

UNIVERSIDAD NACIONAL DE ENTRE RÍOS FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN

ASIGNATURA: Organización de Computadoras

CARRERA: Licenciatura en Sistemas

PLAN DE ESTUDIO: 2012

CICLO (si corresponde): Primer

AÑO: 2017

MODALIDAD: (Anual o cuatrimestral) cuatrimestral.

CARGA HORARIA SEMANAL: 4 horas semanales

REGIMEN (T ó TP): TP

PROFESOR TITULAR / A CARGO: Lic. Marcelo Alberto Colombani

1. OBJETIVOS DE LA ASIGNATURA

Conocer la historia y evolución de las computadoras.

Conocer las unidades funcionales y sus interconexiones, que dan lugar a especificaciones arquitectónicas de los actuales equipos de computación.

Manejar adecuadamente los principales términos utilizados en el campo de la Informática.

2. CONTENIDOS MÍNIMOS -según Plan de Estudios-

Historia de la Computación. Estructura general de una computadora. Sistemas numéricos (binario, octal, hexa, base n). Álgebra de Boole. Formato de instrucciones. Direccionamiento. Estructura del almacenamiento interno. Soportes físicos de la información. Organización de la información. Conceptos de "software". Introducción a los sistemas operativos.

3. UNIDADES TEMÁTICAS

UNIDAD TEMÁTICA 1

a. Objetivos:

Conocer la historia y evolución de las computadoras. Conocer y comprender la estructura y funcionamiento de las computadoras.

b. MODULO 1: INTRODUCCION A LOS SISTEMAS DE COMPUTOS

- Evolución.
 - Historia.
 - Generaciones.
 - Concepto de Familia.
- Tipos de Computadoras. Propósito, capacidad y costo.
- Software y hardware.
- Estructura y funcionamiento de un sistema de cómputos. Unidad central de proceso, memoria y periféricos.

Orden	Título	Autor(es)	Editorial	Año de edición
1	Organización de computadoras. Un enfoque estructurado.	Andrew S. Tanenbaum	Prentice Hall	Séptima Edición, 2001
3	Organización y arquitectura de computadores	William Stallings	Prentice Hall	
5	Arquitectura de ordenadores	M. Rafiquzzaman	Anaya	1988
11	Arquitectura de computadoras. De los microprocesadores a las supercomputadoras	Parhami, Behrooz	Mc Graw Hill	2007

a. Objetivos:

Conocer los métodos de representación numérica de los sistemas: decimal, binario, octal y hexadecimal, para números enteros y fraccionarios.

Discutir los métodos de conversión entre los sistemas numéricos.

Comprender la necesidad de codificar la información.

b. MODULO 2: SISTEMAS NUMÉRICOS Y REPRESENTACION DE LA INFORMACIÓN

- Sistemas de numeración. Posicional y absoluto.
- Números en punto fijo.
 - Rango y precisión.
 - Sistemas de numeración posicionales.
 - Binario, octal, haxadecimal, decimal, base n.
 - Conversión entre sistemas.
 - Operaciones aritméticas.
 - Números signados.
 - Decimal codificado en binario (BCD).
- Números en punto flotante.
 - Rango y precisión.
 - Errores en la representación en punto flotante.
 - Operaciones aritméticas.
- Codificación.
 - o ASCII.
 - o EBCDIC.
 - · UNICODE.

Orden	Título	Autor(es)	Editorial	Año de edición
1	Organización de	Andrew S.	Prentice Hall	Séptima
	computadoras. Un	Tanenbaum		Edición,
	enfoque estructurado.			2001
2	Introducción a la ciencia	Behrouz A.	Thomson	2003
	de la computación.	Forouzan		
3	Organización y	William	Prentice Hall	Séptima
	arquitectura de	Stallings		Edición,
	computadores			2007
4	Principios de	Murdocca, Miles	Prentice Hall	2002
	arquitectura de	J.		
	computadoras	Heuring,		
		Vincent P.		
6	Introducción a los	José Angulo	Paraninfo	1994
	computadores			

a. Objetivos:

Comprender en detalle las operaciones lógicas de los componentes digitales estándares más comunes. Distinguir a estos dispositivos digitales como bloques de construcción para el diseño de circuitos más grandes.

b. MODULO 3: LA LÓGICA DEL COMPUTADOR

- Álgebra de Boole.
- Circuitos en serie y en paralelo.
- Puertas lógicas.
- Implementación de funciones booleanas.
- Expresiones canónicas.

