(19) World Intellectual Property Organization International Bureau

| 1868 | 1869 | 18 | 1869 | 1865 | 1867 | 1868 | 1868 | 1868 | 1868 | 1869 | 1869 | 1869 | 1869 | 1869 | 1869

(43) International Publication Date 10 April 2003 (10.04.2003)

PCT

(10) International Publication Number WO 03/02926 A1

(51) International Patent Classification⁷: C07D 239/54, 213/61, 209/48, 213/20, A01N 43/54, 43/38, 43/56

(21) International Application Number: PCT/EP02/10758

(22) International Filing Date:

25 September 2002 (25.09.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/325,080

26 September 2001 (26.09.2001) US

(71) Applicant (for all designated States except US): BASF Aktiengesellschaft [DE/DE]; 67056 Ludwigshafen (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KARP, Gary, M [US/US]; 37 Cartwright Drive, Princeton Junction, NJ 08550 (US). DONOVAN, Stephen, F. [US/US]; 171 South Main Street, Yardley, PA 19067 (US). MARINELLI, Brett, A. [US/US]; 7 Hirth Drive, Hamilton, NJ 08620 (US). LANGEVINE, Charles, M. [US/US]; 508 Flatbush Ave., Apt. 1M, Brooklyn, NY 11225 (US). COSSETTE, Michael, V. [US/US]; 43-13 Hunters Glen, Plainsboro,

NJ 08536 (US). GUACIARO, Michael, A. [US/US]; 17 Wishingwell Lane, Clifton Park, NY 12065 (US).

(74) Agents: KINZEBACH, Werner et al.; Ludwigsplatz 4, 67059 Ludwigshafen (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HETEROCYCLYL SUBSTITUTED PHENOXYALKYL-, PHENYLTHIOALKYL-, PHENYLAMINOALKYL- AND PHENYLALKYL-SULFAMOYLCARBOXAMIDES

(57) Abstract: The present invention describes compounds, compositions, and methods for treating target plants with an herbicidally effective amount of a compound of formula (I) or a composition that includes compounds of formula (I), wherein A, Q, R¹, R², R³, R⁴, X¹, X², Y, and n are as defined herein.

BEST AVAILABLE COPY

10

15

20

25

HETEROCYCLYL SUBSTITUTED PHENOXYALKYL-, PHENYLTHIOALKYL-, PHENYLAMINOALKYL- AND PHENYLALKYL-SULFAMOYLCARBOXAMIDES

The present invention relates to new herbicidal compounds, compositions, and their methods of use; in particular, the present invention relates to cyclic imide phenoxyalkyl-, phenylthioalkyl-, and phenalkylsulfamoylcaboxamides as herbicidal agents.

Weeds persist in many crops, thereby lowering crop quantity and quality. Applying herbicides containing active ingredients such as heterocyclyl substituted phenyl compounds is effective in the control of undesired vegetation especially weeds. As a rule, these compounds have a substituent, for example a halogen atom, on the phenyl ring in the 2- and/or the 4-position relative to the heterocyclic radical, the letter comprising at least one nitrogen atom as a ring member. A side chain can be present in the 5-position of the phenyl ring. Inter alia, compounds are proposed which have an side chain derived from aliphatic acid derivatives. Several references, such as U.S. Patent No. 6,057,269 to Klintz et al. and U.S. Patent No. 4,859,229 to Wenger et al., describe various heterocyclyl substituted phenyl compounds, compositions, and the use of those compounds as pesticidal agents.

The compounds of the prior art are frequently not satisfactory with respect to their herbicidal activity and their selectivity. It is therefore an object of the present invention to make available compounds having high herbicidal activity. The compounds should preferably act selectively against harmful weeds and not affect culture plants.

We have surprisingly found that this object is achieved by heterocyclyl substituted phenyl compounds of the formula I as described below. Thus, the present invention relates to compounds of the formula I

30 wherein:

A is O or S;

X1 and X2 are each independently H or halogen;

5 n is 0 or 1

10

25

DCID: <WO__03029226A1_I

- Y is O, NR, S(O)_m or a group CHR';
- m is 0, 1, or 2;
- R is H, C₁-C₄ alkyl, C₁-C₄ alkoxyalkyl, or optionally substituted benzyl;
- R' is hydrogen or R' and R² form a bond;
- 15 R^1 and R^2 are each independently H, C_1 - C_6 alkyl, or halogen, or R^1 and R^2 taken together are =CH₂, or form a cyclopropyl ring with the carbon to which they are attached;
- is H, CN, C₁-C₆ alkyl, C₁-C₆ alkoxyalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl or optionally substituted benzyl;
 - R⁴ is NR⁵R⁶, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, optionally substituted phenyl, optionally substituted 4 to 7 membered heterocyclyl or optionally substituted benzyl;
 - Q is selected from nitrogen containing heterocycles of the formulae Q1 to Q8

wherein the Q group is attached to the phenyl ring of formula I at *;

R⁵ and R⁶ are each independently H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ alkynyl, C₃-C₈ cycloalkyl, phenyl, benzyl or C₅-C₈ cycloalkenyl, where each of the aforementioned seven groups can be substituted with any combination of 1, 2, 3, 4 or 5 halogen atoms, 1, 2 or 3 C₁-C₆ alkoxy groups, 1 or 2 C₁-C₆ haloalkoxy groups, 1 or 2 cyano groups, 1 or 2 C₃-C₇ cycloalkyl groups, 1 or 2 two C(O)R²⁵ groups, 1 or 2 C(O)OR²⁶ groups, 1 or 2 C(O)NR²⁸R²⁹ groups, 1, 2 or 3 OR³⁰ groups, 1, 2 or 3 SR³¹ groups, one optionally substituted four to ten

membered monocyclic or fused bicyclic heterocycle, one or two optionally substituted phenyl groups or one or two optionally substituted benzyl groups, or

R⁵ may be also a group CONR^{5a}R^{6a} or SO₂NR^{5a}R^{6a} wherein R^{5a} and R^{6a} are each independently H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ alkynyl, C₃-C₈ cyloalkyl, phenyl, benzyl or C₅-C₈ cycloalkenyl, where each of the aforementioned seven groups can be substituted with any combination of 1, 2, 3, 4 or 5 halogen atoms, 1, 2 or 3 C₁-C₆ alkoxy groups, 1 or 2 C₁-C₆ haloalkoxy groups, 1 or 2 cyano groups, 1 or 2 C₃-C₇ cycloalkyl groups, 1 or 2 two

۱ - ۱۹۹۸ منافعتان ۱۳۱۸ - ۱۳۰۰ - ۱۳۰۰ منافعتان

5

10

15

20

10.

15

25

4

C(O)R²⁵ groups, 1 or 2 C(O)OR²⁶ groups, 1 or 2 C(O)NR²⁸R²⁹ groups, 1, 2 or 3 OR³⁰ groups, 1, 2 or 3 SR³¹ groups, one optionally substituted four to ten membered monocyclic or fused bicyclic heterocycle, one or two optionally substituted phenyl groups or one or two optionally substituted benzyl groups, or

R⁵ and R⁶ together with the atom to which they are attached form a three to seven membered heterocycle;

- A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 , A^9 , A^{10} and A^{11} are each independently O or S;
- R⁷, R⁸, R⁹, R¹², R¹³, R¹⁶, R¹⁷, R²³ and R²⁴ are each independently H, CN, NH₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkynyl, benzyl, OR³², C₁-C₃ cyanoalkyl, or R⁷ and R⁸ or R²³ and R²⁴ may be taken together with the atoms to which they are attached to represent a four- to seven membered ring, optionally interrupted by oxygen, sulfur or nitrogen and optionally substituted with one or more halogen or C₁-C₄ alkyl groups;
- R¹⁰, R¹¹, R¹⁴, R¹⁵, R¹⁹, R²⁰, R²¹ and R²² are each independently H, C₁-C₆ alkyl, C₁-C₆

 haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkynyl,

 OR³³, S(O)_mR³⁴, OSO₂R³⁵, NR³⁶R³⁷ or

 R^{10} and R^{11} may be taken together with the atoms to which they are attached to represent a four to seven membered ring optionally substituted with one or more halogen or C_1 - C_4 alkyl groups,

one of the radicals R¹⁹, R²⁰, R²¹ or R²² may also be an optionally substituted phenyl group;

R¹⁸ is H, halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkynyl, OR³⁸ or SR³⁹ or

IOCID: <WO_03029226A1_I

R¹⁷ and R¹⁸ may be taken together with the atoms to which they are attached to represent a four to seven membered ring optionally substituted with one or more halogen or C₁-C₄ alkyl groups;

R²⁵, R²⁶, R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, R³⁴, R³⁵, R³⁶, R³⁷, R³⁸ and R³⁹ are each independently H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, optionally substituted phenyl or optionally substituted benzyl;

or optical isomers, salts or esters thereof.

10

7.

25

30

The invention relates also to agricultural compositions comprising at least one compound of the formula I or an agriculturally utilizable salt of I and at least one inert liquid and/or solid carrier and, if desired, at least one surface-active substance.

Moreover, the invention relates to the use of the compounds of formula I as
herbicides and/or for the desiccation and/or defoliation of plants. The invention relates
also to methods of controlling or inhibiting the growth of an undesired vegetation
(weeds), which comprises allowing a herbicidally active amount of at least one
compound of the formula I or of an agriculturally utilizable salt of I or a composition
that includes compounds of formula I, to act on plants, their habitat or on seed. The
invention relates also to a method for the desiccation and/or defoliation of plants, which
comprises allowing an effective amount of at least one compound of the formula I
having desiccant and/or defoliant activity or of an agriculturally utilizable salt of I, as
claimed in any of claims 1 to 11, to act on plants.

The compounds of the formula I can have one or more chiral centers in the substituents and then exist either as enantiomer or diastereomer mixtures. The invention relates both to the pure enantiomers or diastereomers and to their mixtures.

Suitable agriculturally utilizable salts are especially the salts of those cations or the acid addition salts of those acids whose cations or anions respectively do not adversely affect the herbicidal action of the compounds I. Thus suitable cations are in particular the ions of the alkali metals, preferably sodium and potassium, the alkaline earth metals, preferably calcium, magnesium and barium, and the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion, which if desired can carry one to four C₁-C₄ alkyl substituents and/or a phenyl or benzyl

10

20

25

30

substituent. Illustrative examples of amines suitable for forming ammonium cations are ammonia as well as primary, secondary and tertiary C1 -C18 alkylamines, C1 -C4 hydroxyalkylamines and C₂-C₄ alkoxyalkylamines typically methylamine, ethylamine, n-propylamine, isopropylamine, the four isomeric butylamines, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methyl ethylamine, methyl isopropylamine, methyl hexylamine, methyl nonylamine, methyl pentadecylamine, methyl octadecylamine, ethyl butylamine, ethyl heptylamine, ethyl octylamine, hexyl heptylamine, hexyl octylamine, dimethylamine, diethylamine, di-npropylamine, diisopropylamine, di-n-butylamine, di-n-amylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-but-2-enylamine, n-pent-2-enylamine, 2,3-dimethylbut-2-enylamine, dibut-2-enylamine, n-hex-2-enylamine, propylenediamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine tri-sec-butylamine, tri-n-amylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines such as pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary arylamines such as anilines. methoxyanilines, ethoxyanilines, o-, m- and p-toluidines, phenylenediamines, benzidines, naphthylamines and o-,m- and p-chloroanilines, in addition phosphonium ions, sulfonium ions, preferably tri(C1-C4-alkyl)sulfonium and sulfoxonium ions, preferably tri(C₁-C₄-alkyl)sulfoxonium.

Anions of utilizable acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, hydrogencarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of C₁-C₄-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reaction of I with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.

The organic moieties mentioned in the definition of the substituents R¹ - R³⁹ or as radicals on phenyl, heterocycl or cycloalkyl rings - such as the meaning halogen - are collective terms for individual lists of the separate group members. All carbon chains, i.e. all alkyl, haloalkyl, cyanoalkyl, cycloalkyl, alkoxy, haloalkoxy, alkylthio.

10

15

20

25

30

alkylsulfinyl, alkylsulfonyl, haloalkylsulfonyl, alkenyl and alkynyl groups and corresponding group moieties in larger groups such as alkoxyalkyl, alkylthioalkyl, (di)alkylamino, (di)alkylaminocarbonyl, alkoxycarbonyl, alkoxycarbonylalkyl etc. can be straight-chain or branched, the prefix C_n - C_m in each case indicating the possible number of carbon atoms in the group. Halogenated substituents preferably carry one, two, three, four or five identical or different halogen atoms, preferably chlorine and/or fluorine atoms. The meaning halogen is in each case fluorine, chlorine, bromine or iodine, preferably fluorine or chlorine.

The meaning of optionally substituted phenyl or benzyl is in each case that the phenyl ring may carry one to five, preferably one or two substituents which are preferably selected from halogen, C₁-C₄ alkyl, CN, NH₂, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, C₁-C₄ alkoxycarbonyl, C₁-C₄ alkylamino, di-C₁-C₄-alkylamino, C₁-C₄ alkylaminocarbonyl and di-C₁-C₄-alkylaminocarbonyl.

 C_1 - C_4 -alkyl: methyl, ethyl, n-propyl, $CH(CH_3)_2$, n-butyl, $CH(CH_3)$ - C_2H_5 , CH_2 - $CH(CH_3)_2$ and $C(CH_3)_3$;

 C_1 - C_4 -alkoxy: methoxy, ethoxy, n-propoxy, OCH(CH₃)₂, n-butoxy, OCH(CH₃)- C_2 H₅, OCH₂-CH(CH₃)₂ and OC(CH₃)₃;

C₁-C₄-haloalkyl: a C₁-C₄-alkyl radical as mentioned above, which is partially or completely substituted, preferably by one to five halogen atoms, e.g. by fluorine, chlorine, bromine and/or iodine, i.e., for example, CH₂F, CHF₂, CF₃, CH₂Cl, dichloromethyl, trichloromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2-difluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2-trichloroethyl, C₂F₅, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl or nonafluorobutyl, especially CH₂F, CHF₂, CF₃, CH₂Cl, dichloromethyl, trichloromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, and 2,2,2-trifluoroethyl;

10

20

25

30

C₁-C₁₀-alkyl: an alkyl radical having from 1 to 10, preferably from 1 to 8, especially from 1 to 6 carbon atoms, such as C₁-C₄-alkyl as mentioned above, and also, for example, n-pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl or 1-ethyl-2-methylpropyl, preferably methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1,1-dimethylethyl, n-pentyl or n-hexyl;

C₁-C₆-haloalkyl: a C₁-C₆-alkyl radical as mentioned above which is partially or fully substituted, preferably by one to five halogen atoms, e.g. by fluorine, chlorine, bromine and/or iodine, i.e. for example one of the radicals mentioned under C₁-C₄-haloalkyl, and also 5-fluoro-1-pentyl, 5-chloro-1-pentyl, 5-bromo-1-pentyl, 5-iodo-1-pentyl, 5,5,5-trichloro-1-pentyl, undecafluoro- pentyl, 6-fluoro-1-hexyl, 6-chloro-1-hexyl, 6-bromo-1-hexyl, 6-iodo-1-hexyl, 6,6,6-trichloro-1-hexyl or dodecafluorohexyl;

C₁-C₄-haloalkoxy: a C₁-C₄-alkoxy radical as mentioned above, which is partially or completely substituted, preferably by one to five halogen atoms, e.g. by fluorine, chlorine, bromine and/or iodine, i.e., for example OCH₂F, OCHF₂, OCF₃, OCH₂Cl, OCH(Cl)₂, OCCl₃, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloro-thoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, OC₂F₅, 2-fluoropropoxy, 3-fluoropropoxy, 2,3-difluoropropoxy, 2-bromopropoxy, 2-chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH₂-C₂F₅, OCF₂-C₂F₅, 1-(CH₂F)-2-fluoroethoxy, 1-(CH₂Cl)-2-chloroethoxy, 1-(CH₂Br)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy, preferably OCHF₂, OCF₃, dichlorofluoromethoxy, chlorodifluoromethoxy or 2,2,2-trifluoroethoxy;

 C_1 - C_6 -haloaloxy: a C_1 - C_6 -alkoxy radical as mentioned above which is partially or fully substituted, preferably by one to five halogen atoms, e.g. by fluorine, chlorine, bromine and/or iodine, i.e. for example one of the radicals mentioned under C_1 - C_4 -haloalkoxy, and also 5-fluoro-1-pentyloxy, 5-chloro-1-pentyloxy, 5-bromo-1-

10

15

20

25

30

pentyloxy, 5-iodo-1-pentyloxy, 5,5,5-trichloro-1-pentyloxy, undecafluoro- pentyloxy, 6-fluoro-1-hexyloxy, 6-bromo-1-hexyloxy, 6-iodo-1-hexyloxy, 6,6,6-trichloro-1-hexyloxy or dodecafluorohexyloxy;

cyano-C₁-C₄-alkyl: e.g. cyanomethyl, 1-cyanoeth-1-yl, 2-cyanoeth-1-yl, 1-cyanoprop-1-yl, 2-cyanoprop-1-yl, 3-cyanoprop-1-yl, 1-cyanoprop-2-yl, 2-cyanoprop-2-yl, 1-cyanobut-1-yl, 2-cyanobut-1-yl, 3-cyanobut-1-yl, 4-cyanobut-1-yl, 1-cyanobut-2-yl, 2-cyanobut-2-yl, 1-cyanobut-3-yl, 2-cyanobut-3-yl, 1-cyano-2-methylprop-3-yl, 2-cyano-2-methylprop-3-yl, in particular cyanomethyl or 2-cyanoethyl;

C₁-C₄-alkoxy-C₁-C₄-alkyl: C₁-C₄-alkyl which is substituted with one C₁-C₄-alkoxy group, e.g. CH₂-OCH₃, CH₂-OC₂H₅, n-propoxymethyl, CH₂-OCH(CH₃)₂, n-butoxymethyl, (1-methylpropoxy)methyl, (2-methylpropoxy)methyl, CH₂-OC(CH₃)₃, 2-(methoxy)ethyl, 2-(ethoxy)ethyl, 2-(n-propoxy)ethyl, 2-(1-methylethoxy)ethyl, 2-(n-butoxy)ethyl, 2-(1-methylpropoxy)ethyl, 2-(1,1-dimethylethoxy)ethyl, 2-(methoxy)propyl, 2-(ethoxy)propyl, 2-(n-propoxy)propyl, 2-(1-methylethoxy)propyl, 2-(1-methylpropoxy)propyl, 3-(ethoxy)propyl, 3-(methoxy)propyl, 3-(n-butoxy)propyl, 3-(1-methylethoxy)propyl, 3-(n-butoxy)propyl, 3-(1-methylpropoxy)propyl, 3-(1-methylpropoxy)propyl, 3-(1-methylpropoxy)propyl, 2-(methoxy)butyl, 2-(ethoxy)butyl, 2-(n-propoxy)butyl, 2-(1-methylethoxy)butyl, 2-(n-butoxy)butyl, 2-(1-methylpropoxy)butyl, 2-(1-methylethoxy)butyl, 2-(1-methylpropoxy)butyl, 2-(2-

methylethoxy)butyl, 2-(n-butoxy)butyl, 2-(1-methylpropoxy)butyl, 2-(2-methylpropoxy)butyl, 2-(1,1-dimethylethoxy)butyl, 3-(methoxy)butyl, 3-(ethoxy)butyl, 3-(n-propoxy)butyl, 3-(1-methylethoxy)butyl, 3-(n-butoxy)butyl, 3-(1-methylpropoxy)butyl, 3-(1,1-dimethylethoxy)butyl, 4-(methoxy)butyl, 4-(ethoxy)butyl, 4-(n-propoxy)butyl, 4-(1-methylpropoxy)butyl, 4-(1-methylpropoxy)butyl, 4-(1-methylpropoxy)butyl, 4-(2-methylpropoxy)butyl or 4-(1,1-dimethylethoxy)butyl, preferably CH₂-OCH₃, CH₂-OC₂H₅, 2-(methoxy)ethyl, 2-(ethoxy)ethyl;

 C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl: C_1 - C_4 -alkyl which is substituted with one C_1 - C_4 -alkylthio group, i.e. for example CH_2 - SCH_3 , CH_2 - SC_2H_5 , n-propylthiomethyl, CH_2 - $SCH(CH_3)_2$, n-butylthiomethyl, (1-methylpropylthio)methyl, (2-methylpropylthio)methyl, CH_2 - $SC(CH_3)_3$, 2-(methylthio)ethyl, 2-(ethylthio)ethyl, 2-(n-propylthio)ethyl, 2-(1-methylethylthio)ethyl, 2-(1-methylthio)ethyl, 2-(1-methylthio)ethyl, 2-(1-methylthio)ethyl, 2-(1-methylthio)ethyl, 2-(1-methylthi

methylpropylthio)ethyl, 2-(2-methylpropylthio)ethyl, 2-(1,1-dimethylethylthio)ethyl, 2-(methylthio)propyl, 2-(ethylthio)propyl, 2-(n-propylthio)propyl, 2-(1methylethylthio)propyl, 2-(n-butylthio)propyl, 2-(1-methylpropylthio)propyl, 2-(2methylpropylthio)propyl, 2-(1,1-dimethylethylthio)propyl, 3-(methylthio)propyl, 3-(ethylthio)propyl, 3-(n-propylthio)propyl, 3-(1-methylethylthio)propyl, 3-(n-5 butylthio)propyl, 3-(1-methylpropylthio)propyl, 3-(2-methylpropylthio)propyl, 3-(1,1dimethylethylthio)propyl, 2-(methylthio)butyl, 2-(ethylthio)butyl, 2-(npropylthio)butyl, 2-(1-methylethylthio)butyl, 2-(n-butylthio)butyl, 2-(1methylpropylthio)butyl, 2-(2-methylpropylthio)butyl, 2-(1,1-dimethylethylthio)butyl, 3-(methylthio)butyl, 10 3-(ethylthio)butyl, 3-(n-propylthio)butyl, 3-(1-methylethylthio)butyl, 3-(nbutylthio)butyl, 3-(1-methylpropylthio)butyl, 3-(2-methylpropylthio)butyl, 3-(1,1dimethylethylthio)butyl, 4-(methylthio)butyl, 4-(ethylthio)butyl, 4-(n-propylthio)butyl, 4-(1-methylethylthio)butyl, 4-(n-butylthio)butyl, 4-(1-methylpropylthio)butyl, 4-(2methylpropylthio)butyl or 4-(1,1-dimethylethylthio)butyl, preferably CH₂-SCH₃, CH₂-15 SC₂H₅, 2-(SCH₃)ethyl or 2-(SC₂H₅)ethyl;

 C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl: C_1 - C_4 -alkyl substituted by one C_1 - C_4 -haloalkoxy group, for example, 2-(OCHF₂)ethyl, 2-(OCF₃)ethyl or 2-(OC₂F₅)ethyl;

C2-C10-alkenyl: alkenyl, having from 2 to 10, preferably from 2 to 6 and .20 especially from 3 to 4 carbon atoms, e.g. ethenyl, prop-1-en-1-yl, allyl, 1methylethenyl, 1-buten-1-yl, 1-buten-2-yl, 1-buten-3-yl, 2-buten-1-yl, 1-methylprop-1en-1-yl, 2-methylprop-1-en-1-yl, 1-methyl-prop-2-en-1-yl, 2-methyl-prop-2-en-1-yl, npenten-1-yl, n-penten-2-yl, n-penten-3-yl, n-penten-4-yl, 1-methyl-but-1-en-1-yl, 2methylbut-1-en-1-yl, 3-methylbut-1-en-1-yl, 1-methylbut-2-en-1-yl, 2-methylbut-2-en-25 1-yl, 3-methylbut-2-en-1-yl, 1-methylbut-3-en-1-yl, 2-methylbut-3-en-1-yl, 3methylbut-3-en-1-yl, 1,1-dimethylprop-2-en-1-yl, 1,2-dimethylprop-1-en-1-yl, 1,2dimethylprop-2-en-1-yl, 1-ethylprop-1-en-2-yl, 1-ethylprop-2-en-1-yl, n-hex-1-en-1-yl, n-hex-2-en-1-yl, n-hex-3-en-1-yl, n-hex-4-en-1-yl, n-hex-5-en-1-yl, 1-methylpent-1-en-1-yl, 2-methylpent-1-en-1-yl, 3-methylpent-1-en-1-yl, 4-methylpent-1-en-1-yl, 1-30 methylpent-2-en-1-yl, 2-methylpent-2-en-1-yl, 3-methyl-pent-2-en-1-yl, 4-methylpent-2-en-1-yl, 1-methylpent-3-en-1-yl, 2-methylpent-3-en-1-yl, 3-methylpent-3-en-1-yl, 4methylpent-3-en-1-yl, 1-methylpent-4-en-1-yl, 2-methyl-pent-4-en-1-yl, 3-methylpent-

10

15

20

25

30

4-en-1-yl, 4-methylpent-4-en-1-yl, 1,1-dimethylbut-2-en-1-yl, 1,1-dimethylbut-3-en-1-yl, 1,2-dimethylbut-1-en-1-yl, 1,2-dimethylbut-2-en-1-yl, 1,3-dimethylbut-2-en-1-yl, 1,3-dimethylbut-2-en-1-yl, 1,3-dimethylbut-3-en-1-yl, 2,2-dimethylbut-3-en-1-yl, 2,3-dimethylbut-1-en-1-yl, 2,3-dimethylbut-2-en-1-yl, 2,3-dimethylbut-1-en-1-yl, 3,3-dimethylbut-2-en-1-yl, 1-ethylbut-1-en-1-yl, 1-ethylbut-2-en-1-yl, 1-ethyl-but-3-en-1-yl, 2-ethylbut-1-en-1-yl, 1-ethyl-but-3-en-1-yl, 2-ethylbut-1-en-1-yl, 1-ethyl-2-methylprop-1-en-1-yl or 1-ethyl-2-methylprop-2-en-1-yl;

C₂-C₆-haloalkenyl: C₂-C₆-alkenyl as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e. for example 2-chloroethenyl, 2-chloroallyl, 3-chloroallyl, 2,3-dichloroallyl, 3,3-dichloroallyl, 2,3,3-trichloroallyl, 2,3-dichlorobut-2-enyl, 2-bromoallyl, 3-bromoallyl, 2,3-dibromoallyl, 3,3-dibromoallyl, 2,3,3-tribromoallyl and 2,3-dibromobut-2-enyl;

C₂-C₁₀-alkynyl: alkynyl, having from 2 to 10, preferably from 2 to 6 and especially from 3 to 4 carbon atoms, e.g ethynyl, prop-1-yn-1-yl, prop-2-yn-1-yl, n-but-1-yn-1-yl, n-but-1-yn-3-yl, n-but-1-yn-4-yl, n-but-2-yn-1-yl, n-pent-1-yn-1-yl, n-pent-1-yn-3-yl, n-pent-1-yn-4-yl, n-pent-2-yn-1-yl, n-pent-2-yn-4-yl, n-pent-2-yn-5-yl, 3-methylbut-1-yn-3-yl, 3-methylbut-1-yn-4-yl, n-hex-1-yn-1-yl, n-hex-1-yn-3-yl, n-hex-1-yn-6-yl, n-hex-2-yn-1-yl, n-hex-2-yn-4-yl, n-hex-2-yn-5-yl, n-hex-2-yn-6-yl, n-hex-3-yn-1-yl, n-hex-3-yn-2-yl, 3-methylpent-1-yn-1-yl, 3-methylpent-1-yn-3-yl, 3-methylpent-1-yn-4-yl, 3-methylpent-1-yn-5-yl, 4-methylpent-1-yn-4-yl or 4-methylpent-2-yn-5-yl, preferably prop-2-yn-1-yl;

C₃-C₈-cycloalkyl: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl;

 C_5 -C₈-cycloalkenyl: cyclopenten-1-yl, cyclopenten-3-yl, cyclopent-1-en-4-yl, cyclohexen-1-yl, cyclohexen-1-yl, cyclohexen-1-yl, cyclohexen-1-yl, cyclohepten-3-yl, cyclohept-1-en-4-yl, cyclohept-1-en-5-yl, cycloocten-1-yl, cycloocten-3-yl, cyclooct-1-en-4-yl, cyclooct-1-en-5-yl;

4- to 10-membered heterocyclyl is to be understood as meaning both saturated, partially or fully unsaturated and aromatic heterocycles, wich are formed by 4 to 10 ring atoms including one, two, three or for hetero atoms, where the hetero atoms are

: 15

20

25

30

selected from nitrogen, oxygen and sulfur. The ring members may form a mono- or bycyclic radical. Preferred heterocyclyl is 5- to 7-membered:

Examples of saturated heterocycles are: oxetan-2-yl, oxetan-3-yl, thietan-2-yl, thietan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahydrothiophen-2-yl, tetrahydrothiophen-3-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrolidin-3-yl, 1,3-dioxolan-2-yl, 1,3-dioxolan-4-yl, 1,3-oxathiolan-2yl, 1,3-oxathiolan-4-yl, 1,3-oxathiolan-5-yl, 1,3-oxazolidin-2-yl, 1,3-oxazolidin-3-yl, 1,3-oxazolidin-4-yl, 1,3-oxazolidin-5-yl, 1,2-oxazolidin-2-yl, 1,2-oxazolidin-3-yl, 1,2oxazolidin-4-yl, 1,2-oxazolidin-5-yl, 1,3-dithiolan-2-yl, 1,3-dithiolan-4-yl, pyrrolidin-1-yl, pyrrolidin-2-yl, pyrrolidin-5-yl, tetrahydropyrazol-1-yl, tetrahydropyrazol-3-yl, tetrahydropyrazol-4-yl, tetrahydropyran-2-yl, tetrahydropyran-3-yl, tetrahydropyran-4yl, tetrahydrothiopyran-2-yl, tetrahydrothiopyran-3-yl, tetrahydropyran-4-yl, piperidin-1-yl, piperidin-2-yl, piperidin-3-yl, piperidin-4-yl, 1,3-dioxan-2-yl, 1,3-dioxan-4-yl, 1,3-dioxan-5-yl, 1,4-dioxan-2-yl, 1,3-oxathian-2-yl, 1,3-oxathian-4-yl, 1,3-oxathian-5yl, 1,3-oxathian-6-yl, 1,4-oxathian-2-yl, 1,4-oxathian-3-yl, morpholin-2-yl, morpholin-3-yl, morpholin-4-yl, hexahydropyridazin-1-yl, hexahydropyridazin-3-yl, hexahydropyridazin-4-yl, hexahydropyrimidin-1-yl, hexahydropyrimidin-2-yl, hexahydropyrimidin-4-yl, hexahydropyrimidin-5-yl, piperazin-1-yl, piperazin-2-yl, piperazin-3-yl, hexahydro-1,3,5-triazin-1-yl, hexahydro-1,3,5-triazin-2-yl, oxepan-2-yl, oxepan-3-yl, oxepan-4-yl, thiepan-2-yl, thiepan-3-yl, thiepan-4-yl, 1,3-dioxepan-2-yl, 1,3-dioxepan-4-yl, 1,3-dioxepan-5-yl, 1,3-dioxepan-6-yl, 1,3-dithiepan-2-yl, 1,3dithiepan-2-yl, 1,3-dithiepan-2-yl, 1,4-dioxepan-2-yl, 1,4-dioxepan-7-yl, hexahydroazepin-1-yl, hexahydroazepin-2-yl, hexahydroazepin-3-yl, hexahydroazepin-4-yl, hexahydro-1,3-diazepin-1-yl, hexahydro-1,3-diazepin-2-yl, hexahydro-1,3-diazepin-4-yl, hexahydro-1,4-diazepin-1-yl and hexahydro-1,4diazepin-2-yl.

Examples of unsaturated heterocycles are: dihydrofuran-2-yl, 1,2-oxazolin-3-yl, 1,2-oxazolin-5-yl, 1,3-oxazolin-2-yl.

Examples of aromatic heterocyclyl are the 5- and 6-membered aromatic heterocyclic radicals, for example furyl, such as 2-furyl and 3-furyl, thienyl, such as 2-thienyl and 3-thienyl, pyrrolyl such as 2-pyrrolyl and 3-pyrrolyl, isoxazolyl, such as 3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, isothiazolyl, such as 3-isothiazolyl, 4-isothiazolyl, pyrazolyl, such as 3-pyrazolyl, 4-pyrazolyl and 5-isothiazolyl, pyrazolyl, 4-pyrazolyl and 5-isothiazolyl, pyrazolyl, 4-pyrazolyl and 5-isothiazolyl, pyrazolyl, 4-pyrazolyl and 5-isothiazolyl, pyrazolyl and 5-isothiazolyl and 5-is

DOCID: ≤WO 03029226A1 1

P≥ Weight

10

15

20

pyrazolyl, oxazolyl, such as 2-oxazolyl, 4-oxazolyl and 5-oxazolyl, thiazolyl, such as 2-thiazolyl, 4-thiazolyl and 5-thiazolyl, imidazolyl, such as 2-imidazolyl and 4-imidazolyl, oxadiazolyl, such as 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,3,4-oxadiazol-2-yl, thiadiazolyl, such as 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl and 1,3,4-thiadiazol-2-yl, triazolyl, such as 1,2,4-triazol-1-yl, 1,2,4-triazol-3-yl and 1,2,4-triazol-4-yl, pyridinyl, such as 2-pyridinyl, 3-pyridinyl and 4-pyridinyl, pyridazinyl, such as 3-pyridazinyl and 4-pyridazinyl, pyrimidinyl, such as 2-pyrimidinyl, 4-pyrimidinyl and 5-pyrimidinyl, furthermore 2-pyrazinyl, 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl, in particular pyridyl, pyrimidyl, furanyl and thienyl.

Bicyclic heterocycles are in general derived from monocyclic 5 or 6 membered heterocycles as mentioned above, which contain a condensed 5 or 6 membered carbocyclic or heterocyclic ring as mentioned above: Examples of bicyclic heterocyles are: indole, benzpyrazole, benzimidazole, benzotriazole, benzofurane, benzothiophene, benzothiazole, quinoline, isoquinoline, benzopyran, benzothiopyran etc.

It has to be understood that for n = 0 the phenyl ring of formula I is directly linked to the moiety CR^1R^2 by a bond. If Y is CHR' and R^2 and R' together are a bond then formula I is as follows:

wherein R¹ and the phenyl ring can have E or Z conformation.

In a first embodiement of the present invention, the variables X^1 , X^2 , Q, Y, n, A and R^1 to R^4 , are as defined below:

A is O or S;

X¹ and X² are each independently H or halogen;

Y is O, NR, or $S(O)_m$;

25 n is 0 or 1;

m is 0, 1, or 2;

R is H, C₁-C₄ alkyl, C₁-C₄ alkoxyalkyl, or optionally substituted benzyl;

R¹ and R² are each independently H, C₁-C₆ alkyl, or halogen, or R¹ and R² taken together are =CH₂, or form a cyclopropyl ring with the carbon to which they are attached:

30

15

20

- R³ is H, CN, C₁-C₆ alkyl, C₁-C₆ alkoxyalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl or optionally substituted benzyl;
- R⁴ is NR⁵R⁶, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, optionally substituted phenyl or optionally substituted benzyl;
- 5 Q is selected from Q1 to Q7:
 - R⁵ and R⁶ are each independently H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ alkynyl, C₃-C₈ cycloalkyl, phenyl, benzyl or C₅-C₈ cycloalkenyl, where each of the aforementioned seven groups can be substituted with any combination of one to five halogen atoms, one to three C₁-C₆ alkoxy groups, one or two C₁-C₈ haloalkoxy groups, one or two cyano groups, one or two C₃-C₇ cycloalkyl groups, one or two C(O)R²⁵ groups, one or two C(O)OR²⁶ groups, one or two C(O)NR²⁸R²⁹ groups, one to three OR³⁰ groups, one to three SR³¹ groups, one optionally substituted four to ten membered monocyclic or fused bicyclic heterocycle, one or two optionally substituted phenyl groups or one or two optionally substituted benzyl groups, or R₅ and R₆ together with the atom to which they are attached form a three to seven membered heterocycle;
 - A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 , and A^9 are each independently O or S;
 - R⁷, R⁸, R⁹, R¹², R¹³, R¹⁶, R¹⁷, R²³ and R²⁴ are each independently H, CN, NH₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkynyl, benzyl, OR³², C₁-C₃ cyanoalkyl, or R⁷ and R⁸ or R²³ and R²⁴ may be taken together with the atoms to which they are attached to represent a four- to seven membered ring, optionally interrupted by oxygen, sulfur or nitrogen and optionally substituted with one or more halogen or C₁-C₄ alkyl groups;
- 25 R¹⁰, R¹¹, R¹⁴, R¹⁵, R¹⁹, R²⁰, R²¹ and R²² are each independently H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkynyl, OR³³, S(O)_mR³⁴, OSO₂R³⁵, NR³⁶R³⁷ or R¹⁰ and R¹¹ may be taken together with the atoms to which they are attached to represent a four to seven membered ring optionally substituted with one or more halogen or C₁-C₄ alkyl groups;
 - R¹⁸ is H, halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkynyl, OR³⁸ or SR³⁹;

OCID: <WO 03029?26A1 I >

R²⁵, R²⁶, R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, R³⁴, R³⁵, R³⁶, R³⁷, R³⁸ and R³⁹ are each independently H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, optionally substituted phenyl or optionally substituted benzyl; In a second embodiment of the present invention, the variables X¹, X², A and R¹ to R⁴, are as defined above, Y is O, NR, or S(O)_m, n is 0 or 1, m is 0, 1, or 2, and Q is Q8.

