618327-2560

ฟิสิกส์ของวัสดุอิเล็กทรอนิกส์

และอุปกรณ์

นพ.อรทัย วัชรกิจจากร

บทที่ 2

• ตามหลักการกีดกันของเพาลีที่ระบุว่าอิเล็กตรอนสองตัวในระบบที่โต้ตอบกันไม่สามารถมีชุดเลขค วอนตัมเดียวกันได้

น, ล,ม, ส.

• อิเล็กตรอนเพียงสองตัวเท่านั้นที่สามารถมีเลขควอนตัมสามตัวที่เหมือนกันได้ คือ n, l, m และทั้งสองจะต้องมีสปินตรงข้ามกัน ซึ่งสามารถสรุปได้ดังนี้

สถานะควอนตัมที่แสดงในตารางใช้เพื่อระบุการกำหนดค่าอิเล็กตรอนสำหรับอะตอมในสถานะพลังงาน ต่ำที่สุด

u	a	u.	а	สถานะที่อนุญาตใน ซับเชลล์	สถานะที่อนุญาตใน เชลล์ที่สมบูรณ์	
1	0	0	±1/2	2	2	
2	0	0	±1/2	2	8	
	1	-1	±1/2			
		0	±1/2	6		
		1	±1/2			
	0	0	±1/2	2		
	1	-1	±1/2		18	
3		0	±1/2	6		
		1	±1/2			
	2	-2	±1/2			
		-1	±1/2			
		0	±1/2	10		
		1	±1/2			
		2	±1/2			

เปลือกหอย(น.)	เค 1	a	2	เอ็ม 3			เอ็น 4			
ซับเชลล์ () ^ล	0	0	1	0	1	2	0	1	2	3
	ส	ส	พี	ส	พี	ט	ส	พี	ט	a
	2	2	6	2	6	10	2	6	10	14
จำนวนอิเล็กตรอน	2	8		18			32			

มีสัญกรณ์ย่อแบบง่ายๆ สำหรับอิเล็กทรอนิกส์
 โครงสร้างที่เป็นการกำหนดชื่อของ ค่า I ที่แสดงเป็น

• s , p, d, f ย่อมาจาก sharp, principal, diffuse และ fundamental • ส่วนที่ เหลือจะเขียนตาม

ลำดับตัวอักษรเลย f ออกไป

• ตัวอย่างเช่น Si (เลขอะตอม = 14)

1s2 2s2 2p6 3s2 3p2

Atomic	:	n = 1 $l = 0$	2 0 1 2s 2p	3 0 1 3s 3p		4 0 1 4s 4p		
number (Z)	r Ele- ment	Number of		f electron			Shorthand notation	
1 2	H He	1 2					1s ¹ 1s ²	
3 4 5 6 7 8 9	Li Be B C N O F	helium core, 2 electrons	1 2 2 1 2 2 2 3 2 4 2 5 2 6				1s ² 2s ¹ 1s ² 2s ²	2p ¹ 2p ² 2p ³ 2p ⁴ 2p ⁵ 2p ⁶
11 12 13 14 15 16 17	Na Mg Al Si P S Cl	neon core, 10 electrons		1 2 2 1 2 2 2 3 2 4 2 5 2 6			[Ne]	3s ¹ 3s ² 3s ² 3p ¹ 3s ² 3p ² 3s ² 3p ³ 3s ² 3p ⁴ 3s ² 3p ⁵ 3s ² 3p ⁶
19 20, 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr	argon core, 18 electrons			1 2 3 5 5 6 7 8 10 10 10 10 10 10 10 10 10 10	1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2		[Ar] $4s^{1}$ $4s^{2}$ $3d^{1}$ $4s^{2}$ $3d^{2}$ $4s^{2}$ $3d^{3}$ $4s^{2}$ $3d^{5}$ $4s^{1}$ $3d^{5}$ $4s^{2}$ $3d^{6}$ $4s^{2}$ $3d^{6}$ $4s^{2}$ $3d^{10}$ $4s^{2}$ $3d^{10}$ $4s^{2}$ $3d^{10}$ $4s^{2}$ $3d^{10}$ $4s^{2}$ $4p^{1}$ $3d^{10}$ $4s^{2}$ $4p^{2}$ $3d^{10}$ $4s^{2}$ $4p^{3}$ $3d^{10}$ $4s^{2}$ $4p^{4}$ $3d^{10}$ $4s^{2}$ $4p^{5}$ $3d^{10}$ $4s^{2}$ $4p^{6}$

พันธบัตร

พันธบัตร

โดยที่ r = ระยะทางระหว่างอะตอม

a = ค่าคงที่แรงดึงดูด

b = ค่าคงที่ของการผลักกัน

m,n = ค่าคงที่ของลักษณะเฉพาะของพันธะหรือโครงสร้างแต่ละประเภท

ตามลำดับ

พันธบัตร

เราอาจสรุปได้ว่า

• E à 0 at r à ¥ : พลังงานศูนย์เป็นพลังงานในกรณีที่ไม่มีปฏิสัมพันธ์

- เมื่อ r > r0 อะตอมจะดึงดูดกันจาก r à ¥ ไปยัง r à r0
- เมื่อ r < r0 อะตอมจะผลักกันจนถึงจุด r0
- ที่ r0 ตำแหน่งสมดุลจะเกิดขึ้น ซึ่งเป็นจุดที่ พลังดึงดูดและพลังผลักมีความสมดุลกัน

