A PROJECT REPORT ON

Astronomical Image colorization and super-resolution using GANs

SUBMITTED TOWARDS THE PARTIAL FULFILMENT OF THE REQUIREMENTS OF

BACHELOR OF ENGINEERING (Computer Engineering)

BY

Shreyas Kalvankar Exam No:
Hrushikesh Pandit Exam No:
Pranav Parwate Exam No:
Atharva Patil Exam No:

Under The Guidance of

Prof. Dr. S.M. Kamalapur

Department of Computer Engineering
K. K. Wagh Institute of Engineering Education & Research
Hirabai Haridas Vidyanagari, Amrutdham, Panchavati,
Nashik-422003
Savitribai Phule Pune University
A. Y. 2020-21 Sem I

K. K. Wagh Institute of Engineering Education and Research Department of Computer Engineering

CERTIFICATE

This is to certify that the Project Titled

Astronomical Image colorization and super-resolution using GANs

Submitted by

Shreyas Kalvankar Exam No:
Hrushikesh Pandit Exam No:
Pranav Parwate Exam No:
Atharva Patil Exam No:

is a bonafide work carried out by Students under the supervision of Prof. Dr. S.M. Kamalapur and it is submitted towards the partial fulfilment of the requirement of Bachelor of Engineering (Computer Engineering) Project during academic year 2020-21.

Prof. Dr. S.M. Kamalapur
Internal Guide
Department of Computer Engineering

Prof. Dr. S. S. Sane
Head
Department of Computer Engineering

Abstract

Automated colorization of black and white images has been subject to much research within the computer vision and machine learning communities. Beyond simply being fascinating from an aesthetic and artificial intelligence perspective, such capability has broad practical applications. It is an area of research that possesses great potentials in applications: from black and white photo reconstruction, image augmentation, video restoration to image enhancement for improved interpretability.

Image downscaling is an innately lossy process. The principal objective of super resolution imaging is to reconstruct a low resolution image into a high resolution one based on a set of low-resolution images to rectify the limitations that existed while the procurement of the original low-resolution images. This is to insure better visualization and recognition for either scientific or non-scientific purposes. No matter how good an upscaling algorithm is, there will always be some amount of high frequency data lost from a downscale-upscale function performed on the image. Ultimately, even the best upscaling algorithms cannot effectively reconstruct data that does not exist. Traditional methods for image upsampling rely on low-information, smooth interpolation between known pixels. Such methods can be treated as a convolution with a kernel encoding no information about the original image. A solution to the problem is by using Generative Adversarial Networks (GANs) to hallucinate high-frequency data in a super-resolved image that does not exist in the smaller image. Although they increase the resolution of an image, they fail to produce the clarity desired in the super-resolution task. By using the above mentioned method, not a perfect reconstruction can be obtained albeit instead a rather plausible guess can be made at what the lost data might be, constrained to reality by a loss function penalizing deviations from the ground truth image. A huge number of raw images lie unprocessed and unseen in the Hubble Legacy Archives. These raw images are typically low-resolution, black and white and unfit to be shared with the world. It takes huge amounts of hours to process them. This processing is necessary because astronomers often struggle to distinguish objects from the raw images. Random and synthetic noise from the sensors in the telescope, changing optical characteristics in ther necessary. Furthermore, colorization is needed to help highlight small features that ordinarily wouldn't be able to be picked out against noise of the image. The processing of the images is so time consuming that the images are rarely seen by human eyes. The problem is only likely to get worse. Not only is new data being continuously produced by Hubble Telescope, but new telescopes are soon to come online. A simplification of image processing by using artificial image colorization and superresolution can be done in an automated fashion to make it easier for astronomers to visually identify and analyze objects in Hubble dataset.

Acknowledgments

please enter text here.

Shreyas Kalvankar Hrushikesh Pandit Pranav Parwate Atharva Patil (B.E. Computer Engg.)

INDEX

1	Intr	oduction	1
	1.1	Project Idea	2
	1.2	Motivation of the Project	2
	1.3	Literature Survey	2
2	Prol	blem Definition and scope	3
	2.1	Problem Statement	4
		2.1.1 Goals and objectives	4
		2.1.2 Statement of scope	5
	2.2	Major Constraints	5
	2.3	Methodologies of Problem solving and efficiency issues	6
	2.4	Scenario in which multi-core, Embedded and Distributed Computing	
		used	6
	2.5	Outcome	6
	2.6	Applications	6
	2.7	Hardware Resources Required	6
	2.8	Software Resources Required	6
3	Proj	ect Plan	8
	3.1	Project Estimates	9
		3.1.1 Reconciled Estimates	9
		3.1.2 Project Resources	10
	3.2	Risk Management	10
		3.2.1 Risk Identification	10

