8

9

1

2

4 5

1

2

3

1

2

3

1

2

sub:	A_1^{\prime}	A method for communicating packets between one of a plurality of
	2	sending nodes and one of a plurality of receiving nodes of a switched network, the
	3	switched network including a buffer-less switch coupling the sending nodes and the
	4	receiving nodes, the method comprising:
	5	transmitting packets from respective sending nodes to respective input ports of
	6	the buffer-less switch; and

- forwarding all packets that are successfully delivered through output ports of the buffer-less switch to the receiving nodes, through the buffer-less switch with a fixed forwarding rate.
- 2. The method as recited in claim I wherein each receiving node sends an acknowledge to a respective sending node at a predetermined time with respect to sending a corresponding packet, to indicate successful delivery of the corresponding packet to the sending node, thereby providing a fixed time for the sending node to know whether a packet was successfully transmitted.
- 3. The method as recited in claim 2 wherein the sending node determines that transmission of a packet was unsuccessful by checking if the acknowledge was returned after the predetermined time has elapsed.
- 4. The method as recited in claim 3 wherein the receiving node sends a no acknowledge (nack) at the predetermined time to the sending node on detection of an error condition in receipt of the packet.
- 5. The method as recited in claim 4 wherein the error condition detected by the receiving node is one of a buffer overflow and a checksum error.
- 1 6. The method as recited in claim 2 wherein unsuccessful transmission 2 is determined by a timeout indicating that an acknowledge failed to arrive after the 3 predetermined time has elapsed.
 - 7. The method as recited in claim 1 further comprising:

1 2

2	for eac	ch packet being sent over the switched network, requesting respective
3		transmission paths through the switched network to one of the
4		receiving nodes;
5	alloca	ting one of the transmission paths to a first requester with respect to
6		arrival time in the buffer-less switch, the first requester requesting the
7		one transmission path, and ignoring any other requests for the one
8		transmission path until the one transmission path again becomes
9		available; and
10	if mul	tiple requests collide by requesting a switch resource simultaneously,
11		selecting a first packet associated with one of the requests as a winning
12		packet and dropping any other packets associated with requests other
13		than the one request.
	_	
1	8.	The method as recited in claim 7 wherein the requests for transmission
2	paths are con	tained within the packets sent into the network and extracted after entry
3	into the switc	h.
1	9.	The method as recited in claim 7 further comprising selecting the
2	winning pack	et according to at least one of a random basis and a round robin basis.
1	10.	The method as recited in claim 7 further comprising selecting the

1 11. The method as recited in claim 7, wherein no buffer space is allocated in a receiving node before a packet/is sent, thereby simplifying switch overhead.

input port an equal share of bandwidth at each output port.

winning packet according to a fairness criteria having an objective to allocate to each

- 1 12. The method as recited in claim 11 wherein if the receiving node detects
 2 a buffer overflow, the receiving node sends a no acknowledge packet (nack) to the
 3 sending node indicating that a packet associated with the buffer overflow was not
 4 successfully received.
 - 13. The method as recited in claim 1 wherein communicating packets between one of the sending nodes and one of the receiving nodes further comprises:

3	the sending node writing a packet to a send register;				
4	the se	nding node polling a status register to determine if transmission of the			
5		packet was successful; and			
6	if tran	smission was unsuccessful rewriting the packet to the send register.			
1	14.	A method for utilizing a switch of a switched network comprising:			
2	forwa	rding packets at a fixed rate on a first come first served basis from			
3		respective input ports through the switch to respective output ports;			
4		and			
5	if a fin	rst and second packet simultaneously request a switch resource, selecting			
6		one of the first and second packets a winner and one a loser, the winner			
7		obtaining the switch resource, and dropping the loser.			
1	15.	The method as recited in claim 14 wherein the selecting is determined			
2	according to	at least one of a random selection and a round robin selection.			
		/ .			
1	16.	The method as recited in claim 14 wherein low latency packets are			
2	transmitted o	n the switch.			
1	17.	The method as recited in claim 14 wherein a sending node can			
2	positively det	ermine after a fixed delay with respect to sending of the packet that a			
3	packet was su	accessfully transmitted across the switched network.			
1	10				
1	18.	A computing system comprising:			
2	_	ality of sending and receiving nodes;			
3	a low	latency switched network including a first switch, the first switch being a buffer-less switch coupling the plurality of sending and receiving			
5		nodes, the buffer-less switch having a fixed forwarding delay for all			
6		packets sent from one of the sending nodes and successfully received			
7		by one of the receiving nodes.			
,					
1	19.	The computing system as recited in claim 18 further comprising a			

second switched network including a second switch coupled to the plurality of

sending and receiving nodes.

2

2 3

1 2

3

1

2 3

1

2

1	20. The computing system as recited in claim 18 wherein the first switch
2	carries scheduling information for a storage device and the second switch carries bulk
3	traffic for at least one of storage and retrieval on the storage device.

- 21. The computing system as recited in claim/18 wherein each sending node includes a send register written into by a sending node to send data across the network.
- 22. The computing system as recited in claim 21 wherein each sending node includes a status register indicating whether a fransfer across the network completed successfully.
- 1 23. The computing system as recited in claim 22 wherein the status 2 register includes a field indicating a type of failure.
 - 24. The computing system as recited in claim 22 wherein a sending node rewrites data into the send register if a transfer across the network for the data completed unsuccessfully.
 - The computing system as recited in claim 18 wherein the buffer-less 25. switch further comprises:
- 3 a plurality of input registers coupled to respective input ports; switch control logic, coupled to the input registers and responsive to packet 4 5 information stored in the registers, to allocate output ports on the switch according to the packet information; 6
- 7 and wherein the switch control logic is responsive to allocate output ports on a 8 first come first served basis.
- 26. The computing system as recited in claim 25 wherein respective packet 2 information provided to the switch control logic constitutes respective requests for 3 output ports, and if a first and second request for an output port path collide by 4 requesting the output port at the same time, the switch control logic responds by

2

3

1

2

3 4

5

- The computing system as recited in claim 25 further comprising output registers in the buffer-less switch coupled to receive data selected by respective selector circuits selectively coupled to respective ones of the input ports.
- 1 28. The computing system as recited in claim 26 wherein the switch 2 control logic selects the winner according to at least one of a random basis and a 3 round robin basis.
 - 29. The computing system as recited in claim 18 wherein the low latency switched network includes a plurality of cascaded buffer-less switches, thereby forming a multi-stage buffer-less switch.
 - 30. A switched network comprising:

 means for forwarding packets ports at a fixed rate on a first come first served
 basis from respective input ports through the switch to respective
 output ports; and
 means for selecting one of a first and second packet as a winner and one a
 - loser, the winner obtaining a switch resource, and dropping the loser, if the first and second packet simultaneously request the switch resource.