

Atmel 8-bit AVR Microcontroller with 512/1024 Bytes In-System Programmable Flash

ATtiny4 / ATtiny5 / ATtiny9 / ATtiny10

Summary

Features

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 54 Powerful Instructions Most Single Clock Cycle Execution
 - 16 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 12 MIPS Throughput at 12 MHz
- · Non-volatile Program and Data Memories
 - 512/1024 Bytes of In-System Programmable Flash Program Memory
 - 32 Bytes Internal SRAM
 - Flash Write/Erase Cycles: 10,000
 - Data Retention: 20 Years at 85°C / 100 Years at 25°C
- Peripheral Features
 - QTouch® Library Support for Capacitive Touch Sensing (1 Channel)
 - One 16-bit Timer/Counter with Prescaler and Two PWM Channels
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - 4-channel, 8-bit Analog to Digital Converter (ATtiny5/10, only)
 - On-chip Analog Comparator
- Special Microcontroller Features
 - In-System Programmable (at 5V, only)
 - External and Internal Interrupt Sources
 - Low Power Idle, ADC Noise Reduction, and Power-down Modes
 - Enhanced Power-on Reset Circuit
 - Programmable Supply Voltage Level Monitor with Interrupt and Reset
 - Internal Calibrated Oscillator
- I/O and Packages
 - Four Programmable I/O Lines
 - 6-pin SOT and 8-pad UDFN
- Operating Voltage:
 - -1.8 5.5V
- Programming Voltage:
 - 5V
- Speed Grade
 - 0 4 MHz @ 1.8 5.5V
 - 0 8 MHz @ 2.7 5.5V
 - $-\ \ 0-12\ MHz\ @\ 4.5-5.5V$
- Industrial and Extended Temperature Ranges
- Low Power Consumption
 - Active Mode:
 - 200µA at 1MHz and 1.8V
 - Idle Mode:
 - 25µA at 1MHz and 1.8V
 - Power-down Mode:
 - < 0.1µA at 1.8V

Rev. 8127FS-AVR-02/2013

1. Pin Configurations

Figure 1-1. Pinout of ATtiny4/5/9/10

1.1 Pin Description

1.1.1 VCC

Supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB3..PB0)

This is a 4-bit, bi-directional I/O port with internal pull-up resistors, individually selectable for each bit. The output buffers have symmetrical drive characteristics, with both high sink and source capability. As inputs, the port pins that are externally pulled low will source current if pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The port also serves the functions of various special features of the ATtiny4/5/9/10, as listed on page 36.

1.1.4 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 16-4 on page 118. Shorter pulses are not guaranteed to generate a reset.

The reset pin can also be used as a (weak) I/O pin.

2. Overview

ATtiny4/5/9/10 are low-power CMOS 8-bit microcontrollers based on the compact AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny4/5/9/10 achieve throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 16 general purpose working registers and system registers. All registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is compact and code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATtiny4/5/9/10 provide the following features: 512/1024 byte of In-System Programmable Flash, 32 bytes of SRAM, four general purpose I/O lines, 16 general purpose working registers, a 16-bit timer/counter with two PWM

channels, internal and external interrupts, a programmable watchdog timer with internal oscillator, an internal calibrated oscillator, and four software selectable power saving modes. ATtiny5/10 are also equipped with a four-channel, 8-bit Analog to Digital Converter (ADC).

Idle mode stops the CPU while allowing the SRAM, timer/counter, ADC (ATtiny5/10, only), analog comparator, and interrupt system to continue functioning. ADC Noise Reduction mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC. In Power-down mode registers keep their contents and all chip functions are disabled until the next interrupt or hardware reset. In Standby mode, the oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The on-chip, in-system programmable Flash allows program memory to be re-programmed in-system by a conventional, non-volatile memory programmer.

The ATtiny4/5/9/10 AVR are supported by a suite of program and system development tools, including macro assemblers and evaluation kits.

2.1 Comparison of ATtiny4, ATtiny5, ATtiny9 and ATtiny10

A comparison of the devices is shown in Table 2-1.

Table 2-1. Differences between ATtiny4, ATtiny5, ATtiny9 and ATtiny10

Device	Flash	ADC	Signature
ATtiny4	512 bytes	No	0x1E 0x8F 0x0A
ATtiny5	512 bytes	Yes	0x1E 0x8F 0x09
ATtiny9	1024 bytes	No	0x1E 0x90 0x08
ATtiny10	1024 bytes	Yes	0x1E 0x90 0x03

3. General Information

3.1 Resources

A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/microcontroller/avr.

3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

3.3 Capacitive Touch Sensing

Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel AVR microcontrollers. The QTouch Library includes support for QTouch[®] and QMatrix[®] acquisition methods.

Touch sensing is easily added to any application by linking the QTouch Library and using the Application Programming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to retrieve channel information and determine the state of the touch sensor.

The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of implementation, refer to the QTouch Library User Guide – also available from the Atmel website.

3.4 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F	SREG	I	T	Н	S	V	N	Z	С	Page 12
0x3E	SPH				Stack Point	er High Byte				Page 12
0x3D	SPL				Stack Point	er Low Byte				Page 12
0x3C	CCP				CPU Change	Protection Byte				Page 11
0x3B	RSTFLR	-	_	-	_	WDRF	_	EXTRF	PORF	Page 34
0x3A	SMCR	_	_	-	_	SM2	SM1	SM0	SE	Page 25
0x39	OSCCAL				Oscillator Ca	libration Byte				Page 21
0x38	Reserved	-	-	-	-	-	-	-	-	
0x37	CLKMSR	-	_	-	_	_	_	CLKMS1	CLKMS0	Page 21
0x36	CLKPSR	-	_	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	Page 22
0x35	PRR	-	_	-	_	-	_	PRADC	PRTIM0	Page 26
0x34	VLMCSR	VLMF	VLMIE	-	-	=	VLM2	VLM1	VLM0	Page 33
0x33	NVMCMD	_	_		•	NVM C	omman	•	•	Page 114
0x32	NVMCSR	NVMBSY	_	_	_	_	_	-	_	Page 114
0x31	WDTCSR	WDIF	WDIE	WDP3	_	WDE	WDP2	WDP1	WDP0	Page 32
0x30	Reserved	_	_	_	_	_	_	_	_	9
0x2F	GTCCR	TSM	_	_	_	_	_	_	PSR	Page 78
0x2E	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	_	_	WGM01	WGM00	Page 72
0x2D	TCCR0B	ICNC0	ICES0	- OONIOD1	WGM03	WGM02	CS02	CS01	CS00	Page 74
0x2D 0x2C	TCCR0C	FOC0A	FOC0B	_	- VVGIVIUS	- VVGIVIU2	-	-	-	Page 75
0x2B	TIMSK0	TOOM	1 OCUB		_	_	OCIE0B		TOIE0	
		_	_	ICIE0				OCIE0A		Page 77
0x2A	TIFR0	-	-	ICF0	Caustar C	nter Desister III	OCF0B	OCF0A	TOV0	Page 78
0x29	TCNT0H					nter Register Hig				Page 76
0x28	TCNT0L					nter Register Lo				Page 76
0x27	OCR0AH					are Register A F				Page 76
0x26	OCR0AL					are Register A L	-			Page 76
0x25	OCR0BH			Timer/C	ounter0 – Comp	are Register B F	ligh Byte			Page 76
0x24	OCR0BL					are Register B L				Page 76
0x23	ICR0H			Timer/Co	unter0 - Input C	apture Register	High Byte			Page 77
0x22	ICR0L			Timer/Co	ounter0 - Input C	apture Register	Low Byte			Page 77
0x21	Reserved	_	_	-	_	_	_	_	_	
0x20	Reserved	-	_	_	-	_	_	-	_	
0x1F	ACSR	ACD	_	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	Page 80
0x1E	Reserved	_	_	_	_	_	_	_	_	-
0x1D	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	Page 92
0x1C	ADCSRB	_	_	_	_	_	ADTS2	ADTS1	ADTS0	Page 93
0x1B	ADMUX	_	_	_	_	_	_	MUX1	MUX0	Page 92
0x1A	Reserved	_	_	_	_	_	_	_	_	
0x19	ADCL				ADC Conve	ersion Result				Page 94
0x18	Reserved	_	_	_	_	_	_	_	_	. ago o .
0x17	DIDR0	_	_	_	_	ADC3D	ADC2D	ADC1D	ADC0D	Page 81, Page 94
0x16	Reserved	_	_	_	_	- -	- ABO2B	-	- ABOOD	rage or, rage 54
0x15	EICRA	_	_	_	_	_	_	ISC01	ISC00	Page 37
								15001		· ·
0x14	EIFR	-	-	-	-	-	-	_	INTF0	Page 38
0x13	EIMSK	-	_	-	_	-	-	-	INT0	Page 38
0x12	PCICR	-	-	-	-	-	_	-	PCIE0	Page 39
0x11	PCIFR	-	_	-	_				PCIF0	Page 39
0x10	PCMSK	_	_	-	_	PCINT3	PCINT2	PCINT1	PCINT0	Page 39
0x0F	Reserved	_	_	-	-	-	_	-	-	
0x0E	Reserved	-	_	-	-	-	_	-	-	
0x0D	Reserved	_	_	-	_	_	_	_	_	
0x0C	PORTCR	-	_	-	_	_	_	BBMB	-	Page 50
0x0B	Reserved	-	-	-	-	-	_	-	-	
0x0A	Reserved	-	_	_	_	_	_	_	_	
0x09	Reserved	_	_	_	_	_	_	_	_	
0x08	Reserved	-	_	-	-	_	_	_	-	
0x07	Reserved	_	_	_	_	_	_	_	_	
0x06	Reserved	_	_	_	_	_	_	_	_	
0x05	Reserved	_	_	_	_	_	_	_	_	
0x04	Reserved	_	_	_	_	=	_	_	_	
0x04	PUEB	_	_		_				1	Page F0
				-		PUEB3	PUEB2	PUEB1	PUEB0	Page 50
0x02	PORTB	-	-	-	-	PORTB3	PORTB2	PORTB1	PORTB0	Page 51
0x01	DDRB	_	_	-	_	DDRB3 PINB3	DDRB2	DDRB1	DDRB0 PINB0	Page 51 Page 51
0x00	PINB	_	_	_	_		PINB2	PINB1		

