Problem N. Long Sequence

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

We have a sequence of N positive integers: $A=(A_1,\ldots,A_N)$. Let B be the concatenation of 10^{100} copies of A.

Consider summing up the terms of B from left to right. When does the sum exceed X for the first time?

In other words, find the minimum integer k such that:

$$\sum_{i=1}^k B_i > X.$$

Constraints

- $1 \le N \le 10^5$
- $1 \le A_i \le 10^9$
- $1 \le X \le 10^{18}$
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

Output

Print the answer.

Sample 1

Sheet 1 (Complexity Analysis & Recursion) Jul 12, 2024

Input	Output
3 3 5 2 26	8

We have $B=(3,5,2,3,5,2,3,5,2,\dots)$.

 $\sum_{i=1}^8 B_i = 28 > 26$ holds, but the condition is not satisfied when k is 7 or less, so the answer is 8.

Sample 2

Input	Output
4 12 34 56 78 1000	23