# Géométrie différentielle Résumé de cours (III)

# **III - Surfaces**

# 1 - Nappe paramétrée de $\mathbb{R}^3$

Une nappe paramétrée de  $\mathbb{R}^3$  c'est une application  $\varphi$  d'un ouvert U de  $\mathbb{R}^2$  à valeur dans  $\mathbb{R}^3$ .



Les génératrices de la nappe sont les courbes u =constante (en bleu) et v =constante (en rouge)

On note 
$$M(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$$
 l'image du point  $(u,v) \in U$  par  $\varphi$ .

## Exemple 1 : Sphère de centre 0 et de rayon R

$$\varphi: \begin{bmatrix} 0, \pi \end{bmatrix} \times \begin{bmatrix} 0, 2\pi \end{bmatrix} \to \mathbb{R}^3$$

$$(\theta, \varphi) \to (x, y, z) \text{ telle que } \begin{cases} x = R \sin \theta \cos \varphi \\ y = R \sin \theta \sin \varphi \\ z = R \cos \theta \end{cases}$$

On représente sur la sphère

- \* les courbes à  $\theta$  constant (les parallèles)
- \* les courbes à  $\varphi$  constant (les méridiens)



#### Exemple 2 : Tore de rayons R et r

$$\varphi: \begin{bmatrix} 0, 2\pi \end{bmatrix} \times \begin{bmatrix} 0, 2\pi \end{bmatrix} \to \mathbb{R}^3 \\ (\theta, \varphi) \to (x, y, z) \text{ telle que } \begin{cases} x = (R + r\cos\theta)\cos\varphi \\ y = (R + r\cos\theta)\sin\varphi \\ z = r\sin\theta \end{cases}$$



#### 2 - Changement de paramétrage

C'est une bijection d'un ouvert V de  $\mathbb{R}^2$  dans U.  $V \xrightarrow{f} U \xrightarrow{\varphi} \mathbb{R}^3$   $(u,v) \xrightarrow{\varphi} (\varphi \circ f)(\alpha,\beta)$ 

Exemple : autre paramétrage de la sphère :



autre paramétrage de la demi-sphère :

$$\varphi: \begin{bmatrix} 0, R \end{bmatrix} \times \begin{bmatrix} 0, 2\pi \end{bmatrix} \to \mathbb{R}^3$$
 telle que 
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = \sqrt{R^2 - r^2} \end{cases}$$

Paramétrage de Mercator pour la sphère :



Les courbes  $v = \text{constante} \times u$  sont les loxodromies (en noir) :

Elles font un angle constant avec les génératrices (les méridiens et les parallèles)



#### 3 - Vecteurs tangents - Plan tangent

Soit  $\varphi$   $U \subset \mathbb{R}^2 \to \mathbb{R}^3$  une nappe paramétrée <u>de classe  $C^1$ </u> et  $M(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$  l'image de (u,v) par  $\varphi$ .

Pour tout  $u_0$ , l'application  $v \to M(u_0, v)$  est une courbe de  $\mathbb{R}^3$  contenue dans la surface.

Son vecteur vitesse  $\frac{\partial M}{\partial v}(u_0, v_0)$  est donc tangent à la surface en  $M(u_0, v_0)$ . Idem pour  $\frac{\partial M}{\partial u}(u_0, v_0)$ .

Si ces vecteurs ne sont pas colinéaires, on dit que la nappe est régulière en  $M\left(u_{\scriptscriptstyle 0},v_{\scriptscriptstyle 0}\right)$ 

Elle a alors un plan tangent en  $M(u_0, v_0)$ , dirigé par ces 2 vecteurs,

et le vecteur  $\overrightarrow{N} = \frac{\partial M}{\partial u} \wedge \frac{\partial M}{\partial v}$  est un vecteur normal à la surface.

En posant  $\overrightarrow{N} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ , l'équation du plan tangent est  $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ 



# 4 - Aire d'une nappe paramétrée

Soit  $\varphi$   $U \subset \mathbb{R}^2 \to \mathbb{R}^3$  une nappe paramétrée <u>de classe C<sup>1</sup></u>, <u>régulière</u>,  $M(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$  l'image de (u,v) par  $\varphi$ .

