(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

- (19) Weltorganisation für geistiges Eigentum Internationales Büro
- HIPO OMPLO

(43) Internationales Veröffentlichungsdatum 12. April 2001 (12.04.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/25210 A2

- (51) Internationale Patentklassifikation⁷: C07D 213/85, A61K 31/4418, 31/4427, C07D 401/12, 405/12, 409/12, 413/12, 417/12
- (21) Internationales Aktenzeichen:

PCT/EP00/09153

(22) Internationales Anmeldedatum:

19. September 2000 (19.09.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 199 47 154.1 1. Oktober 1999 (01.10.1999) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER AKTIENGESELLSCHAFT [DE/DE]; 51368 Leverkusen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (mur für US): ROSENTRETER, Ulrich [DE/DE]; Obere Rutenbeck 6, 42349 Wuppertal (DE). HENNING, Rolf [DE/DE]; Am Jagdhaus 115, 42113 Wuppertal (DE). BAUSER, Marcus [DE/DE]; Heinrich-Bammel-Weg 40, 42327 Wuppertal (DE). KRÄMER, Thomas [DE/DE]; Schneewitchenweg 37, 42111 Wuppertal (DE). VAUPEL, Andrea [DE/DE]; Birkenhöhe 9, 42113 Wuppertal (DE). HÜBSCH, Walter [DE/DE]; Wildsteig 22, 42113 Wuppertal (DE). DEMBOWSKY, Klaus [DE/US]; 289 Shawmut Avenue, Boston, MA 02116 (US). SALCHER-SCHRAUF-STÄTTER, Olga [DE/DE]; Bremer Str. 28, 42109

Wuppertal (DE). STASCH, Johannes-Peter [DE/DE]; Alfred-Nobel-Str. 109, 42651 Solingen (DE). KRAHN, Thomas [DE/DE]; Wiener Str. 29, 58135 Hagen (DE). PERZBORN, Elisabeth [DE/DE]; Am Tescher Busch 13, 42327 Wuppertal (DE).

- (74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; 51368 Leverkusen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: SUBSTITUTED 2-THIO-3,5-DICYANO-4-ARYL-6-AMINOPYRIDINES AND THE USE THEREOF
- (54) Bezeichnung: SUBSTITUIERTE 2-THIO-3,5-DICYANO-4-ARYL-6-AMINOPYRIDINE UND IHRE VERWENDUNG

(57) Abstract: The invention relates to compounds of general formula (I), a method for the production thereof and the use thereof as pharmacologically effective substances for a broad medical indication spectrum. Furthermore, selective adenosine receptor ligands, preferably selective adenosine A1-, adenosine A2a- and/or adenosine A2b-receptor ligands are provided for the prophylaxis and/or the treatment of diseases, especially cardiovascular diseases, diseases of the urogenital region, diseases of the respiratory tract, inflammatory and neuroinflammatory diseases, diabetes, especially pancreatic diabetes, neurodegenerative diseases, pain states, cancer as well as liver fibrosis and liver cirrhosis.

(57) Zusammenfassung: Es werden Verbindungen der allgemeinen Formel (I) beschrieben, ein Verfahren zu ihrer Herstellung sowie ihre Verwendung als pharmakologisch wirk-

same Substanzen für ein breites medizinisches Indikationsspektrum. Des weiteren werden selektive Adenosin-Rezeptorliganden, vorzugsweise selektive Adenosin-A1-, Adenosin-A2a- und/oder Adenosin-A2b-Rezeptorliganden, zur Prophylaxe und/oder Behandlung von Erkrankungen bereitgestellt, insbesondere von kardiovaskulären Erkrankungen; Erkrankungen des Urogenitalbereichs; Erkrankungen der Atemwege; inflammatorischen und neuroinflammatorischen Erkrankungen; Diabetes, insbesondere Diabetes mellitus; neurodegenerativen Erkrankungen; Schmerzzuständen; Krebs; sowie Leberfibrose und Leberzirrhose.

WO 01/25210 PCT/EP00/09153

Substituierte 2-Thio-3,5-dicyano-4-aryl-6-aminopyridine und ihre Verwendung

Die vorliegende Erfindung betrifft substituierte 2-Thio-3,5-dicyano-4-aryl-6-aminopyridine, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Wirkstoffe für Arzneimittel.

Gegenstand der vorliegenden Erfindung ist weiterhin die Verwendung von Adenosinrezeptor-selektiven Liganden zur Prophylaxe und/oder Behandlung von verschiedenen Erkrankungen.

denen Erkrankungen.

5

15

20

25.

Adenosin, ein Nucleosid aus Adenin und D-Ribose, ist ein endogener Faktor mit zellprotektiver Wirksamkeit, insbesondere unter zellschädigenden Bedingungen mit begrenzter Sauerstoff- und Substratversorgung, wie z.B. bei Ischämie in verschiedensten Organen (z.B. Herz und Gehirn).

Adenosin entsteht intrazellulär beim Abbau von Adenosin-5'-monophosphat (AMP) und S-Adenosylhomocystein als Zwischenprodukt, kann jedoch aus der Zelle freigesetzt werden und übt dann durch Bindung an spezifische Rezeptoren Funktionen als hormonähnliche Substanz oder Neurotransmitter aus.

Unter normoxischen Bedingungen ist die Konzentration des freien Adenosin im Extrazellulärraum sehr niedrig. Die extrazelluläre Konzentration von Adenosin erhöht sich in den betroffenen Organen jedoch dramatisch unter ischämischen bzw. hypoxischen Bedingungen. So ist beispielsweise bekannt, dass Adenosin die Thrombozyten-Aggregation hemmt und die Durchblutung der Herzkranzgefäße steigert. Weiterhin wirkt es auf die Herzfrequenz, auf die Ausschüttung von Neurotransmittern und auf die Lymphozyten-Differenzierung.

Diese Wirkungen von Adenosin zielen darauf ab, das Sauerstoffangebot der betroffenen Organe zu erhöhen bzw. den Stoffwechsel dieser Organe zu drosseln, um damit

10

15

20

unter ischämischen oder hypoxischen Bedingungen eine Anpassung des Organstoffwechsels an die Organdurchblutung zu erreichen.

Die Wirkung von Adenosin wird über spezifische Rezeptoren vermittelt. Bekannt sind bisher die Subtypen A1, A2a, A2b und A3. Die Wirkungen dieser Adenosin-Rezeptoren werden intrazellulär durch den Botenstoff cAMP vermittelt. Im Falle der Bindung von Adenosin an die A2a- oder A2b-Rezeptoren kommt es über eine Aktivierung der membranständigen Adenylatzyklase zu einem Anstieg des intrazellulären cAMP, während die Bindung des Adenosin an die A1- oder A3-Rezeptoren über eine Hemmung der Adenylatzyklase eine Abnahme des intrazellulären cAMP-Gehalts bewirkt.

Als "Adenosinrezeptor-selektive Liganden" werden erfindungsgemäß solche Substanzen bezeichnet, die selektiv an einen oder mehrere Subtypen der Adenosinrezeptoren binden und dabei entweder die Wirkung des Adenosin nachahmen (Adenosin-Agonisten) oder dessen Wirkung blockieren (Adenosin-Antagonisten) können.

Adenosinrezeptor-selektive Liganden lassen sich nach ihrer Rezeptorselektivität in verschiedene Klassen einteilen, so z.B. in Liganden, die selektiv an die A1- oder die A2-Rezeptoren des Adenosin binden, bei letzteren auch beispielsweise solche, die selektiv an die A2a- oder die A2b-Rezeptoren des Adenosin binden. Auch sind Adenosinrezeptor-Liganden möglich, die selektiv an mehrere Subtypen der Adenosinrezeptoren binden, so z.B. Liganden, die selektiv an die A1- und an die A2-, jedoch nicht an die A3-Rezeptoren des Adenosin binden.

25

30

Die zuvor genannte Rezeptor-Selektivität lässt sich bestimmen durch die Wirkung der Substanzen an Zelllinien, die nach stabiler Transfektion mit der entsprechenden cDNA die jeweiligen Rezeptorsubtypen exprimieren (siehe hierzu die Druckschrift M.E. Olah, H. Ren, J. Ostrowski, K.A. Jacobson, G.L. Stiles, "Cloning, expression, and characterization of the unique bovine A1 adenosine receptor. Studies on the ligand binding site by site-directed mutagenesis." in *J. Biol. Chem.* 267 (1992)

10

15

20

25

30

Seiten 10764-10770, deren Offenbarung hiermit im vollen Umfang durch Bezugnahme eingeschlossen ist).

Die Wirkung der Substanzen an solchen Zelllinien lässt sich erfassen durch biochemische Messung des intrazellulären Botenstoffes cAMP (siehe hierzu die Druckschrift K.N. Klotz, J. Hessling, J. Hegler, C. Owman, B. Kull, B.B. Fredholm, M.J. Lohse, "Comparative pharmacology of human adenosine receptor subtypes characterization of stably transfected receptors in CHO cells" in *Naunyn Schmiedebergs Arch. Pharmacol.* 357 (1998) Seiten 1-9, deren Offenbarung hiermit im vollen Umfang durch Bezugnahme eingeschlossen ist).

Bei den aus dem Stand der Technik bekannten, als "adenosinrezeptor-spezifisch" geltenden Liganden handelt es sich überwiegend um Derivate auf Basis des natürlichen Adenosins (S.-A. Poulsen und R.J. Quinn, "Adenosine receptors: new opportunities for future drugs" in *Bioorganic and Medicinal Chemistry* 6 (1998) Seiten 619-641). Die aus dem Stand der Technik bekannten Adenosin-Liganden haben jedoch meistens den Nachteil, dass sie nicht wirklich rezeptorspezifisch wirken, schwächer wirksam sind als das natürliche Adenosin oder nach oraler Applikation nur sehr schwach wirksam sind. Daher werden sie aufgrund der zuvor genannten Nachteile überwiegend nur für experimentelle Zwecke verwendet.

Aufgabe der folgenden Erfindung ist nunmehr die Auffindung bzw. Bereitstellung von Verbindungen, die eine große therapeutische Bandbreite aufweisen und als Wirkstoffe zur Prophylaxe und/oder Behandlung von verschiedenen Krankheiten dienen können.

Insbesondere ist es Aufgabe der vorliegenden Erfindung, Substanzen aufzufinden oder bereitzustellen, die vorzugsweise als Adenosinrezeptor-selektive Liganden wirken und für die Prophylaxe und/oder Behandlung verschiedenster Erkrankungen geeignet sind, insbesondere Erkrankungen des Herz-Kreislauf-Systems (kardiovaskuläre Erkrankungen) oder inflammatorischer Erkrankungen, daneben aber auch

Erkrankungen des Urogenitalsystems, der Atemwege, des Zentralnervensystems, des Diabetes (insbesondere Diabetes mellitus) und Krebserkrankungen.

Weitere Aufgabe der vorliegenden Erfindung ist das Auffinden oder Bereitstellen von Adenosinrezeptor-selektiven Liganden hoher Wirkspezifität für die zuvor genannten Zwecke.

Die vorliegende Erfindung betrifft somit Verbindungen der allgemeinen Formel (I)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{4}
 R^{4}

10

5

in der:

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C₁-C₈)-Alkyl;

gegebenenfalls substituiertes (C₆-C₁₀)-Aryl;

gegebenenfalls substituiertes (C1-C8)-Alkoxy;

20 $-O-(CH_2)_n-CH=CH_2$ mit n = 0, 1 oder 2;

Halogen;

Nitro;

Cyano;

-C(O)-R⁵;

25 $-C(O)-NR^6R^7$;

-NR⁶R⁷;

-NR⁶-C(O)-R⁸;

-O-C(O)-R⁸; -SO₂-NR⁶R⁷; und -NR⁶-SO₂R⁸,

wobei:

R⁵ bezeichnet: Wasserstoff; Hydroxy;

gegebenenfalls substituiertes (C₁-C₈)-Alkyl;
gegebenenfalls substituiertes (C₃-C₇)-Cycloalkyl;
gegebenenfalls substituiertes (C₁-C₈)-Alkoxy;
gegebenenfalls substituiertes (C₆-C₁₀)-Aryl;
gegebenenfalls substituiertes (C₆-C₁₀)-Aryloxy; oder
-O-(CH₂)_n-[(C₆-C₁₀)-Aryl] mit n = 1, 2 oder 3,

wobei die (C₆-C₁₀)-Arylgruppe über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein kann,

20 oder

R⁵ einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bedeutet, der seinerseits ein- oder mehrfach mit einer Oxogruppe (=O);

einer Oxogruppe (=O);

Halogen;

gegebenenfalls substituiertem (C₁-C₈)-Alkyl;

Nitro;

Cyano;

Hydroxy;

gegebenenfalls substituiertem (C₆-C₁₀)-Aryl; o

gegebenenfalls substituiertem (C₆-C₁₀)-Aryl; oder mit (C₁-C₈)-Alkoxy

substituiert sein kann,

oder

für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C₆-C₁₀)-Aryl oder gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein können,

und

15 R⁶ und R⁷ gleich oder verschieden sind und für

Wasserstoff;

gegebenenfalls substituiertes (C₁-C₈)-Alkyl;

gegebenenfalls substituiertes (C₆-C₁₀)-Aryl; oder

für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis

zu 3 Heteroatomen aus der Reihe N, O und/oder S

oder

stehen

R⁶ und R⁷ gemeinsam mit dem Stickstoffatom, an das sie gegebenenfalls gebunden sind, einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S bilden, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann mit einer Oxogruppe (=O);

Halogen;

(C₁-C₈)-Alkyl;
Nitro;
Cyano;
Hydroxy;
(C₆-C₁₀)-Aryl; oder
(C₁-C₈)-Alkoxy,

und

10 R⁸ Hydroxy;

NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

gegebenenfalls substituiertes (C₁-C₈)-Alkyl;

(C₁-C₈)-Alkoxy;

gegebenenfalls substituiertes (C₆-C₁₀)-Aryl;

(C₆-C₁₀)-Aryloxy; oder

-O-(CH₂)_n-[(C₆-C₁₀)-Aryl] mit n = 1, 2 oder 3 bedeutet,

und

20

 R^4 für geradkettiges oder verzweigtes (C_1 - C_8)-Alkyl oder (C_2 - C_8)-Alkenyl steht, die gegebenenfalls ein- oder mehrfach substitutiert sind mit Hydroxy;

Halogen;

25 Cyano;

-C(O)-R⁵ mit R⁵ wie zuvor definiert;

-C(O)-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

-NR6-C(O)-R8 mit R6 und R8 wie zuvor definiert;

30 -SO₂-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

-NR⁶-SO₂-R⁸ mit R⁶ und R⁸ wie zuvor definiert;

10

15

-C(O)-(CH₂)_n-C(O)-R⁸ mit n = 0 bis 2 und R⁸ wie zuvor definiert; (C₁-C₈)-Alkoxy;

gegebenenfalls substituiertem (C₆-C₁₀)-Aryloxy;

gegebenenfalls substituiertem 5- bis 6-gliedrigen Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S;

gegebenenfalls substituiertem (C₆-C₁₀)-Aryl; oder

mit einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Halogen; (C₁-C₈)-Alkyl; Nitro; Cyano; Hydroxy; (C₆-C₁₀)-Aryl; oder mit (C₁-C₈)-Alkoxy substituiert sein kann,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C_6 - C_{10})-Aryl anelliert sein können,

oder

für einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit

bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden,

mit einer Oxogruppe (=O); Halogen; (C₁-C₈)-Alkyl; Nitro; Cyano; Hydroxy;

(C₆-C₁₀)-Aryl; oder mit (C₁-C₈)-Alkoxy substituiert sein kann, und

der gegebenenfalls über zwei benachbarte Ringatome mit gegebenenfalls

substituiertem (C₆-C₁₀)-Aryl oder gegebenenfalls substituiertem (C₄-C₇)
Cycloalkyl anelliert sein kann,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel (I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

- $R^1 = R^2 = H$; $R^3 = para-OH$; $R^4 = -CH_2-Z$ mit Z = CN, $C(O)-OC_2H_5$, $4-Br-C_6H_4-CO$, 4-n-Butyl- C_6H_4-CO , H, C_6H_5 , $C(O)-O-CH_2-C_6H_5$, $C(O)-OCH_3$, C(O)-OH, 2-oxo-benzo-pyranyl-3-carbonyl, $4-Cl-C_6H_4-CO$, $3-Br-C_6H_4-CO$, $4-C_6H_5-C_6H_4-CO$, $4-Cl-C_6H_4-CO$, $3-Cl-C_6H_3-CO$;
- $R^1 = R^2 = H$; $R^3 = \text{meta-OH}$; $R^4 = -CH_2$ -Z mit Z = 4-Br-C₆H₄-NH-CO, 2-oxobenzo-pyranyl-3-carbonyl, 4-Cl-C₆H₄-CO;
- $R^1 = R^2 = H$; $R^3 = para-O-C(O)-CH_3$; $R^4 = -CH_2-Z$ mit $Z = 4-CH_3-C_6H_4-CO$, H, 2-oxo-benzopyranyl-3-carbonyl, $(CH_2)_3-CH_3$, $4-C_6H_5-C_6H_4$;
- 10 $R^1 = R^2 = R^3 = H$; $R^4 = -CH_2-Z$ mit $Z = CH_3$, CN, 2-Naphthyl;
 - $R^1 = R^2 = H$; $R^3 = \text{para-Butoxy}$; $R^4 = -\text{CH}_2\text{-Z}$ mit $Z = 4\text{-Cl-C}_6H_5$, $C(O)\text{-OCH}_3$, $C(O)\text{-C}_6H_5$, $CH=CH_2$, $C(O)\text{-NH}_2$, H, $4\text{-Br-C}_6H_4\text{-CO}$, $4\text{-Cl-C}_6H_4\text{-CO}$, $C(O)\text{-OC}_2H_5$, $C(O)\text{-O-CH}_2\text{-C}_6H_5$, 2-oxo-benzopyranyl-3-carbonyl, $C(O)\text{-NH-C}_6H_5$, CN;
- 15 $R^1 = R^2 = H$; $R^3 = \text{para-Brom}$; $R^4 = -CH_2-Z$ mit $Z = 4-\text{Br-C}_6H_4-\text{CO}$, 4-Cl-C₆H₄-CO, C(O)-NH₂, C(O)-OCH₃, 4-Cl-C₆H₅, 4-Br-C₆H₄-NH-CO;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2-Z$ mit $Z = 4-Br-C_6H_4-CO$, $C(O)-NH_2$, $C(O)-O-CH_2-C_6H_5$, CN;
 - $R^1 = R^2 = H$; $R^3 = \text{para-Chlor}$; $R^4 = -CH_2 Z$ mit Z = 2-Naphthyl, CH_3 ;
- $R^1 = R^2 = H$; $R^3 = para-OCH_3$, $R^4 = -CH_2-Z$ mit Z = 2-Naphthyl, CH_3 ;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2 Z$ mit $Z = CH_3$.

Die zuvor genannten Substanzen, die gemäß der vorliegenden Erfindung zur Prophylaxe und/oder Behandlung von Erkrankungen verwendet werden können, sind teils neu, teils aber auch literaturbekannt (siehe *Dyachenko et al.*, Russian Journal of Chemistry, Vol. 33, No. 7, 1997, Seiten 1014-1017 und Vol. 34, No. 4, 1998, Seiten 557-563; *Dyachenko et al.*, Chemistry of Heterocyclic Compounds, Vol. 34, 1998, Seiten 188-194; *Elnagdi et al.*, Zeitschrift für Naturforschung, Vol. 47b, 1992, Seiten 572-578; *Riguera et al.*, Eur. J. Med. Chem. 33, 1998, Seiten 887-897; *J. Vaquero, Thesis*, University of Alcala de Henares, Madrid, Spanien, 1981). Jedoch ist in der Literatur für die bekannten Verbindungen eine therapeutische Anwendung

10

15

20

bisher nicht beschrieben worden. Dies geschieht erstmals im Rahmen der vorliegenden Erfindung.

Daher ist Gegenstand der vorliegenden Erfindung auch die Verwendung der zuvor genannten Verbindungen der allgemeinen Formel (I), und zwar einschließlich der oben ausgenommenen Verbindungen, zur Prophylaxe und/oder Behandlung von Erkrankungen.

Die Verbindungen der Formel (I) können in Abhängigkeit vom Substitutionsmuster in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere) oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren als auch deren jeweilige Mischungen. Die Racemformen lassen sich ebenso wie die Diastereomeren in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen. Gleichermaßen betrifft die vorliegende Erfindung auch die übrigen Tautomeren der Verbindungen der Formel (I) und deren Salze.

Physiologisch unbedenkliche Salze der Verbindungen der Formel (I) können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z.B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Trifluoressigsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Zitronensäure, Fumarsäure, Maleinsäure oder Benzoesäure.

25

30

Als Salze können auch Salze mit üblichen Basen genannt werden, wie beispielsweise Alkalimetallsalze (z.B. Natrium- oder Kaliumsalze), Erdalkalisalze (z.B. Calcium- oder Magnesiumsalze) oder Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen wie beispielsweise Diethylamin, Triethylamin, Ethyldiisopropylamin, Prokain, Dibenzylamin, N-Methylmorpholin, Dihydroabietylamin, 1-Ephenamin oder Methylpiperidin.

Definitionen im Rahmen der vorliegenden Erfindung:

- Halogen steht im allgemeinen für Fluor, Chlor, Brom oder Iod. Bevorzugt sind Fluor, Chlor oder Brom. Ganz besonders bevorzugt sind Fluor oder Chlor.
- (C₁-C₈)-Alkyl, (C₁-C₆)-Alkyl bzw. (C₁-C₄)-Alkyl steht im Rahmen der vorliegenden Erfindung für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 8; 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen. Beispielsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl, n-Pentyl, Isopentyl, n-Hexyl, Isohexyl, n-Heptyl und n-Octyl. Bevorzugt ist ein geradkettiger oder verzweigter Alkylrest mit 1 bis 6 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen.
- Gegebenenfalls substituiertes (C₁-C₈)-Alkyl, (C₁-C₆)-Alkyl bzw. (C₁-C₄)-Alkyl, wie der Begriff bei der vorliegenden Erfindung verwendet wird, steht für einen wie zuvor definierten, geradkettigen oder verzweigten Alkylrest mit 1 bis 8; 1 20 bis 6 bzw. 1 bis 4 Kohlenstoffatomen, der seinerseits ein- oder mehrfach, gleich oder verschieden, substituiert sein kann. Hierbei können als Substituenten insbesondere die folgenden Substituenten genannt werden: Halogen (Fluor, Chlor, Brom, Iod); Cyano; Nitro; Carboxyl; Hydroxy; geradkettiges oder verzweigtes (C₁-C₈)-Alkoxy, vorzugsweise (C₁-C₆)-Alkoxy, insbesondere 25 (C1-C4)-Alkoxy, wobei der Alkoxyrest seinerseits gegebenenfalls substituiert sein kann; geradkettiges oder verzweigtes (C2-C8)-Alkenyl, vorzugsweise (C₂-C₆)-Alkenyl, insbesondere (C₂-C₄)-Alkenyl, wobei der Alkenylrest seinerseits gegebenenfalls substituiert sein kann; (C6-C10)-Aryl, insbesondere Phenyl oder Naphthyl, wobei der (C₆-C₁₀)-Arylrest seinerseits gegebenenfalls 30 substituiert sein kann; (C1-C4)-Alkylsulfonyloxy, wobei der (C1-C4)-Alkylsulfonyloxyrest seinerseits gegebenenfalls substituiert sein kann; Phenyl-

sulfonyl oder p-Tolylsulfonyl; geradkettiges oder verzweigtes (C₁-C₈)-Thio-alkyl, wobei der Thioalkylrest seinerseits gegebenenfalls substituiert sein kann; geradkettiges oder verzweigtes Mono-, Di- und/oder Trihalogen-(C₁-C₈)-alkyl, insbesondere Trifluormethyl; geradkettiges oder verzweigtes Mono-, Di- und/oder Trihalogen-(C₁-C₈)-alkoxy, insbesondere Trifluormethoxy; Acyl; Amino, N-[(C₁-C₈)-Alkyl]-amino und/oder N-Di-[(C₁-C₈)-alkyl]-amino, wobei der Alkylrest seinerseits gegebenenfalls substituiert sein kann; und (C₁-C₈)-Alkoxycarbonyl, wobei der Alkoxycarbonylrest seinerseits gegebenenfalls substituiert sein kann.

10

5

- (C₆-C₁₀)-Aryl steht im Rahmen der vorliegenden Erfindung für einen aromatischen Rest mit 6 bis 10 Kohlenstoffatomen. Bevorzugte Arylreste sind Phenyl und Naphthyl.
- 15 Der Begriff gegebenenfalls substituiertes (C₆-C₁₀)-Aryl steht im Rahmen der vorliegenden Erfindung für einen wie zuvor definierten aromatischen Rest mit 6 bis 10 Kohlenstoffatomen, der seinerseits ein- oder mehrfach, gleich oder verschieden, substituiert sein kann, insbesondere mit: Halogen (Fluor, Chlor, Brom, Iod); Cyano; Nitro; Carboxyl; Hydroxy; geradkettigem oder ver-20 zweigtem (C₁-C₈)-Alkyl, vorzugsweise (C₁-C₆)-Alkyl, insbesondere (C₁-C₄)-Alkyl, wobei der Alkylrest seinerseits gegebenenfalls substituiert sein kann; geradkettigem oder verzweigtem (C1-C8)-Alkoxy, vorzugsweise (C1-C6)-Alkoxy, insbesondere (C1-C4)-Alkoxy, wobei der Alkoxyrest seinerseits gegebenenfalls substituiert sein kann; geradkettigem oder verzweigtem (C2-25 C₈)-Alkenyl, vorzugsweise (C₂-C₆)-Alkenyl, insbesondere (C₂-C₄)-Alkenyl, wobei der Alkenylrest seinerseits gegebenenfalls substituiert sein kann; geradkettigem oder verzweigtem (C1-C8)-Thioalkyl, wobei der Thioalkylrest seinerseits gegebenenfalls substituiert sein kann; geradkettigem oder verzweigtem Mono-, Di- und/oder Trihalogen-(C1-C8)-alkyl, insbesondere Tri-30 fluormethyl; geradkettigem oder verzweigtem Mono-, Di- und/oder Trihalogen-(C1-C8)-alkoxy, insbesondere Trifluormethoxy; Acyl; Amino, N-[(C1-

20

25

30

 C_8)-Alkyl]-amino und/oder N-Di-[(C_1 - C_8)-alkyl]-amino, wobei der Alkylrest seinerseits gegebenenfalls substituiert sein kann; N-[(C_1 - C_6)-Alkoxy]-aldimino; (C_1 - C_8)-Alkoxycarbonyl, wobei der Alkoxycarbonylrest seinerseits gegebenenfalls substituiert sein kann; und (C_6 - C_{10})-Aryl, insbesondere Phenyl oder Naphthyl, wobei der (C_6 - C_{10})-Arylrest seinerseits gegebenenfalls substituiert sein kann.

- (C₆-C₁₀)-Aryloxy steht für eine Gruppe -O-(C₆-C₁₀)-Aryl, insbesondere eine Gruppe -O-Phenyl oder -O-Naphthyl, wobei ansonsten auf die vorangehende Definition von (C₆-C₁₀)-Aryl verwiesen werden kann.
- Gegebenenfalls substituiertes (C₆-C₁₀)-Aryloxy bezeichnet eine wie zuvor definierte Gruppe -O-(C₆-C₁₀)-Aryl, wobei hinsichtlich der Substituenten der (C₆-C₁₀)-Arylgruppe auf obige Definition unter gegebenenfalls substituiertes

 (C₆-C₁₀)-Aryl verwiesen werden kann.
 - (C₁-C₈)-Alkoxy, (C₁-C₆)-Alkoxy bzw. (C₁-C₄)-Alkoxy, wie es in der vorliegenden Erfindung und auch in den Definitionen von (C₁-C₈)-Alkoxycarbonyl verwendet wird, steht für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 8; 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen. Beispielsweise seien genannt: Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, tert.-Butoxy, n-Pentoxy, Isopentoxy, n-Hexoxy, Isohexoxy, n-Heptoxy und n-Octoxy. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 6 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 4 Kohlenstoffatomen.
 - Gegebenenfalls substituiertes (C₁-C₈)-Alkoxy, (C₁-C₆)-Alkoxy bzw. (C₁-C₄)-Alkoxy bezeichnet im Rahmen der vorliegenden Erfindung einen wie zuvor definierten, geradkettigen oder verzweigten Alkoxyrest mit 1 bis 8, 1 bis 6 bzw. 1 bis 4 Kohlenstoffatomen, der gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann, insbesondere mit den folgenden Substi-

10

tuenten: Halogen (Fluor, Chlor, Brom, Iod); Cyano; Nitro; Carboxyl; Hydroxy; geradkettigem oder verzweigtem (C₂-C₈)-Alkenyl, vorzugsweise (C₂-C₆)-Alkenyl, insbesondere (C₂-C₄)-Alkenyl, wobei der Alkenylrest seinerseits gegebenenfalls substituiert sein kann; geradkettigem oder verzweigtem (C₁-C₈)-Thioalkyl, wobei der Thioalkylrest seinerseits gegebenenfalls substituiert sein kann; geradkettigem oder verzweigtem Mono-, Diund/oder Trihalogen-(C₁-C₈)-alkyl, insbesondere Trifluormethyl; geradkettigem oder verzweigtem Mono-, Di- und/oder Trihalogen-(C₁-C₈)-alkoxy, insbesondere Trifluormethoxy; Acyl; Amino, N-[(C₁-C₈)-Alkyl]-amino und/oder N-Di-[(C₁-C₈)-alkyl]-amino, wobei der Alkylrest seinerseits gegebenenfalls substituiert sein kann; oder (C₁-C₈)-Alkoxycarbonyl, wobei der Alkoxycarbonylrest seinerseits gegebenenfalls substituiert sein kann.

