개인 분석 프로젝트

지하철 승차인원 예측

1 프로젝트 개요 및 목적

" 수송 인원 총 27억 2,625만명, 하루 평균 746만 9,180명 "

[2019년 서울 지하철 이용객 현황]

출처: 서울교통공사

프로젝트 개요 및 목적

[2019년 서울 지하철 호선별 수송 실적 비교]

출처: 서울교통공사

				(단위 : 천명, %)
구 분	총인원 (일평균)	전년대비	증감 (일평균)	수송점유율	비고 (공사 운영구간)
1호선	172,369 (472)	101.8%	3,014 (8)	6.3%	서울역~청량리
2호선	811,959 (2,224)	100.7%	5,398 (15)	29.8%	전 구간
3호선	329,660 (903)	101.5%	4,829 (13)	12.1%	지축~오금
4호선	326,793 (895)	100.3%	896 (2)	12.0%	당고개~남태령
5호선	333,836 (914)	101.6%	5,308 (15)	12.2%	전 구간
6호선	204,575 (560)	100.6%	1,288 (4)	7.5%	전 구간
7호선	380,142 (1,041)	101.0%	3,882 (11)	13.9%	전 구간
8호선	112,086 (307)	104.1%	4,336 (12)	4.1%	전 구간
9호선	54,825 (150)	100	-	2.0%	언주~중앙보훈병원
합계	2,726,250 (7,469)	-	28,983 (79)	100%	

2019년도 **수송인원 일평균**이 가장 높은 호선은 **2호선**, 가장 낮은 호선은 **9호선**. 이에 따른 수송 점유율 확보.

[일평균 이용객수 상위 / 하위 3개역]

출처: 서울교통공사

동일한 호선간에도 승차인원의 편차가 큼.

프로젝트 개요 및 목적

지하철 정원 관련 주요 수치

1량 당 정원160명
1편성 정원 ···································
1량 좌석 수 54석
1량 손잡이 수 76개
출입문 8개(양쪽 각 4개)
1량 규격 19.50m x 2.92m(길이x폭) 실내 기준
적정 중량
최대 적재 중량 30톤

[지하철 정원 관련 주요 수치] 출처 : 서울교통공사 " 지하철 1량 당 탑승 적정 인원은 160명 "

" 일평균 이용량이 가장 많은 2호선의 일간 평균 이용인원 2,225,000명 "

" 일간 2호선의 평일 운행회수 976회 "

" 1편성 당 평균 이용인원 약 2,280명 " (적정 인원 : 1600명 내외)

출처: 서울시 지하철 운행현황 통계

적정 인원을 초과하는 이용객으로 인한 지하철 이용의 불편함

서민의 발이라 불리는 지하철,

일자별 노선의 승차인원 예측해 지하철 운행의 유동적인 증/감축을 통한 시민들의 지하철 이용의 불편함을 해소하고자 함

지하철 승차인원 예측을 위한 프로젝트 진행

진행 방향: 2016~2018년도의 승차인원 데이터를 활용한 2019년도 승차인원 예측을 통한 모델링

주요 분석 데이터는 공공데이터인 "서울시 지하철호선별 역별 승차 인원 정보"의 2016 ~ 2019년도 데이터 활용

출처: 서울 열린 데이터 광장

샘플 데이터를 통해 각 일자별 호선명, 역명, 승차총승객수, 하차총승객수, 등록일자 등의 정보가 포함되었음을 확인

	사용일자	호선명	역명	승차총승객수	하차총승객수	등록일자
0	20200905	우이신설선	4.19민주묘지	1682	1530	20200908
1	20200905	경원선	가능	3846	3742	20200908
2	20200905	8호선	가락시장	3942	3958	20200908
3	20200905	3호선	가락시장	4174	3958	20200908
4	20200905	7호선	가산디지털단지	10065	9427	20200908

인천 1호선 등의 주요 서울의 노선이 아닌 호선은 분석에서 제외 -> 1~9호선을 주요 분석 호선으로 설정

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

모델 평가

지하철 승차인원의 영향을 줄 수 있다고 판단되는 일자별기상 데이터(기온, 강수량, 풍속), 휴일정보 데이터 등의 외부 데이터 활용

출처: 기상청 기상자료개방포털

출처: 공공데이터 포털

전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

서울시 지하철호선별 역별 승차 인원 데이터

각 연도의 월별 승차인원 데이터를 각 년도별 데이터로 통합

```
# 데이터 로드
subway_2016 = pd.DataFrame()
subway_2017 = pd.DataFrame()
subway_2018 = pd.DataFrame()
subway_2019 = pd.DataFrame()
subway_2020 = pd.DataFrame()
for f in subway_2016_list:
    tmp = pd.read_csv(f)
    subway_2016 = subway_2016.append(tmp)
for f in subway_2017_list:
    tmp = pd.read csv(f)
    subway_2017 = subway_2017.append(tmp)
for f in subway_2018_list:
    tmp = pd.read_csv(f)
    subway_2018 = subway_2018.append(tmb)
for f in subway_2019_list:
    tmp = pd.read_csv(f)
    subway_2019 = subway_2019.append(tmp)
for f in subway_2020_list:
    tmp = pd.read_csv(f)
    subway_2020 = subway_2020.append(tmp)
```

기상 데이터, 휴일정보 데이터

기온, 강수량, 풍속, 휴일정보 데이터 로드

```
[5] #데이터 로드
    holiday_table = pd.read_csv("holiday_table.csv", index_col=0)
    holiday_table_2020 = pd.read_csv("holiday_table_2020.csv", index_col=0)
    rainfall = pd.read_csv('rainfall.csv')
     rainfall_2020 = pd.read_csv('rainfall_2020.csv')
    temperature = pd.read_csv('temperature.csv')
     temperature_2020 = pd.read_csv("temperature_2020.csv")
    wind = pd.read_csv("wind.csv")
     wind_2020 = pd.read_csv("wind_2020.csv")
     temperature 2020 = temperature 2020.drop(temperature 2020[temperature 2020['일세'],isnull()],index)
     temperature_2020 = temperature_2020.drop(['\tt\t\n점번호', '지점명', '\t\최고기온시각', '최저기온시각'], axis=1)
     temperature 2020.columns = ['일시', '평균기온', '최고기온','최저기온']
     temperature_2020['일시'] = pd.to_datetime(temperature_2020['일시'], format='XY-xm-xd')
     temperature_2020['일시'] = temperature_2020['일시'].map(lambda x: x.strftime("%Y%m%d%H%M%S"))
     holiday_table = pd.concat([holiday_table, holiday_table_2020], axis=0)
    rainfall = pd.concat([rainfall, rainfall_2020], axis=0)
    temperature = pd.concat([temperature, temperature_2020], axis=0)
     wind = pd.concat([wind, wind_2020], axis=0)
```


EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

타깃 변수(승차 총 승객수) 확인

타깃변수 분포 확인 결과

오른쪽으로 꼬리가 늘어진 분포를 지님을 확인

로그 변환

로그 변환 후 이상치 탐색

0.5 -						14			
Density 0.3 -					X				
0.2 -									
0.0	0	7	4	6		10	12	14	16

			C4 P4	
	사용일자	노선명	역명	승차총승객수
44	2016-01-01	3호선	충무로	1.0
142	2016-01-01	6호선	연신내	3.0
347	2016-01-02	3호선	충무로	2.0
633	2016-01-03	3호선	충무로	2.0
772	2016-01-03	6호선	연신내	1.0
522019	2020-09-28	6호선	연신내	1.0
522221	2020-09-29	3호선	충무로	1.0
522325	2020-09-29	6호선	연신내	1.0
522562	2020-09-30	6호선	신내	1.0
522596	2020-09-30	6호선	연신내	1.0
	_			

이상치 제거 후 타겟의 밀도함수를 통한 타깃변수의 정규분포 근사 확인

충무로 / 연신내 등에서 승차승객이 한자리 수인 이상치 발견

데이터 수집

전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

외부 데이터(기온, 강수량, 풍속, 휴일 정보)

	#t#tN점번호	지점명	일시	평균기몬(℃)	최고기몬(℃)	#t최고기몬시각	최저기온(℃)	최저기온시각		₩지점번호	지점명	
0	\t\t108	서울	2020-01-01	-2.2	0.3	14:57	-6.5	0:01	0	\t108	서울	2016-
1	\t\t108	서울	2020-01-02	1.0	3.8	15:00	-0.7	0:01	1	\t108	서울	2016-
2	\t\t108	서울	2020-01-03	-0.1	4.6	15:47	-3.4	8:07	2	\t108	서울	2016-
3	\t\t108	서울	2020-01-04	1.2	6.1	14:50	-2.8	5:12	3	\t108	서울	2016-
4	\t\t108	서울	2020-01-05	1.3	6.6	14:53	-3.2	8:21	4	\t108	서울	2016-
					-							
298	\t	NaN	NaN	NaN	NaN	NaN	NaN	NaN	296	\t108	서울	2020-
299	\t	NaN	NaN	NaN	NaN	NaN	NaN	NaN	297	\t	NaN	
300	\t	NaN	NaN	NaN	NaN	NaN	NaN	NaN	298	\t	NaN	
301	\t	NaN	NaN	NaN	NaN	NaN	NaN	NaN	299	\t	NaN	
302	\t\t	NaN	NaN	NaN	NaN	NaN	NaN	NaN	300	\t\t	NaN	

	₩지점번호	지점명	일시	강수량(mn)	1시간최다강수량(mm)	1시간최다강수량시각		tt tt Natio	제	명 일시	명균풍속(n/s)	최대품속(n/s)	최대풍속풍향(deg)	#최대풍속시각	최대순간풍속(n/s)	최대순간풍속풍향(deg)	nt Aufe 21 TE 4)
	\t108	서울	2016-01-01	NaN	NaN	NaN	0	108	h	을 2016-01-01	1.6	35	270.0	1517	5.6	290.0	1
	\t108	서울	2016-01-02	NaN	NaN	NaN	1	108	h	을 2016-01-02	20	45	320.0	1550	6.9	320.0	1
	\t108	서울	2016-01-03	NaN	NaN	NaN	2	108	H	을 2016-01-03	1.8	40	320.0	1258	5.7	340.0	2
	\t108	서울	2016-01-04	NaN	NaN	NaN	3	108	H	을 2016-01-04	3.1	51	50.0	13:38	8.6	320.0	1
	\t108	서울	2016-01-05	NaN	NaN	NaN	4	108	H	을 2016-01-05	23	46	360.0	1221	7.3	360.0	1
														-	-	-	
6	\t108	서울	2020-10-23	NaN	NaN	NaN	29	V##108	H	을 2020-10-21	1.9	38	160.0	1511	62	180.0	1
7	\t	NaN	NaN	NaN	NaN	NaN	295	100108	h	을 2020-10-22	28	57	320.0	2028	10.4	340.0	2
8	\t	NaN	NaN	NaN	NaN	NaN	299	V##108	H	을 2020-10-23	3.0	55	290.0	1321	10.0	270.0	1
9	\t	NaN	NaN	NaN	NaN	NaN	297	W	Na	aN NaN	NaN	NaN	NaN	1/3/	NaN	NaN	
0	\t\t	NaN	NaN	NaN	NaN	NaN	290	W	Na	aN NaN	NaN	NaN	NaN	1/8/	NaN	NaN	
						_											

	dateKind	dateName	isHoliday	locdate	seq
0	1	신정	Υ	20160101	1
1	1	설날	Υ	20160207	1
2	1	설날	Υ	20160208	1
3	1	설날	Υ	20160209	1
4	1	대체공휴일	Υ	20160210	1
12	1	추석	Y	20201001	1
13	1	추석	Y	20201002	1
14	1	개천절	Υ	20201003	1
15	1	한글날	Y	20201009	1
16	1	기독탄신일	Υ	20201225	1

주요 변수 추출 & 변수명 정리

	일시	평균기온	최고기온	최저기온
0	20160101000000	1.2	4.0	-3.3
1	20160102000000	5.7	9.5	1.0
2	20160103000000	6.5	9.4	5.1
3	20160104000000	2.0	5.3	-2.5
4	20160105000000	-2.7	1.5	-4.8
292	20201019000000	15.1	21.3	9.8
293	20201020000000	15.2	21.7	9.9
294	20201021000000	14.1	17.3	11.8
295	20201022000000	13.5	18.2	8.4
296	20201023000000	8.6	13.3	5.4

	일시	강수량
0	2016-01-01	NaN
1	2016-01-02	NaN
2	2016-01-03	NaN
3	2016-01-04	NaN
4	2016-01-05	NaN
296	2020-10-23	NaN

	일시	평균품속	최대풍속
0	2016-01-01	1.6	3.5
1	2016-01-02	2.0	4.5
2	2016-01-03	1.8	4.0
3	2016-01-04	3.1	5.1
4	2016-01-05	2.3	4.6

294	2020-10-21	1.9	3.8
295	2020-10-22	2.8	5.7
296	2020-10-23	3.0	5.5

	날짜명	휴일여부	locdate
0	신정	Υ	20160101
1	설날	Υ	20160207
2	설날	Υ	20160208
3	설날	Y	20160209
4	대체공휴일	Y	20160210
12	추석	Υ	20201001
13	추석	Υ	20201002
14	개천절	Υ	20201003
15	한글날	Y	20201009
16	기독탄신일	Y	20201225

