PACKAGE IMPORTING

```
In [ ]: %pip install datasist
        #import relevant libraries and frameworks
        import os
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import matplotlib as plb
        import seaborn as sns
        import warnings
        warnings.filterwarnings('ignore')
        # Data Preprocessing
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import PowerTransformer
        from datasist.structdata import detect_outliers
        from sklearn.metrics import mean_squared_error
        from imblearn.over_sampling import SMOTE
        from sklearn.impute import SimpleImputer
        import category_encoders as ce
        import re
        # Modeling and evaluation
        from sklearn.experimental import enable_hist_gradient_boosting
        from sklearn.ensemble import (
            BaggingClassifier,
            ExtraTreesClassifier,
            RandomForestClassifier,
            StackingClassifier,
            HistGradientBoostingClassifier
        from xgboost import XGBClassifier
        from sklearn.metrics import classification report
        import joblib
In [ ]: # Packages options
        sns.set(rc={'figure.figsize': [14, 7]}, font_scale=1.2) # Standard figure size f
        np.seterr(divide='ignore', invalid='ignore', over='ignore');
        import warnings
        warnings.filterwarnings("ignore")
```

LOADING THE DATA (TRAINING AND VALIDATION/TESTING)

```
In [ ]: #import data(train and test)
    train = pd.read_csv('train.csv', low_memory=False)
    test = pd.read_csv('test.csv', low_memory=False)
In [ ]: train.head()
```

Out[]:		ID	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income N
	0	0x1602	CUS_0xd40	January	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12
	1	0x1603	CUS_0xd40	February	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12
	2	0x1604	CUS_0xd40	March	Aaron Maashoh	-500	821- 00- 0265	Scientist	19114.12
	3	0x1605	CUS_0xd40	April	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12
	4	0x1606	CUS_0xd40	May	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12
	5 ro	ows × 28	columns						
	4)
In []:	te	st.head(
Out[]:		ID	Customer_ID	Month					
			Custoffiei_iD	WIOIILII	Nam	ie A	ge SS	N Occupatio	n Annual_Income
	0	0x160a	CUS_0xd40		Δarc	n	82	1- O- Scienti	
	0				Aaro Maasho Aaro	on oh	82 [.] 23 00	1- 0- Scienti 55 1- 0- Scienti	st 19114.12
		0x160a	CUS_0xd40	September	Aaro Maasho Aaro Maasho	on oh on oh	82' 23 00 026 82' 24 00 026	1- 0- Scienti 55 1- 0- Scienti 55 1- 0- Scienti	st 19114.12 st 19114.12
	1	0x160a 0x160b	CUS_0xd40	September October	Aaro Maasho Aaro Maasho	on oh oh oh	82 ² 00 026 24 00 026 82 ² 24 00	1- 0- Scienti 55 1- 0- Scienti 55 1- 0- Scienti 0- Scienti	st 19114.12 st 19114.12 st 19114.12
	1 2	0x160a 0x160b 0x160c	CUS_0xd40 CUS_0xd40 CUS_0xd40	September October November	Aaro Maasho Aaro Maasho Aaro Maasho	on oh oh oh oh	82' 23 00 026 82' 24 00 026 24 00 026 4_ 00	1- 0- Scienti 55 1- 0- Scienti 55 1- 0- Scienti 55 1- 0- Scienti 55 4- 7-	st 19114.12 st 19114.12 st 19114.12
	1 2 3	0x160a 0x160b 0x160c 0x160d 0x1616	CUS_0xd40 CUS_0xd40 CUS_0xd40 CUS_0xd40	September October November	Aaro Maasho Aaro Maasho Aaro Maasho	on oh oh oh oh	82° 23 00° 026 24 00° 026 24 00° 026 4_ 00° 026 00° 28 0°	1- 0- Scienti 55 1- 0- Scienti 55 1- 0- Scienti 55 1- 0- Scienti 55 4- 7-	st 19114.12 st 19114.12 st 19114.12

DESCRIPTIVE STATISTICS

In []: #check the shape of the train and test data
print(train.shape, test.shape)

(100000, 28) (50000, 27)

