

Solar Irradiance Forecasting via Artificial Neural Networks (ANN)

Mohammad F. El Hajj Chehade – E4 ECE Taha Koleilat – E4 CCE

ENMG 616 – Advanced Optimization & Techniques American University of Beirut

Nov 16, 2022

AUB

Outline

- Introduction
 - Motivation
 - Objective
- Problem formulation
 - o ANN
 - Optimization Problem
- Proposed Methodology
 - Weights Initialization
 - Backpropagation
 - Iterative Descent Methods
 - Gradient Clipping
 - Data Pre-processing
- Convergence Analysis and Fine-tuning
- Discussion of results
 - Comparison between Models
 - Prediction on a recent weather sample

Motivation

Photovoltaic Solar Technology

Solar Irradiance Forecasting

Artificial Neural Networks (ANN)

Forward Propagation

Forward Propagation (cont'd)

Objective Function

MSE Loss Function

Gradient Computation

$$\nabla L = (\frac{\partial L}{\partial w_1}, \dots, \frac{\partial L}{\partial b_1}, \dots, \frac{\partial L}{\partial b_i}, \dots) \qquad \qquad \text{Gradient Vector}$$

$$L(w, b) = \frac{1}{n} \sum_{i=1}^{n} (y_{predicted_i} - y_{actual_i})^2 \qquad \qquad \text{Loss Function}$$

$$\frac{\partial L}{\partial w_i} = \frac{\partial L}{\partial y_{predicted}} \frac{\partial y_{predicted}}{\partial w_i} \qquad \qquad \text{Neural Network relations}$$

$$\frac{\partial L}{\partial y_{predicted}} = \frac{1}{2n} \sum_{i=1}^{n} (y_{predicted_i} - y_{actual_i})$$

Back Propagation

GOAL: Find
$$\frac{\partial y_{predicted}}{\partial w_i}$$

$$y_{predicted} = tanh(\underline{w_5h_1 + w_6h_2 + b_2})$$

$$y_{predicted} = tanh(z)$$

$$\frac{\partial y_{predicted}}{\partial w_{5}} = \frac{\partial tanh(z)}{\partial z} \frac{\partial z}{\partial w_{5}} = tanh'(z) \times h_{1}$$

Back Propagation (cont'd)

$$h1 = tanh(w_1i_1 + w_2i_2 + b_1)$$

$$\frac{\partial h_1}{\partial w_1} = \frac{\partial tanh(z)}{\partial z} \frac{\partial z}{\partial w_1} = tanh'(z) \times i_1$$

$$y_{predicted} = tanh(w_5h_1 + w_6h_2 + b_2)$$

$$\frac{\partial y_{predicted}}{\partial h_1} = \frac{\partial tanh(z)}{\partial z} \frac{\partial z}{\partial h_1} = tanh'(z) \times w_5$$

$$\frac{\partial y_{predicted}}{\partial w_1} = tanh'(z) \times w_5 \times tanh'(z) \times i_1$$

Gradient Descent

differentiating the loss function

$$\nabla L \ = \ (\frac{\partial L}{\partial w_1}, \ldots, \frac{\partial L}{\partial w_i}, \ldots, \frac{\partial L}{\partial b_1}, \ldots, \frac{\partial L}{\partial b_i}, \ldots) \ \longleftarrow \quad \text{gradient vector}$$

$$w \leftarrow w - \alpha \nabla L \leftarrow update rule$$

Weights Initialization

- Speeds up convergence
- Mitigates Exploding and Vanishing gradient problems
- Takes into account the weights' variance
- Utilized Weights Initialization proposed by Kaiming He et al.

$$W \sim \mathcal{N}\left(0, \frac{2}{n^l}\right)$$

Kaiming Initialization

Gradient Clipping

- Trim a gradient if it grows too large in order to maintain an acceptable value
- If $\|\nabla L\| \ge T$, then $\|\nabla L\| \leftarrow T$
- Ensures that the update for the parameters isn't too large to cause divergence