In a third embodiment of the present invention, the variables X^1 , X^2 , A, Q and R^1 to R^4 , are as defined above and Y is CHR' wherein R' is hydrogen or R' and R^2 form a bond.

With respect to the herbicidal activity of the compounds of formula I, the variable X^1 is preferably H, fluorine or chlorine. X^2 is preferably chlorine.

With respect to the herbicidal activity of the compounds of formula I, the variables A, Y, n, Q and R¹ to R⁴, alone or in combination, are preferably as defined below:

15 A is O;

10

- Y is O, NH or S, more preferably O;
- n is 0 or 1, more preferably 1;
- Q is Q2, wherein R⁹, R¹⁰ and R¹¹ are as defined above. More preferred are compounds I, wherein R⁹, R¹⁰ and R¹¹ alone or in combination are as defined
- 20 . . . below:
 - R⁹ is NH₂, C_1 - C_4 alkyl, C_3 - C_4 alkenyl or C_3 - C_4 alkynyl, more preferably NH₂, or C_1 - C_4 alkyl;
 - R^{10} is C_1 - C_4 haloalkyl, more preferably trifluoromethyl; and R^{11} is H;
- 25 Most preferred are compounds I, wherein Q2 is a radical Q2a or Q2b as defined below;
 - R¹ H, C₁-C₄ alkyl or halogen, more preferably H and methyl;
 - R^2 H, C_1 - C_4 alkyl or halogen, more preferably H and methyl, with the possibility for R^2 also being chlorine, when R^1 is H;
- 30 R^3 is H or C_1 - C_4 alkyl, more preferably H;
 - is NR⁵R⁶, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, optionally substituted phenyl or optionally substituted benzyl, more preferably NR⁵R⁶, C₁-C₄ alkyl or C₁-C₄ haloalkyl, most preferred NR⁵R⁶. In

10

NR⁵R⁶ the variables R⁵ and R⁶ are as defined above. Preferably R⁵ and R⁶ are each independently H, C₁-C₆ alkyl, which may be substituted with 1, 2, 3, 4 or 5 halogen atoms, prefereably with fluorine or chlorine, C₂-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₇ cycloalkyl, phenyl, benzyl or C₃-C₇ cycloalkenyl. R⁵ and R⁶ may also be C₁-C₄ alkyl which carries one group selected from COOR²⁶, CONR²⁸R²⁹, OR³⁰ or SR³¹, wherein R²⁶, R²⁸, R²⁹, R³⁰ and R³¹ are defined as above. R⁵ and R⁶ together with the atom to which they are attached may also form a three to seven membered saturated heterocyclyl, such as morpholinyl, piridinyl, piperazinyl or N-C₁-C₄-alkylpiperazinyl.

Desirable compounds of formula I include compounds I wherein the variables have the following meanings alone or most preferably in combination:

A is O;

Y is O, NH or S especially O;

n is 0 or 1, preferably 1;

15 R¹ and R² are each independently H, C₁-C₄ alkyl or halogen or form a cyclopropyl-1 ring with the carbon to which they are attached, more preferably H and methyl;

R³ is H or C₁-C₄ alkyl, more preferably H;

R⁴ is NR⁵R⁶, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, optionally substituted phenyl or optionally substituted benzyl;

20 Q is Q2, especially Q2, wherein the variables R⁹, R¹⁰ and R¹¹ have the preferred meanings as defined above and most preferred a radical Q2a or Q2b;

R⁵ and R⁶ are each independently H, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, C₃-C₇ cycloalkyl, phenyl, benzyl or C₃-C₇ cycloalkenyl; preferably R⁵ is methyl;

A² and A³ are each O;

25 R⁹ is NH₂, C₁-C₄ alkyl, C₃ or C₄ alkenyl or C₃ -C₄ alkynyl;

R¹⁰ is C₁-C₄ haloalkyl; and

R¹¹ is H.

With regard to the heterocyclic radicals Q1 to Q8 the variables A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 , A^9 , A^{10} , A^{11} , R^7 , R^8 , R^9 , R^{12} , R^{13} , R^{16} , R^{17} , R^{23} and R^{24} , alone or in

30 combination, are preferably as defined below:

$$A^{1}_{A}A^{2}_{A}A^{3}_{A}A^{4}_{A}A^{5}_{A}A^{7}_{A}A^{8}_{A}A^{9}_{A}$$
, $A^{10}_{A}A^{11}_{A}$ are O;
 A^{6}_{A} is O or S;

- R^7 is C_1 - C_4 -haloalkyl or C_1 - C_4 -alkyl, especially methyl, difluoromethyl or trifluoromethyl;
- R^8 is C_1 - C_4 -haloalkyl or C_1 - C_4 -alkyl, especially methyl, difluoromethyl or trifluoromethyl; or
- R⁷ and R⁸ taken together with the atoms to which they are attached represent a 6 membered ring;
 - R^9 is NH_2 , C_1 - C_4 alkyl, C_3 - C_4 alkenyl or C_3 - C_4 alkynyl, more preferably NH_2 or C_1 - C_4 alkyl;
 - R^{10} is C_1 - C_4 haloalkyl, more preferably trifluoromethyl;
- 10 R¹¹ is H;
 - R¹² is C₁-C₄ alkyl, more preferably methyl;
 - R^{13} is C_1 - C_4 alkyl, more preferably methyl;
 - R¹⁴ is C₁-C₄ haloalkyl, more preferably trifluoromethyl;
 - R¹⁵ is C₁-C₄ alkyl, more preferably methyl;
- 15 R¹⁶ is C₁-C₄ alkyl, more preferably methyl;
 - R¹⁷ is C₁-C₄ haloalkyl or C₁-C₄ haloalkoxy, more preferably difluoromethyl, trifluoromethyl, difluoromethoxy or trifluoromethoxy; and
 - R¹⁸ is halogen, more preferably bromine or chlorine;
 - R¹⁹ is halogen, more preferably chlorine;
- 20 R^{20} , R^{22} are H;
 - R^{21} is C_1 - C_4 haloalkyl, SO_2R^{34} or OSO_2R^{35} ; more preferably CF_3 , SO_2CH_3 , OSO_2CH_3 , SO_2CF_3 or OSO_2CF_3 ;
 - R²³ is C₁-C₄-haloalkyl or C₁-C₄-alkyl, especially methyl, difluoromethyl or trifluoromethyl;
- 25 R²⁴ is C₁-C₄-haloalkyl or C₁-C₄-alkyl, especially methyl, difluoromethyl or trifluoromethyl; or R²³ and R²⁴ taken together with the atoms to which they are attached represent a 6 membered 1,2-diazacyclohexane ring or a 1,2-diaza-4-oxacycyclohexane ring. Preferred examples for Q1 to Q7 are the radicals of the formulae Q1a, Q1b.
- 30 Q1c, Q2a, Q2b, Q3a, Q4a, Q4b, Q5a, Q5b, Q5c, Q5d, Q6a, Q6b, Q6c, Q7a, Q7b and Q8a as defined below:

The variables R²⁵, R²⁶, R³⁰, R³¹, R³², R³³, R³⁴, R³⁵, R³⁸, R³⁹ are preferably different from H and more preferably selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, phenyl or benzyl.

10

 R^{28} , R^{29} , R^{36} , R^{37} R^{39} are preferably H, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl, it being also possible for R^{28} or R^{36} to be phenyl or benzyl.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.1a as indicated below (compounds I in which Q = Q1a, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.1a are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.1a.1 to I.1a.1656.

Table 1:

	(Y) _n	R ¹	R ²	R ⁴
1	- (1/n	H	H	NH-SO ₂ CH ₃
2	-	H	Н	NH-SO ₂ CH ₂ CH ₃
3	 	H	H	NH-SO ₂ CH ₂ CH ₃
4		Н	H	
5	 -	H	H	NH-SO ₂ CH(CH ₃) ₂
	-			NH-SO ₂ C(CH ₃) ₃
6	-	H	H	NH-SO ₂ CH ₂ CI
7	<u> </u>	H	H	NH-SO ₂ CH ₂ CH ₂ CI
8		H	H	NH-SO ₂ CH ₂ CH ₂ OCH ₃
9	ļ <u>-</u>	H	Н	NH-SO ₂ CH ₂ CH ₂ SCH ₃
10		H	H	N(CH ₃)-SO ₂ CH ₃
11	<u> </u>	Н	H	N(CH ₃)-SO ₂ CH ₂ CH ₃
12	<u> </u>	H	Н	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
13	-	H	Н	N(CH ₃)-SO ₂ CH(CH ₃) ₂
14	ļ <u> </u>	H	H	N(CH3)-SO2C(CH ₃) ₃
15		H	Н	N(CH ₃)-SO ₂ CH ₂ Cl
16		H	H	N(CH ₃)-SO ₂ CH ₂ CH ₂ Cl
17	<u> </u>	H	H	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
18	<u> </u>	H	H	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
19	-	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₃
20	-	Н	H	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
21	-	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
22	<u>-</u>	Н	H	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
23	-	Н	Н	N(CH ₂ CH ₃)-SO ₂ C(CH ₃) ₃
24	-	H	H	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
25	<u>-</u>	Н	H	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
26		H	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
27	_	H	H	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
28	-	Н	Н	NH(CH ₃)
29	-	H	Н	NHCH ₂ CH ₃
30	-	Н	Н	NHCH ₂ CH ₂ CH ₃
31	-	H	H	NHCH(CH ₃) ₂
32	1	H	H	NHC(CH ₃) ₃
33	-	Н	Н	NHCH ₂ CH(CH ₃) ₂
34	-	Н	Н	NHCH(CH ₃)CH ₂ CH ₃
35	-	Н	Н	NHCH2CH2CI
36	-	Н	H	NHCH ₂ CH ₂ OCH ₃
37	-	Н	Н	NHCH ₂ CH ₂ SCH ₃
38	-	Н	Н	NHCH ₂ COOCH ₃
39	-	Н	Н	NHCH ₂ CONH ₂
40	-	Н	Н	NHCH ₂ CH=CH ₂
41	-	Н	Н	NHCH2C≡CH
42	-	Н	Н	NH-Cyclopentyl
43	•	Н	Н	NH-Cyclohexyl
44	-	Н	Н	NH-Phenyl
45	-	Н	Н	N(CH ₃) ₂
46	-	Н	Н	N(CH ₃)/2H ₂ CH ₃
47	-	Н	Н	N(CH ₃)CH(CH ₃) ₂
· ·				

JOCIO: ₹MO U305855881 i

	(Y) _n	R ¹	R ²	R ⁴
48	-	Н	Н	N(CH ₃)C(CH ₃) ₃
49	_	Н	Н	N(CH ₃)CH ₂ CH ₂ CH ₃
50	 	Н	Н	N(CH ₃)CH ₂ CH(CH ₃) ₂
51		Н	H	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
52	_	Н	H	N(CH ₃)CH ₂ CH ₂ CI
53	 	Н	H	N(CH ₃)CH ₂ CH ₂ CCH ₃
54		H	H	
55		H	H	N(CH ₃)CH ₂ CH ₂ SCH ₃
56		H	H	N(CH ₃)CH ₂ COOCH ₃
	-		H	N(CH ₃)CH ₂ CONH ₂
57	-	H		N(CH ₃)CH ₂ CH=CH ₂
58	<u> </u>	H	H	N(CH ₃)CH ₂ C≡CH
_59	-	H	Н	N(CH3)-Cyclopentyl
60		H	H	N(CH3)-Cyclohexyl
61	-	Н	H	N(CH ₃)-Phenyl
62	-	Н	Н	N(CH ₂ CH ₃) ₂
63	-	Н	H	N(CH ₂ CH ₃)CH(CH ₃) ₂
64	-	H	H	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
65	-	Н	H	N(CH ₂ CH ₃)C(CH ₃) ₃
66	-	Н	H	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
67		H	H	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
68	-	H	H	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
69	-	H	H	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
70		Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
71		Н	Н	N(CH ₂ CH ₃)CH ₂ COOCH ₃
72	-	Н	H	N(CH ₂ CH ₃)CH ₂ CONH ₂
73	-	Н	Н	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
74	-	Н	Н	N(CH ₂ CH ₃)CH ₂ C≡CH
75	-	Н	Н	N(CH ₂ CH ₃)-Cyclopentyl
76	-	Н	Н	N(CH ₂ CH ₃)-Cyclohexyl
77.	-	Н	Н	N(CH ₂ CH ₃)-Phenyl
78	-	Н	Н	N(CH(CH ₃) ₂) ₂
79	-	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
80	-	Н	Н	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
81	-	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH ₂ Cl
82	-	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
83	-	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
84	-	Н	Н	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
85	-	Н	Н	N(CH(CH ₃) ₂)CH ₂ CONH ₂
86	-	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
87	-	Н	Н	N(CH(CH ₃) ₂)CH ₂ C=CH
88	-	Н	Н	(CH(CH ₃) ₂)H-Cyclopentyl
89	-	Н	H	N(CH(CH ₃) ₂)-Cyclohexyl
90		Н	Н	N(CH(CH ₃) ₂)-Phenyl
91		H	Н	Morpholin-1-yl
92		Н	Н	Piperidin-1-yl
93		H	CH ₃	NH-SO ₂ CH ₃
94		H	CH ₃	NH-SO ₂ CH ₂ CH ₃
95	-	Н	CH ₃	NH-SO ₂ CH ₂ CH ₃
96		Н	CH ₃	NH-SO ₂ CH ₂ CH ₃ CH ₃ NH-SO ₂ CH(CH ₃) ₂
97		H	CH ₃	
31		11	C113	NH-SO ₂ C(CH ₃) ₃

	(Y) _n	R ^T	R ²	R ⁴
98	-	Н	CH ₃	NH-SO ₂ CH ₂ CI
99	•	Н	CH ₃	NH-SO ₂ CH ₂ CH ₂ CI
100	_	Н	CH ₃	NH-SO ₂ CH ₂ CH ₂ OCH ₃
101		Н	CH ₃	NH-SO ₂ CH ₂ CH ₂ SCH ₃
102	•	Н	CH ₃	N(CH ₃)-SO ₂ CH ₃
103		Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
104	-	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
105	-	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃ CH ₃
106		Н	CH ₃	N(CH3)-SO ₂ C(CH ₃) ₃
107	_	Н	CH ₃	N(CH ₃)-SO ₂ C(CH ₃) ₃
108		H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CI
109	-	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CCH ₃
110	-	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃ N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
111		H	CH ₃	
112	-	H	- CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
		H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
113		H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
114	•			N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
115		H	CH ₃	N(CH ₂ CH3)-SO2C(CH3)3
116	-	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
117		H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
118		H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
119		H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
120		H	CH ₃	NH(CH ₃)
121	-	H	CH ₃	NHCH₂CH₃
122		H	CH ₃	NHCH ₂ CH ₂ CH ₃
123		Н	CH₃	NHCH(CH ₃) ₂
124		Н	CH₃	NHC(CH ₃) ₃
125		H	CH ₃	NHCH₂CH(CH₃)₂
126	-	H	CH ₃	NHCH(CH ₃)CH ₂ CH ₃
127		H	CH ₃	··· NHCH2CH2CI
128		H	CH ₃	NHCH₂CH₂OCH₃
129		H	CH ₃	NHCH₂CH₂SCH₃
130		H	CH ₃	NHCH₂COOCH₃
131	-	H	CH ₃	NHCH ₂ CONH ₂
132		H	CH ₃	NHCH ₂ CH=CH ₂
133		<u>H</u>	CH ₃	NHCH ₂ C≡CH
134		H	CH ₃	NH-Cyclopentyl
135		H	CH ₃	NH-Cyclohexyl
136		H	CH ₃	NH-Phenyl
137		H	CH ₃	N(CH ₃) ₂
138		H	CH ₃	N(CH ₃)CH ₂ CH ₃
139	-	Н	CH ₃	N(CH ₃)CH(CH ₃) ₂
140		H	CH₃	N(CH ₃)C(CH ₃) ₃
141	-	H	CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃
142		H	CH ₃	N(CH ₃)CH ₂ CH(CH ₃) ₂
143		Н.	CH ₃	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
144	-	H	CH ₃	N(CH ₃)CH ₂ CH ₂ CI
145	-	Н	CH ₃	N(CH ₃)CH ₂ CH ₂ OCH ₃
146		H	CH ₃	N(CH ₃)CH ₂ CH ₂ SCH ₃
147		H	CH ₃	N(CH ₃)CH ₂ COOCH ₃

	(Y) _n	R	R ²	R ⁴
148		Н	CH ₃	N(CH ₃)CH ₂ CONH ₂
149	 	Н	CH ₃	N(CH ₃)CH ₂ CH=CH ₂
150	 	Н	CH ₃	N(CH ₃)CH ₂ C≡CH
151	 	H	CH ₃	N(CH3)-Cyclopentyl
152	 	H	CH ₃	
153	 	H	CH ₃	N(CH3)-Cyclohexyl
154	 	H		N(CH ₃)-Phenyl
	-	H	CH ₃	N(CH ₂ CH ₃) ₂
155	 -	H	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂
156	-		CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
157	-	H	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
158	 -	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
159	 -	H	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
160	 	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
161	-	H	CH₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
162	<u> </u>	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
163	<u> </u>	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
164	-	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CONH ₂
165		H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
166		H	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
167		Н	CH ₃	N(CH ₂ CH ₃)-Cyclopentyl
168		Н	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
169		H	CH ₃	N(CH ₂ CH ₃)-Phenyl
170	_	Н	CH ₃	N(CH(CH ₃) ₂) ₂
171		Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
172	-	H	CH ₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
173	-	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
174	-	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
175	-	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
176	-	Н	CH₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
177		Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂
178	-	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
179	-	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ C≡CH
180	-	Н	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
181	-	Н	CH ₃	N(CH(CH ₃) ₂)-Cyclohexyl
182	-	H	CH ₃	N(CH(CH ₃) ₂)-Phenyl
183	-	H	CH ₃	Morpholin-1-yl
184	_	Н	CH ₃	Piperidin-1-yl
185	-	CH ₃	CH ₃	NH-SO ₂ CH ₃
186	-	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₃
187	-	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₃
188	-	CH ₃	CH ₃	NH-SO ₂ CH(CH ₃) ₂
189		CH ₃	CH ₃	NH-SO ₂ C(CH ₃) ₃
190		CH ₃	CH ₃	NH-SO ₂ CH ₂ CI
191	-	CH ₃	CH ₃	NH-SO ₂ CH ₂ CI
192		CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ CH ₃
193		CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ CCH ₃
194	-	CH ₃	CH ₃	NGCH ₃)-SO ₂ CH ₃
195		CH ₃	CH ₃	
196		CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
197		CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
19/		СПз	СП3	N(CH ₃)-SO ₂ CH(CH ₃) ₂

	(Y) _n	R	R ²	R ⁴
198	-	CH ₃	CH ₃	N(CH ₃)-SO ₂ C(CH ₃) ₃
199	-	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ Cl
200	-	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
201	_	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
202	•	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
203	<u> </u>	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
204		CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
205	-	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
206		CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
207	-	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
208		CH ₃	CH ₃	
209	-	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CI
210		CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
211	-	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
212		CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
	-			NH(CH ₃)
213	-	CH ₃	CH ₃	NHCH₂CH₃
214		CH ₃	CH ₃	NHCH ₂ CH ₂ CH ₃
215	-	CH ₃	CH₃	NHCH(CH ₃) ₂
216	•	CH ₃	CH ₃	NHC(CH ₃) ₃
217		CH ₃	CH ₃	NHCH ₂ CH(CH ₃) ₂
218	-	CH ₃	CH ₃	NHCH(CH ₃)CH ₂ CH ₃
219	<u>-</u>	CH ₃	CH ₃	NHCH₂CH₂CI
220	-	CH₃	CH ₃	NHCH₂CH₂OCH₃
221		CH ₃	CH₃	NHCH ₂ CH ₂ SCH ₃
222	-	CH ₃	CH ₃	NHCH ₂ COOCH ₃
223		CH ₃	CH ₃	NHCH₂CONH₂
224		CH ₃	CH ₃	NHCH ₂ CH=CH ₂
225		CH₃	CH ₃	NHCH₂C≡CH
226		CH ₃	CH ₃	NH-Cyclopentyl
227		CH ₃	CH ₃	NH-Cyclohexyl
228		CH ₃	CH ₃	NH-Phenyl
229	-	CH ₃	CH₃	N(CH ₃) ₂
230	-	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₃
231	-	CH ₃	CH ₃	N(CH ₃)CH(CH ₃) ₂
232	-	CH ₃	CH₃	N(CH ₃)C(CH ₃) ₃
233		CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃
234		CH ₃	CH ₃	N(CH ₃)CH ₂ CH(CH ₃) ₂
235	-	CH ₃	CH ₃	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
236	-	CH ₃	CH₃	N(CH ₃)CH ₂ CH ₂ CI
237	-	CH ₃	CH₃	N(CH ₃)CH ₂ CH ₂ OCH ₃
238		CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ SCH ₃
239	-	CH ₃	CH ₃	N(CH ₃)CH ₂ COOCH ₃
240	-	CH ₃	CH ₃	N(CH ₃)CH ₂ CONH ₂
241	-	CH ₃	CH ₃	N(CH ₃)CH ₂ CH=CH ₂
242	-	CH ₃	CH ₃	N(CH ₃)CH ₂ C≡CH
243	-	CH ₃	CH ₃	N(CH3)-Cyclopentyl
244	_	CH ₃	CH ₃	N(CH3)-Cyclohexyl
245	-	CH ₃	CH ₃	N(CH ₃)-Phenyl
246	-	CH ₃	CH ₃	N(CH ₂ CH ₃) ₂
247		CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂
	1			

	$(Y)_n$	R ^I	R ²	\mathbb{R}^4
248	(1/n	CH ₃	CH ₃	
249		CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
250		CH ₃	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
	 			N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
251	-	CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
252	-	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
253		CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
254	-	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
255	<u>-</u>	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
256	-	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CONH ₂
257	•	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
258	-	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
259	-	CH ₃	CH ₃	N(CH ₂ CH ₃)-Cyclopentyl
260	-	CH ₃	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
261	-	CH ₃	CH ₃	N(CH ₂ CH ₃)-Phenyl
262	-	CH₃	CH ₃	N(CH(CH ₃) ₂) ₂
263		CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
264		CH ₃	CH₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
265	-	CH ₃	CH₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ Cl
266	-	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
267	•	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
268	-	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
269		CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂
270	•	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
271	-	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ C≡CH
272	-	CH ₃	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
273	-	CH ₃	CH₃	N(CH(CH ₃) ₂)-Cyclohexyl
274	-	CH ₃	CH ₃	N(CH(CH ₃) ₂)-Phenyl
275	-	CH ₃	CH ₃	Morpholin-1-yl
276	-	CH₃	CH ₃	Piperidin-1-yl
277	0	H	Η.	NH-SO ₂ CH ₃
278	0	Н	Н	NH-SO ₂ CH ₂ CH ₃
279	0	H	Н	NH-SO ₂ CH ₂ CH ₃ CH ₃
280	0	H	H	NH-SO ₂ CH(CH ₃) ₂
281	0	Н	Н	NH-SO ₂ C(CH ₃) ₃
282	0	Н	Н	NH-SO ₂ CH ₂ Cl
283	0	Н	Н	NH-SO ₂ CH ₂ CI
284	0	Н	H	NH-SO ₂ CH ₂ CH ₂ OCH ₃
285	0	Н	Н	NH-SO ₂ CH ₂ CH ₂ SCH ₃
286	0	Н	Н	N(CH ₃)-SO ₂ CH ₃
287	0	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₃
288	0	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
289	0	Н	Н	N(CH ₃)-SO ₂ CH(CH ₃) ₂
290	0	Н	Н	N(CH3)-SO2C(CH3)3
291	0	Н	Н	N(CH ₃)-SO ₂ CH ₂ CI
292	0	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
293	0	Н	H	N(CH ₃)-SO ₂ CH ₂ CH ₂ CCH ₃
294	0	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
295	0	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₃
296	0	H	H	N(CH ₂ CH ₃)-SO ₂ CH ₃
297	0	H	H	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
				(0.1,0113) 00/2011/2011/2013

	(Y) _n	R ¹	R ²	R ⁴
298	O	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
299	0	Н	Н	N(CH₂CH3)-SO2C(CH3)3
300	0	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
301	0	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
302	0	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
303	0	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
304	0	Н	Н	NH(CH ₃)
305	0	Н	Н	NHCH₂CH₃
306	0	H	Н	NHCH ₂ CH ₂ CH ₃
307	ō	H	Н	NHCH(CH ₃) ₂
308	0	H	Н	NHC(CH ₃) ₃
309	Ō	<u></u>	Н	NHCH ₂ CH(CH ₃) ₂
310	0	- н	H	NHCH(CH ₃)CH ₂ CH ₃
311	0	Н	Н	NHCH ₂ CH ₂ CI
312	0	H	Н	NHCH ₂ CH ₂ OCH ₃
313	0	H	Н	NHCH ₂ CH ₂ SCH ₃
314	0	- н	H	NHCH ₂ COOCH ₃
.315	0	Н	H	NHCH ₂ CONH ₂
316	0	н	Н	NHCH ₂ CH=CH ₂
317	0	H	Н	NHCH₂C≡CH
	0	- н	H	NH-Cyclopentyl
318	0	H	Н	NH-Cyclohexyl
- 319	0	Н Н	H .	NH-Phenyl
320	0	Н	Н	N(CH ₃) ₂
321	0	H	H	N(CH ₃)CH ₂ CH ₃
322	0	Н	H	N(CH ₃)CH(CH ₃) ₂
323 324	0	H	Н	N(CH ₃)C(CH ₃) ₃
325	ō	H	H	N(CH ₃)CH ₂ CH ₂ CH ₃
326	0	H	H	N(CH ₃)CH ₂ CH(CH ₃) ₂
327	. 0	Н	Н	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
328	0	Н	Н	N(CH ₃)CH ₂ CH ₂ Cl
329	0	H	H	N(CH ₃)CH ₂ CH ₂ OCH ₃
330	0	H	H	N(CH ₃)CH ₂ CH ₂ SCH ₃
331	0	Н	Н	N(CH ₃)CH ₂ COOCH ₃
332	0	Н	Н	N(CH ₃)CH ₂ CONH ₂
333	0	H	Н	N(CH ₃)CH ₂ CH=CH ₂
334	ō	H	Н	N(CH ₃)CH ₂ C≡CH
335	ō	H	Н	N(CH3)-Cyclopentyl
336	0	Н	Н	N(CH3)-Cyclohexyl
337	0	Н	Н	N(CH ₃)-Phenyl
338	0	Н	Н	N(CH ₂ CH ₃) ₂
339	0	H	Н	N(CH ₂ CH ₃)CH(CH ₃) ₂
340	0	Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
341	0	H	H	N(CH ₂ CH ₃)C(CH ₃) ₃
342	0	H	Н	N(CH ₂ CH ₃)C(CH ₃) ₃ N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
343	0	Н	Н	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
344	0	H	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ Cl
345	0	Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
346	0	Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
347	0	Н	H	N(CH ₂ CH ₃)CH ₂ COOCH ₃
J+/			·	(0203,0200003

	$(Y)_n$	R ¹	R ²	R ⁴
348	0	Н	Н	N(CH ₂ CH ₃)CH ₂ CONH ₂
349	0	Н	Н	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
350	0	Н	Н	N(CH ₂ CH ₃)CH ₂ C≡CH
351	0	Н	Н	N(CH ₂ CH ₃)-Cyclopentyl
352	0	H	Н	N(CH ₂ CH ₃)-Cyclohexyl
353	0	Н	H	N(CH ₂ CH ₃)-Phenyl
354	O	H	H	N(CH(CH ₃) ₂) ₂
355	0	H	H	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
356	0	Н	H	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
357	0	Н	H	N(CH(CH ₃) ₂)CH ₂ CH ₂ Cl
358	0	Н	H	N(CH(CH ₃) ₂)CH ₂ CH ₂ CH ₃
359	0	H	H	
360	0	Н	H	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
361	0	H	H	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
362	0	H	H	N(CH(CH ₃) ₂)CH ₂ CONH ₂
	0	Н	H	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
363	0	Н	H	N(CH(CH ₃) ₂)CH ₂ C≡CH
364				(CH(CH ₃) ₂)H-Cyclopentyl
365	0	H	H	N(CH(CH ₃) ₂)-Cyclohexyl
366	0	H	H	N(CH(CH ₃) ₂)-Phenyl
367			H	Morpholin-1-yl
368	0	H	H	Piperidin-1-yl
369		H	CH ₃	NH-SO ₂ CH ₃
370	0	H	CH ₃	NH-SO ₂ CH ₂ CH ₃
371	0	H	CH ₃	NH-SO ₂ CH ₂ CH ₃
372	0	H	CH ₃	NH-SO ₂ CH(CH ₃) ₂
373	0	Н	CH ₃	NH-SO ₂ C(CH ₃) ₃
374	0	H H	CH ₃	NH-SO ₂ CH ₂ Cl
375	0	Н	CH ₃	NH-SO ₂ CH ₂ CH ₂ CI
376	0	H	CH ₃	NH-SO ₂ CH ₂ CH ₂ OCH ₃
377		H	CH ₃	NH-SO ₂ CH ₂ CH ₂ SCH ₃
378	0	H	CH ₃	N(CH ₃)-SO ₂ CH ₃
379			CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
380	0	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
381	0	H	CH ₃	N(CH ₃)-SO ₂ CH(CH ₃) ₂
382	0	H	CH ₃	N(CH3)-SO2C(CH3)3
383	0	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CI
384	0	H H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
385	0		CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
386	0	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
387	0	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
388	0	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
389	0	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
390	0	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
391	0	H	CH ₃	N(CH ₂ CH3)-SO2C(CH3)3
392	0	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CI
393	0	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
394	0	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
395	0	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
396	0	H	CH ₃	NH(CH ₃)
397	0	H	CH ₃	NHCH₂CH₃

