

Cornelia Wulf Chair of Adaptive Dynamic Systems TU Dresden

TrustedIoT Trusted Computing Architectures for IoT Devices

16.04.2024

The Chair of Adaptive Dynamic Systems

What we do?

The Chair of Adaptive Dynamic Systems

The Team

Chair:

Ms Prof. Dr.-Ing. Diana Goehringer

Postdoctoral Researcher:

Dr. Sergio Pertuz

PhD Candidate:

Ms Dipl.-Inf. Cornelia Wulf

Low-power FPGA-based mobile robot with enhanced IoT security:Motivation

- Software side:
 Hypervisors isolate trusted from untrusted guest operating systems.
- Hardware side:
 Fine-grained isolation mechanism for shared usage of hardware accelerators is missing.

Focus on AXI memory-mapped interfaces

Low-power FPGA-based mobile robot with enhanced IoT security:

Proposed Architecture

Low-power FPGA-based mobile robot with enhanced **IoT security:** Platform

KR260 Robotics Starter Kit:

Zynq UltraScale+™ MPSoC EV (XCK26)

Low-power FPGA-based mobile robot with enhanced IoT security:

Architecture Stack

Low-power FPGA-based mobile robot with enhanced IoT security: Software and Middleware

TUD implemented **ROS2/microROS** (novelty) on a Zynq/ZynqMP device and add a **hardware-based secure layer** to the networking and middleware to have improved security in robotics IoT.

Threat analysis overview: Scope

The security scope here is limited to robot middleware and medium-level software vulnerabilities. In particular, **three types of attackers** are considered:

- Human attackers interact physically with the robot (Robot User),
- Another robot or system is capable of physical interaction with the robot. (Third-Party Robotic System), and
- A human teleoperation the robot or sending commands to it through a client application (e.g., smartphone app) (Teleoperator / Remote User)

Protection of hardware accelerators

1. Fixed assignment:

Disadvantage:

- No flexibility
- No scalability

2. Access via software scheduler:

Disadvantage:

Latency

Custom MMU

Scheduler

- Vitis HLS
- Input: Task ID, accelerator type, priority
- Chooses accelerator and updates the translation table

Priority queue for each accelerator

l4rec.io

```
Io.hw.add devices(function()
       hw scheduler = Io.Hw.Device(function()
              Resource.regs = Io.Res.mmio(0xA000000, 0xFFFFFFFF)
              Resource.irq1 € Io.Res.irq(121);
       end);
       task1 = Io.Hw.Device(function()
              Resource.regs = Io.Res.mmio(BASE SCHEDULER, BASE SCHEDULER + OFFSET)
              Resource.regs = Io.Res.mmio(BASE VIRTI, HIGH VIRTI)
       end);
       task2 = Io.Hw.Device(function()
              Resource.regs = Io.Res.mmio(BASE SCHEDULER + OFFSET,
              Resource.regs = Io.Res.mmio(BASE VIRT2, HIGH VIRT2
       end);
End)
```


Hardware task scheduler

Evaluation

- Hardware accelerators: Encryption
- PLMMU adds negligible overhead to the communication between software task and hardware accelerator
- For a First Come First Serve strategy, the hardware task scheduler requires on average 169 clock cycles at 100 MHz.

Conclusion

Memory-mapped access controlled by a PLMMU and a hardware task scheduler

Advantages

- Prevention of unauthorized access
- Shared usage of hardware accelerators
- Preservation of priorities
- Latency reduction compared to a software approach

Disadvantage

Overhead

Future work

- Static and / or dynamic priorities
- Virtualization of interrupts

Questions?

Remarks

Discussion

