—、TRec

TRec: A Taxi Recommender System for Finding Passengers via Deep Neural Networks

1.方法:

- 1、使用word2vec对轨迹进行表征学习
- 2、基于最大利润
- 3、避免出租车聚集
- 3、使用上海10000出租车2个月真实数据

问题目标:

目前车在网格O,考虑网格**Di的热度**,O到Di的路况以及**Di的平均收入**,并为每个网格生成最终得分以表示选择度。最后,将选择**得分最高的网格Di**并将其推荐给出租车司机

2.框架:

- (1) Offline mining and training
- (2) Online recommendation.
- 1、地图网格划分
- 2、GPS轨迹分割
- 3、通过1,2的信息,得到三类信息:
- 1、接送点
- 2、道路信息
- 3、每个网格的收益
- 4、词嵌入
- 5、降维

最终做三件事:

- (1) The prediction model of passengers,
- (2) The prediction model of road condition,
- (3) The evaluation model of grid earnings.

3.地图分析

绘制了pick-up, drop-off网格划分图, 300*300

4.Embedding

5.预测

we select (taxi id, direction), (taxi id, date, weather) and (taxi id, direction, position) as crossed feature.

6.实验:

dataset:

we choose more than ten thousand taxis in the same company and collect their trips for about 2 months (June and July) in 2017.

再将trips分为两类:

- (1) idle trips
- (2) occupied trips.

Table 1 Embedding on input attributes of passenger prediction

Meta-data	Embedding dimension	Number of classes	
Taxi id	10	6012	
Original grids	10	19,865	
Timestamp	10	240	
Directions	5	9	
Weather	5	3	
Day of week	5	7	

we pick the top 70% of drivers as the experienced ones. And the formula used involves miles/driving time and could evaluate the effectiveness of drivers.

7.performance

Table 2 Performance evaluation for passenger prediction

Model	Accuracy (%)	
Wide & deep	64.1	
MLP	48.2	
DNN	61.3	
XGBoost	23.1	

Table 5 Performace evaluation for road condition prediction

Model	Accuracy (%)
Wide & deep	77.6
DNN	73.2
SVM	71.1
Random forest	72.3

Fig. 12 Average trip length originates from different girds. a Weekday. b Weekend

8.Trec的代码实现:

https://github.com/guangxush/Trec

Requirement

Python 2.7/3.5

Keras 2.x

sklearn

pandas

numpy

Tensorflow

Run

代码运行方式如下:

• 训练过程:

```
python cab_embedding.py train
```

• 测试过程:

```
python cab_embedding.py test
```

测试结果

模型/方 法	Tranin Acc	Dev Acc	备注说明
mlp	0.628	0.000	[512, 256, 128] neurons
XGBoost	0.211	0.000	max_depth: 40, eta: 0.1, silent: 0
RF	0.117	0.000	max_depth: 30, n_estimators: 10,min_samples_split: 2
SVM		0.000	C: 1.0, kernel: rbf, degree: 3

文件组织方式

文件名称	文件描述
data文件夹	存放处理好的训练集数据及测试集数据
logs文件夹	存放训练日志
models文件夹	存放训练好的模型
raw_data文件夹	存放原始16年3、4月份的出租车数据
util文件夹	存放数据预处理的代码
README.md	项目描述