华东理工大学 2009 - 2010 学年第一学期

《 复变函数与积分变换》课程期终考试试卷 A 2010.1

开课学院: 理学院 , 考试形式: 闭卷 , 所需时间: 120分钟

考生姓名	姓名:学号:			班纺	及 :	任课教师 :_赵建丛		
题序		_	三	四	五.	六	七	 总 分
				<u> </u>	.11.	<i>/\</i>	u u	
得分 评卷人								
(本试卷共七道大题) 一、 填空 (每小题 4 分, 共 24 分)								
1.								
2 函数 f	$(z) = 2x^3$	+3y³在_			可导.			
3. $z = 0$ 是 $f(z) = \frac{\ln(1+z)}{z}$ 的奇点,其类型为								
4.设 C 为正向圆周 $ \xi =1$,则当 $ z <1$ 时, $f(z)=\oint_C \frac{\sin 2\xi}{(\xi-z)^3}d\xi=$								
5. 函数 $f(t) = \cos t \sin t$ 的 Fourier 变换为								
6. 设 $\mathcal{F}[f_1(t)] = F_1(\omega)$, $\mathcal{F}[f_2(t)] = F_2(\omega)$, 则 $\mathcal{F}[f_1(t) * f_2(t)] = $								
其中 f_1 ($f(t) * f_2(t)$	定义为_						
、单项选择	译题(每 小	题 4 分,	共 24 分)					
	\ddot{f} 论中不正 \ddot{f} $f(z)$ 在 \ddot{f})) 解析,则	J积分∫ ^{z₁} f	(<i>z)dz</i> 与路	各径无关($z_0, z_1 \in I$));
B. 若 $f(z)$ 在 D 内任一点 z_0 的邻域内可展开成泰勒级数,则 $f(z)$ 在 D 解析;								

- C. 如果 f(z) 在单连域 D 内沿 D 内任一条简单闭曲线的积分值为零,则 f(z)在D解析
- D. 设 $f(z) = \frac{g(z)}{(z-z)^n}$, n 为正整数, g(z) 在 z_0 点解析,则 z_0 是 f(z) 的 n 级极点。
- 2. 在映射 $w = \frac{1}{z}$ 之下,将区域 Im(z) > 1映射成为区域(

- A. Im(w) < 1; B. Re(w) < 1; C. $\left| w + \frac{1}{2} \right| < \frac{1}{2}$; D. $\left| w + \frac{1}{2} \right| > \frac{1}{2}$.
- 3. 设 C 为正向圆周 |z-a| = a(a > 0), 则积分 $\oint_C \frac{dz}{z^2 a^2} = 0$
 - A. $-\frac{\pi i}{2a}$ B. $-\frac{\pi i}{a}$ C. $\frac{\pi i}{2a}$ D. $\frac{\pi i}{a}$

- 4. $f(z) = \frac{1}{(1+z^2)^2}$ 在 z = 0 处的泰勒展开式的收敛半径为(
 - A. $\frac{\sqrt{3}}{2}$
- B.1 $C.\sqrt{2}$ D. $\sqrt{3}$
- - A.可去奇点
- B.二阶极点
- C.五阶零点
- D.本性奇点
- 6.设 C 为从-i到i的直线段,则 $\int_C |z| dz = ($

- B. 2i C. -i D. -2i三、(8分) 求线性映射 w = f(z) 它把|z| < 1映射为|w| < 1,使 $f(\frac{1}{2}) = 0$, $f'(\frac{1}{2}) > 0$.

四. (8 分)已知 $u(x,y)=4xy^3+ax^3y$, 求常数 a 以及二元函数 v(x,y), 使得 f(z)=u+iv 为解析函数且满足条件 f(1)=0.

五. (8分) 将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z = 0 点展开为洛朗 (Laurent) 级数.

六. 计算下列积分 (每题 6 分, 共 18 分)

1.
$$\oint_C \frac{e^{-z} \sin 2z}{z^2} dz$$
, 设 C 为正向圆周 $|z+i|=2$.

2.
$$\oint_C \frac{e^{\frac{1}{z}}}{1-z} dz$$
, C 为正向圆周 $|z| = \frac{1}{2}$.

$$3. \int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + 9)(x^2 + 1)} dx$$

七、(10 分) 计算 $f(t) = \int_0^t \frac{e^{-3t} \sin 2t}{t} dt$ 的拉氏变换,并用拉普拉斯(Laplace)变换求解

微分方程 $y''' + y' = e^{2t}$ 满足初始条件 y(0) = y'(0) = y''(0) = 0 的解.

[已知
$$\mathcal{L}[\sin kt] = \frac{k}{s^2 + k^2}$$
, $\mathcal{L}[\cos kt] = \frac{s}{s^2 + k^2}$, $\mathcal{L}[e^{kt}] = \frac{1}{s - k}$]

华东理工大学 2009 - 2010 学年第一学期

《 复变函数与积分变换》课程期终考试试卷 A 答案 2010.1

开课学院:理学院,考试形式:闭卷,所需时间:120分钟

二、 填空(每小题 4 分, 共 28 分)

- 1. $e(\cos 1 \sin 1) + ie(3\sin 1 + \cos 1)$.
- 2 直线 $\sqrt{2}x \pm \sqrt{3}y = 0$
- 3. 可去奇点.
- $4.-4\pi i \sin 2z$.

