

Matematisk formelsamling

stx A-niveau Denne udgave af Matematisk formelsamling stx A-niveau er udgivet af Undervisningsministeriet og gjort tilgængelig på uvm.dk.

Formelsamlingen er udarbejdet i et samarbejde mellem Matematiklærerforeningen og Undervisningsministeriet, Styrelsen for Undervisning og Kvalitet, maj 2018

Kopiering til andet end personlig brug må kun ske efter aftale med Copy-Dan.

ISBN: 978-87-603-3166-4

Forfattere: Gert Schomacker, Jesper Bang-Jensen, Bodil Bruun og Jørgen Dejgaard

feb 2019

Forord:

"Matematisk formelsamling stx A" er udarbejdet til brug for eksaminanderne ved den skriftlige prøve og i undervisningen på stx i matematik på A-niveau.

Formelsamlingen indeholder de emner, der forekommer i læreplanen for matematik på A-niveau på stx inden for både kernestof og supplerende stof.

For overblikkets skyld er medtaget formler for areal og rumfang af en række elementærgeometriske figurer.

Endvidere indeholder formelsamlingen en liste over matematiske standardsymboler.

Hensigten hermed er dels at give eleverne et hurtigt overblik, dels at bidrage til, at undervisere og forfattere af undervisningsmaterialer kan anvende ensartet notation, symbolsprog og terminologi. Listen over matematiske standardsymboler går derfor ud over kernestoffet, men holder sig dog inden for det matematiske univers i gymnasiet og på hf.

En række af formlerne i formelsamlingen er kun anvendelige under visse forudsætninger (fx at nævneren i en brøk er forskellig fra 0). Sådanne forudsætninger er af hensyn til overskueligheden ikke eksplicit nævnt.

Figurerne er medtaget som illustration til formlerne, og den enkelte figur anskueliggør ofte ét blandt flere mulige tilfælde.

Betydningen af de størrelser, der indgår i formlerne, er ikke altid forklaret, men vil dog være det i tilfælde, hvor betydningen ikke følger umiddelbart af skik og brug i den matematiske litteratur.

Birte Iversen

Undervisningsministeriet, Styrelsen for Undervisning og Kvalitet, Kontor for Prøver, Eksamen og Test Maj 2018

Indhold

Procent- og rentesregning	5
Indekstal	5
Proportionalitet	6
Brøkregler	6
Kvadratsætninger	7
Potensregneregler	7
Ensvinklede trekanter	8
Retvinklet trekant	8
Vilkårlig trekant	9
Vektorer i planen	10
Linjer, cirkler og parabler	13
Lineære funktioner	16
Andengradspolynomier	17
Logaritmefunktioner	18
Eksponentielt voksende funktioner	19
Eksponentielt aftagende funktioner	20
Potensfunktioner	21
Trigonometriske funktioner	22
Differentialregning	24
Afledede funktioner	25
Stamfunktion	26
Regneregler for integration	27
Areal og rumfung	28
Differentialligninger	29
Vektorfunktioner	31
Funktioner af to variable	32
Grupperede observationer	35
Ugrupperede observationer	36
Lineær regression	38
Kombinatorik	39
Sandsynlighedsregning	40
Binomialfordelingen	41
Normalfordelingen	43
Pascals trekant	45
Multiplikationstabel	46
Areal og omkreds, rumfang og overflade	47
Matematiske standardsymboler	48
Stikordsregister	54

Procent- og rentesregning

Begyndelsesværdi B Slutværdi S

 $(1) S = B \cdot (1+r)$

Vækstrate r

 $(2) r = \frac{S}{B} - 1$

Procentvis ændring p

(3) $p\% = r \cdot 100\%$

Kapitalformel Startkapital K_0 Rente p% pr. termin Kapital K efter n terminer (4) $K = K_0 \cdot (1+r)^n$, hvor $r = \frac{p}{100}$

Annuitetsopsparing
Terminsindbetaling b
Rentefod r
Antal indbetalinger n
Kapital A efter sidste
indbetaling

 $(5) A = b \cdot \frac{(1+r)^n - 1}{r}$

Annuitetslån
Hovedstol G
Rentefod r
Antal terminsydelser n
Terminsydelse y

(6) $y = G \cdot \frac{r}{1 - (1 + r)^{-n}}$

Indekstal

Værdi	В	S
Indekstal	$I_{\scriptscriptstyle B}$	$I_{\scriptscriptstyle S}$

(7)
$$I_S = \frac{S}{B} \cdot I_B \qquad S = \frac{I_S}{I_B} \cdot B$$

Proportionalitet

x og y er proportionale Proportionalitetsfaktor k

x og y er omvendt proportionale (8) $y = k \cdot x$ $\frac{y}{x} = k$

 $(9) y = k \cdot \frac{1}{x} x \cdot y = k$

Brøkregler

- $(10) \qquad a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$
- $(11) \qquad \frac{a}{\frac{b}{c}} = \frac{a \cdot c}{b}$
- $(12) \qquad \frac{\frac{a}{b}}{c} = \frac{a}{b \cdot c}$
- (13) $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}$
- (14) $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$

Kvadratsætninger

(15)
$$(a+b)^2 = a^2 + b^2 + 2a \cdot b$$

(16)
$$(a-b)^2 = a^2 + b^2 - 2a \cdot b$$

(17)
$$(a+b)(a-b) = a^2 - b^2$$

Potensregneregler

$$(18) a^r \cdot a^s = a^{r+s}$$

$$(19) \qquad \frac{a^r}{a^s} = a^{r-s}$$

$$(20) \qquad (a^r)^s = a^{r \cdot s}$$

$$(21) \qquad (a \cdot b)^r = a^r \cdot b^r$$

$$(22) \qquad \left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

(23)
$$a^0 = 1$$

$$(24) \qquad a^{-r} = \frac{1}{a^r}$$

(25)
$$a^{-1} = \frac{1}{a}$$

$$(26) \qquad \sqrt[r]{a} = a^{\frac{1}{r}}$$

$$(27) \qquad \sqrt[s]{a^r} = a^{\frac{r}{s}}$$

$$(28) \qquad \sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$

(29)
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

$$(30) \qquad \sqrt{a} = a^{\frac{1}{2}}$$

Ensvinklede trekanter

(31)
$$\frac{a_1}{a} = \frac{b_1}{b} = \frac{c_1}{c} = k$$

$$a_1 = k \cdot a$$

(32)
$$a_{1} = k \cdot a$$
$$b_{1} = k \cdot b$$
$$c_{1} = k \cdot c$$

Retvinklet trekant

Pythagoras' sætning

$$(33) c^2 = a^2 + b^2$$

cosinus

(34)
$$\cos(A) = \frac{b}{c}$$

sinus

$$(35) \qquad \sin(A) = \frac{a}{c}$$

tangens

$$(36) \qquad \tan(A) = \frac{a}{b}$$

Vilkårlig trekant

Trekantens vinkelsum

(37)
$$A + B + C = 180^{\circ}$$

Trekantens areal T

$$(38) T = \frac{1}{2}h \cdot g$$

cosinusrelation

(39)
$$c^2 = a^2 + b^2 - 2a \cdot b \cdot \cos(C)$$

sinusrelation

(40)
$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

Trekantens areal T

(41)
$$T = \frac{1}{2}a \cdot b \cdot \sin(C)$$

Vektorer i planen

Koordinatsættet for vektor \vec{a} , hvor $|\vec{i}| = |\vec{j}| = 1$

(42)
$$\vec{a} = a_1 \cdot \vec{i} + a_2 \cdot \vec{j} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Enhedsvektor

