算法分析(2)

Pseudocode (伪代码) Solving Recurrences(解递归)

"pseudocode"

```
INSERTION-SORT (A, n) \triangleleft A[1 ... n]

for j \leftarrow 2 to n

do key \leftarrow A[j]

i \leftarrow j - 1

while i > 0 and A[i] > key

do A[i+1] \leftarrow A[i]

i \leftarrow i - 1

A[i+1] = key
```

- □ While-循环最坏情形Θ(j).
- \square While-循环平均情形 $\Theta(j/2)$,当插入位置有相同概率时.

伪代码-插入排序

- □ "←"表示"赋值 "(assignment).
- □ 忽略数据类型、变量的说明等与算法无关的 部分.
- □ 允许使用自然语言表示一些相关步骤
- □ 伪代码突出了程序使用的算法.

插入排序实例

插入排序分析

□ 最坏情形: 输入数据已按倒序排列

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^{2})$$

□ 平均情形: 输入数据为所有可能的排列

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^{2})$$

- □ 插入排序是否是最快的排序算法?
 - □当n很小时,结论肯定
 - □当n很大时,不一定

最优二叉树(optimized binary tree)

```
for m ←2 to n \Theta(1) do \{\text{for i} \leftarrow 0 \text{ to n-m} \qquad \Theta(1) \\ do \{ \\ j \leftarrow i + m \qquad \Theta(1) \\ w(i,j) \leftarrow w(i,j-1) + P(i) + Q(j) \qquad \Theta(1) \\ c(i,j) \leftarrow \min_{i < i \le j} \{ c(i,i-1) + c(i,j) \} + w(i,j) \} \}  \} \} \} \} \} \} \} W(n,n),P(n),Q(n),c(n,n) 是算法使用的数组,假定已初始化.
```

最优二叉树: 时间复杂度分析

- \square min_{i<|\leq j} { c(i, l-1) + c (l, j) }: $\Theta(j-i)=\Theta(m)$
- □ 内层循环:Θ(m(n-m));
- □ 总的时间复杂度:

$$\Theta(\Sigma_{2 \leq m \leq n} m(n-m)) = \Theta(n^3)$$

解递归方程的方法

- 递归树(Recursion tree)
- 替代法(Substitution method)
- Master方法(Master method)

归并排序

Merge-Sort A[1 ... n]

- 1. If n = 1, done.
- 2. Recursively sort $A[1..\lceil n/2\rceil]$ and $A[\lceil n/2\rceil+1..n]$.
- 3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

合并已排序的子序列

Time = $\Theta(n)$ to merge a total of n elements (linear time).

归并排序时间复杂度分析

```
T(n)
\Theta(1)
2T(n/2)
\Theta(n)
```

MERGE-SORT A[1 ... n]

- 1. If n = 1, done.
- 2. Recursively sort $A[1..\lceil n/2\rceil]$ and $A[\lceil n/2\rceil+1..n]$.
- 3. "Merge" the 2 sorted lists
- \square Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$
- □ 假定n=2^h ,h≥0,上式变为2*T*(n/2)

归并排序时间复杂度: 递归方程

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

- □ 隐含假定n=2h.
- □ 以cn代替 ② (n),不影响渐近分析的结果.
- □ "If n=1",更一般的是 "if n<n₀, *T*(*n*)=**Θ**(1)": 指:可找到足够大常数c₁,使得

 $T(n) < c_1$ if $n < n_0$.

- □ 解T(n) = 2T(n/2) + cn, 其中 c > 0 为常数.
- □ 递归展开到*T*(n₀),然后再从前n₀个T(n)的值确定渐近分析的常数.
- □ 展开到*T*(n₀),有时会导致推导的麻烦,所以展开到 *T*(1).