		3.2.2	Risk Analysis	10
		3.2.3	Overview of Risk Mitigation, Monitoring, Management	11
	3.3	Projec	t Schedule	11
		3.3.1	Project task set	11
		3.3.2	Task network	13
		3.3.3	Timeline Chart	13
	3.4	Team (Organization	13
		3.4.1	Team structure	13
		3.4.2	Management reporting and communication	13
4	Soft	ware re	equirement specification	14
	4.1	Introdu	uction	15
		4.1.1	Purpose and Scope of Document	15
		4.1.2	Overview of responsibilities of Developer	15
	4.2	Usage	Scenario	15
		4.2.1	User profiles	15
		4.2.2	Use-cases	15
		4.2.3	Use Case View	15
	4.3	Data M	Model and Description	16
		4.3.1	Data Description	16
		4.3.2	Data objects and Relationships	16
	4.4	Functi	onal Model and Description	16
		4.4.1	Data Flow Diagram	17
		4.4.2	Description of functions	17
		4.4.3	Activity Diagram:	18
		4.4.4	Non Functional Requirements:	18
		4.4.5	State Diagram:	18
		4.4.6	Design Constraints	18
		4.4.7	Software Interface Description	18
5	Deta	iled De	esign Document	20
	5.1	Introdu	uction	21

	5.2	Archite	ectural Design	21	
	5.3	Data d	esign	21	
		5.3.1	Internal software data structure	21	
		5.3.2	Global data structure	22	
		5.3.3	Temporary data structure	22	
		5.3.4	Database description	22	
6	Data	aset and	l Experimental setup	23	
7	Sum	mary a	nd Conclusion	24	
Ar	nexu	re A M	Mathematical Model	28	
Ar	nexu	re B P	Plagiarism Report	29	
Ar	Annexure C Paper Published (if any) 30				
Ar	nexu	re D S	nonsorship detail (if any)	31	

List of Figures

4.1	Use case diagram	16
4.2	Activity diagram	17
4.3	State transition diagram	19
5.1	Architecture diagram	21

List of Tables

2.1	Hardware Requirements	6
3.1	Risk Table	11
3.2	Risk Probability definitions [1]	11
3.3	Risk Impact definitions [1]	11
4 1	Use Cases	15

CHAPTER 1 INTRODUCTION

1.1 PROJECT IDEA

• The idea of the project is to create a efficient mathematical model for image colorization and super resolution using Generative Adversarial Networks (GANs)

1.2 MOTIVATION OF THE PROJECT

A large number of images lie dormant in most of the space survey data archives
which never go through any kind of processing and are low resolution and
black & white. These images could be processed automatically by an algorithm that will colorize and super-resolve the images which can make it easier
for astronomers to visually inspect the images

1.3 LITERATURE SURVEY

• Review of the papers, Description, Mathematical Terms

CHAPTER 2 PROBLEM DEFINITION AND SCOPE

2.1 PROBLEM STATEMENT

The problem can be divided into two sub-problems:

- Create an efficient model to colorize grayscale images
- Take a colorized image and upscale it *n* times the original size

2.1.1 Goals and objectives

Goal and Objectives:

- Auto-Colorization:
 - The first model will be given input a grayscale, low resolution image of dimensions $(64 \times 64 \times 1)$
 - The model will perform a series of mathematical operations that will increase the channel width of the image from 1 (single channel grayscale image) to 3 (RGB)
 - The output of the model will be a colorized version of the input image with dimensions $(64 \times 64 \times 3)$
- Upscaling/super-resolution:
 - The input to the model will be a colorized image of shape $(64 \times 64 \times 3)$
 - The model will increase the dimensions of the image from (64×64) to $((64 \cdot n) \times (64 \cdot n))$ by performing a series of upscaling operations and predicting information that may be lost while downscaling
 - The output of the model will be an upscaled RGB image with dimensions $((64 \cdot n) \times (64 \cdot n) \times 3)$
- The models may be combined to form a single model that will take a low resolution, grayscale image as its input and produce a high resolution, colorized image as its output

2.1.2 Statement of scope

- The model will consist of neural networks implemented using deep learning frameworks that will accept images of input format *JPEG*
- The input will be grayscale images of size 64×64
- Input bounds:
 - Lower bound: $64 \times 64 \times 1$
 - Upper bound: no limit
- The output will be produced in two phases:
 - A colorized output of model 1 with shape $64 \times 64 \times 3$
 - A upscaled output of model 2 from the colorized output of model 1 with shape $(64 \cdot n) \times (64 \cdot n) \times 3$
- The model will:
 - take input black & white images
 - produce colorized images of the same size
 - produce upscaled images of size *n* times the input size (currently 64)
- The model will **not**:
 - take a colorized image as an input
 - take an image of size less than (64×64) in size
 - produce accurate upscaling or coloring albeit merely make a guess at what the lost values might be

2.2 MAJOR CONSTRAINTS

• Any constraints that will impact the manner in which the software is to be specified, designed, implemented or tested are noted here.

2.3 METHODOLOGIES OF PROBLEM SOLVING AND EFFICIENCY IS-SUES

The single problem can be solved by different solutions. This considers the
performance parameters for each approach. Thus considers the efficiency issues.

2.4 SCENARIO IN WHICH MULTI-CORE, EMBEDDED AND DISTRIBUTED COMPUTING USED

Explain the scenario in which multi-core, embedded and distributed computing methodology can be applied.

2.5 OUTCOME

• Outcome of the project

2.6 APPLICATIONS

• Applications of Project

2.7 HARDWARE RESOURCES REQUIRED

Sr. No.	Parameter	Minimum Requirement	Justification
1	CPU Speed	2 GHz	Remark Required
2	RAM	3 GB	Remark Required

Table 2.1: Hardware Requirements

2.8 SOFTWARE RESOURCES REQUIRED

Platform:

- 1. Operating System:
- 2. IDE:

3. Programming Language

CHAPTER 3 PROJECT PLAN

3.1 PROJECT ESTIMATES

3.1.1 Reconciled Estimates

3.1.1.1 Cost Estimate

The model followed is the Constructive Cost Model (COCOMO) for estimating the efforts required in the completion of the porject. Like all estimation models, the COCOMO model requires sizing information. This information can be specified in the form of:

- Object Point
- Function Point(FP)
- Lines of Source Code(KLOC)

For our project, sizing information in the form of Lines of Source Code is used. The total lines of code,

KLOC = 750

Equations: The initial effort(Ei) in man-months is calculated using equations:

$$E = ax(KLOC)^b$$

where, a = 3.0, b = 1.12, for a semi-detached project E = Efforts in person-hours E = 4.5 PM

$$D = ax(E)^b$$

Where, a = 2.5,

b = 0.35, for a semi-detached project

D = Duration of Project in months

D = 4 Months

3.1.1.2 Time Estimates

$$C = D * Cp * hrs$$

Where, C = Cost of project

D = Duration in Hours

Cp = Cost incurred per person-hour

hrs = hours

Total of 4.5 person-months are required to complete the project successfully.

Duration of Project D = 6 Months

The approximate duration of the project is 4 months

3.1.2 Project Resources

- Google Collab
- IEEE Access Provided by Institute

3.2 RISK MANAGEMENT

This section discusses Project risks and the approach to managing them.

3.2.1 Risk Identification

- 1. Dataset needs to be processed in order to get clean data
- 2. Vanishing Gradients
- 3. Mode Collapse
- 4. Failure to Converge

3.2.2 Risk Analysis

The risks for the Project can be analyzed within the constraints of time and quality

ID	Risk Description	Probability	Impact		
		Tiodadility	Schedule	Quality	Overall
1	Description 1	Low	Low	High	High
2	Description 2	Low	Low	High	High

Table 3.1: Risk Table

Probability	Value	Description
High	Probability of occurrence is	> 75%
Medium	Probability of occurrence is	26 – 75%
Low	Probability of occurrence is	< 25%

Table 3.2: Risk Probability definitions [1]

Impact	Value	Description
Very high > 10% Schedule impact or Unacceptable		Schedule impact or Unacceptable quality
High	5 – 10%	Schedule impact or Some parts of the project have low quality
Medium	< 5%	Schedule impact or Barely noticeable degradation in quality Low Impact on schedule or Quality can be incorporated

Table 3.3: Risk Impact definitions [1]

3.2.3 Overview of Risk Mitigation, Monitoring, Management

Following are the details for each risk.

3.3 PROJECT SCHEDULE

3.3.1 Project task set

Major Tasks in the Project stages are:

- Task 1:
- Task 2:
- Task 3:

Risk ID	1
Risk Description	Description 1
Category	Development Environment.
Source	Software requirement Specification document.
Probability	Low
Impact	High
Response	Mitigate
Strategy	Strategy
Risk Status	Occurred

Risk ID	2
Risk Description	Description 2
Category	Requirements
Source	Software Design Specification documentation review.
Probability	Low
Impact	High
Response	Mitigate
Strategy	Better testing will resolve this issue.
Risk Status	Identified

Risk ID	3
Risk Description	Description 3
Category	Technology
Source	This was identified during early development and testing.
Probability	Low
Impact	Very High
Response	Accept
Strategy	Example Running Service Registry behind proxy balancer
Risk Status	Identified

- Task 4:
- Task 5:

3.3.2 Task network

Project tasks and their dependencies are noted in this diagrammatic form.

