PLP WEEK 3 AI TOOLS ASSIGNMENT GROUP 59

1. Short Answer Questions

Q1: Explain the primary differences between TensorFlow and PyTorch. When would you choose one over the other?

- **TensorFlow** is more production-oriented with tools like TensorFlow Serving and TensorFlow Lite for deployment.
- **PyTorch** is more Pythonic and dynamic, which makes it preferred for research and prototyping.

Choose TensorFlow if you're building a production-ready system and choose PyTorch if you want easier debugging and flexible model experimentation.

Q2: Describe two use cases for Jupyter Notebooks in AI development.

- **-Exploratory Data Analysis (EDA):** Jupyter Notebooks allow interactive data visualization and code execution, helping data scientists explore datasets efficiently.
- -Model Prototyping and Experimentation: Developers can build, test, and tweak machine learning models step-by-step, documenting each stage with markdown and visualizations.

Q3: How does spaCy enhance NLP tasks compared to basic Python string operations?

2. Comparative Analysis

- Compare Scikit-learn and TensorFlow in terms of:
 - Target applications (e.g., classical ML vs. deep learning).
 - o Ease of use for beginners.
 - Community support.

Target Application - Scikit-learn targetsClassical machine learning (e.g., regression, classification, clustering) while **TensorFlow** targets Deep learning (e.g., neural networks, CNNs, RNNs, transformers)

Learning Curve - Scikit-learn has Gentle; easy for beginners with consistent, simple API while **TensorFlow** has Steeper; requires understanding of computational graphs and model structures.

Community Support - Scikit-learn has Strong for classical ML users; mature and stable while **TensorFlow has** Very large and active, especially for cutting-edge AI research

Part 3: Ethics & Optimization

1. Ethical Considerations

Bias in MNIST Digit Classifier

MNIST seems objective, but still has potential biases:

- **Input quality bias**: MNIST digits are centered and grayscale. Real-world input may vary (off-center, noisy, colored).
- **Model overfitting**: The model may overfit to "clean" data and misclassify stylized or handwritten digits from diverse populations (e.g., left-handed writing styles).
- Accessibility: Model may fail for users with motor impairments or alternative drawing styles.

Bias in Amazon Reviews Classifier

When using text data like Amazon reviews:

- **Sentiment bias**: Models might associate certain product categories, demographics, or dialects with negative or positive sentiment.
- **Representation bias**: If most training reviews come from one region or language style, the model may underperform elsewhere.
- **Toxicity or gender bias**: Words associated with certain groups may receive skewed sentiment scores.

Accuracy scores for Decision tree classifier for iris species

Epoch values for CNN model to classify handwrittings

Graph for Epoch against Accuracy CNN model

Handwritten digit and prediction(0)

Handwritten digit and prediction(4)

Handwritten digit and prediction(6)

Handwritten digit and the prediction(2)

Handwritten digit and the prediction(7)

