When a Graded Map is a Chain Map

Let (A, d) and (B, ∂) be R-complexes and let $\psi \colon H(A) \to H(B)$ be a graded R-linear map. Suppose that we could lift ψ to a graded R-linear map $\widetilde{\psi} \colon A \to B$ of the underlying graded R-modules. So $\widetilde{\psi}$ takes ker d to ker ∂ and it takes im d to im ∂ and $H(\widetilde{\psi}) = \psi$. It's easy to see that $\widetilde{\psi}$ is a chain map if and only if $\operatorname{im}(\partial \widetilde{\psi} - \widetilde{\psi} d) = 0$. If $\widetilde{\psi}$ is not a chain map, then can we adjust our R-complexes in a way so that it *induces* a chain map? It turns out that the answer is yes, and knowing that $\widetilde{\psi}$ induces $\psi \colon H(A) \to H(B)$ gives us a little more information about this induced chain map.

Proposition o.1. Let (A, d) and (B, ∂) be R-complexes and let $\varphi \colon A \to B$ be a graded R-linear map of the underlying graded modules. Let $\overline{B} = B/\operatorname{im}(\partial \varphi - \varphi d)$ and let $\pi \colon B \to \overline{B}$ be the quotient map. Define $\overline{\partial} \colon \overline{B} \to \overline{B}$ by

$$\overline{\partial}(\overline{b}) = \overline{\partial(b)}$$

for all $a \in A$ and $\overline{b} \in \overline{B}$. Then $(\overline{B}, \overline{\partial})$ is an R-complex and $\pi \varphi \colon A \to \overline{B}$ is a chain map. Moreover, if φ takes im d to im ∂ , then we have the following short exact sequence of graded R-modules and graded R-linear maps:

$$0 \longrightarrow H(B) \xrightarrow{H(\pi)} H(\overline{B}) \xrightarrow{\gamma} \operatorname{im}(\partial \varphi - \varphi d)(-1) \longrightarrow 0$$
 (1)

where γ is the connecting map coming from a long exact sequence in homology.

Proof. Observe that $\operatorname{im}(\partial \varphi - \varphi \operatorname{d})$ is a graded R-submodule of B since $\partial \varphi - \varphi \operatorname{d}$ is a graded R-linear map of degree -1, therefore the grading on B induces a grading on \overline{B} which makes π into a graded R-linear map. Therefore $\pi \varphi$, being a composite of two graded R-linear maps, is a graded R-linear map. We need to check that $\overline{\partial}$ is well-defined, that is, we need to check that ∂ sends $\operatorname{im}(\partial \varphi - \varphi \operatorname{d})$ to itself. Let $(\partial \varphi - \varphi \operatorname{d})(a) \in \operatorname{im}(\partial \varphi - \varphi \operatorname{d})$ where $a \in A$. Then

$$\begin{aligned} \partial(\partial\varphi - \varphi \mathbf{d})(a) &= (\partial\partial\varphi - \partial\varphi \mathbf{d})(a) \\ &= -\partial\varphi \mathbf{d}(a) \\ &= (-\partial\varphi \mathbf{d}(a) + \varphi \mathbf{d}\mathbf{d})(a) \\ &= (-\partial\varphi + \varphi \mathbf{d})(\mathbf{d}(a)) \in \operatorname{im}(\partial\varphi - \varphi \mathbf{d}). \end{aligned}$$

Thus $\bar{\partial}$ is well-defined. Also $\bar{\partial}$ is an R-linear differential since it inherits these properties from $\bar{\partial}$. Therefore $(\bar{B}, \bar{\partial})$ is an R-complex.

Now let us check that $\pi \varphi$ is a chain map. To see this, we just need to show it commutes with the differentials. Let $a \in A$. Then we have

$$\overline{\partial}\pi\varphi(a) = \overline{\partial}(\overline{\varphi(a)})$$

$$= \overline{\partial}\varphi(a)$$

$$= \overline{\partial}\varphi(a) - (\partial\varphi - \varphi d)(a)$$

$$= \overline{\partial}\varphi(a) - \partial\varphi(a) + \varphi d(a)$$

$$= \overline{\varphi}d(a)$$

$$= \pi\varphi d(a).$$

Thus $\pi \varphi$ is a chain map.

