Week 2: Operators

...

2023年2月20日

1 Operators

表 1: Operators

$\label{eq:Which dimensions} Which dimensions (positions) to modify on Single (the j-th) dimension value function$					all	per-bit crossover rate	${\rm random}\ m$ ${\rm positions}$	k-points Cut into (k+1) segments, and
					All the d dimensions.	For each dimension (position), change by independent probability p .	Randomly select m positions.	alternatively select positions from even segments.
Name	Parameters	#Input	#Output	Function				
exchange two values	-	$x_1^{(j)}, x_2^{(j)}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{cases} x'^{(j)} = x_2^{(j)} \\ x''^{(j)} = x_1^{(j)} \end{cases}$		Uniform Crossover (for binary values) (p10) Global Discrete Recombination (for real values) (p12)		k-point Crossover (for binary values) (p7-8) Multi-point discrete Recombination (for real values) (p11)
weighted arithmetic average	-	$x_1^{(j)}, x_2^{(j)}$	$\begin{array}{c} 2 \\ x'^{(j)} , x''^{(j)} \end{array}$	$\begin{cases} x^{(j)} = \alpha \cdot x_1^{(j)} + (1 - \alpha) \cdot x_2^{(j)} \\ x''^{(j)} = (1 - \alpha) \cdot x_1^{(j)} + \alpha \cdot x_2^{(j)} \\ \text{weight } \alpha \sim U(0, 1) \end{cases}$	Arithmetic Recombination (p14-15)		Single Arithmetic Recombination (for $m=1$) (p18-19)	Simple Arithmetic Recombination (for $k=2$) (p16-17)
heuristic escape	-	$x_1^{(j)}, x_2^{(j)}$	$1 \\ x'^{(j)}$	$x'^{(j)} = x_2^{(j)} + \alpha \cdot (x_2^{(j)} - x_1^{(j)})$ escape weight $\alpha \sim U(0, 1)$	Heuristic Recombination (p20)			
simplex	-	$x_i^{(j)} \forall i \in [1, n]$	1 $x'^{(j)}$	$x'^{(j)} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i^{(j)} - x_n^{(j)} \right) + \left(x_1^{(j)} - x_n^{(j)} \right)$	Simplex Recombination (p20)			
geometric average	-	$x_1^{(j)}, x_2^{(j)}$	$1 \\ x'^{(j)}$	$x'^{(j)} = \sqrt{x_1^{(j)} \cdot x_2^{(j)}}$	Geometric Recombination (p21)			
quadratic	-	$\begin{bmatrix} 3 \\ x_1^{(j)}, x_2^{(j)}, x_3^{(j)} \end{bmatrix}$	$x'^{(j)}$	$x^{\prime(j)}=\dots$	Quadratic Recombination (p21-22)			
bit flipping	-	$x_1^{(j)} \in \{0, 1\}$	1 $x'^{(j)}$	$x^{\prime(j)} = 1 - x_1^{(j)}$		Bitwise Mutation (usually $p = \frac{1}{d}$) (p27)	One-bit Flipping / One-bit Mutation (for $m=1$) (p26) Multi-bit Flipping (for $m>1$) (p26)	
another random integer	image S	$x_1^{(j)} \in S$	1 $x'^{(j)}$	$x'^{(j)} = X' \\ X' \in (S - \{x_1^{(j)}\})$		Random Mutation (p28)		
random real	lower bound lb_j upper bound ub_j	$x_1^{(j)} \in \mathbb{R}$	$x'^{(j)}$	$ x'^{(j)} = X' $ $X' \sim U(lb_j, ub_j) $		Uniform Mutation (p32)		
Gaussian	standard deviation σ lower bound lb_j upper bound ub_j	$\begin{matrix} 1 \\ x_1^{(j)} \end{matrix}$	1 $x'^{(j)}$	$\begin{aligned} x'^{(j)} &= curtailing(x_1^{(j)} + \Delta, lb_j, ub_j) \\ &\text{mutation step-size } \Delta \sim \mathcal{N}(0, \sigma^2) \end{aligned}$	Nonuniform Mutation using Gaussian (p33-35)			
Cauchy	scale t lower bound lb_j upper bound ub_j	$\begin{matrix} 1 \\ x_1^{(j)} \end{matrix}$	$x'^{(j)}$	$x'^{(j)} = curtailing(x_1^{(j)} + \Delta, lb_j, ub_j)$ mutation step-size $\Delta \sim \mathcal{C}(0, t)$	Nonuniform Mutation using Cauchy (p33-35)			