گزارشکارِ ششمِ آزمایشگاهِ ریزپردازنده

تهیه و تنظیم: مبین خیبری

شماره دانشجوي: 994421017

استاد راهنما: دكتر نيكزاد

چکیده:

در این جلسه، ابتدا اقداماتِ انجامشده در جلساتِ گذشته مورد بررسی قرار گرفتند و سپس توجه گروههای مختلفِ دانشجویان روی طراحی و پیادهسازیِ خواستههای آزمایش بعدی معطوف گردید.

به طورِ خلاصه در این گزارش قصد داریم مراحلِ مختلفِ لازم جهتِ طراحیِ یک شبکهی ارتباطیِ بیسیم را قدم به قدم شرح دهیم.

طراحي شبكهى ارتباطى بيسيم توسط NRF 2401

- 1. هر گره (Node) بتواند با گرههای دیگر در ارتباط باشد.
- 2. هر گره تشخیص دهد که از کدام گره پیام دریافت کرده است.
 - 3. در صورتِ عدم موفقیت در ارسال پیام، دوباره ارسال شود.

طراحیِ چنین سیستمی در واقع تفاوتِ چندانی با پروژهی قبلی ندارد و تنها کافیست چند قسمتِ کوتاه را به آن کد اضافه کنیم.

پیامِ ما باید به گونهای به مخاطب ارسال شود که 5 بایتِ اولیهی آن حاویِ آدرسِ ما به عنوان فرستنده باشد. علاوه بر این لازم است که آدرسِ فرستندهی پیام با یک جداکنندهی مورد توافق – که در اینجا ":" در نظر گرفته شده – از متنِ پیام جدا شود.

در کلاس درس، فرض را بر این گذاشتیم که سه بردِ موجود در کلاس، به ترتیب آدرسهای زیر را اختیار کردهاند:

1Node

2Node

3Node

لازم به ذکر است که این آدرسها میتوانند هر عبارتِ دیگری را نیز شامل شوند و لزومی به استفادهی دقیق از اسامی اعلام شده نیست و این آدرسها با توافق جمع انتخاب شدهاند.

تصویر زیر نحوهی اتصالاتِ میان برد و ماژولِ گیرنده/فرستندهی بیسیم را نشان میدهد:

در ادامه، قطعه كدِ لازم براى پيادهسازي اين سيستمِ ارتباطي بيسيم را مشاهده مي كنيد:

#include <SPI.h>

#include "printf.h"

#include "RF24.h"

RF24 radio(7, 8); // using pin 7 for the CE pin, and pin 8 for the CSN pin uint8_t address[6] = {"2Node" };

```
bool radioNumber = 1; // 0 uses address[0] to transmit, 1 uses address[1] to
transmit
bool role = false; // true = TX role, false = RX role
void setup() {
 // initialize both serial ports:
 Serial.begin(9600);
if (!radio.begin()) {
  Serial.println(F("radio hardware is not responding!!"));
  while (1) {} // hold in infinite loop
 //int a = Serial.read();
 // set the TX address of the RX node into the TX pipe
 radio.openWritingPipe(address[radioNumber]); // always uses pipe 0
 // set the RX address of the TX node into a RX pipe
 radio.openReadingPipe(1, address[!radioNumber]); // using pipe 1
 radio.startListening();
}
String str;
char msg[32];
byte addr[5];
void loop() {
 // read from port 1, send to port 0:
 if (Serial.available()) {
  str = Serial.readString();
 Serial.println(str);
```

```
for(int i=0;i<5;i++)
  { addr[i]=str[i];}
  for(int i=0;i<5;i++)
  { msg[i]=address[i];}
 for(int i=5;i<str.length();i++)</pre>
 msg[i]=str[i];
 msg[str.length()]='\0';
 Serial.println(msg);
 radio.stopListening();
 radio.openWritingPipe(addr);
 bool report = radio.write(msg, sizeof(msg)); // transmit & save the report
 if (report) Serial.print(F("Transmission successful! ")); // payload was delivered
 else Serial.println(F("Transmission failed or timed out")); // payload was not
delivered
 radio.startListening();
if (radio.available()) {
 radio.read(msg,32);
 Serial.println(msg);
 }
```