

Regenovo

Beyond imagination Print good life

3D Bio-Architect® Work Station "指令控制"工具使用手册

©2015 杭州捷诺飞生物科技股份有限公司保留所有权利。

杭州捷诺飞生物科技股份有限公司保留所有权。不经本公司同意,不允许以任何目的任何形式复制,传送,转录该出版物,或者翻译成其他语言。

本用户手册为安装、操作、维护指导书,并非产品保证书。杭州捷诺飞生物科技股份有限公司尽力确保手册材料的准确与完整,但对文档里的错误或遗漏不承担任何责任。同时保留对本用户使用手册的排版、错误等进行解释和修改的权利。文档有信息变动时恕不另做通知。

版本	时间	编制
V1.1	2018. 12	ZHOUXJ

9 指令控制

Regenovo 3D Bio-Architect® Work Station 是捷诺飞公司研发生产的具备高生物材料兼容性、高细胞打印成活率的 3D 打印机。由 Bio-Architect 软件进行控制,本文档概括介绍了软件"指令控制"功能的使用方法和主要事项。

指令控制,提供一个操作设备底层动作的操作台。客户可以自定义编写运动指令,使用符合本软件规则的标准指令组合,自由规划打印路径,实现更灵活的打印方案。

相关文档

本使用手册为 3D Bio- Architect® Work Station 用户手册的补充说明,需配合 3D Bio- Architect® Work Station 用户手册使用

9.1 设备安全

安全和特殊说明

请务必遵守本指南中提出的防范说明。安全和其他特殊说明写于方框中。

安全和特殊说明包括以下内容:

注意:

- 1、使用"指令控制"工具,设备将运行在安全保障机制外,请注意安全!
- 2、请密切注意设备运行状况。若遇意外风险。请立即按下急停按钮。
- 3、未经工程师培训授权的操作人员,禁止使用"指令控制"工具。
- 4、使用"指令控制"工具时,需保证设备有且只能挂载一只低温喷头在喷头臂上,若喷头挂载于喷头库或者挂载多个喷头, 执行高级打印都会可能导致设备碰撞!!
- 5、如使用第三方工具生成的路径,需符合本软件运行规则,使用前请严格检查。
- 6、只用"指令控制"工具,造成设备损坏将不受保护。

禁止非专业人士或未经授权人士操作设备。

联系我们

如欲获取产品和服务的最新信息,请访问我们的网站,网址为:

http://www.regenovo.com/

9.2 操作流程

- 1、使用"连接设备",与设备进行通讯连接。
- 2、使用"手动加载喷头", 挂载对应喷头。
- 3、开启温度控制(如需要),控制到材料成型所需要的温度。
- 4、测试材料出丝,确定材料达到顺畅出丝状态。
- 5、通过**手动移动**控制机械手移动,并且观察喷头针尖,使其处于平台上方合适位置。
- 6、进行喷头测高、校准,保证喷头信息栏提示"已校准"状态。
 - a) 选择需要使用的喷头,点击"**测高**"按钮进行喷头测高,测高完成后点击"**校准**"按钮进行喷头校准。
 - b) 如特殊喷头无法进行测高校准,点击"**自定义校准**",修正当前喷头对应**工件坐标系。**
- 7、点击"设备"--"G指令控制",打开G指令控制操作台。
- 8、点击"开始",启动指令控制模式。
- 9、在操作台指令输入栏中,粘贴已编写完成的运动指令。
- 10、点击"发送",将运动指令发送给设备,开始打印工作。
- 11、点击"停止",以停止打印工作。
- 12、打印完成, 取出打印完成的支架。

注意: 使用"指令控制"工具时,设备将运行在安全保障机制外,请注意安全!

