Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 2308 5e. TASK NUMBER MI3C 5f. WORK UNIT NUMBER 346057 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/PRS 11. SPONSOR/MONITOR'S 5 Pollux Drive NUMBER(S) Edwards AFB CA 93524-7048 Please see atta 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 20030116 055 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE OF ABSTRACT OF PAGES **PERSON** Leilani Richardson a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area code) Unclassified Unclassified Unclassified (661) 275-5015 Standard Form 298 (Rev. 8-98)

REPORT DOCUMENTATION PAGE

Form Approved

OMB No. 0704-0188

Prescribed by ANSI Std. 239.18

MEMORANDUM FOR PR (In-House Contractor/In-House Publication) FROM: PROI (TI) (STINFO)

29 February 2000

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-2000-038 Chchroudi, B. (ERC), Badakshan, A., Cohn, R., Talley, D., "Injection of Cryogenic Fluids into Subcritical and Supercritical Environments"

Invited University Seminar

(Statement A)

Eidgenossische Technische Hoch 17 Mar 2000	hschule (ETH), Zurich, Switzerland (Absolute Deadline: 09 Mar 2000)
1. This request has been reviewed by the Fob.) military/national critical technology, c.)	oreign Disclosure Office for: a.) appropriateness of distribution statement, export controls or distribution restrictions,
	nation, and e.) technical sensitivity and/or economic sensitivity.
Signature	Date
2. This request has been reviewed by the Prand/or b) possible higher headquarters reviewed Comments:	ublic Affairs Office for: a.) appropriateness for public release ew.
Signature	Date
b.) appropriateness of distribution statemen e.) parallel review completed if required, as Comments:	TINFO for: a.) changes if approved as amended, nt, c.) military/national critical technology, d.) economic sensitivity, nd f.) format and completion of meeting clearance form if required
Signature	Date
appropriateness of distribution statement, d national critical technology, and f.) data rig	or: a.) technical accuracy, b.) appropriateness for audience, c.) d.) technical sensitivity and economic sensitivity, e.) military/ this and patentability
	APPROVED/APPROVED AS AMENDED/DISAPPROVED
	ROBERT C. CORLEY (Date) Senior Scientist (Propulsion)

Propulsion Directorate

Doug Talley Group Leader, Rocket Combustion Devices Air Force Research Laboratory

Credits

Principle Investigators

- Dr. Bruce Chehroudi
- Dr. Roger Woodward

Collaborators

- R. Cohn
- E. Coy
- A. Badakshan
- D. Poulikakos

Motivation

AFRL

At Edwards

 Supercritical conditions that can exist inside rocket engines

Other

- Gas turbines
- Diesel
- etc

_OX/H2, 500,000 lb thrust (112,000 N) Space Shuttle Main Engine

- It is often advantageous to operate combustion chambers at pressures exceeding the critical pressure of one or both propellants.
- Higher chamber pressures lead to greater performance (Isp).
- At supercritical pressures, the distinct difference between gas and liquid phases disappears.
- Conventional "spray combustion" experience no longer applies.
- It is not known how to replace conventional "spray combustion" models in engine design codes.
- The lack of understanding leads to potentially large engine design errors.

The Problem (3)

AFRL

Other factors not normally considered in conventional spray combustion

- Vanishing surface tension and enthalpy of vaporization.
- Equivalent "gas" and "liquid" phase densities.
- Strongly enhanced solubility of one species ("gas") into another ("liquid").
- Reduced gas phase diffusivity (more liquid-like).
- Large property excursions near the critical point
- Conductivity, viscosity, speed of sound, specific heats.
- Mixing induced critical point variations.
- Enhanced gas phase unsteadiness.
- Potentially different kinetics mechanisms.

breakup, transport, mixing, and combustion of Determine the mechanisms which control the subcritical and supercritical droplets, jets, and sprays.

Experimental Set-up

Transcritical LOX drops in room temperature GN2

Representative evolution of transcritical drop disintegration

Transcritical LOX drops in room temperature GN2 (2)

AFRL

Visualization at different times at the same location

Shadowgraph Results - N₂ into N₂

 $P_{cr} = 3.39 \text{ MPa}$

 $T_{cr} = 126 \text{ K}$

 $T_{amb} = 300 \text{ K}$

 $T_{inj} = 99-120 \text{ K}$

Re = 25,000- 75,000

 $V_{inj} = 10-15 \text{ m/s}$

Mixing Layer Structure - N₂ into N₂

AFRL

 $P_{cr} = 3.39 \text{ Mpa}$, $T_{cr} = 126 \text{ K}$, $T_{inj} = 128 \text{ K}$, $T_{amb} = 300 \text{ K}$

Low Pres. Subcritical Droplets

Mod. Pres. Supercritical Transition

High Pres. Supercritical Gas layers

Jet Spreading Angles

AFRL

Chehroudi et. al., AIAA 99-0206, AIAA 99-2489

- - Steady Diesel-Type Spray L/D=85 Steady Diesel-Type Spray L/D=4
- Cold N2 jet into He; L/D=200 (*) N2 jet into N2 L/D=200 (*)

- N2 jet into N2 Darkcore (*) -E-Brown & Roshko (He/N2)
- Cold He jet into N2; L/D=200 (*)

O2 jet into N2; L/D=200 (*)

O2 jet into N2; Darkcore (*)

Characteristic Times

- Characteristic bulge formation time (au_b) at the jet interface (Tseng et al.): $(\rho_1L^3/\sigma)^{1/2}$; ρ_1 , L, σ are liquid density, characteristic dimension of turbulent eddy, and surface tension, respectively.
- Characteristic time for gasification (τ_a) (D-square law): D^2/K ; D and K are drop diameter and vaporization constant.
- A Hypothesis: If these two characteristic times comparable then an interface bulge may not be separated as an unattached entity (onset of the gas-(calculated for appropriate length scales) jet behavior at supercritical condition)

analysis to find the wavelength of the most unstable Theoretical isothermal liquid spray growth rate (θ_s) based on Orr-Sommerfeld equation and stability interface wave:

$$\theta_{\rm s} = 0.27 [0 + (\rho_{\rm g}/\rho_{\rm l})^{0.5}]$$

Papamoschou/Rashko theory for incompressible variable-density gaseous mixing layer/jet:

$$\Theta_{P/R} \equiv 0.17 [1 + (\rho_g/\rho_1)^{0.5}]$$

Dimotakis theory for incompressible variable-density gaseous mixing layer/jet:

$$\theta_D = 0.212 [0.59 + (\rho_g/\rho_1)^{0.5}]$$

ALL HAVE THE SQUARE ROOT OF DENSITY RATIO AND THE SAME EQUATION FORMAT

Empirical Correlation

Based of the information of the previous slide the following "intuitive/smart" equation is proposed for both rates: growth supercritical measured and

$$\Theta_{\text{Ch}} \equiv O.27 [(\tau_b/(\tau_b + \tau_g)) + (\rho_g/\rho_1)^{O.5}]$$

Note

- For isothermal liquid case: $au_g >> au_b$ and $au_g \to \infty$. It then collapses to the isothermal spray case.
- reaches 0.5. After that it is maintained constant at 0.5 For subcritical the $(au_b/(au_b+ au_g))$ is calculated until it for supercritical gas-like jet. The transition point is found to be approximately when $(\mathbf{\tau}_b/(\mathbf{\tau}_b+\mathbf{\tau}_g)) \cong 0.5$ (i.e. $\mathbf{\tau}_b \cong \mathbf{\tau}_g).$

AFRL

- $(au_b/(au_b+ au_a))$ is assumed to be a dominant function of the density ratio (ρ_g/ρ_l) ; i.e. $\tau_b/(\tau_b + \tau_g)) = F(\rho_g/\rho_l)$.
- ans N_2 -into-Ar) cases. That is, for example, for N_2 -intocase and is taken to be the same for other (N_2 -into-He The function F is only calculated for the N2-into-N2

 $\theta_{Ch} = 0.27 [G(\rho_g/\rho_I) + (\rho_g/\rho_I)^{0.5}]$ where $G(\rho_R) = F(\rho_R)$

 $\rho_R' = \rho_R - (1-X)\rho_R = X\rho_R$ $\rho_{R} = (\rho_{g}/\rho_{l});$ X = 1.2**X=1.0** for N_2 -into- N_2 ; **X=0.2** for N_2 -into-He; for N₂-into-Ar.

