Duração: 1 hora 50 minutos

G1 de Álgebra Linear I - 2007.1

Data: 28 de março de 2007.

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revis.
1a	1.0		
1b	1.0		
1c	1.0		
1d	0.5		
2a	1.5		
2b	0.5		
2c	0.5		
2d	1.0		
2e	1.0		
3a	1.0		
3b	1.5		_
Total	10.5		

Instruções

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear o caderno de prova.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Respostas a caneta. Escreva de forma clara e legível.
- Justifique de forma clara, ordenada e completa suas respostas. Respostas sem justificativas não serão consideradas.

1) Considere o ponto P = (2, 1, 1) e a reta r de equações paramétricas

$$r = (1+t, 1-t, 2+t), \quad t \in \mathbb{R}.$$

- (a) Determine a equação cartesiana do plano π que contém a reta r e o ponto P.
- (b) Determine o plano ϱ perpendicular à reta r que contém o ponto P.
- (c) Determine o ponto M da reta r mais próximo de P e a distância entre o ponto P e a reta r.
- (d) Determine um plano τ tal que a interseção de τ e o plano π do item (a) seja exatamente a reta r.

Resposta:

- 2) Considere
 - o plano η : x + y + z = 1,
 - os pontos A = (1, 0, 0) e B = (0, 0, 1) do plano η , e
 - a reta $s = (t, 1 + 2t, 1 3t), t \in \mathbb{R}$.
- (a) Determine um ponto C do plano η tal que os pontos A, B e C determinem um triângulo retângulo Δ de área $\sqrt{6}$ e os segmentos AB e AC sejam os catetos de Δ .
- (b) Determine um ponto N do plano η que equidiste de A e B, isto é, $\overline{|AN|} = \overline{|BN|}$.
- (c) Determine um ponto T que equidiste de A e B e que não pertença ao plano η .
- (d) Calcule a distância entre a reta s e o plano η .
- (e) Considere os planos

$$\eta: x + y + z = 1,$$
 $\rho: x + 2y + bz = 2,$ $\beta: 2x + y + z = c.$

Determine ${\bf b}$ e ${\bf c}$ para que a interseção dos três planos $\eta,\,\rho$ e β seja uma reta.

Resposta:

3) Considere as retas

$$\begin{array}{ll} r &= (1+t, 1-t, 2+t), & t \in \mathbb{R}, \\ s &= (t, 1+2t, 1-3t), & t \in \mathbb{R}, \\ \ell &= (t, -t, t), & t \in \mathbb{R}. \end{array}$$

- a) Determine a posição relativa das retas r e s. Se as retas forem concorrentes determine o ponto de interseção. Se as retas forem reversas calcule a distância entre elas.
- **b)** Observe que a reta ℓ é paralela a r. Considere os pontos E=(1,1,2) e F=(2,0,3) de r.

Considere agora os pontos da reta ℓ

$$P_0 = (0,0,0), \quad P_1 = (1,-1,1),$$

 $P_{21} = (21,-21,21), \quad P_{333} = (333,-333,333),$
 $P_{4444} = (4444,-4444,4444), \quad P_{77} = (77,-77,77).$

Para cada

$$i = 0, 1, 21, 333, 4444 e 77$$

considere o triângulo Δ_i de vértices $E, F \in P_i$.

Determine as áreas dos triangulos Δ_0 , Δ_1 , Δ_{21} , Δ_{333} , Δ_{4444} e Δ_{77} .

Resposta: