Luiss MBA 2013 - Statistics

Name: ______

- 1. The estimator $\bar{X} = \sum_{i=1}^{n} x_i/n$ of the population value μ is unbiased if
 - A. $\bar{X} \xrightarrow{p} \mu$
 - B. $\mu = \bar{X}$
 - C. $E[\bar{X}] = \mu$
 - D. \bar{X} is constant among different samples

1. _____

- 2. The estimator $\bar{X} = \sum_{i=1}^{n} x_i/n$ of the population value μ is consistent if
 - A. $\bar{X} \xrightarrow{p} \mu$
 - B. $\mu = \bar{X}$
 - C. $E[\bar{X}] = \mu$
 - D. \bar{X} is constant among different samples

2. _____

- 3. Figure 1 plots the histogram of CEO salary. Which of the following is true?
 - A. The median will be larger than the mean, because the distribution is right skewed
 - B. The median will be smaller than the mean, because the distribution is right skewed
 - C. The median and the mean will be the same
 - D. The median will be smaller than the mean, because the distribution is left skewed

3. _____

- 4. We have data on the compensations of 208 CEO's in the US. The sample mean of salary is $\bar{w} = 865.8644$ and a standard deviation of $s_w = 587.5893$. What is the 90% confidence interval for μ , the average CEO compensation in the population?
 - A. $865.8644 \pm 1.96 \times \frac{587.5893}{\sqrt{208}}$
 - B. $865.8644 \pm 1.64 \times \frac{587.5893}{\sqrt{208}}$
 - C. 865.8644 ± 1.96
 - D. $865.8644 \pm 1.64 \times \sqrt{208}$

4

- 5. Look at Figure 2. Which of the following is true?
 - A. The correlation between x and y will be close to zero because the are related in a nonlinear way
 - B. the correlation will be very high, close to 1, because x and y are related
 - C. the relation between y and x is negative
 - D. the relation between y and x is positive

5. _____

- 6. The following statement about the sample correlation coefficient (r_{XY}) is true
 - A. $r_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i X_i)^2$
 - B. $r_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i \bar{Y})(X_i \bar{X})$
 - C. $r_{XY}^2 \le 1$
 - D. $r_{XY} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (Y_i \bar{Y})(X_i \bar{X})}{\frac{1}{n-1} \sum_{i=1}^{n} (Y_i \bar{Y})^2 \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2}$

6. _____

- 7. Assume that you have 125 observations on the height (H) and weight (W) of your peers in college. Let $S_{WH} = 18$, $s_H^2 = 16$, $s_W^2 = 81$. The sample correlation coefficient is
 - A. $r_{HW} = 0.5$
 - B. $r_{HW} = 0.01$
 - C. $r_{HW} = 0.95$
 - D. Cannot be calculated because the unit of measure of height and weight are different

7. _____

- 8. Suppose you observe a sample of n = 100 prices (P) with mean $\bar{P} = 63$ and standard deviation $s_P = 18$. What is the 95% confidence interval of the population mean price (μ_P) ?
 - A. (60, 66)
 - B. (62.1, 63.1)
 - C. (62.7, 63.3)
 - D. (59.5, 66.53)

8				

- 9. Using the data from the previous question, which of the following is true?
 - A. you reject $H_0: \mu_P = 58$ against $H_0: \mu_P \neq 58$ at the 10% significance level
 - B. you cannot reject $H_0: \mu_P = 58$ against $H_0: \mu_P \neq 58$ at the 10% significance level
 - C. you cannot say because μ_P is unknown
 - D. you could say if you knew the sample variance of $\{P_1, \ldots, P_n\}$

- 10. The standard error for the difference in means if two random variables M and W, when the two population variances are different, is
 - A. $\sqrt{\frac{s_M^2}{n_M} + \frac{s_W^2}{n_W}}$

 - B. $\frac{s_M^2}{n_M} + \frac{s_W^2}{n_W}$ C. $\sqrt{\frac{s_M}{n_M} + \frac{s_W}{n_W}}$

10. _____

Figure 1:

Figure 2: