## LTE ADVANCED

Iván Corral Viñas



# TABLE OF CONTENTS

01

02

03

04

05

**INTRODUCTION** 

**CHARACTERISTICS** 

**ARCHITECTURE** 

**TECHNOLOGIES** 

**CONCLUSION** 

#### INTRODUCTION

LTE Advanced (LTE+) is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard.

It was formally submitted as a candidate 4G to ITU-T in late 2009 It was standardized by 3GPP in 2011







#### **PEAK DATA RATE**

Downlink: 1 Gbps Uplink: 500 Mbps

#### **SPECTRUM**

x3 efficiency compared to LTE. Supports scalable bandwidth use & spectrum aggregation

#### **LATENCY**

Conection time: 50 ms Packet transmission:: <5 ms



#### **THROUGHPUT**

Cell Edge user: x2 Average user: x3



OFDMA SC-FDMA



#### **COMPATIBILITY**

LTE+ can internetwork with LTE and 3GPP legacy systems

|                   | UMTS     | HSPA+        | LTE             | LTE+            |  |
|-------------------|----------|--------------|-----------------|-----------------|--|
| DL Speed          | 384 kbps | 1-28<br>Mbps | 10-100<br>Mbps  | 1 Gbps          |  |
| UL Speed          | 128 kbps | 11 Mbps      | 5-50<br>Mbps    | 500 Mbps        |  |
| Latency           | 150 ms   | 50 ms        | 10 ms           | <5 ms           |  |
| Access Methdology | CDMA     | CDMA         | OFDMA & SC-FDMA | OFDMA & SC-FDMA |  |



#### **EVOLVED PACKET CORE**

It is based on IP and supports voice connections using voice over IP (VoIP) via packet switching.

It supports user equipment security and receives and sends packets between the base stations and the core network.

### **EVOLVED UMTS TERRESTRIAL RADIO ACCESS NETWORK**

It gives IP connectivity to the terminal for both data and voice services.

All radio functionalities are situated there.

#### **USER EQUIPMENT**

End-User Terminal.

| UE<br>category | Max. data<br>rate<br>(DL/UL)<br>(Mbps) | Downlink                            |                                     |                               |                              | Uplink                          |                                     |                        |
|----------------|----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------|------------------------------|---------------------------------|-------------------------------------|------------------------|
|                |                                        | Max. #<br>DL-SCH<br>TB bits/<br>TTI | Max. #<br>DL-SCH<br>bits/TB/<br>TTI | Total soft<br>channel<br>bits | Max. #.<br>spatial<br>layers | Max.#<br>UL-SCH TB<br>bits/TTI  | Max. #<br>UL-SCH<br>bits/TB/<br>TTI | Support for<br>64 QAM  |
| Category 1     | 10/5                                   | 10296                               | 10296                               | 250368                        | 1                            | 5160                            | 5160                                | No                     |
| Category 2     | 50/25                                  | 51024                               | 51024                               | 1237248                       | 2                            | 25456                           | 25456                               | No                     |
| Category 3     | 100/50                                 | 102048                              | 75376                               | 1237248                       | 2                            | 51024                           | 51024                               | No                     |
| Category 4     | 150/50                                 | 150752                              | 75376                               | 1827072                       | 2                            | 51024                           | 51024                               | No                     |
| Category 5     | 300/75                                 | 299552                              | 149776                              | 3667200                       | 4                            | 75376                           | 75376                               | Yes                    |
| Category 6     | 300/50                                 | [299552]                            | [TBD]                               | [3667200]                     |                              | [51024]                         | [TBD]                               | No                     |
| Category 7     | 300/150                                | [299552]                            | [TBD]                               | [TBD]                         |                              | [150752/102048<br>(Up to RAN4)] | [TBD]                               | Yes/No<br>(Up to RAN4) |
| Category 8     | 1200/600                               | [1200000]                           | [TBD]                               | [TBD]                         |                              | [600000]                        | [TBD]                               | Yes                    |

# Carrier component Carrier component frequency 3G station 3G station NEWS

4G station

Carrier aggregation (CA) is used in LTE-Advanced to increase the **bandwidth** and increase the **bit** rates.

To keep compatibility, **LTE carriers** are used. Each one is known as Component Carrier.



Carrier bandwidth is of 1.4, 3, 5, 10, 15, or 20 MHz and a maximum of five component carriers can be aggregated AGGREGATION AGGREGATION

Physical and MAC layer protocols are affected by carrier aggregation

#### SU-MIMO



#### MU-MIMO



For LTE-Advanced single-user MIMO, up to **eight** separate transmissions can be sent on the downlink to the same UE (in LTE it was up to four).

As we have multiple users, Downlink references signals are keys to MIMO functionality:

- Rank Indicator (RI):
  Recommended number of layers for SU-MIMO transmission.
- Precoding matrix
   indicator (PMI): Index into a
   codebook of matrices used
   at the base station
- Channel Quality Indicator (CQI): Index to table of recommended modulation and coding schemes.

# ENCHANCED MIMO



An LTE-Advanced base station experiences reduced data rates near the edge of its cell, due to lower signal levels and higher interference levels.

Instead of reducing cell size, small relay nodes, were distributed around the periphery.

The Relay Node receives, demodulates, and decodes the data and applies error correction as needed, and then transmits a new signal to the base station.

RNs can use out-of-band communication using microwave links or inband Communication to avoid interferences.





### CONCLUSSION

LTE+ uses the same architecure as LTE, but thanks to the technology evolution, it could reach the 4G features defined by the 3GPP.

3GPP: LTE-Advanced.

https://www.3qpp.org/technologies/keywords-acronyms/97-lte-advanced

Jyrki T. J. Penttinen: The LTE-Advanced Deployment Handbook: The Planning Guidelines for the Fourth Generation Networks <a href="https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59">https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59</a> <a href="https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59">https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59</a> <a href="https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59">https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59</a> <a href="https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59">https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59</a> <a href="https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59">https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59</a> <a href="https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59">https://books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59</a> <a href="https://books.google.es/books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59">https://books.google.es/books.google.es/books.google.es/books?hl=es&lr=&id=H67QCgAAQBAJ&oi=fnd&pg=PA59</a> <a href="https://books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/books.google.es/b

Fourth Generation Systems and LTE-Advanced. <a href="https://www.cs.uoi.gr/~epap/LO5/downloads/lt/LTE.pdf">https://www.cs.uoi.gr/~epap/LO5/downloads/lt/LTE.pdf</a>

everythingRF: What is LTE-A? https://www.everythingrf.com/community/what-is-lte-a