For the test set all variables are present except the target column

```
In [ ]: #check the info of the train and test data
        train.info()
       <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 100000 entries, 0 to 99999
      Data columns (total 28 columns):
           Column
                                    Non-Null Count
                                                    Dtype
           -----
                                    -----
       0
           ID
                                    100000 non-null object
       1
           Customer_ID
                                    100000 non-null object
       2
           Month
                                    100000 non-null object
           Name
                                    90015 non-null
                                                    object
       4
                                    100000 non-null object
          Age
       5
           SSN
                                   100000 non-null object
       6
           Occupation
                                    100000 non-null object
       7
           Annual_Income
                                   100000 non-null object
       8 Monthly_Inhand_Salary 84998 non-null
                                                    float64
           Num_Bank_Accounts
                                   100000 non-null int64
       9
                                    100000 non-null int64
       10 Num Credit Card
       11 Interest_Rate
                                  100000 non-null int64
       12 Num of Loan
                                  100000 non-null object
       13 Type_of_Loan
                                    88592 non-null
                                                    object
       14 Delay_from_due_date 100000 non-null int64
       15 Num_of_Delayed_Payment 92998 non-null
                                                    object
       16 Changed_Credit_Limit
                                   100000 non-null object
       17 Num_Credit_Inquiries
                                    98035 non-null
                                                    float64
       18 Credit_Mix
                                    100000 non-null object
       19 Outstanding_Debt
                                    100000 non-null object
       20 Credit_Utilization_Ratio 100000 non-null float64
       21 Credit_History_Age
                                    90970 non-null
                                                    object
       22 Payment of Min Amount
                                    100000 non-null object
       23 Total EMI per month
                                    100000 non-null float64
       24 Amount_invested_monthly
                                    95521 non-null
                                                    object
       25 Payment_Behaviour
                                    100000 non-null object
       26 Monthly_Balance
                                    98800 non-null
                                                    object
       27 Credit Score
                                   100000 non-null object
       dtypes: float64(4), int64(4), object(20)
      memory usage: 21.4+ MB
```

In []: test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 27 columns):

#	Column	Non-Null Count	Dtype					
0	ID	50000 non-null	object					
1	Customer_ID	50000 non-null	object					
2	Month	50000 non-null	object					
3	Name	44985 non-null	object					
4	Age	50000 non-null	object					
5	SSN	50000 non-null	object					
6	Occupation	50000 non-null	object					
7	Annual_Income	50000 non-null	object					
8	Monthly_Inhand_Salary	42502 non-null	float64					
9	Num_Bank_Accounts	50000 non-null	int64					
10	Num_Credit_Card	50000 non-null	int64					
11	Interest_Rate	50000 non-null	int64					
12	Num_of_Loan	50000 non-null	object					
13	Type_of_Loan	44296 non-null	object					
14	Delay_from_due_date	50000 non-null	int64					
15	Num_of_Delayed_Payment	46502 non-null	object					
16	Changed_Credit_Limit	50000 non-null	object					
17	Num_Credit_Inquiries	48965 non-null	float64					
18	Credit_Mix	50000 non-null	object					
19	Outstanding_Debt	50000 non-null	object					
20	Credit_Utilization_Ratio	50000 non-null	float64					
21	Credit_History_Age	45530 non-null	object					
22	Payment_of_Min_Amount	50000 non-null	object					
23	Total_EMI_per_month	50000 non-null	float64					
24	Amount_invested_monthly	47729 non-null	object					
25	Payment_Behaviour	50000 non-null	object					
26	Monthly_Balance	49438 non-null	object					
dtyp	dtypes: float64(4), int64(4), object(19)							
memo	memory usage: 10.3+ MB							

In []: #check the summary of the train data
train.describe()

 Out[]:
 Monthly_Inhand_Salary
 Num_Bank_Accounts
 Num_Credit_Card
 Interest_Rate
 C

 count
 84998.000000
 100000.00000
 100000.00000
 100000.00000

count	84998.000000	100000.000000	100000.00000	100000.000000
mean	4194.170850	17.091280	22.47443	72.466040
std	3183.686167	117.404834	129.05741	466.422621
min	303.645417	-1.000000	0.00000	1.000000
25%	1625.568229	3.000000	4.00000	8.000000
50%	3093.745000	6.000000	5.00000	13.000000
75%	5957.448333	7.000000	7.00000	20.000000
max	15204.633333	1798.000000	1499.00000	5797.000000

In []: #check the summary of the train data
 test.describe()

Out[]:		Monthly_Inhand_Salary	Num_Bank_Accounts	Num_Credit_Card	Interest_Rate	D€				
	count	42502.000000	50000.000000	50000.000000	50000.000000					
	mean	4182.004291	16.838260	22.921480	68.772640					
	std	3174.109304	116.396848	129.314804	451.602363					
	min	303.645417	-1.000000	0.000000	1.000000					
	25%	1625.188333	3.000000	4.000000	8.000000					
	50%	3086.305000	6.000000	5.000000	13.000000					
	75%	5934.189094	7.000000	7.000000	20.000000					
	max	15204.633333	1798.000000	1499.000000	5799.000000					
	4					•				
In []:	<pre>#check for duplicates in the train and test data train.duplicated().sum(), test.duplicated().sum()</pre>									
0 1 5 3	(0 0)									

