tidyomics: Enhancing Omic Data Analyses

Table of contents

W	hat is tidyomics? Core values	6				
Re	Workflows	7 7 7 7				
Re	Peproducibility Docker image	8 8				
Se	ession info	9				
Re	eferences	12				
Pr	Preamble					
Re	eferences	14				
I	Fundamentals concepts	15				
1	Genomic intervals data 1.1 Importing GRanges from files	16 16 17				
Re	esources	18				
Se	ession info	19				
Re	eferences	22				
2	Genomic interactions data 2.1 What are GInteractions?	23				

2	2.2	Manip 2.2.1 2.2.2 2.2.3	Moving anchors around	24 24 24 25
2	2.3	Real-w 2.3.1 2.3.2 2.3.3	vorld use case: computing a P(s)	25 26 26 26
Res	ourc	es		28
Sess	sion	info		29
Refe	eren	ces		32
3 9	Sum	marize	d experiment data	33
Res	ourc	es		34
Sess	sion	info		35
Refe	eren	ces		38
II	Spe	ecific (omics	39
4	Tran	scripto	omic data	40
Res	ourc	es		41
Sess	sion	info		42
Refe	eren	ces		45
5 I	Epig	enomic	c data	46
	5.1	5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	CoverageExperiment and AggregatedCoverage class Creating a CoverageExperiment object from tracks and features Tidy coverage? That's right! expand() or aggregate() Visualizing aggregated coverage vorld use case: studying epigenomic landscape of reulatory elements Fetch coverage data from ENCODE Plotting coverage data over several loci Import DNase peaks from ENCODE	46 46 47 48 48 49 49 49

$5.2.4$ Generating coverage aggregates and heatmaps over DNAse peak \dots	49			
Resources	51			
Session info	52			
References	55			
6 Single-cell data	56			
Resources				
Session info				
References				
7 Spatial single-cell data	62			
Resources	63			
Session info				
References	67			
8 Flow cytometry data	68			
Resources				
Session info				
References				
9 Mass cytometry data	74			
Resources				
Session info				
References	79			
III Additional resources	80			
10 List of packages included in the tidyomics framework 10.1 Core packages	81 81			

Resources	83
Session info	84
References	87
11 Future directions	88
Resources	89
Session info	90
References	93
Appendices	94
A tidvomics contributors	94

What is tidyomics?

The tidyverse and Bioconductor ecosystems are transforming R-based data science and biological data analysis. tidyomics bridges the gap between these ecosystems, enabling analysts to leverage the power of tidy data principles in omic analyses.

This integration fosters cross-disciplinary collaborations, reduces barriers to entry for new users and enhances code readability, reproducibility and transparency. The tidy standard applied to biological software creates an extensible development ecosystem where independent researchers can interface with new software.

Ultimately, the tidyomics ecosystem, consisting of new and publicly available R packages, has the potential to greatly accelerate scientific discovery. The mission of this collaborative, worldwide project has been described in more detail in Nature Methods (2024):

Hutchison, William J., Timothy J. Keyes, Helena L. Crowell, Jacques Serizay, Charlotte Soneson, Eric S. Davis, Noriaki Sato, et al. 2024. "The tidyomics ecosystem: enhancing omic data analyses." Nat. Methods 21 (July): 1166–70. (https://doi.org/10.1038/s41592-024-02299-2).

Core values

Our Code of Conduct is available here.

The tidyomics organization is open to new members and contributions; it is an effort of many developers in the Bioconductor community and beyond.

- See our tidyomics open challenges project to see what we are currently working on;
- Issues tagged with good first issue are those that developers think would be good for a new developer to start working on;
- Read over our Guidelines for contributing;
- As with new users, for new developers please consider joining our Slack Channel, #tidiness_in_bioc. Most of the tidyomics developers are active there and we are happy to talk through updates, PRs, or give guidance on your development of a new package in this space.

Resources

Workflows

This section lists the different workshops introducing the tidyomics framework

- BioC workshop covering single cell transcriptomics and genomics: Tidy single-cell analyses
- BioC workshop covering genomic ranges and interactions: Investigating chromatin composition and architecture
- Online book covering tidy manipulation of GRanges and more: Tidy ranges tutorial
- Quarto lecture notes introducing the concepts of tidyomics for expression and ranges: Tidy intro talk
- Short tutorial showing overlaps of GWAS SNPs with scATAC-seq peaks T1D GWAS SNPs and CD4+ peaks
- Workflow showing RNA-seq and ATAC-seq integration with plyranges: Fluent genomics workflow

Talks

This section lists the different talks presenting the tidyomics framework

- Tidy enrichment analysis with plyranges and nullranges
- Tidy analysis of genomic data

We try to add any talk related to tidyomics in our repository. Please open an issue if you'd like to list yours!

Related projects

• biobroom

Please open an issue if you'd like other related projects to be listed here!

Reproducibility

Docker image

A Docker image built from this repository is available here:

ghcr.io/js2264/biocbook.tidyomics

RStudio Server

An RStudio Server instance can be initiated from the Docker image as follows:

Listing 0.2 bash

```
docker run \
    --volume <local_folder>:<destination_folder> \
    -e PASSWORD=OHCA \
    -p 8787:8787 \
    ghcr.io/js2264/biocbook.tidyomics:devel
```

The initiated RStudio Server instance will be available at https://localhost:8787.

