

CONFIABILIDADE

CONFIABILIDADE - DEFINIÇÕES

- probabilidade de que um item ou equipamento opere com sucesso por um período de tempo estabelecido e sob condições definidas de uso;
- NBR 5421 capacidade de um item desempenhar uma função requerida sob condições especificadas, durante um dado intervalo de tempo.

Aspectos importantes da confiabilidade de um sistema:

- sua natureza probabilística;
- sua dependência temporal;
- o que constitui sucesso ou insucesso;
- a especificação das condições operacionais.

CONFIABILIDADE - DEFINIÇÕES

- R(t) função probabilidade cumulativa de sobrevivência, probabilidade de sucesso ou **confiabilidade**;
- F(t) função probabilidade cumulativa de ocorrência de falhas, probabilidade de falha ou **não-confiabilidade**.

TAXA DE FALHAS

- taxa (forma) em que as falhas ocorrem ao longo do tempo. Matematicamente:

$$\lambda(t) = \frac{\left[\frac{dF(t)}{dt}\right]}{R(t)} = \frac{-\left[\frac{dR(t)}{dt}\right]}{R(t)}$$

FUNÇÃO DENSIDADE DE PROBABILIDADE (fdp) DE FALHAS

$$f(t) = \frac{dF(t)}{d(t)}$$

$$\lambda(t) = \frac{f(t)}{R(t)}$$

DISTRIBUIÇÕES ESTATÍSTICAS

Discretas – distribuições associadas aos resultados de ensaios onde se pode conseguir um número de sucessos ou falhas esperadas (ex. distribuição de Poisson e distribuição binomial).

Contínuas – distribuições que descrevem processos onde não é possível especificar probabilidades para pontos individuais, mas unicamente para intervalos (ex. distribuição normal, distribuição exponencial, distribuição gama e distribuição de Weibull).

FUNÇÃO DENSIDADE DE PROBABILIDADE (fdp) – f(x)

Distribuição contínua:

–número de itens↓intervalo de medição

DISTRIBUIÇÃO NORMAL

0.05

DISTRIBUIÇÃO EXPONENCIAL

- válida para diversos itens de engenharia em termos de vida útil (particularmente para componentes eletrônicos). Tem por principal característica, a taxa de falhas como constante.

$$\lambda(t) = cte$$
.

$$f(t) = \lambda e^{-\lambda t} \rightarrow t \ge 0, \lambda > 0$$

$$f(t) = \frac{dF(t)}{d(t)} \qquad \qquad F(t) = 1 - e^{-\lambda t}$$

DISTRIBUIÇÃO EXPONENCIAL

Time units

MTTF e MTBF

- TEMPO MÉDIO ATÉ FALHAR (MEAN TIME TO FAILURE) MTTF
- TEMPO MÉDIO ENTRE FALHAS (MEAN TIME BETWEEN FAILURES) MTBF
- TEMPO MÉDIO DE REPARO (MEAN TIME TO REPAIR) MTTR

MTTF e MTBF

MTBF = MTTF + MTTR

$$MTTF = \sum_{i=1}^{N} \frac{t_1}{N}$$

$$MTTF = \sum_{i=1}^{N} \frac{ti}{N} \qquad \qquad MTTR = \sum_{i=1}^{N} \frac{ri}{N}$$

- para distribuição exponencial: (pois a taxa de falha é constante)

$$MTBF = \frac{1}{\lambda} = MTTF$$

MTTF e MTBF

MTTF x MTBF

MTTF (itens que não sofrem reparos) – rolamentos, lâmpadas, resistores, fusíveis, mangueiras, etc.

MTBF (itens que sofrem reparos) – motores elétricos, transformadores, módulos eletrônicos, etc.

