# A3 Simulative Engineering - Formulary

**2** 2

2 2

2

2

2

# **Contents**

# 2 Laplace

#### 1 Resources for the exam

#### 3 Electronical formulas

| 3.1 | Resistor            |  |
|-----|---------------------|--|
| 3.2 | Capacitor/Condenser |  |

# 

#### 4 Mechanical formulas

| 4.1 | Newton's Second Law |  |  |  |  | • |
|-----|---------------------|--|--|--|--|---|
| 4.2 | Gravitational force |  |  |  |  |   |

- 4.3 Spring force . . . . . . . . . . . . . . . . .
- 4.4 Friction force . . . . . . . . . . . . . . .
- 4.7 Rotational movement . . . . . . . . . . . .

**1** How to transform signals?

#### 

## 3 Electronical formulas



Figure 1: RLC circuit

### 1 Resources for the exam

#### Allowed:

- ✓ Your hand written Lecture notes
- ✓ Summary of your handwritten lectures
- ✓ This formulary
- ✓ Mathematical book e.g.Papula
- ✓ DHBW Calculator (or just use MATLAB)

#### Not allowed:

- × Solutions of the laboratory
- × Learning paper

## 3.1 Resistor

$$u_R(t) = R \cdot i_R(t) \tag{1}$$

U: voltage [Volt V]

R: restistance [Ohm  $\Omega = \frac{V}{A}$ ]

I: current [Ampere A]

# 3.2 Capacitor/Condenser

$$Q = C \cdot U_C \tag{2}$$

$$Q = \int i_C(t) \tag{3}$$

$$i_C(t) = C \cdot u_C'(t) \tag{4}$$

Q: electric charge [Coulomb C = As]

C: capacity [Farad  $F = \frac{C}{V}$ ]

#### 3.3 Inductor

$$u_L(t) = L \cdot i_L'(t) \tag{5}$$

L: inductance [Henry H =  $\frac{Vs}{A}$ ]

# A3 Simulative Engineering - Formulary

# 4 Mechanical formulas

#### 4.1 Newton's Second Law

$$F = m \cdot a = m \cdot x''(t) \tag{6}$$

m: mass [gramm g]

a: acceleration  $\left[\frac{m}{s^2}\right]$  x: length [meter m]

#### 4.2 Gravitational force

$$F_G = m \cdot g \tag{7}$$

g: gravitational acc.  $\left[\frac{m}{s^2}\right]$  (Germany 9.81  $\frac{m}{s^2}$ )

## 4.3 Spring force

$$F_S = k \cdot x \tag{8}$$

k: spring constant  $\left[\frac{kg}{s^2}\right]$ 

#### 4.4 Friction force

$$F_F = r \cdot v = r \cdot x'(t) \tag{9}$$

r: friction constant

v: velocity  $\left[\frac{m}{s}\right]$ 

#### 4.5 Rotational force

$$F_R = F_G \cdot \sin \rho \tag{10}$$

 $\rho$ : angle of displacement

#### 4.6 Torque

$$M = F \cdot r \tag{11}$$

r: radius

#### 4.7 Rotational movement

$$M = J \cdot \rho'' \tag{12}$$

J: moment of inertia  $\rho''$ : angular velocity