Since ∂ sends im($\partial \varphi - \varphi d$) to itself, it restricts to a differential on im($\partial \varphi - \varphi d$). So we have a short exact sequence of *R*-complexes

$$0 \longrightarrow \operatorname{im}(\partial \varphi - \varphi d) \xrightarrow{\iota} B \xrightarrow{\pi} \overline{B} \longrightarrow 0$$
 (2)

where ι is the inclusion map. The short exact sequence (9) induces the following long exact sequence in homology

Let us work out the details of the connecting map γ . Let $[\overline{b}] \in H_i(\overline{B})$, so $\overline{b} \in \overline{B}_i$ is the coset with $b \in B_i$ as a representative and $[\overline{b}] \in H_i(\overline{B})$ is the coset with $\overline{b} \in \overline{B}_i$ as a representative. In particular, $\overline{\partial}(\overline{b}) = \overline{0}$, which implies

$$\partial(b) = (\partial \varphi - \varphi \mathbf{d})(a) \tag{4}$$

for some $a \in A$. Then (4) implies that $(\partial \varphi - \varphi \mathbf{d})(a)$ is the unique element in $\operatorname{im}(\partial \varphi - \varphi \mathbf{d})$ which maps to $\partial(b)$ (under the inclusion map). Therefore

$$\gamma_i[\overline{b}] = [(\partial \varphi - \varphi d)(a)].$$

Now suppose φ takes im d to im ∂ . We claim that ∂ restricts to the zero map on im($\partial \varphi - \varphi d$). Indeed, let $(\partial \varphi - \varphi d)(a) \in \operatorname{im}(\partial \varphi - \varphi d)$ where $a \in A$. Since φ takes im d to im ∂ , there exists a $b \in B$ such that

$$\varphi d(a) = \partial(b)$$
.

Choose such a $b \in B$. Then observe that

$$\partial(\partial\varphi - \varphi \mathbf{d})(a) = \partial\partial\varphi - \partial\varphi \mathbf{d}(a)$$

$$= -\partial\varphi \mathbf{d}(a)$$

$$= -\partial\partial(b)$$

$$= 0.$$

Thus ∂ restricts to the zero map on $\operatorname{im}(\partial \varphi - \varphi d)$. In particular, $\operatorname{H}(\operatorname{im}(\partial \varphi - \varphi d)) \cong \operatorname{im}(\partial \varphi - \varphi d)$.

Next we claim that $H(\iota)$ is the zero map. Indeed, for any $(\partial \varphi - \varphi d)(a) \in \operatorname{im}(\partial \varphi - \varphi d)$ where $a \in A$, we choose $b \in B$ such that $\varphi d(a) = \partial(b)$, then we have

$$(\partial \varphi - \varphi \mathbf{d})(a) = \partial \varphi(a) - \varphi \mathbf{d}(a)$$

$$= \partial \varphi(a) - \partial b$$

$$= \partial (\varphi(a) - b)$$

$$\in \operatorname{im} \partial.$$

Therefore $H(\iota)$ takes the coset in $H(im(\partial \varphi - \varphi d))$ represented by $(\partial \varphi - \varphi d)(a)$ to the coset in H(B) represented by 0. Thus $H(\iota)$ is the zero map as claimed.

Combining everything together, we see that the long exact sequence (3) breaks up into short exact sequences

$$0 \longrightarrow H_i(B) \xrightarrow{H_i(\pi)} H_i(\overline{B}) \xrightarrow{\gamma_i} \operatorname{im}(\partial_{i-1}\varphi_{i-1} - \varphi_{i-2}d_{i-1}) \longrightarrow 0$$
 (5)

for all $i \in \mathbb{Z}$. In other words, (6) is a short exact sequence of graded *R*-modules.

Corollary. Let (A, d) and (B, ∂) be R-complexes and let $\varphi \colon A \to B$ be a graded R-linear map of the underlying graded modules. Suppose φ takes im d to im ∂ . Then φ is a chain map if and only if $H(\overline{B}) \cong H(B)$.

Corollary. *Indeed,* φ *is a chain map if and only if* $\operatorname{im}(\partial \varphi - \varphi d) = 0$ *if and only if* $\operatorname{H}(\overline{B}) \cong \operatorname{H}(B)$ *by* (6).

Corollary. Let (P, d) and (B, ∂) be R-complexes and let $\varphi \colon P \to B$ be a graded R-linear map of the underlying graded modules. Suppose P is a semiprojective R-complex and suppose φ takes im d to im ∂ . Then φ is a chain map if and only if $H(\overline{B}) \cong H(B)$.

Proof. Indeed, φ is a chain map if and only if $\pi: B \to \overline{B}$ is a quasiisomorphism. Since π is surjective and P is semiprojective, there exists a chain map $\varphi: P \to B$ such that $\pi \varphi = \pi \varphi$.

There is a dual version to Proposition (0.2). Let us state it now.

Proposition 0.2. Let (A, d) and (B, ∂) be R-complexes and let $\varphi: A \to B$ be a graded R-linear map of the underlying graded modules. Let $\widetilde{A} = \ker(\partial \varphi - \varphi d)$ and let $\iota: \widetilde{A} \to A$ be the inclusion map. Then d restricts to a differential $d: \widetilde{A} \to \widetilde{A}$. Furthermore, (\widetilde{A}, d) is an R-complex and $\varphi\iota: \widetilde{A} \to B$ is a chain map.

