Problems from Hartshorne Chapter 2.2

Isaac Martin

Last compiled March 28, 2023

EXERCISE 2.7. Let X be a scheme. For any $x \in X$, let \mathcal{O}_x be the local ring at x, and \mathfrak{m}_x its maximal ideal. We define the *residue field* of x on X to be the field $k(x) = \mathcal{O}_x/\mathfrak{m}_x$. Now let K be any field. Show that to give a morphism of Spec K to X it is equivalent to give a point $x \in X$ and an inclusion map $k(x) \to K$.

Proof: Suppose first that we have a map $f:\operatorname{Spec} K\to X$. Topologically, this is determined solely by choosing an image $x\in f(P)$ for the sole point $P\in\operatorname{Spec} K$. Sheaf theoretically, this consists of a map $f^\sharp:\mathcal O_X\to f_*\mathcal O_K$ (by $\mathcal O_K$ we mean $\mathcal O_{\operatorname{Spec} K}$). This induces a local ring map on the stalk at $P\colon f_P^\sharp:\mathcal O_{X,x}\to (f_*\mathcal O_K)_P=K$, meaning that the maximal ideal $\mathfrak m_x$ in $\mathcal O_{X,x}$ is sent to the maximal ideal $(0)\subseteq K$, meaning that $\mathfrak m_x=\ker f_P^\sharp$. This in turn implies that f_P^\sharp factors through the quotient $\pi:\mathcal O_{X,x}\mapsto k(x)=\mathcal O_{X,x}/\mathfrak m_x$ and hence induces a map $k(x)\to K$. This map is necessarily an inclusion since every ring homomorphism of fields is injective.

Now suppose we have an injection $p:k(x)\hookrightarrow K$. We can then define a map $f_x^\sharp:\mathcal{O}_{X,x}\to K$ by $f^\sharp=p\circ\pi$, where $\pi:\mathcal{O}_{X,x}\to k(x)$ is the quotient map. This is precisely a map on between the stalks $\mathcal{O}_{X,x}$ and $\mathcal{O}_{K,P}$. If we define $f:\operatorname{Spec} K\to X$ by $P\mapsto x$ and $f^\sharp(U):\mathcal{O}_X(U)\to f_*\mathcal{O}_K(U)=K$ by $f^\sharp(U)=f_x^\sharp\circ\iota$ where $\iota:\mathcal{O}_X(U)\to\mathcal{O}_{X,x}$ is the natural localization map, then (f,f^\sharp) is a map of schemes. Note that for any open set $U\subseteq X$ not containing x the map $f^\sharp:\mathcal{O}_X(U)\to f_*\mathcal{O}_K(U)$ is necessarily the zero map, since $f_*\mathcal{O}_K(U)=\mathcal{O}_K(f^{-1}(U))=\mathcal{O}_K(\varnothing)=0$.

EXERCISE 2.11. Let $k = \mathbb{F}_p$ be the finite field with p elements. Describe $\operatorname{Spec} k[x]$. What are the residue fields of its points? How many points are there with a given residue field?

Proof: The ring k[x] is a PID since k is a field, so the prime ideals are all principally generated by irreducible polynomials $f \in k[x]$.

Exercise 2.18.

- (a) Let A be a ring, $X = \operatorname{Spec} A f \in A$. Show that f is nilpotent if and only if D(f) is empty.
- (b) Let $\varphi: A \to B$ be a ring homomorphism and let $f: \operatorname{Spec} B \to \operatorname{Spec} A$ be the induced morphism of affine schemes. Show that φ is injective if and only if the map of schaves $f^{\sharp}: \mathcal{O}_X \to f_*\mathcal{O}_X$ is injective. Show furthermore in that case f is *dominant*, i.e. $f(\operatorname{Spec} B)$ is dense in X.

Proof: (a) Recall that the nilradical of any ring is equal to the intersection of all its prime ideals. Therefore

$$f \text{ is nilpotent} \iff f \in \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} \mathfrak{p} \iff V(f) = \operatorname{Spec} A \iff D(f) = \varnothing.$$

(b) Note first that if $f^{\sharp}: \mathcal{O}_{\operatorname{Spec} A} \to f_*\mathcal{O}_{\operatorname{Spec} B}$ is injective then it is injective on global sections and hence $\varphi = f^{\sharp}(\operatorname{Spec} A): A \to B$ is injective. Suppose instead that f^{\sharp} is not injective, so that there is some $U \subseteq \operatorname{Spec} A$ such that $f^{\sharp}(U): \mathcal{O}_{\operatorname{Spec} A}(U) \to \mathcal{O}_{\operatorname{Spec}(B)}(f^{-1}(U))$ which is not an injective ring homomorphism. By taking $f \in A$ such that $D(f) \subseteq U$ (which exists since the sets D(f) are basic

opens) we can assume that U=D(f). In this case, the map $f^\sharp(D(f))$ is the map $\varphi_f:A_f\to B_{\varphi(f)}$. If this is not injective, then there is some $n\in\mathbb{N}$ such that $\varphi(f^n)\varphi(a)=0\implies \varphi(f^n\cdot a)=0$ such that $f^na\neq 0$, and hence φ is not injective.

Suppose now that $\varphi:A\to B$ is injective. The map f is dominant if and only if $f(\operatorname{Spec} B)$ has nontrivial intersection with every (nonempty) basic open D(f). Fix then a nonempty D(f), which by part (a) means f is not nilpotent. Localizing at f yields a map $\varphi_f:A_f\to B_{\varphi(f)}$. Pulling back a maximal ideal $\mathfrak{m}\in\operatorname{Spec} B_{\varphi(f)}$ by φ_f yields a prime ideal in \mathfrak{p} in A_f , and then by the correspondence between $\operatorname{Spec} A_f$ and primes in $\operatorname{Spec} A$ which do not contain f, we get that $f(\mathfrak{m})=\varphi^{-1}(\mathfrak{m})=\mathfrak{p}\in D(f)$. Hence the image of f is dense in $\operatorname{Spec} A$.