Chapter 3: Field-Effect Transistors

Comparison between FET and BJT

FETs (Field-Effect Transistors) are much like BJTs (Bipolar Junction Transistors):

Similarities:

- Amplifiers
- Switching devices
- Impedance matching circuits

Differences:

- FETs are voltage controlled devices whereas BJTs are current controlled devices.
- FETs have a higher input impedance, but BJTs have higher gains.
- FETs are less sensitive to temperature variations and because of the construction they can be more easily integrated on ICs.

FET Types

- JFET Junction Field-Effect Transistor
- MOSFET Metal-Oxide Semiconductor Field-Effect Transistor
 - **D-MOSFET** <u>Depletion</u> MOSFET
 - **E-MOSFET** *Enhancement* MOSFET

3.2 Characteristics of FET

1.JFET

There are two types of JFETs

- n-channel
- p-channel

The *n*-channel is more widely used.

There are *three* terminals on JFET:

- Drain (D) and Source (S) are connected to the *n*-channel
- Gate (G) is connected to the *p*-type material

JFET Symbols

JFET Operating Characteristics

$V_{GS} = 0$, V_{DS} increasing to some positive value

When $V_{GS} = 0$ and V_{DS} is increased from 0 to a more positive voltage

- The depletion region between p-gate and n-channel increases
- Increasing the depletion region, decreases the size of the n-channel which increases the resistance of the n-channel.
- Even though the n-channel resistance is increasing, the current (I_D) from source to drain through the n-channel is increasing. This is because V_{DS} is increasing.
- If V_{DS} is further increased to a more positive voltage, then the depletion zone gets so large that it pinches off the n-channel.
- V_{DS} establishes the pinch-off is denoted as pinch off voltage: V_p .
- Any further increase in $V_{DS} > V_P$ does not produce any increase in I_D . I_D is at saturation or maximum referred to as I_{DSS} .
- The ohmic value of the channel is maximum.

JFET Operating Characteristics

 $V_{GS} < 0$, V_{DS} at some positive value: $I_D < I_{DSS}$

As V_{GS} becomes more negative:

- the depletion region increases.
- The JFET experiences pinch-off at a lower voltage (V_p).
- I_D decreases ($I_D < I_{DSS}$) even though V_{DS} is increased.
- Eventually I_D reaches 0A. V_{GS} at this point is called V_p or $V_{GS(off)}$.

Also note that at high levels of V_{DS} the JFET reaches a breakdown situation. I_{D} increases uncontrollably if $V_{DS} > V_{DSmax}$.

JFET Transfer Characteristics

(a) Transfer Characteristics

V_{GS} is applied between the Gate and the Source

V_{DS} is applied between the Drain and the Source

- V_{GS} is a negative voltage, PN junction is reversed
- $I_G \approx 0$
- I_D is controlled by the voltage V_{GS}
- $I_D = 0$ mA is defined by $V_{GS} = V_P$ (pinchoff)

JFET Transfer Characteristics

The transfer characteristic of input-to-output is not as straightforward in a JFET as it is in a BJT.

In a BJT, β indicates the relationship between I_B (input) and I_C (output).

In a JFET, the relationship of V_{GS} (input) and I_D (output) is a little bit more complicated: (Shockley's Equation)

$$I_{\mathbf{D}} = I_{\mathbf{DSS}} \left(1 - \frac{V_{\mathbf{GS}}}{V_{\mathbf{P}}} \right)^{2}$$

- Nonlinear Relationship
- Unaffected by the network

Nobel Prize 1956

Co-inventor of the first transistor and formulator of the "field-effect" theory

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make them very useful.

There are two types of MOSFETs:

- Depletion-Type
- Enhancement-Type

Depletion-type MOSFET

The Drain (D) and Source (S) connect to the *n*-doped regions. These *n*-doped regions are connected via an *n*-channel. This *n*-channel is connected to the Gate (G) via a thin insulating layer of SiO₂.

The *n*-doped material lies on a *p*-doped substrate that may have an additional terminal connection called Substrate (SS).

Symbols:

- (a) n-channel
- (b) p-channel

Basic Depletion-Type MOSFET Operation

A depletion-type MOSFET can operate in two modes:

- Depletion mode
- Enhancement mode

Depletion Mode

The characteristics are similar to a JFET.

- When $V_{GS} = 0V$, $I_D = I_{DSS}$
- When $V_{GS} < 0V$, $I_D < I_{DSS}$
- The formula used to plot the transfer curve still applies:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

Enhancement Mode

- $V_{GS} > 0V$
- I_D increases above I_{DSS}
- The formula used to plot the transfer curve still applies:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2}$$

$$\frac{V_{GS}}{V_{P}} = \frac{V_{GS}}{V_{P}} = \frac{V_{GS}}{V_{P}} = \frac{V_{GS}}{V_{P}} = \frac{V_{GS}}{V_{P}}$$

Note that V_{GS} is now a positive polarity

Enhancement-type MOSFET

- The Drain (D) and Source (S) connect to the *n*-doped regions. These *n*-doped regions are connected via an *n*-channel
- The Gate (G) connects to the *p*-doped substrate via a thin insulating layer of SiO₂
- There is no channel initially
- The *n*-doped material lies on a *p*-doped substrate that may have an additional terminal connection called the **Substrate** (SS)

Symbols:

- (a) n-channel
- (b) p-channel

$$G \stackrel{\longrightarrow}{=} S$$

$$G \stackrel{\longrightarrow}{=} S$$

$$(a)$$

$$(b)$$

FET Amplifiers and Analyses

FET Biasing

- Excellent voltage gain
- High input impedance
- Low-power consumption
- Good frequency range

FET Amplifiers

Step 1: DC analysis

Based on DC network:

- $\bullet V_{GSQ}$
- **I**_{DQ}
- V_{DSQ}

 $\begin{array}{c} Using \ V_{GSQ} \ to \ determine \ g_m \\ for \ AC \ equivalent \ model \end{array}$

Step 2: AC analysis

Based on AC network and

AC equivalent model:

- Input impedance
- Output impedance
- Voltage gain

JFET

Three basic configurations for FET amplifiers

CS: Common Source Configuration

CG: Common Gate Configuration

Source Follower: Common Drain

- Fixed-Bias
- Self-Bias
- Voltage-Divider Bias

Depletion-Type MOSFET

- •Self-Bias
- Voltage-Divider Bias

Enhancement-Type MOSFET

•Voltage-Divider Bias

3.5 Summary

- A current-controlled device is one in which a current defines the operating conditions of the device, whereas a voltage-controlled device is one in which a particular voltage defines the operating conditions.
- The maximum current for any JFET is labeled I_{DSS} and occurs when V_{GS}=0V.
- The minimum current for any JFET occurs at pinch-off defined by V_{GS}=V_P.
- The relationship between the drain current and the gate-to-source voltage of a JFET is a nonlinear one defined by Shockley's equation.
- The transfer characteristics are characteristics of the device itself and are not sensitive to the network in which the JFET is employed.
- The depletion-type MOSFET has the same transfer characteristics as a JFET for drain currents up to the I_{DSS} level and can exceed the I_{DSS}.
- The transfer characteristics of the enhancement-type MOSFET can not define by Shockley's equation but rather by a nonlinear equation controlled by V_{GS}.

Chapter 3

- **Coursework**
 - Understanding DC & AC analyses for JFET Amplifier or
 - Understanding DC & AC analyses for MOSFET Amplifier