Bike Sharing Demand: Linear Regression Model

Problem Statement:

A bike-sharing system is a service in which bikes are made available for shared use to individuals on a short term basis for a price or free. Many bike share systems allow people to borrow a bike from a "dock" which is usually computer-controlled wherein the user enters the payment information, and the system unlocks it. This bike can then be returned to another dock belonging to the same system.

A US bike-sharing provider **BoomBikes** has recently suffered considerable dips in their revenues due to the ongoing Corona pandemic.

They want to understand the factors on which the demand for these shared bikes depends. Specifically, they want to understand the factors affecting the demand for these shared bikes in the American market. The company wants to know:

- · Which variables are significant in predicting the demand for shared bikes.
- · How well those variables describe the bike demands

Business Goal

We need build a model to predict the demand for shared bikes with the available independent variables in the given dataset. It will be used by the management to understand how exactly the demands vary with different features. They can accordingly manipulate the business strategy to meet the demand levels and meet the customer's expectations. Further, the model will be a good way for management to understand the demand dynamics of a new market.

Steps followed in this exercise

Broadly, we will follow the following steps to build the model:

- 1. Reading, understanding and visualizing the data
- 2. Preparing the data for model (train-test split, rescaling etc.)
- 3. Training the model
- 4. Residual Analysis
- 5. Predictions and evaluations on the test set

Reading and Understanding the data

In [412]:

```
# Import required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import r2_score
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

In [413]:

```
# Read dataset
data = pd.read_csv("day.csv")
pd.concat([data.head(3), data.tail(3)])
```

Out[413]:

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atemp	hum	W
0	1	01-01- 2018	1	0	1	0	6	0	2	14.110847	18.18125	80.5833	
1	2	02-01- 2018	1	0	1	0	0	0	2	14.902598	17.68695	69.6087	
2	3	03-01- 2018	1	0	1	0	1	1	1	8.050924	9.47025	43.7273	
727	728	29-12- 2019	1	1	12	0	6	0	2	10.386653	12.12000	75.2917	
728	729	30-12- 2019	1	1	12	0	0	0	1	10.489153	11.58500	48.3333	:
729	730	31-12- 2019	1	1	12	0	1	1	2	8.849153	11.17435	57.7500	

In [414]:

```
# Check dimension
print("Shape of data:", data.shape)
```

Shape of data: (730, 16)

In [415]:

Get basic information about the columns and their data types
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 730 entries, 0 to 729
Data columns (total 16 columns):

Data	corumns (co	car io corumis,	•
#	Column	Non-Null Count	Dtype
0	instant	730 non-null	int64
1	dteday	730 non-null	object
2	season	730 non-null	int64
3	yr	730 non-null	int64
4	mnth	730 non-null	int64
5	holiday	730 non-null	int64
6	weekday	730 non-null	int64
7	workingday	730 non-null	int64
8	weathersit	730 non-null	int64
9	temp	730 non-null	float64
10	atemp	730 non-null	float64
11	hum	730 non-null	float64
12	windspeed	730 non-null	float64
13	casual	730 non-null	int64
14	registered	730 non-null	int64
15	cnt	730 non-null	int64
dtype	es: float64(4), int64(11),	object(1)
memoi	ry usage: 91	.4+ KB	

