Rappels : espace euclidien

Espaces affin euclidiens

netries vectorienes

Isomètries affine:

M53 - Partie 2

septembre 2015

Rappels : définition espace vectoriel euclidien

Rappels : espace euclidien Définition Norme Notations

euclidiens

Isométries vectorielles

Icométries affines

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R}$$
$$(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $\bullet \text{ définie}: \langle \overrightarrow{\mathbf{v}} | \overrightarrow{\mathbf{v}} \rangle = 0 \Leftrightarrow \overrightarrow{\mathbf{v}} = 0,$
- **positive** : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels : norme euclidienne

Rappels : espace euclidien ^{Définition} Norme

Espaces affine euclidiens

Isométries vectorielles

Isométries affine

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v}\left|\overrightarrow{w}\right\rangle \right|\leq\left\|\overrightarrow{v}\right\|\left\|\overrightarrow{w}\right\|.$$

4 On dit que l'angle entre \vec{v} et \vec{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$
.

Rappels : notations

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Isométries vectorielles

Isométries affines

- $\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$
- $2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}} \text{, alors } \vec{\mathcal{F}}^{\perp} = \big\{ \vec{v} \in \vec{\mathcal{E}} \, \big| \, \, \forall \vec{w} \in \vec{\mathcal{F}}, \, \vec{v} \perp \vec{w} \big\}.$
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$
- 4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\oplus\overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1\perp\overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2\Leftrightarrow\overrightarrow{\mathcal{F}}_1^\perp=\overrightarrow{\mathcal{F}}_2\Leftrightarrow\overrightarrow{\mathcal{F}}_2^\perp=\overrightarrow{\mathcal{F}}_1$.

Définition d'un espace affine euclidien

Rappels : espace euclidien

Espaces affines euclidiens Définition

Isométries vectorielle

Isométries affin

Définition

Un ensemble $\mathcal E$ est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit <u>euclidien</u> si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

Et dans ce cas on pose la distance entre deux points

$$d(A, B) = \left\| \overrightarrow{AB} \right\|.$$

Distance entre parties

Rappels : espace euclidien

Espaces afleuclidiens

Distance entre parties

somethes vectoriene

Isométries affin

Définition

Soit ${\mathcal A}$ et ${\mathcal B}$ deux parties d'un espace affine euclidien ${\mathcal E}.$ On pose

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- 4 Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définit

Petites dimens Forme standar Décomposition

Isométries affin

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des deux conditions équivalentes

$$1 \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\|\vec{\phi}(\vec{v})\| = \|\vec{v}\|.$$

$$\mathbf{v}, \vec{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal, $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}$. En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}: \overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$.

Rappels : Groupe des isométries vectorielles

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Groupe orthogonal
Petites dimensions

Forme standard Décomposition

Isométries :

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ (resp. O_n^+) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

 $(O^+(\vec{\mathcal{E}}) \text{ est un sous-groupe du groupe compact } O(\vec{\mathcal{E}}), \text{ mais } O^-(\vec{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

euclidiens

Définition

Petites dimens

Pécomposition

Isométries affine

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+ \sqcup O_2^-$, où
 - $\bullet O_2^+ = \big\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{R} \big\}$ est le sous-groupe des rotations,
 - $O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{R} \}$ est l'ensemble des réflexions. $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\vec{R}_{\alpha} \circ \vec{R}_{\beta} = \vec{R}_{\alpha+\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{S}_{\beta} = \overrightarrow{R}_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}.$$

Remarque : Toute isométrie de \mathbb{R}^2 est le produit d'au plus 2 réflexions.

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Forme standard

Isométries affine

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre \mathcal{O}_2 et $\mathcal{O}(\mathbb{C})$ est donnée par :

Dimension 3

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielle

Forme standard
Décomposition

ométries .

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\left(\begin{array}{ccc} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{array} \right).$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétrie $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}\rangle}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Forme standard des isométries

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

SOMETRIES VECTORIELLE
Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

Proposition

Soit $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, alors il existe une b.o.n. dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme (dim $\overrightarrow{\mathcal{E}} = 2k + p$)

Et pour $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$, à la place du dernier 1 il y a un -1 (donc p > 0).

Décomposition des isométries en réflexions

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Petites dimensi

Décomposition

Isométries affine

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

 $\textit{Soient} \; \overrightarrow{\mathcal{E}} \; \textit{ de dimension } \dim \overrightarrow{\mathcal{E}} = \textit{n, et } \overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).$

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$.

Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Définition

Définition-Proposition

On dit qu'une application affine $\phi \in Aff(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} .

Ainsi que $lso^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overrightarrow{\mathcal{E}})$.

Premières propriétés des isométries

Rappels : espace euclidien

euciidiens

Isomètries affin

Définition Propriétés

Petites dimension

- $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions.

Structure des isométries affines

Rappels : espace euclidien

euclidiens

lsométries vectorielles

Isométries affin

Propriétés

Structure Petites dimension

Lemme

Soit
$$\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$$
, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composée d'au plus 2 réflexions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{D}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie $\vec{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

(ϕ est la composée d'au plus 3 réflexions.)

Rappel: Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $\bar{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon ϕ est une symétrie glissée.

- \blacksquare Iso(\mathbb{R}^3) = Iso⁺(\mathbb{R}^3) \sqcup Iso⁻(\mathbb{R}^3).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\vec{\mathbf{v}}} \circ R_{\mathcal{D},\alpha}$, avec $\hat{\mathcal{D}} = \langle \vec{\mathbf{v}} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - ullet $\phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - ullet $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

 $(\phi \text{ est la composée d'au plus 4 réflexions.})$

Décomposition des isométries en réflexions

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affine

Propriété

Petites dimens

Décomposition

Rappel : Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k \leq n+1$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in \mathsf{Iso}^+(\mathcal{E})$, et si k est impair $\phi \in \mathsf{Iso}^-(\mathcal{E})$.