

Tarea 5: Política monetaria Macroeconomía II

Profesor: Santiago Bazdresch Barquet

Equipo 7:

Diego Alfonso Valencia Flores Claudia Josselyn Barranco Santamaria Raúl Antonio Tirado Cossío Benjamín Elam Rodríguez Alcaraz

Maestría en Economía

22 de mayo del 2022

Contenido

1.			os ejercicios 12.2 y 12.3. Realice estos con ayuda de su laboratorista y entregue nes a máquina, utilizando LaTeX. [2 horas, 2 puntos cada ejercicio]:	2
	1.1.	Ejercio	io 12.2	2
		1.1.1.	Considere un modelo en que el tiempo es discreto y los precios se muestran absolutamente insensibles ante una perturbación monetaria imprevista durante el primer periodo para volverse completamente flexibles a partir de ese momento. Supongamos que la curva IS es Y=c-ar y que la condición de equilibrio en el mercado de dinero es $m-p=b+hy$, donde y, m y p, son los logaritmos de la producción, la oferta de dinero y el nivel de precios, respectivamente; r, el tipo de interés real; i, el tipo de interés nominal; y a, h y k son parámetros positivos. Suponga que el valor inicial de m es constante a un nivel determinado, que normalizamos a cero, y que y es también constante en el nivel que le correspondería bajo el supuesto de precios flexibles, que también normalizamos a cero. Supongamos ahora que en un determinado periodo (el periodo 1, por simplificar) la autoridad monetaria pasa inesperadamente a practicar una política consistente en aumentar en cada periodo m en una cuantía g>0	62
	1.2.	Ejercio	io 12.3	4
		1.2.1.	Suponga, como en el Problema 12.2, que los precios son sensibles a las perturbaciones monetarias imprevistas durante un periodo y completamente flexibles a partir de ese momento. Suponga también que las expresiones se cumplen en cada periodo, mientras que, por el contrario, la oferta de dinero sigue un paseo aleatorio, donde ut es una perturbación no correlacionada cuya media es cero. Sea Et las expectativas en el periodo	
			t. Explique por qué ()	4
2.			inflación y la política monetaria en México siguiendo estos pasos: [2 horas, cada inciso]. Por favor documente su trabajo para que se pueda replicar.	
	2.1.	Precios nacion	ga datos de las inflaciones ANUALES general y subyacente (del Índice Nacional de s al Consumidor) de México, por lo menos desde 1980, datos del desempleo a nivel al en México, y datos de la tasa de interés a corto plazo de México, todos a frecuencia UAL, y grafíquelos individualmente.	Е.
	2.2.	autoco	zca una tabla de estadísticas descriptivas de estos datos, incluyendo medias, varianzas y prelaciones, para todo el periodo para el que tenga datos y para dos subperiodos, antes ués del año 1999.	7
	2.3.	t en té period de dese grupos anterio famosa se hizo	regla de Taylor' es una función que define a la tasa de interés de corto plazo del periodo rminos de la distancia entre la inflación y su objetivo y del desempleo y su objetivo en el o t-1 (y de una constante). Asuma que el objetivo de inflación es 3% y tome el objetivo empleo como 3% y estime los coeficientes de una regla de Taylor para México para tres de datos: el periodo completo para el que tenga datos, y los dos sub-periodos definidos ormente. Estime las regresiones con la inflación general y con la subyacente. (John Taylor amente empezó por decir que era sólamente una relación empírica – positiva –, y ya que o famosa su regla, empezó a decir que debería usarse como regla para la determinación asa de interés de política – normativa.)**	g
			Interprete los resultados de las regresiones, en general, y a la luz de la adopción en México de un régimen de objetivos de inflación en el año 1999. (En realidad, el objetivo de inflación, fue 3 % solamente a partir de 2003 cuando se volvió ''la meta permanente '´.)	
3.			velocidad del dinero en México siguiendo estos pasos: [2 horas, 1.5 puntos o]. Por favor documente su trabajo para que se pueda replicar.	11

3.1.	Obtenga datos de la cantidad de dinero de distintos tipos M0,M1,M2,M3,M4 en México y grafíquelos (en logaritmos), a frecuencia trimestral	11
3.2.	Obtenga el PIB nominal, y calcule la cantidad real de dinero M0,M1, M2,M3,M4 en México y grafique las tasas de crecimiento de los distintos tipos de dinero, todo a frecuencia trimestral.	11
3.3.	Produzca una tabla de estadísticas descriptivas de las tasas de crecimiento de las distintas formas de dinero real, incluyendo medias y varianzas, para todo el periodo para el que tenga datos de cada variable	12
3.4.	Explique en qué medida el dinero parece comportarse o no de acuerdo a la teoría económica, considerando la demanda de dinero como una función de la actividad económica, los precios y la tasa de interés	13

