Diszkrét matematika 1

Relációk

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2025 tavasz

Relációk.

Relációk tulajdonságai, példa

Legyen R a következő reláció:

- szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$
- reflexív, ha $\forall x \in X : xRx \times$
- tranzitív, ha $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz \times$

Speciális relációk

Ekvivalencia reláció, osztályozás 1

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük Példa

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozóinak osztályozása beosztás szerint
- sík egyeneseinek irányonkénti osztályozása

Definíció

Egy *R* reláció ekvivalencia reláció, ha reflexív, tranzitív és szimmetrikus.

Példa

- $H_1 \sim H_2$, ha H_1 és H_2 évfolyamtársak
- $M_1 \sim M_2$, ha M_1 és M_2 beosztása megegyezik
- $\ell_1 \sim \ell_2$, ha ℓ_1 és ℓ_2 párhuzamosak

d

R reláció hurokélek nélkül

Ekvivalencia reláció, osztályozás 2

Definíció

Egy X halmaz részhalmazainak \mathcal{O} rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

$a \downarrow b$

Példa

- hallgatók:
 - {1. évf. hallgatók, 2. évf. hallgatók, 3. évf. hallgatók}
- $\bullet \ \, \text{dolgoz\'ok:} \ \{\text{fejleszt\'ok}, \text{marketing}, \text{tesztel\'ok}, \text{HR}, \dots \}$
- egyenesek lehetséges irányai

R reláció hurokélek nélkül

Ekvivalencia reláció és osztályozás 3

Definíció

Legyen \sim egy ekvivalencia reláció az X halmazon. Tetszőleges $x \in X$ esetén az

$$\tilde{x} = [x] = \{ y \in X : y \sim x \}$$

halmazt az x ekvivalencia osztályának nevezzük.

Példa

• $\{[\ell] : \ell \text{ a sík egyenese}\}$ az irányok halmaza.

Tétel

- Egy X halmazon értelmezett \sim ekvivalencia reláció esetén $\{[x]: x \in X\}$ egy osztályozás.
- Tekintsük egy X halmaz $\mathcal O$ osztályozását. Ekkor az $R = \{(x,y): x \text{ \'es } y \text{ ugyanazon } \mathcal O \text{ osztályban vannak}\}$ egy ekvivalencia reláció.

Ekvivalencia reláció ⇒ osztályozás

Bizonyítás. Legyen $\mathcal{O} = \{[x] : x \in X\}$ ahol $[x] = \{y \in X : y \sim x\}$

- 1. feltétel: $\cup \mathcal{O} = X$. Mivel $\sim \text{reflex}(v \Rightarrow x \in [x] \Rightarrow \cup \{[x] : x \in X\} = X$.
- 2. feltétel: O elemei páronként diszjunktak.
 - Tegyük fel hogy $[x] \cap [y] \neq \emptyset$. Megmutatjuk, hogy [x] = [y].
 - Legyen $z \in [x] \cap [y]$. Akkor (definíció szerint) $z \sim x$ és $z \sim y$.
 - Mivel \sim szimmetrikus $\Rightarrow x \sim z$.
 - Mivel \sim tranzitív, ezért $x \sim z$ és $z \sim y \implies x \sim y$, azaz $x \in [y]$.
 - Ha $x' \in [x]$, akkor $x' \sim x$ és a tranzitivitás miatt $\Rightarrow x' \sim y$, azaz $x' \in [y]$.
 - Tehát $[x] \subset [y]$.
 - x és y szerepének felcserélésével $[y] \subset [x]$, azaz [x] = [y].

Ekvivalencia reláció ← osztályozás

Bizonyítás. Legyen $R = \{(x, y) : x \text{ \'es } y \text{ ugyanazon } \mathcal{O} \text{ osztályban vannak} \}$

- reflexivitás: Minden x ugyanabban az osztályban van, mint saját maga: xRx.
 Továbbá, mivel ∪O = X, így minden x benne van valamely osztályban.
- szimmetrikusság: ha xRy, akkor x és y ugyanabban az osztályban vannak, speciálisan yRx.
- tranzitivitás Ha xRy és yRz, akkor mind x és y, mind y és z ugyanabban az osztályban vannak, speciálisan x és z is ugyanabban az osztályán vannak, azaz xRz.

R reláció hurokélek nélkül

Példák

alaphalmaz	reláció	osztályozás
\mathbb{R}	$x \sim y$ ha $x = y$	$\{\{x\}:x\in\mathbb{R}\}$, 'azonosság'
${\mathbb R}$	$x \sim y$, ha $ x = y $	$\{\{\pm x\}:x\in\mathbb{R}\}$, 'abszolút érték'
sík egyenesei	$\ell_1 \sim \ell_2, \ ha \ \ell_1 \ell_2$	irányok
sík szakaszai	$c_1 \sim c_2$, ha $\operatorname{len}(c_1) = \operatorname{len}(c_2)$	egybevágóság
$\mathbb{Z}\setminus\{0\}\times\mathbb{Z}\setminus\{0\}$	$(a,b)\sim (c,d),$ ha $ad=bc$	\mathbb{Q} : $r = a/b$

Részbenrendezés

Szeretnénk a ≤, ⊂, | (osztója) relációkat általánosítani.

Definíció

- Egy R reláció részbenrendezés, ha reflexív; tranzitív és antiszimmetrikus.
- Ha valamely $x, y \in X$ párra $x \leq y$ vagy $y \leq x$, akkor x és y összehasonlítható.
- Ha minden (x, y) pár összehasonlítható (azaz ≤ dichotóm), akkor ≤ rendezés.

Példa

- $(\mathbb{N}, |), (2^X, \subset), (\mathbb{R}^5 \text{ alterei, alter relacio})$: részbenrendezés
- (<, ℝ): rendezés

Részbenrendezés, speciális elemek

Legyen \leq egy részbenrendezés az X halmazon.

- legkisebb elem: $x \in X : \forall y \in X \ x \leq y$
- legnagyobb elem: $x \in X : \forall y \in X \ y \leq x$
- minimális elem: $x \in X : \neg \exists y \in X \ y \leq x$
- maximális elem: $x \in X : \neg \exists y \in X \ x \leq y$

Példa

- legkisebb elem: a
- legnagyobb elem: nincs
- minimális elem: a
- maximális elem: f, i, h

Függvények

Definíció

Legyen $f \subset X \times Y$ egy (binér) reláció. Ha egyelemű halmaz képe legfeljebb egyelemű, azaz

$$xfy \land xfz \Rightarrow y = z,$$

akkor azf-et függvénynek hívjuk.

Speciálisan az xfy helyett a f(x) = y használjuk.

Példa

- $(x^2, x) \subset \mathbb{R} \times \mathbb{R}$ nem függvény
- $(x, \sqrt{x}) \subset \mathbb{R} \times \mathbb{R}$ és $(x, -\sqrt{x}) \subset \mathbb{R} \times \mathbb{R}$ függvények.
- Legyen $M \in \mathbb{R}^{2 \times 2}$. Ekkor $\{(\mathbf{v}, M\mathbf{v}) : \mathbf{v} \in \mathbb{R}^2\}$ egy függvény.
- Legyen $M \in \mathbb{R}^{2 \times 2}$. Ekkor $\{(M\mathbf{v}, \mathbf{v}) : \mathbf{v} \in \mathbb{R}^2\}$ függvény $\iff \det M \neq 0$.
- Legyen $R \subset X \times Y$ egy reláció. Ekkor $\{(A, R(A)) : A \subset X\} \subset 2^X \times 2^Y$ egy függvény.