398 O H CH ₃ NHCH ₂ CH ₂ CH ₃ 399 O H CH ₃ NHCH(CH ₃) ₂ 400 O H CH ₃ NHCH(CH ₃) ₃ 401 O H CH ₃ NHCH(CH ₃) ₃ 401 O H CH ₃ NHCH(CH ₃) ₃ 402 O H CH ₃ NHCH ₂ CH ₂ CH ₃ 403 O H CH ₃ NHCH ₂ CH ₃ CH ₃ 404 O H CH ₃ NHCH ₂ CH ₃ CH ₃ 405 O H CH ₃ NHCH ₂ CH ₃ CH ₃ 406 O H CH ₃ NHCH ₂ CH ₃ CH ₃ 407 O H CH ₃ NHCH ₂ COCH ₃ 408 O H CH ₃ NHCH ₂ COCH ₃ 409 O H CH ₃ NHCH ₂ COCH ₃ 410 O H CH ₃ NHCH ₂ COCH ₃ 411 O H CH ₃ NHCH ₂ COCH ₃ 411 O H CH ₃ NHCH ₂ COCH 411 O H CH ₃ NHCH ₂ COCH 412 O H CH ₃ NHCH ₂ COCH 413 O H CH ₃ NHCH ₂ COCH 414 O H CH ₃ NHCH ₃ COCH 415 O H CH ₃ NHCH ₃ COCH 416 O H CH ₃ NHCH ₃ COCH 417 O H CH ₃ NHCH ₃ COCH 418 O H CH ₃ NHCH ₃ COCH 419 O H CH ₃ NHCH ₃ COCH 410 O H CH ₃ NHCH ₃ COCH 411 O H CH ₃ NHCH ₃ COCH 411 O H CH ₃ NHCH ₃ COCH 411 O H CH ₃ NHCH ₃ COCH 412 O H CH ₃ NHCH ₃ CH ₃ CH ₃ CH 414 O H CH ₃ NHCH ₃ CH ₃ CH ₃ CH 415 O H CH ₃ NHCH ₃ CH ₃ CH ₃ CH 416 O H CH ₃ NHCH ₃ CH ₃ CH ₃ CH 417 O H CH ₃ NHCH ₃ CH ₃ CH ₃ CH 418 O H CH ₃ NHCH ₃ CH ₃ CH ₃ CH ₃ CH 419 O H CH ₃ NHCH ₃ CH ₃ CH ₃ CH ₃ CH 420 O H CH ₃ NHCH ₃ CH ₄ CH ₃ CH 421 O H CH ₃ NHCH ₃ CH ₄ CH ₃ CH 422 O H CH ₃ NHCH ₃ CH ₄ CH ₃ CH 423 O H CH ₃ NHCH ₃ CH ₄ CH ₃ CH 424 O H CH ₃ NHCH ₃ CH ₄ CH ₃ CH 425 O H CH ₃ NHCH ₃ CH ₄ CH ₃ CH 426 O H CH ₃ NHCH ₃ CH ₄ CH ₃ CCH 427 O H CH ₃ NHCH ₃ CH ₄ CH ₃ CCH 428 O H CH ₃ NHCH ₃ CH ₄ CH ₃ CCH 429 O H CH ₃ NHCH ₃ CH ₄ CH ₅ CH 429 O H CH ₃ NHCH ₃ CH ₄ CH ₅ CH 420 O H CH ₃ NHCH ₃ CH ₄ CH ₅ CH 421 O H CH ₃ NHCH ₃ CH ₄ CH ₅ CH 422 O H CH ₃ NHCH ₃ CH ₄ CH ₅ CH 423 O H CH ₃ NHCH ₃ CH ₄ CH ₅ CH 424 O H CH ₃ NHCH ₃ CH ₄ CH ₅ CH 425 O H CH ₃ NHCH ₄ CH ₃ CH ₄ CH ₅ CH 426 O H CH ₃ NHCH ₄ CH ₅ CH ₅ CH 427 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH 428 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH 429 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH 421 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH 422 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH 423 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH ₅ CH 426 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH 427 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH 428 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH 430 O H CH ₃ NHCH ₅ CH ₅ CH ₅ CH 431 O H CH ₃ N		(Y) _n	R ¹	R ²	R ⁴
399	398		Н	CH ₃	
400 O H CH ₃ NHC(CH ₃) ₂ 401 O H CH ₃ NHCH ₂ CH ₂ CH ₂ CH ₃ 402 O H CH ₃ NHCH ₂ CH ₂ CH ₃ CH 403 O H CH ₃ NHCH ₂ CH ₂ CH ₃ CH 404 O H CH ₃ NHCH ₂ CH ₃ CH ₃ 405 O H CH ₃ NHCH ₂ COCH ₃ 406 O H CH ₃ NHCH ₂ COCH ₃ 407 O H CH ₃ NHCH ₂ CONH ₃ 408 O H CH ₃ NHCH ₂ CONH ₃ 409 O H CH ₃ NHCH ₂ CONH ₃ 410 O H CH ₃ NHCH ₂ CoPentyl 411 O H CH ₃ NHCH ₂ CoPentyl 411 O H CH ₃ NHCH ₂ CoPentyl 411 O H CH ₃ NHCH ₂ CoPentyl 412 O H CH ₃ N(CH ₂ CH ₂ CH ₂ CH ₃		0	Н	CH ₃	
401 O H CH ₃ NHCH ₂ CH(CH ₃) ₂ 402 O H CH ₃ NHCH ₃ (CH ₃ CH ₂ CH ₃ 403 O H CH ₃ NHCH ₄ CH ₂ CH ₃ 404 O H CH ₃ NHCH ₂ CH ₃ CCH ₃ 405 O H CH ₃ NHCH ₂ CH ₃ CCH ₃ 406 O H CH ₃ NHCH ₂ COCH ₃ 407 O H CH ₃ NHCH ₂ COCH ₃ 408 O H CH ₃ NHCH ₂ COCH ₃ 409 O H CH ₃ NHCH ₂ COCH ₃ 410 O H CH ₃ NHCH ₂ COCH ₃ 411 O H CH ₃ NHCH ₂ COCH ₃ 411 O H CH ₃ NHCH ₂ COCH ₃ 412 O H CH ₃ NHCH ₂ COCH ₃ 413 O H CH ₃ NHCH ₃ CCH ₃ CH 414 O H CH ₃ NHCH ₃ CCH ₃ CH 415 O H CH ₃ NCH ₃ CH ₃ CH ₃ CH 416 O H CH ₃ NCCH ₃ CH ₃ CH ₃ CH 417 O H CH ₃ NCCH ₃ CH ₃ CH ₃ CH 418 O H CH ₃ NCCH ₃ CH ₃ CH ₃ CH 419 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 410 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 411 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 412 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 415 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 416 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 417 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 418 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 419 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 420 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 421 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 422 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 422 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 423 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 424 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 425 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 426 O H CH ₃ NCCH ₃ CH ₄ CH ₃ CH 427 O H CH ₃ NCCH ₃ CH ₄ CH ₅ CH 428 O H CH ₃ NCCH ₃ CH ₄ CH ₅ CH 429 O H CH ₃ NCCH ₃ CH ₄ CH ₅ CH 420 O H CH ₃ NCCH ₃ CH ₄ CH ₅ CH 421 O H CH ₃ NCCH ₃ CH ₄ CH 422 O H CH ₃ NCCH ₃ CH ₄ CH 423 O H CH ₃ NCCH ₃ CH ₄ CH 424 O H CH ₃ NCCH ₃ CH ₄ CH 425 O H CH ₃ NCCH ₃ CH ₄ CH 426 O H CH ₃ NCCH ₃ CH ₄ CH 427 O H CH ₃ NCCH ₃ CH ₄ CH 428 O H CH ₃ NCCH ₃ CH ₄ CH 429 O H CH ₃ NCCH ₃ CH ₃ CH ₄ CH 430 O H CH ₃ NCCH ₃ CH ₃ CH ₄ CH 431 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH 433 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH 433 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH ₃ CH 434 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH ₃ CH 435 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH ₃ CH 436 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH ₃ CH 437 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH ₃ CH 438 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH ₃ CH 439 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH ₃ CH 440 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH ₃ CH 441 O H CH ₃ NCCH ₄ CH ₃ CH ₄ CH ₃ CH 442 O H CH ₃ N		0	Н	CH ₃	
402		0	Н		† · · · · · · · · · · · · · · · · · · ·
403 O H CH ₃ NHCH ₂ CH ₂ CI 404 O H CH ₃ NHCH ₂ CH ₃ CI 406 O H CH ₃ NHCH ₂ CH ₃ CH ₃ 406 O H CH ₃ NHCH ₂ COCH ₃ 407 O H CH ₃ NHCH ₂ COOCH ₃ 408 O H CH ₃ NHCH ₂ COOCH ₃ 409 O H CH ₃ NHCH ₂ COCH ₃ 410 O H CH ₃ NHCH ₂ COCH 411 O H CH ₃ NHCH ₂ CECH 411 O H CH ₃ NHCH ₂ CECH 412 O H CH ₃ NHCH ₂ CECH 413 O H CH ₃ NHCH ₂ CECH 414 O H CH ₃ NHCH ₂ CECH 415 O H CH ₃ NHCH ₂ CECH 416 O H CH ₃ NHCH ₂ CH ₃ CH ₃ 417 O H CH ₃ N(CH ₃)CH ₂ CH ₃ 418 O H CH ₃ N(CH ₃)CH ₂ CH ₃ 419 O H CH ₃ N(CH ₃ CH ₂ CH ₃) 410 O H CH ₃ N(CH ₃ CH ₂ CH ₃) 411 O H CH ₃ N(CH ₃ CH ₂ CH ₃) 412 O H CH ₃ N(CH ₃ CH ₂ CH ₃) 414 O H CH ₃ N(CH ₃ CH ₂ CH ₃) 415 O H CH ₃ N(CH ₃ CH ₂ CH ₃ CH ₃) 416 O H CH ₃ N(CH ₃ CH ₂ CH ₃ CH ₃) 417 O H CH ₃ N(CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₄		0	Н	·	
404 O H CH₃ NHCH₂CH₂OCH₃ 405 O H CH₃ NHCH₂CH₂OCH₃ 406 O H CH₃ NHCH₂CH₂SCH₃ 407 O H CH₃ NHCH₂COCH₃ 408 O H CH₃ NHCH₂CH₂CH₂ 409 O H CH₃ NHCH₂CECH₂ 410 O H CH₃ NHCH₂CECH 411 O H CH₃ NHCH₂CECH 411 O H CH₃ NH-Cyclopentyl 412 O H CH₃ NH-Cyclopentyl 413 O H CH₃ NH-Cyclopentyl 414 O H CH₃ NH-Cyclopexyl 415 O H CH₃ N(CH₃)CH₂CH₃ 416 O H CH₃ N(CH₃)CH₂CH₃ 417 O H CH₃ N(CH₃)CH₂CH₃ 418 O H CH₃ N(CH₃CH₂CH₃ 419 O H CH₃ N(CH₃CH₂CH₂CH₃ 420 O H CH₃ N(CH₃CH₂CH₂CH₃ 421 O H CH₃ N(CH₃CH₂CH₂CH₃ 422 O H CH₃ N(CH₃CH₂CH₂CH₃ 423 O H CH₃ N(CH₃CH₂CH₂CH₃ 424 O H CH₃ N(CH₃CH₂CH₂CH₃ 425 O H CH₃ N(CH₃CH₂CH₂CH₃ 426 O H CH₃ N(CH₃CH₂CH₂CH₃ 427 O H CH₃ N(CH₃CH₂CH₂CH₃ 428 O H CH₃ N(CH₃CH₂CH₂CH₃ 429 O H CH₃ N(CH₃CH₂CH₂CH₃ 420 O H CH₃ N(CH₃CH₂CH₂CH₃ 421 O H CH₃ N(CH₃CH₂CH₂CH₃ 422 O H CH₃ N(CH₃CH₂CH₂CH₃ 423 O H CH₃ N(CH₃CH₂CH₂CH₃ 424 O H CH₃ N(CH₃CH₂CH₂CH₃ 425 O H CH₃ N(CH₃CH₂CH₂CH₃ 426 O H CH₃ N(CH₃CH₂CH₂CH₂ 427 O H CH₃ N(CH₃CH₂CH₂CH₂ 428 O H CH₃ N(CH₃CH₂CH₂CH₂ 429 O H CH₃ N(CH₃CH₂CH₂CH₂ 420 O H CH₃ N(CH₃CH₂CH₂CH₂ 421 O H CH₃ N(CH₃CH₂CH₂CH₂CH₃ 422 O H CH₃ N(CH₃CH₃CH₂CH₂CH₃ 423 O H CH₃ N(CH₃CH₃CH₂CH₂CH₂ 424 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 425 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 426 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 427 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 428 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 429 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 430 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 431 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 432 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 433 O H CH₃ N(CH₃CH₃CH₃CH₂CH₃ 430 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃ 431 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃ 432 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃ 433 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃ 434 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃ 435 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃ 436 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃ 437 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃CH₃ 438 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃CH₃ 439 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃CH₃ 430 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃CH₃ 431 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃CH₃ 432 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃CH₃ 434 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃CH₃ 435 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃CH₃ 446 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃ 447 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂ 448 O H CH₃ N(CH₃CH₃CH₃CH₃CH₂CH₂ 448 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂C					
405 O H CH ₃ NHCH ₂ CH ₂ SCH ₃ 406 O H CH ₃ NHCH ₂ CONH ₂ 407 O H CH ₃ NHCH ₂ CONH ₂ 408 O H CH ₃ NHCH ₂ CONH ₂ 409 O H CH ₃ NHCH ₂ C=CH 410 O H CH ₃ NHCH ₂ C=CH 411 O H CH ₃ NHCH ₂ C=CH 411 O H CH ₃ NH-Cyclopenyl 411 O H CH ₃ NH-Cyclopenyl 412 O H CH ₃ NH-Phenyl 413 O H CH ₃ N(CH ₃) ₂ CH ₂ CH ₃ 415 O H CH ₃ N(CH ₃) ₂ CH ₃ CH ₂ CH ₃ 416 O H CH ₃ N(CH ₃) ₂ CH ₃ D ₄ 417 O H CH ₃ N(CH ₃) ₂ CH ₃ D ₄ 418 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 419 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH ₃ 420 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 421 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 422 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 423 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 424 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 425 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 426 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 427 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 428 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 429 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 420 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 421 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 422 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 423 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH ₃ 424 O H CH ₃ N(CH ₃)CH ₂ CDOCH ₃ 425 O H CH ₃ N(CH ₃)CH ₂ COOCH ₃ 426 O H CH ₃ N(CH ₃)CH ₂ COOCH ₃ 427 O H CH ₃ N(CH ₃)CH ₂ CDOCH ₃ 428 O H CH ₃ N(CH ₃)CH ₂ CDOCH ₃ 429 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH 429 O H CH ₃ N(CH ₃)Cyclopenyl 429 O H CH ₃ N(CH ₃)Cyclopenyl 430 O H CH ₃ N(CH ₃)Cyclopenyl 431 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 433 O H CH ₃ N(CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ 434 O H CH ₃ N(CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH 435 O H CH ₃ N(CH ₃ CH ₃					
406 O H CH ₃ NHCH ₂ COCH ₃ 407 O H CH ₃ NHCH ₂ COCH ₂ 408 O H CH ₃ NHCH ₂ CONH ₂ 409 O H CH ₃ NHCH ₂ CECH 410 O H CH ₃ NH-Cyclopentyl 411 O H CH ₃ NH-Cyclopentyl 411 O H CH ₃ NH-Cyclopentyl 412 O H CH ₃ NH-Cyclopentyl 413 O H CH ₃ N(CH ₃) 414 O H CH ₃ N(CH ₃) 415 O H CH ₃ N(CH ₃) 416 O H CH ₃ N(CH ₃) 417 O H CH ₃ N(CH ₃) 418 O H CH ₃ N(CH ₃) 419 O H CH ₃ N(CH ₃) 419 O H CH ₃ N(CH ₃) 420 O H CH ₃ N(CH ₃) 421 O H CH ₃ N(CH ₃) 422 O H CH ₃ N(CH ₃) 423 O H CH ₃ N(CH ₃) 424 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH ₃ 425 O H CH ₃ N(CH ₃)CH ₂ COCH ₃ 426 O H CH ₃ N(CH ₃) CH ₃ COCH ₃ 427 O H CH ₃ N(CH ₃) CH ₃ COCH ₃ 428 O H CH ₃ N(CH ₃) CH ₃ COCH ₃ 429 O H CH ₃ N(CH ₃) CH ₃ CH ₃ COCH ₃ 421 O H CH ₃ N(CH ₃) CH ₃ CH ₃ COCH ₃ 422 O H CH ₃ N(CH ₃) CH ₃ CH ₃ COCH ₃ 423 O H CH ₃ N(CH ₃) CH ₃ CH ₃ COCH ₃ 424 O H CH ₃ N(CH ₃) CH ₃ CH ₃ COCH ₃ 425 O H CH ₃ N(CH ₃) CH ₃ CH ₃ COCH ₃ 426 O H CH ₃ N(CH ₃) CH ₃ CH ₃ COCH ₃ 427 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 428 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 429 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 429 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 429 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 430 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 431 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 432 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 433 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 434 O H CH ₃ N(CH ₃) CH ₃ CH ₃ CH ₃ CH 435 O H CH ₃ N(CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH 436 O H CH ₃ N(CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH 437 O H CH ₃ N(CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH 438 O H CH ₃ N(CH ₃ CH 439 O H CH ₃ N(CH ₃ CH ₃					<u> </u>
407 O H CH₃ NHCH₂CONH₂ 408 O H CH₃ NHCH₂CH=CH₂ 409 O H CH₃ NHCH₂C=CH 410 O H CH₃ NHCH₂C=CH 411 O H CH₃ NH-Cyclopentyl 411 O H CH₃ NH-Cyclopentyl 411 O H CH₃ NH-Cyclopentyl 412 O H CH₃ NH-Cyclopexyl 414 O H CH₃ NH-Cyclopexyl 415 O H CH₃ N(CH₃)CH₂CH₃ 416 O H CH₃ N(CH₃)CH₂CH₃ 417 O H CH₃ N(CH₃)CH₂CH₃ 418 O H CH₃ N(CH₃)CH₂CH₃ 419 O H CH₃ N(CH₃)CH₂CH₂CH₃ 419 O H CH₃ N(CH₃)CH₂CH₂CH₃ 421 O H CH₃ N(CH₃)CH₂CH₂CH₃ 422 O H CH₃ N(CH₃)CH₂CH₂CH₃ 422 O H CH₃ N(CH₃)CH₂CH₂CH₃ 423 O H CH₃ N(CH₃)CH₂CH₂CH₃ 424 O H CH₃ N(CH₃)CH₂CH₂CH₃ 425 O H CH₃ N(CH₃)CH₂COCH₃ 426 O H CH₃ N(CH₃)CH₂CHCH₂ 427 O H CH₃ N(CH₃)CH₂CHCH₂ 428 O H CH₃ N(CH₃)CH₂CHCH₂ 429 O H CH₃ N(CH₃)CH₂CHCH₂ 430 O H CH₃ N(CH₃)CH₂CHCH₂ 431 O H CH₃ N(CH₃)CH₂CHCH₂ 432 O H CH₃ N(CH₃)CH₂CHCH₂ 433 O H CH₃ N(CH₃CH₂CHCH₂ 426 O H CH₃ N(CH₃CH₂CHCH₂ 427 O H CH₃ N(CH₃CH₂CHCH₂ 428 O H CH₃ N(CH₃CH₂CHCH₂ 429 O H CH₃ N(CH₃CH₂CHCH₂CH 430 O H CH₃ N(CH₃CH₂CHCH₂CH 431 O H CH₃ N(CH₃CH₂CHCH₂CH 432 O H CH₃ N(CH₃CH₂CHCH₂CH 433 O H CH₃ N(CH₃CH₂CHCH₂CH 434 O H CH₃ N(CH₃CH₂CHCCH₂ 435 O H CH₃ N(CH₃CH₂CHCCH₂ 436 O H CH₃ N(CH₃CH₃CH₂CH₂CH₂ 437 O H CH₃ N(CH₃CH₃CH₂CH₂CH₂ 438 O H CH₃ N(CH₃CH₃CH₂CH₂CH₂ 439 O H CH₃ N(CH₃CH₃CH₂CH₂CH₂ 430 O H CH₃ N(CH₃CH₃CH₂CH₂CH₂ 431 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂CH₂ 432 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂CH₂ 433 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂CH₂ 434 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂CH₂ 435 O H CH₃ N(CH₃CH₃CH₃CH₂CH₂CH₂ 436 O H CH₃ N(CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃CH₃C					
408 O H CH ₃ NHCH ₂ CH=CH ₂ 409 O H CH ₃ NHCH ₂ C=CH 410 O H CH ₃ NH-Cyclopentyl 411 O H CH ₃ NH-Cyclohexyl 412 O H CH ₃ NH-Phenyl 413 O H CH ₃ N(CH ₃)CH ₂ CH ₃ 414 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 415 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 416 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 417 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 418 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ CH ₃ 420 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ CH ₃ 421 O H CH ₃ N(CH ₃)CH ₂ CDOCH ₃ 422 O H CH ₃ N(CH ₃ CH ₂ CH ₂ CCH ₃ 423 O H CH ₃ N(
409 O H CH ₃ NHCH ₂ C≡CH 410 O H CH ₃ NH-Cyclopentyl 411 O H CH ₃ NH-Cyclopentyl 411 O H CH ₃ NH-Cyclopentyl 412 O H CH ₃ NH-Phenyl 413 O H CH ₃ NH-Phenyl 414 O H CH ₃ N(CH ₃) ₂ 415 O H CH ₃ N(CH ₃) ₂ 416 O H CH ₃ N(CH ₃)CH ₂ CH ₃ 417 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CH ₃ 417 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 418 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 419 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 420 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 421 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CI 421 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CI 421 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CCI 422 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CN ₃ 423 O H CH ₃ N(CH ₃) CH ₂ CH ₃ CN ₃ 424 O H CH ₃ N(CH ₃)CH ₂ CH ₃ CN ₃ 425 O H CH ₃ N(CH ₃)CH ₂ CH ₃					
410 O H CH₃ NH-Cyclopentyl 411 O H CH₃ NH-Cyclohexyl 412 O H CH₃ NH-Cyclohexyl 413 O H CH₃ N(CH₃)2 414 O H CH₃ N(CH₃)CH₂CH₃ 415 O H CH₃ N(CH₃)CH₂CH₃ 416 O H CH₃ N(CH₃)CH₂CH₃ 417 O H CH₃ N(CH₃)CH₂CH₃CH₃ 418 O H CH₃ N(CH₃)CH₂CH₂CH₃ 419 O H CH₃ N(CH₃)CH₂CH₂CH₂ 420 O H CH₃ N(CH₃)CH₂CH₂CH₃ 422 O H CH₃ N(CH₃)CH₂CH₂CCH₃ 422 O H CH₃ N(CH₃)CH₂COCH₃ 422 O H CH₃ N(CH₃)CH₂COCH₃ 422 O H CH₃ N(CH₃CH₃CH₂COCH₃ 422 O H CH₃ </td <td></td> <td></td> <td></td> <td></td> <td></td>					
411 O H CH ₃ NH-Pcyclohexyl 412 O H CH ₃ NH-Phenyl 413 O H CH ₃ N(CH ₃)2 414 O H CH ₃ N(CH ₃)CH ₂ CH ₅ 415 O H CH ₃ N(CH ₃)CH ₂ CH ₅ 416 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 417 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 418 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 419 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 420 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 421 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CCH ₃ 422 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CCH ₃ 422 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CCH ₃ 424 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CCH ₂ CH ₂ 425 O H CH ₃ <td></td> <td></td> <td></td> <td></td> <td></td>					
412 O H CH ₃ NH-Phenyl 413 O H CH ₃ N(CH ₃) ₂ 414 O H CH ₃ N(CH ₃)CH ₂ CH ₃ 415 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 416 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 417 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 418 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₅ 420 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₅ 420 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₅ 421 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₅ 422 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₅ CH ₃ 423 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ 424 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ 425 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH 428 O					
413 O H CH ₃ N(CH ₃) ₂ 414 O H CH ₃ N(CH ₃)CH ₂ CH ₃ 415 O H CH ₃ N(CH ₃)CH ₂ CH ₃ 416 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 417 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 418 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 419 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 420 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 421 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 422 O H CH ₃ N(CH ₃)CH ₂ COCH ₃ 423 O H CH ₃ N(CH ₃)CH ₂ COOCH ₃ 424 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ C 425 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ C 427 O H CH ₃ N(CH ₃ CH ₃ CH ₂ CH ₂ C 428 O H					
414 O H CH₃ N(CH₃)CH₂CH₃ 415 O H CH₃ N(CH₃)CH(CH₃)₂ 416 O H CH₃ N(CH₃)CH∠CH₃ 417 O H CH₃ N(CH₃)CH∠CH₃ 418 O H CH₃ N(CH₃)CH₂CH₃ 419 O H CH₃ N(CH₃)CH₂CH₃CCH₃ 420 O H CH₃ N(CH₃)CH₂CH₂CC 421 O H CH₃ N(CH₃)CH₂CH₂CH₃ 422 O H CH₃ N(CH₃)CH₂CH₂CH₃ 423 O H CH₃ N(CH₃)CH₂CH₂COCH₃ 424 O H CH₃ N(CH₃)CH₃CH₃CONH₂ 425 O H CH₃ N(CH₃)CH₃CH=CH₂ 426 O H CH₃ N(CH₃)CH₃CH=CH₂ 427 O H CH₃ N(CH₃CH₃CH₃CH 428 O H CH₃ N(CH₃CH₃)CH;CH₃)₂ 431 O H					
415 O H CH ₃ N(CH ₃)CH(CH ₃) ₂ 416 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 417 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 418 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ 419 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 420 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ 421 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CCH ₃ 422 O H CH ₃ N(CH ₃)CH ₂ CCH ₂ CH ₃ 423 O H CH ₃ N(CH ₃)CH ₂ COOCH ₃ 424 O H CH ₃ N(CH ₃)CH ₂ COOCH ₃ 425 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ 426 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ CH 427 O H CH ₃ N(CH ₃)CH ₂ Ch ₂ Ch ₂ Chebexyl 428 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ CH ₂ 430					
416 O H CH3 N(CH3)C(CH3)3 417 O H CH3 N(CH3)CH2CH2CH3 418 O H CH3 N(CH3)CH2CH2CH3 419 O H CH3 N(CH3)CH2CH2CH3 420 O H CH3 N(CH3)CH2CH2CH2 421 O H CH3 N(CH3)CH2CH2COCH3 422 O H CH3 N(CH3)CH2CH2COCH3 423 O H CH3 N(CH3)CH2COCH3 424 O H CH3 N(CH3)CH2COCH3 424 O H CH3 N(CH3)CH2COCH3 425 O H CH3 N(CH3)CH2CH3CHCH2 425 O H CH3 N(CH3)CH2CH3CHCH2 427 O H CH3 N(CH3)CH2CH3CHCH2 428 O H CH3 N(CH3)-Cyclohexyl 429 O H CH3 N(CH2CH3)CH2CHCH3)2 431 O					
417					
418 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH(CH ₃) ₂ 419 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 420 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₂ CH 421 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CCH ₃ 422 O H CH ₃ N(CH ₃)CH ₂ COOCH ₃ 423 O H CH ₃ N(CH ₃)CH ₂ CCOOCH ₃ 424 O H CH ₃ N(CH ₃)CH ₂ COOCH ₃ 425 O H CH ₃ N(CH ₃)CH ₂ CCH=CH ₂ 426 O H CH ₃ N(CH ₃)CH ₂ CH=CH ₂ 427 O H CH ₃ N(CH ₃)-Cyclopentyl 428 O H CH ₃ N(CH ₃)-Phenyl 430 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 431 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃) ₂ 433 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 434 O					
419 O H CH₃ N(CH₃)CH(CH₃)CH₂CH₃ 420 O H CH₃ N(CH₃)CH₂CH₂CI 421 O H CH₃ N(CH₃)CH₂CH₂CH₃ 422 O H CH₃ N(CH₃)CH₂CH₃CH₃ 423 O H CH₃ N(CH₃)CH₂COOCH₃ 424 O H CH₃ N(CH₃)CH₂COOCH₃ 425 O H CH₃ N(CH₃)CH₂CH=CH₂ 426 O H CH₃ N(CH₃)CH₂CE=CH 427 O H CH₃ N(CH₃)CH₂CE=CH 428 O H CH₃ N(CH₃)-Pohenyl 429 O H CH₃ N(CH₃-Pohenyl 430 O H CH₃ N(CH₂-CH₃)CH(CH₃)₂ 431 O H CH₃ N(CH₂-CH₃)CH(CH₃)₂ 432 O H CH₃ N(CH₂-CH₃)CH₂-CH₃ 433 O H CH₃ N(CH₂-CH₃)CH₂-CH₃-CH₃ 434 O					
420 O H CH₃ N(CH₃)CH₂CH₂CI 421 O H CH₃ N(CH₃)CH₂CH₂CH₃ 422 O H CH₃ N(CH₃)CH₂CH₂CH₃ 423 O H CH₃ N(CH₃)CH₂COOCH₃ 424 O H CH₃ N(CH₃)CH₂CONH₂ 425 O H CH₃ N(CH₃)CH₂CH=CH₂ 426 O H CH₃ N(CH₃)CH₂CH=CH₂ 427 O H CH₃ N(CH₃)-Cyclopentyl 428 O H CH₃ N(CH₃)-Cyclopentyl 429 O H CH₃ N(CH₃)-Cyclopentyl 430 O H CH₃ N(CH₃-CH₃)-Cyclohexyl 431 O H CH₃ N(CH₂-CH₃)-CH(CH₃)₂ 432 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃ 433 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃ 434 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃ 435<					
421 O H CH ₃ N(CH ₃)CH ₂ CH ₂ OCH ₃ 422 O H CH ₃ N(CH ₃)CH ₂ CH ₂ SCH ₃ 423 O H CH ₃ N(CH ₃)CH ₂ COOCH ₃ 424 O H CH ₃ N(CH ₃)CH ₂ COOCH ₂ 425 O H CH ₃ N(CH ₃)CH ₂ C=CH 426 O H CH ₃ N(CH ₃)-CH ₂ Copentyl 427 O H CH ₃ N(CH ₃)-Cyclopentyl 428 O H CH ₃ N(CH ₃)-Cyclopentyl 429 O H CH ₃ N(CH ₃)-Cyclopentyl 430 O H CH ₃ N(CH ₂ O-Ph ₃)-Phenyl 431 O H CH ₃ N(CH ₂ CH ₃)-CH ₂ CH ₂ CH ₃ 432 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 433 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ CH ₃ 434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 435 O					
422 O H CH ₃ N(CH ₃)CH ₂ CH ₂ CH ₃ 423 O H CH ₃ N(CH ₃)CH ₂ COOCH ₃ 424 O H CH ₃ N(CH ₃)CH ₂ COOCH ₂ 425 O H CH ₃ N(CH ₃)CH ₂ C≡CH 426 O H CH ₃ N(CH ₃)-Cyclopentyl 427 O H CH ₃ N(CH ₃)-Cyclopentyl 428 O H CH ₃ N(CH ₃)-Cyclopentyl 428 O H CH ₃ N(CH ₂)-Cyclopentyl 430 O H CH ₃ N(CH ₂ O-Cyclopentyl 431 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 432 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 433 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 435 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 436 O					
423 O H CH₃ N(CH₃)CH₂COOCH₃ 424 O H CH₃ N(CH₃)CH₂CONH₂ 425 O H CH₃ N(CH₃)CH₂CECH 426 O H CH₃ N(CH₃)CH₂CECH 427 O H CH₃ N(CH₃)-Cyclopentyl 428 O H CH₃ N(CH₃)-Cyclopentyl 429 O H CH₃ N(CH₃)-Phenyl 430 O H CH₃ N(CH₂CH₃)-Cyclopentyl 431 O H CH₃ N(CH₂CH₃)-CH(CH₃)₂ 432 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₂ 433 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₂ 434 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₂ 435 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₃ 436 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₃ 437 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₃ 438					
424 O H CH₃ N(CH₃)CH₂CONH₂ 425 O H CH₃ N(CH₃)CH₂CH=CH₂ 426 O H CH₃ N(CH₃)CH₂CECH 427 O H CH₃ N(CH₃)-Cyclopentyl 428 O H CH₃ N(CH₃)-Cyclopexyl 429 O H CH₃ N(CH₃)-Phenyl 430 O H CH₃ N(CH₃-CH₃)-Phenyl 431 O H CH₃ N(CH₂-CH₃)-Phenyl 432 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃ 433 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃ 434 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃ 435 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃ 436 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃ 437 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃ 438 O H CH₃ N(CH₂-CH₃)-CH₂-CH₂-CH₃					
425 O H CH ₃ N(CH ₃)CH ₂ CH=CH ₂ 426 O H CH ₃ N(CH ₃)CH ₂ C=CH 427 O H CH ₃ N(CH ₃)-Cyclopentyl 428 O H CH ₃ N(CH ₃)-Cyclopexyl 429 O H CH ₃ N(CH ₃)-Phenyl 430 O H CH ₃ N(CH ₂ CH ₃)-Phenyl 431 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃) ₂ 432 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 433 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂ 435 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 436 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 437 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CCH ₃ 438 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 43					
426 O H CH₃ N(CH₃)CH₂C≡CH 427 O H CH₃ N(CH₃)-Cyclopentyl 428 O H CH₃ N(CH₃)-Cyclohexyl 429 O H CH₃ N(CH₃)-Phenyl 430 O H CH₃ N(CH₂CH₃)-Phenyl 431 O H CH₃ N(CH₂CH₃)-CH(CH₃)₂ 432 O H CH₃ N(CH₂CH₃)-CH₂CH₂CH₃ 433 O H CH₃ N(CH₂CH₃)-CH₂CH₂CH₃ 434 O H CH₃ N(CH₂CH₃)-CH₂CH(CH₃)₂ 435 O H CH₃ N(CH₂CH₃)-CH₂CH(CH₃)-CH₂CH₃ 436 O H CH₃ N(CH₂CH₃)-CH₂CH₂CH₃ 437 O H CH₃ N(CH₂CH₃)-CH₂CH₂CH₃ 438 O H CH₃ N(CH₂CH₃)-CH₂COCH₃ 439 O H CH₃ N(CH₂CH₃)-CH₂COCH₃ 440 O H CH₃ N(CH₂CH₃)-CH₂COCH₃					
427 O H CH ₃ N(CH ₃)-Cyclopentyl 428 O H CH ₃ N(CH ₃)-Cyclohexyl 429 O H CH ₃ N(CH ₂ CH ₃)-Phenyl 430 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃) ₂ 431 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃) ₂ 432 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 433 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 435 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 436 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CI 437 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 438 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 439 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CDOCH ₂ 441 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl					
428 O H CH₃ N(CH₃)-Cyclohexyl 429 O H CH₃ N(CH₃)-Phenyl 430 O H CH₃ N(CH₂CH₃)₂ 431 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₃ 432 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₃ 433 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₃ 434 O H CH₃ N(CH₂CH₃)CH₂CH(CH₃)₂ 435 O H CH₃ N(CH₂CH₃)CH(CH₃)CH₂CH₃ 436 O H CH₃ N(CH₂CH₃)CH₂CH₂CH₂ 437 O H CH₃ N(CH₂CH₃)CH₂CH₂CCH₃ 438 O H CH₃ N(CH₂CH₃)CH₂CH₂CCH₃ 439 O H CH₃ N(CH₂CH₃)CH₂COCCH₃ 440 O H CH₃ N(CH₂CH₃)CH₂COOCH₃ 441 O H CH₃ N(CH₂CH₃)CH₂CECH=CH₂ 442 O H CH₃ N(CH₂CH₃)-Cyclopentyl <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
429 O H CH ₃ N(CH ₃)-Phenyl 430 O H CH ₃ N(CH ₂ CH ₃) ₂ 431 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃) ₂ 432 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 433 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂ 435 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 436 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CI 437 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CCH ₂ CH ₃ 438 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CCH ₂ CCH ₃ 439 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 441 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH=CH ₂ 442 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl					
430 O H CH ₃ N(CH ₂ CH ₃) ₂ 431 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃) ₂ 432 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 433 O H CH ₃ N(CH ₂ CH ₃)C(CH ₃) ₃ 434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂ 435 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₃ 436 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CI 437 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 438 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 439 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 441 O H CH ₃ N(CH ₂ CH ₃)CH ₂ C=CH 442 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl <td></td> <td></td> <td></td> <td></td> <td></td>					
431 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃) ₂ 432 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 433 O H CH ₃ N(CH ₂ CH ₃)C(CH ₃) ₃ 434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂ 435 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 436 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CC 437 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CCOCH ₃ 438 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃ 439 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₂ 441 O H CH ₃ N(CH ₂ CH ₃)CH ₂ C≡CH 442 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl					
432 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ 433 O H CH ₃ N(CH ₂ CH ₃)C(CH ₃) ₃ 434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂ 435 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₃ 436 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CI 437 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 438 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CH ₃ 439 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 441 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH=CH ₂ 442 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 443 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl					
433 O H CH ₃ N(CH ₂ CH ₃)C(CH ₃) ₃ 434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂ 435 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₃ 436 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CI 437 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ COCH ₃ 438 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CCH ₃ 439 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 441 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH=CH ₂ 442 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 443 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl		0			
434 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂ 435 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₃ 436 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₂ CI 437 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CCH ₃ 438 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃ 439 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 441 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₂ 442 O H CH ₃ N(CH ₂ CH ₃)CH ₂ C=CH 443 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl					
435 O H CH ₃ N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃ 436 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ CI 437 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃ 438 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃ 439 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₂ 441 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH=CH ₂ 442 O H CH ₃ N(CH ₂ CH ₃)-CH ₂ C≡CH 443 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl		0	Н		
436 O H CH₃ N(CH₂CH₃)CH₂CH₂CI 437 O H CH₃ N(CH₂CH₃)CH₂CH₂OCH₃ 438 O H CH₃ N(CH₂CH₃)CH₂CH₂SCH₃ 439 O H CH₃ N(CH₂CH₃)CH₂COOCH₃ 440 O H CH₃ N(CH₂CH₃)CH₂COOCH₂ 441 O H CH₃ N(CH₂CH₃)CH₂COOCH₂ 442 O H CH₃ N(CH₂CH₃)CH₂CECH₂ 443 O H CH₃ N(CH₂CH₃)-Cyclopentyl 444 O H CH₃ N(CH₂CH₃)-Cyclohexyl 445 O H CH₃ N(CH₂CH₃)-Phenyl		0	Н		
437 O H CH₃ N(CH₂CH₃)CH₂CH₂OCH₃ 438 O H CH₃ N(CH₂CH₃)CH₂CH₂SCH₃ 439 O H CH₃ N(CH₂CH₃)CH₂COOCH₃ 440 O H CH₃ N(CH₂CH₃)CH₂CONH₂ 441 O H CH₃ N(CH₂CH₃)CH₂CH=CH₂ 442 O H CH₃ N(CH₂CH₃)CH₂C≡CH 443 O H CH₃ N(CH₂CH₃)-Cyclopentyl 444 O H CH₃ N(CH₂CH₃)-Cyclohexyl 445 O H CH₃ N(CH₂CH₃)-Phenyl					
438 O H CH₃ N(CH₂CH₃)CH₂CH₂SCH₃ 439 O H CH₃ N(CH₂CH₃)CH₂COOCH₃ 440 O H CH₃ N(CH₂CH₃)CH₂CONH₂ 441 O H CH₃ N(CH₂CH₃)CH₂CH=CH₂ 442 O H CH₃ N(CH₂CH₃)CH₂C≡CH 443 O H CH₃ N(CH₂CH₃)-Cyclopentyl 444 O H CH₃ N(CH₂CH₃)-Cyclohexyl 445 O H CH₃ N(CH₂CH₃)-Phenyl					
439 O H CH ₃ N(CH ₂ CH ₃)CH ₂ COOCH ₃ 440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CONH ₂ 441 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH=CH ₂ 442 O H CH ₃ N(CH ₂ CH ₃)CH ₂ C≡CH 443 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl		0			
440 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CONH ₂ 441 O H CH ₃ N(CH ₂ CH ₃)CH ₂ CH=CH ₂ 442 O H CH ₃ N(CH ₂ CH ₃)CH ₂ C≡CH 443 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl		0			
441 O H CH₃ N(CH₂CH₃)CH₂CH=CH₂ 442 O H CH₃ N(CH₂CH₃)CH₂C≡CH 443 O H CH₃ N(CH₂CH₃)-Cyclopentyl 444 O H CH₃ N(CH₂CH₃)-Cyclohexyl 445 O H CH₃ N(CH₂CH₃)-Phenyl		0			
442 O H CH ₃ N(CH ₂ CH ₃)CH ₂ C≡CH 443 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl					
443 O H CH ₃ N(CH ₂ CH ₃)-Cyclopentyl 444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl		0			
444 O H CH ₃ N(CH ₂ CH ₃)-Cyclohexyl 445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl					
445 O H CH ₃ N(CH ₂ CH ₃)-Phenyl					
 					
1 44b + O + H + CH3 + N(CH(CH3)2)2	446	0	Н	CH ₃	N(CH(CH ₃) ₂) ₂
447 O H CH ₃ N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂					

	(Y) _n	R ¹	R ²	R ⁴
448	0	H	CH₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
449	0	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
450	0	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
451	0	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
452	0	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
453	0	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂
454	0	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
455	0	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ C≡CH
456	0	Н	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
457	0	Н	CH ₃	N(CH(CH ₃) ₂)-Cyclohexyl
458	0	Н	CH ₃	N(CH(CH ₃) ₂)-Phenyl
459	0	Н	CH ₃	Morpholin-1-yl
460	0	Н	CH ₃	Piperidin-1-yl
461	0	CH ₃	CH ₃	NH-SO ₂ CH ₃
462	0	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₃
463	0	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ CH ₃
464	0	CH ₃	CH ₃	NH-SO ₂ CH(CH ₃) ₂
465	0	CH ₃	CH ₃	NH-SO ₂ C(CH ₃) ₃
466	0	CH ₃	CH ₃	NH-SO ₂ CH ₂ CI
467	0	CH ₃	CH ₃	NH-SO ₂ CH ₂ CI
468	0	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ OCH ₃
469	0	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ SCH ₃
470	0	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₃
471	0	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
472	0	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
473	0	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH(CH ₃) ₂
474	0	CH ₃	CH ₃	N(CH3)-SO2C(CH3)3
475	0	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ Cl
476	0	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
477	0 ·	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
478	0	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
479	0	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
480	0	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
481	0	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
482	0	CH₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
483	0	CH ₃	CH ₃	N(CH ₂ CH3)-SO2C(CH3)3
484	0	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CI
485	0	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ Cl
486	0	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
487	0	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
488	0	CH ₃	CH ₃	NH(CH ₃)
489	0	CH ₃	CH₃	NHCH ₂ CH ₃
490	0	CH ₃	CH ₃	NHCH2CH2CH3
491	0	CH ₃	CH ₃	NHCH(CH ₃) ₂
492	0	CH ₃	CH ₃	NHC(CH ₃) ₃
493	0	CH ₃	CH ₃	NHCH ₂ CH(CH ₃) ₂
494	0	CH ₃	CH ₃	NHCH(CH ₃)CH ₂ CH ₃
495	0	CH ₃	CH ₃	NHCH ₂ CH ₂ CI
496	0	CH ₃	CH ₃	NHCH ₂ CH ₂ OCH ₃
497	0	CH ₃	CH ₃	NHCH ₂ CH ₂ SCH ₃

