12. Кинематика вращательного движения твердого тела. Угловая скорость и угловое ускорение, их связь с линейными скоростями и ускорениями точек вращающегося тела. Рассмотрим кинематику вращательного движения твёрдого тела, а также связь угловой скорости и углового ускорения с линейными скоростями и ускорениями точек тела.

1. Угловая скорость (ω)

Угловая скорость характеризует быстроту изменения угла поворота тела.

Формула:

$$\omega = \frac{d\phi}{dt}$$
,

где:

- ϕ угол поворота (в радианах),
- *t* время.

Единица измерения:

• В СИ: радиан в секунду (рад/с).

Направление:

• Угловая скорость ω направлена вдоль оси вращения по правилу правого винта.

2. Угловое ускорение (α)

Угловое ускорение характеризует быстроту изменения угловой скорости.

Формула:

$$\alpha = \frac{d\omega}{dt} = \frac{d^2\phi}{dt^2}$$
,

где:

- ω угловая скорость,
- *t* время.

Единица измерения:

• В СИ: радиан в секунду в квадрате (pag/c^2) .

Направление:

• Угловое ускорение α направлено вдоль оси вращения.

3. Связь угловых и линейных величин

Для точки, находящейся на расстоянии R от оси вращения:

Линейная скорость (v):

$$v = \omega R$$
,

где:

- ω угловая скорость,
- R расстояние от оси вращения до точки.

Тангенциальное ускорение (a_{τ}):

$$a_{\tau} = \alpha R$$
,

где:

- $a_{\scriptscriptstyle au}$ тангенциальное ускорение точки,
- α угловое ускорение.

Нормальное (центростремительное) ускорение (a_n) :

$$a_n = \omega^2 R$$

где:

• a_n — нормальное ускорение точки.

Полное ускорение (а):

$$a=\sqrt{a_{\tau}^2+a_n^2}$$
.

4. Пример

Твёрдое тело вращается с угловой скоростью $\omega = 4$ рад/с и угловым ускорением $\alpha = 2$ рад/с². Найдём линейную скорость, тангенциальное и нормальное ускорения точки, находящейся на расстоянии R = 0.5 м от оси вращения.

1. Линейная скорость:

$$v = \omega R = 4 \cdot 0,5 = 2 \text{ m/c}$$
.

2. Тангенциальное ускорение:

$$a_{\tau} = \alpha R = 2 \cdot 0, 5 = 1 \text{ m/c}^2.$$

3. Нормальное ускорение:

$$a_n = \omega^2 R = 4^2 \cdot 0, 5 = 16 \cdot 0, 5 = 8 \text{ m/c}^2.$$

4. Полное ускорение:

$$a = \sqrt{a_{\tau}^2 + a_n^2} = \sqrt{1^2 + 8^2} = \sqrt{1 + 64} = \sqrt{65} \approx 8,06 \,\text{m/c}^2.$$

5. Итог

- **Угловая скорость** (ω) характеризует быстроту изменения угла поворота.
- **Угловое ускорение (** α **)** характеризует быстроту изменения угловой скорости.
- Связь угловых и линейных величин:
 - о Линейная скорость: $v = \omega R$.
 - о Тангенциальное ускорение: $a_{\tau} = \alpha R$.
 - о Нормальное ускорение: $a_n = \omega^2 R$.

Эти формулы широко используются для анализа вращательного движения твёрдых тел.