AD-A118 166 NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10 GEOTECHNICAL GEOACOUSTICAL, AND SEDIMENTOLOGICAL PROPERTIES OF--ETC(U) UNCLASSIFIED NORDA-TN-152 NI END 9-82 DTIC

AD A118166

Moved Acoust Mossouch and Development Activity NSTI, Station, Minimippi 39529

FILE COPY

Sportion: 194/AIR-548, F.E. 69260N

Yeek Managen Nevel Coastel Systems Center - 72

> orqë for: NORDA Code 118 Environmentel Reculrements and Protrem Analysis Group

> > in public selects
> > for public selects
> > for public selects

June 1986

ABSTRACT

Thirteen sea bottom cores were collected by scuba divers in the shallow water approaches to Norfolk, Virginia, and were analyzed for geotechnical, geoacoustical and sedimentalogical properties. These cores were collected in support of the Naval Ocean Research and Development Activity's Mine Attitude and Verification Task, sponsored by NAVAIR-548 and tasked by the Naval Coastal Systems Center (NCSC Code 722). Similar field efforts have been conducted in the San Diego, California, and Galveston, Texas, areas, and the analyses on the resulting bottom cores are underway. The results of these core analyses will be used with historical data in the Naval Oceanographic Office's world-wide data bank to investigate the possible existence of reliable geotechnical property relationships for the East, West, and Gulf Coasts of the United States.

The Norfolk core analyses presented herein are for the use of interested readers who may have need for geotechnical, geo-acoustical, or sedimentological data within this complex, strategically important area.

GEOTECHNICAL, GEOACOUSTICAL, AND SEDIMENTOLOGICAL PROPERTIES OF THIRTEEN BOTTOM SEDIMENT CORES COLLECTED IN THE SHALLOW WATER APPROACHES TO NORFOLK, VIRGINIA

INTRODUCTION

This suite of cores was collected in the shallow water approaches to Norfolk, Virginia (Fig. 1), by scientific divers from the U.S. Naval Oceanographic Office (NAVOCEANO) and the Naval Coastal Systems Center (NCSC), supported by U.S. Navy and U.S. Coast Guard divers.

In order to conduct the analyses on cores with minimum disturbance due to shipping, all samples were analyzed in the field at a temporary laboratory. Analyses were conducted for the determination of sea floor acoustic properties (compressional sound speed), sediment shear strength (rotational vane shear), wet bulk density (volumetric) in those intervals for which shear strength was measured, and moisture (percent water content) during intervals between shear strength measurements. The latter values were subsequently used to back-calculate wet bulk density after laboratory determination of grain specific gravity.

Size analyses (percent composition by weight comprising one-Phi class intervals) were performed on the samples after the field operation, using sieve methods for the 62-micron and larger grains, and particle settling methods based on hydraulic equivalent size, assuming a specific gravity of 2.67 for silt and clay-sized material.

Sound velocity has been computed for each core, applying in situ correction factors for the minimum, mid, and maximum values of temperature and salinity measured in the bottom water in the survey area at various times during the field operation.

Several numbering systems have been used in the collection and analysis of the resulting cores. The table below provides a cross reference for use with the location chart presented in Figure 1.

Table 1. Bottom Core Identification Number Cross Reference

ASSIGNED FIELD NO.	ASSIGNED LAB NO.	SURVEY SITE LOCATION
M6	1	A1
D4	2	A2
D3	3	A2
D1	4	A2
D2	5	A3
D6	6	A3
D5	7	A3
B1	8	B1
B2	9	B1
C1-2	10	C1
C1-3	11	C1
H1	12	A2
S1	13	S

Table 2. Symbols used in Core Visual Description Sheets

Gravel	GCCCCGCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Sand	
Silt	
Clay	

Figure 1. Bottom core locations

EXPLANATION OF DATA PAGES BOTTOM SEDIMENT ANALYSIS SUMMARY

ENGINEERING AND MASS PHYSICAL PROPERTIES

Results of engineering properties core analysis performed by the U.S. Naval Oceanographic Office Geological Laboratory are recorded on BOTTOM SEDIMENT ANALYSIS SUMMARY - ENGINEERING AND MASS PHYSICAL PROPERTIES.

The following is a description of the terms employed on the ENGINEERING AND MASS PHYSICAL PROPERTIES SHEET.

- 1. CRUISE NUMBER: A number assigned to each cruise for identification purposes.
 - 2. LATITUDE: Expressed in degrees, minutes, and seconds.

- 3. LONGITUDE: Expressed in degrees, minutes, and seconds.
- 4. CORE NUMBER: A consecutive number, commencing with 1, applied to each core taken successively throughout the cruise.
 - 5. DATE TAKEN: Day (GMT), month, and year.
 - 6. WATER DEPTH (M): The uncorrected sonic sounding recorded in meters.
 - 7. CORER TYPE: Diver-operated corer (DOC).
 - 8. CORE LENGTH (CM): Recorded in centimeters as observed in the laboratory.
- 9. SAMPLE/DEPTH INTERVALS (CM): Interval of subsample, as measured in centimeters, from the top of the core.
- 10. WET UNIT WEIGHT (GM/CU.CM.): The weight (solids plus water) per unit volume of the segiment mass.
- 11. SPECIFIC GRAVITY OF SOLIDS: The ratio of weight, in air, of a given volume of sediment, at 20 degrees centigrade, to the weight in air of an equal volume of distilled water at 20 degrees centigrade.
- 12. WATER CONTENT (% DRY WEIGHT): The ratio, in percent, of the weight of water, in a given mass of the sediment, to the weight of the solid particles in the sediment sample.
- 13. VOID RATIO: The ratio of the volume of void spaces to the volume of solid particles in the sediment sample as computed from Wet Unit Weight, Specific Gravity of Solids, and Water Content.
- 14. SATURATED VOID RATIO: The Void Ratio, at 100 percent saturation, as computed from Water Content and Specific Gravity of Solids.
- 15. POROSITY(%): The ratio, usually expressed as a percentage, of the Volume of Voids, of a sediment mass, to the total volume of the sediment mass.

- 16. COHESION: Shear Strength, in a sediment, not related to interparticle friction. The sediment is sheared in a saturated, undrained state. Therefore: The Angle of Internal Friction is essentially equal to zero, and the Shear Strength is equal to the Cohesion of the sediment.
- 17. SENSITIVITY: The ratio of the natural to the remolded strength. It is a measure of the loss of strength due to remolding the sediment mass.
- 18. ULTIMATE BEARING CAPACITY: The ultimate stress, applied by an object of a certain shape, that a soil can support, i.e., the stress that causes a sudden settlement of the object.

EXPLANATION OF SEDIMENT SIZE AND COMPOSITION DATA

FIELD IDENTIFICATION AND ENVIRONMENTAL CONDITIONS TERMINOLOGY

SAMPLE NUMBER: A consecutive number applied to each core taken throughout the

cruise.

CRUISE: A unique identification number assigned to the cruise.

TAKEN: The day, month, and year, which indicates when the core was

taken.

DEPTH: The uncorrected sonic sounding expressed in meters.

LATITUDE: The north, or south, angular distance from the earth's equator,

expressed in degrees, minutes, and seconds.

LOMOTTUDE: The east, or west, angular distance from the prime meridian,

expressed in degrees, minutes, and seconds, at which the core

was taken.

LENGTH: Laboratory observed length of the core recorded in Centimeters.

PENETRATION: Field observed penetration of the coring device expressed in

Centimeters.

SEDIMENT SIZE STATISTICS AND COMPOSITION DATA

DIAM (PHI): A logarithmic transformation of the Wentworth grade scale in which the negative logarithm, to the base 2, of the particle diameter (in millimeters) is substituted for the diameter value.

DIAM (MM): Particle diameter, in millimeters, of size intervals based on the Wentworth grade scale.

PERCENT: Percent of total sample weight within the given size interval.

DATA ANALYZED: Month, and year, when all required analyses, for a given core, were completed

GRAVEL, SAND, SILT, and CLAY. Percent of the total sample weight within the four size classes. Class ranges are:

• Gravel-Particles coarser than 2 mm

• Sand-Particles within the range 2 mm to 0.0625 mm

• Silt-Particles within the range of 0.0625 to 0.0039 mm

Clay-Particles finer than 0.0039 mm

MEAN (MM): The geometric mean of the distribution expressed in millimeters.

MEAN (PHI): The logarithmic mean of the distribution expressed in phi units.

COLOR: A mass property of a sediment represented by the overall hue caused by a combination of the color of the particles, surface coating matrix, and cement, and controlled, in part, by the degree of fineness of the particles. The numerical designation of the color represents the best match of the sediment with the color chips found in the GSA Rock Color Chart.

STANDARD DEVIATION: A measure of the degree of spread, or dispersion, of the particle size distribution, about the mean. It is expressed in phi units, and is calculated from the relation:

$$s = \frac{\sum f \left(x_i - \bar{x} \right)^2}{100}$$

SKEWNESS: A measure of the asymmetry, of the distribution, which is calculated from the relation:

Skewness =
$$\Sigma f (X_i - \bar{X})^3$$

 $2 * 100s^3$

Positive values denote a skewness of the distribution toward the finer particles. Negative values denote a skewness of the distribution toward the coarser particles. A normal distribution has a skewness of zero (0).

KURTOSIS: A measure of the peakness of the distribution as calculated from the relation:

Kurtosis =
$$\begin{bmatrix} \Sigma f (X_i - \bar{X})^4 \\ \hline 100s^4 \end{bmatrix} -3$$

Leptokurtic curves (positive kurtosis values) denote a particle size distribution more "peaked" than normal. Platykurtic curves (negative kurtosis values) denote a particle size distribution more "flat" than normal. A normal curve has a kurtosis value of zero (0).

Core Visual Description Sheet

SAMPLE: CORE 1
LATITUDE: 36°59.2'N LONGITUDE: 76°11.8'W WATER DEPTH: 10 m CORE LENGTH: 33 cm CORE PENETRATION: UNLNOWN SAMPLER TYPE: DIVER (21/2") DATE TAKEN: 2 AUG 81 ANALYST: L. M. REYNOLDS DATE: AUG 81

	TO DOG 7			2.00			
	VISUAL OBSERVATIONS	DEPTH (cm.)	SKETCH	COLOR	LAB. NO.	SAMPLE INTERVAL (cm.)	SEDIMENT TYPE (Visual)
			2222222222	N21	1-255	6-6-5	Clay Sand Gravel
;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		9999999999				
Ë	rydrogen Surrice odor. Contains r		00000000000				
	regardents up to a cm in promener. One very lough sitting of	200	2020202020		 -		
_	ergenic maner wound misugn me interval, to cm long, 2-3 cm in diameter. Contains some small (2-3) montes of clay.		222222222		557-2	11 - 5.9	
	Graditional change in color and texture		333333333				
			99999999999				
		- 01		_			1
			200000000000000000000000000000000000000	X	667.3		3
			1	SGY4/1	5-/66	61 - 11	Sand Size Clay
:				-			
5 	11-19 cm: Homogenous with diminished HyS odor. Very small amount						
	of shell fragments. Chapanonal change in restore.	3					
			Π	_			1
					557-4	19 - 29	Clayey Silt
		1 20 1 -					
			٩				
19-33 CF	19-33 cm: Homogenous. Similar to previous interval, but slightly	- 25 -					
	coarser grained.		1				
				_			
		1 30	1.1.1.1.1.1		2 623	20	
			1.1.1.1.		2766	۱	
				>			-
				-			
				•			
				•			
				•			
		1		•			
			_				
				•			
		1					

D

ij

1

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAB ITEM NUMBER: 557 CORE NUMBER:M6

CRUISE NUMBER: BURMAS LATITUDE: SHIP NAME: LONG TYUDE: 36 59. 2 N MARSOEN SUJARE: 116 CORER TYPE: DATE CORE TAKEN: 2AUGG1
76 11. 8 W MATER DEPTH : 10.0 4 CORE LENGTH: 33.0 CM DATE ANALYZED : APROP CAMPLING INTERVAL (CM) FROM: 6.5 11.0 11.9 19.0 LET UNIT WEIGHT (GRANS/CCM):
SPECIFIC GRAVITY OF SOLIDS:
LATER CONTENT (BORY WEIGHT): 1.7₁ 2.67 53.1 1.388 1.418 58.10 LATEP CONTENT (EDRY MEIGHT):
VOID KATIO
:
ATUPATED VOID RATIO
:
FOROSITY(2)

NATUKAL (CM/SO CM):
HENDLD ((M/SO CM): 33.3 55.8 $\tau_{E} \, \text{NSIT}_{I} \, \text{V}_{I} \, \text{T} \, \text{V}$ 7-80 4.70 "EMAPASE

*CALCULATER, ASSUMING 1003 SATURATION, FROM THE RELATIONSHIP;

LET UNIT WEIGHT = SP. GRV + (1 + (BMOISTURE / 100)) / 1 + (SP. GRV + (2MOISTURE / 100))

Sediment Size and Composition Data

CRUISE BURNI SAMPLE NO	45 TAKEN 28 US 81 Depth 10.0 0		.20 N MARSD L.00 W CORER	EN SQUARE 116 Type	LENGTH PENETRATION	33.0 ANALYZED	APR8 2
	- CURTEMPLE ID-				557 +		-
	DEPTH INTERVAL	-0- 6-5	6.5-11.0	11.0-19.0	19-0-29-0	29.0-33.0	
DIAM CPHI)	DIAM CHMP	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	
<-9	>16 -000	.000	.000	.000	• 098	-000	
-4-70-3	- 16+000 70 0+000			-000	*000 ·-··		
-3 10 -2	8.000 TO 4-000	3-842	.507	.000	• 000	•000	
-2 70 -1	** 4+000 70 2+000	1.557	. 755	•000	.000	• 000	
-1 TO 0	2.000 10 1.000	2.584	2.716	-014	• 000	.000	
8 40 F	1+000 TO +S00	5.775	5+ 9 10	.076	• 093	.021	
1 70 2	.500 70 .250	12.984	10-386	-396	.495	.045	
2 10 3 -	**************************************	10-104	12+300	2,300	## * #####	21214	
3 TO 4	-125 TO .063	20.040	19.910	34.285	35.447	25.761	
• 10 5	: 003 -70 -:031	9.239	7-701	9.311	6.471	19.992	
5 70 6	.031 TO .016	3.610	4.755	0.213	6.006	9.112	
4 70 7	+014-TO +000	2+451	- +v090	4.154	5.046	5 • 1 75	
7 70	-006 10 -004	1,967	3.463	3.390	4.334	4.343	
* ** *		1+954			5.591		
9 TO 10	.002 TO .001	1.623	2.418	2.149	3 - 158	2.385	
>10	4,001	19:979	21+761 -	- 92.662	20.390	33.000	
	- 48 AUGL - 133,0 RH1	5-304		-909	.006	• 000	
	SANO 12.0063 HM		\$1.373 20-200	37,160 35,069	43.003	28.082	
 _	CLAY (<.004 MM)	23.551	26.955	37,771	35.139	37 • 726	
	MEAN (MM)	488	-0303	-0107	.0128	.0095	
	HEAR (PAE)	4, Ĭ6a	5+047	6 - 546	6.284	6.713	
	STANDARD DEVIATION	3,777	3-601	3-102	3,122	3.000	
	- 346VA633			 1116	1169-		
	KURTOSIS	611	-1,124	-1,667	-1 - 590	-1-656	
	COLOR (85A)	N2/	5674/1	5674/1	5674/3	5674/1	

Compressional Wave Velocity

Lab Item: 557 Core: 1 (M6)

Cruise Number: BURMMS	Latitude :	36 59.2 N	Date Analyzeo :	2 Aug 81
Ship: CGC Madrona	Longitude:	76 11.8 W	Date Completed:	Aug 81

Insitu Salinity: 24.63 ppt Insitu Temperature: 14.55C water Depth: 10.0M Sound Velocity of Bottom Water: 1493 M/Sec

Core	SOUND VELOCIT	IY - M/Sec	AVERAGE
DEPTH (CM)	Zero Degree Plane	90 Degree plane	SOUND VELOCITY (M/Sec)
, ,		P344	(, 500)
2.0	1536	1538	1537
6. 5	1553	1564	1558
12.0	1542	1533	1537
17.0	1511	1526	1519
22.0	1553	1587	1570
27. U	1519	1519	1519

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557

Cruise Number: BURMMS Latitude : Ship: CGC Madrona Date Completed : Aug 81 Longitude: 28.84 ppt Insitu Temperature: Sound Velocity of Bottom Water: Insitu Temperature: 17.31C water Deptn: 10.0M Insitu Salinity:

1507 M/Sec

Core DEPTH (CM)	SOUND VELOCIT Zero Degree Plane	Y - M/Sec 90 Degree plane	AVERAGE SOUND VELOCITY (M/Sec)
2.0	1545	1547	1546
6.5	1562	1573	1567
12.0	1551	1542	1547
17.0	1521	1535	1528
22.0	1562	1596	1579
27.0	1529	1529	1529

In M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 1 (M6)

Cruise Number: BURMMS Latitude: 36 59.2 N Date Analyzed: 2 Aug 81 Snip: CGC Madrona Longitude: 76 11.8 w Date Completed: Aug 81

Insitu Salinity: 31.84 ppt Insitu Temperature: 21.83C water Depth: 10.0M Sound Velocity of Bottom Water: 1523 M/Sec

Core	SOUND VELOCIS	ry - M/Sec	AVERAGE
DEPTH	Zero Degree	90 begree	SOUND VELOCITY
(Ch)	Plane	plane	(M/Sec)
2.0	1558	1560	1559
6.5	1575	1586	1580
12.0	1564	1555	1559
17.0	1533	1548	1541
22.0	1575	1609	1592
27.0	1541	1541	1541

in M/SEC at INSITU CONDITIONS

Of
ACOUSTIC AND SEDIMENT MEASUPEMENTS
for
Lab Item: 557 Core: 1 (M6)

SUMMARY

•

Core Number 2

Core Visual Description Sheet

Oil Case and the ground from the base of the ground from the base of the ground from the groun	MVS	PLE CORE 2	ALL ACTIVITIES OF COLUMN	200		LABORATORY REPORT	RT 557		
Poetri SCORE COLOR LAB.NO. SAMPLE INTERVAL SG73/1 357-6. 0 - 8 G.LA. 10 - 10 - 10 - 10 10 - 10 - 10 10 - 10 -	COR	2	CORE PENETRAL	TION UNKNOWN		R TYPE DIV	IER (2 1/2")		
100	INDIAL OBSEN	ONS	DEPTH (cm.)	L.	COLOR	LAB. NO.	SAMPLE INTERVAL	SEDIMENT TYPE (Vigual)	<u> </u>
20 - 21 - 22 - 23 - 23 - 24 - 23 - 24 - 25 - 24 - 25 - 25 - 25 - 25 - 25			-	1.	SGY 3/1	557-6		Clayey Silt	T
20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -									11
115 120 120 130 140 150 160 170 170 170 170 170 170 170 17						557-7			T
701. 15			- \$!					TT
115 120 200 200 200 200 200 200 200	Soft and homogenous, becoming first	ner below 4 cm, then sof	<u> </u>						1
70d. 10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	agen from 10 to 15 cm. Very small	omount of shells and she	1						
20 - 23 - 27 - 27 - 27 - 27 - 27 - 27 - 27	יים ביים ביים ביים ביים ביים ביים ביים	Š	01	40		+			Π
13				<u>'</u> : '				-	Τ
20 - 20 - 20 - 21 - 27 - 27 - 27 - 20 - 20 - 20 - 20 - 20				্ '				++	
357-8 20 20 25 25 25 26 26 27 27 27 27 27 27 27 27				1					T
357-8 27 - 27 20	***		15 -						Γ
701.			•	1 1 1 1					
- 20			•	. 1	SGY4/1	557-8			Ţ
- 20				1		+			Ţ
- 25									
- 25 - 36 - 36 - 40 - 40 - 45 - 45 - 50	17-27 cm: Homogenous, with more sand size g	rains than previous inter	vol.	۱۰'					
- 25	Croporioral charge in texture.			+					Ţ
- 36 - 35 - 40 - 40 - 45 - 50			25	٠.					П
- 35 - 37 - 37 - 47 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5			-	٦.		+			T
- 35 - 10 37 - 40 - 45 - 55 - 11 557-10 37 - 45 - 45 - 45 - 45 - 45 - 45 - 45 - 4			-			557-9	M	Silty Sand	П
- 35 - 10 37 - 40 - 45 - 45 - 50 - 50 - 11 - 47 - 55 - 10 - 47 - 55 - 10 - 47 - 55 - 10 - 47 - 55 - 10 - 47 - 55 - 10 - 47 - 55 - 10 - 47 - 55 - 10 - 47 - 55 - 10 - 47 - 55 - 10 - 47 - 55 - 55 - 10 - 47 - 55 - 55 - 10 - 47 - 55 - 55 - 10 - 47 - 55 - 55 - 55 - 55 - 55 - 55 - 55					_	+			T
- 35 - 40 - 45 - 45 - 50	22 22		8			 			П
- 35 - 10 - 37 40 - 40 - 557-10 - 37 45 - 50 - 50 - 50 - 50 - 50 - 50 -	27-37 cm. momogenous, except for grocorional	Cograening downward.				+			Ţ
- 35 - 10 37 - 40 - 40 - 45 - 557-11 47 - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5									Ţ
- 40 - 50'3/1 537-10 37 - 45 - 50'3/1 537-10 37 - 50 - 50'3/1 537-10 37 - 50 - 50'3/1 537-10 37 - 50'3/1 537-10 37 - 50'3/1 537-11 67 - 50'3/1 537			38						П
- 40 - 45 - 45 - 50 - 50						+			T
-45 - 45				:	5CY3/1	557-10	$\{\cdot\}$		Π
- 45 - 557-11 47 -									
- 45 - 557-11 47 -									П
20 257-11 47 -									Τ
557-11 47	37-53 cm: Homogenous.								П
557-11 47			- 45			-			
++++						557-11	14		Π
									Π
m3 13			05						Ţ
			-						Π

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAB STEN NUMBER: 557 CORE NUMBER:84

CRUISE NUMBER: BURPMS SHIP NAME:	LATITUBE			LRSBEN SOL LTER DEPT		CORSE :		DATE CORE TAKEN: 3AUG81 53.0 C* DATE ANALYZED : APR82
SAMPLING INTERVAL (CW)	FRO*: 10 :	?. C.8	8.0 17.0	17.C 27.0	27.0 37.0	37.0 47.0	47.0	
WET UNIT WEIGHT (GRAMS SPECIFIC GRAVITY OF SO WATER CONTENT (XDRY WE WOID RATIO SATURATED VOID RATIO POROSITY(X) COMESICM NATURAL (GM/S RFMOLD (GM/S	LIBS : 1GHT): : : :	• 1.76 2.67 44.4 •1.185 •1.185 • 54.24	* 1.67 2.67 55.6 *1.485 *1.485 * 59.75 52.0 13.1	• 1.81 2.47 79.3 •1.049 •1.049 • 51.20 \$9.4 11.5	• 1.76 2.62 45.0 •1.201 •1.201 • 56.58 	• 1.79 2.42 61.6 #1.111 •1.111 • 52.62	• 1.97 2.47 31.7 • .844 • .946 • 45.84	
SENSITIVITY	:		4.36	•••0	7.70			

*CALCULATED. ASSUMING 100% SATURATION, FROM THE RELATIONSHIP:

WET UNIT WEIGHT * SP. GRV * (1 * (%MOISTURE / 100)) / 1 * (SP. GRV * (%MOISTURE / 100))

Sediment Size and Composition Data

COLISE RUPHM Sample D4	S TAKEN 3AUG#1 DEPTM	L AT IT UDE	MARSD CORER	EN SQUAPE Type	LENGTH PENETRATION	53.0 ANALYZED	APR62
	SUBSAMPLE ID.	557 6	557 7	557	557 ♥	557 10	557 11
	DEPTH INTERVAL	.0- 4.0	8.0-17.0	17.0-27.0	27.0-37.0	37.0-47.0	47.0-53.0
DIAM (PHI)	DIAM 4MM)	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
(- ₉	>16 -000	.000	•000	-000	-000	•000	2000
-4 70 -3	16.000 TO 8.000	• 000	•000	.000	.000	•000	•00C
- ? TO -2	8.000 TO 4.000	• (0 0	•000	.000	.000	•000	•000
-2 TO -1	4. COO TO 2.000	-170	.000	.047	. 137	•000	-008
-1 TO 0	2.000 to 1.000	.034	-081	.329	.183	.023	-024
C TO 1	1.000 10 .500	.173	+366	1.717	• 275	.047	-024
1 TO 2	.500 to .250	. 920	1 - 3 00	4.492	.691	.117	•071
2 TO 3	.250 TO .125	2.761	7.518	8.022	1.723	2.993	7-640
3 TO 4	-125 TO -043	34.254	36.149	42.555	54.716	55,272	63.582
4 TO 5	.063 70 .031	11-202	11.210	9.306	11.767	13.467	7.731
5 70 6	.031 TO .016	6.442	5.890	4.117	3.800	4-162	3.306
6 10 7	.016 TO .0DB	5.010	4.021	2.494	2,473	2.619	
7 TO 8	.008 TO .004	4.226	5.443	2.211	2.060	2.408	2-284
3 70 9	.004 TO .002	3.408	.053	1.788	1.236	2.100	2.069
9 10 10	. GO 2 TO . OO1	2.284	7.356	1.411	1.099		1.632
>10	<.001	20,937	29.773	19.031	19.689	1.483	1-427
			2,4113	17.071	14.004	15,109	14.962
	BRAVEL 132,0 HMI	.170	•000	-097	.137	.000	-048
	SAND 12.0043 MM1	30.241	40-414	59.515	57.738	58.452	66.342
	SILT 1.063- 009 481	26.960	26 - 6 09	18.207	29.101	22.656	15.390
	CLAY IC. DOA NH;	34.624	37.981	22.230	22.024	18.492	
	•	310010	27 • •		24,024	10.872	18-221
	MEAN (MM)	_C124	+0129	-0300	.0254	.0287	
	PEAN (PHE)	6.330	6.273	5.061	5 - 302	5,122	-0315
	STANDARD DEVIATION	3.079	3-110	3.047	2.839	7,621	4.987
	SKEWNESS	. 169	•190	.436	.524	.690	2.624
	RUNTOSIS	-1.496	-1.524	-,619	479		-686
	-	25376		- • • 1 •		•015	-533
	COLOR (SSA)	5673/2	\$6¥3/1	5GY4/1	5674/3	\$63/1	563/1

Compressional Wave Velocity

Lab Item: 557 Core: 2 (D4)

Cruise Number: BURMMS Snip: CGC Madrona

Latitude : Longitude:

Date Analyzed Date Completed : 3 Aug 61 Aug 81

water Depth:

Insitu Salinity: 24.63 ppt Insitu Temperature: Sound Velocity of Bottom water: Insitu Temperature: 14.55C

1493 M/Sec

10.0M

Core	SOUND VELUCIT	Y - M/Sec	AVERAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
10.0	1519	1519	1519
15.0	1536	1544	1540
20.0	1582	1582	1582
25.0	1618	1570	1594
30.0	1587	1603	1595
35.0	1591	1596	1594
40.0	1556	1561	1559
45.0	1587	1587	1587
50.0	1613	1613	1613

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 2 (D4)

Cruise Number: BURNAS Ship: CGC Madrona

Latitude : Longitude: Date Analyzed : Date Completed :

3 Aug 81 Aug 81

Core

17.31C water Depth: 1507 M/Sec

10.0m

Insitu Salinity: 28.84 ppt Insitu Temperature: 17.31C Sound Velocity of Bottom mater: 1507 M/

SOUND VELOCITY - M/Sec

AVERAGE

Depth	%ero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
10.0	1529	1529	1529
15.0	1545	1553	1549
40.0	1591	1591	1591
25.0	1627	1579	1603
30.0	1597	1612	1604
35.0	1600	1605	1603
40.0	1565	1570	1568
45.0	1597	1597	1597
50.0	1622	1622	1622

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 2 (D4)

Cruise Number: BURMMS Latitude: Date Analyzed: 3 Aug 81 Ship: CGC Madrona Longitude: Date Completed: Aug 81

Insitu Salinity: 31.84 ppt Insitu Temperature: 21.83C Water Deptn: 10.0M Sound Velocity of Bottom Water: 1523 M/Sec

Core	SOUND VELOCIT	TY - M/Sec	AVERAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
10.0	1542	1542	1542
15.0	1558	1566	1562
20.0	1604	1604	1604
25.0	1640	1592	1616
30.0	1610	1625	1617
35.0	1613	1618	1616
40.0	1578	1583	1581
45.0	1610	1610	1610
50.0	1635	1635	1635

I

Core Visual Description Sheet

SAMPLE. CORE 3
LATITUDE: 36°59.2.*N
LONGITUDE: 76°10.7.*W
WATER DEPTH: 10 m
CORE LENGTH: 34 cm
CORE PENETRATION: UNKNOWN
SAMPLER TYPE: DIVER (2 1/2")
DATE TAKEN: 3 AUG 81
ANALYST: L. M. REYNOLDS
DATE: AUG 1981

UNIE INNEW 5 WG OF MINETER					
VISUAL OBSERVATIONS	DEPTH CORE (cm.) SKETCH	COLOR	LAB. NO.	SAMPLE INTERVAL (cm.)	SEDIMENT TYPE (Visual)
0-7 cm. Soft near the surface, becoming stiffer with depth. A small amount of shell fragments decreasing downward to no shell fragments. Gradational change in color and texture.	5	XCX3/1	557-12	7 - 0 - 7	Sandy Silt
7-15 cm: Homogenous with very small amount of shell fragments and well-rounded gravel. Gradational change due to disappearance of shell fragments and gravel.	100		557-13	7 - 15	Clayev Silt
15-34 cm: Horrogenous.	25	- ราชาปราชาสาราชาวราชาสาราชา	557-14	15 25	
	- 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAB ITEM NUMBER: 557 CORE NUMBERIDS

CRUISE WUMPEO: RUFMMS 'MIP NAME:	LATITUDE : LONGITUDE :			RSDFN SQU TER DEPTH		DATE CORE TAKEN: 3AUG 81 34-0 CM DATE ANALYZED : APR8?
CAMPLING INTERVAL (CM)	FR OM: TO :	7.7	7•0 15•0	15.0 25.0	25.0 34.0	
PET UNIT WEIGHT (GEAMS) PECIFIC GRAVITY OF SOLVATEP CONTENT (BDRY WEIVO) FATIC SATUPATED VOTO RATIO POROSITY(1) COMESION	LID S : GH T 7 : 	2 · 6 7 3 9 · 2 • 0 4 7	2.67 47.6 •1.271 •1.271	* 1.86 2.67 35.6 * .951 * .951	1-g5 2-67 36-0 961 961 + 49-01	
NATURAL (EN/SO REHOLD (EN/SO		41 · 6 9 · 5	61+8 8+3	29.7 19.7		
CENSITIVITY	:	1,34	7,43	2.78		

*CALCULATER, ASSUMING 1903 SATURATION, FROM THE RELATIONSHIP;

WET UNIT WEIGHT = SP. GPV * 61 * (\$MOISTURE / 1001) / 1 * (SP. GRV * (\$MOISTURE / 1001)

Sediment Size and Composition Data

CRUISE EURMPS	TAPEN 3AUGS1 Depth 10.0			SQUARE 116	LENGTH	34.4	ANALYZED	APR6 2
24 (C 03	00PM 1000	F OM at 1 (Inc. 10	10.70 W CORER T	YPL	PENETRATION			
	Sursamply ID.	557 12	557 13	557 10	557 15			
	DEPTH INTERVAL	.0- 7.0	7.0-15.0	15.0-75.0	25.0-34.0			
DIAM (PHI)	CHM) MAIG	PERCENT	PERCENT	PERCENT	PERCENT			
C_%	>16 -000	•000	.000	_000	• 000			
-4 10 -3	16.900 TO 8.000	• 000	-000	.000	• 000			
-3 10 -2	0.000 10 4.000	•000	1 • 5 36	.000	.000			
-2 TO -1	4.000 TO 2.000	• [00	.038	.000	-063			
-1 TO C	2.000 TO 1.00C	.C41	. O 36	.023	.000			
c to 1	1.000 10 .500	.124	-1 15	.137	.063			
1 10 2	.500 10 .250	.448	-384	.524	• 190			
2 10 3	1 250 TO .125	2.863	1.997	2.550	1.963			
3 10 4	•175 TO •063	43.029	40.783	55.497	57.223			
9 10 5	.063 TO .031	13.112	9.935	10.300	12.191			
5 10 6	.031 TO .016	6.598	6 .8 36	4.234	3.463			
6 10 7	.014 70 .008	4 - 232	4 . 8 39	3.437	2.692			
7 70 8	.00s to .00s	3.568	• .5 70	2.959	2.248			
8 10 +	500, OF 400;	2 • 739	2.995	2.193	1,773			
9 10 10	.002 10 .001	2 - 324	2.003	2 • 231	1.678			
>10	<.001	20-071	23.000	15.866	16,054			
	GRAVEL (>2.0 MM)	• 000	1 - 5 7 5	+000	.063			
	SAND 12.0063 HR1		43.310	50.730	59,436			
	111 400 - 100 HH		26.729	21.011	20,999			
	CLAY (<.OG4 MM)	25-934	28.879	20,260	19,506			
	MEAN (MM)	·0189	-0171	-0268	,0283			
	HEAM (PHE)	5.726	5 - 8 71	5.222	5, 155			
	STANDARD DEVIATION	2.865	5 • C 90	2 - 697	2,665			
	skeunes s	- 306	-247	.572	.623			
	KURTOSIS	-1-037	743	310	003			
	COLOR (SSA)	5643/1	563/1	563/1	583/1			

Compressional Wave Velocity

557 Core: 3 (D3) Lab Item:

Cruise Number: BURMMS Ship: CGC Madrona 59. 2 N 10. 7 W Date Analyzed : Date Completed : 3 Aug 81 Aug 81 Latitude : 36 Longitude: 76

Insitu Salinity: 24.63 ppt Insitu Temperature: Sound Velocity of Sottom Water: 10.0M Insitu Temperature: 14.55C water Depth:

1493 M/Sec

Core	SOUND VELOCI	TY - M/Sec	AVERAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
5.0	1572	1565	1568
10.0	1532	1540	1536
15.0	1572	1569	1570
20.0	1598	1565	1582
25.U	1601	1595	159ช
30.0	1578	1010	1594

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 3 (D3)

Cruise Number: Ship: CGC Madro	 	 59. lu.			Analyzed Completed		3 Aug Aug	_
Insitu Salinity:	Insitu Tem			1C 1	water Depti	n:	10.0)M

Core DEPTH (CM)	SOUND VELOCITY Zero Degree Plane	- M/Sec 90 Degree plane	AVERAGE SOUND VELOCITY (M/Sec)
5.0	1581	1575	1578
10.0	1541	1549	1545
15.0	1581	1576	1579
20.0	1607	1575	1591
25.0	1610	1605	1607
30.0	1587	1619	1603

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 3 (D3)

Cruise Number: BURMMS Latitude: 36 59.2 N Date Analyzed: 3 Aug 81 Ship: CGC Madrona Longitude: 76 10.7 % Date Completed: Aug 81

Insitu Salinity: 31.84 ppt Insitu Temperature: 21.83C water Depth: 10.0M Sound Velocity of Bottom water: 1523 M/Sec

Core	SOUND VELOCIS	ly - M/Sec	AVERAGE
DEPTH (CM)	Zero Degree Plane	90 Degree plane	Sound velocity (m/sec)
5.U	1594	1588	1591
10.0	1554	1562	1558
15.0	1594	1591	1592
20.u	1620	1588	1604
25.U	1623	1618	1620
30.U	1600	1632	1616

th M/SEC at INSITU CONDITIONS

Core Visual Description Sheet

SAMPLE, CORE 4
LATITUDE, 36°99,2'N
LATITUDE, 36°99,2'N
CORE LENGTH, 39 cm
CORE LENGTH, 39 cm
CORE LENGTH, 39 cm
CORE PENETRATION UNKNOWN SAMPLER TYPE: DIVER(2 1/2")
DATE TAKEN: 3 AUG 81
ANALYST L. M. REYNOLDS
DATE AUGUST 1981

VISUAL OBSERVATIONS	DEPTH (cm.)	SKETCH	COLOR	LAB. NO.	SAMPLE INTERVAL	SEDIMENT TYPE
0-25 cm: Very soft. Very small amount of rack and shell fragments. Sight Hydrogen Sulfide ador. Distinct change in color and texture.		02020202020	584/1	557~16	0 - 2.5	Clay Sand Gravel
			N3	557-17	2.5 - 5	Silty Clay
4.3-7.7 to cm: nomogenous, much striter than previous interval. Slight Hydrogen Suffide odor. Distinct change in color and texture.	<u>, </u>	1		557-18	5 - 7/10	
			5674/1	557-19	7/10 - 13	Silty Sand
7/10-13 cm. Shell fragments in a silty sand matrix. Shell fragments of up to 2 cm (intermediate axis). Gradational change in color and texture.	2	\				
13-17 cm. A small amount of well-rounded pebbles (up to 2.5 cm diameter). A moderate amount of shell fragments. Distinct change in texture.	57		5864/1	557-20	13 - 17	Si)t Sand Gravel
				557-21	17 - 22	Clayey Silt
17-22 cm: Homogenous. Gradational change in color.	200	11111111				
	<u> </u>	1.1.				
		1	X	567.33		
			2CX4/1	\perp	Of - 77	
	F 25 ₹		_			
		٠.				
		, , , , , , , ,	_			
00000	+	1 - 1 - 1 - 1 - 1 - 1 - 1				-
ZZ-37 CM: Nomogenous.	2	·1 ·		557-22	30 - 39	
	1					
	35	1.1.1.1.1.1.				
	T	1 1 1 1 1 1 1				
		1				
	Ï	1	-			>
	T-	39 с.	-	+		
		-				
			•	+		
	1	-				
		_				
			•			
	1					
	-	_	_			

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAR ITEM NUMBER: 557 CORE NUMBER:DI

CRUISE MUMBED: BUPMMS LATITUDE: 36 50.2 N MARSDEN SOUARE: 116 CORER TYPE: DATE COPE TAKEN: 34061
THIP NAME: 1006 THUDE: 76 10.8 N PTER DEPTH : 1000 N CORE LENGTH: 39.0 CH DATE ANALYZED : APROL

"AMPLING INTEPVAL (CM) FROM: 17.0 22.0 30.0 39.0

WET UNIT WEIGHT (GRANS/CCM): 1.90 + 1.86 + 1.82
"PECIFIC GRAVITY OF SOLIDS: 2.67 2.67 2.67
WATER CONTENT (1078Y MEIGHT): 32.3 35.1 39.1

VOID RATIO : 4.862 + .937 01.004
FOROSITYIE) : 4.862 + .937 01.004
FOROSITYIES : 32.1
FEMOLD (16W/SO CM): 32.1
FEMOLD (16W/SO CM): 32.1

LIALISH3,

4.50

"EMARKS:

*CALCULATEC, ASSUMING 100% SATURATION. FROM THE RELATIONSHIP:

WET UNIT WEIGHT = SP. GRV * () * (#MOISTURE / 100)) / 1 * (SP. GRV * (#MOISTURE / 100))

Sediment Size and Composition Data

CRUISE BURNN SAMPLE DI	S TAKEN 3AUG81 DEPTH 10.0	LATITUDE LONGITUDE	36 59.20 N 76 10.80 W	MARS DEI CORER	I SQUARE 116 TYPE	LENGTH PENETRA	19.0 TION	ANALYZE	APP82
	SURSAMPLE ID. DEPTH INTERVAL	557 16 •0~ 2•5	557 17 2.5- 5.0	557 18 5.0-10.0	557 19 10-0-13-0	557 20 13•0-17•0	557 21 17•0-22.9	557 22 22.C-30.	
DIAM (PHI)	CHM) WALG	PEPCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCE NT	PERCENT	PERCENT
<-4	>16 -000	-000	-000	.000	• 000	•600	-700	•600	•200
-4 TO -3	16.000 10 4.000	• 000	•000	.000	. 744	• 000	•300	.(00	.700
-3 TO -2	8.000 TO 9.000	- COO	-cor	.000	. 744	3.35G	•COC	.442	•200
-· TO -1	4.000 10 2.000	.918	.109	.743	1 - 132	2 . 8 4 9	.284	. 147	-200
-1 TO 0	2.000 TO 1.000	1.399	-8 45	1.520	3.861	6.259	1.517	.074	-040
u TO 1	1.000 TO .500	3.617	1.962	3.055	7-050	12.136	1.565	-110	-060
1 TO 2	.500 TO .250	5.378	2 . 5 88	4.088	9 - 250	14.022	1.754	. 184	-149
4 TO 3	. 250 TO .125	7.433	3.597	3.001	8.053	8.987	2.41 R	1.473	3-108
3 70 4	.125 TO .043	47.792	28.638	32.907	27.426	24,253	48.933	52.504	60.789
4 70 5	.063 TO .031	9.794	12.153	7.184	11.740	6.359	12.470	11.708	12.522
5 10 6	-031 10 -016	3.279	8.093	6 - 111	4.366	3.430	3,698	4,234	3.796
6 70 7	.016 TO .008	2 - 193	5 - 8 04	4 - 377	2.684	2.367	3.129	3.203	2 - 3 31
7 70 8	.00s TO .DGs	1.793	4.768	4.500	2.167	2.227	2,600	3.240	1.494
.6 70 9	.004 TO .002	.962	4.223	2.973	1.908	1.545	1.328	2.246	1.395
9 70 10	-002 TO -001	1 - 355	2.943	2.684	1.423	1.344	1.754	2.320	1,494
>13	<.001	14.735	27.978	25.970	17.432	10.673	18.540	18.115	12.851
	GRAVEL 132.0 MM1	.918	-109	.743	2,620	6.199	.284	.589	•300
	SAND 12.0063 MMT	65.020	37.929	45.458	55.667	65-657	66.188	54.345	64-166
	S1LT (.063- CQ4 MM)	17.609	30-817	22.172	23.957	14.383	21.90€	22.386	20 - 1 43
	CLAY (C.DO4 MM)	17.653	31 - 1 44	31.627	20.763	13.761	21.522	72.6PD	15-690
	MEAN CHM)	.0416	+0154	-0177	. (446	959 ن	•0275	3 9	-7397
	MEAN (PHI)	4,586	6 - 723	5 + 8 7 2	4,487	3,203	5.185	5,388	4.849
	STANDARD DEVIATION	2.914	3 - 1 18	3 - 373	3.472	3.4:8	2 - 75 4	2.675	2 • 4 76
	SKENNESS	. 494	•1 35	.178	247	. 170	•410	+435	•779
	RUFTOSTS	-100	-1,20R	-1.222	542	547	454	475	.R 65
	COLOR (GSA)	574/1	43/	N3/	5EY4/1	5864/1	5PE4/1	FGY4/1	50 44/1

Compressional Wave Velocity

Lab Item: 557 Core: 4 (D1)

Cruise Number: BURMMS Latitude: 36 59.2 N Date Analyzed: 3 Aug 81 Ship: CGC Madrona Longitude: 76 10.6 W Date Completed: Aug 81 Insitu Salinity: 24.63 ppt Insitu Temperature: 14.55C Water Depth: 10.0M

Insitu Salinity: 24.63 ppt Insitu Temperature: 14.55C v Sound Velocity of Bottom water: 1493 M/Sec

Core	SOUND VELOCI	TY - M/Sec	AVERAGE
DEPTH (CM)	Zero Degree Plane	90 Degree plane	SOUNL VELOCITY (M/Sec)
(200)		F	, , ,
10.0	1548	1556	1552
15.0	1598	1612	1605
20.0	1591	1591	1591
25.0	1613	1623	1618
30.0	1635	1596	1616
35.0	1560	1595	1578

in M/SEC at INSITU COMDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 4 (D1)

Cruise Number: B Ship: CGC Madron	 Latitude : Longitude:		59. 10.			Analysed Completed		3 Aug 81 Aug 81
Insitu Salinity:	Insitu Tem	-			LC (water Depth	1 :	10.0M

Core DEPTH (CM)	SOUND VELOCIT Zero Degree Plane	Y - M/Sec 90 Degree plane	AVE RAGE SOUND VELOCITY (M/Sec)
10.0	1557	1566	1561
15.0	1607	1621	1614
20.0	1601	1601	1601
25.0	1622	1633	1628
30.0	1644	1607	1625
35.0	1569	1604	1587

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 4 (D1)

Cruise Number: BURMMS	Latitude: 36 59.2		3 Aug 81
Ship: CGC Madrona	Longitude: 76 10.8		Aug 81
Insitu Salinity: 31.84 ppt	Insitu Temperature:	21.83C Water Depth:	10.0M

Sound Velocity of Bottom Water: 1523 M/Sec

COT e DEPTH (CM)	SOUND VELOCI? Zero Degree Plane	TY - M/Sec 90 Degree plane	AVE RAGE SOUND VELOCITY (M/Sec)
10.0	1570	1579	1574
15.0	1620	1634	1627
20.0	1614	1614	1614
25.0	1635	1646	1641
30.0	1657	1620	1638
35.ú	1582	1617	1600

in M/SEC at INSITU CONDITIONS

.

AND SEDIMENT MEASUREMENTS

for

SUMMARY of (01)

4

Core:

557

•

Core Visual Description Sheet

SAMPLE CORE 5	110 10071 341121010	: 10	LABOR	LABORATORY REPORT	IEPORT 557	
	ENETRATI	CORE PENETRATION: UNKNOWN ANALYST: L. M. REYNOLDS			\sim	
VISUAL OBSERVATIONS	OEPTH (cm.)	SKETCH	COLOR	LAB. NO.	SAMPLE INTERVAL	SEDIMENT TYPE (Visual)
			514/1	557-24	0-1	Sand
0-7 cm: Homogenous. Small amount of shell fragments. Gradational						
change due to appearance of mortling.						
				557-25	7 - 17	
	10		.			
7-17 cm: Highly mattled (5Y2.5/1). Small amount of shell fragments.						
Gradational change due to color and texture.						
	- 15 -					
			—		Н	
			5Y2.5/1	527-26	11 - 21	Stiry Sand
	- 20					
17-27 cm: Homogenous, Small amount of shell fragments. Grational change in color.						
	- 25 -	• • • • •				
					1 1	
				557-27	21 - 37	Sand
	30	• • • • •				
27-37 cm. Homogenous. Small amount of shell fragments. Gradational						
	- 35					
				667-30	27 61	
					1	
	0,7					
37.51 cm. Moderntely mortled (N3). Small amount of shell froaments.						
	-45	• • • •				
	50		>			

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAB ITEM NUMBER: 557 CORE NUMBER:D2

CRUISE NUMBER: PURMAS LATITUDE: 36 56.60 N MARSDEN SQUARE: 116 CORE TYPE: DATE CORE TAKEN: 3AUG61
THIP NAME: LONGITUDE: 76 1.9 W WATER DEPTH : 10.0 4 CORE LENGTH: 51.0 CM DATE ANALYZED : APR82

"E MAPRS:

*CALCULATER, ASSUMING 1003 SATURATION, FROM THE RELATIONSHIP:

WET UNIT WEIGHT = SP. GRV + (1 + (RMOISTURE / 1001) / 1 + (SP. GRV + (RMOISTURE / 1001)

Sediment Size and Composition Data

CPUISE BURMMS	S TAKEN 3AUG81 Depth 10.0	LATITURE 36 56 LONGITUDE 76 1	.60 N MARSDE	N SQUARE 116 Type	LENGTH PENETRATION	F1.G ANALYZED	APR82
	SURSAMPLE ID.	55 7 24	557 25	557 26	557 27	557 28	
	DEPTH INTERVAL	.0- 7.0	7.0-17.0	17.n-27.0	27.0-37.0	37.0-52.C	
DIAM (PHI)	CHM) MAIG	PERCENT	PFRCENT	PEPCENT	PERCENT	PERCENT	
<-4	>16 +000	• C00	•000	.000	•000	•000	
-4 TO -3	16.600 TO 8.000	• 600	•080	.000	• 000	.000	
-3 TO -2	000. + 07 000.8	•000	-200	.100	• 200	•000	
-2 TO -1	4.000 TO 2.000	-017	.041	.198	+057	-154	
-1 70 C	2.000 TO 1.000	. 243	- 3 65	.799	• 606	.437	
2 TO 1	1.000 70 .500	4.119	9 - 5 20	7.348	6.399	7.948	
1 TO 2	.500 to .250	45.516	48.257	41.368	36.823	42.901	
2 TO 3	* *520 10 *15¢	32.144	26.713	19.047	19.652	21.039	
3 TO 4	-125 TO -063	11.192	11.775	15.650	15.581	12.886	
4 10 5	.063 70 .031	-217	.993	2.967	2.404	7.587	
5 10 6	.031 TO .016	. 191	.4 86	1.553	1.969	.000	
6 70 7	.016 70 .008	. 104	- 304	.938	1.306	.000	
7 TO 8	.00. TO .004	. 104	.324	.769	1.193	•000	
8 70 9	.004 	•600	.263	.736	1.022	7.047	
9 TO 10	.002 TO .001	. 174	.223	.630	. 966	•600	
>10	<.001	6.378	5.736	7-978	12.022	.000	
	SRAVEL (>2.0 MM)	•017	-041	-215	.057	. 1 54	
	SAMD 12.0063 MM	92.214	91 - 630	84,212	79.061	85.211	
	5117 1-063- 004 MM I	1.217	2 + 1 GB	6.226	6.872	7.507	
	CLAY (<.004 MM)	6+552	6 /22	9.347	14.010	7.047	
	MEAN (MM)	. 1626	-1 66 6	-1276	.0916	.1654	
	HEAN (PHI)	2.620	2.585	2.971	3,449	2,596	
	STANDARD DEVIATION	2.236	2 - 2 1 4	2 • 653	3,043	1.942	
	5#6UHE55	1 - 30 6	1 - 3 55	.951	. 745	. 9 2 8	
	# UPTO STS	7 • 102	6,929	2.801	.892	3+307	
	COLOR (65A)	574/1	574/1	572.5/1	572.5/1	5+2-5/1	

Compressional Wave Velocity

Lab Item: 557 Core: 5 (D2)

Cruise Number: BURMMS Latitude: 36 56.6 N Date Analyzed: 3 Aug 81 Ship: CGC Madrona Longitude: 76 1.9 W Date Completed: Aug 81

Insitu Salinity: 24.63 ppt Insitu Temperature: 14.55C water Depth: 10.0M Sound Velocity of Bottom water: 1493 M/Sec

Core	SOUND VELOCI?	ry - M/Sec	AVE RAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
5.0	1769	1753	1761
10.0	1750	1764	1757
12.0	1772	1761	1767
15.0	1739	1761	1750
20.0	1701	1701	1701
25.0	1711	1729	1720
30.0	1729	1725	1727
35.0	1725	1711	1718
40.0	1701	1704	1702
47. U	1722	1726	1724

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 5 (D2)

Cruise Number: BURMMS Ship: CGC Madrona Date Analyzed : 3 Aug 81 Latitude : 36 56.6 N Date Completed : Aug 81 Longitude:

Insitu Salinity: 28.84 ppt Insitu Temperature: 17.31C Sound Velocity of Bottom Water: 1507 M/ 10.0M

1507 M/Sec

Core	SOUND VELOCIT	Y - M/Sec	AVERAGE
DEPTH	Zero Degree	90 Degree	Sound velocity
(CM)	Plane	plane	(M/Sec)
5.0	1778	1763	1770
10.0	1760	1774	1767
12.0	1781	1770	1776
15.0	1749	1770	1760
20.0	1710	1710	1710
25.0	1720	1738	1729
30.0	1738	1734	1736
35.0	1734	1720	1727
40.0	1710	1713	1712
47.0	1731	1735	1733

Compressional Wave Velocity, Continued

Core: 5 (D2) Lab Item: 5578

Date Analyzed : Date Completed : Cruise Number: BURMMS 36 56.6 N Latitude : 3 Aug 81 Ship: CGC Madrona Longitude: 76 1.9 W Aug 81

Insitu Salinity: 31.84 ppt Insitu Temperature: 21.83C v Sound Velocity of Bottom Water: 1523 M/Sec water Depth: 10.0M

Core	SOUND VELOCITY	- M/Sec	AVE RAGE
DEPTH	2ero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
5.0	1791	1776	1783
10.0	1773	1787	1780
12.0	1794	1783	1789
15.0	1762	1783	1773
20.0	1723	1723	1723
25.0	1733	1751	1742
30.0	1751	1747	1749
35.0	1747	1733	1740
40.0	1723	1726	1725
47.0	1744	1748	1746

Core Visual Description Sheet

	,	1110	LABO	RATORY RI	LABORATORY REPORT: 557	
LATITUDE, 3020-0-N LONGI CORE LENGTH: 36.5 cm CORE F DATE TAKEN: 3 AUG 81 ANALY	TUDE: A	LONGITUDE: 78 02.0 W CORE PENETRATION UNKNOWN ANALYST L. M. REYNOLDS		WATER DEPTH: 10 m SAMPLER TYPE: DIVER DATE: AUGUST 1981	WATER DEPTH: 10 m SAMPLER TYPE: DIVER (2:1/2") DATE: AUGUST 1981	
VISUAL OBSERVATIONS	DEPTH (cm.)	SKETCH	COLOR	LAB. NO.	SAMPLE INTERVAL	SEDIMENT TYP (Visual)
			5X4/2	557-29	9 - 0	Sand
0-0.3 cm. toose sand. A moderate amount of shall fragments. Sharp change in color.						
	· ·					
			N2/	557-30	6.5 - 18	
	9					
A C 10 cm. Honorous A compile constraint format in the Late of the	2					
long). Gradational change due to apearance of motifing.						
	- 15					
				557-31	18 - 28	
	⊢ 20 −					+
			<u> </u>			
	- 25 -					
18-36.5 cm. Highly mottled (5GY3/1). A small amount of shell fragments.						
				557-32	20 - 36.5	
) 02 1					
	35					
						3
		36.5 cm				
	1					
			-			

2

:

- • - • - • - •

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAB ITEM NUMBERT 557 CORE NUMBERIDS

CRUISE NUMBER: BUPANS LATITUDE: 36 56.6 % MARSDEN SQUARE: 116 CORTR TYPE: DATE CORE TAKEN: 3AUG81
"HIP NAME: LONGITUDE: 76 ?. O W WATER DEPTH : 10.0 4 CORE LENGTH: 36.5 CM DATE ANALYZED : APR82

E MADKS:

*CALCULATEC. ASSUMING 1002 SATURATION. FROM THE RELATIONSHIP:

**BET UNIT WEIGHT = SP. GRV * (1 * (2*OISTURE / 100)) / 1 * (5*), GRV * (2*OISTUPE / 100))

Sediment Size and Composition Data

COLISE FURNIS			56.60 W MARSDER	SQUAPL 116	LENGTH PENETRATION	36.5	ANALYZED	APH8 2
COMEFE DO	0.01 HT430	LONGITHEF 76	STAR COAFE	1 4.5	· LuCinario			
	SUPSAMPLE TO.	557 29	557 30	557 31	557 32			
	DIPTH INTERVAL	•L- 6•5	6.5-18.3	18.7-28.0	20.0-36.5			
CIAP (FHI)	PIAM EMME	PEPCENT	PFRCENT	PERCENT	PERCENT			
C-4	>16 -cua	• t DD	.200		•000 1• 45 2			
-4 TO ~3	16.000 10 8.000	•176	•25A	.000				
10 -2	8.000 TO 4.000	• (0	•300	.393	.443			
10 -1	* no 10 2.000	. 8 2 2	•315	.00	.071			
-1 TO C	2.000 10 1.000	.160	.447	.828	. 779			
L TO 1	1.000 TO .500	3+c12	6.337	10.166	9.952			
1 10 2	100 TO .250	33.406	35.706	41.656	38.959			
· TO 3	.250 to .125	75.472	21.073	18.075	17.289			
. To 4	•125 TO •263	18.477	20,747	11.346	11.865			
4 to c	.(63 TO .031	1.147	4.732	2.43	3 - 41 7			
1 TO 6	11 10 .016	.478	2.130	1.946	2 • 036			
L TO 7	16 10 .738	.:46	-2 75	1.139	1 • 32 4			
7 TO F	08 .004	. 167	.673	1.097	1 - 106			
e TO 9		.143	.7 34	.870	. 903			
5 TO 10	.102 10 .031	-167	•61R	.745	.832			
>13	<. Gft 1	7,719	7.024	6.696	9.497			
			344	.393	1,966			
	CHARFF (35"9 MM)	•072	•?68 84.309	42.070	79.838			
	SAFD 12.L063 MR			7.226	7.969			
	SILT 4.363- CE4 MM1		7.776	16.311	11.227			
	CETA (C'CO# MM)	7.529	9.347	10.311	******			
	PEAN (MM)	.1717	-1224	.1277	. 1243			
	MEIN IPHT :	2.929	3.730	2 969	3.00*			
	STANDARD CENTATION	2.316	7.507	2 • 808	3.000			
	SHEWNESS	1.292	.952	.076	.698			
	wulfosts	5.527	3,323	2,133	1.535			
	COLOR (65.8)	574/2	42/	N2/	42/			

Compressional Wave Velocity

Lab Item: 557 Core: 6 (D6)

Cruise Number: BURMMS		36 56.6 N	Date Analyzeo :	3 Aug 81
Ship: CGC Madrona		76 2.0 W	Date Completed :	Aug 81
Indian Onlinday OA 42	_ ,, _			

Insitu Salinity: 24.63 ppt Insitu Temperature: 14.55C water Deptn: 10.0h Sound Velocity of Bottom water: 1493 M/Sec

Core	SOUND VELOCI	TY - M/Sec	AVE RAGE
DEPTH (CM)	2ero Degree Plane	90 Degree plane	SOUND VELOCITY (M/Sec)
5. U	1727	1745	1736
10.0	1734	1734	1734
15.0	1724	1724	1724
20.0	1773	1759	1766
25.0	1730	1730	1730
30.0	1689	1702	1695

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 6 (D6)

Cruise Number: BURMMS Latitude: 36 56.6 N Date Analyzed: 3 Aug 81 Ship: CGC Madrona Longitude: 76 2.0 W Date Completed: Aug 81

Insitu Salinity: 26.84 ppt Insitu Temperature: 17.31C water Depth: 10.0M Sound Velocity of Bottom Water: 1507 M/Sec

Core	SOUND VELOCI		AVERAGE
DEPTH (CM)	Zero Degree Plane	90 Degree plane	SOUND VELUCITY (M/Sec)
5.0	1736	1754	1745
10.0	1744	1744	1744
15.0	1733	1733	1733
20.0	1783	1768	1776
25.0	1739	1739	1739
30.0	1698	1711	1705

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 6 (D6)

Cruise Number: Ship: CGC Madro	<i>L</i> atitude : Longitude:	 56. 6 2. U	 Date Analyzed : Date Completed :	3 Aug 81 Aug 81
Insitu Salinity:	Insitu Tem city of Botto		B3C water Depth: B M/Sec	10.UM

Core	SOUND VELUCI	FY - M/Sec	AVE RAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
5.0	1749	1767	1758
10.0	1757	1757	1757
15.0	1746	1746	1746
20.0	1796	1781	1769
25.0	1753	1753	1753
30.0	1711	1724	1718

in M/SEC at INSITU CONDITIONS

į

1

I

188

Core Number 7

Core Visual Description Sheet

SAMPLE: CORE 7 LATITUDE: 36°95.6'N LONG! CORE LENGTH: 25 cm CORE F DATE TAKEN: 3 AJIC 81 ANALY	TUDE: 76 PENETRA' ST: L.	LONGITUDE: 76°02.11°4 CORE PENETRATION: UNKNOWN ANALYST: L. H. REYNOLDS		LABORATORY REPORT WATER DEPTH: 10 m SAMPLER TYPE: DIVER DATE: AUGUST 1981	75 WER		
VISUAL OBSERVATIONS	DEPTH (cm.)	SKETCH	COLOR	LAB. NO.	SAMPLE INTERVAL (cm.)	SEDIMENT TYPE (Visual)	
			5Y4/3	557-33	8 - 0	Sand	
	- 5	• • • • • • • • • • • • • • • • • • •					
0-18 cm: Moderately mottled (5GY3/1). Several .58 cm thickness slightly							
inclined lenses of fine sand in a medium to coarse sand matrix. A small amount of shell fragments. Gradational change in color				557-34	8 - 18		
	- 10						
		• • • •					
	- 15						
		• • • •	->				
			N3/	557-35	18-25	Silty Sand	
18-25 cm: Lightly mottled (5Y3/2). A small amount of shell freaments.	- 20						
		• • • •					_
•		· · · · · · · · · · · · · · · · · · ·					
		25 cm					
			1				
			<u></u>				
	1						
			1.1				
	1						
	1						
			-, -,				
							_

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAB ITEM NUMBER: 557 CORE NUMBER:05

acalculater, assuming 100% saturation, from the relationship:

Wer unit weight = Sp. Grv + (1 + (%moisture / 100)) / 1 + (Sp. Grv + (%moisture / 100))

Sediment Size and Composition Data

CRUISE DURMY!	S TAKEN BAUSBI DEPTH 10.0			DEN SQUARE 115 R Type	LENGTH PENETRATION	25.0	ANALYZED	APR*2
	SUNSAMPLE ID.	557 33 •?= 8•0	557 % 3.0-18.0	557 35 18.0-25.0				
DIA* (PHI)	DIAM (wm)	PERCENT	PERCENT	PERCENT				
<-4	>16.2D3							
-4 17 -3	1e.000 to 8.000	.000	.000	.000				
-3 to -2	£.302 TC 4.000	•073	.073	.268				
-2 10 -1	4.000 TO 2.000	.025	.182	-582				
-1 TO G	2.200 10 1.000	•125	474	.761				
0 TO 1	1.000 70 .500	5.692	9,931	7.002				
1 10 2	-500 TO -250	. 59.074	69.089	65481				
2 10 3	.250 TO .125	23.947	16.614	19.821				
5 TO 4	.125 TO .063	6.419	2.364	9.374				
4 10 5	.765 TO .031	5.717	1.786	2.729				
5 TC 6	010. OT 150.	. 270	.984	.828				
6 TO 7	\$30. 3T 6fC.	.010	.656	•872				
7 TO 8	103 TO 100			4671				
e 10 9	.304 10 .002	.070	.547	.694				
9 TO 10	100. 07 520.	•300	.510	.649				
>11	<.001	.000	10.241	10.265				
	SPAVEL (>2.0 HM)	.025	.255	.850				
	SAND (2.0063 PM)		44.475					
	SILT (.043- 004 WM)		1.972	5 • 101				
	CPAA (<*366 mm)	.000	11.297	11.611				
	"EAN (MM)	.2536	.1363	.1254				
	MEAN (PHI)	1,979	2.776	2.996				
	STANDARD DEVIATION	.919	2.885	2.905				
	CKEMAE22	.577	.956	.889				
	KURTOSIS	1.277	2.376	2.039				
	COLOR (GSA)	544/3	544/3	H37				

Compressional Wave Velocity

Lab Item: 557 Core: 7 (D5)

Cruise Number: BURMMS Ship: CGC Madrona	Latitude: 36 56.6 Longitude: 76 2.1		3 Aug 81
Insitu Salinity: 24.63 p	pt Insitu Temperature:	14.55C water Depth:	10.0M

Core	Sound Velocia	Y - M/Sec	AVERAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
5.0	1752	1741	1746
10.0	1747	1747	1747
15.0	1723	1737	1730
20.0	1737	1726	1731

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 7 (D5)

Cruise Number: BURNMS Latitude: 36 56.6 N Date Analyzed: 3 Aug 81 Ship: CGC Madrona Longitude: 76 2.1 W Date Completed: Aug 81

Insitu Salinity: 28.84 ppt Insitu Temperature: 17.31C water Depth: 10.0M Sound Velocity of Bottom water: 1507 M/Sec

COre DEPTH (CM)	SOUND VELOCITY 2ero Degree Plane	Y - M/Sec 90 Degree plane	AVERAGE Sound Velocity (M/Sec)
5.0	1761	1750	1756
10.0	1757	1757	1757
15.0	1732	1746	1739
20.0	1746	1736	1741

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 7 (D5)

Cruise Number: BURMMS Ship: CGC Madrona	Latitude : Longitude:			Date Analysed : Date Completed :	3 Aug 81 Aug 81
--	--------------------------	--	--	-------------------------------------	--------------------

Insitu Salinity: 31.84 ppt Insitu Temperature: 21.83C Water Depth: 10.0M Sound Velocity of Bottom Water: 1523 M/Sec

Core DEPTH (CM)	SOUND VELOCITY Zero Degree Plane	Y - M/Sec 90 Degree plane	AVERAGE SOUND VELOCITY (M/Sec)		
5.0	1774	1763	1769		
10.0	1770	1770	1770		
15.0	1745	1759	1752		
20.0	1759	1749	1754		

in M/SEC at INSITU CONDITIONS

SHEAR STRENGTH

UT HEATT ON TORES

SHMPLING DEPTH in

Core Number 8

Core Visual Description Sheet

SEDIMENT TYPE (Visual) Gravelly Sand Şapd SAMPLE INTERVAL 01 - 0 10 - 20 20 - 30 38 - 44 30 - 38 MATER DEPTH. 15 m SAMPLER TYPE DIVER (2 1/2") DATE AUGUST 1981 557-36 557-37 557-38 557-39 557-40 LAB. NO. COLOR LONGITUDE: 75°45,1'4
CORE PENETRATION: UNKNOWN
ANALYST: L. M. REYNOLDS To contra SKETCH #5 44 DEPT: . ب - 25 -8 20 35 9 15 -10 SAMPLE CORE 8
LATITUDE \$629.3'N
CORELENGTH 44 cm
DATE TAKEN: 4 AUG 81 30-44 cm: A moderate amount of whole shells and shell fragments. VISUAL OBSERVATIONS 0-30 cm: Homogenous. Distinct change in texture.

FHARKS :

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAG ITEM NUMBER: 557 CORE NUMBER:81

*CALCULATER, ASSUMING 100% SATURATION, FROM THE RELATIONSHIP:

**ET UNIT METGHT = SP. GRV + (1 + (%4015TURE / 1001) / 1 + (SP. GRV + (%MOTSTUPE / 1001)

Sediment Size and Composition Data

COLISE FUPRI SAMPLE B1	TAMEN WAUGBI DEPTH 15+C		59.3r N MARSDE 45.1g W CORER	EN SQUARE 116 Type	LENGTH Penetration	DESYLANA C. PF	APR82
	SUPSAMPLE ID.	557 36	557 37	5*7 15	557 39	557 40	
	DEPTH INTERVAL	•0-10•0	10.0-20.0	20.0-30.0	30-0-34-0	38.0-44.0	
CIAP (FHI)	THEFT WATCH	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	
<-4	>1600	• (60	•~u0	.000	5.615	.000	
-4 TO -3	16.400 10 8.000	• 000	•700	.000	1.993	3-165	
-: 10 -2	6.JCG 10 4.Cgg	• L00	•960	.000	- 000	•300	
-1 10 -1	4.000 TO 2.001	• 1.00	.305	.003	- 186	•C42	
-1 TO)	2.100 10 1.000	.(C9	•016	.049	• 056	.63	
L TO 1	1.Grg TO .503	• ť 70	-187	.036	-074	•D4Z	
1 70 2	•500 TO •250	.304	.9 3C	-361	• 112	-105	
. TO ?	.250 10 .125	16.F41	16.409	24.997	22.183	16.350	
→ TO N	• 125 TO • 063	75+343	75.914	67.845	63 - 816	72.996	
4 TO 5	.C63 TO .O31	7.343	6 • 6 38	6.990	. 874	1.392	
5 to 6	10 .C16	-: ro	.700	•000	-130	.274	
e 10 7	.C16 TO .GQ8	• (00	•060	.000	+ 056	·1C5	
7 10 e	06 10 .004	• 000	.non	.000	- 056	+127	
c TO 9	.CO4 TO .DO2	.00	.000	•000	• 000	.084	
5 TO 10	.602 70 .031	• + CO	• 300	.000	• 037	.148	
>13	<.001	. t GD	201.	.000	4.816	5.105	
	GRAVEL (32.5 MM)	• rcc	•105	.003	7.791	3.207	
	"AND 12.G063 MM1	92.657	97-356	93.008	86.240	89.557	
	SILT (.063- 004 MM)	7.243	5 - 6 38	6.990	1.116	1 - 8 9 9	
	CEPY (C.OC4 MM)	-1 00	•700	.000	4,853	5 • 3 38	
	PEAN (PM)	.(951	-2961	.1005	.1226	.0781	
	PLAN (PHT)	1, 295	7 - 3 79	3 - 315	3.028	3,505	
	STANDARD DEVIATION	.524	•5 19	.548	7.652	2.091	
	SETUNESS	:72	471	176	251	. 376	
	PUFTOSTS	2 - 235	7,893	1.412	1.446	7.56G	
	COLOR (65A)	50 74/1	5674/1	5679/1	5674/1	5674/1	

Compressional Wave Velocity

Lab Item: 557 Core: 6 (B1)

Cruise Number: BURMMS Latitude: 36 59.3 N Date Analyzed: 4 Aug 81 Ship: CGC Madrona Longitude: 75 45.1 W Date Completed: Aug 81

Insitu Salinity: 30.75 ppt Insitu Temperature: 11.46C water Depth: 15.0M Sound Velocity of Bottom water: 1490 M/Sec

Core	SOUND VELOCIT	Y - M/Sec	AVE RAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
5.U	1724	1729	1726
10.0	1729	1724	1726
15.0	1739	1739	1739
20.0	1724	1724	1724
25.0	1724	1724	1724
30.0	1721	1721	1721
35.U	1701	1701	1701
40.0	1705	1702	1703

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 8 (B1)

Cruise Number: BURNMS Latitude: 36 59.3 N Date Analyzed: 4 Aug 81 Ship: CGC Madrona Longitude: 75 45.1 w Date Completed: Aug 81

Insitu Salinity: 32.11 ppt Insitu Temperature: 16.54C water Deptn: 15.0m Sound Velocity of Bottom Water: 1509 M/Sec

