Escuela de Ingeniería - Departamento de Ingeniería Eléctrica

IEE2463 Sistemas Electrónicos Programables

Lab 3: PWM y ADC

1. Objetivo

Este laboratorio busca introducir a los estudiantes al manejo de dos nuevas operaciones de entrada/salida. La primera de estas corresponde a la generación de PWM o $Pulse\ Width\ Modulation$, la cual es una funcionalidad de output que permite generar salidas pseudo-analógicas en el rango de 0 a V_{CC} Volts. De esta forma, permite llevar a cabo una gran variedad de aplicaciones, como el control de velocidad de motores, el brillo de LEDs o de $displays\ LCD$. La segunda de estas operaciones corresponde al Conversor Análogo Digital o ADC. Esta es una funcionalidad de inputs que permite digitalizar una señal de entrada analógica de voltaje en un pin.

A modo de concretar el objetivo antes señalado, deberán comprender como llevar a cabo estos modos de operación a partir de la documentación presente en los correspondientes datasheets. Una vez comprendida a cabalidad la operación de estas funcionalidades, deberán hacer uso del ADC para medir los niveles de temperatura y luminosidad sensados por un NTC y un fotorresistor. Ya digitalizados estos datos, deberán representar las mediciones obtenidas mediante señales PWM que controlen el brillo de un LED y el color de un LED RGB. Esta experiencia estará separada en 2 tareas distintas, una para cada microcontrolador. La elección del microcontrolador a utilizar en cada una de ellas es libre (evidentemente, si usa un MCU en la primera actividad no puede usarlo en la segunda).

2. Descripción de la actividad

Task 1: Tu color favorito:)

Para la siguiente actividad deberá hacer uso del potenciómetro entregado en clases y el LED RGB en su kit de SEP. La actividad consiste en la lectura y digitalización del voltaje medido en la línea central del potenciómetro al variar la resistencia del mismo, y su posterior conversión a un color de su elección en el led RGB.

Para concretar esta actividad, deberá conectar el potenciómetro tal como se muestra en la figura 1, para así poder medir el voltaje en la línea central, utilizando el ADC incorporado en el microcontrolador.

Escuela de Ingeniería - Departamento de Ingeniería Eléctrica

IEE2463 Sistemas Electrónicos Programables

Figura 1: Conexión potenciómetro

Una vez obtenido dicho valor, debe convertirlo a una escala que permita modificar el ciclo de trabajo de una PWM, para poder controlar la intensidad de los canales Rojo, Verde y Azul del led RGB, permitiendo obtener una gama de colores distintos al mezclar visualmente dichos canales.

Para poder configurar cada canal por separado, solamente cuenta con un potenciómetro, en el que girando la perilla de este, irá cambiando el valor que mide el ADC. Esta cifra deberá derivar en un valor fijo de ciclo de trabajo de la PWM que está actuando en dicho canal. Para cambiar al canal siguiente, deberá presionar el botón de la placa (manteniendo fija la configuración anterior) y así determinar la PWM del nuevo canal.

Por ejemplo, si es que desea que el LED RGB solo muestre el color rojo a intensidad máxima, y actualmente se encuentra configurando el canal verde y en un color aleatorio, lo que deberá hacer es lo siguiente:

- 1. Llevar el canal verde al valor mínimo girando la perilla.
- 2. Presionar el botón (cambiando así a la configuración del canal azul).
- 3. Llevar el canal azul al valor mínimo girando la perilla.
- 4. Presionar el botón (cambiando así a la configuración del canal rojo).
- 5. Llevar al máximo la perilla, mostrando únicamente el color rojo.

La configuración para otros colores intermedios se deberá realizar de la misma forma, cambiando canal por canal y girando la perilla del potenciómetro (por ejemplo, el morado se forma al llevar al máximo el canal azul y el canal rojo y llevando al mínimo el canal verde). Es importante que la configuración pueda realizarse en todo momento, sin requerir resetear el microcontrolador y sin tener que presionar un botón extra para mostrar el resultado. Debe

mantenerse constante el valor de la PWM en cada canal y permitir que el usuario cambie el valor de las variables la cantidad de veces que desee.

Importante: La PWM se debe mantener en todo momento. Es por eso que al cambiar de canal, el canal anterior debe mantener el valor configurado previamente, lo que permitirá ver los distintos colores y como estos van cambiando en tiempo real. Otro tipo de soluciones no se permitirán.

Figura 2: Escala continua para LED RGB

Task 2: Sensor de iluminación

La siguiente actividad corresponde a la utilización del fotorresistor entregado y un LED a su elección (puede ser rojo, verde, amarillo o el RGB). Para esto deberá controlar la intensidad del LED mediante PWM, variando la intensidad desde el umbral más bajo hasta el más alto. Esta variación deberá ser proporcional a la cantidad de luz que recibe el fotorresistor.

Para lo anterior deberán realizar su propia escala, para que pueda ser perceptible visualmente en las condiciones que se tendrán en el laboratorio. Una sugerencia es que se utilice la luz ambiente como un punto intermedio, el punto más bajo que sea al tapar el fotorresistor con la mano y que el brillo máximo sea al iluminar directamente el fotorresistor (puede ser con una linterna o el flash del celular).