$$(43) \qquad \vec{e} = \begin{pmatrix} \cos(v) \\ \sin(v) \end{pmatrix}$$

Enhedsvektor \vec{e} ensrettet med \vec{a}

$$(44) \qquad \vec{e} = \frac{\vec{a}}{|\vec{a}|}$$

Længden af vektor \vec{a}

(45)
$$|\vec{a}| = \begin{vmatrix} a_1 \\ a_2 \end{vmatrix} = \sqrt{a_1^2 + a_2^2}$$

Multiplikation af vektor \vec{a} med tallet k

(46)
$$k \cdot \vec{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \end{pmatrix}$$

Summen af to vektorer

(47)
$$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$

Differensen mellem to vektorer

(48)
$$\vec{a} - \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} - \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \end{pmatrix}$$

Koordinatsættet for vektor \overrightarrow{AB}

$$(49) \qquad \overrightarrow{AB} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix}$$

Skalarproduktet (prikproduktet) af \vec{a} og \vec{b}

$$(50) \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$$

(51)
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(v)$$

(52)
$$\cos(v) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Ortogonale vektorer

(53)
$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$

Kvadratet på en vektor

(54)
$$\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2$$

Projektionen af \vec{b} på \vec{a}

$$(55) \qquad \vec{b}_a = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a}$$

Længden af projektionen

$$(56) \qquad |\vec{b}_a| = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{a}|}$$

Tværvektoren til \vec{a}

(57)
$$\hat{\vec{a}} = \begin{pmatrix} \hat{a}_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix}$$

$$\vec{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \qquad \vec{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

Determinanten for vektorparret (\vec{a}, \vec{b})

(58)
$$\det(\vec{a}, \vec{b}) = \hat{\vec{a}} \cdot \vec{b} = a_1 b_2 - a_2 b_1$$
$$= \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

(59)
$$\det(\vec{a}, \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cdot \sin(v)$$

Parallelle vektorer

Arealet af det parallelogram, som udspændes af \vec{a} og \vec{b}

 $A = |\det(\vec{a}, \vec{b})|$ (61)

Linjer, cirkler og parabler

Ligning for linjen l gennem Q(0,b) med hældningskoefficient a

$$(62) y = a \cdot x + b$$

Hældningskoefficient (stigningstal) a for linjen l gennem $A(x_1, y_1)$ og $B(x_2, y_2)$

(63)
$$a = \frac{y_2 - y_1}{x_2 - x_1}$$

Skæring med y-aksen

$$(64) b = y_1 - a \cdot x_1$$

Ligning for linjen l gennem $A(x_1, y_1)$ med hældningskoefficient a

(65)
$$y = a \cdot (x - x_1) + y_1$$

Hældningsvinklen v er vinklen fra førsteaksen til l regnet med fortegn

$$(66) a = \tan(v)$$

Ligning for linjen l gennem P_0 med normalvektor

(67)
$$a \cdot (x - x_0) + b \cdot (y - y_0) = 0$$

$$\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$$

Parameter fremstilling for linjen l gennem P_0 med

retningsvektor
$$\vec{r} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$

Afstand |AB| mellem to punkter $A(x_1, y_1)$ og $B(x_2, y_2)$

Midtpunkt M for linjestykke AB

Afstand dist(P,l) fra punktet $P(x_1, y_1)$ til linjen l med ligningen $y = a \cdot x + b$

(71)
$$\operatorname{dist}(P, l) = \frac{|a \cdot x_1 + b - y_1|}{\sqrt{a^2 + 1}}$$

Afstand dist(P,l) fra punktet $P(x_1, y_1)$ til linjen l med ligningen $a \cdot x + b \cdot y + c = 0$

Ligning for cirkel med centrum i C(a,b) og radius r

(73)
$$(x-a)^2 + (y-b)^2 = r^2$$

Ligning for parabel med symmetriakse parallel med andenaksen

(74)
$$y = a \cdot x^2 + b \cdot x + c$$
$$= a \cdot (x - h)^2 + k$$

Toppunkt T

(75)
$$T(h,k) = T\left(\frac{-b}{2a}, \frac{-d}{4a}\right),$$
hvor $d = b^2 - 4ac$

Skæringspunkter S_1 og S_2 med førsteaksen

(76)
$$S_1\left(\frac{-b-\sqrt{d}}{2a},0\right), S_2\left(\frac{-b+\sqrt{d}}{2a},0\right)$$

Lineære funktioner

 $\label{eq:formula} For stegrad spolynomium, \\ line ar funktion f$

 $(77) f(x) = a \cdot x + b$

Hældningskoefficienten a (stigningstallet) ud fra to punkter på grafen (x_1, y_1) og (x_2, y_2)

 $(78) a = \frac{y_2 - y_2}{x_2 - x_2}$

Skæring med *y*-aksen

 $(79) b = y_1 - a \cdot x_1$

Andengradspolynomier

Andengradspolynomium p med nulpunkter (rødder) x_1 og x_2

(80)
$$p(x) = a \cdot x^2 + b \cdot x + c$$

= $a \cdot (x - x_1) \cdot (x - x_2)$

Nulpunkter (rødder)

(81)
$$x_1 = \frac{-b - \sqrt{d}}{2a}, x_2 = \frac{-b + \sqrt{d}}{2a},$$

hvor $d = b^2 - 4ac$

Toppunkt T

(82)
$$T\left(\frac{-b}{2a}, \frac{-d}{4a}\right)$$

Logaritmefunktioner

Grafen for den naturlige logaritmefunktion

(83)
$$ln(x) \rightarrow -\infty$$
 for $x \rightarrow 0$

(84)
$$\ln(x) \to \infty$$
 for $x \to \infty$

(85)
$$y = \ln(x) \Leftrightarrow x = e^y$$

(86)
$$ln(e) = 1$$

(87)
$$\ln(a \cdot b) = \ln(a) + \ln(b)$$

(88)
$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

(89)
$$\ln(a^r) = r \cdot \ln(a)$$

Grafen for logaritmefunktionen med grundtal 10

(90)
$$\log(x) \to -\infty$$
 for $x \to 0$

(91)
$$\log(x) \to \infty$$
 for $x \to \infty$

(92)
$$y = \log(x) \Leftrightarrow x = 10^y$$

(93)
$$\log(10) = 1$$

(94)
$$\log(a \cdot b) = \log(a) + \log(b)$$

(95)
$$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$$

(96)
$$\log(a^r) = r \cdot \log(a)$$

Eksponentielt voksende funktioner

Grafen for en eksponentielt voksende funktion f a > 1 vækstraten r > 0

vækstraten
$$r > 0$$

 $k > 0$

(97)
$$f(x) = b \cdot a^{x}$$
$$= b \cdot (1+r)^{x}$$
$$= b \cdot e^{k \cdot x}, \text{ hvor } k = \ln(a)$$

(98)
$$f(x) \rightarrow \infty$$
 for $x \rightarrow \infty$

(99)
$$f(x) \rightarrow 0$$
 for $x \rightarrow -\infty$

Fremskrivningsfaktoren a ud fra to punkter på grafen (x_1, y_1) og (x_2, y_2)

Skæring med y-aksen

(101) $b = \frac{y_1}{a^{x_1}}$

Fordoblingskonstanten T_2

$$(102) T_2 = x_2 - x_1$$

(103)
$$T_2 = \frac{\log(2)}{\log(a)} = \frac{\ln(2)}{\ln(a)} = \frac{\ln(2)}{k}$$

Eksponentielt aftagende funktioner

Grafen for en eksponentielt aftagende funktion f 0 < a < 1 vækstraten r < 0 k < 0

(104)
$$f(x) = b \cdot a^{x}$$
$$= b \cdot (1+r)^{x}$$
$$= b \cdot e^{k \cdot x}, \text{ hvor } k = \ln(a)$$

(105) $f(x) \rightarrow 0$ for $x \rightarrow \infty$

(106)
$$f(x) \rightarrow \infty$$
 for $x \rightarrow -\infty$

Fremskrivningsfaktoren a ud fra to punkter på grafen (x_1, y_1) og (x_2, y_2)

 (x_1, y_1) og (x_2, y_2)

(107)
$$a = \sqrt[x_2 - x_1]{\frac{y_2}{y_1}} = \left(\frac{y_2}{y_1}\right)^{\frac{1}{x_2 - x_1}}$$

Skæring med *y*-aksen

Halveringskonstanten $T_{\frac{1}{2}}$

$$(109) T_{\frac{1}{2}} = x_2 - x_1$$

(110)
$$T_{\frac{1}{2}} = \frac{\log(\frac{1}{2})}{\log(a)} = \frac{\ln(\frac{1}{2})}{\ln(a)} = \frac{\ln(\frac{1}{2})}{k}$$

Potensfunktioner

Potensfunktion

Grafer for $f(x) = x^a$

Bestemmelse af tallet a ud fra to punkter på grafen (x_1, y_1) og (x_2, y_2)

(112)
$$a = \frac{\log(y_2) - \log(y_1)}{\log(x_2) - \log(x_1)} = \frac{\ln(y_2) - \ln(y_1)}{\ln(x_2) - \ln(x_1)}$$

$$(113) b = \frac{y_1}{x_1^a}$$

 $(111) f(x) = b \cdot x^a$

Når x ganges med tallet $1+r_x$, så ganges f(x) med tallet $1+r_y$

$$(114) \quad 1 + r_y = (1 + r_x)^a$$

Når x ganges med tallet k, så ganges f(x) med tallet k^a

$$(115) f(k \cdot x) = k^a \cdot f(x)$$

Trigonometriske funktioner

Gradtal *v* omsat til radiantal *x*

(116)
$$x = \frac{v}{360} \cdot 2\pi$$
 radian

Radiantal x omsat til gradtal v

$$(117) \quad v = \frac{x}{2\pi} \cdot 360 \quad \text{grader}$$

Definition af cos(x) og sin(x)

(118)
$$\cos^2(x) + \sin^2(x) = 1$$

Grafen for cosinus

$$(120) \quad \cos(-x) = \cos(x)$$

$$(121) \quad \cos(\pi - x) = -\cos(x)$$

Grafen for sinus

$$(122) \quad \sin(x+2\pi) = \sin(x)$$

$$(123) \quad \sin(-x) = -\sin(x)$$

$$(124) \quad \sin(\pi - x) = \sin(x)$$

Definition af tangens

(125)
$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

(126)

Udvalgte funktionsværdier

grader	0°	30°	45°	60°	90°
radiantal	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_

 ${\it Harmonisk svingning} f$

Graf for harmonisk svingning f med amplitude A og periode (svingningstid) T

(128)
$$T = t_2 - t_1 = \frac{2\pi}{\omega}$$

Differentialregning

Differentialkvotienten $f'(x_0)$ for funktionen f i tallet x_0

(129)
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Ligning for tangenten t til grafen for f i $P(x_0, f(x_0))$

(130)
$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

eller
 $y = a \cdot x + b$,
hvor $a = f'(x_0)$ og $b = y_0 - a \cdot x_0$

Regneregler for differentiation

$$(131) \quad (k \cdot f(x))' = k \cdot f'(x)$$

(132)
$$(f(x) + g(x))' = f'(x) + g'(x)$$

(133)
$$(f(x)-g(x))' = f'(x)-g'(x)$$

(134)
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$(135) \quad (f(a \cdot x + b))' = a \cdot f'(a \cdot x + b)$$

(136)
$$(f(g(x))' = f'(g(x)) \cdot g'(x)$$

Afledede funktioner

Funktion	Afledet funktion
y = f(x)	$y'=f'(x)=\frac{dy}{dx}=\frac{d}{dx}(f(x))$

Lineær funktion (137)
$$a \cdot x + b$$
 a (138) k 0

Logaritmefunktion (139) $\ln(x)$ $\frac{1}{x} = x^{-1}$

Eksponentialfunktioner (140)
$$e^x$$
 e^x $k \cdot e^{kx}$ (141) a^x $a^x \cdot \ln(a)$