데이터 수집

전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

외부 데이터(기온, 강수량, 풍속, 휴일 정보)

	일시	평균풍속	최대풍속
0	2016-01-01	1.6	3.5
1	2016-01-02	2.0	4.5
2	2016-01-03	1.8	4.0
3	2016-01-04	3.1	5.1
4	2016-01-05	2.3	4.6
294	2020-10-21	1.9	3.8
295	2020-10-22	2.8	5.7
296	2020-10-23	3.0	5.5
297	NaN	NaN	NaN
298	NaN	NaN	NaN

기온, 강수량, 풍속 데이터 말미에 원인 모를 결측치 존재 -> 제거

	일시	평균품속	최대풍속
652	20171014000000	NaN	NaN
704	20171205000000	NaN	NaN
705	20171206000000	NaN	3.5

2017년 10월 14일, 12월 5일, 6일의 풍속데이터 결측치 -> 최대풍속, 평균풍속의 중앙값으로 대체

	일시	강수량
0	2016-01-01	NaN
1	2016-01-02	NaN
2	2016-01-03	NaN
3	2016-01-04	NaN
4	2016-01-05	NaN

296	2020-10-23	NaN

강수량 데이터의 NaN 값-〉 비가 오지 않았음을 의미 -> 0으로 대체

전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

각 데이터의 시간 정보 통일

	locdate	날짜명	휴일여부		일시	평균기온	최고기온	최저기온
0	20160101000000	신정	Y	0	20160101000000	1.2	4.0	-3.3
1	20160207000000 설날 Y		1	20160102000000	5.7	9.5	1.0	
2	20160208000000	설날	Y	2	20160103000000	6.5	9.4	5.1
3	20160209000000	설날	Y	3	20160104000000	2.0	5.3	-2.5
4	20160210000000	대체공휴일	Y	4	20160105000000	-2.7	1.5	-4.8
12	20201001000000	추석	Y	292	20201019000000	15.1	21.3	9.8
13	20201002000000	추석	Y	293	20201020000000	15.2	21.7	9.9
14	20201003000000	개천절	Y	294	20201021000000	14.1	17.3	11.8
15	20201009000000	한글날	Y	295	20201022000000	13.5	18.2	8.4
16	20201225000000	기독탄신일	Y	296	20201023000000	8.6	13.3	5.4
		일시	강수량		\$	일시 평	균풍속 최	티대풍속
0	20160101	000000	0.0	0	20160101000	0000	1.6	3.5
0	20200101	000000	0.1	1	20160102000	0000	2.0	4.5
1	20160102	2000000	0.0	2	20160103000	0000	1.8	4.0
1	20200102	2000000	0.0	3	20160104000	0000	3.1	5.1
2	20160103	000000	0.0	4	20160105000	0000	2.3	4.6
	-							
29	4 20201021	000000	0.0	292	20201019000	0000	1.7	3.4
29	5 20161022	2000000	0.0	293	20201020000	0000	1.6	3.1
29	5 20201022	2000000	0.0	294			1.9	3.8
29	6 20161023	000000	2.5	295			2.8	5.7
29	6 20201023	000000	0.0	296	20201023000	0000	3.0	5.5

각 데이터의 시간 정보를 yyyyMMddHHmmss 꼴로 통일

➡ 전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

데이터 통합

```
[260] # 지하철 데이터 통합
```

```
subway_total = pd.concat([subway_2016, subway_2017, subway_2018, subway_2019, subway_2020])
subway_total = subway_total.drop(['하차총승객수', '등록일자'], axis=1)
```

추가데이터 합치기

```
subway_total_all = subway_total.merge(holiday_table, how = 'left', left_on = '사용일자', right_on = 'locdate') subway_total_all = subway_total_all.merge(temperature, how = 'left', left_on = '사용일자', right_on = '일시') subway_total_all = subway_total_all.merge(rainfall, how = 'left', left_on = '사용일자', right_on = '일시') subway_total_all = subway_total_all.merge(wind, how = 'left', left_on = '사용일자', right_on = '일시')
```


