Prosjekt 4

Benedicte Allum Pedersen, Emil Heland Broll Fredrik Oftedal Forr

Abstract

Si meg, hva betyr adjø? Er det bare trist? Noe som sårer deg? Tro meg, vi skal ta adjø Ikke sånn som sist Da jeg gikk fra deg

Introduction

In this project we will study the Ising model in two dimensions. This is a model which is used to simulate phase transitions. The model exhibits a phase transition from a magnetic phase to a phase with zero magnetization. We study electrons in a lattice which is a binary system because each electron only can take two values, spin up or spin down.

The energy we get from the Ising model without an externally applied magnetic field is given by:

$$E = -J \sum_{\langle kl \rangle}^{N} S_k S_l$$

where $s_k, s_l = \pm 1$ and represents classical spin values. N is the total number of spins and J is a coupling constant expressing the strength of the interactions between neighboring spins. < kl > indicates that we sum over the spins of the nearest neighbors. We apply periodic boundry conditions as well as the Metropolis algorithm. We also assume that we have a ferromagnetic ordering, so J > 0.

Method

When calculating the degenerate energies for the case of 2x2, we start with the equation $E_i = -J \sum_{\langle kl \rangle}^2 s_k s_l$

And the equation will be.

$$\begin{split} E_1 &= -J \sum_{\langle kl \rangle}^2 s_k s_l \\ &= -J ((s_1 s_2 + s_1 s_3) + (s_2 s_1 + s_2 s_4) + (s_3 s_1 + s_3 s_4) + (s_4 s_3 + s_4 s_2)) \\ &= -J ((1+1) + (1+1) + (1+1) + (1+1)) \\ E_1 &= -8J \end{split}$$

The reason why the same interaction is included several times is because of the unit cell repeating itself to inflinity in both x and y derection. Therefore the s_1 will interact with s_2 and s_3 inside the unit cell, and s_2 and s_3 "outside" the unit cell.

When this is known for all the degenerate energies we can calculate the walue of the partian function.

$$z = \sum_{i=1}^{2^n} e^{-\beta E_i}$$

In out case we have n = 4 since we have a 2x2 lattice.

$$z = \sum_{i=1}^{2^4} e^{-\beta E_i}$$

$$z = e^{-\beta E_1} + e^{-\beta E_2} + \dots + e^{-\beta E_1 6}$$

$$z = e^{8\beta J} + 4e^{-\beta \cdot 0} + 2e^{-8\beta J} + 4e^{-\beta \cdot 0} + 4e^{-\beta \cdot 0} + 4e^{-\beta \cdot 0} + e^{8\beta J}$$

$$z = 2e^{8\beta J} + 2e^{-8\beta J} + 16$$

This gives us the ability to calculate the expectation value of the energy $\langle E \rangle$

$$\langle E \rangle = \sum_{i}^{2^{n}} \frac{E_{i} e^{-\beta E_{i}}}{z}$$

We know we have several energyvalues which is zero. If we do not write these we get

$$= \frac{-8Je^{8\beta J} + 2(8Je^{-8\beta J}) + (-8J)e^{8\beta J}}{2e^{8\beta J} + 2e^{-8\beta J} + 16}$$

$$= \frac{16J(e^{-8\beta J} - e^{8\beta J})}{2(e^{8\beta J} + e^{-8\beta J} + 8)}$$

$$= 8J\frac{e^{-8\beta J} - e^{8\beta J}}{e^{8\beta J} + e^{-8\beta J} + 8}$$

Thus

$$\langle E \rangle^2 = \left(8J \frac{e^{-8\beta J} - e^{8\beta J}}{e^{8\beta J} + e^{-8\beta J} + 8} \right)^2$$

At the same time we calculate $\langle E^2 \rangle$

$$\begin{split} \left\langle E^2 \right\rangle &= \sum_{i}^{2^n} \frac{E_i^2 e^{-\beta E_i}}{z} \\ &= \frac{64J e^{8\beta J} + 2 \left(64 e^{-8\beta J}\right) + 64J e^{8\beta J}}{2 e^{8\beta J} + 2 e^{-8\beta J} + 16} \\ &= \frac{128J e^{8\beta J} + 128 e^{-8\beta J}}{2 e^{8\beta J} + 2 e^{-8\beta J} + 16} \\ &= \frac{64J e^{8\beta J} + 64 e^{-8\beta J}}{e^{8\beta J} + e^{-8\beta J} + 8} \end{split}$$

When this is known we can also calculate the heat capasitace.