Au premier ordre,  $M\left(u_{0}+\alpha,v_{0}\right)\approx M\left(u_{0},v_{0}\right)+\alpha.\frac{\partial M}{\partial u}\left(u_{0},v_{0}\right)$ , et  $M\left(u_{0},v_{0}+\beta\right)\approx M\left(u_{0},v_{0}\right)+\beta.\frac{\partial M}{\partial v}\left(u_{0},v_{0}\right)$ 

On approche donc l'aire de la cellule

$$\left\{ M\left(u,v\right) / u_0 \leqslant u \leqslant u_0 + \alpha , v_0 \leqslant v \leqslant v_0 + \beta \right\}$$

par l'aire du parallélogramme construit sur

$$M(u_0, v_0), \alpha \frac{\partial M}{\partial u}(u_0, v_0) \text{ et } \beta \frac{\partial M}{\partial v}(u_0, v_0).$$

Cette aire est 
$$\alpha \beta \left\| \frac{\partial M}{\partial u} \wedge \frac{\partial M}{\partial v} \right\| = \alpha \beta \left\| \overrightarrow{N} \right\|$$

On admet que l'aire de la nappe est

$$A = \iint_{U} \left\| \frac{\partial M}{\partial u} \wedge \frac{\partial M}{\partial v} \right\| du \ dv = \iint_{U} \left\| \overrightarrow{N} \right\| du \ dv$$

Exemples : Aire d'une sphère de rayon R :  $A = 4\pi R^2$ Aire d'un tore de rayons r et R.



#### 5 - Intégrale d'un champ scalaire

Soit  $\varphi$   $U \subset \mathbb{R}^2 \to \mathbb{R}^3$  une nappe paramétrée <u>de classe C<sup>1</sup></u>, <u>régulière</u> et  $f : \mathbb{R}^3 \to \mathbb{R}$  un champ scalaire.

Soit  $M(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$  l'image de (u,v) par  $\varphi$  et  $\mathcal{S}$  e support de  $\varphi$  (la surface)

L'intégrale de f sur la surface  $\varphi$  est  $\iint_U f(M(u,v)) \left\| \frac{\partial M}{\partial u} \wedge \frac{\partial M}{\partial v} \right\| du dv$ .

On la note  $\iint_U f(M) \|\overrightarrow{N}\| dudv$  ou encore  $\int_{\mathcal{S}} f dS$ .

Exemple : l'abscisse du centre de gravité de la surface (supposée homogène) est  $x_G = \frac{\iint_{\mathcal{S}} x \ dS}{\iint_{\mathcal{S}} dS} = \frac{\iint_{U} x \|\overrightarrow{N}\| du dv}{\text{Aire de } \mathcal{S}}$ 

# **6 - Graphe d'une fonction de** $\mathbb{R}^2$ dans $\mathbb{R}$

Soit  $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ . Son graphe est l'ensemble des  $M = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$  tels que  $\begin{pmatrix} x \\ y \end{pmatrix} \in U$  et z = f(x, y).

Équation paramétrique  $\begin{cases} x = x \\ y = y \end{cases}$  Exemple : le paraboloïde hyperbolique z = x y z = f(x, y)

En un point régulier,  $\frac{\partial M}{\partial x} = \begin{pmatrix} 1 \\ 0 \\ \frac{\partial f}{\partial x} \end{pmatrix}$  et  $\frac{\partial M}{\partial y} = \begin{pmatrix} 0 \\ 1 \\ \frac{\partial f}{\partial y} \end{pmatrix}$ . Un vecteur normal est donc  $\frac{\partial M}{\partial x} \wedge \frac{\partial M}{\partial y} = \begin{pmatrix} -\frac{\partial f}{\partial x} \\ -\frac{\partial f}{\partial y} \\ 1 \end{pmatrix}$ 

et le plan tangent a comme équation (en X,Y,Z):  $-(X-x)\frac{\partial f}{\partial x}-(Y-y)\frac{\partial f}{\partial y}+(Z-f(x,y))=0$ .