Session info

i Click to expand

References

Preamble

References

Part I Fundamentals concepts

1 Genomic intervals data

1.1 Importing GRanges from files

```
library(GenomicRanges)
library(rtracklayer)
bedf <- system.file('extdata', 'S288C-borders.bed', package = 'Bioc2024tidyWorkshop', mustWorders(bedf)</pre>
```

```
library(tidyverse)

tib <- read_tsv(bedf, col_names = FALSE)

tib

library(plyranges)

gr <- as_granges(tib, seqnames = X1, start = X2, end = X3)

gr</pre>
```

tidy evaluation

1.2 Manipulating GRanges with tidy verbs

a number of tidy operations

•

•

•

```
gr |>
    mutate(score = runif(n())) |>
    filter(score > 0.2) |>
    mutate(round_score = round(score, digits = 1)) |>
    group_by(round_score) |>
    summarize(mean = mean(score))
```

```
gr |>
    mutate(
        seqnames = factor('XVI', levels(seqnames)),
        width = 1,
        strand = rep(c('-', '+'), n()/2)
)
```

```
gr |>
    anchor_center() |>
    stretch(extend = -1000) |>
    shift_upstream(250) |>
    flank_upstream(100)
```

Resources

- "Tidy Ranges Tutorial" by Michael Love
- A Bioc2024 workshop on plyranges and others

Session info

i Click to expand

References

2 Genomic interactions data

- 2.1 What are GInteractions?
- 2.1.1 Creating a GInteractions object from scratch

```
library(InteractionSet)
gr1 <- GRanges("I:10-50")
gr2 <- GRanges("I:100-110")
GInteractions(anchor1 = gr1, anchor2 = gr2)</pre>
```

```
GInteractions(anchor1 = c(1, 2, 3), anchor2 = c(1, 4, 5), regions = gr)
```

2.1.2 Importing genomic interaction data from files

```
bedpef <- system.file('extdata', 'S288C-loops.bedpe', package = 'Bioc2024tidyWorkshop', must'

tib <- read_tsv(bedpef, col_names = FALSE)

tib

library(plyinteractions)

gi <- tib |>
    as_ginteractions(
        seqnames1 = X1, start1 = X2, end1 = X3,
        seqnames2 = X4, start2 = X5, end2 = X6
    )

gi
```

2.2 Manipulating GInteractions the tidy way

2.2.1 Moving anchors around

```
gi |>
    mutate(
        seqnames1 = factor('XVI', levels(seqnames1)),
        strand1 = '+',
        start2 = end1,
        width2 = width1 + 100,
        score = runif(length(gi)),
        is_cis = ifelse(seqnames1 == seqnames2, TRUE, FALSE)
)
```

2.2.2 Filtering interactions

```
gi |> filter(seqnames1 == 'I')
gi |> filter(seqnames2 == 'I')
gi |>
    mutate(score = runif(length(gi))) |>
    filter(seqnames2 == 'I', score > 0.2)
```

2.2.3 Overlapping anchors

```
centros <- system.file('extdata', 'col', package = 'Bioc2024tidyWorkshop', mustWork = TRUE)
    read_tsv() |>
    as_granges(seqnames = seqID) |>
    anchor_center() |>
    stretch(20000)

gi |>
    join_overlap_left(centros) |>
    filter(!is.na(patternName))
```

```
gi |>
    pin_anchors1() |>
    join_overlap_left(centros) |>
    filter(!is.na(patternName))

gi |>
    pin_anchors2() |>
    join_overlap_left(centros) |>
    filter(!is.na(patternName))
```

2.3 Real-world use case: computing a P(s)

2.3.1 Importing data from pairs file

```
pairsf <- system.file('extdata', 'mESCs.pairs.gz', package = 'Bioc2024tidyWorkshop', mustWork

pairs <- read_tsv(pairsf, col_names = FALSE, comment = "#") |>
    set_names(c(
        "ID", "seqnames1", "start1", "seqnames2", "start2", "strand1", "strand2"
    )) |>
    as_ginteractions(end1 = start1, end2 = start2, keep.extra.columns = TRUE)
```

2.3.2 Counting interactions by strands

```
df <- pairs |>
    add_pairdist() |>
    filter(pairdist < 2000) |>
    group_by(strand1, strand2, pairdist) |>
    count()

ggplot(df, aes(x = pairdist, y = n, col = interaction(strand1, strand2))) +
    geom_smooth() +
    scale_y_log10()
```

