Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе \mathbb{N}^{4}

По дисциплине «Вычислительная математика» (4 семестр)

Студент:

Дениченко Александр Р3212

Практик:

Наумова Надежда Александровна

1 Цель работы

Найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Вариант
$$-8$$

2 Вычислительная часть

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 1)
- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала;
- 3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4. Выбрать наилучшее приближение;
- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения;

Функция по варианту:

$$y = \frac{3x}{x^4 + 8}, \ x \in [-2, \ 0], \ h = 0.2$$

График функции:

Рис. 1: График функции $y = \frac{3x}{x^4+8}$

Таблица табулирования функции:

x	-2.0	-1.8	-1.6	-1.4	-1.2	-1.0	-0.8	-0.6	-0.4	-0.2	0.0
y	-0.25	-0.292	-0.330	-0.355	-0.357	-0.333	-0.285	-0.221	-0.150	-0.075	0.0

Таблица 1: Трассировка

3 Линейная аппроксимация

Рассмотрим в качестве эмпирической формулы линейную функцию:

$$\phi(a, x, b) = ax + b$$

Сумма квадратов отклонений запишется следующим образом:

$$S = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (\phi(x_i) - y_i)^2 = \sum_{i=1}^{n} (ax_i^2 + b - y_i)^2 - > \min$$

Для нахождения а и b необходимо найти минимум функции S. Необходимое условие существования минимума для функции S:

$$\begin{cases} \frac{\partial S}{\partial a} = 0 \\ \frac{\partial S}{\partial b} = 0 \end{cases} = > \begin{cases} 2\sum_{i=1}^{n} (ax_i + b - y_i)x_i = 0 \\ 2\sum_{i=1}^{n} (ax_i + b - y_i) = 0 \end{cases} = > \begin{cases} a\sum_{i=1}^{n} x_i^2 + b\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a\sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \end{cases}$$

Проведём подсчёты:

$$\sum_{i=1}^{n} x_i = (-2.0) + (-1.8) + (-1.6) + (-1.4) + (-1.2) + (-1.0) + (-0.8) + (-0.6) + (-0.4) + (-0.2) + 0.0 = -11.0$$

$$\sum_{i=1}^{n} x_i^2 = (-2.0)^2 + (-1.8)^2 + (-1.6)^2 + (-1.4)^2 + (-1.2)^2 + (-1.0)^2 + (-0.8)^2 + (-0.6)^2 + (-0.4)^2 + (-0.2)^2 + 0.0^2 = 15.4$$

$$\sum_{i=1}^{n} y_i = (-0.25) + (-0.292) + (-0.330) + (-0.355) + (-0.357) + (-0.333) + (-0.285) + (-0.221) + (-0.150) + (-0.075) + 0.0 = -2.648$$

$$\sum_{i=1}^{n} x_i y_i = (-2.0) \cdot (-0.25) + (-1.8) \cdot (-0.292) + (-1.6) \cdot (-0.330) + (-1.4) \cdot (-0.355) + (-1.2) \cdot (-0.357) + (-1.0) \cdot (-0.333) + (-0.8) \cdot (-0.357) + (-0.357) \cdot (-0.357) + (-0.357) \cdot (-0.333) + (-0.8) \cdot (-0.357) + (-0.357) \cdot (-0.333) + (-0.8) \cdot (-0.357) + (-0.357) \cdot (-0.357) + (-0.357) \cdot (-0.333) + (-0.8) \cdot (-0.357) + (-0.357) (-0.357) + (-0.357)$$

$$\cdot (-0.285) + (-0.6) \cdot (-0.221) + (-0.4) \cdot (-0.150) + (-0.2) \cdot (-0.075) + (0.0) \cdot (0.0) = 3.248$$

Получим систему:

$$\begin{cases} 15.4a + (-11.0)b = 3.248 \\ -11.0a + 11b = -2.648 \end{cases}$$

из которой находим:

$$\Delta = 15.4 \cdot 11 - 11^2 = 48.4$$

$$\Delta_1 = 3.248 \cdot 11 - 11 \cdot 2.648 = 6.6$$

$$\Delta_2 = 15.4 \cdot (-2.648) - (-11.0) \cdot 3.248 = -5.051$$

Подставим найденные значения:

$$a = \frac{6.6}{48.4} \approx 0.136; \ b = \frac{-5.0512}{48.4} \approx -0.104$$

Тогда аппроксимирующая функция будет иметь вид:

$$\phi(x) = 0.136x - 0.104$$

Дополним таблицу:

x	-2.0	-1.8	-1.6	-1.4	-1.2	-1.0	-0.8	-0.6	-0.4	-0.2	0.0
y	-0.25	-0.292	-0.330	-0.355	-0.357	-0.333	-0.285	-0.221	-0.150	-0.075	0.0
$\phi(x)$	-0.377	-0.350	-0.323	-0.295	-0.268	-0.241	-0.214	-0.186	-0.159	-0.132	-0.105
$ y-\phi $	0.127	0.058	0.007	0.060	0.089	0.092	0.071	0.035	0.009	0.057	0.105
$ y-\phi ^2$	0.016	0.003	0	0.003	0.007	0.008	0.005	0.001	0	0.003	0.011

Таблица 2: Линейная аппроксимация

Среднеквадратические отклонения по формуле:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\phi(x_i) - y_i)^2}{n}} = 0.0739$$

4 Квадратичная аппроксимация

Рассмотрим в качестве эмпирической формулы квадратичную функцию:

$$\phi(x, a_0, a_1, a_2) = a_0 + a_1 x + a_2 x^2$$

Сумма квадратов отклонений записывается следующим образом:

$$S = S(a_0, a_1, a_2) = \sum_{i=1}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2 \to \min$$

Приравниваем к нулю частные производные S по неизвестным параметрам, получаем систему линейных уравнений:

$$\begin{cases} \frac{\partial S}{\partial a_0} = 2\sum (a_2 x_i^2 + a_1 x_i + a_0 - y_i) = 0\\ \frac{\partial S}{\partial a_1} = 2\sum (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i = 0\\ \frac{\partial S}{\partial a_2} = 2\sum (a_2 x_i^2 + a_1 x_i + a_0 - y_i) x_i^2 = 0 \end{cases}$$

$$\begin{cases} a_0 n + a_1 \sum x_i + a_2 \sum x_i^2 = \sum y_i\\ a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3 = \sum x_i y_i\\ a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4 = \sum x_i^2 y_i \end{cases}$$

$$\sum_{i=1}^n x_i = -11.0 \sum_{i=1}^n x_i^2 = 15.4 \sum_{i=1}^n y_i = -2.648 \sum_{i=1}^n x_i y_i = 3.248$$

$$\sum_{i=1}^n x_i^3 = -24.2 \sum_{i=1}^n x_i^4 = 40.5328 \sum_{i=1}^n x_i^2 y_i = -4.62272$$

Подставим значения:

$$\begin{cases} 11 \cdot a_0 + (-11.0) \cdot a_1 + 15.4 \cdot a_2 = -2.648 \\ -11.0 \cdot a_0 + 15.4 \cdot a_1 + (-24.2) \cdot a_2 = 3.248 \\ 15.4 \cdot a_0 + (-24.2) \cdot a_1 + 40.5328 \cdot a_2 = -4.62272 \end{cases}$$

Решение системы уравнений:

$$\begin{cases} a_0 = 0.02 \\ a_1 = 0.55 \\ a_2 = 0.207 \end{cases}$$

Получим формулу для квадратичной аппроксимации

$$\phi(x) = 0.02 + 0.55 \cdot x + 0.207 \cdot x^2$$

x	-2.0	-1.8	-1.6	-1.4	-1.2	-1.0	-0.8	-0.6	-0.4	-0.2	0.0
y	-0.25	-0.292	-0.330	-0.355	-0.357	-0.333	-0.285	-0.221	-0.150	-0.075	0.0
$\phi(x)$	-0.252	-0.299	-0.330	-0.344	-0.341	-0.323	-0.287	-0.235	-0.166	-0.081	0.02
$ y-\phi $	0.002	0.007	0	0.01072	0.015	0.01	0.002	0.014	0.016	0.006	0.02
$ y - \phi ^2 \cdot 10^{-4}$	0.04	5	0.006	1.14	2.27	1	0.063	2.09	2.84	0.451	4

Таблица 3: Квадратичная аппроксимация

Среднеквадратические отклонения по формуле:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (\phi(x_i) - y_i)^2}{n}} = 0.011$$

5 Построения результатов

Исходная:

$$y = \frac{3x}{x^4 + 8}$$

Линейная:

$$\zeta(x) = 0.136x - 0.104$$

Квадратичная:

$$\aleph(x) = 0.02 + 0.55 \cdot x + 0.207 \cdot x^2$$

Рис. 2: Графики для сравнения

Самое хорошее приближении получилось квадратичное, оно наиболее чётко совпадает с графиком исходной функции в системе декартовых координат.

6 Машинная реализация

Листинг 1: Первый узел валидации

private CalculateError isValidInterval(RequestFuncUser requestFuncUser) {

7 Пример работы программы

8 GitHub

Ссылка на мой репозиторий на GitHub: https://github.com/Alex-de-bug/cm_math/tree/main/lab3.

9 Вывод

При работе были изучены несколько численных методов вычисления интегралов, написаны несколько алгоритмов для реализации. Подсчёт руками помог усвоить все тонкости работы численных методов. Придумана обработка точек разрыва в том числе неустранимых 2го рода.