Design Fundamentals

Dr. Sambit Bakshi

NIT Rourkela

February 5, 2021

Outline

- Relational Database Design
- 2 Functional Dependencies
- Closure of functional dependency set
- Closure of attribute set
- 5 Redundancy in Functional Dependency Set
- 6 Equivalence of functional dependency sets
- 7 Superkeys, Candidate keys, Alternate Keys, and Primary key

Relational Database Design

Redundant data lead to following anomalies in database:

- Insert Anamolies
- Update Anamolies
- Deletion Anamolies

Redundancy is often caused by a functional dependency present in the relation.

Functional Dependency:

A functional dependency, denoted by $X \longrightarrow Y$, between two sets of attributes X and Y that are subsets of R specifies a constraint on the possible tuples that can form a relation state r of R. The constraint is that, for any two tuples t_1 and t_2 in r that have $t_1[X] = t_2[X]$, they must also have $t_1[Y] = t_2[Y]$.

Armstrong's axioms:

- Reflexivity rule: If X is a set of attributes and $Y \subseteq X$, then $X \longrightarrow Y$ holds.
- Augmentation rule: If X

 Y holds and Z is a set of attributes, then ZX

 ZY holds.
- $\bullet \ \ \, \textbf{Transitivity rule} \colon \ \, \textbf{If} \ \, \textbf{X} \, \longrightarrow \, \textbf{Y} \, \, \textbf{holds and} \, \, \textbf{Y} \, \longrightarrow \, \textbf{Z} \, \, \textbf{holds, then} \, \, \textbf{X} \, \longrightarrow \, \textbf{Z} \, \, \textbf{holds.}$

A functional dependency $X \longrightarrow Y$ is termed as **trivial** if $X \supset Y$; otherwise, it is **nontrivial**.

More inference axioms:

- Union rule. If $X \longrightarrow Y$ and $X \longrightarrow Z$, then $X \longrightarrow YZ$ holds.
- Pseudotransitive rule. If $X \longrightarrow Y$ and $YW \longrightarrow Z$, then $XW \longrightarrow Z$ holds.
- Decomposition rule. If X → YZ, then X → Y and X → Z hold.

Armstrong's axioms are **sound** and **complete**. These inference axioms can be derived from Armstrong's axioms.

Proving Union rule from Armstrong's axioms:

```
Given: X \longrightarrow Y; X \longrightarrow Z

\Longrightarrow XX \longrightarrow XY; XY \longrightarrow YZ (using augmentation of X in X \longrightarrow Y and Y in X \longrightarrow Z)

\Longrightarrow X \longrightarrow XY; XY \longrightarrow YZ \Longrightarrow X \longrightarrow YZ (using transitivity rule)
```

Proving Pseudotransitive rule from Armstrong's axioms:

```
Given: X \longrightarrow Y; YW \longrightarrow Z

\Longrightarrow XW \longrightarrow YW; YW \longrightarrow Z (using augmentation of W in X \longrightarrow Y)

\Longrightarrow XW \longrightarrow Z (using transitivity rule)
```

Proving Decomposition rule from Armstrong's axioms:

```
Given: X \longrightarrow YZ
We know YZ \longrightarrow Y; YZ \longrightarrow Z (using reflexive rule)
From X \longrightarrow YZ; YZ \longrightarrow Y
\Longrightarrow X \longrightarrow Y (using transitivity rule)
From X \longrightarrow YZ; YZ \longrightarrow Z
\Longrightarrow X \longrightarrow Z (using transitivity rule)
```

Let functional dependency set FD = {AB \longrightarrow CD, B \longrightarrow DE, C \longrightarrow F, E \longrightarrow G, A \longrightarrow B}. Use Armstrong's axioms to derive that A \longrightarrow FG is logically implied by FD