Orden	Título	Autor(es)	Editorial	Año de edición
1	Organización de computadoras. Un enfoque estructurado.	Andrew S. Tanenbaum	Prentice Hall	Séptima Edición, 2001
3	Organización y arquitectura de computadores	William Stallings	Prentice Hall	
4	Principios de arquitectura de computadoras	Murdocca, Miles J. Heuring, Vincent P.	Prentice Hall	2007
5	Arquitectura de ordenadores	M. Rafiquzzaman	Anaya	1988
11	Arquitectura de computadoras. De los microprocesadores a las supercomputadoras	Parhami, Behrooz	Mc Graw Hill	2007

a. Objetivos:

Distinguir los bloques de un procesador para favorecer la demostración de su funcionamiento. Interpretar el funcionamiento del computador relacionando hardware/software.

b. MODULO 4: UNIDAD CENTRAL DE PROCESO

- Componentes de la Unidad Central de Proceso.
- Microprocesador: Descripción y funciones. Registros específicos y generales.
- Repertorios de Instrucciones.
- Formato de instrucciones.
- Modos de direccionamiento (absoluto, relativo, con registro base, registro, otros).
- Esquema del funcionamiento de la Unidad Central de Proceso.

Orden	Título	Autor(es)	Editorial	Año de edición
1	Organización de	Andrew S.	Prentice Hall	Séptima
	computadoras. Un	Tanenbaum		Edición,
	enfoque estructurado.			2001
3	Organización y	William	Prentice Hall	Séptima
	arquitectura de	Stallings		Edición,
	computadores			2007
4	Principios de	Murdocca,	Prentice Hall	2002
	arquitectura de	Miles J.		
	computadoras	Heuring,		
		Vincent P.		
5	Arquitectura de	M.	Anaya	1988
	ordenadores	Rafiquzzaman		
7	Estructura de	José Angulo	Paraninfo	1996
	computadores			

a. Objetivos:

Conocer la forma en la que se encuentra organizada la memoria interna, identificar los tipos de memoria.

Comprender como se almacena la información en los dispositivos de almacenamiento masivo.

MODULO 5: MEMORIAS

- Tipos de memorias, clasificación. Parámetros característicos, tamaño, tiempo de acceso, costo, otros.
- Memoria principal.
- Características del almacenamiento externo.
- Tipos de dispositivos de almacenamiento.
 - Cintas magnéticas: Descripción y características.
 - Discos magnéticos: Descripción y características.
 - Discos ópticos: Descripción y características.
 - Otros
- Sistemas RAID de almacenamiento.

Orden	Título	Autor(es)	Editorial	Año de edición
1	Organización de	Andrew S.	Prentice Hall	Séptima
	computadoras. Un	Tanenbaum		Edición,
	enfoque estructurado.			2001
3	Organización y	William	Prentice Hall	Séptima
	arquitectura de	Stallings		Edición,
	computadores			2007
4	Principios de	Murdocca,	Prentice Hall	2002
	arquitectura de	Miles J.		
	computadoras	Heuring,		
		Vincent P.		
6	Estructura y diseño de	David A.	Reverté	2000
	computadores	Patterson		
		John L.		
		Hennessy		
9	Informática: Presente y	Sanders	Mc Graw Hill	1988
	Futuro.			
11	Arquitectura de	Parhami,	Mc Graw Hill	2007
	computadoras. De los	Behrooz		
	microprocesadores a las			
	supercomputadoras			

Objetivos:

Conocer los diferentes dispositivos periféricos que permiten el ingreso y salida de información al sistema de cómputos.

MODULO 6: ENTRADA Y SALIDA.

- Conceptos básicos.
- Comunicaciones Sincrónicas y Asincrónicas. Comunicación serie y paralelo.
- Dispositivos de interacción típicos: terminales, pantallas, teclado, mouse, impresora, scanner, audio, otros.
- Dispositivos de comunicación.
- Interfaces de conexión.

