With Missing Equations Added

GCE A LEVEL - NEW

A420U10-A420U30-1A

PHYSICS – A level components 1 – 3 Data Booklet

A clean copy of this booklet should be issued to candidates for their use during each A level Physics examination.

Centres are asked to issue this booklet to candidates at the start of the course to enable them to become familiar with its contents and layout.

Values and Conversions

Avogadro constant	N_A	=	$6.02 \times 10^{23} \text{ mol}^{-1}$
Fundamental electronic charge	e	=	1.60 × 10 ⁻¹⁹ C
Mass of an electron	m_e	=	$9.11 \times 10^{-31} \mathrm{kg}$
Molar gas constant	R	=	8·31 Jmol ⁻¹ K ⁻¹
Acceleration due to gravity at sea level	g	=	9·81 m s ⁻²
Gravitational field strength at sea level	g	=	9·81 N kg ⁻¹
Universal constant of gravitation	G	=	$6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^{ 2} \mathrm{kg}^{-2}$
Planck constant	h	=	$6.63 \times 10^{-34} \mathrm{Js}$
Boltzmann constant	k	=	$1.38 \times 10^{-23} \text{J K}^{-1}$
Speed of light in vacuo	C	=	$3.00 \times 10^8 \mathrm{m s^{-1}}$
Permittivity of free space	\mathcal{E}_{0}	=	$8.85 \times 10^{-12} \mathrm{Fm^{-1}}$
Permeability of free space	μ_0	=	$4\pi \times 10^{-7} \text{H m}^{-1}$
Stefan constant	σ	=	$5{\cdot}67\times 10^{-8}Wm^{-2}K^{-4}$
Wien constant	W	=	$2.90 \times 10^{-3} m K$
Hubble constant	H_0	=	$2.20 \times 10^{-18} \text{s}^{-1}$

$$T/K = \theta/^{\circ}C + 273.15$$

1 parsec = 3.09×10^{16} m
1 u = 1.66×10^{-27} kg = 9.0×10^{-19} J
 $\frac{1}{4\pi\varepsilon_0} \approx 9.0 \times 10^9$ F⁻¹ m

0/0 D= absolute uncertainty ×100

absolute uncertainty = range/2 or resolution

Vin = $IR_1 + IR_2$ Vont = IR_2 R_2 Vont = $\frac{R_2}{V_{in}} = \frac{R_2}{R_1 + R_2}$ 2

 $\Delta U = Q - W = heat added to - work down by$

E=VQ

 $Q = mc\Delta\theta$

 $I = \frac{\Delta Q}{\Delta t}$

I = nAve

 $P = IV = I^2 R = \frac{V^2}{R}$

 $\frac{V}{V_{\text{total}}} \left[\text{ or } \frac{V_{\text{OUT}}}{V_{\text{IN}}} \right] = \frac{R}{R_{\text{total}}}$

 $U = \frac{1}{2}QV = \frac{1}{2}CV^2$

 $Q = Q_0 \left(1 - e^{-\frac{t}{RC}} \right) \qquad CHARGING$

DISCHARGING

 $R = \frac{V}{I}$

 $R = \frac{\rho l}{A}$

V = E - Ir

 $C = \frac{\varepsilon_0 A}{d}$

K = Bolteman constant

n= no. moles R= molar Gas Constant

		340 27	7
Component	$ \rho = \frac{m}{V} $	$T = 2\pi \sqrt{\frac{I}{g}}$	P. I
1	v = u + at	pV = nRT and $pV = NkT$	
	$x = \frac{1}{2}(u+v)t$	$p = \frac{1}{3}\rho c^{2} = \frac{1}{3}\frac{N}{V}mc^{2}$	
	$x = ut + \frac{1}{2}at^2$ or $Vt - \frac{1}{2}at^2$	$M/kg = \frac{M_r}{1000}$	
	$v^2 = u^2 + 2ax$	$n = \frac{\text{total mass}}{\text{molar mass}}$	i p
	$\sum F = ma$	$k = \frac{R}{N_A}$	j.
	p = mv	$U = \frac{3}{2}nRT = \frac{3}{2}NkT$	< Y
M=DE	$W = Fx \cos \theta$	$W = p\Delta V$	

