Introducción

En la clase de hoy, continuaremos con la construcción del conjunto $\mathbb Z$ de los números enteros a partir del conjunto $\mathbb N$ de los números naturales, que iniciamos en la última clase.

Empezaremos recordando brevemente los conceptos y resultados que vimos en la última clase.

Construcción de Z

Definimos la relación R en $\mathbb{N} \times \mathbb{N}$ por:

$$(m,n)R(p,q) \Leftrightarrow m+q=n+p$$

para todo $(m, n), (p, q) \in \mathbb{N} \times \mathbb{N}$.

Teorema 1

R es una relación de equivalencia.

Definimos $Z = (\mathbb{N} \times \mathbb{N})/R$.

Teorema 2

$$\begin{aligned} &\{\overline{(m,n)}:(m.n)\in\mathbb{N}^2 \text{ tal que } m=0 \text{ o } n=0\} = \\ &\{\overline{(0,k)}:k\in\mathbb{N}\setminus\{0\}\}\cup\{\overline{(0,0)}\}\cup\{\overline{(k,0)}:k\in\mathbb{N}\setminus\{0\}\} \text{ es una buena representación de } \mathbb{Z}. \end{aligned}$$

Sean $a,b\in\mathbb{Z}$. Pongamos $a=\overline{(m,n)}$ y $b=\overline{(p,q)}$. Definimos entonces

$$a+b=\overline{(m,n)}+\overline{(p,q)}=\overline{(m+p,n+q)}.$$

Teorema 3

+ está bien definida en \mathbb{Z} .

Propiedades básicas de la + en $\mathbb Z$

Teorema 4

Para todo $a,b,c\in\mathbb{Z}$ se cumplen las siguientes propiedades:

- (1) Propiedad conmutativa:
- a + b = b + a
- (2) Propiedad asociativa:

$$(a+b) + c = a + (b+c).$$

- (3) Existencia del elemento neutro:
- $a + \overline{(0,0)} = a.$
- (4) Existencia de elementos opuestos:

$$a + (-a) = \overline{(0,0)}.$$

(5) Propiedad cancelativa:

Si
$$a + c = b + c$$
 entonces $a = b$.

Definición del producto en $\mathbb Z$

Sean $a,b\in\mathbb{Z}.$ Pongamos $a=\overline{(m,n)}$ y $b=\overline{(p,q)}.$ Definimos entonces

$$a\cdot b=\overline{(m,n)}\cdot\overline{(p,q)}=\overline{(mp+nq,mq+np)}.$$

Intuitivamente, el producto se define de esta manera, porque la clase $\overline{(m,n)}$ representa al entero m-n, la clase $\overline{(p,q)}$ representa al entero p-q y $(m-n)\cdot(p-q)=(mp+nq)-(mq+np)$, que representa a $\overline{(mp+nq,mq+np)}$.

Por ejemplo,
$$\overline{(0,3)}\cdot\overline{(4,0)}=\overline{(0\cdot 4+3\cdot 0,0\cdot 0+3\cdot 4)}=\overline{(0,12)}.$$

Definición del producto en $\mathbb Z$

Al igual que con la suma, debemos demostrar que el producto en $\mathbb Z$ está bien definido, en el sentido de que no depende de los representantes elegidos.

Teorema 5

· está bien definida en Z.

Para demostrar este teorema, supongamos que $\overline{(m,n)}=\overline{(m',n')}$ y $\overline{(p,q)}=\overline{(p',q')}$. Tenemos que demostrar que

$$\overline{(m,n)}\cdot\overline{(p,q)}=\overline{(m',n')}\cdot\overline{(p',q')}.$$

Es decir, tenemos que demostrar la siguiente condición:

$$(*) \quad \overline{(mp+nq,mq+np)} = \overline{(m'p'+n'q',m'q'+n'p')}.$$

Como $\overline{(m,n)} = \overline{(m',n')}$, tenemos:

(1)
$$m + n' = n + m'$$
.

Y como
$$\overline{(p,q)}=\overline{(p',q')}$$
, tenemos:

(2)
$$p + q' = q + p'$$
.

Multiplicando por p los dos lados de (1), obtenemos:

 $(3) \quad pm + pn' = pm' + pn.$

Y multiplicando por q los dos lados de (1), obtenemos:

 $(4) \quad nq + m'q = n'q + mq.$

Ahora, multiplicando por m' los dos lados de (2), obtenemos:

(5) pm' + q'm' = p'm' + qm'.

Y multiplicando por n' los dos lados de (2), obtenemos:

(6) qn' + p'n' = n'q' + n'p.

Ahora, sumando las partes izquierdas de las condiciones (3)-(6) por un lado, y sumando las partes derechas de (3)-(6), obtenemos:

$$pm + pn' + nq + m'q + pm' + q'm' + qn' + p'n' = pm' + pn + n'q + mq + p'm' + qm' + n'q' + n'p.$$

Entonces, simplificando esta igualdad, obtenemos que

$$pm + nq + q'm' + p'n' = pn + mq + p'm' + n'q'.$$

Por tanto,

$$\overline{(mp+nq,mq+np)} = \overline{(m'p'+n'q',m'q'+n'p')}.$$

Así pues, se cumple la condición (∗). □

Propiedades básicas del \cdot en $\mathbb Z$

Teorema 6

Para todo $a,b,c\in\mathbb{Z}$ se cumplen las siguientes propiedades:

- (1) Propiedad conmutativa:
- $a \cdot b = b \cdot a$
- (2) Propiedad asociativa:
- $(a \cdot b) \cdot c = a \cdot (b \cdot c).$
- (3) Existencia del elemento neutro:
- $a \cdot \overline{(1,0)} = a$.
- (4) Propiedad distributiva:
- $a \cdot (b+c) = (a \cdot b) + (a \cdot c).$
- (5) Propiedad cancelativa:
- Si $a \cdot c = b \cdot c$ y $c \neq \overline{(0,0)}$, entonces a = b.
- (6) No hay divisores de cero:

Si
$$a \cdot b = \overline{(0,0)}$$
, entonces $a = \overline{(0,0)}$ o $b = \overline{(0,0)}$.

Los apartados (1)-(3) se demuestran de manera análoga a los apartados (1)-(3) del Teorema 4. Demostramos entonces los apartados (4)-(6).

Demostramos (4). Pongamos $a=\overline{(m,n)}$, $b=\overline{(p,q)}$ y $c=\overline{(r,s)}$. Tenemos:

$$b+c=\overline{(p,q)}+\overline{(r,s)}=\overline{(p+r,q+s)},$$

$$\frac{a\cdot (b+c)=\overline{(m,n)}\cdot \overline{(p+r,q+s)}=}{(m(p+r)+n(q+s),m(q+s)+n(p+r))}.$$

Por otra parte, tenemos:

Propiedades básicas del \cdot en $\mathbb Z$

$$a \cdot b = \overline{(m,n)} \cdot \overline{(p,q)} = \overline{(mp+nq,mq+np)},$$

$$a \cdot c = \overline{(m,n)} \cdot \overline{(r,s)} = \overline{(mr+ns,ms+nr)},$$

$$\underline{a \cdot b + a \cdot c} = \overline{(mp+nq,mq+np)} + \overline{(mr+ns,ms+nr)} = \overline{(mp+nq+mr+ns,mq+np+ms+nr)}.$$

Es decir,

$$a\cdot b + a\cdot c = \overline{\left(m(p+r) + n(q+s), m(q+s) + n(p+r)\right)}.$$

Por tanto, $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$.

Demostramos (5). Pongamos $a=\overline{(m,n)},\ b=\overline{(p,q)}$ y $c=\overline{(r,s)}$. Tenemos:

$$a\cdot c=\overline{(m,n)}\cdot\overline{(r,s)}=\overline{(mr+ns,ms+nr)},$$

$$b\cdot c=\overline{(p,q)}\cdot\overline{(r,s)}=\overline{(pr+qs,ps+qr)}.$$

Entonces, como $a\cdot c=b\cdot c$, tenemos que mr+ns+ps+qr=ms+nr+pr+qs. Es decir,

$$(m+q)r + (n+p)s = (n+p)r + (m+q)s.$$

Por tanto, (m+q)(r-s)=(n+p)(r-s). Ahora, aplicando la propiedad cancelativa del producto en $\mathbb N$, deducimos que m+q=n+p. Por tanto, $\overline{(m,n)}=\overline{(p,q)}$, con lo cual a=b.

