Bootstrapping for estimating MSE of some estimator

- 1. When estimating $\theta(F)$, we need to assess the **quality** of the estimator $g(\vec{X}) \equiv g(X_1, \ldots, X_n)$; that is, to estimate the mean square error (MSE) of $g(\vec{X})$, where $X_i \stackrel{i.i.d.}{\sim} F, i = 1, \ldots, n$. (We like to have $E(g(\vec{X})) = \theta$ and small $Var(g(\vec{X}))$ or small $MSE = \left[E(g(\vec{X})) \theta\right]^2 + Var(g(\vec{X}))$.)
- 2. For estimator $g(\vec{X})$ to be useful, we need to estimate the MSE of $g(\vec{X})$, denoted by $\mathrm{MSE}(F) \equiv E_F \Big[(g(\vec{X}) \theta(F))^2 \Big]$. (If $g(\vec{X})$ is unbiased for θ (i.e., $\mathrm{E}(g(\vec{X})) = \theta$), then $\mathrm{MSE} = \mathrm{Var}(g(\vec{X}))$. Furthermore, if $g(\vec{X}) \sim \mathrm{normal}$, we have $\mathrm{P}\Big(\big| g(\vec{X}) \theta \big| \le 2\sqrt{\mathrm{Var}(g(\vec{X}))} \Big) = 95\%$.)
- 3. When F is known, we can theoretically compute MSE(F). However, F is often unknown and can be estimated by the empirical distribution function

$$F_e(x) = \frac{\text{number of } i: X_i \le x}{n}, \qquad x \in R$$

$$\iff P(Y = x_i) = \frac{1}{n}, \qquad i = 1, \dots, n. \qquad \text{(This can be easily seen in the plot of } F_e(x)\text{)}$$

- 4. Another way of thinking about F_e is that it is the distribution function of a random variable Y which is equally likely to take on any of the n values x_i , i = 1, ..., n. That is, $Y \sim \text{uniform}(x_1, ..., x_n)$.
- 5. By the strong law of large numbers, $F_e \approx F$ as $n \longrightarrow \infty$, implying that

$$MSE(F_e) \approx MSE(F)$$

with
$$MSE(F_e) \equiv E_{F_e}[(g(\vec{Y}) - \theta(F_e))^2] = \sum_{i_1} \cdots \sum_{i_n} \frac{[g(x_{i_1}, \dots, x_{i_n}) - \theta(F_e)]^2}{n^n}$$
, an average of n^n terms.

- 6. Since F_e is known, we can either **analytically derive** $MSE(F_e)$ or **exactly compute** $MSE(F_e)$ when n^n is not too large.
- 7. If n^n is large, estimate $MSE(F_e)$ by simulation.

First compute $\theta(F_e)$, then sample $(Y_1^1, \ldots, Y_n^1), \ldots, (Y_1^b, \ldots, Y_n^b)$, and finally evaluate $g(Y_1^1, \ldots, Y_n^1), \ldots, g(Y_1^n, \ldots, Y_n^n)$ to form the estimator

$$\widehat{\text{MSE}}(F_e) = \sum_{i=1}^{b} \frac{[g(Y_1^j, \dots, Y_n^j) - \theta(F_e)]^2}{b}.$$

1

It has been reported that choosing b = 100 is usually sufficient.

Key:
$$\theta = ?, g(\vec{X}) = ?, \text{ and } \theta(F_e) = ?$$

Example: When estimating $\theta(F) = E(X)$ by \bar{X} , we can estimate its MSE by S^2/n . Now estimate its MSE by bootstrapping as follows.

Suppose the realized sample is $\{x_1, \ldots, x_n\}$. Since $Y \sim \text{uniform}(x_1, \ldots, x_n)$, we have $\theta(F_e) = \sum_{i=1}^n \frac{1}{n} \cdot x_i = \bar{x}$.

Analytically derive the $MSE(F_e)$ as follows.

$$MSE(F_e) = E_{F_e} \left[\left(\bar{Y} - \underbrace{\bar{x}}_{= E(Y) = E(\bar{Y})} \right)^2 \right]$$
$$= Var_{F_e} (\bar{Y})$$
$$= Var_{F_e} (Y) / n.$$

Since

$$\operatorname{Var}_{F_e}(Y) = \operatorname{E}_{F_e}[(Y - \bar{x})^2] = \sum_{i=1}^n (x_i - \bar{x})^2 / n,$$

we have

$$MSE(F_e) = \sum_{i=1}^{n} (x_i - \bar{x})^2 / n^2 = (S^2/n) \cdot \left(\frac{n-1}{n}\right) \approx S^2/n.$$

Key: $\theta = \mu$, $g(\vec{X}) = \bar{X}$, and $\theta(F_e) = \bar{x}$

Example: If n = 2 and $X_1 = 1$ and $X_2 = 3$, what is the bootstrap estimate of $Var(S^2)$?

- 1. Bootstrapping technique is used to estimate MSE of some estimator $\widehat{\theta}$. For unbiased estimator, $MSE(\widehat{\theta}) = Var(\widehat{\theta})$.
- 2. Since S^2 is an unbiased estimator of σ^2 , estimating $Var(S^2)$ is equivalent to estimating $MSE(S^2)$.

Thus, consider $\theta = \sigma^2$ and $g(\vec{X}) = S^2$. Then

$$MSE(F_e) = E_Y [(g(\vec{Y}) - \theta(F_e))^2]$$

where $\theta(F_e) = \left[(1-2)^2 + (3-2)^2 \right]/2 = 1$ and

$$g(\vec{Y}) = \begin{cases} 0, & \text{if } (Y_1, Y_2) = (1, 1) \\ 0, & \text{if } (Y_1, Y_2) = (3, 3) \\ \left[(1-2)^2 + (3-2)^2 \right] / (2-1) = 2, & \text{if } (Y_1, Y_2) = (1, 3) \\ 2, & \text{if } (Y_1, Y_2) = (3, 1), \end{cases}$$

yielding $MSE(F_e) = [(0-1)^2 + (0-1)^2 + (2-1)^2 + (2-1)^2]/2^2 = 1$. So the bootstrap estimate of $Var(S^2)$ is equal to 1.

Key: $\theta = \sigma^2$, $g(\vec{X}) = S^2$, and $\theta(F_e) = \sigma^2(F_e) = 1$.