

Pathology of Acute and Chronic Coronary Stenting in Humans

Andrew Farb, MD; Giuseppe Sangiorgi, MD; Andrew J. Carter, DO; Virginia M. Walley, MD; William D. Edwards, MD; Robert S. Schwartz, MD; Renu Virmani, MD

Buckground—Despite the increasing use of stems, few reports have described human coronary anery morphology early and late after stemting.

Methods and Results—Histology was performed on 55 stents in 35 coronary vessels (32 native arteries and 3 vein grafts) from 32 patients. The mean duration of stent placement was 39±82 days. Fibrin, platelets, and neurophils were associated with stent struts ≤11 days after deployment. In stents implanted for ≤3 days, only 3% of struts in contact with fibrons plaque had >20 associated inflammatory cells compared with 44% of struts embedded in a lipid core and 36% of struts in contact with damaged media (P<0.001). Neointimal growth determined late histological success, and increased neointimal growth correlated with increased stent size relative to the proximal reference lumon area. Neointimal thickness was greater for struts associated with medial damage than struts in contact with plaque (P<0.0001) or intact media (P<0.0001). When matched for time since treatment, neointimal cell density in stanted arteries was similar to that in unstented arteries that had undergone balloon angioplasty and showed similar proteoglycan deposition. Conclusions—Morphology after coronary stenting demonstrates early thrombus formation and acute inflammation followed by neointimal growth. Medial injury and lipid core penetration by struts result in increased inflammation. Neointima increases as the ratio of stent area to reference lumen area increases. Deployment strategies that reduce medial damage and avoid stent oversizing may lower the frequency of in-stent rostenosis. (Circulation, 1999;99:44-52.)

Key Words: stems a coronary disease a restemosis a angioplasty a pathology

Intracoronary stent placement is being used increasingly for the treatment of atherosclerotic coronary disease. Emergency coronary artery stent placement for abrupt or threatened artery closure due to arterial dissection after PTCA has been a valuable treatment in maintaining lumen patency and reducing the need for urgent coronary bypass surgery. The use of stents as primary therapy for coronary atherosclerosis has gained widespread acceptance, with reports of reduced restenosis rates in selected lesions compared with PTCA. 2.9 Currently, coronary stenting in acute myocardial infarction is under active investigation.

Although stents reduce restenosis rates in carefully sclected lesions,^{2,3} in-stent restenosis remains a recognized clinical problem⁵ and can be expected to increase in incidence as coronary stenting becomes more frequent and is used in less ideal lesions.⁶ Despite the tremendous expansion of the use of coronary stents, there have been few published data on the pathology of stents deployed in human coronary arterles.²⁻⁹ The pathology of human coronary stenting may provide insights into the biology of stent-vessel wall interaction and guide approaches to therapies to prevent or treat in-stent restenosis.

Methods

In brief, human stented coronary arteries were either embedded whole in methylmethacrylate or cut transversely for paraftin embedding (complete details of the methods will be provided by the authors on request). Histological observations consisted of plaque-stent interaction, thrombus formation, inflammation, and the presence of a recointing. In native arteries, each stent strut was evaluated with respect to contact with plaque or media, and the media was determined to be duringed or intect. The extent of arterial injury at the site of stent struts was graded by the method of Schwartz et al. For arteries stented for =3 days, inflammation around each strut was assessed, and the following scale for inflammatory cells adjacent to struts was used: 1+, 0 to 10 inflammatory cells/strut; 2+, 11 to 20 inflammatory cells/strut; and 3+, >20 inflammatory cells/strut. Immunobistochemical staining for detection of smooth muscle cells and macrophages was performed in selected cases.

In native coronary arteries steated for >30 days, indimal thickness at each sure was measured and strut location recorded (in contact with plaque, intact media, or damaged media). A long-term histological success was defined as a percent area stenosis \(\leq 75\% and

Received May 13, 1998; revision received September 1, 1998; accepted September 16, 1998.

From the Department of Cardiovascular Pathology (A.F., A.I.C., R.V.), Armed Forces Institute of Pathology, Washington, DC; the Mayo Clinic (G.S., W.D.E., R.S.S.), Rochester, Minn; and The University of Ottawa Heart Institute and Ottawa Civic Respiral (V.M.W.), Ottawa, Ontario, Canada. The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

Correspondence to Rena Virmani, MD, Department of Cardiovascular Pathology, Armed Forces Institute of Pathology, Weshington, DC 20306-6000.

© 1999 American Heart Association, Inc.

Circulation is available at http://www.circulationsha.org

Farb et al

January 5/12, 1999

4

TABLE 1. Distribution of Duration of Stent Implant and Type of Stent in the 142 Arterial Sections Examined

=3 Daye (14 Patients; 61 Sections)	≥4 to ≤11 Daya (4 Patients; 18 Sections)	≥12 to ≤30 Days (4 Petients; 29 Sections)	>30 Days (10 Patients; 34 Sections)
41 Palmaz-Schatz	1 Palmaz-Schalz	22 Palmaz-Schatz	21 Palmaz-Schatz
13 Gianturco-Roubin	12 Glanturco-Roubin	7 Glanturco-Roubin	3 Gianturco-Roubin
4 Wilder	5 Gianturco-Roubin II		10 Gisnaurco-Roubin II
3 Glanturco-Roubin 1			

failure as stenosis >75%. Native coronary arteries stented for >30 days (5 stents) were compared with coronary arteries with PTCA alone (10 arteries) matched for duration of stent placement or PTCA. Staining with Aleian blue was performed to identify proceedly cans in the neointima and their component glycosaminoglycans (hyaluronic soid, chondroldn sulfate, depunctan sulfate, and heparan sulfate), and staining was repeated after 3 hours of testicular hyalidase digestion. Neointimal cell density and neointimal thickness were determined.

Results

Fifty-five stents in 35 coronary vessels (32 native coronary arteries and 3 saphenous vein bypass grafts) from 32 parients (mean age, 64±10 years; 17 men and 15 women) with stents were studied. Coronary artery stents were obtained at autopsy

in 28 patients; stents in saphenous vein grafts were obtained at repeat bypass surgery in 3 patients, and a stent in a native coronary aftery was obtained at the time of cardiac transplantation in 1 patient. In autopsy cases, the cause of death was acute myocardial infarction in 18 cases, sudden unexpected cardiac death in 7, and noncardiac death in 3. The mean number of stents per artery was 1.6±1.1 (range, 1 to 4 stents). The 32 native coronary stents were placed as follows: left main, n=3; left anterior descending, n=12; left circumflex, n=8; and right coronary, n=9. The indication for stenting was primary therapy in 18 and suboptimal result from PTCA or significant arterial dissection in 17. Adjunctive PTCA was

rigure 1. Compression of commany artery plaque by stent strute (*). There is bowing of the plaque (p) into the lumen between strute of this Palmaz-Schatz stent placed 1 day enformentem (A; hematoxyfin-sosin, bar=0.12 mm). Fibrous plaque compression by stent atrute is present 120 days after coronary implant, seen at low (6) and high (C) powers. A layer of neolintima (n) is present between strute and lumen (L). (B and C: Movat pentachromo, bors=0.12 mm.)

46 Pathology of Human Stents

Figure 2. Focal penetration of stent struts through thin fibrous cap of fibroatheromatous plaque into necrotic core is seen at low power (A; arrowheads outline the necrotic core) and high power (B). In this case, a Palmaz-Schatz stent was placed at a site of eccentric, lipid-rich coronary plaque. Residual arterial dissection (arrow) is evident in A, resulting in focal compression of the lumen (L). Struts are identified (?) in B, and necrotic core (arrowheads) containing cholesterol clefts is seen extending toward the lumen (L). Stent struts within the necrotic core are seen at low (C) and high (D) power after Palmaz-Schatz coronary stending 390 days antemortem. The plaque is eccentric and lipid rich. Cholesterol clefts (arrowhead) are present between struts (*), consistent with penetration of lipid core by struts at time of stent placement. Note that the neclntima (n) is in close proximity to the struts and cholesterol clefts. (Movat pentachrome; A and B, bars=0.12 mm; C and D, bars=0.20 mm.)

performed in all cases, along with atherectomy in 4 cases. The clinical diagnoses at the time of stenting were unstable angina in 13 cases, scute myocardial infarction in 7, and stable angina in 12. Bailout stenting, defined as stenting for threatened or acute vessel closure after PTCA, was performed in 6 patients.

