සියලු ම හිමිකම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

இ ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව පෙළුවා පෙළුවා පෙළුවා මෙන්තුව ගේ ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ඉහස්ගෙන්ට ප්රියාද්ධ ප්රවාද්ධ ප්රියාද්ධ ප්

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்லிப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2017

கு**் යුක්ත ගණිතය I** இணைந்த கணிதம் I Combined Mathematics I

1
II I

ு.ca நகி மூன்று மணித்தியாலம் Three hours

	 1 07 11 11	
විභාග අංකය		
The second of	 *	l l l l

උපදෙස්:

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය. B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටකට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කාවස	පුශ්න අංකග	ලකුණු
	1	
	2	
	3	
ĺ	4	-
A	5	
	6	1/1/
İ	7	
	8	
	9	
	10	
	11	
ĺ	12	0.000
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
ľ	පුතිශනය	

I පතුය	
Π පනුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	1.36
අකුරෙන්	

යංකේන අංක

උත්තර පතු පරීක්ෂ	ක		177
පරීක්ෂා කළේ:	1	<i>5</i> 0	
අධීක්ෂණය කළේ:			_

	$oldsymbol{A}$, කොටස $oldsymbol{A}$, කොටස	
1.	${f 1}$. ගණිත අගපුහන මූලධර්මය භාවිතයෙන්, සියලු $n\!\in\!{f Z}^+$ සඳහා $\sum_{r=1}^n r(3r+1)=n(n+1)^2$ බව සාධනය	3 කරන්න.
	***************************************	*********

		• • • • • • • • • •
		, , , , , , , , , ,
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • •
	***************************************	• • • • • • • • • • • • • • • • • • • •

	***************************************	********

		•••••
2.	$x^2-1 \ge x+1 $ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.	
	***************************************	• • • • • • • • • • • • • • • • • • • •
	•••••••••••••••••••••••••••••••••••••••	•••••

•	· · · · · · · · · · · · · · · · · · ·	••••••
		• • • • • • • • • • • • • • • • • • • •
	•••••••••••••••••••••••••••••••••••••••	•••••
	•••••••••••••••••••••••••••••••••••••••	•••••
	•••••••••••••••••••••••••••••••••••••••	•••••
		••••••
		•••••
		••••••
	***************************************	*******
		•••••

1	3. ආගන්ඩ් සටහනක, $\operatorname{Arg}(z-2i)=rac{\pi}{3}$ යන්න සපුරාලන z සංකීර්ණ සංඛන නීරූපණය කරන ලක්ෂාවල පථ
	වන l හි දළ සටහනක් අඳින්න.
	P හා Q යනු ඉහත ආගන්ඩ් සටහනෙහි පිළිවෙළින් $2i$ හා $\sqrt{3}+5i$ සංකීර්ණ සංඛපා නිරූපණය කරන ලක්ෂ යැයි ගනිමු. PQ දුර සොයා Q ලක්ෂාය l මත පිහිටන බව පෙන්වන්න.
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	4,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	•••••••••••••••••••••••••••••••••••••••

4.	. INFINITY යන වචනයෙහි අකුරු අට, වෙනස් ආකාර කීයකට පේළියක පිළියෙල කළ හැකි ද?
	මෙම පිළියෙල කිරීම්වලින් කොපමණක
	(i) I අකුරු තුන ම එක ළඟ තිබේ ද?
	(ii) හරියටම එක I අකුරක් හා N අකුරු දෙක ම මුල් අකුරු තුන ලෙස තිබේ ද?
	,

5.	$0 යැයි ගනිමු. \lim_{x olpha}rac{x^3-lpha^3}{ an x- anlpha}=3lpha^2\cos^2lpha බව පෙන්වන්න.$	
	·	
		١

