(2.3)
$$V = \left| \operatorname{grad} H \right|^2 = \left(\frac{\partial H}{\partial n} \right)^2 + \left(\frac{\partial H}{\partial s} \right)^2$$
• V is subharmonic in D

(:
$$\Delta V = \frac{\partial^2 V}{\partial n^2} + \frac{\partial^2 V}{\partial s^2} = \frac{\partial}{\partial n} \left(2 \frac{\partial H}{\partial n} \frac{\partial^2 H}{\partial n^2} + 2 \frac{\partial H}{\partial s} \frac{\partial^2 H}{\partial n \partial s} \right)$$

$$+ \frac{\partial}{\partial s} \left(2 \frac{\partial H}{\partial n} \frac{\partial^2 H}{\partial s \partial n} + 2 \frac{\partial H}{\partial s} \frac{\partial^2 H}{\partial s^2} \right)$$

$$+ \frac{\partial}{\partial s} \left(2 \frac{\partial H}{\partial n} \frac{\partial^{2} H}{\partial s \partial n} + 2 \frac{\partial H}{\partial s} \frac{\partial^{2} H}{\partial s^{2}} \right)$$

$$= 2 \left[\frac{\left(\frac{\partial^{2} H}{\partial n^{2}} \right)^{2}}{\partial n} + \frac{\partial H}{\partial n} \frac{\partial}{\partial n} \left(\frac{\partial^{2} H}{\partial n^{2}} \right) + \left(\frac{\partial^{2} H}{\partial n} \frac{\partial}{\partial s} \right)^{2} + \frac{\partial H}{\partial s} \frac{\partial}{\partial n} \left(\frac{\partial^{2} H}{\partial n \partial s} \right) \right]$$

$$+ \left(\frac{\partial^{2}H}{\partial s \partial n}\right)^{2} + \frac{\partial H}{\partial n} \frac{\partial}{\partial s} \left(\frac{\partial^{2}H}{\partial s \partial n}\right) + \left(\frac{\partial^{2}H}{\partial s^{2}}\right)^{2} + \frac{\partial H}{\partial s} \frac{\partial}{\partial s} \left(\frac{\partial^{2}H}{\partial s^{2}}\right)^{2}$$

$$\geq 2 \left[\frac{\partial H}{\partial n} \frac{\partial}{\partial n} \left(-\frac{\partial^{2}H}{\partial s^{2}}\right) + \frac{\partial H}{\partial n} \frac{\partial}{\partial s} \left(\frac{\partial^{2}H}{\partial s \partial n}\right) = O(?) \quad (:: \Delta H = 0)$$

$$+ \frac{\partial H}{\partial s} \frac{\partial}{\partial s} \left(- \frac{\partial^{2} H}{\partial n^{2}} \right) + \frac{\partial H}{\partial s} \frac{\partial}{\partial n} \left(\frac{\partial^{2} H}{\partial n \partial s} \right) = O(?)$$

$$= O(?)$$

$$= Commuting$$

$$3rd \ order$$

$$derivatives$$

Why # curvature terms?

• (2.6a) $2\left[\frac{\partial H}{\partial n}\frac{\partial^2 H}{\partial n^2} + \frac{\partial H}{\partial s}\frac{\partial}{\partial s}\left(\frac{\partial H}{\partial n}\right) - K\left(\frac{\partial H}{\partial s}\right)^2\right] > 0$ At P. $\frac{\partial V}{\partial n} > 0$

At normal coordinates Γ 's = 0 $\iff \nabla_{\vartheta} = \vartheta_{\tilde{s}}$

representatives

In ormal coordinates | .. |
$$s = 0$$
 | $v_{0} = 0$;

To indeed, | Kappears from Commuting Covariant

The erivatives

In standard coordinates | automorphism $(x, y) \longleftrightarrow (n, y)$

So indeed, K appears from commuting covariant derivatives cf) |n| standard coordinates <math>|w| automorphism $(x.y) \longleftrightarrow (n.s)$ already covered.

In normal coordinates, (W.r.t.
$$\partial_n$$
. ∂_s : $\Delta = \frac{\partial^2}{\partial n^2} + \frac{\partial^2}{\partial s^2}$)

• (2.7) $\frac{\partial^2 H}{\partial n^2} + K \frac{\partial H}{\partial n} + \frac{\partial^2 H}{\partial s^2} = 0$ at P

$$\frac{\partial n^2}{\partial n^2} + R \frac{\partial n}{\partial n} + \frac{\partial s^2}{\partial s^2} = 0 \quad \text{at } r$$

 $\partial_n \cdot \partial_s = \partial_s \cdot \partial_n = 0$

max af
$$P \Rightarrow \Delta V(P) \leq 0$$

buf $\frac{\partial^2 V}{\partial n^2} = 2\left[\left(\frac{\partial^2 H}{\partial n^2}\right)^2 + \frac{\partial H}{\partial n}\frac{\partial^3 H}{\partial n^3} + \left(\frac{\partial^2 H}{\partial n \partial s}\right)^2 + \frac{\partial H}{\partial s}\frac{\partial^3 H}{\partial n^2 \partial s}\right]$

$$\geq 0$$

$$= P_2^4 H^2 \geq 0$$

• (2.12) If $\frac{\partial H}{\partial c}(p) = 0$, $\frac{\partial^2 V}{\partial c^2} \leq 0$ at P.

• (2.13)
$$P_{2}^{2}H \frac{\partial^{2}H}{\partial s^{2}} + \left(\frac{\partial^{2}H}{\partial s^{2}}\right)^{2} \leq 0$$
 (Still $\frac{\partial H}{\partial s} = 0$)

(:
$$\frac{\partial^{2}V}{\partial s^{2}} = 2\left[\left(\frac{\partial}{\partial s}\left(\frac{\partial H}{\partial n}\right)\right)^{2} + \frac{\partial H}{\partial n}\frac{\partial^{2}}{\partial s^{2}}\left(\frac{\partial H}{\partial n}\right)\right]$$

 $\left(\frac{\partial}{\partial s}(P_2H)\right)^2 = P_2^2\left(\frac{\partial H}{\partial s}\right)^2 = 0$

$$\frac{\partial^{2} V}{\partial s^{2}} = 2 \left[\left(\frac{\partial}{\partial s} \left(\frac{\partial H}{\partial n} \right) \right)^{2} + \frac{\partial H}{\partial n} \frac{\partial^{2}}{\partial s^{2}} \left(\frac{\partial H}{\partial n} \right) + \left(\frac{\partial^{2} H}{\partial s^{2}} \right)^{2} + \frac{\partial H}{\partial s} \frac{\partial^{3} H}{\partial s^{3}} \right]$$

$$\frac{3s^{2}}{+\left(\frac{3s^{2}}{3s^{2}}\right)^{2}+\frac{3h}{3s}\frac{3s^{3}}{3s^{3}}}$$

$$+\left(\frac{9^{2}H}{3s^{2}}\right)^{2}+\frac{3H}{3s}\frac{3^{3}H}{3s^{3}}$$

$$+\left(\frac{9^{2}H}{3s^{2}}\right)^{2}+\frac{3H}{3s^{2}}$$

$$+\left(\frac{3^{3}(3n/7)}{3s^{2}}\right)^{2}$$

- Why do we consider eigenvalue problems?
- What's special about "Stekloff" eigenvalue problem? In particular, how's it related to minimal surfaces?
- How could finding such eigenvalues help to solve a PDE of interest? In particular, which eigenvalue problem can be formulated on the setting of CMA?

기하해석 공부를 어떤 맥락에서 할 것인지?