1、 填空 15% (每小题 3分)

1、n阶完全图结点v的度数d(v) = _____。

2、设n阶图G中有m条边,每个结点的度数不是k的是k+1,若G中有 N_k 个k度顶点, N_{k+1} 个 k+1度顶点,则 N_k = _____。

3、 算式 $((a+(b*c)*d)\div(e*f)$ 的二叉树表示为

4、如图

给出格L,则e

二、选择15% (每小题3分)

1、设S={0,1,2,3},≤为小于等于关系,则{S,≤}是()。 A、群; B、环; C、域; D、格。

2、设[{a,b,c},*]为代数系统,*运算如下:

*	a	b	c
a	a	b	С
b	b	a	С
С	С	С	С

则零元为()。

A、a; B、b; C、c; D、没有。

3、如右图

相对于完全图Ks的补图为()。

4、一棵无向树T有7片树叶,3个3度顶点,其余顶点均为4度。则T有()4度结点。

A, 1; B, 2; C, 3; D, 4.

5、设[A, +, ·]是代数系统, 其中+, ·为普通加法和乘法, 则A=()时, [A, +, ·]是整环。

A, $\{x \mid x = 2n, n \in Z\}$; B, $\{x \mid x = 2n+1, n \in Z\}$;

C, $\{x \mid x \ge 0, \Box x \in Z\}$; D, $\{x \mid x = a + b\sqrt[4]{5}, a, b \in R\}$.

三、证明 50%

- 1、设G是(n,m)简单二部图,则 $m \le \frac{n^2}{4}$ 。(10分)
- 2、设G为具有n个结点的简单图,且 $m > \frac{1}{2}(n-1)(n-2)$,则G是连通图。(10分)
- 3、记"开"为1,"关"为0,反映电路规律的代数系统[$\{0, 1\}$, +,·]的加法运算和乘法运算。如下:

+	0	1
0	0	1
1	1	0

	0	1
0	0	0
1	0	1

证明它是一个环,并且是一个域。(14分)

4、[L,⊗,⊕]是一代数格,"≤"为自然偏序,则[L,≤]是偏序格。(16分)

四、10%

设 $E(x_1,x_2,x_3)=(x_1\wedge x_2)\vee(x_2\wedge x_3)\vee(x_2\wedge x_3)$ 是布尔代数[$\{0,1\},\vee,\wedge,-$]上的一个布尔表达式,试写出 $E(x_1,x_2,x_3)$ 的析取范式和合取范式(10分)

五、10%

如下图所示的赋权图表示某七个城市 v_1,v_2,\quad,v_7 及预先算出它们之间的一些直接通信成路造价(单位:万元),试给出一个设计方案,使得各城市之间既能够通信又使总造价最小。

一、填空15% (每小题3分)

1、n-1; 2、n(k+1)-2m; 3、如右图; 4、0; 5、臂力小者

二、选择 15% (每小题 3分)

题目	1	2	3	4	5
答案	D	C	A	A	D

三、证明 50%

1、证: 设G=(V, E)

$$V = X \cup Y$$
, $|X| = n_1$, $|Y| = n_2$, $n_1 + n_2 = n_2$

对完全二部图有
$$m = n_1 \cdot n_2 = n_1(n - n_1) = -n_1^2 + n_1 n = -(n_1 - \frac{n}{2})^2 + \frac{n^2}{4}$$

当
$$n_1 = \frac{n}{2}$$
时,完全二部图 (n,m) 的边数m有最大值 $\frac{n^2}{4}$

故对任意简单二部图
$$(n,m)$$
有 $m \le \frac{n^2}{4}$ 。

2、证: 反证法: 若G不连通,不妨设G可分成两个连通分支 G_1 、 G_2 ,假设 G_1 和 G_2 的顶点数分别为 n_1 和 n_2 ,显然 $n_1+n_2=n$

$$n_1 \ge 1$$
 $n_2 \ge 1$ $\therefore n_1 \le n-1$ $n_2 \le n-1$

$$\therefore m \le \frac{n_1(n_1 - 1)}{2} + \frac{n_2(n_2 - 1)}{2} \le \frac{(n - 1)(n_1 + n_2 - 2)}{2} = \frac{(n - 1)(n - 2)}{2}$$

与假设矛盾。所以G连通。

3、(1)[{0,1},+,·]是环

①[{0,1},+]是交换群

乘:由"+"运算表知其封闭性。由于运算表的对称性知:+运算可交换。

$$(0+1) +0=0+ (1+0) =1;$$
 $(0+1) +1=0+ (1+1) =0;$

$$(1+1) +1=1+ (1+1) =0$$

结合律成立。

幺: 幺元为0。

逆: 0,1逆元均为其本身。

②[{0,1},·]是半群

乘:由""运算表知封闭

群:
$$(0.0) \cdot 0 = 0 \cdot (0.0) = 0$$
; $(0.0) \cdot 1 = 0 \cdot (0.1) = 0$; $(0.1) \cdot 0 = 0 \cdot (1.0) = 0$; $(0.1) \cdot 1 = 0 \cdot (1.1) = 0$; $(1.1) \cdot 1 = 1 \cdot (1.1) = 0$.

