Mathematical Domain Reasoning Tasks in Natural Language Tutorial Dialog on Proofs

Christoph Benzmüller

Joint work with: SFB378 DIALOG Project

Computer Science & Comput. Ling.

Saarland University

Saarbrücken, Germany

http://www.ags.uni-sb.de/~chris/dialog/

Dreamer Reunion, 1 August 2005, Edinburgh, UK

Why this talk? ___

- ΩMEGA-λClam: many research links, mutual research visits, friendships
- not in this talk
 - ΩMEGA: basic research/development of an integrated mathematics assistance environment
- in this talk
 - DIALOG: NL based interaction with a mathematics assistance system
 - less well known to Dreamers
 - challenge between NL and AR
 - motivation for 'abstract'-level reasoning: proof planning

The DIALOG Project in the SFB 378

Method: Progressive Refinement

WOZ-Experiment → **Own Corpus**

WOZ-Experiment → **Own Corpus**

Corpus Example

- T1: Bitte zeigen Sie: $K((A \cup B) \cap (C \cup D)) = (K(A) \cap K(B)) \cup (K(C) \cap K(D))!$ [Please show: $K((A \cup B) \cap (C \cup D)) = (K(A) \cap K(B)) \cup (K(C) \cap K(D))!$]
- S1: nach deMorgan-Regel-2 ist $K((A \cup B) \cap (C \cup D)) = (K(A \cup B) \cup K(C \cup D))$. [by deMorgan-Rule-2 $K((A \cup B) \cap (C \cup D)) = (K(A \cup B) \cup K(C \cup D))$ holds.]
- T2: Das ist richtig!
 [This is correct!]
- S2: $K(A \cup B)$ ist laut deMorgan-1 $K(A) \cap K(B)$ [$K(A \cup B)$ is $K(A) \cap K(B)$ according to deMorgan-1]
- T3: Das stimmt auch. [That is also right.]
- S3: und $K(C \cup D)$ ist ebenfalls laut deMorgan-1 $K(C) \cap K(D)$ [and $K(C \cup D)$ is also $K(C) \cap K(D)$ according to deMorgan-1]
- . . .

Get corpus: http://www.ags.uni-sb.de/~chris/dialog/ Total figures 1. exp.: 66 dialogs / av. 12 turns / 1115 sentences

Research Challenges

Perspective of Mathematical Domain Reasoning (MDR):

- Support for resolution of Ambiguities and Underspecification
- Proof Step Evaluation
 - Soundness: proof step verifiable by formal system?
 - Granularity: size/argumentative complexity of proof step?
 - Relevance: proof step needed/useful in achieving the goal?

Perspective of NL Analysis:

[... not in this talk ...]

Perspective of Dialog Management:

[... not in this talk ...]

Perspective of Tutoring Proofs:

[... not in this talk ...]

Research Challenges

Perspective of Mathematical Domain Reasoning (MDR):

- Support for resolution of Ambiguiticion d Underspecification

 Proof Step Evaluation

 Soundness: proof step readed/useful in achieving the series of the step peeded/useful in achieving the step peede
- - proof step needed/useful in achieving the goal?

Perspective of NL Analysis:

[... not in this talk ...]

Perspective of Dialog Management:

[... not in this talk ...]

Perspective of Tutoring Proofs:

[... not in this talk ...]

— declarative abstract level sketches >>

Communication Gap

procedural calculus level proofs ——

type checking

theorem proving

 $\mathcal{P}((A \cup C) \cap (B \cup C)) = \mathcal{P}(C) \cup (A \cap B)$ $\mathcal{P}((A \cup C) \cap (B \cup C)) = \mathcal{P}(C \cup (A \cap B))$

type checking

 $\mathcal{K}((A \cup C) \cap (B \cup C)) = \mathcal{K}(C) \cup (A \cap B)$ $\mathcal{K}((A \cup C) \cap (B \cup C)) = \mathcal{K}(C \cup (A \cap B))$

theorem proving

Proof Step Evaluation

Given: (DM-1)
$$\overline{X \cup Y} = \overline{X} \cap \overline{Y}$$

$$\overline{X} = \overline{X} \cap \overline{Y}$$

(DM-2)
$$\overline{X \cap Y} = \overline{X} \cup \overline{Y}$$

?

