Rotation Notation/Convention

or equivalently:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} \Lambda \end{bmatrix}^T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = = \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

where X/Y/Z are global coordinates, x/y/z are local coordinates, $\hat{\Lambda}$ is the DCM from global to local, and $\hat{x}/\hat{y}/\hat{z}$ are the unit vectors of the local coordinate system expressed in the global coordinate system.

$$\begin{cases} \theta_{x} \\ \theta_{y} \\ \theta_{z} \end{cases} = F^{Euler Extract} \left(\left[\Lambda \left(\theta_{x}, \theta_{y}, \theta_{z} \right) \right] \right)$$

where function $F^{\textit{EulerExtract}}(\)$ returns the 3 Euler angles of the x-y-z (1-2-3) rotation sequence used to form Λ (that is, first a rotation θ_x about the global X axis, followed by rotation θ_y about the Y' axis, followed by rotation θ_z about the Z'' axis) defined as follows:

$$\begin{split} &\Lambda\left(\theta_{x},\theta_{y},\theta_{z}\right) = \begin{bmatrix} COS\left(\theta_{z}\right) & SIN\left(\theta_{z}\right) & 0 \\ -SIN\left(\theta_{z}\right) & COS\left(\theta_{z}\right) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} COS\left(\theta_{y}\right) & 0 & -SIN\left(\theta_{y}\right) \\ 0 & 1 & 0 \\ SIN\left(\theta_{y}\right) & 0 & COS\left(\theta_{z}\right) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & COS\left(\theta_{z}\right) & SIN\left(\theta_{z}\right) \\ 0 & -SIN\left(\theta_{z}\right) & COS\left(\theta_{z}\right) \end{bmatrix} \\ &= \begin{bmatrix} COS\left(\theta_{y}\right)COS\left(\theta_{z}\right) & COS\left(\theta_{z}\right)SIN\left(\theta_{z}\right) + SIN\left(\theta_{z}\right)SIN\left(\theta_{y}\right)COS\left(\theta_{z}\right) \\ -COS\left(\theta_{y}\right)SIN\left(\theta_{z}\right) & COS\left(\theta_{z}\right)COS\left(\theta_{z}\right) - SIN\left(\theta_{z}\right)SIN\left(\theta_{y}\right)SIN\left(\theta_{z}\right) \\ SIN\left(\theta_{y}\right) & -SIN\left(\theta_{z}\right)COS\left(\theta_{y}\right) \end{bmatrix} & COS\left(\theta_{z}\right)COS\left(\theta_{z}\right)SIN\left(\theta_{z}\right)SIN\left(\theta_{z}\right) \\ -SIN\left(\theta_{y}\right) & COS\left(\theta_{z}\right)COS\left(\theta_{y}\right) \end{bmatrix} & COS\left(\theta_{z}\right)COS\left(\theta_{y}\right) \end{bmatrix} \end{split}$$

Note the following simplifications:

$$\Lambda\left(0,\theta_{y},\theta_{z}\right) = \begin{bmatrix} COS\left(\theta_{y}\right)COS\left(\theta_{z}\right) & SIN\left(\theta_{z}\right) & -SIN\left(\theta_{y}\right)COS\left(\theta_{z}\right) \\ -COS\left(\theta_{y}\right)SIN\left(\theta_{z}\right) & COS\left(\theta_{z}\right) & SIN\left(\theta_{y}\right)SIN\left(\theta_{z}\right) \\ SIN\left(\theta_{y}\right) & 0 & COS\left(\theta_{y}\right) \end{bmatrix}$$

$$\Lambda\left(\theta_{x},0,\theta_{z}\right) = \begin{bmatrix} COS\left(\theta_{z}\right) & COS\left(\theta_{x}\right)SIN\left(\theta_{z}\right) & SIN\left(\theta_{x}\right)SIN\left(\theta_{z}\right) \\ -SIN\left(\theta_{z}\right) & COS\left(\theta_{x}\right)COS\left(\theta_{z}\right) & SIN\left(\theta_{x}\right)COS\left(\theta_{z}\right) \\ 0 & -SIN\left(\theta_{x}\right) & COS\left(\theta_{x}\right) \end{bmatrix}$$

$$\Lambda\left(\theta_{x},\theta_{y},0\right) = \begin{bmatrix} COS\left(\theta_{y}\right) & SIN\left(\theta_{x}\right)SIN\left(\theta_{y}\right) & -COS\left(\theta_{x}\right)SIN\left(\theta_{y}\right) \\ 0 & COS\left(\theta_{x}\right) & SIN\left(\theta_{x}\right) & SIN\left(\theta_{x}\right) \\ SIN\left(\theta_{y}\right) & -SIN\left(\theta_{x}\right)COS\left(\theta_{y}\right) & COS\left(\theta_{x}\right)COS\left(\theta_{y}\right) \end{bmatrix}$$

Commented [JJ1]: We've split up KiteFASTMBD into KiteFASTMBD in C and KiteFASTMBD in Fortran. This plan is for KiteFASTMBD in Fortran.

KiteFASTMBD

Inputs	Outputs	States	Parameters
 MBD p̄Wind — Position of the ground station where the fixed wind measurement is taken (m) MBD p̄FissO — Position (origin) of the fuselage (m) MBD ΛFissO — Rotation (absolute orientation) of the fuselage origin (-) MBD √FissO — Translational velocity (absolute) of the fuselage origin (m/s) MBD φ̄FissO — Rotational velocity (absolute) of the fuselage origin (rad/s) MBD φ̄FissO — Translational velocity (absolute) of the fuselage origin (rad/s) MBD φ̄FissO — Translational acceleration (absolute) of the fuselage origin (m/s²) MBD φ̄FissO — Rotational acceleration (absolute) of the fuselage origin (m/s²) MBD φ̄FissO — Rotational acceleration (absolute) of the fuselage origin (rad/s²) MBD φ̄Fiss — Translational position (absolute) of the fuselage mesh (m) 	 MBD F̄_j - Aerodynamic applied concentrated forces at the j th node of the fuselage mesh (N) MBD M̄_j - Aerodynamic applied concentrated moments at the j th node of the fuselage mesh (N-m) MBD F̄_j SWn - Aerodynamic and tether applied concentrated forces at the j th node of the starboard wing mesh (N) MBD M̄_j SWn - Aerodynamic and tether applied concentrated forces at the j th node of the starboard wing mesh (N) MBD M̄_j SWn - Aerodynamic and tether concentrated moments at the j th node of the starboard wing mesh (N-m) MBD F̄_j PWn - Aerodynamic and tether applied concentrated forces at the j th node of the port wing 	NewTime - Is this a new time step (in order to only call the controller once per step)? (flag) (other state) MoorDyn continuous states (varied) KAD Z KiteAeroDy n constraint states (varied)	

Commented [JJ2]: These are the data queried from the MBDyn model (through GetXPrev at t and GetXCur at t+dt) to be used within KiteFASTMBD.

Commented [JJ3]: These are the data sent to the MBDyn model from KiteFASTMBD.

Commented [JJ4]: Obvious parameters are not listed here.

Commented [JJ5]: I'm currently assuming that MBD is marching in time at 100 Hz (dt = 0.01 s), which is what the controller is running at. Changing the MBD time step will require a modification to this plan to ensure that the controller is called at 100 Hz.

- $^{MBD}\Lambda_j^{Fus}$ Displaced rotation (absolute orientation) of the j th node of the fuselage mesh (-)
- ${}^{MBD}\vec{V}_j^{Fus}$ Translational velocity (absolute) of the j th node of the fuselage mesh (m/s)
- $^{MBD}\vec{o}_{j}^{Fus}$ Rotational velocity (absolute) of the j^{th} node of the fuselage mesh (rad/s)
- MBD $\vec{F}R_j^{Fus}$ Reaction force (expressed in the local coordinate system) at the j^{\pm} Gauss point of the fuselage mesh (N)
- MBD MR_j Reaction
 moment (expressed in the local coordinate system) at the j th Gauss point of the fuselage mesh (N-m)
- \overline{p}^{SWnO} Position (origin) of the starboard wing (m)
- ${}^{MBD}\vec{p}_{j}^{SWn}$ Translational position (absolute) of the jth node of the starboard wing
- $^{MBD}\Lambda_j^{SWn}$ Displaced rotation (absolute orientation) of the j th node of the starboard wing mesh (-)
- ${}^{MBD}\vec{v}_{j}^{SWn}$ Translational velocity (absolute) of the j^{th} node of the starboard wing mesh (m/s)
- MBD $\overline{\omega}_{j}^{SWn}$ Rotational velocity (absolute) of the j^{th} node of the starboard wing mesh (rad/s)

- mesh (N)
 $\vec{M}^{BD}\vec{M}_{i}^{PWn}$ -
- Aerodynamic and tether applied concentrated moments at the j^{th} node of the port wing mesh (N-m)
- ${}^{MBD}\vec{F}_{j}^{VS}$ Aerodynamic applied concentrated forces at the j th node of the vertical stabilizer mesh (N)
- ${}^{MBD}\vec{M}_{j}^{VS}$ Aerodynamic applied concentrated moments at the j^{th} node of the vertical stabilizer mesh (N-m)
- MBD F
 j SHS
 Aerodynamic applied concentrated forces at the j th node of the starboard horizontal stabilizer mesh (N)
 MBD M
 j SHS
 j th node of the starboard horizontal stabilizer mesh (N)
- Aerodynamic applied concentrated moments at the j th node of the starboard horizontal stabilizer mesh (N-m)
- ${}^{MBD}\vec{F}_{j}^{PHS}$ Aerodynamic applied concentrated forces at the j^{th} node of the port horizontal stabilizer mesh (N)
 ${}^{MBD}\vec{M}_{j}^{PHS}$ -
- Aerodynamic applied concentrated moments at the j th node of the port horizontal stabilizer mesh (N-m)
- ${}^{MBD}\vec{F}_{j}^{SPy}\left[n_{Pylons}\right]$ Aerodynamic applied concentrated forces at the j^{th} node of the pylons on the starboard wing mesh
- $^{MBD}\vec{M}_{j}^{SPy}\left[n_{Pylons}\right]$ -

- MBD m^{SPyRtr} [n_{Pylons}, n₂]

 Mass of the top and bottom rotors/drivetrains on the pylons on the starboard wing mesh (kg)

 MBD I_{SPyRtr} [n_{Pylons}, n₂]
- Rotational inertia about the shaft axis of the top and bottom rotors/drivetrains on the pylons on the starboard wing mesh (kg·m²)
- Transverse inertia about the rotor reference point of the top and bottom rotors/drivetrains on the pylons on the starboard

 Top MBD I SPyRtr [n_{Pylons}, n₂]

 Transverse inertia about the rotor reference point of the top and bottom rotors/drivetrains on the pylons on the starboard
- wing mesh (kg·m²) $x_{CM}^{SPyRtr} [n_{Pylons}, n_2]$
- Distance along the shaft from the rotor reference point of the top and bottom rotors/drivetrains on the pylons on the starboard wing mesh to the center of mass of the rotor/drivetrain (positive along positive x) (m)
- MBD m^{PPyRtr} [n_{Pylons}, n₂]

 Mass of the top and bottom rotors/drivetrains on the pylons on the port wing mesh (kg)
- $\underline{\qquad}^{MBD} I_{Rot}^{PPyRtr} \left[n_{Pylons}, n_2 \right]$
- Rotational inertia about the shaft axis of the top and bottom rotors/drivetrains on the pylons on the port wing mesh (kg·m²)
- MBD I PPyRtr [n_{Pylons}, n₂]

 Transverse inertia about the rotor reference point of the top and bottom rotors/drivetrains on the
 - the rotor reference point the top and bottom rotors/drivetrains on the pylons on the port wing mesh (kg·m²)

