X-ray wave propagation in PETSc

Sajid Ali¹ & Chris Jacobsen²

¹Applied Physics Northwestern University ²X-ray Science Divison Argonne National Lab

June 9, 2019

Outline

Introduction

Zone Plates

Beyond Depth of Focus imaging

Multi-slice method

Finite Difference methods for wave propagation

PETSc Implementation

Introduction

Introduction

Synchrotron light sources

► Accelerate electrons close to speed of light, then bend the beam to produce "bright" x-rays.

Figure: Synchtrotron schematic¹

More than Moore! 2

Zone Plates

Zone Plates

Focusing X-Rays

- ightharpoonup Ref. indexightharpoonup complex,slightly < 1
- ➤ Zone plates→ monochromatic diffractive optics.
- Consist of alternate rings of low and high refractive index materials placed such that the outgoing waves constructively interfere with each other at the focal spot.

Figure: Illustration of zone plate ³

Zone plates in action!

Figure: Simultaenous Ptychography and fluoresence imaging ⁴

Factors affecting efficiency & resolution

- Efficiency of zone plate depends on refractive index.
- Zones must be thick enough along beam direction to produce a phase shift of π, several um at hard x-ray energy.
- Spatial resolution limited to finest, outermost zone width.

Figure: Thickness vs efficiency ⁵

Scalar theory is not enough

- Scalar approximation assumption → interaction between x-rays and the optic can be treated as one-step diffraction.
- Clearly, waveguide effects need to be taken into account.
- ► Thick zone plate → test object.
- ► Klein-Cook param. : Q_{K-C} indicator of "diffraction regime" ⁶.

Beyond Depth of Focus imaging

Beyond Depth of Focus imaging

What is DoF?

- Can be thought of as the longitudinal spread of focal spot
- ► Goes like $\approx 5 (\text{transverse res.})/\lambda^2$, $30 \text{nm}/25 \text{keV} \rightarrow 90 \text{um}$.

Figure: Optical Transfer Function in real and frequecny space ⁷

Current Imaging schemes

- Object within DoF
- No modulation of input wave within the object

Figure: (Left) Pure Projection Approximation⁸, (Right) Each slice is projected onto a 2D plane. All planes are independent of each other ⁹

⁸Krenkel [2015]

⁹ Jacobsen [2019]

Current Imaging schemes

Figure: Spinning the object to obatin "sinograms", reconstruct each slice independently $^{10}\,$

New reconstruction schemes

- "Thick" objects that extend beyond depth of focus → Pure Projection Approximation is not valid!
- New approaches → optimization of cost function¹¹, neural networks¹², etc.
- ▶ We will compare the relative merits of two approaches to solve the forward problem.

 $^{^{12}}$ Gilles u. a. [2018]; Li und Maiden [2018]; Öztürk u. a. [2018]; Shimomura u. a. [2015]; Tsai u. a. [2016]

¹² Goy u. a. [2018]; Rivenson u. a. [2018]; Scott W. Paine [2019]; Sun u. a. [2018] → 4 ★

└ Multi-slice method

Multi-slice method

Multislice

- "Slice" the object into multiple thin sections. ¹³.
- Agrees with rigorous coupled wave theory ¹⁴.
- ▶ At pixel \approx 0.25 feature size, need \approx Q_{K-C} steps.

Figure: Multi-slice schematic ¹⁵

¹³Cowley und Moodie [1957]; Li u. a. [2017]; Roey u. a. [1981]

¹⁴Li u. a. [2017]

¹⁵ Jacobsen [2019]

Implementation

- Slab modulation → point-wise multiply with the transmission matrix (a point-wise function of refractive indices)¹⁶.
- ► Free Space propagation is given by Fresnel Transform which is implemented numerically by ¹⁷:

$$\psi_{out} = \mathcal{F}^{-1}\{\mathcal{F}\psi_{in}*TF\}$$

$$TF(x,y) = exp(\frac{-i2\pi\delta z}{\lambda})\sqrt{1-\lambda^2(u_x^2+u_y^2)}$$

▶ Where λ is wavelength, δz is step size, u_x/u_y are the x/y co-ordinates.

¹⁶Cowley und Moodie [1957]; Li u. a. [2017]; Roey u. a. [1981]

¹⁷Goodman [2017]

Finite Difference methods for wave propagation

Finite Difference methods for wave propagation

FD-basics

▶ Directly solve the Helmholtz equation for scalar diffraction in inhomogenous matter:

$$\nabla^2 \psi + k^2 n^2(x, y, z) \psi = 0$$

$$(k = \frac{2\pi}{\lambda} \text{ and } n(x, y, z) \text{ is the refractive index})$$

► Approximate the wavefunction with plane wave and osciallating parts:

$$\psi(x, y, z) = u(x, y, z) exp(-ikz)$$

FD-basics

➤ Substituting this in the Helmholtz equation and neglecting the derivative of u along the direction of propagation, we get the following equation :

$$-2\mathrm{i}k\frac{\partial}{\partial z}u + (\frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y})u + k^2(n^2 - 1) = 0$$

▶ Defining $a = \frac{-i}{2k}$ and $F(x, y, z) = \frac{-ik}{2}(n^2(x, y, z) - 1)$; PDE now becomes ¹⁸:

$$\frac{\partial u}{\partial z} = a(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}) + F(x,y,z)u$$

▶ In scaled units, u is $\approx 1e^1$, |a| is $\approx 1e^2$ and |F| is $\approx 1e^{-3}$.

Results from literature

- Need second-order integration along direction of propagation for accuracy ¹⁹.
- A recent implementation ²⁰ was in C++ with a Python front end where ADI ²¹ was used.
- ▶ Preferred method²² : free-space \rightarrow MS, waveguides (inhomogenous matter) \rightarrow FD

¹⁹Fuhse [2006]; Melchior und Salditt [2017]

²⁰Melchior und Salditt [2017]

²¹Alt und Rubinoff [1962]

²²Melchior und Salditt [2017]

PETSc Implementation

PETSc Implementation

PETSc Implementation 23

For the FD method : Standard 5-point stencil.

$$DMDA + CN/GMRES/GAMG$$

▶ For the MS method : Using the PETSc-FFTW interface which maps $FFT/IFFT \rightarrow MatMult,MatMultTranspose$

▶ PETSc vastly simplifies parallel IO, pointwise mult and FFT integration!

Sensitivity sweep

- ► Test a zone plate of size $2^{14}x2^{14}$, $Q_{K-C} = 500$.
- Vary number of TS steps and KSP Rtol.
- \triangleright A relative tolerance of 1e-5 suffices!

Zone plate results

- ► Test a zone plate of size $2^{15}x2^{15}$; $Q_{K-C} = 1500$.
- ▶ FD converges in fewer steps, but needs more memory.

Zone plate results

► Test a zone plate of size $2^{15}x2^{15}$, $Q_{K-C} = 1500$.

Next Steps

- ▶ Simulate tomography (essentially MatMult + wave propagation); for $\theta_i \subset (0, \pi)$, $TS(A_{\theta_i} * x) \rightarrow y_{\theta_i}$.
- Solve the inverse problem with TAO using adjoints given by TSAdjoint; Given $y'_{\theta_i}s$ for $\theta_i \subset (0,\pi)$ get x!

Acknowledgements

- ► Barry Smith MCS,ANL
- ► Hong Zhang MCS,ANL.
- PETSc Developers on petsc-users & petsc-maint.
- bebop-LCRC ANL & theta-ALCF ANL.
- ► NIMH U01 MH109100 & ANL-LDRD.

References I

- [Alt und Rubinoff 1962] ALT, Franz L. (Hrsg.); RUBINOFF, Morris (Hrsg.): Advances in Computers. Bd. 3: Alternating Direction Implicit Methods. Elsevier, 1962. – 189 – 273 S. ISSN 0065-2458
- [Cowley und Moodie 1957] COWLEY, J. M.; MOODIE, A. F.: The scattering of electrons by atoms and crystals. I. A new theoretical approach. In: Acta Crystallographica 10 (1957), Nr. 10, S. 609–619
- [Deng u. a. 2017] DENG, Junjing; VINE, David J.; CHEN, Si; JIN, Qiaoling; NASHED, Youssef S. G.; PETERKA, Tom; VOGT, Stefan; JACOBSEN, Chris: X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning. In: Scientific Reports 7 (2017), Nr. 1, S. 445. – ISSN 2045-2322
- [Fuhse 2006] Fuhse, Christian: X-ray waveguides and waveguide-based lensless imaging, University of Göttingen, Dissertation, 2006
- [Gilles u. a. 2018] GILLES, M. A.; NASHED, Y. S. G.; Du, M.; JACOBSEN, C.; WILD, S. M.: 3D x-ray imaging of continuous objects beyond the depth of focus limit. In: *Optica* 5 (2018), Sep, Nr. 9, S. 1078–1086
- [Goodman 2017] GOODMAN, Joseph W.: Introduction to Fourier optics. W.H. Freeman, 2017

