Approximation numérique et optimisation (MAP411)

Mini-projet:

Une méthode de résolution des problèmes elliptiques symétriques en grande dimension

Sujet proposé par Tony Lelièvre lelievre@cermics.enpc.fr

L'objectif de ce projet est d'explorer une méthode de discrétisation des équations aux dérivées partielles qui permet de calculer des solutions approchées pour des problèmes en dimension grande.

L'algorithme glouton

On considère l'équation de Laplace sur le domaine $\Omega=(0,1)^2$:

Trouver
$$u \in C^2(\overline{\Omega})$$
 tel que
$$\begin{cases} -\Delta u(x,y) = f(x,y) \text{ sur } \Omega, \\ u = 0 \text{ sur } \partial\Omega, \end{cases}$$
(1)

où f est une fonction $C^0(\overline{\Omega})$.

Soit un maillage régulier de [0,1]:

$$\forall i \in \{0, \dots, I+1\}, \ x_i = ih$$

où $h=\frac{1}{I+1}$ est le pas de discrétisation. Associé à ce maillage, on introduit une discrétisation en éléments finis \mathbb{P}_1 des fonctions définies sur [0,1] à valeurs réelles et nulles au bord :

$$V_h = \operatorname{Vect}(\phi_i, i = 1, \dots, I)$$

où, pour tout $i \in \{1, \dots, I\}$,

$$\forall x \in [0, 1], \ \phi_i(x) = \begin{cases} 1 - \frac{|x - x_i|}{h} \text{ si } x \in [x_{i-1}, x_{i+1}], \\ 0 \text{ sinon.} \end{cases}$$

 $\mathbf{Question} \ \mathbf{1}$: Rappeler pourquoi la formulation variationnelle associée à (1) est la suivante :

Trouver
$$u \in V$$
 tel que pour tout $v \in V$, $\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv$ (2)

où $V=\{v\in C^1(\overline{\Omega}) \text{ tel que } v=0 \text{ sur } \partial\Omega\}.$

Dans toute la suite, pour r et s deux fonctions à valeurs réelles définies sur [0,1], on note $r \otimes s$ la fonction produit tensorielle définie par :

$$\forall (x,y) \in \Omega, \ r \otimes s(x,y) = r(x)s(y).$$

Question 2: En cherchant une approximation de la solution u sous la forme

$$u_h(x,y) = \sum_{i,j=1}^{I} U_{i,j} \, \phi_i \otimes \phi_j(x,y),$$

montrer qu'on peut discrétiser le problème (1) sous la forme :

Trouver $U \in \mathbb{R}^{I \times I}$ tel que,

$$\forall (k,l) \in \{1,\ldots,I\}^2, \sum_{i,j=1}^{I} U_{i,j} \left(D_{i,k} M_{j,l} + M_{i,k} D_{j,l} \right) = F_{k,l}$$
(3)

où pour tout $(i,j) \in \{1,\ldots,I\}^2$, $D_{i,j} = \int_0^1 \phi_i' \phi_j'$, $M_{i,j} = \int_0^1 \phi_i \phi_j$ et $F_{i,j} = \int_{\Omega} f \phi_i \otimes \phi_j$. Rappeler pourquoi le problème (3) est bien posé. Si on cherche à résoudre le même problème sur $\Omega = [0,1]^d$, comment augmente la taille des données à stocker avec la dimension d?

On introduit la fonctionnelle $\mathcal{E}: C^1(\overline{\Omega}) \to \mathbb{R}$ définie par

$$\mathcal{E}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \int_{\Omega} f u.$$

Question 3 : Montrer que le problème (3) est équivalent au problème de minimisation :

Trouver $U \in \mathbb{R}^{I \times I}$ tel que,

$$\sum_{i,j=1}^{I} U_{i,j} \, \phi_i \otimes \phi_j = \arg \min_{v_h \in V_h \otimes V_h} \mathcal{E}(v_h). \tag{4}$$

On rappelle que $V_h \otimes V_h$ désigne le produit tensoriel de l'espace vectoriel V_h avec lui même :

$$V_h \otimes V_h = \text{Vect}(\phi_i \otimes \phi_i, i, j = 1, \dots, I).$$

On s'intéresse maintenant à l'algorithme glouton suivant : pour tout $n \ge 1$, trouver $r_n \in V_h$ et $s_n \in V_h$ tels que

$$(r_n, s_n) \in \arg\min_{(r,s) \in V_b \times V_b} \mathcal{E}(u_{n-1} + r \otimes s)$$
(5)

où $u_{n-1} = \sum_{k=1}^{n-1} r_k \otimes s_k$, avec la convention $\sum_{k=1}^{0} = 0$.

