소켓프로그래밍 라즈베리파이로 배우는 소켓 통신 <u>프로그래밍</u>

동양미래대학교 컴퓨터공학부 정석용

웹 서비스 구성

구분	내용	
웹 브라우저	Chrome, Internet Explorer, fire Fox	
웹 서버	아파치, IIS	
Server Side Script	JSP, PHP, ASP	
DBMS	MySQL, Oracle	
운영체제	linux. MS windows	

① 웹 서버로 서비스 요청

② HTTP request

④ script에 DB 액세스(SQL)가 있으면 DB 접근

웹 서버로 동작 절차

웹 서버를 통한 디바이스 제어 ?

관제 센터에서 자동차 문을 열려고 한다 ?

웹 서버를 통한 디바이스 제어?

웹 서버를 통한 디바이스 제어?

웹 서버를 통한 디바이스 제어 ?

관제 센터에서 자동차 문을 열려고 한다?

웹 서버를 탑재한 <mark>컴퓨터</mark>를 자동차에 장착?

웹 서버를 통한 디바이스 제어?

관제 센터에서 자동차 문을 열려고 한다? Internet TCP/IP 관제센터 Server Side Script HTTP 프로토콜 디바이스 드라이버 motor.jsp 자체 프로토콜 서버 프로그램 (socket program) 새로운 형태의 컴퓨터 운영체제(OS) Open source hardware / SBC Hardware RasberryPi, Arduino

웹 서버를 탑재한 컴퓨터를 자동차에 장착?

웹 서버 동작의 이해

구분	내용	설명	사전지식
Hardware	Raspberry Pi	Open Source Hardware 기반의 SBC(Single Board Computer)	
운영체제	Raspberry Pi OS (raspbian)	Debian 계열 리눅스	리눅스
서버프로그램	소켓프로그래밍	TCP 서버 제작	Pythone, C 언어/ 소켓프로그래밍
디바이스 제어	wiringPi	Sensor, Motor, LED 등	
클라이언트	Telnet/ 소켓프로그래밍	linux. MS windows	Pythone, C 언어/ 소켓프로그래밍

오픈 소스

개발과정에 필요한 소스코드나 설계도를

누구나 접근해서 열람하고 수정할 수 있도록 공개하는 것

오픈 소스 소프트웨어(open source software):

- 누구든지 열람하거나 수정하거나, 개량할 수 있도록 소스를 공개하는 것

오픈 소스 하드웨어(open source hardware):

- 누구나 이 디자인이나 이 디자인에 근거한 하드웨어를 배우고, 수정하고, 배포하고, 제조하고 팔 수 있는 그 디자인이 공개된 하드웨어

Linux / Android

Arduino / Raspberry Pi / LateeOanda

Apache / Mozilla Firefox

eclipse / python / vi / PHP / R

https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Open-source-hardware-logo.svg/200px-Open-source-hardware-logo.svg,png

OSHW Open Source Hardware 특징

"누구나 이 디자인이나 이 디자인에 근거한 하드웨어를 배우고, 수정하고, 배포하고, 제조하고 팔 수 있는 그 디자인이 공개된 하드웨어"

- 기술에 대한 특허 라이선스가 없고 제품개발에 필요한 리소스가 공개
- 부품을 직접 구매해 조립하기 때문에 완성형 또는 표준형 제품에 비해 저렴
- 형태 변경을 통해 전혀 새로운 형태의 커넥티드 기기를 탄생시킬 수 있음
- 제어나 조작에 필요한 소프트웨어 역시 오픈 소스로 공개되어 용도에 맞게 직접 프로그래밍도 가능

오픈소스 하드웨어

OSHW Open Source Hardware 오픈소스 하드웨어 개발 플랫폼

OSHW Open Source HardWare 오픈소스 하드웨어 개발 플랫폼

- 2005년 이탈리아 미디어아트 학교 교육용으로 개발
- AVR CPU, Cortex-M3가 탑재된 마이크로콘트롤러 보드
- 전세계적으로 가장 인지도가 높은 오프소스하드웨어 플랫폼

OSHW Open Source HardWare 오픈소스 하드웨어 개발 플랫폼

"누구나 이 디자인이나 이 디자인에 근거한 하드웨어를 배우고, 수정하고, 배포하고, 제조하고 팔 수 있는 그 디자인이 공개된 하드웨어"

- 영국 라즈베리 파이 재단에서 교육용 보드로 개발
- 미국 Broadcom사의 SoC 칩 기반의 초소형 싱글보드 컴퓨터
- 2012년 정식 출시되었으며, 리눅스기반의 전용 raspbian OS 적용

OSHW Open Source HardWare 오픈소스 하드웨어 개발 플랫폼

"누구나 이 디자인이나 이 디자인에 근거한 하드웨어를 배우고, 수정하고, 배포하고, 제조하고 팔 수 있는 그 디자인이 공개된 하드웨어"

LattePanda

- X86 기반의 미니 PC급 성능의 개발용 보드
- 미국 Intel사의 Quad Core 1.8GHz CPU 탑재 싱글보드 컴퓨터
- 윈도우 10을 탑재하여 구동하는 싱글보드 윈도10 컴퓨터
- 높은 성능에 따른 고가

Raspberry Pi는 영국의 라즈베리 파이 재단이 만든 싱글 보드 컴퓨터이다

	Pi 3 Model B	Pi 4 Model B
SoC	Broadcom BCM2837	Broadcom BCM2711
CPU	1.2 GHz 64-bit quad-core ARM Cortex-A53	1.5 GHz 64-bit quad-core ARM Cortex-A72
MEM(SDRAM)	1 GB	2, 4, 8 GB
USB Port	4 (USB 2.0)	2 (USB 2.0). 2 (USB 3.0)
Ethernet Wifi /Bluetooth	10/100 Mbps 2.4GHz / 4.1 BLE	10/100/1000 Mbps 2.4/5GHz / 5.0
HDMI	1 x HDMI	2 x HDMI (micro HDMI)
GPIO connector	40	40

Raspberry Pi는 Linux Kernel 기반의 운영체제를 사

The Raspberry Pi Foundation provides Raspberry Pi OS (formerly called Raspbian), a <u>Debian</u>-based (32-bit) Linux distribution for download, as well as third-party Ubuntu, Windows 10 IoT Core, RISC OS, and <u>LibreELEC</u> (specialised media centre distribution).

Wikipedia

- 라즈베리파이 재단은 데비안 기반 리눅스 배포판인 라즈베리파이 OS (기존 Raspbian이라 불림)를 다운로드 받아 사용할 수 있도록 제공하고 있음
- 또한 3'rd 파티 우분트, 윈도우스 10 IoT Core, RISC OS, LibreELEC 운영체제를 제공함

오픈소스 하드웨어

- 1. 웹서버의 동작 절차
- 2. 라즈베리파이 OS설치 및 환경 설정 방법
- 3. 라즈베리파이로 무선공유기 만들기
- 4. 디지털 액자 만들기
- 5. GPIO를 사용하여 정보를 표시하는 방법
- 6. GPIO를 사용하여 데이터를 수집하는 방법
- 7. 원격 장비의 데이터 수집과 전송 방법
- 8. 대형 디지털 시계 만들기
- 9. 다양한 센서 활용 방법
- 10. 사물인터넷 엣지 서버 만들기
- 11. 부저, 스위치 등을 이용하는 방법
- 12. 응용프로그램 자동 실행방법

출석: 20%

중간 평가 : 40% (중간고사 30%, 수업참여도 10%) 기말 평가 : 40% (기말고사 30%, 수업참여도 10%)