Pattern Mixture Models

Model Classes

Likelihood Function:

$$L(Y_{obs}, R) = \int L(Y_{obs}, Y_{mis}, R) dY_{mis}$$

Two classes of models:

1. Selection model (Diggle and Kenward, 1994):

Partition the likelihood as

$$L(Y_{obs}, Y_{mis}, R) = L(Y_{obs}, Y_{mis})L(R|Y_{obs}, Y_{mis})$$

2. Pattern Mixture Model (Little, 1993, 1994):

Partition the likelihood as

$$L(Y_{obs}, Y_{mis}, R) = L(R)L(Y_{obs}, Y_{mis}|R)$$

Pattern Mixture Model

$$L(\mathbf{Y}_{obs}, R|X) = \int L(R|\mathbf{X})L(\mathbf{Y}_{obs}, \mathbf{Y}_{mis}|\mathbf{X}, R)d\mathbf{Y}_{mis}$$

The joint distribution of (\mathbf{Y}_i, R_i) is factored as:

$$[\mathbf{Y}_i, R_i | \mathbf{X}_i] = [R_i | \mathbf{X}_i] [\mathbf{Y}_i | \mathbf{X}_i, R_i]$$

where

- $[\mathbf{Y}_i|\mathbf{X}_i,R_i]$ models the relationship between Y and X within each missing data pattern.
- $[R_i|\mathbf{X}_i]$ models the drop-out mechanism marginally as a function of covariates.

Pattern Mixture Model: Remarks

- Pattern-mixture models stratify the data by missing data patterns and then allow for different relationships between Y and X for different patterns.
- When drop-out is at random, this approach can avoid a full specification of the drop-out mechanism.
- Complicated when there are too many missing patterns.
- Note: Pattern-mixture model has no marginal mean interpretation

Identifiability in Pattern Mixture Models

Remarks:

- This model assumes the outcome has different means and covariances for different patterns.
- The parameters in Pattern 1, $\mu^{(1)} = (\mu_1^{(1)}, \mu_2^{(2)})$ and $\Sigma^{(1)}$ both can be estimated directly from the data.

Identifiability in Pattern Mixture Models (2)

- The parameters in Pattern 2, $\mu_1^{(2)}$ and $\sigma_{11}^{(2)}$ can be estimated from the data but $\mu_2^{(2)}$, $\sigma_{12}^{(2)}$, $\sigma_{22}^{(2)}$ are not estimable from the data.
- Assumptions are needed to make parameter identifiable, e.g., assume $\mathbf{\Sigma}^{(1)} = \mathbf{\Sigma}^{(2)}$ and perform sensitivity analysis of $\mu_2^{(2)}$.
- Pattern mixture models allow one to see easily which parameters are not identifiable.
- **Y** is a mixture of two normal distributions with the marginal mean

$$E(\mathbf{Y}) = \sum_{j=1}^{2} Pr(R = j + 1)\mu^{(j)}.$$

Compare to selection models, where the marginal distribution of \mathbf{Y} is normal.

 Selection models and pattern mixture models are equivalent under MCAR.

Parameter Interpretation in Pattern Mixture Models

Regression Pattern Mixture Model

$$\mu_{ij}^{(1)} = \mathbf{X}_{ij}^T \boldsymbol{\beta}^{(1)}$$
 $\mu_{ij}^{(2)} = \mathbf{X}_{ij}^T \boldsymbol{\beta}^{(2)}$

- $\beta^{(1)}$ is the regression coefficient vector if longitudinal data are complete (Pattern 1).
- $\beta^{(2)}$ is the regression coefficient vector among those subjects who drop out at time 2.
- Both $\beta^{(1)}$ and $\beta^{(2)}$ need to be interpreted conditional on dropout patterns and are less interesting in practice.

Parameter Interpretation in Pattern Mixture Models (2)

Marginal covariate effect:

$$\hat{\boldsymbol{\beta}} = \sum_{j=1}^{J} \pi_j \widehat{\boldsymbol{\beta}^{(j)}},$$

where $\pi_j = Pr(R = j + 1)$ is the probability of each dropout pattern.

- Can use the Delta Method to obtain standard errors.
 - uncertainty in the estimates of $\beta's$.
 - uncertainty in the sample proportion estimates $\pi's$.

Parameter Interpretation in Pattern Mixture Models (3)

- The parameters for incomplete data are not estimable if no assumption is made.
- The paramters can be identified if assumptions are made across different dropout patterns, e.g., the slopes are the same across different dropout patterns for incomplete subjects.
- Explicit assumptions on the form of the dependence of missing mechanism (R) on Y are avoided in pattern mixture models. Note this is required in selection models.