		.
		.
		.
	••••	
6.	$0 < a < b$ යැයි ගනිමු. $\frac{\mathrm{d}}{\mathrm{d}x} \sin^{-1} \left(\sqrt{\frac{b-a}{b}} \cos x \right) = -\frac{\sqrt{b-a} \sin x}{\sqrt{a \cos^2 x + b \sin^2 x}}$ බව පෙන්වන්න.	
6.	$0 < a < b$ යැයි ගනිමු. $\frac{\mathrm{d}}{\mathrm{d}x} \sin^{-1}\left(\sqrt{\frac{b-a}{b}}\cos x\right) = -\frac{\sqrt{b-a}\sin x}{\sqrt{a\cos^2 x + b\sin^2 x}}$ බව පෙන්වන්න. ඒ නයින්, $\int \frac{\sin x}{\sqrt{a\cos^2 x + b\sin^2 x}} \mathrm{d}x$ සොයන්න.	
6.		•
6.		•
6.		
6.		
6.		
6.		
6.		
6.		
6.		
6.		
6.		
6.		
6.		
6.	ව තයින්, $\int \frac{\sin x}{\sqrt{a\cos^2 x + b\sin^2 x}} \mathrm{d}x$ සොයන්න.	
6.	ට නයින්, $\int \frac{\sin x}{\sqrt{a\cos^2 x + b\sin^2 x}} \mathrm{d}x$ සොයන්න.	

7.	C වකුයක්, $0<\theta<rac{\pi}{2}$ සඳහා $x=3\cos\theta-\cos^3\theta$, $y=3\sin\theta-\sin^3\theta$ මගින් පරාමිතිකව දෙනු ලැබේ.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\cot^3\theta$ බව පෙන්වන්න.
	ස්පර්ශ රේඛාවේ අනුකුමණය -1 වන පරිදි C වකුය මත වූ P ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.
_ `	
8.	l_1 හා l_2 යනු පිළිවෙළින් $3x-4y=2$ හා $4x-3y=1$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.
	(i) l_1 හා l_2 අතර කෝණවල සමච්ඡේදකයන්හි සමීකරණ ලියා දක්වන්න.

9.	S යනු $x^2 + y^2 -$ රේඛාව යැයි ද ග											
	ද වෘත්තයෙහි සමී					~	-	_		-		-
										• • • • • • • • • • • • • • • • • • • •	•••••	
				• • • • • • • •			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • •		· • • • • • • • • • • • • • • • • • • •	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,				*******	• • • • • • • • • •					
	***************************************					*******	• • • • • • • • • •	•••••		*******		
							• • • • • • • • • •				• • • • • • • •	
				• • • • • • • •	· · · • • · · · • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •			• • • • • • • •	
											• • • • • • •	
		,		• • • • • • • • • • • • • • • • • • • •				******			• • • • • • • •	
											• • • • • • •	
	***************************************						• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	
				• • • • • • • • •						******		
						*******					• • • • • • •	
	***************************************						• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	********			
							• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • •	•••••
			• • • • • • • • • • • • • • • • • • • •			••••••						
10	$-\pi < heta \leq \pi$ සඳහා	$\int_{COS} \frac{\theta}{\theta} + \sin \theta$	$(\theta)^2$	1 ± eir	A 20	amed 0	പ്പ ക്		π	sin <u>π</u>	$= \sqrt{3}$	ລຄ
IV.	$-\pi < \theta \le \pi$ ϖcos	1 1003 7 7 31	" <u>~</u> -	1 7 311	10 800	@ <u></u>	6161. Q	නයන, අ	$\frac{12}{12}$	$\frac{3111}{12}$	V 2	හට
10.											٧2	බව
10.	ෙන්වා $\cos \frac{\pi}{12}$										¥2	<i>30</i>
10.											¥2	
10.											V 2	
10.											¥2 	
10.											V2	
10.											V 2	
10.											V 2	
10.											V 2	
10.											V2	
10.											V 2	
10.											V 2	
10.											V 2	
10.											V 2	
10.											V 2	
10.											V 2	

සියලු ම හිමිකම් ඇවිරිනි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved

இ ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්ත**ි අතුවැණි. විභාග දෙපාර්තමේ** මේ ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තමේත්තුව ලේකා විභාග දෙපාර්තමේත්තුව ලේකා විභාග දෙපාර්තමේත්තුව ලේකා විභාග දෙපාර්තමේත්තුව ලේකා විභාග විභා

අධානයන පොදු සහනික පසු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2017

<mark>සංයුක්ත ගණිතය]</mark> இணைந்த கணிதம்] Combined Mathematics]

B කොටස

* පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න.

- $\mathbf{11}$. (a) $f(x) = 3x^2 + 2ax + b$ යැයි ගනිමු; මෙහි $a, b \in \mathbb{R}$ වේ.
 - f(x)=0 සමීකරණයට තාත්ත්වික පුභින්න මූල දෙකක් තිබෙන බව දී ඇත. $a^2>3b$ බව පෙන්වන්න.

f(x)=0 හි මූල lpha හා eta යැයි ගනිමු. a ඇසුරෙන් lpha+eta ද b ඇසුරෙන් lphaeta ද ලියා දක්වන්න.