Demostramos ahora (6). Pongamos $a=\overline{(m,n)}$ y $b=\overline{(p,q)}$. Tenemos:

$$a\cdot b=\overline{(m,n)}\cdot\overline{(p,q)}=\overline{(mp+nq,mq+np)}.$$

Entonces, como $a\cdot b=\overline{(0,0)}$, tenemos que mp+nq=mq+np. Si p=q, tenemos que $b=\overline{(p,p)}=\overline{(0,0)}$, ya que (p,p)R(0,0).

Supongamos entonces que $p \neq q$. Si q > p, tenemos que q-p>0. Entonces, como mp+nq=mq+np, tenemos que m(q-p)=n(q-p). Ahora, por la propiedad cancelativa del producto en \mathbb{N} , deducimos que m=n, y por tanto $a=\overline{(m,n)}=\overline{(m,m)}=\overline{(0,0)}$. Y si p>q, procediendo de forma análoga, deducimos también que $a=\overline{(0,0)}$. \square

Definición del orden en Z

Sean $\overline{(a,b)},\overline{(c,d)}\in\mathbb{Z}$. Definimos entonces

$$\overline{(a,b)} \leq \overline{(c,d)} \Leftrightarrow a+d \leq b+c.$$

Intuitivamente, el orden se define de esta manera, porque la clase $\overline{(a,b)}$ representa al entero a-b, la clase $\overline{(c,d)}$ representa al entero c-d y tenemos que $a-b \leq c-d \Leftrightarrow a+d \leq b+c$.

En el siguiente teorema, demostramos que el orden está bien definido, es decir, no depende de los representantes elegidos.

Teorema 7

< está bien definido en \mathbb{Z} .

Supongamos que $\overline{(a,b)}=\overline{(a',b')}$ y $\overline{(c,d)}=\overline{(c',d')}$. Y supongamos que $\overline{(a,b)}\leq \overline{(c,d)}$. Tenemos que demostrar que $\overline{(a',b')}\leq \overline{(c',d')}$.

Tenemos:

$$\overline{(a,b)} = \overline{(a',b')} \Rightarrow a+b'=b+a',$$

$$\overline{(c,d)} = \overline{(c',d')} \Rightarrow c + d' = d + c'.$$

Entonces:

$$\overline{(a,b)} \le \overline{(c,d)} \Rightarrow a+d \le b+c \Rightarrow a+d+b+a'+c+d' \le b+c+a+b'+d+c'$$

Observamos que a,b,c y d aparecen en los dos lados de la última desigualdad, y por tanto se pueden eliminar.

Por consiguiente, tenemos que $a'+d' \leq b'+c'$. Así pues, $\overline{(a',b')} \leq \overline{(c',d')}$. \square

El orden en \mathbb{Z}

Teorema 8

< es un orden total en \mathbb{Z} .

 \leq es reflexiva, ya que para todo $\overline{(a,b)} \in \mathbb{Z}$, a+b=b+a, y por tanto $\overline{(a,b)} \leq \overline{(a,b)}$.

 $\frac{\leq \text{ es antisimétrica.}}{(a,b),(c,d)} \in \mathbb{Z} \text{ tales que } \underbrace{(a,b)} \leq \underbrace{(c,d)} \text{ y } \underbrace{(c,d)} \leq \underbrace{(a,b)}. \text{ Tenemos que probar que } \underbrace{(a,b)} = \underbrace{(c,d)}. \text{Tenemos entonces:}$

$$\overline{(a,b)} \le \overline{(c,d)} \Rightarrow a+d \le b+c,$$

$$\overline{(c,d)} \le \overline{(a,b)} \Rightarrow c+b \le d+a.$$

Como la relación de orden en $\mathbb N$ es antisimétrica, deducimos que a+d=b+c, y por tanto $\overline{(a,b)}=\overline{(c,d)}$.

