Population flow drives spatio-temporal distribution of COVID-19 in China

Jayson S. Jia, Xin Lu, Yun Yuan, Ge Xu, Jianmin Jia 🖾 & Nicholas A. Christakis

Nature (2020) | Cite this article

41k Accesses | 720 Altmetric | Metrics

Expectativa

Realidad

Pares latitud/longitud de toda la población con alta resolución temporal

≈100 pares latitud/longitud a lo largo del día para cada dispositivo

Algunas localidades más representadas que otras

Mayor cobertura en CABA y zona norte

Cantidad estable de dispositivos únicos

Cobertura suficiente para algunos propósitos, pero no para otros

Base del dispositivo: departamento con más pares latitud/longitud

Computamos,

Movilidad local = $\langle \langle d \rangle_{individuo} \rangle_{departamento}$ = desplazamiento promedio por sujeto, promediado en el departamento

 M_{ij} = cantidad de dispositivos con base en i que aparecen en algún momento del día en j

$$C_{ij} = \frac{M_{ij} + M_{ji}}{N_i + N_j} \frac{N_j}{N_i}$$
, donde $N_{i,j}$ población del departamento i,j

C_{ij} para el 1ero de Marzo

https://covid.grandata.com/distancing