Aula 3: Complexidade de Algoritmos

- O conceito de complexidade
- Complexidade de pior caso, melhor caso e caso médio
- Exemplos: algoritmos para soma e produto de matrizes

Avaliação de Tempo de Algoritmos

- A importância da avaliação de tempo, na história:
 - algoritmos primitivos;
 - o interesse matemático no tempo.
 Exemplo: velocidade de convergência de séries;
 - o aparecimento do computador:
 o tempo como fator primordial.
- A avaliação de espaço somente se tornou importante, com o surgimento do computador:
 - nos primórdios da computação: espaço era fundamental;
 - atualmente: importância decresceu.

Avaliando o Tempo

métodos analíticos

- Dependem do computador, linguagem de programação, compilador, dados, etc., utilizados na experiência.
- Admitem um tratamento estatístico.
- Analíticos: Determinação de expressões matemáticas que possam estimar o comportamento de tempo de um algoritmo.
 - Independem do computador, linguagem de programação e compilador.
 - Objetivo ambicioso.

Estudo de Métodos Analíticos

Simplificações

- Grande quantidade de dados
- Considerar apenas valores assintóticos
- Desconsiderar constantes aditivas e multiplicativas.
- Exemplo: $3.n^2+5.n-7$ e $12.n^2+11.n+32$ seriam expressões equivalentes.
- Variável independente da expressão aritmética: Entrada do Algoritmo

Exprimir tempo de execução em função da entrada.

<u>cederj</u>

Em busca de uma expressão

- O processo de execução de um algoritmo é dividido em"passos".
- Cada passo consiste na execução de um número fixo de operações básicas, cujos tempos de execução são considerados constantes.
- A operação básica de maior freqüência de execução é a "operação dominante".
- O número de passos do algoritmo corresponde à frequência da operação dominante.
- Exemplo: em algoritmos de ordenação, geralmente, a operação dominante é a comparação.
- Objetivo: avaliar a ordem de grandeza do número de passos de um algoritmo, a partir de uma certa entrada.

Avaliação do Nº de Passos

- Exemplo: algoritmo de inversão de uma seqüência.
- Algoritmo: Inversão de uma seqüência.

- Cada passo corresponde a uma troca de posições entre dois elementos.
- Variável independente = tamanho da seqüência = n
- Número de passos= número de execuções do bloco para $i = 1, ..., \lfloor n/2 \rfloor$

Exemplo: Soma de Matrizes

$$\begin{vmatrix} 2 & 3 & 5 & | & 0 & 0 & 2 & | & 2 & 3 & 7 & | \\ 0 & 1 & 2 & | & 3 & -1 & 4 & | & = & 3 & 0 & 6 & | \\ 3 & 0 & 1 & | & -4 & 1 & 0 & | & -1 & 1 & 1 & | \end{vmatrix}$$

$$A = (a_{ij}), B = (b_{ij}), 1 \le i, j \le n$$
 $C = A + B$
 $c_{ij} = a_{ij} + b_{ij}, 1 \le i, j \le n$

Algoritmo: soma de matrizes

Variável independente= número de linhas da matriz = n Número de passos = n² cederj

Exemplo: Produto de Matrizes

$$\begin{vmatrix} 2 & 3 & 5 \\ 0 & 1 & 2 \\ 3 & 0 & 1 \end{vmatrix} . \begin{vmatrix} 0 & 0 & 2 \\ 3 & -1 & 4 \\ -4 & 1 & 0 \end{vmatrix} = \begin{vmatrix} -11 & 2 & 16 \\ -5 & 1 & 4 \\ -4 & 1 & 6 \end{vmatrix}$$

$$A = (a_{ij}), B = (b_{ij}), 1 \le i, j \le n$$

 $D = A \cdot B$

$$d_{ij} = \sum_{1 \le k \le n} a_{ik} \cdot b_{kj}$$

Algoritmo: produto de matrizes

Variável independente= número de linhas da matriz = n Número de passos = n³ <u>cederj</u>

Exemplos

- Nos exemplos de soma e produto das matrizes, o nº de passos depende apenas do tamanho da entrada, mas não depende do seu valor.
 Em geral, o nº de passos depende do valor da entrada
- Exemplo: soma ou produto de matrizes Dadas as matrizes A, B e a variável x, calcular C = A + B, se x = 0; ou $D = A \cdot B$, se $x \neq 0$.
- Algoritmo: soma ou produto de matrizes.

$$\underline{se} \times = 0 \underline{então} C := A + B \underline{senão} D := A . B$$

 $\stackrel{\square}{\longrightarrow}$ Número de passos = n^2 ou n^3

<u>cederj</u>

Exemplos

- Ideal: conhecer o valor do número de passos, conforme a entrada.
- O ideal pode ser difícil de ser atingido.
- Alternativa: Determinar o número de passos, para entradas específicas e "representativas".
- Conceito de complexidade.

Complexidade de Tempo

A = algoritmo

 $E = \{ E_1, ..., E_n \} = conjunto de todas entradas possíveis de A$

 t_i = número de passos efetuados por A, quando a entrada for E_i

 p_i = probabilidade de ocorrência de E_i

Complexidade de espaço: similar

Comentários sobre as Complexidades

Complexidade de pior caso:

- nº de passos da entrada mais desfavorável
- quase sempre relevante (ex.: aplicações de segurança)
- a mais utilizada
- termo complexidade equivale ao pior caso

Complexidade de melhor caso:

- nº de passos da entrada mais favorável
- em geral, menor relevância
- utilizada em situações específicas

Complexidade de caso médio:

- nº de passos da "entrada média"
- em geral, relevante
- o tratamento é matemático, e pode não ser simples
- depende das probabilidades de ocorrência das entradas

ceder

Exemplo de Cálculo das Probabilidades

algoritmo	complexidade de pior caso	complexidade de melhor caso	complexidade de caso médio
inversão de sequências	n	n	n
soma de matrizes	\mathbf{n}^2	\mathbf{n}^2	n^2
produto de matrizes	\mathbf{n}^3	\mathbf{n}^3	\mathbf{n}^3
soma ou produto de matrizes	\mathbf{n}^3	\mathbf{n}^2	$q.n^2+(1-q).n^3$

constantes aditivas ou multiplicativas são irrelevantes

algoritmo de soma ou produto: seja q, $0 \le q \le 1$, a probabilidade de que o valor da entrada x seja igual a zero.

Exercícios

Dado um inteiro $n \ge 0$, determinar a complexidade do algoritmo de cálculo de n!.

Sejam $A = (a_{ik}), B = (b_{kj}), duas matrizes,$ tais que $1 \le i \le n, 1 \le k \le m e 1 \le j \le p$.

Escrever os algoritmos para calcular C = A + B e $D = A \cdot B$.

Determinar as suas complexidades.

Os valores de n, m e p podem ser quaisquer?

Tempo: 9 minutos

Solução

```
Complexidade = n
                                              Restrição: n=m=p
    algoritmo: soma de matrizes
    para i := 1, ..., n <u>faça</u>
             para j := 1, ..., m faça
                                              Complexidade: n.m
                      c_{ij} := a_{ij} + b_{ij}
algoritmo: produto de matrizes
<u>para</u> i := 1, ..., n <u>faça</u>
        para j := 1, ..., p faça
                                          Complexidade: n.m.p
                 d<sub>ij</sub> := 0
                 para k := 1, ..., m faça
```

 $d_{ij} := d_{ij} + a_{ik} \cdot b_{kj}$