Línea de Mercado de Capitales CML

Teoría y Estructuración de Portafolios

Docente: Natalia María Acevedo Prins.

Portafolio con un activo riesgoso y uno libre de riesgo

Portafolio = activo riesgoso + activo libre de riesgo

Desde el supuesto de activo libre de riesgo, la volatilidad es igual a cero.

Rendimiento esperado:

$$E[R_P] = WR_i + (1 - W)R_f$$

$$E[R_P] = R_f + W(R_i - R_f)$$

$$W = \frac{\sigma}{\sigma}$$

$$E[R_P] = R_f + \frac{\sigma_P}{\sigma_i} (R_i - R_f)$$

$$E[R_P] = R_f + \left[\frac{R_i - R_f}{\sigma_i} \right] \sigma_P$$

W: proporción de inversión activo riesgoso.

(1 – W): proporción de inversión activo libre de riesgo.

R_i: rendimiento esperado activo con riesgo i.

R_f: rendimiento esperado activo libre de riesgo.

σ_i: volatilidad activo con riesgo i.

 σ_f : volatilidad activo libre de riesgo = 0.

Varianza:

Línea del Mercado de Capitales – LMC

Mide el exceso de rendimiento que entrega el activo o portafolio por unidad de volatilidad.

Línea del Mercado de Capitales – LMC

Portafolio tangencial:

Rentabilidad esperada más alta posible para cualquier nivel de volatilidad.

Portafolio que genera la recta más inclinada combinando el activo libre de riesgo.

$$Ratio\ de\ Sharpe_i = \frac{E[R_i] - R_f}{\sigma_i}$$

 $E[R_i]$: rendimiento del activo por portafolio i.

 R_f : tasa libre de riesgo.

 σ_i : volatilidiad del activo o portafolio i.

Línea del Mercado de Capitales – LMC

Portafolio = activo riesgoso + activo libre de riesgo

Diferentes proporciones entre los activos, provocarán múltiples combinaciones que cortarán la frontera.

Existirá solo uno que la toque de forma tangencial maximizando el rendimiento

Línea de Mercado de Capitales CML

¡Gracias!

Docente: Natalia María Acevedo Prins.