\bullet MBD \vec{a}_i^{SWn} — Translational	Aerodynamic applied	• $^{MBD}x_{CM}^{PPyRtr}\left[n_{Pylons},n_{2}\right]$	
	concentrated moments at	$X_{CM} \left[n_{Pylons}, n_2 \right]$	
acceleration (absolute) of the	the j th node of pylons on	 Distance along the shaft 	
$j \stackrel{\text{th}}{=} $ node of the starboard	the starboard wing mesh	from the rotor reference	
wing mesh (m/s ²)	(N-m)	point of the top and	
• \vec{FR}_{j}^{SWn} - Reaction force	$ullet$ $MBD \vec{F}_j^{PPy} igg[oldsymbol{n}_{Pylons} igg] -$	bottom rotors/drivetrains	
		on the pylons on the port	
(expressed in the local	Aerodynamic applied	wing mesh to the center of mass of the	
coordinate system) at the $J^{\frac{\text{th}}{}}$	concentrated forces at the j^{th} node of the pylons on	rotor/drivetrain (positive	
Gauss point of the starboard		along positive x) (m)	
wing mesh (N)	the port wing mesh (N)	• $^{MBD}\vec{p}_{i}^{FusR}$ – Reference	
• \vec{MR}^{SWn}_{i} - Reaction	$ullet$ $MBD\vec{M}_j^{PPy} igg[n_{Pylons} igg] -$	- 7	
	Aerodynamic applied	position of the j th node	
moment (expressed in the	concentrated moments at	of the fuselage mesh (m)	
local coordinate system) at	the j^{th} node of pylons on	• $^{MBD}\Lambda_{i}^{FusR}$ – Reference	
the \underline{j} th Gauss point of the	the port wing mesh (N-m)	orientation of the j^{th}	
starboard wing mesh (N-m)	• $^{MBD}\vec{F}^{SPyRtr}\left[n_{Pylons},n_2\right]$		
• \vec{p}^{PWnO} – Position	$[n_{Pylons}, n_2]$	node of the fuselage mesh (-)	
(origin) of the port wing (m)	- <u>C</u> oncentrated <u>reaction</u>		Deleted: Aerodynamic applied c
• \vec{p}_{i}^{PWn} – Translational	forces at the top and	• p_j^{SWnR} – Reference	
~)	bottom nacelles on the	position of the j th node	Deleted: rotors
position (absolute) of the j th	pylons on the starboard wing mesh at the rotor	of the starboard wing	
node of the port wing mesh	reference point (N)	mesh (m)	
(m)	• $\vec{M}^{BD}\vec{M}^{SPyRtr}[n_{Pylons}, n_2]$	• $^{MBD}\Lambda_i^{SWnR}$ - Reference	
• $^{MBD}\Lambda_{j}^{PWn}$ – Displaced	• $M - \lfloor n_{Pylons}, n_2 \rfloor$	orientation of the j^{th}	
rotation (absolute orientation)	 Concentrated reaction 	orientation of the j	Deleted: Aerodynamic applied c
Totation (absolute offentation)		node of the storboard wing	(20000000000000000000000000000000000000
of the j th node of the port	moments at the top and	node of the starboard wing	Deleted: plus generator torque
	bottom nacelles on the	mesh (-)	
of the j th node of the port wing mesh (-)	bottom <u>nacelles</u> on the pylons on the starboard	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference	Deleted: plus generator torque
of the j in node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m)	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node	Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ – Translational velocity (absolute) of the j th	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m)	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m)	Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ – Translational velocity (absolute) of the j th node of the port wing mesh	bottom nacelles on the pylons on the starboard wing mesh at the rotor	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node	Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s)	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \left[n_{Pylons}, n_2 \right] \) -Concentrated reaction	mesh (-) • ${}^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • ${}^{MBD}\Lambda_{j}^{PWnR}$ - Reference	Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ – Translational velocity (absolute) of the j th node of the port wing mesh	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F} \) \(PPYRT \(\vec{N} \) \(n_{Pylons} \cdot \(n_2 \)	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s)	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F} \) \(PPYPRI \(\nabla n_{ylons}, n_2 \) —Concentrated reaction forces at the top and bottom_nacelles on the	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing	Deleted: plus generator torque Deleted: rotors
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{o}_{j}^{PWn}$ - Rotational	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) -Concentrated reaction forces at the top and bottom_nacelles on the pylons on the port wing	mesh (-) • ${}^{MBD}\vec{p}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • ${}^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-)	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{\omega}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s)	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • $^{MBD}\vec{F}^{PPyRtr}\left[n_{Pylons},n_{2}\right]$ - Concentrated reaction forces at the top and bottom_nacelles on the pylons on the port wing mesh at the rotor reference	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{\omega}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s)	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \left[n_{Pylons}, n_2 \right] \) —Concentrated reaction forces at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N)	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{\omega}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD}\vec{a}_{j}^{PWn}$ - Translational	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • $^{MBD}\vec{F}^{PPyRtr}\left[n_{Pylons},n_{2}\right]$ - Concentrated reaction forces at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N) • $^{MBD}\vec{M}^{PPyRtr}\left[n_{Pylons},n_{2}\right]$	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{o}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD}\vec{a}_{j}^{PWn}$ - Translational acceleration (absolute) of the	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}\) \(PPYPRI' \[n_{Pylons}, n_2 \] —Concentrated reaction forces at the top and bottom_nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}\) \(PPYRI' \[n_{Pylons}, n_2 \] —Concentrated reaction	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node of the vertical stabilizer mesh (m)	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c
of the j th node of the port wing mesh (-) • ${}^{MBD} \vec{v}_j^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD} \vec{\omega}_j^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD} \vec{a}_j^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}\) \(PPYPRI'\) \(n_{Pylons}, n_2 \) —Concentrated reaction forces at the top and bottom_nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}\) \(PPYRI'\) \(n_{Pylons}, n_2 \) —Concentrated reaction moments at the top and	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node of the vertical stabilizer	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: rotors
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{o}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD}\vec{a}_{j}^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing mesh (m/s²)	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) —Concentrated reaction forces at the top and bottom_nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) —Concentrated reaction moments, at the top and bottom_nacelles on the	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node of the vertical stabilizer mesh (m)	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: rotors Deleted: Aerodynamic applied c
of the j th node of the port wing mesh (-) • ${}^{MBD} \vec{v}_j^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD} \vec{\omega}_j^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD} \vec{a}_j^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) —Concentrated reaction forces at the top and bottom_nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) —Concentrated reaction moments, at the top and bottom_nacelles on the pylons on the port wing	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Deleted: Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{o}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD}\vec{a}_{j}^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing mesh (m/s²) • ${}^{MBD}\vec{F}R_{j}^{PWn}$ - Reaction force	bottom_nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) —Concentrated reaction forces at the top and bottom_nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) —Concentrated reaction moments, at the top and bottom_nacelles on the	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node of the vertical stabilizer mesh (m)	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Deleted: Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{o}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD}\vec{a}_{j}^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing mesh (m/s ²) • ${}^{MBD}\vec{F}R_{j}^{PWn}$ - Reaction force (expressed in the local	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction forces at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction moments at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j^{th} node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j^{th} node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j^{th} node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ Reference orientation of the j^{th} node of the vertical stabilizer mesh (m)	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Deleted: Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{o}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD}\vec{a}_{j}^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing mesh (m/s ²) • ${}^{MBD}\vec{F}R_{j}^{PWn}$ - Reaction force (expressed in the local coordinate system) at the j th	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction forces at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction moments at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (-) • $^{MBD}\vec{p}_{j}^{SHSR}$ - Reference	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Deleted: Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{o}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD}\vec{a}_{j}^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing mesh (m/s²) • ${}^{MBD}\vec{F}R_{j}^{PWn}$ - Reaction force (expressed in the local coordinate system) at the j th Gauss point of the port wing	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction forces at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction moments at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (-) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (-)	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Deleted: Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD} \vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD} \vec{o}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD} \vec{a}_{j}^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing mesh (m/s ²) • ${}^{MBD} \vec{F} R_{j}^{PWn}$ - Reaction force (expressed in the local coordinate system) at the j th Gauss point of the port wing mesh (N)	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction forces at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction moments at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (-) • $^{MBD}\vec{p}_{j}^{SHSR}$ - Reference position of the j th node of the starboard horizontal	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Deleted: Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD}\vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD}\vec{o}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD}\vec{a}_{j}^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing mesh (m/s²) • ${}^{MBD}\vec{F}R_{j}^{PWn}$ - Reaction force (expressed in the local coordinate system) at the j th Gauss point of the port wing	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction forces at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction moments at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (-) • $^{MBD}\vec{p}_{j}^{SHSR}$ - Reference position of the j th node of the starboard horizontal stabilizer mesh (m)	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Deleted: Deleted: plus generator torque
of the j th node of the port wing mesh (-) • ${}^{MBD} \vec{v}_{j}^{PWn}$ - Translational velocity (absolute) of the j th node of the port wing mesh (m/s) • ${}^{MBD} \vec{o}_{j}^{PWn}$ - Rotational velocity (absolute) of the j th node of the port wing mesh (rad/s) • ${}^{MBD} \vec{a}_{j}^{PWn}$ - Translational acceleration (absolute) of the j th node of the port wing mesh (m/s ²) • ${}^{MBD} \vec{F} R_{j}^{PWn}$ - Reaction force (expressed in the local coordinate system) at the j th Gauss point of the port wing mesh (N)	bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (N-m) • MBD \(\vec{F}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction forces at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference point (N) • MBD \(\vec{M}^{PPyRtr} \Big[n_{Pylons}, n_2 \Big] \) - Concentrated reaction moments at the top and bottom nacelles on the pylons on the port wing mesh at the rotor reference	mesh (-) • $^{MBD}\vec{p}_{j}^{PWnR}$ - Reference position of the j th node of the port wing mesh (m) • $^{MBD}\Lambda_{j}^{PWnR}$ - Reference orientation of the j th node of the port wing mesh (-) • $^{MBD}\vec{p}_{j}^{VSR}$ - Reference position of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (m) • $^{MBD}\Lambda_{j}^{VSR}$ - Reference orientation of the j th node of the vertical stabilizer mesh (-) • $^{MBD}\vec{p}_{j}^{SHSR}$ - Reference position of the j th node of the starboard horizontal	Deleted: plus generator torque Deleted: rotors Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Aerodynamic applied c Deleted: Deleted: Deleted: plus generator torque

local coordinate system) at
the j th Gauss point of the
<u> </u>
port wing mesh (N-m)
$^{MBD} \vec{p}^{VSO}$ – Position (origin)
of the vertical stabilizer (m)
MBD →VS —

- of the vertical stabilizer (m)

 $^{MBD}\vec{p}_{j}^{VS}$ Translational position (absolute) of the j th node of the vertical stabilizer mesh (m)
- $^{MBD}\Lambda_j^{VS}$ Displaced rotation (absolute orientation) of the j th node of the vertical stabilizer mesh (-)
- ${}^{MBD}\vec{V}^{VS}_j$ Translational velocity (absolute) of the j^{th} node of the vertical stabilizer mesh (m/s)
- $MBD\vec{\omega}_{j}^{VS}$ Rotational velocity (absolute) of the j^{th} node of the vertical stabilizer mesh (rad/s)
- MBD $\vec{F}R_j^{VS}$ Reaction force

 (expressed in the local coordinate system) at the j^{th} Gauss point of the vertical stabilizer mesh (N)
- ${}^{MBD} \vec{M} R_j^{VS} \text{Reaction}$ moment (expressed in the local coordinate system) at the j th Gauss point of the vertical stabilizer mesh (N-m)
- ${}^{MBD} \vec{p}^{SHSO}$ Position (origin) of the starboard horizontal stabilizer (m)
- ${}^{MBD}\vec{p}_{j}^{SHS}$ Translational position (absolute) of the j^{th} node of the starboard horizontal stabilizer mesh (m)
- $^{MBD}\Lambda_{j}^{SHS}$ Displaced rotation (absolute orientation)

orientation of the j th node of the starboard horizontal stabilizer mesh (-)

- ${}^{MBD}\vec{p}_{j}^{PHSR}$ Reference position of the j^{th} node of the port horizontal stabilizer mesh (m)
- stabilizer mesh (m)

 ${}^{MBD}\Lambda_j^{PHSR}$ Reference orientation of the j th node of the port horizontal stabilizer mesh (-)
- $^{MBD}\bar{p}_{j}^{SPyR}\left[n_{Pylons}\right]$ Reference position of the j^{th} node of the pylons on the starboard wing mesh (m)
- ${}^{MBD}A_j^{SPyR}\left[n_{Pylons}\right] -$ Reference orientation of the j th node of the pylons on the starboard wing mesh (-)
- ${}^{MBD} \vec{p}_{j}^{PPyR} [n_{Pylons}] -$ Reference position of the j th node of the pylons on the port wing mesh (m)
- ${}^{MBD}\Lambda_{j}^{PPyR}\left[n_{Pylons}\right]$ Reference orientation of the j^{th} node of the pylons on the port wing mesh (-) • ${}^{MBD}\vec{p}^{SPyRtrR}\left[n_{Pylons},n_{2}\right]$
- Reference positions (origins) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m)
- $^{MBD}\Lambda^{SPyRtrR}\left[n_{Pylons},n_{2}\right]$
 - Reference orientations of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (-
- $\vec{p}^{PPyRtrR} \left[n_{Pylons}, n_2 \right]$ Reference positions

Deleted: rotors

Deleted: rotors

of the j th node of the		(origins) of the top and bottom nacelles on the
starboard horizontal stabilizer mesh (-)		pylons on the port wing
• \vec{v}_{j}^{SHS} – Translational		mesh at the rotor reference
velocity (absolute) of the j^{th}		point (m) $^{MBD}\Lambda^{PPyRtrR} \left[n_{Pylons}, n_2 \right]$
node of the starboard		
horizontal stabilizer mesh		 Reference orientations of the top and bottom
(m/s) $\underline{\bullet}^{MBD} \vec{\mathcal{O}}_{i}^{SHS} - \text{Rotational}$		<u>nacelles</u> on the pylons on
,		the port wing mesh <u>at the</u> rotor reference point (-)
velocity (absolute) of the j th node of the starboard		Totol Telefence point (-)
horizontal stabilizer mesh		
(rad/s)		
$\underline{\bullet}$ $\underline{MBD}\vec{a}_{j}^{SHS}$ - Translational		
acceleration (absolute) of the		
$\frac{\int \frac{\text{th node of the starboard}}{}{}$		
horizontal stabilizer mesh (m/s²)		
• $\vec{F}R_i^{SHS}$ - Reaction force		
(expressed in the local coordinate system) at the j^{th}		
Gauss point of the starboard		
horizontal stabilizer mesh (N) MBD 1 CD SHS		
• $\vec{MRD} \vec{MR}_j^{SHS}$ - Reaction		
moment (expressed in the local coordinate system) at		
the j th Gauss point of the		
starboard horizontal stabilizer		
mesh (N-m)		
• \vec{p}^{PHSO} – Position (origin)		
of the port horizontal stabilizer (m)		
• ${}^{MBD}\vec{p}_{j}^{PHS}$ – Translational		
position (absolute) of the j^{th}		
node of the port horizontal		
stabilizer mesh (m)		
• $^{MBD}\Lambda_{j}^{PHS}$ – Displaced		
rotation (absolute orientation) of the j th node of the port		
horizontal stabilizer mesh (-)		
• \vec{v}_{j}^{PHS} – Translational		
velocity (absolute) of the j th		
node of the port horizontal		
stabilizer mesh (m/s)		
• $\vec{\omega}_{j}^{MBD}\vec{\omega}_{j}^{PHS}$ – Rotational		

Deleted: rotors

Deleted: rotors

velo	ocity (absolute) of the j th		
noc	de of the port horizontal		
stał	bilizer mesh (rad/s)		
• MBi	\vec{a}_{j}^{PHS} - Translational		
	celeration (absolute) of the		
$J^{\frac{\mathrm{u}}{2}}$	h node of the port		
hor	rizontal stabilizer mesh		
<u>(m/</u>			
• MBi	${}^{PD}\vec{F}R_j^{PHS}$ - Reaction force		
	pressed in the local		
<u>coo</u>	ordinate system) at the <u>j</u> th		
Gar	uss point of the port		
	rizontal stabilizer mesh (N)		
• MBi	$\vec{M}R_i^{PHS}$ - Reaction		
	oment (expressed in the		
	al coordinate system) at		
the	$j \stackrel{\text{th}}{=} Gauss point of the$		
	rt horizontal stabilizer		
	esh (N-m)		
•	$\vec{p}^{SPyO}\left[n_{Pylons}\right]$ –		
Pos	sitions (origins) of pylons		
	the starboard wing (m)		
• MBi	$\vec{p}_{j}^{SPy} \lceil n_{Pylons} \rceil -$		
	anslational position		
(ab	psolute) of the j^{th} node of		
	· ·		
	pylons on the starboard ng mesh (m)		
•	${}^{D}\Lambda_{j}^{SPy}\left[n_{Pylons}\right]$		
Dis	splaced rotation (absolute		
orie	entation) of the j th node		
of t	the pylons on the starboard		
	ng mesh (-)		
• <i>MBi</i>	$\vec{v}^{D}\vec{v}^{SPy}_{j}\left[n_{Pylons}\right]$ –		
	anslational velocity		
	psolute) of the j^{th} node of		
	pylons on the starboard		
	ng mesh (m/s)		
	$\vec{\omega}_{j}^{SPy} \left[n_{Pylons} \right] -$		
Rot	tational velocity (absolute)		
of t	the j th node of the pylons		
	the starboard wing mesh		
	d/s)		
• MBi	$[D\vec{a}_{j}^{SPy}[n_{Pylons}] =$		
Tra	anslational acceleration		

(absolute) of the j th node of		
the pylons on the starboard		
wing mesh (m/s ²)		
\bullet $MBD \vec{F} R_j^{SPy} [n_{Pylons}] =$		
Reaction force (expressed in		
the local coordinate system)		
at the j th Gauss point of the		
pylons on the starboard wing		
mesh (N)		
\bullet $^{MBD}\vec{M}R_{j}^{SPy}[n_{Pylons}] =$		
Reaction moment (expressed in the local coordinate		
system) at the j th Gauss		
point of the pylons on the		
starboard wing mesh (N-m)		
• $^{MBD}\vec{p}^{PPyO}[n_{Pylons}]$ –		
Positions (origins) of pylons		
on the port wing (m)		
• $^{MBD}\vec{p}_{j}^{PPy}\left[n_{Pylons}\right]$ -		
Translational position		
(absolute) of the j th node of		
the pylons on the port wing		
mesh (m)		
• $^{MBD}\Lambda_{j}^{PPy} [n_{Pylons}] -$		
Displaced rotation (absolute		
orientation) of the j^{th} node		
of the pylons on the port wing		
mesh (-)		
• $^{MBD}\vec{v}_{j}^{PPy}\left[n_{Pylons}\right]$ -		
Translational velocity		
(absolute) of the j th node of		
the pylons on the port wing		
mesh (m/s)		
\bullet $MBD \vec{\omega}_{j}^{PPy} [n_{Pylons}] -$		
Rotational velocity (absolute)		
of the j^{th} node of the pylons		
on the port wing mesh (rad/s)		
\bullet $\underline{\qquad}^{MBD}\vec{a}_{j}^{PPy}\left[n_{Pylons}\right]_{=}$		
Translational acceleration		
(absolute) of the j th node of		
the pylons on the port wing		
$\frac{\text{mesh } (\text{m/s}^2)}{\text{mesh } \frac{1}{2}}$		
$\underline{\bullet}$ $\underline{}^{MBD}\vec{F}R_{j}^{PPy}\left[n_{Pylons}\right] \underline{=}$		
Reaction force (expressed in		

