Dados e Aprendizagem Automática

Trabalho em Grupo

Filipe Pereira

pg55941

João Lopes

pg55964

João Vale

pg55951

Luís Barros

pg55978

Grupo 45

Universidade do Minho

Ano Letivo 2024/2025

Índice

1 Introdução	1
2 Áreas abordadas e Objetivos	
2.1 Áreas abordadas	
2.2 Objetivos	
2.3 Abordagem proposta	
3 Metodologia	2
3.1 Entendimento do negócio	2
3.2 Entendimento dos dados	2
3.3 Preparação dos dados	2
3.4 Modelagem	2
3.5 Validação	3
4 Exploração de Dados	4
4.1 Exploração Inicial	
4.2 Features não Numéricas	
4.3 Correlação	
4.3.1 Variáveis Independentes e Target	
4.3.2 Variáveis Independentes Entre Si	6
5 Processamento e Preparação de Dados	8
5.1 Processamento de features não numéricas	8
5.2 Normalização e Padronização dos Dados	8
5.3 Feature Selection	8
5.3.1 Abordagem Inicial	8
5.3.2 Abordagem mais profunda (SHAP Values)	
5.4 SHAP Values	9
5.4.1 Modelos Utilizados	9
5.4.2 Exploração dos SHAP Values	9
6 Modelagem e Treino	11
6.1 Estratégia de Otimização	11
6.2 Modelos Utilizados e Hiperarâmetros Otimizados	11
6.2.1 RandomForest	11
6.2.2 XGBoost	11
6.2.3 LightGBM	11
6.2.4 SVM	11
6.2.5 LogisticRegression	12
6.2.6 Redes Neurais	12
6.2.7 Ensemble Stacking	12
6.3 Método de treino	13
7 Análise dos resultados obtidos	14
7.1 Comparação de Resultados	
7.2 Avaliação de Métricas Adicionais	
7.2.1 ROC e AUC	
7.2.2 Acertos por classe	15

8 Conclusão	. 17
7.4 Hippocampo vs Lobo Occipital	. 16
7.3 Testes finais	. 15
7.2.3 Matriz de Confusão	. 15

Figuras

Figure 1: Estratégia CRISP-DM	2
Figure 2: Comparação de resultados com todas as features	3
Figure 3: Distribuição de classes	4
Figure 4: Distribuição de idades	4
Figure 5: Distribuição de sexo e idade com o target	5
Figure 6: Correlação entre sexo, idade e target	5
Figure 7: Features com menor correlação com o target	5
Figure 8: Features com maior correlação com o target	6
Figure 9: Features com muita correlação entre si	6
Figure 10: Features com pouca correlação entre si	7
Figure 11: Seleção de features com SHAP Values	10
Figure 12: Cross Validation no conjunto de treino	13
Figure 13: Comparação de resultados dos modelos selecionados	14
Figure 14: Curvas ROC e AUC	14
Figure 15: Accuracy por classe	15
Figure 16: Matriz de Confusão	15
Figure 17: Resultados para diferentes conjuntos de teste	16
Figure 18: Resultados do Hipocampo vs Lobo Occipital	16

1 Introdução

O presente relatório apresenta o desenvolvimento e análise de modelos de **Machine Learning** aplicados à previsão da progressão de Comprometimento Cognitivo Ligeiro (MCI) para a doença de Alzheimer (AD), utilizando dados do Alzheimer's Disease Neuroimaging Initiative (ADNI). Através de dados **radiômicos** obtidos de ressonâncias magnéticas, exploramos a relação entre mudanças estruturais no cérebro e a evolução clínica da doença.

Este projeto visa contribuir para o diagnóstico precoce da AD, possibilitando intervenções mais eficazes no combate à progressão da doença.

2 Áreas abordadas e Objetivos

2.1 Áreas abordadas

Este trabalho foca-se na aplicação de técnicas de **Machine Learning** para o diagnóstico precoce de doenças neurodegenerativas. Desta forma, o estudo explora a **relevância de regiões específicas** do cérebro (hipocampo e lobo occipital) através da análise de características **radiômicas** extraídas de ressonâncias magnéticas.

Adicionalmente são abordadas metodologias para a **exploração** e **processamento** destes dados médicos, assim como o **desenvolvimento**, **treino** e **otimização** dos modelos preditivos e a **comparação** dos resultados obtidos com diferentes abordagens.

