SoilNet: A Spatio-temporal Deep Learning Framework for Digital Soil Mapping

Nafiseh Kakhani¹, Moien Rangzan⁴, Ali Jamali⁵, Sara Attarchi⁴, Seyed Kazem Alavipanah⁴ and Thomas Scholten^{1,2,3}

¹Department of Geosciences, ²CRC 1070 Resource Cultures, ³DFG Cluster of Excellence "Machine Learning", University of Tübingen, Tübingen, Germany. ⁴Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran, ⁵Department of Geography, Simon Fraser University, Burnaby, Canada.

nafiseh.kakhani@uni-tuebingen.de

At a glance

What:

Soil Organic Carbon (SOC) prediction across Europe.

Why:

SOC is a crucial component of the global carbon cycle and plays a vital role in regulating climate change. Two-thirds of the carbon in the terrestrial environment is found in the form of SOC.

How:

architecture. It takes into account both spatial information from Remote Sensing data using a CNN-based architecture along with spatial attention and temporal information from climate data using an LSTM, thereby improving the model's accuracy.

1 - Data Preparation

2 - Proposed Approach

These two components are incorporated using a regressor head with a fully connection.

3 - Experimental Analysis

- The proposed model consistently outperforms other simpler models and Random Forest.
- The proposed model achieves the lowest RMSE, indicating higher prediction accuracy.
- o It also demonstrates stronger correlation (R2) and relative improvement (RPIQ) compared to other setups and the RF Model.
- o Additionally, SoilNet has the lowest MAE and highest CCC, showcasing superior overall performance and potential for accurate predictions.

Table 1. Performance results of SoilNet modifications

Model	RMSE↓	R ² ↑	MAE↓	CCC↑
RESNET-101	19.88	0.34	14.42	0.52
RESNET-101-GLAM	19.74	0.35	14.44	0.54
RESNET-101-GLAM + LSTM	18.99	0.40	13.83	0.58
Random Forest	21.25	0.25	16.02	0.37

 Comparing the statistical distribution of SOC (g/Kg) between the RF and SoilNet models reveals that SoilNet closely resembles the observed data.

Figure 6. Distribution of observed and predicted SOC (g/Kg) values

4 - Results and Discussion

Key Findings

- o A comparison between the models and ground reference samples revealed that SoilNet accurately preserved the spatial patterns of SOC, demonstrating remarkable similarity to the ground reference samples.
- SoilNet outperformed RF in predicting high and low SOC values in regions characterized by SOC heterogeneity, such as the northern region of Europe.
- SoilNet's superior performance is attributable to its use of attention-based DL networks and LSTM, which effectively leverage complex spatial patterns and enable accurate predictions.

Figure 7. Spatial distribution of SOC (g/Kg)

