Reg. No.				1		
	 _					

B.Tech. DEGREE EXAMINATION, JUNE 2024

Fourth Semester

18CSC206J – SOFTWARE ENGINEERING AND PROJECT MANAGEMENT

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:

(i) Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii)	Part - B & Part - C should be answere	ed in a	nswer booklet.				
Time: 3	hours			Max. I	Marl	ks: 1	100
	$PART - A (20 \times 1)$	= 20	Marke)	Marks	BL	СО	P(
	Answer ALL						•
1	are applied throughout the	softw	are process	1	1	1	1
	(A) Framework activities		Umbrella activities		1	1	1
	(C) Planning activities		Construction activities				
2.	is a software development	life	cycle model that is above if it	1	1	1	2
	development team has less experien	ce on	similar projects	15	1	1	2
	(A) Interactive enhancement mode	(B)	RAD				
	(C) Spiral		Waterfall				
3.	Which one is not a size measure for	softw	rare product?	1	2	1	4
	(A) Loc		Function point		2	1	4
	(C) Use cases		Cyclomatic complexity				
4.	The project planner examines the important software functions which	state	ement of scope and extracts all	1	1	1	4
	(A) Association		Decomposition				
	(C) Planning process		Aggregation				
5.	Which is an indication of the relative	e func	tional strength of a module?	1	1	2	3
	(A) Cohesion	(B)	Coupling		-	~	J
	(C) Elaboration		Refactoring				
6.	What is the correct order in which various project parameters while using	a sof	tware project manager estimates OCOMO?	1	2	2	4
	(A) Effort, duration, cost, size		Size, duration, cost, effort				
	(C) Size, effort, duration, cost		Size, cost, duration, effort				
7.	Identify the one which has collection software to handle change in a produ	of too	ols and data models that enables a way.	1	1	2	4
	(A) SCM repository		SCM database				
	(C) SCM content management		SCM change management				
	system		system				

8.			ot, w	hich is implemented to ascertain	1	2	2	5
		hreats to any project plan.	(D)	D. C on on mints				
		real projection	` '	Performance risk				
	(C)	Risk identification	(D)	Support risk				
0	Whi	ch one of the following is not a so	ftwa	re construction characteristics?	1	2	3	4
9.	(4)	Modularity	(B)	Reliability				
	(A) (C)			Requirement				
	(0)	Shiphotey		•				
10.	Whi	ch of the following is not a softwa	are co	ode reuse methods.	1	1	3	4
	(A)	Libraries	(B)	Open source				
	(C)	Inheritance	(D)	Refactoring				
			1	ava gamarata	1	1	3	1
11.	In st	1 0	nd_	are separate.				
		Data and code		Data and algorithm				
•	(C)	Data and database	(D)	Data and data structure				
10	W7h.	ich one of the following is not a so	urce	code review operation sequence?	1	2	3	2
12.	W DI	Desk check, walkthrough, code	(R)	Walkthrough code review, final				
	(A)	review, final inspection	(1)	inspection desk check				
	(C)	Code review final inspection	(D)	Final inspection, desk check,				
	(C)	desk check, walkthrough	(2)	walkthrough code review				
		desk cheek, walkin ough		<i>S</i>				
13	Wh	ich one of the following testing is	also	known as white box testing?	1	1	4	1
1.0.	(A)	Structural testing	(B)	Error guessing technique				
	(C)		(D)	Code testing				
	` ,	-			1	1	4	3
14.	. Wh	at type of test must be done for ap	plica	ations that have many versions?	1	1	7	,
	(A)	Stress testing		Recovery testing				
	(C)	Regression testing	(D)	Mutation testing				
1.5	T.1.	wife the decomment that describe	e in	detail how the testing is being	1	2	4	3
15	. Ide	nned and how it will be managed	actos	ss different test levels.				
		Test management	(B)	Master test plan				
		Test management Test execution	(D)					
	(C)	Test execution	(2)	, Test as F				
16		technique provides a logic	al re	epresentation of various possible	1	1	4	3
10	ope	erational scenarios of the applicati	on b	eing tested.				
	(A)) Boundary value analysis	(B)	Cause effect graphing				
	(C)	Equivalence portioning	(D)	Basis path testing				
					1	1	5	1
17	. Ma	aintenance life cycle approach is s	imila	ar to the concept of	1	ı	J	1
	(A)) Defect fix model		Agile software development				
	(C)) Iterative software development	(D) Test case model				
- م		C.11 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0 ***	and initial OA but for which no	1	2	. 5	3
18	3. A	version of the product which ha	s pa	ssed initial QA but for which no				
		cumentation or support is available	C.) Beta release				
) Alpha release) External release				
	() Internal release	(1)	/				

19.	The modification of the software	to matc	h changes in the ever changing				
	environment falls under which cate	egory of	software maintenance.				
	(A) Corrective	(B)	Adaptive				
	(C) Perfective	(D)	Preventive				
					,	_	2
20.	In which model there is no planni	ing invol	lved in the whole process and is	1	1	5	2
20.	mostly and adhoc approach.						
	(A) Quick fix model	(B)	Boehm's model				
	(C) Osborne model	(D)	Iterative enhance model				
	(C) Osborne moder						
	PART – B	$(5 \times 4 = 1)$	20 Marks)	Marks	BL	CO	PO
	Answer AN						
	THISWOITE						
21	How do you define a story poin	t in sen	m? What are the two essential	4	2	1	1
21.	features a scrum team should poss	es?					
	reatures a scrum team should poss						
20	Til 4 -4- COM process with post	liagram		4	1	1	1
22.	Illustrate SCM process with neat of	magram.					
0.0	AND a large taristics of a c	ood coff	ware decion?	4	2	2	2
23.	What are the characteristics of a g	oou son	ware design:				
	1	cont of r	adefined component structure.	4	2	2	2
24.	Using an example explain the con	cept of i	edermed component structure.				
		tal mantia	nina	4	2	2	3
25.	Differentiate vertical and horizont	tai portio	ning.				
	1 11	1.4		4	2	4	3
26.	Differentiate verification and vali	dation.					
	49.TI	4 ia alaga	ified?	4	2	5	4
27.	What is maintenance cost? How i	t is class	med?				
	DIDE CO.	12 - 60	Marks	Marks	BL	co	PO
	$PART - C (5 \times$						
	Answer AL	L Quesu	OIIS				
		: 4h	a initial versions of games created	12	4.	. 1	4
28. a.	The gaming industry strongly rel	les on un	alkale from various perspectives				
	to have a kickstart and then adapt	to the le	edback from various perspectives.				
	Also if the industry requires a pro-	oper risk	evaluation. Choose and explain a				
	process model that suits this scena	ario. List	the advantages and disadvantages.				
	40	m)					
	(0	R)	-i-o of 600 VI OC Calculate the	12	3	1	4
b	For a given project was estimate	d with a	Size of our KLOC. Calculate the				
	effort, scheduled time for develop	oment. A	lso, calculate the average staff size				
		re for o	organic, semidetached, embedded				
	project type.		2.5.1.0.29				
	Organic mode: $a_1 = 2.4$, $b_1 =$	$= 1.05, c_1$	$d_1 = 2.5, d_1 = 0.38$				
	Semidetached mode: $a_1 = 3$.	$0, b_1 = 1$	$.12, c_1 = 2.5, d_1 = 0.35$				
	Embedded mode: $a_1 = 3.6$, t	$o_1 = 1.20$	$c_1 = 2.5, d_1 = 0.32$				
			4 1100 4 1 1 - 0 - 1 14 - 4	. 12	2	2	3
29. a	. What is a software architecture?	Explain	the different styles of architecture	;			
	with its advantages and disadvan	itages.					
	(0	OR)		1 12	2	2 2	4
b	. Explain the different component	s of anal	ysis model and how it is converted	1 12			
	to design model. Draw the diagr	am.					

50. a.	followed in coding framework.	12	2	3	2
b.	(OR) How software configuration management play an important role in software construction? Explain.	12	3	3	2
31. a.	Explain in detail about Software Testing Life Cycle (STLC). Differentiate white box testing with black box testing.	12	2	4	4
b.i.	(OR) What is a test case and test bed?				
	Illustrate test case report format and explain with an example.	6	3	4	2
32. a.	Explain the software maintenance life cycle with a diagram. Explain the financial reasons for which maintenance may be needed.	12	2	5	4
1.	(OR)				ŧŝ
Ъ.	What are the product release management tasks and explain the different types of product release management types?	12	3	5	2

* * * *