Import Libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Import SK learn

```
In [9]: from sklearn.model_selection import train_test_split
    from sklearn.impute import SimpleImputer
    from sklearn.compose import ColumnTransformer
```

Import Dataset

```
In [10]: df = pd.read_csv('titanic_toy.csv')
```

In [11]: df

Out[11]:

	Age	Fare	Family	Survived
0	22.0	7.2500	1	0
1	38.0	71.2833	1	1
2	26.0	7.9250	0	1
3	35.0	53.1000	1	1
4	35.0	8.0500	0	0
	•••			
886	27.0	13.0000	0	0
887	19.0	30.0000	0	1
888	NaN	23.4500	3	0
889	26.0	NaN	0	1
890	32.0	7.7500	0	0

891 rows × 4 columns

```
In [12]: df.head()
```

Out[12]:

	Age	Fare	Family	Survived
0	22.0	7.2500	1	0
1	38.0	71.2833	1	1
2	26.0	7.9250	0	1
3	35.0	53.1000	1	1
4	35.0	8.0500	0	0

```
In [13]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 4 columns):
                       Non-Null Count Dtype
              Column
                        -----
          0
                       714 non-null
                                       float64
              Age
                                       float64
          1
              Fare
                        846 non-null
                                       int64
              Family
                       891 non-null
                                       int64
              Survived 891 non-null
         dtypes: float64(2), int64(2)
         memory usage: 28.0 KB
```

Perform Train Test Split

Create New Column and Replace Value (Age-99 | Fare-999)

```
In [21]: X_train['Age_99'] = X_train['Age'].fillna(99)
X_train['Age_minus1'] = X_train['Age'].fillna(-1)
X_train['Fare_999'] = X_train['Fare'].fillna(999)
X_train['Fare_minus1'] = X_train['Fare'].fillna(-1)
```

In [23]: X_train.sample(10)

21.0

8.0500

8.0500

Out[23]: Fare Family Age_99 Age_minus1 Fare_999 Fare_minus1 Age 861 21.0 11.5000 21.0 21.0 11.5000 11.5000 7.7500 99.0 -1.0 7.7500 7.7500 428 NaN n 97 23.0 63.3583 1 23.0 23.0 63.3583 63.3583 31 NaN 146.5208 1 99.0 -1.0 146.5208 146.5208 378 20.0 NaN 0 20.0 20.0 999.0000 -1.00007.8792 358 NaN 7.8792 0 99.0 -1.0 7.8792 22.0 29.0000 2 22.0 22.0 29.0000 29.0000 323 121 NaN 8.0500 99.0 -1.0 8.0500 8.0500 165 9.0 20.5250 9.0 9.0 20.5250 20.5250

0

21.0

Review Variance

8.0500

494 21.0

```
In [27]: print('Original Age variable variance: ', X_train['Age'].var())
    print('Age Variance after 99 use imputation: ', X_train['Age_99'].var())
    print('Age Variance after -1 use imputation: ', X_train['Age_minus1'].var())
    print('Original Fare variable variance: ', X_train['Fare'].var())
    print('Fare Variance after 999 use imputation: ', X_train['Fare_999'].var())
    print('Fare Variance after -1 use imputation: ', X_train['Fare_minus1'].var())
```

```
Original Age variable variance: 204.3495133904614
Age Variance after 99 use imputation: 951.7275570187172
Age Variance after -1 use imputation: 318.0896202624484
Original Fare variable variance: 2448.197913706318
Fare Variance after 999 use imputation: 47219.20265217623
Fare Variance after -1 use imputation: 2378.5676784883503
```

Review Distribution - Age:

```
In [29]: fig = plt.figure()
    ax = fig.add_subplot(111)
    # original variable distribution
    X_train['Age'].plot(kind='kde', ax=ax)
    # variable imputed with the median
    X_train['Age_99'].plot(kind='kde', ax=ax, color='red')
    # variable imputed with the mean
    X_train['Age_minus1'].plot(kind='kde', ax=ax, color='green')
    # add Legends
    lines, labels = ax.get_legend_handles_labels()
    ax.legend(lines, labels, loc='best')
```

Out[29]: <matplotlib.legend.Legend at 0x200c9e32ad0>

Review Distribution –Fare:

```
In [30]: fig = plt.figure()
    ax = fig.add_subplot(111)
    # original variable distribution
    X_train['Fare'].plot(kind='kde', ax=ax)
# variable imputed with the median
    X_train['Fare_999'].plot(kind='kde', ax=ax, color='red')
# variable imputed with the mean

X_train['Fare_minus1'].plot(kind='kde', ax=ax, color='green')
# add Legends
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')
```

Out[30]: <matplotlib.legend.Legend at 0x200c9147090>

Check Covariance

In [31]:	X_train.cov()								
Out[31]:		Age	Fare	Family	Age_99	Age_minus1	Fare_999	Fare_minus1	
	Age	204.349513	70.719262	-6.498901	204.349513	204.349513	162.793430	63.321188	
	Fare	70.719262	2448.197914	17.258917	-101.671097	125.558364	2448.197914	2448.197914	
	Family	-6.498901	17.258917	2.735252	-7.387287	-4.149246	11.528625	16.553989	
	Age_99	204.349513	-101.671097	-7.387287	951.727557	-189.535540	-159.931663	-94.317400	
	Age_minus1	204.349513	125.558364	-4.149246	-189.535540	318.089620	257.379887	114.394141	
	Fare_999	162.793430	2448.197914	11.528625	-159.931663	257.379887	47219.202652	762.474982	
	Fare_minus1	63.321188	2448.197914	16.553989	-94.317400	114.394141	762.474982	2378.567678	

Check Correlation

In [32]: X_train.corr() Out[32]: Age **Fare Family** Age_99 Age_minus1 Fare_999 Fare_minus1 1.000000 0.092644 -0.299113 1.000000 1.000000 0.051179 0.084585 Age Fare 0.092644 1.000000 0.208268 -0.066273 0.142022 1.000000 1.000000 -0.299113 0.208268 1.000000 0.0320790.205233Family -0.144787 -0.140668 Age_99 1.000000 -0.066273 -0.144787 1.000000 -0.344476 -0.023857 -0.062687 Age_minus1 1.000000 0.142022 -0.140668 -0.344476 1.000000 0.066411 0.131514 Fare_999 0.051179 1.000000 0.032079 -0.023857 0.066411 1.000000 0.071946 Fare_minus1 0.084585 1.000000 0.205233 1.000000 -0.062687 0.131514 0.071946 In []: