Fakultät Angewandte Naturwissenschaften und Wirtschaftsingenieurwesen

Übungen zu Analytische Grundlagen - WIW-1:

Blatt 8

WS 2014/15

1. Man gebe die ersten 6 Glieder der nachstehenden Zahlenfolgen (a_n) , $n \ge 1$ an : (A15.1)

a)
$$a_n = \frac{n-1}{n+1}$$

a)
$$a_n = \frac{n-1}{n+1}$$
 b) $a_n = 1 + \frac{(-1)^n}{n}$ c) $a_n = \frac{(-2)^n + 2^n}{2n}$ d) $a_n = \frac{(-n)^n}{n!}$

c)
$$a_n = \frac{(-2)^n + 2^n}{2n}$$

d)
$$a_n = \frac{(-n)^n}{n!}$$

e)
$$a_n = \frac{10^{-\frac{n}{2}} \cdot n!}{n + min(n^2, n!)}$$
 f) $a_1 = 1$, $a_n = \sum_{i=1}^{n-1} a_i$, $n > 1$ h) $a_1 = 2$, $a_2 = 3$, $a_n = 3a_{n-1} - 2a_{n-2}$, $n > 2$

h)
$$a_1 = 2$$
, $a_2 = 3$, $a_n = 3 a_{n-1} - 2 a_{n-2}$, $n > 2$

2. Wie lautet das allgemeine Glied a_n der rekursiv vorgegebenen Zahlenfolgen in expliziter Darstellung:

a)
$$a_1 = 1$$
, $a_n = 2a_{n-1}$

b)
$$a_1 = 1$$
, $a_n = \frac{2 a_{n-1}}{n+1}$

a)
$$a_1 = 1$$
, $a_n = 2a_{n-1}$ b) $a_1 = 1$, $a_n = \frac{2a_{n-1}}{n+1}$ c) $a_0 = 3$, $a_1 = 1$, $a_n = a_{n-2}$

d)
$$a_0 = 2$$
, $a_1 = \frac{1}{2}$, $a_n = \frac{a_{n-1} + a_{n-2}}{2}$ f) $a_1 = 2$, $a_n = \sum_{i=1}^{n-1} a_i$, $n > 1$

f)
$$a_1 = 2$$
, $a_n = \sum_{i=1}^{n-1} a_i$, $n > 1$

3. Gegeben seien folgende Zahlenfolgen (a_n) , $n \ge 1$:

a)
$$a_n = \frac{1}{n}$$

b)
$$a_n = \frac{n^2}{2^5}$$

a)
$$a_n = \frac{1}{n}$$
 b) $a_n = \frac{n^2}{2^5}$ c) $a_n = \frac{(-2)^n}{n}$ d) $a_n = \frac{2n+1}{n}$ e) $a_n = \frac{n-1}{n+1}$ f) $a_n = \frac{n+3}{n+1}$

$$d) \quad a_n = \frac{2n+1}{n}$$

$$a_n = \frac{n-1}{n+1}$$

f)
$$a_n = \frac{n+3}{n+1}$$

$$g) \quad a_n = \frac{10^n}{n!}$$

$$a_n = \frac{n!}{n^n}$$

i)
$$a_n = \frac{n^2 + 3}{(n+1)^2}$$

j)
$$a_n = \frac{n^2 + 6n + 8}{n^2 + 5n + 6}$$

g)
$$a_n = \frac{10^n}{n!}$$
 h) $a_n = \frac{n!}{n^n}$ i) $a_n = \frac{n^2 + 3}{(n+1)^2}$ j) $a_n = \frac{n^2 + 6n + 8}{n^2 + 5n + 6}$ k) $a_n = 1 + \frac{(-1)^n}{n^2}$

3.1 Man untersuche das Monotonieverhalten dieser Zahlenfolgen.

(A15.4)

(A15.2)

3.2 Welche der Zahlenfolgen sind beschränkt? Im Falle vorliegender Beschränktheit gebe man jeweils untere und obere Schranken s bzw. S an. (A15.5)

3.3 Welche der Zahlenfolgen sind konvergent? Man ermittle ihren Grenzwert.

(A15.6)

4. Man ermittle den Grenzwert der Zahlenfolgen (a_n) : (Hinweis: Definition der Eulerschen Zahl) (A15.7)

a)
$$a_n = \left(1 + \frac{1}{n+3}\right)^{n+2}$$

a)
$$a_n = \left(1 + \frac{1}{n+3}\right)^{n+2}$$
 b) $a_n = \left(1 - \frac{1}{n-4}\right)^{3n}$

(entnommen der Übungssammlung von Prof. Schulte aus dem Blatt 15)