Bibliographic Fields

Document Identity

(19)【発行国】(19) [Publication Office]日本国特許庁(JP)Japan Patent Office (JP)(12)【公報種別】(12) [Kind of Document]

公開特許公報(A) Unexamined Patent Publication (A)

(11)【公開番号】(11) [Publication Number of Unexamined Application]特開平8-250449Japan Unexamined Patent Publication Hei 8 - 250449(43)【公開日】(43) [Publication Date of Unexamined Application]

(43) [Fuonication Date of Offexammed Application]

平成8年(1996)9月27日 1996 (1996) September 27 days

Public Availability

Technical

21/336

29/78 301 P

(43) [Comparison of Unexamined Application] (43) [Publication Date of Unexamined Application]

平成8年(1996)9月27日 1996 (1996) September 27 days

(54) 【発明の名称】 (54) [Title of Invention]

半導体装置の接続孔の形成方法 FORMATION METHOD OF CONNECTING HOLE OF SEMICONDUCTOR DEVICE

21/336

(51)【国際特許分類第 6 版】 (51) [International Patent Classification, 6th Edition]

H01L 21/28 H01L 21/28

 301
 301

 21/3065
 21/3065

 21/316
 21/316

 21/318
 21/318

 21/768
 21/768

 29/78
 29/78

[FI] [FI]

H01L 21/28 L H01L 21/28 L

301 T 301 T 21/316 H 21/316 H

21/318 B 21/318 B 21/302 F 21/90 D 21/90 D

【請求項の数】 [Number of Claims]

Page 1 Paterra Instant MT Machine Translation

29/78301 P

Abstract

(57)【要約】

4 [Form of Application] 【出願形態】 OL OL [Number of Pages in Document] 【全頁数】 7 Filing [Request for Examination] 【審査請求】 Unrequested 未請求 (21) [Application Number] (21)【出願番号】 Japan Patent Application Hei 7 - 49355 特願平7-49355 (22) [Application Date] (22)【出願日】 1995 (1995) March 9 days 平成7年(1995)3月9日 **Parties Applicants** (71) [Applicant] (71)【出願人】 [Identification Number] 【識別番号】 000002185 000002185 [Name] 【氏名又儲称】 SONY CORPORATION (DB 69-055-3649) ソニー株式会社 【住所又居所】 [Address] Tokyo Prefecture Shinagawa-ku Kitashinagawa 6-7-35 東京都品川区北品川6丁目7番35号 Inventors (72) [Inventor] (72)【発明者】 [Name] 【氏名】 cattle 膓 Tetsuo 牛膓 哲雄 [Address] 【住所又居所】 Inside of Tokyo Prefecture Shinagawa-ku Kitashinagawa 東京都品川区北品川6丁目7番35号 ソニー株 6-7-35 Sony Corporation (DB 69-055-3649) 式会社内 Agents (74) [Attorney(s) Representing All Applicants] (74)【代理人】 [Patent Attorney] 【弁理士】 [Name] 【氏名又格称】 Funabashi Kuninori 船橋 國則

Page 2 Paterra Instant MT Machine Translation

(57) [Abstract]

【目的】

本発明は、膜厚の異なる絶縁膜に接続孔を形成する際に下地のオーバエッチングの防止を図る。

【構成】

第 1 工程で、少なくとも上面側にシリサイド層 14(また腐融点金属層)を設けた第 1 領域 12 と少なくとも上面側にシリサイド層 15(または高 融点金属層)を設けた第 2 領域 13 とを備を基 板 11 上に、各第 1,第 2 領域 12,13 とに対してエッチング選択性を有する第 1 絶縁膜 16 を形成 し、次いで第 2 工程で、第 1 絶縁膜 16 上に第 1,第 2 領域 12,13 上で膜厚が異なる第 2 絶縁膜 17 を形成する。

続いて第3工程で、第1,第2領域12,13上の第2絶縁膜17に第1,第2上部接続孔18,19を形成し、さらに第4工程で、第1絶縁膜16に第1上部接続孔18に連続する第1下部接続孔20を形成し、第2上部接続孔19に連続する第2下部接続孔21を形成する。

Claims

【特許請求の範囲】

【請求項1】

[Objective]

this invention when forming connecting hole in insulating film where film thickness differs, assures prevention of overetching of substrate.

[Constitution]

With first step, first domain 12 which at least provides silicide layer 14 (Or high melting point metal layer) in the top side and on substrate 11 which has second domain 13 which at least provides the silicide layer 15 (Or high melting point metal layer) in top side, first insulating film 16 which possesses etching selectivity vis-a-viswith each first, second domain 12,13 is formed, second insulating film 17 where in second step, on first insulating film 16 film thickness differs next on first, second domain 12,13 is formed.

Consequently with third step, first, second upper part connecting hole 18,19 is formed in second insulating film 17 on the first, second domain 12,13, furthermore with 4 th step, first bottom connecting hole 20 which in first insulating film 16 iscontinued in first upper part connecting hole 18 is formed, second bottom connecting hole 21 which is continued in the second upper part connecting hole 19 is formed.

[Claim(s)]

[Claim 1]

亰

少なくとも上面側に高融点金属層またはシリサイド層を設けた第 1 領域と少なく

融点金属層またはリサイド層を設けた第 2 領域とを設けた基板上に、該第1領域と該第2領域とに対してエッチング選択性を有する第1 絶縁膜を形成する第1工程と、

前記第1 絶縁膜上に、前記第1領域上と前記第2 領域上とで膜厚が異なるもので該第1 絶縁膜に対してエッチング選択性を有する第2 絶縁膜を形成する第2 工程と、

前記第1領域上の前記第2絶縁膜に第1上部接続孔を形成する 2領域上の前記第2絶縁膜に第2上部接続孔を形成する第3工程と、

前記第 1 絶縁膜に前記第 1 上部接続孔に連続して第 1 下部接続孔を形成する 1 絶縁膜に前記第 2 上部接続孔に連続して第 2 下部接続孔を形成する第 4 工程とを備たことを特徴とする半導体装置の接続孔の形成方法。

【請求項2】

請求項1記載の半導体装置の接続孔の形成方 法において、

前記第1領域は前記基板に形成された配線,電極また拡散層であり、2領域館記基板に形成された配線,電極または拡散層であること特徴とする半導体装置の接続孔の形成方法。

【請求項3】

請求項 1 記載の半導体装置の接続孔の形成方 法において、

前記第 1 領域館記基板の段差上部に形成されたもので 2 領域館記基板の段差下部に形成されたものであること特徴とする 半導体装置の接続孔の形成方法。

【請求項4】

請求項3記載の半導体装置の接続孔の形成方 法において、 first domain which at least provides high melting point metal layer or silicide layer in top side and on substrate which provides second domain which at least provides the high melting point metal layer or silicide layer in top side, first step. which forms first insulating film whichpossesses etching selectivity vis-a-vis with said first domain and said second domain

On aforementioned first insulating film, on aforementioned first domain and beingsomething where film thickness differs from with on aforementioned second domain, second step. which forms second insulating film which possesses etching selectivity vis-a-vis said first insulating film

As first upper part connecting hole is formed in aforementioned second insulating film on theaforementioned first domain, third step. which forms second upper part connecting hole in theaforementioned second insulating film on aforementioned second domain

In aforementioned first insulating film continuing in aforementioned first upper part connecting hole, asit forms first bottom connecting hole, in said first insulating film continuing in aforementioned second upper part connecting hole, formation method. of connecting hole of semiconductor device which had 4 th step whichform second bottom connecting hole and makes feature

[Claim 2]

In formation method of connecting hole of semiconductor device which is stated in Claim 1,

As for aforementioned first domain with metallization, electrode or diffusion layer which wasformed to aforementioned substrate, as for aforementioned second domain formation method. of connecting hole of semiconductor device which is made thing featurewhich is a metallization, electrode or a diffusion layer which was formed to aforementioned substrate

[Claim 3]

In formation method of connecting hole of semiconductor device which is stated in Claim 1,

As for aforementioned first domain being something which was formed to step upper part of aforementioned substrate, as for aforementioned second domain formation method. of connecting hole of semiconductor device which is made thing featurewhich is something which was formed to step bottom of aforementioned substrate

[Claim 4]

In formation method of connecting hole of semiconductor device which is stated in Claim 3,

前記第 1 領域館記基板の段差上部に形成された配線,電極また拡散層であり、前記第 2 領域は前記基板の段差下部に形成された配線,電極または拡散層であること特徴とする半導体装置の接続孔の形成方法。

Specification

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明は、半導体装置の絶縁膜、例えば層間 絶縁膜に設けられる接続孔の形成方法に関す る。

[0002]

【従来の技術】

高速デバイスに必要な項目の一つとして配線抵抗の低抵抗化があげられる。

その一つには、ゲート電極に用いる多結晶シリコンおよびソース・ドレイン拡散層をシリサイド化することにより低抵抗化する技術がある。

特にゲート電極上部とソース・ドレイン拡散層上部を自己整合的にシリサイド化する技術は、サリサイド(SALICIDE)技術と呼ば

[0003]

一方、トランジスタ形成後に高温熱処理を必要 としない工程では配線材料として主としてアルミ ニウム系金属が

近年は集積度の観点から配線が多層化しているが、アルミニウム系配線は段差被覆性が十分に得られないため、配線の断線を防止するために層間絶縁膜の平坦化がっている。

また、段差が大きいリングラフィー工程での焦点 深度余裕が十分に取れないので、この点からも 層間絶縁膜の平坦化が必要になっている。

[0004]

上記サリサイド技術と層間絶縁膜の平坦化とを 組み合わせた場合で、ゲート電極上の層間絶 縁膜と拡散層上の層間絶縁膜とに接続孔を形 成する例を、図 4 の形成工程図によって説明す る。 As for aforementioned first domain with metallization, electrode or diffusion layer which wasformed to step upper part of aforementioned substrate, as for theaforementioned second domain formation method. of connecting hole of semiconductor device which is madething feature which is a metallization, electrode or a diffusion layer which was formed to the step bottom of aforementioned substrate

[Description of the Invention]

[0001]

[Field of Industrial Application]

As for this invention, it regards formation method of connecting hole which is provided in insulating film, for example interlayer insulation film of semiconductor device.

