Eficiência de um Estimador

ESTAT0078 - Inferência I

Prof. Dr. Sadraque E. F. Lucena

sadraquelucena@academico.ufs.br

http://sadraquelucena.github.io/inferencia1

- Nesta aula, exploraremos o conceito de estimador eficiente e aprenderemos a avaliar a eficiência de diferentes estimadores.
- Um estimador é considerado mais eficiente quando possui uma variância menor em comparação com outros estimadores não viesados.
- Existe, ainda, um método para determinar o menor limite possível para a variância de um estimador de um parâmetro θ . Caso um estimador atinja esse limite, ele será considerado o mais eficiente, pois nenhum outro terá uma variância menor do que a dele.

Definição 5.1: Eficiência de um estimador

Suponha que $\hat{\theta}$ seja não viesado para o parâmetro θ . Chamamos de **eficiência do estimador** $\hat{\theta}$ o quociente

$$e(\hat{\theta}) = \frac{LI(\theta)}{Var(\hat{\theta})},$$

em que $LI(\theta)$ é o limite inferior da variância dos estimadores não viesados de θ .

• Note que $e(\hat{\theta})=1$ quando $LI(\theta)=Var(\hat{\theta})$. Nesse caso $\hat{\theta}$ é chamado **eficiente**.

Sob certas condições de regularidade (basicamente, o suporte não depende de θ e é possível trocar a ordem das operações de derivação e integração) temos

$$LI(\theta) = \frac{1}{n E \left[\left(\frac{\partial \log f(X|\theta)}{\partial \theta} \right)^{2} \right]}$$

9

$$E\left[\left(\frac{\partial \log f(X)}{\partial \theta}\right)^{2}\right] = -E\left[\frac{\partial^{2} \log f(X)}{\partial \theta^{2}}\right].$$

- Para verificarmos se $\hat{\theta}$ é eficiente (de acordo com a Definição 5.1), seguimos os passos (sob certas condições de regularidade):
 - 1. obtemos $\ell = \log f(x)$;
 - 2. derivamos ℓ duas vezes, isto é, obtemos ℓ'' ;
 - 3. calculamos $E[\ell'']$;
 - 4. obtemos $LI(\theta) = \frac{1}{-nE[\ell'']}$;
 - 5. calculamos $Var(\hat{\theta})$;
 - 6. obtemos $e(\hat{\theta}) = \frac{LI(\theta)}{Var(\hat{\theta})}$.

Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim N(\mu, \sigma^2)$, em que σ^2 é conhecido. Verifique se \overline{X} é eficiente para μ .

i Lembrete

Se $X \sim N(\mu, \sigma^2)$, então

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$$

Seja X_1, \ldots, X_n uma amostra aleatória de tamanho n da variável aleatória $X \sim \operatorname{Poisson}(\theta)$. Verifique se \overline{X} é eficiente para θ .

(i) Lembrete

Se $X \sim \text{Poisson}(\theta)$, então

$$f(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \ x = 0, 1, 2, \dots$$

Definição 5.2: Informação de Fisher

A quantidade

$$I_F(\theta) = E\left[\left(\frac{\partial \log f(X)}{\partial \theta}\right)^2\right]$$

é denominada **informação de Fisher** de θ .

Teorema 5.1: Desigualdade da Informação

Quando as condições de regularidade estão satisfeitas, a variância de qualquer estimador não viciado $\hat{\theta}$ do parâmetro θ satisfaz a desigualdade

$$Var(\hat{\theta}) \ge \frac{1}{n I_F(\theta)}.$$

- É importante ressaltar que a desigualdade da informação não é um método para obter estimadores.
- Ela apenas possibilita verificar se determinado estimador é ou não eficiente.

Seja X_1, \ldots, X_n uma amostra aleatória de tamanho n da variável aleatória $X \sim \text{Bernoulli}(p)$. Verifique se X é eficiente para p.

(i) Lembrete

Se $X \sim \text{Bernoulli}(p)$, então

- $f(x) = p^{x}(1 p)^{1-x}$, x = 0, 1• E(X) = p• Var(X) = p(1 p)

Seja X_1, \ldots, X_n uma amostra aleatória de tamanho n da variável aleatória $X \sim \text{Geométrica}(p)$. Verifique se X é eficiente para p.

(i) Lembrete

Se $X \sim \text{Geométrica}(p)$, então

- $f(x) = (1 p)^x p$, x = 0, 1, 2, 3 ...
- $E(X) = \frac{1-p}{p}$ $Var(X) = \frac{1-p}{p^2}$

Fim

