TABLE OF CONTENTS

Differential Equation

A differential equation is an equation for an unknown function that involves the derivative of the unknown function.

Differential Equation

A differential equation is an equation for an unknown function that involves the derivative of the unknown function.

Differential equations play a central role in modelling a huge number of different phenomena. Here is a table giving a bunch of named differential equations and what they are used for. It is far from complete.

Newton's Law of Motion	describes motion of particles
Maxwell's equations	describes electromagnetic radiation
Navier-Stokes equations	describes fluid motion
Heat equation	describes heat flow
Wave equation	describes wave motion
Schrödinger equation	describes atoms, molecules and crystals
Stress-strain equations	describes elastic materials
Black-Scholes models	used for pricing financial options
Predator-prey equations	describes ecosystem populations
Einstein's equations	connects gravity and geometry
Ludwig-Jones-Holling's equation	models spruce budworm/Balsam fir ecosystem
Zeeman's model	models heart beats and nerve impulses
Sherman-Rinzel-Keizer model	for electrical activity in Pancreatic β –cells
Hodgkin-Huxley equations	models nerve action potentials

Disclaimer:

We are dipping our toes into a vast topic. Most universities offer half a dozen different undergraduate courses on various aspects of differential equations. We will just look at one special, but important, type of equation.

► We will first learn to verify solutions without finding them. (If you learned about differential equations last semester, this will be review.)

Disclaimer:

We are dipping our toes into a vast topic. Most universities offer half a dozen different undergraduate courses on various aspects of differential equations. We will just look at one special, but important, type of equation.

- ► We will first learn to verify solutions without finding them. (If you learned about differential equations last semester, this will be review.)
- ► Then, we will learn to solve one particular type of differential equation.

Definition

A **differential equation** is an equation involving the derivative of an unknown function.

Definition

A **differential equation** is an equation involving the derivative of an unknown function.

Examples:
$$\frac{dy}{dx} = 2x$$
; $x\frac{dy}{dx} = 7xy + y$

Definition

A **differential equation** is an equation involving the derivative of an unknown function.

Examples:
$$\frac{dy}{dx} = 2x$$
; $x\frac{dy}{dx} = 7xy + y$

Definition

If a function makes a differential equation true, we say it **satisfies** the differential equation, or is a solution to the differential equation.

Definition

A **differential equation** is an equation involving the derivative of an unknown function.

Examples:
$$\frac{dy}{dx} = 2x$$
; $x\frac{dy}{dx} = 7xy + y$

Definition

If a function makes a differential equation true, we say it **satisfies** the differential equation, or is a solution to the differential equation.

Example: $y = x^2$ and $y = x^2 + 1$ both satisfy the first differential equation

Consider the equation

$$x + 2 = x^3 - x^2$$

How would you verify whether x = 1 satisfies the equation? How would you verify whether x = 2 satisfies the equation?

Consider the equation

$$x + 2 = x^3 - x^2$$

How would you verify whether x = 1 satisfies the equation? How would you verify whether x = 2 satisfies the equation? Plug x into the equation, check whether the left-hand side and the right-hand side are the same **number**.

Consider the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2y + 4x$$

How would you verify whether $y = e^{2x} - 2x$ satisfies the equation? How would you verify whether $y = e^{2x} - 2x - 1$ satisfies the equation?

Consider the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2y + 4x$$

How would you verify whether $y = e^{2x} - 2x$ satisfies the equation? How would you verify whether $y = e^{2x} - 2x - 1$ satisfies the equation?

Replace y and $\frac{dy}{dx}$ in the equation, check whether the left-hand side and the right-hand side are the same **function**.

Differential equation:

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = 7xy + y$$

Interpretation:

There is a function y(x) that makes the left-hand side and the right-hand side into the same function.

To check whether a given function satisfies the differential equation, plug it in for everything with a "y": y itself and $\frac{dy}{dx}$.

Differential equation:

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = 7xy + y$$

Interpretation:

There is a function y(x) that makes the left-hand side and the right-hand side into the same function.

To check whether a given function satisfies the differential equation, plug it in for everything with a "y": y itself and $\frac{dy}{dx}$.

Is $y = xe^{7x+9}$ a solution to the differential equation?

