## **WEEK 4 QUIZ**

| 1. | Which of the following is an example of clustering?                                                       |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | Compress elongated clouds of data into more spherical representations                                     |  |  |  |  |
|    | Creating a new representation of the data with fewer features                                             |  |  |  |  |
|    | Accumulate data into groups based on labels                                                               |  |  |  |  |
|    | Separate the data into distinct groups by similarity                                                      |  |  |  |  |
|    |                                                                                                           |  |  |  |  |
| 2. | . Which of the following are advantages to using decision trees over other models? (Select all that apply |  |  |  |  |
|    | ✓ Trees often require less preprocessing of data                                                          |  |  |  |  |
|    | Trees are easy to interpret and visualize                                                                 |  |  |  |  |
|    | Decision trees can learn complex statistical models using a variety of kernel functions                   |  |  |  |  |
|    | Trees are naturally resistant to overfitting                                                              |  |  |  |  |

| 3. | What is the main reason that each tree of a random forest only looks at a random subset of the features when building each node?        | 1 point |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
|    | <ul> <li>To reduce the computational complexity associated with training each of the trees needed for the random<br/>forest.</li> </ul> |         |  |  |
|    | To improve generalization by reducing correlation among the trees and making the model more robust to bias.                             |         |  |  |
|    | To learn which features are not strong predictors                                                                                       |         |  |  |
|    | To increase interpretability of the model                                                                                               |         |  |  |
| 4. | Which of the following supervised machine learning methods are greatly affected by feature scaling? (Select all that apply)             | 1 point |  |  |
|    | Naive Bayes                                                                                                                             |         |  |  |
|    | ✓ KNN                                                                                                                                   |         |  |  |
|    | ✓ Neural Networks                                                                                                                       |         |  |  |
|    | Support Vector Machines                                                                                                                 |         |  |  |
|    | ☐ Decision Trees                                                                                                                        |         |  |  |

| 5. | Select which of the following statements are true.                                                                                        |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|    | For having an audience interpret the fitted model, a <b>support vector machine</b> would be a better choice than a <b>decision tree</b> . |  |  |
|    | For predicting future sales of a clothing line, <b>Linear regression</b> would be a better choice than a <b>decision tree</b> regressor.  |  |  |
|    | For a model that won't overfit a training set, Naive Bayes would be a better choice than a decision tree.                                 |  |  |
|    | For a fitted model that doesn't take up a lot of memory, <b>KNN</b> would be a better choice than <b>logistic regression</b> .            |  |  |
|    |                                                                                                                                           |  |  |

6. Match each of the prediction probabilities decision boundaries visualized below with the model that created them.



- 1. Neural Network
  - 2. Decision Tree
  - 3. KNN (k=1)
- 1. KNN (k=1)
  - 2. Neural Network
  - 3. Decision Tree



- 2. KNN (k=1)
- 3. Decision Tree
- 1. KNN (k=1)
  - 2. Decision Tree
  - 3. Neural Network

7. A decision tree of depth 2 is visualized below. Using the `value` attribute of each leaf, find the accuracy score for the tree of depth 2 and the accuracy score for a tree of depth 1.



What is the improvement in accuracy between the model of depth 1 and the model of depth 2? (i.e. accuracy2 - accuracy1)

0.06745

| 8. | For the autograded assignment in this module, you will create a classifier to predict whether a given blight ticket will be paid on time (See the module 4 assignment notebook for a more detailed description). Which of the following features should be removed from the training of the model to prevent data leakage? (Select all that apply) |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | collection_status - Flag for payments in collections                                                                                                                                                                                                                                                                                               |
|    | compliance_detail - More information on why each ticket was marked compliant or non-compliant                                                                                                                                                                                                                                                      |
|    | grafitti_status - Flag for graffiti violations                                                                                                                                                                                                                                                                                                     |
|    | ticket_issued_date - Date and time the ticket was issued                                                                                                                                                                                                                                                                                           |
|    | agency_name - Agency that issued the ticket                                                                                                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                                                                                                                                                                    |

| 9.  | Which of the following might be good ways to help prevent a data leakage situation?                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | If time is a factor, remove any data related to the event of interest that doesn't take place prior to the event                                                              |
|     | Ensure that data is preprocessed outside of any cross validation folds.                                                                                                       |
|     | Remove variables that a model in production wouldn't have access to                                                                                                           |
|     | Sanity check the model with an unseen validation set                                                                                                                          |
|     |                                                                                                                                                                               |
| 10. | Given the neural network below, find the correct outputs for the given values of x1 and x2.                                                                                   |
|     | The neurons that are shaded have an activation threshold, e.g. the neuron with >1? will be activated and output 1 if the input is greater than 1 and will output 0 otherwise. |
|     |                                                                                                                                                                               |
|     |                                                                                                                                                                               |



| x1 | x2 | output |
|----|----|--------|
| 0  | 0  | 0      |
| 0  | 1  | 0      |
| 4  | 0  | 0      |
| 4  | 1  | শ্     |
|    |    |        |

| x1 | x2 | output |
|----|----|--------|
| 0  | 0  | 0      |
| 0  | å  | 1      |
| 1  | 0  | i i    |
| 1  | i  | 0      |

| x1 | x2 | output |  |
|----|----|--------|--|
| 0  | 0  | 0      |  |
| 0  | 1  | 1      |  |
| 1  | 0  | 1      |  |
| 1  | 1  | 1      |  |

(

| x1 | x2 | output |  |
|----|----|--------|--|
| 0  | 0  | 1      |  |
| 0  | 1  | 0      |  |
| 1  | 0  | 0      |  |
| 1  | 1  | 1      |  |