

Przestrzeń Euklidesowa i unitarna – iloczyn skalarny

Def. Niech V będzie przestrzenią wektorową nad ciałem K = R (ciałem K = C). Każdej parze wektorów x, y p.w. V przyporządkowujemy skalar $\langle x, y \rangle$, taki że

(1)
$$\langle x, y \rangle = \langle y, x \rangle$$
 ($\langle x, y \rangle = \overline{\langle y, x \rangle}$)

- (2) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$, dla dowolnego skalara α z ciała K
- (3) < x + x', y > = < x, y > + < x', y >
- $(4) < x, x > \ge 0$, przy czym $< x, x > = 0 \Leftrightarrow x = 0$

Wówczas, przyporządkowanie $V \times V \ni (x, y) \to \langle x, y \rangle \in K$ nazywamy <u>iloczynem skalarnym</u> wektorów x, y p.w. V, zaś przestrzenią Euklidesową (unitarną) nazywamy parę $(V, \langle *, * \rangle)$ nad ciałem skalarów K, odpowiednio.

Uwaga. Przyporządkowanie wektorom x, y p.w. V skalara f(x, y) spełniające warunki (1)-(3) nazywamy formą dwuliniową symetryczną (hermitowską). Jeśli y = x, to formę tę nazywamy formą kwadratową f(x, x), a dodatkowo warunek (4) pozwala nazywać ją formą kwadratową dodatnio określoną. Dlatego iloczynem skalarnym (ogólnie) nazywa się dowolną formą dwuliniową symetryczną lub hermitowską dodatnio określoną.

P1. (a) Dla V = \mathbb{R}^n iloczynem skalarnym wektorów x, y \in V jest znane wyrażenie $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 + ... + x_n y_n \in \mathbb{R}$ (spełnione są aksjomaty (1)-(4));

(b) Dla V= \mathbb{C}^n definiujemy $\langle x, y \rangle = x_1 \overline{y}_1 + x_2 \overline{y}_2 + ... + x_n \overline{y}_n \in \mathbb{C}$, gdzie $\langle x, x \rangle \in \mathbb{R}$;

(c) Ogólnie, dla $V = \mathbf{R}^n$ iloczynem skalarnym będzie wyrażenie $\langle x, y \rangle = xAy^T$ dla $x = [x_1, x_2, x_3, ..., x_n]$ i $y = [y_1, y_2, y_3 ..., y_n] \in V$, jeśli tylko macierz kwadratowa $A \in M_{nxn}(\mathbf{R})$ jest symetryczna i dodatnio określona, tzn. jej elementy spełniają warunek $\langle x, x \rangle = \sum_{i,k=1}^n a_{ik} x_i x_k \geq 0$, przy czym $\langle x, x \rangle = 0$ jedynie dla $x = \mathbf{0}$.

W p.(a) mamy A = I, ale w p.w. \mathbf{R}^2 macierz symetryczna $A = [e_2^T, e_1^T]$ dla kolumn $e_1^T = [1, 0]^T$ i $e_2^T = [0, 1]^T$ nie definiuje poprawnie iloczynu skalarnego $\langle x, y \rangle = x_1 y_2 + x_2 y_1$, gdyż w (4) mamy $\langle x, x \rangle = 2 x_1 x_2 \langle 0 \text{ dla np. } x = [-1, 1]!$

(d) Sprawdź, że macierz $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ definiuje 2-liniową formę dodatnio określoną na p.w. \mathbf{R}^2 , a tym samym określa poprawnie iloczyn skalarny. W sprawdzeniu dodatniej określoności macierzy kwadratowej pomocne jest tzw.:

Tw. Sylwestera

Macierz kwadratowa A jest dodatnio określona, jeśli wszystkie jej minory główne ostatnich elementów głównej przekątnej są dodatnie.