Then the differential d restricts to a differential d: $A_0 \to A_0$. Furthermore, (A_0, d) is an R-complex and $\pi \varphi \colon A \to \overline{B}$ is a chain map. Moreover, if φ takes im d to im ∂ , then we have the following short exact sequence of graded R-modules and graded R-linear maps:

$$0 \longrightarrow H(B) \xrightarrow{H(\pi)} H(\overline{B}) \xrightarrow{\gamma} \operatorname{im}(\partial \varphi - \varphi d)(-1) \longrightarrow 0$$
 (6)

where γ is the connecting map coming from a long exact sequence in homology.

Proof. Observe that \widetilde{A} is a graded R-submodule of A since $\partial \varphi - \varphi d$ is a graded R-linear map of degree -1, therefore the grading on A induces a grading on \widetilde{A} which makes ι into a graded R-linear map. Therefore $\varphi \iota$, being a composite of two graded R-linear maps, is a graded R-linear map. We need to check that \widetilde{A} restricted to \widetilde{A} lands in \widetilde{A} . Suppose $a \in \widetilde{A}$. Thus $a \in A$ and $\partial \varphi(a) = \varphi d(a)$. Then

$$(\partial \varphi - \varphi \mathbf{d})\mathbf{d}(a) = \partial \varphi \mathbf{d}(a) - \varphi \mathbf{d}\mathbf{d}(a)$$
$$= \partial \varphi \mathbf{d}(a)$$
$$= \partial \partial \varphi(a)$$
$$= 0.$$

This implies $d(a) \in \widetilde{A}$. Thus d restricted to \widetilde{A} lands in \widetilde{A} . Clearly d is an R-linear differential. Therefore (\widetilde{A}, d) is an R-complex.

Now let us check that $\varphi \iota$ is a chain map. To see this, we just need to show it commutes with the differentials. Let $a \in \widetilde{A}$. Thus $a \in A$ and $\partial \varphi(a) = \varphi d(a)$. Then we have

$$\partial \varphi \iota(a) = \partial \varphi(a) \\
= \varphi d(a)$$

Thus $\varphi \iota$ is a chain map.

We have a short exact sequence of *R*-complexes

$$0 \longrightarrow \widetilde{A} \stackrel{\iota}{\longrightarrow} A \stackrel{\partial \varphi - \varphi d}{\longrightarrow} \Sigma \operatorname{im}(\partial \varphi - \varphi d) \longrightarrow 0 \tag{7}$$

where ι is the inclusion map. The short exact sequence (9) induces the following long exact sequence in homology

Now suppose φ takes ker d to ker ∂ . We claim that ∂ restricts to the zero map on $\operatorname{im}(\partial \varphi - \varphi d)$. Indeed, let $(\partial \varphi - \varphi d)(a) \in \operatorname{im}(\partial \varphi - \varphi d)$ where $a \in A$. Since φ takes im d to im ∂ , there exists a $b \in B$ such that

$$\varphi d(a) = \partial(b)$$
.

Choose such a $b \in B$. Then observe that

$$\partial(\partial\varphi - \varphi d)(a) = \partial\partial\varphi - \partial\varphi d(a)$$

$$= -\partial\varphi d(a)$$

$$= -\partial\partial(b)$$

$$= 0.$$

Thus ∂ restricts to the zero map on $\operatorname{im}(\partial \varphi - \varphi d)$. In particular, $\operatorname{H}(\operatorname{im}(\partial \varphi - \varphi d)) \cong \operatorname{im}(\partial \varphi - \varphi d)$.

Next we claim that $H(\partial \varphi - \varphi d)$ is the zero map. Indeed, let $[a] \in H(A)$, so $a \in A$ and d(a) = 0. Since φ takes ker d to ker ∂ , we see that $\partial \varphi(a) = 0$. Therefore

$$H(\partial \varphi - \varphi d)[a] = [(\partial \varphi - \varphi d)(a)]$$
$$= [\partial \varphi(a) - \varphi d(a)]$$
$$= [0].$$

Thus $H(\partial \varphi - \varphi d)$ is the zero map as claimed.

Combining everything together, we see that the long exact sequence (8) breaks up into short exact sequences

$$0 \longrightarrow H_i(\operatorname{im}(\partial \varphi - \varphi d)) \xrightarrow{\lambda_i} H_i(\widetilde{A}) \xrightarrow{\iota_i} H(A) \longrightarrow 0$$
 (9)

for all $i \in \mathbb{Z}$. In other words, (6) is a short exact sequence of graded *R*-modules.

