세번째: 온실가스-산업연관표

강성원

KEI

2016.08.05

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

기본 개념

- 1. 1차 에너지 (TPES: Total Primary Energy Supply)
 - ▶ 정의: 자연이 제공한 그대로의 가공하지 않은 에너지.
 - ▶ TPES = 국내생산 + 수입-수출-국제 Bunkering + 재고증가 재고감소
 - ▶ TPES = 최종에너지소비 + 전환손실
- 2. 전환(Transformation)
 - ▶ 에너지의 형태를 변화시키는 과정
- 3. 최종 에너지(TFC: Total Final (Energy) consumption)
 - ▶ 유효에너지로 변환되기 위해 소비자에게 제공되는 에너지
 - ▶ TFC = 최종에너지 소비자에게 공급된 에너지양으로 전환손실 및 에너지산업체의 자체소비는 제외함
- 4. 에너지 Balance
 - ▶ 플로우(Flow)의 개념으로 일정기간동안 일정지역내 에너 지의 투입과 산출간의 균형을 나타내는 표
 - 형태: 에너지원을 가로축, 에너지수급량을 세로축에 나타내는 행렬 (Matrix)방식을 채택

에너지 Balance (한국)

19. 에너지 수급밸런스 (Energy Balance)

1009 Year)																	-						unioo,															
	-	5	3	4	- 5	- 6	7	8	9	90	- 11	15	13	14	15	16	17	18	19	20	- 21	22	23	24	25	26	27	26	29	34	36	12	33	34	36	36	33	-
	4 5			_				4 8										_												5574	泉湖湾山	0 0	현지역	D 0	12	문제품	8.4	
		P 2 2			6 2 2				明州和			_		_					LPG			HHMM																
			246	+28		BER	288			RWR	8 0	8 8	2550		8589	28-1	39-4	AVI-G		XER	4 E		UXU	8 4	何ム業化	単独対象	用可能能力	4923	210.48									
	THIS IS		Comesto		Barros			Telephone	treny	l	Kennere	Diese	8-A	0.0	8-0					Programe		Non-			Aspend		Zaroffin.	Detroire	Other	LNO	Tean	Higg		Electricit	Meat	Removation Energy	Yotal	
	CHM	- Consume	Domestics	mpor	MATRICA.	coung	Staan	Petroeum	Use	5000me	**Soore	Date	D-A	0.0	8-0						BUCANA	Like	sapreus	201410	Asphalt	Labreau	Wax	m Colle	Products	LNO	034	Hydro	Nucea N	Electron	Heat	predi	1993	
																			1,000	104																		
* 4 5 5 1	1,171	5,175	1,775								-					-			-	-								-	-	490	-	1,219	31,771		-	5,400	40,133	
0 2 2	61,431	4,296	-	4,236	55,194	13,667	45,567	190,144	65,109	18,809	4,558	32,735	438	75	22,199	54,379	-		10,490	4,599	5,900	58,915	49,586	643	4,465	3,327	17	966	4,483	50,566	-	-	-	-	-	-		
M 9 6 00 9		-	-	-			-	135,800	80,884	18,829	4,549	37,655	435	7%	10,068	56,279	-		3,656	1,436	2,299	33,84	29,867	105	4,465	3,271	17	166	4,483	-	-	-	-	-	-	-	126,850	Petrovus Products
(N T + S) 4		-	-	-			-	33,294	3,255	-	9	120	4	-	3,121	-	-		6,834	3,153	3,680	25,296	23,144	- 6	-	56	-	-	-	-	-	-	-	-	-	-	33,294	(Petroleum Imports)
		-	-	-			-	-40,758	-37,600	-5,111	-759	-19,053	-	-	-0,997	-9,712	-		-12	-12		-9,93	-9,400	-1	-2,495	-2,895	-	-22	-699	-	-	-	-	-	-	-	-66,758	
		-	-	-			-	-6,885	-4,885	-	-	-483	-54	-	-5,610	-938	-		-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-6,985	INC BUILDING
42827	261	261	258	3	-	-	-	345	199	-30	14	100	1	0	67	26		- 0	37	18	19	109	164	-3		-62		0	-19	1,144	-	-		-	-	-	1,749	Stock Change(+>)
****	1,323	1,029	1,245	79	-	-		5,593	9,712	207	327	1,230	29	•	1,454	305			205	148	117	1,810	1,352	13	100	190		5	30	3,390	-	-		-	-	-	10,306	Former Stock
* # # # # # *	-(.863	-1,063	-987	-76				-5,248	-0,510	-407	-029	+0.073	-39	122	-1,306	=533		-	-226	-100	-98	+1,587	-1,066	-%	-181	-268		=5	-58	-2,146							-0,557	
第月至月2日 市場(円4日 日	3,741		1000	126	3,667	827	2,771	-6,410	-3,113	-263	2 424	-363 19-836	-33	123	-2,351	-4	-	-	564	-385 4.701	049	-1,861	1,002	-195	46	721	- 0	-45	1,367	+1,303	-	120	-	-	_	5.450	-1,672 263.311	Penan Consumptor
	-84,700		1,446	4,364	60,940	4,04	44,576	182,836	41,607	1,20	3,636	18,836	307	104	10,368	3,663	-	۰	11,676	4,211	4,868	45,661	41,300	454	1,065	328	17	88	1,967	84,000	-	1,218	31,771	-	-	-010		
	-44,700	-632	-632		-44,009		-44,009	-3,847	-0,714	-1	-105	-00		-	-3,687	-	-		-238	-238	-1	-14	-		-	-		-	-14	-33,000	10,460	-0,213	-31,771	33,825	959	-613		
