基于PLC的船舶电站控制系统设计与应用

中国船级社实业公司广州分公司 **杜一**民

【摘要】随着社会科技的持续发展, 电气自动化控制系统在国内外得到了广泛应用。基于此背景, 本文选取西门子S7-200系列可编程控制 器,结合HGM6510控制模块,实现船舶电站自动化控制。除此之外,笔者从硬件设计、软件设计以及通信实现这三方面对PLC的船舶电站 控制系统设计进行详尽阐述,并简要阐述其控制系统实际应用。

【关键词】PLC;船舶电站;控制系统;系统设计

DOI:10.19353/j.cnki.dzsj.2018.16.074

引言

现阶段,我国工业自动化产业正处于快速发展阶段。PLC作为 电气自动化控制系统的主要组成部分, 现已成为电气领域最具发展 潜力的高新技术产品之一。此外,由于现代PLC控制技术具有适用 范围广、抗干扰能力强及操作简单这三大优势,因此该技术被广泛 应用于自动化控制系统领域。同理可知,船舶自动化控制系统亦是 相同。当前我国船舶电站控制系统已实现部分自动化控制,即继电 器系统及电子电路控制系统,但这两种系统存在线路复杂、抗干扰 能力差、维修工作量大等问题。基于此,为有效提高船舶安全性、 生产效率,通常采用PLC控制技术对船舶进行自动化控制。

1.基于PLC的船舶电站控制系统设计

首先,PLC控制系统主要由信号处理板、电源板及操作控制显 示板三大部分组成, 所需设备主要有PLC、信号处理板、电源等, 系统参数则是由PLC编程器经在线监视及修改而来。PLC在整个电 站控制系统中主要用于发电机组运行控制、故障处理、调节频率, 从而保证机组整体的正常运行。

1.1 硬件设计

控制系统的硬件主要由PC上位机、PLC、智能模块及发电机等部 分构成,具体系统结构如图1所示。PLC是电站控制系统的重要组成部 分,此外,发电机组智能模块亦是核心设备之一。PC上位机的主要功 能是在线监控发电机组的运作状态,它还能直接对船舶电站部分功能 进行控制监测。监控界面能直接显示船舶电站运行状态。

图1 船舶电站的系统结构图

1.2 软件设计

PLC能有效控制发电机组智能控制模块,从而间接完成对发电 机和发动机的全面控制,除此之外,电机自动启动及并车、自动结 束运转等功能亦需借助PLC控制技术来实现。在发电机及电网的数 据采集过程中, 需利用上位机监控软件, 实现在线监控, 监测结束 后PLC再将发电机和发动机的运行参数传输至上位机监控软件,最 后通过显示界面呈现出船舶机电的工作状态。

由上文可知,船舶自动化控制系统的软件主要指PLC控制软件 及上位机监控界面软件,其中, PLC控制软件的主要工作内容是数 据处理及控制执行;上位机监控界面软件的工作内容是显示船舶实 时状态的相关数据,并对故障数据进行预警。

1.3 通信实现

数据通信是实现船舶电站全面控制的主要步骤之一,本文选取 HGM6510控制模块为研究对象,从而对船舶电站系统的应用进行探 究。首先,HGM6510控制模块与PLC、PLC与上位机间均存在通信协 议,其中HGM6510控制模块与PLC间的通信协议需借助 CAN总线通 信协议来完成。船舶电站控制系统设备间的通信状态是影响控制系统 整体性能的关键因素,系统设备之间通信协议结构如图2所示。

图2 船舶电站控制系统设备之间通信协议

2.实际应用

不同种类的船舶电站控制系统需配置对应的柴油发电机组,此 外,机组的运行时间还需根据实际情况而定。每一个控制系统都必 须对在线监视机组的运行参数及其工况做出适当调整。比如脉冲宽 度的调整需控制在0.5s-2s范围内,从而使得频差与综合信号相适 应;针对一些陈旧船舶,脉冲宽度的调整范围则需控制在1s-5s范围 内:针对保养不当的船舶, 脉冲宽度的调整范围需控制在5s-20s范围 内,以此保证调速器的有效性。

通常发电机的电压、电流、失压、超速、逆功率的各项整定值 可以允许终端用户根据自身所需进行适当调整。但为保证系统运行 安全,通常在安装调试完毕后,不允许用户自行修改信息。

3.结论

综上所述,PLC控制系统适用范围广、抗干扰能力强、可靠性 高及操作简便, 功能扩展方便, 因此该项技术在船舶电站控制领域 具有十分可观的发展前景。基于此背景,本文以S7-200PLC为例, 对船舶电站控制系统设计进行详尽阐述,从而实现PLC船舶电站控 制系统对系统参数的在线监视与在线修改。除此之外,随着社会科 技的持续发展, 电气自动化控制系统势必会在国内外机电行业得到 广泛应用。

参考文献

[1]张桂臣,任光.基于PLC的船舶主机遥控系统设计与实现[J].船 舶工程,2007,(4):65.

[2]林其明,杨胜国,梁前超,等.大型船舶机舱监测报警通讯系统[J]. 中国修船,2007,(6):31

[3]林华峰,李华,赵克威.船舶电站及电力拖动[]].哈尔滨:哈尔滨 工业大学出版社,2006.