

Modulhandbuch

für den berufsbegleitenden Bachelorstudiengang

Systemtechnik (B.Eng.)

SPO-Version ab: Wintersemester 2022

Wintersemester 2022/2023

erstellt am 12.10.2022

von Laura Petersen

Fakultät Maschinenbau

Hinweise:

1. Die Angaben zum Arbeitsaufwand in der Form von ECTS-Credits in einem Modul in diesem Studiengang beruhen auf folgender Basis:

1 ECTS-Credit entspricht in der Summe aus Präsenz und Selbststudium einer durchschnittlichen Arbeitsbelastung von 25 Stunden (45 Minuten Lehrveranstaltung werden als 1 Zeitstunde gerechnet).

2. Erläuterungen zum Aufbau des Modulhandbuchs

Die Module sind nach Studienabschnitten unterteilt und innerhalb eines Abschnitts alphabetisch sortiert. Jedem Modul sind eine oder mehrere Veranstaltungen zugeordnet. Die Beschreibung der Veranstaltungen folgt jeweils im Anschluss an das Modul. Durch Klicken auf das Modul oder die Veranstaltung im Inhaltsverzeichnis gelangt man direkt auf die jeweilige Beschreibung im Modulhandbuch.

3. Standard-Hilfsmittel (SHM)

Folgende Hilfsmittel sind bei allen Prüfungen zugelassen:

- Unbeschriebenes Schreibpapier (Name, Matrikelnummer und Modulbezeichnung dürfen vorab schon notiert werden)
- Schreibstifte aller Art (ausgenommen rote Stifte)
- Zirkel, Lineale aller Art, Radiergummi, Bleistiftspitzer, Tintenentferner
- Zugelassener Taschenrechner der Fakultät Maschinenbau (siehe Merkblatt "Zugelassene Hilfsmittel" auf der Fakultätshomepage), zu erwerben über die Fachschaft.

Ausnahmen von dieser Regel werden in der Spalte "Zugelassene Hilfsmittel" explizit angegeben.

<u>Verwendung der Module:</u> Alle Module sind auf die Lehre im berufsbegleitenden Studium ausgerichtet. Die Module sind zielspezifisch für Studierende in dieser Studiengangsform ausgelegt. Eine systematische Verwendung in anderen Studiengängen ist nicht vorgesehen. Dies beschränkt dennoch nicht die Anrechenbarkeit gemäß den Regelungen der entsprechenden Richtlinien.

Modulliste

Studienabschnitt 1:

Grundlagen der Elektrotechnik und Elektronik	
Grundlagen der Elektrotechnik und Elektronik	
Grundlagen der Ingenieurinformatik	{
Grundlagen der Ingenieurinformatik	6
Ingenieurmathematik 1	
Ingenieurmathematik 1	13
Ingenieurmathematik 2	16
Ingenieurmathematik 2	
Maschinenelemente	20
Maschinenelemente	2 ⁻
Physik mit Praktikum	23
Physik Praktikum	24
Physik Vorlesung	20
Praktikum Mechatronik	
Praktikum Mechatronik	29
Technische Mechanik - Dynamik	
Technische Mechanik - Dynamik	
Technische Mechanik - Statik	
Technische Mechanik - Statik	
Technisches Englisch	37
Technisches Englisch	
<u> </u>	
vverkstomechnik	
Werkstofftechnik Werkstofftechnik Studienabschnitt 2:	4 [.]
Werkstofftechnik	4
Werkstofftechnik	4{ 4
Studienabschnitt 2: Aktorik und Antriebssysteme	48 49 43
Werkstofftechnik	48 49 43
Studienabschnitt 2: Aktorik und Antriebssysteme	
Studienabschnitt 2: Aktorik und Antriebssysteme	49 49 40 44 40 52 55 56 56 56 66 66 66
Studienabschnitt 2: Aktorik und Antriebssysteme	49 49 49 49 49 49 49 50 50 50 50 60 60 60 60 60 77
Studienabschnitt 2: Aktorik und Antriebssysteme	49 49 49 40 40 40 50 50 50 50 60 60 60 60 60 70
Studienabschnitt 2: Aktorik und Antriebssysteme	48 49 49 40 40 50 50 50 50 60 60 60 60 60 70
Studienabschnitt 2: Aktorik und Antriebssysteme	48 49 49 40 40 40 50 50 50 50 60 60 60 60 70 70
Studienabschnitt 2: Aktorik und Antriebssysteme	48 49 49 40 40 40 50 50 50 50 60 60 60 70 70 70
Studienabschnitt 2: Aktorik und Antriebssysteme	48 49 49 40 40 40 52 55 56 56 66 67 67 77 77 78

Studienabschnitt 3:

Bachelorarbeit mit Präsentation	87
Bachelorarbeit	88
Mündliche Verteidigung der Bachelorarbeit	90
Einführung in das Recht	84
Einführung in das Recht	85
Industriepraktikum	91
Industriepraktikum	92
Internationale Handlungskompetenz	94
Internationale Handlungskompetenz	95
Praxismodul Digitalisierung	97
Praxismodul Digitalisierung	98
Projektarbeit	100
Projektbearbeitung	101
Projektseminar	104
Rechnungswesen und Controlling	106
Rechnungswesen und Controlling	107
Schreibkompetenz	109
Angewandte Schreibkompetenz	110
Technische Dokumentation	112
Sensorik und Signalübertragung	114
Sensorik und Signalübertragung	115
Sonderausbildung	117
Sonderausbildung	118
Technisches Wahlpflichmodul 1/2	119
Anrechnungsmodule für TW 1 und TW 2	120
Innovative mobile Antriebssysteme	122
Leichtbau (Konstruktion und Werkstoffe)	124
Wärmetechnik und Energieeffizienz	126

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Grundlagen der Ingenieurinformatik		GII
(Fundamentals of Computer Science for Engineers)		
Modulverantwortliche/r Fakultät		
Prof. Torsten Reitmeier Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2	1	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Grundlagen der Ingenieurinformatik	46 UE	5

Teilmodul		TM-Kurzbezeichnung
Grundlagen der Ingenieurinformatik		GII
(Fundamentals of Computer Science for	or Engineers)	
Verantwortliche/r	Fakultät	
Prof. Torsten Reitmeier	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Johannes Höcherl (LB)	jährlich	
Prof. Torsten Reitmeier		
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

Schriftliche Prüfung, 90 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, 1 beliebig bedrucktes und/oder beschriebenes DIN-A4-Blatt

Inhalte

- Darstellung von Informationen
- Vorgehensweise bei der Lösung von Programmierproblemen
- Grundkonzepte der Programmierung
- Einfache und zusammengesetzte Datentypen und Operatoren
- · Kontrollstrukturen, Ein- und Ausgabe
- Zeiger
- Funktionen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundkonzepte von Programmier- und Anwendersprachen zu benennen (1)
- die wichtigsten Elemente der Programmiersprache C(++) anzuwenden (3)
- ein technisch-wissenschaftliches Berechnungsproblem durch Programmieren in einer Programmiersprache selbstständig zu lösen (3)
- eine Entwicklungsumgebung anzuwenden und einzusetzen (2)
- Algorithmen in ein Programm umzusetzen (2)
- Programmergebnisse zu bewerten und Fehler gezielt zu suchen (3)

• bei der Lösung von programmiertechnischen Fragestellungen methodisch vorzugehen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- bei der Vorbereitung und Durchführung von Übungen in einem Team zu arbeiten (2)
- programmiertechnische Fragestellungen in der Gruppe zu diskutieren (2)
- erzielte Programmierergebnisse kritisch zu bewerten (3)

Angebotene Lehrunterlagen

Skript, Übungen, Software

Lehrmedien

Rechner/Beamer, Tafel

Literatur

Literaturliste siehe Skript

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Grundlagen der Elektrotechnik und Elektronik		GEE
(Fundamentals of Electrical Engineering and Electronics)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Wolfgang Bock	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
Grundkenntnisse der Ingenieurmathematik

	Inhalte
Ì	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Grundlagen der Elektrotechnik und	46 UE	5
	Elektronik		

Teilmodul		TM-Kurzbezeichnung
Grundlagen der Elektrotechnik und Elektronik		GEE
(Fundamentals of Electrical Engineeri	ng and Electronics)	
Verantwortliche/r	Fakultät	
Prof. Dr. Wolfgang Bock Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Wolfgang Bock Prof. Dr. Hermann Ketterl Prof. Torsten Reitmeier		
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

schriftliche Prüfung, 120 Min. (60+60)

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, auf der E-Learning-Plattform veröffentlichtes Kurzskriptum ohne Ergänzungen; Markierungen mit Textmarker sind erlaubt

Inhalte

- Elektrotechnische Grundbegriffe, Schaltbilder, Gesetze zur Berechnung von Gleichstromkreisen, Gleichstromnetzwerke, Gleichstromsysteme, Gleichstrommessungen
- Elektrisches Feld: Zusammenhang Feld mit elektr. Kraft und Spannung, Materialabhängigkeiten, Kondensator, Lade- und Entladevorgänge
- Magnetisches Feld: Feldgrößen, magn. Fluss, Ferromagnetismus, magnetischer Kreis, Kräfte im Magnetfeld, Induktion, Spule, Ein- und Ausschaltvorgänge
- Wechselstromsysteme: Amplitude, Frequenz, Phasenlage, Zeigerdiagramme, Wirk- und Blindwiderstände, Impedanzen, komplexe Wechselstromrechnung
- Halbleiterwerkstoffe: Physikalische und elektrische Eigenschaften, Leitfähigkeit, Dotierung, pn-Übergang
- Halbleiterbauelemente: pn-Dioden, Z-Diode, Photodiode, Bipolartransistor, Feldeffekttransistor; Kenn- und Grenzwerte von Bauelementen
- Nichtlinearer Spannungsteiler, Klein- und Großsignalverhalten, Schalt- und Verstärkeranwendung
- Schaltungen zur Spannungs- und Stromformung: Gleich-, Wechsel- und Mischspannung, Gleichrichtung, Wechselrichtung
- Operationsverstärker: Kenndaten, Grundschaltungen für Verstärkung und Signalverarbeitung, Anwendungen bei Gleich- und Wechselsignalen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Gleichstromnetzwerke mit mehreren Verbrauchern und Quellen zu analysieren (3) und dabei für reale Schaltungen Ersatzschaltbilder zu erstellen (2)
- lineare Gleichungssysteme auf Basis von Knoten- und Maschenregel zu erstellen und zu lösen (2)
- Strom-, Spannungs- und Widerstandsmessungen in Gleichstromnetzwerken zu bewerten und zu benutzen (2)
- die charakteristischen Parameter von R-, L- und C- Bauelementen auf Basis deren physikalischen Aufbaus zu ermitteln (2)
- die Lade- und Entladevorgänge an Kapazitäten sowie die Ein- und Ausschaltvorgänge an Induktivitäten unter Verwendung von geschalteten Gleichstrom- oder -spannungsquellen auf Basis der Lösungen von gewöhnlichen Differenzialgleichungen 1. Ordnung zu berechnen (2)
- lineare Wechselstromkreise mit Hilfe von Zeigerdiagrammen und komplexer Darstellung zu untersuchen und zu berechnen (2)
- die Linearisierung und Idealisierung von Schaltungen mit Halbleiterbauelementen für deren Anwendungen zu benutzen (2)
- die Verlustleistungen und Grenzbelastungen bei Halbleiterdioden und Transistoren in Schaltanwendungen zu berechnen (2)
- den Spannungs- und Stromverlauf in Gleichrichterschaltungen zu untersuchen und zu berechnen (2)
- die Funktion von einfachen Operationsverstärkerschaltungen bei rückgekoppelten Systemen durch Aufstellen von Maschengleichungen zu analysieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• mit englischsprachigen Datenblättern für elektronische Bauelemente umzugehen (1)

- die Grundbegriffe und technischen Größen der Elektrotechnik und Elektronik in deutscher und englischer Sprache zu kennen bzw. zu benennen (1)
- Beispiele für die zunehmende Bedeutung der Elektronik im Rahmen interdisziplinärer Projekte anzugeben (1)
- die Bedeutung der Elektrotechnik und Elektronik im Hinblick der aktuellen Energiediskussion einzuschätzen (3)

Angebotene Lehrunterlagen

Kurs E-Learning-Plattform

Skript, Übungen, Datenblätter zu elektronischen Bauelementen in englischer Sprache

Lehrmedien

Tafel, Rechner/Beamer, Simulationen, Übungen mit audiovisuellen Lösungen (VL), digitale Lehreinheiten

Literatur

- W. Bock, Skriptum mit Übungen
- R. Busch, Elektrotechnik und Elektronik, Springer-Verlag
- Tietze/Schenk/Gamm, Halbleiterschaltungstechnik, Springer-Verlag
- Datenblätter zu elektronischen Bauelementen in englischer Sprache

Weitere Informationen zur Lehrveranstaltung

Eine Anrechnung des Moduls GEE kann in den Bachelorstudiengängen BE, MB und PA nach entsprechendem Antrag erfolgen.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Ingenieurmathematik 1		MA1
(Mathematics for Engineers 1)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Ulrich Briem Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	7

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Ingenieurmathematik 1	68 UE	7

Teilmodul		TM-Kurzbezeichnung
Ingenieurmathematik 1		MA1
(Mathematics for Engineers 1)		
Verantwortliche/r	Fakultät	
Prof. Dr. Ulrich Briem Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Ulrich Briem	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	68 UE	deutsch	7

Präsenzstudium	Eigenstudium
68 h	107 h

Studien- und Prüfungsleistung	
schriftliche Prüfung, 90 Min.	
Community Francing, Co. Will.	
Zugelassene Hilfsmittel für Leistungsnachweis	
Zugelasserie i illismitter für Leistungsnachweis	
SUM (sighs Seits 2) publizierts Formsloommlungen in Buchform	
SHM (siehe Seite 2), publizierte Formelsammlungen in Buchform	

Inhalte

Die Studierenden kennen und verstehen den mathematischen Formalismus und besitzen grundlegende Kenntnisse von mathematischen Konzepten, Rechenregeln und Lösungsverfahren aus den folgenden Bereichen:

- a) Zahlen und Funktionen: Wiederholung von Potenz- und Logarithmusgesetzen, Lösen von Gleichungen und Ungleichungen, Funktionsbegriff, elementare Funktionen und ihre Eigenschaften
- b) Komplexe Zahlen: Darstellungsformen komplexer Zahlen, Rechnen mit komplexen Zahlen, komplexe Exponentialfunktion und die Eulersche Formel, Beschreibung harmonischer Schwingungen im Komplexen
- c) Lineare Algebra: Vektorrechnung, Basen und Koordinatensysteme, Orthogonalität, Matrizen und lineare Abbildungen, Determinanten und Rang einer Matrix, lineare Gleichungssysteme (Gauß-Verfahren, Lösbarkeit und Struktur der Lösungsmenge), Inverse Matrix, Eigenwerte und Eigenvektoren, Diagonalisierung
- d) Folgen, Grenzwerte, Stetigkeit von Funktionen
- e) Differentialrechnung: Ableitungsbegriff und Ableitungstechniken, Regel von l'Hospital, Kurvendiskussion, Extrema unter Nebenbedingungen, Newton-Verfahren
- f) Integralrechnung: Bestimmtes und unbestimmtes Integral, Hauptsatz der Differential- und Integralrechnung, Integrationstechniken (partielle Integration, Substitutionsregel, Integration durch Partialbruchzerlegung)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- passende Methoden und Konzepte aus den oben genannten Bereichen zur Lösung gegebener Problemstellungen zu identifizieren (1)
- die gelernten mathematischen Methoden erfolgreich zur Lösung von Problemen einzusetzen und Ergebnisse zu interpretieren (2)
- einfache praktische Problemstellungen mathematisch zu formulieren und zu analysieren (2 und 3)
- weiterführende mathematische Texte selbstständig zu lesen und zu verstehen (3)
- komplexe Zusammenhänge zu strukturieren und Lösungsansätze zu erarbeiten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mathematische Inhalte mündlich und schriftlich unter Verwendung der Fachsprache zu kommunizieren (2)
- mathematische Fragestellungen selbstständig und in Gruppenarbeit zu bearbeiten (3)
- ihre erarbeiteten Lösungswege kritisch zu reflektieren (3)

Angebotene Lehrunterlagen

Skript, Übungen

Lehrmedien

Tafel, Beamer

Literatur

- C. Karpfinger, Höhere Mathematik in Rezepten, 3. Auflage, Springer Spektrum, 2017.
- L. Papula, Mathematische Formelsammlung, 12. Auflage, Springer Vieweg, 2017.
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 1, 15. Auflage, Springer Vieweg, 2018.
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 2, 14. Auflage, Springer Vieweg, 2015.
- Y. Stry, R. Schwenkert, Mathematik kompakt: für Ingenieure und Informatiker, 4. Auflage, Springer-Verlag Berlin Heidelberg, 2013.
- T. Westermann, Mathematik für Ingenieure, 7. Auflage, Springer Vieweg, 2015.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Ingenieurmathematik 2		MA2
(Mathematics for Engineers 2)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Ulrich Briem	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.	1.	Pflicht	7

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
MA1

nhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Ingenieurmathematik 2	68 UE	7

Teilmodul		TM-Kurzbezeichnung
Ingenieurmathematik 2		MA2
(Mathematics for Engineers 2)		
Verantwortliche/r	Fakultät	
Prof. Dr. Ulrich Briem	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Ulrich Briem	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2.	68 UE	deutsch	7

Präsenzstudium	Eigenstudium
68 h	107 h

Studien- und Prüfungsleistung
Schriftliche Prüfung, 90 Min.
Zugelassene Hilfsmittel für Leistungsnachweis
SHM (siehe Seite 2), publizierte Formelsammlungen in Buchform

Inhalte

Die Studierenden kennen und verstehen den mathematischen Formalismus und besitzen grundlegende Kenntnisse von mathematischen Konzepten, Rechenregeln und Lösungsverfahren aus den folgenden Bereichen:

- a) Zahlenreihen: Definition und Beispiele wichtiger Zahlenreihen, Konvergenzkriterien
- b) Potenzreihen und Taylor-Reihen: Konvergenzverhalten, Rechnen mit Potenzreihen, Potenzreihenentwicklung von Funktionen, Taylor-Reihen, lokale Approximation von Funktionen und der Satz von Taylor, Anwendungsbeispiele
- c) Fourier-Reihen: Bestimmung von Fourier-Reihen von periodischen Funktionen, Konvergenzverhalten und Eigenschaften von Fourier-Reihen
- d) Differentialrechnung mehrerer Veränderlicher: Funktionen mehrerer Veränderlicher, partielle und totale Differenzierbarkeit (Tangentialebenen), Gradient und Richtungsableitung, Extrema mit und ohne Nebenbedingungen
- e) Integralrechnung mehrerer Veränderlicher: Parametrisierung von Kurven und Flächen, Doppel- und Dreifachintegrale über Normalbereichen in 2D und 3D sowie Substitutionsregeln, Anwendungen (Schwerpunkte, Volumina, Rotationskörper, Bogenlängen)
- f) Gewöhnliche Differentialgleichungen (DGL): Einteilung in lineare und nichtlineare DGLn, Lösungsverfahren für DGLn 1. Ordnung (Trennung der Variablen, Variation der Konstanten sowie geeignete Substitutionen), Lösungsstruktur von allgemeinen linearen Differentialgleichungen, Lösungsverfahren für lineare DGL mit konstanten Koeffizienten beliebiger Ordnung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- passende Methoden und Konzepte aus den oben genannten Bereichen zur Lösung gegebener Problemstellungen zu identifizieren (1)
- die gelernten mathematischen Methoden erfolgreich zur Lösung von Problemen einzusetzen und Ergebnisse zu interpretieren (2)
- einfache praktische Problemstellungen mathematisch zu formulieren und zu analysieren (2 und 3)
- weiterführende mathematische Texte selbstständig zu lesen und zu verstehen (3)
- komplexe Zusammenhänge zu strukturieren und Lösungsansätze zu erarbeiten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mathematische Inhalte mündlich und schriftlich unter Verwendung der Fachsprache zu kommunizieren (2)
- mathematische Fragestellungen selbstständig und in Gruppenarbeit zu bearbeiten (3)
- ihre erarbeiteten Lösungswege kritisch zu reflektieren (3)

Angebotene Lehrunterlagen

Skript, Übungen

Lehrmedien

Tafel, Overheadprojektor

Literatur

- C. Karpfinger, Höhere Mathematik in Rezepten, 3. Auflage, Springer Spektrum, 2017.
- L. Papula, Mathematische Formelsammlung, 12. Auflage, Springer Vieweg, 2017.
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 1, 15. Auflage, Springer Vieweg, 2018.
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 2, 14. Auflage, Springer Vieweg, 2015.
- Y. Stry, R. Schwenkert, Mathematik kompakt: für Ingenieure und Informatiker, 4. Auflage, Springer-Verlag Berlin Heidelberg, 2013.
- T. Westermann, Mathematik für Ingenieure, 7. Auflage, Springer Vieweg, 2015.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Maschinenelemente		ME
(Design of Machine Elements)		
Modulverantwortliche/r Fakultät		
Corinna Niedermeier Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	1.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Maschinenelemente	46 UE	5

Teilmodul		TM-Kurzbezeichnung
Maschinenelemente		ME
(Design of Machine Elements)		
Verantwortliche/r	Fakultät	
Corinna Niedermeier	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Corinna Niedermeier	zweijährlich	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

Schriftliche Prüfung, 120 Minuten

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), Roloff/Matek: Maschinenelemente - Lehrbuch und Tabellenbuch. Vieweg Verlag, ab Auflage 20

Inhalte

- Toleranzen und Passungen, Vertiefung
- Vorauslegung und Festigkeitsnachweis von zeitlich-stationär sowie zeitlich-instationär beanspruchten Bauteilen
- Schraubenverbindungen, Grundlagen und Berechnung
- Grundlagen und Anordnung von Wälzlagern, Vorauslegung und Lebensdauerberechnung
- Berechnung von Schweißverbindungen
- Berechnung von form- und stoffschlüssigen Welle/Nabe-Verbindungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die richtigen Maschinenelemente für die jeweilige Anwendung auszuwählen (2) und deren Bauform zu kennen (1)
- Maschinenelemente vorauszulegen und zu dimensionieren (3)
- Festigkeitsnachweise mit Lebensdauerabschätzung zu erstellen (2) und vorhandene Sicherheiten zu beurteilen (3)
- Schadensbilder zu erkennen und Ausfallursachen herzuleiten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Begrifflichkeiten, Nomenklatur und Kenngrößen von Maschinenelementen anzugeben (1)
- Datenblätter und Katalogmaterial handzuhaben (2)
- den geschichtlichen Hintergrund und die Notwendigkeit von Maschinenelementen und Normen zu kennen (1)
- Fachwissen und methodisches Wissen zu sicherem und normengerechtem Handeln in der Wirtschaft anzuwenden (3)
- Produktentwicklung anzuleiten (3)

Lehrmedien

PowerPoint-Präsentationen, Tafel, Overheadprojektor, Rechner/Beamer, Exponate, Berechnungsprogramme

Literatur

 Roloff/Matek: Maschinenelemente - Lehrbuch und Tabellenbuch. Vieweg Verlag ab Auflage 17

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Physik mit Praktikum		PH
(Physics with Laboratory Exercises)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Christoph Höller	Angewandte Natur- und Kulturwissenschaften	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1. u. 2.	1.	Pflicht	7

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand	
		[SWS o. UE]	[ECTS-Credits]	
1.	Physik Praktikum	24 UE	2	
2.	Physik Vorlesung	46 UE	5	

Teilmodul		TM-Kurzbezeichnung
Physik Praktikum		PHP
(Laboratory Exercises: Physics)		
Verantwortliche/r Fakultät		
Prof. Dr. Christoph Höller	Angewandte Natur- und Kulturwissenschaften	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Martin Kammler	jährlich	
Lehrform		
Praktikum		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2	24 UE	deutsch	2

Präsenzstudium	Eigenstudium
24 h	26 h

Studien- und Prüfungsleistung

Praktischer Leistungnachweis: Präsenz, 10 Ausarbeitungen mit Testat

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), Anleitungen zum Praktikum

Inhalte

Durchführung und Auswertung physikalischer Versuche als Ergänzung zur Vorlesung PHV zu den Themen:

- Luftwiderstand und CW-Wert
- Schwingung, Dämpfung und Resonanz
- Schallwellen, Reflexion, stehende Wellen und Dopplereffekt
- Mikrowellen, stehende Wellen und Dämpfung, Licht, Interferenz und Spektrum

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- einfache physikalische Größen, wie Länge, Zeit, Frequenz, elektrische Spannung und Intensität zu messen (1)
- Messfehler zur erkennen (1) und abzuschätzen (2)
- Vorgehensweisen zur Reduzierung von Messfehlern zu entwickeln (3)
- Messergebnisse und Messbedingungen zu dokumentieren (2)
- physikalische Größen und deren Fehler aus verschiedenen Messgrößen zu berechnen (2)
- experimentell bestimmte physikalische Größen mit Literaturwerten zu vergleichen und mögliche Abweichungen zu deuten (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Folgen von Messfehlern auf Messergenbisse abzuschätzen (2)
- die Denkweise in der Physik bei einfachen Problemen anzuwenden (3)
- die Konsequenzen einfacher physikalischer Annahmen in der Technik und im täglichen Leben zu erkennen (2)
- die Bedeutung mathematischer Methoden bei der Beschreibung physikalischer Vorgänge einzuordnen (2)
- erfolgreich mit Naturwissenschaftlern zu kommunizieren (1)

Angebotene Lehrunterlagen

Praktikumsanleitungen, Musterprotokolle

Lehrmedien

Versuche

Literatur

Literatur siehe PHV

Teilmodul		TM-Kurzbezeichnung	
Physik Vorlesung		PHV	
(Physics)			
Verantwortliche/r Fakultät			
Prof. Dr. Christoph Höller	Angewandte Natur- und Kul	Angewandte Natur- und Kulturwissenschaften	
Lehrende/r / Dozierende/r	Angebotsfrequenz	Angebotsfrequenz	
Prof. Dr. Christoph Höller	jährlich	jährlich	
Lehrform			
Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

Schriftliche Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), ausgegebene Formelsammlung (ohne Ergänzungen und Kommentierung)

Inhalte

- Physikalische Größen und Einheiten, systematische und zufällige Fehler, Fehlerfortpflanzung
- Physikalische Bedeutung von Ableitung und Integration, Geschwindigkeit und Beschleunigung
- Eindimensionale, lineare Bewegung, Kreisbewegung
- Newtonsche Axiome, Kraft, Impuls, Arbeit, Leistung, Impulserhaltung
- Harmonischer Oszillator ohne und mit Dämpfung
- Erzwungene Schwingung, Resonanz
- Wellen, Wellenfunktion, Intensität und Schallpegel
- Stehende Wellen
- Dopplereffekt
- Zwei- und Vielstrahl-Interferenz
- Beugung an Einfach- und Mehrfachspalten, Beugung an kreisrunder Öffnung
- Materiewellen und Bohr`sches Atommodell

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• physikalische Größen zu beschreiben (1), Messfehler zu charakterisieren (1) und einfache Berechnungen zur Fehlerfortpflanzung durchzuführen (2)

- die mathematischen Methoden der Ableitung und Integration anzuwenden (1), um Geschwindigkeiten und Beschleunigungen aus Ortskurven und Ortskurven aus Beschleunigungen und Geschwindigkeiten in einfachen Fällen zu berechnen (2)
- einfache lineare Bewegung und Kreisbewegungen zu beschreiben (2) und daraus resultierende Fragestellung zu bearbeiten (3)
- die Newton`schen Axiome zu beschreiben (1)
- die Voraussetzung für Impulserhaltung zu erkennen (1) und anzuwenden (2)
- schwingungsfähige Systeme zu erkennen (2) und harmonische Oszillatoren zu beschreiben (2)
- den Einfluss der Dämpfung bei harmonischen Oszillatoren zu beschreiben (2)
- angetriebene harmonische Oszillatoren und Resonanzen zu erkennen (2)
- schwingungsfähige Systeme zu charakterisieren (3)
- Wellen, Intensitäten und Schallpegel zu berechnen (2)
- die Lage von Maxima und Minima bei Zwei- und Mehrfachinterferenz zu berechnen (2) und zu charakterisieren (3)
- die physikalischen Hintergründe und Auswirkung der Beugung an Spalten und kreisrunden Öffnungen zu verstehen (2) und anzuwenden (2)
- die Konsequenz der de Broglie-Beziehung, die Materiewellen, zu erkennen (2)
- die Folgen des Bohr'schen Postulats für das Bohr'sche Atommodell zu beschreiben (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Folgen von Messfehlern auf Messergebnisse abzuschätzen (2)
- die Denkweise in der Physik bei einfachen Problemen anzuwenden (3)
- die Konsequenzen einfacher physikalischer Annahmen in der Technik und im täglichen Leben zu erkennen (2)
- die Bedeutung mathematischer Methoden bei der Beschreibung physikalischer Vorgänge einzuordnen (2)
- erfolgreich mit Naturwissenschaftlern zu kommunizieren (1)

Angebotene Lehrunterlagen

Skript, Übungsaufgaben mit Lösungen, Formelsammlung

Lehrmedien

Tafel, Rechner/Beamer

Literatur

- U. Harten: Physik: Eine Einführung für Ingenieure und Naturwissenschaftler, Springer (4. Aufl. 2009), ISBN 978-3-540-89100-0
- H. J. Paus: Physik in Experimenten und Beispielen, Hanser (2002), ISBN 3-446-22135-2
- P. A. Tipler, G. Mosca: Physik für Wissenschaftler und Ingenieure, Spektrum der Wissenschaften (2009), ISBN 978-3-8274-1945-3
- D. Mills: Bachelor Trainer Physik, Spektrum der Wissenschaften (2010), ISBN 978-3-8274-2049-7

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Praktikum Mechatronik		PME
(Internship Mechatronic Basics)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Wolfgang Bock Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	1.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Praktikum Mechatronik		5

Teilmodul		TM-Kurzbezeichnung
Praktikum Mechatronik		PME
(Internship Mechatronic Basics)		
Verantwortliche/r	Fakultät	
Prof. Dr. Wolfgang Bock	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	zweijährlich	
Lehrform		
Praktikum		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.		deutsch	5

Präsenzstudium	Eigenstudium

Studien- und Prüfungsleistung

mind. 6-wöchiges Grundpraktikum (240 Std. im Betrieb)

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte

- Arten von technischen Werkstoffen
- Verfahren zur Bearbeitung von Werkstoffen
- Fertigungsmethoden und -einrichtungen
- betriebliche Abläufe von technischen Prozessen und Anlagen
- Grundkenntnisse im Bereich elektrischer Energieversorgung: Spannung und Strom, mögliche Gefahren des elektrischen Stroms
- Montage, Prüfung, Wartung und Reparatur von Apparaten und Geräten der Elektrotechnik oder Informations- und Kommunikationstechnik
- Sicherheitsnormen und Regeln

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage.

- in Arbeitsgruppen und Teams das notwendige Sozialverhalten anzuwenden (2)
- sich zu Aufgaben anleiten zulassen (1)

Literatur

Warn- und Sicherheitshinweise am Arbeitsplatz

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Technische Mechanik - Dynamik		DYN
(Engineering Mechanics - Dynamics)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Hanfried Schlingloff Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	1.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

	Inhalte
Ì	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Technische Mechanik - Dynamik	48 UE	5

Teilmodul		TM-Kurzbezeichnung
Technische Mechanik – Dynamik		DYN
(Engineering Mechanics - Dynamics)		
Verantwortliche/r	Fakultät	
Prof. Dr. Hanfried Schlingloff	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Hanfried Schlingloff	zweijährlich	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.	48 UE	deutsch	5

Präsenzstudium	Eigenstudium
48 h	77 h

Studien- und Prüfungsleistung

Schriftliche Prüfung, 120 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), alle handschriftlichen und gedruckten Unterlagen

Inhalte

- Grundbegriffe der Dynamik
- Massenträgheitsmomente
- Kinematik und Kinetik des Massepunktes
- Kinematik und Kinetik des starren Körpers
- Kinematik und Kinetik der Relativbewegung
- Einführung in die Schwingungslehre

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Bewegungen von Punktmassen zu beurteilen (2)
- Massenträgheitsmomente, Energie und Leistung zu berechnen (3)
- Bewegung von starren Körpern und Punktmassen zu berechnen (3)
- Relativbewegungen zu berechnen (3)
- Schwingungsgleichungen zu analysieren (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• die Bedeutung der Mechanik in allen Disziplinen der Produktions- und Automatisierungstechnik zu erkennen (1)

- Fragestellungen aus der Mechanik klar zu beschreiben (2)
- Lösungen für schwierige Fragestellungen im Team zu finden (3)

Angebotene Lehrunterlagen

Skript, Formelsammlung

Lehrmedien

Tafel, Overhead, Rechner/Beamer

Literatur

keine Literaturangaben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Technische Mechanik - Statik		STA
(Engineering Mechanics - Statics)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Ingo Ehrlich Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2.	1.	Pflicht	5

Verpflichtende Voraussetzungen	
keine	
Empfohlene Vorkenntnisse	
keine	

	Inhalte
Ì	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Technische Mechanik - Statik	48 UE	5

Teilmodul		TM-Kurzbezeichnung
Technische Mechanik - Statik		STA
(Engineering Mechanics - Statics)		
Verantwortliche/r	Fakultät	
Prof. Dr. Ingo Ehrlich	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Ingo Ehrlich	jedes 2.Semester	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
2.	48 UE	deutsch	5

Präsenzstudium	Eigenstudium
48 h	77 h

Studien- und Prüfungsleistung

Schriftliche Prüfung, 120 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), alle handschriftlichen und gedruckten Unterlagen

Inhalte

- Aufgaben und Einteilung der Mechanik
- Kräfte und ihre Darstellung, grundlegende Axiome und Prinzipien
- Schwerpunkt und Resultierende verteilter Kräfte
- Gleichgewicht
- Coulombsche Reibung
- Auflagerreaktionen und Stabkräfte bei Fachwerken und Tragwerken
- Schnittreaktionen in Balken, Rahmen und Bogen
- Linearelastisches Materialgesetz (Hooke)
- Spannungen und Verformungen bei Zug-Druck Beanspruchungen; Torsion von Bauteilen mit kreiszylindrischen Querschnitten
- Gerade Biegung und Knickung; Beschreibung ebener Spannungs- und Verformungszustände

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- grundlegende Methoden der Statik zu kennen (1) und anzuwenden (2)
- Grundbegriffe der Elastostatik zu kennen (1)
- Lagerreaktionen für statisch bestimmte Systeme zu berechnen (3)
- Haftreibungskräfte zu berechnen (2)

- Spannungs- und Verformungszustände für einfache Belastungsfälle (Zug/Druck, Torsion und gerade Biegung) zu berechnen (2)
- zweidimensionale Spannungs- und Verformungszustände zu beschreiben (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (3)
- in interdisziplinären Teams erfolgreich mit Werkstoff- und Berechnungsexperten zu interagieren (2)
- die Folgen der Modellauswahl zu beschreiben (1)

Angebotene Lehrunterlagen

Skript, Aufgaben und Übungsblätter

Lehrmedien

Tafel, Overhead, Rechner/Beamer

Literatur

- Danker, J.; Dankert, H.: Technische Mechanik. Statik, Festigkeitslehre, Kinematik/Kinetik.
 7. Aufl., Springer Vieweg, Wiesbaden, Hamburg, 2013
- Gross, D.; Hauger, W.; Schröder, J.; Wall, W. A.: Technische Mechanik 1. Statik. 13. Aufl., Springer-Verlag, Berlin, Heidelberg, 2016
- Gross, D.; Hauger, W.; Schröder, J.; Wall, W. A.: Technische Mechanik 2. Elastostatik.
 13. Aufl., Springer-Verlag, Berlin, Heidelberg, 2017
- Spura, C.: Technische Mechanik 1. Stereostatik. Springer Vieweg, Wiesbaden, Hamm, 2016

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Technisches Englisch		TE
(Technical English)		
Modulverantwortliche/r	Fakultät	
Sarah O'Sullivan (LB)	Allgemeinwissenschaftliches Programm	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
1.	1.	Pflicht	4

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
Grundkenntnisse der englischen Sprache und Erfahrung (auch begrenzt) mit dem Englischen im
Alltag oder auf Reisen

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Technisches Englisch	26 UE	4

Teilmodul		TM-Kurzbezeichnung	
Technisches Englisch		TE	
(Technical English)			
Verantwortliche/r	Fakultät		
Sarah O'Sullivan (LB)	Allgemeinwissenschaftliches	Allgemeinwissenschaftliches Programm	
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Sarah O'Sullivan (LB)	jährlich		
Lehrform			
Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
1.	26 UE	englisch	4

Präsenzstudium	Eigenstudium
26 h	74 h

Studien- und Prüfungsleistung

Portfolioprüfung:

Klausur, 60 Min.

