10-30-00

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Docket No: 28341/6276NCP

PATENT APPLICATION TRANSMITTAL UNDER 37 C.F.R. 1.53

Box Patent Application Commissioner for Patents Washington, D.C. 20231

Transmitted herewith for filing is the patent application of

Inventor(s):

Gabriel Vogeli, Linda S. Wood and Kalpana Merchant

Title:

G Protein-Coupled Receptors Expressed in Brain

1. Type of Application

⊠ This is a new application for a

□ utility patent.

☐ design patent.

This is a continuation-in-part application of prior application nos. 09/427,653, 09/427,859, 09/428,020, 09/428,114, 09/429,676, 09/429,695, 09/429,555, 09/454,399, 09/429,517 and 09/481,794.

2. Application Papers Enclosed

- 1 Title Page
- 137 Pages of Specification (excluding Claims, Abstract, Drawings & Sequence Listing)
- 15 Page(s) of Claims
- 1 Page(s) of Abstract
- O Sheet(s) of Drawings
 - ☐ Formal
 - ☐ Informal
- 42 Page(s) of Sequence Listing

CERTIFICATION UNDER 37 CFR 1.10

I hereby certify that this Patent Application Transmittal and the documents referred to as enclosed therewith are being deposited with the United States Postal Service on **October 27**, **2000**, in an envelope addressed to the Commissioner for Patents, Washington, D.C. 20231 utilizing the "Express Mail Post Office to Addressee" service of the United States Postal Service under Mailing Label No. EK 657821469 US.

Richard Zimmerman

3.	Declai	ation or	Oatn										
			Enclos	sed									
				Execu	ted by (check all applicable boxes)							
					Invent	cor(s)							
						representative of inventor(s) FR 1.42 or 1.43)							
						inventor or person showing a proprietary interest on of inventor who refused to sign or cannot be ed							
						The petition required by 37 CFR 1.47 and the statement required by 37 CFR 1.47 are enclosed. See Item 5D below for fee.							
		⊠		ation or		ndersigned attorney or agent is authorized to file this of the applicant(s). An executed declaration will							
4.	Small	Entity \$	Status										
		Applie	cant cla	nt claims small entity status. See 37 CFR 1.27.									
			A sm	all entity	y statem	nent is(are) attached.							
5.	Addit	ional Pa	pers En	closed									
			Prelir	minary A	mendm	ent							
			Infor	mation [Disclosu	re Statement							
			Decla	aration o	f Biolog	ical Deposit							
		⊠		puter rea o acid se		opy of sequence listing containing nucleotide and/or							
			Micre	ofiche co	omputer	program							
			Asso	ciate Po	wer of a	Attorney							
			Verif	ied trans	slation o	f a non-English patent application							
			An a	ssignme	nt of th	e invention							
		\boxtimes	Retu	rn receip	ot postc	ard							
		\boxtimes	Othe	r-Staten	nent Reg	garding Sequence Listing							

6. Priority Application	ons Under 35 USC 119
-------------------------	----------------------

Certified copies of applications from which priority under 35 USC 119 is claimed are listed below and

- ☐ are attached.
- □ will follow.

COUNTRY	APPLICATION NO.	FILED

7. Filing Fee Calculation (37 CFR 1.16)

A. Multility Application

	CLAIMS AS FILED - INCLUDING PRELIMINARY AMENDMENT (IF ANY)													
	where the second	The state of the s	SMALL	ENTITY	OTHER THAN A SMALL ENTITY									
	NO. FILED	NO. EXTRA	RATE	FEE	RATE	FEE								
BASIC FEE	Andrew Warner Property Age on the State of t	25 (10) 12 10 (10) 12	Ket (\$355.00		\$710.00								
TOTAL	64-20	= 44	X 9 =	\$	X 18 =	\$792.00								
INDEP.	8- 3	= 5	X 40 =	\$	X 80 =	\$400.00								
☐ First Pre	sentation of Multip	ole Dependent	+ 135 =	\$	+ 270 =	\$								
			Filing Fee:	\$	OR	\$1,902.00								

В.		Design Application (\$160.00/\$320.00) Filing Fee: \$	
c.		Plant Application (\$245.00/\$490.00) Filing Fee: \$	
D.	Other I	Fees	
		Recording Assignment [Fee \$40.00 per assignment]	\$
		Petition fee for filing by other than all the inventors or person on behalf of the inventor where inventor refused to sign or cannot be reached [Fee \$130.00]	j \$
		Other	\$

Total Fees Enclosed \$1,902.00

8. Method of Payment of	Fees
-------------------------	------

\boxtimes	Enclosed check in the amount of:	\$1,902.00
	Charge Deposit Account No. 13-2855 in the amount of: A copy of this Transmittal is enclosed.	\$
	Not enclosed	

9. Deposit Account and Refund Authorization

The Commissioner is hereby authorized to charge any deficiency in the amount enclosed or any additional fees which may be required during the pendency of this application under 37 CFR 1.16 or 37 CFR 1.17 or under other applicable rules (except payment of issue fees), to Deposit Account No. 13-2855. A copy of this Transmittal is enclosed.

Please refund any overpayment to Marshall, O'Toole, Gerstein, Murray & Borun at the address below.

10. Correspondence Address

Customer No.: 04743

Respectfully submitted,

MARSHALL, O'TOOLE, GERSTEIN, MURRAY & BORUN 6300 Sears Tower 233 South Wacker Drive Chicago, Illinois 60606-6402 (312) 474-6300 (312) 474-0448 (Telefacsimile)

By:

David A. Gass Reg. No: 38,153

October 27, 2000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the Application of: Vogeli et al.) "EXPRESS MAIL" mailing label No.
) EK 657821469US
Serial No.: To be assigned)
-) I hereby certify that this paper is being
Filed: Herewith) deposited with the United States Postal
) Service as "EXPRESS MAIL POST
For: G Protein-Coupled Receptors) OFFICE TO ADDRESSEE" service
Expressed in Brain	under 37 C.F.R. § 1.10, in an envelope
•) addressed to: Commissioner for Patents,
Group Art Unit: To be assigend) Washington, DC 20231 on this date:
-)
Examiner: To be assigned) October 27,2000
Ü) Khail L
	Richard Zimmermann

PRELIMINARY AMENDMENT

Box Patent Application Commissioner for Patents Washington, D.C. 20231

Sir:

Prior to calculating the filing fee and substantive examination, please amend the application filed herewith as follows:

IN THE CLAIMS:

Please cancel claims 1-7, 9-11, 49-51.

Please amend claims 8, 12-16, 18-19, 22, 24, 26-28, 31, 35, 39, 41-47 and 75 as shown below:

-- 8. (Amended) A purified and isolated seven transmembrane receptor polypeptide [according to claim 1] comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 14, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.

- 12. (Amended) A purified and isolated seven transmembrane receptor polypeptide according to [any one of claims 1-11] <u>claim 8</u>.
- 13. (Amended) A purified and isolated polypeptide according to [any one of claims 1-11] <u>claim 8</u> comprising at least one extracellular domain of the seven transmembrane receptor polypeptide.
- 14. (Amended) A purified and isolated polypeptide according to [any one of claims 1-11] <u>claim 8</u> comprising the N-terminal extracellular domain of the seven transmembrane receptor polypeptide.
- 15. (Amended) A purified and isolated polypeptide according to [any one of claims 1-11] <u>claim 8</u> comprising a seven transmembrane receptor fragment selected from the group consisting of an N-terminal extracellular domain transmembrane domains, extracellular loops connecting transmembrane domains, intracellular loops connecting transmembrane domains, a C-terminal cytoplasmic domain, and fusions thereof.
- 16. (Amended) A polypeptide according to [any one of claims 1-15] <u>claim 8</u>, wherein the polypeptide further includes a heterologous tag amino acid sequence.
- 18. (Amended) A purified and isolated polynucleotide comprising a nucleotide sequence that encodes a polypeptide according to [any one of claims 2, 3, 4, 8 or 9] claim 8.
- 19. (Amended) A purified and isolated polynucleotide comprising a heterologous expression control sequence operatively linked to a nucleotide sequence that encodes a polypeptide according to [any one of claims 1-16] claim 8.

- 22. (Amended) A purified and isolated polynucleotide comprising a nucleotide sequence that encodes a mammalian seven transmembrane receptor, wherein said polynucleotide hybridizes to [any one of] the nucleotide sequence[s] set forth in SEQ ID NO[S]: [1, 3, 5, 7, 9, 11,] 13, [15, 17, or 19] or the non-coding strand complementary thereto, under the following hybridization conditions:
- (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaC1, 10% dextran sulfate and
- (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS, with the proviso that the nucleotide sequence of the polynucleotide differs from the coding sequence set forth in [any one of] SEQ ID NO[S]: [1, 3, 5, 7, 9, 11,] 13, [15, 17, or 19] and from its complementary strand by at least one nucleotide.
- 24. (Amended) A vector comprising a polynucleotide according to [any one of claims 17-23] claim 17.
- 26. (Amended) A host cell stably transformed or transfected with a polynucleotide according to [any one of claims 17-23] <u>claim 17</u> in a manner allowing the expression in said host cell of the polypeptide or fragment thereof encoded by the polynucleotide.
- 27. (Amended) A host cell stably transformed or transfected with a vector according to claim [24 or] 25 in a manner allowing the expression in said host cell of the polypeptide or fragment thereof encoded by the polynucleotide.
- 28. (Amended) A method for producing a seven transmembrane receptor polypeptide comprising the steps of growing a host cell according to claim 26 [or 27] in a nutrient medium under conditions in which the host cell expresses a seven transmembrane receptor encoded by the polynucleotide.
- 31. (Amended) An antibody specific for a polypeptide according to [any one of claims 1-15] <u>claim 8</u>.

- 35. (Amended) An antibody according to claim 31 that specifically binds an extracellular epitope of a seven transmembrane receptor having an amino acid sequence [selected from the group consisting] of SEQ ID NO: 14 [NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20].
- 39. (Amended) A polypeptide comprising a fragment of an antibody according to claim 31, wherein said fragment and said polypeptide specifically bind to a seven transmembrane receptor having an amino acid sequence [selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20] set forth in SEQ ID NO: 14.
- 41. (Amended) A composition comprising a polypeptide according to [any one of claims 1-16] claim 8 in a pharmaceutically acceptable carrier.
- 42. (Amended) A composition comprising an antibody according to [any one of claims 31, 32, 34, 35, or 36, or a polypeptide according to claim 39 or 40,] <u>claim 31</u> in a pharmaceutically acceptable carrier.
- 43. (Amended) A method for modulating ligand binding of a seven transmembrane receptor polypeptide according to [any one of claims 1-15] claim 8, comprising the step of contacting said seven transmembrane receptor polypeptide with an antibody specific for said seven transmembrane receptor, under conditions wherein the antibody binds the receptor.
- 44. (Amended) A method for modulating ligand binding of a seven transmembrane receptor polypeptide comprising the step of contacting said seven transmembrane receptor polypeptide with a polypeptide according to claim 39 [or 40].

- 45. (Amended) An assay to identify compounds that bind a seven transmembrane receptor polypeptide, said assay comprising the steps of:
- (a) contacting a composition comprising a seven transmembrane receptor polypeptide according to [any of claims 1-15] <u>claim 8</u> with a compound suspected of binding the seven transmembrane receptor polypeptide; and
- (b) measuring binding between the compound and the seven transmembrane receptor polypeptide.
- 46. (Amended) A method for identifying a modulator of binding between a seven transmembrane receptor polypeptide and a binding partner of the seven transmembrane receptor polypeptide, comprising the steps of:
- (a) contacting the binding partner and a composition comprising the seven transmembrane receptor polypeptide in the presence and in the absence of a putative modulator compound, where the seven transmembrane receptor polypeptide is a polypeptide according to [any one of claims 1-15] <u>claim 8</u>;
- (b) measuring binding between the binding partner and said seven transmembrane receptor polypeptide; and
- (c) identifying a putative modulator compound in view of decreased or increased binding between the binding partner and seven transmembrane receptor polypeptide in the presence of the putative modulator, as compared to binding in the absence of the putative modulator.
- 47. (Amended) An assay according to claim 45 [or 46] wherein the composition comprises a cell expressing the seven transmembrane receptor polypeptide on its surface.
- 75. (Amended) An assay according to claim 74 [or 75] wherein the composition comprises a cell expressing the seven transmembrane receptor polypeptide on its surface.

REMARKS

In the forgoing amendment, the Applicants have canceled claims 1-7, 9-11 and 49-51, without prejudice, and amended other claims (*e.g.*, to remove multiple dependencies) in order to reduce the filing fee. The Applicants do not intend by these or any other amendments to abandon the subject matter of any claim as originally filed, and reserve the right to pursue such subject matter in this application or related applications, including but not limited to parent applications and continuing applications.

Respectfully submitted,

MARSHALL, O'TOOLE, GERSTEIN, MURRAY & BORUN

6300 Sears Tower 233 South Wacker Drive Chicago, Illinois 60606-6402 (312) 474-6300

By:

David A. Gass. Reg. No. 38,153

October 27, 2000

JOINT INVENTORS

"EXPRESS MAIL" mailing label No. EK 657821469 US.

Date of Deposit: October 27, 2000
I hereby certify that this paper (or fee) is being deposited with the United States Postal Service "EXPRESS MAIL POST OFFICE TO ADDRESSEE" service under 37 CFR §1.10 on the date indicated above and is addressed to: Commissioner for Patents, Washington, D.C.

Krehall

Richard Zimmermann

APPLICATION FOR UNITED STATES LETTERS PATENT

20231

SPECIFICATION

TO ALL WHOM IT MAY CONCERN:

Be it known that we, Gabriel Vogeli a citizen of United States of America, residing at 2576 Ninth Avenue West, Seattle, Washington 98119, and Linda S. Wood a citizen of United States of America, residing at 10193 FoxHollow, Portage, Michigan 49024, and Kalpana, Merchant a citizen of United States of America, residing at 5015 Gelencove Lane, Portage, Michigan 49024, have invented a new and useful G Protein-Coupled Receptors Expressed in Brain, of which the following is a specification.

10

15

20

G PROTEIN-COUPLED RECEPTORS EXPRESSED IN BRAIN

RELATED APPLICATIONS

This patent application is a continuation-in-part of the following U.S. patent applications: Serial No. 09/481,794 filed January 12, 2000; Serial No. 09/454,399 filed December 3, 1999; Serial Nos. 09/429,517, 09/429,555, 09/429,676, 09/429, 695 filed October 28, 1999; and Serial Nos. 09/428,114, 09/428,020, 09/427,859 and 09/427,653 filed October 27, 1999. All these application are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to the fields of genetics and cellular and molecular biology. More particularly, the invention relates to a novel G protein-coupled seven transmembrane receptor polynucleotide and polypeptide sequences that are expressed in the brain.

DESCRIPTION OF RELATED ART

Humans and other life forms are comprised of living cells. Among the mechanisms through which the cells of an organism communicate with each other and obtain information and stimuli from their environment is through cell membrane receptor molecules expressed on the cell surface. Many such receptors have been identified, characterized, and sometimes classified into major receptor superfamilies based on structural motifs and signal transduction features. Such families include (but are not limited to) ligand-gated ion channel receptors, voltage-dependent ion channel receptors, receptor tyrosine kinases, receptor protein tyrosine phosphatases, and G protein-coupled receptors. The receptors are a first essential link for translating an extracellular signal into a cellular physiological response.

The G protein-coupled receptors (GPCR) form a vast superfamily of cell surface receptors which are characterized by an amino-terminal extracellular domain, a carboxyl-terminal intracellular domain, and a serpentine structure that passes through the cell membrane seven times. Hence, such receptors are sometimes also referred to as seven transmembrane (7TM) receptors. These seven

30

10

15

20

transmembrane domains define three extracellular loops and three intracellular loops, in addition to the amino- and carboxyl-terminal domains. The extracellular portions of the receptor have a role in recognizing and binding one or more extracellular binding partners (ligands), whereas the intracellular portions have a role in recognizing and communicating with downstream effector molecules.

The G protein-coupled receptors bind a variety of ligands including calcium ions, hormones, chemokines, neuropeptides, neurotransmitters, nucleotides, lipids, odorants, and even photons, and are important in the normal (and sometimes the aberrant) function of many cell types. [See generally A.D. Strosberg, Eur. J. Biochem., 196: 1-10 (1991) and S. K. Bohm et al., Biochem J., 322: 1-18 (1997).] When a specific ligand binds to its corresponding receptor, the ligand stimulates the receptor to activate a specific heterotrimeric guanine-nucleotide-binding regulatory protein (G-protein) that is coupled to the intracellular portion of the receptor. The G protein in turn transmits a signal to an effector molecule within the cell, by either stimulating or inhibiting the activity of that effector molecule. These effector molecules include adenylate cyclase, phospholipases, and ion channels. Adenylate cyclase and phospholipases are enzymes that are involved in the production of the second messenger molecules cAMP, inositol triphosphate and diacyglycerol. It is through this sequence of events that an extracellular ligand stimuli exerts intracellular changes through a G protein-coupled receptor. Each such receptor has its own characteristic primary structure, expression pattern, ligand-binding profile, and intracellular effector system.

Because of the vital role of G protein-coupled receptors in the communication between cells and their environment, such receptors are attractive targets for therapeutic intervention, and many drugs have been registered which are directed towards activating or antagonizing such receptors. For receptors having a known ligand, the identification of agonists or antagonists may be sought specifically for enhancing or inhibiting the action of the ligand. Some G protein-coupled receptors have roles in disease pathogenesis (e.g., certain chemokine receptors that act as HIV co-receptors and may have a role in AIDS pathogenesis), and are attractive targets for therapeutic intervention even in the absence of knowledge of the natural

30

10

15

20

ligand of the receptor. Other receptors are attractive targets for therapeutic intervention by virtue of their expression pattern in tissues or cell types that are attractive targets for therapeutic intervention. Examples of this latter category of receptors include receptors expressed in immune cells, for targeting to enhance immune responses to fight pathogens or cancer or inhibit autoimmune responses; and receptors expressed in the brain or other neurons, for targeting to treat schizophrenia, depression, bipolar disease, or other neurological disorders. This latter category of receptor is also useful as a marker for identifying and/or purifying (e.g., via fluorescence activated cell sorting) cellular subtypes that express the receptor. Unfortunately, only a limited number of G protein receptors from the central nervous system (CNS) are known. A need exists for identifying the existence and structure of such G protein-coupled receptors.

SUMMARY OF THE INVENTION

The present invention addresses one or more of the needs identified above in that it provides purified polynucleotides encoding heretofore unknown G protein-coupled receptors (GPCR); constructs and recombinant host cells incorporating the polynucleotides; GPCR polypeptides encoded by the polynucleotides; antibodies to the polypeptides; and methods of making and using all of the foregoing. As set forth in detail herein, the GPCR polypeptides described herein are expressed in the brain, providing a therapeutic indication for GPCR polypeptides and binding partners to treat diseases associated with this tissue.

The invention provides purified and isolated GPCR seven transmembrane receptor polypeptides comprising any one of the amino acid sequences set forth in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20, or a fragment thereof comprising an epitope specific to the seven transmembrane receptor. By "epitope specific to" is meant a portion of the receptor that is recognizable by an antibody that is specific for that seven transmembrane receptor, as defined in detail below.

One preferred embodiment comprises a purified and isolated polypeptide designated CON193, comprising the complete amino acid sequence set

25

forth in SEQ ID NO: 2. This amino acid sequence was deduced from a polynucleotide sequence encoding CON193 (SEQ ID NO:1), as set forth below: ntqqttqttq qaccattaaa atgcattatg gaatttttaa aagttggggg agagggagac 60 agtaaaaata acctatattt totottqttt tttttttttt aactotagga aagcccagac 120 aaattttgag ctatttcata acctaccaga cttatc atg cta aca ctg aat aaa Met Leu Thr Leu Asn Lys aca gac cta ata cca gct tca ttt att ctg aat gga gtc cca gga ctg Thr Asp Leu Ile Pro Ala Ser Phe Ile Leu Asn Gly Val Pro Gly Leu gaa gac aca caa ctc tgg att tcc ttc cca ttc tgc tct atg tat gtt Glu Asp Thr Gln Leu Trp Ile Ser Phe Pro Phe Cys Ser Met Tyr Val qtq qct atq qta qqq aat tqt qga ctc ctc tac ctc att cac tat gag Val Ala Met Val Gly Asn Cys Gly Leu Leu Tyr Leu Ile His Tyr Glu gat gcc ctg cac aaa ccc atg tac tac ttc ttg gcc atg ctt tcc ttt Asp Ala Leu His Lys Pro Met Tyr Tyr Phe Leu Ala Met Leu Ser Phe act gac ctt gtt atg tgc tct agt aca atc cct aaa gcc ctc tgc atc Thr Asp Leu Val Met Cys Ser Ser Thr Ile Pro Lys Ala Leu Cys Ile ttc tgg ttt cat ctc aag gac att gga ttt gat gaa tgc ctt gtc cag Phe Trp Phe His Leu Lys Asp Ile Gly Phe Asp Glu Cys Leu Val Gln atg ttc ttc atc cac acc ttc aca ggg atg gag tct ggg gtg ctt atg Met Phe Phe Ile His Thr Phe Thr Gly Met Glu Ser Gly Val Leu Met ctt atg gcc ctg gat cgc tat gtg gcc atc tgc tac ccc tta cgc tat Leu Met Ala Leu Asp Arg Tyr Val Ala Ile Cys Tyr Pro Leu Arg Tyr tca act atc ctc acc aat cct gta att gca aag gtt ggg act gcc acc Ser Thr Ile Leu Thr Asn Pro Val Ile Ala Lys Val Gly Thr Ala Thr tto otq aga ggg gta tta oto att att oco ttt act tto oto aco aag Phe Leu Arg Gly Val Leu Leu Ile Ile Pro Phe Thr Phe Leu Thr Lys cgc ctg ccc tcc tgc aga ggc aat ata ctt ccc cat acc tac tgt gac Arg Leu Pro Ser Cys Arg Gly Asn Ile Leu Pro His Thr Tyr Cys Asp

	cac	atg	tct	gta	gcc	aaa	ttg	tcc	tgt	ggt	aat	gtc	aag	gtc	aat	gcc	750
	His	Met	Ser	Val	Ala	Lys	Leu	Ser	Cys	Gly	Asn	Val	Lys	Val	Asn	Ala	
			185					190					195				
	atc	tat	ggt	ctg	atg	gtt	gcc	ctc	ctg	att	999	ggc	ttt	gac	ata	ctg	798
5	Ile	Tyr	Gly	Leu	Met	Val	Ala	Leu	Leu	Ile	Gly	Gly	Phe	Asp	Ile	Leu	
		200					205					210					
	_				tcc												846
	Cys	Ile	Thr	Ile	Ser	Tyr	Thr	Met	Ile	Leu	Arg	Ala	Val	Val	Ser	Leu	
	215					220					225					230	
10					gct												894
	Ser	Ser	Ala	Asp	Ala	Arg	Gln	Lys	Ala		Asn	Thr	Cys	Thr		His	
					235					240					245		
			_		gtt												942
1.5	Ile	Cys	Ala		Val	Pne	ser	Tyr		Pro	Ala	Pne	Pne		Pne	Pne	
15				250				_ 4 _	255		~~+		+~a	260	2+4	a + +	990
					ggg												230
	ser	HIS		Pne	Gly	Giu	птѕ	270	116	PIO	PIO	per	275	HIS	TIC	116	
	at a	aaa	265	a++	tat	ata	ata		cc2	ccc	act	ato		cct	att	atc	1038
20	_	-			Tyr												1030
20	vai	280	ASII	110	ı yı.	пса	285	шси	110	110		290	11011	110			
	tat		ata	aaa	acc	aaa		ata	cqa	qac	tat		ata	agg	atc	ctt	1086
					Thr												
	295	1		.2		300			_	_	305					310	
25	tca	ggt	tct	aag	gat	acc	aaa	tcc	tac	agc	atg	tga	atg	aaca	ctt		1132
					Asp												
					315					320							
	gcc	agga	gtg	agaa	gaga	ag ga	aaag	aatta	a ct	tcta	tttg	cct	ctta	tgc .	agga	gttcat	t1192
	aaa	atct	ttc	tgga	agta	ct g	tatt	gatc	a ca	aaat	ggag	ttt	gntg	act	ggtg	cattc	1252
30	caa	taag	tac	cttg	ggaa	tc ti	naca	tcac	t gg	aagg	ccca	cca	catt	tct .	ataa	at	1308
				An	othe	pref	erred	emb	odim	ent c	ompi	ises	a puri	ified	and i	solated	i
	nols	ment	ide d	esion	ated (CON	166	comr	risin	g the	com	nlete	amin	o aci	d sea	uence	set
				U				•		_	•	•					
			_		O: 4.					•							
	poly	ynucl	eotid	e seq	uence	e enco	oding	CO1	N166	(SEC	Q ID	NO:	3), as	s set f	forth	below:	
35	atg	gat	gaa	aca	gga	aat	ctg	aca	gta	tct	tct	gcc	aca	tgc	cat	gac	48
	Met	Asp	Glu	Thr	Gly	Asn	Leu	Thr	Val	Ser	Ser	Ala	Thr	Cys	His	Asp	
	1				5					10					15		
					ttc												96
4.0	Thr	Ile	Asp	_	Phe	Arg	Asn	Gln		Tyr	Ser	Thr	Leu			Met	
40				20					25					30			

	atc	tct	att	qta	ggc	ttc	ttt	ggc	aat	ggc	ttt	gtg	ctc	tat	gtc	ctc	144
			-		Gly												
			35		_			40					45				
	ata	aaa	acc	tat	cac	aag	aag	tca	gcc	ttc	caa	gta	tac	atg	att	aat	192
5	Ile	Lys	Thr	Tyr	His	Lys	Lys	Ser	Ala	Phe	Gln	Val	Tyr	Met	Ile	Asn	
		50					55					60					
	tta	gca	gta	gca	gat	cta	ctt	tgt	gtg	tgc	aca	ctg	cct	ctc	cgt	gtg	240
	Leu	Ala	Val	Ala	Asp	Leu	Leu	Cys	Val	Cys	Thr	Leu	Pro	Leu	Arg	Val	
	65					70					75					80	
10	-				cac												288
	Val	Tyr	Tyr	Val	His	Lys	Gly	Ile	Trp	Leu	Phe	Gly	Asp	Phe	Leu	Cys	
					85					90					95		
	-				tat												336
	Arg	Leu	Ser	Thr	Tyr	Ala	Leu	Tyr	Val	Asn	Leu	Tyr	Cys		Ile	Phe	
15				100					105					110			
		-			atg												384
	Phe	Met		Ala	Met	Ser	Phe		Arg	Cys	Ile	Ala		Val	Pne	Pro	
			115					120					125	1-1-1-		+ ~+	420
20	_				aat												432
20	Val		Asn	Ile	Asn	Leu		Thr	GIn	ьуѕ	гуѕ		arg	Pne	Val	Cys	
		130					135					140	~~~		at a	ata	480
					att												460
		GIY	lie	Trp	Ile		vaı	ile	ьеи	THE	155	ser	PLO	PIIE	пец	160	
25	145				aaa	150	~~~	222	2.2.t	aat		220	tac	+++	aaa		528
25					Lys												320
	Ala	пув	PIO	GIII	цув 165	Asp	Giu	пуъ	ASII	170	1111	цуБ	Cyb	1110	175		
	cca	caa	aac	aat		act	ааа	aat.	cat		tta	atc	tta	cat		gtg	576
					Gln												
30			<u>T</u> -	180			2		185					190			
	tca	ttq	ttt		ggc	ttt	atc	atc	cct	ttt	gtt	att	ata	att	gtc	tgt	624
		-														Cys	
			195					200					205				
	tac	aca	atg	atc	att	ttg	acc	tta	cta	aaa	aaa	tca	atg	aaa	aaa	aat	672
35	Tyr	Thr	Met	Ile	Ile	Leu	Thr	Leu	Leu	Lys	Lys	Ser	Met	Lys	Lys	Asn	
		210					215					220					
	ctg	tca	agt	cat	aaa	aag	gct	ata	gga	atg	atc	atg	gto	gtg	acc	gct	720
	Leu	Ser	Ser	His	Lys	Lys	Ala	. Ile	Gly	Met	Ile	Met	Val	. Val	Thr	Ala	
	225					230					235					240	
40																cac	768
	Ala	Phe	Leu	. Val	Ser	Phe	Met	Pro	Tyr	His	Ile	Glr	Arg	Thr		His	
					245					250)				255	5	

25

30

35

40

25

																	016
					cac												816
	Leu	His	Phe	Leu	His	Asn	Glu	Thr	Lys	Pro	Cys	Asp	Ser	Val	Leu	Arg	
				260					265					270			
	atg	cag	aag	tcc	gtg	gtc	ata	acc	ttg	tct	ctg	gct	gca	tcc	aat	tgt	864
5	Met	Gln	Lys	Ser	Val	Val	Ile	Thr	Leu	Ser	Leu	Ala	Ala	Ser	Asn	Cys	
			275					280					285				
	tgc	ttt	gac	cct	ctc	cta	tat	ttc	ttt	tct	ggg	ggt	aac	ttt	agg	aaa	912
	Cys	Phe	Asp	Pro	Leu	Leu	Tyr	Phe	Phe	Ser	Gly	Gly	Asn	Phe	Arg	Lys	
		290					295					300					
10	agg	ctg	tct	aca	ttt	aga	aag	cat	tct	ttg	tcc	agc	gtg	act	tat	gta	960
	Arg	Leu	Ser	Thr	Phe	Arg	Lys	His	Ser	Leu	Ser	Ser	Va1	Thr	Tyr	Val	
	305					310					315					320	
	ccc	aga	aag	aag	gcc	tct	ttg	сса	gaa	aaa	gga	gaa	gaa	ata	tgt	aaa	1008
	Pro	Arg	Lys	Lys	Ala	Ser	Leu	Pro	Glu	Lys	Gly	Glu	Glu	Ile	Cys	Lys	
15					325					330					335		
	gta	tag															1014
	Val																

Still another preferred embodiment comprises a purified and isolated polypeptide designated CON103, comprising the complete amino acid sequence set forth in SEQ ID NO: 6. This amino acid sequence was deduced from a polynucleotide sequence encoding CON103 (SEQ ID NO: 5), as set forth below: ggggcctact tcaccgtgta cccggacttg ggaccatcac agacttcaga accatcagga 60 acctgggagc aactgaaagc tgaactacag tgggctttca gacacacagc aggctgcgga 120 gcacaaatag gactggttcc ctccaggcca ccagcagggc ggtggaggtc ttcactgact 180 ccctgcctac ctctcaggac aatgtccttt tggctccaca gtccctgaag ccagagctgg 240 tgggggcagg gaggcagcca ccagcctcta tatgtagtgg aggaggggt gtccagggag 300 ggctgcatga tcctgagagc ccccacctca cccggctgga ctatcctccc acttcagggt 360 ttctctgggc ttccatcttg cccctgctga gccctgcttc ctcctctacc agcagcacaa 420 ccccaggct gggctcagag acctcatgtg gtgggatcac tcagtacccc gaggcggagg 480 gaaggaggga gggctgcagg gttccccttg gcctgcaaac aggaacacag ggtgtttctc 540 agtggctgcg agaatgctga tgaaaacccc aggatgttgt gtcaccgtgg tggccagctg 600 atagtgccaa tcatcccact ttgccctgag cactcctgca ggggtagaag actccagaac 660 cttctctcag gcccatggcc caagcagccc atg gaa ctt cat aac ctg agc tct Met Glu Leu His Asn Leu Ser Ser 1 762 Pro Ser Pro Ser Leu Ser Ser Ser Val Leu Pro Pro Ser Phe Ser Pro 15 tca ccc tcc tct gct ccc tct gcc ttt acc act gtg ggg ggg tcc tct 810 Ser Pro Ser Ser Ala Pro Ser Ala Phe Thr Thr Val Gly Gly Ser Ser

30

35

	qqa	ggg	ccc	tgc	cac	CCC	acc	tct	tcc	tcg	ctg	gtg	tct	gcc	ttc	ctg	858
		Gly															
					45					50					55		
	gca	сса	atc	ctg	gcc	ctg	gag	ttt	gtc	ctg	ggc	ctg	gtg	ggg	aac	agt	906
5	Ala	Pro	Ile	Leu	Ala	Leu	Glu	Phe	Val	Leu	Gly	Leu	Val	Gly	Asn	Ser	
				60					65					70			
		gcc															954
	Leu	Ala	Leu	Phe	Ile	Phe	Cys	Ile	His	Thr	Arg	Pro		Thr	Ser	Asn	
			75					80					85				1000
10		gtg															1002
	Thr	Val	Phe	Leu	Val	Ser		Val	Ala	Ala	Asp		ьeu	Leu	TIE	ser	
		90					95			a+ a	a+a	100	asa	200	taa	cac	1050
		ctg														cyc	1050
15		Leu	Pro	ьeu	Arg	vai 110	Asp	тАт	ьеи	ьеи	115	GIU	1111	тър	Ar 9	120	
15	105	ggg	act	act	מככ		222	ata	aac	ctc		atq	cta	tcc	acc		1098
		Gly															
	1110	Cry	TILU	1114	125	0,10	-1~			130					135		
	cac	acg	acc	agc		atc	ttc	ctc	aca	qcc	atc	gca	ctc	aac	cgc	tac	1146
20		Thr															
	5			140					145					150			
	ctg	aag	gtg	gtg	cag	CCC	cac	cac	gtg	ctg	agc	cgt	gct	tcc	gtg	999	1194
	_	Lys															
			155					160					165				
25	gca	gct	gcc	cgg	gtg	gcc	999	gga	ctc	tgg	gtg	ggc	atc	ctg	ctc	ctc	1242
	Ala	Ala	Ala	Arg	Val	Ala	Gly	Gly	Leu	Trp	Val	Gly	Ile	Leu	Leu	Leu	
		170					175					180					
																agc	1290
	Asn	Gly	His	Leu	Leu	Leu	Ser	Thr	Phe	Ser		Pro	Ser	Cys	Leu		
30	185					190					195					200	1220
																gca	1338
	Tyr	Arg	Val	GIY			Pro	ser	Ala	210		Arg	тър	птр	215	Ala	
					205		. ++~	ata				at a	atc	ctc		gct	1386
25																Ala	1300
35	ьeu	туг	ьеи	. вец 220		PHE	PIIC	пеа	225		. AIG	пса		230		. 1114	
	2++	ata	. aaa			cto	. acc	atc			cat	aat	. cta			g cag	1434
																Gln	
	110	· val	235		<u> </u>			240			3	1	245		1		
40	qca	gga			agq	gcc	atg			, ctg	gad	atg	gtg	gtg	gcc	gtc	1482
																ı Val	
		250					255					260					

```
tac acc atc tgc ttc ttg ccc agc atc atc ttt ggc atg gct tcc atg
        Tyr Thr Ile Cys Phe Leu Pro Ser Ile Ile Phe Gly Met Ala Ser Met
                                                 275
                             270
        gtg gct ttc tgg ctg tcc gcc tgc cga tcc ctg gac ctc tgc aca cag
                                                                           1578
        Val Ala Phe Trp Leu Ser Ala Cys Arg Ser Leu Asp Leu Cys Thr Gln
5
                                             290
                        285
        ctc ttc cat ggc tcc ctg gcc ttc acc tac ctc aac agt gtc ctg gac
                                                                            1626
        Leu Phe His Gly Ser Leu Ala Phe Thr Tyr Leu Asn Ser Val Leu Asp
                                         305
                    300
        ccc gtg ctc tac tgc ttc tct agc ccc aac ttc ctc cac cag agc cgg
10
                                                                            1674
        Pro Val Leu Tyr Cys Phe Ser Ser Pro Asn Phe Leu His Gln Ser Arg
                                     320
                                                          325
                315
        gcc ttg ctg ggc ctc acg cgg ggc cgg cag ggc cca gtg agc gac gag
                                                                            1722
        Ala Leu Leu Gly Leu Thr Arg Gly Arg Gln Gly Pro Val Ser Asp Glu
15
                                 335
            330
        age tee tae caa eee tee agg cag tgg ege tae egg gag gee tet agg
                                                                            1770
        Ser Ser Tyr Gln Pro Ser Arg Gln Trp Arg Tyr Arg Glu Ala Ser Arg
                             350
                                                  355
                                                                      360
        345
        aag gcg gag gcc ata ggg aag ctg aaa gtg cag ggc gag gtc tct ctg
                                                                            1818
        Lys Ala Glu Ala Ile Gly Lys Leu Lys Val Gln Gly Glu Val Ser Leu
20
                         365
                                                                            1865
        gaa aag gaa ggc tcc tcc cag ggc tga gggccagctg cagggctgca
        Glu Lys Glu Gly Ser Ser Gln Gly
                                          385
                     380
        gcgctgtggg ggtaagggct gccgcgctct ggcctggagg gacaaggcca gcacacggtg1925
25
        cctcaaccaa ctggacaagg gatggcggca gaccaggggc caggccaaag cactggcagg1985
        actcatgtgg gtggcaggga gagaaaccca cctaggcctc tcagtgtgtc caggatggca2045
        ttcccagaat gcaggggaga gcaggatgcc gggtggagga gacaggcaag gtgccgttgg2105
        cacaccagct cagacagggg cetgegeage tgeaggggae agacgeeaat cactgteaca2165
        gcagagtcac cttagaaatt ggacagctgc atgttctgtg ctctccagtt tgtcccttcc2225
30
        aatattaata aacttccctt ttaaatatat ttatttgcag accaatatct gtctttaatt2285
        ctaacctggg actgtcagta ggcgtcaaag tgagcgcccc agtgaaggaa ccttggagag2345
        agtgggagca ttcccagcct tccaggggga ctcgtcttcc agactttgga gcccgcatgt2405
                                                                            2429
        ctgaagcaga ctctttcttg gtag
                     Another preferred embodiment comprises a purified and isolated
35
        polypeptide designated CON203, comprising the complete amino acid sequence set
         forth in SEQ ID NO: 8. This amino acid sequence was deduced from a
        polynucleotide sequence encoding CON203 (SEQ ID NO: 7), as set forth below:
         ttgaatttag gtgacactat agaagagcta tgacgtcgca tgcacgcgta cgtaagctcg 60
         gaattcggct cgagctgaac taatgactgc cgccataaga agacagagag aactgagtat 120
40
```

	cctc	ccaa	ag g	gtgad	cactg	ıg aa	ıgca									_	172
								met 1	ASII	TIIT	Thr	va1 5	Mec	GIII	GIY	FIIC	
	aac	aga	tct	qaq	cgg	tgc	ccc		gac	act	cgg		gta	cag	ctg	gta	220
5					Arg												
	10					15					20					25	
	ttc	cca	gcc	ctc	tac	aca	gtg	gtt	ttc	ttg	acc	ggc	atc	ctg	ctg	aat	268
	Phe	Pro	Ala	Leu	Tyr	Thr	Val	Val	Phe	Leu	Thr	Gly	Ile	Leu	Leu	Asn	
					30					35					40		
10	act	ttg	gct	ctg	tgg	gtg	ttt	gtt	cac	atc	CCC	agc	tcc	tcc	acc	ttc	316
	Thr	Leu	Ala	Leu	Trp	Val	Phe	Val	His	Ile	Pro	Ser	Ser	Ser	Thr	Phe	
				45					50					55			
					aaa												364
	Ile	Ile	Tyr	Leu	Lys	Asn	Thr	Leu	Val	Ala	Asp	Leu		Met	Thr	Leu	
15			60					65					70				
	_				aaa												412
	Met		Pro	Phe	Lys	Ile		Ser	Asp	Ser	His		Ala	Pro	Trp	Gin	
		75					80			.		85		+-+	~~~	2.55	460
20					gtg												400
20		Arg	Ата	Pne	Val	Cys 95	Arg	Pne	ser	ser	100	116	Pile	тут	Giu	105	
	90	+	a+a	aaa	atc		ata	++>	aaa	ct c		acc	+++	gac	aga		508
	_		-		Ile												300
	мес	ıyı	vai	Сту	110	vai	ncu	пси	GLY	115	110	1124	1110	11010	120		
25	ctc	aad	atc	atc	aga	cct	t.t.a	aga	aat		ttt	cta	aaa	aaa		qtt	556
45					Arg												
	Dou	-2-		125	5			ے	130				-	135			
	ttt	qca	aaa	acg	gtc	tca	atc	ttc	atc	tgg	gtc	ttt	ttg	gtc	ttc	atc	604
					Val												
30			140					145					150				
	tcc	ctg	cca	aat	atg	atc	ttg	agc	aac	aag	gaa	gca	aca	cca	tcg	tct	652
	Ser	Leu	Pro	Asn	Met	Ile	Leu	Ser	Asn	Lys	Glu	Ala	Thr	Pro	Ser	Ser	
		155					160					165					
	gtg	aaa	aag	tgt	gct	tcc	tta	aag	999	cct	ctg	999	ctg	aaa	tgg	cat	700
35	Val	Lys	Lys	Cys	Ala	Ser	Leu	Lys	Gly	Pro	Leu	Gly	Leu	Lys	Trp	His	
	170					175					180					185	
																atc	748
	Gln	Met	Val	Asn	Asn	Ile	Cys	Gln	Phe			Trp	Thr	Gly		Ile	
4.0					190					195					200		806
40																tct	796
	Leu	Met	Leu			Tyr	Val	Val			rys	ГЛS	val			Ser	
				205	5				210					215	•		

	tat a	ga	aag	tcc	aaa	agt	aag	gac	aga	aaa	aac	aac	aaa	aag	ctg	gaa	844
	Tyr A	rg	Lys	Ser	Lys	Ser	Lys	Asp	Arg	Lys	Asn	Asn	Lys	Lys	Leu	Glu	
			220					225					230				
	ggc a																892
5	Gly L	ys	Val	Phe	Val	Val	Val	Ala	Val	Phe	Phe		Cys	Phe	Ala	Pro	
		35					240					245					
	ttt c																940
	Phe H	Iis	Phe	Ala	Arg	Val	Pro	Tyr	Thr	His		Gln	Thr	Asn	Asn		
	250					255					260					265	
10	act g																988
	Thr A	Asp	Cys	Arg		Gin	Asn	GIn	Leu		ile	Ala	гàг	GIU		Thr	
					270					275					280	2+2	1026
	ctc t		_	-													1036
1.5	Leu F	he	Leu		Ala	Thr	Asn	TTE		Met	Asp	Pro	Leu	295	TYL	116	
15				285					290		~~~	H H-	2 t ~		aaa	2012	1084
	ttc t																1004
	Phe I	∍eu	300	гуя	гуя	Pne	TIIL	305	пув	пеп	PIO	СуБ	310	GIII	Gry	Arg	
	aag a	200		aa.	t ca	200	caa		aat	cat	adc	agt		aca	gac	aac	1132
20	Lys 7																
20		315	1111	AIG	DCI	DCI	320	Oru	11011	1110	001	325					
	ata a		tta	ggc	t.ga	caa		aca ·	tagg	atta	ac t		ttta	t ta	atga	gact	1187
	Ile T				ega	ouu	0050		55.	J				3	J	J	
	330		Lou	017													
25		taga	ata a	atqt	qqaa	at c	aaat	ttaa	c ca	agaa	aaaa	aga	ttgg	aac	aaat	gctct	c1247
																catag	
																.ggcca	
																tacat	
	tggaa	aaga	act a	aagg	ggaa	cg g	ttat	ccta	c aa	acct	ccct	tca	acac	ctt	ttac	att	1484
30				And	ther	prefe	rred	embo	dime	ent co	mpri	ses a	purit	ñed a	nd is	olated	
	nolvn	enti	de de	esion	ated	- CON	198.	comi	orisin	g the	com	plete	amir	no ac	id sec	quence	set
	forth	_		_													
			_													1 1	
				_												below	:
35	atg a Met I	atg	gtg	gat	ccc	aat	ggc Gly	aat	gaa	tcc	agt Ser	gct Ala	aca Thr	tac Tvr	ttc Phe	atc Tle	48
33	1	MEC	vai	Asp	5	ASII	GIY	ASII	Ciu	10	DCI	niia	1111	- 1 -	15		
	cta	ata	aac	ctc	aat	aat.	tta	gaa	gag	act	caq	ttc	taa	tta	acc	ttc	96
40	Leu	Ile	Gly	Leu	Pro	Gly	Leu	Glu	Glu	Ãla	Gln	Phe	Trp	Leu	Āla	Phe	
40				20					25					30			
	cca 1	ttg	tgc	tcc	ctc	tac	ctt	att	gct	gtg	cta	ggt	aac	ttg	aca	atc	144
	Pro :	ьeu	Cys 35	ser	ьeu	Tyr	ьeu	11e 40	Ата	vdl	ьеи	дТЙ	45	пеп	TIIT	TIC	
45																	

	atc Ile	tac Tyr 50	att Ile	gtg Val	cgg Arg	act Thr	gag Glu 55	cac His	agc Ser	ctg Leu	cat His	gag Glu 60	ccc Pro	atg Met	tat Tyr	ata Ile	192
5	ttt Phe 65	ctt Leu	tgc Cys	atg Met	ctt Leu	tca Ser 70	ggc Gly	att Ile	gac Asp	atc Ile	ctc Leu 75	atc Ile	tcc Ser	acc Thr	tca Ser	tcc Ser 80	240
10	atg Met	ccc Pro	aaa Lys	atg Met	ctg Leu 85	gcc Ala	atc Ile	ttc Phe	tgg Trp	ttc Phe 90	aat Asn	tcc Ser	act Thr	acc Thr	atc Ile 95	cag Gln	288
15	ttt Phe	gat Asp	gct Ala	tgt Cys 100	ctg Leu	cta Leu	cag Gln	atg Met	ttt Phe 105	gcc Ala	atc Ile	cac His	tcc Ser	tta Leu 110	tct Ser	ggc Gly	336
20	atg Met	gaa Glu	tcc Ser 115	aca Thr	gtg Val	ctg Leu	ctg Leu	gcc Ala 120	atg Met	gct Ala	ttt Phe	gac Asp	cgc Arg 125	tat Tyr	gtg Val	gcc Ala	384
20	atc Ile	tgt Cys 130	cac His	cca Pro	ctg Leu	cgc Arg	cat His 135	gcc Ala	aca Thr	gta Val	ctt Leu	acg Thr 140	ttg Leu	cct Pro	cgt Arg	gtc Val	432
25	acc Thr 145	aaa Lys	att Ile	ggt Gly	gtg Val	gct Ala 150	gct Ala	gtg Val	gtg Val	cgg Arg	999 Gly 155	gct Ala	gca Ala	ctg Leu	atg Met	gca Ala 160	480
30	ccc Pro	ctt Leu	cct Pro	gtc Val	ttc Phe 165	atc Ile	aag Lys	cag Gln	ctg Leu	ccc Pro 170	ttc Phe	tgc Cys	cgc Arg	tcc Ser	aat Asn 175	atc Ile	528
35	ctt Leu	tcc Ser	cat His	tcc Ser 180	tac Tyr	tgc Cys	cta Leu	cac His	caa Gln 185	gat Asp	gtc Val	atg Met	aag Lys	ctg Leu 190	gcc Ala	tgt Cys	576
40	gat Asp	gat Asp	atc Ile 195	cgg Arg	gtc Val	aat Asn	gtc Val	gtc Val 200	tat Tyr	ggc Gly	ctt Leu	atc Ile	gtc Val 205	atc Ile	atc Ile	tcc Ser	624
40	gcc Ala	att Ile 210	ggc	ctg Leu	gac Asp	tca Ser	ctt Leu 215	Leu	atc Ile	tcc Ser	ttc Phe	tca Ser 220	tat Tyr	ctg Leu	ctt Leu	att Ile	672
45	ctt Leu 225	Lys	act Thr	gtg Val	ttg Leu	ggc Gly 230	ttg Leu	aca Thr	cgt Arg	gaa Glu	gcc Ala 235	cag Gln	gcc Ala	aag Lys	gca Ala	ttt Phe 240	720
50	ggc	act Thr	tgc Cys	gtc Val	tct Ser 245	cat His	gtg Val	tgt Cys	gct Ala	gtg Val 250	ttc Phe	ata Ile	ttc Phe	tat Tyr	gta Val 255	Pro	768
55	ttc Phe	att Ile	gga Gly	ttg Leu 260	Ser	atg Met	gtg Val	cat His	cgc Arg 265	Phe	agc Ser	aag Lys	cgg Arg	cgt Arg 270	Asp	tct Ser	816
60	ccc Pro	ctg Leu	ccc Pro 275	Val	atc Ile	ttg Leu	gcc Ala	aat Asn 280	ılle	tat Tyr	ctg Leu	ctg Leu	gtt Val 285	. Pro	cct Pro	gtg Val	864
VV	ctc Leu	aac Asn 290	Pro	att Ile	gtc Val	tat Tyr	gga Gly 295	v Val	aag Lys	g aca Thr	aag Lys	gag Glu 300	ı Ile	cga Arc	caç Glr	g cgc 1 Arg	912

15

20

25

30

35

40

45

atc ctt cga ctt ttc cat gtg gcc aca cac gct tca gag ccc tag Ile Leu Arg Leu Phe His Val Ala Thr His Ala Ser Glu Pro 305 310 315

It will be appreciated that SEQ ID NO: 10 contains methionine

957

residues at positions 1 and 2. Translation of the relevant mRNA sequences may occur beginning from either or both methionines, which can be determined for a particular cell source by purifying expressed CON198 protein and performing amino-terminal sequencing thereon. CON198 polypeptides beginning at either Met₁ or Met₂ of SEQ ID NO: 10 are intended a polypeptides of the invention.