- 1. Resuelva los ejercicios 12.2 y 12.3. Realice estos con ayuda de su laboratorista y entregue las soluciones a máquina, utilizando LaTeX. [2 horas, 2 puntos cada ejercicio]:
- 1.1. Ejercicio 12.2
- 1.1.1. Considere un modelo en que el tiempo es discreto y los precios se muestran absolutamente insensibles ante una perturbación monetaria imprevista durante el primer periodo para volverse completamente flexibles a partir de ese momento. Supongamos que la curva IS es Y=c-ar y que la condición de equilibrio en el mercado de dinero es m p = b + hy, donde y, m y p, son los logaritmos de la producción, la oferta de dinero y el nivel de precios, respectivamente; r, el tipo de interés real; i, el tipo de interés nominal; y a, h y k son parámetros positivos. Suponga que el valor inicial de m es constante a un nivel determinado, que normalizamos a cero, y que y es también constante en el nivel que le correspondería bajo el supuesto de precios flexibles, que también normalizamos a cero. Supongamos ahora que en un determinado periodo (el periodo 1, por simplificar) la autoridad monetaria pasa inesperadamente a practicar una política consistente en aumentar en cada periodo m en una cuantía g>0
- 1.1.1.1. ¿Cuál sería el valor de r, inflación esperada, i y p antes de producirse el cambio en la política monetaria? Como hemos supuesto un valor normalizado de 0 en la producción, tenemos lo siguiente

$$0 = c - ar$$

Despejando para la tasa de interes real tenemos lo que sigue:

$$r_0 = c/a$$

Dado que el shock que se espera de política monetaria será constante, se espera también que el nivel de precios también sea constante, y por tanto la inflación esperada del periodo t_0 al periodo t_1 será:

$$\pi^e = E_0[p_1] = 0$$

Por tanto, el valor del tipo de interés nomoinal i, siguiendo la ecuación de Fisher, estará dado por:

$$i_0 = r_0 = c/a = r_0$$

Si sustituimos los valores para m_0 y y_0 en la ecuación del mercado de dinero, tenemos

$$-p_o = b - k * i_0$$

$$-p_0 = b - k(c/a)$$

$$p_0 = kc/a - b$$

Una vez que los precios se han ajustado por completo. Utilice este hecho para hallar los valores de las variables en el periodo 2.

Para t_2 tenemos que la economía se encuentra de nuevo en el nivel normalizado, es decir, 0. Sustituyéndolo en la ecuación de la curva IS tenemos lo siguiente:

$$c - ar_2 = 0$$

Despejando para r $_2$

$$r_2 = c/a$$

Tomando el supuesto de que se espera que el nivel de precios aumente en el mismo monto que la oferta monetaria, la inflación que se espera para los periodos 2 y 3 es g, por lo que el i será el que sigue:

$$i_2 = r_2 * \pi_2^2$$

Sustituyéndolo en la ecuación tenemos lo que sigue:

$$i_2 = c/a + g$$

De los supuestos tenemos que $m_2 = 2g$. Sustituyéndolo tenemos lo siguiente:

$$2q - p_2 = b - k * i_2$$

Despejando el nivel de precios tenemos:

$$p_2 = kc/a + (k+2)g - b$$

En el periodo 1, ¿cuáles son los valores de las variables entre el periodo 1 y el 2? El nivel de precios en t_1 es el siguiente:

$$p_1 = kc/a - b$$

La expectativa de la inflación para el periodo t_1 es:

$$\pi_1^e = E[\frac{kc}{a} + (k+2)g - b] - \frac{kc}{a} + b$$

El i estará definido como:

$$i_1 = r_1 + (k+2)g$$

La condición de equilibrio queda dada por:

$$m_1 - p_1 = b + hc - har_1 - ki_1$$

Con el supuesto de que $m_1 = g$ tenemos:

$$g - \frac{kc}{a} + b = b + hc - har_1 - kr_1 + k(k+2)g$$

Resolviendo para el interés real en t_1 :

$$r_1 = \frac{hc - g + kc/a - k(k+2)g}{ha + k}$$

El interés nominal será:

$$i_1 = \frac{hc - g + kc/a - k(k+2)g}{ha + k} + (k+2)g$$

Simplificando:

$$i_1 = \frac{hc - g + kc/a + ha(k+2)g}{ha + k}$$

¿Qué es lo que determina que el efecto a corto plazo de la expansión monetaria sea un aumento o una reducción de i? La condición estará dada por:

$$i_1 - i_0 = \frac{ha(k+2)g - g}{ha + k} < 0$$

Es decir, necesitamos que el efecto de la liquidez sea mayor al efecto esperado de la inflación. Esto implica que la tasa de interés real debe de caer más de lo que se espera que aumente la inflación.

1.2. Ejercicio 12.3

1.2.1. Suponga, como en el Problema 12.2, que los precios son sensibles a las perturbaciones monetarias imprevistas durante un periodo y completamente flexibles a partir de ese momento. Suponga también que las expresiones se cumplen en cada periodo, mientras que, por el contrario, la oferta de dinero sigue un paseo aleatorio, donde ut es una perturbación no correlacionada cuya media es cero. Sea Et las expectativas en el periodo t. Explique por qué (...)

Para que el nivel de precios cambie se requiere que u_t sea distinto de 0. Sin embargo, dado que $E_t[u_{t+1}] = 0$ no se espera que haya un cambio en el nivel de precios.

Dada la condición de equilibrio entonces podemos escribir lo siguiente:

$$m_{t+1} - p_{t+1} = b + hy_{t+1} - kr_{t+1} - k(E_{t+1[p_{t+2} - p_{t+1}]})$$

Si utilizamos el supuesto sobre i_{t+1} y sacando expectativas tenemos que:

$$E_t m_{t+1} - E_t p_{t+1} = b + h y^n - k r^n$$

Esto implica que sus valores son iguales a sus valores de precios flexibles

1.2.1.1. Use el resultado del inciso a) para expresar a las variables en términos de m y de u Partiendo de la última ecuación del inciso a y restándole p_t en ambos lados, tenemos lo siguiente:

$$E_t p_{t+1} - p_t = (m_t - p_t) - b - hy^n + kr^n$$

Reduciendo términos:

$$U_t = (m_t - p_t) - b - hy^n + kr^n$$

Obteniendo la expresión para los precios de cada periodo tenemos:

$$p_t = m_{t-1} - b - hy^n + kr^n$$

Despejando i_t de la condición de equilibrio:

$$i_t = \frac{b + hy_t - (m_t - p_t)}{k}$$

Despejando:

$$(m_t - p_t) = u_t + b + hy^n + kr^n$$

Luego,

$$i_t = \frac{h(y_t - y^n) + kr^n - u_t}{k}$$

Resolviendo para y_t

$$y_t = \frac{kc + a[hy^n - kr^n + (1-k)u_t]}{k + ah}$$

Hallando la expresión para r_t

$$r_t = \frac{kc + a[hy^n - kr^n + (1+k)u_t]}{k + ah}$$

Hallando la expresión para i_t

$$i_t = \frac{kc + a[hy^n - kr^n + (ah - 1)u_t]}{k + ah}$$

1.2.1.2. ¿Puede hablarse de un efecto Fisher en esta economía? Es decir, ¿se traducen los cambios en la inflación esperada en el tipo de interés nominal en la proporción uno a uno? De la ecuación de i_t , asumiendo que $u_t = \pi_t^e$, tenemos:

$$i_t = \frac{kc + a[hy^n - kr^n + (ah - 1)\pi_t^e]}{k + ah}$$

De esta ecuación se observa que los cambios en la inflación esperada no se reflejan en la proporción indicada (uno a uno) en la tasa de interés nominal, por lo que los precios no responden completamente al choque de la oferta monetaria durante un periodo.

- 2. Estudie la inflación y la política monetaria en México siguiendo estos pasos: [2 horas, 1.5 puntos cada inciso]. Por favor documente su trabajo para que se pueda replicar.
- 2.1. Obtenga datos de las inflaciones ANUALES general y subyacente (del Índice Nacional de Precios al Consumidor) de México, por lo menos desde 1980, datos del desempleo a nivel nacional en México, y datos de la tasa de interés a corto plazo de México, todos a frecuencia MENSUAL, y grafíquelos individualmente.

Los datos fueron obtenidos de fuentes oficiales, como lo son el Inegi y El Banco de México.

