4.1 Limite et continuité

Définition 4.1.1 Soient A une partie de \mathbb{R} et $f: A \to \mathbb{R}$ une fonction.

On appelle A le domaine de définition de la fonction f.

On dit que f est

- minorée s'il existe $m \in \mathbb{R}$ tel que pour tout $x \in A$ on a $f(x) \geq m$.
- majorée s'il existe $M \in \mathbb{R}$ tel que pour tout $x \in A$ on a $f(x) \leq M$.
- bornée si f est majorée et minorée.

Si f est majorée, on appelle borne supérieure de f le nombre réel

$$\sup_{A} f = \sup\{f(x) \mid x \in A\}.$$

On définit de même la borne inférieure.

On dit que f admet un maximum en $a \in A$ si f(a) est le maximum de la partie $f(A) = \{f(x) \mid x \in A\}$.

On dit que f admet un maximum local en $a \in A$ s'il existe un intervalle ouvert I contenant a tel que f(a) soit le maximum de $f(A \cap I)$.

On définit de même la notion de minimum et de minimum local.

Un extremum (local) est un maximum (local) ou un minimum (local).

Remarque.

Une fonction bornée possède toujours une borne supérieure et une borne inférieure mais pas forcément un maximum et un minimum.

Exemples.

1. Soit $f:]0,1[\to \mathbb{R}$ définie par f(x) = x. Alors f est bornée. On a $\sup_{[0,1[} f = 1]$, mais $\max_{[0,1[} f \text{ n'existe pas.}]$

On a $\inf_{[0,1]} f = 0$, mais $\min_{[0,1]} f$ n'existe pas.

2. Une fonction peut admettre un maximum en plusieurs points. Ainsi $f(x) = \sin x$ admet un maximum en les points $x = \frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$.

Dans la suite on prendra comme domaine de définition A des intervalles de la forme

- $-A = [x, y], [x, y], [x, y], \text{ ou } [x, y] \text{ avec } x < y. \text{ On notera alors } \overline{A} = [x, y].$
- $-A =]-\infty, x]$ ou $]-\infty, x[$. On notera alors $\overline{A} =]-\infty, x[$.
- $-A = [x, +\infty[$ ou $]x, +\infty[$. On notera alors $\overline{A} = [x, +\infty[$.
- $-A =]-\infty, +\infty[$ alors $\overline{A} =]-\infty, +\infty[$.

On dit que \overline{A} est l'adhérence de A.

On généralise la notion de limite d'une suite (u_n) quand n tend vers $+\infty$ à la limite d'une fonction f(x) quand x tend vers a.

(limite d'une fonction)

Définition 4.1.2 (limite d'une fonction) Soient A un intervalle et \overline{A} son adhéren $f: A \to \mathbb{R}$ une fonction et $a \in \overline{A}$.

On dit que f admet ℓ comme limite en a si

$$\forall \varepsilon > 0 \quad \exists \alpha > 0 \ tel \ que \ \forall x \in A, |x - a| < \alpha \Rightarrow |f(x) - \ell| < \varepsilon$$

On note $\lim_{x\to a} f(x) = \ell$.

On dit que f(x) tend vers +∞ quand x tend vers a si

$$\forall K \in \mathbf{R} \quad \exists \alpha > 0 \ tel \ que \ \forall x \in A, |x - a| < \alpha \Rightarrow f(x) > K$$

On note $\lim_{x\to a} f(x) = +\infty$.

3. On dit que f admet ℓ comme limite quand x tend vers $+\infty$ si

$$\forall \varepsilon > 0 \quad \exists K \ tel \ que \ \forall x \in A, x > K \Rightarrow |f(x) - \ell| < \varepsilon$$

On note $\lim_{x\to+\infty} f(x) = \ell$.

4. On dit que f tend vers $+\infty$ quand x tend vers $+\infty$ si

$$\forall K \ \exists M \ tel \ que \ \forall x \in A, x > M \Rightarrow f(x) > K$$

On note $\lim_{x\to+\infty} f(x) = +\infty$

On définit de même $\lim_{x\to\pm\infty} f(x) = -\infty$ et $\lim_{x\to a} f(x) = -\infty$.

(continuité)

Définition 4.1.3 (continuité) Soient $f: A \to \mathbb{R}$ une fonction et $a \in A$. On dit que f est continue en a si f admet f(a) comme limite en a. Autrement dit

$$\forall \varepsilon > 0 \quad \exists \alpha > 0 \ tel \ que \ \forall x \in A, |x - a| < \alpha \Rightarrow |f(x) - f(a)| < \varepsilon.$$

On dit que f est continue sur a si f est continue en tout point de a.

Exemples.

- 1. Les fonctions exponentielles et trigonométriques sont continues sur leurs domaines de définition.
- 2. Soit E(x) le plus grand entier $\leq x$. C'est la partie entière de x. On montre que la fonction $E: \mathbb{R} \to \mathbb{Z} \subset \mathbb{R}$ est continue sur $\mathbb{R} \setminus \mathbb{Z}$.

Définition 4.1.4 (Prolongement par continuité) Soient $f: A \to \mathbb{R}$ une fonction continue et $g: B \to \mathbb{R}$ avec $A \subset B$. On dit que g est un prolongement par continuité de f si

- 1. g est un prolongement de f (c'est-à-dire que g(x) = f(x) pour tout $x \in A$).
- 2. q est continue en tout point de B.

Exemple.

Prenons A = [0, 1] et B = [0, 1]. Soit $f(x) = \frac{\sin x}{x}$. Alors la fonction g définie par :

$$g(x) = \begin{cases} 1 & \text{si } x = 0\\ \frac{\sin x}{x} & \text{sinon} \end{cases}$$

est un prolongement par continuité de f.

4.2 Propriétés de la limite d'une fonction

Les propriétés des limites de suites se généralisent facilement au cas des fonctions.

Proposition 4.2.1 Soient $f: A \to \mathbb{R}$ et $g: B \to \mathbb{R}$ deux fonctions.

- Si f admet une limite ℓ en a ∈ R, alors il existe un intervalle ouvert I contenant a tel que f soit bornée sur A ∩ I. Si f admet une limite ℓ quand x tend vers +∞ alors il existe un intervalle I =]b, +∞[tel que f soit bornée sur A ∩ I.
- 2. $Si \lim_{x\to a} f(x) = 0$ et si g est bornée sur un intervalle ouvert contenant a alors $\lim_{x\to a} f(x)g(x) = 0$.
- 3. Si f et g ont une limite dans \mathbb{R} quand x tend vers a, alors

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

et

$$\lim_{x \to a} (f(x)g(x)) = (\lim_{x \to a} f(x))(\lim_{x \to a} g(x))$$

- 4. Si f ne s'annule pas sur A, et
 - (a) $si \lim_{x\to a} f(x) = \ell \in \mathbb{R} \setminus \{0\}, \ alors$

$$\lim_{x \to a} \frac{1}{f(x)} = \frac{1}{\ell}$$

(b) $si \lim_{x\to a} |f(x)| = +\infty$, alors

$$\lim_{x \to a} \frac{1}{f(x)} = 0$$

(c) $\sin \lim_{x\to a} f(x) = 0$ et $\sin f(x) \ge 0$ sur un intervalle ouvert contenant a, alors

$$\lim_{x \to a} \frac{1}{f(x)} = +\infty.$$

5. Si f(x) < g(x) sur un intervalle ouvert contenant a alors

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$$

6. (gendarmes) $Si\ f(x) \le g(x) \le h(x)$ sur un intervalle ouvert contenant a et $si\ \lim_{x\to a} f(x) = \lim_{x\to a} h(x) = \ell$ alors $\lim_{x\to a} g(x) = \ell$.

Démonstration. Les démonstrations sont les mêmes que dans le cas des suites. Démontrons par exemple le théorème des gendarmes. Fixons $\varepsilon>0$. Alors il existe $\alpha>0$ tel que $|x-a|<\alpha$ implique $|f(x)-\ell|<\varepsilon$, d'où $\ell-\varepsilon< f(x)$. De même il existe $\alpha'>0$ tel que $|x-a|<\alpha'$ implique $|h(x)-\ell|<\varepsilon$, d'où $h(x)<\ell+\varepsilon$. Donc si $|x-a|<\min(\alpha,\alpha')$ alors $\ell-\varepsilon< g(x)<\ell+\varepsilon$.

Proposition 4.2.2 (Composée de deux fonctions continues) Soient deux fonctions $f: A \to \mathbb{R}$ et $g: B \to \mathbb{R}$ avec $f(A) \subset B$. Si f est continue en $a \in A$ et si g est continue en $b = f(a) \in B$, alors la composée $g \circ f$ est continue en a.

Démonstration. Fixons $\varepsilon > 0$. On veut $|g(f(x)) - g(f(a))| < \varepsilon$. Comme g est continue en b = f(a) il existe $\alpha > 0$ tel que $|f(x) - f(a)| < \alpha$ implique $|g(f(x)) - g(b)| < \varepsilon$. Comme f est continue en a il existe $\beta > 0$ tel que $|x - a| < \beta$ implique $|f(x) - f(a)| < \alpha$.

Proposition 4.2.3 (Critère séquentiel de continuité) Soient une fonction $f: A \to \mathbb{R}$ et $a \in A$. Alors les propriétés suivantes sont équivalentes.

- 1. f est continue en a.
- 2. pour toute suite (u_n) à valeurs dans A telle que $\lim_{n\to+\infty} u_n = a$ on $a \lim_{n\to+\infty} f(u_n) = f(a)$.

Démonstration. Supposons f continue en a. Fixons $\varepsilon > 0$. Alors il existe $\alpha > 0$ tel que $|x-a| < \alpha$ implique $|f(x)-f(a)| < \varepsilon$.

Comme (u_n) tend vers a, il existe un entier N tel que si $n \ge N$ alors $|u_n - a| < \alpha$. Mais alors $|f(u_n) - f(a)| < \varepsilon$. Donc la suite $(f(u_n))$ a pour limite f(a).

Pour montrer la réciproque, nous allons prouver la contraposée : en supposant que f n'est pas continue en a il s'agit de trouver une suite (u_n) qui converge vers a et telle que $\lim_{n\to+\infty} f(u_n) \neq f(a)$.

Dire que f n'est pas continue en a est la négation de $\lim_{x\to a} f(x) = f(a)$, c'est-à-dire

$$\operatorname{non}(\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in A \cap]a - \alpha, a + \alpha[|f(x) - f(a)| < \varepsilon)$$

qui équivaut à

(*)
$$\exists \varepsilon > 0, \forall \alpha > 0, \exists x \in A \cap]a - \alpha, a + \alpha[|f(x) - f(a)| \ge \varepsilon.$$

On a le droit de choisir α . Prenons par exemple $\alpha = \frac{1}{2^n}$ avec $n \in \mathbb{N}$. La relation (*) implique alors qu'il existe $u_n \in A \cap]a - \alpha, a + \alpha[$ tel que $|f(u_n) - f(a)| \ge \varepsilon$.

Alors $|u_n - a| < \frac{1}{2^n}$, donc (u_n) tend vers a et comme $|f(u_n) - f(a)| \ge \varepsilon$ la suite $(f(u_n))$ ne tend pas vers f(a).

4.3 Propriétés des fonctions continues

Théorème 4.3.1 (théorème des valeurs intermédiaires)

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue telle que $f(a) \le f(b)$. Alors pour tout $y \in [f(a), f(b)]$ il existe $x \in [a,b]$ tel que

$$f(x) = y$$
.

Théorème 4.3.2 Soit $f:[a,b] \to \mathbb{R}$ une application continue sur un segment¹. Alors f a un maximum et un minimum sur [a,b].