Applications

Example 0.1. Let $\underline{x} = x_1, \dots, x_n$ be a sequence of elements in R, let $\mathcal{K}(\underline{x})$ be the Koszul complex with respect to that sequence, and let π be a permutation of [n]. For any subset $\sigma \subseteq [n]$, we write $\sigma = \{\lambda_1, \dots, \lambda_k\}$ where $1 \le i_1 < \dots < i_k \le n$ and we define $\pi \cdot \sigma$ to be the subset in [n] defined by

$$\pi \cdot \sigma = \{\pi(\lambda_1), \ldots, \pi(\lambda_k)\}.$$

We also define $sign(\pi|_{\sigma})$ to be the sign of the permutation which puts $(\pi(\lambda_1), \dots, \pi(\lambda_k))$ into the correct order. Then π induces a graded R-linear map $\pi \colon \mathcal{K}(\underline{x}) \to \mathcal{K}(\underline{x})$, uniquely determined by

$$\pi(e_{\sigma}) = (-1)^{\operatorname{sign}(\pi|_{\sigma})} e_{\pi \cdot \sigma} \tag{10}$$

for all $\sigma \subseteq [n]$. If $\underline{x} = \underline{1}$, then (10) is a chain map. Indeed, we have

$$\begin{split} \mathbf{d}_{\mathcal{K}(\underline{x})}\pi(e_{\sigma}) &= (-1)^{\operatorname{sign}(\pi|_{\sigma})}\mathbf{d}_{\mathcal{K}(\underline{x})}(e_{\pi\cdot\sigma}) \\ &= \sum_{\pi(\lambda)\in\pi\cdot\sigma} (-1)^{\operatorname{sign}(\pi|_{\sigma})} \langle \pi(\lambda), \sigma \backslash \pi(\lambda) \rangle e_{(\pi\cdot\sigma)\backslash\pi(\lambda)} \\ &= \sum_{\lambda\in\sigma} \langle \lambda, \sigma \backslash \lambda \rangle (-1)^{\operatorname{sign}(\pi|_{\sigma\backslash\lambda})} e_{\pi\cdot(\sigma\backslash\lambda)} \\ &= \sum_{\lambda\in\sigma} \langle \lambda, \sigma \backslash \lambda \rangle \pi e_{\sigma\backslash\lambda} \\ &= \pi \mathbf{d}_{\mathcal{K}(x)}(e_{\sigma}) \end{split}$$

for all $\sigma \subseteq [n]$.

Example o.2. Let R = K[x, y, z], let $\underline{f} = f_1, f_2, f_3$ be a sequence of elements in R, and let $\pi = (12)$. We first calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_1) = d_{\mathcal{K}(\underline{f})}\pi(e_1) - \pi d_{\mathcal{K}(\underline{f})}(e_1)$$
$$= d_{\mathcal{K}(\underline{f})}(e_2) - \pi(f_1)$$
$$= f_2 - f_1.$$

Next we calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_2) = d_{\mathcal{K}(\underline{f})}\pi(e_2) - \pi d_{\mathcal{K}(\underline{f})}(e_2)$$
$$= d_{\mathcal{K}(\underline{f})}(e_1) - \pi(f_2)$$
$$= f_1 - f_2.$$

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_3) = d_{\mathcal{K}(\underline{f})}\pi(e_3) - \pi d_{\mathcal{K}(\underline{f})}(e_3)$$
$$= d_{\mathcal{K}(\underline{f})}(e_3) - \pi(f_3)$$
$$= f_3 - f_3$$
$$= 0.$$

Next we calculate

$$\begin{split} (\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(e_{12}) &= \mathrm{d}_{\mathcal{K}(\underline{f})}\pi(e_{12}) - \pi \mathrm{d}_{\mathcal{K}(\underline{f})}(e_{12}) \\ &= \mathrm{d}_{\mathcal{K}(\underline{f})}(-e_{12}) - \pi(f_1e_2 - f_2e_1) \\ &= -f_1e_2 + f_2e_1 - f_1e_1 + f_2e_2 \\ &= (f_2 - f_1)(e_1 + e_2). \end{split}$$