the local coordinate system)			
at the j th Gauss point of the			
pylons on the port wing mesh			
(N)			
• $\vec{M}R_{j}^{PPy} [n_{Pylons}] =$			
Reaction moment (expressed			
in the local coordinate			
system) at the J th Gauss			
point of the pylons on the port			
wing mesh (N-m)			
• $^{MBD}\vec{p}^{SPyRtr} \left[n_{Pylons}, n_2 \right] -$			
Translational position			
(absolute) of the top and			
			(Bullion)
bottom nacelles on the pylons		 	Deleted: rotors
on the starboard wing mesh at			
the rotor reference point (m)			
• $^{MBD}\Lambda^{SPyRtr} \left[n_{Pylons}, n_2 \right] -$			
Displaced rotation (absolute			
orientation) of the top and			(
bottom <u>nacelles</u> on the pylons		 	Deleted: rotors
on the starboard wing mesh at			
the rotor reference point (-)			
$\bullet \qquad \qquad \stackrel{MBD}{\vec{v}} \vec{v}^{SPyRtr} \left[n_{Pylons}, n_2 \right] -$			
Translational velocity			
(absolute) of the top and			(Bullium)
bottom nacelles on the pylons		 	Deleted: rotors
on the starboard wing mesh at			
the rotor reference point (m/s)			
the rotor reference point (m/s)			
the rotor reference point (m/s) $\underline{\bullet} MBD \overline{\omega}^{SPyRtr} \left[n_{Pylons}, n_2 \right] =$			
the rotor reference point (m/s) $ \underline{ } $			
the rotor reference point (m/s) MBD $\vec{\omega}^{SPyRtr}$ $\left[n_{Pylons}, n_2\right] = \frac{1}{\text{Rotational velocity (absolute)}}$ of the top and bottom nacelles			
the rotor reference point (m/s) • $MBD\vec{o}$ $SPyRtr$ n_{Pylons}, n_2 = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard			
the rotor reference point (m/s) $ \bullet $ MBD \vec{o}^{SPyRtr} $\left[n_{Pylons}, n_2\right] =$ Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor			
the rotor reference point (m/s) • $m^{BD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right] =$ Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s)			
the rotor reference point (m/s) • $m^{BD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right] =$ Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s)			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ =			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right] =$ Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right] =$ Translational acceleration			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right] =$ Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right] =$ Translational acceleration (absolute) of the top and			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right] =$ Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right] =$ Translational acceleration (absolute) of the top and bottom nacelles on the pylons			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at			
the rotor reference point (m/s) MBD \(\vec{o}^{SPyRtr} \Bigg[n_{Pylons}, n_2 \Bigg] \to \] Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) MBD \(\vec{a}^{SPyRtr} \Bigg[n_{Pylons}, n_2 \Bigg] \to \] Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m/s²)			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m/s²)			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right]$ \equiv Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ \equiv Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m/s^2) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ \equiv			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point $\frac{m}{S^2}$ • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational acceleration			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m/s²) • $^{MBD}\vec{\alpha}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational acceleration (absolute) of the top and			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m/s^2) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational acceleration (absolute) of the top and bottom nacelles on the pylons			
the rotor reference point (m/s) MBD \vec{\alpha} \vec{\alpha} S^{PyRtr} \begin{bmatrix} n_{Pylons}, n_2 \end{bmatrix} = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) MBD \vec{\alpha} S^{PyRtr} \begin{bmatrix} n_{Pylons}, n_2 \end{bmatrix} = Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m/s^2) MBD \vec{\alpha} S^{PyRtr} \begin{bmatrix} n_{Pylons}, n_2 \end{bmatrix} = Rotational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at			
the rotor reference point (m/s) • $^{MBD}\vec{o}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m/s²) • $^{MBD}\vec{a}^{SPyRtr}\left[n_{Pylons},n_2\right]$ = Rotational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point on the starboard wing mesh at the rotor reference point on the starboard wing mesh at the rotor reference point wing mesh at the rotor reference point			
the rotor reference point (m/s) MBD \vec{\alpha} \vec{\alpha} S^{PyRtr} \begin{bmatrix} n_{Pylons}, n_2 \end{bmatrix} = Rotational velocity (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (rad/s) MBD \vec{\alpha} S^{PyRtr} \begin{bmatrix} n_{Pylons}, n_2 \end{bmatrix} = Translational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at the rotor reference point (m/s^2) MBD \vec{\alpha} S^{PyRtr} \begin{bmatrix} n_{Pylons}, n_2 \end{bmatrix} = Rotational acceleration (absolute) of the top and bottom nacelles on the pylons on the starboard wing mesh at			

							_	
\bullet $^{MBD}\vec{p}^{PPyR}$	$[n_{Pylons}, n_2] -$							Deleted: <#> $^{MBD}\Omega^{SPyRtr}\left[n_{Pylons},n_{2} ight]$ - Rotational speeds
*	nal position						1	of the top and bottom rotors on the pylons on the starboard wing
	of the top and							(rad/s)¶
` /	celles on the pylon	6						
	t wing mesh at the						+	Deleted: rotors
	ence point (m)							
10tol lelel	ence point (iii)							
 MBD Λ PPyR 	$[n_{Pylons}, n_2] -$							
	rotation (absolute							
	a) of the top and							
	elles on the pylon							(Balana a
							+	Deleted: rotors
	t wing mesh at the							
rotor reter	ence point (-)							
$\underline{\bullet}$ $NBD \vec{v}^{PPyRi}$	$[n_{Pylons}, n_2] -$							
	nal velocity							
. ,	of the top and							
	celles on the pylon						+	Deleted: rotors
	t wing mesh at the							
rotor refer	ence point							
(m/s)								
$\underline{\bullet}$ $MBD \vec{\omega}^{PPyR}$	$tr\left[n_{Pylons}, n_2\right] =$						/	Deleted: ¶
							1	
	velocity (absolute	-						
	and bottom nacelle	<u>es</u>						
	ons on the port							
	at the rotor							
reference p	point (rad/s)							
• MBD a PPyR	$[n_{Pylons}, n_2] =$							
	nal acceleration							
	of the top and							
	celles on the pylon							
	t wing mesh at the							
	ence point (m/s ²)							
• $\vec{\alpha}^{PPyR}$	$[n_{Pylons}, n_2]_{\underline{-}}$							
	acceleration							
	of the top and							
	celles on the pylon	e						
	t wing mech at the							1/00 00 D. F
on the por	t wing mesh at the							
on the por	t wing mesh at the ence point (rad/s²),	,						Deleted: $\Omega^{PPyRtr} \mid n_{Pylons}, n_2 \mid$ - Rotational speeds of
on the por	ence point (rad/s²)	,	Copy KAD _Copy					Deleted: $^{MBD}\Omega^{PPyRtr} [n_{Pylons}, n_2]$ - Rotational speeds of the top and bottom rotors on the pylons on the port wing (rad/s)
on the por		,	Copy , KAD Z Copy					the top and bottom rotors on the pylons on the port wing (rad/s)
on the por	ence point (rad/s²)	,	Copy , KAD Z Copy					the top and bottom rotors on the pylons on the port wing (rad/s) Commented [JJ6]: The outputs of each module (as calculated
on the porrotor reference of the MiscVars:	ence point (rad/s ²), $ {^{Ctrl}}y, {^{MD}}y, {^{IJW}} $	$y, \frac{KAD}{y}, \frac{MD}{x}$	Copy , KAD Z ^C opy					the top and bottom rotors on the pylons on the port wing (rad/s)
on the porrotor reference of the MiscVars:	ence point (rad/s^2) , ^{Ctrl}y , ^{MD}y , IfW outputs to Inputs in	y, ^{KAD} y, ^{MD} x KiteFASTMBD	Copy , ^{KAD} z ^{Copy}					the top and bottom rotors on the pylons on the port wing (rad/s) Commented [JJ6]: The outputs of each module (as calculated by their respective CalcOutput() routines) are stored as MiscVars in
on the porrotor reference of the MiscVars:	ence point (rad/s ²), $ {^{Ctrl}}y, {^{MD}}y, {^{IJW}} $	$y, \frac{KAD}{y}, \frac{MD}{x}$	Copy , KAD z ^C opy					the top and bottom rotors on the pylons on the port wing (rad/s) Commented [JJ6]: The outputs of each module (as calculated by their respective CalcOutput() routines) are stored as MiscVars in
on the porrotor reference of the MiscVars:	ence point (rad/s^2) , ^{Ctrl}y , ^{MD}y , IfW outputs to Inputs in	y, ^{KAD} y, ^{MD} x KiteFASTMBD	Copy , KAD z Copy KiteAeroDyn	InflowWind	MoorDyn	Controller		the top and bottom rotors on the pylons on the port wing (rad/s) Commented [JJ6]: The outputs of each module (as calculated by their respective CalcOutput() routines) are stored as MiscVars in
on the porrotor reference of the MiscVars:	ence point (rad/s^2) , ^{Ctrl}y , ^{MD}y , IfW outputs to Inputs in	y, KADy, MD x KiteFASTMBD Inputs		InflowWind N	MoorDyn N	Controller Y		the top and bottom rotors on the pylons on the port wing (rad/s) Commented [JJ6]: The outputs of each module (as calculated by their respective CalcOutput() routines) are stored as MiscVars in
on the portrotor reference of the MiscVars: Mapping of O Output dependence of the Mapping of O	ence point (rad/s²) Cirl y, MD y, IfW Outputs to Inputs in ds on Input (Y/N)	y, KADy, MD x KiteFASTMBD Inputs	KiteAeroDyn					the top and bottom rotors on the pylons on the port wing (rad/s) Commented [JJ6]: The outputs of each module (as calculated by their respective CalcOutput() routines) are stored as MiscVars in
on the portrotor reference of the MiscVars: Mapping of O Output dependence of the Mapping of O	curl y, MD y, If W butputs to Inputs in ds on Input (Y/N) MBDyn	y, KAD y, MD x KiteFASTMBD Inputs MBDyn	KiteAeroDyn			Y		the top and bottom rotors on the pylons on the port wing (rad/s) Commented [JJ6]: The outputs of each module (as calculated by their respective CalcOutput() routines) are stored as MiscVars in KiteFASTMBD.
on the portrotor reference of the MiscVars: Mapping of O Output dependence of the Mapping of O	curl y, MD y, IJW tutputs to Inputs in ds on Input (Y/N) MBDyn KiteAeroDyn InflowWind	y, KAD y, MD x KiteFASTMBD Inputs MBDyn	KiteAeroDyn N			Y <u>Y</u>		the top and bottom rotors on the pylons on the port wing (rad/s) Commented [JJ6]: The outputs of each module (as calculated by their respective CalcOutput() routines) are stored as MiscVars in
on the portrotor reference of the MiscVars: Mapping of O Output dependence of the Mapping of O	curl y, MD y, If W butputs to Inputs in ds on Input (Y/N) MBDyn KiteAeroDyn	y, KAD y, MD x KiteFASTMBD Inputs MBDyn	KiteAeroDyn N			Y <u>Y</u> Y		the top and bottom rotors on the pylons on the port wing (rad/s) Commented [JJ6]: The outputs of each module (as calculated by their respective CalcOutput() routines) are stored as MiscVars in KiteFASTMBD.

Data Flow (stopping when reaching "N")

MBDyn Controller

KiteAeroDyn MBDyn Controller

Controller

InflowWind KiteAeroDyn MBDyn Controller

Controller

Controller MoorDyn MBDyn Controller

Controller

Controller

Thus, no nonlinear solves are required

Order of calls: MBDyn, Controller, MoorDyn, InflowWind, KiteAeroDyn

Constructor

This routine initializes KiteFASTMBD at t = 0:

- · Sets parameters
- · Initializes states
- · Calls module Init routines
- Opens the write output file
- Opens and writes the summary file

Query the MBDyn model to access the inputs at t = 0.

Query the MBDyn model to access the names of the KiteAeroDyn, InflowWind, and MoorDyn primary input files

Set the parameters from inputs
$$(\Delta t, N_{Flaps}, N_{Pylons} \perp^{MBD} \vec{g} \perp^{MBD} m^{SPyRtr} [n_{Pylons}, n_2] \perp^{MBD} I_{Rot}^{SPyRtr} [n_{Pylons}, n_2]$$

controller interface),
$$N_{Pylons} \neq 2$$
 (to match the current controller interface), $\Delta t \neq 0.01$ (to match the controller time step).
$$\frac{MBD}{T_{Pylons}} m^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_2 \right] < 0 \quad MBD I_{Rot}^{SPyRtr} \left[n_{Pylons}, n_$$

• The flap indices:
$$n_{Flaps} = \{1, 2, ..., N_{Flaps}\}$$

• The pylon indices:
$$n_{Pylons} = \{1, 2, ..., N_{Pylons}\}$$

• And:
$$n_2 = \{1, 2\}$$

Set the DCM conversion parameter from the FAST ground system (X pointed nominally downwind; Z pointed vertically opposite gravity; Y transverse) to the ground system used by the controller (X pointed nominally upwind; Z pointed vertically downward, Y transverse):

Deleted: ?

Commented [JJ8]: Does MBD need to know the aerodynamic loads (etc.) at t=0? If so, would that happen here?

Commented [JJ9]: The names of the KiteAeroDyn input file etc., along with switches for enabling/disabling each module, must be queried from the MBDyn model. I haven't specifically included logic below to enable/disable modules, but this should implemented

Deleted: and

Commented [JJ10]: These must be queried from the MBDyn

Deleted: or

$$A^{FAST \, 2Ctrl} = \begin{bmatrix} -I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & -I \end{bmatrix}$$

Set the reference positions (origins) needed as initialization inputs to KiteAeroDyn:
$$^{KAD} \vec{p}^{SWnOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SWnO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{PWnOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{PWnO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{PSOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{PSO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{SHSOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SHSO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{SHSOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SHSO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{PHSOR} = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{PHSO} - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{SPyOR} \left[n_{Pylons} \right] = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SPyO} \left[n_{Pylons} \right] - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{SPyOR} \left[n_{Pylons} \right] = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SPyO} \left[n_{Pylons} \right] - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{SPyRtrR} \left[n_{Pylons}, n_2 \right] = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SPyRtr} \left[n_{Pylons}, n_2 \right] - {}^{MBD} \vec{p}^{FusO} \right\}$$

$$^{KAD} \vec{p}^{PPyRtrR} \left[n_{Pylons}, n_2 \right] = {}^{MBD} \Lambda^{FusO} \left\{ {}^{MBD} \vec{p}^{SPyRtr} \left[n_{Pylons}, n_2 \right] - {}^{MBD} \vec{p}^{FusO} \right\}$$

Call KiteAeroDyn_Init()

Trigger a fatal error if $\binom{KAD}{\Delta t} \neq \Delta t$

Set the air density for future reference: $\rho = {}^{KAD}\rho$

Determine the number of points where wind will be accessed within InflowWind by summing up the nodes on the AeroDyn input meshes, plus one for the fuselage origin and one for the ground station:

IJW
 NumWindPo int $s=2$
 $+ ^{KAD}$ NumFusNds
 $+ ^{KAD}$ NumSWnNds
 $+ ^{KAD}$ NumPWnNds
 $+ ^{KAD}$ NumVSNds
 $+ ^{KAD}$ NumSHSNds
 $+ ^{KAD}$ NumSHSNds
 $+ ^{KAD}$ NumPHSNds
 $+ ^{KAD}$ NumPylNds $\left(2N_{Pylons}\right)$
 $+ 4N_{Pylons}$

Call InflowWind Init()

Trigger a fatal error if $\left({}^{IfW}\Delta t \neq \Delta t \right)$

Set the initialization inputs to MoorDyn:

$$MD g = \left\| MBD \vec{g} \right\|_{2}$$

$$MD rho W = \rho$$

$$MD WtrDepth = 0$$

$$MD PtfmInit = \left\{ MBD \vec{p}^{FusO} \right\}$$

Call MoorDyn_Init()

Trigger a fatal error if $\binom{MD}{\Delta t} \neq \Delta t$

*Trigger a fatal error if there is more than one anchor set in MoorDyn. Also, set the anchor position for future reference based on the initialization output from MoorDyn:

 \vec{p}^{Anch} = from MoorDyn initialization output

Call Controller_Init()