5.
$$\frac{i\pi}{2}[\delta(\omega+2)-\delta(\omega-2)]$$

6.
$$F_1(\omega) \cdot F_2(\omega)$$
, $\int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau$

二、单项选择题 (每小题 4 分, 共 16 分) D,C,D,B,B,A

三、(8分) 求线性映射 w = f(z) 它把|z| < 1映射为|w| < 1,使 $f(\frac{1}{2}) = 0$, $f'(\frac{1}{2}) > 0$.

解: 因|z|<1映射为|w|<1的映射为 $w = f(z) = e^{i\theta} \frac{z - \alpha}{1 - \overline{\alpha}z}$ ($|\alpha|$ <1)

由題意
$$\alpha = \frac{1}{2}$$

$$w = e^{i\theta} \frac{2z - 1}{2 - z}$$
 3 5

$$f'(z) = e^{i\theta} \frac{3}{(2-z)^2} \quad f'(\frac{1}{2}) = e^{i\theta} \cdot \frac{4}{3} > 0$$
 2 \(\frac{1}{2}\)

$$\theta = arcf'(\frac{1}{2}) = 2k\pi$$
 (k 为整数) 2 分

所以
$$w = \frac{2z-1}{2-z}$$
. 1分

四. $(8 \ \beta)$ 已知 $u(x,y)=4xy^3+ax^3y$, 求常数 a 以及二元函数 v(x,y), 使得 f(z)=u+iv 为解析函数且满足条件 f(1)=0.

解: 若 f(z) = u + iv 解析,则u(x,y)必为调和函数

$$\frac{\partial u}{\partial x} = 4y^3 + 3ax^2y$$

$$\frac{\partial u}{\partial y} = 12xy^2 + ax^3$$

$$\frac{\partial^2 u}{\partial x^2} = 6axy \qquad \qquad \frac{\partial^2 u}{\partial y^2} = 24xy$$

$$\mathbb{E} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 6axy + 24xy = 0 \qquad a = -4 \qquad 2 \, \text{f}$$

$$\therefore u(x, y) = 4xy^3 - 4x^3y$$

由柯西黎曼方程

田村 四家 受 为 程

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 4y^3 - 12x^2y$$

$$v(x, y) = \int (4y^3 - 12x^2y)dy = y^4 - 6x^2y^2 + \varphi(x)$$

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = 4x^3 - 12xy^2 = -12xy^2 + \varphi'(x)$$

$$\varphi'(x) = 4x^3, \quad \varphi(x) = x^4 + C$$

$$v(x, y) = x^4 + y^4 - 6x^2y^2 + C$$

$$f(z) = (4xy^3 - 4x^3y) + i(x^4 + y^4 - 6x^2y^2 + C)$$
代入 $f(1) = 0$ 得 $C = -1$

所以

$$v(x, y) = x^4 + y^4 - 6x^2y^2 - 1$$

五. (8分) 将函数 $f(z) = \frac{1}{(z-1)(z-2)}$ 在 z=0 点展开为洛朗 (Laurent) 级数.

解:
$$f(z) = \frac{1}{(z-1)(z-2)} = -\frac{1}{z-1} + \frac{1}{z-2} = \frac{1}{1-z} - \frac{1}{2-z}$$
, 2分

在复平面上以原点为中心分为三个解析环:

$$0 \le |z| < 1$$
, $1 < |z| < 2$, $2 < |z| < +\infty$.

(1) 在 $0 \le |z| < 1$ 内,

$$f(z) = \frac{1}{1-z} - \frac{1}{2\left(1-\frac{z}{2}\right)}$$

$$= \sum_{n=0}^{+\infty} z^n - \frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} = \sum_{n=0}^{+\infty} \left(1 - \frac{1}{2^{n+1}}\right) z^n \cdot 2$$

(2) 在 1 < |z| < 2 内,

$$f(z) = -\frac{1}{z\left(1 - \frac{1}{z}\right)} - \frac{1}{2\left(1 - \frac{z}{2}\right)}$$

$$= -\frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} - \frac{1}{2} \sum_{n=0}^{+\infty} \frac{z^n}{2^n} = -\sum_{n=0}^{+\infty} \frac{1}{z^{n+1}} - \sum_{n=0}^{+\infty} \frac{z^n}{2^{n+1}} \cdot 2$$

(3) 在 $2 < |z| < +\infty$ 内,

$$f(z) = -\frac{1}{z\left(1 - \frac{1}{z}\right)} + \frac{1}{z\left(1 - \frac{2}{z}\right)}$$
$$= -\frac{1}{z} \sum_{n=0}^{+\infty} \frac{1}{z^n} + \frac{1}{z} \sum_{n=0}^{+\infty} \frac{2^n}{z^n}.$$
 2 $\frac{2}{2}$

