Reiknirit Prims (1957)

Bergur Snorrason

5. mars 2023

• Gerum ráð fyrir að við séum með óstefnt vegið samanhangandi net G = (V, E).

- Gerum ráð fyrir að við séum með óstefnt vegið samanhangandi net G = (V, E).
- Ef við viljum finna spannandi tré nægir að framkvæma leit í trénu (til dæmis breiddarleit eða dýptarleit).

- Gerum ráð fyrir að við séum með óstefnt vegið samanhangandi net G = (V, E).
- Ef við viljum finna spannandi tré nægir að framkvæma leit í trénu (til dæmis breiddarleit eða dýptarleit).
- Par sem við komum aðeins við í hverjum hnút einu sinni ferðumst við aðeins eftir |V|-1 legg.

- Gerum ráð fyrir að við séum með óstefnt vegið samanhangandi net G = (V, E).
- Ef við viljum finna spannandi tré nægir að framkvæma leit í trénu (til dæmis breiddarleit eða dýptarleit).
- Par sem við komum aðeins við í hverjum hnút einu sinni ferðumst við aðeins eftir |V|-1 legg.
- Ef við viljum slembið spannandi tré getum við skipt biðröðinni í breiddarleit út fyrir einhverja gagnagrind sem skilar alltaf slembnu staki.

➤ Við getum líka beitt aðferð svipaðri reikniriti Dijkstras til að finna minnsta spannandi tré með því að ferðast í netinu.

- Við getum líka beitt aðferð svipaðri reikniriti Dijkstras til að finna minnsta spannandi tré með því að ferðast í netinu.
- Við byrjum á að velja upphafshnút og merkjum hann sem "séðann".

- Við getum líka beitt aðferð svipaðri reikniriti Dijkstras til að finna minnsta spannandi tré með því að ferðast í netinu.
- Við byrjum á að velja upphafshnút og merkjum hann sem "séðann".
- Þar sem allar hnútirnar munu vera í spannandi trénu skiptir ekki máli hvaða hnút við veljum.

- Við getum líka beitt aðferð svipaðri reikniriti Dijkstras til að finna minnsta spannandi tré með því að ferðast í netinu.
- Við byrjum á að velja upphafshnút og merkjum hann sem "séðann".
- Þar sem allar hnútirnar munu vera í spannandi trénu skiptir ekki máli hvaða hnút við veljum.
- Við ferðumst svo alltaf eftir þeim legg sem hefur minnsta vigt og tengist nákvæmlega einum "séðum" hnút.

- Við getum líka beitt aðferð svipaðri reikniriti Dijkstras til að finna minnsta spannandi tré með því að ferðast í netinu.
- Við byrjum á að velja upphafshnút og merkjum hann sem "séðann".
- Þar sem allar hnútirnar munu vera í spannandi trénu skiptir ekki máli hvaða hnút við veljum.
- Við ferðumst svo alltaf eftir þeim legg sem hefur minnsta vigt og tengist nákvæmlega einum "séðum" hnút.
- Við merkjum svo hnútinn sem við ferðuðumst í sem "séðann".

- Við getum líka beitt aðferð svipaðri reikniriti Dijkstras til að finna minnsta spannandi tré með því að ferðast í netinu.
- Við byrjum á að velja upphafshnút og merkjum hann sem "séðann".
- Þar sem allar hnútirnar munu vera í spannandi trénu skiptir ekki máli hvaða hnút við veljum.
- Við ferðumst svo alltaf eftir þeim legg sem hefur minnsta vigt og tengist nákvæmlega einum "séðum" hnút.
- Við merkjum svo hnútinn sem við ferðuðumst í sem "séðann".
- Þetta er gert þangað til allir hnútar eru "séðir".


```
9 int prim (vvii& g, vii& mst)
10 {
        int i, x, y, w, n = g.size(), r = 0;
11
12
        vi v(n);
13
       mst = vii();
14
        priority queue < iii > q;
15
       q.push(\overline{i}ii(-0, ii(0, -1)));
16
        while (q.size() > 0)
17
       {
            iii p = q.top(); q.pop();
18
19
           w = -p. first, x = p. second. first, y = p. second. second;
            if (v[x] == 1) continue;
20
21
            if (y != -1) mst.push back(ii(x, y));
22
            r += w;
23
            v[x] = 1;
24
            for (i = 0; i < g[x]. size(); i++) if (v[g[x][i]. first] == 0)
25
                q.push(iii(-g[x][i].second, ii(g[x][i].first, x)));
26
27
        return r:
28 }
```

Burt séð frá nokkrum smáatriðum er þetta reiknirit að gera það sama og reiknirit Dijkstras.

- Burt séð frá nokkrum smáatriðum er þetta reiknirit að gera það sama og reiknirit Dijkstras.
- Svo tímaflækjan er $\mathcal{O}($

- Burt séð frá nokkrum smáatriðum er þetta reiknirit að gera það sama og reiknirit Dijkstras.
- ▶ Svo tímaflækjan er $\mathcal{O}((V + E) \log E)$.

- Burt séð frá nokkrum smáatriðum er þetta reiknirit að gera það sama og reiknirit Dijkstras.
- ▶ Svo tímaflækjan er $\mathcal{O}((V+E)\log E)$.
- ▶ Það er algengt að kenna reiknirit Prims, frekar en reiknirit Kruskals, þar sem það notast við forgangsbiðröð.

- Burt séð frá nokkrum smáatriðum er þetta reiknirit að gera það sama og reiknirit Dijkstras.
- ▶ Svo tímaflækjan er $\mathcal{O}((V+E)\log E)$.
- ▶ Það er algengt að kenna reiknirit Prims, frekar en reiknirit Kruskals, þar sem það notast við forgangsbiðröð.
- Það þekkja mun fleiri forgangsbiðraðir en sammengisleit.