DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 2: Solving Recurrences

SOLVING RECURRENCES

- The analysis of merge sort from *Lecture 1* required us to solve a recurrence.
- Merge Sort recurrence:

$$T(n) = 2T(n/2) + \Theta(n)$$

• How to solve a recurrence?

SUBSTITUTION METHOD

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.

Example: T(n) = 4T(n/2) + n

- Guess $O(n^3)$.
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.

EXAMPLE OF SUBSTITUTION

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{3} + n$$

$$= (c/2)n^{3} + n$$

$$= cn^{3} - ((c/2)n^{3} - n)$$

$$\leq cn^{3}$$

whenever $(c/2)n^3 - n \ge 0$, for example, if $c \ge 2$ and $n \ge 1$.

A TIGHTER UPPER BOUND?

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4cn^{2} + n$$

$$= \sqrt[3]{n}$$

$$= cn^{2} - (-n)$$

$$\leq cn^{2}$$

for **no** choice of c > 0. Lose!

A TIGHTER UPPER BOUND!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$\leq 4(c_1(n/2)^2 - c_2(n/2) + n$$

$$= c_1 n^2 - 2c_2 n + n$$

$$= c_1 n^2 - c_2 n - (c_2 n - n)$$

$$\leq c_1 n^2 - c_2 n \quad \text{if} \quad c_2 > 1.$$

RECURSION-TREE METHOD

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method promotes intuition, however.

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
$$T(n)$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$(n/4)^{2} \qquad (n/2)^{2} \qquad \frac{5}{16}n^{2}$$

$$(n/16)^{2} \qquad (n/8)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2} \qquad \frac{25}{256}n^{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\Theta(1) \qquad \text{Total} = n^{2} \left(1 + \frac{5}{16} + \left(\frac{5}{16}\right)^{2} + \left(\frac{5}{16}\right)^{3} + \cdots\right)$$

$$= \Theta(n^{2})$$

THE MASTER METHOD

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

$$T(n) = a T(n/b) + f(n)$$

THREE COMMON CASES

Compare f(n) with $n^{\log ba}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

```
Solution: T(n) = \Theta(n^{\log_b a}).
```

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log ba}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log ba} \lg^{k+1} n)$$
.

$$T(n) = a T(n/b) + f(n)$$

THREE COMMON CASES (CONT.)

Compare f(n) with $n^{\log ba}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

$$T(n) = a T(n/b) + f(n)$$

EXAMPLES

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1.$
 $T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $T(n) = \Theta(n^2 \lg n)$.

$$T(n) = a T(n/b) + f(n)$$

EXAMPLES

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
Case 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(cn/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.

$$T(n) = a T(n/b) + f(n)$$