Referat, 15 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2)

Inhalte

- Grundlagen und Begriffe: Wirtschaftlichkeitsprinzip Betrieb, Unternehmen, Ziele, Effizienz, Effektivität
- Grammatik: Wiederholung, Intensivierung, auch im geschäftlichen Kontext, Bearbeitung, Diskussion, Zusammenfassung von Texten
- Ausgewählte Themenbereiche im technischen Englisch (beispielhaft): Services, Safety, Measurements, Design, Innovation, Comparison, Processes

Lernziele: Fachkompetenz

- die englische Sprache in Wort und Schrift mit erhöhter Vertrautheit für Vorträge anzuwenden (2)
- Diskussionen und Präsentationen zu technischen Sachverhalten in englischer Sprache zu verfolgen und weitgehend zu verstehen (2)
- in Kurzpräsentationen und Rollenspielen den Wortschatz im Kontext anzuwenden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- englischsprachige Artikel zu lesen und zu diskutieren (2)
- sich bei Reisen ins nicht deutschsprachige Ausland sprachlich selbst zu organisieren (2)

Angebotene Lehrunterlagen

- Technical EXPERT (Klett-Verlag), Lehrbuch und Workbook
- Grammar No Problem (Cornelsen), Business Spotlight (voraussichtlich auszugsweise)
- Murphy's English Grammar in Use (Cambridge)

Lehrmedien

Rechner/Beamer, Overhead

Literatur

- Technical EXPERT (Klett-Verlag), Lehrbuch und Workbook
- Grammar No Problem (Cornelsen), Business Spotlight (voraussichtlich auszugsweise)
- Murphy's English Grammar in Use (Cambridge)

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Werkstofftechnik		WTK
(Materials Engineering)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Wolfram Wörner	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
3.	1.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

	Inhalte
ĺ	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Werkstofftechnik	46 UE	5

Teilmodul		TM-Kurzbezeichnung
Werkstofftechnik		WTK
(Materials Engineering)		
Verantwortliche/r	Fakultät	
Prof. Dr. Wolfram Wörner	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Andreas Hüttner	zweijährlich	
Prof. Dr. Wolfram Wörner		
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
3.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

Schriftliche Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), alle schriftlichen Unterlagen

Inhalte

- Aufbau von Werkstoffen: Metalle, Kunststoffe, Keramiken
- mechanische Eigenschaften von Werkstoffen
- ausgewählte physikalische und chemische Eigenschaften
- Werkstoffprüfung
- Grundlagen der Legierungsbildung
- Phasendiagramme, Zweistoffsysteme
- die Wärmebehandlung der Stähle
- die Zeit-Temperatur-Umwandlungsschaubilder
- · normgerechte Werkstoffbezeichnung

Lernziele: Fachkompetenz

- den mikro- und makrostrukturellen Aufbau von metallischen, keramischen und Polymerwerkstoffen zu beschreiben (1)
- die Zusammenhänge zwischen Struktur und mechanischen Eigenschaften von Werkstoffen darzustellen (2)
- die Verfahren der Werkstoffprüfung (Zugversuch, Kerbschlagbiegeversuch, Härtemessung, Metallographie) zu beschreiben (1) und die Ergebnisse zu beurteilen (3)

- die Auswirkungen grundlegender Werkstoffeigenschaften auf Fertigungsprozesse und Produkteigenschaften abzuschätzen (3)
- die Grundlagen der Legierungsbildung wiederzugeben (1)
- Anhand von Phasendiagrammen die Prozesse bei der Legierungsbildung von Zweistoffsystemen nachzuvollziehen (2)
- die wichtigsten Wärmebehandlungsverfahren für Stähle zu beschreiben (1) und die Ergebnisse einzuschätzen (3)
- anhand von ZTU-Schaubildern die Abläufe bei der Wärmebehandlung von Stählen nachzuvollziehen (2)
- normgerechte Werkstoffbezeichnungen zu verwenden (1)
- den Stoffkreislauf für Werkstoffe (Gewinnung Anwendung Recycling) zu beschreiben
 (1)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (3)
- in interdisziplinären Teams erfolgreich mit Werkstoffexperten zu interagieren (2)
- die Folgen der Werkstoffauswahl für Mensch und Umwelt zu beschreiben (1)

Angebotene Lehrunterlagen

Skript, Übungen

Lehrmedien

Computer/ Beamer, Tafel, Videos

Literatur

- Werkstoffkunde, Bargel, Schulze, Springer Verlag
- Werkstoffkunde für Bachelors, J.Reissner, Carl Hanser Verlag

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Allgemeinwissenschaftliches Wahlpflichtmodul		AW
(General Elective Module)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Andreas Ellermeier	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4 u. 5	2	Wahlpflicht	6

Verpflichtende Voraussetzungen	
keine	
Empfohlene Vorkenntnisse	
keine	

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Allgemeinwissenschaftliches	24 UE	3
	Wahlpflichtmodul 1		
2.	Allgemeinwissenschaftliches	24 UE	3
	Wahlpflichtmodul 2		

Teilmodul		TM-Kurzbezeichnung
Allgemeinwissenschaftliches Wahlpflichtmodul 1		AW1
(General Elective Module 1)		
Verantwortliche/r	Fakultät	
Prof. Dr. Andreas Ellermeier Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz		
N.N. zweijährlich		
Lehrform		
entsprechend der gewählten Veranstaltung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4.	24 UE	deutsch	3

Präsenzstudium	Eigenstudium
24 h	51 h

Studien- und Prüfungsleistung

entsprechend der gewählten Veranstaltung

Zugelassene Hilfsmittel für Leistungsnachweis

entsprechend der gewählten Veranstaltung

Inhalte

- Erweiterung des Fachstudiums durch eine Fremdsprache
- Ein Wahlpflichtmodul aus dem Sprachenprogramm der OTH Regensburg und der Studienbegleitenden Fremdsprachenausbildung (SFA) der Universität Regensburg, dabei sind ausgeschlossen: UNIcert ® I Französisch/Kurs 1, UNIcert ® I Italienisch/Kurs 1,UNIcert ® ISpanisch/Kurs 1, sowie alle UNIcert ® Grund- und Aufbaukurse Englisch.
- In Sonderfällen (z. B. anderer Kurs nicht belegbar) werden auch Sprachkurse der Virtuellen Hochschule Bayern (vhb) anerkannt

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• Erwerb oder Erweiterung der Fertigkeiten in einer Fremdsprache (3)

Angebotene Lehrunterlagen

entsprechend der gewählten Veranstaltung

Lehrmedien

entsprechend der gewählten Veranstaltung

Literatur

entsprechend der gewählten Veranstaltung

Weitere Informationen zur Lehrveranstaltung

Das Nähere regelt der Angebotskatalog für Allgemeinwissenschaftliche Wahlpflichtmodule der Fakultät Angewandte Natur- und Kulturwissenschaften sowie der Angebotskatalog der Virtuellen Hochschule Bayern (vhb).

Teilmodul		TM-Kurzbezeichnung	
Allgemeinwissenschaftliches Wahlpflichtmodul 2		AW2	
(General Elective Module 2)			
Verantwortliche/r Fakultät			
Prof. Dr. Andreas Ellermeier Maschinenbau			
Lehrende/r / Dozierende/r Angebotsfrequenz			
N.N. zweijährlich			
Lehrform			
entsprechend der gewählten Veranstaltung			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5.	24 UE	deutsch	3

Präsenzstudium	Eigenstudium
24 h	51 h

Studien- und Prüfungsleistung

entsprechend der gewählten Veranstaltung

Zugelassene Hilfsmittel für Leistungsnachweis

entsprechend der gewählten Veranstaltung

Inhalte

- Erweiterung des Fachstudiums durch einen Bereich, der zwar nicht zwingend zur Fachausbildung gehört, jedoch einen Bezug zur beruflichen Ausbildung hat.
- Ein Modul aus dem AW-Modulangebot, dabei sind folgende Fächer ausgeschlossen: Block II (Sozialkompetenz): Moderation; Block IV (Kommunikation): Präsentation; Block V (Methodenkompetenz): Projektmanagement und Qualitätsmanagement

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• Kenntnisse (3) von Zusammenhängen, die über das Fachstudium im engeren Sinne hinausgehen

Angebotene Lehrunterlagen

entsprechend der gewählten Veranstaltung

Literatur

entsprechend der gewählten Veranstaltung

Weitere Informationen zur Lehrveranstaltung

Das Nähere regelt der Angebotskatalog für Allgemeinwissenschaftliche Wahlpflichtmodule der Fakultät Angewandte Natur- und Kulturwissenschaften sowie der Angebotskatalog der Virtuellen Hochschule Bayern (vhb).

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Aktorik und Antriebssysteme		AAS
(Actuators and Drive Systems)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Thomas Schlegl Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
6.	2.	Pflicht	6

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
GEE,STA, DYN, RT, RTV

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Aktorik und Antriebssysteme	46 UE	6

Teilmodul		TM-Kurzbezeichnung
Aktorik und Antriebssysteme		AAS
(Actuators and Drive Systems)		
Verantwortliche/r	Fakultät	
Prof. Dr. Thomas Schlegl	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Thomas Schlegl	zweijährlich	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
6.	46 UE	deutsch	6

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

schriftliche Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, 1 beliebig bedrucktes oder beschriebenes DIN-A4-Blatt

Inhalte

- Grundbegriffe, mechatronischer Charakter von Aktoren und Antriebssystemen und deren Anwendungsfelder in Maschinenbau und Automatisierungstechnik
- Antriebssysteme: Aufbau, gewünschtes Bewegungsverhalten, Bewegungsgleichungen, Massenträgheitsmomente, mechanische Übertragungsglieder, Leistungsfluss, Übertragung von Drehmomenten und Massenträgheitsmomenten
- Mechanik von Antriebssträngen: Drehmomentbilanz, stationäres und instationäres Verhalten, Drehmoment-/Drehzahlverhalten von Antrieben und Arbeitsmaschinen, Stabilität von Arbeitspunkten, Schwingungsvorgänge, optimale Auslegung von Antriebsträngen
- Wechselstromsysteme: Amplitude, Frequenz, Phasenlage, Zeigerdiagramme, Wirk- und Blindwiderstände, Impedanzen, komplexe Wechselstromrechnung
- Dreiphasige Wechselstromsysteme: Zeigerdiagramme, komplexe Wechselstromrechnung, magnetisches Drehfeld, grundlegende Schaltungen von Generator und Motor
- Einphasen- und Dreiphasentransformator, Grundlagen von Frequenzumrichtern
- Elektrische Antriebe: Grundlagen, Klassifizierung nach statischem Verhalten, Kennzeichnung, Einhausung, Montage, Thermomanagement
- Gleichstrommaschine: Aufbau und Wirkprinzip, beschreibende Gleichungen, Schaltungsvarianten und Kennlinien, Beeinflussung der stationären Kennlinie
- Drehstrom-Asynchronmaschine: Aufbau und Wirkprinzip, beschreibende Gleichungen, Schaltungsvarianten und Kennlinien, Beeinflussung der stationären Kennlinie, spezielle Betriebsfälle
- Regelung von Antrieben: Anwendungsfälle, Struktur und Charakterisierung geregelter Antriebe, Entwurf, Parametrierung und Analyse einer Stromregelung für eine permanenterregte Gleichstrommaschine, Entwurf, Parametrierung und Analyse von Drehzahl- und Positionsregelungen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- mechanische und elektrische Eigenschaften von Aktoren und Antriebssystemen zu formalisieren (2)
- Aktoren und Antriebssysteme zu abstrahieren, zu modularisieren und graphisch zu repräsentieren (2)
- Bewegungsgleichungen von Arbeitsmaschinen herzuleiten (3)
- Massenträgheitsmomente und Drehmomente über Getriebe hinweg auf beliebige Positionen im Antriebsstrang zu rechnen (3)
- den Bezug zwischen Bewegungsverhalten einer Arbeitsmaschine und dem dafür notwendigen Verhalten eines Antriebs zu beschreiben (1)
- Aktoren für Arbeitsmaschinen unter Berücksichtigung von Betriebsverhalten, Lastfällen und Umgebungsbedingungen auszulegen (2)
- Aktoren und Antriebssysteme durch Verstellung elektrischer Größen gezielt zu beeinflussen (2)
- Aktoren und Antriebssystemen durch Regelung ein gewünschtes Betriebsverhalten angedeihen zu lassen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• textuell oder/und graphisch spezifizierte Anforderungen an Aktoren oder Antriebssysteme zu verstehen und anforderungsgerechte Lösungen zu entwickeln (2)

- komplexe antriebstechnische Aufgaben im Team zu diskutieren und zu bearbeiten (2)
- Analyse- und Berechnungsergebnisse in Fachgesprächen zu präsentieren (1)
- die zentrale Bedeutung von Aktoren und Antriebssystemen für den modernen Maschinenbau zu erfassen und zu verteidigen (1)
- Aktoren und Antriebssystemen als Motor der Mobilitätswende zu verstehen (1)
- ethische Implikationen des Einsatzes von Aktoren und Antrieben zu erkennen (1)
- Technikfolgen beim Einsatz von Aktoren und Antriebssystemen abzuschätzen (1)
- sozioökonomische Aspekte von Antriebssystemen für die gesamtgesellschaftliche Entwicklung in Europa zu durchdringen (1)

Angebotene Lehrunterlagen

Skriptum zur Vorlesung

Lehrmedien

Rechner/Beamer, Tafel, Vorführungen, Exponate

Literatur

- Schröder, Dierk; "Elektrische Antriebe Grundlagen", 3. Auflage, Springer-Verlag, 2009, ISBN 3540896139
- Schröder, Dierk; "Elektrische Antriebe Regelung von Antriebssystemen", 3. Auflage, Springer-Verlag, 2009, ISBN 9783540896135
- Merz, Hermann; Lipphardt, Götz; "Elektrische Maschinen und Antriebe", 2. Auflage, VDI-Verlag, 2008, ISBN 9783800730582
- Levine, William; "The Control Handbook", 2. Auflage, CRC-Press, 2011, ISBN 142007363X
- Isermann, Rolf; "Mechatronic Systems: Fundamentals", Springer-Verlag, 2005, ISBN 1852339306

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Digitale Prozesskette in der Fertigung		DPF
(Digital Process Chain in Production)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Andreas Ellermeier Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
4.	2.	Pflicht	5

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Digitale Prozesskette in der Fertigung	46 UE	5

Teilmodul		TM-Kurzbezeichnung	
Digitale Prozesskette in der Fertigung		DPF	
Verantwortliche/r	Fakultät		
Prof. Dr. Andreas Ellermeier	Maschinenbau	schinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Andreas Ellermeier	jedes 2.Semester		
Lehrform			
Seminaristischer Unterricht			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

Portfolioprüfung:

- 1. Studienarbeit (70%)
- 2. Klausur, 45 Min. (30%)

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, 1 handschriftlich, einseitig beschriebenes DIN-A4-Blatt

Inhalte

- Module der digitalen Prozesskette in der spanenden Fertigung
- Aufbau von spanenden Werkzeugmaschinen: Kinematik und Achsbezeichnungen
- unterschiedliche Prozesse der NC-Programmerstellung
- Arten der Maschinenraumsimulation von NC-Programmen
- Aufbau und Struktur sowie Anwendung und Nutzen von Werkzeugmanagementsystemen
- Geometrie- und Datenschnittstellen entlang der digitalen Prozesskette
- CAD/CAM-Kopplung: Möglichkeiten der Automatisierung
- Übung: manuelle NC-Programmerstellung
- Übung: computerunterstützte NC-Programmerstellung
- Übung: Erstellen von Fertigungsdokumenten

Lernziele: Fachkompetenz

- die grundlegende Fachterminologie anzuwenden (1)
- die notwendigen gesteuerten Maschinenachsen für die Bearbeitung ausgewählter Bauteilmerkmale zu bestimmen (2)

- die Vorteile und Problemfelder bei der Nutzung von 3D Modellen entlang der digitalen Prozesskette zu benennen (1) sowie 3D Modelle NC-gerecht zu gestalten (2)
- den Aufbau von 3D Modellen für eine durchgängige Nutzung festzulegen (2) sowie die ggf. softwareabhängigen Datenlücken mit geeigneten Maßnahmen zu schließen (3)
- ein modernes 3D NC-Programmiersystem anzuwenden (2) sowie alle fertigungsrelevanten Dokumente zu erzeugen (2)
- die technischen Unterschiede von Maschinenraumsimulationen von NC-Programmen zu nennen (1) sowie die softwareabhängige Qualität einer integrierten NC-Programm Simulation zu bewerten (3)
- die gängigen Geometriedatenschnittstellen zu benennen (1) und diese insbesondere hinsichtlich der Anwendung fertigungsrelevanter Informationen zu übermitteln und zu bewerten (3)
- den Funktionsumfang von Werkzeugmanagementsystemen anzugeben (1) sowie den notwendigen Datenfluss zwischen den beteiligten Softwaresystemen für die Organisation eines Werkzeugkreislaufs in der Fertigung festzulegen (2)
- die Techniken zur Automatisierung der NC-Programmerstellung zu benennen (1), deren Möglichkeiten und Grenzen zu kennen (2) sowie Konzepte hinsichtlich ihrer Umsetzbarkeit in einem gegebenen Umfeld zu analysieren (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- erfolgreich mit Konstrukteuren und Fertigungsexperten zu diskutieren (3) sowie Problemstellungen in kleinen Teams zu lösen (2)
- die Rolle und Bedeutung zunehmender Automatisierung und Vernetzung der Fertigungseinrichtungen auf zukünftige Denk- und Arbeitsweisen in der Produktion zu erkennen (2)

