

Code: https://github.com/ShawnXiaoyuWang/Cached-DFL

Decentralized Federated Learning with Model Caching on Mobile Agents

Stony Brook University

Xiaoyu Wang¹, Guojun Xiong², Houwei Cao³, Jian Li², Yong Liu¹ ¹New York University, ²Stony Brook University, ³New York Institute of Technology {wang.xiaoyu, yongliu}@nyu.edu, {guojun.xiong, jian.li.3}@stonybrook.edu, hcao02@nyit.edu

DFL in Vehicular Networks

Cached-DFL

☐ Our Proposal: Cached-DFL

- Motivated by Delay-tolerant Networking (DTN) for robust and efficient data dissemination in Mobile Ad-hoc Network (MANET);
- Knowledge Cache: stores own model + models from other agents;
- Two agents meet -> exchange/fuse local and cached models;
- Knowledge Caching-Relay: leverages mobility to accelerate model spreading/fusion globally.
- □ Values of Caching Agent B's Model | □ Costs of Model Caching on Agent A
 - ✓ Knowledge from B's unique data;
 - ✓ Contribute to model fusion on A;
 - ✓ Relayed to other agents via A;
 - ✓ Fast and even model spreading for global convergence.
- - X Communication cost
 - X Storage cost
 - X Cache Replacement
- X Cached models are not updateto-date:
 - X Diverge global convergence

DFL Round 1 Cached-DFL **Round 1**

Caching Algorithm Design

- ☐ Data coverage vs. staleness
- ☐ Freshness-first Caching:
 - threshold τ_{max} -> control staleness, cached models can not be older than τ_{max}
 - when cache is full-> LRU

Other Considerations:

- data distribution/uniqueness
- load balance
- projected future mobility, etc.

Algorithm 2: LRU Model Cache Update (LRU Update) **Input:** Current cache $C_i(t)$, agent j's cache $C_i(t)$, model $x_i(t)$ from agent j, current time t, cache size \mathcal{C}_{max} , staleness tolerance $\tau_{\rm max}$ **Main Process:** 1: **for** each $x_k(\tau) \in C_i(t)$ or $C_i(t)$ **do** if $t - \tau \ge \tau_{\text{max}}$ then

Remove $x_k(\tau)$ from $C_i(t)$ or $C_i(t)$ 5: end for

- 6: Add or replace $x_i(t)$ into $C_i(t)$ 7: for each $x_k(\tau) \in C_i(t)$ do
- LRU Steps ... 9: end for
- 10: Sort models in $C_i(t)$ in descending order of τ 11: Retain only the first C_{max} models in $C_i(t)$
- 12: **return** $C_i(t+1)$

Output: $C_i(t+1)$

Convergence Analysis

We also gives the convergence analysis, build a relationship related to τ_{max} : smaller τ_{max} leads to tighter bound

$$\min_{t=0}^{T-1} \mathbb{E}||\nabla F(x(t))||^2 \leq \frac{\tau_{max}}{\epsilon \eta C_1 K T} \mathbb{E}[F(x(0)) - F(x_{M(T)}(T)] + \mathcal{O}(\frac{\eta \rho K^2}{\epsilon C_1})$$

$$\leq \mathcal{O}(\frac{\tau_{max}}{\epsilon \eta C_1 K T}) + \mathcal{O}(\frac{\eta \rho K^2}{\epsilon C_1}).$$

Check out more details in our extended version.

Evaluation

Generated Manhattan Map from INRIX. 100 Cars by Manhattan Mobility Model Communication range: 100 meters Velocity: 13.89 m/s

- □ NN Models: CNN
- Image Classification Datasets
- MNIST, FashionMNIST, CIFAR-10 Dataset Distributions:
- i.i.d, Dirichlet, Non-i.i.d.

Fig. 2 Impact of Model Staleness au_{max}

Fig.3 Grouped-based Caching

Conclusion

- Cached-DFL outperforms DFL w.o. caching, especially for non-i.i.d. data distributions on agents;
- \Box Larger cache size and smaller model staleness τ_{max} make caching closer to the performance of CFL;
- \Box The choice of τ_{max} should consider the diversity data distributions on agents;
- The **mobility** or **topology** will also have big impact on model convergence.

Extended Version: Wang, X., Xiong, G., Cao, H., Li, J. and Liu, Y., 2024. "Decentralized Federated Learning with Model Caching on Mobile Agents", arXiv preprint arXiv:2408.14001.

Personal Website