The 'pst-gr3d' package A PSTricks package for three dimensional grids

Denis Girou*

Version 1.34 2005-09-12

Documentation revised September 12, 2005 by Herbert Voss

Abstract

This package allow to draw three dimensional grids using the macro **\PstGridThreeD**. We can also specify how nodes of the grid must look like.

Contents

1	Introduction	2
2	Usage 2.1 Parameters and hooks	2 2
3	Examples	8
4	Driver file	10
5	'pst-gr3d' LATEX wrapper	11
6	'pst-gr3d' code	11
	6.1 Preambule	11
	6.2 Definition of the parameters	11
	6.3 Main macro	12
	6.4 Default hooks (empty)	15
	6.5 Closing	16

1 Introduction

'pst-gr3d' offer a main unique macro with few parameters to interact on it. But we can also use all the relevant PSTricks parameters to change the size, the characteristics of lines, etc.

```
The syntax is simply: \PstGridThreeD[optional_parameters](X,Y,Z)
```

We can define a macro \PstGridThreeDHookNode to specify how the nodes at the interconnections must look like, and there are also some other *hooks* that can be used for special purposes.

The default viewpoint is (1.2,-0.6,0.8), but this can of course be changed using the standard way.

The package try to compute approximatively the size of the object (the pspicture parameter, PSTricks speaking), but for three dimensional grids it is an impossible task to found it accurately in the general case. So, if the exact size is needed or if we change the viewpoint for the graphic, the size must be computed by hand, using the \psframebox[framesep=0]{...} construction to found the correct values by attempts and errors — fortunately, in practice few attempts are often enough...

2 Usage

2.1 Parameters and hooks

The three required parameters specify the lengths in the X, Y and Z directions, respectively:

Of course, we can use all the relevant generic PSTricks parameters, specially those applying to grids:

```
\PstGridThreeD[unit=1.5](1,1,1)\hfill
\PstGridThreeD[viewpoint=1.2 -1.5 0.4,griddots=7](1,3,2)\hfill
\PstGridThreeD[gridwidth=0.08,gridcolor=red](3,2,2)\hfill
\begin{pspicture}(-1.7,0)(0.8,3.6)
\PstGridThreeD[viewpoint=-0.4 -0.6 0.8,PstPicture=false](1,3,2)
\end{pspicture}
```


We can draw one and two dimensional grids, using degenerated cases:

- \PstGridThreeD(0,4,0)\hfill \PstGridThreeD[linewidth=0.05](0,3,1)\hfill \PstGridThreeD[griddots=5](3,1,0)

To change the way the grids are drawn, we can also use **nine** specific parameters and **five** specific hooks:

- PstDebug (integer): to obtain some internal debugging informations here, a framed box around the boundix box used (the pspicture environment) could be drawn. It can take the values 0 (no debug) or 1. (*Default:* θ no debugging informations).
- PstPicture (boolean): to define or not a pspicture environment for the grid. We have to define this parameter to false mainly if we choose a viewpoint different than the default one see examples later (Default: true which is not the case for basic PSTricks objects).
- GridThreeDXUnit (integer): unit coefficient in the X direction (*Default: 1* it must be an integer, not a real).

- GridThreeDYUnit (integer): unit coefficient in the Y direction (*Default: 1* it must be an integer, not a real).
- GridThreeDZUnit (integer): unit coefficient in the Z direction (*Default: 1* it must be an integer, not a real).

```
| PstGridThreeD[GridThreeDXUnit=2] (1,1,1)\hfill | PstGridThreeD[GridThreeDYUnit=3] (1,1,1)\hfill | PstGridThreeD[unit=0.5,GridThreeDZUnit=4] (4,3,1)
```


- GridThreeDXPos (integer) : position of the origin in the X direction (Default: 0 it must be an integer, not a real).
- GridThreeDYPos (integer) : position of the origin in the Y direction (Default: 0 it must be an integer, not a real).
- GridThreeDZPos (integer): position of the origin in the Z direction (*Default: 0*—it must be an integer, not a real).

