Multimodal Emotion Recognition in Videos

Student: Galbenus Andrei Emanuel Coordonator: Sl. Dr. Ing. Dumitru Clementin Cercel

Introduction

- Objective: Automated system, remove subjective human factor
- Problem: Different emotional expressiveness styles
- Motivation:
 - Available datasets (e.g. CMU-MOSEI, EmoReact)
 - Computational power
 - Useful in: medicine, retail, educational

Related Work

- Z. Zheng et al., GammaLab, 2018
 - A: SoundNet
 - o V: VGG16
- D. Deng et al., HKUST, 2018
 - A: openSMILE + LL
 - V: OpenFace + VGG16
- A. Triantafyllopoulos et al., audEERING, 2018
 - o A: openSMILE + BiLSTM
 - V: MTCNN + VGG16

Datasets (One-Minute Gradual Emotion)

- 2018
- 420 YouTube videos
- 1 minute per video, on average, split in utterances
- Approximately 10 hours of content (monologues, auditions, dialogues)
- Valence and arousal
- 3 baseline models
- CCC (Concordance Correlation Coefficient)
- Train/Validation/Test: 1790/550/1450

$$ccc(y, \hat{y}) = \frac{2\rho(y, \hat{y})\sigma_y\sigma_{\hat{y}}}{\sigma_y^2\sigma_{\hat{y}}^2 + (\mu_y - \mu_{\hat{y}})^2}$$

$$\rho(y, \hat{y}) = \frac{\sum (y - \mu_y)(\hat{y} - \mu_{\hat{y}})}{\sqrt{\sum (y - \mu_y)^2 (\hat{y} - \mu_{\hat{y}})^2}}$$

Data processing (A)

- wav files/3s/16khz
- Spectrograms/MS/LMS (STFT)
 - Window: 2048
 - Step: 512
 - o Mels: 90
- 40 MFCCs (Mel Frequency Cepstral Coef)

Figura 1: Semnale audio neprocesate (tristete/fericire/nervozitate)

Figura 3: Spectrograme Mel logaritmate (tristete/fericire/nervozitate)

Figura 4: Spectrograme MFCC (40) (tristete/fericire/nervozitate)

Audio Models (1)

VGG16/ResNet50/AlexNet (P/NP)

Audio Models (2)

Audio Models (3)

Data processing (V)

- 16 frames extracted
- Cropped
- Aligned faces
- OpenFace

Visual Models

Model	Arousal(CCC)	Valence(CCC)	
GammaLab (VA)	0.361	0.498	
Audeering (VA)	0.286	0.368	
HKUST (VAT)	0.276	0.359	
UMONS (VAT)	0.175	0.262	
ADSC (VA)	0.236	0.442	
ADSC (V)	0.244	0.437	
Audeering (A)	0.292	0.361	
iBug (V)	0.130	0.400	
Baseline (A)	0.08	0.10	
BaseLine (V)	0.12	0.23	
VGG16(P)(A)	0.285	0.195	
ResNet50+GRU (V)	0.180	0.446	

Model	Arousal	Valence	Total
5Conv2D	0.211	0.122	0.333
ResNet50(P)	0.251	0.205	0.456
ResNet50(NP)	0.194	0.210	0.404
VGG16(P)	0.285	0.195	0.480
VGG16(NP)	0.078	0.251	0.329
AlexNet(P)	0.159	0.152	0.311
AlexNet(NP)	0.248	0.077	0.325
Conv + ATT	0.066	0.047	0.113
Conv 1D + 2D	0.199	0.041	0.240

Model	Arousal	Valence	Total
ResNet50 + RNN	0.112	0.322	0.434
ResNet50 + GRU	0.18	0.446	0.626
ResNet50 + LSTM	0.249	0.325	0.574
VGG16 + RNN	0.194	0.303	0.497
VGG16 + GRU	0.274	0.254	0.528
VGG16 + LSTM	0.159	0.347	0.506
DenseNet121 + RNN	0.083	0.133	0.216
DenseNet121 + GRU	0.063	0.052	0.115
DenseNet121 + LSTM	0.098	0.021	0.119
ResNet50 + 4Conv1D	0.188	0.25	0.438
VGG16 + 4Conv1D	0.113	0.345	0.458

Hyperparams

- Tanh/Sigmoid
- SGD (Nesterov, momentum, 1e-3 1e-6)
- Batch size 8 32
- Colab (12GB Testa K80, 12 GB RAM) / Locally (4GB Nvidia 960M, 16GB)
- Python 3.7
- PyTorch 1.9.0/1.4.0

Conclusion

- Deep convolutional networks
- GRU smaller datasets
- LMS best results
- Improvements:
 - Bigger dataset
 - Multimodal model
 - Additional cues (textual, kinetic)

References

[1] Zheng, Z., Cao, C., Chen, X., and Xu, G. (2018). Multimodal emotion recognition for one-minute-gradual emotion challenge. arXiv preprint arXiv:1805.01060.

[2] Deng, D., Zhou, Y., Pi, J., and Shi, B. E. (2018). Multimodal utterance-level affect analysis using visual, audio and text features. arXiv preprint arXiv:1805.00625.

[3] Triantafyllopoulos, A., Sagha, H., Eyben, F., and Schuller, B. (2018). audEERING's approach to the One-Minute-Gradual emotion challenge. arXiv preprint arXiv:1805.01222.