

- 警示
- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按 0 分计。
- 4.实验报告文件以 PDF 格式提交。

院系	电	子与信息工程学院	班 级 通信工程—		呈一班	组长	刘渤
学号	<u>163</u>	308073 <u>.</u>	16308161		16308091	<u>16308015</u>	
学生	学生 刘渤		邹紫婧		<u>彭肖文</u>	陈瑞佳	
				<u>实</u> 验	<u>分工</u>		
刘渤 跨交换机实现 VLAN				邹紫婧	跨交换机实现 VLAN		
贡献: 25%					<u>贡献: 25%</u>		
彭肖文 跨交换机实现 VLAN				<u>陈瑞佳</u>	跨交换机实现 VLAN	[<u>-</u>	
		<u>贡献: 25%</u>				<u>贡献: 25%</u>	

【实验题目】跨交换机实现 VLAN

【实验目的】理解跨交换机之间 VLAN 的特点。使在同一 VLAN 里的计算机系统能 跨交换机进行相互通信、而在不同 VLAN 里的计算机系统不能进行相互通信。

【实验内容】

第二版书:

- (1) 完成实验教材第 6 章实例 6-2 的实验(p172-p174)。(不用设网关)
- (2) 实例 6-3 的实验通过三层交换机实现 VLAN 间路由 (P177-P179) (要设置 网关,即每个 SVI 配置的 IP 地址)

【实验记录】(如有实验拓扑,要求自行画出拓扑图,并表明 VLAN 以及相关接口。)

(一) 同一 VLAN 里的计算机系统能跨交换机进行相互通信

本实验的拓扑结构如下图 1 所示:

图 1 VLAN实验拓扑图 1

步骤1:实验前的测试:

(1) 实验开始时,用 netsh 命令将 PC1、PC2、PC3 的网卡分别配置成如下 IP、掩码:

PC1	192.168.10.10	255.255.255.0
PC2	192.168.10.20	255.255.255.0
PC3	192.168.10.30	255.255.255.0

验证3台主机是否可以两两互相 ping 通。结果如下图 2 所示:

```
C:\Users\Administrator\ping 192.168.10.20

正在 Ping 192.168.10.20 具有 32 字节的数据:
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.20 的回复: 字节=32 时间=2ms TTL=128
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.20 的回复: 字节=32 时间<1ms TTL=128

192.168.10.20 的 Pins 统计信息:
数据包:已发送=4,已接收=4,丢失=0(0% 丢失),
征返行程的估计时间(以毫秒为单位):
最短=0ms,最长=2ms,平均=0ms

C:\Users\Administrator\ping 192.168.10.30

正在 Ping 192.168.10.30 的回复:字节=32 时间<1ms TTL=128
来自 192.168.10.30 的回复:字节=32 时间<1ms TTL=128
在 192.168.10.30 的回复:字节=32 时间<1ms TTL=128
来自 192.168.10.30 的回复:字节=32 时间<1ms TTL=128
```

图 2-1 PC1 均能 ping 通

```
C:\Users\Administrator>ping 192.168.10.10
正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.10 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.10 的回复: 字节=32 时间=1ms TTL=128

192.168.10.10 的 Ping 统计信息:
数据包:已发送=4.已接收=4,丢失=0(0%丢失),往返行程的估计时间(以毫秒为单位):
最短=0ms,最长=2ms,平均=0ms

C:\Users\Administrator>ping 192.168.10.30

正在 Ping 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128
非自 192.168.10.30 的回复: 字节=32 时间<1ms TTL=128

192.168.10.30 的 Ping 统计信息:
数据包:已发送=4.已接收=4,丢失=0(0%丢失),往返行程的估计时间(以毫秒为单位):
最短=0ms,最长=0ms,平均=0ms
```

图 2-2 PC2 均能 ping 通

```
C:\Users\Administrator>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.10 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.10 的回复: 字节=32 时间=2ms TTL=128
来自 192.168.10.10 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.10 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.10.10 的回复: 字节=32 时间=1ms TTL=128

192.168.10.10 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 2ms,平均 = 0ms
```


图 2-3 PC3 均能 ping 通

(2) 记录交换机 A 和交换机 B 的 VLAN 信息。如下图 3 所示:

22-S5750-1(config)#no vlan 10 22-S5750-1(config)#no vlan 20 22-S5750-1(config)#show vlan VLAN Name	Status	Ports
1 VLAN0001	STATIC	GiO/1, GiO/2, GiO/3, GiO/4
		GiO/5, GiO/6, GiO/7, GiO/8
		GiO/9, GiO/10, GiO/11, GiO/12
		GiO/13, GiO/14, GiO/15, GiO/16
		GiO/17, GiO/18, GiO/19, GiO/20
		GiO/21, GiO/22, GiO/23, GiO/24
		GiO/25, GiO/26, GiO/27, GiO/28
22-S5750-1(config)#		

图 3-1 交换机 A 初始 VLAN 信息

22-S5750-2(config)#show vlan id 20 VLAN Name	Status	Ports		
22-S5750-2(config)#show vlan VLAN Name	Status	Ports		
1 VLAN0001	STATIC	GiO/1, GiO/2, GiO/3, GiO/4 GiO/5, GiO/6, GiO/7, GiO/8		
		Gi0/9, Gi0/10, Gi0/11, Gi0/12 Gi0/13, Gi0/14, Gi0/15, Gi0/16		
		GiO/17, GiO/18, GiO/19, GiO/20		
		Gi0/21, Gi0/22, Gi0/23, Gi0/24 Gi0/25, Gi0/26, Gi0/27, Gi0/28		

图 3-2 交换机 B 初始 VLAN 信息

可以看到,在没有设置交换机的端口信息时,初始状态每个端口的都处于 Native VLAN 状态,所以三台主机均能互相 ping 通。

步骤 2: 在交换机中 A 创建 VLAN10, 并将端口 0/5 划分到 VLAN10 中。

(1) 并在交换机 A 上查看信息验证是否创建 VLAN10, 操作和结果如下图 4 所示:

图 4-1 步骤 2 的 VLAN 信息表

(2) 检查 PC1,PC2,PC3 的连通情况:

```
C:\Users\Administrator>ping 192.168.10.20
正在 Ping 192.168.10.20 具有 32 字节的数据:
请求超时。
请求超时。
来自 192.168.10.10 的回复: 无法访问目标主机。
请求超时。

192.168.10.20 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 1,丢失 = 3 (75% 丢失),

C:\Users\Administrator>ping 192.168.10.30
正在 Ping 192.168.10.30 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
```

图 5-1 设置 VLAN10 后 PC1 的连通情况

```
C:\Windows\system32>ping 192.168.10.10

正在 Ping 192.168.10.10 具有 32 字节的数据:
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。
来自 192.168.10.20 的回复: 无法访问目标主机。

192.168.10.10 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),

C:\Windows\system32>ping 192.168.10.30

正在 Ping 192.168.10.30 的回复: 字节=32 时间〈lms TTL=128
来自 192.168.10.30 的回复: 字节=32 时间〈lms TTL=128
```

图 5-2 设置 VLAN10 后 PC2 的连通情况

可以看到,设置 VLAN10 后, PC1 与 PC2、PC3 均不通, PC2 和 PC3 通。

步骤 3: 在交换机 A 创建 VLAN20, 并将端口 0/15 划分到 VLAN20 中。如图 6 所示。 验证测试:

(1) 在交换机 A 上验证是否创建 VLAN20,查看端口 0/15 是否划分到 VLAN20 中。

图 6 创建 VLAN20 后的交换机 A 的 VLAN 信息表

可以看到交换机 A 上创建了 VLAN20,端口 0/15 划分到了 VLAN20 中。

(2) 检查 PC1,PC2,PC3 的连通情况。图 7显示 PC2pingPC3 的结果:

```
C:\Users\Administrator>ping 192.168.10.30
正在 Ping 192.168.10.30 具有 32 字节的数据:
请求超时。
课自 192.168.10.20 的回复:无法访问目标主机。
请求超时。
192.168.10.30 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 1,丢失 = 3(75% 丢失),
```

图 7 设置 VLAN20 后 PC2 pingPC3 不通

可以看到,此时 PC1、PC2、PC3 均 ping 不通。这是因为现在三个设置了 VLAN 后,三个主机已经不在同一个 VLAN 上。

步骤 4: 将交换机 A 与交换机 B 相连的端口(0/24)定义为 Tag VLAN 模式。 验证测试:

