Saint Matthew Island Blue King Crab Stock Assessment 2016

D'Arcy Webber¹, Jie Zheng², and James Ianelli³

¹Quantifish, darcy@quantifish.co.nz

²Alaska Department of Fish and Game, jie.zheng@alaska.gov

³NOAA, jim.ianelli@noaa.gov

September 2016

Executive Summary

- 1. Stock: Blue king crab, Paralithodes platypus, Saint Matthew Island (SMBKC), Alaska.
- 2. Catches: Peak historical harvest was 4288 tonnes (9.454 million pounds) in 1983/84¹. The fishery was closed for 10 years after the stock was declared overfished in 1999. Fishing resumed in 2009/10 with a fishery-reported retained catch of 209 tonnes (0.461 million pounds), less than half the 529.3 tonne (1.167 million pound) TAC. Following three more years of modest harvests supported by a fishery catch per unit effort (CPUE) of around 10 crab per pot lift, the fishery was again closed in 2013/14 due to declining trawl-survey estimates of abundance and concerns about the health of the stock. The directed fishery resumed again in 2014/15 with a TAC of 300 tonnes (0.655 million pounds), but the fishery performance was relatively poor with a retained catch of 140 tonnes (0.309 million pounds). The retained catch in 2015/16 was even lower at 48 tonnes (0.105 million pounds).
- 3. Stock biomass: Following a period of low numbers (below 30% of the 1978-2016 mean of 5,865 tonnes) after the stock was declared overfished in 1999, trawl-survey indices of SMBKC stock abundance and biomass generally increased to well above average from 2007-2012. In 2013 the survey biomass estimate was low (~40% of the mean value) but was followed by average biomass estimates in 2014 and 2015 (with sampling CVs of 77% and 45%, respectively). The 2016 survey biomass estimate was 3,500 tonnes (7.7 million lbs with a CV of 39%). This value represents about 60% of the long term mean with the most recent 3-year average surveys at 87% of the mean value. This suggests a general decline in biomass compared to the recent peak survey estimate of nearly twice the average. The assessment model estimates dampen the interannual variability observed in the survey biomass and suggest that the stock (in survey biomass units) is presently at about 45% of the long term model-predicted survey biomass average. The trend from these values suggest a slight decline.
- 4. **Recruitment**: Because little information about the abundance of small crab is available for this stock, recruitment has been assessed in terms of the number of male crab within the 90-104 mm carapace length (CL) size class in each year. The 2013 trawl-survey area-swept estimate of 0.335 million male SMBKC in this size class marked a three-year decline and was the lowest since 2005. That decline did not continue as the 2014 survey estimate was 0.723 million. Survey recruitment was 0.992 million in 2015, but the majority of this survey estimate is from one tow with a great deal of uncertainty. In 2016, survey recruitment declined to 0.535 million.
- 5. Management performance: In recent assessments, estimated total male catch has been determined as the sum of fishery-reported retained catch, estimated male discard mortality in the directed fishery, and estimated male bycatch mortality in the groundfish fisheries, as these have been the only sources of non-negligible fishing mortality to consider. The stock was above the minimum stock-size threshold (MSST) in 2015/16 and is hence not overfished. Overfishing did not occur in 2015/16 (Tables 1 and 2).

 $^{^{1}1983/84}$ refers to a fishing year that extends from 1 July 1983 to 30 June 1984.

Table 1: Status and catch specifications (1000 tonnes) (scenario **Gmacs M**). Notes: A - calculated from the assessment reviewed by the Crab Plan Team in September 2013, B - calculated from the assessment reviewed by the Crab Plan Team in September 2014, C - calculated from the assessment reviewed by the Crab Plan Team in September 2015, D - calculated from the assessment reviewed by the Crab Plan Team in September 2016.

		Biomass		Retained	Total		
Year	MSST	$(MMB_{\rm mating})$	TAC	catch	male catch	OFL	ABC
2012/13	1.80^{A}	2.85^{A}	0.74	0.73	0.82	1.02	0.92
2013/14	1.50^{B}	3.01^{B}	0.00	0.00	0.00	0.56	0.45
2014/15	1.86^{C}	2.48^{C}	0.30	0.14	0.15	0.43	0.34
2015/16	1.73^{D}	1.72^{D}	0.19	0.05	0.05	0.28	0.22
2016/17		1.8^{D}				0.1	0.08

Table 2: Status and catch specifications (million pounds) (scenario **Gmacs M**).

		Biomass		Retained	Total		
Year	MSST	$(MMB_{\rm mating})$	TAC	catch	male catch	OFL	ABC
2012/13	4.0^{A}	6.29^{A}	1.630	1.616	1.81	2.24	2.02
2013/14	3.4^{B}	6.64^{B}	0.000	0.000	0.0006	1.24	0.99
2014/15	4.1^{C}	5.47^{C}	0.655	0.309	0.329	0.94	0.75
2015/16	3.8^D	3.8^D	0.41	0.105	0.105	0.62	0.49
2016/17		3.98^{D}				0.21	0.17

6. Basis for the OFL: Estimated mature-male biomass (MMB) on 15 February is used as the measure of biomass for this Tier 4 stock, with males measuring 105 mm CL or more considered mature. The B_{MSY} proxy is obtained by averaging estimated MMB over a specific reference time period, and current CPT/SSC guidance recommends using the full assessment time frame as the default reference period (Table 3).

Table 3: Basis for the OFL (1000 tonnes) (scenario **Gmacs M**).

			Biomass					Natural
Year	Tier	B_{MSY}	(MMB_{mating})	B/B_{MSY}	F_{OFL}	γ	Basis for B_{MSY}	mortality
2012/13	4a	3.56	5.63	1.56	0.18	1	1978-2012	0.18
2013/14	4b	3.06	3.01	0.98	0.18	1	1978-2013	0.18
2014/15	4b	3.28	2.71	0.82	0.14	1	1978-2014	0.18
2015/16	4b	3.71	2.45	0.66	0.11	1	1978 - 2015	0.18
2016/17	4b	3.46	1.8	0.52	0.09	1	1978-2016	0.18

A. Summary of Major Changes

Changes in Management of the Fishery

There are no new changes in management of the fishery.

Changes to the Input Data

Data used in this assessment have been updated to include the most recently available fishery and survey numbers. This assessment makes use of two new survey data points including the 2016 NMFS trawl-survey estimate of abudance, and the 2016 ADF&G pot survey CPUE. Both of these surveys have associated size

composition data. The assessment also uses updated 1993-2015 groundfish and fixed gear bycatch estimates based on AKRO data. The 2015/16 directed fishery catch data and associated size composition data were also used.

Changes in Assessment Methodology

This assessment is done using Gmacs. The model is based upon the 3-stage length-based assessment model first presented in May 2011 by Bill Gaeuman and accepted by the CPT in May 2012. There are several differences between the Gmacs assessment model and the previous model. One of the major differences being that natural and fishing mortality are continuous within 5 discrete seasons (using the "correct" catch equation rather than being applied as a pulse). Season length in Gmacs is controlled by changing the proportion of natural mortality that is applied during each season. A detailed outline of the Gmacs implementation of the SMBKC model is provided in Appendix A.

Changes in Assessment Results

One of the Gmacs model scenarios (**Gmacs match**) attempts to match the 2015 assessment as closely as possible by specifying the same (or similar) dynamics and some of the same (fixed) parameter values. There are some minor differences between the 2015 model and the **Gmacs match** model, but given that Gmacs and the 2015 model have different underpinning population dynamics, these differences should be of little concern. Four other Gmacs scenarios are presented as well, each providing a slightly different fit to the data.

B. Responses to SSC and CPT Comments

CPT and SSC Comments on Assessments in General

Comment: Regarding general code development, the CPT had the following requests:

- 1. 1-year projection for calculating Tier 3 or 4 OFLs
- 2. specify catchability as a fixed or estimated parameter or use the analytic calculation for the MLE
- 3. specify priors (e.g., gamma) using mean and variance/standard deviation for all parameters to ease specifying priors
- 4. include an option to calculate dynamic B_{MSY}
- 5. add the ability to "jitter" initial parameter values
- 6. add the ability to conduct retrospective analyses
- 7. add ability to estimate by catch fishing mortality rates when observer data are missing but effort data is available
- 8. allow different phases for "rec_ini", "rec_dev" estimation

Response:

- 1. Done
- 2. Done
- 3. Not yet implemented
- 4. Not yet implemented
- 5. Not yet implemented
- 6. Not yet implemented
- 7. Not yet implemented
- 8. Done

Comment: Andre Punt pointed out the need to use a fixed-iteration Newton's method to calculate OFL, not bisection, to keep the calculation differentiable so that OFL can be reported as an sdreport variable.

Response: This has been done and the F_{OFL} and OFL have both been reported as an sdreport variables in this document.

CPT and SSC Comments Specific to the SMBKC Stock Assessment

Comment: the CPT requests that some evaluation should also be included in the September report to the CPT which compares against the previous assessment model corrected for the error.

Response: The error in the 2015 was fixed and this model was run again. Comparisons between the Gmacs models and the 2015 model are presented throughout this document. One of the Gmacs model scenarios (**Gmacs match**) attempts to match the 2015 assessment as closely as possible by specifying the same (or similar) dynamics and some of the same (fixed) parameter values.

Comment: The SSC and CPT requested the following models for review at the spring 2016 meeting:

- 1. Base: try to match 2015 model but prevent dome shaped selectivity
- $2. \; Base + add \; CV \; for \; both \; surveys$
- $3. \ Above + Francis \ re-weighting$
- $4. \ Above + remove \ M \ spike$

Response: Models 1, 3, and 4 are all included and evaluated in this document as the **Gmacs base**, **Gmacs Francis**, and **Gmacs M** scenarios. Model 2 was not included in this document for two reasons. Firstly, if doing Francis iterative re-weighting then additional CV should not be added as well (as the two methods basically do the same thing). Secondly, the SSC recommended against the model runs with additional CV (see the comment from the SSC below).

Comment: The SSC is not convinced that the model runs with extra CV are very informative. The inclusion of extra CV seems to be rather arbitrary based on the numbers of points that fall within confidence intervals estimated from trawl surveys. The SSC recommends coming up with some alternative way to consider extra variability, which could be informed by simulation testing.

Response: All model runs that estimate additional CV were dropped from this document. Instead we provide three model runs that use the Francis iterative re-weighting method to re-weight the length-frequency data relative to the abundance indices. These runs are the **Gmacs Francis**, **Gmacs M**, and **Gmacs force** scenarios. The final Gmacs scenario (**Gmacs force**) is an exploratory model run that upweights both the trawl-survey and pot survey abundance indices (it upweights the pot survey more than the trawl survey).

Comment: The descriptions of seasons in the model is confusing and currently reads as if M differs among seasons. More justification is needed on how seasons are defined and how they were selected, as well as clarification on M during these seasons.

Response: This description has been updated and justification provided in Appendix A.

Comment: During the presentation to the SSC, uncertainty was expressed about the origins of the growth transition matrix, but page 7 of the report indicates that the matrix was derived by Otto and Cummiskey (1990). As this matrix is critical to the model, the origin and integrity of the growth transition matrix should be carefully explained in the assessment for fall 2016. In some other models, the transition matrix can be estimated. If there are doubts about the veracity of the transition matrix, perhaps this can be explored in the modeling framework.

Response: The report is correct, the growth matrix was derived by Otto and Cummiskey (1990) and used in this assessment.

Comment: The selectivities were constrained so that they do not exceed 1.0, but the tables of log-transformed parameter estimates do not indicate that this upper bound was approached. This should be clarified.

Response: After fixing the error in the 2015 SMBKC model code, it was found that the NMFS trawl survey selectivity does exceed 1 for stage-2 crab. The **Gmacs match** scenario does allow selectivity to be greater than 1 (it uses the same fixed selectivity values as the 2015 model). At the request of the CPT an upper

bound of 1 was specified for the remaining Gmacs scenarios. Tables 14, 15, 16, and 17 all show that this upper bound was approached for at least one selectivity parameter in all of these scenarios.

Comment: It would be helpful to include a table of NMFS trawl survey CPUE by crab stage, just as was provided for the ADF&G pot survey (Table 1).

Response: This table has been added.

Comment: Page 10 refers to a table of observed and estimated sample size, but no such table was provided.

Response: This table has been added.

Comment: As with the 2015 model, GMACS consistently overestimates trawl survey estimates of male biomass in the last decade, whereas GMACS tends to underestimate the last couple of pot survey estimates (Figure 9, 12). This is also reflected in patterns in residuals, and the proportions of stage-3 crab tend to be overestimated in recent years (Figure 14). These patterns should be discussed in the assessment.

Response: Done.

Comment: The SSC discussed the possibility that these patterns could be indicative of spatial patterns in stock distribution. The trawl survey covers a much larger geographic distribution than the pot survey (Figure 4). Crab distribution may vary with sex (females tend to be found close to shore) and life stage. Thus, the trawl and pot surveys may sample the crab stock differentially. Moreover, the geographic distributions of these stages may vary with stock density and temperature. It could be informative to conduct some spatial analyses, which could include: (1) estimation of survey catchability as a function of temperature, (2) a stock assessment model run that includes pot surveys and only those trawl stations that fall within the pot survey distribution as a comparison the runs that include the full trawl survey data, and (3) analysis of the spatial distribution of surveyed crabs by stage at high and low biomass and during warm and cold years.

Response: In the past Jie has tried to estimate survey catchability as a function of temperature with little success. We will try again this year, but this run will not be presented in this document.

C. Introduction

Scientific Name

The blue king crab is a lithodid crab, Paralithodes platypus (Brant 1850).

Distribution

Blue king crab are sporadically distributed throughout the North Pacific Ocean from Hokkaido, Japan, to southeastern Alaska (Figure 1). In the eastern Bering Sea small populations are distributed around St. Matthew Island, the Pribilof Islands, St. Lawrence Island, and Nunivak Island. Isolated populations also exist in some other cold water areas of the Gulf of Alaska (NPFMC 1998). The St. Matthew Island Section for blue king crab is within Area Q2 (Figure 2), which is the Northern District of the Bering Sea king crab registration area and includes the waters north of Cape Newenham (58°39' N. lat.) and south of Cape Romanzof (61°49' N. lat.).

Stock Structure

The Alaska Department of Fish and Game (ADF&G) Gene Conservation Laboratory division has detected regional population differences between blue king crab collected from St. Matthew Island and the Pribilof Islands². NMFS tag-return data from studies on blue king crab in the Pribilof Islands and St. Matthew

²NOAA grant Bering Sea Crab Research II, NA16FN2621, 1997.

Figure 1: Distribution of blue king crab ($Paralithodes\ platypus$) in the Gulf of Alaska, Bering Sea, and Aleutian Islands waters (shown in blue).

Figure 2: King crab Registration Area Q (Bering Sea).

Island support the idea that legal-sized males do not migrate between the two areas (Otto and Cummiskey 1990). St. Matthew Island blue king crab tend to be smaller than their Pribilof conspecifics, and the two stocks are managed separately.

Life History

Like the red king crab, Paralithodes camtshaticus, the blue king crab is considered a shallow water species by comparison with other lithodids such as golden king crab, Lithodes aequispinus, and the scarlet king crab, Lithodes couesi (Donaldson and Byersdorfer 2005). Adult male blue king crab are found at an average depth of 70 m (NPFMC 1998). The reproductive cycle appears to be annual for the first two reproductive cycles and biennial thereafter (cf. Jensen and Armstrong 1989) and mature crab seasonally migrate inshore where they molt and mate. Unlike red king crab, juvenile blue king crab do not form pods, but instead rely on cryptic coloration for protection from predators and require suitable habitat such as cobble and shell hash. Somerton and MacIntosh (1983) estimated SMBKC male size at sexual maturity to be 77 mm carapace length (CL). Paul et al. (1991) found that spermatophores were present in the vas deferens of 50% of the St. Matthew Island blue king crab males examined with sizes of 40-49 mm CL and in 100% of the males at least 100 mm CL. Spermataphore diameter also increased with increasing CL with an asymptote at ~ 100 mm CL. They noted, however, that although spermataphore presence indicates physiological sexual maturity, it may not be an indicator of functional sexual maturity. For purposes of management of the St. Matthew Island blue king crab fishery, the State of Alaska uses 105 mm CL to define the lower size bound of functionally mature males (Pengilly and Schmidt 1995). Otto and Cummiskey (1990) report an average growth increment of 14.1 mm CL for adult SMBKC males.

Management History

The SMBKC fishery developed subsequent to baseline ecological studies associated with oil exploration (Otto 1990). Ten U.S. vessels harvested 545 tonnes (1.202 million pounds) in 1977, and harvests peaked in 1983 when 164 vessels landed 4288 tonnes (9.454 million pounds) (Fitch et al. 2012; Table 4).

The fishing seasons were generally short, often lasting only a few days. The fishery was declared overfished and closed in 1999 when the stock biomass estimate was below the minimum stock-size threshold (MSST) of 4990 tonnes (11.0 million pounds) as defined by the Fishery Management Plan for the Bering Sea/Aleutian Islands King and Tanner crabs (NPFMC 1999). Zheng and Kruse (2002) hypothesized a high level of SMBKC natural mortality from 1998 to 1999 as an explanation for the low catch per unit effort (CPUE) in the 1998/99 commercial fishery and the low numbers across all male crab size groups caught in the annual NMFS eastern Bering Sea trawl survey from 1999 to 2005 (Table 8). In November 2000, Amendment 15 to the FMP for Bering Sea/Aleutian Islands king and Tanner crabs was approved to implement a rebuilding plan for the SMBKC stock (NPFMC 2000). The rebuilding plan included a regulatory harvest strategy (5 AAC 34.917), area closures, and gear modifications. In addition, commercial crab fisheries near St. Matthew Island were scheduled in fall and early winter to reduce the potential for bycatch mortality of vulnerable molting and mating crab.

NMFS declared the stock rebuilt on 21 September 2009, and the fishery was reopened after a 10-year closure on 15 October 2009 with a TAC of 529 tonnes (1.167 million pounds), closing again by regulation on 1 February 2010. Seven participating vessels landed a catch of 209 tonnes (460,859 pounds) with a reported effort of 10,697 pot lifts and an estimated CPUE of 9.9 retained individual crab per pot lift. The fishery remained open the next three years with modest harvests and similar CPUE, but large declines in the NMFS trawl-survey estimate of stock abundance raised concerns about the health of the stock, prompting ADF&G to close the fishery again for the 2013/14 season. Due to an abundance above thresholds, the fishery was reopened for the 2014/15 season with a low TAC of 297 tonnes (0.655 million pounds) and in 2015/16 the TAC was further reduced to 186 tonnes (0.411 million pounds).

Though historical observer data are limited due to very limited sampling, bycatch of female and sublegal male crab from the directed blue king crab fishery off St. Matthew Island was relatively high historically,

Table 4: The 1978/79 to 2015/16 directed St. Matthew Island blue king crab pot fishery. The Guideline Harvest Level (GHL) and Total Allowable Catch (TAC) are in millions of pounds. Harvest includes deadloss. Catch per unit effort (CPUE) in this table is simply the harvest number / pot lifts. The average weight is the harvest weight / harvest number in pounds. The average CL is the average of retained crab in mm from dockside sampling of delivered crab. Source: Fitch et al 2012; ADF&G Dutch Harbor staff, pers. comm.

			Har	vest				
Year	Dates	$\mathrm{GHL}/\mathrm{TAC}$	Crab	Pounds	Pot lifts	CPUE	avg wt	avg CL
1978/79	07/15 - 09/03		436,126	1,984,251	43,754	10	4.5	132.2
1979/80	07/15 - 08/24		52,966	210,819	9,877	5	4.0	128.8
1980/81	07/15 - 09/03			CONFI	DENTIAL			
1981/82	07/15 - 08/21		1,045,619	4,627,761	$58,\!550$	18	4.4	NA
1982/83	08/01 - 08/16		1,935,886	8,844,789	$165,\!618$	12	4.6	135.1
1983/84	08/20 - 09/06	8.0	1,931,990	$9,\!454,\!323$	133,944	14	4.9	137.2
1984/85	09/01 - 09/08	2.0 - 4.0	841,017	3,764,592	$73,\!320$	11	4.5	135.5
1985/86	09/01 - 09/06	0.9 - 1.9	436,021	$2,\!175,\!087$	46,988	9	5.0	139.0
1986/87	09/01 - 09/06	0.2 - 0.5	$219,\!548$	1,003,162	22,073	10	4.6	134.3
1987/88	09/01 - 09/05	0.6 - 1.3	$227,\!447$	1,039,779	28,230	8	4.6	134.1
1988/89	09/01 - 09/05	0.7 - 1.5	280,401	1,236,462	$21,\!678$	13	4.4	133.3
1989/90	09/01 - 09/04	1.7	$247,\!641$	$1,\!166,\!258$	30,803	8	4.7	134.6
1990/91	09/01 - 09/07	1.9	$391,\!405$	1,725,349	26,264	15	4.4	134.3
1991/92	09/16 - 09/20	3.2	$726,\!519$	3,372,066	37,104	20	4.6	134.1
1992/93	09/04 - 09/07	3.1	$545,\!222$	2,475,916	56,630	10	4.5	134.1
1993/94	09/15 - 09/21	4.4	$630,\!353$	3,003,089	$58,\!647$	11	4.8	135.4
1994/95	09/15 - 09/22	3.0	827,015	3,764,262	$60,\!860$	14	4.9	133.3
1995/96	09/15 - 09/20	2.4	666,905	3,166,093	$48,\!560$	14	4.7	135.0
1996/97	09/15 - 09/23	4.3	$660,\!665$	3,078,959	91,085	7	4.7	134.6
1997/98	09/15 - 09/22	5.0	$939,\!822$	4,649,660	81,117	12	4.9	139.5
1998/99	09/15 - 09/26	4.0	$635,\!370$	2,968,573	$91,\!826$	7	4.7	135.8
1999/00 -	,			FISHER				
2009/10	10/15 - 02/01	1.17	$103,\!376$	460,859	10,697	10	4.5	134.9
2010/11	10/15 - 02/01	1.60	298,669	$1,\!263,\!982$	29,344	10	4.2	129.3
2011/12	10/15 - 02/01	2.54	$437,\!862$	1,881,322	$48,\!554$	9	4.3	130.0
2012/13	10/15 - 02/01	1.63	$379,\!386$	1,616,054	37,065	10	4.3	129.8
2013/14					Y CLOSED			
2014/15	10/15 - 02/05	0.66	69,109	$308,\!582$	10,133	7	4.5	132.3
2015/16	10/19 - 11/28	0.41	24,076	105,010	5,475	4	4.4	132.6

with estimated total by catch in terms of number of crab captured sometimes more than twice as high as the catch of legal crab (Moore et al. 2000; ADF&G Crab Observer Database). Pot-lift sampling by ADF&G crab observers (Gaeuman 2013; ADF&G Crab Observer Database) indicates similar by catch rates of discarded male crab since the reopening of the fishery (Table 5), with total male discard mortality in the 2012/13 directed fishery estimated at about 12% (88 tonnes or 0.193 million pounds) of the reported retained catch weight, assuming 20% handling mortality.

On the other hand, these same data suggest a significant reduction in the bycatch of females, which may be attributable to the later timing of the contemporary fishery and the more offshore distribution of fishery effort since reopening in $2009/10^3$. Some bycatch of discarded blue king crab has also been observed historically in the eastern Bering Sea snow crab fishery, but in recent years it has generally been negligible, and observers recorded no bycatch of blue king crab in sampled pot lifts during 2013/14. The St. Matthew Island golden king crab fishery, the third commercial crab fishery to have taken place in the area, typically occurred in areas with depths exceeding blue king crab distribution. NMFS observer data suggest that variable but mostly limited SMBKC bycatch has also occurred in the eastern Bering Sea groundfish fisheries (Table 6).

 $^{^3\}mathrm{D.}$ Pengilly, ADF&G, pers. comm.

Table 5: Observed proportion of crab by size class during the ADF&G crab observer pot-lift sampling. Source:

ADF&G Crab Observer Database.

Year	Total pot lifts	Pot lifts sampled	Number of crab (90 mm+ CL)	Stage 1	Stage 2	Stage 3
1990/91	26,264	10	150	0.113	0.393	0.493
1991/92	37,104	125	3,393	0.133	0.177	0.690
1992/93	56,630	71	1,606	0.191	0.268	0.542
1993/94	58,647	84	2,241	0.281	0.210	0.510
1994/95	60,860	203	4,735	0.294	0.271	0.434
1995/96	$48,\!560$	47	663	0.148	0.212	0.640
1996/97	91,085	96	489	0.160	0.223	0.618
1997/98	81,117	133	3,195	0.182	0.205	0.613
1998/99	91,826	135	1.322	0.193	0.216	0.591
1999/00 -	2008/09		FISHERY CLOSED			
2009/10	10,484	989	19,802	0.141	0.324	0.535
2010/11	29,356	2,419	45,466	0.131	0.315	0.553
2011/12	48,554	$3,\!359$	58,666	0.131	0.305	0.564
2012/13	37,065	2,841	57,298	0.141	0.318	0.541
2013/14			FISHERY CLOSED			
2014/15	10,133	895	9,906	0.094	0.228	0.679
2015/16	5,475	419	3,248	0.115	0.252	0.633

D. Data

Summary of New Information

Data used in this assessment have been updated to include the most recently available fishery and survey numbers. This assessment makes use of two new survey data points including the 2016 NMFS trawl-survey estimate of abudance, and the 2016 ADF&G pot survey CPUE. Both of these surveys have associated size composition data. The assessment also uses updated 1993-2015 groundfish and fixed gear bycatch estimates based on AKRO data. The 2015/16 directed fishery catch data and associated size composition data were also used. The data used in each of the new models is shown in Figure 3.

Major Data Sources

Major data sources used in this assessment include annual directed-fishery retained-catch statistics from fish tickets (1978/79-1998/99, 2009/10-2012/13, and 2014/15-2015/16; Table 4); results from the annual NMFS eastern Bering Sea trawl survey (1978-2016; Table 8); results from the triennial ADF&G SMBKC pot survey (every third year during 1995-2013), the 2015 pot survey, and the 2016 pot survey (Table 7); size-frequency information from ADF&G crab-observer pot-lift sampling (1990/91-1998/99, 2009/10-2012/13, and 2014/15-2015/16; Table 5); and NMFS groundfish-observer bycatch biomass estimates (1992/93-2015/16; Table 6).

Figure 4 maps stations from which SMBKC trawl-survey and pot-survey data were obtained. Further information concerning the NMFS trawl survey as it relates to commercial crab species is available in Daly et al. (2014); see Gish et al. (2012) for a description of ADF&G SMBKC pot-survey methods. It should be noted that the two surveys cover different geographic regions and that each has in some years encountered proportionally large numbers of male blue king crab in areas where the other is not represented (Figure 5). Crab-observer sampling protocols are detailed in the crab-observer training manual (ADF&G 2013). Groundfish SMBKC bycatch data come from NMFS Bering Sea reporting areas 521 and 524 (Figure 6). Note that for this assessment the newly available NMFS groundfish observer data reported by ADF&G statistical area was not used.

Data by type and year

Figure 3: Data extent for the SMBKC assessment.

Other Data Sources

Recent model configurations developed for SMBKC makes use of a growth transition matrix based on Otto and Cummiskey (1990), the same growth transition matrix is used in this assessment. Other relevant data sources, including assumed population and fishery parameters, are presented in Appendix A, which also provides a detailed description of the model configuration used for this assessment.

Excluded Data Sources

Groundfish by catch size-frequency data are available for selected years. These data were used in model-based assessments prior to 2011. However, they have since been excluded because these data tend to be severely limited: for example, 2012/13 data include a total of just 4 90 mm+ CL male blue king crab from reporting areas 521 and 524.

Figure 4: Trawl and pot-survey stations used in the SMBKC stock assessment.

Figure 5: Catches of 181 male blue king crab measuring at least 90 mm CL from the 2014 NMFS trawl-survey at the 56 stations used to assess the SMBKC stock. Note that the area north of St. Matthew Island, which includes the large catch of 67 crab at station R-24, is not represented in the ADF&G pot-survey data used in the assessment.

