Income Prediction. Classification Predictive Modeling

by Anupama r.k, Queenie Tsang, Crystal (Yunan) Zhu

12/02/2021

Modeling and Evaluation

Describe the data

Data Dictionary

 $\mbox{\tt \#\#}$ The dimension of the dataset is 32561 by 15 .

There are 32,561 records and 15 columns in the original data set.

There are 6 numeric and 9 categorical variables shown as follows:

Column Name	Data Type	Column Description		
age	Integer	The age of the adult (e.g., 39, 50, 38, etc.)		
workclass	Factor	The work class of the adult (e.g., Private, Self-emp-not-inc, Federal-gov, etc.)		
fnl_wgt	Integer	The weights on the Current Population Survey (CPS) files are controlled to independent estimates of the civilian noninstitutional population of the US (e.g., 77516, 83311, etc.)		
education	Factor	The education of the adult (e.g., Bachelors, Some-college, 10th, etc.)		
education_num	Integer	The number years of the adult's education (e.g., 13, 9, 7, etc.)		
marital_status	Factor	The marital status of the adult (e.g., Divorced, Never-married, Separated, etc.)		
occupation	Factor	The occupation of the adult (e.g., Tech-support, Craft-repair, Sales, etc.)		
relationship	Factor	The relationship of the adult in a family (e.g., Wife, Own-child, Husband, etc.)		
race	Factor	The race of the adult (e.g., White, Asian-Pac-Islander, Amer-Indian-Eskimo, etc.)		
sex	Factor	The gender of the adult.(Female, Male		
capital_gain	Integer	The capital gain of the adult (e.g., 0, 2174, 14084, etc.)		

Column Name	Data Type	Column Description
capital_loss	Integer	The capital loss of the adult (e.g., 0, 1408,2042, etc.)
hours_per_week	Integer	The number of working hours each week for the adult (e.g. 40, 13, 16, etc.)
native_country	Factor	The native country of the adult (e.g. Cambodia, Canada, Mexico, etc.)
income	Factor	The yearly income of the adult at 2 levels: $<=50$ K and >50 K.

Data Description

First, let's check whether there are duplicates in the dataset.

The number of duplicated records in the dataset is 24 .

For the benefit of this report's length, let's look at a sample of duplicated records:

	age	workclass	fnl_wgt	education	education_num	marital_status	occupation	relationship
4768	21	Private	250051	Some-college	10	Never-married	Prof-specialty	Own-child
9172	21	Private	250051	Some-college	10	Never-married	Prof-specialty	Own-child
4326	25	Private	308144	Bachelors	13	Never-married	Craft-repair	Not-in-family
4882	25	Private	308144	Bachelors	13	Never-married	Craft-repair	Not-in-family

	race	sex	capital_gain	capital_loss	hours_per_week	native_country	income
4768	White	Female	0	0	10	United-States	<=50 K
9172	White	Female	0	0	10	United-States	<=50 K
4326	White	Male	0	0	40	Mexico	<=50 K
4882	White	Male	0	0	40	Mexico	$\leq =50 \mathrm{K}$

The 24 duplicated rows will be removed from all later analysis.

Then let's check whether there are any missing values in the dataset.

Warning in plot.aggr(res, ...): not enough horizontal space to display

frequencies


```
##
##
##
         workclass 0.05642807
##
##
    native_country 0.01788733
##
                age 0.00000000
##
           fnl_wgt 0.00000000
##
         education 0.00000000
##
     education_num 0.00000000
##
    marital_status 0.00000000
      relationship 0.00000000
##
##
              race 0.00000000
##
                sex 0.00000000
##
      capital_gain 0.00000000
##
      capital_loss 0.00000000
    hours_per_week 0.00000000
##
##
            income 0.00000000
```

From the above, there are missing values in this data set and all the missing values are from categorical variables.

Comparing records with at least one missing value to those without any missing values.

In order to better understand the patterns of the missing values, let's look at some descriptions of the records with missing values.

From the above bar charts comparing the distributions of 7 variables of the group that do not have missing values and the group that have at least one missing records, we can see that the missing records are generally evenly distributed across all ages, education level, marital status, family relationship, race, working hours per week and the target variable income. When compared with the whole population in the census, the percentages of records with missing values are having slightly lower percentages in the age group between 20-50, Married civ spouse marital status, husband, and slightly higher percentages for 60-70 years old, never-married. Males tend to have fewer missing records than females.

Since the proportion of missing values is relatively small (7%) where we would have 30K records left, and it's generally the same for people with income higher and lower than 50K USD, we think it would be reasonable to remove the records for our analysis in this report. If we had more time, we'd recommend fitting models separately for female and male since they have different willingness to answer occupation, work class or native country related questions, which could be strong predictors for adult income.

Now let's view the summary of the 6 numeric columns:

-	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
age	17.00	28.00	37.00	38.59	48.00	90.00
$\mathrm{fnl}_\mathrm{wgt}$	12285.00	117827.00	178356.00	189780.85	236993.00	1484705.00
education_num	1.00	9.00	10.00	10.08	12.00	16.00
$capital_gain$	0.00	0.00	0.00	1078.44	0.00	99999.00
$capital_loss$	0.00	0.00	0.00	87.37	0.00	4356.00
hours_per_week	1.00	40.00	40.00	40.44	45.00	99.00

Let's take a clearer look at the numeric values by visualizing their distributions using histograms, except for capital gain and capital loss.

Let's use boxplots to see whether there are outliers for each numeric variable.

Since there are large number of zeros in capital gain & capitalloss variables, let's check if there are outliers for non-zero values.

We can see there are still outliers even excluding zeros for capital gain and capital loss variables.

Distributions of categorical variables by target variable.

From the above bar chart we can see the majority of adults in the census were working in private sectors.

