Raiz Digital de Elemento Neutro 9

Rovane Moura¹

¹Faculdade de Informática (FACIN) – Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)

rovane.moura@acad.pucrs.br

Resumo. Este artigo tem o objetivo de analisar o número inteiro positivo 9, tendo foco em suas propriedades e aplicação relacionados ao conceito de raiz digital.

1. Introdução

Para analisar as propriedades estudadas do número 9, na segunda seção é descrita a definição e algumas propriedades da raiz digital de números inteiros positivos. Na seção seguinte, é explicado o papel do número 9 na raiz digital, e na última seção, uma análise de uma aplicação da raiz digital na computação.

Algumas convenções a serem utilizadas neste artigo são:

- \bullet n é um número inteiro positivo.
- m é um número inteiro positivo diferente de zero.
- dr(x) é a notação para a raiz digital de x.
- A raiz digital aqui discutida é a de números na base 10.

2. Raiz Digital

"Raiz Digital" é o nome dado ao valor de dígito único obtido a partir da soma repetida de dígitos de um número inteiro não-negativo (digitSum) [Weisstein].

$$dr(9) = 9$$

 $dr(25) = 2 + 5 = 7$
 $dr(147) = 1 + 4 + 7 = 12 \Rightarrow dr(12) = 1 + 2 = 3$
 $dr(1023) = 1 + 0 + 2 + 3 = 6$

Observe que após a soma de dígitos de 147 o valor 12 é obtido, logo, devemos repetir o processo até que se obtenha um valor de apenas 1 dígito.

A partir dessa definição, é possível observar que a raiz digital de um número n sempre será um valor inteiro do intervalo [1,9] se o mesmo for diferente de 0, onde dr(0)=0 exclusivamente.

Algumas propriedades de operações matemáticas como adição e multiplicação com raízes digitais também podem ser observadas.

- dr(a+b) = dr(dr(a) + dr(b)) (addRoots)1) $dr(11 + 53) = dr(64) = 10 \Rightarrow dr(10) = 1 + 0 = 1$ 2) dr(11 + 53) = dr(dr(11) + dr(53)) = dr(2 + 8) = dr(10)= 1 + 0
- dr(a*b) = dr(dr(a)*dr(b)) (multRoots)

1)
$$dr(48 * 31) = dr(1488) = 1 + 4 + 8 + 8 = 21 => dr(21) = 2 + 1 = 3$$

3. Número 9

A raiz digital de um número n<10 é sempre ele mesmo, para $n\geq 10$ acontece uma repetição de valores, onde dr(10)=1, dr(11)=2, dr(12)=3 e assim em diante até que o padrão recomece mais uma vez.

Nota-se que os valores das raízes digitais são sempre um valor resultante da subtração repetida do valor 9 do número n original enquanto w>9, sendo w=n-9*x, onde x é o número de iterações da subtração (subNines).

```
1) dr(10) = 10 - 9 = 1

2) dr(11) = 11 - 9 = 2

3) dr(18) = 18 - 9 = 9

4) dr(24) = 24 - 9 = 15 \Rightarrow dr(15) = 15 - 9 = 6;
```

A partir dessa observação é possível constatar que o cálculo da raiz digital está relacionado com o resto da divisão inteira do número n por 9, dado que uma divisão inteira n/x é uma subtração repetida n-x enquanto $n \geq x$. Dessa forma, podemos reescrever o cálculo da raiz digital de um número utilizando a definição de mod .

$$dr(n) = \begin{cases} 0, & \text{se } n = 0 \text{ (I)} \\ 9, & \text{se } n \mod 9 = 0 \text{ (II)} \\ n \mod 9 & \text{caso contrário (III)} \end{cases}$$

Considerando essa reescritura, é mais perceptível que o número 9 tem propriedades significativas no cálculo da raiz digital de um número.

• Qualquer número m divisível por 9 ($m \mod 9 = 0$) terá dr(m) = 9

```
1) dr(18) = 1 + 8 = 9

2) dr(18) = 18 - 9 = 9

3) dr(18) => 18 mod 9 = 0, logo 9

4) dr(27) = 2 + 7 = 9

5) dr(27) = 27 - 9 = 18 => dr(18) = 9
```

6) $dr(27) \Rightarrow 27 \mod 9 = 0$, logo 9 (II)

• A concatenação de um dígito 9 em um número m não altera sua raiz digital

1)
$$dr(152) = 1 + 5 + 2 = 8$$

2)
$$dr(1529) = 1 + 5 + 2 + 9 = 17 => dr(17) = 1 + 7 = 8$$

3)
$$dr(247) = 2 + 4 + 7 = 13 => dr(13) = 1 + 3 = 4$$

4)
$$dr(2479) = 2 + 4 + 7 + 9 = 22 => dr(22) = 2 + 2 = 4$$

5)
$$dr(1 * 5) = dr(dr(1) * dr(5))$$

= $dr(1 * 5)$
= $dr(5)$
= 5

6)
$$dr(19 * 59) = dr(dr(19) * dr(59))$$

= $dr(dr(10) * dr(14))$
= $dr(1 * 5)$
= $dr(5)$
= 5

Isso acontece, pois, considerando um número escrito como um somatório de 9s e um elemento e, onde $9>e\geq 0$

1)
$$1 = 1$$

2) $9 = 9 + 0$
3) $15 = 9 + 6$
4) $30 = 9 + 9 + 9 + 3$

O elemento e, quando e=0, indica que o número m é apenas uma soma de 9s, ou seja, m é divisível por 9 ($n \mod 9=0$). Quando $e \neq 0$, e representa o resto da divisão inteira por 9. Para casos onde m < 9, m = e.

