## Algebraic Geometry 2 Exercise sheet 4

**Exercise 1.** Let  $(X, \mathcal{O}_X)$  be a scheme.

- (1) Show that  $(X, \mathcal{O}_X)$  is reduced iff for any  $x \in X$ , the local ring  $\mathcal{O}_{X,x}$  has no nilpotent elements.
- (2) Let  $(\mathfrak{O}_X)_{\text{red}}$  be the sheafification of the presheaf  $U \mapsto \mathfrak{O}_X(U)_{\text{red}}$ , where  $A_{\text{red}} := A/\text{nil}(A)$  for any ring A. Show that  $(X, (\mathfrak{O}_X)_{\text{red}})$  is a scheme, and that there is a natural injective map  $(X, (\mathfrak{O}_X)_{\text{red}}) \to (X, \mathfrak{O}_X)$ .
- (3) Let  $f: X \to Y$  be a morphism of schemes, and assume X is reduced. Show that there exists a unique morphism  $g: X \to Y_{\text{red}}$  such that the diagram



commutes. (Here  $Y_{\text{red}}$  is shorthand for  $(Y, (\mathcal{O}_Y)_{\text{red}})$ .)

**Exercise 2.** Let  $f: X \to Y$  be a morphism of schemes and  $y \in |Y|$ . Show that the underlying topological space of the fiber  $X_y := k(y) \times_Y X$  is homeomorphic to  $f^{-1}(y)$  with the topology induced from |X|. (Here k(y) denotes the residue field  $\mathcal{O}_{Y,y}/\mathfrak{m}_y$ .)

Remark. We have proved this in the case where X is an affine scheme in the tutorial. It is recommended (though not necessary) that you try to reprove this yourselves. For X non-affine, use the fact that X is covered by affine open subsets, in order to glue the fiber  $X_y$  from its corresponding affine subsets.

## Exercise 3. The affine communication lemma. Let X be a scheme.

- (1) Let  $\operatorname{Spec}(A)$  an  $\operatorname{Spec}(B)$  be affine open subschemes of X. Given  $x \in \operatorname{Spec}(A) \cap \operatorname{Spec}(B)$ , show that there exist elements  $f \in A$  and  $g \in B$  such that the open sets  $D^A(f) \subseteq \operatorname{Spec}(A)$  and  $D^B(g) \subseteq \operatorname{Spec}(V)$  coincide and contain x. Here  $D^R(f) = \{\mathfrak{p} \in \operatorname{Spec}(R) : f \notin \mathfrak{p}\}$ , for any ring R and  $f \in R$ .
- (2) Let  $(\mathbf{P})$  be a property enjoyed by some open affine subsets of X, such that
  - (a) if an affine open subset  $\operatorname{Spec}(A) \hookrightarrow X$  has  $(\mathbf{P})$  then, for any  $f \in A$ , the principal open subset  $D^A(f) = \operatorname{Spec}(A_f)$  has  $(\mathbf{P})$  as well; and
  - (b) if  $\operatorname{Spec}(A) \hookrightarrow X$  and  $f_1, \ldots, f_N \in A$  are such that  $A = Af_1 + \cdots + Af_N$  and such that  $\operatorname{Spec}(A_{f_i}) \hookrightarrow X$  has  $(\mathbf{P})$  for all  $i = 1, \ldots, N$ , then  $\operatorname{Spec}(A)$  has  $(\mathbf{P})$  as well.

Assume  $X = \bigcup_{i \in I} \operatorname{Spec}(A_i)$ , where  $\operatorname{Spec}(A_i)$  has property  $(\mathbf{P})$  for all i. Then any open affine subscheme of X has  $(\mathbf{P})$ .

Remark. A property (P) as above is called an affine-local property.

- (3) Verify that the following properties of an open affine  $V \subseteq X$  are affine-local:
  - (a) V is the spectrum of a noetherian ring.
  - (b) V is a reduced scheme.
  - (c) V is the spectrum of a finitely generated B algebra, for a fixed ring B.
- (4) Show that a morphism  $f: X \to Y$  is locally of finite type (as defined in Hartshorne, p 84) if and only if for any affine open  $V = \operatorname{Spec}(B) \subseteq Y$  the preimage  $f^{-1}(V)$  can be covered by affine open subsets  $U_i = \operatorname{Spec}(A_i)$  with  $A_i$  a finitely generated B-algebra.

**Exercise 4. Stability under base change.** Show that the following properties of morphisms of schemes are stable under base change; that is given a morphism of schemes  $f: X \to S$  with one the properties listed below, and another morphism  $g: S' \to S$ , show that the morphism  $X \times_S S' \to S'$  has the same property.

(1) Open immersion

- (2) Closed immersion
- (3) Quasicompact (i.e.  $f^{-1}(V)$  is quasicompact for all open affine  $V \subseteq S$ )
- (4) Finite
- (5) Locally of finite type
- (6) Finite type

**Exercise 5.** Let  $f: X \to Y$  and  $g: Y \to Z$  be morphisms of schemes.

- (1) Show that, if f is quasicompact and  $g \circ f$  is of finite type, then f is of finite type.
- (2) Assume Y is a noetherian scheme and f is of finite type. Show that X is noetherian.

## Exercise 6.

- (1) Let  $S = \bigoplus_{d \in \mathbb{N} \cup \{0\}} S_d$  be a graded ring. Show that  $Proj(S) = \emptyset$  if and only if every  $f \in S_+ = \emptyset$  $\bigoplus_{d>0} S_d$  is nilpotent. (2) Let  $\varphi: S \to T$  be a degree preserving homomorphism between graded rings. Let

$$U = {\mathfrak{p} \in \operatorname{Proj}(T) : \mathfrak{p} \not\supseteq \varphi(S_+)}.$$

Show that  $U \subseteq \operatorname{Proj}(T)$  is an open subset and that  $\varphi$  determines a natural morphism  $f: U \to T$ Proj(S).

(3) \* In the notation of the previous item, show that f can be an isomorphism even if  $\varphi$  is not.