

ИТОГОВЫЙ ОТЧЁТ КОМАНДЫ №1

Капитаны команды Суслов К.С. и Орлов В.В. *Куратор команды* Монахова У.В.

Москва, 2021

Аннотация

Миссия «MINATAVR» - исследовательская миссия к системе Нептун-Тритон, разработанная командой из студентов московского физико-технического института (МФТИ). Основные цели миссии – изучение магнитного поля Нептуна, а также съёмка системы в целом и картографирование Нептуна и Тритона в частности.

В миссии производится: измерение магнитного поля в областях хвоста магнитосферы, магнитопаузы, ближней зоны Нептуна и его окрестностей; картографирование Нептуна и Тритона; съёмка объектов системы в инфракрасном видимом спектрах. Также производятся: измерения электрического поля, плазма-спектрометрия.

Полученная информация сжимается lmza-алгоритмом, скапливается на аппарате и затем отправляется на Землю. В конце миссии аппарат захороняется в плотных слоях атмосферы Нептуна для минимизации антропогенного загрязнения космического пространства.

Состав команды

Суслов Кирилл Сергеевич (капитан)	ФПМИ, 6-й курс
Орлов Владислав Владимирович (капитан)	ФПМИ, 5-й курс
Киселев Кирилл Максимович	ФАКТ, 2-й курс
Кандрашина Екатерина Денисовна	ФАКТ, 3-й курс
Ким Давид Вениаминович	ФАКТ, 3-й курс
Адыгезалов Нураддин Эльдар оглы	ФАКТ, 4-й курс
Дадашев Ролан Рафаэльевич	ФАКТ, 4-й курс
Рябко Елизавета Михайловна	ФАКТ, 4-й курс
Русяев Глеб Алексеевич	ФПМИ, 1-й курс
Белоозерова Яна Александровна	ФРКТ, 5-й курс
Стовбчатая Анастасия Александровна	ФЭФМ, 2-й курс
Холод Арсений Павлович	ФЭФМ, 2-й курс

Куратор команды Монахова Ульяна Владимировна, аспирант ИПМ

Кольца

Тритон

AMADEOS: Advanced Mission Analysis, Design, and Optimization School

Общее описание миссии

Дата старта		31.01.2031
Дата входа в систему Н	ептуна (r = 80 R _N)	16.07.2047
Дата завершения мисси	ии $(r = 1 R_N)$	01.02.2051
Ракета-носитель		SLS Block 1B
Верхняя ступень		EUS
Полная начальная масс	а КА, кг	10476.9
Сухая масса КА, кг		1273.4
в том числе масса	а полезной нагрузки, кг	189.4
Количество этапов тура	a	7
Общий объём переданн	ных научных данных, Гбит	3307
Накопленная доза иони	зирующего излучения, крад	5.37
Исследованные небесные тела (в клеточках поставьте \mathbf{X} там, где нужно):		
х Нептун	пролётов через магнитопаузу	14
	пролётов через хвост магнито	осферы14

Облик космического аппарата

Масса аппарата, кг	10532.4
Габариты аппарата, в метрах до развёртки	4 x 2.21 x 8.3
Габариты аппарата, в метрах в развёртке	12 x 5.21 x 8.3
Главные моменты инерции, в $\kappa \Gamma^* M^2$	1562.76
	x 24557.3
	x 24820

Бортовая вычислительная машина (БВМ)

Модель BAE RAD750 6U

Энергопотребление до 5 Вт

Тактовая частота 110-200 Мгц

Ядро 1

2 радиоизотопных термоэлектрических генератора (РТГ) Масса 100 кг

15 радиоизотопных нагревательных блока (РНБ)

Масса 0.6 кг

Мощность в конце тура 12 Вт

Маршевая двигательная установка (МДУ)