Differential equation: $x \frac{dy}{dx} = 7xy + y$ Function: $y = xe^{7x+9}$ Which of the following solve the differential equation $\frac{dy}{dx} = \frac{x}{y}$?

A.
$$y = -x$$

B.
$$y = x + 5$$

C.
$$y = \sqrt{x^2 + 5}$$

FIRST EXAMPLE OF A SEPARABLE DE

Definition

A separable differential equation is an equation for a function y(x) that can be written in the form

$$g(y) \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

(It may take some rearranging to get the equation into this form.)

For example:

$$y^2 \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = 4x$$

GENERAL METHOD FOR SOLVING SEPARABLE DES

$$g(y) \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

GENERAL METHOD FOR SOLVING SEPARABLE DES

$$g(y) \cdot \frac{\mathrm{d}y}{\mathrm{d}x} = f(x)$$

Shorthand:

$$g(y) \cdot \frac{dy}{dx} = f(x)$$
$$g(y) dy = f(x) dx$$
$$\int g(y) dy = \int f(x) dx$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 x$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 x$$

1. "Separate"
$$y$$
's from x 's.
$$\underbrace{\frac{1}{y^2} dy}_{\text{only } y} = \underbrace{x dx}_{\text{only } x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 x$$

$$\underbrace{\frac{1}{y^2} dy}_{\text{only } y} = \underbrace{x dx}_{\text{only } x}$$

2. Integrate.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2x$$

$$\underbrace{\frac{1}{y^2} dy}_{\text{only } y} = \underbrace{x dx}_{\text{only } x}$$

2. Integrate.

$$\int \frac{1}{y^2} dy = \int x dx \qquad \Longrightarrow \qquad -\frac{1}{y} = \frac{1}{2}x^2 + C$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 x$$

$$\underbrace{\frac{1}{y^2} dy}_{\text{only } y} = \underbrace{x dx}_{\text{only } x}$$

2. Integrate.

$$\int \frac{1}{y^2} dy = \int x dx \qquad \Longrightarrow \qquad -\frac{1}{y} = \frac{1}{2}x^2 + C$$

3. Solve explicitly for *y*.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 x$$

$$\underbrace{\frac{1}{y^2} dy}_{\text{only } y} = \underbrace{x dx}_{\text{only } x}$$

2. Integrate.

$$\int \frac{1}{y^2} dy = \int x dx \qquad \Longrightarrow \qquad -\frac{1}{y} = \frac{1}{2}x^2 + C$$

3. Solve explicitly for *y*.

$$y = \frac{1}{-\frac{1}{2}x^2 - C}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (xy)^4, \qquad y(0) = \frac{1}{2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y(4x^3 - 1) \qquad y(0) = -2$$

Let *a* and *b* be any two constants. We'll now solve the family of differential equations

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a(y - b)$$

using our mnemonic device.

Linear First-Order Differential Equations

Let a and b be constants. The differentiable function y(x) obeys the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a(y - b)$$

if and only if

$$y(x) = \{y(0) - b\} e^{ax} + b$$

Linear First-Order Differential Equations

Let a and b be constants. The differentiable function y(x) obeys the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a(y - b)$$

if and only if

$$y(x) = \{y(0) - b\} e^{ax} + b$$

Find a function y(x) with y' = 3y + 7 and y(2) = 5.

The rate at which a medicine is metabolized (broken down) in the body depends on how much of it is in the bloodstream. Suppose a certain medicine is metabolized at a rate of $\frac{1}{10}A~\mu g/hr$, where A is the amount of medicine in the patient. The medicine is being administered to the patient at a constant rate of $2~\mu g/hr$. If the patient starts with no medicine in their blood at t=0, give the formula for the amount of medicine in the patient at time t. What happens to the amount over time?

Linear First-Order Differential Equations

Let a and b be constants. The differentiable function y(x) obeys the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = a(y - b)$$

if and only if

$$y(x) = \{y(0) - b\} e^{ax} + b$$

$$\frac{dA}{dt} = 2 - \frac{1}{10}A = -\frac{1}{10}(A - 20) \qquad A(0) = 0$$

Included Work

'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021, modified), 13, 17, 32, 34

'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 15, 18, 33