Logical Volume Manager (LVM)

Florent Gluck - Florent.Gluck@hesge.ch

March 9, 2022

What is Logical Volume Manager?

- LVM = storage virtualization
- LVM is a layer of abstraction over the physical storage
- Project started in 1998 with LVM1, followed by LVM2 in 2001 (Linux 2.6)
- LVM2 heavily uses the Linux device mapper (DM) kernel driver

MD, DM, and LVM

Linux MD (Multiple Device) kernel driver

- provides virtual devices created from physical devices
- foundation of software RAID 0,1,4,5,6 (mdadm tool)

Linux DM (Device Mapper) kernel driver

- virtualizes block devices
- maps physical block devices onto higher-level virtual block devices
- foundation of LVM, disk encryption, file system snapshots, etc.

LVM2 (Logical Volume Manager)

- uses DM to provide generic volume management from userspace
- can be used on top of MD or DM devices

Why LVM?

... because

virtualization of mass storage is mandatory in data centers to minimize system downtime and increase flexibility!

LVM benefits

- lacktriangle Thin provisionning ightarrow create filesystems larger than available physical space
- Abstraction layer hides details about physical storage
 - \rightarrow storage can be modified **unknowingly** to applications
 - transparent aggregation of multiple physical devices
 - disks can be added/replaced at runtime (hot-swapping)
- Data can be moved/re-arranged/resized at runtime
 → provides flexibility
- Atomic filesystem snapshots, regardless of the underlying physical layout → allows for consistent backups

Advanced features

Features usually required by large storage farms:

- Clustered LVM (CLVM)
- High-Availability LVM (HA-LVM)
- Mirroring

LVM terminology

Physical Volume (PV)

 Physical storage, typically hard disk, partition, or something that looks like a disk, e.g. software RAID device

Volume Group (VG)

A pool of physical volumes presented as one administrative unit

Logical Volume (LG)

- An exposed block device (~ equivalent of a disk partition)
- May be spanned, striped, mirrored, or a snapshot

LVM 3-layer model

LVM example

LVM data allocation unit

- LVM'b basic allocation unit is an extent
- An extent is a contiguous area of storage, represented by 2 numbers: (offset, length)
- However, LVM's extents are of unique size
 - thus, an LVM extent is simply a "large block"
- LVM manages physical extents (PE) and logical extents (LE)
 - physical volumes are divided into PE
 - volume groups are sets of PE
 - logical volumes are sets of LE
 - PE and LE have the same size
 - PE size displayed in vgdisplay

LE to PE mapping

LVM features

- VGs resizable online by absorbing new PVs or ejecting existing ones
- LVs resizable online
- LVs movable between PVs
- VGs can be split or merged as long as no LVs span the split
 - Useful when migrating whole LVs to or from offline storage
- Atomic snapshots (copy-on-write)
- Thinly-provisioned LVs (over-commit physical storage)
- Supports RAID 0, 1, 4, 5, 6, 10
- High availability (shared-storage cluster with shared PVs between hosts)

LVM usage

- Run lvm, then help
- Physical volume commands start with pv*
- Volume group commands start with vg*
- Logical volume commands start with lv*
- LVM stores its configuration files in /etc/lvm/

Steps to create and mount logical volumes

- 0. (Create partitions: fdisk)
- 1. Create physical volumes: pvcreate
- 2. Define volume groups: vgcreate
- 3. Create logical volumes: lvcreate
- 4. Create file systems in logical volumes: mkfs.ext4, mkfs.xyz
- 5. Mount file systems: mount ...

Physical volume management

Create 3 physical volumes

```
pvcreate /dev/sda /dev/sdb /dev/sdc1
```

This operation simply "labels" each physical disk

List physical volumes

```
pvs
pvdisplay
pvscan
```

Volume group management

Create vg1 volume group over 2 physical volumes

```
vgcreate vg1 /dev/sda /dev/sdb
```

List volume groups

```
vgs
vgdisplay
vgscan
```

Logical volume management

• Create vol1 logical volume, of size 8G, in volume group vg1

```
lvcreate -n vol1 -L 8G vg1
```

vgcreate vg1 /dev/sdb /dev/sdc

```
lvcreate -n vol2 -1 50%VG vg1
```

List volume groups

```
lvs
lvdisplay
lvscan
```

Extend storage space

Add a new physical volume to volume groupe vg1

```
vgextend vg1 /dev/sdc1
```

Set the new size of the logical volume to 42 extends

```
lvextend -1 42 /dev/vg1/vol1
```

Extend the logical volume to 100% of the volume group

```
lvextend -l 100%VG /dev/vg1/vol1
```

Extend the filesystem (e.g., ext4):

```
resize2fs /dev/vg1/vol1
```

Replace a physical disk

- Add the new disk to the volume group with pvcreate and vgextend
- Move extents from the old physical volume (sdb here) to physical volume(s) in the same volume group

```
pvmove /dev/sdb
```

Remove the old physical volume from the volume group

```
vgreduce vg1 /dev/sdb
```

Remove the physical volume label from the physical disk

```
pvremove /dev/sdb
```

Snapshots

- A snapshots atomically saves the state of a logical volume
- \bullet Snapshot performed at the block layer level \rightarrow filesystem independent
- Use Copy-On-Write (COW)
 - requires a new LV to save "changes"
 - up to the user to choose the new volume size
 - size must be enough to store the changes (10% of original's LV is often recommended)
- Allows to create atomic backups
 - a task impossible to perform on a filesystem that doesn't support native shapshots, such as ext4

Snapshots behavior

- Let A be the original volume and S the snapshot volume of A
- S stores the "changes" after the snapshot was performed
 - changes are not the new data, but A's data before S
- When accessing S (via mount), we see A's original content,
 i.e. before S was taken
- When accessing A, we see its current content
- The atomic state of A prior to S can then be backup'ed
- A snapshot's content can be merged back to restore the state pre-snapshot
 - however: requires to umount the original volume (A) before applying the merge

Snapshots use-cases

- Atomic backup of a logical volume without taking the volume offline
- System upgrade (likely to succeed)
 - snapshot before the upgrade
 - $\bullet \quad \text{if everything goes well} \rightarrow \text{remove the snapshot} \\$
 - if upgrade fails \rightarrow revert (merge) the snapshot
- Discardable changes for temporary use
 - create a snapshot of the system
 - mount the snapshot (say in /snap)
 - let user use /snap
 - ullet when user is finished o discard the snapshot

Snapshots usage

• Create snapshot snap of size 10G from logical volume vol1

```
lvcreate -s -n snap -L 10G /dev/vg1/vol1
```

- Good idea to check how full the snapshot volume is with lvs (column Data%)
- Restore the state of vol1 before the snapshot (vol1 and snap must not be mounted)

```
umount /dev/vga1/vol1
lvconvert --merge vg1/snap
```

Resources

Manual pages man lvm

- LVM HOWTO http://tldp.org/HOWTO/LVM-HOWTO/
- Red Hat Enterprise Linux 7 LVM Administrator Guide