SRAM Controller

SR Latch

Gated D Latch

Gated D Latch w/Tristate

Array of D Latches

Add Dout Signals

Dout Signals

Add Din Signals

Din Signals

Connect Dout and Din Signals

Add Read Decoder

Add Write Decoder

Complete Memory

SRAM Block Diagram

се	we	oe	Operation	Data pin d
1	-	-	no operation	Z
0	0	-	write	data in
0	1	0	read	data out
0	1	1	no operation	Z

Timing Diagram of SRAM Write Cycle

Figure 12.7 Role of an SRAM controller.

Role of SRAM Controller

Figure 12.8 Block diagram of an SRAM controller.

Working on the FSM Derivation...

(b) Three-state division

Timing

Parameter	120 ns SRAM	20 ns SRAM	10 ns SRAM*	
T_{aa} (max) =	120 ns	20 ns	12 ns	
T_{oh} (min) =	10 ns	3 ns	2 ns	(T_{oha})
T_{olz} (min) =	10 ns	0 ns	0 ns	(T_{lzoe})
T_{oe} (max) =	80 ns	9 ns	5 ns	(T_doe)
T_{ohz} (max) =	40 ns	9 ns	0 ns	(T_{hzoe})
T_{rc} (min) =	120 ns	20 ns	10 ns	
T_{wp} (min) =	70 ns	12 ns	8 ns	(T_{pwe1})
T_{as} (min) =	20 ns	0 ns	0 ns	(T_{sa})
T_{ah} (min) =	5 ns	0 ns	0 ns	(T_ha)
T_{ds} (min) =	35 ns	1 ns	6 ns	(T_{sd})
T_{dh} (min) =	5 ns	0 ns	0 ns	(T_{hd})
T_{wr} (min) =	120 ns	20 ns	10 ns	(T_{wc})

System clock rate: 40 Mhz (25 ns clock period)

Read Followed by Write (Slow RAM)

Detailed Read Timing

Default: oe <= 1; we <= 1; tri_en <= 0; ready <= 0

Figure 12.14 Division of read and write cycles of a fast SRAM.

Read and Write in a Fast RAM

Write Setup and Hold Times