端口已经被设置成 Trunk 模式,如图 8 所示:

图 8 交换机 A 的 24 端口设置成 Trunk 模式

测试此时 PC1,PC2,PC3 的连通状况:

因为此时交换机 B 的 0/24 端口没有设置成 Trunk 模式,且还是处于不同 VLAN端,所以情况和步骤 3 一样还是三台 PC 端均 ping 不通。

步骤 5: 在交换机 B 上创建 VLAN20,并将端口 0/5 划分到 VLAN20 中。 验证测试:

(1) 在交换机 B 上验证是否创建 VLAN20.查看端口 0/15 是否划分到 VLAN20 中。

22-S5750-2(config)#show vlan VLAN Name	Status	Ports
 1 VLAN0001	STATIC	GiO/1, GiO/2, GiO/3, GiO/4
		GiO/6, GiO/7, GiO/8, GiO/9
		GiO/10, GiO/11, GiO/12, GiO/13
		GiO/14, GiO/15, GiO/16, GiO/17
		GiO/18, GiO/19, GiO/20, GiO/21
		Gi0/22, Gi0/23, Gi0/24, Gi0/25
		GiO/26, GiO/27, GiO/28
20 technical	STATIC	GiO/5

图 9 创建 VLAN20 后的交换机 B 的 VLAN 信息表

如图 9 所示,端口 0/15 划分到 VLAN20 中。

(2) 检查 PC1,PC2,PC3 的连通情况。图 10 显示 PC2pingPC3 的结果:

图 10 设置 VLAN20 后 PC2 pingPC3 不通

可以看到,此时 PC1、PC2、PC3 均 ping 不通。这是因为现在虽然 PC2 和 PC3 已 经在同一个 VLAN 中,但交换机 B 与交换机 A 的端口还没有设置成 Trunk 模式。

步骤 6: 将交换机 B 与交换机 A 相连的端口(0/24)定义为 Tag VLAN 模式。验证测试:

(1)端口已经被设置成 Trunk 模式,如图 11 所示:

22-S5750-2(config)#show interfac	es gigabite	thernet	0/24	swite	chport			
Interface 交换机B 24设置	Switchport	Mode	A	Access	Native	Protected	VLAN lists	3
GigabitEthernet 0/24	enabled	TRUNK	1		1	Disabled	ALL	

图 11 交换机 A 的 24 端口设置成 Trunk 模式

上算机网络实验报告

步骤 7:验证 PC2 和 PC3 能互相通信,但 PC1 和 PC3 不能互相通信。 结果如下图 12 所示:

```
C:\Users\Administrator>ping 192.168.10.20
    Ping 192.168.10.20 具有 32 字节的数据:
92.168.10.20 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
:\Users\Administrator>ping 192.168.10.30
    Ping 192.168.10.30 具有 32 字节的数据:
92.168.10.30 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
:\Users\Administrator>
```

图 12-1 PC1pingPC2、PC3 均不通

```
C:\Users\Administrator>ping 192.168.10.30
 E在 Ping 192.168.10.30 具有
      192. 168. 10. 30 的回复: 字
      192.168.10.30 的回复:
192.168.10.30 的回复:
                                           节=32 时间<1ms TTL=
                                           节=32 时间<1ms TTL=
                                           节=32 时间<1ms
```

图 12-2 PC2pingPC3 通

可以看到, PC2 和 PC3 能互相通信, 但 PC1 和 PC3 不能互相通信。

启动监控软件 Wireshark, 用 ping 测试 3 台主机的连通性,并进行以下观察:

(1) 主机之间能否互相通信

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	192.168.10.10	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	2 3.317573	192.168.10.10	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	3 6.325361	192.168.10.10	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	4 9.329629	192.168.10.10	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	5 12.338860	192.168.10.10	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	6 15.174000	00:88:99:00:09:dc	Broadcast	ARP	42 Who has 192.168.10.20? Tell 192.168.10.10 PCL ping PC2
	7 15.345951	192.168.10.10	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	8 18.348074	192.168.10.10	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1
	9 24.836471	RuijieNe_15:57:36	LLDP_Multicast	LLDP	387 TTL = 121 System Name = 22-S5750-1 System Description = Ruijie Layer 3 FULL G.
	10 41.165409	00:88:99:00:09:dc	Broadcast	ARP	42 Who has 192.168.10.30? Tell 192.168.10.10 PCI ping PC3
	11 54.837330	RuijieNe 15:57:36	LLDP Multicast	LLDP	387 TTL = 121 System Name = 22-S5750-1 System Description = Ruijie Laver 3 FULL G.

PC1 ping PC2、PC3 捕捉的报文 图 13-1

图 13-2 PC1 发送的 ARP 协议

可以看到 PC1 ping PC2,PC3 没有 ping 通,如上图 13 所示,PC1 在网络上发送了一个广播 (ARP request),企图在网路上寻找 PC2,PC3 的 MAC 地址,但没有收到 ARP 的 reply 报文,说明 PC1 和 PC2,PC3 之间不能不想通信。

下面查看 PC3 ping PC2 时捕捉到的报文:

No.	Time	Source	Destination	Protocol	Length Info
г	1 0.000000	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request id=0x0001, seq=127/32512, ttl=128 (reply in 2)
	2 0.000477	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=127/32512, ttl=128 (request in 1)
	3 1.017024	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request id=0x0001, seq=128/32768, ttl=128 (reply in 4)
	4 1.017479	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=128/32768, ttl=128 (request in 3)
	5 1.584115	RuijieNe_15:57:36	LLDP_Multicast	LLDP	392 TTL = 121 System Name = 22-S5750-1 System Description = Ruijie Layer 3 FULL G
-	6 2.020832	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request id=0x0001, seq=129/33024, ttl=128 (reply in 7)
4	7 2.021370	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=129/33024, ttl=128 (request in 6)
	8 3.036508	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request id=0x0001, seq=130/33280, ttl=128 (reply in 9)
L	9 3.037000	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=130/33280, ttl=128 (request in 8)
	10 4.880143	Shenzhen_0e:b7:06	00:88:99:00:13:02	ARP	42 Who has 192.168.10.30? Tell 192.168.10.20
	11 4.880543	00:88:99:00:13:02	Shenzhen_0e:b7:06	ARP	60 192.168.10.30 is at 00:88:99:00:13:02

图 13-3 PC2 ping PC3 捕捉的报文

io.	Time	Source	Destination	Protocol	Length Info
-	1 0.000000	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) request id=0x0001, seq=67/17152, ttl=128 (reply in 2)
	2 0.000524	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) reply id=0x0001, seq=67/17152, ttl=128 (request in 1)
	3 1.014451	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) request id=0x0001, seq=68/17408, ttl=128 (reply in 4)
	4 1.014899	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) reply id=0x0001, seq=68/17408, ttl=128 (request in 3)
	5 2.030008	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) request id=0x0001, seq=69/17664, ttl=128 (reply in 6)
	6 2.030259	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) reply id=0x0001, seq=69/17664, ttl=128 (request in 5)
	7 3.045732	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) request id=0x0001, seq=70/17920, ttl=128 (reply in 8)
-	8 3.045981	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) reply id=0x0001, seq=70/17920, ttl=128 (request in 7)
	9 4.507004	Shenzhen_0e:b7:06	00:88:99:00:13:02	ARP	60 Who has 192.168.10.30? Tell 192.168.10.20 PC2 寻找PC3 的MAC抽情
	10 4.507022	00:88:99:00:13:02	Shenzhen_0e:b7:06	ARP	42 192.168.10.30 is at 00:88:99:00:13:02
	11 4.976909	00:88:99:00:13:02	Shenzhen_0e:b7:06	ARP	42 Who has 192.168.10.20? Tell 192.168.10.30
	12 4.977337	Shenzhen_0e:b7:06	00:88:99:00:13:02	ARP	60 192.168.10.20 is at 44:33:4c:0e:b7:06 PC3 寻找PC2 的MAC地址

图 13-4 PC3 ping PC2 捕捉的报文

(2) 能否检测到 PC1,PC2,PC3 的 ICMP 包

PC1 没有收到 ICMP 包,因为 PC1 不能和另外两个主机通信。 但是, PC2 ping PC3 , PC3 在 ping PC2 时,均有收到回显应答报文 ICMP(Echo reply)。且 PC2、PC3 相互发送的 ARP 均有收到对方的地址响应。表明 PC2,PC3 能互相通信。

(3) 能否捕获到 Trunk 链路上的 VLAN ID,请讨论原因。

不能。Trunk 链路上的 Ethernet 帧和标准的帧不同,会有在 tag 标记的 VLAN ID,但是我们不能捕捉到。因为在到达对方的交换机时,Ethernet 帧的 VLAN ID 会被剥离处理,我们收到的还是标准的没有 tag 标记的 Ethernet 帧。

(4) 查看交换机的地址表。观察和分析地址表的形成和变化过程。

22-S5750-1(config)#show vlan VLAN Name	Status	Ports
1 VLAN0001	STATIC	Gi0/1, Gi0/2, Gi0/3, Gi0/4 Gi0/6, Gi0/7, Gi0/8, Gi0/9 Gi0/10, Gi0/11, Gi0/12, Gi0/13 Gi0/14, Gi0/16, Gi0/17, Gi0/18 Gi0/19, Gi0/20, Gi0/21, Gi0/22 Gi0/23, Gi0/24, Gi0/25, Gi0/26 Gi0/27, Gi0/28
10 sales	STATIC	GiO/5, GiO/24
20 technical 22-S5750-1(config)#	STATIC	GiO/15, GiO/24

图 14-1 交换机 A 的地址表

22-S5750-2(config)#show vlan VLAN Name	Status	Ports
1 VLAN0001	STATIC	GiO/1, GiO/2, GiO/3, GiO/4
		GiO/6, GiO/7, GiO/8, GiO/9
		GiO/10, GiO/11, GiO/12, GiO/13
		GiO/14, GiO/15, GiO/16, GiO/17
		GiO/18, GiO/19, GiO/20, GiO/21
		GiO/22, GiO/23, GiO/24, GiO/25
		GiO/26, GiO/27, GiO/28
20 technical	STATIC	GiO/5, GiO/24

图 14-1 交换机 B 的地址表

9 4.507004 10 4.507022	Shenzhen_0e:b7:06 00:88:99:00:13:02	00:88:99:00:13:02 Shenzhen_0e:b7:06	ARP	60 Who has 192.168.10.30? Tell 192.168.10.20 42 192.168.10.30 is at 00:88:99:00:13:02	PC2 导线PC3 的MAC地址
11 4.976909	00:88:99:00:13:02	Shenzhen_0e:b7:06	ARP	42 Who has 192.168.10.20? Tell 192.168.10.30	nen Statenen Marrella II.
12 4.977337	Shenzhen_0e:b7:06	00:88:99:00:13:02	ARP	60 192.168.10.20 is at 44:33:4c:0e:b7:06	PC3 學程PC2 的MACIBLE

图 14-3 PC2 主机的地址表的形成过程

当交换机使 PC2、PC3 处在同一个 VLAN 端口内,可以相互连通时,因为双方 主机均没有对方的 MAC 地址,所以会发送一个 ARP 协议(地址解析协议)。以 PC2 发送 ARP 协议为例子,这个报文会向这个网络广播询问谁的 IP 地址是 192.168.10.30? 只有和这个 IP 地址相同的主机(PC3)会对这个报文进行相应,告诉 PC2 其 MAC 地址,从而建立了 MAC 地址表。

(5) 判断实验是否达到预期目标。

原本三台主机能够互连互通,经过建立 VLAN 和建立 Trunk 后,实现了在相同的 VLAN 中的主机(PC2、PC3)能互相连通,而处于不同的 VLAN 的主机(PC1)不能互通,实现了不同 VLAN 计算机的互相隔离,可见实验达到预期目标。

【实验思考】

- (1) 实验时,要注意两台交换机之间相连的端口应该设置为 TAG VLAN 模式。配置时要注意区别每个操作模式下可执行的命令种类。交换机不可以跨模式执行命令,返回上级一般使用 exit 命令。交换机端口在默认情况下是开启的。一般配置好 IP 后要 no shutdown 命令开启端口,这样才能使物理设备端口正常通信。
- (2) 为什么不同的 VLAN 之间不能互相通信。
- 答: 因为第二层交换机没有能让不同子网之间互相通信的功能。在转发摸个 VLAN 的数据帧时,会在 Ethernet 上加上 Tag 段标记 VLAN ID,所以不同 VLAN 之间因为 Tag 的标记不同而无法进行通信。处于不同的逻辑工作组。
- (3) 说明 VLAN 技术中的 Trunk 模式端口的用途和特点。 答: 主要用途在于连接其他交换机,使不同交换机下相同和 VLAN 端口可以进行通信。特点是中继端口(Trunk 模式)可以支持 IEEE802.1Q, 普通端口不支持 IEEE802.1Q。
- (4)如何查看 Trunk 端口允许哪些 VLAN 通过? 答:

- Switch# show interfaces fastethernet0/20 switchport

图 15-12 不允许 VLAN 2 通过

可以通过命令: show interfaces gigabitethernet 0/24 switchport 查看这个 Trunk 端口可以允许哪些 VLAN 通过。如上图 15-1 所示,表示这个 Trunk 端口可以允许所有 VLAN 通过。而如图 15-2 所示,这个 Trunk 端口不允许 VLAN2 通过。

(5) 实验前要先确定 3 台主机同在一个网段内,为什么要这样限定? 答:因为第二层交换机没有能让不同子网之间互相通信的功能。所以要保证 3 台主机都在同一个子网段内,才能使相同 VLAN 端口的可以相互通信。如果不设置在同一网段,则需要使用第三层交换机或者单臂路由实现 VLAN 间路由。

(二) 通过三层交换机实现 VLAN 间路由

为了能够实现不同 VLAN 之间的通信,可以使用三层交换机实现 VLAN 间路由。三层交换机采用 SVI 方式实现 VLAN 间互连。SVI 是为交换机中的 VLAN 的虚拟接口,该接口需要配置 IP 地址,三层设备会自动产生该接口 IP 所在网段的直接路由信息。

本实验拓扑结构如下图 16 所示:

图 16 VLAN 间路由拓扑图

步骤 1:

(1) 用跳线将图 16 所示的拓扑连接好,使用 netsh 命令配置 PC1,PC2,PC3 的 IP 地址和子网掩码,注意与实验 1 不同,PC1 所在的子网和 PC2,PC3 所在子网不同。

PC1	192.168.20.10	255.255.255.0
PC2	192.168.10.20	255.255.255.0
PC3	192.168.10.30	255.255.255.0

测试 PC1,PC2,PC3 的连通性。因为 PC1 所在子网为 20 端口,所以 PC1 和 PC2,PC3 不能连通, PC2 和 PC3 能连通。要求 PC1 的网段不同于 PC2 和 PC3,是因为我们要使用路由来连接不同的 VLAN,而路由连接的是不同网段。

步骤 2~7 与实验 1 相同,这里不再赘述。

步骤 8: 设置三层交换机 VLAN 间的通信。

将交换机 A 配置成具有路由器的功能, 配置不同 VLAN 接口的地址。

图 17 设置三层交换机 VLAN 间通信

因为我们要使用路由来连接不同的 VLAN,而路由连接的是不同网段。所以虚拟接口的 IP 地址不能处于同一个网段。

步骤 9: 将 PC2 和 PC3 的默认网关设置成 192.168.10.254,将 PC1 的默认网关设置成 192.168.20.254。

步骤 10: 实验测试。使用 ping 命令查看不同 VLAN 内的主机能否互相 ping 通。

```
C:\Users\Administrator>ping 192.168.20.10

正在 Ping 192.168.20.10 具有 32 字节的数据:
来自 192.168.20.10 的回复:字节=32 时间=1ms TTL=127
来自 192.168.20.10 的回复:字节=32 时间<1ms TTL=127

192.168.20.10 的 Ping 统计信息:
数据包:已发送=4,已接收=4,丢失=0(0%丢失),往返行程的估计时间(以毫秒为单位):最短=0ms,最长=1ms,平均=0ms

C:\Users\Administrator>ping 192.168.10.30

正在 Ping 192.168.10.30 具有 32 字节的数据:
来自 192.168.10.30 的回复:字节=32 时间<1ms TTL=128
```

图 18-1 PC2 经过 VLAN 间路由 ping 通 PC1, TTL=127 ping PC3, TTL=128

```
TTL=127

EA Ping 192.168.20.10 具有 32 字节的数据:

来自 192.168.20.10 的回复:字节=32 时间=1ms

来自 192.168.20.10 的回复:字节=32 时间<1ms

来自 192.168.20.10 的回复:字节=32 时间=1ms

来自 192.168.20.10 的回复:字节=32 时间=1ms

来自 192.168.20.10 的回复:字节=32 时间<1ms

TTL=127

192.168.20.10 的 Ping 统计信息:

数据包:已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),

往返行程的估计时间(以毫秒为单位):

最短 = 0ms,最长 = 1ms,平均 = 0ms
```

