הרצאה 7 לוגיקה

מפשט הנאותות הרחב

הגדרה 1

 $X \vdash \neg \alpha$ וגם $X \vdash \alpha$ -פסוק כך פסוק אם אם עקבית היא א היא היא א קבוצת פסוקים קבוצת

הגדרה 2

 $X \nvdash \beta$ פסוק פסוק אם היא עקבית היא א פסוקים היא עקבית מסוקים היא קבוצת אוא היא עקבית פסוקים אוים א

2 הגדרה \pm 1 הגדרה

 $X \vdash \neg \alpha$ וגם $X \vdash \alpha$ פד כך ש
 α לא קיים מס כך אינו אינו $X \vdash \alpha$ ש
 אינו פחסקנה: לפחות א או $\neg \alpha$ או הגדרה מסקנה: לפחות α

הגדרה ב \Leftarrow 2 הגדרה

 $X \vdash \neg \alpha$ גום $X \vdash \alpha$ כך מפיים α כניח שקיים אברך בדרך $X \nvdash \beta$ ים כך β ככן פסוק נתון: נתון

$$\vdash \neg \alpha \rightarrow (\alpha \rightarrow \beta) \star$$

$$\vdash \neg \alpha \rightarrow (\alpha \rightarrow \beta)$$
 ניכיח.1.

$$\neg \alpha \; X \;'$$
ם מהנתון עסי. 2

$$\alpha~X$$
 מהנתון עס' .3

$$lpha
ightarrow eta$$
 MP 1,2 .4

$$\beta$$
 MP 3,4 .5

$$X \vdash \ell$$

 $X \nvdash \beta$ -בסתירה לנתון

 $X \vdash \neg \alpha$ וגם $X \vdash \alpha$ כך ש- מסקנה: לא קיים מסקנה:

שאלה:

. היא ריקה). היא תחשיב העסיומות של תחשיב הפסוקים היא עקבית (קבוצת ההנחות X היא ריקה). ין!

שאלה:

 $X \vDash \neg \alpha$ וגם $X \vDash \alpha$ האם יתכן :v לכל השמה

$$v \vDash \alpha$$
 אז $v \vDash X$ אם \star

$$v \vDash \neg \alpha$$
 אז $v \vDash X$ אם \star

X את שמספקת שמס אין אם אין להתקיים אם יכול להתקיים אם אין

:X דוגמאות ל

. לא ספיקה
$$X=\{p_1, \neg p_1\} \star$$

לא ספיקה.
$$X = \{\underbrace{\alpha \to \beta}_{\beta}, \alpha, \neg \beta\} \ \star$$

מסקנה:

. אינה עקבית אינה $X \Leftarrow X$ אינה עקבית X

. עקבית א פיקה $X \Leftarrow X$

למה 1

קבוצת פסוקים היא עקבית אם ורק אם כל תת קבוצה סופית שלה היא עקבית.

הוכחה:

עקבית $X \Leftarrow$

. נניח בשלילה שקיימת תת-קבוצה $Y\subseteq X$ סופית שאינה עקבית

 $Y \vdash \neg \alpha$ גם $Y \vdash \alpha$ כך ש- γ

עקבית. ש- $X \vdash \neg \alpha$ גום ארכחה ש- $X \vdash \neg \alpha$ גום אם מתקיים מתקיים ההוכחה מונוטוניות עס'

נתון: כל תת-קבוצה סופית היא עקבית. \Rightarrow

ובשלילה-X אינה עקבית

חונים סופיות כקבוצות שתמשות חוכחה סופיות שתיהן שתיהן אתיהן אתיהן שתיהן אתיהן של הנחות

 $X'' \vdash \neg \alpha$, $x' \vdash \alpha$,X'' סופיות X''' ,X'

סופית $X' \cup X''$

. בסתירה היא עקבית שכל תת-קבוצה בסתירה לכך בסתירה $X' \cup X'' \vdash \neg \alpha$, $X' \cup X'' \vdash \alpha$

למה 2:

- $X \nvdash \neg \alpha$ אם ורק אם עקבית אם א היא $X \cup \{\alpha\}$.1
- $.X \nvdash \alpha$ אם ורק אם עקבית אקבית $X \cup \{ \neg \alpha \}$.2

הוכחה:

עקבית ונניח בשלילה
$$X \cup \{\alpha\}: X \cup \{\alpha\}: Y \cup \{\alpha\}: Y \cup \{\alpha\}: X \cup \{\alpha\}: Y \cup \{\alpha\}: X \cup \{\alpha\}: X \cup \{\alpha\}: Y \cup \{\alpha\}: X \cup \{\alpha\}:$$

$$X \vdash \neg \alpha$$
 ונניון $X \vdash \neg \alpha$ ונניון אר $X \cup \{\alpha\}$ ונניון את אינוז עקביונ. אר א ובחרנו את א להיות α של עקביות). $X \cup \{\alpha\} \vdash \neg \alpha$

$$X \vdash \alpha \to \neg \alpha$$
 (דדוקציה) און איי (נשתמש במשפט: "יכיח $X \vdash \alpha \to \neg \alpha$ (נשתמש במשפט: "יכיח (נשתמש במשפט: "יכיח איי ייכיח (נשתמש במשפט: "יכיח איי ייכיח איי ייכיח איי

- $(\alpha \to \neg \alpha) \to \neg \alpha$ נסוק יכיח.1
- $(lpha
 ightarrow \lnot lpha)$ עס' עס' מהנחת השלילה + דדוקציה א מהנחת 2
 - $\neg \alpha$.3

מסקנה:

.בסתירה לנתון ב $X \vdash \neg \alpha$

למה 3

X אם עקבית ספיקה אז

תזכורת להוכחה:

נתון X ספיקה, אם X אינה עקבית אז $X \vdash \alpha$ וגם אינה עסיי גאותות ספיקה, אם $X \vdash \alpha$ וגם $X \vdash \neg \alpha$

מטרה:

להוכיח $X \Leftarrow X$ עקבית אפיקה.