Another preferred embodiment comprises a purified and isolated polypeptide designated CON197, comprising the complete amino acid sequence set forth in SEQ ID NO: 12. This amino acid sequence was deduced from a polynucleotide sequence encoding CON197 (SEQ ID NO: 11), as set forth below:

ATGGAAAGCGAGAACAGAAGAGTGATAAGAGAATTCATCCTCCTTGGTCTGACCCAGTCTCAAGATATT
M E S E N R R V I R E F I L L G L T Q S Q D I

CAGCTCCTGGTCTTTGTGCTAGTTTTAATATTCTACTTCATCATCCTCCCTGGAAATTTTCTCATTATT Q L L V F V L V L I F Y F I I L P G N F L I I

208 GATGCATCCTACTCCTTCATTGTGGCTCCCCGGATGTTGGTGGACTTCCTCTCTGCGAAGAAGATAATC D A S Y S F I V A P R M L V D F L S A K K I I

GTTGTGATGGCCTTTGACCGCTACATCGCCATCTGCCGGCCTCTGCACTATCCTACTGTCATGAACCCT
V V M A F D R Y I A I C R P L H Y P T V M N P

 $^{4\,84}$ CTCATCCTCCGCTTGCCTTTTTGTGGCCCAAACCAGCTGGACAACTTCTTCTGTGATGTCCCACAGGTC $_{\rm L}$ I $_{\rm L}$ R $_{\rm L}$ P F C G P N Q L D N F F C D V P Q V

50 622 CTCCTGTGCTTCTGGGGCTTCTGGCCTCCTATGCAGTCATTCTTTGTCGCATACGAGGGTCTTCTTCT L L C F L G L L A S Y A V I L C R I R G S S S

	GAGGCAAAAAACAAGGCCATGTCCACGTGCATCACCCATATCATTGTTATATTCTTCATGTTTTGGACCT E A K N K A M S T C I T H I I V I F F M F G P
5	760 GGCATCTTCATCTACACGCGCCCCTTCAGGGCTTTCCCAGCTGACAAGGTGGTTTCTCTCTC
10	829 GTGATTTTTCCTTTGTTGAATCCTGTCATTTATACCCTTCGCAACCAGGAAGTGAAAGCTTCCATGAAA V I F P L L N P V I Y T L R N Q E V K A S M K
15	898 AAGGTGTTTAATAAGCACATAGCCTGAAAAAAGGGCGCAAAAAAAA
	967 TTTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
20	polypeptide designated CON202, comprising the complete amino acid sequence set
	forth in SEQ ID NO: 14. This amino acid sequence was deduced from a
	polynucleotide sequence encoding CON202 (SEQ ID NO: 13), as set forth below:
25	${\tt 1}\\ {\tt TGCTTCCCCATAAGGTAACAGCTTTGTTAGCNCTGTCTGACATCATTGCTTGTTNACTTAAGAACTGAT}$
	70 AGGTNTTTTTTTTTTTTTTTCAGATATTCTGATGGCAAAACAAGTGGAAGAAAAGAGGGAAGCATGA
30	139 CTGCAGATCAGATCAGTTCTCTTTGTGGATTATATTTTCAGTAAAATGTATGGATCTATCT
	208 TTCTTATATCTAGATCATGAGACTTGACTGAGGCTGTATCCTTATCCTCCATCCA
35	277 TAGCCATGCAGCTGACAACATTTTGCAAAATCTCTCGCCTCTAACAGCCTTTCTGAAACTGACTTCCTT S H A A D N I L Q N L S P L T A F L K L T S L
40	346 GGGTTTCATAATAGGAGTCAGCGTGGTGGGCAACCTCCTGATCTCCATTTTGCTAGTGAAAGATAAGAC G F I I G V S V V G N L L I S I L L V K D K T
45	415 CTTGCATAGAGCACCTTACTACTTCCTGTTGGATCTTTGCTGTTCAGATATCCTCAGATCTGCAATTTG L H R A P Y Y F L L D L C C S D I L R S A I C
50	484 TTTCCCATTTGTGTTCAACTCTGTCAAAAATGGTTCTACCTGGACTTATGGGACTCTGACTTGCAAAGT
30	553 GATTGCCTTTCTGGGGGTTTTGTCCTGTTTCCACACTGCTTTCATGCTCTTCTGCATCAGTGTCACCAG
55	I A F L G V L S C F H T A F M L F C I S V T R 622 ATATTTAGCTATCGCCCATCACCGCTTCTATACAAAGAGGCTGACCTTTTGGACGTGTCTGGCTGTGAT
	Y T, A T A H H R F Y T K R L T F W T C L A V I

Another preferred embodiment comprises a purified and isolated polypeptide designated CON215, comprising the complete amino acid sequence set forth in SEQ ID NO: 18. This amino acid sequence was deduced from a polynucleotide sequence encoding CON215 (SEQ ID NO: 17), as set forth below:

35	atg Met	gjà aaa	ttc Phe	aac Asn	ttg Leu	acg Thr	ctt Leu	gca Ala	aaa Lys	tta Leu	cca Pro	aat Asn	aac Asn	gag Glu	Leu 15	cac His	48
33	ggc Gly	caa Gln	gag Glu	agt Ser	cac His	aat Asn	tca Ser	ggc Gly	aac Asn	agg Arg	agc Ser	gac Asp	gly ggg	cca Pro	gga Gly	~~5	96

40

aac acc acc ctt cac aat gaa ttt gac aca att gtc ttg cca gtg ctt
Asn Thr Thr Leu His Asn Glu Phe Asp Thr Ile Val Leu Pro Val Leu
35
tat ctc att ata ttt gtg gca agc atc ttg ctg aat ggt tta gca gtg

45
Tyr Leu Ile Ile Phe Val Ala Ser Ile Leu Leu Asn Gly Leu Ala Val
50
60

	tgg Trp 65	atc Ile	ttc Phe	ttc Phe	cac His	att Ile 70	agg Arg	aat Asn	aaa Lys	acc Thr	agc Ser 75	ttc Phe	ata Ile	ttc Phe	tat Tyr	ctc Leu 80	240
5	aaa Lys	aac Asn	ata Ile	gtg Val	gtt Val 85	gca Ala	gac Asp	ctc Leu	ata Ile	atg Met 90	acg Thr	ctg Leu	aca Thr	ttt Phe	cca Pro 95	ttt Phe	288
10	cga Arg	ata Ile	gtc Val	cat His 100	gat Asp	gca Ala	gga Gly	ttt Phe	gga Gly 105	cct Pro	tgg Trp	tac Tyr	ttc Phe	aag Lys 110	ttt Phe	att Ile	336
15	ctc Leu	tgc Cys	aga Arg 115	tac Tyr	act Thr	tca Ser	gtt Val	ttg Leu 120	ttt Phe	tat Tyr	gca Ala	aac Asn	atg Met 125	tat Tyr	act Thr	tcc Ser	384
20	atc Ile	gtg Val 130	ttc Phe	ctt Leu	Gly aaa	ctg Leu	ata Ile 135	agc Ser	att Ile	gat Asp	cgc Arg	tat Tyr 140	ctg Leu	aag Lys	gtg Val	gtc Val	432
20	aag Lys 145	cca Pro	ttt Phe	gly aaa	gac Asp	tct Ser 150	cgg Arg	atg Met	tac Tyr	agc Ser	ata Ile 155	acc Thr	ttc Phe	acg Thr	aag Lys	gtt Val 160	480
25	tta Leu	tct Ser	gtt Val	tgt Cys	gtt Val 165	tgg Trp	gtg Val	atc Ile	atg Met	gct Ala 170	gtt Val	ttg Leu	tct Ser	ttg Leu	cca Pro 175	aac Asn	528
30	atc Ile	atc Ile	ctg Leu	aca Thr 180	aat Asn	ggt Gly	cag Gln	cca Pro	aca Thr 185	gag Glu	gac Asp	aat Asn	atc Ile	cat His 190	gac Asp	tgc Cys	576
35	tca Ser	aaa Lys	ctt Leu 195	aaa Lys	agt Ser	cct Pro	ttg Leu	999 Gly 200	gtc Val	aaa Lys	tgg Trp	cat His	acg Thr 205	gca Ala	gtc Val	acc Thr	624
40	tat Tyr	gtg Val 210	aac Asn	agc Ser	tgc Cys	ttg Leu	ttt Phe 215	gtg Val	gcc Ala	gtg Val	ctg Leu	gtg Val 220	att Ile	ctg Leu	atc Ile	gga Gly	672
40	tgt Cys 225	Tyr	ata Ile	gcc Ala	ata Ile	tcc Ser 230	agg Arg	tac Tyr	atc Ile	cac His	aaa Lys 235	tcc Ser	agc Ser	agg Arg	caa Gln	ttc Phe 240	720
45	ata Ile	agt Ser	cag Gln	tca Ser	agc Ser 245	cga Arg	aag Lys	cga Arg	aaa Lys	cat His 250	Asn	cag Gln	agc Ser	atc Ile	agg Arg 255	gtt Val	768
50	gtt Val	gtg Val	gct Ala	gtg Val 260	Phe	ttt Phe	acc Thr	tgc Cys	ttt Phe 265	Leu	. cca . Pro	tat Tyr	cac His	ttg Leu 270	Cys	aga Arg	816
55	att Ile	cct Pro	ttt Phe 275	Thr	ttt Phe	agt Ser	cac His	tta Leu 280	. Asp	agg Arg	rctt Leu	tta Leu	gat Asp 285	Glu	tct Ser	gca Ala	864
60	caa Glr	aaa Lys 290	Ile	cta Leu	tat Tyr	tac Tyr	tgc Cys 295	Lys	gaa Glu	att Ile	aca Thr	ctt Leu 300	. Phe	ttg Leu	tct Ser	gcg Ala	912

	tgt Cys 305	aat Asn	gtt Val	tgc Cys	ctg Leu	gat Asp 310	cca Pro	ata Ile	att Ile	tac Tyr	ttt Phe 315	ttc Phe	atg Met	tgt Cys	agg Arg	tca Ser 320	960
5	ttt Phe	tca Ser	aga Arg	agg Arg	ctg Leu 325	ttc Phe	aaa Lys	aaa Lys	tca Ser	aat Asn 330	atc Ile	aga Arg	acc Thr	agg Arg	agt Ser 335	gaa Glu	1008
10	agc Ser	atc Ile	aga Arg	tca Ser 340	ctg Leu	caa Gln	agt Ser	gtg Val	aga Arg 345	aga Arg	tcg Ser	gaa Glu	gtt Val	ctc Leu 350	ata Ile		1056
15			tat Tyr 355	Thr	Asp	Val							• 6	- 1	1	1-4-1	1077
				Ano	ther i	orefei	rred e	embo	dıme	nt co	mpris	ses a	purit	ied ai	na isa	olated	

Another preferred embodiment comprises a purified and isolated polypeptide designated CON217, comprising the complete amino acid sequence set forth in SEQ ID NO: 20. This amino acid sequence was deduced from a polynucleotide sequence encoding CON217 (SEQ ID NO: 19), as set forth below:

20	-41	C ATGGCATCCC CAGCCTAGCT CCCAATCCCA CTTTC	GCACG
	1	TGTTAGCCAACAGCTCCTCAACCAACAGTTCTGTTCTCCCGTGTCCTGACTACCGACCTAC	CCAC
		M L A N S S S T N S S V L P C P D Y R P 1	г н
	67	GCCTGCACTTGGTGGTCTACAGCTTGGTGCTGGCTGCCGGGCTCCCCCTCAACGCGCTAG	CCTC
		R L H L V V Y S L V L A A G L P L N A L A	A L
25	133	GGGTCTTCCTGCGCGCGCTGCGCGTGCACTCGGTGGTGAGCGTGTACATGTGTAACCTGG	CGGCC
		W V F L R A L R V H S V V S V Y M C N L A	A A
	199	GCGACCTGCTCTCACCCTCTCGCTGCCCGTTCGTCTCCTACTACGCACTGCACCACT	3GCCC
			W P
	265	TCCCCGACCTCCTGTGCCAGACGACGGGCGCCATCTTCCAGATGAACATGTACGGCAGCT	JCATC
30		F P D L L C Q I I G A I F Q A A II I S S	CI
	331	TCCTGATGCTCATCAACGTGGACCGCTACGCCGCCATCGTGCACCCGCTGCGACTGCGCC	
		FLMLINVDRIATIONI	H L
	397	GGCGGCCCGCGTGGCGCGGCTGCTCTGCCTGGGCGTGTGGGCGCTCATCCTGGTGTTTG	
		RRPRVARLLETEVWALLET	A V
35	463	CCGCCGCCGCGTGCACAGGCCCTCGCGTTGCCGCTACCGGGACCTCGAGGTGCGCCTAT	
		PAARVHRPSRCKIKDII VKI	C F
	529	BAGAGCTTCAGCGACGAGCTGTGGAAAGGCAGGCTGCTGCCCCTCGTGCTGCTGCCGAGG	
		E S L S D E L M K G K L L L L L L L L L L L L L L L L L	A L
	595	GGCTTCCTGCTGCCCCTGGCGGCGGTGGTCTACTCGTCGGGCCGAGTCTTCTGGACGCTGG	
40		G F L L P L A A V V I D D C R V I I =	A R
	661	CCCGACGCCACGCAGAGCCAGCGGCGGCGGAAGACCGTGCGCCTCCTGCTGGCTAACCTCG	V T
		PDAIQSQRRRIT	-
	727	TTCCTGCTGTGCTTCGTGCCCTACAACAGCACGCTGGCGGTCTACGGGCTGCTGCGGAGCA	K I
4.5		F L L C F V F I N S I L M I I C L L M	
45	793	GTGGCGGCCAGCGTGCCTGCCGCGATCGCGTGCTGGTGATGGTGATGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCT	I A
		V A A S V P A R D R V R G V L M V M V L	ם ה

40

```
S A E G F R N
                        VLDPLVY
                                           Y F
              925
                                           S
                                              Α
                                                 T N
                                                      G
                                                        T
                              H
                                R A
                                      R
                                         T
                    L
                       G
                         т
              CAATCCGAAAGGTCCGCCGTCACCACCGACGCCACCAGGCCGGATGCCGCCAGTCAGGGGCTGCTC
5
          991
                                                 P
                                                   D
                                                      A A
                                                           S
                                 TTDAT
                                              R
                       R
                         S
                           Α
              CGACCCTCCGACTCCCACTCTCTCTCTCCTTCACACAGTGTCCCCAGGATTCCGCCCTCTGAACA
                                         F
                                           Τ
                                                 C
                                                   Ρ
                                                      O
                                                        D
                       D
                            Η
                              S
                                 L
                                   S
                                      S
                                              Q
              CACATGCCAT TGCGCTGTCC GTGCCCGACT CCCAACGCCT CTCGTTCTGG GAGGCTTACA
         1123
              GGGTGTACAC ACAAGAAGGT GGGCTGGGCA CTTGGACCTT TGGGTGGCAA TTCCAGCTTA
10
         1183
              GCAACGCAGA AGAGTACAAA GTGTGGAAGC CAGGGCCCAG GGAAGGCAGT GCTGCTGGAA
         1243
              ATGGCTTCTT TAAACTGTGA GCACGCAGAG CACCCCTTCT CCAGCGGTGG GAAGTGATGC
         1303
              AGAGAGCCCA CCCGTGCAGA GGGCAGAAGA GGACGAAATG CCTTTGGGTG GGCAGGGCAT
              TAAACTGCTA AAAGCTGGTT AGATGGAACA GAAAATGGGC ATTCTGGATC TAAACCGCCA
         1423
              CAGGGGCCTG AGAGCTGAAG AGCACCAGGT TTGGTGGACA AAGCTACTGA GATGCCTGTT
15
         1483
              CATCTGCTGA CTTCTGTCTA GGCTCATGGA TGCCACCCCC TTTCATTTCG GCCTAGGCTT
         1543
              CCCCTGCTCA CCACTGAGGC CTAATACAAG AGTTCCTATG GACAGAACTA CATTCTTTCT
         1603
              CGCATAGTGA CTTGTGACAA TTTAGACTTG GCATCCAGCA TGGGATAGTT GGGGCAAGGC
         1663
              AAAACTAACT TAGAGTTTCC CCCTCAACAA CATCCAAGTC CAAACCCTTT TTAGGTTATC
         1723
              CTTTCTTCCA TCACATCCCC TTTTCCAGGC CTCCTCCATT TTAGGTCCTT AATATTCTTT
20
         1783
              1843
              TTCTCTCTCT CTCCCTCTCT CTCCTTTGTC CAGAGTAAGG ATAAAATTCT TTCTACTAAA
         1903
              GCACTGGTTC TCAAACTTTT TGGTCTCAGA CCCCACTCTT AGAAATTGAG GATCTCAAAG
         1963
              AGCTTTGCTT ATATTTTGTT CTTTTGATAC TTACCATACT AGAAATTAAA GCGAATACAT
         2023
25
              TTTTAAAATA AATACACATG CACACATTAC ATTAGCCATG GGAGCAATAA TGTCACCACA
         2083
              CACACTTCAT GAAGCCTCTG GAAAACTCTA CAGTATACTT GTGAGAGAAT GAGAGTGAAA
         2143
              GGGACAAATA ACATCTGTGT AGCAGTATTA TGAAAATAGC TTGACCTTGT GGACTTCCTC
         2203
              AGAGGGTTGG TCCCTGGATC ACACTTTGAG AACCATACTT GTCCTGAAGT ATTGGAGTTC
         2263
              ATGTCTAACT TCTTCCCAGG GCATTATGTA CAGTGCTTTT TATTACTGTG GGGAGAGGGC
         2323
              30
         2383
```

Although SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 provide for particular human sequences, the invention is intended to include within its scope other human allelic variants; non-human mammalian forms of GPCR polypeptides, and other vertebrate forms of GPCR polypeptides.

It will be appreciated that extracellular epitopes are particularly useful for generating and screening for antibodies and other binding compounds that bind to receptors such as GPCR polypeptides. Thus, in another preferred embodiment, the invention provides a purified and isolated polypeptide comprising at least one extracellular domain of a GPCR polypeptide of the invention. By "extracellular domain", is it meant the amino terminal extracellular domain or an extracellular loop that spans two membrane domains.

10

15

20

25

A purified and isolated polypeptide comprising the N-terminal extracellular domain of GPCR polypeptides of the invention is highly preferred. Also preferred is a purified and isolated polypeptide comprising a GPCR seven transmembrane receptor fragment selected from the group consisting of the N-terminal extracellular domain of GPCR polypeptides of the invention, transmembrane domains of GPCR polypeptides of the invention, extracellular loops connecting transmembrane domains of GPCR polypeptides of the invention, intracellular loops connecting transmembrane domains of GPCR polypeptides of the invention, the C-terminal cytoplasmic domain of GPCR polypeptides, and fusions thereof. Such fragments may be continuous portions of the native receptor. However, it will also be appreciated that knowledge of the GPCR gene and protein sequences as provided herein permits recombining of various domains that are not contiguous in the native protein.

In another embodiment, the invention provides purified and isolated polynucleotides (e.g., cDNA, genomic DNA, synthetic DNA, RNA, or combinations thereof, single or double stranded) that comprise a nucleotide sequence encoding an amino acid sequence of the polypeptides of the invention. Another embodiment provides a purified and isolated polynucleotide encoding the amino acid sequence of the polypeptide of the invention fused to a heterologous tag amino acid sequence. Such polynucleotides are useful for recombinantly expressing the receptor and also for detecting expression of the receptor in cells (e.g., using Northern hybridization and in situ hybridization assays, and Western studies). Polynucleotides encoding polypeptides of the invention also are useful to design antisense and other molecules for the suppression of GPCR polypeptides expression in a cultured cell or animal (for therapeutic purposes or to provide a model for diseases characterized by aberrant GPCR polypeptide expression). Such polynucleotides are also useful to design antisense and other molecules for the suppression of GPCR polypeptide expression in a cultured cell or tissue or in an animal, for therapeutic purposes or to provide a model for diseases characterized by aberrant GPCR polypeptide expression. Specifically excluded from the definition of polynucleotides of the invention are entire isolated chromosomes of native host cells. A preferred polynucleotide set forth in any one of

10

15

the SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 corresponds to a naturally occurring GPCR sequence. It will be appreciated that numerous other sequences exist that also encode GPCR polypeptides having the amino acid sequence set out in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 due to the well-known degeneracy of the universal genetic code. All such sequences represent polynucleotides of the invention.

The invention also provides a purified and isolated polynucleotide comprising a nucleotide sequence that encodes a mammalian seven transmembrane receptor, wherein the polynucleotide hybridizes to a nucleotide sequence set forth in any one of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19 or the non-coding strand complementary thereto, under the following hybridization conditions:

- (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaCl, 10% Dextran sulphate; and
- (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1% SSC, 1% SDS. Polynucleotides that encode a human allelic variant are highly preferred.

A highly preferred polynucleotide of the invention comprises the sequence set forth in SEQ ID NO: 1, which comprises a human CON193 encoding DNA sequence:

```
ntggttgttg gaccattaaa atgcattatg gaatttttaa aagttggggg agagggagac 60
20
        agtaaaaata acctatattt tctcttgttt ttttttttt aactctagga aagcccagac 120
        aaattttgag ctatttcata acctaccaga cttatcatgc taacactgaa taaaacagac 180
        ctaataccag cttcatttat tctgaatgga gtcccaggac tggaagacac acaactctgg 240
        atttccttcc cattctgctc tatgtatgtt gtggctatgg tagggaattg tggactcctc 300
        tacctcattc actatgagga tgccctgcac aaacccatgt actacttctt ggccatgctt 360
25
        tcctttactg accttgttat gtgctctagt acaatcccta aagccctctg catcttctgg 420
        tttcatctca aggacattgg atttgatgaa tgccttgtcc agatgttctt catccacacc 480
        ttcacaggga tggagtctgg ggtgcttatg cttatggccc tggatcgcta tgtggccatc 540
         tgctacccct tacgctattc aactatcctc accaatcctg taattgcaaa ggttgggact 600
        gccaccttcc tgagaggggt attactcatt attcccttta ctttcctcac caagcgcctg 660
30
         ccctcctgca gaggcaatat acttccccat acctactgtg accacatgtc tgtagccaaa 720
         ttgtcctgtg gtaatgtcaa ggtcaatgcc atctatggtc tgatggttgc cctcctgatt 780
         gggggctttg acatactgtg tatcaccatc tcctatacca tgattctccg ggcagtggtc 840
         agectetect cageagatge teggeagaag geetttaata eetgeaetge eeacatttgt 900
         gccattgttt tctcctatac tccagctttc ttctccttct tttcccaccg ctttggggaa 960
35
         cacataatcc ccccttcttg ccacatcatt gtagccaata tttatctgct cctaccaccc 1020
         actatgaacc ctattgtcta tggggtgaaa accaaacaga tacgagactg tgtcataagg 1080
```

Also preferred is a polynucleotide comprising nucleotides 157-1119 of SEQ ID NO: 1, which represent the portion of SEQ ID NO: 1 that encodes CON193 amino acids.

Another highly preferred polynucleotide of the invention comprises the sequence set forth in SEQ ID NO: 3, which comprises a human CON166 encoding

10 DNA sequence:

5

15

20

25

30

35

40

```
atggatgaaa caggaaatct gacagtatct tctgccacat gccatgacac tattgatgac 60
ttccgcaatc aagtgtattc caccttgtac tctatgatct ctgttgtagg cttctttggc 120
aatggctttg tgctctatgt cctcataaaa acctatcaca agaagtcagc cttccaagta 180
tacatgatta atttagcagt agcagatcta ctttgtgtgt gcacactgcc tctccgtgtg 240
gtctattatg ttcacaaagg catttggctc tttggtgact tcttgtgccg cctcagcacc 300
tatgctttgt atgtcaacct ctattgtagc atcttcttta tgacagccat gagctttttc 360
cggtgcattg caattgtttt tccagtccag aacattaatt tggttacaca gaaaaaagcc 420
aggtttgtgt gtgtaggtat ttggattttt gtgattttga ccagttctcc atttctaatg 480
gccaaaccac aaaaagatga gaaaaataat accaagtgct ttgagccccc acaagacaat 540
caaactaaaa atcatgtttt ggtcttgcat tatgtgtcat tgtttgttgg ctttatcatc 600
ccttttgtta ttataattgt ctgttacaca atgatcattt tgaccttact aaaaaaatca 660
atgaaaaaaa atctgtcaag tcataaaaaag gctataggaa tgatcatggt cgtgaccgct 720
gcctttttag tcagtttcat gccatatcat attcaacgta ccattcacct tcattttta 780
cacaatgaaa ctaaaccctg tgattctgtc cttagaatgc agaagtccgt ggtcataacc 840
ttgtetetgg etgeatecaa ttgttgettt gaeeetetee tatatttett ttetgggggt 900
aactttagga aaaggctgtc tacatttaga aagcattctt tgtccagcgt gacttatgta 960
                                                                   1014
cccagaaaga aggcctcttt gccagaaaaa ggagaagaaa tatgtaaagt atag
The final three nucleotides of this sequence represent a stop codon.
```

Still another highly preferred polynucleotide of the invention comprises the sequence set forth in SEQ ID NO: 5, which comprises a human CON103 encoding DNA sequence:

```
ggggcctact tcaccgtgta cccggacttg ggaccatcac agacttcaga accatcagga 60 acctgggagc aactgaaagc tgaactacag tgggctttca gacacacagc aggctgcgga 120 gcacaaatag gactggttce ctccaggcca ccagcagggc ggtggaggtc ttcactgact 180 ccctgcctac ctctcaggac aatgtccttt tggctccaca gtccctgaag ccagagctgg 240 tgggggcagg gaggcagcca ccagcctcta tatgtagtgg aggaggggt gtccagggag 300 ggctgcatga tcctgagagc ccccacctca cccggctgga ctatcctccc acttcagggt 360 ttctctgggc ttccatcttg cccctgctga gccctgctc ctcctcacc agcagcaca 420 ccccaggct gggctcagag acctcatgtg gtgggatcac tcagtacccc gaggcggagg 480 aggaggagga gggctgcagg gttccccttg gcctgcaaac aggaacacaa ggtgtttctc 540 agtggctgca tcatcccac ttgccctgag cactcctga ggggtagaag actccagaac 600 atagtgccaa tcatcccac ttgccctgag cactcctgca ggggtagaag actccagaac 660
```

10

15

20

25

30

35

40

```
cttctctcag gcccatggcc caagcagccc atg gaa ctt cat aac ctg agc tct
cca tot ccc tot ctc tcc tcc tct qtt ctc cct ccc tcc ttc tct ccc
                                                                  762
tca ece tee tet get eee tet gee ttt ace act gtg ggg ggg tee tet
                                                                  810
gga ggg ccc tgc cac ccc acc tct tcc tcg ctg gtg tct gcc ttc ctg
                                                                  858
gca cca atc ctg gcc ctg gag ttt gtc ctg ggc ctg gtg ggg aac agt
                                                                  906
ttg gcc ctc ttc atc ttc tgc atc cac acg cgg ccc tgg acc tcc aac
                                                                  954
acg gtg ttc ctg gtc agc ctg gtg gcc gct gac ttc ctc ctg atc agc
                                                                  1002
aac ctg ccc ctc cgc gtg gac tac tac ctc ctc cat gag acc tgg cgc
                                                                  1050
ttt ggg get get gec tge aaa gte aac ete tte atg etg tee aec aac
                                                                  1098
ege aeg gee age gtt gte tte ete aca gee ate gea ete aac ege tae
                                                                  1146
ctg aag gtg gtg cag ccc cac gtg ctg agc cgt gct tcc gtg ggg
                                                                  1194
gca gct gcc cgg gtg gcc ggg gga ctc tgg gtg ggc atc ctg ctc ctc
                                                                  1242
aac ggg cac ctg ctc ctg agc acc ttc tcc ggc ccc tcc tgc ctc agc
                                                                  1290
tac agg gtq ggc acg aag cec teg gec teg etc ege tgg cac eag gea
                                                                  1338
ctg tac ctg ctg gag ttc ttc ctg cca ctg gcg ctc atc ctc ttt gct
                                                                  1386
att gtg agc att ggg ctc acc atc cgg aac cgt ggt ctg ggc ggg cag
                                                                  1434
gca ggc ccg cag agg gcc atg cgt gtg ctg gcc atg gtg gtg gcc gtc
                                                                  1482
tac acc atc tgc ttc ttg ccc agc atc atc ttt ggc atg gct tcc atg
                                                                  1530
                                                                  1578
gtg gct ttc tgg ctg tcc gcc tgc cga tcc ctg gac ctc tgc aca cag
ctc ttc cat ggc tcc ctg gcc ttc acc tac ctc aac agt gtc ctg gac
                                                                  1626
ccc gtg ctc tac tgc ttc tct agc ccc aac ttc ctc cac cag agc cgg
                                                                  1674
gcc ttg ctg ggc ctc acg cgg ggc cgg cag ggc cca gtg agc gac gag
                                                                  1722
age tee tac caa eee tee agg cag tgg ege tac egg gag gee tet agg
                                                                  1770
aag geg gag gee ata ggg aag etg aaa gtg eag gge gag gte tet etg
                                                                  1818
gaa aag gaa ggc tcc tcc cag ggc tga gggccagctg cagggctgca
gcgctgtggg ggtaagggct gccgcgctct ggcctggagg gacaaggcca gcacacggtg 1925
cctcaaccaa ctggacaagg gatggcggca gaccaggggc caggccaaag cactggcagg 1985
actcatgtgg gtggcaggga gagaaaccca cctaggcctc tcagtgtgtc caggatggca 2045
ttcccagaat gcaggggaga gcaggatgcc gggtggagga gacaggcaag gtgccgttgg 2105
cacaccaget cagacagggg cetgegeage tgeaggggae agacgeeaat caetgteaca 2165
gcagagtcac cttagaaatt ggacagctgc atgttctgtg ctctccagtt tgtcccttcc 2225
aatattaata aactteeett ttaaatatat ttatttgeag accaatatet gtetttaatt 2285
ctaacctggg actgtcagta ggcgtcaaag tgagcgccc agtgaaggaa ccttggagag 2345
agtgggagca ttcccagcct tccaggggga ctcgtcttcc agactttgga gcccgcatgt 2405
                                                                  2429
ctgaagcaga ctctttcttg gtag
```

Also preferred is a polynucleotide comprising nucleotides 691-1842 of SEQ ID NO: 5, which represent the portion of SEQ ID NO: 5 that encodes CON103 amino acids. Nucleotides 1843-1845 represent a stop codon.

Another highly preferred polynucleotide of the invention comprises the sequence set forth in SEQ ID NO: 7, which comprises a CON203-encoding DNA sequence:

```
ttgaatttag gtgacactat agaagagcta tgacgtcgca tgcacgcgta cgtaagctcg 60 gaattcggct cgagctgaac taatgactgc cgccataaga agacagaga aactgagtat 120 cctcccaaag gtgacactgg aagcaatgaa caccacagtg atgcaaggct tcaacagatc 180
```

10

15

20

25

30

35

40

```
tgagcggtgc cccagagaca ctcggatagt acagctggta ttcccagccc tctacacagt 240
ggttttcttg accggcatec tgctgaatac tttggctctg tgggtgtttg ttcacatecc 300
cageteetee acetteatea tetaceteaa aaacaetttq qtqqccqact tqataatqac 360
acteatqett cettteaaaa teetetetqa eteacaeetq geaceetqqe ageteagage 420
tittqtqtqt cqtttttctt cqqtqatatt ttatqaqacc atqtatqtqg qcatcqtgct 480
gttagggctc atagcctttg acagattcct caagatcatc agacctttga gaaatatttt 540
totaaaaaaa cotgttttg caaaaacggt ctcaatcttc atctgggtct ttttggtctt 600
catctccctg ccaaatatga tcttgagcaa caaggaagca acaccatcgt ctgtgaaaaa 660
qtqtqcttcc ttaaaqqqqc ctctqqqqct qaaatqqcat caaatqqtaa ataacatatq 720
ccaqtttatt ttctqqactq qttttatcct aatqcttgtg ttttatgtgg ttattgcaaa 780
aaaagtatat gattettata gaaagteeaa aagtaaggae agaaaaaaca acaaaaaget 840
tgccagagtt ccatatactc acagtcaaac caacaataag actgactgta gactgcaaaa 960
tcaactqttt attqctaaaq aaacaactct ctttttqqca gcaactaaca tttgtatgga 1020
tcccttaata tacatattct tatqtaaaaa attcacaqaa aaqctaccat qtatqcaaqq 1080
qaqaaaqacc acaqcatcaa qccaaqaaaa tcataqcagt cagacagaca acataacctt 1140
aggetgaeaa etgtaeatag ggttaaette tatttattga tgagaettee gtagataatg 1200
tggaaatcaa atttaaccaa gaaaaaaaga ttggaacaaa tgctctctta cattttattt 1260
atcctggtgt ccaggaaaag attatattaa atttaaatcc acatagatct attcataagc 1320
tgaatgaacc attacctaag agaatgcaac aggataccaa tggccactag aggcatattc 1380
cttcttcttt tttttttgtt aaatttcaag agcattcact ttacatttgg aaagactaag 1440
gggaacggtt atcctacaaa cctcccttca acacctttta catt
                                                                1484
```

Also preferred is a polynucleotide comprising nucleotides 146-1144 of SEQ ID NO: 7, which represent the portion of SEQ ID NO: 7 that encodes CON203 amino acids. Nucleotides 1145-1147 represent a stop codon.

Another highly preferred polynucleotide of the invention comprises the sequence set forth in SEQ ID NO: 9, which comprises a human CON198 encoding DNA sequence:

```
ATGATGGTGG ATCCCAATGG CAATGAATCC AGTGCTACAT ACTTCATCCT AATAGGCCTC 60
CCTGGTTTAG AAGAGGCTCA GTTCTGGTTG GCCTTCCCAT TGTGCTCCCT CTACCTTATT 120
GCTGTGCTAG GTAACTTGAC AATCATCTAC ATTGTGCGGA CTGAGCACAG CCTGCATGAG 180
CCCATGTATA TATTTCTTTG CATGCTTTCA GGCATTGACA TCCTCATCTC CACCTCATCC 240
ATGCCCAAAA TGCTGGCCAT CTTCTGGTTC AATTCCACTA CCATCCAGTT TGATGCTTGT 300
CTGCTACAGA TGTTTGCCAT CCACTCCTTA TCTGGCATGG AATCCACAGT GCTGCTGGCC 360
ATGGCTTTTG ACCGCTATGT GGCCATCTGT CACCCACTGC GCCATGCCAC AGTACTTACG 420
TTGCCTCGTG TCACCAAAAT TGGTGTGGCT GCTGTGGTGC GGGGGGCTGC ACTGATGGCA 480
CCCCTTCCTG TCTTCATCAA GCAGCTGCCC TTCTGCCGCT CCAATATCCT TTCCCATTCC 540
TACTGCCTAC ACCAAGATGT CATGAAGCTG GCCTGTGATG ATATCCGGGT CAATGTCGTC 600
TATGGCCTTA TCGTCATCAT CTCCGCCATT GGCCTGGACT CACTTCTCAT CTCCTTCTCA 660
TATCTGCTTA TTCTTAAGAC TGTGTTGGGC TTGACACGTG AAGCCCAGGC CAAGGCATTT 720
GGCACTTGCG TCTCTCATGT GTGTGCTGTG TTCATATTCT ATGTACCTTT CATTGGATTG 780
TCCATGGTGC ATCGCTTTAG CAAGCGGCGT GACTCTCCGC TGCCCGTCAT CTTGGCCAAT 840
ATCTATCTGC TGGTTCCTCC TGTGCTCAAC CCAATTGTCT ATGGAGTGAA GACAAAGGAG 900
ATTCGACAGC GCATCCTTCG ACTTTTCCAT GTGGCCACAC ACGCTTCAGA GCCCTAG
                                                                  957
```

The last three nucleotides of this sequence represent a stop codon.

Still another A highly preferred polynucleotide of the invention comprises the sequence set forth in SEQ ID NO: 11, which comprises a human CON197 encoding DNA sequence:

```
ATGGAAAGCG AGAACAGAAG AGTGATAAGA GAATTCATCC TCCTTGGTCT GACCCAGTCT 60
5
        CAAGATATTC AGCTCCTGGT CTTTGTGCTA GTTTTAATAT TCTACTTCAT CATCCTCCCT 120
        GGAAATTTTC TCATTATTTT CACCATAAAG TCAGACCCTG GGCTCACAGC CCCCCTCTAT 180
        TTCTTTCTGG GCAACTTGGC CTTCCTGGAT GCATCCTACT CCTTCATTGT GGCTCCCCGG 240
        ATGTTGGTGG ACTTCCTCTC TGCGAAGAAG ATAATCTCCT ACAGAGGCTG CATCACTCAG 300
        CTCTTTTTCT TGCACTTCCT TGGAGGAGGG GAGGGATTAC TCCTTGTTGT GATGGCCTTT 360
10
        GACCGCTACA TCGCCATCTG CCGGCCTCTG CACTATCCTA CTGTCATGAA CCCTAGAACC 420
        TGCTATGCAA TGATGTTGGC TCTGTGGCTT GGGGGTTTTG TCCACTCCAT TATCCAGGTG 480
        GTCCTCATCC TCCGCTTGCC TTTTTGTGGC CCAAACCAGC TGGACAACTT CTTCTGTGAT 540
        GTCCCACAGG TCATCAAGCT GGCCTGCACC GACACATTTG TGGTGGAGCT TCTGATGGTC 600
        TTCAACAGTG GCCTGATGAC ACTCCTGTGC TTTCTGGGGC TTCTGGCCTC CTATGCAGTC 660
15
        ATTCTTTGTC GCATACGAGG GTCTTCTTCT GAGGCAAAAA ACAAGGCCAT GTCCACGTGC 720
        ATCACCCATA TCATTGTTAT ATTCTTCATG TTTGGACCTG GCATCTTCAT CTACACGCGC 780
        CCCTTCAGGG CTTTCCCAGC TGACAAGGTG GTTTCTCTCT TCCACACAGT GATTTTTCCT 840
        TTGTTGAATC CTGTCATTTA TACCCTTCGC AACCAGGAAG TGAAAGCTTC CATGAAAAAG 900
        GTGTTTAATA AGCACATAGC CTGA 924
20
```

The last three nucleotides of this sequence represent a stop codon.

Another highly preferred polynucleotide of the invention comprises the sequence set forth in SEQ ID NO: 13, which comprises a human CON202 encoding DNA sequence:

```
TGCTTCCCCA TAAGGTAACA GCTTTGTTAG CNCTGTCTGA CATCATTGCT
25
        1
              TGTTWACTTA AGAACTGATA GGTYTTTTTT TTTTTTTTTT TTCAGATATT
        51
              CTGATGGCAA AACAAGTGGA AGAAAAGAGG AAGCATGACT GCAGATCAGA
        101
              TCAGTTCTCT TTGTGGATTA TATTTTCAGT AAAATGTATG GATCTATCTT
        151
              TTCCTTGTTC TTATATCTAG ATCATGAGAC TTGACTGAGG CTGTATCCTT
        201
              ATCCTCCATC CATCTATGGC GAACTATAGC CATGCAGCTG ACAACATTTT
30
        251
              GCAAAATCTC TCGCCTCTAA CAGCCTTTCT GAAACTGACT TCCTTGGGTT
        301
              TCATAATAGG AGTCAGCGTG GTGGGCAACC TCCTGATCTC CATTTTGCTA
        351
              GTGAAAGATA AGACCTTGCA TAGAGCACCT TACTACTTCC TGTTGGATCT
        401
              TTGCTGTTCA GATATCCTCA GATCTGCAAT TTGTTTCCCA TTTGTGTTCA
        451
              ACTCTGTCAA AAATGGTTCT ACCTGGACTT ATGGGACTCT GACTTGCAAA
35
        501
              GTGATTGCCT TTCTGGGGGT TTTGTCCTGT TTCCACACTG CTTTCATGCT
        551
              CTTCTGCATC AGTGTCACCA GATATTTAGC TATCGCCCAT CACCGCTTCT
        601
              ATACAAAGAG GCTGACCTTT TGGACGTGTC TGGCTGTGAT CTGTATGGTG
        651
              TGGACTCTGT CTGTGGCCAT GGCATTTCCC CCGGTTTTAG ACGTGGGCAC
        701
```

```
TTACTCATTC ATTAGGGAGG AAGATCAATG CACCTTCCAA CACCGCTCCT
       751
             TCAGGGCTAA TGATTCCTTA GGATTTATGC TGCTTCTTGC TCTCATCCTC
       801
             CTAGCCACAC AGCTTGTCTA CCTCAAGCTG ATATTTTTCG TCCACGATCG
       851
             AAGAAAAATG AAGCCAGTCC AGTTTGTAGC AGCAGTCAGC CAGAACTGGA
       901
             CTTTTCATGG TCCTGGAGCC AGTGGCCAGG CAGCTGCCAA TTGGCTAGCA
5
       951
             GGATTTGGAA GGGGTCCCAC ACCACCCACC TTGCTGGGCA TCAGGCAAAA
       1001
             TGCAAACACC ACAGGCAGAA GAAGGCTATT GGTCTTAGAC GAGTTCAAAA
       1051
             TGGAGAAAAG AATCAGCAGA ATGTTCTATA TAATGACTTT TCTGTTTCTA
       1101
             ACCTTGTGGG GCCCCTACCT GGTGGCCTGT TATTGGAGAG TTTTTGCAAG
       1151
             AGGGCCTGTA GTACCAGGGG GATTTCTAAC AGCTGCTGTC TGGATGAGTT
10
        1201
              TTGCCCAAGC AGGAATCAAT CCTTTTGTCT GCATTTTCTC AAACAGGGAG
        1251
             CTGAGGCGCT GTTTCAGCAC AACCCTTCTT TACTGCAGAA AATCCAGGTT
        1301
             ACCAAGGGAA CCTTACTGTG TTATATGAGG
        1351
```

Also preferred is a polynucleotide comprising nucleotides 266-1375 of SEQ ID NO:

13, which represent the portion of SEQ ID NO: 13 that encodes CON202 amino acids.

Nucleotides 1376-1378 represent a stop codon.

Another highly preferred polynucleotide of the invention comprises the sequence set forth in SEQ ID NO: 15, which comprises a human CON222 encoding DNA sequence:

		*				
20	1	ATGTTTAGAC	CTCTTGTGAA	TCTCTCTCAC	ATTTTATATA	AGAAATTCCA
	51	GTACTGTGGG	TATGCACCAC	ATGTTCGCAG	CTGTAAACCA	AACACTGATG
	101	GAATTTCATC	TCTAGAGAAT	CTCTTGGCAA	GCATTATTCA	GAGAGTATTT
	151	GTCTGGGTTG	TATCTGCAGT	TACCTGCTTT	GGAAACATTT	TTGTCATTTG
	201	GATGCGACCT	TATATCAGGT	CTGAGAACAA	GCTGTATGCC	ATGTCAATCA
25	251	TTTCTCTCTG	CTGTGCCGAC	TGCTTAATGG	GAATATATTT	ATTCGTGATC
	301	GGAGGCTTTG	ACCTAAAGTT	TCGTGGAGAA	TACAATAAGC	ATGCGCAGCT
	351	GTGGATGGAG	AGTACTCATT	GTCAGCTTGT	AGGATCTTTG	GCCATTCTGT
	401	CCACAGAAGT	ATCAGTTTTA	CTGTTAACAT	${\tt TTCTGACATT}$	GGAAAAATAC
	451	ATCTGCATTG	TCTATCCTTT	TAGATGTGTG	AGACCTGGAA	AATGCAGAAC
30	501	AATTACAGTT	CTGATTCTCA	TTTGGATTAC	TGGTTTTATA	GTGGCTTTCA
	551	TTCCATTGAG	CAATAAGGAA	TTTTTCAAAA	ACTACTATGG	CACCAATGGA
	601			AGAAGATACA		
	651			TTGGTATTAA		
	701	TAGTTTTTC	CTATGGAAGC	ATGTTTTATA	GTGTTCATCA	AAGTGCCATA
35	751	ACAGCAACTG	AAATACGGAA	TCAAGTTAAA	AAAGAGATGA	TCCTTGCCAA
	801	ACGTTTTTTC	TTTATAGTAT	TTACTGATGC	ATTATGCTGG	ATACCCATTT
	851	TTGTAGTGAA	ATTTCTTTCA	CTGCTTCAGG	TAGAAATACC	AGGTACCATA
	901	ACCTCTTGGG	TAGTGATTTT	TATTCTGCCC	ATTAACAGTG	CTTTGAACCC
	951	AATTCTCTAT		CAAGACCATT		
40	1001	TTTGGTATAA		AGAAAATCTA		
	1051	ACATATGCTC		CTGGGTGGAA		
	1101	GCCACCTGAG	TTAATGAAGC	: CGGACCTTTT	CACATACCCC	TGTGAAATGT

10

15

20

25

1151 CACTGATTTC TCAATCAACG AGACTCAATT CCTATTCA

The last three nucleotides of this sequence represent a stop codon.

Another highly preferred polynucleotide of the invention comprises the sequence set forth in SEQ ID NO: 17, which comprises a human CON215 encoding DNA sequence. Also preferred is a polynucleotide comprising the portion of SEQ ID NO: 17 set forth below, which represent the portion of SEQ ID NO: 17 that encodes CON215 amino acids (the last three nucleotides represent a stop codon).

```
ATGGGGTTCA ACTTGACGCT TGCAAAATTA CCAAATAACG AGCTGCACGG CCAAGAGAGT
                                                                     60
CACAATTCAG GCAACAGGAG CGACGGGCCA GGAAAGAACA CCACCCTTCA CAATGAATTT
                                                                   120
GACACAATTG TCTTGCCAGT GCTTTATCTC ATTATATTTG TGGCAAGCAT CTTGCTGAAT
GGTTTAGCAG TGTGGATCTT CTTCCACATT AGGAATAAAA CCAGCTTCAT ATTCTATCTC
AAAAACATAG TGGTTGCAGA CCTCATAATG ACGCTGACAT TTCCATTTCG AATAGTCCAT
                                                                   300
GATGCAGGAT TTGGACCTTG GTACTTCAAG TTTATTCTCT GCAGATACAC TTCAGTTTTG
                                                                   360
TTTTATGCAA ACATGTATAC TTCCATCGTG TTCCTTGGGC TGATAAGCAT TGATCGCTAT
                                                                    420
CTGAAGGTGG TCAAGCCATT TGGGGACTCT CGGATGTACA GCATAACCTT CACGAAGGTT
                                                                    480
TTATCTGTTT GTGTTTGGGT GATCATGGCT GTTTTGTCTT TGCCAAACAT CATCCTGACA
                                                                    540
AATGGTCAGC CAACAGAGGA CAATATCCAT GACTGCTCAA AACTTAAAAG TCCTTTGGGG
GTCAAATGGC ATACGGCAGT CACCTATGTG AACAGCTGCT TGTTTGTGGC CGTGCTGGTG
ATTCTGATCG GATGTTACAT AGCCATATCC AGGTACATCC ACAAATCCAG CAGGCAATTC
ATAAGTCAGT CAAGCCGAAA GCGAAAACAT AACCAGAGCA TCAGGGTTGT TGTGGCTGTG
                                                                    780
TTTTTTACCT GCTTTCTACC ATATCACTTG TGCAGAATTC CTTTTACTTT TAGTCACTTA
                                                                    840
GACAGGCTTT TAGATGAATC TGCACAAAAA ATCCTATATT ACTGCAAAGA AATTACACTT
                                                                    900
TTCTTGTCTG CGTGTAATGT TTGCCTGGAT CCAATAATTT ACTTTTCAT GTGTAGGTCA
                                                                    960
TTTTCAAGAA GGCTGTTCAA AAAATCAAAT ATCAGAACCA GGAGTGAAAG CATCAGATCA 1020
CTGCAAAGTG TGAGAAGATC GGAAGTTCTC ATATATTATG ATTATACTGA TGTGTAG
```

Another preferred polynucleotide of the invention comprises the portion of the sequence set forth in SEQ ID NO: 19 which comprises a human CON217 encoding DNA sequence:

```
ATGTTAGCCA ACAGCTCCTC AACCAACAGT TCTGTTCTCC CGTGTCCTGA CTACCGACCT
              ACCCACCGCC TGCACTTGGT GGTCTACAGC TTGGTGCTGG CTGCCGGGCT CCCCCTCAAC
30
               GCGCTAGCCC TCTGGGTCTT CCTGCGCGCG CTGCGCGTGC ACTCGGTGGT GAGCGTGTAC
         121
               ATGTGTAACC TGGCGGCCAG CGACCTGCTC TTCACCCTCT CGCTGCCCGT TCGTCTCTCC
          181
               TACTACGCAC TGCACCACTG GCCCTTCCCC GACCTCCTGT GCCAGACGAC GGGCGCCATC
          241
               TTCCAGATGA ACATGTACGG CAGCTGCATC TTCCTGATGC TCATCAACGT GGACCGCTAC
          301
               GCCGCCATCG TGCACCCGCT GCGACTGCGC CACCTGCGGC GGCCCCGCGT GGCGCGGCTG
35
          361
               CTCTGCCTGG GCGTGTGGGC GCTCATCCTG GTGTTTGCCG TGCCCGCCGC CCGCGTGCAC
          421
               AGGCCCTCGC GTTGCCGCTA CCGGGACCTC GAGGTGCGCC TATGCTTCGA GAGCTTCAGC
          481
               GACGAGCTGT GGAAAGGCAG GCTGCTGCCC CTCGTGCTGC TGGCCGAGGC GCTGGGCTTC
          541
               CTGCTGCCCC TGGCGGCGGT GGTCTACTCG TCGGGCCGAG TCTTCTGGAC GCTGGCGCGC
          601
                CCCGACGCCA CGCAGAGCCA GCGGCGGCGG AAGACCGTGC GCCTCCTGCT GGCTAACCTC
40
          661
                GTCATCTTCC TGCTGTGCTT CGTGCCCTAC AACAGCACGC TGGCGGTCTA CGGGCTGCTG
          721
                CGGAGCAAGC TGGTGGCGGC CAGCGTGCCT GCCCGCGATC GCGTGCGCGG GGTGCTGATG
          781
```

```
901 GCCGAGGGC TGCTGGCCGG CGCCAACTGC GTGCTGGACC CGCTGGTGTA CTACTTTAGC
901 GCCGAGGGCT TCCGCAACAC CCTGCGCGGC CTGGGCACTC CGCACCGGGC CAGGACCTCG
961 GCCACCAACG GGACGCGGC GGCGCTCGCG CAATCCGAAA GGTCCGCCGT CACCACCGAC
1021 GCCACCAGGC CGGATGCCGC CAGTCAGGGG CTGCTCCGAC CCTCCGACTC CCACTCTCTG
1081 TCTTCCTTCA CACAGTGTCC CCAGGATTCC GCCCTCTGA
```

The last three nucleotides of this sequence represent a stop codon.

The invention also includes polynucleotides differing from the sequences set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 and from their complementary strand by at least one nucleotide.

In a related embodiment, the invention provides vectors comprising a polynucleotide of the invention. Such vectors are useful, *e.g.*, for amplifying the polynucleotides in host cells to create useful quantities thereof. In preferred embodiments, the vector is an expression vector wherein the polynucleotide of the invention is operatively linked to a polynucleotide comprising an expression control sequence. Such vectors are useful for recombinant production of polypeptides of the invention.

In another related embodiment, the invention provides host cells that are transformed or transfected (stably or transiently) with a polynucleotide of the invention or vectors of the invention. As stated above, such host cells are useful for amplifying the polynucleotides and also for expressing the GPCR seven transmembrane receptor polypeptides or fragments thereof encoded by the polynucleotides. Such host cells are useful in assays as described herein.

In still another related embodiment, the invention provides a method for producing a seven transmembrane receptor polypeptide (or fragment thereof) of the invention comprising the steps of growing a host cell of the invention in a nutrient medium and isolating the polypeptide or variant thereof from the cell or the medium. Since the GPCR polypeptides are seven transmembrane receptors, it will be appreciated that, for some applications, such as certain activity assays, the preferable isolation may involve isolation of cell membranes containing the polypeptide embedded therein, whereas for other applications a more complete isolation may be preferable.

In still another embodiment, the invention provides antibodies that are specific for the GPCR seven transmembrane receptors of the invention. Antibody

15

10

5

20

25

10

15

20

specificity is described in greater detail below. However, it should be emphasized that antibodies that can be generated from polypeptides that have previously been described in the literature and that are capable of fortuitously cross-reacting with the GPCR polypeptides of the invention (*e.g.*, due to the fortuitous existence of a similar epitope in both polypeptides) are considered "cross-reactive" antibodies. Such cross-reactive antibodies are not antibodies that are "specific" for the GPCR polypeptides. The determination of whether an antibody is specific for a GPCR polypeptide or is cross-reactive with another known receptor is made using Western blotting assays or several other assays well known in the literature. For identifying cells that express GPCR polypeptides and also for modulating GPCR -ligand binding activity, antibodies that specifically bind to an extracellular epitope of one of the GPCR seven transmembrane receptors of the present invention are preferred.

In one preferred variation, the invention provides monoclonal antibodies. Hybridomas that produce such antibodies also are intended as aspects of the invention. In yet another variation, the invention provides a humanized antibody. Humanized antibodies are useful for *in vivo* therapeutic indications.

In another variation, the invention provides a cell-free composition comprising polyclonal antibodies, wherein at least one of the antibodies is an antibody of the invention specific for a GPCR polypeptide of the present invention. Antisera isolated from an animal is an exemplary composition, as is a composition comprising an antibody fraction of an antisera that has been resuspended in water or in another diluent, excipient, or carrier.

In still another related embodiment, the invention provides anti-idiotypic antibodies specific for an antibody that is specific for a GPCR polypeptide of the present invention.