Step#	Inference	Justification
1	$\mathtt{A} \longrightarrow \mathtt{B}$	Given
2	$\mathtt{A} \; \longrightarrow \; \mathtt{AB}$	Augmentation of A on step 1
3	$\mathtt{AB} \longrightarrow \mathtt{CD}$	Given
4	$A \longrightarrow CD$	Transitivity on steps 2,3
5	$\mathtt{B} \longrightarrow \mathtt{DE}$	Given
6	$\mathtt{A} \; \longrightarrow \; \mathtt{DE}$	Transitivity on steps 1,5
7	$\mathtt{A} \; \longrightarrow \; \mathtt{ACD}$	Augmentation of A on step 4
8	$\mathtt{ACD} \longrightarrow \mathtt{CDE}$	Augmentation of C,D on step 6
9	$\mathtt{A} \ \longrightarrow \ \mathtt{CDE}$	Transitivity on steps 7,8
10	$A \longrightarrow CE$	Trivial dependency from step 9
11	$\mathtt{C} \longrightarrow \mathtt{F}$	Given
12	$\mathtt{CE} \longrightarrow \mathtt{EF}$	Augmentation of E on step 11
13	$E \longrightarrow G$	Given
14	$FE \longrightarrow FG$	Augmentation of F on step 13
15	$\mathtt{CE} \longrightarrow \mathtt{FG}$	Transitivity on steps 12,14
16	$\mathtt{A} \; \longrightarrow \; \mathtt{FG}$	Transitivity on steps 10,15

The set of **ALL** FDs implied by a given set F of FDs is called the **closure** of F, and denoted as F^+ .

Armstrong Axioms can be applied repeatedly to infer all FDs implied by a set F of FDs.

We already read that Armstrong axioms are sound and complete. The exact meaning is:

Sound: The axioms generate ONLY FDs in F⁺ when applied to a given set of FDs F.

Complete: The axioms, when repeatedly applied to a given set of FDs F, will generate ALL FDs in F^+ .

Attribute Closure:

For a given FD set, **closure of an attribute** is the set of all the attributes in the relation that the input attribute can determine by using inference axioms and given FD set. Closure of an attribute A is denoted by $\{A\}^+$ or $(A)^+$.

Closure of AB = (AB) $^+$ = {A $^+$ \cup B $^+$ \cup (Any FD in F where AB is the determinant)}

Given the following FD set F={X \longrightarrow YZ, ZW \longrightarrow P, P \longrightarrow Z, W \longrightarrow XPQ, XYQ \longrightarrow YW, WQ \longrightarrow YZ}, find the closure of all the single attributes.

Systematically computing Closure of an FD set:

- Step 1. Compute S, which is the set all attributes in the FD set
- Step 2. Compute P(S), which is the power set of S except null element
- Step 3. Compute closure of each element of P(S)
- Step 4. If the closure of an element of P(S) is of the form $\{X\}^+ = \{Y\}$, then $(2^{|Y|} 1)$ number of FDs will be found from this. The FDs will be of the form $X \longrightarrow Z$ where Z is any element in P(Y) (power set of Y) except null.

Systematically computing Closure of an FD set:

Find closure of $F = \{A \longrightarrow B, A \longrightarrow C, B \longrightarrow C\}$

Find closure of $\mathbf{r} - \{\mathbf{A} \longrightarrow \mathbf{b}, \mathbf{A} \longrightarrow \mathbf{c}, \mathbf{b} \longrightarrow \mathbf{c}\}$				
Attribute Closure	Derived FDs			
$A^+ = \{ABC\}$	A \longrightarrow A, A \longrightarrow B, A \longrightarrow C, A \longrightarrow AB, A \longrightarrow BC, A			
	\longrightarrow AC, A \longrightarrow ABC			
$B^+ = \{BC\}$	$ extstyle B \longrightarrow extstyle B, B \longrightarrow extstyle C, B \longrightarrow extstyle BC$			
$C_+ = \{C\}$	$C \longrightarrow C$			
$(AB)^+ = \{ABC\}$	AB \longrightarrow A, AB \longrightarrow B, AB \longrightarrow C, AB \longrightarrow AB, AB \longrightarrow			
	BC, AB \longrightarrow AC, AB \longrightarrow ABC			
$(BC)^+ = \{BC\}$	$\mathtt{BC} \longrightarrow \mathtt{B}$, $\mathtt{BC} \longrightarrow \mathtt{C}$, $\mathtt{BC} \longrightarrow \mathtt{BC}$			
$(AC)^+ = \{ABC\}$	AC \longrightarrow A, AC \longrightarrow B, AC \longrightarrow C, AC \longrightarrow AB, AC \longrightarrow			
	BC, AC \longrightarrow AC, AC \longrightarrow ABC			
$(ABC)^+ = \{ABC\}$	ABC \longrightarrow A, ABC \longrightarrow B, ABC \longrightarrow C, ABC \longrightarrow AB, ABC			
	\longrightarrow BC, ABC \longrightarrow AC, ABC \longrightarrow ABC			
Closure of F	All the FDs above in this column			

Q. In a schema with attributes A, B, C, D, E, following set of functional dependencies are given: $A \rightarrow B$; $A \rightarrow C$; $CD \rightarrow E$; $B \rightarrow D$; $E \rightarrow A$ Which of the following functional dependencies is NOT implied by the above set?

- (a) CD -> AC
- (b) BD -> CD
- (c) BC -> CD
- (d) AC -> BC

[GATE2005]

Q. In a schema with attributes A, B, C, D, E, following set of functional dependencies are given: A -> B; A -> C; CD -> E; B -> D; E -> A Which of the following functional dependencies is NOT implied by the above set?

- (a) CD -> AC
- (b) BD -> CD
- (c) BC -> CD
- (d) AC -> BC
- [GATE2005]
- ANSWER: (b)

Extraneous Attribute:

For a given FD set F, an attribute A is **extraneous** in $X \longrightarrow Y$ if A can be removed from the left side or right side of $X \longrightarrow Y$ without altering the closure of F.

Let G =
$$\{A \longrightarrow BC, B \longrightarrow C, AB \longrightarrow D\}$$

Attribute C is extraneous in the right side of A \longrightarrow BC i.e., {A \longrightarrow B, B \longrightarrow C, AB \longrightarrow D } has same closure as G

Attribute B is extraneous in the left side of AB \longrightarrow D i.e., $\{A \longrightarrow BC, B \longrightarrow C, A \longrightarrow D\}$ has same closure as G

The Satisfies Algorithm

Used to determine if a relation R satisfies or doesn't satisfy a given FD: A --> B

- Input: Relation R and an FD: A → B
- Output: TRUE if R satisfies A \longrightarrow B, otherwise FALSE
- Step 1: Sort the tuples of the relation R on the attribute(s) A (determinant) so that tuples with equal values under A are next to each other
- Step 2: Check that tuples with equal values under A also have equal values under attribute(s) B
- Step 3: If any two tuples of R have equal values under A but different values under attribute(s) B, output of the algorithm is FALSE
- Step 4: If every two tuples of R having equal values under A also have same values under attribute(s) B, output of the algorithm is TRUE

Consider the relation TABLE_PURCHASE_DETAIL(Customer_ID, Store_ ID, Purchase_Location)

TABLE PURCHASE DETAIL

CustomerID	Store ID	re ID Purchase Locatio	
1	1	Los Angeles	
1	3	San Francisco	
2	1	Los Angeles	
3	2	New Y ork	
4	3	San Francisco	

Check if the following functional dependencies are satisfied in the above relation:

- Q1. Customer_ID \longrightarrow Purchase_Location
- Q2. Store_ID → Purchase_Location
- Q3. {Customer_ID, Store_ID} \longrightarrow Purchase_Location
- Q4. Customer_ID \longrightarrow Store_ID

Х	Y	Z
1	4	2
1	5	3
1	6	3
3	2	2

Q. Which of the following functional dependencies are satisfied by the instance?

Redundancy in functional dependency:

Given a set F of FDs, a FD A \longrightarrow B in F is said to be **redundant** with respect to the FDs of F if and only if A \longrightarrow B is implied and can be derived from a subset F' of F such that F' \equiv F-{A \longrightarrow B}.

Eliminating Redundant FDs allows us to minimize the set of FDs.

The Membership Algorithm

Used to determine if there exists a redundant FD A \longrightarrow B in a given set of functional dependencies F

- Input: F and a FD A → B belonging to F
- Output: TRUE if A → B is redundant in F, otherwise FALSE
- Step 1: Remove temporarily A \longrightarrow B from F. Set G = F { A \longrightarrow B }. If G $\neq \phi$, proceed to Step 2; otherwise halt with output FALSE
- Step 2: Initialize the set of attributes T_i with i=1 with the set of attribute(s) A, i.e., Set
 T_i = T₁ = {A}.
- ullet Step 3: Search in G for FDs X \longrightarrow Y such that X \subseteq T_i.
- Step 3a: If such FD X \longrightarrow Y is found from Step 3, form $T_{i+1} \longleftarrow Y \cup T_i$ and assign i \longleftarrow i+1.
- Step 3aa: If all the attributes of B belongs to T_i , declare the FD A \longrightarrow B to be redundant, halt with output TRUE.
- Step 3ab: If all attributes of B are not members of T_i , assign $G \longleftarrow G \{X \longrightarrow Y\}$ and repeat Step 3.
- Step 3b: If G = ϕ or there is no such FD is found from Step 3, then halt with output FALSE.

