MF 790 HW 2 PART 1

This assignment is due on Thursday, September 30th at 8 AM. Problems 1 and 2 are worth 15 points each. Problems 3 and 4 are worth 10 points each.

- **1. Aspects of Brownian Motion.** Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be given and assume W is a Brownian Motion with respect to \mathbb{F} .
- (a) Show that the process $\{X_t := W_t^2 t\}_{t \ge 0}$ is a martingale.
- (b) Show that $\{X_t := W_t^3\}_{t \geq 0}$ has constant expectation in time but is not a martingale. **Hint:** Expand $(W_t W_s)^3 = W_t^3 3W_t^2W_s + 3W_tW_s^2 W_s^3$ and use part (a).
- (c) (analog of $\mathbb{E}\left[S_1\big|S_3\right]$ for Brownian motion) For s < t, compute $\mathbb{E}\left[W(s)\big|W(t)\right]$ **Hint:** Write $W_s = (W_s cW_t) + cW_t$ for some constant c. Find c so that $W_s cW_t$ and W_t are independent.
- **2.** Brownian Motion Squared is Markov. Let $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ be given and assume W is a Brownian Motion with respect to \mathbb{F} . Show that the process $\{X_t := W_t^2\}_{t \geq 0}$ is Markov. Warning and Hint: As W is Markov we know

$$\mathbb{E}\left[g(X_t)\big|\mathcal{F}_s\right] = \mathbb{E}\left[g(W_t^2)\big|\mathcal{F}_s\right] = h(W_s),$$

for some function h. This does NOT imply X is Markov. To show that X is Markov, you must show that h is such that we can write $h(W_s) = \widetilde{h}(X_s)$ for some function \widetilde{h} .

- **3. Other Variations of Brownian Motion.** Do Exercise 3.4 on page 117 of the class textbook (Vol. II).
- **4. A "Normal" Random Walk.** Let $(\Omega, \mathcal{F}, \mathbb{P})$ be given. Let $\{Z_j\}_{j=1,2,\dots}$ be independent identically distributed (iid) $N(\mu, \sigma^2)$ random variables where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Similarly to the random walk discussed in class, define the discrete time stochastic process $X = \{X_n\}_{n=0,1,\dots}$ by

$$X_0(\omega) = 0;$$
 $X_n(\omega) = \sum_{j=1}^n Z_j(\omega);$ $n = 1, 2,$

Thus, X is a random walk which, at each time, moves according to an independent normal random variable. Lastly, define the filtration $\mathbb{F} = \{\mathcal{F}_n\}_{n=0,1,\dots}$ by

$$\mathcal{F}_0 = \{\Omega, \emptyset\}; \qquad \mathcal{F}_n = \sigma(Z_1, \dots, Z_n); \quad n = 1, 2, \dots$$

- (a) For each n, identify the distribution of the quadratic variation process $[X,X]_n$.
- (b) Show with probability one that

$$\lim_{n\uparrow\infty} \frac{[X,X]_n}{n}(\omega)$$

1

exists and identify the limit. Is this limit random? How does it compare to the "regular" random walk?