Universidade Estadual Paulista "Júlio de Mesquita Filho"

Notas de aula Sistemas p-fuzzy

Prof. Dr. Vinícius Francisco Wasques viniciuswasques@gmail.com

4 de fevereiro de 2022

T-normas e S-normas

Nosso objetivo daqui pra frente é trabalhar com regras do seguinte tipo:

"Se x é A e y é B, então z é C."

ou

"Se x é A ou y é B, então z é C."

Até aqui já vimos como trabalhar as expressões "x é A". Agora é necessário aprender os conectivos lógicos e e ou. Além disso, precisamos aprender a trabalhar com "Se....então" do ponto de vista da lógica fuzzy.

Na lógica clássica os conectivos e e ou são definidos pelos operadores mínimo e máximo, respectivamente. Por exemplo, a afirmação "Se x é A e y é B..." fica $\min(\chi_A(x),\chi_B(y))$. Para estender tais operadores lógicos, utilizamos o conceito de t-normas e s-norma (ou também chamado de t-conorma).

Definição: Dizemos que o operador $t:[0,1]\times[0,1]\to[0,1]$ é uma t-norma, se satisfizer as seguintes propriedades:

- 1. Elemento neutro: t(1, x) = 1 t x = x.
- 2. Comutativa: t(x, y) = x t y = y t x = t(y, x).
- 3. Associativa: t(x, t(y, z)) = t(t(x, y), z).
- 4. Monotonicidade: Se $x \le u$ e $y \le v$, então $t(x,y) \le t(u,v)$.

Note que o operador mínimo (que generaliza o conectivo lógico clássico *e*) é um exemplo de t-norma. Pois,

- 1. $\min\{1, x\} = x$, pois $x \in [0, 1]$ e o maior valor possível que x poderia assumir é 1.
- 2. Como $\min\{x,y\} = \min\{y,x\}$, para quaisquer $x,y \in [0,1]$.
- 3. Suponha todos os casos, isto é,
 - (a) $x \le y \le z$
 - (b) $x \le z \le y$
 - (c) $y \le x \le z$
 - (d) $y \le z \le x$
 - (e) $z \le y \le x$
 - (f) $z \le x \le y$

Faremos o caso (a) e os outros seguem de forma análoga. Assim,

$$\min(x, \min(y, z)) = \min(x, y) = x.$$

Por outro lado,

$$\min(\min(x, y), z) = \min(x, z) = x.$$

Logo, $t = \min$ é associativo.

4. Sejam $x \le u$ e $y \le v$. Assim, temos os seguintes casos:

- (a) $x \le y$ e $u \le v$
- (b) $x \leq y e v \leq u$
- (c) $y \le x e u \le v$
- (d) $y \le x e v \le u$

Faremos o caso (a) e os outros seguem de modo análogo.

$$\min(x, y) = x$$
.

Por outro lado,

$$\min(u, v) = u.$$

Portanto, por hipótese, temos que:

$$\min(x, y) = x \le u = \min(u, v).$$

Portanto, o operador mínimo satisfaz a propriedade de monotonicidade.

Com isso mostramos que o operador mínimo é uma t-norma. Esse operador é denotado por t_{\wedge} (ou em algumas referências, por t_{\min}).

Exemplo: O operador t_p definido por $t_p(x,y) = xy$ é chamado de t-norma do produto.

Exemplo: O operador t_L definido por $t_L = \max(0, x + y - 1)$ é chamado de t-norma de Lukasiewcz.

Exemplo: O operador t_d definido por

$$t_d(x,y) = egin{cases} x, & y=1 \ y, & x=1 \ 0, & ext{caso contrário} \end{cases}$$

é chamado de t-norma drástica.

É possível provar que toda t-norma é limitada pelas t-normas do mínimo e da drástica, isto é, para toda t-norma t, vale o seguinte:

$$t_d(x,y) \le t(x,y) \le t_{\wedge}(x,y)$$

Definição: Dizemos que o operador $s:[0,1]\times[0,1]\to[0,1]$ é uma s-norma, se satisfizer as seguintes propriedades:

- 1. Elemento neutro: s(0, x) = 0 s x = x.
- 2. Comutativa: s(x,y) = x s y = y s x = s(y,x).
- 3. Associativa: s(x, s(y, z)) = s(s(x, y), z).
- 4. Monotonicidade: Se $x \le u$ e $y \le v$, então $s(x,y) \le s(u,v)$.

Note que o operador máximo (que generaliza o conectivo lógico clássico *ou*) é um exemplo de s-norma.

- 1. Note que $\max(0,x)=x$, porque $x\in[0,1]$, e portanto, 0 é o menor valor que x pode assumir, isto é, $0\leq x$.
- 2. Também, max(x, y) = max(y, x).
- 3. Suponha todos os casos, isto é,
 - (a) $x \le y \le z$
 - (b) $x \le z \le y$
 - (c) $y \le x \le z$
 - (d) $y \le z \le x$
 - (e) $z \le y \le x$
 - (f) $z \le x \le y$

Faremos o caso (a) e os outros seguem de forma análoga. Assim,

$$\max(x, \max(y, z)) = \max(x, z) = z.$$

Por outro lado,

$$\max(\max(x, y), z) = \max(y, z) = z.$$

- 4. Sejam $x \le u$ e $y \le v$. Assim, temos os seguintes casos:
 - (a) $x \leq y$ e $u \leq v$
 - (b) $x \leq y e v \leq u$
 - (c) $y \le x e u \le v$
 - (d) $y \le x e v \le u$

Faremos o caso (a) e os outros seguem de modo análogo.

$$\max(x, y) = y.$$

Por outro lado,

$$\max(u, v) = v.$$

Assim, temos que

$$\max(x, y) = y \le v = \max(u, v).$$

Portanto, segue a propriedade de monotonicidade.

Com isso provamos que o operador máximo é um exemplo de s-norma, e é denotado por $s_{\rm V}$ (ou também, denotado por $s_{\rm max}$).

Exemplo: O operador s_L , chamado de s-norma de Lukasiewcz é definido por $s(x,y) = \min(1, x+y)$.

Exemplo: O operador s_s chamado de s-norma da soma é definido por $s_s(x,y) = x + y - xy$.

Exercício (para entregar:

- 1. Prove que os operadores t_p e t_L são de fato t-normas.
- 2. Prove que os operadores s_L e s_s são de fato s-normas.

- 3. Um operador $\eta:[0,1]\to[0,1]$ é chamado de negação se satisfizer as seguintes propriedades:
 - (a) $\eta(1) = 0$ e $\eta(0) = 1$.
 - (b) η é descrescente.

Mostre que $\eta_1(x)=1-x$ e $\eta_2(x)=rac{1-x}{1+x}$ são negações.

4. Dizemos que uma t-norma e uma s-norma são duais em relação a uma negação η (denotamos por $(t,s)_{\eta}$), se satisfazem as leis de De Morgan, isto é,

$$\eta(t(x,y)) = s(\eta(x),\eta(y))$$

$$\eta(s(x,y)) = t(\eta(x),\eta(y)).$$

Mostre que:

- (a) $(t_{\wedge},s_{\vee})_{\eta_1}$ são duais.
- (b) $(t_L,s_L)_{\eta_1}$ são duais.