El Efecto Fotoeléctrico

Fundamentos de la Física Cuántica

Ingeniería en Nanotecnología

Universidad Tecnológica de Querétaro

Cuatrimestre Mayo - Agosto 2025

Objetivos de Aprendizaje

- Explicar el fenómeno del efecto fotoeléctrico y su importancia para la física cuántica
- Comparar las predicciones clásicas con los resultados experimentales
- Aplicar la ecuación de Einstein para resolver problemas de efecto fotoeléctrico
- ► Relacionar el efecto fotoeléctrico con aplicaciones tecnológicas modernas
- Comprender cómo el efecto fotoeléctrico evidencia la naturaleza corpuscular de la luz

Contexto Histórico

- ▶ Descubierto por Heinrich Hertz (1887) mientras estudiaba ondas electromagnéticas
- ► Investigado sistemáticamente por Philipp Lenard (Premio Nobel 1905)
- Explicado teóricamente por Albert Einstein (1905)
- ▶ Premio Nobel de Física a Einstein (1921) por "sus servicios a la Física Teórica y especialmente por su descubrimiento de la ley del efecto fotoeléctrico"
- Proporcionó evidencia crucial para la teoría cuántica naciente

El Fenómeno del Efecto Fotoeléctrico

- Luz incidente sobre una superficie metálica provoca emisión de electrones
- ► Los electrones emitidos se denominan fotoelectrones
- La energía cinética de los fotoelectrones puede medirse experimentalmente

Montaje Experimental

- Tubo al vacío con dos placas metálicas
- Emisor (E): placa metálica expuesta a la luz
- Colector (C): recoge los electrones emitidos
- Batería: crea diferencia de potencial entre placas
- Amperímetro: mide la corriente de fotoelectrones

Observaciones Experimentales (I)

- ► Si *V* > 0: corriente aumenta hasta saturación
- ▶ Si V < 0: corriente disminuye
- Existe un potencial de frenado (V_s) para el cual la corriente se anula
- ► La energía cinética máxima está relacionada con el potencial de frenado: $K_{max} = eV_s$

Observaciones Experimentales (II)

- La energía cinética máxima de los fotoelectrones no depende de la intensidad de la luz, sino de su frecuencia
- 2. Los electrones son emitidos instantáneamente (sin retraso), incluso a muy baja intensidad
- 3. No hay emisión de electrones por debajo de cierta frecuencia de corte específica para cada metal
- 4. La emisión de fotoelectrones aumenta con la intensidad de la luz, pero no su energía máxima

Explicación de Einstein (1905)

- La luz está compuesta por "cuantos" de energía (fotones)
- \triangleright Cada fotón tiene una energía E = hf, donde h es la constante de Planck
- Un fotón transfiere toda su energía a un solo electrón
- Parte de esta energía se usa para liberar al electrón del metal (función trabajo ϕ)
- El resto se convierte en energía cinética del electrón

Ecuación de Einstein para el Efecto Fotoeléctrico

$$K_{max} = hf - \phi$$

Interpretación de la Ecuación de Einstein

Aquí va una grafica

- $ightharpoonup K_{max} = hf \phi$
- ► h = pendiente de la recta
- $lackbox{}\phi = {\sf función\ trabajo\ (intercepto)}$
- Frecuencia de corte: $f_c = \frac{\phi}{h}$
- Longitud de onda de corte: $\lambda_c = \frac{hc}{\phi}$

Función Trabajo para Diversos Metales

Metal	Función Trabajo ϕ (eV)	λ_c (nm)
Na	2.46	504
Al	4.08	304
Cu	4.70	264
Zn	4.31	288
Ag Pt	4.73	262
Pt	6.35	195
Fe	4.50	276

Nota

 $hc \approx 1240 \; \mathrm{eV} \cdot \mathrm{nm}$ es una combinación útil para cálculos

Explicación de las Observaciones Experimentales

- 1. $K_{max} = hf \phi$ depende de la frecuencia f, no de la intensidad
- 2. La emisión es instantánea porque cada fotón interactúa individualmente
- 3. No hay efecto por debajo de f_c porque $hf < \phi$
- 4. Mayor intensidad = más fotones = más electrones, pero con la misma energía máxima

¡La naturaleza corpuscular de la luz!

El efecto fotoeléctrico demuestra que la luz se comporta como partículas (fotones) al interactuar con la materia, no solo como ondas.

Ejemplo: Cálculo con Efecto Fotoeléctrico

Problema

Una superficie de sodio (Na) con función trabajo $\phi=2.46$ eV se ilumina con luz de longitud de onda de 300 nm. Determine:

- 1. La energía de los fotones incidentes
- 2. La energía cinética máxima de los fotoelectrones
- 3. El potencial de frenado

Solución

$$E = hf = \frac{hc}{\lambda} = \frac{1240 \text{ eV} \cdot \text{nm}}{300 \text{ nm}} = 4.13 \text{ eV}$$
 (2)

$$K_{max} = hf - \phi = 4.13 \text{ eV} - 2.46 \text{ eV} = 1.67 \text{ eV}$$
 (3)

$$V_s = \frac{K_{max}}{2} = 1.67 \text{ V} \tag{4}$$

Actividad con Simulador PhET

Aquí va una grafica

Instrucciones

Acceder a: https://phet.colorado.edu/es/simulation/photoelectric

Aplicaciones Tecnológicas

- Celdas solares fotovoltaicas
- ► Sensores y detectores de luz
- ► Tubos fotomultiplicadores
- Dispositivos de acoplamiento de carga (CCD)
- ► Microscopía de fotoemisión
- Visión nocturna
- Lectores ópticos y controles automáticos

Aquí va una grafica

Impacto Histórico y Conceptual

- Primera evidencia experimental directa de la cuantización de la energía
- Confirmó la hipótesis cuántica de Planck sobre la radiación electromagnética
- Introdujo el concepto del fotón (partícula de luz)
- Contribuyó al desarrollo del principio de dualidad onda-partícula
- ▶ Pieza fundamental en la revolución cuántica del siglo XX
- Transformó nuestra comprensión de la interacción luz-materia

Recapitulación: Conceptos Clave

- ► El efecto fotoeléctrico es la emisión de electrones cuando la luz incide sobre un metal
- No puede explicarse mediante la física clásica (modelo ondulatorio)
- Requiere el modelo corpuscular de la luz (fotones con energía E = hf)
- La ecuación de Einstein: $K_{max} = hf \phi$ describe correctamente el fenómeno
- Estableció las bases para el desarrollo de la mecánica cuántica
- Tiene numerosas aplicaciones tecnológicas en la actualidad

Conexión con el Siguiente Tema

Dualidad Onda-Partícula

Si la luz puede comportarse como partícula... ¿Podría la materia comportarse como onda?

Hipótesis de De Broglie (1924): $\lambda = \frac{h}{\rho} = \frac{h}{mv}$

Actividades y Evaluación

Actividades para la próxima sesión

- Resolver el problema integrador sobre aplicaciones del efecto fotoeléctrico
- ▶ Leer el material sobre la Hipótesis de De Broglie y responder guía de lectura
- Opcional (puntos extra): Video demostrativo sobre efecto fotoeléctrico

Evaluación formativa

- Quiz digital: acceso a través del código QR o enlace en Google Classroom
- Reporte de la actividad con el simulador PhET
- Participación en las discusiones de clase

Referencias y Recursos Complementarios

- Griffiths, D. (2016). *Quantum Mechanics*. Cambridge University Press.
- Eisberg, R. & Resnick, R. Física Cuántica. Limusa Wiley.
- Serway, R. A., Moses, C. J., & Moyer, C. A. (2005). Física Moderna.
- Tipler, P. A. (2012). Física Moderna. Reverté.

Videos recomendados

- ► "El efecto fotoeléctrico" Walter Lewin, MIT OpenCourseWare
- "Explicación del efecto fotoeléctrico" Khan Academy (español)
- "Aplicaciones modernas del efecto fotoeléctrico" SciShow

¿Preguntas?

¡Gracias por su atención!

Para dudas adicionales: [correo electrónico del profesor]

