Equivalence Relations

Recall:

Definition 1 (Equivalence Relation). Let A be a set and let $\sigma \subseteq A \times A$ be a relation on A. We say that σ is an equivalence relation if the following hold.

- 1. $a\sigma a$ for all $a \in A$. (Reflexivity)
- 2. If $a\sigma b$ then $b\sigma a$ for all $a,b\in A$. (Symmetry)
- 3. If $a\sigma b$ and $b\sigma c$, then $a\sigma c$ for all $a,b,c\in A$. (Transitivity)

If σ is an equivalence on A and $a \in A$, then the set

$$[a]_{\sigma} = \{b \in A \mid a\sigma b\}$$

is called the equivalence class of a.

Definition 2 (Partition). Let A be a set, and let $P \subseteq 2^A$ be a collection of subsets of A. We say that P is a partition of A if the following hold.

- 1. $\bigcup P = A$ (P is collectively exhaustive)
- 2. If $C_1, C_2 \in P$ are distinct, then $C_1 \cap C_2 = \emptyset$.

Equivalence relations and partitions are related in a fundamental way.

Theorem 1. Let A be a set.

1. If σ is an equivalence relation, then the set

$$A/\sigma = \{[a] \mid a \in A\}$$

is a partition of A.

2. If P is a partition of A, then the relation

$$\sigma = \{(x, y) \mid y \in A, x \in [y]\}$$

is an equivalence on A.

That is, given an equivalence we can build a partition, and given a partition we can build an equivalence relation.

Definition 3. Let A be a set and σ an equivalence on A. Then the mapping $\pi_{\sigma}: A \to A/\sigma$ given by $\varphi(a) = [a]_{\sigma}$ is called the natural projection of A onto A/σ .

Theorem 2.

• If $\varphi: A \to B$ is a mapping, then $\ker(\varphi)$ is an equivalence relation.

• If σ is an equivalence relation on A and $\pi:A\to A/\sigma$ the natural projection, then $\ker(\pi)=\sigma$.

Quotient sets, it turns out, are extremely important, and we use them frequently. Defining functions on a quotient set can be tricky.

Theorem 3 (First Isomorphism Theorem for Sets). Let $\varphi: A \to B$ be a function, and suppose we have an equivalence relation σ such that $\sigma \subseteq \ker(\varphi)$. Then there is a unique function $\overline{\varphi}: A/\sigma \to B$ such that $\varphi = \overline{\varphi} \circ \pi_{\sigma}$.