- (e) W p.w. trójmianów kwadratowych $V = \mathbf{R}_2[x]$ iloczyn skalarny określa:
 - (i) całka postaci: $\langle w, v \rangle = \int_{-1}^{1} w(x)v(x)dx$, ale także
- (ii) wyrażenie $\langle w, v \rangle = w(a)v(a) + w(b)v(b) + w(c)v(c)$, dla a < b < c.
- (f*) W p.w. V= $M_{mxn}(\mathbf{R})$ iloczyn skalarny dany jest przez ślad macierzy $\langle A, B \rangle = Tr(AB^T),$

gdzie ślad macierzy M, Tr(M), jest sumą jej elementów diagonalnych m_{ii}.

Def. Długość wektora $x \in (V, <^*, ^*>)$ określamy jako $|x| = \sqrt[2]{\langle x, x \rangle}$.

Def. Kątem dwóch wektorów x, y \in E = (V, <*,*>) nazywamy liczbę $\varphi = \arccos\left(\frac{\langle x, y \rangle}{|x||y|}\right)$

Def. Wektory x, $y \in (V, <^*, *>)$ nazywamy ortogonalnymi, jeśli <x, y> = 0.

Wn. Wektor zerowy jest ortogonalny do dowolnego wektora przestrzeni E.

Def. Odległością wektorów x, $y \in E = (V, <^*, ^*>)$ nazywamy liczbę d=|x-y|

- P2. (a) Odległość wektorów x=[1,1,1] i y=[1,-1,-1] w bazie kanonicznej wynosi $d(x,y) = |[0,2,2]| = 2\sqrt[3]{2}$
- (b) Odległość funkcji $f(t) = \sin(t)$ i $g(t) = \cos(t)$ w p.w. funkcji ciągłych dla $t \in [0, 2\pi]$ wynosi $(2\pi)^{1/2}$, jeśli iloczyn skalarny dany jest przez całkę oznaczoną w przedziale $[0, 2\pi]$.

Wn. Niezerowe wektory ortogonalne dowolnej przestrzeni Euklidesowej są liniowo niezależne. Ogólnie, układ wektorów parami prostopadłych jest układem liniowo niezależnym.

Istotnie, bo gdy wektory prostopadłe x i y byłyby współliniowe, x = s y dla $s \ne 0$, to $0 = \langle x, y \rangle = \langle s, y \rangle = s \langle y, y \rangle$, czyli $\langle y, y \rangle = 0$ więc y = 0 – sprzeczność.

P3. Wektorami ortogonalnymi w odpowiednich przestrzeniach Euklidesowych są np. wielomiany w = 1 i v = x (patrz P1.e) oraz funkcje f i g w P2.b. Sprawdź!

Def. Unormowaniem niezerowego wektora $x \in E = (V, <^*, ^*>)$ nazywamy operację prowadzącą do utworzenia wersora $\hat{x} = x/|x|$, dla którego $|\hat{x}| = 1$.

Tw. Pitagorasa (w ogólnych przestrzeniach wektorowych)

Dla ortogonalnych parami wektorów x, y, z, $w \in E = (V, <^*, *>)$ zachodzi $|x + y + z + ... + w|^2 = |x|^2 + |y|^2 + |z|^2 + ... + |w|^2$.

$$\begin{aligned} & \left| x + y + z + \dots + w \right|^2 = < x + y + z + \dots + w, x + y + z + \dots + w > = \\ & < x, x > + < x, y > + < x, z > + \dots + < x, w > + \\ & < y, x > + < y, y > + < y, z > + \dots + < y, w > + \\ & + \dots + \\ & < w, x > + < w, y > + < w, z > + \dots + < w, w > = \\ & < x, x > + < y, y > + < z, z > + \dots + < w, w > = \\ & \left| x \right|^2 + \left| y \right|^2 + \left| z \right|^2 + \dots + \left| w \right|^2 \end{aligned}$$

Tw. (nierówność Schwartza)

Dla dowolnych wektorów x, $y \in E = (V, <^*, ^*>)$ zachodzi

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

Dowód: wynika z analizy wyróżnika ($\Delta \leq 0$) nieujemnego trójmianu kwadratowego zmiennej $t \in \mathbf{R}$ postaci $\langle x - t y, x - t y \rangle \geq 0$ (patrz aksjomat (4)).