Next we calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_{13}) = d_{\mathcal{K}(\underline{f})}\pi(e_{13}) - \pi d_{\mathcal{K}(\underline{f})}(e_{13})$$

$$= d_{\mathcal{K}(\underline{f})}(e_{23}) - \pi(f_1e_3 - f_3e_1)$$

$$= f_2e_3 - f_3e_2 - f_1e_3 + f_3e_2$$

$$= (f_2 - f_1)e_3.$$

Next we calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_{23}) = d_{\mathcal{K}(\underline{f})}\pi(e_{23}) - \pi d_{\mathcal{K}(\underline{f})}(e_{23})$$

$$= d_{\mathcal{K}(\underline{f})}(e_{13}) - \pi(f_2e_3 - f_3e_2)$$

$$= f_1e_3 - f_3e_1 - f_2e_3 + f_3e_1$$

$$= (f_1 - f_2)e_3.$$

Finally we calculate

$$\begin{split} (\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(e_{123}) &= \mathrm{d}_{\mathcal{K}(\underline{f})}\pi(e_{123}) - \pi \mathrm{d}_{\mathcal{K}(\underline{f})}(e_{123}) \\ &= \mathrm{d}_{\mathcal{K}(\underline{f})}(-e_{123}) - \pi(f_1e_{23} - f_2e_{13} + f_3e_{12}) \\ &= -f_1e_{23} + f_2e_{13} - f_3e_{12} - f_1e_{13} + f_2e_{23} + f_3e_{12} \\ &= (f_2 - f_1)(e_{23} + e_{13}). \end{split}$$

Thus, we have.

$$im(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})}) = \langle f_2 - f_1 \rangle$$

Example 0.3. Let R = K[x, y, z], let $\underline{f} = f_1, f_2, f_3$ be a sequence of elements in R, and let $\pi = (12)$. We first calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_1) = d_{\mathcal{K}(\underline{f})}\pi(e_1) - \pi d_{\mathcal{K}(\underline{f})}(e_1)$$
$$= d_{\mathcal{K}(\underline{f})}(e_2) - \pi(f_1)$$
$$= f_2 - f_1.$$

Next we calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_2) = d_{\mathcal{K}(\underline{f})}\pi(e_2) - \pi d_{\mathcal{K}(\underline{f})}(e_2)$$
$$= d_{\mathcal{K}(\underline{f})}(e_1) - \pi(f_2)$$
$$= f_1 - f_2.$$

Next we calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_3) = d_{\mathcal{K}(\underline{f})}\pi(e_3) - \pi d_{\mathcal{K}(\underline{f})}(e_3)$$
$$= d_{\mathcal{K}(\underline{f})}(e_3) - \pi(f_3)$$
$$= f_3 - f_3$$
$$= 0.$$

$$\begin{split} (\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(e_{12}) &= \mathrm{d}_{\mathcal{K}(\underline{f})}\pi(e_{12}) - \pi \mathrm{d}_{\mathcal{K}(\underline{f})}(e_{12}) \\ &= \mathrm{d}_{\mathcal{K}(\underline{f})}(-e_{12}) - \pi(f_1e_2 - f_2e_1) \\ &= -f_1e_2 + f_2e_1 - f_1e_1 + f_2e_2 \\ &= (f_2 - f_1)(e_1 + e_2). \end{split}$$

Next we calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_{13}) = d_{\mathcal{K}(\underline{f})}\pi(e_{13}) - \pi d_{\mathcal{K}(\underline{f})}(e_{13})$$

$$= d_{\mathcal{K}(\underline{f})}(e_{23}) - \pi(f_1e_3 - f_3e_1)$$

$$= f_2e_3 - f_3e_2 - f_1e_3 + f_3e_2$$

$$= (f_2 - f_1)e_3.$$

Next we calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_{23}) = d_{\mathcal{K}(\underline{f})}\pi(e_{23}) - \pi d_{\mathcal{K}(\underline{f})}(e_{23})$$

$$= d_{\mathcal{K}(\underline{f})}(e_{13}) - \pi(f_2e_3 - f_3e_2)$$

$$= f_1e_3 - f_3e_1 - f_2e_3 + f_3e_1$$

$$= (f_1 - f_2)e_3.$$

Finally we calculate

$$\begin{split} (\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(e_{123}) &= \mathrm{d}_{\mathcal{K}(\underline{f})}\pi(e_{123}) - \pi \mathrm{d}_{\mathcal{K}(\underline{f})}(e_{123}) \\ &= \mathrm{d}_{\mathcal{K}(\underline{f})}(-e_{123}) - \pi(f_1e_{23} - f_2e_{13} + f_3e_{12}) \\ &= -f_1e_{23} + f_2e_{13} - f_3e_{12} - f_1e_{13} + f_2e_{23} + f_3e_{12} \\ &= (f_2 - f_1)(e_{23} + e_{13}). \end{split}$$

Thus, we have.

$$\operatorname{im}(\operatorname{d}_{\mathcal{K}(f)}\pi - \pi\operatorname{d}_{\mathcal{K}(f)}) = \langle f_2 - f_1 \rangle$$

