Numpy Korelasyon

Korelasyon Nedir?

Korelasyon, iki veya daha fazla **değişken** arasındaki **istatistiksel ilişkiyi** ifade eder. Basitçe söylemek gerekirse, bir değişken değiştiğinde diğer değişkenin ne ölçüde ve ne yönde değişme eğiliminde olduğunu gösterir.

Yön:

- Pozitif Korelasyon: İki değişken aynı yönde hareket etme eğilimindedir.
 Biri artarken diğeri de artar (veya biri azalırken diğeri de azalır). Örnek:
 Boy uzunluğu ile kilo arasında genellikle pozitif korelasyon vardır (daha uzun insanlar genellikle daha ağırdır).
- Negatif Korelasyon: İki değişken zıt yönlerde hareket etme eğilimindedir. Biri artarken diğeri azalır. Örnek: Bir ürünün fiyatı ile talep edilen miktar arasında genellikle negatif korelasyon vardır (fiyat arttıkça talep azalır).
- Sıfır (veya Sıfıra Yakın) Korelasyon: İki değişken arasında belirgin bir doğrusal ilişki yoktur. Birindeki değişim, diğerindeki değişimi tahmin etmede pek yardımcı olmaz. Örnek: Ayakkabı numarası ile zeka seviyesi arasında muhtemelen sıfır korelasyon vardır.

• Güç:

Korelasyonun gücü genellikle **korelasyon katsayısı** (en yaygını Pearson korelasyon katsayısıdır, 'r' ile gösterilir) ile ölçülür. Bu katsayı **1 ile +1** arasında bir değer alır:

- +1: Mükemmel pozitif doğrusal ilişki.
- 1: Mükemmel negatif doğrusal ilişki.
- **0**: Doğrusal ilişki yok.
- 0 ile +1 arasındaki değerler pozitif ilişkinin gücünü (1'e yaklaştıkça güçlenir), 0 ile -1 arasındaki değerler negatif ilişkinin gücünü (-1'e yaklaştıkça güçlenir) gösterir. Örneğin, 0.8 güçlü bir pozitif ilişkiyi, -0.2 zayıf bir negatif ilişkiyi gösterir.

Önemli Uyarı: Korelasyon Nedensellik Değildir! İki değişken arasında güçlü bir korelasyon olması, birinin diğerine neden olduğu anlamına gelmez. İlişki tesadüfi olabilir veya her iki değişkeni

Numpy Korelasyon 1

de etkileyen üçüncü bir faktör (gizli değişken) olabilir. Klasik örnek: Yaz aylarında dondurma satışları ile suç oranları arasında pozitif korelasyon vardır. Ancak dondurma yemek suça neden olmaz (veya tersi). Her ikisi de sıcak hava nedeniyle artar.

NumPy'daki corrcoef Ne İşe Yarar?

numpy.corrcoef(), verilen veriler için **Pearson korelasyon katsayılarını** hesaplayan bir NumPy fonksiyonudur. Hesaplama sonucunda bir **korelasyon matrisi** döndürür.

- Girdi: Genellikle 1 boyutlu veya 2 boyutlu dizi benzeri (array-like) yapılar alır.
 - Eğer iki 1 boyutlu dizi verirseniz (örn: np.corrcoef(x, y)), bu iki değişken arasındaki korelasyon matrisini hesaplar.
 - Eğer 2 boyutlu bir dizi verirseniz (örn: np.corrcoef(A)), varsayılan olarak her bir satırı ayrı bir değişken olarak kabul eder ve bu değişkenler arasındaki korelasyonları hesaplar.
- Çıktı (Korelasyon Matrisi): Döndürdüğü matris şu özelliklere sahiptir:
 - Karedir (satır ve sütun sayısı eşittir).
 - Simetriktir (c[i, j] == c[j, i]).
 - Köşegen elemanları (sol üstten sağ alta) her zaman 1'dir. Çünkü bir değişkenin kendisiyle korelasyonu mükemmeldir (+1).
 - Köşegen dışındaki eleman c[i, j], i. değişken ile j. değişken arasındaki korelasyon katsayısını gösterir.
- rowvar Parametresi: Bu parametre önemlidir.
 - rowvar=True (Varsayılan): Girdi dizisindeki satırların değişkenleri,
 sütunların ise gözlemleri temsil ettiği varsayılır.
 - rowvar=False: Girdi dizisindeki sütunların değişkenleri, satırların ise gözlemleri temsil ettiği varsayılır. Veri analizi (özellikle Pandas DataFrame'ler gibi) bağlamında genellikle sütunlar değişkenleri tuttuğu için rowvar=False sıkça kullanılır.

Örnek:

Python

import numpy as np

İki değişken (biraz ilişkili)

Numpy Korelasyon 2

```
x = np.array([1, 2, 3, 4, 5, 6])
y = np.array([2, 3, 5, 7, 8, 10]) # x arttıkça y de artma eğiliminde
# Korelasyon katsayıları matrisini hesapla
korelasyon_matrisi = np.corrcoef(x, y)
print("x:", x)
print("y:", y)
print("\nKorelasyon Matrisi:")
print(korelasyon_matrisi)
Çıktı:
x: [1 2 3 4 5 6]
y: [ 2 3 5 7 8 10]
Korelasyon Matrisi:
[[1. 0.97629516] # Matris[0, 0]: x'in kendisiyle korelasyonu (1)
                   ]] # Matris[0, 1]: x ile y arasındaki korelasyon (yaklaşık 0.976)
               # Matris[1, 0]: y ile x arasındaki korelasyon (aynı)
               # Matris[1, 1]: y'nin kendisiyle korelasyonu (1)
```

Bu örnekte, corrcoef fonksiyonu x ve y arasında yaklaşık 0.976 değerinde güçlü bir pozitif korelasyon olduğunu hesaplamıştır. Matrisin köşegenleri beklendiği gibi 1'dir.

Numpy Korelasyon 3