Trigger a fatal error if $\binom{Ctrl}{\Delta t} \neq \Delta t$

Set the reference positions and orientations of the line2 and point meshes from the inputs:

$$\begin{array}{ll} \textit{MBD} \ \vec{p}_{j}^{FusR} = \vec{\textit{MBD}} A_{j}^{FusO} \left\{ \textit{MBD} \ \vec{p}_{j}^{Fus} - \textit{MBD} \ \vec{p}_{j}^{FusO} \right\} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumFusNds}}{\textit{NumFusNds}} \right\}) \\ \textit{MBD} \ A_{j}^{FusR} = \textit{MBD} A_{j}^{Fus} \left[\textit{MBD} A_{j}^{FusO} \right]^{T} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumFusNds}}{\textit{NumSWnNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{SWnR} = \textit{MBD} A_{j}^{SWn} \left[\textit{MBD} A_{j}^{FusO} \right]^{T} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumFusNds}}{\textit{NumSWnNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{SWnR} = \textit{MBD} A_{j}^{SWn} \left[\textit{MBD} A_{j}^{FusO} \right]^{T} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumSWnNds}}{\textit{NumSWnNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{PWnR} = \textit{MBD} A_{j}^{FusO} \left\{ \textit{MBD} \ \vec{p}_{j}^{PWn} - \textit{MBD} \ \vec{p}_{j}^{FusO} \right\} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumPWnNds}}{\textit{NumPWnNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{SSR} = \textit{MBD} A_{j}^{FusO} \left\{ \textit{MBD} \ \vec{p}_{j}^{FS} - \textit{MBD} \ \vec{p}_{j}^{FusO} \right\} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumPWnNds}}{\textit{NumPWnNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{SSR} = \textit{MBD} A_{j}^{FusO} \left\{ \textit{MBD} \ \vec{p}_{j}^{SSS} - \textit{MBD} \ \vec{p}_{j}^{FusO} \right\} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumPWnNds}}{\textit{NumVSNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{SSRS} = \textit{MBD} A_{j}^{FSS} \left[\textit{MBD} A_{j}^{FusO} \right]^{T} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumVSNds}}{\textit{NumVSNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{SSSS} = \textit{MBD} A_{j}^{FSS} \left[\textit{MBD} \ \vec{p}_{j}^{FSS} - \textit{MBD} \ \vec{p}_{j}^{FusO} \right\} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumVSNds}}{\textit{NumSHSNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{PSSR} = \textit{MBD} A_{j}^{FSS} \left[\textit{MBD} \ \vec{A}_{j}^{FSSO} \right]^{T} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumSHSNds}}{\textit{NumPHSNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{SSSS} = \textit{MBD} A_{j}^{FSSO} \left\{ \textit{MBD} \ \vec{p}_{j}^{FSSO} \right\} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumPHSNds}}{\textit{NumPHSNds}} \right\}) \\ \textit{MBD} \ \vec{p}_{j}^{SSSS} = \textit{MBD} A_{j}^{FSSO} \left\{ \textit{MBD} \ \vec{p}_{j}^{SSSO} \right\} \left\{ \textit{MBD} \ \vec{p}_{j}^{SSSO} \right\} & (\text{for } j = \left\{ 1, 2, \ldots, \frac{\textit{MBD} \textit{NumPyNds}}{\textit{NumPyNds}} \right\} \\ \textit{MBD} \ \vec{p}_{j}^{SSSO} \left[\textit{n}_{SSSO} \right] \left\{ \textit{MBD} A_{j}^{FSSO} \left\{ \textit{MBD} \ \vec{p}_{j}^{SSSO} \right\} \left\{ \textit{MBD} A_{j}^{FSS$$

Deleted: $^{MD}g =$ queried from the MBDyn model

Deleted:
$$^{MD}Pt\widehat{fm}Init = \left\{ \begin{array}{c} ^{MBD}\widehat{p}^{FusO} \\ XXXXXXXXXX \end{array} \right\}$$

Deleted: 1

Commented [JJ12]: TBD. Are there any initialization inputs to the controller? Are there initialization output from the controller?

Right now I'm assuming that Controller_Init() returns the initial outputs.

Commented [JJ13]: Note: the motion meshes are line2 meshes (except for the rotors, which are point meshes), but the load meshes are point meshes.

$$\begin{split} &^{MBD} \vec{p}^{SPyRtrR} \left[\left. n_{Pylons}, n_2 \right. \right] = \,^{MBD} A^{FusO} \left\{ \,^{MBD} \vec{p}^{SPyRtr} \left[\left. n_{Pylons}, n_2 \right. \right] - \,^{MBD} \vec{p}^{FusO} \right\} \\ &^{MBD} A^{SPyRtrR} \left[\left. n_{Pylons}, n_2 \right. \right] = I \\ &^{MBD} \vec{p}^{PPyRtrR} \left[\left. n_{Pylons}, n_2 \right. \right] = \,^{MBD} A^{FusO} \left\{ \,^{MBD} \vec{p}^{PPyRtr} \left[\left. n_{Pylons}, n_2 \right. \right] - \,^{MBD} \vec{p}^{FusO} \right\} \\ &^{MBD} A^{PPyRtrR} \left[\left. n_{Pylons}, n_2 \right. \right] = I \end{split}$$

Set mesh-mappings between KiteFASTMBD-KiteAeroDyn and KiteFASTMBD-MoorDyn

Open the write Output File

Initial calculate output:

Set inputs to MoorDyn at t = 0 from MBDyn (see below for solution at t)

Call MoorDyn_CalcOutput()

Set inputs to KiteAeroDyn from Controller at t = 0 (see below for solution at t)

Set inputs to KiteAeroDyn from MBDyn at t = 0 (see below for solution at t)

Set inputs to InflowWind at t = 0 based on the KiteAeroDyn inputs (see below for solution at t)

Call InflowWind CalcOutput()

Set inputs to KiteAeroDyn from InflowWind at t = 0 (see below for solution at t)

Call KiteAeroDyn CalcOutput()

Transfer outputs from KiteAeroDyn to MBDyn at t = 0 (see below for solution at t)

Transfer outputs from MoorDyn to MBDyn at t = 0 (see below for solution at t)

Model the rotor/drivetrain dynamics, including the effects from the Controller and KiteAeroDyn, and calculate

the reaction loads on the pylons for transfer to MBDyn at t = 0 (see below for solution at t)

Initialize the states not previously initialized:

NewTime = TRUE

Open and write a summary file (if SumPrint = TRUE)

KiteFASTMBD Summary File

Predictions were generated on DATE at TIME using KiteFASTMBD (VERSION, DATE)

compiled with

NWTC Subroutine Library (VERSION, DATE)

KiteAeroDyn (VERSION, DATE)

InflowWind (VERSION, DATE) for OpenFAST (VERSION DATE)

MoorDyn (VERSION, DATE)

Controller Wrapper (VERSION, DATE)

Controller (VERSION, DATE)

MBDyn (VERSION, DATE)

Description from the MDyn input file: TITLE

Reference Points, MBDyn Finite-Element Nodes, and MBDyn Gauss Points

Component	Туре	Number	Output Number
<u>x y z</u>			
(-)	(-)	(-)	(-)
(m) (m) (m)			
Fuselage	Reference point	_	_
0 0 0	•		

Commented [JJ14]: The mesh-mapping routines can only handle one source and one destination mesh. To do this mapping the MBDyn meshes for the starboard and port wings (SWn and PWn) have to be copied into a single mesh using a one-to-one transfer of reference positions, reference orientations, and fields (which I label as Wn in the mesh-mappings below).

 $\textbf{Deleted:} \ Transfer \ outputs \ from \ the \ Controller$

Commented [JJ15]: Do we need to do this here to calculate WriteOutputs at initialization and to set initial loads from MBDyn?

Commented [JJ16]: SumPrint must be queried from the MBDyn model

Commented [JJ17]: I'm only hand waving here because the implementation should be obvious (similar to other OpenFAST summary files)

Commented [JJ18]: The controller version will have to be an initialization output to write this.

Commented [JJ19]: Probably not needed if TITLE is not easily accessible within the MBDyn user element.

```
Fus\langle\beta\rangle for FusOutNd[\beta] = j
Fuselage
                                                    Finite-element node j
                                                                                                                   otherwise
    ^{MBD} \vec{p}_{j}^{\it FusR}
Fuselage
                                                                                                                   otherwise
Starboard wing
                                                    Reference point
    \vec{p}^{SWnOR}
                                                                                              SWn\langle\beta\rangle for SWnOutNd[\beta]=j
Starboard wing
                                                    Finite-element node j
                                                                                                                   otherwise
    ^{MBD} \vec{p}_{j}^{SWnR}
                                                                                              SWn\langle\beta\rangle for (SWnOutNd[\beta]=j)
Starboard wing
                                                                       otherwise
    ^{KAD} \vec{p}^{PWnOR}
                                                                                             PWn\langle \beta \rangle for PWnOutNd[\beta] = j
Port wing
                                                                                                                   otherwise
    ^{MBD} \vec{p}_{j}^{PWnR}
                                                                                              PWn\langle\beta\rangle for (PWnOutNd[\beta] = j)
Port wing
                                                    Gauss point
                                                                       otherwise
                                                    Reference point
Vertical stabilizer
    ^{KAD} \vec{p}^{VSOR}
```

$$\begin{array}{c} \text{Vertical stabilizer} & \text{Finite-element node} \quad \underline{j} \\ -\frac{MBD}{p_{j}^{ISR}} \\ \text{Vertical stabilizer} & \text{Gauss point} \quad \underline{j} \\ -\frac{NS(\beta)}{3} \quad for (VSOutNd[\beta] = j) \\ -\frac{NS(\beta)}{3} \quad for (VSOutNd[\beta] = j) \\ -\frac{NS(\beta)}{3} \quad for (VSOutNd[\beta] = j) \\ -\frac{NBD}{3} \quad for (NOd(j,2) = l) \\ -\frac{NBD}{3} \quad for (NBOutNd[\beta] = j) \\ -\frac{$$

```
Starboard pylon n<sub>Pylons</sub>
                                                                                      Reference point
   \underline{\phantom{a}}^{KAD} \vec{p}^{SPyOR} \left[ \overline{n_{Pylons}} \right]
                                                                                                                                                       \begin{cases} SP \langle n_{Pylons} \rangle \langle \beta \rangle & for (PylOutNd[\beta] = j) \\ - & otherwise \end{cases}
Starboard pylon n<sub>Pylons</sub>
\underline{\phantom{a}}^{MBD} \vec{p}_{j}^{SPyR} \left[ n_{Pylons} \right]
Starboard pylon n<sub>Pylons</sub>
        \left[\left(1 - \frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j}^{SPyR}\left[n_{Pylons}\right] + \left(\frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j}^{SPyR}\left[n_{Pylons}\right] \quad for\left(Mod\left(j,2\right) = 1\right)\right]
          \left[ \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{SPyR} \left[ n_{Pylons} \right] + \left( I - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{SPyR} \left[ n_{Pylons} \right] \right]
Port pylon n<sub>Pylons</sub>
                                                                                     Reference point
       \begin{bmatrix} E^{KAD} \vec{p}^{PPyOR} \begin{bmatrix} n_{Pylons} \end{bmatrix}
Port pylon n<sub>Pylons</sub>
\underline{\phantom{a}}^{MBD}\vec{p}_{j}^{PPyR} [n_{Pylons}]
Port pylon n<sub>Pylons</sub>
        \left[\left(1 - \frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j}^{PPyR}\left[n_{Pylons}\right] + \left(\frac{\sqrt{3}}{3}\right)^{MBD}\vec{p}_{j}^{PPyR}\left[n_{Pylons}\right] \quad for\left(Mod\left(j,2\right) = 1\right)\right]
         \left[ \left( \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{PPyR} \left[ n_{Pylons} \right] + \left( 1 - \frac{\sqrt{3}}{3} \right)^{MBD} \vec{p}_{j}^{PPyR} \left[ n_{Pylons} \right]  otherwise
Top rotor on starboard pylon n_{Pylons} Reference point
    oxedsymbol{oxed{L}}^{\mathit{KAD}} ec{p}^{\mathit{SPyRtrR}} igg[ n_{\mathit{Pylons}} , 1 igg]
Bottom rotor on starboard pylon n<sub>Pylons</sub> Reference point
       [KAD \ \vec{p}^{SPyRtrR} \ [n_{Pylons}, 2]]
Top rotor on port pylon n_{Pylons}
                                                                                      Reference point
  Bottom rotor on port pylon n_{Pylons}
                                                                              Reference point
       \begin{bmatrix} {}^{KAD}\vec{p}^{PPyRtrR} \begin{bmatrix} n_{Pylons}, 2 \end{bmatrix}
Time Step (s): \Delta t
```

Commented [JJ20]: All time steps are the same. Is there a reason to allow for other time step of modules or output?

Deleted: Kite Mass, Center of Mass, and Inertia¶

Requested Channels in KiteFASTMBD Output Files: NUMBER

MILIMADED	NUMBER	LIMITEC	(IZ'A EACTMDD	TZ 14
0	Time	(s)	KiteFASTMBD	
Number	Name	Units	Generated by	

NUMBER NAME UNITS (KiteFASTMBD, KiteAeroDyn, InflowWind, MoorDyn, or Controller Wrapper)

Deconstructor

This routine ends KiteFASTMBD:

- Calls module End routines
- · Deallocates memory
- · Closes the write output file

AssRes

This routine accesses inputs at both t (from GetXPrev) and $t + \Delta t$ (from GetXCur) for both the prediction and correction steps of each MBD time step, temporarily updates states from t to $t + \Delta t$, and calculates outputs at $t + \Delta t$:

- Calls module UpdateStates routines
- Calls module CalcOutput routines

Set the discrete-time counter:

$$n = \frac{t}{\Delta t}$$

Query the MBDyn model to access the inputs at both t (from GetXPrev) and $t + \Delta t$ (from GetXCur).

Calculate the translation displacements (relative) of the MBDyn input meshes at t and $t + \Delta t$:

Advance the controller only once per time step, obtaining the controller outputs at $t + \Delta t$:

IF (NewTime) THEN

• Set inputs to Controller at t:

Commented [JJ21]: Technically, we only need the MBDyn inputs for MoorDyn (i.e. the wing deformation) and the controller at t.

Ensure that we only call the controller once per time step:

NewTime = FALSE

END

Store a copy of the current states at t:

$$| {}^{MD}_{KAD} x^{Copy} = {}^{MD}_{X} x$$

$$| {}^{KAD}_{Z} z^{Copy} = {}^{KAD}_{Z} z$$

Set inputs to MoorDyn at both t and $t + \Delta t$ from MBDyn:

$$^{MD}PtFairleadDisplacement = M_{u}^{L2P} \left(^{MBD} \vec{u}_{j}^{\textit{Wn}}, ^{\textit{MBD}} A_{j}^{\textit{Wn}} \right)$$

Advance MoorDyn:

Call MoorDyn_UpdateStates()

Call MoorDyn_CalcOutput()

Set inputs to KiteAeroDyn from Controller at $t + \Delta t$

timputs to KiteAeroDyn from Controller at
$$t + 2t$$
:
$${}^{KAD}Ctrl^{SFlp} \left[n_{Flaps} \right] = \begin{cases} {}^{Ctrl}kFlapA5 & for\left(n_{Flaps} = 1\right) \\ {}^{Ctrl}kFlapA7 & for\left(n_{Flaps} = 2\right) \\ {}^{Ctrl}kFlapA8 & for\left(n_{Flaps} = 3\right) \end{cases}$$

Commented [JJ22]: All filtered values (f) are identical to the

Commented [JJ23]: We are approximating this input to the controller as the vector sum of the fairlead tensions

Deleted: $^{Ctrl}tether_force_b =$

Commented [JJ25]: These were added to the original controller inputs so that the controller could calculate the rotor/drivetrain acceleration and resulting generator speed and torque.

We should also ensure that the controller is using the same rotor/drivetrain rotational inertia.

We still need to confirm the sign of the rotor speeds, aerodynamic torques, and generator torques

Commented [JJ26]: Use these MiscVars in the calls to MoorDyn and KiteAeroDyn UpdateStates and CalcOutput below rather than the actual states.