[0002]

[Prior Art]

It can increase resistance-lowering of metallization resistance as one of item whichis necessary for high speed device.

There is a technology which resistance-lowering is done, to one by to polycide converting polycrystalline silicon and source * drain diffusion layer which are used for gate electrode.

To polycide is converted technology which is called especially gate electrode upper part and source * drain diffusion layer upper part salicided (SALICI DE) technology in self-aligning.

[0003]

On one hand, after transistor forming with step which does not need high temperature heat treatment aluminum metal is used mainly as metallization material.

Recently metallization multilayering has done from viewpoint of degree of integration, butas for aluminum metallization because step coatability is not acquired to fully, the planarization of interlayer insulation film has become necessary in order to prevent line break of metallization.

In addition, because focus depth room with lithography step where step islarge does not come off in fully, even from this point planarization of interlayer insulation film has become necessary.

[0004]

With above-mentioned salicided technology and when planarization of interlayer insulation film iscombined, example which in interlayer insulation film on gate electrode and interlayer insulation film on diffusion layer forms connecting hole, is explained in formation process figure of

る。

[0005]

図 4 の(1)に示すように、基板 111 上にはゲート 絶縁膜 112 を介してゲート電極 113 が形成され、さらにゲート電極 113 の両側における基板 111 にはソース・ドレイン拡散層 114,115 が されている。

そしてゲート電極 113,ソース・ドレイン領域 114,115 の各上層にはリサイド 116,117,118 が

このような基板 111 に層間絶縁膜 121 を形成する。

なお、図では、素子分離領域およびゲート電極 の側壁に形成したサイドウォールも示した。

[0006]

その後図 4 の(2)に示すように、 ラフィー技術とエッチングとによって、ゲート電極 113 上およびソース・ドレイン拡散層 114,115 上の層間絶縁膜 121 に、ゲート電極 113 およびソース・ドレイン拡散層 114,115 に通じる接続孔 122,123,124を形成する。

なお、レジストマスクの図示は省略した。

[0007]

【発明が解決しようとする課題】

しかしながら、上記接続孔の製造方法では、図5に示すように、層間絶縁膜121は、ソース・ドレイン拡散層114,115上の方がゲート電極113上よりも厚くなっている。

そのため、ゲート電極 113 上およびソース・ドレイン拡散層 114,115 上の層間絶縁膜 121 に、同時に接続孔 122,123,124 を形成した場合には先にゲート電極 113 上に接続孔 122 がる。

そして、接続孔 122を形成した後もソース・ドレイン領域 114,115 上に接続孔 123,124 の形成続くので、このエッチングによっ接続孔 122 の底部が過剰にエッチングされる。

そのため、ゲート電極 113 の上部に形成されているシリサイド層 116 がエッチングされるので、シリサイド層 116によるゲート電極 113 の低抵抗化の効果が減少する。

[8000]

the Figure 4.

[0005]

As shown in (1) of Figure 4, through gate insulating film 112 on substrate 111, the gate electrode 113 is formed, furthermore source * drain diffusion layer 114,115 is formed to substrate 111 in the both sides of gate electrode 113.

And silicide layer 116,117,118 is formed to each top layer of gate electrode 113, source * drain domain 114,115.

interlayer insulation film 121 is formed in this kind of substrate 111.

Furthermore, in figure, it showed also sidewall which was formedin sidewall of disassociated element region and gate electrode.

[0006]

After that as shown in (2) of Figure 4, in interlayer insulation film 121 on gate electrode 113 and on source * drain diffusion layer 114,115, connecting hole 122,123,124 which leads to gate electrode 113 and source * drain diffusion layer 114,115 isformed with lithography technology and etching

Furthermore, it abbreviated illustration of resist mask.

[0007]

[Problems to be Solved by the Invention]

But, with manufacturing method of above-mentioned connecting hole, as shown in the Figure 5, as for interlayer insulation film 121, direction on source * drain diffusion layer 114,115 it has become thick incomparison with on gate electrode 113.

Because of that, when in interlayer insulation film 121 on gate electrode 113 and on source * drain diffusion layer 114,115, the connecting hole 122,123,124 was formed simultaneously, connecting hole 122 is formed on gate electrode 113 first.

Because and, after forming connecting hole 122, formation of connecting hole 123,124 continues on source * drain domain 114,115, with this etching bottom of connecting hole 122 etching is donein excess.

Because of that, because silicide layer 116 which is formed to upper part of the gate electrode 113 is done etching, effect of resistance-lowering of gate electrode 113 decreases with silicide layer 116.

[0008]

本発明は、下地をエッチングするとなく膜厚の異なる絶縁膜に接続孔を形成するのに優れた半 導体装置の接続孔の形成方法を提供すること を目的とする。

[0009]

【課題を解決するための手段】

本発明は、上記目的を達成するためになされた半導体装置の接続孔の形成方法である。

すなわ、第1工程で、 点金属層またはリ 1 領域 と少なくとも上面側に高融点金属層またはシリ サイド層を設けた第2領域とを有する基板上

に、各第1,第2領域とに対して工 を有する第1 絶縁膜を形成する。

次いで第2工程で、 1 絶縁膜上に第1,第2領域上で膜厚が異なるもので第1 絶縁膜に対してエ 2 絶縁膜を形成する。

続いて第3工程で、第1領域上の第2絶縁膜に 第1上部接続孔を形成し、第2領域上の第2絶 縁膜に第2上部接続孔を形成する。

さらに第4 工程で、第1 絶縁膜に第1 上部接続 孔に連続する第1 下部接続孔を形成するととも に第2 上部接続孔に連続する第2 下部接続孔 を形成する。

[0010]

【作用】

上記半導体装置の接続孔の形成方法では、第 1 絶縁膜を設けたことから、第 2 絶縁膜に接続孔を形成する際には第 1 絶縁膜に対してエッチング選択性を有する第 2 絶縁膜のエッチングは第 1 絶縁膜上で停止される。

そのため、第1,第2領域上に第2絶縁膜の膜厚が っている場合でも第1 絶縁膜上でエッチングは停止される。

続いて第1絶縁膜をエッチン 1上部接 続孔に連続する第1下部接続孔を形成するとと もに第2上部接続孔に連続する第2下部接続 孔を形成する。

このとき、第 1,第 2 領域に対して第 1 絶縁膜が エッ め、第 1,第 2 領域 this invention, when substrate etching is done, offers formation method of the connecting hole of semiconductor device which is superior in order to form connecting hole in the insulating film where film thickness differs without makes objective.

[0009]

[Means to Solve the Problems]

As for this invention, it is a formation method of connecting hole of semiconductor device which can be made in order to achieve above-mentioned objective.

With namely, first step, first domain which at least provides high melting point metal layer or the silicide layer in top side and on group board which possesses second domain which at least provides high melting point metal layer or silicide layer in top side, first insulating film which possesses etching selectivity vis-a-vis with each first, second domain is formed.

Next with second step, being something where on first insulating film film thickness differs on first, second domain, it forms second insulating film which possesses etching selectivity vis-a-vis first insulating film.

Consequently with third step, first upper part connecting hole is formed in second insulating film on the first domain, second upper part connecting hole is formed in second insulating film on second domain.

Furthermore as with 4 th step, first bottom connecting hole which in first insulating film is continued in first upper part connecting hole is formed, second bottom connecting hole which is continued in second upper part connecting hole isformed.

[0010]

[Working Principle]

With formation method of connecting hole of above-mentioned semiconductor device, when fromfact that first insulating film is provided, forming connecting hole in second insulating film, as for etching of second insulating film which possesses etching selectivity vis-a-vis the first insulating film it is stopped on first insulating film.

Because of that, even with when film thickness of second insulating film differs on the first, second domain etching is stopped on first insulating film.

Consequently etching doing first insulating film, as it forms first bottom connecting hole which itcontinues in first upper part connecting hole it forms second bottom connecting hole which it continues in the second upper part connecting hole.

