Conor R. Walker

New York Genome Center, 101 6th Ave, New York, NY 10013, USA

✓ conor@conorwalker.net
 ✓ Conor R. Walker
 ✓ conorwalker
 ✓ conorwalker

Education _

University of Cambridge, UK

2017-2021

PhD Computational Biology

- Thesis: Statistical analysis of short template switch mutations in human genomes
- Advisers: Nick Goldman, Aylwyn Scally, Nicola De Maio

Newcastle University, UK

2016-2017

MSc Bioinformatics · Distinction (83%)

- Thesis: Optimising nucleic acid sequences for DNA strand displacement systems
- Adviser: Harold Fellermann

Liverpool John Moores University, UK

2013-2016

BSc (Hons) Zoology · First-class honours (80%)

- Thesis: The genetics of insecticide resistance in the blackfly Simulium vittatum
- Advisers: Craig Wilding, Will Swaney

Research experience _____

New York Genome Center, USA

2022-Present

Postdoctoral Research Associate (Joint appointment at Columbia University)

- Developed a deep learning pipeline (PyTorch) and statistical methods for assessing privacy risks associated with single-cell RNA-Seq datasets
- Implemented multiple classification models (scikit-learn) to predict genotypes from single-cell RNA-Seq, revealing privacy risks across many publicly available datasets
- Modelled noise between bulk and single-cell RNA-Seq data using generalized linear models (Python)
- Collaboratively designed a privacy-preserving bulk RNA-Seq quantification algorithm using homomorphic encryption, and processed hundreds of bulk RNA-Seq samples for benchmarking (Snakemake & AWS)

Columbia University - Department of Biomedical Informatics, USA

2022-Present

Postdoctoral Research Fellow

European Bioinformatics Institute (EMBL-EBI), UK

2017-2022

Predoctoral Researcher

- Designed and implemented (C++) hidden Markov models to identify small-scale rearrangements in sequencing data, providing the first statistical method for identifying <50nt DNA rearrangements
- Applied my models to thousands of whole-genome human sequencing datasets to evaluate the evolutionary, population, cancer, and *de novo* landscape of template switch mutagenesis
- Implemented convolutional neural networks (Keras & PyTorch) to accurately detect positive selection within protein-coding sequences, validated by simulating evolution across tens of millions of genes
- Collaborated on multiple projects to characterize global SARS-CoV-2 genome evolution, analyzing thousands of samples (Python/Snakemake) and co-authoring 4 peer-reviewed papers

This work was funded by EMBL and NIHR.

Newcastle University, UK

2016-2017

Postgraduate Student Research

• I implemented multi-objective genetic algorithms for designing and optimising DNA sequences for use in DNA computing systems

Liverpool John Moores University, UK

2016

Undergraduate Student Research

• I identified enzymes and mutations associated with insecticide resistance in a medically-important blackfly genome using phylogenetic methods

Publications

phastSim: Efficient simulation of sequence evolution for pandemic-scale datasets.

De Maio N., Boulton W., Weilguny L., Walker C. R., Turakhia Y., Corbett-Detig R., Goldman N.

PLOS Computational Biology, 18, e1010056 (2022).

Mutation rates and selection on synonymous mutations in SARS-CoV-2.

De Maio N., Walker C. R., Turakhia Y., Lanfear R., Corbett-Detig R., Goldman N.

Genome Biology and Evolution 13, evab087 (2021).

Short-range template switching in great ape genomes explored using pair hidden Markov models.

Walker C. R., Scally A., De Maio N., Goldman N.

PLOS Genetics 17, e1009221 (2021).

Stability of SARS-CoV-2 phylogenies.

Turakhia Y., De Maio N., Thornlow B., Gozashti L., Lanfear R., **Walker C. R.**, Hinrichs A. S., Fernandes J. D., Borges R., Slodkowicz G., Weilguny L., Haussler D., Goldman N., Corbett-Detig R. *PLOS Genetics* 16, e1009175 (2020).

A phylodynamic workflow to rapidly gain insights into the dispersal history and dynamics of SARS-CoV-2 lineages. Dellicour S., Durkin K., Hong S. L., Vanmechelen B., Martí-Carreras J., Gill M., Meex C., Bontems S., André E., Gilbert M., **Walker C. R.**, De Maio N., Faria N., Hadfield J., Hayette M., Bours V., Wawina-Bokalanga T., Artesi M., Baele G., Maes P. *Molecular Biology and Evolution* 38, 1608–1613 (2020).