Core	SOUND VELOCI	TY - M/Sec	AVE RAGE		
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY		
(CM)	Plane	plane	(M/Sec)		
5.0	1741	1745	1743		
10.0	1745	1741	1743		
15.0	1756	1756	1756		
20.0	1741	1741	1741		
25.0	1741	1741	1741		
30.0	1738	1736	1738		
35.0	1718	1718	1718		
40.0	1722	1719	1720		

Compressional Wave Velocity, Continued

557 Core: 6 (B1) Lab Item:

Date Analyzed : Date Completed : 4 Aug 81 Aug 81 36 59.3 N 75 45.1 w Cruise Number: BURMMS Latitude : Ship: CGC Madrona Longitude:

Insitu Salinity: 33.59 ppt Insitu Temperature: 22.64C v Sound Velocity of Bottom Water: 1528 M/Sec water Depth: 15.0M

Core	SOUND VELUCI	AVERAGE		
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY	
(CM)	Plane	plane	(M/Sec)	
5. u	1758	1763	1761	
10.0	1763	1758	1761	
15.0	1773	1773	1773	
20.0	1756	1758	1758	
25.0	1756	1758	1758	
30.0	1756	1756	1756	
35.0	1735	1735	1735	
40.0	1739	1736	1737	

SUMMARY

of

ACOUSTIC AND SEDIMENT MEASUREMENTS

for

Lab Item: 557 Core: 8 (B)

Core Number 9

Core Visual Description Sheet

SAMPLE: CORE 9 LATITUDE: 36°29.3'N LONGITI CORE LENGTH: 35 cm CORE PE DATE TAKEN: 4 AUG 81 ANALYS	DE: 75º JETRATI	LONGITUDE: 75°45.0°4 CORE PENETRATION: UNKNOWN ANALYST: L. M. REYNOLDS		LABORATORY REPORT. WATER DEPTH: 15 m SAMPLER TYPE DIVER DATE: AUGUST 1981	EPORT. 557 15 m DIVER (2 1/2") 881	
	DEPTH (cm.)	SKETCH	COLOR	LAB. NO.	SAMPLE INTERVAL	SEDIMENT TYPE (Visual)
			/ 5N	557-41	0 - 10	Sand
0-10 cm. Moderately mottled (5Y4/1). A very small amount of shell	Ť					
fragments. Gradational change in mottling.	2					
	1					
		:				
	١				l	
	+			557-42	10 - 20	
	Ť					
	İ					-
	2					
	1					
	Ť			+		
	- 20 -			567 7.3	30 - 36	
	+			27/22	1	
10-35 cm: Lightly mottled (5Y4/1). A small amount of shell fragments.						
	Ť			+		
	- 25 -					
	İ	:		+		
	T			557-44	28 - 35	
	8	:			۱ (
	T			+		
	T			-		
	İ					
	33.		>	1		
		35 cm	•			
		_				
	1			+		
				+		
	T			+		
		•				
				+		
	T					
	,					
	-			1		

REMARKS:

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAB ITEM NUMBER: 557 CORE NUMBER:82

CRUISE NUMBER: BURRMS LATITUDE: 36 59, 3 N MARSDEN SQUARE: 116 CORE TYPE: DATE CORE TAKEN: 4AUSBI SHIP NAME: 10 LONGITHDE: 75 45. 0 W WATER DEPTH : 15.0 M CORE LENGTH: 35.0 CM DATE ANALYZED : APR82

SAMPLING INTERVAL ((M) FROM: ... 10.0 20.0 28.0 35.0

MET UNIT WFIGHT (GRAMS/CCM): 2.07 2.07 2.07 2.07

WET UNIT WFIGHT (GRAMS/CCM): 2.07 2.07 2.07

WATER CONTENT (TORY MEIGHT): 24.2 25.6 25.2 25.0 0010 RATIO : 4.0640 4.0684 4.073 4.0684 1.073 4.0667

POROSITY(X) : 39.25 4.0600 4.0.22 4.0003

*CALCULATED. ASSURING 1002 SATURATION, FROM THE RELATIONSMIP:
WET UNIT MEIGHT = SP. GRV + (1 + (ZMOISTURE / 100)) / 1 + (SP. GRV + (ZMOISTURE / 100))

Sediment Size and Composition Data

CRUISE BURN SAMPLE B2	INS TAKEN 44 UG 81 DEPTH 16+0	LATITUDE 36 59 LONGITUDE 75 46	-30 N HARSDE	N SQUARE 116 Type	LENGTH PENETRATION	35.0	ANALYZED	APR8 2
	subsame to-	- 567 41		467 eg	557 44			
	DEPTH INTERVAL	-0-10-0	10.0-20.0	20.0-20.0	28-0-35-0			
DIAM (PHI)	DIAM (MH)	PERCENT	PERCENT	PERCENT	PERCENT			
<-4	>14 -000	.000	.000	•000	.000			
-4 TO -3	14-000 TO 8-000							
-3 TO -2	8.000 TO 4.000	•000	-394	•075	,000			
-2 TO -1	4-800 TO 2-800	- 997	.042	.275	. 990			
-1 TO 0	2.000 TO 1.000	-067	-144	.125	.004			
5 TO 1	-1+000 ¹⁰ +500	- 152	-250	.100	•019			
1 TO 2	.500 TO .250	.523	. 9 9 6	.150	.070			
2 10 1		21v000 -	29+577	47,446	14 . 325			
3 10 4	-125 TO -063	71,819	62.820	73-839	79.224			
4 TO 5	.063 10 .031	2.019	1.729	2.571	1,914			
5 70 6	-031 TO -016	.214	.167	.349	. 225			
6 TO 7	.016 70 .008	• 990	-043	-050	.028			
7 10 8	-00a TO -004	.119	.042	-175	-089			
8 TO 9	, 004 - 70 - 7002	• 000	w104	-075	. 828			
9 TO 10	•002 TO •001	.048	.104	-125	.056			
>10	<.001	4.038	3-624	2.646	4.025			
	CR MET ()3 'B MM)	-007	-460	.349	.000			
	SAND 12.0063 MM1		93-649	93.660	93,690			
	\$347 4-063- ogs ##1	2-352	5-050	3,146	2.261			
	CLTA IC. DOS MM)	4.086	3 - 8 33	2.846	4,109			
	MEAN (MM)	•0 ⁸ 32	-0 92 4	-0875	.0786			
	HEAM (PHI)	3,507	3 - 4 36	3-514	3,669			
	STANDARD DEVIATION	1.514	1 - 5 52	1 - 326	1,471			
	- 5KFUNESS	1-070	1-507	1-673	\$1012			
	MURTOSIS	14.656	19.016	19.390	16.016			
	COLOR (65A)	H4/	N9/	H4/	No./			

Compressional Wave Velocity

Lab Item: 227 Core: 9 (B2)

Cruise Number: Ship: CGC Madro	 Latitude : Longitude:	 59. 45.	_	 Date Analy Date Comp		4 Aug 81 Aug 81
Insitu Salinity:	Insitu Ter				Depth:	15.0M

Core DEPTH (CM)	SOUND VELOCIT Zero Degree Plane	Y - M/Sec 90 Degree plane	AVERAGE Sound Velocity (M/Sec)		
(CH)	LTGHE	brane	(A/Sec)		
5.0	1719	1708	1713		
10.0	1715	1713	1714		
15.0	1729	1729	1729		
20.0	1729	1729	1729		
25.0	1729	1719	1724		
30.0	1708	1706	1707		

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 9 (B2)

Cruise Number: BURMMS Latitude: 36 59.3 N Date Analyzed: 4 Aug 81 Ship: CGC Madrona Longitude: 75 45.0 W Date Completed: Aug 81

Insitu Salinity: 32.11 ppt Insitu Temperature: 16.54C water Depth: 15.0M Sound Velocity of Bottom Water: 1509 M/Sec

Core DEPTH	SOUND VELOCIT Zero Degree	AVERAGE SOUND VELOCITY (M/Sec)		
(CH)	Plane	plane	(N/Sec)	
.5.0	1736	1725	1730	
10.0	1732	1730	1731	
15.0	1746	1746	1746	
20.0	1746	1746	1746	
25.0	1746	1736	1741	
30.0	1725	1723	1724	

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 9 (B2)

4 Aug 81 Aug 81 Date Analyzed : Date Completed : Cruise Number: BURNAS Latitude : 36 59.3 N Ship: CGC Madrona Longitude: Water Depth: 15.0M Insitu Temperature: 22.64C

Insitu Salinity: 33.59 ppt Insitu Temperature: Sound Velocity of Bottom Water: 1528 M/8ec

Core	SOUND VELOCI?	TY - M/Sec	AVE RAGE
DEPTH (CM)	Zero Degree Plane	90 Degree plane	SOUND VELOCITY (M/Sec)
5.0	1753	1742	1748
10.0	1750	1748	1749
15.0	1763	1763	1763
20.0	1763	1763	1763
25.0	1763	1753	1758
30.0	1742	1740	1741

in M/SEC at INSITU CONDITIONS

3.50 July 200

Core Number 10

Core Visual Description Sheet

	LONGITUDE 75°38.4"% CORE PENETRATION, UNKNOWN	⁰ 38.4°3 TION, UNKNOWN		LABORATORY REPORT WATER DEPTH 25 m SAMPLER TYPE DIVER	ORT 557 m IVER (2 1,2")	
CEN 4 15G 81	ANALYST L.	L. M. REYNOLDS		DATE AUGUST 19	1981	
VISUAL OBSERVATIONS	Cm)	SKETCH SKETCH	COLOR	LAB. NO.	SAMPLE INTERVAL	SEDIMENT TYPE (Visual)
	-		N3/	557-45	0 - 10	Silty Sand with light
	i L_1 —					
				1		
	10 -					
	-			22/-40	ı	
	:			† ! !		
			-			
	- 15					
				1		
						;
	20					
0-42 cm: Homogenous sand top to bottom with some light mottling				257-47	20 - 30	
infolgation me core.						
	<u> </u>					
	- 25 -					
	Ì					
				+		
	1 8 1		_	66.7 693	-	
			_	22/-40	20 = 42	
	07		_			
			>			1
	-	42 cm				
	' 					
	1					
	i _1					
	_			_	•	

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties
LAB TYEM NUMBER: 557 CORE NUMBER:C1-2

CRUISE NUMBER SUMME: SAME LATITUDE: 37 1. 3 N MARSDEN SOURRE: 116 CORER TYPE: DATE CORE TAKEN: QAUGA!
SMIP NAME: 75 38. 9 W WATER DEPTH : 23.0 4 CORE LEMBTH: Q2.0 CM DATE ANALYZED : APRO2

TE MAD ...

*CALCULATED, ASSUMEND 1003 EATUMATION, FROM THE RELATIONSHIP:

WET UMIT MEIGHT = SP. GRV + (1 + (SMOISTURE / 100)) / 1 + (SP. GRV + (SMOISTURE / 100))

Sediment Size and Composition Data

CRUISE BURN SAMPLE C1-2			1.30 N HARSDE 38.40 W CORER	N SQUARE 116 Type	LENGTH PENETRATION	42.0	ANALYZED	APR82
	SUBSAMPLE ID.	557 45	557 44	557 47	557 40			
	DEPTH INTERVAL	.0-10.0	10.0-20.0	20.0-30.0	30-0-42-0			
DIAM (PHI)	DIAM SMM	PERCENT	PERCENT	PERCENT	PERCENT			
<-q	> 16 - 000	.000	•200	•000	• 000			
-4 70 -3	14-000 74-0-000	- 000	.000	•000	• 900			
-3 To -2	8.000 TO 4.000	.000	•000	•000	- 000			
-2 10 -1	4.000 TO 2.000	.047	•019	-019	- 036			
-1 70 0	2-000 TO 1.000	•070	•009	.038	.072			
0 10 1	1-000 70 -500	-187	.0 50	.057	• 072			
1 70 2	.500 70 .250	.529	-373	• Ž8 3	- 145			
5 to -3-	*250 TO *129	0.400	21v730	33.420	39 - 629			
3 70 4	·125 TO ·043	#3,375	72.146	59.397	50 - 208			
4 70 5	.063 10 .031	2-506	1.912	1.905	2 - 045			
5 70 6	.031 TO .016	. 362	•240	.283	• 30B			
• 10 7	. 014 70 . 00 0	• 111	•e 7e	.113	• 145			
7 10	-004 TO -004	.111	-117	-132	- 163			
0 - 10 1		- +111		132	• 265 · · ·			
9 TO 10	.002 TO .001	. 167	.1 17	-170	- 161			
>10	4,001	3.959	3+474	4.094	7.437			
	6848EL 432,0 mm	.047	v 0 1 4	-01+	. 036			
	SAND (2.0063 MM)		93.923	93.152	89.122			
	5-343 +v04-3- 004 MM	3v091		2.434	2.661			
	CLAY 6<.004 MM)	4.233	3 - 6 84	4.395	0.18i			
	MEAN (MM)	•n755	-0 64 6	.0088	-0765			
	MEAN (PHE)	3, 726	3-563	3.493	3. 709			
	STANDARD DEVIATION	1.479	1 - 4 3 4	1.508	2.096			
	-34644695	1+988	1-991	1.792	1 - 329			
	RURTOSTS	15.205	16,692	13.159	5 - 0 8 3			
	COLOR (65A)	N3/	W3/	m3/	41/			

Compressional Wave Velocity

Lab Item: 557 Core: 10 (C1-2)

Cruise Number: BURMAS Latitude: 37 1.3 N Date Analyzed: 4 Aug 81 Snip: CGC Madrona Longitude: 75 38.4 w Date Completed: Aug 81

Insitu Salinity: 30.75 ppt Insitu Temperature: 11.46C water Depth: 23.0M Sound Velocity of Bottom water: 1490 M/Sec

SOUND VELOCITY - M/Sec dero Degree 90 Degree Core AVE RAGE DEPTH SOUND VELOCITY Zero Degree (CM) Plane (M/Sec) plane 5.0 1685 1692 1688 10.0 1692 1692 1692 1709 15.0 1709 1709 20.0 1702 1702 1702 25.0 1702 1702 1702 30.0 1695 1702 1698 1702 35.0 1702 1702

in M/SEC at INSITU CONDITIONS

and the same

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 10 (C1-2)

Cruise Number: BURMMS Latitude: 37 1.3 N Date Analyzed: 4 Aug 81 Ship: CGC Madrona Longitude: 75 38.4 W Date Completed: Aug 81

Insitu Salinity: 32.11 ppt Insitu Temperature: 16.54C Water Depth: 23.0M Sound Velocity of Bottom Water: 1509 M/Sec

Core	SOUND VELOCIT	Y - M/Sec	AVE RAGE		
DEPTH	žero Degree	90 Degree	SOUND VELOCITY		
(CM)	Plane	plane	(M/Sec)		
5.0	1702	1709	1705		
10.0	1709	1709	1709		
15.0	1726	1726	1726		
20.0	1719	1719	1719		
25.0	1719	1719	1719		
30.0	1712	1719	1715		
35.0	1719	1719	1719		

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 10 (C1-2)

Cruise Number: BURMMS		37 1.3 N	Date Analyzed :	4 Aug 81
Ship: CGC Madrona		75 36.4 W	Date Completed :	Aug 81
Taribu Calindana 33 50 mmh	Tanibu Mas		AAC hater Denth :	23.04

Insitu Salinity: 33.59 ppt | Insitu Temperature: 42.04C | Sound Velocity of Bottom Water: 1528 A/Sec

COre DEPTH	SOUND VELOCIT	I'Y - M/Sec 90 Degree	AVERAGE SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
5.0	1719	1726	1722
10.0	1726	1726	1726
15.0	1743	1743	1743
20.0	1736	1736	1736
25.0	1736	1736	1736
30.0	1729	1736	1732
35.0	1736	1736	1736

in M/SEC at INSITU CONDITIONS

-

7 . .

SUMMARY

of

ACOUSTIC AND SEDIMENT MEASUREMENTS

for

Lab Item: 557 Core: 10 (C1-2)

188

Core Visual Description Sheet

SAMPLE CORE 11
LATITUDE. 37-01.4'N LONGITUDE: 75° 38.4'W WATER DEPTH: 23 m CORE LENGTH 52 cm CORE PENETRATION: UNKNOWN SAMPLER TYPE DIVER (2 1/2")
DATE TAKEN 4 AUG 81 ANALYST: L. M. REYNOLDS DATE: AUGUST 1981

VISUAL OBSERVATIONS	DEPTH CORE	1	COLOR	0 M	SAMPLE INTERVAL	SEDIMENT TYPE	Г
		5	17.72		(cm.)	(Visual)	7
		 	214/1	27-/22	0 10	Silicy Sand	7
		• • •					7
	T	• • •					П
	· · · · · · · · · · · · · · · · · · ·						
	···	• • •		:			7 1
0.20 cm. Heavily monified silty sand (N21). Gradational change in both color		•••					T
-	- 10 -			457-50	W. W.		7 1
_		• • •		20-100	10 = 20		7
							_
	Ï	• • •					-
	- 15			1			ГТ
							-
	 T						_
	T		->	1			, ,
	R 2		1/%x55	13.53	20 - 30	Sand	_
			1/2	*		ogine.	_
	···			1			, ,
	25	• • • •					-
	···						
	T	• • •					_
	- 30	· · ·		557-52	30 - 40		, ,
		• • •			1		
	· · · · · · · · · · · · · · · · · · ·	•••		1			
20-52 cm: Mornogenous and to bottom	32	•••		+			
							-
		•••		+			·
		•••		 			
	- 07	• • • •		557-53	65 - 07		
	· · ·				1 1		
	· · · · · · · · · · · · · · · · · · ·	• • • •					_
	4.5	· · ·	L.1				
	T	• • •		1			
				+			
							_
		•••		+			
		-	4	+			

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAR ITEM NUMBER: SS7 CORE NUMBER:C1+3

SHIP NAME: LONGITUDE:		RSDEN SQUARE: 136 CORER TYPE : TER DEPTH : 23.0 M CORE LENGTH:	.DATE CORE TAKEN: 4AUG81 52.0 CM DATE ANALYZED : APR81
SAMPLING INTERVAL ((*) FROM: TO :	.^ 10.C 10.3 20.0	20.0 30.0 40.0 30.0 40.0 52.0	
MET UNIT WEIGHT (GRAMS/CCM): SPECIFIC GRAWITY GE COLLES: WATER (ONTENT (TENT WEIGHT): WOID KATIO SATURATED VOID PATIO PORCSITY(T)	1,00 . 2.01 2.67 . 24.8 2.694662 2.694662 40.98 . 39.84	* 2.02 * 2.00 * 2.01 2.67 2.67 2.67 23.8 25.1 24.3 * 635 * 620 * 649 * 18.86 * 40.13 * 39.35	

*CALCULATED. ASSUMING 1002 SATURATION. FROM THE RELATIONSHIP:

WET UNIT WEIGHT = SP. GPV + (1 < (ZMOISTURE / 100)) / 1 + (SP. GRV + (ZMOISTURE / 100))

Sediment Size and Composition Data

CPUISE RUPHH SAMPLE C1-3	S TAMEN 4AUG81 DEPTH 23.0		1.40 N MARSO 38.40 W CORER	EN SQUAPE 116 Type	LENGTH PENETRATION	52.0 ANALYZED	APRRZ
	SURSAMPLE ID.	557 49	557 50	557 51	557 52	557 53	
	DEPTH INTERVAL	-0-10-0	10.0-20.0	20.0-30.0	30.0-40.0	40.0-52.0	
DIAM (PHI)	DIAM (MM)	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	
<-4	>16 .000	.000	.000	.000	-000	.000	
-4 to -3	16.000 10 8.000	• 000	-000	.000	• 000	-00C	
-3 TO -2	8.000 TO 4.000	• 600	-300	.000	, 300	-000	
-2 10 -1	4.000 TO 2.000	.000	.0 73	.000	• 000	•000	
-1 10 3	2.000 TO 1.000	.048	-110	.017	.012	.012	
5 to 1	1.300 10 .500	-119	-201	.047	.019	.019	
1 TO 2	.5CQ TO .250	. 357	-513	.164	.091	.193	
2 TO 3	.250 10 .125	10.530	34.584	62.137	34.771	21-606	
S TO 🗣	• 125 TO • 06 3	70.005	52,984	59.600	58 - 328	69-102	
4 TO 5	.063 TO .031	2.783	2.343	2.291	2.037	4.078	
5 10 6	.031 TO .016	-642	. 9 34	. 309	. 279	.403	
6 10 7	.016 70 .008	. 333	-6 04	.100	- 120	.116	
7 TO F	.00a TO .004	.452	. 4 9 4	.210	• 137	, 77	
e 01 s	-004 TO .002	. 309	.444	-117	- 006	•B v '	
9 10 10	.002 70 .001	. 262	. 4 58	.164	.137	•135	
>10	₹.001	6,161	L . Z Q7	4.815	3.989	9.121	
	ERFVEL 197.0 MMI	• 000	.073	.000	• 000	• 0 0 0	
	SAND (2.0063 MM)	89.058	88.393	91,960	93.220	85.931	
	SILT 1.063- 009 HH1	9.210	4.376	2,945	2.568	9.759	
	CLAY {<.004 MM}	6-732	7.159	5.095	4.212	9.315	
	MEAN (MH)	.6702	-0771	-0843	.0899	.0631	
	HEAN (PHI)	3, 033	3.696	3.568	3.476	3.986	
	STANDARD DEVIATION	1.858	1 . 9 76	1.691	1.563	2.146	
	SKEWNESS	1.463	1 - 3 32	1.606	1.640	1 • 2 5 1	
	MUPTOSIS	7 - 729	6,456	#1.Q*Q	13-003	4.677	
	COLOR (65A)	579/1	579/1	5679/1	5679/1	4674/1	

Compressional Wave Velocity

Lab Item: 557 Core: 11 (C1-3)

Cruise Number: BURNMS Latitude: 37 1.4 N Date Analyzed: 4 Aug 81 Ship: CGC Madrona Longitude: 75 38.4 W Date Completed: Aug 81

Insitu Salinity: 30.75 ppt Insitu Temperature: 11.46C Water Depth: 23.0M Sound Velocity of Bottom Water: 1490 M/Sec

Core	SOUND VELOCIT	Y - M/Sec	AVERAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CH)	Plane	plane	(M/Sec)
5.0	1698	1698	1698
10.0	1657	1657	1657
15.0	1723	1723	1723
20.0	1708	1708	1708
25.0	1708	1708	1708
30.0	1708	1705	1706
35.0	1695	1695	1695
40.0	1695	1695	1695
45.0	1695	1695	1695

Compressional Wave Velocity, Continued

Lab Item: Core: 11(C1-3) 557

Cruise Number: BURMMS Date Analyzed : Latitude : 4 Aug 81 Ship: CGC Madrona Date Completed : Longitude:

Insitu Salinity: 32.11 ppt Insitu Temperature: 16.54C Sound Velocity of Bottom water: 1509 M. 23.0M

1509 M/Sec

Core	SOUND VELOCIT	TY - M/Sec	AVERAGE
Depth	žero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
5.0	1715	1715	1715
10.0	1674	1674	1674
15.0	1740	1740	1740
20.0	1725	1725	1725
25.0	1725	1725	1725
30.0	1725	1722	1723
35.0	1712	1712	1712
40.0	1712	1712	1712
45.0	1712	1712	1712

In M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 11 (C1-3)

Cruise Number: BURAMS Latitude: 37 l. 4 N Date Analyzed: 4 Aug 81 Snip: CGC Madrona Longitude: 75 38. 4 W Date Completed: Aug 81

Insitu Salinity: 33.59 ppt Insitu Temperature: 22.64C Water Deptn: 23.0M Sound Velocity of Bottom Water: 152d M/Sec

Core	SOUND VELOCIT	Y - M/Sec	AVERAGE
Depth	Zero Degree	90 Degree	Sound velocity
(0.4)	Plane	plane	(M/Sec)
5.J	1732	1732	1732
LU.J	1692	1692	1692
la.J	1757	1757	l757
20.J	1742	1742	1742
25.0	1742	1742	1742
30.3	1742	1739	1741
35.0	1729	1729	1729
40.0	1729	1729	1729
45.J	1729	1729	1729

in M/SEC at INSITU CONDITIONS

un menutati ya

Core Visual Description Sheet

SAMPLE: CORE 12 LATITUDE: 36°59.3'N LONG CORE LENGTH: 48.5 cm CORE	LONGITUDE: 7 CORE PENETRA'	LONGITUDE: 76°10.8"W	LABOR WATER	LABORATORY REPORT: 557 WATER DEPTH: 10 m SAMPLER TYPE: DIVER (2.1	EPORT: 557 10 m DIVER (2 1/2")	
	/ST. L. M	ANALYST: L. M. REYNOLDS	DATE	AUGUST 1981		
VISUAL OBSERVATIONS	OEPTH (cm.)	SKETCH	COLOR	LAB. NO.	SAMPLE INTERVAL	SEDIMENT TYPE (Visual)
0.9 cm. Modertrash moviled (NM.) Strong fishs odor. New soft			5G3/1	557-54	6 - 0	Clayey Silt
Gradetional change in color and texture.	2					
	10			557-55	9 - 17	Silty Clay
9-17 cm: Homogenous. Gradational change in color and texture.						
	51		~~>			
			\$GY3/1	557-56	17 - 26	Silty Sand
17-26 cm: Soft at top of interval, stiffening downward. Large shell (3 cm) prevented shear strength measurement. Distinct change due to	- 20					
opposition of cross in the core.	\[\frac{1}{2}					
				557-57	26 - 53	
26-33 cm: Soft material with many cracks (disturbance) throughout the interval. Gradational change due to disappearance of the cracks.	30					
	35			557-58	33 - 40	
33-40 cm: Same material as in above interval but it is not disturbed. Gradational change in texture.						
				557-59	40 - 48.5	Sand Silt Clay
40-48.5 cm: Homogenous to bottom.	- 45					
			-			
		48.5 cm				

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAB ITEM NUMBER: 557 CORE NUMBER:HI

CRUISE NUMBER: PURMMS LATITUDE: 36 59. 3 N MARSDEN SQUARE: 116 CORER TYPE: DATE CORE TAKEN: SAUGAL TO 10.8 W WATER DEPTH: 13.0 4 CORE LENGTH: 48.5 CM DATE ANALYZED: APROL LONGITUDE: TAMPLING INTERVAL (CM) FROM: 9.0 17.9 -ET UNIT WEIGHT (GFAMS/CCM):

'PECIFIC GRAVITY OF SOLIDS:
-ATEC CONTENT (EDRY WEIGHT):
VOID HATIO
'ATURATED VOID RATIO
:
CORSITYET)
: + 1.71 2+67 50+4 *1-346 *1-346 *57-37 1.88 7.67 33.7 • .900 • .900 1 · 8 3 2 · 6 7 38 · 2 •1 · 0 2 0 •1 · 0 2 0 • 50 · 4 9 * 1.79 2.67 42.1 *1.124 *1.124 FOROSITY:,
COHESION
NATURAL (FM/SO CM):
FENCLE (CM/SC CM): 28.5 'ENSITIVITY 4.80 E MAPKS:

*CALCULATE(, ASSUMING 107% SATURATION, FROM THE RELATIONSHIP:

FT UNIT MEIGHT = SP. GRV + (1 + (%MOISTURE / 1001) / 1 + (SP. GRV + (%MOISTURE / 1001)