Angebotene Lehrunterlagen

Fachbücher, Software, Übungen

Lehrmedien

Rechner/Beamer, Videos, Rechnerarbeitsplatz

Literatur

- Kief, Hans B.; Roschiwal, Helmut A.: CNC-Handbuch. 30. Auflage. Carl Hanser Verlag, München, 2017. eISBN: 978-3-446-45265-7, Print ISBN: 978-3-446-45173-5
- Neugebauer, Reimund: Werkzeugmaschinen. Aufbau, Funktion und Anwendung von spanenden und abtragenden Werkzeugmaschinen. Springer Vieweg Verlag, Berlin, 2012. eISBN: 978-3-642-30078-3, Print ISBN: 978-3-642-30077-6

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Grundlagen der Betriebswirtschaft		GBW
(Fundamentals of Business Administration)		
Modulverantwortliche/r Fakultät		
Brigitte Kauer (LB)	Angewandte Natur- und Kulturwissenschaften	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
5.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Grundlagen der Betriebswirtschaft	46 UE	5

Teilmodul		TM-Kurzbezeichnung
Grundlagen der Betriebswirtschaft		GBW
(Fundamentals of Business Administra	tion)	
Verantwortliche/r	Fakultät	
Brigitte Kauer (LB) Angewandte Natur- und Kult		urwissenschaften
Lehrende/r / Dozierende/r Angebotsfrequenz		
Brigitte Kauer (LB) zweijährlich		
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung
schriftliche Prüfung, 90 Min.
Zugelassene Hilfsmittel für Leistungsnachweis
SHM (siehe Seite 2), Teilnehmerunterlagen

Inhalte

- Grundlagen und Begriffe: Wirtschaftlichkeitsprinzip, Betrieb, Unternehmen, Ziele, Effizienz, Effektivität
- Produktionsfaktoren im Überblick
- Betriebsmittel: Kapazität, Nutzungsdauer, Abschreibung
- Werkstoffe: Roh-, Hilfs- und Betriebsstoffe, Materialausbeute, Materialbeschaffung (Menge und Zeitpunkt)
- Arbeit: Arbeitsvertrag, Personalbeschaffung, Entgelt, Personalfreisetzung, Personalführung
- Produktionsplanung: Sortiment, Produktionsstruktur, Fertigungstypen, Wahl des Standorts, Ebenen der Entscheidung, Standortfaktoren
- Wahl der Rechtsform: Überblick über mögliche Rechtsformen, Unternehmensverbindungen und Zusammenarbeit

Lernziele: Fachkompetenz

- grundlegende Fachkompetenz in zentralen betriebswirtschaftlichen Themen anzuwenden (2)
- ökonomische Zusammenhänge aufzuzählen (1) und zu benutzen (2)
- betriebswirtschaftliche Denkstrukturen, insbesondere bezüglich Optimierungsgedanken und Zielorientierung, zu verstehen (2) und in konkreten Fällen nachzuvollziehen (2)

- den eigenen technischen Horizont um betriebswirtschaftliche Sichtweisen zu erweitern (2)
- technische und betriebswirtschaftliche Denkweisen zusammenzubringen und gegenseitig abzuwägen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- komplikationsfrei mit wirtschaftlich oder sozialwissenschaftlich vorgeprägten Gesprächspartnern zu kommunizieren (2)
- respektvoll mit den Denkweisen und Einstellungen nicht technisch-qualifizierter Personen umzugehen (2)
- ein gesellschaftlich-wirtschaftliches Verantwortungsbewusstseins bei technischen Prozessen und Entscheidungen zu entwickeln (2)
- die wirtschaftlichen und gesellschaftlichen Konsequenzen technischer Entscheidungen abzuwägen (2)

Angebotene Lehrunterlagen

Fachbücher gemäß Literaturliste insb:

• Thommen, Jean-Paul/Achleitner, Ann-Kristin, Allgemeine Betriebswirtschaftslehre, Gabler, Wiesbaden, aktuelle Auflage

Lehrmedien

Overheadprojektor, Tafel / Flipchart

Literatur

Fachbücher gemäß Literaturliste insbesondere:

• Thommen, Jean-Paul/Achleitner, Ann-Kristin, Allgemeine Betriebswirtschaftslehre, Springer/Gabler-Verlag, aktuelle Auflage

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Grundlagen der Konstruktion/CAD		GKC
(Fundamentals of Engineering Design/CAD)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Ulf Kurella	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4.	2.	Pflicht	7

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Grundlagen der Konstruktion/CAD	68 UE	7

Teilmodul		TM-Kurzbezeichnung
Grundlagen der Konstruktion/CAD		GKC
(Fundamentals of Engineering Design/CAD)		
Verantwortliche/r	Fakultät	
Prof. Dr. Ulf Kurella	Maschinenbau	
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Ulf Kurella	zweijährlich	
Prof. Dr. Thomas Schaeffer		
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
4.	68 UE	deutsch	7

Präsenzstudium	Eigenstudium
68 h	107 h

Studien- und Prüfungsleistung
Studienarbeit
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte

- Konstruktion einer Baugruppe mit kinematischen Elementen mit folgenden Aufgabenteilen:
- Erarbeiten von Lösungskonzepten
- Darstellung mittels Handzeichnungen
- Vorauslegung, Auswahl und konstruktive Gestaltung von Maschinenteilen
- Modellieren von Einzelteilen, Erstellen von Baugruppen und Zeichnungsableitung mit CAD
- Produktdokumentation: Erstellen von Stücklisten, Baugruppen-, Roh- und Einzelteilzeichnungen, Konstruktionsbegründungen

Lernziele: Fachkompetenz

- Lösungskonzepte zu entwickeln (3)
- ein Lösungskonzept mittels einer Handzeichnung hinreichend detailliert darzustellen (3)
- die Realisierbarkeit eines Lösungskonzepts durch Vorauslegungsrechnungen sicherzustellen (3)
- ein 3D-Modell einer Baugruppe mit einem CAD-System aufzubauen (3)
- Bauteile fertigungs-, montage-, festigkeits-, werkstoffgerecht u. dgl. zu gestalten (3)

Angebotene Lehrunterlagen

Aufgabenstellung, Hinweise zur Anfertigung der Hausarbeit, Fachliteratur, Kataloge zu Halbzeugen und Normteilen, Lehrunterlagen Normen, Software, CAD-Schulungsunterlagen, Programm-Handbücher,

Lehrmedien

Overheadprojektor, Tafel, CAD-Arbeitsplatz für jeden Teilnehmer, Berechnungsprogramme, Exponate, Rechner/Beamer, Internet

Literatur

Literturangaben werden in der Veranstaltung bekannt gegeben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Informatik Anwendungen		IA
(Applied Informatics)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Wolfgang Bock	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
6.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
"Grundlagen der Ingenieurinformatik"

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Informatik Anwendungen	46 UE	5

Teilmodul		TM-Kurzbezeichnung
Informatik Anwendungen		IA
(Applied Informatics)		
Verantwortliche/r	Fakultät	
Prof. Dr. Wolfgang Bock	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Wolfgang Bock	nur im Sommersemester	
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
6.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

schriftliche Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, auf GRIPS veröffentlichtes

Programmierhandbuch ohne Ergänzungen; Markierungen mit Textmarker sind erlaubt

Inhalte

- Automatisierungssysteme: Begriffsbestimmung, Grundfunktionen
- Fundierte Kenntnisse zu den Grundbegriffen und Normen der Industrieautomation
- Hard- und Softwaremodell der IEC 61131, Normen und Vorgehensweisen für eine systematische Software-Entwicklung
- Beschreibung von Steuerungsalgorithmen mit UML-Methoden, insbesondere OOP und Graphen
- Programmiersprachen: Strukturierter Text, Anweisungsliste, Funktionsplan, Ablaufsprache, objekt-orientierte Sprachelemente
- Einfache, zusammengesetzte und spezielle SPS-Datentypen
- Vertiefte theoretische und praktische Kenntnisse zur Codierung von Prozessabläufen
- Integrierte Entwicklungsumgebungen: Konfiguration und Parametrierung
- Programmiertechniken: Strukturierte Programmierung, Schrittkettenprogrammierung, SPS-Hochsprachen, Zustandsautomaten
- Organisation von Softwareprojekten: Strukturierung, Bibliotheken, Wiederverwendbarkeit
- Prozessvisualisierung: Grundbegriffe und Übungen
- Buskommunikation in der Industrieautomation: Allgemeine Grundlagen und konkrete Beispiele
- ISO/OSI-Kommunikationsmodells am Beispiel von TCP/IP und weiteren Bussystemen der Prozessinformatik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ein steuerungstechnisches Softwareprojekt zu entwerfen (3) und die dazu passenden Programmorganisationseinheiten (POEen) zu erstellen (3)
- an eine Automatisierungsaufgabe methodisch heranzugehen (3)
- eine zugrundeliegende Logikfunktion zu finden, zu minimieren und mit Schaltnetzen zu programmieren (3)
- Schaltwerke unter Verwendung von Flipflops, Timern und Countern anzulegen und zu parametrieren (2)
- logische, arithmetische und programmverzweigende Anweisungen zur Modellierung von Prozessabläufen zu formulieren (2)
- mit aktuellen SPS-Entwicklungsumgebungen Projekte zu codieren, speichern, simulieren und debuggen (2)
- Struktogramme für Algorithmen zu erstellen und diese in der Sprache Strukturierter Text umzusetzen (2)
- Ablauf- und Zustandsgrafen zu erstellen (2) und durch Codierung, Verifikation und Simulation umzusetzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Lösung von Programmieraufgaben in kleinen Teams (2)
- mit Fachbegriffen in deutscher und englischer Sprache umzugehen (1)
- die Auswirkungen der Automatisierungstechnik auf die Arbeitswelt abzuwägen (3)
- Gefährdungen des Menschen durch automatisierte Prozessabläufe zu beurteilen (3)

Angebotene Lehrunterlagen

Skriptum, Übungen, Praktikumsunterlagen, Programmierhandbuch, Manuals für benutzte Software

Lehrmedien

Rechner/Beamer, Tafel, Animationen, Vorführungen

Literatur

Aktuelle Bücherliste und Online-Links im Vorspann des Skriptums, eLearning: https://elearning.uni-regensburg.de/course/view.php?id=2640

Weitere Informationen zur Lehrveranstaltung

Eine Anrechnung des Modul Prozessinformatik (PI) kann im Bachelorstudiengang PA nach entsprechendem Antrag erfolgen.

Angebotsfrequenz: im Sommersemester, derzeit nur alle 2 Jahre

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Messtechnik mit Praktikum		MTP
(Measurement Techniques with Laboratory Exercises)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Anton Horn Elektro- und Informationstech		hnik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
4.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
GEE, MA1, MA2, GII

nhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Messtechnik mit Praktikum	46 UE	5

Teilmodul		TM-Kurzbezeichnung
Messtechnik mit Praktikum		MTP
(Measurement Techniques with Labora	itory Exercises)	
Verantwortliche/r	Fakultät	
Prof. Dr. Anton Horn	Elektro- und Informationstecl	nnik
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Mikhail Chamonine	zweijährlich	
Prof. Dr. Anton Horn		
Prof. Dr. Hermann Ketterl		
Lehrform		
Seminaristischer Unterricht, Praktikum		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

Schriftliche Prüfung, 90 Min.

Präsenz, 4 Versuche, Ausarbeitung mit Testat

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2)

Inhalte

- Grundbegriffe der Sensortechnik; Klassifikation von Sensoren und Sensorsystemen. Parameter von Sensoren
- Zweck des Messens, Einheitensysteme, Basissysteme, Basiseinheiten
- Statischer Messfehler, systematischer und zufälliger Messfehler
- Messunsicherheit, dynamischer Messfehler, digitale Messdatenerfassung
- Signalfluss, Fehlereinflüsse, Anwendung Messsoftware, Messdatenspeicherung, Auswertung
- Beispiele aus der Messpraxis
- Praktikum: Oszilloskop, Gleichrichterschaltungen, Zweipolkennlinien, Wechselstromwiderstände, Ultraschallentfernungsmessung

Lernziele: Fachkompetenz

- die wichtigsten Grundbegriffe und Gesetzmäßigkeiten der Messtechnik aufzuzählen (1) und anzuwenden (2)
- die Kalibrierung von Messgeräten zu bewerten (2)
- systematische und zufällige Fehler zu unterscheiden (2)

- Korrekturen systematischer Messfehler durchzuführen (2)
- zufällige Messfehler zu erkennen und zu behandeln (2) und die daraus resultierende Messunsicherheit zu behandeln (2)
- die Minimum-der-Fehlerquadrat-Methode auf Messergebnisse anzuwenden (2)
- die Eigenschaften digitaler Messeinrichtungen für einen Messzweck zu beurteilen (2)
- die wichtigsten digitalen und analogen Sensorschnittstellenkonzepte anzugeben (1)
- verschiedene Messaufnehmer und Messverstärker fachgerecht einzusetzen (2)
- die wichtigsten Operationsverstärkerschaltungen zur Aufbereitung von Messsignalen zu kennen (1)
- die digitale Messtechnik und Methoden zur Signalumwandlung zur digitalen Messerfassung, z.B. digitales Speicheroszilloskop, zu verstehen (1) und anzuwenden (2)
- mit modernen Laborgeräten fachgerecht umzugehen (2)
- praxisnahe Messaufgaben fachgerecht zu planen und durchzuführen (2)
- Messgenauigkeit und -fehler moderner Messgeräte zu kennen (1)
- rechnerische und graphische Auswertung von Messdaten durchzuführen (2)
- den Laboraufbau vorgegebener Anordnungen durchzuführen (2)
- Messungen und deren Dokumentation auszuführen (3)
- kritische Bewertung von Messergebnissen durchzuführen (2)
- Messaufgaben durch Anwendung theoretischer Kenntnisse aus der Vorlesungen selbstständig zu lösen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Fehlerursachen, Genauigkeit, Auflösung bei Messaufgaben mit Personen, die die Messwerte benötigen, zu diskutieren (2)
- praxisrelevante Messaufgaben zu dokumentieren (2)
- Versuchsberichte, Diagrammdarstellungen oder Anpassungsfunktionen fachgerecht anzufertigen (2)
- Aufgabenverteilungen im Team zu organisieren (3)

Angebotene Lehrunterlagen

- Skript "Messtechnik"
- Anleitungen zu den Praktikumsversuchen
- Bedien- und Betriebsanleitungen zu Messgeräten

Lehrmedien

Tafel, Overhead, Rechner/ Beamer

Literatur

- Elmar Schrüfer, Leonhard M. Reindl, Bernhard Zagar, "Elektrische Messtechnik: Messung elektrischer und nichtelektrischer Größen", Verlag: Carl Hanser Verlag GmbH & Co. KG; Auflage: 10., neu bearbeitete (2. August 2012), Sprache: Deutsch, ISBN-10: 3446430792, ISBN-13: 978-3446430792
- Reinhard Lerch, "Elektrische Messtechnik: Analoge, digitale und computergestützte Verfahren", Verlag: Springer Vieweg; Auflage: 7., aktualisierte Aufl. 2016 (18. November 2016), Sprache: Deutsch, ISBN-10: 3662469405, ISBN-13: 978-3662469408
- Ekbert Hering, Gert Schönfelder, "Sensoren in Wissenschaft und Technik: Funktionsweise und Einsatzgebiete", Verlag: Springer Vieweg; Auflage: 2., überarb. u. aktualisiert Aufl. 2018 (23. Februar 2018), Sprache: Deutsch, ISBN-10: 3658125616, ISBN-13: 978-3658125615
- Jörg Hoffmann, "Taschenbuch der Messtechnik", Verlag: Carl Hanser Verlag GmbH & Co. KG; Auflage: 7., neu bearbeitete (7. September 2015)Sprache: Deutsch, ISBN-10: 9783446442719, ISBN-13: 978-3446442719

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Projekt- und Qualitätsmanagement		PQM
(Project and Quality Management)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Claudia Hirschmann Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
6.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

	Inhalte
ĺ	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Projekt- und Qualitätsmanagement	32 UE	5

Teilmodul		TM-Kurzbezeichnung
Projekt- und Qualitätsmanagement		PQM
(Project and Quality Management)		
Verantwortliche/r	Fakultät	
Prof. Dr. Claudia Hirschmann	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Claudia Hirschmann	zweijährlich	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
6.	32 UE	deutsch	5

Präsenzstudium	Eigenstudium
32 h	93 h

Studien- und Prüfungsleistung
Studienarbeit
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte

- Bedeutung der Themen des Projekt- und Qualitätsmanagements für sichere, effiziente und effektive Produkte, Prozesse und gute Projektergebnisse, magisches Dreieck/'Teufelsquadrat', Rule of Ten, Stakeholder und Anforderungen, Kano-Modell, kontinuierliche Verbesserung (PDCA), Reviews
- Grundlagen des Qualitätsmanagements (QM): QM im Produktlebenszyklus und Produktentstehungsprozess, Qualitätspolitik, Aufbau und Inhalte von Qualitätsmanagementsystemen (QMS), Normenreihe ISO 9000ff, ISO 9001, integrierte Managementsysteme nach gängigen Normen, Total Quality Management (TQM), EFQM
- Qualitätsmethoden und -werkzeuge: Ishikawa-Diagramm und 8M, Fehlerbaumanalyse (FTA), Fehler-Möglichkeits-und-Einfluss-Analyse (FMEA), Quality Function Deployment (QFD) mit HoQ, 8D-Bericht, Benchmarking, Poka Yoke, 5s-Methode, 5-W-Methode, Flussdiagramm, Prozesssteckbrief, Qualitätsregelkarten (QRK) (mit Einblick in statistische Werkzeuge, SPC), Maschinenfähigkeit, ggf. Aspekte aus Lean
- Methoden der Qualitätssicherung, Audits, ggf. Zertifizierungen
- Qualitätscontrolling, Qualitätskosten
- Qualität und Recht: Maschinenrichtlinie, Produktsicherheit, -haftung, CE-Kennzeichnung, GS-Zeichen
- Produkt-, Produktionsrisikomanagement, Safety Integrity Level (SIL)
- Digitalisierung und ihre Auswirkung auf die Themen Q-Management/-Sicherung, Prozessmanagement, Safety, Security
- Grundlagen des Projektmanagements: Projektdefinition, Projektphasen, Einflussfaktoren, Projektauftrag, Projektziele, SMART Regel, DIN 69901, PMBOK Guide, Beispiele großer Projekte, sowie z.B. Projektsteckbrief, ggf. SWOT-Analyse
- Projekt-Organisation: Organisationsformen, Projektleitung, Projekt-Team, Kommunikation, Informations-Management, sowie ggf. z.B. Kommunikationsmodelle, Umfeld-, Stakeholder-, Rollen-Analyse und Zuständigkeiten, sowie z.B. agile Methoden, SCRUM, ...
- Verschiedene Methoden des Projektmanagements:
- Projektplanung, Planungsmethoden: Projektstrukturplan, Netzpläne mit Berechnungen, Zeit-, Kostenpläne, Vorgangsliste, Gantt-Diagramm, sowie z.B. Aufwandsschätzungen, Quality Gates, etc.
- Projekt-Zeitmanagement, Projekt-Kostenmanagement
- Projekt-Risikomanagement, sowie z.B. Änderungsmanagement, Komplexität, Agilität, Dynamik, ggf. Problemlösemethoden, ggf. Erfolgsfaktoren
- Projekt-Controlling und Projekt-Dokumentation, Meilenstein-Trendanalyse (MTA), sowie ggf. Projektkennzahlen, ggf. Performance Indizes, etc.
- Übersicht und Funktionen von Planungssoftware

Lernziele: Fachkompetenz

- Ausprägungen von Qualität anzugeben (1) und Verbesserungspotentiale im Qualitätsmanagement, Qualitätsmanagementsystem, Projektmanagement und in Projekten zu nennen und zu planen (2)
- Verbesserungsmöglichkeiten der Qualität von Produkten, Prozessen und Projekten zusammenzustellen (2)
- Grundlagen des Qualitätsmanagements, der Qualitätssicherung, ausgewählte Aspekte der ISO 9000, ISO 9001, aus TQM und EFQM zu nennen (1)
- Diagramme und Dokumentationen zu den Qualitätsmethoden und Werkzeugen: Ishikawa-Diagramm und 8M, 5-W-Methode, FTA, FMEA, QFD und HoQ, 8D-Bericht, Kano-Modell,

- Benchmarking, Poka Yoke, 5s-Methode, Flussdiagramm, Prozesssteckbrief, QRK zu erstellen und zu analysieren (3)
- Checklisten, Arbeits-/Verfahrens-Anweisungen, Durchführung von Audits, Reviews, Vorbereitung auditrelevanter Szenarien handzuhaben (2)
- Vorgehensweisen bzgl. Q-Controlling und Q-Kosten zu nennen und aufzubauen (2)
- ggf. Bedeutung von Impact-Analysen bzgl. Produktsicherheit und Produkthaftung, sowie im Produkt- und Produktions-Risikomanagement anzugeben (1), die Bedeutung des SIL anzugeben (1), Zusammenhang von Q und Recht, CE, GS zu nennen, zusammenzustellen und zu beurteilen (3),
- Digitalisierung und ihre Auswirkung auf ausgewählte Q-Themen zu nennen (1)
- Grundlagen des Projektmanagements zu nennen (1)
- Projektdefinition, Projektphasen, magisches Dreieck/*Teufelsquadrat*, Einflussfaktoren, sowie z.B. Projektauftrag, Projektsteckbrief, Projektziele, ausgewählte Aspekte zu DIN 69901 und aus dem PMBOK Guide, Beispiele großer Projekte anzugeben und zusammenzustellen (2)
- Projekt-Organisationsformen und zugehörige Aspekte, Kommunikation, Informations-Management, sowie ggf. Kommunikationsmodelle, Umfeld-, Stakeholder-, Rollen-Analyse und Zuständigkeiten anzugeben und zu planen (2)
- geeignete bzw. vorhandene Projekt-Organisationen auszuwählen bzw. jeweils zu beurteilen (3); sowie z.B. Aufgaben der Projektleitung und des Projekt-Teams zu entwickeln und zusammenzustellen (3)
- Diagramme, Dokumentationen, Berechnungen zu verschiedenen Planungsmethoden, wie Projektstrukturplan, Netzpläne mit Berechnungen, Zeit-, Kostenpläne, Vorgangsliste, Gantt-Diagramm, Aufwandsschätzungen, Quality Gates zu erstellen, zu analysieren und zu bewerten (3)
- SMART-Regel zu benutzen (2), ggf. SWOT-Analyse auszuarbeiten und zu beurteilen (3),
- Projekt-Zeit-, Projekt-Kosten- und Projekt-Risiko-Management zusammenzustellen (2)
- Projekt-Controlling und Projekt-Dokumentation zu planen, aufzubauen und darzustellen (3), MTA auszuarbeiten und zu interpretieren (3), sowie ggf.: Performance Indizes und Projektkennzahlen zu berechnen und zu interpretieren (3)
- Projekt-Planungssoftware anzugeben (1)
- die oben genannten Projekt-Methoden an einem Fallbeispiel auszuarbeiten (2) und ggf. zu interpretieren (3)
- sich vertieft mit den Ansätzen des modernen Qualitätsmanagements auseinanderzusetzen, diese auszuarbeiten, darzustellen und zu analysieren (3)
- Aufgaben eines "Qualitätsbeauftragten" im Betrieb anzugeben und zusammenzustellen (2)
- Qualitätsmanagementsysteme z.B. nach ISO 9001 aufzubauen und zu bewerten (3)

Lernziele: Persönliche Kompetenz

- Produkt- und Produktionssicherheit als ethische Verantwortung einzuschätzen, zu empfehlen (3) und in ethischer Verantwortung handzuhaben (2)
- Produkt-, Produktions- und Projekt-Risikomanagement als ethische Verantwortung einzuschätzen, zu empfehlen (3) und in ethischer Verantwortung handzuhaben (2)
- Originalmaterial in englischer Sprache z.B. zu EFQM, TQM, Projektmanagement handzuhaben (2) und internationale, interdisziplinäre Bedeutung von PQM-Themen anzugeben (1)
- ihre eigene Verantwortung für sichere und regularienkonforme Produkte und Prozesse von guter Qualität darzustellen und zu entwickeln (3)
- fachübergreifende Auswirkungen ihres Handelns und Technikfolgen hinsichtlich Qualität und z.B. Haftung zu nennen, darzustellen und einzuschätzen (3)

- sachgerecht PQM-Positionen in Planungs- und Entscheidungsprozessen aufzuzeigen und zu empfehlen (3)
- nutzbringende und sachlich begründete Anregungen hinsichtlich PQM für Produkte, Produktionsprozesse und Projekte vorzuschlagen und zu beurteilen (3)
- Teamarbeit z.B. insbesondere bei Risikoanalysen (z.B. FMEA), bei Problem-Ursache-Analysen (z.B. Ishikawa-Diagramm) oder bei 8D-Berichten auszuführen, zu beurteilen und zu reflektieren (3)
- Managementaufgaben im Projektmanagement oder Qualitätsmanagement auszuführen, zusammenzustellen, einzuschätzen und zu reflektieren (3)
- die eigene Verantwortung sowohl für gute Qualität von Produkten und in der Produktion als auch für ein gutes Projektergebnis anzugeben, zu entwickeln und einzuschätzen (3)
- durch eigenes "Lernen durch Lehren" im Bereich PQM sich selbstverantwortlich weiterzuentwickeln, verschiedene PQM-Themen (z.B. in Referaten) darzustellen und im Hinblick auf zukünftige Aufgaben der Arbeits- und Lebenswelt zu analysieren und zu reflektieren (3)
- Ansätze des modernen Qualitätsmanagements darzustellen und zu beurteilen (3)
- Aufgaben eines "Qualitätsbeauftragten" im Betrieb zu planen und im Hinblick auf zukünftige Aufgaben der Arbeits- und Lebenswelt zu entwickeln (3)

Angebotene Lehrunterlagen

Skriptum, online-Lehrmaterialien

Normen

englisch-sprachiges Originalmaterial

Lehrmedien

Overheadprojektor, Tafel, Videos, Rechner/Beamer

Literatur

- Benes/Groh: Grundlagen des Qualitätsmanagements, Hanser.
- Brüggemann/Bremer: Grundlagen Qualitätsmanagement: Von den Werkzeugen über Methoden zum TQM, Springer.
- Burghardt: Einführung in Projektmanagement, PUBLICIS
- DeMarco/Lister/Hruschka(Übersetzer): Wien wartet auf Dich!, Hanser.
- DIN 69901-2, Projektmanagement Projektmanagementsysteme Teil 2: Prozesse, Prozessmodell,
- DIN EN ISO 9000, Qualitätsmanagementsysteme Grundlagen und Begriffe.
- DIN EN ISO 9001, Qualitätsmanagementsysteme Anforderungen.
- DIN ISO 21500, Leitlinien Projektmanagement
- EFQM: The EFQM Model, www.efgm.org
- Hering: Projektmanagement für Ingenieure, Springer.
- Jakoby: Projektmanagement f
 ür Ingenieure, Springer Vieweg.
- Linß: Qualitätsmanagement für Ingenieure, Hanser.
- Project Management Institute: A Guide to the Project Management Body of Knowledge (PMBOK Guide),
- Schwaber/Sutherland: Der Scrum Guide Der gültige Leitfaden für Scrum: Die SpielregelnTheden/Colsman: Qualitätstechniken: Werkzeuge zur Problemlösung und ständigen Verbesserung, Hanser

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Regelungstechnik mit Praktikum		RT
(Control Engineering with Laboratory Exercises)		
Modulverantwortliche/r Fakultät		
Prof. Torsten Reitmeier Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
5.	2.	Pflicht	7

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Lagoranoto i omnocatio.			
Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Regelungstechnik	46 UE	5
2.	Regelungstechnik Praktikum	16 UE	2

Teilmodul		TM-Kurzbezeichnung
Regelungstechnik		RTV
Verantwortliche/r	Fakultät	
Prof. Torsten Reitmeier	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Torsten Reitmeier Prof. Dr. Thomas Schlegl	zweijährlich	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
german e aranen prans	[SWS oder UE]		[ECTS-Credits]
5.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

schriftliche Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) ohne eigenes Schreibpapier, 1 beliebig bedrucktes und/oder beschriebenes DIN-A4-Blatt

Inhalte

- Regelungstechnische Grundbegriffe
- Beschreibung linearer Systeme im Zeit- und Frequenzbereich
- Eigenschaften wichtiger Übertragungsglieder im Zeit- und Frequenzbereich
- Regeleinrichtungen
- Analyse des Verhaltens von linearen Regelkreisen
- Stabilität von linearen dynamischen Systemen
- ausgewählte Methoden zum Entwurf und zur Applikation von Regelungen

Lernziele: Fachkompetenz

- den Aufbau und die Wirkungsweise von Regelkreisen zu erläutern (1)
- dynamische Vorgänge sowohl im Zeit- als auch Frequenzbereich zu verstehen (3)
- lineare, zeitinvariante Systeme im Zeit- und Frequenzbereich mit verschiedenen Methoden zu beschreiben (2) sowie zu analysieren (3) und zu synthetisieren (3)
- die Laplace-Transformation anzuwenden (2)
- verschiedene Methoden zur Stabilitätsprüfung anzuwenden (2)
- verschiedene Regeleinrichtungen zu unterscheiden (1)
- regelungstechnische Problemstellungen zu verstehen (3) und selbstständig zu lösen (3)

- einschleifige Regelkreise auszulegen (3)
- bei der Lösung von regelungstechnischen Fragestellungen methodisch vorzugehen (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sich technische Sachverhalte anhand wissenschaftlicher Texte selbstständig zu erarbeiten (2)
- technische Fragestellungen in Übungen und Online-Foren zu diskutieren (2)
- zusammen in einem Team regelungstechnische Übungsaufgaben zu lösen (2)
- selbstorganisiert Blended Learning Einheiten zu bearbeiten (2)
- die Rolle und Bedeutung der Regelungstechnik in unterschiedlichen Anwendungen und Anwendungsgebieten zu verstehen (2)
- erzielte Ergebnisse von Rechnungen kritisch zu bewerten (3)

Angebotene Lehrunterlagen

Skript, Übungen

https://elearning.uni-regensburg.de/course/category.php?id=1144

Lehrmedien

Rechner/Beamer, Tafel

Literatur

Literaturliste siehe Skript

Teilmodul		TM-Kurzbezeichnung	
Regelungstechnik Praktikum		RTP	
Verantwortliche/r	Fakultät		
Prof. Torsten Reitmeier	Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz	Angebotsfrequenz	
Prof. Dr. Hermann Ketterl Prof. Torsten Reitmeier Prof. Dr. Thomas Schlegl	zweijährlich		
Lehrform			
Praktikum			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5.	16 UE	deutsch	2

Präsenzstudium	Eigenstudium
16 h	34 h

Studien- und Prüfungsleistung

Praktischer Leistungsnachweis: Präsenz, 3 Ausarbeitungen mit Testat

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte

- experimentelle Untersuchung realer Regelungen
- Simulation von Regelkreisen
- Bedienung von Regelgeräten
- System- und Parameteridentifikation, Abstandsregelung
- Drehzahlregelkreis, Füllstandsregelung, Temperaturregelung, Druckregelung

Lernziele: Fachkompetenz

- theoretische regelungstechnische Kenntnisse anhand experimenteller und simulationstechnischer Untersuchungen anzuwenden (3)
- statische und dynamische Eigenschaften von Regelstrecken zu analysieren (3)
- mathematische Modelle einer konkreten Anlage zu erstellen (2)
- Modellparameter experimentell zu bestimmen (2)
- mit analogen und digitalen Reglern umzugehen und Laborgeräte der Mess- und Regelungstechnik sinnvoll einzusetzen (2)
- bei der Lösung von regelungstechnischen Fragestellungen methodisch vorzugehen (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- in einem Team bei der Vor- und Nachbereitung sowie der Durchführung von Praktikumsversuchen zusammenzuarbeiten (2)
- regelungstechnische Fragestellungen in einem Team zu diskutieren (3)
- Kenntnisse der Arbeitssicherheit auf die aktive und passive Versuchsdurchführung zu transferieren (2)
- erzielte Versuchsergebnisse kritisch zu bewerten (3)

Angebotene Lehrunterlagen

Skript, Handbücher

https://elearning.uni-regensburg.de/course/category.php?id=1144

Lehrmedien

Rechner/Beamer, Tafel, Rechnerarbeitsplatz für jeden Teilnehmer, Exponate

Literatur

siehe Literaturliste in Praktikumsunterlagen und RTV-Skript

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Simulation mechatronischer Systeme		SMS
(Simulation of Mechatronic Systems)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Fredrik Borchsenius Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
5.	2.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Simulation mechatronischer Systeme	46 UE	5

Teilmodul		TM-Kurzbezeichnung
Simulation mechatronischer Systeme		SMS
(Simulation of Mechatronic Systems)		
Verantwortliche/r	Fakultät	
Prof. Dr. Fredrik Borchsenius	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Fredrik Borchsenius	jährlich	
Lehrform		
Seminaristischer Unterricht, Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
5.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	104 h

Studien- und Prüfungsleistung
Schriftliche Prüfung, 90 Min.
Zugelassene Hilfsmittel für Leistungsnachweis
SHM (siehe Seite 2), Skript

Inhalte

- Programmiersprache Matlab/Simulink
- Numerik von Differenzialgleichungen
- Grundgleichungen elektrischer Netzwerke
- Grundgleichungen hydraulischer Systeme
- Grundgleichungen dynamischer mechanischer Systeme

Lernziele: Fachkompetenz

- einfache Matlab/Simulink-Programme zu erstellen (2)
- Lösungsverfahren für stetige und unstetige Systeme zu nennen (1)
- Grundgleichungen für elektrische, hydraulische und mechanische Systeme zu nennen (1)
- Simulationsmodelle in Matlab/Simulink für elektrische, hydraulische und mechanische Systeme zu erstellen (3)
- Simulationsmodelle und -ergebnisse zu bewerten (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Bedeutung der Simulation mechatronischer Systeme zu erkennen (1)
- Fragestellungen aus der Simulation klar zu beschreiben (2)
- Lösungen für schwierige Fragestellungen im Team zu finden (3)

Angebotene Lehrunterlagen

Vorlesungsskript (pdf) mit Übungsbeispielen auf GRIPS

Lehrmedien

Beamer, Tafel, Rechner

Literatur

Literatur wird in der Veranstaltung bekannt gegeben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Wirtschaftsenglisch		WE
(Business English)		
Modulverantwortliche/r	Fakultät	
Sarah O'Sullivan (LB)	Allgemeinwissenschaftliches Programm	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
6.	2.	Pflicht	4

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
TE

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Wirtschaftsenglisch	26 UE	4

Teilmodul		TM-Kurzbezeichnung
Wirtschaftsenglisch		WE
(Business English)		
Verantwortliche/r	Fakultät	
Sarah O'Sullivan (LB)	Allgemeinwissenschaftliches Programm	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Sarah O'Sullivan (LB)	zweijährlich	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
6.	26 UE	englisch	4

Präsenzstudium	Eigenstudium
26 h	74 h

Studien- und Prüfungsleistung

Klausur, 90 Min. Referat, 10 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2)

Inhalte

- Grammatik Wiederholung, Intensivierung, auch im geschäftlichen Kontext
- Bearbeitung, Diskussion, Zusammenfassung von Texten
- Kurzpräsentationen, Rollenspiele, Artikel lesen und Diskutieren, Wortschatz im Kontext
- Themen wie Firmenbesuche, Geschäftsreisen, Trends beschreiben, Tagesablauf im Büro, Verhandlungssprache, u.a.
- erhöhte Vertrautheit mit der englischen Sprache in Wort und Schrift für kommerzielle Zwecke, vor allem Alltag im Büro, Kundengespräche und Small Talk
- Fähigkeit zur Diskussion in englischer Sprache im Bereich Geschäftsentwicklung, Geschäftsreisen und in der Geschäftswelt allgemein