Potensfunktioner (143)
$$x^{a}$$
 $a \cdot x^{a-1}$
$$(144) \quad \frac{1}{x} = x^{-1} \qquad \qquad -\frac{1}{x^{2}} = -x^{-2}$$

$$(145) \quad \sqrt{x} = x^{\frac{1}{2}} \qquad \qquad \frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$$

Trigonometriske funktioner (146)
$$cos(x)$$
 $-sin(x)$ (147) $sin(x)$ $cos(x)$

Stamfunktion

Funktion Stamfunktion $\int f(x) \, dx$ f(x)(148) Konstant funktion a $a \cdot x$ Logaritmefunktion (149) ln(x) $x \cdot \ln(x) - x$ Eksponentialfunktioner e^x (150) e^x $\frac{1}{k}e^{kx}$ e^{kx} (151) a^{x} (152) $\frac{1}{a+1}x^{a+1}$ x^a Potensfunktioner (153) $\frac{1}{x} = x^{-1}$ $\ln |x|$ (154) $\sqrt{x} = x^{\frac{1}{2}}$ $\frac{2}{3}x\sqrt{x} = \frac{2}{3}x^{\frac{3}{2}}$ (155)

(156)

(157)

 $\cos(x)$

sin(x)

sin(x)

 $-\cos(x)$

Trigonometriske funktioner

Regneregler for integration

(158)
$$\int f(x) dx = F(x) + k,$$
hvor $F(x)$ er en stamfunktion til $f(x)$

(159)
$$\int k \cdot f(x) \, dx = k \cdot \int f(x) \, dx$$

(160)
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

(161)
$$\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$$

Integration ved substitution

(162)
$$\int f(g(x)) \cdot g'(x) dx = \int f(t) dt, \text{ hvor } t = g(x)$$

Bestemt integral

(163)
$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a),$$

hvor F(x) er en stamfunktion til f(x)

(164)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

(165)
$$\int_a^b k \cdot f(x) \, dx = k \cdot \int_a^b f(x) \, dx$$

(166)
$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

(167)
$$\int_{a}^{b} (f(x) - g(x)) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

Integration ved substitution

(168)
$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(t) dt = [F(t)]_{g(a)}^{g(b)}$$
$$= F(g(b)) - F(g(a)),$$

hvor F(x) er en stamfunktion til f(x)

Areal og rumfang

Arealet *A* af det markerede område

Arealet *A* af det markerede område

Kurvelængden L af den markerede del af grafen

Rumfanget V af omdrejningslegemet

$$(169) \qquad A = \int_a^b f(x) \, dx$$

(170)
$$A = \int_{a}^{b} (f(x) - g(x)) dx$$

(171)
$$L = \int_{a}^{b} \sqrt{1 + f'(x)^{2}} \, dx$$

(172)
$$V = \pi \int_{a}^{b} f(x)^{2} dx$$

Rumfang V af hult omdrejningslegeme

(173)
$$V = \pi \int_{a}^{b} (f(x)^{2} - g(x)^{2}) dx$$

Differentialligninger

Ligning

Løsning

$$(174) \quad y' = h(x)$$

$$(174) \quad y' = h(x) \qquad \qquad y = \int h(x) \, dx$$

$$(175) \quad y' = h(x) \cdot g(y)$$

(175)
$$y' = h(x) \cdot g(y) \qquad \int \frac{1}{g(y)} dy = \int h(x) dx$$

$$(176) \quad y' = k \cdot y \qquad \qquad y = c \cdot e^{kx}$$

$$y = c \cdot e^{kx}$$

$$(177) y' = b - a \cdot y y = \frac{b}{a} + c \cdot e^{-ax}$$

$$y = \frac{b}{a} + c \cdot e^{-a}$$

(178)
$$y' = y \cdot (b - a \cdot y)$$
 $y = \frac{\frac{b}{a}}{1 + c \cdot e^{-bx}}$

$$y = \frac{\frac{b}{a}}{1 + c \cdot e^{-bx}}$$

(179)
$$y' = a \cdot y \cdot (M - y)$$
 $y = \frac{M}{1 + c \cdot e^{-aMx}}$

$$y = \frac{M}{1 + c \cdot e^{-aMx}}$$

$$(180) \quad y' + a(x) \cdot y = b(x)$$

(180)
$$y' + a(x) \cdot y = b(x)$$
 $y = e^{-A(x)} \int b(x) \cdot e^{A(x)} dx + c \cdot e^{-A(x)}$,

hvor A(x) er stamfunktion til a(x)

Linjeelement (181) (x_0, y_0, y_0')

Hældningsfelt, Linjeelementer (182)

Løsningskurve

(183)

Vektorfunktioner

Vektorfunktion med koordinatfunktioner x(t) og y(t)

(184)
$$\vec{s}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

Hastighedsfunktion

(185)
$$\vec{v}(t) = \vec{s}'(t)$$

Accelerationsfunktion

(186)
$$\vec{a}(t) = \vec{v}'(t) = \vec{s}''(t)$$

Parameterfremstilling for banekurven, x(t) og y(t) er koordinatfunktioner

Retningsvektor \vec{v} for tangenten i punktet P_0 svarende til parameterværdien t_0

(188)
$$\vec{v}(t_0) = \vec{s}'(t_0) = \begin{pmatrix} x'(t_0) \\ y'(t_0) \end{pmatrix}$$

Parameter fremstilling for den rette linje l gennem $P_0(x_0, y_0)$

med retningsvektor $\vec{r} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$

Parameter fremstillingen for en cirkel med centrum C(a,b) og radius r

Funktioner af to variable

Grafen for en funktion af to variable

(191) z = f(x, y)

Snitkurve for *f* i henholdsvis *x*-retningen og *y*-retningen

(192) z = g(x) = f(x, y), hvor y holdes fast (blå kurve)

z = h(y) = f(x, y),

hvor *x* holdes fast (rød kurve)

Niveaukurve for f i xy-plan

$$(193) \quad f(x,y) = k$$

De partielle afledede af f(x, y) mht. x og y

(194)
$$f_x'(x,y) = \frac{\partial}{\partial x} (f(x,y))$$

$$f_y'(x,y) = \frac{\partial}{\partial y}(f(x,y))$$

Gradienten for f

(195)
$$\nabla f(x,y) = \begin{pmatrix} f_x'(x,y) \\ f_y'(x,y) \end{pmatrix}$$

Tangentplanen i punktet $P_0(x_0, y_0, z_0)$

(196)
$$z = z_0 + p \cdot (x - x_0) + q \cdot (y - y_0),$$
hvor
$$p = f'_x(x_0, y_0) \text{ og } q = f'_y(x_0, y_0)$$

Stationært punkt
$$P_0(x_0, y_0, z_0)$$
 for f

(197)
$$\nabla f(x_0, y_0) = \vec{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$f'_x(x_0, y_0) = 0 \text{ og } f'_y(x_0, y_0) = 0$$

