PHYS 410 Homework 1

Gavin Pringle, 56401938

September 30, 2024

Introduction

In this homework assignment, two methods for solving nonlinear equations numerically via root finding are explored: bisection and Newton's method. In order to do this, two problems are provided. The first problem involves the 1-dimesional case where the roots of a nonlinear function are found using a hybrid algorithm that first employs bisection followed by Newton's method. The second problem involves the d-dimensional case where a nonlinear system is solved using a d-dimensional Newton iteration.

In both problems it is assumed the function and its derivative in problem 1 as well as the system of equations and its Jacobian in problem 2 are hard-coded as Matlab functions. Specifically, a polynomial of order 10 is provided for the first question and a nonlinear system of three variables is provided for the second question.

Problem 1 - Hybrid Algorithm

Review of Theory

Bisection, also referred to as binary search, is a method used for solving nonlinear equations of the form f(x) = 0 for the 1-dimensional case or $\vec{f}(\vec{x}) = \vec{0}$ for the d-dimensional case. The bisection algorithm involves bisecting a search interval and checking whether the root is above or below the bisector. The search interval is then bisected again in the new interval where the root lies, and again it is determined whether the root is above or below the new bisector. This process then repeats until the root is determined to be in an interval of small enough tolerance.

For the 1-dimensional bisection algorithm, it is assumed that there is a root of f(x) = 0 in the interval $x_{min} \le x \le x_{max}$. From this, it follows that $f(x_{min})f(x_{max}) \le 0$. As previously described, the interval $[x_{min}, x_{max}]$ which has width $\delta x_0 = x_{max} - x_{min}$ is successively divided into smaller intervals of width $\delta x_1 = \delta x_0/2$, $\delta x_2 = \delta x_0/4$, $\delta x_3 = \delta x_0/8$, ... each of contains the root which is checked using the condition $f(x_{min}^{(n)})f(x_{max}^{(n)}) \le 0$. This process is continued until interval is suitably small, which is verified by checking the relative error given by the formula $\frac{|\delta x^{(n)}|}{|x^{(n+1)}|} \le \epsilon$.

Newton's method is another method used for solving nonlinear equations of the form f(x) = 0 for the 1-dimensional case or $\vec{f}(\vec{x}) = \vec{0}$ for the d-dimensional case. Newton's method does not require an interval wherein the root lies but rather a "good" initial guess as to where the root is near. Whether or not the guess is "good" depends on the specific problem at hand.

In Newton's method, we let x^* be a root of f(x). From the Taylor expansion,

$$0 \approx f(x^{(n)}) + (x^* - x^{(n)})f'(x^{(n)})$$

Letting $x^{(n+1)} = x^*$, we can rearrange to get

$$x^{(n+1)} = x^{(n)} - \frac{f(x^{(n)})}{f'(x^{(n)})}$$

For the 1-dimensional Newton's method algorithm, the above equation can be successively applied to yield a closer and closer approximation to the true x^* . The process can again be stopped when a suitable precision is achieved, calculated using the formula

$$\frac{|\delta x^{(n)}|}{|x^{(n+1)}|} = \frac{|x^{(n+1)} - x^{(n)}|}{|x^{(n+1)}|} \le \epsilon$$

Numerical Approach

Both of the 1-dimensional bisection algorithm and 1-dimensional Newton's method are used in this problem to create a hybrid algorithm that first employs bisection to an intermediate tolerance followed by Newton's method to a final tolerance in order to find the root of an arbitrary function was in the interval $[x_{min}, x_{max}]$. The algorithm was implemented as a function (as per the homework instructions):

function x = hybrid(f, dfdx, xmin, xmax, tol1, tol2)

where x is the returned value of the calculated root, f is the function for which the location of the root is sought, dfdx is the derivative of said function, xmin is the initial interval minimum, xmax is the initial interval maximum, tol1 is the relative convergence criterion for bisection, and tol2 is the relative convergence criterion for Newton iteration.

In order to test the function hybrid(f, dfdx, xmin, xmax, tol1, tol2), the polynomial

$$f(x) = 512x^{10} - 5120x^9 + 21760x^8 - 51200x^7 + 72800x^6 - 64064x^5 + 34320x^4 - 10560x^3 + 1650x^2 - 100x + 100x^2 + 100x^2$$

and its derivative were both implemented as Matlab functions to pass as parameters. The online graphing calculator Desmos was used to graph the function in order to see where the roots are in order to find intervals for each root of f(x) in the interval [0,2]. For testing purposes tol1 was set to 10^{-4} and tol2 was set to 10^{-12} as per the homework instructions on relative precision. Refer to Appendix C for the testing Matlab script.

