Name	Situation	PMF $p(x)$	E(X)	V(X)	Parameters	Possible values
Bernoulli (Indicator)	X is the outcome (success or failure) of one trial Example: X is whether or not a student passes an exam.	$p^x(1-p)^{1-x}$	p	p(1-p)	p = success probability	x = 0, 1
Binomial $\mathcal{B}(n,p)$	X is the number of successes in n independent trials Example: X is the number of heads in ten coin tosses.	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	n = number of trials p = success probability	$x = 0, 1, \dots, n$
Hypergeometric $\mathcal{H}(n, M, N)$	X is the number of successes in a sample of size n from a population of size N . Example: X is the number of aces in a poker hand.	$\binom{M}{x}\binom{N-M}{n-x}/\binom{N}{n}$	$n\frac{M}{N}$	$\left(\frac{N-n}{N-1}\right)n\frac{M}{N}\left(1-\frac{M}{N}\right)$	N = population size $M = number of successes in pop.$ $n = sample size$	$x = 0, 1, \dots$ $\dots \min\{n, M\}$
Geometric $\mathcal{G}(p)$	X is the number of independent trials until the first success Example: X is the number of coin flips until you get the first head.	$p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	p = success probability	$x = 1, 2, \dots$
Negative Binomial $\mathcal{NB}(r,p)$	X is the number of indep. trials until the r^{th} success Example: X is the number of coin flips until you get the third head.	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$r\frac{1}{p}$	$r\frac{(1-p)}{p^2}$	p = success probability $r = $ number of successes	$x = r, r + 1, \dots$
Poisson $\mathcal{P}(\lambda)$	X is the number of times a rare event occurs Example: X is the number of accidents at some intersection next week.	$e^{-\lambda \frac{\lambda^x}{x!}}$	λ	λ	$\lambda = \text{average rate of}$ occurences	$x = 0, 1, \dots$