3adaua. Известны законы распределения случайных величин X и Yчисла очков, выбиваемых 1-ми 2-м стрелками. Необходимо выяснить, какой из двух стрелков стреляет лучше. Найти числовые характеристики ДСВ.

| <b>X</b> : | $x_i$ | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|------------|-------|------|------|------|------|------|------|------|------|------|------|------|
|            | $p_i$ | 0,15 | 0,11 | 0,04 | 0,05 | 0,04 | 0,10 | 0,10 | 0,04 | 0,05 | 0,12 | 0,20 |
| <i>Y</i> : | $y_j$ | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|            | $p_j$ | 0,01 | 0,03 | 0,05 | 0,09 | 0,11 | 0,24 | 0,21 | 0,10 | 0,10 | 0,04 | 0,02 |

Очевидно, ЧТО двух стрелков ИЗ лучше стреляет тот, кто в среднем выбивает большее количество очков.

Расчет числовых характеристик ДСВ:

M(X) = 0.015 + 1.010 + 2.004 + ... + 9.012 + 10.020 = 5.36

$$M(Y) = 0.0,01 + 1.0,03 + 2.0,05 + ... + 9.0,04 + 10.0,02 = 5,36,$$

$$0,20$$

$$0,15$$

$$0,10$$

$$0,05$$

$$0,005$$

$$M(X) = (0 - 5,36)^2 \cdot 0,15 + (1 - 5,36)^2 \cdot 0,11 + ... + (10 - 5,36)^2 \cdot 0,20 = 13,61,$$

$$\sigma_x = \sqrt{D(X)} = 3,69;$$

$$D(Y) = (0 - 5,36)^2 \cdot 0,01 + (1 - 5,36)^2 \cdot 0,03 + ... + (10 - 5,36)^2 \cdot 0,02 = 4,17,$$

$$\sigma_y = \sqrt{D(Y)} = 2,04.$$

$$5,36$$

$$D(X) = (0 - 5,36)^{2} \cdot 0,15 + (1 - 5,36)^{2} \cdot 0,11 + ... + (10 - 5,36)^{2} \cdot 0,20 = 13,61,$$

$$\sigma_{x} = \sqrt{D(X)} = 3,69;$$

$$D(Y) = (0 - 5,36)^{2} \cdot 0,01 + (1 - 5,36)^{2} \cdot 0,03 + ... + (10 - 5,36)^{2} \cdot 0,02 = 4,17,$$

$$\sigma_{y} = \sqrt{D(Y)} = 2,04.$$

# Лекция 5

Законы распределения

• Математическое ожидание, дисперсия, среднее квадратическое отклонение и другие числа, призванные в сжатой форме выразить наиболее существенные черты распределения, называются числовыми характеристиками случайной величины.

• Сама величина X — *случайная*, а ее числовые характеристики являются величинами *неслучайными*, постоянными.

### 1. Функция распределения случайной величины

- Описание случайной величины X с помощью закона распределения не является единственным и не универсально.
- Оно неприменимо для непрерывной случайной величины: 1) нельзя перечислить все бесконечное несчетное множество ее значений; 2) вероятности каждого отдельно взятого значения непрерывной случайной величины равны нулю.
- Для описания закона распределения случайной величины X возможен другой подход:

рассматривать не вероятности событий X=x для разных x (как это имеет место в ряде распределения), а вероятности события X<x, где x — текущая переменная. Вероятность P(X<x), очевидно, зависит от x, т.е. является некоторой функцией от x.

### 1. Функция распределения случайной величины

• *Определение*. Функцией распределения случайной величины X называется функция F(x), выражающая для каждого x вероятность того, что случайная величина X примет значение, меньшее x:

$$F(x) = P(X < x)$$
.

- Функцию F(x) иногда называют интегральной функцией распределения или интегральным законом распределения.
- Геометрически функция распределения интерпретируется как вероятность того, что случайная точка X попадет левее заданной точки x

Пример. Дан ряд распределения случайной величины

| <b>X</b> : | $x_i$ | 1     | 4   | 5   | 7   |  |
|------------|-------|-------|-----|-----|-----|--|
|            | $p_i$ | . 0,4 | 0,1 | 0,3 | 0,2 |  |

Найти и изобразить графически её функцию распределения.

