日知
$$y = y(x), z = z(x)$$
 是方程组
$$\begin{cases} x^3 + y^3 - z^3 = 10 \\ x + y + z = 0 \end{cases}$$
 在点 $(1,1,-2)$ 附近确定的隐函数,求
$$y = y(x), z = z(x)$$
 在 $x_0 = 1$ 点处的导数 $y'(1), z'(1)$.

② 设
$$f \in C^{(2)}(\mathbf{R})$$
, $z = f(x^2 + xy + y^2)$, 求 $\frac{\partial z}{\partial y}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$ 在点 (l, l) 处的值。

- 求 $u = (\sin x)(\sin y)(\sin z)$ 在约束条件 $x + y + z = \frac{\pi}{2}(x > 0, y > 0, z > 0)$ 下的极值,并说明所 求的极值是极大值,还是极小值。。
- 计算 $\iint \left| \frac{y}{x} \right| dxdy$, 其中 $D = \{(x, y) | 1 \le x^2 + y^2 \le 2x \}$.

$$D = \{(x, y) | x > 0\}$$

(I) 若 $A,B \in D$, L 为 D 内连接 A,B 两点的逐段光滑的曲线,问 $\int_{L(A)}^{(B)} \frac{y dx - x dy}{r^2 + 2v^2}$ 是否与路径

(没截全,补充一下:)

是否与路径无关?

(II) 是否存在 dz=···dx+···dy?若存在,求 z(x,y);若不存在,请说明理由。

正向看去,为逆时针方向。

- B 设 2π 周期函数 f(x) 満足 $f(x) = \begin{cases} 0, & -\pi < x \le 0, \\ x, & 0 < x \le \pi. \end{cases}$
 - (I) 求 f(x) 的形式 Fourier 级数;
 - (II) 利用 (I) 的结论求级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的<u>和</u>。
- 9

设 Ω ⊂ \mathbf{R}^3 是包含原点的有界开区域,其边界 $\partial\Omega$ 是 $C^{(1)}$ 类光滑正则曲面。记 $\mathbf{r}=(x,y,z)$,

$$r = \sqrt{x^2 + y^2 + z^2} . \Box$$

求证:
$$\frac{1}{2}\iint_{\partial\Omega}\cos \langle \mathbf{r},\mathbf{n}\rangle dS = \lim_{\varepsilon\to 0^+}\iint_{\Omega_\varepsilon}\frac{\mathrm{d}x\mathrm{d}y\mathrm{d}z}{r}$$
, 其中 $\Omega_\varepsilon = \{(x,y,z)\in\Omega\,|\,\sqrt{x^2+y^2+z^2}\geq\varepsilon\}$,

 $<\mathbf{r},\mathbf{n}>$ 表示向量 \mathbf{r} 与 $\partial\Omega$ 的单位外法向量 \mathbf{n} 的夹角。

- 设 $a_n \ge 0, n = 0, 1, 2, \cdots$,级数 $\sum_{n=0}^{\infty} a_n n!$ 收敛,记 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ 。求证:
 - (I) 级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径 $R = +\infty$;
 - (II) 广义积分 $\int_0^{+\infty} e^{-x} f(x) dx$ 收敛,且 $\int_0^{+\infty} e^{-x} f(x) dx = \sum_{n=0}^{\infty} a_n n! | a_n | dx$

(提示:
$$\int_0^{+\infty} e^{-x} x^n dx = n!$$
)

- 附加题(本题分数不计入总分,仅用于评定 A+) 0 .
 - (I) 证明函数项级数 $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}$ 关于 x 在区间 $[0,2\pi]$ 上收敛,但不一致收敛;
 - (II) 判断函数项级数 $\sum_{n=1}^{\infty} \frac{\sin(n\,x)}{n^p}$ 是否为某个连续的 2π 周期函数的形式 Fourier 级数,并说明理由。