1	а

\boldsymbol{x}	0	1	2
$\Pr(X=x)$	0.16	0.48	0.36

$$\begin{array}{ll} \mathbf{b} & \Pr(X \geq 1) = 0.36 + 0.48 \\ & = 0.84 \end{array}$$

2 a
$$Pr(X=3) = 0.35$$

$$\begin{array}{ll} \textbf{b} & \Pr(X < 3) = \Pr(X = 1) + \Pr(X = 2) \\ & = 0.05 + 0.15 \\ & = 0.20 \end{array}$$

c
$$\Pr(X \ge 4) = \Pr(X = 4) + \Pr(X = 5) + \Pr(X = 6)$$

= $0.25 + 0.15 + 0.05$
= 0.45

$$\begin{array}{ll} \mathsf{d} & & \Pr(1 < X < 5) = \Pr(X = 2) + \Pr(X = 3) + \Pr(X = 4) \\ & = 0.75 \end{array}$$

e
$$\Pr(X \neq 5) = 1 - \Pr(X = 5)$$

= 1-0.15
= 0.85

$$\mathbf{f} \quad \Pr(1 < X < 5 \,|\, X > 1) = \frac{0.75}{0.95} = \frac{15}{19}$$

a
$$\Pr(\hat{P} = 0.2) = 0.0034$$

$$\begin{array}{ll} \textbf{b} & \Pr(\hat{P}<0.4)=\Pr(\hat{P}=0)+\Pr(\hat{P}=0.2)\\ &=0.0001+0.0034\\ &=0.0035 \end{array}$$

$$egin{aligned} \mathbf{c} & & \Pr(\hat{P} \geq 0.8) = \Pr(\hat{P} = 0.8) + \Pr(\hat{P} = 1) \ & = 0.4372 + 0.3060 \ & = 0.7342 \end{aligned}$$

$$\begin{array}{ll} \textbf{d} & \Pr(0.2<\hat{P}<0.8)=\Pr(\hat{P}=0.4)+\Pr(\hat{P}=0.6)\\ &=0.0422+0.2111+0.3060\\ &=0.2533 \end{array}$$

$$\begin{array}{ll} \mathbf{e} & \Pr(\hat{P}<0.8\,|\,\hat{P}>0) = \frac{\Pr(0<\hat{P}<0.8)}{\Pr(\hat{P}>0)} \\ & = \frac{0.2111}{0.9999} \\ & = 0.2212 \end{array}$$

$$\begin{array}{ll} \textbf{f} & \Pr(0.2 < \hat{P} < 0.8 \,|\, \hat{P} > 0.4) = \frac{\Pr(0.2 < \hat{P} < 0.8)}{\Pr(\hat{P} > 0.4)} \\ & = \frac{0.2533}{0.2111 + 0.4372 + 0.3060} \\ & = 0.2654 \end{array}$$

4 a
$$p = \frac{8}{16} = 0.5$$

b Number of soft centred chocolates could be
$$0, 1, 2$$
 or 3. Thus, possible values of \hat{P} are $0, \frac{1}{3}, \frac{2}{3}, 1$

$$\Pr(\hat{P} = 0) = \Pr(X = 0)$$

$$= \frac{\binom{8}{0} \binom{8}{3}}{\binom{16}{3}}$$

$$= \frac{56}{560}$$

$$= 0.1$$

$$\Pr(\hat{P} = \frac{1}{3}) = \Pr(X = 1)$$

$$= \frac{\binom{8}{1} \binom{8}{2}}{\binom{16}{3}}$$

$$= \frac{224}{560}$$

$$\Pr(\hat{P} = 1) = \Pr(X = 3)$$

$$= \frac{\binom{8}{3} \binom{8}{0}}{\binom{16}{3}}$$

$$= \frac{56}{560}$$

$$= 0.1$$

\hat{p}	0	$\frac{1}{3}$	$\frac{2}{3}$	1
$\Pr(\hat{P} = \hat{p})$	0.1	0.4	0.4	0.1

$$\mathsf{d} \quad \Pr(\hat{P} > 0.25) = 0.9$$

5 a
$$p = \frac{12}{20} = 0.6$$

b Number of male swimmers could be 0,1,2,3,4 The values of \hat{P} are 0,0.2,0.4,0.6,0.8,1

$$egin{aligned} \mathbf{r}(\hat{P}=0) &= \Pr(X=0) \ &= rac{inom{12}{0}inom{8}{5}}{inom{20}{5}} \end{aligned}$$

