

Objectifs du Tp:

Dans ce Tp, vous allez, mettre en œuvre diverses mesures sur des tensions variables : amplitude, valeur moyenne, valeur efficace, ...

Compte-rendu:

Vous rédigerez un compte-rendu par binôme. Vous montrerez la préparation (cidessous) à votre encadreur en début de Tp.

Préparation:

- Rappelez les 3 étapes nécessaires à la détermination d'une valeur efficace.
- Rappelez la formule donnant la valeur efficace d'un signal sinusoïdal.
- Montrez que pour un signal carré 0V-5V, de rapport cyclique α , la valeur moyenne est : α .5 (Volts) et la valeur efficace est : $\sqrt{\alpha}$.5 (Volts) :

1. Mesures de valeurs moyennes

1.1. Génération d'un signal carré

Générer un signal carré +E/-E:

- De fréquence : 1kHz
- De tension d'offset = 0 V
- De valeur crête à crête (= 2E) = 10V pour commencer (mais on pourra faire varier cette valeur).

Puis injecter ce signal sur la voie CH1 de l'oscilloscope

1.2. Mesure de la moyenne du signal carré

À l'aide des fonctions de mesure de l'oscilloscope, mesurer l'amplitude et la valeur moyenne de ce signal.

Question 1.

Noter dans un tableau les amplitudes et les valeurs moyennes pour des valeurs crête à crête (= 2E) de 2 V à 10V variant par pas de 2 V. Commentez les résultats.

1.3. Génération d'un signal sinusoïdal

Générer un signal sinusoïdal :

- De fréquence : 1kHz
- De tension d'offset = 0 V pour commencer (mais on pourra faire varier cette valeur).
- De valeur crête à crête (= 2E) = 10V

Puis injecter ce signal sur la voie CH1 de l'oscilloscope

1.4. Mesures sur un signal sinusoïdal

À l'aide des fonctions de mesure de l'oscilloscope, mesurer l'amplitude et la valeur moyenne de ce signal.

À noter: la mesure d'amplitude donnée par les oscilloscopes produit la valeur de l'amplitude crête à crête. À vous d'utiliser de façon adéquate cette mesure (ou bien de changer, par exemple en mesurant la valeur maximale).

Question 2.

Noter dans un tableau les amplitudes et les valeurs moyennes pour des valeurs de tension d'offset de 1 V à 6 V variant par pas de 1 V. Commentez les résultats.

2. Détermination de valeurs efficaces

2.1. Montage

Reprenez le **signal carré** *du début du Tp (celui de la préparation)* À l'aide d'un Té BNC, injecter ce signal sur la voie CH1 **et** sur la voie CH2 de l'oscilloscope.

Réglez les 2 voies sur le même calibre.

Puis, sélectionnez le menu Maths (touche M rose) et sélectionner la fonction produit (x).

Le signal CH1 x CH2 doit apparaître en rouge sur l'écran de l'oscilloscope.

2.2. Mesures de valeurs moyennes du signal résultant

Mesurer l'amplitude du signal d'entrée et la valeur moyenne du signal « Maths » à l'aide des fonctions de mesure.

Question 3.

Noter l'amplitude et la valeur moyenne obtenues.

On sait (voir cours et/ou TD et préparation) que la moyenne de ce signal résultant vaut $\frac{1}{2}$. E 2 et donc que la valeur efficace vaut :

 $\sqrt{1/2}$. E

Interpréter les résultats obtenus.

2.3. Montage

Sélectionner maintenant comme forme du signal un signal sinusoïdal.

Le reste du montage reste le même et l'oscilloscope va donc afficher le carré d'une tension sinusoïdale.

Gardez les 2 voies CH1 et CH2 sur le même calibre.

2.4. Mesures de valeurs moyennes du signal résultant

Mesurer l'amplitude du signal d'entrée et la valeur moyenne du signal « Maths » à l'aide des fonctions de mesure.

Question 4.

Noter l'amplitude et la valeur moyenne obtenues.

En déduire la valeur efficace du signal d'entrée.

De quel signe est le signal résultant ?

Commentez le résultat obtenu.

Question 5.

Noter dans un tableau les amplitudes **d'entrée** et les valeurs moyennes **du signal Maths** (**donc en** V^2) pour des valeurs d'amplitude d'entrée allant de 1 V à 6 V en variant par pas de 1 V.

En déduire les valeurs efficaces du signal d'entrée.

Commentez les résultats obtenus.

3. Détermination de valeurs efficaces par une mesure automatique

3.1. Montage

Reprenez un signal carré:

- De fréquence : 1kHz
- De valeur crête à crête = 2E = 5V et de tension d'offset = 2,5 V
- De rapport cyclique (*Duty* noté encore α) égal à 50 % (mais on fera varier cette valeur).

Puis sélectionnez la fonction de mesures de la valeur efficace.

3.2. Mesures de valeurs efficaces

Question 6.

Noter dans un tableau les valeurs du rapport cyclique α et les valeurs efficaces mesurées pour le signal.

Tracez la courbe Veff = $f(\alpha)$.

Est-elle compatible avec la formule théorique en :

$$\sqrt{\alpha}$$
 . E

3.3. Application

Question 7.

Calculer la puissance générée par le signal précédent dans une résistance de $1k\Omega$. Tracez la courbe $P = g(\alpha)$.

3.4. Montage

La seule modification à faire est de reprendre le **signal sinusoïdal de la 1**ère **partie** du Tp.

Gardez toujours les 2 voies sur le même calibre.

3.5. Mesures de valeurs moyennes du signal sinusoïdal précédent

Question 8.

Noter dans un tableau les amplitudes et les valeurs efficaces pour des valeurs d'amplitude d'entrée allant de 1 V à 6 V en variant par pas de 1 V.

Vous pourrez par exemple compléter un tableau du type :

Amplitudes	1V	2V	3V	4V	5V	6V
Val efficace						

Commentez les résultats obtenus notamment en comparant avec la partie 2.

3.6. Application

Question 9.

Calculer la puissance générée par le signal précédent dans une résistance de 1 k Ω pour des amplitudes de 1 V, 3 V, 6 V.

__