§3.4 Cauchy 中值定理和未定式的极限

3.4.1 Cauchy **中值定理**

定理 1 (Cauchy 中值定理) 设 f(x) 和 g(x) 在 [a,b] 上连续, 在 (a,b) 内可微. 而且对任一点 $x \in (a,b), g'(x) \neq 0$. 则在 (a,b) 内, 必存在一点 ξ , 使得 $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}.$

证明 设辅助函数

$$F(x) = f(x) - f(a) - rac{f(b) - f(a)}{g(b) - g(a)} \Big(g(x) - g(a)\Big)$$

易知, F(x) 在 [a,b] 上连续, 在 (a,b) 内可微, 且 F(b) - F(a) = 0. 即, F(x) 满足 Rolle 定理的三个条件.

根据 Rolle 定理, 存在一点 $\xi \in (a,b)$, 使得 $F'(\xi) = 0$, 即

$$f'(\xi) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(\xi) = 0.$$

根据条件有 $g'(\xi) \neq 0$, 及 $g(a) \neq g(b)$. 于是有

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}.$$

此即定理的结论. 证毕.

Cauchy 中值定理的几何意义

设 f(t) 和 g(t) 在 $t \in [a,b]$ 上连续, 在 (a,b) 内可微. 考察参数方程

$$x=g(t),\;y=f(t),\;\;(t\in[a,b])$$

所确定的曲线 L, 该曲线的两个端点是 A = (g(a), f(a)) 和 B = (g(b), f(b)), 连接这两个端点的直线的斜率是 $\frac{f(b)-f(a)}{g(b)-g(a)}$. 根据条件知在曲线 L 上除端点外的每一点都是有切线的. Cauchy 中值定理的几何意义就是曲线上有一点 $C = (g(\xi), f(\xi))$ 的切线斜率 $\frac{f'(\xi)}{g'(\xi)}$ 恰好等于 $\frac{f(b)-f(a)}{g(b)-g(a)}$.

例 1 设 0 < a < b, 函数 f(x) 在 [a,b] 连续, 在 (a,b) 可导. 求证: 存在 $\xi \in (a,b)$ 使得

$$\frac{af(b)-bf(a)}{a-b}=f(\xi)-\xi f'(\xi).$$

证明 所要证明的式子可以写成

$$\frac{\frac{f(b)}{b} - \frac{f(a)}{a}}{\frac{1}{b} - \frac{1}{a}} = \frac{\left(\frac{f(x)}{x}\right)'}{\left(\frac{1}{x}\right)'}\bigg|_{x=\xi}.$$

因此只要对函数 $\frac{f(x)}{x}$ 和 $\frac{1}{x}$ 应用 Cauchy 中值定理, 即可得到结论.

例 2 设 f(x), g(x) 在 [a,b] 上连续, 在 (a,b) 上可微, 其中 g'(x) 在区间 (a,b) 中无零点. 求证: 存在 $\xi \in (a,b)$, 使得

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(\xi) - f(a)}{g(b) - g(\xi)}.$$

证明 考察函数

$$F(x) = \big(f(x) - f(a)\big) \big(g(b) - g(x)\big).$$

根据条件可知, F(x) 在 [a,b] 上连续, 在 (a,b) 上可微, 且显然有 F(a) = F(b) = 0. 由 Rolle 定理, 存在 $\xi \in (a,b)$, 使得 $F'(\xi) = 0$, 即,

$$f'(\xi)ig(g(b)-g(\xi)ig)-g'(\xi)ig(f(\xi)-f(a)ig)=0.$$

由于 g'(x) 在区间 (a,b) 中无零点, 有 $g'(\xi) \neq 0$, 及 $g(b) - g(\xi) \neq 0$. 因而

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(\xi) - f(a)}{g(b) - g(\xi)}.$$

定理 2 (Cauchy **中值定理的推广**) 设 f(x) 和 g(x) 在 [a,b] 上有 n 阶导函数, 且对任意 $x \in (a,b)$ 有 $g^{(n)}(x) \neq 0$. 则在 $\xi \in (a,b)$ 内, 使得

$$rac{f(b) - \sum_{k=0}^{n-1} rac{f^{(k)}(a)}{k!} (b-a)^k}{g(b) - \sum_{k=0}^{n-1} rac{g^{(k)}(a)}{k!} (b-a)^k} = rac{f^{(n)}(\xi)}{g^{(n)}(\xi)}.$$

