第三章多维随机变量

第二节 随机变量的独立性

- 1、二维随机变量的独立性
- 2、判定独立性的等价条件
- 3、多维随机变量的独立性
- 4、小结、思考

§ 3.2 随机变量的独立性

一. 二维随机变量的独立性 定义:

设(X, Y)是二维随机变量, 若对任意实数对(x, y)均有 $P\{X \le x, Y \le y\} = P\{X \le x\} P\{Y \le y\}$ 成立, 称 X 与 Y 相互独立。

<u>意义</u>:对任意实数对(x,y),随机事件 $\{X \le x\}$ 与随机事件 $\{Y \le y\}$ 相互独立。

例3.2.1 设随机变量 X 的概率密度为:

$$f(x) = \frac{1}{2}e^{-|x|} - \infty < x < + \infty$$
 问 X 与 | X | 是否相互独立。

分析: 1) 判断X与 |X| 是相互独立。需验证 $P\{X \le a, |X| \le b\} = P\{X \le a\}P\{|X| \le b\}$ 对任意的a, b都成立。

若判断不相互独立

则只需找到一对a,b使得上式不成立.

例3.2.1 设随机变量X的概率密度为:

$$f\left(x\right) = \frac{1}{2}e^{-|x|} \qquad -\infty < x < +\infty$$

问 X 与 | X | 是否相互独立。

解:对于任意给定的正实数 a 有

$$\{|X| \le a\} \cap \{X \le -a\} = \{X = -a\}$$

从而
$$P\{X \le -a, |X| \le a\} = \mathbf{0}$$

$$< P\{X \le -a\}P\{|X| \le a\}$$

即X与 |X| 不相互独立。

等价条件:

- 1. X与 Y 相互独立 $\Leftrightarrow F(x,y) = F_X(x)F_Y(y)$
- 2. (离散型)X与Y相互独立 \Leftrightarrow $P\{X=x_i,Y=y_j\}=P\{X=x_i\}$ $P\{Y=y_j\}$
- 3. (连续型)X与Y相互独立 $\Leftrightarrow f(x,y) = f_X(x)f_Y(y)$ 在平面上除去"面积"为0的集合外成立。

例3.2.2 已知二维随机变量(X,Y)的概率密度为:

$$f(x,y) = \begin{cases} 8xy & 0 \le y \le x \le 1 \\ 0 & \text{!}$$

问X,Y是否相互独立?

解:
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$$

$$= \begin{cases} 0 & x < 0 \text{ or } x > 1 \\ \int_0^x 8xy \, dy & 0 \le x \le 1 \end{cases}$$

$$= \begin{cases} 0 & x < 0 \text{ or } x > 1 \\ 4x^3 & 0 \le x \le 1 \end{cases}$$

同理

$$f_{Y}(y) = \begin{cases} 0 & y < 0 \text{ or } y > 1 \\ 4y - 4y^{3} & 0 \le y \le 1 \end{cases}$$

记
$$G = \{(x,y) \mid 0 \le y \le x \le 1\}$$

在区域 G 中 $f(x,y) \neq f_X(x) \cdot f_Y(y)$ 故 X, Y不相互独立。

例3.2.4 设随机变量 X, Y 相互独立, X~U(0, a)

 $Y \sim U(0, \pi/2)$ 且 0 < b < a 试求 $P\{X < b \cos Y\}$

解:
$$f_X(x) = \begin{cases} 1/a & 0 < x < a \\ 0 & 其他 \end{cases}$$
 $f_Y(y) = \begin{cases} 2/\pi & 0 < y < \pi/2 \\ 0 & 其他 \end{cases}$

因为随机变量X,Y相互独立,则

$$f(x,y) = f_X(x) \cdot f_Y(y)$$

$$= \begin{cases} 2/a\pi & o < x < a, 0 < y < \frac{\pi}{2} \\ 0 & \text{其他} \end{cases}$$

$$P\{X < b\cos Y\} = \iint_{D} \frac{2}{a\pi} \, dx \, dy$$

$$=\frac{2}{a\pi}S(D)=\frac{2b}{a\pi}$$

3.2 随机变量的独立性

练习:设随机变量 X 与 Y 相互独立,填出空白处的数值.

XY	y_1	y_2	y_3	p_{i}
x_1	1/24	1/8	1/12	1/4
x_2	1/8	3/8	1/4	3/4
$p_{.j}$	1/6	1/2	1/3	1

若(X,Y)的联合分布律中某 $P_{ij}=0$ 问X,Y是否相互独立? 不相互独立

$$0 < p_{i.}p_{.j} \neq P_{ij} = 0$$

二. 多维随机变量的独立性

定义: 设 n 维随机变量 $(X_1, X_2, ..., X_n)$ 的联合分布函数为 $F(x_1, x_2, ..., x_n)$ 若对任意实数 $x_1, x_2, ..., x_n$ 均有 $F(x_1, x_2, ..., x_n) = \prod_{i=1}^n F_i(x_i)$ $F_i(x_i)$ 为 X_i 的边缘分布函数 称 $X_1, X_2, ..., X_n$ 相互独立。

定理: 若n 维随机变量 $(X_1, X_2, ..., X_n)$ 相互独立,则 1). 任意k个随机变量 $(2 \le k \le n)$ 也相互独立.

- 2). 随机变量 $g_1(X_1), g_2(X_2), ..., g_n(X_n)$ 也相互独立.
- 3). $(X_1, X_2, ..., X_m)$ 与 $(X_{m+1}, X_{m+2}, ..., X_n)$ 也相互独立. 且随机变量 $h(X_1, X_2, ..., X_m)$ 与 $g(X_{m+1}, X_{m+2}, ..., X_n)$ 也相互独立.

例:3 维随机变量 X_1, X_2, X_3 相互独立,则

 X_1^2, X_2^2, X_3^2 也相互独立.

 $X_1 + X_2 与 X_3$ 也相互独立.

 $sin X_1$ 与 X_3 也相互独立.

 $X_1 + X_2 与 X_1 - X_2 不一定相互独立.$

随机变量的独立性本质上是事件的独立性

小 结

- 1.随机变量的独立性本质上是事件的独立性。
- 2. 掌握独立性的判定方法:

1)
$$F(x,y) = F_X(x)F_Y(y)$$

- 2) $\forall i, j P_{ij} = P_i.P_{.j}$
- 3) $f(x,y) = f_X(x)f_Y(y)$ 在平面上除去"面积" 为0 的集合外成立。

练习

设二维随机变量(X,Y)的联合分布律为:

XY	0	1
0	0.4	a
1	b	0.1

已知随机事件{X=0}与{X+Y=1}相互独立

则: a = 0.4 , b = 0.1 。