 $\left|\alpha-\beta\right|=rac{2}{3}\sqrt{a^2-3b}$ බව පෙන්වන්න.

 $\left|lpha+eta
ight|$ හා $\left|lpha-eta
ight|$ ස්වකීය මූල ලෙස ඇති වර්ගජ සමීකරණය

 $9x^2 - 6(|a| + \sqrt{a^2 - 3b})x + 4\sqrt{a^4 - 3a^2b} = 0$ මගින් දෙනු ලබන බව තවදුරටත් පෙන්වන්න.

(b) $g(x) = x^3 + px^2 + qx + 1$ යැයි ගනිමු; මෙහි $p, q \in \mathbb{R}$ වේ. (x-1)(x+2) මගින් g(x) බෙදූ විට ශේෂය 3x+2 වේ. (x-1) මගින් g(x) බෙදූ විට ශේෂය 5 බව හා (x+2) මගින් g(x) බෙදූ විට ශේෂය -4 බව පෙන්වන්න.

p හා q හි අගයන් සොයා (x+1) යන්න g(x) හි සාධකයක් බව පෙන්වන්න.

r=0,1,2,...,14 සඳහා ඉහත පුසාරණයේ x' අඩංගු පදය T_r යැයි ගනිමු.

 $x \neq 0$ සඳහා $\frac{T_{r+1}}{T_r} = \frac{2(14-r)}{5(r+1)}x$ බව පෙන්වන්න.

ඒ නයින්, $x=\frac{4}{3}$ වන විට, ඉහත පුසාරණයෙහි විශාලතම පදය ලබාදෙන r හි අගය සොයන්න.

 $(b) \ c \geq 0$ යැයි ගනිමු. $r \in \mathbb{Z}^+$ සඳහා $\frac{2}{(r+c)(r+c+2)} = \frac{1}{(r+c)} - \frac{1}{(r+c+2)}$ බව පෙන්වන්න.

ඒ නයින්, $n\in\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n\frac{2}{(r+c)(r+c+2)}=\frac{(3+2c)}{(1+c)(2+c)}-\frac{1}{(n+c+1)}-\frac{1}{(n+c+2)}$ බව පෙන්වන්න.

 $\sum_{r=1}^{\infty} rac{2}{(r+c)(r+c+2)}$ අපරිමිත ශ්ල්ණිය අභිසාරී බව අපෝහනය කර එහි ඓකාය සොයන්න.

c සඳහා සුදුසු අගයන් සහිත ව මෙම ඓකාස භාවිතයෙන්, $\sum_{r=1}^{\infty} \frac{1}{r(r+2)} = \frac{1}{3} + \sum_{r=1}^{\infty} \frac{1}{(r+1)(r+3)}$ බව පෙන්වන්න.

$$\mathbf{B} = \begin{pmatrix} 2 & a & 3 \\ -1 & b & 2 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & -1 & a \\ 1 & b & 0 \end{pmatrix}$ හා $\mathbf{P} = \begin{pmatrix} 4 & 1 \\ 2 & 0 \end{pmatrix}$ යැයි ගනිමු; මෙහි $a, b \in \mathbb{R}$ වේ.

 ${f A}{f B}^{
m T}={f P}$ බව දී ඇත; මෙහි ${f B}^{
m T}$ මගින් ${f B}$ නාහාසයෙහි පෙරඑම දැක්වේ. a=1 හා b=-1 බව පෙන්වා, a හා b සඳහා මෙම අගයන් සහිත ව ${f B}^{
m T}{f A}$ සොයන්න.

 ${f P}^{-1}$ ලියා දක්වා, එය භාවිතයෙන්, ${f P}{f Q}={f P}^2+2{f I}$ වන පරිදි ${f Q}$ නාහසය සොයන්න; මෙහි ${f I}$ යනු ගණය ${f 2}$ වූ ඒකක නාහසයයි.

(b) අාගන්ඩ් සටහනක, |z|=1 සපුරාලන z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂායන්හි පථය වූ C හි දළ සටහනක් අඳින්න.

