cases	doc_1		doc_2		decision	id
	authors	Ansel MacLaughlin Jwala Dhamala Anoop Kumar Sriram Venkatapathy Ragav Venkatesan Rahul Gupta	authors	 Ansel MacLaughlin Jwala Dhamala Anoop Kumar Sriram Venkatapathy Ragav Venkatesan Rahul Gupta 		
		Evaluating the Effectiveness of Efficient Neural	title	Evaluating the Effectiveness of Efficient Neural Architecture Search for Sentence-Pair Tasks e 2020-10-08 00:00:00		
	title	Architecture Search for Sentence-Pair Tasks	source	SupportedSources.INTERNET_ARCHIVE	1	
	publication_date 2020-10-08 00:00:00		journal	Supportunion (1211/21/21/21/21/21/21/21/21/21/21/21/21		
	source	SupportedSources.OPENALEX	volume		., NN	ES 421
	journal	arXiv (Cornell University)	doi			
	volume doi	10.48550/arxiv.2010.04249	urls	• https://web.archive.org/web/20201019150340/https://arxiv.org/pdf/2010.04249v1.pdf		
	urls	 https://openalex.org/W4287644805 https://doi.org/10.48550/arxiv.2010.04249 http://arxiv.org/pdf/2010.04249 	id	id-1854650322846677501		
			abstract	Neural Architecture Search (NAS) methods, which automatically learn entire neural model or individual neural cell architectures, have recently achieved competitive or state-of-the-art (SOTA) performance on variety of natural language processing and computer vision tasks, including language modeling, natural language inference, and image classification. In this work, we explore the applicability of a SOTA NAS algorithm, Efficient Neural Architecture Search (ENAS) (Pham et al.,		
	id	id1261178150777643172		2018) to two sentence pair tasks, paraphrase detection and semantic textual similarity. We use ENAS to perform a micro-level search and learn a task-optimized RNN cell architecture as a drop-in replacement for an LSTM. We explore the effectiveness of ENAS through experiments on three datasets (MRPC, SICK, STS-B), with		
	abstract			two different models (ESIM, BiLSTM-Max), and two sets of embeddings (Glove, BERT). In contrast to prior work applying ENAS to NLP tasks, our results are		
	versions			mixed we find that ENAS architectures sometimes, but not always, outperform LSTMs and perform similarly to random architecture search.		
			versions			