HW₃

Solution 1

Show that arc-consistency does not necessarily solve a CSP instance but just reduces the search space. When is a CSP instance 4-consistent? What is the time complexity of checking 4-consistency in a CSP instance? Are the constraints added by enforcing 4-consistency already implied by the given constraints in the CSP instance? Why don't we generally enforce 4-consistency or higher?

Example

Consider a CSP instance with three variables: A, B, and C, each with a domain of {1, 2, 3, 4}. The constraints are as follows:

- 1. A < B
- 2. B < C

Initially, the domains are:

- A: {1, 2, 3, 4}
- B: {1, 2, 3, 4}
- C: {1, 2, 3, 4}

Now, let's apply AC-3:

- 1. Select arc (A, A < B):
 - a. Prune A = 4 from domain of A
 - b. Add nothing to to-do-arcs as no constraints are violated.
 - c. Updated domains: A: {1, 2, 3} B: {1, 2, 3, 4} C: {1, 2, 3, 4}
- 2. Select arc (B, B < C):
 - a. Prune B = 4 from domain of B
 - b. Add (A, A < B) to to-do-arcs as domain of B changed.
 - c. Updated domains: A: {1, 2, 3} B: {1, 2, 3} C: {1, 2, 3, 4}
- 3. Select arc (B, A < B):
 - a. Prune B = 1 from domain of B
 - b. Add nothing to to-do-arcs as domain of A is unchanged.
 - c. Updated domains: A: {1, 2, 3} B: {2, 3, 4} C: {1, 2, 3, 4}
- 4. Select arc (A, A < B):
 - a. Prune A = 3 from domain of A
 - b. Add nothing to to-do-arcs as no constraints in B are violated.
 - c. Updated domains: A: {1, 2} B: {2, 3, 4} C: {1, 2, 3, 4}
- 5. Select arc (C, B < C):
 - a. Prune C = 1, 2 from domain of C
 - b. Add (B, B < C) as domain of B unchanged.
 - c. Updated domains: A: {1, 2} B: {2, 3, 4} C: {3, 4}
- 6. Select arc (B, B < C):
 - a. Prune B = 4 from domain of B
 - b. Add nothing to to-do-arcs as no constraints are violated.
 - c. Updated domains: A: {1, 2} B: {2, 3} C: {3, 4}

Now, the CSP instance is in arc-consistent form, and the search space has been reduced. However, the instance is not solved yet. There are still multiple possible assignments that satisfy the constraints:

- A = 1, B = 2, C = 3
- A = 2, B = 3, C = 4

This demonstrates that arc-consistency, while powerful in reducing the search space and eliminating certain invalid assignments, does not necessarily lead to a complete solution. Additional search and inference techniques may still be required to find a valid assignment for all variables.

4-Consistency

- A CSP is 4-consistent if and only if for every combination of domain values to every possible distinct
 3 variables there exists a common support to every other 4th variable's domain, satisfying the constraints.
- Implication of added constraints by 4-consistency
 - Not necessarily already implied by given constraints in CSP instance.
 - o Instead adds an additional constraint to ensure that every value in domain of variable has valid assignments in the domain of its neighbors.
- Enforcing 4-consistency or higher
 - o Leads to more constrained problem with smaller search space.
 - Tradeoff between propagation and branching.
 - Comes with higher computation cost time complexity increases with increase in number of levels of consistency.
 - Generally high level of consistency shall not be enforced unless problems demand it for efficient solving.
 - Lower level of consistency is preferred that strikes balance between optimizing search space and computational overhead.
- Time Complexity is O(N⁴D⁴)
 - N = number of variables
 - D = maximum domain size

Solution 2

Is CSP backtracking search complete or incomplete? What method is used to implement Look-Back techniques in CSP backtracking search? Pick a problem of interest in Data Science which can be solved efficiently using CSP Look-Ahead techniques. Describe the problem and the application of the CSP Look-Ahead techniques on it.

- CSP backtracking search is complete as it does a complete assignment of variables, and it is guaranteed to find a solution if one exists.
- Conflict-directed back-jumping (CBJ) is used to implement Look-Back technique in CSP backtracking.