Arten af stationære punkter for f, hvor $r = f''_{xx}(x_0, y_0)$ $s = f''_{xy}(x_0, y_0) = f''_{yx}(x_0, y_0)$ og $t = f'''_{yy}(x_0, y_0)$

Lokalt maksimum i $P_0(x_0, y_0, z_0)$

Lokalt minimum i $Q_0(x_0, y_0, z_0)$

$$(198) \quad r \cdot t - s^2 > 0 \text{ og } r < 0$$

 $(199) \quad r \cdot t - s^2 > 0 \text{ og } r > 0$

Saddelpunkt i $P_0(x_0, y_0, z_0)$

 $(200) r \cdot t - s^2 < 0$

Arten ubestemt

 $(201) \qquad r \cdot t - s^2 = 0$

Grupperede observationer

10%

Histogram

(202) Arealet af en blok svarer til intervallets frekvens

(203) Højden af en blok svarer til intervallets frekvens

Sumkurve

Ugrupperede observationer

(205) Observationerne afsat på en tallinje

(206) *min*: mindste observation

(207) *max*: største observation

Variationsbredde

(208) max - min

(209) m: median (midterste observation, når antallet af observationer er ulige, ellers tallet midt mellem de to midterste observationer)

(210) Q_1 : nedre kvartil (medianen for den nederste halvdel af observationerne)

(211) Q_3 : øvre kvartil (medianen for den øverste halvdel af observationerne)

Kvartilbredde

(212) $Q_3 - Q_1$

(213) Boksplot, kassediagram (boksens højde er uden betydning)

Kvartilsæt

(214) (Q_1, m, Q_3)

Udvidet kvartilsæt

(215) (min, Q_1, m, Q_3, max)

Outlier

(216) Observation, der ligger mere end halvanden kvartilbredde under nedre kvartil eller mere end halvanden kvartilbredde over øvre kvartil

Middeltal \overline{x} for observationssættet x_1, x_2, \dots, x_n (217) $\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$

Spredning for observationssættet $x_1, x_2, ..., x_n$ (218) $\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$ $= \sqrt{\frac{(x_1 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}}$

Venstreskæv fordeling

(219) Middeltal mindre end medianen $\bar{x} < m$

Ikke-skæv fordeling

(220) Middeltal lig med medianen $\bar{x} = m$

Højreskæv fordeling

(221) Middeltal større end medianen $\bar{x} > m$

Estimat af middelværdi og spredning for en population ud fra en stikprøve $x_1, x_2, ..., x_n$

Estimat \bar{x} af middelværdien

(217a)
$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Estimat s for spredningen

(218a)
$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

$$= \sqrt{\frac{(x_1 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n-1}}$$

Lineær regression

Tabel med observerede data

(222)	х	x_1	x_2	x_3	 \mathcal{X}_n
	у	y_1	y_2	y_3	 \mathcal{Y}_n

Regressionslinje

(223)Bedste rette linje, graf for $f(x) = a \cdot x + b$

Punktplot og bedste rette linje

observerede datapunktermodelpunkter

Forskel mellem observeret y-værdi og Residual (225)tilsvarende y-værdi i model

Residualtabel (226)

x	x_1	x_2	 X_n
Residual	$r_1 = y_1 - f(x_1)$	$r_2 = y_2 - f(x_2)$	 $r_n = y_n - f(x_n)$

Residualplot

Residualspredning

(228)
$$s = \sqrt{\frac{r_1^2 + r_2^2 + \dots + r_n^2}{n - 2}}$$

Kombinatorik

Multiplikationsprincip Antal mulige måder at vælge *både* ét element fra N og et element fra M, hvor N består af *n* elementer og *M* består af *m* elementer

(229) $n \cdot m$

Additionsprincip Antal mulige måder at vælge

enten ét element fra N eller ét element fra M, hvor N består af *n* elementer og *M* består af *m* elementer

(230)n+m

Fakultet

 $(231) n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$

Permutationer Antal muligheder for udvælgelse af r elementer blandt *n* elementer, når rækkefølgen har betydning (232) $P(n,r) = \frac{n!}{(n-r)!}$

Kombinationer Antal muligheder for udvælgelse af r elementer blandt *n* elementer, når rækkefølgen ikke har betydning

(233) $K(n,r) = \frac{n!}{r!(n-r)!}$

Sandsynlighedsregning

Sandsynlighedsfelt med udfaldsrum U og sandsynligheder p

(234) (U, p)

Udfaldsrum $U \mod n$ udfald

(235) Mængden af alle udfald $\{u_1, u_2, \dots, u_n\}$

Summen af alle sandsynligheder

(236) $p_1 + p_2 + p_3 + ... + p_n = 1$

Sandsynlighedstabel

(237)	Udfald	u_1	u_2	u_3	 u_n
	Sandsynlighed	p_1	p_2	p_3	 p_{n}

Hændelse $A \mod k$ udfald fra U

(238) Mængde af k udfald fra U

Sandsynlighed for hændelse A

(239) Summen af de *k* udfalds sandsynligheder

Symmetrisk sandsynlighedsfelt

Alle sandsynligheder er lige store

(240)
$$p_1 = p_2 = p_3 = \dots = p_n = \frac{1}{n}$$

Sandsynlighed for udvælgelse af et element fra *A*

(241)
$$P(A) = \frac{k}{n} = \frac{antal\ gunstige}{antal\ mulige}$$

Sandsynlighed ved kombination af uafhængige hændelser A og B (242) $P(\text{både } A \text{ og } B) = P(A) \cdot P(B)$

Sandsynlighed ved kombination af hændelser *A* og *B*, som ikke har noget fælles udfald (243) P(A eller B) = P(A) + P(B)

Sandsynlighedsfordelingstabel for en stokastisk variabel *X*

(244)	x_{i}	x_1	x_2	x_3	 \mathcal{X}_n
	$P(X=x_i)$	p_1	p_2	p_3	 $p_{\scriptscriptstyle n}$

Søjlediagram. Højde af søjle svarer til sandsynlighed af udfald

Middelværdi af en stokastisk variabel X

(246)
$$\mu = E(X) = \sum_{i=1}^{n} x_i \cdot P(X = x_i)$$
$$= x_1 \cdot p_1 + x_2 \cdot p_2 + x_3 \cdot p_3 + \dots + x_n \cdot p_n$$

Varians af en stokastisk variabel X

(247)
$$\operatorname{Var}(X) = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(X = x_i)$$
$$= (x_1 - \mu)^2 \cdot p_1 + \dots + (x_n - \mu)^2 \cdot p_n$$

