MA345 Differential Equations & Matrix Method

Lecture: 04

Date: 8/31/2018

Professor Berezovski

COAS.301.12

$$\frac{dN}{dt} = \kappa N$$

$$\frac{dN}{dt} = \kappa dt$$

Linear Equations

A type of first-order differential equation that occurs frequently in applications is the linear equation. Recall from Section 1.1 that a **linear first-order equation** is an equation that can be expressed in the form

(1)
$$a_1(x)\frac{dy}{dx} + a_0(x)y = b(x)$$
,

where $a_1(x)$, $a_0(x)$, and b(x) depend only on the independent variable x, not on y.

$$x^2 \sin x - (\cos x)y = \sin x \frac{dy}{dx}$$

 $\sin x \frac{dy}{dx} + (\cos x)y = x^2 \sin x$
 $y \frac{dy}{dx} + (\sin x)y^3 = e^x + 1$

Linear Equations

A type of first-order differential equation that occurs frequently in applications is the linear equation. Recall from Section 1.1 that a **linear first-order equation** is an equation that can be expressed in the form

(1)
$$a_1(x)\frac{dy}{dx} + a_0(x)y = b(x)$$
,

where $a_1(x)$, $a_0(x)$, and b(x) depend only on the independent variable x, not on y.

One can seldom rewrite a linear differential equation so that it reduces to a form as simple as (2). However, the form (3) can be achieved through multiplication of the original equation (1) by a well-chosen function $\mu(x)$. Such a function $\mu(x)$ is then called an "integrating fae tor" for equation (1). The easiest way to see this is first to divide the original equation (1) by $a_1(x)$ and put it into **standard form**

(4)
$$\frac{dy}{dx} + P(x)y = Q(x) ,$$

where $P(x) = a_0(x)/a_1(x)$ and $Q(x) = b(x)/a_1(x)$.

$$A_1 + A = X$$

$$g(x) = e^{x}$$

$$e^{x}y' + ye^{x} = xe^{x}$$

$$\int (ye^{x})' = \int xe^{x} dy$$

$$ye^{x} = \begin{cases} u = x & dy = e^{x} \\ du = dx & y = e^{x} \end{cases}$$

$$ye^{x} = \begin{cases} du = dx & y = e^{x} \\ xe^{x} - e^{x} + c \end{cases}$$

$$ye^{x} = xe^{x} - e^{x} + c$$

$$ye^{x} = xe^{x} - e^{x} + c$$

by parts Judu= w- Judus

$$y = e^{x} = xe^{x} - e^{x} + c$$
 $y = x - 1 + ce^{-x}$

$$y' + p(x) \cdot y = q(x)$$

$$g(x) = p(x) \cdot q(x)$$

$$g(x) = p(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot p(x) \cdot y = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

$$g(x) \cdot y' + g(x) \cdot y' = g(x) \cdot q(x)$$

Method for Solving Linear Equations

(a) Write the equation in the standard form

$$\frac{dy}{dx} + P(x)y = Q(x) .$$

(b) Calculate the integrating factor $\mu(x)$ by the formula

$$\mu(x) = \exp\left[\int P(x)dx\right].$$

(c) Multiply the equation in standard form by $\mu(x)$ and, recalling that the left-hand side is just $\frac{d}{dx}[\mu(x)y]$, obtain

$$\underbrace{\frac{dy}{dx} + P(x)\mu(x)y}_{} = \mu(x)Q(x),$$

$$\underbrace{\frac{d}{dx}[\mu(x)y]}_{} = \mu(x)Q(x).$$

(d) Integrate the last equation and solve for y by dividing by $\mu(x)$ to obtain (8).

$$y' = 3x^{2} - \frac{y}{x}$$
 $y(1) = 5$.

 $y' + \frac{y}{x}y = \frac{9}{3}x^{2}$
 $xy' + \frac{x}{x}y = 3x^{3}$
 $(xy)' = 3x^{3}$
 $(xy)' = 3x^{3}$
 $(xy)' = 3x^{3}$
 $xy = \frac{3}{4}x^{4} + C$

Faircal. $\Rightarrow y = \frac{3}{4}x^{3} + \frac{17}{4}$
 $y = \frac{3}{4}x^{3} + \frac{17}{4}$
 $y = \frac{3}{4}x^{3} + \frac{17}{4}$
 $y = \frac{3}{4}x^{3} + \frac{17}{4}$

Example 1 Find the general solution to

(9)
$$\frac{1}{x} \frac{dy}{dx} - \frac{2y}{x^2} = x \cos x, \quad x > 0.$$

$$y' - \frac{2}{x}y = x^{2}\cos x$$
integrating $\int_{-\frac{\pi}{x}}^{2} dx = -2\ln|x|$

$$g(x) = e$$

$$= e^{-2} = x^{-2}$$

$$| x^{-2}y' - 2x^{-3}y = \cos x$$

$$(x^{-2}y)'=cosx$$