	$(Y)_n$	R ¹	R ²	R ⁴
498	0	CH ₃	CH ₃	NHCH ₂ COOCH ₃
499	0	CH ₃	CH ₃	NHCH ₂ CONH ₂
500	0	CH ₃	CH ₃	NHCH ₂ CH=CH ₂
501	0	CH ₃	CH ₃	NHCH₂C≡CH
502	0	CH ₃	CH ₃	NH-Cyclopentyl
503	0	CH ₃	CH ₃	NH-Cyclohexyl
504	0	CH ₃	CH ₃	NH-Phenyl
505	0	CH ₃	CH ₃	N(CH ₃) ₂
506	0	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₃
507	0	CH ₃	CH ₃	N(CH ₃)CH(CH ₃) ₂
508	0	CH ₃	CH ₃	N(CH ₃)C(CH ₃) ₃
509	0	CH ₃	CH ₃	N(CH ₃)C(CH ₃)3 N(CH ₃)CH ₂ CH ₂ CH ₃
510	0	CH ₃	CH ₃	N(CH ₃)CH ₂ CH(CH ₃) ₂
511	0	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₃ CH ₂ CH ₃
512	0	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ CI
513	0	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃
514	0	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ OCH ₃ N(CH ₃)CH ₂ CH ₂ SCH ₃
514	0	CH ₃	CH ₃	N(CH ₃)CH ₂ COOCH ₃
516	0	CH ₃	CH ₃	N(CH ₃)CH ₂ COOCH ₃ N(CH ₃)CH ₂ CONH ₂
517	0	CH ₃	CH ₃	N(CH ₃)CH ₂ CONH ₂ N(CH ₃)CH ₂ CH=CH ₂
517 518	0	CH ₃	CH ₃	N(CH ₃)CH ₂ C=CH N(CH ₃)CH ₂ C≡CH
± 519	0	CH ₃	CH ₃	N(CH3)-Cyclopentyl
520	0	CH ₃	CH ₃	N(CH3)-Cyclohexyl
	0	CH ₃	CH ₃	
521	0	CH ₃		N(CH ₃)-Phenyl N(CH ₂ CH ₃) ₂
522	0	CH ₃	CH₃ CH₃	N(CH ₂ CH ₃) ₂ N(CH ₂ CH ₃)CH(CH ₃) ₂
523 524	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂ N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
525	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)C(CH ₃) ₃
526	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
527	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
528	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ Cl
529	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
530	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CCH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
531	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
532	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ COOH ₂
533	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
534	0	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
535	- 0	CH ₃	CH ₃	N(CH ₂ CH ₃)-Cyclopentyl
536	0	CH ₃	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
537	ō	CH ₃	CH ₃	N(CH ₂ CH ₃)-Phenyl
538	0	CH ₃	CH ₃	N(CH(CH ₃) ₂) ₂
539	0	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
540	0	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
541	0	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
542	0	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ CH N(CH(CH ₃) ₂)CH ₂ CH ₂ CH ₃
543	0	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃ N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
544	0	CH ₃	CH ₃	
	0	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
545	0	CH ₃	CH ₃	N(CH(CH ₂) ₂)CH ₂ CONH ₂
546	0	CH ₃		N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
547		Cr13	CH ₃	$N(CH(CH_3)_2)CH_2C\equiv CH$

			R ⁴
0	CH ₃	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
0	CH ₃	CH ₃	N(CH(CH ₃) ₂)-Cyclohexyl
0			N(CH(CH ₃) ₂)-Phenyl
0	+		Morpholin-1-yl
	+		Piperidin-1-yl
			
	<u> </u>		NH-SO ₂ CH ₃
			NH-SO ₂ CH ₂ CH ₃
			NH-SO ₂ CH ₂ CH ₂ CH ₃
			NH-SO₂CH(CH ₃) ₂
			NH-SO ₂ C(CH ₃) ₃
			NH-SO ₂ CH ₂ CI
			NH-SO ₂ CH ₂ CH ₂ CI
			NH-SO ₂ CH ₂ CH ₂ OCH ₃
	H	Н	NH-SO ₂ CH ₂ CH ₂ SCH ₃
S	H	Н	N(CH ₃)-SO ₂ CH ₃
S	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₃
S	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
S	Н	Н	N(CH ₃)-SO ₂ CH(CH ₃) ₂
S	Н	H	N(CH3)-SO2C(CH3)3
S	Н	Н	N(CH ₃)-SO ₂ CH ₂ Cl
	Н	Н	N(CH ₃)-SO ₂ CH ₂ CI
			N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
			N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
			N(CH ₂ CH ₃)-SO ₂ CH ₃
			N(CH ₂ CH ₃)-SO ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
			N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
			N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
			N(CH ₂ CH3)-SO2C(CH3)3
			N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
			N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ Cl
			N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
			N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
			NH(CH ₃)
			NHCH ₂ CH ₃
			NHCH ₂ CH ₂ CH ₃
			NHCH(CH ₃) ₂
			NHC(CH ₃) ₃
		H	NHCH ₂ CH(CH ₃) ₂
		H	NHCH(CH ₃)CH ₂ CH ₃
	Н	Н	NHCH₂CH₂CI
	Н	Н	NHCH₂CH₂OCH₃
S	Н	Н	NHCH ₂ CH ₂ SCH ₃
S	Н	Н	NHCH₂COOCH₃
S	Н	Н	NHCH ₂ CONH ₂
S	Н	Н	NHCH ₂ CH=CH ₂
S	Н	H	NHCH₂C≡CH
			NH-Cyclopentyl
			NH-Cyclohexyl
s	H		NH-Phenyl
	O O O S S S S S S S S S S S S S S S S S	O CH ₃ O CH ₃ O CH ₃ S H S H S H S H S H S H S H S H S H S H	O CH3 CH3 O CH3 CH3 O CH3 CH3 S H H S H <

	(1/1)	R ¹	R ²	R ⁴
	(Y) _n		H	
598	<u> </u>	H	H	N(CH ₃)CH ₂ CH ₃
599	S	H		N(CH ₃)CH(CH ₃) ₂
600	S.	Н	H	N(CH ₃)C(CH ₃) ₃
601	S	H	H	N(CH ₃)CH ₂ CH ₂ CH ₃
602	S	H	Н	N(CH ₃)CH ₂ CH(CH ₃) ₂
603	S	H	Н	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
604	S	H	H	N(CH ₃)CH ₂ CH ₂ CI
605	S	H	H	N(CH ₃)CH ₂ CH ₂ OCH ₃
606	S	H	Н	N(CH ₃)CH ₂ CH ₂ SCH ₃
607	S	Н	H	N(CH₃)CH₂COOCH₃
608	S	Н	Н	N(CH₃)CH₂CONH₂
609	S	H	H	N(CH ₃)CH ₂ CH=CH ₂
610	S	H	H	N(CH ₃)CH ₂ C≡CH
611	S	Н	H	N(CH3)-Cyclopentyl
612	S	H	Н	N(CH3)-Cyclohexyl
613	S	Н	Н	N(CH ₃)-Phenyl
614	S	Н	Н	N(CH ₂ CH ₃) ₂
615	S	Н	Н	N(CH ₂ CH ₃)CH(CH ₃) ₂
616	S	Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
617	S	Н	H	N(CH ₂ CH ₃)C(CH ₃) ₃
618	S	Н	Н	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
619	S	Н	Н	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
620	S	Н	Н	N(CH₂CH₃)CH₂CH₂CI
621	S	Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
622	S	Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
623	S	Н	Н	N(CH ₂ CH ₃)CH ₂ COOCH ₃
624	S	Н	Н	N(CH ₂ CH ₃)CH ₂ CONH ₂
625	S	Н	Н	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
626	S	Н	Н	N(CH ₂ CH ₃)CH ₂ C≡CH
627	S	Н	Н	N(CH ₂ CH ₃)-Cyclopentyl
628	S	Н	Н	N(CH ₂ CH ₃)-Cyclohexyl
629	S	Н	Н	N(CH ₂ CH ₃)-Phenyl
630	S	Н	Н	N(CH(CH ₃) ₂) ₂
631	S	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
632	S	Н	H	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
633	S	Н	H	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
634	S	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
635	S	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
636	S	H	Н	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
637	S	Н	Н	N(CH(CH ₃) ₂)CH ₂ CONH ₂
638	S	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
639	S	Н	Н	N(CH(CH ₃) ₂)CH ₂ C≡CH
640	S	Н	Н	(CH(CH ₃) ₂)H-Cyclopentyl
641	S	Н	Н	N(CH(CH ₃) ₂)-Cyclohexyl
642	S	Н	Н	N(CH(CH ₃) ₂)-Phenyl
643	S	Н	Н	Morpholin-1-yl
644	S	Н	Н	Piperidin-1-yl
645	S	Н	CH ₃	NH-SO ₂ CH ₃
646	S	Н	CH ₃	NH-SO ₂ CH ₂ CH ₃
647	S	H	CH ₃	NH-SO ₂ CH ₂ CH ₃

W. 1410 J3030358 . .

255 ' ' ' '

	(Y) _n	R ¹	R ²	R ⁴
648	S	Н	CH ₃	NH-SO ₂ CH(CH ₃) ₂
649	S	Н	CH ₃	NH-SO ₂ C(CH ₃) ₃
650	S	Н	CH ₃	NH-SO ₂ CH ₂ CI
651	S	Н	CH ₃	NH-SO ₂ CH ₂ CI
652	S	Н	CH ₃	NH-SO ₂ CH ₂ CH ₂ OCH ₃
653	S	Н	CH ₃	NH-SO ₂ CH ₂ CH ₂ SCH ₃
654	S	H	CH ₃	N(CH ₃)-SO ₂ CH ₃
655	S	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
656	S	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
657	S	Н	CH ₃	N(CH ₃)-SO ₂ CH(CH ₃) ₂
658	S	H	CH ₃	N(CH3)-SO2C(CH3)3
659	S	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ Cl
660	S	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CI
661	S	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CCH ₃
662	S	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
663	S	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
664	S	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
665	S	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
666	S	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
667	S	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂ N(CH ₂ CH ₃)-SO ₂ C(CH ₃) ₃
668	S	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ C(CH ₃)3
669	S	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CI
670	S	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
671	S	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
672	S	H	CH ₃	NH(CH ₃)-3O ₂ CH ₂ CH ₂ SCH ₃
673	S	Н	CH ₃	NHCH₂CH₃
674	S	<u>н</u>	CH ₃	NHCH ₂ CH ₃
675	S	H	CH ₃	NHCH ₂ CH ₂ CH ₃
676	S	H	CH ₃	NHC(CH ₃) ₃
677	S	H	CH ₃	NHCH ₂ CH(CH ₃) ₂
678	S	Н	CH ₃	NHCH(CH ₃)CH ₂ CH ₃
679	S	H	CH ₃	NHCH ₂ CH ₂ CI
680	s	H	CH ₃	NHCH ₂ CH ₂ OCH ₃
681	S	Н	CH ₃	NHCH ₂ CH ₂ SCH ₃
682	S	Н	CH ₃	NHCH ₂ COOCH ₃
683	S	Н	CH ₃	NHCH ₂ CONH ₂
684	S	Н	CH ₃	NHCH ₂ CH=CH ₂
685	S	Н	CH ₃	NHCH ₂ C≡CH
686	S	Н	CH ₃	NH-Cyclopentyl
687	S	Н	CH ₃	NH-Cyclohexyl
688	S	H	CH ₃	NH-Phenyl
689	S	H	CH ₃	N(CH ₃) ₂
690	S	Н	CH ₃	N(CH ₃)CH ₂ CH ₃
691	S	H	CH ₃	N(CH ₃)CH(CH ₃) ₂
692	S	H	CH ₃	N(CH ₃)C(CH ₃) ₃
693	S	Н	CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃
694	S	Н	CH ₃	N(CH ₃)CH ₂ CH ₃ CH ₃ N(CH ₃)CH ₂ CH(CH ₃) ₂
695	S	H	CH ₃	N(CH ₃)CH ₂ CH ₁ CH ₃)2
696	S	<u>н</u>	CH ₃	N(CH ₃)CH ₂ CH ₂ Cl
697	S	- н	CH ₃	N(CH ₃)CH ₂ CH ₂ CI N(CH ₃)CH ₂ CH ₂ OCH ₃
031			C113	14(С13)С112СП2ОСП3

	(Y) _n	R	R ²	R ⁴
698	S	Н	CH ₃	N(CH ₃)CH ₂ CH ₂ SCH ₃
699	S	Н	CH ₃	N(CH ₃)CH ₂ COOCH ₃
700	S	Н	CH ₃	N(CH ₃)CH ₂ CONH ₂
701	S	Н	CH ₃	N(CH ₃)CH ₂ CH=CH ₂
702	S	Н	CH ₃	N(CH₃)CH₂C≡CH
703	S	H	CH ₃	N(CH3)-Cyclopentyl
704	S	Н	CH ₃	N(CH3)-Cyclohexyl
705	S	Н	CH ₃	N(CH ₃)-Phenyl
706	S	H	CH ₃	N(CH ₂ CH ₃) ₂
707	S	H	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂
708	S	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
709	<u>s</u>	Н Н	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
710	S	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
711	<u>s</u>	H	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
712	<u>s</u>	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
713	S	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
714	S	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CCH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
715	S	<u>н</u>	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
716	S	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ COOH ₂
717	S	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
718	S	H	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
719	S	H	CH ₃	N(CH ₂ CH ₃)-Cyclopentyl
	S	H	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
720	S	H	CH ₃	N(CH ₂ CH ₃)-Phenyl
721 722	S	Н	CH ₃	N(CH(CH ₃) ₂) ₂
723	S	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
724	S	H	CH ₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
725	S	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
726	S	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
727	S ·	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
728	S	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
729	S	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂
730	S	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
731	S	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ C≡CH
732	S	H	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
733	s	Н	CH ₃	N(CH(CH ₃) ₂)-Cyclohexyl
734	S	Н	CH ₃	N(CH(CH ₃) ₂)-Phenyl
735	S	Н	CH ₃	Morpholin-1-yl
736	<u> </u>	Н	CH ₃	Piperidin-1-yl
737	S	CH ₃	CH ₃	NH-SO ₂ CH ₃
738	<u>S</u>	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₃
739	S	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₃
740	S	CH ₃	CH ₃	NH-SO ₂ CH(CH ₃) ₂
741	S	CH ₃	CH ₃	NH-SO ₂ C(CH ₃) ₃
742	S	CH ₃	CH ₃	NH-SO ₂ C(cl ₁) ₃ 3
742	S	CH ₃	CH ₃	NH-SO ₂ CH ₂ Cl
744	<u>s</u>	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ OCH ₃
745	S	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ SCH ₃
746	S	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₃
747	S	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₃ N(CH ₃)-SO ₂ CH ₂ CH ₃
<u> </u>		C113	C113	11(0113)-00201120113

	(Y) _n	R ¹	R ²	R ⁴
748	S	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
749	S	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH(CH ₃) ₂
750	S	CH ₃	CH ₃	N(CH3)-SO2C(CH3)3
751	S	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CI
752	S	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CI N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
753	S	CH ₃	CH ₃	
754	S	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
755	S	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
756	S	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
757	S	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
	S			N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
758	S	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
759		CH ₃	CH ₃	N(CH ₂ CH3)-SO2C(CH3)3
760	S	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
761	S	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ Cl
762	S	CH ₃	CH₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
763	S	CH ₃	CH₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
764	S	CH ₃	CH ₃	NH(CH ₃)
765	S	CH ₃	CH ₃	NHCH₂CH₃
766	S	CH ₃	CH ₃	NHCH ₂ CH ₂ CH ₃
767	S	CH ₃	CH₃	NHCH(CH ₃) ₂
768	S	CH ₃	CH ₃	NHC(CH ₃) ₃
769	S	CH ₃	CH ₃	NHCH2CH(CH3)2
770	S	CH ₃	CH ₃	NHCH(CH₃)CH₂CH₃
771	S	CH ₃	CH ₃	NHCH ₂ CH ₂ CI
772	S	CH ₃	CH ₃	NHCH ₂ CH ₂ OCH ₃
773	S	CH ₃	CH ₃	NHCH2CH2SCH3
774	S	CH ₃	CH ₃	NHCH ₂ COOCH ₃
775	S	CH ₃	CH ₃	NHCH2CONH2
776	S	CH ₃	CH ₃	NHCH ₂ CH=CH ₂
777	S	CH ₃	CH₃	NHCH2C≡CH
778	S	CH ₃	CH₃	NH-Cyclopentyl
779	S	CH ₃	CH ₃	NH-Cyclohexyl
780	S	CH ₃	CH ₃	NH-Phenyl
781	S	CH ₃	CH ₃	N(CH ₃) ₂
782	S	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₃
783	S	CH ₃	CH ₃	N(CH ₃)CH(CH ₃) ₂
784	S	CH ₃	CH ₃	N(CH ₃)C(CH ₃) ₃
785	S	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃
786	S	CH ₃	CH ₃	N(CH ₃)CH ₂ CH(CH ₃) ₂
787	S	CH ₃	CH ₃	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
788	S	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ CI
789	S	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ OCH ₃
790	S	CH ₃	CH ₃	N(CH ₃)CH ₂ CCH ₃
791	S	CH ₃	CH ₃	N(CH ₃)CH ₂ COOCH ₃
792	S	CH ₃	CH ₃	N(CH ₃)CH ₂ COOCH ₃ N(CH ₃)CH ₂ CONH ₂
793	S	CH ₃	CH ₃	N(CH ₃)CH ₂ CONH ₂ N(CH ₃)CH ₂ CH=CH ₂
794	S	CH ₃	CH ₃	
795	S	CH ₃	CH ₃	N(CH ₃)CH ₂ C≡CH
796	S	CH ₃	CH ₃	N(CH3)-Cyclopentyl
797	S	CH ₃	CH ₃	N(CH3)-Cyclohexyl
		C113	CITS	N(CH ₃)-Phenyl

	(Y) _n	R ¹	R ²	R ⁴
798	S	CH ₃	CH ₃	N(CH ₂ CH ₃) ₂
799	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂
800	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
801	S	CH ₃	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
802	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
803	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
804	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
805	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
806	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
807	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
808	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CONH ₂
809	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
810	S	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
811	S	CH ₃	CH ₃	N(CH ₂ CH ₃)-Cyclopentyl
812	S		CH ₃	
	S	CH ₃	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
813	S	CH₃ CH₃	CH ₃	N(CH ₂ CH ₃)-Phenyl N(CH(CH ₃) ₂) ₂
814	S		CH ₃	
815	S	CH ₃		N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
816	S	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
817	S	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ Cl
818		CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
819	S	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
820	S	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
821	S	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂
822	S	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
823	S	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ C≡CH
824	S	CH ₃	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
825	S	CH ₃	CH ₃	N(CH(CH ₃) ₂)-Cyclohexyl
826	S	CH ₃	CH₃	N(CH(CH ₃) ₂)-Phenyl
827	S	CH ₃	CH ₃	Morpholin-1-yl
828	S	CH ₃	CH₃	Piperidin-1-yl
829	NH	H	H	NH-SO ₂ CH ₃
830	NH	H	H	NH-SO ₂ CH ₂ CH ₃
831	NH	H	H	NH-SO ₂ CH ₂ CH ₃
832	NH	H		NH-SO ₂ CH(CH ₃) ₂
833	NH	H	H	NH-SO ₂ C(CH ₃) ₃
834	NH	H	H	NH-SO ₂ CH ₂ Cl
835	NH	H	H	NH-SO ₂ CH ₂ CH ₂ CI
836	NH	H	H	NH-SO ₂ CH ₂ CH ₂ OCH ₃
837	NH	H	H	NH-SO ₂ CH ₂ CH ₂ SCH ₃
838	NH	Н	H	N(CH ₃)-SO ₂ CH ₃
839	NH	Н	H	N(CH ₃)-SO ₂ CH ₂ CH ₃
840	NH	H	H	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
841	NH_	H	H	N(CH ₃)-SO ₂ CH(CH ₃) ₂
842	NH	H	H	N(CH3)-SO2C(CH3)3
843	NH	Н	H	N(CH ₃)-SO ₂ CH ₂ Cl
844	NH	Н	H	N(CH ₃)-SO ₂ CH ₂ CH ₂ Cl
845	NH	H	H	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
846	NH	H	Н	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
_847	NH	H	H	N(CH ₂ CH ₃)-SO ₂ CH ₃

	$(Y)_n$	R	R ²	R ⁴
848	NH	H	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
849	NH	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
850	NH	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
851	NH	Н	H	N(CH ₂ CH3)-SO2C(CH3)3
852	NH	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
853	NH	Н	H	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
854	NH	Н	H	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
855	NH	Н	H	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
856	NH	H	Н	NH(CH ₃)
857	NH	H	H	NHCH ₂ CH ₃
858	NH	H	H	NHCH ₂ CH ₃
859	NH	Н	Н	NHCH(CH ₃) ₂
860	NH	Н	H	NHC(CH ₃) ₂ NHC(CH ₃) ₃
861	NH	Н	H	
862	NH	Н	H	NHCH ₂ CH(CH ₃) ₂ NHCH(CH ₃)CH ₂ CH ₃
863	NH	H	H	
864	NH	H	H	NHCH ₂ CH ₂ CI
865	NH	H	H	NHCH ₂ CH ₂ OCH ₃
866	NH	H	H	NHCH ₂ CH ₂ SCH ₃
867	NH	H	H	NHCH ₂ COOCH ₃
868	NH	H	H	NHCH ₂ CONH ₂
869	NH	H	Н	NHCH₂CH=CH₂
870	NH	H	H	NHCH₂C≡CH
871	NH	H	H	NH-Cyclopentyl
872	NH	H	H	NH-Cyclohexyl
873	NH	Н	Н	NH-Phenyl N(CH ₃) ₂
874	NH	H	Н	N(CH ₃) ₂ N(CH ₃)CH ₂ CH ₃
875	NH	H	Н	N(CH ₃)CH ₂ CH ₃ N(CH ₃)CH(CH ₃) ₂
876	NH	Н	H	N(CH ₃)CH(CH ₃) ₂ N(CH ₃)C(CH ₃) ₃
877	NH	Н	H	N(CH ₃)C(CH ₃) ₃
878	NH	H	H	N(CH ₃)CH ₂ CH ₂ CH ₃ N(CH ₃)CH ₂ CH(CH ₃) ₂
879	NH	H	H	N(CH ₃)CH ₂ CH ₂ CH ₃ N(CH ₃)CH(CH ₃)CH ₂ CH ₃
880	NH	Н	Н	N(CH ₃)CH ₂ CH ₂ CH ₃
881	NH	H	Н	N(CH ₃)CH ₂ CH ₂ OCH ₃
882	NH	H	Н	
883	NH	H	H	N(CH ₃)CH ₂ CH ₂ SCH ₃ N(CH ₃)CH ₂ COOCH ₃
884	NH	Н	Н	N(CH ₃)CH ₂ COOCH ₃ N(CH ₃)CH ₂ CONH ₂
885	NH	н	H	N(CH ₃)CH ₂ CONH ₂ N(CH ₃)CH ₂ CH=CH ₂
886	NH	H	Н	N(CH ₃)CH ₂ C=CH
887	NH	Н	Н	N(CH3)-Cyclopentyl
888	NH	Н	H	N(CH3)-Cyclohexyl
889	NH	Н	H	
890	NH	Н	Н	N(CH ₃)-Phenyl
891	NH	Н	H	N(CH ₂ CH ₃) ₂
892	NH	Н	H	N(CH ₂ CH ₃)CH(CH ₃) ₂
893	NH	H	H	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
	NH	H	H	N(CH ₂ CH ₃)C(CH ₃) ₃
894	NH	H	H	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
895	NH	 н	H	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
896		<u>н</u>	H	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
897	NH	п	п	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃

	(Y) _n	R ¹	R ²	R ⁴
898	NH	Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
899	NH	Н	Н	N(CH ₂ CH ₃)CH ₂ COOCH ₃
900	NH	Н	Н	N(CH ₂ CH ₃)CH ₂ CONH ₂
901	NH	Н	Н	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
902	NH	Н	Н	N(CH ₂ CH ₃)CH ₂ C≡CH
903	NH	H	H	N(CH ₂ CH ₃)-Cyclopentyl
904	NH	Н	H	N(CH ₂ CH ₃)-Cyclohexyl
905	NH	Н	H	N(CH ₂ CH ₃)-Phenyl
906	NH	H	H	N(CH(CH ₃) ₂) ₂
907	NH	H	Н	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
908	NH	<u>н</u>	Н	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
909	NH	H	Н	N(CH(CH ₃) ₂)CH ₂ CH ₂ CH
910	NH	H	H	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
	NH	<u></u> Н	H	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃ N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
911	NH	H	Н	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
912		H	H	
913	NH NH	H	Н	N(CH(CH ₃) ₂)CH ₂ CONH ₂
914	NH	H	Н	$N(CH(CH_3)_2)CH_2CH=CH_2$ $N(CH(CH_3)_2)CH_2C\equiv CH$
915	NH	H	Н	(CH(CH ₃) ₂)H-Cyclopentyl
916	NH	H	H	N(CH(CH ₃) ₂)-Cyclohexyl
917		<u>н</u>	H	
918	NH	H H	Н	N(CH(CH ₃) ₂)-Phenyl Morpholin-1-yl
919	NH			
920	NH	H	H	Piperidin-1-yl
921	NH	H .	CH ₃	NH-SO ₂ CH ₃
922	NH	H	CH ₃	NH-SO ₂ CH ₂ CH ₃
923	NH	H	CH ₃	NH-SO ₂ CH ₂ CH ₃ NH-SO ₂ CH(CH ₃) ₂
924	NH	H	CH ₃	NH-SO ₂ CH(CH ₃) ₂ NH-SO ₂ C(CH ₃) ₃
925	NH NH	H H	CH ₃	NH-SO ₂ C(CH ₃) ₃ NH-SO ₂ CH ₂ Cl
926	NH	H	CH ₃	NH-SO ₂ CH ₂ CI
927	NH	H	CH ₃	NH-SO ₂ CH ₂ CH ₂ CCH ₃
928	NH	H	CH ₃	NH-SO ₂ CH ₂ CH ₂ CCH ₃
929	NH	H	CH ₃	N(CH ₃)-SO ₂ CH ₃
930	NH	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
931	NH	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃ N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
932	NH	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃ CH ₃ N(CH ₃)-SO ₂ CH(CH ₃) ₂
933	NH	H	CH ₃	N(CH3)-SO2C(CH3)3
934	NH	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ Cl
935	NH	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CI N(CH ₃)-SO ₂ CH ₂ CI
936	NH	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃ CH ₃
937	NH	Н		N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃ N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
938	NH	H	CH ₃	N(CH ₂ CH ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₃
939	NH	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
940	NH	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
941				N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
942	NH	H	CH ₃	
943	NH	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ C(CH ₃) ₃
944	NH	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
945	NH	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
946	NH	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
947	NH	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃

[$(Y)_n$	R ¹	R ²	R ⁴
948	NH	H	CH ₃	NH(CH ₃)
949	NH	H	CH ₃	NHCH ₂ CH ₃
950	NH	Н	CH ₃	NHCH2CH2CH3
951	NH	Н	CH ₃	NHCH(CH ₃) ₂
952	NH	Н	CH ₃	NHC(CH ₃) ₃
953	NH	Н	CH ₃	NHCH ₂ CH(CH ₃) ₂
954	NH	Н	CH ₃	NHCH(CH ₃)CH ₂ CH ₃
955	NH	Н	CH ₃	NHCH ₂ CH ₂ CI
956	NH	Н	CH ₃	NHCH₂CH₂OCH₃
957	NH	Н	CH ₃	NHCH ₂ CH ₂ SCH ₃
958	NH	Н	CH ₃	NHCH ₂ COOCH ₃
959	NH	Н	CH ₃	NHCH2CONH2
960	NH	Н	CH ₃	NHCH ₂ CH=CH ₂
961	NH	Н	CH ₃	NHCH ₂ C≡CH
962	NH	Н	CH ₃	NH-Cyclopentyl
963	NH	Н	CH ₃	NH-Cyclohexyl
964	NH	Н	CH ₃	NH-Phenyl
965	NH	Н	CH ₃	N(CH ₃) ₂
966	NH	H	CH ₃	N(CH ₃)CH ₂ CH ₃
967	NH	Н	CH ₃	N(CH ₃)CH(CH ₃) ₂
968	NH	Н	CH ₃	N(CH ₃)C(CH ₃) ₃
969	NH	Н	CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃
970	NH	Н	CH ₃	N(CH ₃)CH ₂ CH(CH ₃) ₂
971	NH	Н	CH ₃	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
972	NH	Н	CH ₃	N(CH ₃)CH ₂ CH ₂ Cl
973	NH	Н	CH ₃	N(CH ₃)CH ₂ CH ₂ OCH ₃
974	NH	H	CH ₃	N(CH ₃)CH ₂ CH ₂ SCH ₃
975	NH	Н	CH ₃	N(CH ₃)CH ₂ COOCH ₃
976	NH	Н	CH ₃	N(CH ₃)CH ₂ CONH ₂
977	NH	Н	CH ₃ -	N(CH ₃)CH ₂ CH=CH ₂
978	NH	Н	CH ₃	N(CH ₃)CH ₂ C≡CH
979	NH	Н	CH ₃	N(CH3)-Cyclopentyl
980	NH	Н	CH ₃	N(CH3)-Cyclohexyl
981	NH	Н	CH ₃	N(CH ₃)-Phenyl
982	NH	Н	CH ₃	N(CH ₂ CH ₃) ₂
983	NH	Н	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂
984	NH	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
985	NH	Н	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
986	NH	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
987	NH	Н	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
988	NH	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
989	NH	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
990	NH	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
991	NH	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
992	NH	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CONH ₂
993	NH	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
994	NH	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
995	NH	Н	CH ₃	N(CH ₂ CH ₃)-Cyclopentyl
996	NH	Н	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
997	NH	Н	CH ₃	N(CH ₂ CH ₃)-Phenyl

	(Y) _n	R ^T	R ²	R ⁴
998	NH	Н	CH ₃	N(CH(CH ₃) ₂) ₂
999	NH	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
1000	NH	Н	CH ₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
1001	NH	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
1002	NH	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
1003	NH	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
1004	NH	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
1005	NH	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂
1006	NH	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
1007	NH	Н	CH ₃	$N(CH(CH_3)_2)CH_2C \equiv CH$
1008	NH	Н	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
1009	NH	Н	CH ₃	N(CH(CH ₃) ₂)-Cyclohexyl
1010	NH	Н	CH ₃	N(CH(CH ₃) ₂)-Phenyl
1011	NH	Н	CH ₃	Morpholin-1-yl
1012	NH	Н	CH ₃	Piperidin-1-yl
1013	NH	CH ₃	CH ₃	NH-SO ₂ CH ₃
1014	NH	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₃
1015	NH	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₃
1016	NH	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₃ CH ₃
1017	NH	CH ₃	CH ₃	NH-SO ₂ C(CH ₃) ₃
1017	NH	CH ₃	CH ₃	NH-SO ₂ C(CH ₃)3
³ 1019	NH	CH ₃	CH ₃	NH-SO ₂ CH ₂ Cl
1020	NH	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ OCH ₃
1021	NH	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ SCH ₃
1022	NH	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₃
1023	NH	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
1024	NH	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1025	NH	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH(CH ₃) ₂
1026	NH	CH ₃	CH ₃	N(CH3)-SO2C(CH3)3
1027	NH	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CI
1028	NH	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
1029	NH	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1030	NH .	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1031	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
1032	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
1033	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1034	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
1035	NH	CH ₃	CH ₃	N(CH₂CH3)-SO2C(CH3)3
1036	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
1037	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
1038	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1039	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1040	NH	CH ₃	CH ₃	NH(CH ₃)
1041	NH	CH ₃	CH ₃	NHCH ₂ CH ₃
1042	NH	CH ₃	CH ₃	NHCH ₂ CH ₂ CH ₃
1043	NH	CH ₃	CH ₃	NHCH(CH ₃) ₂
1044	NH	CH ₃	CH ₃	NHC(CH ₃) ₃
1045	NH	CH ₃	CH ₃	NHCH ₂ CH(CH ₃) ₂
1046	NH	CH ₃	CH ₃	NHCH(CH ₃)CH ₂ CH ₃
1047	NH	CH ₃	CH ₃	NHCH ₂ CH ₂ CI

COCID: MICO NAMOSSER

	(Y) _n	R	R ²	R ⁴
1048	NH	CH ₃	CH ₃	NHCH ₂ CH ₂ OCH ₃
1049	NH	CH ₃	CH ₃	NHCH ₂ CH ₂ OCH ₃
1050	NH	CH ₃	CH ₃	
1051	NH	CH ₃	CH ₃	NHCH ₂ COOCH ₃
1052	NH	CH ₃	CH ₃	NHCH ₂ CONH ₂
1052	NH	CH ₃	CH ₃	NHCH ₂ CH=CH ₂
	NH	CH ₃	CH ₃	NHCH₂C≡CH
1054		+		NH-Cyclopentyl
1055	NH	CH ₃	CH ₃	NH-Cyclohexyl
1056	NH	CH ₃	CH ₃	NH-Phenyl
1057	NH	CH ₃	CH ₃	N(CH ₃) ₂
1058	NH	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₃
1059	NH	CH ₃	CH₃	N(CH ₃)CH(CH ₃) ₂
1060	NH	CH ₃	CH ₃	N(CH ₃)C(CH ₃) ₃
1061	NH	CH ₃	CH₃	N(CH ₃)CH ₂ CH ₂ CH ₃
1062	NH	CH ₃	CH ₃	N(CH ₃)CH ₂ CH(CH ₃) ₂
1063	NH	CH ₃	CH ₃	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
1064	NH	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ Cl
1065	NH	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ OCH ₃
1066	NH	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ SCH ₃
1067	NH	CH ₃	CH ₃	N(CH ₃)CH ₂ COOCH ₃
1068	NH	CH ₃	CH ₃	N(CH ₃)CH ₂ CONH ₂
1069	NH	CH ₃	CH ₃	N(CH ₃)CH ₂ CH=CH ₂
1070	NH	CH ₃	CH ₃	N(CH ₃)CH ₂ C≡CH
1071	NH	CH ₃	CH ₃	N(CH3)-Cyclopentyl
1072	NH	CH ₃	CH ₃	N(CH3)-Cyclohexyl
1073	NH	CH ₃	CH ₃	N(CH ₃)-Phenyl
1074	NH	CH ₃	CH ₃	N(CH ₂ CH ₃) ₂
1075	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂
1076	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
1077	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
1078	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
1079	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
1080	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ Cl
1081	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
1082	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
1083	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
1084	NH	CH ₃	CH ₃	
1085	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CONH ₂
1086	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
1087	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
				N(CH ₂ CH ₃)-Cyclopentyl
1088	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
1089	NH	CH ₃	CH ₃	N(CH ₂ CH ₃)-Phenyl
1090	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂) ₂
1091	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
1092	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
1093	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
1094	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
1095	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
1096	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
1097	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂

	$(Y)_n$	R	R ²	R ⁴
1098	NH	CH ₃	CH₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
1099_	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ C≡CH
1100	NH	CH ₃	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
1101	NH	CH ₃	CH₃	N(CH(CH ₃) ₂)-Cyclohexyl
1102	NH	CH ₃	CH ₃	N(CH(CH ₃) ₂)-Phenyl
1103	NH	CH ₃	CH₃	Morpholin-1-yl
1104	NH	CH₃	CH ₃	Piperidin-1-yl
1105	NCH ₃	H	Н	NH-SO ₂ CH ₃
1106	NCH ₃	Н	Н	NH-SO ₂ CH ₂ CH ₃
1107	NCH ₃	Н	Н	NH-SO ₂ CH ₂ CH ₂ CH ₃
1108	NCH ₃	Н	Н	NH-SO ₂ CH(CH ₃) ₂
1109	NCH ₃	Н	Н	NH-SO ₂ C(CH ₃) ₃
1110	NCH ₃	Н	Н	NH-SO ₂ CH ₂ Cl
1111	NCH ₃	Н	Н	NH-SO ₂ CH ₂ CH ₂ CI
1112	NCH ₃	Н	Н	NH-SO ₂ CH ₂ CH ₂ OCH ₃
1113	NCH ₃	Н	Н	NH-SO ₂ CH ₂ CH ₂ SCH ₃
1114	NCH ₃	Н	H	N(CH ₃)-SO ₂ CH ₃
1115	NCH ₃	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₃
1116	NCH ₃	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1117	NCH ₃	Н	Н	N(CH ₃)-SO ₂ CH(CH ₃) ₂
1118:	NCH ₃	H	Н	N(CH3)-SO2C(CH3)3
1119	NCH ₃	Н	Н	N(CH ₃)-SO ₂ CH ₂ Cl
1120	NCH ₃	Н	H	N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
1121	NCH ₃	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1122	NCH ₃	Н	Н	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1123	NCH ₃	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₃
1124	NCH ₃	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
1125	NCH ₃	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1126	NCH ₃	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
1127	NCH ₃	Н	H .	N(CH ₂ CH3)-SO2C(CH3)3
1128	NCH ₃	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
1129	NCH ₃	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
1130	NCH ₃	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1131	NCH ₃	Н	Н	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1132	NCH ₃	Н	Н	NH(CH ₃)
1133	NCH ₃	Н	Н	NHCH ₂ CH ₃
1134	NCH ₃	Н	Н	NHCH ₂ CH ₂ CH ₃
1135	NCH ₃	Н	Н	NHCH(CH ₃) ₂
1136	NCH ₃	Н	Н	NHC(CH ₃) ₃
1137	NCH ₃	Н	H	NHCH ₂ CH(CH ₃) ₂
1138	NCH ₃	Н	Н	NHCH(CH ₃)CH ₂ CH ₃
1139	NCH ₃	Н	Н	NHCH₂CH₂CI
1140	NCH ₃	H	Н	NHCH ₂ CH ₂ OCH ₃
1141	NCH ₃	Н	H	NHCH ₂ CH ₂ SCH ₃
1142	NCH ₃	Н	H	NHCH ₂ COOCH ₃
1143	NCH ₃	Н	Н	NHCH ₂ CONH ₂
1144	NCH ₃	Н	Н	NHCH ₂ CH=CH ₂
1145	NCH ₃	Н	Н	NHCH₂C≡CH
1146	NCH ₃	Н	Н	NH-Cyclopentyl
1147	NCH ₃	Н	Н	NH-Cyclohexyl
		<u> </u>	<u> </u>	1

್ ಬಿಲಿಡಿಕ್ಕ

	(Y) _n	R	R ²	D4
1148	NCH ₃	H	H	R ⁴
1149	NCH ₃	H	H	NH-Phenyl
	NCH ₃	H	H	N(CH ₃) ₂
1150				N(CH ₃)CH ₂ CH ₃
1151	NCH ₃	H	H	N(CH ₃)CH(CH ₃) ₂
1152	NCH ₃	Н	H	N(CH ₃)C(CH ₃) ₃
1153	NCH ₃	H	H	N(CH ₃)CH ₂ CH ₂ CH ₃
1154	NCH ₃	Н	Н	N(CH ₃)CH ₂ CH(CH ₃) ₂
1155	NCH ₃	Н	H	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
1156	NCH ₃	H	H	N(CH ₃)CH ₂ CH ₂ CI
1157	NCH ₃	Н	Н	N(CH ₃)CH ₂ CH ₂ OCH ₃
1158	NCH ₃	H	H	N(CH ₃)CH ₂ CH ₂ SCH ₃
1159	NCH ₃	H	H	N(CH ₃)CH ₂ COOCH ₃
1160	NCH ₃	Н	H	N(CH ₃)CH ₂ CONH ₂
1161	NCH ₃	Н	H	N(CH ₃)CH ₂ CH=CH ₂
1162	NCH ₃	Н	H	N(CH ₃)CH ₂ C≡CH
1163	NCH ₃	Н	H	N(CH3)-Cyclopentyl
1164	NCH ₃	Н	Н	N(CH3)-Cyclohexyl
1165	NCH ₃	Н	H	N(CH ₃)-Phenyl
1166	NCH ₃	Н	H	N(CH ₂ CH ₃) ₂
1167	NCH ₃	H	Н	N(CH ₂ CH ₃)CH(CH ₃) ₂
1168	NCH ₃	H	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
1169	NCH ₃	H	Н	N(CH ₂ CH ₃)C(CH ₃) ₃
1170	NCH ₃	Н	H	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
1171	NCH ₃	H	Н	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
1172	NCH ₃	Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
1173	NCH ₃	Н	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
1174	NCH ₃	H	Н	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
1175	NCH ₃	H	Н	N(CH ₂ CH ₃)CH ₂ COOCH ₃
1176	NCH ₃	Н	H	N(CH ₂ CH ₃)CH ₂ CONH ₂
1177	NCH ₃	H	Н	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
1178	NCH ₃	Н	Н	N(CH ₂ CH ₃)CH ₂ C≡CH
1179	NCH ₃	H	H	N(CH ₂ CH ₃)-Cyclopentyl
1180	NCH ₃	H	H	N(CH ₂ CH ₃)-Cyclohexyl
1181	NCH ₃	Н	H	N(CH ₂ CH ₃)-Phenyl
1182	NCH ₃	Н	H	N(CH(CH ₃) ₂) ₂
1183	NCH ₃	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
1184	NCH ₃	Н	Н	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
1185	NCH ₃	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
1186	NCH₃	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
1187	NCH ₃	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
1188	NCH ₃	Н	Н	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
1189	NCH ₃	Н	Н	N(CH(CH ₃) ₂)CH ₂ CONH ₂
1190	NCH ₃	Н	Н	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
1191	NCH ₃	Н	Н	N(CH(CH ₃) ₂)CH ₂ C≡CH
1192	NCH ₃	Н	Н	(CH(CH ₃) ₂)H-Cyclopentyl
1193	NCH ₃	Н	Н	N(CH(CH ₃) ₂)-Cyclohexyl
1194	NCH ₃	Н	Н	N(CH(CH ₃) ₂)-Phenyl
1195	NCH ₃	Н	Н	Morpholin-1-yl
1196	NCH ₃	Н	H	Piperidin-1-yl
1197	NCH ₃	Н	CH ₃	NH-SO ₂ CH ₃

<u> </u>	(Y) _n	R ¹	R ²	R ⁴
1198	NCH ₃	H	CH ₃	NH-SO ₂ CH ₂ CH ₃
1199	NCH ₃	Н	CH ₃	NH-SO ₂ CH ₂ CH ₃
1200	NCH ₃	H	CH ₃	NH-SO ₂ CH ₂ CH ₂ CH ₃
1201	NCH ₃	H	CH ₃	NH-SO ₂ C(CH ₃) ₃
1202	NCH ₃	H	CH ₃	
1203	NCH ₃	H	CH ₃	NH-SO ₂ CH ₂ CI
	NCH ₃	H	CH ₃	NH-SO ₂ CH ₂ CH ₂ CI
1204	NCH ₃	H	CH ₃	NH-SO ₂ CH ₂ CH ₂ OCH ₃
1205		H		NH-SO ₂ CH ₂ CH ₃ SCH ₃
1206	NCH ₃	H	CH ₃	N(CH ₃)-SO ₂ CH ₃
1207	NCH ₃		CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
1208	NCH ₃	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1209	NCH ₃	H	CH ₃	N(CH ₃)-SO ₂ CH(CH ₃) ₂
1210	NCH ₃	Н	CH ₃	N(CH ₃)-SO ₂ C(CH ₃) ₃
1211	NCH ₃	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ Cl
1212	NCH ₃	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ Cl
1213	NCH ₃	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1214	NCH ₃	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1215	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
1216	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
1217^	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1218"	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
1219"	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ C(CH ₃) ₃
1220	NCH ₃	H	CH₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
1221	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ Cl
1222	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1223	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1224	NCH ₃	H	CH₃	NH(CH ₃)
1225	NCH ₃	H	CH ₃	NHCH₂CH₃
1226	NCH ₃	H	CH ₃	NHCH2CH2CH3
1227	NCH ₃	H	CH ₃	NHCH(CH ₃) ₂
1228	NCH ₃	H	CH ₃	NHC(CH ₃) ₃
1229	NCH ₃	H	CH ₃	NHCH ₂ CH(CH ₃) ₂
1230	NCH ₃	Н	CH ₃	NHCH(CH ₃)CH ₂ CH ₃
1231	NCH ₃	H	CH ₃	NHCH₂CH₂Cl
1232	NCH ₃	H	CH ₃	NHCH ₂ CH ₂ OCH ₃
1233	NCH ₃	Н	CH ₃	NHCH ₂ CH ₂ SCH ₃
1234	NCH ₃	H	CH ₃	NHCH ₂ COOCH ₃
1235	NCH ₃	<u>H</u>	CH ₃	NHCH₂CONH₂
1236	NCH ₃	Н	CH ₃	NHCH₂CH=CH₂
1237	NCH ₃	Н	CH ₃	NHCH₂C≡CH
1238	NCH ₃	<u>H</u>	CH ₃	NH-Cyclopentyl
1239	NCH ₃	H	CH ₃	NH-Cyclohexyl
1240	NCH ₃	H	CH ₃	NH-Phenyl
1241	NCH ₃	H	CH ₃	N(CH ₃) ₂
1242	NCH ₃	H	CH ₃	N(CH ₃)CH ₂ CH ₃
1243	NCH ₃	Н	CH ₃	N(CH ₃)CH(CH ₃) ₂
1244	NCH ₃	Н	CH ₃	$N(CH_3)C(CH_3)_3$
1245	NCH ₃	Н	CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃
1246	NCH ₃	Н	CH ₃	N(CH ₃)CH ₂ CH(CH ₃) ₂
1247	NCH ₃	- н	CH ₃	N(CH ₃)CH(CH ₃)CH ₂ CH ₃

	(Y) _n	R	R ²	R ⁴
1248	NCH ₃	H	CH ₃	N(CH ₃)CH ₂ CH ₂ CI
1249	NCH ₃	H	CH ₃	
1250	NCH ₃	H	CH ₃	N(CH ₃)CH ₂ CH ₂ OCH ₃
1251	NCH ₃	H	CH ₃	N(CH ₃)CH ₂ CH ₂ SCH ₃
1252	NCH ₃	H		N(CH ₃)CH ₂ COOCH ₃
1253	NCH ₃	H	CH ₃	N(CH ₃)CH ₂ CONH ₂
		H	CH ₃	N(CH ₃)CH ₂ CH=CH ₂
1254	NCH ₃		CH ₃	N(CH ₃)CH ₂ C≡CH
1255	NCH ₃	H	CH ₃	N(CH3)-Cyclopentyl
1256	NCH ₃	H	CH ₃	N(CH3)-Cyclohexyl
1257	NCH ₃	H	CH ₃	N(CH ₃)-Phenyl
1258	NCH ₃	H	CH ₃	N(CH ₂ CH ₃) ₂
1259	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂
1260	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
1261	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
1262	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
1263	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
1264	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
1265	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
1266	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
1267	NCH ₃	H	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
1268	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CONH ₂
1269	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
1270	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
1271	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)-Cyclopentyl
1272	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
1273	NCH ₃	Н	CH ₃	N(CH ₂ CH ₃)-Phenyl
1274	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂) ₂
1275	NCH₃	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
1276	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
1277	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
1278	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
1279	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
1280	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
1281	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂
1282	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
1283	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ C≡CH
1284	NCH ₃	H	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
1285	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)-Cyclohexyl
1286	NCH ₃	Н	CH ₃	N(CH(CH ₃) ₂)-Phenyl
1287	NCH ₃	Н	CH ₃	Morpholin-1-yl
1288	NCH₃	H	CH ₃	Piperidin-1-yl
1289	NCH ₃	CH ₃	CH ₃	NH-SO ₂ CH ₃
1290	NCH ₃	CH ₃	CH ₃	NH-SO ₂ CH ₃ NH-SO ₂ CH ₂ CH ₃
1291	NCH ₃	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₃ NH-SO ₂ CH ₂ CH ₃
1292	NCH ₃	CH ₃	CH ₃	
1293	NCH ₃	CH ₃	CH ₃	NH-SO ₂ CH(CH ₃) ₂
1294	NCH ₃	CH ₃	CH ₃	NH-SO ₂ C(CH ₃) ₃
1295	NCH ₃	CH ₃		NH-SO ₂ CH ₂ CI
1295	NCH ₃	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ CI
	NCH ₃		CH ₃	NH-SO ₂ CH ₂ CH ₂ OCH ₃
1297	исп3	CH ₃	CH ₃	NH-SO ₂ CH ₂ CH ₂ SCH ₃

	(Y) _n	l R ¹	R ²	R ⁴
1298	NCH ₃	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₃
	NCH ₃	CH ₃	CH ₃	
1299			CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
1300	NCH ₃	CH ₃		N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1301	NCH ₃	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH(CH ₃) ₂
1302	NCH ₃	CH ₃	CH ₃	N(CH ₃)-SO ₂ C(CH ₃) ₃
1303	NCH ₃	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ Cl
1304	NCH ₃	CH₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
1305	NCH ₃	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1306	NCH ₃	CH ₃	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1307	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
1308	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
1309	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1310	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
1311	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH3)-SO2C(CH3)3
1312	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
1313	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
1314	NCH₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1315	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1316	NCH ₃	CH ₃	CH ₃	NH(CH ₃)
1317	NCH ₃	CH ₃	CH ₃	NHCH ₂ CH ₃
1318	NCH ₃	CH ₃	CH ₃	NHCH2CH2CH3
1319	NCH ₃	CH ₃	CH ₃	NHCH(CH ₃) ₂
1320	NCH ₃	CH ₃	CH ₃	NHC(CH ₃) ₃
1321	NCH ₃	CH ₃	CH ₃	NHCH ₂ CH(CH ₃) ₂
1322	NCH ₃	CH ₃	CH ₃	NHCH(CH ₃)CH ₂ CH ₃
1323	NCH ₃	CH ₃	CH ₃	NHCH ₂ CH ₂ CI
1324	NCH ₃	CH ₃	CH ₃	NHCH2CH2OCH3
1325	NCH ₃	CH ₃	CH ₃	NHCH ₂ CH ₂ SCH ₃
1326	NCH ₃	CH ₃	CH ₃	NHCH ₂ COOCH ₃
1327	NCH ₃	CH ₃	CH ₃	NHCH₂CONH₂
1328	NCH ₃	CH ₃	CH ₃	NHCH ₂ CH=CH ₂
1329	NCH ₃	CH ₃	CH ₃	NHCH₂C≡CH
1330	NCH ₃	CH ₃	CH ₃	NH-Cyclopentyl
1331	NCH ₃	CH ₃	CH ₃	NH-Cyclohexyl
1332	NCH ₃	CH ₃	CH ₃	NH-Phenyl
1333	NCH ₃	CH ₃	CH ₃	N(CH ₃) ₂
1334	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₃
1335	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH(CH ₃) ₂
1336	NCH ₃	CH ₃	CH ₃	N(CH ₃)C(CH ₃) ₃
1337	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃
1338	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ CH(CH ₃) ₂
1339	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
1340	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ CI
1341	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ OCH ₃
1342	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ CH ₂ OCH ₃
1343	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ CCH ₃ N(CH ₃)CH ₂ COOCH ₃
1344	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ COOCH ₃ N(CH ₃)CH ₂ CONH ₂
1344	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ CONH ₂ N(CH ₃)CH ₂ CH=CH ₂
1345	NCH ₃	CH ₃	CH ₃	
	NCH ₃	CH ₃	CH ₃	N(CH ₃)CH ₂ C≡CH
1347	110113	C113	C: 13	N(CH3)-Cyclopentyl

1348 1349 1350	(Y) _n NCH ₃	R ¹	\mathbb{R}^2	R ⁴
1349 1350	110113	1 ('H-	CH ₃	
1350	NCH ₃	CH ₃	CH ₃	N(CH3)-Cyclohexyl
				N(CH ₃)-Phenyl
	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃) ₂
1351	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂
1352	NCH ₃	CH ₃	CH₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
1353	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
1354	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
1355	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
1356	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ Cl
1357	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
1358	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
1359	NCH ₃	CH₃	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
1360	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CONH ₂
1361	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
1362	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
1363	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-Cyclopentyl
1364	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
1365	NCH ₃	CH ₃	CH ₃	N(CH ₂ CH ₃)-Phenyl
1366	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂) ₂
1367	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
1368	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
1369	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ Cl
1370	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
1371	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
1372	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
1373	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂
1374	NCH ₃	CH ₃	CH₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
1375	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)CH ₂ C≡CH
1376	NCH ₃	CH ₃	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
1377	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)-Cyclohexyl
1378	NCH ₃	CH ₃	CH ₃	N(CH(CH ₃) ₂)-Phenyl
1379	NCH ₃	CH ₃	CH ₃	Morpholin-1-yl
1380	NCH ₃	CH ₃	CH ₃	Piperidin-1-yl
1381	CH ₂	H	Cl	NH-SO ₂ CH ₃
1382	CH ₂	H	Cl	NH-SO ₂ CH ₃
1383	CH ₂	H	Cl	NH-SO ₂ CH ₂ CH ₃
1384	CH ₂	H	Cl	NH-SO ₂ CH ₂ CH ₃ CH ₃
1385	CH ₂	Н	Cl	
1386	CH ₂	H	C!	NH-SO ₂ C(CH ₃) ₃ NH-SO ₂ CH ₂ Cl
1387	CH ₂	Н	CI	
1388	CH ₂	Н	CI	NH-SO ₂ CH ₂ CH ₂ CI
1389	CH ₂	H	CI	NH-SO ₂ CH ₂ CH ₂ OCH ₃
1390	CH ₂	Н	CI	NH-SO ₂ CH ₂ CH ₃
1390	CH ₂	H	CI	N(CH ₃)-SO ₂ CH ₃
1391	CH ₂	Н	Cl	N(CH ₃)-SO ₂ CH ₂ CH ₃
1392	CH ₂	Н	Cl	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
				N(CH ₃)-SO ₂ CH(CH ₃) ₂
1394	CH ₂	H	Cl ·	N(CH ₃)-SO ₂ C(CH ₃) ₃
1395	CH ₂	Н	Cl	N(CH ₃)-SO ₂ CH ₂ Cl
1396	CH ₂	H	Cl	N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
1397	CH ₂	Н	Cl	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃

[(Y) _n	R ¹	R ²	R ⁴
1398	CH ₂	Н	CI	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1399	CH ₂	Н	CI	N(CH ₂ CH ₃)-SO ₂ CH ₃
1400	CH ₂	H	Ci	N(CH ₂ CH ₃)-SO ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
1401	CH ₂	H	CI	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1402	CH ₂	H	CI	
1403	CH ₂	H	CI	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
1404	CH ₂	H	CI	N(CH ₂ CH ₃)-SO ₂ C(CH ₃) ₃
1405	CH ₂	H	CI	N(CH ₂ CH ₃)-SO ₂ CH ₂ CI
	CH ₂	 	Ci	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
1406		H		N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1407	CH ₂	H	CI	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1408	CH ₂	H	CI	NH(CH ₃)
1409	CH₂	H	Cl	NHCH ₂ CH ₃
1410	CH ₂	Н	Cl	NHCH ₂ CH ₂ CH ₃
1411	CH₂	H	CI	NHCH(CH ₃) ₂
1412	CH ₂	Н	Cl	NHC(CH ₃) ₃
1413	CH₂	H	Cl	NHCH ₂ CH(CH ₃) ₂
1414	CH ₂	Н	Cl	NHCH(CH ₃)CH ₂ CH ₃
1415	CH ₂	H	Cl	NHCH₂CH₂Cl
1416	CH ₂	H	Cl	NHCH ₂ CH ₂ OCH ₃
1417	CH ₂	H	Cl	NHCH ₂ CH ₂ SCH ₃
1418	CH ₂	H	CI	NHCH ₂ COOCH ₃
1419	CH ₂	Н	Cl	NHCH₂CONH₂
1420	CH ₂	Н	Cl	NHCH ₂ CH=CH ₂
1421	CH ₂	H	Cl	NHCH ₂ C≡CH
1422	CH ₂	Н	Cl	NH-Cyclopentyl
1423	CH ₂	H	CI	NH-Cyclohexyl
1424	CH ₂	Н	Cl	NH-Phenyl
1425	CH ₂	Н	Cl	N(CH ₃) ₂
1426	CH ₂	H	Cl	N(CH ₃)CH ₂ CH ₃
1427	CH ₂	H	Cl	N(CH ₃)CH(CH ₃) ₂
1428	CH ₂	H	Cl	N(CH ₃)C(CH ₃) ₃
1429	CH ₂	Н	Cl	N(CH ₃)CH ₂ CH ₂ CH ₃
1430	CH ₂	H	CI	N(CH ₃)CH ₂ CH(CH ₃) ₂
1431	CH ₂	Н	Cl	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
1432	CH ₂	Н	CI	N(CH ₃)CH ₂ CH ₂ CI
1433	CH ₂	H	Cl	N(CH ₃)CH ₂ CH ₂ OCH ₃
1434	CH ₂	H	Cl	N(CH ₃)CH ₂ CH ₂ SCH ₃
1435	CH ₂	H	Cl	N(CH₃)CH₂COOCH₃
1436	CH ₂	H	Cl	N(CH ₃)CH ₂ CONH ₂
1437	CH ₂	H	Cl	N(CH ₃)CH ₂ CH=CH ₂
1438	CH₂	H	Cl	N(CH ₃)CH ₂ C≡CH
1439	CH₂	H	Cl	N(CH3)-Cyclopentyl
1440	CH ₂	H	Cl	N(CH3)-Cyclohexyl
1441	CH ₂	H	Cl	N(CH ₃)-Phenyl
1442	CH ₂	H	Cl	N(CH ₂ CH ₃) ₂
1443	CH ₂	H	Cl	N(CH ₂ CH ₃)CH(CH ₃) ₂
1444	CH ₂	H	Cl	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
1445	CH ₂	H	Cl	N(CH ₂ CH ₃)C(CH ₃) ₃
1446	CH ₂	H	Cl	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
1447	CH₂	H	Cl	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃

	(Y) _n	R ¹	R ²	R ⁴
1448	CH ₂	Н	CI	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
1449	CH ₂	H	Cl	N(CH ₂ CH ₃)CH ₂ CH ₂ CCH ₃
1450	CH ₂	H	Cl	
1451	CH ₂	H	CI	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
1452	CH ₂	H	CI	N(CH ₂ CH ₃)CH ₂ COOCH ₃
	CH ₂	H	CI	N(CH ₂ CH ₃)CH ₂ CONH ₂
1453			Cl	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
1454	CH ₂	H		N(CH ₂ CH ₃)CH ₂ C≡CH
1455	CH ₂	H	Cl	N(CH ₂ CH ₃)-Cyclopentyl
1456	CH ₂	H	Cl	N(CH ₂ CH ₃)-Cyclohexyl
1457	CH ₂	H	Cl	N(CH ₂ CH ₃)-Phenyl
1458	CH ₂	Н	Cl	N(CH(CH ₃) ₂) ₂
1459	CH ₂	H	Cl	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
1460	CH ₂	H	Cl	N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
1461	CH ₂	H	Cl	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI
1462	CH ₂	H	Cl	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
1463	CH ₂	Н	CI	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
1464	CH ₂	Н	Cl	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
1465	CH ₂	Н	Cl	N(CH(CH ₃) ₂)CH ₂ CONH ₂
1466	CH ₂	Н	Cl	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
1467	CH ₂	H	Cl	N(CH(CH ₃) ₂)CH ₂ C≡CH
1468	CH ₂	Н	Cl	(CH(CH ₃) ₂)H-Cyclopentyl
1469	CH ₂	Н	Cl	N(CH(CH ₃) ₂)-Cyclohexyl
1470	CH ₂	H	Cl	N(CH(CH ₃) ₂)-Phenyl
1471	CH ₂	Н	Cl	Morpholin-1-yl
1472	CH ₂	H	Cl	Piperidin-1-yl
1473	CH ₂	Н	CH₃	NH-SO ₂ CH ₃
1474	CH ₂	H	CH₃	NH-SO ₂ CH ₂ CH ₃
1475	CH ₂	Н	CH ₃	NH-SO ₂ CH ₂ CH ₂ CH ₃
1476	CH ₂	H	CH ₃	NH-SO ₂ CH(CH ₃) ₂
1477	CH ₂	Н	CH ₃	NH-SO ₂ C(CH ₃) ₃
1478	CH ₂	Н	CH ₃	NH-SO ₂ CH ₂ Cl
1479	CH ₂	Н	CH ₃	NH-SO ₂ CH ₂ CI
1480	CH ₂	Н	CH ₃	NH-SO ₂ CH ₂ CH ₂ OCH ₃
1481	CH ₂	Н	CH ₃	NH-SO ₂ CH ₂ CH ₂ SCH ₃
1482	CH ₂	H	CH ₃	N(CH ₃)-SO ₂ CH ₃
1483	CH ₂	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₃
1484	CH ₂	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1485	CH ₂	Н	CH ₃	N(CH ₃)-SO ₂ CH(CH ₃) ₂
1486	CH ₂	Н	CH ₃	N(CH ₃)-SO ₂ C(CH ₃) ₃
1487	CH ₂	Н	CH ₃	N(CH ₃)-SO ₂ C(CH ₃) ₃
1488	CH ₂	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CI
1489	CH ₂	Н	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1490	CH ₂	H	CH ₃	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1491	CH ₂	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃
1492	CH ₂	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
1493	CH ₂	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1494	CH ₂	Н	CH ₃	
1495	CH ₂	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
1496	CH ₂	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ C(CH ₃) ₃
1497	CH ₂	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ Cl
1731	C112		Cris	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI

	(Y) _n	R ¹	R ²	R ⁴
1498	CH ₂	Н	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1499	CH ₂	H	CH ₃	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1500	CH ₂	Н	CH ₃	NH(CH ₃)
1501	CH ₂	H	CH ₃	NHCH ₂ CH ₃
	CH ₂	Н	CH ₃	NHCH ₂ CH ₃
1502	CH ₂	H	CH ₃	NHCH ₂ CH ₃ CH ₃
1503	CH ₂	H	CH ₃	
1504	CH ₂	H	CH ₃	NHC(CH ₃) ₃ NHCH ₂ CH(CH ₃) ₂
1505	CH ₂	H	CH ₃	
1506		H	CH ₃	NHCH(CH ₃)CH ₂ CH ₃
1507	CH ₂			NHCH ₂ CH ₂ CI
1508	CH ₂	Н	CH ₃	NHCH ₂ CH ₂ OCH ₃
1509	CH ₂	H	CH ₃	NHCH ₂ CH ₂ SCH ₃
1510	CH ₂	H	CH ₃	NHCH ₂ COOCH ₃
1511	CH ₂	H	CH ₃	NHCH ₂ CONH ₂
1512	CH ₂	H	CH ₃	NHCH ₂ CH=CH ₂
1513	CH ₂	H	CH ₃	NHCH₂C≡CH
1514	CH ₂	H	CH ₃	NH-Cyclopentyl
1515	CH ₂	H	CH ₃	NH-Cyclohexyl
1516	CH₂	H	CH ₃	NH-Phenyl
1517	CH ₂	H	CH ₃	N(CH ₃) ₂
1518	CH₂	H	CH ₃	N(CH ₃)CH ₂ CH ₃
1519	CH ₂	H	CH ₃	N(CH ₃)CH(CH ₃) ₂
1520	CH ₂	H	CH ₃	N(CH ₃)C(CH ₃) ₃
1521	CH ₂	H	CH ₃	N(CH ₃)CH ₂ CH ₂ CH ₃
1522	CH₂	H	CH ₃	N(CH ₃)CH ₂ CH(CH ₃) ₂
1523	CH ₂	<u>H</u>	CH ₃	N(CH ₃)CH(CH ₃)CH ₂ CH ₃
1524	CH ₂	H	CH ₃	N(CH ₃)CH ₂ CH ₂ Cl
1525	CH ₂	H	CH ₃	N(CH ₃)CH ₂ CH ₂ OCH ₃
1526	CH₂	H	CH ₃	N(CH ₃)CH ₂ CH ₂ SCH ₃
1527	CH ₂	H	CH ₃	N(CH ₃)CH ₂ COOCH ₃
1528	CH ₂	H	CH ₃	N(CH ₃)CH ₂ CONH ₂
1529	CH₂	H	CH ₃	N(CH ₃)CH ₂ CH=CH ₂
1530	CH ₂	H	CH ₃	N(CH ₃)CH ₂ C≡CH
1531	CH ₂	H	CH ₃	N(CH3)-Cyclopentyl
1532	CH ₂	H	CH ₃	N(CH3)-Cyclohexyl
1533	CH ₂	H	CH ₃	N(CH ₃)-Phenyl
1534	CH ₂	H	CH₃	N(CH ₂ CH ₃) ₂
1535	CH ₂	<u> </u>	CH ₃	N(CH ₂ CH ₃)CH(CH ₃) ₂
1536	CH ₂	<u> </u>	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
1537	CH₂	<u> </u>	CH ₃	N(CH ₂ CH ₃)C(CH ₃) ₃
1538	CH ₂	H	CH₃	N(CH ₂ CH ₃)CH ₂ CH(CH ₃) ₂
1539	CH₂	<u>H</u>	CH ₃	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
1540	CH ₂	<u>H</u>	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
1541	CH ₂	H	CH₃	N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
1542	CH ₂	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
1543	CH₂	H	CH ₃	N(CH ₂ CH ₃)CH ₂ COOCH ₃
1544	CH₂	<u>H</u>	CH ₃	N(CH ₂ CH ₃)CH ₂ CONH ₂
1545	CH₂	H	CH ₃	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
1546	CH₂	H	CH ₃	N(CH ₂ CH ₃)CH ₂ C≡CH
1547	CH ₂	H	CH ₃	N(CH ₂ CH ₃)-Cyclopentyl

	$(Y)_n$	R	R ²	R ⁴
1548	CH ₂	Н	CH ₃	N(CH ₂ CH ₃)-Cyclohexyl
1549	CH ₂	·H	CH ₃	N(CH ₂ CH ₃)-Phenyl
1550	CH ₂	H	CH ₃	N(CH(CH ₃) ₂) ₂
1551	CH ₂	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂
1552	CH ₂	Н	CH ₃	N(CH(CH ₃) ₂)CH(CH ₃) ₂ N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
1553	CH ₂	H	CH ₃	
1554	CH ₂	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ Cl
1555	CH ₂	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
1556	CH ₂	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
1557	CH ₂	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
1558	CH ₂	H	CH ₃	N(CH(CH ₃) ₂)CH ₂ CONH ₂
1559	CH ₂	Н	CH ₃	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
1560	CH ₂			N(CH(CH ₃) ₂)CH ₂ C≡CH
		H	CH ₃	(CH(CH ₃) ₂)H-Cyclopentyl
1561	CH ₂	H	CH ₃	N(CH(CH ₃) ₂)-Cyclohexyl
1562	CH ₂	H	CH ₃	N(CH(CH ₃) ₂)-Phenyl
1563	CH ₂	H	CH ₃	Morpholin-1-yl
1564	CH ₂	H	CH₃	Piperidin-1-yl
1565	CH	=	Cl	NH-SO ₂ CH ₃
1566	CH	=	Cl	NH-SO ₂ CH ₂ CH ₃
1567	СН	=	Cl	NH-SO ₂ CH ₂ CH ₂ CH ₃
1568	CH	=	Cl	NH-SO ₂ CH(CH ₃) ₂
1569	СН	=	Cl	NH-SO ₂ C(CH ₃) ₃
1570	CH	=	Cl	NH-SO ₂ CH ₂ CI
1571	СН	=	CI	NH-SO ₂ CH ₂ CH ₂ CI
1572	CH	=	Cl	NH-SO ₂ CH ₂ CH ₂ OCH ₃
1573	СН	=	Cl	NH-SO ₂ CH ₂ CH ₂ SCH ₃
1574	СН	=	Cl	N(CH ₃)-SO ₂ CH ₃
1575	СН	=	Cl	N(CH ₃)-SO ₂ CH ₂ CH ₃
1576	CH	=	CI	N(CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1577	··· CH	· =	Cl	N(CH ₃)-SO ₂ CH(CH ₃) ₂
1578	CH	=	Cl	$N(CH_3)-SO_2C(CH_3)_3$
1579	СН		Cl	N(CH ₃)-SO ₂ CH ₂ CI
1580	CH	=	Cl	N(CH ₃)-SO ₂ CH ₂ CH ₂ CI
1581	CH	=	Cl	N(CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1582	CH	=	Cl	N(CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1583	CH	=	Cl	N(CH ₂ CH ₃)-SO ₂ CH ₃
1584	CH	=	Cl	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₃
1585	CH	=	Cl	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CH ₃
1586	CH	=	Cl	N(CH ₂ CH ₃)-SO ₂ CH(CH ₃) ₂
1587	CH	=	Cl	N(CH ₂ CH ₃)-SO2C(CH ₃) ₃
1588	СН	= _	Cl	N(CH ₂ CH ₃)-SO ₂ CH ₂ CI
1589	СН	=	Cl	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ CI
1590	СН	=	Cl	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ OCH ₃
1591	CH	=	CI	N(CH ₂ CH ₃)-SO ₂ CH ₂ CH ₂ SCH ₃
1592	CH	=	Cl	NH(CH ₃)
1593	СН	=	Cl	NHCH ₂ CH ₃
1594	CH	=	CI	NHCH ₂ CH ₃
1595	CH	=	Cl	NHCH(CH ₃) ₂
1596	СН	=	Cl	NHC(CH ₃) ₃
1597	СН	=	CI	NHCH ₂ CH(CH ₃) ₂
		<u>-</u> .l.	L	2011(0113)/2

	$(Y)_n$	R ¹	R ²	R ⁴
1598	CH	=	Cl	NHCH(CH ₃)CH ₂ CH ₃
1599	CH	=	Cl	NHCH ₂ CH ₂ CI
1600	СН	=	Cl	NHCH ₂ CH ₂ OCH ₃
1601	СН	=	Cl	NHCH ₂ CH ₂ SCH ₃
1602	СН	=	CI	NHCH ₂ COOCH ₃
1603	СН	=	Cl	NHCH ₂ CONH ₂
1604	CH	=	Cl	NHCH ₂ CH=CH ₂
1605	CH	=	Cl	NHCH ₂ C≡CH
1606	СН	=	Cl	NH-Cyclopentyl
1607	CH	=	Cl	NH-Cyclohexyl
1608	CH	=	Cl	NH-Phenyl
1609	CH	=	Cl	N(CH ₃) ₂
1610	CH	=	Cl	N(CH ₃)CH ₂ CH ₃
1611	CH	=	Cl	N(CH ₃)CH(CH ₃) ₂
1612	CH	=	Cl	N(CH ₃)C(CH ₃) ₃
1613	CH	=	Cl	N(CH ₃)CH ₂ CH ₂ CH ₃
1614	CH	=	Cl	N(CH ₃)CH ₂ CH ₂ CH ₃ N(CH ₃)CH ₂ CH(CH ₃) ₂
1615	CH		Cl	N(CH ₃)CH ₂ CH ₃ CH ₂ CH ₃
1616	CH	=	Cl	N(CH ₃)CH ₂ CH ₂ CH ₃
1617	CH	=	Cl	N(CH ₃)CH ₂ CH ₂ CCH ₃
1618	CH	=	Cl	N(CH ₃)CH ₂ CH ₂ CCH ₃
1619	CH	=	Cl	N(CH ₃)CH ₂ COOCH ₃
	CH	=	Cl	N(CH ₃)CH ₂ COOCH ₃ N(CH ₃)CH ₂ CONH ₂
1620	CH	=	Cl	N(CH ₃)CH ₂ CONH ₂ N(CH ₃)CH ₂ CH=CH ₂
1621	CH	_ _	Cl	N(CH ₃)CH ₂ C=CH N(CH ₃)CH ₂ C≡CH
1622	CH	=	Cl	N(CH3)-Cyclopentyl
1623 1624	CH	=	Cl	N(CH3)-Cyclohexyl
1625	CH		Cl	N(CH ₃)-Phenyl
1626	CH		Ci	N(CH ₂ CH ₃) ₂
1627	CH		CI	$N(CH_2CH_3)_2$ $N(CH_2CH_3)CH(CH_3)_2$
1628	CH	=	CI	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃
1629	CH	=	Cl	N(CH ₂ CH ₃)C(CH ₃) ₃
1630	CH	=	Cl	N(CH ₂ CH ₃)C(CH ₃) ₃
1631	CH	=	Cl	N(CH ₂ CH ₃)CH(CH ₃)CH ₂ CH ₃
1632	CH	=	Cl	N(CH ₂ CH ₃)CH ₂ CH ₂ CI
1633	CH	=	Cl	N(CH ₂ CH ₃)CH ₂ CH ₂ CH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ OCH ₃
1634	CH	=	Cl	N(CH ₂ CH ₃)CH ₂ CH ₂ CCH ₃ N(CH ₂ CH ₃)CH ₂ CH ₂ SCH ₃
1635	CH	=	Cl	N(CH ₂ CH ₃)CH ₂ COOCH ₃
1636	CH	=	Cl	N(CH ₂ CH ₃)CH ₂ COOCH ₃ N(CH ₂ CH ₃)CH ₂ CONH ₂
. 1637	CH	=	CI	N(CH ₂ CH ₃)CH ₂ CH=CH ₂
1638	CH	=	Cl	N(CH ₂ CH ₃)CH ₂ C=CH
1639	CH	=	Cl	N(CH ₂ CH ₃)-Cyclopentyl
1640	CH	=	CI	N(CH ₂ CH ₃)-Cyclohexyl
1641	CH		CI	N(CH ₂ CH ₃)-Cyclonexyl
1642	CH	=	CI	N(CH(CH ₃) ₂) ₂
1643	CH	=	CI	N(CH(CH ₃) ₂) ₂ CH ₂ CH(CH ₃) ₂
1644	CH	=	CI	N(CH(CH ₃) ₂)CH ₂ CH(CH ₃) ₂ N(CH(CH ₃) ₂)CH(CH ₃)CH ₂ CH ₃
1645	СН		CI	N(CH(CH ₃) ₂)CH ₂ CH ₂ Cl ₃ N(CH(CH ₃) ₂)CH ₂ CH ₂ Cl
	CH	=	Cl	N(CH(CH ₃) ₂)CH ₂ CH ₂ CI N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃
1646	CH		Cl	N(CH(CH ₃) ₂)CH ₂ CH ₂ OCH ₃ N(CH(CH ₃) ₂)CH ₂ CH ₂ SCH ₃
1647	Cn		CI	N(CH(CH3/2/CH2CH2CH3

10

15

	$(Y)_n$	R	R ²	R ⁴
1648	CH	=	Cl	N(CH(CH ₃) ₂)CH ₂ COOCH ₃
1649	CH	=	Cl	N(CH(CH ₃) ₂)CH ₂ CONH ₂
1650	CH	=	Cl	N(CH(CH ₃) ₂)CH ₂ CH=CH ₂
1651	CH	=	Cl	N(CH(CH ₃) ₂)CH ₂ C≡CH
1652	CH	=	Cl	(CH(CH ₃) ₂)H-Cyclopentyl
1653	CH	=	Cl	N(CH(CH ₃) ₂)-Cyclohexyl
1654	CH	=	Cl	N(CH(CH ₃) ₂)-Phenyl
1655	СН	=	Cl	Morpholin-1-yl
1656	CH	=	Cl	Piperidin-1-yl

Particularly preferred compounds of the general formula I are the compounds of the general formula I.1a' as indicated below (compounds I in which Q = Q1a, $R^3 = H$, X^1 and X^2 are chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$F_{2}HC-N$$

$$H_{3}C$$

$$C1$$

$$R^{1}$$

$$R^{2}$$

$$H_{N}-SO_{2}-R^{4}$$

$$(I.1a')$$

Examples of compounds of formula I.1a' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.1a'.1 to I.1a'.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.1b as indicated below (compounds I in which Q = Q1b, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$\begin{array}{c|c}
 & F \\
 & C1 \\
 & R^1 \\
 & R^2 \\
 & N - SO_2 - R^4
\end{array}$$
(I.1b)

Examples of compounds of formula I.1b are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.1b.1 to I.1b.1656.

