Advanced Digital Signal Processing (ADSP)

徐林

ADSP

Part A: Stochastic signal processing

Contents

- > Random variable
- Random vector
- > Stochastic process
- > Second order statistics
- Power spectrum estimation

ADSP

Random Vectors

<u>Definition:</u> $\mathbf{x}(\xi) = [x_1(\xi), x_2(\xi), ..., x_M(\xi)]^T$, T denotes the transpose.

A mapping from an abstract probability space to a vector-valued real space \mathbb{R}^M

Distribution function:

$$F_{\mathbf{x}}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_M) \triangleq \Pr\{x_1(\xi) \le x_1, x_2(\xi) \le x_2, ..., x_M(\xi) \le x_M\}.$$

$$F_{\mathbf{x}}(\mathbf{x}) \triangleq \Pr{\mathbf{x}(\xi) \leq \mathbf{x}}.$$

Joint probability density function:

Joint probability density function:
$$f_{\mathbf{X}}(\mathbf{x}) = \lim_{\substack{\Delta x_1 \to 0 \\ \vdots \\ \Delta x_M \to 0}} \frac{\Pr\{x_1 < x_1(\xi) \le x_1 + \Delta x_1, x_M < x_M(\xi) \le x_M + \Delta x_M\}}{\Delta x_1 \dots \Delta x_M}$$

$$\triangleq \frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_M} F_{\mathbf{X}}(\mathbf{x}).$$

ADSP

Random Vectors

Marginal density function

$$f_{x_j}(x_j) = \int \dots \int_{M-1} f_{x_j}(x) dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_M$$

$$F_{\mathbf{x}}(\mathbf{x}) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_M} f_{\mathbf{x}}(\mathbf{v}) \, \mathrm{d}v_1 \dots \mathrm{d}v_M = \int_{-\infty}^{\mathbf{x}} f_{\mathbf{x}}(\mathbf{v}) \, \mathrm{d}\mathbf{v}$$

<u>Independent</u>

 $x_1(\xi)$ and $x_2(\xi)$ independent: $\{x_1(\xi) \le x_1\}$ and $\{x_2(\xi) \le x_2\}$ jointly independent.

$$\Pr\{x_{1}(\xi) \leq x_{1}, x_{2}(\xi) \leq x_{2}\} = \Pr\{x_{1}(\xi) \leq x_{1}\} \Pr\{x_{2}(\xi) \leq x_{2}\}$$

$$F_{x_{1},x_{2}}(x_{1}, x_{2}) = F_{x_{1}}(x_{1}) F_{x_{2}}(x_{2})$$

$$f_{x_{1},x_{2}}(x_{1}, x_{2}) = f_{x_{1}}(x_{1}) f_{x_{2}}(x_{2})$$

$$4$$

ADSP

Random Vectors: statistics

Mean Vector

$$\mu_{\mathbf{x}} = \mathbf{E}\{\mathbf{x}(\xi)\} = \begin{vmatrix} \mathbf{E}\{x_1(\xi)\} \\ \vdots \\ \mathbf{E}\{x_M(\xi)\} \end{vmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_M \end{bmatrix}$$

Correlation matrix

$$\mathbf{R}_{\mathbf{x}} \triangleq \mathbf{E}\{\mathbf{x}(\xi)\mathbf{x}^{H}(\xi)\} = \begin{bmatrix} r_{11} & \dots & r_{1M} \\ \vdots & \ddots & \vdots \\ r_{M1} & \dots & r_{MM} \end{bmatrix} \qquad \begin{array}{l} \textit{H} \text{ denotes the} \\ \text{conjugate transpose} \end{array}$$

Diagonal terms:
$$r_{ii} \triangleq E\{|x_i(\xi)|^2\}, \quad i = 1, ..., M$$
 $r_{x_i}^{(2)}$

$$i = 1, \ldots, M$$

$$r_{\chi_i}^{(2)}$$

Off-diagonal terms:
$$r_{ij} \triangleq E\{x_i(\xi)x_i^*(\xi)\} = r_{ji}^*, \quad i \neq j$$

 r_{ij} : the statistical similarity between $x_i(\xi)$ and $x_i(\xi)$

 R_x is conjugate symmetric $R_x = R_x^H$ Hermitian Matrix

$$R_x = R_x^H$$

ADSP

Random Vectors: statistics

<u>Auto-covariance</u>

$$\Gamma_{\mathbf{x}} \triangleq \mathrm{E}\{[\mathbf{x}(\xi) - \mu_{\mathbf{x}}][\mathbf{x}(\xi) - \mu_{\mathbf{x}}]^{H}\} = \begin{bmatrix} \gamma_{11} & \dots & \gamma_{1M} \\ \vdots & \ddots & \vdots \\ \gamma_{M1} & \dots & \gamma_{MM} \end{bmatrix}$$

