Report format

Table of contents

1	Introduction	1
2	Exploratory data analysis	1
3	24 logistical models (Individual models then ensembles, in alphabetical order)	2
4	Ensembles and individual model plots	6
5	Strongest evidence based data:	8
6	Five strongest evidence based recommendations	8
7	Conclusions	8

1 Introduction

Statement of the problem from the customer's perspective

History of the problem, previous results

2 Exploratory data analysis

- Head of the data
 - Discuss the characteristics of each feature.
- y (predictor) vs target variables (insert plot here)
 - Discussion of y vs target variables

- Boxplots of the numeric data (insert plot here)
 - Discussion of boxplots of the numeric data
- Histograms of each numeric column (insert plot here)
 - Discussion of histograms of each numeric column
- Data summary (insert table here)
 - Discussion of the data summary
- Outliers in the data (insert outliers data here)
 - Discussion of outliers in the data
- The stories in the exploratory data analysis

3 24 logistical models (Individual models then ensembles, in alphabetical order)

One paragraph summary about statistical modeling

• Bagging

```
bagging_train_fit <- ipred::bagging(formula = y \sim ., data = train)
```

• BayesGLM

```
bayesglm_train_fit <- arm::bayesglm(y ~ ., data = train, family = gaussian(link = "identity"))
```

• BayesRNN

```
bayesrnn\_train\_fit < -brnn::brnn(x = as.matrix(train), y = train$y)
```

• BoostRF (Random Forest) (tuned)

```
boost_rf_train_fit <- e1071::tune.randomForest(x = train, y = train$y, mtry = ncol(train) - 1)
```

• Cubist

```
cubist train fit <- Cubist::cubist(x = train[, 1:ncol(train) - 1], y = train$y)
```

• Earth

```
earth\_train\_fit <- earth::earth(x = train[, 1:ncol(train) - 1], y = train$y)
```

• Elastic (uses best model)

best_elastic_model <- glmnet::glmnet(x, y, alpha = 0, lambda = best_elastic_lambda)

• GAM (Generalized Additive Models) (uses smoothing splines)

 $f2 \leftarrow stats::as.formula(paste0("y \sim", paste0("gam::s(", names_df, ")", collapse = "+")))$ $gam_train_fit \leftarrow gam(f2, data = train1)$

• Gradient Boosted

gb_train_fit <- gbm::gbm(train $y \sim ...$, data = train, distribution = "gaussian", n.trees = 100, shrinkage = 0.1, interaction.depth = 10)

• K-Nearest Neighbors (Optimized)

knn_train_fit <- e1071::tune.gknn(x = train[, 1:ncol(train) - 1], y = train\$y, scale = TRUE, k = c(1:25))

• Lasso (uses best model)

best lasso lambda <- lasso cv\$lambda.min

best_lasso_model <- glmnet(x, y, alpha = 1, lambda = best_lasso_lambda)

• Linear (tuned)

 $linear_train_fit < -e1071::tune.rpart(formula = y \sim ., data = train)$

• Neuralnet

neuralnet_train_fit <- nnet::nnet(train $y \sim ..., data = train, size = 0, linout = TRUE, skip = TRUE)$

• PCR (Principal Components Regression)

 $pcr_train_fit <- pls::pcr(train\$y \sim ., data = train)$

• PLS (Partial Least Squares)

 $pls_train_fit <- pls::plsr(train\$y \sim ., data = train)$

• Ridge

best_ridge_lambda <- ridge_cv\$lambda.min

best ridge model <- glmnet(x, y, alpha = 0, lambda = best ridge lambda)

• RPart

rpart_train_fit <- rpart::rpart(train\$y ~ ., data = train)

• SVM (Support Vector Machines) (tuned)

svm_train_fit <- e1071::tune.svm(x = train, y = train\$y, data = train)

• Tree

 $tree_train_fit < -tree::tree(train\$y \sim ., data = train)$

• XGBoost (optimized)

xgb_model <- xgboost::xgb.train(data = xgb_train, max.depth = 3, watchlist = watchlist_test, nrounds = 70) xgb_model_validation <- xgboost::xgb.train(data = xgb_train, max.depth = 3, watchlist = watchlist_validation, nrounds = 70)

• Ensemble Bagged Random Forest (tuned)

ensemble_bag_rf_train_fit <- e1071::tune.randomForest(x = ensemble_train, y = ensemble_train\$\\$y_ensemble, mtry = ncol(ensemble_train) - 1\$

• Ensemble Bagging

ensemble_bagging_train_fit <- ipred::bagging(formula = y_ensemble \sim ., data = ensemble_train)

• Ensemble BayesGLM

ensemble_bayesglm_train_fit <- arm::bayesglm(y_ensemble \sim ., data = ensemble_train, family = gaussian(link = "identity"))

• Ensemble BayesRNN

ensemble_bayesrnn_train_fit <- brnn::brnn($x = as.matrix(ensemble_train)$, $y = ensemble_train\$y_ensemble$)

• Ensemble Boosted Random Forest (tuned)

ensemble_boost_rf_train_fit <- e1071::tune.randomForest($x = ensemble_train, y = ensemble_train$) - 1)

• Ensemble Cubist

ensemble_cubist_train_fit <- Cubist::cubist(x = ensemble_train[, 1:ncol(ensemble_train) - 1], y = ensemble_train\$y_ensemble)

