November 17, 2023 Class 14: RNAseq Mini Project

Savannah Bogus A69027475

Differential Expression Analysis

```
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Warning: package 'GenomeInfoDb' was built under R version 4.3.2

Loading required package: SummarizedExperiment

Warning: package 'SummarizedExperiment' was built under R version 4.3.2

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds,

colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.
```

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
metaFile <- "GSE37704_metadata.csv"
countFile <- "GSE37704_featurecounts.csv"

# Import metadata
colData = read.csv(metaFile, row.names=1)
head(colData)</pre>
```

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

```
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				

I need to remove the weird column though.

ENSG00000187634

```
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

258

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Now I have to get rid of the zeros.

```
countData = countData[-which(rowSums(countData)==0), ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258

ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

```
dds = DESeqDataSetFromMatrix(countData=countData,
                             colData=colData,
                             design=~condition)
```

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  res=results(dds)
  summary(res)
```

out of 15975 with nonzero total read count adjusted p-value < 0.1

LFC > 0 (up) : 4349, 27% LFC < 0 (down): 4396, 28% outliers [1] : 0, 0% low counts [2] : 1237, 7.7%

(mean count < 0)

[1] see 'cooksCutoff' argument of ?results

[2] see 'independentFiltering' argument of ?results

```
plot( res$log2FoldChange, -log(res$padj),col="darkcyan" )
```


Make a color vector for all genes

```
mycolors <- rep("cyan", nrow(res) )

#coloring genes with fold change above 2
mycolors[ abs(res$log2FoldChange) > 2 ] <- "violet"

# coloring genes w adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj<0.01) & (abs(res$log2FoldChange) > 2 )
mycolors[ inds ] <- "darkcyan"

plot( res$log2FoldChange, -log(res$padj), col=mycolors, xlab="Log2(FoldChange)", ylab="-Log2")</pre>
```



```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

```
[1] "ACCNUM"
                     "ALIAS"
                                     "ENSEMBL"
                                                     "ENSEMBLPROT"
                                                                     "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                     "GENENAME"
[11] "GENETYPE"
                                     "GOALL"
                                                     "IPI"
                                                                     "MAP"
                     "GO"
[16] "OMIM"
                                     "ONTOLOGYALL"
                                                     "PATH"
                                                                     "PFAM"
                     "ONTOLOGY"
[21] "PMID"
                     "PROSITE"
                                     "REFSEQ"
                                                     "SYMBOL"
                                                                     "UCSCKG"
[26] "UNIPROT"
```

```
'select()' returned 1:many mapping between keys and columns
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue	
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01	
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03	
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43989e-36	
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08	
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01	
ENSG00000187642	11.979750	0.5428105	0.5215599	1.040744	2.97994e-01	
ENSG00000188290	108.922128	2.0570638	0.1969053	10.446970	1.51282e-25	
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02	
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17	
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01	
	padj	symbol	entrez		name	
	<numeric></numeric>	<character> <ch< td=""><td>naracter></td><td colspan="3"><character></character></td></ch<></character>	naracter>	<character></character>		
ENSG00000279457	6.86555e-01	NA	NA		NA	

```
ENSG00000187634 5.15718e-03
                                  SAMD11
                                              148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                   NOC2L
                                               26155 NOC2 like nucleolar ..
ENSG00000187961 1.13413e-07
                                  KLHL17
                                              339451 kelch like family me..
ENSG00000187583 9.19031e-01
                                 PLEKHN1
                                               84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                               84808 PPARGC1 and ESRR ind..
                                   PERM1
ENSG00000188290 1.30538e-24
                                               57801 hes family bHLH tran..
                                    HES4
ENSG00000187608 2.37452e-02
                                   ISG15
                                                9636 ISG15 ubiquitin like...
ENSG00000188157 4.21963e-16
                                    AGRN
                                              375790
                                                                       agrin
ENSG00000237330
                                              401934 ring finger protein ...
                         NA
                                  RNF223
```

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Pathway Analysis

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
library(gage)
```

```
library(gageData)
data(kegg.sets.hs)
data(sigmet.idx.hs)
```

Now, I'm going to limit it to signaling and metabolic pathways.

```
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
            "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                         "10720"
                                  "10941"
                                            "151531" "1548"
                                                                "1549"
                                                                          "1551"
 [9] "1553"
               "1576"
                         "1577"
                                            "1807"
                                  "1806"
                                                      "1890"
                                                                "221223" "2990"
[17] "3251"
               "3614"
                         "3615"
                                  "3704"
                                            "51733"
                                                      "54490"
                                                                "54575"
                                                                          "54576"
[25] "54577"
               "54578"
                         "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                                "54659"
                                                                          "54963"
[33] "574537"
               "64816"
                         "7083"
                                  "7084"
                                            "7172"
                                                      "7363"
                                                                "7364"
                                                                          "7365"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                                "79799"
                                                                          "83549"
[49] "8824"
                         "9"
                                  "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                                                       "10623"
                                                                 "107"
                          "10606"
                                    "10621"
                                             "10622"
                                                                           "10714"
  [9] "108"
                "10846"
                          "109"
                                                                 "112"
                                                                           "113"
                                    "111"
                                             "11128"
                                                       "11164"
 [17] "114"
                "115"
                          "122481" "122622" "124583" "132"
                                                                 "158"
                                                                           "159"
 [25] "1633"
                "171568" "1716"
                                    "196883" "203"
                                                       "204"
                                                                 "205"
                                                                           "221823"
 [33] "2272"
                "22978"
                          "23649"
                                    "246721"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                                                                           "270"
 [41] "271"
                "27115"
                          "272"
                                    "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
                                                                           "2984"
 [49] "2986"
                "2987"
                          "29922"
                                    "3000"
                                             "30833"
                                                       "30834"
                                                                 "318"
                                                                           "3251"
 [57] "353"
                "3614"
                          "3615"
                                    "3704"
                                             "377841"
                                                      "471"
                                                                 "4830"
                                                                           "4831"
 [65] "4832"
                "4833"
                          "4860"
                                    "4881"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                           "50940"
                                    "5136"
                                             "5137"
                                                                 "5139"
                                                                           "5140"
 [73] "51082"
                "51251"
                          "51292"
                                                       "5138"
 [81] "5141"
                "5142"
                          "5143"
                                    "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                           "5148"
 [89] "5149"
                "5150"
                          "5151"
                                    "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                          "5236"
                                    "5313"
                                             "5315"
                                                       "53343"
                                                                 "54107"
                                                                           "5422"
[105] "5424"
                "5425"
                          "5426"
                                    "5427"
                                             "5430"
                                                       "5431"
                                                                 "5432"
                                                                           "5433"
                                                       "5439"
                                                                 "5440"
[113] "5434"
                "5435"
                          "5436"
                                    "5437"
                                             "5438"
                                                                           "5441"
                                    "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
[121] "5471"
                "548644" "55276"
                                                                           "55821"
[129] "5631"
                "5634"
                          "56655"
                                    "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[137] "6241"
                "64425"
                          "646625"
                                   "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
                "84284"
                                    "8622"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
[145] "84265"
                          "84618"
[153] "9061"
                "93034"
                          "953"
                                    "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
[161] "9583"
                "9615"
```

We have to get ready for the gage function format, which is what I'm doing here.

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Next, I'm actually using the gage function, with same.dir=TRUE to help with order.

```
keggres = gage(foldchanges, gsets=kegg.sets.hs,same.dir=TRUE)
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

Checking out what is downregulated.

```
head(keggres$less)
```

```
p.geomean stat.mean
                                                                    p.val
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                   exp1
hsa04110 Cell cycle
                                                      121 8.995727e-06
                                      0.001448312
hsa03030 DNA replication
                                      0.007586381
                                                       36 9.424076e-05
                                                       144 1.375901e-03
hsa03013 RNA transport
                                      0.073840037
hsa03440 Homologous recombination
                                      0.121861535
                                                       28 3.066756e-03
hsa04114 Oocyte meiosis
                                                       102 3.784520e-03
                                      0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
```

And finally getting the pathview look at the pathway, inserted below.

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/200

Info: Writing image file hsa04110.pathview.png

Next, I'm going to focus on the top 5 pathways.

```
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
```

Get the 8 character ID.

```
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
```

```
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/20
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/20
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/202
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/202
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/202
Info: Writing image file hsa04330.pathview.png
```


Same procedure for the downregulated.

```
First, get the top 5 downregulated pathways.
  keggrespathwaydown <- rownames(keggres$less)[1:5]</pre>
  keggresidsdown = substr(keggrespathwaydown, start=1, stop=8)
  keggresidsdown
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data=foldchanges, pathway.id=keggresidsdown, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/20
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/202
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/20
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/20
Info: Writing image file hsa03440.pathview.png
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/savannahbogus/Documents/Classes/BGGN 213 Bioinformatics/200

Info: Writing image file hsa04114.pathview.png

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Just focus on biological process part of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

p.geomean stat.mean p.val GO:0007156 homophilic cell adhesion 8.519724e-05 3.824205 8.519724e-05

```
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                         1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                          1.925222e-04 3.565432 1.925222e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                          0.1952430
                                                         113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1952430
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                                         424 1.432451e-04
                                          0.1952430
GO:0007610 behavior
                                          0.1968058
                                                         426 1.925222e-04
GO:0060562 epithelial tube morphogenesis 0.3566193
                                                         257 5.932837e-04
GO:0035295 tube development
                                          0.3566193
                                                         391 5.953254e-04
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.843127e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.843127e-12
                                                           352 4.286961e-15
GD:0007067 mitosis
                                         5.843127e-12
                                                           352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                        1.659009e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.178690e-07
                                                            84 1.729553e-10
$stats
                                          stat.mean
                                                        exp1
GO:0007156 homophilic cell adhesion
                                           3.824205 3.824205
GD:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                           3.643242 3.643242
GO:0007610 behavior
                                           3.565432 3.565432
GO:0060562 epithelial tube morphogenesis
                                          3.261376 3.261376
GO:0035295 tube development
                                           3.253665 3.253665
```

Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

#Q What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Cell cycle, mitotic has the most significant entities p-value. It's the same for the KEGG results, interestingly.