Diagonal terms:

$$\gamma_{ii} \triangleq E\{|x_i(\xi) - \mu_i|^2\} = E\{|x_i(\xi)|^2\} - \mu_i^2 \quad i = 1, ..., M$$

$$\sigma_{x_i}^{(2)}$$

Off-diagonal terms:

$$\gamma_{ij} \triangleq \mathbb{E}\{[x_i(\xi) - \mu_i][x_j(\xi) - \mu_j]^*\} = \mathbb{E}\{x_i(\xi)x_j^*(\xi)\} - \mu_i\mu_j^* = \gamma_{ji}^*, \quad i \neq j$$

 γ_{ij} : the covariance between $x_i(\xi)$ and $x_i(\xi)$

$\Gamma_{\mathbf{x}}$ is also a Hermitian matrix

$$\gamma_{ij} = E\{x_i(\xi)x_j^*(\xi)\} - \mu_i \mu_j^* = r_{ij} - \mu_i \mu_j^*$$

$$\Gamma_{x} \triangleq E\{[x(\xi) - \mu_x][x(\xi) - \mu_x]^H\} = R_{x} - \mu_x \mu_x^H$$

Random Vectors: statistics

Correlation coefficient between $x_i(\xi)$ and $x_i(\xi)$

$$\rho_{ij} \triangleq \frac{\gamma_{ij}}{\sigma_{\chi_i} \sigma_{\chi_j}}$$

 ρ_{ij} measures the statistical similarity between $x_i(\xi)$ and $x_j(\xi)$

$$|\rho_{ij}| \leq 1$$

- $\rho_{ij} = 1, x_i(\xi)$ and $x_j(\xi)$ are perfectly correlated;
- $\rho_{ii} = 0$, uncorrelated;
- $\rho_{ij} = -1$, negatively correlated.

Linear correlation

Random Vectors: statistics

<u>Uncorrelated vs. independent</u>

Uncorrelated
$$\rho_{ij} \triangleq \frac{\gamma_{ij}}{\sigma_{x_i}\sigma_{x_j}} = \frac{\mathrm{E}\{x_i(\xi)x_j^*(\xi)\} - \mu_i\mu_j^*}{\sigma_{x_i}\sigma_{x_j}} = 0$$

Independent
$$f_{x_1,x_2}(x_1,x_2) = f_{x_1}(x_1) f_{x_2}(x_2)$$

$$E\{x_i(\xi)x_j^*(\xi)\} = E\{x_i(\xi)\} E\{x_j^*(\xi)\} = \mu_i \mu_j^*$$

Independent

Uncorrelated

Uncorrelated **Y**

Independent

Uncorrelated + Gaussian Independent

Random Vectors: statistics

Uncorrelated vs. orthogonal

Uncorrelated
$$\rho_{ij} \triangleq \frac{\gamma_{ij}}{\sigma_{\chi_i}\sigma_{\chi_j}} = \frac{\mathrm{E}\{[\chi_i(\xi) - \mu_i][\chi_j(\xi) - \mu_j]^*}{\sigma_{\chi_i}\sigma_{\chi_j}} = 0$$

Orthogonal
$$E\{x_i(\xi)x_j^*(\xi)\}=0$$

{Uncorrelated} + {
$$\mu_i = 0 \text{ or } \mu_i = 0$$
} Orthogonal

{Orthogonal} + {
$$\mu_i = 0 \text{ or } \mu_i = 0$$
} Uncorrelated

ADSP

Part A: Stochastic signal processing

Contents

- > Random variable
- > Random vector
- Stochastic process
- > Second order statistics
- Power spectrum estimation

ADSP

Discrete-time stochastic process

Ensemble: set of all possible sequences $\{x(n, \xi)\}$

- $x(n,\xi)$: a random variable if n is fixed and ξ is a variable.
- $x(n, \xi)$: a sample sequence if ξ is fixed and n is a variable.
- $x(n, \xi)$: a number if both n and ξ are fixed.
- $x(n, \xi)$: a stochastic process if both n and ξ are variables.

ADSP

Discrete-time stochastic process

kth-order distribution function

$$F_x(x_1, \ldots, x_k; n_1, \ldots, n_k) = \Pr\{x(n_1) \le x_1, \ldots, x(n_k) \le x_k\}$$

<u>kth-order pdf</u>

x(n) is assumed to be real-valued

$$f_{\chi}(x_1,\ldots,x_k;n_1,\ldots,n_k) \triangleq \frac{\partial F_{\chi}(x_1,\ldots,x_k;n_1,\ldots,n_k)}{\partial x_1\ldots\partial x_M} \qquad k\geq 1$$

Notes:

- Probabilistic description requires a lot of information
- Use statistical description in practice
- Skip ξ , thus x[n] for random process or single realization

ADSP

Part A: Stochastic signal processing

Contents

- > Random variable
- > Random vector
- > Stochastic process
- Second order statistics
- Power spectrum estimation

ADSP

Stochastic process: 2nd order statistics

Statistical properties of stochastic process x[n] at time n

Mean : $\mu_x[n] = E\{x[n]\}$

Variance : $\sigma_x^2[n] = E\{|x[n] - \mu_x[n]|^2\} = E\{|x[n]|^2\} - E\{|\mu_x[n]|^2\}$

