

Observe and explore your data: 3 options to make sure the data is loaded correctly

Many mistakes can be made when loading data. Checking the data before working with it is always a good idea:

- 1. Look at the data
- 2. Look at the individual variables
- 3. Look at summary statistics

Step 1: Look at your data

```
Customer TransDate Quantity PurchAmount
                                                  Cost
                                                         TransID
        149332 15.11.2005
                                     199.95
                                               107.00 27998739
        172951 29.08.2008
                                     199.95
                                             108.00 128888288
        120621 19.10.2007
                                     99.95
                                                49.00 125375247
                                      39.95
        149236 14.11.2005
                                                18.95 127996226
        149236 12.06.2007
                                      79.95
                                                35.00 128670302
                                      29.95
223186
        199997 17.09.2012
                                                13.80 132481149
                                     29.95
                                                13.80 132481149
223187
        199997 17.09.2012
223188
        199998 17.09.2012
                                      29.95
                                                13.80 132481154
223189
        199999 17.09.2012
                                     179.95
                                               109.99 132481165
       199542 17.09.2012
223190
                                      39.95
                                                10.50 131973368
```

[223191 rows x 5 columns]

myData

Step 1: Look at your data

Look at the first observations with the head () function:

myData.head(n=3)

	Customer	TransDate	Quantity	PurchAmount	Cost	TransID
0	149332	15.11.2005	1	199.95	107.00	27998739
1	172951	29.08.2008	1	199.95	108.00	128888288
2	120621	19.10.2007	1	99.95	49.00	125375247

Do the same for the last observations with the tail () function:

myData.tail(n=3)

	Customer	TransDate	Quantity	PurchAmount	Cost	TransID
223188	199998	17.09.2012	1	29.95	13.80	132481154
223189	199999	17.09.2012	1	179.95	109.99	132481165
223190	199542	17.09.2012	1	39.95	10.50	131973368

Step 1: Look at your data

Look at the first observations with the head () function:

	Customer	TransDate	Quantity	PurchAmount	Cost	TransID
0	149332	15.11.2005	1	199.95	107.00	27998739
1	172951	29.08.2008	1	199.95	108.00	128888288
2	120621	19.10.2007	1	99.95	49.00	125375247

Do the same for the last observations with the tail() function:

	Customer	TransDate	Quantity	PurchAmount	Cost	TransID
223188	199998	17.09.2012	1	29.95	13.80	132481154
223189	199999	17.09.2012	1	179.95	109.99	132481165
223190	199542	17.09.2012	1	39.95	10.50	131973368

Step 1: Look at your data

Look at the first observations with the head () function:

myData.head(n=3)

	Customer	TransDate	Quantity	PurchAmount	Cost	TransID
0	149332	15.11.2005	1	199.95	107.00	27998739
1	172951	29.08.2008	1	199.95	108.00	128888288
2	120621	19.10.2007	1	99.95	49.00	125375247

Do the same for the last observations with the tail () function:

myData.tail(n=3)

	Customer	TransDate	Quantity	PurchAmount	Cost	TransID
223188	199998	17.09.2012	1	29.95	13.80	132481154
223189	199999	17.09.2012	1	179.95	109.99	132481165
223190	199542	17.09.2012	1	39.95	10.50	131973368

Step 2: Look at individual variables

Before processing any data, you always have to ensure that your data is formatted properly and that the right data types are assigned to your variables. This will save a lot of time and you can avoid common mistakes.

Customer TransDate	Quantity	PurchAmount	Cost	TransID
149332 15/11/05	1	199.95	107.00	127998739
172951 29/08/08	1	199.95	108.00	128888288
120621 19/10/07	1	99.95	49.00	125375247
149236 14/11/05	1	39.95	18.95	127996226
149236 12/06/07	1	79.95	35.00	128670302

Customer
TransDate
Quantity
PurchAmount
Cost
dtype: object

int64
object
int64
float64
float64

Check if the type of the variables is correct.

mydata.dtypes

E 3 **E3 E** 3 **E3** €3 **E** 3

Sidenote: Built-in data types in Python

Python distinguishes between several data types. The most common are:

Data type		Description	Sign	Example
Logical		Variable is a logical value which can either be <i>True</i> or <i>False</i> .	bool	True, False
Numaria	integer	Variable is a number which can be written without a fractional component (whole-number).	int	-3, 0, 1, 2, 3,
Numeric	float	Variable is a computational approximation of any real-valued number.	float	-2.6, 1.0, 1.1, 1.329
Text	string	Variable is interpreted as "text".	str	"a", "Z", "Hello", "Anna"
Categorical	pandas. categorical	Variable, which can take on only a limited and usually fixed, number of possible values on a nominal scale.	category	pd.Series(["a","b","c"], dtype="category")
Dates and time	datetime	Variable is a data or time and special functionalities for manipulation are provided.	date / time	d = datetime.datetime (2009, 10, 5)

