CS & IT ENGINEERING

Digital Logic

Sequential Circuit
Lecture No. 11

By- CHANDAN SIR

TOPICS TO BE COVERED 01 Synchronous counter

02 Aesigning

03 QUESTION PRACTICE

04 DUAL & SELF DUAL

05 DISCUSSION

JOHNSON COUNTER

I Twisted Ring counter

L - Creeping counter

L. Mobies counter

Ly walking counter

Crock	Q _A	QB	Q _c
0	0	0	0
1	1	>0	>0
2	1)T	20
3	1	1	1
4	0	1	1
5	0	0	21
6	0	30	0
7	1	0	0
R.	1	11	30

Pw

3 bit Johnson counter

4 bit Johnson counter

N bit Johnson counter > MOD (ysed state) = 2N

unused states = 2 2 2N

Symbolic Representation

CLK	Q,	Qz	03
0		0	1
J	0	1	0
2	1	0	1
3	0	1	0
4	1	0	1
2			

Lockout problem:>

Ly whenever Johnson counter enters into its unused

state, it will be trap or Lock into unused state, are called Lockout problem

MOD-2

Johnson counter by JK FF.

SYNCHRONOUS COUNTER DESIGN: ->

Step 1: → Write the Previous and Present state

Step 2: → Write the excitation Table of Flip-Flop.

Step 3: → Write the Logical expression

Stept: - Minimization

Steps: -> Hardware Implementation.

Question > Design a synchronous counter by using "T" FF which count the sequence > 0 -3 - 1 - 2 - 0 -}

Step 1.

& Step2.

1			1		72F	F's required
Q ₁	Ø'è	9+	60	TL	To	Step 3.
0	0	1	1	L	1	d Step 4
0	1	1	O	L	J	
1	0	0	0	1	0	
1	1	0	1	1	0	

Step 3. $T_1 = 1$ $t = \overline{Q}_1 = \overline{Q}_0 + \overline{Q}_1 = \overline{Q}_0$ $t_0 = \overline{Q}_1 = \overline{Q}_0 + \overline{Q}_1 = \overline{Q}_0$

Step5:

Justification

CLour	Q ₁	Qo
0	0	0
1	1	1
2	0	1
3	Ļ	0
4	0	0

a Resign a Synchronous counter by using "p" FF which count

Method 1

Step1 & Step2.

Q,	Qo	Q_1^{\dagger}	Qt	DI	Do
0	0	1	1	1	1
1		0	1	0	1
0	1	0	0	0	0

Steps.

CLK	Q,	Q ₀
0		D
1	1	1
2	0	
3	0	0
4.	1	1

5.0

6.00

Methoda

					1 37	
	Q,	Qσ		Ø+	B	Ro
0	0	0	1	T		L
J	0	1	0	0		0
2	1		X	X	X,	X
3	1	1		1	0	1

BI

CLOCK	Qı	Q.
0	0	0
1	7	1
2	0	1
3	0	0
4	L	L
5.	0	L

No Lock out

Q Resign a synchronous counter by using T-FF which count-000→001→010→011→100→101→110→111→000→----

$$T_0 = L$$

$$\int_1 = Q_0$$

