SC223 - Linear Algebra

Aditya Tatu

Lecture 38

November 10, 2023

Summary of Lecture 37 A \in $C^{n \times n}$ $V = C^{n}$, $\langle x, y \rangle = y^{*} \times 2$

- **Definition:** (Inner Product Space) A vector space V with an inner product is called an Inner Product space(IPS) and is denoted by $(V, \langle \cdot, \cdot \rangle).$
- Given an IPS $(V, \langle \cdot, \cdot \rangle), \forall x \in V, ||x|| = \sqrt{\langle x, x \rangle}$ is a valid norm, called the induced norm.
- Given an IPS $(V, \langle \cdot, \cdot \rangle)$, two vectors $x, y \in V$ are said to be **orthogonal** if $\langle x,y\rangle=0$, and are said to be **orthonormal** if $\langle x,y\rangle=0, ||x||=||y||=1$.
- A set of vectors $\{v_1, \dots, v_n\}$ is said to be **orthogonal** if $\langle v_i, v_i \rangle = 0, \forall i \neq j$ and is said to be **orthonormal** if $\langle v_i, v_i \rangle = 0, \forall i \neq j$, $||v_i|| = 1, \forall i$.
- A set of orthonormal vectors that also forms a basis of the given vector space is called an **Orthonormal basis**.
- A matrix $A \in \mathbb{R}^{n \times n}$ or $\mathbb{C}^{n \times n}$ is said to be an **orthogonal matrix** if all its n columns are orthonormal, i.e., $A^*A = I$, where A^* denotes the conjugate transpose of A. In this case, $A^{-1} = A^*$.

$$A \notin \mathbb{R}^{n \times n} / \mathbb{F} = \mathbb{R}^n, \langle x, y \rangle = x^T y.$$

Proposition 23: In a IPS $(V, \langle \cdot, \cdot \rangle)$, a set of n non-zero orthogonal vectors $\{v_1, \ldots, v_n\}$ is linearly independent.

$$\sum_{i=1}^{\infty} a_i u_i^* = 0, \text{ not all } a_i \text{ s are } 0.$$

$$\left\langle \sum_{i=1}^{\infty} a_i^* u_i^*, u_1 \right\rangle = \left\langle 0, u_1 \right\rangle = 0$$

$$\Rightarrow \sum_{i=1}^{\infty} a_i^* \left\langle 0, u_1 \right\rangle = 0$$

$$\Rightarrow a_1 ||u_1||^2 = 0 \Rightarrow a_1 = 0$$

- **Proposition 23:** In a IPS $(V, \langle \cdot, \cdot \rangle)$, a set of *n* non-zero orthogonal vectors $\{v_1, \ldots, v_n\}$ is linearly independent.
- **Proposition 24:** (Pythagoras Theorem): In an IPS $(V, \langle \cdot, \cdot \rangle)$, if $\langle x, y \rangle = 0, ||x + y||^2 = ||x||^2 + ||y||^2.$

$$||x+y||^{2} = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle y, y \rangle + \langle x, y \rangle + \langle x, y \rangle + \langle y, y \rangle + \langle x, y \rangle + \langle y, y \rangle + \langle x, y \rangle + \langle y, y \rangle + \langle$$

11 = cne inust || = = = [Cn| -

• **Proposition 23:** In a IPS $(V, \langle \cdot, \cdot \rangle)$, a set of *n* non-zero orthogonal vectors $\{v_1, \ldots, v_n\}$ is linearly independent.

• **Proposition 24:** (Pythagoras Theorem): In an IPS $(V, \langle \cdot, \cdot \rangle)$, if $\langle x, y \rangle = 0, ||x + y||^2 = ||x||^2 + ||y||^2.$

• Orthogonal Decomposition: Let $x, y \neq \theta \in V$. Find $w \in V$ such

- **Proposition 23:** In a IPS $(V, \langle \cdot, \cdot \rangle)$, a set of n non-zero orthogonal vectors $\{v_1, \ldots, v_n\}$ is linearly independent.
- **Proposition 24:** (Pythagoras Theorem): In an IPS $(V, \langle \cdot, \cdot \rangle)$, if $\langle x, y \rangle = 0$, $||x + y||^2 = ||x||^2 + ||y||^2$.
- **Orthogonal Decomposition:** Let $x, y \neq \theta \in V$. Find $w \in V$ such that $x = a \cdot y + w$, with $a \in \mathbb{F}, \langle w, y \rangle = 0$.

$$\begin{split} \langle w,y \rangle &= 0 \\ \langle x - a \cdot y, y \rangle &= \langle x,y \rangle - a \langle y,y \rangle = 0 \\ a &= \frac{\langle x,y \rangle}{\langle y,y \rangle} \\ \text{Thus, } x &= \frac{\langle x,y \rangle}{\langle y,y \rangle} \cdot y + \left(x - \frac{\langle x,y \rangle}{\langle y,y \rangle} \cdot y \right) \end{split}$$

 \bullet **Proposition 25** (Cauchy-Schwartz inequality): In an IPS $(V,\langle\cdot,\cdot\rangle)$, $|\langle x,y\rangle|\leq ||x||\ ||y||.$

- **Proposition 25** (Cauchy-Schwartz inequality): In an IPS $(V, \langle \cdot, \cdot \rangle)$, $|\langle x, y \rangle| \leq ||x|| \ ||y||$.
- Proof: If $x = \theta$, or $y = \theta$, both sides are equal to zero. So let us assume $x, y \neq \theta$.

- \bullet **Proposition 25** (Cauchy-Schwartz inequality): In an IPS ($V, \langle \cdot, \cdot \rangle$), $|\langle x, y \rangle| \leq ||x|| \ ||y||$.
- $lackbox{ Proof: If } x=\theta, \text{ or } y=\theta, \text{ both sides are equal to zero. So let us assume } x,y\neq\theta.$
- From previous proposition,

The previous proposition,
$$x = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + \left(x - \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y\right) = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + w, \text{ with } w \perp y.$$

$$\left|\left|\chi\right|^{2} = \left|\left|\frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + \omega\right|\right|^{2} = \left|\left|\frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y\right|\right|^{2} + \left|\left|\omega\right|\right|^{2}$$

$$= \left|\frac{\langle x, y \rangle}{\langle y, y \rangle}\right|^{2} \cdot \left|\left|y\right|\right|^{2} + \left|\left|\omega\right|\right|^{2}$$

$$= \left|\frac{\langle x, y \rangle}{\langle y, y \rangle}\right|^{2} \cdot \left|\left|y\right|\right|^{2} + \left|\left|\omega\right|\right|^{2}$$

$$\left|\left|\chi\right|\right|^{2} = \frac{\left|\langle x, y \rangle\right|^{2}}{\left|\left|y\right|\right|^{2}} + \left|\left|\omega\right|\right|^{2} > \frac{\left|\langle x, y \rangle\right|^{2}}{\left|\left|y\right|\right|^{2}}$$

- **Proposition 25** (Cauchy-Schwartz inequality): In an IPS $(V, \langle \cdot, \cdot \rangle)$, $|\langle x, y \rangle| \leq ||x|| \ ||y||$.
- $lackbox{ Proof: If } x=\theta, \text{ or } y=\theta, \text{ both sides are equal to zero. So let us assume } x,y\neq\theta.$
- From previous proposition,

$$x = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + \left(x - \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y \right) = \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y + w, \text{ with } w \perp y.$$

Proposition 26: (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.

Proposition 26: (Gram-Schmidt Procedure): Let $\{v_1,\ldots,v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1,\ldots,e_m\}$ such that $span(\{v_1,\ldots,v_j\})=span(\{e_1,\ldots,e_j\}), \forall j=1,\ldots,m.$

• Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 - \langle v_2, e_1 \rangle e_1}{||v_2 - \langle v_2, e_1 \rangle e_1||}$.

Proposition 26: (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.

• Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 - \langle v_2, e_1 \rangle e_1}{||v_2 - \langle v_2, e_1 \rangle e_1||}$.

• Similarly, $e_3 = \frac{v_3 - (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 - (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}$, and $e_k = \frac{v_k - \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k - \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}$.

End of Class.

- **Proposition 26:** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.
- Similarly, $e_3 = \frac{v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}$, and $e_k = \frac{v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i||}$.
- Observe that $span(\{v_1,\ldots,v_j\}) = span(\{e_1,\ldots,e_j\})$.

- **Proposition 26:** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.
- Similarly, $e_3 = \frac{v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}$, and $e_k = \frac{v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i||}$.
- Observe that $span(\{v_1,\ldots,v_j\}) = span(\{e_1,\ldots,e_j\})$.
- ullet It is easy to see that $e_1 \perp e_2$. Assume that $\{e_1,\ldots,e_j\}$ are orthonormal.

- **Proposition 26:** (Gram-Schmidt Procedure): Let $\{v_1, \ldots, v_m\}$ be a list of linearly independent vectors. Then there exists a list of orthonormal vectors $\{e_1, \ldots, e_m\}$ such that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\}), \forall j = 1, \ldots, m$.
- Let $e_1 = \frac{v_1}{||v_1||}$. Define $e_2 = \frac{v_2 \langle v_2, e_1 \rangle e_1}{||v_2 \langle v_2, e_1 \rangle e_1||}$.
- Similarly, $e_3 = \frac{v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)}{||v_3 (\langle v_3, e_1 \rangle e_1 + \langle v_3, e_2 \rangle e_2)||}$, and $e_k = \frac{v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i}{||v_k \sum_{i=1}^{k-1} \langle v_k, e_i \rangle e_i||}$.
- Observe that $span(\{v_1, \ldots, v_j\}) = span(\{e_1, \ldots, e_j\})$.
- ullet It is easy to see that $e_1 \perp e_2$. Assume that $\{e_1,\ldots,e_j\}$ are orthonormal.
- ullet Then $\forall I=1,\ldots j$, with $e_{j+1}^{\boldsymbol{\cdot}}=v_{j+1}-\sum_{i=1}^{j}\langle v_{j+1},e_i\rangle e_i$

$$egin{aligned} \langle e_{j+1}, e_{l}
angle &= rac{1}{||e_{j+1}^{\sim}||} \left(\langle v_{j+1}, e_{l}
angle - \sum_{i=1}^{j} \langle v_{j+1}, e_{i}
angle \langle e_{i}, e_{l}
angle
ight) \ &= rac{1}{||e_{j+1}^{\sim}||} \left(\langle v_{j+1}, e_{l}
angle - \langle v_{j+1}, e_{l}
angle
ight) = 0 \end{aligned}$$

Orthogonal Complement

ullet Let V be a FD IPS and let U be a subset of V. The **Orthogonal Complement** of U is defined as

$$U^{\perp} = \{ v \in V \mid \langle v, u \rangle = 0, \forall u \in U \}$$

Orthogonal Complement

ullet Let V be a FD IPS and let U be a subset of V. The **Orthogonal Complement** of U is defined as

$$U^{\perp} = \{ v \in V \mid \langle v, u \rangle = 0, \forall u \in U \}$$

ullet Proposition 27: Irrespective of whether U is a subspace of V or not, U^\perp is a subspace.

ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.

- ullet Let U be a subspace of FD IPS V, and $V=U\oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- \bullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) =

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. $Null(P_U) =$

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. $Null(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 =$

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. Null $(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 = P_U$
 - 4. (Conjugate) Symmetric: If $U = \mathbb{R}^n$ (or \mathbb{C}^n), $P_U^T =$

- ullet Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range $(P_U) = U$
 - 2. Null $(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 = P_U$
 - 4. (Conjugate) Symmetric: If $U = \mathbb{R}^n$ (or \mathbb{C}^n), $P_U^T = P_U$ ($P_U^* = P_U$).

- Let U be a subspace of FD IPS V, and $V = U \oplus U^{\perp}$.
- Define $P_U \in \mathcal{L}(V)$ as $\forall v \in V$, if $v = u + w, u \in U, w \in U^{\perp}$, $P_U(v) = u$.
- ullet P_U is said to be the Orthogonal Projection Operator on U.
- It has the following properties:
 - 1. Range(P_U) = U
 - 2. Null $(P_U) = U^{\perp}$
 - 3. Idempotent: $(P_U)^2 = P_U$
 - 4. (Conjugate) Symmetric: If $U = \mathbb{R}^n$ (or \mathbb{C}^n), $P_U^T = P_U$ ($P_U^* = P_U$).
 - 5. $\forall v \in V, P_U(v) = \arg\min_{u \in U} ||u v||^2$.