Ejercicios Tema 3 - Intervalos de Confianza. Taller 1

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Curso completo de estadística inferencial con R y Python

Contenidos

1		ervalos de confianza taller 1
	1.1	Ejercicio 1
	1.2	
	1.3	Ejercicio 3
	1.4	Ejercicio 4
	1.5	Ejercicio 5
	1.6	Ejercicio 6
	1.7	Ejercicio 7
	1.8	Ejercicio 8
2		uciones
	2.1	Solución ejercicio 1
	2.2	Ejercicio 2
	2.3	Ejercicio 3
	2.4	Ejercicio 4
	2.5	Ejercicio 5
	2.6	Ejercicio 6
	2.7	Ejercicio 7
	2.8	Ejercicio 8

1 Intervalos de confianza taller 1

1.1 Ejercicio 1

El fabricante SMART_LED fabrica bombillas led inteligentes y de alta gama. Supongamos que la vida de de estas bombillas sigue una distribución exponencial de parámetro λ . Si tomamos una muestra aleatoria de tamaño n de estas bombillas y representamos por X_i la duración de la i-ésima bombilla para $i=1,\ldots,n$, ¿cuál es la función de densidad conjunta de la muestra?

1.2 Ejercicio 2

Sean X_1, X_2, \ldots, X_{10} variables aleatorias que son una muestra aleatoria simple de una v.a. X. a. Dividimos la muestra en dos partes: de forma que la primera son los 5 primeros valores y la segunda los restantes. ¿Son independientes las dos partes? b. Volvemos a dividir la muestra en dos partes: la primera está formada por los 5 valores más pequeños y la segunda por el resto. ¿Son independientes las dos partes?

1.3 Ejercicio 3

Un fabricante de motores pone a prueba 6 motores sobre el mismo prototipo de coche de competición. Para probar que los motores tienes las mismas prestaciones se someten a distintas pruebas en

un circuito. Las velocidades máximas en 10 vueltas al circuito de cada motor tras la prueba son 190, 195, 193, 177, 201 y 187 en Km/h. Estos valores forman una muestra aleatoria simple de la variable X = velocidad máxima de un motor en 10 vueltas. Se pide calcular los valores observados de los siguientes estadísticos de la muestra: a. \overline{X} . b. \tilde{S}^2 . c. Mediana. d. $X_{(4)}$ (valor que ocupa el cuarto lugar ordenados los valores de menor a mayor).

1.4 Ejercicio 4

¿Cuál es la probabilidad de que el máximo de de una muestra de tamaño n = 10 de una v.a. uniforme en el intervalo (0,1) sea mayor que 0.9? ¿Cuál es la probabilidad de sea menor que $\frac{1}{2}$?

1.5 Ejercicio 5

Sea X_1, X_2, \ldots, X_n una muestra aleatoria simple de una variable aleatoria normal de parámetros μ y σ . Denotemos por $X_{(1)} \leq X_{(2)} \leq, \ldots, \leq X_{(n)}$ la muestra ordenada de menor a mayor. a. Calcular la funciones de densidad del mínimo $X_{(1)}$ y del máximo $X_{(n)}$ b. ¿Alguna de estas variables sigue una distribución normal?

1.6 Ejercicio 6

Consideremos la muestra aleatoria simple X_1, X_2, \dots, X_n de una v.a X de media μ y varianza σ^2 desconocidas. Definimos

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \ \text{y} \ T = \frac{\sqrt{n} \cdot (\overline{X} - \mu)}{\sigma}.$$

a. ¿Cuál es la distribución de T?

b. ¿Es T un estadístico?

1.7 Ejercicio 7

Consideremos la muestra aleatoria simple X_1, X_2, \dots, X_n de tamaño n=10 de una v.a X normal estándar. Calculad $P\left(2.56 < \sum_{i=1}^{10} X_i^2 < 18.31\right)$.

