GEOMETRIC FORMULAS

RECTANGLE OF LENGTH b AND WIDTH a

- 4.1 Area = ab
- 4.2 Perimeter = 2a + 2b

PARALLELOGRAM OF ALTITUDE h AND BASE b

- 4.3 Area = $bh = ab \sin \theta$
- 4.4 Perimeter = 2a + 2b

TRIANGLE OF ALTITUDE h AND BASE b

- 4.5 Area = $\frac{1}{2}bh$ = $\frac{1}{2}ab \sin \theta$ $=\sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{1}{2}(a+b+c) = \text{semiperimeter}$
- 4.6 Perimeter = a + b + c

TRAPEZOID OF ALTITUDE h AND PARALLEL SIDES a AND b

- 4.7 Area = $\frac{1}{2}h(a+b)$
- Perimeter = $a + b + h \left(\frac{1}{\sin \theta} + \frac{1}{\sin \phi} \right)$ = $a + b + h(\csc \theta + \csc \phi)$ 4.8

Fig. 4-4

REGULAR POLYGON OF n SIDES EACH OF LENGTH b

4.9 Area =
$$\frac{1}{4}nb^2 \cot \frac{\pi}{n} = \frac{1}{4}nb^2 \frac{\cos (\pi/n)}{\sin (\pi/n)}$$

Fig. 4-5

CIRCLE OF RADIUS 1

4.11 Area =
$$\pi r^2$$

4.12 Perimeter = $2\pi r$

Fig. 4-6

SECTOR OF CIRCLE OF RADIUS r

4.13 Area =
$$\frac{1}{2}r^2\theta$$
 [θ in radians]

4.14 Arc length
$$s = r\theta$$

Fig. 4-7

RADIUS OF CIRCLE INSCRIBED IN A TRIANGLE OF SIDES a,b,c

4.15
$$r = \frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}$$
 where $s = \frac{1}{2}(a+b+c) = \text{semiperimeter}$

RADIUS OF CIRCLE CIRCUMSCRIBING A TRIANGLE OF SIDES a,b,c

4.16
$$R = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}}$$
 where $s = \frac{1}{2}(a+b+c) = \text{semiperimeter}$

Fig. 4-9

REGULAR POLYGON OF n SIDES INSCRIBED IN CIRCLE OF RADIUS r

4.17 Area =
$$\frac{1}{2}nr^2 \sin \frac{2\pi}{n} = \frac{1}{2}nr^2 \sin \frac{360^{\circ}}{n}$$

4.18 Perimeter =
$$2nr \sin \frac{\pi}{n} = 2nr \sin \frac{180^{\circ}}{n}$$

REGULAR POLYGON OF n SIDES CIRCUMSCRIBING A CIRCLE OF RADIUS r

4.19 Area =
$$nr^2 \tan \frac{\pi}{n} = nr^2 \tan \frac{180^{\circ}}{n}$$

4.20 Perimeter =
$$2nr \tan \frac{\pi}{n} = 2nr \tan \frac{180^{\circ}}{n}$$

Fig. 4-11

SEGMENT OF CIRCLE OF RADIUS T

4.21 Area of shaded part = $\frac{1}{2}r^2(\theta - \sin \theta)$

Fig. 4-12

ELLIPSE OF SEMI-MAJOR AXIS a AND SEMI-MINOR AXIS b

$$4.22 \qquad \text{Area} = \pi ab$$

4.23 Perimeter =
$$4a \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} \ d\theta$$

= $2\pi \sqrt{\frac{1}{2}(a^2 + b^2)}$ [approximately]

where $k = \sqrt{a^2 - b^2}/a$. See page 254 for numerical tables.

Fig. 4-13

SEGMENT OF A PARABOLA

$$4.24 \qquad \text{Area} = \frac{2}{3}ab$$

4.25 Arc length
$$ABC = \frac{1}{2}\sqrt{b^2 + 16a^2} + \frac{b^2}{8a}\ln\left(\frac{4a + \sqrt{b^2 + 16a^2}}{b}\right)$$

Fig. 4-14

RECTANGULAR PARALLELEPIPED OF LENGTH a, HEIGHT l, WIDTH c

- 4.26 Volume = abc
- **4.27** Surface area = 2(ab + ac + bc)

Fig. 4-15

PARALLELEPIPED OF CROSS-SECTIONAL AREA A AND HEIGHT h

4.28 Volume = $Ah = abc \sin \theta$

Fig. 4-16

SPHERE OF RADIUS T

- **4.29** Volume = $\frac{4}{3}\pi r^3$
- 4.30 Surface area = $4\pi r^2$

Fig. 4-17

RIGHT CIRCULAR CYLINDER OF RADIUS r AND HEIGHT h

- 4.31 Volume = $\pi r^2 h$
- **4.32** Lateral surface area = $2\pi rh$

Fig. 4-18

CIRCULAR CYLINDER OF RADIUS r AND SLANT HEIGHT l

- 4.33 Volume = $\pi r^2 h = \pi r^2 l \sin \theta$
- 4.34 Lateral surface area = $2\pi rl$ = $\frac{2\pi rh}{\sin \theta}$ = $2\pi rh \csc \theta$

Fig. 4-19

CYLINDER OF CROSS-SECTIONAL AREA A AND SLANT HEIGHT l

4.35 Volume =
$$Ah = Al \sin \theta$$

4.36 Lateral surface area =
$$pl = \frac{ph}{\sin \theta} = ph \csc \theta$$

Note that formulas 4.31 to 4.34 are special cases.

Fig. 4-20

RIGHT CIRCULAR CONE OF RADIUS $\it r$ and height $\it h$

4.37 Volume =
$$\frac{1}{3}\pi r^2 h$$

4.38 Lateral surface area =
$$\pi r \sqrt{r^2 + h^2} = \pi r l$$

Fig. 4-21

PYRAMID OF BASE AREA A AND HEIGHT h

$$4.39 \qquad \text{Volume} = \frac{1}{3}Ah$$

Fig. 4-22

SPHERICAL CAP OF RADIUS r AND HEIGHT h

4.40 Volume (shaded in figure) =
$$\frac{1}{3}\pi h^2(3r-h)$$

4.41 Surface area =
$$2\pi rh$$

Fig. 4-23

FRUSTRUM OF RIGHT CIRCULAR CONE OF RADII $a,b\,$ AND HEIGHT $h\,$

4.42 Volume =
$$\frac{1}{3}\pi h(a^2 + ab + b^2)$$

4.43 Lateral surface area
$$= \pi(a+b)\sqrt{h^2+(b-a)^2}$$

 $= \pi(a+b)l$

Fig. 4-24

SPHERICAL TRIANGLE OF ANGLES A,B,C ON SPHERE OF RADIUS au

4.44 Area of triangle $ABC = (A + B + C - \pi)r^2$

Fig. 4-25

TORUS OF INNER RADIUS a AND OUTER RADIUS b

4.45 Volume =
$$\frac{1}{4}\pi^2(a+b)(b-a)^2$$

4.46 Surface area = $\pi^2(b^2 - a^2)$

Fig. 4-26

ELLIPSOID OF SEMI-AXES a, b, c

4.47 Volume = $\frac{4}{3}\pi abc$

Fig. 4-27

PARABOLOID OF REVOLUTION

4.48 Volume = $\frac{1}{2}\pi b^2 a$

Fig. 4-28