

Big Data Analytics & Applications

Bin Li

School of Computer Science Fudan University

Latent Semantic Analysis

- After applying SVD to the word-document co-occurrence matrix and obtain the factorization $A = USV^{T}$
 - \square *U*: similar words have large inner products
 - \square *V*: similar documents have large inner products
 - Related word and document have large inner products

Latent Semantic Analysis

- LSA applies singular value decomposition (SVD) to find latent concepts $A = USV^{T}$
 - \blacksquare A: $m \times n$ word-document co-occurrence matrix
 - \square *U*: $m \times k$ orthogonal matrices for representing words
 - \square *V*: $n \times k$ orthogonal matrices for representing documents
 - \square S: $k \times k$ diagonal singular value matrix
 - □ Select $k' \ll n, k' \ll m$ for a low-rank approximation of A

	Α							U		x			S				x		Vt			
	d1	d2	d3	d4			f1	f2	f3	f4			f1	f2	f3	f4			d1	d2	d3	d4
а	6	7	1	0		а	0.24	-0.51	0.08	0.06		f1	23.1	0	0	0		f1	0.37	0.38	0.65	0.53
b	8	6	0	1		b	0.25	-0.54	-0.64	-0.23		f2	0	14.3	0	0		f2	-0.55	-0.63	0.37	0.38
С	6	9	8	5		С	0.58	-0.28	0.57	0.13		f3	0	0	3.5	0		f3	-0.69	0.59	0.27	-0.21
d	0	1	8	8		d	0.42	0.37	0.16	-0.68		f4	0	0	0	1.5		f4	0.26	-0.29	0.59	-0.69
е	2	0	9	7		е	0.44	0.34	-0.24	0.66												
f	2	0	7	7		f	0.39	0.29	-0.40	-0.09												

Probabilistic LSA

- Probabilistic LSA (PLSA) is a statistical technique for the analysis of co-occurrence matrix.
- Compared to standard LSA stemming from a low-rank decomposition (SVD), PLSA is based on a mixture decomposition derived from a latent class model

PLSA Model

- Observations in the form of co-occurrences (w, d) of words and documents
- PLSA models the probability of (w, d) as a mixture of conditionally independent multinomial distributions

$$p(w,d) = \sum_{z} p(z)p(d|z)p(w|z) = p(d) \sum_{z} p(w|z)p(z|d)$$

- An advantage of PLSA is that the latent variable *z* can be interpreted as a topic
 - \square z: topic (latent class)
 - \square p(z|d): each document has a distribution over K latent topics
 - \square p(w|z): each topic has a distribution over the vocabulary

PLSA Model

■ PLSA is a generative model of the documents in the collection it is estimated on

$$p(w,d) = p(d) \sum_{z} p(w|z)p(z|d)$$

- For each document d, a topic z is generated conditionally to d according to p(z|d)
- \square A word is then generated from topic z according to P(w|z)

EM Algorithm for Latent Variable Models

- Given a joint distribution $p(X, Z|\Theta)$ over observed variables X and latent variables Z, governed by parameters Θ , the goal is to maximize the likelihood function $p(X|\Theta)$ w.r.t. Θ .
- The general EM algorithm:
 - \square Initialize the parameters Θ^{old} ;
 - E-Step: Evaluate $p(Z|X, \Theta^{\text{old}})$;
 - \square M-Step: Evaluate Θ^{new} given by

$$\Theta^{\text{new}} = \underset{\Theta}{\operatorname{argmax}} \sum_{Z} p(Z|X, \Theta^{\text{old}}) p(X, Z|\Theta)$$

□ Check the convergence of the parameter values; if not convergence condition not satisfied set $\theta^{\text{old}} = \theta^{\text{new}}$ and go to E-step.

Learning for PLSA

- The parameters p(z|d) and p(w|z) of PLSA can be learned by using the EM algorithm
- EM algorithm for PLSA:
 - E-Step: Evaluate $p(z_k | d_i, w_i; \Theta^{\text{old}})$;

$$p(z_k|d_i, w_j; \Theta^{\text{old}}) = \frac{p(w_j|z_k)p(z_k|d_i)}{\sum_{l=1}^{K} p(w_j|z_l)p(z_l|d_i)}$$

■ M-Step: Evaluate Θ^{new} given by

$$p(w_j|z_k) = \frac{\sum_{i=1}^{M} p(d_i, w_j) p(z_k|d_i, w_j)}{\sum_{n=1}^{N} \sum_{m=1}^{M} p(d_m, w_n) p(z_k|d_m, w_n)} = \frac{\sum_{i=1}^{M} \#(d_i, w_j) p(z_k|d_i, w_j)}{\sum_{n=1}^{N} \sum_{m=1}^{M} \#(d_m, w_n) p(z_k|d_m, w_n)}$$

$$p(z_k|d_i) = \sum_{j=1}^{N} p(w_j|d_i)p(z_k|d_i, w_j) = \frac{\sum_{j=1}^{N} \#(d_i, w_j)p(z_k|d_i, w_j)}{\#(d_i)}$$

Latent Dirichlet Allocation

- PLSA is not a generative model of new documents
- LDA is identical to PLSA except that in LDA
 - □ Document-topic distribution ← sparse Dirichlet prior
 - □ Topic-word distribution ← sparse Dirichlet prior

[1] Blei et al. (2003). "Latent Dirichlet Allocation".