Пример. Дан ряд распределения случайной величины

| <i>X</i> : | $x_i$ 1 |     | 4   | 5   | 7   |  |
|------------|---------|-----|-----|-----|-----|--|
|            | $p_i$   | 0,4 | 0,1 | 0,3 | 0,2 |  |

Найти и изобразить графически её функцию распределения.

*Решение*. Будем задавать различные значения x и находить для них F(x) = P(X < x).

$$F(x) = \begin{cases} 0 & \text{при} & x \le 1, & F(x) \\ 0.4 & \text{при} & 1 < x \le 4, & 1.0 \\ 0.5 & \text{при} & 4 < x \le 5, & 0.6 \\ 0.8 & \text{при} & 5 < x \le 7, & 0.2 \\ 1.0 & \text{при} & x > 7. & 0 \end{cases}$$

Функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины и равны вероятностям этих значений.

Сумма всех скачков функции F(x) равна 1.

### 1. Функция распределения случайной величины

# Общие свойства функции распределения

• 1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей:  $0 \le F(x) \le 1$ .

- 2. Функция распределения случайной величины есть неубывающая функция на всей числовой оси.
- 3. На минус бесконечности функция распределения равна нулю, на плюс бесконечности равна единице, т.е.

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0,$$
  $F(+\infty) = \lim_{x \to +\infty} F(x) = 1.$ 

• 4. Вероятность попадания случайной величины в интервал [x<sub>1</sub>, x<sub>2</sub>) (включая x<sub>1</sub>) равна приращению ее функции распределения на этом интервале, т.е.

$$P(x_1 \leq X < x_2) = F(x_2) - F(x_1).$$

• Особенно важными являются ДСВ, которые принимают значения из множества целых неотрицательных чисел 0, 1, 2, ....

Эти величины описывают реальные задачи.

- К наиболее распространенным законам распределения ДСВ относят:
- биномиальное распределение,
- распределение Пуассона,
- геометрическое распределение.

• Определение. Дискретная случайная величина X имеет биномиальный закон распределения с параметрами n и p, если она принимает значения 0, 1, 2, ..., m, ..., n с вероятностями  $P(X = m) = C_n^m p^m q^{n-m}$ 

где 0 .

| X | 0     | 1                | 2                   |     | n-1                 | n     |
|---|-------|------------------|---------------------|-----|---------------------|-------|
| P | $q^n$ | $C_m^1 pq^{n-1}$ | $C_m^2 p^2 q^{n-2}$ | ••• | $C_m^{m-1}p^{n-1}q$ | $p^n$ |

• *Теорема*. Математическое ожидание и дисперсия случайной величины X, распределенной по биномиальному закону:

$$M(X) = nq$$
;  $D(X) = npq$ ;  $\sigma = \sqrt{npq}$ 

Уисловые характеристики ДСВ Х при биноминальном распределении

• Очевидно, что определение биномиального закона корректно, так как основное свойство ряда распределения

 $\sum_{i=0}^{n} p_{i} = 1$  выполнено, так как сумма в левой части является сумой всех членов разложения бинома Ньютона:

$$q^{n} + C_{n}^{1}pq^{n-1} + C_{n}^{2}p^{2}q^{n-2} + ... + C_{n}^{m}p^{m}q^{n-m} + ... + p^{n} = (q+p)^{n} = 1^{n} = 1$$

*Следствие.* Математическое ожидание частости  $\frac{m}{n}$  события в n независимых испытаниях, в каждом из которых оно может наступить с одной и той же вероятностью p, равно p, т.е.  $M\left(\frac{m}{n}\right) = p$ , а дисперсия  $D\left(\frac{m}{n}\right) = \frac{pq}{n}$ 

Доказательство. Частость события  $\frac{m}{n}$  есть  $\frac{X}{n}$ , т.е.  $\frac{m}{n} = \frac{X}{n}$ , где X – случайная величина, распределенная по биномиальному закону. Поэтому

$$M\left(\frac{m}{n}\right) = M\left(\frac{X}{n}\right) = \frac{1}{n}M(X) = \frac{1}{n} \cdot np = p, \quad D\left(\frac{m}{n}\right) = D\left(\frac{X}{n}\right) = \frac{1}{n^2}D(X) = \frac{1}{n^2} \cdot npq = \frac{pq}{n}.$$

