Mesterséges Intelligencia

Módszertanok, technológiák, eszközök

FONTOS

- Az alábbi anyag munkavázlat, hibákat tartalmazhat. Amennyiben hibát találnak, kérem, a portálon keresztül üzenetben jelezzék, hogy melyik heti előadás, vagy jegyzet melyik részében, milyen hibát véltek felfedezni!
- Az anyagok kizárólag a Széchenyi István Egyetem 2021-2022 tavaszi félévében Mesterséges Intelligencia kurzust felvett hallgatói számára készültek, kizárólag az adott félév kurzusaihoz használható fel!
- Az alábbi hivatkozásokon megnyitott minden fájl automatikusan begyűjti a hallgató különböző egyedi azonosítóit, mely alapján beazonosítható lehet. Ennek megfelelően a hivatkozásokat ne osszák meg egymással (különösen a kurzust nem hallgatókkal), mert abból az egyedi azonosítók visszakereshetők és a személyazonosság meghatározható!
- Az alábbi anyagra vonatkozóan minden jog fenntartva!
- Az anyagok bármely részének vagy egészének nyomtatása, másolása, megosztása, sokszorosítása, terjesztése, értékesítése módosítással vagy módosítás nélkül egyaránt szigorúan tilos!

A lecke főbb témakörei

- MI fejlesztés főbb jellemzői, kérdései
- MI fejlesztés főbb megközelítései
 - Transfer process
 - Modelin process
 - Data-driven
 - CRISP-DM
- Kapcsolat klasszikus szoftverfejlesztési módszertanokkal
- MI rendszerek infrastruktúra elemei
 - Futtató hardverek
 - Érzékelő/beavatkozó hardverek
 - szoftverek

Módszertanok, technológiák, eszközök

Korai MI fejlesztések

Korai MI fejlesztések

- formalizmusok, következtetési mechanizmusok és a tudásalapú rendszerek (TAR) működtetésére szolgáló eszközök fejlesztése
- Jellemzően kis TAR megvalósítások
- különböző megközelítések megvalósíthatóságának vizsgálata
- Ígéretes eredmények ellenére a legtöbb esetben megbukott a (kereskedelmi) nagyobb méretű TAR fejlesztés

Szoftverfejlesztés analógia

- A késő '60-as években hasonló folyamat volt megfigyelhető a tradícionális szoftverrendszerek fejlesztésénél
 - szoftver krízis
 - a kis akadémiai prototípusokat nem tudták skálázni nagyméretű, karbantartható kereskedelmi rendszerek szintjére
 - a szoftverfejlesztés/szoftvertechnológia (software engineering) területének megalapításához vezetett

MI fejlesztés

- A tudásfejlesztés (~tudástechnológia, knowledge engineering) hasonló a szoftverfejlesztés/szoftvertechnológia területéhez
 - Cél: TAR fejlesztés egy mérnöki területté formálása
 - magába foglalja az építési és karbantartási folyamatok vizsgálatát, valamint a megfelelő módszertanok, nyelvek és céleszközök fejlesztését a TAR fejlesztéshez

MI integrálása

- Az "MI" fejlesztése önmagában nem elég
 - Be kell építeni egy olyan szoftver- és hardverkörnyezetbe, amely hasznossá teszi
 - Ez tartalmazhat akár más MI megoldásokat is
- A rendszerintegrálás speciális változata

MI fejlesztés: főbb módszertani megközelítések

- Átadási folyamat (transfer process)
- Modellezési folyamat (modeling process)
- Adatvezérelt (data-driven)

Általánosságban az Ml fejlesztésről

- Legfontosabb kérdések a fejlesztés közben:
 - Mi a jó kérdés?
 - Mi a legjobb megoldás a problémára?
 - Van adatunk hozzá?
 - Mennyire fog jól működni?
 - Mennyire vihető át a gyártásba?
- Szoftver és tervezési korlátok
- Bizonytalanság a problémában és a megoldásban
- Minden iteráció a probléma jobb megértéshez vezet