Figure 6: NFMS Bering Sea reporting areas. Estimates of SMBKC by catch in the groundfish fisheries are based on NMFS observer data from reporting areas 524 and 521.

Table 6: Groundfish SMBKC male by catch biomass (tonnes) estimates. Trawl includes pelagic trawl and non-pelagic trawl types. Source: J. Zheng, ADF&G, and author estimates based on data from R. Foy, NMFS. AKRO estimates used after 2008/09.

Year	Trawl bycatch	Fixed gear bycatch
1978	0.000	0.000
1979	0.000	0.000
1980	0.000	0.000
1981	0.000	0.000
1982	0.000	0.000
1983	0.000	0.000
1984	0.000	0.000
1985	0.000	0.000
1986	0.000	0.000
1987	0.000	0.000
1988	0.000	0.000
1989	0.000	0.000
1990	0.000	0.000
1991	3.538	0.045
1992	1.996	2.268
1993	1.542	0.000
1994	0.318	0.091
1995	0.635	0.136
1996	0.000	0.045
1997	0.000	0.181
1998	0.000	0.907
1999	0.000	1.361
2000	0.000	0.000
2001	0.000	0.862
2002	0.726	0.408
2003	0.998	1.134
2004	0.091	0.635
2005	0.000	0.590
2006	2.812	1.451
2007	0.045	69.717
2008	0.272	6.622
2009	0.635	7.530
2010	0.363	9.571
2011	0.181	0.590
2012	0.000	0.590
2013	0.181	0.272
2014	0.000	0.272
2015	0.000	0.635

Table 7: Size-class and total CPUE (90+ mm CL) with estimated CV and total number of captured crab (90+ mm CL) from the 96 common stations surveyed during the seven triennial ADF&G SMBKC pot surveys and the 2015 and 2016 surveys. Source: D. Pengilly and R. Gish, ADF&G.

	Stage-1	Stage-2	Stage-3	·		
Year	(90-104 mm)	(105-119 mm)	(120+ mm)	Total CPUE	CV	Number of crabs
1995	1.919	3.198	6.922	12.042	0.13	4624
1998	0.964	2.763	8.804	12.531	0.06	4812
2001	1.266	1.737	5.487	8.477	0.08	3255
2004	0.112	0.414	1.141	1.667	0.15	640
2007	1.086	2.721	4.836	8.643	0.09	3319
2010	1.326	3.276	5.607	10.209	0.13	3920
2013	0.878	1.398	3.367	5.643	0.19	2167
2015	0.198	0.682	1.924	2.805	0.18	1077
2016	0.083	0.192	0.725	2.378	0.186	777

Table 8: NMFS EBS trawl-survey area-swept estimates of male crab abundance (10^6 crab) and of mature male biomass (10^6 lbs). Total number of captured male crab ≥ 90 mm CL is also given. Source: R. Foy, NMFS. The "+" refer to plus group.

Abundance Biomass								
-	Stage-1	Stage-2	Stage-3			Total		Number
Year	(90-104 mm)	(105-119 mm)	(120 + mm)	Total	CV	(90+ mm CL)	CV	of crabs
1978	2.213	1.991	1.521	5.726	0.411	15.064	0.394	157
1979	3.061	2.281	1.808	7.150	0.472	17.615	0.463	178
1980	2.856	2.563	2.541	7.959	0.572	22.017	0.507	185
1981	0.483	1.213	2.263	3.960	0.368	14.443	0.402	140
1982	1.669	2.431	5.884	9.984	0.401	35.763	0.344	271
1983	1.061	1.651	3.345	6.057	0.332	21.240	0.298	231
1984	0.435	0.497	1.452	2.383	0.175	8.976	0.179	105
1985	0.379	0.376	1.117	1.872	0.216	6.858	0.210	93
1986	0.203	0.447	0.374	1.025	0.428	3.124	0.388	46
1987	0.325	0.631	0.715	1.671	0.302	5.024	0.291	71
1988	0.410	0.816	0.957	2.183	0.285	6.963	0.252	81
1989	2.169	1.154	1.786	5.109	0.314	13.974	0.271	208
1990	1.053	1.031	2.338	4.422	0.302	14.837	0.274	170
1991	1.147	1.665	2.233	5.046	0.259	15.318	0.248	197
1992	1.074	1.382	2.291	4.746	0.206	15.638	0.201	220
1993	1.521	1.828	3.276	6.626	0.185	21.051	0.169	324
1994	0.883	1.298	2.257	4.438	0.187	14.416	0.176	211
1995	1.025	1.188	1.741	3.953	0.187	12.574	0.178	178
1996	1.238	1.891	3.064	6.193	0.263	20.746	0.241	285
1997	1.165	2.228	3.789	7.182	0.367	24.084	0.337	296
1998	0.660	1.661	2.849	5.170	0.373	17.586	0.355	243
1998	0.223	0.222	0.558	1.003	0.192	3.515	0.182	52
2000	0.282	0.285	0.740	1.307	0.303	4.623	0.310	61
2001	0.419	0.502	0.938	1.859	0.243	6.242	0.245	91
2002	0.111	0.230	0.640	0.981	0.311	3.820	0.320	38
2003	0.449	0.280	0.465	1.194	0.399	3.454	0.336	65
2004	0.247	0.184	0.562	0.993	0.369	3.360	0.305	48
2005	0.319	0.310	0.501	1.130	0.403	3.620	0.371	42
2006	0.917	0.642	1.240	2.798	0.339	8.585	0.334	126
2007	2.518	2.020	1.193	5.730	0.420	14.266	0.385	250
2008	1.352	0.801	1.457	3.609	0.289	10.261	0.284	167
2009	1.573	2.161	1.410	5.144	0.263	13.892	0.256	251
2010	3.937	3.253	2.458	9.648	0.544	24.539	0.466	388
2011	1.800	3.255	3.207	8.263	0.587	24.099	0.558	318
2012	0.705	1.970	1.808	4.483	0.361	13.669	0.339	193
2013	0.335	0.452	0.807	1.593	0.215	5.043	0.217	74
2014	0.723	1.627	1.809	4.160	0.503	13.292	0.449	181
2015	0.992	1.269	1.979	4.240	0.774	12.958	0.770	153
2016	0.535	0.660	1.178	2.373	0.447	7.685	0.393	108

E. Analytic Approach

History of Modeling Approaches for this Stock

A four-stage catch-survey-analysis (CSA) assessment model was used before 2011 to estimate abundance and biomass and prescribe fishery quotas for the SMBKC stock (2010 SAFE; Zheng et al. 1997). The four-stage CSA is similar to a full length-based analysis, the major difference being coarser length groups, which are more suited to a small stock with consistently low survey catches. In this approach, the abundance of male crab with a CL of 90 mm or above is modeled in terms of four crab stages: stage 1: 90-104 mm CL; stage 2: 105-119 mm CL; stage 3: newshell 120-133 mm CL; and stage 4: oldshell \geq 120 mm CL and newshell \geq 134 mm CL. Motivation for these stage definitions comes from the fact that for management of the SMBKC stock, male crab measuring at least 105 mm CL are considered mature, whereas 120 mm CL is considered a proxy for the legal size of 5.5 in carapace width, including spines. Additional motivation for these stage definitions comes from an estimated average growth increment of about 14 mm per molt for SMBKC (Otto and Cummiskey 1990).

Concerns about the pre-2011 assessment model led to the CPT and SSC recommendations that included development of an alternative model with provisional assessment based on survey biomass or some other index of abundance. An alternative 3-stage model was proposed to the CPT in May 2011 but was requested to proceed with a survey-based approach for the Fall 2011 assessment. In May 2012 the CPT approved a slightly revised and better documented version of the alternative model for assessment.

The 2015 SMBKC stock assessment model, first used in Fall 2012, was a variant of the previous four-stage SMBKC CSA model and similar in complexity to that described by Collie et al. (2005). Like the earlier model, it considered only male crab at least 90 mm in CL, but it combined stages 3 and 4 of the earlier model resulting in just three stages (male size classes) determined by CL measurements of (1) 90-104 mm, (2) 105-119 mm, and (3) 120 mm+ (i.e., 120 mm and above). This consolidation was driven by concern about the accuracy and consistency of shell-condition information, which had been used in distinguishing stages 3 and 4 of the earlier model.

Assessment Methodology

The 2016 SMBKC assessment model makes use of the modeling framework Gmacs. The aim when developing this model was to first provide a fit to the data that best matched the 2015 SMBKC stock assessment model. A detailed description of the Gmacs model and its implementation is presented in Appendix A.

Model Selection and Evaluation

Five different Gmacs model scenarios were considered, in this document results from these models and the 2015 model are compared. The models inlude:

- 1. **2015 Model**: the 2015 provided by Jie. Note that an error was found in the 2015 model code⁴. This error was fixed before making comparisons. Fixing this error caused the NMFS trawl survey selectivity to exceed 1 for stage-2 crab.
- 2. **Gracs match**: tries to match as closely as possible with the 2015 Model by fixing the stage-1 and stage-2 selectivity parameters and the catchability coefficient (q) for the ADF&G pot survey at those values estimated in the 2015 model (and allows the NMFS trawl survey selectivity to exceed 1 for stage-2 crab). The parameters that are estimated in this model include the average recruitment (\bar{R}) , the recruitment deviations (δ_u^R) , the initial numbers in each stage (n^0) , the natural mortality deviation

⁴The error in the 2015 model code was in the population dynamics function where the growth transition matrix is applied to the numbers at length to calculate the numbers during the following time-step, specifically 'N(t+1,3)=TM(2,3)*NN(2)+NN(3);' which should be 'N(t+1,3)=TM(1,3)*NN(1)+TM(2,3)*NN(2)+NN(3);'.

- 1998 (δ_{1998}^{M}) , and the fishing mortalities for the directed pot fishery, the trawl by catch fishery, and the fixed by catch fishery $(\bar{F}^{\text{df}}, \, \bar{F}^{\text{tb}}, \, \bar{F}^{\text{fb}}, \, \delta_{t,y}^{\text{df}}, \, \delta_{t,y}^{\text{fb}})$.
- 3. **Gracs base**: directed pot, NMFS trawl survey and ADF&G pot survey selectivities are estimated for stage-1 and stage-2 crab (and fixed at 1 for stage-3 crab). These selectivities are bounded so that they cannot be greater than 1. This model also estimates the catchability coefficient (q) for the ADF&G pot survey as well as the average recruitment (\bar{R}) , the recruitment deviations (δ_y^R) , the initial numbers in each stage (n^0) , the natural mortality deviation 1998 (δ_{1998}^M) , and the fishing mortalities for the directed pot fishery, the trawl bycatch fishery, and the fixed bycatch fishery $(\bar{F}^{\rm df}, \bar{F}^{\rm tb}, \bar{F}^{\rm fb}, \delta_{t,y}^{\rm df}, \delta_{t,y}^{\rm tb}, \delta_{t,y}^{\rm fb})$.
- 4. **Gracs Francis**: is the same as above except that it also uses the Francis iterative re-weighting method (Francis 2011), to re-weight the size-composition data relative to the abundance indices. The trawl survey and pot survey weights were left as is (i.e. a weight of 1) because upweighting these series resulted in worse standard deviation of the normalised residual (SDNR) and median of the absolute residual (MAR) values for each of the surveys. Down-weighting the two surveys actually improved the SDNR and MAR values, but it would be unwise to down-weight either of these series.
- 5. **Gracs M**: is the same as above except that natural mortality (M) is fixed at 0.18 yr⁻¹ during all years. The Francis weights for each of the size-compositions were recalculated and applied again in this model.
- 6. **Gracs force**: is an exploratory scenario that the same as above except the NMFS trawl survey is up-weighted by $\lambda^{\rm NMFS} = 1.5$ and the ADF&G pot survey is up-weighted by $\lambda^{\rm ADFG} = 2$. After this, the Francis weights for each of the size-compositions were recalculated and applied again in this model. This scenario should not be used for overfishing determination as it upweights the trawl and pot survey abundance indices to force a better fit to each of these data sets and provide some contrast among the Gracs model runs. This scenario forces a better fit to the trawl and pot surveys at the expense of the SDNR (and MAR) for each of these series.

Table 9 outlines the major features of each of the models.

TD 11 0	O 11:	C 1	•	C ,	C . 1	C	1. C	α	•
Table 9	()iitline	of the	maior	teatures	of th	a true	different	(+macs	scenarios.

Table 5. Outline of the major leavanes of the five unicient uniaes seenarios.							
Scenario	Selectivity estimated	Use Francis LF weighting	Estimate M_{1998}				
Gmacs match	No	No	Yes				
Gmacs base	Yes	No	Yes				
Gmacs M	Yes	No	No				
Gmacs Francis	Yes	Yes	No				
Gmacs force	Yes	Yes	No				

Results

Results for all Gmacs scenarios are provided with comparisons to the 2015 model. We recommend that the **Gmacs M** scenario be used for overfishing determination in 2016, based on the fit to the data and the plausibility of parameter estimates.

a. Effective sample sizes and weighting factors.

Observed and estimated effective sample sizes are compared in Table 12. Effective sample sizes are also shown on size-composition plots (Figures 14, 15, and 16).

Data weighting factors, SDNRs, and MARs are presented in Table 19. The SDNR for the trawl survey is acceptable at 1.44 in the **Gmacs match** scenario, and improves to 1.41 and 1.36 in the **Gmacs base** and **Gmacs Francis** scenarios. In the **Gmacs M** model the SDNR of the trawl survey is slightly worse at 1.54, and is much worse in the exploratory **Gmacs force** scenario at 2.26. The SDNRs for the pot surveys show

much the same pattern between each of the scenarios, but are much higher values (ranging from 3.77 to 5.94). These values are very high, and whilst they can be improved by down-weighting the pot survey, it is recommended that they be left as they are as the pot survey is one of the most important data series in this model. The MAR for the trawl and pot surveys shows the same pattern among each of the scenarios as the SDNR. The SDNR (and MAR) values for the trawl survey and pot survey size compositions were excellent, ranging from 0.79 to 1.35 (except for in the **Gmacs force** scenario where the weights were a little high). The SDNRs for the directed pot fishery size compositions are a little low, ranging from 0.65 to 0.8. However, the SDNRs (and MARs) were not used when weighting the size composition data sets in those scenarios that used the Francis weighting method (i.e. in the **Gmacs Francis**, **Gmacs M**, and **Gmacs Force** scenarios). Instead, the Francis size composition weights were used (Francis 2011). In all model scenarios, the Francis weights match the weights that were actually applied to each of the size composition data sets.

b. Tables of estimates.

