1.3 Ejercicios sobre convergencia uniforme

Ejercicio 1.21. Una sucesión de funciones $\{f_n \colon I \to \mathbb{R}\}_{n \in \mathbb{N}}$ es uniformemente de Cauchy sobre el intervalo $I \subseteq \mathbb{R}$ si para cada $\varepsilon > 0$ dado, existe $M \in \mathbb{N}$ tal que

$$m, n \geqslant M \implies ||f_m - f_n||_I < \varepsilon.$$

Demostrar que $\{f_n\}$ es uniformemente de Cauchy sobre I si y solo si $\{f_n\}$ es uniformemente convergente sobre I.

Solución: (\Rightarrow) Si $\{f_n\}$ es uniformemente de Cauchy sobre I, para $\varepsilon > 0 \; \exists M \in \mathbb{N}$ tal que si $n, m \ge M$ se cumple $||f_m - f_m||_I < \varepsilon$. En particular para cada $x \in I$ se va a tener

$$|f_m(x) - f_n(x)| < \varepsilon$$

Así $\{f_n(x)\}$ es una suceción de Cauchy, y por lo tanto convergente digamos a $f(x) \in \mathbb{R}$. De esta manera construimos la función límite f(x). Tomando $m \to \infty$ en $|f_m(x) - f_n(x)| < \varepsilon$ por continuidad del valor absoluto se tiene $|f(x) - f_n(x)| \le \varepsilon$, $\forall n \ge M \ \forall x \in I$ y tomando el supremo $||f - f_n||_I \le \varepsilon$, $\forall n \ge M$ $\therefore f_n \to f$ uniformemente en I.

(\Leftarrow) Ahora, si { f_n } es uniformemente convergente en I, para $\varepsilon > 0$ ∃ $M \in \mathbb{R}$ tal que

$$||f_n - f||_I < \varepsilon, \ \forall n \geqslant M$$

Si $n, m \ge M$, para cada $x \in I$ se tiene

$$|f_m(x) - f_n(x)| \le |f_m(x) - f(x)| + |f_n(x) - f(x)| \le ||f_m - f||_I + ||f_n - f||_I \le 2\varepsilon$$

y tomando supremos se tiene

$$||f_m - f_n||_I \le 2\varepsilon$$

 \therefore $\{f_n\}$ es uniformemente de Cauchy.

Ejercicio 1.22. Demostrar que una sucesión de funciones $\{f_n: I \to \mathbb{R}\}_{n \in \mathbb{N}}$ no converge uniformemente sobre I a una función límite $f: I \to \mathbb{R}$ si y solo si para algún $\varepsilon_1 > 0$ existen una subsucesión $\{f_{n_k}\}$ de $\{f_n\}$ y una sucesión $\{t_k\}$ en I tales que $|f_{n_k}(t_k) - f(t_k)| \ge \varepsilon_1$ para todo $k \in \mathbb{N}$.

Solución: (\Rightarrow) Si f_n no coverge uniformemente sobre sobre I, negando la definición tenemos

$$\exists \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n_N > N \ \exists t_N \in I : |f_{n_N}(t_N) - f(t_N)| \ge \varepsilon$$

Entonces haciendo N recorrer los naturales se construye la suceción $\{f_{n_k}\}$ las culaes satisfacen lo requerido.

0

(\Leftarrow) Suponga por contradicción que f_n converge uniformemente. Entonces para $\varepsilon = \varepsilon_1$ $\exists N \in \mathbb{N}$ tal que si $n \ge N$ se tiene $||f_n - f||_I < \varepsilon_1$ lo cual es contradictorio ya que existen $n_N > N$ y $t_N \in I$ tales que $|f_{n_N}(t_N) - f(t_N)| \ge \varepsilon_1$.

Ejercicio 1.23. Considérese las siguientes funciones definidas sobre el intervalo $[0, \infty)$:

(a)
$$f_n(t) := \frac{t^2 + nt}{n}$$
, (b) $g_n(t) := \frac{t^n}{1 + t^n}$, (c) $h_n(t) := \frac{t^n}{1 + t^{2n}}$.

