

Reinforcement Learning in a Neurally Controlled Robot Using Dopamine Modulated STDP

By Richard Evans

Aug 8, 2023 Sungmin Yoon

Index

- Neurons
- RL in Brain
- SNN controlled robot
- Discussion

General architecture

Input from several Pre-synaptic neurons

Figure 2.1: The structure of a neuron.

- Hodgkin-Huxley Model
- Izhikevich Model
- LIF Model

Hodgkin-Huxley Model

$$C\frac{dv}{dt} = -\sum_{k} I_k + I$$

where

C = The capacitance of the neuron,

v = The membrane potential of the neuron,

 I_k = The various ionic currents that pass through the cell,

I =The external current coming from pre-synaptic neurons,

t = Time.

Izhikevich Model

$$\frac{dv}{dt} = 0.04v^2 + 5v + 140 - u + I \tag{2.2}$$

u is the recovery variable that determines the refractory period

$$\frac{du}{dt} = a(bv - u) \tag{2.3}$$

if
$$v \ge 30$$
 then
$$\begin{cases} v \leftarrow c \\ u \leftarrow u + d \end{cases}$$
 (2.4)

Izhikevich Model

$$\frac{du}{dt} = a(bv - u)$$

$$\geq 30 \text{ then } \left\{ \begin{array}{l} v \leftarrow c \\ u \leftarrow u + d \end{array} \right.$$

Figure 2.3: An overview of some types of neurons that can be modelled with the Izhikevich model

Reinforcement Learning

- Markov property
- Q-function
- Sarsa
- Q-Learning

```
Q^{\pi}(s, a) = E[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | \pi, s_t = s, a_t = a]
```

Algorithm 1 Sarsa

```
Initialize Q(s,a) arbitrarily
Repeat (for each episode)
Initialize s
Choose a from s using policy derived from Q
Repeat (for each step of episode):
Take action a, observe r, s'
Choose a' from s' using policy derived from Q
Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma Q(s',a') - Q(s,a)]
s \leftarrow s'; a \leftarrow a';
until s is terminal
```

Algorithm 2 Q-Learning

```
Initialize Q(s,a) arbitrarily Repeat (for each episode)
Initialize s
Choose a from s using policy derived from Q with exploration Repeat (for each step of episode):

Take action a, observe r, s'
Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma max_{a'}Q(s',a') - Q(s,a)]
s \leftarrow s'
until s is terminal
```

Reinforcement Learning

Eligibility Traces

Figure 2.6: The eligibility trace for a state over time, as it is repeatedly visited.

We can incorporate the eligibility trace into the Sarsa algorithm (referred to as $Sarsa(\lambda)$), if we define e(s,a) as the eligibility trace for the state s and action a then the Q-function update becomes:

$$Q(s,a) \leftarrow Q(s,a) + \alpha e(s,a)[r + \gamma Q(s',a') - Q(s,a)]$$
(2.6)

Reinforcement Learning

Eligibility Traces

```
Algorithm 3 Sarsa(\lambda)

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,a
Repeat (for each episode)

Initialize s,a
Repeat (for each step of episode):

Take action a, observe r,s'
Choose a' from s' using policy derived from Q
\delta \leftarrow r + \gamma Q(s',a') - Q(s,a)
e(s,a) \leftarrow e(s,a) + 1
For all s,a:
Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)
e(s,a) \leftarrow \gamma \lambda e(s,a)
s \leftarrow s'; a \leftarrow a'
until s is terminal
```

BCM Theory

Hebb : "Fire together, Wire together"

→ LTP (long term potentiation)

BCM (Bienenstock, <u>Cooper</u>, Munro)

→ LTD (long term depression)

STDP (Spike-timing Dependent Plasticity)

$$\Delta w = \begin{cases} A^+ e^{-\Delta t/\tau^+} & \text{if } \Delta t \ge 0\\ -A^- e^{\Delta t/\tau^-} & \text{if } \Delta t < 0 \end{cases}$$

 Δw is the weight update

$$\Delta t = t_{post} - t_{pre}$$

 A^+, A^-, τ^+ and τ^- are constants that define how STDP is applied over time.

Figure 2.7: Graph showing how the weight update Δw relates to the $\Delta t = t_{post} - t_{pre}$ parameter.

■ STDP A

Synaptic Depression

Synaptic Facilitation

Dopamine Modulated STDP

This is the pathway of the dopamine!

Where the most of dopaminergic neurons are! (VTA)

Figure 2.8: The main dopamine pathways in the human brain.

Dopamine Modulated STDP

Two different firing pattern(dopaminergic neurons)

- Background firing (stimulus X)
- Burst firing (stimulus O)

- Synaptic tag
 - → For distal reward problem

- Synaptic tag
 - → For distal reward problem

$$\dot{s} = cd$$

Where s is the synapse strength and d is the current level of dopamine.

Dual-path model

Figure 2.12: The network architecture used by Chorley & Seth [31], red lines represent excitatory connections and blue represent inhibitory connections. When neurons in the DA module fire then dopamine is released which causes STDP of the PFC \rightarrow STR and SEN \rightarrow INT pathways. The mean firing rate of the STR module is also modulated by the amount of dopamine.

Dual-path model

Figure 2.12: The network architecture used by Chorley & Seth [31], red lines represent excitatory connections and blue represent inhibitory connections. When neurons in the DA module fire then dopamine is released which causes STDP of the PFC \rightarrow STR and SEN \rightarrow INT pathways. The mean firing rate of the STR module is also modulated by the amount of dopamine.

Neural encoding

- Rate coding
- Population coding
- Temporal coding

Discussion

- Out of date(2015)
- bridge between RL and SNN