Model parameter estimates for each of the Gmacs scenarios are summarized in Tables 13, 14, 15, 16, and 17. These parameter estimates are compared in Table 18. Negative log-likelihood values and management measures for each of the Gmacs scenarios are compared in Tables 20 and 10.

There is little difference in the parameter estimates within the **Gmacs match** and **Gmacs base** scenarios. This is reflected in the log-likelihood components and the management quantities. The parameter estimates in the **Gmacs M** scenario are a little different to the previous scenarios, particularly the estimate of the ADF&G pot survey catchability (q) (see Table 18).

c. Graphs of estimates.

Estimated (and fixed) selectivities are compared in Figure 7.

The various model fits to total male (> 89 mm CL) trawl survey biomass are compared in Figures 8 and 9. The fits to pot survey CPUE are compared in Figures 10 and 11. Standardized residuals of total male trawl survey biomass and pot survey CPUE are plotted in Figures 12 and 13.

Fits to stage compositions for trawl survey, pot survey, and commercial observer data are shown in Figures 14, 15, and 16 for the all scenarios. Bubble plots of stage composition residuals for trawl survey, pot survey, and commercial observer data are shown for the **Gmacs base**, **Gmacs Francis**, **Gmacs M**, and **Gmacs force** scenarios in Figures 17, 18, 19, and 20, respectively.

Fits to retained catch numbers and bycatch biomass are shown for all Gmacs scenarios in Figure 21.

Estimated recruitment is compared in Figure 22. Estimated abundances by stage and mature male biomasses for all scenarios (including the 2015 model) are shown in Figures 26 and 23. Estimated natural mortality each year (M_t) is presented in Figure 27.

d. Graphic evaluation of the fit to the data.

There is little difference between model estimated survey biomass in the gmacs scenarios when compared with the 2015 model (Figures 8 and 10). Looking at the model fits to the NMFS trawl survey biomass (Figure 8), the **Gmacs match** scenario is the most similar to the 2015 model, and the **Gmacs base** model is very similar as well. In all scenarios, Gmacs produces a better fit during the mid-late 1980s. However, since about 2010 Gmacs estimates a slighly lower survey biomass than the 2015 model in an attempt to better fit the ADF&G pot survey CPUE (Figure 10). The two Gmacs scenarios that do not attempt to estimate natural mortality in 1998/99 (**Gmacs M** and **Gmacs force**) predict lower survey biomass from 1992 to 1998 than the other scenarios and the 2015 model. These same two runs also predict a lower survey biomass in recent years (since about 2010). While these two models may result in slightly worse fits to the data, they do not risk over-fitting the data in the same way the other scenarios do. As expected the model that upweights the

NMFS survey biomass and ADF&G pot survey CPUE (**Gmacs force**) provides a better fit to the survey biomass during the mid-late 1980s and a much better fit to the pot survey CPUE in the most recent two years (Figures 8, 9, 10, and 11). Keep in mind that this scenario was only included for exploratory purposes and forcing these weights resulted in worse SDNR and MAR values for the two abundance indices.

Estimated recruitment to the model is variable over time (Figure 22). Estimated recruitment during recent years is generally low in all scenarios. Estimated mature male biomass on 15 February also fluctuates strongly over time (Figure 23).

e. Retrospective and historic analyses.

Gmacs retrospective analyses under development.

f. Uncertainty and sensitivity analyses.

Estimated standard deviations of parameters and selected management measures for the five Gmacs scenarios are summarized in Tables 13, 14, 15, 16, and 17. Probabilities for mature male biomass and OFL in 2016 are illustrated in Section F.

g. Comparison of alternative model scenarios.

Both the **Gmacs match** and **Gmacs base** scenarios provide adequate matches between the 2015 model and its Gmacs equivalent. In fact, despite a few minor differences, estimates produced by the 2015 model are generally encompassed the in the uncertainty bounds of the **Gmacs match** model.

Looking at the plot of mature male biomass (Figure 23), the **Gmacs force** scenario stands out as being quite different to the other models (including the 2015 model). This scenario results in a lower MMB from the mid-1908s through to the late-1990s, and is again lower in the most recent 5 years. This scenario upweights both the trawl survey and the pot survey abundance indices (it upweights the pot survey more than the trawl survey) and represents a model run that places greater trust in the abundance indices, particularly the pot survey, than other data sources.

Although the **Gmacs M** scenario presents a worse fit to the data, particularly the NMFS trawl-survey time series, this model does not simply allow a better fit to by estimating an unconstrained pulse in natural mortality. Allowing a better fit in this way is a bit like estimating catchability (q) every year, it is not recommended. Although doing so produces a better fit to the model, it reduces predictive power and support for such a phenomena, anecdotal or otherwise, seems to be limited. It also raises concerns about what the implications would be for an "average" true natural mortality which can affect the management measures.

In summary, we recommend that the $\mathbf{Gmacs}\ \mathbf{M}$ scenario be used for overfishing determination for this stock in 2016.

F. Calculation of the OFL and ABC

The overfishing level (OFL) is the fishery-related mortality biomass associated with fishing mortality F_{OFL} . The SMBKC stock is currently managed as Tier 4 (2013 SAFE), and only a Tier 4 analysis is presented here. Thus given stock estimates or suitable proxy values of B_{MSY} and F_{MSY} , along with two additional parameters α and β , F_{OFL} is determined by the control rule

$$F_{OFL} = \begin{cases} F_{MSY}, & \text{when } B/B_{MSY} > 1\\ F_{MSY} \frac{(B/B_{MSY} - \alpha)}{(1 - \alpha)}, & \text{when } \beta < B/B_{MSY} \le 1 \end{cases}$$

$$F_{OFL} < F_{MSY} \text{ with directed fishery } F = 0 \text{ when } B/B_{MSY} \le \beta$$

$$(1)$$

where B is quantified as mature-male biomass (MMB) at mating with time of mating assigned a nominal date of 15 February. Note that as B itself is a function of the fishing mortality F_{OFL} (therefore numerical approximation of F_{OFL} is required). As implemented for this assessment, all calculations proceed according to the model equations given in Appendix A. F_{OFL} is taken to be full-selection fishing mortality in the directed pot fishery and groundfish trawl and fixed-gear fishing mortalities set at their model geometric mean values over years for which there are data-based estimates of bycatch-mortality biomass.

The currently recommended Tier 4 convention is to use the full assessment period, currently 1978-2016, to define a B_{MSY} proxy in terms of average estimated MMB and to set $\gamma = 1.0$ with assumed stock natural mortality $M = 0.18 \text{ yr}^{-1}$ in setting the F_{MSY} proxy value γM . The parameters α and β are assigned their default values $\alpha = 0.10$ and $\beta = 0.25$. The F_{OFL} , OFL, ABC, and MMB in 2016 for all scenarios are summarized in Table 10. ABC is 80% of the OFL.

Table 10: Comparisons of management measures for the five Gmacs model scenarios. Biomass and OFL are in tonnes.

Component	Gmacs match	Gmacs base	Gmacs M	Gmacs Francis	Gmacs force
$\overline{\mathrm{MMB}_{2016}}$	2240.516	2229.091	1804.755	1796.937	1439.655
$B_{ m MSY}$	3681.513	3671.965	3459.058	3453.784	3325.722
$F_{ m OFL}$	0.089	0.088	0.073	0.073	0.057
OFL_{2016}	140.623	140.253	95.567	95.928	62.115
ABC_{2016}	112.499	112.203	76.454	76.742	49.692

G. Rebuilding Analysis

This stock is not currently subject to a rebuilding plan.

H. Data Gaps and Research Priorities

- 1. Growth increments and molting probabilities as a function of size.
- 2. Trawl survey catchability and selectivities.
- 3. Temporal changes in spatial distributions near the island.
- 4. Natural mortality.

I. Projections and Future Outlook

With the decline of estimated population biomass during recent years, outlook for this stock is not promising. If the decline continues, the stock will fall to depleted status soon.

J. Acknowledgements

We thank the Crab Plan Team, Doug Pengilly for reviewing the earlier draft of this manuscript. Some materials in the report are from the SAFE report prepared by Bill Gaeuman in 2014. We thank Andre Punt for his input into the Gmacs model and for finding the error in the old SMBKC model code.

K. References

Alaska Department of Fish and Game (ADF&G). 2013. Crab observer training and deployment manual. Alaska Department of Fish and Game Shellfish Observer Program, Dutch Harbor. Unpublished.

Collie, J.S., A.K. Delong, and G.H. Kruse. 2005. Three-stage catch-survey analysis applied to blue king crabs. Pages 683-714 [In] Fisheries assessment and management in data-limited situations. University of Alaska Fairbanks, Alaska Sea Grant Report 05-02, Fairbanks.

Daly, B., R. Foy, and C. Armistead. 2014. The 2013 eastern Bering Sea continental shelf bottom trawl survey: results for commercial crab species. NOAA Technical Memorandum, NMFS-AFSC.

Donaldson, W.E., and S.C. Byersdorfer. 2005. Biological field techniques for lithodid crabs. University of Alaska Fairbanks, Alaska Sea Grant Report 05-03, Fairbanks.

Fitch, H., M. Deiman, J. Shaishnikoff, and K. Herring. 2012. Annual management report for the commercial and subsistence shellfish fisheries of the Bering Sea, 2010/11. Pages 75-1776 [In] Fitch, H., M. Schwenzfeier, B. Baechler, T. Hartill, M. Salmon, M. Deiman, E.

Evans, E. Henry, L. Wald, J. Shaishnikoff, K. Herring, and J. Wilson. 2012. Annual management report for the commercial and subsistence shellfish fisheries of the Aleutian Islands, Bering Sea and the Westward Region's Shellfish Observer Program, 2010/11. Alaska Department of Fish and Game, Fishery Management Report No. 12-22, Anchorage.

Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M.N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-249.

Francis, R.I.C.C. 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68: 1124-1138.

Gaeuman, W.B. 2013. Summary of the 2012/13 mandatory crab observer program database for the Bering Sea/Aleutian Islands commercial crab fisheries. Alaska Department of Fish and Game, Fishery Data Series No. 13-54, Anchorage.

Gish, R.K., V.A. Vanek, and D. Pengilly. 2012. Results of the 2010 triennial St. Matthew Island blue king crab pot survey and 2010/11 tagging study. Alaska Department of Fish and Game, Fishery Management Report No. 12-24, Anchorage.

Jensen, G.C. and D.A. Armstrong. 1989. Biennial reproductive cycle of blue king crab, Paralithodes platypus, at the Pribilof Islands, Alaska and comparison to a congener, P. camtschatica. Can. J. Fish. Aquat. Sci. 46: 932-940.

Moore, H., L.C. Byrne, and D. Connolly. 2000. Alaska Department of Fish and Game summary of the 1998 mandatory shellfish observer program database. Alaska Dept. Fish and Game, Commercial Fisheries Division, Reg. Inf. Rep. 4J00-21, Kodiak.

North Pacific Fishery Management Council (NPFMC). 1998. Fishery Management Plan for Bering Sea/Aleutian Islands king and Tanner crabs. North Pacific Fishery Management Council, Anchorage.

North Pacific Fishery Management Council (NPFMC). 1999. Environmental assessment/regulatory impact review/initial regulatory flexibility analysis for Amendment 11 to the Fishery Management Plan for Bering Sea/Aleutian Islands king and Tanner crabs. North Pacific Fishery Management Council, Anchorage.

North Pacific Fishery Management Council (NPFMC). 2000. Environmental assessment/regulatory impact review/initial regulatory flexibility analysis for proposed Amendment 15 to the Fishery Management Plan for king and Tanner crab fisheries in the Bering Sea/Aleutian Islands and regulatory amendment to the Fishery Management Plan for the groundfish fishery of the Bering Sea and Aleutian Islands area: A rebuilding plan for the St. Matthew blue king crab stock. North Pacific Fishery Management Council, Anchorage. Draft report.

North Pacific Fishery Management Council (NPFMC). 2007. Public Review Draft: Environmental assessment for proposed Amendment 24 to the Fishery Management Plan for Bering Sea and Aleutian Islands king and Tanner crabs to revise overfishing definitions. 14 November 2007. North Pacific Fishery Management Council, Anchorage.

Otto, R.S. 1990. An overview of eastern Bering Sea king and Tanner crab fisheries. Pages 9-26 [In] Proceedings of the international symposium on king and Tanner crabs. University of Alaska Fairbanks, Alaska Sea Grant Program Report 90-4, Fairbanks.

Otto, R.S., and P.A. Cummiskey. 1990. Growth of adult male blue king crab (Paralithodes platypus). Pages 245-258 [In] Proceedings of the international symposium on king and Tanner crabs. University of Alaska Fairbanks, Alaska Sea Grant Report 90-4, Fairbanks.

Paul, J.M., A. J. Paul, R.S. Otto, and R.A. MacIntosh. 1991. Spermatophore presence in relation to carapace length for eastern Bering Sea blue king crab (Paralithodes platypus, Brandt, 1850) and red king crab (P. Camtschaticus, Tilesius, 1815). J. Shellfish Res. 10: 157-163.

Pengilly, D. and D. Schmidt. 1995. Harvest Strategy for Kodiak and Bristol Bay Red king Crab and St. Matthew Island and Pribilof Blue King Crab. Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Special Publication Number 7, Juneau.

Schirripa, M.J., C.P. Goodyear, and R.M. Methot. 2009. Testing different methods of incorporating climate data into the assessment of US West Coast sablefish. ICES Journal of Marine Science, 66: 1605–1613.

Somerton, D.A., and R.A. MacIntosh. 1983. The size at sexual maturity of blue king crab, Paralithodes platypus, in Alaska. Fishery Bulletin 81: 621-828.