2.3.3 Plot P(s)

```
x <- 1.1^(1:200-1)
lmc <- coef(lm(c(1,1161443398)~c(x[1], x[200])))
bins_breaks <- unique(round(lmc[2]*x + lmc[1]))
bins_widths <- lead(bins_breaks) - bins_breaks

# Bin distances
df <- pairs |>
```

```
add_pairdist(colname = 's') |>
   mutate(
        binned_s = bins_breaks[as.numeric(cut(s, bins_breaks))],
       bin_width = bins_widths[as.numeric(cut(s, bins_breaks))]
   ) |>
   group_by(binned_s, bin_width) |>
   count(name = "n") |>
   as_tibble() |>
   mutate(Ps = n / sum(n) / bin_width)
ggplot(df, aes(x = binned_s, y = Ps)) +
   geom_line() +
   scale_y_log10() +
   scale_x_log10() +
   annotation_logticks() +
   labs(x = "Genomic distance", y = "Contact frequency") +
   theme_bw()
```

Resources

Session info

i Click to expand

References

3 Summarized experiment data

Resources

Session info

i Click to expand

References

Part II Specific omics

4 Transcriptomic data

Resources

- tidybulk vignette
- Fluent genomics workflow

Session info

i Click to expand

References

5 Epigenomic data

- 5.1 Introduction to tidyCoverage
- 5.1.1 CoverageExperiment and AggregatedCoverage class

```
library(tidyCoverage)

data(ce)

data(ac)

ce
```

5.1.2 Creating a CoverageExperiment object from tracks and features

```
tracks <- BigWigFileList(c(
    mnase = system.file("extdata", "MNase.bw", package = "tidyCoverage"),
    cohesin = system.file("extdata", "Scc1.bw", package = "tidyCoverage")
))
features <- GRangesList(
    TSSs = system.file("extdata", "TSSs.bed", package = "tidyCoverage") |> import() |> sample    TTSs = system.file("extdata", "TTSs.bed", package = "Bioc2024tidyWorkshop") |> import()
)
```

```
ce2 <- CoverageExperiment(
    tracks = tracks,
    features = features,
    width = 2000,
    ignore.strand = FALSE
)</pre>
```

```
colData(ce2)
rowData(ce2)
assay(ce2, 'coverage')
class(assay(ce2, 'coverage')['TSSs', 'mnase'])
class(assay(ce2, 'coverage')[['TSSs', 'mnase']])
dim(assay(ce2, 'coverage')[['TSSs', 'mnase']])
```

5.1.3 Tidy coverage? That's right!

```
library(tidySummarizedExperiment)

ce2

ce2 |> filter(features == 'TSSs')

ce2 |> slice(2)

ce2 |> select(features, n)
```

5.1.4 expand() or aggregate()

```
tib <- expand(ce2)
tib</pre>
```

```
ac2 <- aggregate(ce2)
ac2</pre>
```

5.1.5 Visualizing aggregated coverage

•

```
CoverageExperiment(tracks, GRanges("II:1-100000"), window = 100) |>
    expand() |>
    ggplot() +
    geom_coverage() +
    facet_grid(track ~ features, scales = "free") +
    labs(x = 'chrV', y = 'Signal coverage')

ggplot(ac2) +
    geom_aggrcoverage() +
    facet_grid(track ~ features, scales = "free") +
    labs(x = 'Distance from genomic features', y = 'Signal coverage')
```

5.2 Real-world use case: studying epigenomic landscape of reulatory elements

5.2.1 Fetch coverage data from ENCODE

```
library(AnnotationHub)
ah <- AnnotationHub()
ids <- c('AH32207', 'AH35187')
names(ids) <- c('DNAse', 'H3K4me3')
bws <- lapply(ids, function(.x) ah[[.x]] |> resource()) |> BigWigFileList()
names(bws) <- names(ids)</pre>
```

5.2.2 Plotting coverage data over several loci

5.2.3 Import DNase peaks from ENCODE

```
features <- list(DNase = ah[['AH30077']] |> filter(zScore > 100) |> sample(1000))
```

5.2.4 Generating coverage aggregates and heatmaps over DNAse peak

```
ce4 <- CoverageExperiment(bws, features, width = 2000, window = 10)</pre>
```

```
aggregate(ce4) |>
    ggplot(aes(x = coord, y = mean)) +
    geom_aggrcoverage(aes(col = track)) +
    facet_wrap(~track) +
    labs(x = 'Distance from DNAse peak', y = 'Signal')
```

Resources

Session info

i Click to expand

References

6 Single-cell data

Resources

- tidySingleCellExperiment vignette
 A Bioc2023 workshop on tidySingleCellExperiment

Session info

i Click to expand

References

7 Spatial single-cell data

Resources

Session info

i Click to expand

References

8 Flow cytometry data

Resources

Session info

i Click to expand

9 Mass cytometry data

Resources

Session info

i Click to expand

Part III Additional resources

10 List of packages included in the tidyomics framework

10.1 Core packages

tidySummarizedExperin Kiig nette		GitHub
tidy Single Cell Experiment	e n Vignette	GitHub
tidySeurat	Vignette	GitHub
${\bf tidy Spatial Experiment}$	Vignette	GitHub
tidytof		GitHub
plyranges	Vignette	GitHub
plyinteractions	Vignette	GitHub
tidybulk	Vignette	GitHub

10.2 Helper packages

nullranges	Vignette	GitHub
easylift	Vignette	GitHub
tidygate	Vignette	GitHub

Resources

Session info

i Click to expand

11 Future directions

•

•

•

Resources

Session info

i Click to expand

A tidyomics contributors