The mean duration of stent implantation for the 55 stents was 39 ± 82 days (range, 0.5 to 390 days), with 25 stents (from 14 parients) examined ≤ 3 days after implantation, 8 stents (4 patients) from ≥ 4 to ≤ 11 days, 11 stents (4 patients) from ≥ 12 to ≤ 30 days, and 11 stents (10 patients) after > 30 days (mean, 175 ± 105 days). A total of 142 arterial sections (137 native coronary arteries and 5 saphenous vein bypass grafts) containing stents were analyzed (Table 1).

Plaque compression (Figure 1) by stent struts was observed in 30 (94%) of 32 patients and 129 (91%) of 142 arcrisl

sections and was seen in all stent designs. A lipid core was present in the plaque in 66 sections (21 of 32 patients), and the core was focally penetrated by stont struts in 17 sections (26%; 11 patients; Figure 2): 14 of 44 sections containing a Palmaz-Schatz stent. 2 of 13 containing a Gianturco-Roubin stent, 0 of 1 containing a Wiktor stent, and 1 of 8 containing a Gianturco-Roubin II stent.

Platelet-rich thrombi were associated with strat strats (Figure 3A) in 65 of the 142 arterial sections (19 of 32 patients) and were related to the duration of stent implantation: 44 (72%) of 61 sections at ≤ 3 days (12 of 14 patients), 14 (78%) of 18 sections at 4 to 11 days (3 of 4 patients), 7 (24%) of 29 sections at 12 to 30 days (2 of 4 patients), and 0 of 34 sections at ≥ 30 days (0 of 11 patients ($P \leq 0.0001$). The presence of platelet deposition around stent struts at ≤ 3 days was similar in Palmaz-Schatz stents (33 (80%) of 41 sections)

Figure 3. Platelet-rich thrombus (A, arrowhead) is associated with strut from Glamurco-Roubin II coronary artery stent implanted 1 day enternortem. Numerous acute inflammatory cells are present within the thrombus. Focal fibrous cap disruption is seen (arrow). A fibrin-rich thrombus (arrowheads) is focally present around a stent strut (*) 1 day after placement of a Palmaz-Schatz stent (B). Fibrous plaque (p) is present below the strut. (Hematoxylin-ecsin; A, bar=0.16 mm; B, bar=0.12 mm.)

compared with Gianurco-Roubin stents (§ [62%] of 13 sections; P=NS). Fibrin-rich thrombi were also commonly seen around stent struts, especially early after stenting (Figure 3B). All 79 arterial seedons from stents at \leq 11 days (in 18 of 18 patients) had fibrin associated with stent struts; conversely, 12 (19%) of 63 sections and 7 of 14 patients at \geq 12 days had stent fibrin (P<0.0001).

Acute inflammatory cells (neutrophils) associated with stent struts were present in 48 (79%) of 61 arterial sections and 12 of 14 patients in stents implanted for ≤ 3 days, 15 (83%) of 18 at 4 to 11 days (3 of 4 patients), 21 (72%) of 29 at 12 to 30 days (3 of 4 patients), and 0 of 34 at ≥ 30 days (P < 0.0001 for all time points versus ≥ 30 days). Chronic inflammatory cells (lymphocytes and macrophages) around stent struts were also commonly seen at all time points: 50 (82%) of 61 sections at ≤ 3 days (11 of 14 patients), 12 (67%) of 18 sections at 4 to 11 days (3 of 4 patients), 28 (97%) of 29 sections at 12 to 30 days (4 of 4 patients), and 29 (85%) of 34 sections at ≥ 30 days (9 of 10 patients).