E 3 **E** 3 **E** 3 **E** 3 **E**3 **E** 3

Sidenote: Built-in data types in Python

Python distinguishes between several data types. The most common are:

Data type		Description	Sign	Example
Logical		Variable is a logical value which can either be <i>True</i> or <i>False</i> .	bool	True, False
Numoria	integer	Variable is a number which can be written without a fractional component (whole-number).	int	-3, 0, 1, 2, 3,
Numeric	float	Variable is a computational approximation of any real-valued number.	float	-2.6, 1.0, 1.1, 1.329
Text	string	Variable is interpreted as "text".	str	"a", "Z", "Hello", "Anna"
Categorical	pandas. categorical	Variable, which can take on only a limited and usually fixed, number of possible values on a nominal scale.	category	pd.Series(["a","b","c"], dtype="category")
Dates and time	datetime	Variable is a data or time and special functionalities for manipulation are provided.	date / time	d = datetime.datetime (2009, 10, 5)

E 3 **E** 3 **E** 3 €3 **E** 3 **E** 3 **E** 3

Sidenote: Built-in data types in Python

Python distinguishes between several data types. The most common are:

Data type		Description	Sign	Example
Logical		Variable is a logical value which can either be <i>True</i> or <i>False</i> .	bool	True, False
N	integer	Variable is a number which can be written without a fractional component (whole-number).	int	-3, 0, 1, 2, 3,
Numeric	float	Variable is a computational approximation of any real-valued number.	float	-2.6, 1.0, 1.1, 1.329
Text	string	Variable is interpreted as "text".	str	"a", "Z", "Hello", "Anna"
Categorical	pandas. categorical	Variable, which can take on only a limited and usually fixed, number of possible values on a nominal scale.	category	pd.Series(["London", "Berlin","Paris"], dtype="category")
Dates and time	datetime	Variable is a data or time and special functionalities for manipulation are provided.	date / time	d = datetime.datetime (2009, 10, 5)

Sidenote: Module "datetime"

A **module** is a single file which can be imported in Python. A **package** refers to a collection of modules.

If working with dates and times, many mistakes occur when dates and times are not identified and/or formatted properly (especially wrt international settings).

The "datetime" module makes it easier to work with dates and times:

- Identify and parse time
- Extract and modify years, months, days, hours, ...
- Perform accurate math with date-times

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15/11/05	1	199.95	107.00	127998739
172951	29/08/08	1	199.95	108.00	128888288
120621	19/10/07	1	99.95	49.00	125375247
149236	14/11/05	1	39.95	18.95	127996226
149236	12/06/07	1	79.95	35.00	128670302
Objec	t 1 ···				

Customer	TransDate	
149332	2005-11-15	
172951	2008-08-29	
120621	2007-10-19	
149236	2005-11-14	
149236	2007-06-12	

Recognized as date 8

Pandas object to modify

Column to modify 3

myData["TransDate"]=

pd.to datetime

Function is part of the pandas library

(myData["TransDate"],
format="%d.%m.%Y",

utc=True, dayfirst=True)

Ensure the right timezone

Ensure correct month and day ordering

Pandas recognizes often used separators as "-" and "." automatically, but it is safer to specify the format explicitly.

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15/11/05	1	199.95	107.00	127998739
172951	29/08/08	1	199.95	108.00	128888288
120621	19/10/07	1	99.95	49.00	125375247
149236	14/11/05	1	39.95	18.95	127996226
149236	12/06/07	1	79.95	35.00	128670302
Object	.				

Customer	TransDate	•••
149332	2005-11-15	
172951	2008-08-29	
120621	2007-10-19	
149236	2005-11-14	
149236	2007-06-12	

Recognized as date 8

Pandas object to modify

Column to modify 3

myData["TransDate"]=

pd.to datetime

(myData["TransDate"],

format="%d.%m.%Y",

utc=True, dayfirst=True)

Function is part of the pandas library

Ensure the right timezone

Ensure correct month and day ordering

Pandas recognizes often used separators as "-" and "." automatically, but it is safer to specify the format explicitly.