- Смысл аргументов в функциях f(x) и  $\Phi(x)$ , содержащихся в локальной и интегральной теоремах Муавра-Лапласа:
- 1) аргумент x функции f(x) есть отклонение числа X=m появления события A в n независимых испытаниях, распределенного по биномиальному закону, от его среднего значения M(X)=np, выраженное в стандартных отклонениях  $\sigma_x = \sqrt{D(X)} = \sqrt{npq}$ .
- 2) аргумент x функции  $\Phi(x)$ , рассматриваемой в следствии интегральной теоремы Муавра-Лапласа, есть отклонение A частости m/n события A в n независимых испытаниях от его вероятности p в отдельном испытании, выраженное в стандартных

отклонениях  $\sigma\left(\frac{m}{n}\right) = \sqrt{D\left(\frac{m}{n}\right)} = \sqrt{\frac{pq}{n}}.$ 

• Если в схеме повторных независимых испытаний  $n \to \infty$ , а число p близко к 0, и кроме того  $np \to \lambda$  при  $n\to \infty$ , тогда ДСВ X, которая определяет количество появлений определённого события с схеме Бернулли имеет **распределение Пуассона**, которое задаётся таблицей:

| X | 0              | 1                      | 2                                  | <br>n-1                                        | n                                  |
|---|----------------|------------------------|------------------------------------|------------------------------------------------|------------------------------------|
| p | $e^{-\lambda}$ | $\lambda e^{-\lambda}$ | $\frac{\lambda^2}{2!}e^{-\lambda}$ | <br>$\frac{\lambda^{n-1}}{(n-1)!}e^{-\lambda}$ | $\frac{\lambda^n}{n!}e^{-\lambda}$ |

**Определение.** Дискретная случайная величина X имеет закон распределения Пуассона с параметром  $\lambda > 0$ , если она принимает значения 0, 1, 2, ..., m, ... (бесконечное, но счетное множество значений) с вероятностями

$$P(X=m) = \frac{\lambda^m e^{-\lambda}}{m!} = P_m(\lambda)$$

• Определение. Дискретная случайная величина X=m имеет геометрическое распределение с параметром p, если она принимает значения 1,2,..., m, ... (бесконечное, но счетное множество значений) с вероятностями

$$P(X=m) = pq^{m-1}$$

где 0 , <math>q = 1 - p.

- Случайная величина X=m, имеющая геометрическое распределение, представляет собой число т испытаний, проведенных по схеме Бернулли, с вероятностью р наступления события в каждом испытании до первого положительного исхода.
- Числовые характеристики ДСВ *X*, которые имеют геометрический закон распределения:

$$M(X) = \frac{1}{p}$$

$$D(X) = \frac{q}{p^2}$$

Ряд геометрического распределения:

| X | 1 | 2  | 3      | ••• | m          | ••• |
|---|---|----|--------|-----|------------|-----|
| p | p | pq | $pq^2$ | ••• | $pq^{m-1}$ | ••• |

Вероятности pq образуют reометрическую прогрессию с первым членом p и знаменателем q (отсюда название reometrice reometric

Определение геометрического распределения корректно, так как сумма ряда

$$\sum_{i=1}^{\infty}p_{i}=p+pq+...+pq^{m-1}+...=p\Big(1+q+...+q^{m-1}+...\Big)=p\frac{1}{1-q}=1,$$
 (так как  $\frac{1}{1-q}=\frac{1}{p}$  сумма ряда  $\sum_{m=1}^{\infty}q^{m-1}$  при  $\mid q\mid<1$  ).

# 3. Непрерывные случайные величины. Плотность вероятности

• *Определение*. Случайная величина *X* называется непрерывной, если ее функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.

Будем рассматривать пространство элементарных событий как совокупность всех точек числовой оси. В этом случае введенная ранее функция распределения имеет вид:

$$F(x) = P(X > x)$$

Пусть функция распределения является непрерывной. Вероятность того, что в результате испытаний случайная величина X примет значение a, где a - произвольное действительное число

**Теорема.** Вероятность любого отдельно взятого значения непрерывной случайной величины равна нулю.

# 3. Непрерывные случайные величины. Плотность вероятности

- Из приведенной выше теоремы следует, что нулевой вероятностью могут обладать и возможные события, так как событие, состоящее в том, что случайная величина *X* приняла конкретное значение *a*, является возможным.
- *Следствие*. Если X непрерывная случайная величина, то вероятность попадания случайной величины в интервал  $(x_1, x_2)$  не зависит от того, является этот интервал открытым или закрытым, т.е.

