Le êture 8. Groups presented by generators and relations.

Let G be an m-generated group, $G = \langle a_1, ..., a_m \rangle$. Let Fr(m) be the free group on the Set of free generators $X = \{ \mathcal{D}_1, ..., \mathcal{D}_m \}$.

Then the mapping $\mathcal{D}_i \to a_i$, $1 \le i \le m$, extends to a surjective homomorphism $\mathcal{P}: Fr(m) \to G$.

Let $H = \ker \mathcal{P}$. Then

G = Fr (m)/H.

Let $R \subseteq H$ be a Subset that generales H as a normal Subgroup. It means that H is the smallest normal Subgroup of $F_2(m)$ that contains R. Let

 $R^{Fr(m)} = \{r^g = g'rg \mid r \in R, g \in Fr(m)\}$ be the Set of all conjugates of elements of R. Then H is the Subgroup of Fr(m)generated by the Set $R^{Fr(m)}$

We day that the group 6 is predented by the Det of generators X and the set of relations R,

 $G = \langle x \mid R = 1 \rangle$

Dehn's Algorithmic Problem: assume $1\times1\times\infty$, $1\times1\times\infty$. Does there exist an algorithm that decides if two elements $v, w \in Fr(m)$ are equal modulo H? Equivalently, if $v(a_1,...,a_m) \stackrel{?}{=} w(a_1,...,a_m)$

1959 P.S. Novikov: a finitely presented group for which Inch an algorithm does not exist.

If $h \in H$ then h can be presented as $h = (z_1^{g_1})^{\frac{1}{2}} - (z_s^{g_s})^{\frac{1}{2}}$, where $z_1, ..., z_s \in R$ (not necessarily distinct) $g_1, ..., g_s \in F_2(m)$.

Such a presentation may be not unique.

11 hll = min 5

Let B(n) be the ball of radius n in $Cay(F_2(m), X)$ with the center at 1.

What is B(n)? If $w = \mathcal{P}_{i,-}$. $\mathcal{P}_{i,K}^{\mathcal{E}_K}$ is

a reduced form them dist (w, 1) = K, sc $B(n) = \{ \mathcal{X}_{i_1}^{\mathcal{E}_i} - \mathcal{X}_{i_k}^{\mathcal{E}_k}, \text{ reduced forms, } k \leq n \}$ Dehn functions. $D_X(n) = \max\{\|h\| | h \in H \cap B(n)\}, n \geq 1.$ As in the case of semigroups of $\langle x | R_1 = 1 \rangle \cong \langle Y | R_2 = 1 \rangle$ X, Y, R, R2 are finite Dets, then Dx(n) is asymptotically equivalent to $\mathbb{D}_{Y}(n)$. Delin function and nondeterministic time complexity. Example. < x,y | y x yx = 1 >= Z + Z

Example. $\langle x, y | y x y x = 1 \rangle \cong \mathbb{Z} \oplus \mathbb{Z}$ free abelian group of earl 2.

Carsider the coordinate system and move \rightarrow for x, \leftarrow for x', \uparrow for y, \downarrow for y'. Then y'x stands for the contour

of a unit square.

What is (y'x'yx) ?

Unit square, but moved away from the origin.

 $w = x^{-1}y^{2}xy^{-2}x^{2}yx^{-2}y^{-1}.$ ||w|| = Area bounded by the curve W = 4.

Now the problem looks as: the length of a curve is & M. What is the maximal area bounded by this curve? We did not fill in all details. Isoperimetric problem: ~ n2.

Free Product of Algebras.

Let F be a field and let A, B be associative F-algebras with 1. We always assume that a homomorphism maps 1-1.

Objects: triples (an associative with 1)

F-algebra CV, homomorphisms 4: A > C,

 $\Psi: B \to C$).

Morphism (C1, 41: A→C, 41:B→C) → (G, 4: A→C, 42:B > C)

is a homomorphism $X:C_1\to C_2$ of associative algebras such that the diagrans

Commute.