Because first insulating film has etching selectivity this time, vis-a-vis first, second domain, the first insulating film etching

例え

がほとんどエッチングされることなく第 1 絶縁膜 はッチン

そのため、第1,第2領域がほとんどエッチングされる 1,第2下部接続孔が

[0011]

【実施例】

本発明の第1実施例を図1の形成工程図によって説明する。

[0012]

図 1 の(1)に示すように、基板 11 には、第 1 領域 12 と第 2 領域 13 とが設けられてる。

この第 1 領域 12 は、例尾基板 11 上に形成された配線であり、その上面側にはシリサイド層 14 が形成されてる。

このシリサイド層 14 は高融点金属層で っても よい。

また第2領域13は 11上に形成された拡散層であり、その上面側にはシリサイド 層 15 が

このシリサイド層 15 は高融点金属層で ってもよい。

[0013]

まず第 1 工程では、例えば低圧化学的気相成長(以下、LPCVD という)法によって、上記基板11上に、第1,第2領域12,13を覆う状態にして、第1,第2領域12,13とに対してエッチング選択性(例成選択 比が3~5程度以上)を有する第1絶縁膜16を形成する。

この第1絶縁膜16は、例えば窒化シリコン膜で形成することが可能である。

なお窒化シリコンに対する高融点金属またはシリサイドのエッチング選択比は10程度となる。

[0014]

また上記 LPCVD 法で 般の LPCVD 装置を用いた。

反応気体には 一例として流量が 50sccm のジ クロルシラン(SiH₂Cl₂), 流量が 200sccm のアン モニア(NH₃)および流量が 2000sccm の窒素 (N₂)を用いた。

また反応雰囲気の圧力を例えば 70Pa、基板温度を例ば 760 deg C に設定した。

is done without first, second domain being done etching for themost part.

Because of that, first, second bottom connecting hole is formed without first, second domain being done the etching for most part.

[1100]

[Working Example(s)]

first Working Example of this invention is explained in formation process figure of Figure 1.

[0012]

As shown in (1) of Figure 1, first domain 12 and second domain 13 are provided in substrate 11.

As for this first domain 12, with metallization which was formed on for example substrate 11, the silicide layer 14 being formed by top side, δ .

This silicide layer 14 is good even with high melting point metal layer.

In addition as for second domain 13, with diffusion layer which was formed on the for example substrate 11, silicide layer 15 is formed to top side.

This silicide layer 15 is good even with high melting point metal layer.

[0013]

First with first step, with for example low pressure chemical vapor phase deposition (Below, you call LPCVD) method, on above-mentioned substrate 11, first insulating film 16 which possesses etching selectivity (for example selectivity 3 - 5 extent or greater) to state whichcovers first, second domain 12,13, vis-a-vis with first, second domain 12,13 is formed.

Forms this first insulating film 16, is possible with for example silicon nitride membrane.

Furthermore selected etching ratio of high melting point metal or polycide for silicon nitride becomes 10 extent.

[0014]

In addition with above-mentioned LPCVD, for example general LPCVD equipment was used as equipment.

flow dichlorosilane of 50 sccm (SiH₂Cl₂), flow ammonia of 200 sccm (NH₃) and flow used nitrogen (N₂) of 2000 sccm to reaction gas, as one example.

In addition pressure of reaction atmosphere for example 70 Pa, substrate temperature was set to the for example 760 deg C.

または、LPCVD の代わりにプラズマ化学的気相成長(以下プラズマ CVD という)法を用いてもよい。

プラズマ CVD 法による て例えば、一般の平行平板型の枚葉式プラズ マ CVD 装置を用い、反応気体には、一例として 流量が 50sccm のモノシラン(SiH₄), 流量が 200sccm のアンモニア(NH₃)および流量が 2000sccm の窒素(N_2)を用いる。

また反応雰囲気の圧力を例えば 600Pa、基板温度を例成 360 deg C に設定する。

[0015]

次いで図1の(2)に示す第2工程を行う。

この工程では、常圧化学的気相成長(以下、常圧 CVD という)法によって上記第 1 絶縁膜 16 上にこの第 1 絶縁膜 16 に対してエッチング選択性(例尾選択 比が 3~5 程度以上)を有する第 2 絶縁膜 17 を形成する。

この第2絶縁膜17は、例えばリンシリケートガラス(以下、PSGという)からなりその表面が平坦化されるように形成される。

また、第 1 領域 12 の方が 2 領域 13 よりも高く 形成されている。

したがって、 1 領域 12 上の第2 絶縁膜 17 の 膜厚より第2 領域 13 上の第2 絶縁膜 17 の膜 厚の方が厚くなる。

[0016]

続いて図1の(3)に示す第3工程を行う。

この工程では、リソグラフィー技術(レジスト塗布、露光、現像、ベーキング等)により、第2絶縁膜 17 上にレジストマスク 31 を形成し、第1,第2 領域 12,13 の上方に開口部 32,33 を形成する。

その後、例えば反応性イオンエッチング(以下、 RIE という)によって、上記第2絶縁膜16が露出 するまで第2絶縁膜17をエッチングする。

そして、第 1 領域 12 上の第 2 絶縁膜 17 に第 1 上部接続孔 18 を形成するとともに第 2 領域 13 上の第 2 絶縁膜 17 に第 2 上部接続孔 19 を形成する。

[0017]

上記 RIE では、 般の枚葉式マグネトロン RIE 装置を用いた。 Or, in place of LPCVD making use of plasma chemical vapor phase deposition (You call below plasma CVD) method it is good.

With film formation, making use of sheet-fed type plasma CVD equipment of for example general parallel flat plate type as film formation equipment, flow monosilane of 50 sccm (SiH₄), flow ammonia of 200 sccm (NH₃) and flow uses nitrogen (N₂) of 2000 sccm to thereaction gas , with plasma CVD method as one example.

In addition pressure of reaction atmosphere for example 600 Pa, substrate temperature is set to the for example 360 deg C.

[0015]

second step which is shown next in (2) of Figure 1 is done.

With this step, with ambient pressure chemical vapor phase deposition (Below, you call ambient pressure CVD) method, second insulating film 17 which possesses the etching selectivity (for example selectivity 3 - 5 extent or greater) vis-a-vis this first insulating film 16 is formed on above-mentioned first insulating film 16.

This second insulating film 17, consists of for example phosphorus silicate glass (Below, you call PSG) and in order surface planarization to be done, is formed.

In addition, first domain 12 it is formed highly in comparison with the second domain 13.

Therefore, film thickness of second insulating film 17 on first domain 12 compared to film thickness of second insulating film 17 on second domain 13 becomes thick.

[0016]

Consequently third step which is shown in (3) of Figure 1 is done.

With this step, resist mask 31 is formed on second insulating film 17 with lithography technology (resist application, exposure, development and baking etc), opening 32,33 is formed in upward direction of first, second domain 12,13.

After that, until with for example reactive ion etching (Below, you call RIE), above-mentioned second insulating film 16 exposes, second insulating film 17 etching is done.

As and, first upper part connecting hole 18 is formed in second insulating film 17 on first domain 12, second upper part connecting hole 19 isformed in second insulating film 17 on second domain 13.

[0017]

With above-mentioned RIE, for example general sheet-fed type magnetron RIE equipment was used as etching

第

エッチン

エッチング気体には、例えば流量が 8sccm のオクタフルオロシクロブタン(C_*F_8)および流量が 60sccm の一酸化炭素(CO)を用いた。

また搬送気体には、例えば流量が 200sccm の アル ン(Ar)を用いた。

さらにエッチング雰囲気の圧力を例えば 5.3Pa、 高周波電力を例えば 1.6kW、基板温度としてサ セプタの温度を例えば 30 deg C に設定した。

[0018]

その後図 1 の(4)に示す第 4 工程を行う。

この工程では例えば RIE によって、第 1 絶縁 膜 16 に、第 1 上部接続孔 18 に連続し第 1 下 部接続孔 20 を形成するとともに第2 上部接続孔 19 に連続し第 2 下部接続孔 21 を形成する。

このようにして、第 1 上部接続孔 18 と第 1 下部接続孔 20 とで第 1 接続孔 22 を形成し、第 2 上部接続孔 19 と第 2 下部接続孔 21 とで第 2 接続孔 23 を形成する。

[0019]

この RIE では上記シリサイド層 14 およびシリサイド層 15 が例えばチタンシリサイドで形成されている場合には、エッチング装置として例えば 一般の枚葉式マグネトロン RIE 装置を用いた。

エッチング気体には、例えば流量が 30sccm のオクタフルオロシクロブタン(C_4F_8)および流量が 170sccm の一酸化炭素(CO)を用いた。

またエッチング雰囲気の圧力を例成 5.3Pa、高周波電力を例えば 1.0kW、基板温度としてサセプタの温度を例成 30 deg C に設定した。

[0020]

その後、酸素プラズマアッシングまたは剥離液を用いたウェット処理によって、 RIE で用いたエッチングマスク31を除去する。

[0021]

上記半導体装置の接続孔の形成方法では、第 1 絶縁膜 16 を形成し、その上面にこの第1 絶縁 膜 16 に対してエ 2 絶 縁膜 17 を形成した。

equipment.

for example flow octafluorocyclobutane of 8 sccm ($C_4\,F_8$) and flow used carbon monoxide (CO) of60 sccm to etching gas .

Furthermore temperature of susceptor was set to for example 30 deg C pressure of etching atmosphere with for example 5.3 Pa, high frequency electric power as for example 1.6 kW, substrate temperature.

[0018]

After that 4 th step which are shown in (4) of Figure 1 are done.

With this step, with for example RIE, in first insulating film 16, continuing in the first upper part connecting hole 18, as it forms first bottom connecting hole 20, continuing in second upper part connecting hole 19, it forms the second bottom connecting hole 21.

This way, with first upper part connecting hole 18 and first bottom connecting hole 20 first connecting hole 22 is formed, with the second upper part connecting hole 19 and second bottom connecting hole 21 second connecting hole 23 is formed.

[0019]

With this RIE, when above-mentioned silicide layer 14 and silicide layer 15 areformed with for example titanium polycide, for example general sheet-fed type magnetron RIE equipment was used as etching equipment.

for example flow octafluorocyclobutane of 30 sccm ($C_4\,F_8$) and flow used carbon monoxide (CO) of 170 sccm to etching gas .