$$P(x_1 < X < x_2) = P(x_1 \le X < x_2) = P(x_1 < X \le x_2) = P(x_1 \le X \le x_2).$$

**Определение.** Плотностью вероятности (плотностью распределения или просто плотностью) f(x) непрерывной случайной величины X называется производная ее функции распределения  $f(x) = \lim_{\Delta x \to \infty} \frac{(x \le X \le x + \Delta x)}{\Delta x} = \lim_{\Delta x \to \infty} \frac{F(x + \Delta x) - F(x)}{\Delta x} = F'(x)$ 

# 3. Непрерывные случайные величины. Плотность вероятности

# • Свойства плотности вероятности

- 1. Плотность вероятности является неотрицательной функцией.

  х

  Геометрически полученная
- 2.  $F(x) = P(X < x) = \int_{0}^{x} f(U)dU$ .
- $F(x) = F(x) F(-\infty)$  кривой распределения и опирающейся на отрезок [a, b]

вероятность равна площади

фигуры, ограниченной сверху

 $P(a \le x \le b) = F(b) - F(a) = \int_{-\infty}^{b} f(x) dx - \int_{-\infty}^{a} f(x) dx = \int_{a}^{b} f(x) dx$   $4. \int_{-\infty}^{\infty} f(x) dx = 1$   $\int_{-\infty}^{\infty} f(x) dx = P(X < \infty) = F(\infty) - F(-\infty) = 1 - 0 = 1$ 

*Следствие:* Если пространством элементарных событий является отрезок числовой оси, то пространство элементарных событий формально можно распространить на всю числовую ось, положив вне отрезка значение плотности вероятности равное 0.

# 4. Вероятностные характеристики непрерывных случайных величин

- В случае НСВ математическое ожидание, дисперсия и среднее квадратичное отклонение имеют тот самый вид и те же свойства, но рассчитываются по другим формулам.
- Если f(x) плотность распределения вероятностей X, то M(X)находят по формуле:  $M(X) = \int_{-\infty}^{\infty} x f(x) dx$
- Дисперсия, как и в случае ДСВ, вычисляется по формуле  $D(X) = M((X - M(X)^2)$

что в случае НСВ имеет вид

$$D(X) = \int_{0}^{+\infty} (x - M(x))^{2} f(x) dx$$

• Для расчёта удобно использовать формулу  $D(X) = \int_{-\infty}^{\infty} x^2 f(x) dx - \left(\int_{-\infty}^{+\infty} x f(x) dx\right)^2$ • Среднее квадратичное отклонение HCB определяют

следующим образом:  $\sigma = \sqrt{D(X)}$ 

# 4. Вероятностные характеристики непрерывных случайных величин

- *Модой* (*Мо*) называется значение случайной величины, которое встречается чаще всего, т.е. имеет максимальную вероятность (для дискретной случайной величины) или максимум функции плотности вероятности в данной точке (при непрерывной случайной величине).
- Одна и та же величина может иметь несколько мод. Однако возможно, что случайная величина и не имеет моды (если все её значения имеют одинаковую вероятность (равномерное распределение).
- Медиана. Определим сначала понятие квантиля непрерывной случайной величины. Корень уравнения

F(x) = p , где F(x) - функция распределения и 0 , называется <math>p-квантилем  $\mathcal{X}_p$  .

• По определению функции распределения F(x) получаем  $P(X < M_0) = \frac{1}{1}$ 

$$P(X < Me) = \frac{1}{2}$$
 и отсюда  $P(X > Me) = \frac{1}{2}$ 

• Таким образом, медиана делит область значений случайной величины на две равные по вероятности части.

