The group G is isomorphic to the group labelled by [120, 34] in the Small Groups library. Ordinary character table of $G \cong S5$:

	1a	2a	3a	5a	2b	4a	6a
χ_1	1	1	1	1	1	1	1
χ_2	1	1	1	1	-1	-1	-1
χ_3	6	-2	0	1	0	0	0
χ_4	4	0	1	-1	2	0	-1
χ_5	4	0	1	-1	-2	0	1
χ_6	5	1	-1	0	1	-1	1
χ_7	5	1	-1	0	-1	1	-1

Trivial source character table of $G \cong S5$ at p = 5:

Normalisers N_i		N_1					N_2				
p-subgroups of G up to conjugacy in G			P_1					P_2			
Representatives $n_j \in N_i$		2b	3a	2a	4a	6a	1a	4b	2a	4a	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	5	3	2	1	1	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	5	-3	2	1	-1	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	10	2	1	-2	0	-1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	10	-2	1	-2	0	1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7$	5	1	-1	1	-1	1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	5	-1	-1	1	1	-1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	-1	1	1	-1	-1	1	-1	1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	6	0	0	-2	0	0	1	E(4)	-1	-E(4)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	6	0	0	-2	0	0	1	-E(4)	-1	E(4)	
								•			

$$P_1 = Group([()]) \cong 1$$

 $P_2 = Group([(1, 2, 3, 5, 4)]) \cong C5$

 $N_1 = SymmetricGroup([1..5]) \cong S5$ $N_2 = Group([(1, 2, 3, 5, 4), (2, 4)(3, 5), (2, 4)(3, 5), (2, 4)(3, 5), (3, 4), (4, 4)(3, 5), (4, 4)(4, 5), (4, 4)(4, 5), (4, 4)(4, 5), (4, 5), (4, 5)(4, 5), (4, 5), (4, 5), (4, 5), (4, 5), (4, 5), (4,$

 $N_2 = Group([(1, 2, 3, 5, 4), (2, 4)(3, 5), (2, 5, 4, 3)]) \cong C5 : C4$