Statistical Machine Learning Theory

Model Evaluation and Selection

Hisashi Kashima kashima@i.Kyoto-u.ac.jp

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Topics:

Methods for model evaluation and selection

- You empirically want to know the final performance of your model, or select the best one among possible models (or both)
- Performance measures (especially for binary classification): accuracy, precision/recall, DCG@k, AUC
- Empirical model evaluation and selection framework: cross validation
- Model stacking

Performance Measures

Various performance measures of classifiers: Should be chosen according to applications

- Evaluation measures to quantify the performance of a trained model especially in supervised classification
 - -Accuracy, precision/recall, DCG@k, AUC, ...
- They should be appropriately chosen depending on applications
 - -Classification with decision thresholds: accuracy, precision/recall, ...
 - -Classification without decision thresholds: AUC, ...
 - -Ranking: DCG@k, ...

Confusion matrix:

Set of predictions on a dataset gives a confusion matrix

■ Binary classifier makes positive (+1) or negative (-1) predictions

-Linear classifier:
$$y = \text{sign}(f(\mathbf{x})), f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$

Once we have a set of predictions on a dataset, we have a confusion matrix:

		predicted label	
		positive	negative
true label	positive	#true positives 😀	#false negatives
	negative	#false positives	#true negatives 😀

Accuracy, precision, recall, and F-measure: Basic predictive performance measures

- Accuracy: percentage of #true positives + #true negatives #all predictions
 - -In other words, averaged 0-1 loss
- Precision/Recall

		predicted label	
		positive	negative
true label	positive	#true positives ⊙	#false negatives
	negative	#false positives	#true negatives ⓒ

$$-Precision = \frac{\text{#true positives}}{\text{#true positives} + \text{#false positives}}$$

$$-Recall = \frac{\text{#true positives}}{\text{#true positives} + \text{#false negatives}}$$

$$-F$$
-measure = $\frac{Precision \cdot Recall}{Precision + Recall}$

Harmonic mean of precision and recall

Performance measure for ranking: Evaluate the confidence score directly

- In ranking (of web pages), accuracy of top-ranked items is more important
 - -We usually check only the first page of Google search results
- In a linear classifier: $y = \text{sign}(f(\mathbf{x})), f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x},$ $f(\mathbf{x})$ indicates how likely \mathbf{x} belongs to class +1
 - $-|f(\mathbf{x})|$ is considered as a confidence level for the prediciton
- lacktriangle Usually, we use a decision threshold au to make a decision:
 - $-y = \operatorname{sign}(f(\mathbf{x}) \tau)$
 - -Predict +1 for x if f(x) is larger than decision threshold τ

Performance measure for ranking:

Precision@k and DCG@k

- ullet Precision@k: precision calculated using the top-k scored items
 - –Or, with the threshold model, we can have different precision values for different thresholds au
- DCG(Discounted Cumulative Gain)@k is a weighted variant of Precision@k: $\sum_{i=1}^{k} \frac{\operatorname{rel}(i)}{\log(i+1)}$
 - -rel(i) is the relevance score for the i-th ranked item

AUC:

A standard performance measure of classification

- We want a performance measure that
 - -is not affected by class (im)balance
 - Imbalanced data generally results in a high accuracy
 - -does not depend on k or τ
- AUC: a performance measure directly given by confidence score $f(\mathbf{x})$
 - —Probability of P being larger than N
 - P: confidence score of a randomly chosen positive instance
 - *N*: confidence score of a randomly chosen *negative* instance
 - -AUC=1 for perfect predictions, 0.5 for random predictions

Evaluation and Selection Framework

Model evaluation and selection framework: We want to predict final performance of models

- We are interested in the future performance of the obtained model when it is deployed
 - Model performance for training data and that for future data are different
- We often have some hyper-parameters to be tuned so that the final performance gets better
 - -E.g. Training target of the ridge regression: Hyperparameter minimize $\|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$

Hyper-parameters are not optimized in the training

The first principle: Evaluation must use a dataset not used in training

- You must not evaluate your classifier based on the performance on the dataset you already used for training
- Usually, a given dataset must be divided into a training dataset and a test dataset
 - 1. Train a classifier using the training dataset
 - 2. Evaluate its performance on the test dataset
 - Partitioning should be done carefully
 - Time series data: if your dataset explicitly has time stamps and you are interested in predicting the future, you should divide it into past and future

A statistical framework for performance evaluation: Cross validation

- (K-fold) cross validation gives an estimate of the future performance of the classifier when it is deployed
- Divide a given dataset into K non-overlapping sets
 - —Use K-1 of them for training
 - —Use the remaining one for testing
- Changing the test dataset results in K measurements
 - -Take their average to get a final performance estimate

Statistical framework for tuning hyper-parameters: Cross validation (for model selection)

- Most of machine learning algorithms have hyper-parameters
 - Hyper-parameters are not automatically tuned in the training phase and must be given by users
- (K-fold) cross validation can also be used for this purpose:
 - -Use K-1 of K sets for training models for various hyperparameter settings
 - Use the remaining one for testing
 - Choose the hyper-parameter setting with the best averaged performance
 - Note that this is NOT the estimate of its final performance

Double-loop cross validation: Tuning hyper-parameters and performance evaluation at the same time

- Sometimes you want to do both hyper-parameter tuning and estimation of future performance
- lacktriangle Doing both with one K-fold cross validation is guilty lacktriangle

- You saw the test dataset for tuning hyper-parameters
- Double-loop cross validation:
 - Outer loop for performance evaluation
 - Inner loop for hyper-parameter tuning
 - –High computational costs...

A simple alternative of double-loop cross validation: "Development set" approach

- A simple alternative for the double-loop cross validation
- "Development set" approach
 - -Use K-2 of K sets for training
 - Use one for tuning hyper-parameters
 - Use one for testing