Birla Institute of Technology & Science, Pilani 2nd Semester 2016-17 - CS F211 - Data Structures and Algorithms

Lab 8 – 14th March Topics – Hashtables with open addressing

Problem 1

Design and implement ADT SmallSet by treating a single *unsigned int* word as a bit vector and the positions as members of the universe:

- Let N be sizeof(unsigned int). Then any subset of the universal set U = { 0, 1, ..., N-1 } can be represented as a bit vector of size N (which in turn can be stored as an int word.)
- Given $S \subseteq U$, for any $j \in U$, $(j \in S)$ iff $(j^{th}$ bit (counting 0 as the LSB) of S is 1)
- Adding j to S can be implemented as setting jth bit to 1; deleting as setting it to 0.

Obtaining j^{th} bit of an *int* in C can be achieved by masking the vector with a bit pattern and testing it: i.e. (S & B_j) iff (j^{th} bit of S is 1) where B_j is all 0s except the j^{th} bit.

B_i can be obtained by left-shifting ((unsigned int) 1) j times.

Implement typical set operations *union*, *intersect*, and *difference* for this SmallSet ADT. You can use the following table for designing your functions.

Key	Function	Input Format	Description
0	readData	0 N X Y	N represents the size of U (taken as input for convenience). X
		A ₁ A ₂ A ₃ A _x	and Y represent the sizes of two sets of A & B respectively.
		B ₁ B ₂ B ₃ B _y	You shall need to read two sets (A & B) of integers, separated
			by a new line. Each set contains values with space separation.
			Represent A and B in the form of SmallSet ADT described
			above.
1	Union	1	Perform union operation on A and B (C = A U B) and print C.
			You may sort C in ascending order first before printing.
2	Intersection	2	Perform intersection operation on A and B (C = A \cap B) and
			print C. You may sort C in ascending order first before
			printing.
3	Difference	3	Perform difference operation on A and B (C = A - B) and print
			C. You may sort C in ascending order first before printing.

Sample input and output

Sample Input	Sample Output
<mark>0 32 5 6</mark>	2 4 7 9 10 15 16 20 21 24
<mark>2 4 15 7 24</mark>	1 <mark>5</mark>
<mark>9 16 15 10 20 21</mark>	<mark>2 4 7 24</mark>
<mark>1</mark>	
<mark>2</mark>	
3	