These parameters are in fact mainly useful if we want to superpose grids, which can be done easily using the \PstGridThreeDHookEnd macro (see description below):

```
gridcolor=green,
GridThreeDYPos=2,
GridThreeDZPos=1](1,1,1)}
PstGridThreeD(1,3,2)
```


GridThreeDNodes (boolean): to define or not the nodes at interconnection points of the grid. The nodes are named Gr3dNodeXYZ. We can use the Rx and Ry parameters to position the relevant material relatively to the nodes, specifying the distance in cartesian coordinates. The parameter angle used with Rx allow to use polar ones. (Default: false — no nodes defined).


```
\PstGridThreeD[GridThreeDNodes=true](1,3,1)
\SpecialCoor
\rput*(Gr3dNode130){\footnotesize 130}
\rput*(Gr3dNode131){\footnotesize 131}
```

\PstGridThreeDHookNode (macro): this hook allow to define the form of the nodes. A predefined \PstGridThreeDNodeProcessor macro exist, which define a circle with a little white circle in it. We can also use the \iy counter to differentiate the nodes according to the Y faces — but note that we can't do the same thing for the X or Z faces (Default: empty).

```
% First grid
\def \PstGridThreeDHookNode {%
  \begin{pspicture}(-0.15,-0.15)(0.15,0.15)
  \pscircle*[linecolor=magenta] {0.15}
  \end{pspicture}

begin{pspicture}
  \begin{pspicture}
  \PstGridThreeD(1,2,2)\hfill
  % Second grid

definecolor{LightBlue}{rgb}{0.68,0.85,0.9}
\def \PstGridThreeDHookNode {%
  \PstGridThreeDHookNode {%
  \PstGridThreeDNodeProcessor{LightBlue}}

\PstGridThreeD[unit=0.7](2,3,3)\hfill
```

```
12 % Third grid
   \def \PstGridThreeDHookNode {%
13
     \ifcase\iy
14
          \PstGridThreeDNodeProcessor{magenta}%
15
       \or\PstGridThreeDNodeProcessor{yellow}%
16
       \or\PstGridThreeDNodeProcessor{cyan}%
17
       \else\PstGridThreeDNodeProcessor{green}%
18
     fi
19
   \PstGridThreeD(1,3,1)
20
```


\PstGridThreeDHookEnd (macro): this hook allow to execute a macro at the end of the grid drawing, before the pspicture environment closing. This is specially interesting for instance to superpose grids, if we take care to define the PstPicture parameter to false for them (Default: empty).

```
\def \PstGridThreeDHookEnd{{%
    \psset{PstPicture=false,gridwidth=0.1}
    {\def\PstGridThreeDHookNode{%
       \PstGridThreeDNodeProcessor{blue}}%
     \PstGridThreeD[gridcolor=blue,
                     GridThreeDZPos=3](0,7,0)%
    {\def\PstGridThreeDHookNode{%
       \PstGridThreeDNodeProcessor{red}}%
     \PstGridThreeD[gridcolor=red,
                     GridThreeDXPos=1,
10
                     GridThreeDZPos=1](0,3,1)}%
11
    {\def\PstGridThreeDHookNode{{%
12
       \PstGridThreeDNodeProcessor{green}}%
13
     \PstGridThreeD[gridcolor=green,
14
                     GridThreeDYPos=\mathbf{6}] (1,1,1)}}
15
  \PstGridThreeD(1,7,3)
```


\PstGridThreeDHookXFace (macro): this hook allow to execute a macro before to draw the X faces (*Default: empty*).

\PstGridThreeDHookYFace (macro): this hook allow to execute a macro before to draw the Y faces (Default: empty).

\PstGridThreeDHookZFace (macro): this hook allow to execute a macro before to draw the Z faces (*Default: empty*).