1.8 Ejercicio 8

Consideremos la muestra aleatoria simple X_1, X_2, \dots, X_n de tamaño n=10 de una v.a X normal $N(\mu=2,\sigma=4)$. Definimos la siguiente variable aleatoria $Y=\frac{\sum\limits_{i=1}^{10}{(X_i-2)^2}}{16}$. Calculad $P(Y\leq 2.6)$

2 Soluciones

2.1 Solución ejercicio 1

Tenemos una m.a.s. de tamaño n X_1, X_2, X_n de una v.a. X con distribución $Po(\lambda)$. Bajo estas condiciones $P(X_i = x_i) = \frac{\lambda^{x_i}}{x_i!} \cdot e^{-\lambda}$

La función de probabilidad (densidad) de la muestra es el propducto de las de cada X_i , concretamente:

$$P(X_{1} = x_{1}, X_{2} = x_{2}, \dots, X_{n} = x_{n}) = P(X_{i} = x_{1}) \cdot P(X_{i} = x_{2}) \cdot \dots \cdot P(X_{i} = x_{n})$$

$$= \frac{\lambda^{x_{1}}}{x_{1}!} e^{-\lambda} \cdot \frac{\lambda^{x_{2}}}{x_{2}!} e^{-\lambda} \cdot \dots \cdot \frac{\lambda^{x_{n}}}{x_{n}!} e^{-\lambda}$$

$$= \frac{\lambda^{\sum_{i=1}^{n} x_{i}}}{x_{1}! \cdot x_{2}! \dots \cdot x_{n}!} e^{-n \cdot \lambda}.$$

2.2 Ejercicio 2

Sean X_1, X_2, \ldots, X_{10} variables aleatorias que son una muestra aleatoria simple de una v.a. X. a. Dividimos la muestra en dos partes: de forma que la primera son los 5 primeros valores y la segunda los restantes. ¿Son independientes las dos partes? b. Volvemos a dividir la muestra en dos partes: la primera está formada por los 5 valores más pequeños y la segunda por el resto. ¿Son independientes las dos partes?

2.3 Ejercicio 3

Un fabricante de motores pone a prueba 6 motores sobre el mismo prototipo de coche de competición. Para probar que los motores tienes las mismas prestaciones se someten a distintas pruebas en un circuito. Las velocidades máximas en 10 vueltas al circuito de cada motor tras la prueba son 190, 195, 193, 177, 201 y 187 en Km/h. Estos valores forman una muestra aleatoria simple de la variable X= velocidad máxima de un motor en 10 vueltas. Se pide calcular los valores observados de los siguientes estadísticos de la muestra: a. \overline{X} . b. \tilde{S}^2 . c. Mediana. d. $X_{(4)}$ (valor que ocupa el cuarto lugar ordenados los valores de menor a mayor).

2.4 Ejercicio 4

¿Cuál es la probabilidad de que el máximo de de una muestra de tamaño n = 10 de una v.a. uniforme en el intervalo (0,1) sea mayor que 0.9? ¿Cuál es la probabilidad de sea menor que $\frac{1}{2}$?

2.5 Ejercicio 5

Sea X_1, X_2, \ldots, X_n una muestra aleatoria simple de una variable aleatoria normal de parámetros μ y σ . Denotemos por $X_{(1)} \leq X_{(2)} \leq, \ldots, \leq X_{(n)}$ la muestra ordenada de menor a mayor. a. Calcular la funciones de densidad del mínimo $X_{(1)}$ y del máximo $X_{(n)}$ b. ¿Alguna de estas variables sigue una distribución normal?

2.6 Ejercicio 6

Consideremos la muestra aleatoria simple X_1, X_2, \dots, X_n de una v.a X de media μ y varianza σ^2 desconocidas. Definimos

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \ \text{y} \ T = \frac{\sqrt{n} \cdot (\overline{X} - \mu)}{\sigma}.$$

a. ¿Cuál es la distribución de T?

b. ¿Es T un estadístico?

2.7 Ejercicio 7

Consideremos la muestra aleatoria simple X_1, X_2, \dots, X_n de tamaño n=10 de una v.a X normal estándar. Calculad $P\left(2.56 < \sum_{i=1}^{10} X_i^2 < 18.31\right)$.

2.8 Ejercicio 8

Consideremos la muestra aleatoria simple X_1, X_2, \dots, X_n de tamaño n=10 de una v.a X normal $N(\mu=2,\sigma=4)$. Definimos la siguiente variable aleatoria $Y=\frac{\sum\limits_{i=1}^{10}{(X_i-2)^2}}{16}$. Calculad $P(Y\leq 2.6)$