C12P 21/00 A61P 35/00

[12] 发明专利申请公开说明书

[21] 申请号 00121527.2

[43]公开日 2001年2月21日

[11]公开号 CN 1284566A

[22]申请日 2000.8.10 [21]申请号 00121527.2

[71]申请人 中国医学科学院医药生物技术研究所

地址 100050 北京市天坛西里一号

[72]发明人 邵荣光 甄永苏 李电东 胡继兰 金莲舫

[74]专利代理机构 北京科龙环宇专利事务所代理人 杨 厚 孙皓晨

权利要求书1页 说明书5页 附图页数4页

[54] 发明名称 抗肿瘤抗生素力达霉素的制备新方法 [57] 摘要

本发明涉及一种大分子肽类抗肿瘤抗生素力达霉素的制造新方法,由于力 达霉素分子中肽与发色团以非共价键结合,外界条件如有机溶煤、pH、洗脱剂 离子特性、光和热等因家影响其结合并易引起发色团失活,采用羟基磷灰石柱 吸附工艺,缩短流程,避光操作,可产生不同于一般离子交换层析的特殊分离 效果,既提高了制品纯度,也增强了它的稳定性,生物活性实验证明,采用精原细胞法和克隆形成法检测其活性明显优于文献报道的结果,体内对小鼠 H22 肝癌、Lewis 肺癌、C26 结肠癌有显著疗效。

权 利 要 求 书

- 1. 抗肿瘤抗生素力达霉素的制备新方法,其特征是将力达霉素产生菌链霉菌 C-1027 在中性条件下振荡培养发酵,其活性物质经羟基磷灰石和 Sephadex G-75 分离、纯化得到成品。
- 2. 按照权利要求 1 所述的抗肿瘤抗生素力达霉素的制备新方法, 其特征是力达霉素产生菌在高氏 1 号斜面培养基培养, 28°C, 7-10 天, 取一小块接种一级种子(发酵培养基成分包含: 淀粉, 玉米浆, 血胨, 葡萄糖, 无水硫酸镁, 碘化钾, 玉米面, 碳酸钙等, pH7.0), 28°C, 旋转摇床培养 48 小时, 再转种为二级种子, 发酵培养基同一级种子, 28°C, 往返摇床培养 18 小时, 上发酵罐, 28°C, 搅拌 400 转/分, pH6.5-7.0, 发酵 96 小时, 得到所需要的发酵液。
- 3. 按照权利要求 1 所述的抗肿瘤抗生素力达霉素的制备新方法,其特征是将力达霉素产生菌发酵液离心,上清液经硫酸铵沉淀,透析或超滤脱盐,羟基磷灰石柱吸附,洗脱除杂质,Sephadex G-75 柱层析分离,进一步洗脱除杂质,冷冻干燥得到抗肿瘤高活性力达霉素白色粉末精制品。

说 明 书

抗肿瘤抗生素力达霉素的制备新方法

本发明涉及一种大分子肽类抗肿瘤抗生素力达霉素的制备新方法。

力达霉素产生菌 C-1027 是从我国湖南省潜江县土壤中分离得到的链霉菌属菌株(中国医学科学 院医药生物技术研究所菌种保藏室提供),用精原细胞法为向导,微生物学方法追踪,从 2000 株放线菌的发酵液中发现,它不仅具有较强的抗瘤活性,还具有抗革蓝氏阳性菌及革蓝氏阴性菌的作用(C-1027 物质 1987 年申请了日本专利,特愿昭 62-160279,又于 1987 年申请了中国专利,申请号88102750.6)。由该菌株分离得到的抗肿瘤活性物质力达霉素由一个蛋白肽和一个发色团以非共价键结合而成,二者可以拆分,发色团为其主要活性部位,但容易失活,蛋白肽对发色团活性具有保护作用。然而,现有的力达霉素制备技术比较复杂,工艺流程较长,用碱性离子交换树脂分离,力达霉素在分离过程中容易失活,且产量低,直接影响了该物质的抗肿瘤功效。

本发明之目的是,通过改进制备工艺,以获得稳定性好、纯度较高、疗效更佳的抗肿瘤抗生素力达霉素。

本发明之内容与要点:

一、菌种生物学特征鉴别

力达霉素产生菌 C-1027 菌株通常在链霉菌分类用的培养基中均能生长。

其形态特征是: 孢子丝直至波曲 (图 1),成熟的孢子丝链有 10-30 个或更多的孢子,孢子呈柱形,表面光滑 (图 2);

其培养特征是:在各种合成的或有机的培养基上,往往有浅粉软皮色乃至榛子色彩,基内菌丝一般无色,日久稍变乳脂色,无可溶性色素,亦不产生黑色素;

其生理特征是:产 H_2S 、明胶液化、牛乳凝固及胨化、硝酸还原均为阳性反应,温度在 $28-32^{\circ}$ C 时丰茂,生长迅速, 45° C 不生长;

其碳原利用情况:L-阿拉伯糖、D-木糖、D-葡萄糖、D-果糖、L-鼠李糖、D-甘露醇、D-半乳糖等均能促进生长良好;蔗糖、肌醇、乳糖、纤维素、卫茅醇、棉籽糖等对生长不起作用。

二、发酵培养

将力达霉素产生菌冷干管中加 0.7ml 无盐水, 使之形成菌悬液, 用白金耳接种于高氏 1 号斜面培养基培养, 28°C, 7-10 天, 表面生长白色气生菌丝, 取一

小块接种一级种子 100ml/500ml 三角瓶(发酵培养基成分可以为:淀粉 1%, 玉米浆 0.5%,血胨 0.5%,葡萄糖 0.5%,无水硫酸镁 0.02%,碘化钾 0.06%,玉米面 1.5%,碳酸钙 0.4%,自来水配制,pH7.0,15 磅消毒),28°C,旋转摇床培养 48 小时,再转种 5%于 1000ml/5000ml 立瓶中,为二级种子,发酵培养基同一级种子,28°C,往返摇床培养 18 小时,上 200L 发酵罐,装量 100L,接种量 2%,加 0.03%泡敌为消沫剂,罐压 0.04,28°C,搅拌 400 转/分,气流 1/1,pH6.5-7.0,发酵 96 小时,得到所需要的发酵液。

发酵液生物学活性检测,八叠球菌为检定菌,采用杯碟法(单层培养基10ml),抑菌圈直径20-24mm,精原细胞法检测结果,X10000(发酵液稀释一万倍)仍为阳性。

三、分离提取

由上述发酵液产生的活性物质力达霉素,其分离提取新工艺主要采用羟基磷灰石柱层析,凝胶过滤层析方法进行。本发明采用羟基磷灰石柱层析,主要考虑到力达霉素是一个不稳定的化合物,对紫外光、热等敏感,在水溶液室温条件下其活性易丢失。由于力达霉素蛋白肽与发色团以非共价键结合,外界条件如有机溶媒、pH、离子强度和离子交换剂等影响它们的结合并引起发色团的失活。羟基磷灰石层析是通过多因素分离蛋白的:羟基磷灰石钙离子对蛋白质的亲和力、蛋白质的等电点、三维结构的差异、洗脱剂的离子特性、蛋白质极性基团和羟基磷灰石极性位点的相互作用等,这些综合因素使羟基磷灰石具有不同于离子交换层析的特殊分离效果而不影响力达霉素的活性。本发明同时简化操作流程,尽可能减少了活性物质力达霉素在水溶液中的滞留时间,避光操作,以免失活。

具体步骤是:将存在于发酵液中力达霉素物质离心去菌丝,取上清液加硫酸铵盐析,然后将含有力达霉素的沉淀物离心分离。将离心沉淀物溶于水或磷酸缓冲液,用透析或超滤脱盐,进一步用羟基磷灰石进行吸附,然后再洗脱除去杂质。洗脱液经冷冻干燥或超滤浓缩后,再经 Sephadex G-75 柱层析,进一步除去杂质,以获得高纯度的力达霉素。