Wilderbuer, T., D. G. Nichol, and J. Ianelli. 2013. Assessment of the yellowfin sole stock in the Bering Sea and Aleutian Islands. Pages 619-708 in 2013 North Pacific Groundfish Stock Assessment and Fishery Evaluation Reports for 2014. North Pacific Fishery Management Council, Anchorage.

Zheng, J. 2005. A review of natural mortality estimation for crab stocks: data-limited for every stock? Pages 595-612 [In] Fisheries Assessment and Management in Data-Limited Situations. University of Alaska Fairbanks, Alaska Sea Grant Program Report 05-02, Fairbanks.

Zheng, J., and G.H. Kruse. 2002. Assessment and management of crab stocks under uncertainty of massive die-offs and rapid changes in survey catchability. Pages 367-384 [In] A.J. Paul, E.G. Dawe, R. Elner, G.S. Jamieson, G.H. Kruse, R.S. Otto, B. Sainte-Marie, T.C. Shirley, and D. Woodby (eds.). Crabs in Cold Water Regions: Biology, Management, and Economics. University of Alaska Fairbanks, Alaska Sea Grant Report 02-01, Fairbanks.

Zheng, J., M.C. Murphy, and G.H. Kruse. 1997. Application of catch-survey analysis to blue king crab stocks near Pribilof and St. Matthew Islands. Alaska Fish. Res. Bull. 4:62-74.

Table 11: Mean weight (kg) by stage in used in all of the models (provided as a vector of weights at length each year to Gmacs).

Year	Stage-1	Stage-2	Stage-3
1978	0.7	1.2	1.9
1979	0.7	1.2	1.7
1980	0.7	1.2	1.9
1981	0.7	1.2	1.9
1982	0.7	1.2	1.9
1983	0.7	1.2	2.1
1984	0.7	1.2	1.9
1985	0.7	1.2	2.1
1986	0.7	1.2	1.9
1987	0.7	1.2	1.9
1988	0.7	1.2	1.9
1989	0.7	1.2	2.0
1990	0.7	1.2	1.9
1991	0.7	1.2	2.0
1992	0.7	1.2	1.9
1993	0.7	1.2	2.0
1994	0.7	1.2	1.9
1995	0.7	1.2	2.0
1996	0.7	1.2	2.0
1997	0.7	1.2	2.1
1998	0.7	1.2	2.0
1999	0.7	1.2	1.9
2000	0.7	1.2	1.9
2001	0.7	1.2	1.9
2002	0.7	1.2	1.9
2003	0.7	1.2	1.9
2004	0.7	1.2	1.9
2005	0.7	1.2	1.9
2006	0.7	1.2	1.9
2007	0.7	1.2	1.9
2008	0.7	1.2	1.9
2009	0.7	1.2	1.9
2010	0.7	1.2	1.8
2011	0.7	1.2	1.8
2012	0.7	1.2	1.8
2013	0.7	1.2	1.9
2014	0.7	1.2	1.9
2015	0.7	1.2	1.9
2016	0.7	1.2	1.9

Table 12: Observed and assumed sample sizes for observer data from the directed pot fishery, the NMFS trawl survey, and the ADF&G pot survey.

		served sample s		Assumed san		
Year	Observer pot	NMFS trawl	ADF&G pot	Observer pot	NMFS trawl	ADF&G pot
1978		157			50	
1979		178			50	
1980		185			50	
1981		140			50	
1982		271			50	
1983		231			50	
1984		105			50	
1985		93			46.5	
1986		46			23	
1987		71			35.5	
1988		81			40.5	
1989		208			50	
1990	150	170		15	50	
1991	3393	197		25	50	
1992	1606	220		25	50	
1993	2241	324		25	50	
1994	4735	211		25	50	
1995	663	178	4624	25	50	100
1996	489	285		25	50	
1997	3195	296		25	50	
1998	1323	243	4812	25	50	100
1999		52			26	
2000		61			30.5	
2001		91	3255		45.5	100
2002		38			19	
2003		65			32.5	
2004		48	640		24	100
2005		42			21	
2006		126			50	
2007		250	3319		50	100
2008		167			50	
2009	19802	251		50	50	
2010	45466	388	3920	50	50	100
2011	58667	318		50	50	
2012	57282	193		50	50	
2013		74	2167		37	100
2014	9906	181		50	50	
2015	3248	153	1077	50	50	100
2016		108	777		50	100

Table 13: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for the Gmacs match model.

ouci.		
Parameter	Estimate	SD
Natural mortality deviation in 1998/99 (δ_{1998}^{M})	1.668	0.116
$\log(ar{R})$	13.390	0.048
$\log(n_1^0)$	14.894	0.169
$\log(n_2^0)$	14.477	0.194
$\log(n_3^0)$	14.285	0.200
$\log(ar{F}^{ ext{df}})$	-1.519	0.045
$\log(ar{F}^{ ext{tb}})$	-12.228	0.068
$\log(ar{F}^{ ext{fb}})$	-9.130	0.068
$F_{ m OFL}$	0.089	0.009
OFL	140.620	25.900

Table 14: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for the Gmacs base model.

Natural mortality deviation in 1998/99 (δ_{1998}^{M}) 1.669 0.12 $\log(\bar{R})$ 13.399 0.05 $\log(n_{1}^{0})$ 14.860 0.17
$\log(n^0)$ 14.860 0.17
$108(n_1)$ 14.000 0.17
$\log(n_2^0)$ 14.524 0.19
$\log(n_3^0)$ 14.224 0.21
ADF&G pot survey catchability $(q \times 1000)$ 3.967 0.30
$\log(\bar{F}^{\mathrm{df}}) \qquad \qquad -1.512 \qquad 0.05$
$\log(\bar{F}^{\text{tb}})$ -12.245 0.08
$\log(\bar{F}^{\text{fb}})$ -9.147 0.08
log Stage-1 directed pot selectivity 1978-2008 -0.713 0.17
log Stage-2 directed pot selectivity 1978-2008 -0.406 0.12
log Stage-1 directed pot selectivity 2009-2016 -0.629 0.16
log Stage-2 directed pot selectivity 2009-2016 -0.000 0.00
log Stage-1 NMFS trawl selectivity -0.203 0.06
log Stage-2 NMFS trawl selectivity -0.000 0.00
log Stage-1 ADF&G pot selectivity -0.856 0.13
log Stage-2 ADF&G pot selectivity -0.106 0.07
$F_{\rm OFL}$ 0.088 0.01
OFL 140.250 32.76

Table 15: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for the $\mathbf{Gmacs}\ \mathbf{M}\ \mathrm{model}.$

Parameter	Estimate	SD
Natural mortality deviation in 1998/99 (δ_{1998}^{M})		
$\log(ar{R})$	13.245	0.054
$\log(n_1^0)$	14.836	0.207
$\log(n_2^0)$	14.608	0.223
$\log(n_3^0)$	14.280	0.236
ADF&G pot survey catchability $(q \times 1000)$	4.573	0.301
$\log(ar{F}^{ ext{df}})$	-1.421	0.056
$\log(ar{F}^{ ext{tb}})$	-12.154	0.080
$\log(ar{F}^{ ext{fb}})$	-9.056	0.080
log Stage-1 directed pot selectivity 1978-2008	-0.510	0.183
log Stage-2 directed pot selectivity 1978-2008	-0.396	0.150
log Stage-1 directed pot selectivity 2009-2016	-0.502	0.175
log Stage-2 directed pot selectivity 2009-2016	-0.000	0.000
log Stage-1 NMFS trawl selectivity	-0.063	0.060
log Stage-2 NMFS trawl selectivity	-0.000	0.000
log Stage-1 ADF&G pot selectivity	-0.812	0.132
log Stage-2 ADF&G pot selectivity	-0.000	0.000
$F_{ m OFL}$	0.073	0.010
OFL	95.567	22.394

Table 16: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for the Gmacs Francis model.

Parameter	Estimate	SD
$-\log(\bar{R})$	13.229	0.057
$\log(n_1^0)$	14.815	0.276
$\log(n_2^0)$	14.600	0.295
$\log(n_3^0)$	14.269	0.309
ADF&G pot survey catchability $(q \times 1000)$	4.347	0.287
$\log(ar{F}^{ ext{df}})$	-1.402	0.061
$\log(ar{F}^{ ext{tb}})$	-12.188	0.080
$\log(ar{F}^{ ext{fb}})$	-9.091	0.080
log Stage-1 directed pot selectivity 1978-2008	-0.511	0.159
log Stage-2 directed pot selectivity 1978-2008	-0.414	0.132
log Stage-1 directed pot selectivity 2009-2016	-0.516	0.149
log Stage-2 directed pot selectivity 2009-2016	-0.000	0.000
log Stage-1 NMFS trawl selectivity	-0.051	0.079
log Stage-2 NMFS trawl selectivity	-0.000	0.000
log Stage-1 ADF&G pot selectivity	-0.705	0.126
log Stage-2 ADF&G pot selectivity	-0.000	0.000
$F_{ m OFL}$	0.073	0.010
OFL	95.928	22.287

Table 17: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for the

	C	1 1
Gmacs	torce	model.

$\begin{array}{ c c c c c c } \hline \text{Parameter} & \text{Estimate} & \text{SD} \\ \hline \log(\bar{R}) & 13.110 & 0.049 \\ \log(n_1^0) & 14.785 & 0.207 \\ \log(n_2^0) & 14.600 & 0.217 \\ \log(n_3^0) & 14.255 & 0.228 \\ \hline \text{ADF\&G pot survey catchability } (q \times 1000) & 4.129 & 0.190 \\ \log(\bar{F}^{\text{df}}) & -1.335 & 0.044 \\ \log(\bar{F}^{\text{tb}}) & -12.168 & 0.070 \\ \log(\bar{F}^{\text{fb}}) & -9.069 & 0.070 \\ \log \text{Stage-1 directed pot selectivity } 1978-2008 & -0.639 & 0.179 \\ \log \text{Stage-2 directed pot selectivity } 1978-2008 & -0.507 & 0.147 \\ \log \text{Stage-2 directed pot selectivity } 2009-2016 & -0.223 & 0.168 \\ \log \text{Stage-2 directed pot selectivity } 2009-2016 & -0.000 & 0.000 \\ \log \text{Stage-1 NMFS trawl selectivity } & -0.012 & 0.059 \\ \log \text{Stage-2 NMFS trawl selectivity } & -0.000 & 0.000 \\ \log \text{Stage-1 ADF\&G pot selectivity } & -0.478 & 0.163 \\ \log \text{Stage-2 ADF\&G pot selectivity } & -0.000 & 0.000 \\ \hline F_{\text{OFL}} & 0.057 & 0.005 \\ \hline \end{array}$	lel.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Estimate	SD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{\log(ar{R})}$	13.110	0.049
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log(n_1^0)$	14.785	0.207
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\log(n_2^0)$	14.600	0.217
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\log(n_3^0)$	14.255	0.228
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ADF&G pot survey catchability $(q \times 1000)$	4.129	0.190
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\log(ar{F}^{ ext{df}})$	-1.335	0.044
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\log(ar{F}^{ ext{tb}})$	-12.168	0.070
$\begin{array}{llllllllllllllllllllllllllllllllllll$		-9.069	0.070
$\begin{array}{llllllllllllllllllllllllllllllllllll$	log Stage-1 directed pot selectivity 1978-2008	-0.639	0.179
$\begin{array}{llllllllllllllllllllllllllllllllllll$	log Stage-2 directed pot selectivity 1978-2008	-0.507	0.147
$\begin{array}{llllllllllllllllllllllllllllllllllll$	log Stage-1 directed pot selectivity 2009-2016	-0.223	0.168
$\begin{array}{llllllllllllllllllllllllllllllllllll$	log Stage-2 directed pot selectivity 2009-2016	-0.000	0.000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	log Stage-1 NMFS trawl selectivity	-0.012	0.059
$\begin{array}{llllllllllllllllllllllllllllllllllll$	log Stage-2 NMFS trawl selectivity	-0.000	0.000
$F_{ m OFL}$ 0.057 0.005	log Stage-1 ADF&G pot selectivity	-0.478	0.163
	log Stage-2 ADF&G pot selectivity	-0.000	0.000
	$F_{ m OFL}$	0.057	0.005
OFL 62.115 8.838	OFL	62.115	8.838

Table 18: Comparisons of model parameter estimates for the five Gmacs model scenarios.

Parameter	Match	Base	M	Francis	Force
ADF&G pot survey catchability (q)	-	3.967	4.573	4.347	4.129
$\log(ar{F}^{ ext{df}})$	-1.519	-1.512	-1.421	-1.402	-1.335
$\log(ar{F}^{ ext{fb}})$	-9.130	-9.147	-9.056	-9.091	-9.069
$\log(ar{F}^{ ext{tb}})$	-12.228	-12.245	-12.154	-12.188	-12.168
$\log(ar{R})$	13.390	13.399	13.245	13.229	13.110
$\log(n_1^0)$	14.894	14.860	14.836	14.815	14.785
$\log(n_2^{\bar{0}})$	14.477	14.524	14.608	14.600	14.600
$\log(n_3^{\overline{0}})$	14.285	14.224	14.280	14.269	14.255
log Stage-1 ADF&G pot selectivity	-	-0.856	-0.812	-0.705	-0.478
log Stage-1 directed pot selectivity 1978-2008	-	-0.713	-0.510	-0.511	-0.639
log Stage-1 directed pot selectivity 2009-2015	-	-0.629	-0.502	-0.516	-0.223
log Stage-1 NMFS trawl selectivity	-	-0.203	-0.063	-0.051	-0.012
log Stage-2 ADF&G pot selectivity	-	-0.106	-0.000	-0.000	-0.000
log Stage-2 directed pot selectivity 1978-2008	-	-0.406	-0.396	-0.414	-0.507
log Stage-2 directed pot selectivity 2009-2015	-	-0.000	-0.000	-0.000	-0.000
log Stage-2 NMFS trawl selectivity	-	-0.000	-0.000	-0.000	-0.000
Natural mortality deviation in 1998/99 (δ_{1998}^{M})	1.668	1.669	-	-	-

Table 19: Comparisons of data weights, Francis LF weights (i.e. the new weights that should be applied to the LFs), SDNR values, and MAR values for the five Gmacs model scenarios. Note that in the Gmacs Francis, M and Force scenarios, the Francis LF weights and the LF weights applied to each size composition are the same as the size compositions have been re-weighted using the Francis method.

