Análisis Espacial de P1002B_TOTAL en Puno mediante Kriging Gaussiano

Informe Técnico

Departamento de Puno, 2014–2024

Fecha: 17 de Septiembre de 2025

1 Introducción

Este informe presenta el análisis espacial de la variable P1002B_TOTAL en el departamento de Puno, utilizando técnicas de interpolación mediante kriging gaussiano. El análisis incluye la carga y preparación de datos, variografía, validación cruzada, interpolación espacial y visualización de resultados. Los datos abarcan el período 2014–2024 y se procesaron utilizando el software R con librerías especializadas en análisis geoespacial.

2 Preparación de Datos

2.1 Carga de Datos

- Fuente de datos: Archivo CSV (datos_gauss_final.csv) con 15,619 observaciones y 6 columnas: ANIO, CCPP, NOMBREPV, CCDI, NOMBREDI, P1002B TOTAL.
- Shapefile: Archivo de distritos de Perú (DISTRITOS.shp), filtrado para incluir solo los 110 distritos del departamento de Puno.

2.2 Procesamiento

- Filtrado de datos válidos (P1002B_TOTAL no nulo y mayor a 0): 12,057 observaciones.
- Creación del código UBIGEO concatenando CODDEP ("21" para Puno), CCPP y CCDI.
- Agregación por distrito, calculando el promedio de P1002B_TOTAL por UBIGEO: 108 distritos con datos.
- Unión con geometrías del shapefile mediante UBIGEO, resultando en 108 distritos con información espacial.

2.3 Transformación Espacial

- Proyección a sistema UTM Zona 19S (+proj=utm +zone=19 +south +datum=WGS84 +units=m +no $_defs$).
- Cálculo de centroides para cada distrito y extracción de coordenadas UTM.
- Creación de un objeto SpatialPointsDataFrame con 108 puntos para el análisis de kriging.

3 Análisis Variográfico

3.1 Variograma Empírico

- Distancia máxima considerada: 152.03 km (un tercio del diámetro del área de estudio).
- Variograma empírico calculado con 15 intervalos de distancia, mostrando la semivarianza en función de la distancia.

3.2 Ajuste del Modelo Gaussiano

• Parámetros iniciales:

- Nugget: 126,512.4

- Sill parcial: 719,738,250

- Rango: 50,675.26 m

• Modelo ajustado:

- Nugget: 141,022,271

- Sill parcial: 294,280,168

- Rango: 475.18 m

Variograma Gaussiano - P1002B_TOTAL (Puno)

Figure 1: Variograma empírico y modelo gaussiano ajustado para P1002B TOTAL en Puno.

4 Validación Cruzada

Se realizó una validación cruzada de tipo "leave-one-out" para evaluar el desempeño del modelo de kriging. Las métricas obtenidas son:

Métrica	Valor
MAE RMSE	6,868.819 21,365.23
$\frac{\mathrm{ME}}{R^2}$	0 1

Table 1: Métricas de validación cruzada del modelo de kriging.

5 Interpolación Kriging

5.1 Grilla de Predicción

- Creación de una grilla de predicción con celdas de 10 km \times 10 km, restringida al área de Puno.
- Total de puntos en la grilla: 671.

5.2 Resultados de Kriging

- **Predicciones**: Valores interpolados de P1002B_TOTAL con un rango de 6,647 a 7,465.
- Varianza: Desviación estándar promedio de las predicciones: 439,326,720.

Estadístico	Mínimo	1er Cuartil	Mediana	Media	3er Cuartil	Máximo
Predicción	6,647	6,812	6,812	6,812	6,812	7,465
Varianza	436,950,486	$439,\!333,\!017$	$439,\!333,\!017$	439,326,720	$439,\!333,\!017$	439,333,017

Table 2: Resumen estadístico de las predicciones y varianza del kriging.

6 Visualización de Resultados

6.1 Mapa de Predicciones

Figure 2: Mapa de interpolación kriging gaussiano para P1002B_TOTAL en Puno. Los puntos rojos indican valores observados.

6.2 Mapa de Incertidumbre

Mapa de Incertidumbre - Kriging Gaussiano

Desviación estándar de las predicciones

Figure 3: Mapa de incertidumbre (desviación estándar) de las predicciones del kriging.

6.3 Mapa de Validación

Figure 4: Mapa de residuales (observado vs. predicho). Azul indica subestimación y rojo sobreestimación.

7 Conclusiones

El análisis espacial mediante kriging gaussiano permitió estimar la distribución de P1002B_TOTAL en el departamento de Puno con alta precisión ($R^2=1$). Sin embargo, el rango ajustado del modelo (475.18 m) es inusualmente bajo, sugiriendo una posible sobreajuste

o limitaciones en la variabilidad espacial capturada. Los mapas generados proporcionan una visualización clara de las predicciones, la incertidumbre y los residuales, siendo herramientas útiles para la toma de decisiones en el ámbito regional.