证明 构造两个函数

$$F(x) = f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

$$G(x) = g(x) - \sum_{k=0}^{n-1} \frac{g^{(k)}(a)}{k!} (x-a)^k.$$

则 F(x) 和 G(x) 在 [a,b] 上有 n 阶导函数, 且

$$F(a) = F'(a) = \cdots = F^{(n-1)}(a) = 0,$$

$$G(a) = G'(a) = \cdots = G^{(n-1)}(a) = 0.$$

由于 $g^{(n)}(x) \neq 0$, 反复应用 Rolle 定理可知 $G^{(k)}(x)$ $(k = 0, 1, \dots, n)$ 在 (a,b) 内无零点. 再反复应用 Cauchy 中值定理, 有

$$\frac{F(b)}{G(b)} = \frac{F(b) - F(a)}{G(b) - G(a)} = \frac{F'(\xi_1)}{G'(\xi_1)}$$

$$= \frac{F'(\xi_1) - F'(a)}{G'(\xi_1) - G'(a)} = \frac{F''(\xi_2)}{G''(\xi_2)}$$

$$= \cdots$$

$$= \frac{F^{(n-1)}(\xi_{n-1}) - F^{(n-1)}(a)}{G^{(n-1)}(\xi_{n-1}) - G^{(n-1)}(a)} = \frac{F^{(n)}(\xi)}{G^{(n)}(\xi)}$$

$$= \frac{f^{(n)}(\xi)}{g^{(n)}(\xi)}$$

其中 $a < \xi < \xi_{n-1} < \cdots < \xi_2 < \xi_1 < b$.

3.4.2 $\frac{0}{0}$ 型未定式

定理 3 ($\frac{0}{0}$ 型 L'Hospital **法则**) 设 f(x) 和 g(x) 在 x_0 附近可微, $g'(x) \neq 0$, 且满足

$$\lim_{x o x_0}f(x)=\lim_{x o x_0}g(x)=0.$$

如果 $\lim_{x\to x_0}\frac{f'(x)}{g'(x)}=l$,那么有 $\lim_{x\to x_0}\frac{f(x)}{g(x)}=l$,这里 l 可以是一个有限实数,也可以是 ∞ .

证明 由于 $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$, 而且当 $x\to x_0$ 时, $\frac{f(x)}{g(x)}$ 的极限与函数 f 和 g 在 x_0 的值无关, 因此我们不妨假设 $f(x_0) = g(x_0) = 0$, 这样, 函数 f 和 g 在 x_0 都连续.

设 x 是区间 $(x_0 - \delta, x_0 + \delta)$ 中的任意一点 $(x \neq x_0)$, 在以 x 和 x_0 为端点的闭区间上, f 和 g 满足 Cauchy 中值定理的一切条件, 于是存在介于 x

和 x_0 之间的一点 ξ , 使得

$$rac{f(x)}{g(x)} = rac{f(x) - f(x_0)}{g(x) - g(x_0)} = rac{f'(\xi)}{g'(\xi)}.$$

因为 $|\xi - x_0| < |x - x_0|$, 所以当 $x \to x_0$ 时, $\xi \to x_0$. 由定理的假设, 即得到

$$\lim_{x o x_0}rac{f(x)}{g(x)}=\lim_{\xi o x_0}rac{f'(\xi)}{g'(\xi)}=l.$$

注1: 定理中的极限过程可改为单测极限 (即 $x \to x_0 \pm 0$), 此时结论同样成立, 另一方面对于极限过程 $x \to +\infty$, $x \to -\infty$ 或 $x \to \infty$ 时的 $\frac{0}{0}$ 型未定式, 也有类似的 L'Hospital 法则.

以 $x \to \infty$ 时为例,如果 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$, $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = l$,则 $\lim_{x \to \infty} \frac{f(x)}{g(x)} = l$.