Fractal Dimension vs Reduced Pressure

AFRE

Chehroudi et. al., AIAA 99-2489

----Sreenivasan & Meneveau (plane gaseous mixing layer) Sreenivasan & Meneveau (gaseous boundary layer) BOX64 (N2into N2) - EDM (N2into N2) -Sreenivasan & Meneveau (axisymmetric gaseous jet) -- Taylor & Hoyt (2nd-wind-induced water jet breakup) ---- Dimotakis et al. (turbulent water jet) - - AVERAGE (N2into N2) BOX32 (N2into N2)

Results in Isothermal N₂ at 273 K

Chamber Pressure	Chamber Pressure Density Ratio Based on	Dark-background-corrected
Mna	P-Measurement & Ideal Gas	Camera-measured
DOM:	Nitrogen	Intensity Ratio
A CONTRACTOR OF THE PROPERTY O		Nitrogen
6 90	4.73	4.78
2 82	1.93	1.89
1.46	1.00	1.00

2-D Raman Images, N₂ into N₂

Intensity Defect vs Normalized Radius

Normalized Intensity Defect Plot: Reference Case

(ı - լсբ) / (ı - լсբ)шях

Normalized Intensity Defect Plot: Supercritical Regime

Normalized Intensity Defect Plot: Supercritical Regime (3)

Normalized Intensity Defect Plot: Supercritical Regime (4)

	Z/D	Pch Pr	Ì	Inj. Temp Inj. Vel Re	Inj. Vel	Re	Inj/Cham
And the second s		MPa	THE PARTY OF THE P	K	s/m	Andrews of the control of the contro	density ratio
Oschwald et al.	1.0	1.0 4.0	1.2	140		5.0 115000	3.3
Oschwald et al.	8.4	4.0	1.2	118	2.0	5.0 126000	12.5
	Action and by Milkington, the day is appropriately the statement of		AND THE PROPERTY OF THE PROPER				
Chehroudi et al. 4.8	4.8 to 24.4	6.9	2.0	95	8.0	35000	7.1
Chehroudi et al. 4.8	4.8 to 24.4	1.5	0.4	110	8.0	12000	40.6
		NAMES OF TAXABLE PROPERTY.					
So et. al.	5.1	0.1		275	11.6	2000	0.0
So et. al.	6.4	0.1	1	275	11.6	2000	0.6

Normalized Intensity Defect Plot: Subcritical Regime

Growth Rates

Comparison of Shadowgraph Measurements with Raman Measurements

- Setting $\theta = 2 \times FWHM$ produces agreement with shadowgraph measurements.
- Consistent with the observations of Brown and Roshko

Summary & Conclusions

Structural differences in cryogenic jets have been observed below and above the thermodynamic critical point.

AFRE

- Liquid-Jet like appearance occurs up to near the critical point, similar to second wind-induced liquid jet breakup regime.
- Gas-jet like appearance occurs above the critical point. No drops are observed.
- Supercritical spreading rate measurements agree quantitatively with incompressible variable density mixing layer experiments and
- Supercritical fractal dimensions agree quantitatively with gas jet measurements.
- theory have for the first time been consolidated into a single plot as a function of density ratio, where the density ratio spans New and existing mixing layer growth rate experiments and three orders of magnitude.
- A physical mechanism and correlation have been proposed to describe the transition from spray to gas jet behavior.

Summary & Conclusions (Raman)

- performing Raman measurements of isothermal N_2 at different Measurement system integrity has been established by
- Measurements were constrained to the near-field in order to maintain large Froude numbers (minimize buoyancy).
- Growth rates measured from Raman profiles measured at 2 x FWHM point agree well with shadowgraph measurements.
- The equivalency of visual and density growth rates has also been reported in the literature (Brown & Roshko, 1974).
- To within experimental error, the near-field plots appear to reduce to self-similar shapes for both the supercritical and subcritical
- Not the same profile as for fully developed turbulent gas jets.
- The near-field supercritical profile more closely approaches that of fully developed turbulent gas jets than the near-field subcritical

- Complete N₂-into-N₂ analysis.
- Reduce and analyzise N₂-into-N₂/He data.
- Acoustic experiments.