It is well known that antibodies contain relatively small antigen binding domains that can be isolated chemically or by recombinant techniques. Such domains are useful GPCR binding molecules themselves, and also may be reintroduced into human antibodies, or fused to toxins or other polypeptides. Thus, in still another embodiment, the invention provides a polypeptide comprising a fragment of a GPCR-specific antibody, wherein the fragment and the polypeptide bind to a

30

GPCR seven transmembrane receptor of the present invention. By way of non-limiting example, the invention provides polypeptides that are single chain antibodies and CDR-grafted antibodies.

Also within the scope of the invention are compositions comprising polypeptides, polynucleotides, or antibodies of the invention that have been formulated with, *e.g.*, a pharmaceutically acceptable carrier.

The invention also provides methods of using antibodies of the invention. For example, the invention provides a method for modulating ligand binding of a GPCR seven transmembrane receptor of the present invention comprising the step of contacting the seven transmembrane receptor with an antibody specific for the seven transmembrane receptor, under conditions wherein the antibody binds the receptor.

GPCR polypeptides are expressed in the brain, providing an indication that aberrant GPCR polypeptide signaling activity may correlate with one or more neurological disorders. The invention also provides a method for treating a neurological disorder comprising the step of administering to a mammal in need of such treatment an amount of an antibody-like polypeptide of the invention that is sufficient to modulate ligand binding of a GPCR seven transmembrane receptor of the present invention in neurons of the mammal. In addition to administration of antibody-like polypeptides, administration of natural ligands for GPCR polypeptides as well as modulators of GPCR polypeptide activity, such as small molecules that mimic, agonize or antagonize ligand-mediated GPCR polypeptide signaling, are contemplated. The expression pattern provides an indication that such molecules will have utility for treating neurological and/or psychiatric diseases, including but not limited to schizophrenia, depression, anxiety, bipolar disease, affective disorders, attention deficit hyperactivity disorder/attention deficit disorder (ADHD/ADO), epilepsy, neuritis, neurasthenia, neuropathy, neuroses, Alzheimer's disease, Parkinson's disease, migraine, senile dementia, and the like. Treatment of individuals having any of these disorders is contemplated as an aspect of the invention.

Thus, in yet another embodiment, the invention provides genetic screening procedures that entail analyzing a person's genome -- in particular their

20

5

10

15

25

10

15

20

25

alleles for GPCR's of the invention -- to determine whether the individual possesses a genetic characteristic found in other individuals that are considered to be afflicted with, or at risk for, developing a mental disorder or disease of the brain that is suspected of having a hereditary component. For example, in one embodiment, the invention provides a method for determining a potential for developing a disorder affecting the brain in a human subject comprising the steps of analyzing the coding sequence of one or more GPCR genes from the human subject; and determining development potential for the disorder in said human subject from the analyzing step.

More particularly, the invention provides a method of screening a human subject to diagnose a disorder affecting the brain or genetic predisposition therefor, comprising the steps of: (a) assaying nucleic acid of a human subject to determine a presence or an absence of a mutation altering the amino acid sequence, expression, or biological activity of at least one seven transmembrane receptor that is expressed in the brain, wherein the seven transmembrane receptor comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20, or an allelic variant thereof, and wherein the nucleic acid corresponds to the gene encoding the seven transmembrane receptor; and (b) diagnosing the disorder or predisposition from the presence or absence of said mutation, wherein the presence of a mutation altering the amino acid sequence, expression, or biological activity of allele in the nucleic acid correlates with an increased risk of developing the disorder. In preferred variations, the seven transmembrane receptor is CON202 comprising an amino acid sequence set forth in SEQ ID NO: 14, or an allelic variant thereof, and the disease is schizophrenia.

By "human subject" is meant any human being, human embryo, or human fetus. It will be apparent that methods of the present invention will be of particular interest to individuals that have themselves been diagnosed with a disorder affecting the brain or have relatives that have been diagnosed with a disorder affecting the brain.

By "screening for an increased risk" is meant determination of whether a genetic variation exists in the human subject that correlates with a greater likelihood of developing a disorder affecting the brain than exists for the human population as a

10

15

20

25

whole, or for a relevant racial or ethnic human sub-population to which the individual belongs. Both positive and negative determinations (i.e., determinations that a genetic predisposition marker is present or is absent) are intended to fall within the scope of screening methods of the invention. In preferred embodiments, the presence of a mutation altering the sequence or expression of at least one *CON202* seven transmembrane receptor allele in the nucleic acid is correlated with an increased risk of developing schizophrenia, whereas the absence of such a mutation is reported as a negative determination.

The "assaying" step of the invention may involve any techniques available for analyzing nucleic acid to determine its characteristics, including but not limited to well-known techniques such as single-strand conformation polymorphism analysis (SSCP) [Orita et al., Proc Natl. Acad. Sci. USA, 86: 2766-2770 (1989)]; heteroduplex analysis [White et al., Genomics, 12: 301-306 (1992)]; denaturing gradient gel electrophoresis analysis [Fischer et al., Proc. Natl. Acad. Sci. USA, 80: 1579-1583 (1983); and Riesner et al., Electrophoresis, 10: 377-389 (1989)]; DNA sequencing; RNase cleavage [Myers et al., Science, 230: 1242-1246 (1985)]; chemical cleavage of mismatch techniques [Rowley et al., Genomics, 30: 574-582 (1995); and Roberts et al., Nucl. Acids Res., 25: 3377-3378 (1997)]; restriction fragment length polymorphism analysis; single nucleotide primer extension analysis [Shumaker et al., Hum. Mutat., 7: 346-354 (1996); and Pastinen et al., Genome Res., 7: 606-614 (1997)]; 5' nuclease assays [Pease et al., Proc. Natl. Acad. Sci. USA, 91:5022-5026 (1994)]; DNA Microchip analysis [Ramsay, G., Nature Biotechnology, 16: 40-48 (1999); and Chee et al., U.S. Patent No. 5,837,832]; and ligase chain reaction [Whiteley et al., U.S. Patent No. 5,521,065]. [See generally, Schafer and Hawkins, Nature Biotechnology, 16: 33-39 (1998).] All of the foregoing documents are hereby incorporated by reference in their entirety.

Thus, in one preferred embodiment involving screening CON202 sequences, for example, the assaying step comprises at least one procedure selected from the group consisting of: (a) determining a nucleotide sequence of at least one codon of at least one CON202 allele of the human subject; (b) performing a hybridization assay to determine whether nucleic acid from the human subject has a

10

15

20

25

nucleotide sequence identical to or different from one or more reference sequences; (c) performing a polynucleotide migration assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences; and (d) performing a restriction endonuclease digestion to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences.

In a highly preferred embodiment, the assaying involves sequencing of nucleic acid to determine nucleotide sequence thereof, using any available sequencing technique. [See, e.g., Sanger et al., Proc. Natl. Acad. Sci. (USA), 74: 5463-5467 (1977) (dideoxy chain termination method); Mirzabekov, TIBTECH, 12: 27-32 (1994) (sequencing by hybridization); Drmanac et al., Nature Biotechnology, 16: 54-58 (1998); U.S. Patent No. 5,202,231; and Science, 260: 1649-1652 (1993) (sequencing by hybridization); Kieleczawa et al., Science, 258: 1787-1791 (1992) (sequencing by primer walking); (Douglas et al., Biotechniques, 14: 824-828 (1993) (Direct sequencing of PCR products); and Akane et al., Biotechniques 16: 238-241 (1994); Maxam and Gilbert, Meth. Enzymol., 65: 499-560 (1977) (chemical termination sequencing), all incorporated herein by reference. The analysis may entail sequencing of the entire seven transmembrane receptor gene genomic DNA sequence, or portions thereof; or sequencing of the entire seven transmembrane receptor coding sequence or portions thereof. In some circumstances, the analysis may involve a determination of whether an individual possesses a particular allelic variant, in which case sequencing of only a small portion of nucleic acid -- enough to determine the sequence of a particular codon characterizing the allelic variant -- is sufficient. This approach is appropriate, for example, when assaying to determine whether one family member inherited the same allelic variant that has been previously characterized for another family member, or, more generally, whether a person's genome contains an allelic variant that has been previously characterized and correlated with a mental disorder having a heritable component.

In another highly preferred embodiment, the assaying step comprises performing a hybridization assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference

10

15

20

25

30

sequences. In a preferred embodiment, the hybridization involves a determination of whether nucleic acid derived from the human subject will hybridize with one or more oligonucleotides, wherein the oligonucleotides have nucleotide sequences that correspond identically to a portion of the GPCR gene sequence taught herein, such as the CON202 coding sequence set forth in SEQ ID NO: 14, or that correspond identically except for one mismatch. The hybridization conditions are selected to differentiate between perfect sequence complementarity and imperfect matches differing by one or more bases. Such hybridization experiments thereby can provide single nucleotide polymorphism sequence information about the nucleic acid from the human subject, by virtue of knowing the sequences of the oligonucleotides used in the experiments.

Several of the techniques outlined above involve an analysis wherein one performs a polynucleotide migration assay, *e.g.*, on a polyacrylamide electrophoresis gel (or in a capillary electrophoresis system), under denaturing or nondenaturing conditions. Nucleic acid derived from the human subject is subjected to gel electrophoresis, usually adjacent to (or co-loaded with) one or more reference nucleic acids, such as reference GPCR-encoding sequences having a coding sequence identical to all or a portion of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19 (or identical except for one known polymorphism). The nucleic acid from the human subject and the reference sequence(s) are subjected to similar chemical or enzymatic treatments and then electrophoresed under conditions whereby the polynucleotides will show a differential migration pattern, unless they contain identical sequences. [See generally Ausubel *et al.* (eds.), *Current Protocols in Molecular Biology*, New York: John Wiley & Sons, Inc. (1987-1999); and Sambrook *et al.*, (eds.), Molecular Cloning, *A Laboratory Manual*, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press (1989), both incorporated herein by reference in their entirety.]

In the context of assaying, the term "nucleic acid of a human subject" is intended to include nucleic acid obtained directly from the human subject (e.g., DNA or RNA obtained from a biological sample such as a blood, tissue, or other cell or fluid sample); and also nucleic acid derived from nucleic acid obtained directly from the human subject. By way of non-limiting examples, well known procedures

10

15

20

25

30

exist for creating cDNA that is complementary to RNA derived from a biological sample from a human subject, and for amplifying (e.g., via polymerase chain reaction (PCR)) DNA or RNA derived from a biological sample obtained from a human subject. Any such derived polynucleotide which retains relevant nucleotide sequence information of the human subject's own DNA/RNA is intended to fall within the definition of "nucleic acid of a human subject" for the purposes of the present invention.

In the context of assaying, the term "mutation" includes addition, deletion, and/or substitution of one or more nucleotides in the GPCR gene sequence (e.g., as compared to the seven transmembrane receptor-encoding sequences set forth in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19) and other polymorphisms that occur in introns (where introns exist) and that are identifiable via sequencing, restriction fragment length polymorphism, or other techniques. The various activity examples provided herein permit determination of whether a mutation modulates activity of the relevant receptor in the presence or absence of various test substances.

In a related embodiment, the invention provides methods of screening a person's genotype with respect to GPCR's of the invention, and correlating such genotypes with diagnoses for disease or with predisposition for disease (for genetic counseling). For example, the invention provides a method of screening for a CON202 hereditary schizophrenia genotype in a human patient, comprising the steps of: (a) providing a biological sample comprising nucleic acid from the patient, the nucleic acid including sequences corresponding to said patient's CON202 alleles; (b) analyzing the nucleic acid for the presence of a mutation or mutations; (c) determining a CON202 genotype from the analyzing step; and (d) correlating the presence of a mutation in a CON202 allele with a hereditary schizophrenia genotype. In a preferred embodiment, the biological sample is a cell sample containing human cells that contain genomic DNA of the human subject. The analyzing can be performed analogously to the assaying described in preceding paragraphs. For example, the analyzing comprises sequencing a portion of the nucleic acid (e.g., DNA or RNA), the portion comprising at least one codon of the CON202 alleles.

10

15

20

25

Although more time consuming and expensive than methods involving nucleic acid analysis, the invention also may be practiced by assaying protein of a human subject to determine the presence or absence of an amino acid sequence variation in GPCR protein from the human subject. Such protein analyses may be performed, e.g., by fragmenting GPCR protein via chemical or enzymatic methods and sequencing the resultant peptides; or by Western analyses using an antibody having specificity for a particular allelic variant of the GPCR.

The invention also provides materials that are useful for performing methods of the invention. For example, the present invention provides oligonucleotides useful as probes in the many analyzing techniques described above. In general, such oligonucleotide probes comprise 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides that have a sequence that is identical, or exactly complementary, to a portion of a human GPCR gene sequence taught herein (or allelic variant thereof), or that is identical or exactly complementary except for one nucleotide substitution. In a preferred embodiment, the oligonucleotides have a sequence that corresponds in the foregoing manner to a human GPCR coding sequence taught herein, and in particular, the coding sequences set forth in SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19. In one variation, an oligonucleotide probe of the invention is purified and isolated. In another variation, the oligonucleotide probe is labeled, e.g., with a radioisotope, chromophore, or fluorophore. In yet another variation, the probe is covalently attached to a solid support. [See generally Ausubel et al. And Sambrook et al., supra.]

In a related embodiment, the invention provides kits comprising reagents that are useful for practicing methods of the invention. For example, the invention provides a kit for screening a human subject to diagnose schizophrenia or a genetic predisposition therefor, comprising, in association: (a) an oligonucleotide useful as a probe for identifying polymorphisms in a human CON202 seven transmembrane receptor gene, the oligonucleotide comprising 6-50 nucleotides that have a sequence that is identical or exactly complementary to a portion of a human CON202 gene sequence or CON202 coding sequence, except for one sequence

10

15

20

25

difference selected from the group consisting of a nucleotide addition, a nucleotide deletion, or nucleotide substitution; and (b) a media packaged with the oligonucleotide containing information identifying polymorphisms identifyable with the probe that correlate with schizophrenia or a genetic predisposition therefor. Exemplary information-containing media include printed paper package inserts or packaging labels; and magnetic and optical storage media that are readable by computers or machines used by practitioners who perform genetic screening and counseling services. The practitioner uses the information provided in the media to correlate the results of the analysis with the oligonucleotide with a diagnosis. In a preferred variation, the oligonucleotide is labeled.

In still another embodiment, the invention provides methods of identifying those allelic variants of GPCR's of the invention that correlate with mental disorders. For example, the invention provides a method of identifying a seven transmembrane allelic variant that correlates with a mental disorder, comprising steps of: (a) providing a biological sample comprising nucleic acid from a human patient diagnosed with a mental disorder, or from the patient's genetic progenitors or progeny; (b) analyzing the nucleic acid for the presence of a mutation or mutations in at least one seven transmembrane receptor that is expressed in the brain, wherein the at least one seven transmembrane receptor comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20, or an allelic variant thereof, and wherein the nucleic acid includes sequence corresponding to the gene or genes encoding the at least one seven transmembrane receptor; (c) determining a genotype for the patient for the at least one seven transmembrane receptor from said analyzing step; and (d) identifying an allelic variant that correlates with the mental disorder from the determining step. To expedite this process, it may be desirable to perform linkage studies in the patients (and possibly their families) to correlate chromosomal markers with disease states. The chromosomal localization data provided herein facilitates identifying an involved GPCR with a chromosomal marker.

The foregoing method can be performed to correlate GPCR's of the invention to a number of disorders having hereditary components that are causative or

that predispose persons to the disorder. For example, in one preferred variation, the disorder is schizophrenia, and the at least one seven transmembrane receptor comprises CON202 having an amino acid sequence set forth in SEQ ID NO: 14, or an allelic variant thereof.

5

10

15

20

25

Also contemplated as part of the invention are polynucleotides that comprise the allelic variant sequences identified by such methods, and polypeptides encoded by the allelic variant sequences, and oligonucleotide and oligopeptide fragments therof that embody the mutations that have been identified. Such materials are useful in in vitro cell-free and cell-based assays for idenifying lead compounds and therapeutics for treatment of the disorders. For example, the variants are used in activity assays, binding assays, and assays to screen for activity modulators described herein. In one preferred embodiment, the invention provides a purified and isolated polynucleotide comprising a nucleotide sequence encoding a CON202 receptor allelic variant identified according to the methods described above; and an oligonucleotide that comprises the sequences that differentiate the allelic variant from the CON202 sequences set forth in SEQ ID NOs: 13 and 14. The invention also provides a vector comprising the polynucleotide (preferably an expression vector); and a host cell transformed or transfected with the polynucleotide or vector. The invention also provides an isolated cell line that is expressing the allelic variant GPCR polypeptide; purified cell membranes from such cells; purified polypeptide; and synthetic peptides that embody the allelic variation amino acid sequence. In one particular embodiment, the invention provides a purified polynucleotide comprising a nucleotide sequence encoding a CON202 seven transmembrane receptor protein of a human that is affected with schizophrenia; wherein said polynucleotide hybridizes to the complement of SEQ ID NO: 13 under the following hybridization conditions: (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaC1, 10% dextran sulfate and (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS; and wherein the polynucleotide encodes a CON202 amino acid sequence that differs from SEQ ID NO: 14 at at least one residue.

10

15

20

25

An examplary assay for using the allelic variants is a method for identifying a modulator of CON202 biological activity, comprising the steps of: (a) contacting a cell expressing the allelic variant in the presence and in the absence of a putative modulator compound; (b) measuring CON202 biological activity in the cell; and (c) identifying a putative modulator compound in view of decreased or increased CON202 biological activity in the presence versus absence of the putative modulator.

In still another example, the invention provides for a method of diagnosing schizophrenia or a susceptibility to schizophrenia comprising the steps of: determining the presence or amount of expression of CON202 polypeptide as set out as SEQ ID NO: 14 or the polypeptide encoded by the nucleic acid molecule having SEQ ID NO: 13 in a sample; and comparing the level of CON202 polypeptide in a biological, tissue or cellular sample from normal subjects or the subject at an earlier time, wherein the susceptibility to schizophenia is based on the presence or amount of CON202 polypeptide expression.

The invention also provides for a method of treating schizophrenia comprising the step of administering to a human diagnosed with schizophrenia an amount of a modulator of CON202 receptor activity sufficient to modulate CON202 receptor activity or CON202 ligand binding in said human.

The invention also provides assays to identify compounds that bind GPCR seven transmembrane receptors. One such assay comprises the steps of: (a) contacting a composition comprising one of the GPCR seven transmembrane receptor polypeptides of the invention with a compound suspected of binding a GPCR polypeptide of the invention; and (b) measuring binding between the compound and the GPCR polypeptide. In one variation, the composition comprises a cell expressing a GPCR polypeptide of the invention on its surface. In another variation, an isolated GPCR polypeptide of the invention or cell membranes comprising a GPCR polypeptide of the invention are employed. The binding may be measured directly, *e.g.*, using a labeled compound, or may be measured indirectly by several techniques, including measuring intracellular signaling of a GPCR polypeptide of the invention induced by the compound (or measuring changes in the level of GPCR polypeptide signaling).

10

15

20

25

30

The invention also provides a method for identifying a modulator of binding between a GPCR seven transmembrane receptor of the invention and a GPCR polypeptide binding partner, comprising the steps of: (a) contacting a GPCR polypeptide binding partner and a composition comprising one of the GPCR seven transmembrane receptors of the invention in the presence and in the absence of a putative modulator compound; (b) detecting binding between the binding partner and the GPCR polypeptide of the invention; and (c) identifying a putative modulator compound in view of decreased or increased binding between the binding partner and the GPCR polypeptide in the presence of the putative modulator, as compared to binding in the absence of the putative modulator.

GPCR polypeptide binding partners that stimulate GPCR seven transmembrane receptors of the present invention are useful as agonists in disease states characterized by insufficient GPCR polypeptide signaling (e.g., as a result of insufficient expression of active GPCR polypeptide ligand). GPCR polypeptide binding partners that block ligand-mediated GPCR polypeptide signaling are useful as GPCR polypeptide antagonists to treat disease states characterized by excessive GPCR polypeptide signaling.

Additional features and variations of the invention will be apparent to those skilled in the art from the entirety of this application, including the detailed description, and all such features are intended as aspects of the invention. Likewise, features of the invention described herein can be re-combined into additional embodiments that also are intended as aspects of the invention, irrespective of whether the combination of features is specifically mentioned above as an aspect or embodiment of the invention. Also, only such limitations which are described herein as critical to the invention should be viewed as such; variations of the invention lacking limitations which have not been described herein as critical are intended as aspects of the invention.

In addition to the foregoing, the invention includes, as an additional aspect, all embodiments of the invention narrower in scope in any way than the variations specifically mentioned above. Although the applicant(s) invented the full scope of the claims appended hereto, the claims appended hereto are not intended to

10

15

20

25

30

encompass within their scope the prior art work of others. Therefore, in the event that statutory prior art within the scope of a claim is brought to the attention of the applicants by a Patent Office or other entity or individual, the applicant(s) reserve the right to exercise amendment rights under applicable patent laws to redefine the subject matter of such a claim to specifically exclude such statutory prior art or obvious variations of statutory prior art from the scope of such a claim. Variations of the invention defined by such amended claims also are intended as aspects of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides purified and isolated polynucleotides (e.g., DNA sequences and RNA transcripts, both sense and complementary antisense strands, both single and double stranded, including splice variants thereof) encoding human G protein-coupled receptors referred to herein as GPCR polypeptides. DNA polynucleotides of the invention include genomic DNA, cDNA, and DNA that has been chemically synthesized in whole or in part. "Synthesized" as used herein and understood in the art, refers to polynucleotides produced by purely chemical, as opposed to enzymatic, methods. "Wholly" synthesized DNA sequences are therefore produced entirely by chemical means, and "partially" synthesized DNAs embrace those wherein only portions of the resulting DNA were produced by chemical means.

Genomic DNA of the invention comprises the protein coding region for a polypeptide of the invention and is also intended to include allelic variants thereof. It is widely understood that, for many genes, genomic DNA is transcribed into RNA transcripts that undergo one or more splicing events wherein intron (*i.e.*, non-coding regions) of the transcripts are removed, or "spliced out." RNA transcripts that can be spliced by alternative mechanisms, and therefore be subject to removal of different RNA sequences but still encode a GPCR polypeptide of the present invention, are referred to in the art as splice variants which are embraced by the invention. Splice variants comprehended by the invention therefore are encoded by the same original genomic DNA sequences but arise from distinct mRNA transcripts. Allelic variants are modified forms of a wild type gene sequence, the modification

resulting from recombination during chromosomal segregation or exposure to conditions which give rise to genetic mutation. Allelic variants, like wild type genes, are naturally occurring sequences (as opposed to non-naturally occurring variants which arise from *in vitro* manipulation).

5

The invention also comprehends cDNA that is obtained through reverse transcription of an RNA polynucleotide encoding a GPCR of the present invention (conventionally followed by second strand synthesis of a complementary strand to provide a double-stranded DNA).

10

A preferred DNA sequence encoding a human GPCR polypeptide is set out in SEQ ID NO: 1, wherein nucleotides 157 to 1122 represent the CON193 coding sequence, with termination codon (surrounded by upstream and downstream untranslated sequences). Another preferred DNA sequence encoding a human GPCR polypeptide is set out in SEQ ID NO: 3, wherein nucleotides 1 to 1014 represent the CON166 coding sequence and stop codon. Still another preferred DNA sequence encoding a human GPCR polypeptide is set out in SEQ ID NO: 5, wherein nucleotides 691 to 1845 represent the CON103 coding sequence with stop codon

15

(surrounded by upstream and downstream untranslated sequences). Another preferred DNA sequence encoding a human GPCR polypeptide is set out in SEQ ID NO: 7, wherein nucleotides 146 to 1147 represent the CON203 coding sequence with

20

stop codon (surrounded by upstream and downstream untranslated sequences). A preferred DNA sequence encoding a human GPCR polypeptide is set out in SEQ ID NO: 9, wherein nucleotides 1 to 957 represent the CON198 coding sequence with stop

out in SEQ ID NO: 11, wherein nucleotides 1 to 924 represent the CON197 coding

codon. Another preferred DNA sequence encoding a human GPCR polypeptide is set

25

sequence with stop codon (followed by downstream untranslated sequences). A preferred DNA sequence encoding a human GPCR polypeptide is set out in SEQ ID

NO: 13, wherein nucleotides 266 to 1378 represent the CON202 coding sequence and

termination codon (surrounded by upstream and downstream untranslated sequences).

termination codon. A preferred DNA sequence encoding a human GPCR polypeptide

A preferred DNA sequence encoding a human GPCR polypeptide is set out in SEQ ID

NO: 15, wherein nucleotides 1 to 1191 represent the CON222 coding sequence and

10

15

20

25

is set out in SEQ ID NO: 17, wherein nucleotides 13 to 1089 represent the CON215 coding sequence and termination codon (surrounded by upstream and downstream untranslated sequences). A preferred DNA sequence encoding a human GPCR polypeptide is set out in SEQ ID NO: 19, wherein nucleotides 42 to 1157 represent the CON217 coding sequence (surrounded by upstream and downstream untranslated sequences). The foregoing sequences without their termination codons also comprise preferred sequences.

The worker of skill in the art will readily appreciate that the preferred DNA of the invention comprises a double stranded molecule, for example the molecule having any one of the sequences set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19 (or coding portions thereof) along with the complementary molecule (the "non-coding strand" or "complement") having a sequence deducible from the sequence of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19 according to Watson-Crick base pairing rules for DNA. Also preferred are other polynucleotides encoding the GPCR polypeptides of the invention set forth in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 which differ in sequence from the polynucleotide of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19, respectively, by virtue of the well-known degeneracy of the universal genetic code.

The invention further embraces species, preferably mammalian, homologs of the human GPCR DNAs. Species homologs, sometimes referred to as "orthologs," in general, share at least 35%, at least 40%, at least 45%, at least 50%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99% homology with human DNA of the invention. Percent sequence "homology" with respect to polynucleotides of the invention is defined herein as the percentage of nucleotide bases in the candidate sequence that are identical to nucleotides in the GPCR sequence set forth in any one of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19 after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity.

The polynucleotide sequence information provided by the invention makes possible large scale expression of the encoded polypeptide by techniques well known and routinely practiced in the art. Polynucleotides of the invention also permit

10

15

20

25

identification and isolation of polynucleotides encoding related GPCR polypeptides, such as human allelic variants and species homologs, by well known techniques including Southern and/or Northern hybridization, and polymerase chain reaction (PCR). Examples of related polynucleotides include human and non-human genomic sequences, including allelic variants, as well as polynucleotides encoding polypeptides homologous to GPCR polypeptides and structurally related the polypeptides sharing one or more biological, immunological, and/or physical properties of the GPCR polypeptides. Non-human species genes encoding proteins homologous to GPCR polypeptides can also be identified by Southern and/or PCR analysis and are useful in animal models for GPCR-related disorders. Knowledge of the sequence of a human GPCR DNA also makes possible, through use of Southern hybridization or polymerase chain reaction (PCR), the identification of genomic DNA sequences encoding GPCR expression control regulatory sequences such as promoters, operators, enhancers, repressors, and the like. Polynucleotides of the invention are also useful in hybridization assays to detect the capacity of cells to express GPCR polypeptides. Polynucleotides of the invention may also be the basis for diagnostic methods useful for identifying a genetic alteration(s) in a GPCR locus that underlies a disease state or states, which information is useful both for diagnosis and for selection of therapeutic strategies.

The disclosure herein of full length polynucleotides encoding GPCR polypeptides of the present invention makes readily available to the worker of ordinary skill in the art every possible fragment of the full length polynucleotides. The invention therefore provides fragments of GPCR-encoding polynucleotides comprising at least 14-15, and preferably at least 18, 20, 25, 50, or 75 consecutive nucleotides of a polynucleotide encoding GPCR polypeptides. Preferably, fragment polynucleotides of the invention comprise sequences unique to the GPCR-encoding polynucleotide sequence, and therefore hybridize under highly stringent or moderately stringent conditions only (*i.e.*, "specifically") to polynucleotides encoding GPCR polypeptides (or fragments thereof). Polynucleotide fragments of genomic sequences of the invention comprise not only sequences unique to the coding region, but also include fragments of the full length sequence derived from introns, regulatory regions,

and/or other non-translated sequences. Sequences unique to polynucleotides of the invention are recognizable through sequence comparison to other known polynucleotides, and can be identified through use of alignment programs routinely utilized in the art, *e.g.*, those made available in public sequence databases. Such sequences also are recognizable from Southern and Northern hybridization analyses to determine the number of fragments of genomic DNA and RNA to which a polynucleotide will hybridize. Polynucleotides of the invention can be labeled in a manner that permits their detection, including radioactive, fluorescent, and enzymatic labeling.

10

5

Fragment polynucleotides are particularly useful as probes for detection of full length or other fragment GPCR polynucleotides. One or more fragment polynucleotides can be included in kits that are used to detect the presence of a polynucleotide encoding a GPCR polypeptide, or used to detect variations in a polynucleotide sequences encoding GPCR polypeptides.

15

The invention also embraces DNAs encoding GPCR polypeptides which DNAs hybridize under moderately stringent or high stringency conditions to the non-coding strand, or complement, of the polynucleotide in any one of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17 or 19.

Exemplary highly stringent hybridization conditions are as follows:

20

hybridization at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaCl, 10% Dextran sulfate, and washing twice for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS. It is understood in the art that conditions of equivalent stringency can be achieved through variation of temperature and buffer, or salt concentration as described Ausubel, *et al.* (Eds.), *Protocols in Molecular Biology*, John Wiley & Sons (1994), pp. 6.0.3 to 6.4.10. Modifications in hybridization conditions can be empirically determined or precisely calculated based on the length and the percentage of guanosine/cytosine (GC) base pairing of the probe. The hybridization conditions can be calculated as described in Sambrook *et al.*, (Eds.), *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York (1989), pp. 9.47 to 9.51.

30

10

15

20

25

30

Autonomously replicating recombinant expression constructs such as plasmid and viral DNA vectors incorporating polynucleotides of the invention are also provided. Expression constructs wherein GPCR-encoding polynucleotides are operatively linked to an endogenous or exogenous expression control DNA sequence and a transcription terminator are also provided. Expression control DNA sequences include promoters, enhancers, and operators, and are generally selected based on the expression systems in which the expression construct is to be utilized. Preferred promoter and enhancer sequences are generally selected for the ability to increase gene expression, while operator sequences are generally selected for the ability to regulate gene expression. Expression constructs of the invention may also include sequences encoding one or more selectable markers that permit identification of host cells bearing the construct. Expression constructs may also include sequences that facilitate, and preferably promote, homologous recombination in a host cell. Preferred constructs of the invention also include sequences necessary for replication in a host cell.

Expression constructs are preferably utilized for production of an encoded protein, but also may be utilized simply to amplify GPCR-encoding polynucleotide sequences.

According to another aspect of the invention, host cells are provided, including prokaryotic and eukaryotic cells, comprising a polynucleotide of the invention (or vector of the invention) in a manner which permits expression of the encoded GPCR polypeptide. Polynucleotides of the invention may be introduced into the host cell as part of a circular plasmid, or as linear DNA comprising an isolated protein coding region or a viral vector. Methods for introducing DNA into the host cell well known and routinely practiced in the art include transformation, transfection, electroporation, nuclear injection, or fusion with carriers such as liposomes, micelles, ghost cells, and protoplasts. Expression systems of the invention include bacterial, yeast, fungal, plant, insect, invertebrate, and mammalian cells systems.

Host cells of the invention are a valuable source of immunogen for development of antibodies specifically immunoreactive with GPCR polypeptides. Host cells of the invention are also useful in methods for large scale production of

10

15

20

25

30

GPCR polypeptides wherein the cells are grown in a suitable culture medium and the desired polypeptide products are isolated from the cells or from the medium in which the cells are grown by purification methods known in the art, *e.g.*, conventional chromatographic methods including immunoaffinity chromatography, receptor affinity chromatography, hydrophobic interaction chromatography, lectin affinity chromatography, size exclusion filtration, cation or anion exchange chromatography, high pressure liquid chromatography (HPLC), reverse phase HPLC, and the like. Still other methods of purification include those wherein the desired protein is expressed and purified as a fusion protein having a specific tag, label, or chelating moiety that is recognized by a specific binding partner or agent. The purified protein can be cleaved to yield the desired protein, or be left as an intact fusion protein. Cleavage of the fusion component may produce a form of the desired protein having additional amino acid residues as a result of the cleavage process.

Knowledge of GPCR DNA sequences allows for modification of cells to permit, or increase, expression of endogenous GPCR. Cells can be modified (*e.g.*, by homologous recombination) to provide increased expression by replacing, in whole or in part, the naturally occurring GPCR promoter with all or part of a heterologous promoter so that the cells express GPCR polypeptides at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to endogenous GPCR polypeptide encoding sequences. [See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955.] It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (*e.g.*, ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the GPCR coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the GPCR coding sequences in the cells.

The DNA sequence information provided by the present invention also makes possible the development through, *e.g.* homologous recombination or "knock-out" strategies [Capecchi, *Science 244*: 1288-1292 (1989)], of animals that

fail to express functional GPCR polypeptides or that express a variant of GPCR polypeptides. Such animals (especially small laboratory animals such as rats, rabbits, and mice) are useful as models for studying the *in vivo* activities of GPCR polypeptides and modulators of GPCR polypeptides.

5

10

15

Also made available by the invention are anti-sense polynucleotides which recognize and hybridize to polynucleotides encoding GPCR polypeptides. Full length and fragment anti-sense polynucleotides are provided. Fragment anti-sense molecules of the invention include those which specifically recognize and hybridize to GPCR RNA (as determined by sequence comparison of DNA encoding GPCR polypeptides to DNA encoding other known molecules). Identification of sequences unique to GPCR-encoding polynucleotides, can be deduced through use of any publicly available sequence database, and/or through use of commercially available sequence comparison programs. The uniqueness of selected sequences in an entire genome can be further verified by hybridization analyses. After identification of the desired sequences, isolation through restriction digestion or amplification using any of the various polymerase chain reaction techniques well known in the art can be performed. Antisense polynucleotides are particularly relevant to regulating expression of GPCR polypeptides by those cells expressing GPCR mRNA.

20

Antisense nucleic acids (preferably 10 to 20 base pair oligonucleotides) capable of specifically binding to GPCR expression control sequences or GPCR RNA are introduced into cells (*e.g.*, by a viral vector or colloidal dispersion system such as a liposome). The antisense nucleic acid binds to the GPCR target nucleotide sequence in the cell and prevents transcription or translation of the target sequence. Phosphorothioate and methylphosphonate antisense oligonucleotides are specifically contemplated for therapeutic use by the invention. The antisense oligonucleotides may be further modified by poly-L-lysine, transferrin polylysine, or cholesterol moieties at their 5' end. Suppression of GPCR polypeptide expression at either the transcriptional or translational level is useful to general cellular and/or animal models for diseases characterized by aberrant expression. Suppression of GPCR polypeptide expression at either the transcriptional or translational level is useful to generate

30

10

15

20

25

30

cellular animal models for diseases characterized by aberrant GPCR polypeptide expression.

The GPCR polynucleotide and polypeptide sequences taught in the present invention facilitate the design of novel transcription factors for modulating GPCR polypeptide expression in native cells and animals, and cells transformed or transfected with GPCR polynucleotides. For example, the Cys₂-His₂ zinc finger proteins, which bind DNA via their zinc finger domains, have been shown to be amenable to structural changes that lead to the recognition of different target sequences. These artificial zinc finger proteins recognize specific target sites with high affinity and low dissociation constants, and are able to act as gene switches to modulate gene expression. Knowledge of the particular GPCR target sequence of the present invention facilitates the engineering of zinc finger proteins specific for the target sequence using known methods such as a combination of structure-based modeling and screening of phage display libraries [Segal et al., Proc Natl Acad Sci USA 96: 2758-2763 (1999); Liu et al., Proc Natl Acad Sci USA 94: 5525-30 (1997); Greisman and Pabo Science 275: 657-61 (1997); Choo et al., J Mol Biol 273: 525-32 (1997)]. Each zinc finger domain usually recognizes three or more base pairs. Since a recognition sequence of 18 base pairs is generally sufficient in length to render it unique in any known genome, a zinc finger protein consisting of 6 tandem repeats of zinc fingers would be expected to ensure specificity for a particular sequence [Segal et al., Proc Natl Acad Sci USA 96: 2758-2763 (1999)]. The artificial zinc finger repeats, designed based on GPCR polynucleotide sequences, are fused to activation or repression domains to promote or suppress GPCR polypeptides expression [Liu et al., Proc Natl Acad Sci USA 94: 5525-30 (1997)]. Alternatively, the zinc finger domains can be fused to the TATA box-binding factor (TBP) with varying lengths of linker region between the zinc finger peptide and the TBP to create either transcriptional activators or repressors [Kim et al., Proc Natl Acad Sci USA 94: 3616-3620 (1997)]. Such proteins, and polynucleotides that encode them, have utility for modulating GPCR polypeptide expression in vivo in both native cells, animals and humans; and/or cells transfected with GPCR polynulcoeitde-encoding sequences. The novel transcription factor can be delivered to the target cells by transfecting constructs that

10

15

20

25

express the transcription factor (gene therapy), or by introducing the protein. Engineered zinc finger proteins can also be designed to bind RNA sequences for use in therapeutics as alternatives to antisense or catalytic RNA methods [McColl *et al.*, *Proc Natl Acad Sci USA* 96:9521-6 (1999); Wu *et al.*, *Proc Natl Acad Sci USA* 92:344-348 (1995)]. The present invention contemplates methods of designing such transcription factors based on the gene sequence of the invention, as well as customized zinc finger proteins, that are useful to modulate GPCR polypeptide expression in cells (native or transformed) whose genetic complement includes these sequences.

The invention also provides purified and isolated mammalian GPCR polypeptides encoded by a polynucleotide of the invention. Presently preferred is a human GPCR polypeptide comprising the amino acid sequence set out in any one of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20.

The invention also embraces polypeptides that have at least 99%, at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55% or at least 50% identity and/or homology to a preferred polypeptide of the invention. Percent amino acid sequence "identity" with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in a GPCR polypeptide sequence after aligning both sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Percent sequence "homology" with respect to the preferred polypeptide of the invention is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the residues in a GPCR sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and also considering any conservative substitutions as part of the sequence identity.

In one aspect, percent homology is calculated as the percentage of amino acid residues in the smaller of two sequences which align with identical amino acid residue in the sequence being compared, when four gaps in a length of 100 amino

10

15

20

25

acids may be introduced to maximize alignment [Dayhoff, in *Atlas of Protein Sequence and Structure*, Vol. 5, p. 124, National Biochemical Research Foundation, Washington, D.C. (1972), incorporated herein by reference].

Polypeptides of the invention may be isolated from natural cell sources or may be chemically synthesized, but are preferably produced by recombinant procedures involving host cells of the invention. Use of mammalian host cells is expected to provide for such post-translational modifications (*e.g.*, glycosylation, truncation, lipidation, and phosphorylation) as may be needed to confer optimal biological activity on recombinant expression products of the invention. Glycosylated and non-glycosylated forms of GPCR polypeptides are embraced.

The invention also embraces variant (or analog) GPCR polypeptides. In one example, insertion variants are provided wherein one or more amino acid residues supplement a GPCR amino acid sequence. Insertions may be located at either or both termini of the protein, or may be positioned within internal regions of the GPCR amino acid sequence. Insertional variants with additional residues at either or both termini can include for example, fusion proteins and proteins including amino acid tags or labels.

Insertion variants include GPCR polypeptides wherein one or more amino acid residues are added to a GPCR amino acid sequence, or to a biologically active fragment thereof.

Variant products of the invention also include mature GPCR polypeptide products, *i.e.*, GPCR polypeptide products wherein leader or signal sequences are removed, with additional amino terminal residues. The additional amino terminal residues may be derived from another protein, or may include one or more residues that are not identifiable as being derived from a specific proteins. GPCR polypeptide products with an additional methionine residue at position -1 (Met⁻¹-GPCR) are contemplated, as are variants with additional methionine and lysine residues at positions -2 and -1 (Met⁻²-Lys⁻¹-GPCR). Variants of GPCR polypeptide with additional Met, Met-Lys, Lys residues (or one or more basic residues in general) are particularly useful for enhanced recombinant protein production in bacterial host cell.

The invention also embraces GPCR polypeptide variants having additional amino acid residues which result from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as part of glutathione-S-transferase (GST) fusion product provides the desired polypeptide having an additional glycine residue at position -1 after cleavage of the GST component from the desired polypeptide. Variants which result from expression in other vector systems are also contemplated.

Insertional variants also include fusion proteins wherein the amino and/or carboxy termini of a GPCR polypeptide is fused to another polypeptide.

10

5

In another aspect, the invention provides deletion variants wherein one or more amino acid residues in a GPCR polypeptide are removed. Deletions can be effected at one or both termini of the GPCR polypeptide, or with removal of one or more residues within the GPCR amino acid sequence. Deletion variants, therefore, include all fragments of a GPCR polypeptide.

15

The invention also embraces polypeptide fragments of the sequence set out in SEQ ID NO: 2 wherein the fragments maintain biological (*e.g.*, ligand binding and/or intracellular signaling) or immunological properties of a GPCR polypeptide. Fragments comprising at least 5, 10, 15, 20, 25, 30, 35, or 40 consecutive amino acids of SEQ ID NO: 2 are comprehended by the invention. Preferred polypeptide fragments display antigenic properties unique to or specific for human GPCR and its allelic and species homologs. Fragments of the invention having the desired biological and immunological properties can be prepared by any of the methods well known and routinely practiced in the art.

25

20

In still another aspect, the invention provides substitution variants of GPCR polypeptides. Substitution variants include those polypeptides wherein one or more amino acid residues of a GPCR polypeptide are removed and replaced with alternative residues. In one aspect, the substitutions are conservative in nature, however, the invention embraces substitutions that are also non-conservative. Conservative substitutions for this purpose may be defined as set out in Tables A, B, or C below.

Variant polypeptides include those wherein conservative substitutions have been introduced by modification of polynucleotides encoding polypeptides of the invention. Amino acids can be classified according to physical properties and contribution to secondary and tertiary protein structure. A conservative substitution is recognized in the art as a substitution of one amino acid for another amino acid that has similar properties. Exemplary conservative substitutions are set out in Table A (from WO 97/09433, page 10, published March 13, 1997 (PCT/GB96/02197, filed 9/6/96), immediately below.

10 Table A

Conservative Substitutions I

SIDE CHAIN

	CHARACTERISTIC	AMINO ACID
15	Aliphatic	
	Non-polar	GAPILV
	Polar - uncharged	CSTMNQ
	Polar - charged	DEKR
	Aromatic	HFWY
20	Other	NQDE

Alternatively, conservative amino acids can be grouped as described in Lehninger, [*Biochemistry*, Second Edition; Worth Publishers, Inc. NY:NY (1975), pp.71-77] as set out in Table B, immediately below.

25

Table B **Conservative Substitutions II**

	5	SIDE CHAIN		
		<u>CHARACTERISTIC</u>	AMINO ACID	
		Non-polar (hydrophobic)		
		A. Aliphatic:	ALIVP	
	10	B. Aromatic:	F W	
		C. Sulfur-containing:	M	
f.		D. Borderline:	G	
		Uncharged-polar		
of the first support the support		A. Hydroxyl:	STY	
	15	B. Amides:	NQ	
1772 1772 1772		C. Sulfhydryl:	C	
e E		D. Borderline:	G	
23 811		Positively Charged (Basic):	KRH	
		Negatively Charged (Acidic):	DE	
The first state of the state of	20			

As still an another alternative, exemplary conservative substitutions are set out in Table C, immediately below.

Table C Conservative Substitutions III

	<u>Original</u>	Exemplary Substitution
5	Residue	
	Ala (A)	Val, Leu, Ile
	Arg (R)	Lys, Gln, Asn
	Asn (N)	Gln, His, Lys, Arg
	Asp (D)	Glu
10	Cys (C)	Ser
	Gln (Q)	Asn
	Glu (E)	Asp
	His (H)	Asn, Gln, Lys, Arg
	Ile (I)	Leu, Val, Met, Ala, Phe,
15	Leu (L)	Ile, Val, Met, Ala, Phe
	Lys (K)	Arg, Gln, Asn
	Met (M)	Leu, Phe, Ile
	Phe (F)	Leu, Val, Ile, Ala
	Pro (P)	Gly
20	Ser (S)	Thr
	Thr (T)	Ser
	Trp (W)	Tyr
	Tyr (Y)	Trp, Phe, Thr, Ser
	Val (V)	Ile, Leu, Met, Phe, Ala

25

GPCR polypeptide variants that display ligand binding properties of native GPCR polypeptides and are expressed at higher levels, and variants that provide for constitutive active receptor are particularly useful in assays of the

10

15

20

invention. Such variants also are useful in cellular and animal models for diseases characterized by aberrant GPCR polypeptide expression/activity.

It should be understood that the definition of polypeptides of the invention is intended to include polypeptides bearing modifications other than insertion, deletion, or substitution of amino acid residues. By way of example, the modifications may be covalent in nature, and include for example, chemical bonding with polymers, lipids, other organic, and inorganic moieties. Such derivatives may be prepared to increase circulating half-life of a polypeptide, or may be designed to improve targeting capacity for the polypeptide to desired cells, tissues, or organs.

Similarly, the invention further embraces GPCR polypeptides that have been covalently modified to include one or more water soluble polymer attachments such as polyethylene glycol, polyoxyethylene glycol, or polypropylene glycol.

In a related embodiment, the present invention provides compositions comprising purified polypeptides of the invention. Preferred compositions comprise, in addition to the polypeptide of the invention, a pharmaceutically acceptable (*i.e.*, sterile and non-toxic) liquid, semisolid, or solid diluents that serve as pharmaceutical vehicles, excipients, or media. Any diluent known in the art may be used. Exemplary diluents include, but are not limited to, water, saline solutions, polyoxyethylene sorbitan monolaurate, magnesium stearate, methyl- and propylhydroxybenzoate, talc, alginates, starches, lactose, sucrose, dextrose, sorbitol, mannitol, glycerol, calcium phosphate, mineral oil, and cocoa butter.

Also comprehended by the present invention are antibodies (*e.g.*, monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, bifunctional/bispecific antibodies, humanized antibodies, human antibodies, and complementary determining region (CDR)-grafted antibodies, including compounds which include CDR sequences which specifically recognize a polypeptide of the invention) specific for GPCR polypeptides of the invention or fragments thereof. Preferred antibodies of the invention are human antibodies which can be produced and identified according to methods described in WO93/11236, published June 20, 1993, which is incorporated herein by reference in its entirety. Antibody fragments, including Fab, Fab', F(ab')₂, and F_{v2} are also provided by the invention. The term

30

10

15

20

25

"specific for," when used to describe antibodies of the invention, indicates that the variable regions of the antibodies of the invention recognize and bind GPCR polypeptides exclusively (i.e., able to distinguish GPCR polypeptides from other known GPCR polypeptides by virtue of measurable differences in binding affinity, despite the possible existence of localized sequence identity, homology, or similarity between GPCR polypeptides and such polypeptides). It will be understood that specific antibodies may also interact with other proteins (for example, S. aureus protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable region of the antibodies, and in particular, in the constant region of the molecule. Screening assays to determine binding specificity of an antibody of the invention are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see Harlow et al. (Eds), Antibodies A Laboratory Manual; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY (1988), Chapter 6. Antibodies that recognize and bind fragments of the GPCR polypeptides of the invention are also contemplated, provided that the antibodies are, first and foremost, specific for GPCR polypeptides. Antibodies of the invention can be produced using any method well known and routinely practiced in the art.

Non-human antibodies may be humanized by any methods known in the art. In one method, the non-human CDRs are inserted into a human antibody or consensus antibody framework sequence. Further changes can then be introduced into the antibody framework to modulate affinity or immunogenicity.

Antibodies of the invention are useful for, for example, therapeutic purposes (by modulating activity of GPCR polypeptides), diagnostic purposes to detect or quantitate GPCR polypeptides, as well as purification of GPCR polypeptides. Kits comprising an antibody of the invention for any of the purposes described herein are also comprehended. In general, a kit of the invention also includes a control antigen for which the antibody is immunospecific.

Specific binding molecules, including natural ligands and synthetic compounds, can be identified or developed using isolated or recombinant GPCR polypeptide products, GPCR polypeptide variants, or preferably, cells expressing such products. Binding partners are useful for purifying GPCR polypeptide products and

detection or quantification of GPCR polypeptide products in fluid and tissue samples using known immunological procedures. Binding molecules are also manifestly useful in modulating (*i.e.*, blocking, inhibiting or stimulating) biological activities of GPCR polypeptides, especially those activities involved in signal transduction.

5

The DNA and amino acid sequence information provided by the present invention also makes possible identification of binding partner compounds with which a GPCR polypeptide or polynucleotide will interact. Methods to identify binding partner compounds include solution assays, *in vitro* assays wherein GPCR polypeptides are immobilized, and cell based assays. Identification of binding partner compounds of GPCR polypeptides provides candidates for therapeutic or prophylactic intervention in pathologies associated with GPCR polypeptide normal and aberrant biological activity.

15

10

The invention includes several assay systems for identifying GPCR polypeptide binding partners. In solution assays, methods of the invention comprise the steps of (a) contacting a GPCR polypeptide with one or more candidate binding partner compounds and (b) identifying the compounds that bind to the GPCR polypeptide. Identification of the compounds that bind the GPCR polypeptide can be achieved by isolating the GPCR polypeptide/binding partner complex, and separating the GPCR polypeptide from the binding partner compound. An additional step of characterizing the physical, biological, and/or biochemical properties of the binding partner compound is also comprehended in another embodiment of the invention. In one aspect, the GPCR polypeptide/binding partner complex is isolated using a antibody immunospecific for either the GPCR polypeptide or the candidate binding partner compound.

25

20

In still other embodiments, either the GPCR polypeptide or the candidate binding partner compound comprises a label or tag that facilitates its isolation, and methods of the invention to identify binding partner compounds include a step of isolating the GPCR polypeptide/binding partner complex through interaction with the label or tag. An exemplary tag of this type is a poly-histidine sequence, generally around six histidine residues, that permits isolation of a compound so labeled using nickel chelation. Other labels and tags, such as the FLAG[®] tag

(Eastman Kodak, Rochester, NY), well known and routinely used in the art, are embraced by the invention.

In one variation of an *in vitro* assay, the invention provides a method comprising the steps of (a) contacting an immobilized GPCR polypeptide with a candidate binding partner compound and (b) detecting binding of the candidate compound to GPCR polypeptide. In an alternative embodiment, the candidate binding partner compound is immobilized and binding of GPCR polypeptide is detected. Immobilization is accomplished using any of the methods well known in the art, including covalent bonding to a support, a bead, or a chromatographic resin, as well as non-covalent, high affinity interaction such as antibody binding, or use of streptavidin/biotin binding wherein the immobilized compound includes a biotin moiety. Detection of binding can be accomplished (i) using a radioactive label on the compound that is not immobilized, (ii) using a fluorescent label on the non-immobilized compound, (iii) using an antibody immunospecific for the non-immobilized compound, (iv) using a label on the non-immobilized compound that excites a fluorescent support to which the immobilized compound is attached, as well as other techniques well known and routinely practiced in the art.

The invention also provides cell-based assays to identify binding partner compounds of a GPCR polypeptide. In one embodiment, the invention provides a method comprising the steps of contacting a GPCR polypeptide expressed on the surface of a cell with a candidate binding partner compound and detecting binding of the candidate binding partner compound to the GPCR polypeptide. In a preferred embodiment, the detection comprises detecting a calcium flux or other physiological cellular events caused by the binding of the molecule.

