# 2021 Final Exam for Analysis

**Question.1** Suppose  $\mu, \nu$  are  $\sigma$ -finite measures.

- (1) State the definition of  $\mu \ll \nu, \mu \perp \nu$  and Radon-Nikodym derivative  $\frac{d\mu}{d\nu}$ .
- (2) Prove that  $\mu \perp \nu$  if and only if  $\frac{d\nu}{d(\nu + \mu)} \cdot \frac{d\mu}{d(\mu + \nu)} = 0$ .
- (3) Denote  $\mu \simeq \nu$  if  $\mu \ll \nu, \nu \ll \mu$ . Prove that  $\mu \simeq \nu$  is equivalent to  $\frac{d\nu}{d(\nu + \mu)}, \frac{d\mu}{d(\mu + \nu)} > 0$ .

**Question.2** For measurable set E and  $x_0 \in E$ , define

$$\rho(x_0, E) = \lim_{r \searrow 0} \frac{\mathcal{L}(E \cap (x_0 - r, x_0 + r))}{2r}$$

if the limit exists, we say that E has **point density** at  $x_0$  and call  $\rho(x_0, E)$  the **point density** of  $x_0$  in E.

- (1) State the Riesz representation theorem for Radon measure.
- (2) Does a has point density in [a, b]? If so, compute its value.
- (3) For any  $\lambda \in (0,1)$ , construct E such that  $\rho(x_0, E) = \lambda$ .

Question.3

- (1) Show that  $\lim_{n\to\infty} \int_0^\infty \frac{\mathrm{d}x}{(1+t/n)^n t^{1/n}} = 1$  and  $\lim_{n\to\infty} \int_0^\infty \frac{\log^p(x+n)}{n} e^{-x} \cos x \, \mathrm{d}x = 0$ .
- (2) Suppose  $f: \mathbb{R} \to \mathbb{R}$  is a Lebesgue measurable function and is integrable on any open interval  $(a,b) \subseteq \mathbb{R}$ , i.e.  $f \in L^1_{loc}(\mathbb{R})$ . If  $g \in C^n_c(\mathbb{R})$ , prove that  $h(y) := \int_{\mathbb{R}} f(x+y)g(x) dx$  is well-defined in  $C^n(\mathbb{R})$ .
- (3) Suppose f is integrable on  $[a,b] \subset \overline{\mathbb{R}}$ . Show that for any  $\epsilon > 0$ , there exists  $\varphi \in C^0[a,b]$  such that  $\int_a^b |f-\varphi| \, \mathrm{d}x < \epsilon$ .

**Question.4**  $f: \mathbb{R} \to \mathbb{R}$  is Lebesgue measurable.

- (1) Define the Lebesgue  $\sigma$ -algebra on  $\mathbb{R}$  and state the definition of Lebesgue measurable function.
- (2) If f satisfies  $f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{R}$ , show that there exists a real number c such that  $f(z) = cz, \forall z \in \mathbb{R}$ .

**Question.5** X is a Banach space.

(1) Z is a closed subspace of X, show that Z is Banach.

(2) We say Y is a **hyperplane** of X if codim  $Y = \dim X/Y = 1$ . Prove Y is a closed hyperplane if and only if there exists a non-zero  $f \in X^*$  such that  $Y = f^{-1}(0)$ .

### Question.6

- (1) State the definition of the spectrum of a linear operator.
- (2) Define  $S: \ell^1 \to \ell^1$  as  $S(\alpha_1, \alpha_2, \cdots) = (\alpha_2, \alpha_3, \cdots)$ , show that the spectrum of S is the closed unit ball  $\bar{\mathbb{D}}$  on  $\mathbb{C}$ , i.e.  $\mathrm{Spec}(S) = \bar{\mathbb{D}} := \{z : |z| \leq 1\}$ .
- (3) Suppose  $T((\alpha_j)) = (\alpha_j 2\alpha_{j+1} + \alpha_{j+2}) : \ell^1 \to \ell^1$ , show that the spectrum of T is the heart curve on  $\mathbb{R}^2$ :  $\{(r,\theta): r \leq 2 + 2\cos\theta, 0 \leq \theta < 2\pi\}$ .

Question.7  $f \in L^{\infty}(\mathbb{R})$ , define  $T_n(f) = \frac{1}{2n} \int_{-\pi}^n f(x) dx$ .

- (1) State the definition of operator norm and compute  $||T_n||$ .
- (2) Show that any operator T with form

$$T(f) = \int_{\mathbb{R}} h(x)f(x) \, \mathrm{d}x$$

where  $h(x) \in L^1(\mathbb{R})$  is not the weak\*-limit of  $T_n$ . Specially,  $[L^{\infty}(\mathbb{R})]^* \ncong L^1(\mathbb{R})$ .