Latent Dirichlet Allocation

- \blacksquare θ and φ are matrices through decomposing the document-word co-occurrence matrix
 - \square θ : $N \times K$ matrix for distribution for a document over topics
 - \square φ : $K \times M$ matrix for distribution for a topic over words
 - \square α and β are fixed hyper-parameters
 - \Box z is latent variable

Generative Process of LDA

- Sample $\theta_i \sim Dir(\alpha)$ for each document (typically $\alpha < 1$)
- Sample $\varphi_k \sim Dir(\beta)$ for each topic (typically $\beta < 1$)
- For each of the word positions (i, j)
 - Sample a topic $z_{i,j} \sim Multinomial(\theta_i)$
 - Sample a word $w_{i,j} \sim Multinomial(\varphi_{z_{i,j}})$

Properties of Dirichlet

■ Dirichlet distribution is the conjugate prior of the multinomial distribution

$$\begin{aligned} Dir(\mu|\alpha) &= \frac{\Gamma(\alpha_1 + \dots + \alpha_K)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1} \\ Multi(m_1, \dots, m_K | \mu, N) &= \frac{n!}{m_1! \dots m_K!} \prod_{k=1}^K \mu_k^{m_k} \\ p(\mu|D, \alpha) &= Dir(\mu|\alpha + m) \\ &= \frac{\Gamma(\alpha_1 + \dots + \alpha_K + N)}{\Gamma(\alpha_1 + m_1) \dots \Gamma(\alpha_K + m_K)} \prod_{k=1}^K \mu_k^{\alpha_k + m_k - 1} \end{aligned}$$

■ The expectation of Dirichlet is $E(\mu_k) = \frac{\alpha_k}{\alpha_1 + \dots + \alpha_K}$

Gibbs Sampling

- Suppose we want to obtain k samples of $(x_1, ..., x_n)$ from a joint distribution $p(x_1, ..., x_n)$, we can sample x_i in order in each iteration $p(x_i^{(t+1)}|x_1^{(t+1)}, ..., x_{i-1}^{(t+1)}, x_{i+1}^{(t)}, ..., x_n^{(t)})$
- Gibbs sampling
 - \square Sample x_1 conditioned on x_2 , x_3
 - \square Sample x_2 conditioned on x_1 , x_3
 - Sample x_3 conditioned on x_1 , x_2
- Collapsed Gibbs sampling
 - \square Sample x_1 conditioned on x_3
 - \square Sample x_3 conditioned on x_1
 - \square x_2 is collapsed out during the sampling process

- In the generative process of LDA, latent variable $z_{d,j}$ is used to choose a topic for the jth word of the dth document
 - If we know $\{z_{d,j}\}$ it is easy to estimate $\{\theta_d\}$ and $\{\varphi_k\}$
 - If we can integrate out $\{\theta_d\}$ and $\{\varphi_k\}$ the problem can be simplified to estimate $p(z_{d,j} = k | \{z_{-(d,j)}\}, \{w_{d,j}\})$

■ By integrating out $\{\theta_d\}$ and $\{\varphi_k\}$ the Gibbs sampling procedure boils down to estimate

$$p(z_{i} = k | \{z_{-i}\}, \{w_{i}\}) = \frac{p(z_{i} = k, \{z_{-i}\}, \{w_{i}\})}{p(\{z_{-i}\}, \{w_{i}\})}$$

$$p(z_{i} = k | \{z_{-i}\}, \{w_{i}\}) \propto p(z_{i} = k, \{z_{-i}\}, \{w_{i}\})$$

$$\propto p(w_{i} | z_{i} = k, \{z_{-i}\}, \{w_{-i}\}) p(z_{i} = k | \{z_{-i}\}, \{w_{-i}\})$$

$$= p(w_{i} | z_{i} = k, \{z_{-i}\}, \{w_{-i}\}) p(z_{i} = k | \{z_{-i}\})$$

- ☐ The first term is the likelihood
- ☐ The second term is like a prior

■ Look at the first term in $p(z_i = k | \{z_{-i}\}, \{w_i\}) \propto p(w_i | z_i = k, \{z_{-i}\}, \{w_{-i}\}) p(z_i = k | \{z_{-i}\})$

