

Explainability of Machine Learning Models in Prediction of Affective Disorders

FANI SENTINELLA-JERBIĆ

July 2024, Zagreb

- 1 Introduction & Motivation
- 2 Literature Review
- **3** Dataset
- 4 Methodology
- **5** Results
- 6 Conclusion

- 1 Introduction & Motivation
- 2 Literature Review
- **3** Dataset
- 4 Methodology
- **5** Results
- 6 Conclusion

Introduction

Affective disorders

- Mental and behavioral disorders characterized by a shift in mood to either elation or depression
- Mainly diagnosed with patient interviews and questionnaires

Introduction

Electroencephalography (EEG)

- Brain activity recording method
- Captures electrical signals fired by groups of neurons synchronizing

Introduction

Explainable Artificial Intelligence (XAI)

- Rising area of research aiming to increase trust and adoption of Al
- Focused on improving understanding of increasingly complex Al systems

Motivation

Brain Awareness Week 2022

Motivation

Objectives

- 1. Identify potential EEG biomarkers of depression
- 2. Compare different explainable Al methods

- 1 Introduction & Motivation
- 2 Literature Review
- **3** Dataset
- 4 Methodology
- **5** Results
- 6 Conclusion

Literature Review

Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures (2024)

Input	raw EEG signal
Model	deep convolutional
Explainability	visualization of model internals
Findings	• β & δ power • brain-wide correlation • right hemisphere

Literature Review

An Explainable Assessment for Depression Detection Using Frontal EEG (2023)

Input	EEG extracted features from frontal lobes: Higuchi's fractal dimension, sample entropy	
Model	Decision Tree, LDA, k-NN, Random Forest, XGBoost	
Explainability	feature importance	
Findings	complexityhigh-frequency features	

Literature Review

Depression detection based on analysis of EEG signals in multi brain regions (2023)

Input	EEG extracted features: Lempel-Ziv complexity, power spectral density	
Model	Support Vector Machine	
Explainability	subset evaluation	
Findings	 temporal region frontal, temporal, and central regions combined 	

- 1 Introduction & Motivation
- 2 Literature Review
- **3** Dataset
- 4 Methodology
- **5** Results
- 6 Conclusion

Dataset

Composition

- 105 individuals
 - 75 depressed
 - 30 healthy
- representative train-test split
 - 75 train examples
 - 30 test examples

Dataset

Features

19 electrodes x 5 brain waves x features = 570 features

absolute band power
relative band power
spectral centroids
relative wavelet energy
wavelet entropy
Katz fractal dimension

- 1 Introduction & Motivation
- 2 Literature Review
- **3** Dataset
- 4 Methodology
- **5** Results
- 6 Conclusion

Approach

Feature Ranking with XAI Methods

 identify features that contribute most to the predictive power of a classification model

Feature Subset Evaluation

 identify subsets of features that contribute most to the predictive power of a classification model

Ideal outcomes

- Feature Ranking with XAI Methods
 - agreement across methods
- Feature Subset Evaluation
 - agreement across models
 - → both would imply a reliable EEG biomarker

Feature Ranking with XAI Methods

Feature Ranking with XAI Methods

Correlation with Diagnosis

Decision Tree Importance

Shapley Additive Explanations on SVM

Correlation with Diagnosis

- Measure of the strength and direction of a relationship
- Assumes linear or monotonic relationship

Decision Tree Importance

 A tree is built by recursively partitioning based on features that best separate the data into similar subsets

Shapley Additive Explanations (SHAP)

- Rooted in cooperative game theory
 - distribution of the total gain among players based on their contribution to the overall outcome

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

Support Vector Machine

- Aims to find the best separation of classes
 - by maximizing the margin between the nearest data points of different classes, known as support vectors
- Uses the kernel trick for implicit mapping into high dimensional feature spaces where data becomes separable by a hyperplane
 - reduced interpretability

Feature Subset Evaluation

- Domain-informed subsets
 - per electrode
 - per brain wave type
 - per feature extraction method
- Analyses-informed subsets
 - literature
 - hypothesis testing
 - feature ranking

