Измерение емкости конденсатора

Александр Крупин

21 октября 2020 г.

1 Оборудование, цель работы

Цель работы: Измерить емкость конденсатора, определить наиболее точный ме тод.

Оборудование:

- Магазин сопротивлений (2x),
- Источник питания,
- Амперметр,
- Конденсатор известной емкости ($C_1 = 1 \text{ мк}\Phi \pm 0.2\%$),
- Конденсатор неизвестной емкости (C_x) ,
- Вольтметр,
- Осциллограф.

2 Метод №1

Попробуем определить емкость конденсатора C_x , непосредственно измерив время зарядки с помощью осциллографа. Для этого соберем схему, приведенную на рис. 1. Сопротивление "верхней ветви" R_1 выставляем максимально возможным. Процедура вычисления следующая:

- 1. Рассматриваем осциллограмму одного периода;
- 2. Находим характерное время зарядки τ для различных значений R_2 (с учетом внутреннего сопротивления генератора $R_g = 600 \text{ Om}$);
- 3. Строим зависимость $\tau = \tau(R_2)$ и делаем линейную аппроксимацию (см. рис. 2);
- 4. Сопоставляя полученное уравнение прямой и соотношение $\tau = R_2 C_x$, получаем значение C_x .

Выходит, что $C_x \approx 3.4$ мк Φ . Получили довольно грубую оценку, так как по дороге накопили достаточное количество ошибок.

Рис. 1

Рис. 2

3 Метод №2

Теперь присоединим осциллограф к точкам A и B (см. рис. 1) и попытаемся достичь нулевой разности потенциалов, регулируя R_2 при фиксированном R_1 (условие баланса моста). Очевидно, что сделать это с абсолютной точностью нам не удастся, поэтому будем фиксировать диапазон изменения R_2 , при котором осциллограф перестает "чувствовать"ток через перемычку AB. Результаты измерения представлены в таб. 1. Также в этой таблицы представлены $\delta R = \frac{R_{2max} - R_{2min}}{2\langle R_2 \rangle}$ и $C_x = \frac{R_1C_1}{\langle R_2 \rangle}$

Покажем, что относительная погрешность измерения емкости определяется погрешностью измерения R_2 :

Пусть
$$C=f(R)=f(R_0)+rac{\partial f(R)}{\partial R}\Delta R=C_0+\Delta C,$$
 тогда $\Delta C=rac{\partial f(R)}{\partial R}\Delta R$

Значит если
$$C_x=rac{R_1C_1}{R_2},\,\,{
m To}\,\,\Delta C_x=-rac{R_1C_1}{R_2}\delta R_2\Leftrightarrow\delta C_x=-\delta R_2$$

Таким образом: $C_x = 4{,}11 \text{ мк}\Phi \pm 6\%$

Согласуется ли полученная погрешность измерения с теорией?

Нетрудно получить, что погрешность измерения для безынерционного метода определяется так: $\delta R_2 \approx \frac{e \cdot U_{\min}}{E}$, где U_{\min} – минимальное напряжение, которое регистрируется прибором как не нулевое; E – напряжение источника. Получается, что она не зависит от сопротивлений R_1 и R_2 , а также убывает с ростом напряжения от источника. В нашем случае: $U_{\min} = 200$ мВ; E = 11.4 В.

Значит $\delta R_2 \approx 5\%$, что не сильно отличается от полученного ранее результата.

	R_1 , Ом	$R_{2_{max}}$, Om	$R_{2_{min}}$, Om	$\langle R_2 \rangle$, Ом	δR_2	C_x , мк Φ
	50	16	7	11,5	0,39	4,34
	150	42	32	37	0,14	$4,\!05$
	300	80	69	74,5	0,07	4,03
Ì	1500	379	356	367,5	0,03	4,08
	3000	750	720	735	0,02	4,08
Ì	4500	1140	1070	1105	0,03	4,07

Таблица 1

4 Метод №3

Теперь возьмем в качестве измерительного прибора гальванометр (инерционный метод измерения). Соберем схему, указанную на рис. 5. Идея измерения схожа с идеей в методе №2. Проделаем измерения для двух различных значений напряжения источника $E=11.4~{\rm B}$ и $E=17.0~{\rm B}$ (см. таб. 2, 3).

Выходит, что $C_x = 4.17 \text{ мк}\Phi \pm 1\%$

Согласуется ли полученная погрешность измерения с теорией?

Теория гласит, что

$$\delta R_2 = Q_{\min} \frac{R_1 + R_2^* + R_G}{R_1 C_1 E}$$

Имеем: $Q_{\min} = 3 \cdot 10^{-8} \text{ Kл;}^1 R_2^* = < R_2 >; R_G = 1,0 \text{ кОм.}$

Построим графики $\delta R_2(R_1)$ для разных значений напряжения источника (см. рис. 3, 4). Сравнивая таб. 2, 3 и полученные графики, можно сказать, что теория, в целом, согласуется с практикой.

¹Определили на "ощупь"

Рис. 3

Рис. 4

R_1 , Om	$R_{2_{max}}$, Om	$R_{2_{min}}$, Om	$\langle R_2 \rangle$, Ом	δR_2	C_x , мк Φ
50	15	12	13,5	0,11	3,70
150	38	35	$36,\!5$	0,04	4,11
300	74	71	72,5	0,02	4,14
1500	364	359	361,5	0,007	4,149
3000	723	720	721,5	0,002	4,158
4500	1087	1083	1085	0,002	4,147

Таблица 2: данные при $E=11,\!4~{\rm B}$

R_1 , Om	$R_{2_{max}}$, Om	$R_{2_{min}}$, Om	$\langle R_2 \rangle$, Ом	δR_2	C_x , мк Φ
50	12,4	11,6	12	0,03	4,17
150	36,4	34,9	35,65	0,02	4,20
300	72,3	71	71,65	0,009	4,187
1500	359,7	359,4	$359,\!55$	0,0004	4,1718
3000	722	721,1	721,55	0,0006	4,1577
4500	1085	1084,7	1084,85	0,0001	4,1480

Таблица 3: данные при $E=17~\mathrm{B}$

Рис. 5

5 Вывод

Мы проделали измерения емкости 3 способами. Убедились, что измерение емкости напрямую сильно проигрывает в точности измерениям с помощью мостовой схемы. Причем, наиболее точным оказался Метод №3 при $E=17~{\rm B}$ и при больших значениях R_1 (это согласуется с теорией).