ASSESSING MODEL ACCURACY DAVID ORME

OVERVIEW

- The confusion matrix
- Measures of model accuracy
- Thresholds for continuous predictions
- Application to Species Distribution Models

MODIS LAND COVER CLASSIFICATION

Site	Class					CI	assi	ficat	ion (Outc	ome						
Class	Name	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	Total
1	Evergreen Needleleaf	1460	42	18	11	266	7	9	17	23	10	15	21	2	0	0	1901
2	Evergreen Broadleaf	31	4889	0	14	14	11	18	79	23	17	4	38	10	0	1	5149
3	Deciduous Needleleaf	87	0	104	25	118	0	0	4	0	0	0	10	0	0	0	348
4	Deciduous Broadleaf	22	56	16	384	278	0	3	11	1	3	0	47	8 2	0	0	903
5	Mixed Forest	405	63	9 4	148	1355	3	1	27	7	8	40	41	17	0	0	2209
6	Closed Shrubland	34	35	2	12	5	140	124	29	15	30	2	158	19	0	8	613
7	Open Shrubland	10	12	3	9	1	41	1002	33	4 5	203	0	210	6	0	213	1788
8	Woody Savanna	62	133	0	16	110	11	104	577	141	71	0	221	22	0	3	1471
9	Savanna	10	53	1	0	21	18	48	93	440	43	1	252	79	0	16	1075
10	Grasslands	2	16	0	2	20	4	179	6	101	632	0	249	13	0	363	1587
11	Pmnt Wtlnd	63	24	0	5	28	23	1	2	36	2	8 9	1	7	0	0	281
12	Cropland	6	75	2	7	16	8	61	42	132	133	2	5168	183	0	18	5853
14	Cropland/Natural Vegn	2	133	0	48	28	2	8	16	66	8	1	320	832	0	7	1471
15	Snow+ice	1	0	0	0	0	1	2	0	0	0	5	1	0	1297	5	1312
16	Barren	0	2	1	0	0	1	162	4	5	126	3	56	5	14	3537	3916
	Total	2195	5533	241	681	2260	270	1722	940	1035	1286	162	6793	1277	1311	4171	29877

Accuracy = 21906 / 29877 = 73.3%

A SIMPLER CONFUSION MATRIX

Zoom in on just two of those categories:

Site	Class		
Class	Name	1	2
1	Evergreen Needleleaf	1460	42
2	Evergreen Broadleaf	3 1	4889

Model predicts: Is this evergreen forest needleleaf or broadleaf

Easy to calculate accuracy:

	Pred. Needle	Pred. Broad	Sum
Obs. Needle	1460	42	1502
Obs. Broad	31	4889	4920
Sum	1491	4931	6422

$$A = \frac{1460 + 4889}{1460 + 4889 + 42 + 31} = 98.9$$

But random models can have reasonable accuracy!

	Pred. Needle	Pred. Broad	Sum
Obs. Needle	756	746	1502
Obs. Broad	2441	2479	4920
Sum	3197	3225	6422

$$A = \frac{756 + 2479}{6422} = 50.4$$

And so can stupid ones: everything is a broadleaf.

	Pred. Needle	Pred. Broad	Sum
Obs. Needle	0	1502	1502
Obs. Broad	0	4920	4920
Sum	0	6422	6422

$$A = \frac{0 + 4920}{6422} = 76.6$$

PREVALENCE

Prevalence is simple the proportion of the observed positive outcomes:

Prevalence =
$$\frac{1502}{6422}$$
 = 0.234

And accuracy is affected by prevalence

	Pred. Needle	Pred. Broad	Sum
Obs. Needle	0	35	35
Obs. Broad	0	6407	6407
Sum	0	6442	6442

$$A = \frac{0 + 6407}{6422} = 99.5$$

PREDICTION OUTCOMES

Giving some simple names to the four outcomes:

	Pred. Needle	Pred. Broad
Obs. Needle	True Positive	False Negative
Obs. Broad	False Positive	True Negative

PREDICTION OUTCOMES

Other more confusing names do get used:

	Pred. Needle	Pred. Broad
Obs. Needle	True Positive	Type II Error
Obs. Broad	Type I Error	True Negative

RATES OF OUTCOMES

Divide the four outcomes by the **observed** positive and negative counts to give **rates**:

	Pred. Needle	Pred. Broad
	True	False
Obs. Needle	Positive	Negative
	Rate	Rate
	False	True
Obs. Broad	Positive	Negative
	Rate	Rate

RATES OF OUTCOMES

Calculate those values:

Obs. Broad

	Pred. Needle	Pred. Broad	Sum
Obs. Needle	$\frac{1460}{1502} = 97.2$	$\frac{42}{1502} = 2.8$	1502
	31	4889	

= 99.4 4920

SENSITIVITY AND SPECIFICITY

Sensitivity

- Another name for the True Positive Rate
- The proportion of correctly predicted positive observations

Specificity

- Another name for the True Negative Rate
- The proportion of correctly predicted negative observations

SENSITIVITY AND SPECIFICITY

	Pred. Needle	Pred. Broad	Sum
Obs. Needle	1460	42	1502
Obs. Broad	2010	2910	4920
Sum	3470	2952	6422

Outcome rates for the new model above

	Pred. Needle	Pred. Broad
Obs. Needle	97.2%	2.8%
Obs. Broad	40.9%	59.1%

COHEN'S KAPPA

Cohen's kappa (κ) is a measure of agreement that rescales accuracy (A) to account for chance agreement (P_e):

$$\kappa = \frac{A - P_e}{1 - P_e}$$

It can take values from $-\infty$ to 1, where 1 is perfect prediction and anything below zero is worse than chance.

COHEN'S KAPPA

Multiply proportions of observed and predicted to get probability of each outcome

	Pred. Needle	Pred. Broad	Sum
Obs. Needle	1460	42	1502
Obs. Broad	31	4889	4920
Sum	1491	4931	6422

$$P_{YY} = \frac{1491}{6422} \times \frac{1502}{6422} = 0.054$$

COHEN'S KAPPA

	Pred. Needle	Pred. Broad	p
Obs. Needle	0.054	0.180	0.234
Obs. Broad	0.178	0.588	0.766
р	0.232	0.768	1.000

$$P_e = P_{YY} + P_{NN}\kappa = \frac{0.989 - (0.054 + 0.588)}{1 - (0.054 + 0.588)} = 0.989$$

TRUE SKILL STATISTIC

TODO - MathJax linebreak fix? An alternative measure is TSS:

$$TSS = Sensitivity + Specificity - 1 TSS = [0, 1] +$$

- TSS = 1 (perfect)
- TSS = 0 (random)
- TSS = -1 (always wrong)
- Unaffected by prevalence.

A model predicting the probability of success.

	0	1
1	0	59
0	0	41
	•	value
Sens		1
Spec		0
TSS		0

	0	1
1	2	57
0	19	22
	V	alue
Sen	s O	.966
Spe	c 0	.463
TSS	0	.430

	0	1
1	10	49
0	35	6
	V	alue
Ser	is 0	.831
Spe	ec 0	.854
TSS	6 0	.684

	0	1
1	30	29
0	40	1
	V	alue
Sen	is 0	.492
Spe	ec 0	.976
TSS	6 0	.467

	0	1
1	59	0
0	41	0
	Vä	alue
Sens		0
Spec		1
TSS		0

ROC CURVE

- Receiver

 operating
 characteristic
 (ROC)
- A random model gives the red line

AREA UNDER ROC CURVE (AUC)

- AUC varies between 0 and 1.
- AUC = 0.5 is random.
- Overall model performance

Kinkajou (Potos flavus)

- Observed (red)
- Background (black)

Threshold = 0.1				
	Pres	ent	Ab	sent
Obs		200		0
Back	159 41		41	
_		val	ue	
	Sens	0.2	05	
_	Spec	1.0	00	
	TSS	0.2	05	

Threshold = 0.4				
	Pres	ent	Ab	sent
Obs	-	186		14
Back	121 79		79	
		val	ue	
	Sens	0.3	95	
	Spec	0.9	30	
	TSS	0.3	25	

Threshold = 0.55				
	Pres	ent	Ab	sent
Obs		80		120
Back		51		149
_		val	ue	
	Sens	0.7	45	
	Spec	0.4	00	
	TSS	0.1	45	

AUC FOR THE KINKAJOU

Maximum sensitivity + specificity shown in red.

Threshold = 0.371				
	Pres	ent	Ab	sent
Obs	-	195		5
Back	126 74		74	
		val	ue	
	Sens	0.3	70	
	Spec	0.9	75	
	TSS	0.3	45	

THRESHOLD CHOICES

Method	Definition
Fixed value	An arbitrary fixed value (e.g. probability = 0.5)
Lowest predicted value	The lowest predicted value corresponding with an observed occurrence record
Sensitivity-specificity equality	The threshold at which sensitivity and specificity are equal
Sensitivity-specificity sum maximization	The sum of sensitivity and specificity is maximized
Maximize Kappa	The threshold at which Cohen's Kappa statistic is maximized
Equal prevalence	Propn of presences relative to the number of sites is equal in prediction and calibration data

FAST MOVING FIELD

