Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002659

International filing date: 14 February 2005 (14.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-085588

Filing date: 23 March 2004 (23.03.2004)

Date of receipt at the International Bureau: 31 March 2005 (31.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 3月23日

出 願 番 号 Application Number:

特願2004-085588

[ST. 10/C]:

[JP2004-085588]

出 願 人 Applicant(s):

独立行政法人物質·材料研究機構

特言 Com Japan

特許庁長官 Commissioner, Japan Patent Office 2005年 3月18日

1/E

【書類名】

特許願

【整理番号】

03-MS-275

【提出日】

平成16年 3月23日

【あて先】

特許庁長官殿

【国際特許分類】

B82B 1/00 B82B 3/00

CO1B 31/02

【発明者】

【住所又は居所】

茨城県つくば市千現一丁目2番1号 独立行政法人物質・材料研

究機構内

【氏名】

宮澤 薫一

【発明者】

【住所又は居所】

茨城県つくば市千現一丁目2番1号 独立行政法人物質・材料研

究機構内

【氏名】

須賀 唯知

【特許出願人】

【識別番号】

301023238

【氏名又は名称】

独立行政法人物質・材料研究機構

【代表者】

岸 輝雄

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【書類名】特許請求の範囲

【請求項1】

フラーレン分子からなる中空構造部を持つ針状結晶。

【請求項2】

フラーレン分子が C 6 0 、 C 7 0 以上の高次フラーレン、金属内包フラーレン又はフラーレン誘導体であることを特徴とする請求項 1 記載の針状結晶。

【請求項3】

加熱又は電子線により変性されたことを特徴とする請求項1又は2記載の針状結晶。

【請求項4】

閉じた形状もしくは穴が開いた形状を持つことを特徴とする請求項1ないし3のいずれか に記載の針状結晶。

【請求項5】

(1)フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合わせる工程、(2)前記溶液と前記第2溶媒との間に液一液界面を形成する工程、及び(3)前記液一液界面にて炭素細線を析出させる工程を含む液一液界面析出法によるフラーレン分子からなる中空構造部を持つ針状結晶の製造方法

【請求項6】

C60の白金誘導体を添加したC60の有機溶液にアルコール類を加えることによって行なう液一液界面析出法によってC60の針状結晶、中空構造部を持つC60針状結晶、白金もしくはC60白金誘導体を含むC60の針状結晶、又は白金もしくはC60白金誘導体を含む中空構造部を持つC60の針状結晶を製造する方法。

【請求項7】

 C_{6} の白金誘導体($(\eta^{2}-C_{60})$ Pt(PPh₃)₂)を添加した C_{6} のトルエン飽和溶液とイソプロピルアルコールによる液一液界面析出法によって、 C_{6} の の針状結晶、中空構造部を持つ C_{6} の 針状結晶,白金もしくは白金誘導体を含む C_{6} の の針状結晶、又は白金もしくは C_{6} の 白金誘導体を含む中空構造部を持つ C_{6} の の針状結晶を製造する方法。

【発明の名称】フラーレン分子から成る中空構造を持つ針状結晶及びその製造方法

【技術分野】

【0001】 本発明は、フラーレン系炭素材料、特にフラーレン分子から成る中空構造を持つ針状結晶(フラーレンシェルカプセル)及びその製造方法に関する。

【背景技術】

[0002]

フラーレン細線(フラーレンナノウィスカー、フラーレンナノファイバー)は、内外の研究所、民間企業、大学で最近注目を集めており、開発競争が激化しつつある

本発明者らは、先に、液-液界面析出法を用いてフラーレン細線を製造する方法を開発した(特許文献1、2、非特許文献1)。

[0003]

この方法は、フラーレンを構成要素とする炭素細線を得るにあたり、(1)フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合わせる工程、(2)前記溶液と前記第2溶媒との間に液一液界面を形成する工程、及び(3)前記液一液界面にて炭素細線を析出させる工程を含む炭素細線の製造方法である。また、本発明者らは、フラーレン細線の成長中に可視光を照射することによって、著しく成長が促進されることを明らかにして来た(非特許文献2)。

[0004]

さらに、本発明者の宮澤は、C60ナノチューブを熱処理することにより非晶質炭素壁を持つフラーレンシェルチューブを発見した(非特許文献3、特願2003-346117)。

[0005]

【特許文献1】特開2003-1600300号公報

【特許文献2】米国特許出願公開20020192143号明細書

【非特許文献 1】K.Miyazawa, Y.Kuwasaki, A.Obayashi and M.Kuwabara, "C60 nan owhiskers formed by the liquid-liquid interfacial precipitation method", J. Mater.Res., 17[1](2002)83-88,

【非特許文献 2】M. Tachibana, K. Kobayashi, T. Uchida, K. Kojima, M. Tanimura and K. Miyazawa, "Photo-assisted growth and polymerization of C60 nano whi skers", Chemical Physics Letters 374(2003) 279-285

【非特許文献 3 】 宮澤薫一, 工業材料, 52[1](2004)24-25

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は、新規な形状的特徴を持つフラーレンを提供することを課題とする。

【課題を解決するための手段】

[0007]

本発明は、 C_{60} や C_{60} 白金誘導体などのフラーレン分子から構成される中空部を有するカプセル状の針状結晶(フラーレンシェルカプセル)を提供する。本発明者らは、先に、液一液界面析出法を用いてフラーレン細線を製造する方法を開発したが、本発明は、この方法を応用して、 C_{60} フラーレン分子と C_{60} の白金誘導体で構成されるカプセル状針状結晶(フラーレンシェルカプセル)を作製することを可能とするものである。

[0008]

このフラーレンシェルカプセルは、C60などのフラーレン分子からなる中空構造を持つ針状結晶であることに、その特徴を有する。このフラーレンシェルカプセルは、フラーレンナノウィスカーの常温合成法として本発明者らが確立した液-液界面析出法によって初めて合成され、見出された物質である。フラーレン分子から成る中空な針状結晶は今までに報告されていない。フラーレンシェルカプセルは新しい形態のフラーレンであり、類例が無い。フラーレンシェルカプセルは、触媒担持材料、プラスチック複合材料素材、水

素などのガス貯蔵材料、燃料電池触媒などとしての用途を持つ。

[0009]

すなわち、本発明は、(1)フラーレン分子からなる中空構造部を持つ針状結晶である。

また、本発明は、(2)フラーレン分子が C_{60} 、 C_{70} 以上の高次フラーレン、金属内包フラーレン又はフラーレン誘導体であることを特徴とする上記(1)の針状結晶である。

また、本発明は、(3)加熱又は電子線により変性されたことを特徴とする上記(1)又は(2)の針状結晶である。

また、本発明は、(4)閉じた形状もしくは穴が開いた形状を持つことを特徴とする上記(1)ないし(3)のいずれかの針状結晶である。

[0010]

また、本発明は、(5)(1)フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合わせる工程、(2)前記溶液と前記第2溶媒との間に液-液界面を形成する工程、及び(3)前記液-液界面にて炭素細線を析出させる工程を含む液-液界面析出法によるフラーレン分子からなる中空構造部を持つ針状結晶の製造方法である。

[0011]

また、本発明は、(6) C_{60} の白金誘導体を添加した C_{60} の有機溶液にアルコール類を加えることによって行なう液ー液界面析出法によって C_{60} の針状結晶、中空構造部を持つ C_{60} 針状結晶、白金もしくは C_{60} 白金誘導体を含む C_{60} の針状結晶、又は白金もしくは C_{60} 白金誘導体を含む中空構造部を持つ C_{60} の針状結晶を製造する方法である。

[0012]

また、本発明は、(7) C_{60} の白金誘導体((η^2-C_{60}) Pt (PPh₃)₂)を添加した C_{60} のトルエン飽和溶液とイソプロピルアルコールによる液-液界面析出法によって、 C_{60} の針状結晶、中空構造部を持つ C_{60} 針状結晶、白金もしくは白金誘導体を含む C_{60} の針状結晶、又は白金もしくは C_{60} 白金誘導体を含む中空構造部を持つ C_{60} の針状結晶を製造する方法である。

【発明の効果】

[0013]

本発明の形状的特徴を持つカプセル状フラーレンは、これまでに無かった。フラーレンシェルカプセルは、触媒担持材料、吸着剤、各種ガス貯蔵剤、軽量樹脂複合材料としての広い用途を持つ。使用後は、分解させてフラーレン分子を回収することにより、リサイクルすることが可能となる。本技術を発展させることにより、管壁がフラーレン分子のみからなる、中空なフラーレンナノファイバー(= "真性フラーレンシェルチューブ")を作製する可能性が開かれる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 4\]$

本発明者らが開発した前記の液ー液界面析出法は下記のとおりである。

フラーレンを構成要素とする炭素細線を得るにあたり、(1)フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合わせる工程、(2)前記溶液と前記第2溶媒との間に液-液界面を形成する工程、及び(3)前記液-液界面にて炭素細線を析出させる工程を含む。

[0015]

フラーレンシェルカプセルは、前記液-液界面析出法における結晶成長速度を制御することによって生成することを可能にするものであり、常温常圧環境下、白金誘導体を添加した有機溶液(第2溶媒)を用いるのみという、簡便なプロセスで製造可能である。このプロセスは、通常の白色蛍光灯のもとで行なうことができるが、波長を選択した光のもとで行なっても良い。

[0016]