3.3.3 Timeline Chart

A project timeline chart is presented. This may include a time line for the entire project. Above points should be covered in Project Planner as Annex C and you can mention here Please refer Annex C for the planner

3.4 TEAM ORGANIZATION

The manner in which staff is organized and the mechanisms for reporting are noted.

3.4.1 Team structure

The team structure for the project is identified. Roles are defined.

3.4.2 Management reporting and communication

Mechanisms for progress reporting and inter/intra team communication are identified as per assessment sheet and lab time table.

CHAPTER 4 SOFTWARE REQUIREMENT SPECIFICATION

4.1 INTRODUCTION

4.1.1 Purpose and Scope of Document

The purpose of SRS and what it covers is to be stated

4.1.2 Overview of responsibilities of Developer

What all activities carried out by developer?

4.2 USAGE SCENARIO

This section provides various usage scenarios for the system to be developed.

4.2.1 User profiles

The profiles of all user categories are described here.(Actors and their Description)

4.2.2 Use-cases

All use-cases for the software are presented. Description of all main Use cases using use case template is to be provided.

Sr No.	Use Case	Description	Actors	Assumptions
1	Use Case 1	Description	Actors	Assumption

Table 4.1: Use Cases

4.2.3 Use Case View

Use Case Diagram. Example is given below

Figure 4.1: Use case diagram

4.3 DATA MODEL AND DESCRIPTION

4.3.1 Data Description

Data objects that will be managed/manipulated by the software are described in this section. The database entities or files or data structures required to be described. For data objects details can be given as below

4.3.2 Data objects and Relationships

Data objects and their major attributes and relationships among data objects are described using an ERD- like form.

4.4 FUNCTIONAL MODEL AND DESCRIPTION

A description of each major software function, along with data flow (structured analysis) or class hierarchy (Analysis Class diagram with class description for object oriented system) is presented.

4.4.1 Data Flow Diagram

- 4.4.1.1 Level 0 Data Flow Diagram
- 4.4.1.2 Level 1 Data Flow Diagram

4.4.2 Description of functions

A description of each software function is presented. A processing narrative for function n is presented.(Steps)/ Activity Diagrams. For Example Refer 4.2

Figure 4.2: Activity diagram

4.4.3 Activity Diagram:

• The Activity diagram represents the steps taken.

4.4.4 Non Functional Requirements:

- Interface Requirements
- Performance Requirements
- Software quality attributes such as availability [related to Reliability], modifiability [includes portability, reusability, scalability], performance, security, testability and usability[includes self adaptability and user adaptability]

4.4.5 State Diagram:

State Transition Diagram

Fig.4.3 example shows the state transition diagram of Cloud SDK. The states are represented in ovals and state of system gets changed when certain events occur. The transitions from one state to the other are represented by arrows. The Figure shows important states and events that occur while creating new project.

4.4.6 Design Constraints

Any design constraints that will impact the subsystem are noted.

4.4.7 Software Interface Description

The software interface(s) to the outside world is(are) described. The requirements for interfaces to other devices/systems/networks/human are stated.

Figure 4.3: State transition diagram

CHAPTER 5 DETAILED DESIGN DOCUMENT

5.1 INTRODUCTION

This document specifies the design that is used to solve the problem of Product.

5.2 ARCHITECTURAL DESIGN

A description of the program architecture is presented. Subsystem design or Block diagram, Package Diagram, Deployment diagram with description is to be presented.

Figure 5.1: Architecture diagram

5.3 DATA DESIGN

A description of all data structures including internal, global, and temporary data structures, database design (tables), file formats.

5.3.1 Internal software data structure

Data structures that are passed among components the software are described.

5.3.2 Global data structure

Data structured that are available to major portions of the architecture are described.

5.3.3 Temporary data structure

Files created for interim use are described.

5.3.4 Database description

Database(s) / Files created/used as part of the application is(are) described.

CHAPTER 6 DATASET AND EXPERIMENTAL SETUP

CHAPTER 7 SUMMARY AND CONCLUSION

Write one page summary and conclusion

REFERENCES

[1] R. S. Pressman, Software Engineering (3rd Ed.): A Practitioner's Approach. New York, NY, USA: McGraw-Hill, Inc., 1992.

ANNEXURE A MATHEMATICAL MODEL

ANNEXURE B PLAGIARISM REPORT

ANNEXURE C PAPER PUBLISHED (IF ANY)

ANNEXURE D SPONSORSHIP DETAIL (IF ANY)