□ 解T(n) = 2T(n/2) + cn, 其中 c > 0 是常数.

$$cn/2$$

$$cn/2$$

$$Cn/2$$

$$cn/2$$

$$T(n/4)$$

$$T(n/4)$$

$$T(n/4)$$

$$T(n/4)$$

□ 解 T(n) = 2T(n/2) + cn, 其中 c > 0 是常数

递归树等价于迭代展开

```
□ T(n)=4T(n/2)+n
=4(4T(n/2<sup>2</sup>)+n/2)+n
=4<sup>2</sup>T(n/2<sup>2</sup>)+n+2n
=4<sup>3</sup>T(n/2<sup>3</sup>)+n+2n+2<sup>2</sup>n
=4<sup>h</sup>T(n/2<sup>h</sup>)+n(1+2+--+2<sup>h-1</sup>)
=n<sup>2</sup>T(1)+n(2<sup>h</sup>-1)
=Θ(n<sup>2</sup>)
```

□ 很多递归式用递归树解不出来,但递归树能提供直觉,帮助我们用归纳法求解(Guess 归纳假设).

结论

- \square Θ(n lg n)比Θ(n^2)增长的慢.
- □ merge sort 渐近(asymptotically)优于插入排序.
- □ 实际上, merge sort 优于 insertion sort 仅当 *n* > 30 or so.
- □ 1000*nlogn算法当n比较小时未必比n²算法要快. n足够大时前者才能看出优势.

当n≠2h

 $\square 2^{h} \le n < 2^{h+1} = >$ $n=\Theta(2^h)$, $h=\Theta(logn)$ \square T(2^h) \leq T(n) \leq T(2^{h+1}). □ 所以,Θ(h2h)≤T(n)≤Θ((h+1)2h+1) $\square \Theta((h+1)2^{h+1}) = \Theta(h2^{h+1}+2^{h+1})$ $=\Theta(h2^{h+1})=\Theta(h2^h)$ □ 所以T(n)=Θ(h2h)=Θ(nlogn)

较一般的递归式

- □ 较一般的递归:T(n)=aT(n/b)+cn, a,b是大于1的整数,递归树方法仍可使用.
- □ 首先考虑n=b^h情形:

$$T(n)=a^{h}T(1)+cn(1+(a/b)+---+(a/b)^{h-1})$$

= $a^{h}T(1)+cb^{h}(1+(a/b)+---+(a/b)^{h-1})$

□ 当bh≤n<bh+1, 仍有:

$$h = \Theta(\log_b n)$$

换底公式: $log_b n = log_2 n / log_2 b = > h = \Theta(log_n)$

替代法

- □ 解递归方程最一般的方法:
- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

例1

- $\Box T(n) = 4T(n/2) + n (n=2h)$
- \square [Assume that $T(1) = \Theta(1)$.]
- □ Guess O(*n*³):归纳假定为*T*(*n*)≤*cn*³. *c*是待定常数.
- □ 应用假定有: $T(k) \le ck^3$ for k < n.
- □ 归纳证明: $T(n) \le cn^3$ 并确定常数c.

例(续)

```
\square T(n)=4T(n/2)+n
       ≤4c(n/2)<sup>3</sup>+n
        =(c/2)n^3+n
        =cn^3-((c/2)n^3-n)
        ≤cn<sup>3</sup>
   取 c≥2 and n≥1,不等式(c/2)n3-n≥0成
  立.
```

例(续)

- □ 还要检验初始条件是否满足归纳假设.
- □ 初始条件为:

 $T(n)=\Theta(1)$,当 $n< n_0$, n_0 为常数。

- □ 因为有常数(n₀-1)个T的值:T(1),---,T(n₀-1)
- □ 所以可取c足够大,使得T(n)≤cn³, 对n<n₀ 成立.
- □ 该上界不是紧上界(tight bound)!

例(续)

- \square We shall prove that $T(n) = O(n^2)$.
- \square Assume that $T(k) \le ck^2$ for k < n:
- T(n) = 4T(n/2) + n $\leq 4c(n/2)^2 + n$ $= cn^2 + n$
- □ 归纳不能往下进行!

替代法 (续)

- IDEA: Strengthen the inductive hypothesis.
- Subtract a low-order term.
- □ Inductive hypothesis: $T(k) \le c_1 k^2 c_2 k$ for k < n.
- T(n)=4T(n/2)+n≤4[c₁(n/2)²-c₂(n/2)]+n =c₁n²-c₂n-(c₂n-n) ≤c₁n²-c₂n if c₂>1

续

☐ For $1 \le n < n_0$, we have " $\ominus(1)$ " $\le c_1 n^2 - c_2 n$, if we pick c_1 big enough.