Assim, podemos dizer que o valor e indica a raiz digital de um número m.

$$dr(m) = \begin{cases} 9, & \text{se } e = 0 \\ e, & \text{caso contrário} \end{cases}$$

A raiz digital obtida a partir do valor e não é alterado caso o número m seja somado a um múltiplo de 9. Para provar isso por uma simples prova de indução, assumindo m < 9, temos como caso base dr(m) = dr(9+m)

$$dr(9 + m) = dr((9 + m) - 9)$$
 (subNines)
= $dr(m)$ (arit.)

Fazendo indução em x, assumimos como hipótese que dr(m) = dr(9*x+m), e temos que provar que dr(m) = dr(9*(x+1)+m)

```
dr(9*(x+1) + m) = dr((9*x + 9) + m)  (arit.)

= dr((9*x + m) + 9)  (arit.)

= dr(dr(9*x + m) + dr(9))  (addRoots)

= dr(dr(m) + dr(9))  (hip.)

= dr(m + 9)  (dr(x))

= dr((m + 9) - 9)  (subNines)

= dr(m)  (arit.)

= dr(m)  (arit.)
```

Dessa forma, podemos concluir que a raiz digital de um número m não é alterada caso um múltiplo de 9 seja adicionado a ele. Deve ser observado que a concatenação de dígitos 9 ao número m equivale à mesma operação.

```
1) dr(5) = 5
2) dr(59) = dr(5 + 9*6)
                                         (n = e + 9x)
          = dr(dr(5) + dr(9*6))
                                         (addRoots)
          = dr(5 + dr(dr(9) * dr(6)))
                                         (multRoots)
          = dr(5 + dr(9*6))
                                         (dr(x))
          = dr(5 + dr(54))
                                         (arit.)
          = dr(5 + 9)
                                         (dr(x))
          = dr(14)
                                         (arit.)
          = 5
                                         (dr(x))
```

Assim como o 0 é o elemento neutro na adição e o 1 é o elemento neutro na multiplicação, temos o 9 como um elemento neutro no cálculo da raiz digital de um número, assim como o 0 que também não altera o resultado.

- 1) dr(3) = 3
- 2) dr(30) = 3 + 0 = 3
- 3) dr(300) = 3 + 0 + 0 = 3
- 4) $dr(39) = 3 + 9 = 12 \Rightarrow dr(12) = 1 + 2 = 3$
- 5) $dr(3099) = 3 + 0 + 9 + 9 = 21 \Rightarrow dr(21) = 2 + 1 = 3$

Mais além, podemos dizer que qualquer dois números que somem 9, também não alteram a raiz digital de um número. Essa lógica se assemelha à "prova dos nove" ou "noves fora", utilizada na verificação de cálculos.

1)
$$dr(5) = 5$$

2)
$$dr(518) = 5 + 1 + 8$$

= 5 + 9 = 14 =>
 $dr(14) = 5$

3)
$$dr(554) = 5 + 5 + 4$$

= 5 + 9 = 14 =>
 $dr(14) = 5$

4. Aplicação da Raiz Digital

A construção dos números naturais se dá por $\forall x: \mathbb{N}.(x+1) \in \mathbb{N}$, e a raiz digital desses números segue o padrão de 9 valores até que se reinicie, tendo apenas o 0 como exceção. Tendo isso em mente, pode-se verificar que existem sequências de números formadas por uma regra bem estruturada cujas raízes digitais dos números seguem um padrão.

Para demonstrar isso, temos a sequência de Fibonacci [Fourie 2009].

```
1 1 2 3 5 8 13 21 34 55 89 144 233 ...
```

Utilizando as funcionalidades do *Google Spreadsheets*, foram calculados os primeiros 72 números da sequência e suas raízes digitais [Teknomono 2005].