ประเภทของพันธบัตร

- พันธบัตรสามารถแบ่งได้เป็น 4 ประเภทดังนี้
 - 1. พันธะไอออนิก: ไม่มีทิศทาง
 - 2. พันธะโลหะ: ไม่มีทิศทาง
 - 3. พันธะโควาเลนต์ : ทิศทาง
 - 4. ฟาน เดอร์ วาลส์ บอนด์ : อ่อนแอมาก

พันธะไอออนิก

สิ่งนี้เกิดขึ้นจากแรงดึงดูดไฟฟ้าสถิตระหว่าง
 ไอออนที่มีประจุต่างกัน เช่น NaCl หรือ LiF
 พลังงานยึดเหนี่ยว Ec พลังงานที่ต้องการในการรับ
 คริสตัลแยกกันอาจเขียนเป็น

โดยที่ M = ค่าคงที่ของมาเดลุง

$$-\frac{1}{100}$$
 = พลังงานดึงดูดไฟฟ้าสถิตแบบคูลอมบ์ ระหว่างไอออน 2 ตัว $-\frac{1}{100}$

พันธะโลหะ

พันธะโลหะมีความคล้ายคลึงกับพันธะไอออนิก เนื่องจากมีแรงไฟฟ้าสถิตย์เข้ามามีบทบาทอย่างมาก
 แต่แรงไฟฟ้าสถิตย์นี้มีอยู่ทุกที่และมาจากทุกทิศทาง

- ในโลหะ ประจุลบมีการเคลื่อนที่ได้สูง อิเล็กตรอนทำหน้าที่เหมือนกาวเพื่อยึดโครง ตาข่ายเข้าด้วยกัน
- แรงยึดเหนี่ยวในโลหะมีความแข็งแกร่งมากและ ยากที่จะทำลาย

พันธะโควาเลนต์

- พันธะนี้เกิดขึ้นจากการแบ่งปันอิเล็กตรอน ระหว่างอะตอมสองอัน
- ตัวอย่างที่ง่ายที่สุดของพันธะโควาเลนต์แสดงโดยอะตอมไฮโดรเจน
- อะตอมไฮโดรเจนต้องการอิเล็กตรอนอีกตัวเพื่อเติมเต็ม 1 เปลือก.
- มันจะค้นหาอิเล็กตรอนส่วนเกินจากอะตอมไฮโดรเจนอื่นเมื่อทั้งสองแบ่งปันอิเล็กตรอนกันในที่สุด

พันธะโควาเลนต์

• ในพันธะโควาเลนต์ อิเล็กตรอนทั้งหมดจะจับคู่กันและโคจรรอบอะตอมหนึ่งคู่ จึงมี อิเล็กตรอนจำนวนมากขึ้นที่เคลื่อนตัวออกไปเพื่อนำไฟฟ้า

ในกรณีของคาร์บอน จะทำหน้าที่เหมือนฉนวน แต่พันธะในซิลิกอนหรือเจอร์เมเนียม
 จะอ่อนแอกว่า

• อิเล็กตรอนบางส่วนในกรณีหลังนี้จะถูกเขย่าออกและสามารถนำไฟฟ้าได้ ดังนั้นเราจึงเรียกว่า "สารกึ่ง ตัวนำ"

พันธะโควาเลนต์

- (ก) พันธะที่ขาดที่ตำแหน่ง A ส่งผลให้เกิดการนำไฟฟ้า อิเล็กตรอนและหลุม
- (b) พันธะที่ขาดที่ตำแหน่ง B

พันธบัตรแวนเดอร์วาลส์

- นี่ก็เหมือน พันธะ รอง เพราะมีแรงมาก อ่อนแอ.
- พันธะนี้สามารถมองเห็นได้ในอะตอมที่เปลือกนอกถูกเติมเต็มอย่างสมบูรณ์

- พิจารณาว่าอะตอม A มีโมเมนต์ไดโพล ดังนั้นจึงเหนี่ยวนำให้เกิดโมเมนต์ได โพลตรงข้ามกับอะตอม B
- แรงดึงดูดนี้เรียกว่า "พันธะแวนเดอร์วาลส์"

ตัวอย่างที่ 1

พลังงานศักย์ E ต่อคู่ Na+ Cl- ภายใน
 ผลึก NaCl ขึ้นอยู่กับการแยกระหว่างไอออน r เป็น

โดยที่ n = 8, M = 1.7476, B = 6.972x10-96 J.m8

- (ก) หาการแยกสมดุล (ro) ของไอออนใน คริสตัล
- (b) หาพลังงานพันธะไอออนิก ซึ่งกำหนดเป็น –E(ro)