10

15

20

Particularly preferred compounds of the general formula I are the compounds of the general formula I.1b' as indicated below (compounds I in which Q = Q1b, $R^3 = H$, X^1 and X^2 are chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.1b' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.1b'.1 to I.1b'.1656

Particularly preferred compounds of the general formula I are the compounds of the general formula I.1c as indicated below (compounds I in which Q = Q1c, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.1c are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.1c.1 to I.1c.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.1c' as indicated below (compounds I in which Q = Q1c, $R^3 = H$, X^1 and X^2 are chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

10

15

Examples of compounds of formula I.1c' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.1c'.1 to I.1c'.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.2a as indicated below (compounds I in which Q = Q2a, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.2a are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 2a .1 to I. 2a.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.2a' as indicated below (compounds I in which Q = Q2a, $R^3 = X^1 = H$ and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.2a' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 2a' .1 to I. 2a'.1656.

10

15

20

Particularly preferred compounds of the general formula I are the compounds of the general formula I.2b as indicated below (compounds I in which Q = Q2b, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$\begin{array}{c|c}
 & F \\
 & C^{1} \\
 & R^{1} \\
 & R^{2} \\
 & N \\
 & -SO_{2} - R^{4}
\end{array}$$
(I.2b)

Examples of compounds of formula I.2b are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 2b .1 to I. 2b.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.2b' as indicated below (compounds I in which Q = Q2b, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.2b' are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 2b' .1 to I. 2b'.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.3a as indicated below (compounds I in which Q = Q3a, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

10

. 15

Examples of compounds of formula I.3a are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 3a .1 to I. 3a.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.3a' as indicated below (compounds I in which Q = Q3a, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$H_{3}C \xrightarrow{N} N \xrightarrow{C1} N \xrightarrow{R^{1} R^{2}} H \xrightarrow{N-SO_{2}-R^{4}} (I.3a')$$

Examples of compounds of formula I.3a' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 3a' .1 to I. 3a' .1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.4a as indicated below (compounds I in which Q = Q4a, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.4a are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 4a .1 to I. 4a.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.4a' as indicated below (compounds I in which Q = Q4a, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

10

15

20

Examples of compounds of formula I.4a' are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 4a' .1 to I. 4a'.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.4b as indicated below (compounds I in which Q = Q4b, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.4b are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.4b.1 to I.4b.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.4b' as indicated below (compounds I in which Q = Q4b, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$F_{3}C$$

$$C1 R^{1} R^{2}$$

$$H_{N-SO_{2}-R^{4}}$$

$$(1.4b')$$

Examples of compounds of formula I.4b' are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.4b'.1 to I.4b'.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.5a as indicated below (compounds I in which Q = Q5a, $R^3 = H$,

DOCID: <WO_ 03029226A1_I_>

10

15

 X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$F_{3}C$$

$$N-N$$

$$(Y)$$

$$n$$

$$0$$

$$N-SO_{2}-R^{4}$$

$$(I.5a)$$

Examples of compounds of formula I.5a are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 5a .1 to I. 5a.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.5a' as indicated below (compounds I in which Q = Q5a, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$F_{3}C$$

$$H_{3}C$$

$$(Y)$$

$$n$$

$$0$$

$$(I.5a')$$

Examples of compounds of formula I.5a' are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 5a' .1 to I. 5a' .1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.5b as indicated below (compounds I in which Q = Q5b, $R^3 = H$, X^1 and X^2 are chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

10

15

Examples of compounds of formula I.5b are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.5b.1 to I.5b.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.5c as indicated below (compounds I in which Q = Q5c, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.5c are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.5c.1 to I.5c.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.5c' as indicated below (compounds I in which Q = Q5c, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$F_{2}HCO \xrightarrow{C1} \underset{N}{R^{1}} \underset{R^{2}}{R^{2}} \underset{N-SO_{2}-R^{4}}{H_{3}C}$$

$$(I.5c')$$

Examples of compounds of formula I.5c' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.5c'.1 to I.5c'.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.5d as indicated below (compounds I in which Q = Q5d, $R^3 = H$, X^1 and X^2 are chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

10

15

20

$$F_{2}HCO \xrightarrow{R^{1}} (Y) \xrightarrow{R^{1}} (Y) \xrightarrow{R^{2}} H - SO_{2} - R^{4}$$

$$(I.5d)$$

$$H_{3}C$$

Examples of compounds of formula I.5d are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.5d.1 to I.5d.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.6a as indicated below (compounds I in which Q = Q6a, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$\begin{array}{c|c}
C1 & R^1 & R^2 \\
(Y) & N & SO_2 - R^4
\end{array}$$
(I.6a)

Examples of compounds of formula I.6a are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 6a .1 to I. 6a.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.6a' as indicated below (compounds I in which Q = Q6a, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$\begin{array}{c|c}
C1 & R^1 & R^2 \\
(Y) & N - SO_2 - R^4
\end{array}$$
(I.6a')

Examples of compounds of formula I.6a' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 6a' .1 to I. 6a' .1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.6b as indicated below (compounds I in which Q = Q6b, $R^3 = H$,

10

15

 X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$C1 \xrightarrow{\text{C1}} \xrightarrow{\text{R1}} \xrightarrow{\text{R2}} \xrightarrow{\text{H}} \text{SO}_2 - \text{R4}$$

$$(\text{I.6b})$$

$$H_3C-SO_2$$

Examples of compounds of formula I.6b are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.6b.1 to I.6b.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.6b' as indicated below (compounds I in which Q = Q6b, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.6b' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.6b'.1 to I.6b'.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.6c as indicated below (compounds I in which Q = Q6c, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$C1 \xrightarrow{\text{C1}} \xrightarrow{\text{R}^1 \times \text{R}^2} \xrightarrow{\text{H}} \text{SO}_2 - \mathbb{R}^4$$

$$(1.6c)$$

$$H_2C-SO_2-O$$

Examples of compounds of formula I.6c are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I.6c.1 to I.6c.1656.

10

15

20

Particularly preferred compounds of the general formula I are the compounds of the general formula I.7a as indicated below (compounds I in which Q = Q7a, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$\begin{array}{c|c}
 & F \\
 & C1 \\
 & R^1 \\
 & R^2 \\
 & N - SO_2 - R^4
\end{array}$$
(I.7a)

Examples of compounds of formula I.7a are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 7a .1 to I. 7a.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.7a' as indicated below (compounds I in which Q = Q7a, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.7a' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 7a' .1 to I. 7a' .1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.7b as indicated below (compounds I in which Q = Q7b, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

10

Examples of compounds of formula I.7b are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 7b .1 to I. 7b.1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.7b' as indicated below (compounds I in which Q = Q7b, $R^3 = H$, X^1 is H and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

$$\begin{array}{c|c}
C1 & R^1 & R^2 \\
N & N & SO_2 - R^4
\end{array}$$
(I.7b')

Examples of compounds of formula I.7b' are those, wherein $(Y)_n$, R^1 , R^2 and R^4 have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 7b' .1 to I. 7b' .1656.

Particularly preferred compounds of the general formula I are the compounds of the general formula I.8a as indicated below (compounds I in which Q = Q8a, $R^3 = H$, X^1 is fluorine and X^2 is chlorine), in which $(Y)_n$, R^1 , R^2 and R^4 have the meanings as indicated above.

Examples of compounds of formula I.8a are those, wherein (Y)_n, R¹, R² and R⁴ have the meanings as given in line Nos 1 to 1656 of Table 1. These compounds are also designated below as compounds I. 8a .1 to I.8a.1656.

Particular desirable compounds include: Propane-2-sulfonic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl}-propionyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl}-propionyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-

20

phenylsulfanyl]-propionyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-propionyl}-amide; Propane-2-sulfonic acid {2-[2-chloro-4-fluoro-5-(3methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-acetyl}amide; Propane-2-sulfonic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-5 trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-acetyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-acetyl}-amide; Dimethylsulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-acetyl}-amide; Dimethyl-sulfamic acid 10 {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2Hpyrimidin-1-yl)-phenyl]-acetyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenyl]-acetyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl]-15 propionyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-acetyl}amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-acetyl}-amide; Methylphenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-20 3.6-dihydro-2H-pyrimidin-1-yl)-phenyl]-acetyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2Hpyrimidin-1-yl)-phenyl]-propionyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-acetyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-25 (3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]acetyl}-amide; Propane-2-sulfonic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylamino]-acetyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylamino]-acetyl}-amide; 30 Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-propionyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-

10

15

20

25

trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-2-methyl-propionyl}-amide;
Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-propionyl}-amide;
-Dimethyl-sulfamic acid 2-chloro-4-fluoro-5-(5-methyl-6-oxo-4-trifluoromethyl-6H-pyridazin-1-yl)-benzoylamide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-propionyl}-amide; and Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylamino]-acetyl}-amide.

Even more desirable compounds are: Propane-2-sulfonic acid {2-[2-chloro-4fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-propionyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-propionyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl}-propionyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-propionyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]acetyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl]-propionyl}-amide; Isopropylmethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl]-propionyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2Hpyrimidin-1-yl)-phenoxy]-propionyl}-amide; and Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenoxy]-propionyl}-amide.

10

15

20

25

30

The compounds useful in the present invention may be readily synthesized using techniques generally known to synthetic organic chemists. The present compositions may be prepared in a known manner, for example by homogeneously mixing or grinding the active ingredient(s) with other ingredients. Additional components may be admixed with the composition at any point during the process, including during and/or after any mixing step of the herbicide components.

The key step in the synthesis of the compounds of formula I is the activation of an acid of formula II and subsequent reaction with a sulfamid of the formula III as shown in scheme 1:

In scheme 1 the variables X^1 , X^2 , Q, Y, n, R^1 to R^4 have the meanings as defined above. R^3 is preferably H.

The reaction of II with the sulfamide III by activation can be performed e.g. according to the methods described in WO 01/83459 p 31 ff. Methods of activating carboxylic acids are also known from e.g. Houben-Weyl, Methoden der Org. Chemie Vol E5, (1985) part 1, pp. 587 ff. and Vol E5, (1985) part 2, pp. 934 ff. and can be applied to the compounds II. For example activation of II can be achieved by transferring the COOH group of II into the corresponding acid halide, preferably into its acid chloride, or by reacting II with III in the presence of a dehydrating agent such as carbonyl diimidazole or dicyclohexyl carbodiimide

The sulfamides III are either known from the literature or can be prepared according to the methods disclosed in Houben-Weyl, Methoden der Org. Chemie Vol E11. (1985) S 1019, G. Hamprecht, Angew. Chem. 93, 151-163 and

The acids II are either known from the literature, e.g. from EP-A 361114, EP-A 300387, WO 96/39392, WO 97/07104, DE 19754348, WO 99/52878, WO 01/79182, US 5,783,522, US 6,090,753 or can be prepared according to methods known from the literature. When Y is O, NH or S acids II can be prepared by the synthetic route as outlined in scheme 2:

10

15

20

25

30

Q

Base

$$X^1$$
 X^2
 X^2

In scheme 2 the variables X^1 , X^2 , R^1 and R^2 are as defined above. L is usually halogen, preferably chlorine, bromine or iodine. Alkyl is preferably methyl or ethyl.

The conditions required for the reaction of IV with V to obtain VI and subsequent hydrolysis of the ester VI to obtain the acid II are well known to a skilled person, e.g. from WO 97/07104.

Compounds IV are known, e.g.

for Q = Q1 from US 4,806,145, US 4,743,291, US 5,035,740, US 4,818,275, WO 87/03782 (Compound IV with Q= Q1, A^1 = O, R^7 = CH_3 , R^8 = CHF_2 , X^1 =F, X^2 =Cl, YH= OH: CAS-Nr. 97986-19-1; Q= Q1, A^1 = O, R^7 = CH_3 , R^8 = CHF_2 , X^1 =F, X^2 =Cl, YH= NH_2 : CAS-Nr. 111992-07-5; Q= Q1, A^1 = O, R^7 and R^8 = -(CH_2)₄-, X^1 =F, X^2 =Cl, YH= OH: CAS-Nr. 292856-11-2);

for Q = Q2 from EP 1122244, WO 9838188, WO 93/14073, US 6,303,783, WO 98/47904, US 5753595, WO 97/08170 (Compound IV with Q = Q2, A^2 , A^3 = O, R^9 = CH₃, R^{10} = CF₃, R^{11} = H, X^1 =F, X_2 =Cl, YH = OH: Cas-Nr. 114136-60-6; Q = Q2, A^2 , A^3 = O, R^9 = CH₃, R^{10} = CF₃, R^{11} = H, X^1 =F, X_2 =Cl, YH = SH: Cas-Nr. 353292-92-9; Q = Q2, A^2 , A^3 = O, A^3 = O, A^3 = O, A^3 = CH₃, A^3 = CH₃

for Q = Q3 from WO 00/50409 (Compound IV with Q = Q3 with R^{12} , R^{13} = CH₃, A^4 , A^6 = O, A^5 =S, X^1 = F, X^2 = C1, YH= OH, Cas-Nr. 289882-54-8);

for Q = Q4 from WO 97/07104, WO 99/52878, US 6,090,753, WO 01/79182 (Compound IV with Q = Q4: A^7 = O, R^{14} = CF₃, R^{15} = H, X^1 =F, X^2 =Cl, Y=OH: Cas-Nr. 188489-77-2):

Q = Q5 from WO 92/06962, (Compound IV with Q = Q5 R¹⁶= CH₃, R¹⁷= CF₃, R¹⁸= Cl, X¹=F, X²=Cl, Y = OH, Cas-Nr. 142625-52-3; Q = Q5, R¹⁶= CH₃, R¹⁷= CF₃,

DOCID: <WO__03029226A1_I_>

10

15

20

 R^{18} = Cl, X^{1} =F, X^{2} =Cl, Y = NH₂, Cas-Nr. 142621-86-1; Q = Q5, R^{16} = CH₃, R^{17} = CF₃, R^{18} = Cl, X^{1} =F, X^{2} =Cl, Y = SH, Cas-Nr. 142625-68-1; Q = Q5, R^{16} = CH₃, R^{17} = OCHF₂, R^{18} = Cl, X^{1} =F, X^{2} =Cl, Y = OH, Cas-Nr. 129631-56-7; Q = Q5, R^{16} = CH₃, R^{17} = OCHF₂, R^{18} = Cl, X^{1} =F, X^{2} =Cl, Y = NH₂, Cas-Nr. 129631-55-6; Q = Q5, R^{16} = CH₃, R^{17} = OCHF₂, R^{18} = Cl, X^{1} =F, X^{2} =Cl, Y = SH, Cas-Nr. 129630-96-2);

for Q = Q6: from WO 95/02580 and WO 02/42275 (Q=Q6, R^{19} = Cl, R^{20} = H, R^{21} = CF₃, R^{22} = H, X^{1} =F, X^{2} =Cl, Y = OH, Cas-Nr. 180153-43-9; Q=Q6, R^{19} = Cl, R^{20} = H, R^{21} = CF₃, R^{22} = H, X^{1} =F, X^{2} =Cl, Y = NH₂, Cas-Nr. 195304-19-9)

for Q=Q7 from WO 94/10173, EP 211805 (Q=Q7, $A^8 = A^9 = O$. $R^{23} - R^{24} = -(CH2)4$ -, $X^1 = F$, $X^2 = CI$, Y = OH, Cas-Nr. 98417-20-0).

Compounds of formula IV, which are not specifically mentioned in the references cited, can be obtained in analogous manner.

Compounds of the formula II can be also prepared starting from aniline compounds of the formula VI,

$$\begin{array}{c}
R^1 \\
\text{CO}_2-\text{alkyl} \\
X^1 \\
X^2
\end{array}$$
(VI)

wherein X^1 , X^2 Y, n R^1 and R^2 are as defined above and Q is Q1 - Q4, Q7 or Q8 by routine methods in the synthesis of heterycles, or in anology to the methods described in the schemes below. For example, compounds, wherein Y is CH= or CH₂, can be prepared starting from aminocinnamic acid derivatives of the formulas VIa or

VIb

$$H_2N$$
 X^2
 H_2N
 X^2
 H_2N
 X^2
 H_2N
 X^2
 H_2N
 X^2
 H_2N
 H_2N

(VIa) (VIb)

wherein X¹, X², R¹ and R² are as defined above by routine methods in the synthesis of heterycles, or in anology to the methods described in the schemes below. Compounds of the formulas VIa or VIb are known e.g. from WO 01/79182, EP-A 240 659, EP-A 300 387 and DE-A 39 04 082.

Exemplary synthesis methods for the compounds of formula I are shown in schemes 3 to 7 below for particular Y, n and Q values. In the following schemes X^3 is halogen, preferably chlorine, bromine or iodine. DBU means diazabicyloundecene. CDI is carbonyldimidazole. The methods and conditions for achieving the reactions described ins the following schemes are in general known from the literature cited above and from Böger et al. Peroxidizing Herbicides, Springer Verlag 1999.

10

د ۱ ۱۹۹۹ دده ۱۵ ۱۳۸۱ ایالیان

Scheme 3: Y is O, n = 1, Q = Q1

$$\begin{array}{c|c} & O_2N & OH & Base & O_2N & OH & R^1 \\ \hline & H_2O & X^1 & X^2 & (R^1) & (R^2) & CO_2-alkyl & X^2 & X^2 & CO_2-alkyl & CO_2-alkyl$$

$$\frac{1}{100 \cdot 10^{10}} = \frac{1}{100 \cdot 10^{10}}$$

Scheme 4: Y is O, n = 1, Q = Q25

> R9X3 Base

$$\begin{array}{c} \begin{array}{c} R_1 \\ CO_2-alkyl \\ X^2 \end{array} \end{array} \begin{array}{c} CH_3COOH, \ reflux \\ R^{10} \\ VI) \end{array} \begin{array}{c} R^{10} \\ Y=O, \ n=1 \end{array} \begin{array}{c} R^{10} \\ R^{10} \\ R^{10} \\ R^{10} \end{array} \begin{array}{c} R^{10} \\ R^{10}$$

$$\begin{array}{c} R^{10} \\ R^{11} \\ O \\ X^{1} \end{array}$$

Alternatively, the intermediate compound IV $\{Q = Q2, Y=0, n=1\}$ may be prepared

$$R^{1}$$
 CO_{2} -alkyl
 CO_{2} -alkyl
 CO_{2} -alkyl
 CO_{2} -alkyl

(VI) $\{Y=0, n=1\}$

(IV) $\{Q=Q2, Y=0, n=1\}$

10

OCID: <WO__03029226A1_I_>

Scheme 6: Y = S, n = 1, Q = Q1 to Q4, Q7, Q8

$$A_2N$$
 A_2
 A_2
 A_3
 A_4
 A_4

$$\begin{array}{c|c} & & & & \\ & & & \\ \hline \text{Acid} & & & \\ \hline & & & \\ X^1 & & & \\ \hline & & & \\ X^2 & & \\ \hline & & & \\ X^3 \text{C} (R^1) (R^2) \text{CO}_2-\text{alkyl} \\ \hline & & \\ X^1 & & \\ \hline & & \\ X^2 & \\ \hline \end{array}$$

Scheme 7: Y = S, n = 1, Q = Q5

$$\frac{SnCl_2}{Acid} \xrightarrow{R^{16}} \overset{R^{17}}{N} \xrightarrow{R^{18}} \frac{Base}{X^3C(R^1)(R^2)CO_2-alkyl} \xrightarrow{X^1} \overset{R^{17}}{X^2} \overset{R^{18}}{X^2}$$

In scheme 7, the radical R¹⁸ in the starting material is usually different from halogen. A halogen atom as radical R¹⁸ will be usually introduced during the reaction sequence.

10

The compounds I and their agriculturally utilizable salts are suitable - both as isomer mixtures and in the form of the pure isomers - as herbicides. The compounds I or herbicidal compositions comprising their salts control vegetation very well on non-crop areas, particularly at high application rates. In crops such as wheat, rice, corn, soybeans and cotton, they act against weeds and weed grasses without noticeably damaging the crop plants. This effect occurs especially at low application rates.

Weeds and weed grases species are exemplified without limitation by the following: velvetleaf (Abutilon theophrasti), pigweed (Amaranthus spp.), mugwort (Artemisia spp.), milkweed (Asclepias spp.), buttonweed (Borreria spp.), oilseed rape, canola, indian mustard, etc. (Brassica spp.), canada thistle (Cirsium arvense), commelina (Commelina spp.), field bindweed (Convolvulus arvensis), filaree (Erodium spp.), sunflower (Helianthus spp.), morning glory (Ipomoea spp.), kochia (Kochia scoparia), mallow (Malva spp.), wild buckwheat, smartweed, etc. (Polygonum spp.), purslane (Portulaca spp.), kudzu (Pueraria spp.), russian thistle (Salsola spp.), sida (Sida spp.), wild mustard (Sinapis arvensis) and cocklebur (Xanthium spp.).

Narrowleaf species are exemplified without limitation by the following: wild oat (Avena fatua), carpetgrass (Axonopus spp.), brachiaria (Brachiaria spp.), downy brome (Bromus tectorum), bermuda grass (Cynodon dactylon), yellow nutsedge (Cyperus esculentus), purple nutsedge (C. rotundus), crabgrass (Digitaria spp.), barnyard grass (Echinochloa crus-galli), goosegrass (Eleusine indica), quackgrass (Elymus repens), lalang (Imperata cylindrica), annual ryegrass (Lolium multiflorum), perennial ryegrass (Lolium perenne), rice (Oryza sativa), ottochloa (Ottochloa nodosa), guineagrass (Panicum maximum), dallisgrass (Paspalum dilatatum), bahiagrass (Paspalum notatum), canarygrass (Phalaris spp.), reed (Phragmites spp.), foxtail (Setaria spp.), johnsongrass (Sorghum halepense), wheat (Triticum aestivum), cattail (Typha spp.), and corn (Zea mays).

Other harmful plant species are exemplified without limitation by the following: horsetail (Equisetum spp.), bracken (Pteridium aquilinum), blackberry (Rubus spp.) and gorse (Ulex europaeus).

Depending on the particular application method, the compounds I or compositions comprising them can additionally be employed for controlling undesired plants in a further number of crop plants. The following crops, for example, are suitable:

20

15

25

30

35

JUC.D. < INU U3US-3588 + 1

10

15

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (S. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera, Zea mays.

20

25

30

35

Moreover, the compounds I can also be used in crops which have been made tolerant to the action of herbicides by means of breeding, including genetic engineering methods.

In addition, the compounds of the general formula I according to the invention and their agriculturally utilizable salts are also suitable for the desiccation and/or defoliation of plants.

As desiccants, they are suitable, in particular, for drying out the above-ground parts of crop plants such as potatoes, rapeseed, sunflower and soybeans. Completely mechanical harvesting of these important crop plants is made possible in this way.

Also of economic interest is the time-controlled fall of fruit or the reduction in their firmness of attachment to the plant, for example in the case of citrus fruits, olives and other types of pomes, drupes and indehiscent fruit, since by this means the harvesting of this fruit is facilitated. The fall is based on the formation of abscission tissue between the fruit, leaf and sprout part of the plants and is promoted by the compounds of the general formula I according to the invention and their salts. The use of the compounds of the general formula I according to the invention and their agriculturally utilizable salts thus allows controlled fall of fruits and controlled defoliation of the crop plants such as cotton and thus makes possible facilitation of

10

15

20

25

30

35

harvesting in crop plants of this type. Controlled defoliation is particularly also of interest in the case of useful plants such as cotton. By means of the shortening of the time interval in which the individual cotton plants become ripe, increased quality of the harvested fiber material is achieved. Control of undesirable vegetation is in general achieved by contacting the plants, their habitat or seeds with a herbicidally effective amount of at least one compound I or its salt.

As used throughout, the term "contacting" is used to mean at least an instance of exposure of at least one plant cell or planting area with a compound or composition of formula I by applying the herbicide using any method known in the art. As such, contacting" includes both direct contact (applying the composition directly on the plant) and indirect contact (applying the composition to the planting area whereupon the plant incorporates the active ingredients). This contact can take place before the target plant emerges from the soil ("pre-emergence" or "PRE") or after the target plant emerges from the soil ("post-emergence" or "POST"). The compounds of the present invention can be applied in a number of ways, for example, they can be applied, formulated or unformulated, directly to the foliage of the target plant or to the planting area or they can be sprayed on, broadcast, dusted on or applied as a cream or paste formulation or they can be applied as slow release granules (ie by injecting, shanking, chiseling or working into the soil).

In general, "herbicidally effective amount" means the amount needed to achieve an observable herbicidal effect on plant growth, including the effects of plant necrosis, plant death, growth inhibition, reproduction inhibition, inhibition of proliferation, and removal, destruction, or otherwise diminishing the occurrence and activity of a plant. Desirably, the herbicidal effects result in greater than 40% control, more desirably greater than 50% control, even more desirably more than 60% control, even more desirably more than 80% control, and even more desirably more than 90% control. Such control may not be immediately apparent, but may be present after 1 days to 15 days after treatment. One of ordinary skill in the art will recognize that the potency and, therefore, an "herbicidally effective amount," can vary for the various compounds/compositions used in the invention.

The compounds of the formula I according to the invention or the herbicidal compositions comprising them can be applied by spraying, atomizing, dusting, broadcasting, watering or treatment of the seed or mixing with the seed in the form of

DOCID: <WO 03029226A1 I >

10

15

20

25

30

35

directly sprayable aqueous solutions, powders, suspensions, also high-percentage aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusting compositions, broadcasting compositions or granules. The use forms depend on the intended use; in each case they should if possible guarantee the finest dispersion of the active compounds according to the invention. The compositions according to the invention contain a herbicidally active amount of at least one compound of the general formula I or an agriculturally utilizable salt of I and the auxiliaries customary for the formulation of crop protection compositions.

Typical formulations contain the compound I of the present invention in a range from 0.1 parts to 100 parts by weight and may also contain a carrier. The carrier may be any natural or synthetic organic or inorganic ingredient that facilitates dispersion of the composition or compound and contact with the plant. The carrier may be solid (e.g. clays, synthetic silicates, silica, resins, waxes, kaolin, bentonite, dolomite, calcium carbonate, talc, powdered magnesia, Fuller's earth, gypsum, diatomaceous earth, China clay, and combinations thereof); liquid (e.g. water, aqueous solutions, N-methylpyrrolidone, kerosene, cyclohexanone, methylethyl ketone, acetonitrile, methanol, ethanol, isopropyl alcohol, acetone, butyl cellosolved, 2-ethyl-1hexanol, cyclohexanone, methyl cellulose, polyvinyl alcohol, sodium lignin sulfonates, polymeric alkyl naphthalene sulfonates, sodium naphthalene sulfonate, polymethylene bisnaphthalenesulfonate, sodium N-methyl-N-(long.chain acid) laureates, hydrocarbons and other water-immiscible ethers, esters and ketones, and combinations thereof); or a combination of solid and liquid carriers.

Suitable inert additives are essentially: mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, alkylated benzenes or their derivatives, alcohols such as methanol, ethanol, propanol, butanol, cyclohexanol, ketones such as cyclohexanone or strongly polar solvents, e.g. amines such as N-methylpyrrolidone or water.

Aqueous application forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by addition of water. For the preparation of emulsions, pastes or oil dispersions, the compounds I can be homogenized as such or dissolved in an oil or solvent, by means of wetting agents,

10

15

20

25

30

adhesives, dispersants or emulsifiers. However, concentrates consisting of active substance, wetting agent, adhesive, dispersant or emulsifier and possibly solvent or oil can also be prepared, which are suitable for dilution with water.

Formulations useful in the present invention may also contain one or more surfactants to increase the biological effectiveness of the active ingredient. Suitable surface active ingredients include surfactants, emulsifying agents, and wetting agents. A wide range of surfactants is available and can be selected readily by those skilled in the art from "The Handbook of Industrial Surfactants," 2nd Edition, Gower (1997), which is incorporated herein by reference in its entirety for all purposes. There is no restriction on the type or chemical class of surfactant that can be used. Nonionic, anionic, cationic and amphoteric types, or combinations of more than one of these types, are all useful in particular situations.

Among nonionic surfactants, exemplary classes include polyoxyethylene alkyl, alkyne, alkynyl or alkylaryl ethers, such as polyoxyethylene primary or secondary alcohols, alkylphenols or acetylenic diols; polyoxyethylene alkyl or alkyne esters, such as ethoxylated fatty acids; sorbitan alkylesters, whether ethoxylated or not; glyceryl alkylesters; sucrose esters; and alkyl polyglycosides. Exemplary anionic surfactant classes include fatty acids, sulfates, sulfonates, and phosphate mono- and diesters of alcohols, alkylphenols, polyoxyethylene alcohols and polyoxyethylene alkylphenols, and carboxylates of polyoxyethylene alcohols and polyoxyethylene alkylphenols. These can be used in their acid form but are more typically used as salts, for example sodium, potassium or ammonium salts.

Cationic surfactants classes include polyoxyethylene tertiary alkylamines or alkenylamines, such as ethoxylated fatty amines, quaternary ammonium surfactants and polyoxyethylene alkyletheramines. Representative specific examples of such cationic surfactants include polyoxyethylene (5) cocoamine, polyoxyethylene (15) tallowamine, distearyldimethylammonium chloride, N-dodecylpyridine chloride and polyoxypropylene (8) ethoxytrimethylammonium chloride. Many cationic quaternary ammonium surfactants of diverse structures are known in the art to be useful in combination with herbicides and can be used in compositions contemplated herein.

Suitable emulsifying agents and wetting agents include, but are not limited to, ionic and nonionic types such as polyacrylic acid salts, lignosulphonic acid salts, phenolsulphonic or naphthalenesulphonic acids, products of polycondensation of

35

)OCID: <WO__03029226A1_I_>

بالمثالات

10

15

20

25

30

35

ethylene oxide with fatty alcohols, fatty acids or fatty amines, substituted phenols (especially alkylphenols or arylphenols), sulphonosuccinic acid ester salts, taurine derivatives (especially alkyl taurates), phosphoric esters of alcohols or products of polycondensation of ethylene oxide with phenols, esters of fatty acids with polyhydric alcohols, and derivatives having sulphate, sulphonate and phosphate groups, of the compounds above.

The composition of this invention may be made up as granules comprising 0.5 to 40%, preferably 2 to 30% by weight of the active compound of this invention as active ingredient; 1 to 20%, preferably 2 to 10% by weight of the surfactant; and 40 to 98.5%, preferably 20 to 96% by weight of solid carrier. Formulated into a dust, the composition may include 0.5 to 40%, preferably 1 to 35% by weight of the active ingredient; and 99.5 to 60%, preferably 99 to 65% by weight of finely divided solid carrier.

The composition of this invention may also be formulated into a paste comprising 0.1 to 20%, preferably 1 to 10% by weight of the active ingredient, 1 to 20%, preferably 2 to 10% by weight of surfactant; and 60 to 98.9%, preferably 80 to 97% by weight of paste base. In a wettable powder formulation, the composition typically includes 5 to 95%, preferably 10 to 50% by weight of the new compounds of this invention as active ingredient; 1 to 20%, preferably 5 to 10% by weight of surfactant; and 4 to 44%, preferably 40 to 85% by weight of solid carrier, the solid carrier being preferably ammonium sulfate.

The aqueous dispersions or emulsions may be prepared by dissolving the active ingredient in an organic solvent optionally containing wetting, dispersing or emulsifying agent(s) and then adding the mixture to water which may also contain wetting, dispersing or emulsifying agents(s). Suitable organic solvents are kerosene, cyclohexanone, methylethyl ketone, acetone, methanol, acetonitrile, and the like. The compositions may also be in the form of liquid preparations for use as dips or sprays which are generally aqueous dispersions or emulsions containing the active ingredient in the presence of one or more of wetting agent(s), dispersing agent(s), emulsifying agent(s) or suspending agent(s).

Typical liquid solutions include the active ingredient, a carrier, and optionally, a surface active agent. The dilute solutions of the present compositions generally contain about 0.1 to about 50 parts active ingredient, about 0.25 to about 50 parts carrier, and

10

15

20

25

30

35

about 0 to about 94 parts surface active agent, all parts being by weight based on the total weight of the composition. Similarly, the concentrated compositions typically include about 40 to about 95 parts active ingredient, about 5 to about 25 parts carrier, and about 0 to about 20 parts surface active agent.

Emulsifications are usually solutions of herbicides in water-immiscible or partially water-immiscible solvents as the carrier together with at least one surface active agent. Suitable solvents for the active ingredients of this invention include, but are not limited to, hydrocarbons and water-immiscible ethers, esters or ketones. The emulsification compositions generally contain from 5 to 95%, preferably 20 to 70% by weight of the active compound of this invention as active ingredient; 1 to 40%, preferably 5 to 20% by weight of surfactant; and 4 to 94%, preferably 10 to 75% by weight of liquid carrier.

Powders, broadcasting compositions and dusting compositions can be prepared by mixing or joint grinding of the active substances with a solid carrier.

Granules, e.g. coated, impregnated and homogeneous granules, can be prepared by binding the active compounds to solid carriers. Solid carriers are mineral earths such as silicic acids, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earths, calcium sulfate and magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and vegetable products such as grain flour, tree bark meal, wood meal and nutshell meal, cellulose powder or other solid carriers.

The concentrations of the active compounds I in the ready-to-use preparations can be varied within wide ranges. The formulations in general contain 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active compound. The active compounds are employed here in a purity of from 90% to 100%, preferably 95% to 100% (according to NMR spectrum).

The compounds I according to the invention can be formulated, for example, as follows:

I 20 parts by weight of a compound I are dissolved in a mixture which consists of 80 parts by weight of alkylated benzene, 10 parts by weight of the addition product of 8 to 10 mol of ethylene oxide to 1 mol of oleic acid N-monoethanolamide, 5 parts by weight of calcium salt of dodecylbenzenesulfonic acid and 5 parts by weight of

10

3.5

20

25

30

35

the addition product of 40 mol of ethylene oxide to 1 mol of castor oil. By pouring out and finely dispersing the solution in 100 000 parts by weight of water, an aqueous dispersion is obtained which contains 0.02% by weight of the active compound.