Autocorrelation : $r_x[n_1, n_2] = E\{x[n_1] \cdot x^*[n_2]\}$

Autocovariance : $\gamma_x[n_1, n_2] = E\{(x[n_1] - \mu_x[n_1]) \cdot (x[n_2] - \mu_x[n_2])^*\}$ = $r_x[n_1, n_2] - \mu_x[n_1] \cdot \mu_x^*[n_2]$

Random variable $x[\xi]$

Mean : $\mu_x \triangleq E\{x(\xi)\} = \int_{-\infty}^{\infty} x f_x(x) dx$

Variance: $\sigma_x^2 \triangleq \gamma_x^{(2)} = E\{[x(\xi) - \mu_x]^2\}$

Correlation: $r_{ij} \triangleq E\{x_i(\xi)x_j^*(\xi)\} = r_{ji}^*, \quad i \neq j$

Covariance : $\gamma_{ij} \triangleq E\{[x_i(\xi) - \mu_i][x_j(\xi) - \mu_j]^*$ = $E\{x_i(\xi)x_j^*(\xi)\} - \mu_i\mu_j^*, i \neq j$ 14

ADSP

Stochastic process: 2nd order statistics

Statistical relation between two of stochastic process x[n] and y[n]

Cross-correlation : $r_{xy}[n_1, n_2] = E\{x[n_1] \cdot y^*[n_2]\}$

Cross-covariance : $\gamma_{xy}[n_1,n_2] = E\{(x[n_1] - \mu_x[n_1]) \cdot (y[n_2] - \mu_y[n_2])^*\}$ = $r_{xy}[n_1,n_2] - \mu_x[n_1] \cdot \mu_y^*[n_2]$

Normalized γ_{xy} : $\rho_{xy}[n_1,n_2] = \frac{\gamma_{xy}[n_1,n_2]}{\sigma_x[n_1]\cdot\sigma_y[n_2]}$

Stochastic process: some definitions

<u>Independent</u>

If
$$f_x[x_1, ..., x_k; n_1, ..., n_k] = f_1[x_1; n_1] ... f_k[x_k; n_k] \quad \forall k, n_i, i = 1, ..., k$$

x[n] is a sequence of independent random variables.

IID (Independent and Identically Distributed)

If
$$f_1[x_1; n_1] = f_2[x_2; n_2] = \dots = f_k[x_k; n_k] \quad \forall k, n_i, i = 1, \dots, k$$

x[n] is a IID random sequence.

ADSP

Stochastic process: some definitions

Uncorrelated

If
$$\gamma_x[n_1, n_2] = \begin{cases} \sigma_x^2[n_1] & n_1 = n_2 \\ 0 & n_1 \neq n_2 \end{cases} = \sigma_x^2[n_1]\delta(n_1 - n_2)$$

x[n] is a sequence of uncorrelated random variables.

$$\gamma_{x}[n_{1}, n_{2}] = r_{x}[n_{1}, n_{2}] - \mu_{x}[n_{1}] \cdot \mu_{x}^{*}[n_{2}]$$

$$r_{x}[n_{1}, n_{2}] = \begin{cases} \sigma_{x}^{2}[n_{1}] + |\mu_{x}[n_{1}]|^{2} & n_{1} = n_{2} \\ \mu_{x}[n_{1}] \cdot \mu_{x}^{*}[n_{2}] & n_{1} \neq n_{2} \end{cases}$$

<u>Orthogonal</u>

$$r_{x}[n_{1}, n_{2}] = \begin{cases} \sigma_{x}^{2}[n_{1}] + |\mu_{x}[n_{1}]|^{2} & n_{1} = n_{2} \\ 0 & n_{1} \neq n_{2} \end{cases} = E\{|x[n_{1}]|^{2}\} \delta(n_{1} - n_{2})$$

ADSP

Stochastic process: stationary

Stationary of order N

$$f_x[x_1, ..., x_N; n_1, ..., n_N] = f_x[x_1, ..., x_N; n_1 + k, ..., n_N + k] \quad \forall k$$

Strict-sense stationary (SSS)

x[n] is stationary for all orders N=1, 2,

An IID sequence is SSS.

Wide-sense stationary (WSS): stationary up to order 2

- Mean is a constant independent of n: $E\{x(n)\} = \mu_x$
- Variance is a constant independent of n: $var\{x(n)\} = \sigma_x^2$
- Autocorrelation depends only on l ($l = n_1 n_2$)

$$r_{\chi}(n_1, n_2) = r_{\chi}(n_1 - n_2) = r_{\chi}(l)$$

Stochastic process: stationary

Wide-sense stationary (WSS):

Example:

Let w(n) be a zero-mean, uncorrelated Gaussian random sequence with variance $\sigma^2(n) = 1$.

a. Characterize the random sequence w(n).

b. Define x(n) = w(n) + w(n-1). Determine the mean and autocorrelation of x(n). Also characterize x(n).