

AD-A081 680

NAVY UNDERWATER SOUND LAB NEW LONDON CT
VARIANCE TEST FOR NORMALITY. (U)
DEC 69 J SKORY

UNCLASSIFIED NUSL-TM-2211-343-69

F/6 12/1

NL

1 6 1
N
2 1 1 1 1 1

END
DATE
FILED
4-80
DTIC

ADA 081630

LEVEL II O.

(00682)

Copy No. 9

Code No. 2064.2

(14) NUSL-TM-2211-343-69

NAVY UNDERWATER SOUND LABORATORY
NEW LONDON, CONNECTICUT 06320

(6)

VARIANCE TEST FOR NORMALITY

by

(10) John Skory

USL Problem No.
0-A-055-00-00

ZR 011 01 01

(17)

NUSL Technical Memorandum No. 2211-343-69

(11) 30 December 1969

DTIC

ELECTRONIC

1969-12-1969

INTRODUCTION

For sample sizes up to $n = 50$ an ordered sample $(X_1 \dots X_n)$ may be tested for normality by a calculation involving a vector $(V_1 \dots V_n)$ that is tabulated in (1). If V and X are column vectors the test statistic, also tabulated in (1), is

(12) 3

$$W = \frac{(V_i^T X_i)^2}{(X_i - \bar{X})^2} \quad i = 1 \dots n$$

(9) Technical memo

The distribution of W ranges from 0 to 1 where as W approaches 1.0 the distribution of $(X_1 \dots X_n)$ comes closer and closer to being Gaussian.

FILE COPY
DRAFT

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited

80

1 23 086

Incl. 18

to USNUSL Ser 2064-0302

254200

Lm

then be tested by $(V_1 \dots V_{50})$ from the table in (1).

METHOD

The procedure for obtaining $n = 50$ values from N values is:

The i^{th} ordered value of the sample $(X_1 \dots X_{50})$

equals the $(NP_i + \frac{50-i}{49})^{\text{th}}$ ordered value of sample $(X_1 \dots X_N)$

rounding to the nearest integral value.

The vector $P = (P_1 \dots P_{50})$ is obtained from (2) using 50 percent ranks with the tails of the distribution adjusted outward to give a standard deviation for $(X_1 \dots X_{50})$ close to that of the large sample $(X_1 \dots X_N)$ and with W close to 1. The vector P is:

$P = .0048, .0322, .0531, .0729, .0928, .1126, .1325, .1524, .1722, .1921, .2119,$
 $.2318, .2517, .2715, .2914, .3113, .3311, .3510, .3709, .3907, .4106, .4305,$
 $.4503, .4702, .4901, .5099, .5298, .5497, .5695, .5894, .6093, .6291, .6490,$
 $.6689, .6887, .7086, .7285, .7483, .7682, .7880, .8079, .8278, .8476, .8675,$
 $.8873, .9072, .9270, .9469, .9678, .9952$

If $N = 10,000$ the required set $(X_1 \dots X_{50})$ equals the (49th, 323rd, 532nd ... 9952nd) ordered values of the sample $(X_1 \dots X_{10,000})$.

The vector $(V_1 \dots V_{50}) = (-.3751, \dots, -.0035, .0035, \dots, .3751)$ and W would be calculated as usual. From tables of the unit normal distribution a cross-section sample of 50 yielded a sigma of 1.004 (for 50 degrees of freedom) and a W of .9996, both sufficiently close

NUSL Tech Memo
2211-343-69

to unity for general application.

SUMMARY

An alternate method has been outlined to test if a large sample is Gaussian in distribution. Instead of a chi squared test of fit a new statistic W is evaluated using a cross-section sample of 50 from a much larger sample of data. If the large sample is at least 100, the technique yields reliable results which may be assessed for significance against tabulated percentiles of W.

John Skory

JOHN SKORY
Math Statistician

REFERENCES

1. Shapiro, S.S., and Wilk, M.B., "An Analysis of Variance Test for Normality," *Biometrika*, 52, 3 and 4, p 591, (1965).
2. Failure Distribution Analyses Study, Volume 3, Tables of Plotting Positions, Dept of the Navy, CAI-NY 6052, Contract N0bsr-89126, AD631527, (1964).

Accession For	
PTIS GRAM	
DDC TAB	
Unannounced	
Justification	
2011-02 file	
By _____	
Distribution/ _____	
Availability Date _____	
Dist.	Available
A	special