רעיון ראשון

 $X \vdash \neg \alpha$ עקבית אז לכל α לא מתקיים $X \vdash X$ וגם $x \vdash x$ נגדיר השמה y לכל פסוק אטומי y אז $y \vdash y$ אז $y \vdash y$ אם $y \vdash y$

 $X \nvdash p$ אקראית כאשר ע אפשר לבחור את אפשר לכך איז אפשר דוגמא

 $:X \nvdash \neg p$

$$X = \{ \overbrace{p_o \lor p_1}^F \}$$

$$p_0 \lor p_1 \nvDash \overbrace{p_0}^F \Rightarrow p_0 \lor p_1 \nvDash p_0$$

$$p_0 \lor p_1 \nvDash \overbrace{p_0}^F$$

$$p_0 \lor p_1 \nvDash \overbrace{p_1}^F$$

$$p_0 \lor p_1 \nvDash \overbrace{p_1}^F$$

$$p_0 \lor p_1 \nvDash \overbrace{p_1}^F$$

הגדרה נוספת:

:אפשרויות מ-2 מתקיימת בדיוק אחת לכל פסוק מסוק אם לכל מקסימלית מקסימלית אם לכל מתקיימת בדיוק אחת אותר מ

$$.X \vdash \alpha$$
 .1

$$.X \vdash \neg \alpha$$
 .2

למה 4

אינה $Y \cup \{\alpha\}$ אז $Y \vdash \alpha$ אם אם α , אם ורק אם $Y \cup \{\alpha\}$ אינה אינה עקבית מקסימלית אם ורק אם אינה אינה אינה אינה עקבית.

הוכחה:

נתון Y עקבית מקסימלית \Leftarrow

.לכן Yעקבית

$$Y \vdash \neg \alpha$$
 (מקט אינה. עקביות מקס' אז עס' אז עס' עקביות מקס' אז עס' אז עס' עקביות מקס' עקביות $Y \vdash \alpha$ אינה עקבית.
$$\begin{cases} Y \cup \{\alpha\} \vdash \alpha \\ Y \cup \{\alpha\} \vdash \neg \alpha \end{cases}$$

ינה עקבית. $Y \cup \{\alpha\}$ אז $y \nvdash \alpha$ אם α אינה עקבית. \Rightarrow נוכיח ש-Y עקבית מקס', קיימות 2 אפשרויות:

 $Y \vdash \alpha$.1

.אינה עקבית. אינה $Y \cup \{\alpha\}$ אז $Y \nvdash \alpha$.2

עס' למה 2:

.סיימנו $Y \vdash \neg \alpha$

```
למה 5
```

```
lpha_1,lpha_2,lpha_3\dots קבוצת הפסוקים היא בת
                                                                                         :נגדיר
                                                                      X-סדרת הרחבות ל
                                   X_0 \subseteq X_1 \subseteq X_2 \subseteq \dots
                                                             נניח בשלב ה-ת מוגדרת מוגדרת נניח בשלב
                                               X_{n+1}=X_n אם X_n \vdash \neg \alpha_n את X_n \vdash \neg \alpha_n את X_{n+1}=X_n \cup \{\alpha_n\} אז X_n \nvdash \neg \alpha_n אם
                                               X-עקבית, מקסימלית, מכילה את נוכיח Y
                                                                                       :טענה א
                                                                                   X \subseteq Y
                                                                                       :טענה ב
                                                                       .כל X_n היא עקבית
                                                                                   הוכחה ל-ב:
                                                                       :\!n אינדוקציה עבור
                                                                                   :בסיס
                                                              . עקבית כי X עקבית X_0
                                             נניח כי X_{n+1} עקבית ונוכיח עקבית:
                                                                      נחלק ל 2 מקרים:
                                               עקבית. X_{n+1} ולכן X_n = X_{n+1} .1
                                                 2. למה 2 (גרסה ראשונה(שחורה)).
                                                                                       :טענה ג
                                                                                  עקבית Y
W\subseteq X_k קיימת
                                                    (W\subseteq Y-מיw_i\in X_i ,w_i\in W לכל
                                            :\!\!w_i של המכיל המכיל המקסימלי של עבור האינדקס המקסימלי
                                                             .'סתירה לטענה בW\subseteq X_m
                                                                                       :טענה ד
                עס' בניה. y \vdash \neg \alpha_n או Y \vdash \alpha_n נראה ש-\alpha_n לכל לכל מקסימלית עקבית עקבית עקבית לכל ל
```

 $X\subseteq Y$ עקבית מקסימלית קבוצה קיימת קבוצה קיימת קיימת קיימת לכל קיימת קיימת