HAE302: Partie Circuits et composants INDUCTIFS

Contrôle Continu du 18/11/2024 : Durée conseillée 45 mn, noté sur 10 pts Tous documents interdits – Calculatrices autorisées - A composer sur 1 copie séparée

On rappelle: Perméabilité magnétique du vide $\mu_0 = 4\pi \ 10^{-7} \ H/m$.

Les 3 questions sont indépendantes

1°/ Bobine plate (2pts) : L'expression du champ B en un point P suivant l'axe d'une bobine plate de rayon R comportant N spires est donnée par la relation suivante où α est l'angle au point P permettant de repérer la bobine plate :

$$B = \frac{\mu_0 N i}{2R} \sin^3 \alpha$$

- a- Que devient cette expression pour un champ au centre de la bobine plate ?
- b- Etablir l'expression de l'inductance L_{Bob} de cette bobine plate. Calculer L_{Bob} pour N = 1000 spires et R = 2cm
- **2°/ Solénoïde (2pts)**: L'expression du champ B_1 sur l'axe à l'intérieur d'un solénoïde (ou bobine longue) de section S_1 (rayon R_1), de longueur ℓ_1 est donnée par la relation suivante où n_1 est le nombre de spires par unité de longueur et α et α' les angles permettant de repérer les extrémités du solénoïde :

$$B_1 = \frac{\mu_0 n_1 i}{2} (\cos \alpha + \cos \alpha')$$

- a- Que devient cette expression dans le cas d'un solénoïde infini et dans quel cas peut-on utiliser cette relation?
- b- Etablir l'expression de l'inductance L_{sol} de ce solénoïde. Calculer L_{sol} pour N_1 = 1000 spires, R_1 = 2cm, ℓ_1 = 25cm
- **3°/ Bobine torique (6pts)** : Soit une bobine torique de section S considérée rectangulaire comportant N spires de hauteur h, de rayons interne R₁ et externe R₂ parcourue par un courant de 2A.

- a- En utilisant le théorème d'Ampère, établir l'expression du champ B de ce Tore au point r entre R_1 et R_2 . Faire un choix de sens de courant dans le bobinage torique et représenter le champ **B**.
- **b** Etablir l'expression de l'inductance du Tore L_{Tore}.

Calculer L_{Tore} puis le flux Φ pour N = 1000 spires, R_1 = 2cm, R_2 = 5cm, h = 3cm

- c- Une Bobine comportant N' = 10 spires est enroulée sur une partie du Tore (figure ci-dessous).
 - Etablir l'expression puis calculer l'inductance mutuelle M de la combinaison Tore Bobine pour laquelle l'inducteur est le Tore et l'induit est la Bobine.
 - En déduire la fem moyenne induite lorsque le courant dans le Tore est annulé en 25ms.

HAE302: Partie Circuits et composants CAPACITIFS

Contrôle Continu du 18/11/2024 : Durée conseillée 45 mn, noté sur 10 pts Tous documents interdits – Calculatrices autorisées - A composer sur 1 copie séparée

On rappelle que la permittivité diélectrique du vide $\varepsilon_0 = 1/(36\pi 10^9)$ F/m

Champ et potentiel électriques créés par une sphère chargée en surface (10 pts).

Soit une sphère de centre O et de rayon R, uniformément chargée en surface de densité surfacique +o.

- 1°/ On donne $\sigma = 2x10^{-1}$ C/m²; R = 5 cm. Calculer la charge Q de la sphère.
- **2°/ Déterminer** en fonction de $(\sigma, R, r, \varepsilon_0)$ l'expression du champ électrique $\stackrel{\rightarrow}{E}$ en tout point r variant de 0 à l'infini.
- Représenter le champ électrique $\stackrel{
 ightharpoonup}{E}$ en fonction de r avec r variant de 0 à l'infini
- Calculer E en r = R
- **3°/ Déterminer** en fonction de $(\sigma, R, r, \epsilon_0)$ l'expression du potentiel V créé en tout point r variant de 0 à l'infini.

On considèrera le potentiel comme nul à l'infini

- Vérifier la continuité de potentiel en r = R puis calculer V(R)
- Représenter le potentiel V en fonction de r avec r variant de 0 à l'infini.
- 4°/ Quelle est la particularité de cette distribution de charge, en particulier que vaut le courant pour $0 \le r \le R$?

