

네트워크계층1

■ 강의날짜	@2022/10/17
① 작성일시	@2022년 10월 17일 오후 10:28
① 편집일시	@2022년 10월 17일 오후 11:49
◈ 분야	네트워크
◈ 공부유형	스터디 그룹
☑ 복습	
∷ 태그	

Chapter 4: network layer

chapter goals:

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - broadcast, multicast
- · instantiation, implementation in the Internet

Network Layer 4-1

Chapter 4: outline

4.1 introduction

- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-2

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Network Layer 4-3

• 라우터에서 패킷을 목적지를 보고 어디로 가야되는지 생각하고 계속 반복된다

Two key network-layer functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

Network Layer 4-4

Interplay between routing and forwarding

Network Layer 4-5

- 특정 목적지로 보내기 위해서 목적지 어디로 보내라
- forwarding : 테이블을 보고 전달하면 됨
- 들어온 패킷과 매칭 시켜서 어디로 보낸다.
- 라우터는 죽을 때까지 포워딩만 함
- 라우팅 알고리즘 : 포워딩 테이블을 만드는 것

.

Datagram networks

- * no call setup at network layer
- * routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address

Network Layer 4-6

Datagram forwarding table

Network Layer 4-7

Datagram forwarding table

Destination Address Range			Link Interface	
11001000 through	00010111	00010000	00000000	0
_	00010111	00010111	11111111	Ü
11001000 through	00010111	00011000	00000000	1
_	00010111	00011000	1111111	'
11001000 through	00010111	00011001	00000000	2
_	00010111	00011111	11111111	
otherwise				3

Q: but what happens if ranges don't divide up so nicely?

Network Layer 4-8

• 매칭이 되는 엔트리를 찾아 보낸다

Longest prefix matching

- longest þrefix matching -

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range				Link interface
11001000 0	0010111	00010***	*****	0
11001000 0	0010111	00011000	******	1
11001000 0	0010111	00011***	*****	2
otherwise				3

examples:

DA: 11001000 00010111 00010110 10100001 which interface?

DA: 11001000 00010111 00011000 10101010 which interface?

Network Layer 4-9

• 매칭을 시키긴 시키되 그 중 가장 길게 매칭되는 엔트리와 포워딩한다.