W-1

максимальним вихідним сигналом, якщо частота вхідного сигналу дорівнює ω_0 . Сама ж частота ω_0 може бути визначена експериментально при слабкому зв'язку між контурами, коли частотна характеристика має чіткий максимум на частоті ω_0 .

этимы патонингодин сопо Завдання:

- 1. Встановити слабкий зв'язок (максимальну відстань) між контурами. Настроїти контури на задану частоту зовнішньої напруги, змінюючи ємності C_1 і C_2 .
- 2. Після настроювання контурів у резонанс зняти залежність модуля напруги на другому контурі $|\dot{U}|$ від відстані між контурами. З графіка отриманої залежності визначити відстань, що відповідає критичному, слабкому та надкритичному зв'язкам.
- 3. Експериментально визначити частотні характеристики зв'язаних контурів при слабкому, критичному та надкритичному зв'язках.

5. Дослідження перехідних процесів у лінійних електричних колах

Короткі теоретичні відомості

Зміна структури кола (вмикання чи вимикання пасивних або активних елементів кола), так звані комутації, спричиняють зміну значень струмів і напруг у колі, що тривають певний час.

У більшості випадків зміна структури кола (комутація) відбувається практично миттєво у порівнянні зі змінами струмів і напруг, до яких вони приводять. Процес зміни струмів і напруг унаслідок комутації називають перехідним процесом у колі, який є важливим під час аналізу кіл.

Розрахунок перехідних процесів грунтується на двох законах комутації:

1. Магнітний потік і струм через індуктивність в електричному колі до і після комутації незмінні.

2. Напруга і заряд ємності у колі до і після комутації незмінні. Закони комутації випливають з неможливості стрибкоподібної зміни напруги на ємності і струму через індуктивність, інакше енергії ємності $(\frac{CU^2}{2})$ та індуктивності $(\frac{Li^2}{2})$ змінювались би стрибком, що передбачає наявність у колі джерела нескінченної потужності. Крім того, у випадку стрибкоподібної зміни напруги на ємності струм через неї $(i_C = C\frac{dU_C}{dt})$ мав би дорівнювати безмежності. Аналогічно для індуктивності, при стрибку струму через неї напруга на індуктивності $U_L = L\frac{di_L}{dt}$ була б безмежно великою.

Аналізуючи перехідні процеси, часто користуються класичним методом. Він полягає у розв'язку інтегро-диференціального рівняння, що описує поведінку кола, отриманого на основі законів Кірхгофа і компонентних рівнянь елементів електричного кола для миттєвих значень струмів та напруг.

У процесі розв'язування рівнянь з'являються постійні інтегрування, які визначаються з початкових умов із врахуванням законів комутації.

Розглянемо перехідний процес у послідовному RL-колі у випадку під'єднання до нього постійного джерела напруги E (рис.5.1.).

Рис. 5.1. Схема послідовного RL-кола.

Після комутації (замикання ключа K) коло описується рівнянням:

$$L\frac{di}{dt} + Ri = E, \tag{5.1}$$

Відлік часу ведемо від моменту замикання ключа. До комутації струм через індуктивність був відсутній. Тому після замикання ключа, згідно із законами комутації, у початковий момент часу i(0)=0. Розв'язок рівняння (5.1) складається з часткового розв'язку неоднорідного рівняння $i_0=Ae^{-\frac{t}{\tau}}$ (де $\tau=\frac{L}{R}$), що описує вільний перехідний процес у колі. Частковий розв'язок неоднорідного рівняння можна знайти за умови $t\to\infty$. Тоді вільний перехідний процес завершиться $(i_0\approx 0)$, а значення струму у колі буде майже незмінне і дорівнюватиме $i_{\text{вим}}=\frac{E}{R}$, що визначає вимушене (визначається дією зовнішнього джерела E) значення струму у колі. Загальний розв'язок рівняння (5.1) можна записати так:

$$i(t) = i_{\rm O} + i_{H} = i_{\rm вільн} + i_{\rm вим} = \frac{E}{R} + Ae^{-\frac{t}{\tau}}$$
.

Значення A визначається з початкових умов: i(0) = 0, тоді $A = -\frac{E}{R}$, звідки випливає

$$i(t) = \frac{E}{R} (1 - e^{-\frac{t}{\tau}}). \tag{5.2}$$

Напруга на індуктивності:

$$U_L(t) = L\frac{di}{dt} = Ee^{-\frac{t}{\tau}}.$$
 (5.3)

З виразів (5.2) і (5.3) видно, що зміна струму та напруги на індуктивності має експоненціальний характер. Такий тип перехідного процесу називається аперіодичним перехідним процесом. Швидкість перехідного процесу (час переходу значення струму чи напруги до усталеного значення) визначається значенням часової сталої т. Вважається, що за час (3-5)т перехідний процес майже завершується. Значення т можна визначити як інтервал часу, за який значення струму чи напруги змінюється в е разів.