Figura 1: Inflación

Figura 2: Inflación subyacente

Figura 3: Tasa de desempleo

Figura 4: tasa de Cetes a 28 días

2.2. Produzca una tabla de estadísticas descriptivas de estos datos, incluyendo medias, varianzas y autocorrelaciones, para todo el periodo para el que tenga datos y para dos subperiodos, antes y después del año 1999.

En la tabla 1 se muestran los principales estadísticos descriptivos de los datos. En dicha tabla, primero se muestran los datos para todo el periodo; después se presentan descriptivos para el periodo previo a 1999 así como para el periodo posterior.

Los datos para todo el periodo son muy volátiles para todas las variables menos para el desempleo. Podemos destacar que se observa un nivel promedio de inflación alta, de un $22\,\%$ a proximadamente.

Al analizar el periodo previo al 99 vemos que los datos son todavía más volátiles. El desempleo se mantuvo relativamente estable, pero la inflación fue mayor con un $35\,\%$

En el periodo posterior a 1999 los estadísticos muestran varianzas y desviaciones más pequeñas, es decir, hubo menos volatilidad. También, el valor promedio de la inflación fue mucho menor, pasando a un nivel promedio de aproximadamente $5\,\%$.

Notemos pues, que para todos los cortes temporales, la tasa de los Cetes a 28 días se mantuvieron en niveles similares a la inflación, es decir, se ofrecían tasas altas, en promedio, previo al año 1999. Después de dicho periodo, las tasas del valor gubernamental bajaron considerablemente hasta un nivel promedio de 7%-

Cuadro 1: Estadísticas descriptiva

Periodo completo	Media	Varianza	Desv.	Max	Min
Inflación	22.078	945.389	30.747	179.73	2.13
Inflación subyacente	22.513	1182.287	34.384	176.85	2.30
Tasa de desempleo	3.838	1.065	1.032	7.60	1.90
Cetes a 28 días	19.973	615.939	24.818	157.07	2.67
Periodo previo a 1	999				
Inflación	35.662	1282.805	35.816	179.73	4.05
Inflación subyacente	48.345	1763.079	41.989	176.85	7.09
Tasa de desempleo	3.791	1.280	1.131	7.60	2.10
Cetes a 28 días	41.492	875.215	29.584	157.07	9.45
Periodo posterior	a 1999				
Inflación	5.085	7.856	2.803	18.54	2.13
Inflación subyacente	4.688	8.892	2.982	18.49	2.30
Tasa de desempleo	3.869	0.938	0.968	6.42	1.90
Cetes a 28 días	7.003	16.451	4.056	28.76	2.67

Las siguientes figuras muestran el coeficiente de autocorrelación para cada una de las variables. Para un lag=1, la inflación, así como la inflación subyacente tienen una autocorrelación de 0.7 aproximadamente. La tasa de desempleo presenta una autocorrelación de 0.75 aproximadamente, sin embargo, conforme aumenta el lag, la disminución de la autocorrelación es más lineal. La tasa de interés tiene un coeficiente de autocorrelación de 0.8.

2.3. Una "regla de Taylor' es una función que define a la tasa de interés de corto plazo del periodo t en términos de la distancia entre la inflación y su objetivo y del desempleo y su objetivo en el periodo t-1 (y de una constante). Asuma que el objetivo de inflación es 3% y tome el objetivo de desempleo como 3% y estime los coeficientes de una regla de Taylor para México para tres grupos de datos: el periodo completo para el que tenga datos, y los dos sub-periodos definidos anteriormente. Estime las regresiones con la inflación general y con la subyacente. (John Taylor famosamente empezó por decir que era sólamente una relación empírica – positiva –, y ya que se hizo famosa su regla, empezó a decir que debería usarse como regla para la determinación de la tasa de interés de política – normativa.)**

Se estimaron la siguientes regresiones:

$$Cetes28 = \beta_0 + \beta_1 Br\pi + \beta_2 BrU + u$$

$$Cetes 28 = \beta_0 + \beta_1 Br \pi_s + \beta_2 Br U + u$$

En donde Cetes28 se refiere a la tasas del valor gubernamental a 28 días, $Br\pi$ es la brecha en el objetivo de inflación, $Br\pi_s$ se refiere a la brecha usando la inflación subyacente y BrU es la brecha de desempleo. Se estimo cada regresión para todo el periodo, el periodo previo a 1999 y el periodo posterior al mismo año.

los resultados de la regresión, usando la inflación, se muestran en el cuadro 2; los resultados, al incluir la inflación subyacente, aparecen en el cuadro 3.

Cuadro 2: Regla de Taylor

		Dependent vari	able:
		Cetes a 28 dí	as
	Completo	Antes de 1999	Después de 1999
	(1)	(2)	(3)
Brecha de inflación	0.709***	0.591***	0.986***
	(0.016)	(0.029)	(0.043)
Brecha de desempleo	-0.601	2.082*	-1.457***
_	(0.494)	(1.077)	(0.124)
Constante	8.879***	16.144***	6.215***
	(0.698)	(1.772)	(0.200)
Observations	446	167	278
\mathbb{R}^2	0.814	0.732	0.815
Adjusted \mathbb{R}^2	0.813	0.728	0.814

Note:

*p<0.1; **p<0.05; ***p<0.01

Cuadro 3: Regla de Taylor usando inflación subyacente

	Dependent varia	ble:
Completo	Cetes a 28 día Después de 1999	s Después de 1999
(1)	(2)	(3)
0.711***	0.594***	0.950***
(0.016)	(0.029)	(0.039)
-0.513	2.138**	-1.388***
(0.492)	(1.079)	(0.121)
9.008***	16.108***	6.606***
(0.695)	(1.777)	(0.181)
446	167	278
0.815	0.731	0.828
0.814	0.727	0.827
	0.711*** (0.016) -0.513 (0.492) 9.008*** (0.695) 446 0.815	Cetes a 28 día Completo Después de 1999 (1) (2) 0.711*** 0.594*** (0.016) (0.029) -0.513 2.138** (0.492) (1.079) 9.008*** 16.108*** (0.695) (1.777) 446 167 0.815 0.731

Interprete los resultados de las regresiones, en general, y a la luz de la adopción en México de un régimen de objetivos de inflación en el año 1999. (En realidad, el objetivo de inflación, fue 3% solamente a partir de 2003 cuando se volvió 'la meta permanente'.)

Al utilizar los datos para el periodo completo podemos destacar que lo predicho por Taylor se cumple, es decir, la brecha de inflación tiene un efecto positivo en la tasa de interés, pues un incremento porcentual de la brecha, produce un incremento del 0.7% en la tasa de interés. Además, un incremento porcentual en la brecha de desempleo produce una caida del 0.6 % de la tasa de referencia.

Si analizamos los resultados tomando solo datos previos a 1999 notamos que el efecto de la brecha de inflación en la tasa es similar. Sin embargo, hay que destacar el cambio en el signo del coeficiente de la brecha en el desempleo. Además el coeficiente es estadísticamente significativo solo a un nivel de confianza del 90 %. Estos resultados van en contra de la regla de Taylor, pues un aumento porcentual en la brecha de desempleo, generaría un incremento del 2% en la tasa de referencia.

En el periodo posterior a 1999, cuando se establece el régimen de objetivos de inflación los coeficientes vuelven a ir en línea con la regla de Taylor. Además, ambos coeficientes son significativos para un nivel del confianza del 99%. El coeficiente de la brecha de inflación es más grande que en los casos analizados previamente y muy cercando a 1¹. El coeficiente de la brecha de desempleo también aumento en términos absolutos, con un valor de -1.47.

Al incluir la inflación subvacente en el análisis, las conclusiones no cambian en términos generales.

¹Recordemos que según el principio de Taylor, la tasa de interés debe de aumentar, en términos porcentuales, más que la inflación para tener un efecto contracíclico.

- 3. Estudie la velocidad del dinero en México siguiendo estos pasos: [2 horas, 1.5 puntos cada inciso]. Por favor documente su trabajo para que se pueda replicar.
- 3.1. Obtenga datos de la cantidad de dinero de distintos tipos M0,M1,M2,M3,M4 en México y grafíquelos (en logaritmos), a frecuencia trimestral.

Figura 5: Agregados monetarios, 2000Q4-2022Q1

Podemos notar como el comportamiento de los agregados monetarios es en esencia el mismo que el de la base monetaria. Las expansiones de la base monetaria más grandes se dan de M_0 a M_1 , y de M_1 a M_2 . M_3 y M_4 fueron pracricamente iguales para el inicio del periodo, pero a partir de 2010 podemos ver un ligero incremento de M_4 que se explica por el incremento de los instrumentos monetarios en poder de no residentes.

3.2. Obtenga el PIB nominal, y calcule la cantidad real de dinero M0,M1, M2,M3,M4 en México y grafique las tasas de crecimiento de los distintos tipos de dinero, todo a frecuencia trimestral.

En este inciso estaremos calculamos la cantidad de dinero real de la economía, tal que:

$$\frac{M_i}{P} = \frac{Y}{V_i}$$

siendo M_i el agregado monetario $i \in [0, 1, 2, 3, 4]$ y PY el pib nominal obtenido de INEGI. Para encontrar $\frac{M_i}{P}$ podemos deflactar los agregados monetarios. Pero para complementar el ejercicio también obtendremos la velocidad del dinero.

En la primera gráfica podemos notar como la velocidad del dinero ha venido disminuyendo para todos los agregados monetarios. Otra característica importante es que la velocidad del dinero esta estrechamente relacionada con la liquidez, ya que sabemos que en términos de liquidez M_0 es más liquido que M_1 y así sucesivamente.

Las tasas de crecimiento de los agregados monetarios se presenta en la segunda gráfica. Podemos notar dos cosas, que la tasa de crecimiento de los dos primero agregados monetarios ha sido superior a la de los últimos tres. Como se anticipó en la gráfica del inciso anterior, el comportamiento de M_0 es replicado muy de cerca por M_1 , es por eso que la correlación entre ambas tasas es de 0.74 significativa al 99 %. Otra cosa que llama la atención es que a medida que avanzamos en los agregados monetarios dependen menos de la base monetaria. Por ejemplo, la correlación entre M_0 y M_4 no es significativamente distinto de cero.

3.3. Produzca una tabla de estadísticas descriptivas de las tasas de crecimiento de las distintas formas de dinero real, incluyendo medias y varianzas, para todo el periodo para el que tenga datos de cada variable.

como era de esperarse, el agregado monetario con mayor volatilidad es el asociado a la base monetaria. De ahí en adelante, podemos decir que los agregados van capturando una fracción de la volatilidad, a excepción de M_4 que depende en mayor medida de la cantidad de moneda en manos de extranjeros. Otra cosa que resalta es que para todos los casos, y para todo el periodo hubo una tasa de crecimiento positiva, a pesar que hay dos recesiones importantes (2008 y 2020).

Cuadro 4: Estadisticas descriptivas

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
M0	1	82	13.19	4.82	13.17	13.22	4.94	2.56	24.04	21.47	-0.05	-0.27	0.53
M1	2	82	12.55	4.52	12.60	12.56	3.50	1.53	26.07	24.53	0.14	0.29	0.50
M2	3	82	9.11	3.43	8.77	8.91	2.94	1.47	22.42	20.95	1.02	2.57	0.38
M3	4	82	9.50	3.38	9.51	9.29	2.95	2.54	21.59	19.05	0.73	1.17	0.37
M4	5	82	10.19	4.44	8.82	9.70	3.89	4.05	22.55	18.49	0.90	0.05	0.49

3.4. Explique en qué medida el dinero parece comportarse o no de acuerdo a la teoría económica, considerando la demanda de dinero como una función de la actividad económica, los precios y la tasa de interés.

Para este inciso tomaremos en cuenta la inflación, y veremos cual es la correlación que existe entre dicha variable y los agregados monetarios. La teoría dicta que a mayor tasa de crecimiento de los saldos monetarios reales mayor será el cambio en el nivel de precios.

Cuadro 5: Correlación								
	π	$\Delta \% \frac{M_0}{P}$	$\Delta \% \frac{M_1}{P}$	$\Delta \% \frac{M_2}{P}$	$\Delta \% \frac{M_3}{P}$			
π								
$\Delta \% \frac{M_0}{P}$	0.28***							
$\Delta \% \frac{\dot{M}_1}{P}$	0.19	0.76***						
$\Delta \% \frac{\dot{M}_2}{P}$	0.28**	0.33***	0.55***					
$\Delta \% \frac{\dot{M}_3}{P}$	0.27**	0.41***	0.53***	0.91***				
$\Delta\%rac{\dot{M}_4}{P}$	0.23**	0.13	0.34***	0.71***	0.74***			

Lo interesante del ejercicio es que de acuerdo con la teoría la tasa de crecimiento de los agregados monetarios afecta de manera positiva a la inflación. Aunque de manera moderada, podemos confirmar que hay una relación contemporánea entre el nivel de saldos que mantienen las personas y los precios del mercado. De manera sorpresiva, el agregado monetario M_1 no guarda una relación significativa con la inflación.