 \rightarrow all on both DT & SVM,

using F1-score as primary metric

Main Limitations

dataset nature

- imbalanced
- single train-test split
- ~5:1 feature to instance ratio

multiple comparisons problem

- 1 Introduction & Motivation
- 2 Literature Review
- **3** Dataset
- 4 Methodology
- 5 Results
- 6 Conclusion

Results

Feature Ranking

	•
Corre	INTIAN
	1 4 6 1 9 1 1

T4_AbsPow_Delta

F8_AbsPow_Alpha

T3_AbsPow_Gamma

T3_AbsPow_Delta

T4_AbsPow_Alpha

F8_KFD_Alpha

F8_AbsPow_Gamma

T3_AbsPow_Theta

Cz_AbsPow_Delta

P3_AbsPow_Gamma

Decision Tree

Fp2_KFD_Beta

Fp2_AbsPow_Beta

C3_SpecCent_Beta

F3_KFD_Gamma

Fp1_WavEntr_Gamma

Fp1_SpecCent_Gamma

Pz_SpecCent_Theta

P4_RelPow_Gamma

F3_AbsPow_Theta

C3_KFD_Beta

SHAP Values

01_AbsPow_Delta

T3_AbsPow_Delta

Fp2_RelPow_Delta

01_WavEntr_Alpha

Fp2_RWE_Delta

T6_WavEntr_Alpha

P4_AbsPow_Alpha

Pz_SpecCent_Alpha

Fp2_RWE_Theta

Fp2_WavEntr_Theta

poor agreement → different paradigms & assumptions

Results

Feature Subset Evaluation

- subsets with good predictive power:
 - P1, F7, C4, P3 and P4 electrodes
 - beta wave subset
 - left hemisphere with midline
 - decision tree important features
- results largely varied between Decision Tree and SVM
 - → different paradigms & assumptions

- 1 Introduction & Motivation
- 2 Literature Review
- **3** Dataset
- 4 Methodology
- **5** Results
- 6 Conclusion

Revisiting the Objectives

Identify potential EEG biomarkers of depression

- prefrontal, frontal, temporal, and parietal region
- left hemisphere combined with the midline
- beta alone or a subset of alpha, delta and gamma waves combined

Revisiting the Objectives

Compare different XAI methods

Method	Advantages	Disadvantages
Correlation with Diagnosis	simplicity, directionality, model independence	linearity or monotonicity assumption, feature interactions not considered
Decision Tree Importance	easy to compute, hierarhical information	instability, no directional information
SHAP Values	model-agnostic, robustness, directionality	computationally expensive

Conclusion

General Takeaways

- understanding ML models ≠ understanding depression
 - model explainability ~ human-computer interaction
 - depression explainability ~ biomarkers
- single train-test split
 - does not make sense for subset feature evaluation
 - introduce any variability to asses significance

References

Engineering. Springer, 2023, pp. 377–383.

- S. Nagel, "Towards a home-use BCI: fast asynchronous control and robust non-control state detection," Ph.D. dissertation, Universität Tübingen, 2019 **image from slide 5 C. A. Ellis, M. L. Sancho, R. L. Miller, and V. D. Calhoun, "Identifying EEG Biomarkers of Depression with Novel Explainable Deep Learning Architectures," bioRxiv 2024. F. Chen, L. Zhao, L. Yang, J. Li, and C. Liu, "An Explainable Assessment for Depression Detection Using Frontal EEG," in Asian-Pacific Conference on Medical and Biological
- J. Yang, Z. Zhang, P. Xiong, and X. Liu, "Depression Detection Based on Analysis of EEG Signals in Multi Brain Regions," Journal of Integrative Neuroscience, vol. 22, no. 4, p. 93, 2023.
- S. M. Lundberg and S.-I. Lee, "A Unified Approach to Interpreting Model Predictions," Advances in Neural Information Processing Systems, vol. 30, 2017

Thank you.

AUTHOR: FANI SENTINELLA-JERBIĆ

fani.sentinella.jerbic@gmail.com

MENTOR: PROF. DR. SC. MARIO CIFREK

mario.cifrek@fer.unizg.hr

ASSISTANT: EDA JOVIČIĆ

eda.jovicic@fer.unizg.hr