FIBONACCI	FST DIGIT SUM	DIGITAL ROOT	PATTERN COUNT	FIBONACCI	FST DIGIT SUM	DIGITAL ROOT	PATTERN COUNT	FIBONACCI	FST DIGIT SUM	DIGITAL ROOT	PATTERN COUNT
0	0	0	0								
1	1	1	1	75025	19	1	1	7778742049	55	1	1
1	1	1	2	121393	19	1	2	12586269025	46	1	2
2	2	2	3	196418	29	2	3	20365011074	29	2	3
3	3	3	4	317811	21	3	4	32951280099	48	3	4
5	5	5	5	514229	23	5	5	53316291173	41	5	5
8	8	8	6	832040	17	8	6	86267571272	53	8	6
13	4	4	7	1346269	31	4	7	139583862445	58	4	7
21	3	3	8	2178309	30	3	8	225851433717	48	3	8
34	7	7	9	3524578	34	7	9	365435296162	52	7	9
55	10	1	10	5702887	37	1	10	591286729879	73	1	10
89	17	8	11	9227465	35	8	11	956722026041	44	8	11
144	9	9	12	14930352	27	9	12	1548008755920	54	9	12
233	8	8	13	24157817	35	8	13	2504730781961	53	8	13
377	17	8	14	39088169	44	8	14	4052739537881	62	8	14
610	7	7	15	63245986	43	7	15	6557470319842	61	7	15
987	24	6	16	102334155	24	6	16	10610209857723	51	6	16
1597	22	4	17	165580141	31	4	17	17167680177565	67	4	17
2584	19	1	18	267914296	46	1	18	27777890035288	73	1	18
4181	14	5	19	433494437	41	5	19	44945570212853	59	5	19
6765	24	6	20	701408733	33	6	20	72723460248141	51	6	20
10946	20	2	21	1134903170	29	2	21	117669030460994	65	2	21
17711	17	8	22	1836311903	35	8	22	190392490709135	62	8	22
28657	28	1	23	2971215073	37	1	23	308061521170129	46	1	23
46368	27	9	24	4807526976	54	9	24	498454011879264	72	9	24

Cada coluna representa o número da sequência de Fibonacci, a soma dos dígitos, a raiz digital e o contador do padrão, respectivamente.

Devido ao aumento rápido dos números, quanto maior a ordem do número na sequência de Fibonacci, o cálculo do mesmo é mais suscetível a erros, logo podemos identificar erros de roundoff no cálculo desses números pelo padrão da raiz digital. A partir do momento onde o padrão é quebrado, o erro é acumulado para os valores seguintes. Essa situação é identificável a partir do 74^o número da sequência calculada pelo $Google\ Spreadsheets$.

FIBONACCI	FST DIGIT SUM	DIGITAL ROOT	PATTERN COUNT	FIBONACCI	FST DIGIT SUM	DIGITAL ROOT	PATTERN COUNT
806515533049393	64	1	1	83621143489848400000	73	1	1
1304969544928660	76	4	2	135301852344707000000	53	8	2
2111485077978050	65	2	3	218922995834555000000	77	5	3
3416454622906710	60	6	4	354224848179262000000	67	4	4
5527939700884760	80	8	5	573147844013817000000	63	9	5
8944394323791460	76	4	6	927372692193079000000	76	4	6
14472334024676200	55	1	7	1500520536206900000000	44	8	7
23416728348467700	72	9	8	2427893228399980000000	85	4	8
37889062373143900	73	1	9	3928413764606870000000	74	2	9
61305790721611600	55	1	10	6356306993006850000000	69	6	10
99194853094755500	83	2	11	10284720757613700000000	60	6	11
160500643816367000	56	2	12	16641027750620600000000	53	8	12
259695496911123000	72	9	13	26925748508234300000000	68	5	13
420196140727490000	56	2	14	43566776258854900000000	85	4	14
679891637638612000	82	1	15	70492524767089100000000	71	8	15
1100087778366100000	55	1	16	114059301025944000000000	48	3	16
1779979416004710000	72	9	17	184551825793033000000000	64	1	17
2880067194370820000	65	2	18	298611126818977000000000	76	4	18
4660046610375530000	56	2	19	483162952612010000000000	50	5	19
7540113804746350000	58	4	20	781774079430988000000000	82	1	20
12200160415121900000	35	8	21	12649370320430000000000000	44	8	21
19740274219868200000	70	7	22	2046711111473990000000000	56	2	22
31940434634990100000	60	6	23	33116481435169800000000000	63	9	23
51680708854858300000	76	4	24	5358359254990970000000000	83	2	24

5. Conclusão

A raiz digital, sendo inicialmente definida como a soma de dígitos de um número m, pode ser também identificada pela diferença de m com relação ao último número divisível por 9, dada pelo resto da divisão inteira pelo mesmo.

As propriedades do número 9 auxiliam e facilitam o cálculo da raiz digital de números inteiros positivos, a qual pode ser utilizada na identificação de erros de cálculo em sequências de números formadas por regras bem estruturadas, sendo uma solução simples e fácil de se executar.

Referências

- Fourie, D. (2009). Pattern in Digital Roots of Fibonacci Numbers. http://www.danielfourie.net/fibonacci.html.
- TEK-TIPS (2007). Sum of digits in spreadsheet cell. http://www.tek-tips.com/viewthread.cfm?qid=1378437.
- Teknomono, K. (2005). Digital Root. http://people.revoledu.com/kardi/tutorial/DigitSum/.
- Weisstein, E. W. Digital Root. From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/DigitalRoot.html.