### Wirtualne sieci prywatne

- Wprowadzenie
- Szyfrowanie symetryczne i asymetryczne
- Bezpieczne sumy kontrolne
- Typy VPN
- IP Security Architecture (IPSec)
- Internet Key Exchange (IKE)
- Etapy wdrażania VPN

### Wprowadzenie

- Typowa sieć korporacyjna: centrum (central office, CO) + oddziały (branch office)
- Użytkownik zdalny jest to użytkownik nie pracujący w danej chwili w CO
- VPN (wirtualna sieć prywatna) jest to sieć zrealizowana na infrastrukturze publicznie dostępnej, zapewniająca poziom bezpieczeństwa porównywalny z występującym w rzeczywistej prywatnej sieci















# Klasyfikacja ataków Ataki aktywne przerwanie modyfikacja fabrykacja przechwycenie ATAKI PASYWNE uzyskanie treści przesyłanej informacji analiza ruchu w sieci - obserwacja natury komunikacji



## Zabezpieczenia



<u>Cel:</u> zapewnienie ochrony ważnych danych, np. przyszłych cen produktów, ...

### Przykłady:

firewall - blokada dostępu z określonych miejsc, transmisja szyfrowana

 ${\color{red} \underline{\textbf{Uwaga:}}}$  czasami sam fakt istnienia jakiegoś obiektu jest informacją tajną

Ataki na poufność zazwyczaj są atakami pasywnymi, w związku z czym trudno je wykryć - można im tylko (np. poprzez szyfrowanie) zapobiegać.

## Zabezpieczenia



Cel: umożliwienie stwierdzenia źródła komunikatu

### Przykłady:

zabezpieczenie hasłem,

transmisja z szyfrowaniem asymetrycznym

Podstawowym celem tych zabezpieczeń jest uniemożliwienie fabrykacji wiadomości, nieuprawnionemu włączaniu się osób "trzecich".

### Zabezpieczenia



Cel: zapobieganie modyfikacjom np. bazy danych

### Przykłady:

sumy kontrolne,

transmisja z szyfrowaniem ("przy okazji" zapewniamy poufność),

przykład praktyczny: SNMPv2

Ważnym aspektem zabezpieczeń integralności systemu (lub jego części) jest istnienie procedur odzyskiwania integralności (ang. recovery).

"Nieodwołalność" (non-repudiation)

### Wartość informacji

System jest <u>bezwarunkowo bezpieczny</u>, gdy niezależnie od nakładów (czasowych i finansowych) nie można złamać jego zabezpieczeń.

System jest <u>warunkowo bezpieczny</u>, gdy do złamania jego zabezpieczeń potrzeba większych nakładów, niż wynoszą potencjalne korzyści związane z chronioną informacją.

## **Technologie VPN**

## Wprowadzenie



- Przy konstruowaniu wirtualnej sieci prywatnej ważne są trzy aspekty bezpieczeństwa:
  - poufność,
  - spójność danych,
  - autentykacja źródła.
- Inne wymagania odnośnie bezpieczeństwa systemów sieciowych, np. zapewnienie niemożliwości odwołania transakcji też są ważne, ale nie są realizowane za pomocą VPN.

### **Wprowadzenie**



- Podstawowe mechanizmy, wykorzystywane do konstrukcji wirtualnych sieci prywatnych to:
  - tunele (dedykowane połączenia pomiędzy urządzeniami końcowymi),
  - silne szyfrowanie.
- Wirtualne sieci prywatne mogą być zrealizowane na (prawie) każdej warstwie modelu OSI!
  - na pierwszej nie są wirtualne ☺
- Na obecnym etapie połączenia przez VPN uzupełniają lub nawet zastępują linie dzierżawione bądź prywatne sieci Frame Relay lub ATM.

### Dlaczego stosuje się VPN?



- Bo jest taniej:
  - łącza dzierżawione są najdroższym rozwiązaniem,
  - zastąpienie łącza dzierżawionego przez połączenie VPN wykorzystujące publicznie dostępną infrastrukturę może obniżyć koszty utrzymania łącza nawet o 40%
- Bo VPN są bardziej elastyczne od tradycyjnych sieci WAN:
  - można łatwo zmieniać końce połączenia (dziś pracuję w Gdańsku, a jutro w Wąchocku)
  - łatwiej utrzymywać VPN, niż klasyczną sieć WAN (?)



### Podstawowe pojęcia – c.d.

- autentykacja: stwierdzenie, że użytkownik lub urządzenie jest tym, za kogo się podaje
- autoryzacja: proces przyznawania praw dostępu poszczególnym użytkownikom
- centrum autoryzacji (certificate of authority service, CA): instytucja lub usługa wspomagająca bezpieczną komunikację pomiędzy urządzeniami poprzez wystawianie certyfikatów oraz (czasami) generowanie kluczy szyfrowania

### Szyfrowanie symetryczne

- szyfrowanie i deszyfrowanie jest mniej złożone obliczeniowo
- w obydwu przekształceniach wykorzystywany jest ten sam klucz
- problem: jak dystrybuować kopie klucza szyfrowania?



- przykłady szyfrów symetrycznych:
  - historyczne: szyfr Cezara, szyfr Vigenere'a, Playfair, ...
  - współczesne: DES, 3DES, AES, ...
- szyfrowanie symetryczne jest stosowane do przesyłania dużych ilości danych
- w czasie transmisji klucze mogą się zmieniać

# Tradycyjne metody kodowania 1937 Kornel Makuszyński "Szatan z siódmej klasy": • [...] PILNUJCIE DOMU [...] • nakłucia tekstu, • atrament sympatyczny • zaznaczanie Kodak Photo CD: \* 2048x3072 punktów Zalety i wady: (+) tę metodę można wykorzystać do ukrycia faktu istnienia komunikacji (-) raz odkryty schemat jest bezużyteczny



### Szyfrowanie symetryczne

- Data Encryption Standard (DES)
  - wynaleziony w latach 70-tych ubiegłego stulecia
  - oparty na tablicach permutacji, które służą do minimalizacji ilości przenoszonych informacji statystycznych
  - długość klucza: 56 bitów
  - nie jest już tak trudny do złamania, jak kiedyś, ale nadal dość często używany
  - ten sam algorytm służy do szyfrowania i deszyfrowania informacji
- wariant 3DES potrójny DES
  - ten sam algorytm jest stosowany trzykrotnie z tym samym bądź różnymi kluczami

### Szyfrowanie asymetryczne

- zwane jest także szyfrowaniem z kluczem publicznym
  - jeden klucz (prywatny) zazwyczaj służy do szyfrowania, a drugi (publiczny) do deszyfrowania
  - dla danego klucza prywatnego istnieje tylko jeden odpowiadający mu klucz publiczny (i odwrotnie)
- procedury szyfrowania i deszyfrowania są znacznie bardziej złożone obliczeniowo (nawet o kilka rzędów wielkości)
  - są to algorytmy o złożoności wielomianowej, problem tkwi jednak w stopniu wielomianu



### Szyfrowanie asymetryczne

- często bazuje na bardzo dużych liczbach pierwszych (lub przynajmniej względnie pierwszych)
  - szyfry mają przez to mniej możliwych kluczy → klucz musi być dłuższy
  - operacje na bardzo dużych liczbach zajmują stosunkowo dużo czasu
- stosowane jest do przesyłania małych ilości danych (np. podpisy elektroniczne lub klucze szyfrowania symetrycznego)
- przykładem często stosowanego szyfru asymetrycznego jest RSA (Ron Rivest, Adi Shamir, Leonard Adleman)



### Co nam daje szyfrowanie...



- poufność: należy dobrać szyfr na tyle mocny, aby nakłady poniesione na jego złamanie były większe, niż wartość przesyłanych informacji (szyfr jest obliczeniowo (względnie) bezpieczny)
- autentykacja: jeśli możemy odczytać dane za pomocą czyjegoś klucza publicznego i mamy pewność, że istnieje tylko jeden klucz prywatny odpowiadający danemu kluczowi publicznemu, to wiemy, kto nadał dane

### Co nam daje szyfrowanie...



- **spójność danych**: do sprawdzania, czy dane nie zostały zmodyfikowane stosuje się ... sumy kontrolne
  - przykłady algorytmów obliczających tzw. bezpieczne sumy kontrolne: MD5, SHA
- **UWAGA**! Algorytmy szyfrowania są zazwyczaj publicznie znane, nieznane są natomiast ich parametry, czyli **klucze**.

### Bezpieczne sumy kontrolne

 MD5, SHA-1 – funkcje jednokierunkowe obliczające sumy kontrolne o stałej długości na podstawie porcji danych o zmiennej długości oraz (tajnego) klucza



- 1. ponowne obliczenie sumy kontrolnej
- sprawdzenie zgodności z przesłaną wartością

Długość kluczy i danych wyjściowych: MD5: 128 bitów, SHA-1: 160 bitów klucz: alamakota

### Ile czasu zajmie złamanie?

| Rozmiar klucza         | <u>Ilość kluczy</u>                     | 1 klucz/us                   | 1 mln kluczy/us          |  |
|------------------------|-----------------------------------------|------------------------------|--------------------------|--|
| 32 bity                | 2 <sup>32</sup> = 4,3*10 <sup>9</sup>   | 2 <sup>31</sup> us =35,8 min | 2,15 us                  |  |
| 56 bitów (DES)         | 2 <sup>56</sup> = 7,2*10 <sup>16</sup>  | 1142 lata                    | 10,01 godz.              |  |
| 128 bitów              | 2 <sup>128</sup> = 3,4*10 <sup>38</sup> | 5,4*10 <sup>24</sup> lat     | 5,4*10 <sup>18</sup> lat |  |
| 26 znaków (permutacja) | 26!= 4,03*10 <sup>26</sup>              | 6,4*10 <sup>12</sup> lat     | 6,4*10 <sup>6</sup> lat  |  |
|                        |                                         |                              |                          |  |
|                        |                                         |                              |                          |  |
|                        |                                         |                              |                          |  |
|                        |                                         |                              |                          |  |

### Wnioski:

- włamywacz stosujący wyłącznie metodę "brute-force" nie jest w stanie wyżyć ze swojego fachu,
- atak siłowy jest skuteczny niezmiernie rzadko,
- kryptoanalityk musi znaleźć elementy, które przetrwały proces kodowania

### **Z** powrotem do VPN

- Wirtualne sieci prywatne konstruowane są pomiędzy:
  - urządzeniami sieciowymi należącymi do danego przedsiębiorstwa,
  - stacjami roboczymi użytkowników zdalnych (np. klientów)
     a punktami dostępowymi sieci przedsiębiorstwa (połączenia B2B,B2C)
- Tworzenie wirtualnej sieci prywatnej może być zainicjowane przez:
  - klienta: użytkownik zdalny używa odpowiedniego oprogramowania aby dostać się za pomocą sieci publicznej do sieci przedsiębiorstwa,
  - serwer dostępowy: ruch generowany przez użytkownika pracującego w oddziale firmy jest szyfrowany przy wychodzeniu do sieci publicznej bez udziału samego użytkownika
- Za chwilę będzie jaśniej... 🙂

### VPN inicjowany przez klienta



- Dwa pojęcia:
  - intranet:
    - zabezpieczona sieć łącząca oddziały danego przedsiębiorstwa
  - extranet: zabezpieczona sieć łącząca dane przedsiębiorstwo z partnerami
- Technicznie, obydwa typy sieci realizowane są podobnie.

### VPN inicjowany przez klienta





- Dawniej zdalny dostęp do firmy oparty był na posiadaniu odpowiedniej liczby łączy telefonicznych. Użytkownik "wdzwaniał się" do sieci firmy.
- Zastosowanie VPN pozwala na tańsze rozwiązanie użytkownik "wdzwania się" do swojego ISP – dalej transmisja (szyfrowana) przechodzi zabezpieczonym tunelem.

### VPN inicjowany przez serwer dostępowy



- Dawniej połączenie dwóch (lub więcej) oddziałów firmy wymagało posiadania łącza dzierżawionego albo przynajmniej kanału Frame Relay lub ATM. Połączenie z siecią publiczną realizowane było za pomocą osobnej infrastruktury.
- Zastosowanie VPN pozwala na wykorzystanie jednego łącza zarówno w charakterze "wyjścia na świat", jak i końca tunelu.





- Secure/Multipurpose Internet Mail Extensions (S/MIME) jest standardem IETF dla aplikacji VPN
- w zastosowaniach szerokiej skali stosowanie VPN na lub nad warstwą aplikacji jest kłopotliwe, gdyż każda nowa aplikacja wykorzystywana w ramach intra- lub extranetu musi być dostosowana do istniejących mechanizmów
  - a co dopiero, gdy nadejdzie czas wymiany mechanizmów...







- Secure Sockets Layer jest ustandaryzowaną technologią pozwalającą na zapewnienie poufności i integralności danych oraz autentykację źródła dla aplikacji opartych na protokole TCP
  - technologia ta jest często używana w nowoczesnych rozwiązaniach e-commerce
  - ma jednak swoje wady:
    - ograniczona elastyczność,
    - niezbyt łatwe wdrażanie,
    - duży, ale ograniczony zakres stosowania (tylko TCP),
    - szyfrowanie programowe obciąża CPU końcówki.

### Technologie wspomagające tworzenie VPN



- IPSec (RFC 2401) jest zestawem mechanizmów tworzących połączenie punkt-punkt z wykorzystaniem (bezpołączeniowego) protokołu IP
  - zapewnia poufność i sprawdzanie integralności danych oraz autentykację źródła
  - wykorzystuje tzw. Internet Key Exchange (IKE) do negocjacji algorytmów kryptograficznych oraz ich parametrów (kluczy)
- GRE (Generic Routing Encapsulation, RFC 1701, 2784) pozwala na przenoszenie wielu protokołów, tworzy tunele (połączenia punkt-punkt), ale nie zapewnia mechanizmów szyfrowania



- L2TP (Layer 2 Tunnelling Protocol) jest wykorzystywany do tworzenia "wdzwanianych" wieloprotokołowych wirtualnych sieci prywatnych (VPDN)
  - powstał w roku 1999 jako unifikacja L2F (Cisco) oraz PPTP (Microsoft)
  - **uwaga**... nie definiuje mechanizmów szyfrowania (!)
  - w celu zapewnienia wymaganych właściwości sieci musi być stosowany wraz z innymi technologiami

### Technologie wspomagające tworzenie VPN



- wieloprotokołowość na czym to polega?
  - 1. przychodzi pakiet do routera ...
  - 2. ... zostaje opakowany w pakiet IP adresowany do drugiego końca ...
  - 3.  $\dots$  router na drugim końcu tunelu odpakowuje powłoczkę  $\dots$
  - 4. ... i pakiet sam wędruje dalej
- nigdzie nie jest powiedziane, że musi to być pakiet IP!
  - w szczególności może to być nawet ramka np. Frame Relay



- szyfrowanie na warstwie 2:
  - istnieją techniki szyfrowania na warstwie 2, ale ich użyteczność jest kontrowersyjna – nawet adresy IP są szyfrowane (!), co spowalnia routing
  - nie ma szans, aby skonstruować w ten sposób tunel wykorzystujący publiczną sieć WAN

### Technologie wspomagające tworzenie VPN

szyfrowanie transmisji na warstwie 2



- technologie warstwy 2 były dość często stosowane do zabezpieczania pojedynczych połączeń, ale:
  - ciężko (drogo) stosować je na większą skalę,
  - są wrażliwe na ataki typu "man-in-the-middle", bo każde urządzenie warstwy 3 kończy tunel realizowany przy ich wykorzystaniu
    - np. ISP może podsłuchiwać nasz ruch...