其制备方法如工艺流程(图3)所示。

鉴别:上述方法得到的力达霉素精制液冷冻干燥后,得到力达霉素的白色粉末。

本发明所得到的力达霉素为单一物质,SDS-聚丙烯凝胶电泳显示单一带(图 4),高压液相色谱为单一峰(图 5),此外,毛细管电泳色谱也为单一峰(图 6),均可得到证实。

本发明所得到的力达霉素物质,其理化性质与文献报道的力达霉素物质一 致。

四、活性测定

精原细胞法测定,选用雄性昆明小鼠,睾丸内注射不同剂量的力达霉素,注射 3 天后处死动物,取标本,固定,包埋,切片,染色,最后在显微镜下观察。结果显示,力达霉素对精原细胞有强烈抑制作用,最低有效浓度为0.001µg/ml,比文献报道的力达霉素(0.0039µg/ml)强 3.9 倍。

体外克隆生成测定法检测,取肿瘤细胞接种于 96 孔培养板中,每孔 50 个细胞,培养 24 小时后加不同浓度的力达霉素处理,7 天后倒置显微镜下数细胞集落数。结果显示,力达霉素对多种肿瘤细胞具有很强的杀伤作用,杀伤力在10⁻¹⁶mol/L 水平,包括人鼻咽癌 KB 细胞、人肝癌 BEL-7402 细胞、人结肠癌 HT-29 细胞和人胃癌 BGC-823 细胞等(见表一)。本发明制备的力达霉素比文献报道的力达霉素具有更强力的抗肿瘤活性,如对 KB 细胞,本发明的半数抑制浓度为 2.6×10⁻¹⁶ mol/L,文献报道的为 1.0×10⁻¹² mol/L(0.0001µg/ml),对 HT-29 细胞,本发明的半数抑制浓度为 1.1×10⁻¹⁶ mol/L,文献报道的为 1.3×10⁻¹¹ mol/L,比本发明均大 3 个数量级以上。

表一、力达霉素的体外抗肿瘤活性(克隆形成法测定)

肿瘤细胞系	半数抑制浓度(mol/L)	
人鼻咽癌 KB 人结肠癌 HT-29 人肝癌 BEL-7402 人胃癌 BGC-823	2.6×10^{-16} 1.1×10^{-16} 3.2×10^{-16} 1.9×10^{-16}	

体内小鼠移植性结肠癌的疗效实验,使用 BALB/c 小鼠,在腋窝皮下接种结肠癌 26 的瘤组织小块,接种 24 小时后静脉内注射不同剂量的力达霉素,1 次或 3 次,间隔 3 天,接种肿瘤 10 天后处死动物,取肿瘤块,称重,计算肿瘤抑制率。实验结果表明:力达霉素对小鼠结肠癌有非常明显的疗效,一次给药,0.15 mg/kg 剂量,肿瘤抑制率为 84%,三次给药,0.1 mg/kg 剂量,肿瘤抑制率为 94%。采用等毒性剂量(1/4 半数致死量 LD50 或 1/8 LD50),单次静脉内注射给药的治疗方案进行比较,在相当于 1/4 LD50 或 1/8 LD50 剂量时,力达霉素的肿瘤抑制率明显高于临床常用的抗肿瘤药物表阿霉素和丝裂霉素 C (见表 二)。

表二、力达霉素、表阿霉素和丝裂霉素 C 对小鼠结肠癌 C26 的影响

	剂 量 (mg/kg)	相当毒性剂量 (剂量/LD50)	肿瘤抑制率
力达霉素 0.1 0.05	1/4	. 76	
	1/8	70	
表阿霉素 5.2 2.6	5.2	1/4	48
	1/8	38	
丝裂霉素 C 1.2 0.6	1.2	1/4	42
	0.6	1/8	39