References II

- [Goy u. a. 2018] GOY, Alexandre; ARTHUR, Kwabena; LI, Shuai; BARBASTATHIS, George: Low Photon Count Phase Retrieval Using Deep Learning. In: Phys. Rev. Lett. 121 (2018), Dec, S. 243902
- [Jacobsen 2016] JACOBSEN, Borland M.: X-ray brightness and coherence, and diffraction-limited storage rings. In: Proceedings of the International School of Physics "Enrico Fermi" 194 (2016), Nr. 5, S. 35–51
- [Jacobsen 2019] JACOBSEN, Chris: X-Ray Microscopy. Cambridge University Press, 2019 (Advances in Microscopy and Microanalysis)
- [Klein und Cook 1967] KLEIN, W. R.; COOK, B. D.: Unified Approach to Ultrasonic Light Diffraction. In: *IEEE Transactions on Sonics and Ultrasonics* 14 (1967), July, Nr. 3, S. 123–134. – ISSN 0018-9537
- [Kopylov u. a. 1995] KOPYLOV, Yuri V.; POPOV, Alexei V.; VINOGRADOV, Alexander V.: Application of the parabolic wave equation to X-ray diffraction optics. In: Optics Communications 118 (1995), Nr. 5, S. 619 - 636. - URL http://www.sciencedirect.com/science/article/pii/003040189500295J. -ISSN 0030-4018

References III

- [Krenkel 2015] KRENKEL, Martin: Gttingen Series in X-ray Physics. Bd. 017: Cone-beam x-ray phase-contrast tomography for the observation of single cells in whole organs. Gttingen: Universittsverlag Gttingen, 2015
- [Li u. a. 2017] LI, Kenan; WOJCIK, Michael; JACOBSEN, Chris: Multislice does it all;calculating the performance of nanofocusing X-ray optics. In: Opt. Express 25 (2017), Feb, Nr. 3, S. 1831–1846
- [Li und Maiden 2018] LI, Peng; MAIDEN, Andrew: Multi-slice ptychographic tomography. In: Scientific Reports 8 (2018), Nr. 1, S. 2049. – ISSN 2045-2322
- [Melchior und Salditt 2017] MELCHIOR, Lars; SALDITT, Tim: Finite difference methods for stationary and time-dependent X-ray propagation. In: Opt. Express 25 (2017), Dec, Nr. 25, S. 32090–32109
- [Öztürk u. a. 2018] ÖZTÜRK, Hande; YAN, Hanfei; HE, Yan; GE, Mingyuan; DONG, Zhihua; LIN, Meifeng; NAZARETSKI, Evgeny; ROBINSON, lan K.; CHU, Yong S.; HUANG, Xiaojing: Multi-slice ptychography with large numerical aperture multilayer Laue lenses. In: Optica 5 (2018), May, Nr. 5, S. 601–607
- [Rivenson u. a. 2018] RIVENSON, Yair; ZHANG, Yibo; GÜNAYDIN, Harun; TENG, Da; OZCAN, Aydogan: Phase recovery and holographic image reconstruction using deep learning in neural networks. In: Light: Science & Amp; Applications 7 (2018), Feb, S. 17141 EP –. Article

References IV

- [Roey u. a. 1981] ROEY, J. V.; DONK, J. van der; LAGASSE, P. E.: Beam-propagation method: analysis and assessment. In: J. Opt. Soc. Am. 71 (1981), Jul, Nr. 7, S. 803-810. – URL http://www.osapublishing.org/abstract.cfm?URI=josa-71-7-803
- [Scott W. Paine 2019] SCOTT W. PAINE, James R. F.: Machine learning for avoiding stagnation in image-based wavefront sensing. 2019
- [Shimomura u. a. 2015] SHIMOMURA, Kei; SUZUKI, Akihiro; HIROSE, Makoto; TAKAHASHI, Yukio: Precession x-ray ptychography with multislice approach. In: Phys. Rev. B 91 (2015), Jun, S. 214114
- [Sun u. a. 2018] Sun, Yu; XIA, Zhihao; KAMILOV, Ulugbek S.: Efficient and accurate inversion of multiple scattering with deep learning. In: Opt. Express 26 (2018), May, Nr. 11, S. 14678–14688
- [Tsai u. a. 2016] Tsai, Esther H. R.; Usov, Ivan; Diaz, Ana; Menzel, Andreas; Guizar-Sicairos, Manuel: X-ray ptychography with extended depth of field. In: Opt. Express 24 (2016), Dec, Nr. 25, S. 29089–29108