In addition temperature of susceptor was set to for example 30 deg C pressure of etching atmosphere with for example 5.3 Pa, high frequency electric power as for example 1.0 kW, substrate temperature.

[0020]

After that, with wet processing which uses oxygen plasma ashing or stripping solution, the etching mask 31 which is used with above-mentioned RIE is removed.

[0021]

With formation method of connecting hole of above-mentioned semiconductor device, first insulating film 16 was formed, second insulating film 17 which possesses etching selectivity vis-a-vis this first insulating film 16 was

そのことから、第 1,第 2 領域 12,13 上の第 2 絶縁膜 17 の膜厚が異なっている場合でも、第 2 絶縁膜 17 をエッチン 1,第 2 上部接続孔 18,19 を形成した際には第 1 絶縁膜 16 上でそのエッチングは停止される。

続いて第 1,第 2 領域 12,13 に対してエッチング 選択性を有する第 1 絶縁膜 16 をエッチン ことから、第 1,第 2 領域 12,13 はほとんどエッチ ングされることなく第 1,第 2 下部接続孔 20,21 が 形成される。

[0022]

また上記第1実施例では上記第 1領域 12は 配線でなくてもよい。

例**尾電極で ってもよく 11 に形** 成された拡散層で ってもよい。

また上記第2領域13は拡散層でよい。

例えば配線また篦極であ ってもよい。

さらに上記第1実施例では、第1絶縁膜16を窒化シリコン、第2絶縁膜17をPSGで 一例で説明したが 材料に限定されることはなく、下地に対してエッチング選択性を有する材料であればよい。

また第 2 絶縁膜 17 を平坦化膜として説明したが、第 1,第 2 領域 12,13 上の第 2 絶縁膜 17 の 膜厚が異なるものであれば、上記第 2 絶縁膜 17 展 坦化膜でなくてもよい。

また第2 絶縁膜17 は複数の絶縁膜を積層した構造であっても差し支えない。

なお、第 1,第 2 領域 12,13 上の第 2 絶縁膜 17 の膜厚がほぼ同等であっても、本発明の形成 方法は適用できる。

[0023]

上記接続孔の形成方法に係わる半導体装置へ の具体的な適用例を、図2の形成工程図によっ て以下に説明する。 formed in upper surface.

From the, even with when film thickness of second insulating film 17 on first, second domain 12,13 differs, etching doing second insulating film 17, case where it formed first, second upper part connecting hole 18,19 the etching is stopped on first insulating film 16.

Consequently from fact that etching it does first insulating film 16 whichpossesses etching selectivity vis-a-vis first, second domain 12,13, as for first, second domain 12,13 first, second bottom connecting hole 20,21 isformed without etching being done for most part.

Therefore, without etching doing first, second domain 12,13 for most part the first, second connecting hole 22,23 is formed.

[0022]

In addition it is not necessary with above-mentioned first Working Example, as forabove-mentioned first domain 12 a metallization to be.

It is good even with for example electrode, or it is good even with diffusion layer which was formed to substrate 11.

In addition it is not necessary for above-mentioned second domain 13 the diffusion layer to be.

It is good even with for example metallization or electrode.

Furthermore with above-mentioned first Working Example, first insulating film 16 was explained with one example which formed silicon nitride, second insulating film 17 with PSG, but if a material which possesses etching selectivity without being limited in these material, vis-a-vis substrate it should have been.

In addition you explained second insulating film 17 as planarizing film it is not necessary, but if it is something where film thickness of second insulating film 17 on first, second domain 12,13 differs, for above-mentioned second insulating film 17 planarizing film to be.

In addition as for second insulating film 17 there is not hindrance even with the structure which laminates insulating film of plural.

Furthermore, film thickness of second insulating film 17 on first, second domain 12,13 being almost equal, it can apply formation method of this invention.

[0023]

exemplary use example to semiconductor device which relates to formation method of the above-mentioned connecting hole, in formation process figure of Figure 2 is explained below.

第

図では、一例として、金属・絶縁膜・半導体(以下、MIS という)トランジスタを示す。

[0024]

図2の(1)に示すように、シリコン基板51(上記図1の基板11に相当)上はゲート絶縁膜52を介してゲート電極53(上記図1の第1領域12に相当)が

このゲート電極 53 は、いわゆるポリサイド構造 を成していて、下層が多結晶シリコン層 54 から なり タンシリサイド層 55 からな る。

またゲート電極 53 の両側におけるシリコン基板 51 の上層には一ス ・ドレイン領域 56,57(図 1 の第2領域 13 に相当)が

このソース・ドレイン領域 56,57 の上層にもチタンシリサイド層 58,59 が

すなわ 、上記構成の MIS トランジスタ 50 は リサイド構造を成している。

なお、図では、素子分離領域およびゲート電極53の側壁に設けたサイドウォールも図示した。

[0025]

まず第1 工程では、例えば LPCVD 法またはプラズマ CVD 法によって、上記ゲート電極 53 を覆う状態にしてシリコン基板 51 上に、上記チタンシリサイド層 55,58,59 に対してエッチング選択性(例尾選択 比が 3~5 程度以上)を有する第1 絶縁膜 16 を形成する。

この第 1 絶縁膜 16 は、例えば窒化シリコン膜で 形成する。

上記 LPCVD 法またはプラズマ CVD 法では、上記図 1 によって説明したのと同様の条件にて窒化シリコン膜の成膜を行う。

[0026]

次いで図2の(2)に示す第2工程を行う。

この工程では 常圧 CVD 法によって、 I 絶縁膜 16 上にこの第 I 絶縁膜 16 に対してエッチング選択性(例えば選択比が 3~5 程度以上)を有する第 2 絶縁膜 17 を形成する。

この第2絶縁謨17は、例えばリンシリケートガラス(以下 PSG という)からなり、その表面が平坦化されるように形成される

そのため、ゲート電極 53 上とソース・ドレイン領域 56,57 上とで 2 絶縁膜 17 の膜厚が

In figure, metal-insulating film-semiconductor (Below, you call MIS) transistor is shown as one example.

[0024]

As shown in (1) of Figure 2, on silicon substrate 51 (Suitable to substrate 11 of above-mentioned Figure 1) through gate insulating film 52,gate electrode 53 (Suitable to first domain 12 of above-mentioned Figure 1) is formed.

As for this gate electrode 53, forming so-called poly side structure, bottom layer consists of polycrystalline silicon layer 54,top layer consists of for example titanium silicide layer 5上層が

In addition source * drain domain 56,57 (Suitable to second domain 13 of Figure 1) is provided in top layer of silicon substrate 51 in the both sides of gate electrode 53.

titanium silicide layer 58,59 is formed to also top layer of this source * drain domain 56,57.

MIStransistor 50 of namely, above-mentioned constitution has formed salicided structure.

Furthermore, in figure, it illustrated also sidewall which isprovided in sidewall of disassociated element region and gate electrode 53.

[0025]

First with first step, with for example LPCVD or plasma CVD method, on silicon substrate 51, the first insulating film 16 which possesses etching selectivity (for example selectivity 3 - 5 extent or greater) vis-a-vis above-mentioned titanium silicide layer 55,58,59 is formed to state which covers above-mentioned gate electrode 53.

It forms this first insulating film 16, with for example silicon nitride membrane.

With above-mentioned LPCVD or plasma CVD method, that you explained withabove-mentioned Figure 1, film formation of silicon nitride membrane is donewith similar condition.

[0026]

second step which is shown next in (2) of Figure 2 is done.

With this step, with ambient pressure CVD method, second insulating film 17 which possesses etching selectivity (for example selectivity 3 - 5 extent or greater) vis-a-vis this first insulating film 16 is formed on above-mentioned first insulating film 16.

This second insulating film 17 consists of for example phosphorus silicate glass (You call below PSG), in order surface planarization tobe done, is formed.

Because of that, on gate electrode 53 and film thickness of second insulating film 17 differs withwith on source * drain

る。

ここでは、ゲート電極 53 上の第2 絶縁膜 17より ソース・ドレイン領域 56,57 上の第2 絶縁膜 17 の方が膜厚は厚くなる。

[0027]

続いて図2の(3)に示す第3工程で ラフィー技術(レジスト塗布、露光、現像、ベーキング等)によって、エッチングマスク60を形成し、続いて RIE によって、 2 絶縁膜 16 が露出するまで第2 絶縁膜 17 をエッチングする。

そして、ゲート電極 53 上の第 2 絶縁膜 17 に第 1 上部接続孔 61 を形成するとともにソース・ドレイン領域 56,57 上の第 2 絶縁膜 17 に第 2 上部接続孔 62,63 を形成する。

この RIE で 1 によっ説明したのと 同様の条件にてエッチングを行う。

[0028]

その後図 2 の(4)に示す第 4 工程で RIE によって、 1 絶縁膜 16 に第 1 上部接続孔 61 に連続して第 1 下部接続孔 64 を形成するとともに第 2 上部接続孔 62,63 に連続し第 2 下部接続孔 65,66 を形成する。

このようにして、第1上部接続孔61と第1下部接続孔64とでゲート電極53に通じる第1接続孔67を形成し、第2上部接続孔62,63と第2下部接続孔65,66とでソース・ドレイン領域56,57に通じる第2接続孔68,69を形成する。

この RIE で 1 によっ説明したのと 同様の条件にてエッチングを行う。

[0029]

その後、酸素プラズマアッシングまたは剥離液を用いたウェット処理によって、 RIE で用いたエッチングマスク60を除去する。

[0030]

このように、ゲート電極 53 のチタンシリサイド層 55 およびソース・ドレイン領域 56,57 のチタンシリサイド層 58,59 をほとんどエッチングすることなく接続孔 67,68,69 を形成することができるので、チタンシリサイド層 55,58,59 による低抵抗化の効果が減少することない。

したがって、サリサイド構造の MIS トランジスタを搭載したスタティック RAM[SRAM(Static Random Access Memory)]や ASIC(Application

domain 56,57.