Implementation

The function hybrid(f, dfdx, xmin, xmax, tol1, tol2) first employs bisection via a while loop to a precision of tol1. The middle of the final bisection interval is passed as the starting point for the Newton's method algorithm which then computes the root to a precision of tol2 via another while loop. A loop iteration counter is utilized for both the bisection and Newton's method loops that causes the function to immediately return NaN if either loop exceed 50 iterations.

Refer to Appendix A for the full Matlab script.

Results

Using the script test.m shown in Appendix C, the roots of f(x) were computed using the hybrid algorithm as

roots(1) = 0.012311659404862 roots(2) = 0.108993475811632 roots(3) = 0.292893218813451 roots(4) = 0.546009500260433 roots(5) = 0.843565534960010 roots(6) = 1.156434465041807 roots(7) = 1.707106781182998 roots(8) = 1.891006524189957 roots(9) = 1.453990499747037 roots(10) = 1.987688340584366

Plugging these calculated roots into the original function

Figure 1: Numerically calculated roots overlaid on example function f(x).

Problem 2 - D-dimesional Newton's Method

Review of Theory

Go over theory for d-d newton's method:

Numerical approach

definition of all pertinent problem parameters

exposition of the requisite equations

methodology that is used to solve the problem

function signature

testing method

provided equations

$$\begin{bmatrix} 2x & 4y^3 & 6z^5 \\ -yz^2\sin\left(xyz^2\right) - 1 & -xz^2\sin\left(xyz^2\right) - 1 & -2xyz\sin\left(xyz^2\right) - 1 \\ -2x - 2y + 2z & -2x + 2z & 2x + 2y + 3z^2 - 2z \end{bmatrix}$$

Figure 2: Calculated Jacobian matrix for the provided system of equations.

Implementation

refer to appendix

iteration counter

Results

console output

Conclusions

Briefly summarize your findings (again, more extensively in the case of projects). Discuss any particular problems you had with the homework/project. Include your statement concerning your use or non-use of generative AI here.

Appendix A - Hybrid Algorithm Code

```
% Problem 1 − Hybrid algorithm
     3
     % A hybrid algorithm that uses bisection and Newton's method
     % to locate a root within a given interval [xmin, xmax]. If the
     % number of iterations exceeds for either bisection or Newton's
     % method returns 50, the function returns NaN.
     % Arguments:
                                  Function whose root is sought (takes one argument).
            f :
10
                                 Derivative function (takes one argument).
            dfdx:
11
                                  Initial bracket minimum.
             xmin:
             xmax:
                                  Initial bracket maximum.
             tol1:
                                  Relative convergence criterion for bisection.
                                  Relative convergence criterion for Newton iteration.
             to12:
     % Returns:
                                  Estimate of root.
17
      \(\frac{\partial \partial \par
18
       function x = hybrid(f, dfdx, xmin, xmax, tol1, tol2)
                 overflow\_counter = 0;
20
                MAX_{ITERATIONS} = 50;
21
22
                % Bisection:
23
                converged = false;
24
                fmin = f(xmin);
25
                 while not (converged)
26
                          xmid = (xmin + xmax)/2;
                           fmid = f(xmid);
28
                           if fmid == 0
29
                                    break
30
                           elseif fmid*fmin < 0
31
                                    xmax = xmid;
32
33
                                    xmin = xmid;
                                    fmin = fmid;
36
                                 (xmax - xmin)/abs(xmid) < tol1
37
                                    converged = true;
                          end
39
40
                           overflow_counter = overflow_counter + 1;
                           if overflow_counter == MAX_ITERATIONS
                                    x = NaN;
43
                                    return;
44
                          end
45
                end
                 bisection_result = xmid;
47
48
                overflow\_counter = 0;
                % Newton's method:
51
                converged = false;
52
                x = bisection_result;
53
                xprev = bisection_result;
                 while not (converged)
55
                          x = xprev - f(xprev)/dfdx(xprev);
56
```

```
if \ abs((x-xprev)/xprev) < tol2 \\
57
                   converged = true;
58
              \quad \text{end} \quad
              xprev = x;
60
61
              overflow_counter = overflow_counter + 1;
              if overflow_counter == MAX_ITERATIONS
63
                   x = NaN;
64
                   return;
65
              \quad \text{end} \quad
        end
67
68
_{69} end
```