Inflammation associated with stents ≤3 days after implant in native company arteries was related to the underlying arterial wall morphology (Figures 4 and 5): 71% of struts in contact with fibrous plaque had ≤10 associated inflammatory

Figure 4. Inflammatory cell infiltrates associated with stent atruta wore assessed in coronary arteries containing stents of \$3 days' duration. There were increased numbers of inflammatory cells associated with struta in contact with lipid compand damaged media compared with fibrous plaque (P<0,001). For grading scale, see Methods.

cells (1+ inflammation) compared with 11% of state embedded in a lipid core and 19% of strats in contact with damaged media. In contrast, only 3% of strats in contact with fibrous plaque had 3+ inflammation (>20 associated inflammatory cells) compared with 44% of strats embedded in a lipid core and 36% of strats in contact with damaged media (P<0.001).

A neointima consisting of spindle-shaped mesenchymal cells (α -actin positive smooth muscle cells) within a proteoglycan matrix associated with stent struts was not present in any section in any of the 18 patients with ≤ 11 days implant duration; 45% of sections (2 of 4 patients) at 12 to 30 days (Figure 6) and 100% of sections (all 10 patients) at >30 days had spindle-shaped cells in a proteoglycan-rich matrix (P < 0.0001). Multinucleated giant cells were present in only 3 (10%) of 29 sections at 12 to 30 days and were more frequently seen in older stents (10 [29%] of 34 sections at >30 days; Figure 7).

The findings in the 3 patients with stenting of saphenous vein grafts were similar to those in the 32 patients with stenting in native atteries. In a 3-day-old Palmaz-Schatz stent, the stent wires focally penetrated the thin fibrous cap and were embedded in the large necrotic core of the lipid-rich plaque, with the necrotic core prolapsing into the lumen (Figure 8). A well-defined neointima (smooth muscle cells in a proteoglycan-collagen matrix), focal plaque compression, and chronic inflammatory cells associated with stent struts were present in the 2 patients with chronic (120 and 270 days) Palmaz-Schatz stents in vein bypass grafts.

Arterial Injury and Coronary Stenting

There were a total of 1036 stent strut sites identified in the 137 sections of native coronary arteries, of which 643 (62%) of 1036 struts were in direct contact with atherosclerotic plaque. Of the remaining 393 struts (38%) in contact with the media, medial damage was present at 120 struts (30%) and medial compression without laceration of the internal clastic lamina (IEL) at 215 struts (55%); the media was unremarkable at 58 struts (15%). The mean arterial injury score (Schwartz scale¹⁰) for the arterial sections in which focal medial damage was present was 0.73±0.80. When medial damage was absent and stent struts were associated with a

48 Pathology of Human Stents

Figure 5. Arterial Inflammation in coronary arteries with stems placed ≤ 3 days antemortem: Movet pentachrome stain (left) with higher-power hematoxylin-ecoin staining (right) from earne section. A, Few Inflammatory cells are present adjacent to Palmez-Schatz strut (*) in power hematoxylin-ecoin staining (right) from earne section. A, Few Inflammatory cells are expectated with Palmez-Schatz strut (*) that penetrates contact with fibrous plaque (p). B, Increased numbers of Inflammatory cells are expectated with dissection (d) and sesociated inflammatory cells (A). C, A Palmaz-Schatz strut (*) is in contact with damaged media (m) with dissection (d) and sesociated inflammatory cells. (A and B, bars=0.10 mm; C, bar=0.14 mm.)

normal or compressed media, the injury score was 0.11 ± 0.21 .

Neointimal Growth in Long-Term Stenting

In stents implanted for >30 days (mean, 175 ± 105 days), neointimal thickness at stent strut sites was greater when medial damage (medial laceration or repture) was present $(0.69\pm0.29 \text{ mm})$ than when struts were in contact with plaque $(0.33\pm0.26 \text{ mm}; P<0.0001)$ or struts in contact with an intact media $(0.29\pm0.23 \text{ mm}, P<0.0001, Figure 9)$. Ultimate histological success was dependent on lumen area and neointimal growth within the stent (Table 2). The mean neointimal area and neointima area/stent area in successos were 2.2 ± 1.1 and $0.39\pm0.12 \text{ mm}^2$, respectively, versus 3.9 ± 1.9 and $0.68\pm0.15 \text{ mm}^2$ in failures, respectively

(P<0.006 and P<0.0001). There were no differences between successes and failures with respect to areas of the external elastic lamina, IEL, plaque, or steat (Table 2). There was a significant linear correlation (P<0.0001, $R^2=0.54$) between increased neointimal growth and increased steat size relative to the proximal reference coronary artery lumen (Figure 10).

