Algebrske strukture, 3.del

Obsegi in polja

Obsegi so zelo poseben tip kolobarjev. V kolobarjih lahko elemente seštevamo, odštevamo in množimo, v obsegih pa jih lahko tudi delimo (razen deljenja z nič seveda).

Definicija obsega

Obseg je tak kolobar, v katerem je množica neničelnih elementov grupa za množenje. Komutativnemu obsegu pravimo **polje**.

Opomba: Grupa je asociativen grupoid z enoto, v katerem je vsak element obrnljiv. Definicijo obsega lahko torej povemo tudi takole. **Obseg** je tak asociativen kolobar z enoto, v katerem je vsak neničeln element obrnljiv.

Primeri polj

Kolobarji $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$ in $(\mathbb{C},+,\cdot)$ so polja. Za vsako polje F naj bo F(x) množica vseh racionalnih funkcij v spremenljivki x s koeficienti iz F. Ta množica je polje za običajno seštevanje in množenje racionalnih funkcij. Torej so $(\mathbb{Q}(x),+,\cdot)$, $(\mathbb{R}(x),+,\cdot)$ in $(\mathbb{C}(x),+,\cdot)$ polja.

Primer obsega, ki ni polje

Množica vseh matrik oblike

$$\left[\begin{array}{cc} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{array}\right]$$

kjer $\alpha, \beta \in \mathbb{C}$, je obseg za običajno seštevanje in množenje matrik. Pravimo mu **obseg kvaternionov**.

Če vstavimo $\alpha = a + bi$ in $\beta = c + di$, velja

$$\left[\begin{array}{cc} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{array}\right] = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] + b \left[\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right] + c \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right] + d \left[\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right]$$

Ta izraz lahko na kratko zapišemo kot $a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$. Matrika $\mathbf{1}$ je identična matrika, za matrike $\mathbf{i}, \mathbf{j}, \mathbf{k}$ pa velja

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$$
, $\mathbf{i}\mathbf{j} = -\mathbf{j}\mathbf{i} = \mathbf{k}$, $\mathbf{j}\mathbf{k} = -\mathbf{k}\mathbf{j} = \mathbf{i}$, $\mathbf{k}\mathbf{i} = -\mathbf{i}\mathbf{k} = \mathbf{j}$.

Odtod med drugim sledi, da obseg kvaternionov ni komutativen.

Podobsegi in podpolja

Definicija podobsega in podpolja

Naj bo $(L,+,\cdot)$ obseg. Podmnožica $K\subseteq L$ je njegov **podobseg**, če je K podgrupa v (L,+) in če je $K\setminus\{0\}$ podgrupa v $(L\setminus\{0\},\cdot)$. Komutativen podobseg je **podpolje**.

Opomba: Na kratko povedano je $K\subseteq L$ podobseg v L, če je zaprta za odštevanje in deljenje.

Primeri podpolj

Očitno je $\mathbb Q$ podpolje polja $\mathbb R$ in $\mathbb R$ je podpolje polja $\mathbb C.$

Primer podpolja

Označimo s $\mathbb{Q}(\sqrt{3})$ množico vseh realnih števil oblike $a+b\sqrt{3}$, kjer $a,b\in\mathbb{Q}$. Pokažimo, da je $\mathbb{Q}(\sqrt{3})$ podpolje v \mathbb{R} .

Ker je

$$(a+b\sqrt{3})-(c+d\sqrt{3})=(a-c)+(b-d)\sqrt{3},$$

je množica $\mathbb{Q}(\sqrt{3})$ zaprta za odštevanje. Ker je

$$\frac{a + b\sqrt{3}}{c + d\sqrt{3}} = \frac{(a + b\sqrt{3})(c - d\sqrt{3})}{(c + d\sqrt{3})(c - d\sqrt{3})} = \frac{ac - 3bd}{c^2 - 3d^2} + \frac{bc - ad}{c^2 - 3d^2}\sqrt{3},$$

je množica $\mathbb{Q}(\sqrt{3})\setminus\{0\}$ zaprta za deljenje. Pri tem smo upoštevali, da je $c+d\sqrt{3}\neq 0$ in $c^2-3d^2\neq 0$, če $c\neq 0$ ali $d\neq 0$. V nasprotnem primeru bi namreč bilo $\sqrt{3}$ racionalno število.