Out[]: (0, 0)

EXPLORATIVE DATA ANALYSIS

In []:	tr	ain.head	I()							
Out[]:	ID Customer_I		Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	N
	0	0x1602	CUS_0xd40	January	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
	1	0x1603	CUS_0xd40	February	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
	2	0x1604	CUS_0xd40	March	Aaron Maashoh	-500	821- 00- 0265	Scientist	19114.12	
	3	0x1605	CUS_0xd40	April	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
	4	0x1606	CUS_0xd40	May	Aaron Maashoh	23	821- 00- 0265	Scientist	19114.12	
5 rows × 28 columns										
	4									•
In []:	tr	ain.colu	ımns							

```
Out[ ]: Index(['ID', 'Customer_ID', 'Month', 'Name', 'Age', 'SSN', 'Occupation',
                'Annual_Income', 'Monthly_Inhand_Salary', 'Num_Bank_Accounts',
                'Num_Credit_Card', 'Interest_Rate', 'Num_of_Loan', 'Type_of_Loan',
                'Delay_from_due_date', 'Num_of_Delayed_Payment', 'Changed_Credit_Limit',
                'Num_Credit_Inquiries', 'Credit_Mix', 'Outstanding_Debt',
                'Credit_Utilization_Ratio', 'Credit_History_Age',
                'Payment_of_Min_Amount', 'Total_EMI_per_month',
                'Amount_invested_monthly', 'Payment_Behaviour', 'Monthly_Balance',
                'Credit_Score'],
               dtype='object')
        categ_cols = ['Month','Occupation','Credit_Mix','Payment_of_Min_Amount', 'Paymen
In [ ]:
In [ ]: #create a for loop to plot a countplot of all categorical column in the train da
        for i in categ_cols:
            sns.countplot(train[i], palette='mako')
            plt.show()
           January
          February
             March
              April
               May
              June :
               July
            August
                    0
                            2000
                                      4000
                                                 6000
                                                           8000
                                                                     10000
                                                                               12000
```

count


```
In [ ]: #check the distribution of the target variable
    sns.countplot(train['Credit_Score'], palette='mako')
    plt.show()
```

count


```
In [ ]: #check the normalized count of the target variable
         train['Credit_Score'].value_counts(normalize=True)
Out[]: Credit_Score
         Standard
                      0.53174
         Poor
                      0.28998
                      0.17828
         Good
         Name: proportion, dtype: float64
In [ ]: train.columns
Out[ ]: Index(['ID', 'Customer_ID', 'Month', 'Name', 'Age', 'SSN', 'Occupation',
                 'Annual_Income', 'Monthly_Inhand_Salary', 'Num_Bank_Accounts',
                 'Num_Credit_Card', 'Interest_Rate', 'Num_of_Loan', 'Type_of_Loan',
                 'Delay_from_due_date', 'Num_of_Delayed_Payment', 'Changed_Credit_Limit', 'Num_Credit_Inquiries', 'Credit_Mix', 'Outstanding_Debt',
                 'Credit Utilization Ratio', 'Credit History Age',
                 'Payment_of_Min_Amount', 'Total_EMI_per_month',
                 'Amount_invested_monthly', 'Payment_Behaviour', 'Monthly_Balance',
                 'Credit_Score'],
                dtype='object')
In [ ]: dist_cols = ['Monthly_Inhand_Salary', 'Num_Bank_Accounts', 'Num_Credit_Card', 'I
In [ ]: #create a for loop to plot a distplot of all numerical column in the train data
         for i in dist_cols:
             sns.distplot(train[i], color='blue')
             plt.show()
```


In []: #check the number of values in the 'Type_of_Loan' column
train['Type_of_Loan'].value_counts().head(10)

```
Out[]: Type_of_Loan
        Not Specified
                                           1408
        Credit-Builder Loan
                                           1280
        Personal Loan
                                           1272
        Debt Consolidation Loan
                                           1264
        Student Loan
                                           1240
        Payday Loan
                                           1200
        Mortgage Loan
                                           1176
        Auto Loan
                                           1152
        Home Equity Loan
                                           1136
        Personal Loan, and Student Loan
                                          320
        Name: count, dtype: int64
```

Identify issues

- ID, Name and SSN (Not useful)
- Age, Annual_Income, Num_of_Loan, Num_of_Delayed_Payment,
 Changed_Credit_Limit, Amount_invested_monthly, Outstanding_Debt Credit_Mix,
 Monthly_Balance Numerical but show as catogery (need to be fixed)
- Occupation, CreditMix has value "__"
- Data contains outliers
- Num_Credit_Card has zeros
- Type_of_Loan Need to rewrite as 8 columns
- Num_Bank_Accounts contains negative values
- Credit_History_Age,Payment_of_Min_Amount,Payment_Behaviour,'Credit_Mix' (needs Feature Engineering)
- Target Columns is Imbalanced
- A lot of missing data

