Introduction to Digital Image Processing

M.W.Wadumulla PGC in IA BEng, IIESL, AMEI

Outline

- Pre-requisites
- Bibliography
- Course Outline
- Assignment-1

Pre-requisites

- Basic mathematics
- Statistics and Matrices
- Programming Skill (Python)

Bibliography

- Pattern Recognition and Machine Learning" by Christopher M. Bishop
- The Hundred-Page Machine Learning Book" by Andriy Burkov
- "Understanding Machine Learning: From Theory to Algorithms" by Shai Shalev-Shwartz and Shai Ben-David
- Any other Video/ Book/ Conference/ Journal Paper

Learning Outcomes

On completion of this module, a successful student should be able to:

- 1. Need of Machine Learning, introduction to Machine Learning, types of Machine Learning, such as supervised, unsupervised, and respective categories, Machine Learning Process, Machine Learning with Python, Applications of Machine Learning
- 2. How to use Jupyter Notebook and Python packages Numpy, Matplotlib, Scikit-learn for data visualization and machine learning.
- 3. program in Python using the latest Python 3.
- 4. preprocess data, clean data, and analyze large data.
- 5. Training machine learning model.

Lectures Sessions

No	Session	Teaching Hours	Learning Outcomes	Method
1	Introduction to Machine Learning	3	1	Lecture
2	Introduction to Python for Machine Learning	6	2	Lecture Lab
3	Supervise Learning – Regression, Classification	12	2	Lecture Lab
4	Unsupervised Learning – Cluster Analysis, Dimension Reduction	6	3	Lecture Lab
5	Sampling, Exploring and Cleaning and preparing data	6	3	Lecture Lab
6	Training a machine learning model	6	4	Lecture Lab
7				

Module Evaluation Criteria

- No final exam!
- Open Book Exam
- 3 Credits
- 4 Assignments
 - Introductory Assignment (Today) 5%
 - Programming Assignment (In Class 3 hrs) –
 15%
 - Test (In class, Open Book) 30%
 - Group Project (Presentation + Viva) -50%

$Assignment \ 1-Pre\text{-}Course$