

Como implementar uma célula de memória?

- Para que a variável de estado mude é preciso que ocorram determinadas combinações nas variáveis de entrada.
- Uma vez alterada, a variável de estado permanecerá num estado fixo até que volte a ocorrer certas combinações de entrada.

- Latches e Flip-Flops são componentes primitivos de memória
- Latches
 - São componentes cuja saída responde apenas à mudança da entrada.
 - Latch sem controle de relógio Neste caso a saída é função direta da entrada.
 - Latch sensível a nível (clocked) (Sensível a nível) A saída é modificada apenas quando o circuito é habilitado através de um sinal enable ou clock.

Chaveamento de sinais eletrônicos usando Latchs RS

- Sinais digitais podem ser introduzidos em um sistema através de chaves mecânicas.
- Quando aberta Vout = o V
- Quando fechada Vout = Vh

Problema

- Quando a chave aberta é fechada, seus contatos mecânicos vibram ou "bounce" por um curto período de tempo até estabilizar e fechar completamente.
- Este bounce causa transientes indesejáveis na tensão de saída, que provocam um comportamento irregular do circuito digital (circuito lógico)

Chaveamento de sinais eletrônicos usando Latch RS

Solução

 Retirar o "bounce" usando um Latch tipo RS, ou seja, o circuito pode ser "debounced".

- O Latch RS responde quase que instantaneamente a primeira subida do sinal de entrada na linha R ou S. Assim quando a chave é ligada (on) (S=1, R=0), a posição do Latch irá para o estado Q='1' na primeira parte do "bounce".
- Mesmo que a chave vibre o sinal permanecerá estável, desde que (S=0,R=0) mantém o estado do Latch.
- Assim Q=1 até que o operador desligue a chave (off).
- Colocando a chave em off, o Latch vai para um novo estado (S=0,R=1) com Q=0. O comportamento será similar ao caso anterior.

- Funcionamento do Latch RS
 - S=0, R=0
 - O próximo estado tem valores iguais aos valores anteriores (estado estável)
 - S=0. R=1
 - Esta condição de entarda provoca um reset no latch, forçando Q_{n+1} para zero ('0'), $\overline{Q_{n+1}}$ para '1'.
 - S=1, R=0
 - Nestas condições o latch é "setado", ou seja
 Q_{n+1} vai para o nível lógico '1', Q_{n+1} = '0'.
 - S=1, R=1 Não usado. Por que?
 - Neste caso em particular as duas saídas seriam '0', o que implicaria de imediato na inconsistência com a teoria das saídas Q e Q.

0 0

0

1 0

1

Mantém Q_n

0

Indefinido

 Um outro ponto crítico ocorre quando passamos deste estado para S=0 e R=0. Neste caso, seguindo a tabela verdade e o comportamento do Latch, a saída deveria permanecer inalterada, o que não ocorre, gerando um estado indefinido para Q_{n+1 e} Q_{n+1}. Devido a esta ambigüidade a condição S=1 e R=1 não é usada para Latch RS.

Latches e Flip-Flops - RS

- Para que um Latch funcione corretamente as entradas S (ou R) só podem ser alteradas quando o circuito alcançar um estado estável
- Como conseguir isto? Introduzir um relógio (clock)

- A largura do pulso de clock deve ser suficiente para que o circuito alcance o próximo estado.
- O tempo entre dois pulsos deve ser suficiente para que o flip-flop alcance o estado permanente.
 - A saída começa a mudar △t após o pulso de clock ser aplicado e uma nova saída em estado permanente aparece 2 △t.
 - Se a entrada muda enquanto o pulso de clock estiver ativo (alto), o funcionamento do circuito pode n\u00e3o ser o esperado.

Flip-Flop

- São componentes de memória, que diferentemente dos latches, permitem que suas saídas mudem apenas na transição do relógio ou clock.
 - Flip-Flop que dispara na subida do relógio (positive edgetriggered). Mostra suas entradas na saída quando o clock vai de do nível lógico'0' para o nível lógico '1'.
 - Flip-Flop que dispara na descida do relógio (negative edge-triggered). Mostra suas entradas na saída quando o clock vai de do nível lógico'1' para o nível lógico '0'.
 - · Flip-Flop Mestre-Escravo

☑ Tabela verdade dos Flip-Flops

	Q+	R	S	J	K	T	D
(0	X	0	0	Χ	0	0
() 1	0	1	1	Χ	1	1
1	0	1	0	Х	1	1	0
1	1	0	Χ	Х	0	0 1 1 0	1

☑ Equações de próximo estado dos Flip-Flops

R-S: $Q+=S+\overline{R}Q$

D: Q+=D

J-K: $Q+=J\overline{Q}+\overline{K}Q$

T: $Q + = T\overline{Q} + \overline{T}Q$

Flip-Flops

Características

- R-S Clocked Latch: Usado como elemento de memória. Fundamental na construção de outros tipos de Flip-Flops.
- ✓ Flip-Flop J-K
 Construção versátil
 Pode ser usado na construção de Flip-Flops D e T
 Usualmente requer menos lógica para implementar controles sequênciais
- ✓ Flip-FlopD
 Reduz conexões, preferível em projetos VLSI Técnica simples em projetos
 Melhor escolha para registradores
- Flip-Flop T
 Não existe na realidade. São construídos a partir de Flip-Flops JK.
 Usualmente é uma boa escolha em projetos de contadores.

Exercício

- Flip-Flop trigado na borda Entender seu funcionamento
 - Além do FF tipo Master-Slave existem dois outros modelos largamente utilizados:
 - Positive edge-triggered (Trigado na borda positiva 0 $\,\to\,$ 1), ou seja na subida do relógio.
 - Negative edge-triggered (Trigado na borda negativa 1 ightarrow 0), ou seja na descida do relógio.
- Exemplo (FF-D trigado na descida)