Data Preprocessing

Removing the unnecessary columns (Unique Identifier)

```
In [ ]: del train['ID'] # Identification
    del train['Name'] # Name of client
    del train['SSN'] # SSN (social security number of a person)
In [ ]: train.head()
```

Out[]:		Customer_ID	Month	Age	Occupation	Annual_Income	Monthly_Inhand_Salary	N			
	0	CUS_0xd40	January	23	Scientist	19114.12	1824.843333				
	1	CUS_0xd40	February	23	Scientist	19114.12	NaN				
	2	CUS_0xd40	March	-500	Scientist	19114.12	NaN				
	3	CUS_0xd40	April	23	Scientist	19114.12	NaN				
	4	CUS_0xd40	May	23	Scientist	19114.12	1824.843333				
	5 rows × 25 columns										
	4							•			

Fixing the Numerical Column

- rename in a more better way
- place correct data type

Out[]:	Customer_ID		Month	Age	Occupation	Annual_Income	Monthly_Inhand_Salary				
	0	CUS_0xd40	January	23.0	Scientist	19114.12	1824.843333				
	1	CUS_0xd40	February	23.0	Scientist	19114.12	NaN				
	2	CUS_0xd40	March	-500.0	Scientist	19114.12	NaN				
	3	CUS_0xd40	April	23.0	Scientist	19114.12	NaN				
	4	CUS_0xd40	May	23.0	Scientist	19114.12	1824.843333				
	5 rows × 25 columns										
	4						+				
	Re	eset the type	of Loan								
In []:	##	Rebuild Type	of Loans	CoLumr	ıs						

Out[]:

train.head()

	Customer_ID	Month	Age	Occupation	Annual_Income	Monthly_Inhand_Salary			
0	CUS_0xd40	January	23.0	Scientist	19114.12	1824.843333			
1	CUS_0xd40	February	23.0	Scientist	19114.12	NaN			
2	CUS_0xd40	March	-500.0	Scientist	19114.12	NaN			
3	CUS_0xd40	April	23.0	Scientist	19114.12	NaN			
4	CUS_0xd40	May	23.0	Scientist	19114.12	1824.843333			
5 ro	5 rows × 32 columns								
- 4						•			

Num Bank Accounts

resizing the type of credit card column

```
In [ ]: train['Num_Credit_Card'].replace(0,1,inplace=True)
```

convert credit_history_age to months age

```
In [ ]: #create a function to convert the age column to months

def History_age(age):
    try :
        years = int("".join(re.findall('[0-9]',''.join(age.split("and")[0]))))
        month = int("".join(re.findall('[0-9]',''.join(age.split("and")[1]))))
        return years*12 + month
    except :
        return np.nan
#apply the function to the column
train['Credit_History_Age'] = train['Credit_History_Age'].apply(History_age)
```

Binary categorizing of Payment_Min_Amount column

Removing the error in the Payment_Behaviour column

```
In [ ]: train['Payment_Behaviour']= train['Payment_Behaviour'].replace("!@9#%8",np.nan)
        train['Payment Behaviour'].value counts()
Out[]: Payment_Behaviour
        Low_spent_Small_value_payments
                                            25513
        High_spent_Medium_value_payments
                                            17540
        Low spent Medium value payments
                                            13861
        High_spent_Large_value_payments
                                            13721
        High spent Small value payments
                                            11340
                                            10425
        Low_spent_Large_value_payments
        Name: count, dtype: int64
```