X 9 12 18 14	-40,000	-692	-632		-64,004		-64,076	-3,40	-3,402	-1	-90	-99		-	-3,293	-	-				-	-96	-		-	-		-	-94	-U,AFF	-158	-020	-31,771	31,290	953	-619	-04,794	
7 4 4 5 5		-	-				-	-911	-311	-	-7		-	-	-904	-	-		-	-		- 1	-		-	-		-	- 1	-681	-855	-		-	683		-0,964	
DOMESTIC N		-	-				-	-239	-1	-		-1	-	-		-	-		-238	-237	-1		-		-	-		-		-00,50K	20,766	-					-0.581	
90.00 4H T	73.000	4 100	810				4.000	06.365	41.000	4.00	0.634	** ***	207	***	4.00	2.662	_	_	72.040	0.000	1.00			***	1.065	301	- 0	- 60	1.162		13.653	_	_	22,000	1.00	4.007	102.066	
	20,000	4.000					4.000	55.705	7,433	100	550	3.773	107	170	2.642			- 1	3.678	2.000	1,670			220	1,000	778		87	1.000		0.000			17,000	1,000	3.676	106,119	Industry
* B 0 2 9		-	- 1					3.764	2.226	100	700	1.000	-	-	7,041	- 1	- 1				-	-				-				- 1	-	- 1	- 1	786	- 1		3,635	ASS PERSON
# 10 20										-		41	-	- 7					- 6	- 1	- :	- 1		- 1					- 1		- 3			110			196	Motor
N & 9 2							4.000	61.704	4 338	-	242	462	-							1.00	1.000		-	***		778		- 01						W 103			91,999	100/20/00
84, 94 (0	-	- 1						300	700			-	-	- 10	770	- 1	- 0				-	77		-	- 1	-			77			- 1			- 1		1,601	F000 7303000
MH. NH 20	- 1		-	-	-		-	461	616		23	12	- 1	2	274				- 3	,		24	_	-	-		-		16		467			993			1,847	Texto S.Apparel
M46, 128 24	-	-	-	-	-		-	22	20			7			17	-	-		- 1		-	2	-	- 1	-	-	-	-		-	52	-		127	-	-	221	Wood & Wood Pts
\$0, 54 20								490	484		99		,	4	450				5	5				- 6							295			827			1,559	Pulp & Publication
48, 59 20	116		-		116		116	46,266	1,182		19	72	- 1		1,085				2,771	1,478	1,299	40,00	41,790	267	-		15		722		1,077			3,445			50,905	Petro Chemical
H 2 4 27	2,367		-	-	2,767	-	2,767	833	685		6		2	10	526	-	-	-	31	31		117	-		-	-	-	85	32	-	442	-	-	966	-		5,008	NON-SWEAK
1 20 20 40 20	94,894		-	-	14,014	94,014	-	269	228	-	0	3	0	1	223	-	-	-	34	10	23		-	0	-	-	-	2		-	1,239	-	-	3,023	-		19,045	Iron & Steel
H & B4 29			-	-	-	-		85	61			3	1	1	96				17	10		7	-	- 1	-		-	-			220			-	-		305	Non-female.
X 0 24 10	-		-	-	-	-	-	627	441	29	32	127	26		220		-		62	62		24	-		-	-	-	-	28	-	1,794	-	-	5,839	-		7,620	PROTESTED WHEN
対印視監督	1,200		-	-	1,200	-	1,290	1,070	423		132	105	6	14	211	-	-	-	612	407	105	85	-	55	-	-	-	-	38	-	490	-	-	167	-		2,853	Other Manufacturin
23E0E4E 32	-		-	-	-	-	-	903	60			4	-		54	-	-	-			-	943	-		-	725	2	-	110	-	-	-	-	-	-		903	Other Energy
S # 13 10				-				2,772	792	19	36	655	22	54	42				21	21		1,960	-		1,965			-						-			2,772	Construction
			-	-				34,529	29,983	6,995	7	54,876	152	38	2,740	3,04			5,862		5,800	4	-		-		-		3		960			167		254	35,939	Transportation
2 × 20 30	-		-	-	-	-	-	201	200	-	0	200	-	-	-	-	-	-	0	0	-		-	-	-	-	-	-		-	-	-	-	167	-	-	388	Mail
R & 24 M								27,8%	22,462	6,985		54,349	4		17				5,301		5,000				-				2		960					254	29,000	Land
+ 0 R+ 37			-	-	-	-		3,321	3,329		0	419	147	33	2,717	-			0				-	0	-		-	-	-		-			-	-		3,321	Water
8 8 84 10	-		-	-	-	-	-	3,101	3,100				1	1	7	3,04	-		0	0	-		-	-	-	-	-	-		-	-	-	-	-	-	-	3,181	All
8 4 2 10	540	940	812	128	-	-	-	3,860	2,857		2,007	545	3		287	-	-	-	930	931	39	33	-	10	-	-	-	-	10	-	9,267	-	-	4,953	1,388	129	20,537	Recontai
1 H 2 40	-		-	-	-	-	-	2,027	1,190	29	932	129	29	20	143		-		1,007	900	69	97	-	10	-	-	-	1	85	-	3,060	-	-	9,640	120	23	15,195	Commencial
* * 5 *	-	-	-	-	-	-	_	1,263	1,218	46	100	642	- 6	3	- 19	429	-		23	23		23	-	- 1	-	-	-	-	21	-	277	-	-	2,138	42	626	4,295	Public