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses

- should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. The ADC is available in ATtiny5/10, only.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
	OGIC INSTRUCTIONS	·			0100110
ADD	Rd, Rr	Add without Carry	Rd ← Rd + Rr	Z,C,N,V,S,H	1
ADC	Rd, Rr	Add with Carry	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,S,H	1
SUB	Rd, Rr	Subtract without Carry	Rd ← Rd - Rr	Z,C,N,V,S,H	1
SUBI	Rd, K	Subtract Immediate	Rd ← Rd - K	Z,C,N,V,S,H	1
SBC	Rd, Rr	Subtract with Carry	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,S,H	1
SBCI	Rd, K	Subtract Immediate with Carry	$Rd \leftarrow Rd - K - C$	Z,C,N,V,S,H	1
AND	Rd, Rr	Logical AND	Rd ← Rd • Rr	Z,N,V,S	1
ANDI	Rd, K	Logical AND with Immediate	$Rd \leftarrow Rd \bullet K$	Z,N,V,S	1
OR	Rd, Rr	Logical OR	$Rd \leftarrow Rd v Rr$	Z,N,V,S	1
ORI	Rd, K	Logical OR with Immediate	$Rd \leftarrow Rd \vee K$	Z,N,V,S	1
EOR	Rd, Rr	Exclusive OR	$Rd \leftarrow Rd \oplus Rr$	Z,N,V,S	1
COM	Rd	One's Complement	Rd ← \$FF – Rd	Z,C,N,V,S	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,S,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V,S	1
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd • (\$FFh - K)	Z,N,V,S	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V,S	1
DEC	Rd	Decrement	Rd ← Rd − 1	Z,N,V,S	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V,S	1
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V,S	1
SER	Rd	Set Register	Rd ← \$FF	None	1
BRANCH INSTRUCT			T == == : :	L	
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP	1.	Indirect Jump to (Z)	PC(15:0) ← Z, PC(21:16) ← 0	None	2
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3/4
ICALL		Indirect Call to (Z)	$PC(15:0) \leftarrow Z, PC(21:16) \leftarrow 0$	None	3/4
RET		Subroutine Return	PC ← STACK	None	4/5 4/5
RETI CPSE	Rd,Rr	Interrupt Return	PC ← STACK	None	1/2/3
CPSE	Rd,Rr	Compare, Skip if Equal Compare	if (Rd = Rr) PC ← PC + 2 or 3 Rd – Rr	Z, C,N,V,S,H	1/2/3
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, C,N,V,S,H	1
CPI	Rd,K	Compare with Immediate	Rd – K	Z, C,N,V,S,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b)=0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	A, b	Skip if Bit in I/O Register Cleared	if $(I/O(A,b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	A, b	Skip if Bit in I/O Register is Set	if $(I/O(A,b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if $(C = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if $(H = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
BIT AND BIT-TEST I			Tau n au	T = =	
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V,H	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V,H	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	S	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	S	Flag Clear	SREG(s) ← 0	SREG(s)	1
SBI	A, b	Set Bit in I/O Register	I/O(A, b) ← 1	None	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
CBI	A, b	Clear Bit in I/O Register	I/O(A, b) ← 0	None	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	1←1	1	1
CLI		Global Interrupt Disable	1←0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow.	V ← 1	٧	1
CLV		Clear Two's Complement Overflow	V ← 0	٧	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER	INSTRUCTIONS				
MOV	Rd, Rr	Copy Register	Rd ← Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	1/2
LD	Rd, X+	Load Indirect and Post-Increment	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Decrement	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2/3
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	1/2
LD	Rd, Y+	Load Indirect and Post-Increment	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Decrement	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2/3
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	1/2
LD	Rd, Z+	Load Indirect and Post-Increment	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Decrement	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2/3
LDS	Rd, k	Store Direct from SRAM	$Rd \leftarrow (k)$	None	1
ST	X, Rr	Store Indirect	(X) ← Rr	None	1
ST	X+, Rr	Store Indirect and Post-Increment	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	1
ST	- X, Rr	Store Indirect and Pre-Decrement	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	1
ST	Y+, Rr	Store Indirect and Post-Increment	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	1
ST	- Y, Rr	Store Indirect and Pre-Decrement	$Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	1
ST	Z+, Rr	Store Indirect and Post-Increment.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	1
ST	-Z, Rr	Store Indirect and Pre-Decrement	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	1
IN	Rd, A	In from I/O Location	Rd ← I/O (A)	None	1
OUT	A, Rr	Out to I/O Location	I/O (A) ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL IN	STRUCTIONS	-			
BREAK		Break	(see specific descr. for Break)	None	1
NOP		No Operation	,	None	1
SLEEP		Sleep	(see specific descr. for Sleep)	None	1
WDR	1	Watchdog Reset	(see specific descr. for WDR)	None	1 .

Ordering Information

ATtiny4 6.1

Supply Voltage	Speed (1)	Temperature	Package (2)	Ordering Code (3)
	10 MHz	Industrial	6ST1	ATtiny4-TSHR ⁽⁵⁾
1.8 – 5.5V	12 MHz	(-40°C to 85°C) (4)	8MA4	ATtiny4-MAHR (6)
	10 MHz	Extended (-40°C to 125°C) ⁽⁶⁾	6ST1	ATtiny4-TS8R (5)

- Notes: 1. For speed vs. supply voltage, see section 16.3 "Speed" on page 116.
 - 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS). NiPdAu finish.
 - 3. Tape and reel.
 - 4. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities.
 - 5. Top/bottomside markings:
 - Top: T4x, where x = die revision
 - Bottom: zHzzz or z8zzz, where $H = (-40^{\circ}C \text{ to } 85^{\circ}C)$, and $8 = (-40^{\circ}C \text{ to } 125^{\circ}C)$
 - 6. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny4/5/9/10 Specification at 125°C.