Schizophrenia Study

 312 patients received drug therapy for schizophrenia; 101 patients received a placebo

Variables:

- subject ID number
- Outcome = IMPS79: overall severity of illness (continuous)
- WEEK: 0,1,3,6
- DRUG: 0=placebo 1=drug (chlorpromazine, fluphenazine, or thioridazine)
- SEX: 0=female 1=male

Trial sample size:

		Time		
Group	0	1	3	6
Placebo $(n = 108)$	107	105	87	70
Drug (<i>n</i> = 329)	327	321	287	265

Note: The drug group combines three treatments.

- 102 of 437 subjects did not complete the trial by the end of the study.
- Assume the time trajectory (intercept and slope) is the same across different patterns for those subjects who dropped out from the study.

Pattern Mixture Model for Schizophrenia study:

$$IMPS79_{ij} = \beta_0 + \beta_1 Drug_i + \beta_2 \sqrt{week}_i + \beta_3 Drug_i \times \sqrt{week}_i$$
$$\beta_0^D \times Drop_i + \beta_1^D (Drug_i \times Drop_i) + \beta_2^D (\sqrt{week}_i \times Drop_i)$$
$$+ \beta_3^D (Drug_i \times \sqrt{week}_i \times Drop_i)$$
$$+ b_{i0} + b_{i1} \sqrt{week}_i + \epsilon_{ij}$$

- Drop_i: indicator of whether the subject dropped out of study.
- β_0 , β_1 , β_2 and β_3 are the coefficients for the subgroup who completed the trial.
- β_0^D , β_1^D , β_2^D and β_3^D are the difference of coefficients for those dropped out of the trial compared to the completers.

Pattern-mixture averaged results:

 Final estimates are obtained by averaging over missing-data patterns

$$\hat{\vec{\beta}} = \hat{\pi}_c \hat{\beta}_c + \hat{\pi}_d \hat{\beta}_d$$

where π_c =prob of completing the trial and π_d = prob of dropping out.

- In this example, we use drug-specific sample proportions as estimates of missing-data pattern proportions
- Note when Drug = 0:
 - *drop* = 0 :

$$E[IMPS79_{ij}] = \beta_0 + \beta_2 \sqrt{week_i}$$

• *drop* = 1 :

$$E[IMPS79_{ij}] = \beta_0 + \beta_2 \sqrt{week_i} + \beta_0^D + \beta_2^D \sqrt{week_i}$$

Pattern-mixture averaged results (2)

Therefore,

$$\hat{\bar{\beta}}_{0} = \hat{\pi}_{c0} \times \hat{\beta}_{0} + \hat{\pi}_{d0} \times (\hat{\beta}_{0} + \hat{\beta}_{0}^{D})
= \hat{\beta}_{0} + \hat{\pi}_{d0} \times \hat{\beta}_{0}^{D}
\hat{\bar{\beta}}_{2} = \hat{\pi}_{c0} \times \hat{\beta}_{2} + \hat{\pi}_{d0} \times (\hat{\beta}_{2} + \hat{\beta}_{2}^{D})
= \hat{\beta}_{2} + \hat{\pi}_{d0} \times \hat{\beta}_{2}^{D}$$

where $\hat{\pi}_{c0}$ and $\hat{\pi}_{d0}$ are the completer proportion and the dropout proportion in the placebo group respectively.

Similarly, we can get

$$\hat{\bar{\beta}}_1 = \hat{\beta}_1 + \hat{\pi}_{d1} \times \hat{\beta}_1^D$$

and

$$\hat{\bar{\beta}}_3 = \hat{\beta}_3 + \hat{\pi}_{d1} \times \hat{\beta}_3^D$$

where $\hat{\pi}_{d1}$ is the dropout proportion in the treatment group.

Analysis Results

NIMH Schizophrenia Study: Severity across Time MML Estimates (se) random intercept and slope models

	Completers $N = 335$	All cases $N = 437$	Pattern $mixture$ $N = 437$
intercept	5.221	5.348	5.334
	(.109)	(.088)	(.089)
Drug (0=P; 1=D)	0.202	0.046	0.124
	(.123)	(.101)	(.105)
Time (sqrt wk)	-0.393	-0.336	-0.305
	(.073)	(.068)	(.071)
Drug by Time	-0.539	-0.641	-0.662
	(.083)	(.078)	(.078)