Sediment Size and Composition Data

CAUTSE DURAN	S TAKEN SAURBI BEPIM 10.0			EN SQUARE 116 Type	LENGTH PENETRATION	43.5 ANALYZI	D APRP1
	- OL BLOWARDUS	\$57 54	557 55	557.54	557 57		\$57 59
	DESTH INTERVAL	•n- 9.0	9.0-17.0	17.0-26.3	26.0-34.0	33.0-40.0	40.0-49.5
CIAT (PHI)	DIAM (MM)	PERCENT	PFRCENT	PERCENT	PERCENT	PERCENT	PERCENT
<-4	>16.000	.300	.000	•000	•200	•333	• 220
-4 IO -1	16.300 10 8.000	-000	000		-000		
-3 10 -2	8.700 TO 4.000	.010	.107	. 195	.700	. 220	.000
-2 TO -1	4.000 TO 2.000	.034	.000	.113	-000	-000	-100
-1 to 3	2.000 to 1.000	.0*9	.081	.081	.012	.521	. 103
0 70 1	1.000 TO .500	+070	.124	.157	.023	-033	.031
1 10 2	.5°0 TO .25°	.376	•522	.552	.115	.133	. 092
2 10 -1	250 10 .125		4-248	2.209		1-744	1.218
3 10 4	.125 TO .C63	45.441	44.682	43.287	53.180	62.255	59.661
4 TO 5	.063 10 .031	13.339	11.554	12.384	11.340	12-092	12.270
5 TO 6	•931 TO •016	5.593	6.431	4.390	3.864	3.104	3.926
6 10 7	800. OT ALD.	2.545	3.273	2.733	2.001	1.834	1.940
7 10 5	.028 TO .004	2.629	3.654	2.180	1.587	1.833	1.718
a 10 _ 9	-004 10 -003	1.538	2.397	1.832		1.212	1.288
9 TO 10	.002 TO .001	1.594	2.183	1.832	.966	1.419	1.503
>10	.c.001	23.965	20.241	28.054	18.999	- 14-339	15.950
	GRAVEL (22.0 MM)	.034	-107	.304	.000		.000
	SAND (2.0063 FM)		49.658	46.288	60.023	64.196	61.134
	CHE AND -PAN-1 TIP.		25.414	21.687	18.792	18.833	19.754
	CLAY (<.004 PM)	27.097	24.821	31.717	21.185	16.971	15.742
	TEAN (WH)	.0188	.0205	.015A	.0273	•0326	.0296
	MEAN (PMI)	5.736	5.605	5.988	5.193	4.934	5.076
	STANDARD DEVIATION	2.952	2.880	3.121	2.806	2.550	2.434
	SKEPNESS		198	268		-745	679
	FURTOSIS	-1.176	902	-1.322	-,349	.548	.136
	(429) #0103	563/1	563/1	5GY3/1	5GY3/1	5GY3/1	5GY3/1

Compressional Wave Velocity

Core: 12 (H1) Lab Item: 557

Date Analyzed : Date Completed : 36 59.3 N 76 10.8 W Cruise Number: BURNUS Latitude : Aug 81 Ship: CGC Madrona Longitude:

Insitu Salinity: 24.63 ppt Insitu Temperature: 14.55C to Sound Velocity of Bottom Water: 1493 M/Sec Water Depth: 10.0M

Core	SOUND VELOCI	TY - M/Sec	AVERAGE		
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY		
(CN)	Plane	plane	(M/Sec)		
10.0	1537	1537	1537		
15.0	1551	1551	1551		
20.0	1604	1604	1604		
25.0	1569	1580	1584		
30.0	1580	1580	1580		
35.0	1625	1625	1625		
40.0	1616	1616	1616		

in M/SEC at INSITU CONDITIONS

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 12 (H1)

Cruise Number: BURNMS Latitude: 36 59.3 N Date Analysed: 4 Aug 81 Ship: CGC Nadrona Longitude: 76 10.8 W Date Completed: Aug 81

Insitu Salinity: 26.84 ppt Insitu Temperature: 17.31C Water Depth: 10.0M Sound Velocity of Bottom Water: 1507 M/Sec

Core	SOUND VELOCIT	Y - M/Sec	ave rage
DEPTH	Zero Degree	90 Degree	Sound velocity
(CN)	Plane	plane	(M/Sec)
10.0	1546	1546	1546
15.0	1560	15 6 0	1560
20.0	1613	1613	1613
25.0	1598	1589	1593
30.0	1589	1589	1589
35.0	1634	1634	1634
40.0	1625	1625	1625

in M/SEC at INSITU CONDITIONS

Compressinal Wave Velocity, Continued

Lab Item: 557 Core: 12 (11)

Cruise Number: BURNMS Latitude: 36 59.3 N Date Analyzed: 4 Aug 81 Ship: CGC Madrona Longitude: 76 10.8 W Date Completed: Aug 81

Insitu Salinity: 31.84 ppt Insitu Temperature: 21.83C Water Depth: 10.0M Sound Velocity of Bottom Water: 1523 M/Sec

Core	SOUND VELOCI:	IY - N/Sec	AVE RAGE
DEPTH	lero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
10.0	1559	1559	1559
15.u	1573	1573	1573
20.0	1626	1626	1626
25.0	1611	1602	1606
30.0	1602	1602	1602
35.0	1647	1647	1647
40.0	1638	1638	1638

in M/SEC at INSITU CONDITIONS

مداني محال ده العجاد

TOTAL FINES

30 28

SHMPLING DEPTH IN

4

38

SHAPLING DEPTH

Core Visual Description Sheet

SAMPLE: CORE 13
LATITUDE: 36°58.5'N LONGITUDE: 76°02.3'W WATER DEPTH: 10 m CORE LENGTH: 55 cm CORE PENETRATION: UNKNOWN SAMPLER TYPE: DIVER (2 1/2")
DATE: TAKEN: 6 AJIC 81 ANALYST: L. M. REYNOLDS DATE: AUGUST 1981

	N. COTO	,		H	CAMBIE INTERVAL	T CENIMENT TYPE
VISUAL OBSERVATIONS	(cm.)	SKETCH .	COLOR	LAB. NO.	(cm.)	(Visual)
			5GY4/1	257-60	0 - 10	Silty Sand
		• • • • • • • • • • • • •				
	, ,					
0-13/17 cm: Managements Firm seal[newbed send Distinct change due		• • • • • • • • • • • • • • • • • • •				
to color.						+
	01			557-61	10 - 13/17	
•		· · · · · · · · · · · · · · · · · · ·	>			
			/EN	557-62	13/17 - 20	
	- 15	./				
13/17-20 cm: Homogenous. Small amount of shell fragments throughout		//: :::				
interval. Gradational change due to appearance of mortling.						
	20			557-63	20 - 30	
		••				
	- 25					
		· · · · · · · · · · · · · · · · · · ·				
	30			557-64	30 - 40	
20-48 cm: Liabily motified (5C3/1). Small amount of shell fraaments.						
increasing downward with depth to a moderate amount between						
38 and 41 cm. Gradational change due to increase in mottling.	- 35 -	 				
	0,7			557-65	40 - 48	
		•••				
	45					
		••••				
		•••				
46-55 cm: Heavily monthed (5G3/1). Monthed material is horizontally				557-66	48 ~ 55	
oriented in lenses that vary in thi	8					
Very indiginal eoges. Very small amount of shell fragments.	5.5	. 55 cm	*			J 55 cm

Bottom Sediment Analysis Summary

Engineering and Mass Physical Properties

LAR ITEM NUMBER: 557 CORE NUMBER:51

[MACKS:

*CALCULATEC, ASSUMING 100% SATURATION, FROM THE RELATIONSHIP:

WET UNIT WEIGHT = SP. GRV * (1 * (%) MOISTURE / 100)) / 1 * (SP. GRV * (%) MOISTURE / 100))

Sediment Size and Composition Data

COLISE FURNMS	S TAKEN SAUGBI DEPTH 15-0		58.50 N 2.30 W	MARSDEN SQUARE CORER TYPE		NGTH NETRATION	55.0 ANAL	YZED APRB1
	SUPSAMPLE ID.	557 67	557 61	557 62	557 63	557 64	557 65	557 66
	DEPTH INTERVAL	-9-10-0	10.0-17.0	17.0-20.0	20.0-30.0	30 • 0 - 40 • C	40.0-48.0	48.0-55.0
DIAM CPHIL	DIAM EMMS	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
<-4	>16.000	• 000	.000	.000	• 000	•000	-000	• 000
-4 TO _3	16.000 10 8.000	- 000	.000	.000	.000	-000	-000	.000
- 2 TO -2	8.000 10 4.000	.000	-700	.000	• 000	-608	.000	- 000
-2 TO -1	4. COD 10 2.000		.013	.083	- 000	•0.00	-046	.000
-1 TO 0	2.000 TO 1.000	.05	-009	-128	. 130	.005	-007	.070
⊌ TO 1	1.000 10 .700	-D44	.056	.180	. 151	-031	-161	-116
1 10 2	. 500 TO - 50	.224	.243	.498	. 606	- 305	.738	. 581
2 70 3	.250 TO .125	43.574	49.493	46.688	47,101	49.585	51.264	36.252
3 To 4	-125 10 -063	47.708	41.469	41.830	42.428	41.337	39.393	50.046
4 70 5	.663 70 .031	8.424	1 - 4 96	1.612	1.363	6.084	1.083	2.067
5 TQ 6	.031 70 .016	-000	. 3 37	.379	.411	-000	.254	.650
6 10 7	.016 TO .0DE	.000	.094	-166	. 411	-000	-115	.418
7 TO 8	.CG# TO .DG4	.000	.112	.190	. 108	-000	+138	.511
4 10 9	.004 TO .002	.000	.168	.166	. 281	2,573	.115	• 395
9 TO 10	.CO2 TO .OD1	.000	.131	.190	. 195	.000	-161	- 348
>10	<.001	. 000	6.378	7.892	6.815	.000	6,523	8.546
	GRAVEL 132,0 MMT	•071	.013	.083	.000	.00g	•046	.000
	54ND 12.0063 MM3		91.270	89.323	90.415	*1.343	91.564	P7-065
	5117 t.063- ggs MH;		2.039	2.346	2.293	6.084	1.590	3 - 646
	CLAY (<.004 MM)	• 600	6 - 6 78	8.247	7.291	2.573	6.800	9.289
	MEAN (MM)	.1133	-0ae0	-0815	.0855	.1100	-9907	.0706
	HEAN (PHI)	3,141	3 - 4 69	3-617	3,548	3,185	3.462	3.825
	STANDARD DEVIATION	.641	1.945	2-141	2.023	1,058	1.976	2 - 209
	SHEUMESS	. 196	1.500	1,302	1.398	1.616	1.476	1.197
	KURTOSTS	.640	8.033	5.704	6.861	13.664	7.784	4.477
	COLOR (65A)	5G74/1	N3/	N 37	43/	N3/	N3/	N3/

Compressional Wave Velocity

Lab Item: 557 Core: 13 (S1)

Cruise Number: BURMMS Latitude: 36 58.5 N Date Analyzeo: 5 Aug 81 Snip: CGC Madrona Longitude: 76 2.3 w Date Completed: Aug 81

Insitu Salinity: 30.75 ppt Insitu Temperature: 11.46C Water Depth: 23.0M Sound Velocity of Bottom Water: 1490 M/Sec

Core	SOUND VELOCIT	Y - M/Sec	AVE RAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CH)	Plane	plane	(M/Sec)
5.0	1720	1720	1720
10.0	1716	1716	1716
15.0	1706	1710	1708
20.0	1679	1706	1692
25.0	1685	1682	1684
30.0	1672	1692	1682
35.0	1682	1686	1685
40.0	1688	1688	1688
45.0	1688	1692	1690
50.0	1692	1692	1692

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 13 (S1)

Cruise Number: BURMMS Latitude: 36 58.5 N Date Analyzed: 5 Aug 81 Ship: CGC Madrona Longitude: 76 2.3 W Date Completed: Aug 81 Insitu Salinity: 32.11 ppt Insitu Temperature: 16.54C Water Depth: 23.0M Sound Velocity of Bottom Water: 1509 M/Sec

Core	SOUND VELOCI:	ry - M/Sec	AVERAGE
DEPTH	Zero Degree	90 Degree	SOUND VELOCITY
(CM)	Plane	plane	(M/Sec)
5.0	1737	1737	1737
10.0	1733	1 733	1733
15.0	1723	1727	1725
20.0	1696	1723	1709
25.0	1702	1699	1701
30.0	1689	1709	1699
35.0	1699	1705	1702
40.0	1705	1705	1705
45.0	1705	1709	1707
50.0	1709	1709	1709

Compressional Wave Velocity, Continued

Lab Item: 557 Core: 13 (S1)

Cruise Number: HURMMS Latitude: 36 58.5 N Date Analyzed: 5 Aug 81 Ship: CGC Madrona Longitude: 76 2.3 w Date Completed: Aug 81

Insitu Salinity: 33.59 ppt Insitu Temperature: 22.64C water Depth: 23.0M Sound Velocity of Bottom water: 1526 M/Sec

Core DEPTH (CM)	SOUND VELOCI'S Zero Degree Plane	TY - M/Sec 90 Degree plane	AVERAGE SOUND VELOCITY (M/Sec)
5.0	1754	1754	1754
10.0	1750	1750	1750
15.0	1740	1744	1742
20.0	1713	1740	1727
25.0	1719	1716	1718
30.0	1706	1726	1716
35.0	1716	1722	1719
40.0	1722	1722	1722
45.0	1722	1726	1724
50.0	1726	1726	1726

Core Number 13

7-

100

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NORDA Technical Note 152 AD-AII8 166	<u></u>
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Geotechnical, Geoacoustical, and Sedimentological Properties of Thirteen Bottom Sediment Cores	Final
Collected in the Shallow Water Approaches to Norfolk, Virginia	6. PERFORMING ORG. REPORT NUMBER
	8. CONTRACT OR GRANT NUMBER(a)
L.M. Reynolds J. Bowman C. Ingram	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Oceanographic Office, Marine Geological Laboratory, NSTL Station, Mississippi 39529	AREA & WORK ONLY NOMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Ocean Research and Development Activity	June 1982
NSTL Station, Mississippi, 39529	13. NUMBER OF PAGES
14 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Distribution Unlimited	
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Tactical ASW Environmental Acoustic Support (TAEA	5)
mine countermeasures (MCM) mine burial prediction	
burial mines	
BURMMS	
20 ABSTRACT (Continue on reverse elde it necessary and identify by block number) Thirteen sea bottom cores were collected by scuba	divers in the shallow water

Thirteen sea bottom cores were collected by scuba divers in the shallow water approaches to Norfolk, Virginia, and were analyzed for geotechnical, geoacoustical and sedimentological properties. These cores were collected in support of the Naval Ocean Research and Development Activity's Mine Attitude and Verification Task, sponsored by NAVAIR-548 and tasked by the Naval Coastal Systems Center (NCSC Code 722). Similar field efforts have been conducted in the Sun Diego, California, and Galveston, Texas, areas, and the analyses on the resulting bottom cores are underway. The results of these core analyses will be used with

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE 5 'N 0102-LF-014-6601

UNCLASSIFIED

TREE TO THE THE PARTY OF THE PA

historical data in the Naval Oceanographic Office's world-wide data bank to investigate the possible existence of reliable geotechnical property relationships for the East, West, and Gulf Coasts of the United States.

UNCLASSIFIED