$$\Delta F = m\sigma \Delta h$$

$$I = Ft$$

$$= \Delta P$$

$$E = \frac{1}{2}kx^2 = \frac{1}{2}Fx$$

$$E = \frac{1}{2}mv^2$$

 $Fx = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$

$$FX = \frac{1}{2}mV - \frac{1}{2}mu$$

$$P = \frac{W}{t} = \frac{\Delta E}{t}$$

efficiency = $\frac{\text{useful energy transfer}}{\text{total energy input}} \times 100\%$

 $\omega = \frac{\theta}{t}$ $v = \omega r = \frac{2\pi r}{T}$ $a = \omega^2 r = \frac{V}{r}$ $a = \frac{v^2}{r}$

$$v = \omega r$$

$$a = \omega^2 r = \frac{v^*}{2}$$

$$F = \frac{mv^2}{r}$$

 $F = m\omega^2 r$

$$a = -\omega^2 x$$

 $x = A\cos(\omega t + \varepsilon)$

$W=2\pi f$ $T=\frac{2\pi}{\omega}$

a = -Awicos(wt + E) $v = -A\omega\sin(\omega t + \varepsilon)$

W= 1 = 1 =

TI Pala

Component Z

Ve, = (=)V

 $Q = Q_0 e^{-\frac{t}{RC}}$

F = kx

 $\sigma = \frac{F}{A}$

(63% different from original) ~= time to fall by factor of e C= R((capacitos) $\frac{W}{V} = \frac{1}{2} \nabla \xi = \text{area under } \nabla - \xi$ $n = \frac{c}{v}$ $E = \frac{\sigma}{\varepsilon} = \frac{F L_0}{\Delta L A} \Rightarrow F = \left(\frac{EA}{L}\right) \Delta L \Rightarrow K = \frac{EA}{L_0}$ $W = \frac{1}{2}Fx = \frac{1}{2}Kx^2 \text{ (area under } F = x\text{)}$ $n_1 v_1 = n_2 v_2$ $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $F = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{e^2}$ $n_1 \sin \theta_C = n_2$ $E_{k \max} = hf - \phi$ $E_{phat} = hf = \frac{hC}{\lambda}$ $E_{k \max} = eV_{stop}$ $p = \frac{h}{\lambda}$ $hf_{k,r_s s h_a | k} = \phi$ Photon $f_{ressure} = \frac{T_{abc}}{\lambda}$ $p = \frac{h}{\lambda}$ λ= $g = \frac{GM}{r^2}$ A = 2N (deany constant *Annuals = activity) $N=N_0e^{-\lambda t}$ $PE = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r}$ $A = A_0 e^{-\lambda t}$ $V_g = -\frac{GM}{r}$ $PE = -\frac{GM_1M_2}{r}$ $A = \frac{A_0}{2^x}$ A = Ink To = time taken to fall by a factor $W = q\Delta V_E$ 0+16 $W = m\Delta V_{g}$ leptons quarks electron particle electron up down neutrino (symbol) (e⁻) (u) (d) (v_e) charge $\frac{\Delta \lambda}{\lambda} = \frac{v}{c} = \frac{\Delta t}{t}$ 0 (e) lepton 1 1 0 0 Universe age = +. number $\rho_c = \frac{3H_0^2}{8\pi G}$ kepler's Lau/s $E = mc^2$ I ellipse ... II area swept ... (Current carrying conductor) III: TZ CZ $F = BIl \sin \theta$ $T = 2\pi \sqrt{\frac{d^3}{G(M_1 + M_2)}}$ $F = Bqv\sin\theta$ (moving thinge) Component $B = \frac{\mu_0 I}{2\pi a}$ VH = BI $c = f\lambda$ (at solenoid centre) $B = \mu_0 nI$ $\lambda = \frac{a\Delta y}{D}$ $\Phi = AB\cos\theta$ $d\sin\theta = n\lambda$ flux linkage ₽ 🗸 🗸 ф Construction interference = | d = d. | @WJECGBACLIN. Ve = BLV Turn over. (for general (A420U10-1A) VE = WNBAsin (w++ $V_{\xi} = -\frac{\Delta(N\phi)}{\Delta t} \left(\text{often} = \frac{\Delta \phi}{\Delta t} \right)$ destructine = = (n+ 2) 2

