Optimal filtering

Sensor fusion & nonlinear filtering

Lars Hammarstrand

FILTERING: PROBLEM FORMULATION

Consider a time-discrete state space model:

$$p(\mathbf{x}_k | \mathbf{x}_{k-1})$$
 motion model $p(\mathbf{y}_k | \mathbf{x}_k)$ measurement model, and suppose that $\mathbf{x}_0 \sim p(\mathbf{x}_0)$ and $p(\mathbf{x}_k | \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1}) = p(\mathbf{x}_k | \mathbf{x}_{k-1})$

 $p(\mathbf{y}_k|\mathbf{x}_{0:k},\mathbf{y}_{1:k-1})=p(\mathbf{y}_k|\mathbf{x}_k).$

Objective in filtering

• We seek to compute $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ for $k=1,2,3,\ldots$

A NON-RECURSIVE SOLUTION

• We know Bayesian statistics \Rightarrow we can find $p(\mathbf{x}_k|\mathbf{y}_{1:k})!$

Step 1: use Bayes' rule to find

$$p(\mathbf{x}_{0:k}|\mathbf{y}_{1:k}) = \frac{p(\mathbf{y}_{1:k}|\mathbf{x}_{0:k})p(\mathbf{x}_{0:k})}{p(\mathbf{y}_{1:k})} \propto p(\mathbf{x}_0) \prod_{i=1}^k p(\mathbf{y}_i|\mathbf{x}_i)p(\mathbf{x}_i|\mathbf{x}_{i-1})$$

Step 2: marginalize with respect to $\mathbf{x}_{0:k-1}$

$$\rho(\mathbf{x}_k|\mathbf{y}_{1:k}) = \int \rho(\mathbf{x}_{0:k}|\mathbf{y}_{1:k}) \, d\mathbf{x}_{0:k-1}$$

Weakness: complexity grows with k.

A RECURSIVE FILTERING SOLUTION

Methodology

• Recursively compute $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ from $p(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1})$.

 A block diagram illustrating the prediction and update steps that we perform recursively.

THE PREDICTION STEP

Prediction

- Compute $p(\mathbf{x}_k | \mathbf{y}_{1:k-1})$ from $p(\mathbf{x}_{k-1} | \mathbf{y}_{1:k-1})$.
- In this step we use our knowledge regarding \mathbf{x}_{k-1} , obtained from $\mathbf{y}_{1:k-1}$, to predict \mathbf{x}_k .

$$p(\mathbf{x}_{k}|\mathbf{y}_{1:k-1}) = \begin{cases} p(\mathbf{x}_{k}, \mathbf{x}_{k-1}|\mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1} = \int p(\mathbf{x}_{k}|\mathbf{x}_{k-1}, \mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1} \\ = \int p(\mathbf{x}_{k}|\mathbf{x}_{k-1}) p(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1} \end{cases}$$

This is the *Chapman-Kolmogorov* equation.

SELF-ASSESSMENT ON THE PREDICTION STEP

Suppose $x_k = x_{k-1} + q_k$ where $q_k \sim \mathcal{N}(0, 1)$. The uncertainties in $p(x_k | y_{1:k-1})$ are then normally [select a suitable word below] than the uncertainties in $p(x_{k-1} | y_{1:k-1})$.

- smaller
- larger
- neither larger nor smaller

Only one answer applies.

THE MEASUREMENT UPDATE STEP

Measurement update

- Compute $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ from $p(\mathbf{x}_k|\mathbf{y}_{1:k-1})$.
- In this step, we update our knowledge about \mathbf{x}_k using the new measurement \mathbf{y}_k .

assurement
$$\mathbf{y}_k$$
.
$$p(\mathbf{x}_k|\mathbf{y}_{1:k}) = p(\mathbf{x}_k|\mathbf{y}_{1:k}) = \frac{p(\mathbf{y}_k|\mathbf{x}_k, \mathbf{y}_{1:k})}{p(\mathbf{y}_k|\mathbf{y}_{1:k})}$$

Note: the prediction and update equations are general.
 They provide a recursive solution to any filtering problem!

SELF-ASSESSMENT ON THE UPDATE STEP

Suppose $y_k = x_k + r_k$ where $r_k \sim \mathcal{N}(0, 1)$. The uncertainties in $p(x_k|y_{1:k})$ are then normally [select a suitable word below] than the uncertainties in $p(x_k|y_{1:k-1})$.

- smaller
- larger
- neither larger nor smaller

Only one answer applies.

OPTIMAL FILTER EXAMPLE

2D random walk with position observations

• Let us consider a 2D state vector, $\mathbf{x}_k = [x_1, x_2]^T$, with the following system model

$$\mathbf{x}_k = \mathbf{x}_{k-1} + \mathbf{q}_{k-1}$$
 $\mathbf{q}_{k-1} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$ $\mathbf{y}_k = \mathbf{x}_k + \mathbf{r}_k$ $\mathbf{r}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$ and $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{P}_0)$

PREDICTION AND UPDATE ILLUSTRATIONS

Optimal filter recursion:

- Note 1: uncertainties increase during prediction step.
- Note 2: posterior ∝ prior (predicted density) x likelihood.