Imputation of the Occupation Column

```
In [ ]: train['Occupation'].value_counts()
```

```
Out[]: Occupation
                           7062
         Lawyer
                           6575
         Architect
                          6355
                          6350
         Engineer
         Scientist
                          6299
         Mechanic
                          6291
         Accountant
                          6271
         Developer
                          6235
         Media_Manager
                          6232
         Teacher
                          6215
         Entrepreneur
                          6174
         Doctor
                          6087
         Journalist
                          6085
                           5973
         Manager
         Musician
                           5911
                           5885
         Writer
         Name: count, dtype: int64
In [ ]:
        occs = train['Occupation'].value_counts().index[1:]
         occs
Out[ ]: Index(['Lawyer', 'Architect', 'Engineer', 'Scientist', 'Mechanic',
                 'Accountant', 'Developer', 'Media_Manager', 'Teacher', 'Entrepreneur',
                 'Doctor', 'Journalist', 'Manager', 'Musician', 'Writer'],
               dtype='object', name='Occupation')
In [ ]: #further cleaning of the Occupation column
         id_ = "CUS_0xb891"
         oc = train[train['Customer_ID'] == id_]['Occupation'].mode()[0]
         train[train['Customer_ID'] == id_].replace("_
Out[]:
             Customer ID
                            Month Age
                                         Occupation Annual_Income Monthly_Inhand_Salary
                                                            30689.89
                                                                                2612.490833
         24
              CUS_0xb891
                                   54.0
                                         Entrepreneur
                           January
         25
              CUS_0xb891
                                   54.0
                                                                                2612.490833
                                         Entrepreneur
                                                            30689.89
                          February
         26
              CUS_0xb891
                            March 55.0
                                                                                2612.490833
                                         Entrepreneur
                                                            30689.89
              CUS_0xb891
                                   55.0
                                                                                2612.490833
         27
                                                            30689.89
                              April
                                         Entrepreneur
              CUS_0xb891
                                                                                2612.490833
         28
                              May
                                   55.0
                                         Entrepreneur
                                                            30689.89
         29
              CUS_0xb891
                                   55.0
                                                            30689.89
                                                                                2612.490833
                              June
                                         Entrepreneur
         30
              CUS_0xb891
                                   55.0
                                                            30689.89
                                                                                2612.490833
                              July
                                         Entrepreneur
                                                                                2612.490833
              CUS_0xb891
                            August 55.0
                                                            30689.89
         31
                                        Entrepreneur
        8 rows × 32 columns
In [ ]: #for loop to replace some specific redundant values in the Occupation column
         for ID in train[train['Occupation'] == "_____"]['Customer_ID'] :
             oc = train[train['Customer_ID'] == ID]['Occupation'].mode()[0]
             train[train['Customer_ID'] == ID] = train[train['Customer_ID'] == ID].replac
```

```
train['Occupation'].value_counts()
Out[]: Occupation
        Lawyer
                          7096
        Engineer
                          6864
        Architect
                          6824
        Mechanic
                          6776
        Scientist
                          6744
        Accountant
                          6744
        Developer
                          6720
        Media_Manager
                          6715
        Teacher
                          6672
        Entrepreneur
                          6648
        Doctor
                          6568
        Journalist
                          6536
        Manager
                          6432
        Musician
                          6352
        Writer
                          6304
                             5
        Name: count, dtype: int64
In [ ]: #replace the '_____' values in the Occupation column with the mode of the colu
        train['Occupation'] = train['Occupation'].replace("_____",train['Occupation'].
        train['Occupation'].value_counts()
Out[]: Occupation
        Lawyer
                          7101
        Engineer
                          6864
        Architect
                          6824
        Mechanic
                          6776
        Scientist
                          6744
        Accountant
                          6744
        Developer
                          6720
        Media_Manager
                          6715
        Teacher
                          6672
        Entrepreneur
                          6648
        Doctor
                          6568
        Journalist
                          6536
        Manager
                          6432
        Musician
                          6352
                          6304
        Writer
        Name: count, dtype: int64
        recategorize the credit mix column
In [ ]: train['Credit Mix'].value counts()
Out[]: Credit Mix
        Standard
                    36479
        Good
                     24337
                     20195
                    18989
        Name: count, dtype: int64
In [ ]: #apply custom catgorical encoding to the 'Credit_Mix' column
        m = {
            "Bad":0,
            "Standard":1,
            "Good":2,
```

```
"_":np.nan
}
train['Credit_Mix'] = train['Credit_Mix'].apply(lambda x : m[x])
```

handle missing values

```
In [ ]: # Edit Columns from bool to int
        for col in list(train.columns[-8:]):
            train[col] = train[col].astype(float)
In [ ]: #replacing unique ID with a simple integer that increments for each unique ID
        IDs = 1
        for ID in train['Customer_ID'].unique() :
            train['Customer_ID'] = train['Customer_ID'].replace(ID, IDs)
In [ ]: #apply KNN imputer to the dataset to fill the missing values
        from sklearn.impute import KNNImputer
        imputer = KNNImputer(n_neighbors=1)
In [ ]: Numericals = train.select_dtypes(exclude='object').columns[1:]
        Numericals
Out[ ]: Index(['Age', 'Annual_Income', 'Monthly_Inhand_Salary', 'Num_Bank_Accounts',
                'Num_Credit_Card', 'Interest_Rate', 'Num_of_Loan',
                'Delay_from_due_date', 'Num_of_Delayed_Payment', 'Changed_Credit_Limit',
                'Num_Credit_Inquiries', 'Credit_Mix', 'Outstanding_Debt',
                'Credit_Utilization_Ratio', 'Credit_History_Age', 'Total_EMI_per_month',
                'Amount_invested_monthly', 'Monthly_Balance', 'Credit-Builder Loan',
                'Personal Loan', 'Debt Consolidation Loan', 'Student Loan',
                'Payday Loan', 'Mortgage Loan', 'Auto Loan', 'Home Equity Loan'],
              dtype='object')
In [ ]: #for loop to apply the imputer to all the numerical columns in the dataset:
        for col in Numericals[1:]:
            imputer.fit(train[['Customer_ID',col]])
            train[['Customer_ID',col]] = imputer.transform(train[['Customer_ID',col]])
In [ ]: #recheck the dataset
        train
```