에너지 Balance (한국-약식)

			석탄, 석유, 천연가스	도시 가스	전력	열	수력, 원자력, 신재생
(공	생산,수	:입	+				+
급)	수출, =	국제벙커링	-		0		0
	재고, 의	2차	+,-				0
TPES	TPES						
(전	에너	발전		-	+	+	-
환)	지전 환	지역난방	-	-	0	+	0
		가스제조		+	0	0	0
	자가소	· 비, 손실	-,+		-,+		0
TFC							
소비	(산업, 기	·정, 상업,공공)	+	+			+

에너지 밸런스와 1차에너지, 최종에너지

	개념	에너지밸런스
1차	국내생산 + 수입 - 수출 - 국제	국내생산 + 수입 + 수출(-) + 국제
에너지	벙커링 + 재고증감 + 오차	벙커링 (-) + 재고증감 + 오차
최종	1차에너지 - 전환손실- 자가소	1차에너지 + 에너지전환 + 자가소
에너지	비 및 손실	비 및 손실(-)
		= 1차에너지 + 전환(생성) + 전환손 실(-) + 자가소비 및 손실(-)

산업연관표-에너지 밸런스: TPSE + 전환 E \Rightarrow TFC

			석탄, 석유, 천연가스	도시 가스	전력	열	수력, 원자력, 신재생
(공	생산,수	≐입	+			•	+
급)	수출, -	국제벙커링	-	0			0
	재고, 의	오차	+,-				0
TPES	5						
(전	에너	발전		-	+	+	-
환)	지전 환	지역난방	-	-	0	+	0
		가스제조		+	0	0	0
	자가소	비, 손실	-,+		-,+ O		0
TFC							
소비	(산업, 기	가정, 상업,공공)	+		+		+