Universal Object: such a triple $(U, u_1: A \rightarrow U, u_2: B \rightarrow U)$ that for any other

triple object $(C, \varphi: A \rightarrow C, \psi: B \rightarrow C)$ there

exists a unique morphism $\chi: U \rightarrow C$.

Lemma If $(U, u_1: A \rightarrow U, u_2: B \rightarrow U)$

is universal then U is generated by $u_1(A)$, $u_2(B)$ as an F-algebra.

Proof. Suppose that the Imbalgebra U' < U generated by u1 (A), 42 (B) in U is smaller than U. There exists a morphic 7: U > U'that can be viewed as a marphism from (U, u1, u2) to itself. Then there are two dofferent morphisms from (U, u1, u2) to itself: id and X, a conhado

Let $A = F(X \mid R_1(X) = 0)$, $B = F(Y \mid R_2(Y) = 0)$ be presentations by generators and relations.

Consider the free F-algebra F(X UY) on the set of free generators X UY.

-9-

Let $id_{F(X \dot{U}Y)}$ ($R_1(X)$, $R_2(Y)$) be the ideal generated by $R_1(X)$ UR(Y) in $F(X \dot{U}Y)$. Clearly,

F(x) id $(R_2(Y)) \subseteq id$ $(R_1(X), R_2(Y))$

Hence we can define natural homomorphism

 $u_1: f\langle x \rangle / i J(R_1(x)) \rightarrow F\langle x \dot{\upsilon} \gamma \rangle / i J(R_1(x), R_2(\gamma)) = I$ $f(x) \Rightarrow F\langle x \dot{\upsilon} \gamma \rangle / i J(R_1(x), R_2(\gamma)) = I$

 $u_2: F(Y)/id_{F(Y)}(R_2(Y)) \rightarrow F(X \dot{U}Y)/id_{F(X \dot{U}Y)}(R_2(X), R_2(Y)) = U$

Lemma · The trople (U, u1: A +U, 42: B > U)

is universal.

Proof. Let C be an F-algebra and let 4: A - C, 4: B-C be homomorphisms. Consider the mapping $x_i \rightarrow \varphi(x_i) \in (R_2(x_i)) \in \mathcal{C}$ $y_i \rightarrow \psi(y_j + id_{\mathcal{F}(Y)}(R_2(Y))) \in \mathcal{C}$ and extend it to a homomorphism $\tilde{\chi}: F(\chi \cup Y) \rightarrow \mathcal{C}$.

Then $\widetilde{\chi}(R_1(x)) = (0)$ and similarly $\widetilde{\chi}(R_2(y)) = (0)$ so $\widetilde{\chi}(id_{F(X)}(R_1(x), R_2(y))) = (0)$. Hence the

homomore homomore X gives rize to the homomore phism $X: U = F(X \dot{U}Y)/id_{pxiy}(R_1(X), R_2(Y)) \rightarrow C$

It is straightforward that the corresponding

d'agrand are commutative. This complètes

the proof of the lemma.

Lemma. A universal triple is unique

up to isomorphism.

Proof. Let (U1, 4, A , U1, 4, B , U1) and

(U_2 , $\Psi_2: A \to U_2$, $\Psi_2: B \to U_2$) be universal triple. Then there exist morphisms $\chi: U_1 \to U_2$ and $\chi': U_2 \to U_1$. For an arbitrary element $a \in A$ we have

> 4, 94, (a) a x1 1x2 42 (a)

hence $\chi_2 \chi_1(4, (a)) = 4, (a), \chi_2 \chi_1 = id_{4,(A)}$

and similarly $\chi_2\chi$, $|\psi_1(B)| = id\psi_1(B)$. Since $\psi_1(A)$, $\psi_1(B)$ generate U_1 it follows that

X2 X1 = WVI. Similarly X1 X2 = idv. Hence

both Xy and X2 are isomorphisms. This

coupletes the proof of the lemma.

Lemma. The homomorphisms 42 and 42 are injective.