	사용일자	노선명	역명	승차총승객수	날짜명	휴일여부	평균기온	최고기온	최저기온	강수량	index	평균품속	최대풍속	year	month	day	week	date
0	2016-01-01	4호선	동작	1213.0	신정	Υ	1.2	4.0	-3.3	0.0	0	1.6	3.5	2016	1	1	53	Friday
1	2016-01-01	4호선	동작	1213.0	신정	Υ	1.2	4.0	-3.3	0.0	0	1.6	3.5	2016	1	1	53	Friday
2	2016-01-01	4호선	이촌	3365.0	신정	Υ	1.2	4.0	-3.3	0.0	0	1.6	3.5	2016	1	1	53	Friday
3	2016-01-01	4호선	이촌	3365.0	신정	Υ	1.2	4.0	-3.3	0.0	0	1.6	3.5	2016	1	1	53	Friday
4	2016-01-01	4호선	신용산	5746.0	신정	Υ	1.2	4.0	-3.3	0.0	0	1.6	3.5	2016	1	1	53	Friday

1328780	2020-09-30	2호선	뚝섬	5557.0	추석	Υ	19.6	25.7	16.2	38.3	273	1.7	4.1	2020	9	30	40	Wednesday
1328781	2020-09-30	2호선	한양대	1870.0	추석	Υ	19.6	25.7	16.2	38.3	273	1.7	4.1	2020	9	30	40	Wednesday
1328782	2020-09-30	2호선	한양대	1870.0	추석	Υ	19.6	25.7	16.2	38.3	273	1.7	4.1	2020	9	30	40	Wednesday
1328783	2020-09-30	2호선	왕십리(성동구청)	6817.0	추석	Υ	19.6	25.7	16.2	38.3	273	1.7	4.1	2020	9	30	40	Wednesday
1328784	2020-09-30	2호선	왕십리(성동구청)	6817.0	추석	Υ	19.6	25.7	16.2	38.3	273	1.7	4.1	2020	9	30	40	Wednesday

각 연도별 지하철 승차 인원 데이터 + 외부 데이터 통합

연도별, 월별, 주차별, 요일별 분석을 위해 시간 데이터로부터 각 데이터 추출

휴일이 아닌 일자의 휴일여부 -> N으로 변경

토요일, 일요일의 휴일여부 -> Y로 변경

데이터

수집

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

라벨 인코딩(Label Encoding)

date	노선명	역명
1	1	287
2	1	179
2	1	268
2	1	269
2	1	270
4	9	20
4	9	138
4	9	182
4	9	40
4	9	24
	1 2 2 2 2 4 4 4	2 1 2 1 2 1 2 1 4 9 4 9 4 9 4 9

휴일여부, 요일, 노선명, 역명 등 문자열로 주어진 데이터들을 모델에 활용하기 위한 숫자형태로 바꾸어 주는 라벨 인코딩 진행

=> 데이터 사이즈를 고려해 라벨 인코딩이 더 적합하다고 판단

데이터 수집

➡ 전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

분석용 데이터

	노선명	역명	승차총승객수	휴일여부	평균기온	강수량	최대풍속	year	month	day	date	누적휴일	명절여부	환승노선	승차총승객수_log
308777	1	287	28296.0	0	0.034650	-0.272244	-1.595552	2018	1	14	1	0	0	0	10.250511
282858	1	179	15201.0	1	1.478218	0.328971	-0.776419	2018	9	20	2	1	0	1	9.629182
282859	1	268	29126.0	1	1.478218	0.328971	-0.776419	2018	9	20	2	1	0	0	10.279421
282860	1	269	28728.0	1	1.478218	0.328971	-0.776419	2018	9	20	2	1	0	2	10.265662
282861	1	270	19847.0	1	1.478218	0.328971	-0.776419	2018	9	20	2	1	0	0	9.895859

476384	9	20	9107.0	1	0.323363	-0.272244	1.107585	2020	6	23	4	1	0	2	9.116908
476385	9	138	1269.0	1	0.323363	-0.272244	1.107585	2020	6	23	4	1	0	0	7.146772
476386	9	182	16558.0	1	0.323363	-0.272244	1.107585	2020	6	23	4	1	0	0	9.714685
476375	9	40	2801.0	1	0.323363	-0.272244	1.107585	2020	6	23	4	1	0	0	7.938089
31601	9	24	3311.0	0	-0.114364	-0.272244	0.288453	2016	6	5	4	0	0	0	8.105308
520610 ro	ws × 15 c	olumns													

520610행 15열

	노선명	역명	승차총승객수	휴일여부	평균기온	강수량	최대풍속	year	month	day	date	누적휴일	명절여부	환승노선	슴차촘슴객수_log
count	520610.000000	520610.000000	520610.000000	520610.000000	5.206100e+05	5.206100e+05	5.206100e+05	520610.000000	520610.000000	520610.000000	520610.000000	520610.000000	520610.000000	520610.000000	520610.000000
mean	5.026653	156.765508	16158.036123	0.322764	-2.615782e-16	1.823595e-14	2.111770e-16	2017.894385	5.683433	14.841982	2.999422	0.697386	0.027087	0.279945	9.348408
std	2.281421	91.032001	14729.559297	0.467534	1.000001e+00	1.000001e+00	1.000001e+00	1.373147	3.449799	8.948887	2.000434	1.247472	0.162338	0.511433	0.853744
min	1.000000	0.000000	60.000000	0.000000	-2.647593e+00	-2.722442e-01	-2.414684e+00	2016.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	4.110874
25%	3.000000	80.000000	6754.000000	0.000000	-8.501180e-01	-2.722442e-01	-6.945061e-01	2017.000000	3.000000	7.000000	1.000000	0.000000	0.000000	0.000000	8.818038
50%	5.000000	157.000000	11844.000000	0.000000	1.184697e-01	-2.722442e-01	-1.211135e-01	2018.000000	6.000000	15.000000	3.000000	0.000000	0.000000	0.000000	9.379661
75%	7.000000	236.000000	20264.000000	1.000000	8.821638e-01	-2.481956e-01	6.161056e-01	2019.000000	9.000000	22.000000	5.000000	1.000000	0.000000	0.000000	9.916651
max	9.000000	315.000000	152285.000000	1.000000	1.869378e+00	1.131117e+01	5.940466e+00	2020.000000	11.000000	30.000000	6.000000	10.000000	1.000000	2.000000	11.933516

요약 통계량

데이터 수집

파생변수 생성

모델 선택

모델 최적화

모델 평가

2016 ~ 2019년도 데이터 승차인원의 전반적인 추세

4개 연도의 지하철 탑승객 추세는 비슷비슷함

=> 이를 바탕으로 예측 대상인 2019년도 데이터에 가까운 2018년도 데이터를 바탕으로 EDA 진행

분석과정 및 결과

전처리

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

호선별 탑승 인원

2호선의 탑승인원이 가장 많고 그 뒤로 7호선, 4호선이 많았음

월별 탑승인원

11월이 가장 많고 2월, 9월의 탑승객이 상대적으로 적음

주차별 탑승인원

18년도 기준 7주차, 39주차의 승차인원이 명절(설날, 추석)의 영향으로 감소함

모델 평가

일자별 탑승인원

일자별 탑승인원 확인 결과 승차인원이 주기적으로 감소했다가 증가했음을 확인

요일별 탑승 인원

금요일의 탑승인원이 가장 많고 주말인 토요일, 일요일에 승차인원이 적었음

휴일별 탑승인원

휴일이 아닌 날(N)에 승차인원이 휴일인 날(Y)에 비해 많았음

변수 유의성 검증

변수 year, ANOVA 검정 P-value : 0.1757 집단 간 평균의 차이 X(유의미 X)

변수 month, ANOVA 검정 P-value : 0.0000 집단 간 평균의 차이 0(유의미)

변수 day, ANOVA 검정 P-value : 0.0000 집단 간 평균의 차이 0(유의미)

변수 week, ANOVA 검정 P-value : 0.0000 집단 간 평균의 차이 0(유의미)

변수 노선명, ANOVA 검정 P-value : 0,0000 집단 간 평균의 차이 0(유의미)

변수 휴일여부, ANOVA 검정 P-value : 0.0000 집단 간 평균의 차이 0(유의미) Scipy 패키지의 f_oneway, ttest_ind 라이브러리를 이용한 ANOVA, 사후검정, T-test로 승차인원예측을 위한 각 변수 별 유의성 확인 및 유의미한 변수 선택

=> 월, 일자, 주차, 요일, 호선, 역, 휴일 여부, 기온 데이터

데이터 수집

전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

다중공선성(Multicollinearity)

=〉 독립변수들 간의 상관관계가 높아 종속변수를 예측에 부정적인 영향을 미치는 다중공선성 제거를 위해 상관관계가 높은 변수탐색

평균기온, 최고기온, 최저기온 간의 상관관계가 높음

월, 주차 간의 상관관계가 높음

평균풍속, 최대풍속 간의 상관관계가 높음

=〉 상관관계가 높은 변수들 중 평균기온, 월, 최대풍속 데이터만을 분석에 활용

데이터 수집

파생변수 생성

=〉 선택한 변수를 바탕으로 승차인원 예측에 도움을 줄 수 있는 파생변수 생성

전처리

EDA

변수 누적휴일, ANOVA 검정 P-value : 0.0000 집단 간 평균의 차이 이유의미)

변수 명절여부, ANOVA 검정 P-value : 0.0000 집단 간 평균의 차이 0(유의미)

변수 환승노선, ANOVA 검정 P-value : 0.0000 집단 간 평균의 차이 이유의미)

변수 선택

파생변수 생성

가설 1. 연속된 휴일 수가 승차인원 예측에 영향을 줄 것이다.

가설2. 명절 여부가 승차인원 예측에 영향을 줄 것이다.

가설3. 환승 노선의 수가 승차인원 예측에 영향을 줄 것이다.

모델 선택

모델 최적화

모델 평가

=〉 세 가지 가설 모두 유의함을 확인하며 새로운 파생변수 생성

Ç	데이터 수집
	전처리
	EDA
	변수 선택
	파생변수 생성
C	모델 선택
4	모델 최적화
	모델 평가

최종 분석 활용 변수

노선명 역명 휴일여부 평균기온 강수량 최대풍속 month day date 누적휴일 명절여부 환승노선

=〉 분석에 활용한 독립변수

승차총승객수_log

=〉 분석에 활용한 종속변수

=> 기온, 일자, 노선, 역 등을 바탕으로 로그 변환한 승차총승객수 예측 후 지수화를 통한 최종 예측값 산출

데이터

수집

전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

모델 선택을 위한 데이터 분리 및 지표 설정

학습 / 검증데이터 분리 x_train, x_valid, y_train, y_valid = train_test_split(subway_train, label_train, test_size=0.2, random_state=1122, shuffle=True)

예측 성능의 평가를 위해 7:3비율로 학습 데이터셋 분리 => Hold Out 검증 기법

print("학습 데이터 셋 크기 : {}".format(x_train.shape)) print("검증 데이터 셋 크기 : {}".format(x_valid.shape))

학습 데이터 셋 크기 : (263041, 396) 검증 데이터 셋 크기 : (65761, 396)

약 26만 개의 학습 데이터

약 7만 개의 검증 데이터

$$\frac{1}{n} \sum_{i=1}^{n} \left(\left| y_i - \hat{y}_i \right| \right)$$

모델의 평가 기준을 MAE(Mean Absolute Error)로 설정

=〉 실제 승차인원과 예측 승차인원 차의 평균을 직관적으로 확인하고자 함.

전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

모델 선택(Model Selection)

- => 학습 데이터를 학습한 각 모델의 검증 데이터 예측값의 MAE 값 확인
- 1. LinearRegression Model

MAE: 8771.66

2. XGBoost Regression Model

MAE: 6226.20

3. LightGBM Regression Model

MAE: 2714.55

=> 가장 좋은 예측 성능을 보여준 LGBMRegressor Model을 최종 예측모델로 선택

데이터 수집

전처리

EDA

변수 선택

파생변수 생성

모델 선택

모델 평가

모델 최적화

하이퍼 파라미터(Hyper Parameter) 튜닝

⇒ 선택한 LGBM Model을 최적화 시키기 위해 GridSearchCV 구현 및 파라미터 튜닝

주요 파라미터 중 learning_rate, max_depth 두 개의 주요 파라미터 튜닝

⇒ GridSearchCV를 이용한 learning_rate, max_depth 파라미터 튜닝 결과 각각 0.2, 10일때 가장 좋은 성 능을 나타내며 Hold-out 검증을 이용하여 확인한 모델의 CV(Cross Validation) MAE값은 1696.96

데이터 수집

과적합(Over fitting) 방지

전처리

1. 교차 검증(Cross Validation)

EDA

⇒ K-Folds 교차 검증을 통한 과적합 방지

변수 선택

2. Early Stopping Rounds 조절

파생변수 생성 ⇒ 일정 수준 이상 성능이 증가되지 않을 때 학습 중지

모델 선택

3. Out-of-fold(OOF) Ensemble

모델 최적화

모델 평가

⇒ 각 Fold에 대한 예측 값을 앙상블하는 기법

```
val_scores = []
oof_pred = np.zeros((subway_test.shape[0], ))
for i, (trn_idx, val_idx) in enumerate(kf.split(subway_train, label_train)):
    x_train, x_valid = subway_train.iloc[trn_idx], subway_train.iloc[val_idx]
    _y_train, y_valid = label_train.iloc[trn_idx], label_train[val_idx]
    model = LGBMRegressor(n_estimators = 20000, learning_rate = 0.2, max_depth = 10, verbose = 1000, tree_method = 'gpu_hist', random_state=10)
    evals = [(x_train, y_train), (x_valid, y_valid)]
    model.fit(x_train, y_train, eval_metric = 'mae', eval_set = evals, early_stopping_rounds=500, verbose=500)
    pred = model.predict(x_valid)
    df.append(valid)
    oof_pred += model.predict(subway_test) / n_splits
    val_mae = mean_absolute_error(y_valid, pred)
    -val_scores.append(val_mae)
    print(f"{i+1} folder validation score : {val_mae: .4f}#n#n")
```