```
# Get descriptive statistics of data
print("Description statisctics of data", data.describe())
```

Descri	ption statis	ctics of data	ı	instant	season	yr	mnt			
h holiday weekday \										
count	730.000000	730.000000	730.000000	730.000000	730.000000	730.000000				
mean	365.500000	2.498630	0.500000	6.526027	0.028767	2.997260				
std	210.877136	1.110184	0.500343	3.450215	0.167266	2.006161				
min	1.000000	1.000000	0.000000	1.000000	0.000000	0.000000				
25%	183.250000	2.000000	0.000000	4.000000	0.000000	1.000000				
50%	365.500000	3.000000	0.500000	7.000000	0.000000	3.000000				
75%	547.750000	3.000000	1.000000	10.000000	0.000000	5.000000				
max	730.000000	4.000000	1.000000	12.000000	1.000000	6.000000				
	workingday	weathersit	temp	atemp	hum	windspeed	\			
count	730.000000	730.000000	730.000000	730.000000	730.000000	730.000000				
mean	0.683562	1.394521	20.319259	23.726322	62.765175	12.763620				
std	0.465405	0.544807	7.506729	8.150308	14.237589	5.195841				
min	0.000000	1.000000	2.424346	3.953480	0.000000	1.500244				
25%	0.000000	1.000000	13.811885	16.889713	52.000000	9.041650				
50%	1.000000	1.000000	20.465826	24.368225	62.625000	12.125325				
75%	1.000000	2.000000	26.880615	30.445775	72.989575	15.625589				
max	1.000000	3.000000	35.328347	42.044800	97.250000	34.000021				
	casual	registered	d d	ent						
count	730.000000	730.000000	730.000	000						
mean	849.249315	3658.757534	4508.0068	349						
std	686.479875	1559.758728	3 1936.011	547						
min	2.000000	20.00000	22.0000	000						
25%	316.250000	2502.250000	3169.750	000						
50%	717.000000	3664.500000	4548.5000	000						
75%	1096.500000	4783.250000	5966.000	000						
max	3410.000000	6946.000000	8714.0000	000						

Data Quality Check

Null value check

```
In [418]:
```

```
# Check if there are null values in dataset
data.isnull().any().any()
```

Out[418]:

False

There is no null value in dataset

Fixing weekday and workingday columns

Seems like weekday and workingday columns are shifted 2 steps down. This can be verified by dteday column. For example 1st Jan, 2018 is Monday and it should be working day.

In [419]:

```
steps = 2
while steps > 0:
    val_1 = data.weekday.iloc[0]
    val_2 = data.workingday.iloc[0]
    data['weekday'] = data['weekday'].shift(-1).fillna(0).astype(int)
    data['workingday'] = data['workingday'].shift(-1).fillna(0).astype(int)
    data.at[data.index[-1], 'weekday'] = val_1
    data.at[data.index[-1], 'workingday'] = val_2
    steps = steps - 1
pd.concat([data.head(3), data.tail(3)])
```

Out[419]:

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atemp	hum	W
0	1	01-01- 2018	1	0	1	0	1	1	2	14.110847	18.18125	80.5833	-
1	2	02-01- 2018	1	0	1	0	2	1	2	14.902598	17.68695	69.6087	
2	3	03-01- 2018	1	0	1	0	3	1	1	8.050924	9.47025	43.7273	
727	728	29-12- 2019	1	1	12	0	1	1	2	10.386653	12.12000	75.2917	
728	729	30-12- 2019	1	1	12	0	6	0	1	10.489153	11.58500	48.3333	1
729	730	31-12- 2019	1	1	12	0	0	0	2	8.849153	11.17435	57.7500	

Data cleaning

```
In [420]:
```

```
1 # Drop column 'instant' since it is an identity/index column
   data = data.drop('instant', axis= 1)
   # Converting dteday to Pandas datetime format
 4
 5
   data['dteday'] = pd.to_datetime(data['dteday'], dayfirst= True)
 6
   # Droping column 'cnt' gives summation of casual and registered values. So we can drop columns
7
8
   data = data.drop(['casual', 'registered'], axis= 1)
9
   # Derive a new column day which represent days passed since beginning of data collection
10
   from datetime import date
11
   start_date = date(2017, 12, 31)
12
13
   data['day'] = (data.dteday.dt.date - start_date).dt.days
14
15
   # Mapping season to actual values
   data['season'] = data['season'].map({1: 'spring', 2: 'summer', 3: 'fall', 4: 'winter'})
16
17
18 pd.concat([data.head(3), data.tail(3)])
```

Out[420]:

	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed
0	2018- 01-01	spring	0	1	0	1	1	2	14.110847	18.18125	80.5833	10.749882
1	2018- 01-02	spring	0	1	0	2	1	2	14.902598	17.68695	69.6087	16.652110
2	2018- 01-03	spring	0	1	0	3	1	1	8.050924	9.47025	43.7273	16.636700
727	2019- 12-29	spring	1	12	0	1	1	2	10.386653	12.12000	75.2917	8.33366 ⁻
728	2019- 12-30	spring	1	12	0	6	0	1	10.489153	11.58500	48.3333	23.500518
729	2019- 12-31	spring	1	12	0	0	0	2	8.849153	11.17435	57.7500	10.374682

Visualizing data

Visualize count of bike rentals over time

In [421]:

```
fig = plt.figure(figsize=(15, 5))
sns.lineplot(data= data, x= 'day', y= 'cnt')
plt.show()
```


There is a considerable dip in bike rental demand towars the tail of the graph. Which makes sense because there was a COVID-19 impact on the business

Visualize numeric variables

```
numeric_vars = ['temp', 'atemp', 'hum', 'windspeed', 'cnt']
sns.pairplot(data[numeric_vars])
plt.show()
```


Linear relationships between temp and cnt, atemp and cnt, are clearly visible in the pairplot

Visualize categorical variables

In [423]:

```
# Introducing a derived variable 'weekend'
 1
   data['weekend'] = data['dteday'].dt.day_name().isin(['Saturday', 'Sunday']).astype(int)
 2
 3
   categorical_vars = ['season', 'yr', 'holiday', 'workingday', 'weathersit', 'weekday', 'mnth',
 4
 5
   plt.figure(figsize=(15, 15))
 6
 7
 8
   for index, var in enumerate(categorical vars):
 9
       plt.subplot(4, 2, index + 1)
10
       sns.boxplot(x= var, y= 'cnt', data= data)
11
   plt.show()
```


A few observation from above boxplots:

- There are more demand of bikes during Summer and Fall seasons
- Overall there were more demands in 2019 as compered to 2018 which means company's YOY growth was good during years 2018 to 2019
- · Weather situation also affects the business. Clearer the weather, better for the business
- · There a pattern of increasing demands from the Month of March till September

Preparing the data for model

Get dummy variables for non-binary categorical variables

```
In [424]:
```

```
# Dummy varaibles for season dropping redundant variable
seasons = pd.get_dummies(data['season'], drop_first= True)
seasons.head()
```

Out[424]:

	spring	summer	winter
0	1	0	0
1	1	0	0
2	1	0	0
3	1	0	0
4	1	0	0

In [425]:

```
# Mapping mnth to actual values
import calendar
d = dict(enumerate(calendar.month_abbr))
data['mnth'] = data['mnth'].map(d)

# Dummy varaibles for mnth
months = pd.get_dummies(data['mnth'], drop_first= True)
months.head()
```

Out[425]:

	Aug	Dec	Feb	Jan	Jul	Jun	Mar	May	Nov	Oct	Sep
0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	0	0	0	0
3	0	0	0	1	0	0	0	0	0	0	0
4	0	0	0	1	0	0	0	0	0	0	0

In [426]:

```
# Mapping weekday to actual values
data['weekday'] = data['dteday'].dt.day_name()

# Dummy varaibles for mnth
weekdays = pd.get_dummies(data['weekday'], drop_first= True)
weekdays.head()
```

Out[426]:

	Monday	Saturday	Sunday	Thursday	Tuesday	Wednesday
() 1	0	0	0	0	0
	0	0	0	0	1	0
:	2 0	0	0	0	0	1
;	3 0	0	0	1	0	0
	4 0	0	0	0	0	0

In [427]:

```
# Encoding weathersit. Dataset contains only three values for weathersit.
data['weathersit'] = data['weathersit'].map({1: 'Clear', 2: 'Mist/Cloud', 3: 'Light Snow'})

# Dummy varaibles for weathersit
weathersits = pd.get_dummies(data['weathersit'], drop_first= True)
weathersits.head()
```

Out[427]:

	Light Snow	Mist/Cloud
0	0	1
1	0	1
2	0	0
3	0	0
4	0	0

In [428]:

```
# Merge dummy variables and drop originals
data = pd.concat([data, seasons, months, weathersits], axis=1)
data.drop(['season', 'mnth', 'weekday', 'weathersit'], inplace= True, axis= 1)
```

In [429]:

```
# Drop day as it was ony useful to visualize demand trend of the time
data.drop('day', inplace= True, axis= 1)

# Drop column 'dteday' as we already have all components of date as a separate columns in data data = data.drop('dteday', axis= 1)

data.head()
```

Out[429]:

	yr	holiday	workingday	temp	atemp	hum	windspeed	cnt	weekend	spring	 Jan	Jul	Jun	М
0	0	0	1	14.110847	18.18125	80.5833	10.749882	985	0	1	 1	0	0	_
1	0	0	1	14.902598	17.68695	69.6087	16.652113	801	0	1	 1	0	0	
2	0	0	1	8.050924	9.47025	43.7273	16.636703	1349	0	1	 1	0	0	
3	0	0	1	8.200000	10.60610	59.0435	10.739832	1562	0	1	 1	0	0	
4	0	0	1	9.305237	11.46350	43.6957	12.522300	1600	0	1	 1	0	0	

5 rows × 25 columns

Spit data into Train-Test

In [430]:

```
1  np.random.seed(0)
2  df_train, df_test = train_test_split(data, train_size= 0.7, random_state= 100)
3  print("Training data shape:", df_train.shape)
4  print("Test data shape:", df_test.shape)
```

Training data shape: (510, 25) Test data shape: (220, 25)

Rescale features

```
In [431]:
```

```
# normalisation: (x - xmin) / (xmax - xmin)
scaler = MinMaxScaler()
# create a list of variables to be rescaled
scale_vars = ['temp', 'atemp', 'hum', 'windspeed', 'cnt']
# Fit on data
df_train[scale_vars] = scaler.fit_transform(df_train[scale_vars])
df_train.head()
```

Out[431]:

	yr	holiday	workingday	temp	atemp	hum	windspeed	cnt	weekend	spring	 Jan	Jul	J
576	1	0	1	0.815169	0.766351	0.725633	0.264686	0.827658	0	0	 0	1	
426	1	0	1	0.442393	0.438975	0.640189	0.255342	0.465255	1	1	 0	0	
728	1	0	0	0.245101	0.200348	0.498067	0.663106	0.204096	0	1	 0	0	
482	1	0	1	0.395666	0.391735	0.504508	0.188475	0.482973	1	0	 0	0	
111	0	0	0	0.345824	0.318819	0.751824	0.380981	0.191095	1	0	 0	0	

5 rows × 25 columns

In [432]:

```
1 df_train[scale_vars].describe()
```

Out[432]:

	temp	atemp	hum	windspeed	cnt
count	510.000000	510.000000	510.000000	510.000000	510.000000
mean	0.537440	0.513156	0.650480	0.320883	0.513499
std	0.225858	0.212410	0.145846	0.169803	0.224421
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.339853	0.332086	0.538643	0.199179	0.356420
50%	0.542596	0.529718	0.653714	0.296763	0.518638
75%	0.735215	0.688457	0.754830	0.414447	0.684710
max	1.000000	1.000000	1.000000	1.000000	1.000000

Train the model

```
In [433]:
```

```
1 # Create X and y
2 y_train = df_train.pop('cnt')
3 X_train = df_train
```

Recursive feature elimination