Out[]:

In []: train.info()

	Customer_ID	Month	Age	Occupation	Annual_Income	Monthly_Inhand_Sala			
0	1.0	January	23.0	Scientist	19114.12	1824.8433			
1	1.0	February	23.0	Scientist	19114.12	1824.8433			
2	1.0	March	-500.0	Scientist	19114.12	1824.8433			
3	1.0	April	23.0	Scientist	19114.12	1824.8433			
4	1.0	May	23.0	Scientist	19114.12	1824.8433			
•••									
99995	12500.0	April	25.0	Mechanic	39628.99	3359.4158			
99996	12500.0	May	25.0	Mechanic	39628.99	3359.4158			
99997	12500.0	June	25.0	Mechanic	39628.99	3359.4158			
99998	12500.0	July	25.0	Mechanic	39628.99	3359.4158			
99999	12500.0	August	25.0	Mechanic	39628.99	3359.4158			
	100000 rows × 32 columns								
4						•			

file:///C:/Users/DONKAMS/Downloads/FIN-830/Submissibles/Notebook.html

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 32 columns):

#	Column	Non-Null C	ount	Dtype
0	Customer_ID	100000 non	 -null	float64
1	Month	100000 non	-null	object
2	Age	100000 non	-null	float64
3	Occupation	100000 non	-null	object
4	Annual_Income	100000 non	-null	float64
5	Monthly_Inhand_Salary	100000 non	-null	float64
6	Num_Bank_Accounts	100000 non	-null	float64
7	Num_Credit_Card	100000 non	-null	float64
8	Interest_Rate	100000 non	-null	float64
9	Num_of_Loan	100000 non	-null	float64
10	Delay_from_due_date	100000 non	-null	float64
11	Num_of_Delayed_Payment	100000 non	-null	float64
12	Changed_Credit_Limit	100000 non	-null	float64
13	Num_Credit_Inquiries	100000 non	-null	float64
14	Credit_Mix	100000 non	-null	float64
15	Outstanding_Debt	100000 non	-null	float64
16	Credit_Utilization_Ratio	100000 non	-null	float64
17	Credit_History_Age	100000 non	-null	float64
18	Payment_of_Min_Amount	100000 non	-null	object
19	Total_EMI_per_month	100000 non	-null	float64
20	Amount_invested_monthly	100000 non	-null	float64
21	Payment_Behaviour	92400 non-	null	object
22	Monthly_Balance	100000 non	-null	float64
23	Credit_Score	100000 non	-null	object
24	Credit-Builder Loan	100000 non	-null	float64
25	Personal Loan	100000 non	-null	float64
26	Debt Consolidation Loan	100000 non	-null	float64
27	Student Loan	100000 non	-null	float64
28	Payday Loan	100000 non	-null	float64
29	Mortgage Loan	100000 non	-null	float64
30	Auto Loan	100000 non	-null	float64
31	Home Equity Loan	100000 non	-null	float64
dtyp	es: float64(27), object(5)			

dtypes: float64(27), object(5)
memory usage: 24.4+ MB

The column Payment_behaviour is yet to be filled, so we can fit impute function on it

```
In [ ]: #refit the imputer to the Payment Behaviour column specifically to fill its miss
imputer = SimpleImputer(strategy="most_frequent")
imputer.fit(train[['Payment_Behaviour']])
train[['Payment_Behaviour']] = imputer.transform(train[['Payment_Behaviour']])
In [ ]: train.isnull().sum()
```

```
Out[]: Customer_ID
        Month
        Age
        Occupation
        Annual Income
        Monthly_Inhand_Salary
                                    0
        Num_Bank_Accounts
        Num_Credit_Card
        Interest Rate
        Num_of_Loan
        Delay_from_due_date
        Num_of_Delayed_Payment
        Changed_Credit_Limit
                                     0
        Num_Credit_Inquiries
        Credit_Mix
                                     0
        Outstanding Debt
        Credit_Utilization_Ratio
        Credit_History_Age
        Payment_of_Min_Amount
        Total_EMI_per_month
        Amount_invested_monthly
        Payment_Behaviour
        Monthly_Balance
        Credit_Score
        Credit-Builder Loan
                                    0
        Personal Loan
        Debt Consolidation Loan
        Student Loan
        Payday Loan
                                    0
        Mortgage Loan
        Auto Loan
        Home Equity Loan
        dtype: int64
```

Outlier Detection and Handling

```
In []: ## replace Outliers with median
for col in Numericals :
    outliers_indecies = detect_outliers(train,0,[col])
    median = train[col].median()
    train[col].iloc[outliers_indecies] = median
```

Data Preprocessing

Handling Categorical Columns

```
In [ ]: #check for categorical columns and there values
    train.select_dtypes(include="object")
```

Out[]: Month Occupation Payment_of_Min_Amount

	0	January	Scientist		No	High_spent_Small_value_paymen		
	1	February	Scientist		No	Low_spent_Large_value_paymen		
	2	March	Scientist		No	Low_spent_Medium_value_paymen		
	3	April	Scientist		No	Low_spent_Small_value_paymen		
	4	May	Scientist		No	High_spent_Medium_value_paymen		
	•••							
	99995	April	Mechanic		No	High_spent_Large_value_paymen		
	99996	May	Mechanic		No	High_spent_Medium_value_paymen		
	99997	June	Mechanic		No	High_spent_Large_value_paymen		
	99998	July	Mechanic		No	Low_spent_Large_value_paymen		
	99999	August	Mechanic		No	Low_spent_Small_value_paymen		
	100000	rows × 5 co	lumns					
	4					>		
In []:		-	ount of the ore'].value_	target columns _counts()				
Out[]:	Credit Standa Poor Good Name:	_	8 8					
In []:	<pre>#create a dictionary to map the target column m = { "Poor":0, "Standard":1, "Good":2 }</pre>							
In []:				e target column .n['Credit_Score'].	map(n	n)		
In []:		the 'Custon ain['Custon	ner_ID' colu ner_ID']	ımn				
In []:	train	= pd.get_du	ummies(trair	,drop_first= True)				
In []:	train.	info()						

Payment_Behaviou

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 54 columns):

Data	columns (total 54 columns):		
#	Column	Non-Null Count	Dtype
0	Age	100000 non-null	float64
1	Annual_Income	100000 non-null	float64
2	Monthly_Inhand_Salary	100000 non-null	float64
3	Num_Bank_Accounts	100000 non-null	float64
4	Num_Credit_Card	100000 non-null	float64
5	Interest_Rate	100000 non-null	float64
6	Num_of_Loan	100000 non-null	float64
7	 Delay_from_due_date	100000 non-null	float64
8	Num of Delayed Payment	100000 non-null	float64
9	Changed_Credit_Limit	100000 non-null	float64
10	Num_Credit_Inquiries	100000 non-null	float64
11	Credit_Mix	100000 non-null	float64
12	Outstanding_Debt	100000 non-null	float64
13	Credit_Utilization_Ratio	100000 non-null	float64
14	Credit_History_Age	100000 non-null	float64
15	Total_EMI_per_month	100000 non-null	float64
16	Amount_invested_monthly	100000 non-null	float64
17		100000 non-null	float64
	Monthly_Balance		
18	Credit_Score	100000 non-null	int64
19	Credit-Builder Loan	100000 non-null	float64
20	Personal Loan	100000 non-null	float64
21	Debt Consolidation Loan	100000 non-null	float64
22	Student Loan	100000 non-null	float64
23	Payday Loan	100000 non-null	float64
24	Mortgage Loan	100000 non-null	float64
25	Auto Loan	100000 non-null	float64
26	Home Equity Loan	100000 non-null	float64
27	Month_August	100000 non-null	bool
28	Month_February	100000 non-null	bool
29	Month_January	100000 non-null	bool
30	Month_July	100000 non-null	bool
31	Month_June	100000 non-null	bool
32	Month_March	100000 non-null	bool
33	Month_May	100000 non-null	bool
34	Occupation_Architect	100000 non-null	bool
35	Occupation_Developer	100000 non-null	bool
36	Occupation_Doctor	100000 non-null	bool
37	Occupation_Engineer	100000 non-null	bool
38	Occupation_Entrepreneur	100000 non-null	bool
39	Occupation_Journalist	100000 non-null	bool
40	Occupation_Lawyer	100000 non-null	bool
41	Occupation_Manager	100000 non-null	bool
42	Occupation_Mechanic	100000 non-null	bool
43	Occupation_Media_Manager	100000 non-null	bool
44	Occupation_Musician	100000 non-null	bool
45	Occupation_Scientist	100000 non-null	bool
46	Occupation_Teacher	100000 non-null	bool
47	Occupation_Writer	100000 non-null	bool
48	Payment_of_Min_Amount_Yes	100000 non-null	bool
49	Payment_Behaviour_High_spent_Medium_value_payments	100000 non-null	bool
50	Payment_Behaviour_High_spent_Small_value_payments	100000 non-null	bool
51	Payment_Behaviour_Low_spent_Large_value_payments	100000 non-null	bool
52	Payment_Behaviour_Low_spent_Medium_value_payments	100000 non-null	bool
53	Payment_Behaviour_Low_spent_Small_value_payments	100000 non-null	bool
,,	- aymene_benaviour_cow_spene_smail_value_paymenes	100000 HOH-HULL	5001

```
dtypes: bool(27), float64(26), int64(1)
memory usage: 23.2 MB
```