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

에너지 IO, 온실가스 IO 생성

- ▶ Step 1: 순 발열량 에너지 Balance 구축
 - ▶ 순 발열량 Balance = 전환계수 × 총 발열량 Balance
- ▶ Step 2: 에너지원별 '총수요' 파악 (순 에너지 Balance 사용)
 - ▶ 총수요(E_i)= 1차에너지 소비 혹은 최종에너지소비+전환손실
- ▶ Step 3: 에너지 '총수요'를 산업연관표에 할당 (에너지 IO 생성)
 - ▶ 할당 $(E_{i,(j,f)})$ = 총수요 (E_i) × $\frac{IO_{i,(j,f)}}{\sum_{jIO_{i,f}}($ 중간재수요 $)+\sum_{fIO_{i,f}}($ 최종수요)
- ▶ Step 4: 온실가스 계산 = 배출계수×할당 에너지 (온실가스 IO 생성)
 - ▶ 온실가스 (G_{ij}) = 배출계수 (θ_i) × 할당 에너지 (E_{ij})

차례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Step 1: 순 발열량 에너지 Balance 구축

- 해운, 항만 국제운송 에너지는 분석에서 제외: 국제운송 발생 배출량을 제외하는 집계방식 반영
 - ▶ 해운: 모든 해운 최종에너지 소비는 0으로 대체
 - 항공: 항공 최종에너지 소비 중 28.7%는 국제운송으로 간주하여 집계에서 제외¹
- 2. 기본 공식 (i:에너지원)

순 발열량
$$(E_i)$$
 = 총 발열량 (E_i^*) × $\frac{\mathsf{d} \mathbf{n}$ 환산계수 $($ 순발열량기준 $)_i$ \mathbf{d} 대한산계수 $($ 총발열량기준 $)_i$

- ▶ 석유환산계수: 2010에너지통계연보
- 3. Wax, Asphalt, Solvent 는 배출량을 산정하지 않아서 순발열량을 0으로 가주
- 4. 기타제품(석유)은 석유환산계수가 존재하지 않아서 전환계수를 구할 수 없음→ 0.93953으로 대치

¹²⁰⁰⁷년 대한항공 영업보고서

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Step 2: 에너지 원별 총수요 파악-(1) 기본공식

```
총수요 = 최종에너지소비
                  - {발전 \times I(발전 \leq 0) + 지역난방 \times I(지역난방 \leq 0)
                      +가스제조 \times I(가스제조 < 0)
                      +자가소비 및 손실 \times I(자가소비 및 손실 < 0)}
                  - (수출+국제벙커링+재고증감)
= 최종에너지소비 - 전화손실 - (수출 + 국제벙커링 + 재고증감)
= \begin{cases} 1차에너지공급 - (수출 + 국제벙커링 + 재고증감) & (Not 도시가스, 전력, 열) \\ 전환생성 - (수출 + 국제벙커링 + 재고증감) & (도시가스, 전력, 열) \end{cases}
 수출 및 재고증감 과정에서 발생하는 온실가스는 계상하지 않으므로 수출,
국제벙커링, 재고증감 과정의 에너지 증감도 무시→
수출 = 0,국제벙커링 = 0,재고증감 = 0
      총수요 = \begin{cases} 1차에너지공급 & (for Not 도시가스, 전력, 열) \\ 전환생성 & (for 도시가스, 전력, 열) \end{cases}
```

에너지 총수요 기본공식

			석탄, 석유, 천연가스	도시 가스	전력	열	수력, 원자력, 신재생
(공	생산,수	-입	+				+
급)	수출, -	국제벙커링	-		0		0
	재고, 의	오차	+,-				0
TPES	5 (1차 어	너지)			0		
(전	에너	발전		-	+	+	-
환)	지전 환	지역난방	-	-	0	+	0
	_	가스제조		+	0	0	0
	자가소	비, 손실	-,+		-,+		0
TFC	(최종 어	너지 소비)					
소비	(산업, 기	't정, 상업,공공)	+		+		+
*총수	누요 기본	본공식			-		

Step 2: 에너지 원별 총수요 파악-(1) 기본공식 활용

- 1. 석탄, 석유, 천연가스: 기본공식
 - ▶ 총수요 = 1차에너지
- 2. 수력, 원자력: 기본공식 × 보정계수
 - ▶ 총수요 = 1차에너지 $\times \frac{860}{2150}$
- 3. 화력 및 자가발전 전력: 기본공식 수력 원자력-신재생 발전
 - ▶ 총수요 = 전환생성 수력총수요 원자력총수요 신재생 발전
- 4. 도시가스: 천연가스 1차에너지 수요를 사용
 - ▶ 산업연관표: 천연가스가 도시가스 원료로만 사용
 - 에너지 밸런스: 천연가스가 발전, 지역난방, 가스제조에 사용
 - 발전, 지역난방에 투입된 천연가스로부터 발생하는 온실가스를 도시가스
 사용 시 발생하는 온실가스에 포함

Step 2: 에너지 원별 총수요 파악-(2) 도시가스

		천연가스	도시가스						
	국내생산	539							
	수입	42384							
(공급)	수출								
(0 日)	국제벙카링								
	재고증감	-1194							
	통계오차	1279							
1차에	너지소비	43008							
	에너지전환	-43008	21081						
	1)발전	-19043	-922						
(전환)	2)지역난방	-847	-1157						
	3)가스제조	-22842	22280						
	자가소비및손	-276	881						
최종에너지소비 21081									

에너지 총수요: 산업-에너지원 match

산업연관표 기본부문	에너지 밸런스 에너지원	산업연관표 기본부문	에너지 밸런스 에너지원
무연탄(26)	무연탄 1차에너지소비	액화석유가스(107)	LPG 1차에너지소비
유연탄(27)	유연탄 1차에너지소비	정제혼합용원료유(108)	
천연가스(29)	천연가스 1차에너지소비	윤활유 및 그리스(109)	
석탄 코크스 및 관련제품(99)		기타 석유정제제품(110)	석유코크, 기타제품 1차에너지소비
연탄(100)		수력(274)	수력 1차에너지소비
나프타(101)	나프타 1차에너지소비	화력(275)	
휘발유(102)	휘발유 1차에너지소비	원자력(276)	원자력 1차에너지소비
제트유(103)	JA-1 1차에너지소비	자카발전(277)	
등유(104)	등유 1차에너지소비	신재생에너지(278)	신재생 및 기타 1차에너지소비
경유(105)	경유 1차에너지소비	도시가스(279)	천연가스 1차에너지 소비
중유(106)	경질중유, 중유, 중질중유 1차에너지소비	증기 및 온수(280)	열에너지 전환부문 생성 에너지

Step 2: 에너지 원별 총수요 파악: 에너지 Balance에 해당 항목이 부재한 경우

- 1. 연탄: 가정부문 소비 무연탄
- 2. 석탄코크스및 관련제품: 유연탄 중 발전으로 전환되지 않은 양을 기준으로 재구성
- 3. 정제혼합용원료유,윤활유 및 그리스: 윤활기유 1차에너지 소비를 산업연관표를 사용하여 분할
- 4. 화력발전, 자가발전: '화력 및 자가발전 총수요'를 산업연관표를 사용하여 분할

Step 2: 에너지 원별 총수요 파악-(3-1) 연탄, 기타석탄제품

- ▶ 연탄: 에너지 Balance 상의 무연탄 국내탄 항목은 실제 연탄과는 관계 희박
 - ▶ 연탄은 발전용으로 직접 사용되지 않음
 - ▶ 무연탄 국내탄 최종에너지수요 중 가계수요 에너지를 연탄 에너지 총수요로 사용
- ▶ 기타석탄제품: 에너지 Balance 상에는 기타석탄제품이 없지만 IO 에는 존재(코크스)
 - ▶ 기타석탄제품 총수요: 발전에 투입되지 않은 유연탄(유연탄 잔여분) 중 기타석탄제품에 투입된 양