(3)·对+的分配律 $\forall x, y \in \{0,1\}$

$$0 \cdot (x+y) = 0 = 0 + 0 = (0 \cdot x) + (0 \cdot y);$$

 \Box 1· (x+y)

当x=y (x+y)=0 则

$$1 \cdot (x+y) = 1 \cdot 0 = 0 = \begin{cases} 0+0 \\ 1+1 \end{cases} = \begin{cases} (1 \cdot 0) + (1 \cdot 0) \\ (1 \cdot 1) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y);$$

当 $x \neq y$ (x + y = 1) 则

$$1 \cdot (x + y) = 1 \cdot 1 = 1 = \begin{cases} 1 + 0 \\ 0 + 1 \end{cases} = \begin{cases} (1 \cdot 1) + (1 \cdot 0) \\ (1 \cdot 0) + (1 \cdot 1) \end{cases} = (1 \cdot x) + (1 \cdot y)$$

所以 $\forall x, y, z \in \{0,1\}$ 均有 $z \cdot (x + y) = (z \cdot x) + (z \cdot y)$

同理可证:
$$(x+y)\cdot z = (x\cdot z) + (y\cdot z)$$

所以·对+是可分配的。

由(1)(2)(3)得, [{0, 1}, +, ·]是环。

因为[{0,1},+,·]是有限环,故只需证明是整环即可。

- (1)乘交环: 由乘法运算表的对称性知,乘法可交换。
- (2)含幺环: 乘法的幺元是1
- ③无零因子: 1·1=1≠0

因此[{0, 1}, +,·]是整环,故它是域。

- 4、证: (1) "≤"是偏序关系, ≤自然偏序 $\forall a,b \in L$ $a \otimes b = a$
 - ①反自反性:由代数格幂等关系: $a \otimes a = a : a \leq a$ 。
 - ②反对称性: $\forall a,b \in L$ 若 $a \le b,b \le a$ 即: $a \otimes b = a$, $b \otimes a = b$,

则
$$a = a \otimes b = b \otimes a = b$$
 $b \leq a$

③传递性: $a \le b$, $b \le c$ 则:

$$a \otimes c = (a \otimes b) \otimes c$$
 $a \leq b \square \ a \otimes b = a$
 $= a \otimes (b \otimes c)$ $\square \square$
 $= a \otimes b$ $b \leq c \square \ b \otimes c = b$
 $= a$ $a \leq b \square \ a \otimes b = a$

 $\therefore a \leq c$

(2) $\forall x, y \in L$ 在L中存在{x,y}的下(上)确界

设
$$x, y \in L$$
则: $x \otimes y = \inf\{x, y\}$

事实上:
$$x \otimes (x \otimes y) = (x \otimes x) \otimes y = x \otimes y$$

$$\therefore x \otimes y \leq x \square \square \square \square \qquad : x \otimes y \leq y$$

若
$$\{x,y\}$$
有另一下界 c ,则 $c \otimes (x \otimes y) = (c \otimes x) \otimes y = c \otimes y = c$

 $\therefore c \le x \otimes y \therefore x \otimes y$ 是{x,y}最大下界,即 $x \otimes y = \inf\{x,y\}$ 同理可证上确界情况。

四、14%

解:函数表为:

X_1	x_2	x_3	$E(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

析取范式: $E(x_1, x_2, x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$

合取范式: $E(x_1, x_2, x_3) = (x_1 \lor x \lor_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$

五、10%

解: 用库斯克(Kruskal)算法求产生的最优树。算法为:

$$w(v_{1}, v_{7}) = 1 \qquad \Box e_{1} = v_{1}v_{7}$$

$$w(v_{7}, v_{2}) = 4 \qquad \Box e_{2} = v_{7}v_{2}$$

$$w(v_{7}, v_{3}) = 9 \qquad \Box e_{3} = v_{7}v_{3}$$

$$w(v_{3}, v_{4}) = 3 \qquad \Box e = v_{3}v_{4}$$

$$w(v_{4}, v_{5}) = 17 \qquad \Box e = v_{4}v_{5}$$

$$w(v_{1}, v_{6}) = 23 \qquad \Box e = v_{1}v_{6}$$

结果如图:

树权C(T)=23+1+4+9+3+17=57(万元)即为总造价