ROBUST RANDOM CHOICE

Evan Piermont & Roee Teper

21 May, 2018

Economic choice data is usually aggregated across

- many subjects, or,
- many different points in time, or both

For a choice problem: $D = \{x, y, z\}$

The analyst observes: $\rho_D(E)$ for $E \subseteq D$, representing the frequencies of choice.

Economic choice data is usually aggregated across

- many subjects, or,
- many different points in time, or both

For a choice problem: $D = \{x, y, z\}$

The analyst observes: $\rho_D(E)$ for $E \subseteq D$, representing the frequencies of choice.

Can we still ensure consistency with individual rationality?

Random Utility Models are a way of dealing with aggregated choice data:

Let $\mathcal U$ denote a set of utility functions. Then $\xi\in\Delta(\mathcal U)$ is a random utility representing ρ if

$$\rho_D(E) = \xi\{u \in \mathcal{U} \mid \arg\max_D u \in E\}$$

Random utility models do not deal well with ties:

If with positive
$$\xi$$
-probability $u(x) = u(y)$, what is $\rho_D(x)$?

Random utility models do not deal well with ties:

If with positive ξ -probability u(x) = u(y), what is $\rho_D(x)$?

Depends on how indifferences are broken.

- Gul and Pesendorfer (2006); Frick et al. (2017) assume ties occur with probability 0;
- Lu (2016) extends to allow ties with probability 0 or probability 1;
- Apesteguia et al. (2017) rule out ties by fiat, considering only linearly ordered preferences.
- Ahn and Sarver (2013) allow a tie breaking rule identified by preference over decision problems.

We present a model of random choice, ρ , such that

- Utility functions are linear (EU)
- Robust to how ties are broken:
 - We make **no** assumptions on how indifference is handled.
 - ightharpoonup
 ho is identified only up to choice by **strict** maximization.
- * Necessary and sufficient for consistency with a EU-RUM, ξ .

Why do we care?

- Actual data reflects multiple tie breaking rules.
- Mathematically interesting.
- > There is economic content to indifference.

If I learn an event did not occur, I do not care about the outcome within the event.

acquisition requires dealing with indifference.

Using random choice to identify a rich model of info

- State space $\{s_1, s_2\}$ —ex ante equally likely.
- $x = [x^1, x^2] \in \mathbb{R}^2$ is a state contingent claim in utils.
- ▶ A 'utility function' is a belief $u \in \Delta(\{s_1, s_2\})$.
 - Utility of x is $u \cdot x$.
- Each agent i can learn the state at cost $c_i \in \mathbb{R}$.
 - Without info: $\xi(\left[\frac{1}{2}, \frac{1}{2}\right]) = 1$.
 - With info: $\xi([1,0]) = \xi([0,1]) = \frac{1}{2}$.

Can we identify the distribution over \emph{c} from choice frequencies?

- $D_{\lambda} = \{x_{\lambda}, y_{\lambda}, z_{\lambda}\}, \lambda > 0.$
 - $x_{\lambda} = \left[\frac{2\lambda}{3}, \frac{2\lambda}{3}\right]$
 - $y_{\lambda} = [\lambda, 0]$
 - $z_{\lambda} = [0, \lambda]$
- Conditional choices are:
 - Without info: $\rho_{D_{\lambda}}(x_{\lambda}) = 1$.
 - With info: $\rho_{D_{\lambda}}(y_{\lambda}) = \rho_{D_{\lambda}}(z_{\lambda}) = \frac{1}{2}$.

Then agent *i* obtains info whenever $\lambda - c_i \geq \frac{2\lambda}{3}$, i.e., when

$$\frac{1}{3}\lambda \ge c_i$$

So $\operatorname{Prob}(c < \lambda)$ is probability info is obtained in $D_{3\lambda}$. I.e.,

$$\mathsf{Prob}(c < \lambda) = 1 - \rho_{D_{3\lambda}}(x_{3\lambda}).$$

But notice, when information is acquired

$$\label{eq:continuous} u\cdot[x^1,x^2]=u\cdot[x^1,y^2] \text{ with } \xi \text{ prob } \tfrac{1}{2}.$$

> Must allow non-trivial indifference.

This paper:

- 1. Outline a general model of random (linear) choice
- 2. Discuss how this model can identify endogenous information acquisition

Idea

 ρ is identified only up to strict maximization:

- > Different agent's break ties in different ways.
- We assume ρ is largest value consistent with some tie breaking rule.
- $\triangleright \rho$ is no longer a probability distribution.

- As before, $x \in \mathbb{R}^2$.
- Let ξ be uniform over $u_1 = [1, 0]$, $u_2 = [\frac{1}{2}, \frac{1}{2}]$ and $u_3 = [0, 1]$.
- Let $D = \{[5,0],[0,5]\}$

- As before, $x \in \mathbb{R}^2$.
- Let ξ be uniform over $u_1 = [1, 0]$, $u_2 = [\frac{1}{2}, \frac{1}{2}]$ and $u_3 = [0, 1]$.
- Let $D = \{[5,0],[0,5]\}$

What is $\rho_D([5,0])$?

 \Rightarrow If u_1 is realized, or,

- As before, $x \in \mathbb{R}^2$.
- Let ξ be uniform over $u_1 = [1, 0]$, $u_2 = [\frac{1}{2}, \frac{1}{2}]$ and $u_3 = [0, 1]$.
- Let $D = \{[5,0], [0,5]\}$

- \Rightarrow If u_1 is realized, or,
- if u_2 is realized and indifference is broken for [5,0].

- As before, $x \in \mathbb{R}^2$.
- Let ξ be uniform over $u_1 = [1, 0]$, $u_2 = [\frac{1}{2}, \frac{1}{2}]$ and $u_3 = [0, 1]$.
- Let $D = \{[5,0], [0,5]\}$

- \blacktriangleright If u_1 is realized, or,
- \bullet if u_2 is realized and indifference is broken for [5,0].
- Each agent might choose [5,0] with prob between $\frac{1}{3}$ and $\frac{2}{3}$.

- As before, $x \in \mathbb{R}^2$.
- Let ξ be uniform over $u_1 = [1, 0]$, $u_2 = [\frac{1}{2}, \frac{1}{2}]$ and $u_3 = [0, 1]$.
- Let $D = \{[5,0], [0,5]\}$

- \Rightarrow If u_1 is realized, or,
- \bullet if u_2 is realized and indifference is broken for [5,0].
- * Each agent might choose [5,0] with prob between $\frac{1}{3}$ and $\frac{2}{3}$.
- $\rho_D([5,0]) = \rho_D([0,5]) = \frac{2}{3}.$

Set Up

 \mathcal{D} is the set of **decision problems**: all finite non-empty subsets of \mathbb{R}^n .

Could be interpreted as:

- lotteries (wlog restrict attention to simplex).
- state contingent claims (in utils).

Primitive

Our primitive is a random choice capacity (RCC),

$$\rho = {\rho_D : 2^D \to [0, 1]}_{D \in \mathcal{D}}.$$

 ho_D is

- grounded: $\rho_D(\emptyset) = 0$.
- ▶ normalized: $\rho_D(D) = 1$.
- ▶ monotone: $\rho_D(A \cup B) \ge \rho_D(A)$.
- not necessarily additive! (recall above example)

Utilities

For $u \in \mathbb{R}^n$, we can consider $u : \mathbb{R}^n \to \mathbb{R}$ —a linear utility function—via the inner product:

$$u: x \mapsto u \cdot x = \sum_{i \le n} u^i x^i$$

- If x is interpreted as a lottery:
 - u is interpreted as a vNM index
- If x is interpreted as state contingent claim:
 - u is interpreted as belief (prob over state space)

Utilities

For $A \subseteq D$, let

$$N(D, A) = \{ u \in \mathbb{R}^n \mid A \cap (\arg \max_{y \in D} u \cdot y) \neq \emptyset \}.$$

- If something in A is chosen from D, the agent's utility must be in N(D, A).
- $N(D, \{x\})$ is normal cone to D at x.
- $N(D,D) = \mathbb{R}^n$.
- Let Ω denote the smallest algebra containing all N(D, A).

Random Linear Representations

Call a (finitely additive) probability measure, ξ over (\mathbb{R}^n, Ω) , a random linear representation (RLR). Say that ρ maximizes ξ if

$$\rho_D(A) = \xi(N(D, A))$$

for all (D, A).

GP axioms

If ρ is additive then GP provide conditions for the existence of a RLR:

- 1. Monotonicity: $D \subseteq D' \implies \rho_D(x) \ge \rho_{D'}(x)$.
- 2. Extremeness: $\rho_D(\text{ext}(D)) = 1$
- 3. Linearity: $\rho_D(x) = \rho_{\lambda D + y}(\lambda x + y)$ for $\lambda > 0$.
- **4.** Mixture Cont: $\rho_{\lambda D + \lambda' D'}$ is continuous in λ, λ' for $\lambda, \lambda' \geq 0$.