Primer podpolja

Označimo s $\mathbb{Q}(\sqrt[3]{2})$ množico vseh realnih števil oblike $a+b\sqrt[3]{2}+c\sqrt[3]{4}$, kjer $a,b,c\in\mathbb{Q}$. Pokažimo, da je $\mathbb{Q}(\sqrt[3]{2})$ podpolje v \mathbb{R} .

Očitno je $\mathbb{Q}(\sqrt[3]{2})$ zaprta za odštevanje in množenje, torej je podkolobar. Pokazati je treba še, da za vsake $a,b,c\in\mathbb{Q}$, ki niso vsi nič, obstajajo taki $x,y,z\in\mathbb{Q}$, da je $(a+b\sqrt[3]{2}+c\sqrt[3]{4})^{-1}=x+y\sqrt[3]{2}+z\sqrt[3]{4}$. Treba je rešiti sistem ax+2cy+2bz=1,bx+ay+2cz=0,cx+by+az=0 z det $\neq 0$.

Homomorfizmi obsegov in polj

Definicija homomorfizma obsegov

Homomorfizem obsegov je tak homomorfizem kolobarjev z enoto, ki slika iz obsega v obseg. Enako definiramo **homomorfizem polj**.

Opomba: Na dolgo povedano je homomorfizem polj iz polja $(K, +_K, \cdot_K)$ v polje $(L, +_L, \cdot_L)$ taka preslikava $f \colon K \to L$, ki za vsaka $x, y \in K$ zadošča $f(x +_K y) = f(x) +_L f(y)$ in $f(x \cdot_K y) = f(x) \cdot_L f(y)$ in tudi $f(1_K) = 1_L$. Opomba: Definicijo homomorfizma polj iz polja $(K, +_K, \cdot_K)$ v polje $(L, +_L, \cdot_L)$ lahko povemo tudi takole: To je taka preslikava iz K v L, ki je homomorfizem grup iz $(K, +_K)$ v $(L, +_L)$ in iz $(K \setminus \{0\}, \cdot_K)$ v $(L \setminus \{0\}, \cdot_L)$.

Primer homomorfizma obsegov

Preslikava iz realnih števil v kvaternione, ki je definirana z

$$f(a) := \left[\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right]$$

je homomorfizem obsegov.

Trditev

Vsak homomorfizem obsegov je injektiven.

Dokaz: Recimo, da je $f: K \to L$ homomorfizem obsegov in da je $f(a_1) = f(a_2)$ za neka $a_1, a_2 \in K$. Radi bi pokazali, da je $a_1 = a_2$. Označimo $a:=a_1-a_2$. Potem je $f(a)=f(a_1)-f(a_2)=0_L$. Če $a_1 \neq a_2$, potem je $a \neq 0$, torej obstaja tak b iz K, da je $ab=1_K$. Odtod sledi, da je $0_L = 0_L f(b) = f(a) f(b) = f(ab) = f(1_K) = 1_L$, kar je protislovje. Torej je res $a_1 = a_2$.

Opomba: Bijektivnemu homomorfizmu obsegov pravimo **izomorfizem obsegov**. Inverz izomorfizma obsegov je spet izomorfizem obsegov.

Opomba: Če je $f: K \to L$ homomorfizem obsegov, potem je f(K) podobseg v L. Poleg tega je f bijektiven homomorfizem obsegov iz obsega K v obseg f(K). Obsega K in f(K) sta zato izomorfna. Torej lahko smatramo K za podobseg v L.

Kolobarji \mathbb{Z}_n in F[x]/(p)

V tem razdelku bomo konstruirali dva tipa komutativnih kolobarjev, v nadaljevanju pa se bomo ukvarjali s tem, kdaj so ti kolobarji polja.