```
In [434]:
 1 from sklearn.feature_selection import RFE
    from sklearn.linear_model import LinearRegression
    # Running RFE specifying 12 features to choose
 5
   lm = LinearRegression()
 6
   lm.fit(X train, y train)
 8
   rfe = RFE(lm, n features to select = 12)
    rfe = rfe.fit(X train, y train)
10
11
    # Inspect RFE result
12
   list(zip(X train.columns, rfe.support , rfe.ranking ))
Out[434]:
[('yr', True, 1),
 ('holiday', True, 1),
 ('workingday', False, 13),
 ('temp', True, 1),
 ('atemp', False, 6),
 ('hum', True, 1),
 ('windspeed', True, 1),
 ('weekend', False, 9),
 ('spring', True, 1),
 ('summer', True, 1),
 ('winter', True, 1),
 ('Aug', False, 8),
 ('Dec', False, 4),
 ('Feb', False, 5),
```

In [435]:

('Jan', False, 2), ('Jul', True, 1), ('Jun', False, 10), ('Mar', False, 12), ('May', False, 7), ('Nov', False, 3), ('Oct', False, 11), ('Sep', True, 1),

('Light Snow', True, 1), ('Mist/Cloud', True, 1)]

```
1 col = X_train.columns[rfe.support_]
2 print("Out of", X_train.columns.size, "features,",col.size, "selected by RFE are:", list(col)
```

```
Out of 24 features, 12 selected by RFE are: ['yr', 'holiday', 'temp', 'hum', 'windsp eed', 'spring', 'summer', 'winter', 'Jul', 'Sep', 'Light Snow', 'Mist/Cloud']
```

Model 1

With 12 variables selected after RFE, building the 1st model using Stats Model library

In [436]:

```
1  X_train_rfe = X_train[col]
2  # Adding a constant
3  X_train_rfe_sm = sm.add_constant(X_train_rfe)
4  # Fit the model
5  lm = sm.OLS(y_train, X_train_rfe_sm).fit()
```

1 lm.summary()

Out[437]:

OLS Regression Results

7_0						
Dep. Var	Dep. Variable:		cnt	R-squared:		l: 0.842
N	lodel:		OLS	Adj. R-squared		l: 0.838
Me	thod:	Least So	ast Squares F-statis		-statistic	220.6
	Date: T	ue, 13 Jur	e, 13 Jun 2023 F		-statistic	2.95e-190
	Time:	23	23:21:22		ikelihood	l: 509.29
No. Observa	tions:		510		AIC	-992.6
Df Resid	duals:		497		BIC	-937.5
Df M	lodel:		12			
Covariance	Туре:	non	nonrobust			
	coef	std err	t	P> t	[0.025	0.975]
const	0.2848	0.034	8.258	0.000	0.217	0.353
yr	0.2294	0.008	28.208	0.000	0.213	0.245
holiday	-0.0969	0.026	-3.787	0.000	-0.147	-0.047
temp	0.5299	0.034	15.728	0.000	0.464	0.596
hum	-0.1726	0.038	-4.569	0.000	-0.247	-0.098
windspeed	-0.1822	0.026	-7.074	0.000	-0.233	-0.132
spring	-0.0564	0.021	-2.700	0.007	-0.097	-0.015
summer	0.0531	0.015	3.536	0.000	0.024	0.083
winter	0.0976	0.017	5.643	0.000	0.064	0.132
Jul	-0.0572	0.018	-3.123	0.002	-0.093	-0.021
Sep	0.0833	0.017	4.973	0.000	0.050	0.116
Light Snow	-0.2369	0.026	-8.983	0.000	-0.289	-0.185
Mist/Cloud	-0.0527	0.010	-5.017	0.000	-0.073	-0.032
Omnibus: 57.486 Durbin-Watson: 2.051						
Prob(Omnib	u s): 0.0	000 Jar o	0 Jarque-Bera (JB):		130.221	
Ske	ew: -0.6	612	Prok	o(JB):	5.28e-29	
Kurto	sis: 5.	151	Conc	l. No.	19.4	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [438]:

```
1 # Check VIFs
2 def get_vifs(X):
       vif = pd.DataFrame()
3
       vif['Features'] = X.columns
4
5
       vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
       vif['VIF'] = round(vif['VIF'], 2)
6
       vif = vif.sort_values(by= 'VIF', ascending= False)
7
8
       return vif
10 X = X_train_rfe
11 vif = get vifs(X)
```

Model 2

In [439]:

```
1  # Drop hum which has a high VIF
2
3  X = X.drop('hum', axis= 1)
4  X_train_sm = sm.add_constant(X)
5
6  # create and fit the model
7  lm = sm.OLS(y_train, X_train_sm).fit()
8
9  # check params
10  lm.summary()
```

Out[439]:

OLS Regression Results

Dep. Var	ariable: cnt		cnt	R-squared:		0.835
N	Model: OLS		OLS	Adj. R-squared:		0.832
Method: l		Least So	quares	F-statistic:		229.6
	Date: To	ue, 13 Jur	n 2023 P	rob (F-s	statistic):	5.06e-187
	Time:	23:21:25		Log-Likelihood:		498.80
No. Observa	tions:	510		AIC:		-973.6
Df Resid	duals:	498			BIC: -922	
Df M	lodel:		11			
Covariance	Type:	non	robust			
	coef	std err	t	P> t	[0.025	0.975]
const	0.1994	0.030	6.746	0.000	0.141	0.258
yr	0.2336	0.008	28.352	0.000	0.217	0.250
holiday	-0.0975	0.026	-3.736	0.000	-0.149	-0.046
temp	0.4910	0.033	14.770	0.000	0.426	0.556
windspeed	-0.1479	0.025	-5.887	0.000	-0.197	-0.099
spring	-0.0672	0.021	-3.175	0.002	-0.109	-0.026
summer	0.0465	0.015	3.051	0.002	0.017	0.076
winter	0.0817	0.017	4.730	0.000	0.048	0.116
Jul	-0.0521	0.019	-2.790	0.005	-0.089	-0.015
Sep	0.0768	0.017	4.517	0.000	0.043	0.110
Light Snow	-0.2842	0.025	-11.487	0.000	-0.333	-0.236
Mist/Cloud	-0.0802	0.009	-9.146	0.000	-0.097	-0.063
Omnibus: 59.182 Durbin-Watson: 2.051						
Prob(Omnibus): 0.000 Jarque-Bera (JB): 134.016						

Notes

Skew: -0.629

Kurtosis: 5.173

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

17.3

Prob(JB): 7.92e-30

Cond. No.

In [440]:

```
1 # Check VIFs
2 vif = get_vifs(X)
3 vif
```

Out[440]:

	Features	VIF
2	temp	5.09
3	windspeed	4.60
5	summer	2.23
4	spring	2.08
0	yr	2.07
6	winter	1.78
7	Jul	1.58
10	Mist/Cloud	1.55
8	Sep	1.34
9	Light Snow	1.08
1	holiday	1.04

Model 3

```
In [441]:
```

```
# All variables a statistically significant and temp has a high VIF.
# We will still keep temp since we know that temperature is a strong predictor of bike demand

# Dropping Jul having slightly high p-value

X = X.drop('Jul', axis= 1)

X_train_sm = sm.add_constant(X)

# create and fit the model

Im = sm.OLS(y_train, X_train_sm).fit()

# check params

lm.summary()
```

Out[441]:

OLS Regression Results

Dep. Variable:	cnt	R-squared:	0.833
Model:	OLS	Adj. R-squared:	0.829
Method:	Least Squares	F-statistic:	248.4
Date:	Tue, 13 Jun 2023	Prob (F-statistic):	1.47e-186
Time:	23:21:27	Log-Likelihood:	494.84
No. Observations:	510	AIC:	-967.7
Df Residuals:	499	BIC:	-921.1
Df Model:	10		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]	
const	0.1909	0.030	6.447	0.000	0.133	0.249	
yr	0.2341	0.008	28.237	0.000	0.218	0.250	
holiday	-0.0963	0.026	-3.668	0.000	-0.148	-0.045	
temp	0.4777	0.033	14.423	0.000	0.413	0.543	
windspeed	-0.1481	0.025	-5.854	0.000	-0.198	-0.098	
spring	-0.0554	0.021	-2.654	0.008	-0.096	-0.014	
summer	0.0621	0.014	4.350	0.000	0.034	0.090	
winter	0.0945	0.017	5.630	0.000	0.062	0.127	
Sep	0.0910	0.016	5.566	0.000	0.059	0.123	
Light Snow	-0.2850	0.025	-11.444	0.000	-0.334	-0.236	
Mist/Cloud	-0.0787	0.009	-8.938	0.000	-0.096	-0.061	

 Omnibus:
 63.413
 Durbin-Watson:
 2.085

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 142.384

 Skew:
 -0.674
 Prob(JB):
 1.21e-31

 Kurtosis:
 5.210
 Cond. No.
 17.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [442]:

```
1 # Check VIFs
2 vif = get_vifs(X)
3 vif
```

Out[442]:

	Features	VIF
3	windspeed	4.60
2	temp	3.84
0	yr	2.07
4	spring	1.99
5	summer	1.90
6	winter	1.63
9	Mist/Cloud	1.55
7	Sep	1.23
8	Light Snow	1.08
1	holiday	1.04

Final Model 3 has a very good Adjusted R-Squared of 0.83 and as per the VIF values, we don't have any multicollinearity in variables.

Residual Analysis

```
In [443]:
```

```
1  y_train_pred = lm.predict(X_train_sm)
2  res = y_train - y_train_pred
3  sns.distplot(res)
```

/var/folders/y8/s7bl9twj7gsc19zqg5ltypt00000gp/T/ipykernel_57614/3590158396.py:3: Us
erWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot(res)

Out[443]:

<Axes: ylabel='Density'>

Error terms are normally distributed with mean zero.

Making predictions

Scaling features on test data

```
In [444]:
```

```
1 # transform on data
2 df_test[scale_vars] = scaler.transform(df_test[scale_vars])
```

Creating X and y

```
In [445]:
```

```
1 y_test = df_test.pop('cnt')
2 X_test = df_test
```

Removing variables from Test data which were dropped in Training set

```
In [446]:
```

```
1 X_test_new = X_test[X.columns]
```

Prediction

```
In [447]:
```

```
1  # Add constant
2  X_test_new = sm.add_constant(X_test_new)
3
4  # Make prediction
5  y_test_pred = lm.predict(X_test_new)
```

Model evaluation

```
In [448]:
```

```
from sklearn.metrics import mean_squared_error, r2_score
mean_squared_error = mean_squared_error(y_test, y_test_pred)
r_squared = r2_score(y_test, y_test_pred)

print('Mean Squared Error :',mean_squared_error)
print('R Squared :', r_squared)
```

Mean Squared Error: 0.009380224523815579 R Squared: 0.8038195990728844

Calculating Adj. R-Squared

```
In [449]:
```

```
1  # number of rows in X_test_new
2  n = X_test_new.shape[0]
3
4  # number of columns in X_test_new
5  p = X_test_new.shape[1]
6
7  adjusted_r2 = 1 - (1 - r_squared) * (n - 1) / (n - p - 1)
8  adjusted_r2
```

```
Out[449]:
```

0.7934446740238542

SyntaxError: invalid syntax

```
In [450]:
```

```
This value is very close to Adj.R-Squared of our final Model 3 which is 0.829

Cell In[450], line 1

This value is very close to Adj.R-Squared of our final Model 3 which is 0.829
```

In [451]:

```
# Plotting y_test and y_test_pred

fig = plt.figure()
plt.scatter(y_test, y_test_pred, alpha=.5)
fig.suptitle('y_test vs y_test_pred', fontsize = 20)
plt.xlabel('y_test', fontsize = 18)
plt.ylabel('y_test_pred', fontsize = 16)
plt.show()
```

y_test vs y_test_pred

Final Model Analysis

As per our final regression model, following features are the top predictors of bike sharing demand -

- **Temperature**: This is the strongest predictor of bike sharing demand with a positive coefficient of 0.4777. As the temperature rises, there is a very high probability of increase in demand.
- Weather situation 3(Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds): This kind of weather situation with a high negative coefficient of -0.2850 indicates a drop in bike sharing demand.
- **Year**: Again with a positive coefficient of 0.2341, this variable suggests that as the year passes with consistent presence of business, the service will become popular and hence demand would grow.

Thank You!