Модель S400-15

Тяга 425 Н

Удельный импульс 321 с

Энергопотребление 35 Вт

Топливо ММН

Окислитель МОМ-3

Массовое соотношение 1.65

Расход смеси 135 г/с

Плановые циклы использования 135

Масса 4.3 кг

Кластеры реактивных ориентационных двигателей

Модель S10-18

Тяга 10 Н

Удельный импульс 292 с

Топливо ММН

Окислитель МОМ-3

Массовое соотношение 1.65

Расход смеси 3.5 г/с

Плановые циклы использования 1000000

Масса 0.35 кг

Количество 12 шт

Баки с топливом и окислителем

Модель MPCV ESM

Вместительность 2100 л

Топливо ММН

Окислитель МОМ-3

Максимальное ожидаемое давление 25 бар

Предельное безопасное давление 31.25 бар

Масса 110 кг

Количество 4 шт

Баки с гелием

Производитель European Space Agency

Максимальное ожидаемое давление 600 бар

Предельное безопасное давление 633 бар

Вместительность 57 л

Масса 14.4 кг

Количество 2 шт

Узконаправленная антенна

Потребление 160 Вт

Скорость передачи данных 109 кбит/с (по теореме Шеннона-Хартли)

Масса 15 кг

Узкоугольная камера

Модель LROC Performance NAC-R

Потребление нагрузочное 9.3 Вт

Потребление фоновое 6.4 Вт

FOV 2.8502 град

Соотношение расстояние от высоты на пиксел 0.5 м : 50 км

Масса 16.4 кг

Широкоугольная камера

Модель Mastcam-Z

Потребление нагрузочное 11.8 Вт

Потребление фоновое 7.5 Вт

FOV 23x18 град

Матрица 1600х1200

Соотношение расстояние от высоты на пиксел 0.5 м: 50 км

Масса 4 кг

УФ-спектрограф

Потребление нагрузочное 9 Вт

Поток данных 20 кбит/с

Масса 10 кг

ИК-спектрограф

Потребление нагрузочное 22 Вт

Поток данных 90 кбит/с

Масса 37 кг

Магнитометр

Потребление нагрузочное 6 Вт

Поток данных 2 кбит/с

Масса 5 кг

Плазма-спектрометр

Потребление нагрузочное 15 Вт

Поток данных 8 кбит/с

Масса 13 кг

(на одной штанге с магнитометром)

Детектор радиоволн

Потребление нагрузочное 10 Вт

Поток данных 2 кбит/с

Масса 15 кг

Лазерный альтиметр

Потребление нагрузочное 28 Вт

Поток данных 1 кбит/с

Масса 13 кг

Детектор высокоэнергетических частиц

Потребление нагрузочное 20 Вт

Поток данных 3 кбит/с

Масса 16 кг

Зонд

Запасённая энергия 500 Вт*ч

Пиковое потребление 160 Вт

Батареи LSH20 46.8 Вт*ч в начале миссии, 31.2 Вт*ч в конце

(используем 16 штук)

Масса 100 кг

Конструкция

Масса 1000 кг (оценённая)

Радиозащита

Масса 240 кг (2.2-сантиметровая алюминиевая оболочка)

Звёздный датчик

Модель AA-STR

Количество 3

Маховики

Модель RDR 68-3 and WDE 8-45

Количество 5

Энергоснабжение:

Пиковая мощность, потребляемая аппаратурой около 315 Вт, поэтому необходимо два РТГ (по 300 Вт каждый) для обеспечения работы приборов, с учетом того что со временем РТГ будут выделять меньше мощности (примерно 425 Вт через 20 лет):

Тепловой баланс:

- **А)** В уравнении теплового баланса учитывались излучения Солнца, планет, отраженное излучение Солнца от планет, а также излучение самого аппарата.
- Б) Материалы покрытия (общая масса покрытия 72 кг.):
- 1. Самый нижний слой каптоновая пленка, защищает от микрометеоритов. Вклад массы 42.6кг.
- 2.Средний слой экранно-вакуумная изоляция (ЭВИ), состоит из 40 слоев отражающих экранов из синтетического материала с металлическим покрытием (толщина пленки 0.01мм, толщина алюминиевого покрытия 0.001мм), чередующихся с разделяющими прокладками из волокнистого материала. Характеристики: $\alpha \approx 3 * 10^{-5} \frac{\text{Вт}}{\text{м K}}$ теплопроводность, $\rho = 1.2 \frac{\text{кг}}{\text{м}^2}$, l = 0.02 м толщина. Вклад по массе 28.8 кг.
- 3.Внешний слой майларовая пленка. Коэффициенты поглощения и отражения $A \approx 0.08$, $\epsilon \approx 0.0446$. Вклад массы 0.5 кг
- **B)** Температура внутри поддерживается в диапазоне 10°C-20°C. Для подогрева системы используется мощность, выделяемая на аппаратуре и 12 РНБ (по 1 Вт каждый). Графики избытка тепла:
- **Г)** Отвод тепла происходит с помощью вентиляционных отверстий (за счет увеличения излучения)