Commented [JJ27]: See earlier comment about mesh mapping

Commented [JJ28]: Input the time at t+dt in this call.

$${}^{KAD}Ctrl^{PFlp} \left[n_{Flaps} \right] = \begin{cases} {}^{Ctrl}kFlapA4 & for \left(n_{Flaps} = 1 \right) \\ {}^{Ctrl}kFlapA2 & for \left(n_{Flaps} = 2 \right) \\ {}^{Ctrl}kFlapA1 & for \left(n_{Flaps} = 3 \right) \end{cases}$$

$${}^{KAD}Ctrl^{Rudr} \left[n_{2} \right] = {}^{Ctrl}kFlapA10 \\ {}^{KAD}Ctrl^{SElv} \left[n_{2} \right] = {}^{Ctrl}kFlapA9 \\ {}^{KAD}Ctrl^{PElv} \left[n_{2} \right] = {}^{Ctrl}kFlapA9 \\ {}^{KAD}Ctrl^{PElv} \left[n_{2} \right] = {}^{Ctrl}kFlapA9 \\ {}^{KAD}\Omega^{SPyRtr} \left[n_{Pylons}, n_{2} \right] = {}^{Ctrl}\Omega^{SPyRtr} \left[n_{Pylons}, n_{2} \right] \\ {}^{KAD}\Omega^{PPyRtr} \left[n_{Pylons}, n_{2} \right] = {}^{Ctrl}\Omega^{PPyRtr} \left[n_{Pylons}, n_{2} \right] \\ {}^{KAD}\theta^{SPyRtr} \left[n_{Pylons}, n_{2} \right] = 0 \\ {}^{KAD}\theta^{PPyRtr} \left[n_{Pylons}, n_{2} \right] = 0$$

Set inputs to KiteAeroDyn from MBDyn at
$$t + \Delta t$$
 based on mesh-mapping:
$$\frac{KAD}{u}^{FusO} = \frac{MBD}{p}^{FusO}$$

$$\frac{KAD}{u}^{Fus} = M_u^{L2L} \left(\frac{MBD}{u} u_j^{Fus}, \frac{MBD}{u} \Lambda_j^{Fus} \right)$$

$$\frac{KAD}{v}^{Fus} = M_u^{L2L} \left(\frac{MBD}{v} \Lambda_j^{Fus}, \frac{MBD}{v} u_j^{Fus}, \frac{MBD}{v} v_j^{Fus}, \frac{MBD}{v} v_j^{Fus} \right)$$

$$\frac{KAD}{v}^{Fus} = M_v^{L2L} \left(\frac{KAD}{v} u_j^{Fus}, \frac{MBD}{v} u_j^{Fus}, \frac{MBD}{v} v_j^{Fus}, \frac{MBD}{v} v_j^{Fus} \right)$$

$$\frac{KAD}{v}^{SWn} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{SWn}, \frac{MBD}{v} u_j^{SWn}, \frac{MBD}{v} v_j^{SWn}, \frac{MBD}{v} v_j^{SWn}, \frac{MBD}{v} v_j^{SWn}, \frac{MBD}{v} v_j^{SWn} \right)$$

$$\frac{KAD}{v}^{SWn} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{EWn}, \frac{MBD}{v} u_j^{EWn}, \frac{MBD}{v} v_j^{EWn}, \frac{MBD}{v} v_j^{EWn}, \frac{MBD}{v} v_j^{EWn}, \frac{MBD}{v} v_j^{EWn} \right)$$

$$\frac{KAD}{v}^{PWn} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{FWn}, \frac{MBD}{v} u_j^{FWn}, \frac{MBD}{v} v_j^{FWn}, \frac{MBD}{v} v_j^{FWn}, \frac{MBD}{v} v_j^{FWn} \right)$$

$$\frac{KAD}{v}^{VS} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{VS}, \frac{MBD}{v} u_j^{VS}, \frac{MBD}{v} v_j^{VS}, \frac{MBD}{v} v_j^{VS}, \frac{MBD}{v} v_j^{VS} \right)$$

$$\frac{KAD}{v}^{VS} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{FWn}, \frac{MBD}{v} u_j^{FWn}, \frac{MBD}{v} v_j^{FWn}, \frac{MBD}{v} v_j^{FWn} \right)$$

$$\frac{KAD}{v}^{SHS} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{SHS}, \frac{MBD}{v} u_j^{SHS}, \frac{MBD}{v} v_j^{FWn}, \frac{MBD}{v} v_j^{FWn} \right)$$

$$\frac{KAD}{v}^{SHS} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{SHS}, \frac{MBD}{v} u_j^{SHS}, \frac{MBD}{v} v_j^{SHS}, \frac{MBD}{v} v_j^{SHS}, \frac{MBD}{v} v_j^{SHS}, \frac{MBD}{v} v_j^{SHS} \right)$$

$$\frac{KAD}{v}^{SHS} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{SHS}, \frac{MBD}{v} u_j^{SHS}, \frac{MBD}{v} v_j^{SHS}, \frac{MBD}{v} v_j^{SHS}, \frac{MBD}{v} v_j^{SHS}, \frac{MBD}{v} v_j^{SHS} \right)$$

$$\frac{KAD}{v}^{PHS} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{PHS}, \frac{MBD}{v} u_j^{FHS} \right)$$

$$\frac{KAD}{v}^{PHS} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{PHS}, \frac{MBD}{v} u_j^{FHS} \right)$$

$$\frac{KAD}{v}^{PHS} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{PHS}, \frac{MBD}{v} u_j^{FHS} \right)$$

$$\frac{KAD}{v}^{PHS} = M_u^{L2L} \left(\frac{MBD}{v} u_j^{PHS}, \frac{MBD}{v} u_j^{FHS} \right)$$

Commented [JJ29]: Different controller documentation use kFlapRud in place of kFlapA10

Commented [JJ30]: Different controller documentation use kFlapEle in place of kFlapA9

Commented [JJ31]: These were added to the original controller outputs so that the controller could calculate the rotor/drivetrain acceleration and resulting generator speed and torque.

Deleted: ¶

Commented [JJ32]: The rotor-collective pitch angles are not currently commanded from the controller; assume zero for now.

Commented [JJ33]: You could use P2P mappings here, but there is no point, because the reference (0,0,0) is the same in both KiteAeroDyn and MBDyn.

$$\begin{split} &^{KAD} \vec{v}_{j}^{PHS} = M_{v}^{L2L} \left({^{KAD} \vec{u}_{j}^{PHS}}, {^{MBD} \vec{u}_{j}^{PHS}}, {^{MBD} \vec{v}_{j}^{PHS}}, {^{MBD} \vec{o}_{j}^{PHS}}, {^{MBD} \vec{o}_{j}^{PHS}} \right) \\ &^{KAD} \vec{u}_{j}^{SPy} \left[n_{Pylons} \right] = M_{u}^{L2L} \left({^{MBD} \vec{u}_{j}^{SPy} \left[n_{Pylons} \right]} \right) \\ &^{KAD} A_{j}^{SPy} \left[n_{Pylons} \right] = M_{A}^{L2L} \left({^{MBD} A_{j}^{SPy} \left[n_{Pylons} \right]} \right) \\ &^{KAD} \vec{v}_{j}^{SPy} \left[n_{Pylons} \right] = M_{v}^{L2L} \left({^{KAD} \vec{u}_{j}^{SPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{u}_{j}^{SPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{v}_{j}^{SPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{v}_{j}^{SPy} \left[n_{Pylons} \right]}, \\ &^{KAD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right] = M_{u}^{L2L} \left({^{MBD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} A_{j}^{PPy} \left[n_{Pylons} \right]} \right) \\ &^{KAD} A_{j}^{PPy} \left[n_{Pylons} \right] = M_{u}^{L2L} \left({^{MBD} A_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{v}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{v}_{j}^{PPy} \left[n_{Pylons} \right]}, \\ &^{KAD} \vec{v}_{j}^{PPy} \left[n_{Pylons} \right] = M_{u}^{L2L} \left({^{KAD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{u}_{j}^{PPy} \left[n_{Pylons} \right]}, {^{MBD} \vec{v}_{j}^{PPy} \left[n_{Pylons} \right]}, \\ &^{KAD} \vec{v}_{j}^{SPyRtr} \left[n_{Pylons}, n_{2} \right] = {^{MBD} \vec{u}_{j}^{SPyRtr} \left[n_{Pylons}, n_{2} \right]}, {^{KAD} \vec{v}_{j}^{SPyRtr} \left[n_{Pylons}, n_{2} \right]}, {^{MBD} \vec{v}_{j}^{SPyRtr} \left[n_{Pylons}, n_{2} \right]}, {^{KAD} \vec{v}_{j}^{SPyRtr} \left[n_{Pylons}, n_{2} \right]}, {^{MBD} \vec{v}_{j}^{SPyRtr} \left[n_{Pylons}, n_{2} \right]}, {$$

Set inputs to InflowWind at $t + \Delta t$ based on the KiteAeroDyn inputs:

$$I_{jlW} PositionXYZ (:, 1) = {}^{MBD} \vec{p}^{Wind}$$

$$I_{jlW} PositionXYZ (:, 2) = {}^{MBD} \vec{p}^{FusO}$$

$$I_{jlW} PositionXYZ (:, j + 2) = {}^{KAD} I_{ll} \vec{p}^{FusR} + {}^{KAD} \vec{u}^{Fus}_{j}$$
 (for $j = \{1, 2, ..., {}^{KAD} NumFusNds \}$)
$$I_{jlW} PositionXYZ (:, j + 2) + {}^{KAD} NumFusNds$$

$$+ {}^{KAD} NumFusNds + {}^{KAD} NumFusNds$$

$$+ {}^{KAD} NumFusNds + {}^{KAD} NumFusNds + {}^{KAD} NumSWnNds$$

$$+ {}^{KAD} NumSWnNds + {}^{KAD} NumFusNds + {}^{KAD} NumSWnNds + {}^{KAD} NumSWnNds + {}^{KAD} NumSWnNds + {}^{KAD} NumSWnNds + {}^{KAD} NumPWnNds + {}^{KAD} NumPWnNds + {}^{KAD} NumPWnNds + {}^{KAD} NumFusNds + {}^{KAD} NumSWnNds + {}^{KAD} Nu$$

Commented [JJ34]: You could use P2P mappings here, but there is no point, because the references are the same in both KiteAeroDyn and MBDyn.

Deleted:
$$^{KAD}\Omega^{SPyRtr} \left[n_{Pylons}, n_2 \right] = {^{MBD}\Omega^{SPyRtr}} \left[n_{Pylons}, n_2 \right] = {^{MBD}\Omega^{SPyR$$

Commented [JJ35]: You could use P2P mappings here, but there is no point, because the references are the same in both KiteAeroDyn and MBDyn.

```
+ KAD NumFusNds
                                + KAD NumSWnNds
                                                                    = {^{\text{KAD}} \text{In}} \vec{p}_{j}^{PHSR} + {^{\text{KAD}}} \vec{u}_{j}^{PHS} \text{ (for } j = \left\{1, 2, \dots, {^{\text{KAD}}} NumPHSNds\right\})
IfW PositionXYZ
                                + KAD NumPWnNds
                                 + KAD NumVSNds
                                 + KAD NumSHSNds
                   (:, j+2)
                       + KAD NumFusNds
                                                                                                           (for j = \{1, 2, ..., {}^{KAD}NumPylNds\})
                       + KAD NumSWnNds
                       +\ ^{\mathit{KAD}} NumPWnNds
<sup>IfW</sup> PositionXYZ
                       + KAD Num VSNds
                       + KAD NumSHSNds
                        + {}^{KAD}NumPylNds(n_{Pylons})
                     i, j + 2
                       + KAD NumFusNds
                                                                                                           (for j = \{1, 2, \dots, {}^{KAD}NumPylNds\})
                       + KAD NumSWnNds
                       +\ ^{\mathit{KAD}} \mathit{NumPWnNds}
                      + KAD NumVSNds
<sup>IfW</sup> PositionXYZ
                                                             = \stackrel{\text{\tiny KAD}}{p_j} \stackrel{PPyR}{[} n_{Pylons} ] + \stackrel{KAD}{u_j} \stackrel{PPy}{[} n_{Pylons} ]
                       +\ ^{\mathit{KAD}} \mathit{NumSHSNds}
                       +\ ^{\mathit{KAD}} NumPHSNds
                       +\ ^{\mathit{KAD}} NumPylNds\left(N_{\mathit{Pylons}}\right)
                        + \frac{KAD}{NumPylNds} (n_{Pylons} - 1)
                            \left(\vdots, n_2 + 2\right)
                                 + KAD NumFusNds
                                 + KAD NumSWnNds
                                  + KAD NumPWnNds
                                                                                    = {^{KAD}}\vec{p}_{j}^{SPyRtrR} \left[ n_{Pylons}, n_{2} \right] + {^{KAD}}\vec{u}^{SPyRtr} \left[ n_{Pylons}, n_{2} \right] 
                                 + KAD Num VSNds
IfW PositionXYZ
                                  + {}^{KAD}NumSHSNds
                                 + {^{KAD}}NumPHSNds 
+ {^{KAD}}NumPylNds (2N_{Pylons}) 
+ 2(n_{Pylons} - 1)
```

$$\begin{bmatrix} \vdots, n_{2} + 2 \\ + {}^{KAD}NumFusNds \\ + {}^{KAD}NumSWnNds \\ + {}^{KAD}NumPWnNds \\ + {}^{KAD}NumVSNds \\ + {}^{KAD}NumSHSNds \\ + {}^{KAD}NumSHSNds \\ + {}^{KAD}NumPHSNds \\ + {}^{KAD}NumPHSNds \\ + {}^{KAD}NumPylNds \left(2N_{Pylons}\right) \\ + 2\left(N_{Pylons}\right) \\ + 2\left(n_{Pylons} - 1\right) \end{bmatrix} = {}^{KAD}\vec{p}^{PPyRtrR} \left[n_{Pylons}, n_{2}\right] + {}^{KAD}\vec{u}^{PPyRtr} \left[n_{Pylons}, n_{2}\right]$$

Call InflowWind CalcOutput()

Set inputs to KiteAeroDyn from InflowWind at $t + \Delta t$:

$$\begin{split} & \overset{KAD}{V}_{j}^{Fus} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumFusNds \right\}) \\ & \overset{KAD}{V}_{j}^{SWn} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumSWnNds \right\}) \\ & \overset{KAD}{V}_{j}^{Fus} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumSWnNds \right\}) \\ & \overset{KAD}{V}_{j}^{VS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumPWnNds \right\}) \\ & \overset{KAD}{V}_{j}^{VS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumVSNds \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumVSNds \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumVSNds \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumSHSNds \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumSHSNds \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumVSNds \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumVSNds \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumVSNds \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumVSNdS \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumVSNdS \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \text{ (for } j = \left\{ 1, 2, \ldots, {}^{KAD}NumVSNdS \right\}) \\ & \overset{KAD}{V}_{j}^{SHS} = \overset{IJW}{V} Velocity UVW \left(:, j+2 \right) & \overset{KAD}{V}_{j}^{SHS} & \overset{KAD}{V}$$