**Question.8** Denote  $X = \ell^{\infty}$ ,  $Y = \{x = (x_1, x_2, \dots) \in X : f = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} x_i \text{ exists.} \}$  is the subspace of sequences whose Cesáro sums convergent.

- (1) State any version of Hahn-Banach theorem.
- (2) Show that there exists a function  $F \in X^*$  s.t. ||F|| = 1 and  $F|_Y = f$ .
- (3) Prove there's no  $T \in \mathcal{B}(\ell^2, \ell^1)$  s.t. T is surjective.

**Question.9** X is a Banach space.

- (1) X is separable if and only if the unit sphere  $\mathbb{S}_X = \{x \in X : ||x|| = 1\}$  of X is separable.
- (2) Suppose Y, X/Y are separable, prove X is separable.
- (3) Y is a subspace of X, X is separable, prove that there exists a sequences of subspaces  $Y = L_0 \le L_1 \le L_2 \le \cdots$  such that  $L_\infty := \bigcup_{i=0}^\infty L_i$  is a dense subspace of X.

**Question.10**  $\mathcal{H}$  is a Hilbert space.

(1) State and prove Bessel inequality or Parseval indentity. State the Parallelogram law.

- (2) Show that  $\mathcal{H}$  is uniformly convex.
- (3) Suppose  $\mathcal{H}$  is a infinity dimensional separable space, show that  $\mathcal{H}$  is isometric isomorphic to  $\ell^2$ , i.e.  $\mathcal{H} \xrightarrow[\text{isometr}]{\sim} \ell^2$ .

## Question.11

- (1) State open mapping theorem and closed graph theorem.
- (2) X, Y is Banach,  $T \in \mathcal{B}(X, Y)$ . Suppose ran T is a subspace of Y with infinity codimension. Prove ran T is closed.
- (3) Conversely, show that every infinity dimensional Banach space has a finite codimensional subspace which is not closed.

## Here's some questions from Final Exam-B.

# Question.1

- (1) State open mapping theorem and closed graph theorem.
- (2)  $T \in \mathcal{B}(X,Y)$ . Prove following statements are equivalent.
  - i) T is open;
  - ii) T is open at 0;
  - iii) Denote y = Tx, then there exists M > 0 s.t.  $||x|| \le M||y||$ .
- (3) If  $B_Y \subseteq T(B_X) \subseteq \overline{B_Y}$ , then T is surjective.

#### **Question.2** $\mathcal{H}$ is a Hilbert space.

- (1) Suppose Y is closed, show that  $\mathcal{H} = Y \oplus Y^{\perp}$ .
- (2) Give an example to show that  $\mathcal{H}$  can not be written as the direct sum of a subspace Y and its orthogonal complement.
- (3) Suppose  $||\cdot||$  is a norm which satisfies the parallelogram law, show that bilinear form  $\langle , \rangle$  given by polarisation indentity

$$\langle x, y \rangle = \frac{1}{4} \left( ||x + y||^2 - ||x - y||^2 + i ||x + iy||^2 - i ||x - iy||^2 \right)$$

is an inner product on  $\mathcal{H}$ .

# Question.3

The same as Question.1 in A.

### Question.4

The same as Question.2 in A.

### Question.5

- (1) State the definition of weak topology on X.
- (2) If  $F \subseteq X$  is a closed convex set (in norm topology), show that F is weak closed.
- (3) Suppose  $x_n$  is weakly convergent, prove that there exists a convex combination  $y_n$  is strongly convergent.
- (4) Prove X is reflexive if and only if  $X^*$  is reflexive.

## Question.6

- (1) and (3) are the same as **Question.3** in **A**.
- (2) Prove  $\int_{\Omega} \phi(f(x)) \mu(dx) = \int_{0}^{\infty} \mu(\{x \in \Omega : f(x) \ge t\}) \nu(dt)$  where  $\phi(t) = \nu([0, t])$   $\mu, \nu$  are measures.

## Question.7

The same as Question.6 in A.

#### Question.8

The same as Question.7 in A.

## **Question.9** X is a Banach space.

- (1) X is separable if and only if the unit sphere  $\mathbb{S}_X = \{x \in X : ||x|| = 1\}$  of X is separable.
- (2) Show that  $C^0(0,1)$  under max-value norm is not separable.
- (3) t.b.a.

#### Question.10

- (1) Prove F.Riesz lemma: Let X be NVS. If Y is a proper closed subspace of X, then  $\forall \epsilon > 0, \exists x \in \mathbb{S}_X \text{ s.t. } \operatorname{dist}(x,Y) \geq 1 \epsilon.$
- (2) Let X be infinity dimensional NVS, show that any open set of X contains uncountable disjoint balls with same radius.

(3) Use (2) to prove that there's no translation invariant measure on any infinity dimensional NVS.

你出的题只比我难一点