 $z_0=a\left(\cos\theta+i\sin\theta
ight)$ යැයි ගනිමු; මෙහි a>0 හා $0<\theta<\frac{\pi}{2}$ වේ. $\frac{1}{z_0}$ හා z_0^2 යන සංකීර්ණ සංඛාා එක එකක මාපාංකය a ඇසුරෙන් ද පුධාන විස්තාරය θ ඇසුරෙන් ද සොයන්න.

P,Q,R හා S යනු පිළිවෙළින් $z_0,\,rac{1}{z_0}\,,z_0+rac{1}{z_0}$ හා z_0^2 යන සංකීර්ණ සංඛාා ඉහත ආගන්ඩ් සටහනෙහි නිරූපණය කරන ලක්ෂා යැයි ගනිමු.

 $m{P}$ ලක්ෂාය ඉහත $m{C}$ මත පිහිටන විට

(i) Q හා S ලක්ෂා ද C මත පිහිටන බවත්

More Past Papers at

tamilguru.lk

- (ii) R ලක්ෂාය තාත්ත්වික අක්ෂය මත 0 හා 2 අතර පිහිටන බවත් පෙන්වත්න.
- **14**. (a) $x \neq 1, 2$ සඳහා $f(x) = \frac{x^2}{(x-1)(x-2)}$ යැයි ගනිමු.

 $x \neq 1, 2$ සඳහා f(x)හි වසුත්පන්නය, f'(x) යන්න $f'(x) = \frac{x(4-3x)}{(x-1)^2(x-2)^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝන්මුඛ හා හැරුම් ලක්ෂා දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න. පුස්තාරය භාවිතයෙන් $\frac{x^2}{(x-1)(x-2)} \leq 0$ අසමානතාව විසඳන්න.

(b) යාබද රූපයේ පෙන්වා ඇති අඳුරු කළ පෙදෙසෙහි D වර්ගඵලය 385 m^2 වේ. මෙම පෙදෙස ලබාගෙන ඇත්තේ දිග මීටර 5x ද පළල මීටර 3y ද වූ ABCD සෘජුකෝණාසුයකින්, දිග මීටර y ද පළල මීටර x ද වූ සර්වසම සෘජුකෝණාසු හතරක් ඉවත් කිරීමෙනි. $y=\frac{35}{x}$ බව පෙන්වා, අඳුරු කළ පෙදෙසෙහි මීටරවලින් මනින ලද පරිමිතිය P යන්න x>0 සඳහා $P=14x+\frac{350}{x}$ මගින් දෙනු ලබන බව පෙන්වන්න.

P අවම වන පරිදි x හි අගය සොයන්න.

- 15. (a) (i) $\frac{1}{x(x+1)^2}$ හින්න භාග ඇසුරෙන් පුකාශ කර, **ඒ නයින්.** $\int \frac{1}{x(x+1)^2} \, \mathrm{d}x$ සොයන්න.
 - (ii) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int xe^{-x}\,\mathrm{d}x$ සොයා, ඒ නයින්, $y=xe^{-x}$ වකුයෙන් ද x=1, x=2 හා y=0 සරල රේඛාවලින් ද ආවෘත පෙදෙසෙහි වර්ගඵලය සොයන්න.

$$(b)$$
 $c>0$ හා $I=\int\limits_0^c rac{\ln{(c+x)}}{c^2+x^2}\,\mathrm{d}x$ යැයි ගනිමු. $x=c\, an heta$ ආදේශය භාවිතයෙන්,

$$I=rac{\pi}{4c}\ln c+rac{1}{c}J$$
 බව පෙන්වන්න; මෙහි $J=\int\limits_{c}^{rac{\pi}{4}}\ln\left(1+ an heta
ight)\mathrm{d} heta$ වේ.

$$a$$
 නියතයක් වන $\int\limits_0^a f(x)\,\mathrm{d}x = \int\limits_0^a f(a-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්, $J=rac{\pi}{8}\ln 2$ බව පෙන්වන්න.

$$I = \frac{\pi}{8c} \ln(2c^2)$$
 බව අපෝහනය කරන්න.

16. m \in \mathbb{R} යැයි ගනිමු. P \equiv (0,1) ලක්ෂාය y=mx මගින් දෙනු ලබන l සරල රේඛාව මත නොපිහිටන බව පෙන්වන්න.

l ට ලම්බව P හරහා වූ සරල රේඛාව මත ඕනෑම ලක්ෂායක ඛණ්ඩාංක $(-mt,\,t+1)$ ආකාරයෙන් ලිවිය හැකි බව පෙන්වන්න; මෙහි t යනු පරාමිතියකි.

