TOPOLOGY - HOMEWORK 03

Due: 2020 March 26th, 10:00AM

Question 1. Let S be a nonempty set.

(i) Consider the discrete metric

$$d: S \times S \longrightarrow \mathbf{R}$$

given by d(x,x) = 0 and d(x,y) = 1 if $x \neq y$. Show that the topology on S induced from this metric is just $\mathscr{P}(S)$, i.e., every subset of S is an open set in the metric space (S,d).

(ii) Is there always a metric on S such that the induced topology is $\{\emptyset, S\}$?

Question 2. Show that

$$\mathcal{B} = \{(a, b) : a < b \text{ and } a, b \in \mathbf{Q}\}\$$

is a basis for the standard topology on \mathbf{R} . What is the cardinality of \mathcal{B} ?

Question 3. Let (S, d) and (M, ρ) be two metric spaces. A function

$$f: S \longrightarrow M$$

is called an isometry if f is bijective and $\rho(f(x), f(y)) = d(x, y)$ for all $x, y \in S$; in this case, $f^{-1}: M \longrightarrow S$ is also an isometry. Prove that there is no isometry between (\mathbf{R}, d) and (\mathbf{R}^2, ρ) , where d(x, y) := |x - y| and $\rho(x, y) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ are the standard metrics.

Question 4. Fix a set S.

- (i) Let $\{\mathcal{T}_i\}_{i\in I}$ be a family of topologies on S index by $i\in I$. Prove that $\bigcap_{i\in I}\mathcal{T}_i$ is a topology on S.
- (ii) Give an example of S and two topologies \mathcal{T}_1 and \mathcal{T}_2 such that the set $\mathcal{T}_1 \cup \mathcal{T}_2$ is not a topology on S. Find the unique minimal topology on S which contains $\mathcal{T}_1 \cup \mathcal{T}_2$.

Question 5. A subset of \mathbb{R}^2 is called radially open if it contains an open line segment in each direction about each of its points. Consider the set

$$\mathcal{T}_{ro} = \left\{ S \subset \mathbf{R}^2 : S \text{ is radially open} \right\}$$

of radially open sets in \mathbb{R}^2 .

- (i) Prove that \mathcal{T}_{ro} is a topology for \mathbb{R}^2 .
- (ii) Let \mathcal{T} be the standard topology on \mathbf{R}^2 induced from the standard metric, as in Question 3. Is there any relation between \mathcal{T} and \mathcal{T}_{ro} ?
- (iii) Is there a basis $\mathcal{B} \subset \mathcal{T}_{ro}$ with $card(\mathcal{B}) = \aleph_0$? If so, give such a basis.