기타석탄제품 총수요

- = $\{$ 유연탄 1차에너지수요 유연탄 발전 전환량 $\times I($ 유연탄 발전 전환량 $>0)\}$ IO 총거래표 기타석탄제품 투입 유연탄(금액)
- NO 총거래표 유연탄 총수요액-IO 총거래표 발전 투입 유연탄(금액)

총수요액 = 중간수요액($\Sigma_i IO_{i,j}$) + 가계최종수요액($Household_i$)

Step 2: 에너지 원별 총수요 파악-(3-2) 정제혼합용원료유, 윤활유 및 그리스

에너지 Balance 상 윤활기유 1차에너지 소비를 산업연관표를 이용하여 분할

- 1. 정제혼합용원료유
- = 윤활기유 1차에너지
- IO 총거래표 정제혼합용원료유 총수요액
- ^ IO 총거래표 정제혼합용원료유 총수요액 + IO 총거래표 윤활유 및 그리스 총수요액
 - 2. 윤활유 및 그리스
- = 윤활기유 1차에너지
- IO 총거래표 윤활유 및 그리 총수요액
- × IO 총거래표 정제혼합용원료유 총수요액 + IO 총거래표 윤활유 및 그리스 총수요액

Step 2: 에너지 원별 총수요 파악-(3-3) 화력발전, 자가발전

에너지 Balance 상 전력 전환부문 생성에너지에서 에서 수력 1차에너지 수요, 원자력 1차에너지 수요, 신재생 발전수요를 제외한 값을 분할

- 1. 화력발전 총수요
- = (전력 전환부문 생성 에너지 수력 1차에너지 수요
 - -원자력 1차 에너지 수요 -신재생 발전 수요)
 - IO 총거래표 화력 총수요액
- × IO 총거래표 화력 총수요액 + IO 총거래표 기타발전 총수요액
 - 2. 자가발전 총수요
- = (전력 전환부문 생성 에너지 수력 1차에너지 수요
 - -원자력 1차 에너지 수요 -신재생 발전 수요)
 - IO 총거래표 자가발전 총수요액
- × IO 총거래표 화력 총수요액 + IO 총거래표 자가발전 총수요액

차 례

Introduction

Process

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Step 3: 에너지 '총수요'를 산업연관표에 할당-(1) 기본공식

산업별 에너지 '총수요'를 산업연관표의 중간수요액/가계수요액을 기준으로 각 산업으로 분할

에너지 중간수요
$$(E_{ij})$$
 = 에너지 총수요 $(E_i) imes rac{IO_{ij}}{\Sigma_j IO_{ij} + Household_i}$ 에너지 가계수요 $(E_{i,h})$ = 에너지 총수요 $(E_i) imes rac{Household_i}{\Sigma_j IO_{ij} + Household_i}$

Step 3: 에너지 '총수요'를 산업연관표에 할당-(2) 우선할당

산업별 에너지 '총수요'의 일부를 산업연관표 중간수요에 직접 할당하고 나머지를 산업연관표 중간수요액 기준으로 분할

에너지 중간수요
$$(E_{ij|j\in J})$$
 $=$ \overline{E}_{ij} (에너지밸런스 특정항목) 에너지 중간수요 $(E_{ij|j\notin J})$ $=$ (에너지 총수요 $(E_i) - \sum_{j\in J} E_{ij})$ $imes rac{IO_{ij|j\notin J}}{\sum_{j}IO_{ij} + Household_i - \sum_{j\in J}IO_{ij}}$ 에너지 가계수요 $(E_{i,h})$ $=$ (에너지 총수요 $(E_i) - \sum_{j\in J} E_{ij})$ $imes rac{Household_h}{\sum_{j}IO_{ij} + Household_i - \sum_{j\in J}IO_{ij}}$

에너지 중간수요 우선할당: 무연탄, 유연탄, 중유, 도시가스

Table: 에너지 우선 할당

산업연관표	에너지 밸런스
연탄(100) 투입 무연탄(26)	가정 소비 무연탄
화력(275) 투입 무연탄(26)	전력 전환 유연탄
화력(275) 투입 유연탄(27)	전력 전환 무연탄
화력(275) 투입 중유(106)	전력 전환 경질중유, 중유, 중질중유
화력(275) 투입 도시가스(279)	전력 전환 도시가스, 천연가스
증기 및 열에너지(280) 투입 도시가스(279)	열에너지 전환 도시가스, 천연가스

- ▶ 에너지밸런스에는 천연가스가 발전/지역난방에 사용되지만 산업연관표에서는 천연가스가 전량 도시가스 생산에만 투입됨.
- 발전/지역난방에 사용되는 천연가스 에너지를 도시가스 에너지에 포함

에너지 중간수요 직접할당

산업연관표

	연탄 (100)	화력 (275)	증기 및 온수공 급(303)
무연 탄 (26)			
유연 탄 (27)			
중유 (106)			
도시 가스 (279)			

에너지밸런스

		마 연 반	유 연 탄	경질중유 중유 중질중유	천 연 가 스	도 시 가 스
전 환	발 전					
	지역난방					
소 비	가 정					

Step 3: 에너지 '총수요'를 산업연관표에 할당-(3) 나프타

- 석유화학제품(111-138)에 투입된 나프타(101): 에너지 밸런스에서 석유화학산업 최종에너지소비에 할당된 나프타 에너지양을 석유화학제품 별 나프타 수요의 비중에 따라 우선할당
- ▶ 나머지 나프타 수요: 석유화학제품 이외의 산업에 투입된 양에 따라 할당

$$E_{ij|j\in J} = \overline{E}($$
정유 및 석유화학산업 나프타 최종에너지소비 $) imes rac{IO_{i,j\in J}}{\Sigma_{j\in J}IO_{i,j}}$
 $E_{ij|j\notin J} = ($ 에너지 총수요 $(E_i) - \sum_{j\in J}E_{ij})$
 $imes rac{IO_{ij|j\notin J}}{\Sigma_{j}IO_{ij} + Household_i - \sum_{j\in J}IO_{ij}}$
 $E_{i,h} = ($ 에너지 총수요 $(E_i) - \sum_{j\in J}E_{ij})$
 $imes rac{Household_h}{\Sigma_{j}IO_{ij} + Household_i - \sum_{j\in J}IO_{ij}}$

Step 3: 에너지 '총수요'를 산업연관표에 할당-(4) 화력 및 자가발전

- ▶ 화력에 우선 할당한 무연탄, 유연탄, 중유, 도시가스, 천연가 에너지를 제외한 나머지 에너지 분할
- 화력 및 자가발전 중간수요/가계수요 항목이 화력 총수요 + 자가발전 총수요에서 차지하는 비중에 따라 분할

$$\begin{array}{rcl} E_{275,j|j\in J} & = & \overline{E}(\mathrm{화력 투입 무연탄, 유연탄, 중유, 도시가스, 천연가스}) \\ E_{ij|i\in(275,277),j\notin J} & = & (E_{275}+E_{277}-\sum_{j\in J}E_{275,j}) \\ & & \times \frac{IO_{ij|i\in(275,277),j\notin J}}{\Sigma_{j}IO_{275,j}+\Sigma_{i\in(275,277)}Household_{i}-\sum_{j\in J}IO_{275,j}} \\ E_{i,h|i\in(275,277),j\notin J} & = & (E_{275}+E_{277}-\sum_{j\in J}E_{275,j}) \\ & & \times \frac{Household_{i|i\in(275,277),j\notin J}}{\Sigma_{j}IO_{275,j}+\Sigma_{i\in(275,277),j\notin J}} \\ & \times \frac{E_{i,h|i\in(275,277),j\notin J}}{\Sigma_{j}IO_{275,j}+\Sigma_{i\in(275,277)}Household_{i}-\sum_{j\in J}IO_{275,j}} \end{array}$$

차 례

Introduction

rocess

Step 1: 순 발열량 에너지 Balance 구축

Step 2: 에너지 원별 총수요 파악

Step 3: 에너지 '총수요'를 산업연관표에 할당

Step 4:온실가스 계산 = 배출계수×할당 에너지

Step 4:온실가스 계산-(1) 기본공식

1. 에너지 중간수요에 배출계수와 몰입률을 적용하여 온실가스 배출량 계산

온실가스 배출량
$$(G_{ij}) = \left\{ egin{array}{l} ext{thin} \exists A \cap (heta_i) imes (1 - Sunk_i) imes E_{ij} \ ext{(나프타, 윤활유)} \ ext{thin} \exists A \cap (heta_i) imes E_{ij} \ ext{(for the rest)} \end{array}
ight.$$

