	<u>TD2 - Bagur</u>	Pt		A B C D Note			
1	Donner le nom de la boucle de régulation.	0,5	Α			0,5	
2	Donner le nom de la grandeur réglée.	0,5	Α			0,5	
3	Donner le nom de l'organe de réglage.	0,5	Α			0,5	
4	Donner le nom de la grandeur réglante.	0,5	Α			0,5	
5	Donner le nom d'une perturbation.	0,5	Α			0,5	
6	Donner le nom des éléments intervenants dans la boucle de régulation.	0,5	Α			0,5	
7	Sur la capture d'écran ci-dessus, donner la valeur de la consigne.	0,5	Α			0,5	
8	Sur la capture d'écran ci-dessus, donner la valeur de la mesure.	0,5	Α			0,5	
9	En déduire la valeur de l'erreur statique.	1	Α			1	
10	Enregistrer la réponse du système à un échelon de commande de 5%.	1	Α			1	
11	Le système est-il stable ?	1	Α			1	
12	Le système est-il intégrateur ?	1	В			0,75	
13	Expliquer l'évolution de la mesure.	1	С			0,35	
14	Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ?	1	D			0,05	
15	Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?	1	D			0,05	
16	Quel doit être le sens d'action du régulateur ? Justifier votre réponse.	1	Α			1	
17	Enregistrer l'évolution de la mesure pour un gain égal au gain critique Ac.	1	Α			1	
18	Donner la valeur du gain critique ainsi que celle de la période des oscillations.	1	Α			1	
19	En déduire les réglages du régulateur PID.	1	Α			1	
20	Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1	Α			1	
21	Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaitre les constructions sur l'enregistrement précédent.	1	В			0,75	
22	Déterminer des réglages du correcteur PID permettant une réponse à ±10% la plus rapide possible.	1	В			0,75	
	Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.	1	Α			1	
24	Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaitre les constructions sur l'enregistrement précédent.	1	В			0,75	
25	Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.	1	Α			1	
		Note: 17,45/21					

Bagur

TD2 Steamer - Régulation à un élément

4

Dans un premier temps, installer le logiciel <u>steamer</u> sur votre ordinateur. Lancer le logiciel pour répondre aux questions suivantes :

Le <u>fichier aide</u> pour bien débuter.

I. Analyse de la boucle

Q1 : Donner le nom de la boucle de régulation.	0.5
Régulation de niveau	
Q2 : Donner le nom de la grandeur réglée.	0.5
Grandeur réglée: Le niveau	
Q3 : Donner le nom de l'organe de réglage.	0.5
organe de réglage: LV	
Q4 : Donner le nom de la grandeur réglante.	0.5
Débitd'entrée	
Q5 : Donner le nom d'une perturbation.	0.5
debit de vapeur envoyé a la turbine	
Q6 : Donner le nom des éléments intervenants dans la boucle de régulation.	0.5
LT, LIC, LV	

Q7 : Sur la capture d'écran ci-dessus, donner la valeur de la consigne.

50%

Q8 : Sur la capture d'écran ci-dessus, donner la valeur de la mesure.

50%

Q9 : En déduire la valeur de l'erreur statique.

1

II. Boucle ouverte

Attendre que la mesure se stabilise vers 50%, puis mettre le système dans l'état initial et manuel en cliquant sur les boutons :

On pourra régler le défilement sur 4s/carreau.

On pourra réinitialiser le graphe.

Q10 : Enregistrer la réponse du système à un échelon de commande de 5%.

1

non

Q12 : Le système est-il intégrateur ?

1

oui

Q13 : Expliquer l'évolution de la mesure.

1

La mesure augmente quand la commande augmente

1

Q14 : Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ? 0%

Q15 : Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?

1

Trop instable.

III. Réglage de la boucle - Méthode de Ziegler&Nichols

Q16 : Quel doit être le sens d'action du régulateur ? Justifier votre réponse.

Quand on augmente la commande du régulateur LIC, la vanne LV s'ouvre donc la mesure LT augmente donc le procédé est direct, il faut mettre le régulateur en inverse.

Q17 : Enregistrer l'évolution de la mesure pour un gain égal au gain critique A_c.

1

1

1

Q18 : Donner la valeur du gain critique ainsi que celle de la période des oscillations.

periode des oscillations : 20s Ac =30

Q19: En déduire les réglages du régulateur PID.

A=17.6; Ti=10; Td =2.5

Q20 : Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment

Q21: Mesurer les performances (temps de réponse à $\pm 10\%$, valeur du premier dépassement) de votre réglage. Faire apparaitre les constructions sur l'enregistrement précédent.

45s et 50% le premier dépassement

1

1

1

Q24: Mesurer les performances (temps de réponse à $\pm 10\%$, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.

1 er dépassement = 50% Tr = 33s

Q25 : Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.

Ici, par rapport au réglages Ziegler&Nichols la rapidité a augmenté.