Context	Problem	Description	Instances
ippc2011	CooperativeRecon_MDP_ippc2011	There is a 2d grid with an agent, a base, some hazard squares, and objects in different locations.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	CooperativeRecon_POMDP_ippc2011	There is a 2d grid with an agent, a base, some hazard squares, and objects in different locations. This is the pomdp version.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	CrossingTraffic_MDP_ippc2011 CrossingTraffic_POMDP_ippc2011	In a grid, a robot must get to a goal and avoid obstacles arriving randomly and moving left. In a grid, a robot must get to a goal and avoid obstacles arriving randomly and moving left. This is the pomdp version.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011 ippc2011	Elevators_MDP_ippc2011	This domain has a number of elevators delivering passengers to either the top or the bottom floor.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	Elevators_POMDP_ippc2011	This domain has a number of elevators delivering passengers to either the top or the bottom floor. This domain has a number of elevators delivering passengers to either the top or the bottom floor. This is the pomdp version.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	GameOfLife_MDP_ippc2011	A simple DBN to encode Conway's cellular automata game of life on a grid.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	GameOfLife_POMDP_ippc2011	A simple DBN to encode Conway's cellular automata game of life on a grid. This is the pomdp version.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	Navigation_MDP_ippc2011	In a grid, a robot must get to a goal G, and every cell offers the robot a (different) chance of disappearing.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	Navigation_POMDP_ippc2011	In a grid, a robot must get to a goal G, and every cell offers the robot a (different) chance of disappearing. This is the pomdp version.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	SkillTeaching_MDP_ippc2011	The agent is trying to teach a series of skills to a student through the use of hints and multiple choice questions.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	SkillTeaching_POMDP_ippc2011	The agent is trying to teach a series of skills to a student through the use of hints and multiple choice questions. This is the pomdp version.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	SysAdmin_MDP_ippc2011	An example RDDL description for the well-known SysAdmin problem.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011	SysAdmin_POMDP_ippc2011	An example RDDL description for the well-known SysAdmin problem. This is the pomdp version A simple binary version of the cell transition model (CTM) for modeling traffic.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2011 ippc2011	Traffic_CTM_MDP_ippc2011 Traffic_CTM_POMDP_ippc2011	A simple binary version of the cell transition model (CTM) for modeling traffic. A simple binary version of the cell transition model (CTM) for modeling traffic.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	AcademicAdvising_MDP_ippc2014	In this domain, a student may take courses at a given cost and passes the course with a probability determined by how many of the prerequisites they have successfully passed.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	AcademicAdvising_POMDP_ippc2014	In this domain, a student may take courses at a given cost and passes the course with a probability determined by how many of the prerequisites they have successfully passed. This is the pomdp version	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	CrossingTraffic_MDP_ippc2014	In a grid, a robot must get to a goal and avoid obstacles arriving randomly and moving left.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	CrossingTraffic_POMDP_ippc2014	In a grid, a robot must get to a goal and avoid obstacles arriving randomly and moving left. This is the pomdp version	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	$Elevators_MDP_ippc2014$	This domain has a number of elevators delivering passengers to either the top or the bottom floor.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	Elevators_POMDP_ippc2014	This domain has a number of elevators delivering passengers to either the top or the bottom floor. This is the pomdp	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	SkillTeaching_MDP_ippc2014	In this domain, the agent is trying to teach a series of skills to a student through the use of hints and multiple choice questions.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	SkillTeaching_POMDP_ippc2014 Tamarisk_MDP_ippc2014	In this domain, the agent is trying to teach a series of skills to a student through the use of hints and multiple choice questions. This is the pomdp version The agent manages the spread of an invasive plant species, by manually intervening to eridaticate them or restore the native species.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014 ippc2014	Tamarisk_MDP_ippc2014 Tamarisk_POMDP_ippc2014	The agent manages the spread of an invasive plant species, by manually intervening to eridaticate them or restore the native species. The agent manages the spread of an invasive plant species, by manually intervening to eridaticate them or restore the native species. This is the pomdp version	1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	Traffic_MDP_ippc2014	A simple binary version of the cell transition model (CTM) for modeling traffic.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	Traffic_POMDP_ippc2014	A simple binary version of the cell transition model (CTM) for modeling traffic. This is the pomdp verion	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	TriangleTireworld_MDP_ippc2014	In short, this problem was intended to be difficult for determinization/replanning approaches since the highest probability path to the goal is longer than other lower probability (but still possible) paths to the goal.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	TriangleTireworld_POMDP_ippc2014	In short, this problem was intended to be difficult for determinization/replanning approaches since the highest probability path to the goal is longer than other lower probability (but still possible) paths to the goal. This is the pomdp version	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	Wildfire_MDP_ippc2014	A boolean version of the wildfire fighting domain.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2014	Wildfire_POMDP_ippc2014	A boolean version of the wildfire fighting domain. This is the pomdp version	1, 2, 3, 4, 5, 6, 7, 8, 9, 10
ippc2018	AcademicAdvising_ippc2018	In this domain, a student may take courses at a given cost and passes the course with a probability determined by how many of the prerequisites they have successfully passed.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
ippc2018 ippc2018	ChromaticDice_ippc2018 CooperativeRecon_ippc2018	Chromatic Dice is a variant of the popular dice game Yahtzee (also known as Kniffel). In this domain, the planner controls one or more planetary rovers that examine objects of interest in order to detect life and take a picture of it.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
ippc2018	EarthObservation_ippc2018	The Earth Observation domain models a satellite orbiting Earth that can take pictures of the landscape below with a camera.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
ippc2018	Manufacturer_ippc2018	In this domain, the agent manages a manufacturing company that buys goods to use them in the production of other goods.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
ippc2018	PushYourLuck_ippc2018	As the name suggest, Push Your Luck is an artificial version of a "push your luck" game like, for instance, Can't Stop.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
ippc2018	RedFinnedBlueEye_ippc2018	The Red-finned Blue-eye domain tackles the problem of eradicating the invasive Gambusia from the habitat of the red-finned blue-eye.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
ippc2023	HVAC_ippc2023	Multi-zone and multi-heater HVAC control problem	0, 1, 2, 3, 4, 5, 6, 7
ippc2023	MarsRover_ippc2023	Multi Rover Navigation, where a group of agent needs to harvest mineral	0, 1, 2, 3, 4, 5
ippc2023	MountainCar_ippc2023	A simple continuous MDP for the classical mountain car control problem	1, 2, 3, 4, 5
ippc2023 ippc2023	PowerGen_ippc2023 RaceCar_ippc2023	A continuous simple power generation problem loosely modeled on the problem of unit commitment A simple continuous MDP for the racecar problem	$\begin{array}{c} 1, 2, 3, 4, 5 \\ 0, 1, 2, 3, 4, 5, 6 \end{array}$
ippc2023	RecSim_ippc2023	A simple continuous MD1 for the facecar problem A problem of recommendation systems, with consumers and providers	0, 1, 2, 3, 4, 5, 6
ippc2023	Reservoir_ippc2023	Continuous action version of management of the water level in interconnected reservoirs	1, 2, 3, 4, 5
ippc2023	UAV_ippc2023	Continuous action space version of multi-UAV problem where a group of UAVs have to reach goal positions in the 3d Space	1, 2, 3, 4, 5
gym	Cartpole_Continuous_gym	A simple continuous state-action MDP for the classical cart-pole system by Rich Sutton, with actions that describe the continuous force applied to the cart.	0
gym	Cartpole_Discrete_gym	A simple continuous state discrete action MDP for the classical cart-pole system by Rich Sutton, with actions that describe the direction of the force applied to the cart.	0
gym	MountainCar_Continuous_gym	A simple continuous MDP for the classical mountain car control problem.	0
gym	MountainCar_Discrete_gym	A simple continuous MDP with discrete actions for the classical mountain car control problem.	0
gym rddlsim	Pendulum_gym ComplexSysAdmin_rddlsim	The classical pendulum control problem. The well known sys-admin problem with a number of enhancements.	U 0
rddlsim	Logistics_rddlsim	A logistics problem extended from the standard Box-Truck World.	0
rddlsim	Pizza_rddlsim	A pizza delivery task.	0
rddlsim	PropDBN_rddlsim	Simple propositional DBN.	0
rddlsim	Sidewalk_rddlsim	One or more people walking down a sidewalk with 2 lanes.	0, 1
rddlsim	Workforce_rddlsim	Running a call center.	0
standalone	Elevators	The Elevator domain models evening rush hours when people from different floors in a building want to go down to the bottom floor using elevators.	0, 1
standalone standalone	Pong Portfolio	Single player pong/tennis problem. Manage a portfolio of financial assets to maximize return.	0
standalone standalone	Portiono PowerGen_Continuous	Manage a portion of financial assets to maximize return. A simple continuous version of the power generation problem, loosely modeled on the problem of unit commitment.	U n
standalone	PowerGen_Discrete	A simple continuous version of the power generation problem, loosely modeled on the problem of unit commitment. A simple continuous version of the power generation problem loosely modeled on the problem of unit commitment.	
standalone	Quadcopter	Control a swarm of four-propeller drones in 3D space.	0, 1
standalone	Reservoir_Continuous	Continuous action version of management of the water level in interconnected reservoirs.	0, 1
standalone	Reservoir_Discrete	Discrete action version of management of the water level in interconnected reservoirs.	0, 1
standalone	SupplyChain	A supply chain with factory and multiple warehouses.	0
standalone	Traffic	BLX/QTM traffic model.	0, 1
standalone	UAV_Continuous	Continuous action space version of multi-UAV problem where a group of UAVs have to reach goal positions in the 3d Space.	0, 1
standalone	UAV_Discrete UAV_Mixed	Discrete action space version of multi-UAV problem where a group of UAVs have to reach goal positions in the 3d Space.	U
standalone	UAV_MIXEC	Mixed action space version of multi-UAV problem where a group of UAVs have to reach goal positions in the 3d Space.	U