CS 341

These notes are meant to be supplementary to lecture slides & the textbook, and so may not contain all covered materials. Here I've chosen content which might not be easy to remember and/or is helpful to look at when doing assignments.

Asymptotic Analysis

- Order Notations:
 - $f(n) \in O(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$
 - \circ f "grows no faster than" g
 - $f(n) \in \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n) \ \forall n \ge n_0$
 - \circ f "grows no slower than" q
 - $f(n) \in \Theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0$
 - \circ f ang g have the same complexity
 - $f(n) \in o(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le f(n) < cg(n) \ \forall n \ge n_0$
 - \circ f has lower complexity than g
 - $f(n) \in \omega(g(n))$ if $\forall c > 0, \exists n_0 > 0$ such that $0 \le cg(n) < f(n) \ \forall n \ge n_0$
 - \circ f has higher complexity than g
 - $f \in O(g)$ and $f \in \Omega(g) \iff f \in \Theta(g)$
- Limit method: suppose $L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$
 - $f \in o(g) \text{ if } L = 0$
 - $f \in \Theta(q)$ if $0 < L < \infty$
 - $f \in \omega(q) \text{ if } L = \infty$
- Useful facts for first-principles proofs:
 - \bullet log $n \ge 1 \ \forall \ n \ge 2$; i.e. log n grows faster than 1
 - \blacksquare log $n > n \ \forall \ n > 0$; i.e. log n grows faster than n
- Some math rules:
 - $\quad \blacksquare \quad \textstyle \sum_{i=1}^n i^k \in \Theta(n^{k+1})$
 - $\sum_{i=1}^{n} c^i \in$
 - $\circ \quad \Theta(c^n) \text{ if } c > 1$
 - $\circ \quad \Theta(n) \text{ if } c = 1$
 - \circ $\Theta(1)$ if c < 1
 - $a^{\log_b n} = n^{\log_b a}$ (Useful for recursion trees)
 - $\blacksquare \ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \text{ if it exists (L'Hopital's Rule)}$

- $\log(n!) \in \Theta(n \log n)$ (Stirling's Approximation)

Divide and Conquer

• Recursion-tree method:

- E.g. given the recurrence T(n) = aT(n/b) + f(n), T(1) = c:
 - \circ a is the # of recursive calls made in the function
 - \circ b is the # by which the input size n is divided in each recursive call
 - \circ f(n) is the runtime of the "work done outside of the recursive calls"
 - \circ c is the constant-time work done in each recursive call in the base case
- Each node of the recursion tree represents the cost of the work done other than making recursive calls
- Each row represents the total cost of work done in all recursive calls at that recursion "level"
- The height of the tree depends on the factor that the input size is divided by; i.e. $\log_b n$
- E.g.: Picture this as a tree where each node (except for leaves) has a children;

Level 0:
$$f(n)$$
 total = $f(n)$
Level 1: $f(n/b)$... $f(n/b)$ total = $af(n/b)$
Level 2: $f(n/b^2)$... $f(n/b^2)$ total = $a^2f(n/b^2)$
...

Level k : $f(n/b^k)$... $f(n/b^k)$ total = $a^kf(n/b^k)$
...

Level $\log_b n$: c ... c total = $ca^{\log_b n} = cn^{\log_b a}$

• Total runtime of recursion tree is (summing every row total):

$$T(n) \in \Theta\left(\sum_{i=0}^{\log_b n - 1} a^i f(n/b^i)\right) + \Theta(n^{\log_b a})$$