Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3217</u>	К работе допущен
Студент Бессонов Борис Александрович	Работа выполнена 01.12.23
Преподаватель Тимофеева Эльвира Олеговна	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.05

Температурная зависимость электрического сопротивления металла и полупроводника

- 1. Цель работы.
 - а. Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75 °С.
 - b. По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника
- 2. Задачи, решаемые при выполнении работы.

Измерение сопротивления и силы тока в зависимости от температуры полупроводника

3. Объект исследования.

Полупроводник, сила тока и напряжение в схеме

4. Метод экспериментального исследования

С помощью амперметре-вольтметра измерить силу тока и напряжения при повышении температуры полупроводника

- 5. Рабочие формулы и исходные данные.
 - 1. Среднее арифметическое:

$$\bar{t} = \frac{1}{N} \sum_{i=1}^{N} t_i$$

2. Абсолютная погрешность прямого измерения:
$$\Delta t = t_{\alpha,\,N} \cdot \sqrt{\frac{1}{N\left(N-1\right)} \sum_{i=1}^{N} \left(t_i - \langle t \rangle_N\right)^2}$$

3. Абсолютная погрешность косвенного измерения:

$$\Delta_z = \sqrt{\left(\frac{\partial f}{\partial x_1} \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2} \Delta_{x_2}\right)^2 + \dots + \left(\frac{\partial f}{\partial x_n} \Delta_{x_n}\right)^2}$$

4. Угловой коэффициент линейной зависимости у(x)=a+bx:
$$b=\frac{\sum (x_i-\overline{x})(y_i-\overline{y})}{\sum (x_i-\overline{x})^2}$$

5. Свободный член линейной зависимости у(х)=а+bx:

$$a = \overline{y} - b\overline{x}$$

6. Погрешность углового коэффициента:

$$d_i = y_i - (a + bx_i)$$

$$D = \sum (x_i - \overline{x})^2$$

$$\Delta b = t_{\alpha, N} \cdot \sqrt{\frac{\sum d_i^2}{D(n-2)}}$$

7. Погрешность свободного члена:

$$\Delta a = t_{\alpha, N} \cdot \sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{D}\right) \frac{\sum d_i^2}{n - 2}}$$

8. Сопротивление

$$R = \frac{U}{I}$$

9. Величина температурного коэффициента сопротивления

$$a_{ij} = \frac{R_i R_j}{R_j t_i - R_i t_j}$$

10. Ширина запрещенной зоны

$$E_{ij} = 2k \frac{T_i T_j}{T_j - T_i} \ln \left(\frac{R_i}{R_j}\right)$$

11. Зависимость сопротивления полупроводника от температуры

$$\ln(R_n) = \ln(R_m) + \frac{E_g}{2kT}$$

6. Измерительные приборы.

$N_{\underline{0}}$	Наименование	Тип прибора	Предел измерений	Погрешность
				прибора
1	амперметре-	Электронный	20 B	0,002 B
	вольтметр			
2	Генератор	Электронный	450 Гц	50 Гц
	напряжения			
3	Термометр	Электронный	390 K	1 K

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

№	T, K	І, мкА	U, B
1	291	1020	0.638
2	295	1175	0.513
3	300	1286	0.426
4	305	1389	0.344
5	310	1468	0.282

6	315	1527	0.231
7	320	1575	0.199
8	325	1615	0.165
9	330	1648	0.142
10	335	1677	0.119
11	340	1698	0.102

№	T, K	І, мкА	U, B
1	355	0.1080	1.554
2	350	0.1091	1.546
3	345	0.1102	1.537
4	340	0.1110	1.530
4	335	0.1117	1.524
5	330	0.1128	1.516
6	325	0.1138	1.508
7	320	0.1149	1.499
8	315	0.1161	1.489
9	310	0.1175	1.478
10	305	0.1190	1.467
11	300	0.1204	1.454
12	295	0.1220	1.441

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

№	T, K	І, мкА	U, B	R, Om	ln(R)	$\frac{1000}{T}$, K
1	291	1020	0.638	625,49	6,43	3,44
2	295	1175	0.513	436,6	6,08	3,39
3	300	1286	0.426	331,26	5,80	3,33
4	305	1389	0.344	247,66	5,51	3,28
5	310	1468	0.282	192,10	5,26	3,23
6	315	1527	0.231	151,28	5,02	3,17
7	320	1575	0.199	126,35	4,84	3,13
8	325	1615	0.165	102,17	4,63	3,08
9	330	1648	0.142	86,17	4,46	3,03
10	335	1677	0.119	70,96	4,26	2,99
11	340	1698	0.102	60,07	4,10	2,94

No	T, K	І, мкА	U, B	R, кОм	t, C
1	355	0.1080	1.554	14388,89	81,85
2	350	0.1091	1.546	14170,49	76,85
3	345	0.1102	1.537	13947,37	71,85
4	340	0.1110	1.530	13783,78	66,85
4	335	0.1117	1.524	13643,69	61,85
5	330	0.1128	1.516	13439,72	56,85
6	325	0.1138	1.508	13251,32	51,85
7	320	0.1149	1.499	13046,13	46,85
8	315	0.1161	1.489	12825,15	41,85
9	310	0.1175	1.478	12578,72	36,85
10	305	0.1190	1.467	12327,73	31,85
11	300	0.1204	1.454	12076,41	26,85
12	295	0.1220	1.441	11811,48	21,85

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Таблица 2

t1 [C]	R1 [кОм]	t2 [C]	R2 [кОм]	a
81,85	14388,89	46,85	13046,13	0,00341
76,85	14170,49	41,85	12825,15	0,00343
71,85	13947,37	36,85	12578,72	0,00351
66,85	13783,78	31,85	12327,73	0,00378
61,85	13643,69	26,85	12076,41	0,00412
56,85	13439,72	21,85	11811,48	0,00431

 $\langle a \rangle = 0,0038$ $\Delta a = 0,00439$

Таблица 1

T1 [K]	R1 [Ом]	T2 [K]	R2 [Ом]	Е [Дж]	Е [эВ]
291	625,49	315	151,28	0,000000000000000000015	0,93
295	436,60	320	126,35	0,000000000000000000013	0,81
300	331,26	325	102,17	0,000000000000000000013	0,79
305	247,66	330	86,17	0,0000000000000000000012	0,73
310	192,10	335	70,96	0,00000000000000000011	0,71

$\langle E \rangle$ Дж = 0,00000000000000000013 $\langle E \rangle$ эВ = 0,8 $\Delta E \approx 0$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

По величине температурного коэффициента сопротивления металла удалось понять, что полупроводником является серебро

$$\langle a \rangle = 0,0038$$

 $\Delta a = 0,00439$
 $\langle E \rangle$ Дж = 0,00000000000000000013
 $\langle E \rangle$ эВ = 0,8
 $\Delta E \approx 0$

13. Выводы и анализ результатов работы.

В результате лабораторной работе мы исследовали силу тока и напряжение схемы. Сила тока имеет прямую зависимость от температуры, в то время как сопротивление обратную.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Примечание:

- 1. Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения.
- 2. Необходимые исправления выполняют непосредственно в протоколеотчете.
- 3. При ручном построении графиков рекомендуется использовать миллиметровую бумагу.
- 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.