CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations

Wuhan University

Chenglong Wang

Related work

■ The importance of geospatial information

These two species have distinct geospatial distribution patterns, and it is very easy to tell them apart based on the geo-locations.

■ Geo-aware Supervised Learning

Pretrain – Finetune (using locations as auxiliary information)

Related work

Pretrain – Finetune (Tile2Vec)

Anchor – Neighbor – Distant

■ Pretrain – Finetune (SeCo)

MoCo: temporal & artificial augmentations

Overview (Interaction)

CLIP

CLIP in GIScience

Potential problem

The number of trainable parameters of the image encoder f() is 100 times larger than that of the location encoder e()

Pre-train

Architecture

■ Training Pair Construction

(a) In-batch negative sampling

Pre-train

Train Pair Construction

(b) Random negative location sampling

(c) SimCSE sampling

Pre-train

Contrastive Learning Objectives

1. Noise-Contrastive Estimation:

$$l_{\text{NCE}}(\mathcal{P}, \mathcal{N}) = -\mathbb{E}_{(\mathbf{a}, \mathbf{b}) \sim \mathcal{P}} \log \sigma(s(\mathbf{a}, \mathbf{b}))$$
$$-\mathbb{E}_{(\mathbf{a}, \mathbf{b}^{-}) \sim \mathcal{N}} \log(1 - \sigma(s(\mathbf{a}, \mathbf{b}^{-})))$$

2. InfoNCE (MC):

$$l_{\text{MC}}(\mathcal{P}, \mathcal{N}, \tau)$$

$$= \mathbb{E}_{(\mathbf{a}, \mathbf{b}) \sim \mathcal{P}} \frac{e^{s(\mathbf{a}, \mathbf{b})/\tau}}{e^{s(\mathbf{a}, \mathbf{b})/\tau} + \sum_{(\mathbf{a}, \mathbf{b}^{-}) \in \mathcal{N}_{\mathbf{a}}} e^{s(\mathbf{a}, \mathbf{b}^{-})/\tau}}$$

1. self-supervised binary (NCE) loss:

$$l_{\text{NCE}}(\mathbb{X}) = l_{\text{NCE}}^{B}(\mathbb{X}) + \beta_{1} l_{\text{NCE}}^{L}(\mathbb{X}) + \beta_{2} l_{\text{NCE}}^{D}(\mathbb{X})$$
$$= l_{\text{NCE}}(\mathcal{P}^{X}, \mathcal{N}^{B}) + \beta_{1} l_{\text{NCE}}(\emptyset, \mathcal{N}^{L})$$
$$+ \beta_{2} l_{\text{NCE}}(\mathcal{P}^{D}, \mathcal{N}^{D})$$

2. self-supervised multi-class (MC) loss:

$$l_{\text{MC}}(\mathbb{X}) = l_{\text{MC}}^{B}(\mathbb{X}) + \alpha_{1} l_{\text{MC}}^{L}(\mathbb{X}) + \alpha_{2} l_{\text{MC}}^{D}(\mathbb{X})$$
$$= l_{\text{MC}}(\mathcal{P}^{X}, \mathcal{N}^{B}, \tau_{0}) + \alpha_{1} l_{\text{MC}}(\mathcal{P}^{X}, \mathcal{N}^{L}, \tau_{1})$$
$$+ \alpha_{2} l_{\text{MC}}(\mathcal{P}^{D}, \mathcal{N}^{D}, \tau_{2})$$

Fine-tune

Architecture

Fine-tune

■ Image Fine-tuning

Multimodality?

Although we only investigate the effectiveness of our CSP framework on locationimage pre-training in this work, CSP can be easily extended to learn the alignment between location (or time) and data in other modalities such as text for different downstream tasks such as geo-aware text classification.

Location?

In the

future, we can explore more complex geometries such as polylines (Xu et al., 2018) and polygons (Mai et al., 2023b). The proposed CSP framework can be seen as a step towards the geo-aware foundation models (Mai et al., 2022a; 2023a).

More Interaction?

CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations

Wuhan University

Chenglong Wang