

Fundamentals of Information Theory

Data Compression

Yayu Gao

School of Electronic Information and Communications Huazhong University of Science and Technology

Email: yayugao@hust.edu.cn

Outline

- Three key questions about data compression
- What is source coding?
- Get to know some codes
- What do we want from a source code?
- Kraft inequality—constraints on prefix codes
- How to find the optimal code?
- Shannon's first theorem——Zero-error source coding theorem
- From Theory to Applications: source coding algorithms

- 1. 写出Kraft inequality的表达式
- 2. 写出最优码优化问题的建立
- 3. 求解最优码优化问题
- 4. 求解最优码长的上下界
- 5. 写出无失真信源编码定理
- 6. 说出香农第一定理的意义

重难点:

- Kraft inequality
- > 最优码优化问题
- > 香农第一定理

Review:上节学习目标

- 1. 理解效率与可靠性之间的折衷关系
- 2. 说出信源编码器与信源译码器各自的目标
- 3. 写出信源编码效率的评价指标
- 4. 说出信源编码优化问题
- 5. 说出什么是non-singular code
- 6. 说出什么是Uniquely decodable code
- 7. 说出什么是prefix code
- 8. 说出以上三种code的优缺点
- 9. 说出对信源编码的三个要求

重难点:

- > 信源编码优化问题
- > 认识几种编码类型

Review: Source code

• A source code **C** for a random variable X is a mapping between the space of X to the space of code D.

$$C: X \rightarrow D: C(x),$$

where \mathbf{D} is the set of finite length strings of symbols from a D-ary alphabet¹.

- Let C(x) denote the codeword corresponding to x.
- Let I(x) denote the length of C(x).

Review: Expected length of a source code

• Definition: The expected length L(C) of a source code C(x) for a random variable X with p.m.f. p(x) is given by

$$L(C) = \sum_{x \in \mathcal{X}} p(x)I(x)$$

where I(x) is the length of the codeword associated with x.

• Shorter average code length —— Higher efficiency —— Better compression

Efficiency

Find codes with the minimum average code length.

Compression

Reversibility

The code must be uniquely decodable

Zero-error

Instantaneous code

 Detect where the code for one input symbol ends and the next begins.

Engineering

- Easy implementation of the code
 - From algorithm design's point of view

- In general, the optimal zero-error source coding problem is equivalent to find the optimal (shortest average length) uniquely decodable codes.
- Such a targeted code is called a compact code.
 - The uniquely decodable code with the smallest average code length for an information source S.
 - How short can it be?
 - Shannon's first theorem

- Kraft inequality was proposed by L. G. Kraft in 1949.
- It provides a constraint requirement on the codeword lengths of any instantaneous code.
- To construct an instantaneous code, what are the possible codeword lengths?

Kraft inequality

• For any instantaneous code over an alphabet of size D, the codeword lengths $\{l_1, l_2, \ldots, l_m\}$ must satisfy the inequality:

$$\sum_{i=1}^m D^{-l_i} \leq 1,$$

where *m* is the number of codewords.

Converse: for codeword lengths satisfying the above inequality, there
exists an instantaneous code.

Kraft inequality: code tree

We can always construct the code tree of a prefix code.

- Each codeword of an instantaneous code must be a leaf node of the tree.
- No codeword is an ancestor of any other codeword on the tree.
- Each codeword eliminates its descendants as possible codewords.

Kraft inequality: proof

Kraft inequality: a short history

Applicable for prefix codes: first proposed by L. G. Kraft in 1949.

• Applicable for uniquely decodable codes: proved by B. McMillan in 1956.

 Applicable for uniquely decodable codes: a simplified proof by J. Karush in 1961.

Kraft inequality: assignment #1

• Q1: r.v.X

$$Pr(X = a) = 0.5,$$

 $Pr(X = b) = 0.25,$
 $Pr(X = c) = 0.125,$
 $Pr(X = d) = 0.125.$

$$C(a) = 00,$$

 $C(b) = 10,$
 $C(c) = 01,$
 $C(d) = 11.$

- Is this code good enough?
- Could you design a binary instantaneous code for the information source with
 - code length 1, 2, 3 and 3, respectively?
 - code length 1, 2, 2 and 3, respectively?

What do we want from a source code?

Efficiency

Find codes with the minimum average code length.

Compression

Reversibility

The code must be uniquely decodable

Zero-error

Instantaneous code

 Detect where the code for one input symbol ends and the next begins.

Engineering

$$\sum_{i=1}^m D^{-l_i} \leq 1,$$

Optimal codes: formulate the problem

Objective: find the instantaneous code with the minimum expected length

Objective function

$$\min_{l_1, l_2, \dots, l_m} L = \sum_{i=1}^{m} p_i l_i$$

Constraint

subject to
$$\sum_{i=1}^{m} D^{-l_i} \leq 1$$
,

over integers $\{l_1, l_2, ..., l_m\}$.