图 18-2 PC3 经过 VLAN 间路由 ping 通 PC1, TTL=127

可以看到,处于 VLAN20 的 PC2 能 ping 通处在不同 VLAN10 的 PC1, TTL=127 表示经过了一次 VLAN 间路由。相同 VLAN20 的 PC3 也能 ping 通, TTL=128 表示 没有经过 VLAN 间路由。处于 VLAN20 的 PC3 能 ping 通处在不同 VLAN10 的 PC1, TTL=127 表示经过了一次 VLAN 间路由。

启动监控软件 Wireshark, 互 ping2 台计算机并观察:

(1) 计算机是否互相连通:

El 17 11 Cipingi CZV 1 C3 im M I I K Z					
4 8.944640	192.168.10.20	192.168.20.10	ICMP	74 Echo (ping) request id=0x0001, seq=174/44544, ttl=128 (reply in 5)	
5 8.945171	192.168.20.10	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=174/44544, ttl=127 (request in 4)	
6 9.959083	192.168.10.20	192.168.20.10	ICMP	74 Echo (ping) request id=0x0001, seq=175/44800, ttl=128 (reply in 7)	
7 9.959578	192.168.20.10	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=175/44800, ttl=127 (request in 6)	
8 10.976639	192.168.10.20	192.168.20.10	ICMP	74 Echo (ping) request id=0x0001, seq=176/45056, ttl=128 (reply in 9)	
9 10.977101	192.168.20.10	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=176/45056, ttl=127 (request in 8)	
10 11.713422	192.168.10.30	239.255.255.250	SSDP	179 M-SEARCH * HTTP/1.1	
11 11.983326	192.168.10.20	192.168.20.10	ICMP	74 Echo (ping) request id=0x0001, seq=177/45312, ttl=128 (reply in 12)	
12 11.985560	192.168.20.10	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=177/45312, ttl=127 (request in 11)	
13 13.721397	Shenzhen_0e:b7:06	RuijieNe_15:57:37	ARP	42 Who has 192.168.10.254? Tell 192.168.10.20	
14 13.722195	RuijieNe_15:57:37	Shenzhen_0e:b7:06	ARP	60 192.168.10.254 is at 58:69:6c:15:57:37	
32 84.493933	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request id=0x0001, seq=178/45568, ttl=128 (reply in 33)	
33 84.494425	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=178/45568, ttl=128 (request in 32)	
34 85.502181	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request id=0x0001, seq=179/45824, ttl=128 (reply in 35)	
35 85.502722	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=179/45824, ttl=128 (request in 34)	
36 86.516810	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request id=0x0001, seq=180/46080, ttl=128 (reply in 37)	
37 86.517381	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=180/46080, ttl=128 (request in 36)	
38 87.521896	192.168.10.20	192.168.10.30	ICMP	74 Echo (ping) request id=0x0001, seq=181/46336, ttl=128 (reply in 39)	
39 87.522557	192.168.10.30	192.168.10.20	ICMP	74 Echo (ping) reply id=0x0001, seq=181/46336, ttl=128 (request in 38)	
40 89.188476	00:88:99:00:13:02	Shenzhen_0e:b7:06	ARP	60 Who has 192.168.10.20? Tell 192.168.10.30	
41 89.188496	Shenzhen_0e:b7:06	00:88:99:00:13:02	ARP	42 192.168.10.20 is at 44:33:4c:0e:b7:06	
42 89.225706	Shenzhen_0e:b7:06	00:88:99:00:13:02	ARP	42 Who has 192.168.10.30? Tell 192.168.10.20	
43 89.226121	00:88:99:00:13:02	Shenzhen_0e:b7:06	ARP	60 192.168.10.30 is at 00:88:99:00:13:02	

