Sección 4.3

1.

3.

5. $\mathbf{F} = (2y, x)$:

7.

- 9. (a) Corresponde a (II).
 - (b) Corresponde a (1).
- 11. Las líneas de flujo son circunferencias concéntricas:

13. Las líneas de flujo para t > 0:

15.
$$\mathbf{c}'(t) = (2e^{2t}, 1/t, -1/t^2) = \mathbf{F}(\mathbf{c}(t)).$$

17.
$$\mathbf{c}'(t) = (\cos t, -\sin t, e^t) = \mathbf{F}(\mathbf{c}(t)).$$

19.
$$(\mathbf{F} \circ \mathbf{c})(t) = \left(\frac{1}{(1-t)^2}, 0, \frac{e^t}{1-t} + \frac{e^t}{(1-t)^2}\right) = \mathbf{c}'(t).$$

21. (a)
$$f(x, y, z) = xyz$$
.

(b)
$$f(x,y,z) = \frac{x^2}{2} + \frac{y^2}{2} + \frac{z^2}{2}$$
.

- **23.** Comparar $\frac{1}{2}mv^2$ para la velocidad de escape $v_e=\sqrt{2gR_0}$ y la velocidad en una órbita de radio R_0 dada en la Sección 4.1. (Ignorar la rotación de la Tierra).
- **25.** Utilizar el hecho de que $-\nabla T$ es perpendicular a la superficie T= constante.

27.
$$x'(t) = x(t)e^{y(t)}$$
, $y'(t) = (y(t))^2(z(t))^2$, $z'(t) = x(t)y(t)z(t)$.