Chronic Stenting Versus PTCA: Neointimal Cellularity and Proteoglycans

The number of neointimal cells/mm² in native coronary exteries stented for >30 days was 3280±869, similar to that in PTCA arterics (3260±851 cells/mm²; Figure 11, A1-A2, B1-B2) matched for time since treatment (195±131 days for stents and 180±137 days for PTCA). The neointimal area

Figure 6. Early necintima present 12 days after Gianturco-Roubin coronary artery stent placement. A, intimol cells within extracellular metrix (arrowhead) are seen above the stent strut. B, KP-1 immunostaining identifies macrophages adjacent to the strut at bese of neolintima (arrow). C, Actin staining shows smooth muscle calls close to luminal surface of neolintima (arrowhead), within the plaque close to the media, and within the media (m). (A: Movet pentachrome, bar=0.18 mm; B: KP-1 immunostain; C: amouth muscle actin immunostain.)

was greater in the stented segments than in PTCA arteries $(3.1\pm1.6 \text{ versus } 1.9\pm1.2 \text{ mm}^2)$, respectively; P<0.05). However, IBL area was larger $(11.6\pm2.1 \text{ mm}^2)$ with stent placement than with PTCA $(7.9\pm2.1 \text{ mm}^3)$, P=0.0001), so that the neciminal corrected for artery size (neointima/IBL) was similar in stents and PTCA $(0.26\pm0.16 \text{ versus } 0.26\pm0.10$, respectively; P=NS). The mean neointimal thickness in the stented arteries $(0.39\pm0.26 \text{ mm})$ was smaller than in PTCA versus $(0.51\pm0.24 \text{ mm})$, but this difference did not reach statistical significance.

Alcian blue staining of stented and matched PTCA arteries demonstrated similar patterns of neointimal proteoglycan depo-

Figure 7. Multinucleated glant cell (arrowhead) and numerous chronic inflammatory cells (ic) associated with Palmaz-Schatz stent strut (*) placed 70 days antemortem in the left anterior descending coronary artory. (Hematoxylin-sosin, bar=0,10 mm.)

sition. Alcian blue staining showed strong blue staining of the neointima in stented and PTCA arteries (Figure 11, A3 and B3). After testicular hyalidase digestion, there was similar light staining for heparan and dermatan sulfate in stented and PTCA arteries (Figure 11, A4 and B4). These data identify chondroitin

Figure 8. Palmaz-Schatz atent placed 3 days antemortem in a suphenous voin graft containing a large necrotic core (nc. low power in A). In 8 (nigh power), there is focal extrusion of necrotic core contents (outlined by arrowheads) into the luman accondary to panetration of stern struts into the lipid core. The protruding necrotic core is covered by a tayer of thrombus (t). (Movat pentachrome; bern=0.14 mm.)

50 Pathology of Human stents

Figure 9. In stems implanted for >30 days, neclinimal thickness was increased at stent strut often when model laceration or rupture was prosent compared with struts in contact with plaque or with an intact media.

sulfate and hydromic soid as the predominant necintimal proteoglycans in PTCA and stented arteries.

Discussion

The present study demonstrates the time course of histological vascular responses to coronary stenting in humans. Early after stenting (≤11 days), fibrin, platelets, and acute inflammatory colls were nearly always present in association with stent struts. The stent-arterial wall interface influenced the severity of associated inflammation; increased numbers of inflammatory cells were seen when the stent strut was adjacent to injured media or lipid core rather than fibrous plaque. Chronic inflammation was also commonly observed adjacent to stent struts at all time points, especially ≥12 days after stenting. Plaque was compressed by stent struts (seen in 91% of vessel sections) in the present study. However, the concept that stents provide a boundary that excludes the underlying plaque from the lumen was not supported by the present study; penetration of the stent struts into a lipid core was common (26% of arterial sections with a lipid core had stent struts embedded in the core). A neointima containing smooth muscle cells was recognized beginning ~2 weeks after stenting.

In longer-term stents (>30 days after implant), histological success or failure was determined by neointimal growth within the stent and was not influenced by artery or stent size. Neointimal thickness was increased when me-

TABLE 2. Morphomotric Data from Histological Sections of Native Corenary Arteries Containing Stents >30 Days' Duration

	_	-	
	Histological Surcess (n=16)	Histological Fadure (n=14)	P
EEL area, mm ^e	10.9±4,0	10.9=25	0,98
IEL eres, min²	9,7±3,5	9.9±2.2	0.89
Stent area, mm²	5,9±27	5.5±1.7	0.60
Piaque area, mm²	3.621.3	4,4±1,8	0.31
Neolitima area, mm²	22±1.1	3.9 ± 1.9	<0.006
Noointima area/etent area	0.39±0.12	0.68±0.15	<0.0001
Milliage alsa, millis	3,7±1.9	1.6±0.6	<0.0006

A long-term histological success was defined as a percent area stenosis ≤75%. A long-term histological follows was defined as a percent area stenosis >75%.

EEL indicates external clastic lamina, Values are mean±SD.

Figure 10. Linear regression comparing ratio of stent area to litmen area of proximal reference artery (x axis) to that of nepirtimal area (y axis). Increased nepiritimal growth was associated with increased stent size relative to proximal reference lumen (R^2 =0.54, P<0.0001).

dial damage was present compared with struts in contact with atherosclerotic plaquo or an intact media. Furthermore, increased intrastent neointimal growth was present in histological failures, and increased neointimal area correlated with increased stent size relative to the proximal reference artery lumen. Therefore, stent oversizing relative to the reference lumen appears to be an undesirable goal in deployment. Intravascular ultrasound may be particularly useful in determining proximal reference lumen area. A stenting strategy in which stents are expanded to a point at which no gradient exists from the proximal reference to the stent may be beneficial. The present study is the first to compare whole arterial sections and to show neointimal ceil density and type of proteoglycan deposition in coronary stents similar to those in matched PTCA coronary vessels. In these arterios, the neointimal area was greater in stented arteries than in arteries with PTCA, but this difference was accounted for by the larger vessel size in the stept group.

Previous Pathological Studies of Stenting in Humans

Few pathological observations of coronary stenting in humans have been reported. Anderson et als reported pathological findings in 4 cases of Gianturco-Roubin stenting in coronary vessels: 2 nativo coronary arteries and 2 coronary bypass vein grafts. At 21 days, stent endothelialization was present, and a thin neointima containing smooth muscle cells was seen.8 In vein grafts at 19 weeks and 6 months, a smooth muscle cell-rich peointima and occasional chronic inflammatory cells were seen. In a study of 11 human cotonary stents, 4 of which were placed for resterosis after PTCA, Komatsu et al? showed actinpositive incimal amouth muscle cells 30 days after stenting. Van Beusekom et al' studied saphonous vein coronary bypass grafts with Wallstents (21 stouts in 10 patients). At 3 days, loukocytes, platelets, and fibrin were evident, and at 3 months, there was complete endothelial stent coverage and a smooth muscle cell-rich neointima. At 6 to 10

