

Practical SAT Solving

Lecture 4

Markus Iser, Dominik Schreiber, Tomáš Balyo | May 06, 2024

Overview

Recap. Lecture 3: Classic Algorithms

- · Local Search
- Resolution
- · DP Algorithm
- · DPLL Algorithm

Overview

Recap. Lecture 3: Classic Algorithms

- · Local Search
- Resolution
- DP Algorithm
- DPLL Algorithm

Today's Topics

- Classic Heuristics: Branching Order, Branching Polarity, Restart Strategies
- Modern SAT Solving 1: Conflict Analysis, Clause Learning

Decision Heuristics:

- · Branching Order: Which variable to choose?
- Branching Polarity: Which value to assign?

```
Algorithm 1: iterativeDPLL(CNF Formula F)
```

Data: Trail (Stack of Literals)

```
1 while not all variables assigned by Trail do
     if unitPropagation(F, Trail) has CONFLICT then
```

```
L \leftarrow last literal not tried both True and False
if no such I then return UNSAT
```

pop all literals after and including L from Trail push $\{L=0\}$ on Trail

else

7

```
L \leftarrow pick an unassigned literal
push \{L=1\} on Trail
```

10 return SAT

Decision Heuristics

Properties of Decision Heuristics

- Desired properties:
 - Fast to compute
 - · Yields easy sub-problems
 - ightarrow Maximize unit propagations
- Static vs. dynamic:
 - · Static: Based on formula statistics
 - · Dynamic: Based on formula and current state
- Separate vs. joint:

May 06, 2024

- Separate: Choose variable and value independently
- · Joint: Choose variable and value together

- $h_i(x)$: number of clauses of size i containing literal x which are not yet satisfied
- $H_i(x) := \alpha \max(h_i(x), h_i(\overline{x})) + \beta \min(h_i(x), h_i(\overline{x}))$ (let $\alpha := 1$ and $\beta := 2$, for example)
- Select literal x with the maximal vector $(H_1(x), H_2(x), \dots)$ under lexicographic order

Properties of Böhm's Heuristic

Goal: satisfy or reduce size of many and preferably short clauses

- Separate polarity heuristic (note that $H_i(x) = H_i(\overline{x})$)
 - \rightarrow select x if $\sum_i h_i(x) \geq \sum_i h_i(\overline{x})$
- depends on literal occurrence counts over the not yet satisfied clauses
- SAT Competition 1992: best heuristic for random instances

Decision Heuristics: Mom's Heuristic

Maximum Occurrences in clauses of Minimum Size

- $f^*(x)$: how often x occurs in the smallest not yet satisfied clauses
- Select variable x with a maximum $S(x) = (f^*(x) + f^*(\overline{x})) \cdot 2^k + f^*(x) \cdot f^*(\overline{x})$ (let k := 10, for example)

Properties of Mom's Heuristic

Goal: assign variables with high occurrence in short clauses

- Separate polarity heuristic
 - \rightarrow for example, select x if $f^*(\overline{x}) \geq f^*(x)$
- depends on literal occurrence counts over the not yet satisfied clauses
- Popular in the mid 90s (Find some variants in Freeman 1995)

• Choose the literal x with a maximum $J(x) = \sum_{x \in C} 2^{-|c|}$

Properties of Jeroslow-Wang Heuristic

Goal: assign variables with high occurrence in short clauses

- Considers all clauses, but shorter clauses are more important
- Separate polarity heuristic
 - → for example, use conflict-seeking polarity heuristic
- Two-sided variant: choose variable x with maximum $J(x) + J(\overline{x})$
 - → one-sided version works better
- Much better experimental results than Böhm and MOMS

(R)DLCS and (R)DLIS Heuristics

- based on positive $C_P(x)$ and negative occurrences $C_N(x)$ of variable x
- used in the famous SAT solver GRASP in 2000

Properties of (R)DLCS and (R)DLIS Heuristics

- Dynamic: Take the current partial assignment into account
- Combined: select x with maximal $C_P(x) + C_N(x)$
- Individual: select x with maximal $\max(C_P(x), C_N(x))$
- · Randomized: randomly select variable among the best

Recap

Decision Heuristics

- · Böhm's Heuristic
- · Mom's Heuristic
- · Jeroslow-Wang Heuristic
- (R)DLCS and (R)DLIS Heuristics

Next up

Restart Strategies

Restarts Strategies: Motivation

Given *n* runs of randomized DPLL search, what is the average number of backtracks per run (relative to *n*)?

Heavy-tailed Distribution backtracks of number mean 0.5 runs runs — vs. Standard distribution: $P[X > x] \sim \frac{1}{x\sqrt{2\pi}}e^{-x^2/2}$ ⇒ Heavy-tailed distribution: $P[X > x] \sim C \cdot x^{-\alpha}, \quad C > 0, \alpha \in (0, 2)$ [From: Gomes et al. 2000]

Restart Strategies

Clear the partial assignment and backtrack to the root of the search tree.

