Nome e Cognome (leggibili):	
Matricola:	

Geometria e Algebra (Prova scritta 24-07-2023)

Punteggio: ____ /32

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

$\begin{cases} 2x + 3y + 5z + t = 1 \\ 2x + 6y + z + t = 2 \\ x + y + z + t = 3 \end{cases}$		(2x + 2x + 5x + t - 1)
$\begin{cases} x + y + z + t = 3 \end{cases}$		$\begin{cases} 2x + 5y + 5z + t = 1\\ 2x + 6y + z + t = 2 \end{cases}$
		$\begin{cases} 2x + 6y + z + t - 2 \\ x + y + z + t = 3 \end{cases}$
	_	

ja j . ne / ne un endomornam	no. La funzione f è diagonali	zzabne: Quan sono i suoi a	autovettoii:

Esercizio 5 (6	punti)
Siano $A = (1, 0, 0)$ da $A \in B$.	e $B = (1, 1, 1)$ punti dello spazio. Determinare l'equazione del luogo geometrico dei punti equidistanti

	= V se e solo dim(

Esercizio 7 (3 punti) La matrice di passaggio è invertibile? Se sì dimostrare, altrimenti fornire un controesempio.	_
La matrice di passaggio e invertibile? Se si dimostrare, attrimenti fornire un controesempio.	_

Nome e Cognome (leggibili):		
Matricola:	Punteggio:	/32

Geometria e Algebra (Prova scritta 23-10-2023)

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

(2m+2m+4-1)
$\begin{cases} 2x + 3y + 5z + t = 1\\ 2x + 5y + z + 2t = 2\\ x + y + z + t = 1 \end{cases}$
$\begin{cases} 2x + 6y + z + 2t = 2 \\ x + y + z + t = 1 \end{cases}$

Esercizio 5 (6 punti)
Sia $f: V \to V$ un endomorfismo lineare avente 3 e 4 come unici autovalori. Sapendo che f è diagonalizzabile e che $\dim(V) = 3$ determinare le possibili molteplicità algebriche e geometriche di 3 e 4.

Esercizio 6 (5 punti) Qual è la dimensione della somma diretta di due sottospazi? Dimostrare la formula.	_

Esercizio 7 (3 punti) Sia $f: V \to W$ un isomorfismo lineare. Dimostrare che f^{-1} è a sua volta un isomorfismo lineare.

Nome e Cognome (leggibili):		
Matricola:	Punteggio:	_ /32

Geometria e Algebra (Prova scritta 22-01-2024)

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

nazioni lineari.	sottospazio generat			

$\begin{cases} 2x + y + 5z + t = 1\\ 2x + 5y + z + 2t = 2\\ x + y + z + t = 1 \end{cases}$	

Г

Esercizio 5 (6 punti)
Sia $f: V \to V$ un endomorfismo e siano $\mathcal{R}, \mathcal{R}'$ due riferimenti di V . Dimostrare che le matrici associate a \mathcal{R} e \mathcal{R}' sono simili.
simili.

Esercizio 6 (5 punti) Qual è la dimensione della somma diretta di due sottospazi? Dimostrare la formula.	_

Esercizio 7	(3 punti)		
Sia	e /	.\	.\
D 1 1 1		$(z) \in \mathbb{R}^3 \mapsto (x - y + \lambda, y - z, z - z)$	
Per che valori fismo)?	di λ , la funzione f è un endom	norfismo? Per quali valori è inieti	civa (possibilmente anche non un endom

Nome e Cognome (leggibili):	
Matricola:	

Geometria e Algebra (Prova scritta 19-02-2024)

Punteggio: ____ /32

- Rispondere in maniera **esaustiva** alle seguenti domande riportando nelle apposite sezioni vuote il **procedimento** utilizzato nella forma più precisa e meticolosa possibile.
- NON STACCARE I FOGLI.
- NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

rate ia definizione di sociospazzo generato da un instenie di veccori e dimostrare la caracterizzazzone in termini di inazioni lineari.	Esercizio 1 (6 punti)					
	Dare la definizione di sottospazio generato da un insieme di vettori e dimostrare la caratterizzazione in termini di co Dinazioni lineari					

Esercizio 2 (5 punti)
Dimostrare che:
• gli autospazi sono sottospazi vettoriali
ullet se l'equazione caratteristica di un endomorfismo f ammette tutte le radici reali e distinte, allora f è diagonalizzabile
• che il viceversa del punto precedente non vale

Esercizio 3 (3 punti) Determinare il rango della matrice	(4 0 1 0 1)
	$A = \begin{pmatrix} 4 & 0 & 1 & 0 & 1 \\ 2 & 2 & 2 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$
Determinare una base per $Ker(F_A)$.	(0 0 0 1 1)

Esercizio 4 (4 punti)	
Sia π : $\begin{cases} x = 2t + 3s \\ y = 1 + 5t + 3s \\ z = 1/2 - 1t + s \end{cases}$ un piano e r : $\begin{cases} x = 4 + r \\ y = 1 + r \\ z = 1/2 - 1r \end{cases}$ passante per l'intersezione e perpendicolare al piano.	una retta. Qual è la loro intersezione? Trovare una retta

 esto rappresenta una	retta).		

Esercizio 6 (5 punti) Sia $f: V \to V$ un endomorfismo iniettivo. l'indipendenza lineare.	Dare la definizione di	funzione iniettiva e dir	nostrare che f conserva