logistics

1. My office is Evans 1066. Office hours TBD.

If you can't make office hours, you can also reach me at c_h_bae@berkeley.edu

linear stuff

- 2. Recall the definition of a vector space over a field F. A vector space is a set V along with an addition on V and a scalar multiplication on V such that the following properties hold.
 - Addition is commutative and associative.
 - Scalar multiplication is associative.
 - There exists an additive identity element $0 \in V$. That is, v + 0 = v for all $v \in V$
 - Every element $v \in V$ has an additive inverse. That is, for each $v \in V$, there exists a $w \in V$ such that v + w = 0.
 - 1v = v for all v.
 - Multiplication distributes over addition. That is, (a+b)(u+v) = au + av + bu + bv for all $a, b \in F$ and $u, v \in V$.
- a) Define the notation "-v" to denote the additive inverse of v. Show that -(-v) = v. You may use the fact that the additive inverse of a vector is unique.
- b) Is the empty set a vector space? Explain.