- (C₃-C₇)-Cycloalkyl steht im Rahmen der Erfindung im allgemeinen für einen Kohlenstoffring mit 3 bis 7 Kohlenstoffatomen wie beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl.
- Gegebenenfalls substituiertes (C₃-C₇)-Cycloalkyl steht im Rahmen der Erfindung im allgemeinen für einen wie zuvor definierten (C₃-C₇)-Cycloalkylrest, der gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann, insbesondere mit einem (C₁-C₈)-Alkylrest, vorzugsweise einem (C₁-C₆)-Alkylrest, ganz besonders bevorzugt einem (C₁-C₄)-Alkylrest, der seinerseits wiederum ein- oder mehrfach wie zuvor definiert substituiert sein kann.
- Ein 5- bis 6-gliedriger aromatischer Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht im Rahmen der Erfindung im allgemeinen für einen monocyclischen Heteroaromaten, der über ein Ringkohlenstoffatom des Heteroaromaten, gegebenenfalls auch über ein Ringstickstoffatom des Heteroaromaten, verknüpft ist. Beispielsweise seien genannt: Furanyl (z.B. Furan-2-yl, Furan-3-yl), Pyrrolyl (z.B. Pyrrol-1-yl, Pyrrol-2-yl, Pyrrol-3-yl), Thienyl, Thiazolyl, Oxazolyl, Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl,

Pyridazinyl Bevorzugt sind Pyridyl, Pyrimidyl, Pyridazinyl, Furanyl, Imidazolyl und Thiazolyl

• Ein gegebenenfalls substituierter 5- bis 6-gliedriger aromatischer Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht im
Rahmen der Erfindung im allgemeinen für einen wie zuvor definierten
Heterocyclus, der ein- oder mehrfach, gleich oder verschieden, substituiert sein
kann mit Nitro; Amino; Guanidino; Aminocarbonyl; Halogen, vorzugsweise
Chlor oder Fluor; seinerseits gegebenenfalls substituiertem (C₁-C₆)-Alkyl, vorzugsweise (C₁-C₄)-Alkyl, wie zuvor definiert; oder mit seinerseits gegebenenfalls substituiertem (C₆-C₁₀)-Aryl wie zuvor definiert.

Im Rahmen der Erfindung bevorzugte Verbindungen sind Verbindungen der allgemeinen Formel (I),

15

in der:

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C₁-C₆)-Alkyl;

gegebenenfalls substituiertes Phenyl oder Naphthyl;

gegebenenfalls substituiertes (C1-C6)-Alkoxy;

25 $-O-(CH_2)_n-CH=CH_2 \text{ mit } n=1 \text{ oder } 2;$

Fluor, Chlor, Brom;

Nitro;

Cyano;

-C(O)-R⁵;

30 -C(O)-NR 6 R 7 ;

 $-NR^6R^7$;

-NR⁶-C(O)-R⁸; -O-C(O)-R⁸; -SO₂-NR⁶R⁷; und -NR⁶-SO₂R⁸,

5

wobei:

R⁵ bezeichnet: Wasserstoff;

Hydroxy;

10

gegebenenfalls substituiertes (C₁-C₆)-Alkyl; gegebenenfalls substituiertes (C₃-C₇)-Cycloalkyl; gegebenenfalls substituiertes (C₁-C₆)-Alkoxy; gegebenenfalls substituiertes Phenyl oder Naphthyl;

15 gegel

gegebenenfalls substituiertes Phenyloxy oder Naphthyloxy; oder

-O- $(CH_2)_n$ -Phenyl mit n = 1, 2 oder 3,

wobei die Phenyl- oder Naphthylgruppe über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein kann,

20

oder

einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus
bedeutet, der seinerseits ein- oder mehrfach mit
einer Oxogruppe (=O);
Fluor, Chlor, Brom;

gegebenenfalls substituiertem (C₁-C₆)-Alkyl;

Nitro;

30 Cyano;

Hydroxy;

gegebenenfalls substituiertem Phenyl oder Naphthyl; oder mit (C₁-C₆)-Alkoxy substituiert sein kann,

5 oder

R⁵ für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder Naphthyl oder gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein können,

15 und

 R^6 und R^7 gleich oder verschieden sind und für

Wasserstoff;

gegebenenfalls substituiertes (C₁-C₆)-Alkyl;

gegebenenfalls substituiertes Phenyl oder Naphthyl; oder für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis

zu 3 Heteroatomen aus der Reihe N, O und/oder S

stehen

25 oder

20

30

R⁶ und R⁷ gemeinsam mit dem Stickstoffatom, an das sie gegebenenfalls gebunden sind, einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S bilden, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann mit

einer Oxogruppe (=O);

Fluor, Chlor, Brom;

 (C_1-C_6) -Alkyl;

Nitro;

5

Cyano;

Hydroxy;

Phenyl oder Naphthyl; oder

 (C_1-C_6) -Alkoxy,

10

und

R⁸ NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

gegebenenfalls substituiertes (C1-C6)-Alkyl;

 (C_1-C_6) -Alkoxy;

15

gegebenenfalls substituiertes Phenyl oder Naphthyl;

Phenyloxy oder Naphthyloxy; oder

 $-O-(CH_2)_n$ -Phenyl mit n = 1, 2 oder 3

bedeutet,

20 und

R⁴ für geradkettiges oder verzweigtes (C₁-C₆)-Alkyl oder (C₂-C₆)-Alkenyl steht,

die gegebenenfalls ein- oder mehrfach substitutiert sind mit

Hydroxy;

25 Fluor, Chlor, Brom;

Cyano;

-C(O)-R⁵ mit R⁵ wie zuvor definiert;

-C(O)-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

30 -NR⁶-C(O)-R⁸ mit R⁶ und R⁸ wie zuvor definiert;

-SO₂-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

10

15

 $-NR^6-SO_2-R^8$ mit R^6 und R^8 wie zuvor definiert; $-C(O)-(CH_2)_0-C(O)-R^8$ mit n=0 bis 2 und R^8 wie zuvor definiert;

 (C_1-C_6) -Alkoxy;

gegebenenfalls substituiertem Phenyloxy oder Naphthyloxy;

gegebenenfalls substituiertem 5- bis 6-gliedrigen Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S;

gegebenenfalls substituiertem Phenyl oder Naphthyl; oder

mit einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Fluor, Chlor, Brom; (C₁-C₆)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl oder Naphthyl; oder mit (C₁-C₆)-Alkoxy substituiert sein kann,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder Naphthyl anelliert sein können,

oder

R⁴ für einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Fluor, Chlor, Brom; (C₁-C₆)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl oder Naphthyl; oder mit (C₁-C₆)-Alkoxy substituiert sein kann und der gegebenenfalls über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder Naphthyl oder gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein kann,

30 und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel (I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

- R¹ = R² = H; R³ = para-OH; R⁴ = -CH₂-Z mit Z = CN, C(O)-OC₂H₅, 4-Br-C₆H₄-CO, 4-n-Butyl-C₆H₄-CO, H, C₆H₅, C(O)-O-CH₂-C₆H₅, C(O)-OCH₃, C(O)-OH, 2-oxo-benzo-pyranyl-3-carbonyl, 4-Cl-C₆H₄-CO, 3-Br-C₆H₄-CO, 4-C₆H₅-C₆H₄-CO, 4-CH₃-C₆H₄-CO, 3,4-Cl₂-C₆H₃-CO;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-OH}$; $R^4 = -\text{CH}_2\text{-Z}$ mit $Z = 4\text{-Br-C}_6H_4\text{-NH-CO}$, 2-oxobenzo-pyranyl-3-carbonyl, 4-Cl-C₆H₄-CO;
- $R^1 = R^2 = H$; $R^3 = \text{para-O-C(O)-CH}_3$; $R^4 = -\text{CH}_2 Z \text{ mit } Z = 4 \text{CH}_3 \text{C}_6 H_4 \text{CO}$, H, 2-oxo-benzopyranyl-3-carbonyl, $(CH_2)_3 - CH_3$, $4 - C_6H_5 - C_6H_4$;
 - $R^1 = R^2 = R^3 = H$; $R^4 = -CH_2 Z$ mit $Z = CH_3$, CN, 2-Naphthyl;
 - $R^1 = R^2 = H$; $R^3 = \text{para-Butoxy}$; $R^4 = -CH_2-Z$ mit $Z = 4-Cl-C_6H_5$, $C(O)-OCH_3$, $C(O)-C_6H_5$, $CH=CH_2$, $C(O)-NH_2$, H, H, H-Br-C₆H₄-CO, H-CO, H-CO,
- CO, C(O)-OC₂H₅, C(O)-O-CH₂-C₆H₅, 2-oxo-benzopyranyl-3-carbonyl, C(O)-NH-C₆H₅, CN;
 - $R^1 = R^2 = H$; $R^3 = \text{para-Brom}$; $R^4 = -CH_2-Z$ mit $Z = 4-\text{Br-C}_6H_4-\text{CO}$, 4-Cl-C₆H₄-CO, C(O)-NH₂, C(O)-OCH₃, 4-Cl-C₆H₅, 4-Br-C₆H₄-NH-CO;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2-Z$ mit $Z = 4-Br-C_6H_4-CO$, $C(O)-NH_2$, $C(O)-O-CH_2-C_6H_5$, CN;
 - $R^1 = R^2 = H$; $R^3 = \text{para-Chlor}$; $R^4 = \text{-CH}_2\text{-}Z$ mit Z = 2-Naphthyl, CH_3 ;
 - $R^1 = R^2 = H$; $R^3 = para-OCH_3$; $R^4 = -CH_2-Z$ mit Z = 2-Naphthyl, CH_3 ;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2 Z \text{ mit } Z = CH_3$.
- Besonders bevorzugte Verbindungen sind die Verbindungen der allgemeinen Formel (I),

in der:

20

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

```
Wasserstoff;
                      Hydroxy;
                       gegebenenfalls substituiertes (C1-C4)-Alkyl;
                      gegebenenfalls substituiertes Phenyl;
  5
                      gegebenenfalls substituiertes (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy;
                      -O-(CH_2)_n-CH=CH_2 \text{ mit } n=1;
                      Fluor, Chlor;
                      Nitro;
                      Cyano;
                      -C(O)-R<sup>5</sup>;
10
                      -C(O)-NR^6R^7;
                      -NR^6R^7;
                      -NR<sup>6</sup>-C(O)-R<sup>8</sup>;
                      -O-C(O)-R8;
                      -SO<sub>2</sub>-NR<sup>6</sup>R<sup>7</sup>; und
15
                      -NR<sup>6</sup>-SO<sub>2</sub>R<sup>8</sup>,
                      wobei:
                      R^5
20
                               bezeichnet:
```

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C₁-C₄)-Alkyl;

gegebenenfalls substituiertes (C₃-C₇)-Cycloalkyl;

gegebenenfalls substituiertes (C₁-C₄)-Alkoxy;

gegebenenfalls substituiertes Phenyl;

gegebenenfalls substituiertes Phenyloxy; oder

-O-(CH₂)_n-Phenyl mit n = 1,

wobei die Phenylgruppe über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C₅-C₆)-Cycloalkyl anelliert sein kann,

oder

einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus

bedeutet, der seinerseits ein- oder mehrfach mit
einer Oxogruppe (=O);
Fluor, Chlor;
gegebenenfalls substituiertem (C₁-C₄)-Alkyl;
Nitro;

Cyano;
Hydroxy;
gegebenenfalls substituiertem Phenyl; oder
mit (C₁-C₄)-Alkoxy
substituiert sein kann,

. .

oder

R⁵ für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, das ausgewählt ist aus der Gruppe von Furanyl, Pyrrolyl, Thienyl, Thiazolyl, Oxazolyl, Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl und Pyridazinyl, steht,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder gegebenenfalls substituiertem (C₅-C₆)-Cycloalkyl anelliert sein können,

und

30

20

25

R⁶ und R⁷ gleich oder verschieden sind und für

Wasserstoff;

gegebenenfalls substituiertes (C₁-C₄)-Alkyl;

gegebenenfalls substituiertes Phenyl; oder

für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, das ausgewählt ist aus der Gruppe von Furanyl, Pyrrolyl, Thienyl, Thiazolyl, Oxazolyl, Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl und Pyridazinyl,

stehen

10 oder

R⁶ und R⁷ gemeinsam mit dem Stickstoffatom, an das sie gegebenenfalls gebunden sind, einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S bilden, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann mit

einer Oxogruppe (=O);

Fluor, Chlor;

 (C_1-C_4) -Alkyl;

20 Nitro;

Cyano;

Hydroxy;

Phenyl; oder

 (C_1-C_4) -Alkoxy,

25

15

und

R⁸ NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; gegebenenfalls substituiertes (C₁-C₄)-Alkyl;

 (C_1-C_4) -Alkoxy;

gegebenenfalls substituiertes Phenyl;

Phenyloxy; oder $-O-(CH_2)_n-Phenyl mit n = 1$ bedeutet,

5 und

R⁴ für geradkettiges oder verzweigtes (C₁-C₄)-Alkyl oder (C₂-C₄)-Alkenyl steht, die gegebenenfalls ein- oder mehrfach substitutiert sind mit Hydroxy;

10 Fluor, Chlor;

Cyano;

-C(O)-R⁵ mit R⁵ wie zuvor definiert;

-C(O)-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

15 -NR⁶-C(O)-R⁸ mit R⁶ und R⁸ wie zuvor definiert;

-SO₂-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

-NR6-SO2-R8 mit R6 und R8 wie zuvor definiert;

-C(O)-(CH₂)_n-C(O)-R⁸ mit n = 0 bis 2 und R⁸ wie zuvor definiert;

 (C_1-C_4) -Alkoxy;

20 gegebenenfalls substituiertem Phenyloxy;

gegebenenfalls substituiertem 5- bis 6-gliedrigen Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, das ausgewählt ist aus der Gruppe von Furanyl, Pyrrolyl, Thienyl, Thiazolyl, Oxazolyl, Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl und Pyridazinyl;

25 gegebenenfalls substituiertem Phenyl; oder

mit einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Fluor, Chlor; (C₁-C₄)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl; oder mit

30 (C₁-C₄)-Alkoxy substituiert sein kann.

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl anelliert sein können.

5 oder

für einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Fluor, Chlor; (C₁-C₄)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl; oder mit (C₁-C₄)-Alkoxy substituiert sein kann und der gegebenenfalls über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder gegebenenfalls substituiertem (C₅-C₆)-Cycloalkyl anelliert sein kann,

15

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel (I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

20

- $R^1 = R^2 = H$; $R^3 = para-OH$; $R^4 = -CH_2-Z$ mit Z = CN, $C(O)-OC_2H_5$, $4-Br-C_6H_4-CO$, $4-n-Butyl-C_6H_4-CO$, H, C_6H_5 , $C(O)-O-CH_2-C_6H_5$, $C(O)-OCH_3$, C(O)-OH, 2-oxo-benzo-pyranyl-3-carbonyl, $4-Cl-C_6H_4-CO$, $3-Br-C_6H_4-CO$, $4-C_6H_5-C_6H_4-CO$, $4-CH_3-C_6H_4-CO$, $3,4-Cl_2-C_6H_3-CO$;
- $R^1 = R^2 = H$; $R^3 = \text{meta-OH}$; $R^4 = -CH_2$ -Z mit Z = 4-Br-C₆H₄-NH-CO, 2-oxobenzo-pyranyl-3-carbonyl, 4-Cl-C₆H₄-CO;
 - $R^1 = R^2 = H$; $R^3 = \text{para-O-C(O)-CH}_3$; $R^4 = -\text{CH}_2\text{-Z}$ mit $Z = 4\text{-CH}_3\text{-C}_6H_4\text{-CO}$, H, 2-oxo-benzopyranyl-3-carbonyl, $4\text{-C}_6H_5\text{-C}_6H_4$;
 - $R^1 = R^2 = R^3 = H$; $R^4 = -CH_2 Z$ mit $Z = CH_3$, CN;
- 30 $R^1 = R^2 = H$; $R^3 = \text{para-Butoxy}$; $R^4 = -CH_2$ -Z mit Z = 4-Cl-C₆H₅, C(O)-OCH₃, C(O)-C₆H₅, CH=CH₂, C(O)-NH₂, H, 4-Br-C₆H₄-CO, 4-Cl-C₆H₄-CO,

C(O)- OC_2H_5 , C(O)-O- CH_2 - C_6H_5 , 2-oxo-benzopyranyl-3-carbonyl, C(O)-NH- C_6H_5 , CN;

- $R^1 = R^2 = H$; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2-Z$ mit $Z = 4-Br-C_6H_4-CO$, $C(O)-NH_2$, $C(O)-O-CH_2-C_6H_5$, CN;
- $R^1 = R^2 = H$; $R^3 = \text{para-Chlor}$; $R^4 = -CH_2 Z \text{ mit } Z = CH_3$;
 - $R^1 = R^2 = H$; $R^3 = para-OCH_3$; $R^4 = -CH_2-Z$ mit $Z = CH_3$;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2 Z$ mit $Z = CH_3$.

Erfindungsgemäß insbesondere bevorzugt sind Verbindungen der allgemeinen 10 Formel (I),

in der:

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

Methyl;

Trifluormethyl;

20 Methoxy;

Resten der Formeln -O-CH2-CH2-OH, -O-CH2-COOH oder

-O-CH₂-CH=CH₂;

Fluor, Chlor oder Brom;

Nitro;

25 Cyano;

-C(O)OH oder -C(O)OCH₃;

-C(O)NH₂;

-NH₂;

-NH-C(O)-CH₃;

30 -O-C(O)-CH₃ oder -O-C(O)-C₂H₅;

Resten der Formeln

und

-NH-SO₂CH₃ oder -NH-SO₂C₆H₅,

5

und

R⁴ für geradkettiges oder verzweigtes (C₁-C₄)-Alkyl steht, das gegebenenfalls ein- oder mehrfach substitutiert ist mit

10 Hydroxy;

Amino;

-C(O)-OCH₃;

-C(O)-NH₂, -C(O)-HNCH₃, -C(O)-HNC₂H₅, oder -C(O)-HNC₆H₅;

-NHC(O)NH₂, -NHC(O)NHCH₃, -NHC(O)NHC₂H₅, -NHC(O)OCH₃ oder

15 -NHC(O)OC₂H₅;

 $-SO_2-NH_2$;

-NH-SO₂-CH₃ oder -NH-SO₂-C₂H₅;

-OCH₃;

Phenyl, das durch Nitro, Cyano, Fluor, Methoxy, Difluormethoxy,

Methoxycarbonyl oder p-Tolylsulfonylmethyl substituiert sein kann;

Pyridyl, Furyl, Imidazolyl, Benzimidazolyl oder Thiazolyl, die jeweils einoder zweifach gleich oder verschieden durch Methyl, Nitro oder Chlor substituiert sein können;

Oxadiazolyl, das durch Phenyl oder Methoxyphenyl substituiert sein kann;

25 oder

20

einem Rest der Formel

oder

5 R⁴ für Allyl oder 3,3-Dimethylallyl steht,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel (I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

- $R^1 = R^2 = H$; $R^3 = para-OH$; $R^4 = -CH_2-Z$ mit Z = H, C_6H_5 , $C(O)-OCH_3$;
- $R^1 = R^2 = H$; $R^3 = para-O-C(O)-CH_3$; $R^4 = -CH_2-Z$ mit Z = H;
- $R^1 = R^2 = R^3 = H$; $R^4 = -CH_2-Z$ mit $Z = CH_3$;
- $R^1 = R^2 = H$; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2-Z$ mit $Z = C(O)-NH_2$;
- $R^1 = R^2 = H$; $R^3 = \text{para-Chlor}$; $R^4 = -CH_2$ -Z mit $Z = CH_3$;
 - $R^1 = R^2 = H$; $R^3 = para-OCH_3$; $R^4 = -CH_2-Z$ mit $Z = CH_3$;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2-Z$ mit $Z = CH_3$.

Erfindungsgemäß ganz besonders bevorzugt sind Verbindungen der allgemeinen 20 Formel (I),

in der:

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

Methyl;

- 29 -

Methoxy;

Resten der Formeln -O-CH2-CH2-OH, -O-CH2-COOH oder

-O-CH₂-CH=CH₂;

Fluor oder Chlor;

5 Nitro;

Cyano;

-C(O)OH oder -C(O)OCH₃;

-C(O)NH₂;

- NH₂;

10 -NH-C(O)CH₃;

-O-C(O)-CH₃ oder -O-C(O)-C₂H₅;

Resten der Formeln

15 und

-NH-SO₂CH₃ oder -NH-SO₂C₆H₅,

und

20 R⁴ für geradkettiges oder verzweigtes (C₁-C₄)-Alkyl steht, das gegebenenfalls ein- oder mehrfach substitutiert ist mit

Hydroxy;

Amino;

-C(O)-OCH3;

25 -C(O)-NH₂, -C(O)-HNC₁, -C(O)-HNC₂H₅, oder -C(O)-HNC₆H₅;

-NHC(O)NH₂, -NHC(O)NHCH₃, -NHC(O)NHC₂H₅, -NHC(O)OCH₃ oder

-NHC(O)OC₂H₅;

-SO₂-NH₂;

-NH-SO₂-CH₃ oder -NH-SO₂-C₂H₅;

30 -OCH₃;

Phenyl; ortho-Nitrophenyl; oder einem Rest der Formel

5

15

oder

R⁴ für Allyl steht,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel (I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

•
$$R^1 = R^2 = H$$
; $R^3 = para-OH$; $R^4 = -CH_2-Z$ mit $Z = H$, C_6H_5 , $C(O)-OCH_3$;

•
$$R^1 = R^2 = H$$
; $R^3 = para-O-C(O)-CH_3$; $R^4 = -CH_2-Z$ mit $Z = H$;

•
$$R^1 = R^2 = R^3 = H$$
; $R^4 = -CH_2-Z$ mit $Z = CH_3$;

•
$$R^1 = R^2 = H$$
; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2 - Z \text{ mit } Z = C(O) - NH_2$;

•
$$R^1 = R^2 = H$$
; $R^3 = \text{para-Chlor}$; $R^4 = -CH_2 - Z \text{ mit } Z = CH_3$;

•
$$R^1 = R^2 = H$$
; $R^3 = para-OCH_3$; $R^4 = -CH_2-Z$ mit $Z = CH_3$;

20 •
$$R^1 = R^2 = H$$
; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2-Z$ mit $Z = CH_3$.

Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung der Verbindungen der allgemeinen Formel (I).

Gemäß einer ersten Variante des erfindungsgemäßen Verfahrens erfolgt die Herstellung der Verbindungen der allgemeinen Formel (I), indem man

Verbindungen der allgemeinen Formel (II)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{3

in welcher die Reste R¹, R² und R³ die zuvor angegebene Bedeutung haben,

5

mit Verbindungen der allgemeinen Formel (III)

$$R^4$$
-X (III),

in welcher R⁴ die zuvor angegebene Bedeutung hat

und

X für eine nucleofuge Gruppe (vorzugsweise für Halogen, insbesondere Chlor, Brom oder Iod, oder für Mesylat, Tosylat, Triflat oder 1-Imidazolyl) steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base, umsetzt.

Das zuvor beschriebene Verfahren kann durch folgendes Formelschema beispielhaft 20 erläutert werden:

10

Für den Fall, dass in der allgemeinen Formel (I) der Rest R⁴ die Bedeutung von

Alkyl, substituiert durch die Reste -NR 6 -C(O)-R 8 , -NR 6 -C(O)-NR 6 R 7 , -NR 6 -SO $_2$ -R 8

hat, wobei die Reste R⁶, R⁷ und R⁸ wie zuvor definiert sind,

können gemäß einer zweiten Variante des erfindungsgemäßen Verfahrens die Verbindungen der allgemeinen Formel (I) auch alternativ dadurch hergestellt werden, dass zunächst die Verbindungen der allgemeinen Formel (II) mit 2-Bromethylamin zu den Verbindungen der allgemeinen Formel (IV) umgesetzt werden

$$\begin{array}{c|c}
R^{1} & R^{2} \\
 & R^{3} \\
 & CN \\
 & H_{2}N & N \\
 & N$$

und diese dann mit Verbindungen der allgemeinen Formel

$$R^9-Y$$
 (V),

in welcher

20

15

R⁹ die Bedeutung -C(O)-R⁸, -C(O)-O-R⁸, -C(O)-NR⁶R⁷, -SO₂-R⁸ mit R⁸ wie zuvor definiert hat

und

Y für eine nucleofuge Gruppe steht, vorzugsweise für Halogen, insbesondere Chlor, Brom oder Iod, oder für Mesylat, Tosylat, Triflat oder 1-Imidazolyl,

oder aber

5

20

25

R⁹ die Bedeutung R⁶ hat

und

10 Y für die Gruppe O=C=N- steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base, umgesetzt werden.

Die zuvor beschriebene zweite Variante des erfindungsgemäßen Verfahrens kann durch folgendes Formelschema beispielhaft erläutert werden:

$$\begin{array}{c} R^{1} \\ R^{2} \\ R^{3} \\$$

Die nucleofuge Gruppe X, bisweilen auch als Abgangs- oder Austrittsgruppe bezeichnet, kann der Reaktion separat zugeführt werden oder aber auch nach üblichen Methoden in situ generiert werden, z.B. über die sogenannte Mitsunobu-Reaktion.

Als Lösemittel für das erfindungsgemäße Verfahren eignen sich alle organischen Lösemittel, die unter den Reaktionsbedingungen inert sind. Hierzu gehören Alkohole wie Methanol, Ethanol und Isopropanol, Ketone wie Aceton und Methylethylketon,

acyclische und cyclische Ether wie Diethylether und Tetrahydrofuran, Ester wie Essigsäureethylester oder Essigsäurebutylester, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan oder Cyclohexan, Dimethylformamid, Acetonitril, Pyridin, Dimethylsulfoxid (DMSO), chlorierte Kohlenwasserstoffe wie Dichlormethan, Chlorbenzol oder Dichlorethan oder Hexamethylphosphorsäuretriamid. Wasser ist als Lösemittel ebenso geeignet. Besonders bevorzugt ist Dimethylformamid. Ebenso ist es möglich, Gemische der zuvor genannten Lösemittel einzusetzen.

Als Basen eignen sich die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkalihydroxide wie beispielsweise Natrium- oder Kalium-hydroxid oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat oder Natrium- oder Kaliumhydrogencarbonat oder Natrium- oder Kaliumethanolat oder Natrium- oder Kaliumethanolat oder Kalium-tert.-butylat oder aber Amide wie Natriumamid, Lithium-bis-(trimethylsilyl)amid oder Lithiumdiisopropylamid oder metallorganische Verbindungen wie Butyllithium oder Phenyllithium oder aber auch Amine wie Triethylamin und Pyridin. Bevorzugt sind die Alkalicarbonate und -hydrogencarbonate.

Die Base kann hierbei in einer Menge von 1 bis 10 Mol, bevorzugt von 1 bis 5 Mol, insbesondere 1 bis 4 Mol, bezogen auf 1 Mol der Verbindungen der allgemeinen Formel (II) bzw. (IV) eingesetzt werden.

Die Reaktion erfolgt im allgemeinen in einem Temperaturbereich von -78°C bis zur Rückflusstemperatur, bevorzugt im Bereich von -78°C bis +40°C, insbesondere bei Raumtemperatur.

Die Umsetzung kann bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

20

25

Dem Fachmann sind zahlreiche Abwandlungen von den zuvor genannten Bedingungen geläufig, die im durchschnittlichen fachmännischen Können liegen und den Rahmen der vorliegenden Erfindung nicht verlassen.

- Die Verbindungen der allgemeinen Formeln (II) sind dem Fachmann ebenfalls an sich bekannt oder nach üblichen, literaturbekannten Methoden herstellbar. Insbesondere kann auf die folgenden Druckschriften verwiesen werden, deren jeweiliger Inhalt durch Bezugnahme eingeschlossen wird:
 - Dyachenko et al., Russian Journal of Chemistry, Vol. 33, No. 7, 1997,
 Seiten 1014-1017 und Vol. 34, No. 4, 1998, Seiten 557-563;
 - Dyachenko et al., Chemistry of Heterocyclic Compounds, Vol. 34, No. 2, 1998, Seiten 188-194;
 - Qintela et al., European Journal of Medicinal Chemistry, Vol. 33, 1998,
 Seiten 887-897;
- Kandeel et al., Zeitschrift für Naturforschung 42b, 107-111 (1987).

Die Verbindungen der allgemeinen Formel (II) können auch aus Verbindungen der allgemeinen Formel (VI) durch Umsetzung mit einem Alkalisulfid hergestellt werden. Diese Herstellungsmethode kann durch folgendes Formelschema beispielhaft erläutert werden:

$$R^{1}$$
 R^{2}
 R^{3}
 R^{1}
 R^{3}
 R^{3

Als Alkalisulfid wird vorzugsweise Natriumsulfid in einer Menge von 1 bis 10 Mol, bevorzugt 1 bis 5 Mol, insbesondere 1 bis 4 Mol, bezogen auf 1 Mol der Verbindungen der allgemeinen Formel (VI) eingesetzt.

