Frequently Asked Questions

Chanseok Park (박찬석)

Applied Statistics Laboratory Department of Industrial Engineering Pusan National University

August 5, 2020

Hosted by SEC

Overview

- Question 1
- 2 Question 2
- 3 Question 3
- 4 Question 4
- Question 5

Question

오염 및 결측 Data 판정은 쉽게 이해하면 Outlier등 비정상 Data를 판정하는 것 이라고 이해하고 있습니다. 해당 판정에 있어서 대용량/ 대규모 Data여서 (다소 정합성을 희생하더라도) 최대한 System부하를 줄이고, 빠른 판정이 가능하도록 하는 로직이 있다면 소개를 좀 받았으면 합니다.

Answer

- Deciding whether it is outlying.
- Reducing computational complexity.
- Big data versus small data.

Deciding whether it is outlying (filtering out)

• Classical rule is based on the z-scores (standardized or Studentized statistic) given by

$$z_i=\frac{x_i-\bar{x}}{s}.$$

The rule is to flag x_i as outlying if $|z_i| > 2.5$ (Rousseeuw and Hubert, 2018).

• Be careful, due to outlier(s), s can be inflated so that $|z_i|$ tends to be small. Thus, instead of the non-robust estimates (mean and standard deviation), we recommend to use robust alternative, say,

$$z_i^* = \frac{x_i - \text{median}_j x_j}{\text{MAD}_i x_i}$$

• When Huber (Winsorizing) method is used, the cut-off is around 1.5.

Reducing computational complexity

- Mean: calculation complexity O(n)
- HL: calculation complexity $O(n^2)$

Trade-offs between computation and robustness (with decent efficiency).

Big data versus small data

- J.Faraway and Augustin (2018) states that
 - Small data is sometimes preferable to big data.
 - A high quality small sample is superior to a low quality large sample.

Trade-offs between quality and quantity.

Thus, a well-designed sampling plan can be a solution.

Question

outlier 또한 궁금합니다. 몇% 까지 산포 벗어난 data는 의미가 없어 버리는지, 학계에서 일반적으로 기준 %가 있는지 궁금합니다.

Answer

- If the question is about detecting anomaly, refer to Answer 1 (deciding whether it is outlying).
- This is related to the breakdown points. Thus, it depends on the choice of estimators.
- Ideally, the maximum allowable outliers are 50%.
- Consider the finite-sample breakdown points.
- Also, it is recommended to consider the relative efficiency (RE) (not ARE) along with breakdown point.
- Using rQCC R package, the finite-sample breakdown points and RE are easily obtained (See Talk-2)

Table 1: **RECALL Talk-2:** Finite-sample breakdown points (%).

n	median/MAD	HL1/Shamos	HL2	HL3
2	00.000	00.000	00.000	00.000
3	33.333	00.000	00.000	00.000
4	25.000	00.000	25.000	25.000
5	40.000	20.000	20.000	20.000
6	33.333	16.667	16.667	16.667
7	42.857	14.286	28.571	28.571
8	37.500	25.000	25.000	25.000
9	44.444	22.222	22.222	22.222
10	40.000	20.000	30.000	20.000
50	48.000	28.000	28.000	28.000
∞	50	$100(1-\sqrt{1/2})$	$100(1-\sqrt{1/2})$	$100(1-\sqrt{1/2})$

RECALL Talk-2: rQCC package for finite-sample breakdown points and RE

- > install.packages("rQCC") # if rQCC is not installed
- > library("rQCC")
- > help(package="rQCC") # For help page
- > finite.breakdown (n=10, method="median")
 0.4
- > RE (n=10, method="median") 0.7229247

For more details, see Talk-2 and rQCC R Package (Park and Wang, 2020) at https://cran.r-project.org/web/packages/rQCC/

Question

평가가 많은 것 대비, 평가에 대한 검사 및 계측이 작은 경우가 있습니다. 이와 같은 경우, 계측의 결측치를 어떻게 대응해야 하는지 문의 하고 싶습니다.

ex) 동일 공정 조건에서 10개 중 $1\sim 2$ 개의 결측치가 나오면 현재도 할 수 있는데, (1)동일 공정 조건에서도 Data 10개 중 $8\sim 9$ 개의 결측치가 나오면 어떻게 처리해야 하는지? (2)공정 조건이 너무 다양해서 Data 5개 중 $2\sim 3$ 개의 결측치가 나오면 어떻게 처리해야 하는지?

