

EVKG: An interlinked and interoperable electric vehicle knowledge graph for smart transportation system

Author: Yanlin Qi, Gengchen Mai*, Rui Zhu, Michael Zhang

Presenter: Gengchen Mai

GIScience Research Session, ESRI UC 2023

July 11, 2023

Emphatic Transition to Vehicle Electrification

- Increasing EV adoption
- Positive regulatory mandates

Data Management Complexity of EV Industry

Diverse Vehicle Configurations:

 Different EV models have different battery capacities and charger types.

Diverse EV Supply Equipments(EVSE) system:

• EV charging stations, operated by diverse providers, have different constraints.

Charging Infrastructure and Power Grid Management:

 Proper charging station site selection is crucial for power grid sustainability.

TYPES OF ELECTRIC VEHICLE PLUGS

Knowledge Graphs

A knowledge graph (KG) is a data repository that stores real-world knowledge under some schema, e.g., an ontology.

Directed multi-graphs

- Nodes: entities
- Edges: relationships between entities with relation types as labels
- Statement: <subject, predict, object>

nteroperable

ccessible

Why use Knowledge Graphs for EV data Management?

- Decentralized, but standardized (e.g., W3C, OGC)
- Semantically rich, and diverse (ontology engineering and alignment)
- Extensible and flexible
- Human and machine readable
- foster interoperability across different domains

Core Modules of EVKG

Ontology Design for the EVKG

Submodule of EV Adoption

Submodule of EV Charging Infrastructure

Submodule of Electric Transmission Network

Reused Submodule From KWG and GeoSPARQL

Group 1: Semantic and geospatial questions

Q1. Semantic Questions
Which [electric vehicle products] have charging cables that match the [CHADeMO connector type]?

Q2. Geospatial Questions
Which [charging stations/road segments/transmission lines/power plants/ substations] are [located in/pass through] [King county]?

Group 1: Semantic and geospatial questions

Q3. Semantic and Geospatial Questions

Which and where are the [public charging stations] operating ["24 hours daily"] that a [Nissan Leaf 2021] vehicle with a membership of the [ChargePoint] network can use for [fast charging] within ZIP code [95814]?

Group 2: Spatial and temporal aggregation questions

Q4. Temporal Aggregation Questions

How does the fast charging resource of the *[CCS]*, *[CHAdeMO]*, and *[TESLA]* types per matchable electric vehicle evolve over the temporal scope in *[New Jersey]*?

Group 2: Spatial and temporal aggregation questions

Q5. Spatial Aggregation Queries

How many registered electric vehicles equipped with the [CCS] type connector are there in each [ZIP code areas] of [New Jersey] in [2021]? How many [CCS chargers] are there in those [ZIP code areas]? What about the CCS Charger per EV with CCS-type connectors in each [ZIP code area]?

(a) The distribution of CCS-EV registrations

(b) The average CCS-charger share per CCS-EV

Group 3: Cross-domain questions

Q6. Cross-Domain Complex Questions

Which ZIP code areas in the [New Jersey] State with significant charging resource shortage can potentially take advantage of the high-voltage transmission lines that pass through for installing the direct electricity source for DCFC stations?

Conclusions

- Inadequate data sharing and integration hinder vehicle electrification success.
- The EVKG integrates critical aspects of EVs, charging infrastructure, and electricity networks.
- The EVKG serves as a comprehensive knowledge management system for efficient EV charging and infrastructure planning.
- Future plans include expanding data integration, integrating with other knowledge repositories, and enhancing data quality and multidisciplinary insights.

Core components for the EV charging System

Support power requirement

Data Management Complexity of EV Industry

- EV charging capacity diversity
 - Abundance of emerging EV models
 - Onboard charging cables limited to specific compatible chargers
- EVSE incompatibility & heterogeneity
 - No universal charger/connector standard applicable for all EVs
 - Various additional onsite requirements
- Level 1 Outlet:

 Plug: Location: Home

 120 Volt (NEMA 5-15)

 Plug: Location: Home, Public Charging Station

 DC Fast Charge

 Plugs: Location: Public Charging Station

 CCS (HAdeMO Tesla

- Dependence on the power grid
 - EV replenishment replying on power grid sustainability

Data Silo Issues for Smart Transportation System

- EV Travelers Smart E-mobility
 - Both of spatial location & semantic contexts matter much
 - Isolated in conventional GIS environment
 - Urban Infrastructure Planners EVSE location selection
 - Necessitates information integration of
 - EV adoption
 - EVSE distribution
 - Electricity network
 - No interoperability and extensibility across the available data sources

Data Management Complexity of EV Industry

Diverse Vehicle Configurations:

- EV manufacturers offer unique models with varied battery capacities and charger types.
- Compatibility issues arise due to lack of universal charger or connector type.

Diverse Electric Vehicle Supply Equipments(EVSE) system:

- EV charging stations, operated by diverse providers, have different constraints.
- Heterogeneous data formats hinder data sharing and integration.

Charging Infrastructure and Power Grid Management:

- High demand from EVSEs can overload the electricity system, leading to blackouts.
- Proper charging station site selection is crucial for power grid sustainability.

Knowledge Graphs

A knowledge graph (KG) is a data repository that stores real-world knowledge under some schema, e.g., an ontology.

Directed multi-graphs

Nodes: entities

 Edges: relationships between entities with relation types as labels

Statement: <subject, predict, object>

Why Knowledge Graphs?

eusable

- Decentralized, but standardized (e.g., W3C, OGC)
- Semantically rich, and diverse (ontology engineering and alignment)
- Extensible and flexible
- Human and machine readable

Human Mortality

(a)

- Monitoring Power Flow
- Safety Monitoring

Three-Phase ac Supply

Relay

Battery

- ac-dc Off Board Conversion
- Monitoring Power Flow
- Safety Monitoring