Spredning af en stokastisk variabel X

(248)
$$\sigma = \sigma(X) = \sqrt{\operatorname{Var}(X)}$$

Binomial for deling

Binomialfordelt stokastisk variabel *X* med antalsparameter *n* og sandsynlighedsparameter *p*

$$(249) \quad X \sim b(n, p)$$

Binomialkoefficient K(n,r)

(250)
$$K(n,r) = {n \choose r} = \frac{n!}{r!(n-r)!}$$

(251)
$$K(n,r) = K(n,n-r)$$

Sandsynlighedsfunktion for binomialfordelt stokastisk variabel X

(252)
$$P(X = r) = K(n,r) \cdot p^r \cdot (1-p)^{n-r}$$

Middelværdi μ

$$(253) \quad \mu = n \cdot p$$

Spredning σ

(254)
$$\sigma = \sqrt{n \cdot p \cdot (1-p)}$$

Statistisk usikkerhed i stikprøver

Antal elementer i stikprøven n

95% konfidensinterval for populationens sandsynlighedsparameter pestimeret ud fra stikprøveandelen \hat{p}

(255)
$$\left[\hat{p} - 2 \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}; \hat{p} + 2 \cdot \sqrt{\frac{\hat{p} \cdot (1 - \hat{p})}{n}}\right]$$

Normalfordelingsapproksimation til binomialfordelt stokastisk variabel X med middelværdi

(256)

$$\mu = n \cdot p$$

og spredning

Normalfordelingen

Standardnormalfordelt stokastisk variabel X

Middelværdi

Spredning

Tæthedsfunktion

Fordelingsfunktion

Sandsynligheden for, at X er større end eller lig med a

Sandsynligheden for, at X er større end eller lig med a og mindre end eller lig med b

Normalfordelt stokastisk variabel X med middelværdi μ og spredning σ

Fordelingsfunktion

Tæthedsfunktion

(257)
$$X \sim N(0,1)$$

(258)
$$\mu = E(X) = 0$$

$$(259) \qquad \sigma = \sigma(X) = 1$$

(260)
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x}$$

(261)
$$\Phi(a) = \int_{-\infty}^{a} \varphi(x) dx$$

(262)
$$\Phi(X \ge a) = 1 - \Phi(a)$$

(263)
$$\Phi(a \le X \le b) = \Phi(b) - \Phi(a)$$

(264)
$$X \sim N(\mu, \sigma)$$

(265)
$$F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

(266)
$$f(x) = \frac{1}{\sqrt{2\pi \cdot \sigma}} e^{-\frac{1}{2} \cdot \left(\frac{x-\mu}{\sigma}\right)^{-1}}$$

Sandsynligheden for, at X er mindre end eller lig med a

(267)
$$P(X \le a) = \int_{-\infty}^{a} f(x) dx$$
$$P(X \le a) = \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Sandsynligheden for, at X er større end eller lig med a

(268)
$$P(X \ge a) = 1 - P(X \le a)$$
$$P(X \ge a) = 1 - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Sandsynligheden for, at X er større end eller lig med a og mindre end eller lig med b

(269)
$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$
$$P(a \le X \le b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

Fraktilplot (270) QQ-plot

K(0,0) K(1,0) K(1,1) K(2,0) K(2,1) K(2,2) K(3,0) K(3,1) K(3,2) K(3,3) K(4,0) K(4,1) K(4,2) K(4,3) K(4,4) K(5,0) K(5,1) K(5,2) K(5,3) K(5,4) K(5,5) K(6,0) K(6,1) K(6,2) K(6,3) K(6,4) K(6,5) K(6,6) K(7,0) K(7,1) K(7,2) K(7,3) K(7,4) K(7,5) K(7,6) K(7,7) K(8,0) K(8,1) K(8,2) K(8,3) K(8,4) K(8,5) K(8,6) K(8,7) K(8,8)

10 10 8 1

Multir	likationstabel	
TILLICIA	1111th Cloth Stub Cl	

(272)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80
5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
6	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
7	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119	126	133	140
8	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144	152	160
9	9	18	27	36	45	54	63	72	81	90	99	108	117	126	135	144	153	162	171	180
10	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
11	11	22	33	44	55	66	77	88	99	110	121	132	143	154	165	176	187	198	209	220
12	12	24	36	48	60	72	84	96	108	120	132	144	156	168	180	192	204	216	228	240
13	13	26	39	52	65	78	91	104	117	130	143	156	169	182	195	208	221	234	247	260
14	14	28	42	56	70	84	98	112	126	140	154	168	182	196	210	224	238	252	266	280
15	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240	255	270	285	300
16	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	256	272	288	304	320
17	17	34	51	68	85	102	119	136	153	170	187	204	221	238	255	272	289	306	323	340
18	18	36	54	72	90	108	126	144	162	180	198	216	234	252	270	288	306	324	342	360
19	19	38	57	76	95	114	133	152	171	190	209	228	247	266	285	304	323	342	361	380
20	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400

Røde tal: Kvadrattal

Areal og omkreds, rumfang og overflade af geometriske figurer

Trekant

- *h* højde
- g grundlinje
- A areal

$A = \frac{1}{2}h \cdot g$

Parallelogram

- h højde
- g grundlinje
- A areal

$A = h \cdot g$

Trapez

- h højde
- a, b parallelle sider
- A areal

$$A = \frac{1}{2}h \cdot (a+b)$$

Cirkel

- r radius
- A areal
- $A = \pi r^2$
- O omkreds
- $O = 2\pi \cdot r$

Kugle

- r radius
- O overflade
- $O = 4\pi \cdot r^2$
- V rumfang
- $V = \frac{4}{3}\pi \cdot r^3$

Cylinder

- h højde
- r grundfladeradius
- O krum overflade
- $O=2\pi r\cdot h$
- V rumfang
- $V = \pi r^2 \cdot h$

 $O = \pi r \cdot s$

Kegle

- *h* højde
- s sidelinje
- r grundfladeradius
- O krum overflade
- V rumfang $V = \frac{1}{3}\pi r^2 \cdot h$

