AMENDMENT

1. (Currently Amended) Anthraquinone dye compounds having formula X. or formula XIV.:

$$X. \qquad \begin{array}{c} R_5 - S & O & S - L_1 - Z - O \\ \\ Q - Z - L_1 - S & O & S - R_5 \end{array}$$

XIV.
$$R_5 - S \longrightarrow 0 \qquad S - L_1 - Z - Q$$
$$R_5 - S \longrightarrow 0 \qquad S - L_1 - Z - Q$$

wherein:

R is hydrogen or 1-3 groups selected from C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and halogen; R_2 is hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl or aryl; R_5 is C_1 - C_6 -alkyl, substituted C_1 - C_6 alkyl, C_3 - C_8 -cycloalkyl, aryl, heteroaryl, - L_1 -Z-Q,

R₈ is hydrogen or C₁—C₆ alkyl;

X is a covalent bond or a divalent linking group selected from -O-, -S-, -SO₂-, - $\frac{CO_2}{CO_2}$ -, and -CON(Y)- and -SO₂N(Y)-, wherein Y is hydrogen, C₁- C₆-alkyl, substituted C₁-C₆-alkyl, C₃-C₈-cycloalkyl, C₃-C₈-alkenyl aryl or -L-Z- Q;

 X_2 is selected from $-CO_2$ —and $-SO_2N(Y_1)$, wherein Y_1 is hydrogen, C_1 — C_6 -alkyl, substituted C_1 — C_6 -alkyl, C_2 — C_8 -alkenyl, C_3 — C_8 -cycloalkyl, aryl, heteroaryl or $-CH_2$ -p- C_6H_4 - $-C(R_8)$ = $-CH_2$;

L is a divalent linking group selected from C₁-C₈-alkylene, C₁-C₆-alkylene-arylene, arylene, C₁-C₆-alkylene-arylene -C₁-C₆-alkylene, C₃-C₈-cycloalkylene,

 C_1 - C_6 -alkylene - C_3 - C_8 -cycloalkylene - C_1 - C_6 -alkylene, C_1 - C_6 -alkylene - Z_1 -arylene - Z_1 - Z_1 - Z_1 - Z_1 - Z_2 - Z_1 - Z_2 - Z_1 - Z_2 - Z_1 - Z_2 - Z_3 -and Z_1 is -O-, -S- or -SO₂- and Z_1 - arylene - Z_1 - Z_2 - Z_3 - Z_4 - Z_1 - Z_2 - Z_3 - Z_4 - Z_4 - Z_4 - Z_4 - Z_4 - Z_5 - Z_5 - Z_5 - Z_6 -alkylene - Z_1 - Z_1 - Z_2 - Z_3 - Z_4 - Z_4 - Z_4 - Z_4 - Z_5 -Z

 L_1 is a divalent linking group selected from C_2 - C_6 -alkylene, C_1 - C_6 -alkylene- C_3 - C_8 -cycloalkylene- C_1 - C_6 -alkylene, C_1 - C_6 -alkylene-arylene, C_3 - C_8 -cycloalkylene, and C_2 - C_6 -alkylene- C_1 - C_2 - C_6 -alkylene- C_1 - C_2 - C_6 -alkylene- C_1 - C_1 - C_2 - C_6 -alkylene- C_1 - C_2 - C_6 -

Z is a divalent group selected from -O-, -S-, -NH-, -N(C_1 - C_6 -alkyl)-, -N(C_3 - C_8 alkenyl)-, -N(C_3 - C_8 cycloalkyl)-, -N(C_3 - C_8 cycloalkyl)-, -N(C_3 - C_8 -alkyl) or -N(C_3 - C_8 - C_8 -alkyl) or -N(C_3 - C_8 -C

Q is an ethylenically-unsaturated, photosensitive polymerizable group; and m is 0 or 1.