Example o.4. Let R = K[x,y,z], let $\underline{f} = f_1, f_2, f_3$ be a sequence of elements in R, and let $\pi \colon \mathcal{K}(\underline{f}) \to \mathcal{K}(\underline{f})$ be a graded R-linear map. For each $1 \le \overline{i} < j \le 3$, we have

$$\pi(1) = f_0^0$$

$$\pi(e_i) = f_i^1 e_1 + f_i^2 e_2 + f_i^3 e_3$$

$$\pi(e_{ij}) = f_{ij}^{12} e_{12} + f_{ij}^{13} e_{13} + f_{ij}^{23} e_{23}$$

$$\pi(e_{ijk}) = f_{123}^{123} e_{123}$$

where the $f_i^{k\prime}$'s and $f_{ij}^{kl\prime}$'s are in R. Then we have

$$\begin{split} &(\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(1) = f_0^0 \\ &(\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(e_i) = f_i^1 f_1 + f_i^2 f_2 + f_i^3 f_3 - f_0^0 f_i \\ &(\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(e_{ij}) = (f_j f_i^1 - f_i f_j^1 - f_{ij}^{13} f_3 - f_{ij}^{12} f_2) e_1 + (f_j f_i^2 - f_i f_j^2 - f_{ij}^{23} f_3 + f_{ij}^{12} f_1) e_2 + (f_j f_i^3 - f_i f_j^3 + f_{ij}^{23} f_j + f_{ij}^{13}) e_3 \end{split}$$

One can calculate more generally that

$$(d_{\mathcal{K}(f)}\pi - \pi d_{\mathcal{K}(f)})(e_1) = f_1^1 f_1 + f_1^2 f_2 + f_1^3 f_3 - f_1 f_0$$

We first calculate

$$\begin{split} (\mathsf{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathsf{d}_{\mathcal{K}(\underline{f})})(e_1) &= \mathsf{d}_{\mathcal{K}(\underline{f})}\pi(e_1) - \pi \mathsf{d}_{\mathcal{K}(\underline{f})}(e_1) \\ &= \mathsf{d}_{\mathcal{K}(\underline{f})}(f_1^1e_1 + f_1^2e_2 + f_1^3e_3) - \pi(f_1) \\ &= f_1^1f_1 + f_1^2f_2 + f_1^3f_3 - f_1f_0 \end{split}$$

More generally we have

$$(d_{\mathcal{K}(f)}\pi - \pi d_{\mathcal{K}(f)})(e_i) = f_i^1 f_1 + f_i^2 f_2 + f_i^3 f_3 - f_i f_0$$

for i = 1, 2, 3.

$$\begin{split} (\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(e_{12}) &= \mathrm{d}_{\mathcal{K}(\underline{f})}\pi(e_{12}) - \pi \mathrm{d}_{\mathcal{K}(\underline{f})}(e_{12}) \\ &= \mathrm{d}_{\mathcal{K}(\underline{f})}(f_{12}^{12}e_{12} + f_{12}^{13}e_{13} + f_{12}^{23}e_{23}) - \pi(f_{1}e_{2} - f_{2}e_{1}) \\ &= f_{12}^{12}(f_{1}e_{2} - f_{2}e_{1}) + f_{12}^{13}(f_{1}e_{3} - f_{3}e_{1}) + f_{12}^{23}(f_{2}e_{3} - f_{3}e_{2}) - f_{1}(f_{2}^{1}e_{1} + f_{2}^{2}e_{2} + f_{2}^{3}e_{3}) + f_{2}(f_{1}^{1}e_{1} + f_{1}^{2}e_{2} + f_{1}^{3}e_{3}) \\ &= (f_{2}f_{1}^{1} - f_{1}f_{2}^{1} - f_{12}^{13}f_{3} - f_{12}^{12}f_{2})e_{1} + (f_{2}f_{1}^{2} - f_{12}^{23}f_{3} + f_{12}^{12}f_{1})e_{2} + (f_{2}f_{1}^{3} - f_{1}f_{2}^{3} + f_{12}^{13}f_{2} + f_{12}^{13})e_{3} \end{split}$$

Next we calculate

$$\begin{split} (\mathsf{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathsf{d}_{\mathcal{K}(\underline{f})})(e_{13}) &= \mathsf{d}_{\mathcal{K}(\underline{f})}\pi(e_{13}) - \pi \mathsf{d}_{\mathcal{K}(\underline{f})}(e_{13}) \\ &= \mathsf{d}_{\mathcal{K}(\underline{f})}(e_{23}) - \pi(f_1e_3 - f_3e_1) \\ &= f_2e_3 - f_3e_2 - f_1e_3 + f_3e_2 \\ &= (f_2 - f_1)e_3. \end{split}$$