Here, second insulating film 17 on gate electrode 53 compared to second insulating film 17 on source * drain domain 56,57 as for film thickness becomes thick.

[0027]

Consequently until with third step which is shown in (3) of the Figure 2, with lithography technology (resist application, exposure, development and baking etc), etching mask 60 is formed, continuously with the RIE, above-mentioned second insulating film 16 exposes, second insulating film 17 etching is done

As and, first upper part connecting hole 61 is formed in second insulating film 17 on gate electrode 53, second upper part connecting hole 62,63 isformed in second insulating film 17 on source * drain domain 56,57.

With this RIE, that you explained with above-mentioned Figure 1 etching is done with similar condition.

[0028]

After that with 4 th step which are shown in (4) of Figure 2, with RIE, in first insulating film 16 continuing in first upper part connecting hole 61, as it forms the first bottom connecting hole 64, continuing in second upper part connecting hole 62,63, it forms second bottom connecting hole 65,66.

This way, first connecting hole 67 which with first upper part connecting hole 61 and first bottom connecting hole 64 leads to the gate electrode 53 is formed, second connecting hole 68,69 which with second upper part connecting hole 62,63 and second bottom connecting hole 65,66 leads to source * drain domain 56,57 is formed.

With this RIE, that you explained with above-mentioned Figure 1, etching is done with similar condition.

[0029]

After that, with wet processing which uses oxygen plasma ashing or stripping solution, the etching mask 60 which is used with above-mentioned RIE is removed.

[0030]

This way, because connecting hole 67,68,69 can be formed without titanium silicide layer 55 of the gate electrode 53 or etching doing titanium silicide layer 58,59 of source * drain domain 56,57 for most part, there are not times when effect of resistance-lowering decreases with titanium silicide layer 55,58,59.

Therefore, static RAM which installs MIStransistor of salicided structure {SRAM (St atic random access memory)} and with ASIC (Appl ication Specific In tegrated Circuit) or

上記!

Specific Integrated Circuit)等の半導体装置では、動作速度が低下することなく高速動作が確保される。

[0031]

次に第2実施例を図3の形成工程図によって説明する。

また、上記図 1 で 同様の構成部品 には同一の符号を付す。

[0032]

図 3 の(1)に示すように、段差を有する基板 71 の段差上部 71U に第 1 領域 12 が 差下部 71B に第 2 領域 13 が

この第 1 領域 12 は、基板 71 上に形成された例 えば配線であり、その上面側にはシリサイド層 14 が形成されてる。

このシリサイド層 14 は高融点金属層で っても よい。

また第2領域13は、基板71に形成された例えば拡散層であり、その上面側にはシリサイド層15が形成されてる。

このシリサイド層 15 は高融点金属層で っても よい。

[0033]

上記図 1 で 同様にして、第 1 工程 で、 71 上に、第 1,第 2 領域 12,13 を覆 う状態にして、第 1,第 2 領域 12,13 とに対してエッ (例尾選択 比が 3~5 程度以上) を有する第 1 絶縁膜 16 を形成する。

[0034]

次いで第2工程で、 1 絶縁膜 16 上にこの第1 絶縁膜 16 に対してエッチング選択性(例尾選 択比が 3~5 程度以上)を有する第2 絶縁膜 17 を形成する。

ここでは、例えばリンシリケートガラス(以下 PSG という)を用い、表面をほぼ平坦に形成する。

また、第1領域12の方が 2領域13よりも高くなっている。

したがって、 1 領域 12 上に第 2 絶縁膜 17 の 膜厚より第 2 領域 13 上に第 2 絶縁膜 17 の膜 厚の方が厚くなる。

[0035]

続いて図3の(2)に示す第3工程で ラフィー技術と例えば RIE とによって、 1 絶縁

other semiconductor device, high speed operation is guaranteed without operating speed decreasing.

[0031]

second Working Example is explained next in formation process figure of Figure 3.

In addition, that you explained with above-mentioned Figure 1, thesame symbol to similar component attaching.

[0032]

As shown in (1) of Figure 3, first domain 12 is formed by step upper part 71U of group board 71 which possesses step, second domain 13 is formed to step bottom 71B.

As for this first domain 12, with for example metallization which was formed on substrate 71, the silicide layer 14 being formed by top side, る.

This silicide layer 14 is good even with high melting point metal layer.

In addition as for second domain 13, with for example diffusion layer which was formed to the substrate 71, silicide layer 15 being formed by top side, る.

This silicide layer 15 is good even with high melting point metal layer.

[0033]

That you explained with above-mentioned Figure 1, with first step, onabove-mentioned substrate 71, first insulating film LE記基板 which possesses etching selectivity (for example selectivity 3 - 5 extent or greater) to state which covers first, second domain 12,13, vis-a-vis with first, second domain 12,13 is formedto similar.

[0034]

Next with second step, second insulating film 17 which possesses etching selectivity (for example selectivity 3 - 5 extent or greater) vis-a-visthis first insulating film 16 is formed on first insulating film 16.

Here, surface is almost formed in flat making use of for example phosphorus silicate glass (You call below PSG).

In addition, first domain 12 it has become high in comparison with the second domain 13.

Therefore, on first domain 12 film thickness of second insulating film 17 compared to film thickness of second insulating film 17 becomes thick on second domain 13.

[0035]

Consequently until with third step which is shown in (2) of the Figure 3, above-mentioned first insulating film 16 exposes

第

第

膜 16 が露出するまで第 2 絶縁膜 17 をエ グする。

そして、第 1 領域 12 上の第 2 絶縁膜 17 に第 1 上部接続孔 18 を形成するとともに第 2 領域 13 上の第 2 絶縁膜 17 に第 2 上部接続孔 19 を形成する。

このとき、第2 絶縁膜17 第 1 絶縁膜16 に対してエッチング選択性を有している 1 絶縁膜16 上でこのエッチングは停止される。

なお、図面ではレジストマスクの図示は省略した。

[0036]

その後図3の(3)に示す第4工程で RIEによって、 1絶縁膜16に第1上部接続孔18に連続して第1下部接続孔20を形成するとともに第2上部接続孔19に連続して第2下部接続孔21を形成する。

このようにして、第1上部接続刊18と第1下部接続刊20とで第1接続刊22を形成し、第2上部接続刊19と第2下部接続刊21とで第2接続刊23を形成する。

このとき、第 1 絶縁膜 16 は第 1,第 2 領域 12,13 に対してエッチング選択性を有しているので、第 1,第 2 領域 12,13 上でこのエッチングは停止される。

[0037]

上記図3によって説明した接続孔の形成方法では、上記図1によっ説明した接続孔の形成方法と同様に、第1,第2領域12,13をほとんどエッチングすることなく第1,第2接続孔22,23がされる。

[0038]

また上記第2実施例では上記第 1領域12は 配線でなくてもよい。

例**尾電**極で ってもよく 71 に形成された拡散層で ってもよい。

また上記第2領域13は拡散層でよい。

例えば配線また電極であ ってもよい。

さらに上記第2実施例では、第1絶縁膜16を窒化シリコン、第2絶縁膜17をPSGで -

with lithography technology and for example RIE, second insulating film 17 etching is done.

As and, first upper part connecting hole 18 is formed in second insulating film 17 on first domain 12, second upper part connecting hole 19 isformed in second insulating film 17 on second domain 13.

Because this time, second insulating film 17 has had etching selectivity vis-a-vis first insulating film 16, this etching is stopped on first insulating film 16.

Furthermore, with drawing it abbreviated illustration of the resist mask.

[0036]

After that with 4 th step which are shown in (3) of Figure 3, with RIE, in first insulating film 16 continuing in first upper part connecting hole 18, as it forms the first bottom connecting hole 20, continuing in second upper part connecting hole 19, it forms second bottom connecting hole 21.

This way, with first upper part connecting hole 18 and first bottom connecting hole 20 first connecting hole 22 is formed, with the second upper part connecting hole 19 and second bottom connecting hole 21 second connecting hole 23 is formed.

Because this time, first insulating film 16 has had etching selectivity vis-a-vis first, second domain 12,13,this etching is stopped on first, second domain 12,13.

[0037]

With formation method of connecting hole which is explained with the above-mentioned Figure 3, in same way as formation method of connecting hole which is explained with above-mentioned Figure 1, first, second connecting hole 22,23 is formed without etching doing first, second domain 12,13 for most part.

[0038]

In addition it is not necessary with above-mentioned second Working Example, as forabove-mentioned first domain 12 a metallization to be.

It is good even with for example electrode, or it is good even with diffusion layer which was formed to substrate 71.

In addition it is not necessary for above-mentioned second domain 13 the diffusion layer to be.

It is good even with for example metallization or electrode.