Question 4 : Expliquer pourquoi cet algorithme est appelé algorithme glouton. Quelle est la taille des données à stocker pour l'algorithme glouton appliqué au même problème sur $\Omega = [0,1]^d$, en fonction de la dimension d? Discuter l'importance de disposer d'une représentation séparée de la fonction f, sous la forme :

$$f(x_1, \dots, x_d) = \sum_{p=1}^{P} f_1^p(x_1) f_2^p(x_2) \dots f_d^p(x_d).$$

Equations d'Euler et convergence de l'algorithme

Question 5: Montrer que le problème (5) admet une solution. Montrer que les équations d'Euler associée au problème (5) s'écrivent : trouver $r_n \in V_h$ et $s_n \in V_h$ tels que pour tout $(\delta r, \delta s) \in V_h \times V_h$,

$$\int_{\Omega} \nabla(r_n \otimes s_n) \cdot \nabla(r_n \otimes \delta s + \delta r \otimes s_n) = \int_{\Omega} f(r_n \otimes \delta s + \delta r \otimes s_n) \\
- \int_{\Omega} \nabla u_{n-1} \cdot \nabla(r_n \otimes \delta s + \delta r \otimes s_n).$$
(6)

Le problème (6) est la formulation variationnelle sur $V_h \times V_h$ d'un système de deux équations aux dérivées partielles couplées : quel est-il?

Question 6: Soit u_h la solution du problème construite à la Question 2. On note $g_n = u_h - u_n$ l'écart entre la solution et l'approximation obtenue après n itérations de l'algorithme. Montrer que pour tout $(\delta r, \delta s) \in V_h \times V_h$,

$$\int_{\Omega} \nabla g_n \cdot \nabla (\delta r \otimes s_n + r_n \otimes \delta s) = 0.$$

En déduire que

$$\int_{\Omega} |\nabla g_{n-1}|^2 = \int_{\Omega} |\nabla g_n|^2 + \int_{\Omega} |\nabla (r_n \otimes s_n)|^2.$$

Soit $E_n = \mathcal{E}(u_n) - \mathcal{E}(u_{n-1})$. Montrer que

$$E_n = \frac{1}{2} \int_{\Omega} |\nabla(r_n \otimes s_n)|^2 - \int_{\Omega} fr_n \otimes s_n + \int_{\Omega} \nabla u_{n-1} \cdot \nabla(r_n \otimes s_n)$$
$$= -\frac{1}{2} \int_{\Omega} |\nabla(r_n \otimes s_n)|^2.$$

Montrer que les séries suivantes sont convergentes :

$$\sum_{n>1} \int_{\Omega} |\nabla(r_n \otimes s_n)|^2 = -2 \sum_{n>1} E_n < \infty.$$

Question 7: En utilisant le fait que $v_h \in V_h \otimes V_h \mapsto \sqrt{\int_{\Omega} |\nabla v_h|^2}$ définit une norme sur $V_h \otimes V_h$, montrer que $(g_n)_{n \geq 1}$ admet une limite à extraction près : $\exists g_\infty \in V_h \otimes V_h$, $\exists \varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante tel que

$$\lim_{n \to \infty} g_{\varphi(n)} = g_{\infty}.$$

Montrer en utilisant (5) que pour tout $(\delta r, \delta s) \in V_h \times V_h$,

$$\frac{1}{2} \int_{\Omega} |\nabla(\delta r \otimes \delta s)|^2 - \int_{\Omega} \nabla g_{n-1} \cdot \nabla(\delta r \otimes \delta s) \ge E_n.$$

En déduire que pour tout $(\delta r, \delta s) \in V_h \times V_h$,

$$\int_{\Omega} \nabla g_{\infty} \cdot \nabla (\delta r \otimes \delta s) = 0$$

et conclure sur la convergence de la méthode.