Appendix B - D-dimesional Newton's Method Code

```
% Problem 2 - D-dimensional Newton iteration
  % Newton's method for a d-dimensional space. If the number of
  % iterations exceeds 50, the function returns NaN.
  %
  % Arguments:
           Function which implements the nonlinear system of
           equations. Function is of the form f(x) where x is a
  %
           length-d vector, and which returns length-d column
10
  %
           vector.
11
  %
     jac: Function which is of the form jac(x) where x is a
           length-d vector, and which returns the d x d matrix of
13
           Jacobian matrix elements for the nonlinear system defined
14
  %
           by f.
  %
           Initial estimate for iteration (length-d column vector).
     x0:
  %
      tol: Convergence criterion: routine returns when relative
17
           magnitude of update from iteration to iteration is
18
  %
           \leq tol.
19
  % Returns:
           Estimate of root (length-d column vector).
  VKPA V 7/7/A V
  function x = newtond(f, jac, x0, tol)
       overflow\_counter = 0;
24
       MAXJTERATIONS = 50:
25
26
       x = x0;
       res = f(x0);
28
       dx = jac(x0) \backslash res;
29
       while rms(dx) > tol
30
           res = f(x);
31
           dx = jac(x) \backslash res;
32
           x = x - dx;
33
34
           overflow_counter = overflow_counter + 1;
           if overflow_counter == MAX_ITERATIONS
36
               x = NaN:
37
               return;
           end
39
       end
40
  end
41
```