#### • Равномерное распределение

Определение. Непрерывная случайная величина X имеет равномерный закон распределения на отрезке [a, b], если ее плотность вероятности f(x)постоянна на этом отрезке и равна нулю вне его, т.е.

$$f(x) = \begin{cases} c = \frac{1}{b-a}, \_ecnu\_x \in [a;b]; \\ 0, \_ecnu\_x \notin [a;b]. \end{cases}$$

$$F(x) = \begin{cases} 0, x \le a; \\ \frac{x - a}{x - b}, a < x \le b; \\ 1, x > b. \end{cases}$$

Числовые характеристики равномерно распределенной НСВ

$$M(X) = \frac{a+b}{2};$$



$$M(X) = \frac{a+b}{2};$$
  $D(X) = \frac{(b-a)^2}{12}.$ 

Вероятность того, что равномерно распределённая НСВ попадёт в промежуток  $P(x_1 < X < x_2) = \frac{x_1 - x_2}{b - a}$  $[x_1; x_2]$  при условии  $a \le x_1 < x_2 \le b$  высчитывается по формуле

- Равномерный закон распределения используется при анализе ошибок округления при проведении числовых расчетов (например, ошибка округления числа до целого распределена равномерно на отрезке [-0,5; +0,5]), в ряде задач массового обслуживания, при статистическом моделировании наблюдений, подчиненных заданному распределению.
- Так, случайная величина X, распределенная по равномерному закону на отрезке [0;1], называемая случайным числом от 0 до 1, служит исходным материалом для получения случайных величин с любым законом распределения.

• Определение. Непрерывная случайная величина X имеет **показательный** (экспоненциальный) закон распределения с параметром  $\lambda > 0$ , если ее плотность вероятности имеет вид:

 $f(x) = \begin{cases} \lambda \cdot e^{-\lambda x}, \_npu\_x \ge 0; \\ 0, \_npu\_x < 0. \end{cases}$ 

• Интегральная функция распределения для НСВ, имеющей показательное распределение задаётся формулой

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & npu = x \ge 0; \\ 0, & npu = x < 0. \end{cases}$$

• Числовые характеристики:

$$M(X) = \frac{1}{\lambda}; \quad D(X) = \frac{1}{\lambda^2}$$

• Вероятность того, что распределённая по показательному закону НСВ попадёт в интервал (a;b) при условии 0 < a < b вычисляется по формуле

$$P(a < X < b) = F(b) - F(a) = e^{-a\lambda} - e^{-b\lambda}$$

- Показательный закон распределения играет большую роль в теории массового обслуживания и теории надежности.
- Так, например, интервал времени T между двумя соседними событиями в простейшем потоке имеет показательное распределение с параметром  $\lambda$  интенсивностью потока.

#### • Нормальный закон распределения

Нормальный закон распределения наиболее часто встречается на практике.

Главная особенность, выделяющая его среди других законов, состоит в том, что он является *предельным* законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях

**Определение.** Непрерывная случайная величина X имеет нормальный закон распределения (закон Гаусса) с параметрами  $\mu$  и  $\sigma$  если ее плотность вероятности имеет вид:

$$f(x) = \frac{1}{\sqrt{2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Кривую нормального закона распределения называют нормальной или гауссовой кривой.

 $N(\mu,\sigma_1)$ 

 $N(\mu,\sigma_2)$ 

 $N(\mu,\sigma_3)$ 

• Интегральная функция нормального распределения имеет вид

$$F(X) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

- При  $\mu = 0$ ,  $\sigma = 1$  нормальная кривая называется нормированной и ĤCB X имеет стандартное или нормированное распределение.
- Числовые характеристики НСВ X, распределенной по нормальному закону

$$M(X) = \mu$$
  $D(X) = \sigma^2$ 

• Вероятность того, что нормально распределенная величина попадёт в промежуток (c; d)

$$P(c < X < d) = \Phi\left(\frac{d - \mu}{\sigma}\right) - \Phi\left(\frac{c - \mu}{\sigma}\right)$$

где  $\Phi(x)$  функция Лапласа, которая задаётся формулой  $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^2}{2}} dz$ 

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{z^2}{2}} dz$$

• Для вычисления вероятности отклонения нормально распределенной СВ от своего математического ожидания μ на наперед заданную величину δ используют формулу

$$P(|X - \mu| < \delta) = 2\Phi\left(\frac{\delta}{\sigma}\right)$$

Правило трёх сигм: Если СВ X распределена нормально, то вероятность того, что абсолютная величина отклонения X от математического ожидания стремится к нулю, то есть событие  $|X - \mu| < 3\sigma$  практически достоверно.



Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

**На практике:** если распределение случайной величины неизвестно, но условие, указанное в данном правиле выполняется, то есть основание предполагать, что случайная величина распределена нормально.