

● 데이터베이스 설계 과정(Lifecyle)

경성대학교 소프트웨어학과 홍석희 [2/12]

* 요구 사항 분석

- ☑ 데이터베이스가 제공해야 할 정보 내역을 분석하여 제공
- ☑ 사용자와 응용 환경 범위에서의 주요 대상 범위와 데이터베이스를 사용할 사용자 집단이 검증하고, 운영 환경과 처리 사항을 분석하여 시스템 내에서의 정보의 흐름, 입력 및 출력 데이터 등을 정의
- [예] 영화 DB를 위해 최종 사용자에게 영화, 배우, 제작자, 영화사 등에 대한 정보를 어떻게 제공할 것인가??

정적 정보 구조 요소	개체, 애트리뷰트, 관계성, 제약 조건 등의 요구조건 분석
동적 DB 처리 요구 조건	트랜잭션 유형, 실행 빈도 등의 요구조건 분석
범 기관적 제약 조건	경영목표, 정책, 규정 등의 요구조건 분석

경성대학교 소프트웨어학과 홍석희

요구 분석 단계의 일반적 처리 절차

경성대학교 소프트웨어학과 홍석희 [4/12]

- 개념 데이터 설계(Conceptual Data Design)
 - ★ 표현하고자 하는 현실 세계를 정보 모델링에 의해 개념적 모델로 전환하여 정보 구조를 정의하는 단계
 - ★ 데이터 사이의 의미와 상호 관계에 대한 규칙을 표현
 - ★ 결과물로 ER(Entity-Relationship) 데이터 모델(ERD)을 주로 사용
 - ★ 설계 과정에 필요한 정보
 - ① 엔터티와 관계(relationship): 영화 DB 구축의 목적은? 영화 DB를 표현하기 위해 어떤 정보가 저장되는가?
 - ② 주키(primary key): 각 엔터티(객체)를 유일하게 구별하기 위한 방법은?
 - ③ 속성(attribute): 각 엔터티를 표현하는 속성은?
 - ④ 보안(security control): 데이터를 열람하고 수정할 수 있는 유저는?
 - ⑤ subtype, supertype, aggregation : 엔터티를 여러 하부 구조로 구성하나? 하나의 엔터티가 여러 작은 엔터티로 조합되는가?
 - ⑥ business rule, cardinality: 데이터 무결성을 위한 규칙은? 관계에 참여하는 엔터티의 최소, 최대 개수는?

- ER 데이터 모델링
 - * 정보 모델링으로 스키마를 정확한 형태로 재정의하여 정보 구조(개념 스키마)를 생성하고, 개념적 데이터 모델인 E-R 다이어그램을 사용하여 개체, 속성, 관계성 등의 정보 구조를 표현하여 최종적으로 하나의 개념적 데이터 모델을 작성한다. 즉, 집단화와 일반화를 통하여 데이터를 추상화하는 과정

개념적 설계 절차

- 논리 데이터 설계(Logical Data Design)
 - ★ 개념적 모델을 데이터 모델링에 의해 논리적 구조로 정의하여 데이터베이스 관리 시스템과 결부된 논리적 모델로 변환하는 단계
 - ★ 논리 데이터 설계를 위해 필요한 내용
 - ☑ 개념 데이터 모델: 개념 설계에서 작성한 ERD 등의 모델
 - ☑ ER 모델을 관계형 테이블로 변환
 - ☑ 데이터베이스 이상(anomaly)을 해결하기 위한 테이블들에 대한 정규화
 - ☑ 운영 요구사항: 요구사항 분석 단계에서 파악된 응답시간, 보안, 회복 및 데이터 저장, 일관성의 제약조건 등에 관한 명세
 - ☑ 상위 수준의 프로그램 명세 : 데이터베이스 트랜잭션의 접근형태 등
 - ☑ DBMS 특성: DBMS의 논리적 구조와 데이터 정의어
 - ☑ 일관성 제약조건 : 일관성 있게 데이터를 보관하는 규칙, 일관성 제약조건에 위배되는 데이터를 다루는 규칙 및 중복, 변경연산의 순서에 따른 제약조건

경성대학교 소프트웨어학과 홍석희

경성대학교 소프트웨어학과 홍석희 [8/12]

- ★ 물리 데이터 설계(Physical Data Design)
 - ☑ 논리적 모델을 데이터 구조화에 의해 물리적 자료 구조를 정의하여 물리 적 모델로 변환하는 단계
 - ☑ 시스템을 고려한 논리적 설계를 해당 구현 가능한 물리적 데이터베이스 구조로 전환하고 DBMS의 조건에 맞게 성능을 최적화하는 과정

경성대학교 소프트웨어학과 홍석희 [9/12]

● 데이터베이스 설계 시 고려 사항

항목	설명
무결성	데이터가 만족해야 할 제약 조건 만족 (갱신, 삽입, 삭제 등의 연산 후에도 데이터 값이 정확)
일관성	저장된 데이터와 질의응답 일치하여 모순성이 없어야 함
회복	시스템에 장애 발생 시 장애 발생 전의 일관된 상태의 데이터베 이스 상태로 복구 가능
보안	불법 접근(데이터의 변경, 손실, 노출)에 대한 보호 가능
효율성	응답시간 단축, 저장 공간 최적화, 시스템의 생산성(처리도) 등을 고려
데이터베이스 확장	응용과 데이터의 확대(시스템에 영향을 주지 않고, 새로운 데이터 추가 가능)

경성대학교 소프트웨어학과 홍석희 [10/12]

- three-schema architecture
 - ★ 데이터베이스를 세 가지 관점에서 표현
 - ★ 응용 프로그램과 물리적 데이터베이스 사이의 독립성을 표현
- 스키마의 3단계
 - ★ internal level(물리(physical) 데이터 모델): 데이터베이스의 물리적 저장 구조 관점
 - * conceptual level(개념 데이터 모델과 논리 데이터 모델): 사용자 관점에서 데이터베이스의 논리적 구조를 표현. 저장 구조에 대한 정보를 숨기고 엔터티, 속성 자료형, 관계, 기능, 제약 조건을 표현
 - * external 또는 view level : 각 사용자 그룹에 관련되어 다른 데이터에 대한 관점을 표현. 각 사용자에게 특화된 엔터티, 관계, 속성, 제약 조건등만을 제공.

three-schema architecture

경성대학교 소프트웨어학과 홍석희 [12/12]

- 데이터 독립성(data independence)
 - ★ 하위 단계의 변화가 상위 단계에 영향을 주지 않는다.
- 두 가지 독립성
 - ★ 논리 데이터 독립성(logical data independence)
 - ☑ conceptual level의 변화가 external schema나 응용 프로그램에 영향을 주지 않는다.
 - 트정 엔터티나 엔터티의 속성이 삭제되더라도 external schema나 응용 프로그램을 변경할 필요 없다.
 - * 물리 데이터 독립성(physical data independence)
 - ☑ internal schema의 변화가 conceptual 또는 external schema에 영향을 주지 않는다.
 - ☑ 테이블이 저장된 디스크가 변경되더라도 conceptual 또는 external schema를 변경할 필요가 없다.