Parameter Estimation

Geohydraulics | CE60113

Lecture:14

Learning Objective(s)

• To estimate aquifer parameter under unsteady confined flow condition

Unsteady Radial Flow

- Confined Aquifer
 - Assumptions
 - Aquifer→ Homogeneous, Isotropic, Infinite extent
 - Initial piezometric surface → Horizontal
 - Pumping at well → Constant rate
 - Well → fully penetrating
 - Flow \rightarrow Horizontal
 - Well diameter → infinitesimal (storage can be neglected)
 - Aquifer storage release → Instantaneous
- Unconfined Aquifer
- Semiconfined/Leaky Aquifer

Unsteady Radial Flow in Confined Aquifer

Confined Aquifer

$$S_{S} \frac{\partial h}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(K_{r} r \frac{\partial h}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(\frac{K_{\theta}}{r} \frac{\partial h}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial h}{\partial z} \right) - W$$

or,

$$\frac{\partial^2 h}{\partial r^2} + \frac{1}{r} \frac{\partial h}{\partial r} = \frac{S}{T} \frac{\partial h}{\partial t}$$

Subject to

Initial Condition (IC)

$$h(r,0) = h_0$$

Boundary Conditions (BCs)

$$h(r \to \infty, t) = h_0$$

$$Q = \lim_{r \to 0} \left[2\pi r b(-q_r) \right] = \lim_{r \to 0} \left[2\pi r \left(T \frac{\partial h}{\partial r} \right) \right]$$

or,

$$\lim_{r \to 0} \left(r \frac{\partial h}{\partial r} \right) = \frac{Q}{2\pi T}$$

Theis Solution

$$h_0 - h(r, t) = \frac{Q}{4\pi T} \int_u^{\infty} \frac{1}{\omega} e^{-\omega} d\omega$$

with

$$u = \frac{r^2 S}{4Tt}$$

In terms of drawdown

$$s(r,t) = \frac{Q}{4\pi T}W(u)$$

Theis Well Function

$$W(u) = \int_{u}^{\infty} \frac{1}{\omega} e^{-\omega} d\omega$$

Incomplete Gamma Function

$$\Gamma(a,u) = \int_{u}^{\infty} \omega^{a-1} e^{-\omega} d\omega$$

Well Function

$$W(u) = \Gamma(0, u)$$

Analysis

Well Function in terms of infinite series

$$W(u) = -\gamma - \ln(u) + \sum_{k=1}^{\infty} \frac{(-1)^{k+1} u^k}{k \, k!}$$

where γ = Euler–Gamma Constant =0.5772156649

As
$$t \to \infty$$
, $u \to 0$, $W(u) \to 0$

$$\frac{\partial s}{\partial t} = \frac{Q}{4\pi T} \left(-\frac{1}{u} e^{-u} \right) \frac{\partial u}{\partial t} = \frac{Q}{4\pi T} \left(\frac{1}{t} e^{-u} \right)$$

For large t or small $r, e^{-u} \rightarrow 1$

$$\frac{\partial s}{\partial t} = \frac{Q}{4\pi T} \left(\frac{1}{t} \right)$$

• Well Function

• Pumping Test Data: $Q = 2500 \, m^3/day$

(r = 60 m)						
t, min	s, m	r^2/t , m ² /min	t, min	s, m	r^2/t , m ² /min	
0	0	∞	18	0.67	200	
1	0.20	3,600	24	0.72	150	
1.5	0.27	2,400	30	0.76	120	
2	0.30	1,800	40	0.81	90	
2.5	0.34	1,440	50	0.85	72	
3	0.37	1,200	60	0.90	60	
4	0.41	900	80	0.93	45	
5	0.45	720	100	0.96	36	
6	0.48	600	120	1.00	30	
8	0.53	450	150	1.04	24	
10	0.57	360	180	1.07	20	
12	0.60	300	210	1.10	17	
14	0.63	257	240	1.12	15	

Numerical Solution

$$Min F(S,T) \equiv \sum_{l=1}^{N_T} \sum_{i=1}^{N_l} \left[s_i^l - \frac{Q}{4\pi T} W\left(\frac{r_i^2 S}{4Tt_l}\right) \right]^2$$