Agents that modulate (*i.e.*, increase, decrease, or block) GPCR polypeptide activity or expression may be identified by incubating a putative modulator with a cell expressing a GPCR polypeptide or polynucleotide and determining the effect of the putative modulator on GPCR polypeptide activity or expression. The selectivity of a compound that modulates the activity of GPCR polypeptides can be evaluated by comparing its effects on GPCR polypeptides to its effect on other G coupled-protein receptor compounds. Selective modulators may

25

30

5

10

15

10

15

20

25

include, for example, antibodies and other proteins, peptides, or organic molecules which specifically bind to a G coupled-protein receptor polypeptide or a G coupled-protein receptor-encoding nucleic acid. Modulators of GPCR polypeptide activity will be therapeutically useful in treatment of diseases and physiological conditions in which normal or aberrant GPCR polypeptide activity is involved.

Methods of the invention to identify modulators include variations on any of the methods described above to identify binding partner compounds, the variations including techniques wherein a binding partner compound has been identified and the binding assay is carried out in the presence and absence of a candidate modulator. A modulator is identified in those instances where binding between the GPCR polypeptide and the binding partner compound changes in the presence of the candidate modulator compared to binding in the absence of the candidate modulator compound. A modulator that increases binding between the GPCR polypeptide and the binding partner compound is described as an enhancer or activator, and a modulator that decreases binding between the GPCR polypeptide and the binding partner compound is described as an inhibitor.

The invention also comprehends high throughput screening (HTS) assays to identify compounds that interact with or inhibit biological activity (*i.e.*, inhibit enzymatic activity, binding activity, *etc.*) of a GPCR polypeptide. HTS assays permit screening of large numbers of compounds in an efficient manner. Cell-based HTS systems are contemplated to investigate GPCR receptor-ligand interaction. HTS assays are designed to identify "hits" or "lead compounds" having the desired property, from which modifications can be designed to improve the desired property. Chemical modification of the "hit" or "lead compound" is often based on an identifiable structure/activity relationship between the "hit" and the GPCR polypeptide.

Mutations in the GPCR gene that result in loss of normal function of the GPCR gene product underlie GPCR polypeptide-related human disease states. The invention comprehends gene therapy to restore activity to treat those disease states. Delivery of a functional GPCR gene to appropriate cells is effected *ex vivo*, *in situ*, or *in vivo* by use of vectors, and more particularly viral vectors (*e.g.*, adenovirus,

adeno-associated virus, or a retrovirus), or *ex vivo* by use of physical DNA transfer methods (*e.g.*, liposomes or chemical treatments). See, for example, Anderson, *Nature*, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, *Science*, *244*: 1275-1281 (1989); Verma, *Scientific American*: 68-84 (1990); and Miller, *Nature*, *357*: 455-460 (1992). Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of GPCR polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of GPCR polypeptides of the invention.

Additional features of the invention will be apparent from the following Examples.

EXAMPLE 1

Cloning of G Protein-Coupled Receptors

The Incyte and Genbank expressed sequence tag (EST) databases were searched with the NCBI program Blastall using either the transmembrane VI region of known dopamine receptors (leading to the identification of CON193, CON166, CON103 and CON 203) or all known GPCR's *except* olfactory and opsin receptors (leading to the identification of CON198, CON197, CON202, CON222, CON215) as query sequences, to find patterns suggestive of novel G protein-coupled receptors. Positive hits from the find-pattern program were further analyzed with the GCG program BLAST to determine which ones were the most likely candidates to encode a GPCR, using the standard (default) alignment produced by BLAST as a guide.

25

30

5

10

15

20

A. Cloning of CON193 G Protein-Coupled Receptor

A.1. Database Search Results

Searching identified Clone 3091220H1 in the Incyte database as an interesting candidate sequence. The 3091220H1 Clone was obtained and sequenced directly using an ABI377 fluorescence-based sequencer (Perkin-Elmer/Applied Biosystems Division, PE/ABD, Foster City, CA) and the ABI PRISMTM Ready

Dye-Deoxy Terminator kit with Taq FSTM polymerase. Each ABI cycle sequencing reaction contained about 0.5 µg of plasmid DNA. Cycle-sequencing was performed using an initial denaturation at 98°C for 1 minute, followed by 50 cycles using the following parameters: 98°C for 30 seconds, annealing at 50°C for 30 seconds, and extension at 60°C for 4 minutes. Temperature cycles and times were controlled by a Perkin-Elmer 9600 thermocycler. Extension products were purified using CentriflexTM gel filtration cartridges (Advanced Genetic Technologies Corp., Gaithersburg, MD). Each reaction product was loaded by pipette onto the column, which was then centrifuged in a swinging bucket centrifuge (Sorvall model RT6000B tabletop centrifuge) at 1500 x g for 4 minutes at room temperature. Column-purified samples were dried under vacuum for about 40 minutes and then dissolved in 5 µl of a DNA loading solution (83% deionized formamide, 8.3 mM EDTA, and 1.6 mg/ml Blue Dextran). The samples were then heated to 90°C for three minutes and loaded into the gel sample wells for sequence analysis using the ABI377 sequencer. Sequence analysis was done by importing ABI377 files into the Sequencer program (Gene Codes, Ann Arbor, MI). Generally, sequence reads of 700 bp were obtained. Potential sequencing errors were minimized by obtaining sequence information from both DNA strands and by re-sequencing difficult areas using primers annealing at different locations until all sequencing ambiguities were removed.

20

5

10

15

From the sequence it was deduced that Clone 3091220H1 contained only an amino-terminal fragment of a putative GPCR corresponding to the third through the seventh transmembrane regions (3TM-7TM) of a GPCR. Referring to SEQ ID NO: 1, the nucleotide sequence of Clone 3091220H1 corresponds to nucleotides 404 to 1308 of what was eventually determined to be the complete sequence of a novel seven-transmembrane receptor designated CON193. A database search with this partial sequence showed a 56% match to members of the olfactory receptor gene family, *e.g.*, the gene encoding mouse odorant receptor S19.

A.2 Screening of a Genomic Phage Library to Obtain a Full-Length GPCR Clone:

30

25

The PCR technique was used to prepare a genomic fragment for use as a probe specific for the genomic CON193 Clone. Based on the complete sequence of Clone 3091220H1, two oligonucleotide primers were designed: Primer LW1282: 5'-

10

15

20

25

TAATACCTGCACTGCCCAC-3' (SEQ ID NO: 21; see nucleotides 876-894 of SEQ ID NO:1) and Primer LW1283: 5'-TCTTTCCTTCTCTCTCTCACTCC-3' (SEQ ID NO: 22 see nucleotides 1137-1158 of SEQ ID NO:1). These primers were designed to amplify a 283 base-pair fragment of genomic DNA containing a portion of the CON193 coding region found in Clone 3091220H1 (assuming the absence of introns in this region).

Initially, a suitable human genomic library constructed in EMBL3 SP6/T7 (Clontech Laboratories) was amplified to provide the materials required for screening. Two microliters of the human genomic library (approximately 10⁸ plaqueforming units per milliliter; Clontech Laboratories, catalog number HL1067J) were added to 6 ml of an overnight culture of K802 cells (Clontech Laboratories), and 250 µl aliquots were distributed into each of 24 tubes. The tubes were incubated at 37°C for 15 minutes, and then 7 ml of 0.8% agarose (i.e., top agarose) at 50°C were added to each tube. After mixing, the contents of the tubes were poured onto 150 mm LB plates and incubated overnight at 37°C to allow clone amplification, evident as plaque formation (typically, confluent lysis was observed rather than discrete plaques). To each plate, 5 ml of SM phage buffer (0.1 M NaCl, 8.1 μM MgSO₄•7H₂O, 50 mM Tris-HCl (pH 7.5), and 0.0001 % gelatin) was added and the top agarose was removed by scraping with a microscope slide. Top agarose slurries containing phage were then placed in individual 50 ml centrifuge tubes. A drop of chloroform was added and each tube was placed in a 37°C shaker for 15 minutes, followed by centrifuging at 2,750 x g for 15 minutes. The supernatants were isolated and separately stored at 4°C as 24 stock solutions of amplified library clones.

As noted above, polymerase chain reaction (PCR) was selected as a technique for screening the phage library. Each PCR reaction was done in a 20 μl reaction volume containing 8.84 μl H₂O, 2 μl 10X PCR buffer II (Perkin-Elmer), 2 μl 25 mM MgCl₂, 0.8 μl dNTP mixture (dATP, dCTP, dGTP, dCTP, each at 10 mM), 0.12 μl primer LW1282 (approximately 1 μg/μl), 0.12 μl primer LW1283 (approximately 1 μg/μl), 0.12 μl AmpliTaq Gold polymerase (5 Units/μl, with "Units" as defined by the supplier, Perkin-Elmer) and 2 μl of phage from one of the 24 stock tubes. The PCR reaction involved 1 cycle at 95°C for 10 minutes and 80°C for 20

minutes, followed by 22 cycles at 95°C for 30 seconds, 72-51°C for 2 minutes (72°C for this stage of the second cycle, with a decrease of one degree for this stage in each succeeding cycle), 72°C for one minute, followed by 30 cycles at 95°C for 15 seconds, 50°C for 30 seconds, and 72°C for one minute.

5

Following PCR cycling, the contents from each reaction tube were loaded onto a 2% agarose gel and electrophoresed adjacent to known size standards to screen for PCR products of the expected size, indicative of a clone containing the 283 bp portion of Clone 3091220H1 amplified by the two selected primers. A positive signal (*i.e.*, a fragment of the expected size) was found in one of the 24 PCR reactions, thereby identifying a single stock genomic library tube containing positive clones.

10

15

20

25

From the original genomic library tube that had given a PCR product of the correct size, a 5 µl phage aliquot was used to establish a set of five serial dilutions (1/100, v/v) that were plated and incubated in the same manner as described for the amplification of the phage library. Following incubation, BA85 nitrocellulose filters (Schleicher & Schuell) were placed on top of each of the plates for 1 hour to adsorb phage from the plaques that had formed in the top agarose during incubation. Each filter was then gently removed, placed phage side up in an individual petri dish, and covered with 4 ml of SM buffer for 15 minutes to elute the phage. One milliliter of SM containing eluted phage was removed from each plate and used to set up a PCR reaction as described above. The plate containing the most dilute phage solution to yield a PCR product of the expected size was then subdivided using the following procedure. A BA85 filter was placed on the top agar of the plate and the medium with applied filter was physically divided into 24 sections. After one hour to allow phage adsorption to the 24 filters, each filter was removed and separately incubated in 1 ml of SM buffer at room temperature for 15 minutes. Two microliters of each eluted phage solution were then used as a PCR substrate. Those plate sections yielding positive PCR results were then subdivided into 12 subsections by removing the top agar and incubating it in 200 µl of SM buffer for one hour at room temperature. Again, 2 µl of the eluted phage solutions were plated and lifted using BA85 filters, and PCR reactions were repeated. The procedure for progressive

10

15

20

25

dilution of phage was continued until a single plaque was isolated. Subsequently, 10 µl of eluted phage from that single plaque were added to 100 µl SM and 200 µl of K802 cells for plating in a single petri dish as described above. A total of 7 plates were inoculated in this manner. Following incubation at 37°C for 16 hours, the top agarose from each of the 7 plates was removed to recover the phage, which were used to prepare purified genomic phage DNA using the Qiagen Lambda Midi Kit.

The purified CON193 genomic phage DNA was sequenced using the ABI PRISM^{1M} 310 Genetic Analyzer (Perkin-Elmer/Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. The cycle-sequencing reaction contained 18 µl of H₂O, 16 µl of BigDyeTM Terminator mix, 3 µl of genomic phage DNA (0.26 μ g/ μ l), and 3 μ l primer (25 ng/ μ l). The reaction was performed in a Perkin-Elmer 9600 thermocycler at 95°C for 5 minutes, followed by 75 cycles of 95°C for 30 seconds, 55°C for 20 seconds, and 60°C for 4 minutes. The final subclone was also sequenced using the ABI PRISMTM 310 Genetic Analyzer. The cycle-sequencing reaction contained 6 µl of H₂O, 8 µl of BigDyeTM Terminator mix, 5 μl of miniprep clone DNA (0.1 μg/μl), and 1 μl primer (25 ng/μl). The reaction was performed in a Perkin-Elmer 9600 thermocycler at 25 cycles of 96°C for 10 seconds, 50°C for 10 seconds, and 60°C for 4 minutes. The product of the PCR reaction was purified using CentriflexTM gel filtration cartridges, dried under vacuum, and dissolved in 16 µl of Template Suppression Reagent (PE-Applied Biosystems). The samples were then incubated at 95°C for 5 minutes and placed in the 310 Genetic Analyzer. These efforts resulted in the determination of the CON193 polynucleotide sequence set forth in SEQ ID NO:1 and the deduced amino acid sequence of the encoded CON193 polypeptide which is set forth in SEQ ID NO:2.

A.3 Subcloning of the Coding Region of CON193 via PCR

Additional experiments were conducted to subclone the coding region of CON193 and place the isolated coding region into a useful vector. Two additional PCR primers were designed based on the coding region of CON193. The first PCR primer, designated Primer LW1373, has the sequence 5'-GCATAAGCTTATGCTA-ACACTGAATAAAACAG-3' (SEQ ID NO: 23), nucleotides 11-32 of which

10

15

20

25

correspond to nucleotides 157-178 of SEQ ID NO: 1. The second PCR primer is Primer LW1374, which has the sequence 5'-GCATCTCGAGTCACA-TGCTGTAGGATTTGG-3' (SEQ ID NO: 24, nucleotides 11-30 of which correspond to the complement of nucleotides 1102-1121 of SEQ ID NO: 1. To protect against exonucleolytic attack during subsequent exposure to enzymes, *e.g.*, Taq polymerase, primers were routinely synthesized with a protective run of nucleotides at the 5' end that were not necessarily complementary to the desired target.

PCR was performed in a 50 μl reaction containing 35 μl H₂O, 5 μl 10X TT buffer (140 mM ammonium sulfate, 0.1% gelatin, 0.6 M Tris-tricine, pH 8.4), 5 μl 15 mM MgSO₄, 2 μl dNTP mixture (dGTP, dATP, dTTP, and dCTP, each at 10 mM), 2 μl genomic phage DNA (0.26 μg/μl), 0.3 μl Primer LW1373 (1 μg/μl), 0.3 μl Primer LW1374 (1 μg/μl), 0.4 μl High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle of 94°C for 2 minutes; followed by 15 cycles at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1.3 minutes.

The contents from the PCR reaction were loaded onto a 2% agarose gel, fractionated and electroeluted. The DNA band of expected size was excised from the gel, placed in a GenElute Agarose spin column (Supelco) and spun for 10 minutes at maximum speed in a microcentrifuge. The eluted DNA was precipitated with ethanol and resuspended in $6 \mu l H_2O$ for ligation.

The PCR-amplified DNA fragment containing the CON193 coding region was cloned into pCR2.1 using a protocol standard in the art. In particular, the ligation reaction consisted of 6 μl of CON193 DNA, 1 μl 10X ligation buffer, 2 μl pCR2.1 (25 ng/μl, Invitrogen), and 1 μl T4 DNA ligase (Invitrogen). The reaction mixture was incubated overnight at 14°C and the reaction was then stopped by heating at 65°C for 10 minutes. Two microliters of the ligation reaction were transformed into One Shot cells (Invitrogen) and plated onto ampicillin plates. A single colony containing an insert was used to inoculate a 5 ml culture of LB medium. The culture was grown for 18 hours and the plasmid DNA was purified using the Concert Rapid Plasmid Miniprep System (GibcoBRL) and sequenced. Following confirmation of the sequence, pCR-CON193 was identified, and a 50 ml culture of LB medium was

15

25

30

inoculated and recombinant plasmid DNA was purified using a Qiagen Plasmid Midi Kit to vield purified pCR-CON193.

B. Cloning of CON166 G Protein-Coupled Receptor

5 B.1 Database Search Results

The database searching identified clone 2553280H1 in the Incyte database as an interesting candidate sequence. The 2553280H1 clone was obtained and sequenced directly using an ABI377 fluorescence-based sequencer and the ABI PRISMTM Ready Dye-Deoxy Terminator kit with Taq FSTM polymerase as described above for CON 193 in Example 1A.1. From the sequence it was deduced that clone 2553280H1 contained 349 nucleotides of a GPCR coding region comprising a carboxy-terminal fragment of a putative GPCR corresponding to the sixth and seventh transmembrane regions (6TM and 7TM). In addition, clone 2553280H1 contained 1.2 kb of the 3' untranslated sequence of that GPCR. Referring to SEQ ID NO: 3, the nucleotide sequence of Clone 2553280H1 corresponds to nucleotides 663 to 1,014 of what was eventually determined to be the complete sequence of a novel seven-transmembrane receptor that was designated CON166. A database search with this partial sequence showed a 44% match to an activated T cell-specific G protein-coupled receptor.

20 **B2.** Screening of a Genomic Phage Library to Obtain a Full-Length GPCR Clone

The PCR technique was used to prepare a genomic fragment for use as a probe specific for the genomic CON166 clone. Based on the complete sequence of clone 2553280H1, two oligonucleotide primers were designed: Primer LW1278: 5'-ACCGCTGCCTTTTTAGTC-3' (SEQ ID NO: 28; see nucleotides 715 to 732 of SEQ ID NO: 3 and Primer LW1279: 5'-CCTTCTTTCTGGGTACATAAGTC-3' (SEQ ID NO: 29; see the reverse complement of nucleotides 951-973 of SEQ ID NO: 3). These primers were designed to amplify a 259 base-pair fragment of genomic DNA containing a portion of the CON166 coding region found in clone 2553280H1 (assuming the absence of introns in this region).

Initially, a suitable human genomic library constructed in EMBL SP6/T7 was amplified to provide the materials required for screening as described

10

15

20

above for CON193 in Example 1A.2. Polymerase chain reaction (PCR) was selected as a technique for screening the phage library. Each PCR reaction was done in a 20 μl reaction volume containing 8.84 μl H₂O, 2 μl 10X PCR buffer II (Perkin-Elmer), 2 μl 25 mM MgCl₂, 0.8 μl dNTP mixture (dATP, dCTP, dGTP, dCTP, each at 10 mM), 0.12 μl primer LW1278 (approximately 1 μg/μl), 0.12 μl primer LW1279 (approximately 1 μg/μl), 0.12 μl AmpliTaq Gold polymerase (5 Units/μl, with "Units" as defined by the supplier, Perkin-Elmer) and 2 μl of phage from one of the 24 stock tubes. The PCR reaction involved 1 cycle at 95°C for 10 minutes and 80°C for 20 minutes, followed by 12 cycles at 95°C for 30 seconds, 72-61°C for 2 minutes (72°C for this stage of the second cycle, with a decrease of one degree for this stage in each succeeding cycle), 72°C for 30 seconds, followed by 30 cycles at 95°C for 15 seconds, 60°C for 30 seconds, and 72°C for 30 seconds.

Following PCR cycling, the contents from each reaction tube were loaded onto a 2% agarose gel and electrophoresed adjacent to known size standards to screen for PCR products of the expected size of 259 bp, indicative of a clone containing the portion of clone 2553280H1 amplified by the two selected primers. A positive signal (*i.e.*, a fragment of the expected size) was found in one of the 24 PCR reactions, thereby identifying a single stock genomic library tube containing positive clones.

From the original genomic library tube that had given a PCR product of the correct size, a 5 μ l phage aliquot was used to amplify the CON166 genomic phage DNA as described for CON 193 above in Example 1A.2. For the amplification of the phage library, the plates containing the diluted phage solution were subdivided into 12 sections unlike that of CON193; otherwise the procedures were identical.

The purified CON166 genomic phage DNA was sequenced using the ABI PRISMTM 310 Genetic Analyzer which uses advanced capillary electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit as described above for CON193 in Example 1A.2. These efforts resulted in the determination of the CON166 polynucleotide sequence set forth in SEQ ID NO: 3 and the deduced amino acid sequence of the encoded CON166 polypeptide which is set forth in SEQ ID NO: 4.

25

10

15

20

25

B.3 Subcloning of the Coding Region of CON166 via PCR

Additional experiments were conducted to subclone the coding region of CON166 from the genomic clone and place the isolated coding region into a useful vector. Two additional PCR primers were designed based on the coding region of CON166. The first PCR primer, designated Primer LW1405, has the sequence 5'-AAGCATAACATGGATGAAACAGGAAATCTG-3' (SEQ ID NO: 29, nucleotides 10-30 of which correspond to nucleotides 1-21 of SEQ ID NO: 3). To protect against exonucleolytic attack during subsequent exposure to enzymes, *e.g.*, Taq polymerase, primers were routinely synthesized with a protective run of nucleotides at the 5' end that were not necessarily complementary to the desired target. The second PCR primer is Primer LW1406, which has the sequence 5'-AAGCATAACTATACTTTACATATTTCTTC-3' (SEQ ID NO: 30, nucleotides 9-29 of which correspond to the reverse complement of nucleotides 994-1014 of SEQ ID NO: 3).

PCR was performed in a 50 μl reaction containing 34 μl H₂O, 5 μl 10X TT buffer (140 mM ammonium sulfate, 0.1% gelatin, 0.6 M Tris-tricine, pH 8.4), 5 μl 15 mM MgSO₄, 2 μl dNTP mixture (dGTP, dATP, dTTP, and dCTP, each at 10 mM), 3 μl genomic phage DNA (0.25 μg/μl), 0.3 μl Primer LW1405 (1 μg/μl), 0.3 μl Primer LW1406 (1 μg/μl), 0.4 μl High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle of 94°C for 2 minutes; followed by 25 cycles at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1.3 minutes.

The contents from the PCR reaction were loaded onto a 2% agarose gel and fractionated. The DNA band of expected size (1,031 bp) was excised from the gel, placed in a GenElute Agarose spin column (Supelco) and spun for 10 minutes at maximum speed in a microfuge. The eluted DNA was precipitated with ethanol and resuspended in 6 μ l H₂O for ligation.

The PCR-amplified DNA fragment containing the CON166 coding region was cloned into pCR2.1 to generate pCR-CON166 using a protocol standard in the art. In particular, the ligation reaction was carried out as described for CON193 in Example 1A.3. The resulting plasmid DNA was purified using the Concert Rapid

Plasmid Miniprep System (GibcoBRL) and sequenced. Following confirmation of the sequence, a 50 ml culture of LB medium was inoculated with the transformed One Shot cells, cultured, and processed using a Qiagen Plasmid Midi Kit to yield purified pCR-CON166.

5

10

15

20

C. Cloning of CON103 G Protein-Coupled Receptor

C.1 Database Search Results

The database searching identified clone 1581220H1 in the Incyte database as an interesting candidate sequence. The 1581220H1 clone was obtained and sequenced directly using an ABI377 fluorescence-based sequencer and the ABI PRISMTM Ready Dye-Deoxy Terminator kit with Taq FSTM polymerase as described for CON 193 in Example 1A.1. From the sequence it was deduced that clone 1581220H1 contained 454 nucleotides of a GPCR coding region comprising a carboxy-terminal fragment of a putative GPCR corresponding to the sixth and seventh transmembrane regions (6TM and 7TM). In addition, clone 1581220H1 contained 1.2 kb of the 3' untranslated sequence of that GPCR. Referring to SEQ ID NO: 5, the nucleotide sequence of clone 1581220H1 corresponds to nucleotides 698 to 1190 of what was eventually determined to be the complete sequence of a novel seventransmembrane receptor designated CON103. A database search with this partial sequence showed a 44% match to an activated T cell-specific G protein-coupled receptor.

C.2 Screening of a Genomic Phage Library to Obtain a Full-Length GPCR Clone

The PCR technique was used to prepare a genomic fragment for use as a probe specific for the genomic CON103 clone. Based on the complete sequence of clone 1581220H1, two oligonucleotide primers were designed: Primer LW1280: 5'-TCTGCACACAGCTCTTCCATGG-3' (SEQ ID NO: 32; see nucleotides 1568-1589 of SEQ ID NO: 5) and Primer LW1281: 5'-TCCCTTGTCCAGTTGGTTGAGG-3' (SEQ ID NO: 33; see nucleotides 1926 to 1947 of SEQ ID NO: 5. These primers were designed to amplify a 380 base-pair fragment of genomic DNA containing a portion of the CON103 coding region found in clone 1581220H1 (assuming the absence of introns in this region).

30

10

15

20

25

30

Initially, a suitable human genomic library constructed in EMBL SP6/T7 was amplified to provide the materials required for screening as described above for CON193 in Example 1A.2. Polymerase chain reaction (PCR) was selected as a technique for screening the phage library. Each PCR reaction was done in a 20 µl reaction volume containing 8.84 µl H₂O, 2 µl 10X PCR buffer II (Perkin-Elmer), 2 µl 25 mM MgCl₂, 0.8 µl dNTP mixture (dATP, dTTP, dGTP, dCTP, each at 10 mM), 0.12 μl primer LW1280 (approximately 1 μg/μl), 0.12 μl primer LW1281 (approximately 1 µg/µl), 0.12 µl AmpliTaq Gold polymerase (5 Units/µl, with "Units" as defined by the supplier, Perkin-Elmer) and 2 µl of phage from one of the 24 stock tubes. PCR amplification reactions using each one of the other 23 stock collections of genomic clones were performed under the same conditions. The PCR reaction involved 1 cycle at 95°C for 10 minutes and 80°C for 20 minutes, followed by 12 cycles at 95°C for 30 seconds, 72-61°C for 2 minutes (72°C for this stage of the second cycle, with a decrease of one degree for this stage in each succeeding cycle), 72°C for one minute, followed by 30 cycles at 95°C for 15 seconds, 60°C for 30 seconds, and 72°C for 30 seconds.

Following PCR cycling, the contents from each reaction tube were loaded onto a 2% agarose gel and electrophoresed adjacent to known size standards to screen for PCR products of the expected size of 380 bp, indicative of a clone containing the portion of clone 1581220H1 amplified by the two selected primers. A positive signal (*i.e.*, a fragment of the expected size) was found in one of the 24 PCR reactions, thereby identifying a single stock genomic library tube containing positive clones.

From the original genomic library tube that had given a PCR product of the correct size, a 5 µl phage aliquot was used to amplify the CON 103 genomic phage DNA as described above for CON193 in Example 1A.2. A total of 8 plates were inoculated with eluted phage in this manner described above. Following incubation at 37°C for 16 hours, the top agarose from each of the 8 plates was removed to recover the phage, which were used to prepare purified genomic phage DNA using the Qiagen Lambda Midi Kit.

10

15

20

25

The CON103 clone was sequenced using the ABI PRISMTM 310 Genetic Analyzer. The cycle-sequencing reaction contained 6 μl of H₂O, 8 μl of BigDyeTM Terminator mix, 5 μl of miniprep clone DNA (0.1 μg/μl), and 1 μl primer (25 ng/μl). The reaction was performed in a Perkin-Elmer 9600 thermocycler at 25 cycles of 96°C for 10 seconds, 50°C for 10 seconds, and 60°C for 4 minutes. The product of the PCR reaction was purified using CentriflexTM gel filtration cartridges, dried under vacuum, and dissolved in 16 μl of Template Suppression Reagent (PE-Applied Biosystems). The samples were then incubated at 95°C for 5 minutes and placed in the 310 Genetic Analyzer. These efforts resulted in the determination of the CON103 polynucleotide sequence set forth in SEQ ID NO: 5 and the deduced amino acid sequence of the encoded CON103 polypeptide which is set forth in SEQ ID NO: 6.

C.3 Subcloning of the Coding Region of CON103 via PCR

Additional experiments were conducted to subclone the coding region of CON103 from the genomic clone and place the isolated coding region into a useful vector. Two additional PCR primers were designed based on the sequence of the coding region of CON103: Primer LW1385 (5'-GCATAAGCT-TCCATGGAACTTCATAACCTG-3'; SEQ ID NO: 34, nucleotides 13-30 of which correspond to nucleotides 1-18 of SEQ ID NO: 5) and Primer LW1386 (5'-GCATCTCGAGTTACCCCCACAGCGCTGCAG-3'; SEQ ID NO: 35, nucleotides 11-30 of which correspond to the reverse complement of nucleotides 1171-1190 of SEQ ID NO: 5). To protect against exonucleolytic attack during subsequent exposure to enzymes, *e.g.*, Taq polymerase, primers were routinely synthesized with a protective run of nucleotides at the 5' end that were not necessarily complementary to the desired target.

PCR was performed in a 50 μ l reaction containing 22.6 μ l H₂O, 5 μ l 10X TT buffer (140 mM ammonium sulfate, 0.1% gelatin, 0.6 M Tris-tricine, pH 8.4), 5 μ l 15 mM MgSO₄, 10 μ l rapid dye (Origene), 2 μ l dNTP mixture (dGTP, dATP, dTTP, and dCTP, each at 10 mM), 0.5 μ l genomic phage DNA (0.97 μ g/ μ l), 0.3 μ l Primer LW1385 (1 μ g/ μ l), 0.3 μ l Primer LW1386 (1 μ g/ μ l), and 0.4 μ l High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle

of 94°C for 2 minutes, followed by 12 cycles at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1.3 minutes.

The contents from the PCR reaction were loaded onto a 2% agarose gel and fractionated. The DNA band of expected size (1,212 bp) was excised from the gel, placed in a GenElute Agarose spin column (Supelco) and spun for 10 minutes at maximum speed in a microcentrifuge. The eluted DNA was precipitated with ethanol and resuspended in $6 \mu l H_2O$ for ligation.

The PCR-amplified DNA fragment containing the CON103 coding region was cloned into pCR2.1 using a protocol standard in the art. In particular, the ligation reaction was carried out as described above for CON193 in Example 1A.3. The resulting plasmid DNA was purified using the Concert Rapid Plasmid Miniprep System (GibcoBRL) and sequenced. Following confirmation of the sequence, pCR-CON103 was identified, and a 50 ml culture of LB medium was inoculated, cultured, and processed using a Qiagen Plasmid Midi Kit to yield purified pCR-CON103.

15

20

25

30

5

10

D. Cloning of CON203 G Protein-Coupled Receptor

D.1 Database Search Results

The database searching identified clone 3210396H1 in the Incyte database as an interesting candidate sequence. The 3210396H1 clone was obtained and sequenced directly using an ABI377 fluorescence-based sequencer and the ABI PRISMTM Ready Dye-Deoxy Terminator kit with Taq FSTM polymerase as described above for CON193 in Example 1A.1. From the sequence it was deduced that clone 3210396H1 contained all 1,002 nucleotides of a GPCR coding region (see SEQ ID NO: 7). A database search with this sequence showed a 33% match to a platelet activating receptor (Gene H963, GenBank Acc. No. AF002986).

D.2 Subcloning of the Coding Region of CON203 via PCR

Additional experiments were conducted to subclone the coding region of CON203 and place the isolated coding region into a useful vector. Two additional PCR primers were designed based on the sequence of the coding region of CON203: Primer LW1329: 5'-GCATCTCGAGTCAGCCTAAGGTTATGTTG-3' (SEQ ID NO: 36; see nucleotides 984 to 1,002 of SEQ ID NO: 7 for the reverse complement of

10

15

20

25

nucleotides 9-29 of SEQ ID NO: 36) and Primer LW1377: 5'-GCATAAGCTTATGAACACCACAGTGATGC-3' (SEQ ID NO: 37; see nucleotides 1-19 of SEQ ID NO: 7 which correspond to nucleotides 11-29 of SEQ ID NO: 37). To protect against exonucleolytic attack during subsequent exposure to enzymes, *e.g.*, Taq polymerase, primers were routinely synthesized with a protective run of nucleotides at the 5' end that were not necessarily complementary to the desired target. These primers were designed to amplify a 1,020 base-pair fragment of clone 3210396H1 containing the complete coding region of CON203.

PCR was performed in a 50 μl reaction containing 34 μl H₂O, 5 μl 10X TT buffer (140 mM ammonium sulfate, 0.1% gelatin, 0.6 M Tris-tricine, pH 8.4), 5 μl 15 mM MgSO₄, 2 μl dNTP mixture (dGTP, dATP, dTTP, and dCTP, each at 10 mM), 3 μl clone 3210396H1 (miniprep DNA), 0.3 μl Primer LW1329 (1 μg/μl), 0.3 μl Primer LW1377 (1 μg/μl), and 0.4 μl High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle of 94°C for 2 minutes, followed by 12 cycles at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1.3 minutes.

The contents from the PCR reaction were loaded onto a 1.2% agarose gel and fractionated. The DNA band of expected size (1,020 bp) was excised from the gel, placed in a GenElute Agarose spin column (Supelco) and spun for 10 minutes at maximum speed in a microcentrifuge. The eluted DNA was precipitated with ethanol and resuspended in 6 μ l H_2O for ligation.

The PCR-amplified DNA fragment containing the CON203 coding region was cloned into pCR2.1 using a standard protocol and the Original TA Cloning Kit (Invitrogen). Ligation reactions were carried out as described above for CON193 in Example 1A.3. The resulting plasmid DNA was purified using the Concert Rapid Plasmid Miniprep System (GibcoBRL) and sequenced. Following confirmation of the sequence, pCR-C203 was identified, and a 50 ml culture of LB medium was inoculated, cultured, and processed using a Qiagen Plasmid Midi Kit to yield purified pCR-C203.

The CON203 clone was sequenced using the ABI PRISMTM 310 Genetic Analyzer (P-E Applied Biosystems), which uses advanced capillary

10

15

20

25

30

electrophoresis technology and the ABI PrismTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. The cycle-sequencing reaction contained 6 μl of H₂O, 8 μl of BigDyeTM Terminator mix, 5 μl of miniprep clone DNA (0.1 μg/μl), and 1 μl primer (25 ng/μl). The reaction was performed in a Perkin-Elmer 9600 thermocycler using the following conditions: 25 cycles of 96°C for 10 seconds, 50°C for 10 seconds, and 60°C for 4 minutes. The product of the PCR reaction was purified using CentriflexTM gel filtration cartridges, dried under vacuum, and dissolved in 16 μl of Template Suppression Reagent (PE-Applied Biosystems). The samples were then incubated at 95°C for 5 minutes and placed in the 310 Genetic Analyzer.

Initially, these efforts showed that the CON203 coding region cloned into pCR2.1 had a single bp difference from the corresponding sequence of clone 3210396H1. The single bp change in the pCR2.1 clone was eliminated by conforming that sequence to the sequence of clone 3210396H1 using the QuikChange Site-Directed Mutagenesis Kit (Stratagene). The method involves modification of a sequence during PCR amplification, for which PCR primers LW1387 (5'-GAGAAATATTTTCTAAAAAAACCTGTTTTTGCAAAAACGG-3'; SEQ ID NO: 38) and LW1388 (5'-CCGTTTTTGCAAAAACAGGTTTTTTTAGAAAA-ATATTTCTC-3'; SEQ ID NO: 39) were used. The PCR reaction contained 40 μl H_2O , 5 μl 10X proprietary Reaction Buffer (Stratagene), 1 μl pCR-C203 (0.125 $\mu g/\mu l$) mini-prep DNA, 1 µl dNTP mixture (dGTP, dATP, dTTP, and dCTP, each at 10 mM), 1 μl Pfu DNA polymerase (2.5 Units/μl), 1 μl LW1387 (125 ng/μl) and 1 μl LW1388 (125 ng/l). The cycle conditions were 95°C for 30 seconds, followed by 12 cycles at 95°C for 30 seconds, 55°C for 1 minute, and 68°C for 12 minutes. The tube was then placed on ice for 2 minutes and 1 µl of DpnI was added. The tube was then incubated at 37°C for one hour. One microliter of the *Dpn*I-treated DNA was transformed into Epicurian coli XL1-Blue supercompetent E. coli cells. Following isolation of pCR-C203, the entire insert was re-sequenced, thereby successfully verifying repair of the single-site polymorphism. As expected, the sequence of the CON203 coding region determined using this pCR2.1 clone is in complete agreement

10

15

20

25

with the CON203 coding region sequence of SEQ ID NO: 7 which specifies the amino acid sequence set forth in SEQ ID NO: 8.

E. Cloning of CON198 G Protein-Coupled Receptor

E.1 Database Search Results

The database searching identified Clone 3359808HI in the Incyte database as an interesting candidate sequence. The 3359808HI clone was obtained and sequenced using standard techniques. From the sequence it was deduced that Clone 3359808HI contained the entire coding region for a previously unidentified GPCR, which was designated "CON198." The DNA and deduced amino acid sequences for CON198 are set forth in SEQ ID NOS: 9 and 10, respectively. A database search with this CON198 DNA sequence showed a 61% match to the rat putative GPCR designated RA1c [Raming et. al., Recept Channels, 6: 141-151 (1998)] and 46% identity to an olfactory receptor.

E.2 Subcloning of the Coding Region of CON198 via PCR

Additional experiments were conducted to subclone the coding region of the CON198 clone into a useful vector. Two PCR primers were designed based on the coding region of CON198 for the purpose of PCR amplification of the CON198 coding sequence. The first, Primer LW1326, from 5' to 3' (SEQ ID NO: 42): GCATGAATTCATGATGGTGGATCCCAATGG, includes the 5' end of the CON198 coding sequence (underlined) as well as a *Eco*RI restriction site, useful for subsequent expression work. The second, Primer LW1327, from 5' to 3' (SEQ ID NO: 43): GCATCTCGAGCCTAGGGCTCTGAAGCG, includes sequence complementary to the 3' end of the CON198 coding sequence (underlined), preceded by a *Xho*I restriction site sequence useful for subsequent cloning and expression work.

The PCR was performed in a 50 μ l reaction containing 34 μ l H₂O, 5 μ l of 10X TT buffer (140 mM Ammonium Sulfate, 0.1% gelatin, 0.6 M Tris-tricine, pH 8.4), 5 μ l of 15 mM MgSO₄, 2 μ l of 10 mM dNTPs (dATP, dCTP, dTTP, dGTP), 2 μ l of Clone 3359808H1 mini-prep DNA (approx. 0.125 μ g/ μ l), 0.3 μ l of Primer LW1326 (1 μ g/ μ l), 0.3 μ l of Primer LW1327 (1 μ g/ μ l), and 0.5 μ l of High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle

10

15

20

25

30

of 94°C for 2 minutes; followed by 12 cycles at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute.

The contents from the PCR reaction were loaded onto a 1.2% agarose gel and electrophoresed. The DNA band of expected size was excised from the gel, placed in a GenElute Agarose spin column (Supelco) and spun for 10 minutes at maximum speed in a microcentrifuge. The eluted DNA was ethanol-precipitated and resuspended in 6 µl H₂O for ligation.

The purified PCR fragment containing the CON198 coding sequence was ligated into a commercial vector using Invitrogen's Original TA Cloning Kit. The ligation reaction was carried out as described above for CON193 in Example 1A.3. The resulting plasmid DNA was isolated using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and sequenced to confirm that the plasmid contained the CON198 insert. Sequencing of the subcloned CON198 construct revealed that the PCR amplification had introduced a mutation (relative to the sequence of the original clone) at the nucleotide corresponding to position 204 of SEQ ID NO: 9. A site-directed mutagenesis experiment was performed using the QuikChange Site-Directed Mutagenesis Kit (Stratagene) to repair the mutation.

Two primers were designed to revert the mutated A nucleotide at position 204 back to a G nucleotide via polymerase chain reaction. Primer LW1415 (SEQ ID NO: 44) contained the sequence:

5'-CCATGTATATTTCTTTGCATGCTTTCAGGCATTGACATCC-3'; and primer LW1416 (SEQ ID NO: 45) contained the sequence:

5'-GGATGTCAATGCCTGAAAGCATGCAAAGAAATATATACATGG-3'. The PCR reaction contained 40 μl of H₂O, 5 μl of 10x Reaction buffer, 1 μl of mini-prep DNA (approx. 0.125 μg/μl) from the CON198-pCR2.1 clone (as template), 1 μl of primer LW1415 (125 ng/μl), 1 μl of primer LW1416 (125 ng/μl), 1 μl of 10 mM dNTPs, 1 μl Pfu DNA polymerase. The PCR cycle conditions were as follows: initial denaturation at 95°C for 30 seconds, then 14 cycles at 95°C for 30 seconds, 55°C annealing for 1 minute, and 68°C extension for 12 minutes. Thereafter, the reaction tube was placed on ice for 2 minutes.

10

15

20

25

After PCR, 1 µl of *Dpn*I was added and the tube incubated at 37°C for one hour to digest the methylated parental DNA template. One microliter of the *Dpn*I-treated DNA was transformed into Epicurian coli XL1-Blue supercompetent cells and the entire insert was re-sequenced. The resequencing confirmed that position 204 of SEO ID NO: 9 had been successfully reverted to a guanine nucleotide.

Upon confirmation of the insert, the *E. coli* transformant was used to inoculate a 50 ml culture of LB medium. The culture was grown for 16 hours at 37°C, and centrifuged into a cell pellet. Plasmid DNA was purified from the pellet using a Qiagen Plasmid Midi Kit and again sequenced to confirm successful cloning of the CON198 insert, using an ABI377 fluorescence-based sequencer and the ABI PRISMTM Ready Dye-Deoxy Terminator kit with Taq FSTM polymerase as described abvoe for CON 193 in Example 1A.1.

F. Cloning of CON197 G Protein-Coupled Receptor

F.1 Database Search Results

The database searching identified Clone 866390H1 in the Incyte database as an interesting candidate sequence. The 866390H1 clone was obtained and sequenced using standard techniques. From the sequence it was deduced that Clone 866390H1 contained the entire coding region for a previously unidentified GPCR, which was designated "CON197." The DNA and deduced amino acid sequences for CON197 are set forth in SEQ ID NOs: 11 and 12, respectively. A database search with this CON197 DNA sequence showed a 42% match to an olfactory receptor.

F.2 Subcloning of the Coding Region of CON197 via PCR

Additional experiments were conducted to subclone the coding region of the CON197 clone into a useful vector. Two PCR primers were designed based on the coding region of CON197 for the purpose of PCR amplification of the CON197 coding sequence. The first, Primer LW1324, from 5' to 3' (SEQ ID NO: 48): GATCGGATCCATGGAAAGCGAGAACAG, includes the 5' end of the CON197 coding sequence (underlined) as well as a *Bam*HI restriction site, useful for subsequent expression work. The second, Primer LW1325, from 5' to 3' (SEQ ID NO: 49): GATCCTCGAGTCAGGCTATGTGCTTATTAAACACC, includes

10

15

20

25

sequence complementary to the 3' end of the CON197 coding sequence (underlined), preceded by a *XhoI* restriction site sequence useful for subsequent cloning and expression work.

The PCR was performed in a 50 μl reaction containing 24 μl H₂O, 10 μl Rapid Dye Loading buffer (Origene) 5 μl 10X TT buffer (140 mM Ammonium Sulfate, 0.1% gelatin, 0.6 M Tris-tricine, pH 8.4), 5 μl of 15 mM MgSO₄, 2 μl of 10 mM dNTPs (dATP, dCTP, dTTP, dGTP), 3 μl of Clone 866390H1 mini-prep DNA (approx. 0.125 μg/μl), 0.3 μl of Primer LW1324 (1 μg/μl), 0.3 μl of Primer LW1325 (1 μg/μl), and 0.5 μl of High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle of 94°C for 2 minutes; followed by 12 cycles at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute.

The contents from the PCR reaction was loaded onto a 1.2% agarose gel and electrophoresed. The DNA band of expected size was excised from the gel, placed in GenElute Agarose spin column (Supelco) and spun for 10 minutes at maximum speed in a Savant microcentrifuge. The eluted DNA was ethanol-precipitated and resuspended in 6 μ l H_2 O for ligation.

The purified PCR fragment containing the CON197 coding sequence was ligated into a commercial vector using Invitrogen's Original TA Cloning Kit. The resulting plasmid DNA from the culture was isolated using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and sequenced to confirm that the plasmid contained the CON197 insert.

Upon confirmation of the insert, the same transformant was used to inoculate a 50 ml culture of LB medium. The culture was grown for 16 hours at 37°C, and centrifuged into a cell pellet. Plasmid DNA was purified from the pellet using a Qiagen Plasmid Midi Kit and again sequenced to confirm successful cloning of the CON197 insert, using an ABI377 fluorescence-based sequencer (Perkin Elmer/Applied Biosystems Division, PE/ABD, Foster City, CA) and the ABI PRISMTM Ready Dye-Deoxy Terminator kit with Taq FSTM polymerase as described above for CON193 in Example 1A.1.

G. Cloning of CON202 G Protein-Coupled Receptor

G.1 Database Search Results

The database searching identified Clone Number 1305513H1 in the Incyte database as an interesting candidate sequence. The 1305513H1 clone was obtained and sequenced using an ABI377 fluorescence-based sequencer (Perkin Elmer/Applied Biosystems Division, PE/ABD, Foster City, CA) and the ABI PRISMTM Ready Dye-Deoxy Terminator kit with Taq FSTM polymerase as described above for CON193 in Example 1A.1.

Sequencing of Incyte Clone 1305513H1 revealed a sequence corresponding to nucleotides 1054 to 1378 of SEQ ID NO: 13. Using a FORTRAN computer program called "tmtrest.all" [Parodi *et al., Comput. Appl. Biosci., 5*: 527-535 (1994)], Clone 1305513H1 was deduced to contain two transmembrane-spanning domains (TMVI and TMVII) and an extracellular loop for a previously unidentified GPCR, which was designated as "CON202". The sequence obtained was used as a tool to identify a full length GPCR clone as described in the next section.

G.2 PCR Screening of Genomic Clones

A human genomic phage library was selected as a source from which to attempt to clone the CON202 gene. The genomic library was amplified as described above for CON193 in Example 1A.2.

This genomic library was screened by PCR using the primers: GV599 (5'GGCAGAAGAAGACTATTGGTCTTAGACGAG3'; SEQ ID NO: 52), and GV600 (5'CTGAAACAGCGCCTCAGCTCCC3'; SEQ ID NO: 53). These primers were designed from the sequence of Clone 1305513H1 to amplify a 253 base pair fragment (corresponding to nucleotides 1064 to 1317 of SEQ ID NO: 13) from any corresponding genomic clone in the library. The 20 μl PCR reactions each contained 12.8 μl of H₂O, 2 μl of 10x PCR buffer II (Perkin-Elmer), 2 μl of 25 mM MgCl₂, 0.8 μl of 10 mM dNTP's (dATP, dGTP, dCTP, dTTP), 0.12 μl of primer GV599 (1 μg/ml), 0.12 μl of primer GV600 (1 μg/ml), 0.2 μl AmpliTaq Gold polymerase (5 Units/μl, with "Units" as defined by the supplier, Perkin Elmer) and 2 μl of phage from one of the 24 tubes. The PCR reaction consisted of 1 cycle at 95°C for 10 minutes; then 17 cycles at 95°C for 20 seconds, 72°C for 2 minutes decreasing 1°C

20

25

5

10

15

10

15

20

25

30

each cycle, 72°C for 30 seconds followed by 30 cycles at 95°C for 20 seconds, 55°C for 30 seconds, and 72°C for 30 seconds.

The PCR products were visualized on a 2% agarose gel. For those tubes which produced the correct sized band of 253 bp, five microliters from each original phage culture tube were used to amplify the CON202 genomic phage DNA as described above for CON 193 in Example 1A.2.

The genomic DNA from the single phage isolate, was sequenced with the ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM Big DyeTM Terminator Cycle Sequencing Ready Reaction Kit. The cycle-sequencing reaction contained 20 ml of H₂O, 16 ml of BigDyeTM Terminator Mix, 1 ml of genomic phage DNA (1.1 mg/ml), and 3 ml primer (25 ng/ml). The reaction was performed in a Perkin-Elmer 9600 thermocycler at 95°C for 5 minutes, followed by 99 cycles of 95°C for 30 seconds, 55°C for 20 seconds and 60°C for 4 minutes. The product was purified using a CentriflexTM gel filtration cartridge, dried under a vacuum, then dissolved in 16 ml of Template Suppression Reagent. The samples were heated at 95°C for 5 minutes then placed in the 310 Genetic Analyzer.

G.3 Subcloning of the Coding Region of CON202 via PCR

Additional experiments were conducted to subclone the coding region of the CON202 clone into a more useful vector. Two PCR primers were designed based on the coding region of CON202 for the purpose of PCR amplification of the CON202 coding sequence. The first, Primer LW1482 (5'AGCTATGGCGAACTATAGCCATGCAGC3'; SEQ ID NO: 54) included the 5' end of the CON202 coding sequence (underlined). The second, Primer LW148 (5'AGTCCTCATATAACACAGTAAGGTTCC3'; SEQ ID NO: 55) included the sequence complementary to the 3' end of the CON202 coding sequence (underlined).

The PCR was performed in a 50 μ l reaction containing 36.5 μ l of H₂O, 5 μ l of 10x TT buffer (140 mM Ammonium Sulfate, 0.1% gelatin, 0.6 M Tris-tricine, pH 8.4), 5 μ l of 15 mM MgSO₄, 2 μ l of 10 mM dNTP's (dATP, dCTP, dTTP, dGTP), 0.5 μ l of CON202 genomic phage DNA (approx. 1.1 μ g/ μ l), 0.3 μ l of Primer LW1482 (1 μ g/ μ l), 0.3 μ l of Primer LW1483 (1 μ g/ μ l), and 0.4 μ l of High Fidelity Taq

10

15

20

polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle of 94°C for 2 minutes; followed by 12 cycles at 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1.3 minutes.

The contents from the PCR reaction were loaded onto a 2.1% agarose gel and electrophoresed. The DNA band of expected size (1.1 kb) was excised from the gel, placed on a GenElute Agarose spin column (Supelco), and spun for 10 minutes at maximum speed in a microfuge. The eluted DNA was ethanol-precipitated and resuspended in 6 µl of H₂O for ligation.

The purified PCR fragment, containing the CON202 coding sequence, was ligated into a commercial vector using Invitrogen's Original TA Cloning Kit. The ligation reaction was carried out as described above for CON193 in Example 1A.3. The resulting plasmid DNA from the culture was isolated using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and sequenced to confirm that the plasmid contained the CON202 insert. The resulting construct was denoted as pCR-CON202.

The final subclone was sequenced using the ABI PRISMTM 310
Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM Terminator Cycle Sequencing Ready Reaction Kit. The cycle-sequencing reaction contained 6 ml of H2O, 8 ml of BigDyeTM Terminator mix, 5 ml miniprep DNA (0.1 mg/ml), and 1 ml primer (25 ng/ml). The reaction was performed in a Perkin-Elmer 9600 thermocycler at 25 cycles of 96°C for 10 seconds, 50°C for 10 seconds, and 60°C for 4 minutes. The product was purified using CentriflexTM gel filtration cartridges, dried under vacuum, then dissolved in 16 ml of Template Suppression Reagent. The samples were heated to 95°C for 5 minutes then placed in the 310 Genetic Analyzer.

Upon confirmation of the insert, the same transformant was used to inoculate a 50 ml culture of LB medium. The culture was grown for 16 hours at 37°C, and centrifuged into a cell pellet. Plasmid DNA was purified from the pellet using a Qiagen Plasmid Midi Kit and again sequenced to confirm successful cloning of the CON202 insert, as described above.

30

10

15

20

25

H. Cloning of CON222 G Protein-Coupled Receptor

H.1 Database Search Results

The database searching in the Incyte database identified Sequence Number 2488822CB1 as an interesting candidate sequence. This Incyte sequence is a consensus sequence derived by compiling multiple, shorter contiguous (apparently overlapping) partial sequences from cDNA clones. A single clone known to contain the complete consensus sequence was not available from Incyte. The following experiments were performed to clone a piece of human DNA which corresponds to the region of the theoretical Incyte Sequence Number 2488822CB that was deduced to encode a heretofore undescribed GPCR. The human DNA and protein that was eventually isolated is referred to herein as CON222.