• Ensemble Earth

ensemble_earth_train_fit <- earth::earth(x = ensemble_train[, 1:ncol(ensemble_train) - 1], y = ensemble_train\$y_ensemble)

• Ensemble Elastic (uses best model)

ensemble_best_elastic_lambda <- ensemble_elastic_cv\$lambda.min
ensemble_best_elastic_model <- glmnet(ensemble_x, ensemble_y, alpha = 0, lambda
= ensemble_best_elastic_lambda)

• Ensemble Gradient Boosted

ensemble_gb_train_fit <- gbm::gbm(ensemble_train\$y_ensemble \sim ., data = ensemble_train, distribution = "gaussian", n.trees = 100, shrinkage = 0.1, interaction.depth = 10)

• Ensemble K-Nearest Neighbors (optimized)

ensemble_knn_model <- e1071::tune.gknn(x = ensemble_train, y = ensemble_train\$y_ensemble, k = c(1:25), scale = TRUE)

• Ensemble Lasso (uses best model)

ensemble_best_lasso_lambda <- ensemble_lasso_cv\$lambda.min
ensemble_best_lasso_model <- glmnet(ensemble_x, ensemble_y, alpha = 1, lambda = ensemble_best_lasso_lambda)

• Ensemble Linear (tuned)

ensemble_linear_train_fit <- e1071::tune.rpart(formula = y_ensemble \sim ., data = ensemble_train)

• Ensemble Random Forest (tuned)

ensemble_rf_train_fit <- e1071::tune.randomForest(x = ensemble_train, y = ensemble_train\$y_ensemble, data = ensemble_train)

• Ensemble Ridge

ensemble_best_ridge_lambda <- ensemble_ridge_cv\$lambda.min
ensemble_best_ridge_model <- glmnet(ensemble_x, ensemble_y, alpha = 0, lambda
= ensemble_best_ridge_lambda)

• Ensemble RPart

ensemble_rpart_train_fit <- rpart::rpart(ensemble_train $y_ensemble \sim ..., data = ensemble_train)$

• Ensemble Support Vector Machines (tuned)

ensemble_svm_train_fit <- e1071::tune.svm(x = ensemble_train, y = ensemble_train\$y_ensemble, data = ensemble_train)

• Ensemble Trees

ensemble_tree_train_fit <- tree::tree(ensemble_train $y_ensemble \sim ., data = ensemble train)$

• Ensemble XGBoost (optimized)

ensemble_xgb_model <- xgboost::xgb.train(data = ensemble_xgb_train, max.depth = 3, watchlist = ensemble_watchlist_test, nrounds = 70) ensemble_xgb_model_validation <- xgboost::xgb.train(data = ensemble_xgb_train, max.depth = 3, watchlist = ensemble_watchlist_validation, nrounds = 70)

• The stories in the models

4 Ensembles and individual model plots

- Most accurate model results:
 - Predicted vs actual
 - * Discussion of most accurate predicted vs actual
 - Residuals
 - * Discussion of residuals from the most accurate model
 - Histogram of residuals
 - * Discussion of the histogram of residuals from the most accurate model
 - Q-Q plot
 - * Discussion of the Q-Q plot from the most accurate model
 - Mean accuracy for train, test, validation, and holdout (mean of test and validation)
 sets
 - Barchart of model accuracy
 - * Measures mean Root Mean Squared Error, from low to high
 - * Includes 1 standard deviation error bars
 - Insert model accuracy numbers with standard deviations
 - Insert model accuracy bar chart with 1 standard deviation error bars here
- Bias
 - bias computes the average amount by which actual is greater than predicted.
 - If a model is unbiased bias(actual, predicted) should be close to zero. Bias is calculated by taking the average of (actual predicted).
 - Insert bias plot here

- Holdout / Train
 - Calculates the mean of the holdout RMSE / mean of the train RMSE across the samples. Closer to one is better.
 - Insert table for holdout / train numbers
 - Insert plot for holdout / train chart here

• Duration

- Calculates the mean duration for each model
- Insert barchart for duration here
- t-test with p-values
 - Performs one and two sample t-tests on vectors of data
 - Insert t-test numbers
 - Insert plot for t-test results
- Barchart of Kolmogorov-Smirnov test by model
 - stats::ks.test(x = y_hat_bag_rf, y = c(trainy, validationy), exact = TRUE)\$statistic
 - Tests if the holdout data from each of the 40 models came from the same distribution as the raw data. If y is numeric, a two-sample (Smirnov) test of the null hypothesis that x and y were drawn from the same distribution is performed.
 - Lines are given for p = 0.05 and p = 0.10,
- Variance Inflation Factor report
 - Calculates variance-inflation and generalized variance-inflation factors (VIFs and GVIFs) for linear, generalized linear, and other regression models.
- Correlation of the data
 - Presents a table of the correlation of the data.
- Correlation of the ensemble
 - Presents a table of the correlation of the ensemble. This can be modified in the function call, such as remove_ensemble_correlations_greater_than = 0.98 (or whatever value is most useful)
- Summary report
- Function call

- Warnings or errors
- The stories in the plots

5 Strongest evidence based data:

- Most accurate models with error ranges
- Strongest predictor with error ranges
- The stories of the strongest evidenced based data

6 Five strongest evidence based recommendations

7 Conclusions