Exemple:

le plan tangent en  $\begin{pmatrix} x \\ y \\ xy \end{pmatrix}$  au paraboloïde z = x y coupe le paraboloïde en 2 droites  $\begin{cases} X = x \\ Y = t \\ Z = x \end{cases}$  et  $\begin{cases} X = t \\ Y = y \\ Z = y \end{cases}$ 





## 7 - Équation cartésienne

Soit  $f: \mathbb{R}^3 \to \mathbb{R}$ 

L'ensemble des  $M = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$  tels que f(M) = f(x, y, z) = 0 est une surface  $\mathcal{S}$  définie implicitement.

Plan tangent, vecteur normal.

Si 
$$M = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 est un point de  $\mathcal{S}$  et si  $\overline{\text{grad } f} = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$  n'est pas nul en  $M$ , alors c'est un vecteur normal à  $\mathcal{S}$  en  $M$ .

Exemples

| Exemples                |                                                                                                                                                                                                                                  |                                                                                                                                                                                                |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Équation cartésienne                                                                                                                                                                                                             | Équations paramétriques                                                                                                                                                                        |
| Sphère                  | $x^2 + y^2 + z^2 = R^2$                                                                                                                                                                                                          | $[R\cos(\phi)\sin(\theta), R\sin(\phi)\sin(\theta), R\cos(\theta)], \phi = 02\pi, \theta = 0\pi$                                                                                               |
| Ellipsoïde              | $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$                                                                                                                                                                        | $[a\cos(\phi)\sin(\theta),b\sin(\phi)\sin(\theta),c\cos(\theta)],\phi=02\pi,\theta=0\pi$                                                                                                       |
| Hyperboloïde à 2 nappes | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$                                                                                                                                                                       | $[a\cos(\phi)\sinh(\theta),b\sin(\phi)\sinh(\theta),c\cosh(\theta)],\phi=02\pi,\theta=0\infty$ $[a\cos(\phi)\sinh(\theta),b\sin(\phi)\sinh(\theta),-c\cosh(\theta)],\phi=02\pi,\theta=0\infty$ |
| Hyperboloïde à 1 nappe  | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = +1$                                                                                                                                                                       | $[a\cos(\phi)\cos h(\theta),b\sin(\phi)\cosh(\theta),c\sinh(\theta)],\phi=02\pi,\theta=-\infty\infty$                                                                                          |
| Cône elliptique         | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$                                                                                                                                                                        | $[a\cos(\phi)t, b\sin(\phi)t, t], \phi = 02\pi, t = -\infty\infty$                                                                                                                             |
| Paraboloïde             | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$                                                                                                                                                                                | $[a\cosh(\phi)t, b\sinh(\phi)t, ct^2], \phi = -\infty\infty, t = 0\infty$                                                                                                                      |
| hyperbolique            | $\frac{a^2}{a^2} - \frac{b^2}{b^2} - \frac{c}{c}$                                                                                                                                                                                | $[-a\cosh(\phi)t,b\sinh(\phi)t,ct^2],\phi=-\infty\infty,t=0\infty$                                                                                                                             |
|                         |                                                                                                                                                                                                                                  | $[a \sinh(\phi)t, b \cosh(\phi)t, -ct^2], \phi = -\infty\infty, t = 0\infty$                                                                                                                   |
|                         |                                                                                                                                                                                                                                  | $[a \sinh(\phi)t, -b \cosh(\phi)t, -ct^2], \phi = -\infty\infty, t = 0\infty$                                                                                                                  |
| Paraboloïde elliptique  | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$                                                                                                                                                                                | $[a\cos(\phi)t, b\sin(\phi)t, ct^2], \phi = 02\pi, t = 0\infty$                                                                                                                                |
| Tore                    | $(x^2 + y^2 + z^2 - R^2 - r^2)$                                                                                                                                                                                                  | $\Big)^2 = 4R^2 \left( r^2 - z^2 \right)$                                                                                                                                                      |
|                         | ou $(x^2 + y^2 + z^2 + R^2 - r^2)^2 = 4R^2(x^2 + y^2)$<br>ou $\rho = R \pm \sqrt{r^2 - z^2}$ en coord. cylindriques $[(R + r\cos\theta)\cos\varphi, (R + r\cos\theta)\sin\varphi, r\sin\theta], \theta = 02\pi, \varphi = 02\pi$ |                                                                                                                                                                                                |
|                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                |
|                         |                                                                                                                                                                                                                                  |                                                                                                                                                                                                |