 $\frac{\leq \text{ es transitiva. Para demostrarlo, supongamos que}}{(a,b),(c,d),\overline{(e,f)}} \in \mathbb{Z} \text{ tales que } \underbrace{(a,b)} \leq \overline{(c,d)} \text{ y } \underline{(c,d)} \leq \overline{(e,f)}.$ Tenemos que probar que $\overline{(a,b)} \leq \overline{(e,f)}.$ Tenemos entonces:

$$\overline{(a,b)} \le \overline{(c,d)} \Rightarrow a+d \le b+c.$$

$$\overline{(c,d)} \leq \overline{(e,f)} \Rightarrow c+f \leq d+e.$$

Por tanto,

$$a+d+c+f \le b+c+d+e.$$

Simplificando esta desigualdad, obtenemos que $a+f\leq b+e$, con lo cual tenemos que $\overline{(a,b)}\leq \overline{(e,f)}.$

El orden en \mathbb{Z}

Si
$$a+d \leq b+c$$
, entonces $\overline{(a,b)} \leq \overline{(c,d)}$. Y si $b+c \leq a+d$, entonces $\overline{(c,d)} \leq \overline{(a,b)}$.

Por tanto, \leq es total. \square

A continuación, vamos a demostrar que dentro de $\mathbb Z$ tenemos una copia de $\mathbb N$ que se comporta correctament con la suma, el producto, los elementos neutros de la suma y el producto y también con el orden.

Una copia de $\mathbb N$ en $\mathbb Z$

Teorema 9

Sea $\sigma:\mathbb{N}\longrightarrow\mathbb{Z}$ definida por $\sigma(n)=\overline{(n,0)}$ para todo $n\in\mathbb{N}.$ Se tiene entonces:

- (1) σ es una aplicación inyectiva de \mathbb{N} en \mathbb{Z} .
- (2) σ preserva la suma, es decir, $\sigma(m+n)=\sigma(m)+\sigma(n)$ para todo $m,n\in\mathbb{N}.$
- (3) σ preserva el producto, es decir, $\sigma(m\cdot n)=\sigma(m)\cdot\sigma(n)$ para todo $m,n\in\mathbb{N}.$
- (4) $\sigma(0) = \overline{(0,0)}$.
- (5) $\sigma(1) = \overline{(1,0)}$.
- (6) Para todo $m, n \in \mathbb{N}$,

$$m \le n \Leftrightarrow \sigma(m) \le \sigma(n)$$
.

Demostramos el apartado (1). Es claro que σ es una aplicación, porque está definida para todo elemento de $\mathbb N$. Para probar que σ es inyectiva, supongamos que m y n son números naturales distintos. Por tanto $m+0\neq n+0$, con lo cual (m,0) R(n,0). Tenemos entonces:

$$\sigma(m) = \overline{(m,0)} \neq \overline{(n,0)} = \sigma(n).$$

Demostramos (2). Para todo $m, n \in \mathbb{N}$ tenemos:

$$\sigma(m+n) = \overline{(m+n,0)} = \overline{(m,0)} + \overline{(n,0)} = \sigma(m) + \sigma(n).$$

Demostramos (3). Para todo $m, n \in \mathbb{N}$ tenemos:

$$\frac{\sigma(mn)}{(m,0)} = \overline{(mn,0)} = \overline{(mn+0\cdot 0, m\cdot 0 + 0\cdot n)} = \overline{(m,0)\cdot (n,0)} = \sigma(m)\cdot \sigma(n).$$

Los apartados (4) y (5) son inmediatos, por la definición de σ .

Demostramos entonces el apartado (6). Para todo $m, n \in \mathbb{N}$ tenemos:

$$\sigma(m) \leq \sigma(n) \Leftrightarrow \overline{(m,0)} \leq \overline{(n,0)} \Leftrightarrow m+0 \leq n+0 \Leftrightarrow m \leq n.$$

Por tanto,

$$m \le n \Leftrightarrow \sigma(m) \le \sigma(n)$$
. \square