Furthermore with above-mentioned second Working Example, first insulating film 16 was explained with one

JP1996250449A

1996-9-27

例で説明したが 材料に限定されることはなく、下地に対してエッチング選択性を有する 材料であればよい。

また第 2 絶縁膜 17 を平坦化膜として説明したが、第 1,第 2 領域 12,13 上の第 2 絶縁膜 17 の 膜厚が異なるものであれば、上記第 2 絶縁膜 17 歴 坦化膜でなくてもよい。

また第2 絶縁膜17 は複数の絶縁膜を積層した構造であっても差し支えない。

なお、第 1,第 2 領域 12,13 上の第 2 絶縁膜 17 の膜厚がほぼ同等であっても、本発明の形成方法は適用できる。

[0039]

【発明の効果】

以上、説明したように本発明によれば、下地となる第1,第2領域に対してエッチング選択性を有する第1絶縁膜を設けたので、2絶縁膜に接続孔を形成する際に、第2絶縁膜の工を第1絶縁膜で停止することがきるとともに、第1,第2領域をほとんどエッチングすることなく第1絶縁膜をエ1,第2接続孔を形成することがきる。

よって、 1,第2領域の下地層の厚さが確保され、半導体装置の性能の悪化を防ぐことができる。

【図面の簡単な

【図1】

本発明の第1実施例の形成工程図であ

【図2】

第1 実施例の具体的適用例の形成工程図である。

【図3】

第2実施例の形成工程図であ

[図4]

従来例の形成工程図である。

【図5】

課題の説明図であ

【符号の説明】

example which formed silicon nitride. second insulating film 17 with PSG, but if a material which possesses etching selectivity without being limited in these material, vis-a-vis substrate it should have been.

In addition you explained second insulating film 17 as planarizing film it is not necessary, but if it is something where film thickness of second insulating film 17 on first, second domain 12,13 differs, for above-mentioned second insulating film 17 planarizing film to be.

In addition as for second insulating film 17 there is not hindrance even with the structure which laminates insulating film of plural.

Furthermore, film thickness of second insulating film 17 on first, second domain 12,13 being almost equal, it can apply formation method of this invention.

[0039]

[Effects of the Invention]

As above, explained, because first insulating film which possesses etching selectivity according to this invention, vis-a-vis first, second domain which becomes substrate was provided, when forming connecting hole in second insulating film, as etching of the second insulating film can be stopped with first insulating film, etching doing first insulating film without etching doing first, second domain for most part, it can form first, second connecting hole.

Depending, thickness of substrate layer of first, second domain is guaranteed, itprevents deterioration of performance of semiconductor device, is possible.

[Brief Explanation of the Drawing(s)]

[Figure 1]

It is a formation process figure of first Working Example of this invention.

[Figure 2]

It is a formation process figure of concrete use example of first Working Example.

[Figure 3]

It is a formation process figure of second Working Example.

[Figure 4]

It is a formation process figure of Prior Art Example.

[Figure 5]

It is a explanatory diagram of problem.

[Explanation of Symbols in Drawings]

11	11
基板	substrate
12	12
第1領域	first domain
13	13
第 2 領域	second domain
14	14
シリサイド層	silicide layer
15	15
シリサイド層	silicide layer
16	16
第1絶縁膜	first insulating film
17	17
第2 絶縁膜	second insulating film
18	18 .
第1上部接続孔	first upper part connecting hole
19	19
第 2 上部接続孔	second upper part connecting hole
20	20
第1下部接続孔	first bottom connecting hole
21	21
第 2 下部接続孔	second bottom connecting hole
22	22
第1接続孔	first connecting hole
23	23
第2接続孔	second connecting hole
Drawings	
【图1】	[Figure 1]

Page 17 Paterra Instant MT Machine Translation

【図2】

[Figure 2]

【図3】

[Figure 3]

Page 19 Paterra Instant MT Machine Translation

第2吴施例の形成工程图

Page 20 Paterra Instant MT Machine Translation

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-250449

(43)公開日 平成8年(1996)9月27日

(51) Int.Cl. ⁶		識別記号	庁内整理	[番号	FΙ						技術表示箇所
H01L	21/28				H 0	1 L :	21/28			L	
		3 0 1							3 0	1 T	
	21/3065					:	21/316			Н	
	21/316					2	21/318			В	
	21/318					2	21/302			F	
			1	客查請求	未請求	請求」	頁の数 4	OL	(全 7	頁)	最終頁に続く
(21)出願番号	}	特願平7-49355			(71)	人顧出	000002	185			
							ソニー	株式会	社		
(22)出願日		平成7年(1995)3/	月9日						北品川 6	5丁目	7番35号
					(72)	発明者					
		•						品川区 会社内		5丁目	7番35号 ソニ
					(74)	人野升	弁理士	船橋	國則		

(54) 【発明の名称】 半導体装置の接続孔の形成方法

(57)【要約】

【目的】 本発明は、膜厚の異なる絶縁膜に接続孔を形成する際に下地のオーパエッチングの防止を図る。

【構成】 第1工程で、少なくとも上面側にシリサイド層14(または高融点金属層)を設けた第1領域12と少なくとも上面側にシリサイド層15(または高融点金属層)を設けた第2領域13とを備えた基板11上に、各第1,第2領域12,13とに対してエッチング選択性を有する第1絶縁膜16を形成し、次いで第2工程で、第1絶縁膜16上に第1,第2領域12,13上で膜厚が異なる第2絶縁膜17を形成する。続いて第3工程で、第1,第2領域12,13上の第2絶縁膜17に第1,第2上部接続孔18,19を形成し、さらに第4工程で、第1絶縁膜16に第1上部接続孔18に連続する第1下部接続孔20を形成し、第2上部接続孔19に連続する第2下部接続孔21を形成する。

1

【特許請求の範囲】

【請求項1】 少なくとも上面側に高融点金属層またはシリサイド層を設けた第1領域と少なくとも上面側に高融点金属層またはシリサイド層を設けた第2領域とを設けた基板上に、該第1領域と該第2領域とに対してエッチング選択性を有する第1絶縁膜を形成する第1工程と、

前記第1絶縁膜上に、前記第1領域上と前記第2領域上とで膜厚が異なるもので該第1絶縁膜に対してエッチング選択性を有する第2絶縁膜を形成する第2工程と、

前記第1領域上の前記第2絶縁膜に第1上部接続孔を形成するとともに前記第2領域上の前記第2絶縁膜に第2 上部接続孔を形成する第3工程と、

前記第1 絶縁膜に前記第1上部接続孔に連続して第1下部接続孔を形成するとともに該第1 絶縁膜に前記第2上部接続孔に連続して第2下部接続孔を形成する第4工程とを備えたことを特徴とする半導体装置の接続孔の形成方法。

【請求項2】 請求項1記裁の半導体装置の接続孔の形成方法において、

前記第1領域は前記基板に形成された配線, 電極または 拡散層であり、前記第2領域は前記基板に形成された配 線, 電極または拡散層であること特徴とする半導体装置 の接続孔の形成方法。

【請求項3】 請求項1記载の半導体装置の接続孔の形成方法において、

前記第1領域は前記基板の段差上部に形成されたものであり、前記第2領域は前記基板の段差下部に形成されたものであること特徴とする半導体装置の接続孔の形成方法。

【請求項4】 請求項3記載の半導体装置の接続孔の形成方法において、

前記第1領域は前記基板の段差上部に形成された配線, 電極または拡散層であり、前記第2領域は前記基板の段 差下部に形成された配線,電極または拡散層であること 特徴とする半導体装置の接続孔の形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置の絶縁膜、 例えば層間絶縁膜に設けられる接続孔の形成方法に関す 40 る。

[0002]

【従来の技術】高速デバイスに必要な項目の一つとして配線抵抗の低抵抗化があげられる。その一つには、ゲート電極に用いる多結晶シリコンおよびソース・ドレイン拡散層をシリサイド化することにより低抵抗化する技術がある。特にゲート電極上部とソース・ドレイン拡散層上部を自己整合的にシリサイド化する技術は、サリサイド(SALICIDE)技術と呼ばれている。

【0003】一方、トランジスタ形成後に髙温熱処理を 50

必要としない工程では配線材料として主としてアルミニウム系金属が用いられている。近年は集積度の観点から配線が多層化しているが、アルミニウム系配線は段差被 覆性が十分に得られないため、配線の断線を防止するために層間絶縁膜の平坦化が必要となっている。また、段差が大きいリソグラフィー工程での焦点深度余裕が十分に取れないので、この点からも層間絶縁膜の平坦化が必要になっている。

【0004】上記サリサイド技術と層間絶縁膜の平坦化 10 とを組み合わせた場合で、ゲート電極上の層間絶縁膜と 拡散層上の層間絶縁膜とに接続孔を形成する例を、図4 の形成工程図によって説明する。

【0005】図4の(1)に示すように、基板111上にはゲート絶録膜112を介してゲート電極113が形成され、さらにゲート電極113の両側における基板111にはソース・ドレイン拡散層114,115が形成されている。そしてゲート電極113,ソース・ドレイン領域114,115の各上層にはシリサイド層116,117,118が形成されている。このような基板111に層間絶縁膜121を形成する。なお、図では、素子分離領域およびゲート電極の側壁に形成したサイドウォールも示した。

【0006】その後図4の(2)に示すように、リソグラフィー技術とエッチングとによって、ゲート電極113上およびソース・ドレイン拡散層114,115上の層間絶縁膜121に、ゲート電極113およびソース・ドレイン拡散層114,115に通じる接続孔122,123,124を形成する。なお、レジストマスクの図示は省略した。

30 [0007]

