Specific Heat: $Q = mc\Delta T$

Heat Capacity: $Q = C\Delta T$

Energy in Capacitor: Q = CV

Switching Energy: $E = \frac{1}{2}CV^2$ (per charge/discharge)

Switching Energy: $E = CV^2$ (full cycle)

Power per Cycle: $P = E \times f$

Power per Cycle w/ Activity Factor: $P = \alpha CV^2 f$

Resistance: $R = \rho \frac{L}{A} = \rho \frac{L}{w \times h}$

Wire Thickness: $t = \frac{\rho}{R}$

Sheet Resistance: $R_s = \frac{\rho}{h} \parallel R = R_s \frac{L}{W}$

Capacitance per Unit Area: $C = C_A WL$

Elmore Delay: $\delta_E = \frac{1}{2}rcn(n+1) \parallel \delta_E = c_1r_1 + c_2(r_1 + r_2)...$

 $\delta_E = \frac{1}{2} R_s \frac{L}{W} \times C_A W L \times \frac{L_T^2}{r^2} = \frac{1}{2} R_s C_A L_T^2 \parallel n = \frac{L_T}{r}$

Capacitance Scaling: $C_g = \frac{c_g}{r}$

Drive Voltage Scaling: $V_{dd} = \frac{V_{dd}}{r}$

Current Scaling: $I = \frac{I}{x}$

Switching Time Scaling: $\tau = RC = \frac{\tau}{r}$

Switching Energy Scaling: $E = \frac{E}{r^3}$

Power Scaling: $P = \frac{P}{r^2}$

Power Density Scaling: not changed!

Delay Scaling: unchanged for local interconnect, scales with L^2

for global interconnect

Local	Global
R' = R⋅x	R'∝L
C' = C/x	C'∝L
Delay not changed	Delay ∝ L ²

Zeroth Law: If bodies A and B are each in thermal equilibrium with a third body T, then A and B are in thermal equilibrium with each other.

Heat: the transferred energy between a system and its environment because of a temperature difference that exists between them.

Energy Transfer Rate: $q = \frac{Q}{t}$

Fourier's Law of Heat Conduction: $q = -k\frac{A}{\Lambda x}(T_H - T_C)$

Thermal Resistance: $q = \frac{\Delta T}{R_T} = \frac{T_1 - T_2}{L/kA} \parallel R_T = \frac{L}{kA} = \frac{\Delta T}{q}$

Newton's Law of Cooling: $q_c = hA(T_s - T_a)$

• h = heat transfer coefficient, T_a = environment temp.

Fins: $q_c = NhA_{fin} \frac{3}{4} (T_{base/s} - T_a)$

 $A_{fin} = W_{chip} \times L_{fin} \times 2$ $N = \frac{W_{chip} + gap_{fin}}{t_{fin} + gap_{fin}}$

 $\bullet \quad T_s = T_i - q(R_{ic} + R_{el} + R_{hs})$

First Law: The internal energy E_{int} of a system tends to increase if energy is added as heat Q and tends to decrease if energy is lost as work W done by the system ($\Delta E_{int} = Q - W$)

Second Law: If a process occurs in a closed system, the entropy of the system increases for irreversible processes and remains constant for reversible processes.

Adiabatic Process: occurs so rapidly or system is so well insulated that no transfer of energy as heat occurs between the system and its environment, i.e. Q = 0.

Constant-Volume Process: If the volume of a system is held constant, that system cannot do work, i.e. W = 0.

Cyclical Process: After certain interchanges of heat and work, the system is restored to its initial state, i.e. Q = W.

Free Expansion: Special adiabatic processes in which no transfer of energy as heat occurs between the system and its environment and no work is done by the system, i.e. Q = W = 0.

Isothermal Process: Temperature is constant while volume/pressure changes, $\Delta T = 0$. (pV = nRT = constant)

Ideal Gas: $pV = nRT (R = 8.314 \, Jmol^{-1} K^{-1})$

Isothermal Work: $W = nRT ln \frac{V_f}{V_c}$ (done by ideal gas)

• If positive, gas does work on environment

Average Translational Kinetic Energy: $K_{avg} = \frac{3}{2}kT$

• At a given temperature T, all ideas gases (no matter their mass) have the same average translational KE

Internal Energy: $E_{int} = \frac{3}{2}nRT$

Molar Specific Heat at Const. Vol:

• Monatomic: $C_v = \frac{3}{2}R$

• Diatomic: $C_v = \frac{5}{2}R$

• Polyatomic: $C_v = 3R$

• $Q = nC_v \Delta T$

Molar Specific Heat at Constant Pressure: $C_p = C_v + R$

Adiabatic Process: $pV^{\gamma} = \text{constant}$, $TV^{\gamma-1} = \text{constant}$

 \bullet $\gamma = C_p/C_v$

 $\bullet \quad p_R V_R^{\ \gamma} = p_C V_C^{\ \gamma}$

 $\bullet T_{R}V_{R}^{\gamma-1} = T_{C}V_{C}^{\gamma-1}$

Adiabatic Work: $W = \frac{1}{1-y} (P_2 V_2 - P_1 V_1)$

Fridge: Remove heat from low-temp reservoir, move it to high-temp reservoir

• Efficiency = $K_R = \frac{Q_L}{W} = \frac{Q_L}{O_{ii} - O_i} = \frac{T_L}{T_{ii} - T_i}$

 $\bullet \quad W = Q_H - Q_L$

• You do 1 J of work to remove K_R J of heat

 $\bullet W = \frac{W}{\% Carnot \ limit}$

• Q_L = heat removed/added to low-temp per cycle

• Q_H = heat removed/added to high-temp per cycle

Heat Pump:

• Efficiency = $K_P = \frac{Q_H}{W} = \frac{Q_H}{Q_H - Q_L} = \frac{T_H}{T_H - T_L}$

Entropy Equality: $\frac{Q_L}{T_L} = \frac{Q_H}{T_H}$

Entropy: $\Delta S = \frac{Q}{T}$

Entropy Change: $\Delta S = S_f - S_i = nRln \frac{V_f}{V_i} + nC_v ln \frac{T_f}{T_i}$

• For one molecule: $\Delta S = k_B ln \frac{V_f}{V_i}$

Constant Volume Process: $\Delta S = nC_v ln \frac{T_f}{T_i}$

Constant Pressure Process: $\Delta S = nR ln \frac{V_f}{V_i}$

Maxwell Speed Distribution: $P(v) = 4\pi (\frac{M}{2\pi RT})^{3/2} v^2 e^{-Mv^2/2RT}$

• This is for 3D

Average Molecule Speed: $v_{avg} = \sqrt{\frac{8RT}{\pi M}}$

• M: molar mass [g/mol]

RMS Molecule Speed: $v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{(v^2)_{avg}}$

Most Probable Speed: $v_p = \sqrt{\frac{2RT}{M}}$

• The speed at which P(v) is maximum

Magnitudes: $v_p < v_{avg} < v_{rms}$

Degrees of Freedom: the number of independent ways in which a molecule can store energy; each DoF has an energy of $\frac{1}{2}kT$ associated with it on average.

 $\bullet \quad E_{int} = (f/2)nRT$

 $\bullet \quad C_v = (f/2)R$

 Translational, rotational, and oscillatory motions (diatomic and polyatomic only)

Equipartition Theorem: Energy is shared equally amongst all energetically accessible degrees of freedom of a system, and each share is $\frac{1}{2}kT$.

Boltzmann Entropy: $S = k_B lnW$

• $k_B = 1.3806 \times 10^{-23}$

Information Content: Q = -klogP

Average Uncertainty: $H = -k \sum p_i log(p_i)$

• Typically k = 1

Maximum Entropy: $H_{MAX} = logN$

Algorithmic Entropy: the shortest code that produces a specified string as output.

Shannon Coding Theorem: $n = \frac{M}{M_o}$

• Describes efficiency of compression code

• M_c = entropy of compressed string

• M =lower bound Shannon entropy

Joint Entropy: $H(X,Y) = -\sum_{x,y} p(x,y)log(p(x,y))$

• p(x, y) = probability of x AND y

 $\bullet \quad H(X,Y) = H(Y,X)$

Conditional Entropy: $H(X|Y) = -\sum_{x,y} p(x,y) log(p(x|y))$

 $P(A \cup B) = P(A) + P(B) + P(A \cap B)$

• $P(A|B) = \frac{P(A \cap B)}{P(B)}$

 $\bullet \quad P(A \cap B) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$

Mutual Information:

 $I(X; Y) = H(X) - H(X|Y) = \sum_{x,y} p(x,y) log \frac{p(x,y)}{p(x)p(y)}$

• Measures the correlation between two variables

 $\bullet \quad I(X;Y) = I(Y;X)$

Relationship 1:

• I(X; Y) = H(X) + H(Y) - H(X, Y)

• If X,Y corr: H(X,Y) < H(X) + H(Y)

• else: H(X, Y) = H(X) + H(Y)

Relationship 2:

• I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

• If X,Y corr: H(X|Y) < H(X); H(Y|X) < H(Y)

• else: H(X|Y = H(X); H(Y|X) = H(Y) $\circ I = 0$

Differential Entropy: $h(X) = -\int_{0}^{L} f(x) \log_2 f(x) dx$

Uniform DE: $h(X) = -\int_{0}^{L} \frac{1}{L} log_2 \frac{1}{L} dx = log_2 L$

Quantized Entropy: $H(X^{\Delta}) = (-\sum \Delta f(x_i) log(f(x_i))) - log\Delta$

• $H(X^{\Delta}) = h(X) - log\Delta = log_2(L/\Delta)$

• L/Δ = number of microstates

1D Momentum: $f(v_x) = \left(\frac{m}{2\pi kT}\right)^{1/2} e^{-mv_x^2/2k_BT}$

3D Momentum: $f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-mv^2/2k_BT}$

Uncertainty Principle: you cannot determine the position and momentum of a molecule at the same time with the same accuracy.

• $\sigma_x \sigma_y \geq \frac{h}{4\pi}$

• $h = 6.626 \times 10^{-34} J \cdot s$

Entropy Increase: As N increases, the probability of the system being in state n* (the most probable macrostate) actually decreases. Although this decreases, we notice the "peak" is less sharp and broader, i.e. the probability of the system occupying states close to n* increases (close to 100%).

 Probability drives entropy to increase, and also drives systems to equilibrium state

Fuel Value: the amount of energy that can be extracted from a tape.

- Random tape has zero fuel value
- $FV = (N I)k_BT \ln 2$ (for N bits)
- Zero uncertainty/information = max fuel value

Landauer's Principle: the energy cost associated with erasing/resetting memory is $k_BT \ln 2$ per bit.

• Information is proportional to the amount of energy we need to spend if we want to reset memory

Minimum Energy for Reversible Computer: $E_{min} = Nk_BTln2$

- For N-bit output, theoretical minimum that is being chased
- T in Kelvin!

Controlled NOT Gate:

Α	В	A'	B'
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1 ~	0 /

- If input to O-wire is 1, then input to X-wire (NOT gate) is inverted
- Otherwise, both pass through unchanged
- O-wire input is never changed

CCN Gate:

Controlled Controlled NOT (CCN) gate

	D	·	A	ь	٠
0	0	0_	0	0	0
0	0	_1	0	0	_1
0	1	0	0	1	0
0	1	1_	0	1	1
1	0	.0_	1	0	0
1	0	1	1	0	1
1_	1	0	1	1	1_
1_	_1_	1	1	1	0

X-wire is inverted only if both O-inputs are 1

Fredkin Gate:

С	Α	В	C'	A'	В'
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1_	1	1	0
1_	1	0	1	0	1
1	1	1	1	1	1

- AND: Set B to 0; B'=A AND C
- NOT: Set A to 0 and B to 1; B'=NOT C
- OR: Set B to 1; A'=A OR C

Billiard Balls:

Outputs X and Y can realize the CN Gate

Feynman Rate r: At any given stage, it is r times more likely to make a forward calculation than a backward one.

- E = kT log r
- Smaller r means less energy is required

Brownian Computer:

- Two "wells" and a barrier
- Wells have energy E_1 and E_2 , $E_1 > E_2$. To go forward, a molecule in well E_1 needs less energy to overcome the barrier and so forward computation is favoured.
- Rate is proportional to $exp[\frac{E_1-E_2}{kT}]$
- Prob. of moving forward is proportional to $exp[\frac{-(A-E_1)}{kT}]$
- Prob. of moving backward is prop. to $exp[\frac{-(A-E_2)}{kT}]$
- If r > 1, then forward; if 0 < r < 1, then backward

State-Based Rate: $r = n_2/n_1$

 n_2 states in forward direction, n_1 in backward

Energy Loss per Step:

 $kT log r = kT (log n_2 - log n_1) = (S_2 - S_1)T$

Energy loss per step is equal to entropy generated in that step

Reversible Computing:

- Process can go forward or backward with equal probability (not desirable, r = 1)
- All inputs can be deduced from outputs
- Zero energy cost for computations
- Energy cost comes from memory erasing/resetting

Adiabatic Computing: we can approach zero energy as speed is reduced.

