1.- Determinar la intersección

$$\begin{array}{llll} \mathbf{a} = & 2.5 & \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} X_d \\ Y_d \end{bmatrix} + \begin{bmatrix} \cos(\theta) & -sen(\theta) \\ sen(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} & \text{Talud globales} \\ \mathbf{X} \mathbf{1} = & 1 & \\ \mathbf{X} \mathbf{1} = & 1 & \\ \mathbf{Y} \mathbf{1} = & 12 & \\ \mathbf{Y} \mathbf{1} = & 12$$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = 0.985 -0.17$$

$$0.985 -0.17$$

$$0.174 0.985$$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}^{-1} = 0.985 \quad 0.174$$

$$-0.17 \quad 0.985$$

Traslacion a locales

x1=	-7
y1=	4
x2=	6
y2=	-7

Rotación a locales

x1= -6.2 Talud en y1= 5.155 coordenadas x2= 4.693 locales de la y2= -7.94 elipse girada

Homogenizar la ecuacion local de la elipse asi:

Sistema local homogéneo

$$s = \frac{x}{a} \qquad p = \frac{y}{b}$$
$$s^2 + p^2 = 1$$

Homogenizar la ecuacion local de la talud asi:

$$p = m_l s + b_l$$

$$m_l = \left(\frac{a}{b}\right) \left(\frac{y_2 - y_1}{x_2 - x_1}\right) = -2$$

$$b_l = \frac{y_1}{b} - m_l \left(\frac{x_1}{a}\right) = -1.53$$

Finalmente resolver la ecuación

$$(m_l^2 + 1)s^2 + 2m_lb_ls + (b_l^2 - 1) = 0$$

5.012 $s^2 + 6.13$ $s + 1.341 = 0$

s1= p1= s2= p2=	-0.28543775 -0.95839725 -0.93756721 0.347804137	Intersección en coordenadas locales y homogeneas.	$ax^{2} + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
x1= y1= x2= y2=		Intersección en coordenadas locales de la elipse.	$s = \frac{x}{a}$ $p = \frac{y}{b}$
Xi1= Yi1= Xi2= Yi2=		Primero girar.	$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -sen(\theta) \\ sen(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$
Xi1= Yi1= Xi2= Yi2=	7.546882642 6.460330072 5.601098013 8.10676322	Finalmente Intersección en coordenadas globales	$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} X_d \\ Y_d \end{bmatrix} + \begin{bmatrix} \cos(\theta) & -sen(\theta) \\ sen(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

