Model Question Paper BASIC ELECTRICAL ENGINEERING (14ELE15/14ELE 25)

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

MODULE 1

4)	a		(6 Marks)
		separately excited, shunt and series generators.	
	b	Explain with a neat diagram, the constructional features and operation of	(6 Marks)
		dynamometer type wattmeter.	
	С	A lap wound 750 rpm shunt motor has an armature resistance of 0.4 Ω and	(8 Marks)
		shunt field resistance of 200 Ω respectively. The armature has 120 coils	
		each of 3 turn each. The flux per pole is 0.03Wb. If the load resistance is 10	
		Ω , determine the terminal voltage.	
		MODULE 3	
5)	a	Obtain an expression for the voltage across pure inductor, if the current through it is $t = l_m sin\omega t$.	(6 Marks)
	b	Write a short note on (i)Fuse and (ii) Electric shock.	(6 Marks)
	С	A coil of resistance 10Ω and inductance 0.1 H is connected in series with a	(8 Marks)
		150 μF capacitor across a 200 V, 50 Hz supply. Calculate the voltage across	
		the coil and the capacitor respectively.	
		OR	
6)	a	Deduce a condition at which an RLC circuit behaves like a resistive circuit.	(6 Marks)
		State whether the current in the circuit is minimum or maximum.	
	b	Find the expression for the current, and calculate the power, when a voltage	(6 Marks)
		represented by $v = 283 stn 100 \pi t$ is applied to a coil of 50Ω resistance and	
		0.159 H inductance.	
	c	Write a short note on	(8 Marks)
		(i)Miniature Circuit Breaker and (ii) Earth leakage circuit breaker	
	•	MODULE 4	
7	a	Explain the advantages of rotating field type alternator.	(6 Marks)
	b	For a certain load, one wattmeter read 20 kW and the other 5 kW after the	(6 Marks)
		voltage circuit of the wattmeter has been reversed. Calculate the phaseangle	
		between voltage and current.	
	С	A 12 pole, 500rpm star connected <u>alternator</u> has 60 slots with 20	(8 Marks)
			(o iviaiks)
		conductors/slot. The flux per pole is 0.02Wb and sinusoidally distributed. The	

		winding factor is 0.97. Calculate frequency, phase emf and line emf.				
	OR					
0		Show that two wattmaters are sufficient to measure three phase power	(6 Mortza)			
8	a	Show that two wattmeters are sufficient to measure three phase power.	(6 Marks)			
	b	A 3 phase, 6 pole star connected alternator revolves at 1000 rpm. The stator	(6 Marks)			
		has 90 slots and 8 conductors per slot. The flux per pole is 0.05Wb. Calculate				
		voltage generated, if $K_w = 0.96$.				
	С	Three similar coils each having resistance of 10Ω and reactance 8Ω are	(8 Marks)			
		connected in star across a 400V, 3 phase supply. Determine the line current,				
		total power and reading of each wattmeters connected to measure power.				
		MODULE 5				
9	a	What are the losses in a transformer and how they vary with load? Deduce a	(6 Marks)			
		condition for maximum efficiency.				
	b	A 6 pole alternator runs at 1000 rpm, and supplies power to a 4 pole, 3 phase	(6 Marks)			
		induction motor. The frequency of rotor of induction motor is 2 Hz. Determine				
		the slip and speed of the motor.				
	С	A 40kVA single phase transformer has core loss of 450W and full load copper	(8 Marks)			
		loss of 850W. If the power factor of the load is 0.8, calculate (i) full load				
		efficiency, (ii) load corresponding to maximum efficiency, and (iii) maximum				
		efficiency at unity power factor.				
		OR				
10	a	Explain the working principle of a 3 phase induction motor.	(6 Marks)			
	b	Obtain an expression for the load KVA at which maximum efficiency occurs.	(6 Marks)			
	c	Explain why it is not advisable to start a 3 phase induction motor by directly	(8 Marks)			
		connecting it across the supply. With a circuit diagram, explain a star –				
		delta starter.				
		delta starter.				