Masking strategies for SARS-CoV-2 alignments.

De Maio N., **Walker C. R.**, Borges R., Weilguny L., Slodkowicz G., Goldman N. *virological.org/t/masking-strategies-for-sars-cov-2-alignments/480* (2020).

Issues with SARS-CoV-2 sequencing data.

De Maio N., **Walker C. R.**, Borges R., Weilguny L., Slodkowicz G., Goldman N. *virological.org/t/issues-with-sars-cov-2-sequencing-data/473* (2020).

Selected presentations _____

Walker C. R.

RECOMB 2023 · Istanbul, Türkiye Poster: Private information leakage in single-cell omics data Walker C. R., Gürsoy G.	Apr. 2023
Rocky 2022 · Colorado, US Poster: Private information leakage in single-cell omics data Walker C. R., Gürsoy G.	Dec. 2022
ISMB/ECCB 2021 · Remote Talk: Accurate detection of positive selection using convolutional neural networks Walker C. R., De Maio N., Goldman N.	Jul. 2021
SMBE 2021 · Remote Talk: Accurate detection of positive selection using convolutional neural networks Walker C. R., De Maio N., Goldman N.	Jul. 2021
SMBE 2019 · Manchester, UK Poster: Short template switches explain mutation clusters in the human genome Walker C. R., De Maio N., Goldman N.	Jul. 2019
NIHR BRC Annual Research Day · Cambridge, UK Talk: Investigating short template switch mutations in humans and model organisms	Jul. 2018

Talk: Short template switch events explain mutation clusters in the human genome

Walker C. R., Löytynoja A., Goldman N.

Teaching _

Students supervised

Marvin Limpijankit · Undergraduate student

2022

· Project: Classifying somatic mutations using machine learning

Will Lounsbery-Scaife · Undergraduate student

2022

• Project: Deep learning models of single-cell genotype-phenotype relationships

Fatma Rabia Fidan · Masters student

2021

· Project: Statistically identifying de novo template switch mutations in trios of human genomes

Shayesteh Arasti · Masters student

2021

• Project: Convolutional neural networks for predicting positive selection

Viacheslav Vasilev · Undergraduate student

2020

• Project: Convolutional neural networks for predicting positive selection

William Xu · Undergraduate student

2020

• Project: Convolutional neural networks for predicting positive selection

Teaching assistant

Medics to Coders · University of Cambridge, UK

2018

• I delivered practical sessions on programming at the School of Clinical Medicine

Honours and awards

ISMB/ECCB 2021 EvolCompGen - Best Talk Award

Jul. 2021

EMBL-EBI PhD Seminar Day - Best Talk Award

May 2019

MSc Bioinformatics Prize - highest overall grade on my master's degree program

Oct. 2017

BSc Zoology Prize - highest overall grade on my bachelors's degree program

Sep. 2016

Other scientific activities _

Committees

Student Representative · EMBL-EBI, UK

2018-2020

- Attended meetings with senior management from across all EMBL outstations to discuss issues impacting the graduate community at EMBL
- Organised a variety of academic and social events within the institution

Graduate Student and Post-Doc Forum member · University of Cambridge, UK

2018

• I worked as part of a group of students and postdocs to devise strategies for creating a more productive and positive experience for graduate students in the School of Life Sciences

Memberships

International Society for Computational Biology Society for Molecular Biology and Evolution Society for the Study of Evolution

Reviewer for

Nature Medicine Molecular Biology and Evolution BMC Bioinformatics RECOMB (Research in Computational Molecular Biology) Skills

Programming Python, Bash, C++, R, AWK, LaTeX

Libraries Numpy, SciPy, Keras, TensorFlow, PyTorch, pandas, matplotlib, seaborn, Dask,

Numba, pysam, scikit-allel, Scanpy, scvi-tools

Coding practices Git, Snakemake, Nextflow, unit testing, Docker, Singularity, Jupyter, Vim

High performance computing Slurm, LSF

Cloud computing AWS, Google Cloud

Operating systems Linux, MacOS