Открываются с противосолнечной стороны, поэтому необходимо расположить их симметрично по периметру так, чтобы на теневой стороне аппарата находились отверстия суммарной площадью не менее $1 \, \mathrm{m}^2$.

Вся внутренность корабля покрывается специальной краской Black Silicone Paint с $\epsilon=0.93$ для того, чтобы излучение было максимальным.

На единицу площади, при открытом люке, излучается: $E = \varepsilon \sigma T^4 \approx 437 \frac{\text{Вт}}{\text{M}^2}$

.Вентиляционные отверстия автоматически открываются с противосолнечной стороны при повышении температуры на 10° С, то есть при 20° С, и закрываются при 10° С.

Без использования РНБ:

С использованием РНБ:

Радиационные пояса Земли преимущественно состоят из электронов в десятки кэВ и протонов в десятки МэВ, не способных проникнуть сквозь защитную оболочку. Аналогично, радиационный пояс Нептуна, состоящий из частиц с энергиями до 5 МэВ, не наносит вреда аппарату.

Аппарат находится от Юпитера на расстоянии менее 2,2 млн километров в течение 3,05*10^5 с. На этом расстоянии также нет высокоэнергетичных протонов, способных пройти радиационную защиту.

Однако электроны энергией свыше 10 МэВ создают поток 10000/с*см^2 Итого за это время аппарат получит дозу радиации 1952 Дж.

Галактическое и солнечное излучение, способное пройти алюминиевый слой, в среднем создаёт поток около 2000 ГэВ/с*м^2 = $3,2*10^-7$ Дж/с*м^2.

Перелёт в систему Нептуна

Межпланетный перелёт

Затраты характеристической скорости, км/с 0,0701

Затраты рабочего тела (топлива), кг 239.57

Накопленная доза ионизирующего излучения, крад < 50

Ракета-носитель: Space Launch System Block 1B

Верхняя ступень: Exploration Upper Stage

Дата старта 31.01.2031

 v_{∞} при отлёте от Земли **8.5639 км/с**

 $C_3 = v_{\infty}^2 - 2\frac{\mu}{r} = 8.56^2 - 2\frac{398600.44}{930000} = 72.48\kappa \frac{M^2}{c^2}$

 v_{∞} при подлёте к Нептуну 7.3228 км/с

Затраты характеристической скорости на DSM 0.0001 км/с

1. Зависимость выводимой массы от характеристической энергии

Пролёт у Марса **13.05.2031**

 v_{∞} при подлёте к планете, км/с **15.0555 км/с**

Пролётное расстояние, км (радиусов планеты) 1.1800

Импульс в перицентре гиперболы, $\kappa \text{м/c}$ 9. $8471 \cdot 10^{-5} \text{км/c}$

Пролёт у Юпитера **06.01.2033**

 $v_{\rm m}$ при подлёте к планете, км/с 7.4508 км/с

Пролётное расстояние, км (радиусов планеты) 17.1970

Импульс в перицентре гиперболы, км/с 1. 8289·10⁻⁶ км/с

Затраты характеристической скорости на ТСМ, км/с 0,07 км/с

Этап 1. Вход в систему Нептун-Тритон

Этап 1: вход в систему Нептун - Тритон

Дата начала этапа	16.07.2047
Дата завершения этапа	18.07.2047
Затраты характеристической скорости на манёвры	1,4 км/с
Затраты рабочего тела (топлива), кг	
Накопленная доза ионизирующего излучения, крад	< 50
Объём переданных в ходе этапа научных данных, Гбит	18
Пиковое энергопотребление, Вт	312

Основная цель этапа: выйти на эллиптическую траекторию вокруг Нептуна. Для этого в перицентре траектории подаётся импульс вдоль тангенциальной компоненты против направления вектора скорости аппарата. До момента выдачи импульса характеристическая скорость аппарата

$$C_3 = v_0^2 - \frac{2\mu_N}{r} = 53.3319 \kappa \frac{M^2}{c^2}$$
, а после манёвра — 4.1484 $\kappa \frac{M^2}{c^2}$, что свидетельствует о переходе аппарата к финитному движению вокруг Нептуна.

