

Sommersemester 2015

$Formel sammlung\ Koordinaten transformation$

Es wird die Notation aus Vorlesung und Übung zur Analysis 2 (EI) verwendet.

Skalarfelder $f\colon \mathbb{R}^3 o \mathbb{R}$	Kugelkoordinaten im Punkt $(r, \theta, \varphi)^T$	$ \widetilde{\Delta f} = \frac{\partial^2 \widetilde{f}}{\partial r^2} + \frac{2}{r} \frac{\partial \widetilde{f}}{\partial r} + \frac{\cos \theta}{r^2 \sin \theta} \frac{\partial \widetilde{f}}{\partial \theta} \\ + \frac{1}{r^2} \frac{\partial^2 \widetilde{f}}{\partial \theta^2} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \widetilde{f}}{\partial \theta^2} \\ + \frac{1}{r^2 \partial \theta^2} + \frac{\partial^2 \widetilde{f}}{r^2 \sin^2 \theta} \frac{\partial^2 \widetilde{f}}{\partial \varphi^2} \\ \widetilde{\nabla f} = \begin{pmatrix} \frac{\partial \widetilde{f}}{r} \\ \frac{\partial \widetilde{f}}{r \sin \theta} \\ \frac{\partial \widetilde{f}}{\partial \varphi} \end{pmatrix} \\ \text{bzgl. } \left\{ e_r, e_\theta, e_\varphi \right\} $	Kugelkoordinaten im Punkt $(r, \theta, \varphi)^T$	$\hat{g} = \begin{pmatrix} \hat{g}_1 \\ \hat{g}_2 \\ \hat{g}_3 \end{pmatrix}$ bzgl. $\{e_r, e_\theta, e_\varphi\}$	$\widehat{\operatorname{div} g} = \underbrace{\frac{1}{r^2} \frac{\partial (r^2 \hat{g}_1)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\hat{g}_2 \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \hat{g}_2}{\partial \varphi}}_{\text{I}}$	$\widehat{\cot g} = \begin{pmatrix} \frac{1}{r \sin \theta} \frac{\partial (\hat{g}_3 \sin \theta)}{\partial \theta} - \frac{1}{r \sin \theta} \frac{\partial \hat{g}_2}{\partial \varphi} \\ \frac{1}{r \sin \theta} \frac{\partial \hat{g}_1}{\partial \varphi} - \frac{1}{r} \frac{\partial (\hat{r}_3)}{\partial r} \\ \frac{1}{r} \frac{\partial (\hat{r}_2)}{\partial r} - \frac{1}{r} \frac{\partial \hat{g}_1}{\partial \theta} \end{pmatrix}$ $\operatorname{bzgl.} \left\{ e_r, e_\theta, e_\varphi \right\}$				
	Zylinderkoordinaten im Punkt $(r, \varphi, z)^T$	f ~	$\widehat{\Delta f} = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2}$	$\widehat{\widehat{ abla}_f} = \left(egin{array}{c} rac{\partial ilde{f}}{\partial r} \ rac{\partial ilde{f}}{\partial r} \end{array} ight)$;;	$\text{Vektorfelder }g\colon \mathbb{R}^3\to\mathbb{R}^3$	Zylinderkoordinaten im Punkt $(r,\varphi,z)^T$	$\hat{g} = \begin{pmatrix} \hat{g}_1 \\ \hat{g}_2 \\ \hat{g}_3 \end{pmatrix}$ $\text{bzgl. } \{e_r, e_\varphi, e_z\}$	$\widehat{\operatorname{div}g} = \frac{1}{r} \frac{\partial(r\hat{g}_1)}{\partial r} + \frac{1}{r} \frac{\partial \hat{g}_2}{\partial \varphi} + \frac{\partial \hat{g}_3}{\partial z}$	$\widehat{\cot g} = \begin{pmatrix} \frac{1}{r} \frac{\partial \hat{g}_3}{\partial \varphi} - \frac{\partial \hat{g}_2}{\partial z} \\ \frac{g}{2g} - \frac{\partial g}{\partial z} - \frac{\partial g}{\partial z} \\ \frac{1}{r} \frac{\partial (r\hat{g}_2)}{\partial r} - \frac{1}{r} \frac{\partial \hat{g}_1}{\partial \varphi} \end{pmatrix}$ $\operatorname{bzgl.} \left\{ e_r, e_\varphi, e_z \right\}$
	kartesische Koordinaten im Punkt $(x, y, z)^T$		$\Delta f = rac{\partial^2 f}{\partial x^2} + rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2}$	$\sqrt{\frac{\partial f}{\partial f}}$ $= \sqrt{\frac{\partial f}{\partial f}}$	$\left(rac{\partial f}{\partial z} \right)$ bzgl. $\left\{ e_x, e_y, e_z ight\}$		kartesische Koordinaten im Punkt $(x, y, z)^T$	$g = \begin{pmatrix} g_1 \\ g_2 \\ g_3 \end{pmatrix}$ $\operatorname{bzgl.} \left\{ e_x, e_y, e_z \right\}$	$\operatorname{div} g = \frac{\partial g_1}{\partial x} + \frac{\partial g_2}{\partial y} + \frac{\partial g_3}{\partial z}$	$\operatorname{rot} g = \begin{pmatrix} \frac{\partial g_3}{\partial y} - \frac{\partial g_2}{\partial z} \\ \frac{\partial g_1}{\partial z} - \frac{\partial g_3}{\partial y} \\ \frac{\partial g_2}{\partial x} - \frac{\partial g_1}{\partial y} \end{pmatrix}$ $\operatorname{bzgl.} \left\{ e_x, e_y, e_z \right\}$