Als Lösungsmittel geeignet sind alle organischen Lösungsmittel, die unter den Reaktionsbedingungen inert sind. Hierzu gehören N,N-Dimethylformamid, N-Methylpyrrolidinon, Hexamethylphosphorsäuretriamid, Pyridin und Acetonitril. Besonders bevorzugt ist N,N-Dimethylformamid. Ebenso ist es möglich, Gemische der zuvor genannten Lösungsmittel einzusetzen.

Die Reaktion erfolgt im allgemeinen in einem Temperaturbereich von +20°C bis zur Rückflusstemperatur, bevorzugt im Bereich von +20°C bis +120°C, insbesondere bei +60°C bis +100°C.

Die Umsetzung kann bei normalem, erhöhtem oder erniedrigtem Druck durchgeführt werden (z.B. im Bereich von 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

15

30

10

5

Dem Fachmann sind zahlreiche Abwandlungen von den zuvor genannten Bedingungen geläufig, die im durchschnittlichen fachmännischen Können liegen und den Rahmen der vorliegenden Erfindung nicht verlassen.

- Die Verbindungen der allgemeinen Formeln (VI) sind dem Fachmann ebenfalls an sich bekannt oder nach üblichen, literaturbekannten Methoden herstellbar. Insbesondere kann auf die Druckschrift Kambe et al., Synthesis, 531 (1981) verwiesen werden, deren Inhalt durch Bezugnahme eingeschlossen wird.
- Die Verbindungen der allgemeinen Formeln (III) oder (V) sind entweder käuflich oder dem Fachmann an sich bekannt oder nach üblichen Methoden herstellbar.

Uberraschenderweise zeigen die Verbindungen der allgemeinen Formel (I) ein nicht vorhersehbares, wertvolles pharmakologisches Wirkspektrum und sind daher insbesondere zur Prophylaxe und/oder Behandlung von Erkrankungen geeignet.

Denn es wurde nun in unerwarteter Weise gefunden, dass die Substanzen der obenstehenden Formel (I) geeignet sind zur Prophylaxe und/oder Behandlung einer ganzen Reihe von Erkrankungen, so z.B. insbesondere Erkrankungen des Herzkreislaufsystems (kardiovaskulären Erkrankungen); Erkrankungen des Urogenitalbereichs; Erkrankungen der Atemwege; inflammatorischen und neuroinflammatorischen Erkrankungen; Diabetes, insbesondere Diabetes mellitus; Krebs; und schließlich auch von neurodegenerativen Erkrankungen, wie z.B. Morbus Parkinson, sowie von Schmerzzuständen.

Im Sinne der vorliegenden Erfindung sind unter Erkrankungen des Herz-KreislaufSystems bzw. kardiovaskulären Erkrankungen beispielsweise insbesondere die
folgenden Erkrankungen zu verstehen: Koronare Herzkrankheit; Hypertonie (Bluthochdruck); Restenose wie z.B. Restenose nach Ballondilatation von peripheren
Blutgefäßen; Arteriosklerose; Tachykardien; Arrhythmien; periphere und kardiale

Gefäßerkrankungen; stabile und instabile Angina pectoris; und Vorhofflimmern.

Weiterhin eignen sich die Verbindungen der allgemeinen Formel (I) auch zur Reduktion des von einem Infarkt betroffenen Myokardbereichs.

- Des weiteren eignen sich die Verbindungen der allgemeinen Formel (I) zur Behandlung und Prophylaxe von thromboembolischen Erkrankungen und Ischämien wie
 Myokardinfarkt, Hirnschlag, transitorischen ischämischen Attacken.
- Ein weiteres Indikationsgebiet, für das sich die Verbindungen der allgemeinen Formel (I) eignen, sind die Prophylaxe und/oder Therapie von Erkrankungen des Urogenitalbereiches, wie z.B. Reizblase, erektile Dysfunktion und weibliche sexuelle Dysfunktion, daneben aber auch die Prophylaxe und/oder Behandlung von inflammatorischen Erkrankungen, wie z.B. Asthma und entzündlichen Dermatosen, von neuroinflammatorischen Erkrankungen des Zentralnervensystems, wie beispielsweise Zustände nach Hirninfarkt, die Alzheimer-Erkrankung, weiterhin auch neurodegenerative Erkrankungen wie die Parkinson-Erkrankung, sowie von Schmerzzuständen.

Ein weiteres Indikationsgebiet sind Erkrankungen der Atemwege wie beispielsweise Asthma, chronische Bronchitis, Lungenemphysem, Bronchiektasien, zystische Fibrose (Mukoviszidose) und pulmonale Hypertonie.

5

10

15.

20

25

Des weiteren kommen die Verbindungen der allgemeinen Formel (I) auch für die Prophylaxe und/oder Therapie von Leberfibrose und Leberzirrhose in Betracht.

Schließlich kommen die Verbindungen der allgemeinen Formel (I) auch für die Prophylaxe und/oder Therapie von Diabetes, insbesondere Diabetes mellitus, in Betracht.

Die vorliegende Erfindung betrifft somit auch die Verwendung der Substanzen der allgemeinen Formel (I) zur Herstellung von Arzneimitteln und pharmazeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung der zuvor genannten Krankheitsbilder.

Die vorliegende Erfindung betrifft weiterhin ein Verfahren zur Prophylaxe und/oder Behandlung der zuvor genannten Krankheitsbilder mit den Substanzen der allgemeinen Formel (I).

Die pharmazeutische Wirksamkeit der zuvor genannten Verbindungen der allgemeinen Formel (I) lässt sich durch ihre Wirkung als selektive Liganden an einzelnen oder mehreren Subtypen der Adenosin-Rezeptoren, insbesondere als selektive Liganden an Adenosin-A1-, Adenosin-A2a- und/oder Adenosin-A2b-Rezeptoren, vorzugsweise als selektive Liganden an Adenosin-A1- und/oder Adenosin-A2b-Rezeptoren erklären.

Als "selektiv" werden im Rahmen der vorliegenden Erfindung solche Adenosinrezeptor-Liganden bezeichnet, bei denen einerseits eine deutliche Wirkung an einem oder mehreren Adenosin-Rezeptor-Subtypen und andererseits keine oder eine deutliche schwächere Wirkung an einem oder mehreren anderen Adenosin-Rezeptor-Subtypen zu beobachten ist, wobei bezüglich der Testmethoden für die Wirk-Selektivität Bezug genommen wird auf die im Abschnitt A. II. beschriebenen Testmethoden.

5

10

15

Gegenüber Adenosinrezeptor-Liganden des Standes der Technik wirken die Substanzen der allgemeinen Formel (I) viel selektiver. So wirken beispielsweise Verbindungen der allgemeinen Formel (I), worin R⁴ für (C₁-C₄)-Alkyl steht, das durch eine Gruppe der Formel -C(O)NR⁶R⁷ substituiert ist, wobei R⁶ und R⁷ gleich oder verschieden sind und Wasserstoff oder gegebenenfalls substituiertes (C₁-C₃)-Alkyl bedeuten, im allgemeinen selektiv an Adenosin-A2b-Rezeptoren.

Verbindungen der allgemeinen Formel (I), worin R⁴ für (C₁-C₄)-Alkyl steht, das durch eine oder mehrere Hydroxygruppen substituiert ist, wirken andererseits im allgemeinen selektiv an Adenosin-Al-Rezeptoren.

Verbindungen der allgemeinen Formel (I), worin R⁴ für (C₁-C₄)-Alkyl steht, das durch Imidazolyl oder gegebenenfalls substituiertes Benzyl substituiert ist, wirken wiederum im allgemeinen selektiv an Adenosin-A1- und Adenosin-A2b-Rezeptoren.

20

25

30

Diese Rezeptorselektivität kann bestimmt werden durch die biochemische Messung des intrazellulären Botenstoffes cAMP in Zellen, die spezifisch nur einen Subtyp der Adenosinrezeptoren exprimieren. Im Falle von Agonisten wird dabei ein Anstieg des intrazellulären cAMP-Gehaltes, im Falle von Antagonisten eine Abnahme des intrazellulären cAMP-Gehaltes nach Vorstimulation mit Adenosin oder Adenosin ähnlichen Substanzen beobachtet (siehe Druckschriften B. Kull, G. Arslan, C. Nilsson, C. Owman, A. Lorenzen, U. Schwabe, B.B. Fredholm, "Differences in the order of potency for agonists but not antagonists at human and rat adenosine A2A receptors", Biochem. Pharmacol., 57 (1999) Seiten 65-75; und S.P. Alexander, J. Cooper, J. Shine, S.J. Hill, "Characterization of the human brain putative A2B adenosine receptor expressed in Chinese hamster ovary (CHO.A2B4) cells", Br. J.

Pharmacol., 119 (1996) Seiten 1286-90, deren jeweilige Offenbarung hiermit durch Bezugnahme eingeschlossen ist).

Daher ist Gegenstand der vorliegenden Erfindung auch die Verwendung von selektiven Adenosin-Rezeptorliganden, insbesondere von selektiven Adenosin-A1-, Adenosin-A2a- und/oder Adenosin-A2b-Rezeptorliganden, zur Herstellung von Arzneimitteln und pharmazeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung von Erkrankungen, so z.B. insbesondere Erkrankungen des Herzkreislaufsystems (kardiovaskulären Erkrankungen); Erkrankungen des Urogenitalbereichs; inflammatorischen und neuroinflammatorischen Erkrankungen; neurodegenerativen Erkrankungen; Erkrankungen der Atemwege; Leberfibrose, Leberzirrhose; Krebs; und schließlich Diabetes, insbesondere Diabetes mellitus, wobei bezüglich der einzelnen Indikationsgebiete auch auf die obigen Ausführungen verwiesen wird.

15

20

25

5

10

So eignen sich Verbindungen der allgemeinen Formel (I), die selektiv an Adenosin-A1-Rezeptoren binden, bevorzugt zur Myokard-Protektion und zur Prophylaxe und/oder Behandlung von Tachykardien, Vorhof-Arrhythmien, der Herzinsuffizienz, von akutem Nierenversagen, Diabetes sowie von Schmerzzuständen. Verbindungen der allgemeinen Formel (I), die selektiv an Adenosin-A2a-Rezeptoren binden, sind andererseits bevorzugt zur Prophylaxe und/oder Behandlung von thrombo-embolischen Erkrankungen, von neurodegenerativen Erkrankungen wie Morbus Parkinson sowie zur Wundheilung geeignet. Verbindungen der allgemeinen Formel (I), die selektiv an Adenosin-A2b-Rezeptoren binden, wiederum eignen sich bevorzugt zur Prophylaxe und/oder Therapie der Leberfibrose, des Herzinfarkts, von neuroinflammatorischen Erkrankungen, der Alzheimer-Erkrankung, von urogenitaler Inkontinenz sowie von Atemwegserkrankungen wie beispielsweise Asthma und chronischer Bronchitis.

30

Weiterer Gegenstand der vorliegenden Erfindung sind also Arzneimittel und pharmazeutische Zusammensetzungen, die mindestens einen selektiven Adenosinund/oder Adenosin-A2b-Rezeptorliganden, vorzugsweise mindestens eine Verbindung der allgemeinen Formel (I), zusammen mit einem oder mehreren pharmakologisch unbedenklichen Hilfs- oder Trägerstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.

5

Für die Applikation der Verbindungen der allgemeinen Formel (I) kommen alle üblichen Applikationsformen in Betracht, d.h. also oral, parenteral, inhalativ, nasal, sublingual, rektal oder äußerlich wie z.B. transdermal, insbesondere bevorzugt oral oder parenteral. Bei der parenteralen Applikation sind insbesondere intravenöse, intramuskuläre, subkutane Applikation zu nennen, z.B. als subkutanes Depot. Ganz besonders bevorzugt ist die orale Applikation.

10

15

Hierbei können die Wirkstoffe allein oder in Form von Zubereitungen verabreicht werden. Für die orale Applikation eignen sich als Zubereitungen u.a. Tabletten, Kapseln, Pellets, Dragees, Pillen, Granulate, feste und flüssige Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen. Hierbei muss der Wirkstoff in einer solchen Menge vorliegen, dass eine therapeutische Wirkung erzielt wird. Im allgemeinen kann der Wirkstoff in einer Konzentration von 0,1 bis 100 Gew.-%, insbesondere 0,5 bis 90 Gew.-%, vorzugsweise 5 bis 80 Gew.-%, vorliegen. Insbesondere sollte die Konzentration des Wirkstoffs 0,5 – 90 Gew.-% betragen, d.h. der Wirkstoff sollte in Mengen vorliegen, die ausreichend sind, den angegebenen Dosierungsspielraum zu erreichen.

20

Zu diesem Zweck können die Wirkstoffe in an sich bekannter Weise in die üblichen Zubereitungen überführt werden. Dies geschieht unter Verwendung inerter, nichttoxischer, pharmazeutisch geeigneter Trägerstoffe, Hilfsstoffe, Lösungsmittel, Vehikel, Emulgatoren und/oder Dispergiermittel.

25

Als Hilfsstoffe seien beispielsweise aufgeführt: Wasser, nichttoxische organische Lösungsmittel wie z.B. Paraffine, pflanzliche Öle (z.B. Sesamöl), Alkohole (z.B. Ethanol, Glycerin), Glykole (z.B. Polyethylenglykol), feste Trägerstoffe wie natür-

30

liche oder synthetische Gesteinsmehle (z.B. Talkum oder Silikate), Zucker (z.B. Milchzucker), Emulgiermittel, Dispergiermittel (z.B. Polyvinylpyrrolidon) und Gleitmittel (z.B. Magnesiumsulfat).

- Im Falle der oralen Applikation können Tabletten selbstverständlich auch Zusätze wie Natriumcitrat zusammen mit Zuschlagstoffen wie Stärke, Gelatine und dergleichen enthalten. Wässrige Zubereitungen für die orale Applikation können weiterhin mit Geschmacksaufbesserern oder Farbstoffen versetzt werden.
- Im allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0,1 bis etwa 10.000 μg/kg, vorzugsweise etwa 1 bis etwa 1.000 μg/kg, insbesondere etwa 1 μg/kg bis etwa 100 μg/kg Körpergewicht, zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Menge etwa 0,1 bis etwa 10 mg/kg, vorzugsweise etwa 0,5 bis etwa 5 mg/kg, insbesondere etwa 1 bis etwa 4 mg/kg Körpergewicht.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt.

Die vorliegende Erfindung wird an den folgenden Beispielen veranschaulicht, die die Erfindung jedoch keinesfalls beschränken, sondern nur helfen sollen, die Erfindung besser zu verstehen.

A. Bewertung der physiologischen Wirksamkeit

I. Nachweis der kardiovaskulären Wirkung Langendorff-Herz der Ratte:

5

Narkotisierten Ratten wird nach Eröffnung des Brustkorbes das Herz schnell entnommen und in eine konventionelle Langendorff-Apparatur eingeführt. Die Koronararterien werden volumenkonstant (10 ml/min) perfundiert und der dabei auftretende Perfusionsdruck wird über einen entsprechenden Druckaufnehmer registriert. Eine Abnahme des Perfusionsdrucks in dieser Anordnung entspricht einer Relaxation der Koronararterien. Gleichzeitig wird über einen in die linke Herzkammer eingeführten Ballon und einen weiteren Druckaufnehmer der Druck gemessen, der vom Herzen während jeder Kontraktion entwickelt wird. Die Frequenz des isoliert schlagenden Herzens wird rechnerisch aus der Anzahl der Kontraktionen pro Zeiteinheit ermittelt.

. 15

20

10

In dieser Versuchsanordnung wurden folgende Werte für den koronaren Perfusionsdruck erhalten (der prozentual angegebene Wert bezieht sich auf die prozentuale Absenkung des koronaren Perfusionsdruckes bei der jeweiligen Konzentration):

	Prozentuale Absenkung des koronaren Perfusionsdruckes bei einer Konzentration von		
Verwendete Verbindung der Formel (I)		:	
R^1 R^2 R^3 R R	10 ⁻⁷ g/ml	10 ⁻⁶ g/ml	
H ₂ N N S R ⁴			
$R^{1} = R^{2} = H$ $R^{3} = para-CH_{3}$	kein Effekt beobachtet	ca. 26 %	
$R^4 = -CH_2-CH(OH)(CH_2OH)$ (Verbindung aus Beispiel A 198)		:	
$R^{1} = R^{2} = H$ $R^{3} = para-CH_{3}$ $R^{4} = -CH_{2}-Phenyl$ (Verbindung aus Beispiel A 189)	kein Effekt beobachtet	ca. 37 %	
$R^{1} = R^{2} = H$ $R^{3} = meta-OH$ $R^{4} = -CH_{2}-CH_{2}OH$ (Verbindung aus Beispiel A 43)	ca. 42 %	ca. 68 %	
$R^{1} = R^{2} = H$ $R^{3} = para-OH$ $R^{4} = -CH_{2}-CH_{2}OH$ (Verbindung aus Beispiel 21)	ca. 40 %	ca. 75 %	
$R^1 = R^2 = H$ $R^3 = para-OH$ $R^4 = 2-Imidazolylmethyl$ (Verbindung aus Beispiel A 379)	ca. 64 %	ca. 63 %	

Die getesteten Substanzen hatten in den angegebenen Konzentrationen weder eine Wirkung auf den während der Kontraktion entwickelten Druck in der linken Herzkammer noch auf die Herzfrequenz. Dadurch konnte gezeigt werden, dass die Substanzen selektiv nur auf die Koronardurchblutung wirken.

II. Nachweis der Rezeptorselektivität (Adenosin-A1-, A2a-, A2b- und A3-Rezeptorselektivität)

Zellen der permanenten Linie CHO (Chinese Hamster Ovary) wurden stabil mit der cDNA für die Adenosin-Rezeptor-Subtypen A1, A2a, A2b und A3 transfiziert. Die Bindung der Substanzen an die A2a- oder A2b-Rezeptorsubtypen wurde bestimmt durch Messung des intrazellulären cAMP-Gehaltes in diesen Zellen mit einem konventionellen radioimmunologischen Assay (cAMP-RIA, IBL GmbH, Hamburg, Deutschland).

10

15

5

Im Falle der Wirkung der Substanzen als Agonisten kommt es als Ausdruck der Bindung der Substanzen zu einem Anstieg des intrazellulären cAMP-Gehaltes. Als Referenzverbindung diente in diesen Experimenten die Adenosin-analoge Verbindung NECA (5-N-Ethylcarboxamido-adenosin), die nicht selektiv, aber mit hoher Affinität an alle Adenosin-Rezeptor-Subtypen bindet und eine agonistische Wirkung besitzt (Klotz, K.N., Hessling, J., Hegler, J., Owman, C., Kull, B., Fredholm, B.B., Lohse, M.J., Comparative pharmacology of human adenosine receptor subtypes - characterization of stably transfected receptors in CHO cells, Naunyn Schmiedebergs Arch Pharmacol, 357 (1998), 1-9).

20

25

Die Adenosin-Rezeptoren A1 und A3 sind an ein Gi-Protein gekoppelt, d.h. eine Stimulation dieser Rezeptoren führt zu einer Inhibition der Adenylatcyclase und somit zu einer Senkung des intrazellulären cAMP-Spiegels. Zur Identifizierung von A1/A3-Rezeptor-Agonisten wird die Adenylatcyclase mit Forskolin stimuliert. Eine zusätzliche Stimulation der A1/A3-Rezeptoren hemmt jedoch die Adenylatcyclase, so dass A1/A3-Rezeptor-Agonisten über einen vergleichsweise geringen Gehalt der Zelle an cAMP detektiert werden können.

30

Für den Nachweis einer antagonistischen Wirkung an Adenosin-Rezeptoren wurden die mit dem entsprechenden Rezeptor transfizierten, rekombinanten Zellen mit NECA vorstimuliert und die Wirkung der Substanzen auf eine Reduktion des intra-

zellulären cAMP-Gehalts durch diese Vorstimulation untersucht. Als Referenzverbindung diente in diesen Experimenten XAC (xanthine amine congener), die nicht selektiv, aber mit hoher Affinität an alle Adenosinrezeptor-Subtypen bindet und eine antagonistische Wirkung besitzt (Müller, C.E., Stein, B., Adenosine receptor antagonists: structures and potential therapeutic applications, Current Pharmaceutical Design, 2 (1996), 501-530).

In den nachstehenden Experimenten wurde der intrazelluläre cAMP-Gehalt in CHOZellen, die mit der cDNA für den A2b-Rezeptor transfiziert wurden, bestimmt.

Angegeben ist die prozentuale cAMP-Konzentration in allen Zellen einer Vertiefung einer Mikrotiterplatte bezogen auf den Kontrollwert ohne Substanzeinwirkung:

·	Konzentration des intrazellulären cAMP in				
	Prozent bei einer Konzentration von				
Verwendete Verbindung der					
Formel (I)					
R ¹ R ² R ³ NC CN CN S-R ⁴	10 ⁻⁹ M	10 ⁻⁸ M	10 ⁻⁷ M	10 ⁻⁶ M	10 ⁻⁵ M
NECA (Referenz)	363	340	858	1226	1263
$R^1 = R^2 = H$ $R^3 = \text{para-OH}$ $R^4 = -\text{CH}_2\text{-C(O)NH}_2$ (Verbindung aus Beispiel A 1)		·	837	947	900
$R^1 = R^2 = H$			253	432	384
R^3 = para-OH R^4 = -CH ₂ -CH ₂ OH (Verbindung aus Beispiel 21)		·	200		
$R^1 = R^2 = H$ $R^3 = \text{meta-OH}$ $R^4 = -\text{CH}_2\text{-CH}_2\text{OH}$ (Verbindung aus Beispiel A 43)			347	674	784
$R^1 = R^2 = H$ $R^3 = meta-OH$ $R^4 = -CH_2-CH(CH3)OH$ (Verbindung aus Beispiel A 46)			463	716	753
$R^1 = R^2 = H$ $R^3 = H$ $R^4 = -CH_2-CH_2OH$ (Verbindung aus Beispiel A 104)	100	178	438	586	571
$R^1 = R^2 = H$ $R^3 = para-OH$ $R^4 = 2-Imidazolylmethyl$ (Verbindung aus Beispiel A 379)	870	846	861	936	1140

Die Wirkung aller Substanzen konnte in diesen Experimenten durch den unselektiven, aber für Adenosin-Rezeptoren hochspezifischen Antagonisten XAC blockiert werden.

In den folgenden Experimenten wurde der intrazelluläre cAMP-Gehalt in CHO-Zellen, die mit der cDNA für den A2a-Rezeptor transfiziert wurden, bestimmt. Angegeben ist die prozentuale cAMP-Konzentration in allen Zellen einer Vertiefung einer Mikrotiterplatte bezogen auf den Kontrollwert ohne Substanzeinwirkung:

5

	Konzentration des intrazellulären cAMP in				
<u>' </u>	Prozent bei einer Konzentration von				
Verwendete Verbindung der					
Formel (I)					
R ¹ R ² R ³ NC CN	10 ⁻⁹ M	10 ⁻⁸ M	10 ⁻⁷ M	10 ⁻⁶ M	10 ⁻⁵ M
H ₂ N N S R ⁴					
NECA (Referenz)	585	800	1301	1992	2075
$R^{1} = R^{2} = H$ $R^{3} = para-OH$			92	117	208
$R^4 = -CH_2-C(O)NH_2$ (Verbindung aus Beispiel A 1)					
$R^1 = R^2 = H$ $R^3 = para-OH$			143	117	
$R^4 = -CH_2-CH_2OH$ (Verbindung aus Beispiel 21)		•			
$R^1 = R^2 = H$ $R^3 = \text{meta-OH}$			117	200	317
R ⁴ = -CH ₂ -CH ₂ OH (Verbindung aus Beispiel A 43)	·				
$R^1 = R^2 = H$ $R^3 = \text{meta-OH}$ $R^4 = -\text{CH}_2\text{-CH(CH3)OH}$			67	108	183
(Verbindung aus Beispiel A 46) $R^{1} = R^{2} = H$					
$R^3 = H$ $R^4 = -CH_2-CH_2OH$	104	107	107	146	212
(Verbindung aus Beispiel A 104) $R^{1} = R^{2} = H$ $R^{3} = para-OH$	93	160	218	235	291
R ⁴ = 2-Imidazolylmethyl (Verbindung aus Beispiel A 379)					·

Die Wirkung aller Substanzen konnte in diesen Experimenten durch den unselektiven, aber für Adenosin-Rezeptoren hochspezifischen Antagonisten XAC blockiert werden.

10

15

In den folgenden Experimenten wurde der intrazelluläre cAMP-Gehalt in CHO-Zellen, die mit der cDNA für den A1-Rezeptor transfiziert wurden, bestimmt. Angegeben ist die prozentuale cAMP-Konzentration in allen Zellen einer Vertiefung einer Mikrotiterplatte bezogen auf den Kontrollwert ohne Substanzeinwirkung, aber nach Vorstimulation mit 1 µM Forskolin für 15 min (der cAMP-Gehalt ohne Forskolin-Vorstimulation beträgt bei diesen Messungen 18%):

	Konzentration des intrazellulären cAMP in Prozent bei einer Konzentration von		
Verwendete Verbindung der Formel (I)			
R ¹ R ² R ³ NC CN CN S R ⁴	10 ⁻⁷ M	10 ⁻⁶ M	10 ⁻⁵ M
NECA (Referenz)	24	24	28
$R^1 = R^2 = H$ $R^3 = meta-OH$ $R^4 = -CH_2-CH_2OH$ (Verbindung aus Beispiel A 43)	18	24	22
$R^1 = R^2 = H$ $R^3 = H$ $R^4 = -CH_2-CH_2OH$ (Verbindung aus Beispiel A 104)	28	23	21
$R^1 = R^2 = H$ $R^3 = para-OH$ $R^4 = 2$ -Imidazolylmethyl (Verbindung aus Beispiel A 379)	34	34	35

Die Verbindung aus Beispiel A 1 besitzt somit eine deutliche agonistische Wirkung an Zellen, die den Adenosinrezeptor A2b exprimieren, und nahezu keine Wirkung an Zellen mit dem A2a-Rezeptor. Die Verbindungen aus Beispiel A 43 und A 104 haben dagegen eine deutliche agonistische Wirkung an Zellen mit dem A1-Rezeptor, nahezu keine Wirkung an Zellen mit A2a-Rezeptoren und eine deutlich schwächere Wirkung an Zellen mit dem A2b-Rezeptor und stellen somit selektive Adenosin-A1-Rezeptoragonisten dar. Die Verbindung aus Beispiel A 379 andererseits zeigt eine

deutliche agonistische Wirkung an Zellen mit dem A2b-Rezeptor, nahezu keine Wirkung an Zellen mit A2a-Rezeptoren und eine vergleichsweise schwächere Wirkung an Zellen mit dem A1-Rezeptor und ist somit ein selektiver Adenosin-A2b-Rezeptoragonist.

5

B. Synthesebeispiele

Beispiel 1

2-{[6-Amino-3,5-dicvano-4-(4-hvdroxvphenyl)-2-pyridinyl]sulfanyl}-N-methyl-

5 <u>acetamid</u>

53,6 mg (0,2 mmol) 2-Amino-4-(4-hydroxyphenyl)-6-sulfanyl-3,5-pyridindicarbonitril und 45,6 mg (0,3 mmol) N-Methylbromacetamid werden in 0,5 ml Dimethylformamid (DMF) zusammen mit 33,6 mg (0,4 mmol) NaHCO₃ 4 Stunden bei Raumtemperatur (RT) gerührt. Die Dünnschichtchromatographie (DC) (CH₂Cl₂/CH₃OH
10:1) zeigt eine vollständige Umsetzung. Das Ganze wird mit Wasser und Essigester
(EE) verdünnt, die EE-Phase mit MgSO₄ getrocknet und im Vakuum eingedampft.

15 Der Rückstand kristallisiert aus Methanol.

Ausbeute: 45 mg (66,3 % d.Th.), weiße Kristalle

Massenspektrum: gesuchte Molmasse: 339, gefunden [M+H]⁺=340.3

$\underline{2\text{-}\{[6\text{-}Amino\text{-}3,5\text{-}dicvano\text{-}4\text{-}(4\text{-}hvdroxyphenvl})\text{-}2\text{-}pvridinvl}] sulfanvl} - N, N-diethvlacetamid \\$

$$H_2N$$
 N
 H_2N
 H_2N

5

10

53,6 mg (0,2 mmol) 2-Amino-4-(4-hydroxyphenyl)-6-sulfanyl-3,5-pyridindicarbonitril und 58,2 mg (0,3 mmol) N,N-Diethylbromacetamid werden in 0,5 ml DMF zusammen mit 33,6 mg (0,4 mmol) NaHCO₃ 4 Stunden bei RT gerührt. Die DC-Kontrolle (CH₂Cl₂/CH₃OH 10:1) zeigt vollständige Umsetzung. Das Ganze wird mit Wasser und Essigester verdünnt, die EE-Phase mit MgSO₄ getrocknet und im Vakuum eingedampft. Der Rückstand kristallisiert aus Methanol.

Ausbeute: 50 mg (65,5 % d.Th.), weiße Kristalle

Massenspektrum: gesuchte Molmasse: 381, gefunden [M+H]⁺=382

2-{[6-Amino-3.5-dicvano-4-(4-hvdroxvphenvl)-2-pvridinvl]sulfanvl}-N-ethvlacetamid

5

10

0,76 g (2 mmol) 2-Amino-4-(4-hydroxyphenyl)-6-sulfanyl-3,5-pyridindicarbonitril und 0,5 g (3 mmol) N-Ethylbromacetamid werden in 5 ml DMF zusammen mit 0,34 g (4 mmol) NaHCO₃ 4 Stunden bei RT gerührt. Nach Verdünnen mit Wasser wird mit Essigester extrahiert, die Essigester-Phase mit MgSO₄ getrocknet und im Vakuum eingedampft. Der feste Eindampfrückstand wird mit Methanol verrührt. Die Kristalle werden abgesaugt und im Vakuum getrocknet.