We keep Linearity and Mixture Continuity exactly.
 Modify Monotonicity and Extremeness
 Add an additional restriction: Convex Modularity

Montonicity

Let $D \subset D'$, and let $A \subset D$. Then

$$\rho_D(A) \ge \rho_{D'}(A),$$

with equality whenever ext(D) = ext(D').

▶ In GP, with ρ additive: ext(D) = ext(D) = 1 implies the final condition.

Let $D = \{x, y, \frac{1}{2}x + \frac{1}{2}y\}$. For all u:

$$u \cdot \left(\frac{1}{2}x + \frac{1}{2}y\right) = \max\{u \cdot x, u \cdot y\}$$

if and only if $u \cdot x = u \cdot y$.

- Convex combinations are chosen only when all extreme points are chosen.
- GP assume this never happens, $\rho_D(\text{int}(D)) = 0$.

Let pi(D, A) =

 $\{x\in \mathsf{conv}(D)\mid x=\alpha a+(1-\alpha)y, a\in A, y\in \mathsf{conv}(D), \alpha\in (0,1]\}$

donate the projective interior of 4 in 1

denote the projective interior of A in D.

 \Rightarrow pi(D,A) is the union of the relative interiors of all faces intersecting A.

Extremeness

Let $A \subseteq D$. Then

$$\rho_D(\operatorname{pi}(D,A)) = \rho_D(A).$$

• Since
$$pi(D, ext(D)) = conv(D)$$
. Extremeness implies $\rho_D(ext(D)) = 1$.

astly,	we need	to restrict	how non-	-additive	ho can be	

Let $D = \{x, y, \frac{1}{2}x + \frac{1}{2}y\}$. Notice:

$$[\omega, g, 2\omega + 2g]$$
. Notice

So.

 $\rho_D(\{x\}) = \xi(\{u \mid u(x) > u(y)\}) + \xi(\{u \mid u(x) = u(y)\}), \text{ and}$

 $\rho_D(\{x,y\}) = \rho_D(\{x\}) + \rho_D(\{y\}) - \xi(\{u \mid u(x) = u(y)\})$

 $\rho_D(\{y\}) = \xi(\{u \mid u(y) > u(x)\}) + \xi(\{u \mid u(x) = u(y)\}).$

Also, recall,

Hence

$$u(x) = u(y) \iff \frac{1}{2}x + \frac{1}{2}y \in \underset{z \in D}{\operatorname{arg max}} u(z)$$

 $\rho_D(\{x,y\}) = \rho_D(\{x\}) + \rho_D(\{y\}) - \rho_D(\frac{1}{2}x + \frac{1}{2}y)$

Convex-Modularity

Let
$$A, B \subseteq D$$
 be such that $\frac{1}{2}A + \frac{1}{2}B \subseteq D$. Then

 $\rho_D(A \cup B) = \rho_D(A) + \rho_D(B) - \rho_D(\frac{1}{2}A + \frac{1}{2}B)$

Theorem

The following are equivalent:

- 1. ρ satisfies Monotonicity, Extremeness, Convex-Modularity, Linearity, and Mixture-Continuity.
 - 2. ρ maximizes a finitely additive RLR, ξ .

Proof Sketch

Two preliminary facts:

- 1. ρ is completely determined by its value over singletons.
 - Convex Modularity and Monotonicity
- 2. If $N(D, \{x\}) = N(D', \{x'\})$ then $\rho_D(x) = \rho_{D'}(x')$.
 - Linearity, mostly.

Proof Sketch

Construct ξ by setting value on $ri(N(D, \{x\}))$ for each $(D, \{x\})$.

- ▶ Induction on the dimension of $N(D, \{x\})$.
- If $\dim(N(D, \{x\})) = 0$ then $N(D, \{x\}) = 0$.
 - $\xi(\mathbf{0}) = \rho_D(x)$

$$\xi(\operatorname{ri}(N(D,y))) = \xi(N(D,y) \setminus \mathbf{0}) = \rho_D(y) - \rho_D(x)$$

$$\xi(\operatorname{ri}(N(D,z))) = \xi(N(D,z) \setminus \mathbf{0}) = \rho_D(z) - \rho_D(x)$$

•
$$\xi(\text{ri}(N(D, w))) = \rho_D(w) - \rho_D(z) - \rho_D(y) + \rho_D(x)$$

- We motivated the non-additivity of ρ as coming from tie breaking rules; but ρ is an arbitrary capacity.
- The structure imposed on ρ_D , implies that it is a coherent upper probability.
 - Exists a $M \subseteq \Delta(D)$ such that

$$\rho_D(A) = \sup_{m \in M} m(A),$$

Define

$$M(\xi,D) = \big\{ \int_{\mathbb{R}^n} \tau_u(A)\xi(du) \mid \tau_u \in \Delta(\mathbb{R}^n), \, \operatorname{supp}(\tau_u) = rg \max_{y \in D} u(y) \big\}.$$

Theorem

Let ρ maximize ξ . Then $\rho_D = \sup_{m \in M(\xi, D)} m(A)$ for all D.

Info Acquisition

- Take interpretation that D is sets of AA-acts on n-dimensional state space.
- A RLR ξ is over n-dimensional simplex.
 - \blacktriangleright Utility u is a belief.
 - Requires state monotonicity and non-triviality axioms, as in Lu (2016).

All agents have the same prior, but

- have different costs to acquire information.
 - l.e., run an experiment
 Experiments are partitions of the state space.
 - observe different realizations for the same eve
- observe different realizations for the same exp,
 according to the prior (exp are i.i.d.)

The Model

- 1. Agent *i* faces $D \in \mathcal{D}$, with prior μ .
- 2. Chooses partition, Γ to maximize

$$\sum_{s_i, i \le n} \mu(s_i) \max_{x \in D} \mu(\cdot | \Gamma(s_i)) \cdot x - c_i(\Gamma)$$

- 3. Observes $\Gamma(s_i)$ with probability $\mu(\Gamma(s_i))$
- 4. Chooses $x \in D$ to maximize $\mu(\cdot|\Gamma(s_i)) \cdot x$

The observer only sees the final choice frequencies.

The resulting choice rule will satisfy all axioms but linearity

and monotonicity.

Weakened to translation invariance.

Why not linearity?

$$D = \{[0,1], [1,0]\}.$$

* As $\lambda \to 0$, choose no info when faced with λD .

* As $\lambda \to \infty$, choose maximal info when faced with λD .

As $\lambda \to 0$, choice becomes degenerate a dictated by prior, μ .

We can exploit this lack of linearity to identify the distribution of costs.

• (Assuming cost of $c_i(\Gamma)$ and $c_i(\Gamma')$ are independent.) • If $\Gamma \subset \Gamma'$, but $c_i(\Gamma) \geq c_i(\Gamma')$ then agent never chooses Γ .

If Γ has two cells E_1, E_2 , we can find c_i as in the example.

- (Assume $\mu(E_1) < \mu(E_2)$ for simplicity).
- $D_{\lambda}(\Gamma)$ is acts 1. Constant act (at least) $\lambda \gamma$ with $1 > \gamma \geq (1 - \min_{i \leq n} \mu(a_i))$.
- 2. Act $x_{\lambda}^{\Gamma_i}$: λ on E_i and 0 on E_j , $j \neq i$.
- For a given λ , choose info iff $\lambda c \geq \lambda \gamma$. Iff info is acquired will agent (maybe, depending on the info) choose $x_1^{\Gamma_1}$.

If Γ' has three cells F_1, F_2, F_3 , and refines

$$\Gamma$$
 has three cells F_1, F_2, F_3 , and refines $\Gamma = \{E_1 = \{F_1\}, E_2 = \{F_2, F_3\}\}.$

 $D_{\lambda,\lambda'} = D_{\lambda}(\Gamma) \cup D_{\lambda'}(\Gamma')$

independent of λ' .

$$F = \{E_1 = \{F_1\}, E_2 = \{F_2, F_3\}\}.$$

Assume $\mu(F_1) < \mu(F_2) < \mu(F_3)$ for simple

(Assume $\mu(F_1) < \mu(F_2) < \mu(F_3)$ for simplicity).

For small $\lambda' = \lambda$: agents choose out of $D_{\lambda}(\Gamma)$.

• Only agents with low enough cost $c(\Gamma)$ will choose $x_{\lambda}^{\Gamma_1}$,

* Fixing λ as λ' increases, the rate of switching form $x_{\lambda}^{\Gamma_1}$ to $x_{\lambda}^{\Gamma'_1}$ identifies the cost.

• Only if $c(\Gamma') > c(\Gamma)$, observe switching rate

• Can vary λ to observe the entire distribution.