

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

Product Summary

BVDSS	RDSON	ID
150V	9.5mΩ	100A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

PDFN5060-8L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	150	V
V _G S	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	100	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	47	Α
I _{DM}	Pulsed Drain Current ²	292	Α
EAS	Single Pulse Avalanche Energy³	204.8	mJ
las	Avalanche Current	32	Α
P _D @T _C =25°C	Total Power Dissipation⁴	178.6	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-Ambient ¹		52	°C/W
Rejc	Thermal Resistance Junction-Case ¹		0.7	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	150			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =17A		9.5	11.5	mΩ
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} . I _D =250uA	2	3	4	V
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	VGS-VDS, ID-250UA				mV/°C
l	Drain Source Leakage Current	V _{DS} =150V , V _{GS} =0V , T _J =25°C			1	- uA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =150V, V _{GS} =0V , T _J =100°C			100	
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =17A		69		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		3.2		Ω
Q _g	Total Gate Charge			45		
Q _{gs}	Gate-Source Charge	V _{DS} =75V , V _{GS} =10V , I _D =17A		15		nC
Q_{gd}	Gate-Drain Charge			8.5		
T _{d(on)}	Turn-On Delay Time			16		
T _r	Rise Time	V _{GS} =10V, V _{DD} =75V,		12		
T _{d(off)}	Turn-Off Delay Time	$R_G=3\Omega$, $I_D=17A$		30		ns
T _f	Fall Time			18		
C _{iss}	Input Capacitance			3310		
Coss	Output Capacitance	V _{DS} =75V , V _{GS} =0V , f=1MHz		268		pF
C _{rss}	Reverse Transfer Capacitance			9.4		

Diode Characteristics

Symbol	Parameter	Parameter Conditions		Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			100	А
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =17A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time	IF=17A , di/dt=100A/μs ,		76		nS
Q _{rr}	Reverse Recovery Charge	T _J =250		182		nC

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C
- 2. The EAS data shows Max. rating . The test condition is V_{DD} =50V, V_{GS} =10V,L=0.4mH, I_{AS} =32A.
- 3. The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper, The value in any given application depends on the user's specific board design.
- 4. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Characteristics

Figure 1. Output Characteristics

Figure 3. Forward Characteristics of Reverse

Figure 5. $R_{DS(ON)}$ vs. I_D

Figure 2. Transfer Characteristics

Figure 4. $R_{\text{DS}(\text{ON})}\,$ vs. V_{GS}

Figure 6. Normalized $R_{DS(on)}$ vs. Temperature

10

Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

Figure 9. Power Dissipation

Figure 10. Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit

N-Ch 150V Fast Switching MOSFETs

Figure A. Gate Charge Test Circuit & Waveforms

Figure B. Switching Test Circuit & Waveforms

Figure C. Unclamped Inductive Switching Circuit & Waveforms

Package Mechanical Data-PDFN5060-8L -Single

Symbol	Common					
	mm	mm				
	Mim	Max	Min	Max		
Α	1.03	1.17	0.0406	0.0461		
b	0.34	0.48	0.0134	0.0189		
С	0.824	0.0970	0.0324	0.082		
D	4.80	5.40	0.1890	0.2126		
D1	4.11	4.31	0.1618	0.1697		
D2	4.80	5.00	0.1890	0.1969		
E	5.95	6.15	0.2343	0.2421		
E1	5.65	5.85	0.2224	0.2303		
E2	1.60	/	0.0630	/		
е	1.27 BSC	1.27 BSC				
L	0.05	0.25	0.0020	0.0098		
L1	0.38	0.50	0.0150	0.0197		
L2	0.38	0.50	0.0150	0.0197		
Н	3.30	3.50	0.1299	0.1378		
1	/	0.18	/	0.0070		