证明的过程中只要设 $y = \frac{1}{x}$, 则 $x \to \infty$ 时, $y \to 0$, 而且

$$\lim_{x o\infty}rac{f(x)}{g(x)}=\lim_{y o0}rac{f\left(rac{1}{y}
ight)}{g\left(rac{1}{y}
ight)}=\lim_{y o0}rac{rac{1}{y^2}f'\left(rac{1}{y}
ight)}{rac{1}{y^2}g'\left(rac{1}{y}
ight)}=\lim_{x o\infty}rac{f'(x)}{g'(x)}=l.$$

注2: 在使用 L'Hospital 法则时, 如果 $\frac{f'(x)}{g'(x)}$ 还是 $\frac{0}{0}$ 型未定式, 即不但 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$, 而且 $\lim_{x \to x_0} f'(x) = \lim_{x \to x_0} g'(x) = 0$, 则可以继续考虑二阶导数, 如果 $\lim_{\xi \to x_0} \frac{f''(\xi)}{g''(\xi)} = l$, 则 $\lim_{\xi \to x_0} \frac{f(\xi)}{g(\xi)} = l$. 不管使用几次, 前提条件一是前者必须是 $\frac{0}{0}$ 型未定式, 二是后者的极限一定存在, 两者缺一不可.

注3: 在使用 L'Hospital 法则之前, 最好先用等价无穷小替换的方法将分子或分母换成简单的函数.

例 3 求
$$\lim_{x\to 0} \frac{e^{2x}-1}{\ln(1+x)}$$
.

解 这是一个 ½ 型未定式,由 L'Hospital 法则知

$$\lim_{x o 0} rac{e^{2x} - 1}{\ln(1 + x)} = \lim_{x o 0} rac{e^{2x} - 1}{x} = \lim_{x o 0} 2e^{2x} = 2$$

例 4 求 $\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{\sin^2 x}$.

解 这是一个 0 型未定式. 但分子分母各自求导后的比式

$$\frac{(e^x + e^{-x} - 2)'}{(\sin^2 x)'} = \frac{e^x - e^{-x}}{\sin 2x}$$

仍然是一个 🖟 型未定式, 因此需要再次使用 L'Hospital 法则, 即

$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{\sin^2 x} = \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin 2x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{2\cos 2x} = 1.$$

3.4.3 $\stackrel{\infty}{\sim}$ 型未定式

定理 $4 \left(\frac{\infty}{\infty}$ 型 L'Hospital 法则) 设 f(x) 和 g(x) 在 x_0 附近可微, $g'(x) \neq 0$, 且 $\lim_{x \to x_0} g(x) = \infty$. 如果 $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l$, 则有 $\lim_{x \to x_0} \frac{f(x)}{g(x)} = l$, 这里 l 可以是一个有限实数, 也可以是 ∞ .

证明 只对 l 为实数的情况证明, $l = +\infty$ 或 $l = -\infty$ 的情况类似. 由 $\lim_{x \to x_0^+} \frac{f'(x)}{g'(x)} = l$, 知, 对任意 $\varepsilon > 0$, 存在 $\delta_1 > 0$, 当 $x \in (x_0, x_0 + \delta_1)$ 时, 有

$$l-arepsilon < rac{f'(x)}{g'(x)} < l+arepsilon.$$

由 Cauchy 中值定理, 对于 $(x,c) \subset (x_0,x_0+\delta_1)$, 存在 $\xi \in (x,c)$ 使得

$$\frac{f(x)-f(c)}{g(x)-g(c)}=\frac{f'(\xi)}{g'(\xi)}.$$

因此,

$$l-arepsilon < rac{f(x)-f(c)}{g(x)-g(c)} < l+arepsilon.$$

由于 $\lim_{x\to x_0}g(x)=\infty$, 对于固定的 c, 存在 $\delta>0$, 使得当 $x\in(x_0,x_0+\delta)$ 时,

有
$$\left| \frac{g(c)}{g(x)} \right| < \varepsilon$$
, $\left| \frac{f(c)}{g(x)} \right| < \varepsilon$. 于是, 当 $x \in (x_0, x_0 + \delta)$ 时, 有

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(c)}{g(x) - g(c)} - \frac{f(x) - f(c)}{g(x) - g(c)} \cdot \frac{g(c)}{g(x)} + \frac{f(c)}{g(x)}$$

$$< l + \varepsilon + (|l| + \varepsilon)\varepsilon + \varepsilon;$$

$$rac{f(x)}{g(x)} > l - arepsilon - (|l| + arepsilon) arepsilon - arepsilon.$$

因此,

$$\left|rac{f(x)}{g(x)}-l
ight|<(2+|l|+arepsilon)arepsilon.$$

由此证明了 $\lim_{x\to x_0^+} \frac{f(x)}{g(x)} = l$. 同理, 有 $\lim_{x\to x_0^-} \frac{f(x)}{g(x)} = l$. 证毕.