Commented [JJ36]: Input the time at t+dt in this call.

```
+ KAD NumFusNds
+ KAD NumSWnNds
+ KAD NumPWnNds
\vec{V}_{j}^{PHS} = \vec{V}^{W} Velocity UVW
                                                                                                  (for j = \{1, 2, \dots, {}^{KAD}NumPHSNds\})
                                                   + KAD Num VSNds
                                                   + KAD NumSHSNds
                                                  (:, j+2)
                                                       +\ ^{\mathit{KAD}} NumFusNds
                                                       +\ ^{\mathit{KAD}} NumSWnNds
                                                                                                  (for j = \{1, 2, ..., {}^{KAD}NumPylNds\})
                                                       + {}^{KAD}NumPWnNds
^{\mathit{KAD}} \vec{V}_{j}^{\mathit{SPy}} \left[ n_{\mathit{Pylons}} \right] = {}^{\mathit{IfW}} \mathit{VelocityUVW}
                                                       +\ ^{\mathit{KAD}}\mathit{NumVSNds}
                                                       + KAD NumSHSNds
                                                       + KAD NumPHSNds
                                                       + {}^{KAD}NumPylNds(n_{Pylons} - 1)
                                                    i, j + 2
                                                       + KAD NumFusNds
                                                       + KAD NumSWnNds
                                                       +\ ^{\mathit{KAD}} NumPWnNds
                                                                                                  (for j = \{1, 2, ..., {}^{KAD}NumPylNds\})
^{KAD}\vec{V}_{j}^{PPy}\left[n_{Pylons}\right] = {}^{lfW}VelocityUVW
                                                       + KAD NumVSNds
                                                       +\ ^{\mathit{KAD}} \mathit{NumSHSNds}
                                                        + KAD NumPHSNds
                                                       + \ ^{\mathit{KAD}} NumPylNds \Big( N_{\mathit{Pylons}} \Big)
                                                       + \left.^{\mathit{KAD}} NumPylNds \left( n_{\mathit{Pylons}} - 1 \right) \right)
                                                                        + KAD NumFusNds
                                                                        + KAD NumSWnNds
                                                                        + {}^{KAD}NumPWnNds
^{\mathit{KAD}}\vec{V}^{\mathit{SPyRtr}}\Big[\,n_{\mathit{Pylons}}\,,n_{2}\,\Big] = \,^{\mathit{IfW}}\mathit{Velocity}\,\mathit{UVW}
                                                                        + KAD NumVSNds
                                                                        + KAD NumSHSNds
                                                                        + KAD NumPHSNds
                                                                      + {}^{KAD}NumPylNds(2N_{Pylons})
+ 2(n_{Pylons} - I)
```

$$\begin{pmatrix} \vdots, n_{2} + 2 \\ + {}^{KAD}NumFusNds \\ + {}^{KAD}NumSWnNds \\ + {}^{KAD}NumPWnNds \\ + {}^{KAD}NumVSNds \\ + {}^{KAD}NumVSNds \\ + {}^{KAD}NumSHSNds \\ + {}^{KAD}NumSHSNds \\ + {}^{KAD}NumPHSNds \\ + {}^{KAD}NumPHSNds \\ + {}^{KAD}NumPylNds \left(2N_{Pylons}\right) \\ + 2\left(N_{Pylons}\right) \\ + 2\left(N_{Pylons} - 1\right)$$

Copy KiteAeroDyn inputs at $t + \Delta t$ to t (for KiteAeroDyn_UpdateStates)

Advance KiteAeroDyn:

Call KiteAeroDyn_UpdateStates()
Call KiteAeroDyn_CalcOutput()

Transfer outputs from KiteAeroDyn to MBDyn at $t + \Delta t$:

$$\begin{split} ^{MBD}\vec{F}_{j}^{Fus} &= M_{F}^{P2P} \left(^{KAD}\vec{F}_{j}^{Fus} \right) \\ ^{MBD}\vec{M}_{j}^{Fus} &= M_{M}^{P2P} \left(^{MBD}\vec{u}_{j}^{Fus}, ^{KAD}Out\vec{u}_{j}^{Fus}, ^{KAD}\vec{F}_{j}^{Fus}, ^{KAD}\vec{M}_{j}^{Fus} \right) \\ ^{MBD}\vec{F}_{j}^{SWn} &= M_{F}^{P2P} \left(^{KAD}\vec{F}_{j}^{SWn} \right) \\ ^{MBD}\vec{M}_{j}^{SWn} &= M_{M}^{P2P} \left(^{MBD}\vec{u}_{j}^{SWn}, ^{KAD}Out\vec{u}_{j}^{SWn}, ^{KAD}\vec{F}_{j}^{SWn}, ^{KAD}\vec{M}_{j}^{SWn} \right) \\ ^{MBD}\vec{M}_{j}^{SWn} &= M_{M}^{P2P} \left(^{MBD}\vec{u}_{j}^{PWn}, ^{KAD}Out\vec{u}_{j}^{PWn}, ^{KAD}\vec{F}_{j}^{PWn}, ^{KAD}\vec{M}_{j}^{PWn} \right) \\ ^{MBD}\vec{M}_{j}^{PWn} &= M_{M}^{P2P} \left(^{MBD}\vec{u}_{j}^{PWn}, ^{KAD}Out\vec{u}_{j}^{PWn}, ^{KAD}\vec{F}_{j}^{PWn}, ^{KAD}\vec{M}_{j}^{PWn} \right) \\ ^{MBD}\vec{F}_{j}^{VS} &= M_{F}^{P2P} \left(^{MBD}\vec{u}_{j}^{VS}, ^{KAD}Out\vec{u}_{j}^{VS}, ^{KAD}\vec{F}_{j}^{VS}, ^{KAD}\vec{M}_{j}^{VS} \right) \\ ^{MBD}\vec{K}_{j}^{SHS} &= M_{F}^{P2P} \left(^{KAD}\vec{F}_{j}^{SHS} \right) \\ ^{MBD}\vec{M}_{j}^{SHS} &= M_{F}^{P2P} \left(^{MBD}\vec{u}_{j}^{SHS}, ^{KAD}Out\vec{u}_{j}^{SHS}, ^{KAD}\vec{F}_{j}^{SHS}, ^{KAD}\vec{M}_{j}^{SHS} \right) \\ ^{MBD}\vec{K}_{j}^{PHS} &= M_{F}^{P2P} \left(^{MBD}\vec{u}_{j}^{SHS}, ^{KAD}Out\vec{u}_{j}^{PHS}, ^{KAD}\vec{F}_{j}^{SHS}, ^{KAD}\vec{M}_{j}^{PHS} \right) \\ ^{MBD}\vec{K}_{j}^{PHS} &= M_{M}^{P2P} \left(^{MBD}\vec{u}_{j}^{PHS}, ^{KAD}Out\vec{u}_{j}^{PHS}, ^{KAD}\vec{F}_{j}^{PHS}, ^{KAD}\vec{M}_{j}^{PHS} \right) \\ ^{MBD}\vec{K}_{j}^{SPY} \left[n_{Pylons} \right] &= M_{F}^{P2P} \left(^{MBD}\vec{u}_{j}^{SPY} \left[n_{Pylons} \right], ^{KAD}\vec{K}_{j}^{SPY} \left[n_{Pylons} \right], ^{KAD}\vec{M}_{j}^{SPY} \left$$

Commented [JJ37]: Input the time at t+dt in this call.

$$\begin{split} & ^{MBD}\vec{F}_{j}^{PPy}\Big[n_{Pylons}\Big] = M_{F}^{P2P}\left(^{KAD}\vec{F}_{j}^{PPy}\Big[n_{Pylons}\Big]\right) \\ & ^{MBD}\vec{M}_{j}^{PPy}\Big[n_{Pylons}\Big] = M_{M}^{P2P}\left(^{MBD}\vec{u}_{j}^{PPy}\Big[n_{Pylons}\Big], ^{KAD}out\vec{u}_{j}^{PPy}\Big[n_{Pylons}\Big], ^{KAD}\vec{F}_{j}^{PPy}\Big[n_{Pylons}\Big], ^{KAD}\vec{M}_{j}^{PPy}\Big[n_{Pylons}\Big] \end{split}$$

Transfer outputs from MoorDyn to MBDyn at $t + \Delta t$:

$$\begin{split} ^{MBD}\vec{F}_{j}^{SWn} &= {}^{MBD}\vec{F}_{j}^{SWn} + M_{F}^{P2P} \Big({}^{MD}PtFairleadLoad \Big) \\ ^{MBD}\vec{M}_{j}^{SWn} &= {}^{MBD}\vec{M}_{j}^{SWn} + M_{M}^{P2P} \Big({}^{MBD}\vec{u}_{j}^{SWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0} \Big) \\ ^{MBD}\vec{F}_{j}^{PWn} &= {}^{MBD}\vec{F}_{j}^{PWn} + M_{F}^{P2P} \Big({}^{MD}PtFairleadLoad \Big) \\ ^{MBD}\vec{M}_{j}^{PWn} &= {}^{MBD}\vec{M}_{j}^{PWn} + M_{F}^{P2P} \Big({}^{MBD}\vec{u}_{j}^{PWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0} \Big) \\ ^{MBD}\vec{M}_{j}^{PWn} &= {}^{MBD}\vec{M}_{j}^{PWn} + M_{M}^{P2P} \Big({}^{MBD}\vec{u}_{j}^{PWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0} \Big) \\ ^{MBD}\vec{M}_{j}^{PWn} &= {}^{MBD}\vec{M}_{j}^{PWn} + M_{M}^{P2P} \Big({}^{MBD}\vec{u}_{j}^{PWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0} \Big) \\ ^{MBD}\vec{M}_{j}^{PWn} &= {}^{MBD}\vec{M}_{j}^{PWn} + M_{M}^{P2P} \Big({}^{MBD}\vec{u}_{j}^{PWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0} \Big) \\ ^{MBD}\vec{M}_{j}^{PWn} &= {}^{MBD}\vec{M}_{j}^{PWn} + M_{M}^{P2P} \Big({}^{MBD}\vec{u}_{j}^{PWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0} \Big) \\ ^{MBD}\vec{M}_{j}^{PWn} &= {}^{MBD}\vec{M}_{j}^{PWn} + M_{M}^{P2P} \Big({}^{MBD}\vec{u}_{j}^{PWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0} \Big) \\ ^{MBD}\vec{M}_{j}^{PWn} &= {}^{MBD}\vec{M}_{j}^{PWn} + M_{M}^{P2P} \Big({}^{MBD}\vec{u}_{j}^{PWn}, {}^{MD}PtFairleadDisplacement, {}^{MD}PtFairleadLoad, \vec{0} \Big) \\ ^{MBD}\vec{M}_{j}^{PWn} &= {}^{MBD}\vec{M}_{j}^{PWn} + {}^{MD}\vec{M}_{j}^{PWn} + {}^{MD}\vec{M}_{j}^{P$$

Model the rotor/drivetrain dynamics, including the effects from the Controller and KiteAeroDyn, and calculate the reaction loads on the pylons for transfer to MBDyn at $t + \Delta t$:

where:
$$\begin{bmatrix} \text{Ctrl} T^{\text{GenSPyRtr}} \left[n_{\text{Pylons}}, n_2 \right] = \begin{cases} \text{Ctrl} Motor 7 & for \left(\left(n_{\text{Pylons}} = 1 \right) . AND. \left(n_2 = 1 \right) \right) \\ \text{Ctrl} Motor 2 & for \left(\left(n_{\text{Pylons}} = 1 \right) . AND. \left(n_2 = 2 \right) \right) \\ \text{Ctrl} Motor 8 & for \left(\left(n_{\text{Pylons}} = 2 \right) . AND. \left(n_2 = 1 \right) \right) \\ \text{Ctrl} Motor 1 & for \left(\left(n_{\text{Pylons}} = 2 \right) . AND. \left(n_2 = 2 \right) \right) \end{cases}$$

$$\begin{bmatrix} \text{Ctrl} Motor 6 & for \left(\left(n_{\text{Pylons}} = 1 \right) . AND. \left(n_2 = 1 \right) \right) \\ \text{Ctrl} Motor 3 & for \left(\left(n_{\text{Pylons}} = 1 \right) . AND. \left(n_2 = 2 \right) \right) \\ \text{Ctrl} Motor 5 & for \left(\left(n_{\text{Pylons}} = 2 \right) . AND. \left(n_2 = 1 \right) \right) \\ \text{Ctrl} Motor 4 & for \left(\left(n_{\text{Pylons}} = 2 \right) . AND. \left(n_2 = 2 \right) \right) \end{cases}$$

Private SUBROUTINES

$$\begin{bmatrix} \textbf{Deleted:} & ^{MBD}\vec{F}^{SPyRtr} \left[n_{Pylons}, n_2 \right] = {}^{KAD}\vec{F}^{SPyRtr} \left[n_{Pylons}, n_2 \right] \\ \P & \\ & ^{MBD}\vec{M}^{SPyRtr} \left[n_{Pylons}, n_2 \right] = {}^{KAD}\vec{M}^{SPyRtr} \left[n_{Pylons}, n_2 \right] \\ \P & \\ & ^{MBD}\vec{F}^{PPyRtr} \left[n_{Pylons}, n_2 \right] = {}^{KAD}\vec{F}^{PPyRtr} \left[n_{Pylons}, n_2 \right] \P \\ & ^{MBD}\vec{M}^{PPyRtr} \left[n_{Pylons}, n_2 \right] = {}^{KAD}\vec{M}^{PPyRtr} \left[n_{Pylons}, n_2 \right]$$

Commented [JJ38]: See earlier comment about mesh mapping with Wn above.

Deleted: Transfer outputs from

Deleted:

Commented [JJ39]: When this is updated, update the same line in the Constructor routine above

Formatted: Lowered by 8 pt

Commented [JJ41]: This math assumes the top node of the pylon is node 1 and that the pylons are numbered from inboard to outboard.

Rotor (SUBROUTINE Rotor)

Implements the structural dynamics of a rotor/drivetrain analytically to calculate the reaction loads (forces and moments) applied on the nacelle, including the applied aerodynamic loads, rotor inertial loads, rotor gyroscopic loads, etc. The analytical formulation assumes that the rotor/drivetrain is a rigid body rotating about the local x-axis of the nacelle coordinate system and that the structure is axisymmetric about this axis (with no imbalances) such that the calculations do not depend on the azimuth angle of the rotor. That is, for a body-fixed (x,y,z) coordinate system in the rotor/drivetrain, it is assumed that:

$$C^{M} y = C^{M} z = 0$$

$$I_{xy} = I_{yz} = I_{xz} = 0$$

$$I_{xx} = I^{Rot}$$

$$I_{yy} = I_{zz} = I^{Tran}$$

<u>Inputs</u>	Outputs	States	Parameters
■	Preaction forces applied on the nacelle at the rotor reference point expressed in the global inertial-frame coordinate system (N) Mreact reaction moments applied on the nacelle about the rotor reference point expressed in the global inertial-frame coordinate system (N·m)		
F Aero _ aerodynamic forces applied on the rotor at the rotor reference point expressed in the global inertial-frame coordinate system (N) M Aero _ aerodynamic moments applied on the rotor about the			

Commented [JJ42]: This is input in place of:

 $\dot{\mathcal{Q}}^{\it Rtr}$ – Rotor acceleration about the shaft axis (relative to the nacelle) (rad/s²)

rotor reference point		
expressed in the global		
inertial-frame		
coordinate system		
(N·m)		
$\underline{\bullet}$ \vec{g} – gravity vector		
expressed in the global		
inertial-frame		
coordinate system		
(m/s^2)		
• m _ rotor/drivetrain		
mass (kg)		
• I ^{Rot} - rotor/drivetrain		
rotational inertia about		
the shaft axis (kg·m²)		
$\bullet I^{Tran} - rotor/drivetrain$		
transverse inertia about		
the rotor reference		
point (kg·m²)		
\bullet CM x – distance along		
the shaft from the rotor		
reference point to the		
center of mass of the		
rotor/drivetrain		
(positive along positive		
v) (m)	Ì	

$$\frac{\text{Compute the inputs relative to the rotor/drivetrain CM and expressed in the local nacelle coordinate system:} {CM \vec{r} = \frac{CM}{x} \hat{x}^{Nac}} {\frac{CM}{I}^{Tran} = I^{Tran} - m^{CM} x^2}} {\frac{CM}{I}^{K}^{Aero}} {\frac{CM}{I}^{K}^{Aero}} = \Lambda^{Nac} \vec{F}^{Aero}} {\frac{CM}{I}^{K}^{Aero}}} = \Lambda^{Nac} \vec{F}^{Aero}} {\frac{CM}{I}^{M}} {\frac{Aero}{I}^{Aero}}} = \Lambda^{Nac} \left\{ \vec{M}^{Aero} - \frac{CM}{I} \vec{r} \times \vec{F}^{Aero} \right\}} {\frac{g_x}{g_y}} = \Lambda^{Nac} \vec{g}} {\frac{g_x}{g_z}} = \Lambda^{Nac} \vec{g}} {\frac{\vec{\sigma}^{Rtr} = \vec{\sigma}^{Nac} + \Omega^{Rtr} \hat{x}^{Nac}}{\frac{Rtr}{I}^{Rtr} = \vec{\sigma}^{Nac}}}$$

