where the products in the right-hand side are understood as the products of the actions rather than as the matrix products. Furthermore, the intersection of the groups $\mathrm{Spin}_{10}^+(F)$ and F^{16} is trivial: the action of $\mathrm{Spin}_{10}^+(F)$ preserves the decomposition $\mathbb{J} = \mathbb{J}_1^c \oplus \mathbb{J}_{16}^{AB} \oplus \mathbb{J}_{10}^{abC}$, while any non-trivial action of the elementary abelian group F^{16} fails to do so. Indeed, a general element in F^{16} has the form $M_x' \cdot L_y''$ for some $x, y \in \mathbb{O}$ and it sends an Albert vector $(a, b, c \mid A, B, C)$ to

$$(a,b,c+a\mathrm{N}(y)+b\mathrm{N}(x)+\mathrm{T}(By)+\mathrm{T}(\bar{x}A)+\mathrm{T}(\bar{x}\bar{C}y)\mid A+\bar{C}y+bx,B+a\bar{y}+\bar{x}\bar{C},C).$$

So, we have shown that the actions of the elements M'_x , L''_x , M_x , L_x on \mathbb{J} generate a group of shape F^{16} : Spin $_{10}^+(F)$, as x ranges through a split algebra \mathbb{O} .

Next, we consider the white point $\langle v \rangle$ spanned by our white vector. The stabiliser in $SE_6(F)$ of $\langle v \rangle$, where $v = (0, 0, 1 \mid 0, 0, 0)$, maps v to λv for some non-zero $\lambda \in F$. For instance, this can be achieved by the elements

$$P'_{u^{-1}} = \operatorname{diag}(1_{\mathbb{O}}, u^{-1}, u) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & u^{-1} & 0 \\ 0 & 0 & u \end{bmatrix}$$
 (3.36)

with u being an invertible octonion of arbitrary norm. Indeed, any such element $P'_{u^{-1}}$ sends $(0,0,1 \mid 0,0,0)$ to $(0,0,N(u) \mid 0,0,0)$ and since N(u) can be any non-zero field element, we get an abelian group F^{\times} on top of the vector stabiliser. This finishes the proof of the main theorem in this section.

Now, since the vector stabiliser is generated by the actions of M_x , L_x , M'_x , L''_x on \mathbb{J} , and the subgroup of $SE_6(F)$ generated by M_x , M'_x , M''_x , L_x , L'_x , L''_x acts transitively on the white points, we make the following conclusion.

Theorem 3.3.17. The group $SE_6(F)$ is generated by the actions of M_x, M'_x, M''_x and L_x, L'_x, L''_x on \mathbb{J} as x ranges through \mathbb{O} .

3.4 Some related geometry

In this section we are interested in some of the underlying geometry related to white points. Consider first a 10-dimensional space \mathbb{J}_{10}^{abC} and note that it contains

only white and grey vectors. In this section we are interested in finding the stabiliser of \mathbb{J}_{10}^{abC} , discovering some of its properties, and also finding the joint stabiliser of such a 10-space and a white point. Note that throughout the whole section \mathbb{O} is a split octonion algebra.

3.4.1 The stabiliser in $SE_6(F)$ of \mathbb{J}_{10}^{abC}

The following lemma helps to get an idea what the stabiliser we are looking for can be.

Lemma 3.4.1. The stabiliser in $SE_6(F)$ of \mathbb{J}_{10}^{abC} contains a subgroup of shape

$$F^{16}: \operatorname{Spin}_{10}^{+}(F).F^{\times}.$$
 (3.37)

Proof. We take an arbitrary vector $(a, b, 0 \mid 0, 0, C)$ in \mathbb{J}_{10}^{abC} and look how the elements M_x , M_x' , M_x'' , L_x , L_x' , and L_x'' act on it:

```
M_{x}: (a, b, 0 \mid 0, 0, C) \mapsto (a, b + aN(x) + T(\bar{x}C), 0 \mid 0, 0, C + ax),
M'_{x}: (a, b, 0 \mid 0, 0, C) \mapsto (a, b, aN(x) \mid bx, \bar{x}\overline{C}, C),
M''_{x}: (a, b, 0 \mid 0, 0, C) \mapsto (a, b, 0 \mid 0, 0, C),
L_{x}: (a, b, 0 \mid 0, 0, C) \mapsto (a + bN(x) + T(Cx), b, 0 \mid 0, 0, C + b\bar{x}),
L'_{x}: (a, b, 0 \mid 0, 0, C) \mapsto (a, b, 0 \mid 0, 0, C),
L''_{x}: (a, b, 0 \mid 0, 0, C) \mapsto (a, b, aN(x) + T(Bx) \mid \bar{C}x, a\bar{x}, C).
```

It is visibly clear now that the elements M_x , L_x , M''_x , L'_x preserve \mathbb{J}_{10}^{abC} . We have been in a similar situation before (Theorem 3.3.8), so we just note here that the abelian group F^{16} generated by the actions of M''_x and L'_x is different from the one generated by M'_x and L''_x in the theorem we refer to. Thus, the stabiliser of \mathbb{J}_{10}^{abC} is at least a group of shape $F^{16}: \mathrm{Spin}_{10}^+(F)$.

Finally, we notice that each of the elements P_u , P'_u , P''_u preserve \mathbb{J}_{10}^{abC} . It is straightforward to see that for any invertible octonion u, $P_u \cdot P'_u \cdot P''_u$ acts on \mathbb{J} as the identity matrix. Therefore we only consider the action on \mathbb{J}_{10}^{abC} of two of them, say P_u and P'_u , and since P_u acts on \mathbb{J} as $M_{u-1} \cdot L_1 \cdot M_{u^{-1}-1} \cdot L_{-u}$, we conclude that they represent the elements of $\mathrm{Spin}_{10}^+(F)$, which we already have as a part of the stabiliser, so it is enough to consider the elements P'_u .

Note that the elements P'_u , where u is an arbitrary invertible octonion, preserve \mathbb{J}_{10}^{abC} :

$$P'_u: (a, b, 0 \mid 0, 0, C) \mapsto (a, bN(u), cN(u)^{-1} \mid \bar{u}A\bar{u}N(u)^1, uBN(u)^{-1}, Cu),$$

so we get F^{\times} on top of the stabiliser, and the result follows.

The following theorem strengthens this result: we prove that the stabiliser of \mathbb{J}_{10}^{abC} is precisely a group of shape $F^{16}: \mathrm{Spin}_{10}^+(F).F^{\times}$.

Theorem 3.4.2. The stabiliser in $SE_6(F)$ of \mathbb{J}_{10}^{abC} is a subgroup of shape

$$F^{16}: \operatorname{Spin}_{10}^+(F).F^{\times},$$
 (3.38)

generated by the actions on \mathbb{J} of the elements M_x , M''_x , L_x , L'_x as x ranges through \mathbb{O} , and P'_u as u ranges through invertible octonions in \mathbb{O} .

Proof. Consider the white point W spanned by $(0,0,1 \mid 0,0,0)$. We are interested in the joint stabiliser of \mathbb{J}_{10}^{abC} and W. Theorem 3.3.8 tell us that the stabiliser in $SE_6(F)$ of W has the shape $G_W = F^{16}: \mathrm{Spin}_{10}^+(F).F^{\times}$, and by stabilising \mathbb{J}_{10}^{abC} we go down to $H = \mathrm{Spin}_{10}^+(F).F^{\times}$. The normal subgroup $T_1 \cong F^{16}$ of G_W is a left (or right) transversal of H in G_W . It is easy to see that no non-trivial element of T_1 stabilises \mathbb{J}_{10}^{abC} . Indeed, a general element in T_1 has the form $M'_x \cdot L''_y$ for some $x, y \in \mathbb{O}$ and it sends $(a, b, 0 \mid 0, 0, C) \in \mathbb{J}_{10}^{abC}$ to

$$(a, b, aN(y) + bN(x) + T(\bar{x}\bar{C}y) \mid \bar{C}y + bx, a\bar{y} + \bar{x}\bar{C}, C).$$

Therefore, such an element preserves \mathbb{J}_{10}^{abC} if and only if the following conditions hold for arbitrary a, b, and C:

$$aN(y) + bN(x) + T(\bar{x}\bar{C}y) = 0,$$

$$\bar{C}y + bx = 0,$$

$$a\bar{y} + \bar{x}\bar{C} = 0.$$

In particular, if we take C=0, b=1 then we obtain x=0, and when C=0, a=1, we get y=0. Next, every element of H stabilises \mathbb{J}_{10}^{abC} , and it confirms that

 $H = \operatorname{Spin}_{10}^+(F).F^{\times}.$

Let T_2 be the subgroup of $SE_6(F)$ generated by the actions on \mathbb{J} of M_x'' and L_y' as x, y range through \mathbb{O} . Consider the 26-dimensional space \mathbb{J}_{26}^{abABC} spanned by the 17-spaces corresponding to the white vectors in \mathbb{J}_{10}^{abC} . Let $(a, b, c \mid A, B, C)$ be a white vector outside \mathbb{J}_{26}^{abABC} , i.e. with $c \neq 0$. The whiteness conditions imply that such a vector has the form $(B\overline{B}/c, A\overline{A}/c, c \mid A, B, \overline{B}\overline{A}/c)$. These span a 16-space, and so T_2 acts sharply transitively on such vectors and points spanned by them. Therefore, the full stabiliser of \mathbb{J}_{10}^{abC} is indeed F^{16} : $\mathrm{Spin}_{10}^+(F).F^{\times}$, understood as $F^{16}: \Omega_{10}^+(F).F^{\times}$ in characteristic 2.