L'Hospital 法则与 Stolz 定理的比较

 $(\frac{0}{0}$ 型 L'Hospital 法则) 设 f(x) 和 g(x) 在区间 $(x_0, +\infty)$ 上可微, $g'(x) \neq 0$, 且当 $x \to +\infty$ 时 f(x) 和 g(x) 都趋于 0,

如果
$$\lim_{x o +\infty} rac{f'(x)}{g'(x)} = A$$
, 那么有 $\lim_{x o +\infty} rac{f(x)}{g(x)} = A$,

这里 A 可以是一个有限实数, 也可以是 $+\infty$ 或 $-\infty$.

 $(\frac{0}{0}$ 型 Stolz **定理**) 设 $\{a_n\}$, $\{b_n\}$ 是两个趋于零的数列, 且 $\{b_n\}$ 严格单调递增.

如果
$$\lim_{n o\infty}rac{a_{n+1}-a_n}{b_{n+1}-b_n}=A, \quad$$
那么有 $\lim_{n o\infty}rac{a_n}{b_n}=A,$

其中 A 可以是实数, 也可以是 $+\infty$ 或 $-\infty$.

 $(\frac{\infty}{\infty}$ 型 L'Hospital 法则) 设 f(x) 和 g(x) 在区间 $(x_0, +\infty)$ 上可微, $g'(x) \neq 0$, 且 $\lim_{x \to +\infty} g(x) = \infty$.

如果
$$\lim_{x o +\infty} rac{f'(x)}{g'(x)} = A$$
, 那么有 $\lim_{x o +\infty} rac{f(x)}{g(x)} = A$,

这里 A 可以是一个有限实数, 也可以是 $+\infty$ 或 $-\infty$.

 $(\frac{\infty}{\infty}$ 型 Stolz **定理**) 设 $\{a_n\}$, $\{b_n\}$ 是两个数列, 且 $\{b_n\}$ 严格单调递增趋于 $+\infty$.

如果
$$\lim_{n o\infty}rac{a_{n+1}-a_n}{b_{n+1}-b_n}=A, \quad$$
那么有 $\lim_{n o\infty}rac{a_n}{b_n}=A,$

其中 A 可以是实数, 也可以是 $+\infty$ 或 $-\infty$.

例 5 设
$$f(x)$$
 在 $[a,+\infty)$ 上可导,且 $\lim_{x\to +\infty}e^{-x^2}f'(x)=0$. 求证:
$$\lim_{x\to +\infty}xe^{-x^2}f(x)=0.$$

证明 根据 L'Hospital 法则, 有

$$egin{aligned} \lim_{x o +\infty}f(x)e^{-x^2}&=\lim_{x o +\infty}rac{f(x)}{e^{x^2}}=\lim_{x o +\infty}rac{f'(x)}{2xe^{x^2}}\ &=\lim_{x o +\infty}rac{1}{2x}\cdot f'(x)e^{-x^2}=0. \end{aligned}$$

再根据 L'Hospital 法则, 得

$$egin{align} \lim_{x o +\infty}rac{xf(x)}{e^{x^2}}&=\lim_{x o +\infty}rac{f(x)+xf'(x)}{2xe^{x^2}}\ &=\lim_{x o +\infty}\left(rac{1}{2x}\cdot f(x)e^{-x^2}+rac{1}{2}f'(x)e^{-x^2}
ight)=0. \end{aligned}$$

例 6 设 f(x) 在 $(a,+\infty)$ 上可导,且 $\lim_{x\to +\infty}(f(x)+xf'(x)\ln x)=l$. 求证: $\lim_{x\to +\infty}f(x)=l$.

证明
$$\lim_{x o +\infty} f(x) = \lim_{x o +\infty} rac{f(x) \ln x}{\ln x} = \lim_{x o +\infty} rac{f'(x) \ln x + f(x) rac{1}{x}}{rac{1}{x}} = \lim_{x o +\infty} (f(x) + x f'(x) \ln x) = l.$$

例 7 设 $\alpha > 0$, 求 $\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}}$.

解 这是一个 ∞ 型未定式, 所以

$$\lim_{x o +\infty}rac{\ln x}{x^lpha}=\lim_{x o +\infty}rac{1}{lpha x^{lpha-1}\cdot x}=\lim_{x o +\infty}rac{1}{lpha x^lpha}=0.$$

如果用 $\frac{1}{x}$ 代替 x, 则 $\lim_{x\to 0^+} x^{\alpha} \ln x = 0$.

这个例子说明无论 α 是多小的正数, 当 $x \to +\infty$ 时, 幂函数 x^{α} 总是比对数函数更高阶的无穷大量.

例 8 设
$$\mu > 0$$
, $a > 1$, 求 $\lim_{x \to +\infty} \frac{x^{\mu}}{a^{x}}$.

解 注意到, 只要 $\mu-k>0$, 当 $x\to +\infty$ 时, 本题的分子部分 k 次导函数仍是无穷大量, 而分母部分的任意阶导函数都是无穷大量. 因此取正整数 $n>\mu$. 则当 x>1 时有

$$0<rac{x^{\mu}}{a^{x}}<rac{x^{n}}{a^{x}}.$$

接连使用 n 次 L'Hospital 法则就有

$$\lim_{x o +\infty}rac{x^n}{a^x}=\lim_{x o +\infty}rac{nx^{n-1}}{a^x\ln a}=\cdots \ =\lim_{x o +\infty}rac{n!}{a^x(\ln a)^n}=0.$$

所以

$$\lim_{x o +\infty}rac{x^{\mu}}{a^{x}}=0.$$

此例说明, a > 1 时, 有 $a^x >> x^{\mu}$ $(x \to +\infty)$.

例 9 设 f(x) 在区间 [0,a] 上有二阶连续导数, f'(0) = 1, $f''(0) \neq 0$, 且 0 < f(x) < x, $x \in (0,a)$. 令

$$x_{n+1} = f(x_n), \quad x_1 \in (0, a).$$

- (i) 求证 $\{x_n\}$ 收敛并求极限;
- (ii) 试问 $\{nx_n\}$ 是否收敛? 若不收敛, 则说明理由. 若收敛, 则求其极限.

证明 (i) 由条件有 $0 < x_2 = f(x_1) < x_1$, 归纳地可证得

$$0 < x_{n+1} < x_n,$$

于是 $\{x_n\}$ 有极限, 设为 x_0 . 由 f 的连续性, 及 $x_{n+1} = f(x_n)$ 得

$$x_0=f(x_0).$$

又因为当 x > 0 时, f(x) > x, 所以只有 $x_0 = 0$. 即,

$$\lim_{n o\infty}x_n=0.$$

(ii) 由 Stolz 定理和 L'Hospital 法则,

$$egin{aligned} \lim_{n o \infty} n x_n &= \lim_{n o \infty} rac{n}{1/x_n} = \lim_{n o \infty} rac{1}{1/x_{n+1} - 1/x_n} \ &= \lim_{n o \infty} rac{x_{n+1} x_n}{x_n - x_{n+1}} \ &= \lim_{n o \infty} rac{x_n f(x_n)}{x_n - f(x_n)} = \lim_{x o 0} rac{x f(x)}{x - f(x)} \ &= \lim_{x o 0} rac{f(x) + x f'(x)}{1 - f'(x)} \ &= \lim_{x o 0} rac{2 f'(x) + x f''(x)}{-f''(x)} \ &= -rac{2}{f''(0)} \end{aligned}$$

例 10 设 f 在 $(0, +\infty)$ 上三次可导, 且 f(x), f'(x), f''(x) 在 $(0, +\infty)$ 上均取正值. 如果存在极限

$$\lim_{x \to +\infty} \frac{f'(x)f'''(x)}{(f''(x))^2} = l, \ l \neq 1, \tag{1}$$