First derivative:

$$F_1(S,T) = \frac{\partial F}{\partial S} = 0$$
$$F_2(S,T) = \frac{\partial F}{\partial T} = 0$$

Taylor series expansion

$$F_{1}(S + \Delta S, T + \Delta T) = F_{1}(S, T) + \frac{\partial F_{1}}{\partial S} \Delta S + \frac{\partial F_{1}}{\partial T} \Delta T + \mathcal{O}(\Delta S^{2}, \Delta T^{2})$$

$$F_{2}(S + \Delta S, T + \Delta T) = F_{2}(S, T) + \frac{\partial F_{2}}{\partial S} \Delta S + \frac{\partial F_{2}}{\partial T} \Delta T + \mathcal{O}(\Delta S^{2}, \Delta T^{2})$$

In compact form

$$\begin{cases}
F_1(S + \Delta S, T + \Delta T) \\
F_2(S + \Delta S, T + \Delta T)
\end{cases} \approx
\begin{cases}
F_1(S, T) \\
F_2(S, T)
\end{cases} +
\begin{bmatrix}
\frac{\partial F_1}{\partial S} & \frac{\partial F_1}{\partial T} \\
\frac{\partial F_2}{\partial S} & \frac{\partial F_2}{\partial T}
\end{bmatrix}
\begin{cases}
\Delta S \\
\Delta T
\end{cases}$$

Jacobian

$$\mathbf{J}(S,T) = \begin{bmatrix} \frac{\partial F_1}{\partial S} & \frac{\partial F_1}{\partial T} \\ \frac{\partial F_2}{\partial S} & \frac{\partial F_2}{\partial T} \end{bmatrix}$$

• Newton-Raphson

$${S^{(p)} \brace T^{(p)}} = {S^{(p-1)} \brack T^{(p-1)}} - J(S^{(p-1)}, T^{(p-1)})^{-1} {F_1(S^{(p-1)}, T^{(p-1)}) \brack F_2(S^{(p-1)}, T^{(p-1)})}$$

where p is the iteration number (≥ 1)

- Graphical Solution: Theis Method
- CASE-I

• CASE-II

• CASE-III

$$\frac{r^2}{t} = \frac{4T}{S}u$$

$$s(r,t) = \frac{Q}{4\pi T}W(u)$$

$$t = \frac{r^2 S}{4T} \frac{1}{u}$$
$$s(r,t) = \frac{Q}{4\pi T} W(u)$$

$$\frac{t}{r^2} = \frac{S}{4T} \frac{1}{u}$$
$$s(r,t) = \frac{Q}{4\pi T} W(u)$$

• CASE-I

$$log\left(\frac{r^2}{t}\right) = log\left(\frac{4T}{S}\right) + log(u)$$
$$log(s) = log\left(\frac{Q}{4\pi T}\right) + log(W(u))$$

- Relation between log(s) and $log(\frac{r^2}{t})$ has the same form as the relation between log(W(u)) and log(u)
- Two relations differ by a constant factor
- A plot of log(s) vs. $log(\frac{r^2}{t})$ should look the same as a plot of log(W(u)) vs. log(u)
- Valid for multiple well case

Steps for CASE-I

$$log\left(\frac{r^2}{t}\right) = log\left(\frac{4T}{S}\right) + log(u)$$
$$log(s) = log\left(\frac{Q}{4\pi T}\right) + log(W(u))$$

- Plot the function log(W(u)) vs. log(u) on log-log paper. This is known as type curve.
- Plot the measured log(s) and $log(\frac{r^2}{t})$ on log-log paper of the same size and scale as the type curve. This plot is known as data curve.
- Match the data curve with type curve.
- For a pair of arbitrary points $\left[\left(\frac{r^2}{t}\right)^+, s^+\right]$ and $[u^+, W(u)^+]$, calculate

$$T = \frac{Q}{4\pi} \frac{W(u)^+}{s^+}$$

$$S = 4T \frac{u^+}{\left(\frac{r^2}{t}\right)^+}$$

• CASE-I

• CASE-II

• CASE-III

Thank you