Módszertanok, technológiák, eszközök

Átadási folyamat

Transfer Process

- Korai '80-as évek
- "This transfer and transformation of problem-solving expertise from a knowledge source to a program is the heart of the expert-system development process."
- Az emberi tudás átvitele egy implementált tudásbázisba
 - alap feltevés, hogy a TAR fejlesztéséhez szükséges tudás már létezik és csak be kell gyűjteni
 - leggyakrabban szakértők interjúján keresztül történik, melynek során feladatokat oldanak meg
 - jellemzően a tudást szabályok formájában tárolták, amit egy interpreter dolgozott fel

Transfer Process

- Különböző tudásbázisok alapos vizsgálata kimutatta, hogy a szabályoknál (production rules) alkalmazott egyetlen reprezentációs formalizmus sem támogatta megfelelően a különböző tudástípusok reprezentálását
 - a tudásbázisok karbantartása emiatt nehéz és időigényes lett
- A transzfer megközelítés csak kisméretű, jellemzően prototípus rendszerek fejlesztésére volt alkalmas
- Felismerték, hogy maga az alapfeltevés hibás
 - nem csak a meglévő (explicit) tudás szükséges
 - fontos a tacit (rejtett/hallgatólagos) tudás is

A tudás/ismeret típusai

- Explicit
- Tacit
- Beágyazott
 - eszközökben, folyamatokban, kultúrában, rutinban

Módszertanok, technológiák, eszközök

Waterman – tudástechnológia

Fő forrás: Sziray József Dr. - Varga Ágnes: Szakértői rendszerek. Győr: Széchenyi István Egyetem, 2006. 151 p. [elektronikus jegyzet (pdf)]

Waterman: tudástechnológia

- Szakértői/tudás alapú rendszerek fejlesztése (1986)
 - Lényegében hasonló folyamatok a modern rendszereknél is
- 6 fázis
 - Probléma felmérése
 - Adatok és tudás megszerzése
 - Prototípus rendszer kifejlesztése
 - Teljes rendszer kifejlesztése
 - Rendszer kiértékelése, átdolgozása
 - Rendszer integrálása, karbantartása

Waterman: tudástechnológia

- A fázisok határait esetenként nehéz meghúzni
- Természetes része az állandó iteratív átalakítás
- Kritikus a megfelelő szereplők, adatok és eszközök megválasztása
- Klasszikus (régi-módi) MI-k esetén még ma is használható
 - Főként szakértői rendszerek
- A főbb folyamatok mai gyakorlatban is jelen vannak
 - De megjelent az agilis szemlélet
 - Hatékony (humán)erőforrás kihasználás
 - Modern megoldások specifikus igényei miatt helyenként eltérhet

- A probléma jellege?
 - Milyen típusú a probléma?
 - Osztályozás, kiválasztás, csoportosítás, diagnózis stb.

- A probléma jellege?
 - Milyen típusú a probléma?
 - Osztályozás, kiválasztás, csoportosítás, diagnózis stb.
 - Hatással van az alkalmazandó erőforrások (eszközök és emberek) körére

- A probléma jellege?
- Projekt résztvevők?
 - Két kritikus résztvevő
 - Tudásmérnök (knowledge engineer)
 - Területi szakértő (domain expert)

- A probléma jellege?
- Projekt résztvevők?
 - Két kritikus résztvevő
 - Tudásmérnök (knowledge engineer)
 - Aki képes:
 - » megtervezni,
 - » megépíteni,
 - » tesztelni
 - egy inelligens rendser
 - Területi szakértő (domain expert)

- A probléma jellege?
- Projekt résztvevők?
 - Két kritikus résztvevő
 - Tudásmérnök (knowledge engineer)
 - Területi szakértő (domain expert)
 - Az adott szakterületen
 - » Széleskörű tudással rendelkezik
 - » Kellő tapasztalattal rendelkezik
 - » Képes a feladatok megoldására az adott területen

- A probléma jellege?
- Projekt résztvevők?
- Projekt tárgya?
 - Célkitűzés
 - Versenyelőny, költségek döntések/termék/szolgáltatás javítása stb.

csökkentése, minőségének

- A probléma jellege?
- Projekt résztvevők?
- Projekt tárgya?
- Szükséges erőforrások?
 - Minden, ami a rendszer megépítéséhez szükséges
 - Hardver infrastruktúra
 - Szoftver infrastruktúra
 - Szaktudás és adatforrások
 - Szakértők, szakkönyvek, kézikönyvek, adatbázisok, minták stb.
 - Anyagi fedezet

