ML/DL Algorithms

text numbers

Word2Vec

What is Word2Vec?

- A two layer neural network to generate word embeddings given a text corpus.
- Word Embeddings Mapping of words in a vector space.

What is Word2Vec?

 A two layer neural network to generate word embeddings given a text corpus.

	battle	horse	king	man	queen	 woman
authority	0	0.01	1	0.2	1	 0.2
event	1	0	0	0	0	 0
has tail?	0	1	0	0	0	 0
rich	0	0.1	1	0.3	1	 0.2
gender	0	1	-1	-1	1	 1

Why Word2vec?

- Preserves relationship between words.
- Deals with addition of new words in the vocabulary.
- Better results in lots of deep learning applications.

Working of word2Vec

• The word2vec objective function causes the words that occur in similar contexts to have similar embeddings.

Example: The <u>kid</u> said he would grow up to be superman.

The <u>child</u> said he would grow up to be superman.

The words kid and child will have similar word vectors due to a similar context.

CBOW

Predict the target word from the context.

Skip Gram

Predict the context words from target.

CBOW - Working

Hope can set you free.

CBOW - Working

w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

W_{3X5}

Actual Target

one hot vector

of "Can"

Skip Gram - Working

Getting word embeddings

w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

Word Vector for hope = $W_{3 \times 5} \times V_{5 \times 1}$

A				
w00	w01	w02	w03	w04
w10	w11	w12	w13	w14
w20	w21	w22	w23	w24

Improving the accuracy

- Choice of Model architecture (CBOW / Skipgram)
 - Large Corpus, higher dimensions, slower

 Skipgram
 - Small Corpus, Faster CBOW

- Increasing the training dataset.
- Increasing the vector dimensions

Increasing the windows size.

mercusing the vector uniteristants