Contents

1	Elei	mentary Set Theory	2
	1.1	Basic Notation	2
		1.1.1 Common Notation	2
		1.1.2 The Sample Space	2
	1.2	Set Operations	2

Chapter 1

Elementary Set Theory

1.1 Basic Notation

1.1.1 Common Notation

 $\{w\}$ denotes a set

w denotes an element

(a,b) is an open interval, not including a and b

[a, b] is a closed interval, including a and b

 $\{w: \mbox{ a statement}\};$ the set of elements w for which the statement holds. ex: $\{w: a < w < b\}$

1.1.2 The Sample Space

Sample Space: denoted by Ω , as a non-empty set of all the elements concerned. These elements are called points and are denoted with lower case letters.

1.2 Set Operations

Difference: $A - B = \{w : w \in A, w \notin B\} = A \cap B^c$

Symmetric Difference:

 $A\Delta B = (A - B) \cup (B - A) = \{w : w \in \text{exactly one of A and B}\}\$

Disjoint: Two sets are disjoint if $A \cap B = \emptyset$

Disjoint Union: For two disjoint sets the disjoint union is $A \cup B = A + B$

 $\mathbf{Infimum}(\inf) \colon \operatorname{greatest\ lower\ bound}$

Supremum(sup): least upper bound