Lernziele: Fachkompetenz

- unternehmensbezogene E-Mails an Geschäftspartner, Lieferanten und Kunden zu interpretieren und zu entwerfen (3)
- einfache Telefonate mit obigen Zielgruppen zu führen (2)
- spezifische Produkte aus deren Unternehmen zu beschreiben und erfolgreich zu präsentieren (3)
- einen Überblick über Wirtschaftssektoren, Industrie- und Dienstleistungsbranchen zu geben (1)

- wirtschaftsspezifischen Wortschatz korrekt anzuwenden (2)
- begleitende grammatische Regeln richtig anzuwenden, z.B. Tenses, Differenzierung zwischen Adjektiv und Adverb, Anwendung von Quantifiers (2)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- sprachlich angemessen und zielorientiert mit Kollegen, Kunden, Geschäftspartnern zusammenzuarbeiten, ihre Interessen zu erfassen, sich mit ihnen rational und verantwortungsbewusst auseinanderzusetzen und zu verständigen (3)
- eigenständig und verantwortlich zu handeln, eigenes und das Handeln anderer zu reflektieren und die eigene Handlungsfähigkeit zu entwickeln. (3)

Lehrmedien

Beamer, Overheadprojektor, CD

Literatur

- Technical EXPERT (Klett-Verlag), Lehrbuch und Workbook
- Grammar No Problem (Cornelsen), Business Spotlight (auszugsweise)
- Murphy's English Grammar in Use (Cambridge)

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Einführung in das Recht		ER
(Introduction to Law)		
Modulverantwortliche/r Fakultät		
Elisabeth Cramer (LB)	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7	3	Pflicht	4

Verpflichtende Voraussetzungen	
keine	
Empfohlene Vorkenntnisse	
keine	

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Einführung in das Recht	32 UE	4

Teilmodul		TM-Kurzbezeichnung
Einführung in das Recht		ER
(Introduction to Law)		
Verantwortliche/r	Fakultät	
Elisabeth Cramer (LB)	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Elisabeth Cramer (LB) nur im Wintersemester		
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7.	32 UE	deutsch	4

Präsenzstudium	Eigenstudium
32 h	93 h

Studien- und Prüfungsleistung

schriftliche Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), kein eigenes Schreibpapier, unkommentierte Gesetzestexte

Inhalte

- Einführung in die Systematik des deutschen Rechtssystems: Rechtsgeschichte, Rechtsphilosophie, Rechtsquellen, Gesetzgebung, Rechtsprechung
- Arbeiten mit dem Gesetz: Lesen und Anwenden; Methodik der Fallbearbeitung
- Verträge: allgemeine Voraussetzungen (BGB AT) und konkrete Vertragsarten (BGB BT)
- Einführung in das Haftungsrecht: allgemeines Haftungsrecht mit Einblick in das Produkthaftungsrecht und Arbeitssicherheit
- Grundzüge des (Individual-) Arbeitsrechts

Lernziele: Fachkompetenz

- die Systematik, Aufbau und Historie des deutschen Rechtssystems zu verstehen (3)
- die verschiedenen Rechtsgebiete und Rechtsquellen zu unterscheiden und einzuordnen (3)
- bei der Bearbeitung von konkreten Fällen die geschilderten Sachverhalte rechtlich zuzuordnen und dabei die Hierarchie der verschiedenen Rechtsquellen und Gesetze zu berücksichtigen (3)
- die behandelten Vertragstypen zu erkennen, deren Eigenschaften und Besonderheiten zu beschreiben (2) und entsprechende Übungsfälle zu lösen (3)
- Fragestellungen aus dem Bereich des Haftungs- und Produkthaftungsrechts zu identifizieren (2) und entsprechende Übungsfälle zu lösen (3)

- die gesetzlichen Grundlagen des Arbeitssicherheitsrechts zu nennen (1) und die Zusammenhänge zu erklären (2)
- sich in den verschiedenen gesetzlichen Grundlagen des (Individual-) Arbeitsrechts zurechtzufinden (1) und einfache Sachverhalte zu prüfen (3)
- juristische Fachausdrücke zu verstehen und richtig zu verwenden (1)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- im Team Fragestellungen zu bearbeiten (2)
- bei Diskussionen ihren Standpunkt durch sachliche Argumentation strukturiert darzulegen und zu verteidigen (3)
- Fragestellungen anhand einer lösungsorientierten, methodischen Herangehensweise zu bearbeiten und dies auch schriftlich darzustellen (3)

Angebotene Lehrunterlagen

Skript, Sammlung von Übungsfällen mit Lösungen zu finden im ELO-Kurs der Veranstaltung

Lehrmedien

Tafel, Rechner/Beamer, Videos

Literatur

Literaturempfehlungen werden in der Veranstaltung und über ELO bekanntgegeben.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Bachelorarbeit mit Präsentation		BAS
(Bachelor Thesis with Presentation)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Andreas Ellermeier Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
9.	3.	Pflicht	15

Verpflichtende Voraussetzungen
Für mündliche Verteidigung: Note BA ausreichend oder besser
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Bachelorarbeit		12
2.	Mündliche Verteidigung der Bachelorarbeit		3

Teilmodul		TM-Kurzbezeichnung
Bachelorarbeit		ВА
(Bachelor Thesis)		
Verantwortliche/r	Fakultät	
Prof. Dr. Andreas Ellermeier	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	in jedem Semester	
Lehrform		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
9		deutsch	12

Präsenzstudium	Eigenstudium
0 h	300 h

Studien- und Prüfungsleistung

Bachelorarbeit

Das Modul BAS wird mit einer Gesamtnote aus BA und BS bewertet.

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte

- selbstständige ingenieurmäßige Bearbeitung eines zusammenhängenden Themas
- Aufbereitung der Ergebnisse in wissenschaftlicher Form
- Dokumentation der Ergebnisse in wissenschaftlicher Form

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Fertigkeit zur selbstständigen ingenieurmäßigen Bearbeitung eines größeren zusammenhängenden Themas (3)
- Fertigkeit zur Aufbereitung der Ergebnisse in wissenschaftlicher Form (3)
- Fertigkeit zur Dokumentation der Ergebnisse in wissenschaftlicher Form (3)

Angebotene Lehrunterlagen

entsprechend der Aufgabenstellung

Literatur

keine Literaturangaben

Weitere Informationen zur Lehrveranstaltung

entsprechend der Aufgabenstellung

Teilmodul		TM-Kurzbezeichnung
Mündliche Verteidigung der Bachelorarbeit		BS
(Presentation of the Bachelor Thesis)		
Verantwortliche/r	erantwortliche/r Fakultät	
Prof. Dr. Andreas Ellermeier	Maschinenbau	
Lehrende/r / Dozierende/r Angebotsfrequenz		
N.N.	in jedem Semester	
Lehrform		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan	[SWS oder UE]		[ECTS-Credits]
9.		deutsch	3

Präsenzstudium	Eigenstudium
0 h	75 h

Studien- und Prüfungsleistung

Präsentation

Das Modul BAS wird mit einer Gesamtnote aus BA und BS bewertet.

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte

- Präsentation der Bachelorarbeit und/oder eines Zwischenstands
- Diskussion von wissenschaftlichen Vorträgen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- demonstriert die Fähigkeit zur wissenschaftlichen Arbeit (3)
- demonstriert die Fähigkeit wissenschaftliche Erkenntnisse in Wort und Schrift darzustellen
 (3)

Angebotene Lehrunterlagen

Keine

Lehrmedien

Rechner/Beamer

Literatur

keine Literaturangaben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Industriepraktikum		IP
(Industrial Placement)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Ulf Kurella Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
8.	3.	Pflicht	25

Verpflichtende Voraussetzungen
siehe SPO
Empfohlene Vorkenntnisse
keine

	Inhalte
Ì	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Industriepraktikum		25

Teilmodul		TM-Kurzbezeichnung
Industriepraktikum		IP
(Industrial Placement)		
Verantwortliche/r	Fakultät	
Prof. Dr. Ulf Kurella Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz		
N.N.	in jedem Semester	
Lehrform		
Praktikum		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
8.		deutsch	25

Präsenzstudium	Eigenstudium
0	

Studien- und Prüfungsleistung

6 Monate Vollzeittätigkeit

Zugelassene Hilfsmittel für Leistungsnachweis

_

Inhalte

Die Studierenden wählen in Absprache mit dem/der Praxisbetreuer/in in der Praxisstelle aus den folgenden Gebieten bis zu drei Schwerpunktbereiche für ihr Praktikum aus:

- 1. Entwicklung, Projektierung, Konstruktion
- 2. Fertigung, Fertigungsvorbereitung und -steuerung
- 3. Planung, Betrieb und Unterhaltung von Maschinen und Anlagen
- 4. Prüfung, Abnahme und Qualitätssicherung
- 5. Technischer Vertrieb

Lernziele: Fachkompetenz

- die T\u00e4tigkeit des Ingenieurs anhand konkreter Aufgabenstellung im industriellen Umfeld zu kennen (1)
- die im Studium erworbenen Kenntnisse und Fertigkeiten unter Anleitung anzuwenden (2)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• eine ingenieurnahe fachliche Tätigkeit zu reflektieren und zu dokumentieren (2)

Literatur

Betriebsspezifische Vorgaben und Unterlagen

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Internationale Handlungskompetenz		IHK
(International Decision Making)		
Modulverantwortliche/r Fakultät		
Diana Hetzenecker (LB)	Angewandte Natur- und Kulturwissenschaften	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
8.	3.	Pflicht	5

Verpflichtende Voraussetzungen	
Interview und Präsentation	
Empfohlene Vorkenntnisse	
keine	

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Internationale Handlungskompetenz	30 UE	5

Teilmodul		TM-Kurzbezeichnung
Internationale Handlungskompetenz		IHK
(International Decision Making)		
Verantwortliche/r	Fakultät	
Diana Hetzenecker (LB)	Angewandte Natur- und Kulturwissenschaften	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Diana Hetzenecker (LB)	jährlich	
Lehrform		
Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
8.	30 UE	deutsch	5

Präsenzstudium	Eigenstudium
30 h	93 h

Studien- und Prüfungsleistung
Portfolioprüfung
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte

- Einfluss kultureller Prägung auf menschliches Erleben und Handeln
- Überblick über wichtige interkulturelle Forschungs- und Handlungsfelder
- Grundlagen zu ausgewählten Aspekten wie Kultur, Kulturstandards und -dimensionen
- Übungen zur Analyse kulturell bedingter Konfliktsituationen
- Akkulturation, interkulturelles Lernen, soziale Kategorisierung
- praktische Übungen aus dem interkulturellen Trainingsbereich mit Reflexion und Feedback
- Bearbeitung von Fallbeispielen aus Berufsleben und Alltag durch Kleingruppenarbeit, Ergebnissammlung, Diskussion

Lernziele: Fachkompetenz

- den Einfluss kultureller Prägung und deren Auswirkung auf das jeweilige Erleben und Handeln von sich und anderen zu erkennen und zu benennen (2)
- kulturell bedingte Konfliktsituationen zu erkennen, adäquat zu analysieren und Handlungsalternativen zu entwickeln, die allen Interaktionspartnern gerecht werden (3)
- sich auf die Interaktion mit Personen aus anderen Kulturen gezielt vorzubereiten (3)
- ihre interkulturelle Handlungskompetenz selbständig weiter zu entwickeln (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- in interkulturellen Interaktionen flexibler zu reagieren (3)
- vergangene interkulturelle Interaktionen zu reflektieren und aus ihnen zu lernen (3)
- als Individuum eine starke Ambiguitätstoleranz zu entwickeln (3)
- Stereotypen und Vorurteile kritisch zu reflektieren (3)
- mit Selbstreflexion umzugehen und diese zu entwickeln (3)

Angebotene Lehrunterlagen

Folien zur Vorlesung

Lehrmedien

Rechner/Beamer, Tafel, Overhead

Literatur

- Schroll-Machl, S. (2007). Die Deutschen wir Deutsche (2. Auflage). Göttingen: Vandenhoeck & Ruprecht.
- Thomas, A., Kinast, E-U., Schroll-Machl, S. (2005) (Hrsg.). Handbuch Interkulturelle Kommunikation und Kooperation. Band 1: Grundlagen und Praxisfelder (2. Auflage). Göttingen: Vandenhoeck & Ruprecht.
- Thomas, A., Kammhuber, S. & Schroll-Machl, S. (2007) (Hrsg.). Handbuch Interkulturelle Kommunikation und Kooperation. Band 2: Länder, Kulturen und interkulturelle Berufstätigkeit (2. Auflage). Göttingen: Vandenhoeck & Ruprecht.
- Buchreihe Thomas, A. et al.: "Beruflich in… Trainingsprogramm für Manager, Fach- und Führungskräfte" erschienen bei Vandenhoeck & Ruprecht. http://www.v-r.de

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Praxismodul Digitalisierung		PD
(Exercises in Digitalisation)		
Modulverantwortliche/r Fakultät		
N.N. Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7.	3.	Pflicht	4

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Praxismodul Digitalisierung	24 UE	4

Teilmodul		TM-Kurzbezeichnung
Praxismodul Digitalisierung		PD
(Exercises in Digitalisation)		
Verantwortliche/r	Fakultät	
	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	jährlich	
Lehrform		
Übung		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7.	24 UE	deutsch	4

Präsenzstudium	Eigenstudium
24 h	51 h

Studien- und Prüfungsleistung

praktischer Leistungsnachweis

Teilnahme mit Erfolg

Zugelassene Hilfsmittel für Leistungsnachweis

n.n.

Inhalte

n.n.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, n.n.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, n.n.

Angebotene Lehrunterlagen

n.n.

Lehrmedien

n.n.

Literatur

n.n.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Projektarbeit		PA
(Project Work)		
Modulverantwortliche/r Fakultät		
Prof. Dr. Claudia Hirschmann Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7.	3.	Pflicht	8

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
Module des 2. Studienabschnitts

	Inhalte
Ì	siehe Teilmodul

Edgeoranete Temmedate.				
Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand	
		[SWS o. UE]	[ECTS-Credits]	
1.	Projektbearbeitung		6	
2.	Projektseminar	12 UE	2	

Teilmodul		TM-Kurzbezeichnung
Projektbearbeitung		РВ
Verantwortliche/r	Fakultät	
Prof. Dr. Claudia Hirschmann Maschinenbau		
Lehrende/r / Dozierende/r Angebotsfrequenz		
Prof. Dr. Claudia Hirschmann	jährlich	
Lehrform		
Projektarbeit		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7.		deutsch	6

Präsenzstudium	Eigenstudium
0 h	175 h

Studien- und Prüfungsleistung
Portfolioprüfung:
Projektarbeit
Zugelessens Hilfsmittel für Leistungenschweis
Zugelassene Hilfsmittel für Leistungsnachweis
alle

Inhalte

- Projektorganisation, Projektstrukturierung
- Projekt-Controlling
- fallbeispielorientierte Problem- und Zielanalyse
- Datenerhebung und -darstellung, Schwachstellenanalyse
- zielorientierte Problembearbeitung und -lösung im Team unter Berücksichtigung von methodischen, systemtechnischen und wertanalytischen Vorgehensweisen.
- strukturierte Dokumentation zum Projektmanagement und Projektverlauf
- systematische Dokumentation der Ergebnisse
- Präsentation des Projekts
- Nutzung digitaler Medien zur Informationsbeschaffung

Lernziele: Fachkompetenz

- das im Studium erworbene interdisziplinäre Fach- und Methodenwissen praktisch anzuwenden (3)
- eine konkrete Problemstellung zu untersuchen, zu analysieren (3) und hierzu eine Lösung zu entwickeln, darzustellen und zu beurteilen (3)
- erarbeitete komplexe Erkenntnisse aus dem Projekt im Projektteam zusammenzustellen, zu beurteilen, darzustellen und zu präsentieren (3)

- wissenschaftliches Arbeiten im Team auszuführen, zusammenzustellen (2) und zu zeigen (3), zielorientiertes Arbeiten im Team unter Anwendung von methodischen, systemtechnischen und wertanalytischen Vorgehensweisen auszuführen, zusammenzustellen (2) und zu zeigen (3)
- Insbesondere zu einer konkreten Problemstellung:
- ausgewählte Aspekte zu DIN 69901-2 und PMBOK(R) Guide auszuarbeiten (2), anzuwenden und darzustellen (3)
- eine systematische Dokumentation der Ergebnisse des Projekts zu planen, aufzubauen, auszuarbeiten und darzustellen (3)
- eine strukturierte Projekt-Dokumentation, u.a. hinsichtlich Projektmanagement, Projektverlauf und Projektpräsentation, zu planen, aufzubauen, auszuarbeiten und darzustellen (3)
- Projektdefinition, Projektziele, Projektphasen, Einflussfaktoren, Projektauftrag, Projektsteckbrief anzuwenden, auszuarbeiten (2), zu analysieren, darzustellen und zu zeigen (3)
- Kommunikation, Informations-Management, Umfeld-, Stakeholder-, Rollen-Analyse und Zuständigkeiten auszuführen (2), zu beurteilen und darzustellen (3)
- Aufgaben der Projektleitung und des Projekt-Teams zu planen, anzuwenden, zu entwickeln, zu beurteilen und darzustellen (3)
- Diagramme, Dokumentationen, Berechnungen zu verschiedenen Planungsmethoden, wie Projektstrukturplan, Netzpläne mit Berechnungen, Zeit-, Kostenpläne, Vorgangsliste, Gantt-Diagramm, Aufwandsschätzungen, Quality Gates zu erstellen, zu analysieren, zu interpretieren und zu bewerten (3)
- Daten zu erheben, zu analysieren, zu interpretieren, darzustellen (3)
- digitale Medien zur Informationsbeschaffung zu benutzen und zu bewerten (3)
- Schwachstellen zu analysieren und darzustellen (3)
- Zeit-, Kosten- und Risiko-Management zu planen, aufzubauen, anzuwenden und darzustellen (3)
- Projekt Controlling (inkl. MTA) zu planen, aufzubauen, auszuarbeiten und darzustellen (3)

