Computational Complexity

Exam #3-Take Home Start Date: 16/4/1398 13:00 Due Date: 18/4/1398 15:00

Some Rules.

- 1. Please hand in your worksheet prior to 15:00 Tuesday 18 Tir 1398. Overdue papers are not acceptable at all.
- 2. You are allowed to use the Internet and the textbooks. You are NOT allowed to talk with your classmates about the problems and the solutions.
- 3. Partial answers are appreciated, so write down your thinking even though you may think it is insufficient or imperfect.

Problem 1.

we are given a family F of subsets of a universe U and a positive integer k, and the goal is to test whether there exists a coloring of U with two colors such that at least k sets in F contain members of both colors. Show that the problem admits a kernel with at most 2k subsets and $O(k^2)$ universe size.

Problem 2.

Given a graph G and an integer ℓ , the INDUCED MATCHING PROBLEM asks whether there is a subset of 2ℓ vertices in G inducing a matching (i.e. ℓ nonadjacent edges such no two of them have a common adjacent edge). Show that this problem can be solved in $2^{\mathcal{O}(k)}n^{\mathcal{O}(1)}$ where k = tw(G).

Problem 3.

Let P be a maximization problem and for instance I, let $OPT_P(I)$ be the optimal solution for I. Its corresponding decision problem \hat{P} is defined as follows:

Input: Instance I and integer k.

Query: Is $OPT_P(I) \geq k$?

We say that Problem P admits an FPTAS if for every $\epsilon > 0$ there is an ϵ -approximation algorithm for P, i.e. for instance I, the algorithm outputs $ALG_P(I)$ such that

- (1) $1 \le \frac{OPT_P(I)}{ALG_P(I)} \le 1 + \epsilon$.
- (2) the running time of the algorithm is bounded by a polynomial of |I| and $\frac{1}{\epsilon}$.

Prove that if P admits an FPTAS, then \hat{P} is fixed-parameter tractable with parameter k.

Good Luck!