How to solve it?
 Method of Lagrange multipliers

Optimal codes: solve the problem

For an optimization problem with inequality constraints:

$$\min_{l_1, l_2, \dots, l_m} L = \sum_{i=1}^m p_i l_i$$

$$\min_{l_1, l_2, \dots, l_m} L = \sum_{i=1}^m p_i l_i$$
subject to
$$\sum_{i=1}^m D^{-l_i} - 1 \le 0,$$

• Construct a new function L with the Lagrange multiplier λ :

$$L(\lambda, x) = f(x) + \lambda g(x)$$

$$L(\lambda, l_i) = \sum_{i=1}^m p_i l_i + \lambda (\sum_{i=1}^m D^{-l_i} - 1)$$

The optimal solution must satisfy KKT conditions:

$$\begin{cases} \frac{\partial L(\lambda, x)}{\partial x} = 0 \\ \lambda g(x) = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L(\lambda, l_i)}{\partial l_i} = 0 \\ \lambda (\sum_{i=1}^m D^{-l_i} - 1) = 0 \end{cases}$$

Optimal codes: solution over real code lengths

 By solving the constrained minimization with the method of Lagrange multipliers, the optimal code lengths are given by

$$I_i^* = -\log_D(p_i)$$

• The minimum average code length is:

$$L^* = \sum_{i=1}^m p_i I_i^* = -\sum_{i=1}^m p_i \log_D(p_i) = H_D(x).$$

- However, it is the solution over real code lengths.
- In practice, the code lengths must be integers.

Optimal codes: lower bound

 Theorem: Expected code length L of any instantaneous D-ary code for a r.v. X.

$$L \geq H_D(X)$$
,

the equality holds if and only if $p(x_i) = D^{-l(x_i)}$.

• For uniquely decodable D-ary symbol code, define $H_D(X) = -\sum_{x} p(x) \log_D p(x)$.

$$L(C,X) = \sum_{i=1}^{m} p(x_{i}) I(x_{i}) = \sum_{x} p(x) \log_{D} D^{I(x)} \qquad \left(I(x) = \log_{D} D^{I(x)}\right)$$

$$= H_{D}(X) + \sum_{x} p(x) \log_{D} \frac{p(x)}{D^{-I(x)}} \qquad \left(\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \ge \left(\sum_{i=1}^{n} a_{i}\right) \log \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}}\right)$$

$$\ge H_{D}(X) + \sum_{x} p(x) \cdot \log_{D} \frac{\sum_{x} p(x)}{\sum_{x} D^{-I(x)}} = H_{D}(X) + 1 \cdot \log_{D} \frac{1}{\sum_{x} D^{-I(x)}} \qquad \left(\sum_{x} D^{-I(x)} \le 1\right)$$

$$\ge H_{D}(X)$$

Optimal codes: is there an upper bound?

- The optimal length $I(x) = \log_D \frac{1}{p(x)}$ may not to be integer.
- Then we round it up as $I(x) = \lceil \log_D \frac{1}{p(x)} \rceil$.
- These codeword lengths satisfy the Kraft inequality.

$$\sum_{x} D^{-\lceil \log_D \frac{1}{p(x)} \rceil} \leq \sum_{x} D^{-\log_D \frac{1}{p(x)}} = \sum_{x} p(x) = 1$$

So there exists a (uniquely decodable) prefix code with these codeword lengths, we have

$$\log_{D}\left(\frac{1}{p(x)}\right) \leq I(x) < \log_{D}\left(\frac{1}{p(x)}\right) + 1$$

$$\sum_{x} p(x) \log_{D}\left(\frac{1}{p(x)}\right) \leq \sum_{x} p(x)I(x) < \sum_{x} p(x) \left\{\log_{D}\left(\frac{1}{p(x)}\right) + 1\right\}$$

$$H_{D}(X) \leq L(C, X) < H_{D}(X) + 1$$

Optimal codes: is there an upper bound?

Expected code length of an optimal D-ary code for X

$$H_D(X) \leq L^* < H_D(X) + 1,$$

- There is an overhead that is at most 1 bit. Why?
 - The optimal code length $\log_D \frac{1}{p_i}$ may not be integer.
- What do you think? Is this overhead small enough for you?
- Can we reduce the overhead per symbol?

Can we reduce the overhead per symbol?

