ER Diagram Analysis Report

1. Introduction

ER diagram is an entity-relationship model of a business system that incorporates customers, orders, invoices, payments, products, suppliers, events, tickets, and users. It is an examination of the inter-entity relations and cardinalities.

2. Entities and Their Relationships

Each entity in the database is defined with specific attributes and is linked to other entities through relationships.

2.1 Customers and Orders (1:M)

- Entity: Customers (customer_id)
- Entity: Orders (order_id, customer_id)
- Relationship: One-to-Many (1:M)
- 1. One **customer** can place **many orders**, but each **order** belongs to only one **customer**.

2.2 Orders and Order_Items (1:M)

- Entity: Orders (order_id)
- Entity: Order_Items (order_item_id, order_id, product_id)
- Relationship: One-to-Many (1:M)
- 2. One order can contain multiple order items, but each order item belongs to only one order.

2.3 Order Items and Products (M:1)

- Entity: Order Items (order_item_id, product_id)
- Entity: Products (product_id)
- Relationship: Many-to-One (M:1)
- 3. Many order items can reference the same product, but each order item is linked to one product.

2.4 Orders and Invoices (1:1)

- Entity: Orders (order_id)
- Entity: Invoices (invoice_id, order_id)
- Relationship: One-to-One (1:1)
- 4. Each **order** generates **one invoice**, and each **invoice** corresponds to exactly **one order**.

2.5 Invoices and Payments (1:1)

- Entity: Invoices (invoice_id)
- Entity: Payments (payment_id, invoice_id)
- Relationship: One-to-One (1:1)
- 5. Each invoice has exactly one payment, and each payment is linked to one invoice.

2.6 Products and Suppliers (M:1)

- Entity: Products (product_id, supplier_id)
- Entity: Suppliers (supplier_id)
- Relationship: Many-to-One (M:1)
- 6. Many products can be supplied by the same supplier, but each product has only one supplier.

2.7 Customers and Tickets (1:M)

- Entity: Customers (customer_id)
- Entity: Tickets (ticket_id, customer_id, event_id)
- Relationship: One-to-Many (1:M)
- 7. A **customer** can purchase **multiple tickets**, but each **ticket** is assigned to one **customer**.

2.8 Events and Tickets (1:M)

- Entity: Events (event_id)
- Entity: Tickets (ticket_id, event_id)
- Relationship: One-to-Many (1:M)
- 8. One **event** can have **many tickets**, but each **ticket** is assigned to one **event**.

2.9 Users and Roles (1:M)

- Entity: Users (user_id, role)
- Relationship: One-to-Many (1:M)
- 9. Each user has a role (Admin, Staff, or Customer), and multiple users can belong to the same role.

8/03/04 SQL Inventory management system Important Entities: 01. supplies (which related to supplies_10-) a. product (which related product 10 -) order 160) 03. austomess (which realated cus tomes_1 > order) oy orders Cwhich related order ID gorder_itemwhich, involves the defails of tockets, Evert payment which related to prorce and students the payment details) 05. ordes_ I tem (which involves the table like order 10, product 10) 06. Invoices (which involves the Invoices-10, \$ payment) 07. payments C which makes Relation between payment to and Invoice (1) 18. Usess (which involves the uses ip and Admin, stabb, austomestand ases) tutuse Involvement 09. Events Cookich makes Relation between End Event-10, Ticket, pagment, invoices may be with asess, order 10, product 10, product)

10) Tickets Clicket-10, which has Relation with customes_10, order 10, payment, Events, Envoice 11) Student (Student 10 > Events, payment, Ticket, invoices) 8 upplies to cludes like ticket provides Event organizes and etc. Brent 1d, austomesid, Future expansion Events customes opprevious Roward in voice id, event name, I vent date, location payment-id, desoription Event Customes a Hicker

invoice date Had amos last transferral, pho in protas ia, orderia customes id First name inroices Stabas product of supplies 14 poded id, product-name description, porta, pulment date Pagment 9 order i tem 10, order 19 mice descri mice, sub total ordes: 1 Pans man or day broduct 10 supplies 14, mane, E Contact trame, phone wending WERS Z em rui westo 300 emas (

3. Summary of Relationships

Entity 1	Entity 2	Relationship Type
Customers	Orders	1:M (One customer can have many orders)
Orders	Order Items	1:M (One order contains multiple order items)
Order Items	Products	M:1 (Many order items refer to one product)
Orders	Invoices	1:1 (Each order has exactly one invoice)
Invoices	Payments	1:1 (Each invoice has exactly one payment)
Products	Suppliers	M:1 (Many products are supplied by one supplier)
Customers	Tickets	1:M (One customer can buy multiple tickets)
Events	Tickets	1:M (One event has multiple tickets)
Users	Roles	1:M (Multiple users can belong to the same role)

4. Conclusion

ER diagram is a great database schema for orders, payments, customers, suppliers, and events. The 1:M (One-to-Many) relationships support proper transaction handling, and the 1:1 (One-to-One) relationships between invoices and orders/payments ensure accounting record consistency.