Component	Match	Base	M	Francis	Force
NMFS trawl survey weight	1.00	1.00	1.00	1.00	1.50
ADF&G pot survey weight	1.00	1.00	1.00	1.00	2.00
Directed pot LF weight	1.00	1.00	1.00	1.59	1.35
NMFS trawl survey LF weight	1.00	1.00	1.00	0.55	0.28
ADF&G pot survey LF weight	1.00	1.00	1.00	1.31	0.39
Francis weight for directed pot LF	1.72	1.75	1.59	1.85	1.35
Francis weight for NMFS trawl survey LF	0.54	0.53	0.55	0.45	0.28
Francis weight for ADF&G pot survey LF	2.17	2.22	1.31	1.30	0.39
SDNR NMFS trawl survey	1.44	1.41	1.54	1.49	2.26
SDNR ADF&G pot survey	3.95	3.87	3.79	3.68	6.02
SDNR directed pot LF	0.68	0.64	0.69	0.79	0.81
SDNR NMFS trawl survey LF	1.22	1.27	1.32	1.07	1.74
SDNR ADF&G pot survey LF	0.78	0.80	0.98	1.08	1.63
MAR NMFS trawl survey	1.06	1.10	1.27	1.20	1.69
MAR ADF&G pot survey	3.03	2.90	3.42	3.19	4.75
MAR directed pot LF	0.47	0.45	0.51	0.57	0.57
MAR NMFS trawl survey LF	0.55	0.55	0.69	0.56	1.04
MAR ADF&G pot survey LF	0.53	0.53	0.58	0.51	0.88

Table 20: Comparisons of negative log-likelihood values for the five Gmacs model scenarios.

Component	Match	Base	M	Francis	Force
Pot Retained Catch	-69.05	-69.19	-69.06	-69.14	-67.31
Pot Discarded Catch	6.44	6.00	5.72	6.82	8.25
Trawl by catch Discarded Catch	-6.88	-6.88	-6.88	-6.88	-6.88
Fixed bycatch Discarded Catch	-6.85	-6.86	-6.87	-6.87	-6.86
NMFS Trawl Survey	-6.21	-7.60	1.49	-1.43	41.40
ADF&G Pot Survey CPUE	56.31	53.35	52.51	48.26	149.86
Directed Pot LF	-12.12	-12.98	11.75	6.73	14.80
NMFS Trawl LF	16.82	22.39	55.70	58.17	93.15
ADF&G Pot LF	-7.05	-6.49	1.38	0.23	12.65
Recruitment deviations	57.24	57.11	58.08	58.50	62.34
F penalty	14.49	14.49	13.83	14.49	14.49
M penalty	6.47	6.47	0.00	0.00	0.00
Prior	13.72	13.71	13.71	13.71	13.71
Total	63.34	63.53	131.35	122.59	329.59
Total estimated parameters	282.00	291.00	289.00	289.00	289.00

Table 21: Population abundances (n) by crab stage in numbers of crab at the time of the survey and mature male biomass (MMB) in tonnes on 15 February for the **2015 model**.

Year	$\frac{1 \text{ cordary}}{n_1}$	$\frac{n_1}{n_2}$	$\frac{10 \text{ model}}{n_3}$	MMB
1978	3018380	1953510	1597980	4075
1979	3919060	2341120	2147490	5802
1980	3467980	3064710	3243990	9074
1981	1395090	3047670	4504000	9239
1982	1368260	1777680	4466940	6370
1983	707216	1318650	3036760	3355
1984	683165	782950	1543430	1990
1985	2244990	616447	986160	1686
1986	1338560	1445520	916977	2727
1987	1432180	1228070	1383660	3375
1988	1306640	1222920	1677970	3723
1989	2279000	1148700	1865710	4245
1990	1445840	1690250	2098040	4744
1991	2024880	1377550	2361620	4400
1992	2321500	1583990	2169580	4531
1993	2514290	1829500	2290170	4977
1994	1465290	2012460	2447020	4912
1995	1572620	1462710	2400370	4768
1996	1807950	1360970	2267560	4351
1997	1086810	1459480	2125050	3718
1998	684461	1059430	1727860	1804
1999	373686	342335	653347	1560
2000	412027	332743	748221	1725
2001	380490	352080	826139	1889
2002	169056	340032	898096	2008
2003	336657	212374	934340	1942
2004	235762	267626	914402	1963
2005	525625	227222	917421	1927
2006	799432	383194	923952	2099
2007	590277	594788	1029430	2455
2008	1019370	530589	1177800	2720
2009	928263	772468	1333420	2992
2010	873520	791923	1475900	2755
2011	723104	753585	1409700	2350
2012	458036	646078	1187950	1959
2013	532334	461243	984254	2294
2014	466341	465305	1097620	2327
2015	389087	424535	1123020	2511

Table 22: Population abundances (n) by crab stage in numbers of crab at the time of the survey (1 July, season 1) and mature male biomass (MMB) in tonnes on 15 February for the **Gmacs match** model.

1978 2940912 1937321 1599485 4443 1979 4214746 2366729 2186198 6293 1980 3530461 3255079 3319758 9985 1981 1339907 3151773 4671239 10382 1982 1423213 1836341 4716859 7421 1983 703526 1445516 3354759 4515 1984 627868 894099 1961366 3104 1985 933225 665758 1432033 2802 1986 1338578 768053 1239446 2797 1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 <td< th=""><th>Voor</th><th>()</th><th>m</th><th></th><th>MMD</th></td<>	Voor	()	m		MMD
1979 4214746 2366729 2186198 6293 1980 3530461 3255079 3319758 9985 1981 1339907 3151773 4671239 10382 1982 1423213 1836341 4716859 7421 1983 703526 1445516 3354759 4515 1984 627868 894099 1961366 3104 1985 933225 665758 1432033 2802 1986 1338578 768053 1239446 2797 1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 <td< td=""><td>Year</td><td>2040012</td><td>1027221</td><td>1500405</td><td>MMB</td></td<>	Year	2040012	1027221	1500405	MMB
1980 3530461 3255079 3319758 9985 1981 1339907 3151773 4671239 10382 1982 1423213 1836341 4716859 7421 1983 703526 1445516 3354759 4515 1984 627868 894099 1961366 3104 1985 933225 665758 1432033 2802 1986 1338578 768053 1239446 2797 1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1981 1339907 3151773 4671239 10382 1982 1423213 1836341 4716859 7421 1983 703526 1445516 3354759 4515 1984 627868 894099 1961366 3104 1985 933225 665758 1432033 2802 1986 1338578 768053 1239446 2797 1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1982 1423213 1836341 4716859 7421 1983 703526 1445516 3354759 4515 1984 627868 894099 1961366 3104 1985 933225 665758 1432033 2802 1986 1338578 768053 1239446 2797 1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159					
1983 703526 1445516 3354759 4515 1984 627868 894099 1961366 3104 1985 933225 665758 1432033 2802 1986 1338578 768053 1239446 2797 1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4					
1984 627868 894099 1961366 3104 1985 933225 665758 1432033 2802 1986 1338578 768053 1239446 2797 1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 28					
1985 933225 665758 1432033 2802 1986 1338578 768053 1239446 2797 1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 165					
1986 1338578 768053 1239446 2797 1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791					
1987 1329964 1039251 1346574 3294 1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
1988 1226021 1124816 1564678 3617 1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060					
1989 2674536 1092640 1736620 4139 1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952					
1990 1666073 1928817 2012719 5144 1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 <t>254862 898980 1968 <!--</td--><td></td><td></td><td></td><td></td><td></td></t>					
1991 1762209 1618513 2457709 5111 1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 <td></td> <td>2674536</td> <td>1092640</td> <td></td> <td></td>		2674536	1092640		
1992 1851674 1570399 2396923 5251 1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052				2012719	
1993 2090492 1606677 2482221 5419 1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416					
1994 1515487 1758741 2518683 5130 1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 <t< td=""><td></td><td>1851674</td><td></td><td>2396923</td><td></td></t<>		1851674		2396923	
1995 1675780 1473533 2412962 5059 1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679	1993	2090492	1606677	2482221	5419
1996 1511565 1471942 2333159 4852 1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456	1994	1515487	1758741	2518683	
1997 853687 1375503 2256106 4212 1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089	1995	1675780	1473533		5059
1998 614040 958573 1853684 2887 1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762	1996	1511565	1471942	2333159	4852
1999 363364 313057 693876 1650 2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	1997	853687	1375503	2256106	4212
2000 409999 316943 766549 1791 2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041	1998	614040	958573	1853684	2887
2001 375285 345619 833361 1948 2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	1999	363364	313057	693876	1650
2002 132240 334836 900466 2060 2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2000	409999	316943	766549	1791
2003 328086 189126 930652 1952 2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2001	375285	345619	833361	1948
2004 211796 254862 898980 1968 2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2002	132240	334836	900466	2060
2005 467209 208953 896146 1911 2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2003	328086	189126	930652	1952
2006 745199 342948 892153 2052 2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2004	211796	254862	898980	1968
2007 436309 549673 978199 2416 2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2005	467209	208953	896146	1911
2008 921106 432887 1113856 2568 2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2006	745199	342948	892153	2052
2009 819128 682462 1222934 2679 2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2007	436309	549673	978199	2416
2010 757131 706071 1339466 2456 2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2008	921106	432887	1113856	2568
2011 643942 677524 1270850 2089 2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2009	819128	682462	1222934	2679
2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2010	757131	706071	1339466	2456
2012 363765 602723 1067516 1762 2013 457408 413959 889357 2032 2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2011	643942	677524	1270850	2089
2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2012	363765	602723	1067516	
2014 450828 405706 988406 2041 2015 358504 399119 1006285 2106	2013	457408	413959	889357	2032
$2015 \ 358504 \ 399119 1006285 \ 2106$		450828	405706	988406	2041
		358504	399119	1006285	
2016 354174 342919 1048939 2241	2016	354174	342919	1048939	2241

Table 23: Population abundances (n) by crab stage in numbers of crab at the time of the survey (1 July, season 1) and mature male biomass (MMB) in tonnes on 15 February for the **Gracs base** model.

Year n_1 n_2 n_3 MMB197828425532030682150427043691979411579123404162145183619419803529677318843232640459803198113386693129048459123610207198214690611828043463832972591983754807146957232881464406198463745893214319215063073198589040068408314183672795198613367677491411233575276419871287378103187713320123258198811794031097457154522835501989266096210562481702720403119901673076190872619649795034199117542141615905240810050121992187145815648582352908516119932128922161639324439685354199415158441784461249434451121995169529514823492404947505219961570907148630823318324864199787413714150112266545427619986275709837461883218296019993773843204617110711690200041608332761378579318392001336596352741855291	_		(1111112) 111	COLLING GIL	10 1 001 001	J 101 0110
1979 4115791 2340416 2145183 6194 1980 3529677 3188432 3264045 9803 1981 1338669 3129048 4591236 10207 1982 1469061 1828043 4638329 7259 1983 754807 1469572 3288146 4406 1984 637458 932143 1921506 3073 1985 890400 684083 1418367 2795 1986 1336767 749141 1233575 2764 1987 1287378 1031877 1332012 3258 1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 <td< td=""><td></td><td>Year</td><td></td><td></td><td></td><td></td></td<>		Year				
1980 3529677 3188432 3264045 9803 1981 1338669 3129048 4591236 10207 1982 1469061 1828043 4638329 7259 1983 754807 1469572 3288146 4406 1984 637458 932143 1921506 3073 1985 890400 684083 1418367 2795 1986 1336767 749141 1233575 2764 1987 1287378 1031877 1332012 3258 1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
1981 1338669 3129048 4591236 10207 1982 1469061 1828043 4638329 7259 1983 754807 1469572 3288146 4406 1984 637458 932143 1921506 3073 1985 890400 684083 1418367 2795 1986 1336767 749141 1233575 2764 1987 1287378 1031877 1332012 3258 1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 534 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947		1979	4115791	2340416	2145183	6194
1982 1469061 1828043 4638329 7259 1983 754807 1469572 3288146 4406 1984 637458 932143 1921506 3073 1985 890400 684083 1418367 2795 1986 1336767 749141 1233575 2764 1987 1287378 1031877 1332012 3258 1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 534 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4						
1983 754807 1469572 3288146 4406 1984 637458 932143 1921506 3073 1985 890400 684083 1418367 2795 1986 1336767 749141 1233575 2764 1987 1287378 1031877 1332012 3258 1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4				3129048	4591236	
1984 637458 932143 1921506 3073 1985 890400 684083 1418367 2795 1986 1336767 749141 1233575 2764 1987 1287378 1031877 1332012 3258 1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 29			1469061	1828043	4638329	
1985 890400 684083 1418367 2795 1986 1336767 749141 1233575 2764 1987 1287378 1031877 1332012 3258 1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 169		1983	754807			
1986 1336767 749141 1233575 2764 1987 1287378 1031877 1332012 3258 1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2001 386596 352741 855291 1997		1984	637458	932143	1921506	3073
1987 1287378 1031877 1332012 3258 1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 </td <td></td> <td>1985</td> <td>890400</td> <td>684083</td> <td>1418367</td> <td>2795</td>		1985	890400	684083	1418367	2795
1988 1179403 1097457 1545228 3550 1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003		1986	1336767	749141	1233575	2764
1989 2660962 1056248 1702720 4031 1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003		1987	1287378	1031877	1332012	3258
1990 1673076 1908726 1964979 5034 1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 <		1988	1179403	1097457	1545228	3550
1991 1754214 1615905 2408100 5012 1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 <td></td> <td>1989</td> <td>2660962</td> <td>1056248</td> <td>1702720</td> <td>4031</td>		1989	2660962	1056248	1702720	4031
1992 1871458 1564858 2352908 5161 1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123		1990	1673076	1908726	1964979	5034
1993 2128922 1616393 2443968 5354 1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494		1991	1754214	1615905	2408100	5012
1994 1515844 1784461 2494344 5112 1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 <		1992	1871458	1564858	2352908	5161
1995 1695295 1482349 2404947 5052 1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 <tr< td=""><td></td><td>1993</td><td>2128922</td><td>1616393</td><td>2443968</td><td>5354</td></tr<>		1993	2128922	1616393	2443968	5354
1996 1570907 1486308 2331832 4864 1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534		1994	1515844	1784461	2494344	5112
1997 874137 1415011 2266545 4276 1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144		1995	1695295	1482349	2404947	5052
1998 627570 983746 1883218 2960 1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800		1996	1570907	1486308	2331832	4864
1999 377384 320461 711071 1690 2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		1997	874137	1415011	2266545	4276
2000 416083 327613 785793 1839 2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		1998	627570	983746	1883218	2960
2001 386596 352741 855291 1997 2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		1999	377384	320461	711071	1690
2002 136181 343829 923298 2113 2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2000		327613	785793	1839
2003 332125 194435 954559 2003 2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2001	386596	352741	855291	1997
2004 214753 258999 921946 2015 2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2002	136181	343829	923298	2113
2005 507024 212065 917650 1955 2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2003	332125	194435	954559	2003
2006 757084 367265 915000 2123 2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2004	214753	258999	921946	2015
2007 499106 564749 1010460 2494 2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2005	507024	212065	917650	1955
2008 936580 474418 1153889 2690 2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2006	757084	367265	915000	2123
2009 783535 705391 1278475 2801 2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2007	499106	564749	1010460	2494
2010 746606 692962 1394496 2534 2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2008	936580	474418	1153889	2690
2011 635953 667031 1309638 2144 2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2009	783535	705391	1278475	2801
2012 370619 594551 1094544 1800 2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2010	746606	692962	1394496	2534
2013 458732 415238 908815 2068 2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2011	635953	667031	1309638	2144
2014 418921 406908 1005411 2072 2015 349833 380865 1018496 2107		2012	370619	594551	1094544	1800
2015 349833 380865 1018496 2107		2013	458732	415238	908815	2068
		2014	418921	406908	1005411	2072
$2016 \ 348100 \ 331752 1049276 \ 2229$		2015	349833	380865	1018496	2107
		2016	348100	331752	1049276	2229

