$$\min[30x + 20y + 50z]$$

$$\begin{cases}
50x + 20y + 180z = 2000, \\
6x + 4y + 3z = 120, \\
2x + y + z = 40, \\
x, y, z \ge 0.
\end{cases}$$

MatLab Code:

clear all

clc

% Коэффициенты целевой функции

 $f = [30\ 20\ 50];$

% Матрица ограничений равенств

Aeq = [50 20 180; 6 4 3; 2 1 1];

beq = [2000; 120; 40];

% Нижние границы для переменных $(x, y, z \ge 0)$

 $1b = [0\ 0\ 0];$

% Верхние границы отсутствуют

ub = [];

% Вызов функции linprog для решения задачи

[x, fval] = linprog(f, [], [], Aeq, beq, lb, ub);

% Вывод результата

X

fval

$\times \sqrt{f_x}$ =30*C2+20*D2+50*E2						
С	D	E	F	G		
ie 16,77419355	0	6,451612903	ЦФ			
x	у	Z	825,8064516	правые части		
ие 50	20	180	2000	2000		
ие 6	4	3	120	120		
ие 2	1	1	40	40		
1	C sie 16,77419355 x ue 50 ue 6	C D Sile 16,77419355 0 X y He 50 20 He 6 4	C D E Sile 16,77419355 0 6,451612903 X Y Z He 50 20 180 He 6 4 3	С D E F Sile 16,77419355 0 6,451612903 ЦФ х у z 825,8064516 не 50 20 180 2000 не 6 4 3 120		

2.

$$(x_1 - 2)^2 + (x_2 - 1)^2 \Rightarrow \max$$

$$0 \le x_1 \le 5,$$

$$0 \le x_2 \le 3.$$

$$x_1^2 - 4x_1 + 4 + x_2^2 - 2x_2 + 1 = x_1^2 + x_2^2 - 4x_1 - 2x_2 + 5 \to max$$

MatLab Code:

clear all

clc

% Матрица квадратичных коэффициентов

 $H = [2 \ 0; 0 \ 2];$

% Вектор линейных коэффициентов

f = [-4; -2];

% Границы для переменных х и у

lb = [0; 0]; % Нижние границы

ub = [5; 3]; % Верхние границы

% Вызов функции quadprog для минимизации

[x, fval] = quadprog(H, f, [], [], [], lb, ub);

% Вывод результата

x

fval = (fval + 5); % Возвращаем значение

fval

3.

$$2x_1 + x_2 \Rightarrow \max$$

 $3x_1 + 2x_2 \le 14$,
 $4x_1 - 5x_2 \le 5$,
 $-7x_1 + 2x_2 \le 4$,
 $x_1, x_2 \ge 0$, $x_1, x_2 \in Z$.

clear all

clc

% Коэффициенты целевой функции

f = [-2; -1]; % Для минимизации (-2x - y)

% Матрица линейных ограничений

$$A = [3\ 2; 4\ -5; -7\ 2];$$

% Вектор правых частей ограничений

$$b = [14; 5; 4];$$

% Целочисленные переменные: 1 2 означает, что х и у целые

$$intcon = [1 \ 2];$$

% Нижние границы для переменных х и у

$$1b = [0; 0];$$

% Вызов функции intlinprog для решения задачи

[x, fval] = intlinprog(f, intcon, A, b, [], [], lb, []);

% Вывод результата

X

fval = -fval; % Так как мы минимизировали отрицательную функцию

4.

Рабочие	Виды работ					
Раоочие	<i>№1 №2 №3 №</i>	<i>№4</i>				
Иванов	8	4	6	5		
Петров	6	5	8	5		
Сидоров	8	2	4	7		
Егоров	5	7	1	5		

clear all

clc

```
% Матрица стоимости (эффективности)
```

$$C = [8 \ 4 \ 6 \ 5; 6 \ 5 \ 8 \ 5; 8 \ 2 \ 4 \ 7; 5 \ 7 \ 1 \ 5];$$

f = C(:); % Превращаем матрицу в вектор

% Ограничения: каждому рабочему назначается одна работа

$$Aeq = [kron(eye(4), ones(1,4)); kron(ones(1,4), eye(4))];$$

beq = ones(8,1);

% Указываем, что переменные целочисленные булевы (0 или 1)

intcon = 1:16;

% Нижние и верхние границы для переменных

$$1b = zeros(16,1); \% 0$$

$$ub = ones(16,1); \% 1$$

% Решение задачи с помощью функции intlinprog

% Переводим результат в матрицу 4х4

x = reshape(x, 4, 4)

% Оптимальное значение функции

fval

5.

Пункты	Пункты распределения				Объемы
производства	<i>№1</i>	<i>№2</i>	<i>№3</i>	<i>№4</i>	производства
№1	2	7	7	6	15
№2	1	1	1	2	17
№3	5	5	4	1	45
№4	2	8	3	4	20
№5	3	2	1	5	13
Объемы потребления	40	30	10	30	

```
clc
clear all
f = [ 2 7 7 6 1 1 1 2 5 5 4 1 2 8 3 4 3 2 1 5];
intcon = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20];
Aeq = [kron(eye(5), ones(1, 4)); kron(ones(1, 5), eye(4))];
beq = [15 17 45 20 13 40 30 10 30];
lb = zeros(length(f), 1);
[x, fval] = intlinprog(f, intcon, [], [], Aeq, beq, lb, []);
Xopt = reshape(x, 4, 5)';
Fopt = fval;
disp('result matrix:');
disp(Xopt);
disp(Yopt);
```

result matrix: 17 0 20 0 0 0 3 10 min

	40	30	10	30		
15	15	0	0	0		
17	0	17	0	0		
45	5	10	0	30		
20	20	0	0	0		
13	0	3	10	0		