# Jak wybrać technologię realizacji VPN

- technologie warstw wyższych niż 3 mają dość dobrze zdefiniowany zakres zastosowań
- wybór technologii warstw 3 i 2 może przebegać według następującego (bardzo prostego) algorytmu:



- unicastowe pakiety IP wystarczy opakować w nagłówek IPSec,
- multicast IP lub inne protokoły np. przed przesłaniem przez sieć IP (w postaci jawnej bądź szyfrowanej) muszą być opakowane np. przez L2TP lub GRE



### Jak działa IPSec?

- IPSec w zależności od trybu pracy może zachowywać oryginalny nagłówek IP lub też dodawać nowy,
- może również zapewniać autentykację (AH authentication header) oraz szyfrowanie przenoszonych danych (ESP - encapsulating security payload)





- tunnel mode: urządzenie końcowe tunelu dodaje nowy nagłówek IP (cały źródłowy pakiet IP zostaje umieszczony w polu danych) → stosowany przez routery lub podobne urządzenia
- transport mode: urządzenie końcowe dokonuje modyfikacji źródłowego pakietu IP, ale zachowuje nagłówek

  → stosowany przez hosty – routery nie muszą obsługiwać IPSec

  → mniejszy narzut związany z przetwarzaniem pakietów

### **Authentication Header**

 Authentication Header (AH) jest protokołem wchodzącym w skład IPSec, który pozwala na autentykację źródła danych, sprawdzenie integralności danych oraz (opcjonalnie) zabezpiecza przed atakami przez powtórzenie





### **Gdzie umieszczany jest AH?**

- W trybie transport jest dodawany tuż za nagłówkiem IP
  - w polu "protokół" nagłówka IP umieszczana jest zarezerwowana dla AH liczba 51, zaś oryginalna wartość tego pola przenoszona jest do pola "next header" AH
  - nie wszystkie pola nagłówka brane są pod uwagę przy obliczaniu sumy kontrolnej (np. TTL zmniejsza się na każdym routerze)



W trybie tunnel jest dodawany tuż za nowym nagłówkiem IP



### **Encapsulating Security Payload**

 Encapsulating Security Payload (ESP) jest protokołem wchodzącym w skład IPSec zapewniającym poufność oraz integralność danych; opcjonalnie także autentykację źródła oraz zabezpieczenie przed atakami przez powtórzenie



- ESP enkapsuluje zabezpieczane dane
- często stosuje się wyłącznie ESP (bez AH)

# Warianty stosowania AH i ESP AH i ESP mogą być stosowane niezależnie mogą nawet być stosowane jednocześnie a mimo to mieć

- mogą być (i czasami są) wykorzystywane kaskadowo...
- typowe warianty to:

różne "końce działania"

- tryb transportowy pomiędzy dwoma hostami
  - zarówno AH, jak i ESP pracują w tym trybie









### Literatura:

- http://www.cisco.com
- <a href="http://cisco.netacad.net">http://cisco.netacad.net</a>
- <a href="http://www.redbooks.ibm.com">http://www.redbooks.ibm.com</a>
- http://www.microsoft.com
- <a href="http://computer.howstuffworks.com">http://computer.howstuffworks.com</a>
- http://www.watchguard.com
- D. Elizabeth, R. Denning, Kryptografia i ochrona danych
- M. Murhammer i in., A Comprehensive Guide to Virtual Private Networks, vol. I-III, <u>www.redbooks.ibm.com</u>

| KONIEC |  |  |
|--------|--|--|
|        |  |  |