In fact, these hooks are not very powerful, because we can't control the order of the faces drawing as we can dream... For instance, we can't use this technic to draw objects with only *true* visible lines. Take care also that for the Y faces, the direction is negative in the horizontal direction, so the coordinates must take this fact in account.

```
{\def\PstGridThreeDHookXFace{%
  \ifnum\multidocount=1\psframe*[linecolor=cyan](3,2)\fi}%
  \PstGridThreeD(1,3,2)\hfill
  {\def\PstGridThreeDHookYFace{%
   \ifnum\multidocount=2\psframe*[linecolor=yellow](-3,0)(0,2)\fi}%
  \PstGridThreeD(3,1,2)\hfill
  {\def\PstGridThreeDHookZFace{%
   \ifnum\multidocount=2
   \else
   \psframe*[linecolor=yellow](3,3)
   \fi}%
  \PstGridThreeD(3,3,2)}
```


3 Examples

We give here more advanced examples, most of them from technical drawings describing the architecture of a multiprocessors supercomputer.


```
\definecolor{LightBlue}{rgb}{0.68,0.85,0.9}
  \def \PstGridThreeDHookNode{%
    \PstGridThreeDNodeProcessor{LightBlue}}
  \PstGridThreeD[GridThreeDNodes=true](1,2,2)
  \SpecialCoor
  \rput([Rx=-0.15,Ry=0.3] Gr3dNode122){%
    psline{<-}(0.5;35)
  \rput([Rx=0.35,Ry=0.8] Gr3dNode122) {Network}
  \rput([Rx=0.15,angle=-40] Gr3dNode110) {%
    psline{<-}(0.8;-60)
10
  \rput([Rx=0.25,angle=-100] Gr3dNode120) {%
11
    psline{<-}(0.8;-100)
12
  \rput([Rx=1.5,angle=-55] Gr3dNode010) {Nodes}
```



```
\definecolor{Orange}{rgb}{1.,0.65,0.}
  \def \PstGridThreeDHookNode{%
    \PstGridThreeDNodeProcessor{Orange}}
  \psset{unit=1.3}
  \PstGridThreeD[GridThreeDNodes=true] (1,2,2)
  \SpecialCoor
  \psset{arrows=<->,arrowscale=2}
  \ThreeDput[normal=0 0 -1](0,0,0){%
    \ncloop[linecolor=red,arm=0.35,
             loopsize=0.6,angleA=-90,angleB=90]
10
11
            \{Gr3dNode022\}\{Gr3dNode002\}
    \ncloop[linecolor=green,arm=0.7,
12
             nodesepA=0.18,nodesepB=0.12,
13
             loopsize=-0.5,angleA=180]
14
            { Gr3dNode002} { Gr3dNode102} }
15
```

```
\def\PstGridThreeDHookEnd{{%
     \psset{PstPicture=false,gridwidth=0.1}
    {\def\PstGridThreeDHookNode{{%
3
        \PstGridThreeDNodeProcessor{blue}}%
     \PstGridThreeD[gridcolor=blue,
                     GridThreeDZPos=31(0,7,0)%
    {\def\PstGridThreeDHookNode{%
       \PstGridThreeDNodeProcessor{red}}%
     \PstGridThreeD[gridcolor=red,
                     GridThreeDXPos=1,
10
                     GridThreeDZPos=1 (0,3,1)}%
11
    {\def\PstGridThreeDHookNode{%
12
       \PstGridThreeDNodeProcessor{green}}%
13
     \PstGridThreeD[gridcolor=green,
                     GridThreeDYPos=6] (1,1,1)}}
15
  \PstGridThreeD[gridwidth=0.04,
16
                  GridThreeDNodes=true
[(1,7,3)
17
  \SpecialCoor
18
  \rput([Rx=0.15,angle=140] Gr3dNode033) {%
19
    \psline[linecolor=blue]{<-}(0.8;150)}
20
  \rput([Rx=0.95,angle=140] Gr3dNode033){%
21
    \ \footnotesize (X=8,Y=1,Z=1)}
  \rput([Rx=0.15,angle=-50] Gr3dNode121) {%
23
    \prootember [linecolor=red] {<-}(1.2;-50)}
24
  \rput([Rx=1.5,angle=-55] Gr3dNode121){%
25
    \shortstack{2d grid\\\footnotesize (X=4,Y=2,Z=1)}}
  \rput([Rx=0.2,angle=-100]Gr3dNode160){%
27
    \psline[linecolor=green]{<-}(0.8;-100)}
29 \rput([Rx=1.4,angle=-100] Gr3dNode160) {%
```


4 Driver file

The next bit of code contains the documentation driver file for TEX, i.e., the file that will produce the documentation you are currently reading. It will be extracted from this file by the docstrip program.

```
1 (*driver)
2 \documentclass{ltxdoc}
3 \GetFileInfo{pst-gr3d.dtx}
4 \usepackage{fancyvrb}
5 \usepackage{pstricks}
6 \usepackage[colorlinks,linktocpage]{hyperref}
7 \usepackage{pst-gr3d}
8 %
9 \AtBeginDocument{
10 % \OnlyDescription % comment out for implementation details
    \EnableCrossrefs
   \CodelineIndex
   \RecordChanges}
14 \AtEndDocument{
15 \PrintIndex
    \setcounter{IndexColumns}{1}
    \PrintChanges}
18 \hbadness=7000
                             % Over and under full box warnings
19 \hfuzz=3pt
20 \begin{document}
21 \DocInput{pst-gr3d.dtx}
22 \end{document}
23 (/driver)
```

5 'pst-gr3d' LaTeX wrapper

```
24 \langle *latex - wrapper \rangle
25 \RequirePackage{pstricks}
26 \ProvidesPackage{pst-gr3d}[2005/01/13 package wrapper for
   pst-gr3d.tex (hv)]
28 \input{pst-gr3d.tex}
29 \ProvidesFile{pst-gr3d.tex}
    [\filedate\space v\fileversion\space 'PST-gr3d' (dg)]
31 \langle /latex - wrapper \rangle
      'pst-gr3d' code
32 \langle *pst - gr3d \rangle
6.1 Preambule
```

```
Who we are.
33 \def\fileversion{1.34}
34 \def\filedate{2005/09/12}
35 \message{'PST-Grid3d' v\fileversion, \filedate\space (Denis Girou)}
36 \c name PSTGridThreeDLoaded\endcsname
Require the PSTricks, 'pst-node', 'pst-3d' and 'multido' packages.
38 \ifx\PSTricksLoaded\endinput\else\input pstricks.tex\fi
39 \ifx\PSTnodesLoaded\endinput\else\input pst-node.tex\fi
40 \ifx\PSTthreeDLoaded\endinput\else\input pst-3d.tex\fi
41 \ifx\MultidoLoaded\endinput\else\input multido.tex\fi
   interface to the extended 'keyval' package.
42 \ifx\PSTXKeyLoaded\endinput\else\input pst-xkey\fi
43 %%
   Catcodes changes and defining the family name for xkeyvalue.
44 \edf\PstAtCode{\the\catcode'\0}\catcode'\0=11\relax
45 \sl gardfams{pst-gr3d}
46 %%
```

