Université Mohamed Ier ENSA, Oujda Département MMA

Année universitaire : 2023-2024 Section : 4ème GI

Enseignant : A. Mbarki

TD 2 en Recherche opérationnelle

Exercice 1 : Soit $\Gamma: X = \{a,b,c,d,e,f,g\} \to 2^X$ l'application multivoque définie par:

$$\Gamma(a) = \{a, b, e, g\}, \ \Gamma(b) = \{c, d, e, f\}, \ \Gamma(c) = \{g\}, \Gamma(d) = \{c, g\}, \ \Gamma(e) = \{c, f, g\}, \ \Gamma(f) = \{a, c, d, g\} \text{ et } \Gamma(g) = \emptyset$$

- 1. Définir le graphe G = (X, U) dont Γ l'application multivoque associée.
- 2. Donner la représentation sagittale du graphe G.
- 3. En déduire la matrice booléenne associée au graphe G.
- 4. Déterminer au plus trois chemin(s) simple(s) entre les deux points a et g.

Exercice 2 : Un Voyageur désire se rende de la ville A à la ville G. Le but de ce problème est d'établir son itinéraire de façon à minimiser la distance parcourue.

Soit $M=(a_{(i,j)})$ la matrice associée au graphe G=(X,U) de ce problème qui est définie par:

$$a_{(i,j)} = \begin{cases} l(i,j) & \text{si } (i,j) \in U \\ \emptyset & \text{sinon} \end{cases}$$

(l(i,j)) est la distance entre la ville i et la ville j

$i \setminus j$	A	В	С	D	Е	F	G
A	Ø	30	Ø	Ø	36	Ø	180
В	Ø	Ø	60	42	27	18	Ø
С	Ø	Ø	Ø	Ø	Ø	Ø	84
D	Ø	Ø	18	Ø	Ø	Ø	90
E	Ø	Ø	48	Ø	Ø	48	126
F	33	Ø	36	12	Ø	Ø	132
G	Ø	Ø	Ø	Ø	Ø	Ø	Ø

- 1. Donner la représentation sagittale du graphe G.
- 2. Résoudre le probléme par l'algorithme de Dijksra.
- 3. Résoudre le problème par l'algorithme de Bellman Ford.