本発明の方法により閉じた形状もしくは穴が開いた形状を持つフラーレンシェルカプセルを製造できる。例えば、フラーレン誘導体、すなわち、 C_6 0の白金誘導体((η_2-C_60) Pt (PPh3)2)を数重量パーセント添加した C_6 0のトルエン飽和溶液とイソプロピルアルコールによる液-液界面を形成したガラスビンを、10C~25C(望ましくは20C)で、1日~1ヶ月以上静置し、析出法によって、中空な構造を持つ針状結晶を得ることができる。 (η^2-C_60) Pt (PPh3)2の添加量は、 C_{60} に対して2-10mass%が望ましい。

[0017]

得られる針状結晶の直径は、10ナノメートルから100マイクロメートルオーダーの範囲にある大きさであり、10ナノメートルから数マイクロメートル以上の長さを持つ。また、長さに対する直径の比で定義されるアスペクト比は、1以上である。また、このようにして生じた針状結晶に電子線照射を施して、ナノメートルサイズの白金微粒子を析出させ、分散させることが可能である。この針状結晶は、600 C以上の真空熱処理や100k eV以上の高エネルギーの電子線照射などの二次的作用によって、非晶質構造とさせることができる。

[0018]

さらに、本発明は、フラーレン分子からなる中空ファイバー(真性フラーレンシェルチューブ)を得る指針をも提供する。また、本方法は、上記フラーレンのみならず、 C_7 0以上の高次フラーレン,金属内包フラーレンや C_{60} [$C(COOC_2H_5)_2$]などのフラーレン誘導体全般に適用することができる。

【実施例1】

[0019]

<作製方法>

 C_{60} の白金誘導体である (η^2-C_{60}) Pt (PPh3)2のトルエン飽和溶液を用意した。 (η^2-C_{60}) Pt (PPh3)2 は、株式会社 サイエンスラボラトリーズから購入した。トルエンは特級試薬を用いた。上記トルエンの飽和溶液を、適当な大きさ(内容量 $5\,\mathrm{mL}\sim20\,\mathrm{mL}$ の大きさが望ましい)の透明ガラスビンに、半分の高さまで入れ、冷却板上において、約 $2\,0\,\mathrm{C}$ 以下に冷却した。上記のガラスビンに、約 $2\,0\,\mathrm{C}$ 以下に冷却したイソプロピルアルコール($1\,\mathrm{PA}$ 、純度は特級が望ましい)を、ピペットを用いて、静かに滴下するか、ビン壁を伝わらせるかして、注ぎ込み、フラーレンのトルエン溶液と $1\,\mathrm{PA}$ の液一液界面を形成させた。ここまでの一連の作業は、通常の白色蛍光灯のもとで行なった。上記の液一液界面を形成したガラスビンを、 $2\,\mathrm{O}\,\mathrm{C}$ で、 $13\,\mathrm{E}\sim55\,\mathrm{E}$ 間静置し、針状結晶を成長させた。

[0020]

<透過電子顕微鏡による観察>

図 1 0 には、 $(\eta^2$ -C60)Pt (PPh3)2のトルエン飽和溶液とイソプロピルアルコールの系による液ー液界面析出法で作製した $(\eta^2$ -C60)Pt (PPh3)2針状結晶のTEM像とそのHRTEM像及びFFT (高速フーリエ変換) 図形を示す。HRTEM像から明らかなように、 $(\eta^2$ -C60)Pt (PPh3)2分子のC60ケージ同士の間隔は、0.98nmであって、C60ナノウィスカーにおけるC60分子の中心間距離と一致する。このことは、 $(\eta^2$ -C60)Pt (PPh3)2針状結晶が成長できるためには、C60分子が成長軸方向に稠密に配列することが必要であることを示しており、 $(\eta^2$ -C60)Pt (PPh3)2が長繊維のファイバーとなるための重要な指針が得られている。

【実施例2】

[0021]

<作製方法>

 (η^2-C_{60}) Pt (PPh₃)₂を添加したC₆0飽和トルエン溶液を用意した。 (η^2-C_{60}) Pt (PPh₃)₂ は、株式会社 サイエンスラボラトリーズから購入した。C₆0は、純度99.5% (MTR社製)、トルエンは特級試薬を用いた。 (η^2-C_{60}) Pt (PPh₃)₂の添加量は、C₆0 に対して6 mass%とした。その他は実施例1の条件と同じ条件で針状結晶を成長させた。

[0022]

<透過電子顕微鏡による観察>

図 1 に、 C_{60} - 6% (η^2 - C_{60}) Pt (PPh₃) 2 飽和トルエン溶液-IPAの系で生じたC 6 0 の中空針状結晶 (フラーレンシェルカプセル) の透過電子顕微鏡 (TEM) 写真の例を示す(JEM-4010,400kVで観察)。図 2 に、フラーレンシェルカプセルのカプセル部分の拡大図を示す。中空部の存在は、モアレフリンジが観察されることにより明らかである。

[0023]

閉じたフラーレンシェルカプセルの他に、図3のTEM写真に示すように、穴が開いたフラーレンシェルカプセルも作製できる。穴あきフラーレンシェルカプセルは、官能基や触媒担持作業を容易にする。図4に、図2に示したフラーレンシェルカプセルのEDX分析結果を示す。白金が検出されるので、 C_{60} の白金誘導体 (η^2-C_{60}) Pt (PPh₃)2が取り込まれていることが分かる。銅(Cu)のピークは、観察に用いたTEMのマイクログリッド支持体によるものである。

[0024]

図 5 に、図 2 の中心部分の高分解能 T E M 像 (HRTEM) 像を示す。 C_{60} ケージが 1.0 nm の間隔で並んでいる様子が示されている。図 4 と図 5 から、図 1 と図 2 の物質は、 $(\eta^2 - C_{60})$ Pt $(PPh_3)_2$ を含む C_{60} の中空針状結晶であることが明白である。図 6 に、 $(\eta^2 - C_{60})$ Pt $(PPh_3)_2$ を添加した空洞の無い C_{60} 針状結晶の T E M 写真を示す。図 7 の T E M - E D X 分析により、図 6 の C_{60} 針状結晶が、白金誘導体を含むことが確認される。

【実施例3】

[0025]

実施例 1 で得られた針状結晶にエネルギー400keV, ビーム密度約200pAcm $^{-2}$ の電子線照射を行った。図 8 に、非晶質となった(η^2 - C_{60}) $Pt(PPh_3)_2$ 添加 C_{60} 針状結晶のTEM写真を

示す。図9には、図8の針状結晶に生じた白金ナノ粒子のHRTEM像と白金ナノ粒子の(111)面の格子像を示す。このような白金ナノ粒子が分散したC60針状結晶は、燃料電池触媒として有用であることが期待される。

【産業上の利用可能性】

[0026]

本発明の方法によって得られるフラーレンシェルカプセルや真性フラーレンシェルチューブは、管壁がフラーレン分子からなるので、水酸基、マロン酸基、スルホン酸基などの官能基で内外を修飾することができるため、触媒、抗菌剤、活性酸素発生媒体など多様な機能を付与することができる。

【図面の簡単な説明】

[0027]

- 【図1】フラーレンシェルカプセルの図面代用TEM写真(400kV)。
- 【図2】C60フラーレンシェルカプセルの図面代用TEM写真。
- 【図3】穴が開いたC60フラーレンシェルカプセルの図面代用TEM写真。
- 【図4】 C60 フラーレンシェルカプセル(図1) の透過電子顕微鏡EDX分析。
- 【図5】図2のフラーレンシェルカプセルに対する図面代用HRTEM像。
- 【図6】(η²-C60)Pt(PPh3)2を添加したC60針状結晶の図面代用TEM像。
- 【図7】 C 6 0 の P t 誘導体 ((η²-C60)Pt(PPh3)2) を含有する C 6 0 針状結晶 (図 6) の T E M E D X 分析。
- 【図8】電子線照射によって非晶質となった(η^2 -C60)Pt(PPh3)2添加C60針状結晶の図面代用TEM写真。
- 【図9】(a) (η^2-C_{60}) Pt(PPh₃)₂添加C₆₀針状結晶を電子線照射することにより生じた白金ナノ粒子(粒子直径=3.2±0.8nm)と(b)白金ナノ粒子の図面代用HRTEM写真。
- 【図10】 (η^2-C_{60}) Pt (PPh₃)₂のトルエン飽和溶液とイソプロピルアルコールの系の液一液界面析出法を用いて作製した (η^2-C_{60}) Pt (PPh₃)₂針状結晶の図面代用TEM像(a)とその図面代用HRTEM像(b)。単位胞を長方形で示す。

【書類名】図面【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図8】

【図9】

【図10】

【書類名】要約書

【要約】

【課題】新規な形状的特徴を持つフラーレンを提供すること。

【構成】C60 やC60 白金誘導体などのフラーレン分子から構成される中空部を有するカプセル状の針状結晶(フラーレンシェルカプセル)を提供する。(1)フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解能が小さな第2溶媒とを合わせる工程、(2)前記溶液と前記第2溶媒との間に液-液界面を形成する工程、及び(3)前記液-液界面にて炭素細線を析出させる工程を含む液-液界面析出法によって製造する。フラーレンシェルカプセルは、触媒担持材料、プラスチック複合材料素材、水素などのガス貯蔵材料、燃料電池触媒などとしての用途を持つ。

【選択図】 図1

出願人履歷情報

識別番号

[301023238]

1. 変更年月日

2001年 4月 2日

[変更理由]

新規登録

住 所

茨城県つくば市千現一丁目2番1号

氏 名 独立行政法人物質·材料研究機構