1.

3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2006 ELECTRICAL AND ELECTRONICS MEASUREMENT SEMESTER - 3

Time: 3 Hours	•			Full Marks: 70)

GROUP - A

(Multiple Choice Questions)

Che	oose t	he correct answers of the following	lowing:		$10\times1=10$		
i)	The	The torque produced in a wattmeter is proportional to					
	a)	the average value of curre	nts in two	coils			
	b)	the r.m.s. value of current	ts in the t	wo coils			
·	c)	the average value of the su	upply volt	age			
	d)	none of these.					
ii)	The	The ratio error in the current transformers is largely dependent upon					
	a)	iron loss component of ma	gnetising	current			
	b)	magnetising component of	the magn	etising current			
•	c)	both (a) and (b)					
	d)	either (a) or (b).					
iii)	Mu	rray loop test is used for loca	ation of				
	a)	short circuit fault on a cab	ole				
	b)	ground fault on a cable		• • • • • • • • • • • • • • • • • • •			
	c)	both ground fault and sho	rt circuit	ault			
	d)	open circuit fault.					
iv)	iv) LVDT is used to measure						
	a)	displacement	b)	temperature			
**	c)	pH value	d)	intensity of light.			
v)	Cre	eping is observed in					
	a)	watt-hourmeter	b)	wattmeter			
	c)	ammeter	d)	power factor meter.			

ne.	B.TECH	/SEM-3	/EE-302	/0A
vo	D. LEVILL	OPER-O		v

4

vi)	The	household energymeter is					
	a).	an integrating instrument	b)	an indicating instrument			
	c)	a recording instrument	d)	none of these.			
vii)	In a	CRT the focusing anode is loca	ted				
	a) between pre-accelerating and accelerating anodes						
	b)	after accelerating anode					
	c)	before pre-accelerating anode					
	d)	none of these.					
viii)	Which of the following instruments has the highest frequency range with accuracy within reasonable limits?						
	a)	Moving iron	b)	Electrodynamometer			
	c)	Thermocouple	d)	Rectifier.			
ix)		mA d'Arsonval galvanometer ha 10 V voltmeter. The value of m		sistance of $100~\Omega$. It is to be converges resistance is	erted		
	a)	999 Ω	b)	9999 Ω			
	c)	9900 Ω	d)	990 Ω.			
x)		ch of the following bridges is p ng high Q-factor?	preferre	ed for the measurement of induc	tance		
	a)	Maxwell bridge	b)	Hay bridge			
	c)	Owen bridge	d)	DeSauty's bridge.			

GROUP - B

(Short Answer Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Explain the difference between Dynamometer type wattmeter and induction type wattmeter.
- 3. Show that the driving torque in a moving iron instrument is given by

 $T_D = \frac{1}{2} I^2 \frac{dL}{d\theta}$, where the symbols have their usual meaning.

S/B.TECH/SEM-3/EE-302/06

5

- 4. Name and explain, how the different torques are produced in a permanent magnet moving coil instrument.
- 5. What are the advantages of instrument transformers over a 'shunt' or 'multiplier'?
- 6. Why can we not use a conventional Wheatstone bridge for measurement of low resistance? How can we measure low resistance?

GROUP - C

(Long Answer Questions)

Answer any three questions.

 $3 \times 15 = 45$

- a) Derive the equations of balance for an Anderson's bridge. Draw the phasor diagram for condition under balance. 5 + 2
 - b) The four arms of a bridge are:

arm ab: an imperfect capacitor C_1 with an equivalent series resistance of r_1 ,

arm bc: a non-inductive resistance R_3 ,

arm cd: a non-inductive resistance R_4 ,

arm da: an imperfect capacitor C_2 with an equivalent series resistance of r_2 , series with a resistance R_2 .

A supply of 450 Hz is given between terminals a and c and the detector is connected between b & d.

At balance : $R_2 = 4.8 \,\Omega$, $R_3 = 2 \,\mathrm{k}\Omega$, $R_4 = 2.85 \,\mathrm{k}\Omega$, $C_2 = 0.5 \,\mathrm{\mu F}$ & $r_2 = 0.4 \,\Omega$.

Calculate the value of C_1 , r_1 & also calculate dissipation factor of this capacitor. Deduce the expression used. 3+5

- 8. a) Describe in brief the construction and working principle of a single phase induction type energymeter.
 - b) What is phantom loading?

3

c) A single phase kWhr meter makes 500 revolutions per kWhr. It is found on testing as making 40 revolutions in 58·1 seconds at 5 kW full load. Find out the percentage error.

7.

CS/B.TECH/SEM-3/EE-302/06

6

- a) Draw and explain different blocks of a CRO. Write the operating principle of a CRT.
 - b) How do we measure phase and frequency of a.c. quantity with the help of a CRO?
- 10. Draw the equivalent circuit and phasor diagram of a current transformer. Derive the expression for ratio and phase angle errors.
- Draw the diagram of a laboratory type (Crompton's) d.c. potentiometer and explain how 1.0186 V is measured with this potentiometer.
 - b) How can potentiometer be used for
 - i) calibration of a voltmeter
 - ii) calibration of a wattmeter?

6

c) In the measurement of a low resistance by means of a potentiometer, the following readings were obtained:

Voltage drop across low resistance under test: 0.83942 V

Voltage drop across a standard resistance connected in series with the unknown: 1.01575 V.

If the value of the standard resistance is $0.10014~\Omega$, find the value of unknown resistance.

12. Write notes on any three of the following:

 $3 \times 5 = 15$

- i) Frequency counter
- ii) Digital multimeter
- iii) Q meter
- iv) Megger
- v) Rectifier type of deflecting instruments.