UC - Elementos de Probabilidades e Teoria de Números Teste - Elementos de Probabilidades

Teste - Elemen versão A	tos de Probabilidades	duração: 2 horas				
Nome:		Número:				
1. O valor de $P\left(X<\frac{1}{2}\right)$ é:	$\Box \frac{1}{2}$	☐ Nenhuma das anteriores				
$\Box F_X(c) = \begin{cases} 0 & se & c < 0 \\ \frac{c}{4} & se & 0 \le c < 0 \\ \frac{1}{4} + \frac{3}{4}(c-1) & se & 1 \le c < 0 \\ 1 & se & c \ge 2 \end{cases}$	$\begin{array}{cccc} 1 & & & & & & & & & & & \\ 2 & & & & & & &$	$0 = \begin{cases} \frac{c}{4} & se & 0 \le c < 1\\ \frac{1}{4} + \frac{3}{4}(c - 1) & se & 1 \le c < 2\\ 0 & se & c.c. \end{cases}$				
$\Box F_X(c) = \begin{cases} \frac{c}{4} & se & 0 \le c < \\ \frac{1}{4} + \frac{3}{4}(c-1) & se & 1 \le c < \\ 1 & se & c.c. \end{cases}$	1 2 Nenhu	uma das anteriores				
3. O valor médio de X é:	$\Box \frac{3}{2}$	Nenhuma das anteriores				
4. O terceiro quartil de X é:	$\Box \frac{5}{3}$	Nenhuma das anteriores				
5. A distribuição de X é:	\square $Exp\left(\frac{4}{5}\right)$	Nenhuma das anteriores				
Grupo II - 4 valores						
Para as questões 1, 2 e 3, <u>assinale a resposta corret</u> 4 no espaço reservado par a o efeito .	\underline{ta} marcando x no respet	ivo quadrado. Responda à questão				
Considere duas variáveis aleatórias, X e Y , independentes e tais que $X \sim Poisson(2)$ e $Y \sim Exp(2)$.						
1. Os acontecimentos $(X \le 1)$ e $(Y > 2)$ são:	-	Nenhuma das anteriores				
 A variável aleatória 2X – 3 tem variância igual 1 8 A variável electória 2X corres a distribuição. 	a: 5	Nenhuma das anteriores				
3. A variável aleatória $3Y$ segue a distribuição:		Nenhuma das anteriores				
4. Calcule $P(X \le 1, Y > 2)$.						

Grupo III - 3 valores

Para cada uma das questões seguintes, assinale a resposta correta marcando x no respetivo quadrado.

Considere duas variáveis aleatórias, X e T, tais que $X \sim N(-1,25)$ e $T \sim N(3,9)$.

1.	O valor de $P(X < 1)$) é:				
	0.5319	0.1554	0.6554	Nenhuma das anteriores		
2.	2. Se X e T são independentes então a variável aleatória $X-T$ tem distribuição:					
	\square $N(0,1)$			Nenhuma das anteriores		
3.	3. Suponha agora que T representa o peso, em kg, de uma embalagem de um certo produto. A probabilidade de a média de uma amostra aleatória de 100 embalagens deste produto ser inferior a 3.3 kg é:					
	0.3413	0.8000	0.8413	Nenhuma das anteriores		
Grupo IV - 4 valores						

Responda às questões deste grupo na folha de teste. Pode trocar a ordem, mas identifique sempre a questão a que está a responder. Justifique as respostas apresentando os cálculos intermédios.

Um hospital abriu concurso para uma vaga de enfermeiro e todos os candidatos foram submetidos a duas provas, A e B. Sabe-se que 40% dos candidatos reprovou na prova A, 30% reprovou na prova B e 10% reprovou em ambas as provas. Depois de efetuar estas provas, <u>alguns</u> candidatos passam à fase seguinte, em que são entrevistados, de acordo com os seguintes critérios:

- os candidatos aprovados em ambas as provas passam à entrevista;
- os candidatos que reprovam na prova B são automaticamente excluídos (e não seguem para a entrevista);
- ullet dos candidatos que reprovam apenas na prova A, 10% são escolhidos aleatoriamente para seguir para a entrevista.

Escolheu-se, ao acaso, um indivíduo que se candidatou a esta vaga.

- a) [0.75 valores] Mostre que a probabilidade de ele ter reprovado apenas na prova A é igual a 0.3.
- b) [0.75 valores] Mostre que a probabilidade de ele ter sido aprovado em ambas as provas é igual a 0.4.
- c) [1.50 valores] Qual a probabilidade de ele ter passado à entrevista? Justifique.
- d) [1.00 valores] Sabendo que este indivíduo passou à entrevista, qual a probabilidade de ele ter reprovado na prova A? Justifique.

Grupo V - 4 valores

Responda às questões deste grupo na folha de teste. Pode trocar a ordem, mas <u>identifique</u> sempre a questão a que está a responder. Justifique as respostas apresentando os cálculos intermédios.

Considere a experiência aleatória que consiste em efetuar três lançamentos consecutivos de um dado equilibrado.

- 1. Recorrendo ao produto cartesiano de conjuntos, identifique o espaço amostral da experiência aleatória.
- 2. Recorrendo ao produto cartesiano de conjuntos, identifique o subconjunto do espaço amostral que corresponde ao acontecimento I: "nos dois primeiros lançamentos saíram duas faces par" e diga, justificando, se I é um acontecimento elementar. Determine ainda P(I).
- 3. Seja X a variável aleatória que representa o número de vezes que saiu uma face inferior ou igual a 4 nos três lançamentos do dado.
 - a) X tem uma distribuição conhecida. Identifique-a e apresente a sua função massa de probabilidade.
 - b) Calcule $P(X \ge E[X])$.