Appendix C - Testing Code

```
7% Test script for Problem 1 and Problem 2
2
   close all; clear; clc;
3
  format long;
5
  NO PARAMANA NA PARAMANA NA
  % Test Script - Problem 1
  10
  % Example polynomial function given in problem 1 of Homework 1
12
  % document.
13
14
  % Arguments:
  % x: Polynomial independent variable
  % Returns:
17
  % example_f_out:
                      Function evaluated at x
18
  VKINAU VINAU V
   function example_f_out = example_f(x)
20
       example_fout = 512*x^10 - 5120*x^9 + 21760*x^8 - 51200*x^7 + \dots
21
       72800*x^6 - 64064*x^5 + 34320*x^4 - 10560*x^3 + 1650*x^2 - 100*x + 1;
22
  end
23
24
  25
  % Derivative of example polynomial function given in problem 1 of
26
  % Homework 1 document.
28
  % Arguments:
29
  % x: Polynomial independent variable
  % Returns:
    example_dfdx_out:
                          Derivative evaluated at x
32
  VKPARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTA
33
  function example_dfdx_out = example_dfdx(x)
34
       example_dfdx_out = 20*(-5 + 165*x - 1584*x^2 + 6864*x^3 - 16016*x^4 \dots
      + 21840*x^5 - 17920*x^6 + 8704*x^7 - 2304*x^8 + 256*x^9);
36
  end
37
38
  % Root finding
39
  roots = zeros([1,10]);
40
41
  BS_{-tol} = 1.0e-4;
42
  NM_{tol} = 1.0e - 12;
43
44
   roots(1) = hybrid(@example_f, @example_dfdx, 0.0, 0.04, BS_tol, NM_tol);
45
   roots(2) = hybrid(@example_f, @example_dfdx, 0.05, 0.15, BS_tol, NM_tol);
   roots(3) = hybrid(@example_f, @example_dfdx, 0.23, 0.35, BS_tol, NM_tol);
47
   roots (4) = hybrid (@example_f, @example_dfdx, 0.47, 0.6, BS_tol, NM_tol);
48
   roots(5) = hybrid(@example_f, @example_dfdx, 0.77, 0.9, BS_tol, NM_tol);
49
   roots(6) = hybrid(@example_f, @example_dfdx, 1.11, 1.22, BS_tol, NM_tol);
   roots (7) = hybrid (@example_f, @example_dfdx, 1.65, 1.75, BS_tol, NM_tol);
51
   {\tt roots}\,(8) \,=\, {\tt hybrid}\,(\,@example\_f\,,\,\, @example\_dfdx\,,\,\, 1.86\,,\,\, 1.90\,,\,\, BS\_tol\,,\,\, NM\_tol\,)\,;
52
   roots(9) = hybrid(@example_f, @example_dfdx, 1.4, 1.5, BS_tol, NM_tol);
   roots (10) = hybrid (@example_f, @example_dfdx, 1.98, 2.0, BS_tol, NM_tol);
55
  for i = 1:10
```

```
fprintf('roots(%d) = %.12f \ \ ',i, \ roots(i));
57
      end
58
59
      function_at_roots = transpose(arrayfun(@example_f, roots))
60
61
     % Plotting
62
      xvec = linspace(0,2,10000);
63
64
      fig = figure;
65
      plot(xvec, arrayfun(@example_f, xvec), 'LineWidth', 1, 'DisplayName', 'f(x)
              ');
      hold on;
67
      scatter (roots, zeros ([1,10]), 'filled', 'DisplayName', 'Calculated roots',
68
             'Color', 'r');
      lgd = legend;
69
      ax = gca;
70
      fontsize (lgd, 12, 'points');
71
      fontsize (ax, 12, 'points');
      title ('Bisection and Newton''s Method Hybrid Algorithm Results', 'FontSize'
73
              , 16);
      xlabel('x');
      ylabel(',y',);
75
      grid on;
76
77
     VKPARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTARTOTTA
     % Test Script - Problem 2
     VKPART CVPART C
80
81
     % Example nonlinear system given in problem 2 of Homework 1
     % document.
84
85
     % Arguments:
                    Vector of length 3. x, y, z independent variables in the
88
     % Returns:
 89
           example_sys_out: Column ector of length 3. f1, f2, f3
                    outputs of each function in the system.
91
     MARAN BARAN BARA
92
      function example_sys_out = example_sys(x)
93
              example_sys_out = zeros(3,1);
94
              example_sys_out (1) = x(1)^2 + x(2)^4 + x(3)^6 - 2;
95
              example_sys_out(2) = \cos(x(1)*x(2)*x(3)^2) - x(1) - x(2) - x(3);
96
              example_sys_out(3) = x(2)^2 + x(3)^3 - (x(1) + x(2) - x(3))^2;
97
      end
98
99
     VKPART CVPART C
100
     % Jacobian matrix of example nonlinear system given in problem 2
     \% of Homework 1 document.
     %
103
     % Arguments:
104
     % x:
                    Vector of length 3. x, y, z independent variables in the
105
                    System.
107
            example_jac_out: 3x3 matrix. Entries of the Jacobian matrix
108
                    for f1(x,y,z), f2(x,y,z), f3(x,y,z).
     function example_jac_out = example_jac(x)
```

```
example_jac_out(1,1) = 2*x(1);
112
        example_{-jac_{-out}(1,2)} = 4*x(2)^3;
113
        example_jac_out (1,3) = 6*x(3)^5;
114
        example_jac_out (2,1) = -x(2)*x(3)^2*sin(x(1)*x(2)*x(3)^2) - 1;
115
        example_jac_out (2,2) = -x(1)*x(3)^2*sin(x(1)*x(2)*x(3)^2) - 1;
116
        example_jac_out (2,3) = -2*x(1)*x(2)*x(3)*sin(x(1)*x(2)*x(3)^2) - 1;
117
        example_jac_out (3,1) = -2*x(1)-2*x(2)+2*x(3);
118
        example_jac_out (3,2) = -2*x(1)+2*x(3);
119
        example_jac_out(3,3) = 2*x(1)+2*x(2)+3*x(3)^2-2*x(3);
120
   end
121
122
   % Root finding
123
   initial_guess = [-1.0; 0.75; 1.50];
124
   NM_3D_{tol} = 1.0e - 12;
126
   solution = newtond(@example_sys, @example_jac, initial_guess, NM_3D_tol);
127
128
   fprintf('x = \%.12f \ \ 'n', \ solution(1));
129
   fprintf('y = \%.12f \ \ \ \ \ \ \ \ solution(2));
130
   fprintf('z = \%.12f \ \ n', \ solution(3));
131
   system_at_solution = example_sys(solution)
```