Ausbeute: 0,49 g (69,5 % d.Th..), Kristalle

Massenspektrum: gesuchte Molmasse: 353, gefunden [M+H]⁺=354.2

$\underline{\textbf{2-Amino-6-[(2-aminoethvl)sulfanvl]-4-(4-hydroxyphenyl)-3,5-pvridinedicarbo-nitril}$

5

10

268 mg (1 mmol) 2-Amino-4-(4-hydroxyphenyl)-6-sulfanyl-3,5-pyridindicarbonitril, 105 mg (1 mmol) 2-Bromethylamin-Hydrobromid und 168 mg (2 mmol) NaHCO₃ werden in 1 ml DMF 1 Stunde gerührt. Das Ganze wird mit einigen Millilitern 1 N HCl verdünnt. Die Kristalle werden abgesaugt und im Vakuum getrocknet.

Ausbeute: 200 mg (64,2 % d.Th.), gelbe Kristalle

Massenspektrum: gesuchte Molmasse: 311, gefunden [M+H]⁺=312

10

15

Beispiel 5

N-(2-{[6-Amino-3,5-dicvano-4-(4-hvdroxvphenvl)-2-pvridinvl}sulfanvl}ethvl)-acetamid

H₂N N S

60 mg (0,2 mmol) 2-Amino-6-[(2-aminoethyl)sulfanyl]-4-(4-hydroxyphenyl)-3,5-pyridindicarbonitril und 30 mg (0,3 mmol) N-Acetylimidazol werden in 0,5 ml DMF 1 Stunde bei RT gerührt. Langsam wird Wasser zugetropft, nach Entstehen einer leichten Trübung kristallisiert das Rohprodukt aus. Es wird abgesaugt, mit Wasser gewaschen und im Vakuum getrocknet. Man erhält 53 mg gelbe Kristalle. Die Kristalle werden in 1 ml CH₂Cl₂/CH₃OH 1:1-Gemisch gelöst und mit einigen Tropfen konzentriertem Ammoniak versetzt (Entfernung von diacyliertem Nebenprodukt). Es wird 5 Stunden bei RT gerührt. Beim Einengen der Reaktionslösung kristallisiert das Produkt aus. Es wird abgesaugt und mit Methanol gewaschen.

Ausbeute: 37 mg (52,3 % d.Th.), nahezu weiße Kristalle

Massenspektrum: gesuchte Molmasse: 353, gefunden [M+H]⁺=354

2-{[6-Amino-3,5-dicvano-4-(4-hvdroxvphenyl)-2-pvridinyl]sulfanyl}methylcarbamat

5

10

15

31,1 mg (0,1 mmol) 2-Amino-6-[(2-aminoethyl)sulfanyl]-4-(4-hydroxyphenyl)-3,5-pyridindicarbonitril werden unter Argon bei RT in 1 bis 2 ml Dichlormethan suspendiert und auf -20 bis -25 °C gekühlt. 30,3 mg (0,3 mmol) Triethylamin und 28,3 mg (0,3 mmol) Chlorameisensäuremethylester werden bei dieser Temperatur zugegeben. Es wird 30 Minuten bei -20 °C nachgerührt, dann lässt man den Ansatz innerhalb von 1 Stunde auf 0 °C kommen. Der Ansatz wird im Vakuum eingeengt, mit 4 ml einer 2molaren NH₃-Lösung in Methanol versetzt und 1 Stunde bei RT gerührt. Dann wird der Ansatz eingeengt, in 600 μl DMSO gelöst und durch präparative HPLC gereinigt.

HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5μ 50 X 20 mm Vorsäule: GROM-SIL ODS 4 HE 15μ 10 X 20 mm

Wellenlänge: 220 nm

Flussrate: 25 ml/min

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B= Wasser + 0,1 % Trifluoressigsäure

0 Min: 10% A; 1,75 Min. 10% A; 5,5 Min. 90% A; 8 Min. 90% A;

25 8,1 Min. 10% A; 9 Min. 10% A

Injektionsvolumen: 600 µl DMSO-Lösung

Ausbeute: 21,7 mg (58,7 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 369, gefunden [M+H]⁺=370.1

5 Beispiel 7

2-{[6-Amino-3.5-dicvano-4-(4-hvdroxvphenyl)-2-pvridinyl]sulfanyl}ethyl-carbamat

31,1 mg (0,1 mmol) 2-Amino-6-[(2-aminoethyl)sulfanyl]-4-(4-hydroxyphenyl)-3,5-pyridindicarbonitril werden unter Argon bei RT in 1 bis 2 ml Dichlormethan suspendiert und auf -20 bis -25°C gekühlt. 30,3 mg (0,3 mmol) Triethylamin und 32,6 mg (0,3 mmol) Chlorameisensäureethylester werden bei dieser Temperatur zugegeben. Es wird 30 Minuten bei -20°C nachgerührt, dann lässt man den Ansatz innerhalb von 1 Stunde auf 0°C kommen. Der Ansatz wird im Vakuum eingeengt, mit 4 ml einer 2molaren NH₃-Lösung in Methanol versetzt und 1 Stunde bei RT gerührt. Dann wird der Ansatz eingeengt, in 600 μl DMSO gelöst und durch präparative HPLC gereinigt. HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5μ 50 X 20 mm

20 Vorsäule: GROM-SIL ODS 4 HE 15μ 10 X 20 mm

Wellenlänge: 220 nm Flussrate: 25 ml/min

25

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B= Wasser + 0.1 % Trifluoressigsäure

0 Min: 10% A; 1,75 Min. 10% A; 5,5 Min. 90% A; 8 Min. 90% A;

8,1 Min. 10% A; 9 Min. 10% A

Injektionsvolumen: 600 µl DMSO-Lösung Ausbeute: 20,5 mg (53,5 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 383, gefunden [M+H]⁺=384.2

5

Beispiel 8

4-[2-Amino-3,5-dicvano-6-({2-|(methoxvcarbonyl)amino|ethyl}sulfanyl)-4-pyridinyl|phenyl-methylcarbonat

10

20

31,1 mg (0,1 mmol) 2-Amino-6-[(2-aminoethyl)sulfanyl]-4-(4-hydroxyphenyl)-3,5-pyridindicarbonitril werden unter Argon bei RT in 1 bis 2 ml Dichlormethan suspendiert und auf -20 bis -25°C gekühlt. 10,1 mg (0,1 mmol) Triethylamin und 9,4 mg (0,1 mmol) Chlorameisensäuremethylester werden bei dieser Temperatur zugegeben.

Es wird 30 Minuten bei -20°C nachgerührt, dann lässt man den Ansatz innerhalb von 1 Stunde auf 0°C kommen. Dann wird der Ansatz eingeengt in 600 μl DMSO gelöst und durch präparative HPLC gereinigt.

HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5μ 50 X 20 mm Vorsäule: GROM-SIL ODS 4 HE 15μ 10 X 20 mm

Wellenlänge: 220 nm

Flussrate: 25 ml/min

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B= Wasser + 0,1 % Trifluoressigsäure

0 Min: 10% A; 1,75 Min. 10% A; 5,5 Min. 90% A; 8 Min. 90% A;

8,1 Min. 10% A; 9 Min. 10% A

Injektionsvolumen: 600 μl DMSO-Lösung Ausbeute: 11,2 mg (26,2 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 427, gefunden [M+H]⁺= 428.2

Beispiel 9

4-[2-Amino-3,5-dicyano-6-({2-[(methoxycarbonyl)amino]ethyl}sulfanyl)-4-pyridinyl]phenyl-ethylcarbonat

10

15

31,1 mg (0,1 mmol) 2-Amino-6-[(2-aminoethyl)sulfanyl]-4-(4-hydroxyphenyl)-3,5-pyridindicarbonitril werden unter Argon bei RT in 1 bis 2 ml Dichlormethan suspendiert und auf -20 bis -25 °C gekühlt. 10,1 mg (0,1 mmol) Triethylamin und 10,9 mg (0,1 mmol) Chlorameisensäureethylester werden bei dieser Temperatur zugegeben. Es wird 30 Minuten bei -20 °C nachgerührt, dann lässt man den Ansatz innerhalb von 1 Stunde auf 0 °C kommen. Dann wird der Ansatz eingeengt, in 600 μl DMSO gelöst und durch präparative HPLC gereinigt.

HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5μ 50 X 20 mm

Vorsäule: GROM-SIL ODS 4 HE 15µ 10 X 20 mm

Wellenlänge: 220 nm Flussrate: 25 ml/min Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B= Wasser + 0,1 % Trifluoressigsäure

0 Min: 10% A; 1,75 Min. 10% A; 5,5 Min. 90% A; 8 Min. 90% A;

8,1 Min. 10% A; 9 Min. 10% A

5 Injektionsvolumen: 600 μl DMSO-Lösung

Ausbeute: 15,2 mg (33,4 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 455, gefunden [M+H]⁺= 456.2

Beispiel 10

10 <u>N-(2-{[6-Amino-3,5-dicvano-4-(4-hvdroxyphenvl)-2-pvridinvl}sulfanyl}-ethvl)harnstoff</u>

15

31,1 mg (0,1 mmol) 2-Amino-6-[(2-aminoethyl)sulfanyl]-4-(4-hydroxyphenyl)-3,5-pyridindicarbonitril werden in 0,91 ml 1N HCl suspendiert und mit 8,1 mg (0,1 mmol) Kaliumcyanat versetzt. Nach Zugabe von einigen Tropfen Methanol wird insgesamt 10 Stunde bei 50°C gerührt. Die Kristalle werden abgesaugt und mit Wasser und Ether gewisseler.

ser und Ether gewaschen.

Ausbeute: 16 mg (45,1 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 354, gefunden [M+H]⁺= 355.1

N-(2-{[6-Amino-3,5-dicyano-4-(4-hvdroxyphenvl)-2-pvridinvl}sulfanvl}ethyl)-N'-methylharnstoff

5

10

62,2 mg (0,2 mmol) 2-Amino-6-[(2-aminoethyl)sulfanyl]-4-(4-hydroxyphenyl)-3,5-pyridindicarbonitril werden in 0,4 ml DMF suspendiert und bei Raumtemperatur mit 11,4 mg (0,2 mmol) Methylisocyanat versetzt. Der Ansatz wird über Nacht gerührt, filtriert und durch präparative HPLC gereinigt.

HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5μ 50 X 20 mm Vorsäule: GROM-SIL ODS 4 HE 15μ 10 X 20 mm

Wellenlänge: 220 nm

15 Flussrate: 25 ml/min

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B= Wasser + 0,1 % Trifluoressigsäure

0 Min: 10% A; 1,75 Min. 10% A; 5,5 Min. 90% A; 8 Min. 90% A;

8,1 Min. 10% A; 9 Min. 10% A

20 Injektionsvolumen: 400 µl DMF-Lösung

Ausbeute: 45,9 mg (62,3 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 368, gefunden [M+H]⁺=369.2

N-(2-{[6-Amino-3,5-dicvano-4-(4-hvdroxyphenyl)-2-pvridinyl]sulfanyl}ethyl)-N'-methylharnstoff

62,2 mg (0,2 mmol) 2-Amino-6-[(2-aminoethyl)sulfanyl]-4-(4-hydroxyphenyl)-3,5-pyridindicarbonitril werden in 0,4 ml DMF suspendiert und bei Raumtemperatur mit 14,2 mg (0,2 mmol) Ethylisocyanat versetzt. Der Ansatz wird über Nacht gerührt, filtriert und durch präparative HPLC gereinigt.

HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5μ 50 X 20 mm Vorsäule: GROM-SIL ODS 4 HE 15μ 10 X 20 mm

15 Wellenlänge: 220 nm

10

Flussrate: 25 ml/min

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B= Wasser + 0,1 % Trifluoressigsäure

0 Min: 10% A; 1,75 Min. 10% A; 5,5 Min. 90% A; 8 Min. 90% A;

20 8,1 Min. 10% A; 9 Min. 10% A

Injektionsvolumen: 400 µl DMF-Lösung

Ausbeute: 37,6 mg (49,2 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 382, gefunden [M+H]⁺=383.2

3,5-Dicvano-4-(3,5-dichlor-4-hydroxyphenyl)-2-carbamovlmethyl-6-amino-pyridin

5

10

337,2 mg (1 mmol) 2-Amino-4-(3,5-dichlor-4-hydroxyphenyl)-6-sulfanyl-3,5-pyridindicarbonitril und 207 mg (1,5 mmol) Bromacetamid werden in 4 ml DMF gelöst, mit 336 mg (4 mmol) NaHCO₃ versetzt und 8 Stunden bei RT gerührt. Es wird mit Wasser verdünnt und mit Essigester gewaschen. Die wässrige Phase wird mit 1 N HCl angesäuert, die entstandene Kristalle abgesaugt und getrocknet.

Ausbeute: 180 mg (45,7 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 393, gefunden [M+H]⁺=394.1

2-[(6-Amino-3,5-dicvano-4-{4-[(4-methylpiperazino)sulfonyl]phenyl}-2-pyridinyl)sulfanyl]acetamid

5

10

84 mg (0,163 mmol) 2-Amino-4-{4-[(4-methylpiperazino)sulfonyl]phenyl}-6-sulfanyl-3,5-pyridindicarbonitril-N-methylmorpholiniumsalz werden zusammen mit 53,3 mg (0,244 mmol) Bromacetamid und 54,7 mg (0,65 mmol) NaHCO₃ in 0,5 ml DMF über Nacht gerührt. Nach Filtration wird die Reaktionslösung über präparative HPLC vorgereinigt. Die isolierte Fraktion wird im Vakuum wieder eingedampft, der Rückstand durch präparative Dünnschichtchromatographie gereinigt.

Ausbeute: 14 mg (18,2 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 471, gefunden [M+H]⁺=472.1

15

2-({6-Amino-3,5-dicvano-4-{4-(piperidinosulfonvl)phenvl}-2-pvridinvl}-sulfanvl)acetamid

5

10

82 mg (0,164 mmol) 2-Amino-4-{4-(piperidinosulfonyl)phenyl}-6-sulfanyl-3,5-pyridindicarbonitril-N-methylmorpholiniumsalz werden zusammen mit 53,5 mg (0,246 mmol) Bromacetamid und 55 mg (0,65 mmol) NaHCO₃ in 0,5 ml DMF über Nacht gerührt. Nach Filtration wird die Reaktionslösung über präparative HPLC gereinigt.

HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5μ 50 x 20 mm Vorsäule: GROM-SIL ODS 4 HE 15μ 10 x 20 mm

15 Wellenlänge: 220 mm

Flussrate: 25 ml/min

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B = Wasser + 0,1 % Trifluoressigsäure

0 Min: 10 %; 1,75 Min. 10 % A; 5,5 Min. 90 % A; 8 Min. 90 % A;

20 8,1 Min. 10 % A; 9 Min. 10 % A

Injektionsvolumen: 400 µl DMF-Lösung Ausbeute: 42,8 mg (57,2 % d.Th.) Produkt NMR [400 MHz, DMSO-d₆]: 1,4 m (2H), 1,6 m (4H), 3,0 tr (4H), 3,9 s (2H), 7,25 s (1H), 7,5 s (1H), 7,8 d (2H), 7,9 d (2H), 8,1 s breit (2H)

Beispiel 16

5 <u>2-({6-Amino-3,5-dicyano-4-[4-(morpholinosulfonvl)phenvl]-2-pvridinvl}-sulfanyl)acetamid</u>

90 mg (0,179 mmol) 2-Amino-4-{4-(morpholinosulfonyl)phenyl}-6-sulfanyl-3,5-pyridindicarbonitril-N-methylmorpholiniumsalz werden zusammen mit 58,5 mg (0,269 mmol) Bromacetamid und 60 mg (0,71 mmol) NaHCO₃ in 0,5 ml DMF über Nacht gerührt. Nach Filtration wird die Reaktionslösung über präparative HPLC gereinigt.

HPLC-Bedingungen:

15 Säule: GROM-SIL 120 ODS 4 HE 5μ 50 x 20 mm

Vorsäule: GROM-SIL ODS 4 HE 15 µ 10 x 20 mm

Wellenlänge: 220 mm

Flussrate: 25 ml/min

20

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

0 Min: 10 %; 1,75 Min. 10 % A; 5,5 Min. 90 % A; 8 Min. 90 % A;

8,1 Min. 10 % A; 9 Min. 10 % A

B = Wasser + 0,1 % Trifluoressigsäure

Injektionsvolumen: 400 µl DMF-Lösung

Ausbeute: 43,7 mg (53,2 % d.Th.) Produkt

NMR[400 MHz, DMSO-d₆]: 2,9 tr (4H), 3,65 tr (4H), 3,9 s (2H), 7,25 s (1H), 7,5 s

(1H), 7,85 d (2H), 7,95 d (2H), 8,15 s breit (2H)

5

Beispiel 17

2-(4-{2-Amino-6-[(2-amino-2-oxoethyl)sulfanyl]-3,5-dicyano-4-pyridinyl}-phenoxy)essigsäure

10

15

135 mg (0,316 mmol) 2-[4-(2-Amino-3,5-dicyano-6-sulfanyl-4-pyridinyl)phenoxy]-essigsäure-N-methylmorpholiniumsalz werden zusammen mit 103,3 mg (0,474 mmol) Bromacetamid und 106,1 mg (1,263 mmol) NaHCO₃ in 0,5 ml DMF über Nacht gerührt. Nach Filtration wird die Reaktionslösung über präparative HPLC vorgereinigt. Die isolierte Fraktion wird im Vakuum wieder eingedampft, der Rückstand durch präparative Dünnschichtchromatographie gereinigt.

Ausbeute: 14 mg (11,6 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 383, gefunden [M+Na]⁺=406.2

20

4-{2-Amino-6-[(2-amino-2-oxoethyl)sulfanyl]-3,5-dicyano-4-pyridinyl}-benzoesäure

5 .

72 mg (0,18 mmol) 2-[4-(2-Amino-3,5-dicyano-6-sulfanyl-4-pyridinyl)benzoesäure-N-methylmorpholiniumsalz werden zusammen mit 59,2 mg (0,27 mmol) Bromacetamid und 60,9 mg (0,72 mmol) NaHCO₃ in 0,5 ml DMF über Nacht gerührt. Nach Filtration wird die Reaktionslösung über präparative HPLC vorgereinigt. Die isolierte Fraktion wird im Vakuum wieder eingedampft, der Rückstand durch präparative Dünnschichtchromatographie gereinigt.

Ausbeute: 11 mg (17,2 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 353, gefunden [M+H]⁺=353.9

15

10

4-{2-Amino-6-[(2-amino-2-oxoethyl)sulfanyl]-3,5-dicyano-4-pyridinyl}-methylbenzoat

5

10

89 mg (0,216 mmol) 4-(2-amino-3,5-dicyano-6-sulfanyl-4-pyridinyl)-benzoesäure-methylester-N-methylmorpholiniumsalz werden zusammen mit 70,7 mg (0,324 mmol) Bromacetamid und 72,7 mg (0,86mmol) NaHCO₃ in 0,5 ml DMF über Nacht gerührt. Nach Filtration wird die Reaktionslösung über präparative HPLC gereinigt. HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5μ 50 x 20 mm Vorsäule: GROM-SIL ODS 4 HE 15μ 10 x 20 mm

Wellenlänge: 220 mm

15 Flussrate: 25 ml/min

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B = Wasser + 0,1 % Trifluoressigsäure

0 Min: 10 %; 1,75 Min. 10 % A; 5,5 Min. 90 % A; 8 Min. 90 % A;

8,1 Min. 10 % A; 9 Min. 10 % A

20 Injektionsvolumen: 400 μl DMF-Lösung

Ausbeute: 40,4 mg (50,8 % d.Th.) Produkt

NMR [400 MHz, DMSO-d₆]: 3,9 s (2H), 7,25 s (1H), 7,5 s (1H), 7,7 d (2H), 8,1 d (2H), 8,1 s breit (2H)

2-{{4-[4-(Acetvlamino)phenvl]-6-amino-3,5-dicvano-2-pvridinvl}sulfanvl}-acetamid

5

10

44 mg (0,11 mmol) N-[4-(2-Amino-3,5-dicyano-6-sulfanyl-4-pyridinyl)phenyl]-acetamid-N-methylmorpholiniumsalz werden zusammen mit 35 mg (0,16 mmol) Bromacetamid und 36 mg (0,43 mmol) NaHCO₃ in 0,5 ml DMF über Nacht gerührt. Nach Filtration wurde die Reaktionslösung über präparative HPLC gereinigt. HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5 μ 50 x 20 mm Vorsäule: GROM-SIL ODS 4 HE 15 μ 10 x 20 mm

Wellenlänge: 220 mm

Flussrate: 25 ml/min

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B = Wasser + 0,1 % Trifluoressigsäure

0 Min: 10 %; 1,75 Min. 10 % A; 5,5 Min. 90 % A; 8 Min. 90 % A;

20 8,1 Min. 10 % A; 9 Min. 10 % A

Injektionsvolumen: 400 µl DMF-Lösung Ausbeute: 18,3 mg (46,6 % d.Th.) Produkt NMR [400 MHz, DMSO-d₆]: 2,1 s (3H), 3,9 s (2H), 7,25 s (1H), 7,5 d (3H), 7,7 d (2H), 8,0 s breit (2H), 10,25 s (1H)

Beispiel 21

5 <u>2-Amino-6-[(2-hvdroxvethvl)sulfanvl]-4-(4-hvdroxyphenvl)-3,5-pyridindi-</u>carbonitril

26.8 mg (0,1 mmol) 2-Amino-4-(4-hydroxyphenyl)-6-sulfanyl-3,5-pyridindicarbonitril werden in 0,2 ml Dimethylformamid gelöst. Nach Zugabe von 20 mg (0,238 mmol) festem Natriumhydrogencarbonat wird eine Lösung 18.74 mg (0,15 mmol) 2-Bromethanol in 0,06 ml Dimethylformamid zugegeben. Die Reaktionsmischung wird über Nacht geschüttelt und nach Filtration durch präparative HPLC gereinigt.

15 HPLC-Bedingungen:

Säule: GROM-SIL 120 ODS 4 HE 5µ 50 X 20 mm

Vorsäule: GROM-SIL ODS 4 HE 15µ 10 X 20 mm

Wellenlänge: 220 nm

Flussrate: 25 ml/min

20 Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

B= Wasser + 0,1 % Trifluoressigsäure

0 Min: 10% A; 1,75 Min. 10% A; 5,5 Min. 90% A; 8 Min. 90% A;

8,1 Min. 10% A; 9 Min. 10% A

Injektionsvolumen: 300 µl DMSO-Lösung

25 Retentionszeit: 3.97 Min

Ausbeute: 14,1 mg (45,1 % d.Th.)

Massenspektrum: gesuchte Molmasse: 312, gefunden [M+H]⁺=313

Beispiel 22

5 1. Stufe:

N-[4-(2,2-dicvanovinyl)phenyl]acetamid

32,6 g (0,2 Mol) 4-Acetaminobenzaldehyd und 13,74 g (0,208 Mol) Malononitril werden in 140 ml Ethanol vorgelegt und mit 24 Tropfen Piperidin versetzt. 30 min. wird unter Rückfluss gerührt. Nach Abkühlen werden die Kristalle abgesaugt und getrocknet.

Ausbeute: 38,6 g (90,6 % d.Th.) Produkt

15 Massenspektrum: gesuchte Molmasse: 211, gefunden [M+H]⁺ = 212

2. Stufe

20

N-{4-[2-amino-3,5-dicvano-6-(phenylsulfanyl)-4-pyridinyl]phenyl}acetamid

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

19 g (0,09 Mol) N-[4-(2,2-dicyanovinyl)phenyl]acetamid, 5,95 g (0,09 Mol) Malononitril und 9,91 g (0,09 Mol) Thiophenol werden in 120 ml Ethanol vorgelegt und mit 0,4 ml Triethylamin versetzt. 2 h wird unter Rückfluss gerührt, dabei findet Kristallisation statt. Nach Abkühlen wird das Produkt abgesaugt und i.V. getrocknet.

5 Ausbeute: 10,25 g (29,6 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 385, gefunden [M+H]⁺ = 386

3. Stufe

N-[4-(2-amino-3,5-dicyano-6-sulfanyl-4-pyridinyl)phenyl]acetamid

10

15

1,16 g (3 mmol) N-{4-[2-amino-3,5-dicyano-6-(phenylsulfanyl)-4-pyridinyl]-phenyl}-acetamid werden in 10 ml DMF unter Argon gelöst, 0,78 g (10 mmol) Natriumsulfid werden zugegeben und 2 h bei 80°C gerührt. Danach wird mit 20 ml 1N HCl versetzt, die dabei entstandenen Kristalle abgesaugt und i.V. getrocknet.

Ausbeute: 428 mg (46,1 % d.Th.) Produkt

Massenspektrum: gesuchte Molmasse: 309, gefunden [M+H]⁺ = 310.1

4. Stufe

2-[({4-[4-(Acetvlamino)phenvl]-6-amino-3,5-dicvano-2-pyridinvl}sulfanvl}-methvl]-1H-imidazol-1-ium trifluoracetat

5

10

15

309 mg (1 mmol) N-[4-(2-amino-3,5-dicyano-6-sulfanyl-4-pyridinyl)phenyl]-acetamid, 241 mg (1 mmol) 2-(Brommethyl)-1H-imidazol-Hydrobromid und 336 mg (4 mmol) NaHCO₃ werden in 2 ml DMF bei RT gerührt. Nach 2 h wird mit 4 bis 5 ml Wasser versetzt, die beigen Kristalle abgesaugt und i.V. getrocknet. Die Kristalle (310 mg) werden in DMSO gelöst und durch präp. HPLC in 9 Injektionen gereinigt. Die entsprechende Fraktion wird i.V. eingedampft, der kristalline Rückstand in Wasser suspendiert, abgesaugt und i.V. getrocknet.

HPLC-Bedingungen:

Säule: Kromasil 100 C18 5µm 50 X 20 mm

Vorsäule: GROM-SIL ODS 4 HE 15 µ 10 X 20 mm

Wellenlänge: 220 nm Flussrate: 25 ml/min

Gradient: A = Acetonitril + 0,1 % Trifluoressigsäure

20 B= Wasser + 0,1 % Trifluoressigsäure

0 Min: 10% A; 2 min. 10% A; 6 min. 90% A; 7 min. 90% A;

7,1 min. 10% A; 8 min. 10% A

Injektionsvolumen: 500 µl DMSO-Lösung

Retentionszeit: 3,6 Min

25

Ausbeute: 234 mg (60 % d.Th.) Produkt

20

Massenspektrum: gesuchte Molmasse: 389, gefunden $[M+H]^+$ = 390.1 ¹H-NMR (300 MHz, DMSO-d₆): δ = 2,1 s (3H), 4,7 s (1H), 7,4 d (2H), 7,55 s (1H), 7,7 d (2H), 8,1 s breit (2H), 10,25 s (1H), 14,2 s breit (1H)

- Die in den folgenden Tabellen aufgeführten Verbindungen (Beispiele A 1 bis A 377, A 378 bis A 413 und B 1 bis B 375) wurden analog zu den zuvor aufgeführten Vorschriften hergestellt. Die Identität und Reinheit der Verbindungen wurde durch LC-MS nachgewiesen.
- Die Verbindungen der Beispiele A 1 bis A 413 wurden entweder als Kristalle isoliert oder, wenn sie nicht direkt aus der Reaktionslösung kristallisierten, durch präparative HPLC gereinigt.
- Die Verbindungen der Beispiele B 1 bis B 375 wurden im 10-µmol-Maßstab analog

 zu den obigen Vorschriften hergestellt. Die Reinigung und Identifizierung dieser

 Verbindungen erfolgte über ein präparatives HPLC-MS-System.
 - In den folgenden Tabellen ist bei Strukturen, die eine Gruppe -N- enthalten, stets eine Gruppe -NH- gemeint, und bei Strukturen, die eine Gruppe -N enthalten, stets eine Gruppe -NH₂ gemeint.