Given the set $F=\{X \longrightarrow YW, XW \longrightarrow Z, Z \longrightarrow Y, XY \longrightarrow Z\}$. Using membership algorithm, determine if the FD XY \longrightarrow Z is redundant in F.

Given the set $F=\{X \longrightarrow YW, XW \longrightarrow Z, Z \longrightarrow Y, XY \longrightarrow Z\}$. Using membership algorithm, determine if the FD XY \longrightarrow Z is redundant in F.

Step#	G	Is G = ϕ	i	Ti	Does $Z \in T_i$?
1	$\{X \longrightarrow YW, XW \longrightarrow Z, Z \longrightarrow Y\}$	N	1	{XY}	N
2	$\{XW \longrightarrow Z, Z \longrightarrow Y\}$	N	2	{XYW}	N
3	$\{Z \longrightarrow Y\}$	N	3	{XYWZ}	Y

The algorithm halts as $Z \in T_i$ at i=3.

 $XY \longrightarrow Z$ is redundant in F.

Verification of the membership algorithm by iteratively applying Armstrong's axioms and derived axioms

Step#	Inference	Justification
1	$X \longrightarrow YW$	Given
2	$XY \longrightarrow YW$	Augmentation of Y on Step 1
3	$XY \longrightarrow XYW$	Augmentation of X on Step 2
4	$XW \longrightarrow Z$	Given
5	$XYW \longrightarrow YZ$	Augmentation of Y on Step 4
6	$XY \longrightarrow YZ$	Transitivity on Steps 3,5
7	$YZ \longrightarrow Z$	Trivial
8	$XY \longrightarrow Z$	Transitivity on Steps 6,7

 $\mathsf{Check} \; \mathsf{if} \; \mathsf{BD} \; \longrightarrow \; \mathsf{E} \; \mathsf{is} \; \mathsf{a} \; \mathsf{redundant} \; \mathsf{FD} \; \mathsf{in} \; \mathsf{F} \; = \; \{ \mathsf{A} \; \longrightarrow \; \mathsf{B}, \; \mathsf{C} \; \longrightarrow \; \mathsf{D}, \; \mathsf{BD} \; \longrightarrow \; \mathsf{E}, \; \mathsf{AC} \; \longrightarrow \; \mathsf{E} \}$

Check if AC \longrightarrow E is a redundant FD in F = {A \longrightarrow B, C \longrightarrow D, BD \longrightarrow E, AC \longrightarrow E}

Eliminate redundant FDs from $F=\{X \longrightarrow Y, Y \longrightarrow X, Y \longrightarrow Z, Z \longrightarrow Y, X \longrightarrow Z, Z \longrightarrow X\}$ using the Membership algorithm.

Find the redundant FDs in the set F = {X \longrightarrow YZ, ZW \longrightarrow P, P \longrightarrow Z, W \longrightarrow XPQ, XYQ \longrightarrow YW, WQ \longrightarrow YZ}. Apply Membership algorithm |F| times to validate non-redundancy of every member FDs.

The set G found after removing ALL redundant FDs from F is called non-redundant cover of F.

Two sets of FDs F and G defined over same relation schema are equivalent iff

i. every FD in F can be inferred from G

AND

ii. every FD in G can be inferred from F

G covers F if every FD in F can be inferred from G (i.e., if F+ is subset of G+)

Two sets of FDs F and G defined over same relation schema are equivalent if F covers G and G covers F

G is a non-redundant cover of F if G covers F and no proper subset H of G exist such that $H^+ = G^+$.

A **superkey** is a unique set of attribute(s) that determine the set of other attributes in a relation. In a relation R(A,B,C,D,E,F), we define set of attributes as $P=\{A,B,C,D,E,F\}$. A superkey SK is a subset of $P(SK \subseteq P)$ that determines all other attributes, i.e., $(SK)^+ = P - SK$ or $SK \rightarrow P - SK$.

There can be many superkeys in a relation. A superkey is a set of attributes that has the uniqueness property, but is not necessarily minimal.

candidate key is a minimal superkey, i.e. removing any attribute from a candidate key will not retain its ability to uniquely determine other attributes.