Master方法 (The Master Method)

□ The master method用来解下述递归

$$T(n)=aT(n/b)+f(n)$$
,

式中a≥1, b>1, 为整数, f(n)>0.

- 口按f(n)相对于 $n^{\log a}$ 的渐近性质,分三种情形进行分析.
- □ 这里loga 指以b为底的a的对数log_ba.

The Master Method:情形1

□ 情形1.

 $f(n)=O(n^{\log a-\epsilon})$, $\epsilon>0$, 为某一常数 f(n)的增长渐近地慢于 $n^{\log a}$ (慢 n^{ϵ} 倍).

□ Solution: $T(n) = \Theta(n^{\log a})$.

The Master Method:情形2

- □ 情形2:
 - $f(n) = \Theta(n^{\log a} \lg^k n) k \ge 0$ 为某一常数.
- $\Box f(n)$ 和 $n^{\log a}$ 几乎有相同的渐近增长率.
- \square Solution: $T(n) = \Theta(n^{\log a} \lg^{k+1} n)$.

The Master Method:情形3

- □ 情形3
- \square $f(n) = \Omega(n^{\log a + \epsilon})$ $\epsilon > 0$ 为一常数. f(n) 多项式地快于 $n^{\log a}$ (by an n^{ϵ} factor),
- □ f(n) 满足以下规则性条件: $af(n/b) \leq cf(n), 0 < c < 1$ 为常数.
- □ Solution: $T(n) = \Theta(f(n))$.

Examples 1

- \square T(n)=4T(n/2)+n
- $\square a=4, b=2 \Rightarrow n^{\log a}=n^2; f(n)=n.$
- □ 情形1: $f(n)=O(n^{2-\epsilon})$ for $\epsilon=1$.
- $\square : T(n) = \Theta(n^2).$

Examples 2

- □ $T(n)=4T(n/2)+n^2$ $a=4, b=2 \Rightarrow n^{\log a}=n^2; f(n)=n^2.$
- 口情形 2: $f(n) = \Theta(n^2 \lg^0 n)$, k = 0.
- $\square T(n) = \Theta(n^2 \lg n).$

Examples 3

- $\Box T(n) = 4T(n/2) + n^3$
- $\Box a=4, b=2 \Rightarrow n^{\log a}=n^2; f(n)=n^3.$
- \square **CASE 3**: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon=1$
- □ **and** $4(n/2)^3 \le cn^3$ (reg. cond.) for c=1/2.
- $\square : T(n) = \Theta(n^3).$

Idea of the Master method

Idea of the Master method

□ 从递归树可知:

$$T(n) = a^{h}T(1) + \sum a^{k}f(n/b^{k})$$

$$= a^{h}T(1) + \sum a^{k}f(b^{h-k})$$

$$= n^{\log a}T(1) + \sum a^{k}f(b^{h-k})$$

- □ T(n)的渐近性质由n^{loga}和∑a^kf(b^{h-k})的渐近性 质决定:两者中阶较高的决定!
- □ 为什么要比较f(n)和nloga 的原因!

Master 方法分析

- \square n=b^h, h=log_bn,n^{loga}=a^h
- □ loga 指 log_ba.

 $\square \sum_{k} a^{k} f(b^{h-k}) = \sum_{k} a^{h-k} f(b^{k}), (后者求和从1到h)$

Proof (Case 1)

 \square $n=b^h$, $n^{loga}=a^h$, $n^{\epsilon}=b^{\epsilon h}$. 因 $f(n)=O(n^{loga-\epsilon})$, 所以 $f(n) \le cn^{\log a - \varepsilon} = ca^h/b^{\varepsilon h} = > f(b^h) \le c(a^h/b^{\varepsilon h})$ □ 取充分大的c,使f(bi)≤c(ai/bεi) **对**所有i成立. \Box T(n)=a^hT(1)+ \sum a^kf(b^{h-k}),(\sum : k=0,...,h-1) \square $T(n) \le a^h T(1) + c \sum a^k (a^{h-k}/b^{\epsilon(h-k)})$ $=a^{h}T(1)+ca^{h}\sum(1/b^{\epsilon(h-k)})$ $\leq a^h T(1) + ca^h \sum_{1 \leq k \leq \infty} (1/b^{\epsilon k})$ ≤c'ah (因b>1,ε>0,无穷和收敛) □ 所以T(n)=O(n^{loga}); 显然, T(n)=Ω(n^{loga})

