HW#5 Cache Optimization

Chun-Jen Tsai National Chiao Tung University 12/17/2020

Homework Goal

- □ Cache is crucial for the memory subsystem performance of a microprocessor:
 - Aquila has a pair of 4-way set associative caches
 - Dhrystone running on DRAM is only 0.64 DMIPS/MHz
- □ Your tasks:
 - Analyze the cache behavior and find out why the DMIPS is much lower than running Dhrystone on TCM
 - Improve the performance of the cache subsystem
- □ You should upload your report to E3 by 1/8, 17:00.

Some Simple Statistics

- □ Default size on Arty is 4KB each for I- and D-caches
 - 76% usage of LUT
 - 38% usage of FF
 - 68% usage of BRAM
- □ Using the linker script to put code/data and heap/stack in either TCM or DRAM, the DMIPS/MHz are as follows:
 - Everything on TCM: 0.90
 - Code/data on TCM, heap/stack on DDR: 0.84
 - Code/data on DDR, heap/stack on TCM: 0.67
 - Everything on DRAM: 0.64
 - With an 8KB I-cache, DMIPS increases by 0.04 ~ 0.05

Handling Aquila Memory Requests

- □ Unlike TCM, a memory request to cache can take multiple cycles
 - Aquila uses strobing signals for memory requests (for both TCM and cache)
 - Therefore, p_addr_i must be registered as p_addr_r at the strobe cycle for cache memory
- □ Notes on I-cache:
 - An instruction can be returned in the same clock cycle of strobe upon cache hit
 - The returned instruction is intentionally delayed till next clock edge to match the behavior of TCM

Cache Organization on Aquila

□ Data flow on cache hit:

Cache Memory Coding Issue

- □ Each cache line should have a pair of "valid" and "dirty" flags that stores the state of the cache line
 - Valid the cache line contains valid data
 - Dirty the data in the cache line have been modified
- ☐ These flags are synthesized using LUTs or BRAMs
 - For a small cache, using BRAM may be wasteful since BRMAs are allocated in 18-kbit unit
 - Aquila uses LUTs for tags and flags
- □ On Arty, 8KB I-cache + 4KB D-cache is possible, to enlarge them, you have to change the coding style

Register Array Implementation

□ A register array can be implemented using LUTs, Flip-Flops, or BRAMs:

```
reg VALID_ [0 : N_LINES-1][0 : N_WAYS-1]; reg DIRTY_ [0 : N_LINES-1][0 : N_WAYS-1];
```

- □ How do you control the implementation methods?
 - Using pragma in your code (may not be honored)

```
(* ram_style = "block" *) reg [0:31] my_ram [127:0];
```

- Type of RAM styles are: block, distributed, ultra
- BRAMs can only be used to synthesize a memory array with at most two clocked ports, each port controlled by enable and read/write signals

Cache Controller

☐ The FSM of the D-Cache controller is as follows:

Measuring Performance Hotspot

- □ You should add some counters in the cache controller to find the hotspot by collecting the following statistics
 - Average cache latency for each memory request
 - Read/write latency should be separated
 - Miss/hit latency should be separated
 - Cache hit/miss rates
- □ By latency, we mean the #cycles between the p_strobe_i and p_ready_o.

Things You Can Try

- ☐ There are a few things you can try to improve the performance of Aquila's memory subsystem:
 - Change cache ways (0-way and 8-way are worth trying)
 - If direct-mapping is used, you should enlarge I-cache
 - Rewrite the 4-way cache controller to allow larger cache size
 - Redesign the cache controller based on the statistics you have collected
 - Applying good pre-fetching algorithm to I-cache
- □ Note that you can reduce the size of TCM to free more BRAMs for the caches

Current Resource Usage

☐ The FPGA resource utilization after PAR:

Your Homework

- ☐ The goal of this homework is to improve the memory subsystem by modifying the I- and/or D-caches
- □ Write a report:
 - Describe how you collect the memory operation statistics and analyze the results
 - Describe your improvements to the memory subsystem