Для того, чтобы аппарат без последствий прошёл через зону, заполненную кольцами Нептуна, принято решение входить в систему немного выше эклиптики, таким образом создав ненулевое наклонение эллиптической орбиты. Промоделированный вход из координат (- 0. 5147ае, - 0. 2662ае, 0. 0134ае) в системе координат с центром в центре масс Нептуна и осями, сонаправленными с осями гелиоцентрической СК, даёт наклонение в 167.8 градусов.

Доступность для связи с Землёй: всё время этапа кроме съемки и картографирования – 2 дня, доступно к передаче 18 Гбит.

Работа аппаратуры (на графиках этого этапа временная шкала начинается с момента 134 дня после входа в сферу действия Нептуна):

• Плазма-спектрометр, УФ-спектрограф, ИК-спектрограф и магнитометр: работают всё время с момента входа в систему ($r < 80R_N$), т.е. 2.6 дня, 24,9 Гбит информации

• Детектор радиоволн и волн в плазме: 14 часов, 0,1 Гбит информации

• Широкоугольная съёмка: 3 часа, 0,7 Гбит информации

• Картографирование: 29 часов, 7 Гбит информации

Наполненность хранилища на конец этапа: 15 Гбит

Этап 2. Выход на целевую орбиту «Магнитосфера»

Дата начала этапа	18.07.2047
Дата завершения этапа	0 5.10.2047
Затраты характеристической скорости на манёвры	1,85 км/с
Затраты рабочего тела (топлива), кг	
Накопленная доза ионизирующего излучения, крад	< 50
Объём переданных в ходе этапа научных данных, Гбит	600

Пиковое энергопотребление, Вт

312

На этом этапе аппарат переводится на целевую орбиту для изучения магнитных полей в окрестности Нептуна. Для этого 18.08.2047 в апоцентре орбиты выдаётся тангенциальный импульс величиной 0,9 км/с вдоль скорости, поднимающий перицентр на высоту, на которой расположен хвост магнитосферы планеты. Затем, 05.10.2047 в новом апоцентре тангениальный импульс величиной 0,95 км/с против скорости понижает апоцентр на высоту магнитопаузы.

Доступность для связи с Землёй: 66, доступно к передаче 600 Гбит.

Работа аппаратуры:

- Плазма-спектрометр, УФ-спектроскоп и ИК-спектроскоп: 78 дней, 550 Гбит
- Магнитометрия: 21 день, 3 Гбит

• Детекция радиоволн и волн в плазме: 20 часов, 1,5 Гбит

• Картографирование: 58 часов, 14 Гбит

Наполненность хранилища на конец этапа: 0 Гбит

Этап 3. Целевая орбита «Магнитосфера»

Дата начала этапа	05.10.204	ł 7
Дата завершения этапа	03.10.204	18
Затраты характеристической скорости на манёвры	0 км/с	
Затраты рабочего тела (топлива)	0 кг	
Накопленная доза ионизирующего излучения, крад	<50	
Объём переданных в ходе этапа научных данных, Гбит		1600
Пиковое энергопотребление, Вт		312

На этом этапе производятся измерения магнитосферы Нептуна, а также картографирование планеты. Предполагается оставаться на этой орбите 364 дня, совершив 14 витков и столько же раз пролетев через магнитопаузу и хвост магнитосферы.

Доступность для связи с Землёй: 200 дней, доступно к передаче 1600 Гбит.

Работа аппаратуры на каждом из 14 витков:

• Магнитометрия: 26 дней, 60Гбит за этап

• Картографирование: 11 дней, 866 Гбит за этап.

Наполненность хранилища на конец этапа: 0 Гбит

Этап 4. Переход на целевую орбиту «Тритон»

Дата начала этапа	03.10.204	8
Дата завершения этапа	07.10.204	8
Затраты характеристической скорости на манёвры	1,53 км/с	
Затраты рабочего тела (топлива)		
Накопленная доза ионизирующего излучения, крад	< 50	
Объём переданных в ходе этапа научных данных, Гбит		0
Пиковое энергопотребление, Вт		312

На этом этапе аппарат переводится на целевую орбиту для изучения Тритона. Для этого 03.10.2048 в перицентре орбиты выдаётся тангенциальный импульс величиной 1,1 км/с против скорости, опускающий апоцентр до орбиты Тритона. Затем, 07.10.2048 в новом перицентре тангенциальный импульс величиной 0,43 км/с против скорости снижает апоцентр, делая орбиту близкой к круговой с периодом, идентичным орбите Тритона.

Этап 5. Целевая орбита «Тритон»

Целевая орбита «Тритон»

Дата начала этапа	07.10.20	48
Дата завершения этапа	18.05.20	50
Затраты характеристической скорости на манёвры	0,3 км/с	
Затраты рабочего тела (топлива)	0 кг	
Накопленная доза ионизирующего излучения, крад	< 50	
Объём переданных в ходе этапа научных данных, Гбит		281
Пиковое энергопотребление, Вт		312

На этом этапе производятся сближения с Тритоном, а также картографирование Нептуна и его спутника. Предполагается оставаться на этой орбите 588 дней, совершив 100 витков и столько же раз пролетев на расстоянии менее 1 200 км от Тритона. Затраты в 0,3 км/с предложены для поддержания стабильности данной орбиты на протяжении длительного промежутка времени.

Доступность для связи с Землёй: 540 дней, доступно к передаче 4500 Гбит.

Работа аппаратуры на каждом из 100 витков:

• Съёмка Тритона: 7 часов, 164 Гбит за этап

• Картографирование Тритона: 5 часов, 117 Гбит за этап

Этап 6. Сближения с Нептуном

Дата начала этапа	18.05.2050
Дата завершения этапа	21.01.2051
Затраты характеристической скорости на манёвры	2,5 км/с
Затраты рабочего тела (топлива)	0 кг
Накопленная доза ионизирующего излучения, крад	< 50
Объём переданных в ходе этапа научных данных, Гбит	808
Пиковое энергопотребление, Вт	312

На этом этапе производятся сближения с Нептуном с помощью выдачи тангенциального импульса размером 2,5 км/с против скорости, что позволяет опустить перицентр орбиты на высоту менее 1.3 R_N. Предполагается оставаться на этой орбите 248 дней, совершив 100 витков и столько же раз пролетев на расстоянии менее 0,3 R_{N} от поверхности планеты.

Доступность для связи с Землёй: 119 дней, доступно к передаче 1000 Гбит.

Работа аппаратуры на каждом из 100 витков (Принято решение проводить измерения только на половине траектории, чтобы на второй половине отправлять полученное на Землю):

• Съёмка Нептуна: 7 часов, 164 Гбит за этап

• Картографирование Нептуна: 26 часов, 609 Гбит за этап

• Съёмка колец Нептуна: 1,5 часа, 35 Гбит за этап

Этап 7. Вход в плотные слои атмосферы Нептуна

Дата завершения миссии $(r = 1 R_N)$

Радиальная скорость KA при r = 1 R_N

Затраты характеристической скорости на деорбитинг

23.01.2051

-10,83 км/с

0,3 км/с

Затраты рабочего тела (топлива), кг

Ориентация

Расход топлива одного двигателя ориентации

3.5 г/с

Для изменения угловой скорости на 1 рад/с вокруг главных осей инерции необходимо:

вокруг оси **х: 1260г** вокруг оси **у: 1225г** вокруг оси **z: 105г**

С помощью реактивных двигателей ориентации можно добиться угловой скорости порядка 10^-4

Далее задействуем маховики для стабилизации и ориентации

Разгрузка одного маховика стоит 1000 г топлива

Один поворот стоит ~ 1 Нмс

Запас маховиков 60 Нмс

3D - модель