Answer

Check if interval-data are available. Refer to Talk-4 saying Full observations are costly. Interval observations are cheap or free.

- Robust design with interval data: EM method.
 Interval data help a lot for better accuracy of estimation.
- Grouped Data: QEM method.

Question

학계에서 일반적으로 몇% 까지 결측된 data는 의미가 없어 버리고, 몇% 이상부터는 다중대체(multiple imputation)으로 결측치를 보정하여 사용 할수 있는지, 기준 %가 있는지 궁금합니다.

EM algorithm

- MCAR: EM algorithm will work.
- MAR: EM algorithm will be OK. (See the example in the next page).

What if EM is not available

- Less than 5% missingness percentage: Single Imputation will be OK.
 Refer to Page 7 of Schafer (1999).
- The EM example suggests that for MAR (of course, MCAR) case, high percentage of missingness seems OK.
- Recent article supports the above (Madley-Dowd et al., 2019).
 MI under MAR produces unbiased results with up to 90% missingness.

The above is from Figure 3.1 of Schafer (1997).

- There are $n_1=10$ full observations. The left has $n_0=10$ missing values and the right has $n_0=90$. Thus, the corresponding missingness percentages are 50% (left side) and 90% (right side).
- Note: we can think that Y_{mis} is interval-censored in $(-\infty, \infty)$.
- Both converge to the same value. Thus, the issue is how fast they converge.

Question

성능이 좋은 multiple imputation 최신 package 추천 부탁드립니다. (missforest, mice 외).

Answer

mice seems to be most-updated and powerful as far as I know.

- Keep watching on www.multiple-imputation.com
- Trace R package https://CRAN.R-project.org/package=??? where ??? is a R package name.

R package

- Multiple Imputation: Amelia, BaBooN, cat, Hmisc, kmi, mice, mi, MImix, mitools, MissingDataGUI, missMDA, miP, mirf, mix, norm, pan, VIM, Zelig, etc.
- Single Imputation: arrayImpute, ForImp, imputation, impute, imputeMDR, mtsdi, missForest, robCompositions, rrcovNA, sbgcop, SeqKnn, yaImpute, etc.
- Note: R built-in functions such as sum, var, cov can handle missing data with option na.rm=TRUE.

Stata

ice package. mi command in Stata 11. mi impute chained command in Stata 12.

SAS

PROC MI and PROC MIANALYZE (SAS V8.2),

SPSS

MULTIPLE IMPUTATION (SPSS 17). tw.sps SPSS macro.

References

- J.Faraway, J. and Augustin, N. H. (2018). When small data beats big data. Statistics & Probability Letters, 136:142–145.
- Madley-Dowd, P., Hughes, R., Tilling, K., and Heron, J. (2019). The proportion of missing data should not be used to guide decisions on multiple imputation. <u>Journal of Clinical Epidemiology</u>, 110:63–73.
- Park, C. and Wang, M. (2020). rQCC: Robust quality control chart. https://CRAN.R-project.org/package=rQCC. R package version 1.20.7 (published on July 5, 2020).
- Rousseeuw, P. J. and Hubert, M. (2018). Anomaly detection by robust statistics. WIREs Data Mining and Knowledge Discovery, 8:1–14.
- Schafer, J. L. (1997). <u>Analysis of Incomplete Multivariate Data</u>. Chapman & Hall, Boca Raton, FL.
- Schafer, J. L. (1999). Multiple imputation: a primer. <u>Statistical Methods</u> in Medical Research, 8:3–15.