Generaliseret cylinder

- h højde
- s omkreds af grundfladen
- G grundfladen
- O krum overflade $s \cdot h$
- V rumfang $V = h \cdot G$

overflade = $s \cdot h + 2G$

Matematiske standardsymboler

ke standardsymboler		
Betydning	Eksempler, k	oemærkninger m.v.
mængde på listeform	$\{-5,0,3,10\}$,	$\{2,4,6,\},\{,-1,0,1,\}$
mængden af naturlige tal	$\mathbb{N} = \{1, 2, 3,\}$	
mængden af hele tal	$\mathbb{Z} = \{, -2, -1\}$,0,1,2,}
mængden af rationale tal	tal, der kan sk	rives $\frac{p}{q}$, $p \in \mathbb{Z}$, $q \in \mathbb{N}$
mængden af reelle tal		
tilhører / er element i	$2 \in \mathbb{N}$	
lukket interval	$[1;3] = \{x \in \mathbb{R}$	$ 1 \le x \le 3\}$
halvåbent interval	$]1;3] = \{x \in \mathbb{R}$	$2 \mid 1 < x \le 3 $
halvåbent interval	$[1;3] = \{x \in \mathbb{R}$	$2 \mid 1 \leq x < 3 \}$
åbent interval	$]1;3[=\{x\in\mathbb{R}$	$\mathbb{R} \mid 1 < x < 3 \}$
er en ægte delmængde af	$\big\{1,2,3\big\} \subset N$	
fællesmængde	$A \cap B$	$A \bigcirc B$
Foreningsmængde	$A \cup B$	$A \bigcirc B$
mængdedifferens	$A \setminus B$	$A \longrightarrow B$
komplementærmængde	$U \setminus A$	U A
	mængde på listeform mængden af naturlige tal mængden af hele tal mængden af rationale tal mængden af reelle tal tilhører / er element i lukket interval halvåbent interval åbent interval åbent interval er en ægte delmængde af fællesmængde Foreningsmængde mængdedifferens	BetydningEksempler, Rmængde på listeform $\{-5,0,3,10\}$,mængden af naturlige tal $\mathbb{N} = \{1,2,3,\}$ mængden af hele tal $\mathbb{Z} = \{,-2,-1\}$ mængden af rationale taltal, der kan skmængden af reelle taltilhører / er element ilukket interval $[1;3] = \{x \in \mathbb{R}$ halvåbent interval $[1;3] = \{x \in \mathbb{R}$ åbent interval $[1;3] = \{x \in \mathbb{R}$ er en ægte delmængde af $\{1,2,3\} \subset \mathbb{N}$ fællesmængde $A \cap B$ Foreningsmængde $A \cup B$ mængdedifferens $A \setminus B$

Symbol	Betydning	Eksempler, bemærkninger m.v.
Ø	den tomme mængde	
	disjunkte mængder	$A \cap B = \emptyset$ $A \bigcirc B$
×	mængdeprodukt	$[-10;10] \times [-10;10]$
^	"og" i betydningen "både og" (konjunktion)	$x < 2 \land y = 5$
V	"eller" i betydningen "og/eller" (disjunktion)	$x < 2 \lor x > 5$
\Rightarrow	"medfører", "hvis så" (implikation)	$x=2 \Rightarrow x^2=4$
\Leftrightarrow	"ensbetydende", "hvis og kun hvis" (biimplikation)	$x^2 = 4 \Leftrightarrow x = -2 \lor x = 2$
$\sum_{i=1}^{n} a_i$	$a_1 + a_2 + \ldots + a_n$	$\sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2$
n!	n fakultet, n udråbstegn	$n! = 1 \cdot 2 \cdot \dots \cdot n$ for $n \ge 1$ 0! = 1
f(x)	funktionsværdi af x ved funktionen f	$f(x) = \sqrt{2x+1}$, så er $f(4) = 3$.
Dm(f)	${\it definitions mængden } {\it for } f$	
Vm(f)	værdimængden for f	
log(x)	logaritmefunktionen med grundtal 10	$y = \log(x) \iff x = 10^y$
ln(x)	den naturlige logaritme- funktion	$y = \ln(x) \iff x = e^y$
e^x	den naturlige eksponential- funktion	e^x betegnes også $exp(x)$
a^x	eksponentialfunktionen med grundtal a , $a > 0$	$b \cdot a^x$ kaldes undertiden for en eksponentialfunktion eller en eksponentiel udvikling
x^a	potensfunktion	$b \cdot x^a$ kaldes undertiden for en potensfunktion eller en potensudvikling
x	numerisk (absolut) værdi af x	3 =3, -7 =7 x betegnes også abs(x)

Symbol	Betydning	Eksempler, bemærkninger m.v.
sin(x)	sinus	
$\cos(x)$	cosinus	
tan(x)	tangens	$\tan(x) = \frac{\sin(x)}{\cos(x)}$
$\sin^{-1}(y)$	omvendt funktion til sinus	$\sin^{-1}(y) = x \Leftrightarrow \sin(x) = y$ $\sin^{-1}(0,5) = 30^{\circ}$
$\cos^{-1}(y)$	omvendt funktion til cosinus	\sin^{-1} betegnes også Arcsin $\cos^{-1}(y) = x \Leftrightarrow \cos(x) = y$ $\cos^{-1}(0,5) = 60^{\circ}$
		cos ⁻¹ betegnes også Arccos
$\tan^{-1}(y)$	omvendt funktion til tangens	$\tan^{-1}(y) = x \Leftrightarrow \tan(x) = y$ $\tan^{-1}(1) = 45^{\circ}$
		tan ⁻¹ betegnes også Arctan
$\lim_{x\to x_0} f(x)$	grænseværdien af $f(x)$ for x gående mod x_0	$\lim_{x\to 3} \sqrt{x+1} = 2$
$\lim_{x\to\infty}f(x)$	grænseværdien af $f(x)$ for x gående mod ∞	$\lim_{x \to \infty} \frac{1}{x} = 0$
$f(x) \rightarrow a$	f(x) går mod a	$\sqrt{x+1} \to 2 \text{ for } x \to 3$
for $x \to x_0$	for x gående mod x_0	
$f(x) \rightarrow a$ for $x \rightarrow \infty$	$f(x)$ går mod a for x gående mod ∞	$e^{-x} \to 0$ for $x \to \infty$
Δx	x-tilvækst	$\Delta x = x - x_0$
$\Delta y, \Delta f$	funktionstilvækst for $y = f(x)$	$\Delta y = \Delta f = f(x) - f(x_0)$
$\frac{\Delta y}{\Delta x}, \frac{\Delta f}{\Delta x}$	differenskvotient for $y = f(x)$	$\frac{\Delta y}{\Delta x} = \frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$
$f'(x_0)$	differentialkvotienten for $y = f(x)$ i x_0	$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$
		$= \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

