Data Science Assignment 4

Nike Marie Pulow – Henri Paul Heyden

stu239549 - stu240825

1 PCA, SVD

1. We search for matrices U, Σ, V with $X = U\Sigma V^T$ so that the columns of U and V are eigenvectors of XX^T and X^TX respectively.

We'll begin by computing U:

$$XX^{T} = \begin{bmatrix} 4 & 2 \\ \sqrt{2} & 2\sqrt{2} \\ -\sqrt{2} & -2\sqrt{2} \end{bmatrix} \times \begin{bmatrix} 4 & \sqrt{2} & -\sqrt{2} \\ 2 & 2\sqrt{2} & -2\sqrt{2} \end{bmatrix}$$
$$= \begin{bmatrix} 20 & 8\sqrt{2} & -8\sqrt{2} \\ 8\sqrt{2} & 10 & -10 \\ -8\sqrt{2} & -10 & 10 \end{bmatrix}$$

2.

2 TF-IDF

- 1. Vocabulary: ["fast", "car", "highway", "road", "bike", "wheel"]
- 2. term frequencies:

t	d=1	d=2	d=3	d=4
fast	0.2	0.4	0.2	0
car	0.4	0.4	0	0.25
highway	0.2	0	0.2	0
road	0.2	0	0.4	0
bike	0	0.2	0	0.25
wheel	0	0	0.2	0.5

3. document frequency:

	$oldsymbol{t}$	#d containing t	IDF	
_	fast	3	$\log \frac{4}{3}$	
	car	3	$\log \frac{4}{3}$	
	highway	2	$\log \frac{4}{2} = \log 2$	
	road	2	log(2)	
	bike	2	log(2)	
	wheel	2	$\log(2)$	

4. calculating TF-IDF vectors:

$oldsymbol{t}$	d=1	d=2	d = 3	d=4
fast	0.025	0.05	0.025	0
car	0.05	0.05	0	0.031
highway	0.06	0	0.06	0
road	0.06	0	0.120	0
bike	0	0.06	0	0.075
wheel	0	0	0.06	0.151

Which gives us the following vectors for each d:

$$r(d=1) = (0.025, 0.05, 0.06, 0.06, 0, 0)$$

$$r(d=2) = (0.05, 0.05, 0, 0, 0.06, 0)$$

$$r(d=3) = (0.025, 0, 0.06, 0.12, 0, 0.06)$$

$$r(d=4) = (0, 0.031, 00, 0.075, 0.151)$$