Content:

Declaration

Acknowledgment

Abstract

- 1) Vector and product of vectors
- 2) Scalar product of vectors
 - 2.1) Geometrical interpretation
 - 2.1.1) Case: Perpendicular vectors
 - 2.1.2) Case: Co-directional vectors
 - 2.1.3) Angle between two vectors
 - 2.1.4) Length of a vector as scalar product
 - 2.1.5) Properties of scalar product

Scalar projection

Associative law

Commutative law

Distributive law

- 3) Observation
- 4) Conclusion
- 5) Bibliography/Refrences

1 Objective:

To write four compound statements by using two simple mathematical statements.

2 Procedure/ Explanation:

In any triangle ABC,

$$\mathbf{p}: a = b\cos C + c\cos B$$

$$q: b = c \cos A + a \cos C$$

Here, p and q are two simple statements. Both of them are true mathematical statements regarding projection law in a triangle. The compound statements that can be formed using statements p and q are as follows:

2.1 $\mathbf{p} \wedge \mathbf{q}$

$$a = b \cos C + c \cos B$$
 AND $b = c \cos A + a \cos C$

Truth table:

p	q	$p \wedge q$
T	Т	Т

$\textbf{2.2} \ p \lor q$

$$a = b \cos C + c \cos B$$
 OR $b = c \cos A + a \cos C$

Truth table:

p	q	$p \lor q$
Т	T	Т

2.3 $\backsim p \lor q$

$$a \neq b \cos C + c \cos B$$
 OR $b = c \cos A + a \cos C$

Truth table:

∽p	q	$\neg p \lor q$
F	Т	Т

2.4 $p \Rightarrow \neg q$

IF
$$a = b \cos C + c \cos B$$
, THEN $b \neq c \cos A + a \cos C$

Truth table:

p	∽q	$p \Rightarrow \sim q$
Т	F	F

3 Observation:

For any two true simple statements p and q, the compound statement true and the statement (p \Rightarrow \backsim q) is found to be false.

4 Conclusion:

Two simple mathematical statements can be used to form a number of compound statements by using the logical connec-

tives conjuction (\wedge), disjunction (\vee), negation (\backsim), implication