3 Inferencia probabilística exacta

Camilo Palazuelos Calderón

REPRESENTACIÓN DEL CONOCIMIENTO Grado en Ingeniería Informática Mención en Computación

Curso 2023-2024

Información útil

Sobre la práctica y su entrega

Objetivos de la práctica

- Manejar estructuras de datos básicas en Python
- Implementar el algoritmo de eliminación de variables
- Calcular el coste temporal del algoritmo codificado
- Laboratorio: 3 y 10 de noviembre de 14:30 a 16:30
 - La fecha límite de entrega es el 16 de noviembre a las 23:59

L	M	X	J	V
		1	2	3
6	7	8	9	10
13	14	15	16	17
20	21	22	23	24
27	28	29	30	

Qué entregar

- Memoria con respuestas a las preguntas formuladas en el guion de la práctica
- Código desarrollado (y material adicional si lo consideráis oportuno)

Inferencia probabilística

Qué podemos preguntarle a una RB

Inferencia marginal

$$p(\boldsymbol{a}) = \sum_{\boldsymbol{b}} p(\boldsymbol{a}, \boldsymbol{b})$$

Inferencia condicional

$$p(\boldsymbol{a} \mid \boldsymbol{b}) = p(\boldsymbol{a}, \boldsymbol{b})/p(\boldsymbol{b})$$

- Responder estas preguntas es un problema NP-duro
 - Que la inferencia sea intratable depende de la propia RB;
 - \Box en concreto, de las *variables* **X** y la *estructura del grafo* \mathcal{G}
- Variables discretas y continuas
 - Asumiremos que X es un conjunto de variables discretas
 - □ El coste temporal de razonar con RB continuas es $O(n^3)$
- Inferencia probabilística exacta
 - □ Algoritmo de *eliminación de variables*

Factores y sus operaciones

Qué son y qué representan

- Sea **A** un conjunto de variables aleatorias
 - □ Un *factor* $\phi(\mathbf{a})$ es una función entre el dominio de \mathbf{A} y \mathbb{R}^+
 - \Box Al conjunto de variables **A** se lo denomina **ámbito** de $\phi(\mathbf{a})$
- Un factor no necesariamente representa una distribución

Producto de dos factores

$$\psi(\pmb{a},\pmb{b},\pmb{c})=\phi_1(\pmb{a},\pmb{b})\cdot\phi_2(\pmb{b},\pmb{c})$$

Marginalización

$$au(m{a},m{c}) = \sum_{m{b}} \psi(m{a},m{b},m{c})$$

- Sean **A**, **B** y **C** tres conjuntos disjuntos de variables binarias
 - \Box ¿Cuántos parámetros para describir $\psi(\mathbf{a}, \mathbf{b}, \mathbf{c})$?
 - \square ¿Y para $\tau(\boldsymbol{a},\boldsymbol{c})=\sum_{\boldsymbol{b}}\psi(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})$?

Inferencia marginal

Cómo razonamos algorítmicamente

- Eliminación de variables (EV)
 - □ Permite razonar con inferencias *marginal* y *condicional*
 - Multiplica y marginaliza factores en un proceso iterativo
 - Se debe indicar el orden en que eliminar las variables
- El orden determina la complejidad computacional de la EV

Para cada variable X_i (en orden)

Sustituye los
$$\phi_i$$
 y τ_k por $\tau_i(\mathbf{w})$

$$\mathbf{W} = \bigcup_{j,k} \mathbf{Y}_j \cup \mathbf{Z}_k$$

marginalización de X_i

eliminación de Xi

Inferencia condicional

¿Y si hemos observado variables?

El algoritmo de EV permite obtener distribuciones condicionales

$$p(\boldsymbol{a} \mid \boldsymbol{c}) = \frac{\sum_{\boldsymbol{b}} p(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})}{\sum_{\boldsymbol{a}', \boldsymbol{b}} p(\boldsymbol{a}', \boldsymbol{b}, \boldsymbol{c})}$$

• Elimina **B** (en orden)

$$p(oldsymbol{a} \mid oldsymbol{c}) = rac{p(oldsymbol{a}, oldsymbol{c})}{\sum_{oldsymbol{a}'} p(oldsymbol{a}', oldsymbol{c})}$$

2 Elimina A (en orden)

$$p(oldsymbol{a} \mid oldsymbol{c}) = rac{p(oldsymbol{a}, oldsymbol{c})}{p(oldsymbol{c})}$$

- Sea E un conjunto de variables observadas tal que E ⊆ C
 - \square Para todo i, $\phi_i[\boldsymbol{e}_i](\boldsymbol{y}_i) = \phi_i(\boldsymbol{e}_i, \boldsymbol{y}_i)$ tal que $\boldsymbol{E}_i = \boldsymbol{e}_i$, donde $\boldsymbol{E}_i \subseteq \boldsymbol{E}_i$

Tareas y preguntas

Qué hacer y a qué dar respuesta en la memoria

- [6 PUNTOS] Codificación del algoritmo descrito
 - Producto y marginalización de factores
 - Algoritmo de EV para inferencia marginal
 - Algoritmo de EV para inferencia condicional
- [2 PUNTOS] Eficacia de vuestra propuesta
 - Mostrad, con ejemplos variados, que funciona correctamente
- [2 PUNTOS] Evaluación de su coste temporal empírico
 - En función de algún parámetro de su coste temporal teórico