Figure 11. Necintimal cellularity and proteoglycans in chronic coronary stents compared with balloon engioplasty (PTCA). A1, Low-power micrograph of left circumflex coronary artory containing Glanturco-Roubin stent placed 10 months antemortem. Necintima is outlined by arrowheads, and stent struct is identified (*). Necintima is relatively thicker over stent struct compared with remainder of arterial segment. Bar=0.20 mm. A2, or Actin staining of necintima (n) identifying smooth muscle cells bar=0.12 mm. A3, Strong Aldian blue stain of necintima (n) showing presence of proteoglycans; bor=0.12 mm. A4, Faint Alcian blue staining after testicular hyalidate digestion, identifying minimal heparan sulfate and dermatan sulfate glycosaminoglycans in necintima (n). Strong Aldian blue steining before testicular hyalidase digestion indicates that necintimal proteoglycans consist predominantly of chondrollin sulfate and hyaluronic acid. Bar=0.12 mm. B1, Low-power micrograph of left anterior descending coronary artery treated with PTCA 13 months antemortem. Necinitima is outlined by arrowheads, and residual lumen (L) is indicated. Bar=0.16 mm. B2, or-Actin attaining of necintima (n), identifying smooth muscle cells. Cell density is similar to stented artery (A2). Bar=0.20 mm. B3, Alcian blue stain of necintima (n) showing strong staining for proteoglycans, similar in intensity to stented artery (A3). Bar=0.08 mm. B4, Faint Alcian blue staining after testicular hyalidase digestion, identifying minimal heparan sulfate and dormatan sulfate glycosaminoglycans in necintimal (n), similar in intensity to stanted artery (A4). Chondroitin sulfate and hyaluronic acid are the major constituents of the healntimal proteoglycans after PTCA. Bar=0.08 mm. (A1 and B1, Movat pentachrome: A2 and B2, amooth muscle actin immunostain; A3 and B3, Alcian blue; and A4 and B4, Alcian blue with 3 hours' hyalidase digestion.)

months, atherosclerotic plaque, foam cells, and cholesterol crystals were observed: it was suggested that stent-induced atheroma formation may occur. In the present study, the accintima was composed of smooth muscle cells in a proteoglycan-rich matrix. The presence of atherosclerotic plaque within the stent is likely due to penetration of struts into the necrotic core and prolapse of plaque between stent wires rather than stent-induced accelerated atherosclerosis.

Comparison to Stenting in Experimental Animal Models

In the porcine restenosis model, thrombus adjacent to stent struts composed of fibrin and trapped crythrocytes with acute inflammatory cells is seen at 24 hours. 11 At 7 days, there is organization of the thrombus associated with

macrophages; however, neutrophils are still observed. 11 From 14 to 28 days after stenting, smooth muscle cells are the predominant cell type, with occasional chronic inflammatory cells present. 11 These data in the pig model regarding inflammation and thrombus closely reflect the findings observed in human coronary stenting early after implantation (with a relatively longer direction of healing in humans).

The type of vascular injury in stemed normal arteries in experimental animals differs considerably from that in human atherosclerotic arteries. In normal pig arteries, for example, stent oversizing to produce a proliferative neo-intimal lesion results in direct medial injury (compression or laceration) by stent struts. In contrast, in humans, we observed that 62% of stent struts were in direct contact with atherosclerotic plaque, not media; medial compression by stent struts or medial damage associated with struts was present at 32% of struts.

52 Pathology of Human Stents

Arterial Inflammation and Injury: Clinical Implications

Experimental studies suggest important relationships among inflammation, vascular injury, and neointimal growth. In stented, nonetherosclerotic, balloon-injured rabbit iliac arteries, peak monocyte adherence was observed 3 days after stenting, with maximal proliferation seen at 7 days.12 There was a linear correlation (R2=0.82 to 0.92) between monocyte adherence and neoliitima at 14 days, 12 Forthermore, increased vascular injury correlated with increased nocintimal growth. inflammation, and thrombus formation.19 In the porcine double-artery injury model, acolutimal thickness was smaller at strut sites adjacent to an intact IEL and media than at areas of medial-loss.14 The observations from experimental work showing correlations among arterial injury, inflammation, and peointima and data from the present study demonstrating increased inflammation associated with stent struts in the vicinity of damaged modia and increased neointimal thickness at strute associated with medial damage suggest that avoidance of severe arterial injury during catheter-based interventions with stents may have a beneficial effect on late accintimal growth. Data from the present study showing the positive association of neointimal growth and increased stept sizing relative to the proximal reference lumen (a reflection of probable increased arterial injury) are supportive of stentdeployment techniques that can reduce arterial injury. Novel devices that do not require very high balloon inflations to accomplish close apposition of the stent to the arterial wall (eg, self-expanding stents) are currently under clinical trial.

Limitations

The findings in the present study are derived from descriptive pathology. Because most of the tissues analyzed were obtained at antopsy, the results presented may not be representative of persons who receive stents and survive. However, the present study is the first to report histological findings from a large series of stents placed in native human coronary atteries, and a majority of segments with stents in place for >30 days demonstrated histological success.