- Sunk_i: 몰입률 = 연료가 아닌 중간재에 포함되는 탄소는 일부 제품에 체화(몰입)되므로 대기중의 온실가스로 전환되지 않음
- 2. 제외항목= 수출, 고정자본형성, 재고, 이중계산
 - 소비과정에서 발생하는 온실가스만 계산: 수출, 고정자본형성, 재고조정에 할당된 에너지는 온실가스로 전환하지 않음
 - 이중계산 방지: 전력 및 열에너지는 사용 시 온실가스가 배출되지 않는다고 가정

배출계수

			탄소배출계수			CO2	
산업연관표	IPCC 분류체계	kg C/GJ	(ton C/toe)	(TJ/10³TON)	탄소 몰입율	배출계수 (ton C/toe) *(44/12)	CO2 배출계수 *(1-몰입률)
무연탄	무연탄	26.8	1.1			4.0333	4.0333
유연탄	원료탄	25.8	1.059			3.8830	3.8830
	연료탄	25.8	1.059			3.8830	3.8830
원유	원유	20	0.829	-		3.0397	3.0397
천연가스	천연액화가스 (NGL)	17.2	0.63	-		2.3100	2.3100
연탄	무연탄	26.8	1.1			4.0333	4.0333
기타석탄제품	BKB & Patent Fuel	(25.80)(a)	1.059			3.8830	3.8830
나프타	납 사	(20.00)(a)	0.829	45.01	0.75	3.0397	0.7599
휘발유	휘발유	18.9	0.783	44.8		2.8710	2.8710
제트유	항공유	19.5	0.808	-		2.9627	2.9627
등유	아	19.6	0.812	44.75		2.9773	2.9773
경유	경 유	20.2	0.837	43.33		3.0690	3.0690
중유	중 유	21.1	0.875	40.19		3.2083	3.2083
액화석유가스	LPG	17.2	0.713	47.31		2.6143	2.6143
윤활유제품	윤활유	(20.00)(a)	0.829	40.19	0.5	3.0397	1.5198
기타석유정제품	Refinery Feedstock	(20.00)(a)	0.829	44.8		3.0397	3.0397
수력							
화력+기타발전							
원자력							
도시가스	LNG(dry)	15.3	0.637			2.3357	2.3357
증기 및 온수공급업							

제외항목: 수출, 고정자본형성, 재고, 이중계산 방지

산업연관표	Other	연탄, 기타석탄	석유류	전력	도시가스	증기 및 온수	소비	고정자본 형성	수출	재고
무연탄		×						X	×	X
유연탄		×						X	×	X
원유			Х					X	×	X
천연가스					Х			Х	×	Х
연탄								Х	×	Х
기타석탄제품								Х	×	Х
석유제품								X	×	X
액화석유가스 (LPG)					X			X	Х	X
전력	×	×	×	X	X	×	×	×	×	X
도시가스								X	×	X
증기 및 온수 공급	Х	×	X	×	X	×	Х	Х	X	Х

GTAP_K_R

1. input

- IO data files: IO_(type)_(price)_(sector)_(year).csv
 - ▶ type: 총거래표(T), 국내표(D), 수입표(M)
 - ▶ price: 생산자가격표(N), 기초가격표(P)
 - ▶ sector: 82 (소분류), 384 (기본부문)
 - ▶ year: 년도
- IO index files: indinex_(sector)_(year).csv
- Energy balance files: EBS(year).csv
- > 총발열량 → 순발열량 전환 factor:Heatconft.csv
- ▶ 배출계수:EF.cov

2. process

- ▶ 자료 준비: Dataload.r, lOimport.r
- Step 1-2. :EnergyIO.r
- Step 3-4. :GHG_fuel.r
- Process CO₂ and Non CO₂:GHG_proc.r

output

- ▶ 모든 결과물을 집적한 Rdata file :IO_E_G2_(year).Rdata
- ▶ 온실가스 IO:GIO_(year).csv, GIO_FD_(year).Rdata

GTAP K R

IO_E_G2_*.Rdata GIO_*.csv GIO_FD_*.csv

감사합니다.