

Quick, Draw! Doodle Recognition Challenge

Team

- Yauhen Babakhin
- Ivan Sosin
- Roman Solovyev
- Alex Parinov
- Roman Vlasov

■ In the	money	■ Gold ■ Silver ■ Bron	nze				
#	△pub	Team Name	Kernel	Team Members	Score @	Entries	L
1	_	[ods.ai] Pablos			0.95480	79	2
2	^ 2	Guanshuo Xu			0.95330	76	21
3	▼ 1	mgchbot			0.95327	79	21
4	± 1	[ods.ai] BRAIZ			0.95305	148	2r
5	A 3	[ods.ai] resnet34			0.95249	180	21
6	~ 1	ORNITORRINCO			0.95150	85	2r
7	▼ 1	bestfitting			0.95143	102	2r
8	4	Aleksey Nozdryn-Plotnic	ki		0.95101	46	2r
9	^ 2				0.95093	189	2r
10	_	Across the Pacific Ocean	I	<u>i</u> en	0.95093	291	2r
11	▼ 6	JNU Multimedia and Im	age P	+4	0.95037	289	2r
12	▲ 7	Shakeup Monster		+5	0.94994	235	2r
13	▼ 4	outrunner			0.94989	65	2r
14	_	pudae			0.94974	29	2r
15	^ 2	ShakeupNet V2			0.94958	96	2r

Can a neural network learn to recognize doodling?

Help teach it by adding your drawings to the <u>world's largest doodling</u> <u>data set</u>, shared publicly to help with machine learning research.

Let's Draw

Well drawn!

Our neural net figured out 4 of your doodles.

But it saw something else in the other 2.

Select one to see what it saw, and visit the <u>data</u> to see 50 million drawings made by other real people on the internet.

zigzag

in under 20 seconds

Got It!

I see arrow, eraser, crayon

Data

Train Set: 49.707.579

Test Set: 112.199

Classes: 340

Format:

```
{
  "key_id":"5891796615823360",
  "word":"nose",
  "countrycode":"AE",
  "timestamp":"2017-03-01 20:41:36.70725 UTC",
  "recognized":true,
  "drawing":[[[129,128,129,129,130,130,131,132,132,133,133,133,133,...]]]
}
```

```
[ // First stroke
      [x0, x1, x2, x3, ...],
      [y0, y1, y2, y3, ...],
      [t0, t1, t2, t3, ...]
],
[ // Second stroke
      [x0, x1, x2, x3, ...],
      [y0, y1, y2, y3, ...],
      [t0, t1, t2, t3, ...]
],
      // Additional strokes
```

Data

Data

Recognized (airplane)

Not recognized (airplane)

Evaluation

Mean Average Precision @ 3 (MAP@3):

MAP@3 =
$$\frac{1}{U} \sum_{u=1}^{U} \sum_{k=1}^{\min(n,3)} P(k)$$

where U is the number of scored drawings in the test data, P(k) is the precision at cutoff k, and n is the number predictions per drawing.

Models

- PNASNet-5-Large
- SENet154
- SE-ResNeXt101_32x4d
- SE-ResNeXt50_32x4d
- ResNet50
- DenseNet121

Training

- Models pre-trained on ImageNet
- Cosine Annealing with Warm Restarts
- Reduce Learning Rate on Plateau
- Don't Decay the Learning Rate, Increase the Batch Size
- Pseudo Labeling
- Size: 128x128, 160x160, 192x192, 224x224
- Optimizer: SGD, Adam
- Single Model Score: 0.941 0.946 Public LB

Training

- Models pre-trained on ImageNet
- Cosine Annealing with Warm Restarts
- Reduce Learning Rate on Plateau
- Don't Decay the Learning Rate, Increase the Batch Size
- Pseudo Labeling
- Size: 128x128, 160x160, 192x192, 224x224
- Optimizer: SGD, Adam
- Ensemble Score: 0.95143 Public LB

Training

- Models pre-trained on ImageNet
- Cosine Annealing with Warm Restarts
- Reduce Learning Rate on Plateau
- Don't Decay the Learning Rate, Increase the Batch Size
- Pseudo Labeling
- Size: 128x128, 160x160, 192x192, 224x224
- Optimizer: SGD, Adam
- Final Score: 0.95463 Public LB

Stochastic Gradient Descent with Warm Restarts

$$\eta_t = \eta_{\min}^i + \frac{1}{2} \left(\eta_{\max}^i - \eta_{\min}^i \right) \left(1 + \cos \left(\frac{T_{current}}{T_i} \pi \right) \right)$$

Proxy Score

Public LB	Proxy
0,933	8495
0,941	8093
0,945	6735
0,946	7621
0,947	7397
0,949	7121
0,950	6957
0,951	6647

KEEP CALM AND BALANCE YOUR PREDICTIONS

8th Place Solution (Aleksey Nozdryn-Plotnicki)

Standard Му Approach Approach Raw Stroke Data Raw Stroke Data Preprocessing: Preprocessing: Resample to 256 Rasterize to Image points Encode time to RGB Sequence Module 7x7x64 Conv2D Rasterization Module 2x2 MaxPool 56x56 image, channels=64 32x32 image, channels=64 ResNet Core ResNet Core Classification Classification

Sequence Module

Rasterization Module

Thank you for your attention!