图 19-2 PC2pingPC1、PC3 捕获的报文

可以看到,PC1pingPC2 捕获到了回显应答报文 Echo reply ICMP,且 TTL=127,然后发送了一个 ARP 报文,找到了 PC2 主机的 MAC 地址并加入 ARP 高速缓存中。PC2pingPC1 同理。而 PC2pingPC3 时其 TTL=128,可见处于不同网段的不同 VLAN 计算机可以通过 VLAN 间路由互相连通。

- (2) 能否监控到 PC1,PC2,PC3 的 ICMP 包? 从图 19 可以看出,均捕获到了回显应答报文 Echo reply ICMP。
- (3) 使用 show ip route 命令查看三层交换机的路由表,并与步骤 1 比较。

```
22-S5750-1(config)#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP
0 - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set
C 192.168.10.0/24 is directly connected, VLAN 20
C 192.168.10.254/32 is local host.
C 192.168.20.0/24 is directly connected, VLAN 10
C 192.168.20.254/32 is local host.
```

图 20 三层交换机的路由表

可以看到,配置后增加了红色方框的路由信息。记录了虚拟接口 VLAN20 的 IP 地址和 VLAN10 的 IP 地址。

(4) 在命令提示符窗口下使用 route print 命令能否查看到实验设置的路由?

图 21 主机 PC1 的路由表信息

可以看到,在永久路由上有网关地址 192.168.20.254, IPV4 路由中有显示子网 192.168.20.x. 这是因为在自己的主机上设置了默认网关 192.168.20.254,所有可以看 到路由信息。

(5) 由本实验能得到什么结论?

经过这次实验,我们得出以下结论:在交换网络中,通过 VLAN 对一个物理网络进行逻辑划分,不同的 VLAN 之间是无法直接访问的,需要通过三层的路由设备进行连接。而且要求不同的 VLAN 所在的子网段不同。三层交换机和路由具有网络层的功能,能够将 IP 的报头信息进行路由和转发,实现不同网段之间的访问。

【实验思考】

(1) 实验用到了三层交换机的路由功能,为什么在 VLAN 配置好 IP 地址后,不同个 VLAN 间(PC1 和 PC2)就可以相互通信了?

答:因为配置好 IP 地址后,PC1 如果向 PC2 发送报文,发现不在一个子网,则会通过默认网关发送这个报文,从而报文就可以发送到三层交换机的虚拟 VLAN 接口,然后三层交换机会将报文进行转发到其目的 IP 地址对应的 VLAN 接口。实现不同的 VLAN 通信。

(2)请使用 show ip route 命令查看三层交换机的路由表,并说明每个条目代表什么。答:三层交换机的路由表如下图 22 所示:

```
22-S5750-1(config)#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP
0 - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set
C 192.168.10.0/24 is directly connected, VLAN 20
C 192.168.10.254/32 is local host.
C 192.168.20.0/24 is directly connected, VLAN 10
C 192.168.20.254/32 is local host.

图 22 三层交换机的路由表
```

第一条表示 192.168.10.0/24 这个子网已经直接连接到虚拟 VLAN20 接口,

第二条表示 192.168.10.254 是这个路由的虚拟 VLAN20 接口的 IP 地址。 第三条表示 192.168.20.0/24 这个子网已经直接连接到虚拟 VLAN10 接口,

第四条表示 192.168.20.254 是这个路由的虚拟 VLAN10 接口的 IP 地址。

本次实验完成后,请根据组员在实验中的贡献,请实事求是,自评在实验中应得的分数。 (按百分制)

学号	学生	自评分
16308091	彭肖文	100
16308073	刘勃	100
16308161	邹紫婧	100
16308015	陈瑞佳	100

【交实验报告】

上传实验报告: ftp://172.18.186.41

截止日期(不迟于): 1周之内

上传包括两个文件:

- (1) 小组实验报告。上传文件名格式: 小组号_Ftp 协议分析实验.pdf (由组长负责上传) 例如: 文件名"10_Ftp 协议分析实验.pdf"表示第 10 组的 Ftp 协议分析实验报告
- (2) 小组成员实验体会。每个同学单独交一份只填写了实验体会的实验报告。只需填写自己的学号和姓名。

文件名格式: 小组号_学号_姓名_ Ftp 协议分析实验.pdf (由组员自行上传)

例如: 文件名 " $10_05373092_{张三}$ Ftp 协议分析实验.pdf" 表示第 10 组的 Ftp 协议分析实验报告。

注意:不要打包上传!