

Practice

Use valence bond theory to depict bond formation in the following cases

(C≡N)⁻ N_2

Use Valence Bond Theory and hybridization to predict the bonding in H₂O molecule

- 1. Draw the Lewis structure for CH₃CCH.
- 2. Predict the VSEPR geometry at each of the carbons.
- 3. Determine a hybridization scheme to rationalize the geometry of the bolded carbons CH_3 **CC**H.
- 4. Identify the orbitals involved in each bond.

In this given structure, determine the orbitals (using Valence bond theory + hybridization) involved in bonding between the highlighted atoms

- 1. Draw the Lewis structure for [CH₂CHCH₂]⁺
- 2. Predict the VSEPR geometry at each of the carbons.
- 3. Determine a hybridization scheme at each carbon.
- 4. Identify the orbitals involved in each bond.

- 1. Draw the Lewis structure for XeF₄.
- 2. Predict the VSEPR geometry at xenon.
- 3. Determine a hybridization scheme to rationalize the geometry.