Package Type		
6ST1	6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)	
8MA4	8-pad, 2 x 2 x 0.6 mm Plastic Ultra Thin Dual Flat No Lead (UDFN)	

6.2 ATtiny5

Supply Voltage	Speed (1)	Temperature	Package ⁽²⁾	Ordering Code (3)
1.8 – 5.5V	12 MHz	Industrial (-40°C to 85°C) (4)	6ST1	ATtiny5-TSHR (5)
			8MA4	ATtiny5-MAHR (6)
	10 MHz	Extended (-40°C to 125°C) ⁽⁶⁾	6ST1	ATtiny5-TS8R (5)

Notes: 1. For speed vs. supply voltage, see section 16.3 "Speed" on page 116.

- 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS). NiPdAu finish.
- 3. Tape and reel.
- 4. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities.
- 5. Top/bottomside markings:
 - Top: T5 \mathbf{x} , where \mathbf{x} = die revision
 - Bottom: zHzzz or z8zzz, where $H = (-40^{\circ}C \text{ to } 85^{\circ}C)$, and $8 = (-40^{\circ}C \text{ to } 125^{\circ}C)$
- 6. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny4/5/9/10 Specification at 125°C.

Package Type		
6ST1	6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)	
8MA4	8-pad, 2 x 2 x 0.6 mm Plastic Ultra Thin Dual Flat No Lead (UDFN)	

6.3 ATtiny9

Supply Voltage	Speed (1)	Temperature	Package ⁽²⁾	Ordering Code (3)
1.8 – 5.5V	12 MHz	Industrial (-40°C to 85°C) (4)	6ST1	ATtiny9-TSHR (5)
			8MA4	ATtiny9-MAHR (6)
	10 MHz	Extended (-40°C to 125°C) ⁽⁶⁾	6ST1	ATtiny9-TS8R (5)

Notes: 1. For speed vs. supply voltage, see section 16.3 "Speed" on page 116.

- 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS). NiPdAu finish.
- 3. Tape and reel.
- 4. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities.
- 5. Top/bottomside markings:
 - Top: T9 \mathbf{x} , where \mathbf{x} = die revision
 - Bottom: zHzzz or z8zzz, where $H = (-40^{\circ}C \text{ to } 85^{\circ}C)$, and $8 = (-40^{\circ}C \text{ to } 125^{\circ}C)$
- 6. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny4/5/9/10 Specification at 125°C.

Package Type		
6ST1	6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)	
8MA4	8-pad, 2 x 2 x 0.6 mm Plastic Ultra Thin Dual Flat No Lead (UDFN)	

6.4 ATtiny10

Supply Voltage	Speed (1)	Temperature	Package (2)	Ordering Code (3)
1.8 – 5.5V	12 MHz	Industrial (-40°C to 85°C) (4)	6ST1	ATtiny10-TSHR (5)
			8MA4	ATtiny10-MAHR (6)
	10 MHz	Extended (-40°C to 125°C) ⁽⁶⁾	6ST1	ATtiny10-TS8R (5)

Notes: 1. For speed vs. supply voltage, see section 16.3 "Speed" on page 116.

- 2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS). NiPdAu finish.
- 3. Tape and reel.
- 4. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities.
- 5. Top/bottomside markings:
 - Top: T10 \mathbf{x} , where \mathbf{x} = die revision
 - Bottom: zHzzz or z8zzz, where $H = (-40^{\circ}C \text{ to } 85^{\circ}C)$, and $8 = (-40^{\circ}C \text{ to } 125^{\circ}C)$
- 6. For typical and Electrical characteristics for this device please consult Appendix A, ATtiny4/5/9/10 Specification at 125°C.

Package Type		
6ST1	6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)	
8MA4	8-pad, 2 x 2 x 0.6 mm Plastic Ultra Thin Dual Flat No Lead (UDFN)	

7. Packaging Information

7.1 6ST1

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	ı	_	1.45	
A1	0	_	0.15	
A2	0.90	_	1.30	
D	2.80	2.90	3.00	2
Е	2.60	2.80	3.00	
E1	1.50	1.60	1.75	
L	0.30	0.45	0.55	
е	0.95 BSC			
b	0.30	_	0.50	3
С	0.09	_	0.20	
θ	0°	_	8°	·

Notes: 1. This package is compliant with JEDEC specification MO-178 Variation AB

- 2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrustion or gate burrs shall not exceed 0.25 mm per end.
- 3. Dimension b does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm
- 4. Die is facing down after trim/form.

