The operational semantics and Curry-Howard

Mike Stay, L.G. Meredith

Modern presentations of computational calculi generalize generators and relations style presentations of universal algebra They are typically given in terms of bi-directional

a grammar \approx generators \approx a free functor

a structural equivalence \approx relations \approx an algebra of a monad

no analog an operational semantics

uni-directional rewrites

Process calculi, like vector spaces, are two sorted algebraic structures

dynamics internal a relation on a single algebra

processes

names

scalars

vectors

dvnamics external: morphisms between algebras rewrites

Syntax

$$P := 0$$
 stopped process $|x?(y_1, \dots, y_n)| \Rightarrow P$ input $|x!(y_1, \dots, y_n)|$ output $|(\text{new } x)P|$ new channel $|P|Q$

Free and bound names

$$\mathcal{FN}(0) \coloneqq \emptyset$$

$$\mathcal{FN}(x?(y_1, \dots, y_n) \Rightarrow P) \coloneqq$$

$$\{x\} \cup (\mathcal{FN}(P) \setminus \{y_1, \dots y_n\})$$

$$\mathcal{FN}(x!(y_1, \dots, y_n)) \coloneqq \{x, y_1, \dots, y_n\}$$

$$\mathcal{FN}((\mathsf{new}\ x)P) \coloneqq \mathcal{FN}(P) \setminus \{x\}$$

$$\mathcal{FN}(P \mid Q) \coloneqq \mathcal{FN}(P) \cup \mathcal{FN}(Q)$$

Structural congruence

The structural congruence of processes, noted \equiv , is the least congruence containing α -equivalence, \equiv_{α} , making (P, |, 0) into commutative monoids and satisfying

$$(\operatorname{new} x)(\operatorname{new} x)P \equiv (\operatorname{new} x)P$$

$$(\operatorname{new} x)(\operatorname{new} y)P \equiv (\operatorname{new} y)(\operatorname{new} x)P$$

$$((\operatorname{new} x)P) \mid Q \equiv (\operatorname{new} x)(P \mid Q)$$

Operational semantics

$$\frac{|\vec{y}| = |\vec{z}|}{x?(\vec{y}) \Rightarrow P \mid x!(\vec{z}) \to P\{\vec{z}/\vec{y}\}}$$
 (COMM)

$$\frac{P \to P'}{P \mid Q \to P' \mid Q} \tag{PAR}$$

$$\frac{P \to P'}{(\mathsf{new}\; x)P \to (\mathsf{new}\; x)P'} \tag{New}$$

$$\frac{P \equiv P' \qquad P' \to Q' \qquad Q' \equiv Q}{P \to Q} \quad \text{(EQUIV)}$$

Bisimulation

$$\frac{\overline{x!(\vec{y}) \downarrow x}}{P \not Q \downarrow x}$$

DEFINITION 2.1.2. An barbed bisimulation, is a symmetric binary relation S between agents such that P S Q implies:

1. If
$$P \to P'$$
 then $Q \to Q'$ and $P' \mathcal{S} Q'$.

2. If
$$P \downarrow x$$
, then $Q \downarrow x$.

Bisimulation

P is barbed bisimilar to Q, written $P \approx Q$, if $P \mathcal{S} Q$ for some barbed bisimulation \mathcal{S} .

The categorical machinery

objects $\mathcal N$ for names and $\mathcal P$ for processes

1-morphisms $\Delta : \mathcal{N} \to \mathcal{N} \otimes \mathcal{N}$ and $\delta : \mathcal{N} \to I$ 1-morphisms $|: \mathcal{P} \otimes \mathcal{P} \to \mathcal{P}$ and $0 : I \to \mathcal{P}$

The categorical machinery

1-morphism $?_n : \mathcal{N} \otimes (\mathcal{N}^{\otimes n} \multimap \mathcal{P}) \to \mathcal{P}$ and $!_n : \mathcal{N} \otimes \mathcal{N}^{\otimes n} \to \mathcal{P}$ for each natural number $n \geq 0$,

The categorical machinery

The categorical machinery

a 2-morphism $comm_n$ encoding the COMM rule for each natural number $n \geq 0$.

The semantics

The semantics

$$\llbracket 0 \rrbracket \coloneqq 0$$

$$\downarrow \mathcal{P}$$

$$\llbracket x?(y_1,\ldots,y_n) \Rightarrow Q \rrbracket := \underbrace{curry_n(\llbracket Q \rrbracket)}_{\mathcal{N}}$$

$$[x!(y_1,\ldots,y_n)] :=$$

$$[x!(y_1,\ldots,y_n)] :=$$

$$[x!(y_1,\ldots,y_n)] :=$$

$$[x!(y_1,\ldots,y_n)] :=$$

The semantics

The semantics

 $[\![(\mathsf{new}\ y)(\mathsf{new}\ x)x?(y_1,\ldots,y_n)\Rightarrow Q]\!]_{top}$

The semantics

$$\llbracket x!(y_1,\ldots,y_n)\rrbracket \Downarrow \llbracket x\rrbracket$$
$$\llbracket P\rrbracket \Downarrow \llbracket x\rrbracket \text{ or } \llbracket Q\rrbracket \Downarrow \llbracket x\rrbracket \text{ implies } \llbracket P\rrbracket \vdash \llbracket Q\rrbracket \Downarrow \llbracket x\rrbracket$$

Taken together these two notions provide an immediate lifting of the syntactic notion of bisimulation to a corresponding semantic notion, which we write, \approx .

The semantics

THEOREM 4.1.1 (FULL ABSTRACTION).

$$P \stackrel{.}{\approx} Q \qquad \Longleftrightarrow \qquad \llbracket P \rrbracket \approx \llbracket Q \rrbracket$$

Higher category models of the π -calculus Conclusions and future work

Mellies and Zeilberger types

Explicit computational resources

True concurrency

```
{ }
P,Q ::= 0
                                        [| a |](m) ![ [| v1 |](m), ..., [| vn |](m) ]
     a![ v1, ..., vn ]
                                        for( [ x1, ..., xn ] <- [| a |](m)) {
     a?( x1, ..., xn )P
                                            [|P|](m)(x1, ..., xn)
     P | Q
                                         spawn{ [| P |](m) }; spawn{ [| Q |](m) }
                                        { val q = new Queue(); [| P |](m[a <- q])}
     (new a)P
     ( def X( x1, ..., xn ) = P )[v1, ..., vn]
                                         object X {
                                            def apply(x1, ..., xn) = {
                                                [|P|](m)(x1, ..., xn)
     X[v1, ..., vn]
                                        X([| v1 |](m), ..., [| vn |](m))
            [|-|](-): ( \pi-calculus, Map[Symbol,Queue] ) -> Scala
```