Kolobar \mathbb{Z}_n

Vzemimo neko naravno število n in označimo $\mathbb{Z}_n=\{0,1,\ldots,n-1\}.$ Za vsaka $x,y\in\mathbb{Z}_n$ naj bo

$$x \oplus y := (x + y) \mod n$$
 in $x \odot y := (x \cdot y) \mod n$

kjer sta + in \cdot operaciji na \mathbb{Z} in je z mod n ostanek pri deljenju z z n. Trdimo, da je $(\mathbb{Z}_n, \oplus, \odot)$ komutativen in asociativen kolobar z enoto.

Komutativnost \oplus in \odot sledi direktno iz komutativnosti + in \cdot . Pokažimo asociativnost \oplus . Vzemimo $x,y,z\in\mathbb{Z}_n$ in označimo $u=x\oplus y$ in $v=y\oplus z$. Vzemimo take $i,j,k,l\in\mathbb{N}$, da je

$$x + y = in + u$$
 $u + z = kn + (u \oplus z)$
 $y + z = jn + v$ $x + v = ln + (x \oplus v)$

Odtod sledi

$$(x \oplus y) \oplus z = u \oplus z = u + z - kn = (x + y - in) + z - kn$$

 $x \oplus (y \oplus z) = x \oplus v = x + v - ln = x + (y + z - jn) - ln$

torej je $(x \oplus y) \oplus z - x \oplus (y \oplus z) = (j + l - i - k)n$. Ker sta $(x \oplus y) \oplus z$ in $x \oplus (y \oplus z)$ med 0 in n - 1 in ker je njuna razlika deljiva z n, sta enaka.

Podobno dokažemo tudi asociativnost \odot in distributivnost. Aditivna enota je 0, multiplikativna enota pa 1. Aditivni inverz elementa $x \neq 0$ je n-x.

Opomba: Preslikava

$$f: \mathbb{Z} \to \mathbb{Z}_n, \quad f(z) := z \mod n$$

je homomorfizem kolobarjev z enoto iz $(\mathbb{Z},+,\cdot)$ v $(\mathbb{Z}_n,\oplus,\odot)$.

Opomba: Če n ni praštevilo, potem kolobar $(\mathbb{Z}_n, \oplus, \odot)$ ni obseg. Iz razcepa n=rs, kjer r,s < n, namreč sledi, da je $r \odot s = 0$ in $r \neq 0$ in $s \neq 0$.

4 D > 4 A > 4 B > 4 B > B = 900

Konstrukcijo iz prejšnjega primera lahko razširimo tudi na polinome.

Kolobar F[x]/(p)

Naj bo F polje. Označimo s F[x] množico vseh polinomov v spremenljivki x s koeficienti iz F. Običajno seštevanje in množenje polinomov označimo s + in \cdot . Potem je $(F[x], +, \cdot)$ komutativen in asociativen kolobar z enoto.

Vzemimo nek nekonstanten polinom $p \in F[x]$ in označimo z F[x]/(p) množico vseh polinomov iz F[x], ki so nižje stopnje kot p. Za vsaka polinoma $r, s \in F[x]/(p)$ definirajmo polinoma

$$r \oplus s := r + s$$
 in $r \odot s := (r \cdot s) \mod p$

kjer je $q \mod p$ ostanek pri deljenju polinoma q s polinomom p.

Podobno kot v prejšnjem primeru pokažemo, da je $(F[x]/(p), \oplus, \odot)$ komutativen in asociativen kolobar z enoto.

Opomba: Preslikava

$$\phi \colon F[x] \to F[x]/(p), \quad \phi(q) := q \mod p$$

je homomorfizem kolobarjev z enoto iz $(F[x], +, \cdot)$ v $(F[x]/(p), \oplus, \odot)$

Definicija razcepnega in nerazcepnega polinoma

Polinom $p \in F[x]$ je **razcepen**, če obstajata taka polinoma $p_1, p_2 \in F[x]$ stopnje ≥ 1 , da je $p = p_1p_2$. Polinom, ki ni razcepen, je **nerazcepen**.

Opomba: Konstantni in linearni polinomi so nerazcepni.

Primer

Polinom x^2-3 leži tako v $\mathbb{Q}[x]$ kot v $\mathbb{R}[x]$. V $\mathbb{Q}[x]$ je nerazcepen, ker nima racionalne ničle. V $\mathbb{R}[x]$ je razcepen, ker velja $x^2-3=(x+\sqrt{3})(x-\sqrt{3})$.

Opomba: Preslikavi $\phi \colon \mathbb{Q}[x]/(x^2-3) \to \mathbb{Q}(\sqrt{3}), \ \phi(q) = q(\sqrt{3})$ in $\psi \colon \mathbb{R}[x]/(x^2-3) \to \mathbb{R} \times \mathbb{R}, \ \psi(q) = (q(\sqrt{3}), q(-\sqrt{3}))$ sta izomorfizma kolobarjev. Ker je $\mathbb{Q}(\sqrt{3})$ polje, je tudi $\mathbb{Q}[x]/(x^2-3)$ polje. $\mathbb{R} \times \mathbb{R}$ ni polje.

Trditev

Če je polinom $p \in F[x]$ razcepen, potem kolobar $(F[x]/(p), \oplus, \odot)$ ni obseg.

Dokaz je podoben kot pri \mathbb{Z}_n . Če je p razcepen v F[x], potem obstajata taka neničelna polinoma $p_1, p_2 \in F[x]/(p)$, da je $p_1 \odot p_2 = 0$.

Linearna diofantska enačba

V dokazu glavnega izreka bomo potrebovali naslednji tehnični rezultat.

Izrek o linearni diofantski enačbi

Če sta celi števili a_1 in a_2 tuji (= njun največji skupni delitelj je 1), potem obstajata taki celi števili x in y, da velja $a_1x + a_2y = 1$.

Dokaz: Brez škode lahko predpostavimo, da sta a_1 in a_2 naravni števili. Po izreku o deljenju z ostankom obstajajo taka naravna števila k_1, \ldots, k_n in a_3, \ldots, a_{n+1} , da velja:

$$a_1 = k_1 a_2 + a_3$$
 kjer $a_3 < a_2$ (1)

$$a_2 = k_2 a_3 + a_4$$
 kjer $a_4 < a_3$ (2)

:

$$a_{n-1} = k_{n-1}a_n + a_{n+1}$$
 kjer $a_{n+1} < a_n$ (n-1)

$$a_n = k_n a_{n+1} \tag{n}$$

Postopek smo nadaljevali toliko časa, dokler ni ostanek padel na nič. Ker se ostanek v vsakem koraku zmanjša, je korakov samo končno mnogo.

Pokažimo najprej, da je $a_{n+1} = 1$. Iz enačbe (n) sledi, da a_{n+1} deli a_n Odtod in iz enačbe (n-1) sledi, da a_{n+1} deli a_{n-1} . Odtod in iz enačbe (n-2) sledi, da a_{n+1} deli a_{n-2} . Ta postopek nadaljujemo, dokler ne pridemo do prve enačbe. Torej a_{n+1} deli tako a_1 kot a_2 . Ker sta a_1 in a_2 tuji, odtod sledi, da je $a_{n+1} = 1$.

Pokažimo sedaj, da za vsako naravno število $m=1,\ldots,n$ obstajata taki celi števili x_m in y_m , da velja

$$a_1 x_m + a_2 y_m = a_{m+1}. (*)$$

Pri m=1 lahko vzamemo kar $x_1=0$ in $y_1=1$. Iz enačbe (1) sledi $a_3 = a_1 - k_2 a_2$, torej lahko vzamemo $x_2 = 1$ in $y_2 = -k_2$. Izpeljimo sedaj še rekurzivni zvezi za x_m in y_m . Iz enačbe (m-1) sledi, da je $a_{m+1} = a_{m-1} - k_{m-1}a_m$, kar je po indukcijski predpostavki enako $(a_1x_{m-2} + a_2y_{m-2}) - k_{m-1}(a_1x_{m-1} + a_2y_{m-1})$. Če to primerjamo z želeno relacijo (*), dobimo $x_m = x_{m-2} - k_{m-1}x_{m-1}$ in $y_m = y_{m-2} - k_{m-1}y_{m-1}$. Ko je *m* enak *n*, dobimo ravno izrek: $a_1x_n + a_2y_n = a_{n+1} = 1$.