H.2 Isolation of CON222 Genomic DNA using PCR

To isolate a clone of CON222, PCR primers were designed based on the 5' and 3' ends of the open reading frame that was identified in the Incyte Sequence Number 2488822CB1. The first primer, designated as LW1440, has the sequence 5'AAGCGGATGTTTAGACCTCTTGTG3' (SEQ ID NO: 60) which corresponds to nucleotides 1 to 18 of SEQ ID NO: 15 (underlined). The second primer, designated LW1441, has the sequence 5'AACAGTCATGAATAGGAATTGAG3' (SEQ ID NO: 61) which is the reverse complement of nucleotides 1173 to 1191 of SEQ ID NO: 15 (underlined).

PCR was performed in a 50 ml reaction containing 22.1 ml H₂O, 10 ml Rapid Dye Loading Buffer (Origene), 5 ml 10x TT buffer (140 mM Ammonium Sulfate, 0.1% gelatin, 0.6 M Tris-tricine pH 8.4), 5 ml 15 mM MgSO₄, 2 ml 10 mM dNTP's (dATP, dCTP, dGTP, dTTP), 5 ml human genomic DNA (0.03 mg/ml) (Clontech, Cat# 6550-1), 0.3 ml of Primer LW1440 (1 mg/ml) (SEQ ID NO: 59), 0.3 ml of LW1441 (1 mg/ml) (SEQ ID NO: 60), 0.4 ml High Fidelity Taq polymerase (Boehringer Mannheim). The PCR reaction was started with 1 cycle of 94°C for 2 minutes followed by 10 cycles at 94°C for 30 seconds, 55°C for 2 minutes, 72°C for 2 minutes. The PCR reaction was loaded onto a 1.2% agarose gel. The resulting band was not 1.2 kB in length as expected, indicating that this method was unsuccessful in

10

15

20

25

30

identifying an appropriate clone from the selected Clontech genomic DNA library containing the coding region of CON222.

A human genomic DNA phage library was selected as an alternate source from which to attempt to clone the CON222 gene. Internal primers were designed to attempt to isolate from a genomic library a single phage which expresses the complete coding region. The procedure was carried out as described above for CON193 in Example 1A.2.

PCR was performed to identify a phage that contained a genomic DNA insert which corresponds to the deduced complete coding region of Incyte Sequence Number 2488822CB1 using the primers: Primer LW1442: 5'GCCATTCTGTCCACAGAAG3' (SEQ ID NO: 58; see nucleotides 391 to 410 of SEQ ID NO: 15) and Primer LW1443: 5'TCAGTTGCTGTTATGGCAC3' (SEQ ID NO: 59; see reverse complement of nucleotides 744 to 761 of SEQ ID NO: 15). These primers were designed based on the deduced coding region of Incyte Sequence Number 2488822CB1, to amplify a 370 bp fragment (corresponding to nucleotides 391 to 761 of SEQ ID NO: 1) from any corresponding genomic clone in the library. The 50 µl PCR reactions each contained 32 µl of H₂O, 5 µl of 10x PCR gold buffer (PE Applied Biosystems), 5 µl of 25 mM MgCl₂, 2 µl of 10 mM dNTP's (dATP, dCTP, dGTP, dTTP), 0.3 µl of primer LW1442 (1µg/ml), 0.3 µl of primer LW1443 (1μg/ml), 0.4 μl AmpliTaq Gold polymerase (5 U/μl, with "Units" defined by the supplier; PE Applied Biosystems) and 5 μl of phage isolated human genomic DNA (0.03 µg/µl). The PCR reaction consisted of 1 cycle at 95°C for 10 minutes, then 17 cycles at 95°C for 20 seconds and 72°C for 2 minutes decreasing 1 degree each cycle, and 72°C for 1 minute, followed by 30 cycles at 95°C for 20 seconds, 55°C for 30 seconds, and 72°C for 1 minute. An aliquot of the PCR reaction was loaded onto a 1.2% agarose gel and electrophoresed. Although the internal primers were designed to produce a 370 bp PCR fragment, the resulting band was approximately 1.4 kb in length.

The DNA band was excised from the gel, placed on GenElute Agarose spin columns (Supelco) and spun for 10 minutes at maximum speed in a

10

15

20

25

microcentrifuge. The eluted DNA was ethanol-precipitated and resuspended in 10 μ l of H₂O and 5 μ l was used to sequence the PCR band.

The PCR fragment was sequenced with an ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. Each cycle-sequencing reaction contained 6 ml of H₂O, 8 ml of BigDye Terminator mix, 5 ml PCR fragment DNA (0.2 mg/ml), and 1 ml Primer LW1442 (25 ng/ml) and Primer LW1443 (25 ng/ml). The reaction was performed in a Perkin-Elmer 9600 thermocycler with 25 cycles of 96°C for 10 seconds, 50°C for 10 seconds, and 60°C for 4 minutes. The product was purified using CentriflexTM gel Reagent (PE Applied Biosystems). The samples were heated at 95°C for 5 minutes then placed in the 310 Genetic Analyzer.

The sequence analysis determined that there is an intron in the middle of the 5th transmembrane-spanning domain between nucleotides 673 and 674 in SEQ ID NO: 15. This intron was responsible for the unexpectedly large PCR fragment.

H.3 Isolation of Full Length cDNA

Since attempts to isolate an uninterrupted coding region from genomic DNA were unsuccessful, a fetal brain cDNA was used to generate the complete coding region of Incyte Sequence Number 2488833CB1. The PCR primers described above, LW1440 (SEQ ID NO: 60) and LW1441 (SEQ ID NO: 61), which correspond to the 5' and 3' end of CON222 respectively, were used to generate the full length coding region.

The 50 μ l PCR reaction contained 37.4 μ l of H₂O, 5 μ l of 10x cDNA PCR buffer (Clontech), 1 μ l of 10 mM dNTP's (dATP, dCTP, dTTP, dGTP), 5 μ l of Marathon-Ready Fetal Brain cDNA (Clontech), 0.3 μ l of Primer LW1440 (1 μ g/ μ l), 0.3 μ l of Primer LW1441 (1 μ g/ μ l), and 1 μ l of 50x Advantage cDNA polymerase (Clontech). The PCR reaction was started with 1 cycle of 94°C for 1 minute, followed by 30 cycles at 94°C for 30 seconds, 50°C for 30 seconds, and 68°C for 3 minutes.

The contents from the PCR reaction were loaded onto a 1.2% agarose gel and electrophoresed. The DNA band of expected size (1.2 kb) was excised from

10

15

20

25

the gel, placed on a GenElute Agarose spin column (Supelco), and spun for 10 minutes at maximum speed in a microfuge. The eluted DNA was ethanol-precipitated and resuspended in $6 \mu l H_2O$ for ligation.

H.4 Subcloning of Coding Region of CON222 via PCR

After a cDNA containing the full length CON222 open reading frame was obtained, the coding region of CON222 was then subcloned into a more useful vector as follows.

The purified PCR fragment described above, containing the CON222 coding sequence, was ligated into a commercial vector using Invitrogen's Original TA Cloning Kit. The ligation reaction was carried out as described above for CON193 in Example 1A.3. The resulting plasmid DNA from the culture was isolated using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and sequenced to confirm that the plasmid contained the CON222 insert.

The subcloned insert in pCR2.1 was sequenced using the ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary technology and the ABI PRISM TM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit. Each cycle-sequence reaction contained 6 ml of H₂O, 8 ml of BigDyeTM Terminator mix, 5 ml mini-prep DNA (0.1 mg/ml), and 1 ml of primer (25 ng/ml) and was performed in a Perkin-Elmer 9600 thermocycler with 25 cycles of 96°C for 10 seconds, 50°C for 10 seconds, and 60°C for 4 minutes. The product was purified using a CentriflexTM gel filtration cartridge, vacuum dried and dissolved in 16 ml of Template Suppression Reagent (PE Applied Biosystems). The samples were heated at 95°C for 5 minutes then placed in the 310 Genetic Analyzer.

Upon confirmation of the insert, the same transformant was used to inoculate a 50 ml culture of LB medium. The culture was grown for 16 hours at 37°C, and centrifuged into a cell pellet. Plasmid DNA was purified from the pellet using a Qiagen Plasmid Midi Kit and again sequenced to confirm successful cloning of the CON222 insert, as described above.

10

15

20

25

Cloning of CON215 G Protein-Coupled Receptor I.

Database Search Results I.1

The database searching identified Clone 1452259H1 in the Incyte database as an interesting candidate sequence. The sequence from 1452259H1 clone was used to search the Incyte fill-length database and matched the entry 1650519CB1. An inspection of the clones that made up 1650519CB1 indicated that Incyte Clone 2796157H1 probably contained the full-length coding region. Sequence analysis of Incyte Clone 2796157H1 indicated that it contains the entire coding region for a previously unidentified GPCR, which was designated "CON215", along with 12 nucleotides of 5' untranslated region, 63 nucleotides of 3' untranslated region and a poly A+tail. The DNA and deduced amino acid sequences for CON215 are set forth in SEQ ID NOS: 17 and 18, respectively. A database search with this CON215 sequence showed a 47% match to the human probable G protein-coupled receptor KIA0001.

Since the untranslated regions were relatively short, it was not necessary to remove the coding region of CON215 from the pINCY vector (Incyte) and the construct is referred to as pINCY-CON215. The Incyte Clone 2796157H1 was sequenced using the ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISMTM BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit as described above for CON222 in Example1H.4.

Cloning of CON217 G Protein-Coupled Receptor J.

Database Search Results J.1

The Incyte database search identified EST 3700658H1 as an interesting candidate sequence. The EST sequence No. 3700658H1 was used to search the Incyte full length database. This search identified Incyte clone No. 3356166H1 as a clone that potentially contained a full length GPCR corresponding to the selected EST.

The 3356166H1 clone was obtained from Incyte and sequenced using an ABI377 fluorescence-based sequencer (and the ABI $\textsc{PRISM}^{\textsc{TM}}$ Ready Dye-Deoxy

20

25

5

Terminator kit with Taq FS^{TM} polymerase as described above for CON193 in Example 1A.1.

Sequencing of Incyte Clone No. 3356166H1 revealed a 2480 basepair sequence as shown in SEQ NO: 19. Using a FORTRAN computer program called "tmtrest.all" [Parodi *et al., Comput. Appl. Biosci., 5*: 527-535 (1994)], Clone No. 3356166H1 was deduced to contain seven transmembrane-spanning domains (TMI-TMVII) and was designated as "CON217" (SEQ ID NO: 20). The following experiments were performed to subclone and isolate the full length coding sequence of CON217 from Incyte Clone No. 3356166H1.

J.2 Subcloning of the Coding Region of GPCR217

To subclone the full length coding sequence of CON217, PCR primers were designed based on the 5' and 3' ends of the open reading frame that was identified in the Incyte Clone No. 3356166H1. The first primer, designated as LW1448, has the sequence 5'AAGCGGTACCATGTTAGCCAACAGCTCCTC3' (SEQ ID NO: 66) which corresponds to nucleotides 42 to 62 of SEQ ID NO: 19 (underlined). The second primer, designated LW1449, has the sequence 5'AAGCTCTAGATCAGAGGGCGGAATCCTGG3' (SEQ ID NO: 67) which is the reverse complement of nucleotides 1142 to 1160 of SEQ ID NO: 20 (underlined). The primers also include recognition sequences (bold) for the restriction enzymes KpnI and XbaI, respectively.

PCR was performed in a 50 ml reaction containing 32.5 ml of H₂O, 5 ml of 10x Pfx Amplification buffer (GibcoBRL), 5 ml of 10x PCR Enhancer solution (GibcoBRL), 1.5 ml of 50 mM MgSO₄, 2 ml of 10 mM dNTP's (dATP, dCTP, dGTP, dTTP), 3 ml 3356166H1 mini-prep DNA (0.125 mg/ml obtained with the Concert Rapid Plasmid Miniprep System; GibcoBRL), 0.3 ml of Primer LW1448 (1 mg/ml) (SEQ ID NO: 3), 0.3 ml of Primer LW1449 (1 mg/ml) (SEQ ID NO: 4), 0.5 ml Platinum Pfx DNA polymerase (2.5 U/ml; GibcoBRL). The PCR reaction was started with 1 cycle of 94°C for 2 minutes followed by 25 cycles at 94°C for 30 seconds, 55°C for 30 seconds, 68°C for 1.3 minutes.

The contents from the PCR reaction were loaded onto a 1.2% agarose gel and electrophoresed. The DNA band of expected size (~1.1 kb) was excised from

10

15

20

25

30

the gel, placed on a GenElute Agarose spin column (Supelco), and spun for 10 minutes at maximum speed in a microfuge. The eluted DNA was ethanol-precipitated and resuspended in $6~\mu l$ of H_2O for ligation.

The purified PCR fragment, containing the CON217 coding sequence, was ligated into a commercial vector designated pCR2.1 using Invitrogen's Original TA Cloning Kit. The ligation reaction was carried out as described above for CON193 in Example 1A.3. The resulting plasmid DNA from the culture was isolated using a Concert Rapid Plasmid Miniprep System (GibcoBRL) and sequenced to confirm that the plasmid contained the CON217 insert and to confirm that no errors were introduced during PCR amplification. The resulting construct was denoted as pCR-CON217.

The final subclone was sequenced using the ABI PRISM™ 310 Genetic Analyzer (PE Applied Biosystems) which uses advanced capillary electrophoresis technology and the ABI PRISM™ Terminator Cycle Sequencing Ready Reaction Kit as described above for CON222 in Example 1H.4.

EXAMPLE 2

Analysis of G Protein-Coupled Receptor Sequence

A. CON193

The DNA and deduced amino acid sequence for CON193 are set forth in SEQ ID NOS: 1 and 2, respectively. Beginning with the initiation codon (methionine), the CON193 genomic Clone contains an open reading frame of 963 nucleotides encoding 321 amino acids, followed by a stop codon. Using a FORTRAN computer program called "tmtrest.all" [Parodi *et al.*, *Comput. Appl. Biosci.*, *5*: 527-535 (1994)], CON193 was shown to contain seven transmembrane-spanning domains corresponding to residues 30-49 (1TM), 61-81 (2TM), 103-122 (3TM), 146-165 (4TM), 199-222 (5TM), 243-262 (6TM), and 270-295 (7TM) of SEQ ID NO: 2. These transmembrane domains define first ("N-terminal," residues 1-29), second ("first EC loop," residues 82-102), third ("second EC loop," residues 166-198), and fourth ("third EC loop," residues 263-269) extracellular domains, as well as first ("first IC loop," residues 50-60), second ("second IC loop," residues 123-145), third

10

15

20

25

30

("third IC loop," residues 223-242), and fourth ("C-terminal," residues 296-321) intracellular domains.

Inspection of the CON193 amino acid sequence (SEQ ID NO: 2) reveals that this GPCR contains a DRY sequence following the third transmembrane domain (3TM) and a PIVY sequence found in the sixth transmembrane domain (TM6). In addition, the CON193 polynucleotide sequence was compared to sequences of known genes. CON193 is 45% identical and 72% similar to the mouse olfactory receptor gene S19 [see Malnic et al., Cell 96:713-723 (1999)]. This level of sequence similarity suggests that CON193 is a novel GPCR.

The CON193 cDNA clone (SEQ ID NO:1) was deposited with the National Center for Agricultural Utilization Research at the United States Department of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30250.

B. CON166

The DNA and deduced amino acid sequence for CON166 are set forth in SEQ ID NOS: 3 and 4, respectively. Beginning with the initiation codon (methionine), the CON166 genomic clone contains an open reading frame of 1,011 nucleotides encoding 337 amino acids, followed by a stop codon. Using a FORTRAN computer program called "tmtrest.all" [Parodi *et al.*, *Comput. Appl. Biosci.*, 5: 527-535 (1994)], CON166 was shown to contain seven transmembrane-spanning domains corresponding to the following residues presented in SEQ ID NO: 4: 1TM (30-49), 2TM (59-79), 3TM (99-119), 4TM (141-161), 5TM (191-215), 6TM (231-251), and 7TM (277-296). These transmembrane domains define first ("N-terminal," residues 1-29), second ("first EC loop," residues 80-98), third ("second EC loop," residues 162-190), and fourth ("third EC loop," residues 252-276), extracellular domains as well as first ("first IC loop," residues 50-58), second ("second IC loop," residues 120-140), third ("third IC loop," residues 216-230), and fourth ("C-terminal," residues 297-337) intracellular domains.

10

15

20

25

30

Inspection of the CON166 amino acid sequence (SEQ ID NO:2) reveals that this GPCR contains an FRC sequence following the third transmembrane domain (3TM), which is typically occupied by a consensus DRY sequence in other GPCRs; a PLLY sequence is also found in the seventh transmembrane domain (7TM). In addition, the CON166 polynucleotide sequence was compared to sequences of known genes. CON166 is 44% identical and 62% similar to a T-cell-specific G protein-coupled receptor of *Gallus gallus* found in the TREMBL database (Accession No. L06109). This level of sequence similarity suggests that CON166 is a novel GPCR.

The CON166 cDNA clone (SEQ ID NO:3) was deposited with the National Center for Agricultural Utilization Research at the United States Department of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30248.

C. CON103

The DNA and deduced amino acid sequence for CON103 are set forth in SEQ ID NOS: 5 and 6, respectively. Beginning with the initiation codon (methionine), the CON103 genomic clone contains an open reading frame of 1,152 nucleotides encoding 384 amino acids, followed by a stop codon and a short open reading frame (SEQ ID NO: 5). Using a FORTRAN computer program called "tmtrest.all" [Parodi *et al., Comput. Appl. Biosci., 5*: 527-535 (1994)], CON103 was shown to contain seven transmembrane-spanning domains corresponding to the following residues in SEQ ID NO: 6: 54-77 (1TM), 89-108 (2TM), 134-149 (3TM), 167-188 (4TM), 216-240 (5TM), 258-283 (6TM), and 301-320 (7TM). These transmembrane domains define first ("N-terminal," residues 1-53), second ("first EC loop," residues 109-133), third ("second EC loop," residues 189-215), and fourth ("third EC loop," residues 284-300) extracellular domains, as well as first ("first IC loop," residues 78-88), second ("second IC loop," residues 321-384) intracellular domains.

10

15

20

25

Inspection of the CON103 amino acid sequence (SEQ ID NO: 6) reveals that this GPCR contains an NRY sequence following the third transmembrane domain (3TM), which is typically occupied by a consensus DRY sequence in other GPCRs. In addition, the CON103 polynucleotide sequence was compared to sequences of known genes. CON103 is 36% identical to GPR31 (GenBank Accession No. U65402) and 31% identical to the P2Y1 purinergic receptor (GenBank Accession No. S81950). This level of sequence similarity indicates that CON103 is a novel GPCR.

The CON103 cDNA clone (SEQ ID NO:5) was deposited with the National Center for Agricultural Utilization Research at the United States Department of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30247.

D. CON203

The DNA and deduced amino acid sequence for CON203 are set forth in SEQ ID NOS: 7 and 8, respectively. Beginning with the initiation codon (methionine), the CON203 genomic clone contains an open reading frame of 999 nucleotides encoding 333 amino acids, followed by a stop codon. Using a FORTRAN computer program called "tmtrest.all" [Parodi *et al., Comput. Appl. Biosci., 5*: 527-535 (1994)], CON203 was shown to contain seven transmembrane-spanning domains corresponding to the following residues of SEQ ID NO: 7: nucleotides 29-53 (1TM), 63-82 (2TM), 97-118 (3TM), 136-160 (4TM), 189-211 (5TM), 232-252 (6TM), and 281-300 (7TM). These transmembrane domains define first ("N-terminal," residues 1-28), second ("first EC loop," residues 83-96), third ("second EC loop," residues 161-188), and fourth ("third EC loop," residues 253-280) extracellular domains, as well as first ("first IC loop," residues 54-62), second ("second IC loop," residues 119-135), third ("third IC loop," residues 212-231), and fourth ("C-terminal," residues 301-333) intracellular domains.

Inspection of the CON203 amino acid sequence (SEQ ID NO: 8) reveals that this GPCR contains a DRF sequence following the third transmembrane

10

15

20

domain (3TM), which is typically occupied by a consensus DRY sequence in other GPCRs; CON203 also exhibited a PLIY sequence in the seventh transmembrane domain (7TM). In addition, the CON203 polynucleotide sequence was compared to sequences of known genes. CON203 is 33% identical to a platelet activating receptor (GenBank Accession No. AF002986. This level of sequence similarity suggests that CON203 is a novel GPCR.

The CON203 cDNA clone (SEQ ID NO: 7) was deposited with the National Center for Agricultural Utilization Research at the United States Department of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30254.

E. **CON198**

The DNA and deduced amino acid sequence for CON198 are set forth in SEQ ID NO: 9 and 10 respectively. Beginning with the initiator methionine, the CON198 genomic clone contains an open reading frame of 954 nucleotides encoding 318 amino acids, followed by a stop codon. It will be appreciated that residue 2 of SEQ ID NO: 10 also is a methionine. Amino-terminal sequencing of purified native or recombinant CON198 protein will provide an indication as to which methionine acts as an initiator codon in vivo. Using a FORTRAN computer program called "tmtrest.all" [Parodi et al., Comput . Appl. Biosci., 5: 527-535 (1994)], CON198 was deduced to contain seven transmembrane-spanning domains corresponding to residues 28-52 (TM1), 61-80 (TM2), 104-123 (TM3), 147-167 (TM4), 200-226 (TM5), 239-263 (TM6), and 274-295 (TM7) of SEQ ID NO: 10 . These transmembrane domains define first ("N-terminal," residues 1-27 or 2-27), second ("first EC loop," residues 81-103), third ("second EC loop," residues 168-199), and fourth ("third EC loop," residues 264-273) extracellular domains as well as first ("first IC loop," residues 53-60), second ("second IC loop," residues 124-146), third ("third IC loop," residues 227-238), and fourth ("C-terminal," residues 296-318) intracellular domains.

CON198 contains a DRY sequence following the third transmembrane domain (TM3), a feature that is conserved in most GPCR. The most similar sequence

30

in a public database, at the time of initial screening, was that of rat GPCR RA1c, which shared only 61% identity at the amino acid level.

The CON198 cDNA clone (SEQ ID NO: 9) was deposited with the National Center for Agricultural Utilization Research at the United States Department of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30252.

F. <u>CON197</u>

10

15

20

25

5

The DNA and deduced amino acid sequence for CON197 are set forth in SEQ ID NO: 11 and 12, respectively. Beginning with the initiator methionine, the CON197 genomic clone contains an open reading frame of 921 nucleotides encoding 307 amino acids, followed by a stop codon. Using a FORTRAN computer program called "tmtrest.all" [Parodi *et al.*, *Comput. Appl. Biosci.*, 5: 527-535 (1994)], CON197 was deduced to contain seven transmembrane-spanning domains corresponding to residues 23-47 (TM1), 58-78 (TM2), 99-120 (TM3), 142-164 (TM4), 195-219 (TM5), 237-258 (TM6), and 270-289 (TM7) of SEQ ID NO: 12. These transmembrane domains define first ("N-terminal" residues 1-22), second ("first EC loop" residues 79-98), third ("second EC loop" residues 165-194), and fourth ("third EC loop" residues 259-269) extracellular domains as well as first ("first IC loop" residues 48-57), second ("second IC loop" residues 121-141), third ("third IC loop" residues 220-236), and fourth ("C-terminal" residues 290-309) intracellular domains.

CON197 contains a DRY sequence following the third transmembrane domain (TM3), a feature that is conserved in most GPCR. The most similar sequence in a public database, at the time of initial screening, was that of an olfactory receptor, which shared only 42% identity at the amino acid level.

The CON197 cDNA clone (SEQ ID NO: 11) was deposited with the National Center for Agricultural Utilization Research at the United States Department of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30251.

10

15

20

G. CON202

The DNA and deduced amino acid sequence for this phage insert, termed "CON202", are set forth in SEQ ID NO: 13 and 14, respectively. The CON202 open reading frame, as depicted in SEQ ID NO: 14, begins with the initiator methionine and spans 1110 nucleotides which encode 370 amino acids, followed by a stop codon. Since this gene was isolated from genomic DNA and there are no apparent interruptions in the sequence, it is likely that CON202 contains no introns within the coding region. The full length clone of CON202 contained seven transmembrane-spanning domains corresponding to residues, 24 to 46 (TM1), 57 to 77 (TM2), 96 to 117 (TM3), 135 to 159,(TM4) TMV comprises 184 to 202 (TM5), 286 to 308 (TM6), 316 to 339 (TM7) of SEQ ID NO: 14. TM2 terminates with PFVC instead of the characteristic PXXY. TM3 is followed by the sequence TRY instead of the characteristic DRY. These transmembrane domains define first ("N-terminal," residues 1-23), second ("first EC loop," residues 78-95), third ("second EC loop," residues 160-183), and fourth ("third EC loop," residues 309-315) extracellular domains as well as first ("first IC loop," residues 47-56), second ("second IC loop," residues 118-134), third ("third IC loop," residues 203-285), and fourth ("C-terminal," residues 340-370) intracellular domains.

The CON202 cDNA clone (SEQ ID NO: 13) was deposited with the National Center for Agricultural Utilization Research at the United States Department of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30253.

25 H. CON222

The sequence of CON222 coding region deduced the DNA and amino acid sequence set forth in SEQ ID NO: 15 and 16, respectively. The open reading frame that is depicted in SEQ ID NO: 16 begins with an initiator codon and spans 1188 nucleotides which encode 396 amino acids, followed by a stop codon.

The full length clone of CON222 contains seven transmembrane-spanning domains corresponding to residues 42-65 (TM1) 79-103, (TM2), 125-156,

10

15

20

25

30

(TM3), 167-188 (TM4), 217-241(TM5), 268-290 (TM6), 301-320 (TM7) of SEQ ID NO: 16. TM2 is followed by a FRC sequence and TM7 contains a PILY sequence within. These transmembrane domains define first ("N-terminal," residues 1-41), second ("first EC loop," residues 104-124), third ("second EC loop," residues 189-216), and fourth ("third EC loop," residues 291-300) extracellular domains as well as first ("first IC loop," residues 66-78), second ("second IC loop," residues 157-166), third ("third IC loop," residues 242-267), and fourth ("C-terminal," residues 321-396) intracellular domains. A search of the public database indicated that CON222 is about 35% identical to a unique GPCR found in the nervous system of *Lymnaea stagnalis*.

The CON222 cDNA clone (SEQ ID NO: 15) was deposited with the National Center for Agricultural Utilization Research at the United States Department of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30257.

I. CON215

The DNA and deduced amino acid sequence for CON215 are set forth in SEQ ID NO: 17 and 18, respectively. Beginning with the initiator methionine, the CON215 genomic clone contains an open reading frame of 1074 nucleotides encoding 358 amino acids, followed by a stop codon. Using a FORTRAN computer program called "tmtrest.all" [Parodi *et al., Comput . Appl. Biosci., 5*: 527-535 (1994)], CON215 was deduced to contain seven transmembrane-spanning domains corresponding to residues 42-66 (TM1), 81-99 (TM2), 116-137 (TM3), 156-180 (TM4), 210-234 (TM5), 256-275 (TM6), and 308-328 (TM7) of SEQ ID NO: 18. These transmembrane domains define first ("N-terminal," residues 1-41), second ("first EC loop," residues 100-115), third ("second EC loop," residues 181-209), and fourth ("third EC loop," residues 276-307) extracellular domains as well as first ("first IC loop," residues 67-80), second ("second IC loop," residues 138-155), third ("third IC loop," residues 235-255), and fourth ("C-terminal," residues 329-358) intracellular domains.

20

25

CON215 contains a DRY sequence following the third transmembrane domain (TM3), a feature that is conserved in most GPCR. CON215 also contains a PIIY sequence within the seventh transmembrane domain (TM7).

The CON215 cDNA clone (SEQ ID NO: 17) was deposited with the National Center for Agricultural Utilization Research at the United States Department of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30255.

10 **J. CON217**

5

The DNA and deduced amino acid sequences of CON217 are set forth as SEQ ID NO: 19 and 20, respectively. The open reading frame that is depicted in SEQ ID NO: 2 begins with an initiator methionine codon and spans 1116 nucleotides which encode 372 amino acids, followed by a stop codon. In addition, the nucleotide sequence consists of 41 bp in the 5′ untranslated region and 1323 bp in the 3′ untranslated region.

The full length clone of CON217 contains seven transmembrane-spanning domains as indicated by the FORTRAN computer program "tmtrest.all" [Parodi *et al.*, *Comput. Appl. Biosci.*, 5: 527-535 (1994)] which corresponds to 29-50 (TM1), 57-75 (TM2), 96-117 (TM3), 137-160 (TM4), 188-210 (TM5), 235-258 (TM6), 277-297 (TM7). TM3 is followed by a DRY sequence and TM7 contains a PLVY sequence within. These transmembrane domains define first ("N-terminal," residues 1-28), second ("first EC loop," residues 76-95), third ("second EC loop," residues 161-187), and fourth ("third EC loop," residues 259-276) extracellular domains as well as first ("first IC loop," residues 51-56), second ("second IC loop," residues 118-136), third ("third IC loop," residues 211-234), and fourth ("C-terminal," residues 298-372) intracellular domains. A search of the public database indicated that CON217 is about 41% identical to GPR23 (Genebank Accession No.: U66578) and to a purinergic receptor P2Y9 (Genebank Accession No.: U90322).

The CON215 cDNA clone (SEQ ID NO: 19) was deposited with the National Center for Agricultural Utilization Research at the United States Department

of Agriculture 1815 North University Street, Peoria, Illinois 61604 in accordance with the Budapest Treaty on January 18, 2000. The clone was given accession no. B-30256.

5 K. Summary of Deposits

The polynucleotides (SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15 and 17) encoding the GPCR polypeptides of the invention were deposited with the Agricultural Research Service Culture Collection (NRRL) at the National Center Agricultural Utilization Research at the U.S. Department of the Agriculture 1815 North University Street, Peoria, Illinois 61604. These deposits were made in accordance with the Budapest Treaty on the International Recognition of the Deposit of Microorganism for the Purposes of Patent Procedures. The table below lists the details of these deposits.

	<u>GPCR</u>	SEQ ID NO:	NRRL No.	Deposit Date
15	CON193	1	B-30250	1/18/00
	CON166	3	B-30248	1/18/00
	CON103	5	B-30247	1/18/00
	CON203	7	B-30254	1/18/00
	CON198	9	B-30252	1/18/00
20	CON197	11	B-30251	1/18/00
	CON202	13	B-30253	1/18/00
	CON222	15	B-30257	1/18/00
	CON215	17	B-30255	1/18/00
	CON217	19	B-30256	1/18/00

25

EXAMPLE 3 <u>Hybridization Analysis Demonstrates that the GPCRs are</u> Expressed in the <u>Brain</u>

The expression of GPCR polynucloetides in mammals, such as the rat, was investigated by *in situ* hybridization histochemistry. Coronal and sagittal rat

10

15

20

25

30

brain cryosections (20 µm thick) were prepared using a Reichert-Jung cryostat. Individual sections were thaw-mounted onto silanized, nuclease-free slides (CEL Associates, Inc., Houston, TX), and stored at -80°C. Sections were processed starting with post-fixation in cold 4% paraformaldehyde, rinsed in cold phosphate-buffered saline (PBS), acetylated using acetic anhydride in triethanolamine buffer, and dehydrated through a series of alcohol washes in 70%, 95%, and 100% alcohol at room temperature. Subsequently, sections were delipidated in chloroform, followed by rehydration through successive exposure to 100% and 95% alcohol at room temperature. Microscope slides containing processed cryosections were allowed to air dry prior to hybridization.

A. <u>CON193</u>

A CON193-specific probe was generated using PCR. The probe consisted of a 270 bp fragment containing sequence at the 3' end of CON-193. The primers for PCR amplification were LW 1248 [5'-GCATGAATTCCAATATACTTCCCCATACCTAC-3'; SEQ ID NO: 26) and LW 1249 [5'-GCATGGATCCGGAAAAGAAGGAGAAGAAGAAG-3'; SEQ ID NO: 27), which introduced terminal EcoRI and BamHI restriction sites into the PCR product. Following PCR amplification, the fragment was digested with EcoRI and BamHI and cloned into pBluescriptII cleaved with the same enzymes. For production of a probe specific for the sense strand of CON193, the CON193 Clone in pBluescriptII was linearized with BamHI, which provided a substrate for labeled run-off transcripts (i.e., cRNA riboprobes) using the vector-borne T7 promoter and commercially available T7 RNA polymerase. A probe specific for the antisense strand of CON193 was also readily prepared using the CON193 Clone in pBluescriptII by cleaving the recombinant plasmid with EcoRI to generate a linearized substrate for the production of labeled run-off cRNA transcripts using the T3 promoter and cognate polymerase. The riboprobes were labeled with $[^{35}S]$ -UTP to yield a specific activity of 0.81 x 10^6 cpm/pmol for antisense riboprobes and 0.55×10^6 cpm/pmol for sense-strand riboprobes. Both riboprobes were subsequently denatured by incubating at 70°C for 3 minutes and added (2 pmol/ml) to hybridization buffer which contained 50%

10

15

20

25

formamide, 10% dextran, 0.3 M NaCl, 10 mM Tris (pH 8.0), 1 mM EDTA, 1X Denhardt's Solution, and 10 mM dithiothreitol. Microscope slides containing sequential brain cryosections were independently exposed to 45 μl of hybridization solution per slide and silanized cover slips were placed over the sections being exposed to hybridization solution. Sections were incubated overnight (15-18 hours) at 52°C to allow hybridization to occur. Equivalent series of cryosections were exposed to sense or antisense CON193-specific cRNA riboprobes.

Following the hybridization period, coverslips were washed off the slides in 1X SSC. Slides were subjected to RNase A treatment by incubation in a buffer containing 20 µg/ml RNase A, 10 mM Tris (pH 8.0), 0.5 M NaCl and 1 mM EDTA for 45 minutes at 37°C. The cryosections were then subjected to three highstringency washes in 0.1 X SSC at 52°C for 20 minutes each. Following the series of washes, cryosections were dehydrated by consecutive exposure to 70%, 95%, and 100% ammonium acetate in alcohol, followed by air drying and exposure to Kodak BioMax MR-1 film. After 13 days of exposure, the film was developed. Based on these results, brain sections that gave rise to positive hybridization signals were coated with Kodak NTB-2 nuclear track emulsion and the slides were stored in the dark for 32 days The slides were then developed and counterstained with hematoxylin. Emulsion-coated sections were analyzed microscopically to determine the specificity of labeling. The signal was determined to be specific if autoradiographic grains (generated by antisense probe hybridization) were clearly associated with crystal violet-stained cell bodies. Autoradiographic grains found between cell bodies indicates non-specific binding.

Specific labeling with the antisense probe occurred at low levels in the cortex and in the substantia nigra-pars compacta (SN-c). The specificity of labeling was confirmed by microscopic analysis of emulsion-coated cryosections, as described above. In contrast, hybridization using the riboprobe specific for the sense strand of CON193 did not result in specific tissue labeling. The observed regional distribution of CON193 mRNA suggests that ligands for this GPCR may be involved in signal transductions important for cellular processes underlying neurological functioning. In addition, expression of CON193 in the brain provides an indication that modulators of

10

15

20

25

CON193 activity have utility for treating neurological disorders, including but not limited to, schizophrenia, depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, and the like. Use of CON193 modulators, including CON193 ligands and anti-CON193 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

B. <u>CON166</u>

above for CON193 in Example 3A (but using CON166-specific primers). The probe consisted of a 259 bp fragment containing sequence at the 3' end of CON-166 (nucleotides 715-974 of SEQ ID NO:1) and containing terminal *Eco*RI and *Bam*HI restriction sites. The riboprobes were labeled with [35 S]-UTP to yield a specific activity of 0.40 x 10⁶ cpm/pmol for antisense riboprobes and 0.65 x 10⁶ cpm/pmol for sense-strand riboprobes. Hybridization with the riboprobes and subsequent washing of the slides was carried out as described above for CON193 in Example 3A.

Specific labeling with the antisense probe occurred in cortical regions, including the piriform complex, neostriatum, thalamus and hippocampus. The specificity of labeling was confirmed by microscopic analysis of emulsion-coated cryosections. These sections revealed that the autoradiographic grains resulting from antisense riboprobe in situ hybridizations were distributed over cell bodies rather than trapped between cell bodies. In contrast, hybridization using the riboprobe specific for the sense strand of CON166 produced a faint signal in the hippocampus only, but even this signal was found to be non-specific upon microscopic examination. The observed regional distribution of CON166 mRNA suggests that ligands for this GPCR may be involved in signal transductions important for cellular processes underlying neurological functioning. In addition, expression of CON166 in the brain provides an indication that modulators of CON166 activity have utility for treating neurological disorders, including but not limited to, schizophrenia, affective disorders, ADHD/ADD (i.e., Attention Deficit-Hyperactivity Disorder/Attention Deficit Disorder), and neural disorders such as Alzheimer's disease, Parkinson's disease, migraine, and senile dementia. Some other diseases for which modulators of

CON166 may have utility include depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, and the like. Use of CON166 modulators, including CON166 ligands and anti-CON166 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

5

10

15

20

C. CON 103

A cocktail of two CON103-specific antisense oligonucleotide probes (CON103a and CON103b) were used because of the relatively high GC content of the CON103 coding region. The CON103a sequence

(5'TTTATTAATATTGGAAGGGACAAACTGGAGAGCACAGAACAT3'; SEQ ID NO: 72) corresponds to the reverse complement of nucleotides 2196-2237 of SEQ ID NO: 5 and CON103b sequence (5'AAAGCCACCATGGA AGCCATGCCAAAGATGATGCTGGGCAAGAA 3'; SEQ ID NO: 73) corresponds

to the reverse complement of nucleotides 195-1538 of SEQ ID NO: 5. Terminal deoxynucleotidyltransferase and $[\alpha - ^{33}P]dATP$ were used to 3' end-label CON103a

 $(1.36 \times 10^7 \text{ cpm/pmol})$ and CON103b $(9.1 \times 10^6 \text{ cpm/pmol})$. The probes were denatured by incubation at 70°C for three minutes and added to hybridization buffer containing 50% formamide, 10% dextran, 0.3 M NaCl, 10 mM Tris (pH 8.0), 1 mM

EDTA, 1X Denhardt's Solution, and 200 mM dithiothreitol. The final concentration of each radiolabeled probe was 2 pmol/ml of hybridization solution. Microscope

slides containing sequential brain cryosections were independently exposed to 45 µl of hybridization solution (containing the antisense oligonucleotide probes CON103a

and CON103b) per slide and silanized cover slips were placed over the sections being exposed to hybridization solution. Sections were incubated overnight (15-18 hours) at

37°C to allow hybridization to occur.

Following the hybridization period, coverslips were washed off the slides in 1X SSC. The cryosections were then subjected to three high-stringency washes in 1 X SSC at 65°C for 20 minutes each. Following two room-temperature washes, cryosections were dehydrated by consecutive exposure to 70%, 95%, and 100% ethanol (0.3 M ammonium acetate added to 70% and 95% ethanol solutions), followed by air drying and exposure to Kodak BioMax MR-1 film. After 28 days of

30

10

15

20

25

30

exposure, the film was developed. Based on these results, brain sections that showed positive hybridization signals were coated with Kodak NTB-2 nuclear track emulsion and the slides were stored in the dark for four months. The slides were then developed and counterstained with hematoxylin. Emulsion-coated sections were analyzed microscopically to determine the specificity of labeling. The signal was determined to be specific if autoradiographic grains (generated by antisense probe hybridization) were present over cell bodies and not trapped between cell bodies.

Specific labeling with the antisense probe occurred in all cortical regions, including the piriform cortex and hippocampus. The specificity of labeling was confirmed by microscopic analysis of emulsion-coated cryosections. These sections revealed that the autoradiographic grains resulting from antisense riboprobe in situ hybridizations were distributed over cell bodies rather than trapped between cell bodies. The observed distribution of CON103 mRNA in the cortical and paralimbic regions of the mammalian brain suggests that ligands for this GPCR may be involved in signal transductions important for cellular processes underlying neurological functioning. In addition, expression of CON103 in the brain provides an indication that modulators of CON103 activity have utility for treating neurological and neuropsychiatric disorders, including but not limited to, schizophrenia, depression, anxiety, attention deficit disorder (with or without hyperactivity), bipolar disease, epilepsy, migraine, neuritis, neurasthenia, neuropathy, neuroses, obesity, Parkinson's disease, other dementias, and the like. Use of CON103 modulators, including CON103 ligands and anti-CON103 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

D. <u>CON203</u>

CON203-specific cRNA probes were prepared using conventional techniques. Initially, a 293 bp fragment of the CON203 coding region, with a *Bam*HI site and an *Eco*RI site disposed on opposite ends, was prepared by PCR using primers LW1314 (5'-GCATGAATTCCCACCTTCATCATCTACCTC-3'; SEQ ID NO: 40) and LW1315 (5'-GCATGGATCCGAAGACCAAAAAGACCCAG-3'; SEQ ID NO: 41). LW1314 includes an *Eco*RI site and additional protective residues at its 5'

10

15

20

25

terminus, with the rest of the sequence corresponding to CON203 coding nucleotides 164-183, which correspond to positions 309-328 of SEQ ID NO: 7. LW1315 includes 5' protective nucleotides and a BamHI site, with the rest of the sequence corresponding to the complement of CON203 coding nucleotides 438-456, which correspond to positions 583-601 of SEQ ID NO: 7. The PCR-amplified fragment was then digested with BamHI and EcoRI and ligated into the corresponding sites of pBluescript II to yield pCon203 BS. The recombinant clone was then linearized either with BamHI or EcoRI. Linearization with BamHI provided a substrate for in vitro expression of a sense-strand cRNA probe using the vector-borne T7 promoter. Digestion with EcoRI was used to provide a substrate for in vitro transcription using the vector-borne T3 promoter to generate an anti-sense cRNA probe. In vitro transcriptions were performed in the presence of [35S] UTP, thereby yielding senseand anti-sense strand riboprobes having specific radioactivities of 5.38 x 10⁷ cpm/pmol and 5.34 x 10⁷ cpm/pmol, respectively. Hybridization with the riboprobes and subsequent washing of the slides was carried out as described above for CON193 in Example 3A. Subsequently, the slides were exposed to Kodak BioMax MR-1 film. After 9 days of exposure, the film was developed. Based on these results, brain sections that gave rise to positive hybridization signals were coated with Kodak NTB-2 nuclear track emulsion and the slides were stored in the dark for 25 days. The slides were then developed as described above for CON193 in Example 3A.

Specific labeling with the antisense probe occurred in several limbic and paralimbic regions, as well as areas thought to be involved in voluntary motor control. In particular, the probe hybridized to CON203 mRNAs in the following regions of the brain: cortical regions, including the piriform cortex, neostriatum, lateral olfactory tract, hypothalamic nuclei, bed nucleus of the stria terminalis, amygdala, hippocampus, reticular thalamus and other thalamic regions, subthalamic nucleus, and the red nucleus. The specificity of labeling was confirmed by microscopic analysis of emulsion-coated cryosections. These sections revealed that the autoradiographic grains resulting from antisense riboprobe *in situ* hybridizations were distributed over cell bodies rather than trapped between cell bodies. Confirming expression of CON203 mRNA, the sense-strand riboprobe did not show specific

10

15

20

hybridization. The observed distribution of CON203 mRNA in the cortical (particularly, motor circuits) and paralimbic regions of the mammalian brain suggests that CON203 and the ligands for this GPCR may be involved in signal transductions important for cellular processes underlying neurological functioning. In addition, expression of CON203 in the brain provides an indication that modulators of CON203 activity have utility for treating neurological disorders, including but not limited to, schizophrenia, depression, anxiety, bipolar disease, epilepsy, migraine, attention deficit disorder (with or without hyperactivity), neuritis, neurasthenia, neuropathy, neuroses, Parkinson's disease, dementia, obesity, and the like. Use of CON203 modulators, including CON203 ligands and anti-CON203 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

E. CON198

A 266 bp fragment of CON198 containing *Eco*RI and *Bam*HI restriction sites was amplified from the full-length clone by PCR, using the primers LW1308: 5'-GCATGAATTCACTCACTTCTCATCTCCTTC-3' (SEQ ID NO: 46) and LW1309:5'-GCATGGATCCAATCTCCTTTGTCTTCACTC-3' (SEQ ID NO: 47) Primer LW1308 contains an *Eco*RI site (underlined) followed by sequence identical to nucleotides 638-657 of SEQ ID NO: 9. Primer LW1309 contain a *Bam*HI site (underlined) followed by sequence complementary to nucleotides 903-884 of SEQ ID NO: 9. The amplification product was digested with *Eco*RI and *Bam*HI, and then subcloned into an *Eco*RI- and *Bam*HI-digested pBluescript II vector (*Stratagene*). The 266 amplified and subcloned basepairs correspond to nucleotides 638 to 903 of SEQ ID NO: 9.

The subcloned CON198-Bluescript construct was used to generate strand-specific probes for the *in situ* hybridization experiments. The construct was linearized with *Bam*HI, for labeling with T7 polymerase (sense), or *Eco*RI, for T3 polymerase (antisense), and used as a template for *in vitro* transcription of sense and antisense cRNA riboprobes. The riboprobes were labeled with ³⁵S-UTP to yield a

specific activity of 0.45 x 10⁶ cpm/pmol for antisense and 0.732 x 10⁶ cpm/pmol for

30

10

15

20

25

sense probe. Hybridization with the riboprobes and subsequent washing of the slides was carried out as described above for CON193 in Example 3A.

Specific labeling with the antisense probe showed distribution of CON198 mRNA in the rat brain in several limbic and paralimbic regions as well as areas thought to be involved in voluntary motor control. Labelled regions included cortical regions, piriform cortex, hypothalamic nuclei (paraventricular nucleus, supraoptic nucleus, suprachiasmatic nucleus), hippocampus, reticular thalmus, substantia nigra-pars compacta (SN-C), ventral tegmental area, and the red nucleus. The specificity of labeling was confirmed by microscopic analysis of emulsion coated sections. These sections revealed that the autoradiographic grains generated by the antisense probe were distributed over cell bodies rather than trapped between cell bodies. Sense probe did not generate specific labeling.

The observed regional distribution of CON198 mRNA provides a therapeutic indication for natural ligands for CON198 as well as modulators of CON198 activity, such as anti-CON198 antibody substances or small molecules that agonize or antagonize ligand-mediated CON198 signalling. In particular, the expression pattern provides an indication that such molecules will have utility for treating neurological and/or psychiatric diseases, including but not limited to schizophrenia, depression, anxiety, bipolar disease, affective disorders, ADHD/ADD, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, Alzheimer's disease, Parkinson's disease, migraine, senile dementia, and the like. Use of CON198 modulators, including CON198 ligands and anti-CON198 antibodies, to treat individuals having such disease states is intended as an aspect of the invention. Such modulators are administered by any means effective to safely deliver the modulators to the CON198-expressing cells, including but not limited to oral administration, inhalation, or injection of compositions comprising the modulators in a pharmaceutically acceptable diluent, adjuvant, or carrier. Efficacy of treatment can initially be determined in any accepted animal model that provides a biochemical or behavioral marker that correlates with disease severity or treatment efficacy.

F. <u>CON197</u>

A 261 bp fragment of CON197 containing *Eco*RI and *Bam*HI restriction sites was amplified from the full-length clone by PCR, using the primers LW1306: 5'-GCATGAATTC<u>TTCTACTTCATCATCATCCTCC</u>-3' (SEQ ID NO: 50) and LW1307: 5'-GCATGGATC<u>CAAAGGCCATCACAACAAG</u>-3' (SEQ ID NO: 51). Primer LW1306 includes sequence identical to nucleotides 100-118 of SEQ ID NO: 11 (underlined), preceded by an *Eco*RI site. Primer LW1307 includes sequence complementary to nucleotides 361-343 of SEQ ID NO: 11 (underlined), preceded by a *Bam*HI restriction site. The amplification product was digested with *Eco*RI and *Bam*HI, and then subcloned into an *Eco*RI- and *Bam*HI-digested pBluescript II vector (Stratagene). The 261 amplified and subcloned basepairs correspond to nucleotides 100 to 361 of SEQ ID NO: 11.

The subcloned CON197-Bluescript construct was used to generate strand-specific probes for the *in situ* hybridization experiments. The construct was linearized with *Bam*HI, for labeling with T7 polymerase (sense), or *Eco*RI, for T3 polymerase (antisense), and used as a template for *in vitro* transcription of sense and antisense cRNA riboprobes. The riboprobes were labeled with ³⁵S-UTP to yield a specific activity of 0.51 x 10⁶ cpm/pmol for antisense and 0.432 x 10⁶ cpm/pmol for sense probe. Hybridization with the riboprobes and subsequent washing of the slides was carried out as described above for CON193 in Example 3A.

Specific labeling with the antisense probe showed wide spread distribution of CON197 mRNA in the rat brain. Labelled regions included neo and allo cortex, piriform cortex, neostriatum, thalamic nuclei, hypothalamic nuclei, hippocampus, amygdala, cerebellum, and the olfactory bulb. The specificity of labeling was confirmed by microscopic analysis of emulsion coated sections. These sections revealed that the autoradiographic grains generated by the antisense probe were distributed over cell bodies rather than trapped between cell bodies. Sense probe did not generate specific labeling.

The observed regional distribution of CON197 mRNA provides a therapeutic indication for natural ligands for CON197 as well as modulators of CON197 activity, such as anti-CON197 antibody substances or small molecules that

20

25

5

10

15

10

15

20

25

30

agonize or antagonize ligand-mediated CON197 signalling. In particular, the expression pattern provides an indication that such molecules will have utility for treating neurological and/or psychiatric diseases, including but not limited to dementia, schizophrenia, depression, anxiety, bipolar disease, migraine, Parkinson's disease, affective disorders, Alzheimer's disease, senile dementia, attention deficit hyperactivity disorder/attention deficit disorder (ADHD/ADD), epilepsy, neuritis, neurasthenia, neuropathy, neuroses, and the like. Use of CON197 modulators, including CON197 ligands and anti-CON197 antibodies, to treat individuals having such disease states is intended as an aspect of the invention. Such modulators are administered by any means effective to safely deliver the modulators to the CON197-expressing cells, including but not limited to oral administration, inhalation, or injection of compositions comprising the modulators in a pharmaceutically acceptable diluent, adjuvant, or carrier. Efficacy of treatment can initially be determined in any accepted animal model that provides a biochemical or behavioral marker that correlates with disease severity or treatment efficacy.

G. CON202

A 272 bp fragment of CON202 containing EcoRI and BamHI restriction sites was amplified from the full-length clone by PCR, using the primers LW1310 GCATGAATTCGCAGAAGAAGGCTATTGG (SEQ ID NO: 56) and LW1311 GCATGGATCCGCAGTAAAGAAGGGTTGTG (SEQ ID NO: 57). The amplification product was digested with EcoRI and BamHI, and then subcloned into a pBluescript II vector (Strategene) that was digested with EcoRI and BamHI. The 272 amplified and subcloned basepairs correspond to nucleotides 1065 to 1336 of SEQ ID NO: 13.

The subcloned CON202-Bluescript construct was used to generate strand-specific probes for the *in situ* hybridization experiments. The construct was linearized with BamHI, for labeling with T7 polymerase (sense), or EcoRI, for T3 polymerase (antisense), and used as a template for *in vitro* transcription of sense and antisense cRNA riboprobes. The riboprobes were labeled with ³⁵S-UTP to yield a specific activity of 4.7 x 10⁵ cpm/pmol for antisense and 4.3 x 10⁵ cpm/pmol for sense

10

15

20

probe. Hybridization with the riboprobes and subsequent washing of the slides was carried out as described above for CON193 in Example 3A.

Specific labeling with the antisense probe showed wide spread distribution of CON202 mRNA in the rat brain. Labelled regions included the cortical regions, lateral olfactory nuclei, hippocampus, subthalamic nucleus, and at a lower level, the nigra-pars compacta.