注意: 导入程序段必须以 " M02 " 结尾, 保证程序正常结束。

9.3 打印机支持的指令列表

G01	直线插补	M02	程序结束
G04	延时	M101	开始出丝
G27	机械零点检测	M103	停止出丝
G28	返回机械零点	M108	设定气压
G54	选定坐标系	M171	出丝设置
G55	设置工件坐标系	M172	关丝设置
G56	增量模式补偿(工件坐标)		
G57	绝对模式补偿(工件坐标)		
G90	绝对模式输入		
G91	增量模式输入		

9.4 G 指令详细说明

G01 直线插补(直线运动)

指令格式: G01 X_Y_Z_F_

功能:直线插补

参数: X_ X 轴坐标, 单位 mm;

Y_ Y 轴坐标, 单位 mm;

Z_ Z 轴坐标, 单位 mm;

F_ 直线插补运动速度, 单位 mm/s。

G04 延时

指令格式: G04T_

功能: 延时

参数: T_ 延时时间,单位 ms

示例: M101 开始出丝

G04 T2000 延时 2s

G27 机械零点检查

指令格式: G27

功能: 机械零点检查

G28 返回机械零点

指令格式: G28

功能:返回机械零点

G54 选定坐标系

指令格式: G54 N

功能: 选定坐标系

参数: N 坐标系编号

示例: G54 NO 选定机械坐标系;

G54 N1~N4 选定工件坐标系。

G55 设置工件坐标系

指令格式: G55 N_ X_ Y_ Z_

功能:设置工件坐标系

参数: N_ 坐标系编号;

- X_ 坐标系 X 轴值;
- Y_ 坐标系 Y 轴值;
- Z_ 坐标系 Z 轴值;

注意:启用"设置工件坐标系"指令时,设置 Z 轴运动限位将被修改; Z 值修改过大,或 Z 轴补偿参数过大,会导致喷头与平台碰撞。

G56 增量模式补偿(工件坐标系)

指令格式: G56 N_X_Y_Z_

功能: 增量模式补偿(工件坐标系)

参数: N_坐标系编号;

- X_ 偏移坐标系 X 轴累加值;
- Y 偏移坐标系 Y 轴累加值;
- Z 偏移坐标系 Z 轴累加值;

G57 绝对模式补偿(工件坐标系)

指令格式: G57 N_ X_ Y_ Z_

功能: 绝对模式补偿(工件坐标系)

参数: N_ 坐标系编号;

- X_ 偏移坐标系 X 轴值;
- Y_ 偏移坐标系 Y 轴值;
- Z 偏移坐标系 Z 轴值;

G90 绝对模式输入

指令格式: G90

功能: 绝对模式输入。

G91 增量模式输入

指令格式: G91

功能:增量模式输入。

M02 程序结束

指令格式: M02

功能:程序结束

M101 开始出丝

指令格式: M101

功能:开始出丝。

M103 停止出丝

指令格式: M103

功能:停止出丝。

M108 设置气压

指令格式: M108 L

参数: I_ 气压值,单位 MPa

功能:设置挤出气压。

M171 出丝设置(高温/低温喷头)

指令格式: M171 T_

参数: T_ 提前出丝时间,单位 ms

功能: 设置高温、低温喷头出丝参数,补偿提前出丝量。

M172 关丝设置(高温/低温喷头)

指令格式: M172 L_

参数: L_ 提前关丝距离,单位 mm

功能:设置高温、低温喷头关丝参数,补偿提前关丝量。

9.5 示例

9.5.1 设定和切换工件坐标系

工作坐标系,常用于多喷头组合打印。通过偏移各喷头相对应的工件坐标系原点,矫正针尖位置,可保证多喷头打印时的配合精度。

方法一:使用软件界面操作,手动移动喷头到预设打印位置,点击"**平台校准"** --- "**自定义校准**"功能,可修改当前位置为喷头对应工作坐标系原点。

方法二:使用软件界面中,"**喷头校准**"—坐标系输入框填入**设定数值**,点击**"修改坐标系"**可以修改当前喷头对应工作坐标系原点位置。

方法三: 使用指令操作,

G54 N0	选定 N0 机械坐标系
G55 N1 X75 Y45 Z50	设置 N1 工件坐标系位置
G54 N1	选定 N1 坐标系
G55 N2 X120 Y85 Z0	设置 N2 工作坐标系位置
G54 N2	选定 N2 坐标系
G55 N3 X170 Y60 Z0	设置 N3 工作坐标系位置
G54 N3	选定 N3 坐标系

