International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN(P): 2249-6955; ISSN(E): 2249-8060 Vol. 5, Issue 3, Jun 2015, 11- 24 © TJPRC Pvt. Ltd.

THE NUCLEI U=C IN ALTERNATIVE PRIME RIGHT RINGS

Y. S. N. SATYANARAYANA¹, A. ANJANEYULU² & D. PRABHAKARA REDDY³

¹Assistant Professor, Mathematics, Brindavan Institute of Technology & Science, Kurnool, Andhra Pradesh, India ²Departments of Mathematics, VSR &NVR College, Tenali, Andhra Pradesh, India ³Lecture in Mathematics, IT Department, Nizwa College of Technology, Nizwa, Oman

ABSTRACT

In this paper we have to prove that the collection of sub rings called nuclei some of which like commutative centre $U=\{u\in R/(u,R)=0\}$. $C=\{c\in U/(R,R,c)=(c,R,R)=0\}$ either equal i.e

U=C or strongly (-1,1) ring when R is prime right alternative ring of characterstic \neq 2,3 with $(R,R,U)\subseteq U$ or $S(p^2,p,q)=0$.

KEYWORDS: Nucleus, Centre, Commutative Centre, Right Alternative Rings, Strongly (-1, 1) Ring

INTRODUCTION

Let R be a non associative ring with characteristic $\neq 2$, 3, which have non zero locally nilpotent ideals. At first Rommel'di [1] show that U=C, particularly when R is simple right alternative ring with characteristic $\neq 2$.U=C is also shown when the alternator ideal of R is either right or left nilpotent particularly when R satisfies the minimum condition on right ideals. Later in an example due to Pchelincev [2] shows that U \neq C when R is a prime strongly (-1, 1) ring. Pchelincev also established the nil potency of the associators in a free (-1, 1) rings. Miheev [3] had constructed a finite dimensional prime right alternative nil algebra in which $N_{\lambda} \neq U$ and $N_{\lambda} \neq N_{\gamma}$. Now in this paper we have to prove that when (R,R,R) \subseteq U then either U=C or R is strongly (-1,1) ring

K. Suvarna[4] proved some results in this direction when R is a prime right alternative ring with characteristic \neq 2.In particular when R be a prime right alternative ring with characteristic \neq 2,3 then U=C or R is strongly (-1,1) ring if either [R,R] $\subseteq N_{\alpha}$ or R satisfies S (p²,p,q)=0.

PRELIMINARIES: Let R be a non associative ring, we shall denote the associator and commutator by

$$(pq) = pq - qp$$

$$(pqr) = (pq)r - p(qr)$$
 for all p,q,r in R.

A ring is called right alternative if it satisfies the identity (q,p,p) = 0 which also satisfies the identity (p,p,q) = 0 is called alternative and one which satisfies the identity [(p,q),r] = 0 is called strongly (-1,1).

The following are the notations are used for nuclei and centers in right alternative ring R. Left nucleus,

$$N_{\alpha} = \{\alpha \in R / (\alpha, \beta, \beta) = 0\} \qquad \text{Right nucleus,} \qquad N_{\gamma_{\gamma}} = \{\alpha \in R / (\beta, \beta, \alpha) = 0\}$$

Associative centre or Nucleus $N = N_{\alpha} \cap N_{\gamma}$

The right alternative nucleus $N_{\lambda} = \{v \in R/(P, P, V) = 0\}$

Alternative centre
$$N_{\rho} = \{ v \in R/(p, v, p) = 0, (v, p, q) = (p, q, v) = (q, v, p) \}$$

Commutative centre $U = \{u \in R / (u, R) = 0\}$

The associative commutative Centre C = $N \cap U = \{C \in N / (c, R, R) = (R, R, C) = 0.$

A right alternative ring R is said to be prime if AB=0 for ideal Aand Bof R implies either A=0 or B=0. Now we show that U=C when R is prime right alternative ring.

The identity know as Teichmuller identity holds in any non associative ring is

$$(\omega p, q, r) - (\omega, pq, r) + (\omega, p, qr) = \omega(p, q, r) + (\omega, p, q)r.$$

From this identity it is clear that, left and right nuclei are the associative sub rings of R.The following are the identities satisfied in any right alternative ring

$$(q, p, p) = 0$$

Its linearization gives $(q, p, r) + (q, r, p) = 0. -----(2^1)$.

$$_{3)}[pq,r] = p[q,r] + [p,r]q + 2(p,q,r) + (r,p,q)$$

$$2s(p,q,r) = [[p,q],r] + [[q,r],p] + [[r,p]q]$$

$$(r, p^2, q) = (r, p, pq + qp)$$

$$_{6)}(r, p, pq) = (r, p, q)p$$

$$(\omega p, q, r) + (\omega, p, [q, r]) = \omega(p, q, r) + (\omega, q, r)p$$

8)
$$([\omega, p], q, r) - [\omega, (p, q, r)] + [p, (\omega, q, r)] = (p, \omega[q, r]) - (\omega, p, [q, r])$$

$$_{9)} (N_{\delta}, R, R) \subseteq N_{\delta}$$

$$10) \ ((a,q,r),b,c) = ((a,b,c),q,r) - (a,b,(c,q,r)) - (a,(b,q,r),c) + (a,b,c)[q,r] - (a,b,c[q,r]) + (a,b,[q,r])c + (a,b,c)[q,r] - (a,b,c)[q,r] + (a,b,c)[q$$

Now we have to prove certain identities and relations involving the commutative centre U of right alternative ring R with characteristic $\neq 2$, Now $u \in U$.

$$(11)(u,q,p) = 2(p,q,u)$$

12)
$$((p,q,u),r,\omega) = 2(\omega,r,(p,q,u))$$

$$(p, p, u) = 0$$

The fundamental and most extremely useful tool in non associative algebra is linearization using his concept we replace a repeated variable or an identity by the sum of two variables in order to obtain another identity like

$$(p,q,u) + (q,p,u) = 0$$

14)
$$[p(p,q,u)] = 0$$
 its linearization leads the identity -----(14)

$$14)^{1} (p,(r,q,u) + (r,(p,q,u)) = 0$$

15)
$$2[p,(r,q,u)] = [p,(u,q,r)] = (p[q,r],u)$$

16)
$$(p, [p,q], u) = 0$$
 its linearization leads the identity-----(16)

$$(p,[r,q],u) + (r,[p,q],u) = 0$$

17)
$$([p.q], [r, w], u) = 0$$

18)
$$(R, [R, R], U) \subseteq U \Leftrightarrow (R, R, U) \subseteq U$$

19)
$$[R(R,R,U)] \subset U$$

20)
$$S((p,q,u),r,\omega) = 0$$

21)
$$(a, a, (p, q, u)) = 0$$
 its linearization leads the identity-----(21)

$$(a, r(p,q,r) + (r, a(p,q,r))) = 0$$

22)
$$3(c, a(a, q, u)) = ((a, a, c), q, u)$$

$$(23)^3(p,(p,r,(a,b,u))) = [(p,p,r),(a,b,u)]$$

The proofs related to commutative centre are from 11-23 as follows

$$(u,q,p) = 2(p,q,u)$$

$$\{pq, u\} = p[q, u] + [p, u]q + 2(p, q, u) + (u, p, q)$$
 ------from (3)

$$2(p,q,u) + (u,p,q) = [pq,u] - p[q,u] - [p,u]q = 0$$

$$2(p,q,u) = -(u, p,q)$$

$$2(p,q,u) = -(-(u,q,p))$$
 ______from (2)

$$2(p,q,u) = (u,q,p)$$

Similarly the proof of (12)

$$_{13)}(p,p,u) = 0$$

From the definition of right alternative ring ie from (2)

$$(u,p,p)=0$$

$$(u, p, p) = 2(p, p, u)$$
_____from (11)

Since characteristic $\neq 2$

$$(p, p, u) = 0$$

$$[p,(p,q,u)] = 0$$

$$p(p,q,u) + (p,q,u)p = (p^2,q,u) + (p,p,[q,u])$$
______from(7)

$$=(p^{2},q,u)$$

$$=-(q,p^2,u)$$

$$= -(q, p, pu + up)$$
 -----from (5)

$$= -[(q, p, pu) + (q, p, up)]$$

$$=-2(q, p, pu)$$

$$=-2(q, p, u)p$$
 ------from (6)

$$= 2(p,q,u) p$$
 -----from (13)

$$p(p,q,u) = 2(p,q,u)p - (p,q,u)p$$

Thus p(p,q,u) = (p,q,u)p or [p(p,q,u)] = 0

15)
$$2[p,(r,q,u)] = [p,(u,q,r)] = (p,[q,r],u)$$

$$2[p,(r,q,u)] = [p(u,q,r)]$$
------from (11)

 \Rightarrow Using the identity (8) by replacing $\omega = u$

$$[p,(u,q,r)] = -[(u,p),q,r] + [u,(p,q,r)] + [p,u,[q,r]] - [u,p,[q,r]] - \dots - \text{from (8)}$$

$$= -[p,[q,r],u] + [u,[q,r],p] - \dots - \text{from (2^1)}$$

Put
$$\omega = p, p = q, q = [r, \omega], r = u$$
 in (8) getting
$$([p,q], [r,\omega], u) = [p, (q, [r,\omega], u)] - [q, (p, [r,\omega], u)] + (q, p, ([r,\omega], u) - (p, q, [[r,\omega], u]))$$

$$= [p, (q, [r,\omega], u)] - [q, (p, [r,\omega], u] \qquad \text{From } (16)^{\dagger} \text{ and } (14)^{\dagger} \text{ again } (16)^{\dagger}$$

$$= -[p, (r, [q,\omega], u)] + [q, (r, [p,\omega], u)]$$

$$= -[p, (r, [q,\omega], u)] - [r, (q, [p,\omega], u)]$$

$$= -[p, (r, [q,\omega], u)] + [r, (p, [q,\omega], u)] - (p, r, [[q,\omega], u])$$

$$= -([p, r], [q,\omega], u) + (r, p, [[q,\omega], u]) - (p, r, [[q,\omega], u])$$

$$= -([p, r], [q,\omega], u)$$

$$= -([p, q], [p, q], u)$$

$$= -([p, q], [r,\omega], u) + ([p, q], [r,w], u) = 0$$

$$\Rightarrow 2([p, q], [r,\omega], u) = 0$$

$$\Rightarrow 2([p, q], [r,\omega], u) = 0$$

$$\Rightarrow 2([p, q], [r,\omega], u) = 0$$

$$\Rightarrow ([p, q], [r,\omega], u) = 0$$

$$\Rightarrow ([p, q], [r,\omega], u) = 0$$

www.tiprc.org editor@tjprc.org

2[p,(r,[a,b],u)] = (p,[[a,b],r],u) ______ from (15)

$$= -([a,b], [p,r], u) = 0 \qquad \qquad \text{from}(16)^{1}\&(17)$$

$$2[p,(r,[a,b],u] = 0 \text{ since the characteristic } \neq 2 \text{ hence} \qquad (R,[R,R],u) \subseteq U$$

$$19) [R,(R,R,U)] \subseteq U$$

$$2[p,(r,q,u)] = (p,[q,r],u) \in U \qquad \qquad \text{From } (15)$$

$$= (R,[R,R],U) \subseteq U \qquad \qquad \text{Using } (18)$$

$$2(p,(r,q,u)] = 0 \text{ since the characteristic } \neq 2$$

$$[p,(r,q,u)] = 0$$

$$\Rightarrow [R,(R,R,U)] \subseteq U$$

$$20) S((p,q,u),r,\omega) = 0$$

$$2s((p,q,u),r,\omega) = [[(p,q,u),r],\omega] + [(r,\omega)(p,q,u)] + [[\omega,(p,q,u),r]] \qquad \text{using } (4)$$

$$= [(r,\omega)(p,q,u)] \qquad \qquad \text{Using } (14)^{1} \& (19)$$

$$= -[p,((r,\omega),q,u)] \qquad \qquad \text{From}(13)^{1}$$

$$= [p,(q,(r,\omega),u)] = 0 \text{ since the characteristic } \neq 2$$

$$\Rightarrow s((p,q,u),r,\omega) = 0$$

$$21) ((a,a(p,q,u)) = 0$$

$$(u,q,p) = 2(p,q,u) \qquad \qquad \text{Using } (11)$$

$$\text{Since } U \subseteq N_{\lambda}, \quad (N_{\lambda},R,R) \subseteq N_{\lambda} \qquad \qquad \text{From } (9)$$

$$\Rightarrow 2(p,qu) = (u,q,p) \in N_{\lambda}$$

$$\text{Thus } 2((a,a,(p,q,u)) = 0$$

$$22) \ 3(c,a(a,q,u)) = ((a,a,c),q,u)$$

$$\text{From } (10)$$

((a,a,c),q,u) = ((a,q,u),a,c) - (a,q,(u,a,c)) - (a,(q,a,c),u) + (a,q,u)[a,c] - (a,q,u[a,c]) + (a,q,[a,c])

(a, a, (p, q, u)) = 0 ______ from (21)

Using (8) and then using (21) it reduces to

$$= [p,(r,p,(a,b,u)] - 0 + (r,p,[p,(a,b,u)]) + (r,p,[p,(a,b,u)])$$

$$= [p,(r,p,(a,b,u)] + 2(r,p,[p,(a,b,u)])$$
Since by (19) $[p,(a,b,u)] \in u \subseteq N_{\lambda}$ then from (15) and (13)\(^1\) we have
$$-2(r,p,[p,(a,b,u)]) = (p,(r,p,(a,b,u)) - ([p,r],p,(a,b,u)) - ([p,r],p,(a,b,u))$$

$$-(p,(u,a,b),[p,r]) = 2((b,a,u),p,[p,r])$$
______using (11)
$$= -2((b,a,u),[p,r],p)$$
_____using (2)
$$= 2([p,r],(b,a,u),p)$$
____using (21)
$$= -2([p,r],p,(b,a,u))$$
_____(28)

Make use (27) &(28) in (26)

$$2(r, p, [p, [a,b], u]) = (p, (u,a,b), p, r) - ((u,a,b), (p,p,r)) + 4([p,r], p, (b,a,u)) - 2([p,r], p, (b,a,u))$$

$$= (p, (u,a,b), p, r) - ((u,a,b), (p,p,r)) + 2([p,r], p, (b,a,u))$$
with(2)

$$2(r, p, (p, [a,b], u)) = 2[p, (r, p, (a,b,u)] + 2[[p,r], p, (b,a,u)]$$
(30)

Substitute R.H.S of (30) in L.H.S of (29)

$$2(p,(r,p,(a,b,u))] + 2([p,r],p,(b,a,u)) = (p,(u,a,b),p,r) - ((u,a,b),(p,p,r)) + 2([p,r],p,(b,a,u))$$

$$[p,(u,a,b),p,r)] - [(u,a,b),(p,p,r)] = 2(p,(r,p,(a,b,u))$$
-from(31)

Now take each term for calculation in (31)

$$[p,(u,a,b), p,r] = 2[p,(r,p,(u,a,b)]$$

$$= 4[p,(r,p,(b,a,u)]$$

$$= 4[p,(p,r,(a,b,u)]$$

$$-[(u,a,b),(p,p,r)] = 2[(p,p,r)(b,a,u)]$$

$$= -2[(p,p,r)(a,b,u)]$$

$$2[p,(r,p,(a,b,u)] = -2[p,(p,r,(a,b,u)]$$
______from(21)^1

Now substituting these values in (31)

$$4[p,(p,r,(a,b,u)] - 2[(p,p,r)(a,b,u)] = -2[p,(p,r,(a,b,u)]$$

$$6[p,(p,r,(a,b,u)] = 2[(p,p,r),(a,b,u)]$$

$$3[p,(p,r,(a,b,u)] = [(p,p,r),(a,b,u)].$$

Lemma1: If Ris a right alternative ring with $p(qr)-q(pr)\in U$ then $(R,R,U)\subseteq U$ then the ideal generated by $(R,R,U)\in R$ is $\langle (R,R,U)\rangle=(R,R,U)+(R(R,R,U))$.

Proof: By the hypothesis $p(qr) - q(pr) \in U$

$$(pq)r - (p,q,r) + (q,p,r) - (qp)r \in U$$

 $-(p,q,r) + (q,p,r) + [p,q]r \in U$

by using semi jacobian identity, we get

$$[pr,q] + p[r,q] + [p,r,q] \in U$$

 $-[pr,u] + p[r,u] + [p,r,q] \in U$

Using the definition of commutative centre U

$$\Rightarrow (p,r,u) \in U : (R,R,U) \subseteq U$$
$$\Rightarrow (R,R,U) = R(R,R,U)$$

$$R(R(R,R,U)) \subseteq (R,R,(R,R,U)) + R^2(R,R,U) \subseteq (R,R,U) + R(R,R,U)$$

using this and (2)

$$(R,(R,R,U))R \subseteq (R,(R,R,U),R) + R((R,R,U),R)$$

$$\subseteq (R,R,(R,R,U)) + R(R(R,R,U))$$

$$\subseteq (R,R,U) + R(R,R,U)$$

Lemma2; Let R be a right alternative ring with characteristic $\neq 2$ such that $(R, R, U) \subseteq U$, then

$$k = \{ p \in R / (p, R, U) = p(R, R, U) = 0 \}$$
 is an ideal of R such that $k < (R, R, U) >= 0$ and

$$[[R,R],R]\subseteq K$$

proof:Let
$$p \in k$$
 using $U \subseteq N_{\lambda}$ and(2)¹

$$(q, p, r) + (q, r, p) = 0$$

Since
$$(P, R, U) = (R, P, U) = (R, U, P) = 0$$
 and $(R, R, U) \subseteq U$

Now we have
$$(pR)(R,R,U) = p(R,(R,R,U)) = p((R,R,U),R) = (p(R,R,U))R = 0$$

And
$$(Rp)(R, R, U) = R(p(R, R, U)) = 0$$

Now
$$(R, R, U) \subseteq U$$
 which means $0 = (R, [p, R]U) = ([p, R], R, U)$ _____using (18)

From
$$U\subseteq N_\lambda$$
and using (7)

$$(pR, R, U) = (Rp, R, U)$$

$$\subseteq R(p, R, U) + (R, R, U)p + (R, p, [R, U]) = p(R, R, U) = 0$$

Thus it follows that Kis an ideal of R using this concept and lemma (1) we have $(R, R, U) \subseteq U$

$$K\langle (R,R,U)\rangle = K\{(R,R,U) + R(R,R,U)\} = (KR)(R,R,U) \subseteq K(R,R,U) = 0$$

That leads $K\langle (R, R, U)\rangle = 0$

Final aim to show $[[R, R], R] \subseteq K$

From (18) and $U \subseteq N_{\lambda}$ we have

$$([[R,R],R],R,U) = -(R,[[R,R],R],U) = 0$$

then by using (3) $(R, R, U) \subseteq U$ from (18) &(7), we see

$$[[R,R],R](R,R,U) \subseteq [[R,R](R,R,U),R] + [R,R][(R,R,U),R] + 2([R,R],(R,R,U),R) + (R,[R,R],(R,R,U))$$

$$= [[R,R](R,R,U),R]$$

$$\subseteq [([R,R]R,R,U),R]+[([R,R],R,U)R,R]+[([R,R],R,[R,U]),R]$$

$$=[([R,R],R,U)R,R]=0$$

Lemma3:Let R be a right alternative ring with characterstic $\neq 2,3$ such that (M,[R,R],U)=0 then <Alt>

$$<(R,[R,R],U)>0=0$$
 where $<(R,[R,R],U)>$ is the ideal generated by $(R,[R,R],U)$ in R

Proof: Since from $(18)(R,[R,R],U) \subseteq U \subseteq N_{\lambda}$

i.e $(R,[R,R],U)R \subseteq N_{\lambda}$, Next by using (22)

$$3(c,a,(a,[R,R],U)) = ((a,a,c),[R,R],U) = 0$$

Hence (c, a, (a, [R, R], u)) = 0 since the characterstic $\neq 3$, then linearization of this identity gives

$$(R,[R,R],(R,[R,R],U)) = -(R,R,([R,R],[R,R],U)) = 0$$

$$(R, R, (R[R, R], U)) \subseteq U$$
 From (17)

Now by using (18)&(15)

$$(M, R, (R, [R, R], U)) = -(R, M, (R, [R, R], U)) = R, R, (M, [R, R], U) = 0$$

Let $W_1 = (R, [R, R], U)_{\text{using induction we write}} W_n = (R, R, W_{n-1})_{\text{for n}>1}$

Thus it is clear that $W_1, W_2 \subseteq U$, $W, R \subseteq N_{\lambda}$ and

$$(M, R, W_{n-2}) = ([R, R], R, W_{n-2}) = 0$$
 for some $n \ge 3$

Thus
$$W_{n-1}, W_n \subseteq U, W_{n-1}R \subseteq N_{\lambda}$$

$$\therefore W_{n-1} \subseteq U \subseteq N_{\lambda} \subseteq ((a, a, b)R, R, W_{n-2}) + ((a, a, b), R, W_{n-2})R + ((a, a, b), R, [R, W_{n-2}]) = 0$$

$$3((a,(a,R,W_{n-2}) = ((a,a,c),R,W_{n-2}) = 0$$
 from (22)

Since the characterstiv $\neq 3$, $\Rightarrow (R, a, (a, R, W_{n-2})) = 0$

Then from linearization of this identity and $W_{{\scriptscriptstyle n-1}} \subseteq U \subseteq N_{{\scriptscriptstyle \lambda}}$

we have
$$(M, R, W_{n-1}) = -(R, M, W_{n-1}) = -(R, M, (R, R, W_{n-2})) = (R, R, (M, R, W_{n-2})) = 0$$

$$\underset{\text{similarly }}{\text{similarly }}([R,R],R,W_{n-1}) = -(R,[R,R],W_{n-1}) = -(R,[R,R],(R,R,W_{n-2})) = (R,R,([R,R],R,W_{n-2})) = 0$$

hence
$$W_{n-1} \subseteq U$$
 from (15) $W_n = (R, R, W_{n-1}) \subseteq U$

then by induction each $W_{{\scriptscriptstyle k}} \subseteq U \ \& \ W_{{\scriptscriptstyle k}} R \subseteq N_{{\scriptscriptstyle \lambda}}$

thus the ideal generated in the right alternative ring R is

$$(R,[R,R],U)_{is}$$
 $\langle (R,[R,R],U)\rangle = \sum W_k + \sum W_k R \subseteq N_{\lambda}$

 $_{\text{Thus} < \text{Alt}>} < (R, [R, R], U) \rangle = 0$

MAIN RESULTS: Let R be a prime right alternative ring with characteristic $\neq 2,3$ if

- $(1) \qquad (R, R, U) \subseteq U$
- (2) If $[R, R] \subseteq N_{\alpha \text{ then U=C}}$
- (M,[R,R],U)=0
- (4) $S(p^2, p, q) = 0$ then U=C for (2) and the remaining U=C or R is strongly (-1,1) ring.