Two properties of candidate key, or called just **key**, are unique and minimal.

If a relation has multiple keys, database designer specifies one of them to be the used as a key while others won't be. This specially selected key is called **primary key**.

The candidate keys which do not get elected as primary key are called alternate keys.

Convention: in a relational schema, underline the attributes of the primary key.

How to find superkeys / candidate keys in a given relation:

Superkeys are those sets of attributes whose closure is the set of all attributes.

Find all superkeys and candidate keys in $F = \{A \longrightarrow B, A \longrightarrow C, B \longrightarrow C\}$ Let us first find the attribute closure of all subsets of the attribute set.

Attribute set	Closure	Closure contains all attributes?	Superkey?
A	$A^+ = \{ABC\}$	Y	Y
В	$B^+ = \{BC\}$	N	N
C	$C^+ = \{C\}$	N	N
AB	$(AB)^+ = \{ABC\}$	Y	Y
BC	$(BC)^+ = \{BC\}$	N	N
AC	$(AC)^+ = \{ABC\}$	Y	Y
ABC	$(ABC)^+ = \{ABC\}$	Y	Y

Superkeys: A; {AB}; {AC}; {ABC}.

Candidate keys are minimal superkeys, i.e., those superkeys, whose proper subsets are not a superkey, are candidate keys.

Candidate keys: A. In this case, there is only one candidate key!

Q. An instance of relational schema R(A,B,C) has distinct values for attribute A. Can you conclude that A is a candidate key for R? [GATE1994]

Q. Relation R has eight attributes A,B,C,D,E,F,G,H. Fields of R contain only atomic values. F = {CH \rightarrow G, A \rightarrow BC, B \rightarrow CFH, E \rightarrow A, F \rightarrow EG} is a set of functional dependencies (FDs) so that F⁺ is exactly the set of FDs that hold for R. How many candidate keys does the relation R have?

- (a) 3
- (b) 4
- (c) 5
- (d) 6
- [GATE2013]

```
Q. Consider a relation scheme R (A, B, C, D, E, H) on which the following functional dependencies hold: \{A \rightarrow B, BC \rightarrow D, E \rightarrow C, D \rightarrow A\}. What are the candidate keys of R? (a) AE, BE
```

- (b) AE, BE, DE
- (c) AEH, BEH, BCH
- (d) AEH, DEH, DEH
- (d) AEH, BEH, DEH [GATE2005]

Q. A Relation R with FD set $\{A \rightarrow BC, B \rightarrow A, A \rightarrow C, A \rightarrow D, D \rightarrow A\}$. How many candidate keys will be there in R?

- (a) 1
- (b) 2
- (c) 3
- (d) 4

- Q. The maximum number of superkeys for the relation schema R(E,F,G,H) with E as the key is:
- (a) 5
- (b) 6
- (c) 7
- 8 (b)

[GATE2014]

Q. Which of the following is NOT a superkey in a relational schema with attributes V, W, X, Y, Z and primary key VY?

- (a) VXYZ
- (b) VWXZ
- (c) VWXY
- (d) VWXYZ
- [GATE2016]

```
Q. Consider the relation scheme R = {E, F, G, H, I, J, K, L, M} and the set of functional dependencies { {E,F} \rightarrow {G}, {F} \rightarrow {I,J}, {E,H} \rightarrow {K,L}, {K} \rightarrow {M}, {L} \rightarrow {N}} on R. What is the key for R? (a) {E,F} (b) {E,F,H}
```

(c) {E,F,H,K,L} (d) {E} [GATE2014]

```
Q. The following functional dependencies hold true for the relational schema R\{V, W, X, Y, Z\}: V \rightarrow W; VW \rightarrow X; Y \rightarrow VX; Y \rightarrow Z Which of the following is irreducible equivalent for this set of functional dependencies? (a) \{V \rightarrow W; V \rightarrow X; Y \rightarrow V; Y \rightarrow Z\} (b) \{V \rightarrow W; W \rightarrow X; Y \rightarrow V; Y \rightarrow Z\} (c) \{V \rightarrow W; V \rightarrow X; Y \rightarrow V; Y \rightarrow X; Y \rightarrow Z\} (d) \{V \rightarrow W; V \rightarrow X; Y \rightarrow V; Y \rightarrow X; Y \rightarrow Z\}
```

[GATE2017]