						
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A1	HO S S NH ₂	H ₂ N Br	OH N N SH	325	326	57,5
A2	HO NH ₂ S OH	HO Br	OH N SH	326	327	7,0
А3	HO CH ₃ S OH	ОН Ң.С Вг	OH N SH	326.	327	52,7
A4	HO S CH ₃ NH ₂	H ₂ N Br CH ₃	OH N SH	339	340	67,5
A5	HO N S O O O CH ₃	Br O CH ₃	OH N SH	340	341	60,8

					,	
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A6	HO CH ₃ NH ₂	H ₃ C CH ₃	OH N N N SH	354	355	53,6
A7	HO S S CH ₃ CH ₃	H,C O Br	OH N SH	366	367	30,0
A8	HO N S N N N N N N N N N N N N N N N N N	O Br	OH N N SH	386	387	57,2
A9	HO S S S S S S S S S S S S S S S S S S S	N Br	H Z Z	394	395	12,2
A10	HO S S S S S S S S S S S S S S S S S S S	Br Br	OH N N N SH	404	405	39,3

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A11	HO N S CH ₃	O CH ₃	OH N SH	415	416	58,2
A12	HO CH ₃ N N N N N N N N N N N N N N N N N N N	H ₂ C CH ₃ N B ₁	OH N N SH	430	431	25,1
A13	HO S N N N N N N N N N N N N N N N N N N	H ₃ C O Br	OH N SH	446	447	28,1
A14	HO N N N N N N N N N N N N N N N N N N N	O Br	OH N N SH	456	457	29,6

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A15	HO S S N N N N N N N N N N N N N N N N N	O Br	OH N N SH	470	471	62,2
A16	HO NH ₂ OH	Br OH	F S S S S S S S S S S S S S S S S S S S	342	343	54,0
A17	HO S S S S S S S S S S S S S S S S S S S	O Br	OH SH	352	353	73,8
A18	HO S OH	OH OBr	OH N N SH	402	403	65,6

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A19	HO CH ₃ NH ₂ NH ₂	H ₃ C _O Br	OH N N N SH	416	417	51,9
A20	OH NH ₂	HO Br	N SH	341	342	29,7
A21	S NH ₂	H ₂ N Br	N SH	354	355	84,4
A22	O = N O O O O O O O O O O O O O O O O O	HOBr	H, N SH SH	355	356	10,0
A23	O CH ₃ N CH ₃ N CH ₃ N CH ₃	OH H₃C Br	H ₂ N SH	355	356	35,2

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A24	O NH2	H ₂ N Br	N SH	368	369	77,1
A25	NH ₂ CH ₃	Br O CH ₃	HÅN SH	369	370	70,9
A26	2	H³C CH³	N SH SH	383	384	68,1
A27	NH ₃ N _C CH ₃	H ₃ C Br	H'M SH	395	396	60,2
A28	S N N N	Br	H'N N SH	415	416	58,0

	·					
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A29	O N S S N N N N N N N N N N N N N N N N	N Br	N SH	423	424	31,2
A30	O N N N N N N N N N N N N N N N N N N N	P Br	H ₁ N SH	433	434	36,2
A31		O Br CH ₃	N SH	444	445	51,1
A32	O N CH,	H ₃ C Br	N O O O O O O O O O O O O O O O O O O O	459	460	46,7

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A33	O N N N N N N N N N N N N N N N N N N N	H,C Br	H ² N SH	475	476	49,7
A34		O Br	N SH	485	486	47,1
A35		O Br	N SH SH	499	500	64,0
A36	S CH ₃ CCH ₃ C	H ₂ C N Br	N O O O O O O O O O O O O O O O O O O O	507	508	37,5

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A37		o Br	H,N SH	521	522	61,5
A38	OH. N. S. HO. OH.	Br OH	N N SH	371	372	63,8
A39	O N N N N N N N N N N N N N N N N N N N	O Br	H ₂ N SH	381	382	50,3
A40	0 - Z - Z - Z - Z - Z - Z - Z - Z - Z -	OH Br	H,N SH	431	432	40,8

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A41	O III. O N O CH ₃	H ₃ C _O Br	N SH	445	446	71,9
A42		Br O	H,N N SH	445	446	32,6
A43	OH NH OH	HO Br	OH N N SH	312	313	60,8
A44	OH N S NH ₂ NH ₃	H ₂ N Br	N N SH	325	326	78,4

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A45	OH N S OH OH	HO Br	N N SH	326	327	13,9
A46	OH N CH ₃	OH H ₃ C Br	N N SH	326	327	17,8
A47	OH N S CH ₃ NH ₂ NH ₂	H ₂ N Br	N SH	339	340	89,6
A48	OH NEW OCH,	Br O CH ₃	N SH SH	340	341	77,6
A49	OH N O CH ₃	H ₃ C CH ₃	OH SH	354	355	56,2

BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A50	OH N S CH, NH, CH,	H ₃ C Br	OH N H,N SH	366	367	47,5
A51	DH N N N N N N N N N N N N N N N N N N N	Br	N N SH	386	387	36,5
A52	OH NI S N N N N N N N N N N N N N N N N N	N Br	OH N H,N N SH	394	395	20,5
A53	OH N S S S S S S S S S S S S S S S S S S	F Br	N SH	404	405	58,8

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A54	OH N S CH,	O Br CH ₃	N SH	415	416	18,3
A55	OH OH OH, S OH, OH, S OH	H'C Br	OH N SH	430	431	29,8
A56	2	H ₃ C O Br	OH N N SH	446	447	42,2
A57	OH N S O	O Br	N SH	456	457	9,2

BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes [M+H]	Ausbeute (% d.Th.)
A58	OH NH,	H ₂ C N CH ₃	N N SH	478	479	54,2
A59	OH N N N N N N N N N N N N N N N N N N N		N SH	492	493	66,3
A60	OH N N HO OH	Br OH	OH N N SH	342	343	73,6
A61	OH N S O	O Br	N SH	352	353	68,1

BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A62	OH N OH OH	OH OBr	N N SH	402	403	41,2
A63	OH NEW YORK ON THE STATE OF THE	H ₃ C ₀ Br	N N SH	416	417	52,1
A64	Z==	Broo	OH N SH	416	417	52,6
A65	F N OH	HO Br	N N SH	314	315	62,7

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A66	F S NH ₂	H ₂ N Br	H,N SH	327	328	58,0
A67	F S O OH	HO Br	H _A N SH	328	329	17,1
A68	S CH ₃	OH H ₃ C Br	N SH	328	329	53,9
A69	F S CH ₃	H ₂ N Br CH ₃	N SH	341	342	57,7

					· -	,
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A70	F N N O O CH ₃	Br O CH ₃	H,N SH	342	343	35,6
A71	F CH ₃ O CH ₃ O CH ₃ O CH ₃	H ₃ C O CH ₃	H,N SH	356	357	49,7
A72	F S S S S S S S S S S S S S S S S S S S	Br	H,N SH	360	361	43,3
A73	S H ₃ C CH ₃	H ₃ C Br CH ₃	H ₂ N SH	368	369	14,7
A74	F S S NH ₂ S	Br	N N SH	388	389	17,5

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A75	F CH ₃	O CH ₃	H ₁ N N SH	417	418	31,1
A76		O N	h _i n SH	458	459	19,5
A77		O Br	H,N SH	472	473	41,8
A78	F CH, CH,	H ₂ C N CH ₃	N SH	480	481	32,9

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A79	F S N N N N N N N N N N N N N N N N N N	Br N	H ₂ N SH	494	495	29,0
A80	S HO OH	Br OH	H _M N SH	344	345	45,6
A81	F S S NH,	O Br	N SH	354	355	37,2
A82	F S OH	OH Br	N N SH	404	405	37,6

		· · · · · · · · · · · · · · · · · · ·				
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes	Ausbeute (% d.Th.)
A83	F CH ₃	H ₃ C Br	H ₂ N SH	418	419	63,3
A84	F S S S S S S S S S S S S S S S S S S S	Br O	H ₂ N SH	418	419	21,5
A85	CO NH, OH	HO Br	N N S	331	332	71,3
A86	N N N N N N N N N N N N N N N N N N N	H ₂ N Br	H ₂ N S	344	345	66,9
A87	CH ₃ OH NH ₂	OH H ₃ C Br	N N S	345	346	76,3

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A88	S CH,	H ₂ N Br CH ₃	N N N S	358	359	83,8
A89	N S O CH,	Br O CH ₃	H ₂ N S	359	360	89,7
A90	2 CH, S CH,	н,с О сн,	H,N S	373	374	70,5
A91	S CH ₃ CH ₃	H ₃ C O Br	N S S	385	386	12,2
A92	S S NH ₂ S	Br	H ₁ N N S	405	406	84,0

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A93	N N N N N N N N N N N N N N N N N N N	N Br	N N S	413	414	12,1
A94	S S S S S S S S S S S S S S S S S S S	Br	H ₂ N N S	423	424	23,6
A95	CH, SH, NH, NH,	O CH ₃	H _N N S	434	435	67,3
A96		O Br	H,N N N N N N N N N N N N N N N N N N N	488	489	67,4
A97	\$\frac{2}{2} \\ \frac{2}{2} \\ \frac	D Br CH,	N N S	496	497	90,2

		·				
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A98	O N S N N N N N N N N N N N N N N N N N	O Br	H ₂ N N S	510	511	55,7
A99	S NH HO OH	Br OH	H,N S	361	362	103,1
A100	S S S S S S S S S S S S S S S S S S S	O O O	H _I N N S	371	372	48,3
A101	S S S S S S S S S S S S S S S S S S S	OH OBr	N N S	421	422	97,9
A102	O CH ₃	H ₃ C Br	N N S	435	436	51,7

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A103	N S S S S S S S S S S S S S S S S S S S	Br 0 0	H,N S	435	436	63,7
A104	N OH	HO Br	H _N N S	296	297	82,0
A105	N S NH2	H ₂ N Br	N N S	309	310	75,6
A106	N CH, OH	OH H₃C Br	HAN NO	310	311	72,5
A107	S CH ₃ NH ₂	H ₂ N Br CH ₃	N N N S	323	324	84,4

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A108	S S S CH,	Br CH ₃	N N S	324	325	67,8
A109	N CH ₃	H ₃ C CH ₃	H,N N S	338	339	71,8
A110	× × × × × × × × × × × × × × × × × × ×	Br	N N N N N N N N N N N N N N N N N N N	342	343	44,7
A111	S H,C CH,	H ₃ C Br	H ₂ N N S	350	351	18,5
A112	S NH ₂	Br	M,N N S	370	371	73,2

	·					
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A113	NH ₂ ONN	N Br	H,N N S	378	379	46,8
A114	S NH,	F Br	N N S	388	389	91,4
A115	2 Ct ₃	O CH ₃	N N S	399	400	17,5
A116	S N CH,	H ₂ C Br	H ₂ N S	414	415	16,7
A117	S S N N N N N N N N N N N N N N N N N N	H,C Br	N N N S	430	431	31,4

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A118	N S N S N S N S N S N S N S N S N S N S	O Br	HAN S-	454	455	58,4
A119	N S CH ₃	H ₂ C N CH ₃	N N S	462	463	77,1
A120	S N N N N N N N N N N N N N N N N N N N	Br	N N S	476	477	13,0
A121	S NH ₂ OH	Br OH	N N S	326	327	89,8

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] [†]	Ausbeute (% d.Th.)
A122	N S O O O O O O O O O O O O O O O O O O	Br	N N S	336	337	69,3
A123	S OH	OH OBr	N N S	386	387	73,2
A124	N S CH ₃	E C C C C C C C C C C C C C C C C C C C	H ₂ N N	400	401	66,9
A125	S S S S S S S S S S S S S S S S S S S	Br O	S S S S S S S S S S S S S S S S S S S	400	401	74,2
A126	CI N S OH	HO Br	N N S	331	332	72,6

						
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1⁺	Ausbeute (% d.Th.)
A127	CI N S NH ₂ S NH ₂	H ₂ N Br	CI N H,N S	344	345	68,1
A128	CH ₃ S OH	OH H₃C Br	n n n n n n n n n n n n n n n n n n n	345	346	70,2
A129	S CH ₃	H ₂ N Br	N N S	358	359	72,4
A130	CI S S O O O CH,	Br CH ₃	N N N S	359	360	44,3

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A131	CH ₃ NH ₂ CH ₃	H³C CH³	H ₂ N N S	373	374	57,7
A132		Br	H ₂ N S	377	378	17,2
A133	C N N O H,C CH,	H ₃ C O Br	H,N N S	385	386	14,0
A134		Br	N N S	405	406	8,9

BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A135	N N N N N N N N N N N N N N N N N N N	N Br	CI N,N N S	413	414	17,2
A136	2= - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	P Br	CI N H ₂ N S	423	424	12,8
A137	O S S S S S S S S S S S S S S S S S S S	O CH ₃	H,N S	434	435	10,1
A138	CI CH, CH, CH, NH,	H ₂ C Br	CI N N N S	448	449	10,0

	-					
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes · [M+H]	Ausbeute (% d.Th.)
A139	CI NI S O	O Br	N N S	474	475	52,1
A140	CI N S S S S S S S S S S S S S S S S S S	O Br	C N N N N N N N N N N N N N N N N N N N	488	489	52,3
A141		^{1,2} → C → C → C → C → C → C → C → C → C →	S S S S S S S S S S S S S S S S S S S	496	497	50,2
A142		O Br	N H ₂ N N S	510	511	43,5

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A143	CI NI	Br OH	N N S	361	362	56,0
A144	CCH ₃	H,C Br	C N N S	435	436	3,7
A145	O N N N O N N N N N N N N N N N N N N N	Br	H ₁ N N S.	435	436	67,4
A146	CI N S OH NH ₂	HO Br	N CI N SH	331	332	64,1

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A147	S NH ₂	H ₂ N Br	CI N N SH	344	345	70,7
A148	CI N S CH, N O NH2	H ₂ N CH ₃	N SH	358	359	72,7
A149	CI N S O O O CH ₃	Br O CH ₃	CI N H ₂ N N SH	359	360	58,8
A150	CI N O CH ₃	н _з с О сн _з	CI N N SH	373	374	56,3

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A151	CI N S NH ₂	Br	N N SH	377	378	55,5
A152	CI N S CH ₃	H,C H,C CH ₃	CI N SH	385	386	64,2
A153	CI N S NH ₂	Br	N CI N SH	405	406	32,4
A154	S N N N N N N N N N N N	N Br	CI N H ₂ N SH	413	414	55,7

		T	·		,	
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A155	CI N S S NH ₂ S	Br	CI N N SH	423	424	53,9
A156	C N S CH ₃	O Br CH,	N C N SH	434	435	74,9
A157	S N COL	н _с сн, в	N SH	448	449	69,0
A158	S N N N N N N N N N N N N N N N N N N N	H ₃ C Br	CI N H ₂ N SH	464	465	72,0

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A159	C N N N O N N N N N N N N N N N N N N N	O N	N C N SH	474	475	73,0
A160	S NH ₂	O Br	N C C N SH	488	489	75,2
A161	CI N O CH, NH,	H ₃ C N Br CH ₃	N CI N SH	496	497	75,5
A162	NH ₂	Br Br	CI N N SH	510	511	67,4

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A163	CI N S O	O O O Br	H,N N SH	371	372	75,2
A164	CI N OH	OH OH Br	N SH	421	422	57,7
A165	CI N O CH ₃	H ₂ C _O B _r	CI N H ₂ N SH	435	436	71,3
A166	N N O O O O O O O O O O O O O O O O O O	Bryo	N CI N SH	435	436	54,0

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A167	CH ₃ OH	HO Br	O CH ₃	326	327	50,9
A168	CH ₃ o NH ₂	Br H ₂ N	O CH ₃	339	340	76,3
A169	CH ₃ O N S CH ₃ N N N N N N N N N N N N N N N N N N N	H ₂ N CH ₃	O CH ₃	353	354	50,4
A170	CH ₃ S NH ₂	Br	N N S	372	373	30,6

					· · · · ·	
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A171	CH ₃ N N N N N N N N N N N N N N N N N N N	F Br	O_CH ₃	418	419	13,6
A172	Ct, 2	O Br	O_CH ₃	430	431	63,8
A173	CH, NH, S IN CH, CH, NH,	H ₃ C Br	N N N S	444	445	26,2
A174	\$ 2	H ₃ C N Br	N N N S	460	461	32,2

,			<u> </u>			
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes	Ausbeute (% d.Th.)
A175	CH ₃ N N N N N N N N N N N N N N N N N N N	Br N	O CH ₃ N H ₂ N N S	470	471	96,9
A176	CH3 N N N N N N N N N N N N N N N N N N N		N N S	484	485	18,2
A177	CH ₃ O O CH ₃ O CH ₄ O C CH ₄ O C CH ₄ O C C C C C C C C C C C C C C C C C C	C O H,C N CH,	N N N N N N N N N N N N N N N N N N N	492	493	78,5
A178	CH ₃ O N N N N O O O O O O O O O O O O O O	Br OH	N N S	356	357	17,1

		·	·			
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A179	CH ₃ O O O O O O O O O O O O O O O O O O O	O Br	N N S	366	367	31,1
A180	CH ₂	OH OBr	N N N S	416	417	80,0
A181	CH ₃ O O O O O O O O O O O O O O O O O O O	H ₃ C _O Br	N N S	430	431	66,2
A182	CH ₃ N N N N N N N N N N N N N	Br	H,N N S	430	431	73,6

			1		 -	·
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A18	3 N N OH	HO Br	CH ₃	310	311	28,4
A18-	H ₃ C N S NH ₂	H ₂ N Br	CH ₃	323	324	39,3
A185	H,C CH, CH, OH	OH H₃C Br	CH ₃	324	325	41,9
A186	H ₃ C N S CH ₃ NH ₂ NH ₂	H ₂ N Br CH ₃	CH ₃	337	338	40,9

	T					
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes	Ausbeute (% d.Th.)
A187	H ₃ C N S O O CH ₃	Br O CH ₃	CH ₃	338	339	11,5
A188	H ₃ C CH ₃ N N CH ₃ N NH ₂	H,C CH,	CH, N H ₂ N S	352	353	29,2
A189	H,C N S S S N N N N N N N N N N N N N N N	Br	CH ₃	356	357	51,9
A190	H ₃ C N S CH ₃	H ₃ C Br	CH ₃	364	365	77,4

Γ			 _			
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A191	H ₂ C N S CH ₃	O CH ₃	CH ₃	414	415	51,8
A192	H ₃ C CH ₃	HC CH, N B	CH ₃	428	429	58,2
A193	N.C. N.	H,C Br	CH ₃	444	445	58,2
A194	H ₂ C N N N N N N N N N N N N N N N N N N N	O Br	CH ₃	454	455	29,5

,		<u></u>				
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A195	H,C N S N S N S N S N S N S N S N S N S N	O Br	CH ₃	468	469	43,8
A196	H ₂ C OH ₃ OH ₃ OH ₃	CI O H,C N CH ₃	CH ₃	476	477	51,7
A197	H,C S S S S S S S S S S S S S S S S S S S	Br Br	CH ₃	490	491	73,9
A198	H ₃ C N N N N N N N N N N N N N N N N N N N	Br OH	CH ₃	340	341	37,9

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes	Ausbeute (% d.Th.)
A199	H ₃ C N N O O O O O O O O O O O O O O O O O	O Br	CH ₃	350	351	80,8
A200	H ₃ C OH	OH OBr	CH ₃	400	401	48,4
A201	H ₃ C CH ₃	H ₂ C O Br	EH, N S	414	415	20,7
A202	H,C S S S S S S S S S S S S S S S S S S S	Bryo	CH ₃	414	415	61,0

	·	Τ	1	I	r	
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A203	O N N N N N N N N N N N N N N N N N N N	HO Br	O N SH	341	342	55,4
A204	N N N N N N N N N N N N N N N N N N N	H ₂ N Br	O N SH	354	355	38,4
A205	NEW SET OF SET O	H ₂ N CH ₃	O SH	368	369	70,6
A206	N S S CH,	Br CH ₃	N N SH	369	370	49,5

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A207	O CH ₃	H ₃ C O CH ₃	O N SH	383	384	65,5
A208	S H,C CH,	H ₃ C Br	N SH	395	396	14,2
A209		Br	O N SH	415	416	22,9
A210	ON NH S	F Br	N SH	433	434	40,8

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A211	S S S S S S S S S S S S S S S S S S S	O Br CH ₃	O N SH	444	445	70,2
A212		H,C CH ₃ N Br	O N SH	459	460	21,6
A213	O N N N N N N N N N N N N N N N N N N N	H ₃ C O O Br	O N SH	475	476	57,5

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A214		O Br	O N SH	485	486	41,5
A215	O N N N N N N N N N N N N N N N N N N N	O Br	O N SH	499	500	43,1
A216		H ₂ C N CH ₃	O N O N	507	508	56,2

		· · · · · · · · · · · · · · · · · · ·				
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A217	N N HO OH	Br OH	O N SH	371	372	62,5
A218		O Br	O N SH	381	382	39,9
A219	O N S O O O O O O O O O O O O O O O O O	OH OBr	HS ATH	431	432	55,6
A220	O CH ₃	н,с. о в	O N SH	445	446	32,6

		,		,	,	
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A221	CH ₂ N N N N N N N N N N N N N N N N N N N	HO Br	CH ₂	352	353	61,3
A222	CH ₂ NH ₃ NH ₃	H ₂ N Br	E S S S S S S S S S S S S S S S S S S S	365	366	80,2
A223	CH, OH NH,	OH H ₃ C Br	N N S	366	367	73,1

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A224	CH ₂ N N S CH ₃ NH ₂	H ₂ N Br CH ₃	CH ₂	379	380	81,7
A225	CH ₂ N N N N N N N N N N N N N	Br O CH ₃	CH ₂	380	381	71,0
A226	CH,	H ₃ C CH ₃	CH ₂	394	395	65,9
A227	CH, NEW S.	Br	N,N N S	398	399	76,3

					,	
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A228	CH ₂ N S H ₂ C CH ₃ N H ₄ C CH ₃	H ₃ C O Br	CH ₂	407	408	79,7
A229		Br	CH,	427	428	40,8
A230	CH, S N N N N N N N N N N N N N N N N N N	N Br	CH ₂	434	435	22,1

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A231	Z =	F Br	H _I N N S	444	445	9,7
A232	2	O Br CH ₃	CH ₂	456	457	15,6
A233	OH, N N CH, CH, CH, N NHI,	H ₃ C CH ₃ N Br	CH ₂	470	471	43,7

· .		· · · · · · · · · · · · · · · · · · ·				
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A234	CH, S,	H,C BI	CH ₂	486	487	71,1
A235	d.	O Br	CH ₂	496	497	96,4
A236		O Br	N N S	510	511	84,6

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A237	CH, SH, SH, SH, SH, SH, SH, SH, SH, SH, S	H ₃ C N CH ₃	N N S	518	519	41,7
A238		Br	CH ₂	532	533	28,8
A239	CH ₂ N N N N N N N N N N N N N N N N N N N	Br OH	CH ₂	382	383	83,7

<u> </u>					_	
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes fM+H1 ⁺	Ausbeute (% d.Th.)
A240	CH ₂	O Br	H ₂ N S	392	393	54,8
A241	CH, S OH	OH OBr	CH ₂	443	444	75,0
A242	CH ₃ CH ₃ CH ₃ N N N N N N N N N N N N N	ӉС _O Br	CH ₂	457	458	50,2

BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes [M+H] [†]	Ausbeute (% d.Th.)
A243		Br O	CH, N	457	458	44,9
A244	CH ₃ O CH ₃ N CH ₂ CH ₃	H₂C ✓ Br	CH, O CH, N SH	352	353	54,5
A245	CH, 0 CH, 2 MH, 2	H ₂ N Br	O CH,	369	370	85,5
A246	CH ₃ O CH ₃ CH ₃ S OH	OH H₃C Br	O CH ₃ O CH ₃ N N SH	370	371	60,7

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A247	CH ₃ O CH ₃ N O O O O CH ₃ NH ₂ CH ₃	Br O CH ₃	O CH,	384	385	59,1
A248	CH ₃ O CH ₃ N HO OH	Вг∕∕ОН ОН	E SH	386	387	79,7
A249	CH ₃ OCH ₃ N	BrOH	O CH,	370	371	51,6
A250	CH ₃ O CH ₃ N N N N N N N N N N N N N N N N N N N	Br. CH ₃	N SH	370	371	49,4

		<u>, </u>	·			
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1]	Ausbeute (% d.Th.)
A251	CH ₃ OPCH ₃ N	Br NH ₂	O CH ₃	448	449	70,4
A252	CH ₃	Br O CH ₃ CH ₃	O CH ₃ N SH	426	427	39,0
A253	HO N S CH ₂	H₂C ✓ Br	H ₂ N SH	324	325	66,9
A254	HO NH ₂ S OH	Br OH	OH HO N N SH	328	329	90,1

 -						
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes	Ausbeute (% d.Th.)
A255	HO N S NH ₂	H ₂ N Br	H ₂ N N SH	341	342	114,5
A256	HO N CH ₃ N OH	OH H₃C Br	OH NO SH	342	343	70,7
A257	HO N S O CH,	Br CH ₃	OH HO SH	356	357	77,7
A258	HO N S N N N N N N N N N N N N N N N N N	Br	HO OH NO SH	374	375	87,1

_			γ			
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A25!	HO N S OH	BrOH	H ₂ N SH	342	343	85,3
A260	HO N S O CH ₃	BrCH ₃	HO OH N SH	342	343	73,3
A261	HO NH ₂ S NH ₂	Br S NH2	H ₂ N SH	419	420	91,3
A262	HO NH ₂ CH ₃ CH ₃	CH ₃ CH ₃	HO OH SH	397	398	66,2

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]	Ausbeute (% d.Th.)
A263	H ₂ C O N S CH ₂	H₂C ✓ Br	CH ₃ O SH	350	351	50,5
A264	H,C,OH,N	OH H ₃ C Br	€-0 SH	368	369	49,1
A265	H ₃ C ₂ O N S NH ₃ CH ₃	Br CH ₃	CH ₂ O SH	382	383	58,6

BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A266	H,C. O S S S S N N N N N N N N N N N N N N N	Br	EL SH	400	401	53,4
A267	H,C O S OH	BrOH	CH, O SH	368	369	48,9
A268	H,C., CH,	Br. OCH3	CH ₃ O	368	369	31,8

·		_				
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A26	H ₂ C ₀ N N N N N N N N N N N N N N N N N N N	Br O CH ₃	CH, O N SH	381	382	30,2
A270	H ₂ C ₀ CH ₃ CH	Br O CH ₃ CH ₃	CH, O SH	423	424	17,0
A271	CH ₃ OH O N N CH ₂	H₂C → Br	OCH, OH	338	339	71,2
A272	CH ₃ OH N S OH NH ₂	Br OH	O CH ₃ OH N SH	342	343	50,8

						-
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A27.	CH ₃ OH N N N N N N N N N N N N N N N N N N N	H ₂ N Br	O CH ₃ OH N SH	355	356	96,0
A274	CH ₃ OH CH ₃ S OH	OH H ₃ C Br	O CH ₃ OH N N N SH	356	357	69,0
A275	CH ₃ OH N S O CH ₃	Br O CH ₃	O CH ₃ OH SH	370	371	80,5
A276	CH ₃ OH N S N HO OH	Br OH	O CH ₃ OH N N SH	372	373	85,4

			· · · · · · · · · · · · · · · · · · ·			. •
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A27	CH ₃ OH	BrOH	OCH ₃ OH N N SH	356	357	69,3
A278	CH ₃ OH O NH ₂ S CH ₃ O CH ₃	Br O CH ₃	H,N SH	356	357	58,9
A279	CH ₃ OH O S NH ₂	BI NH2	O CH ₃ OH N SH	434	435	84,4
A280	CH ₃ OH CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	Br O CH ₃ CH ₃	O_CH ₃ OH NSH	411	412	80,2

						
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes fM+H1 ⁺	Ausbeute (% d.Th.)
A28	HO CH ₃ N S CH ₃ NH ₂	H ₂ C Br	OH O CH ₃	338	339	60,6
A282	HO CH ₃ N N N NH ₂ OH	Br OH	OH O CH ₃	342	343	59,3
A283	HO CH ₃ N N N N N N N N N N N N N N N N N N N	OH H₃C Br	OH O CH,	356	357	62,0
A284	HO CH ₃ N S NH ₂ CH ₃	Br CH ₃	OH O CH ₃	370	371	55,3

<u></u>						
BspNr.		Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A28	5 HO CH ₃	Br	OH O CH ₃	388	389	59,0
A280	HO CH, S OH	ВгОН	OH O CH,	356	357	43,2
A287	NH,	Br CH ₃	OH O CH ₃	356	357	46,6
A288	HO ON S NH,	BI ON NH,	OH O CH ₃	434	435	62,5

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molniasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A289	HO CH ₃ CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	Br O CH ₃ CH ₃	OH O CH ₃	411	412	24,5
A290	H ₂ C CH ₃ CH ₃ N S CH ₂ NH ₂ C	H₂C ✓ Br	H,C CH, CH, CH, CH, CH, CH, CH, CH, CH,	421	422	100,6
A291	H ₂ C CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	H ₂ N Br	H ₂ C CH ₃ CH ₃ N CH ₃ N CH ₃ N SH	438	439	75,4
A292	H,C CH, N N N N N N N N N N N N N N N N N N N	Br O CH ₃	H ₂ C OH OH ₂ OH OH ₃ OH ₃ CH ₃ N N SH	453	454	58,8

		.,	· · · · · · · · · · · · · · · · · · ·			
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A293	HO CH ₃ HO CH ₃ HO CH ₃ N N N N N N N N N N N N N N N N N N	Br OH	H ₂ C CH ₃ CH ₃	439	440	50,2
A294	HO N CH ₂	H₂C ∕ Br	OH O CH ₃	352	353	68,7
A295	HO NH, SOH	Br OH	OH O CH,	356	357	73,5
A296	HO N S NH ₂	H ₂ N Br	OH O CH,	369	370	92,9

<u> </u>						
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A29'	HO CH ₃ N N N N N N N N N N N N N N N N N N N	OH H₃C Br	OH O CH ₃	370	371	78,6
A298	HO NH ₂ CH ₃	Br CH ₃	OH O CH ₃	384	385	71,0
A299	HO N S NH ₂	Br	OH O CH ₃	402	403	84,2
A300	HO N N N N N N N N N N N N N N N N N N N	Br OH	OH O CH,	386	387	100,9

						
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A30	HO CH ₃ N N N NH ₃	BrOH	OH O CH ₃	370	371	100,4
A302	HO S O CH ₃	Br CH ₃	OH O CH,	370	371	82,3
A303	HO S NH,	Br O 11 NH2	OH O CH,	448	449	82,0
A304	HO CH3 CH3 N S CH3 N N N N N N N N N N N N N N N N N N N	Br O CH ₃ CH ₃	OH O CH,	426	427	60,2