药效学与急性毒性研究,结果表明:力达霉素对小鼠 H22 肝癌与 Lewis 肺癌均有高度疗效。静脉注射力达霉素的急性毒性 LD50 为 0.4mg/kg,力达霉素对 H22 肝癌的 ED50 (50%抑瘤率)为 0.013mg/kg,化疗指数为 31;静脉注射丝裂霉素的 LD50 为 5mg/kg,丝裂霉素对 H22 肝癌的 ED50 为 0.78mg/kg,化疗指数为 6.4。力达霉素的化疗指数明显高于丝裂霉素。

本发明的优点与积极效果是:

制备流程短,比文献报道少四个步骤;产品稳定性好,纯度产率高,14.5mg/每升发酵液,比文献报道的 6.2mg/每升发酵液提高 1.3 倍;成本低,短流程和高产率减少了生产材料;产品活性强,比文献报道的力达霉素强 1000 倍以上(克隆生成半数抑制浓度),精原细胞法显示,力达霉素对精原细胞的抑制率比现有技术制备的强 3.9 倍。

力达霉素物质制备新方法实施例如下:

将力达霉素产生菌冷干管中加 0.7ml 无盐水,使之形成菌悬液,用白金耳接种于高氏 1 号斜面培养基培养,28°C,7-10 天,表面生长白色气生菌丝,取一小块接种一级种子 100ml/500ml 三角瓶(发酵培养基成分为:淀粉 1%,玉米浆 0.5%,血胨 0.5%,葡萄糖 0.5%,无水硫酸镁 0.02%,碘化钾 0.06%,玉米面 1.5%,碳酸钙 0.4%,自来水配制,pH7.0,15 磅消毒),28°C,旋转摇床培养 48 小时,再转种 5%于 1000ml/5000ml 立瓶中,为二级种子,发酵培养基同一级种子,28°C,往返摇床培养 18 小时,上 200L 发酵罐,装量 100L,接种量

2%,加 0.03%泡敌为消沫剂,罐压 0.04, 28℃,搅拌 400 转/分,气流 1/1, pH6.5 -7.0,发酵 96 小时,得到所需要的发酵液。

取发酵液 10 L, 离心,取上清液,用 HCl 调 pH4.0,加硫酸铵 4.5 Kg, 8°C 搅拌 3 小时,析出的力达霉素离心分离 (4°C,8000 转/分,15 分钟),沉淀物加 200 冷水溶解,透析,离心除去不溶物,上清液经羟基磷灰石柱吸附,0.001M磷酸缓冲液 (pH6.8)洗脱,活性部分冷冻干燥,得粗制品 1500 mg。粗制品溶于水,经 Sephadex G-75 柱层析,活性部分冷冻干燥,得到 145 mg 抗肿瘤高活性力达霉素白色粉末精制品,其理化性质及生物学特征如前所述。

附图说明:

- 图 1 是力达霉素产生菌 C-1027 菌株孢子丝 (X400);
- 图 2 是力达霉素产生菌 C-1027 菌株孢子形态 (X1200);
- 图 3 是力达霉素制备新工艺流程:
- 图 4 是 SDS-聚丙烯凝胶电泳谱:

其中: 1一力达霉素

2一标准蛋白

图 5 是高压液相色谱;

图 6 是毛细管电泳色谱。

说明书附图

图 1

图 2

发酵液

↓8000 转/每分钟, 4°C, 离心

上清液

↓pH4.0,饱和硫酸铵,8°C

硫酸铵沉淀

↓H₂O,8°C,透析

透析液

↓羟基磷灰石, pH6.8, 8°C, 洗脱 洗脱液

↓冷冻干燥

冻干品

↓H₂O, Sephadex G-75, 8°C, 洗脱 洗脱液

↓冷冻干燥

力达霉素

图 3

图 4

图 5

图 6