The observed regional distribution of CON202 mRNA provides a therapeutic indication for natural ligands for CON202 as well as modulators of CON202 activity, such as anti-CON202 antibody substances or small molecules that agonize or antagonize ligand-mediated CON202 signaling. In particular, the expression pattern provides an indication that such molecules will have utility for treating neurological and/or psychiatric diseases, including but not limited to schizophrenia, affective disorders, attention deficit hyperactivity disorder/attention deficit disorder, depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, Alzheimer's disease, Parkinson's disease, migraine, senile dementia and the like. Use of CON202 modulators, including CON202 ligands and anti-CON202 antibodies, to treat individuals having such disease states is intended as an aspect of the invention. Such modulators are administered by any means effective to safely deliver the modulators to the CON202-expressing cells, including but not limited to oral administration, inhalation, or injection of compositions comprising the modulators in a pharmaceutically acceptable diluent, adjuvant, or carrier. Efficacy of treatment can initially be determined in any accepted animal model that provides a biochemical or behavioral marker that correlates with disease severity or treatment efficacy.

25

30

H. CON222

A 264 bp fragment of CON222 containing EcoRI and BamHI restriction sites was amplified from the full-length clone by PCR, using the primers LW1472 (5'GCATGAATTCTGCCATGTCAATCATTTCTCTC3'; SEQ ID NO: 62, EcoRI site is underlined) and LW1473 (5'GCATGGATCCGTTCTGCATTTTCC-AGGTCTC3'; SEQ ID NO: 63, BamHI site is underlined). The amplification product

10

15

20

25

was digested with EcoRI and BamHI, and then subcloned into a predigested pBluescript II vector (Stratagene). The 264 amplified and subcloned basepairs correspond to nucleotides 237 to 500 of SEQ ID NO: 15.

The subcloned CON222-Bluescript construct was used to generate strand-specific probes for the *in situ* hybridization experiments. The construct was linearized with BamHI, for labeling with T7 polymerase (sense), or EcoRI, for T3 polymerase (antisense), and used as a template for *in vitro* transcription of sense and antisense cRNA riboprobes. The riboprobes were labeled with ³⁵S-UTP to yield a specific activity of 4.25 x 10⁵ cpm/pmol for antisense and 3.9 x 10⁵ cpm/pmol for sense probe. Hybridization with the riboprobes and subsequent washing of the slides was carried out as described above for CON193 in Example 3A.

Specific labeling with the antisense probe showed wide spread distribution of CON222 mRNA in the rat brain. Labelled regions included the cortical regions, piriform cortex, striatum, hippocampus, thalamus, hypothalamus, dorsal raphe, and habenula.

The observed regional distribution of CON222 mRNA provides a therapeutic indication for natural ligands for CON222 as well as modulators of CON222 activity, such as anti-CON222 antibody substances or small molecules that agonize or antagonize ligand-mediated CON222 signaling. In particular, the expression pattern provides an indication that such molecules will have utility for treating neurological and/or psychiatric diseases, including but not limited to schizophrenia, affective disorders, attention deficit hyperactivity disorder/attention deficit disorder, depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, Alzhemeimer's disease, Parkinson's Disease, migraine, senile dementia, and the like. Use of CON222 modulators, including CON222 ligands and anti-CON222 antibodies, to treat individuals having such disease states is intended as an aspect of the invention. Such modulators are administered by any means effective to safely deliver the modulators to the CON222-expressing cells, including but not limited to oral administration, inhalation, or injection of compositions comprising the modulators in a pharmaceutically acceptable diluent, adjuvant, or carrier. Efficacy of treatment can initially be determined in any accepted animal model that provides a

biochemical or behavioral marker that correlates with disease severity or treatment efficacy.

I. CON215

5

A 261 bp fragment of CON215 containing *Eco*RI and *Bam*HI restriction sites was amplified from the full-length clone by PCR, using the primers LW1411: 5'-GCATGAATTCTGCCAAACATCATCCTGAC-3' (SEQ ID NO: 64) and LW1412: 5'-GCATGGATCCTACACAGCCACAACAACCC-3' (SEQ ID NO: 65). Primer LW1411 contains an *Eco*RI site (underlined) followed by sequence identical to CON215 coding nucleotides 521-537, which correspond to positions 533-549 of SEQ ID NO: 17. Primer LW1412 contain a *Bam*HI site (underlined) followed by sequence complementary to CON215 coding nucleotides 764-781, which correspond to positions 776-793 of SEQ ID NO: 17. The amplification product was digested with *Eco*RI and *Bam*HI, and then subcloned into an *Eco*RI- and *Bam*HI-digested pBluescript II vector (*Stratagene*). The 261 amplified and subcloned basepairs correspond to nucleotides 521 to 781 of SEQ ID NO: 17.

15

20

10

The subcloned CON215-Bluescript construct was used to generate strand-specific probes for the *in situ* hybridization experiments. The construct was linearized with *Bam*HI, for labeling with T7 polymerase (sense), or *Eco*RI, for T3 polymerase (antisense), and used as a template for *in vitro* transcription of sense and antisense cRNA riboprobes. The riboprobes were labeled with ³⁵S-UTP to yield a specific activity of 48.03 x 10⁶ cpm/pmol for antisense and 48.09 x 10⁶ cpm/pmol for sense probe. Hybridization with the riboprobes and subsequent washing of the slides was carried out as described above for CON193 in Example 3A.

25

Subsequently, the slides were exposed to Kodak BioMax MR-1 film. After 9 days of exposure, the film was developed. Slides containing sections that showed a hybridization signal on film autoradiograms were coated with Kodak NTB-2 nuclear track emulsion and stored in the dark for 25 days. The slides were then developed as described above for CON193 in Example 3A.

30

Specific labeling with the antisense probe showed distribution of CON215 mRNA in the rat brain in limbic endocrine and motor circuits. Specifically,

10

15

20

30

CON215 mRNA was present in the cortex, hippocampus, and red nucleus. The specificity of labeling was confirmed by microscopic analysis of emulsion coated sections. These sections revealed that the autoradiographic grains generated by the antisense probe were distributed over cell bodies rather than trapped between cell bodies. Sense probe did not generate specific labeling.

The observed regional distribution of CON215 mRNA provides a therapeutic indication for natural ligands for CON215 as well as modulators of CON215 activity, such as anti-CON215 antibody substances or small molecules that agonize or antagonize ligand-mediated CON1215 signaling. In particular, the expression pattern provides an indication that such molecules will have utility for treating neurological and/or psychiatric diseases, including but not limited to schizophrenia, depression, anxiety, bipolar disease, epilepsy, migraine, attention deficit (with or without hyperactive disorder), neuritis, neuasthenia, neuropathy, neuroses, Parkinson's disease, dementia, obesity, and the like. Use of CON215 modulators, including CON215 ligands and anti-CON215 antibodies, to treat individuals having such disease states is intended as an aspect of the invention.

Such modulators are administered by any means effective to safely deliver the modulators to the CON215-expressing cells, including but not limited to oral administration, inhalation, or injection of compositions comprising the modulators in a pharmaceutically acceptable diluent, adjuvant, or carrier. Efficacy of treatment can initially be determined in any accepted animal model that provides a biochemical or behavioral marker that correlates with disease severity or treatment efficacy.

25 J. <u>CON 217</u>

10

15

20

5'GCCCCTGTGGCGGTTTAGATCCAGAATGCCCATTTTCTGTTCCATCTAAC CA3' (SEQ ID NO: 69) which corresponds to the complement of nucleotides 1530 to 1479 of SEQ ID NO: 17. Both oligonucleotides, 217A and 217B, were reconstituted with 1x TE buffer to a concentration of 20 pMol/ml and labeled with ³³P-dATP to yield a specific activity of 2.08 x 10⁶ and 1.53 x 10⁶ cpm/ml, respectively.

Hybridization was carried out at 37°C overnight as described above for CON193 in Example 3A. Following the hybridizations, the coverslips were washed off the slides with 1x SSC for 45 minutes. The slides were then washed for 20 minutes at room temperature in 1x SSC followed by three high stringency washes in 1x SSC at 65°C. After washing, the slides were dehydrated with 70%, 95%, and 100% ethanol containing 0.3 mM NH₄OAc, air-dried, and exposed to Kodak BioMax MR-1 film. After 21 days of exposure, the film was developed. Based on these results, sections that showed a hybridization signal on film autoradiography were coated with Kodak NTB-2 nuclear track emulsion and stored in the dark for 42 days. The slides were then developed and counterstained with hematoxylin. Emulsion-coated sections were analyzed microscopically to determine the specificity of labeling. The signal was judged to be specific if autoradiographic grains (generated by antisense probe hybridization) were associated clearly with crystal violet stained cell bodies. Autoradiographic grains found between cell bodies were deemed non-specific.

Specific labeling with the antisense probe showed wide spread distribution of CON217 mRNA in the rat brain. Labelled regions included the cortex, piriform cortex, hippocampus, cerebellum, medulla, spinal cord, temporal lobe, putamen, substantia nigra and thalamus.

The observed regional distribution of CON217 mRNAs provide a therapeutic indication for natural ligands for these G protein-coupled receptors as well as modulators of their activity, such as anti-CON217 antibody substances or small molecules that mimic, agonize or antagonize ligand-mediated CON217 signaling. In particular, the expression patterns provide an indication that such molecules will have utility for treating neurological and/or psychiatric diseases, including but not limited to schizophrenia, affective disorders, attention deficit hyperactivity disorder/attention

25

deficit disorder, depression, anxiety, bipolar disease, epilepsy, neuritis, neurasthenia, neuropathy, neuroses, Alzhemeimer's disease, Parkinson's Disease, migraine, senile dementia, and the like. Use of CON217 polypeptide modulators, including CON217 ligands and anti-CON217 polypeptide antibodies, to treat individuals having such disease states is intended as an aspect of the invention. Such modulators are administered by any means effective to safely deliver the modulators to the GPCR polypeptide-expressing cells, including but not limited to oral administration, inhalation, or injection of compositions comprising the modulators in a pharmaceutically acceptable diluent, adjuvant, or carrier. Efficacy of treatment can initially be determined in any accepted animal model that provides a biochemical or behavioral marker that correlates with disease severity or treatment efficacy.

EXAMPLE 4

Recombinant Expression of GPCR Polypeptides in Eukaryotic Host Cells

15

20

5

10

To produce GPCR protein, a GPCR polypeptide-encoding polynucleotide is expressed in a suitable host cell using a suitable expression vector, using standard genetic engineering techniques. For example, one of the GPCR polypeptide-encoding sequences described in Example 1 (such as SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17 or 19) is subcloned into the commercial expression vector pzeoSV2 (Invitrogen, San Diego, CA) and transfected into Chinese Hamster Ovary (CHO) cells (ATCC CRL-1781) using the transfection reagent fuGENE 6 (Boehringer-Mannheim) and the transfection protocol provided in the product insert. Additional eukaryotic cell lines, such as African Green Monkey Kidney cells (COS-7, ATCC CRL-1651) or Human Kidney cells (HEK 293, ATCC CRL-1573), may be used as well. Cells stably expressing a GPCR polypeptide (e.g., CON193, CON166, CON103, CON203, CON198, CON197, CON202, CON222, CON215, or CON217) are selected by growth in the presence of 100 mg/ml zeocin (Stratagene, LaJolla, CA). Optionally, GPCR polypeptide is purified from the cells using standard chromatographic techniques. To facilitate purification, antisera is raised against one or more synthetic peptide sequences that correspond to portions of the GPCR amino acid sequence, and the antisera is used to affinity purify GPCR polypeptides. The

30

GPCR gene also may be expressed in frame with a tag sequence (e.g., polyhistidine, hemaggluttinin, FLAG) to facilitate purification. Moreover, it will be appreciated that many of the uses for GPCR polypeptides, such as assays described below, do not require purification of GPCR polypeptides from the host cell.

5

10

15

20

EXAMPLE 5

Antibodies to GPCR Polypeptides

Standard techniques are employed to generate polyclonal or monoclonal antibodies to the GPCR receptors (e.g., CON193, CON166, CON103, CON203, CON198, CON197, CON202, CON222, CON215, or CON217), and to generate useful antigen-binding fragments thereof or variants thereof, including "humanized" variants. Such protocols can be found, for example, in Sambrook et al., Molecular Cloning: a Laboratory Manual. Second Edition, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory (1989); Harlow et al. (Eds), Antibodies A Laboratory Manual; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY (1988); and other documents cited below. In one embodiment, recombinant GPCR polypeptides (or cells or cell membranes containing such polypeptides) of the invention are used as an antigen to generate the antibodies. In another embodiment, one or more peptides having amino acid sequences corresponding to an immunogenic portion of a GPCR polypeptide (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more amino acids) are used as antigen. Peptides corresponding to extracellular portions of GPCR polypeptides, especially hydrophilic extracellular portions, are preferred. The antigen may be mixed with an adjuvant or linked to a hapten to increase antibody production.

25

A. Polyclonal or Monoclonal antibodies

As one exemplary protocol, a recombinant GPCR polypeptide or synthetic fragment thereof is used to immunize a mouse for generation of monoclonal antibodies (or larger mammal, such as a rabbit, for polyclonal antibodies). To increase antigenicity, peptides are conjugated to Keyhole Lympet Hemocyanine (Pierce), according to the manufacturer's recommendations. For an initial injection,

the antigen is emulsified with Freund's Complete Adjuvant and injected subcutaneously. At intervals of two to three weeks, additional aliquots of GPCR antigen are emulsified with Freund's Incomplete Adjuvant and injected subcutaneously. Prior to the final booster injection, a serum sample is taken from the immunized mice and assayed by Western blot to confirm the presence of antibodies that immunoreact with GPCR polypeptide. Serum from the immunized animals may be used as a polyclonal antisera or used to isolate polyclonal antibodies that recognize GPCR polypeptide. Alternatively, the mice are sacrificed and their spleen removed for generation of monoclonal antibodies.

10

5

To generate monoclonal antibodies, the spleens are placed in 10 ml serum-free RPMI 1640, and single cell suspensions are formed by grinding the spleens in serum-free RPMI 1640, supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin, and 100 µg/ml streptomycin (RPMI) (Gibco, Canada). The cell suspensions are filtered and washed by centrifugation and resuspended in serum-free RPMI. Thymocytes taken from three naive Balb/c mice are prepared in a similar manner and used as a Feeder Layer. NS-1 myeloma cells, kept in log phase in RPMI with 10% fetal bovine serum (FBS) (Hyclone Laboratories, Inc., Logan, Utah) for three days prior to fusion, are centrifuged and washed as well.

20

15

To produce hybridoma fusions, spleen cells from the immunized mice are combined with NS-1 cells and centrifuged, and the supernatant is aspirated. The cell pellet is dislodged by tapping the tube, and 2 ml of 37°C PEG 1500 (50% in 75mM Hepes, pH 8.0) (Boehringer Mannheim) is stirred into the pellet, followed by the addition of serum-free RPMI. Thereafter, the cells are centrifuged and resuspended in RPMI containing 15% FBS, 100 μ M sodium hypoxanthine, 0.4 μ M aminopterin, 16 μ M thymidine (HAT) (Gibco), 25 units/ml of IL-6 (Boehringer Mannheim) and 1.5 x 10⁶ thymocytes/ml and plated into 10 Corning flat-bottom 96-well tissue culture plates (Corning, Corning New York).

25

On days 2, 4, and 6, after the fusion, 100 µl of medium is removed from the wells of the fusion plates and replaced with fresh medium. On day 8, the fusions are screened by ELISA, testing for the presence of mouse IgG that binds to a

GPCR polypeptide. Selected fusion wells are further cloned by dilution until monoclonal cultures producing anti-GPCR polypeptide antibodies are obtained.

B. Humanization of Anti-GPCR Monoclonal Antibodies

5

The expression patterns of GPCR polypepties as reported herein and the proven track record of GPCR's as targets for therapeutic intervention suggest therapeutic indications for GPCR polypeptide inhibitors (antagonists). GPCR polypeptide-neutralizing antibodies comprise one class of therapeutics useful as antagonists. Following are protocols to improve the utility of anti-GPCR polypeptide monoclonal antibodies as therapeutics in humans, by "humanizing" the monoclonal antibodies to improve their serum half-life and render them less immunogenic in human hosts (*i.e.*, to prevent human antibody response to non-human anti-GPCR polypeptide antibodies).

15

10

The principles of humanization have been described in the literature and are facilitated by the modular arrangement of antibody proteins. To minimize the possibility of binding complement, a humanized antibody of the IgG4 isotype is preferred.

20

For example, a level of humanization is achieved by generating chimeric antibodies comprising the variable domains of non-human antibody proteins of interest with the constant domains of human antibody molecules. (See, *e.g.*, Morrison and Oi, *Adv. Immunol.*, *44*:65-92 (1989). The variable domains of GPCR-neutralizing anti-GPCR antibodies are cloned from the genomic DNA of a B-cell hybridoma or from cDNA generated from mRNA isolated from the hybridoma of interest. The V region gene fragments are linked to exons encoding human antibody constant domains, and the resultant construct is expressed in suitable mammalian host cells (*e.g.*, myeloma or CHO cells).

25

To achieve an even greater level of humanization, only those portions of the variable region gene fragments that encode antigen-binding complementarity determining regions ("CDR") of the non-human monoclonal antibody genes are cloned into human antibody sequences. [See, e.g., Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science,

10

15

20

25

30

239:1534-36 (1988); and Tempest *et al.*. *Bio/Technology*, 9:266-71 (1991). If necessary, the β-sheet framework of the human antibody surrounding the CDR3 regions also is modified to more closely mirror the three dimensional structure of the antigen-binding domain of the original monoclonal antibody. (See Kettleborough *et al.*, *Protein Engin.*, 4:773-783 (1991); and Foote *et al.*, *J. Mol. Biol.*, 224:487-499 (1992).

In an alternative approach, the surface of a non-human monoclonal antibody of interest is humanized by altering selected surface residues of the non-human antibody, *e.g.*, by site-directed mutagenesis, while retaining all of the interior and contacting residues of the non-human antibody. See Padlan, *Molecular Immunol.*, 28(4/5):489-98 (1991).

The foregoing approaches are employed using GPCR-neutralizing anti-GPCR monoclonal antibodies and the hybridomas that produce them to generate humanized GPCR-neutralizing antibodies useful as therapeutics to treat or palliate conditions wherein GPCR expression or ligand-mediated GPCR signaling is detrimental.

C. Human GPCR-Neutralizing Antibodies from Phage Display

Human GPCR-neutralizing antibodies are generated by phage display techniques such as those described in Aujame *et al.*, *Human Antibodies*, *8*(*4*):155-168 (1997); Hoogenboom, *TIBTECH*, *15*:62-70 (1997); and Rader *et al.*, *Curr. Opin. Biotechnol.*, *8*:503-508 (1997), all of which are incorporated by reference. For example, antibody variable regions in the form of Fab fragments or linked single chain Fv fragments are fused to the amino terminus of filamentous phage minor coat protein pIII. Expression of the fusion protein and incorporation thereof into the mature phage coat results in phage particles that present an antibody on their surface and contain the genetic material encoding the antibody. A phage library comprising such constructs is expressed in bacteria, and the library is panned (screened) for GPCR-specific phage-antibodies using labelled or immobilized GPCR polypeptide as antigen-probe.

10

15

20

25

30

D. Human GPCR-Neutralizing Antibodies from Transgenic Mice

Human GPCR-neutralizing antibodies are generated in transgenic mice essentially as described in Bruggemann and Neuberger, *Immunol. Today*, 17(8):391-97 (1996) and Bruggemann and Taussig, *Curr. Opin. Biotechnol.*, 8:455-58 (1997). Transgenic mice carrying human V-gene segments in germline configuration and that express these transgenes in their lymphoid tissue are immunized with a GPCR composition using conventional immunization protocols. Hybridomas are generated using B cells from the immunized mice using conventional protocols and screened to identify hybridomas secreting anti-GPCR human antibodies (*e.g.*, as described above).

EXAMPLE 6

Assays to Identify Modulators of GPCR Polypeptide Activity

Set forth below are assays for identifying modulators (agonists and antagonists) of GPCR polypeptide activity. Among the modulators that can be identified by these assays include natural ligand compounds of the receptor; synthetic analogs and derivatives of natural ligands; antibodies, antibody fragments, and/or antibody-like compounds derived from natural antibodies or from antibody-like combinatorial libraries; and/or synthetic compounds identified through high throughput screening of libraries; and the like. All modulators that bind GPCR polypeptide are useful for identifying GPCR polypeptide in tissue samples (e.g., for diagnostic purposes, pathological purposes, and the like). Agonist and antagonist modulators are useful for up-regulating and down-regulating GPCR polypeptide activity, respectively, to treat disease states characterized by abnormal levels of GPCR polypeptide activity. GPCR polypeptide binding molecules also may be used to deliver a therapeutic compound or a label to cells that express GPCR polypeptide (e.g., by attaching the compound or label to the binding molecule). The assays may be performed using single putative modulators, and/or may be performed using a known agonist in combination with candidate antagonists (or visa versa). Performance of the assays using any of the GPCR polypeptides of the invention described herein (e.g., CON193, CON166, CON103, CON203, CON198, CON197,

CON202, CON222, CON215, or CON217) is contemplated. It will be appreciated that co-transfecting cells with two or more of the receptors for simultaneous screening also is possible.

A. <u>cAMP Assays</u>

5

10

15

20

In one type of assay, levels of cyclic adenosine monophosphate (cAMP) are measured in GPCR-transfected cells that have been exposed to candidate modulator compounds. Protocols for cAMP assays have been described in the literature. [See, e.g., Sutherland et al., Circulation, 37: 279 (1968); Frandsen, E.K. and Krishna, G, Life Sciences, 18: 529-541 (1976); Dooley et al., Journal of Pharmacology and Experimental Therapeutics, 283 (2): 735-41 (1997); and George et al., Journal of Biomolecular Screening, 2 (4): 235-40 (1997).] An exemplary protocol for such an assay, using an Adenylyl Cyclase Activation FlashPlate® Assay from NENTM Life Science Products, is set forth below.

Briefly, the GPCR coding sequence (*e.g.*, a cDNA or intronless genomic DNA) is subcloned into a commercial expression vector, such as pzeoSV2 (Invitrogen, San Diego, CA), and transiently transfected into Chinese Hamster Ovary (CHO) cells using known methods, such as the transfection reagent FuGENE 6 (Boehringer-Mannheim) and the transfection protocol provided in the product insert.

The transfected CHO cells are seeded into the 96 well microplates from the FlashPlate® assay kit, which are coated with solid scintillant to which antisera to cAMP has been bound. For a control, some wells are seeded with wild type (untransfected) CHO cells. Other wells on the plate receive various amounts of cAMP standard solution for use in creating a standard curve.

One or more test compounds are added to the cells in each well, with water and/or compound-free media/diluent serving as a control. After treatment, cAMP is allowed to accumulate in the cells for exactly 15 minutes at room temperature. The assay is terminated by the addition of lysis buffer containing [125I]-labelled cAMP, and the plate is counted using a Packard TopcountTM 96-well microplate scintillation counter. Unlabelled cAMP from the lysed cells (or from standards) competes with the fixed amounts of [125I]-cAMP for antibody bound to the

25

plate. A standard curve is constructed, and cAMP values for the unknowns are obtained by interpolation. Changes in intracellular cAMP level of the cells in response to exposure to a test compound are indicative of GPCR polypeptide modulating activity. Modulators that act as agonists at receptors which couple to the Gs subtype of G-proteins will stimulate production of cAMP, leading to a measurable 3-10 fold increase. Receptor agonists which couple to the Gi/o subtype of G-proteins will inhibit forskolin-stimulated cAMP production, leading to a measurable decrease of 50-100%. Modulators that act as inverse agonists will reverse these effects at receptors that are either constitutively active or activated by known agonists.

10

15

20

5

B. Aequorin Assays

In another assay cells (e.g., CHO cells) are transiently co-transfected with both a GPCR expression construct and a construct that encodes the photoprotein apoaequorin. In the presence of the cofactor coelenterazine, apoaequorin will emit a measurable luminescence that is proportional to the amount of intracellular (cytoplasmic) free calcium. [See generally Cobbold P.H. and Lee, J.A.C. "Aequorin measurements of cytoplasmic free calcium. In: McCormack J.G. and Cobbold P.H., eds., Cellular Calcium: A Practical Approach. Oxford:IRL Press (1991); Stables et al., Analytical Biochemistry, 252: 115-26 (1997); and Haugland, R.P. Handbook of Fluorescent Probes and Research Chemicals. Sixth edition. Eugene OR: Molecular Probes (1996).]

In one exemplary assay, a GPCR-encoding polynucleotide is subcloned into the commercial expression vector pzeoSV2 (Invitrogen, San Diego, CA) and transiently co-transfected along with a construct that encodes the photoprotein apoaequorin (Molecular Probes, Eugene, OR) into CHO cells using the transfection reagent FuGENE 6 (Boehringer-Mannheim) and the transfection protocol provided in the product insert.

The cells are cultured for 24 hours at 37°C in αMEM (Gibco/BRL, Gaithersburg, MD) supplemented with 10% FBS, 2 mM glutamine, 10 U/ml of penicillin and 10 μg/ml of streptomycin. Subsequently, the media is changed to serum-free αMEM containing 5 μM coelenterazine (Molecular Probes, Eugene, OR),

30

10

15

20

25

30

and the cells are cultured for two additional hours at 37° C. Cells are then detached from the plate using VERSEN (Gibco/BRL), washed and resuspended at 2×10^{5} cells/ml in serum-free α MEM.

Dilutions of candidate GPCR modulator drugs are prepared in serum-free α MEM and dispensed into wells of an opaque 96-well assay plate, 50 μ l/well. Plates are loaded onto an MLX microtiter plate luminometer (Dynex Technologies, Inc., Chantilly, VA). The instrument is programmed to dispense 50 μ l of cell suspension into each well, one well at a time, and immediately read luminescence for 15 seconds. Dose-response curves for the modulator candidates are constructed using the area under the curve for each light signal peak. Data are analyzed with SlideWrite, using the equation for 1-site ligand, and EC₅₀ values are obtained. Changes in luminescence caused by the drugs are considered indicative of modulatory activity. Modulators that act as receptor agonists which couple to the Gq subtype of G-proteins give an increase in luminescence of up to 100 fold. Modulators that act as inverse agonists will reverse this effect at receptors that are either constitutively active or activated by known agonists.

C. <u>Luciferase Reporter Gene Assay</u>

The photoprotein luciferase provides another useful tool for assaying for modulators of GPCR activity. Cells (*e.g.*, CHO cells or COS 7 cells) are transiently co-transfected with both a GPCR expression construct (*e.g.*, GPCR-encoding sequence in pzeoSV2 (Invitrogen, San Diego, CA)) and a reporter construct which includes a gene for the luciferase protein downstream from a transcription factor, either cAMP-response element (CRE), AP-1, or NF kappa B. Agonist binding to receptors coupled to the Gs subtype of G-proteins leads to increases in cAMP, activating the CRE transcription factor and resulting in expression of the luciferase gene. Agonist binding to receptors coupled to the Gq subtype of G-protein leads to production of diacylglycerol that activates protein kinase C. As a result, the AP-1 or NF kappa B transcription factors are activated which stimulate expression of the luciferase gene. Expression levels of luciferase reflect the activation status of the signaling events. [See generally George *et al.*, *Journal of Biomolecular Screening*,

10

15

20

25

2(4): 235-40 (1997); and Stratowa et al., Current Opinion in Biotechnology, 6: 574-81 (1995).] Luciferase activity may be quantitatively measured using, e.g., luciferase assay reagents that are commercially available from Promega (Madison, WI).

In one exemplary assay, CHO cells are plated in 24-well culture dishes at a density of 100,000 cells/well one day prior to transfection and cultured at 37°C in αMEM (Gibco/BRL, Gaithersburg, MD) supplemented with 10% FBS, 2 mM glutamine, 10 U/ml penicillin and 10 µg/ml streptomycin. Cells are transiently co-transfected with both a GPCR expression construct and a reporter construct containing the luciferase gene. The reporter plasmids CRE-luciferase, AP-1-luciferase and NF kappa B-luciferase may be purchased from Stratagene (LaJolla, CA). Transfections are performed using FuGENE 6 transfection reagent (Boehringer-Mannheim), and the protocol provided in the product insert. Cells transfected with the reporter construct alone are used as a control. Twenty-four hours after transfection, cells are washed once with phosphate buffered saline (PBS) pre-warmed to 37°C. Serum-free aMEM is then added to the cells either alone (control) or with one or more candidate modulators and the cells are incubated at 37°C for five hours. Thereafter, cells are washed once with ice cold PBS and lysed by the addition of 100 µl of lysis buffer/well (from luciferase assay kit, Promega, Madison, WI). After incubation for 15 minutes at room temperature, 15 µl of the lysate is mixed with 50 µl substrate solution (Promega) in an opaque white 96-well plate, and the luminescence is read immediately on a Wallace model 1450 MicroBeta scintillation and luminescence counter (Wallace Instruments, Gaithersburg, MD).

Differences in luminescence in the presence versus the absence of a candidate modulator compound are indicative of modulatory activity. Receptors that are either constitutively active or activated by agonists give a 3-20 fold stimulation of luminescence compared to cells transfected with the reporter gene alone. Modulators that act as inverse agonists will reverse this effect.

D. Intracellular Calcium Measurement using FLIPR

Changes in intracellular calcium levels are another recognized indicator of G protein-coupled receptor activity, and such assays can be employed to

٠.,

5

10

15

20

25

evaluate modulators of GPCR activity. For example, CHO cells stably transfected with a GPCR expression vector are plated at a density of 4 x 10⁴ cells/well in Packard black-walled 96-well plates specially designed to isolate fluorescent signal to individual wells. The cells are incubated for 60 minutes at 37°C in modified Dulbecco's PBS (D-PBS) containing 36 mg/L of pyruvate and 1 g/L of glucose with the addition of 1% FBS and one of four calcium indicator dyes (Fluo-3TM AM, Fluo-4TM AM, Calcium GreenTM-1 AM, or Oregon GreenTM 488 BAPTA-1 AM) at a concentration of 4 μM. Plates are washed once with modified D-PBS without 1% FBS and incubated for 10 minutes at 37°C to remove residual dye from the cellular membrane. In addition, a series of washes with modified D-PBS without 1% FBS is performed immediately prior to activation of the calcium response.

Calcium response is initiated by the addition of one or more candidate receptor agonist compounds, calcium ionophore A23187 (10 μM), or ATP (4 μM). Fluorescence is measured by Molecular Device's FLIPR with an argon laser, excitation at 488 nm. [See, *e.g.*, Kuntzweiler *et al.*, *Drug Development Research*, 44(1): 14-20 (1998).] The F-stop for the detector camera was set at 2.5 and the length of exposure was 0.4 milliseconds. Basal fluorescence of cells was measured for 20 seconds prior to addition of agonist, ATP, or A23187, and was subtracted from the response signal. The calcium signal is measured for approximately 200 seconds, taking readings every two seconds. Calcium ionophore and ATP increase the calcium signal 200% above baseline levels. In general, activated orphan GPCRs increase the calcium signal approximately 10-15% above baseline signal.

E. Mitogenesis Assay

In mitogenesis assays, the ability of candidate modulators to induce or inhibit GPCR-mediated cell growth is determined. [See, e.g., Lajiness et al., Journal of Pharmacology and Experimental Therapeutics, 267(3): 1573-81 (1993).]

For example, CHO cells stably expressing a GPCR are seeded into 96-well plates at a density of 5000 cells/well and grown at 37°C in αMEM supplemented with 10% fetal calf serum. After 48 hours, the cells are rinsed twice with serum-free αMEM and 80 μl of fresh αMEM, or αMEM containing a known mitogen, is added

along with $20~\mu l$ α MEM containing varying concentrations of one or more test compounds diluted in serum free media. As controls, some wells on each plate receive serum-free media alone, and some receive media containing 10% FBS. Untransfected cells or cells transfected with vector alone also may serve as controls.

5

10

After culture for 16-18 hours, 1 μ Ci/well of [³H]-thymidine (2 Ci/mmol; cpm) is added to the wells and cells are incubated for an additional 2 hours at 37°C. The cells are trypsinized and harvested onto filter mats with a cell harvester (Tomtec) and the filters are counted in a Betaplate counter. The incorporation of ³H-thymidine in serum-free test wells is compared to the results achieved in cells stimulated with serum. Use of multiple concentrations of test compounds permits creation and analysis of dose-response curves using the non-linear, least squares fit equation: $A = B \times [C/(D+C)] + G$ where A is the percent of serum stimulation; B is the maximal effect minus baseline; C is the EC_{50} ; D is the concentration of the compound; and G is the maximal effect. Parameters B, C and G are determined by Simplex optimization.

15

Agonists that bind to the receptor are expected to increase [³H]-thymidine incorporation into cells, showing up to 80% of the response to serum. Antagonists that bind to the receptor will inhibit the stimulation seen with a known agonist by up to 100%.

20

25

F. [35S]GTPγS Binding Assay

Because G protein-coupled receptors signal through intracellular "G proteins" whose activity involves GTP/GDP binding and hydrolysis. Another indicator of GPCR modulator activity is measuring binding of the non-hydrolyzable GTP analog [35S]GTPγS in the presence and absence of putative modulators. [See, e.g., Kowal, et al., Neuropharmacology, 37: 179-87 (1998).]

In one exemplary assay, cells stably transfected with a GPCR expression vector are grown in 10 cm dishes to subconfluence, rinsed once with 5 ml of ice cold Ca²⁺/Mg²⁺ free PBS, and scraped into 5 ml of the same buffer. Cells are pelleted by centrifugation (500 x g, 5 minutes), resuspended in TEE buffer (25 mM Tris, 5 mM EDTA, 5 mM EGTA, pH 7.5) and frozen in liquid nitrogen. After

10

15

20

thawing, the cells are homogenized using a dounce (one ml TEE per plate of cells), and centrifuged at 1,000 x g for 5 minutes to remove nuclei and unbroken cells.

The homogenate supernatant is centrifuged at 20,000 x g for 20 minutes to isolate the membrane fraction. The membrane pellet is then washed once with TEE and resuspended in binding buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 10 mM MgCl₂, 1 mM EDTA). The resuspended membranes can be frozen in liquid nitrogen and stored at -70°C until use.

Aliquots of cell membranes prepared as described above and stored at -70°C are thawed, homogenized, and diluted to a concentration of 10-50 μ g/ml in buffer containing 20 mM HEPES, 10 mM MgCl₂, 1 mM EDTA, 120 mM NaCl, 10 μ M GDP, and 0.2 mM ascorbate. In a final volume of 90 μ l, homogenates are incubated with varying concentrations of putative modulator compounds or 100 μ M GTP for 30 minutes at 30°C and then placed on ice. To each sample, 10 μ l guanosine 5'-O-(3[35 S]thio) triphosphate (NEN, 1200 Ci/mmol), ([35 S]-GTP γ S), was added to a final concentration of 100-200 pM. Samples are incubated at 30°C for an additional 30 minutes. The reaction is then stopped by the addition of 1 ml of 10 mM HEPES, and 10 mM MgCl₂ (pH 7.4), at 4°C, and filtration.

Samples are filtered over Whatman GF/B filters. These filters are washed with 20 ml ice-cold 10 mM HEPES (pH 7.4) and 10 mM MgCl₂ and counted by liquid scintillation spectroscopy. Nonspecific binding of [³⁵S]-GTPγS is measured in the presence of 100 μM GTP and subtracted from the total. Compounds are selected that modulate the amount of [³⁵S]-GTPγS binding in the cells, compared to untransfected control cells. Activation of receptors by agonists gives up to a five-fold increase in [³⁵S]GTPγS binding. This response is blocked by antagonists.

25

30

G. MAP Kinase Activity Assay

Evaluation of MAP Kinase activity in cells expressing a GPCR provide another assay to identify modulators of GPCR activity. [See, *e.g.*, Lajiness *et al.*, *Journal of Pharmacology and Experimental Therapeutics*, 267(3): 1573-81 (1993); and Boulton *et al.*, Cell, 65: 663-75 (1991).]

10

15

20

25

30

In one embodiment, CHO cells stably transfected with a GPCR-encoding polynucleotide are seeded into 6 well plates at a density of 70,000 cells/well 48 hours prior to the assay. During this time, the cells are cultured at 37°C in αMEM media supplemented with 10% FBS, 2 mM glutamine, 10 U/ml penicillin and 10 μg/ml streptomycin. The cells are serum starved for 1-2 hours prior to the addition of stimulants.

For the assay, the cells are treated with media alone or media containing a putative agonist or phorbal ester-myistoyl acetate (PMA) as a positive control. After treatment, cells are incubated at 37°C for varying times. To stop the reaction, the plates are placed on ice, the media is aspirated, and the cells are rinsed with 1 ml of ice-cold PBS containing 1 mM EDTA. Thereafter, 200 μl cell lysis buffer (12.5 mM MOPS (pH 7.3), 12.5 mM β-glycerophosphate, 7.5 mM MgCl₂, 0.5 mM EGTA, 0.5 mM sodium vanadate, 1 mM benzamidine, 1 mM dithiothreitol, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 2 μg/ml pepstatin A, and 1 μM okadaic acid) is added to the cells. The cells are scraped from the plates and homogenized by 10 passages through a 23 3/4 gauge needle. The cytosol fraction is prepared by centrifugation at 20,000 x g for 15 minutes.

Aliquots (5-10 μl containing 1-5 μg protein) of cytosols are mixed with 1 mM MAPK Substrate Peptide (APRTPGGRR; SEQ ID NO: 25); Upstate Biotechnology, Inc., N.Y.) and 50 μM [γ-³²P]ATP, (NEN, 3000 Ci/mmol) diluted to a final specific activity of ~2000 cpm/pmol in a total volume of 25 μl. The samples are incubated for 5 minutes at 30°C, and reactions are stopped by spotting 20 μl on 2 cm² of Whatman P81 phosphocellulose paper. The filter squares are washed in 4 changes of 1% H₃PO₄, and the squares are counted by liquid scintillation spectroscopy. Equivalent cytosolic extracts are incubated without MAPK substrate peptide, and the cpm from these samples are subtracted from the matched samples with the substrate peptide. The cytosolic extract from each well is used as a separate point. Protein concentrations are determined by a dye binding protein assay (Bio-Rad). Agonist activation of the receptor is expected to result in up to a five fold increase in MAPK enzyme activity. This increase is blocked by antagonists.

H. [3H]Arachidonic Acid Release

The activation of GPCR's also has been observed to potentiate arachidonic acid release in cells, providing yet another useful assay for modulators of the activity of GPCR's of the present invention. [See, *e.g.*, Kanterman *et al.*, *Molecular Pharmacology, 39*: 364-9 (1991).] For example, CHO cells that are stably transfected with a GPCR expression vector are plated in 24-well plates at a density of 15,000 cells/well and grown in αMEM media supplemented with 10% FBS, 2 mM glutamine, 10 U/ml penicillin and 10 μg/ml streptomycin for 48 hours at 37°C before use. Cells of each well are labeled by incubation with [³H]arachidonic acid (Amersham Corp., 210 Ci/mmol) at 0.5 μCi/ml in 1 ml αMEM supplemented with 10 mM HEPES (pH 7.5), and 0.5% fatty-acid-free bovine serum albumin for 2 hours at 37°C. The cells are then washed twice with 1 ml of the same buffer.

Candidate modulator compounds are added in 1 ml of the same buffer, either alone or containing 10 µM ATP (Adenosine 5'-triphosphate) and the cells are incubated at 37°C for 30 minutes. Buffer alone and mock transfected cells are used as controls. Samples (0.5 ml) from each well are counted by liquid scintillation spectroscopy. Agonists which activate the receptor will lead to potentiation of the ATP-stimulated release of [³H]-arachidonic acid. This potentiation is blocked by antagonists.

20

25

30

5

10

15

I. Extracellular Acidification Rate

In yet another assay, the effects of putative modulators of GPCR activity are assayed by monitoring extracellular changes in pH induced by the putative modulators. [See, e.g., Dunlop et al., Journal of Pharmacological and Toxicological Methods, 40(1): 47-55 (1998).]

CHO cells transfected with a GPCR expression vector are seeded into 12-mm capsule cups (Molecular Devices Corp.) at 4 x 10^5 cells/cup in α MEM supplemented with 10% FBS, 2 mM 1-glutamine, 10 units/ml penicillin, and 10 μ g/ml streptomycin. The cells are incubated in this media at 37°C in 5% CO₂ for 24 hours.

Extracellular acidification rates are measured using a Cytosensor microphysiometer (Molecular Devices Corp.). The capsule cups are loaded into the

10

15

20

25

sensor chambers of the microphysiometer and the chambers are perfused with running buffer (bicarbonate free aMEM supplemented with 4 mM 1-glutamine, 10 units/ml penicillin, 10 μg/ml streptomycin, 26 mM NaCl) at a flow rate of 100 μl/min. Agonists or other agents are diluted into the running buffer and perfused through a second fluid path. During each 60 second pump cycle, the pump is run for 38 seconds and is off for the remaining 22 seconds. The pH of the running buffer in the sensor chamber is recorded during the cycle from 43-58 seconds, and the pump is re-started at 60 seconds to start the next cycle. The rate of acidification of the running buffer during the recording time is calculated by the Cytosoft program. Changes in the rates of acidification are calculated by subtracting the baseline value (the average of 4 rate measurements immediately before addition of modulator candidates) from the highest rate measurement obtained after addition of a modulator candidate. The selected instrument detects 61 mV/pH unit. Modulators that act as agonists at the receptor result in an increase in the rate of extracellular acidification as compared to the rate in the absence of agonist. This response is blocked by modulators which act as antagonists at the receptor.

EXAMPLE 7

Luciferase Reporter Gene Assays

Luciferase reporter gene assays (essentially as described in Example 6) were carried out to measure signaling activity of the GPCR receptors when coupled to Gs, Gi or Gq G-proteins. Activation of Gs coupled receptors results in stimulation of intracellualar cAMP production which leads to activation of the transcription factor cyclic AMP response element (CRE). Therefore activation of Gs coupled receptors can be detected by measuring transcription and translation of the reporter gene CRE-luciferase. The level of expression of the CRE reporter gene is dependent on the intracellular level of cAMP. Similarily, activation of Gs, Gi or Gq coupled receptors will result in activation of the AP-1 transcription factor. Expression of the AP-1 transcription factor can be attributed to changes in cAMP levels and/or increases in the levels of intracellular calcium and therefore can be an indication of G-protein

30

coupled receptor activation.

10

15

20

25

CHO 10001A cells (Gottesman et al., Somatic Cell Genetics 6: 45-61, 1980) were maintained in Minimal Essential Medium (MEM) supplemented with 10% FBS (Hyclone Laboratories, Inc., Logan, Utah) at 37°C in an atmosphere of 5% CO₂. The cells were split 1:5 twice a week for maintence. Plasmids used in the experiments were propogated in *E.coli* strain DH5 (Gibco BRL) and purified using the Qiagen Maxi-prep plasmid purification system according to the manufacturer's instructions.

One day prior to transfection, 1x10⁵ CHO cells/well were plated on 24 well culture plates and allowed to adhere overnight. Each well on the plate was transfected with 0.5 µg of either AP-1 luciferase (Stratagene,, LaJolla, CA) or CRE luciferase plasmid alone or in combination with 0.125 µg of a GPCR plasmid (GPCR DNA inserted into the pCDNA3 vector form Invitrogen). Cell were transiently transfected with the commercially available transfection reagent FUGENE-6 according the manufacturer's instructions (Boehringer Mannheim, Indianapolis, IN).

Twenty-four hours after transfection, the cells were washed in PBS pre-warmed to 37°C. Agonists and antagonists were diluted in pre-warmed serumfree MEM, added to the transfected cells and incubated at 37°C, 5% CO₂ for 5 hours. Subsequently, the cells were washed once in ice cold PBS and lysed with the addition of 100 µl of lysis buffer (Promega) to each well. fter a 15 minute incubation at room temperature, luciferase reporter gene activation was analyzed with the Luciferase Assay Reagents commercially available from Promega (Madison. WI). An alloquot of lysate (15 µl) was mixed with 50 µl of substrate solution in an opaque white 96 well plate. The luminescence from the plate was read in a Wallance 1450 MicroBeta scintillation and luminscence counter (Wallac Instruments, Gaithersburg, MD). Constitutive GPCR activity was calculated as activity measured in GPCR transfected cells divided by activity measured in control cells (control cells= luciferase-transfected cells in the absence of GPCR plasmid). The measurements of GPCR constitutive activity (as a percentage of control measurements) are summarized in the table below:

10

15

20

<u>GPCR</u>	CRE Activity	AP-1 Activity
CON193	128%	100%
CON197	165%	100%
CON198	178%	146%
CON203	100%	468%
CON215	173%	307%
CON222	100%	100%
CON202	135%	336%
CON166	115%	100%
CON217	211%	100%

These results provide useful information for designing screening assays to identify molecules (natural or artificial) that activate or inhibit the GPCR's of the invention. For example, compound libraries can be screened using the AP-1 luciferase (for CON198, CON203, CON215, or CON202) or the CRE-luciferase assay (for CON193, CON197, CON198, CON215, CON202, and CON166) to identify compounds which increase the signaling activity in GPCR polypeptide expressing cells as compared to receptor negative cells. The identified compounds may be useful for predicting endogenous ligands for the GPCR polypeptides, for measuring the physiological effects of GPCR activation in animal models, and for designing therapeutics to modulate GPCR activity to treat disease states.

EXAMPLE 8

Chromosomal Localization of GPCR

25 The following example pertains to chromosomal localization of GPCR genes of the present invention (e.g., CON193, CON166, CON103, CON203, CON198, CON197, CON202, CON222, CON215, or CON217). The chromosomal localization permits use of the GPCR polynucleotide sequences (including fragments thereof) as chromosomal markers to assist with genome mapping and to provide markers for disease states. Chromosomal localization also permits correlation of the

GPCR's of the invention with disease states in which aberrant activity of the GPCR is implicated, especially disease states that have previously linked (or will be linked) with mutations, polymorphisms, chromosomal rearrangements, and other chromosomal changes near the locus of the GPCR gene.

5

A. CON197

Chomosomal localization of the gene encoding CON197 (SEQ ID NO: 11) was determined using the Standford G3 Radiation Hybrid Panel (Research Genetics, Inc. Huntsville, AL). This panel contains 83 radiation hybrid clones of the entire human genome as created by the Stanford Human Gemone Center (Stanford, California). PCR was carried out with each clone within the Hybrid Panel and the results were submitted to the Standford Human Genomic Center via e-mail for analysis (http://www.shgc.standford.edu/RH/rhserverformnew.html).

PCR reactions were carried out with the Expand Hi-Fi PCR System[™]

15

20

25

10

according the manufacturer's instructions (Roche Molecular Biochemicals, Indianapolis, IN). Primers, synthesized by Genosys Corp. (The Woodlands, TX), were designed to generate a 10 base pair fragment of CON197-encoding DNA in the presence of the appropriate genomic DNA. The forward primer, denoted as LW1332 (TCCTACTGTCATGAACCC; SEQ ID NO: 74), corresponded to nuceotides 396 through 413 of SEQ ID NO: 11. The reverse primer, denoted as LW1333 (CAGAAGAAGTTGTCCAGC; SEQ ID NO: 75), corresponded to the complement of nucleotides 519 through 536 of SEQ ID NO: 11. Each reaction contained 25 ng of DNA from a hybrid clone, 60 ng of Primer LW1332, and 60 ng of Primer LW1333 resulting in a final volume of 15 μl. The PCR reactions were carried our in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems) under the following conditions: 94°C for 3 minutes followed by 35 cycles of 94°C for 30 seconds, 52°C for 1 minute, and 72°C for 2 minutes. The PCR reactions were then analyzed on a 2.0% agarose gel and stained with ethidium bromide. The lanes were scored for the presence of the 140 base pair PCR product.

30

The G3 Hybrid Panal analysis revealed that the CON197 gene (SEQ ID NO: 11) was localized to chromosome 14, most nearly linked to Standford marker

SHGC-10764 with a LOD score of 9.10. The SHGC-10764 marker lies at position 1q11.1.

B. CON202

5

Chomosomal localization of the gene encoding CON202 (SEQ ID NO: 13) was determined using the Standford G3 Radiation Hybrid Panel (Research Genetics, Inc. Huntsville, AL). This panel contains 83 radiation hybrid clones of the entire human genome as created by the Stanford Human Gemone Center (Stanford, California). PCR was carried out with each clone within the Hybrid Panel and the results were submitted to the Standford Human Genomic Center via e-mail for analysis (http://www.shgc.standford.edu/RH/rhserverformnew.html).

10

15

20

25

PCR reactions were carried out with the Expand Hi-Fi PCR SystemTM according the manufacturer's instructions (Roche Molecular Biochemicals, Indianapolis, IN). Primers, synthesized by Genosys Corp. (The Woodlands, TX), were designed to generate a 250 base pair fragment of CON202-encoding DNA in the presence of the appropriate genomic DNA. The forward primer, denoted as LW1480 (GGTTCTACCTGGACTTATGG; SEQ ID NO: 70), corresponded to nuceotides 515 through 534 of SEQ ID NO: 13. The reverse primer, denoted as LW1481 (TAATGAATGAGTAAGTGCCC; SEQ ID NO: 71), corresponded to the complement of nucleotides 745 through 764 of SEQ ID NO: 13. Each reaction contained 25 ng of DNA from a hybrid clone, 60 ng of Primer LW1480, and 60 ng of Primer LW1481 resulting in a final volume of 15 µl. The PCR reactions were carried our in a GeneAmp 9700 PCR thermocycler (Perkin Elmer Applied Biosystems) under the following conditions: 94°C for 3 minutes followed by 35 cycles of 94°C for 30 seconds, 52°C for 1 minute, and 72°C for 2 minutes. The PCR reactions were then analyzed on a 2.0% agarose gel and stained with ethidium bromide. The lanes were scored for the presence of the 250 base pair PCR product.

The G3 Hybrid Panal analysis revealed that the CON202 gene (SEQ ID NO: 13) was localized to chromosome 7, most nearly linked to Standford marker SHGC-12021 with a LOD score of 10.36. The SHGC-12021 marker lies at position 7q21. There is evidence that schizophrenia is linked to chromosome 7q22, and

10

15

therefor any genes localized to this region are candidates for disease involvement or susceptibility. [See Ekelund *et al.*, *Human Mol. Genetics* 9(7): 1049-1057 (2000); Faraone *et al.*, *Am. J. Med. Genet.* 81: 290-295 (September, 1998); and Blouin *et al.*, *Nat. Genet.*, 20: 70-73 (1998)]. The SHGC-12021 marker is proximal to 7q22 (~1 cM) and therefore may be associated with schizophrenia susceptibility.

In particular, G protein-coupled receptors, such as CON202 polypeptide, have the biochemical and functional potential to play a role in the disease process of schizophenia. CON202 is an attractive target for screening for ligands (natural and synthetic) that are useful in modulating cellular processes involved in schizophrenia. In addition, the chromosomal localization data (especially coupled with CON202 expression patterns in the brain) identifies CON202 as a candidate for screening healthy and affected (schizophrenia) individuals for CON202 allelic variants, mutations, duplications, rearrangements, and other chromosomal variations that correlate with the disease state. Variations that correlate with disease state are useful for diagnosis of disease or disease susceptibility. CON202 constructs containing the variations are useful for designing targeted therapeutics for treatment of the disease (e.g., by using the assays for modulators described in preceding examples.

20 C. High throughput Analysis

The EMBL High Throughput Genome database (provided by the European Bioinformics Institute) was searched with GPCR nucleotide sequences to determine chromosomal localization for CON193, CON166, CON103, CON203, CON198, and CON215 genes. The results are summarized in the table below:

	<u>GPCR</u>	SEQ ID NO:	<u>Chomosome</u> <u>Localization</u>	Based on Genbank Accession No.
	CON193	1	11	AC026090
	CON166	3	X	AC021992
	CON103	5	2	AC013396
5	CON203	7	3	AC024886
	CON198	9	11	AC025249
	CON215	17	3	AC024886

While the present invention has been described in terms of specific embodiments, it is understood that variations and modifications will occur to those in the art, all of which are intended as aspects of the present invention. Accordingly, only such limitations as appear in the claims should be placed on the invention.

Summary of Sequences:

15	SEQ ID NO.	Description
	1	CON 193 DNA
	2	CON 193 protein
	3	CON 166 DNA
	4	CON 166 protein
20	5	CON 103 DNA
	6	CON 103 protein
	7	CON 203 DNA
	8	CON 203 protein
	9	CON 198 DNA
25	10	CON 198 protein
	11	CON 197 DNA
	12	CON 197 protein
	13	CON 202 DNA
	14	CON 202 protein
30	15	CON 222 DNA
	16	CON 222 protein
	17	CON 215 DNA

SEQ ID NO.

Description

		SEQ ID NO.	<u>Description</u>
		52	PCR primer GV 599 for CON 202
		53	PCR primer GV 600 for CON 202
		54	PCR primer LW 1482 for CON 202
		55	PCR primer LW 148 for CON 202
	5	56	Primer LW 1310 for CON 202 to generate insitu hybridization probe
		57	Primer LW 1311 for CON 202 to generate insitu hybridization probe
		58	PCR primer LW 1442 for CON 222
		59	PCR primer LW 1443 for CON 222
		60	PCR primer LW 1440 for CON 222
	10	61	PCR primer LW 1441 for CON 222
17		62	Primer LW 1472 for CON 222 to generate insitu hybridization probe
The strike of the track of the strike of the		63	Primer LW 1473 for CON 222 to generate insitu hybridization probe
		64	Primer LW 1411 for CON 215 to generate insitu hybridization probe
12.00		65	Primer LW 1412 for CON 215 to generate insitu hybridization probe
	15	66	PCR primer LW 1448 for CON 217
1		67	PCR primer LW 1449 for CON 217
a Lak		68	Primer LW 217A for CON 217 to generate insitu hybridization probe
And the state of t		69	Primer LW 218B for CON 217 to generate insitu hybridization probe
W W		70	Primer LW 1480 for CON 202 chromosomal localization
	20	71	Primer LW 1481 for CON 202 chromosomal localization
		72	Primer CON103a for CON 103 to generate insitu hybridization probe
		73	Primer CON103b for CON 103 to generate insitu hybridization probe
		74	Primer LW 1332 for CON 197 chromosomal localization
		75	Primer LW 1333 for CON 197 chromosomal localization

10

15

20

CLAIMS

What is claimed is:

- 1. A purified and isolated seven transmembrane receptor polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence set forth in any one of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.
- 2. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 2, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.
- 3. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 4, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.
- 4. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 6, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.
- 5. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 8, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.

6. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 10, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.

5

7. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 12, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.

10

8. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 14, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.

15

9. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 16, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.

20

10. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 18, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.

25

11. A purified and isolated seven transmembrane receptor polypeptide according to claim 1 comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO: 20, or a fragment thereof comprising an epitope specific to said seven transmembrane receptor polypeptide.

15

20

- 12. A purified and isolated seven transmembrane receptor polypeptide according to any one of claims 1-11.
- 13. A purified and isolated polypeptide according to any one of claims
 1-11 comprising at least one extracellular domain of the seven transmembrane receptor polypeptide.
 - 14. A purified and isolated polypeptide according to any one of claims 1-11 comprising the N-terminal extracellular domain of the seven transmembrane receptor polypeptide.
 - 15. A purified and isolated polypeptide according to any one of claims 1-11 comprising a seven transmembrane receptor fragment selected from the group consisting of an N-terminal extracellular domain transmembrane domains, extracellular loops connecting transmembrane domains, intracellular loops connecting transmembrane domains, a C-terminal cytoplasmic domain, and fusions thereof.
 - 16. A polypeptide according to any one of claims 1-15, wherein the polypeptide further includes a heterologous tag amino acid sequence.
 - 17. A purified and isolated polynucleotide comprising a nucleotide sequence that encodes the polypeptide of claim 16.
 - 18. A purified and isolated polynucleotide comprising a nucleotide sequence that encodes a polypeptide according to any one of claims 2, 3, 4, 8 or 9.
 - 19. A purified and isolated polynucleotide comprising a heterologous expression control sequence operatively linked to a nucleotide sequence that encodes a polypeptide according to any one of claims 1-16.

10

15

20

- 20. The polynucleotide according to claim 19, wherein the expression control sequence is a promoter sequence that promotes expression of said polynucleotide in an eukaryotic cell.
- 21. The polynucleotide according to claim 19, wherein the promoter is a heterologous promoter that promotes expression of the polynucleotide in a human cell.
 - 22. A purified and isolated polynucleotide comprising a nucleotide sequence that encodes a mammalian seven transmembrane receptor, wherein said polynucleotide hybridizes to any one of the nucleotide sequences set forth in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19 or the non-coding strand complementary thereto, under the following hybridization conditions:
 - (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaC1, 10% dextran sulfate and
 - (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS, with the proviso that the nucleotide sequence of the polynucleotide differs from the coding sequence set forth in any one of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19 and from its complementary strand by at least one nucleotide.
 - 23. A polynucleotide according to claim 22 that encodes a human seven transmembrane receptor.
 - 24. A vector comprising a polynucleotide according to any one of claims 17-23.
 - 25. A vector according to claim 24 that is an expression vector for expressing the polynucleotide in a mammalian cell.

- 26. A host cell stably transformed or transfected with a polynucleotide according to any one of claims 17-23 in a manner allowing the expression in said host cell of the polypeptide or fragment thereof encoded by the polynucleotide.
- 27. A host cell stably transformed or transfected with a vector according to claim 24 or 25 in a manner allowing the expression in said host cell of the polypeptide or fragment thereof encoded by the polynucleotide.
 - 28. A method for producing a seven transmembrane receptor polypeptide comprising the steps of growing a host cell according to claim 26 or 27 in a nutrient medium under conditions in which the host cell expresses a seven transmembrane receptor encoded by the polynucleotide.
 - 29. A method according to claim 28, further comprising a step of isolating said polypeptide from said cell or said medium.
 - 30. A method according to claim 29, further comprising a step of isolating cell membranes from the host cell, wherein the cell membrane comprises the seven transmembrane receptor.
 - 31. An antibody specific for a polypeptide according to any one of claims 1-15.
 - 32. The antibody of claim 31 which is a monoclonal antibody.
 - 33. A hybridoma that produces an antibody according to claim 32.
 - 34. An antibody according to claim 31 that is a humanized antibody.

15

5

10

35. An antibody according to claim 31 that specifically binds an extracellular epitope of a seven transmembrane receptor having an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20.

5

36. An antibody according to claim 35 that specifically binds to the amino-terminal extracellular domain of the seven transmembrane receptors.

10

- 37. A cell-free composition comprising polyclonal antibodies, wherein at least one of said antibodies is an antibody according to claim 31.
- 38. An anti-idiotypic antibody specific for an antibody according to claim 31.

15

39. A polypeptide comprising a fragment of an antibody according to claim 31, wherein said fragment and said polypeptide specifically bind to a seven transmembrane receptor having an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18 or 20.

20

25

40. A polypeptide according to claim 39 that is selected from the group consisting of single chain antibodies and CDR-grafted antibodies.

claims 1-16 in a pharmaceutically acceptable carrier.

42. A composition comprising an antibody according to any one of claims 31, 32, 34, 35, or 36, or a polypeptide according to claim 39 or 40, in a pharmaceutically acceptable carrier.

41. A composition comprising a polypeptide according to any one of

10

15

20

- 43. A method for modulating ligand binding of a seven transmembrane receptor polypeptide according to any one of claims 1-15, comprising the step of contacting said seven transmembrane receptor polypeptide with an antibody specific for said seven transmembrane receptor, under conditions wherein the antibody binds the receptor.
- 44. A method for modulating ligand binding of a seven transmembrane receptor polypeptide comprising the step of contacting said seven transmembrane receptor polypeptide with a polypeptide according to claim 39 or 40.
- 45. An assay to identify compounds that bind a seven transmembrane receptor polypeptide, said assay comprising the steps of:
- (a) contacting a composition comprising a seven transmembrane receptor polypeptide according to any of claims 1-15 with a compound suspected of binding the seven transmembrane receptor polypeptide; and
- (b) measuring binding between the compound and the seven transmembrane receptor polypeptide.
- 46. A method for identifying a modulator of binding between a seven transmembrane receptor polypeptide and a binding partner of the seven transmembrane receptor polypeptide, comprising the steps of:
- (a) contacting the binding partner and a composition comprising the seven transmembrane receptor polypeptide in the presence and in the absence of a putative modulator compound, where the seven transmembrane receptor polypeptide is a polypeptide according to any one of claims 1-15;
- (b) measuring binding between the binding partner and said seven transmembrane receptor polypeptide; and
- (c) identifying a putative modulator compound in view of decreased or increased binding between the binding partner and seven transmembrane receptor polypeptide in the presence of the putative modulator, as compared to binding in the absence of the putative modulator.

30

10

15

20

- 47. An assay according to claim 45 or 46 wherein the composition comprises a cell expressing the seven transmembrane receptor polypeptide on its surface.
- 48. An assay according to claim 47 wherein the measuring step comprises measuring intracellular signaling of the seven transmembrane receptor polypeptide induced by the compound.
- 49. A method for treating a neurological disorder comprising the step of administering to a mammal in need of such treatment a pharmaceutical composition comprising a compound in an amount effective to modulate biological activity of a seven transmembrane receptor in neurons of said mammal, wherein the compound is selected from the group consisting of:
 - (a) an antibody according to any one of claims 31, 32, 34, 35, or 36;
 - (b) an anti-idiotypic antibody according to claim 38;
 - (c) a polypeptide according to claim 39 or 40;
 - (d) a compound identified according to the method of claim 45; and
 - (e) a modulator identified according to claim 46.
- 50. The method of claim 49 wherein the neurological disorder is schizophrenia.
 - 51. A method according to claim 50, wherein the seven transmembrane receptor comprises a polypeptide according to claim 8.
- 52. A method of treating schizophrenia comprising the step of administering to a human diagnosed with schizophrenia an amount of a modulator of CON202 receptor activity sufficient to modulate CON202 receptor activity or CON202 ligand binding in said human.

30

10

15

20

- 53. A method of diagnosing schizophrenia or a susceptibility to schizophrenia comprising the steps of:
- (a) measuring the presence or amount of expression or activity of a polypeptide according to claim 8 in a cell of a human patient; and
- (b) comparing the measurement of step (a) to a measurement of expression or activity of the polypeptide in a cell from a normal subject or the patient at an earlier time, wherein the diagnosis of schizophrenia or susceptibility to schizophrenia is based on the presence or amount of CON202 polypeptide expression or activity.
- 54. A method of screening a human subject to diagnose a disorder affecting the brain or genetic predisposition therefor, comprising the steps of:
- (a) assaying nucleic acid of a human subject to determine a presence or an absence of a mutation altering the amino acid sequence, expression, or biological activity of at least one seven transmembrane receptor that is expressed in the brain, wherein the seven transmembrane receptor comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20, or an allelic variant thereof, and wherein the nucleic acid corresponds to the gene encoding the seven transmembrane receptor; and
- (b) diagnosing the disorder or predisposition from the presence or absence of said mutation, wherein the presence of a mutation altering the amino acid sequence, expression, or biological activity of allele in the nucleic acid correlates with an increased risk of developing the disorder.
- 55. A method according to claim 54, wherein the seven transmembrane receptor is CON202 comprising an amino acid sequence set forth in SEQ ID NO: 14, or an allelic variant thereof.
- 56. A method according to claim 55, wherein the disease is schizophrenia.

10

15

20

- 57. A method according to claim 56, wherein the assaying step comprises at least one procedure selected from the group consisting of:
- (a) determining a nucleotide sequence of at least one codon of at least one CON202 allele of the human subject;
- (b) performing a hybridization assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences;
- (c) performing a polynucleotide migration assay to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences; and
- (d) performing a restriction endonuclease digestion to determine whether nucleic acid from the human subject has a nucleotide sequence identical to or different from one or more reference sequences.
- 58. A method according to claim 56 wherein the assaying step comprises: performing a polymerase chain reaction (PCR) to amplify nucleic acid comprising CON202 coding sequence, and determining nucleotide sequence of the amplified nucleic acid.
- 59. A method of screening for a CON202 hereditary schizophrenia genotype in a human patient, comprising the steps of:
 - (a) providing a biological sample comprising nucleic acid from said patient, said nucleic acid including sequences corresponding to said patient's CON202 alleles;
- (b) analyzing said nucleic acid for the presence of a mutation or mutations;
 - (c) determining a CON202 genotype from said analyzing step; and
- (d) correlating the presence of a mutation in a CON202 allele with a hereditary schizophrenia genotype.

10

15

- 60. The method according to claim 59 wherein said biological sample is a cell sample.
- 61. The method according to claim 59 wherein said analyzing comprises sequencing a portion of said nucleic acid, said portion comprising at least one codon of said CON202 alleles.
- 62. The method according to claim 59 wherein said nucleic acid is DNA.
- 63. The method according to claim 59 wherein said nucleic acid is RNA.
- 64. A kit for screening a human subject to diagnose schizophrenia or a genetic predisposition therefor, comprising, in association:
- (a) an oligonucleotide useful as a probe for identifying polymorphisms in a human CON202 seven transmembrane receptor gene, the oligonucleotide comprising 6-50 nucleotides that have a sequence that is identical or exactly complementary to a portion of a wild type human CON202 gene sequence or CON202 coding sequence, except for one sequence difference selected from the group consisting of a nucleotide addition, a nucleotide deletion, or nucleotide substitution; and
- (b) a media packaged with the oligonucleotide containing information identifying polymorphisms identifyable with the probe that correlate with schizophrenia or a genetic predisposition therefor.

- 65. A method of identifying a seven transmembrane allelic variant that correlates with a mental disorder, comprising steps of:
- (a) providing a biological sample comprising nucleic acid from a human patient diagnosed with a mental disorder, or from the patient's genetic progenitors or progeny;
- (b) analyzing said nucleic acid for the presence of a mutation or mutations in at least one seven transmembrane receptor that is expressed in the brain, wherein the at least one seven transmembrane receptor comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20, or an allelic variant thereof, and wherein the nucleic acid includes sequence corresponding to the gene or genes encoding the at least one seven transmembrane receptor;
- (c) determining a genotype for the patient for the at least one seven transmembrane receptor from said analyzing step; and
- (d) identifying an allelic variant that correlates with the mental disorder from the determining step.
- 66. A method according to claim 65, wherein the disorder is schizophrenia, and wherein the at least one seven transmembrane receptor comprises CON202 having an amino acid sequence set forth in SEQ ID NO: 14, or an allelic variant thereof.
- 67. A purified and isolated polynucleotide comprising a nucleotide sequence encoding a CON202 receptor allelic variant identified according to claim 66.
- 68. A host cell transformed or transfected with a polynucleotide according to claim 67 or with a vector comprising the polyncleotide.

25

15

5

10

15

20

25

	69.	A purified polynucleotide comprising a nucleotide sequence
encoding a Co	ON202 s	seven transmembrane receptor protein of a human that is affected
with schizoph	renia;	

wherein said polynucleotide hybridizes to the complement of SEQ ID NO: 13 under the following hybridization conditions:

- (a) hybridization for 16 hours at 42°C in a hybridization solution comprising 50% formamide, 1% SDS, 1 M NaC1, 10% dextran sulfate and
- (b) washing 2 times for 30 minutes at 60°C in a wash solution comprising 0.1x SSC and 1% SDS; and

wherein the polynucleotide encodes a CON202 amino acid sequence that differs from SEQ ID NO: 14 at at least one residue.

- 70. A vector comprising a polynucleotide according to claim 69.
- 71. A host cell that has been transformed or transfected with a polynucleotide according to claim 70 and that expresses the CON202 protein encoded by the polynucleotide.
- 72. A host cell according to claim 71 that has been co-transfected with a polynucleotide encoding the CON202 amino acid sequence set forth in SEQ ID NO: 14 and that expresses the con202 protein having the amino acid sequence set forth in SEQ ID NO: 14.
 - 73. A method for identifying a modulator of CON202 biological activity, comprising the steps of:
 - a) contacting a cell according to claim 71 in the presence and in the absence of a putative modulator compound;
 - b) measuring CON202 biological activity in the cell; and
- c) identifying a putative modulator compound in view of
 decreased or increased CON202 biological activity in the presence versus absence of the putative modulator.

20

- 74. An assay to identify compounds useful for the treatment of schizophrenia, said assay comprising steps of:
- (a) contacting a composition comprising a seven transmembrane
 receptor polypeptide according to claim 8 with a compound suspected of binding the
 seven transmembrane receptor polypeptide;
- (b) measuring binding between the compound and the seven transmembrane receptor polypeptide; and
- (c) identifying molecules that bind the seven transmembrane receptor as candidate compounds useful for the treatment of schizophrenia.

10

5

- 75. A method for identifying compound useful for a modulator of binding between a seven transmembrane receptor polypeptide and a binding partner of the seven transmembrane receptor polypeptide, which modulator is useful for treatment of schizophrenia, comprising the steps of:
- (a) contacting the binding partner and a composition comprising the seven transmembrane receptor polypeptide in the presence and in the absence of a putative modulator compound, where the seven transmembrane receptor polypeptide is a polypeptide according to claim 8;
- (b) measuring binding between the binding partner and the seven transmembrane receptor polypeptide;
- (c) identifying a modulator compound useful for the treatment of schizophrenia in view of decreased or increased binding between the binding partner and seven transmembrane receptor polypeptide in the presence of the putative modulator, as compared to binding in the absence of the putative modulator.

76. An assay according to claim 74 or 75 wherein the composition comprises a cell expressing the seven transmembrane receptor polypeptide on its surface.

77. An assay according to claim 76 wherein the composition comprises a cell transformed or transfected with a polynucleotide encoding the seven transmembrane polypeptide and expressing the seven transmembrane receptor polypeptide on its surface.

_

ABSTRACT OF THE DISCLOSURE

The present invention provides genes encoding heretofore unknown G protein-coupled receptors, constructs and recombinant host cells incorporating the genes; the GPCR polypeptides encoded by the genes; antibodies to the polypeptides; and methods of making and using all of the foregoing.

SEQUENCE LISTING

```
<110> Vogeli, Gabriel
      Wood, Linda S.
      Merchant, Kalpana
<120> G PROTEIN-COUPLED RECEPTORS EXPRESSED IN BRAIN
<130> 28341/6276NCP
<140>
<141>
<150> US 09/481,794
<151> 2000-01-12
<150> US 09/454,399
<151> 1999-12-03
<150> US 09/429,517
<151> 1999-10-28
<150> US 09/429,555
<151> 1999-10-28
<150> US 09/429,676
<151> 1999-10-28
<150> US 09/429,695
<151> 1999-10-28
<150> US 09/428,114
<151> 1999-10-27
<150> US 09/428,020
<151> 1999-10-27
<150> US 09/427,859
<151> 1999-10-27
<150> US 09/427,653
<151> 1999-10-27
<160> 75
<170> PatentIn Ver. 2.0
<210> 1
<211> 1308
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (157)..(1122)
<220>
<221> misc_feature
<222> (1)
```

<223> N = A or C or G or T

<220> <221> misc feature <222> (1237) <223> N = A or C or G or T <220> <221> misc feature <222> (1274) <223> N = A or C or G or T <400> 1 ntqgttgttg gaccattaaa atgcattatg gaatttttaa aagttggggg agagggagac 60 aaattttgag ctatttcata acctaccaga cttatc atg cta aca ctg aat aaa Met Leu Thr Leu Asn Lys aca gac cta ata cca gct tca ttt att ctg aat gga gtc cca gga ctg 222 Thr Asp Leu Ile Pro Ala Ser Phe Ile Leu Asn Gly Val Pro Gly Leu 10 15 gaa gac aca caa ctc tgg att tcc ttc cca ttc tgc tct atg tat gtt 270 Glu Asp Thr Gln Leu Trp Ile Ser Phe Pro Phe Cys Ser Met Tyr Val gtg gct atg gta ggg aat tgt gga ctc ctc tac ctc att cac tat gag 318 Val Ala Met Val Gly Asn Cys Gly Leu Leu Tyr Leu Ile His Tyr Glu 40 45 gat gcc ctg cac aaa ccc atg tac tac ttc ttg gcc atg ctt tcc ttt 366 Asp Ala Leu His Lys Pro Met Tyr Tyr Phe Leu Ala Met Leu Ser Phe 55 act gac ctt gtt atg tgc tct agt aca atc cct aaa gcc ctc tgc atc 414 Thr Asp Leu Val Met Cys Ser Ser Thr Ile Pro Lys Ala Leu Cys Ile ttc tgg ttt cat ctc aag gac att gga ttt gat gaa tgc ctt gtc cag 462 Phe Trp Phe His Leu Lys Asp Ile Gly Phe Asp Glu Cys Leu Val Gln atg ttc ttc atc cac acc ttc aca ggg atg gag tct ggg gtg ctt atg 510 Met Phe Phe Ile His Thr Phe Thr Gly Met Glu Ser Gly Val Leu Met 115 110 ctt atg gcc ctg gat cgc tat gtg gcc atc tgc tac ccc tta cgc tat 558 Leu Met Ala Leu Asp Arg Tyr Val Ala Ile Cys Tyr Pro Leu Arg Tyr 120 125 130 tca act atc ctc acc aat cct qta att qca aaq qtt ggg act gcc acc 606 Ser Thr Ile Leu Thr Asn Pro Val Ile Ala Lys Val Gly Thr Ala Thr ttc ctg aga ggg gta tta ctc att att ccc ttt act ttc ctc acc aag 654 Phe Leu Arg Gly Val Leu Leu Ile Ile Pro Phe Thr Phe Leu Thr Lys 155 702 cgc ctg ccc tcc tgc aga ggc aat ata ctt ccc cat acc tac tgt gac Arg Leu Pro Ser Cys Arg Gly Asn Ile Leu Pro His Thr Tyr Cys Asp 170

									-) -							
cac His	atg Met	tct Ser 185	gta Val	gcc Ala	aaa Lys	ttg Leu	tcc Ser 190	tgt Cys	ggt Gly	aat Asn	gtc Val	aag Lys 195	gtc Val	aat Asn	gcc Ala	750
atc Ile	tat Tyr 200	ggt Gly	ctg Leu	atg Met	gtt Val	gcc Ala 205	ctc Leu	ctg Leu	att Ile	ggg Gly	ggc Gly 210	ttt Phe	gac Asp	ata Ile	ctg Leu	798
tgt Cys 215	atc Ile	acc Thr	atc Ile	tcc Ser	tat Tyr 220	acc Thr	atg Met	att Ile	ctc Leu	cgg Arg 225	gca Ala	gtg Val	gtc Val	agc Ser	ctc Leu 230	846
tcc Ser	tca Ser	gca Ala	gat Asp	gct Ala 235	cgg Arg	cag Gln	aag Lys	gcc Ala	ttt Phe 240	aat Asn	acc Thr	tgc Cys	act Thr	gcc Ala 245	cac His	894
att Ile	tgt Cys	gcc Ala	att Ile 250	gtt Val	ttc Phe	tcc Ser	tat Tyr	act Thr 255	cca Pro	gct Ala	ttc Phe	ttc Phe	tcc Ser 260	ttc Phe	ttt Phe	942
tcc Ser	cac His	cgc Arg 265	ttt Phe	Gly	gaa Glu	cac His	ata Ile 270	atc Ile	ccc Pro	cct Pro	tct Ser	tgc Cys 275	cac His	atc Ile	att Ile	990
gta Val	gcc Ala 280	aat Asn	att Ile	tat Tyr	ctg Leu	ctc Leu 285	cta Leu	cca Pro	ccc Pro	act Thr	atg Met 290	aac Asn	cct Pro	att Ile	gtc Val	1038
tat Tyr 295	Gly	gtg Val	aaa Lys	acc Thr	aaa Lys 300	cag Gln	ata Ile	cga Arg	gac Asp	tgt Cys 305	Val	ata Ile	agg Arg	atc Ile	ctt Leu 310	1086
tca Ser	ggt Gly	tct Ser	aag Lys	gat Asp 315	Thr	aaa Lys	tcc Ser	tac Tyr	agc Ser 320	Met	tga	atg	aaca	ctt		1132
gcc	agga	gtg	agaa	ıgaga	ag g	aaag	aatt	a ct	tcta	tttg	cct	ctta	tgc	agga	gttcat	1192
aaa	atct	ttc	tgga	agta	.ct g	tatt	gato	a ca	aaat	ggag	, ttt	gnto	jact	ggtg	cattct	1252
caa	taag	ıtac	cttg	ggaa	tc t	naca	ıtcac	t gg	aagg	ccca	ı cca	ıcatt	tct	ataa	ıat	1308
<21 <21	0 > 2 .1 > 3 .2 > E .3 > F	321	sapi	iens												
Met	00> 2 Lei L	2 1 Thi	r Lei	ı Asr		Th:	: Asp	Lei	ı Ile		o Ala	a Sei	r Phe	e Ile 15	e Leu 5	
Ası	n Gly	y Val	L Pro		z Leu	ı Glı	ı Asp	Th:		ı Let	ı Trş	o Ile	e Sei 30	Phe	e Pro	
Phe	e Cy:	s Sei		t Tyı	c Val	l Vai	l Ala		. Vai	l Gl	y Ası	n Cy	s Gly 5	y Let	ı Leu	
Ту	r Lei		e Hi:	s Ty	r Glı	ı Asj 5		a Lei	ı Hi:	з Ьу	s Pro	o Me	t Ty	r Ty:	r Phe	
Let 6	_	a Me	t Le	u Se:	r Phe		r As	o Le	ı Va	l Me		s Se	r Se	r Th	r Ile 80	

Pro Lys Ala Leu Cys Ile Phe Trp Phe His Leu Lys Asp Ile Gly Phe Asp Glu Cys Leu Val Gln Met Phe Phe Ile His Thr Phe Thr Gly Met 105 Glu Ser Gly Val Leu Met Leu Met Ala Leu Asp Arg Tyr Val Ala Ile 120 Cys Tyr Pro Leu Arg Tyr Ser Thr Ile Leu Thr Asn Pro Val Ile Ala 140 135 Lys Val Gly Thr Ala Thr Phe Leu Arg Gly Val Leu Leu Ile Ile Pro 150 Phe Thr Phe Leu Thr Lys Arg Leu Pro Ser Cys Arg Gly Asn Ile Leu Pro His Thr Tyr Cys Asp His Met Ser Val Ala Lys Leu Ser Cys Gly Asn Val Lys Val Asn Ala Ile Tyr Gly Leu Met Val Ala Leu Leu Ile 200 Gly Gly Phe Asp Ile Leu Cys Ile Thr Ile Ser Tyr Thr Met Ile Leu 215 Arg Ala Val Val Ser Leu Ser Ser Ala Asp Ala Arg Gln Lys Ala Phe Asn Thr Cys Thr Ala His Ile Cys Ala Ile Val Phe Ser Tyr Thr Pro 245 Ala Phe Phe Ser Phe Phe Ser His Arg Phe Gly Glu His Ile Ile Pro 265 Pro Ser Cys His Ile Ile Val Ala Asn Ile Tyr Leu Leu Leu Pro Pro 280 Thr Met Asn Pro Ile Val Tyr Gly Val Lys Thr Lys Gln Ile Arg Asp Cys Val Ile Arg Ile Leu Ser Gly Ser Lys Asp Thr Lys Ser Tyr Ser 320 315 310 Met <210> 3 <211> 1014 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1014) <400> 3 atg gat gaa aca gga aat ctg aca gta tct tct gcc aca tgc cat gac Met Asp Glu Thr Gly Asn Leu Thr Val Ser Ser Ala Thr Cys His Asp

act Thr	att Ile	gat Asp	gac Asp 20	ttc Phe	cgc Arg	aat Asn	caa Gln	gtg Val 25	tat Tyr	tcc Ser	acc Thr	ttg Leu	tac Tyr 30	tct Ser	atg Met	96
atc Ile	tct Ser	gtt Val 35	gta Val	ggc Gly	ttc Phe	ttt Phe	ggc Gly 40	aat Asn	ggc Gly	ttt Phe	gtg Val	ctc Leu 45	tat Tyr	gtc Val	ctc Leu	144
ata Ile	aaa Lys 50	acc Thr	tat Tyr	cac His	aag Lys	aag Lys 55	tca Ser	gcc Ala	ttc Phe	caa Gln	gta Val 60	tac Tyr	atg Met	att Ile	aat Asn	192
tta Leu 65	gca Ala	gta Val	gca Ala	gat Asp	cta Leu 70	ctt Leu	tgt Cys	gtg Val	tgc Cys	aca Thr 75	ctg Leu	cct Pro	ctc Leu	cgt Arg	gtg Val 80	240
gtc Val	tat Tyr	tat Tyr	gtt Val	cac His 85	aaa Lys	ggc Gly	att Ile	tgg Trp	ctc Leu 90	ttt Phe	ggt Gly	gac Asp	ttc Phe	ttg Leu 95	tgc Cys	288
cgc Arg	ctc Leu	agc Ser	acc Thr 100	tat Tyr	gct Ala	ttg Leu	tat Tyr	gtc Val 105	aac Asn	ctc Leu	tat Tyr	tgt Cys	agc Ser 110	atc Ile	ttc Phe	336
ttt Phe	atg Met	aca Thr 115	gcc Ala	atg Met	agc Ser	ttt Phe	ttc Phe 120	cgg Arg	tgc Cys	att Ile	gca Ala	att Ile 125	gtt Val	ttt Phe	cca Pro	384
gtc Val	cag Gln 130	aac Asn	att Ile	aat Asn	ttg Leu	gtt Val 135	aca Thr	cag Gln	aaa Lys	aaa Lys	gcc Ala 140	agg Arg	ttt Phe	gtg Val	tgt Cys	432
gta Val 145	Gly	att Ile	tgg Trp	att Ile	ttt Phe 150	gtg Val	att Ile	ttg Leu	acc Thr	agt Ser 155	tct Ser	cca Pro	ttt Phe	cta Leu	atg Met 160	480
gcc Ala	: aaa . Lys	cca Pro	caa Gln	aaa Lys 165	gat Asp	gag Glu	aaa Lys	aat Asn	aat Asn 170	Thr	aag Lys	tgc Cys	ttt Phe	gag Glu 175	. Pro	528
cca Pro	caa Glr	gac Asp	aat Asn 180	Gln	act Thr	aaa Lys	aat Asn	cat His 185	gtt Val	ttg Leu	gtc Val	ttg Leu	cat His 190	Tyr	gtg Val	576
tca Ser	a ttg Lev	ttt Phe	val	ggc Gly	ttt Phe	atc Ile	ato : Ile : 200	Pro	ttt Phe	gtt Val	att Ile	ata : Ile 205	: TTE	gto Val	tgt Cys	624
tac Tyi	c aca c Thr	Met	g ato	att lle	ttg Leu	acc Thr 215	Lev	cta Leu	aaa Lys	aaa Lys	tca Ser 220	Met	aaa Lys	aaa Lys	a aat s Asn	672
Let	g tca	a agt	cat	aaa Lys	a aag S Lys	Ala	ata a Ile	gga Gly	ato Met	ato : Ile :235	e Met	gto Val	gtg Val	g aco	gct Ala 240	720
225		r sei		_	230	į										
ace	5	- ++ a	a ata	e agt	t tto	ato	g cca E Pro	a tat o Tyr	cat His	s Ile	caa e Glr	a cgt n Arg	aco g Thi	c att	cac His	768

atg cag Met Glr															864
tgc ttt Cys Phe 290	a Āsp														912
agg cto Arg Let 305	-			_	_			_		_				-	960
ccc aga Pro Arg	_	_			_		-			_	_		_		1008
gta tag Val	J														1014
<210> 4 <211> 3 <212> 1 <213> 1	337 PRT	sapi	ens												
<400> 2 Met Ası 1		Thr	Gly 5	Asn	Leu	Thr	Val	Ser 10	Ser	Ala	Thr	Cys	His 15	Asp	
Thr Ile	a Asp	Asp 20	Phe	Arg	Asn	Gln	Val 25	Tyr	Ser	Thr	Leu	Tyr 30	Ser	Met	
Ile Se	Val		Gly	Phe	Phe	Gly 40	Asn	Gly	Phe	Val	Leu 45	Tyr	Val	Leu	
Ile Ly:		Tyr	His	Lys	Lys 55	Ser	Ala	Phe	Gln	Val 60	Tyr	Met	Ile	Asn	
Leu Ala 65	a Val	Ala	Asp	Leu 70	Leu	Cys	Val	Cys	Thr 75	Leu	Pro	Leu	Arg	Val 80	
Val Ty	Tyr	Val	His 85	Lys	Gly	Ile	Trp	Leu 90	Phe	Gly	Asp	Phe	Leu 95	Cys	
Arg Le	ı Ser	Thr 100	Tyr	Ala	Leu	Tyr	Val 105	Asn	Leu	Tyr	Cys	Ser 110	Ile	Phe	
Phe Me	Thr 115		Met	Ser	Phe	Phe 120	Arg	Cys	Ile	Ala	Ile 125	Val	Phe	Pro	
Val Gla		Ile	Asn	Leu	Val 135	Thr	Gln	Lys	Lys	Ala 140	Arg	Phe	Val	Cys	
Val Gly	y Ile	Trp	Ile	Phe 150	Val	Ile	Leu	Thr	Ser 155	Ser	Pro	Phe	Leu	Met 160	
Ala Ly	s Pro	Gln	Lys 165	Asp	Glu	Lys	Asn	Asn 170	Thr	Lys	Cys	Phe	Glu 175	Pro	
Pro Gl:	n Asp	Asn 180	Gln	Thr	Lys	Asn	His 185	Val	Leu	Val	Leu	His 190	Tyr	Val	

```
Ser Leu Phe Val Gly Phe Ile Ile Pro Phe Val Ile Ile Ile Val Cys 195

Tyr Thr Met Ile Ile Leu Thr Leu Leu Lys Lys Ser Met Lys Lys Asn
```

210 215 220

Leu Ser Ser His Lys Lys Ala Ile Gly Met Ile Met Val Val Thr Ala

Ala Phe Leu Val Ser Phe Met Pro Tyr His Ile Gln Arg Thr Ile His
245 250 255

Leu His Phe Leu His Asn Glu Thr Lys Pro Cys Asp Ser Val Leu Arg
260 265 270

Met Gln Lys Ser Val Val Ile Thr Leu Ser Leu Ala Ala Ser Asn Cys 275 280 285

Cys Phe Asp Pro Leu Leu Tyr Phe Phe Ser Gly Gly Asn Phe Arg Lys 290 295 300

Arg Leu Ser Thr Phe Arg Lys His Ser Leu Ser Ser Val Thr Tyr Val 305 310 315 320

Pro Arg Lys Lys Ala Ser Leu Pro Glu Lys Gly Glu Glu Ile Cys Lys 325 330 335

Val

<210> 5 <211> 2429 <212> DNA <213> Homo sapiens

<220> <221> CDS <222> (691)..(1845)

<400> 5
ggggcctact tcaccgtgta cccggacttg ggaccatcac agacttcaga accatcagga 60
acctgggagc aactgaaagc tgaactacag tgggctttca gacacacagc aggctgcgga 120
gcacaaatag gactggttcc ctccaggcca ccagcagggc ggtggaggtc ttcactgact 180
ccctgcctac ctctcaggac aatgccttt tggctcaca gtccctgaag ccagagctgg 240
tgggggcagg gaggcagcca ccagcctcta tatgtagtgg aggaggggt gtccagggag 300
ggctgcatga tcctgagagc ccccacctca cccggctgga ctatcctccc acttcagggt 360
ttctctgggc ttccatcttg cccctgctga gccctgcttc ctcctctacc agcagcacaa 420
ccccaggct gggctcagag acctcatgtg gtgggatcac tcagtacccc gaggcggagg 480
gaaggaggga gggctgcagg gttccccttg gcctgcaaac aggaacacag ggtgtttctc 540
agtggctgca tcatcccact ttgccctgag cactcctgca ggggtagaag actccagaac 660

cttctctca	g gecea	tggcc ca	agcagco	c atg Met	. Glu	ctt Leu	cat His	aac Asn 5	ctg Leu	agc Ser	tct Ser	714
cca tct c Pro Ser P 10	cc tct ro Ser	ctc tcc Leu Ser	tcc tct Ser Ser 15	gtt Val	ctc Leu	cct Pro	ccc Pro 20	tcc Ser	ttc Phe	tct Ser	ccc Pro	762
tca ccc t Ser Pro S 25	cc tct Ser Ser	gct ccc Ala Pro 30	tct gcc Ser Ala	ttt Phe	acc Thr	act Thr 35	gtg Val	Gly 999	ggg Gly	tcc Ser	tct Ser 40	810
gga ggg c Gly Gly F	ecc tgc Pro Cys	cac ccc His Pro 45	acc tct Thr Ser	tcc Ser	tcg Ser 50	ctg Leu	gtg Val	tct Ser	gcc Ala	ttc Phe 55	ctg Leu	858
gca cca a Ala Pro I	atc ctg Ile Leu 60	gcc ctg Ala Leu	gag tti Glu Phe	gtc Val 65	ctg Leu	ggc Gly	ctg Leu	gtg Val	ggg Gly 70	aac Asn	agt Ser	906
ttg gcc o Leu Ala I	ctc ttc Leu Phe 75	atc ttc Ile Phe	tgc ato Cys Ile	e His	acg Thr	cgg Arg	ccc Pro	tgg Trp 85	acc Thr	tcc Ser	aac Asn	954
acg gtg t Thr Val I	ttc ctg Phe Leu	gtc agc Val Ser	ctg gt Leu Va 95	g gcc l Ala	gct Ala	gac Asp	ttc Phe 100	ctc Leu	ctg Leu	atc Ile	agc Ser	1002
aac ctg (Asn Leu l 105	ccc ctc Pro Leu	cgc gtg Arg Val 110	gac ta Asp Ty	c tac r Tyr	ctc Leu	ctc Leu 115	cat His	gag Glu	acc Thr	tgg Trp	cgc Arg 120	1050
ttt ggg	gct gct Ala Ala	gcc tgc Ala Cys 125	aaa gt Lys Va	c aac l Asn	ctc Leu 130	ttc Phe	atg Met	ctg Leu	tcc Ser	acc Thr 135	aac Asn	1098
cgc acg	gcc agc Ala Ser 140	Val Val	ttc ct Phe Le	c aca u Thr 145	Ala	atc Ile	gca Ala	ctc Leu	aac Asn 150	cgc Arg	tac Tyr	1146
ctg aag Leu Lys	gtg gtg Val Val 155	cag ccc Gln Pro	cac ca His Hi	s Val	ctg Leu	agc Ser	cgt Arg	gct Ala 165	tcc Ser	gtg Val	Gly aaa	1194
gca gct Ala Ala 170	gcc cgg Ala Arg	gtg gcc Val Ala	ggg gg Gly Gl 175	ga cto y Lei	tgg Trp	gtg Val	ggc Gly 180	atc Ile	ctg Leu	ctc Leu	ctc Leu	1242
aac ggg Asn Gly 185	cac cto His Lev	g ctc ctc Leu Lei 190	ı Ser Th	c tto ir Phe	tcc Ser	ggc Gly 195	Pro	tcc Ser	tgc Cys	ctc Leu	agc Ser 200	1290
tac agg Tyr Arg	gtg ggc Val Gl _y	acg aag Thr Lys 205	g ccc to s Pro Se	eg ged er Ala	c tcc a Ser 210	. Leu	cgc Arg	tgg Trp	cac His	cag Gln 215	Ніа	1338
ctg tac Leu Tyr	ctg ctg Leu Leu 220	g gag tto 1 Glu Phe)	c ttc ci	eu Pro 22!	o Let	g gcg ı Ala	g ctc Leu	atc Ile	cto Leu 230	Phe	gct Ala	1386

att Ile	gtg Val	agc Ser 235	att Ile	gly aaa	ctc Leu	acc Thr	atc Ile 240	cgg Arg	aac Asn	cgt Arg	ggt Gly	ctg Leu 245	ggc Gly	gly ggg	cag Gln	1434
gca Ala	ggc Gly 250	ccg Pro	cag Gln	agg Arg	gcc Ala	atg Met 255	cgt Arg	gtg Val	ctg Leu	gcc Ala	atg Met 260	gtg Val	gtg Val	gcc Ala	J	1482
tac Tyr 265	acc Thr	atc Ile	tgc Cys	ttc Phe	ttg Leu 270	ccc Pro	agc Ser	atc Ile	atc Ile	ttt Phe 275	ggc Gly	atg Met	gct Ala	tcc Ser	atg Met 280	1530
gtg Val	gct Ala	ttc Phe	tgg Trp	ctg Leu 285	tcc Ser	gcc Ala	tgc Cys	cga Arg	tcc Ser 290	ctg Leu	gac Asp	ctc Leu	tgc Cys	aca Thr 295	cag Gln	1578
ctc Leu	ttc Phe	cat His	ggc Gly 300	tcc Ser	ctg Leu	gcc Ala	ttc Phe	acc Thr 305	tac Tyr	ctc Leu	aac Asn	agt Ser	gtc Val 310	ctg Leu	gac Asp	1626
ccc Pro	gtg Val	ctc Leu 315	tac Tyr	tgc Cys	ttc Phe	tct Ser	agc Ser 320	ccc Pro	aac Asn	ttc Phe	ctc Leu	cac His 325	cag Gln	agc Ser	cgg Arg	1674
gcc Ala	ttg Leu 330	ctg Leu	ggc Gly	ctc Leu	acg Thr	cgg Arg 335	ggc Gly	cgg Arg	cag Gln	ggc	cca Pro 340	gtg Val	agc Ser	gac Asp	gag Glu	1722
agc Ser 345	Ser	tac Tyr	caa Gln	ccc Pro	tcc Ser 350	Arg	cag Gln	tgg Trp	cgc Arg	tac Tyr 355	Arg	gag Glu	gcc Ala	tct Ser	agg Arg 360	1770
aag Lys	gcg Ala	gag Glu	gcc Ala	ata Ile 365	Gly	aag Lys	ctg Leu	aaa Lys	gtg Val 370	Gln	ggc	gag Glu	gtc Val	tct Ser 375	Leu	1818
gaa Glu	aag Lys	gaa Glu	ggc Gly 380	Ser	tcc Ser	cag Gln	ggc Gly	tga 385		ıccag	ıctg	cagg	gatg	ıca		1865
gcg	ıctgt	ggg	ggta	aggg	ıct g	ccgc	gcto	t gg	gaatg	gagg	gac	aagg	gcca	gcac	acggtg	1925
cct	caac	caa	ctgg	jacaa	igg g	gatgg	cggc	a ga	ccag	gggg	cag	gcca	aag	cact	.ggcagg	1985
act	cate	ıtgg	gtgg	gcagg	ıga ç	jagaa	acco	a co	tagg	gaata	tca	ıgtgt	gtc	cagg	atggca	2045
tto	ccas	jaat	gcag	ggga	ıga ç	gcago	gatgo	c gg	gtgg	gagga	a gad	caggo	caag	gtgo	cgttgg	2105
cad	cacca	gct	caga	acago	ggg (ctgo	gcag	ga ts	gcagg	gggad	aga	acgco	caat	cact	gtcaca	2165
gca	agagt	cac	ctta	agaaa	att 9	ggaca	agcto	gc at	gtto	ctgtg	g cto	ctcca	agtt	tgto	ccttcc	2225
aat	tatta	ata	aact	taco	ctt t	taaa	atata	at t	catt	gcag	g aco	caata	atct	gtct	ttaatt	2285
cta	aacct	ggg	act	gtcag	gta g	ggcgt	caaa	ag to	gagc	gccc	c agt	gaaq	ggaa	cctt	ggagag	2345
agt	ggga	agca	ttc	ccago	cct t	ccag	99999	ga ct	cgt	cttc	c aga	actti	tgga	gcc	cgcatgt	2405
ct	gaago	caga	ctc	tttct	tg 9	gtag										2429

<210> 6 <211> 384 <212> PRT

<213> Homo sapiens

<400> 6

Met Glu Leu His Asn Leu Ser Ser Pro Ser Pro Ser Leu Ser Ser Ser 1 10 15

Val Leu Pro Pro Ser Phe Ser Pro Ser Pro Ser Ser Ala Pro Ser Ala 20 25 30

Phe Thr Thr Val Gly Gly Ser Ser Gly Gly Pro Cys His Pro Thr Ser 35 40 45

Ser Ser Leu Val Ser Ala Phe Leu Ala Pro Ile Leu Ala Leu Glu Phe 50 60

Val Leu Gly Leu Val Gly Asn Ser Leu Ala Leu Phe Ile Phe Cys Ile 65 70 75 80

His Thr Arg Pro Trp Thr Ser Asn Thr Val Phe Leu Val Ser Leu Val 90 95

Ala Ala Asp Phe Leu Leu Ile Ser Asn Leu Pro Leu Arg Val Asp Tyr
100 105 110

Tyr Leu Leu His Glu Thr Trp Arg Phe Gly Ala Ala Cys Lys Val 115 120 125

Asn Leu Phe Met Leu Ser Thr Asn Arg Thr Ala Ser Val Val Phe Leu 130 140

Thr Ala Ile Ala Leu Asn Arg Tyr Leu Lys Val Val Gln Pro His His 145 150 155 160

Val Leu Ser Arg Ala Ser Val Gly Ala Ala Ala Arg Val Ala Gly Gly

165 170 175

Leu Trp Val Gly Ile Leu Leu Leu Asn Gly His Leu Leu Leu Ser Thr 180 185 190

Phe Ser Gly Pro Ser Cys Leu Ser Tyr Arg Val Gly Thr Lys Pro Ser 195 200 205

Ala Ser Leu Arg Trp His Gln Ala Leu Tyr Leu Leu Glu Phe Phe Leu 210 215 220

Pro Leu Ala Leu Ile Leu Phe Ala Ile Val Ser Ile Gly Leu Thr Ile 225 230 240

Arg Asn Arg Gly Leu Gly Gly Gln Ala Gly Pro Gln Arg Ala Met Arg 245 250 255

Val Leu Ala Met Val Val Ala Val Tyr Thr Ile Cys Phe Leu Pro Ser 260 270

Ile Ile Phe Gly Met Ala Ser Met Val Ala Phe Trp Leu Ser Ala Cys 275 280 285

Arg Ser Leu Asp Leu Cys Thr Gln Leu Phe His Gly Ser Leu Ala Phe 290 295 300

Thr Tyr Leu Asn 305	Ser Val Le 310	ı Asp Pro	Val Leu 315	Tyr Cys	Phe Ser	Ser 320	
Pro Asn Phe Leu	His Gln Se 325	r Arg Ala	Leu Leu 330	Gly Leu	Thr Arg 335	Gly	
Arg Gln Gly Pro	Val Ser As	o Glu Ser 345	Ser Tyr	Gln Pro	Ser Arg 350	Gln	
Trp Arg Tyr Arg 355	Glu Ala Se	r Arg Lys 360	Ala Glu	Ala Ile 365	Gly Lys	Leu	
Lys Val Gln Gly 370	Glu Val Se 37		Lys Glu	Gly Ser 380	Ser Gln	Gly	
<210> 7 <211> 1484 <212> DNA <213> Homo sapi	ens						
<220> <221> CDS <222> (146)(1	147)						
<400> 7 ttgaatttag gtga	cactat agaa	gageta tga	acgtcgca	tgcacgcg	gta cgta	agctcg 60	
gaattegget egag	ctgaac taat	gactgc cg	ccataaga	agacagag	gag aact	gagtat 12	0
cctcccaaag gtga	cactgg aagc	_	acc aca Thr Thr				2
aac aga tct gag Asn Arg Ser Glu 10							0
ttc cca gcc ctc Phe Pro Ala Leu							8
act ttg gct ctg Thr Leu Ala Leu 45				agc tcc	tcc acc	ttc 31	6
13		50	lle Pro	Ser Ser	Ser Thr 55		
atc atc tac ctc Ile Ile Tyr Leu 60	aaa aac ac Lys Asn Th	50 t ttg gtg	gec gac	ttg ata	55 atg aca	Phe ctc 36	
atc atc tac ctc Ile Ile Tyr Leu	Lys Asn Th	50 t ttg gtg r Leu Val 65 c tct gac u Ser Asp	gcc gac Ala Asp tca cac	ttg ata Leu Ile 70 ctg gca	atg aca Met Thr	Phe ctc 36 Leu cag 41	4
atc atc tac ctc Ile Ile Tyr Leu 60 atg ctt cct ttc Met Leu Pro Phe	Lys Asn Th aaa atc ct Lys Ile Le 8 gtg tgt cg	t ttg gtg Leu Val 65 c tct gac Ser Asp	gcc gac Ala Asp tca cac Ser His	ttg ata Leu Ile 70 ctg gca Leu Ala 85	atg aca Met Thr ccc tgg Pro Trp	Phe ctc 36 Leu cag 41 Gln acc 46	2

