CO226: Database Systems

Database Design Methodology

Sampath Deegalla dsdeegalla@pdn.ac.lk

1st July 2014

Information System Life Cycle

- Database system is typically part of the information system
- Phases of the information system life cycle
 - Feasibility analysis
 - Requirements collection and analysis
 - Design
 - Implementation
 - Validation and acceptance testing
 - Deployment, operation, and maintenace

Information System Life Cycle

- Database system is typically part of the information system
- Phases of the information system life cycle
 - Feasibility analysis
 - Requirements collection and analysis
 - Design
 - Implementation
 - Validation and acceptance testing
 - Deployment, operation, and maintenace

Information System Life Cycle

- Database system is typically part of the information system
- Phases of the information system life cycle
 - Feasibility analysis
 - Requirements collection and analysis
 - Design
 - Implementation
 - Validation and acceptance testing
 - Deployment, operation, and maintenace

- System definition
 - Defining scope of database system, its users and applications
- Database Design
 - Logical and physical design of the database system on the chosen DBMS
- Database implementation
 - Specifying conceptual, external and internal database definitions
 - Creating empty database files
 - Implementing software applications

- System definition
 - Defining scope of database system, its users and applications
- Database Design
 - Logical and physical design of the database system on the chosen DBMS
- Database implementation
 - Specifying conceptual, external and internal database definitions
 - Creating empty database files
 - Implementing software applications

- System definition
 - Defining scope of database system, its users and applications
- Database Design
 - Logical and physical design of the database system on the chosen DBMS
- Database implementation
 - Specifying conceptual, external and internal database definitions
 - Creating empty database files
 - Implementing software applications

- System definition
 - Defining scope of database system, its users and applications
- Database Design
 - Logical and physical design of the database system on the chosen DBMS
- Database implementation
 - Specifying conceptual, external and internal database definitions
 - Creating empty database files
 - Implementing software applications

- Loading or data conversion
 - Populating the database
- Application conversior
 - Converting applications to the new system
- Testing and validation
- Operation
 - Running the new system
- Monitoring and maintenance
 - System maintenance
 - Performance monitoring

- Loading or data conversion
 - Populating the database
- Application conversion
 - Converting applications to the new system
- Testing and validation
- Operation
 - Running the new system
- Monitoring and maintenance
 - System maintenance
 - Performance monitoring

- Loading or data conversion
 - Populating the database
- Application conversion
 - Converting applications to the new system
 - Testing and validation
- Operation
 - Running the new system
- Monitoring and maintenance
 - System maintenance
 - Performance monitoring

- Loading or data conversion
 - Populating the database
- Application conversion
 - Converting applications to the new system
- Testing and validation
- Operation
 - Running the new system
- Monitoring and maintenance
 - System maintenance
 - Performance monitoring

- Loading or data conversion
 - Populating the database
- Application conversion
 - Converting applications to the new system
- Testing and validation
- Operation
 - Running the new system
- Monitoring and maintenance
 - System maintenance
 - Performance monitoring

- Loading or data conversion
 - Populating the database
- Application conversion
 - Converting applications to the new system
- Testing and validation
- Operation
 - Running the new system
- Monitoring and maintenance
 - System maintenance
 - Performance monitoring

Database Design Process

Problem

 Design the logical and physical structure of one or more databases to accommodate the information needs of the users in an organization for a defined set of applications.

Goals

- Satisfy the content requirements
- Provide easy structuring of information
- Support processing requirements and performance objectives

Database Design Process

Problem

 Design the logical and physical structure of one or more databases to accommodate the information needs of the users in an organization for a defined set of applications.

Goals

- Satisfy the content requirements
- Provide easy structuring of information
- Support processing requirements and performance objectives

Database Design Process

Problem

 Design the logical and physical structure of one or more databases to accommodate the information needs of the users in an organization for a defined set of applications.

Goals

- Satisfy the content requirements
- Provide easy structuring of information
- Support processing requirements and performance objectives

- Requirements Collections and Analysis
- Conceptual Database Design
- Choice of a DBMS
- Data Model Mapping (Logical Database Design)
- Physical Database Design
- Database System Implementation and Tuning

- Requirements Collections and Analysis
- Conceptual Database Design
- Choice of a DBMS
- Data Model Mapping (Logical Database Design)
- Physical Database Design
- Database System Implementation and Tuning

- Requirements Collections and Analysis
- Conceptual Database Design
- Choice of a DBMS
- Data Model Mapping (Logical Database Design)
- Physical Database Design
- Database System Implementation and Tuning

- Requirements Collections and Analysis
- Conceptual Database Design
- Choice of a DBMS
- Data Model Mapping (Logical Database Design)
- Physical Database Design
- Database System Implementation and Tuning

