Ph.D. Candidate, Department of Aeronautics & Astronautics, Stanford

💌 tpark94@stanford.edu | 🧥 taehajeffpark.com | 🖸 tpark94 | 🛅 taehajeffpark | 🕿 Tae Ha Park

Education

Stanford University Stanford, CA

Ph.D. IN AERONAUTICS & ASTRONAUTICS

Apr. 2018 - Current

- · Topic: Robust deep learning in spaceborne computer vision and autonomous navigation
- · Advisor: Dr. Simone D'Amico.

Stanford University Stanford, CA

M.S. IN AERONAUTICS & ASTRONAUTICS

Sep. 2017 - Apr. 2020

Conducted research on deep learning, computer vision, spacecraft swarm navigation and optimization

Harvey Mudd College (HMC)

Claremont, CA

B.S. IN ENGINEERING

Aug. 2013 - May 2017

- Graduated with High Distinction (GPA: 3.81/4.0)
- Member of the Tau Beta Pi Engineering Honors Society
- De Pietro fellow in Civil Engineering

Experience

Infinite Orbits SAS Toulouse, France

COMPUTER VISION AND GUIDANCE, NAVIGATON AND CONTROL (GNC) INTERN

Jun. 2022 - Aug. 2022

- Integrated a PyTorch-based neural networks into the MATLAB/Simulink-based closed-loop GNC simulator
- Constructed a satellite rendezvous simulator and scene renderer based on Unreal Engine 5 and C++ to train and validate convolutional neural networks for monocular pose estimation and tracking of known noncooperative spacecraft

Space Rendezvous Laboratory (SLAB), Stanford University

Stanford, CA

RESEARCH ASSISTANT | ADVISOR: DR. SIMONE D'AMICO

Jan. 2019 - Current

- Developed robust deep learning models and GNC algorithms for vision-based relative navigation in space to support future mission concepts such as on-orbit servicing and debris removal with the ultimate goal of improving the sustainability of the Earth's orbit
- Developed and calibrated the Testbed for Rendezvous and Optical Navigation (TRON) facility at SLAB that is capable of physically simulating spacecraft proximity operations with a mockup satellite model under high-fidelity spaceborne illumination settings and estimating high-accuracy pose labels 🔼 🔼
- Developed the next-generation open-source benchmark datasets (e.g., SPEED+, SHIRT) using TRON to train and validate spaceborne vision-based deep learning and navigation algorithms with emphasis on robustness across domain gap between synthetic training and target spaceborne data
- Organized the second international Satellite Pose Estimation Competition (SPEC2021) in collaboration with the European Space Agency 🗹

Dynamics Laboratory, HMC

Claremont, CA

DE PIETRO FELLOW | ADVISOR: DR. ZIYAD DURON

May 2016 - May 2017

- Developed a method to assess the functionality of steel anchors embedded within a concrete dam based on the Performance-Based Testing using spectral analysis, spectrogram, and model verification
- Analyzed the earthquake response of Monticello dam by constructing and evaluating a lumped element model of dam, reservoir and a spillway

HMC Claremont, CA

STUDENT RESEARCHER | ADVISOR: DR. PHILIP D. CHA

May 2016 - May 2017

· Developed a method to accelerate the modal convergence of the eigen-characteristics of uniform and non-uniform rods carrying various lumped attachments

Publications

Journal Articles

Park, T. H. and D'Amico, S. "Adaptive Neural Network-based Unscented Kalman Filter for Robust Pose Tracking of Noncooperative Spacecraft." Journal of Guidance, Control, and Dynamics (2023). arXiv (Accepted)

Park, T. H. and D'Amico, S. "Robust Multi-Task Learning and Online Refinement for Spacecraft Pose Estimation across Domain Gap." Advances in Space Research (2023). 🗹 🗘

Pasqualetto Cassinis, L., **Park, T. H.**, Stacey, N., D'Amico, S., Menicucci, A., Gill, E., Ahrns, I. and Sanchez-Gestido, M. "Leveraging Neural Network Uncertainty in Adaptive Unscented Kalman Filter for Spacecraft Pose Estimation." *Advances in Space Research* (2023).

Park, T. H., Märtens, M., Jawaid, M., Wang, Z., Chen, B., Chin., T.-J., Izzo, D. and D'Amico, S. "Satellite Pose Estimation Competition 2021: Results and Analyses." *Acta Astronautica* (2023).