2.2 Objetivos

Os principais objetivos deste projeto passam por:

- Analisar a relevância do hipocampo para a progressão de MCI para AD: ou seja, avaliar se as características desta região são mais informativas que as do lobo occipital, uma área menos associada a esta doença.
- **Desenvolver modelos ML eficazes**: criar, treinar e otimizar modelos de Machine Learning para prever a progressão da doença com base no conjunto de dados do hipocampo.
- **Criticar e validar os resultados obtidos**: garantir que os modelos desenvolvidos são uteis para o contexto e identificar as suas limitações.

2.3 Abordagem proposta

De modo a completar os objetivos estabelecidos, o grupo achou que seria adequado fazer uma boa **exploração e preparação** dos dados disponíveis, preparar e ajustar **modelos** adequados ao tipo de problema, sendo este **categórico** com a presença de **cinco classes** distintas, e ainda **validar** os resultados tendo em conta a métrica **F1-macro**, uma métrica capaz de avaliar o desempenho considerando todas as classes igualmente.

3 Metodologia

A metodologia adotada para este trabalho segue o padrão **CRISP-DM**, devido à sua abordagem iterativa e abrangente, permitindo estruturar o projeto desde a compreensão inicial do problema até a avaliação dos resultados.

Figure 1: Estratégia CRISP-DM

3.1 Entendimento do negócio

Como já mencionado neste documento, o problema em questão é a possível progressão de um estado de doença ligeiro, MCI, para um estado mais grave, AD. Tendo este entendimento em mãos, torna-se clara a necessidade clínica de prever o quanto antes se essa progressão irá acontecer. Para isso, o uso de modelos de machine learning torna-se crucial na medida em que permite intervenções precoces por parte médica.

3.2 Entendimento dos dados

Numa análise mais superficial aos dados fornecidos pelo **ADNI**, percebemos que se tratavam de dados radiômicos do hipocampo e do lobo occipital. Tratando-se de análises clínicas de 305 pacientes, com 5 diferentes transições associadas, havendo dentro destes 173 homens e 132 mulheres com uma distribuição de idades entre os 55 e os 91 anos.

3.3 Preparação dos dados

De modo a tornar os dados mais **limpos** e **claros** para os nossos modelos começamos por remover features que **não** apresentassem informação relevante, como por exemplo as versões das ferramentas utilizadas. **Transformámos** também colunas não numéricas em numéricas de modo a extrair alguma informação que pudesse ser relevante para o problema e **escalámos** os dados para o uso de modelos sensíveis à magnitude das features, como o SVM ou o XGBoost.

3.4 Modelagem

No que toca a modelos de ML, começamos por abranger diversos adequados a problemas categóricos e fomos restringindo conforme a sua performance e resultados obtidos. Seguem-se os modelos testados:

Modelo	Resultados	Performance/Speed	Тіро
Logistic Regression	Moderados	Rápido	Regressão Linear
RandomForest	Moderados	Rápido	Árvores de decisão
XGBoost	Bons	Rápido	Gradiente
GradientBoost	Bons	Médio	Gradiente
CatBoost	Bons	Muito Lento	Gradiente
LightGBM	Bons	Rápido	Gradiente
SVM	Moderados	Rápido	Métodos geométricos
Redes Neurais	Bons	Lento	Redes de neurônios

No entanto, o modelo final trata-se de um **Ensemble Stacking** de **Random Forest**, **SVM**, **Logistic Regression**, **XGBoost** e **LightGBM**, principalmente por se tratarem de modelos com diferentes abordagens e portanto capazes de capturar diferentes padrões. Será abordado em detalhe no decorrer do relatório.

Figure 2: Comparação de resultados com todas as features.

3.5 Validação

Devido ao problema de **desbalanceamento** das classes, a utilização de **cross-validation** com uma divisão **estratificada** dos dados foi fundamental. Esta abordagem assegura que cada conjunto de treino e teste tenha uma **distribuição balanceada** das classes, o que é crucial para a avaliação correta dos modelos em problemas multiclasse.

Para evitar **overfitting**, foi reservado um conjunto de dados **exclusivo** para testes finais, garantindo que os modelos não tivessem acesso a esse conjunto durante o treinamento e pudessem **generalizar** corretamente.

