НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Лабораторная работа №3.

Реакции процессора на внешний сигнал запроса прерывания и сигнал готовности подсистем

Выполнил: Игнаков К.М. 19-В-2

Принял: Киселев Ю.Н.

Цель работы

Изучение реакции процессора на внешние сигналы прерывания INT и READY (готовность подсистем) путем получения и исследование временных диаграмм, которые формирует процессор КР580ВМ80А при выполнении перехода на программу прерывания, анализ данных на ШД и ША в циклах перехода; исследование реакции сигнал ГОТОВНОСТИ подсистем на Ready.

Задача

Написать программу, которая позволит исследовать реакцию процессора на внешний сигнал прерывания; произвести наблюдение фиксацию временных И диаграмм сигналов управления, сигналов шин данных и адреса в процессорных циклах с помощью логических анализаторов; снятие битовой информации ПО осциллограммам; исследование временных которые процессор формирует диаграмм, при получении внешних сигналов прерывания И сигнала готовности подсистем.

Схема микро-ЭВМ на процессоре КР580ВМ80А

Листинг программы:

lxi sp, 200h
ei
nop
:m1
jmp m1
skip 18h
mvi a, 64h
out 01h

ret

Сведенные в таблицу результаты считывания данных с ШД

Адрес (PC)	Код	Мнемоника
lxi sp, 200h	0000h	31 00 02
ei	0003h	FB
nop	0004h	00
jmp m1	0004h	C3 01 00
skip 20h	0004h	E7
mvi a, 64h	0018h	3E 64
out 01h	001Ah	D3 01
ret	001Ch	C9

Временные диаграммы:

1 цикл:

- 1) Приём запроса прерывания
- 2) Сброс триггера INTE, выдача адреса следующей операции на $\mathbb{U}A$
- 3) Формирование внешним устройством байта вектора
- 4) Процессор принимает байт вектора
- 5) Формирование адреса первой ячейки стека

2 цикл:

- 1) Выдача на ША адреса вершины стека
- 2) Формирование следующего адреса вершины стека (SP-1)
- 3) Занесение в стек старшего байта адреса возврата

3 цикл:

- 1) Выдача на ША адреса вершины стека
- 2) Формирование следующего адреса вершины стека (SP-1)
- 3) Занесение в стек младшего байта адреса возврата

Результаты считывания данных с ШД:

	ST1	INTA	ST2	MW1	ST3	MW2
D7 / MR	0	1	0	0	0	0
D6 / IN	0	1	0	0	0	0
D5 / M1	1	0	0	0	0	0
D4 / OUT	0	1	0	0	0	0
D3 / HALT	0	1	0	0	0	0
D2 / STACK	0	1	1	0	1	1
D1 / WR	1	1	0	0	0	0
D0 / INTA	1	1	0	0	0	1
Код	23h	DFh	04h	00h	04h	05h

Комментарии к результатам считывания данных с шины данных.

INTA - Чтение кода вектора прерывания

MW1 - Занесение старшего байта адреса возврата в стек

MW2 - Занесение младшего байта адреса возврата в стек

Результаты считывания данных с ША:

	INTA	MW1	MW2
A12	0	0	0
A11	0	0	0
A10	0	0	0
A9	0	0	0
A8	0	1	1
A7	0	1	1
A6	0	1	1
A5	0	1	1
A4	0	1	1
А3	0	1	1
A2	1	1	1
A1	0	1	1
A0	1	1	0
Код	0005h	01FFh	01FEh

Комментарии к результатам считывания данных с шины адреса.

- 1) По адресу 00001001 (0009h) хранится КОП следующей выполняемой команды (адрес возврата)
- 2) По адресу 11111111 (01FFh) записан старший байт адреса возврата
- 3) По адресу 11111110 (01FEh) записан младший байт адреса возврата

Реакция микропроцессора КР580BM80A на сигнал READY на примере команды EI.

Введение такта ожидания увеличивает длительность сигнала обращения к памяти (регистрам). Также увеличивается длительность состояний адреса и сигнала управления (МR, МW, IOR, IOW). Это дает более благоприятные условия для чтения/записи содержимого ячейки памяти (регистра). Тем самым мы удовлетворяем требованиям более медленных устройств и учитываем задержку распространения сигналов от блока ЦП к конкретному узлу.

На временной диаграмме показан случай, когда линии WAIT и READY соединены. Микропроцессор анализирует сигнал READY в 2 такте каждого машинного цикла. Во втором такте READY = 0, поэтому микропроцессор вводит такты ожидания, а также подтверждает ожидание сигналом WAIT. Так как сигнал WAIT стал равен 1, то сигнал READY тоже перешел в состояние 1. Во время анализа в такте ожидания сигнал READY=1, поэтому микропроцессор продолжает выполнение машинного цикла.

Таким образом, при соединении линий процессора READY и WAIT микропроцессор будет вводить по одному такту ожидания в каждом машинном цикле.

Вывод: в результате выполнения данной лабораторной работы была изучена реакция процессора на внешние

сигналы прерывания INT и READY путем получения и исследования временных диаграмм, которые формирует процессор ${\tt KP580BM80A}$