【発明が解決しようとする課題】しかしながら、上記接続孔の製造方法では、図5に示すように、層間絶縁膜121は、ソース・ドレイン拡散層114,115上の方がゲート電極113上よりも厚くなっている。そのため、ゲート電極113上およびソース・ドレイン拡散層114,115上の層間絶縁膜121に、同時に接続孔122,123,124を形成した場合には、先にゲート電極113上に接続孔122が形成される。そして、接続孔122を形成した後もソース・ドレイン領域114,115上に接続孔123,124の形成は続くので、このエッチングによって接続孔122の底部が過剰にエッチングされる。そのため、ゲート電極113の上部に形成されているシリサイド層116がエッチングされるので、シリサイド層116によるゲート電極113の低抵抗化の効果が減少する。

【0008】本発明は、下地をエッチングするとなく膜 厚の異なる絶録膜に接続孔を形成するのに優れた半導体 装置の接続孔の形成方法を提供することを目的とする。

[0009]

【課題を解決するための手段】本発明は、上記目的を達

3

成するためになされた半導体装置の接続孔の形成方法である。すなわち、第1工程で、少なくとも上面側に高融点金属層またはシリサイド層を設けた第1領域と少なくとも上面側に高融点金属層またはシリサイド層を設けた第2領域とを有する基板上に、各第1,第2領域とに対してエッチング選択性を有する第1絶縁膜を形成する。次いで第2工程で、第1絶縁膜上に第1,第2領域上で膜厚が異なるもので第1絶縁膜に対してエッチング選択性を有する第2絶縁膜を形成する。続いて第3工程で、第1領域上の第2絶縁膜に第1上部接続孔を形成し、第102領域上の第2絶縁膜に第1上部接続孔を形成し、第102領域上の第2絶縁膜に第1上部接続孔を形成する。さらに第4工程で、第1絶緣膜に第1上部接続孔を形成する。さらに第4工程で、第1絶緣膜に第1上部接続孔に連続する第1下部接続孔を形成するとともに第2上部接続孔に連続する第2下部接続孔を形成する。

[0010]

【作用】上記半導体装置の接続孔の形成方法では、第1 絶縁膜を設けたことから、第2絶縁膜に接続孔を形成する際には第1絶縁膜に対してエッチング選択性を有する第2絶縁膜のエッチングは第1絶縁膜上で停止される。そのため、第1,第2領域上に第2絶縁膜の膜厚が異なっている場合でも第1絶縁膜上でエッチングは停止される。続いて第1絶縁膜をエッチングして、第1上部接続孔に連続する第1下部接続孔を形成するとともに第2上部接続孔に連続する第2下部接続孔を形成する。このとき、第1,第2領域に対して第1絶縁膜がエッチング選択性を有するため、第1,第2領域がほとんどエッチングされることなく第1絶縁膜はエッチングされることなく第1絶縁膜はエッチングされることなく第1、第2領域がほとんどエッチングされることなく第1,第2で部接続孔が形成される。

[0011]

【実施例】本発明の第1実施例を図1の形成工程図によって説明する。

【0012】図1の(1)に示すように、基板11には、第1領域12と第2領域13とが設けられている。この第1領域12は、例えば基板11上に形成された配線であり、その上面側にはシリサイド層14が形成されてる。このシリサイド層14は高融点金属層であってもよい。また第2領域13は、例えば基板11上に形成された拡散層であり、その上面側にはシリサイド層15が形成されている。このシリサイド層15は高融点金属層40であってもよい。

【0013】まず第1工程では、例えば低圧化学的気相成長(以下、LPCVDという)法によって、上記基板11上に、第1,第2領域12,13を覆う状態にして、第1,第2領域12,13とに対してエッチング選択性(例えば選択比が3~5程度以上)を有する第1絶縁膜16を形成する。この第1絶縁膜16は、例えば窒化シリコン膜で形成することが可能である。なお窒化シリコンに対する高融点金属またはシリサイドのエッチング選択比は10程度となる。

【0014】また上記LPCVD法では、装置として例 えば、一般のLPCVD装置を用いた。反応気体には、 一例として流量が50sccmのジクロルシラン (Si H₂C 1₂),流量が200sccmのアンモニア (N H₁) および流量が2000sccmの窒素 (N₂) を 用いた。また反応雰囲気の圧力を例えば70Pa、基板 温度を例えば760℃に設定した。または、LPCVD の代わりにプラズマ化学的気相成長(以下プラズマCV Dという) 法を用いてもよい。プラズマCVD法による 成膜では、成膜装置として例えば、一般の平行平板型の 枚葉式プラズマCVD装置を用い、反応気体には、一例 として流量が50sccmのモノシラン(SiHa), 流量が200sccmのアンモニア(NH₃)および流 量が2000sccmの窒素 (N₂) を用いる。また反 応雰囲気の圧力を例えば600Pa、基板温度を例えば 360℃に設定する。

【0015】次いで図1の(2)に示す第2工程を行う。この工程では、常圧化学的気相成長(以下、常圧CVDという)法によって、上記第1絶縁膜16上にこの第1絶縁膜16に対してエッチング選択性(例えば選択比が3~5程度以上)を有する第2絶縁膜17を形成する。この第2絶縁膜17は、例えばリンシリケートガラス(以下、PSGという)からなりその表面が平坦化されるように形成される。また、第1領域12の方が第2領域13よりも高く形成されている。したがって、第1領域12上の第2絶縁膜17の膜厚より第2領域13上の第2絶縁膜17の膜厚の方が厚くなる。

【0016】続いて図1の(3)に示す第3工程を行う。この工程では、リソグラフィー技術(レジスト塗30 布、露光、現像、ベーキング等)により、第2絶縁膜17上にレジストマスク31を形成し、第1,第2領域12,13の上方に開口部32,33を形成する。その後、例えば反応性イオンエッチング(以下、RIEという)によって、上記第2絶縁膜16が露出するまで第2絶縁膜17をエッチングする。そして、第1領域12上の第2絶縁膜17に第1上部接続孔18を形成するとともに第2領域13上の第2絶縁膜17に第2上部接続孔19を形成する。

【0017】上記RIEでは、エッチング装置として例えば、一般の枚葉式マグネトロンRIE装置を用いた。エッチング気体には、例えば流量が8sccmのオクタフルオロシクロプタン(C、Fs)および流量が60sccmの一酸化炭素(CO)を用いた。また搬送気体には、例えば流量が200sccmのアルゴン(Ar)を用いた。さらにエッチング雰囲気の圧力を例えば5.3 Pa、高周波電力を例えば1.6kW、基板温度としてサセプタの温度を例えば30℃に設定した。

【0018】その後図1の(4)に示す第4工程を行う。この工程では、例えばRIEによって、第1絶縁膜16に、第1上部接続孔18に連続して第1下部接続孔

5

20を形成するとともに第2上部接続孔19に連続して 第2下部接続孔21を形成する。このようにして、第1 上部接続孔18と第1下部接続孔20とで第1接続孔2 2を形成し、第2上部接続孔19と第2下部接続孔21 とで第2接続孔23を形成する。

【0019】このRIEでは、上記シリサイド層14およびシリサイド層15が例えばチタンシリサイドで形成されている場合には、エッチング装置として例えば、一般の枚葉式マグネトロンRIE装置を用いた。エッチング気体には、例えば流量が30sccmのオクタフルオ 10ロシクロブタン (C4Fs) および流量が170sccmの一酸化炭素 (CO)を用いた。またエッチング雰囲気の圧力を例えば5.3Pa、高周波電力を例えば1.0kW、基板温度としてサセブタの温度を例えば30℃に設定した。

【0020】その後、酸素プラズマアッシングまたは剥離液を用いたウェット処理によって、上記RIEで用いたエッチングマスク31を除去する。

【0021】上記半導体装置の接続孔の形成方法では、第1絶縁膜16を形成し、その上面にこの第1絶縁膜1206に対してエッチング選択性を有する第2絶縁膜17を形成した。そのことから、第1,第2領域12,13上の第2絶縁膜17の膜厚が異なっている場合でも、第2絶縁膜17をエッチングして第1,第2上部接続孔18,19を形成した際には第1絶縁膜16上でそのエッチングは停止される。続いて第1,第2領域12,13に対してエッチング選択性を有する第1絶縁膜16をエッチングしたことから、第1,第2領域12,13はほとんどエッチングされることなく第1,第2下部接続孔20,21が形成される。したがって、第1,第2領域3012,13をほとんどエッチングすることなく第1,第2接続孔22,23は形成される。

【0022】また上記第1実施例では、上記第1領域1 2は配線でなくてもよい。例えば電極であってもよく、 または基板11に形成された拡散層であってもよい。ま た上記第2領域13は拡散層でなくてもよい。例えば配 線または電極であってもよい。さらに上記第1実施例で は、第1絶縁膜16を窒化シリコン、第2絶縁膜17を PSGで形成した一例で説明したが、これらの材料に限 定されることはなく、下地に対してエッチング選択性を 40 有する材料であればよい。また第2絶縁膜17を平坦化 膜として説明したが、第1, 第2領域12, 13上の第 2 絶縁膜17の膜厚が異なるものであれば、上記第2 絶 緑膜17は平坦化膜でなくてもよい。また第2絶緑膜1 7 は複数の絶縁膜を積層した構造であっても差し支えは ない。なお、第1, 第2領域12, 13上の第2絶縁膜 17の膜厚がほぼ同等であっても、本発明の形成方法は 適用できる。