ඒ නගින්. P සිට l ට ඇඳි ලම්බයේ අඩිය වූ Q ලක්ෂායෙහි ඛණ්ඩාංක $\left(\frac{m}{1+m^2},\frac{m^2}{1+m^2}\right)$ මගින් දෙනු ලබන බව පෙන්වන්න.

m විචලනය වන විට, Q ලක්ෂාය $x^2+y^2-y=0$ මගින් දෙනු ලබන S වෘත්තය මත පිහිටන බව පෙන්වා, Q හි පථයේ දළ සටහනක් xy-තලයෙහි අඳින්න.

තව ද $R \equiv \left(\frac{\sqrt{3}}{4}, \frac{1}{4}\right)$ ලක්ෂාය S මත පිහිටන බව පෙන්වන්න.

R ලක්ෂාලයේ දී S බාහිරව ස්පර්ශ කරන හා x-අක්ෂය මත කේන්දය පිහිටන S' වෘත්තයේ සමීකරණය සොයන්න.

 S^\prime හි කේත්දුයම කේත්දුය ලෙස ඇතිව S අභාවන්තරව ස්පර්ශ කරන වෘත්තයේ සමීකරණය ලියා දක්වන්න.

- 17. (a) (i) $0^{\circ} < \theta < 90^{\circ}$ සඳහා $\frac{2\cos(60^{\circ} \theta) \cos\theta}{\sin\theta} = \sqrt{3}$ බව පෙන්වන්න.
 - (ii) රූපයේ පෙන්වා ඇති ABCD චතුරසුයෙහි AB=AD, $A\hat{B}C=80^\circ$, $C\hat{A}D=20^\circ$ හා $B\hat{A}C=60^\circ$ වේ. $A\hat{C}D=\alpha$ යැයි ගනිමු. ABC තිකෝණය සඳහා සයින් නීතිය භාවිතයෙන්, $\frac{AC}{AB}=2\cos 40^\circ$ බව පෙන්වන්න.

මීළඟට ADC තුිකෝණය සඳහා සයින් නීතිය භාවිතයෙන්,

$$\frac{AC}{AD} = \frac{\sin(20^\circ + \alpha)}{\sin \alpha}$$
 බව පෙන්වන්න.

 $\sin{(20^{\circ} + \alpha)} = 2\cos{40^{\circ}}\sin{\alpha}$ බව අපෝහනය කරන්න.

ඒ නයින්.
$$\cot \alpha = \frac{2\cos 40^\circ - \cos 20^\circ}{\sin 20^\circ}$$
 බව පෙන්වන්න.

දැන්, ඉහත (i) හි පුතිඵලය භාවිතයෙන්, $\alpha=30^\circ$ බව පෙන්වන්න.

(b) $\cos 4x + \sin 4x = \cos 2x + \sin 2x$ සමීකරණය විසඳන්න.

.

ශි ලංකා විතාහ දෙපාර්තමේන්තුව ලි ලංකා විතාහ දෙපාර්තමේන්තුව ලි ලංකා විතාහ දෙපාර්තමේන්තුව ලි ලංකා විතාහ දෙපාර්තමේන්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் படன்றத் திணைக்களும் இலங்கைப் பரிடன்றத் திணைக்களும் இலங்கைப் பரிடன்சத் திணைக்களும் Department of Examinations, Sri Lanka Department of இலங்கைய Sri Links (Stri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka Department of Examinations, Sri Lanka (ලි ලංකා විතාහ දෙපාර්තමේන්තුව ලි ලෙකා විතාහ දෙපාර්තමේන්තුව ලි ලෙකා විතාහ දෙපාර්තමේන්තුව ලි ලෙකා විතාහ දෙපාර්තමේන්තුව ලික්වන් ලික්වන් ලික්වන් ලික්වන් ලික්වන් ලික්වන් ලික්වන් ලික්වන් ලෙක්වන් ලික්වන්
> අබාසන ලපාදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2017

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II

பැය තුනයි முன்று மணித்தியாலம் Three hours

විභාග අංකය

උපදෙස් :

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා ඓ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විහාග ශාලාධිපතිට භාර දෙන්න.
- 🗱 පුශ්න පතුයෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- * මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය II						
කොටස	පුශ්න අංකය	ලකුණු				
	1					
	2					
	3					
	4					
A	5					
	6					
	7					
	8					
	9					
	10					
	11					
	12					
	13					
В	14					
	15					
	16					
	17					
	එකතුව					
	පුතිශත ය					