DISTRIBUIÇÃO EXPONENCIAL

Ex. – A taxa de falhas de um item eletrônico é 0,005 falhas/h. Calcule a probabilidade de um item vir a falhar durante uma missão de 50h.

$$F(50) = 1 - e^{-(0.005).50} = 0.221$$

- permite representar falhas típicas de partida (mortalidade infantil);
- permite identificar falhas aleatórias;
- permite identificar falhas devido ao desgaste;
- permite obter parâmetros significativos da configuração das falhas;
- apresenta melhores resultados para componentes mecânicos (poucas informações em termos de falhas) convencionalmente utilizados na área da engenharia.

$$f(t) = \frac{\beta}{\eta} \left(\frac{t - t_o}{\eta} \right)^{\beta - 1} \exp \left(-\left(\frac{t - t_o}{\eta} \right) \right)^{\beta} \to t \ge 0, (\eta, \beta) > 0$$

t_o - parâmetro de localização, vida mínima ou confiabilidade intrínseca – intervalo de tempo no qual o componente não apresenta falha;

- η parâmetro de escala (vida característica) intervalo de tempo no qual ocorrem 63,2% das falhas; e
- β parâmetro de forma indica a forma da curva e a característica das falhas.

PARÂMETRO DE LOCALIZAÇÃO - EXEMPLO

PARÂMETRO DE ESCALA

para:
$$(t - t_o) = \eta$$

$$F = 1 - \exp \left[-\left(\frac{t - t_o}{\eta}\right) \right]^{\beta} = 1 - e^{-(1)} = 0,632$$

PARÂMETRO DE ESCALA – η EXEMPLO

PARÂMETRO DE FORMA – β

PARÂMETRO DE FORMA

 β < 1 – mortalidade infantil

 $\beta = 1$ – falhas aleatórias (\approx dist exponencial)

 $\beta > 1$ – falhas por desgaste

CURVA DE FALHAS (CURVA DA BANHEIRA)

Mortalidade infantil – f(falhas de projeto, falhas de execução, falhas de materiais, pré-testes insuficientes, falhas humanas.

Vida útil – f(fator segurança insuficiente, cargas aleatórias acima do esperado, aplicações indevidas, falhas naturais).

Fase de envelhecimento – f(fadiga, problemas de manutenção, corrosão e creep, desgaste).

22

CURVA DE FALHAS (CURVA DA BANHEIRA)

$$f(t) = \frac{dF(t)}{d(t)}$$

$$f(t) = \frac{dF(t)}{d(t)} \qquad F(t) = 1 - \exp\left[-\left(\frac{t - t_o}{\eta}\right)^{\beta}\right]$$

$$\lambda(t) = \frac{f(t)}{R(t)}$$

$$\lambda(t) = \frac{f(t)}{R(t)} \qquad \lambda(t) = \frac{\beta}{\eta} \left(\frac{t - t_o}{\eta} \right)^{\beta - 1}$$