		1	· · · · · · · · · · · · · · · · · · ·	<u> </u>		· · · · · ·
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+Hl ⁺	Ausbeute (% d.Th.)
A305	OH N S CH ₂	H₂C ✓ Br	H ₂ N N SH	324	325	26,8
A306	HO N N OH	Br OH	H ₂ N SH	328	329	33,8
A307	HO N O NH2	H ₂ N Br	HO OH	341	342	43,1
A308	HO N CH ₃	OH H ₃ C Br	H ₂ N SH	342	343	34,2

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmassc	gefundenes [M+H]	Ausbeute (% d.Th.)
A309	HO NH ₂ CH ₃	Br O CH ₃	HO OH N SH	356	357	30,9
A310	HO NH S	Br	HO OH SH	374	375	34,7
A311	OH N N N N N N N N N N N N N N N N N N N	ВГОН	HO N SH	358	359	41,0
A312	HO NH ₂ S OH	Br OH	DH SH	342	343	33,3

BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A313	HO NH, S O CH, NH,	BrCH ₃	H ₂ N N SH	342	343	25,1
A314	HO NH, S NH,	Br ON NH2	HO OH	419	420	30,3
A315	OH N S N O NH, CH,	Br O CH ₃	HO OH SH	355	356	36,3
A316	OH CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	Br O CH ₃ CH ₃	HO OH N SH	397	398	30,7

	T	γ				
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A317	H ₂ C OH N S CH ₃	H ₂ C Br	CH ₃ OCH ₃ OH	368	369	68,9
A318	CH ₃ OH OH NH ₃ OH OH NH ₃	Br	CH ₃ O CH ₃ OH	372	373	77,6
A319	CH ₃ OH N N N N N N N N N N N N N N N N N N N	H₂N Br	CH ₃ OCH ₃ OH	385	386	107,4
A320	H,C OH NH, S CH, S OH	OH H₃C Br	CH, OCH, OH	386	387	64,2

	·					
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A321	H,C,OH,NHOOH	Br ОН	CH ₃ OCH ₃ OH	402	403	88,7
A322	H,C OH N N N N N N N N N N N N N N N N N N	Br OH	CH ₃ OCH ₃ OH	386	387	73,8
A323	CH ₃ OH N N N NH ₃ CH ₃ NH ₃	BrCH ₃	CH, OCH, OH	386	387	74,5
A324	H,C OH N S S NH,	0 NH ₂ S	CH ₃ O CH ₃ OH	464	465	83,3

		T	·			
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A32	H ₂ C _O OH CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	Br O CH, CH,	CH ₃ O CH ₃ O OH N N N SH	442	443	85,6
A320	HO N S CH ₂	H₂C ∕ Br	H ₂ N N SH	322	323	53,0
A327	HO H ₃ C N OH NH ₂	Br OH	H, C OH N SH	326	327	19,3
A328	HO H ₃ C N N NH ₂ NH ₂	H ₂ N Br	H ₂ C OH N SH	339	340	88,1

		T		- 		
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A329	HO CH ₃ N CH ₃ OH NH ₂	OH H₃C Br	H ₂ C OH N SH	340	341	77,3
A330	HO H ₂ C S CH ₃	Br CH ₃	H ₂ C OH N SH	354	355	68,3
A331	HO H ₃ C N NH ₂		H ₂ C OH N SH	372	373	59,3
A332	HO H ₃ C N N N H ₂ OH	OH OH	H ₂ C OH N SH	356	357	75,2

	7	·				
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A333	HO N S OH	ВгОН	H ₂ N N SH	340	341	47,0
A334	HO NH ₃ S O CH ₃	Br CH ₃	H ₂ C OH N SH	340	341	60,5
A335	HO N S NH,	O NH ₂ S NO	H ₂ C OH N SH	418	419	80,5
A336	HO CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	Br O CH ₃ CH ₃	H ₂ N N SH	395	396	74,6

BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A33	HO HO N S CH ₂	H₂C ✓ Br	HO O CH ₃	354	355	56,4
A338	HO N S NH2	H ₂ N Br	HO O CH ₃	371	372	47,4
A339	HO CH ₃ N CH ₃ NH ₂	H³C Bt	HO O CH ₃	372	373	68,5
A340	HO CH ₃ N N N N CH ₃	Br O CH ₃	H ₂ N N SH	386	387	81,0

			·			
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A34	HO N N N N N N N N N N N N N N N N N N N	Br	HO CH ₃	404	405	77,1
A342	HO CH ₃ N N N HO NH ₂ OH	Br OH	HO CH ₃	388	389	64,1
A343	HO CH ₃ N N NH ₃	BrOH	OH O CH,	372	373	65,5
A344	HO N S CH ₃	BrCH3	OH O CH ₃	372	373	67,9

			· · · · · · · · · · · · · · · · · · ·			
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes	Ausbeute (% d.Th.)
A345	HO CH ₃ NH ₂ NH ₂ O NH ₂	0 \\ \\ \\ \\ \\ \\	H ₂ N N SH	450	451	77,0
A346	HO NH ₂	Br O CH ₃ CH ₃	OH O CH ₃	427	428	77,2
A347	H ₃ C O N CH ₂	H²C ∕ BL	CH ₃ OH O CH ₃	368	369	69,5
A348	H ₂ C ₀ CH ₃ N N _N C ₀ OH NH ₂ OH	Br OH	CH ₃ OH O CH ₃	372	373	10,7

	1					,
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A349	HO CH ₃ N S NH ₂ NH ₂	H ₂ N Br	CH ₃ OH O CH ₃	385	386	46,2
A350	HO CH ₃ N _C O OH NH ₃	OH H₃C Br	CH ₃ OH O CH ₃	386	387	75,6
A351	HO CH ₃ N N N N CH ₃ N N CH ₃ N CH ₃	Br CH ₃	CH, OH O CH, SH	400	401	31,7
A352	H ₂ C ₀ CH ₃ N _N S N _N S	Br	CH ₃ OH O CH ₃	418	419	90,8

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molniasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A353	HO CH ₃ N HO OH	Вг ОН	CH ₃ OH O CH ₃	402	403	92,4
A354	HO CH ₃ N N N N N N N N N N N N N N N N N N N	Br OH	CH ₃ OH O CH ₃	386	387	73,2
A355	HO CHY N S O CHY NHY	BrO_CH ₃	CH ₃ OH O CH ₃	386	387	55,6
A356	HCO NH, S NH,	Br NH ₂	CH ₃ OH O CH ₃	464	465	85,4

	T		1	T	T	т
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H1	Ausbeute (% d.Th.)
A357	H ₂ N S OH	Br OH	H ₂ N O SH	339	340	58,9
A358	H ₂ N CH ₃	H³C Br	H ₂ N O SH	353	354	89,1
A359	H ₂ N S S CH ₃	Br O CH ₃	H ₂ N O N SH	367	368	61,5

r	T					
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Mohnasse	gefundenes [M+H1 ⁺	Ausbeute (% d.Th.)
A360	H ₂ N S N HO OH	Br OH	H ₂ N O N SH	369	370	65,2
A361	H,N S CH	BrOH	H ₂ N O SH	353	354	61,7
A362	H ₂ N S NH ₂ S NH ₂	Br NH ₂	H ₂ N O SH	431	432	53,9

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A363	H ₂ N S O	Br O CH ₃ CH ₃	H ₂ N O N SH	408	409	61,7
A364	N CH ₂	H₂C ∕ Br	H ₂ N SH	317	318	35,9
A365	N S NH ₂	H ₂ N Br	H ₂ N SH	334	335	24,5

				,		
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] [†]	Ausbeute (% d.Th.)
A366	N S O CH ₃	Br O CH ₃	N SH	349	350	41,2
A367	N S S S S S S S S S S S S S S S S S S S	Br	H ₂ N SH	367	368	45,2
A368	N S OH	Br OH	H ₂ N SH	335	336	50,1
A369	HO N S CH ₂	H₂C ✓ Br	OH CI N SH	343	344	75,6

Γ			· * * * * * * * * * * * * * * * * * * *			· · · · · · · · · · · · · · · · · · ·
BspNr.	Produkt	Edukt A	Edukt B	gesuchte	gefundenes	Ausbeute (% d.Th.)
A370	HO CI N S OH NH ₂	Br OH	OH OH SH	347	348	89,4
A371	HO S S NiH ₂	H ₂ N Br	OH OH SH	360	361	81,7
A372	HO CH ₃ CI N S OH NH ₂	H³C Br	OH OH SH	361	362	89,0
A373	HO N S O CH ₃	Br O CH ₃	OH CI N SH	375	376	60,8

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H] ⁺	Ausbeute (% d.Th.)
A374	HO N S N S N N N N N N N N N N N N N N N	Br	OH OH SH	393	394	69,5
A375	HO N S OH	BrOH	OH CI N SH	361	362	21,9
A376	HO S O CH ₃	Br CH ₃	OH OH N SH	361	362	56,5
A377	HO NH, S NH,	Br Ol NH,	OH CI N SH	438	439	90,7

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]+	Ausbeute (% d.Th.)
A 378	HO S F OH	OH N N N SH	CI	476	477	40,3
A 379	HO CH CH	OH N SH	Br N BrH	462	463	16,4
A 380	N F F OH	N OH N-	Br N BrH N H	446	447	71,7
A 381	S S NH,	Br N N SH	O H ₂ N Br	388	389	74,2
A 382	HO S CH ₃	OH N SH O Z- SH	Br	336	337	76,4
A 383	HO S S F S F S		F Br	376	377	68,3

							
BspNr.	Produkt	표 4 차대	C.	Edukt B	gesuchte Molmasse	gefundenes [M+H]+	Ausbeute (% d.Th.)
A 38	4 HO S S S S S S S S S S S S S S S S S S	OH N N N SH	´φ	_F □ Br	376	377	66,4
A 38	5 HO S S S S S S S S S S S S S S S S S S	OH N N N N N N N N	°	Br	388	389	64,9
A 380	HO N S N S N S N S N S N S N S N S N S N	OH N H _M N SH	¢	O _N +√O Br	393	.394	57,7
A 387	HO N S N N N N N N N N N N N N N N N N N	CH N SH	¢	CI H CI	431	432	23,4
A 388	HO S S S O	OH N N N N N N N N N N	¢	CI S CI	400	401	46,5
A 389	HO NO	OH N N SH	¢	N-CI ON O	456	457	5,5

BspNr.	Produkt		Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]+	Ausbeute (% d.Th.)
A 390	HO S S S S S S S S S S S S S S S S S S S	OH H,N N SH	(°	Br	386	387	62,9
A 391	HO S S S S S S S S S S S S S S S S S S S	NA SH	o. Y	ON-COB	403	404	60,2
A 392	HO CH ₃	OH N SH	ф	Br. Co.	416	417	18,0
A 393	HO NE S	OH N N N SH	¢	N= DBr	383	384	55,6
A 394	HO S F F F NHH,	OH N HJN N SH	¢	Br F F	424	425	56,5
A 395	HO COLL S. COLL S. COLL	OH N SH	¢	Br	527	528	67,8
A 396		N ₂ N N	SH	N≕——Br	367	368	13,6

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]+	Ausbeute (% d.Th.)
A 39	7 NH ₃	N N SH	BrH BrH	343	344	23,6
A 39	B N S S S	N N SH	CI S CI	384	385	15,6
A 399	S S N N N N N N N N N N N N N N N N N N	N N SH	N≕ Br	367	368	72,4
A 400	S S S S S S S S S S S S S S S S S S S	N N N SH	N Br	367	368	7,1
A 401	N S F F	N N N SH	Br F F	408	409	78,1
A 402		N N SH	Br. (1, 3°)	511	512	45,0

		•				
BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]+	Ausbeute (% d.Th.)
A 403	0 0 0 0 0 0 0 0 0	HN N SH	O N H	380	381	21,8
A 404	O COH, N COH,		N H O Br	399	400	47,3
A 405	O CH ₃ N N N OH	H ₂ N ₂ N ₃ N ₄ N ₄ N ₅ N ₄ N ₅	но ^{~Вг}	353	354	56,6
A 406	O CH, N S O CH, NH,	HN SH	HO ^{∕∕} Br	367	368	43,3
A 407	O CH, N CH, NH,	H ₂ N N SH	OH ∕ Br	367	368	49,8

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]+	Ausbeute (% d.Th.)
A 408	F F F N N N OH	NC CN	HO ^{~Br}	364	365	68,6
A 409	H,N S N	NC CN H ₂ N N SH	HN N E	^r 446	447	57,3
A 410	F F F O NH ₂ N NH ₂	F F F F CN CN H ₂ N N SH	O H ₂ N Br	377	378	15,5
A 411	N N N S H N N N N N N N N N N N N N N N	N N SH	CI N HCI H	332	333	35,4

BspNr.	Produkt	Edukt A	Edukt B	gesuchte Molmasse	gefundenes [M+H]+	Ausbeute (% d.Th.)
A 412	N N N S O	N N N SH	MeO [∕] Br	310	311	86,4
A 413	OH N N N N N S O	N N N SH	MeO [∕] Br	326	327	46,4

BspNr.	Produkt	Molgewicht
B1	S NH, OCH,	419
B2	S H ₃ C O O O O O O O O O O O O O O O O O O O	465
В3	S S S S S S S S S S S S S S S S S S S	439
B4	S H,C OCH,	465
B5		450

BspNr.	Produkt	Molgewicht
В6		455
В7	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	435
В8	N S CH,	498
В9	CI N S CH ₃	419
В10	S NH ₂ S Br	484

BspNr.	Produkt	Molgewicht
B11	N N N N N N N N N N N N N N N N N N N	406
B12	S S S S S S S S S S S S S S S S S S S	406
B13	H,C,O	541
B14		481
B15	CI N S S S S S S S S S S S S S S S S S S	423

BspN	r. Produkt	Molgewicht
B16	S F F	473
B17	S O C C C C C C C C C C C C C C C C C C	474
B18	H ₂ N N O N O N O O O O O O O O O O O O O O	450
B19	N N N N N N N N N N N N N N N N N N N	515
B20	S O O O	439

BspNr	Produkt	Molgewicht
B21	N N N O O O O	474
B22		430
B23	CH ₃	434
B24	S CH ₃ O CH ₃	443
B25	S S CH ₃	507

BspNr.	Produkt	Molgewicht
B26	2	406
B27	N CH ₃ N CH ₃ O N F O	469
B28	H,C (B) C (B	515
B29	a N	540

BspNr	. Produkt	Molgewicht
B30	S N CH,	476
B31		463
B32	S O O O O O O O O O O O O O O O O O O O	497
B33	S S S S S S S S S S S S S S S S S S S	461
B34	S O N C C	541

BspNr.	Produkt	Molgewicht
B35	S NH ₂ N ₁ N ₂	562
B36	N S N H ₃ C O	486
B37	F F F S S S S S S S S S S S S S S S S S	473
B38	N S S O O O O O O O O O O O O O O O O O	373

BspNr.	Produkt	Molgewicht
B39	CH ₃ N H ₃ C	434
B40		560
B41	S H,C CH,	433
B42	S S S C C C C C C C C C C C C C C C C C	474

BspNr.	Produkt	Molgewicht
B43	H ₃ C CH ₃ CH ₃ CH ₃ S N N N N N N N N N N N N N N N N N N	451
B44	N O O CH, N O O O O O O O O O O O O O O O O O O	515
B45	N H ₃ C S O	419
B46		556

BspNr.	Produkt	Molgewicht
B47	S O N N N N N N N N N N N N N N N N N N	369
B48	N S S O D O O O O O O O O O O O O O O O O	631
B49	N S O N O	550
B50	CO F S S S S S S S S S S S S S S S S S S	492

BspNr.	Produkt	Molgewicht
B51		545
B52		515
B53	CH, SH, CH, ON SCH, ON SCH, ON SCH,	479
B54		484

BspNr.	Produkt	Molgewicht
B55	S N CH ₃	381
B56	CI N H ₃ C O O O O O O O O O O O O O O O O O O O	527
B57	CO NEW	417
B58	CI H ₃ C N O CH ₃	396

BspNr.	Produkt	Molgewicht
B59	H ₃ C CH ₃ N N N N N N N N N N N N N N N N N N N	397
B60	N S N N N N N N N N N N N N N N N N N N	460
B61		373
B62	CH ₃	415

BspNr.	Produkt	Molgewicht
B63	CH ₃ CH ₃ CH ₃ N N NH ₂	357
B64	S H ₃ C O	400
B65	S NH ₂ S CH ₃	384
B66	S H ₃ C O CH ₃	430

BspNr.	Produkt	Molgewicht
B67	S H ₃ C O CH ₃	430
B68	N NH ₂ S CH ₃	400
B69	S CH ₃	400
B70	Br NH ₂ NH ₂	463

BspNr.	Produkt	Molgewicht
B71	N S CH ₃	384
B72	S S N N N N N N N N N N N N N N N N N N	371
B73	S NH ₂	371
B74	S NH ₂	371

BspNr	Produkt	Molgewicht
B75	N S S O NH ₂	447
B76	S NH ₂	388
B77	S F F	438
B78	H ₂ N N B O	415

BspNr	Produkt	Molgewicht
B79	S IH ₃ C CH ₃ O CH ₃ O CH ₃ O	408
B80	S O CH ₃	473
B81	S O NH ₂	371
B82	N CH ₃ N F O	434

BspNr.	Produkt	Molgewicht
B83	H,C CH, N N N N NH,	481
B84	S NH ₂ OH ₃	442
B85	S S S S S S S S S S S S S S S S S S S	428
B86	S O O O O O O O O O O O O O O O O O O O	463

BspNr	Produkt	Molgewicht
B87	N S S S S S S S S S S S S S S S S S S S	528
B88	S H ₃ C O	452
B89	F F F S S S S S S S S S S S S S S S S S	438
B90	N S O O O O O O O O O O O O O O O O O O	338

BspNr.	Produkt	Molgewicht
B91	CH, S	399
B92	S H ₃ C CH ₃	398
B93	N H ₃ C CH ₃ CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	417
B94	N O O O CH ₃	481

BspNr.	Produkt	Molgewicht
B95	H,C S S N N N N N	384
B96	N S O NH ₂	334
В97	N S O O O O O O O O O O O O O O O O O O	516
B98	C S S S S S S S S S S S S S S S S S S S	457

BspNr.	Produkt	Molgewicht
B99	N S O NH ₂	481
B100	N NH ₂ CH ₃ O O O O O CH ₃	445
B101	N H ₃ C CH ₃ CH ₃	399
B102	S NH ₂	456

BspNr.	Produkt	Molgewicht
B103	S CH ₃	346
B104	S N N N N N N N N N N N N N N N N N N N	382
B105	N H ₃ C N O CH ₃	361
B106	H ₃ C CH ₃ S O	362

BspNr.	Produkt	Molgewicht
B107	S S N	426
B108	S O OH	338
B109	S O O CH ₃	380
B110	S CH ₃ CH ₃ N NH ₂	322

BspNr.	Produkt	Molgewicht
B111	H ₃ C CH ₃ S O CH ₃	379
B112	CI S H ₃ C O NH ₂	435
B113	CI S CH ₃	419
B114	CO CH3	465

BspNr.	Produkt	Molgewicht
B115	S H ₃ C O CH ₃	465
B116	CI N S CH ₃	498
B117	C S CH ₃	419
B118	CI S S NH ₂ S	406

BspNr.	Produkt	Molgewicht
B119	CI NIN ON NIN NIN ON NIN NIN ON NIN NIN ON NIN NI	406
B120	CI S S N N N N N N N N N N N N N N N N N	406
B121		481
B122	S NH ₂	423

BspNr.	Produkt	Molgewicht
B123	CI S F F F	473
B124	H,N,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,NO,N	450
B125	CH, CH, O CH, NH, NH,	443
B126	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	507

BspNr.	Produkt	Molgewicht
B127	C C C C C C C C C C C C C C C C C C C	469
B128	H,C CH, CH, CH, CH, CH, CH, CH, CH, CH,	515
B129	CH, CH, CH,	476
B130	Z== - Z - Z - Z - Z - Z - Z - Z - Z - Z	562

BspNr.	Produkt	Molgewicht
B131	CI N S O N H ₃ C O N	486
B132	F F S S S S S S S S S S S S S S S S S S	473
B133	N S N O O O O O O O O O O O O O O O O O	373
B134	CH ₃ N H ₃ C S O N NH ₂	434

BspNr.	Produkt	Molgewicht
B135	CH ₃	451
B136	OH,	515
B137	CCH ₃ NH ₂ CCH ₃ CCH ₃ CCH ₃	415
B138	CI H ₃ C O	419

BspNr.	Produkt	Molgewicht
B139	CI S O NH ₂	369
B140	a s s s	492
B141	CI S S O S NH ₂	484
B142	CI S S NH ₂ S	427

BspNr.	Produkt	Molgewicht
B143	CH ₃	381
B144	CI S N N N N N N N N N N N N N N N N N N	417
B145	CI H ₃ C N O CH ₃	396
B146	CI H ₃ C CH ₃ N N N N N N N N N N N N N N N N N N N	397

BspNi	. Produkt	Molgewicht
B147	S S N N N N N N N N N N N N N N N N N N	460
B148	CI S O OH OH	373
B149	CH ₃ CH ₃ N N CH ₃	357
B150	CI H ₃ C CH ₃ N O CH ₃ NH ₂	414
B151		416

BspNr.	Produkt	Molgewicht
B152	N S S S S S S S S S S S S S S S S S S S	416
B153	O NH ₂	416
B154	O CH ₃ N CH ₃ CH ₃	444
B155	S NH ₂ NH ₂ NH ₃	453

BspNr	. Produkt	Molgewicht
B156	o NH ₂ S O O O O O O O O O O O O O O O O O O	550
B157	O N N N N N N N N N N N N N N N N N N N	573
B158	O N H ₃ C S S	444
B159	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	462

BspNr.	Produkt	Molgewicht
B160	S CH ₃ NH ₂ C CH ₃ CH ₃	425
B161		494
B162	H ₂ C ₂ CH ₃	602
B163	S N CH ₃	391

BspNr.	Produkt	Molgewicht
B164	O N N N N N N N N N N N N N N N N N N N	427
B165	N H ₃ C CH ₃ S N N N N N N N N N N N N N N N N N N N	407
B166		471
B167	N H ₃ C CH ₃ N N H ₃ C CH ₃ N N O CH ₃	424

BspNr.	Produkt	Molgewicht
B168	CH ₃ N S H ₃ C N NH ₂	430
B169	CH ₃ N N N N N CH ₃ CH ₃ CH ₃	461
B170	CH ₃	435
B171	CH ₃ S H ₃ C O CH ₃ O CH ₃	461

BspNr.	Produkt	Molgewicht
B172	CH ₃ N N N N N N N N N N N N N N N N N N N	445
B173	CH ₃ O N N N N N N N N N N N N N N N N N N	451
B174	CH ₃ N N N N N N N N N N N N N N N N N N N	430
B175	CH ₃ O N N S CH ₃ O N N N N N N N N N N N N N N N N N N	430

BspNr	. Produkt	Molgewicht
É176	CH ₃ N N N N N N N N N N N N N N N N N N N	493
B177	CH ₃ N S O N NH ₂	414
B178	CH ₃ N N N N N N N N N N N N N N N N N N N	401
B179	CH ₃ S S N N N N N N N N N N N N N N N N N	401

BspNr.	Produkt	Molgewicht
B180	CH ₃ O N N N N N N N N N N N N N N N N N N	401
B181	CH ₃ N N N N N N N N N N N N N N N N N N N	477
B182	CH ₃ N N N N N N N N N N N N N N N N N N N	418
B183	CH ₃ N N N N N N N N N N N N N N N N N N N	468

BspNr.	Produkt	Molgewicht
B184	CH ₃ O N N N N N N N N N N N N N N N N N N	469
B185	H ₂ N N O CH ₃	445
B186	CH ₃ O N N N N N N N N N N N N N N N N N N	435
B187	CH ₃ N S N N N N N N N N N N N N N N N N N	425

BspNr	Produkt	Molgewicht
B188	CH ₃ N N N CH ₃ CH ₃ CH ₃ CH ₃	430
B189	CH ₃ O C CH ₃ O C CH ₃ O C C C C C C C C C C C C C C C C C C	439
B190	CH ₃ O N S S O CH ₃ O N N N N N N N N N N N N N N N N N N	503
B191	CH ₃ N N N N N N N N N N N N N N N N N N N	401

BspNr.	Produkt	Molgewicht
B192	CH ₃ N N N N N N N N N N N N N N N N N N N	425
B193	CH ₃ O N S S O F F	464
B194	H ₃ C (OH) (OH) (OH) (OH) (OH) (OH) (OH) (OH)	511
B195	CH ₃ NH ₃ CH ₃ CH ₃ CH ₃	472

BspNr	Produkt	Molgewicht
B196	CH ₃ N N S O N N N N N N N N N N N N N N N N	458
·B197	CH ₃ O O O O O O O O O O O O O O O O O O O	493
B198	CH ₃ N N N N N N N N N N N N N N N N N N N	457
B199	CH,	558

BspNr.	Produkt	Molgewicht
B200	CH ₃ O N N N N N N N N N N N N N N N N N N	482
B201	CH ₃ S S O	468
B202	CH ₃ O N N N O O O O O O O O O O O O O O O	368
B203	CH ₃ Z H ₃ S N N N N N N N N N N N N	430

BspNr.	Produkt	Molgewicht
B204	CH ₃ O S H ₂ CCH ₃ O CH ₄ O C C C C C C C C C C C C C C C C C	429
B205	CH ₃ O N N N N N N N N N N N N N N N N N N	469
B206	CH ₃ N N H ₃ C CH ₃ CH ₃ O N N N N N N N N N N N N N N N N N N	447
B207	CH,	511

BspNr	. Produkt	Molgewicht
B208	CH ₃ O N N N N N N N N N N N N N N N N N N	364
B209	CH ₃ N N N N N N N N N N N N N N N N N N N	546
B210	CH ₃ O S O NH ₂	487
B211	CH ₃ O N N N N CH ₃ O N O N O O O O O O O O O O O O O O O	475

BspNr.	Produkt	Molgewicht
B212	CH ₃ N N N N N N N N N N N N N N N N N N N	480
B213	CH ₃ N H ₃ C S N N N N N N N N N N N N N N N N N N	493
B214	CH ₃ N N N N N N N N N N N N N N N N N N N	479
B215	CH ₃ O N N N N NH ₂	423

BspNr.	Produkt	Molgewicht
B216	CH ₃ CH ₃ CH ₃ CH ₃	429
B217	CH ₃ O N N N N N N N N N N N N N N N N N N	486
B218	H,C, O CH, OH, N N N N N N N N N N N N N	605
B219	CH ₃ O N N CH ₃ CH ₃	376

BspNr.	Produkt	Molgewicht
B220	CH ₃ N N NH ₂	412
B221	CH ₃ N N N N N N N N N N N N N N N N N N N	391
B222	CH ₃ N H ₃ C CH ₃ O N N N N N N N N N N N N N N N N N N	392
B223	CH ₃ N N N N N N N N N N N N N N N N N N N	456

BspNr.	Produkt	Molgewicht
B224	CH ₃ N N N CH ₃ CH ₃	410
B225	CH ₃ O N CH ₃ O N N CH ₃	352
B226	CH ₃ N H ₃ C CH ₃ O CH ₃ N N N N N N N N N N N N N N N N N N N	409
B227	CH ₂ NH ₂ NH ₃	457

BspNr	. Produkt	Molgewicht
B228	CH ₂ N N N N N CH ₃ CH ₄	441
B229	OH, N N N NH, OH,	487
B230	CH ₂ N N N N N N N CH ₃ CH ₄ CH ₅ CH ₇ CH	487
B231	CH ₂ NH ₂ OCH ₃	457

BspNr.	Produkt	Molgewicht
B232	CH ₂	457
B233	CH ₂ N S CH ₃ NH ₃	441
B234	CH ₂	427
B235	CH ²	427

BspNr.	Produkt	Molgewicht
B236	CH ₂ N N N N N N N N N N N N N	427
B237	CH ₂ N N N N N N N N N N N N N N N N N N N	503
B238	OH2 N N N N N N N N N N N N N	444
B239	CH ₂ N N S N F F N N N N N N N N N N N N N N	494

BspNr.	Produkt	Molgewicht
B240	H ₂ N N O CH ₃	471
B241	CH2	456
B242	CH ₂ N N N N N N N N N N N N N N N N N N N	465
B243	CH ₂ N N N N N N N N N N N N N N N N N N N	529

BspNr	Produkt	Molgewicht
B244	CH ₂ N N N N N N N N N N N N N N N N N N	427
B245	CH ₂ N CH ₃ N F O F F	490
B246	CH ₂ N S N CH ₃ CH ₄ CH ₅	498
B247	CH ₂ S S S S S S S S S S S S S S S S S S S	485

BspNr	. Produkt	Molgewicht
B248		519
B249	OH, S H,C O	584
B250	CH ₂ N N H ₃ C S O N N N N N N N N N N N N N N N N N N	456
B251	CH, N,	455

BspNr	Produkt	Molgewicht
B252	CH ₂ N N N N N N N N N N N N N	473
B253	CH ₂ CH ₃ CH ₄ N N N N N N N N N N N N N N N N N N N	537
B254	CH ₂ N N N N N N N N N N N N N N N N N N N	441

BspNr.	Produkt	Molgewicht
B255	CH ₂ N N N N N N N N N N N N N N N N N N N	390
B256	CH ₂ S S H,N O	572
B257	CH ² O S S O NH ₂	513

BspNr.	Produkt	Molgewicht
B258	CH ₂ O N N N N N N N N N N N N N N N N N N	567
	СН ₂	
B259	N CH ₃ N O H ₃ CC O CH ₃ O CH ₃ O CH ₃	501
B260	O-N'OS NHA	443

