```
# Importing Libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the Dataset
df = pd.read_csv(r"C:\Users\Rohit\Documents\Rohit\Internship\Elevate Labs\Task 5\tr

# BASIC OVERVIEW

print("Shape:", df.shape)
print("\nColumn Types:\n", df.dtypes)
print("\nMissing Values:\n", df.isnull().sum())
print("\nUnique Values:\n", df.nunique())
print("\nDescriptive Stats:\n", df.describe(include='all'))
```

Shape: (891, 12)

Column Types:

int64 PassengerId Survived int64 Pclass int64 Name object Sex object Age float64 SibSp int64 Parch int64 Ticket object Fare float64 Cabin object Embarked object

dtype: object

Missing Values:

PassengerId 0 0 Survived Pclass 0 Name 0 0 Sex 177 Age SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2

dtype: int64

Unique Values:

PassengerId 891 Survived 2 Pclass 3 891 Name Sex 2 88 Age SibSp 7 Parch 7 Ticket 681 Fare 248 Cabin 147 Embarked 3 dtype: int64

Descriptive Stats:

	PassengerId	Survived	Pclass				Name	Sex	\
count	891.000000	891.000000	891.000000				891	891	
unique	NaN	NaN	NaN				891	2	
top	NaN	NaN	NaN	Braund,	Mr.	0wen	Harris	male	
freq	NaN	NaN	NaN				1	577	
mean	446.000000	0.383838	2.308642				NaN	NaN	
std	257.353842	0.486592	0.836071				NaN	NaN	
min	1.000000	0.000000	1.000000				NaN	NaN	
25%	223.500000	0.000000	2.000000				NaN	NaN	
50%	446.000000	0.000000	3.000000				NaN	NaN	
75%	668.500000	1.000000	3.000000				NaN	NaN	
max	891.000000	1.000000	3.000000				NaN	NaN	

```
numeric cols = df.select dtypes(include=['int64', 'float64']).columns
categorical_cols = df.select_dtypes(include='object').columns
# Plot numeric columns
for col in numeric cols:
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    sns.histplot(df[col].dropna(), kde=True, bins=30)
    plt.title(f"Distribution of {col}")
    plt.subplot(1, 2, 2)
    sns.boxplot(x=df[col])
    plt.title(f"Boxplot of {col}")
    plt.tight_layout()
    plt.show()
# Plot categorical columns
for col in categorical cols:
    plt.figure(figsize=(8, 4))
    df[col].value_counts().plot(kind='bar')
    plt.title(f"Bar Plot of {col}")
    plt.xticks(rotation=45)
    plt.tight layout()
    plt.show()
                 Distribution of Passengerld
                                                                Boxplot of Passengerld
 30
 25
 20
700 T2
 10
  5
                                                            200
                                                                              600
                                                                                       800
                                                                     PassengerId
                                                                  Boxplot of Survived
                  Distribution of Survived
 500
 400
Sount
300
 200
 100
   0
                                                                                            1.0
     0.0
              0.2
                                      0.8
                                              1.0
                                                           0.2
                        Survived
                                                                      Survived
```


C:\Users\Rohit\AppData\Local\Temp\ipykernel_6244\2807690441.py:25: UserWarning: Tight layout not applied. The bottom and top margins cannot be made large enough to accommodate all Axes decorations.

plt.tight_layout()

Bar Plot of Ticket

Bar Plot of Cabin

Cabin

C:\Users\Rohit\AppData\Local\Temp\ipykernel_6244\1676552089.py:7: UserWarning: Tight layout not applied. The bottom and top margins cannot be made large enough to accommodate all Axes decorations.

plt.tight_layout()

Bar Plot of Ticket

Bar Plot of Cabin

Cabin

Bar Plot of Embarked


```
# BIVARIATE / MULTIVARIATE ANALYSIS
# Correlation heatmap
plt.figure(figsize=(10, 6))
sns.heatmap(df[numeric cols].corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Matrix")
plt.show()
# Clean and prepare pairplot data
pairplot data = df[['Age', 'Fare', 'Pclass', 'Survived']].copy()
for col in pairplot data.columns:
    pairplot data[col] = pd.to numeric(pairplot data[col], errors='coerce')
pairplot data.dropna(inplace=True)
# Pairplot
sns.pairplot(pairplot_data, hue='Survived')
plt.suptitle("Pairplot of Age, Fare, Pclass, Survived", y=1.02)
plt.show()
# Boxplot: Age by Survival
sns.boxplot(x='Survived', y='Age', data=df)
plt.title("Age Distribution by Survival")
plt.show()
# Boxplot: Fare by Pclass
sns.boxplot(x='Pclass', y='Fare', data=df)
plt.title("Fare Distribution by Pclass")
plt.show()
# Countplot: Survival by Sex
sns.countplot(x='Sex', hue='Survived', data=df)
plt.title("Survival Count by Sex")
plt.show()
```


Age Distribution by Survival

Fare Distribution by Pclass

Survival Count by Sex

MISSING VALUES VISUALIZATION

```
plt.figure(figsize=(10, 5))
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.title("Missing Values Heatmap")
plt.show()
```