证明

$$\lim_{x\to +\infty}\frac{f(x)f''(x)}{(f'(x))^2}=\frac{1}{2-l}.$$

证明 先证

$$\lim_{x \to +\infty} \frac{f'(x)}{xf''(x)} = 1 - l. \tag{2}$$

即,

$$\lim_{x o +\infty} \left(1 - rac{f'(x)}{xf''(x)}
ight) = l.$$

由 L'Hospital 法则和 (1) 可得

$$egin{aligned} \lim_{x o +\infty} \left(1 - rac{f'(x)}{xf''(x)}
ight) &= \lim_{x o +\infty} rac{x - f'(x)/f''(x)}{x} \ &= \lim_{x o +\infty} rac{1 - (f'(x)/f''(x))'}{1} \ &= \lim_{x o +\infty} \left(1 - rac{(f''(x))^2 - f'''(x)f'(x)}{(f''(x))^2}
ight) \ &= \lim_{x o +\infty} rac{f'''(x)f'(x)}{(f''(x))^2} = l. \end{aligned}$$

由 (2) 知 1 - l > 0, 于是有

$$\lim_{x o +\infty}rac{xf''(x)}{f'(x)}=rac{1}{1-l}.$$

由中值定理, 当 $x>x_0>0$ 时, 存在 $\xi\in(x_0,x)$ 使得

$$f(x) = f(x_0) + f'(\xi)(x - x_0) > f(x_0) + f'(x_0)(x - x_0).$$

因此 $\lim_{x \to +\infty} f(x) = +\infty$.

再用 L'Hospital 法则

$$\lim_{x
ightarrow+\infty}rac{xf'(x)}{f(x)}=\lim_{x
ightarrow+\infty}rac{f'(x)+xf''(x)}{f'(x)}=1+rac{1}{1-l}=rac{2-l}{1-l},$$

所以

$$\lim_{x o +\infty} rac{f(x)f''(x)}{(f'(x))^2} = \lim_{x o +\infty} rac{xf''(x)}{f'(x)} rac{f(x)}{xf'(x)} = rac{1}{1-l} rac{1-l}{2-l} = rac{1}{2-l}.$$

3.4.4 其他类型的未定式

除了前面重点介绍的 $\frac{0}{0}$ 型未定式和 $\frac{\infty}{\infty}$ 未定式之外, 还有下列几种未定式

$$0\cdot\infty,~~\infty-\infty,~~1^{\infty},~~0^{0},~~\infty^{0}$$

前两种均容易化成 $\frac{0}{0}$ 型或 $\frac{\infty}{\infty}$ 型;而后三种可通过现对函数取对数,再化为基本的 $\frac{0}{0}$ 型或 $\frac{\infty}{\infty}$ 型. 因此上述五类未定式,都可以用 L'Hospital 法则处理.

例 11 求
$$\lim_{x\to+\infty} x\left(\frac{\pi}{2} - \arctan x\right)$$
.

解 这是一个 $0 \cdot \infty$ 型未定式, 可将它化为 $\frac{0}{0}$ 型未定式处理

$$egin{aligned} \lim_{x o +\infty} x\left(rac{\pi}{2} - rctan x
ight) &= \lim_{x o +\infty} rac{rac{\pi}{2} - rctan x}{x^{-1}} \ &= \lim_{x o +\infty} rac{rac{1}{1+x^2}}{rac{1}{x^2}} &= \lim_{x o +\infty} rac{x^2}{1+x^2} &= 1. \end{aligned}$$

例 12 求
$$\lim_{x\to 1}\left(\frac{1}{\ln x}+\frac{1}{1-x}\right)$$
.

解 这是一个 $\infty-\infty$ 型未定式. 令 y=x-1, 则当 $x\to 1$ 时有 $y\to 0$. 原式可化为 $\frac{0}{0}$ 型未定式. 在处理过程中, 可以用同阶的无穷小量进行替代, 如 $\ln(1+y)\sim y,\;y\to 0$, 所以

$$\lim_{x o 1} \left(rac{1}{\ln x} + rac{1}{1-x}
ight) = \lim_{y o 0} rac{y - \ln(1+y)}{y \ln(1+y)} = \lim_{y o 0} rac{y - \ln(1+y)}{y^2} = \lim_{y o 0} rac{y - \ln(1+y)}{y^2} = \lim_{y o 0} rac{y - \ln(1+y)}{y^2}$$

例 13 求 $\lim_{x\to 0^+} x^x$.

 \mathbf{m} 这是 $\mathbf{0}^0$ 型未定式,由例 $\mathbf{7}$ 以及指数函数的连续性得

$$\lim_{x o 0^+} x^x = \lim_{x o 0^+} e^{x \ln x} = e^{\lim_{x o 0^+} x \ln x} = e^0 = 1$$

例 14 求 $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$.