- Requirements Collections and Analysis
- Conceptual Database Design
- Choice of a DBMS
- Data Model Mapping (Logical Database Design)
- Physical Database Design
- Database System Implementation and Tuning

- Requirements Collections and Analysis
- Conceptual Database Design
- Choice of a DBMS
- Data Model Mapping (Logical Database Design)
- Physical Database Design
- Database System Implementation and Tuning

- Requirements Collections and Analysis
- Conceptual Database Design
- Choice of a DBMS
- Data Model Mapping (Logical Database Design)
- Physical Database Design
- Database System Implementation and Tuning

- Identifying Users
- Interacting with users to gather requirements
- Time consuming BUT very important
 - Very expensive to fix requirements error

- Identifying Users
- Interacting with users to gather requirements
- Time consuming BUT very important
 - Very expensive to fix requirements error

- Identifying Users
- Interacting with users to gather requirements
- Time consuming BUT very important
 - Very expensive to fix requirements error

- Identifying Users
- Interacting with users to gather requirements
- Time consuming BUT very important
 - Very expensive to fix requirements error

- Produce a conceptual schema for the database that is independent of a specific DBMS
- Involves two parallel activities
 - Conceptual Schema Design
 - Transaction and Application Design

- Produce a conceptual schema for the database that is independent of a specific DBMS
- Involves two parallel activities
 - Conceptual Schema Design
 - Transaction and Application Design

- Produce a conceptual schema for the database that is independent of a specific DBMS
- Involves two parallel activities
 - Conceptual Schema Design
 - Transaction and Application Design

- Produce a conceptual schema for the database that is independent of a specific DBMS
- Involves two parallel activities
 - Conceptual Schema Design
 - Transaction and Application Design

- Produce a conceptual schema for the database that is independent of a specific DBMS
- Involves two parallel activities
 - Conceptual Schema Design
 - Transaction and Application Design

Choice of DBMS

Many factors to consider

- Technical Factors
 - Type of DBMS: Relational, object-relational, object etc
 - Storage Structures
 - Architectural options
- Economic Factors
 - Acquisition, maintenance, training and operating costs
 - Database creation and conversion cost
- Organizational Factors
 - Organizational philosophy
 - Relational or Object Oriented
 - Vendor Preference
 - Familiarity of staff with the system
 - Availability of vendor services

Choice of DBMS

Many factors to consider

- Technical Factors
 - Type of DBMS: Relational, object-relational, object etc.
 - Storage Structures
 - Architectural options
- Economic Factors
 - Acquisition, maintenance, training and operating costs
 - Database creation and conversion cost
- Organizational Factors
 - Organizational philosophy
 - Relational or Object Oriented
 - Vendor Preference
 - Familiarity of staff with the system
 - Availability of vendor services

Choice of DBMS

Many factors to consider

- Technical Factors
 - Type of DBMS: Relational, object-relational, object etc.
 - Storage Structures
 - Architectural options
- Economic Factors
 - Acquisition, maintenance, training and operating costs
 - Database creation and conversion cost
- Organizational Factors
 - Organizational philosophy
 - Relational or Object Oriented
 - Vendor Preference
 - Familiarity of staff with the system
 - Availability of vendor services

Choice of DBMS

Many factors to consider

- Technical Factors
 - Type of DBMS: Relational, object-relational, object etc.
 - Storage Structures
 - Architectural options
- Economic Factors
 - Acquisition, maintenance, training and operating costs
 - Database creation and conversion cost
- Organizational Factors
 - Organizational philosophy
 - Relational or Object Oriented
 - Vendor Preference
 - Familiarity of staff with the system
 - Availability of vendor services

- Transform the Schema from high-level data model into the data model of the selected DBMS.
- Design of external schemas for specific applications
- Two stages
 - System-independent mapping
 - DBMS independent mapping
 - 2 Tailoring the schemas to a specific DBMS
 - Adjusting the schemas obtained in step 1 to conform to the specific implementation features of the data model used in the selected DBMS
- Result: DDL statements in the language of the chosen DBMS

- Transform the Schema from high-level data model into the data model of the selected DBMS.
- Design of external schemas for specific applications
- Two stages
 - System-independent mapping
 - DBMS independent mapping
 - 2 Tailoring the schemas to a specific DBMS
 - Adjusting the schemas obtained in step 1 to conform to the specific implementation features of the data model used in the selected DBMS
- Result: DDL statements in the language of the chosen DBMS

- Transform the Schema from high-level data model into the data model of the selected DBMS.
- Design of external schemas for specific applications
- Two stages
 - System-independent mapping
 - DBMS independent mapping
 - 2 Tailoring the schemas to a specific DBMS
 - Adjusting the schemas obtained in step 1 to conform to the specific implementation features of the data model used in the selected DBMS
- Result: DDL statements in the language of the chosen DBMS