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්ෂ	ක	
පරීක්ෂා කළේ:	1	
	2	
අධීක්ෂණය කළේ:		

A කොටස

1.	ස්කන්ධය m වූ P අංශුවක් හා ස්කන්ධය λm වූ Q අංශුවක් පිළිවෙළින් u හා v වේගවලින් එකිනෙක දෙසට, සුමට තිරස් ගෙබීමක් මත වූ එක ම සරල රේඛාවක් දිගේ චලනය වේ. ඒවායේ ගැටුමෙන් පසු, P අංශුව v වේගයෙන් හා Q අංශුව u වේගයෙන් පුකිවිරුද්ධ දිශාවලට චලනය වේ. $\lambda=1$ බව පෙන්වා, P හා Q අතර පුකාහාගති සංගුණකය සොයන්න.
	-අතුරමෑහි කාර වකාකාර 7 තුවරණයකින්න භාරත ව මහළට වැදුනය මව. මෙන $I < V$ මට. කාරුය $I = I$ ව C යිවෙලය.
	අාරම්භ කර ඒකාකාර f ත්වරණයකින් සිරස් ව ඉහළට චලනය වේ; මෙහි $f < g$ වේ. කාලය $t = T$ හි දී බෝලය, බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t = 0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුචේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. T , f හා g ඇසරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.
	බැලුනයෙන් සීරුවෙන් ඉවත් වී ගුරුත්වය යටතේ චලනය වේ. $t=0$ සිට බෝලය එහි උපරිම උස කරා ළඟා වන තෙක් බෝලයේ උඩු අත් චලිතය සඳහා පුවේග-කාල පුස්තාරයේ දළ සටහනක් අඳින්න. $T,\ f$ හා g ඇසුරෙන්, බෝලය ළඟා වූ උපරිම උස සොයන්න.

3.	රූපයේ $PABCD$ යනු තිරසට 30° කින් ආනත අචල සුමට තලයක් මත තබා $222222222222222222222222222222222222$
	ඇති ස්කන්ධය m වූ අංශුවකට ඈඳා ඇති සැහැල්ලු අවිතනා තන්තුවකි.
	තත්තුව, A හි වූ අවල කුඩා සුමට කප්පියක් මතින් ද ස්කන්ධය 2 <i>m</i> වූ සුමට
	කප්පියක් යටින් ද යයි. D ලක්ෂාය අචල වේ. PA , උපරිම බෑවුම් රේඛාවක්
	දිගේ වන අතර AB හා CD සිරස් වේ. තන්තුව තදව ඇතිව පද්ධතිය
	නිශ්චලතාවයේ සිට මුදාහරිනු ලැබේ. අංශුවේ ත්වරණයෙහි විශාලත්වය
	සචල කප්පියේ ත්වරණයෙහි විශාලත්වය මෙන් දෙගුණයක් බව පෙන්වා, $B \stackrel{\longleftarrow}{\triangleright} C$
	තන්තුවේ ආතතිය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වන්න. 🗾 📆 🔭
	▼ 2 mg

	······································
	······································
4.	ස්කන්ධය M k g වූ ටුක් රථයක් ස්කන්ධය m k g වූ කාරයක් සෘජු තිරස් පාරක් දිගේ ඇදගෙන යනු ලබන්නෙ
	ුටුක් රථයේ හා කාරයේ චලිත දිශාවට සමාන්තර වූ සැහැල්ලු අවිතනා කේබලයක් ආධාරයෙනි. ටුක් රථයෙ
	හා කාරයේ චලිතයට පුතිරෝධ පිළිවෙළින් නිව්ටන λM හා නිව්ටන λm වේ; මෙහි λ ($>$ 0) නියතයකි. එක්තර
	මොහොතක දී ටුක් රථයේ එන්ජිමෙන් ජනනය කරනු ලබන ජවය $P\mathrm{kW}$ වන අතර ටුක් රථයෙහි හා කාරයෙහි
	වේගය v m s $^{-1}$ වේ. එම මොහොතේ දී කේබලයේ ආතතිය නිව්ටන $\frac{1000mP}{(M+m)v}$ බව පෙන්වන්න.
	······································