6/30/08

	TITLE	GPC	DRAWING NO.	REV.	1
Package Drawing Contact: packagedrawings@atmel.com	6ST1 , 6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)	TAQ	6ST1	A	

7.2 8MA4

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	МАХ	NOTE
Α	_	_	0.60	
A1	0.00	_	0.05	
b	0.20	_	0.30	
D	1.95	2.00	2.05	
D2	1.40	1.50	1.60	
E	1.95	2.00	2.05	
E2	0.80	0.90	1.00	
е	-	0.50	_	
L	0.20	0.30	0.40	
К	0.20	_	_	

Note: 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.

2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS COPLANARITY SHALL NOT EXCEED 0.05 mm.

- 3. WARPAGE SHALL NOT EXCEED 0.05 mm.
- 4. REFER JEDEC MO-236/MO-252

12/17/09

Package Drawing Contact: packagedrawings@atmel.com

TITLE
8PAD, 2x2x0.6 mm body, 0.5 mm pitch,
0.9x1.5 mm exposed pad, Saw singulated
Thermally enhanced plastic ultra thin dual flat no lead package (UDFN/USON)

GPC

YAG

8MA4

A

8. Errata

The revision letters in this section refer to the revision of the corresponding ATtiny4/5/9/10 device.

8.1 ATtiny4

8.1.1 Rev. E

· Programming Lock Bits

1. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround

When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.1.2 Rev. D

- ESD HBM (ESD STM 5.1) level ±1000V
- Programming Lock Bits

1. ESD HBM (ESD STM 5.1) level ±1000V

The device meets ESD HBM (ESD STM 5.1) level ±1000V.

Problem Fix / Workaround

Always use proper ESD protection measures (Class 1C) when handling integrated circuits before and during assembly.

2. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround

When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.1.3 Rev. A - C

8.2 ATtiny5

8.2.1 Rev. E

· Programming Lock Bits

1. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround

When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.2.2 Rev. D

- ESD HBM (ESD STM 5.1) level ±1000V
- · Programming Lock Bits

1. ESD HBM (ESD STM 5.1) level ±1000V

The device meets ESD HBM (ESD STM 5.1) level ±1000V.

Problem Fix / Workaround

Always use proper ESD protection measures (Class 1C) when handling integrated circuits before and during assembly.

2. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround

When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.2.3 Rev. A – C

8.3 ATtiny9

8.3.1 Rev. E

· Programming Lock Bits

1. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround

When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.3.2 Rev. D

- ESD HBM (ESD STM 5.1) level ±1000V
- · Programming Lock Bits

1. ESD HBM (ESD STM 5.1) level ±1000V

The device meets ESD HBM (ESD STM 5.1) level ±1000V.

Problem Fix / Workaround

Always use proper ESD protection measures (Class 1C) when handling integrated circuits before and during assembly.

2. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround

When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.3.3 Rev. A – C

8.4 ATtiny10

8.4.1 Rev. E

· Programming Lock Bits

1. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround

When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.4.2 Rev. C – D

- ESD HBM (ESD STM 5.1) level ±1000V
- · Programming Lock Bits

1. ESD HBM (ESD STM 5.1) level ±1000V

The device meets ESD HBM (ESD STM 5.1) level ±1000V.

Problem Fix / Workaround

Always use proper ESD protection measures (Class 1C) when handling integrated circuits before and during assembly.

2. Programming Lock Bits

Programming Lock Bits to a lock mode equal or lower than the current causes one word of Flash to be corrupted. The location of the corruption is random.

Problem Fix / Workaround

When programming Lock Bits, make sure lock mode is not set to present, or lower levels.