- Each switching operation minimizes irreversible energy dissipation
- Conventional computer architectures/circuits can be used (can lower operating frequency to reduce energy loss)
- Could be far more efficient than reversible principles
- A balance between speed and cost
- Energy: $E = I^2RT = CV^2 \times RC/T$

At Landauer's Limit: $k_B T ln 2 = \frac{1}{2} C V_{DD}^2$

Johnson Noise (Capacitor): $V_N = \sqrt{\frac{k_B T}{C}} \parallel V_{DD} = N \cdot V_N$

Johnson Noise (Resistor):

- $\bullet \quad i_{n\Delta f} = \frac{4k_B T \Delta f}{R}$
- $V_N^2 = 4k_R T R \Delta f$

Minimum Switching Energy: $E_{min} = \frac{1}{2}CV_{DD}^2 = \frac{1}{2}N^2k_BT$

• For full switching cycle: $E_{min} = N^2 k_B T$

• For adiabatic: $k_B T \ln 2 = C V_{DD}^2 \times RC/T$

Emissivity:

• $J = \varepsilon \sigma T^4$ (T in Kelvin)

• J = radiance, $\sigma = 5.67 \times 10^{-8}$

• Heat flux = $Radiance \times Area$

Prefix		Base 1000	D 10
Name	Symbol	base 1000	base 10
yotta	Υ	1000 ⁸	10 ²⁴
zetta	Z	1000 ⁷	10 ²¹
exa	Е	1000 ⁶	10 ¹⁸
peta	Р	1000 ⁵	10 ¹⁵
tera	Т	1000 ⁴	10 ¹²
giga	G	1000 ³	10 ⁹
mega	М	1000 ²	10 ⁶
kilo	k	1000 ¹	10 ³
hecto	h	1000 ^{2/3}	10 ²
deca	da	10001/3	10 ¹
		1000 ⁰	10 ⁰
deci	d	1000 ^{-1/3}	10 ⁻¹
centi	С	1000-2/3	10-2
milli	m	1000-1	10 ⁻³
micro	μ	1000-2	10 ⁻⁶
nano	n	1000 ⁻³	10-9
pico	р	1000-4	10-12
femto	f	1000 ⁻⁵	10 ⁻¹⁵
atto	а	1000-6	10 ⁻¹⁸
zepto	z	1000 ⁻⁷	10-21
yocto	у	1000 ⁻⁸	10-24

$$h_{si} = 130 \ \text{W/m} \cdot ^{\circ}\text{C}; h_{el} = 0.65 \ \text{W/m} \cdot ^{\circ}\text{C}; h_{hs} = 202 \ \text{W/m} \cdot ^{\circ}\text{C}$$
 $P = 40 \ W$ $A_{chip} = 625 \ mm^2$ $L_{chip} = 0.5 \ mm; L_{el} = 20 \ \mu m; L_{hs} = 2 \ mm$ $L_{fin} = 8 \ mm; t_{fin} = 0.5 \ mm; g_{fin} = 0.5 \ mm$

 $T_a = 20^{\circ}C; T_{I,max} = 85^{\circ}C$

$$\begin{split} W_{chip} &= \sqrt{A_{chip}} = Nt_{tin} + (N+1)g_{fin} \Longrightarrow N = \frac{W_{chip} + g_{fin}}{t_{fin} + gap} = 25.5 \to 25 \, fins \\ q &= NA_{fin}h\frac{3}{4}(T_S - T_a) = \frac{\Delta T}{R_{total}} = 40 \, W \\ A_{fin} &= W_{chip} * L_{fin} * 2 = 400 \, \mu m \\ T_S &= T_J - q(R_J + R_{el} + R_{hs}) \\ R_J &= \frac{L_{chip}}{h_{si}A_{chip}} = 0.0062 \, ^{\circ}C/W \\ R_{el} &= \frac{L_{el}}{h_{el}A_{chip}} = 0.0492 \, ^{\circ}C/W \\ R_{hs} &= \frac{L_{hs}}{h_{hs}A_{chip}} = \mathbf{0.0158} \, ^{\circ}C/W \\ T_S &= T_J - q(R_J + R_{el} + R_{hs}) = 82.15 \, ^{\circ}C \\ q &= NA_{fin}h\frac{3}{4}(T_S - T_a) \Longrightarrow h = 85.8 \, W/m^{2} \, ^{\circ}K \Longrightarrow Forced\ convection \end{split}$$

"If you know a ball's suit, how much information do you gain and how much uncertainty is left about its color and vice versa?"

• How much information do you gain: $H(S) \equiv Entropy \ of \ ball's \ suit$

• How much uncertainty is left about its color: $H(C|S) \equiv Entropy \ of \ color \ given \ suit$

• And vice-versa: H(C) and H(S|C)

"How much information is shared between these two features?"

• Mutual information: *I*(*S*; *C*)