解 这是1[∞]型未定式,令

$$y=y(x)=\left(rac{\sin x}{x}
ight)^{rac{1}{x^2}},$$

则

$$\ln y = rac{\ln rac{\sin x}{x}}{x^2}$$

这是一个 🖟 型未定式, 所以

$$\lim_{x o 0} rac{\ln rac{\sin x}{x}}{x^2} = \lim_{x o 0} rac{rac{\cos x}{\sin x} - rac{1}{x}}{2x} = \lim_{x o 0} rac{x \cos x - \sin x}{2x} = \lim_{x o 0} rac{x \cos x - \sin x}{6x^2} = -rac{1}{6}.$$

例 15 求 $\lim_{x \to +\infty} x^{\frac{1}{\sqrt{x}}}$.

解 这是 ∞^0 型未定式, 记 $y=y(x)=x^{1/\sqrt{x}}$, 则 $\ln y=\frac{\ln x}{\sqrt{x}}$. 由例 7 可知 $\lim_{x\to+\infty}\frac{\ln x}{\sqrt{x}}=0$, 所以

$$\lim_{x\to +\infty} x^{1/\sqrt{x}} = \lim_{x\to +\infty} e^{\ln y} = e^{\lim_{x\to +\infty} \ln y} = e^0 = 1.$$

例 16 求 $\lim_{x\to 0} (1-\cos x)^{\tan x}$.

解 这是 00 型未定式

$$\lim_{x \to 0} (1 - \cos x)^{\tan x} = \lim_{x \to 0} e^{\tan x \ln(1 - \cos x)}.$$

$$egin{align} \lim_{x o 0} an x \ln(1 - \cos x) &= \lim_{x o 0} x \ln(1 - \cos x) &= \lim_{x o 0} rac{\ln(1 - \cos x)}{rac{1}{x}} \ &= \lim_{x o 0} rac{\sin x}{x^{-2}(\cos x - 1)} &= 0. \end{aligned}$$

所以

$$\lim_{x\to 0} (1-\cos x)^{\tan x} = 1.$$

例 17 求 $\lim_{x \to +\infty} x^{\arctan x - \frac{\pi}{2}}$.

解 这是 ∞^0 型未定式

$$\lim_{x o +\infty} x^{rctan\,x-rac{\pi}{2}} = \lim_{x o +\infty} e^{(rctan\,x-rac{\pi}{2})\ln x}.$$

$$\lim_{x o +\infty} \left(rctan x - rac{\pi}{2}
ight) \ln x = \lim_{x o +\infty} rac{rctan x - rac{\pi}{2}}{rac{1}{x}} \cdot rac{\ln x}{x} = \lim_{x o +\infty} rac{rac{1}{1+x^2}}{-rac{1}{x^2}} \lim_{x o +\infty} rac{\ln x}{x} = 0.$$

故

$$\lim_{x\to +\infty} x^{\arctan x - \frac{\pi}{2}} = 1.$$

例 18 求
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x \tan x}\right)$$
.

解 这是 $\infty - \infty$ 型未定式

$$\begin{split} \lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{x \tan x} \right) &= \lim_{x \to 0} \frac{\tan x - x}{x^2 \tan x} = \lim_{x \to 0} \frac{\tan x - x}{x^3} \\ &= \lim_{x \to 0} \frac{\sin x - x \cos x}{x^3 \cos x} \\ &= \lim_{x \to 0} \frac{\sin x - x \cos x}{x^3} \\ &= \lim_{x \to 0} \frac{\cos x - x \cos x}{x^3} \\ &= \lim_{x \to 0} \frac{\cos x - \cos x + x \sin x}{3x^2} \\ &= \frac{1}{3}. \end{split}$$

1. 是否存在可导函数 f(x) 使得 $f'(x) = \operatorname{sgn} x, x \in \mathbb{R}$.

2. 若 f(x) 在区间上严格递增且可导,则 f'(x) > 0.

3. 若 f(x) 在 [a,b] 上可导,则 f'(x) 的值域是一个区间.

4. 设 f(x) 在 (a,b) 上可导, $x_0 \in (a,b)$. 若 f'(x) 在 x_0 左边为正, 在 x_0 的右边为负, 则 f(x) 在 x_0 取最大值.