Chapter 9

Relational Database Design by ERand to-Relational Mapping

Chapter 9 Outline

 Relational Database Design Using ER-to-Relational Mapping

Relational Database Design by ER- and EER-toRelational Mapping

- Design a relational database schema
 - Based on a conceptual schema design
- Seven-step algorithm to convert the basic ER model constructs into relations

Relational Database Design Using ER-to-Relational Mapping

ER-to-Relational Mapping Algorithm

- COMPANY database example
 - Assume that the mapping will create tables with simple single-valued attributes
- Step 1: Mapping of Regular Entity Types
 - For each regular entity type, create a relation R
 that includes all the simple attributes of E
 - Called entity relations
 - Each tuple represents an entity instance

ER-to-Relational Mapping Algorithm (cont'd.)

- Step 2: Mapping of Weak Entity Types
 - For each weak entity type, create a relation R
 and include all simple attributes of the entity
 type as attributes of R
 - Include primary key attribute of owner as foreign key attributes of R

Mapping Regular and Weak Entities

ER-to-Relational Mapping Algorithm (cont'd.)

- Step 3: Mapping of Binary 1:1 Relationship
 Types
 - For each binary 1:1 relationship type
 - Identify relations that correspond to entity types participating in R
 - Possible approaches:
 - Foreign key approach
 - Merged relationship approach
 - Crossreference or relationship relation approach

1:1 Mapping: Foreign Key Approach

SSNFnameMnameLnameSalaryBdateAddressDnumberDname

It is better to put in the relation with total participation the primary key of the other relation as a foreign key

1:1 Mapping: Merged Relation Approach

SSNFnameMnameLnameSalaryBdateAddressDnumberDname

This is possible when both participations are total

1:1 Mapping: Cross Reference

Create new relation containing the two primary key of the two relations and then choose one of them to be primary key

Mapping 1:M Relationship

- Step 4: Mapping of Binary 1:N Relationship
 Types
 - For each regular binary 1:N relationship type
 - Identify relation that represents participating entity type at N-side of relationship type
 - Include primary key of other entity type as foreign key in S
 - Include simple attributes of 1:N relationship type as attributes of S

Mapping 1:M Relationship (cont'd.)

Mapping M:N Relationship

- Step 5: Mapping of Binary M:N Relationship
 Types
 - For each binary M:N relationship type
 - Create a new relation S
 - Include primary key of participating entity types as foreign key attributes in S
 - Include any simple attributes of M:N relationship type

Mapping M:N Relationship (cont'd.)

ER-to-Relational Mapping Algorithm (cont'd.)

- Step 6: Mapping of Multivalued Attributes
 - For each multivalued attribute
 - Create a new relation
 - Primary key of R is the combination of A and K
 - If the multivalued attribute is composite, include its simple components

Summary

- Map conceptual schema design in the ER model to a relational database schema
 - Algorithm for ER-to-relational mapping
 - Illustrated by examples from the COMPANY database