Naš glavni rezultat je:

Izrek o \mathbb{Z}_p

Če je p praštevilo, potem je kolobar \mathbb{Z}_p polje.

Dokaz. Vemo že, da je \mathbb{Z}_p komutativen in asociativen kolobar z enoto. Pokazati moramo še, da ima vsak neničelni element multiplikativen inverz. Vzemimo $a_2=p$ in naj bo a_1 poljuben neničeln element v \mathbb{Z}_p . Vidimo, da sta a_1 in a_2 tuji števili. Po izreku o linearni diofantski enačbi obstajata taki celi števili x in y, da je $a_1x+a_2y=1$. Odtod sledi, da je $a_1^{-1}=x$ mod p.

Podobno dokažemo tudi naslednji rezultat:

Izrek o F[x]/(p)

Če je $p \in F[x]$ nerazcepen polinom stopnje ≥ 1 , potem je F[x]/(p) polje.

Dokaz: Dva polinoma sta tuja, če nimata skupnega faktorja stopnje ≥ 1 . Če vzamemo $p_2=p$ iz izreka in $p_1\neq 0$ polinom, ki je nižje stopnje kot p, potem sta p_1 in p_2 tuja. Za vsaka tuja polinoma p_1 in p_2 konstruramo kot zgoraj taka polinoma q_1 in q_2 , da je $p_1q_1+p_2q_2\equiv 1$ in dobimo izrek.

Primer

Poiščimo inverz elementa 12 v polju \mathbb{Z}_{41} .

lščemo tak $x\in\mathbb{Z}$, da je 12x mod 41=1. To velja natanko tedaj, ko obstaja tak $y\in\mathbb{Z}$, da velja 12x+41y=1. Evklidov algoritem nam da

$$41 = 3 \cdot 12 + 5 \implies 5 = 41 - 3 \cdot 12$$

 $12 = 2 \cdot 5 + 2 \implies 2 = 12 - 2 \cdot 5$
 $5 = 2 \cdot 2 + 1 \implies 1 = 5 - 2 \cdot 2$

Ko vstavimo prvo enačbo v drugo, dobimo

$$2 = 12 - 2 \cdot (41 - 3 \cdot 12) = -2 \cdot 41 + 7 \cdot 12$$

Ko to in prvo enačbo vstavimo v tretjo enačbo, dobimo

$$1 = (41 - 3 \cdot 12) - 2 \cdot (-2 \cdot 41 + 7 \cdot 12) = 5 \cdot 41 + (-17) \cdot 12$$

Torej je x = -17, kar pa ni v \mathbb{Z}_{41} . Sledi $12^{-1} = x \mod 41 = 24$.

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ★)९(~

Primer

Izračunajmo inverz polinoma $x^3 - 2x + 2$ v polju $\mathbb{Q}[x]/(x^4 + 1)$.

Najprej uporabimo Evklidov algoritem

$$x^{4} + 1 = x(x^{3} - 2x + 2) + 2x^{2} - 2x + 1$$
$$x^{3} - 2x + 2 = \frac{x+1}{2}(2x^{2} - 2x + 1) + \frac{3-3x}{2}$$
$$2x^{2} - 2x + 1 = -\frac{4x}{3}\left(\frac{3-3x}{2}\right) + 1$$