Orden	Título	Autor(es)	Editorial	Año de edición
1	Organización de	Andrew S.	Prentice Hall	Séptima
	computadoras. Un	Tanenbaum		Edición,
	enfoque estructurado.			2001
3	Organización y	William	Prentice Hall	Séptima
	arquitectura de	Stallings		Edición,
	computadores	_		2007
11	Arquitectura de	Parhami,	Mc Graw Hill	2007
	computadoras. De los	Behrooz		
	microprocesadores a las			
	supercomputadoras			

Objetivos:

Comprender como se organiza la información en un sistema de cómputos. Introducir los conceptos básicos del desarrollo de sistemas. Conocer los diferentes sistemas operativos y comprender su utilidad.

MODULO 7: ORGANIZACIÓN DE LA INFORMACIÓN. CONCEPTOS DE "SOFTWARE". SISTEMAS OPERATIVOS.

- Organización de la información.
- Archivos. Definición.
- Lenguajes de programación.
 - Clasificaciones: Absoluto y simbólicos; de bajo nivel y de alto nivel.
- Instrucciones, programas, y sistemas.
- Programas a medida y enlatados.
- Etapas del desarrollo de un sistema.
- Sistemas operativos. Tipos. Objetivos y funciones. Componentes.

Orden	Título	Autor(es)	Editorial	Año de edición
	Introducción a la ciencia de la computación.	Behrouz A. Forouzan	Thomson	2003
3	Organización y arquitectura de computadores	William Stallings		Séptima Edición, 2007
9	Informática: Presente y Futuro.	Sanders	Mc Graw Hill	1988

4. BIBLIOGRAFÍA

a) OBLIGATORIA

Orden	Título	Autor(es)	Editorial	Año de edición
1	Organización de computadoras. Un enfoque estructurado.	Tanenbaum	Prentice Hall	Séptima Edición, 2001
		Forouzan		2003
3	Organización y arquitectura de computadores		Prentice Hall	Séptima Edición, 2007
4	Principios de arquitectura de computadoras	Murdocca, Miles J. Heuring, Vincent P.	Prentice Hall	2002
5	Arquitectura de ordenadores	M. Rafiquzzaman	Anaya	1988
6	Estructura y diseño de computadores	David A. Patterson John L. Hennessy	Reverté	2000
7	Introducción a los computadores		Paraninfo	1994
8	Estructura de computadores	José Angulo	Paraninfo	1996
9	Informática: Presente y Futuro.		Hill	1988
10	Sistemas informáticos	Seoane	Macchi	
	Arquitectura de computadoras. De los microprocesadores a las supercomputadoras	Parhami, Behrooz	Mc Graw Hill	2007
12	Material provisto por la cátedra			

5. RÉGIMEN DE EVALUACIÓN Y ACREDITACIÓN

El régimen de evaluación y acreditación a la materia se encuadra en el Resolución C.D. № 509/16, según el artículo 26 inciso c, de promoción directa.

Deberá cumplir con el 75 % de la asistencia a clase. Según lo dispuesto en el artículo 20 se tomará la asistencia a los 15 minutos de la hora fijada de inicio de clases.

Los alumnos deberán rendir 1 (un) un examen parcial y un recuperatorio en caso de resultar aplazado o no haberlo rendido el parcial.

Además los alumnos deberán realizar evaluaciones y/o trabajos en línea por medio del campus virtual, lo que les permitirá realizar un seguimiento de los diferentes contenidos desarrollado.

Para promocionar el alumno deberá cumplir con el régimen de asistencia, aprobar el parcial o recuperatorio y cumplir con la totalidad de las evaluaciones y/o trabajos en línea. El incumplimiento de uno de las evaluaciones en línea anulará la posibilidad de promoción.

En el caso de haber aprobado el parcial o recuperatorio y no cumplir con los requisitos de promoción el estudiante conservará la regularidad.

Para el caso de los estudiantes regulares el examen final será oral. Se seleccionarán 2 (dos) unidades del programa por medio del bolillero, el estudiante tendrá 15 minutos para preparar su exposición. El estudiante podrá optar por el orden de exposición de las mismas. El tribunal de podrá realizar preguntas de las diferentes unidades si considera necesario.