Why Restart?

- To recover from bad branching decisions and solve more instances
- · Might decrease performance on easy instances

When to Restart?

- After some number of conflicts / backtracks
- The intervals between restarts should increase to guarantee completeness
- · How much increase?
 - · Linear increase too slow
 - Exponential increase ok with small exponent
 - MiniSat: k-th restart happens after 100 × 1.1^k conflicts

Theorem (Luby, Sinclair, Zuckerman 1993)

Consider a Las Vegas algorithm A (i.e., correct but with random run time) and a restart strategy $S = \langle t_1, t_2, \ldots \rangle$ (i.e., run A for time t_1 , then for time t_2 , etc.). Up to a constant factor, the Luby sequence is the best possible universal strategy to minimize the expected run time until a run is successful.

$$Luby = u \cdot (t_i)_{i \in \mathbb{N}} \quad \textit{with} \quad t_i = \begin{cases} 2^{k-1} & \textit{if } i = 2^k - 1 \\ t_{i-2^{k-1}+1} & \textit{if } 2^{k-1} \le i \le 2^k - 1 \end{cases}$$

Example (Luby Sequence)

 $1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, \dots$

Algorithm 3: Luby Sequence

Input: int i

1 for
$$k = 1$$
 to 32 do

2 | if
$$i == (1 \ll k) - 1$$
 then

$$3 \quad | \quad | \quad \mathbf{return} \ 1 \ll (k-1)$$

4 for
$$k = 1$$
 to ∞ do

5 | if
$$(1 \ll (k-1)) \le i \le (1 \ll k) - 1$$
 then

6 return Luby
$$(i - (1 \ll (k-1)) + 1)$$

run DPLL() with conflict-limit 512. Luby(++restarts)

Luby Sequence: Reluctant Doubling

A more efficient implementation of the Luby sequence invented by Donald Knuth

Use the v_n of the following pairs (u_n, v_n) :

$$(u_1, v_1) = (1, 1);$$

 $(u_{n+1}, v_{n+1}) = u_n \& -u_n == v_n ? (u_n+1, 1) : (u_n, 2v_n);$

Example (Luby Sequence)

$$(1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), \dots$$

Branching Polarity: Phase Saving

Observation: Frequent restarts decrease performance on some satisfiable instances

Assignment Caching

Idea: Remember last assignment of each variable and use it first in branching

- First implemented in RSAT (2006)
- Result: Phase saving stabilizes positive effect of restarts
- Best results in combination with non-chronological backtracking

Example: A and B are satisfied, search works on component C

Recap

Decision Heuristics

Restart Strategies

- Inner / Outer Pattern
- Luby Sequence / Reluctant Doubling
- · Phase Saving / Assignment Caching

Next up

Clause Learning

DPLL: Backtracking

Example: Chronological Backtracking

$$\left\{ \{A,B\}, \{B,C\}, \{\neg A,\neg X,Y\}, \right. \\ \left. \{\neg A,X,Z\}, \{\neg A,X,\neg Z\}, \right. \\ \left. \{\neg A,\neg Y,Z\}, \{\neg A,\neg Y,\neg Z\} \right\} \right.$$
 (Formula)

A, B, C, X, Y, Z (Trail)

$$\{\neg A, \neg Y, \neg Z\}$$
 (Conflicting Clause)

DPLL: Backtracking

Example: Chronological Backtracking

$$\left\{ \{A,B\}, \{B,C\}, \{\neg A, \neg X, Y\}, \\ \{\neg A, X, Z\}, \{\neg A, X, \neg Z\}, \\ \{\neg A, \neg Y, Z\}, \{\neg A, \neg Y, \neg Z\} \right\}$$
 (Formula)

$$A, B, C, \neg X, Z$$
 (Trail)

$$\{\neg A, X, \neg Z\}$$
 (Conflicting Clause)

DPLL: Backtracking

Example: Chronological Backtracking

$$\left\{ \{A,B\}, \{B,C\}, \{\neg A,\neg X,Y\}, \\ \{\neg A,X,Z\}, \{\neg A,X,\neg Z\}, \\ \{\neg A,\neg Y,Z\}, \{\neg A,\neg Y,\neg Z\} \right\}$$
 (Formula)

Observation: Conflicting clauses $\{\neg A, \neg Y, \neg Z\}$, $\{\neg A, X, \neg Z\}$ constrain only a fraction of the trail (*B* and *C* irrelevant)

How to find out which assignments on the trail are relevant for the actual conflict and immediately backtrack to *A*?

Implication Graph

Given: Formula *F*, assignment trail *T* and conflicting clause *C*.

