Numerical Methods :: Nonlinear equations

Nonlinear equations

Introduction
Fixed-point iteration
Newton iteration
Systems of equations

Nonlinear equations

Consider the problem of finding solutions of

$$f(x) = 0$$

for some given function f. Such solutions are referred to as roots of the equation, or zeros of the function.

Rewrite
$$f(x) = 0$$
 as
$$x = g(x).$$

Guess $x=x_0$ and iterate according to

$$x_{k+1} = g(x_k), \quad k = 0, 1, \dots$$

If $\lim_{k\to\infty} x_k = s$ and g is continuous, then s=g(s). The point s is called a fixed point of g.

Example 7.1

Suppose we do not know the formula for solving $x^2 - 3x + 1 = 0$.

We can write this as f(x) = 0, where $f(x) = x^2 - 3x + 1$. Then we can rewrite as

$$x = \frac{1}{3}(x^2 + 1)$$
 or $x = 3 - \frac{1}{x}$,

which yield the iteration formulae

$$x_{k+1} = \frac{1}{3}(x_k^2 + 1)$$
 or $x_{k+1} = 3 - \frac{1}{x_k}$.

Starting at $x_0 = 1$, the first iteration formula produces the sequence

$$1, 0.6667, 0.4815, \ldots, 0.3820.,$$

while the second produces the sequence

$$1, 2, 2.5, \ldots, 2.6180,$$

which converge to the two roots of f(x) = 0.

However, other initial guesses, such as $x_0 = 3$ or $x_0 = 0$ are not successful.

Theorem 7.2

Let x=s be a solution of x=g(x) and suppose that the function g has a continuous derivative in some interval I containing s and that $|g'(x)| \leq G < 1$ in I. Then the iteration $x_{k+1} = g(x_k)$ converges for any initial x_0 in I and $\lim_{k \to \infty} x_k = s$.

Proof.

We use Taylor's theorem about x = s to show that

$$|x_k - s| \le G|x_{k-1} - s| \le G^2|x_{k-2} - s| \le \dots \le G^k|x_0 - s|.$$

When G < 1, $G^k \to 0$ as $k \to \infty$, hence the iteration converges with $x_k \to s$ as $k \to \infty$.

Newton iteration

Suppose f(x) can be approximated near x_k by a truncated Taylor series. Then

$$f(x_{k+1}) \approx f(x_k) + f'(x_k)(x_{k+1} - x_k).$$

We want $f(x_{k+1}) = 0$, hence

$$f(x_k) + f'(x_k)(x_{k+1} - x_k) = 0$$
$$\Rightarrow x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Newton iteration

Example 7.3

Consider the cubic

$$f(x) = x^3 - 4 = 0.$$

Newton iteration is given by

$$x_{k+1} = x_k - \frac{x_k^3 - 4}{3x_k^2}$$

Newton iteration

Starting at $x_0 = 2$, we obtain the sequence

Only three iterations were necessary to obtain four decimal place accuracy in this example.

Our Newton iteration is equivalent to fixed-point iteration with $g(x) = x - (x^3 - 4)/(3x^2)$. Notice that g'(x) is zero near the root, hence G^k rapidly becomes small $(|g'(x)| \leq G)$ and convergence is fast.

Convergence

Theorem 7.4

If f(x) is thrice differentiable and f' and f'' are not zero at a root s of f(x) = 0, then for initial x_0 sufficiently close to s, the rate of convergence of Newton's method is quadratic.

Proof.

We use an additional term in Taylor's theorem about x=s to show that

$$|x_{k+1} - s| = |g(x_k) - g(s)| = \frac{1}{2}|g''(t)(x_k - s)^2| \le \frac{1}{2}M|x_k - s|^2,$$

where g(x) = x - f(x)/f'(x) and |g''(x)| < M on the interval around the root.

Termination

Example 7.5

Reconsider the cubic

$$f(x) = x^3 - 4 = 0.$$

whose Newton iteration is given by

$$x_{k+1} = x_k - \frac{x_k^3 - 4}{3x_k^2}$$

To terminate, we can try

if abs(xNew - x) < tol, break, end

Termination

Various termination criteria are possible. Depending on the problem, we could choose:

- ▶ an absolute test on the iterates, $|x_{k+1} x_k| < \epsilon$, or
- ▶ a relative test on the iterates, $|x_{k+1} x_k| < \epsilon |x_k|$, or
- lacktriangle an absolute test on the residual, $|f(x_k)|<\epsilon$, or
- ▶ a relative test on the residual, $|f(x_k)| < \epsilon |f(x_0)|$.

Depending on the circumstances, any of these may be misleading or even fail. You need to choose a termination condition that is suitable for your problem.

No Derivative, No Problems

Sometimes the derivative f'(x) is unavailable (perhaps the function is calculated by some 'black box' software). In that case, we can use a finite difference approximation to the derivative, such as those we derived earlier. For example,

$$f'(x) \approx \frac{f(x+h) - f(x)}{h},$$

where h is about 10^{-6} to 10^{-8} .

No Derivative, No Problems

Example 7.6

Use Newton's method to find a solution of

$$\exp(\sin(x^2 - 3x + 2) - x) = 1.$$

In this case, the residual is

$$f(x) = \exp(\sin(x^2 - 3x + 2) - x) - 1.$$

Using a finite difference approximation for f'(x) and starting at $x_0=1$, we converge to x=0.57272914.

Nonlinear systems

The simplest nonlinear system consists of two nonlinear equations in two variables:

$$f(x,y) = 0$$
$$g(x,y) = 0$$

A solution to this system consists of those values of x and y that satisfy both equations simultaneously. Newton iteration can be adapted to find such solutions.

Example 7.7

Suppose we wish to solve the nonlinear system

$$f(x,y) = x^2 - xy^2 - xy - 1 = 0,$$

$$g(x,y) = y^2 + x^3 + xy - 3 = 0.$$

Try guessing (x,y)=(1,0). We find f(1,0)=0 and g(1,0)=-2. This is not a solution, because a solution must satisfy both equations.

Try to find a better solution by modifying the original guess as $(x,y)=(1+\Delta x,\Delta y)$, where Δx and Δy are small. Ignoring the very small nonlinear terms (such as Δx^2 , Δy^2 , $\Delta x \Delta y$, and so on), we obtain

$$f(1 + \Delta x, \Delta y) \approx 2\Delta x - \Delta y,$$

 $g(1 + \Delta x, \Delta y) \approx 3\Delta x + \Delta y - 2,$

We want $f(1+\Delta x, \Delta y) = g(1+\Delta x, \Delta y) = 0$, hence we obtain a linear system

$$\begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = - \begin{bmatrix} 0 \\ -2 \end{bmatrix}.$$

Solving the linear system yields $(\Delta x, \Delta y) = (2/5, 4/5)$. The new guess is thus $(x_1, y_1) = (1 + \Delta x, \Delta y) = (7/5, 4/5)$.

We can continue this process by searching for an even better guess $(x,y)=(x_1+\Delta x,y_1+\Delta y).$ We approximate f and g as before, obtaining

$$f(x_1 + \Delta x, y_1 + \Delta y) \approx (x_1^2 - x_1 y_1^2 - x_1 y_1 - 1) + (2x_1 - y_1^2 - y_1) \Delta x + (-2x_1 y_1 - x_1) \Delta y,$$

$$g(x_1 + \Delta x, y_1 + \Delta y) \approx (y_1^2 + x_1^3 + x_1 y_1 - 3) + (3x_1^2 + y_1) \Delta x + (x_1 + 2y_1) \Delta y.$$

Setting $f(x_1 + \Delta x, y_1 + \Delta y) = g(x_1 + \Delta x, y_1 + \Delta y) = 0$ yields

$$\begin{bmatrix} 2x_1 - y_1^2 - y_1 & -2x_1y_1 - x_1 \\ 3x_1^2 + y_1 & x_1 + 2y_1 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = - \begin{bmatrix} f_1 \\ g_1 \end{bmatrix},$$

where

$$f_1 = f(x_1, y_1) = x_1^2 - x_1 y_1^2 - x_1 y_1 - 1$$

$$g_1 = g(x_1, y_1) = y_1^2 + x_1^3 + x_1 y_1 - 3.$$

We again solve for $(\Delta x, \Delta y)$ and hence find a new guess $(x_1 + \Delta x, y_1 + \Delta y)$. And so on...

Suppose f(x,y) and g(x,y) can be approximated near (x_k,y_k) by truncated multivariable Taylor series. Then

$$f(x_{k+1}, y_{k+1}) \approx f(x_k, y_k) + \frac{\partial f}{\partial x} \Big|_{x_k, y_k} \Delta x + \frac{\partial f}{\partial y} \Big|_{x_k, y_k} \Delta y,$$

$$g(x_{k+1}, y_{k+1}) \approx g(x_k, y_k) + \frac{\partial g}{\partial x} \Big|_{x_k, y_k} \Delta x + \frac{\partial g}{\partial y} \Big|_{x_k, y_k} \Delta y,$$

where $\Delta x = x_{k+1} - x_k$ and $\Delta y = y_{k+1} - y_k$.

We want $f(x_{k+1}, y_{k+1}) = 0$ and $g(x_{k+1}, y_{k+1}) = 0$, hence

$$f(x_k, y_k) + \frac{\partial f}{\partial x} \bigg|_{x_k, y_k} \Delta x + \frac{\partial f}{\partial y} \bigg|_{x_k, y_k} \Delta y = 0,$$

$$g(x_k, y_k) + \frac{\partial g}{\partial x} \bigg|_{x_k, y_k} \Delta x + \frac{\partial g}{\partial y} \bigg|_{x_k, y_k} \Delta y = 0,$$

which can be written as a linear system

$$\begin{bmatrix} \frac{\partial f}{\partial x} \Big|_{x_k, y_k} & \frac{\partial f}{\partial y} \Big|_{x_k, y_k} \\ \frac{\partial g}{\partial x} \Big|_{x_k, y_k} & \frac{\partial g}{\partial y} \Big|_{x_k, y_k} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = - \begin{bmatrix} f(x_k, y_k) \\ g(x_k, y_k) \end{bmatrix}.$$

The matrix on the left hand side is the Jacobian J_k .

Assuming this system can be solved for Δx and Δy , the new iterates can be found using

$$x_{k+1} = x_k + \Delta x,$$

$$y_{k+1} = y_k + \Delta y.$$

Example 7.8

Suppose we wish to solve the nonlinear system

$$f(x,y) = x^{2} + y^{2} - 2 = 0,$$

$$g(x,y) = y - \cos x = 0.$$

Newton iteration is given by

$$x_{k+1} = x_k + \Delta x,$$

$$y_{k+1} = y_k + \Delta y,$$

$$\begin{bmatrix} 2x_k & 2y_k \\ \sin x_k & 1 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = -\begin{bmatrix} x_k^2 + y_k^2 - 2 \\ y_k - \cos x_k \end{bmatrix}.$$

Let $\boldsymbol{x}_k = [x_k, y_k]^T$ and $\Delta \boldsymbol{x} = [\Delta x_k, \Delta y_k]^T$. Then the iteration formulae are

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \Delta \boldsymbol{x}, \quad \boldsymbol{J}_k \Delta \boldsymbol{x} = -\boldsymbol{r}_k.$$

where $r_k = [f(x_k, y_k), g(x_k, y_k)]^T$.

Although you would not compute the inverse of the Jacobian, the above formulae can also be written as

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \boldsymbol{J}_k^{-1} \boldsymbol{r}_k,$$

which is analogous to the single variable formula

$$x_{k+1} = x_k - [f'(x_k)]^{-1} f(x_k).$$

General Newton iteration

A system of n nonlinear equations can be written as

$$f(x) = 0$$

where f and x are vectors of length n.

The Newton iteration formulae for such a system are

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + \Delta oldsymbol{x}, \quad oldsymbol{J}_k \Delta oldsymbol{x} = -oldsymbol{f}_k.$$

where $oldsymbol{f}_k = oldsymbol{f}(oldsymbol{x}_k)$ and the elements of the Jacobian are

$$J_{ij} = \frac{\partial f_i}{\partial x_i}.$$

General Newton iteration

Start with an initial guess x_0 . Continue iteration until

- $lacksquare \|oldsymbol{x}_{k+1}-oldsymbol{x}_k\|<\epsilon$, or
- $ightharpoonup \| oldsymbol{f}(oldsymbol{x}_k) \| < \epsilon,$

where ϵ is the tolerance. As for the single variable case, it is also possible to rewrite the above in terms of relative magnitude.

Aside: Newton Fractals

Consider solving $f(z)=z^4-1=0$ over the complex plane using Newton's method. The roots are:

$$1, -1, i, -i$$

and every starting point $z_0 \in \mathbb{C}$ will eventually converge to one of these roots.

Newton's method over \mathbb{C} works exactly as it does over \mathbb{R} :

$$z_{k+1} = z_k - \frac{f(z_k)}{f'(z_k)}$$
$$= z_k - \frac{z^4 - 1}{4z^3}$$

Obviously starting points near 1 converge to the root 1+0i, and similarly for the other roots.

What happens at the boundaries between regions?

Aside: Newton Fractals

The boundaries dividing basins of attraction for each z_0 turn out to be quite interesting!

Points coloured by the root which they eventually converge to.

Aside: Newton Fractals

For more information:

- Simon Tatham. Fractals derived from Newton-Raphson. http://www.chiark.greenend.org.uk/~sgtatham/ newton/
- ▶ Johannes Rueckert. Newton's Method as a Dynamical System (PhD thesis). http://www.math.stonybrook.edu/cgi-bin/thesis.pl?thesis06-1