- Problémakör jobb megismerése
 - Adatok begyűjtése, elemzése
 - Új ismeretek szerzése
- Rendszer tervének pontosítása az új ismeretek alapján
- Az adatok gyakran heterogén forrásból származnak
 - Minőség, felépítés eltérhet
 - → Szükség lehet az adatok kondicionálására
- Az alkalmazott eszközöktől függően eltérő jellegű adatokra van szükség

- Az adatok begyűjtése során is keletkezhet új ismeret
- Ismeretszerzés
 - Iteratív folyamat
 - A területhez kapcsolódó szakirodalom megismerése
 - Alaposabb megértés érdekében szakértői interjúk
 - Nehéz folyamat
 - Tipikus esetek bemutatása
 - » Megoldással, részletes magyarázattal a következtetés menetére vonatkozóan
- Meghatározható absztrakt szintű megoldási stratégia
- A prototípusnál használandó eszközök kiválaszthatók

- Tipikus problémák a beszerzett adatokkal
 - Inkompatibilis adatok
 - A különböző forrásból származó adatok kódolása eltérhet
 - Az adatforrás és a feldolgozáshoz használt eszköz által elvárt kódolás eltérhet
 - Az adatok transzformációja nagy körültekintést igényel

- Tipikus problémák a beszerzett adatokkal
 - Inkompatibilis adatok
 - Inkonzisztens adatok
 - Nem összefüggő adatok
 - Az adatforrások eltérő tartalmú adatokból állnak
 - Például közösségimédia, keresőmotor használat és TV nézési adatok kombinálása
 - Az adatforrások eltérő pontosságúak

- Tipikus problémák a beszerzett adatokkal
 - Inkompatibilis adatok
 - Inkonzisztens adatok
 - Hiányos adatok
 - Üres adatmezők
 - Például opcionális adatok
 - Sérült adatok
 - Mulasztás miatt hiányzó adatok
 - Kezelhető
 - Elvetjük a hiányos rekordokat
 - Pótoljuk a hiányzó adatmezőket

Tudástechnológia: prototípus rendszer kifejlesztése

- Ez már önmagában is egy intelligens rendszer létrehozása
- A teljes rendszer kicsiben megépített változata
- Kimondottan a probléma megértésének, a koncepció és a megoldás tesztelése a cél
 - Jól közelítettük meg a problémát?
 - Értjük a probléma "viselkedését"?
 - Megfelelő eszközöket használunk?
 - Megfelelő/elegendő adatot használunk?
- Szükség lehet a szakértő bevonására

Tudástechnológia: prototípus rendszer kifejlesztése

- A különböző megoldások eltérő tesztelési stratégiát kívánnak meg
- A tesztesetek általában már megoldott esetek adatait tartalmazzák
 - A rendszert azonos bemeneti paraméterekkel látjuk el és megfigyeljük a viselkedését
- Előfordulhat, hogy teljesen új alapokra épített prototípust kell fejleszteni az eredmények alapján, ez természetes folyamat

Tudástechnológia: teljes rendszer kifejlesztése

- A prototípus rendszer fejlesztése során szerzett tapasztalatok alapján
- Főbb lépései
 - Tervezés
 - Ütemezés
 - Költségvetés elkészítése
 - Teljesítmény kritériumok definiálása
- Újabb adatokkal és ismeretekkel kell bővíteni a rendszert
- Megfelelő (felhasználói) interfész(ek) kialakítása

Tudástechnológia: a rendszer kiértékelése és átdolgozása

- A klasszikus rendszerekkel szemben nem jól definiálhatók a problémák és megoldásuk
- A kiértékelés a szoftver céloknak való megfelelőség ellenőrzése
 - Megrendelői/felhasználói elégedettség
- Formális kiértékelés jellemzően minta adatok alapján
 - Az elfogadási kritériumok a prototípus fejlesztésének végén kerülnek meghatározásra
 - Ha az eredmények nem elfogadhatók, a rendszer teljes revíziójára lehet szükség

Tudástechnológia: a rendszer integrálása és karbantartása

- A fejlesztési ciklus végső fázisa
- Szoftver-környezetbe való illesztés
 - Megfelelő interfészek
- Karbantartási program
- A felhasználó számára biztosítani kell a rendszer üzemeltethetőségét és karbantarthatóságát
 - lde értjük a rendszerbe épített tudás "fejlesztését" is

