Heat pump model

Michael Wetter and Hagar Elarga

April 4, 2019

Lawrence Berkeley National Laboratory

Motivation

Need heat pump model for annual building simulation.

Transition from old EnergyPlus input data should be as easy as practically possible.

Approach

Model based on equation fit

- Same method is used in both cooling and heating modes.
- Control input: discrete, either heating on, cooling on or off.

The governing equations are:

Cooling mode:

$$\frac{\dot{Q}_{eva}(T_{eva,l}, T_{con,e})}{\dot{Q}_{eva,nom}} = A_1 + A_2 \frac{T_{eva,l}}{T_{nom}} + A_3 \frac{T_{con,e}}{T_{nom}} + A_4 \frac{\dot{V}_{eva}(T_{eva,l}, T_{con,e})}{\dot{V}_{eva,nom}} + A_5 \frac{\dot{V}_{con}(T_{eva,l}, T_{con,e})}{\dot{V}_{con,nom}}$$

$$\frac{P_{com}(T_{eva,l}, T_{con,e})}{P_{com,nom,cooling}} = B_1 + B_2 \frac{T_{eva,l}}{T_{nom}} + B_3 \frac{T_{con,e}}{T_{nom}} + B_4 \frac{\dot{V}_{eva}(T_{eva,l}, T_{con,e})}{\dot{V}_{eva,nom}} + B_5 \frac{\dot{V}_{con}(T_{eva,l}, T_{con,e})}{\dot{V}_{con,nom}}$$

Heating mode:

$$\frac{\dot{Q}_{con}(T_{eva,l}, T_{con,e})}{\dot{Q}_{con,nom}} = C_1 + C_2 \frac{T_{eva,l}}{T_{nom}} + C_3 \frac{T_{con,e}}{T_{nom}} + C_4 \frac{\dot{V}_{eva}(T_{eva,l}, T_{con,e})}{\dot{V}_{eva,nom}} + C_5 \frac{\dot{V}_{con}(T_{eva,l}, T_{con,e})}{\dot{V}_{con,nom}}$$

$$\frac{P_{com}(T_{eva,l}, T_{con,e})}{P_{com,nom,h}} = D_1 + D_2 \frac{T_{eva,l}}{T_{nom}} + D_3 \frac{T_{con,e}}{T_{nom}} + D_4 \frac{\dot{V}_{eva}(T_{eva,l}, T_{con,e})}{\dot{V}_{eva,nom}} + D_5 \frac{\dot{V}_{con}(T_{eva,l}, T_{con,e})}{\dot{V}_{con,nom}}$$

Model based on DOE-2 curves

Control input: On/off, and condenser leaving temperature.

Computes off-design conditions with three performance curves:

1) Cooling capacity function as a function of temperature

$$CAP(T) = \frac{\dot{Q}_{eva}(T_{eva,l}, T_{con,e})}{\dot{Q}_{eva,nom}} = a + b T_{eva,l} + c T_{eva,l}^2 + d T_{con,e} + e T_{con,e}^2 + f T_{eva,l} T_{con,e}$$

2) EIR temperature correction

$$EIR(T) = \frac{\frac{P_{com}(T_{eva,l}, T_{con,e})}{\dot{Q}_{eva}(T_{eva,l}, T_{con,e})}}{\frac{P_{com,nom}}{\dot{Q}_{eva,nom}}} = g + h T_{eva,l} + j T_{eva,l}^2 + i T_{con,e} + k T_{con,e}^2 + l T_{eva,l} T_{con,e}$$

3) EIR correction due to part load

$$f_{EIR,PLR}(PLR) = \frac{P_{com}(T_{eva,l}, T_{con,e})}{P_{com,nom} CAP(T) EIR(T)} = m + n PLR + o PLR^{2}$$

Note that the PLR is defined as the available capacity at the same evaporator and condenser temperature

$$PLR = \frac{\dot{Q}_{eva}(T_{eva,l}, T_{con,e})}{\dot{Q}_{nom} \cdot CAP(T)}$$

Questions