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15/11/05	1	199.95	107.00	127998739
172951	29/08/08	1	199.95	108.00	128888288
120621	19/10/07	1	99.95	49.00	125375247
149236	14/11/05	1	39.95	18.95	127996226
149236	12/06/07	1	79.95	35.00	128670302
Object	<u> </u>				

Customer	TransDate	
149332	2005-11-15	
172951	2008-08-29	
120621	2007-10-19	
149236	2005-11-14	
149236	2007-06-12	
	<u></u>	

Recognized as date 8

Pandas object to modify

Column to modify 3

myData["TransDate"]=

pd.to_datetime (myData["TransDate"],

format="%d.%m.%Y",

utc=True, dayfirst=True)

Function is part of the pandas library

Ensure the right timezone

Ensure correct month and day ordering

Pandas recognizes often used separators as "-" and "." automatically, but it is safer to specify the format explicitly.

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15/11/05	1	199.95	107.00	127998739
172951	29/08/08	1	199.95	108.00	128888288
120621	19/10/07	1	99.95	49.00	125375247
149236	14/11/05	1	39.95	18.95	127996226
149236	12/06/07	1	79.95	35.00	128670302
Object	0				

Customer	TransDate	•••
149332	2005-11-15	
172951	2008-08-29	
120621	2007-10-19	
149236	2005-11-14	
149236	2007-06-12	

Recognized as date 8

Pandas object to modify

Column to modify 3

myData["TransDate"]=

pd.to datetime

Function is part of the pandas library

(myData["TransDate"],
format="%d.%m.%Y",

utc=True, dayfirst=True)

Ensure the right timezone

Ensure correct month and day ordering

Pandas recognizes often used separators as "-" and "." automatically, but it is safer to specify the format explicitly.

Sidenote: General command structure for addressing columns in a Pandas DataFrame

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15.11.2005	1	199.95	107.00	127998739
172951	29.08.2008	1	199.95	108.00	128888288
120621	19.10.2007	1	99.95	49.00	125375247
		_	22.22		
149236	14.11.2005	1	39.95	18.95	127996226
149236	12.06.2007	1	79.95	35.00	128670302
				•••	

Step 3: Look at summary statistics

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15.11.2005	1	199.95	107.00	127998739
172951	29.08.2008	1	199.95	108.00	128888288
120621	19.10.2007	1	99.95	49.00	125375247
149236	14.11.2005	1	39.95	18.95	127996226
149236	12.06.2007	1	79.95	35.00	128670302

myData.describe()

	Customer	Quantity	PurchAmount	Cost
count	223191.000000	223191.000000	223191.000000	223191.000000
mean	148366.708384	1.037009	84.164615	39.013295
std	28657.866956	0.336899	105.864308	57.145100
min	100001.000000	1.000000	0.00000	0.000000
25%	123563.000000	1.000000	34.950000	14.030000
50%	148635.000000	1.000000	59.950000	24.000000
75%	172467.000000	1.000000	99.950000	45.000000
max	199999.000000	70.00000	5000.000000	3100.000000

Are the summary statistics as you expect them to be?

Step 3: Look at summary statistics

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15.11.2005	1	199.95	107.00	127998739
172951	29.08.2008	1	199.95	108.00	128888288
120621	19.10.2007	1	99.95	49.00	125375247
149236	14.11.2005	1	39.95	18.95	127996226
149236	12.06.2007	1	79.95	35.00	128670302

myData.describe()

Are the summary statistics as you expect them to be?

	Customer	Quantity	PurchAmount	Cost
count	223191.000000	223191.000000	223191.000000	223191.000000
mean	148366.708384	1.037009	84.164615	39.013295
std	28657.866956	0.336899	105.864308	57.145100
min	100001.000000	1.000000	0.00000	0.000000
25%	123563.000000	1.000000	34.950000	14.030000
50%	148635.000000	1.000000	59.950000	24.000000
75%	172467.000000	1.000000	99.950000	45.000000
max	199999.000000	70.00000	5000.000000	3100.000000

Write data as CSV

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15.11.2005	1	199.95	107.00	127998739
172951	29.08.2008	1	199.95	108.00	128888288
120621	19.10.2007	1	99.95	49.00	125375247
149236	14.11.2005	1	39.95	18.95	127996226
149236	12.06.2007	1	79.95	35.00	128670302

Object to save

Write data as CSV

Customer	TransDate	Quantity	PurchAmount	Cost	TransID
149332	15.11.2005	1	199.95	107.00	127998739
172951	29.08.2008	1	199.95	108.00	128888288
120621	19.10.2007	1	99.95	49.00	125375247
149236	14.11.2005	1	39.95	18.95	127996226
149236	12.06.2007	1	79.95	35.00	128670302

Sidenote: Remove objects from your workspace

When you are finished with an object it is good practice (but not obligatory) to remove it from your workspace. Thus, you save storage and keep your programming environment clean:

