Decision Analysis 2: Value of Information

ISE/OR 560, Fall 2022

In the previous lecture

We know how to make decisions with perfect information.

Determine the best portfolio selection for the investor.

	Portfolio Selection					
Event	Α	В	С	Prob.		
Economy Declines	\$500	-\$2,000	-\$7,000	0.30		
No change	\$1,000	\$2,000	-\$1,000	0.50		
Economy Expands	\$2,000	\$5,000	\$20,000	0.20		

Perfect Information

- Perfect information is complete foresight of "which state of nature is really going to occur"
- Sequence of events:
 - Obtain perfect information
 - Now that we know what state of nature is going to happen, pick the best alternative for that state of nature
- Usually not realistic, but the value of perfect information provides a bound on the value of any information

Example: Real Estate Investment

- Investor choosing between 3 real estate investments, with 2 states of nature.
- Based on forecasts, the investor is able to estimate a 0.60 probability that good economic conditions will prevail and a 0.40 probability that poor economic conditions will prevail

Decision (alternatives)	States of nature		
	Good econ. (j=1)	Bad econ. (j=2)	
Apt. bldg. (a ₁)	50	30	
Office bldg. (a ₂)	100	-40	
Warehouse (a ₃)	30	10	
Probability			

Perfect Information Example 1

- Now suppose we knew which type of economy was going to occur, and we choose best investment for each
- Calculate EMV with perfect information
 EMV (with PI)=
- EVPI (Expected Value of Perfect Information): EVPI =

Decision (alternatives)	States of nature		
	Good econ.	Bad econ.	EMV
Apt. bldg.	50	30	
Office bldg.	100	-40	
Warehouse	30	10	
Probability	.60	.40	
Best alt., given state of nature			

Perfect Information and EVPI

- Expected Value of Perfect Information
 EVPI = EMV with perfect information
 - EMV with no information
- Maximum we'd be willing to pay for any kind of information (Consultant, Market research, Trade insider, etc)
- Related: EVSI: Expected Value of Sample (or Imperfect) Information

Sample

Often, there will be imperfect information available:

Expert forecasts

Market research

Consultants

Simulation....

Question: How best to use sample info, and how much to pay for it?

Sample/Imperfect Information: Example 1

- Economic analyst provides ratings on economy: P (positive) or N (negative)
- Sequence of events:
 - Investor decides whether to use analyst info.
 - Analyst provides rating (P or N)
 - Investor decides where to invest
 - Economy turns out to be good or bad

Decision Tree without Analyst info.

Without analyst info. (Tree A)

How do we decide the information value

- What probabilities do we need?
 - Marginal: probability of sample information outcomes

Posterior probability: updated probabilities of events with new information

Prior Belief

Given: Prior

- Probabilities assigned to each state of nature: P(S₁), P(S₂), ...
- Probabilities determined prior to acquiring additional information

How Good is the Sample Information?

Given: Likelihood (conditional probability)

Conditional probability indicates accuracy of sample information

Probability of observing a sample outcome, given a state of nature

Known and Unknown Probabilities

- What probabilities do we already have?
 - Prior: prob. of states of nature before new information
 P(Good), P(Bad)
 - Likelihood: Accuracy of new information
 P(P|G), P(N|G), P(P|B), P(N|B)
- What probabilities do we need?
 - Marginal: Prob. of sample information type P(Positive), P(Negative)
 - Posterior: prob. of states of nature after new information P(Good|Positive), P(B|P), P(G|N), P(B|N)

Marginal Probabilities: Total Probability Rules

Marginal

Probability of sample outcomes

Probability of positive report, probability of negative report

Posterior: Bayes' rule

Conditional probability of state of nature given sample information

Calculating Posterior

If analyst report is Positive

S.O.N	Priors	Likelihoods	Joint	Posterior
Good	P(G)=	P(P G)=	P(P∩G)=	P(G P)=
Bad	P(B)=	P(P B)=	P(P∩B)=	P(B P)=

$$P(P)=$$

If analyst report is Negative

S.O.N	Priors	Likelihoods	Joint	Posterior
Good	P(G)=	P(N G)=	P(N∩G)=	P(G N)=
Bad	P(B)=	P(N B)=	P(N∩B)=	P(B N)=

P(N)=

Tree B Analyst Information

EVSI: Expected Values of Sample Information

```
EMV(w.o. info) = $44,000 (the optimal action: office)

In real estate example,
If analyst is positive, invest in ( ) with EMV =
If analyst is negative, invest in ( ) with EMV =
EMV(with samp. info) =
```

EVSI: Maximum amount to pay for the sample information EVSI =

Value of Sample Information

Original states of nature S_1 , S_2 , ... S_n Sample information I_1 , I_2 , ... I_k Key idea: Sample information updates probabilities of states of nature.

<u>Priors</u> Original P(S_j) Bayes' rule

<u>Posterior</u>

After info. I_k : $P(S_i|I_k)$

Solve a decision tree with updated probabilities.

If sample information was perfect (no error), then Generally, sample information is imperfect. Therefore,