Blinkit Sales Analysis - EDA

Import all the necessary libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Import Raw Data

```
In [34]: df = pd.read_csv("C:/Users/91911/Desktop/eda python/blinkit_data.csv")
```

Sample Data

```
In [35]: df.head(20)
```

_			ė.	_	_	-	
ſΊ	1.11	+		~	ь.	-	
U	u	ч.		\mathcal{L}	J	-	

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outle Size
0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Mediun
1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Mediun
2	Regular	FDR28	Frozen Foods	2010	OUT046	Tier 1	Smal
3	Regular	FDL50	Canned	2000	OUT013	Tier 3	Higl
4	Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Smal
5	low fat	FDS52	Frozen Foods	2020	OUT017	Tier 2	Smal
6	Low Fat	NCU05	Health and Hygiene	2011	OUT010	Tier 3	Smal
7	Low Fat	NCD30	Household	2015	OUT045	Tier 2	Smal
8	Low Fat	FDW20	Fruits and Vegetables	2000	OUT013	Tier 3	Higl
9	Low Fat	FDX25	Canned	1998	OUT027	Tier 3	Mediun
10	LF	FDX21	Snack Foods	1998	OUT027	Tier 3	Mediun
11	Low Fat	NCU41	Health and Hygiene	2017	OUT035	Tier 2	Smal
12	Low Fat	FDL20	Fruits and Vegetables	2022	OUT018	Tier 3	Mediun
13	Low Fat	NCR54	Household	2000	OUT013	Tier 3	Higl
14	Low Fat	FDH19	Meat	1998	OUT027	Tier 3	Mediun
15	Regular	FDB57	Fruits and Vegetables	2017	OUT035	Tier 2	Smal
16	Low Fat	FDO23	Breads	2022	OUT018	Tier 3	Mediun
17	Low Fat	NCB07	Household	2012	OUT049	Tier 1	Mediun
18	Low Fat	FDJ56	Fruits and Vegetables	1998	OUT027	Tier 3	Mediun
19	Low Fat	DRN47	Hard Drinks	2022	OUT018	Tier 3	Mediun

```
Out[36]: Item Fat Content
                                        object
         Item Identifier
                                        object
         Item Type
                                        object
         Outlet Establishment Year
                                         int64
         Outlet Identifier
                                        object
         Outlet Location Type
                                        object
         Outlet Size
                                        object
         Outlet Type
                                        object
         Item Visibility
                                       float64
         Item Weight
                                       float64
         Sales
                                       float64
         Rating
                                       float64
         dtype: object
```

Size of Data

```
In [37]: print("size of data is :" , df.shape)
    size of data is : (8523, 12)
```

Data Cleaning

KPI Requirements:-

```
In [41]: # Total Sales
    total_sales = df['Sales'].sum()

# Average Sales
    avg_sales = df['Sales'].mean()

# No of Items Sold
    no_of_items_sold = df['Sales'].count()

# Average Ratings
    avg_ratings = df['Rating'].mean()

# Display
    print(f"Total Sales: ${total_sales:,.0f}")
    print(f"Average Sales: ${avg_sales:,.0f}")
    print(f"No of Items Sold: {no_of_items_sold:,.0f}")
    print(f"Average Ratings: {avg_ratings:,.0f}")
```

Total Sales: \$1,201,681 Average Sales: \$141 No of Items Sold: 8,523 Average Ratings: 4

Charts Requirements

Total Sales by Fat content

Sales by Fat Content

Sales By Item Type

```
In [43]: sales_by_type = df.groupby('Item Type') ['Sales'].sum().sort_values(ascendir
plt.figure(figsize=(10, 6))
bars = plt.bar(sales_by_type.index, sales_by_type.values)
plt.xticks(rotation=-90)
plt.xlabel('Item Type')
plt.ylabel('Total Sales')
plt.title('Total Sales by Item Type')
```


Total Sales By Outlet (Fat Content)

```
In [44]: grouped = df.groupby(['Outlet Location Type', 'Item Fat Content'])['Sales'].
    grouped = grouped[['Regular', 'Low Fat']] # Optional filtering order

ax = grouped.plot(kind='bar', figsize=(8, 5), title='Outlet Tier by Item Fat
    plt.xlabel('Outlet Location Tier')
    plt.ylabel('Total Sales')
    plt.legend(title='Item Fat Content')
    plt.tight_layout()
    plt.show()
```

Outlet Tier by Item Fat Content

Total Sales By Outlet Establishment Year

```
In [45]: sales_by_year = df.groupby('Outlet Establishment Year')['Sales'].sum().sort_
    plt.figure(figsize=(9, 5))
    plt.plot(sales_by_year.index, sales_by_year.values, marker='o', linestyle='-

plt.xlabel('Outlet Establishment Year')
    plt.ylabel('Total Sales')
    plt.title('Outlet Establishment')

for x, y in zip(sales_by_year.index, sales_by_year.values):
        plt.text(x, y, f'{y:,.0f}', ha='center', va='bottom', fontsize=8)

plt.tight_layout()
    plt.show()
```


Sales By Outlet Size

Outlet Size

Sales By Location

```
In [47]: sales_by_location = df.groupby('Outlet Location Type')['Sales'].sum().reset_sales_by_location = sales_by_location.sort_values('Sales', ascending=False)

plt.figure(figsize=(8, 3)) # Smaller height, enough width
ax = sns.barplot(x='Sales', y='Outlet Location Type', data=sales_by_location

plt.title('Total Sales by Outlet Location Type')
plt.xlabel('Total Sales')
plt.ylabel('Outlet Location Type')
plt.tight_layout() # Ensures layout fits without scroll
plt.show()
```



```
In [ ]:
```