Next we calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_{23}) = d_{\mathcal{K}(\underline{f})}\pi(e_{23}) - \pi d_{\mathcal{K}(\underline{f})}(e_{23})$$

$$= d_{\mathcal{K}(\underline{f})}(e_{13}) - \pi(f_2e_3 - f_3e_2)$$

$$= f_1e_3 - f_3e_1 - f_2e_3 + f_3e_1$$

$$= (f_1 - f_2)e_3.$$

Finally we calculate

$$\begin{split} (\mathsf{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathsf{d}_{\mathcal{K}(\underline{f})})(e_{123}) &= \mathsf{d}_{\mathcal{K}(\underline{f})}\pi(e_{123}) - \pi \mathsf{d}_{\mathcal{K}(\underline{f})}(e_{123}) \\ &= \mathsf{d}_{\mathcal{K}(\underline{f})}(-e_{123}) - \pi(f_1e_{23} - f_2e_{13} + f_3e_{12}) \\ &= -f_1e_{23} + f_2e_{13} - f_3e_{12} - f_1e_{13} + f_2e_{23} + f_3e_{12} \\ &= (f_2 - f_1)(e_{23} + e_{13}). \end{split}$$

Thus, we have.

$$\operatorname{im}(\operatorname{d}_{\mathcal{K}(f)}\pi - \pi\operatorname{d}_{\mathcal{K}(f)}) = \langle f_2 - f_1 \rangle$$

Example 0.5. Let R = K[x, y, z], let $\underline{f} = f_1, f_2, f_3$ be a sequence of elements in R, and let $\pi = (12)$. We first calculate

$$\begin{split} (\mathsf{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathsf{d}_{\mathcal{K}(\underline{f})})(e_1) &= \mathsf{d}_{\mathcal{K}(\underline{f})}\pi(e_1) - \pi \mathsf{d}_{\mathcal{K}(\underline{f})}(e_1) \\ &= \mathsf{d}_{\mathcal{K}(\underline{f})}(f_1^1 e_1 + f_1^2 e_2 + f_1^3 e_3) - \pi(f_1) \\ &= f_1^1 f_1 + f_1^2 f_2 + f_1^3 f_3 - f_1 f_0 \end{split}$$

More generally we have

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_i) = f_i^1 f_1 + f_i^2 f_2 + f_i^3 f_3 - f_i f_0$$

for i = 1, 2, 3.

Next we calculate

$$\begin{split} (\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(e_{12}) &= \mathrm{d}_{\mathcal{K}(\underline{f})}\pi(e_{12}) - \pi \mathrm{d}_{\mathcal{K}(\underline{f})}(e_{12}) \\ &= \mathrm{d}_{\mathcal{K}(\underline{f})}(f_{12}^{12}e_{12} + f_{12}^{13}e_{13} + f_{12}^{23}e_{23}) - \pi(f_{1}e_{2} - f_{2}e_{1}) \\ &= f_{12}^{12}(f_{1}e_{2} - f_{2}e_{1}) + f_{12}^{13}(f_{1}e_{3} - f_{3}e_{1}) + f_{12}^{23}(f_{2}e_{3} - f_{3}e_{2}) - f_{1}(f_{2}^{1}e_{1} + f_{2}^{2}e_{2} + f_{2}^{3}e_{3}) + f_{2}(f_{1}^{1}e_{1} + f_{1}^{2}e_{2} + f_{1}^{3}e_{3}) \\ &= (f_{2}f_{1}^{1} - f_{1}f_{2}^{1} - f_{12}^{13}f_{3} - f_{12}^{12}f_{2})e_{1} + (f_{2}f_{1}^{2} - f_{12}^{23}f_{3} + f_{12}^{12}f_{1})e_{2} + (f_{2}f_{1}^{3} - f_{1}f_{2}^{3} + f_{12}^{23}f_{2} + f_{12}^{13})e_{3} \end{split}$$

Next we calculate

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_{13}) = d_{\mathcal{K}(\underline{f})}\pi(e_{13}) - \pi d_{\mathcal{K}(\underline{f})}(e_{13})$$

$$= d_{\mathcal{K}(\underline{f})}(e_{23}) - \pi(f_1e_3 - f_3e_1)$$

$$= f_2e_3 - f_3e_2 - f_1e_3 + f_3e_2$$

$$= (f_2 - f_1)e_3.$$

$$(d_{\mathcal{K}(\underline{f})}\pi - \pi d_{\mathcal{K}(\underline{f})})(e_{23}) = d_{\mathcal{K}(\underline{f})}\pi(e_{23}) - \pi d_{\mathcal{K}(\underline{f})}(e_{23})$$