Importante: Dada la sensibilidad a las variaciones de luz de este sensor, se recomienda trabajar durante el día en esta actividad, pues será revisada de 10:00 a 11:20 hrs en un laboratorio iluminado).

2.1. *Hint*

A modo de orientarlo en la ejecución y organización de su código, se adjunta el siguiente pseudo-código:

```
\left. 1 
ight| /st Puede que necesite librerias adicionales, como math.h st/
  #include librerias.h
   /***Rutina principal***/
  int main(){
     //Configuracion ADC y PWM (lea el datasheet);
     //Lectura de la entrada;
     //Conversion de voltaje a escala de Temperatura o Luz;
     //Gestion de las salidas PWM;
10
11
  /***Rutinas secundarias***
12
   *Una buena practica es crear funciones separadas
   del codigo principal, que posteriormente sean
   llamadas en este, asi tendra un codigo mas ordenado
   y sencillo de debuggear.*/
  int funcion (variables){
       //codigo;
19 }
```

3. Lectura recomendada

- ATmega328/P Complete Datasheet.
- MSP430x5xx and MSP430x6xx Family User's Guide
- MSP430F552x, MSP430F551x Mixed-Signal Microcontrollers datasheet.
- Datasheet del fotorresistor.
- Datasheet del LED RGB.

Escuela de Ingeniería - Departamento de Ingeniería Eléctrica

4. Pauta de Evaluación

4.1. Consideraciones generales

- El laboratorio será evaluado exclusivamente con nota 1.0 (Reprobado), 4.0 (Suficiente), 5.5 (Aprobado) y 7.0 (Distinguido). En ningún caso habrán notas intermedias.
- No se reciben trabajos después del módulo de presentación. Trabajos no entregados son calificados con nota 1.0 y son considerados dentro del criterio de aprobación del curso. La hora límite para inscribir a revisión es a las 10:30 hrs.
- La nota Suficiente se otorgará en el caso de falla de una de las tareas de este laboratorio, quedando a criterio del ayudante. En caso de que un alumno haya decidido solamente hacer un 50 % del trabajo (dicho de otra forma, solo hacer una tarea o parcialmente alguna de ellas), se evaluará con un 1.0.
- Cualquier consulta sobre los criterios de evaluación de cada laboratorio debe ser realizada en las issues, donde estará disponible para que sea revisada por todos los alumnos.

4.2. Criterios de Aprobación

Se requiere cumplir con <u>todos</u> los puntos mencionados a continuación para poder aprobar. No existen casos excepcionales.

Funcionamiento de los requerimientos

El alumno realiza una presentación de su trabajo y se responsabiliza de exponer que este satisfaga todos los requerimientos mínimos solicitados en la *Descripción de la actividad*, los cuales incluyen en este laboratorio:

Requerimientos Task 1

- Programa compilado y ejecutándose
- Utilización de canal rojo, verde y azul del LED RGB.
- Variación visible de color al girar el potenciómetro
- Utilización de ADC para medir el voltaje en el potenciómetro.

IEE2463 Sistemas Electrónicos Programables

- Mantiene fijo el valor de los dos canales que no están siendo utilizados.
- Utilización de *Timers* dedicados a la generación de PWM (No se permite usar *dekays* para simular una PWM).

Requerimientos Task 2

- Programa compilado y ejecutándose.
- Variación visible de la intensidad del LED.
- Utilización de ADC para medir la intensidad de luz recibida.
- Variación cumple con lo solicitado, (Brillo bajo LED → casi nula presencia de luz en el sensor, Brillo alto LED → directa iluminación al sensor).
- Utiliza un microcontrolador distinto al task anterior.
- Utilización de Timers dedicados a la generación de PWM (No se permite usar dekays para simular una PWM).

Preguntas

Se responde satisfactoriamente a 2 de 3 preguntas aleatorias al momento de la presentación final, las cuales abarcan los siguientes temas:

- Modo utilizado para generar la PWM.
- Modo utilizado para el ADC.
- Especificaciones ADC y *Timer* utilizado (cantidad de bits, modos, conversión, entre otros).
- Qué representa cada línea de código y en qué se traducen en el funcionamiento del programa.

Solo se dispone de una oportunidad para responder estas preguntas. Fallar en este requisito se traduce en la reprobación inmediata de la experiencia de forma inapelable.

Escuela de Ingeniería - Departamento de Ingeniería Eléctrica

4.3. Criterios de Distinción

La distinción representa un trabajo adicional que sobresale a los requerimientos mínimos para la aprobación. Agregados adicionales no constituyen por sí mismo una distinción si no representan un verdadero trabajo adicional de comprensión y análisis. Sobre este punto, es importante notar que el mostrar un distinguido implica que el alumno comprende cada línea de su código y los conceptos que utilizó para ello. Estos son analizados en función de lo que presenten sus compañeros.

Los trabajos distinguidos pueden caer (no exclusivamente) en algunas de las siguientes líneas generales:

- Portabilidad
- Utilización de características más avanzadas, por ejemplo, UART.
- Funcionalidades creativas, por ejemplo, puente H controlado por PWM.
- Funcionalidades sobresalientes en la línea de *Timers*, Interrupciones, ADC *multiple* channel-multiple conversion mode.

Las Distinciones son discutidas caso a caso por la totalidad del equipo de ayudantes al finalizar la corrección del laboratorio. Serán notificadas públicamente después del módulo de evaluación.