$$p(w_i|z_i = k, \{z_{-i}\}, \{w_{-i}\}) = \int p(w_i|z_i = k, \varphi_k) p(\varphi_k|\{z_{-i}\}, \{w_{-i}\}) d\varphi_k$$
$$= \int \varphi_{k,w_i} p(\varphi_k|\{z_{-i}\}, \{w_{-i}\}) d\varphi_k$$

where

$$p(\varphi_k|\{z_{-i}\},\{w_{-i}\}) \propto p(\{w_{-i}\}|\varphi_k,\{z_{-i}\})p(\varphi_k) \sim Dir(\#_{-i,k}^{(w_i)} + \beta)$$

By using the property of expectation of Dirichlet distribution

$$p(w_i|z_i = k, \{z_{-i}\}, \{w_{-i}\}) = \frac{\#_{-i,k}^{(w_i)} + \beta}{\#_{-i,k} + W\beta}$$

Collapsed Sampling for LDA

■ Look at the second term in $p(z_i = k | \{z_{-i}\}, \{w_i\}) \propto p(w_i | z_i = k, \{z_{-i}\}, \{w_{-i}\}) p(z_i = k | \{z_{-i}\})$

$$p(z_i = k | \{z_{-i}\}) = \int p(z_i = k | \theta_d) p(\theta_d | \{z_{-i}\}) d\theta_d$$
$$= \int \theta_{d,z_i} p(\theta_d | \{z_{-i}\}) d\theta_d$$

where

$$p(\theta_d|\{z_{-i}\}) \propto p(\{z_{-i}\}|\theta_d)p(\theta_d) \sim Dir(\#_{-i,k}^{(d)} + \alpha)$$

By using the property of expectation of Dirichlet distribution

$$p(z_i = k | \{z_{-i}\}) = \frac{\#_{-i,k}^{(d)} + \alpha}{\#_{-i,*}^{(d)} + K\alpha}$$

■ Recall that the Gibbs sampling for LDA

$$p(z_{i} = k | \{z_{-i}\}, \{w_{i}\}) \propto p(w_{i} | z_{i} = k, \{z_{-i}\}, \{w_{-i}\}) \times p(z_{i} = k | \{z_{-i}\})$$

$$\propto \frac{\#_{-i,k}^{(w_{i})} + \beta}{\#_{-i,k}^{(*)} + W\beta} \times \frac{\#_{-i,k}^{(d)} + \alpha}{\#_{-i,*}^{(d)} + K\alpha}$$

- Now the problem has been simplified to count
 - \blacksquare # $_{-i,k}^{(w_i)}$: number of w_i appearing in topic k
 - \square # $_{-i,k}^{(*)}$: number of words in topic k
 - \square $\#_{-i,k}^{(d)}$: number of words of document d in topic k
 - \square # $_{-i,*}^{(d)}$: number of words of document d (constant)

PLSA vs LDA

■ PLSA

$$p(w_j|z_k) = \frac{\sum_{i=1}^{M} \#(d_i, w_j) p(z_k|d_i, w_j)}{\sum_{n=1}^{N} \sum_{m=1}^{M} \#(d_m, w_n) p(z_k|d_m, w_n)}$$
$$p(z_k|d_i) = \frac{\sum_{j=1}^{N} \#(d_i, w_j) p(z_k|d_i, w_j)}{\#(d_i)}$$

■ LDA

$$p(z_{i} = k | \{z_{-i}\}, \{w_{i}\}) \propto p(w_{i} | z_{i} = k, \{z_{-i}\}, \{w_{-i}\}) \times p(z_{i} = k | \{z_{-i}\})$$

$$\propto \frac{\#_{-i,k}^{(w_{i})} + \beta}{\#_{-i,k}^{(*)} + W\beta} \times \frac{\#_{-i,k}^{(d)} + \alpha}{\#_{-i,*}^{(d)} + K\alpha}$$

Topic Visualization

■ How to interpret the following topic visualization?

$$\varphi_{k,w_i} = \frac{\#_{*,k}^{(w_i)} + \beta}{\#_{*,k}^{(*)} + W\beta}$$

Project: Topic Modeling

- Dataset:
 - Public available topic modeling datasets (e.g., https://www.kaggle.com/jaykrishna/topic-modeling-enron-email-dataset)
 - ☐ Or document data collected by yourself
- Method:
 - Use Probabilistic LSA or LDA with Collapsed Gibbs Sampling for topic modeling
- Experiments:
 - ☐ Obtain the topic modeling results and visualize the topics using word clouds
 - ☐ And discuss the observations from the visualization

Thanks

Email: libin@fudan.edu.cn