Excel training session

API-201, Fall 2021 TF: Sophie Hill

Plan for today

- Sophie's 2 Golden Rules of Excellence
- Getting oriented with Excel
- Excel for API-201
 - Cleaning data
 - Analyzing data
 - Visualizing data

Rule #1: Work efficiently

Rule #1: Work efficiently

This is a stats class, not an Excel class.

If you are stuck on something Excel-related for more than 5 minutes... it's time to #askforhelp!

Rule #2: Work transparently

 f_x =if(A2=1, if(B3=5, sum(A3:C8), avg(C2:D11)), stdev(A:A), "hello world")

Rule #2: Work transparently

Make your Excel sheet intelligible to your future self / your collaborators / your hypothetical boss!

- Break calculations down into smaller steps
- Use sensible column/sheet names

But first... The Basics

Disclaimer: I am using Microsoft Excel for Mac version 16 (Office 365). Things may look slightly different depending on your version and operating system.

Menu bar

Highlighted cell

Formula bar

Sheet

Rows (numbers)

Columns (letters)

Tabs

A1	The cell A1
A1:A3	The cells A1, A2, A3
A:A	
A:B	
A1:B7	
\$A\$1	
Sheet1!A1	

A 1	The cell A1
A1:A3	The cells A1, A2, A3
A:A	The whole A column
A:B	
A1:B7	
\$A\$1	
Sheet1!A1	

A1	The cell A1
A1:A3	The cells A1, A2, A3
A:A	The whole A column
A:B	The whole of columns A and B
A1:B7	
\$A\$1	
Sheet1!A1	

A1	The cell A1
A1:A3	The cells A1, A2, A3
A:A	The whole A column
A:B	The whole of columns A and B
A1:B7	The array covering A1 down to A7 and B1 down to B7
\$A\$1	
Sheet1!A1	

A 1	The cell A1
A1:A3	The cells A1, A2, A3
A:A	The whole A column
A:B	The whole of columns A and B
A1:B7	The array covering A1 down to A7 and B1 down to B7
\$A\$1	A fixed reference to cell A1 that won't change when you copy a formula to another cell
Sheet1!A1	

A1	The cell A1
A1:A3	The cells A1, A2, A3
A:A	The whole A column
A:B	The whole of columns A and B
A1:B7	The array covering A1 down to A7 and B1 down to B7
\$A\$1	A fixed reference to cell A1 that won't change when you copy a formula to another cell
Sheet1!A1	Cell A1 on Sheet 1

Cell A1 contains a text string ("hello world"). Cell B1 contains a formula ("=\$A1").

Cell A1 contains a text string ("hello world"). Cell B1 contains a formula ("=\$A1").

What will B1 evaluate to?

Cell A1 contains a text string ("hello world"). Cell B1 contains a formula ("=\$A1").

What will B1 evaluate to?

Cell A1 contains a text string ("hello world"). Cell B1 contains a formula ("=\$A1").

- What will B1 evaluate to?
- What will happen if I copy the contents of cell B1 into cell B2?

Cell A1 contains a text string ("hello world"). Cell B1 contains a formula ("=\$A1").

- What will B1 evaluate to?
- What will happen if I copy the contents of cell B1 into cell B2?

Cell A1 contains a text string ("hello world"). Cell B1 contains a formula ("=\$A1").

- What will B1 evaluate to?
- 2. What will happen if I copy the contents of cell B1 into cell B2?

Why?

Because "\$A1" only fixes the column, not the row!

So cell B2 now contains the formula "=\$A2" and cell A2 is empty.

Syntax: fixed references

A 1	Neither row nor column is fixed
\$A1	Column is fixed
A\$1	Row is fixed
\$A\$1	Row and column are fixed

In Excel, formulas must start with the equals sign (=)

Otherwise, Excel doesn't know if you want to calculate the SUM or just write the word "sum"!

In Excel, formulas must start with the equals sign (=)

Otherwise, Excel doesn't know if you want to calculate the SUM or just write the word "sum"!

Functions take arguments separated by commas:

=MYFUNCTION(argument1, argument2, argument3)

- a number
- a text string in quotes
- a cell or range of cells
- a logical condition
- the output of another function

- a number
- a text string in quotes
- a cell or range of cells
- a logical condition
- the output of another function

```
=IF(A1>0, "this is a positive number", 0)
```

- a number
- a text string in quotes
- a cell or range of cells
- a logical condition
- the output of another function

```
=IF(A1>0, "this is a positive number", 0)
```

- a number
- a text string in quotes
- a cell or range of cells
- a logical condition
- the output of another function

```
=IF(A1>0, "this is a positive number", 0)
```

- a number
- a text string in quotes
- a cell or range of cells
- a logical condition
- the output of another function

```
=IF(A1>0, "this is a positive number", 0)
```

Syntax: formulas

An **argument** could be:

- a number
- a text string in quotes
- a cell or range of cells
- a logical condition
- the output of another function

```
=IF(A1>0, "this is a positive number", AVERAGE(A:A))
```

Syntax: formulas

An **argument** could be:

- a number
- a text string in quotes
- a cell or range of cells
- a logical condition
- the output of another function

```
=IF(A1>0, "this is a positive number", AVERAGE(A:A)
```

"Give an MPP a COUNTIF, and they will complete the problem set today.