- Let us send a sequence of *n* symbols from *X*, which is $\{x_1, x_2, ..., x_n\}$.
- $I(x_1, x_2, ..., x_n)$: the codeword length of $\{x_1, x_2, ..., x_n\}$.
- L_n : the expected codeword length per input symbol.

$$L_n = \frac{1}{n} \sum_{n} p(x_1, x_2, ..., x_n) I(x_1, x_2, ..., x_n)$$
$$= \frac{1}{n} EI(X_1, X_2, ..., X_n)$$

By applying the bounds derived above:

$$H(X_1, X_2, ..., X_n) \le EI(X_1, X_2, ..., X_n) < H(X_1, X_2, ..., X_n) + 1$$

 $\frac{H(X_1, X_2, ..., X_n)}{n} \le L_n < \frac{H(X_1, X_2, ..., X_n)}{n} + \frac{1}{n}$

- If $X_1, X_2, ..., X_n$ are i.i.d, then?
- If $X_1, X_2, ..., X_n$ are stationary, then?

Shannon's first theorem

• Theorem: the minimum expected codeword length per symbol satisfies

$$\frac{H(X_1,X_2,...,X_n)}{n} \leq L_n^* < \frac{H(X_1,X_2,...,X_n)}{n} + \frac{1}{n}.$$

• Moreover, if $X_1, X_2, ..., X_n$ is a stationary stochastic process,

$$L_n^* \to H(\mathcal{X})$$
, Entropy Rate

- What is the significance of entropy rate?
 - Shortest average description length per symbol of a process.
 - Ultimate data compression rate

Shannon's first theorem: another presentation

- Source coding theorem
 - For a binary information source S and arbitrary ε , there exists a binary instantaneous code for which the average code length L per coding symbol satisfies

$$H(S) \leq L_n^* < H(S) + \varepsilon.$$

- Source coding limit: the average code length per symbol of an instantaneous code for an information source can be made as close to the entropy as desired, but never be smaller.
- If the average code length per symbol is smaller than the entropy, you cannot find an instantaneous code.
 - Errors will occur when decoding.

What if the code is designed for the wrong distribution?

- In practice, the true distribution of the source p(x) may be unknown.
- We may have a best estimation of the true distribution, a wrong distribution q(x).
- Then we may design the code length as $l(x) = \left|\log \frac{1}{q(x)}\right|$
- In this case, we will not achieve expected length L=H(p).
- Instead, the expected length would be

$$El(X) = \sum_{x} p(x) \left\lceil \log \frac{1}{q(x)} \right\rceil < \sum_{x} p(x) \left(\log \frac{1}{q(x)} + 1 \right)$$
$$= \sum_{x} p(x) \log \frac{p(x)}{q(x)} \frac{1}{p(x)} + 1$$

$$= \sum_{x} p(x) \log \frac{p(x)}{q(x)} + \sum_{x} p(x) \log \frac{1}{p(x)} + 1 = D(p||q) + H(p) + 1.$$

What if the code is designed for the wrong distribution?

Theorem 5.4.3 (Wrong code) The expected length under p(x) of the code assignment $l(x) = \left\lceil \log \frac{1}{q(x)} \right\rceil$ satisfies

$$H(p) + D(p||q) \le E_p l(X) < H(p) + D(p||q) + 1.$$

- Insights:
 - The increase in expected description length due to the incorrect distribution is the relative entropy.
 - Believing that the distribution is q(x) when the true distribution is p(x) incurs a
 penalty of D(p||q) in the average description length.
 - Relative entropy: the increase in descriptive complexity due to incorrect information

- Efficiency
 - Find codes with the minimum average code length.

Compression

- Reversibility
 - The code must be uniquely decodable

Zero-error

- Instantaneous code
 - Detect where the code for one input symbol ends and the next begins.

Engineering

 What if we expand the allowed codes to uniquely decodable codes?

Can we do better if we loose the constraint?

- What if we expand the allowed codes to uniquely decodable codes?
- Recall: Kraft inequality and the converse still hold for all uniquely decodable codes.
- Surprising fact: Uniquely decodable codes does not offer any further choices for the codeword lengths than prefix codes.
- The theorem can be extended to show the existence of uniquely decodable code for any information source.
 - Uniquely decodable codes are the basic requirements of the zero-error coding.
 - This theorem is also called zero-error source coding theorem

Revisiting: can we compress the data unlimitedly?

- Data compression has a limit? Yes!
- What is the limit? Entropy of the source

Source coding theorem: reflection

- Zero-error source coding theorem
 - Provide the theoretical limit to achieve the ideal coding
 - Prove the existence of the ideal source code.

- 1. 写出Kraft inequality的表达式
- 2. 写出最优码优化问题的建立
- 3. 求解最优码优化问题
- 4. 求解最优码长的上下界
- 5. 写出无失真信源编码定理
- 6. 说出香农第一定理的意义
- 7. 理解相对熵在编码层面的意义

重难点:

- Kraft inequality
- > 最优码优化问题
- > 香农第一定理

Thank you!

My Homepage

Yayu Gao

School of Electronic Information and Communications Huazhong University of Science and Technology

Email: yayugao@hust.edu.cn

