Integração de forças evolutivas: interação entre deriva e seleção

BIO 208 - Processos Evolutivos - 2014 Diogo Meyer

Modelos que vimos

Deriva

Seleção

Como explicar a variação entre e dentro de espécies?

1. Diferenças <u>entre</u> espécies: Deriva ou seleção?

2. Variabilidade dentro de espécies: Quanta? O que a mantém?

A visão neutralista da evolução molecular

- 60 mil diferenças de proteínas entre as duas espécies
- alto polimorfismo em humanos

Neutralista: a maior parte das diferenças (e polimorfismos) por deriva

Selecionista: a maior parte por seleção

Taxa de substituição varia ao longo do gene da insulina

Funcionalmente importante -> muda menos Funcionalmente menos importante -> muda mais

Taxas de substituição não-sinônimas entre humanos e roedores

Evolução proteica (subst/sítio/milhão de anos x109)

Histona 0

Mioglobina 0.57

Apolipo-proteina 3.72

Taxas de substituição não-sinônimas entre humanos e roedores para diferentes genes

Como estimar kN e kS

AAA ACT ATG ACC TCA AAA

Como estimar kN e kS

Como estimar kN e kS

AAA TCT ATG ACC TCC AAA

AAA ACT ATG ACC TCA AAA

total de sítios: 18

sítios não sinônimos: 12

sítios sinônimos: 6

kN = 1/12

kS = 1/6

kN/kS=0,5

Predições a partir de kN e kS

```
kN/kS < 1 seleção <u>remove deletérias</u> (purificadora)
```

kN/kS = <u>1ausência de seleção</u> (neutralidade completa)

kN/kS > 1 seleção <u>fixa vantajosas</u> (positiva)

Taxas de substituição não sinônima em alguns genes

Tabela 7.6

Taxas de evolução para substituições sinônimas e não-sinônimas (ou seja, que trocam o aminoácido vários genes. As taxas são expressas como o número inferido de bases por 10⁹ anos. Esses dados fo utilizados para calcular as figuras introdutórias na Tabela 7.1. Reproduzida de Li (1997).

Gene	Taxa não-sinonima	Taxa sinônima
Albumina	0,92	5,16
α-globina	0,56	4,38
β-globina	0,78	2,58
Imunoglobulina V _H	1,1	4,76
Hormônio da paratireóide	1,0	3,57
Relaxina	2,59	6,39
Proteína ribossomal	0,02	2,16
Média (45 genes)	0,74	3,51

dS > dN dS mais uniforme do que dN

Evidências de seleção natural em sequências de DNA

O caso da lisozima

Presbytis entellus

kN/kS=3.5 para linhangem de colobinos

kN/kS = 0,6 para as demais linhangens de primatas

Seleção positiva: o quão comum é kN/kS > 1?

Cerca de <u>400 genes</u> num estudo com vários mamíferos (3% do total)

Genes selecionados atuam em:

- •Imunidade
- Defesa
- Reprodução

O paradoxo da variação

Conclusão: variação em populações grandes é menor do que a esperada pela teoria neutra

Interação entre seleção e deriva: modelo

O paradoxo da variação

Explicação: em populações maiores, mais variação fracamente deletéria é removida

A teoria quase neutra

"A teoria quase neutra pode ser resumida da seguinte forma. Tanto a deriva genética como a seleção influenciam o comportamento de mutações fracamente selecionadas. A deriva predomina em populações pequenas, e a seleção em populações grandes. A maioria das novas mutações é deletéria, e a maioria das mutações de efeito pequeno devem ser muito fracamente deletérias. Há seleção contra essas mutações em populações grandes, mas se comportam como neutras e populações pequenas"

Ilha: Anas luzonica

Continente: Anas zonorhyncha,

Mais substituições não sinônimas

More genes underwent positive selection in chimpanzee evolution than in human evolution

Margaret A. Bakewell, Peng Shi, and Jianzhi Zhang*

Table 1. Genic positive selection in human and chimp lineages since their split

Comparison	Chimp	Human	Chimp/human ratio
No. of genes analyzed	13,888	13,888	1
No. of PSGs	233	154	1.51

Mensagens da aula

- Deriva sozinha não explica toda a variação:
 - há casos de genes selecionados (kN/kS revela isso)
- Há menos variação em populações com N grande do que seria esperado
- Uma explicação: fracamente s deletérias são removidas mais eficientemente em populações grandes
- Há apoio para o maior acúmulo de variantes fracamente deletérias em populações menores