

Data Visualization Lab

Estimated time needed: **45 to 60** minutes

In this assignment you will be focusing on the visualization of data.

The data set will be presented to you in the form of a RDBMS.

You will have to use SQL queries to extract the data.

Objectives

In this lab you will perform the following:

- Visualize the distribution of data.
- Visualize the relationship between two features.
- Visualize composition of data.
- Visualize comparison of data.

Demo: How to work with database

Download database file.

In [1]: !wget https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DA0321

Connect to the database.

```
In [3]: import sqlite3
conn = sqlite3.connect("m4_survey_data.sqlite") # open a database connection
```

Import pandas module.

```
In [10]: import pandas as pd
import matplotlib.pyplot as plt
```

Demo: How to run an sql query

```
In [11]: # print how many rows are there in the table named 'master'
QUERY = """
SELECT COUNT(*)
FROM master
"""

# the read_sql_query runs the sql query and returns the data as a dataframe
df = pd.read_sql_query(QUERY,conn)
df.head()
```

```
Out[11]: COUNT(*)
0 11398
```

Demo: How to list all tables

```
In [12]: # print all the tables names in the database
QUERY = """
SELECT name as Table_Name FROM
sqlite_master WHERE
type = 'table'
"""
# the read_sql_query runs the sql query and returns the data as a dataframe
pd.read_sql_query(QUERY,conn)
```

Out[12]:		Table_Name
	0	EduOther
	1	DevType
	2	LastInt
	3	JobFactors
	4	WorkPlan
	5	WorkChallenge
	6	LanguageWorkedWith
	7	Language Desire Next Year
	8	DatabaseWorkedWith
	9	DatabaseDesireNextYear
	10	PlatformWorkedWith
	11	PlatformDesireNextYear
	12	WebFrameWorkedWith
	13	WebFrameDesireNextYear
	14	MiscTechWorkedWith
	15	MiscTechDesireNextYear
	16	DevEnviron
	17	Containers
	18	SOVisitTo
	19	SONewContent
	20	Gender
	21	Sexuality
	22	Ethnicity
	23	master

Demo: How to run a group by query

```
In [13]: QUERY = """
SELECT Age,COUNT(*) as count
FROM master
group by age
order by age
```

pd.read_sql_query(QUERY,conn)

Out[13]:		Age	count
	0	NaN	287
	1	16.0	3
	2	17.0	6
	3	18.0	29
	4	19.0	78
	5	20.0	109
	6	21.0	203
	7	22.0	406
	8	23.0	581
	9	24.0	679
	10	25.0	738
	11	26.0	720
	12	27.0	724
	13	28.0	787
	14	29.0	697
	15	30.0	651
	16	31.0	531
	17	32.0	489
	18	33.0	483
	19	34.0	395
	20	35.0	393
	21	36.0	308
	22	37.0	280
	23	38.0	279
	24	39.0	232
	25	40.0	187
	26	41.0	136
	27	42.0	162
	28	43.0	100
	29	44.0	95

	Age	count
30	45.0	85
31	46.0	66
32	47.0	68
33	48.0	64
34	49.0	66
35	50.0	57
36	51.0	29
37	52.0	41
38	53.0	32
39	54.0	26
40	55.0	13
41	56.0	16
42	57.0	11
43	58.0	12
44	59.0	11
45	60.0	2
46	61.0	10
47	62.0	5
48	63.0	7
49	65.0	2
50	66.0	1
51	67.0	1
52	69.0	1
53	71.0	2
54	72.0	1
55	99.0	1

Demo: How to describe a table

```
In [14]: table_name = 'master' # the table you wish to describe

QUERY = """
SELECT sql FROM sqlite_master
```

```
WHERE name= '{}'
""".format(table_name)

df = pd.read_sql_query(QUERY,conn)
print(df.iat[0,0])
```

CREATE TABLE "master" ("index" INTEGER, "Respondent" INTEGER, "MainBranch" TEXT, "Hobbyist" TEXT, "OpenSourcer" TEXT, "OpenSource" TEXT, "Employment" TEXT, "Country" TEXT, "Student" TEXT, "EdLevel" TEXT, "UndergradMajor" TEXT, "OrgSize" TEXT, "YearsCode" TEXT, "Age1stCode" TEXT, "YearsCodePro" TEXT, "CareerSat" TEXT, "JobSat" TEXT, "MgrIdiot" TEXT, "MgrMoney" TEXT, "MgrWant" TEXT, "JobSeek" TEXT, "LastHireDate" TEXT, "FizzBuzz" TEXT, "ResumeUpdate" TEXT, "CurrencySymbol" TEXT, "CurrencyDesc" TEXT, "CompTotal" REAL, "CompFreq" TEXT, "ConvertedComp" REAL, "WorkWeekHrs" REAL, "WorkRemote" TEXT, "WorkLoc" TEXT, "ImpSyn" TEXT, "CodeRev" TEXT, "CodeRevHrs" REAL, "UnitTests" TEXT, "PurchaseHow" TEXT, "PurchaseWhat" TEXT, "OpSys" TEXT, "BlockchainOrg" TEXT, "BlockchainIs" TEXT, "BetterLife" TEXT, "ITperson" TEXT, "OffOn" TEXT, "SocialMedia" TEXT, "Extraversion" TEXT, "ScreenName" TEXT, "SOVisit1st" TEXT, "SOVisitFreq" TEXT, "SOFindAnswer" TEXT, "SOTimeSaved" TEXT, "SOHowMuchTime" TEXT, "SOAccount" TEXT, "SOPartFreq" TEXT, "SOJobs" TEXT,

https://labs.cognitiveclass.ai/v2/tools/jupyterlab?ulid=ulid-bbf4408f3b1a5b2ef615bcf68de57001a126604b

```
"EntTeams" TEXT,
"SOComm" TEXT,
"WelcomeChange" TEXT,
"Age" REAL,
"Trans" TEXT,
"Dependents" TEXT,
"SurveyLength" TEXT,
"SurveyEase" TEXT
```

Hands-on Lab

Visualizing distribution of data

Histograms

Plot a histogram of ConvertedComp.

```
In [16]: # Query to get the 'ConvertedComp' column
    query = "SELECT ConvertedComp FROM master"
    df = pd.read_sql_query(query, conn)

# Plot the histogram
    plt.figure(figsize=(10, 6))
    plt.hist(df['ConvertedComp'].dropna(), bins=30, edgecolor='black', alpha=0.7)
    plt.title('Histogram of Converted Compensation')
    plt.xlabel('Converted Compensation')
    plt.ylabel('Frequency')
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.show()
```


Box Plots

Plot a box plot of Age.

```
In [17]: # Query to get the 'Age' column
    query = "SELECT Age FROM master"
    df = pd.read_sql_query(query, conn)

# Plot the box plot
    plt.figure(figsize=(10, 6))
    plt.boxplot(df['Age'].dropna(), vert=False)
    plt.title('Box Plot of Age')
    plt.xlabel('Age')
    plt.show()# your code goes here
```


Visualizing relationships in data

Scatter Plots

Create a scatter plot of Age and WorkWeekHrs.

```
In [18]: # Query to get 'Age' and 'WorkWeekHrs'
    query = "SELECT Age, WorkWeekHrs FROM master"
    df = pd.read_sql_query(query, conn)

# Plot the scatter plot
    plt.figure(figsize=(10, 6))
    plt.scatter(df['Age'], df['WorkWeekHrs'], alpha=0.6)
    plt.title('Scatter Plot of Age vs WorkWeekHrs')
    plt.xlabel('Age')
    plt.ylabel('WorkWeekHrs')
    plt.grid(alpha=0.3)
    plt.show()# your code goes here
```


Bubble Plots

Create a bubble plot of WorkWeekHrs and CodeRevHrs, use Age column as bubble size.

```
In [19]: # Query to get 'WorkWeekHrs', 'CodeRevHrs', and 'Age'
query = "SELECT WorkWeekHrs, CodeRevHrs, Age FROM master"
df = pd.read_sql_query(query, conn)

# Plot the bubble plot
plt.figure(figsize=(10, 6))
plt.scatter(df['WorkWeekHrs'], df['CodeRevHrs'], s=df['Age'], alpha=0.5)
plt.title('Bubble Plot of WorkWeekHrs vs CodeRevHrs (Bubble size: Age)')
plt.xlabel('WorkWeekHrs')
plt.ylabel('CodeRevHrs')
plt.grid(alpha=0.3)
plt.show()# your code goes here
```


Visualizing composition of data

Pie Charts

Create a pie chart of the top 5 databases that respondents wish to learn next year. Label the pie chart with database names. Display percentages of each database on the pie chart.

```
In [20]: # Query to get the database respondents wish to Learn next year
query = "SELECT DatabaseDesireNextYear FROM DatabaseDesireNextYear"
df = pd.read_sql_query(query, conn)

# Get the top 5 databases
top_databases = df['DatabaseDesireNextYear'].value_counts().head(5)

# Plot the pie chart
plt.figure(figsize=(8, 8))
plt.pie(top_databases, labels=top_databases.index, autopct='%1.1f%%', startangle=14
plt.title('Top 5 Databases Respondents Wish to Learn Next Year')
plt.show()# your code goes here
```

Top 5 Databases Respondents Wish to Learn Next Year

Stacked Charts

Create a stacked chart of median WorkWeekHrs and CodeRevHrs for the age group 30 to 35.

```
In [21]: # Query to get the relevant columns
    query = """
    SELECT Age, WorkWeekHrs, CodeRevHrs
    FROM master
    WHERE Age BETWEEN 30 AND 35
    """
    df = pd.read_sql_query(query, conn)

# Calculate the median
    median_values = df.groupby('Age')[['WorkWeekHrs', 'CodeRevHrs']].median()

# Plot the stacked bar chart
    median_values.plot(kind='bar', stacked=True, figsize=(10, 6))
```

```
plt.title('Median WorkWeekHrs and CodeRevHrs for Age Group 30-35')
plt.ylabel('Hours')
plt.xlabel('Age')
plt.legend(title='Metric')
plt.show()# your code goes here
```


Visualizing comparison of data

Line Chart

Plot the median ConvertedComp for all ages from 45 to 60.

```
In [22]: # Query to get the relevant columns
    query = """
    SELECT Age, ConvertedComp
    FROM master
    WHERE Age BETWEEN 45 AND 60
    """
    df = pd.read_sql_query(query, conn)

# Calculate the median
    median_comp = df.groupby('Age')['ConvertedComp'].median()

# Plot the line chart
    plt.figure(figsize=(10, 6))
    plt.plot(median_comp.index, median_comp.values, marker='o')
    plt.title('Median ConvertedComp for Ages 45-60')
    plt.xlabel('Age')
```

```
plt.ylabel('Median ConvertedComp')
plt.grid(alpha=0.3)
plt.show()# your code goes here
```


Bar Chart

Create a horizontal bar chart using column MainBranch.

```
In [23]: # Query to get the 'MainBranch' column
    query = "SELECT MainBranch FROM master"
    df = pd.read_sql_query(query, conn)

# Count values in 'MainBranch'
main_branch_counts = df['MainBranch'].value_counts()

# Plot the horizontal bar chart
main_branch_counts.plot(kind='barh', figsize=(10, 6), color='skyblue', edgecolor='bplt.title('Distribution of MainBranch')
plt.xlabel('Count')
plt.ylabel('MainBranch')
plt.ylabel('MainBranch')
plt.show()# your code goes here
```


Close the database connection.

```
In [32]: # Import necessary libraries
         import pandas as pd
         import sqlite3
         # Connect to the database
         conn = sqlite3.connect("m4_survey_data.sqlite")
         # SQL query to count occurrences of each developer type
         query = """
         SELECT DevType, COUNT(*) AS Count
         FROM DevType
         GROUP BY DevType
         ORDER BY Count DESC
         # Execute the query and load the results into a DataFrame
         df = pd.read_sql_query(query, conn)
         # Get the majority developer type
         majority_devtype = df.iloc[0] # The first row contains the most frequent developer
         # Print the result
         print(f"The majority developer type is: {majority_devtype['DevType']} with {majorit
         # Close the database connection
         conn.close()
```

The majority developer type is: Developer, full-stack with 6928 respondents.

Authors

Ramesh Sannareddy

Other Contributors

Rav Ahuja

Copyright © 2020 IBM Corporation. This notebook and its source code are released under the terms of the MIT License.

<!--## Change Log