BspNr.	Produkt	Molgewicht
B261	CH ₂ N N N N N N N N N N N N N N N N N N N	455
B262	CH ₂ N N N N N N N N N N N N N	512
B263	CH2 N N N NH2	402
B264	CH ₂ N N N NH ₂	439

BspNr.	Produkt	Molgewicht
B265	CH2	417
B266	CH2 CH3	418
B267	CH ₂ N N N N N N N N N N N N N N N N N N N	482
B268	CH ₂	394

BspNr	Produkt	Molgewicht
B269	CH ₂ NH ₂ OH ₃ OH ₄ OH ₅ OH	436
B270	H ₃ C N S H ₃ C O NH ₂	414
B271	H ₃ C S S NH ₃ S	461
B272	H ₃ C S CH ₃	398

BspNr.	Produkt	Molgewicht
B273	H ₃ C S H ₃ C O CH ₃	445
B274	H ₃ C S H ₃ C O CH ₃	445
B275	H ₃ C S S S S S S S S S S S S S S S S S S S	429
B276	H,C S S NH,	435

BspNr.	Produkt	Molgewicht
B277	H ₃ C S O CH ₃	414
B278	H ₃ C CH ₃	414
B279	H ₃ C S CH ₃	477
B280	H ₃ C N S CH ₃	398

BspNr.	Produkt	Molgewicht
B281	H ₃ C N S N N N N N N N N N N N N N N N N N	385
B282	H ₃ C S N N N N N N N N N N N N N N N N N N	385
B283	H ₃ C S N N N N N N N N N N N N N N N N N N	385
B284	H ₃ C S O	461

BspNr	. Produkt	Molgewicht
B285	H ₃ C S S S S S S S S S S S S S S S S S S S	402
B286	H ₃ C S F F	452
B287	H ₃ C O O O O O O O O O O O O O O O O O O O	453
B288	H ₂ N N O N O CH ₃	429

BspNr.	Produkt	Molgewicht
B289	H ₃ C O O O O O O O O O O O O O O O O O O O	419
B290	H ₃ C S S NH ₂ S	409
B291	H ₃ C CH ₃ CCH ₃	414
B292	H ₃ C O CH ₃	423

BspNr.	Produkt	Molgewicht
B293	H ₃ C N S O CH ₃	487
B294	H ₃ C N N N N N N N N N N N N N N N N N N N	385
B295	H ₃ C S N N N N N N N N N N N N N N N N N N	409
B296	H ₃ C N N N N S O F F	448

BspNr.	Produkt	Molgewicht
B297	H,C O O O O O O O O O O O O O O O O O O O	495
B298	H ₃ C N N N CH ₃ CH ₃	456
B299	H ₂ C S S S S S S S S S S S S S S S S S S S	443
B300	H ₃ C O O OH OH OH OH	477

BspNr.	Produkt	Molgewicht
B301	H,C S N N N N N N N N N N N N N N N N N N	542
B302	H ₃ C S H ₂ C N N N N N N N N N N N N N N N N N N N	466
B303	FF S S S S S S S S S S S S S S S S S S	452
B304	H ₃ C N N N N O O O O O O O	352

BspNr.	Produkt	Molgewicht
B305	H ₃ C H ₃ C CH ₃	414
B306	H ₃ C O CH ₃	413
B307	H ₃ C S O C C C C C C C C C C C C C C C C C	453
B308	H ₃ C CH ₃ CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	431

BspNr.	Produkt	Molgewicht
B309	H ₃ C CH ₃	495
B310	H ₃ C H ₃ C S O	398
B311	H ₃ C S O	348
B312	H ₃ C N N N N N N N Q	611

BspNr.	Produkt	Molgewicht
B313	H ₂ C N S O H ₂ N O O	530
B314	H ₃ C C C C C C C C C C C C C C C C C C C	471
B315	H ₃ C S S O	525

BspNr.	Produkt	Molgewicht
B316	H,C S CH, S	459
B317	H ₃ C S NH ₂	407
B318	O-NONNH2 NCH3	401
B319	H ₃ C CH ₃ N S CH ₃	413

BspNr.	Produkt	Molgewicht
B320	H ₃ C S S N N N N N N N N N N N N N N N N N	470
B321	H ₃ C N N CH ₃	360
B322	H ₃ C S N N N N N N N N N N N N N N N N N N	396
B323	H ₃ C N O CH ₃	375

BspNr.	Produkt	Molgewicht
B324	H ₃ C CH ₃ S O	376
B325	H ₃ C S S N	440
B326	H ₃ C S O S O S O S O S O S O S O S O S O S	414
B327	H ₃ C OH OH	352

BspNr	Produkt	Molgewicht
B328	H ₃ C O O CH ₃	394
B329	H ₃ C CH ₃ S CH ₃ NH ₂	336
B330	H ₃ C CH ₃ N H ₃ C CH ₃ O CH ₃	393
B331	S H ₃ C O	435

BspNr	. Produkt	Molgewicht
B332	S NH ₂ CH ₃	419
B333	S H ₃ C O CH ₃	465
B334	S H ₃ C O CH ₃	465
B335	CH ₃	435

BspNr.	Produkt	Molgewicht
B336	CI N S CH ₃	435
B337	N S CH ₃	419
B338	CO N NH ₂ S	406
B339	CI S N NH ₂	406

BspNr.	Produkt	Molgewicht
B340	S N N N N N N N N N N N N N N N N N N N	406
B341	N S O NH ₂	481
B342	S NH ₂	423
B343	S F F	473

BspNr	Produkt	Molgewicht
B344	CH ₃	434
B345	CI N O CH ₃ NH ₂ CH ₃ CH	443
B346	CI N S O	406
B347	CI N CH ₃ N S O F F	469

BspN	r. Produkt	Molgewicht
B348	H ₃ C CH ₃ CH ₃ CH ₃	515
B349	S NH ₂ CH ₃	476
B350	G N S N N N N N N N N N N N N N N N N N	562
B351	CI N S O N N N N N N N N N N N N N N N N N	486

BspNr	. Produkt	Molgewicht
B352	F F F S S S S S S S S S S S S S S S S S	473
B353	CI N N N OH	373
B354	CH ₃ N H ₃ C N N N N N N N N N N N N N N N N N N	434
B355	S H ₃ C CH ₃	433

BspNr.	Produkt	Molgewicht
B356	CI N H ₃ C CH ₃ CH ₃ CH ₃ O	451
B357	CH ₃ O O O H ₃ C	515
B358	CI H ₃ C S O	419
B359	S O NH ₂	369

BspNr.	Produkt	Molgewicht
B360	N S O N O	550
B361		515
B362	CH ₃ NH ₂ CH ₃ O CH ₃	479
B363	S S S S S S S S S S S S S S S S S S S	484

BspNr.	Produkt	Molgewicht
B364	O-N, S, NH, NH, NH, NH, NH, NH, NH, NH, NH, NH	422
B365	CI S CH ₃ CH ₃ CH ₃	433
B366	CI N S N N N N N N N N N N N N N N N N N	490
B367	S N CH ₃	381

BspNr.	Produkt	Molgewicht
B368	CI III S N N N N N N N N N N N N N N N N	417
B369	CI N H ₃ C N O CH ₃	396
B370	CI N H ₃ C CH ₃ S O	397
B371	CI N S S NH ₂	460

BspNr.	Produkt	Molgewicht
B372	CI NO OH NH2	373
B373	CH ₃	415
B374	CI CH ₃ CH ₃ O CH ₃ NH ₂	357
B375	CI N H ₃ C CH ₃ S O CH ₃ NH ₂	414

Patentansprüche

1. Verbindungen der allgemeinen Formel (I)

5

wobei:

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

10

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C1-C8)-Alkyl;

gegebenenfalls substituiertes (C₆-C₁₀)-Aryl;

gegebenenfalls substituiertes (C1-C8)-Alkoxy;

15

 $-O-(CH_2)_n-CH=CH_2$ mit n = 0, 1 oder 2;

Halogen;

Nitro;

Cyano;

-C(O)-R⁵;

20

 $-C(O)-NR^6R^7$;

 $-NR^6R^7$;

 $-NR^6-C(O)-R^8$;

-O-C(O)-R⁸;

-SO₂-NR⁶R⁷; und

25

 $-NR^6-SO_2R^8$,

wobei:

R⁵ bezeichnet: Wasserstoff; Hydroxy; 5 gegebenenfalls substituiertes (C1-C8)-Alkyl; gegebenenfalls substituiertes (C₃-C₇)-Cycloalkyl; gegebenenfalls substituiertes (C₁-C₈)-Alkoxy; gegebenenfalls substituiertes (C₆-C₁₀)-Aryl; gegebenenfalls substituiertes (C₆-C₁₀)-Aryloxy; oder 10 $-O-(CH_2)_n-[(C_6-C_{10})-Aryl]$ mit n = 1, 2 oder 3, wobei die (C₆-C₁₀)-Arylgruppe über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C4-C7)-Cycloalkyl anelliert sein kann, 15 oder R^5 einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bedeutet, der seinerseits ein- oder mehrfach mit 20 einer Oxogruppe (=O); Halogen; gegebenenfalls substituiertem (C₁-C₈)-Alkyl; Nitro; Cyano; 25 Hydroxy; gegebenenfalls substituiertem (C₆-C₁₀)-Aryl; oder mit (C_1-C_8) -Alkoxy

substituiert sein kann,

30

oder

 R^5 für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

. 5

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C₆-C₁₀)-Aryl oder gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein können,

10

und

R⁶ und R⁷ gleich oder verschieden sind und für Wasserstoff; gegebenenfalls substituiertes (C₁-C₈)-Alkyl; gegebenenfalls substituiertes (C₆-C₁₀)-Aryl; oder

15

für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S stehen

20

25

oder

R⁶ und R⁷ gemeinsam mit dem Stickstoffatom, an das sie gegebenenfalls gebunden sind, einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S bilden, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann mit einer Oxogruppe (=O);

Halogen;

30

 (C_1-C_8) -Alkyl;

Nitro;

Cyano; Hydroxy; (C₆-C₁₀)-Aryl; oder (C_1-C_8) -Alkoxy,

5

und

 R^8 Hydroxy; NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; 10 gegebenenfalls substituiertes (C1-C8)-Alkyl; (C_1-C_8) -Alkoxy; gegebenenfalls substituiertes (C₆-C₁₀)-Aryl; (C₆-C₁₀)-Aryloxy; oder $-O-(CH_2)_n-[(C_6-C_{10})-Aryl]$ mit n = 1, 2 oder 3 bedeutet,

15

und

 R^4 für geradkettiges oder verzweigtes (C1-C8)-Alkyl oder (C2-C8)-20 Alkenyl steht, die gegebenenfalls ein- oder mehrfach substitutiert sind mit Hydroxy; Halogen; Cyano; -C(O)-R⁵ mit R⁵ wie zuvor definiert; 25 -C(O)-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; -NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; -NR⁶-C(O)-R⁸ mit R⁶ und R⁸ wie zuvor definiert; -SO₂-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; -NR⁶-SO₂-R⁸ mit R⁶ und R⁸ wie zuvor definiert; 30

 $-C(O)-(CH_2)_n-C(O)-R^8$ mit n=0 bis 2 und R^8 wie zuvor definiert;

 (C_1-C_8) -Alkoxy;

gegebenenfalls substituiertem (C₆-C₁₀)-Aryloxy;

gegebenenfalls substituiertem 5- bis 6-gliedrigen Heteroaryl mit bis zu

3 Heteroatomen aus der Reihe N, O und/oder S;

gegebenenfalls substituiertem (C6-C10)-Aryl; oder

mit einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Halogen; (C₁-C₈)-Alkyl; Nitro; Cyano; Hydroxy; (C₆-C₁₀)-Aryl; oder mit (C₁-C₈)-Alkoxy substituiert

sein kann,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C₆-C₁₀)-Aryl anelliert sein können,

oder

R⁴ für einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Halogen; (C₁-C₈)-Alkyl; Nitro; Cyano; Hydroxy; (C₆-C₁₀)-Aryl; oder mit (C₁-C₈)-Alkoxy substituiert sein kann, und

der gegebenenfalls über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C_6 - C_{10})-Aryl oder gegebenenfalls substituiertem (C_4 - C_7)-Cycloalkyl anelliert sein kann,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

5

10

15

20

10

20

25

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel (I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

- R¹ = R² = H; R³ = para-OH; R⁴ = -CH₂-Z mit Z = CN, C(O)-OC₂H₅, 4-Br-C₆H₄-CO, 4-n-Butyl-C₆H₄-CO, H, C₆H₅, C(O)-O-CH₂-C₆H₅, C(O)-OCH₃, C(O)-OH, 2-oxo-benzo-pyranyl-3-carbonyl, 4-Cl-C₆H₄-CO, 3-Br-C₆H₄-CO, 4-C₆H₅-C₆H₄-CO, 4-CH₃-C₆H₄-CO, 3,4-Cl₂-C₆H₃-CO;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-OH}$; $R^4 = -\text{CH}_2\text{-Z}$ mit $Z = 4\text{-Br-C}_6H_4\text{-NH-CO}$, 2-oxo-benzo-pyranyl-3-carbonyl, 4-Cl-C₆H₄-CO;
 - $R^1 = R^2 = H$; $R^3 = para-O-C(O)-CH_3$; $R^4 = -CH_2-Z$ mit $Z = 4-CH_3-C_6H_4-CO$, H, 2-oxo-benzopyranyl-3-carbonyl, $(CH_2)_3-CH_3$, $4-C_6H_5-C_6H_4$;
 - $R^1 = R^2 = R^3 = H$; $R^4 = -CH_2 Z$ mit $Z = CH_3$, CN, 2-Naphthyl;
- $R^1 = R^2 = H$; $R^3 = \text{para-Butoxy}$; $R^4 = -\text{CH}_2\text{-Z}$ mit $Z = 4\text{-Cl-C}_6\text{H}_5$, $C(O)\text{-OCH}_3$, $C(O)\text{-C}_6\text{H}_5$, $CH=\text{CH}_2$, $C(O)\text{-NH}_2$, H, $4\text{-Br-C}_6\text{H}_4\text{-CO}$, $4\text{-Cl-C}_6\text{H}_4\text{-CO}$, $C(O)\text{-OC}_2\text{H}_5$, $C(O)\text{-O-CH}_2\text{-C}_6\text{H}_5$, 2-oxo-benzo-pyranyl-3-carbonyl, $C(O)\text{-NH-C}_6\text{H}_5$, CN;
 - $R^1 = R^2 = H$; $R^3 = \text{para-Brom}$; $R^4 = -CH_2-Z \text{ mit } Z = 4-Br-C_6H_4-CO$, 4-Cl-C₆H₄-CO, C(O)-NH₂, C(O)-OCH₃, 4-Cl-C₆H₅, 4-Br-C₆H₄-NH-CO;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2-Z$ mit $Z = 4-Br-C_6H_4-CO$, $C(O)-NH_2$, $C(O)-O-CH_2-C_6H_5$, CN;
 - $R^1 = R^2 = H$; $R^3 = \text{para-Chlor}$; $R^4 = -CH_2 Z$ mit Z = 2-Naphthyl, CH_3 ;
 - $R^1 = R^2 = H$; $R^3 = para-OCH_3$; $R^4 = -CH_2-Z$ mit Z = 2-Naphthyl, CH_3 ;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2 Z$ mit $Z = CH_3$.
 - 2. Verbindungen der allgemeinen Formel (I) nach Anspruch 1, wobei:
- R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

 Wasserstoff;

```
Hydroxy;
                                 gegebenenfalls substituiertes (C<sub>1</sub>-C<sub>6</sub>)-Alkyl;
                                 gegebenenfalls substituiertes Phenyl oder Naphthyl;
                                 gegebenenfalls substituiertes (C1-C6)-Alkoxy;
  5
                                -O-(CH_2)_n-CH=CH_2 mit n = 1 oder 2;
                                Fluor, Chlor, Brom;
                                Nitro;
                                Cyano;
                                -C(O)-R<sup>5</sup>;
                                -C(O)-NR<sup>6</sup>R<sup>7</sup>;
10
                                -NR^6R^7;
                                -NR^{6}-C(O)-R^{8};
                                -O-C(O)-R<sup>8</sup>;
                                -SO<sub>2</sub>-NR<sup>6</sup>R<sup>7</sup>; und
                                -NR<sup>6</sup>-SO<sub>2</sub>R<sup>8</sup>,
15 .
                               wobei:
                               R^5
                                         bezeichnet:
20
                                         Wasserstoff;
                                         Hydroxy;
                                         gegebenenfalls substituiertes (C<sub>1</sub>-C<sub>6</sub>)-Alkyl;
```

oder

gegebenenfalls substituiertes (C_3 - C_7)-Cycloalkyl; gegebenenfalls substituiertes (C_1 - C_6)-Alkoxy;

gegebenenfalls substituiertes Phenyl oder Naphthyl;

-O-(CH₂)_n-Phenyl mit n = 1, 2 oder 3,

gegebenenfalls substituiertes Phenyloxy oder Naphthyloxy;

wobei die Phenyl- oder Naphthylgruppe über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C₄-C₇)-Cyclo-alkyl anelliert sein kann,

5

oder

10

R⁵ einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bedeutet, der seinerseits ein- oder mehrfach mit einer Oxogruppe (=O);

Fluor, Chlor, Brom;

gegebenenfalls substituiertem (C1-C6)-Alkyl;

Nitro;

Cyano;

Hydroxy;

15

gegebenenfalls substituiertem Phenyl oder Naphthyl; oder mit (C_1-C_6) -Alkoxy substituiert sein kann,

oder

20

R⁵ für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

25

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder Naphthyl oder gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein können,

30

und

- 5

15

20

 R^6 und R^7 gleich oder verschieden sind und für

Wasserstoff;

gegebenenfalls substituiertes (C1-C6)-Alkyl;

gegebenenfalls substituiertes Phenyl oder Naphthyl; oder

für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl

mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S

stehen

oder

10

R⁶ und R⁷ gemeinsam mit dem Stickstoffatom, an das sie gegebenenfalls gebunden sind, einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S bilden, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann mit

einer Oxogruppe (=O);

Fluor, Chlor, Brom;

 (C_1-C_6) -Alkyl;

Nitro;

Cyano;

Hydroxy;

Phenyl oder Naphthyl; oder

 (C_1-C_6) -Alkoxy,

und

R⁸ NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; gegebenenfalls substituiertes (C₁-C₆)-Alkyl; (C₁-C₆)-Alkoxy;

30

gegebenenfalls substituiertes Phenyl oder Naphthyl; Phenyloxy oder Naphthyloxy; oder -O- $(CH_2)_n$ -Phenyl mit n = 1, 2 oder 3 bedeutet,

5

und R^4 für geradkettiges oder verzweigtes (C₁-C₆)-Alkyl oder (C₂-C₆)-Alkenyl steht, die gegebenenfalls ein- oder mehrfach substitutiert sind 10 mit Hydroxy; Fluor, Chlor, Brom; Cyano; -C(O)-R⁵ mit R⁵ wie zuvor definiert; -C(O)-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; 15 -NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; -NR⁶-C(O)-R⁸ mit R⁶ und R⁸ wie zuvor definiert; -SO₂-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; -NR⁶-SO₂-R⁸ mit R⁶ und R⁸ wie zuvor definiert; $-C(O)-(CH_2)_n-C(O)-R^8$ mit n=0 bis 2 und R^8 wie zuvor definiert; 20 (C_1-C_6) -Alkoxy; gegebenenfalls substituiertem Phenyloxy oder Naphthyloxy; gegebenenfalls substituiertem 5- bis 6-gliedrigen Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S; 25 gegebenenfalls substituiertem Phenyl oder Naphthyl; oder mit einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=0); Fluor, Chlor, Brom; (C1-C6)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl oder Naphthyl; oder mit (C1-30 C₆)-Alkoxy substituiert sein kann,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder Naphthyl anelliert sein können,

5

10

15

20

oder

R⁴ für einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Fluor, Chlor, Brom; (C₁-C₆)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl oder Naphthyl; oder mit (C₁-C₆)-Alkoxy substituiert sein kann und

der gegebenenfalls über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder Naphthyl ode gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein kann,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel (I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

25

• $R^1 = R^2 = H$; $R^3 = para-OH$; $R^4 = -CH_2-Z$ mit Z = CN, $C(O)-OC_2H_5$, $4-Br-C_6H_4-CO$, $4-n-Butyl-C_6H_4-CO$, H, C_6H_5 , $C(O)-O-CH_2-C_6H_5$, $C(O)-OCH_3$, C(O)-OH, 2-oxo-benzo-pyranyl-3-carbonyl, $4-Cl-C_6H_4-CO$, $3-Br-C_6H_4-CO$, $4-C_6H_5-C_6H_4-CO$, $4-Cl_3-C_6H_4-CO$, $3,4-Cl_2-C_6H_3-CO$;

- $R^1 = R^2 = H$; $R^3 = \text{meta-OH}$; $R^4 = -\text{CH}_2\text{-Z}$ mit $Z = 4\text{-Br-C}_6H_4\text{-NH-CO}$; NH-CO, 2-oxo-benzo-pyranyl-3-carbonyl, 4-Cl-C $_6H_4$ -CO;
- $R^1 = R^2 = H$; $R^3 = \text{para-O-C(O)-CH}_3$; $R^4 = \text{-CH}_2\text{-Z mit }Z = 4$ - $CH_3\text{-C}_6H_4\text{-CO}$, H, 2-oxo-benzopyranyl-3-carbonyl, $(CH_2)_3$ - CH_3 , $4\text{-C}_6H_5\text{-C}_6H_4$;
- $R^1 = R^2 = R^3 = H$; $R^4 = -CH_2-Z$ mit $Z = CH_3$, CN, 2-Naphthyl;
- $R^1 = R^2 = H$; $R^3 = \text{para-Butoxy}$; $R^4 = -\text{CH}_2\text{-Z}$ mit Z = 4-Cl- C_6H_5 , $C(O)\text{-OCH}_3$, $C(O)\text{-C}_6H_5$, $CH=\text{CH}_2$, $C(O)\text{-NH}_2$, H, 4-Br- $C_6H_4\text{-CO}$, $4\text{-Cl-C}_6H_4\text{-CO}$, $C(O)\text{-OC}_2H_5$, $C(O)\text{-O-CH}_2\text{-C}_6H_5$, 2-oxo-benzopyranyl-3-carbonyl, $C(O)\text{-NH-C}_6H_5$, CN;
- $R^1 = R^2 = H$; $R^3 = \text{para-Brom}$; $R^4 = -CH_2-Z$ mit $Z = 4-Br-C_6H_4-CO$, $4-Cl-C_6H_4-CO$, $C(O)-NH_2$, $C(O)-OCH_3$, $4-Cl-C_6H_5$, $4-Br-C_6H_4-NH-CO$;
- $R^1 = R^2 = H$; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2-Z$ mit $Z = 4-Br-C_6H_4-CO$, $C(O)-NH_2$, $C(O)-O-CH_2-C_6H_5$, CN;
- $R^1 = R^2 = H$; $R^3 = \text{para-Chlor}$; $R^4 = -CH_2-Z$ mit Z = 2-Naphthyl, CH_3 ;
- $R^1 = R^2 = H$; $R^3 = para-OCH_3$; $R^4 = -CH_2-Z$ mit Z = 2-Naphthyl, CH_3 ;
- $R^1 = R^2 = H$; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2 Z \text{ mit } Z = CH_3$.
- 3. Verbindungen der allgemeinen Formel (I) nach Anspruch 1 oder 2, wobei:
 - R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C₁-C₄)-Alkyl;

gegebenenfalls substituiertes Phenyl;

gegebenenfalls substituiertes (C1-C4)-Alkoxy;

-O- $(CH_2)_n$ -CH= CH_2 mit n = 1;

5

10

15

20

30

Fluor, Chlor;
Nitro;
Cyano;
-C(O)-R⁵;
5
-C(O)-NR⁶R⁷;
-NR⁶R⁷;
-NR⁶-C(O)-R⁸;
-O-C(O)-R⁸;
-SO₂-NR⁶R⁷; und
-NR⁶-SO₂R⁸,

wobei:

R⁵ bezeichnet:

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C₁-C₄)-Alkyl;

gegebenenfalls substituiertes (C₃-C₇)-Cycloalkyl;

gegebenenfalls substituiertes (C₁-C₄)-Alkoxy;

gegebenenfalls substituiertes Phenyl;

gegebenenfalls substituiertes Phenyloxy; oder

-O-(CH₂)_n-Phenyl mit n = 1,

wobei die Phenylgruppe über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C_5 - C_6)-Cycloalkyl anelliert sein kann,

oder

R⁵ einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bedeutet, der seinerseits ein- oder mehrfach mit einer Oxogruppe (=O); Fluor, Chlor; 5 gegebenenfalls substituiertem (C₁-C₄)-Alkyl; Nitro; Cyano; Hydroxy; gegebenenfalls substituiertem Phenyl; oder 10 mit (C₁-C₄)-Alkoxy substituiert sein kann, oder R⁵ 15 für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, das ausgewählt ist aus der Gruppe von Furanyl, Pyrrolyl, Thienyl, Thiazolyl, Oxazolyl, Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl und Pyridazinyl, 20 steht, wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder gegebenenfalls

und

25

30

R⁶ und R⁷ gleich oder verschieden sind und für

Wasserstoff;

gegebenenfalls substituiertes (C₁-C₄)-Alkyl;

substituiertem (C5-C6)-Cycloalkyl anelliert sein können,

gegebenenfalls substituiertes Phenyl; oder

für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, das ausgewählt ist aus der Gruppe von Furanyl, Pyrrolyl, Thienyl, Thiazolyl, Oxazolyl, Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl und Pyridazinyl,

stehen

oder

10

15

20

5

R⁶ und R⁷ gemeinsam mit dem Stickstoffatom, an das sie gegebenenfalls gebunden sind, einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S bilden, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann mit

einer Oxogruppe (=O);

Fluor, Chlor;

 (C_1-C_4) -Alkyl;

Nitro;

Cyano;

Hydroxy;

Phenyl; oder

 (C_1-C_4) -Alkoxy,

25

und

R⁸ NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; gegebenenfalls substituiertes (C₁-C₄)-Alkyl; (C₁-C₄)-Alkoxy; gegebenenfalls substituiertes Phenyl;

Phenyloxy; oder $-O-(CH_2)_n$ -Phenyl mit n=1bedeutet,

5 und

> R^4 für geradkettiges oder verzweigtes (C1-C4)-Alkyl oder (C2-C4)-Alkenyl steht, die gegebenenfalls ein- oder mehrfach substitutiert sind mit

10 Hydroxy;

Fluor, Chlor;

Cyano;

-C(O)-R⁵ mit R⁵ wie zuvor definiert;

-C(O)-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

-NR⁶-C(O)-R⁸ mit R⁶ und R⁸ wie zuvor definiert;

-SO₂-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert;

-NR⁶-SO₂-R⁸ mit R⁶ und R⁸ wie zuvor definiert;

-C(O)-(CH₂)_n-C(O)-R⁸ mit n = 0 bis 2 und R⁸ wie zuvor definiert;

 (C_1-C_4) -Alkoxy;

gegebenenfalls substituiertem Phenyloxy;

gegebenenfalls substituiertem 5- bis 6-gliedrigen Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, das ausgewählt ist aus der Gruppe von Furanyl, Pyrrolyl, Thienyl, Thiazolyl, Oxazolyl,

Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl und Pyridazinyl;

gegebenenfalls substituiertem Phenyl; oder

mit einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=0); Fluor, Chlor; (C1-C4)-Alkyl;

15

20

25

Nitro; Cyano; Hydroxy; Phenyl; oder mit (C₁-C₄)-Alkoxy substituiert sein kann,

5

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl anelliert sein können,

oder

10

R⁴ für einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

15

der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Fluor, Chlor; (C₁-C₄)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl; oder mit (C₁-C₄)-Alkoxy substituiert sein kann und

der gegebenenfalls über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder gegebenenfalls substituiertem (C₅-C₆)-Cycloalkyl anelliert sein kann,

20

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel (I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

25

• $R^1 = R^2 = H$; $R^3 = para-OH$; $R^4 = -CH_2-Z$ mit Z = CN, $C(O)-OC_2H_5$, 4-Br-C₆H₄-CO, 4-n-Butyl-C₆H₄-CO, H, C₆H₅, C(O)-O-CH₂-C₆H₅, C(O)-OCH₃, C(O)-OH, 2-oxo-benzo-pyranyl-3-carbonyl, 4-Cl-C₆H₄-CO, 3-Br-C₆H₄-CO, 4-C₆H₅-C₆H₄-CO, 4-CH₃-C₆H₄-CO, 3,4-Cl₂-C₆H₃-CO;

15

- $R^1 = R^2 = H$; $R^3 = \text{meta-OH}$; $R^4 = -CH_2-Z$ mit $Z = 4-Br-C_6H_4-NH-CO$, 2-oxo-benzo-pyranyl-3-carbonyl, 4-Cl-C₆H₄-CO;
- C₆H₄-CO, H, 2-oxo-benzopyranyl-3-carbonyl, 4-C₆H₅-C₆H₄;
- $R^1 = R^2 = R^3 = H$; $R^4 = -CH_2$ -Z mit Z = CH₃, CN; 5
 - $R^{1} = R^{2} = H$; $R^{3} = para-Butoxy$; $R^{4} = -CH_{2}-Z$ mit $Z = 4-Cl-C_{6}H_{5}$. C(O)-OCH₃, C(O)-C₆H₅, CH=CH₂, C(O)-NH₂, H, 4-B_I-C₆H₄-CO, 4-C1-C₆H₄-CO, C(O)-OC₂H₅, C(O)-O-CH₂-C₆H₅, 2-oxo-benzopyranyl-3-carbonyl, C(O)-NH-C₆H₅, CN;
- $R^1 = R^2 = H$; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2-Z$ mit $Z = 4-Br-C_6H_4-CO$, 10 $C(O)-NH_2$, $C(O)-O-CH_2-C_6H_5$, CN;
 - $R^1 = R^2 = H$; $R^3 = \text{para-Chlor}$; $R^4 = -CH_2-Z$ mit $Z = CH_3$;
 - $R^1 = R^2 = H$; $R^3 = para-OCH_3$; $R^4 = -CH_2-Z$ mit $Z = CH_3$;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2 Z \text{ mit } Z = CH_3$.
 - 4. Verbindungen der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 3. wobei
- R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander 20 ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

Methyl;

Trifluormethyl;

25 Methoxy;

> Resten der Formeln -O-CH2-CH2-OH, -O-CH2-COOH oder -O-CH₂-CH=CH₂;

Fluor, Chlor oder Brom;

Nitro;

30 Cyano;

-C(O)OH oder -C(O)OCH₃;

-C(O)NH₂;

-NH₂;

-NH-C(O)-CH₃;

-O-C(O)-CH₃ oder -O-C(O)-C₂H₅;

5 Resten der Formeln

$$-\overset{\text{O}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text$$

und

10

-NH-SO₂CH₃ oder -NH-SO₂C₆H₅,

und

R⁴ für geradkettiges oder verzweigtes (C₁-C₄)-Alkyl steht, das gegebenenfalls ein- oder mehrfach substitutiert ist mit

Hydroxy;

Amino;

-C(O)-OCH₃;

-C(O)-NH₂, -C(O)-HNCH₃, -C(O)-HNC₂H₅, oder -C(O)-HNC₆H₅;

20 -NHC(O)NH₂, -NHC(O)NHCH₃, -NHC(O)NHC₂H₅, -NHC(O)OCH₃ oder -NHC(O)OC₂H₅;

-SO₂-NH₂;

-NH-SO₂-CH₃ oder -NH-SO₂-C₂H₅;

-OCH₃;

Phenyl, das durch Nitro, Cyano, Fluor, Methoxy, Difluormethoxy, Methoxycarbonyl oder p-Tolylsulfonylmethyl substituiert sein kann; Pyridyl, Furyl, Imidazolyl, Benzimidazolyl oder Thiazolyl, die jeweils ein- oder zweifach gleich oder verschieden durch Methyl, Nitro oder Chlor substituiert sein können;

Oxadiazolyl, das durch Phenyl oder Methoxyphenyl substituiert sein kann;

oder

einem Rest der Formel

5

oder

10 R⁴ für Allyl oder 3,3-Dimethylallyl steht,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel

(I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

- $R^1 = R^2 = H$; $R^3 = para-OH$; $R^4 = -CH_2-Z$ mit Z = H, C_6H_5 , $C(O)-OCH_3$;
- $R^1 = R^2 = H$; $R^3 = para-O-C(O)-CH_3$; $R^4 = -CH_2-Z$ mit Z = H;
- $R^1 = R^2 = R^3 = H$; $R^4 = -CH_2 Z$ mit $Z = CH_3$;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2 Z \text{ mit } Z = C(O) NH_2$;
 - $R^1 = R^2 = H$; $R^3 = para-Chlor$; $R^4 = -CH_2-Z$ mit $Z = CH_3$;
 - $R^1 = R^2 = H$; $R^3 = para-OCH_3$; $R^4 = -CH_2-Z$ mit $Z = CH_3$;
 - $R^1 = R^2 = H$; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2-Z$ mit $Z = CH_3$.