Hallar las funciones $f, g, h: [0, \infty) \to \mathbb{R}$ tales que $f_n \to f$, $g_n \to g$, $h_n \to h$ puntualmente sobre $[0, \infty)$. Determinar, en cada caso, si la convergencia es uniforme sobre $[0, \infty)$.

En los casos en que esta convergencia no es uniforme, comprobar que sí hay convergencia uniforme sobre un intervalo finito [0, b].

Solución:

(a) Para $t \in [0, \infty)$,

$$f_n(t) = \frac{t^2 + nt}{n} = \frac{n\left(\frac{t^2}{n} + t\right)}{n} = \frac{t^2}{n} + t \to t, \ n \to \infty$$

por lo que f_n converge puntualmente a f(t) := t en $[0, \infty)$. Sin embargo,

$$\left\| \frac{t^2 + nt}{n} - t \right\|_{[0,\infty)} = \left\| \frac{t^2}{n} \right\|_{[0,\infty)}$$

y se concluye que no hay convergencia uniforme ya que esta expresión no es acotada. Si $t \in [0, b]$,

$$\left\| \frac{t^2 + nt}{n} - t \right\|_{[0,b]} = \left\| \frac{t^2}{n} \right\|_{[0,b]} \leqslant \frac{b^2}{n} \to 0, \ n \to \infty$$

por lo que en un intervalo finito si hay convergencia uniforme.

- (b) Para $t < 1, t^n \to 0$ y por lo tanto $g_n(t) \to 0$
 - Si t = 1, $g_n(t) = \frac{1}{2}$
 - Si t > 1, $g_n(t) \rightarrow 1$

Entonces g_n converge puntualmente a la función

$$g(t) := \begin{cases} 0, & t < 1 \\ \frac{1}{2}, & t = 1 \\ 1, & t > 1 \end{cases}$$

y como la función límite no es continua y cada g_n lo es se concluye que la convergencia no puede ser uniforme en $[0, \infty)$.

Si 0 < b < 1,

$$\left\| \frac{t^n}{1+t^n} - 0 \right\|_{[0,h]} = \left\| \frac{t^n}{1+t^n} \right\|_{[0,h]} \leqslant \frac{b^n}{1+b^n} \to 0, \ n \to \infty$$

donde última desigualdad se da por monotonía. Y de aquí se concluye $h_n(t) \to 0$ uniformemente en [0,b].

- (c) Para t < 1, $h_n(t) \le t^n \to 0$ y por lo tanto $g_n(t) \to 0$
 - Si t = 1, $h_n(t) = \frac{1}{2}$
 - Si t > 1, $h_n(t) \rightarrow 0$

Entonces $h_n(t)$ converge puntualmente a la función

$$h(t) := \begin{cases} \frac{1}{2}, & t = 1\\ 0, & t \in [0, 1) \cup (1, \infty) \end{cases}$$

y como la función límite no es continua y cada h_n lo es se concluye que la convergencia no puede ser uniforme en $[0, \infty)$.

Si 0 < b < 1,

$$\left\| \frac{t^n}{1 + t^{2n}} - 0 \right\|_{[0,b]} = \left\| \frac{t^n}{1 + t^{2n}} \right\|_{[0,b]} \leqslant \frac{b^n}{1 + b^{2n}} \to 0, \ n \to \infty$$

donde última desigualdad se da por monotonía. Y de aquí se concluye $g_n(t) \to 0$ uniformemente en [0,b].

0

Ejercicio 1.24. (a) Defínase una sucesión de funciones $\{f_n : [0,2] \to \mathbb{R}\}_{n \geqslant 1}$ por

$$f_n(t) := (n - n^2 | t - \frac{1}{n} |) [[|t - \frac{1}{n}| \le \frac{1}{n}]].$$

Graficar las funciones f_1 , f_2 , f_3 . Demostrar que $f_n \to 0$ puntualmente sobre [0,2], y comprobar que esta convergencia no es uniforme, al verificar que $\int_0^2 f_n(t) dt \to 0$.