N-Queens Problem

Given an N×N chessboard, the task is to place N queens on the board in a way that no two queens threaten each other. Specifically, no two queens can be in the same row, column, or diagonal.

Algorithm

- 1. Variable Selection:
 - Choose a variable (queen) using a heuristic like Most Restricted Variable to place on the board.
- 2. Value Selection:
 - Choose a value (position) for the selected queen using a heuristic like Least Constrained Variable.
- 3. Forward Checking:

 Perform forward checking to update the domains of the unplaced queens based on the current placement.

4. Constraint Propagation:

• Apply constraint propagation techniques like Arc-Consistency to further prune the possible positions for queens.

5. Backtracking:

• If a variable has no valid values left in its domain, backtrack to the deepest previous variable that ruled out the value, and try a different value.

6. Solution Checking:

• Once all queens are placed, check if the placement is a valid solution. If not, continue backtracking and forward checking.

Solution 3

In the Dynamic Variable/Value Ordering technique, which variable do we instantiate next and in what order should the values of that variable be tried? Give an example of a problem that can be solved efficiently using Dynamic Variable/Value Ordering techniques. Draw the normal (static) search tree and the dynamically ordered search tree for that example and explain why the dynamically ordered search tree is better.

Variable to instantiate next?

- Minimum Remaining Value:
 - Choose the variable with the fewest legal values.
 - o Choose the variable with the most constrains on the remaining variables.

Order in which variables are to be tried?

- Least Constrained Value:
 - Choose the value the leaves most choices for the neighboring variables in the constraint graph, offering the max flexibility.

Static vs Dynamic search tree

- In the dynamically ordered search tree, we make more informed choices.
 - By selecting columns based on the MRV heuristic, we focus on columns with fewer available positions, which are more likely to lead to a solution.
 - By using LCV within each column, we prioritize rows that limit the constraints on future placements.
- This dynamic approach prunes the search space more effectively, avoiding many unnecessary branches that would be explored in a static search tree.
- As a result, the dynamically ordered search tree is significantly more efficient in finding a solution to the 4-Queens problem.

Static tree

11
21, 22 - no
23
3y - no
24
31
32
4y - no

We start with column 2 based on MRV and select row 1 based on LCV, repeat for every iteration and it directly leads to the solution.

Solution 4

What are Simple Temporal Problems (STPs)? How can they be solved efficiently? What are the earliest and latest schedules for a consistent STP instance? What are Disjunctive Temporal Problems (DTPs)? Where do they arise? What is the complexity of solving them? How can they be solved efficiently in practice?

Simple Temporal Problems (STPs)

- STPs are a class of scheduling problems where a set of tasks need to be executed subject to temporal constraints. Each task has a duration and a time window within which it can start and end.
- They can be solved efficiently using,
 - Bellmann Ford algorithm
 - If the problem, can be converted into a distance graph.
 - Then the shortest path computation with negative costs can give an optimal solution.

- Consistency of this temporal problem then corresponds to absence of negative cost cycle in the distance graph.
- o Time-Indexed Formulation
- Floyd Warshall's algorithm can also be used with distance graph for shortest path computation.
- Simple Temporal Problem in Disjunctive Scheduling (STPDS) algorithm
- Schedules for consistent STP instance
 - Earliest:
 - minimizes the overall completion time of all tasks while respecting all constraints.
 - $\tau(X_i) \leftarrow -d(X_0, X_i)$
 - > Latest:
 - allows for maximum flexibility in task execution, ensuring that no constraint is violated.
 - $\tau(X_i) \leftarrow d(X_i, X_o)$
 - o Where?
 - $\tau(X_i) = execution time of event X_i$
 - $X_i = time\ for\ event\ start$
 - $X_o = time for event end$

Disjunctive Temporal Problems (DTPs)

- DTPs extend the concept of STPs by introducing disjunctive constraints.
- In DTPs, tasks can be executed in one of several alternative ways, and these alternatives are subject to temporal constraints.
- DTPs are encountered in various scenarios where scheduling, has more constraints attached to it like resource allocation, starting and ending process, etc. where tasks have multiple modes of execution.
- Solving DTPs is known to be NP-hard.
 - o Finding an optimal solution can be computationally intensive.
 - Number of possible schedules and combinations of disjunctive constraints can grow exponentially with the size of the problem.
 - Presence of disjunctive constraints adds complexity to the problem.