5 .	සුපුරුදු අංකනයෙන්, $-\mathbf{i}+2\mathbf{j}$ හා $2lpha\mathbf{i}+lpha\mathbf{j}$ යනු පිළිවෙළින් O අචල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා
	දෙකක පිහිටුම් දෛශික යැයි ගනිමු; මෙහි $lpha(>0)$ නියතයකි. අදිශ ගුණිකය භාවිතයෙන්, $\hat{AOB}=rac{\pi}{2}$ බව පෙන්වන්න.
	C යනු $OACB$ සෘජුකෝණාසුයක් වන පරිදි වූ ලක්ෂාය යැයි ගනිමු. \overrightarrow{OC} දෙශිකය y -අක්ෂය දිගේ පිහිටයි නම්, $lpha$ හි අගය සොයන්න.
6.	OA හා OB සැහැල්ලු අවිතනාඃ තන්තු දෙකක් මගින් O අචල ලක්ෂායකින් එල්ලන ලද දිග $2a$ හා බර W වූ AB ඒකාකාර දණ්ඩක් රූපයේ දැක්වෙන පරිදි සමතුලිතතාවයේ
	පවතී. G යනු AB හි මධා ලක්ෂාය වේ. $A\hat{O}B=\frac{\pi}{2}$ හා $O\hat{A}B=lpha$ බව දී ඇත.
	$A\hat{O}G=lpha$ බව පෙන්වා, තන්තු දෙකෙහි ආතති සොයන්න. $ar{lpha}$
	A
	······································

7 .	A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A \cup B) = rac{4}{5}$,
	$P(A' \cup B') = \frac{5}{6}$ හා $P(B \mid A) = \frac{1}{4}$ බව දී ඇත. $P(A)$ හා $P(B)$ සොයන්න.
•	
	මල්ලක, කාඩ් නවයක් අඩංගු වේ. ඒවායින් හතරක 1 සංඛාහාංකය මුදුණය කර ඇති අතර ඉතිරි ඒවායේ
	2 සංඛාහාංකය මුදුණය කර ඇත. පුතිස්ථාපන රහිත ව වරකට එක බැගින් සසම්භාවීව මල්ලෙන් කාඩ් ඉවතට ගනු ලැබේ. (i) ඉවතට ගත් පළමු කාඩ් දෙකෙහි සංඛාහාංකයන්හි එකතුව හතර වීමේ,
	(ii) ඉවතට ගත් පළමු කාඩ තුනෙහි සංඛාහංකයන්හි එකතුව තුන වීමේ,
	සම්භාවිතාව සොයන්න.

9.	තිරීක්ෂණ හයක අගයන් a,a,b,b,x හා y වේ; මෙහි a,b,x හා y යනු පුභින්න ධන තිබිල වත අතර $a\!<\!b$ වේ. මෙම තිරීක්ෂණ හයෙහි මාතයන් මොනවා ද?
	මෙම මාතයන්හි ඓකාසය හා ගුණිතය පිළිවෙළින් x හා y බව දී ඇත. නිරීක්ෂණ හයෙහි මධාෘතාසය $rac{7}{2}$ වේ
	තම්, a හා b සොයන්න.
	,
10	r r r යන සංඛාන දහලයුති මධානනයෙ හා විචලතාව පිළිවෙළින් 10 හා 9 වේ. x සංඛානව වෙත්
10.	$x_1, x_2,, x_{10}$ යන සංඛාහ දහයෙහි මධානොසය හා විචලතාව පිළිවෙළින් 10 හා 9 වේ. x_{10} සංඛාහව ඉවත් කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව
10.	x_1, x_2, \ldots, x_{10} යන සංඛාහ දහයෙහි මධානොසය හා විචලතාව පිළිවෙළින් 10 හා 9 වේ. x_{10} සංඛාහව ඉවත් කිරීමෙන් පසු ඉතිරි වන සංඛාහ නවයෙහි ද මධානාසය 10 බව දී ඇත. මෙම සංඛාහ නවයෙහි විචලතාව සොයන්න.
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාා නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාා නවයෙහි විචලතාව
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාෘ නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාෘ නවයෙහි විචලතාව සොයන්න.
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාෘ නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාෘ නවයෙහි විචලතාව සොයන්න.
10.	කිරීමෙන් පසු ඉතිරි වන සංඛාෘ නවයෙහි ද මධානාය 10 බව දී ඇත. මෙම සංඛාෘ නවයෙහි විචලතාව සොයන්න.