Solución:

$$[\![|t - \frac{1}{n}| \leqslant \frac{1}{n}]\!] \Leftrightarrow [\![0 \leqslant t \leqslant \frac{2}{n}]\!]$$

Tome $t \in [0,2]$. Por arquimedianidad $\exists N \in \mathbb{N}$ para el cual $\frac{2}{n} < t$, $\forall n \ge N$ y así $f_n \to 0$ puntualmente en [0,2].

Además,

$$\int_{0}^{2} f_{n}(t) dt = \int_{0}^{\frac{2}{n}} f_{n}(t) dt, \quad \text{función es nula en} \quad (\frac{2}{n}, 2]$$

$$= \int_{0}^{\frac{1}{n}} n - n^{2}(t - \frac{1}{n}) dt + \int_{\frac{1}{n}}^{\frac{2}{n}} n + n^{2}(t - \frac{1}{n}) dt$$

$$= 1$$

: la convergencia no puede ser uniforme ya que $\int_0^2 f_n(t) dt$ cuando $n \to \infty$ debería coincidir con $\int_0^2 f(t) dt = 0$.

(b) Defínase una sucesión de funciones $\{g_n : [0,1] \to \mathbb{R}\}_{n \geqslant 1}$ por

$$g_n(t) := n^2 t (1 - t^2)^n$$
.

Demostrar que $g_n \to 0$ puntualmente sobre [0, 1]. Calcular $\int_0^1 g_n(t) dt$ y luego comprobar que la convergencia de la sucesión $\{g_n\}$ no es uniforme sobre [0, 1].

Solución: Si t = 0 ó t = 1, $g_n(t) = 0$. Cuando $t \in (0, 1)$ se tiene

$$\lim_{x \to \infty} x^2 t (1 - t^2)^x = \lim_{x \to \infty} \frac{\frac{x^2 t}{1}}{\frac{1}{(1 - t^2)^x}} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{\frac{2xt}{1}}{\frac{-x}{(1 - t^2)^{x+1}}} \lim_{x \to \infty} -2t(1 - t^2)^{x+1} = 0$$

lo que implica $g_n(t) \to 0$, $\forall t \in (0,1)$. Y se concluye $g_n \to 0$ puntualmente en [0,1]. Sin embargo,

$$\int_0^1 g_n(t) dt = \int_0^1 n^2 t (1 - t^2)^n dt$$

$$= n^2 \left[\frac{-(1 - t^2)^{n+1}}{2(n+1)} \right]_0^1$$

$$= \frac{n^2}{2n+2} \to 0, \ n \to \infty$$

:. la convergencia no puede ser uniforme ya que en caso de serlo $\int_0^1 g_n(t) dt$ cuando $n \to \infty$ debería coincidir $\int_0^1 g(t) dt = 0$ por ser cada g_n continua.

Ejercicio 1.25. Para $t \in [-1, 1]$, evaluar la suma de la serie:

$$s(t) := \sum_{k=0}^{\infty} \frac{t^2}{(1+t^2)^k}.$$

Determinar si esta serie converge uniformemente o no sobre [-1, 1].

Solución: Se tiene s(0) = 0. Note que si $t \in [-1, 1]$, entonces $\frac{1}{(1+t^2)} < 1$ y por consiguiente

$$\sum_{i=1}^{\infty} \frac{1}{(1+t^2)^i} = \frac{1}{1-\left(\frac{1}{1+t^2}\right)} = \frac{1+t^2}{t^2}$$

Así la serie converge puntualmente a la función límite definida por

$$s(t) := \begin{cases} 0, & t = 0 \\ 1 + t^2, & t \in [-1, 0) \cup (0, 1] \end{cases}$$

∴ la convergencia no puede ser uniforme ya que cada término de la serie es continuo y la función limite no lo es.

⊚

Ejercicio 1.26. Mostrar que la serie $\sum_{k=0}^{\infty} t^k (1-t)$ converge puntualmente para $t \in [0,1]$, pero no uniformemente.

Solución: Si t = 0 ó t = 1 la serie vale 0. Si $t \in (0, 1)$,

$$\sum_{k=0}^{\infty} t^k (1-t) = (1-t) \sum_{k=0}^{\infty} t^k = 1$$

Entonces la serie converge puntualmente a la función

$$f(t) = \begin{cases} 0, & t = 0, 1 \\ 1, & t \in (0, 1) \end{cases}$$

∴ la convergencia no puede ser uniforme ya que todas las $f_n(t) = t^k(1-t)$ son continuas, y la función límite no lo es.

Ejercicio 1.27. (a) Comprobar que las funciones $f_n(t) := |t|^{(n+1)/n} \equiv (t^2)^{(n+1)/2n}$, para $n \ge 1$, son diferenciables en el intervalo (-1,1).

Solución:

$$f'_n(t) = \left(\frac{n+1}{2n}\right)(t^2)^{(1-n)/2n}(2t) = \frac{t(n+1)}{n}(t^2)^{(1-n)/2n}$$

0

(b) Demostrar que $f_n(t) \to |t|$ uniformemente sobre (-1, 1), pero que las derivadas $f'_n(t)$ no convergen uniformemente sobre (-1, 1).

Ejercicio 1.28. Si $f_k(t) := \frac{\operatorname{sen}(k^2t)}{k^2}$ para $t \ge 0$, $k \in \mathbb{N}^*$, demostrar que la serie $\sum_{k=0}^{\infty} f_k(t)$ converge uniformemente sobre $[0, \infty)$, pero que la serie de derivadas $\sum_{k=0}^{\infty} f'_k(t)$ diverge para todo $t \ge 0$.

Solución: Dado que $f_k(t)$ es una suceción de funciones que satisface $|f_k(t)| \le \frac{1}{k^2}$ para todo $t \in [0, \infty)$ y además $\sum_{k=0}^{\infty} \frac{1}{k^2} < \infty$, entonces por criterio M-test de Weistrass $\sum_{k=0}^{\infty} f_k(t)$ converge uniformemente en $[0, \infty)$.

La serie de las derivadas esta dada por $\sum_{k=0}^{\infty} \cos(k^2t)$ y es divergente para $t \ge 0$. En efecto, fijando t, si esta serie converge tenemos $\lim_{k\to\infty} \cos(k^2t) = 0$. Sabemos que $\cos(k^2t)$ es pequeño cuando $k^2t \approx (2n+1)\frac{\pi}{2}$ lo cual implicaría $(2k)^2t \approx 2(2n+1)\pi$ y este sería un número cercano a 1, por lo cual el límite no puede ser 0.

Ejercicio 1.29. Demostrar que la función definido por la serie

$$h(t) := \sum_{k=1}^{\infty} \frac{\operatorname{sen}(kt)}{k^4}$$

es dos veces diferenciable sobre \mathbb{R} .

 \llbracket Indicación: calcular h'(t) y h''(t) formalmente, al derivar la serie término por término. Demostrar que la serie para h''(t) converge uniformemente sobre \mathbb{R} ; y luego retroceder. \rrbracket

Solución: Derivando formalmente la serie término a término,

$$h'(t) = \sum_{k=1}^{\infty} \frac{\cos(kt)}{k^3}$$
$$h''(t) = \sum_{k=1}^{\infty} \frac{-\sin(kt)}{k^2}$$

Tenemos h'(t), h''(t) y h'''(t) uniformemente convergentes en \mathbb{R} por criterio M-test de Weierstrass. Por lo anterior se cumplen las hipótesis para asegurar por teorema de diferenciación término a término que h'(t) es diferenciable con derivada h''(t) y además h(t) es diferenciable con derivada h''(t).

h(t) es dos veces diferenciable en \mathbb{R} .