Para avaliar o desempenho dos modelos, utilizamos a métrica **F1-macro**, que é apropriada para problemas multiclasse **desbalanceados**, além de outras métricas como **ROC** e **AUC**. A **matriz de confusão** foi também empregada para examinar o desempenho dos modelos em cada classe individualmente.

4 Exploração de Dados

Embora admirada por poucos, exploração de dados é uma etapa crucial no treinamento de modelos de Machine Learning. Entender os dados com que estámos a lidar é fundamental para um conhecimento maior na hora de escolher e otimizar os modelos.

4.1 Exploração Inicial

Assim, começamos por analisar a distribuição da variável target e observamos um grande desbalanceamento, como demonstra a seguinte figura, o que nos indica que devemos estar atentos e ter este detalhe em consideração futuramente.

Figure 3: Distribuição de classes.

e analisamos também a distribuição de idades no nosso dataset.

Figure 4: Distribuição de idades.

Seguidamente, tentamos encontrar alguma relação entre o **sexo** e a **idade** com a variável target, no entanto, numa análise superficial, não nos pareceu existir alguma relação forte (figura 5). Caso que se veio a confirmar na **matriz de correlação** entre estas três variáveis (figura 6).

Figure 5: Distribuição de sexo e idade com o target.

Figure 6: Correlação entre sexo, idade e target.

4.2 Features não Numéricas

Foram identificadas 20 features não numéricas nos datasets disponibilizados. Entre elas, analisámos quais poderiam fornecer informações relevantes para o problema. Concluímos que apenas diagnostics_Mask-original_BoundingBox e diagnostics_Mask-original_CenterOfMass seriam adequadas para feature engineering, de modo a extrair dados úteis para os modelos.

As restantes features foram descartadas.

4.3 Correlação

4.3.1 Variáveis Independentes e Target

Seguimos para a avaliação da relação entre as features e a variável target e concluímos que de facto haviam variáveis com relação **extremamente baixa** com o target e que, dentro das variáveis **mais** relacionadas, ainda assim a relação era **menor** do que **esperávamos**.

Figure 7: Features com menor correlação com o target.

Figure 8: Features com maior correlação com o target.

Como observado na última linha de cada tabela (linha de correlação com o target), a figura 7 apresenta valores extremamente infímos e, numa primeira análise, irrelevantes. Já na figura seguinte, figura 8, é possível observar valores mais notáveis, acima de **0.1**.

4.3.2 Variáveis Independentes Entre Si

Dentro das variáveis independentes também consideramos útil analisar a sua correlação entre si, levando a concluir que de facto existe uma boa proporção de features que está **altamente** correlacionada, sendo um indicativo de que eventualmente seria boa ideia descartá-las.

Segue um exemplo de matriz de correlação que demonstra a existência de diversas features com uma correlação de 100%, apresentando valores como **1** ou **-1** (excluindo a diagonal).

Figure 9: Features com muita correlação entre si.

Em contrapartida, fomos capazes de observar também que existem features pouco relacionadas entre si e que podem trazer mais valias para o nosso modelo, como segue o exemplo:

Figure 10: Features com pouca correlação entre si.

Concluímos com esta exploração que existem diversas vertentes e detalhes a ter em atenção numa fase posterior, levando a possíveis melhores resultados nos nossos modelos.

Estes processos de exploração foram aplicados ao dataset do hipocampo e **replicados** no dataset de controlo relativo ao lobo occipital, resultando em **conclusões semelhantes**.

5 Processamento e Preparação de Dados

O processamento de dados desempenha um papel crucial na eliminação ou minimização de **ruído**, tornando o dataset mais **limpo** e adequado para os modelos de Machine Learning.

Nos datasets analisados, não foram identificados **missing values** ou **outliers** significativos que justificassem tratamento ou remoção. Contudo, a escolha **criteriosa de features** merece destaque. Com 2162 colunas e apenas 305 entradas, é essencial realizar uma **seleção** cuidadosa das features mais relevantes, garantindo a eficácia e eficiência dos modelos.

