2018 Spring 자료구조 실습 과제

#1: Snail Array, Tower of Hanoi

제출 관련 사항

• 제출 기한: 4월 12일 오후 5시

·제출 방법: 코드와 보고서를 압축하여 지정된 E-mail에 첨부하여 발송

E-mail 제목: ds_학번_01

압축 파일명: ds_학번_01.zip

코드 파일명: ① Snail Array: ds_학번_SA(.c 또는 .cpp)

② Tower of Hanoi: ds_학번_TOH(.c 또는 .cpp)

보고서 파일명: ds_학번_01 (Word 또는 한글 사용)

제출 E-mail 주소: sgds2018s@gmail.com

· 유의 사항

Late는 받지 않음. 반드시 제출 기한 전에 제출 완료 할 것.

E-mail 제목, 파일명 오류 시, 건 당 10% 감점

지정된 입출력 형식 오류 시, 건 당 10% 감점

Copy의 경우 적발 시 F학점을 부여

1. 과제 목적

자료구조 수업 시간에 배운 내용을 바탕으로 Snail Array와 Tower of Hanoi의 알고리즘을 구현하고 결과를 확인한다.

2. 개발환경

Visual Studio 2015 이상

3. 과제 수행 방법

(1) Snail Array

Snail Array는 2차원 배열에 달팽이 모양으로 숫자를 배열하는 알고리즘이다. 숫자를 배열하는 규칙은 아래와 같다.

- ① 첫 줄의 가장 왼쪽은 1로 시작하고 오른쪽으로 진행하며 숫자를 증가시킨다.
- ② 그 다음은 아래쪽으로 진행하며 숫자를 증가시킨다.
- ③ 그 다음은 왼쪽으로 진행하며 숫자를 증가시킨다.
- ④ 그 다음은 다시 위쪽으로 진행하며 숫자를 증가시킨다.
- ⑤ 모든 숫자가 배열 될 때까지 이를 반복한다.

알기 쉽게 6 * 6의 Snail Array 배열 방식을 살펴보면 아래와 같다.

1	2	3	4	5	6
20	21	22	23	24	7
19	1 32	33	34	25	8
18	31	36	35	26	9
17	30	29	28	27	10
16	15	14	13	12	11

본 과제에서는 위와 같은 규칙대로 숫자를 배열하는 알고리즘을 구현해야 한다.

입력

N*N의 Snail Array를 구성할 때, N값을 입력 받는다. 아래는 N=3일 때 입력 예시이다.

출력

본인이 설계한 알고리즘에 따라 N값을 임의로 지정하고, 표시되는 배열 결과를 출력으로 하다. 아래는 N=3일 때의 출력 예시이다.

(2) Tower of Hanoi

Tower of Hanoi는 퍼즐의 일종으로, 세 개의 기둥과 이 기둥에 꽂을 수 있는 크기가 다양한 n개의 원판들이 있고, 처음엔 한 기둥에 원판들이 작은 것이 위에 있도록 순서대로 쌓여 있다. 퍼즐의 목적은 다음 두 가지 조건을 만족시키면서, 한 기둥에 꽂힌 원판들을 그 순서 그대로 다른 기둥으로 옮겨서 다시 쌓는 것이다.

- ① 한 번에 하나의 원판만 옮길 수 있다.
- ② 큰 원판이 작은 원판 위에 있어서는 안 된다.

해당 알고리즘을 그림으로 살펴보면 아래와 같다.

After moving from A to B

After moving from C to B

과정 1

과정 2

과정 3

과정 4

위의 그림은 A 기둥의 3개의 원판들을 규칙대로 모두 C기둥으로 옮겨야 할 때의 과정을 나타낸 것이다. 최종적으로 7번만에 A 기둥의 모양 그대로 C기둥으로 옮겨간 것을 확인할 수있다.

본 과제에서는 Recursion(재귀)를 활용하여 Tower of Hanoi 알고리즘을 구현하고, 그 결과를 확인한다. 알고리즘을 구성할 때에는 3개의 기둥을 각각 A, B, C라고 지정하고, 원판의 경우 작은 순서대로 (1,2,3,...n)으로 지정한다. 이 때, 반드시 A 기둥의 원판을 B기둥의 원판으로 옮기는 알고리즘을 구현해야 한다.

<u>입력</u>

n개의 원판을 옮긴다고 할 때, n값을 입력으로 받는다. n은 1이상의 정수 값이다. 아래는 n=2일 때의 입력 예시이다.

출력

3개의 기둥을 각각 A, B, C로, 가장 작은 원판을 1이라고 했을 때, A의 원판을 B 기둥으로 옮기는 과정을 모두 출력해야 한다. 또한, 해당 알고리즘의 수행 시간을 측정하고, 화면에 1/1000(ms)까지 출력해야 한다. 아래는 입력 n=2일 때의 출력 예시이다.

또한 n값을 (3, 5, 10, 15, 20)으로 변화시키며 걸리는 시간을 측정하고, 이 결과를 바탕으로 그래프를 그린 후 분석해야 한다. (그래프는 엑셀 등을 이용하여 자유롭게 그린다)

4. 보고서 작성 방법

보고서는 자유양식으로 작성하되, 다음과 같은 내용을 반드시 포함해야 한다.

- ① 본인이 과제에서 사용한 자료구조 및 알고리즘에 대한 설명
- ② Snail Array 알고리즘의 입력, 출력이 표시된 캡쳐화면(N값 임의로 지정)
- ③ Tower of Hanoi 알고리즘에서 n값이 3일 때 입력, 출력이 표시된 캡쳐화면
- ④ Tower of Hanoi 알고리즘에서 n값이 (3, 5, 10, 15, 20)일 때 걸리는 시간을 바탕으로 그린 그래프와 이에 대한 분석

5. 점수 부여 방식

점수는 보고서 20%, 과제 채점 80%로 점수를 부여한다. 과제 채점은 5개의 테스트 케이스에 대하여 정답/오답을 확인한다. 각각의 테스트 케이스의 정답/오답 여부에 따라 채점을 진행한다. 보고서 점수를 합산한 후, 감점 사항에 대해 감점을 진행하여 최종 과제 점수를 부여한다.

※이미지 출처

https://commons.wikimedia.org/wiki/File:Towersofhanoi1.pdf https://commons.wikimedia.org/wiki/File:Towersofhanoi2.pdf https://commons.wikimedia.org/wiki/File:Towersofhanoi3.pdf https://commons.wikimedia.org/wiki/File:Towersofhanoi4.pdf