## Exercise sheet 2

- 1. Prove that if  $r: X \to A$  is a retraction map from X to a subspace A, then the induced maps  $r_*: \pi_1(X) \to \pi_1(A)$  is surjective and  $i_*: \pi_1(A) \to \pi_1(X)$ is injective  $(i:A\to X)$  is the inclusion map
- 2. Prove that  $\pi_1(X, x_0)$  is trivial if and only if any two paths having the same end points, are path homotopic.
- 3. Prove that two base point change maps are equal if and only if the fundamental group of the space is abelian.
- 4. Prove that the fundamental groups of  $\mathbb{R}^3$  minus a straight line is isomorphic to the fundamental group of a circle.
- 5. Let  $\mathbb{R}^3_+ = \{(x,y,z) \in \mathbb{R}^3 \mid z \geq 0\}$ . Note that its boundary, i.e. the subspace  $\{(x,y,z) \in \mathbb{R}^3 \mid z=0\}$ , is a copy of  $\mathbb{R}^2$ . Prove that:

  - a) The fundamental group of  $\mathbb{R}^3_+$  is trivial. b) The fundamental group of  $\mathbb{R}^3_+$  minus a straight line is trivial if the line lies on the boundary, and isomorphic to the fundamental group of a circle if it does not.
  - c) The fundamental group of  $\mathbb{R}^3_+$  minus a set A is trivial if A is a subset of the boundary.
- 6. What is the fundamental group of  $\mathbb{R}^n \setminus \{0\}$ , for each n = 1, 2, ...?

## to be updated