Teach an MPP how to use the Excel help function, and they will complete the problem sets forever."

— API-201 proverb

Formula builder

To bring up the Formula Builder, click on the function button (fx).

You can search for a function by name.

Formula builder

Click on the function you want, and it will show you the arguments you need to enter.

Click on "More help on this function" to see examples.

Formula builder

Click on the function you want, and it will show you the arguments you need to enter.

Click on "More help on this function" to see examples.

Excel for Mac Help

COUNTIF function

Use COUNTIF, one of the statistical functions, to count the number of cells that meet a criterion; for example, to count the number of times a particular city appears in a customer list.

In its simplest form, COUNTIF says:

= COUNTIF(Where do you want to look?, What do you want to look for?)

For example:

- = COUNTIF(A2:A5,"London")
- = COUNTIF(A2:A5,A4)

Cleaning data

i.e., getting the data into a format that is most useful to us

There are many ways to encode information.

Sometimes we might want to switch, e.g., from **categorical** variable to a **numeric** variable.

turnout_2020	abstained
voted	0
abstained	1
voted	0
voted	0
voted	0
abstained	1
voted	0

We can use the IF function to recode variables.

Note that Excel helpfully gives us the syntax of the function as a pop-up.

\uparrow \times \checkmark f_x =IF(A2="abstained", 1, 0)			
al_test, [value_if_true], [value_if_false])			
abstained			
", 1, 0)			
1			
0			
0			
0			
1			
0			
	abstained ", 1, 0) 1 0 0 0		

There are many ways to encode information.

Sometimes we might want to **collapse** a variable down into fewer categories.

vote_2020	vote_2020_simplified	
Republican	Republican	
Democrat	Democrat	
Democrat	Democrat	
Independent	Other	
Green	Other	
Republican	Republican	
Libertarian	Other	
Democrat	Democrat	
Republican	Republican	
Republican	Republican	

But what if we have more than two categories?

We could nest multiple IF functions, but that gets messy!

Instead, we can use the VLOOKUP function with a lookup table.

vote_2020	vote_2020_simplified		
Republican	\$E\$8, 2, FALSE)		
Democrat	Democrat	Lookup table	
Democrat	Democrat	Republican	Republican
Independent	Other	Democrat	Democrat
Green	Other	Independent	Other
Republican	Republican	Green	Other
Libertarian	Other	Libertarian	Other
Democrat	Democrat		
Republican	Republican		
Republican	Republican		

=VLOOKUP(A2,\$D\$4:\$E\$8, 2, FALSE)

VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])

Analyzing data

i.e., calculating descriptive statistics, performing statistical tests

Tables

Turning our data into a table allows us to sort and filter by different variables

Tables

Tables are a great way to **explore** a dataset.

However, if you have a BIG dataset with LOTS of variables, using a table can be slow and confusing.

In these cases, we probably want to use **functions** instead.

Descriptive statistics

Function	What does it do?	
COUNT	Counts the number of cells that contain a number	
SUM	Adds up the cells	
AVERAGE	Takes the mean of the cells	
STDEV.P / STDEV.S	Standard deviation for a population / a sample	
MEDIAN	Takes the median of the cells	

Descriptive statistics

Function	What does it do?
COUNT / COUNTIF / COUNTIFS	Counts the number of cells that contain a number (or meet a certain condition)
SUM / SUMIF / SUMIFS	Adds up the cells (or the cells that meet a certain condition)
AVERAGE / AVERAGEIF / AVERAGEIFS	Takes the mean of the cells (or the cells that meet a certain condition)
STDEV.P / STDEV.S	Standard deviation for a population / a sample
MEDIAN	Takes the median of the cells

Statistical tests (don't need to worry about these yet!)

Function	What does it do? Inverse of the standard normal distribution, used for finding critical values	
NORM.S.INV		
NORM.S.DIST	Standard normal distribution, used for finding p-values	
CHISQ.TEST	Chi-squared test	

Suppose we want to calculate the average age of the individuals in our data who voted in 2020.

We can use AVERAGEIF! But how does the syntax work?

Let's use the Formula Builder...

turnout_2020 🗔 age	•
voted	24
abstained	55
voted	72
voted	19
voted	44
abstained	37
voted	65

To do the same calculation for the abstainers, I made 2 changes:

- I added \$ to the cell references to keep it fixed when I copied it!
- 2. I changed "voted" to "abstained"

Easy!

	В	C	D	E	
_↓ age	V				
	24				
	55		Average age of		
	72		voters	abstainers	
	19		44.8	46	
	44				
	37				
	65				

Visualizing data

i.e., making graphs!

Highlight the column we want to display

Go Insert → Chart → Histogram

Excel will spit out some default chart.

It will not be pretty!

But that's ok.

Protip: to change something on a chart, double-click on that element!

Excel will spit out some default chart.

It will not be pretty!

But that's ok.

Charts: multiple variables

Charts: multiple variables