注意: 1, 打印模型的中心点, 默认与该喷头对应的工作坐标系原点重合。

2、推荐使用方法一、方法二,进行工作坐标系原点设定。

9.5.2 偏移工件坐标系

使用 G57 指令补偿工件坐标位置

G54 N0 //选定 N0 机械坐标系

G55 N1 X75 Y45 Z50 //设置 N1 工件坐标系位置

G54 N1 //选定 N1 坐标系

G57 N1 X45 Y40 Z0 //使用**绝对模式**,补偿 N1 工件坐标中点至 N1'点

G57 N1 X95 Y15 Z0 //使用**绝对模式**,补偿 N1 工件坐标中点至 N1"点

使用 G56 指令补偿工件坐标位置

G54 N0 //选定 N0 机械坐标系

G55 N1 X75 Y45 Z50 //设置 N1 工件坐标系位置

G54 N1 //选定 N1 坐标系

G56 N1 X45 Y40 Z0 //使用**增量模式**,补偿 N1 工件坐标中点至 N1'点

G56 N1 X50 Y-25 Z0 //使用**增量模式**,补偿 N1 工件坐标中点至 N1"点

偏移工件坐标系功能,常使用于对整段打印路径进行阵列偏移。例如:多孔板打印中,阵列多个相同的打印模型。

注意: 1、运行G01指令时,实际启用的工件坐标系原点坐标为: G55 与 G56/G57组合运算之和。

2、如果重新设定 G55 基础值,请注意清零 G56/G57 偏移数据,避免累计偏移数据过大,导致设备超限故障。

9.5.3 指今模板

G28 //返回机械零点

G90 //使用绝对模式输入(默认采用 G90 模式)

G54 N1 //选定工件坐标系,必须是当前挂载喷头对应的坐标系

G01 X0 Y0 Z5.0 F40 //运动到打印安全区域(打印中心点以上 5mm 处),速度 40mm/s

M108 I0.25 //设置当前气压为 0.25MPa

M171 T500 //设置提前出丝时间 500ms

M172 L0.2 //设置提前关丝长度 0.2mm

M103 //停止出丝

G01 X10.0000 Y5.7735 Z0.2500 F10 //移动到打印起始点,速度 10mm/s

M101 //开始出丝

G01 X0.0000 Y11.5470 Z0.2500 F8.5 //直线插补,运动到目标点 X0.0 Y11.547 Z0.25,速度 8.5mm/s

G01 X-10.0000 Y5.7735 Z0.2500 F8.5

G01 X-10.0000 Y-5.7735 Z0.2500 F8.5

G01 X0.0000 Y-11.5470 Z0.2500 F8.5

G01 X10.0000 Y-5.7735 Z0.2500 F8.5

G01 X10.0000 Y5.7735 Z0.2500 F8.5 //打印完成六边形轮廓第一层

M103 //停止出丝

G01 Z0.75 F2 //抬高 0.5mm

G01 X10 Y5.7735 F10 //跳转至下个起始点

G01 Z0.75 F5 //针头回落至打印层

M101 //开始出丝

G01 X0.0000 Y11.5470 Z0.7500 F8.5 //直线插补,运动到目标点 X0.0 Y11.547 Z0.75

G01 X-10.0000 Y5.7735 Z0.7500 F8.5

G01 X-10.0000 Y-5.7735 Z0.7500 F8.5

G01 X0.0000 Y-11.5470 Z0.7500 F8.5

G01 X10.0000 Y-5.7735 Z0.7500 F8.5

G01 X10.0000 Y5.7735 Z0.7500 F8.5 //打印完成六边形轮廓第二层

•••••

M103 //停止出丝

G28 //返回机械零点

M02 //程序结束