$$MTTF = t_0 + \eta \Gamma (1 + \beta^{-1})$$

n	Gama(n)	n	Gama(n)	n	Gama(n)	n	Gama(n)
1	1	1,25	0,906615	1,5	0,886483	1,75	0,919248
1,01	0,994339	1,26	0,904614	1,51	0,886847	1,76	0,921555
1,02	0,988871	1,27	0,902724	1,52	0,887293	1,77	0,923938
1,03	0,983589	1,28	0,900943	1,53	0,88782	1,78	0,926397
1,04	0,978489	1,29	0,89927	1,54	0,888429	1,79	0,928931
1,05	0,973567	1,30	0,897703	1,55	0,889118	1,8	0,931542
1,06	0,968817	1,31	0,896239	1,56	0,889888	1,81	0,934228
1,07	0,964236	1,32	0,894878	1,57	0,890736	1,82	0,936991
1,08	0,95982	1,33	0,893619	1,58	0,891664	1,83	0,93983
1,09	0,955563	1,34	0,892458	1,59	0,892671	1,84	0,942745
1,10	0,951464	1,35	0,891397	1,6	0,893756	1,85	0,945737
1,11	0,947518	1,36	0,890432	1,61	0,894918	1,86	0,948806
1,12	0,943721	1,37	0,889563	1,62	0,896159	1,87	0,951952
1,13	0,94007	1,38	0,888788	1,63	0,897477	1,88	0,955176
1,14	0,936563	1,39	0,888106	1,64	0,898871	1,89	0,958477
1,15	0,933195	1,40	0,887517	1,65	0,900343	1,9	0,961855
1,16	0,929965	1,41	0,887019	1,66	0,901891	1,91	0,965312
1,17	0,926868	1,42	0,886611	1,67	0,903516	1,92	0,968848
1,18	0,923903	1,43	0,886292	1,68	0,905217	1,93	0,972462
1,19	0,921066	1,44	0,886062	1,69	0,906994	1,94	0,976155
1,20	0,918356	1,45	0,885918	1,7	0,908847	1,95	0,979928
1,21	0,915769	1,46	0,885861	1,71	0,910775	1,96	0,983781
1,22	0,913304	1,47	0,88589	1,72	0,91278	1,97	0,987714
1,23	0,910958	1,48	0,886004	1,73	0,91486	1,98	0,991728
1,24	0,908729	1,49	0,886201	1,74	0,917016	1,99	0,995823

$$\Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} e^{-x} dx$$

função gama

$$f(t) = \frac{\beta}{\eta} \left(\frac{t - t_o}{\eta} \right) \exp \left(-\left(\frac{t - t_o}{\eta} \right) \right)^{\beta}$$

- estimativa de t_o:

$$t_0 = t_2 - \frac{(t_3 - t_2)(t_2 - t_1)}{(t_3 - t_2) - (t_2 - t_1)}$$

– os parâmetros de forma, escala e localização da distribuição de Weibull, para qualquer grupo de dados, podem ser determinados graficamente através do chamado "papel de Weibull".

$$F(t) = 1 - \exp\left[-\left(\frac{t - t_o}{\eta}\right)^{\beta}\right]$$

$$1 - F(t) = \exp\left[-\left(\frac{t - t_o}{\eta}\right)^{\beta}\right]$$

- aplicando-se "ln" em ambos os lados da expressão:

$$\ln(1-F(t)) = -(\frac{t-t_o}{\eta})^{\beta}$$

- aplicando-se "In" novamente:

$$\ln[-\ln(1-F(t))] = \beta \ln(t-t_o) - \beta \ln \eta$$

- a qual pode ser expressa como uma equação linear:

$$Y = \beta . X + b$$

sendo:

$$Y = \ln[-\ln(1-F(t))]$$

$$X = \ln(t-t_o)$$

$$X = \ln(t - t_o)$$

$$b = -\beta \ln \eta$$

- processo gráfico válido para determinação dos parâmetros de forma e de escala.

$$(t-t_{o})$$

- F(t) pode, nesse caso, ser aproximado por:

$$F(t) = \frac{j - 0.3}{N + 0.4} \times 100$$

onde j = número da ordem (sequência)

Problema – ensaios de durabilidade de determinadas pontas de eixo para veículos forneceram os seguintes resultados (em horas): 165500, 172700, 179600, 185900, 251600, 188700, 96900, 169200, 132100, 103800 e 152500. Determine, utilizando o papel de Weibull, a confiabilidade esperada para 100000h e 200000h de funcionamento.

- a) ordenar os valores em ordem crescente
- b) apurar a freq. acumulada (n=11)

j	vida útil	F(t)
1	96900	6,140
2	103800	14,912
3	132100	23,684
4	152500	32,456
5	165500	41,228
6	169200	50,000
7	172700	58,772
8	179600	67,544
9	185900	76,316
10	188700	85,088
11	251600	93,860

PARÂMETROS DE WEIBULL **POR REGRESSÃO LINEAR**

$$\beta = \frac{N \sum_{i=1}^{N} Xi.Yi - \sum_{i=1}^{N} Xi.\sum_{i=1}^{N} Yi}{N \sum_{i=1}^{N} Xi^{2} - \left(\sum_{i=1}^{N} Xi\right)^{2}}$$

$$b = \frac{\sum_{i=1}^{N} Yi}{N} - \beta \frac{\sum_{i=1}^{N} Xi}{N}$$

$$b = -\beta \ln \eta \Rightarrow \ln \eta = \frac{-b}{\beta}$$

 - Ex. – 100 bombas idênticas são colocadas em operação até falhar. Os resultados dos tempos de falha de cada uma estão agrupados na tabela (supor to = 1050h):

Tem	Frequência observada		
1000	=>	1100	2
1100	=>	1200	6
1200	=>	1300	16
1300	=>	1400	14
1400	=>	1500	26
1500	=>	1600	22
1600	=>	1700	7
1700	=>	1800	6
1800	=>	1900	1

Determine:

- a) a probabilidade de falha para 1350h;
- b) a confiabilidade para 1400h;
- c) o tempo médio sem falhas
- a) 39,16%
- b) 50,75%
- c) 1432h

tempo (h)	freq.obs.	freq.rel.	F(t)	Υ	х	X^2	Y^2	XY
1100	2	0,020	0,020	-3,901938658	3,912023	15,30392	15,22513	-15,2645
1200	6	0,060	0,080	-2,48432751	5,010635	25,10647	6,171883	-12,4481
1300	16	0,160	0,240	-1,293034115	5,521461	30,48653	1,671937	-7,13944
1400	14	0,140	0,380	-0,738069652	5,857933	34,31538	0,544747	-4,32356
1500	26	0,260	0,640	0,021420188	6,109248	37,32291	0,000459	0,130861
1600	22	0,220	0,860	0,676058424	6,309918	39,81507	0,457055	4,265873
1700	7	0,070	0,930	0,978047902	6,476972	41,95117	0,956578	6,334789
1800	6	0,060	0,990	1,527179626	6,620073	43,82537	2,332278	10,11004
1900	1	0,010	1,000	-	-	-	-	-
	100	1,000				268,1268	27,36006	-18,334

$$\beta = \frac{8(-18,334) - (45,818) * (-5,2146)}{8(268,126) - (45,818)^2} = 2,018$$

$$b = \frac{-5,2146}{8} - 2,018 \frac{45,8181}{8} = -12,2095$$

$$\ln \eta = \frac{-(-12,2095)}{2,0186}$$

$$\eta = 424,24h$$

- Ex. – Os seguintes dados de falha são recolhidos a partir de um teste no qual 20 itens foram testados ao fracasso.

Order Number	Failure Time (in hours)				
1	92				
2	130				
3	233				
4	260				
5	320				
6	325				
7	420				
8	430				
9	465				
10	518				
11	640				
12	700				
13	710				
14	770				
15	830				
16	1010				
17	1020				
18	1280				
19	1330				
20	1690				

Determine:

- a) a probabilidade de falha para 1000h;
- b) a confiabilidade para 1330h.

