LOGICAL ORGANIZATION OF COMPUTER-1

Note: Attempt five questions in all. Q. No. 1 is compulsory. Select one question from each section.

(Compulsory Question)

- 1. (a) Express 6. 8 in 2421 code.
 - (b) Abbreviate ASCII, EBCDIC.

i i	(c)	What is $(X)^2 = AF^3D$	
	(d)	Define Duality principle.	1 9
	(e)	Make T.T. for 3-variable 'OR'.	
	(f)	How many control signals are needed in 16:1 MUX?	
	(g)	$(X)u = (768)_{10}$	
	(h)	Make table for self-complementing code.	
	(i)	Make T.T. for XOR gate.	18
		SECTION-1	
2.	(a)	Define error-detection and correction scheme using Pari	ty-
		bit.	
	(b)	Perform the following using 1's and 2's complement:	
		-8 -42	
		<u>-10</u> <u>+43</u>	8
	(c)	Make table for Cyclic code.	4
	(d)	A Register stores High, Low, Low, High. Find number	in
		binary and hexadecimal.	2
3.	(a)	Define Floating point representation and discuss overflo	ow.
		and underflow conditions.	0
	(b)	Convert	
		$(10.3)10 \rightarrow ()_2$	N
		\rightarrow () ₈	
		\rightarrow () ₁₆	199
	(c)	Write 4-bit BCD for 25, 128.	2
		UNIT-II	
1.	(a)	Define Boolean algebra and differentiate in with ordina	гу
		algebra.	4
	(b)	Solve Full-adder using Boolean algebra.	4
	(c)	Solve the following using Boolean algebra:	

5. (a) Draw and label 4 variable K-map and solve for four corners. 10

(b) Solve the following using K-map:

$$Z = \sum 0.1.4.5.11 + \sum_{9} 3.10.14.15$$

$$Z = \pi 0.2.4.6$$

$$UNIT-III$$
6. (a) Prove that NAND is a universal gate. 4

(b) Make circuit for
$$X = (\overline{AB} + A\overline{B})(\overline{CD} + CD)(\overline{XY} + XY)$$
4 (c) Make Half-adder using NAND gates only. 10

7. (a) Expand the following using Boolean algebra and make gate realization:
$$XY + YZ + ZX$$
(b) Make circuit using NAND gates only:
$$X = AB + CD$$

$$F = A\overline{B} + \overline{AB} + C\overline{D}$$

$$UNIT-IV$$
8. (a) Explain 4: 1 MUX.
(b) Make code convertor from 8421 to cyclic. 18

9. (a) Make circuit for 2's complement adder.
(b) Explain 7-segment display. 18

 $XY + \overline{X}Z + YZ = XY + XXZ$