Аналогічно можна розглянути процес усталення струмів і напруг у RC-колі (рис.5.2.). Перехідний процес, як і у попередньому колі, має аперіодичний характер із часовою сталою $\tau = RC$

Якщо коло складається з R,L i C елементів, то перехідний процес має більш складний характер. Розглянемо процес зміни струму в колі (рис.5.3.) у випадку замикання ключа K, враховуючи, що до комутації напруга на конденсаторі відсутня, а струм у колі дорівнює нулю. Після комутації коло описується рівнянням $L\frac{di}{dt}+Ri+\frac{1}{C}\int idt=E_0$, яке після диференціювання і ділення на L має такий вигляд:

Рис.5.2. Схема послідовного *RC*-кола

Рис. 5.3. Схема послідовного RLC-кола

Шукаючи розв'язок рівняння у формі $i=Ae^{pt}$, отримаємо характеристичне рівняння $p^2+\frac{R}{L}p+\frac{1}{LC}=0$, корені якого дорівнюють: $p_{_{1,2}}=-\frac{R}{2L}\pm\sqrt{\frac{R^2}{4L^2}-\frac{1}{LC}}$

Тоді розв'язок рівняння (5.4) матиме такий вигляд: $i(t) = A_1 e^{p_1 t} + A_2 e^{p_2 t},$

де A_1 та A_2 постійні інтегрування, які знаходять з початкових умов.

Оскільки струм у колі безпосередньо після комутації дорівнює нулю, то

$$A_1 + A_2 = 0$$
 and $A_1 = -A_2$. (5.5)

Врахувавши, що напруга на конденсаторі і струм в колі безпосередньо після комутації дорівнюють нулю, отримаємо напругу на індуктивності E_0 , і тоді можна записати:

$$L(p_1A_1 + p_2A_2) = E_0. (5.6)$$

3 рівнянь (5.5) та (5.6) знайдемо постійні інтегрування:

$$A_1 = \frac{E_0}{p_1 - p_2}$$
, $A_2 = \frac{E_0}{p_2 - p_1}$

Розв'язок рівняння (5.4), з врахуванням початкових умов, має такий вигляд:

$$i(t) = \frac{E_0}{(p_2 - p_1)L} (e^{p_1 t} - e^{p_2 t}).$$

Знаючи струм у колі, легко можна знайти напруги на ємності та індуктивності:

$$U_L(t) = \frac{E_0}{(p_2 - p_1)L} (p_1 e^{p_1 t} - p_2 e^{p_2 t}),$$

$$U_C(t) = \frac{E_0}{(p_2 - p_1)L} (p_2 e^{p_1 t} - p_1 e^{p_2 t}).$$

Характер перехідного процесу залежить від коренів характеристичного рівняння. При додатному підкореневому виразі $(R>2\sqrt{\frac{L}{C}})$ обидва корені дійсні і від'ємні. Тоді перехідний процес має аперіодичний характер. Тривалість перехідного процесу визначається більшою часовою сталою: $\tau_1=\frac{1}{-\frac{R}{2L}+\sqrt{\frac{R^2}{4L^2}-\frac{1}{LC}}}$

Якщо корені характеристичного рівняння є уявними ($R < 2\sqrt{\frac{L}{C}}$), характер перехідного процесу якісно змінюється.

Позначимо $\omega_0 = \frac{1}{\sqrt{LC}}$, $\alpha = \frac{R}{2L}$ і, застосувавши формулу

Ейлера ($e^{jx} = \cos x + j \sin x$), отримаємо розв'язок рівняння (5.4) у такому вигляді:

яді:
$$i(t) = Ae^{-\alpha t} \sin(\sqrt{\omega_0^2 - \alpha^2} \cdot t + \varphi), \tag{5.7}$$

де A і φ — постійні інтегрування.

Як видно з рівняння (5.7), перехідний процес має коливний характер з частотою коливань, яка менша від власної частоти коливань послідовного контуру. Швидкість згасання коливань визначається величиною α , яку називають коефіцієнтом згасання (загасання). В граничному випадку, коли $\alpha \to 0$, перехідний процес у колі триватиме нескінченно довго і матиме вигляд гармонічних коливань з частотою власних коливань контуру ω_0 . Величину α можна зв'язати із характеристиками контуру:

$$\alpha = \frac{\omega_0}{2Q},$$

де Q — добротність контуру.

Завдання:

- 1. Для заданих викладачем значень елементів R, L, C обчислити часові сталі для RL-, RC-, RLC-кіл (рис.5.1;5.2;5.3) і визначити типи перехідного процесу для кожного з випадків.
- 2. Експериментально визначити значення часових сталих для кожного кола. Для цього необхідно підключити на вхід кола генератор П-подібних коливань, виставити період коливань генератора, що дорівнює $(3\div5\tau)\cdot2$, де τ найбільша часова стала для цього кола.

3. Порівняти отримані експериментальні результати розрахунковими.

6. Дослідження вольт-амперних характеристик нелінійних резисторів

Короткі теоретичні відомості

Нелінійним резистором називається двополюсник, в якому залежність між струмом і напругою (вольт-амперна характеристика) має такий вигляд: u=f(i), де f(i) — нелінійна функція, або i=g(u), де g(u) — нелінійна функція

Для опису нелінійного резистора часто використовують величину $R_{\pi}=\frac{\partial f\left(i\right)}{\partial i}$, яку називають диференціальним або динамічним опором резистора. Обернену до R_{π} величину називають диференціальною провідністю і позначають G_{π} . Для нелінійного резистора величини R_{π} і G_{π} є функціями струму.

Часто вольт-амперні характеристики задаються графічно на основі експериментально виміряних значень струмів і напруг (рис.6.1). Виходячи з них, легко можна визначити значення статичного ($R_{\rm cr}$) і диференціального ($R_{\rm h}$) опорів у заданому положенні робочої точки $P(i_0,u_0)$ на характеристиці нелінійного резистора:

$$R_{\rm cr} = \frac{u_0}{i_0}$$
, $R_{\rm p} = \left[\frac{\partial g(u)}{\partial u}\right]_{u_0 i_0}^{-1} = ctg\alpha$.