Implémentation et tests numériques

On suppose dans la suite que f s'écrit sous forme séparée :

$$\forall (x,y) \in \Omega, f(x,y) = \sum_{p=1}^{P} f_1^p(x) f_2^p(y).$$

On note $F_{\alpha}^p \in \mathbb{R}^n$ les vecteurs associés : pour $\alpha \in \{1, 2\}$, pour $p \in \{1, \dots, P\}$, pour tout $i \in \{1, \dots, n\}$,

$$(F_{\alpha}^p)_i = \int_0^1 f_{\alpha}^p(t)\phi_i(t) dt.$$

Question 8: Soit $R_n \in \mathbb{R}^I$ et $S_n \in \mathbb{R}^I$ les vecteurs associés à la décomposition des fonctions r_n et s_n sur la base (ϕ_1, \ldots, ϕ_I) . Montrer que les équations d'Euler (6) s'écrivent sous la forme matricielle suivante :

$$\begin{cases}
\mathcal{M}(S_n)R_n = \mathcal{F}_n(S_n) \\
\mathcal{M}(R_n)S_n = \mathcal{G}_n(R_n)
\end{cases}$$
(7)

où, pour tout vecteur $V \in \mathbb{R}^I$, $\mathcal{M}(V) \in \mathbb{R}^{I \times I}$ est défini par

$$\mathcal{M}(V) = (V^T D V) M + (V^T M V) D$$

et pour tout $n \geq 1$, les vecteurs $\mathcal{F}_n(V) \in \mathbb{R}^I$ et $\mathcal{G}_n(V) \in \mathbb{R}^I$ sont définis par

$$\mathcal{F}_n(V) = \sum_{p=1}^{P} (V^T F_2^p) F_1^p - \sum_{k=1}^{n-1} ((V^T D S_k) M R_k + (V^T M S_k) D R_k)$$

$$\mathcal{G}_n(V) = \sum_{p=1}^{P} (V^T F_1^p) F_2^p - \sum_{k=1}^{n-1} ((V^T D R_k) M S_k + (V^T M R_k) D S_k).$$

En pratique, on résout le problème (7) par une méthode de point fixe : $\forall m \geq 0$,

$$\begin{cases} \mathcal{M}(S_n^m)R_n^{m+1} = \mathcal{F}_n(S_n^m) \\ \mathcal{M}(R_n^{m+1})S_n^{m+1} = \mathcal{G}_n(R_n^{m+1}) \end{cases}$$

On considère la limite $m \to \infty$ pour trouver une solution du problème (7), en partant d'une condition initiale S_n^0 arbitraire.

Question 9: Implémenter l'algorithme et faire des tests de convergence (en m et n), en choisissant des seconds membres f (comparer le cas P=1 et P>1). Plus précisément, on considèrera au moins les deux exemples suivants : $f(x,y) = \cos(2\pi x)\cos(4\pi y)$ puis $f(x,y) = \sin^2(\pi x)\sin(2\pi y) + \sin(10\pi x)\sin(\pi y)$, et on tracera l'erreur en fonction du nombre d'itérations n, après avoir choisi m assez grand pour avoir convergence des itérations de point fixe.

Pour aller plus loin : Pour les plus courageux, voici quelques pistes pour poursuivre le travail :

- Implémenter une méthode de gradient pour chercher la solution de (5) et comparer les performances par rapport à la méthode de point fixe.
- Adapter le code pour résoudre le problème de Laplace en dimension d > 2.
- Adapter la méthode pour résoudre un problème du type :

Trouver
$$u: \Omega \to \mathbb{R}$$
 tel que, pour tout $y \in (0,1)$,
$$\begin{cases} -\partial_{x,x} u(x,y) + \alpha(x,y) u(x,y) = f(x) \text{ pour } x \in (0,1), \\ u(0,y) = u(1,y) = 0, \end{cases}$$

où $\alpha(x,y)$ est une fonction positive. Ici, y joue le rôle d'un paramètre, et l'équation aux dérivées partielles est en dimension 1.

— Adapter la méthode pour écrire une fonction f(x,y) sous forme séparée, en considérant la fonctionnelle $\mathcal{E}(u) = \int_{\Omega} |f-u|^2$. Faire un lien avec la décomposition en valeurs singulières des matrices.