Proof of Case 2

- $\square f(n) = \Theta(n^{\log a} \lg^k n), n = b^h, n^{\log a} = a^h$
- $\square => f(b^h) \le ca^h(hlgb)^k = ca^hh^k(lgb)^k$
- □ 类似,f(bi) ≤caiik(lgb)k. (取充分大的c)
- □ $T(n) \le a^h T(1) + ca^h \sum_i i^k (lgb)^k \le a^h T(1) + c'a^h h^{k+1} (lgb)^k = a^h T(1) + c'a^h h^{k+1} (lgb)^{k+1} / lgb = c''(n^{loga} lg^{k+1} n)$
- □ 上面推导中用到:1^k+...+h^k=Θ(h^{k+1})

Case 3

- □ 反复应用规则性条件有:
 - $a^k f(n/b^k) \le c^k f(n)$
- □ 所以: ∑a^kf(n/b^k) ≤∑c^kf(n)
- □ $T(n)=a^hT(1)+\sum a^kf(n/b^k)\leq a^hT(1)+f(n)\sum c^k\leq a^hT(1)+f(n)(1-c)^{-1}$
- 口 因为, $f(n) = \Omega(n^{\log a + \epsilon})$, 量级高于 a^h , 所以 T(n)=O(f(n)).
- □ 又,T(n)>f(n).所以,T(n)=Θ(f(n))

补充例题

例题1: 展开递归树:T(n)=T(1)+T(n-1)+cn,并做渐近分析

$$\begin{array}{c}
 & \bigcap_{\Theta(1)} c(n-1) \\
 & \Theta(1) \\
 & \Theta(1)
\end{array}$$

$$\begin{array}{c}
 & \Theta(1) \\
 & \Theta(1)
\end{array}$$

$$\begin{array}{c}
 & \Theta(1) \\
 & \Theta(1)
\end{array}$$

$$\begin{array}{c}
 & \Theta(1) \\
 & \Theta(1)
\end{array}$$

例题2:展开T(n)=T(0.1n)+T(0.9n)+Θ(n)的 递归树并计算递归树的深度和T(n)的渐近值.

裴波那契(Fibonacci)序列

```
□ 序列F<sub>0</sub>=F1=1,F<sub>i</sub>=F<sub>i-1</sub>+F<sub>i-2</sub> (i>1)称为Fibonacci
  序列. 以下算法计算第n个Fibonacci数:
  proc F(n)
  if n \le 1 return(1)
   else return(F(n-1)+F(n-2));
  end proc
□ 令t(n)为算法执行的加法次数,有:
  t(n)=0 \text{ for } n=0,1
  t(n)=t(n-1)+t(n-2)+1
  特别t(2)=1,t(3)=2
```

续

- □ 因为t(n-1)>t(n-2),有
 t(n)<2t(n-1)+1,for n>2. 用归纳法易证:
 t(n)≤2ⁿ
- □ 又有t(n)>2t(n-2)>--->2^{k-1}t(2)=2^{k-1} n=2k >2^{k-1}t(3)=2^k n=2k+1
- \square t(n)=O(2ⁿ)
- □ 算法有指数的时间复杂度.
- □ 实际上这是因递归引起的大量的重复计算而非问题本身的难 度所致.可设计一非常简单的线性时间复杂度的迭代算法.

Homework(2)

□ 1.用归纳法证明

```
T(N) \leq \begin{cases} 0 & \text{if } N = 1 \\ \underline{T(\lceil N/2 \rceil)} + \underline{T(\lfloor N/2 \rfloor)} + \underline{cN} & \text{otherwise} \end{cases}
\Rightarrow T(N) \leq cN \lceil \log_2 N \rceil
```

- □ 2.应用master方法求解T(n)=2T(n/2)+@(n¹/²)
- □ 3.展开递归树: *T*(*n*)=*T*(2)+*T*(*n*–2)+*cn*, 并做渐近分析
- □ 展开T(n)=T(0.2n)+T(0.8n)+Θ(n)的递归树并计 算递归树的深度和T(n)的渐近值.
- □ 14章练习33-(a),(b),(c),(d),(e),(f),(g),(h),(i),(j)