Iz prve enačbe dobimo

$$2x^2 - 2x + 1 = (x^4 + 1) - x(x^3 - 2x + 2)$$

Iz druge enačbe potem dobimo

$$\frac{3-3x}{2} = (x^3 - 2x + 2) - \frac{x+1}{2}(2x^2 - 2x + 1)$$

$$= (x^3 - 2x + 2) - \frac{x+1}{2}((x^4 + 1) - x(x^3 - 2x + 2))$$

$$= -\frac{x+1}{2}(x^4 + 1) + \frac{x^2 + x + 2}{2}(x^3 - 2x + 2)$$

Upoštevajmo sedaj oba izraza v tretji enačbi. Dobimo

$$1 = (2x^{2} - 2x + 1) + \frac{4x}{3} \left(\frac{3 - 3x}{2} \right)$$

$$= ((x^{4} + 1) - x(x^{3} - 2x + 2))$$

$$+ \frac{4x}{3} \left(-\frac{x + 1}{2}(x^{4} + 1) + \frac{x^{2} + x + 2}{2}(x^{3} - 2x + 2) \right)$$

$$= \frac{3 - 2x(x + 1)}{3}(x^{4} + 1) + \frac{-3x + 2x(x^{2} + x + 2)}{3}(x^{3} - 2x + 2)$$

Inverz polinoma $x^3 - 2x + 2 \vee \mathbb{Q}[x]/(x^4 + 1)$ je torej

$$\frac{-3x+2x(x^2+x+2)}{3}=\frac{2x^3+2x^2+x}{3}.$$

Produkt polinoma in njegovega inverza je res enak 1 v $\mathbb{Q}[x]/(x^4+1)$, ker

$$\frac{2x^3 + 2x^2 + x}{3}(x^3 - 2x + 2) = \frac{2x^2 + 2x - 3}{3}(x^4 + 1) + 1.$$

Polja s p^n elementi

Radi bi opisali vsa končna polja. Ideja konstrukcije je naslednja:

- Vzemi praštevilo p in naravno število n. Vemo, da je \mathbb{Z}_p polje.
- Dokaži, da v $\mathbb{Z}_p[x]$ obstaja nerazcepen polinom q(x) stopnje n.
- Dokaži, da je $\mathbb{Z}_p[x]/(q(x))$ polje s p^n elementi.

Izrek o klasifikaciji končnih obsegov pravi:

- Vsako končno polje je izomorfno enemu od zgornjih polj.
- Dve končni polji z enakim številom elementov sta izomorfni.

Podrobnosti bomo izpustili. Raje si oglejmo primer.

Polje s štirimi elementi

lščemo polje, ki ima štiri elemente. Kolobar \mathbb{Z}_4 sicer ima štiri elemente, ampak ni polje. Iskano polje je $\mathbb{Z}_2[x]/(x^2+x+1)$.

Množica $\mathbb{Z}_2[x]/(x^2+x+1)$ se sestoji iz vseh polinomov v $\mathbb{Z}_2[x]$, ki so nižje stopnje kot x^2+x+1 . To so polinomi 0,1,x,x+1.

Operaciji na množici $\mathbb{Z}_2[x]/(x^2+x+1)$ sta seštevanje in množenje modulo x^2+x+1 . Njuni tabeli sta:

Pokazali smo že, da je $(\mathbb{Z}_2[x]/(x^2+x+1), \oplus, \odot)$ komutativen in asociativen kolobar z enoto. Iz tabele za \odot se vidi, da ima vsak neničeln element inverz. Torej je ta kolobar polje.

Opomba: Tudi brez tabele za \odot lahko dokažemo, da je ta kolobar polje. Zadošča dokazati, da je x^2+x+1 nerazcepen polinom v $\mathbb{Z}_2[x]$.

V $\mathbb{Z}_2[x]$ imamo dva polinoma stopnje 1 in štiri polinome stopnje 2. Polinoma stopnje 1 sta x in x+1. Razcepni polinomi stopnje 2 so torej x^2 , $x(x+1)=x^2+x$ in $(x+1)^2=x^2+1$. Polinom x^2+x+1 ni eden od teh, torej je nerazcepen.