Unidad III: Paralelismo en monoprocesadores

Trabajo Práctico Nº 2 Dependencias de un programa y Procesadores Superescalares

1.- Estudie el siguiente fragmento de programa y marque los tipos de dependencias que detecte.

```
S_1: A = B * C

S_2: X = Y + V

S_3: V = A + 2

S_4: A = A + 1

S_5: C = B + X

S_6: B = C + A
```

2.- Para el bucle del siguiente fragmento de código, arme los grafos de dependencia de datos que detecte y complete los valores *T* y *C* de los arcos vinculantes.

```
F
```

```
fibo[1] = 1;
fibo[2] = 2;
for (int i = 3; i <= 1000; i++) {
S1: fibo[i] = fibo[i-1] + fibo[i-2];
S2: acum = acum + fibo[i];
S3: suma[i] = fibo[i] * 100;
S4: prom[i] = suma[i] / count;
S5: data[i] = acum + data[i-1];
S6: total[i] = data[i] / prom[i];
S7: count = total[i];
}</pre>
```

- 3.- Basándose en el ejercicio anterior, halle:
 - a) los ciclos de dependencia que se forman
 - b) calcule el tiempo de ejecución de cada uno de ellos
 - c) el tiempo de dependencia crítico del loop
 - d) la aceleración total obtenida.
- **4.-** Para el siguiente fragmento de código, arme los grafos de dependencia de datos que detecte muestre todas las trazas existentes y calcule la aceleración que la traza critica produce por sobre la ejecución secuencial del bucle. En cuántos procesadores podría ejecutarse el loop luego de optimizarlo?

```
for (int i = 3; i < 1003; i++) {
S1: A[i] = E[i-2] + D[i-3];
S2: B = B * B + A[i-1];
S3: C[i] = A[i] * B;
S4: D[i] = C[i+2] / 2;
S5: E[i] = C[i-1] * 5;
}</pre>
```

Suponga los siguientes parámetros Suma: 2 ciclos Multiplicación: 4 ciclos División: 5 ciclos Asignación: 1 ciclo

Suponga los siguientes parámetros

Suma: 2 ciclos

División: 5 ciclos Asignación: 1 ciclo

Multiplicación: 4 ciclos

5.- Realice el grafo de dependencias (RAW) del siguiente fragmento de código y averigüe el tiempo que tardará en emitirse el en un procesador con emisión en orden de una instrucción por ciclo y dos unidades de ejecución que pueden ejecutar cualquier tipo de instrucción?

Arquitectura de Computadoras y Técnicas Digitales

```
S<sub>1</sub>: ADDD r3, r0, r5
S<sub>2</sub>: MULD r2, r2, r5
S<sub>3</sub>: DIVD r1, r5, r0
S<sub>4</sub>: STD (r3),r1
S<sub>5</sub>: SUBD r6, r3, r2
S<sub>6</sub>: LDD r9, (r6)
S<sub>7</sub>: ADDD r2, r6, r3
S<sub>8</sub>: DIVD r10,r3, r1
```

```
Suponga los siguientes parámetros

ADDD: 2 ciclos

MULD: 4 ciclos

SUBD: 3 ciclos

DIVD: 7 ciclos

LDD/STD: 5 ciclos
```

- **6.-** Elaboración. Intente armar (sin consultar el material bibliográfico) un esuquema de bloques de la estructura de un procesador superescalar mostrando todas las etapas de que consiste.
- **7.-** Elaboración. Analice en forma individual o grupal la estructura y la función de cada una de las etapas de un procesador superescalar genérico
- **8.-** a) ¿Cuánto tiempo tardará en emitirse el siguiente fragmento de código en un procesador superescalar de grado 2 con ejecución en orden y 2 unidades de ejecución, en el que todas las instrucciones tienen una latencia de 1 ciclo y cualquier unidad de ejecución puede ejecutar cualquier tipo de instrucción?
- b) ¿Cuál es la aceleración obtenida si el mismo fragmento se ejecutara en un procesador escalar (de grado 1)?

```
S<sub>1</sub>: LDD r1, (r2)

S<sub>2</sub>: SUBD r4, r5, r6

S<sub>3</sub>: ADDD r3, r1, r7

S<sub>4</sub>: MULD r8, r3, r3

S<sub>5</sub>: STD (r11), r4

S<sub>6</sub>: STD (r12), r8

S<sub>7</sub>: ADDD r15, r14, r13

S<sub>8</sub>: SUBD r10, r15, r10

S<sub>9</sub>: STD (r9), r10
```

9.- (ejercicio de elaboración)

Analice y discuta los conceptos de emisión en orden y en desorden, emisión con ventana fija y deslizante, ejecución escalar y superescalar y unidades de cálculo genéricas y especializadas.

Proponga un fragmento de código en bajo nivel y pruebe su ejecución en distintas combinaciones de arquitecturas evaluando su tiempo de ejecución en ciclos de reloj.

10.- Emita la secuencia de instrucciones del ejercicio 5 a la estación de reserva (ER) renombrando los registros de arquitectura por registros físicos a partir de la tabla de renombre de registros (RRF) siguiente:

P	valid	Reg des	value	busy	last
1	1	0	100	1	1
2	0	2	1000	1	1
3	1	2	200	1	1
4	1	5	70	1	1
5					
6					
7					
8					
9					
10					
11					

Arquitectura de Computadoras y Técnicas Digitales

12			
32			

- **11.-** Muestre el cronograma temporal de ejecución de las instrucciones del ejercicio 5. Suponga una arquitectura superescalar que emite 2 instrucciones por ciclo, sin estaciones de reserva (emisión ordenada y finalización desordenada) y 3 unidades funcionales dedicadas: 1 de memoria (*loads / stores*) y 2 aritméticas (ambas de punto fijo y flotante).
- **12.-** Con los datos del ejercicio 8 realice el cronograma temporal pero ahora con emisión fuera de orden. ¿Existe alguna aceleración con respecto a la versión que emite en orden? ¿Que magnitud tiene?
- **13.-** Con los datos del ejercicio 5 y suponiendo emisión fuera de orden con ventana de 4 instrucciones (estación de reserva), muestre el estado del *ROB* para cada ciclo de reloj hasta terminar toda la ejecución de las instrucciones.

ciclo	Despacho	Estaciones de	UF1 UF2							R	ОВ					
	Despacho	reserva	OFI OF2		I	S	I	S	Ι	S	I	S	Ι	S	I	S
0																
1																
2																
3																
4																
5																
6																
7																
8																
9																
10																
11																
12																
13																
14																
15																
16																
17																
18																
19																
20																

Arquitectura de Computadoras y Técnicas Digitales

14.- El esquema de la figura representa de manera simplificada la arquitectura de un procesador que planifica la ejecución de instrucciones mediante el algoritmo de *Tomasulo Original*.

RS	Tag	Src1	Tag	Src2	Dst
1					
2					
3					

RS	Tag	Src1	Tag	Src2	Dst
4					
5					

Adder

Mu	lt/	Div
----	-----	-----

FPRF	Busy	Tag	Data
0	0		6.0
2	0		3.5
4	0		10.0
8	0		7.8

 S_1 : MULD r4, r0, r8 (3 ciclos) S_2 : ADDD r2, r0, r4 (2 ciclos) S₃: ADDD r4, r0, r8 (2 ciclos) S₄: MULD r8, r4, r8 (5 ciclos) S₅: MULD r8, r4, r8 (5 ciclos) S_6 : ADDD r8, r4, r8 (5 ciclos) Busy r4 en 0

Se ejecuta la secuencia de instrucciones mostrada en la figura con las latencias de cada UF indicada entre paréntesis. Complete para cada ciclo el estado de las estaciones de reserva (RS) y del banco de registros de punto flotante (FPRF) en los siguientes supuestos:

- a) Emisión de una instrucción por ciclo
- b) Emisión múltiple de 2 instrucciones en caso de que se ejecuten en UF diferentes (Adder o Mult/Div).
- c) Analice el resultado de la ejecución anterior y explique que inconsistencias se presentan.
- d) ¿Cómo solucionaría dicha inconsistencia? (Tenga en cuenta el tomasulo básico vs optimizado)