Mastering Machine Learning Model Training

A Complete Guide to Building Supervised Models

Edgar Rios Linares

Roadmap

Mastery of supervised learning

Definition

We "teach" a machine from labeled data so that it learns to predict future outcomes.

Definition

Supervised learning is a technique in which a model is trained with a set of labeled data.

Each training example is accompanied by a desired output.

The goal is for the model to learn to map inputs (features) to correct outputs (labels).

Components

Labeled dataset

Features

Labels

Objective function

Components

Labeled dataset: Input data with its respective expected outputs.

Features: Relevant attributes that will be used to make predictions (pixels of an image)

Labels: Target values that the model must learn to predict (dog or cat)

Objective Function: Metric that the model optimizes during training to improve its predictions.

1. Data Splitting

Training: Train the model. (70-80%)

Validation: Tune hyperparameters. (10-15%)

Testing: Evaluate final performance. (10-15%)

2. Model Selection

Regression, trees, SVM, networks, etc.

3. Parameter Optimization

Cross-validation, Grid Search, etc.

4. Performance Evaluation

Validation and testing performance.

1. Data Splitting

1. Data Splitting

Label (y) Features (X) X1 X2 Xn **CAT** DOG DOG Training 70% CAT DOG CAT CAT DOG **Test 15%** CAT CAT Validation 15% DOG

2. Model Selection

3. Parameter Optimization

Label (y) Features (X) X1 X2 Xn CAT DOG Training DOG CAT DOG K2678 CAT Training CAT DOG CAT CAT Test DOG

4. Performance Evaluation

ACTUAL

CAT

NO CAT

CAT

TRUE POSITIVE

FALSE POSITIVE ERROR

NO CAT

FALSE NEGATIVE ERROR

TRUE NEGATIVE

F1-Score

Recall

Evaluates the model's ability to identify all positive cases.

Precision

Measures the accuracy of the model's positive predictions.

Balances precision and

recall in a single score.

MSE

Calculates the average of the squared errors of the predictions.

Confusion Matrix

Provides a detailed view of correct and incorrect predictions.

Precision (accuracy) Proportion of correct predictions out of the total number of predictions.

Formula: (True positives + True negatives) / Total.

Recall (Sensitivity) Proportion of true positives out of the total number of real positives.

Formula: True positives / (True positives + False negatives).

TRUE POSITIVE

F1-Score, Average of precision and recall. Useful when there is imbalance in classes.

Formula: 2 * (Precision * Recall) / (Precision + Recall).

$$F1 ext{-}score = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

MSE (Mean Square Error): For regression problems, measures the difference between actual and predicted values

$$MSE = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Where:

- y_i are the actual values.
- \hat{y}_i are the predictions of the model.
- n is the total number of observations.

Practical Example

Predicting Solvent Companies

Step 1: Data Collection

A data set is obtained with characteristics such as income, expenses, credits and solvency.

Step 2: Preprocessing

Data cleaning and treatment of null values.

Normalization of numerical variables.

Step 3: Model Training

Data division into training, validation and testing.

LDA model - relationship of characteristics and solvency.

Step 4: Evaluation

Precision, Recall, F1-Score and Confusion Matrix are calculated.

Hyperparameters are adjusted and retraining is carried out.

Practical Example

STEP 1

	income	debt	credit_history	solvent
0	57450.712295	26483.242833	392.115420	0
1	47926.035482	33365.916483	357.512312	0
2	59715.328072	10210.026983	650.036637	1
3	72845.447846	23940.784657	688.561650	1
4	46487.699379	15445.502016	317.372380	1

STEP 2

	income	debt	credit_history
0	-0.245825	-0.531158	1.500187
1	-0.042386	0.079393	-0.803370
2	-0.741307	-0.848214	-0.136724
3	-1.040191	0.480125	0.156964
4	-0.720783	0.168569	-1.356440

STEP 3

STEP 4

OVERFITTING

Overfitting occurs when a model learns the details and noise of the training set too well, but does not generalize well to new data. It memorizes the data.

ACTUAL

CAT

NO CAT

CAT

TRUE POSITIVE

NO CAT

TRUE NEGATIVE

Educator in Al

Artificial Intelligence

Data Engineering

Machine Learning

Data Science

TLinkedin —> https://www.linkedin.com/in/erlinares/

☐ GitHub: https://github.com/erlinares/365_Al_Journey/

Discord: https://discord.gg/5fFM2zh8

Edgar Rios Linares