데이터 수집

전처리

EDA

2019년도 승차인원 예측 MAE : 1111.7672

모델 평가(Model Evaluation)

최종 예측데이터(2019년도 승차인원)에 대한 최종 MAE값은 1111.7672임을 확인

=〉 실제 승차인원과 약 1100명정도 차이나는 값으로 예측

변수 선택

파생변수 생성

모델 선택

모델 최적화

모델 평가

〈모델 최적화 후 〉

예측 성능 시각화 결과 최적화 후의 모델이 승차 인원을 더 잘 예측하는 모습

데이터 수집

EDA

전처리

변수 선택

파생변수 생성

모델 선택

〈 파라미터 튜닝 후 〉

모델 최적화

=> 이를 통하여 지하철 승차인원을 예측함에 있어 단순히 역, 노선 등의 정보 뿐만 아니라 기온, 휴일여부, 최대 풍속, 월, 일 데이터 등의 다양한 변수 조합을 이용하여 예측 결과를 산출해 냄을 확인

변수 중요도(Feature importance) 변화 확인

" 정확한 데이터(기온, 강수량, 풍속)를 기반으로 한 승차인원 예측 "

승차인원			승차인원
실제 106582.00	H 전 취 등 시 사 전 H	실제	106582.00
예측 107510.36	부정확한 기상 정보	예측	105360.97

⇒ 특정 일자의 실제 기상정보를 바탕으로 잠실역 승차인원 예측 결과 실제 승차인원과 약 900명정도의 차이를 보이는 인원 수 예측

⇒ 특정 일자의 **부정확한 기상 정보**를 바탕으로 잠실역 승차인원 예측 결과 실제 승차인원과 **약 1200명**정도의 차이를 보이는 인원 수 예측

=> 정확한 기상 예측 데이터와 함께 승차인원을 예측함으로써 지하철 탑승 수요 파악 가능

" 변수 추가로 인한 승차인원 변화에 대응 "

코로나19로 인해 2019년도의 기존 승차인원에 비해 2020년의 승차인원이 확 줄어든 모습

변수 추가로 인한 승차인원 변화에 대응 "

2020년도 9월 승차인원 예측 MAE : 3448,9860

2016 ~ 2018년도의 데이터로 설계한 기존의 모델로 2020년도 9월의 승차 인원을 예측한 결 과 MAE값은 3448.99, 기존 모델의 MAE가 1111.72임을 감안할때 엄청난 성능 감소

시각화 결과 코로나19로 인한 승차객 감소 현상을 모델이 반영하지 못함

"변수 추가로 인한 승차인원 변화에 대응"

보건의료 공공기관

XML 보건복지부_코로나19 감염_현황

코로나19감염증으로 인한 일별 확진자,완치자,지료중인환자,사망자등에 대한 현황자료

수정일 2020-10-19 조회수 21385 활용신청 2210

Feature importance
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
10065
1006

<u>미리보기</u> **②** 활용신청

공공데이터 활용을 통한 누적확진자 수, 일자별 확진자 수 변수 추가

2020년도 9월 승차인원 예측 (With Covid Data) MAE : 1455.7566

실제로 높은 변수 중요도를 보여주며 예측 성능을 향상시킴

"변수 추가로 인한 승차인원 변화에 대응"

바이러스 잠복기(평균 4~7일)을 고려한 일주일 전 확진자 수 변수 추가

2020년도 9월 승차인원 예측 (With Covid Data + 일주일 전 확진자 데이터) MAE: 1036.3153

마찬가지로 한번 더 코로나19이후 승차인원에 예측 성능 향상에 기여함을 확인

" 변수 추가로 인한 승차인원 변화에 대응 "

=> 기존 설계 모델에 변수를 추가함으로써 코로나19이후 지하철 승차인원에 영향을 주는 요인을 확인하며 승차인원 예측 성능을 향상시킬 수 있음

56

지하철 승차에 영향을 주는 요인 탐색.

승차인원 예측에 따른 효율적인 운행 인력 운용 및 유동적인 운행 증 / 감축.

지하철 이용 불편 감소로 인한 대중교통 이용 장려.