6.1 Worked Out Exercises

- Exercise 6.1 Find the value of x^3 in the group of integers under the operation + (arithmetic addition). Solution In the group of integers under addition, $x^n = x + x + \cdots + x$ (n times). So $x^3 = x + x + x$.
- Exercise 6.2 How many binary operations are needed for a set to satisfy the ring axioms?

 Solution A ring requires two binary operations: one for addition (denoted +) and one for multiplication (denoted ·). So, the set needs two binary operations to satisfy the ring axioms.
- Exercise 6.3 Show that if a group has two identity elements e and f, then e = f. Solution Let e and f be two identity elements of a group G. By definition, for any element $g \in G$, we have:

$$e \cdot g = g$$
 and $f \cdot g = g$.

Also, since e is an identity element, we have $e \cdot f = f$. Substituting f for g, we get:

$$e \cdot f = f$$
 and $f \cdot e = e$.

Thus, e = f, showing that there can only be one identity element in a group.

- Exercise 6.4 Determine the number of binary operations required for a set to form a field.

 Solution A field requires two binary operations: one for addition (denoted +) and one for multiplication (denoted ·). Therefore, two binary operations are needed for a set to form a field.
- Exercise 6.5 In any group, how many trivial subgroups can be identified?

 Solution In any group, there are two trivial subgroups: the subgroup containing only the identity element, {e}, and the group itself, G. These are the only trivial subgroups.
- Exercise 6.6 Verify that the set of roots of $x^4 1 = 0$ satisfies the group axioms under the operation of multiplication.

Solution The equation $x^4 - 1 = 0$ has the solutions x = 1, -1, i, -i, where i is the imaginary unit. The set of roots is $\{1, -1, i, -i\}$.

- 1. Closure: The product of any two elements in $\{1, -1, i, -i\}$ is another element in $\{1, -1, i, -i\}$.
- 2. Associativity: Multiplication is associative for complex numbers.
- 3. *Identity element:* The identity element is 1, since multiplying any element by 1 gives the element itself.
- 4. Inverse elements: Each element has an inverse: $1^{-1} = 1$, $(-1)^{-1} = -1$, $i^{-1} = -i$, and $(-i)^{-1} = i$.

Thus, the set $\{1, -1, i, -i\}$ satisfies the group axioms under multiplication.

Exercise 6.7 Prove that (G, *) is abelian if and only if $(a * b)^2 = a^2 * b^2$ holds for all $a, b \in G$. **Solution** First, assume that (G, *) is abelian. This means that a * b = b * a for all $a, b \in G$. Now, compute:

$$(a*b)^2 = (a*b)*(a*b) = a*(b*a)*b = a*(a*b)*b = a^2*b^2.$$

Thus, if (G, *) is abelian, then $(a * b)^2 = a^2 * b^2$.

Conversely, assume that $(a*b)^2 = a^2*b^2$ holds for all $a, b \in G$. Expanding both sides: $(a*b)^2 = a*(b*a)*b = a^2*b^2$.

Since this holds for all $a, b \in G$, we conclude that a * b = b * a, and therefore (G, *) is abelian.

- **Exercise 6.8** Check whether $(\mathbb{Z}, +, \cdot)$ forms a commutative ring with unity under addition and multiplication.
 - **Solution** The set of integers \mathbb{Z} with addition and multiplication forms a commutative ring with unity. The axioms of a commutative ring with unity are satisfied: Addition and multiplication are commutative and associative. The distributive property holds. The additive identity is 0, and the multiplicative identity is 1. Therefore, $(\mathbb{Z}, +, \cdot)$ is a commutative ring with unity.
- **Exercise 6.9** Prove that the set $\{1, \omega, \omega^2\}$ is an abelian group with respect to multiplication. **Solution** *This was covered in an earlier solution for the set of roots of* $x^3 1 = 0$, which is $\{1, \omega, \omega^2\}$, and is indeed an abelian group under multiplication.