Commented [JJ43]: The equation implemented neglects the rotor acceleration about the shaft axis. The correct equation should be:

$$\vec{\alpha}^{Rtr} = \vec{\alpha}^{Nac} + \dot{\Omega}^{Rtr} \hat{x}^{Nac}$$

, but the rotor acceleration about the shaft axis is not needed because the generator torque is input instead.

$$\begin{split} & \left\{ \begin{matrix} \boldsymbol{\omega}_{x}^{Rtr} \\ \boldsymbol{\omega}_{y}^{Rtr} \\ \boldsymbol{\omega}_{z}^{Rtr} \end{matrix} \right\} = \boldsymbol{\Lambda}^{Nac} \boldsymbol{\vec{\omega}}^{Rtr} \\ & \left\{ \begin{matrix} \boldsymbol{\omega}_{x}^{Rtr} \\ \boldsymbol{\omega}_{z}^{Rtr} \end{matrix} \right\} = \boldsymbol{\Lambda}^{Nac} \left\{ \vec{a}^{Nac} + \vec{\alpha}^{Rtr} \times {}^{CM} \vec{r} + \vec{\omega}^{Rtr} \times \left\{ \vec{\omega}^{Rtr} \times {}^{CM} \vec{r} \right\} \right\} \\ & \left\{ \begin{matrix} \boldsymbol{\alpha}_{x}^{Rtr} \\ \boldsymbol{\alpha}_{z}^{Rtr} \\ \boldsymbol{\alpha}_{z}^{Rtr} \end{matrix} \right\} = \boldsymbol{\Lambda}^{Nac} \boldsymbol{\vec{\alpha}}^{Rtr} \end{split}$$

Compute the reaction loads applied to the rotor/drivetrain at the rotor/drivetrain CM and expressed in the local nacelle coordinate system:

$$\begin{cases} \binom{CM}{K} F_x^{React} \\ \binom{CM}{K} F_y^{React} \\ \binom{CM}{K} F_z^{React} \end{cases} = \begin{cases} -\binom{CM}{K} F_x^{Aero} - mg_x + m\binom{CM}{k} a_x^{Rir} \\ -\binom{CM}{K} F_y^{Aero} - mg_y + m\binom{CM}{k} a_z^{Rir} \\ -\binom{CM}{K} F_z^{Aero} - mg_z + m\binom{CM}{k} a_z^{Rir} \end{cases}$$

$$\begin{cases} {}^{CM}\boldsymbol{M}_{x}^{React} \\ {}^{CM}\boldsymbol{M}_{y}^{React} \\ {}^{CM}\boldsymbol{M}_{z}^{React} \end{cases} = \begin{cases} \boldsymbol{T}^{Gen} \\ -{}^{CM}\boldsymbol{M}_{y}^{Aero} + \boldsymbol{I}^{Rot}\boldsymbol{\alpha}_{y}^{Rtr} + \left(\boldsymbol{I}^{Rot} - {}^{CM}\boldsymbol{I}^{Tran}\right)\boldsymbol{\omega}_{z}^{Rtr}\boldsymbol{\omega}_{x}^{Rtr} \\ -{}^{CM}\boldsymbol{M}_{z}^{Aero} + \boldsymbol{I}^{Rot}\boldsymbol{\alpha}_{z}^{Rtr} - \left(\boldsymbol{I}^{Rot} - {}^{CM}\boldsymbol{I}^{Tran}\right)\boldsymbol{\omega}_{y}^{Rtr}\boldsymbol{\omega}_{x}^{Rtr} \end{cases}$$

Compute the reaction loads applied to the nacelle (this is equal, but opposite to the reaction loads applied to the rotor/drivetrain) at the rotor/drivetrain reference point and expressed in the global inertial frame coordinate system:

$$\vec{F}^{React} = - \left[A^{Nac} \right]^T \begin{cases} {}^{CM}F_x^{React} \\ {}^{CM}F_y^{React} \\ {}^{CM}F_z^{React} \end{cases}$$

$$\vec{M}^{React} = - \left[A^{Nac} \right]^T \left\{ \begin{matrix} {}^{CM}M_x^{React} \\ {}^{CM}M_y^{React} \\ {}^{CM}M_z^{React} \end{matrix} \right\} + {}^{CM}\vec{r} \times \vec{F}^{React}$$

AfterPredict 1 4 1

This routine updates the actual states based on the temporary states at the successful completion of time step $t + \Delta t$.

$$NewTime = TRUE$$
 $^{MD}x = {}^{MD}x^{Copy}$
 $^{KAD}z = {}^{KAD}z^{Copy}$

Output

Commented [JJ44]: The first equation should be:

$$^{CM}M_{x}^{React} = - ^{CM}M_{x}^{Aero} + I^{Rot}\alpha_{x}^{Rtr}$$

But this equals the equation implemented because the generator torque is input instead of the rotor acceleration about the shaft axis.

This routine is called at initialization (t = 0) and at the successful completion of time step $t + \Delta t$ to write output data to a file.

Calculate the KiteFASTMBD write outputs and write them to the output file, together with the module-level write output data currently stored in MiscVars.

This is a list of all possible output parameters available within the KiteFASTMBD (not including the module-level outputs available from KiteAeroDyn, InflowWind, MoorDyn, and the Controller). The names are grouped by meaning, but can be ordered in the OUTPUTS section of the KiteMBDyn Preprocessor input file as you see fit.

Fus β refers to output β on the fuselage, where β is a one-digit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the *FusOutNd* list. Setting $\beta \ge NFusOuts$ yields invalid output.

SWn β and PWn β refer to output β on the starboard and port wings, respectively, where β is a one-digit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the *SWnOutNd* and *PWnOutNd* lists, respectively. Setting $\beta > NSWnOuts$ and *NPWnOuts*, respectively, yields invalid output.

VSβ refers to output β on the vertical stabilizer, where β is a one-digit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the *VSOutNd* list. Setting $\beta > NVSOuts$ yields invalid output.

SHS β and PHS β refer to output β on the starboard and port horizontal stabilizers, respectively, where β is a onedigit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the SHSOutNd and PHSOutNd lists, respectively. Setting $\beta > NSHSOuts$ and NPHSOuts, respectively, yields invalid output.

SPα and PPα refer to pylon α on the starboard and port wings, respectively, where α is a one-digit number in the range [1,9]. SPαβ and PPαβ refer to output β on pylon α on the starboard and port wings, respectively, where α is a one-digit number in the range [1,9] and β is a one-digit number in the range [1,9] corresponding to the finite-element node for motions or Gauss point for loads identified by entry β in the *PylOutNd* list. Setting α \geq *NumPylons* or setting β > *NPylOuts* yields invalid output. If *NumPylons* > 9, only the first 9 pylons can be output.

For the fuselage, wings, vertical stabilizer, horizontal stabilizers, and pylons, the local structural coordinate system is used for output, where n is normal to the chord pointed toward the suction surface, c is along the chord pointed toward the trailing edge, and the spanwise (s) axis is directed into the airfoil following the right-hand rule i.e. $s = n \times c$.

Figure: Example member with 5 finite elements, 11 nodes (*), and 10 Gauss points (x) (each finite element in MBDyn has 2 end nodes, 1 middle node, and 2 Gauss points). The red circles identify the finite-element nodes where motions are output and Gauss points where loads are output when *NOuts* = 3 and *OutNd* = 3, 6, 10.

Channel Name(s)	<u>Unit(s)</u>	Description				
Fuselage						
FusβTDx, FusβTDy, FusβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections				
FusβRDx, FusβRDy, FusβRDz	(deg), (deg), (deg)	at Fusβ relative to the undeflected rigid-body				
		position/orientation in the kite coordinate system;				

Deleted: Write
Deleted: to the output file

Deleted: 1

Commented [JJ45]: The new OUTPUT section of the KiteMBDyn Preprocessor input file should look something like this:

True SumPrint Print summary data to <RootName>.sum? (flag)
"ES10.3E2" OutFmt Format used for text tabular output, excluding the time channel; resulting field should be 10 characters (string)

4 NFusOuts Number of fuselage outputs (-) [0 to 9]
2, 4, 6, 8 FusOutNd List of fuselage nodes/points whose values will be output (-) [1 to NFusOuts] [unused for NFusOuts=0]
4 NSWnOuts Number of starboard wing outputs (-)

[0 to 9]
2, 4, 6, 8 SWnOutNd List of starboard wing nodes/points whose values will be output (-) [1 to NSWnOuts] [unused for NSWnOuts=0]

4 NPWnOuts Number of port wing outputs (-) [0 to 9]
2, 4, 6, 8 PWnOutNd List of port wing nodes/points whose values will be output (-) [1 to NPWnOuts] [unused for

NPWnOuts=0]
2 NVSOuts Number of vertical stabilizer outputs (-) [0 to 9]

2, 4 VSOutNd List of vertical stabilizer nodes/points whose values will be output (-) [1 to NVSOuts] [unused for NVSOuts =0]

1 NSHSOuts Number of starboard horizontal stabilizer outputs (-) [0 to 9]
2 SHSOutNd List of starboard horizontal stab

2 SHSOutNd List of starboard horizontal stabilizer nodes/points whose values will be output (-) [1 to NSHSOuts] [unused for NSHSOuts=0] NPHSOuts Number of port horizontal stabilizer

outputs (-) [0 to 9]
2 PHSOutNd List of port horizontal stabilizer nodes/points whose values will be output (-) [1 to NPHSOuts | [unused for NPHSOuts=0]

2 NPylOuts Number of pylon outputs (-) [0 to 9]
2, 4 PylOutNd List of pylon nodes/points whose values will be output (-) [1 to NPylOuts] [unused for NPylOuts=0]
OutList The next line(s) contains a list of output parameters. See OutListParameters.xlsx for a listing of available

output channels (quoted string)
END of input file (the word "END" must appear in the first 3 columns of this last OutList line)

		41				
		the rotations are output as Euler angles in a x-y'-z'' (roll-pitch-yaw) rotation sequence				
FusβRVn, FusβRVc, FusβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at Fusβ				
ruspicvii, ruspicve, ruspicvs	(deg/s), (deg/s), (deg/s)	expressed in the local structural coordinate				
		system				
FusβTAn, FusβTAc, FusβTAs	$(m/s^2), (m/s^2), (m/s^2)$	Absolute translational acceleration at Fusβ				
	***************************************	expressed in the local structural coordinate				
		system (does not include gravity)				
FusβFRn, FusβFRc, FusβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at				
FusβMRn, FusβMRc, FusβMRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	Fusβ expressed in the local structural coordinate				
		system				
Starboard (Right) Wing						
SWnβTDx, SWnβTDy, SWnβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections				
SWnβRDx, SWnβRDy, SWnβRDz	(deg), (deg), (deg)	at SWnβ relative to the undeflected rigid-body				
		position/orientation in the kite coordinate system;				
		the rotations are output as Euler angles in a x-y'-				
		z'' (roll-pitch-yaw) rotation sequence				
SWnβRVn, SWnβRVc, SWnβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at SWnβ				
		expressed in the local structural coordinate				
		system				
SWnβTAn, SWnβTAc, SWnβTAs	$(m/s^2), (m/s^2), (m/s^2)$	Absolute translational acceleration at SWnβ				
		expressed in the local structural coordinate				
		system (does not include gravity)				
SWnβFRn, SWnβFRc, SWnβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at				
SWnβMRn, SWnβMRc, SWnβMRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	SWnβ expressed in the local structural coordinate				
		system				
Port (Left) Wing						
PWnβTDx, PWnβTDy, PWnβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections				
PWnβRDx, PWnβRDy, PWnβRDz	(deg), (deg), (deg)	at PWnß relative to the undeflected rigid-body				
		position/orientation in the kite coordinate system;				
		the rotations are output as Euler angles in a x-y'-				
		z'' (roll-pitch-yaw) rotation sequence				
PWnβRVn, PWnβRVc, PWnβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at PWnβ				
		expressed in the local structural coordinate				
		system				
PWnβTAn, PWnβTAc, PWnβTAs	$(m/s^2), (m/s^2), (m/s^2)$	Absolute translational acceleration at PWnβ				
		expressed in the local structural coordinate				
		system (does not include gravity)				
PWnβFRn, PWnβFRc, PWnβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at				
<u>PWnβMRn, PWnβMRc, PWnβMRs</u>	$(N \cdot m), (N \cdot m), (N \cdot m)$	PWnβ expressed in the local structural coordinate				
		<u>system</u>				
Vertical Stabilizer						
<u>VSβTDx, VSβTDy, VSβTDz,</u>	(m), (m), (m),	Translational and rotational (angular) deflections				
<u>VSβRDx, VSβRDy, VSβRDz</u>	(deg), (deg), (deg)	at VSβ relative to the undeflected rigid-body				
		position/orientation in the kite coordinate system;				
		the rotations are output as Euler angles in a x-y'-				
***************************************		z'' (roll-pitch-yaw) rotation sequence				
<u>VSβRVn, VSβRVc, VSβRVs</u>	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at VSβ				
		expressed in the local structural coordinate				
**************************************		system				
<u>VSβTAn, VSβTAc, VSβTAs</u>	$(m/s^2), (m/s^2), (m/s^2)$	Absolute translational acceleration at VSβ				
		expressed in the local structural coordinate				
		system (does not include gravity)				
VSβFRn, VSβFRc, VSβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at				
<u>VSβMRn, VSβMRc, VSβMRs</u>	$(N \cdot m), (N \cdot m), (N \cdot m)$	<u>VSβ</u> expressed in the local structural coordinate				