六. 计算下列积分(每题6分,共18分)

1.
$$\oint_C \frac{e^{-z} \sin 2z}{z^2} dz$$
, 设 C 为正向圆周 $|z+i|=2$ 。

解: 令 $f(z) = e^{-z} \sin 2z$,则由高阶求导公式得:

原式 =
$$2\pi i \cdot f'(0)$$
 3分
= $2\pi i (-e^z \sin 2z + 2e^{-z} \cos 2z)|_{z=0} = 4\pi i$ 3分

2.
$$\oint_C \frac{e^{\frac{1}{z}}}{1-z} dz$$
, C 为正向圆周 $|z| = \frac{1}{2}$ 。

解: 在 C 内, $\frac{e^{\frac{1}{z}}}{1-z}$ 有本性奇点 z=0,

由留数定理: 原式 =
$$2\pi i \{ \text{Re } s[\frac{e^{\frac{1}{z}}}{1-z}, 0] \}$$
 3 分

在 $0 < |z| < \frac{1}{2}$ 内将 $\frac{e^{\frac{1}{z}}}{1-z}$ 展为 Laurent 级数:

$$\frac{e^{\frac{1}{z}}}{1-z} = (1+z+z^2+\cdots+z^n+\cdots)(1+\frac{1}{z}+\frac{1}{2!z^2}+\cdots+\frac{1}{n!z^n}+\cdots)$$

$$= \cdots \frac{1}{z} (1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} + \cdots) + \cdots$$

故: Re
$$s\left[\frac{e^{\frac{1}{z}}}{1-z}, 0\right] = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots = e-1$$
 2分

$$\oint_{|z|=\frac{1}{2}} \frac{e^{\frac{1}{z}}}{1-z} dz = 2\pi i = 2\pi i (e-1)$$
1 \(\frac{\phi}{z}\)

3.
$$\int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + 9)(x^2 + 1)} dx$$

解:
$$\diamondsuit$$
 $f(z) = \frac{e^{iz}}{(z^2 + 4)(z^2 + 1)}$

f(z)在上半平面有两个一级极点 $z_1 = i$, $z_2 = 3i$ 分

$$\int_{-\infty}^{\infty} \frac{e^{ix}}{(x^2 + 9)(x^2 + 1)} dx = 2\pi i \{ \operatorname{Re} s[f(z), i] + \operatorname{Re} s[f(z), 3i] \}$$

$$= 2\pi i \left[\frac{e^{iz}}{(z^2 + 9)(z + i)} \bigg|_{z=i} + \frac{e^{iz}}{(z^2 + 1)(z + 3i)} \bigg|_{z=3i} \right]$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{-48i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{-48i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{-48i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

$$= 2\pi i \left(\frac{e^{-1}}{16i} + \frac{e^{-3}}{16i} \right) = \frac{\pi}{8} e^{-1} - \frac{\pi}{24} e^{-3}$$

七、(8分) 计算 $f(t) = \int_0^t \frac{e^{-3t} \sin 2t}{t} dt$ 的拉氏变换,并用拉普拉斯(Laplace)变换求解微

分方程 $y''' + y' = e^{2t}$ 满足初始条件 y(0) = y'(0) = y''(0) = 0 的解.

[已知
$$\mathcal{L}[\sin kt] = \frac{k}{s^2 + k^2}, \mathcal{L}[\cos kt] = \frac{s}{s^2 + k^2}, \mathcal{L}[e^{kt}] = \frac{1}{s - k}$$
]

解: (1) 由于
$$\mathcal{L}[e^{-3t}\sin 2t] = \frac{4}{(s+3)^2+4}$$

由像函数的积分性质得
$$\mathcal{L}\left[\frac{e^{-3t}\sin 2t}{t}\right] = \int_{s}^{\infty} \frac{2}{\left(s+3\right)^{2}+4} ds = \frac{\pi}{2} - \arctan\frac{s+3}{2}$$

$$\mathcal{L}[f(t)] = \frac{1}{s} \left[\frac{\pi}{2} - \arctan \frac{s+3}{2} \right]$$
 4 £

(2) 设 $\mathcal{L}[y(t)] = Y(s)$ 对方程取拉氏变换

$$s^{3}Y(s) + sY(s) = \frac{1}{s-2} (2 \%), \qquad Y(s) = \frac{1}{s(s^{2}+1)(s-2)}$$

$$y(t) = \mathcal{L}^{-1}\left[\frac{1}{s(s^2+1)(s-2)}\right] = \mathcal{L}^{-1}\left[\frac{-\frac{1}{2}}{s} + \frac{\frac{1}{10}}{s-2} + \frac{\frac{2}{5}s - \frac{1}{5}}{s^2+1}\right]$$

$$= -\frac{1}{2} + \frac{1}{10}e^{2t} + \frac{2}{5}\cos t - \frac{1}{5}\sin t$$
(2 \(\frac{1}{2}\))