Skill Mastery Quiz 3
Communicating in Math (MTH 210-01)
Winter 2020

Name:		
L1-3 Co	onsider the following conditional statement:	
	If p is a prime number then $p = 2$ or p is an odd number.	
Ide	entify the hypothesis and the conclusion of the conditional satement.	
	ssume the above conditional statement is true. Assuming <i>only</i> the conditional statement and that a ven p is odd what can you conclude (if anything)? Explain your answer.	
	ate the definition of even integer precisely: a integer n is even provided that	
	utline a proof that if $x, y \in \mathbb{Z}$ are even integers then xy is even. (Make sure to include key details the what things are integers.)	

L3-9	Construct a truth table for $P \implies (Q \land R)$.
L0-2	Constitute a truth table for $T \longrightarrow (Q \cap T)$.
L4-2	Describe what the set $\{x \in \mathbb{R} \mid 3 \le x \le 5\}$ is in words. Then write what the set is in roster notation or explain why you can not.
T 5 1	Write a useful negation of the following statement:
го-1	
	There exists $x \in \mathbb{Z}$ such that if $y \in \mathbb{Z}$ then $\frac{y}{x} \in \mathbb{Z}$.
	Useful negations don't start with "It is not true that" and avoid the word not in cases where it could be replaced (e.g., don't use "not even").