Proof:(1) from lemma (1) we have $(R, R, U) \subseteq U$

Since
$$\langle (R, R, U) \rangle = 0$$
 and $[[R, R], R] \subseteq K$

Since R is prime, either K=0 or $\langle (R, R, U) \rangle = 0$

If
$$k=0$$
 then $[[R,R],R] = 0$

$$_{\mathrm{if}}\langle(R,R,U)\rangle=0,_{\mathrm{then}}\ U\subseteq U\cap N_{\gamma}=C$$
 from def of C

then either U=C or R is strongly Ris strongly (-1,1).

(2) since
$$U \subseteq N_{\lambda}$$
 we have $(R, [R, R], U) = -([R, R], R, U) = 0$

And so $(R,R,U)\subseteq U$ from (18) then by theorem (1) either U=C or R is strongly (-1,1) but if R is a prime(-1,1) ring with characteristic \neq 2,3 and $[R,R]\subseteq N_{\alpha}$

Then R is associative by (9), since in any associative ring U=C.

(3) Since R is prime, by lemma (3)

We either have
$$\langle Alt \rangle = 0$$
 or $\langle (R, [R, R], U) \rangle = 0$

Now in any alternative ring with characteristic ≠3,U=C

On the other hand if
$$(R,[R,R],U) = 0$$
 then $(R,R,U) \subseteq U$ by (18)

Then by theorem(1) either again U=C or R is strongly (-1,1) ring.

4) Using $(2)^1$,(6)&(20)

$$0 = s(p^{2}, p, q) = (p^{2}, p, q) + (p, q, p^{2}) + (q, p^{2}, p)$$

$$= (p^{2}, p, q) - (p, p^{2}, q)$$

$$= -(p, p, pq) + p(p, p, q)$$

$$= [p(p, p, q)]$$

then linearization of this identity together with (12) linearized $(21)^1 & (2)^1$ gives

$$[(a,b,u),(p,p,u)] = -[p,((a,b,u),p,q)] - [p,(p,(a,b,u),q)]$$
$$= 3[p,(p,q,(a,b,u)] \text{ Where } u \in U$$

Then by (23) we have
$$[(a,b,u),(p,p,q)] = [(p,p,q),(a,b,u)]$$

Since characteristic $\neq 3$, gives [(p, p, q), (a, b, u)] = 0

But then (M, [R, R], U) = 0 from (15) so from the theorem (3) either U=C or R is strongly (-1, 1) ring.

REFERENCES

- 1. R.E. Roomel'di, On simple right alternative rings (Russian), Tartu Riikl U1. Toimetised no. 700 (1985), 60-70.
- 2. S.V. Pchelincev, Prime algebras and absolute divisors of zero (Russian), Izv. Akad. Nauk SSSR Ser. Mat. <u>50</u> 1986), 79-100.
- 3. I.M. Miheev, on prime right alternative rings (Russian), Algebra i Logika 14 (1975), 56-60.

- 4. Right alternative rings with x (yz)-y (xz) in the centre, Italian journal of pure and applied mathematics N.32-2014(415-418).
- 5. Erwin Kleinfeld and Harry F. Smith, On centers and nuclei in prime right alternative rings, communications in algebra, 22(3) (1994), 829-855.
- 6. Erwin Klenfeld, on a class of right alternative rings, Math. z.87(1965),12-16.
- 7. I.R. Hentzel, nil semi simple (-1, 1) rings, J.algebra22(1972),442-450.
- 8. I.M Maneri, on prime right alternative rings (Russian), Algebra I Logika 14 (1975), 56-60.
- 9. A. Thedy, right alternative rings, J. Algebra 37(1975),1-43.
- 10. Ng Seong Nam Right nucleus in right alternative algebras, J. London Math. Soc. (2) 21 (1980), 456-464.