Wn. (nierówność trójkąta)

Z nierówności Schwartza wynika tzw. nierówność trójkąta $|x+y| \le |x| + |y|$, bo $|x+y|^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle \le |x|^2 + 2|x||y| + |y|^2 = |x| + |y|^2$.

Ortogonalne bazy przestrzeni Euklidesa

Def. Niezerowe wektory $\{b_1, b_2, ..., b_n\}$ n - wymiarowej przestrzeni Euklidesa E = (V, <*, *>) tworzą bazę zwaną <u>bazą ortogonalną</u>, jeśli są parami prostopadłe, zaś bazą <u>orto-normalną</u>, gdy dodatkowo są także wersorami. Wówczas, mamy

$$(*) \ \ \langle b_k,\, b_p \rangle = \delta_{kp} \; (k,\, p=1,\, 2,\, ...,\, n).$$

Wn. W bazie ortogonalnej $\{b_1, b_2, ..., b_n\}$ współrzędne x_k wektora x są postaci: $x_k = \langle x, b_k \rangle / \langle b_k, b_k \rangle$ i tworzą rzuty wektora x na kolejne wektory bazy.

Wn. W przestrzeni Euklidesa z bazą orto-normalną iloczyn skalarny jest postaci standardowej: $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 + ... + x_n y_n$, gdzie n =dim V. Istotnie, wektory x i y są liniowymi kombinacjami wektorów bazy i teza wynika z liniowości iloczynu skalarnego wobec relacji (*).

Tw. (algorytm ortogonalizacji Grama-Schmidta)

Każda n-wymiarowa p. Euklidesa posiada bazę ortogonalną.

Dowód – konstrukcja bazy ortogonalnej: Niech układ $\{f_1, f_2, ... f_n\}$ będzie dowolną bazą p.w. V (n =dim V).

Połóżmy: $b_1 = f_1$ oraz $b_2 = f_2 + s$ b_1 tak, że $s = - \langle f_2, b_1 \rangle / \langle b_1, b_1 \rangle$, co wynika z warunku prostopadłości $\langle b_2, b_1 \rangle = 0$.

Tak postępując dalej utworzymy każdy wektor nowej bazy ortogonalnej $\{b_1, b_2, ... b_n\}$, gdzie $b_k = f_k + s_{k-1} b_{k-1} + s_{k-2} b_{k-2} + ... + s_1 b_1$ przy czym

$$s_i = - < f_k, b_i > / < b_i, b_i >$$

Wektory b_k nie redukują się do wektora zerowego, bo są ostatecznie liniowymi kombinacjami wektorów bazy $\{f_1, f_2, ... f_n\}$.

P4. Dla wektorów $f_1 = [1,1,0]$, $f_2 = [1,0,1]$, $f_3 = [0,1,1]$ otrzymamy drogą ortogonalizacji G-S bazę ortogonalną $b_1 = [1,1,0]$, $b_2 = [1,-1,2]$, $b_3 = [-1,1,1]$. Po procesie normalizacji otrzymamy bazę orto-normalną $\{\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3\}$, która prowadzi do macierzy ortogonalnej A o wierszach złożonych z tych wektorów:

$$A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{6} & -1/\sqrt{6} & 2/\sqrt{6}\\ -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix}$$
. Czy umiesz to wykazać?

Wn. Wiersze dowolnej macierzy ortogonalnej stopnia k stanowią bazę ortonormalną przestrzeni wektorowej \mathbf{R}^k .

- Wn. Wiersze macierzy kwadratowej stopnia k, która spełnia warunek $AA^{T} = D$, gdzie macierz D jest pewną macierzą diagonalną, stanowią bazę <u>ortogonalną</u> przestrzeni wektorowej \mathbf{R}^{k}
- P5. Ortogonalizacja w przestrzeni wielomianów o bazie {1, x, x², ..., xn} z iloczynem skalarnym jak w P1(e) prowadzi do bazy złożonej z tzw. wielomianów Legendre'a.