- Managementaufgaben im Projektmanagement auszuführen, zusammenzustellen, einzuschätzen und zu reflektieren (3)
- Teamarbeit in Projekten auszuführen und zu reflektieren (3)
- ihre eigene Verantwortung für ein gutes Projektergebnis und Qualität im Projekt einzuschätzen und zu entwickeln (3)
- Kooperation bei der Ideenfindung aufzubauen, zu entwickeln und zu zeigen (3)
- Kommunikation mit externen Wertschöpfungspartnern und Kunden aufzubauen und zu entwickeln (3)
- Teamarbeit z.B. im Risikomanagement auszuführen und zu reflektieren (3)
- das ,Vier-Augen-Prinzip' anzugeben und zu benutzen (2)
- Sicherheitsaspekte im Projekt und entsprechendes Risikomanagement als ethische Verantwortung einzuschätzen, zu empfehlen (3) und in ethischer Verantwortung handzuhaben und auszuführen (2)
- fachübergreifende Auswirkungen ihres Handelns auf Projekte sowie Technikfolgen einzuschätzen (3)
- die Bedeutung des Entwicklungsprozesses für die ökonomische und qualitativ hochwertige Wertschöpfungskette zu beurteilen (3)
- die Bedeutung der Anwendung von Qualitätsmethoden im Projekt zu beurteilen (3)

- ressourcenschonende, energieeffiziente und qualitätsbezogene Entwicklungen unter Berücksichtigung aktueller wissenschaftlicher Erkenntnisse zu untersuchen und einzuschätzen (3)
- komplexe Erkenntnisse aus Projekten zusammenzustellen, zu beurteilen, darzustellen und zu präsentieren (3)
- Abstraktionsvermögen zu entwickeln und zu zeigen (3)
- wissenschaftliches Arbeiten auszuführen, zusammenzustellen (2) und zu zeigen (3)
- zielorientiertes Arbeiten unter Anwendung von methodischen, systemtechnischen, wertanalytischen und qualitätsbezogenen Vorgehensweisen auszuführen, zusammenzustellen (2) und zu zeigen (3)

Angebotene Lehrunterlagen

Projekt- und fallspezische Arbeitsunterlagen und Fachbücher

Lehrmedien

Overheadprojektor, Rechner/Beamer, Exponate

Literatur

- DIN 69901-2, Projektmanagement Projektmanagementsysteme Teil 2: Prozesse, Prozessmodell.
- Jakoby: Projektmanagement für Ingenieure, Springer Vieweg.
- Litke: Projektmanagement: Handbuch für die Praxis, Hanser.
- Olfert/Steinbuch: Kompakt-Training Projektmanagement, Kiehl
- Schelle/Linssen: Projekte zum Erfolg führen, dtv.
- PMI: PMBOK(R) Guide
- · Siehe auch: Literaturliste in der Veranstaltung

Teilmodul		TM-Kurzbezeichnung	
Projektseminar		PS	
Verantwortliche/r	Fakultät		
Prof. Dr. Claudia Hirschmann Maschinenbau			
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Claudia Hirschmann	jedes 2.Semester		
Lehrform			
Seminar			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7.	12 UE	deutsch	2

Präsenzstudium	Eigenstudium
12 h	38 h

Studien- und Prüfungsleistung

Protfolioprüfung:

Präsenz, Präsentation und fachliche Diskussion,

Teilnahme mit Erfolg

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte

- Übersicht über Grundlagen zum Projektmanagement aus DIN 69901-2 und PMBOK® Guide
- Präsentationen der Ergebnisse der Projektarbeit, des Projektmanagements und des Projektverlaufs
- Diskussion der Ergebnisse der Projektarbeit, des Projektmanagements und des Projektverlaufs
- Lessons Learned-Methode

Lernziele: Fachkompetenz

- Grundlagen zum Projektmanagement aus DIN 69901-2 und PMBOK(R) Guide anzugeben (1)
- die Lessons Learned Methode auszuführen, einzuschätzen, darzustellen und zu empfehlen
 (3)
- erarbeitete komplexe Erkenntnisse aus dem Projekt im Projektteam zusammenzustellen, zu beurteilen, darzustellen und zu präsentieren (3)
- Präsentationen zu erarbeiteten komplexen Projekten und Themen zusammenzustellen, darzustellen, zu präsentieren und zu beurteilen (3)

- zielorientierte Präsentationen im Team zu planen, zusammenzustellen und zu zeigen (3)
- eine Diskussion zu komplexen Projekten und Themen auszuführen und zu interpretieren (3)
- Managementaufgaben und Teamarbeit in Projekten zu beurteilen und zu reflektieren (3)
- fachübergreifende Auswirkungen ihres Handelns und Technikfolgen und in Projekten einzuschätzen (3)
- die Bedeutung des Entwicklungsprozesses für eine ökonomische und qualitativ hochwertige Wertschöpfungskette zu beurteilen (3)
- das im Studium erworbene interdisziplinäre Fach- und Methodenwissen praktisch anzuwenden (3)
- wissenschaftliche und methodische Arbeiten zu bewerten (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- komplexe Erkenntnisse aus Projekten und Themen zusammenzustellen, zu beurteilen, darzustellen und zu präsentieren (3)
- zielorientiertes Arbeiten, Diskutieren und Präsentieren unter Anwendung von methodischen, systemtechnischen, wertanalytischen und qualitätsbezogenen Vorgehensweisen auszuführen und zu zeigen (3)
- wissenschaftliches Arbeiten, Diskutieren und Präsentieren auszuführen und zu zeigen (3)
- Managementaufgaben im Projektmanagement und Teamarbeit in Projekten zusammenzustellen, einzuschätzen und zu reflektieren (3)
- ihre eigene Verantwortung für ein gutes Projektergebnis und Qualität im Projekt einzuschätzen, zu evaluieren und zu entwickeln (3)
- Teamarbeit z.B. im Risikomanagement, in Projekt- und Qualitätsmanagement-Methoden zu reflektieren (3)
- das ,Vier-Augen-Prinzip' zu benutzen und zu reflektieren (3)
- fachübergreifende Auswirkungen ihres Handelns und Technikfolgen und in Projekten einzuschätzen (3)
- die Bedeutung des Entwicklungsprozesses für die ökonomische und qualitativ hochwertige Wertschöpfungskette zu beurteilen (3)
- wissenschaftliche und methodische Arbeiten und Darstellungen zu bewerten (3)

Literatur

- DIN 69901-2, Projektmanagement Projektmanagementsysteme Teil 2: Prozesse, Prozessmodell.
- Jakoby: Projektmanagement f
 ür Ingenieure, Springer Vieweg.
- Litke: Projektmanagement: Handbuch für die Praxis, Hanser,
- Olfert/Steinbuch: Kompakt-Training Projektmanagement, Kiehl
- Schelle/Linssen: Projekte zum Erfolg führen, dtv.
- PMI: PMBOK(R) Guide
- Siehe auch: Literaturliste in der Veranstaltung.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Rechnungswesen und Controlling		RC
(Accounting and Controlling)		
Modulverantwortliche/r Fakultät		
Heiko Bordel (LB) Maschinenbau		

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7.	3.	Pflicht	4

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

Inhalte	
siehe Teilmodul	

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Rechnungswesen und Controlling	32 UE	4

Teilmodul		TM-Kurzbezeichnung
Rechnungswesen und Controlling		RC
(Accounting and Controlling)		
Verantwortliche/r	Fakultät	
Heiko Bordel (LB)	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Heiko Bordel (LB)	jährlich	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7	32 UE	deutsch	4

Präsenzstudium	Eigenstudium
32 h	93 h

Studien- und Prüfungsleistung	
schriftliche Prüfung, 90 Min.	
Zugelassene Hilfsmittel für Leistungsnachweis	
SHM (siehe Seite 2)	

Inhalte

- Grundlagen des betrieblichen Rechnungswesens
- Grundlagen der Buchführung und Bilanzierung
- Grundlagen der Kosten- und Leistungsrechnung (KLR)
- Grundlagen der Kostenarten-, -stellen- und -trägerrechnung
- Überblick über Instrumente des Kosten- und Erlöscontrollings
- Grundlagen der Cash Flow- und Kapitalflussrechnung
- Überblick über Instrumente des Finanzcontrollings und der Jahresabschlussanalyse

Lernziele: Fachkompetenz

- grundlegende Kenntnisse in relevanten Bereichen des externen und internen Rechnungswesens eines Unternehmens zu benennen und anzugeben (1)
- die Fragestellungen zu grundlegenden Dingen im Rechnungswesen in der betrieblichen Praxis zu beantworten (1)
- die Bedeutung der Notwendigkeit von Buchführung, Bilanzierung und der Integration der Kosten- und Leistungsrechnung richtig einzuschätzen (2)
- wesentliche Positionen handelsrechtlicher Jahresabschlüsse zu lesen (2) sowie die erforderlichen steuerungsrelevanten Informationen zu analysieren (3), um damit die wirtschaftliche Lage des Unternehmens zu beurteilen (3)
- grundlegende Buchungen in der Buchhaltung durchzuführen (2)

- eine Kosten- und Leistungsrechnung für einfache Fälle zu erstellen (2)
- Ergebnisrechnungen und Kapitalflussrechnungen zu erstellen (2)
- für das (Finanz-)Controlling relevante Kennzahlen zu berechnen (2) und zu interpretieren
 (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• als Ingenieur(in) auch über Fragen des Rechnungswesens und (Finanz-)Controllings kompetent zu diskutieren (2)

Angebotene Lehrunterlagen

Skriptum, Übungen, online-Lehrmaterialien

eLearning: https://elearning.uni-regensburg.de/course/view.php?id=2638

Lehrmedien

Overheadprojektor, Tafel, Rechner/Beamer

Literatur

Literatur: ausgewählte Fallbeispiele des Lehrenden

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Schreibkompetenz		SK
(Writing Skills)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Claudia Hirschmann	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand
			[ECTS-Credits]
8.	3.	Pflicht	5

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Angewandte Schreibkompetenz	20 UE	3
2.	Technische Dokumentation	12 UE	2

Teilmodul		TM-Kurzbezeichnung	
Angewandte Schreibkompetenz		ASK	
Verantwortliche/r	Fakultät		
Prof. Dr. Claudia Hirschmann	Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Claudia Hirschmann	in jedem Semester		
Lehrform			
Entsprechend des vhb-Kurses			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
gement construction	[SWS oder UE]		[ECTS-Credits]
8.	20 UE	deutsch	3

Präsenzstudium	Eigenstudium
20 h	55 h

Studien- und Prüfungsleistung

Entsprechend des vhb-Kurses

Bei einer Note von 2 oder besser im Fach Deutsch in der weiterführenden Ausbildung (nicht Berufsschule) kann die Prüfungsleistung angerechnet werden.

Zugelassene Hilfsmittel für Leistungsnachweis

Entsprechend des vhb-Kurses

Inhalte

Angewandte Schreibkompetenz

- Verbesserung der sprachlichen Fertigkeiten
- Strategien und Aspekte der Texterstellung
- Erstellen von Essays, Referaten, Bildschirmtexten und Präsentationen

Oder:

Businessplan-Erstellung: Fallbeispiele

- Analyse von Businessplänen bzgl. der Ziele und der Inhalte
- Schwachstellenidentifizierung und Erarbeiten von Verbesserungsvorschlägen
- Erstellen eines guten Businessplans

Das Modul wird über die Virtuelle Hochschule Bayern angeboten. Folgende Kurse werden angerechnet:

"Angewandte Schreibkompetenz"

http://kurse.vhb.org/VHBPORTAL/kursprogramm/kursprogramm.jsp?Period=60&School=3 oder "Businessplan-Erstellung: Fallbeispiele"

http://kurse.vhb.org/VHBPORTAL/kursprogramm/kursprogramm.jsp?Period=60&School=5

Bitte melden Sie sich über die vhb an.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Kriterien einer guten Texterstellung zu benennen (1)
- und diese bei einer eigenen Texterstellung anzuwenden (3)
- Texte zu überarbeiten (2)
- Schreibblockaden zu überwinden (2)

Bzw.:

- Ziele und Inhalte eines Businessplans zu nennen (1)
- Businesspläne zu analysieren (3) und Verbesserungen zu erarbeiten (2)
- einen guten Businessplan zu erstellen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die eigene Schreibkompetenz einzuschätzen (1)
- die Fähigkeit zu entwickeln, komplexe Texte so zu verfassen, dass sie für andere verständlich und lesbar sind (3)
- die sprachliche Kompetenz zu verbessern und in Schreibprozessen Souveränität zu entwickeln (3)

Bzw.:

ein Gespür dafür zu entwickeln, was einen guten Businessplan ausmacht (2)

Angebotene Lehrunterlagen

Entsprechend des VHB- Kurses

Literatur

Literaturangaben werden im Kurs bekannt gegeben

Teilmodul		TM-Kurzbezeichnung
Technische Dokumentation		TD0
Verantwortliche/r	Fakultät	
Prof. Dr. Claudia Hirschmann	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Claudia Hirschmann	jährlich	
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
german e sa an en promi	[SWS oder UE]		[ECTS-Credits]
8.	12 UE	deutsch	2

Präsenzstudium	Eigenstudium
12 h	38 h

Studien- und Prüfungsleistung

Portfolioprüfung, Teilnahme mit Erfolg

Zugelassene Hilfsmittel für Leistungsnachweis

alle

Inhalte

- Charakteristika von technischen Dokumenten, wie z.B. Aufbau- und Bedienungsanleitungen, Sicherheitshinweisen, Pflichtenheften und (Versuchs-)Protokollen
- formale Anforderungen an technische Dokumente
- Formulieren, Schreiben und Erstellen einer technischen Dokumentation
- Grundlagen wissenschaftlichen Arbeitens
- Ursachen kommunikativer Missverständnisse

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- technische Texte zu strukturieren und zu gliedern (2) und zielgruppenbezogen zu erstellen (3)
- Tabellen und andere Visualisierungen zum Text passend zu gestalten (2)
- richtig zu zitieren und Quellen normgerecht zu bibliographieren (1)
- Kommunikationsbarrieren, vor allem an Schnittstellen, zu analysieren und Möglichkeiten zu entwickeln, diese zu vermeiden (3)

Lernziele: Persönliche Kompetenz

- die Fähigkeit zu entwickeln, komplexe sprachliche Äußerungen bzw. Texte so zu verfassen, dass sie für andere verständlich und lesbar sind (3)
- sich bei Gruppenarbeiten einzubringen und zielgerichtet vorzugehen (2)
- die Konsequenzen von kommunikativen Prozessen zu beschreiben (1)

Angebotene Lehrunterlagen

Skriptum, Fallbeispiele, Online-Lehrmaterialien Normen

Lehrmedien

Präsentationen

Literatur

Literaturangaben werden im Kurs bekannt gegeben

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Sensorik und Signalübertragung		SES
(Sensors and Signal Transmission)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Mikhail Chamonine	Elektro- und Informationstechnik	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
7.	3.	Pflicht	5

Verpflichtende Voraussetzungen
keine
Empfohlene Vorkenntnisse
keine

	Inhalte
Ì	siehe Teilmodul

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Sensorik und Signalübertragung	46 UE	5

Teilmodul		TM-Kurzbezeichnung
Sensorik und Signalübertragung		SES
(Sensors and Signal Transmission)		
Verantwortliche/r	Fakultät	
Prof. Dr. Mikhail Chamonine	Elektro- und Informationstechnik	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Mikhail Chamonine	zweijährlich	
Prof. Dr. Anton Horn		
Lehrform		
Seminaristischer Unterricht		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
7.	46 UE	deutsch	5

Präsenzstudium	Eigenstudium
46 h	79 h

Studien- und Prüfungsleistung

schriftliche Prüfung, 90 Min.

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), Bücher, Skript

Inhalte

- Grundbegriffe der Sensortechnik; Klassifikation von Sensoren und Sensorsystemen.
 Parameter von Sensoren
- Grundlagen der Signaldarstellung, AM, FM, PWM, Diskrete Fourier-TransformationFensterung
- Übersicht zu Sensoren in automatisierten Systemen
- Sensoren zur Umsetzung mechanischer Größen, Resistive Sensoren, Kapazitive Sensoren, Induktive Sensoren, Näherungsdetektoren, Piezoelektrische Sensoren, Dehnungsmessstreifen
- Sensoren zur Umsetzung thermischer Größen, Thermowiderstandssensoren, Thermoelemente, PTC und NTC, Halbleiter-Sensoren, Pyrometer
- Analoge Signalverarbeitung, Passive und aktive Filter, Trägerfrequenzverfahren
- Digitale Signalverarbeitung, Digitale Filter, Analog/Digital-Wandler

Lernziele: Fachkompetenz

- Beispiele für Sensortypen in Abhängigkeit von der Messaufgabe aufzuzählen und zu benennen (1)
- anwendungsspezifisch Sensoren zu spezifizieren und auszuwählen (2)

- Sensoren und Sensorsysteme zur Messung von mechanischen und thermischen Größen einzusetzen (2)
- ein Sensorsystem zu konzeptionieren (2) und die Signalformung und Signalauswertung in einem Sensorsystem festzulegen (2)
- die Funktionsweise von Sensoren zur Messung von mechanischen und thermischen Größen zu kennen (1) und für eine gewünschte Anwendung zu beurteilen (3)
- die modulationsbasierte Darstellung von Signalen und der Grundprinzipien der digitalen Signalverarbeitung zu verstehen (3)
- analoge aktive Tiefpassfilter zu berechnen und auszulegen (2)
- die Parameter und Kenngrößen von Analog/Digital Wandern zu kennen (1) und zu bewerten (2)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• englischsprachige Datenblätter von Sensoren zu lesen (2) und die darin enthaltenen Angaben zu verstehen (3)

Angebotene Lehrunterlagen

Skriptum, Übungen, Datenblätter zu elektronischen Bauelementen

Lehrmedien

Overheadprojektor, Tafel, Rechner/Beamer Simulationen

Literatur

- Datenblätter zu Sensoren und Sensorsystemen
- J. Fraden, Handbook of modern sensors, Springer, New York, 2002.
- S. Hesse, G. Schnell, Sensoren für Prozess- und Fabrikautomation, Vieweg, Wiesbaden, 2004.
- R. Kleger, Sensorik für Praktiker, AZ-Verlag, Aarau, 1998.
- J. Niebuhr, G. Lindner, Physikalische Meßtechnik mit Sensoren, Oldenbourg Industrieverlag, München, 2002.
- H. Schaumburg, Sensoren, B.G. Teubner, Stuttgart, 1992.
- E. Schiessle, Sensortechnik und Messwertaufnahme, Vogel, Würzburg, 1992.
- W.-D. Schmidt, Sensorschaltungstechnik, Vogel, Würzburg, 2002.
- H.-R. Tränkler, Taschenbuch der Meßtechnik, Oldenbourg Verlag, München, 1996.
- H.-R. Tränkler, E. Obermaier, Sensortechnik. Handbuch für Praxis und Wissenschaft, Springer Verlag, 1998.
- M.J. Usher, D.A. Keating, Sensors and transducers, Macmillan Press, London, 1996.

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Sonderausbildung		SO
(Specific Course)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Andreas Ellermeier	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
8.	3.	Pflicht	5

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Sonderausbildung		5

Teilmodul		TM-Kurzbezeichnung
Sonderausbildung		SO
(Specific Course)		
Verantwortliche/r	Fakultät	
Prof. Dr. Andreas Ellermeier	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	in jedem Semester	
Lehrform		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
8.		deutsch	5

Präsenzstudium	Eigenstudium
mind. 80 Std. o. 10 Vollzeittage	

Studien- und Prüfungsleistung	
Teilnahme mit Erfolg	

Inhalte

 Fachspezifische Fortbildungskurse aus der beruflichen Praxis (z. B.: Sicherheitsingenieur, Ausbilderschein, Energieberater), Zertifikatskurse aus dem Angebot des ZWW oder ein Modul der vhb (Virtuelle Hochschule Bayern). Die Liste der wählbaren Module wird auf der elearning-Plattform ELO veröffentlicht. Kurse aus dem AW-Angebot der Hochschule dürfen nur nach Vorabgenehmigung durch die Prüfungskommission belegt werden.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• siehe Beschreibung des jeweiligen Kurses

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, siehe Beschreibung des jeweiligen Kurses

Literatur

siehe Literaturangaben des jeweiligen Kurses

Modulbezeichnung (ggf. englische Bezeichnung)		Modul-KzBez. oder Nr.
Technisches Wahlpflichmodul 1/2		TW1/TW2
(Technical Elective Module 1/2)		
Modulverantwortliche/r	Fakultät	
Prof. Dr. Andreas Ellermeier	Maschinenbau	

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
8. o. 9.	3.	Wahlpflicht	5

Nr.	Bezeichnung der Teilmodule	Lehrumfang	Arbeitsaufwand
		[SWS o. UE]	[ECTS-Credits]
1.	Anrechnungsmodule für TW 1 und TW 2	44 UE	5
2.	Innovative mobile Antriebssysteme	44 UE	5
3.	Leichtbau (Konstruktion und Werkstoffe)	44 UE	5
4.	Wärmetechnik und Energieeffizienz	44 UE	5

Teilmodul		TM-Kurzbezeichnung
Anrechnungsmodule für TW 1 und TW	2	ARM
Verantwortliche/r	Fakultät	
Prof. Dr. Andreas Ellermeier	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
N.N.	jedes 2.Semester	
Lehrform		
seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen		

Studiensemester	Lehrumfang	Lehrsprache	Arbeitsaufwand
gemäß Studienplan			
	[SWS oder UE]		[ECTS-Credits]
8. o. 9.	44 UE	deutsch	5

Präsenzstudium	Eigenstudium
44 h	81 h

Studien- und Prüfungsleistung

Details siehe Wahlpflichtmodulkatalog für den Bachelorstudiengang Systemtechnik der Fakultät Maschinenbau

siehe Beschreibung des jeweiligen Kurses

Zugelassene Hilfsmittel für Leistungsnachweis

• siehe Beschreibung des jeweiligen Kurses

Inhalte

- Anrechnung von anwendungsorientierten Modulen aus folgenden Bereichen: Elektro- und Informationstechnik, Maschinenbau, Mechatronik, Verfahrenstechnik
- Anrechnung von anwendungsorientierten Fächern aus beruflicher Fortqualifikation mit einem Umfang von mindestens 80 Lehreinheiten und zentraler Abschlussprüfung
- Beispiele für mögliche Anrechnungen aus der Elektrotechnik: CAE, Mikrocontrollertechnik, Leistungselektronik
- Beispiele für mögliche Anrechnungen aus der Informationstechnik: Datenbanken, Methoden der Softwareentwicklung
- Beispiele für mögliche Anrechnungen aus dem Maschinenbau: CNC, Produktions- und Fertigungsverfahren, Verbrennungsmotoren, Werkzeugmaschinen
- Beispiele für mögliche Anrechnungen aus der Verfahrenstechnik: Regenerative Energien, Heizungstechnik, Verfahrenstechnik

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• siehe Beschreibung des jeweiligen Kurses

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

• siehe Beschreibung des jeweiligen Kurses

Literatur

siehe Literaturangaben des jeweiligen Kurses

Weitere Informationen zur Lehrveranstaltung

Anrechnung von einschlägigen vhb-Kursen möglich; des Weiteren können (nach Rücksprache mit der Prüfungskommission Systemtechnik) auch Module aus dem Angebotskatalog der Regensburg School of Digital Sciences (RSDS) angerechnet werden.

Teilmodul		TM-Kurzbezeichnung
Innovative mobile Antriebssysteme		IMA
(Innovative Mobile Drive Systems)		
Verantwortliche/r	Fakultät	
Prof. Dr. Hans-Peter Rabl	Maschinenbau	
Lehrende/r / Dozierende/r	Angebotsfrequenz	
Prof. Dr. Hans-Peter Rabl jährlich		
Lehrform		
seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen		

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
9.	44 UE	deutsch	5

Präsenzstudium	Eigenstudium
44 h	81 h

Studien- und Prüfungsleistung

Details siehe Wahlpflichtmodulkatalog für den Bachelorstudiengang Systemtechnik der Fakultät Maschinenbau

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), vorgegebene Formelsammlung

Inhalte

- Mobilität und motorisierter Individualverkehr
- Energieträger für mobile Anwendungen
- Fahrwiderstand, Fahrleistung und Energiebedarf für entsprechende Fahrzeug-Fahrmanöver
- idealer und realer Fahrzeugantrieb
- Fahrleistungslimitierungen durch Antrieb und Kraftschluss
- mobile Energiewandler (Verbrennungsmotor, Elektromotor, Brennstoffzelle, ...)
- mobile Energiespeicher (elektrisch, chemisch, ...)
- Architektur von Fahrzeugantriebsystemen (verbrennungsmotorisch, batterieelektrisch, hybridisch)

Lernziele: Fachkompetenz

- die Baugruppen von alternativen Antriebssysteme zu benennen (1)
- Einflussgrößen und Randbedingungen bei der Entwicklung von Fahrzeugen zu nennen (1) und zu beurteilen (3)
- Fahrwiderstände von Fahrzeugen zu berechnen (2) und das Optimierungspotenzial zu analysieren (3)

- Fahrwiderstandsgleichungen auch für komplexere Fahrmanöver zu erstellen (2) und berechnete Fahrwiderstandskräfte und -leistungen zu interpretieren (3)
- Zugkraft- und Antriebsleistungsbedarfe darzustellen (3)
- Zusammenwirken der Baugruppen im Antriebsstrang zu analysieren (3) und zu interpretieren (3)
- alternative Antriebssysteme zu entwickeln (3), die Lösungen zu analysieren (3) und die Einsatzmöglichkeiten zu interpretieren (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ihren eigenen Kenntnisstand im Verhältnis zum Fachgebiet realistisch einzuschätzen (3)
- den Energiebedarf des motorisierten Individualverkehrs global zu beschreiben (1)
- den Beitrag, die Bedeutung und die Auswirkung des motorisierten Individualverkehrs auf Umwelt und Gesellschaft kritisch einzuschätzen (3)
- technische Lösungen zur Einhaltung gesetzlicher Vorschriften für z. B. Klimaschutz und Immissionsschutz zu empfehlen (3)

Angebotene Lehrunterlagen

Skript, Übungen

Lehrmedien

Exponate, Flipchart, Overheadprojektor, Rechner/Beamer, Tafel, Versuche, Videos, Fachaufsätze, Übungen

Literatur

Literaturliste siehe Skript

Teilmodul		TM-Kurzbezeichnung	
Leichtbau (Konstruktion und Werkstof	fe)	LB	
(Lightweight Design and Materials)			
Verantwortliche/r	Fakultät		
Prof. Dr. Ingo Ehrlich	Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Ingo Ehrlich jedes 2.Semester			
Lehrform			
seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
8. oder 9.	44 UE	deutsch	5

Präsenzstudium	Eigenstudium
44 h	81 h

Studien- und Prüfungsleistung

Details siehe Wahlpflichtmodulkatalog für den Bachelorstudiengang Systemtechnik der Fakultät Maschinenbau

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2), Fachliteratur, Skript, eigene Mitschriften

Inhalte

- Ziele und Probleme des Leichtbaus; Leichtbauweisen und -werkstoffe;
- Gestaltungsprinzipien
- mechanische Grundlagen, Elastizitätstheorie, elastische Eigenschaften von Profilen
- Schubwandträger/Schubfeld- u. Sandwich-Konstruktion
- Stabilität von Leichtbaukonstruktionen (Beulen, Knicken)
- Verbindungstechnik, Strukturoptimierung, -zuverlässigkeit
- Schwingbeanspruchung von Leichtbaukonstruktionen
- Leichtbauwerkstoffe Vertiefung Faserverbundwerkstoffe

Lernziele: Fachkompetenz

- Leichtbauelemente und deren Anwendung zu kennen (2)
- Steifigkeit vs. Festigkeit bzw. Masse vs. Steifigkeit zu analysieren (3)
- Integral-/Differential- und Verbund-Bauweisen zu kennen (1)
- Anwendungseigenschaften von Faserverbundwerkstoffen zu kennen (2)
- Berechnungen ausgewählter Verbundbauweisen durchzuführen (3)
- Festigkeitsberechnungen von Faserverbundwerkstoffen durchzuführen (3)
- Dimensionierung von Leichtbaustrukturen abzuschätzen (2)
- Schubverlauf in Leichtbaukonstruktionen zu berechnen (2)

• Knick- und Beulsicherheit zu berechnen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Analysen von Konstruktionen durchführen (2)
- Leichtbaupotential zu erkennen (1)
- Realisierung von Leichtbaukonzepten in der Entwicklungsphase und in der Konstruktionsoptimierung zu beschreiben (1)
- Bedeutung des Leichtbaus in der konstruktiven Anwendung zu benennen (1)
- Leichtbau zur Ressourcenschonung zu erkennen (3)
- Leichtbau zur Leistungssteigerung von konstruktiven Ausführungen wahrzunehmen (2)

Angebotene Lehrunterlagen

Skript

Lehrmedien

Overheadprojektor, Rechner/Beamer, Tafel, Exponate

Literatur

- Altenbach, H.; Altenbach, J.; Rikards, R.: Einführung in die Mechanik der Laminat- und Sandwichtragwerke. Deutscher Verlag für Grundstoffindustrie Stuttgart, Halle, Magdeburg, Riga, 1996.
- Dieker, S.; Reimerdes, H. G.: Elementare Festigkeitslehre im Leichtbau. Donat Verlag, Bremen, 2005.
- Gibson, R. F.: Principles of Composite Masterial Mechanics. 4th ed., CC Press, Boca Raton, 2016.
- Klein, B.: Leichtbau-Konstruktion, 7. Aufl., Vieweg & Sohn Verlag, Wiesbaden, 2007.
- Kossira, H.: Grundlagen des Leichtbaus. Springer-Verlag, Berlin, Heidelberg, Braunschweig, 1996.
- Schürmann, H.: Konstruieren mit Faser-Kunststoffverbunden. 2. Aufl. Springer-Verlag, Berlin, Heidelberg, 2007.
- Wiedemann, J.: Leichbau 1: Elemente. 2. Aufl., Springer-Verlag, Berlin, Heidelberg, 1996.
- Wiedemann, J.: Leichbau 2: Konstruktion. 2. Aufl., Springer-Verlag, Berlin, Heidelberg, 1996.

Teilmodul		TM-Kurzbezeichnung	
Wärmetechnik und Energieeffizienz		WTE	
(Thermal Engineering and Energy Efficiency)			
Verantwortliche/r	Fakultät		
Prof. Dr. Belal Dawoud	Maschinenbau		
Lehrende/r / Dozierende/r	Angebotsfrequenz		
Prof. Dr. Belal Dawoud	jedes 2.Semester		
Lehrform			
seminaristischer Unterricht bei fachwissenschaftlichen Wahlpflichtmodulen			

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand
	[SWS oder UE]		[ECTS-Credits]
8. o. 9.	44 UE	deutsch	5

Präsenzstudium	Eigenstudium
44 h	81 h

Studien- und Prüfungsleistung

Details siehe Wahlpflichtmodulkatalog für den Bachelorstudiengang Systemtechnik der Fakultät Maschinenbau

Zugelassene Hilfsmittel für Leistungsnachweis

SHM (siehe Seite 2) und alle handschriftlichen und gedruckten Unterlagen

Inhalte

- Grundbegriffe der Thermodynamik
- Massen- und Energieerhaltungsgesetze
- Entropie als Zustandsgröße und der zweite Hauptsatz der Thermodynamik
- Zustandseigenschaften und Zustandsänderungen idealer Gase und mehr-phasiger Systeme
- Energieumwandlungsprozesse
- Wärmeübertragungsmechanismen
- stationäre Wärmeleitung
- Energieeffizienz und Energieeffizienzanalyse
- energetische Bewertung von Gebäuden und gebäudetechnischen Anlagen
- Maßnahmen zur Energieeffizienzsteigerung im Wärmesektor
- Maßnahmen zur Energieeffizienzsteigerung in der Industrie

Lernziele: Fachkompetenz

- die Grundbegriffe der Thermodynamik anzugeben (1)
- Massen- und Energieerhaltungsgesetze auszuarbeiten (2)
- die Gesetzmäßigkeiten der Energieumwandlung in Komponenten und Gesamtsysteme anzuwenden (2)

- die Entropie als Zustandsgröße zu interpretieren (2)
- die Berechnung der Eigenschaften von idealen Gasen sowie Fluide mit Phasenübergang durchzuführen (2)
- praxisrelevante Kreisprozesse von Wärmekraftmaschinen sowie Wärmepumpen und Kälteanlagen zu berechnen und zu evaluieren (3)
- Wärmeübertragungsmechanismen anzugeben (1)
- Wärmetransportphänomene (Wärmeleitung, Konvektion und Strahlung) differenziert zu bewerten (3)
- stationäre Wärmeleitung in ein- und mehrschichtigen ebenen Geometrien zu analysieren (3)
- stationäre Wärmeleitung in ein- und mehrschichtigen zylindrischen Schalen zu bewerten
 (3)
- Wärmedämmschichten zu dimensionieren (3)
- Energieeffizienz und Energieeffizienzanalyse zu erläutern (2)
- Stufen der Energiewandlung darzustellen (3)
- Systematik der Energieeffizienz auszuüben (3)
- allgemeine Maßnahmen zur rationellen Energienutzung zu benennen (1)
- Systematik der Energieeffizienzanalyse zur Ableitung von individuellen Maßnahmen zur rationellen Energie- und Ressourcennutzung anzuwenden (3)
- energetische Bewertung von Gebäuden und gebäudetechnischen Anlagen durchzuführen
 (3)
- Maßnahmen zur Energieeffizienzsteigerung im Wärmesektor abzuleiten (3)
- Maßnahmen zur Energieeffizienzsteigerung in der Industrie zu analysieren und darzustellen (Selbstlernkapitel) (3)

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Grundprinzipien der Teamarbeit und Feedbackregeln zu benennen und auszuüben (2)
- mit anderen Fachvertreterinnen und Fachvertretern sowie Fachfremden zu kommunizieren und zu kooperieren, um eine Aufgabenstellung verantwortungsvoll zu lösen (3)
- mit Datenblätter und Stoffdaten der unterschiedlichen Komponenten und Materialien der Energiesystemtechnik in englischer Sprache umzugehen (2)
- zunehmende Bedeutung der Wärmetechnik und Energieeffizienz im Rahmen interdisziplinärer Projekte in einem beruflichen Selbstbild zu entwickeln (3)
- ihr berufliches Handeln kritisch in Bezug auf gesellschaftliche Erwartungen und Folgen zu reflektieren (3)

Angebotene Lehrunterlagen

Skript, Übungen, Fachbücher

Lehrmedien

Tafel, Rechner/ Beamer, Buchkapitel

Literatur

- Cerbe, G. & Wilhelms, G.; Technische Thermodynamik, Theoretische Grundlagen und praktische Anwendungen, 17. Auflage, Carl Hanser Verlag München, 2013.
- Peter von Böckh und Thomas Wetzel; Wärmeübertragung, Grundlagen und Praxis; 4. Auflage, Springer, 2011.
- Yunus Cengel and Michael A. Boles, Thermodynamics; an Engineering Approach, 4th Edition, McGraw-Hill Higher Education, 2002.
- Incropera & Dewitt: Introduction to Heat Transfer, 2007; Wiley.
- Wesselak, V.; Schabbach, T.; Link, T.; und Fischer, J.; Regenerative Energietechnik, 2. Auflage, Springer Verlag, 2013.
- A. Sauer und T. Bauernhaus; "Energieeffizienz in Deutschland Eine Metastudie; Analyse und Empfehlungen"; 2. Auflage, Springer Vieweg, 2016Fell H.-J.; Globale Abkühlung: Strategien gegen die Klimaschutzblockade – ökologisch, wirtschaftlich, erfolgreich, Beuth Verlag. 1. Auflage 2013.