Módszertanok, technológiák, eszközök

Modellezési folyamat

Modeling Process

- A TAR építés modellezési tevékenységnek is tekinthető
- Olyan számítógépes modell létrehozása, melynek célja olyan problémamegoldási képesség megvalósítása, ami felér a terület szakértőjével
- Nem az cél, hogy lemásolja/szimulálja a szakértő kognitív folyamatait, hanem az, hogy olyan modellt hozzunk létre, ami hasonló eredményeket hoz
- A szakértő tudása lehet rejtett/nem tudatos, amit nem tud megfogalmazni (tacit), így nem érhető el közvetlenül, de a tudás beszerzése során építeni kell rá

Modeling Process

- A modellezési szemlélet következményei
 - egy modell csak a valóság egy megközelítése
 - végtelen folyamat, melynek célja az elvárt viselkedés lehető legjobb megközelítése
 - A modellezés egy ciklikus folyamat
 - új megfigyelések révén finomítani, módosítani kell a meglévő modellt
 - a modellezés függ a tudásmérnök személyes értelmezésétől
 - ez a folyamat gyakran hibás és a modell kiértékelése a valósághoz viszonyítva elengedhetetlen a megfelelő modell létrehozásához (visszacsatolás)
 - a modellezési folyamat minden fázisban módosíthatónak kell lennie a modellnek
- A modellezési szemlélet jellemzői
 - A rendszer/folyamat mély ismerete szükséges
 - Nem lehet végtelen komplexitást kezelni
 - Esetenként egyszerűsítés szükséges
 - Költséges és időigényes

További említésre méltó modellek és módszerek

- Problem Solving Methods (Clancey)
 - Cover-and-Differentiate
 - Propose-and-Revise
 - SALT (PSM: Propose-and-Revise)
- Role-Limiting Methods (RLM)
 - Configurable Role-Limiting Methods
- Knowledge Acquisition and Documentation Structuring (KADS)
 - CommonKADS
- Model-based and Incremental Knowledge Engineering (MIKE)
- PROTÉGÉ-II

• ...

Módszertanok, technológiák, eszközök

Adatvezérelt folyamat

Data-driven megközelítés

- Jellemzően gépi tanulás módszerek
 - Olyan rendszer építése, ami minta esetek alapján próbál megfelelő megoldást találni
- Nagy mennyiségű adat szükséges
 - Igazán Big Data
 - ...dolgoznak rajta, hogy ez csökkenthető legyen, de nem minden esetben megvalósítható
- Számos módon megvalósítható
 - A leggyakoribb a neurális hálók
- Előnye, hogy nem kell szakértő által megfogalmazott tudást formalizálni

Gépi tanulás életciklus

Projekt célkitűzésének definiálása

- Üzleti cél meghatározása
- Területi szakértelem gyűjtése
- Modell kritériumok rangsorolása
- Megvalósíthatóság, kockázatok és siker kritériumok
- Döntés a folytatásról

Adatok felkutatása és begyűjtése

- Megfelelő adat felkutatása
- Feltáró adatelemzés végrehajtása
- Hiányosságok feltárása és pótlása
- Feature engineering

Adat modellezése

- Változók kiválasztása
- Különböző modell-jelöltek kialakítása
- Modellek validációja és a megfelelő kiválasztása

Feldolgozás és közlése

- Modell értelmezése
- A modellben feltártak átadása

Implementálás, dokumentálás, karbantartás

- A modellt alkalmazó rendszer implementálása
- A modellezési folyamat dokumentálása
- Modell megfigyelési és karbantartási rendszer kidolgozása

Módszertanok, technológiák, eszközök

- Cross-industry standard process for data mining
- https://dmlab.hu/blog/crisp-dmmodszertan-mi-az-es-hogyan-hasznald/
 - "A CRISP-DM módszertan az egyik leggyakrabban használt módszertan, ami iránytűként szolgál abban, hogyan lehet egy üzletileg sikeres adatelemzési projektet véghezvinni"

- "Egy adatelemzési projekt sikerességéhez számos komponensre van szükség.
- Tudnod kell:
 - Mi a valós üzleti cél, aminek elérésében az adatelemzés segítséget nyújthat?
 - Hogyan lehet a fenti üzleti célt adatelemzési céllá fordítani?
 - Milyen adatok állnak rendelkezésre az elemzés létrehozásához?
 - Hogyan kell ezeket az adatokat felhasználni a leghatékonyabb és üzletileg is sikeres megoldás kialakításához?
 - Milyen modellezési technikákat érdemes a cél elérése érdekében használni?
 - Hogyan lehet egy adatelemzési megoldást üzletileg kiértékelni?
 - Hogyan lehet a megoldást felhasználni, integrálni az eddigi üzleti folyamatokba?"