6.2 Definition of the parameters

PstDebug is for internal debugging purposes — here, a framed box around the grid is shown (to debug, set PstDebug=1).

```
47 %% change Pst@Debug to prevent a clash with pst-fill
48 %% which has the same option. Now pstricks defines Pst@Debug
49 %%\define@key[psset]{pst-gr3d}{PstDebug}{\pst@getint{#1}{\Pst@Debug}}
50 %% end hv 2004-06-22
   PstPicture allow to define a "pspicture" environment.
51 \newif\ifPst@PstPicture
52 \define@key[psset]{pst-gr3d}{PstPicture}[true]{\@nameuse{Pst@PstPicture#1}}
```

```
GridThreeDNodes allow to define nodes on the grid.
53 \newif\ifPstGridThreeD@Nodes
54 \ensuremath{$ \  \  } \{pst-gr3d\} \{GridThreeDNodes\} [true] \{\%\} 
     \@nameuse{PstGridThreeD@Nodes#1}}
   GridThreeDXUnit, GridThreeDYUnit and GridThreeDZUnit define the X, Y
and Z units (must be integers).
56 \define@key[psset]{pst-gr3d}{GridThreeDXUnit}{%
    \pst@getint{#1}{\PstGridThreeD@XUnit}}
58 \define@key[psset]{pst-gr3d}{GridThreeDYUnit}{%
59 \pst@getint{#1}{\PstGridThreeD@YUnit}}
60 \define@key[psset]{pst-gr3d}{GridThreeDZUnit}{%
    \pst@getint{#1}{\PstGridThreeD@ZUnit}}
   GridThreeDXPos, GridThreeDYPos and GridThreeDZPos define the X, Y and
Z positions.
62 \define@key[psset]{pst-gr3d}{GridThreeDXPos}{%
    \pst@getint{#1}{\PstGridThreeD@XPos}}
64 \define@key[psset]{pst-gr3d}{GridThreeDYPos}{%
    \pst@getint{#1}{\PstGridThreeD@YPos}}
66 \define@key[psset]{pst-gr3d}{GridThreeDZPos}{%
   \pst@getint{#1}{\PstGridThreeD@ZPos}}
   Rx and Ry are aliases for relative moves from nodes.
68 \define@key[psset]{pst-gr3d}{Rx}{\psset{XnodesepA=#1}}
69 \define@key[psset]{pst-gr3d}{Ry}{\psset{offsetA=#1}}
   Default values (including viewpoint first).
70 \psset{viewpoint=1.2 -0.6 0.8}
71 \psset{%
72 PstDebug=0,PstPicture=true,GridThreeDNodes=false,
73 GridThreeDXPos=0, GridThreeDYPos=0, GridThreeDZPos=0,
```

6.3 Main macro

The general \PstGridThreeD macro to draw three dimensional grids.

74 GridThreeDXUnit=1,GridThreeDYUnit=1,GridThreeDZUnit=1}

\PstGridThreeD

 $75 \end{ThreeD@i} {\end{ThreeD@i}_{\end{Thre$

\PstGridThreeD@i

```
76 \def\PstGridThreeD@i[#1](#2,#3,#4){{% 77 \psset{dimen=middle}% 78 \psset{#1}%
```

First, we try to compute rather accurate values for the "pspicture" environment (it is not possible to found them in the general case, so we must define our own ones, setting PstPicture to false before, if the ones automatically computed here are really wrong in our case...).

```
Ymin pspicture value.
 79 \pst@cnth=#2
 80 \multiply\pst@cnth\PstGridThreeD@XUnit
 81 \divide\pst@cnth\tw@
 82 \ifodd\pst@cnth
     \edef\PstGridThreeD@PictureYmin{-\the\pst@cnth}%
 83
 84 \else
     \edef\PstGridThreeD@PictureYmin{-\the\pst@cnth.5}%
 86 \fi
    Xmax pspicture value (stored in \pst@cntg).
 87 \pst@cntg=#3
 88 \verb|\multiply\pst@cntg\PstGridThreeD@YUnit|
 89 \text{pst@cnth=#2}
 90 \divide\pst@cnth\tw@
 91 \multiply\pst@cnth\PstGridThreeD@XUnit
 92 \advance\pst@cntg\pst@cnth
    Ymax pspicture value.
 93 \pst@cnth=#3
 94 \advance\pst@cnth\m@ne
 95 \verb|\multiply\pst@cnth\PstGridThreeD@YUnit|\\
 96 \divide\pst@cnth\tw@
 97 \pst@cntd=#4
 98 \verb|\multiply\pst@cntd\PstGridThreeD@ZUnit|
 99 \advance\pst@cntd\pst@cnth
100 \ifnum\pst@cnth=\z@
101
    \edef\PstGridThreeD@PictureYmax{\the\pst@cntd.5}%
102 \ensuremath{\setminus} else
    \edef\PstGridThreeD@PictureYmax{\the\pst@cntd}%
104\fi
    If required, the pspicture environment.
105 \ifPst@PstPicture
    If PstDebug=1, we draw a framed box around the grid.
     \ifnum\Pst@Debug=\@ne
106
107
       \psframebox[framesep=0]{%
108
     \pspicture(0,\PstGridThreeD@PictureYmin)
109
                (\the\pst@cntg,\PstGridThreeD@PictureYmax)
110
111 \fi
112 \pst@cntd=\PstGridThreeD@XPos
113 \multiply\pst@cntd\PstGridThreeD@XUnit
114 \pst@cntg=\PstGridThreeD@YPos
115 \multiply\pst@cntg\PstGridThreeD@YUnit
116 \pst@cnth=\PstGridThreeD@ZPos
```

117 \multiply\pst@cnth\PstGridThreeD@ZUnit

```
Z faces (only if \PstGridThreeDHookZFace is defined).
118 \ifx\PstGridThreeDHookZFace\empty
119 \ensuremath{\mbox{\mbox{lse}}}
     \pst@cntc=#4
120
     \advance\pst@cntc\@ne
121
     122
       \ThreeDput[normal=0 0 1](\pst@cntd,\pst@cntg,\iz){\PstGridThreeDHookZFace}}
123
124 \fi
    X faces.
125 \pst@cntc=#2
126 \advance\pst@cntc\@ne
127 \verb|\mu| tido{\ix=\pst@cntd+\PstGridThreeD@XUnit}{\pst@cntc}{\%} \\
    \ThreeDput[normal=1 0 0](\ix,\pst@cntg,\pst@cnth){%
    with an X face hook.
       \PstGridThreeDHookXFace
129
       \psgrid[xunit=\PstGridThreeD@YUnit,yunit=\PstGridThreeD@ZUnit,
130
131
               subgriddiv=0,gridlabels=0](#3,#4)}}
    Y faces.
132 \pst@cnta=#3
133 \multiply\pst@cnta\PstGridThreeD@YUnit
134 \advance\pst@cnta\pst@cntg
135 \pst@cntc=#3
136 \advance\pst@cntc\@ne
137 \multido{\iy=\pst@cnta+-\PstGridThreeD@YUnit}{\pst@cntc}{%
     \ThreeDput[normal=0 1 0](\pst@cntd,\iy,\pst@cnth){%
       \PstGridThreeDYFace{#2}{#4}{\iy}}}
    Hook at the end, if defined.
140 \PstGridThreeD@HookEnd
    Then we close the "pspicture" environment, if defined.
141 \ifPst@PstPicture
    \endpspicture
    If PstDebug=1, we close of the framed box.
     \ifnum\Pst@Debug=\@ne
143
144 }
    And we close the \PstGridThreeD@ macro.
146 \fi}}
    One face of the three dimensional grid.
```

\PstGridThreeDYFace

147 \def\PstGridThreeDYFace#1#2#3{%

```
First, Y face hook.
                        148 \verb|\PstGridThreeDHookYFace%||
                        149 \psgrid[xunit=\PstGridThreeD@XUnit,yunit=\PstGridThreeD@ZUnit,
                                   subgriddiv=0,gridlabels=0](-#1,#2)
                        151 \pst@cnta=#1
                        152 \advance\pst@cnta\@ne
                        153 \pst@cntb=#2
                        154 \advance\pst@cntb\@ne
                        155 \pst@cntg=#3
                        156 \multido{\ia=0+-\PstGridThreeD@XUnit}{\pst@cnta}{%
                             \pst@cntc=\multidocount
                        157
                             \advance\pst@cntc\m@ne
                        158
                             \multido{\ib=0+\PstGridThreeD@ZUnit}{\pst@cntb}{%
                            Nodes definition.
                               \ifPstGridThreeD@Nodes
                        160
                                 \pst@cntd=\multidocount
                        161
                                 \advance\pst@cntd\m@ne
                        162
                                 163
                        164
                               \ifx\PstGridThreeDHookNode\empty
                        165
                               \else
                            Nodes drawing.
                                 \rput(\ia,\ib){\PstGridThreeDHookNode}
                        167
                               \fi}}}
                        168
                               Default hooks (empty)
\PstGridThreeDHookNode
                        169 \def\PstGridThreeDHookNode{}
\PstGridThreeDHookXFace
                        170 \def\PstGridThreeDHookXFace{}
\PstGridThreeDHookYFace
                        171 \ensuremath{\mbox{\sc hreeDHookYFace}} \{\}
\PstGridThreeDHookZFace
                        172 \def\PstGridThreeDHookZFace{}
                            For the end hook, we must avoid infinite recursion if the hook contain a
                         \PstGridThreeD macro!
  \PstGridThreeDHookEnd
                        173 \verb| def\PstGridThreeDHookEnd{}|
```

Vertical faces.

