EXERCISE 9

Date issued: 12th June 2023
Date due: 20th June 2023

Homework Problem 9.1 (Finding Solutions using First and Second Order Information) 6 Points Consider the problem

Maximize
$$-(x_1-2)^2-2(x_2-1)^2$$
 where $x \in \mathbb{R}^2$ subject to $x_1+4x_2 \le 3$ and $x_1 \ge x_2$

Determine, which admissible points satisfy a constraint qualification (ACQ/GCQ/MFCQ/LICQ) and use first and second order information to compute all stationary points and solve the problem, i. e., find all optima and explain why they are local and/or global solutions.

Homework Problem 9.2 (Comparing the Strength of CQs)

6 Points

From the lecture notes, we know that

$$\begin{array}{ccc}
LICQ & \xrightarrow{Lemma \ 8.17} & \xrightarrow{MFCQ} & \xrightarrow{Corollary \ 8.14} & & ACQ & \xrightarrow{Definition \ 8.6} & & GCQ.
\end{array}$$
(8.15)

Show that generally

by investigating the following problems P₁ to P₃ at $x^* = (0,0)^T$:

Minimize
$$f(x)$$
 where $x \in \mathbb{R}^2$ subject to $x_1 \le 0$ $x_2 \le 0$ $x_1 x_2 = 0$ (P1)

$$\begin{array}{lll} \text{Minimize} & f(x) & \text{where } x \in \mathbb{R}^2 \\ \text{subject to} & q(x_1) - x_2 \leq 0 \\ & q(x_1) + x_2 \leq 0 \end{array} \right\} \quad \text{for} \quad q(x_1) \coloneqq \begin{cases} (x_1 + 1)^2, & x_1 < -1, \\ 0, & -1 \leq x_1 \leq 1, \\ (x_1 - 1)^2, & x_1 > 1, \end{cases}$$

Minimize
$$f(x)$$
 where $x \in \mathbb{R}^2$ subject to $-x_1^3 - x_2 \le 0$ $-x_2 \le 0$ (P3)

Homework Problem 9.3 (CQs are invariant under Slack Transformation) 10 Points

We can reformulate the original nonlinear problem

Minimize
$$f(x)$$
 where $x \in \mathbb{R}^n$
subject to $g_i(x) \le 0$ for $i = 1, ..., n_{\text{ineq}}$
and $h_j(x) = 0$ for $j = 1, ..., n_{\text{eq}}$ (7.1)

by introducing a so called **slack variable** $s \in \mathbb{R}^{n_{\text{ineq}}}$ to obtain the simple one-sided box-constrained problem

Minimize
$$f(x)$$
 where $(x, s) \in \mathbb{R}^{n \times n_{\text{ineq}}}$
subject to $g_i(x) + s = 0$ for $i = 1, ..., n_{\text{ineq}}$
and $-s \le 0$
and $h_j(x) = 0$ for $j = 1, ..., n_{\text{eq}}$ (7.1_s)

- (i) Derive the KKT-system of (7.1_s) and show that there is a one-to-one connection between the solutions of the KKT systems corresponding to (7.1) and (7.1_s) .
- (ii) Show that GCQ/ACQ/MFCQ/LICQ is satisfied at a feasible (x, s) for (7.1_s) if the respective condition is satisfied at x for (7.1).

For which CQs can you show equivalence?

Homework Problem 9.4 (Multiplier Compactness is Equivalent to MFCQ)

6 Points

(*i*) Use Farkas' Lemma (Lemma 7.11 in the lecture notes) to show that for $A \in \mathbb{R}^{p \times n}$ and $B \in \mathbb{R}^{n_{eq} \times n}$ with rank(B) = n_{eq} and $p \le n_{ineq}$ either the system

$$Ad < 0, \quad Bd = 0 \tag{0.1}$$

has a solution $d \in \mathbb{R}^n$ or

$$A^{\mathsf{T}}\mu + B^{\mathsf{T}}\lambda = 0 \tag{0.2}$$

has a solution $(\mu, \lambda) \neq 0$ with $\mu \geq 0$.

Hint: Start with the existence of a nontrivial solution to (0.2). Focus the nontriviality on μ . Transform the conditions $\mu \neq 0, \mu \geq 0$ into a linear condition with a sign condition using a normalization step with respect to $\|\cdot\|_1$. Split λ into its positive and negative part. Apply Farkas' Lemma. Success.

(*ii*) Let (x^*, λ^*, μ^*) be a KKT-point of (7.1). Show that MFCQ is satisfied at x^* if and only if the set of Lagrange multipliers that solve the KKT system for x^* is compact.

Please submit your solutions as a single pdf and an archive of programs via moodle.