PRACTICE: Faiss

PHƯƠNG PHÁP TOÁN TRONG PHÂN TÍCH DỮ LIỆU THỊ GIÁC

Contents

l.	Tỉ lệ hoàn thành	2
II.	Nội dung:	3
	Tham khảo:	

I. Tỉ lệ hoàn thành

STT	Yêu cầu	Mức độ hoàn thành
1	Pick at least one image dataset (more than one dataset: bonus point)	100%
	and provide the dataset link in the report with its description.	
2	Implement at least 2 different image feature extraction, one traditional	83%
	method and one deep learning approach, i.e. SIFT/ORB for the	
	traditional and ResNet/DenseNet for the deep learning (more than 2:	
	bonus points) for the chosen dataset	
	- SIFT	100%
	- ORB	100%
	- ResNet	50%
3	Combine with the Faiss library, experiment with at least 3 different	75%
	distance metrics, including both primary L2 and inner product (from 4	
	distance metrics: bonus point)	
	- L2 distance	100%
	- Inner product	100%
	- Cosine similarity	50%
	- Mahalanobis distance	50%
4	Report the detailed experimental results, with comments or	100%
	explanations.	

II. Nội dung:

- Thư viện được sử dụng: os, pydoc, numpy, faiss, OpenCV2, matplotlib, torch, torchvision.models, kagglehub
- 1. Pick at least one image dataset (more than one dataset: bonus point) and provide the dataset link in the report with its description:
- Cat Dataset: Bộ dữ liệu CAT dataset có hơn 9,000 hình ảnh mèo.
- 2. Implement at least 2 different image feature extraction, one traditional method and one deep learning approach, i.e. SIFT/ORB for the traditional and ResNet/DenseNet for the deep learning (more than 2: bonus points) for the chosen dataset:

```
def method_SIFT(image_list):
   def method_ORB(image_list):
```

- Hai hàm sử dụng phương pháp phân tách đặc trưng hình ảnh truyền thống có cách thực hiện tương tự nhau:
 - + Sử dụng hàm từ thư viện OpenCV2 để tạo ra hàm tương ứng.
 - + Tạo list để chứa các descriptor của ảnh
 - + Với mỗi ảnh:
 - Đọc ảnh rồi chuyển thành dạng grayscale
 - Dùng hàm detectAndCompute() để lấy ra các keypoint và descriptor của ảnh
 - Thêm các descriptor vào list và trả về list

```
def method_ResNet(image_list):
```

- Hàm này sẽ load một model ResNet đã được huấn luyện và làm một số thao tác chuẩn bị gần giống với 2 phương pháp truyền thống
- 3. Combine with the Faiss library, experiment with at least 3 different distance metrics, including both primary L2 and inner product (from 4 distance metrics: bonus point)
- L2:

```
INDEX = faiss.IndexFlatL2(descriptors.shape[1])
```

Inner product:

```
INDEX = faiss.IndexFlatIP(descriptors.shape[1])
```

- Cosine similarity

```
INDEX = faiss.IndexFlatIP(descriptors.shape[1])
faiss.normalize_L2(descriptors)
```

Mahalanobis distance

```
INDEX = faiss.IndexPreTransform(
    faiss.IndexFlatL2(descriptors.shape[1]),
    faiss.MahalanobisVectorTransform(np.cov(descriptors, rowvar=False)),
)
```

Kết quả mẫu thực hiện trên một dataset nhỏ hơn trích từ Cat dataset

1	Image Distance
1	Image,Distance
2	537.00
3	4823,108818.00
4	28873,111010.00
5	26326,111011.00
6	0,0.00
7	116,33024.00
8	112,59176.00
9	230,88205.00
10	2764,90329.00
11	0,262557.00
12	14593,224455.00
13	4823,207579.00
14	26326,207272.00
15	10632,206844.00
16	825,1089328.00
17	3161,1085903.00
18	1337,1072509.00
19	5187,1062207.00
20	1427,1038374.00
21	

III. Tham khảo:

facebookresearch/faiss: A library for efficient similarity search and clustering of dense vectors.

MetricType and distances · facebookresearch/faiss Wiki

OpenCV: ORB (Oriented FAST and Rotated BRIEF)

Residual Networks (ResNet) - Deep Learning - GeeksforGeeks

Multiple copies of the OpenMP runtime · Issue #543 · ultralytics/ultralytics

python - How to fix the the following error 'Backend TkAgg is interactive backend. Turning interactive mode on'? - Stack Overflow