Определение 1. Компле́ксное число z — это выражение вида z=a+bi, где $a,\ b\in\mathbb{R}$, а i — мнимая единица. По определению $i^2=-1$. Число a называют вещественной частью z (пишут $a=\mathrm{Re}\,(z)$), а число b — мнимой частью z (пишут $b=\mathrm{Im}\,(z)$). Комплексные числа складывают и умножают, «раскрывая скобки и приводя подобные». Множество комплексных чисел обозначают буквой \mathbb{C} .

Задача 1 $^{\varnothing}$. Найдите вещественную и мнимую части суммы и произведения чисел a+bi и c+di.

Определение 2. Каждому комплексному числу z=a+bi сопоставим точку (a,b) и вектор (a,b). Длина этого вектора называется модулем числа z и обозначается |z|. Пусть $z\neq 0$. Угол (в радианах), отсчитанный против часовой стрелки от вектора (1,0) до вектора (a,b), называется аргументом числа z и обозначается ${\rm Arg}\,(z)$. Аргумент определен с точностью до прибавления числа вида $2\pi n$, где $n\in\mathbb{Z}$.

Задача 2. а) Каков геометрический смысл суммы комплексных чисел? **б)** Сравните |z+w| и |z|+|w| для $z,w\in\mathbb{C}$. **в)*** Можно ли сравнивать комплексные числа так, чтобы сохранились основные свойства неравенств (домножение на число, большее 0, не меняет знак неравенства и т.п.)? Верно ли, что i>0, или что i<0?

Задача 3. Найдите модуль и аргумент чисел: **a)** -4, 1+i, $1-i\sqrt{3}$, $\sin \alpha + i\cos \alpha$; **6)** $1+\cos \alpha + i\sin \alpha$.

Задача 4 . (*Тригонометрическая форма записи*) Докажите, что для любого ненулевого комплексного числа z имеет место равенство $z = r(\cos \varphi + i \sin \varphi)$, где r = |z|, $\varphi = \operatorname{Arg}(z)$.

Задача 5°. Рассмотрим умножение точек комплексной плоскости на $\cos \varphi + i \sin \varphi$ как преобразование f этой плоскости, переводящее z в $(\cos \varphi + i \sin \varphi)z$. Куда при этом преобразовании перейдут

- а) точки действительной оси; б) точки мнимой оси?
- в) Докажите, что f поворот против часовой стрелки на угол φ вокруг начала координат.
- г) Пусть $z, w \in \mathbb{C}$. Выразите |zw| и Arg (zw) через |z|, |w|, Arg (z), Arg (w).
- д) Выведите из предыдущего пункта формулы для косинуса суммы и синуса суммы.

Задача 6. а) Из любого ли комплексного числа можно извлечь квадратный корень?

б) Решите уравнение $z^2 = i$. **в)** Найдите ошибку: $1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = i \cdot i = i^2 = -1$.

Задача 7. Докажите, что если и m и n — суммы двух квадратов целых чисел, то и mn — тоже.

Задача 8^{\varnothing} . (Формула Муавра) Пусть $z = r(\cos \varphi + i \sin \varphi), n \in \mathbb{N}$. Докажите: $z^n = r^n(\cos n\varphi + i \sin n\varphi)$.

Задача 9. Вычислите **a)** $(1+i)^{333}$; **б)** $(1+i\sqrt{3})^{150}$. **в)** Выразите $\cos nx$ и $\sin nx$ через $\cos x$ и $\sin x$ $(n \in \mathbb{N})$.

Определение 3. (Формула Эйлера) $e^{i\varphi} = \cos \varphi + i \sin \varphi$. Мы сможем доказать эту формулу в 11 классе, а пока можно использовать выражение $e^{i\varphi}$ как короткое и удобное обозначение для $\cos \varphi + i \sin \varphi$.

Задача 10. а) Докажите, что $e^{i\varphi}e^{i\psi}=e^{i(\varphi+\psi)}$.

б) Можно ли найти $e^{i\varphi} + e^{i\cdot 2\varphi} + \ldots + e^{i\cdot n\varphi}$ по формуле суммы геометрической прогрессии?

Задача 11[©]. Найдите: a) $\sin \varphi + \sin 2\varphi + \ldots + \sin n\varphi$; б) $C_n^1 - C_n^3 + C_n^5 - C_n^7 + \ldots$; в) $C_n^0 + C_n^4 + C_n^8 + C_n^{12} + \ldots$

Определение 4. Пусть z = a + bi, где $a, b \in \mathbb{R}$. Число $\overline{z} = a - bi$ называют комплексно-сопряжённым к z.

Задача 12[©]. а) Выразите $|\overline{z}|$, Arg (\overline{z}) через |z|, Arg (z). Докажите: б) $|z|^2 = z\overline{z}$; в) $\overline{z+w} = \overline{z}+\overline{w}$, $\overline{zw} = \overline{z}\,\overline{w}$; г) если P(x) — многочлен с вещественными коэффициентами и P(z) = 0, то $P(\overline{z}) = 0$.

Задача 13. Докажите, что многочлен степени n с коэффициентами из $\mathbb C$ имеет не более n корней из $\mathbb C$.

Задача 14 . a) Определите деление комплексных чисел; **б)** вычислите $\frac{(5+i)(7-6i)}{3+i}$; **в)** вычислите $\frac{(1+i)^5}{(1-i)^3}$.

Определение 5. Корнем из 1 степени n называется любое такое комплексное число z, что $z^n = 1$.

Задача 15°. **а)** Найдите и нарисуйте все корни из 1 степеней 2, 3, 4, 5 и 6. **б)** Сколько всего корней из 1 степени n? Найдите их произведение и сумму их s-х степеней для каждого $s \in \mathbb{N}$.

Задача 16. Пусть P — многочлен степени k с коэффициентами из \mathbb{C} . Докажите, что среднее арифметическое значений P в вершинах правильного n-угольника равно значению P в центре многоугольника, если n > k.

Задача 17*. Вершины правильного n-угольника покрашены в несколько цветов так, что точки одного цвета — вершины правильного многоугольника. Докажите: среди этих многоугольников есть равные.

Задача 18*. а) Пусть z = (3+4i)/5. Найдётся ли такое $n \in \mathbb{N}$, что $z^n = 1$? б) Докажите, что $\frac{1}{\pi} \arctan \frac{4}{3} \notin \mathbb{Q}$.

Задача 19[©]. Нарисуйте: a) $\{z \in \mathbb{C} \mid z^n + 1 = 0\}$; б) $\{z \in \mathbb{C} \mid 2 \geqslant |z - i|\}$; в) $\{z \in \mathbb{C} \mid \operatorname{Re} \frac{1}{z} = 1\}$; г) $\{\frac{1 + ti}{1 - ti} \mid t \in \mathbb{R}\}$.

1	2 a	2 : a (2 б	2 B	3 a	3	4	5 a	5 б	5 в	5 г	5 д	6 a	6 6	6 B	7	8	9 a	9 б	9 B	10 a	10 б	$\begin{vmatrix} 11 \\ a \end{vmatrix}$	11 б	11 B	12 a	12 б	12 в	12 Г	13	14 a	14 б	14 B	15 a	15 б	16	17	18 a	18 б	19 a	.91 б г	9 19 г