- Transform the Schema from high-level data model into the data model of the selected DBMS.
- Design of external schemas for specific applications
- Two stages
 - System-independent mapping
 - DBMS independent mapping
 - 2 Tailoring the schemas to a specific DBMS
 - Adjusting the schemas obtained in step 1 to conform to the specific implementation features of the data model used in the selected DBMS
- Result: DDL statements in the language of the chosen DBMS

- Transform the Schema from high-level data model into the data model of the selected DBMS.
- Design of external schemas for specific applications
- Two stages
 - System-independent mapping
 - DBMS independent mapping
 - 2 Tailoring the schemas to a specific DBMS
 - Adjusting the schemas obtained in step 1 to conform to the specific implementation features of the data model used in the selected DBMS
- Result: DDL statements in the language of the chosen DBMS

- Transform the Schema from high-level data model into the data model of the selected DBMS.
- Design of external schemas for specific applications
- Two stages
 - System-independent mapping
 - DBMS independent mapping
 - 2 Tailoring the schemas to a specific DBMS
 - Adjusting the schemas obtained in step 1 to conform to the specific implementation features of the data model used in the selected DBMS
- Result: DDL statements in the language of the chosen DBMS

- Design the specifications for the stored database in terms of physical storage structures, record placements and indexes.
- Design Criteria
 - Response Time: Elapsed Time between submitting a database transaction for execution and receiving a response
 - Space Utilization: Storage space used by database files and their access path structures
 - Transaction throughput
 - Average number of transactions/minute
 - Must be measured under peak conditions
- Result: Initial determination of storage structures and access paths for database files

- Design the specifications for the stored database in terms of physical storage structures, record placements and indexes.
- Design Criteria
 - Response Time: Elapsed Time between submitting a database transaction for execution and receiving a response
 - Space Utilization: Storage space used by database files and their access path structures
 - Transaction throughput
 - Average number of transactions/minute
 - Must be measured under peak conditions
- Result: Initial determination of storage structures and access paths for database files

- Design the specifications for the stored database in terms of physical storage structures, record placements and indexes.
- Design Criteria
 - Response Time: Elapsed Time between submitting a database transaction for execution and receiving a response
 - Space Utilization: Storage space used by database files and their access path structures
 - Transaction throughput
 - Average number of transactions/minute
 - Must be measured under peak conditions
- Result: Initial determination of storage structures and access paths for database files

- Design the specifications for the stored database in terms of physical storage structures, record placements and indexes.
- Design Criteria
 - Response Time: Elapsed Time between submitting a database transaction for execution and receiving a response
 - Space Utilization: Storage space used by database files and their access path structures
 - Transaction throughput
 - Average number of transactions/minute
 - Must be measured under peak conditions
- Result: Initial determination of storage structures and access paths for database files

- Design the specifications for the stored database in terms of physical storage structures, record placements and indexes.
- Design Criteria
 - Response Time: Elapsed Time between submitting a database transaction for execution and receiving a response
 - Space Utilization: Storage space used by database files and their access path structures
 - Transaction throughput
 - Average number of transactions/minute
 - Must be measured under peak conditions
- Result: Initial determination of storage structures and access paths for database files

- Design the specifications for the stored database in terms of physical storage structures, record placements and indexes.
- Design Criteria
 - Response Time: Elapsed Time between submitting a database transaction for execution and receiving a response
 - Space Utilization: Storage space used by database files and their access path structures
 - Transaction throughput
 - Average number of transactions/minute
 - Must be measured under peak conditions
- Result: Initial determination of storage structures and access paths for database files

- Design the specifications for the stored database in terms of physical storage structures, record placements and indexes.
- Design Criteria
 - Response Time: Elapsed Time between submitting a database transaction for execution and receiving a response
 - Space Utilization: Storage space used by database files and their access path structures
 - Transaction throughput
 - Average number of transactions/minute
 - Must be measured under peak conditions
- Result: Initial determination of storage structures and access paths for database files

- During this phase database and application programs are implemented, tested and deployed
- Database Tuning
 - System and Performance Monitoring
 - Data indexing
 - Reorganization
- Tuning is a continuous process

- During this phase database and application programs are implemented, tested and deployed
- Database Tuning
 - System and Performance Monitoring
 - Data indexing
 - Reorganization
- Tuning is a continuous process

- During this phase database and application programs are implemented, tested and deployed
- Database Tuning
 - System and Performance Monitoring
 - Data indexing
 - Reorganization
- Tuning is a continuous process

- During this phase database and application programs are implemented, tested and deployed
- Database Tuning
 - System and Performance Monitoring
 - Data indexing
 - Reorganization
- Tuning is a continuous process