Given the following information, find optimal BST using DP.

Value	60	30	20	50	40
Probability	0.15	o. 25	0.17	0.13	0.30

$$C[i,j] = \min_{C[i,k-1]} C[k+1,j] + 2ps_{s=i}$$

 $i \le K \le j$
 $C[i,j] = p[i]$ for $1 \le i \le n$

j	0	1	a	3	4	15
1	0	0.15	0.55	0.89	1-as	3 2.1
a		0	0.25	0.63		3 1.66
3			0	0.17	0.43	1.03
4				0		0.56
5		1 1/4 1/4			0	0.30
6		100				0

j	0	1	a	3	4	S
1	0	1	a	2	2	3
2		0	а	2	3	3
3			0	3	3	5
4				0	4	5
2					0	5
6						0

$$C[\frac{1}{1},\frac{1}{2}] = \min(\frac{1}{1},\frac{1}{1-1}) + (\frac{1}{1}+\frac{1}{1},\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{1},0) + (\frac{1}{2},\frac{1}{2}) + 0.4$$

$$= 0.65$$

$$C[\frac{1}{1},\frac{1}{2}] = 0.65$$

$$C[\frac{1}{1},\frac{1}{2}] = \min(\frac{1}{1},\frac{1}{2}-\frac{1}{1}) + (\frac{1}{2}+\frac{1}{1},\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{1},\frac{1}{1}) + (\frac{1}{2}+\frac{1}{2}+\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{2},\frac{1}{2}) = \min(\frac{1}{2},\frac{1}{2}-\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{2},\frac{1}{2}) = \min(\frac{1}{2},\frac{1}{2}-\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{2},\frac{1}{2}) = \min(\frac{1}{2},\frac{1}{2}-\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.3$$

$$= C(\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.3$$

$$= C(\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.3$$

$$= C(\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.3$$

$$= C(\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.4$$

$$= C(\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + (\frac{1}{2}+\frac{1}{2},\frac{1}{2}) + 0.4$$

$$= C(\frac{$$

$$C(\frac{1}{3},\frac{1}{5}) \cdot mm[3, 4-1] + [4+1,5] + 0.6$$

$$C(\frac{1}{3},\frac{1}{5}] + 0.6$$

$$C(\frac{1}{3},\frac{1}{5}] + 0.6$$

$$C(\frac{1}{3},\frac{1}{5}] = min[3, 5-1] + [5+1,5] + 0.6$$

$$C(\frac{1}{3},\frac{1}{5}] = min[3, 5-1] + [5+1,5] + 0.6$$

$$C(\frac{1}{3},\frac{1}{5}] = min[3, 5-1] + [5+1,5] + 0.6$$

$$C(\frac{1}{3},\frac{1}{5}] = min[3, 5-1] + [1+1,7] + 0.7$$

$$C(\frac{1}{3},\frac{1}{5}] = min[1, 1-1] + [1+1,7] + 0.7$$

$$C(\frac{1}{3},\frac{1}{5}] = min[1, 1-1] + [1+1,7] + 0.7$$

$$C(\frac{1}{3},\frac{1}{5}] = min[1, 1-1] + [1+1,7] + 0.7$$

$$C(\frac{1}{3},\frac{1}{5}] = min[1, 2-1] + [2+1,7] + 0.7$$

$$C(\frac{1}{3},\frac{1}{5}] = min[1, 3-1] + [3+1,7] + 0.7$$

$$C(\frac{1}{3},\frac{1}{3}] = min[1, 3-1] + [3+1,7] + 0.7$$

$$C(\frac{1}{3},\frac{1}{3}] = min[1, 3-1] + [3+1,7] + 0.7$$

$$C(\frac{1}{3},\frac{1}{3}] = min[1,3] + (3+1,7] + (3+1,7] + 0.7$$

$$C(\frac{1}{3},\frac{1}{3}] = min[1,3] + (3+1,7] + (3+1$$

$$C[ind] = \min \{1, 4.1\} + \{4+1,47\} + 0.7$$

$$= C(1,3) + \{5,44\} + 0.7$$

$$= C(1,47) + 1.59$$

$$C[ind] = \min \{a, a-1\} + \{a+1,5\} + 0.85$$

$$= C(a,1) + \{3,5\} + 0.85$$

$$= C(a,1) + \{3,5\} + 0.85$$

$$= C(a,2) + \{3+1,5\} + 0.85$$

$$= C(a,3) + \{4,5\} + 0.85$$

$$= C(a,3) + \{4,5\} + 0.85$$

$$= C(a,3) + \{4,5\} + 0.85$$

$$= C(a,3) + \{5,5\} + 0.85$$

$$= C(a,3) + \{6,5\} + 0.85$$

$$C[i,s] = \min\{1,1-1\} + \{1+1,s\} + 1$$

$$= C[1,o] + \{2,s\} + 1$$

$$= C[1,s] = 2.66$$

$$C[i,s] = \min\{1,2-1\} + \{2+1,s\} + 1$$

$$= C[1,s] + \{3+1,s\} + 1$$

$$= C[1,s] = 2.18$$

$$C[i,s] = \min\{1,3-1\} + \{3+1,s\} + 1$$

$$= C[1,s] + \{3+1,s\} + 1$$

$$= C[1,s] + \{4+1,s\} + 1$$

$$= C[1,s] + \{5+1,s\} + 1$$

$$= C[1,s] + \{5+1,s\} + 1$$

$$= C[1,s] + \{6+s\} + 1$$