Solving STPs and DTPs

- Can be converted to CSP and be represented as a graph.
 - Variables:
 - Each task with its associated modes becomes a variable in the CSP.
 - The domain of each variable is the set of modes.
 - o Constraints:
 - Duration and mode selection constraints are directly translated into unary constraints on the variables.
 - Concurrent tasks and temporal constraints are translated into binary constraints between the variables.
 - Slack variables can be included as additional variables with their respective domains and constraints.
 - For each constraint in the form of end_time start_time <= duration,
 a slack variable is introduced to represent the difference between the
 duration and the actual time taken.
- Graph representation
 - Nodes:

- Each variable in the CSP corresponds to a node in the distance graph.
- The nodes represent the possible choices for each task.

o Edges:

- Edges between nodes are added to represent constraints.
- In the context of DTP, these constraints may be temporal constraints, mode selection constraints, or concurrent task constraints.
- The weights on the edges represent the "distance" or cost associated with transitioning from one choice to another.
- After conversion to a distance graph and cost matrix can be constructed.
 - Check for -ve cost cycles for consistency.
 - o Apply Bellman Ford or Floyd Warshall's algorithm to find a solution.
 - For more complex where directed distance graph representation is not feasible more specialized algorithms may be used.

Solution 5

What are Bayesian Networks (BNs)? What are the various kinds of queries that can be formulated on a BN? Compare CSPs and BNs with respect to their representational power, the queries they support, the techniques used for answering the queries, and the efficiency of doing so.

- Bayesian Networks (BNs) are graphical models that represent probabilistic relationships among a set of variables.
- Each node is associated with a conditional probability distribution that quantifies the likelihood of its value given the values of its parents.
- Defined by a directed acyclic graph (DAG) where:
 - Nodes represent random variables.
 - Edges represent probabilistic dependencies.

Types of Queries

- Distribution Inference Queries
 - Query that involves inferring or computing a probability distribution over the variables in the Bayesian Network.
 - o It can encompass both MAP and Marginal Probability queries.
- Map Queries
 - Seeks to find the most probable assignment of values to a set of variables given evidence.
 - o Finds the assignment that maximizes the posterior probability.
- Marginal Map Queries (MMAP)
 - Involves computing the probability distribution of a subset of variables in the network, considering all possible values of the remaining variables.
- Probability Queries
 - Given evidence about some variables, compute the probability of other variables or events occurring.

Comparison

	CSPs	BNs
Representational	deterministic constraints and	probabilistic relationships and
Power	logical relationships among	dependencies among variables
	variables	

	O(n+m), where n is the number of	O(n+m), where n is the number of
	variables, and <i>m</i> is the number of	nodes (variables), and <i>m</i> is the
	constraints	number of edges
Queries Supported	Support:	Support:
	satisfiability	probability queries
	solution finding	 distribution inference queries
	optimization queries	MAP queries
	related to deterministic constraints	Marginal MAP queries
Techniques for	Constraint Propagation – Arc	Variable Elimination
answering queries	Consistency	
	Backtracking – Conflict directed	
	back-jumping.	
	 Look Ahead – Forward 	
	checking.	
	Dynamic variable/value	
	ordering	
Computational	Arc Consistency – O(N ^k D ^k) where	Depends on the structure of the
Efficiency	N=number of variables, D=domain	Bayesian Network and the complexity
	size and k=number of consistent	of the conditional probability
	variables	distributions.
	CBJ - $O(b^d)$, where b is the	It can have exponential time
	branching factor and d is the depth	complexity in the worst case.
	of the search tree.	
	FC – depends on tree structure. In	
	worst case exponential time	
	DVO – done heuristically where it	
	needs to find variables and values	
	using MRV and LCV at every new	
	branch explored	