~~.~~

					cct Pro											556
					tca Ser											604
	_			_	atc Ile	_	_		_	_	_			_		652
_			_	_	tcc Ser 175		_			_					_	700
	_	_			ata Ile	_	~									748
					tat Tyr											796
		_			agt Ser	_	-	_					_	_	_	844
_		-			gtc Val			-								892
					gtt Val 255											940
					caa Gln											988
		_	_	_	act Thr			_	_	_						1036
ttc Phe	tta Leu	tgt Cys 300	aaa Lys	aaa Lys	ttc Phe	aca Thr	gaa Glu 305	aag Lys	cta Leu	cca Pro	tgt Cys	atg Met 310	caa Gln	Gly aaa	aga Arg	1084
					agc Ser											1132
	acc Thr			tga	caa	ctgt	aca :	tagg	gtta	ac ti	cctai	tta [.]	t tg	atga	gact	1187
tcc	gtaga	ata a	atgt	ggaa	at ca	aaat	ttaa	c caa	agaa	aaaa	agat	ttgg	aac a	aaat	gctctc	1247
tta	catt	tta 1	ttta	tact	gg t	gtcca	agga	a aa	gatt	atat	taaa	attt	aaa 1	tcca	cataga	1307
tct	attca	ata a	agct	gaat	ga a	ccati	tacc	t aag	gaga	atgc	aaca	agga	tac (caat	ggccac	1367
taga	aggca	ata 1	ttcc	ttct	tc ti	tttti	tttt	t gti	taaa	tttc	aaga	agca	ttc a	actt	tacatt	1427

tggaaagact aaggggaacg gttatcctac aaacctccct tcaacacctt ttacatt 1484

<210>	8	
<211>	333	
<212>	PRT	
<213>	Homo	sapiens
<400>	8	

Met Asn Thr Thr Val Met Gln Gly Phe Asn Arg Ser Glu Arg Cys Pro

Arg Asp Thr Arg Ile Val Gln Leu Val Phe Pro Ala Leu Tyr Thr Val 25

Val Phe Leu Thr Gly Ile Leu Leu Asn Thr Leu Ala Leu Trp Val Phe

Val His Ile Pro Ser Ser Ser Thr Phe Ile Ile Tyr Leu Lys Asn Thr

Leu Val Ala Asp Leu Ile Met Thr Leu Met Leu Pro Phe Lys Ile Leu

Ser Asp Ser His Leu Ala Pro Trp Gln Leu Arg Ala Phe Val Cys Arg

Phe Ser Ser Val Ile Phe Tyr Glu Thr Met Tyr Val Gly Ile Val Leu 105

Leu Gly Leu Ile Ala Phe Asp Arg Phe Leu Lys Ile Ile Arg Pro Leu 120

Arg Asn Ile Phe Leu Lys Lys Pro Val Phe Ala Lys Thr Val Ser Ile

Phe Ile Trp Val Phe Leu Val Phe Ile Ser Leu Pro Asn Met Ile Leu

Ser Asn Lys Glu Ala Thr Pro Ser Ser Val Lys Lys Cys Ala Ser Leu 165 170

Lys Gly Pro Leu Gly Leu Lys Trp His Gln Met Val Asn Asn Ile Cys

Gln Phe Ile Phe Trp Thr Gly Phe Ile Leu Met Leu Val Phe Tyr Val

Val Ile Ala Lys Lys Val Tyr Asp Ser Tyr Arg Lys Ser Lys

Asp Arg Lys Asn Asn Lys Lys Leu Glu Gly Lys Val Phe Val Val Val

Ala Val Phe Phe Val Cys Phe Ala Pro Phe His Phe Ala Arg Val Pro 245 250

Tyr Thr His Ser Gln Thr Asn Asn Lys Thr Asp Cys Arg Leu Gln Asn 265

Gln Leu Phe Ile Ala Lys Glu Thr Thr Leu Phe Leu Ala Ala Thr Asn 275 280 2.85

Ile Cys Met . 290	Asp Pro	Leu Ile 295	_	Ile	Phe	Leu	Cys 300		Lys	Ph∈	Thr	
Glu Lys Leu 305	Pro Cys	Met Gln 310	Gly	Arg	Lys	Thr 315	Thr	Ala	Ser	Ser	Gln 320	
Glu Asn His	Ser Ser 325	Gln Thr	Asp	Asn	Ile 330		Leu	Gly				
<210> 9 <211> 957 <212> DNA <213> Homo sa	apiens											
<220> <221> CDS <222> (1)(9	954)											
<400> 9 atg atg gtg q Met Met Val 2												48
cta ata ggc o Leu Ile Gly I	ctc cct Leu Pro 20	ggt tta Gly Leu	gaa Glu	gag Glu 25	gct Ala	cag Gln	ttc Phe	tgg Trp	ttg Leu 30	gcc Ala	ttc Phe	96
cca ttg tgc ? Pro Leu Cys ? 35												144
atc tac att of the state of the												192
ttt ctt tgc Phe Leu Cys 1 65				_								240
atg ccc aaa Met Pro Lys I												288
ttt gat gct Phe Asp Ala												336
atg gaa tcc Met Glu Ser' 115												384
atc tgt cac Ile Cys His 130												432
acc aaa att Thr Lys Ile 145							_	_	_	_	_	480
ccc ctt cct Pro Leu Pro	-	_	_	_			_	-				528

and the second s

ctt tcc car Leu Ser His	tcc Ser	tac Tvr	tgc Cvs	cta Leu	cac His	caa Gln	gat Asp	gtc Val	atg Met	aag Lvs	ctg Leu	gcc Ala	tgt Cvs	576
	180	2	1			185	1.			1	190		•	
gat gat ato Asp Asp Ile 199	e Arg													624
gcc att ggc Ala Ile Gl 210														672
ctt aag ac Leu Lys Th: 225														720
ggc act tg Gly Thr Cy														768
ttc att gg. Phe Ile Gl														816
ccg ctg cc Pro Leu Pr	val													864
ctc aac cc Leu Asn Pr 290														912
atc ctt cg Ile Leu Ar 305												tag		957
Ile Leu Ar	g Leu	Phe	His					Ala				tag		957
<pre>1le Leu Ar 305 <210> 10 <211> 318 <212> PRT</pre>	g Leu sapie	Phe	His 310 Asn	Val	Ala	Thr	His	Ala 315 Ser	Ser	Glu	Pro			957
Ile Leu Ar 305 <210> 10 <211> 318 <212> PRT <213> Homo <400> 10	g Leu sapie l Asp	Pheens Pro 5	His 310 Asn	Val	Ala	Thr	His Ser 10	Ala 315	Ser	Glu	Pro Tyr	Phe 15		957
Ile Leu Ar 305 <210> 10 <211> 318 <212> PRT <213> Homo <400> 10 Met Met Va 1	sapie l Asp y Leu 20 s Ser	Phe ens Pro 5 Pro	His 310 Asn Gly	Val Gly Leu	Asn Glu	Glu Glu 25	Ser 10 Ala	Ala 315 Ser Gln	Ala	Glu Thr Trp	Tyr Leu 30	Phe 15 Ala	Phe	957
Ile Leu Ar 305 <210> 10 <211> 318 <212> PRT <213> Homo <400> 10 Met Met Va 1 Leu Ile Gl	sapie l Asp y Leu 20 s Ser	Phe ens Pro 5 Pro Leu	Asn Gly Tyr	Gly Leu Leu	Asn Glu Ile 40	Glu Glu 25 Ala	Ser 10 Ala	Ala 315 Ser Gln Leu	Ala Phe Gly	Thr Trp Asn 45	Tyr Leu 30 Leu	Phe 15 Ala Thr	Phe	957
Ile Leu Ar 305 <210> 10 <211> 318 <212> PRT <213> Homo <400> 10 Met Met Va 1 Leu Ile Gl Pro Leu Cy 3 Ile Tyr Il	sapie l Asp y Leu 20 s Ser 5	Phe ens Pro 5 Pro Leu Arg	Asn Gly Tyr	Gly Leu Leu Glu 55	Asn Glu Ile 40	Glu Glu 25 Ala Ser	Ser 10 Ala Val Leu	Ala 315 Ser Gln Leu His	Ala Phe Gly Glu 60	Thr Trp Asn 45	Tyr Leu 30 Leu Met	Phe 15 Ala Thr	Phe Ile	957
Ile Leu Ar 305 <210> 10 <211> 318 <212> PRT <213> Homo <400> 10 Met Met Va	sapie l Asp y Leu 20 s Ser e Val	Phe ens Pro 5 Pro Leu Arg	Asn Gly Tyr Thr Ser 70	Gly Leu Leu Glu 55	Asn Glu Ile 40 His	Glu Glu 25 Ala Ser Asp	Ser 10 Ala Val Leu	Ala 315 Ser Gln Leu His Leu 75	Ala Phe Gly Glu 60 Ile	Thr Trp Asn 45 Pro	Tyr Leu 30 Leu Met	Phe 15 Ala Thr Tyr	Phe Ile Ile Ser 80	957

									- 10	-						
Met	Glu	Ser 115	Thr	Val	Leu	Leu	Ala 120	Met	Ala	Phe	Asp	Arg 125	Tyr	Val	Ala	
Ile	Cys 130	His	Pro	Leu	Arg	His 135	Ala	Thr	Val	Leu	Thr 140	Leu	Pro	Arg	Val	
Thr 145	Lys	Ile	Gly	Val	Ala 150	Ala	Val	Val	Arg	Gly 155	Ala	Ala	Leu	Met	Ala 160	
Pro	Leu	Pro	Val	Phe 165	Ile	Lys	Gln	Leu	Pro 170	Phe	Cys	Arg	Ser	Asn 175	Ile	
Leu	Ser	His	Ser 180	Tyr	Cys	Leu	His	Gln 185	Asp	Val	Met	Lys	Leu 190	Ala	Cys	
Asp	Asp	Ile 195	Arg	Val	Asn	Val	Val 200	Tyr	Gly	Leu	Ile	Val 205	Ile	Ile	Ser	
Ala	Ile 210	Gly	Leu	Asp	Ser	Leu 215	Leu	Ile	Ser	Phe	Ser 220	Tyr	Leu	Leu	Ile	
Leu 225	Lys	Thr	Val	Leu	Gly 230	Leu	Thr	Arg	Glu	Ala 235	Gln	Ala	Lys	Ala	Phe 240	
Gly	Thr	Cys	Val	Ser 245	His	Val	Cys	Ala	Val 250	Phe	Ile	Phe	Tyr	Val 255	Pro	
Phe	Ile	Gly	Leu 260	Ser	Met	Val	His	Arg 265	Phe	Ser	Lys	Arg	Arg 270	Asp	Ser	
Pro	Leu	Pro 275	Val	Ile	Leu	Ala	Asn 280	Ile	Tyr	Leu	Leu	Val 285	Pro	Pro	Val	
Leu	Asn 290	Pro	Ile	Val	Tyr	Gly 295	Val	Lys	Thr	Lys	Glu 300	Ile	Arg	Gln	Arg	
Ile 305	Leu	Arg	Leu	Phe	His 310	Val	Ala	Thr	His	Ala 315	Ser	Glu	Pro			
<213 <213	0 > 1: L > 9: 2 > DI 3 > Ho	95 NA	sapie	ens												
	1 > C		(921))												
atg	0> 1: gaa Glu	agc	gag Glu	aac Asn 5	aga Arg	aga Arg	gtg Val	ata Ile	aga Arg 10	gaa Glu	ttc Phe	atc Ile	ctc Leu	ctt Leu 15	ggt Gly	48
			tct Ser 20													96
			ttc Phe													144
			gac Asp					_						_		192

aac Asn 65	ttg Leu	gcc Ala	ttc Phe	ctg Leu	gat Asp 70	gca Ala	tcc Ser	tac Tyr	tcc Ser	ttc Phe 75	att Ile	gtg Val	gct Ala	ccc Pro	cgg Arg 80	240
								aag Lys								288
								cac His 105								336
tta Leu	ctc Leu	ctt Leu 115	gtt Val	gtg Val	atg Met	gcc Ala	ttt Phe 120	gac Asp	cgc Arg	tac Tyr	atc Ile	gcc Ala 125	atc Ile	tgc Cys	cgg Arg	384
								aac Asn								432
atg Met 145	ttg Leu	gct Ala	ctg Leu	tgg Trp	ctt Leu 150	gly aaa	ggt Gly	ttt Phe	gtc Val	cac His 155	tcc Ser	att Ile	atc Ile	cag Gln	gtg Val 160	480
gtc Val	ctc Leu	atc Ile	ctc Leu	cgc Arg 165	ttg Leu	cct Pro	ttt Phe	tgt Cys	ggc Gly 170	cca Pro	aac Asn	cag Gln	ctg Leu	gac Asp 175	aac Asn	528
ttc Phe	ttc Phe	tgt Cys	gat Asp 180	gtc Val	cca Pro	cag Gln	gtc Val	atc Ile 185	aag Lys	ctg Leu	gcc Ala	tgc Cys	acc Thr 190	gac Asp	aca Thr	576
ttt Phe	gtg Val	gtg Val 195	gag Glu	ctt Leu	ctg Leu	atg Met	gtc Val 200	ttc Phe	aac Asn	agt Ser	ggc Gly	ctg Leu 205	atg Met	aca Thr	ctc Leu	624
								tcc Ser								672
								aaa Lys								720
								ttc Phe								768
								ttc Phe 265								816
								ttg Leu								864
ctt Leu	cgc Arg 290	aac Asn	cag Gln	gaa Glu	gtg Val	aaa Lys 295	gct Ala	tcc Ser	atg Met	aaa Lys	aag Lys 300	gtg Val	ttt Phe	aat Asn	aag Lys	912
	Ile	gcc Ala	tga	aaaa	ggg ·	cgca	aaaa	aa a	aaag	aata	a aa	atag	actg			961

<210> 12 <211> 307 <212> PRT

<213> Homo sapiens

<400> 12

Met Glu Ser Glu Asn Arg Arg Val Ile Arg Glu Phe Ile Leu Leu Gly
1 5 10 15

Leu Thr Gln Ser Gln Asp Ile Gln Leu Leu Val Phe Val Leu Val Leu 20 25 30

Ile Phe Tyr Phe Ile Ile Leu Pro Gly Asn Phe Leu Ile Ile Phe Thr 35 40 45

Ile Lys Ser Asp Pro Gly Leu Thr Ala Pro Leu Tyr Phe Phe Leu Gly 50 60

Asn Leu Ala Phe Leu Asp Ala Ser Tyr Ser Phe Ile Val Ala Pro Arg 65 70 75 80

Met Leu Val Asp Phe Leu Ser Ala Lys Lys Ile Ile Ser Tyr Arg Gly 85 90 95

Cys Ile Thr Gln Leu Phe Phe Leu His Phe Leu Gly Gly Gly Glu Gly $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$

Leu Leu Val Val Met Ala Phe Asp Arg Tyr Ile Ala Ile Cys Arg 115 120 125

Pro Leu His Tyr Pro Thr Val Met Asn Pro Arg Thr Cys Tyr Ala Met 130 \$135\$

Met Leu Ala Leu Trp Leu Gly Gly Phe Val His Ser Ile Ile Gln Val 145 150 155

Val Leu Ile Leu Arg Leu Pro Phe Cys Gly Pro Asn Gln Leu Asp Asn 165 170 175

Phe Phe Cys Asp Val Pro Gln Val Ile Lys Leu Ala Cys Thr Asp Thr 180 185 190

Phe Val Val Glu Leu Leu Met Val Phe Asn Ser Gly Leu Met Thr Leu 195 200 205

Leu Cys Phe Leu Gly Leu Leu Ala Ser Tyr Ala Val Ile Leu Cys Arg 210 215 220

Ile Arg Gly Ser Ser Ser Glu Ala Lys Asn Lys Ala Met Ser Thr Cys225230235240

Ile Thr His Ile Ile Val Ile Phe Phe Met Phe Gly Pro Gly Ile Phe 245 250 255

Ile Tyr Thr Arg Pro Phe Arg Ala Phe Pro Ala Asp Lys Val Val Ser 260 265 270

Leu Phe His Thr Val Ile Phe Pro Leu Leu Asn Pro Val Ile Tyr Thr 275 280 285

```
Leu Arq Asn Gln Glu Val Lys Ala Ser Met Lys Lys Val Phe Asn Lys
                        295
    290
His Ile Ala
305
<210> 13
<211> 1380
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (266) .. (1375)
<220>
<221> misc_feature
<222> (32)
<223> n = A or C or G or T
<220>
<221> misc feature
<222> (55)
<223> n = A or C or G or T
<220>
<221> misc feature
<222> (74)
<223> n = A or C or G or T
<400> 13
tgcttcccca taaggtaaca gctttgttag cnctgtctga catcattgct tgttnactta 60
agaactgata ggtntttttt ttttttttt ttcagatatt ctgatggcaa aacaagtgga 120
agaaaagagg aagcatgact gcagatcaga tcagttctct ttgtggatta tattttcagt 180
aaaatgtatg gatctatctt ttccttgttc ttatatctag atcatgagac ttgactgagg 240
ctgtatcctt atcctccatc catct atg gcg aac tat agc cat gca gct gac
                                                                    292
                             Met Ala Asn Tyr Ser His Ala Ala Asp
aac att ttg caa aat ctc tcg cct cta aca gcc ttt ctg aaa ctg act
                                                                    340
Asn Ile Leu Gln Asn Leu Ser Pro Leu Thr Ala Phe Leu Lys Leu Thr
 10
                      15
                                          2.0
tcc ttg ggt ttc ata ata gga gtc agc gtg gtg ggc aac ctc ctg atc
                                                                    388
Ser Leu Gly Phe Ile Ile Gly Val Ser Val Val Gly Asn Leu Leu Ile
                  30
                                      35
tcc att ttg cta gtg aaa gat aag acc ttg cat aga gca cct tac tac
                                                                    436
Ser Ile Leu Leu Val Lys Asp Lys Thr Leu His Arg Ala Pro Tyr Tyr
ttc ctg ttg gat ctt tgc tgt tca gat atc ctc aga tct gca att tgt
                                                                    484
Phe Leu Leu Asp Leu Cys Cys Ser Asp Ile Leu Arg Ser Ala Ile Cys
ttc cca ttt gtg ttc aac tct gtc aaa aat ggt tct acc tgg act tat
                                                                    532
Phe Pro Phe Val Phe Asn Ser Val Lys Asn Gly Ser Thr Trp Thr Tyr
     75
                          80
                                               85
```

ggg gly 90	act Thr	ctg Leu	act Thr	tgc Cys	aaa Lys 95	gtg Val	att Ile	gcc Ala	ttt Phe	ctg Leu 100	ggg Gly	gtt Val	ttg Leu	tcc Ser	tgt Cys 105	580
ttc Phe	cac His	act Thr	gct Ala	ttc Phe 110	atg Met	ctc Leu	ttc Phe	tgc Cys	atc Ile 115	agt Ser	gtc Val	acc Thr	aga Arg	tat Tyr 120	tta Leu	628
gct Ala	atc Ile	gcc Ala	cat His 125	cac His	cgc Arg	ttc Phe	tat Tyr	aca Thr 130	aag Lys	agg Arg	ctg Leu	acc Thr	ttt Phe 135	tgg Trp	acg Thr	676
tgt Cys	ctg Leu	gct Ala 140	gtg Val	atc Ile	tgt Cys	atg Met	gtg Val 145	tgg Trp	act Thr	ctg Leu	tct Ser	gtg Val 150	gcc Ala	atg Met	gca Ala	724
ttt Phe	ccc Pro 155	ccg Pro	gtt Val	tta Leu	gac Asp	gtg Val 160	ggc Gly	act Thr	tac Tyr	tca Ser	ttc Phe 165	att Ile	agg Arg	gag Glu	gaa Glu	772
			acc Thr													820
			ctg Leu													868
		_	ctg Leu 205				_		_	_						916
			gta Val													964
			ggc Gly													1012
			cca Pro			_	_									1060
			aga Arg													1108
			aga Arg 285													1156
			tac Tyr													1204
			cca Pro													1252

									- 21 -							
gcc Ala 330	caa Gln	gca Ala	gga Gly	atc Ile	aat Asn 335	cct Pro	ttt Phe	gtc Val	tgc Cys	att Ile 340	ttc Phe	tca Ser	aac Asn	agg Arg	gag Glu 345	1300
		cgc Arg														1348
		agg Arg							tgag	13						1380
<213 <212)> 14 l> 37 2> PH B> Ho	70	sapie	ens												
)> 14 Ala	asn	Tyr	Ser 5	His	Ala	Ala	Asp	Asn 10	Ile	Leu	Gln	Asn	Leu 15	Ser	
Pro	Leu	Thr	Ala 20	Phe	Leu	Lys	Leu	Thr 25	Ser	Leu	Gly	Phe	Ile 30	Ile	Gly	
Val	Ser	Val 35	Val	Gly	Asn	Leu	Leu 40	Ile	Ser	Ile	Leu	Leu 45	Val	Lys	Asp	
Lys	Thr 50	Leu	His	Arg	Ala	Pro 55	Tyr	Tyr	Phe	Leu	Leu 60	Asp	Leu	Cys	Cys	
Ser 65	Asp	Ile	Leu	Arg	Ser 70	Ala	Ile	Cys	Phe	Pro 75	Phe	Val	Phe	Asn	Ser 80	
Val	Lys	Asn	Gly	Ser 85	Thr	Trp	Thr	Tyr	Gly 90	Thr	Leu	Thr	Cys	Lys 95	Val	
Ile	Ala	Phe	Leu 100	Gly	Val	Leu	Ser	Cys 105	Phe	His	Thr	Ala	Phe 110	Met	Leu	
Phe	Cys	Ile 115	Ser	Val	Thr	Arg	Tyr 120	Leu	Ala	Ile	Ala	His 125	His	Arg	Phe	
Tyr	Thr 130	Lys	Arg	Leu	Thr	Phe 135	Trp	Thr	Cys	Leu	Ala 140	Val	Ile	Cys	Met	
Val 145	Trp	Thr	Leu	Ser	Val 150	Ala	Met	Ala	Phe	Pro 155	Pro	Val	Leu	Asp	Val 160	
Gly	Thr	Tyr	Ser	Phe 165	Ile	Arg	Glu	Glu	Asp 170	Gln	Cys	Thr	Phe	Gln 175	His	
Arg	Ser	Phe	Arg 180	Ala	Asn	Asp	Ser	Leu 185	Gly	Phe	Met	Leu	Leu 190	Leu	Ala	
Leu	Ile	Leu 195	Leu	Ala	Thr	Gln	Leu 200	Val	Tyr	Leu	Lys	Leu 205	Ile	Phe	Phe	
Val	His 210	Asp	Arg	Arg	Lys	Met 215	Lys	Pro	Val	Gln	Phe 220	Val	Ala	Ala	Val	
Ser 225	Gln	Asn	Trp	Thr	Phe 230	His	Gly	Pro	Gly	Ala 235	Ser	Gly	Gln	Ala	Ala 240	

Ala Asn Trp Leu Ala Gly Phe Gly Arg Gly Pro Thr Pro Pro Thr Leu 250 Leu Gly Ile Arg Gln Asn Ala Asn Thr Thr Gly Arg Arg Leu Leu 265 Val Leu Asp Glu Phe Lys Met Glu Lys Arg Ile Ser Arg Met Phe Tyr 280 Ile Met Thr Phe Leu Phe Leu Thr Leu Trp Gly Pro Tyr Leu Val Ala 290 295 300 Cys Tyr Trp Arg Val Phe Ala Arg Gly Pro Val Val Pro Gly Gly Phe Leu Thr Ala Ala Val Trp Met Ser Phe Ala Gln Ala Gly Ile Asn Pro 330 Phe Val Cys Ile Phe Ser Asn Arg Glu Leu Arg Arg Cys Phe Ser Thr 345 Thr Leu Leu Tyr Cys Arg Lys Ser Arg Leu Pro Arg Glu Pro Tyr Cys Val Ile 370 <210> 15 <211> 1191 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1188) <400> 15 atg ttt aga cct ctt gtg aat ctc tct cac ata tat ttt aag aaa ttc 48 Met Phe Arg Pro Leu Val Asn Leu Ser His Ile Tyr Phe Lys Lys Phe cag tac tgt ggg tat gca cca cat gtt cgc agc tgt aaa cca aac act 96 Gln Tyr Cys Gly Tyr Ala Pro His Val Arg Ser Cys Lys Pro Asn Thr 2.0 gat gga att tca tct cta gag aat ctc ttg gca agc att att cag aga 144 Asp Gly Ile Ser Ser Leu Glu Asn Leu Leu Ala Ser Ile Ile Gln Arg 40 3.5 gta ttt gtc tgg gtt gta tct gca gtt acc tgc ttt gga aac att ttt 192 Val Phe Val Trp Val Val Ser Ala Val Thr Cys Phe Gly Asn Ile Phe 50 55 gtc att tgc atg cga cct tat atc agg tct gag aac aag ctg tat gcc 240 Val Ile Cys Met Arg Pro Tyr Ile Arg Ser Glu Asn Lys Leu Tyr Ala 65 atg tca atc att tct ctc tgc tgt gcc gac tgc tta atg gga ata tat 288 Met Ser Ile Ile Ser Leu Cys Cys Ala Asp Cys Leu Met Gly Ile Tyr

90

85

tta Leu	ttc Phe	gtg Val	atc Ile 100	gga Gly	ggc Gly	ttt Phe	gac Asp	cta Leu 105	aag Lys	ttt Phe	cgt Arg	gga Gly	gaa Glu 110	tac Tyr	aat Asn	336
aag Lys	cat His	gcg Ala 115	cag Gln	ctg Leu	tgg Trp	atg Met	gag Glu 120	agt Ser	act Thr	cat His	tgt Cys	cag Gln 125	ctt Leu	gta Val	gga Gly	384
tct Ser	ttg Leu 130	gcc Ala	att Ile	ctg Leu	tcc Ser	aca Thr 135	gaa Glu	gta Val	tca Ser	gtt Val	tta Leu 140	ctg Leu	tta Leu	aca Thr	ttt Phe	432
ctg Leu 145	aca Thr	ttg Leu	gaa Glu	aaa Lys	tac Tyr 150	atc Ile	tgc Cys	att Ile	gtc Val	tat Tyr 155	cct Pro	ttt Phe	aga Arg	tgt Cys	gtg Val 160	480
aga Arg	cct Pro	gga Gly	aaa Lys	tgc Cys 165	aga Arg	aca Thr	att Ile	aca Thr	gtt Val 170	ctg Leu	att Ile	ctc Leu	att Ile	tgg Trp 175	att Ile	528
act Thr	ggt Gly	ttt Phe	ata Ile 180	gtg Val	gct Ala	ttc Phe	att Ile	cca Pro 185	ttg Leu	agc Ser	aat Asn	aag Lys	gaa Glu 190	ttt Phe	ttc Phe	576
aaa Lys	aac Asn	tac Tyr 195	tat Tyr	ggc Gly	acc Thr	aat Asn	gga Gly 200	gta Val	tgc Cys	ttc Phe	cct Pro	ctt Leu 205	cat His	tca Ser	gaa Glu	624
gat Asp	aca Thr 210	gaa Glu	agt Ser	att Ile	gga Gly	gcc Ala 215	cag Gln	att Ile	tat Tyr	tca Ser	gtg Val 220	gca Ala	att Ile	ttt Phe	ctt Leu	672
ggt Gly 225	att Ile	aat Asn	ttg Leu	gcc Ala	gca Ala 230	ttt Phe	atc Ile	atc Ile	ata Ile	gtt Val 235	ttt Phe	tcc Ser	tat Tyr	gga Gly	agc Ser 240	720
atg Met	ttt Phe	tat Tyr	agt Ser	gtt Val 245	cat His	caa Gln	agt Ser	gcc Ala	ata Ile 250	aca Thr	gca Ala	act Thr	gaa Glu	ata Ile 255	cgg Arg	768
							atc Ile									816
gta Val	ttt Phe	act Thr 275	gat Asp	gca Ala	tta Leu	tgc Cys	tgg Trp 280	ata Ile	ccc Pro	att Ile	ttt Phe	gta Val 285	gtg Val	aaa Lys	ttt Phe	864
							ata Ile									912
							aac Asn									960
							aaa Lys									1008
							atg Met									1056

									- ∠-+ -							
gct Ala	cca Pro	tca Ser 355	ttc Phe	atc Ile	tgg Trp	gtg Val	gaa Glu 360	atg Met	tgg Trp	cca Pro	ctg Leu	cag Gln 365	gag Glu	atg Met	cca Pro	1104
					ccg Pro											1152
_					acg Thr 390	_						tga				1191
<211 <212)> 16 L> 39 2> PH B> Ho	96	sapie	ens												
)> 10 Phe		Pro	Leu 5	Val	Asn	Leu	Ser	His 10	Ile	Tyr	Phe	Lys	Lys 15	Phe	
Gln	Tyr	Cys	Gly 20	Tyr	Ala	Pro	His	Val 25	Arg	Ser	Cys	Lys	Pro 30	Asn	Thr	
Asp	Gly	Ile 35	Ser	Ser	Leu	Glu	Asn 40	Leu	Leu	Ala	Ser	Ile 45	Ile	Gln	Arg	
Val	Phe 50	Val	Trp	Val	Val	Ser 55	Ala	Val	Thr	Cys	Phe 60	Gly	Asn	Ile	Phe	
Val 65	Ile	Cys	Met	Arg	Pro 70	Tyr	Ile	Arg	Ser	Glu 75	Asn	Lys	Leu	Tyr	Ala 80	
Met	Ser	Ile	Ile	Ser 85	Leu	Cys	Cys	Ala	Asp 90	Cys	Leu	Met	Gly	Ile 95	Tyr	
Leu	Phe	Val	Ile 100	Gly	Gly	Phe	Asp	Leu 105	Lys	Phe	Arg	Gly	Glu 110	Tyr	Asn	
Lys	His	Ala 115	Gln	Leu	Trp	Met	Glu 120	Ser	Thr	His	Cys	Gln 125	Leu	Val	Gly	
Ser	Leu 130	Ala	Ile	Leu	Ser	Thr 135	Glu	Val	Ser	Val	Leu 140	Leu	Leu	Thr	Phe	
Leu 145	Thr	Leu	Glu	Lys	Tyr 150	Ile	Cys	Ile	Val	Tyr 155	Pro	Phe	Arg	Cys	Val 160	
Arg	Pro	Gly	Lys	Cys 165	Arg	Thr	Ile	Thr	Val 170	Leu	Ile	Leu	Ile	Trp 175	Ile	
Thr	Gly	Phe	Ile 180	Val	Ala	Phe	Ile	Pro 185	Leu	Ser	Asn	Lys	Glu 190	Phe	Phe	
Lys	Asn	Tyr 195	Tyr	Gly	Thr	Asn	Gly 200	Val	Cys	Phe	Pro	Leu 205	His	Ser	Glu	
Asp	Thr 210	Glu	Ser	Ile	Gly	Ala 215	Gln	Ile	Tyr	Ser	Val 220	Ala	Ile	Phe	Leu	
Gly 225	Ile	Asn	Leu	Ala	Ala 230	Phe	Ile	Ile	Ile	Val 235	Phe	Ser	Tyr	Gly	Ser 240	

Met Phe Tyr Ser Val His Gln Ser Ala Ile Thr Ala Thr Glu Ile Arg 250 245 Asn Gln Val Lys Lys Glu Met Ile Leu Ala Lys Arg Phe Phe Ile Val Phe Thr Asp Ala Leu Cys Trp Ile Pro Ile Phe Val Val Lys Phe Leu Ser Leu Leu Gln Val Glu Ile Pro Gly Thr Ile Thr Ser Trp Val 290 300 295 Val Ile Phe Ile Leu Pro Ile Asn Ser Ala Leu Asn Pro Ile Leu Tyr Thr Leu Thr Thr Arg Pro Phe Lys Glu Met Ile His Arg Phe Trp Tyr Asn Tyr Arg Gln Arg Lys Ser Met Asp Ser Lys Gly Gln Lys Thr Tyr 345 Ala Pro Ser Phe Ile Trp Val Glu Met Trp Pro Leu Gln Glu Met Pro Pro Glu Leu Met Lys Pro Asp Leu Phe Thr Tyr Pro Cys Glu Met Ser 375 Leu Ile Ser Gln Ser Thr Arg Leu Asn Ser Tyr Ser 390 385 <210> 17 <211> 1164 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (13)..(1089) <400> 17 cacaactgaa ga atg ggg ttc aac ttg acg ctt gca aaa tta cca aat aac 51 Met Gly Phe Asn Leu Thr Leu Ala Lys Leu Pro Asn Asn gag ctg cac ggc caa gag agt cac aat tca ggc aac agg agc gac ggg 99 Glu Leu His Gly Gln Glu Ser His Asn Ser Gly Asn Arg Ser Asp Gly 15 cca gga aag aac acc ctt cac aat gaa ttt gac aca att gtc ttg 147 Pro Gly Lys Asn Thr Thr Leu His Asn Glu Phe Asp Thr Ile Val Leu 30 35 195 cca gtg ctt tat ctc att ata ttt gtg gca agc atc ttg ctg aat ggt Pro Val Leu Tyr Leu Ile Ile Phe Val Ala Ser Ile Leu Leu Asn Gly 50 243 tta qca qtq tqq atc ttc ttc cac att agg aat aaa acc agc ttc ata Leu Ala Val Trp Ile Phe Phe His Ile Arg Asn Lys Thr Ser Phe Ile ttc tat ctc aaa aac ata gtg gtt gca gac ctc ata atg acg ctg aca 291 Phe Tyr Leu Lys Asn Ile Val Val Ala Asp Leu Ile Met Thr Leu Thr

ttt Phe	cca Pro 95	ttt Phe	cga Arg	ata Ile	gtc Val	cat His 100	gat Asp	gca Ala	gga Gly	ttt Phe	gga Gly 105	cct Pro	tgg Trp	tac Tyr	ttc Phe	339
aag Lys 110	ttt Phe	att Ile	ctc Leu	tgc Cys	aga Arg 115	tac Tyr	act Thr	tca Ser	gtt Val	ttg Leu 120	ttt Phe	tat Tyr	gca Ala	aac Asn	atg Met 125	387
	act Thr			_				_		-		_				435
aag Lys	gtg Val	gtc Val	aag Lys 145	cca Pro	ttt Phe	gly ggg	gac Asp	tct Ser 150	cgg Arg	atg Met	tac Tyr	agc Ser	ata Ile 155	acc Thr	ttc Phe	483
	aag Lys															531
	cca Pro 175															579
	gac Asp															627
	gtc Val															675
_	atc Ile		_			_						_				723
	caa Gln															771
atc Ile	agg Arg 255	gtt Val	gtt Val	gtg Val	gct Ala	gtg Val 260	ttt Phe	ttt Phe	acc Thr	tgc Cys	ttt Phe 265	cta Leu	cca Pro	tat Tyr	cac His	819
	tgc Cys															867
	tct Ser															915
_	tct Ser		_		_	_	_	_								963
_	agg Arg				_	~ ~	_						_	_	_	1011
	agt Ser 335	_	_		_		_		_		_	_				1059

ctc ata tat tat gat tat act gat gtg tag gccttttatt gtttgttgga
Leu Ile Tyr Tyr Asp Tyr Thr Asp Val
350 355

atcgatatgt acaaagtgta aataaatgtt tcttttcatt aaaaaaaaa aaaaa 1164

<210> 18 <211> 358 <212> PRT <213> Homo sapiens

<400> 18

Met Gly Phe Asn Leu Thr Leu Ala Lys Leu Pro Asn Asn Glu Leu His 1 5 10 15

Gly Gln Glu Ser His Asn Ser Gly Asn Arg Ser Asp Gly Pro Gly Lys 20 25 30

Asn Thr Thr Leu His Asn Glu Phe Asp Thr Ile Val Leu Pro Val Leu 35 40 45

Tyr Leu Ile Ile Phe Val Ala Ser Ile Leu Leu Asn Gly Leu Ala Val 50 55 60

Trp Ile Phe Phe His Ile Arg Asn Lys Thr Ser Phe Ile Phe Tyr Leu 65 70 75 80

Lys Asn Ile Val Val Ala Asp Leu Ile Met Thr Leu Thr Phe Pro Phe 85 90 95

Arg Ile Val His Asp Ala Gly Phe Gly Pro Trp Tyr Phe Lys Phe Ile 100 105 110

Leu Cys Arg Tyr Thr Ser Val Leu Phe Tyr Ala Asn Met Tyr Thr Ser 115 120 125

Ile Val Phe Leu Gly Leu Ile Ser Ile Asp Arg Tyr Leu Lys Val Val 130 135 140

Lys Pro Phe Gly Asp Ser Arg Met Tyr Ser Ile Thr Phe Thr Lys Val 145 150 155 160

Leu Ser Val Cys Val Trp Val Ile Met Ala Val Leu Ser Leu Pro Asn 165 170 175

Ile Ile Leu Thr Asn Gly Gln Pro Thr Glu Asp Asn Ile His Asp Cys 180 185 190

Ser Lys Leu Lys Ser Pro Leu Gly Val Lys Trp His Thr Ala Val Thr 195 200 205

Tyr Val Asn Ser Cys Leu Phe Val Ala Val Leu Val Ile Leu Ile Gly 210 215 220

Cys Tyr Ile Ala Ile Ser Arg Tyr Ile His Lys Ser Ser Arg Gln Phe 225 230 235 240

Ile Ser Gln Ser Ser Arg Lys Arg Lys His Asn Gln Ser Ile Arg Val \$245\$ \$250\$

Val Val Ala Val Phe Phe Thr Cys Phe Leu Pro Tyr His Leu Cys Arg
260 265 270

120

Ile Pro Phe Thr Phe Ser His Leu Asp Arg Leu Leu Asp Glu Ser Ala 280 Gln Lys Ile Leu Tyr Tyr Cys Lys Glu Ile Thr Leu Phe Leu Ser Ala 295 Cys Asn Val Cys Leu Asp Pro Ile Ile Tyr Phe Phe Met Cys Arg Ser Phe Ser Arg Arg Leu Phe Lys Lys Ser Asn Ile Arg Thr Arg Ser Glu 325 330 Ser Ile Arg Ser Leu Gln Ser Val Arg Arg Ser Glu Val Leu Ile Tyr 345 Tyr Asp Tyr Thr Asp Val 355 <210> 19 <211> 2480 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (42)..(1157) <400> 19 catggcatcc ccagcctagc tcccaatccc actttggcac g atg tta gcc aac agc 56 Met Leu Ala Asn Ser tcc tca acc aac agt tct gtt ctc ccg tgt cct gac tac cga cct acc 104 Ser Ser Thr Asn Ser Ser Val Leu Pro Cys Pro Asp Tyr Arg Pro Thr cac cgc ctg cac ttg gtg gtc tac agc ttg gtg ctg gcc ggg ctc 152 His Arg Leu His Leu Val Val Tyr Ser Leu Val Leu Ala Ala Gly Leu ccc ctc aac gcg cta gcc ctc tgg gtc ttc ctg cgc gcg ctg cgc gtg 200 Pro Leu Asn Ala Leu Ala Leu Trp Val Phe Leu Arg Ala Leu Arg Val cac tcg gtg gtg agc gtg tac atg tgt aac ctg gcg gcc agc gac ctg 248 His Ser Val Val Ser Val Tyr Met Cys Asn Leu Ala Ala Ser Asp Leu 60 55 ctc ttc acc ctc tcg ctg ccc gtt cgt ctc tcc tac tac gca ctg cac 296 Leu Phe Thr Leu Ser Leu Pro Val Arg Leu Ser Tyr Tyr Ala Leu His 70 cac tgg ccc ttc ccc gac ctc ctg tgc cag acg acg ggc gcc atc ttc 344 His Trp Pro Phe Pro Asp Leu Leu Cys Gln Thr Thr Gly Ala Ile Phe cag atg aac atg tac ggc agc tgc atc ttc ctg atg ctc atc aac gtg 392 Gln Met Asn Met Tyr Gly Ser Cys Ile Phe Leu Met Leu Ile Asn Val gac ege tae gee gee ate gtg eac eeg etg ega etg ege eac etg egg 440 Asp Arg Tyr Ala Ala Ile Val His Pro Leu Arg Leu Arg His Leu Arg

125

130

cgg ccc cgc gtg g Arg Pro Arg Val A 135	gcg cgg ctg ctc Ala Arg Leu Leu 140	tgc ctg ggc Cys Leu Gly	gtg tgg gcg ct Val Trp Ala Le 145	cc atc 488 eu Ile
ctg gtg ttt gcc g Leu Val Phe Ala V 150	gtg ccc gcc gcc /al Pro Ala Ala 155	c cgc gtg cac A Arg Val His 160	agg cec teg eg Arg Pro Ser Ai	gt tgc 536 rg Cys 165
cgc tac cgg gac c Arg Tyr Arg Asp I 1	etc gag gtg cgc Leu Glu Val Arg 170	c cta tgc ttc g Leu Cys Phe 175	Glu Ser Phe Se	gc gac 584 er Asp 30
gag ctg tgg aaa g Glu Leu Trp Lys G 185	ggc agg ctg ctg Gly Arg Leu Leu	g ccc ctc gtg 1 Pro Leu Val 190	ctg ctg gcc ga Leu Leu Ala G 195	ag gcg 632 lu Ala
ctg ggc ttc ctg c Leu Gly Phe Leu I 200		a Ala Val Val		
gtc ttc tgg acg c Val Phe Trp Thr I 215	etg gcg cgc ccc Leu Ala Arg Pro 220	c gac gcc acg o Asp Ala Thr	cag agc cag co Gln Ser Gln A: 225	gg cgg 728 rg Arg
cgg aag acc gtg c Arg Lys Thr Val A 230				
tgc ttc gtg ccc t Cys Phe Val Pro 1			Tyr Gly Leu L	
agc aag ctg gtg g Ser Lys Leu Val A 265	gcg gcc agc gtg Ala Ala Ser Va	g cct gcc cgc l Pro Ala Arg 270	gat cgc gtg c Asp Arg Val A 275	gc ggg 872 rg Gly
gtg ctg atg gtg a Val Leu Met Val N 280		u Ala Gly Ala		
ccg ctg gtg tac t Pro Leu Val Tyr 1 295				
ggc ctg ggc act o Gly Leu Gly Thr I 310	ccg cac cgg gc Pro His Arg Al 315	c agg acc tcg a Arg Thr Ser 320	gcc acc aac g Ala Thr Asn G	gg acg 1016 ly Thr 325
cgg gcg gcg ctc g Arg Ala Ala Leu A	gcg caa tcc ga Ala Gln Ser Gl 330	a agg tcc gcc u Arg Ser Ala 335	Val Thr Thr A	ac gcc 1064 sp Ala 40
acc agg ccg gat of Thr Arg Pro Asp A	gcc gcc agt ca Ala Ala Ser Gl	g ggg ctg ctc n Gly Leu Leu 350	cga ccc tcc g Arg Pro Ser A 355	ac tcc 1112 sp Ser
cac tct ctg tct t His Ser Leu Ser S 360		n Cys Pro Gln		
tgaacacaca tgccat	ttgcg ctgtccgt	gc ccgactccca	acgcctctcg tt	ctgggagg 1217
cttacagggt gtacac	cacaa gaaggtgg	gc tgggcacttg	gacctttggg tg	gcaattcc 1277

agcttagcaa cgcagaagag tacaaagtgt ggaagccagg gcccagggaa ggcagtgctg 1337 ctggaaatgg cttctttaaa ctgtgagcac gcagagcacc ccttctccag cggtgggaag 1397 tgatgcagag agcccacccg tgcagagggc agaagaggac gaaatgcctt tgggtgggca 1457 gggcattaaa ctgctaaaag ctggttagat ggaacagaaa atgggcattc tggatctaaa 1517 ccgccacagg ggcctgagag ctgaagagca ccaggtttgg tggacaaagc tactgagatg 1577 cctgttcatc tgctgacttc tgtctaggct catggatgcc acccctttc atttcggcct 1637 aggetteece tgeteaceae tgaggeetaa tacaagagtt cetatggaca gaactacatt 1697 ctttctcqca taqtqacttq tgacaattta gacttggcat ccagcatggg atagttgggg 1757 caaqqcaaaa ctaacttaga gtttccccct caacaacatc caagtccaaa ccctttttag 1817 gttatccttt cttccatcac atcccctttt ccaggcctcc tccattttag gtccttaata 1877 ttattattt ttatatatat ataqtttata tattatatat catataatat catatatatt 1937 ctcctcttct ctctctccc ctctctccc tttgtccaga gtaaggataa aattctttct 1997 actaaaqcac tqqttctcaa actttttqqt ctcagacccc actcttagaa attgaggatc 2057 tcaaagaget tigettatat titgitetti tgataettae eataetagaa attaaagega 2117 accacacaca cttcatgaaq cctctggaaa actctacagt atacttgtga gagaatgaga 2237 gtgaaaggga caaataacat ctgtgtagca gtattatgaa aatagcttga ccttgtggac 2297 ttcctcagag ggttggtccc tggatcacac tttgagaacc atacttgtcc tgaagtattg 2357 qaqttcatqt ctaacttctt cccagggcat tatgtacagt gctttttatt actgtgggga 2417 2480 aaa

```
<210> 20
<211> 372
<212> PRT
<213> Homo sapiens
```

Asp Tyr Arg Pro Thr His Arg Leu His Leu Val Val Tyr Ser Leu Val 20 25 30

Leu Ala Ala Gly Leu Pro Leu Asn Ala Leu Ala Leu Trp Val Phe Leu
35 40 45

Arg Ala Leu Arg Val His Ser Val Val Ser Val Tyr Met Cys Asn Leu 50 60

Ala Ala Ser Asp Leu Leu Phe Thr Leu Ser Leu Pro Val Arg Leu Ser 65 70 75 80 Tyr Tyr Ala Leu His His Trp Pro Phe Pro Asp Leu Leu Cys Gln Thr 85 90 95

Thr Gly Ala Ile Phe Gln Met Asn Met Tyr Gly Ser Cys Ile Phe Leu 100 105 110

Met Leu Ile Asn Val Asp Arg Tyr Ala Ala Ile Val His Pro Leu Arg 115 120 125

Leu Arg His Leu Arg Arg Pro Arg Val Ala Arg Leu Cys Leu Gly
130 135 140

Val Trp Ala Leu Ile Leu Val Phe Ala Val Pro Ala Ala Arg Val His 145 150 155 160

Arg Pro Ser Arg Cys Arg Tyr Arg Asp Leu Glu Val Arg Leu Cys Phe
165 170 175

Glu Ser Phe Ser Asp Glu Leu Trp Lys Gly Arg Leu Leu Pro Leu Val

Leu Leu Ala Glu Ala Leu Gly Phe Leu Leu Pro Leu Ala Ala Val Val 195 200

Tyr Ser Ser Gly Arg Val Phe Trp Thr Leu Ala Arg Pro Asp Ala Thr 210 215 220

Gln Ser Gln Arg Arg Arg Lys Thr Val Arg Leu Leu Leu Ala Asn Leu 225 230 235 240

Val Ile Phe Leu Leu Cys Phe Val Pro Tyr Asn Ser Thr Leu Ala Val 245 250 255

Tyr Gly Leu Leu Arg Ser Lys Leu Val Ala Ala Ser Val Pro Ala Arg 260 265 270

Asp Arg Val Arg Gly Val Leu Met Val Met Val Leu Leu Ala Gly Ala

Asn Cys Val Leu Asp Pro Leu Val Tyr Tyr Phe Ser Ala Glu Gly Phe 290 295 300

Arg Asn Thr Leu Arg Gly Leu Gly Thr Pro His Arg Ala Arg Thr Ser 305 310 315 320

Ala Thr Asn Gly Thr Arg Ala Ala Leu Ala Gln Ser Glu Arg Ser Ala 325 330 335

Val Thr Thr Asp Ala Thr Arg Pro Asp Ala Ala Ser Gln Gly Leu Leu 340 345 350

Arg Pro Ser Asp Ser His Ser Leu Ser Ser Phe Thr Gln Cys Pro Gln 355 360 365

Asp Ser Ala Leu 370

<210> 21

<211> 19 <212> DNA

<213> Artificial Sequence

<220>

```
<223> Description of Artificial Sequence: Primer LW1282
<400> 21
                                                                   19
taatacctgc actgcccac
<210> 22
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW 1283
<400> 22
                                                                    22
tctttccttc tcttctcact cc
<210> 23
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer LW 1373
                                                                    32
gcataagctt atgctaacac tgaataaaac ag
<210> 24
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1374
<400> 24
                                                                    30
gcatctcgag tcacatgctg taggatttgg
<210> 25
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Peptide
<400> 25
Ala Pro Arg Thr Pro Gly Gly Arg Arg
<210> 26
<211> 32
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1248
```

<400> 26 gcatgaattc caatatactt ccccatacct ac	32
<210> 27 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer LW1249	
<400> 27 gcatggatcc ggaaaagaag gagaagaaag	30
<210> 28 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1278	
<400> 28 accgctgcct ttttagtc	18
<210> 29 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1279	
<400> 29 ccttctttct gggtacataa gtc	23
<210> 30 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1405	
<400> 30 aagcataaca tggatgaaac aggaaatctg	30
<210> 31 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1406	
<400> 31 aagcataact atactttaca tatttcttc	29

```
<210> 32
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1280
<400> 32
                                                                    22
tctgcacaca gctcttccat gg
<210> 33
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1281
<400> 33
                                                                    22
tcccttgtcc agttggttga gg
<210> 34
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1385
<400> 34
                                                                    30
gcataagctt ccatggaact tcataacctg
<210> 35
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1386
<400> 35
                                                                    30
gcatctcgag ttacccccac agcgctgcag
<210> 36
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1329
<400> 36
                                                                    29
gcatctcgag tcagcctaag gttatgttg
<210> 37
<211> 29
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer LW1377
                                                                    29
gcataagctt atgaacacca cagtgatgc
<210> 38
<211> 41
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1387
<400> 38
                                                                    41
gagaaatatt tttctaaaaa aacctgtttt tgcaaaaacg g
<210> 39
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer LW1388
<400> 39
                                                                    41
ccgtttttgc aaaaacaggt ttttttagaa aaatatttct c
<210> 40
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1314
<400> 40
                                                                     30
gcatgaattc ccaccttcat catctacctc
 <210> 41
 <211> 29
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer LW1315
 <400> 41
                                                                     29
 gcatggatcc gaagaccaaa aagacccag
 <210> 42
 <211> 30
 <212> DNA
 <213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Primer LW1326
                                                                   30
gcatgaattc atgatggtgg atcccaatgg
<210> 43
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1327
<400> 43
                                                                    27
gcatctcgag cctagggctc tgaagcg
<210> 44
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1415
<400> 44
                                                                    42
ccatgtatat atttetttgc atgetttcag gcattgacat cc
<210> 45
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer LW1416
                                                                    42
ggatgtcaat gcctgaaagc atgcaaagaa atatatacat gg
 <210> 46
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer LW1308
 <400> 46
                                                                     30
 qcatqaattc actcacttct catctccttc
 <210> 47
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer LW1309
 <400> 47
```

gcatggatcc aatctccttt gtcttcactc	30
<210> 48 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1324	
<400> 48 gatcggatcc atggaaagcg agaacag	27
<210> 49 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1325	
<400> 49 gatcctcgag tcaggctatg tgcttattaa acacc	35
<210> 50 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1306	
<400> 50 gcatgaatte ttetaettea teateetee	29
<210> 51 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1307	
<400> 51 gcatggatcc aaaggccatc acaacaag	28
<210> 52 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer GV599	
<400> 52 ggcagaagaa ggctattggt cttagacgag	30

<210> 53 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer GV600	
<400> 53 ctgaaacagc gcctcagctc cc	22
<210> 54 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1482	
<400> 54 agctatggcg aactatagcc atgcagc	27
<210> 55 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW148	
<400> 55 agtcctcata taacacagta aggttcc	27
<210> 56 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1310	
<400> 56 gcatgaattc gcagaagaag gctattgg	28
<210> 57 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1311	
<400> 57 gcatggatcc gcagtaaaga agggttgtg	29
<210> 58 <211> 19	

```
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1442
<400> 58
                                                                   19
gccattctgt ccacagaag
<210> 59
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer LW1443
<400> 59
                                                                   19
tcagttgctg ttatggcac
<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1440
<400> 60
aagcggatgt ttagacctct tgtg
   24
<210> 61
<211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Description of Artificial Sequence: Primer LW1441
 <400> 61
                                                                    23
 aacagtcatg aataggaatt gag
 <210> 62
 <211> 32
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer LW1472
 <400> 62
                                                                    32
 gcatgaattc tgccatgtca atcatttctc tc
 <210> 63
 <211> 31
```

```
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1473
<400> 63
gcatggatcc gttctgcatt ttccaggtct c
                                                                    31
<210> 64
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1411
<400> 64
gcatgaattc tgccaaacat catcctgac
                                                                    29
<210> 65
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer LW1412
<400> 65
                                                                    29
gcatggatcc tacacagcca caacaaccc
<210> 66
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer LW1448
<400> 66
                                                                    30
aagcggtacc atgttagcca acagctcctc
<210> 67
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer LW1449
<400> 67
aagctctaga tcagagggcg gaatcctgg
                                                                    29
<210> 68
<211> 43
<212> DNA
```

<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer 217A	
<400> 68 taggtcggta gtcaggacac gggagaacag aactgttggt tga	43
<210> 69 <211> 52 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer 217B	
<400> 69 gcccctgtgg cggtttagat ccagaatgcc cattttctgt tccatctaac	ca 52
<210> 70 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1480	ı
<400> 70 ggttctacct ggacttatgg	20
<210> 71 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer LW1481	L
<400> 71 taatgaatga gtaagtgccc	20
<210> 72 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer CON103	3a
<400> 72 tttattaata ttggaaggga caaactggag agcacagaac at	42
<210> 73 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer CON10	3b
<400> 73	

aaagccacca tggaagccat gccaaagatg atgctgggca agaa	44
<210> 74 <211> 18 <212> DNA <213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer 1332	
<400> 74 tcctactgtc atgaaccc	18
<210> 75	
<211> 18	
<212> DNA <213> Artificial Sequence	
22137 Altilitat Sequence	
<220>	
<223> Description of Artificial Sequence: Primer 1333	
<400> 75 cagaagaagt tgtccagc	18