【0023】上記接続孔の形成方法に係わる半導体装置への具体的な適用例を、図2の形成工程図によって以下 50

に説明する。図では、一例として、金属-絶縁膜-半導体(以下、MISという)トランジスタを示す。

【0024】図2の(1)に示すように、シリコン基板51(上記図1の基板11に相当)上はゲート絶縁膜52を介してゲート電極53(上記図1の第1領域12に相当)が形成されている。このゲート電極53は、いわゆるポリサイド構造を成していて、下層が多結晶シリコン層54からなり、上層が例えばチタンシリサイド層55からなる。またゲート電極53の両側におけるシリコン基板51の上層にはソース・ドレイン領域56,57(図1の第2領域13に相当)が設けられている。このソース・ドレイン領域56,57の上層にもチタンシリサイド層58,59が形成されている。すなわち、上記構成のMISトランジスタ50はサリサイド構造を成している。なお、図では、素子分離領域およびゲート電極53の側壁に設けたサイドウォールも図示した。

【0025】まず第1工程では、例えばLPCVD法またはプラズマCVD法によって、上記ゲート電極53を 覆う状態にしてシリコン基板51上に、上記チタンシリサイド層55,58,59に対してエッチング選択性 (例えば選択比が3~5程度以上)を有する第1絶縁膜 16を形成する。この第1絶縁膜16は、例えば窒化シリコン膜で形成する。上記LPCVD法またはプラズマ CVD法では、上記図1によって説明したのと同様の条件にて窒化シリコン膜の成膜を行う。

【0026】次いで図2の(2)に示す第2工程を行う。この工程では、常圧CVD法によって、上記第1絶縁膜16上にこの第1絶縁膜16に対してエッチング選択性(例えば選択比が3~5程度以上)を有する第2絶縁膜17を形成する。この第2絶縁膜17は、例えばリンシリケートガラス(以下PSGという)からなり、その表面が平坦化されるように形成される。そのため、ゲート電極53上とソース・ドレイン領域56,57上とでは第2絶縁膜17の膜厚が異なる。ここでは、ゲート電極53上の第2絶縁膜17よりソース・ドレイン領域56,57上の第2絶縁膜17の方が膜厚は厚くなる。

【0027】続いて図2の(3)に示す第3工程で、リソグラフィー技術(レジスト塗布、露光、現像、ベーキング等)によって、エッチングマスク60を形成し、続いてRIEによって、上記第2絶縁膜16が露出するまで第2絶縁膜17をエッチングする。そして、ゲート電極53上の第2絶縁膜17に第1上部接続孔61を形成するとともにソース・ドレイン領域56,57上の第2絶縁膜17に第2上部接続孔62,63を形成する。このRIEでは、上記図1によって説明したのと同様の条件にてエッチングを行う。

【0028】その後図2の(4)に示す第4工程で、R IEによって、第1絶緑膜16に第1上部接続孔61に 連続して第1下部接続孔64を形成するとともに第2上 部接続孔62,63に連続して第2下部接続孔65,6

6を形成する。このようにじて、第1上部接続孔61と 第1下部接続孔64とでゲート電極53に通じる第1接 続孔67を形成し、第2上部接続孔62,63と第2下 部接続孔65,66とでソース・ドレイン領域56,5 7に通じる第2接続孔68, 69を形成する。このRI Eでは、上記図1によって説明したのと同様の条件にて エッチングを行う。

【0029】その後、酸素プラズマアッシングまたは剥 離液を用いたウェット処理によって、上記RIEで用い たエッチングマスク60を除去する。

【0030】このように、ゲート電極53のチタンシリ サイド層55およびソース・ドレイン領域56,57の チタンシリサイド層58,59をほとんどエッチングす ることなく接続孔67,68,69を形成することがで きるので、チタンシリサイド層55,58,59による 低抵抗化の効果が減少することはない。したがって、サ リサイド構造のMISトランジスタを搭載したスタティ ックRAM (SRAM (Static Random Access Memory)) PASIC (Application Specific Integrated C ircuit) 等の半導体装置では、動作速度が低下するこ となく高速動作が確保される。

【0031】次に第2実施例を図3の形成工程図によっ て説明する。また、上記図1で説明したのと同様の構成 部品には同一の符号を付す。

【0032】図3の(1)に示すように、段差を有する 基板71の段差上部71Uに第1領域12が形成され、 段差下部71Bに第2領域13が形成されている。この 第1領域12は、基板71上に形成された例えば配線で あり、その上面側にはシリサイド層14が形成されて い。また第2領域13は、基板71に形成された例えば 拡散層であり、その上面側にはシリサイド層15が形成 されてる。このシリサイド層15は髙融点金属層であっ てもよい。

【0033】上記図1で説明したのと同様にして、第1 工程で、上記基板71上に、第1, 第2領域12, 13 を覆う状態にして、第1,第2領域12,13とに対し てエッチング選択性(例えば選択比が3~5程度以上) を有する第1絶縁膜16を形成する。

【0034】次いで第2工程で、第1絶縁膜16上にこ 40 適用できる。 の第1絶縁膜16に対してエッチング選択性(例えば選 択比が3~5程度以上)を有する第2絶縁膜17を形成 する。ここでは、例えばリンシリケートガラス(以下P SGという)を用い、表面をほぼ平坦に形成する。ま た、第1領域12の方が第2領域13よりも高くなって いる。したがって、第1領域12上に第2絶縁膜17の 膜厚より第2領域13上に第2絶縁膜17の膜厚の方が 厚くなる。

【0035】続いて図3の(2)に示す第3工程で、リー ソグラフィー技術と例えばRIEとによって、上記第1 50

絶縁膜16が露出するまで第2絶縁膜17をエッチング する。そして、第1領域12上の第2絶縁膜17に第1 上部接続孔18を形成するとともに第2領域13上の第 2 絶縁膜17に第2上部接続孔19を形成する。このと き、第2絶縁膜17は第1絶縁膜16に対してエッチン グ選択性を有しているので、第1絶緑膜16上でこのエ ッチングは停止される。なお、図面ではレジストマスク の図示は省略した。

8

【0036】その後図3の(3)に示す第4工程で、R IEによって、第1絶録膜16に第1上部接続孔18に 連続して第1下部接続孔20を形成するとともに第2上 部接続孔19に連続して第2下部接続孔21を形成す る。このようにして、第1上部接続孔18と第1下部接 続孔20とで第1接続孔22を形成し、第2上部接続孔 19と第2下部接続孔21とで第2接続孔23を形成す る。このとき、第1絶縁膜16は第1, 第2領域12. 13に対してエッチング選択性を有しているので、第 1, 第2領域12, 13上でこのエッチングは停止され

【0037】上記図3によって説明した接続孔の形成方 法では、上記図1によって説明した接続孔の形成方法と 同様に、第1, 第2領域12, 13をほとんどエッチン グすることなく第1,第2接続孔22,23が形成され

【0038】また上記第2実施例では、上記第1領域1 2は配線でなくてもよい。例えば電極であってもよく、 または基板71に形成された拡散層であってもよい。ま た上記第2領域13は拡散層でなくてもよい。例えば配 線または電極であってもよい。さらに上記第2実施例で る。このシリサイド層14は高融点金属層であってもよ 30 は、第1絶縁膜16を窒化シリコン、第2絶縁膜17を PSGで形成した一例で説明したが、これらの材料に限 定されることはなく、下地に対してエッチング選択性を 有する材料であればよい。また第2絶縁膜17を平坦化 膜として説明したが、第1、第2領域12、13上の第 2 絶縁膜17の膜厚が異なるものであれば、上記第2絶 **縁膜17は平坦化膜でなくてもよい。また第2絶縁膜1** 7は複数の絶縁膜を積層した構造であっても差し支えは ない。なお、第1, 第2領域12, 13上の第2絶縁膜 17の膜厚がほぼ同等であっても、本発明の形成方法は

[0039]

【発明の効果】以上、説明したように本発明によれば、 下地となる第1, 第2領域に対してエッチング選択性を 有する第1絶縁膜を設けたので、第2絶縁膜に接続孔を 形成する際に、第2絶縁膜のエッチングを第1絶縁膜で 停止することができるとともに、第1, 第2領域をほと んどエッチングすることなく第1絶縁膜をエッチングし て第1, 第2接続孔を形成することができる。よって、 第1, 第2領域の下地層の厚さが確保され、半導体装置 の性能の悪化を防ぐことができる。

22 第1接続

【図2】第1 実施例の具体的適用例の形成工程図であ

【図1】本発明の第1実施例の形成工程図である。

10 ド層 15 シリサイド層 16 第1絶縁 膜 17 第2絶縁膜 18 第1上部 接続孔 19 第2上部接続孔 20 第1下部 接続孔

【図3】第2実施例の形成工程図である。 【図4】従来例の形成工程図である。

【図5】課題の説明図である。

【符号の説明】

13 第2領域

【図面の簡単な説明】

11 基板

12 第1領域

孔

14 シリサイ 10 23 第2接続孔

21 第2下部接続孔

[図1]

【図2】

(1) 56 (2)<u>61</u> 60 (3) 53 <u>67</u> 56 62 65 58 61 64 57 63 (4)

第1实枪例の具体的迫用例の形成工程图

[図5]

課題の説明図

フロントページの続き					٠	
(51) Int. Cl. 6	識別記号	庁内整理番号	FΙ			技術表示箇所
H 0 1 L 21/768			H01L	21/90	D	
29/78				29/78	301P	
21/336						