OPTION A

flux linkage = $BAN \cos \omega t$	$X_L = \omega L$
$V = \omega BAN \sin \omega t$	$X_C = \frac{1}{\omega C}$
$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	$Z = \sqrt{X^2 + R^2}$
$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$	$Q = \frac{V_L}{V_R} \left(= \frac{V_c}{V_R} \right)$
$V_{\rm rms} = \frac{\omega BAN}{\sqrt{2}}$	$Q = \frac{\omega_0 L}{R}$

OPTION B

$I = I_0 e^{-\mu x}$	$f = 42.6 \times 10^6 B$	
$Z = c\rho$	$H = DW_R$	
$\frac{\Delta f}{f_0} = \frac{2v}{c}\cos\theta$	$E = HW_T$	

OPTION C

Ft = mv - mu	$\tau = I\alpha$
$e = \frac{\text{Relative speed after collision}}{\text{Relative speed before collision}}$	$L = I\omega$
$e = \sqrt{\frac{h}{H}}$	$KE = \frac{1}{2}I\omega^2$
$I = \frac{2}{5}mr^2$	$p = p_0 - \frac{1}{2}\rho v^2$
$I = \frac{2}{3}mr^2$	$F_D = \frac{1}{2}\rho v^2 A C_D$
$\alpha = \frac{\omega_2 - \omega_1}{t}$	

OPTION D

$I = \frac{P}{A} = \frac{P}{4\pi r^2}$	equal $\frac{\Delta Q}{\Delta t} = -AK \frac{\Delta \theta}{\Delta x}$	11.13.
$E = \frac{1}{2}A\rho v^3$	$P = UA\Delta\theta$	7 U = 1/4
This is	$\rho = \frac{\Delta G}{\Delta t}$	1 = 1 + 1
This is Power		

Mathematical Information

SI multipliers

Multiple	Prefix	Symbol
10-18	atto	а
10-15	femto	f
10-12	pico	р
10-9	nano	· n
10 ⁻⁶	micro	μ
10-3	milli	m
10-2	centi	С

Multiple	Prefix	Symbol
10 ³	kilo	k
10 ⁶	mega	M
10 ⁹	giga	G
10 ¹²	tera	Т
10 ¹⁵	peta	Р
10 ¹⁸	exa	Е
10 ²¹	zetta	Z

Areas and Volumes

Area of a circle =
$$\pi r^2 = \frac{\pi d^2}{4}$$

Area of a triangle = $\frac{1}{2}$ base × height

Solid	Surface area	Volume
rectangular block	$2\left(lh+hb+lb\right)$	lbh
cylinder	$2\pi r (r+h)$	$\pi r^2 h$
sphere	$4\pi r^2$	$\frac{4}{3}\pi r^3$

Trigonometry

$$\sin \theta = \frac{PQ}{PR}$$
, $\cos \theta = \frac{QR}{PR}$, $\tan \theta = \frac{PQ}{QR}$, $\frac{\sin \theta}{\cos \theta} = \tan \theta$
 $PR^2 = PQ^2 + QR^2$

$$\log(ab) = \log a + \log b$$

$$\log\left(\frac{a}{b}\right) = \log a - \log b$$

$$\log x^n = n \log x$$

$$\log_e e^{kx} = \ln e^{kx} = kx$$

$$\log_e 2 = \ln 2 = 0.693$$

@ WJEC CBAC Ltd.

(A420U10-1A)