Symbol	Betydning	Eksempler, bemærkninger m.v.
f'	afledet funktion af $y = f(x)$	betegnes $f'(x)$, y' , $\frac{d}{dx}(f(x))$,
$f^{(n)}$	den n 'te afledede funktion af $y = f(x)$	$f^{(2)}(x)$ skrives ofte $f''(x)$, y'' eller $\frac{d^2y}{dx^2}$
AB	linjestykket AB	
AB	længden af linjestykket AB	
\widehat{AB}	cirkelbuen \widehat{AB}	
$ \widehat{AB} $	længden af cirkelbuen \widehat{AB}	
$\vec{a}, \overrightarrow{AB}$	vektor	
$ \overrightarrow{a} , \overrightarrow{AB} $	længden af vektoren	
$\hat{\vec{a}}$	tværvektor	betegnelsen \hat{a} kan også anvendes
$\vec{a}\cdot\vec{b}$	skalarprodukt, prikprodukt	betegnelsen $\vec{a} \cdot \vec{b}$ benyttes også
$egin{array}{c c} \vec{a} \cdot b & & & \\ a_1 & b_1 & & \\ a_2 & b_2 & & \\ \end{array}$	determinanten for vektor- parret (\vec{a}, \vec{b})	betegnelsen $\det(\vec{a}, \vec{b})$ benyttes også
Τ	"er vinkelret på"	$l \perp m$ læses også " l og m er ortogonale"
$\angle A$	vinkel A	$\angle A = 110^{\circ} \text{ eller } A = 110^{\circ}$
∠ABD	vinkel B i trekant ABD	A D
$\angle(\vec{a},\vec{b})$	vinklen v mellem \vec{a} og \vec{b} , hvor $0^{\circ} \le v \le 180^{\circ}$	\vec{a} \vec{b}

vinklen fra \vec{a} til \vec{b}

retvinklet trekant

midtnormalen *n* for linjestykket *AB*

 h_b højden fra B på siden b eller dens forlængelse

 m_b medianen fra B på siden b

 v_B vinkelhalveringslinjen for vinkel B

trekant *ABC*'s omskrevne cirkel

trekant *ABC*'s indskrevne cirkel

Stikordsregister

A	accelerationsfunktion	31	E	eksponentiel funktion	
	additionsprincip	39		- aftagende	20
	afledet funktion	25, 51		- voksende	19
	afstand mellem			enhedsvektor	10
	- punkt og linje	14		ensvinklede trekanter	8
	- to punkter	14		exceptionelle udfald	42
	amplitude	23			
	andengradspolynomium	17	F	fakultet	39, 49
	annuitetslån	5		fordoblingskonstant	19
	annuitetsopsparing	5		fordelingsfunktion	43
	areal			fremskrivningsfaktor	19, 20
	- cirkel	47		førstegradspolynomium	16
	- generaliseret cylinder	48			
	- parallelogram	47	G	generaliseret cylinder	48
	- trapez	47		gradient	33
	- trekant	47		gradtal	22
				grupperede observationer	35
B	banekurven	31		grænseværdi	50
	bedste rette linje	38			
	begyndelsesværdi	5	H	halveringskonstant	20
	bestemt integral	27		harmonisk svingning	23
	binomialfordeling	31		hastighedsfunktion	31
	binomialkoefficient	31		histogram	35
	boksplot	36, 37		hult omdrejningslegeme	29
	brøkregler	6		hældningskoefficient	13, 16
				hældningsvinklen	13
\mathbf{C}	cirkel	47		hændelse	40
	cirklens ligning	14		højde	47, 52
	cosinus	8, 50		højreskæv	37
	cosinusrelation	9			
	cylinder	47	I	ikke-skæv	37
				indekstal	5
D	determinant	12		indskreven cirkel	53
	differensen mellem	11		integration	27
	differenskvotient	50			
	differentialkvotient	24, 50			
	differentialligninger	29			

K	kapitalformel	5	O	omkreds, cirkel	47
	kegle	47		omskreven cirkel	53
	kombinationer	39		omvendt proportionalitet	3
	konfidensinterval	42		ortogonal, vinkelret	39
	koordinatsæt	11		ortogonale vektorer	11
	kugle	47		outlier	37
	kurvelængde	28		overflade	
	kvadratsætninger	7		- cylinder	47
	kvartil	35, 36, 37		- generaliseret cylinder	48
	kvartilbredde	36		- kegle	47
	kvartilsæt	36		- kugle	47
L	lineær funktion	16	P	p% -fraktil	35
	lineær regression	28		parabel	15
	linjens ligning	13		parallelle vektorer	12
	logaritmefunktioner	18		parallelogram	47
	lokalt maksimum	34		Pascals trekant	45
	lokalt minimum	34		permutationer	39
	længde af vektor	10		potensfunktioner	21
	løsningkurve	30		potensregneregler	7
				prikdiagram	36
M	median (statistik)	36, 37		prikprodukt	11, 51
	median (trekant)	52		procent-procent tilvækst	21
	middeltal	37		procentregning	5
	middelværdi	41		projektionen	12
	midtnormal	52		proportionalitet	6
	midtpunkt	14		punktplot	38
	multiplikation af vektor	10			
	multiplikationsprincip	39	Q	QQ-plot	44
	multiplikationstabel	46			
			R	radiantal	22
N	nedre kvartil	35		regneregler for differentiation	
	niveaukurve	33		regneregler for integration	27
	normale udfald	42		regression, lineær	38
	normalfordeling	43		regressionslinje	38
	normalvektor	13		residual	38
	nulpunkter	17		residualplot	38
				residualspredning	38
				retningsvektor	31

	retvinklet trekant rod, rødder rumfang af - cylinder - generaliseret cylinder - kegle - kugle	8, 52 17 47 48 47 47	V	varians variationsbredde vektorer i planen venstreskæv fordeling vilkårlig trekant vinkelhalveringslinje vinkelret, ortogonal vinkelsum i trekant	41 36 10 37 9 52 51
S	saddelpunkt	34		vinkler	51, 52
	sandsynlighed	40, 41		vækstrate	5, 19, 20
	sinus	8, 50			
	sinusrelation	9	Ø	øvre kvartil	35
	skæringspunkt m. førsteakse				
	skalafaktor	8			
	skalarprodukt	11, 39			
	spredning	37, 41			
	statistisk usikkerhed	42			
	stokastisk variabel	41, 42			
	sum af vektorer	11			
	sumkurve	35			
	symboler	48			
	symmetrisk sandsynlighedsfelt 40				
	søjlediagram	41			
T	tangens	8, 50			
	tangent til graf	24			
	toppunkt	15, 17			
	trapez	47			
	trigonometriske funktioner	22, 23			
	tværvektor	12			
	tæthedsfunktion	43			
U	uafhængige hændelser	30			
	ubestemt integral	27			
	udfaldsrum	40			
	udvidet kvartilsæt	36			
	ugrupperede observationer	36			