8.4.3 Rev. A - B

9. Datasheet Revision History

9.1 Rev. 8127F - 02/13

- 1. Updated:
 - Ordering information on page 10, page 11, page 12, and page 13

9.2 Rev. 8127E - 11/11

- 1. Updated:
 - Device status from Preliminary to Final
 - Ordering information on page 10, page 11, page 12, and page 13

9.3 Rev. 8127D - 02/10

- 1. Added UDFN package in "Features" on page 1, "Pin Configurations" on page 2, "Ordering Information" on page 10, and in "Packaging Information" on page 14
- 2. Updated Figure 8-2 and Figure 8-3 in Section 8.2.1 "Power-on Reset" on page 27
- 3. Updated Section 8.2.3 "External Reset" on page 29
- 4. Updated Figures 17-36 and 17-51 in "Typical Characteristics"
- 5. Updated notes in Section 6. "Ordering Information" on pages 10 13
- 6. Added device Rev. E in Section 8. "Errata" on page 16

9.4 Rev. 8127C - 10/09

- 1. Updated values and notes:
 - Table 16-1 in Section 16.2 "DC Characteristics" on page 115
 - Table 16-3 in Section 16.4 "Clock Characteristics" on page 117
 - Table 16-6 in Section 16.5.2 "VCC Level Monitor" on page 118
 - Table 16-9 in Section 16.8 "Serial Programming Characteristics" on page 120
- 2. Updated Figure 16-1 in Section 16.3 "Speed" on page 116
- 3. Added Typical Characteristics Figure 17-36 in Section 17.8 "Analog Comparator Offset" on page 139. Also, updated some other plots in Typical Characteristics.
- 4. Added topside and bottomside marking notes in Section 6. "Ordering Information" on page 10, up to page 13
- 5. Added ESD errata, see Section 8. "Errata" on page 16
- 6. Added Lock bits re-programming errata, see Section 8. "Errata" on page 16

9.5 Rev. 8127B - 08/09

- 1. Updated document template
- 2. Expanded document to also cover devices ATtiny4, ATtiny5 and ATtiny9
- 3. Added section:
 - "Comparison of ATtiny4, ATtiny5, ATtiny9 and ATtiny10" on page 4
- 4. Updated sections:
 - "ADC Clock clkADC" on page 18
 - "Starting from Idle / ADC Noise Reduction / Standby Mode" on page 20
 - "ADC Noise Reduction Mode" on page 24
 - "Analog to Digital Converter" on page 25

- "SMCR Sleep Mode Control Register" on page 25
- "PRR Power Reduction Register" on page 26
- "Alternate Functions of Port B" on page 48
- "Overview" on page 82
- "Physical Layer of Tiny Programming Interface" on page 95
- "Overview" on page 106
- "ADC Characteristics (ATtiny5/10, only)" on page 119
- "Supply Current of I/O Modules" on page 121
- "Register Summary" on page 6
- "Ordering Information" on page 10
- 5. Added figure:
 - "Using an External Programmer for In-System Programming via TPI" on page 96
- 6. Updated figure:
 - "Data Memory Map (Byte Addressing)" on page 15
- 7. Added table:
 - "Number of Words and Pages in the Flash (ATtiny4/5)" on page 108
- 8. Updated tables:
 - "Active Clock Domains and Wake-up Sources in Different Sleep Modes" on page 23
 - "Reset and Interrupt Vectors" on page 35
 - "Number of Words and Pages in the Flash (ATtiny9/10)" on page 107
 - "Signature codes" on page 109

9.6 Rev. 8127A - 04/09

1. Initial revision

Atmel Corporation

1600 Technology Drive San Jose, CA 95110 USA

Tel: (+1) (408) 441-0311 **Fax:** (+1) (408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Roa Kwun Tong, Kowloon HONG KONG

Tel: (+852) 2245-6100 **Fax:** (+852) 2722-1369

Atmel Munich GmbH

Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY

Tel: (+49) 89-31970-0 **Fax:** (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo Bldg 1-6-4 Osaki, Shinagawa-ku

Tokyo 141-0032

JAPAN

Tel: (+81) (3) 6417-0300 **Fax:** (+81) (3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 8127FS-AVR-02/2013

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION), ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.