All required preprocessing done, safe to save the preprocessed data now

```
In [ ]: #save the cleaned train data
         train.to csv('train cleaned.csv', index=False)
In [ ]: #load the cleaned train data
         train = pd.read_csv('train_cleaned.csv', low_memory=False)
         train.head()
Out[]:
            Age Annual_Income Monthly_Inhand_Salary Num_Bank_Accounts Num_Credit_Card
         0 23.0
                        19114.12
                                            1824.843333
                                                                         3.0
                                                                                           4.0
         1 23.0
                        19114.12
                                            1824.843333
                                                                         3.0
                                                                                           4.0
         2 33.0
                        19114.12
                                            1824.843333
                                                                         3.0
                                                                                           4.0
         3 23.0
                                            1824.843333
                        19114.12
                                                                         3.0
                                                                                           4.0
         4 23.0
                        19114.12
                                            1824.843333
                                                                         3.0
                                                                                           4.0
        5 rows × 54 columns
```

Data Splitting

```
In [ ]: # define dataset
X, y = train.drop("Credit_Score",axis=1).values , train["Credit_Score"]
```

Since we observed that our target variable distribution is imbalanced, Hence Oversampling or Resampling techniques will be carried out to improve it.

```
In []: #check the normalized count of the target variable
    y.value_counts(normalize=True)

Out[]: Credit_Score
    1    0.53174
    0    0.28998
    2    0.17828
    Name: proportion, dtype: float64

In []: #apply SMOTE to the dataset to balance the target column
    from imblearn.over_sampling import SMOTE
    rus = SMOTE(sampling_strategy='auto')
    X_data_rus, y_data_rus = rus.fit_resample(X, y)

In []: y_data_rus.value_counts(normalize=True)
```

```
Out[]: Credit_Score
2  0.333333
1  0.333333
0  0.333333
Name: proportion, dtype: float64

In []: # split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X_data_rus, y_data_rus, test)
```

Handling Numerical Variables

PowerTransformer is employed here to avoid data skewness

Modeling and Evaluation

Model Building

```
In [ ]: bagging = BaggingClassifier(n_jobs=-1)
    extraTrees = ExtraTreesClassifier(max_depth=10, n_jobs=-1)
    randomForest = RandomForestClassifier(n_jobs=-1)
    histGradientBoosting = HistGradientBoostingClassifier()
    XGB = XGBClassifier(n_jobs=-1)

model = StackingClassifier([
        ('bagging', bagging),
        ('extraTress', extraTrees),
        ('randomforest', randomForest),
        ('histGradientBoosting', histGradientBoosting),
        ('XGB', XGB)
], n_jobs=-1)
```

Model Fitting/Training

```
In [ ]: model.fit(X_train, y_train)
```


Model Evaluation

```
print("Train Score: ",model.score(X_train, y_train))
        print("Test Score: ",model.score(X_test, y_test))
       Train Score: 0.9993731249720145
       Test Score: 0.8493846250287315
In [ ]: y_pred = model.predict(X_test)
        print(classification_report(y_pred,y_test))
                     precision recall f1-score
                                                     support
                  0
                          0.84
                                   0.87
                                              0.86
                                                       15473
                  1
                          0.81
                                   0.79
                                              0.80
                                                       16321
                                                      16063
                  2
                          0.89
                                   0.89
                                              0.89
                                              0.85
                                                      47857
           accuracy
          macro avg
                          0.85
                                   0.85
                                              0.85
                                                      47857
```

Saving the model

0.85

weighted avg

```
In [ ]: #save the model
    joblib.dump(model, 'model.pkl')
Out[ ]: ['model.pkl']
```

0.85

47857

0.85