5.1 Processamento de features não numéricas

Como já mencionado, começamos por aplicar **feature engineering** às features *diagnostics_Mask-original_BoundingBox* e *diagnostics_Mask-original_CenterOfMass*, trasnformando estas listas de dados em features individuais, como segue o exemplo:

diagnostics_Mask-original_BoundingBox
(103, 113, 93, 36, 30, 71)
(32, 104, 3, 54, 10, 89)

transforma-se em:

x_min	y_min	largura	altura	profundidade	extra
103	113	93	36	30	71
32	104	3	54	10	89

5.2 Normalização e Padronização dos Dados

A utilização de **data scalers** é essencial em Machine Learning, especialmente quando os modelos dependem de métricas baseadas em distância, como regressões ou algoritmos baseados em gradiente. **Escalar** os dados garante que todas as features sejam tratadas na mesma escala, evitando que variáveis com valores majores dominem o treinamento.

5.3 Feature Selection

5.3.1 Abordagem Inicial

Durante a **exploração de dados**, identificamos que features com **baixa** correlação com o target e **alta** correlação entre si podem ser **candidatas** à remoção. Aplicando a abordagem **iterativa** da estratégia CRISP-DM, determinamos os seguintes thresholds: features com correlação com o target inferior a 0,005 foram descartadas, enquanto, para pares de features com correlação superior a 0,9 entre si, uma delas foi removida.

Obtivemos assim um novo dataframe composto por **655** features!

5.3.2 Abordagem mais profunda (SHAP Values)

Apesar de já termos reduzido significativamente o número de features, de 2162 para 655, identificamos que essa quantidade ainda poderia levar a **overfitting**, considerando que o dataset contém apenas 305 entradas. Esse **desequilíbrio** entre o número de features e as amostras dificulta a **generalização** dos modelos e aumenta a **complexidade** e o custo computacional.

Numa tentativa de melhorar os resultados, começamos por analisar as **feature importances**, mas os resultados não foram satisfatórios. Foi então que consideramos o uso de SHAP Values, que oferecem uma análise mais **detalhada** sobre a **contribuição** de cada feature para as previsões dos modelos. Essa abordagem mostrou-se promissora por capturar interações e impactos das features, fornecendo uma base mais **robusta** para a seleção.

Após aplicarmos novamente uma abordagem iterativa, identificamos o **XGBoost** como o modelo que gerava os SHAP Values mais informativos. Isso permitiu uma redução adicional de features, de **655** para **91**, **equilibrando** a capacidade de generalização dos modelos com a necessidade de **evitar overfitting** e mantendo um custo computacional mais **eficiente**.

5.4 SHAP Values

Como mencionado anteriormente, esta ferramente foi encontrada como a mais adequada para o problema da seleção de features. Apresentamos abaixo a estratégia detalhada que nos permitiu reduzir o número de features de 655 para 91.

5.4.1 Modelos Utilizados

Iniciamos o processo utilizando *Bayesian Optimization* para otimizar os *hiperparâmetros* de diversos modelos: XGBoost, Random Forest, Logistic Regression, LightGBM e SVM. Todos foram treinados com o conjunto inicial de **655** features.

Após otimizar os modelos, obtivemos os SHAP Values detalhados de cada um, avaliando o impacto de cada feature em suas previsões. Contudo, a análise indicou que o **XGBoost** se destacava como o modelo mais informativo para essa tarefa.

5.4.2 Exploração dos SHAP Values

Encontramos três abordagens possíveis para a análise de SHAP Values:

- SHAP Values **locais**: esta abordagem é muito exaustiva por se tratar de um dataset com imensas features e entradas, no entanto é recompensada pela sua precisão, pois traz informação detalhada de cada feature por entrada individualmente.
- SHAP Values **globais**: contrária à abordagem, esta é muito abrangente por se tratar da média de SHAP Values por feature. No entanto torna-se vantajosa por permitir a remoção rápida de todas as features que apresentem uma média de 0.
- SHAP Values por **classe**: sendo a abordagem mais equilibrada, procura analisar a média dos SHAP values por cada classe, trazendo consigo os aspetos positivos e negativos das anteriores.

Dentre as três abordagens, optamos por explorar os SHAP Values por Classe, pois esta estratégia ofereceu um bom desempenho entre granularidade e eficiência computacional.

Para cada classe, utilizamos critérios definidos iterativamente para identificar features candidatas à remoção. Segue um exemplo prático para a classe 0 (AD-AD):

	importance_mean	importance_max	$importance_std$	positive_ratio	negative_ratio	skewness
count	655.000000	655.000000	655.000000	655.000000	655.000000	146.000000
mean	0.008114	0.035725	0.006544	0.098692	0.122519	2.888779
std	0.030074	0.113440	0.020675	0.220326	0.259070	1.980686
min	0.000000	0.000000	0.000000	0.000000	0.000000	-0.312767
25%	0.000000	0.000000	0.000000	0.000000	0.000000	1.309063
50%	0.000000	0.000000	0.000000	0.000000	0.000000	2.514550
75%	0.000000	0.000000	0.000000	0.000000	0.000000	4.107987
max	0.307048	1.250126	0.211041	0.979508	0.979508	7.713615
<pre>discard_features_0 = shap_importances_xgb_0[</pre>						

Figure 11: Seleção de features com SHAP Values.

- Features com média de SHAP Values igual a 0.
- Desvio padrão dos SHAP Values inferior a 0.01.
- Assimetria dos valores (skewness) superior a 1.
- Discrepância entre valores positivos e negativos superior a 0.7.

Após identificar os candidatos para cada classe, adotamos uma estratégia de interseção. Todas as features que foram classificadas como não importantes em pelo menos 4 das 5 classes foram removidas. Esta abordagem garantiu que as features retidas fossem relevantes para a maioria dos cenários analisados, reduzindo ainda mais o risco de overfitting e mantendo a capacidade de generalização dos modelos.

6 Modelagem e Treino

Para alcançar os melhores resultados, selecionamos modelos robustos e implementamos métodos de otimização de hiperparâmetros.

6.1 Estratégia de Otimização

Optámos por usar o método *Grid Search* combinado com *cross-validation* estratificado e balanceado, o que garantiu uma avaliação robusta e mais justa do desempenho dos modelos.

6.2 Modelos Utilizados e Hiperarâmetros Otimizados

6.2.1 RandomForest

Modelo baseado num ensemble de árvores de decisão que usa amostras aleatórias e combina os resultados para melhorar a precisão e reduzir overfitting.

Procuramos com auxilio do grid search, melhorar os seguintes hiperparametros:

- nr_estimators: Número de árvores no ensemble.
- max_depth: Profundidade máxima das árvores.
- min_samples_split: Mínimo de amostras para dividir um nó.
- min_samples_leaf: Mínimo de amostras em uma folha.
- bootstrap: Impacta a diversidade das árvores.
- max_features: Número máximo de features consideradas em cada divisão.
- class_weigth: Ponderação das classes para lidar com desbalanceamento.

6.2.2 XGBoost

Modelo de boosting que adiciona árvores de maneira iterativa, corrigindo os erros das anteriores. Este ensemble é normalmente bom para capturar relações complexas.

Procuramos com auxilio do grid search, melhorar os seguintes hiperparametros:

- nr_estimators: Número de árvores no ensemble.
- max_depth: Profundidade máxima das árvores.
- learning_rate: Taxa de aprendizagem.
- **subsample**: Proporção de amostras usadas por árvore.
- colsample_bytree: Proporção de features usadas por árvore.
- min_child_weight: Número mínimo de amostras em um nó folha.
- **objective**: Define o tipo de problema. Para multiclasse, utilizamos 'multi:softprob' pois gera probabilidades.

6.2.3 LightGBM

Modelo de boosting baseado em histogramas, eficiente para grandes datasets.

Procuramos com auxilio do grid search, melhorar os seguintes hiperparametros:

- nr_estimator: Número de árvores.
- max_depth: Profundidade máxima das árvores.
- num_leaves: Número máximo de folhas por árvore.
- **subsample**: Proporção de amostras usadas por árvore.
- colsample_bytree: Proporção de features usadas.
- class_weigth: Ponderação das classes para lidar com desbalanceamento.
- objective: Define o tipo de problema.

6 2 4 SVM

Modelo que encontra hiperplanos para separar classes com margens máximas. Usa kernels para encontrar relações complexas.

