## Attention Is All You Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser

December 6, 2017

#### 01. Introduction

RNN, LSTM, GRU 와 같은 언어 모델링들이 좋은 성능을 내왔다. 하지만 이러한 Recurrent 기반의 모델들은 이전 결과를 입력으로 받는다는 점 때문에 병렬처리가 불가능하다. 최근에는 factorization tricks 와 conditional computation 을 통해 연산 효율의 대폭적인 향상을 달성했지만 여전히 recurrent 기반의 순차적 계산으로 이루어진다.

이 연구에서는 recurrent 의 특성들을 피하고 입력과 출력 사이의 전역 의존성을 이끌어내기 위해 transformer 을 제안한다.

### 02. Model Architecture

Attention 기법만으로 encoder-decoder 구조를 설계했다.



Figure 1: The Transformer - model architecture.

Encoder 은 6 개의 동일한 층으로 구성되어 있고 각 층에는 2 개의 sub-layer 이 있다. 이 sub layer 주의에 residual connection 을 태책하고 있다. Decoder 은 encoder 과 동일하게 6 개의 층과 각 층에는 2 개의 sub layer 으로 구성이 되어 있다.

Self-Attention 을 사용하면 다음과 같은 장점들이 있다. 먼저 레이어당 계산량이 줄어들고 병렬처리가 가능한 계산이 늘어난다. 그리고 장거리 학습이 가능해진다. 이러한 점들은 아래의 표에서 확인이 가능하다.

| Layer Type                  | Complexity per Layer     | Sequential Operations | Maximum Path Length |
|-----------------------------|--------------------------|-----------------------|---------------------|
| Self-Attention              | $O(n^2 \cdot d)$         | O(1)                  | O(1)                |
| Recurrent                   | $O(n \cdot d^2)$         | O(n)                  | O(n)                |
| Convolutional               | $O(k \cdot n \cdot d^2)$ | O(1)                  | $O(log_k(n))$       |
| Self-Attention (restricted) | $O(r \cdot n \cdot d)$   | O(1)                  | O(n/r)              |

# 03. Training

WMT 2014 English-German Dataset 을 이용했으며 GPU 8 대로 기본 모델은 12 시간 동안을 big 모델은 3.5 일 동안 학습시켰다.

| M. 1.1                          | BLEU  |       | Training Cost (FLOPs)                   |                     |
|---------------------------------|-------|-------|-----------------------------------------|---------------------|
| Model                           | EN-DE | EN-FR | EN-DE                                   | EN-FR               |
| ByteNet [18]                    | 23.75 |       |                                         |                     |
| Deep-Att + PosUnk [39]          |       | 39.2  |                                         | $1.0 \cdot 10^{20}$ |
| GNMT + RL [38]                  | 24.6  | 39.92 | $2.3 \cdot 10^{19}$                     | $1.4 \cdot 10^{20}$ |
| ConvS2S [9]                     | 25.16 | 40.46 | $9.6 \cdot 10^{18}$                     | $1.5 \cdot 10^{20}$ |
| MoE [32]                        | 26.03 | 40.56 | $2.0 \cdot 10^{19}$                     | $1.2\cdot 10^{20}$  |
| Deep-Att + PosUnk Ensemble [39] |       | 40.4  |                                         | $8.0 \cdot 10^{20}$ |
| GNMT + RL Ensemble [38]         | 26.30 | 41.16 | $1.8 \cdot 10^{20}$                     | $1.1 \cdot 10^{21}$ |
| ConvS2S Ensemble [9]            | 26.36 | 41.29 | $7.7 \cdot 10^{19}$                     | $1.2\cdot 10^{21}$  |
| Transformer (base model)        | 27.3  | 38.1  | $3.3 \cdot 10^{18}$ $2.3 \cdot 10^{19}$ |                     |
| Transformer (big)               | 28.4  | 41.8  |                                         |                     |

성능에 비해 빠른 속도로 우수한 BLEU scores 을 획득했음을 알 수 있다.

### Reference

https://arxiv.org/pdf/1706.03762.pdf

https://hipgyung.tistory.com/entry/ATTENTION-IS-ALL-YOU-NEED-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0