$$= d_{\mathcal{K}(\underline{f})}(e_{13}) - \pi(f_2e_3 - f_3e_2)$$

$$= f_1e_3 - f_3e_1 - f_2e_3 + f_3e_1$$

$$= (f_1 - f_2)e_3.$$

Finally we calculate

$$\begin{split} (\mathrm{d}_{\mathcal{K}(\underline{f})}\pi - \pi \mathrm{d}_{\mathcal{K}(\underline{f})})(e_{123}) &= \mathrm{d}_{\mathcal{K}(\underline{f})}\pi(e_{123}) - \pi \mathrm{d}_{\mathcal{K}(\underline{f})}(e_{123}) \\ &= \mathrm{d}_{\mathcal{K}(\underline{f})}(-e_{123}) - \pi(f_1e_{23} - f_2e_{13} + f_3e_{12}) \\ &= -f_1e_{23} + f_2e_{13} - f_3e_{12} - f_1e_{13} + f_2e_{23} + f_3e_{12} \\ &= (f_2 - f_1)(e_{23} + e_{13}). \end{split}$$

Thus, we have.

$$\operatorname{im}(\operatorname{d}_{\mathcal{K}(f)}\pi - \pi \operatorname{d}_{\mathcal{K}(f)}) = \langle f_2 - f_1 \rangle$$

DG Algebras

Let (A,d) be an R-complex. A **graded-multiplication** on A is a graded R-linear map $m: A \otimes_R A \to A$ of the underlying graded R-modules. The universal mapping property on graded tensor products tells us that there exists a unique graded R-bilinear map $B_m: A \times A \to A$ such that

$$B_{\mathbf{m}}(a,b) = \mathbf{m}(a \otimes b)$$

for all $(a, b) \in A \times A$. However since B_m is *uniquely* determined by m, we often identify B_m with m and simply think of m as a graded R-bilinear map. In fact, we often drop m altogether and simply denote this multiplication map by

$$\sum a_i \otimes b_i \mapsto \sum a_i b_i$$

for all $\sum a_i \otimes b_i \in A \otimes_R A$. At the end of the day, context will make everything clear.

Suppose m is a graded multiplication As the name of the definition suggests, a graded-multiplication on A must respect the grading. In particular, this means that if $a \in A_i$ and $b \in A_j$, then $ab \in A_{i+j}$. We can also impose other conditions on a graded-multiplication on A.

Definition 0.1. Let (A, d) be an R-complex and let m be a graded-multiplication on A.

1. We say a m is **associative** if

$$a(bc) = (ab)c$$

for all $a, b, c \in A$.

2. We say m is **graded-commutative** if

$$ab = (-1)^i ba$$

for all $a \in A_i$ and $b \in B_i$ for all $i, j \in \mathbb{Z}$.

3. We say m is **strictly graded-commutative** if it is graded-commutative and satisfies the following extra property:

$$a^2 = 0$$

for all $a \in A_i$ for all i odd.

4. We say m is **unital** if there exists an $e \in A$ such that

$$ae = e = ea$$

for all $a \in A$.

5. We say a graded-multiplication satisfies Leibniz law if

$$d(ab) = d(a)b + (-1)^{i}ad(b)$$

for all $a \in A_i$ and $b \in B_i$ for all $i, j \in \mathbb{Z}$. This is equivalent to m being a chain map!

6. We say (*A*, m, d) is a **differential graded** *R***-algebra** (or **DG** *R***-algebra**) if m is a graded-multiplication on *A* which satisfies conditions 1-5.

We are often presented with the following scenario: we are given a graded-multiplication m on an R-complex (A,d) and would like to know if (A,m,d) is a DG R-algebra. For instance, we may know that m satisfies the conditions 2-5 in Definition (0.1), which would reduce the question of whether (A,m,d) is a DG R-algebra to the question of whether m is associative. On the other hand, we may know that m satisfies the conditions 1-4

in Definition (0.1), which would reduce the question of whether (A, m, d) is a DG R-algebra to the question of whether m is chain map. Proposition (0.2) gives us some insight on how to proceed in this direction.

Proposition 0.3. Let (A, d) be an R-complex and let m be a graded-multiplication on A which satisfies conditions 1-4 in Definition (0.1). Furthermore, suppose that

$$d(a)b + (-1)^{i}ad(b) \in \operatorname{im} d \tag{11}$$

for all $a \in A_i$ and $b \in A_j$ for all $i, j \in \mathbb{Z}$. Then (A, m, d) is a DG R-algebra if and only if $\pi \colon A \to \overline{A}$ is a quasiisomorphism where

$$\overline{A} = A/\langle \{d(ab) - d(a)b - (-1)^i ad(b)\}\rangle.$$

Proof. The condition (11) is equivalent to the condition that m takes im d_A^{\otimes} to im d.