Definition: Implication Graph

The implication graph is a DAG $G = (V \cup \{ \mbox{$\rlap/$} \}, E)$ of

- vertices $[\ell_i, d_i]$ for each literal ℓ_i with decision level d_i on the trail
- vertex ¼ representing the conflicting assignment
 Note: all literals of C have edges to ⅓
- edges $([\ell_i, d_i], [u_{i,j}, d_i])$ for each propagated literal $u_{i,j}$ at decision level d_i

Observations:

The sink is always the conflicting assignment, and the sources are the desicion literals involved in the conflict.

We can use this to determine the reasons for the conflict.

Conflict Analysis

Example: Implication Graph

Implication graph for the conflicting state under the trail A, B, C, X, Y, Z.

The edge labels denote clauses, node labels indicate a variable assignment and its decision level.

- Consider inferring the clause $\{\neg A, \neg X\}$ by the following resolution steps: $(7 \circ_Z 5) \circ_Y 3.$
- Learning of $\{\neg A, \neg X\}$ prevents the solver choosing the same partial assignment again.

$$\{\{A,B\},\tag{1}$$

$$\{B,C\},$$
 (2)

$$\{\neg A, \neg X, Y\},$$
 (3)

$$\{\neg A, X, Z\}, \tag{4}$$

$$\{\neg A, \neg Y, Z\},$$
 (5)

$$\neg A, X, \neg Z$$
}, (6

$$\{\neg A, \neg Y, \neg Z\}\}$$
 (7)

Implement trail as stack of literals together with a pointer to the reason clause (nullptr for decisions) and the decision level. On each conflict, use the trail to trace back the implications to the conflict sources.

Example (Trail with conflicting clause $\{\neg A, \neg Y, \neg Z\}$)

$$\begin{cases}
4 & \{ \neg A, \neg Y, \neg Z \} \\
Z & 4 & \{ \neg A, \neg Y, Z \} \\
Y & 4 & \{ \neg A, \neg X, Y \} \\
X & 4 & \text{null}
\end{cases}$$

C 3 null

B 2 null

null

Trail Resolution:

•
$$\{\neg A, \neg Y, \neg Z\} \otimes_{Z} \{\neg A, \neg Y, Z\} = \{\neg A, \neg Y\}$$

•
$$\{\neg A, \neg Y\} \otimes_Y \{\neg A, \neg X, Y\} = \{\neg A, \neg X\}$$

• Conflict Clause
$$C = \{\neg A, \neg X\}$$

Backtrack Level b = 1

Conflict Analysis: Unit Implication Points (UIP)

Several possibilities to learn a clause from an implication graph

- UIP is a dominator in the implication graph
- A node v is a dominator for \(\frac{1}{2} \), if all paths to ∮ contain v
- FirstUIP: "first" dominator (seen from conflict side)

*[From: Beame et al. 2003]

Conflict Analysis: Unit Implication Points (UIP)

1-UIP Learning

- · FirstUIP-clause: resolve conflicting clause and reason clauses until only a single literal of the current decision level remains
- Advantage: Stopping at a UIP always leads to an asserting clause. Algorithm becomes easier: backtrack until clause becomes asserting
- The assertion level is the second highest level in a conflict clause

1-UIP learning changes the decision tree in our example like this:

Example: Non-chronological Backtracking

$$F = \{ \{A, B\}, \{B, C\}, \\ \{\neg A, \neg X, Y\}, \\ \{\neg A, X, Z\}, \\ \{\neg A, -Y, Z\}, \\ \{\neg A, X, \neg Z\}, \\ \{\neg A, -Y, -Z\} \}$$

Trail: *A*, *B*, *C*, *X*, *Y*, *Z* Conflicting Clause: $\{\neg A, \neg Y, \neg Z\}$ Conflict Clause (1UIP): $\{\neg A, \neg Y\}$

1-UIP learning changes the decision tree in our example like this:

Example: Non-chronological Backtracking

$$F = \{ \{A, B\}, \{B, C\}, \\ \{\neg A, \neg X, Y\}, \\ \{\neg A, X, Z\}, \\ \{\neg A, \neg Y, Z\}, \\ \{\neg A, X, \neg Z\}, \\ \{\neg A, \neg Y, \neg Z\}, \\ \{\neg A, \neg Y\} \}$$

Trail: $A, \neg Y, \neg X, Z$

Conflicting Clause: $\{\neg A, X, \neg Z\}$

Resolution Proof

Properties of conflict clause C

- *F* |= *C*
- $F \cup \neg C \vdash_{IIP} \bot$
- $D \notin F, \forall D \subseteq C$

Certificates for Unsatisfiability

- · sequence of learned clauses serves as a proof of unsatisfiability
- can be used to validate the correctness of the SAT result in high risk applications (e.g., verification)

The End.

Recap

- Decision Heuristics
 - · Böhm's Heuristic
 - · Mom's Heuristic
 - · Jeroslow-Wang Heuristic
 - (R)DLCS and (R)DLIS Heuristics
- Restart Strategies
 - · Inner / Outer Pattern
 - Luby Sequence / Reluctant Doubling
- Branching Polarity: Phase Saving
- Conflict Analysis, Clause Learning