$$\Pr(\hat{P} = \frac{1}{5}) = \Pr(X = 1)$$

$$= \frac{\binom{12}{1}\binom{8}{4}}{\binom{20}{5}}$$

= 0.0036

$$egin{aligned} \Pr(\hat{P} = rac{2}{5}) &= \Pr(X = 2) \ &= rac{inom{12}{2}inom{8}{3}}{inom{16}{3}} \ &= 0.2384 \end{aligned}$$

$$\Pr(\hat{P} = \frac{3}{5}) = \Pr(X = 3)$$

$$= \frac{\binom{12}{3} \binom{8}{2}}{\binom{20}{5}}$$

$$= 0.3973$$

$$\begin{aligned} \Pr(\hat{P} &= \frac{4}{5}) = \Pr(X = 4) \\ &= \frac{\binom{12}{4} \binom{8}{1}}{\binom{20}{5}} \\ &= 0.2554 \end{aligned}$$

$$\Pr(\hat{P} = 1) = \Pr(X = 5)$$

$$= \frac{\binom{12}{5} \binom{8}{0}}{\binom{20}{5}}$$

$$= 0.0511$$

$\hat{m{p}}$	0 0.2		0.4
$\Pr(\hat{P} = \hat{p})$	0.0036	0.0542	0.2384

\hat{p}	0.6	0.8	1
$\Pr(\hat{P} = \hat{p})$	0.3973	0.2554	0.0511

$$\mathsf{d} \quad \Pr(\hat{P} > 0.7) = 0.3065$$

$$ext{Pr}(0<\hat{P}<0.8)=0.6899$$
,

$$ext{Pr}(\hat{P} < 0.8 \, | \, \hat{P} > 0) = rac{ ext{Pr}(0 < \hat{P} < 0.8)}{ ext{Pr}(\hat{P} > 0)} = 0.6924$$

$$= 0.6924$$

a
$$p = \frac{15}{50} = 0.3$$

Possible number of defectives could be 0, 1, 2, 3, or 4. Therefore values of \hat{P} are 0, 0.25, 0.5, 0.75, 1.

C

$$\Pr(\hat{P} = 0) = \Pr(X = 0)$$

$$= \frac{\binom{15}{0}\binom{35}{4}}{\binom{50}{4}}$$

$$= 0.2274$$

$$\Pr(\hat{P} = \frac{1}{4}) = \Pr(X = 1)$$

$$= \frac{\binom{15}{1}\binom{35}{3}}{\binom{50}{4}}$$

$$\Pr(\hat{P} = \frac{2}{4}) = \Pr(X = 2)$$

$$= \frac{\binom{15}{2}\binom{35}{2}}{\binom{50}{4}}$$

$$\Pr(\hat{P} = \frac{3}{4}) = \Pr(X = 3)$$

$$= \frac{\binom{15}{3}\binom{35}{1}}{\binom{50}{4}}$$

		^	•		-
_			6	u	
	u	u	v	J	1

$$\Pr(\hat{P} = 1) = \Pr(X = 4)$$

$$= \frac{\binom{12}{4} \binom{35}{0}}{\binom{50}{4}}$$

$$= 0.0059$$

$\hat{m{p}}$	0	0.2	0.5
$\Pr(\hat{P} = \hat{p})$	0.2274	0.4263	0.2713

$\hat{m{p}}$	0.75	1
$\Pr(\hat{P} = \hat{p})$	0.0691	0.0059

d
$$\Pr(\hat{P} > 0.5) = 0.075$$

$$extbf{e} \quad \Pr(0 < \hat{P} < 0.5) = 0.4263, \Pr(\hat{P} < 0.5 \,|\, \hat{P} > 0) = 0.5518$$

7 a
$$\Pr(\hat{P} > 0.6) = \Pr(\hat{P} = \frac{2}{3}) + \Pr(\hat{P} = 1)$$

= 0.028

b
$$\Pr(0 < \hat{P} < 0.6) = \Pr(\hat{P} = \frac{1}{3}) = 0.243$$
,

$$egin{split} \Pr(\hat{P} < 0.6 \,|\, \hat{P} > 0) &= rac{\Pr(0 < \hat{P} < 0.6)}{\Pr(\hat{P} > 0)} \ &= 0.897 \end{split}$$

$$p=0.5$$

b Values of \hat{P} are 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

c Binomial with
$$n = 10, p = 0.5$$

$$Pr(\hat{P} = 0) = Pr(X = 0)$$

$$= {10 \choose 0} (0.5)^{0} (0.5)^{10}$$

$$= 0.00098$$

$$Pr(\hat{P} = 0.1) = Pr(X = 1)$$

$$= \binom{10}{1} (0.5)^{1} (0.5)^{9}$$

$$= 0.0098$$

The following values are obtained in the same way

$\hat{m{p}}$	0	0.1	0.2	0.3
$\Pr(\hat{P} = \hat{p})$	0.00098	0.0098	0.0440	0.1172

$\hat{m{p}}$	0.4	0.5	0.6	0.7
$\Pr(\hat{P} = \hat{p})$	0.2051	0.2461	0.2051	0.1172

\hat{p}	0.8	0.9	1
$\Pr(\hat{P} = \hat{p})$	0.0440	0.0098	0.00098

$$\mathbf{d} \quad \Pr(\hat{P}>0.5)=0.3771$$

9 a The values that \hat{P} can take are $0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1$

b	Binomial	with n	n = 6, p =	0.5
---	----------	----------	------------	-----

$$\Pr(\hat{P} = 0) = \Pr(X = 0)$$

= $\binom{6}{0} (0.52)^0 (0.48)^6$
= 0.0122

Binomial with n=6, p=0.52

$$\Pr(\hat{P} = \frac{1}{6}) = \Pr(X = 1)$$

$$= \binom{6}{1} (0.52)^{1} (0.48)^{5}$$

$$= 0.0795$$

The following values are obtained in the same way.

\hat{p}	0	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$
$\Pr(\hat{P} = \hat{p})$	0.0122	0.0795	0.2153	0.3110

\hat{p}	$\frac{2}{3}$	<u>5</u>	1
$\Pr(\hat{P} = \hat{p})$	0.2527	0.1095	0.0198

c
$$\Pr(\hat{P} > 0.6) = 0.307$$

$$\begin{array}{ll} \mathbf{d} & \Pr(\hat{P} < 0.3 \,|\, \hat{P} < 0.8) = \frac{\Pr(\hat{P} < 0.3)}{\Pr(\hat{P} < 0.8)} \\ & = 0.1053 \end{array}$$

10a The values that \hat{P} can take are $0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{7}{8}, 1$

b

Binomial with
$$n=8, p=0.8$$

$$Pr(\hat{P} = 0) = Pr(X = 0)$$

$$= \binom{8}{0} (0.8)^{0} (0.2)^{6}$$

$$= 0.000003$$

Binomial with n = 8, p = 0.8

$$Pr(\hat{P} = \frac{1}{8}) = Pr(X = 1)$$

$$= {8 \choose 1} (0.8)^{1} (0.2)^{5}$$

$$= 0.00008$$

The following values are obtained in the same way.

\hat{p}	0	$\frac{1}{8}$	$\frac{1}{4}$
$\Pr(\hat{P} = \hat{p})$	0.000003	0.00008	0.00115

\hat{p}	3 8	$\frac{1}{2}$	<u>5</u> 8
$\Pr(\hat{P} = \hat{p})$	0.0092	0.0459	0.1468

\hat{p}	$\frac{3}{4}$	7/8	1
$\Pr(\hat{P} = \hat{p})$	0.2936	0.3355	0.1678

$$\mathbf{c} \quad \Pr(\hat{P} > 0.6) = 0.1468 + 0.2936 + 0.3355 + 0.1678 = 0.9437$$

$$\mathsf{d} \quad \Pr(\hat{P} > 0.6 \,|\, \hat{P} > 0.25) = rac{\Pr(\hat{P} > 0.6)}{\Pr(\hat{P} > 0.25)}$$

11a

$\hat{m{p}}$	0	0.25	0.5	0.75	1
Нур	0.0587	0.2499	0.3827	0.2499	0.0587
Bin	0.0625	0.25	0.375	0.25	0.0625

b

$\hat{m{p}}$	0	0.1	0.2	0.3
Нур	0.0006	0.0072	0.0380	0.1131
Bin	0.00098	0.0098	0.0440	0.1172

$\hat{m{p}}$	0.4	0.5	0.6	0.7
Нур	0.2114	0.2593	0.2114	0.1131
Bin	0.2051	0.2461	0.2051	0.1172

$\hat{m{p}}$	0.8	0.9	1
Нур	0.0380	0.0072	0.0006
Bin	0.0440	0.0098	0.00098

c Not much