SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in AIML & AIDS Academic Year: 2022 Duration: 3 hours

Date: 19.01.2023

Time: 09:00 am to 12:00 pm

Subject: Engineering Mathematics-III (Semester III)

Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question No.	Question	Max. Marks
Q1 (a)	Show that V and W are subspaces of R^4 : $V = \{(a, b, c, d): b - 2c + d = 0\}$ and $W = \{(a, b, c, d): a = d, b = 2c\}$. Also find a basis and the dimension of V and W. OR The vectors $(1,2,0,3), (4,0,5,8), (8,1,5,6)$ form a basis for three dimensional subspace V of R^4 . Construct an orthonormal basis for V by using Gram-Schmidt process.	[07]
Q1 (b)	Show that R^n is a vector space with w.r.t usual vector addition and scalar multiplication defined as Addition: $u+v=(u_1+v_1,\ u_2+v_2,\dots,\ u_n+v_n)$ Scalar multiplication: $cu=(cu_1,cu_2,\dots,cu_n)$ For $u=(u_1,u_2,\dots,u_n),\ v=(v_1,v_2,\dots,v_n)$ are elements of R^n .	[08]
Q2 (a)	Show that $f: \mathbb{R}^3 \to \mathbb{R}$ is a linear transformation, where $f(x, y, z) = 3x + y - z$. What is the dimension of the Kernel space of f ? Find a basis for the Kernel of f . OR If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by $T(x, y) = (2x - 3y, x + y)$, compute the matrix of T relative to the basis $\beta\{(1,2), (2,3)\}$.	[07]
Q2 (b)	Let T: $R^5 \rightarrow R^5$ be a linear mapping given by $T(a,b,c,d,e) = (b-d,d+e,b,2d+e,b+e)$. Verify Rank Nullity Theorem. Is T invertible?	[08]

******* 1 *******

Q3 (a)	Use Caley Hamilton Theorem to compute A^{-1} and also A^9 - $6A^8$ + $10A^7$ - A^6 + A + I where $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ OR Determine if the following matrix is diagonalizable $A = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 3 & 0 \\ 1 & 1 & 5 \end{bmatrix}$. If	[07]
	diagonable, find an invertible matrix P such that P ⁻¹ AP is diagonal, and use this to compute A ¹⁷ .	
Q3 (b)	Find the SVD of A, $U\Sigma V^{T}$, where $A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{pmatrix}$	[08]
Q4 (a)	Obtain half range sine series for $f(x) = \begin{cases} x & , & 0 < x < 1 \\ 2 - x & , & 1 < x < 2 \end{cases}$ hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$ OR Obtain the complex form of Fourier series for $f(x) = \cosh 3x + \sinh 3x$ in $(-3,3)$.	[07]
Q4 (b)	Find a Fourier series to represent $f(x)=x^2$ in $(0,2\pi)$ and hence deduce that $\frac{\pi^2}{12}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+\cdots$	[08]
Q5 (a)	Solve the following LPP by Simplex Method / Big – M Method Maximize $z = 4x_1 - 2x_2 - x_3$ Subject to, $x_1 + x_2 + x_3 \le 3$, $2x_1 + 2x_2 + x_3 \le 4$ $x_1 - x_2 \le 0$ x_1 , x_2 , $x_3 \ge 0$ OR Use Dual – Simplex Method to solve the following LPP Maximize $z = -x_1 - 2x_2 - 3x_3$ Subject to, $2x_1 - x_2 - x_3 \ge 4$, $x_1 - x_2 + 2x_3 \le 8$ x_1 , x_2 , $x_3 \ge 0$	[07]
Q5 (b)	Using the method of Lagrange Multiplier solve the following N.L.P.P. Optimize $z = 12x_1 + 8x_2 + 6x_3 - {x_1}^2 - {x_2}^2 - {x_3}^2 - 23$ Subject to $x_1 + x_2 + x_3 = 10$ $x_1, x_2, x_3 \ge 0$	[08]

******* 2 *******