25

5. Verbindungen der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 4, wobei:

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

5 Methyl;

Methoxy;

Resten der Formeln -O-CH2-CH2-OH, -O-CH2-COOH oder

-O-CH₂-CH=CH₂;

Fluor oder Chlor;

10 Nitro;

Cyano;

-C(O)OH oder -C(O)OCH₃;

-C(O)NH₂;

- NH₂;

15 -NH-C(O)CH₃;

-O-C(O)-CH₃ oder -O-C(O)-C₂H₅;

Resten der Formeln

20

und

-NH-SO₂CH₃ oder -NH-SO₂C₆H₅,

und

25

 R^4 für geradkettiges oder verzweigtes (C1-C4)-Alkyl steht, das gegebenenfalls ein- oder mehrfach substitutiert ist mit

Hydroxy;

Amino;

30 -C(O)-OCH₃; $-C(O)-NH_2, -C(O)-HNCH_3, -C(O)-HNC_2H_5, oder -C(O)-HNC_6H_5;\\$

 $-NHC(O)NH_2, \ -NHC(O)NHCH_3, \ -NHC(O)NHC_2H_5, \ -NHC(O)OCH_3 \\$

oder -NHC(0)OC₂H₅;

-SO₂-NH₂;

-NH-SO₂-CH₃ oder -NH-SO₂-C₂H₅;

-OCH₃;

Phenyl;

ortho-Nitrophenyl; oder

einem Rest der Formel

10

5

oder

R⁴ für Allyl steht,

15

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

ausgenommen jedoch die folgenden Verbindungen der allgemeinen Formel (I), in denen die Reste R¹, R², R³ und R⁴ die nachstehende Bedeutung haben:

20

25

- $R^1 = R^2 = H$; $R^3 = para-OH$; $R^4 = -CH_2-Z$ mit Z = H, C_6H_5 , $C(O)-OCH_3$;
- $R^1 = R^2 = H$; $R^3 = para O C(O) CH_3$; $R^4 = -CH_2 Z$ mit Z = H;
- $R^1 = R^2 = R^3 = H$; $R^4 = -CH_2 Z$ mit $Z = CH_3$;

• $R^1 = R^2 = H$; $R^3 = \text{meta-Fluor}$; $R^4 = -CH_2-Z$ mit $Z = C(O)-NH_2$;

- $R^1 = R^2 = H$; $R^3 = \text{para-Chlor}$; $R^4 = -CH_2 Z$ mit $Z = CH_3$;
- $R^1 = R^2 = H$; $R^3 = para-OCH_3$; $R^4 = -CH_2-Z$ mit $Z = CH_3$;
- $R^1 = R^2 = H$; $R^3 = \text{meta-NO}_2$; $R^4 = -CH_2 Z$ mit $Z = CH_3$.

- 6. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 5,
- 5 wobei:

Verbindungen der allgemeinen Formel (II)

$$R^1$$
 R^2
 R^3
 R^3

10

in welcher die Reste R¹, R² und R³ die zuvor angegebene Bedeutung haben,

mit Verbindungen der allgemeinen Formel (III)

15

in welcher R⁴ die zuvor angegebene Bedeutung hat

und

20

X für eine nucleofuge Gruppe (vorzugsweise für Halogen, insbesondere Chlor, Brom oder Iod, oder für Mesylat, Tosylat, Triflat oder 1-Imidazolyl) steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base, umgesetzt werden.

- 7. Verfahren zur Herstellung der Verbindungen der allgemeinen Formel (I) nach einem der Ansprüche 1 bis 5 für den Fall, dass in der allgemeinen Formel (I) der Rest R⁴ die Bedeutung von
- 5 Alkyl, substituiert durch die Reste -NR⁶-C(O)-R⁸, -NR⁶-C(O)-NR⁶R⁷, -NR⁶-SO₂-R⁸

hat, wobei die Reste R⁶, R⁷ und R⁸ wie zuvor definiert sind,

10 wobei:

zunächst die Verbindungen der obigen allgemeinen Formel (II) mit 2-Bromethylamin zu den Verbindungen der allgemeinen Formel (IV) umgesetzt werden

15

$$R^{1}$$
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3

und diese dann mit Verbindungen der allgemeinen Formel

20

25

in welcher

R⁹ die Bedeutung -C(O)-R⁸, -C(O)-O-R⁸, -C(O)-NR⁶R⁷, -SO₂-R⁸ mit R⁸ wie zuvor definiert hat

und

Y für eine nucleofuge Gruppe steht, vorzugsweise für Halogen, insbesondere Chlor, Brom oder Iod, oder für Mesylat, Tosylat, Triflat oder 1-Imidazolyl,

oder aber

R⁹ die Bedeutung R⁶ hat

und

10

Y für die Gruppe O=C=N- steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base, umgesetzt werden.

8. Verbindungen der allgemeinen Formel (I)

$$R^{1}$$
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}

20

25

wobei:

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C1-C8)-Alkyl;

gegebenenfalls substituiertes (C_6 - C_{10})-Aryl; gegebenenfalls substituiertes (C_1 - C_8)-Alkoxy; -O-(CH_2)_n-CH= CH_2 mit n = 0, 1 oder 2; Halogen; Nitro; Cyano; -C(O)- R^5 ; -C(O)- R^6R^7 ; -N R^6R^7 ; -N R^6 -C(O)- R^8 ; -O-C(O)- R^8 ; -SO₂-N R^6R^7 ; und -N R^6 -SO₂ R^8 ,

15 wobei:

P5 bezeichnet:

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C₁-C₈)-Alkyl;

gegebenenfalls substituiertes (C₃-C₇)-Cycloalkyl;

gegebenenfalls substituiertes (C₁-C₈)-Alkoxy;

gegebenenfalls substituiertes (C₆-C₁₀)-Aryl;

gegebenenfalls substituiertes (C₆-C₁₀)-Aryloxy; oder

25 -O-(CH₂)_n-[(C₆-C₁₀)-Aryl] mit n = 1, 2 oder 3,

wobei die (C_6-C_{10}) -Arylgruppe über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C_4-C_7) -Cycloalkyl anelliert sein kann,

30

oder

einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten
Heterocyclus bedeutet, der seinerseits ein- oder mehrfach mit
einer Oxogruppe (=O);

Halogen;
gegebenenfalls substituiertem (C₁-C₈)-Alkyl;
Nitro;
Cyano;
Hydroxy;
gegebenenfalls substituiertem (C₆-C₁₀)-Aryl; oder
mit (C₁-C₈)-Alkoxy
substituiert sein kann,

oder

15

R⁵ für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

20

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C_6 - C_{10})-Aryl oder gegebenenfalls substituiertem (C_4 - C_7)-Cycloalkyl anelliert sein können,

25

und

 R^6 und R^7 gleich oder verschieden sind und für Wasserstoff; gegebenenfalls substituiertes (C_1 - C_8)-Alkyl; gegebenenfalls substituiertes (C_6 - C_{10})-Aryl; oder

für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S stehen

oder

R⁶ und R⁷ gemeinsam mit dem Stickstoffatom, an das sie gegebenenfalls gebunden sind, einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S bilden, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann mit einer Oxogruppe (=O); Halogen;

15

10

 (C_1-C_8) -Alkyl;

Nitro;

Cyano;

Hydroxy;

(C₆-C₁₀)-Aryl; oder

20

 (C_1-C_8) -Alkoxy,

und

 R^8

Hydroxy;

25

NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; gegebenenfalls substituiertes (C1-C8)-Alkyl;

 (C_1-C_8) -Alkoxy;

gegebenenfalls substituiertes (C₆-C₁₀)-Aryl;

(C₆-C₁₀)-Aryloxy; oder

30

 $-O-(CH_2)_n-[(C_6-C_{10})-Aryl]$ mit n = 1, 2 oder 3

bedeutet,

und

R4 für geradkettiges oder verzweigtes (C1-C8)-Alkyl oder (C2-C8)-5 Alkenyl steht, die gegebenenfalls ein- oder mehrfach substitutiert sind mit Hydroxy; Halogen; Cyano; -C(O)-R⁵ mit R⁵ wie zuvor definiert; 10 -C(O)-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; -NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; -NR⁶-C(O)-R⁸ mit R⁶ und R⁸ wie zuvor definiert; -SO₂-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; -NR⁶-SO₂-R⁸ mit R⁶ und R⁸ wie zuvor definiert; 15 $-C(O)-(CH_2)_n-C(O)-R^8$ mit n=0 bis 2 und R^8 wie zuvor definiert; (C_1-C_8) -Alkoxy; gegebenenfalls substituiertem (C₆-C₁₀)-Aryloxy; gegebenenfalls substituiertem 5- bis 6-gliedrigen Heteroaryl mit bis zu 20 3 Heteroatomen aus der Reihe N, O und/oder S; gegebenenfalls substituiertem (C₆-C₁₀)-Aryl; oder mit einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder 25 verschieden, mit einer Oxogruppe (=O); Halogen; (C₁-C₈)-Alkyl; Nitro; Cyano; Hydroxy; (C₆-C₁₀)-Aryl; oder mit (C₁-C₈)-Alkoxy substituiert sein kann,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C_6 - C_{10})-Aryl anelliert sein können,

15

oder

für einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten

Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder
S steht,

der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder
verschieden, mit einer Oxogruppe (=O); Halogen; (C₁-C₈)-Alkyl;
Nitro; Cyano; Hydroxy; (C₆-C₁₀)-Aryl; oder mit (C₁-C₈)-Alkoxy

substituiert sein kann, und
der gegebenenfalls über zwei benachbarte Ringatome mit
gegebenenfalls substituiertem (C₆-C₁₀)-Aryl oder gegebenenfalls
substituiertem (C₄-C₇)-Cycloalkyl anelliert sein kann,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

zur Prophylaxe und/oder Behandlung von Erkrankungen.

20 9. Verbindungen der allgemeinen Formel (I) nach Anspruch 8,

wobei:

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C₁-C₆)-Alkyl;

gegebenenfalls substituiertes Phenyl oder Naphthyl;

gegebenenfalls substituiertes (C₁-C₆)-Alkoxy;
-O-(CH₂)_n-CH=CH₂ mit n = 1 oder 2;

Fluor, Chlor, Brom;
Nitro;
Cyano;
-C(O)-R⁵;
-C(O)-NR⁶R⁷;
-NR⁶R⁷;
-NR⁶-C(O)-R⁸;
-O-C(O)-R⁸;
-SO₂-NR⁶R⁷; und
-NR⁶-SO₂R⁸,

wobei:

R⁵ bezeichnet:

Wasserstoff;

Hydroxy;

gegebenenfalls substituiertes (C₁-C₆)-Alkyl;

gegebenenfalls substituiertes (C₃-C₇)-Cycloalkyl;

gegebenenfalls substituiertes (C_1 - C_6)-Alkoxy; gegebenenfalls substituiertes Phenyl oder Naphthyl; gegebenenfalls substituiertes Phenyloxy oder Naphthyloxy; oder

-O- $(CH_2)_n$ -Phenyl mit n = 1, 2 oder 3,

wobei die Phenyl- oder Naphthylgruppe über zwei benachbarte Ringatome mit gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein kann,

oder

15

20

einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten
Heterocyclus bedeutet, der seinerseits ein- oder mehrfach mit
einer Oxogruppe (=O);
Fluor, Chlor, Brom;
gegebenenfalls substituiertem (C₁-C₆)-Alkyl;
Nitro;
Cyano;
Hydroxy;
gegebenenfalls substituiertem Phenyl oder Naphthyl; oder
mit (C₁-C₆)-Alkoxy
substituiert sein kann,

oder

R⁵ für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder Naphthyl oder gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein können,

25 und

R⁶ und R⁷ gleich oder verschieden sind und für

Wasserstoff;

gegebenenfalls substituiertes (C₁-C₆)-Alkyl;

gegebenenfalls substituiertes Phenyl oder Naphthyl; oder

20

15

für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S stehen

R⁶ und R⁷ gemeinsam mit dem Stickstoffatom, an das sie

5

oder

10

15

20

gegebenenfalls gebunden sind, einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S bilden, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann mit einer Oxogruppe (=O);
Fluor, Chlor, Brom;
(C₁-C₆)-Alkyl;
Nitro;
Cyano;
Hydroxy;
Phenyl oder Naphthyl; oder

 (C_1-C_6) -Alkoxy,

und

30

25

 R^8 NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; gegebenenfalls substituiertes (C₁-C₆)-Alkyl; (C₁-C₆)-Alkoxy; gegebenenfalls substituiertes Phenyl oder Naphthyl; Phenyloxy oder Naphthyloxy; oder -O-(CH₂)_n-Phenyl mit n = 1, 2 oder 3 bedeutet. und

 R^4 für geradkettiges oder verzweigtes (C1-C6)-Alkyl oder (C2-C6)-Alkenyl steht, die gegebenenfalls ein- oder mehrfach substitutiert sind 5 mit Hydroxy; Fluor, Chlor, Brom; Cyano; -C(O)-R⁵ mit R⁵ wie zuvor definiert; -C(O)-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; 10 -NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; -NR⁶-C(O)-R⁸ mit R⁶ und R⁸ wie zuvor definiert: -SO₂-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert: -NR⁶-SO₂-R⁸ mit R⁶ und R⁸ wie zuvor definiert; $-C(O)-(CH_2)_n-C(O)-R^8$ mit n=0 bis 2 und R^8 wie zuvor definiert; 15 (C_1-C_6) -Alkoxy; gegebenenfalls substituiertem Phenyloxy oder Naphthyloxy; gegebenenfalls substituiertem 5- bis 6-gliedrigen Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S; 20 gegebenenfalls substituiertem Phenyl oder Naphthyl; oder mit einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N. O und/oder S, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=0); Fluor, Chlor, Brom; (C₁-C₆)-25 Alkyl; Nitro; Cyano; Hydroxy; Phenyl oder Naphthyl; oder mit (C1-C₆)-Alkoxy substituiert sein kann,

> wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder Naphthyl anelliert sein können,

oder

 R^4 für einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder 5 S steht, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Fluor, Chlor, Brom; (C1-C6)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl oder Naphthyl; oder mit (C1-C₆)-Alkoxy substituiert sein kann und 10 der gegebenenfalls über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder oder gegebenenfalls substituiertem (C₄-C₇)-Cycloalkyl anelliert sein kann,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate, zur Prophylaxe und/oder Behandlung von Erkrankungen.

10. Verbindungen der allgemeinen Formel (I) nach Anspruch 8 oder 9,

20 wobei:

15

R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

25 Hydroxy;

gegebenenfalls substituiertes (C₁-C₄)-Alkyl;

gegebenenfalls substituiertes Phenyl;

gegebenenfalls substituiertes (C₁-C₄)-Alkoxy;

 $-O-(CH_2)_n-CH=CH_2$ mit n=1;

30 Fluor, Chlor;

Nitro;

```
Cyano;
                              -C(0)-R^5;
                              -C(O)-NR<sup>6</sup>R<sup>7</sup>;
                              -NR^6R^7;
                              -NR^6-C(O)-R^8;
   5
                             -O-C(O)-R<sup>8</sup>;
                             -SO<sub>2</sub>-NR<sup>6</sup>R<sup>7</sup>; und
                             -NR<sup>6</sup>-SO<sub>2</sub>R<sup>8</sup>,
 10
                             wobei:
                             R<sup>5</sup>
                                      bezeichnet:
                                      Wasserstoff;
                                      Hydroxy;
 15
                                      gegebenenfalls substituiertes (C<sub>1</sub>-C<sub>4</sub>)-Alkyl;
                                      gegebenenfalls substituiertes (C3-C7)-Cycloalkyl;
                                     gegebenenfalls substituiertes (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy;
                                     gegebenenfalls substituiertes Phenyl;
                                     gegebenenfalls substituiertes Phenyloxy; oder
20
                                     -O-(CH_2)_n-Phenyl mit n = 1,
                                     wobei die Phenylgruppe über zwei benachbarte Ringatome mit
                                     gegebenenfalls substituiertem (C5-C6)-Cycloalkyl anelliert sein
                                     kann,
25
                            oder
                            R<sup>5</sup>
                                    einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten
                                    Heterocyclus bedeutet, der seinerseits ein- oder mehrfach mit
30
                                    einer Oxogruppe (=O);
```

Fluor, Chlor;

gegebenenfalls substituiertem (C₁-C₄)-Alkyl;

Nitro;

Cyano;

Hydroxy;

gegebenenfalls substituiertem Phenyl; oder

mit (C₁-C₄)-Alkoxy

substituiert sein kann,

oder

10

5

R⁵ für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, das ausgewählt ist aus der Gruppe von Furanyl, Pyrrolyl, Thienyl, Thiazolyl, Oxazolyl, Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl und Pyridazinyl,

15

steht,

20.

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder gegebenenfalls substituiertem (C₅-C₆)-Cycloalkyl anelliert sein können,

und

25

R⁶ und R⁷ gleich oder verschieden sind und für

Wasserstoff;

gegebenenfalls substituiertes (C₁-C₄)-Alkyl;

gegebenenfalls substituiertes Phenyl; oder

30

für gegebenenfalls substituiertes 5- bis 6-gliedriges Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, das ausgewählt ist aus der Gruppe von Furanyl, Pyrrolyl, Thienyl,

Thiazolyl, Oxazolyl, Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl und Pyridazinyl,

stehen

5

10

15

oder

R⁶ und R⁷ gemeinsam mit dem Stickstoffatom, an das sie gegebenenfalls gebunden sind, einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S bilden, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, substituiert sein kann mit

einer Oxogruppe (=O);

Fluor, Chlor;

 (C_1-C_4) -Alkyl;

Nitro;

Cyano;

Hydroxy;

bedeutet,

Phenyl; oder

 (C_1-C_4) -Alkoxy,

und

25

20

 R^8 NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; gegebenenfalls substituiertes (C₁-C₄)-Alkyl; (C₁-C₄)-Alkoxy; gegebenenfalls substituiertes Phenyl; Phenyloxy; oder -O-(CH₂)_n-Phenyl mit n = 1

und

für geradkettiges oder verzweigtes (C1-C4)-Alkyl oder (C2-C4)-R⁴ Alkenyl steht, die gegebenenfalls ein- oder mehrfach substitutiert sind mit Hydroxy; Fluor, Chlor; Cyano; -C(O)-R⁵ mit R⁵ wie zuvor definiert; -C(O)-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert; 10 -NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert: -NR⁶-C(O)-R⁸ mit R⁶ und R⁸ wie zuvor definiert; -SO₂-NR⁶R⁷ mit R⁶ und R⁷ wie zuvor definiert: -NR⁶-SO₂-R⁸ mit R⁶ und R⁸ wie zuvor definiert: -C(O)-(CH₂)_n-C(O)-R⁸ mit n = 0 bis 2 und R⁸ wie zuvor definiert; 15 (C_1-C_4) -Alkoxy; gegebenenfalls substituiertem Phenyloxy; gegebenenfalls substituiertem 5- bis 6-gliedrigen Heteroaryl mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S, das ausgewählt ist aus 20 der Gruppe von Furanyl, Pyrrolyl, Thienyl, Thiazolyl, Oxazolyl, Imidazolyl, Triazolyl, Pyridyl, Pyrimidyl und Pyridazinyl; gegebenenfalls substituiertem Phenyl; oder mit einem 5- bis 7-gliedrigen gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder 25 S, der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Fluor, Chlor; (C1-C4)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl; oder mit (C1-C4)-Alkoxy substituiert sein kann,

wobei gegebenenfalls der Heterocyclus und der Heteroaryl-Ring jeweils über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl anelliert sein können,

5 oder

10

15

R⁴ für einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe N, O und/oder S steht,

der seinerseits gegebenenfalls ein- oder mehrfach, gleich oder verschieden, mit einer Oxogruppe (=O); Fluor, Chlor; (C₁-C₄)-Alkyl; Nitro; Cyano; Hydroxy; Phenyl; oder mit (C₁-C₄)-Alkoxy substituiert sein kann und

der gegebenenfalls über zwei benachbarte Ringatome mit gegebenenfalls substituiertem Phenyl oder gegebenenfalls substituiertem (C_5 - C_6)-Cycloalkyl anelliert sein kann,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

20 zur Prophylaxe und/oder Behandlung von Erkrankungen.

- Verbindungen der allgemeinen Formel (I) nach einem der Ansprüche 8 bis
 wobei:
- 25 R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

Wasserstoff;

Hydroxy;

Methyl;

Trifluormethyl;

Methoxy;

Resten der Formeln -O-CH2-CH2-OH, -O-CH2-COOH oder

-O-CH₂-CH=CH₂;

Fluor, Chlor oder Brom;

Nitro;

Cyano;

-C(O)OH oder -C(O)OCH₃;

-C(O)NH2;

-NH₂;

-NH-C(O)-CH₃,

10 -O-C(O)-CH₃ oder -O-C(O)-C₂H₅;

Resten der Formeln

15 und

-NH-SO₂CH₃ oder -NH-SO₂C₆H₅,

und

20 R⁴ für geradkettiges oder verzweigtes (C₁-C₄)-Alkyl steht, das

gegebenenfalls ein- oder mehrfach substitutiert ist mit

Hydroxy;

Amino;

-C(O)-OCH3;

25 -C(O)-NH₂, -C(O)-HNCH₃, -C(O)-HNC₂H₅, oder -C(O)-HNC₆H₅;

-NHC(O)NH₂, -NHC(O)NHCH₃, -NHC(O)NHC₂H₅, -NHC(O)OCH₃

oder -NHC(O)OC₂H₅;

-SO₂-NH₂;

-NH-SO₂-CH₃ oder -NH-SO₂-C₂H₅;

30 -OCH₃;

Phenyl, das durch Nitro, Cyano, Fluor, Methoxy, Difluormethoxy, Methoxycarbonyl oder p-Tolylsulfonylmethyl substituiert sein kann; Pyridyl, Furyl, Imidazolyl, Benzimidazolyl oder Thiazolyl, die jeweils ein- oder zweifach gleich oder verschieden durch Methyl, Nitro oder Chlor substituiert sein können;

Oxadiazolyl, das durch Phenyl oder Methoxyphenyl substituiert sein kann;

oder

einem Rest der Formel

10

5

oder

15 R⁴ für Allyl oder 3,3-Dimethylallyl steht,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

zur Prophylaxe und/oder Behandlung von Erkrankungen.

- 12. Verbindungen der allgemeinen Formel (I) nach einem der Ansprüche 8 bis 11, wobei:
- 25 R¹, R², R³ gleich oder verschieden sind und unabhängig voneinander ausgewählt sind aus der Gruppe der folgenden Substituenten:

 Wasserstoff;

 Hydroxy;

Methyl;

Methoxy;

Resten der Formeln -O-CH2-CH2-OH, -O-CH2-COOH oder

-O-CH₂-CH=CH₂;

5 Fluor oder Chlor;

Nitro;

Cyano;

-C(O)OH oder -C(O)OCH₃;

-C(O)NH₂;

10 -NH₂;

-NH-C(O)CH₃;

-O-C(O)-CH₃ oder -O-C(O)-C₂H₅;

Resten der Formeln

15

und

-NH-SO₂CH₃ oder -NH-SO₂C₆H₅,

und

20

für geradkettiges oder verzweigtes (C_1-C_4) -Alkyl steht, das gegebenenfalls ein- oder mehrfach substitutiert ist mit

Hydroxy;

Amino;

25 -C(O)-OCH₃;

-C(O)-NH₂, -C(O)-HNCH₃, -C(O)-HNC₂H₅, oder -C(O)-HNC₆H₅;

-NHC(O)NH₂, -NHC(O)NHCH₃, -NHC(O)NHC₂H₅, -NHC(O)OCH₃

oder -NHC(O)OC₂H₅;

-SO₂-NH₂;

30 -NH-SO₂-CH₃ oder -NH-SO₂-C₂H₅;

-OCH₃;

Phenyl;

ortho-Nitrophenyl; oder

einem Rest der Formel

5

oder

10 R⁴ für Allyl steht,

und ihre Tautomeren sowie deren jeweilige Salze, Hydrate und Alkoholate,

zur Prophylaxe und/oder Behandlung von Erkrankungen.

- Arzneimittel oder pharmazeutische Zusammensetzung, enthaltend mindestens eine Verbindung der allgemeinen Formel (I) nach einem der Ansprüche 8 bis
 12.
- 20 14. Arzneimittel oder pharmazeutische Zusammensetzung, enthaltend mindestens einen selektiven Adenosin-Rezeptorliganden, vorzugsweise einen selektiven Adenosin-A1-, Adenosin-A2a- und/oder Adenosin-A2b-Rezeptorliganden.
- 15. Arzneimittel nach Anspruch 13 oder 14, enthaltend des weiteren pharma kologisch unbedenkliche Trägerstoffe und Hilfsstoffe.
 - Arzneimittel nach einem der Ansprüche 13 oder 14 zur Prophylaxe und/oder
 Behandlung von Erkrankungen, insbesondere von kardiovaskulären Er-

krankungen; Erkrankungen des Urogenitalbereichs; Erkrankungen der Atemwege; inflammatorischen und neuroinflammatorischen Erkrankungen; Diabetes, insbesondere Diabetes mellitus; neurodegenerativen Erkrankungen; Schmerzzuständen; Krebs; sowie Leberfibrose und Leberzirrhose.

5

17. Verwendung von selektiven Adenosin-Rezeptorliganden, vorzugsweise selektiven Adenosin-A1-, Adenosin-A2a- und/oder Adenosin-A2b-Rezeptorliganden, zur Prophylaxe und/oder Behandlung von Erkrankungen, insbesondere von kardiovaskulären Erkrankungen; Erkrankungen des Urogenitalbereichs; Erkrankungen der Atemwege; inflammatorischen und neuroinflammatorischen Erkrankungen; Diabetes, insbesondere Diabetes mellitus; neurodegenerativen Erkrankungen; Schmerzzuständen; Krebs; sowie Leberfibrose und Leberzirrhose.

15