Statistical Methods for Insurance: Generalised Linear Models 9/7/16, 10:07 PM

# Statistical Methods for Insurance: Generalised Linear Models

Di Cook & Souhaib Ben Taieb, Econometrics and Business Statistics, Monash University W7.C2

### Generalised linear models

- Overview
- Types
- Assumptions
- Fitting
- Examples

#### Overview

- GLMs are a broad class of models for fitting different types of response variables distributions.
- The multiple linear regression model is a special case.

# Three components

- · Random Component: probability distributin of the response variable
- Systematic Component: explanatory variables
- · Link function: describes the relaionship between the random and systematic components

# Multiple linear regression

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
 or  $E(Y_i) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ 

- Random component:  $y_i$  has a normal distribution, and so  $e_i \sim N(0, \sigma^2)$
- Systematic component:  $\beta_0 + \beta_1 x_1 + \beta_2 x_2$
- · Link function: identity, just the systematic component

## Poisson regression

$$y_i = exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2) + \varepsilon$$

- $y_i$  takes integer values, 0, 1, 2, ...
- · Link function:  $ln(\mu)$ , name=log. (Think of  $\mu$  as  $\hat{y}$ .)

## Bernouilli, binomial regression

$$y_i = \frac{exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2)}{1 + exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2)} + \varepsilon$$

- $y_i$  takes integer values,  $\{0,1\}$  (bernouilli),  $\{0,1,\ldots,n\}$  (binomial)
- Let  $\mu = \frac{exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2)}{1 + exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2)}$ , link function is  $ln \frac{\mu}{1 \mu}$ , name=logit

# Assumptions

- The data  $y_1, y_2, ..., y_n$  are independently distributed, i.e., cases are independent.
- The dependent variable  $y_i$  does NOT need to be normally distributed, but it typically assumes a distribution from an exponential family (e.g. binomial, Poisson, multinomial, normal,...)
- · Linear relationship between the transformed response (see examples below)
- Explanatory variables can be transformations of original variables
- Homogeneity of variance does NOT need to be satisfied
- Uses maximum likelihood estimation (MLE) to estimate the parameters
- Goodness-of-fit measures rely on sufficiently large samples

# Example: Olympics medal tally

- Model medal counts on log\_GDP
- Medal counts = integer, suggests use a Poisson model.



Statistical Methods for Insurance: Generalised Linear Models 9/7/16, 10:07 PM

|             | Estimate | Std. Error | z value | Pr(> z ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | -13.2    | 0.54       | -24     | 0        |
| GDP_log     | 1.3      | 0.04       | 30      | 0        |

### Your turn

Write down the formula of the fitted model.

## What does this model look like?



## Example: winning tennis matches

We have data scraped from the web sites of the 2012 Grand Slam tennis tournaments. There are a lot of statistics on matches. Below we have the number of receiving points won, and whether the match was won or not.



#### Your turn

The response variable is binary. What type of GLM should be fit?

## Model

|                      | Estimate | Std. Error | z value | Pr(> z ) |
|----------------------|----------|------------|---------|----------|
| (Intercept)          | -2.91    | 0.59       | -5.0    | 0        |
| Receiving.Points.Won | 0.11     | 0.02       | 7.3     | 0        |

Statistical Methods for Insurance: Generalised Linear Models



Statistical Methods for Insurance: Generalised Linear Models 9/7/16, 10:07 PM

## Your turn

Write down the fitted model

#### Resources

- Beginners guide
- Introduction to GLMs
- Quick-R GLMs
- The Analysis Factor, Generalized Linear Models Parts 1-4
- wikipedia
- Do Smashes Win Matches?

#### Share and share alike

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by-nc/">http://creativecommons.org/licenses/by-nc/</a> 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.