Procuramos com auxilio do grid search, melhorar os seguintes hiperparametros:

- C: Penalidade por erros de classificação.
- kernel: Função usada para calcular similaridades.
- gamma: Determina a influência de cada amostra no kernel.
- **degree**: Para multiclasse, define o método de decisão (ovo para um-contra-um).
- class_weigth: 'balanced'

6.2.5 LogisticRegression

Modelo linear que usa a função sigmoide para prever probabilidades. Simples e eficiente em problemas lineares e portanto escolhido por nós para manter um equilibrio durante o ensemble stacking.

Procuramos com auxilio do grid search, melhorar os seguintes hiperparametros:

- C: Inverso da regularização.
- penalty: Tipo de regularização.
- max_iter: Máximo de iterações para convergência.
- class_weigth: 'balanced'

6.2.6 Redes Neurais

Redes neurais são inspiradas no funcionamento do cérebro humano e são capazes de aprender padrões complexos. No entanto **não** foi escolhida para modelo final por não nos inspirar confiança nos resultados e na sua **generalização**. Para além disso, por se tratar de um modelo **complexo**, o facto de apenas termos 305 entradas pode levar a que o modelo encontre demasiado bem os padrões e ocorra um overfitting maior do que em modelos mais simples.

Ainda assim, consideramos melhorar os seguintes hiperparâmetros:

- Numero de camadas e neurónios: controla a capacidade de aprendizagem.
- Taxa de aprendizagem: define a velocidade de atualização dos pesos.
- Funções de ativação: definem como as redes aprendem relações não lineraes.

6.2.7 Ensemble Stacking

Pensamos na utilização de RandomForest, XGBoost, LightGBM, SVM e LogisticRegression juntos num stacking ensemble, por possuirem caracteristicas **complementares**, aumentando a probabilidade de ter um bom **desempenho geral**.

Vantagens deste stacking:

- **Diversidade**: por apresentarem uma boa diversidade de algoritmos, são capazes de combinar os pontes fortes de cada um, encontrando diferentes padrões e melhorando a robustez.
- **Redução de overfitting**: modelos como XGBoost e LightGBM sao mais propensos a ajustar-se bem aos dados, no entanto o RandomForest e o LogisticRegression são mais robustos contra overfitting, levando a um equilibrio possível.
- **Meta modelo**: o nosso stacking utiliza LogisticRegression como modelo meta, aprendendo a combinar os outputs dos modelos base, o que reduz o risco de decisões mais viradas para um único modelo, o que melhora a **generalização**.

6.3 Método de treino

Relativamente ao treino, reservamos **80**% dos dados dividindo de forma estratificada devido ao desbalanceamento encontrado. Dentro desses 80%, aplicamos o *grid search* combinado com *cross validation* estratificado em 5 *folds* para otimizar os hiperparâmetros do modelo.

Importante referir que foi implementada uma abordagem personalizada de *cross-validation* com o objetivo de estimar métricas como a **variância** das previsões e um **bias** aproximado. Nesta abordagem, o conjunto de treino foi dividido em cinco *folds*, permitindo treinar e testar os modelos iterativamente em cada fold. Com isto, todas as previsões de cada *fold* foram recolhidas, proporcionando maior **flexibilidade** no cálculo das métricas.

Finalmente, os outros **20**% reservados exclusivamente para testes finais de modo a verificar a consistência de resultados e capacidade de generalização do modelo.

Através da seguinte figura é possível observar claramente a forma como dividimos o dataset principal e como foi aplicado o *cross validation* apenas no conjunto de treino.

Figure 12: Cross Validation no conjunto de treino.

7 Análise dos resultados obtidos

A análise de resultados revelou-se um desafio maior do que o esperado, devido à inconsistência observada. Pequenas alterações na forma de treinar o modelo refletiram-se significativamente nos resultados.

Desta forma, procuramos encontrar o método mais justo de o fazer, analisando múltiplas métricas e iterando exaustivamente sobre os modelos.

7.1 Comparação de Resultados

Ao obter os resultados com validação cruzada, conseguimos perceber facilmente as vantagens de um bom **processamento** de dados e **otimização** de hiperparâmetros. Como mostra a figura seguinte, a azul observam-se os modelos iniciais, treinados com todas as features e sem otimização, enquanto à direita, a verde, estão os modelos finais, já otimizados, com uma melhoria geral de 5%.

Figure 13: Comparação de resultados dos modelos selecionados

7.2 Avaliação de Métricas Adicionais

7.2.1 ROC e AUC

Para além dos resultados F1-macro obtidos com validação cruzada, analisámos também as curvas ROC e métricas AUC, como mostra a figura:

Figure 14: Curvas ROC e AUC

Estes dados foram obtidos com o modelo final escolhido: um **stacking ensemble** de cinco modelos diferentes — Random Forest, XGBoost, Logistic Regression, SVM e LightGBM.

Como é possível observar, o modelo poderia obter resultados mais otimistas para a Classe 2 (aquela com menos amostras). No entanto, isso implicaria um sacrifício nas outras classes, o que não considerámos vantajoso. Devido à existência de cinco classes, foi um desafio identificar a melhor abordagem para interpretar estes dados, pelo que nos concentrámos na melhoria geral da AUC.

7.2.2 Acertos por classe

Ainda dentro dos 20% dos dados para teste, procurámos obter a percentagem de acertos por classe, permitindo identificar quais necessitam de mais ou menos atenção. Os resultados estão ilustrados na seguinte figura:

Figure 15: Accuracy por classe

7.2.3 Matriz de Confusão

A matriz de confusão fornece uma visão detalhada sobre as previsões, mostrando onde cada classe é bem ou mal prevista. Esta análise complementa o gráfico anterior.

Figure 16: Matriz de Confusão

A partir destas métricas, identificámos que o modelo apresentava dificuldades em classes específicas, como a Classe 2 (CN-MCI), que possui menos amostras e, portanto, era mais difícil de prever, o que pode comprometer a aplicabilidade prática.

7.3 Testes finais

Como mencionado, **pequenas** variações no treino do modelo resultam em **grandes** diferenças nos resultados. Por isso, realizámos o máximo de testes possíveis, aplicando **diferentes** seeds na divisão do dataset e treinando os modelos com novos dados de treino, garantindo sempre que os dados de teste eram desconhecidos.

Para o modelo final, realizámos 10 testes com diferentes divisões, como mostra e exemplo:

7
F1 Macro Score: 0.4213
Bias: 0.786
Variance: 0.027
Ruído: 0.434
8
F1 Macro Score: 0.3709
Bias: 0.777
Variance: 0.03
Ruído: 0.439
9
F1 Macro Score: 0.408
Bias: 0.792
Variance: 0.03
Ruído: 0.51

Figure 17: Resultados para diferentes conjuntos de teste

Obtendo como média F1-macro dos 10 conjuntos um valor de **41%**, atingindo o objetivo proposto por nós de um F1-macro acima de 40%!

7.4 Hippocampo vs Lobo Occipital

Concluímos que, neste caso, a região do hipocampo está muito mais associada ao avanço da doença do que a região do lobo occipital. Isso reflete-se claramente nos resultados dos modelos, como mostra o exemplo:

Figure 18: Resultados do Hipocampo vs Lobo Occipital

É notória a diferença de desempenho entre os modelos treinados com dados do hipocampo (verde) e do lobo occipital (vermelho), confirmando a maior relevância do hipocampo para este estudo.

8 Conclusão

Neste trabalho exploramos o uso de **Machine Learning** para prever a progressão de MCI para AD, com foco na importância das características radiômicas do hipocampo e do lobo occipital. Através de uma abordagem iterativa, desde a preparação de dados até à modelagem, conseguimos identificar que o **hipocampo** é significativamente **mais informativo** para este problema.

A utilização de técnicas como a **seleção de features** com SHAP Values e o **ensemble stacking** permitiram-nos atingir um desempenho bastante satisfatório, com um F1-macro **acima** de 40%. Apesar disso, algumas classes, como a Classe 2 (CN-MCI), apresentaram desafios devido ao **desbalancea-mento** de dados, revelando a necessidade de mais amostras para melhorar a **generalização**.

Num trabalho futuro, seria esperado que melhorássemos o modelo para prever determinadas classes de acordo com a sua **urgência clínica**, **deixando de lado** a sua **performance** geral e **focando-se** no **perigo** representado para o paciente.

Em suma, este estudo contribuiu para a compreensão das relações entre alterações cerebrais e a progressão do Alzheimer, além de destacar o **potencial** de métodos avançados de **aprendizagem automática** no diagnóstico **precoce**.