II 20 parts by weight of a compound I are dissolved in a mixture which consists of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the addition product of 7 mol of ethylene oxide to 1 mol of isooctylphenol and 10 parts by weight of the addition product of 40 mol of ethylene oxide to 1 mol of castor oil. By pouring the solution into 100 000 parts by weight of water and finely dispersing it, an aqueous dispersion is obtained which contains 0.02% by weight of the active compound.

III 20 parts by weight of a compound I are dissolved in a mixture which consists of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction of boiling point 210 to 2805C and 10 parts by weight of the addition product of 40 mol of ethylene oxide to 1 mol of castor oil. By pouring the solution into 100 000 parts by weight of water and finely dispersing it, an aqueous dispersion is obtained which contains 0.02% by weight of the active compound.

IV 20 parts by weight of a compound I are well mixed with 3 parts by weight of the sodium salt of diisobutylnaphthalenesulfonic acid, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of powdered silica gel and ground in a hammer mill. By finely dispersing the mixture in 20 000 parts by weight of water, a spray liquor is obtained which contains 0.1% by weight of the active compound.

V 3 parts by weight of a compound I are mixed with 97 parts by weight of finely divided kaolin. A dusting composition which contains 3% by weight of the active compound is obtained in this way.

VI 20 parts by weight of a compound I are intimately mixed with 2 parts by weight of calcium salt of dodecylbenzenesulfonic acid, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. A stable oily dispersion is obtained.

VII 1 part by weight of a compound I is dissolved in a mixture which consists of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated

isooctylphenol and 10 parts by weight of ethoxylated castor oil. A stable emulsion concentrate is obtained.

VIII 1 part by weight of a compound I is dissolved in a mixture which consists of 80 parts by weight of cyclohexanone and 20 parts by weight of Wettol® EM 31 (nonionic emulsifier based on ethoxylated castor oil). A stable emulsion concentrate is obtained.

The herbicidal compositions or the active compounds which contain the compound of the general formula I and/or their salts can be applied preemergence, postemergence or together with the seed of a crop plant. There is also the possibility of applying the herbicidal compositions or active compounds by applying seed of a crop plant pretreated with the herbicidal compositions or active compounds. If the active compounds are less tolerable to certain crop plants, application techniques can be used in which the herbicidal compositions are sprayed with the aid of spray equipment such that the leaves of the sensitive crop plants are not affected if possible, while the active compounds reach the leaves of undesired plants growing thereunder or the uncovered soil surface (post-directed, lay-by).

Depending on the aim of control, time of year, target plants and stage of growth, the application rates of active compound are 0.001 to 3.0, preferably 0.01 to 1.0, kg/ha of active substance (a.s.), more preferably 1 g to about 500 g per hectare; desirably from about 1 to about 125 g per hectare; more desirably from about 5 g to about 75 g per hectare as the active ingredient.

Compositions of this invention may also contain other active ingredients, for example fertilizers such as ammonium nitrate, urea, potash, and superphosphate; phytotoxicants and plant growth regulators; safeners; and pesticides. These additional ingredients may be used sequentially or in combination with the above-described compositions. For example, the piant(s) may be sprayed with a composition of this invention either before or after being treated with other active ingredients. Such sequential applications may be performed by applying the combination of active ingredients individually within a one day period or less, such as separate applications of the individual herbicides within less than 1 hour, less than 5 hours, less than 10 hours, less than 14 hours, or less than 17 hours.

Other optional components may be admixed with the present compositions to facilitate the application and/or effectiveness of the active ingredient. To this end.

.

10

5

15

20

25

30

35

المارين <۱۴۱ للانتخاجة ا

10

15

20

25

30

35

optional components that may be added include antifoaming agents including silicone based antifoaming agents; thickening agents such as fumed silica; antimicrobial agents; antioxidants; buffers; dyes; perfumes; stabilizing agents; and antifreezing agents.

Exemplary antifreezing agents include but are not limited to, glycols such as propylene glycol and ethylene glycol, N-methylpyrrolidone, cyclohexanone, and alcohols such as ethanol and methanol.

To widen the spectrum of action and to achieve synergistic effects, the compounds of the general formula I according to the invention can be mixed and applied together with numerous representatives of other herbicidal or growth-regulating active compound groups. For example, suitable mixture components are 1,2,4thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acids and their derivatives, aminotriazoles, anilides, (het)aryloxyalkanoic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones, 2-aroyl-1,3-cyclohexanediones, hetaryl aryl ketones, benzylisoxazolidinones, meta-CF₃-phenyl derivatives, carbamates. quinolinecarboxylic acid and its derivatives, chloroacetanilides, cyclohexane-1,3-dione derivatives, diazines, dichloropropionic acid and its derivtives, dihydrobenzofurans, dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas, 3-phenyluracils, imidazoles, imidazolinones, N-phenyl-3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- or hetaryloxyphenoxypropionic acid esters, phenylacetic acid and its derivatives, phenylpropionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and its derivatives, pyrimidyl ethers, sulfonamides, sulfonylureas, triazines, triazinones, triazolinones, triazolecarboxamides and uracils.

Before the present compounds, compositions, and methods are disclosed and described, it is to be understood that this invention is not limited to specific synthetic methods of making that may of course vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.

Experimental:

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds,

10

15

compositions, and methods claimed herein are made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for. Unless indicated otherwise, percent is percent by weight given the component and the total weight of the composition, temperature is in °C or is at ambient temperature, and pressure is at or near atmospheric.

Preparation of Chemical Compounds:

The compounds of the present invention were prepared using the following methodology:

A Preparation of intermediate compounds AR to AX

$$F_3C$$

$$N$$

$$O$$

$$F$$

$$C1$$

$$R^1$$

$$CO_2H$$

 R^1 \mathbb{R}^2 Compound Y mp (°C) n AR O Η CH_3 1 foam AS 0 1 CH_3 CH₃ foam AT0 1 Η H 55-60 AU S 1 CH_3 H colorless oil AVNH Η H 187-192 AW 0 H 186-186 none Η AXnone CH₃ H 173-175

1. 2-Chloro-4-fluorophenol, O-methyl carbonate

A mixture of sodium hydroxide (14.7 g, 0.368 mol) and water is cooled to 10 °C and treated with 2-chloro-4-fluorophenol (45.0 g, 0.307 mol). The resultant mixture is

20

10

15

20

25

30

stirred 15 min at 10 °C and treated dropwise with methyl chloroformate (37.7 g, 0.399 mol) such that T < 10 °C. The resultant mixture is stirred two hr at 10 °C and two hr at room temperature. Filtration with water wash affords the title compound (57.7 g, 92 %) with consistent NMR spectral data.

2. 2-Chloro-4-fluoro-5-nitrophenol, O-methyl carbonate

$$\begin{array}{c} OCO_2CH_3 \\ \hline HNO_3 \\ \hline H_2SO_4 \end{array} \qquad \begin{array}{c} O_2N \\ \hline \\ F \end{array} \qquad \begin{array}{c} OCO_2CH_3 \\ \hline \end{array}$$

A mixture of 2-chloro-4-fluorophenol, O-methyl carbonate (57.0 g, 0.279 mol) and conc sulfuric acid (75 ml) is cooled and treated dropwise with a mixture of 90% nitric acid (19.3 g, 0.306 mol) and conc sulfuric acid (15 ml). The resultant mixture is stirred three hr at room temperature and poured into ice water. The suspension is filtered with water wash to afford the title compound (70.5 g, 100%) with consistent NMR spectral data.

3. 2-Chloro-5-fluoro-nitrophenol

A mixture of 2-chloro-4-fluoro-5-nitrophenol, O-methyl carbonate (70.4 g, 0.282 mol), water and sodium hydroxide (13.5 g, 0.338 mol) is stirred three hr at reflux, cooled and diluted with additional water. The mixture is filtered through celite and the filtrate acidified to pH~6. The suspension is filtered with water wash to afford the title compound (54.8 g, 64.5%) with consistent NMR spectral data.

4. Intermediate Compound AA:

To a mixture of the phenol (10.0 g, .0522 mol), potassium carbonate (7.60 g, 0.0548 mol) and dimethylformamide (60 ml) is added dropwise methyl-2-bromopropionate (9.20 g, 0.0548 mol) at ambient temperature. The mixture is stirred two hr at 50 °C, cooled and diluted with ethyl acetate and water. The organic layer is saved and the aqueous layer extracted twice with ethyl acetate. The combined organic layers are washed with water and brine, dried over sodium carbonate and concentrated *in vacuo* to afford the title compound as an off-white solid (14.2 g, 98.1%) with consistent NMR spectral data.

Using the same procedure, the appropriate phenol, thiophenol or amine and the appropriate alkylating agent the following products are obtained.

20

5

10

15

Compound	Y	\mathbb{R}^1	\mathbb{R}^2	mp (°C)
AB	Ο	CH_3	CH_3	Not observed
AC	Ο	H	H	84-89
AD	S	CH_3	H	colorless syrup
AE	S	H	H	colorless oil
AF	NH	H	H	78-82

5. Intermediate Compound 1AG

$$C_{2N}$$
 C_{C}
 $C_{$

A mixture of Compound AA (14.0 g, 0.0543 mol) and acetic acid (175 ml) is heated to 60 °C and treated with iron (14.1 g, 0.252mol) in portions. The resultant mixture is

DUCID: </40 030505564 •

10

15

20

25

30

stirred three hr at 70 °C, cooled and diluted with water and ethyl acetate. The organic layer is saved and the aqueous layer is extracted with ethyl acetate. The combined organic layers are washed with water, aq sodium carbonate (1 M) and brine, dried over sodium sulfate and concentrated in vacuo to afford the title compound as a light brown oil (12.3 g, 98.6%) with consistent NMR spectral data.

Using the same procedure and the appropriate nitrobenzene, the following products are obtained.

$$H_2N$$
 $C1$
 R^1
 R^2
 CO_2CH_3

 Compound
 R¹
 R²
 mp (°C)

 AH
 H
 H
 oil

 AI
 CH₃
 CH₃
 88-90

6. Intermediate Compound AJ

A mixture of Compound AG (20.0 g, 0.0475 mol), acetic acid (150 ml) and hydrochloric acid (70 ml) is treated with stannous chloride dihydrate (53.6 g, 0.237 mol). The mixture is stirred 1.5 hr at 80 °C, cooled and diluted with water. The mixture is extracted twice with ether. The combined organic extracts are washed with water and brine, dried and concentrated *in vacuo* to afford the title compound as an off-white foam (11.1, g, 66%) with consistent NMR and mass spectral data.

Using the same procedure and the appropriate aniline, the following products are obtained.

10

15

20

25

2001D - <WO_

$$F_3C$$
 N
 O
 CH_3
 R^1
 O
 CH_3

Compound	Y	n	\mathbb{R}^1	\mathbb{R}^2	mp (°C)
AK ·	O	1	H	\mathbf{H}^{\cdot}	158-162
AL	O	1	CH_3	CH_3	
AM	none	0	CH_3	H	

7. Intermediate Compound AN:

A mixture of Compound AJ (6.67 g, 0.0162 mol), dimethylformamide (50 ml) and potassium carbonate (2.36 g, 0.0170 mol) is stirred for 30 min at room temperature and treated with iodomethane (2.53 g, 0.0179 mol). The mixture is stirred for four hr and treated with additional potassium carbonate (0.50 g) and iodomethane (0.50 g). The resultant mixture is stirred overnight at room temperatues and partitioned between ice water and ether. The organic layer is washed with water and brine, dried over sodium sulfate and concentrated *in vacuo* to a glassy solid, which is chromatographed on silica gel (hexanes:ethyl acetate eluent) to afford the title compound as an oil (5.50 g, 79.7%) with consistent NMR and mass spectral data.

Using an identical procedure and the appropriate uracil substituted phenyl, the following products are obtained.

10

15

20

25

Compound \mathbb{R}^1 \mathbb{R}^2 Y n mp (°C) AO O 1 H Η 153-156 ΑP 1 CH_3 CH₃ 107-111 AQ CH_3 none Η

8. Intermediate Compound AR:

To a mixture of Compound AN (4.50 g, 0.0106 mol) and acetic acid (25 ml) is added a mixture of hydrochloric acid (25 ml) and water (25 ml). The resultant mixture is stirred four hr at reflux, cooled to room temperature and partitioned between ethyl acetate and water. The organic layer is saved and the aqueous layer extracted with ethyl acetate. The combined organic layers are washed three times with water and then brine, dried over sodium sulfate and concentrated in vacuo to afford the title compound as a foam (4.32 g, 99.3%) with consistent NMR and mass spectral data.

Using the same procedure and the appropriate ester, the intermediate products AS to AX are obtained.

- B. Preparation of intermediate compounds B
- 1. Intermediate Compound BA:

10

15

20

25

DOCID: <WO | 03029226A1 | 1 >

A mixture of 2-fluoro-3-chloroaniline (25.0 g, 0.172 mol), the oxazinone (35.8 g, 0.172 mol) and acetic acid (200 ml) is stirred overnight at reflux, cooled to room temperature and poured into ice water. The resulting suspension is extracted with ethyl acetate. The organic layer is washed with brine, dried and concentrated *in vacuo* to afford the title compound as a white solid (48.5 g, 91.3%) with mp = 186-187.5 °C.

2. Intermediate Compound BB:

A mixture of Compound BA (48.5 g, 0.157 mol) and dimethylformamide (200 ml) is treated with potassium carbonate (32.5g, 0.236 mol) and iodomethane (14.7 ml, 0.236 mol). The resultant mixture is stirred two hr at 50 °C, cooled to room temperature and poured into ice water. The mixture is extracted three times with ethyl acetate. The combined organic extracts are washed with water and brine, dried and concentrated in vacuo to a solid, which is recrystallized from ether/hexanes to afford the title compound as an off-white solid (40.5 g, 80 %) with mp 80-86 °C.

3. Intermediate Compound BC:

10

15

20

$$CF_3$$
 CF_3
 CH_3
 CF_3
 CH_3
 CF_3
 CH_3
 CF_3
 CH_3
 $COSO_2CI$
 $CISO_3H$
 $CISO_3H$

Chlorosulfonic acid (80 ml) is treated with Compound BB (40.5 g, 0.126 mol) and the resultant mixture is stirred 2.5 hr at 130 °C, cooled to room temperature and slowly poured onto crushed ice (~1.5 l). The suspension is filtered with water wash to afford the title compound as an off-white solid (47.3 g, 89%) with mp = 120-122 °C and consistent NMR and mass spectral data.

4. Intermediate Compound BD:

A mixture of Compound BC (20.0 g, 0.0475 mol), acetic acid (150 ml) and hydrochloric acid (70 ml) is treated with stannous chloride dihydrate (53.6 g, 0.237 mol). The mixture is stirred 1.5 hr at 80 °C, cooled and diluted with water. The mixture is extracted twice with ether. The combined organic extracts are washed with water and brine, dried and concentrated *in vacuo* to afford the title compound as an off-white foam (11.1, g, 66%) with consistent NMR and mass spectral data.

5. Intermediate compounds BE, BF and BG

$$F_3C$$
 N
 O
 CO_2CH_3
 C_1
 R^2

Compound	\mathbb{R}^1	\mathbb{R}^2
BE	CH_3	H
BF	CH_3	CH ₃
BG	Н	H

Compound BD is reacted according to step 4 of route A, whereby intermediate compound BE is obtained. Using the same procedure compounds BF and BG are obtained.

6. Intermediate compounds BH, BI and BJ

$$F_3C \xrightarrow{CH_3} O \xrightarrow{R^1} CO_2H$$

15

20

10

Compound	\mathbb{R}^1	\mathbb{R}^2
BH = AU	CH_3	H
BI	CH_3	CH ₃
BJ	H	Н

Compounds BE to BG can be hydrolyzed according to step 8 of route A, whereby intermediate compounds BH, BI and BJ are obtained.

Example 1: Compound I.2a.415

10

15

20

A mixture of Compound 1AR (1.00 g, 0.00244 mol), N,N-carbonyldiimidazole (0.45 g, 0.00280 mol) and tetrahydrofuran (30 ml) is stirred four hr at room temperature. The sulfamide (0.43 g, 0.00280 mol) and DBU (0.43 g, 0.00280 mol) are added and the resultant mixture is stirred overnight at room temperature. The mixture is diluted with ethyl acetate and washed twice with hydrochloric acid (1.0 N). The organic layer is saved and the combined acid layers back-extracted with ethyl acetate. The combined organic layers are washed with brine, dried over sodium sulfate and concentrated *in vacuo* to afford the title compound as a foam with consistent NMR and mass spectral data.

Examples 2 to 25:

Using an essentially identical procedure and the appropriate carboxylic acid and sulfamide the following compounds are obtained.

$$F_{3}C$$

$$N$$

$$O$$

$$F$$

$$O$$

$$F$$

$$C_{1}$$

$$N$$

$$R^{1}$$

$$N$$

$$R^{2}$$

$$N$$

$$R^{2}$$

$$H$$

$$R^{2}$$

Compound	Y	n	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^4	mp (°C)
2	O	1	CH ₃	H	$N(CH_3)_2$	177-180
3	O	1	CH_3	H	N(CH ₃)Ph	foam
4	O	1	CH_3	CH_3	$N(CH_3)_2$	foam
5	O	1	H	H	$N(CH_3)_2$	foam
6	O	1	H	H	N(CH ₃)Ph	foam
7	O	1	H	H	$N(CH_3)CH(CH_3)_2$	55-62
.8	О	1	H	H	$CH(CH_3)_2$	foam
9	S	1	CH_3	H	$CH(CH_3)_2$	white foam
10	S	1	CH_3	H	$N(CH_3)_2$	white foam

Compound	Y	n	\mathbb{R}^1	\mathbb{R}^2	R ⁴	mp (°C)
11	S	1	CH_3	H	$N(CH_3)CH(CH_3)_2$	colorless oil
12	S	1	CH_3	H	N(CH ₃)Ph	colorless syrup
13	S	1	H	H	$CH(CH_3)_2$	85-90
14	S	1	H	H	$N(CH_3)_2$	90-102
15	S	1	H	\mathbf{H}	$N(CH_3)CH(CH_3)_2$	164-173
16	S	1	H	H	N(CH ₃)Ph	85-90
17	NH	1	H	H	$CH(CH_3)_2$	236-237
18	NH	1	H	H	$N(CH_3)_2$	218-220
19	NH	1	H	H	N(CH ₃)Ph	foam
20	none	0	H	H	$N(CH_3)_2$	foam
21	none	0	H	H	$N(CH_3)CH(CH_3)_2$	foam
22	none	0	H	H	N(CH ₃)Ph	foam
23	none	0	CH_3	H	N(CH ₃)Ph	192-193
24	none	0	CH_3	H	$N(CH_3)CH(CH_3)_2$	196-198
25	none	0	CH_3	H	$N(CH_3)_2$	191-192.5

Example 26: N-Ethyl-N-methyl sulfamic acid-[2-(2-chloro-5-(3-chloro-5-trifluoromethylpyridin-2-yl)-4-fluorophenoxy)propionyl] amide

$$F_3C \xrightarrow{C1F} C1 \xrightarrow{F_3C} C1 \xrightarrow{C1F} C$$

Step 1:

5

10

15

20

1.3 g (0,0032 mol) of methyl (2-(2-chloro-5-(3-chloro-5-trifluoromethylpyridin-2-yl)-4-fluorophenoxy)-propionate (obtained according to US 5,783,522) are stirred with a solution of BBr₃ (1M, 11.5 ml) at 0°C for 4 hours. The reaction mixture is poured into ice-cold water followed by extraction with dichloromethane. The solvent is evaporated to yield 1.2 g of 2-((2-chloro-5-(3-chloro-5-trifluoromethylpyridin-2-yl)-4-fluoro)phenoxy)-propionic acid.

Step 2:

To 1.2 g (3.2 mmol) of 2-((2-chloro-5-(3-chloro-5-trifluoromethylpyridin-2-yl)-4-fluoro)phenoxy)-propionic acid, are added 25 ml of thionylchloride. The mixture is refluxed for 3 hours. Excessive thionylchloride is evaporated under reduced pressure to yield 1.3 g of a crude product which is used without further purification. 0.4 g (1.0

10

15

20

25

mmol) of said crude product in 20 ml of dichloromethane are stirred with 0,15 g (1.1 mmol) of N-ethyl-N-methylsulfamic acid amide, 0.24 g (2 mmol) of triethylamine and a catalytic amount of 4-dimethylaminopyridine for 2 days. The reaction mixture is washed with aqueous hydrochloric acid (10% strength by weight) and the organic phase is dried over magnesium sulfate. After concentration under reduced pressure the residue is purified by silica gel chromatography (cyclohexane/ethyl acetate = 4/1) to give 0.18 g of the title compound. Melting-point: 116-119°C.

Example 27: N,N-dimethyl sulfamic acid-[2-(2-chloro-5-(3-chloro-5-trifluoromethylpyridin-2-yl)-4-fluorophenoxy)propionyl] amide

Using the method of Example 26 the following compound is prepared:

Melting point: 132 - 133 °C.

Example 28: N-((2-methoxy)ethyl)-N-methyl sulfonic acid-[(2-chloro-3-(2-chloro-5-(N-(3,4,5,6-tetrahydrophthalimido))phenylacryloyl)] amide

1.5 g of 2-chloro-3-(2-chloro-5-(N-(3,4,5,6-tetrahydrophthalimido))phenyl)propenoic acid (CAS-Nr. 175156-71-5, obtained similarly to the process described in EP 0300387) and 50 ml of thionylchloride are refluxed for 3 hours and then the reaction mixture is evaporated to dryness. 0.53 g (1.4 mmol) of the resulting acid chloride in 15 ml of dichloromethane are mixed with 0.20 g of N-methyl-N-(2-(methoxy)ethyl)sulfamic acid amide and 0.3 g (3.1 mmol) of triethylamine and a

10

catalytic amount of 4-dimethylaminopyridine and reacted in a manner according to the procedure described in Example 26. After work-up 0.1 g of the title compound are obtained. Melting-point 110°C.

Using an essentially similar procedure and the appropriate sulfamide the compounds of examples 29 and 30 were obtained.

Example		melting point [°C]
29	CI CI S-NO	180-182
30		178-179

Example 31: N-methyl-N-phenyl sulfamic acid [2-(2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-pyrazol-3-yl)-4-fluoro)-phenoxy)acetyl] amide

To 0.5 g (1.3 mmol) of 2-(2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-pyrazol-3-yl)-4-fluorophenoxy acetic acid (CAS-Nr. 129630-17-7, EP 361114) in 50 ml of dichloromethane are added 0.13 ml (1,56 mmol) of oxalyl chloride. The mixture is refluxed until the gas evolution ceased. The reaction mixture is concentrated and the residue is dissolved in 50 ml of dicloromethane and 0.51 ml (3.64 mmol) of triethylamine. 0.266 g N-methyl-N-phenyl-sulfamic acid amide and a catalytic amount

20

15

OCID: <WO_03029226A1_I_>

15

20

25

30

of 4-dimethylaminopyridine are added and the mixture is reacted similarly to the procedure described in Example 26. Work-up yield 0.98 g of the title compound.

¹H-NMR (400 MHz, CDCl₃, [ppm]) δ: 9.0 (br. s, 1H), 7.5-7.2 (m, 6H), 7.1 (d, 1H), 6.7 (t, 1H), 4.6 (s, 2H), 3.8 (s, 3H), 3.5 (s, 3H)

Example 32: N-methyl-N-propen-3-yl sulfamic acid [2-(2-chloro-5-(4-chloro-5-difluoromethoxy-1-methyl-pyrazol-3-yl)-4-fluoro)-phenoxy)acetyl] amide

Using an essentially similar procedure as in Example 31 and the N-methyl-N-propen-3-yl sulfamide the compound of example 32 is prepared:

¹H-NMR (400 MHz, CDCl₃ [ppm]) δ: 9.0 (br. s, 1H), 7.3 (d, 1H), 7.1 (d, 1H), 6.7 (t, 1H), 5.8 (m, 1H), 5.3-5.2 (m, 2H), 4.6 (s, 2H), 4.0 (d, 2H), 3.9 (s, 3H), 3.0 (s, 3H).

Herbicidal Testing

Test compounds described in Table 2b were used in herbicidal testing.

1. Postemergence Herbicidal Evaluation of Test Compounds (POST)

Postemergence herbicidal activity of the compounds of the present invention is demonstrated by the following tests wherein a variety of dicotyledonous and monocotyledonous plants (described in Table 2a) are treated with test compounds (described in Table 2b). In the tests, seedling plants were grown in jiffy flats for about

10

15

20

25

two weeks. The test compounds were dispersed in 50/50 acetone/water mixtures containing 0.5% TWEEN®20, a polyoxyethylene sorbitan monolaurate sufactant of Atlas Chemical Industries, in sufficient quantities to provide the equivalent of about 0.0157 kg to about 0.250 kg per hectare of active compound when applied to the plants through a spray nozzle operating at 40 psi for a predetermined time. After spraying, the plants were placed on greenhouse benches and cared for in accordance with conventional greenhouse procedures. One and two weeks after treatment (WAT), the seedling plants were examined and rated according to the rating system set forth below (Table 2c), with the results as shown in Table 2d.

2. Preemergence Herbicidal Evaluation of Test Compounds (PRE)

The preemergence herbicidal activity of the test compounds of the present invention is exemplified by the following tests in which the seeds of a variety of monocotyledonous and dicotyledonous plants were separately mixed with potting soil and planted on top of approximately one inch of soil in separate pint cups. After planting, the cups were sprayed with the selected aqueous acetone solution containing test compound in sufficient quantity to provide the equivalent of about 0.0157 kg to about 0.250 kg per hectare of test compound per cup. The treated cups were then placed on greenhouse benches, watered and cared for in accordance with conventional greenhouse procedures. Approximately three weeks after treatment (WAT), the tests were terminated and each cup is examined and rated according to the rating system provided in Table 2c with the results as shown in Table 2d.

Table 2a: Plants Tested

30			
	Bayer Code	Common Name	Scientific Name
	ABUTH	Velvetleaf	Abutilon threophrasti
	AMATA	Waterhemp, Common	Amaranthus rudis
	AMBEL	Ragweed, Common	Ambrosia artemisifolia
35	CHEAL	Lambsquarters, Common	Chenopodium album
	IPOHE	Morningglory, Ivyleaf	Ipomea hederacea
	STEME	Chickweed, Common	Stellaria media
	XANST	Cocklebur	Xanthium strumarium
	ALOMY	Blackgrass	Alopecurus myosuroides
40	DIGSA	Crabgrass, Large	Digitaria sanguinalis
	ECHCG	Barnyardgrass	Echinocloa cruss-galli
	SETVI	Foxtail, Green	Setaria viridis

DUCID: <INIO 030202284

ZEAMX

5 GLXMA ORYSA TRZAW Soybeans Rice

Wheat, Winter Corn, Field Glycine max Oryza sativa Triticum aestivum

Zea mays

10

Table 2b: C

Compounds Tested

Test Compound	Chemical Structure	Chemical Name
1	H ₃ C N N O C1 CH ₃ H SO ₂ -N-CH ₃	Isopropyl-methyl-sulfa,ic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-propionyl}-amide
2	H ₃ C N N N O N N SO ₂ -N(CH ₃) ₂	Dimethyl-sulfamic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenoxy]-propionyl}-amide
3	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	Methyl-phenyl-sulfamic acid {2-{2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-propionyl}-amide
4	H ₃ C N O O O O O O O O O O O O O O O O O O	Dimethyl-sulfamic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenoxy]-2-methyl- propionyl}-amide
5	H_3C N	Dimethyl-sulfamic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenoxy}-acetyl}-amide
6	H_3C N	Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro- 5-(3-methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenoxy}-acetyl}-amide

Test	Chemical Structure	Chemical Name
Compound 7	H ₃ C N N O C1 CH (CH ₃) ₂ H ₃ C N O O O O O O O O O O O O O O O O O O	Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-acetyl}-amide
8	H_3C N	Propane-2-sulfonic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenoxy]-acetyl}-amide
9	H ₃ C N N SO ₂ -CH(CH ₃) ₂	Propane-2-sulfonic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenylsulfanyl]-propionyl}- amide
	H ₃ C N N S N S N S O S N S N S O S S N S O S S N S O S O S S O S S O S S O S S O S S O S S O S S O S S O S S O S S O S O S S O S S O S S O S S O S S O S S O S S O S S O S S O S S O S O S S O	Dimethyl-sulfamic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenylsulfanyl]-propionyl}- amide
11	H ₃ C N N S N S N S N S N S N S N S N S N S	Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-propionyl}-amide
12	H_3C N	Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-propionyl}-amide
13	H ₃ C N N S N N S O S O S O S O S O S O S O S	Propane-2-sulfonic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenylsulfanyl]-acetyl}- amide

)OCID: <WO__03029226A1_I_>

Test		ή
Compound	Chemical Structure	Chemical Name
14	H ₃ C N C1 H N-SO ₂ -N(CH ₃) ₂	Dimethyl-sulfamic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenylsulfanyl]-acetyl}- amide
15	H ₃ C N N S O C1 CH (CH ₃) ₂ H ₃ C N S O CH (CH ₃) ₂ F ₃ C	Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-acetyl}-amide
16	H ₃ C N N S O N S	Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-acetyl}-amide
17	H ₃ C N N N N N N N N N N N N N N N N N N N	Propane-2-sulfonic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenylamino]-acetyl}-amide
18	H ₃ C N N N N N N N N N N N N N N N N N N N	Dimethyl-sulfamic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenylamino]-acetyl}-amide
19	H_3C N	Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro- 5-(3-methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)- phenylamino]-acetyl}-amide
20	H ₃ C N N N N N N N N N N N N N N N N N N N	Dimethyl-sulfamic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)-phenyl]- acetyl}-amide

Test Compound	Chemical Structure	Chemical Name
21	H ₃ C N Cl CH (CH ₃) ₂ N-SO ₂ -N-CH ₃	Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl]-acetyl}-amide
22	H_3C N	Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl]-acetyl}-amide
23	H_3C N	Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro- 5-(3-methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)-phenyl]- propionyl}-amide
24	H ₃ C N N N C1 CH (CH ₃) ₂ F ₃ C CH ₃ N-SO ₂ -N-CH ₃	Isopropyl-methyl-sulfamic acid {2-{2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl}-propionyl}-amide
25	H ₃ C N N N N N SO ₂ -N (CH ₃) ₂	Dimethyl-sulfamic acid {2- [2-chloro-4-fluoro-5-(3- methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro- 2H-pyrimidin-1-yl)-phenyl]- propionyl}-amide

Table 2c: Herbicide Rating Scale

Results of herbicide evaluation are expressed on a rating scale of 0 to 9. The scale is based upon a visual observation of plant stand, vigor, malformation, size, chlorosis and overall plant appearance as compared with a control.

	<u>Rating</u>	<u>Meaning</u>	%Control Compared to Check
	9	Complete kill	100
15	8	Approaching complete kill	91-99
	7	Good herbicidal effect	80-90
	6	Herbicidal effect	65-79
	5	Definite injury	45-64
	4	Injury	30-44

5

Table 3a: Herbicidal Evaluation Results for POST

	Γ -			_			F	209	ST	2 V	۷A	T						1	W	AT
				Γ																
Test Cpd	Rate g/ha	АВИТН	AMATA	AMBEL	CHEAL	ЭНОЫ	STEME	XANST	ALOMY	DIGSA	ECHCG	SETVI	GLXMA	ORYSA	TRZAW	ZEAMX	GLXMA	ORYSA	TRZAW	ZEAMX
	125															L				
9	64 32	9	9	9	8	9	9	9	6	8	9	9	8	7	8	9	8	8	8	8
"	16	9	9	9	8	9	9	9	5	8	9	9	8	6	6	8	8	8	8	8
	8	9	9	9	8	9	8	9	4	8	9	9	8	6	5	8	8	7	8	8
	125									L_							L		L	
	64	_	_						_	Ļ				_			<u> </u>	_		
10	32	9	9	9	9	9	9	9	6	8	9	9	8	7	8	8	8	8	8	8
	16	9	9	9	8	9	8	9	<u>6</u> 5	8	9	9	8	6	6	8	8	7	8	8
<u> </u>	8 125	9	9	9	8	9	8	9		8	8	9	8	6	5	8	8	6	8	8
	64								_	_		-		_		_			_	
11	32	9	9	9	8	9	9	9	6	9	9	9	9	7	7	8	8	8	8	8
	16	9	9	9	9	9	8	9	5	8	9	9	8	6	7	8	8	7	8	8
	8	9	9	9	8	9	8	9	5	8	9	9	8	6	5	8	8	7	8	8
	125																			
1 1	64										_									
12	32	9	9	9	9	9	8	9	5	8	9	9	8	5	7	9	8	7	8	<u>B</u>
	16 8	9	9	9	9	9	8	9	5	7	8	9	8 7	4	5	8 5	8	7 6	8 7	8
	64	- 3	9	-	-	-		3	-	<u> </u>	-		-	-	-	-	٠	-		
_	32	_																		
8	16_	9	9	8	8	9	6	9	3	8	8	8	8	5	4	8	8	8	7	8
	8	9	9	8	8	9	5	9	2	3	7	8	8	5	3	6	8	6	6	6
	125			-																
13	64 32			-	-			-		-		\vdash								
,,,	16	9	9	9	8	9	8	9	3	8	6	8	8	6	4	8	8	7	7	8
}	8	9	9	9	8	9	8	9	3	6	5	8	8	5	4	8	8	6	7	8
	125																			
_ :	64		ļ						_	_				_					_	
5	32	-	9	9	9	9	8	9	3	8	8	8	8	7	4	7	8	8	7	8
ļ	16 8	9	9	8	8	9	3	9	2	7	8	8	8	4	4	7	8	5	7	8
	125	<u> </u>	۱Ť	۲	<u> </u>	Ť	Ť	Ť		H	Ť	Ť		·	Ť	Ť		Ť	Ė	
1	64																			
14	32			L																
1	16	9	9	9	8	9	8	9	3	7	7	8	8	6	5	8	8	<u>8</u> 7	8	8
<u> </u>	125	9	9	8	8	9	8	9	2	7	7	8	8	4	4	8	8			8
[125 64	\vdash		-	╁	_	_	_	 		-						_	-		
20	32																			
1	16	9	9	8	8	9	8	9	3	6	8	7	8	4	4	8	8	7	8	8
	8	9	9	8	8	9	5	9	3	4.	8	7	8	.3	3	8	8	7	7	8
	250	<u> </u>	<u> </u>	-	 _	_	<u> </u>	<u> </u>		ļ	<u> </u>		ļ				Щ		_	
	125	-		├		├-	 	\vdash		-	<u> </u>							\vdash		
25	32	9	9	9	8	9	9	9	7	8	9	9	9	7	8	8	8	8	8	8
1	16	9	9	8	8	9	8	9	7	8	9	9	9	7	8	8	8	8	8	8
	8	9	9	8.	8	9	8	9	5	8	8	8	9	5	8	8	8	7	8	8
21	125					L_														
	64	L_	<u> </u>	 _	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ						Ш			
1	16	9	9	9	8	8	3	9	3	4	8	8	7	2	3	8	8	7	7	
L	1 10	l a	۳	T a	Lo	10	1_3	l a	13	14	டீ	டீ	<u>'</u>	ےــا		٥	٥			_8