Conclusions

Morphology after coronary stent placement demonstrates the following sequence of events: thrombus formation and acute inflammation early after deployment, with subsequent neoin-timal growth. Increased inflammation early after stenting is associated with medial injury and lipid core penetration by

stent struts. Medial damage and stent oversizing relative to the reference arterial lumen are associated with increased neointimal growth.

References

- Schemig A, Kastrati A, Dietz R, Rauch B, Neuman F-I, Kame HH, Busch
 U. Emergency contrary stending for dissection duting percutaneous transluminal coronary angioplasty: angiographic follow-up after stending and
 after repeat angioplasty of the stended argment. J Am Coll Cardiol. 1994;
 23:1053-1060.
- Serruya PW, de Jacgere P. Kiernenerij F. Macaya C. Rusch W. Hayndricks
 G. Engentselston H. Macco J. Legrand V. Macco P. A companison of
 balloon-expandable about implantation with balloon angiophisty in patients
 with coronary energy disease. N Engl J Med. 1994;331;489-495.
- Fischman DL, Leen MB, Bolm DS, Schatz RA, Savage MP, Penn I, Detre
 K, Vehri L, Ricci D, Nobuyoshi M. A randomized compenison of coronary stem placement and balloon angloplasty in the treatment of corotity
 artery disease. N Engl J Med. 1994;331:496-501.
- 4. Thomas CN, Weintraub WS, Shen Y, Ghazzal ZM, Douglas JS, King SB III, Scott NA. "Bailout" coronary stending in patients with a recent myocardial infarction. Am J Cardiol. 1996;77:653-655.
- Klughezz BD, DcAngelo DL, Kim BK, Henman RC, Himbfeld JW, Kolansky DM. Three-year clinical follow-up after Palmaz-Schatz steading. J Am Coll Cardiol. 1996;27:1185-1191.
- Sawada Y, Nosaka H, Kamura T, Nobuyoshi M Indial and six month outcome of Palmez-Schatz stent implantation: STRESS/Benestent equivalent vs non-equivalent lesions. J Am Coll Cardiol. 1996;27(suppl A):252A. Abstract.
- Van Beusekom HMM, Van der Geissen WJ, Van Stylen RJ, Bos E, Bostnan FT, Serruys PW. Histology after stending of human suphenous vein bypass grafts: observations from surgically excised grafts 3 to 320 days after stent implantation. J Am Coll Cardiol. 1993;21:45-54.
- Anderson PG, Bajaj RK, Baxley WA, Roubin GS. Vascular pathology of balloon-expandable flexible coil stents in humans. J Am Coll Cardiol. 1992;19:277-381.
- Komatsu R, Ueda M, Naruko T, Kolima A, Becker AE Negintimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analysis. Circulation, 1998;98:224-233.
- Schwartz RS, Huber KC, Murphy JO, Edwards WD, Camrud AR, Vlietstra RB, Holmes DR. Restenosis and the proportional neolindmal response to coronary amony injury: results in a possine model. J Am Coll Cardiol. 1992;19:267-274.
- Carter AJ, Laird JR, Parb A, Kufs W, Wortham DC, Virmani R. Morphologic characteristics of lesion formation and time course of amount muscle cell proliferation in a porcine proliferative restruction model. J Am Coll Cardial. 1994;24:1398-1405.
- Rogers C, Welt FGP, Karnovsky MJ, Edelman ER. Monocyto recruitment and acointimal hyperplania in rabbits: coupled inhibitory effects of heparin. Arterioscler Thromb Vasc Blol. 1996;16:1312-1318.
- Roders C, Edelman ER. Endovascular stent design dictates experimental reatments and thrombosis. Circulation. 1995;91:2995–3001.
- 14. Carter AJ, Laird JR, Eufs WM, Bailey L, Hoopes TG, Reeves T, Fath A, Vinnani R. Coronary stenting with a novel stainless steel billoom expandable atent: determinants of neointimal formation and changes in arterial geometry after placement in an atheroscierotic model. J Am Coll Cardiol, 1996;27:1270—1277.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☑ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.