Sistemas Digitais 2009/2010

Departamento de Informática, Universidade de Évora

1º Exame – Resolução parcial 26 de Janeiro de 2010

Observações

- *Duração*: 2h00m (+30m)
- Cálculos: Nas respostas apresente todos os cálculos efectuados
- Potências de 2

$$2^0 = 1$$
 $2^1 = 2$ $2^2 = 4$ $2^3 = 8$ $2^4 = 16$ $2^5 = 32$ $2^6 = 64$ $2^7 = 128$ $2^8 = 256$ $2^9 = 512$ $2^{10} = 1024$ $2^{11} = 2048$

• Tabelas de excitação dos FF

Q*	Q	S	R
0	0	0	-
0	1	1	0
1	0	0	1
1	1	-	0

Q*	Q	D
0	0	0
0	1	1
1	0	0
1	1	1

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0
1	1	U

Q*	Q	J	K
0	0	0	-
0	1	1	-
1	0	-	1
1	1	-	0

Grupo 1

Efectue as seguintes operações indicando todos os cálculos:

1. Converta o número $37_{(10)}$ para código de complemento para 2 com 7 bits.

$$37_{(10)} = 0100101_{(C2)}$$

Através de divisões sucessivas por 2 obtém-se $37_{(10)} = 100101_{(2)}$. Como se pretende a representação em $_{(C2)}$ e o nº é positivo, basta adicionar um zero à esquerda.

2. Converta o número $10000110_{(BCD)}$ para binário.

$$10000110_{(BCD)} = 1010110_{(2)}$$

Cada conjunto de 4 bits num código BCD corresponde a um dígito binário. Assim $1000.0110_{(BCD)}=86_{(10)}$. Através de divisões sucessivas por 2 obtém-se $86_{(10)}=1010110_{(2)}$.

3. Converta o número $2451_{(8)}$ para binário.

$$2451_{(8)} = 10100101001_{(2)}$$

Como $8=2^3$ a conversão entre as bases 8 e 2 é directa, onde cada dígito octal corresponde a 3 dígitos binários.

4. Calcule $3134_{(8)} + 1437_{(8)}$.

$$3134_{(8)} + 1437_{(8)} = 4573_{(8)}$$

Somam-se os algarismos da mesma forma como se os somam na base 10, tendo em atenção que $7_{(8)}+1_{(8)}=10_{(8)}$. Assim, começando pelos dígitos menos significativos, temos $4_{(8)}+7_{(8)}=13_{(8)}$. Depois somam-se os dígitos seguintes com o transporte do dígito anterior $3_{(8)}+3_{(8)}+1_{(8)}=7_{(8)}$, e assim sucessivamente.

Grupo 2

Considere uma função booleana de 4 variáveis que assume o valor lógico de A sempre que A + B + C + D seja igual a 2 ou superior a 3 e o valor lógico de C nos restantes casos.

1. Apresente a tabela de verdade da função.

A	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

2. Represente-a na primeira forma canónica.

$$F = \overline{A} \ \overline{B} \ C \ \overline{D} + \overline{A} \ B \ C \ D + A \ \overline{B} \ \overline{C} \ D + A \ \overline{B} \ C \ \overline{D} + A \ B \ \overline{C} \ \overline{D} + A \ B \ C \$$

3. Represente-a na forma decimal da forma canónica disjuntiva.

$$F = \prod M(0, 1, 3 - 6, 8, 13)$$

4. Simplifique a função.

$AB \setminus CD$	00	01	11	10
00	0	0	0	1
01	0	0	1	0
11	1	0	1	1
10	0	1	1	1

$$F = \overline{B} \ C \ \overline{D} + B \ C \ D + A \ B \ \overline{D} + A \ \overline{B} \ D$$

5. Implemente-a só com portas NAND.

$$F = \overline{\overline{B} \ C \ \overline{D} + B \ C \ D + A \ B \ \overline{D} + A \ \overline{B} \ \overline{D}} = \overline{\overline{\overline{B} \ C \ \overline{D}} \ \overline{B \ C \ \overline{D}} \ \overline{B \ C \ \overline{D}} \ \overline{A \ B \ \overline{D}} \ \overline{A \ \overline{B} \ \overline{D}}$$

Grupo 3

Considere o circuito da figura seguinte.

- 1. Identifique cada um dos circuitos combinatórios MSI representados. Da esquerda para a direita temos um multiplexer 2-para-1, um somador completo e um codificador com prioridade 4x2.
- 2. Simplifique a função F.

A	В	F^*	S_{MUX}	S_{som}	Co_{som}	F
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	1	0	1	0
0	1	1	1	0	1	0
1	0	0	0	0	0	1
1	0	1	1	1	0	1
1	1	0	0	1	0	1
1	1	1	1	0	1	1

$AB\F^*$	0	1	
00	0	1	
01	0	0	$F = A + \overline{B} F *$
11	1	1	
10	1	1	

3. Construa a tabela de transição de estados de F. Comparando, na tabela de verdade, o valor de F com F* (agrupando as linhas 2 a duas)

podemos chegar facilmente à seguinte tabela de transição de estados:

A	В	F
0	0	F*
0	1	0
1	0	1
1	1	1

4. Desenhe o diagrama de transição de estados de F.

5. Implemente a função com flip-flops SR (latch).

AB\F	0	1		AB\F	0	1
00	0	-		00	-	0
01	0	0		01	-	1
11	1	-		11	0	0
10	1	-		10	0	0
$S-A$ $R-\overline{A}$ R						

Grupo 4

Considere o circuito apresentado na figura seguinte suponhando que no instante inicial Q0=Q1=Q2=0 e Q3=1. Qual é o valor de $Q0,\ Q1,\ Q2$ e Q3 após o 3º impulso de relógio? Justifique a resposta desenhando o diagrama temporal.

Após o 3º impulso de relógio temos Q0=Q1=Q3=0 e Q2=1. O diagrama temporal está representado na figura seguinte.

Grupo 5

Pretende-se implementar um sistema síncrono que reconheça uma sequência bits na entrada utilizando flip-flops JK. Existe uma entrada X e uma saída Y que deve ficar activa sempre que à entrada surgirem três 1s consecutivos.

1. Desenhe o modelo ASM.

Cada estado representa o nº de 1 consecutivos que apareceram à entrada. Assim são necessários 4 estados de nome: "zero", "um", "dois", "três". A saída só fica activa no estado três (depois de aparecerem 3 uns consecutivos). Em qualquer dos estados, quando a entrada (X) é zero, transita-se sempre para o estado "zero".

2. Escreva a tabela de transição de estados e saídas.

Com a codificação de estados já representada no modelo ASM, trata-se apenas de representar a mesma informação de forma tabular.

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	1	1	1

3. Obtenha as equações de entrada dos flip-flops e das saídas.

J1						
$X \setminus Q_1 Q_0$	00	01	11	10		
0	0	0	-	-		
1	0	1	-	-		

KI					
$X \setminus Q_1Q_0$	00	01	11	10	
0	-	-	1	1	
1	_	-	0	0	

$$J1 = XQ_0$$

$$K1=\overline{X}$$

J0				
00	01	11	10	
0	-	-	0	
1	-	-	1	

$\mathbf{K}0$				
$X \setminus Q_1 Q_0$	00	01	11	10
0	-	1	1	-
1	-	1	0	-

$$J0 = X$$

$$K0 = \overline{Q_1} + \overline{X}$$

Y					
$X \setminus Q_1 Q_0$	00	01	11	10	
0	0	0	1	0	
1	0	0	1	0	

$$Y = Q_1 Q_0$$

4. Implemente o circuito.

