Funktionalanalysis 1

1.Übung (20.3.2020)

1. Sei X ein topologischer Vektorraum und $\mathfrak W$ eine Basis des Umgebungsfilters der Null in X. Zeige

$$\forall A \subseteq X. \ \overline{A} = \bigcap_{W \in \mathfrak{M}} (A + W).$$

2. Sei X ein topologischer Vektorraum. Zeige

$$\forall A\subseteq X \text{ kreisf\"{o}rmig. } \left(A^{\circ} \text{ kreisf\"{o}rmig } \Leftrightarrow \left(A^{\circ}=\emptyset \vee 0 \in A^{\circ}\right)\right)$$

Finde ein Beispiel eines topologischen Vektorraumes X und einer kreisförmigen Menge $A \subseteq X$, deren Inneres nicht kreisförmig ist.

3.*Ein TVR ohne stetige Funktionale: Sei $0 , und sei <math>L^p(0,1)$ der Raum aller (Äquivalenzklassen von) Lebesgue-messbaren komplexwertigen Funktionen definiert auf (0,1) mit $\int_{(0,1)} |f(x)|^p dx < \infty$. Weiters sei

$$d_p(f,g) := \int_{(0,1)} |f(x) - g(x)|^p dx, \quad f, g \in L^p(0,1).$$

Zeige:

- (a) d_p ist eine Metrik auf $L^p(0,1)$, und $L^p(0,1)$ wird mit der von d_p induzierten Topologie zu einem topologischen Vektorraum.
- (b) Ist $V \subseteq L^p(0,1)$ eine Umgebung von 0 und ist V konvex, so folgt $V = L^p(0,1)$.
- (c) dim $X = \infty$ und $X' = \{0\}$.

Hinweis. Sei V konvexe Nullumgebung, r > 0, sodass $U_r(0) := \{g \in L^p(0,1) : \Delta(g) < r\} \subseteq V$ wobei $\Delta(f) := d_p(f,0)$. Sei $f \in L^p(0,1)$. Wähle $n \in \mathbb{N}$ mit $n^{p-1}\Delta(f) < r$, $0 = x_0 < x_1 < \ldots < x_n = 1$ mit $\int_{x_{i-1}}^{x_i} |f(t)|^p dt = n^{-1}\Delta(f)$ und setze $g_i(t) := nf(t)\mathbb{1}_{[x_{i-1},x_i]}$, sodass $f = n^{-1}(g_1 + \ldots + g_n)$.

- 4. Sei X ein topologischer Vektorraum mit dim $X=\infty$ in dem der Umgebungsfilter der Null eine abzählbare Basis besitzt. Zeige, dass $X'\neq X^*$.
- 5. Sei X ein Vektorraum mit $X \neq \{0\}$. Ist X mit der diskreten Topologie ein topologischer Vektorraum? Finde eine Topologie auf X mit der X ein topologischer Vektorraum wird und sodass $X' = X^*$ ist.
- 6. Sei X ein topologischer Vektorraum. Eine Menge $B \subseteq X$ heißt beschränkt, falls es zu jeder Nullumgebung U ein positive Zahl λ_U gibt, sodass $B \subseteq \lambda_U U$.

Zeige, dass jede kompakte Teilmenge von X beschränkt ist. Zeige, dass jeder lineare Teilraum $Y \neq \{0\}$ von X unbeschränkt ist.

- 7.*Sei X ein topologischer Vektorraum und $B \subseteq X$. Zeige, dass die folgenden Aussagen äquivalent sind:
 - (i) B ist beschränkt.
 - (ii) Zu jeder Nullumgebung U gibt es eine Zahl $\mu_U > 0$, sodass $B \subseteq \lambda U$ für alle $\lambda > \mu_U$.
 - (iii) Für jede Folge $(x_n)_{n\in\mathbb{N}}$ von Elementen von B und jede Folge $(\alpha_n)_{n\in\mathbb{N}}$ komplexer Zahlen mit $\lim_{n\to\infty}\alpha_n=0$ gilt $\lim_{n\to\infty}\alpha_nx_n=0$.