DISTRIBUIÇÃO DE WEIBULL

J	tempo (h)	F(t)	Υ	Χ	X^2	Y^2	XY
1	92	0,034	-3,354802509	4,521789	20,44657	11,2547	-15,1697
2	130	0,083	-2,441716399	4,867534	23,69289	5,961979	-11,8851
3	233	0,132	-1,952137671	5,451038	29,71382	3,810841	-10,6412
4	260	0,181	-1,608807204	5,560682	30,92118	2,588261	-8,94606
5	320	0,230	-1,339891087	5,768321	33,27353	1,795308	-7,72892
6	325	0,279	-1,115695152	5,783825	33,45263	1,244776	-6,45299
7	420	0,328	-0,920953918	6,040255	36,48468	0,848156	-5,5628
8	430	0,377	-0,746689513	6,063785	36,76949	0,557545	-4,52776
9	465	0,426	-0,587084006	6,142037	37,72462	0,344668	-3,60589
10	518	0,475	-0,438053654	6,249975	39,06219	0,191891	-2,73782
11	640	0,525	-0,296508894	6,461468	41,75057	0,087918	-1,91588
12	700	0,574	-0,159920103	6,55108	42,91665	0,025574	-1,04765
13	710	0,623	-0,026021058	6,565265	43,1027	0,000677	-0,17084
14	770	0,672	0,107442983	6,646391	44,17451	0,011544	0,714108
15	830	0,721	0,24300008	6,721426	45,17756	0,059049	1,633307
16	1010	0,770	0,383882124	6,917706	47,85465	0,147365	2,655584
17	1020	0,819	0,534855821	6,927558	47,99106	0,286071	3,705245
18	1280	0,868	0,704227134	7,154615	51,18852	0,495936	5,038474
19	1330	0,917	0,910235093	7,192934	51,7383	0,828528	6,547261
20	1690	0,966	1,21556827	7,432484	55,24182	1,477606	9,034691
			-10,88906966	125,0202	792,678	32,01839	-51,064

beta 1,521471 b -10,0552 In eta 6,608857 eta 741,6345

- Configuração em série

$$Rss = \prod_{i=1}^{n} Ri = R_1.R_2....$$

n – número de componentes em sérieRi – confiabilidade do i-nésimo componente

$$\lambda = \lambda_1 \cdot \lambda_2 \cdot \dots$$

Ex. – Para o sistema em série ilustrado, determinar a confiabilidade individual de cada componente para uma operação de 100h, bem como, a confiabilidade do sistema. Adotar distribuição exponencial e taxas de falhas de: 3.10⁻⁴/h, 5.10⁻⁵/h e 10⁻⁴/h, respectivamente.

- Configuração em paralelo

$$Rsp = 1 - \prod_{i=1}^{n} (1 - Ri) = 1 - (1 - R_1).(1 - R_2)....$$

n – número de componentes em paralelo
 Ri – confiabilidade do i-nésimo componente

$$\mathbf{MTTF} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2} - \frac{1}{\lambda_1 + \lambda_2}$$

$$\mathbf{MTTF} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \frac{1}{\lambda_3} - \frac{1}{\lambda_1 + \lambda_2} - \frac{1}{\lambda_1 + \lambda_3} - \frac{1}{\lambda_2 + \lambda_3} + \frac{1}{\lambda_1 + \lambda_2 + \lambda_3}$$

Ex. – Para o sistema em paralelo ilustrado, determinar a confiabilidade individual de cada componente para 100h de operação, bem como, a confiabilidade do sistema. Adotar distribuição exponencial e taxas de falhas de: 3.10⁻⁴/h e 5.10⁻⁵/h, respectivamente.

LIGAÇÃO FÍSICA x LIGAÇÃO LÓGICA

Sistema em série ou paralelo?

- a) Função = bloquear o sistema apenas uma VB funcionando atende! Sistema em paralelo
- b) Função = liberar o fluxo as duas VBs devem funcionar! –
 Sistema em série

LIGAÇÃO FÍSICA x LIGAÇÃO LÓGICA

- Configurações mistas

- Problema – qual a confiabilidade do sistema?

EFEITO DA MANUTENÇÃO SOBRE AS CONDIÇÕES DO EQUIPAMENTO

BIBLIOGRAFIA UTILIZADA

- Filho, Valentino Bergamo Confiabilidade básica e prática,
 Editora Edgard Blucher Ltda;
- Reliasoft Brasil Resumo teórico Engenharia da confiabilidade;
- http://www.qualytek.com.br;
- B.S. Dhillon Maintainability, Maintenance and Reliability for Enginners Taylor & Francis Group; e
- A.D.S. Carter Mechanical Reliability Livraria Politécnica Ltda.