Next, we investigate the orbits of the stabiliser of \mathbb{J}_{10}^{abC} on white vectors and white points. First, consider white vectors in \mathbb{J}_{10}^{abC} . An arbitrary non-zero vector $(a,b,0\mid 0,0,C)$ is white if and only if $ab-C\overline{C}=0$, and the action of $\Omega_{10}^+(F)$ is transitive on such vectors. Therefore, the stabiliser of \mathbb{J}_{10}^{abC} is transitive on white vectors in \mathbb{J}_{10}^{abC} , and on the white points spanned by them.

Suppose now that $(a,b,c \mid A,B,C)$ is a white vector such that $(c,A,B) \neq (0,0,0)$. We consider two cases. First, assume $c \neq 0$. The element $M''_{-c^{-1}B}$ maps our vector to $(a-c^{-1}\mathrm{N}(B),b,c \mid A,0,C-c^{-1}\overline{B}\overline{A})$, and since the latter is white, we have $a-c^{-1}\mathrm{N}(B)=0=C-c^{-1}\overline{B}\overline{A}$, so our new vector is of the form $(0,b,c \mid A,0,0)$. Similarly, we act on it by $L_{-c^{-1}\overline{A}}$ to obtain $(0,b-c^{-1}\mathrm{N}(A),c \mid 0,0,0)$, and since this vector is also white, we have $b-c^{-1}\mathrm{N}(A)=0$, so the resulting vector is of the form $(0,0,c \mid 0,0,0),c \neq 0$.

Second, we consider the case c=0, so we start with $(a,b,0\mid A,B,C)$ with $(A,B)\neq (0,0)$. The whiteness conditions are

$$A\overline{A} = 0,$$

$$B\overline{B} = 0,$$

$$C\overline{C} = ab,$$

$$AB = 0,$$

$$BC = a\overline{A},$$

$$CA = b\overline{B}.$$

$$(3.39)$$

If (a,b) = 0, then we choose a suitable M_x , M''_x , L_x , or L'_x to map our vector to the vector of the form $(a',b',0 \mid A',B',C')$ with $(a',b') \neq (0,0)$. Thus, we may assume

 $(a,b) \neq (0,0).$

We again distinguish two cases. If $a \neq 0$, then we act on $(a, b, 0 \mid A, B, C)$ by $M_{-a^{-1}C}$ to obtain $(a, 0, 0 \mid 0, B, 0)$. Next, we act by M''_y to get $(a + T(\bar{y}B), 0, 0 \mid 0, B, 0)$, and choosing a suitable y we obtain $(0, 0, 0 \mid 0, B, 0)$.

If on the other hand $b \neq 0$, the action by $L_{-b^{-1}\overline{C}}$ maps $(a, b, 0 \mid A, B, C)$ to $(0, b, 0 \mid A, 0, 0)$ and similarly acting by a suitable L'_y , we obtain $(0, 0, 0 \mid A, 0, 0)$. Recall that the duality element δ preserves \mathbb{J}_{10}^{abC} , so it is enough to consider vectors $(0, 0, 0 \mid 0, 0, 0)$ with $A \in \mathbb{O}$. By choosing a copy of $\Omega_8^+(F)$ generated by the elements P'_u with u being an octonion of norm one, we can map $(0, 0, 0 \mid A, 0, 0)$ to $(0, 0, 0 \mid e_0, 0, 0)$.

Finally, it is impossible to map $(a, b, c \mid A, B, C)$ with $c \neq 0$ to $(a, b, 0 \mid A, B, C)$ using any of the elements M_x , M''_x , L_x , and L'_x , so these two belong to different orbits. In other words, we have shown the following result.

Theorem 3.4.3. The stabiliser in $SE_6(F)$ of \mathbb{J}_{10}^{abC} has three orbits on white vectors:

- (i) vectors in \mathbb{J}_{10}^{abC} ,
- (ii) images of $(0,0,1 \mid 0,0,0)$ under the action of stabiliser,
- (iii) images of $(0,0,0 \mid e_0,0,0)$ under the action of stabiliser.

3.5 Simplicity of $E_6(F)$

The construction we have obtained also allows us to show that the group $E_6(F)$ is indeed simple without any references to Lie theory. The classical way of showing the simplicity of certain groups is the following lemma.

Lemma 3.5.1 (Iwasawa). If G is a perfect group acting faithfully and primitively on a set Ω , and the point stabilizer H has a normal abelian subgroup A whose conjugates generate G, then G is simple.

First, we show that the subgroup of $SE_6(F)$ stabilising all the white points simultaneously acts on \mathbb{J} by scalar multiplications, and hence the action of $E_6(F)$ on the set of white points is faithful.