Without gradient clipping

With gradient clipping

Data Pre-processing

	Data	Time	Temperature	Pressure	Humidity	WindDirection(Degrees)	Speed	TimeSunRise	TimeSunSet
0	9/29/2016 12:00:00 AM	23:55:26	48	30.46	59	177.39	5.62	06:13:00	18:13:00
1	9/29/2016 12:00:00 AM	23:50:23	48	30.46	58	176.78	3.37	06:13:00	18:13:00
2	9/29/2016 12:00:00 AM	23:45:26	48	30.46	57	158.75	3.37	06:13:00	18:13:00
3	9/29/2016 12:00:00 AM	23:40:21	48	30.46	60	137.71	3.37	06:13:00	18:13:00
4	9/29/2016 12:00:00 AM	23:35:24	48	30.46	62	104.95	5.62	06:13:00	18:13:00
32681	12/1/2016 12:00:00 AM	00:20:04	44	30.43	102	145.42	6.75	06:41:00	17:42:00
32682	12/1/2016 12:00:00 AM	00:15:01	44	30.42	102	117.78	6.75	06:41:00	17:42:00
32683	12/1/2016 12:00:00 AM	00:10:01	44	30.42	102	145.19	9.00	06:41:00	17:42:00
32684	12/1/2016 12:00:00 AM	00:05:02	44	30.42	101	164.19	7.87	06:41:00	17:42:00
32685	12/1/2016 12:00:00 AM	00:00:02	44	30.43	101	83.59	3.37	06:41:00	17:42:00
32686 rows × 9 columns									

	Radiation			
0	1.21			
1	1.21			
2	1.23			
3	1.21			
4	1.17			
32681	1.22			
32682	1.17			
32683	1.20			
32684	1.23			
32685	1.20			
32686 rows × 1 columns				

Data Pre-processing (cont'd)

Convergence Analysis and Fine-tuning

- Full Batch Gradient Descent
- Diminishing step size
- 0.001 Learning Rate
- 1200 epochs

Set	MSE	MAE	RMSE
Training Set	10,919.83	N/A	N/A
Testing Set	11,119.12	51.67	105.44

Convergence Analysis and Fine-tuning (cont'd)

- Mini Batch Gradient Descent
- 0.0001 Learning Rate
- 128 Batch Size
- 100 epochs

Set	MSE	MAE	RMSE
Training Set	7806.26	N/A	N/A
Testing Set	8559.51	41.79	92.52

Convergence Analysis and Fine-tuning (cont'd)

- Mini Batch Gradient Descent
- 0.001 Learning Rate
- Diminishing Step Size
- 128 Batch Size
- 100 epochs

Set	MSE	MAE	RMSE
Training Set	8351.33	N/A	N/A
Testing Set	8887.98	43.08	94.27

Convergence Analysis and Fine-tuning (cont'd)

- Mini Batch Gradient Descent
- 0.001 Learning Rate
- 128 Batch Size
- 100 epochs

Set	MSE	MAE	RMSE
Training Set	6936.05	N/A	N/A
Testing Set	9705.06	46.37	98.52

Comparison between Models

- Mini Batch Gradient Descent
- 0.001 Learning Rate
- 32 Batch Size
- 100 epochs

Models	MSE	MAE	RMSE
Neural Network SGD	8752.26	40.83	93.55
Neural Network GD	11119.12	51.67	105.44
Linear Regression SGD	35658.31	141.90	188.83

Prediction on a recent weather sample

Sat 12 | Day

54°

Sat 12 | Night

31°

Prediction on a recent weather sample (cont'd)

Predicting solar irradiance according to weather forecast in Dallas, Texas

```
X = pd.DataFrame(data={"Data": '12/11/2022 12:00:00 PM', "Time": '10:18:00', "Temperature":54, "Pressure":29.97, "Humidity":41, "WindDirection(Degrees)":0,
       "Speed":15, "TimeSunRise":'06:54:00', "TimeSunSet":'17:27:00'},index=[0])
X['TSR Minute'] = pd.to datetime(X['TimeSunRise']).dt.minute
X['TSS Minute'] = pd.to datetime(X['TimeSunSet']).dt.minute
X['TSS Hour'] = np.where(pd.to datetime(X['TimeSunSet']).dt.hour==18, 1, 0)
X['Month'] = pd.to datetime(X['Data']).dt.month
X['Day'] = pd.to datetime(X['Data']).dt.day
X['Hour'] = pd.to datetime(X['Time']).dt.hour
X['Minute'] = pd.to datetime(X['Time']).dt.minute
X['Second'] = pd.to datetime(X['Time']).dt.second
X = X.drop(['Data', 'Time', 'TimeSunRise', 'TimeSunSet'], axis=1)
X['WindDirection(Degrees) bin'] = np.digitize(X['WindDirection(Degrees)'], np.arange(0.0, 1.0, 0.02).tolist())
X['TSS Minute bin'] = np.digitize(X['TSS Minute'], np.arange(0.0, 288.0, 12).tolist())
X['Humidity bin'] = np.digitize(X['Humidity'], np.arange(32, 3192, 128).tolist())
X = StandardScaler().fit transform(X)
np.squeeze(net1.predict(X))
```


Prediction on a recent weather sample (cont'd)