Proof Consider the direct sum of algebras $A \oplus B$. Let $A \ni a \stackrel{\varphi}{\to} a + 0 \in A \oplus B$, $B \ni b \stackrel{\varphi}{\to} 0 + b \in A \oplus E$ be natural embeddings. There exists a morphis $U \to A \oplus B$ Much that the diagrams $u_1, u_2, u_3(a)$ $u_4, u_5(a)$ $u_5 \stackrel{u_2}{\to} u_2(b)$

a 4, (a)
42, (b)
6 12, (b)
4 200
4 30+6

are commutative. Since 4,4 are embeddings at implies that 41,42 are embeddings as well. This completes the proof of the lemma.

Identifying ADA with Us (a) we assume that A < U and B < U; A and B generate U.

The algebra U is called the free product of the algebras A, B and denoted U = A * B

Let {1, ai}ieI, {1, bj}jeJ be bases of the subalgebras A, B in A*B.

Lemma. The Set 1, C1.--Cn, n≥1, where $CK \in \{a_i, b_j\}_{i \in I}$, $j \in J$, and two consegntive elements CK, CKH do not lie in the same subalgebra An B, is a basis

Proof. Let X= d&i3ieI, Y= lyj]jeJ. Let ainain = Lining. 1 + Z Lining ap

 $6j_{1}j_{5j_{2}} = \beta j_{1}j_{2}\cdot 1 + \sum_{q} \beta j_{1}j_{2} \ bq; \ \alpha_{i_{1}i_{2}},$ Lviz, fi, j2, fi, j2 e F. Consider the Sets of defining relations $Q_{1}(x) = \left\{ \mathcal{X}_{i_{1}}^{i_{1}} \mathcal{X}_{i_{2}}^{i_{2}} - \mathcal{A}_{i_{1}}^{i_{1}} i_{2}^{i_{2}} \cdot 1 - \sum_{p} \mathcal{A}_{i_{1}}^{i_{2}} \mathcal{D}_{p} \middle| i_{1}, i_{2} \in \mathcal{I} \right\},$ $R_2(y) = \{ y_{\hat{j}_1} y_{\hat{j}_2} - \beta_{\hat{j}_1} j_2 \cdot 1 - \sum_{q} \beta_{\hat{j}_1} j_2 y_q \mid \hat{j}_1, \hat{j}_2 \in J \}.$ Then $A = \langle X | R_1(x) = 0 \rangle$, $B = \langle Y | R_2(Y) = 0 \rangle$ The Set R1(x) UR2(Y) is closed with respect to compositions. A word in XU4 is irreducible if and only if it does not contain Introvoids Di, Diz, 4ji 4jiz. Now it suffices to refer to Theorem I.3. 1.

Free Products of families of algebras.

Let $A_i = F(X_i \mid R_i(X_i) = 0)$, $i \in I$, be a family of F-algebras.

Objects: (an associative algebrase C with 1) homomorphisms $(C, i \in I)$.

Morphisms: $(C, Q_i) \rightarrow (C', Q_i')$ is a homomorphism $\chi: C \rightarrow C'$ much that all diagrams

 $C \xrightarrow{\chi} C'$, $i \in I$, $\varphi_i \uparrow \varphi_i'$

are commutative

Free product $\star A_i = universal object(U, ui: A_i \rightarrow U, i \in I)$.

For an arbohary object $(C, \mathcal{L}_i: A_i \rightarrow C)$ there exists a unique morphism $(U, u_i) \rightarrow (C, \mathcal{L}_i)$ This universal object is

 $U = F \langle \dot{U} x_i | R_i(x_i) = 0, i \in I \rangle,$

 $u_{\kappa}: F < \chi_{\kappa} / \mathcal{R}_{\kappa}(\chi_{\kappa}) = 0 > \rightarrow F < U\chi_{i} / \mathcal{R}_{i}(\chi_{i}) = 0, i \in I > i \in I$

are the natural embeddings.

If Bris a basis of Ax then products

1, Ci-Cn, where each cie UBilland

two consequtive elements Cis City do not

in the same Bx (1).