- "A módszertan 6 fő fázisa:
 - Üzleti célok meghatározása (Business Understanding)
 - Adatok megértése (Data Understanding)
 - Adatok előkészítése (Data Preparation)
 - Modellezés (Modeling)
 - Üzleti kiértékelés (Evaluation)
 - Hadrendbe állítás (Deployment)"

Módszertanok, technológiák, eszközök

MI tesztelés

MI tesztelési életciklus

- Követelmény elemzés
- Teszt tervezés
- Tesztek kidolgozása, adatok előkészítése
- Teszt végrehajtása
- Tesztelési ciklus zárása

Módszertanok, technológiák, eszközök

MI fejlesztéshez használt népszerű szoftverek

Caffe

- eredetileg a Berkeley egyetemen fejlesztett
- mélytanulási keretrendszer (deep learning framework)
- népszerű
 - sebesség
 - a GPU alapú számítások támogatása
 - gyakori modellek támogatása
- Caffe2
 - továbbfejlesztett változata
 - a Facebook adta ki
 - 2018 során a PyTorchba olvasztották

PyTorch

- Python programozási nyelvre épül
- tudományos számítási csomag
- Alapvetően két fő célközönségnek szánják
 - a GPU alapú számításoknál
 - jellemzően General Purpose GPU (GPGPU)
 - NumPy csomag alternatívájának
 - Mélytanulási kutatásoknál
 - rugalmas
 - gyors

TensorFlow

- Google kutatói által fejlesztett
- bonyolult numerikus számítások kezelésére alkalmas programkönyvtár
- egyaránt alkalmas kutatásra és termékfejlesztésre
- közkedvelt a gépi tanulás kutatók és fejlesztők között

Cognitive Toolkit

- Microsoft
- nyíltforrású mélytanulási eszköztár
- kereskedelmi színvonalú fejlesztésekhez

Keras

- Python alapú
- Nyíltforrású
- neurális hálózat programkönyvtár
- képes együttműködni más népszerű könyvtárakkal
 - például a TensorFlow
 - Microsoft Cognitive Toolkit.

DeepLearning4j

- Java nyelvhez
 - De támogat más JVM alapú nyelveket
 - Pl. Kotlin, Scala
- mélytanulási programkönyvtár

Jupyter Notebook

- Nyíltforrású
- web alapú alkalmazás
- lehetővé teszi olyan dokumentumok létrehozását, melyek "élő" (futtatható) forráskódot, formulákat és egyéb elemeket is tartalmaz

NLP Architect

- Intel
- Python programozási nyelvhez
- nyíltforrású programkönyvtár
- korszerű mélytanulási módszerek érhetőek el
 - a természetes nyelvfeldolgozás (Natural Language Processing, NLP) fókuszú

Weka

- Ingyenes
- Nyíltforrású
- gépi tanulási szoftver
- számos adatbányászati feladat megoldására szolgáló algoritmust tartalmazó gyűjtemény
- Lehetőséget nyújt többek között az adatok előkészítésére, osztályozási, regressziós, valamint klaszterezési feladatokra is.

OpenCV

- Nyíltforrású
- akadémiai és kereskedelmi célra egyaránt ingyenesen használható
- gépi látás és gépi tanulási programkönyvtár
- Több programozási nyelvet támogat
 - például, C++, Java, Python stb
- számos platformot támogat
 - Windows, Linux, Mac OS, iOS, Android

R

- Nyíltforrású
- általános célú adatelemzésre szolgáló szoftverkörnyezet
 - főként statisztikai számításokra
 - lineáris és nemlineáris modellezésre
 - idősorok elemzésére
 - Osztályozásra
 - klaszterezésre
 - Grafikára
- több operációs rendszeren is fut
- használják a gépi tanulás területén
 - támogat olyan mélytanulási rendszereket, mint a TensorFlow, vagy a Keras.

Módszertanok, technológiák, eszközök

MI szolgáltatások

MI szolgáltatások

- A komoly MI megoldások gyakran igényelnek jelentős hardver infrastruktúrát
 - Ez számos kihívást jelent
 - Az eszközök költségesek
 - Megfelelő helyet kell találni az üzemeltetéshez
 - A karbantartás komoly erőforrásokat köt le
 - Megoldás lehet a felhő alapú technológia
- A tech-óriások számos felhő alapú MI szolgáltatást biztosítanak
- https://colab.research.google.com/

Google

- A Google számos szolgáltatást nyújt
 - például a gépi tanulás, a nyelvfeldolgozás, vagy a gépi látás területén
 - https://cloud.google.com/products/ai/

Google

- Különös figyelmet érdemel a Google Colab rendszere
 - Ingyenes
 - GPU használat lehetséges
 - saját MI projektek valósíthatóak meg
 - például Python nyelven olyan eszközök segítségével, mint a Jupyter Notebook, a TensorFlow, vagy a Keras.

Microsoft

- Azure szolgáltatásába integrált
 - főként gépi látás, beszédfelismerés és gépi fordítás területekre fókuszál.
 - https://azure.microsoft.com/hu-hu/overview/aiplatform/

IBM

- Az IBM Watson megoldására épül
- természetes nyelvfeldolgozási módszereket alkalmazó
 - felhő-alapú szolgáltatás
 - a gépi fordításon túl különböző nyelvi elemzéseket is lehetővé tesz.
- https://www.ibm.com/watson/services/natural-language-understanding/

Módszertanok, technológiák, eszközök

MI megoldást futtató hardver

MI megoldást futtató hardver

- Lényegében a feldolgozó egység
- Alapvetően két fő típus
 - On-device MI
 - CPU/FPGA/ASIC/GPU stb
 - Cloud MI
- A valóságban ez sokkal bonyolultabb témaköröket érint
 - On-premises
 - Edge devices
 - Fog computing
 - stb

MI megoldást futtató hardver

CPU

- Bonyolult számítások gyorsan
- Kevés párhuzamos szál

GPU

- Egyszerűbb számítások nem túl gyorsan
- Rengeteg párhuzamos szál
- nVidia jelentős előnyben a többi gyártóval szemben (CUDA/cuDNN)
- AMD nagy hátrányban (OpenCL)

FPGA

- Field Programable Gate Array
- Robosztus rendszer hozható létre egy chipen
- Különböző funkcióval rendelkező blokkok hozhatók létre

MI megoldást futtató hardver

ASIC

- Application Specific Integrated Chips
- Hasonló az FPGA-hoz, de nem módosítható
 - …sőt, sokkal lassabban módosítható
- Masszív párhuzamosítás
- Intel® Nervana™ Neural Network Processor

SoC

- System-on-Chip
- Quantum számítógép
 - (talán nem annyira) távoli jövő
 - Hatalmas jelentősége lenne a gépi tanulásban
 - · ...és így a MI-ben

Módszertanok, technológiák, eszközök

Beavatkozók és érzékelők

Beavatkozó hardverek

- Elektromos beavatkozók
 - Villanymotorok
 - egyenáramú servomotorok
 - váltóáramú motorok
 - léptetőmotorok
 - Solenoidok
- Hidraulikus beavatkozók
 - Valamilyen hidraulikus folyadékot használnak
- Pneumatikus beavatkozók
 - Nagynyomású levegőt használnak

Beavatkozó hardverek

- Léptető motor
- Servomotor
- Motorvezérlők

Érzékelő hardverek

- Érzékelők főbb típusai
 - Látás/képalkotás
 - Hőmérséklet
 - Sugárzás
 - Távolság
 - Nyomás
 - Pozíció
 - Részecske
 - Mozgás
 - Fém
 - Szint
 - Szivárgás
 - Páratartalom
 - Gáz és vegyianyag
 - Erő
 - Áramlás
 - Anyagok felületi és felszín alatti hibák (Flaw)
 - Láng
 - Elektromosság