Disaster Management Assignment 5 QGIS – Raster Analysis

Shivani Chepuri 2018122004

Q1 - Data Downloading

The data is downloaded from USGS Earth Explorer (logged in)

Link: https://earthexplorer.usgs.gov/
Google Drive Link for .TIF images:

https://drive.google.com/open?id=1q1dD2vx2yEZTx8xPDpN20vZ5U8vqKe 2

Data Type: Landsat 7 ETM+ C1 Level 1

Data ID: LE07_L1TP_144047_20000229_20170213_01_T1

Data Acquisition Date: 29-FEB-00 (by satellite - Data time scale)

Path: 144 **Row:** 47

Area: Telangana, India
Data set Downloading:

Q2

TCC and FCC – True Color Composition and False Color Composition

Merging Bands:

Each band has pixels with values ranging from 0-255, representing intensity values.

Each band is assigned a color – say instead of gradations of black and white, in a red band, we have gradations of red color.

The Landsat Data has 7 bands. They are in the order Blue, Green, Red, Near Infrared, Infrared, Shortwave Infrared, Thermal Infrared and Panchromatic. B, G, R bands are in the visible range.

To obtain True Color composite, we need Blue, Green and Red components of an image. Therefore, merge the first three bands for **TCC**

Original Merged Image: 4 bands

Red (Band 1), Green (Band 2), Blue (Band 3) -Default

TCC

Merged Output of Red (Band 3), Green (Band 2), Blue (Band 1) is as follows: Oversampling value = 2.00

Before Enhancing

After Enhancing

By changing intensity, contrast, saturation and such parameters, the merged image can be visualized in different ways.

1. FCC

Merged Output of Red (Band 4), Green (Band 3), Blue (Band 2) is as follows: Oversampling value = 2.00 FCC 432 - Before Enhancing

FCC 432 - After Enhancing

By changing intensity, contrast, saturation and such parameters, the merged image can be visualized in different ways. Oversampling value = 2.00

2. FCC 431

Before Enhancing

After Enhancing

5 Bands Merged Image:

3. FCC 542

Before Enhancing

After Enhancing

4. FCC 532

Before Enhancing

After Enhancing

Q3 – Layers : Done on FCC431 and FCC432 Fcc431 with vegetation, river and forest layers:

Vegetation, River, Water Body, Forest layers - Layout Image: FCC 432

Zoomed layout version highlighting the layers

(The layers were not selected in the layers panel in the above image – therefore, not visible. Please find them in another layout image attached below)

FCC423 with Vegetation, River, Forest and Waterbody layers

Q4 - Unsupervised Learning:

1. K-means Clustering:

Number of classes =3, Number of Iterations=1

Kmeans example 2: Iterations = 2

Unsupervised Learning:

2. Isodata Algorithm: Iterations = 2

Q5 - Supervised Learning:

1. Maximum Likelihood Algorithm

No. of classes = 4

Crops, River, Roads, Unclassified

Maximum Likelihood Algorithm No. of classes = 6 Crops/Vegetation, River, Forest, Roads, water body, Buildings, unclassified

Supervised Trained sets – ROI Polygon