		cristam
C4l		system
Starboard (Right) Horizontal Stabilizer		T 10 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SHSβTDx, SHSβTDy, SHSβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections
SHSβRDx, SHSβRDy, SHSβRDz	(deg), (deg), (deg)	at SHSβ relative to the undeflected rigid-body
		position/orientation in the kite coordinate system;
		the rotations are output as Euler angles in a x-y'-
		z'' (roll-pitch-yaw) rotation sequence
SHSβRVn, SHSβRVc, SHSβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at SHSβ
	, , , , , , , , , , , , , , , , , , , ,	expressed in the local structural coordinate
		system
SHSβTAn, SHSβTAc, SHSβTAs	$(m/s^2), (m/s^2), (m/s^2)$	Absolute translational acceleration at SHSB
		expressed in the local structural coordinate
		system (does not include gravity)
SHSβFRn, SHSβFRc, SHSβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
SHS\$MRn, SHS\$MRc, SHS\$MRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	SHSβ expressed in the local structural coordinate
SHSpirikii, SHSpirike, SHSpiriks	(1V III), (1V III), (1V III)	
Don't (I of) Homometal Stabilia		system
Port (Left) Horizontal Stabilizer	() () ()	The sector of the first of the sector of the
PHSβTDx, PHSβTDy, PHSβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections
PHSβRDx, PHSβRDy, PHSβRDz	(deg), (deg), (deg)	at PHSβ relative to the undeflected rigid-body
		position/orientation in the kite coordinate system;
		the rotations are output as Euler angles in a x-y'-
		z" (roll-pitch-yaw) rotation sequence
PHSβRVn, PHSβRVc, PHSβRVs	(deg/s), (deg/s), (deg/s)	Absolute rotational (angular) velocity at PHSβ
		expressed in the local structural coordinate
		system
PHSβTAn, PHSβTAc, PHSβTAs	$(m/s^2), (m/s^2), (m/s^2)$	Absolute translational acceleration at PHSB
		expressed in the local structural coordinate
		system (does not include gravity)
PHSβFRn, PHSβFRc, PHSβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
PHSβMRn, PHSβMRc, PHSβMRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	PHSβ expressed in the local structural coordinate
1110 pivitei, 1110 pivite, 1110 pivites	(11 11), (11 11), (11 11)	system
Pylons		system
<u>Pytons</u> SPαβTDx, SPαβTDy, SPαβTDz,	(m), (m), (m),	Translational and rotational (angular) deflections
SPαβTDx, SPαβTDy, SPαβTDz, SPαβRDx, SPαβRDy, SPαβRDz,		at SP $\alpha\beta$ and PP $\alpha\beta$ relative to the undeflected
	(deg), (deg), (deg),	
ΡΡαβΤΟχ, ΡΡαβΤΟχ,	(m), (m), (m),	rigid-body position/orientation in the kite
PPαβRDx, PPαβRDy, PPαβRDz	(deg), (deg), (deg)	coordinate system; the rotations are output as
		Euler angles in a x-y'-z'' (roll-pitch-yaw) rotation
		sequence
SPαβRVn, SPαβRVc, SPαβRVs,	(deg/s), (deg/s), (deg/s),	Absolute rotational (angular) velocity at SPαβ
<u>PPαβRVn, PPαβRVc, PPαβRVs</u>	(deg/s), (deg/s), (deg/s)	and PPαβ expressed in the local structural
		coordinate system
SPαβTAn, SPαβTAc, SPαβTAs,	$(m/s^2), (m/s^2), (m/s^2),$	Absolute translational acceleration at SPαβ and
ΡΡαβΤΑη, ΡΡαβΤΑς, ΡΡαβΤΑς	$(m/s^2), (m/s^2), (m/s^2)$	PPαβ expressed in the local structural coordinate
•		system (does not include gravity)
SPαβFRn, SPαβFRc, SPαβFRs,	(N), (N), (N),	Shear force and bending moment reaction loads at
SPαβMRn, SPαβMRc, SPαβMRs,	$(N \cdot m), (N \cdot m), (N \cdot m),$	SPαβ and PPαβ expressed in the local structural
PPαβFRn, PPαβFRc, PPαβFRs,	(N), (N), (N),	coordinate system
PPαβMRn, PPαβMRc, PPαβMRs	$(N \cdot m), (N \cdot m), (N \cdot m)$	
Rotors	1-1	
SPαTRtSpd, SPαBRtSpd,	(rad/s), (rad/s),	Rotor speed of the top (T) and bottom (B) rotor
		on SP α and PP α (relative to the nacelle)
PPαTRtSpd, PPαBRtSpd	(rad/s), (rad/s)	
SPαTRtAcc, SPαBRtAcc,	(rad/s^2), (rad/s^2),	Rotor acceleration of the top (T) and bot Deleted
PPαTRtAcc, PPαBRtAcc	(rad/s^2), (rad/s^2)	rotor on SPα and PPα (relative to the nacelle)
Energy Kite		
KitePxi, KitePyi, KitePzi,	(m), (m), (m),	Translational position and rotational (angular)

-		
KiteRoll, KitePitch, KiteYaw	(deg), (deg), (deg)	orientation of the energy kite fuselage reference
		point in the global inertial-frame coordinate
		system; the rotations are output as Euler angles in
		a X-Y'-Z'' (roll-pitch-yaw) rotation sequence
KiteTVx, KiteTVy, KiteTVz,	(m/s), (m/s), (m/s),	Absolute translational and rotational (angular)
KiteRVx, KiteRVy, KiteRVz	(deg/s), (deg/s), (deg/s)	velocity of the energy kite fuselage reference
		point expressed in the kite coordinate system
KiteTAx, KiteTAy, KiteTAz,	$(m/s^2), (m/s^2), (m/s^2),$	Absolute translational and rotational (angular)
KiteRAx, KiteRAy, KiteRAz	$(deg/s^2), (deg/s^2), (deg/s^2)$	acceleration of the energy kite fuselage reference
		point expressed in the kite coordinate system

These are calculated within KiteFASTMBD as follows:

<u>Fuselage:</u>

$$\begin{cases} Fus \beta TDx \\ Fus \beta TDy \\ Fus \beta TDz \\ Fus \beta RDx \\ Fus \beta RDx \\ Fus \beta RDy \\ Fus \beta RDy \\ Fus \beta RDz \end{cases} = \begin{cases} MBD \Lambda^{FusO} \left\{ ^{MBD} \vec{p}_{FusOutNd[\beta]}^{Fus} - ^{MBD} \vec{p}_{FusOutNd[\beta]}^{FusO} \right\} - ^{MBD} \vec{p}_{FusOutNd[\beta]}^{FusR} \\ \frac{180}{\pi} F^{EulerExtract} \left(\left[^{MBD} \Lambda^{FusO} \right]^T \left[^{MBD} \Lambda^{FusR}_{FusOutNd[\beta]} \right]^{T \ MBD} \Lambda^{Fus}_{FusOutNd[\beta]} \right) \\ Fus \beta RVn \\ Fus \beta RVc \\ Fus \beta RVs \end{cases} = \frac{180}{\pi} MBD \Lambda^{Fus}_{FusOutNd[\beta]} MBD \vec{\omega}_{FusOutNd[\beta]}^{Fus} \\ Fus \beta TAn \\ Fus \beta TAc \\ Fus \beta TAs \end{cases} = MBD \Lambda^{Fus}_{FusOutNd[\beta]} MBD \vec{\omega}_{FusOutNd[\beta]}^{Fus} \\ Fus \beta FRn \\ Fus \beta FRc \\ Fus \beta FRs \\ Fus \beta MRn \\ Fus \beta MRc \\ Fus \beta MRs \end{cases} = \begin{cases} MBD \vec{F} R_{FusOutNd[\beta]}^{Fus} \\ MBD \vec{M} R_{FusOutNd[\beta]}^{Fus} \\ MBD \vec{M} R_{FusOutNd[\beta]}^{Fus} \\ MBD \vec{M} R_{FusOutNd[\beta]}^{Fus} \end{cases}$$

Starboard (Right) Wing:

$$\begin{vmatrix} SWn\beta TDx \\ SWn\beta TDy \\ SWn\beta TDz \\ SWn\beta RDx \\ SWn\beta RDy \\ SWn\beta RDz \end{vmatrix} = \begin{cases} MBD \Lambda^{FusO} \left\{ MBD \vec{p}_{SWn}^{SWn} \\ \vec{p}_{SWnOutNd[\beta]}^{SWn} - MBD \vec{p}_{SWnOutNd[\beta]}^{FusO} \right\} - MBD \vec{p}_{SWnOutNd[\beta]}^{SWnR} \\ \frac{180}{\pi} F^{Euler Extract} \left(\left[MBD \Lambda^{FusO} \right]^T \left[MBD \Lambda_{SWnOutNd[\beta]}^{SWnR} \right]^T MBD \Lambda_{SWnOutNd[\beta]}^{SWn} \right)$$

Vertical Stabilizer:

PWnβMRc PWnβMRs

$$\begin{vmatrix} VS\beta TDx \\ VS\beta TDy \\ VS\beta TDz \\ VS\beta RDx \\ VS\beta RDy \\ VS\beta RDy \\ VS\beta RDz \end{vmatrix} = \begin{cases} MBD \Lambda^{FusO} \left\{ MBD \vec{p}_{VSOutNd[\beta]}^{VS} - MBD \vec{p}_{VSOutNd[\beta]}^{VSR} \right\} - MBD \vec{p}_{VSOutNd[\beta]}^{VSR} \\ \frac{180}{\pi} F^{EulerExtract} \left(\left[MBD \Lambda^{FusO} \right]^T \left[MBD \Lambda_{VSOutNd[\beta]}^{VSR} \right]^T MBD \Lambda_{VSOutNd[\beta]}^{VS} \right) \\ \frac{VS\beta RVn}{VS\beta RVc} \\ VS\beta RVs \end{vmatrix} = \frac{180}{\pi} \frac{MBD}{\Lambda_{VSOutNd[\beta]}^{VS}} \frac{MBD}{\sigma} \vec{\omega}_{VSOutNd[\beta]}^{VS} \\ \frac{VS\beta TAn}{VS\beta TAc} \\ VS\beta TAc \\ VS\beta FRc \\ VS\beta FRc \\ VS\beta FRc \\ VS\beta FRc \\ VS\beta MRn \\ VS\beta MRc \end{cases} = \begin{cases} \frac{MBD}{\pi} \vec{F}_{VSOutNd[\beta]}^{VS} \\ \frac{MBD}{\pi} \vec{M}_{VSOutNd[\beta]}^{VS} \end{cases}$$

Starboard (Right) Horizontal Stabilizer:

$$\begin{vmatrix} SHS\beta FRn \\ SHS\beta FRc \\ SHS\beta FRs \\ SHS\beta MRn \\ SHS\beta MRc \\ SHS\beta MRs \end{vmatrix} = \begin{cases} {}^{MBD}\vec{F}R_{SHSOutNd[\beta]}^{SHS} \\ {}^{MBD}\vec{M}R_{SHSOutNd[\beta]}^{SHS} \\ \end{pmatrix}$$

Pylons:

```
SP\alpha\beta TDx
 SP\alpha\beta TDy
 SP\alpha\beta TDz
                                                                                                                                                                      ^{\mathit{MBD}} A^{\mathit{FusO}} \left\{ ^{\mathit{MBD}} \vec{p}_{\mathit{PylOutNd}[\beta]}^{\mathit{SPy}} [\alpha] - ^{\mathit{MBD}} \vec{p}^{\mathit{FusO}} \right\} - ^{\mathit{MBD}} \vec{p}_{\mathit{PylOutNd}[\beta]}^{\mathit{SPyR}} [\alpha]
 SP\alpha\beta RDx
                                                                                                                               \frac{180}{\pi} F^{\text{EulerExtract}} \left( \begin{bmatrix} {}^{\text{MBD}} \Lambda^{\text{FusO}} \end{bmatrix}^{\text{T}} \begin{bmatrix} {}^{\text{MBD}} \Lambda^{\text{SPyR}}_{\text{PylOutNd}[\beta]}[\alpha] \end{bmatrix}^{\text{T}} {}^{\text{MBD}} \Lambda^{\text{SPy}}_{\text{PylOutNd}[\beta]}[\alpha] \right) 
\frac{{}^{\text{MBD}} \Lambda^{\text{FusO}} \left\{ {}^{\text{MBD}} \vec{p}^{\text{PPy}}_{\text{PylOutNd}[\beta]}[\alpha] - {}^{\text{MBD}} \vec{p}^{\text{FusO}} \right\} - {}^{\text{MBD}} \vec{p}^{\text{PPyR}}_{\text{PylOutNd}[\beta]}[\alpha] \right\} 
\frac{180}{\pi} F^{\text{EulerExtract}} \left( \begin{bmatrix} {}^{\text{MBD}} \Lambda^{\text{FusO}} \end{bmatrix}^{\text{T}} \begin{bmatrix} {}^{\text{MBD}} \Lambda^{\text{PPyR}}_{\text{PylOutNd}[\beta]}[\alpha] \end{bmatrix}^{\text{T}} {}^{\text{MBD}} \Lambda^{\text{PPy}}_{\text{PylOutNd}[\beta]}[\alpha] \right) 
 SP\alpha\beta RDy
 SP\alpha\beta RDz
 ΡΡαβΤΟχ
 ΡΡαβΤΟυ
 PP\alpha\beta TDz
 PP\alpha\beta RDx
 PP\alpha\beta RDy
PP\alpha\beta RDz
 SP\alpha\beta RVn
 SP\alpha\beta RVc
                                                                                                                                   \frac{180}{\pi}^{MBD} A_{PylOutNd[eta]}^{SPy} [lpha]^{MBD} \vec{o}_{PylOutNd[eta]}^{SPy} [lpha]
 SP\alpha\beta RVs
                                                                                                                               \frac{180}{\pi} {}^{\mathit{MBD}} \Lambda^{\mathit{PPy}}_{\mathit{PylOutNd}[\beta]} [\alpha] {}^{\mathit{MBD}} \vec{\omega}^{\mathit{PPy}}_{\mathit{PylOutNd}[\beta]} [\alpha] \Big]
 PP\alpha\beta RVn
 ΡΡαβRVc
PP\alpha\beta RVs
 SPαβTAn
 SP\alpha\beta TAc
                                                                                                                          egin{array}{l} \left\{egin{array}{l} {}^{MBD} A^{SPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{SPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} A^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} ig[lpha
ight] & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PPy}_{PylOutNd[eta]} & a \end{array}
ight\} & \left\{egin{array}{l} {}^{MBD} ar{a}^{PP}_
 SP\alpha\beta TAs
 ΡΡαβΤΑη
 ΡΡαβΤΑς
PP\alpha\beta TAs
```

$$\begin{cases} SP\alpha\beta FRn \\ SP\alpha\beta FRc \\ SP\alpha\beta FRs \\ SP\alpha\beta MRn \\ SP\alpha\beta MRc \\ SP\alpha\beta MRs \\ PP\alpha\beta FRn \\ PP\alpha\beta FRc \\ PP\alpha\beta FRs \\ PP\alpha\beta MRn \\ PP\alpha\beta MRn \\ PP\alpha\beta MRn \\ PP\alpha\beta MRc \\ PP\alpha\beta MRc \\ PP\alpha\beta MRs \end{cases} = \begin{cases} {}^{MBD}\vec{F}R_{PyOutNd[\beta]}^{SPy}[\alpha] \\ {}^{MBD}\vec{M}R_{PyOutNd[\beta]}^{SPy}[\alpha] \\ {}^{MBD}\vec{M}R_{PyOutNd[\beta]}^{PPy}[\alpha] \\ {}^{MBD}\vec{M}R_{PyOutNd[\beta]}^{PPy}[\alpha] \end{cases}$$

Rotors

$$\begin{bmatrix} SP\alpha TRtSpd \\ SP\alpha BRtSpd \\ PP\alpha TRtSpd \\ PP\alpha BRtSpd \end{bmatrix} = \begin{bmatrix} Ctrl \Omega^{SPyRtr} [\alpha, l] \\ Ctrl \Omega^{SPyRtr} [\alpha, 2] \\ Ctrl \Omega^{PPyRtr} [\alpha, l] \\ Ctrl \Omega^{PPyRtr} [\alpha, l] \end{bmatrix}$$

$$\begin{cases} SP\alpha TRtAcc \\ SP\alpha BRtAcc \\ PP\alpha TRtAcc \\ PP\alpha BRtAcc \end{cases} = \begin{cases} {}^{Ctrl}\alpha^{SPyRtr}\left[\alpha,1\right] \\ {}^{Ctrl}\alpha^{SPyRtr}\left[\alpha,2\right] \\ {}^{Ctrl}\alpha^{PPyRtr}\left[\alpha,1\right] \\ {}^{Ctrl}\alpha^{PPyRtr}\left[\alpha,2\right] \end{cases}$$

Energy Kite

$$\begin{cases} KitePxi \\ KitePyi \\ KitePzi \\ KiteRoll \\ KitePitch \\ KiteYaw \end{cases} = \begin{cases} \frac{MBD}{\vec{p}} \vec{p}^{FusO} \\ \frac{180}{\pi} F^{EulerExtract} \binom{MBD}{\Lambda^{FusO}} \end{cases}$$

$$\begin{cases} \textit{KiteTVx} \\ \textit{KiteTVy} \\ \textit{KiteTVz} \\ \textit{KiteRVx} \\ \textit{KiteRVy} \\ \textit{KiteRVz} \end{cases} = \begin{cases} \frac{{}^{MBD}\Lambda^{FusOMBD}\vec{v}^{FusO}}{\pi} \\ \frac{180}{\pi} \frac{{}^{MBD}\Lambda^{FusOMBD}\vec{o}^{FusO}}{\pi} \end{cases}$$

Commented [JJ46]: This can only be output if the controller outputs the rotor acceleration in addition to the generator torque. Does it? If not, this output should be removed.