2. (Currently amended) Anthraquinone compounds according to Claim 1 wherein the ethylenically-unsaturated, photosensitive copolymerizable groups represented by Q are selected from the following organic radicals:

Ia
$$-COC(R_{11})=CH-R_{12}$$

IIa
$$-CONH-COC(R_{11})=CH-R_{12}$$

IIIa -CONH-
$$C_1$$
 - C_6 -alkylene OCOC(R_{11}) -CH=CH- R_{12}

IVa
$$\begin{array}{c} R_{13} \\ -\text{CO-C-NHCOC}(R_{11}) = \text{CH-R}_{12} \\ R_{14} \end{array}$$

VIIa
$$-CH_2$$
 $-C(R_{11})=CH_2$

VIIIa -CONH
$$C$$
 $R_{14}^{R_{13}}$ $C(R_{11})=CH_2$

IXa $-SO_2C(R_{11})=CH_2$

$$Xa$$
 $\stackrel{O}{\longrightarrow} R_{16}$

$$\overset{\text{CH}_2}{\underset{\text{III}}{\text{COCH}_2\text{CCO}_2\text{R}_{15}}} \overset{\text{CH}_2}{\underset{\text{II}}{\text{COCCH}_2\text{CO}_2\text{R}_{15}}} \text{ or } -\text{COCCH}_2\text{CO}_2\text{R}_{15}$$

wherein:

 R_{11} is hydrogen or C_1 - C_6 -alkyl;

 R_{12} is hydrogen; C_1 - C_6 -alkyl; phenyl or phenyl substituted with one or more groups selected from C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, -N(C_1 - C_6 -alkyl), nitro, cyano, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkanoyloxy and halogen; 1- or 2-naphthyl which may be substituted with C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy; 2- or 3-thienyl which may be substituted with C_1 - C_6 -alkyl;

 R_{13} and R_{14} are hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, aryl or may be combined to represent a $-[-CH_2-]_{3-5}$ - radical;

 R_{15} is hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, C_3 - C_8 -alkenyl, C_3 - C_8 -cycloalkyl or aryl; and

 R_{16} is hydrogen, C_1 - C_6 -alkyl or aryl.

Claims 3 – 10 (Previoulsy canceled)

11. (Original) Anthraquinone compounds according to Claim 2 having the formula:

$$X. \\ \begin{array}{c} R_s - S & O & S^-L_1 - Z - Q \\ \\ Q - Z - L_1 - S & O & S - R_5 \end{array}$$

wherein Z is -O-.

Claims 12 and 13 (Previously canceled)

14. (Original) Anthraquinone compounds according to Claim 2 having the formula:

XIV.

wherein Z is -O-.

Claims 15 – 18 (Previously canceled)

- 19. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical la.
- 20. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical la wherein R_{11} is hydrogen or methyl and R_{12} is hydrogen.
- 21. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIa.

22. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIa wherein R₁₁ is hydrogen.

- 23. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIIa.
- 24. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIIa wherein R_{11} is hydrogen or methyl and R_{13} and R_{14} are methyl.

Claims 25 – 46 (Previously canceled)

- 47. (Original) A coating composition comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the dye compounds of Claim 1, and (iii) a photoinitiator.
- 48. (Previously amended) A coating composition comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the dye compounds of Claim 2 present in a concentration of about 0.05 to 15 weight percent based on the weight of component (i), and (iii) a photoinitiator present in a concentration of about 1 to 15 weight percent based on the weight of the polymerizable vinyl compound(s) present in the coating composition.
- 49. (Original) A coating composition according to Claim 48 wherein the polymerizable vinyl compounds comprise a solution of a polymeric, polymerizable vinyl compound selected from acrylated and methacrylated polyesters, acrylated and methacrylated polyethers, acrylated and methacrylated epoxy polymers, acrylated or methacrylated urethanes, and mixtures thereof, in a diluent selected from monomeric acrylate and methacrylate esters.
- 50. (Previously amended) A polymeric coating composition comprising a polymer of one or more acrylic acid esters, one or more methacrylic acid esters or other

copolymerizable vinyl compounds, having copolymerized therein one or more of the dye compounds defined in Claim 1.

- 51. (Previously amended) A polymeric coating_composition comprising a coating of an acrylic polymer of one or more acrylic acid esters, one or more methacrylic acid esters or a mixture thereof having copolymerized therein one or more of the dye compounds defined in Claim 2.
- 52. (Previously amended) A polymeric coating composition comprising a coating of an unsaturated polyester containing one or more maleate/fumarate residues; one or more monomers which contain one or more vinyl ether groups, one or more vinyl ester groups, or a combination thereof, and, optionally, one or more acrylic or methacrylic acid esters; or a mixture thereof having copolymerized therein one or more of the dye compounds defined in Claim 2.
- 53. (Previously amended) A polymeric coating according to Claim 51 containing from about 0.05 to 15.0 weight percent of the residue of one or more of the dye compounds based on the weight of the coating.