		1	POST 2 WAT														Τ.	1 WA		
	 	†	Т	Т	Т	Г	T^{-1}	Т	Ť	Ī		T	T -	Т-	T	Т		+	7	<u>~'</u>
Test Cpd	Rate g/ha	АВИТН	AMATA	AMBEL	CHEAL	POHE	STEME	XANST	ALOMY	DIGSA	ECHCG	SETVI	GLXMA	ORYSA	TRZAW	ZEAMX	GLXMA	ORYSA	TRZAW	ZEAMX
	8	9	9	8	8	8	2	9	2	5	8	7	5	2	1	7	8	6	4	8
	125																	1_		
١	64	<u> </u>	<u> </u>	ļ	┞	<u> </u>	_	L.	<u> </u>	<u> </u>	_	↓_	<u> </u>	<u> </u>		_		<u> </u>	L	<u> </u>
24	32	_	-	 _	١.	 _	-	-	-	١.	<u> </u>	┝	-	+-	╀	+_	+_	1_	1_	<u> </u>
	16 8	9	9	9	8	8	8	9	3	8	8	8	8	5	8	8	8	8	8	8
	125	۲	۲	٦	<u> </u>	۳	-	<u> </u>	Ť	۲	٦	 	۲	╅	۲	+-	10	1 6	╁	-
	64																	1	 	
15	32														oxdot	L				
	16	9	9	9	8	9	8	9	3	17	8	9	8	5	4	8	8	7	7	8
	8 125	9	9	9	8	9	4	9	2	4	7	8	8	3	3	8	8	6	7	8
	64		-	\vdash		\vdash		 	-	 	\vdash	╁	 	 	-	\vdash	+	-	 	
7	32															1	1			
	16	9	9	9	8	9	6	8	3	8	8	9	8	3	2	7	8	7	7	8
	8	X	Х	Х	X	Х	X	X	×	X	Х	X	Х	X	Х	X	X	X	X	Х
	125				_					├		<u> </u>			<u> </u>	├-	ـــ		<u> </u>	
22	64 32				\vdash			_		┢		┢	-	\vdash	-	-	┼	-	 	
	16	9	9	9	8	9	5	9	3	4	7	8	8	2	3	8	8	6	6	8
	8	9	9	8	8	9	2	9	2	3	6	4	6	1	2	6	8	5	5	8
	125						į													
00	64			_	\vdash					_		<u> </u>	<u> </u>	<u> </u>		ļ				i
23	32 16	9	9	9	7	9	8	9	3	4	8	7	8	3	4	8	8	7		
	8	9	9	9	6	9	4	9	2	4	4	7	8	3	3	6	8	5	8 7	8 7
	125														Ť	Ť	Ť	-		
	64							_												
16	32	_		_		_			_	_			_	_	_	Ļ		_		
	16 8	9	9	9	8	9	6	9	2	7	<u>8</u> 7	9	8	5	2	7	8	7	7	8 8
	125	Ť		Ť	Ė			Ť	•		- <u>-</u> -		Ŭ	-	-	<u> </u>	٣	Ĭ		-
Ì	64																			
6	32					_		_												
	16 8	9	9	9	8	9	5 3	9	1	5	7	7	8 7	3	1	7	8	7	7	8
	125	-	-	9	-	-	3	-	<u> </u>	4	•	6	/	1	<u>-</u>	8	8	6	6	8
	64																			\dashv
17	32																			
	16	9	9	9	9	9	5	9	5	8	8	8	8	4	6	8	8	7	8	8
	8 125	9	9	9	6	9	4	9	4	8	6	8	8	3	5	8	8	5	7	8
	64	\dashv	\dashv	\dashv			\neg	-			-		-			-		-	\dashv	\dashv
18	32									一						\neg			\neg	\neg
[16	9	9	9	9	9	8	9	5	8	8	8	8	7	5	8	8	5	8	8
	8	9	9	9	8	9	6	9	4	8	7	8	8	5	4	7	8	5	8	8
}	125 64	\dashv						\dashv		\dashv							\dashv	_		\dashv
1	32	\dashv		-	-	\dashv			\dashv	\dashv	\dashv		\dashv	\dashv	-		\dashv			
	16	9	9	9	9	9	9	9	6	9	9	9	9	6	8	8	8	7	8	8
	8	9	9	9	8	9	8	9	4	9	9	9	9	5	6	8	8	6	8	8
]	125							[[[_]	[\Box	二	\Box	\Box	\Box	
4	64 32			\dashv			\dashv		-				\dashv	\dashv		\dashv		-+	\dashv	
7	16	9	9	9	8	9	4	9	5	8	8	8	7	6	5	8	8	6	8	8
Ì	8	9	9	9	8	9	4	9	4	8	8	8	5	4	4	7	8	6	8	8
2	125													二				丁	$\equiv \uparrow$	
	64				}		[[\Box	_]		[二		\Box	\Box	\Box	\Box	\Box
	32 16	9	9	9	8	9	8	9	7	9	9	9	-	7	8	9	ၧ	-	-	-
		1		1	~ 1	-1	<u> </u>	<u> 1</u>		ت	- 1	- 1	8	<u>, 1</u>	ب	٦_	8	7	8	8

							F	0	ST	2 V	۷Α	T						1	W	AT
Test Cpd	Rate g/ha	АВИТН	AMATA	AMBEL	CHEAL	IPOHE	STEME	XANST	ALOMY	DIGSA	ECHCG	SETVI	GLXMA	ORYSA	TRZAW	ZEAMX	GLXMA	ORYSA	TRZAW	ZEAMX
	8	9	9	9	8	9	7	9	6	8	8	8	8	5	6	8	8	7	8	8
	125																			
ł	64																			
3	32																			
١	16	9	9	9	9	9	8	9	5	8	8	9	9	5	7	8	8	7	8	8
	8	9	9	9	9	9	8	9	4	8	6	8	8	3	5	8	8	6	7	8
	4	9	9	8	8	9	7	9	ვ	6	5	7	8	1	3	6	8	4	6	7
	125																			
1 .	64													-						
19	32																			
'*	16	9	9	9	9	9	7	9	3	8	7	8	9	3	5	8	8	5	8	8
	8																			
نـــــا	4	9	9	8	8	9	6	9	2	6	4	5	8	2	3	4	8	4	7	6

Table 3b: Herbicidal Evaluation Results for PRE

						PI	RE	3 \	NA	Т						
Test Cpd.	Rate g/ha	АВИТН	AMATA	AMBEL	CHEAL	РОИЕ	STEME	XANST	ALOMY	DIGSA	ECHCG	SETVI	GLXMA	ORYSA	TRZAW	ZEAMX
	125	9	9	9	9	9	9	9	1	9	8	7	1	3	1	1
	64	9	9	8	9	8	8	3	0	8	3	2	0	7	0	0
9	32_	9	9	5	7	6_	7	1	0	6	2	1	0	3	0	0
Ì	16	8	8	6	6	2	6	0	0	2	0	0	0	0	0	0
	8	_			<u> </u>								<u> </u>			
	125	9	9	9	9	9	9	8	1	8	6	6	1_	2	0	1
	64	9	8	9	8	7	8	2	0	6	5	2	0	1	0	0
10	32	8	8_	6	8	0	8	0	0	5	1	1	0	0	0	0
	16	3	8	5_	5	0	6	0	0	2	0	0	0	0	0	0
	8															
	125	9	9	9	9	9	8	9	0	8	5	8	2	5	0	0
	64	9	9	7	9	6	8	1	0	7	2	5	1	4	٥	0
11	32	9	8	6	9	3	7	0	0	6	0	2	0	4	0	0
	16	7	9	3	6	0	2	0	0	5	0	0	0	3	0	0
	8														_	
	125	9	9	9	9	0	9	9	0	7	4	5	1	4	0	0
1	64	9	9	7	9	2	7	X	0	5	2	3	0	4	o	6
12	32	9	8	5	6	2	3	0	Ō.	3	0	2	0	0	ō	0
	16	8	8	1	7	0	6	0	0	0	0	0	0	0	0	0
	8															М
	64	9	9	9	9	8	3	8	0	7	0	4	0	5	0	0
8	32	9	8	9	8	2	0	2	0	5	0	2	0	5	0	0
8	16	8	8	4	8	0	0	1	0	2	0	0	0	0	0	0
	8	5	6	2	6	0	0	0	0	2	0	0	0	0	0	0
	125															
İ	64	9	9	8	9	9	8	6	0	5	0	2	0	5	0	0
13	32`	8	9	7	8	9	5	1	0	2	0	5	0	3	0	0
1	16	8	8	7	8	1	5	1	0	2	0	0	0	2	0	0
	8	6	8	6	3	0	2	0	0	0	0	0	0	0	0	0
5	125															
	64	9	9	8	9	8	8	5	0	7	3	5	0	6	0	0
L	32	9	8	8	9	7	6	2	0	5	0	0	0	6	0	0

•

*

						P	RE	∃ 3	W	AT						
Test Cpd.	Rate g/ha	АВИТН	AMATA	AMBEL	CHEAL	POHE	STEME	XANST	ALOMY	DIGSA	ECHCG	SETVI	GLXMA	OBVSA	TD7.0W	ZEAMX
	16	8	8	5	7	2	4	1	0	3	0	0	0	0	0	
	8	6	5	4	17	10	2	10	10	10	10	10	10	10	10	10
	125 64	9	9	8	9	8	9	1	1	5	3	4	10	17	+0	0
14	32	9	8	7	9	5	6	Ö	0	2	3	2	10	4	10	10
	16	5	8	6	3	3	5	0	0	0	0	0	0	0	0	0
	8	16	7	3	2	0	14	0	0	0	10	10	0	10	0	0
	125 64	9	9	8	9	9	8	8	0	5	3	2	100	5	0	0
20	32	9	8	7	9	7	8	3	0	3	2	0	10	6	10	10
- 0	16	7	8	2	2	3	5	0	0	3	2	0	0	0	Ō	Ō
	8			_			<u> </u>		_	_	<u> </u>					L
	250 125	9	9	9	9	9	9	9	8	9	9	9	1-	10	1	1-
25	64	9	9	9	9	8	9	7	5	9	8	7	5	8	1	0
25	32	9	9	7	8	3	8	3	2	7	7	5	ō	4	6	0
	16	9	8	6	8	0	8	3	0	6	2	3	0	2	0	0
	125				<u> </u>	<u> </u>	 	-	⊢	ļ	├-	_	<u> </u>	_	-	\vdash
	64	9	8	7	9	5	0	4	0	0	0	2	0	0	0	6
21	32	9	8	6	8	ō	0	0	0	2	0	0	0	0	ō	ŏ
	16	9	8	3	7	0	0	0	0	0	0	0	0	0	0	0
	8 125	0	6	0	_1_	0	0	<u> </u>	0	0	0	0	0	0	0	0
	64	9	8	5	8	3	8	6	0	6	8	5	1	3	1	0
24	32	8	8	6	8	1	3	0	0	6	4	6	0	1	0	0
	16 8	9	8	5 3	9	1	6	0	0	5	2	3	0	0	0	0
	125	-2	3	3	_ <u>'</u> _	<u>'</u>	-	0	۳	0	0	1	0	0	0	9
	64	9	8	9	9	3	5	2	0	4	1	7	0	0	0	0
15	32	8	8	8	8	0	4	0	0	2	0	6	0	0	0	0
}	16 8	6	7	2	8	0	0	0	0	0	0	00	0	0	0	0
	125	-	-	ᅴ			٦		Ü	۳	۲		-	-	-	۲
Ţ	64	9	9	9	8	3	3	2	0	6	2	5	0	0	0	0
7	32	8	8	2	6	3	3	0	0	2	0	1	0	0	9	0
}	16 8	6	5	0	4	3	0	0	0	0	0	0	00	00	0	0
	125				Ť	Ť	Ť	<u> </u>	Ť	-	Ť		Ť	Ŭ		H
[64	9	9	7	9	7	4	3	0	0	0	2	0	0	0	0
22	32	9	8	6	8	2	0	0	0	9	0	0	0	0	0	0
}	16 8	3	5	2	5	0	0	0	0	0	0	0	0	0	0	0
	125							Ť		Ť		Ť		٦	Ť	\dashv
	64	9	8	4	8	5	9	2	0	4	1	2	1	0	0	0
23	32 16	6	5	3	5	0	2	0	0	3	힀	0	0	0	0	9
	8	2	1	히	2	6	0	0	0	3	0	0	0	0	0	0
	125									_	Ť	Ť		-		Ť
. [64	9	8	8	9	9	6	0	0	5	2	5	0	2	0	0
16	32 16	8 7	8 8	5	6	0	3	0	0	5 3	2	2	0	5	0	
F	8	4	6	2	7	×	0	0	0	3	0	응	0	0	0	읭
	125									_						\dashv
_ [64	9	8	8	9	2	2	2	0	5	0	3	0	0	0	0
6	32 16	8	8	6	9	0	0	0	0	2	0	의	0	읝	0	0
ŀ	8	3	5	6	X	8	0	0	0	0	0	0	0	읭	0	
				1	لمنت								1	لت	<u>~</u> 1	ت

						Р	RE	3	WA	\T	0.1					
Test Cpd.	Rate g/ha	АВИТН	AMATA	AMBEL	CHEAL	POHE	STEME	XANST	ALOMY	DIGSA	ECHCG	SETVI	GLXMA	ORYSA	TRZAW	ZEAMX
	125															
	64	9	9	8	8	2	6	7	0	7	3	6	X	3	0	0
17	32	9	8	6	8	2	3	2	0	3	1	2	0	2	0	0
	16	6	7	2	8	0	3	0	0	3	0	0	0	0	0	0
	8	6	3	2	5	0	3	0	0	2	0	0	0	0	0	0
	125											Γ-	П	П	1	Т
ĺi	64	9	9	8	9	6	7	4	0	4	2	4	1	0	0	0
18	32	9	8	6	9	0	6	0	0	2	0	0	0	0	0	0
	16	8	8	7	7	0	0	0	0	0	0	0	0	0	0	0
	8	4	6	4	9	0	0	0	0	0	0	0	0	0	0	0
	125															
	64	9	9	9	9	6	8	8	2	8	8	9	3	0	0	1
1	32	9	8	7	9	0	8	4	0	4	5	8	0	0	0	0
	16	8	9	6	9	0	5	3	0	0	2	3	0	0	0	0
	8	5	7	5	9	0	2	0	0	0	2	0	0	0	0	0
	125															
	64	9	8	8	9	0	3	2	0	4	5	4	0	0	0	0
4	32	7	8	6	9	0	0	0	0	2	2	0	0	0	0	Ö
	16	7	5	5	4	0	0	0	0	0	0	0	0	0	0	0
	8	2	5_	5	2	0	0	0	0	0	0	0	0	٥	0	0
	125															
	64	9	9	9	9	7	9	8	4	8	7	7	0	3	0	2
2	32	9	9	7	9	5	8	7	3	7	5	7	0	2	0	1
[16	8	8	7	7	0	7	2	1	1	3	2	0	0	0	0
	8	7	6	6	7	0	2	0	0	0	1	0	0	0	0	0
ļ.	125						— ↓									Ш
	64	9	8	8	9	0	7	4	1	6	2	3	2	0	0	0
3	32	7	8	6	9	0	6	2	0	4	1	1	1	0	0	0
}	16	6	7	٥	5	0	2	0	0	1	0	0	0	0	0	0
	8	_'-	4	0	2	0	0	0	0	0	0	0	0	0	0	0
	4			-					-							
}	125								\vdash							\vdash
	64 32	8	8	2	8	8	2	2		_	-	_		-	_	
19	16	- 	<u> </u>	-	-	-	-		0	0	1	0	0	1	0	0
 	8	2	2	1	2	0	-	0	0	0	0	_	$\overline{}$	_	_	닖
 	4	-	-		-	-	<u></u>	<u></u>		-	Ӵ	0	0	0	0	0
		1							⊢ І							ل

Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference into this application for all purposes.

It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as

exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

We claim:

1. A compound of formula I:

5 wherein:

10

20

A is O or S;

X¹ and X² are each independently H or halogen;

n is 0 or 1

Y is O, NR, S(O)_m or a group CHR';

15 m is 0, 1, or 2;

R is H, C₁-C₄ alkyl, C₁-C₄ alkoxyalkyl, or optionally substituted benzyl;

R' is hydrogen or R' and R² form a bond;

 R^1 and R^2 are each independently H, C_1 - C_6 alkyl, or halogen, or R^1 and R^2 taken together are =CH₂, or form a cyclopropyl ring with the carbon to which they are attached;

25 R³ is H, CN, C₁-C₆ alkyl, C₁-C₆ alkoxyalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl or optionally substituted benzyl;

is NR⁵R⁶, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, optionally substituted phenyl, optionally substituted 4 to 7 membered heterocyclyl or optionally substituted benzyl;

Q is selected from

wherein the Q group is attached to the compound of formula I at *;

R⁵ and R⁶ are each independently H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ alkynyl, C₃-C₈ cycloalkyl, phenyl, benzyl or C₅-C₈ cycloalkenyl, where each of the aforementioned seven groups can be substituted with any combination of 1, 2, 3, 4 or 5 halogen atoms, 1, 2 or 3 C₁-C₆ alkoxy groups, 1 or 2 C₁-C₈ haloalkoxy groups, 1 or 2 cyano groups, 1 or 2 C₃-C₇ cycloalkyl groups, 1 or 2 two C(O)R²⁵ groups, 1 or 2 C(O)OR²⁶ groups, 1 or 2 C(O)NR²⁸R²⁹ groups, 1, 2 or 3 OR³⁰ groups, 1, 2 or 3 SR³¹ groups, one optionally substituted four to ten membered monocyclic or fused bicyclic heterocycle, one or two optionally substituted benzyl groups, or

 R^5 may be also a group CONR^{5a}R^{6a} or SO₂NR^{5a}R^{6a} wherein R^{5a} and R^{6a} are each independently H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ alkynyl, C₃-C₈ cyloalkyl, phenyl, benzyl or C₅-C₈ cycloalkenyl, where each of the

20

5

10

10

15

20

25

30

aforementioned seven groups can be substituted with any combination of 1, 2, 3, 4 or 5 halogen atoms, 1, 2 or 3 C₁-C₆ alkoxy groups, 1 or 2 C₁-C₈ haloalkoxy groups, 1 or 2 cyano groups, 1 or 2 C₃-C₇ cycloalkyl groups, 1 or 2 two C(O)R²⁵ groups, 1 or 2 C(O)OR²⁶ groups, 1 or 2 C(O)NR²⁸R²⁹ groups, 1, 2 or 3 OR³⁰ groups, 1, 2 or 3 SR³¹ groups, one optionally substituted four to ten membered monocyclic or fused bicyclic heterocycle, one or two optionally substituted benzyl groups, or

R⁵ and R⁶ together with the atom to which they are attached form a three to seven membered heterocycle;

 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , A^8 , A^9 , A^{10} and A^{11} are each independently O or S;

- R⁷, R⁸, R⁹, R¹², R¹³, R¹⁶, R¹⁷, R²³ and R²⁴ are each independently H, CN, NH₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkynyl, benzyl, OR³², C₁-C₃ cyanoalkyl, or R⁷ and R⁸ or R²³ and R²⁴ may be taken together with the atoms to which they are attached to represent a four- to seven membered ring, optionally interrupted by oxygen, sulfur or nitrogen and optionally substituted with one or more halogen or C₁-C₄ alkyl groups;
- R^{10} , R^{11} , R^{14} , R^{15} , R^{19} , R^{20} , R^{21} and R^{22} are each independently H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_7 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_8 - C_8

 R^{10} and R^{11} may be taken together with the atoms to which they are attached to represent a four to seven membered ring optionally substituted with one or more halogen or C_1 - C_4 alkyl groups,

one of the radicals R^{19} , R^{20} , R^{21} or R^{22} may also be an optionally substituted phenyl group;

10

R¹⁸ is H, halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₃-C₆ alkynyl, OR³⁸ or SR³⁹ or R¹⁷ and R¹⁸ may be taken together with the atoms to which they are attached to represent a four to seven membered ring optionally substituted with one or more halogen or C₁-C₄ alkyl groups;

R²⁵, R²⁶, R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, R³⁴, R³⁵, R³⁶, R³⁷, R³⁸ and R³⁹ are each independently H, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, optionally substituted phenyl or optionally substituted benzyl;

or optical isomers, salts or esters thereof.

- The compound as claimed in claim 1, wherein Q is Q2, wherein R⁹ is NH₂, C₁-C₄ alkyl, C₃ or C₄ alkenyl or C₃ -C₄ alkynyl;
 R¹⁰ is C₁-C₄ haloalkyl; and R¹¹ is H.
 - 3. The compound as claimed in any of the preceding claims, wherein X^2 is chlorine.
- 20 4. The compound as claimed in any of the preceding claims, wherein R^4 is a group NR^5R^6 .
 - 5. The compound as claimed in any of the preceding claims, wherein R^4 is C_1 - C_6 alkyl or C_1 - C_6 haloalkyl.
 - 6. The compound as claimed in claims 4 or 5, wherein R³ is H, A is O, Y is O, n is 1, R¹ and R² are independently of each other hydrogen or alkyl, and Q is Q2.
 - 7. The compound as claimed in claim 6, wherein A^2 and A^3 are each O.
 - 8. The compound as claimed in claim 1, wherein:
 - A is O;
 - Y is O, NH or S;

25

n is 0 or 1;

R¹ and R² are each independently H, C₁-C₄ alkyl or halogen;

 R^3 is H or C_1 - C_4 alkyl;

is NR⁵R⁶, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₇ cycloalkyl, C₂-C₆ alkenyl, C₃-C₆ alkynyl, optionally substituted phenyl or optionally substituted benzyl;

Q is Q2;

5

10

20

 R^5 and R^6 are each independently H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_7 cycloalkyl, phenyl, benzyl or C_3 - C_7 cycloalkenyl;

A² and A³ are each O;

 R^9 is NH_2 , C_1 - C_4 alkyl, C_3 or C_4 alkenyl or C_3 - C_4 alkynyl;

 R^{10} is C_1 - C_4 haloalkyl; and

 R^{11} is H.

- 7. The compound as claimed in claim 6, wherein R^3 is H, A is O, Y is O, n is 1, R^1 and R^2 are independently of each other hydrogen or C_1 - C_4 alkyl.
 - 8. The compound as claimed in claims 6 or 7, wherein R⁴ is a group NR⁵R⁶.
 - 9. The compound as claimed in claim 8, wherein R⁵ is methyl.
 - 10. The compound as claimed in claims 6 to 9 wherein both R¹ and R² are methyl.
 - 11. The compound as claimed in claim 1, which is: Propane-2-sulfonic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-propionyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-propionyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-

phenylsulfanyl]-propionyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-

5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-propionyl}-amide; Propane-2-sulfonic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-acetyl}-

amide; Propane-2-sulfonic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-

IOCID: <WO 03029226A1 I

10

15

20

25

30

trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-acetyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-acetyl}-amide; Dimethylsulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-acetyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2Hpyrimidin-1-yl)-phenyl]-acetyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenyl]-acetyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl]propionyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]-acetyl}amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-acetyl}-amide; Methylphenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl]-acetyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2Hpyrimidin-1-yl)-phenyl]-propionyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-acetyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxylacetyl}-amide; Propane-2-sulfonic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylamino]-acetyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylamino]-acetyl}-amide; Isopropyl-methyl-sulfa,ic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-propionyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-2-methyl-propionyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-propionyl}-amide; Dimethyl-sulfamic acid 2-chloro-4-fluoro-5-(5-methyl-6-oxo-4-trifluoromethyl-6Hpyridazin-1-yl)-benzoylamide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-

(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxyl-propionyl}-amide; and Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylamino]-acetyl}-amide.

5

10

15

20

12. The compound as claimed in claim 1, which is: Propane-2-sulfonic acid {2-[2-chloro-4fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-propionyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-propionyl}-amide; Isopropyl-methyl-sulfamic acid {2-[2-chloro-4fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-propionyl}-amide; Methyl-phenyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenylsulfanyl]-propionyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenylsulfanyl]acetyl}-amide; Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl]-propionyl}-amide; Isopropylmethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenyl]-propionyl}-amide; Isopropyl-methyl-sulfa,ic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2Hpyrimidin-1-yl)-phenoxy]-propionyl}-amide; or Dimethyl-sulfamic acid {2-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)phenoxy]-propionyl}-amide.

25 13.

- An agricultural composition comprising at least one compound of the formula I or of an agriculturally utilizable salt of I, as claimed in any of the preceding claims, and at least one inert liquid and/or solid carrier and, if desired, at least one surface-active substance.
- 14. A method for controlling undesired vegetation, which comprises allowing a

 herbicidally active amount of at least one compound of the formula I or of an
 agriculturally utilizable salt of I, as claimed in any of claims 1 to 12, to act on plants,
 their habitat or on seed.

- 15. The method of claim 14, wherein the compound is formulated into a composition comprising, in addition to the compound of formula (I), a carrier.
- 16. The method of claim 15, wherein the formulation is a dusting powder or granule;
 dispersible powder, granule or grain; aqueous dispersion; suspension; paste; or emulsion.
 - 17. The method of claim 14, wherein the compound is applied at a rate of about 25 g per hectare to about 600 g per hectare.
 - 18. A method for the desiccation and/or defoliation of plants, which comprises allowing an effective amount of at least one compound of the formula I having desiccant and/or defoliant activity or of an agriculturally utilizable salt of I, as claimed in any of claims 1 to 12, to act on plants.

INTERNATIONAL SEARCH REPORT

PCT/EP 02/10758

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D239/54 C07D213/61 C07D209/48 C07D213/20 A01N43/54
A01N43/38 A01N43/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C070 A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data, CHEM ABS Data

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
		· ·
Χ.	WO 92 06962 A (MONSANTO CO) 30 April 1992 (1992-04-30)	1,3,5, 13-18
	cited in the application	
Y	see general formula and page 5, line 3, pages 24-27 and compound no 238, page 85	1-18
X	EP 0 443 059 A (NIHON NOHYAKU CO LTD) 28 August 1991 (1991-08-28)	1,2,5, 13-18
Y	see general formula and compound 248, page 28 and page 120	1-18
	-/- -	•
		•
	·	
		1

	<u> </u>
X Further documents are listed in the continuation of box C.	Y Patent family members are listed in annex.
Special calegories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the International filing date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents; such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search 18 December 2002	Date of mailing of the international search report 30/12/2002
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tet. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax. (+31-70) 340-3016	Authorized officer Scruton-Evans, I

Form PCT/ISA/210 (second sheet) (July 1992)

PCT/EP 02/10758

		PCT/EP 02/10758
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
egory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	WO 90 02120 A (FMC CORP)	1 2 5
	8 March 1990 (1990-03-08)	1,3,5, 13-18
	see the whole application, general formula	1-18
	I on page 5, definitions of Q and examples	1 18
	5, compound nos 32-38,25-27 and 72	
	WO 86 02642 A (FMC CORP)	1 2 5
	9 May 1986 (1986-05-09)	1,3,5, 13-18
	cited in the application	13-16
	see formula III, page 5 and examples	1-18
	6,11,14 and Table 5	1-16
	PATENT ABSTRACTS OF JAPAN	1 2 5
	vol. 010, no. 199 (C-359),	1,3,5, 13-18
	11 July 1986 (1986-07-11)	13-18
	& JP 61 040261 A (MITSUBISHI CHEM IND	
	LTD), 26 February 1986 (1986-02-26)	ļ
	see compound 77 and whole document	1–18
	abstract	
	PATENT ABSTRACTS OF JAPAN	1,3,5,
	vol. 009, no. 309 (C-318),	13-18
	5 December 1985 (1985-12-05)	
	& JP 60 149571 A (MITSUBISHI KASEI KOGYO	
	KK), 7 August 1985 (1985-08-07)	
	see whole document, and examples 153 and	1-18
	144	
	abstract 	
	EP 0 077 938 A (MITSUBISHI CHEM IND)	1,3,5,
	4 May 1983 (1983-05-04)	13-18
	see general formula II and examples	1-18
	122-124,350-358.	
	EP 0 049 508 A (MITSUBISHI CHEM IND)	1 2 E
	14 April 1982 (1982-04-14)	1,3,5,
	see general formula definitions of A and B	1-18
	and examples 280,279,267,333,335	1-10
	 EP 0 255 047 A (HOFFMANN LA ROCHE)	7 10
	3 February 1988 (1988-02-03)	1-18
	cited in the application	
	the whole document	
	 EP 0 836 594 A (BASF AG)	1 10
		1-18
	22 April 1998 (1998-04-22) cited in the application	
	the whole document	1
	-/	
	·	

PCT/EP 02/10758

C (Cantin	MIGHT DOCUMENTS CONCIDEDED TO BE BELEVANT	PCT/EP 02	710/58
Category •	citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
P,Y	WO 01 83459 A (BASF AG) 8 November 2001 (2001-11-08) the whole document		1-18
			٠
		٠,	
	·	·	
	210 (continuation of second sheet) (July 1992)		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

JUCIU:

Information on patent family members

PCT/EP 02/10758

						/EP 02/10/58
	itent document I in search report		Publication date		Patent family member(s)	Publication date
WO	9206962	Α	30-04-1992	US	5281571 A	25-01-1994
				AT	174330 T	15-12-1998
				AU	653758 B2	13-10-1994
				AU	8927591 A	20-05-1992
				BG	97638 A	31-03-1994
				BR	9107049 A	28-09-1993
				CA	2092083 A1	19-04-1992
				CN	1061777 A	,B 10-06-1992
				CN	1090845 A	,B 17-08-1994
				CZ	9300637 A3	15-12-1993
				DE	69130614 D1	21-01-1999
				DE	69130614 T2	
				DK	553307 T3	
				EP	0553307 A1	04-08-1993
				EP	0791571 A1	27-08-1997
				ES	2059290 T1	16-11-1994
				FI	931708 A	10-06-1993
				GR	3029621 T3	
				HU	64310 A2	
				HŪ	219574 B	28-05-2001
				IE	913642 A1	22-04-1992
				JP	6502637 T	24-03-1994
				MX	9101637 A1	05-06-1992
				NZ	240282 A	27-04-1994
				PL PL	168964 B1 170158 B1	31-05-1996
				PL	169882 B1	31-10-1996 30-09-1996
				PT .		
				RU .	99261 A 2137761 C1	20-09-1999
				SK	35993 A3	
				MO	9206962 A1	30-04-1992
				US	5489571 A	06-02-1996
				US	5536700 A	16-07-1996
				us	5530126 A	25-06-1996
				ÜS	5600008 A	04-02-1997
				US	5600016 A	04-02-1997
				US	5496956 A	05-03-1996
				ZA	9108291 A	26-08-1992
				US	5866723 A	02-02-1999
EP	0443059	Α	28-08-1991	CN	1073432 A	
				EP	0443059 A1	
				ES	2118060 T3	16-09-1998
ᇤ	9002120	Α	08-03-1990	AT	87914 T	15-04-1993
110	5002220		30 00 1330	AU	626324 B2	
				AU	4210489 A	23-03-1990
				BR	8907626 A	30-07-1991
				CA	1331463 A1	
				CN	1041154 A	
				DE	68905926 D1	
				DE	68905926 T2	
				DK	34091 A	27-02-1991
				EG	18737 A	30-12-1993
				EP	0432212 A1	
				ES	2017826 A6	
				HU	55959 A2	
1				IL	91416 A	25-01-1994
L						

Form PCT/ISA/210 (patent family ennex) (July 1992)

Information on patent family members

PCT/EP 02/10758

Data at danswers!		Dublication		Datast familie	
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9002120	Α		JP	3503053 T	11-07-1991
			JP	5015708 B	02-03-1993
			KR	9302567 B1	03-04-1993
			LU	90281 A9	03-11-1998
			LV	11079 B	20-06-1996
			MD MX	940359 A 164601 B	30-04-1996 04-09-1992
			OA	9638 A	30-04-1993
			PL	161816 B1	31-08-1993
			RO	109196 B1	30-12-1994
			RU	2047296 C1	10-11-1995
			WO	9002120 A1	08-03-1990
			US	5125958 A	30-06-1992
			US	5217520 A	08-06-1993
			US	5208212 A	04-05-1993
			ZA 	8905660 A	25-04-1990
WO 8602642	Α	09-05-1986	AU	1333988 A	23-06-1988
			AU	573930 B2	23-06-1988
			AU	5066385 A	15-05-1986
			BR	8507017 A	06-01-1987
			CA CN	1266667 A1 85108193 A	13-03-1990 17-12-1986
			EP	0199794 A1	05-11-1986
			HU	41611 A2	28-05-1987
÷ .•			JP	61501991 T	11-09-1986
			KR	8801297 B1	22-07-1988
			RO	96607 A1	30-03-1989
			WO	8602642 A1	09-05-1986
			US	4919708 A	24-04-1990
			US US	4806145 A 4743291 A	21-02-1989 10-05-1988
			ZA	8603720 A	30-12-1986
JP 61040261	Α	26-02-1986	NONE		
	A	20-02-1900	NONE		
		07 00 1005	NONE		
JP 60149571	Α	07-08-1985	NONE		
	A A	07-08-1985 04-05-1983	JP	58072562 A	30-04-1983
JP 60149571			JP JP	1634028 C	20-01-1992
JP 60149571			JP JP JP	1634028 C 2057543 B	20-01-1992 05-12-1990
JP 60149571			JP JP JP JP	1634028 C 2057543 B 58103363 A	20-01-1992 05-12-1990 20-06-1983
JP 60149571			JP JP JP JP AU	1634028 C 2057543 B 58103363 A 8946382 A	20-01-1992 05-12-1990 20-06-1983 28-04-1983
JP 60149571			JP JP JP JP AU BR	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983
JP 60149571			JP JP JP JP AU	1634028 C 2057543 B 58103363 A 8946382 A	20-01-1992 05-12-1990 20-06-1983 28-04-1983
JP 60149571			JP JP JP JP AU BR DK EP ES	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A 470082 A 0077938 A2 8401031 A1	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983 24-04-1983 04-05-1983 16-02-1984
JP 60149571			JP JP JP JP AU BR DK EP	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A 470082 A 0077938 A2	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983 24-04-1983 04-05-1983
JP 60149571			JP JP JP JP AU BR DK EP ES ZA	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A 470082 A 0077938 A2 8401031 A1 8207487 A	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983 24-04-1983 04-05-1983 16-02-1984 31-08-1983
JP 60149571 EP 0077938	A	04-05-1983	JP JP JP JP AU BR DK EP ES ZA	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A 470082 A 0077938 A2 8401031 A1 8207487 A 1619995 C 2045621 B	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983 24-04-1983 04-05-1983 16-02-1984 31-08-1983 30-09-1991 11-10-1990
JP 60149571 EP 0077938	A	04-05-1983	JP JP JP JP AU BR DK EP ES ZA JP JP	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A 470082 A 0077938 A2 8401031 A1 8207487 A 	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983 24-04-1983 04-05-1983 16-02-1984 31-08-1983 30-09-1991 11-10-1990 19-04-1982
JP 60149571 EP 0077938	A	04-05-1983	JP JP JP JP AU BR DK EP ES ZA JP JP JP	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A 470082 A 0077938 A2 8401031 A1 8207487 A 	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983 24-04-1983 04-05-1983 16-02-1984 31-08-1983 30-09-1991 11-10-1990 19-04-1982 18-01-1989
JP 60149571 EP 0077938	A	04-05-1983	JP JP JP JP AU BR DK EP ES ZA JP JP	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A 470082 A 0077938 A2 8401031 A1 8207487 A 	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983 24-04-1983 04-05-1983 16-02-1984 31-08-1983 30-09-1991 11-10-1990 19-04-1982
JP 60149571 EP 0077938	A	04-05-1983	JP JP JP JP AU BR DK EP ES ZA JP JP JP JP	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A 470082 A 0077938 A2 8401031 A1 8207487 A 1619995 C 2045621 B 57064671 A 1474230 C 57067560 A	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983 24-04-1983 04-05-1983 16-02-1984 31-08-1983 30-09-1991 11-10-1990 19-04-1982 18-01-1989 24-04-1982
JP 60149571 EP 0077938	A	04-05-1983	JP JP JP JP AU BR DK EP ES ZA JP JP JP JP JP	1634028 C 2057543 B 58103363 A 8946382 A 8206186 A 470082 A 0077938 A2 8401031 A1 8207487 A 	20-01-1992 05-12-1990 20-06-1983 28-04-1983 20-09-1983 24-04-1983 04-05-1984 31-08-1983

Form PCT/ISA/210 (patent family annox) (July 1992)

Information on patent family members

PCT/EP 02/10758

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0049508	Α		BR	8106478 A	22-06-1982
			CA	1163635 A1	13-03-1984
			EP	0049508 A1	14-04-1982
			US	4536209 A	20-08-1985
EP 0255047	Α	03-02-1988	AU	604250 B2	13-12-1990
			AU 🗀	7637187 A	11-02-1988
			CA	1286662 A1	23-07-1991
			CN	87105777 A	06-04-1988
			DK	366887 A	13-05-1988
			EP	0255047 A1	03-02-1988
			HU	44902 A2	30-05-1988
			US	4859229 A	22-08-1989
			BR	8703926 A	05-04-1988
			JP	63041466 A	22-02-1988
			ZA	8705466 A	02-02-1988
EP 0836594	Α	22-04-1998	DE	19524617 A1	09-01-1997
			DE	19616719 A1	30-10-1997
			ΑU	6305696 A	05-02-1997
			BR	9609306 A	15-06-1999
			CA	2223111 A1	23-01-1997
			CN	1192737 A	09-09-1998
			CZ	9800026 A3	15-07-1998
			DE	59606553 D1	12-04-2001
			WO	9702253 A1	23-01-1997
			EP	0836594 A1	22-04-1998
			HU	9802434 A2	28-01-1999
			JP	11508574 T	27-07-1999
			PL	324524 A1	08-06-1998
			TR	9800010 T1	21-05-1998
			US	6057269 A	02-05-2000
WO 0183459	Α	08-11-2001	AU	5838401 A	12-11-2001
			BG	106473 A	31-10-2002
			CN	1383425 T	04-12-2002
			CZ	20020805 A3	12-06-2002
			WO	0183459 A2	08-11-2001
			EP	1226127 A2	31-07-2002
			US	2002045550 A1	18-04-2002

Form PCT/ISA/210 (patent tamily annex) (July 1992)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)