\PstGridThreeD@HookEnd

```
174 \def\PstGridThreeD@HookEnd{%
175 \def\PstGridThreeD@HookEnd{}%
176 \PstGridThreeDHookEnd}
```

Default definition of a processor node.

\PstGridThreeDNodeProcessor

```
177 \def\PstGridThreeDNodeProcessor#1{{%
178 \psset{unit=0.3}
179 \pspicture(-0.5,-0.5)(0.5,0.5)
180 \pscircle*[linecolor=#1]{0.5}
181 \pscircle*[linecolor=white]{0.2}
182 \endpspicture}}
```

6.5 Closing

Catcodes restoration. 183 \catcode '\@=\PstAtCode\relax $184 \ \langle /pst - gr3d \rangle$

Change History

v1.1	option and use the one the one
General: First public release 1	from pstricks, to prevent a clash
v1.2	with pst-fill 1
General: Standard packaging (.ins	v1.32
+ .dtx files) 1	General: (hv) new package wrapper
v1.3	for pst-gr3d.tex $\dots 1$
General: Changed conventions for	v1.33
units and updates in the exam-	General: (hv) fixed introduced bug 1
ple macros and the examples 1	v1.34
v1.31	General: (hv) switch to extended
General: (hv) delete the PstDebug	version of key value interface \dots 1

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

${f E}$				I	
		\ia			156, 163, 167
\empty	118, 165	\ifP	st@PstPicture		51, 105, 141

\ifPstGridThreeD@Nodes 53, 160	\PstGridThreeD@i 75, <u>76</u>			
\ix 127, 128	\PstGridThreeD@PictureYmax			
\iy $137-139$				
\iz 122, 123	$\verb \PstGridThreeD@PictureYmin 83, 85, 109 $			
	\PstGridThreeD@XPos 63, 112			
M	\PstGridThreeD@XUnit			
\m@ne 94, 158, 162	\dots 57, 80, 91, 113, 127, 149, 156			
\multido 122, 127, 137, 156, 159	\PstGridThreeD@YPos 65, 114			
\multidocount 157, 161	\PstGridThreeD@YUnit			
\MultidoLoaded 41	\dots 59, 88, 95, 115, 130, 133, 137			
P	\PstGridThreeD@ZPos 67, 116			
-	\PstGridThreeD@ZUnit			
\pnode	\dots 61, 98, 117, 122, 130, 149, 159			
\pscircle 180, 181	\PstGridThreeDHookEnd <u>173</u> , 176			
\psframebox	\PstGridThreeDHookNode 165, 167, 169			
\pspicture 109, 179	\PstGridThreeDHookXFace $129, \overline{170}$			
\pst@cnta . 132-134, 137, 151, 152, 156	\PstGridThreeDHookYFace $148, \overline{171}$			
\pst@cntb 153, 154, 159	\PstGridThreeDHookZFace 118, 123, 172			
\pst@cntc 120-122,	\PSTGridThreeDLoaded 37			
125–127, 135–137, 157, 158, 163	\PstGridThreeDNodeProcessor <u>177</u>			
\pst@cntd 97-99, 101, 103,	\PstGridThreeDYFace 139, $\overline{147}$			
112, 113, 123, 127, 138, 161–163	\PSTnodesLoaded 39			
\pst@cntg 87, 88, 92, 110,	\PSTthreeDLoaded 40			
114, 115, 123, 128, 134, 155, 163	\PSTXKeyLoaded 42			
\pst@cnth 79-83, 85,				
89–96, 99, 100, 116, 117, 128, 138	${f S}$			
\Pst@Debug 49, 106, 143	\setcounter 16			
\pst@getint 49, 57, 59, 61, 63, 65, 67				
\PstGridThreeD	${f T}$			
$\verb \PstGridThreeD@HookEnd 140, \underline{174}$	\ThreeDput 123, 128, 138			