Task: Please show
$$\overline{(A \cup B) \cap (C \cup D)} = (\overline{A} \cap \overline{B}) \cup (\overline{C} \cap \overline{D})$$

New: By deMorgan $\overline{(A \cup B) \cap (C \cup D)} = \overline{(A \cup B)} \cup \overline{(C \cup D)}$.

Proof Step Evaluation

Given: (DM-1)
$$\overline{X \cup Y} = \overline{X} \cap \overline{Y}$$

(DM-2) $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$

Task: Please show $\overline{(A \cup B) \cap (C \cup D)} = (\overline{A} \cap \overline{B}) \cup (\overline{C} \cap \overline{D})$

New: By deMorgan $\overline{(A \cup B) \cap (C \cup D)} = \overline{(A \cup B)} \cup \overline{(C \cup D)}$.

Soundness: yes

Granularity: 1x(DM-2)

Relevance: yes

Soundness: yes

Granularity: 2x(DM-1)

Relevance: yes

Proof Step Evaluation: How?

New:

PSE:

Discourse:

- **(1)** A ∧ B
- (2) $A \Rightarrow C$
- (3) $C \Rightarrow D$
- (4) $F \Rightarrow B$

?

(G) D ∨ E

We show E.

- (1) ...
- (2) . . .
- (3) ...
- (4) ...

?

(G') E

(G) . . .

Soundness

Granularity

Proof Step Evaluation: How?

New:

PSE:

Discourse:

- **(1)** A ∧ B
- (2) $A \Rightarrow C$
- (3) $C \Rightarrow D$
- (4) $F \Rightarrow B$

?

(**G**) D ∨ E

We show E.

- (1) ...
- (2) ...
- (3) ...
- (4) ...

?

- (G') E
- (G) . . .

Soundness

- \blacksquare (G') \vdash ? (G)
- any proof

Granularity

Proof Step Evaluation: How?_

New:

PSE:

Discourse:

- **(1)** A ∧ B
- (2) $A \Rightarrow C$
- (3) $C \Rightarrow D$
- (4) $F \Rightarrow B$

?

(G) D ∨ E

We show E.

- (1) ...
- (2) ...
- (3) . . .
- (4) ...

7

(G') E

(G) . . .

Soundness

- $(G') \vdash ? (G)$
- any proof

Granularity

- \blacksquare complexity((G') \vdash ? (G))
- cognitively adequate proofs

Proof Step Evaluation: How?

New:

We show E.

Discourse:

- **(1)** A ∧ B
- (2) $A \Rightarrow C$
- (3) $C \Rightarrow D$
- $(4) F \Rightarrow B$

?

(G) D ∨ E

T

- (1) ...
- (2) ...
- (3) ...
- (4) ...

?

(G') E

(G) ...

PSE:

Soundness

- $(G') \vdash ? (G)$
- any proof

Granularity

- complexity((G') ⊢? (G))
- cognitively adequate proofs

- \blacksquare (1), (2), (3), (4) \vdash ? (G')
- detours?, shorter proofs?

Granularity and Relevance call for

cognitively adequate abstract level proofs

+

enumeration of (some) proof alternatives

One candidate: knowledge based proof planning [Bundy88]

Original motivation: widen range of automatable maths

New motivation: support for proof step evaluation

Implementation: DIALOG Demonstrator_

Related Work

- Motivation: [Moore93] Flexible tutorial NL dialog supports active learning
- Closest related: [Zinn04] analyzes well structured text-book proofs; lots of interesting ongoing work
- NL analysis: shallow techniques and keyword spotting probably not suitable
- MDR: Comparison against 'golden standard solutions' [GreaserEtAl00] not suitable
- Dialog modeling: Autotutor [PersonEtAl00], Geometry Tutor [MatsudaVanLehn03], Trindi and Siridus [TraumLarsson03], Beetle [Zinn03]

Conclusion

Lots of ongoing work in all corners of the DIALOG Project

