# INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA

## ENGENHARIA DE COMPUTAÇÃO

Antônio F. A. Terceiro

Diogo da Silva Santos

Jorge V. S. Castro

João Marcos de A. Almeida

# Uso do microcontrolador ESP32 para automação de controle de luminosidade em ambientes

Relatório Final - Internet of Things - Sistema de Segurança

**CAMPINA GRANDE - PB** 

Nov/23

#### 1 OBJETIVO

Criar um sistema de Internet das Coisas (IoT) com a capacidade de monitorar a luminosidade em tempo real nas salas de aula e laboratórios por meio de sensores de luminosidade. As informações coletadas por esses sensores serão utilizadas como referência para o controle automatizado dos sistemas de iluminação.

O objetivo central do projeto é desenvolver um sistema IoT que incorpore os princípios do Smart Campus, visando proporcionar melhorias na eficiência e na qualidade de vida no campus. O sistema terá a função de monitorar e controlar a luminosidade ambiente nas salas ou laboratórios, com o intuito de reduzir o consumo de energia e promover o aumento do conforto dos usuários.

#### 2 RECURSOS DAS PLACAS

#### Módulo ESP32-S3-USB-OTG:

- Características:
  - o CPU: Xtensa® Dual-Core 32-bit LX7
  - Clock: 80 MHz~240 MHz (Ajustável)
  - o ROM: 384 KB
  - o RAM: 520 Kbytes SRAM
  - o Flash: 4 MB
  - o WiFi 802.11 b/g/n: 2.4GHz~2.5 GHz
  - 45 GPIOs programáveis
  - Pinout:
    - o 10 e 11: Pinos de comunicação analógico (I2C).
    - o GND: Pinos para passagem do ground.
    - VCC OUT: Saída de tensão (varia de acordo com a tensão de alimentação;

#### Módulo ESP32-C3-WROOM-02

- Características:
  - o CPU: 32-bit RISC-V single-core processor, up to 160 MHz
  - Clock: 40 MHz ~160 MHz (Ajustável)
  - o ROM: 384 KB
  - o RAM: 400KB
  - o Flash: 4MB
  - WiFi 802.11 b/g/n: 2.4GHz
  - o 19 GPIOs
- Pinout:

- o GND: Pinos para passagem do ground.
- VCC OUT: Saída de tensão (varia de acordo com a tensão de alimentação;
- o 05: Ligado ao relé para ligamento e desligamento

# 3 DOS REQUISITOS DO PROJETO

| Quantidade | Descrição       |
|------------|-----------------|
| 1          | ESP32-C3        |
| 1          | ESP-S3-WROOM    |
| 1          | PROTOBOARD      |
| 1          | RELÉ            |
| 1          | SENSOR TSL-2561 |
| 1          | LAMPADA         |
| 1          | INTERRUPTOR     |
| 1          | TOMADA          |
| ~          | JUMPERS         |
| ~          | FIO             |

#### 4 FUNCIONAMENTO

#### 4.1 Nó sensor de luminosidade:



• Responsabilidade: Coletar e enviar dados sobre a luminosidade ambiente para o Middleware.

 Protocolo de Comunicação: Utilizará o protocolo I2C para conexão com o gateway, visando a comunicação a curta distância.

#### 4.1.1 Hardware Utilizado:

- ESP-32: O cérebro do nó, controlando o fluxo de dados.
- Sensor TSL2561: Este sensor é usado para medir a luminosidade ambiente, com a saída analógica.

#### 4.2 Nó Atuador:



- Responsabilidade: Controlar o ponto de iluminação da sala.
- Protocolo de Comunicação: Implementação do protocolo MQTT entre o nó e o gateway.

#### **4.2.1** Hardware Utilizado:

- Microcontrolador ESP32-S3: O microcontrolador oferece conectividade Wi-Fi e Bluetooth.
- Módulo Relé: Utilizado para controlar o dispositivo de iluminação.

#### 4.3 Controle de Iluminação:

O nó atuador recebe comandos de controle do relé.

O módulo de relé é responsável por controlar a alimentação do ponto de iluminação. Pode ser utilizado para ligar/desligar a iluminação ou modular a intensidade da luz.

#### 4.4 Gateway:

• Responsabilidade: Interface de comunicação com a Cloud para visualização.

Hardware Utilizado: ESP32-C3.

• Conexão com a Internet: WiFi.

#### 4.5 Nuvem

• Provedor: Arduino Cloud

• Protocolo: MQTT

### 5 ILUSTRAÇÃO DO SISTEMA



#### 6 DIAGRAMA DE BLOCOS



# 7 REFERÊNCIAS BIBLIOGRÁFICAS

 $\frac{https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-reference/peripherals/touch\_pad.html$ 

https://pt.aliexpress.com/item/1005005059816321.html?gatewayAdapt=glo2bra

https://github.com/espressif/esp-who/blob/master/docs/en/get-started/ESP32-S3-EYE\_Getting\_Started\_Guide.md

https://pt.aliexpress.com/item/1005005507532921.html?spm=a2g0o.productlist.main.37.37497cbezUdEXM&algo\_pvid=a0b18e70-d656-4007-a0b8-e7e724d2f58a&algo\_exp\_id=a0b18e70-d656-4007-a0b8-e7e724d2f58a-18&pdp\_npi=3%40dis%21BRL%215.36%213.96%21%21%21%21%21%21%40211be10916878936892306245d07e2%2112000033349692652%21sea%21BR%21166774328&curPageLogUid=noONjwjob3hy

https://www.mouser.com/datasheet/2/348/bh1750fvi-e-186247.pdf

https://randomnerdtutorials.com/esp32-bh1750-ambient-light-sensor/

https://www.esp32learning.com/code/esp32-and-a-tsl2561-luminosity-sensor-example.php

https://ams.com/documents/20143/36005/TSL2561\_DS000110\_3-00.pdf/18a41097-2035-4333-c70e-bfa544c0a98b

https://pt.aliexpress.com/item/1005004926993351.html?spm=a2g0o.productlist.mai n.25.37497cbezUdEXM&algo\_pvid=a0b18e70-d656-4007-a0b8e7e724d2f58a&algo\_exp\_id=a0b18e70-d656-4007-a0b8-e7e724d2f58a-12&pdp\_npi=3%40dis%21BRL%2111.87%2111.52%21%21%21%21%21%4021 1be10916878936892306245d07e2%2112000031048693211%21sea%21BR%211667 74328&curPageLogUid=FdY69yNyPOwc

https://www.vishay.com/docs/84366/veml6030.pdf

https://pt.aliexpress.com/item/1005001765423193.html

https://www.14core.com/wiring-the-vishay-veml6030-high-accuracy-ambient-light-digital-sensor/

https://www.analog.com/media/en/technical-documentation/data-sheets/DS18B20.pdf

https://www.mouser.com/datasheet/2/783/BST-BME280-DS002-1509607.pdf

https://datasheet.lcsc.com/szlcsc/1909111105\_HI-LINK-HLK-PM24\_C399250.pdf