Table 24: Population abundances (n) by crab stage in numbers of crab at the time of the survey (1 July, season 1) and mature male biomass (MMB) in tonnes on 15 February for the **Gmacs M** model.

iomass	(MIMID) III	tonnes on	10 Pediuary	ioi tiic
Year	n_1	n_2	n_3	MMB
1978		2208567	1590815	4739
1979	4014131	2359326	2300825	6476
1980	3379208	3135309	3395032	9990
1981	1228348	3023321	4661454	10215
1982	1323065	1728219	4634844	7138
1983	784869	1350865	3223131	4136
1984	607531	910065	1809304	2838
1985	841161	659203	1310956	2545
1986	1307054	712036	1127309	2521
1987	1300481	1002106	1222198	3016
1988	1165518	1095169	1439700	3355
1989	2727772	1047362	1612268	3845
1990	1547353	1944817	1890504	4939
1991	1662327	1554449	2353528	4838
1992	1702967	1490606	2268953	4919
1993	1870927	1493083	2322597	4977
1994	1238826	1592424	2309597	4549
1995	1364594	1256220	2130913	4263
1996	1126489	1217400	1962079	3853
1997	589493	1065316	1785667	2903
1998	358607	700474	1281905	1987
1999	221539	443566	901900	2186
2000	316604	277654	993850	2171
2001	318313	277884	995728	2175
2002	124506	278909	997378	2178
2003	285292	165930	982924	2023
2004	188769	222113	927434	1984
2005	392829	184551	901577	1893
2006	662876	291310	878245	1968
2007	596329	484330	933815	2262
2008	860535	503684	1058216	2544
2009	713010	670698	1206873	2639
2010	726948	640149	1311501	2341
2011	509971	637872	1212987	1952
2012	292388	511149	989858	1535
2013	392793	341635	773317	1747
2014	310712	343761	849838	1732
2015	267290	296500	847865	1725
2016	259047	255304	857559	1805

Table 25: Population abundances (n) by crab stage in numbers of crab at the time of the survey (1 July, season 1) and mature male biomass (MMB) in tonnes on 15 February for the **Gmacs Francis** model.

Omass	(MIMID) III	tonnes on	10 Pediuary	101 1110
Year	n_1	n_2	n_3	MMB
1978	2718048	2190894	1573381	4685
1979	4066560	2321146	2272826	6385
1980	3195063	3153206	3356890	9938
1981	1196087	2921633	4623182	10027
1982	1247326	1675385	4549235	6913
1983	733806	1288932	3118593	3850
1984	559278	859519	1685268	2548
1985	753090	614099	1177647	2219
1986	1188583	645470	985994	2178
1987	1326820	910597	1060897	2607
1988	1313122	1079995	1261297	3012
1989	3100392	1128595	1467915	3656
1990	1309643	2189817	1841686	5129
1991	1611260	1497310	2415653	4891
1992	1727255	1441687	2287235	4897
1993	2082136	1490945	2315142	4960
1994	1299776	1715187	2319894	4708
1995	1296461	1332865	2206551	4496
1996	1174846	1203177	2057671	4019
1997	608593	1088844	1862273	3085
1998	403869	719509	1359492	2160
1999	203306	476396	980888	2371
2000	327565	277968	1074753	2323
2001	338227	284398	1064377	2310
2002	125856	292730	1059647	2310
2003	295442	171338	1041973	2140
2004	168527	229857	980314	2092
2005	420908	175307	947935	1970
2006	722360	304639	914679	2051
2007	537333	523547	975904	2384
2008	901010	482858	1108074	2614
2009	739628	687411	1241466	2717
2010	666165	661294	1351034	2429
2011	516677	609458	1251531	1987
2012	312152	505584	1008418	1561
2013	376174	351333	788128	1784
2014	314984	337286	865681	1752
2015	237031	296835	858175	1743
2016	220838	237727	863789	1797

Table 26: Population abundances (n) by crab stage in numbers of crab at the time of the survey (1 July, season 1) and mature male biomass (MMB) in tonnes on 15 February for the **Gracs force** model.

	/		·	
Year	n_1	n_2	n_3	MMB
1978	2637916	2191610	1551721	4645
1979	3863213	2274538	2248369	6291
1980	3292168	3018741	3296119	9668
1981	1168317	2933483	4513144	9838
1982	1260806	1663115	4461823	6736
1983	697016	1292723	3042386	3703
1984	510866	839282	1622052	2408
1985	682666	579036	1111094	2041
1986	1059689	592580	906957	1969
1987	1194847	817564	957766	2307
1988	1169196	971750	1117773	2628
1989	2931393	1008278	1282244	3158
1990	1541046	2050811	1612480	4554
1991	1680312	1586167	2174252	4534
1992	1712905	1511681	2137214	4696
1993	1887221	1505911	2224169	4798
1994	1164232	1606230	2234610	4423
1995	1104599	1217221	2068310	4106
1996	1885521	1052380	1872486	3503
1997	759491	1453992	1695142	3170
1998	415152	929690	1420442	2487
1999	168540	553203	1126248	2729
2000	302700	283309	1231754	2622
2001	258218	271643	1196115	2542
2002	76507	241698	1156604	2434
2003	169306	125449	1093257	2184
2004	95781	140823	989597	2008
2005	554693	103039	904989	1808
2006	816129	358709	853769	1999
2007	622382	596360	959983	2437
2008	830704	556086	1138229	2752
2009	677685	670804	1297453	2797
2010	615176	619586	1384128	2436
2011	424614	565768	1252168	1931
2012	239781	437169	974564	1421
2013	282938	286169	714646	1583
2014	218293	261004	763856	1491
2015	162491	214817	726441	1429
2016	141604	166746	706359	1440

Figure 7: Comparisons of the estimated (and fixed to match the 2015 model selectivities in the Gmacs base scenario) stage-1 and stage-2 selectivities for each of the different model scenarios (the stage-3 selectivities are all fixed at 1). Estimated selectivities are shown for the directed pot fishery, the trawl bycatch fishery, the fixed bycatch fishery, the NMFS trawl survey, and the ADF&G pot survey. Two selectivity periods are estimated in the directed pot fishery, from 1978-2008 and 2009-2016.

Figure 8: Comparisons of area-swept estimates of total male survey biomass (tonnes) and model predictions for the 2015 model and each of the Gmacs model scenarios. The error bars are plus and minus 2 standard deviations.

Figure 9: Comparisons of area-swept estimates of total male survey biomass (tonnes) and model predictions for the 2015 model and each of the Gmacs model scenarios. The solid black error bars are plus and minus 2 standard deviations derived using the original survey CVs. The dotted error bars are plus and minus 2 standard deviations but represent the weighted survey CVs.

Figure 10: Comparisons of total male pot survey CPUEs and model predictions for the 2015 model and each of the Gmacs model scenarios. The error bars are plus and minus 2 standard deviations.

Figure 11: Comparisons of total male pot survey CPUEs and model predictions for the 2015 model and each of the Gmacs model scenarios. The solid black error bars are plus and minus 2 standard deviations derived using the original survey CVs. The dotted error bars are plus and minus 2 standard deviations but represent the weighted survey CVs.

Figure 12: Standardized residuals for area-swept estimates of total male survey biomass for each of the Gmacs model scenarios.

Figure 13: Standardized residuals for total male pot survey CPUEs for each of the Gmacs model scenarios.

Figure 14: Observed and model estimated size-frequencies of SMBKC by year retained in the directed pot fishery for the 2015 model and each of the Gmacs model scenarios. Note that there is no model estimated size-frequency for the 2015 model during the 2015 year.

Figure 15: Observed and model estimated size-frequencies of discarded male SMBKC by year in the NMFS trawl survey for the 2015 model and each of the Gmacs model scenarios. Note that there is no model estimated size-frequency for the 2015 model during the 2016 year.

Figure 16: Observed and model estimated size-frequencies of discarded SMBKC by year in the ADF&G pot survey for the 2015 model and each of the Gmacs model scenarios. Note that there is no model estimated size-frequency for the 2015 model during the 2016 year.

Figure 17: Bubble plots of residuals by stage and year for the directed pot fishery size composition data for St. Mathew Island blue king crab (SMBKC) in the **Gmacs base** model.

Figure 18: Bubble plots of residuals by stage and year for the NMFS trawl survey size composition data for St. Mathew Island blue king crab (SMBKC) in the **Gmacs Francis** model.

Figure 19: Bubble plots of residuals by stage and year for the NMFS trawl survey size composition data for St. Mathew Island blue king crab (SMBKC) in the $\mathbf{Gmacs}\ \mathbf{M}$ model.

Figure 20: Bubble plots of residuals by stage and year for the ADF&G pot survey size composition data for St. Mathew Island blue king crab (SMBKC) in the **Gmacs force** model.

Figure 21: Comparison of observed and model predicted retained catch and bycatches in each of the Gmacs models. Note that difference in units between each of the panels, some panels are expressed in numbers of crab, some as biomass (tonnes).

Figure 22: Comparisons of estimated recruitment time series during 1979-2016 in each of the scenarios. The solid horizontal lines in the background represent the estimate of the average recruitment parameter (\bar{R}) in each model scenario.

Figure 23: Comparisons of estimated mature male biomass (MMB) time series on 15 February during 1978-2016 for each of the model scenarios.

Figure 24: Distribution of carapace width (mm) at recruitment.

Figure 25: Probability of size transition by stage (i.e. the combination of the growth matrix and molting probabilities). Each of the panels represent the stage before a transition. The x-axes represent the stage after a transition. The size transition matrix was provided as an input directly to Gmacs (as it was during the 2015 SMBKC assessment).

Figure 26: Numbers by stage each year (at the beginning of the model year, i.e. 1 July, season 1) in each of the models including the 2015 model.

Figure 27: Time-varying natural mortality (M_t) . Estimated pulse period occurs in 1998/99 (i.e. M_{1998}).

Appendix A: SMBKC Model Description

1. Introduction

The Gmacs model has been specified to account only for male crab at least 90 mm in carapace length (CL). These are partitioned into three stages (size-classes) determined by CL measurements of (1) 90-104 mm, (2) 105-119 mm, and (3) 120+ mm. For management of the St. Matthew Island blue king crab (SMBKC) fishery, 120 mm CL is used as the proxy value for the legal measurement of 5.5 mm in carapace width (CW), whereas 105 mm CL is the management proxy for mature-male size (5 AAC 34.917 (d)). Accordingly, within the model only stage-3 crab are retained in the directed fishery, and stage-2 and stage-3 crab together comprise the collection of mature males. Some justification for the 105 mm value is presented in Pengilly and Schmidt (1995), who used it in developing the current regulatory SMBKC harvest strategy. The term "recruit" here designates recruits to the model, i.e., annual new stage-1 crab, rather than recruits to the fishery. The following description of model structure reflects the Gmacs base model configuration.

2. Model Population Dynamics

Within the model, the beginning of the crab year is assumed contemporaneous with the NMFS trawl survey, nominally assigned a date of 1 July. Although the timing of the fishery is different each year, MMB is measured 15 February, which is the reference date for calculation of federal management biomass quantities. To accommodate this, each model year is split into 5 seasons (t) and a proportion of the natural mortality (τ_t) is applied in each of these seasons where $\sum_{t=1}^{t=5} \tau_t = 1$. Each model year consists of the following processes:

- 1. Season 1
 - Beginning of the SMBKC fishing year (1 July)
 - $\tau_1 = 0$
 - Surveys
- 2. Season 2
 - τ_2 ranges from 0.05 to 0.44 depending on the time of year the fishery begins each year (i.e. a higher value indicates the fishery begins later in the year; see Table 4)
- 3. Season 3
 - $\tau_3 = 0$
 - Fishing mortality applied
- 4. Season 4
 - $\tau_4 = 0.63 \sum_{i=1}^{i=4} \tau_i$
 - Calculate MMB (15 February)
- 5. Season 5
 - $\tau_5 = 0.37$
 - Growth and molting
 - Recruitment (all to stage-1)

The proportion of natural mortality (τ_t) applied during each season in the model is provided in Table 27. The beginning of the year (1 July) to the date that MMB is measured (15 February) is 63% of the year. Therefore 63% of the natural mortality must be applied before the MMB is calculated. Because the timing of the fishery is different each year τ_2 is different each year and thus τ_4 differs each year.

With boldface lower-case letters indicating vector quantities we designate the vector of stage abundances during season t and year y as

$$\mathbf{n}_{t,y} = n_{l,t,y} = [n_{1,t,y}, n_{2,t,y}, n_{3,t,y}]^{\top}.$$
 (2)

The number of new crab, or recruits, of each stage entering the model each season t and year y is represented as the vector $\mathbf{r}_{t,y}$. The SMBKC formulation of Gmacs specifies recruitment to stage-1 only during season t = 5, thus the recruitment size distribution is

$$\phi_l = \begin{bmatrix} 1, 0, 0 \end{bmatrix}^\top, \tag{3}$$

and the recruitment is

$$\mathbf{r}_{t,y} = \begin{cases} 0 & \text{for } t < 5\\ \bar{R}\phi_l \delta_y^R & \text{for } t = 5. \end{cases}$$
 (4)

where \bar{R} is the average annual recruitment and δ_y^R are the recruitment deviations each year y

$$\delta_y^R \sim (N) \left(0, \sigma_R^2 \right). \tag{5}$$

Using boldface upper-case letters to indicate a matrix, we describe the size transition matrix G as

$$G = \begin{bmatrix} 1 - \pi_{12} - \pi_{13} & \pi_{12} & \pi_{13} \\ 0 & 1 - \pi_{23} & \pi_{23} \\ 0 & 0 & 1 \end{bmatrix}, \tag{6}$$

with π_{jk} equal to the proportion of stage-j crab that molt and grow into stage-k within a season or year.

The natural mortality each season t and year y is

$$M_{t,y} = \bar{M}\tau_t + \delta_y^M \text{ where } \delta_y^M \sim \mathcal{N}\left(0, \sigma_M^2\right)$$
 (7)

Fishing mortality by year y and season t is denoted $F_{t,y}$ and calculated as

$$F_{t,y} = F_{t,y}^{\text{df}} + F_{t,y}^{\text{tb}} + F_{t,y}^{\text{fb}} \tag{8}$$

where $F_{t,y}^{\text{df}}$ is the fishing mortality associated with the directed fishery, $F_{t,y}^{\text{tb}}$ is the fishing mortality associated with the trawl by catch fishery, $F_{t,y}^{\text{fb}}$ is the fishing mortality associated with the fixed by catch fishery. Each of these are derived as

$$F_{t,y}^{\mathrm{df}} = \bar{F}^{\mathrm{df}} + \delta_{t,y}^{\mathrm{df}} \quad \text{where} \quad \delta_{t,y}^{\mathrm{df}} \sim \mathcal{N}\left(0, \sigma_{\mathrm{df}}^{2}\right),$$

$$F_{t,y}^{\mathrm{tb}} = \bar{F}^{\mathrm{tb}} + \delta_{t,y}^{\mathrm{tb}} \quad \text{where} \quad \delta_{t,y}^{\mathrm{df}} \sim \mathcal{N}\left(0, \sigma_{\mathrm{tb}}^{2}\right),$$

$$F_{t,y}^{\mathrm{fb}} = \bar{F}^{\mathrm{fb}} + \delta_{t,y}^{\mathrm{fb}} \quad \text{where} \quad \delta_{t,y}^{\mathrm{df}} \sim \mathcal{N}\left(0, \sigma_{\mathrm{fb}}^{2}\right),$$

$$(9)$$

where $\delta^{\mathrm{df}}_{t,y}$, $\delta^{\mathrm{tb}}_{t,y}$, and $\delta^{\mathrm{fb}}_{t,y}$ are the fishing mortality deviations for each of the fisheries, each season t during each year y, \bar{F}^{df} , \bar{F}^{tb} , and \bar{F}^{fb} are the average fishing mortalities for each fishery. The total mortality $Z_{l,t,y}$ represents the combination of natural mortality $M_{t,y}$ and fishing mortality $F_{t,y}$ during season t and year t

$$Z_{t,y} = Z_{l,t,y} = M_{t,y} + F_{t,y}. (10)$$

The survival matrix $S_{t,y}$ during season t and year y is

$$\mathbf{S}_{t,y} = \begin{bmatrix} 1 - e^{-Z_{1,t,y}} & 0 & 0\\ 0 & 1 - e^{-Z_{2,t,y}} & 0\\ 0 & 0 & 1 - e^{-Z_{3,t,y}} \end{bmatrix}.$$
(11)

The basic population dynamics underlying Gmacs can thus be described as

$$n_{t+1,y} = S_{t,y} n_{t,y},$$
 if $t < 5$
 $n_{t,y+1} = GS_{t,y} n_{t,y} + r_{t,y}$ if $t = 5$. (12)

3. Model Data

Data inputs used in model estimation are listed in Table 28.

4. Model Parameters

Table 29 lists fixed (externally determined) parameters used in model computations. In all scenarios, the stage-transition matrix is

$$\mathbf{G} = \begin{bmatrix} 0.2 & 0.7 & 0.1 \\ 0 & 0.4 & 0.6 \\ 0 & 0 & 1 \end{bmatrix} \tag{13}$$

which is the combination of the growth matrix and molting probabilities.

Estimated parameters are listed in Table 30 and include an estimated natural mortality deviation parameter in 1998/99 (δ_{1998}^{M}) assuming an anomalous mortality event in that year, as hypothesized by Zheng and Kruse (2002), with natural mortality otherwise fixed at 0.18 yr⁻¹.

5. Model Objective Function and Weighting Scheme

The objective function consists of the sum of several "negative log-likelihood" terms characterizing the hypothesized error structure of the principal data inputs (Table 20).

Gmacs calculates standard deviation of the normalised residual (SDNR) values and median of the absolute residual (MAR) values for all abundance indices and size compositions to help the user come up with resonable likelihood weights. For an abundance data set to be well fitted, the SDNR should not be much greater than 1 (a value much less than 1, which means that the data set is fitted better than was expected, is not a cause for concern). What is meant by "much greater than 1" depends on m (the number of years in the data set). Francis (2011) suggests upper limits of 1.54, 1.37, and 1.26 for m = 5, 10, and 20, respectively. Although an SDNR not much greater than 1 is a necessary condition for a good fit, it is not sufficient. It is important to plot the observed and expected abundances to ensure that the fit is good.

Gmacs also calculates Francis weights for each of the size composition data sets supplied (Francis 2011). If the user wishes to use the Francis iterative re-weighting method, first the weights applied to the abundance indices should be adjusted by trial and error until the SDNR (and/or MAR) are adequte. Then the Francis weights supplied by Gmacs should be used as the new likelihood weights for each of the size composition data sets the next time the model is run. The user can then iteratively adjust the abudance index and size composition weights until adequate SDNR (and/or MAR) values are achieved, given the Francis weights.

6. Estimation

The model was implemented using the software AD Model Builder (Fournier et al. 2012), with parameter estimation by minimization of the model objective function using automatic differentiation. Parameter estimates and standard deviations provided in this document are AD Model Builder reported values assuming maximum likelihood theory asymptotics.

Table 27: Proportion of the natural mortality (τ_t) that is applied during each season (t) in the model.

Year	Season 1	Season 2	Season 3	Season 4	Season 5
1978	0.00	0.07	0.00	0.56	0.37
1979	0.00	0.06	0.00	0.57	0.37
1980	0.00	0.07	0.00	0.56	0.37
1981	0.00	0.05	0.00	0.58	0.37
1982	0.00	0.07	0.00	0.56	0.37
1983	0.00	0.12	0.00	0.51	0.37
1984	0.00	0.10	0.00	0.53	0.37
1985	0.00	0.14	0.00	0.49	0.37
1986	0.00	0.14	0.00	0.49	0.37
1987	0.00	0.14	0.00	0.49	0.37
1988	0.00	0.14	0.00	0.49	0.37
1989	0.00	0.14	0.00	0.49	0.37
1990	0.00	0.14	0.00	0.49	0.37
1991	0.00	0.18	0.00	0.45	0.37
1992	0.00	0.14	0.00	0.49	0.37
1993	0.00	0.18	0.00	0.45	0.37
1994	0.00	0.18	0.00	0.45	0.37
1995	0.00	0.18	0.00	0.45	0.37
1996	0.00	0.18	0.00	0.45	0.37
1997	0.00	0.18	0.00	0.45	0.37
1998	0.00	0.18	0.00	0.45	0.37
1999	0.00	0.18	0.00	0.45	0.37
2000	0.00	0.18	0.00	0.45	0.37
2001	0.00	0.18	0.00	0.45	0.37
2002	0.00	0.18	0.00	0.45	0.37
2003	0.00	0.18	0.00	0.45	0.37
2004	0.00	0.18	0.00	0.45	0.37
2005	0.00	0.18	0.00	0.45	0.37
2006	0.00	0.18	0.00	0.45	0.37
2007	0.00	0.18	0.00	0.45	0.37
2008	0.00	0.18	0.00	0.45	0.37
2009	0.00	0.44	0.00	0.19	0.37
2010	0.00	0.44	0.00	0.19	0.37
2011	0.00	0.44	0.00	0.19	0.37
2012	0.00	0.44	0.00	0.19	0.37
2013	0.00	0.44	0.00	0.19	0.37
2014	0.00	0.44	0.00	0.19	0.37
2015	0.00	0.44	0.00	0.19	0.37
2016	0.00	0.44	0.00	0.19	0.37

Table 28: Data inputs used in model estimation.

Data	Years	Source			
Directed pot-fishery retained-catch number	1978/79 - 1998/99	Fish tickets			
(not biomass)	2009/10 - 2015/16	(fishery closed $1999/00 - 2008/09$)			
Groundfish trawl bycatch biomass	1992/93 - 2015/16	NMFS groundfish observer program			
Groundfish fixed-gear bycatch biomass	1992/93 - 2015/16	NMFS groundfish observer program			
NMFS trawl-survey biomass index					
(area-swept estimate) and CV	1978-2016	NMFS EBS trawl survey			
ADF&G pot-survey abundance index					
(CPUE) and CV	Triennial 1995-2016	ADF&G SMBKC pot survey			
NMFS trawl-survey stage proportions					
and total number of measured crab	1978-2016	NMFS EBS trawl survey			
ADF&G pot-survey stage proportions					
and total number of measured crab	Triennial 1995-2016	ADF&G SMBKC pot survey			
Directed pot-fishery stage proportions	1990/91 - 1998/99	ADF&G crab observer program			
and total number of measured crab	2009/10 - 2015/16	(fishery closed $1999/00 - 2008/09$)			

Table 29: Fixed model parameters for all scenarios.

Parameter	Symbol	Value	Source/rationale
Trawl-survey catchability	\overline{q}	1.0	Default
Natural mortality	M	$0.18 \ {\rm yr}^{-1}$	NPFMC (2007)
Size transition matrix	${m G}$	Equation 13	Otto and Cummiskey (1990)
Stage-1 and stage-2 mean weights	w_1, w_2	$0.7,1.2~\mathrm{kg}$	Length-weight equation (B. Foy, NMFS) applied to stage midpoints
Stage-3 mean weight	$w_{3,y}$	Depends on year	Fishery reported average retained weight
	-,3	Table 11	from fish tickets, or its average, and
			mean weights of legal males
Recruitment SD	σ_R	1.2	High value
Natural mortality SD	σ_{M}	10.0	High value (basically free parameter)
Directed fishery		0.2	2010 Crab SAFE
handling mortality			
Groundfish trawl		0.8	2010 Crab SAFE
handling mortality			
Groundfish fixed-gear		0.5	2010 Crab SAFE
handling mortality			
SD of directed fishery			
fishing mortality deviations	$\sigma_{ m df}$	50	
SD of trawl by catch			
fishing mortality deviations	$\sigma_{ m tb}$	50	
SD of fixed gear bycatch			
fishing mortality deviations	$\sigma_{ m fb}$	50	

Table 30: The lower bound (LB), upper bound (UB), initial value, prior, and estimation phase for each estimated model parameter. \Box

Parameter	LB	Initial value	UB	Prior	Phase
Average recruitment $\log(\bar{R})$	-7	10.0	20	Uniform(-7,20)	1
Stage-1 initial numbers $\log(n_1^0)$	5	14.5	20	Uniform(5,20)	1
Stage-2 initial numbers $\log(n_2^0)$	5	14.0	20	Uniform(5,20)	1
Stage-3 initial numbers $\log(n_3^0)$	5	13.5	20	Uniform(5,20)	1
ADF&G pot survey catchability q	0	4.0	5	Uniform(0,5)	1
Stage-1 directed fishery selectivity 1978-2008	0	0.4	1	Uniform(0,1)	3
Stage-2 directed fishery selectivity 1978-2008	0	0.7	1	Uniform(0,1)	3
Stage-1 directed fishery selectivity 2009-2015	0	0.4	1	Uniform(0,1)	3
Stage-2 directed fishery selectivity 2009-2015	0	0.7	1	Uniform(0,1)	3
Stage-1 NMFS trawl survey selectivity	0	0.4	1	Uniform(0,1)	4
Stage-2 NMFS trawl survey selectivity	0	0.7	1	Uniform(0,1)	4
Stage-1 ADF&G pot survey selectivity	0	0.4	1	Uniform(0,1)	4
Stage-2 ADF&G pot survey selectivity	0	0.7	1	Uniform(0,1)	4
Natural mortality deviation during 1998 δ_{1998}^{M}	-3	0.0	3	$Normal(0, \sigma_M^2)$	4
Recruitment deviations δ_y^R	-7	0.0	7	$Normal(0, \sigma_R^2)$	3
Average directed fishery fishing mortality \bar{F}^{df}	-	0.2	-	-	1
Average trawl by catch fishing mortality \bar{F}^{tb}	-	0.001	-	-	1
Average fixed gear by catch fishing mortality \bar{F}^{fb}	-	0.001	-	-	1