Kisantal, M., Sharma, S., **Park, T. H.**, Izzo, D., Märtens, M. and D'Amico, S. "Satellite Pose Estimation Challenge: Dataset, Competition Design and Results." *IEEE Transactions on Aerospace and Electronic Systems* (2020).

Cha, P. D. and **Park, T. H.** "Improved Modal Convergence Using the Assumed Modes Method for Rods Carrying Various Lumped Elements." *International Journal of Mechanical Engineering Education* (2018).

Conference Proceedings

Park, T. H. and D'Amico, S. "Adaptive Neural Network-based Unscented Kalman Filter for Spacecraft Pose Tracking at Rendezvous." 2022 AAS/AIAA Astrodynamics Specialist Conference, Charlotte, North Carolina, August 7 - 11 (2022).

Park, T. H. and D'Amico, S. "Robust Multi-Task Learning and Online Refinement for Spacecraft Pose Estimation across Domain Gap." 11th International Workshop on Satellite Constellations & Formation Flying, Milano, Italy, June 7 - 10 (2022).

Park, T. H., Märtens, M., Lecuyer, G, Izzo, D. and D'Amico, S. "SPEED+: Next-Generation Dataset for Spacecraft Pose Estimation across Domain Gap." 2022 IEEE Aerospace Conference (2022). 🗹 😯

Park, T. H., Bosse, J. and D'Amico, S. "Robotic Testbed for Rendezvous and Optical Navigation: Multi-Source Calibration and Machine Learning Use Cases." 2021 AAS/AIAA Astrodynamics Specialist Conference, Virtual, August 8 - 12 (2021).

Park, T. H. and D'Amico, S. "Generative Model for Spacecraft Image Synthesis using Limited Dataset." 2020 AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, California, August 9 - 13 (2020).

Park, T. H., Sharma, S. and D'Amico, S. "Towards Robust Learning-Based Pose Estimation of Noncooperative Spacecraft." 2019 AAS/AIAA Astrodynamics Specialist Conference, Portland, Maine, August 11 - 15 (2019). 🚨 **<Best Paper Award>**

Datasets

Park, T. H. and D'Amico, S. "SHIRT: Satellite Hardware-In-the-loop Rendezvous Trajectories Dataset." *Stanford Digital Repository* (2022). Available at https://purl.stanford.edu/zq716br5462.

Park, T. H., Märtens, M., Lecuyer, G, Izzo, D. and D'Amico, S. "Next Generation Spacecraft Pose Estimation Dataset (SPEED+)." *Stanford Digital Repository* (2021). Available at https://purl.stanford.edu/wv398fc4383.

Sharma, S., **Park, T. H.** and D'Amico, S. "Spacecraft Pose Estimation Dataset (SPEED)." *Stanford Digital Repository* (2019). Available at https://purl.stanford.edu/dz692fn7184.

Skills.

Programming MATLAB/Simulink, Python, C/C++, HTML, LTFX

Libraries PyTorch, Cython, OpenCV, CVX **Tools** OpenGL, Unreal Engine

Languages Korean (native), English (fluent), Japanese (proficient), Chinese (elementary), French (elementary)

Leadership

'16 - '17 **Secretary**, Tau Beta Pi (TBP) Engineering Honors Society, HMC chapter

Claremont, CA

'16 Clinic Project Leader, leading a 6-person team on a year-long project sponsored by Hewlett Packard, Inc.

Claremont, CA

Teaching

MAY 24, 2023

'19, '21, '22 Teaching Assistant, AA279A: Space Mechanics

Stanford, CA

'16 - '17 **Proctor**, E79/80: Engineering Systems

Claremont, CA

TBP Tutor, E72: Engineering Mathematics, E83: Continuum Mechanics, E101: Advanced Systems Engineering, E171: Dynamics of Elastic Systems

Claremont, CA

Honors & Awards

'19	Best Paper Award, 2019 AAS/AIAA Astrodynamics Specialist Conference	Portland, ME
'15	Tau Beta Pi Engineering Honors Society, HMC	Claremont, CA
'15	De Pietro Fellowship in Civil Engineering, HMC	Claremont, CA
'13	Harvey S. Mudd Merits, HMC	Claremont, CA
13-'17	Dean's List, HMC	Claremont, CA

3