

STA 5106 Computational Methods in Statistics I

Department of Statistics
Florida State University

Class 24 November 26, 2019

Special Topic 3

Function Registration/Alignment

Berkeley Growth Data

Berkeley Growth Data

What is Function Registration?

given functions and aligned function

feature-to-feature matching (registration)

time warping function

Time warping: A continuous, strictly increasing, and bijective mapping:

$$\Gamma = \{ \gamma : [0, 1] \rightarrow [0, 1] \mid \gamma(0) = 0, \gamma(1) = 1, 0 < \dot{\gamma}(t) < \infty \}.$$

Naïve Matching

• A simple matching between f and g:

$$d(f,g) = \min_{\gamma} \|g - (f \circ \gamma)\|$$

• Main problems:

Note: $0 < d(f, g) \neq d(g, f) = 0$

Function Space

- $f: [0, 1] \to \mathbb{R}$, an **absolutely continuous** function (denote the set of all such functions as \mathbb{F}).
- Square-Root Velocity Function (SRVF) of f is defined as:

$$q = sign(\dot{f})\sqrt{|\dot{f}|} \in L^2$$

- Note: $q \in \mathbf{L}^2 \Leftrightarrow f \in \mathbf{F}$
- For any $\gamma \in \Gamma$, the SRVF of $f \circ \gamma$:

$$\begin{aligned} q_{f \circ \gamma} &= sign(f \circ \gamma) \sqrt{|f \circ \gamma|} = sign(\dot{f} \circ \gamma) \sqrt{|\dot{f} \circ \gamma|} \dot{\gamma} \\ &= (q \circ \gamma) \sqrt{\dot{\gamma}} \equiv (q, \gamma). \end{aligned}$$

Equivalent Representations w.r.t. Time Warping

$$||(q,\gamma)||^2 = \int_0^1 (q(\gamma(t))\sqrt{\dot{\gamma}(t)})^2 dt = \int_0^1 (q(\gamma(t))^2 d(\gamma(t)))^2 d(\gamma(t)) = \int_0^1 q(s)^2 ds = ||q||^2$$

For any two functions $f_1, f_2 \in \mathbf{F}$ and the corresponding SRVFs $q_1, q_2 \in \mathbf{L}^2$, we define the distance d as follows:

$$d(f_1, f_2) \equiv \min_{\gamma \in \Gamma} ||q_1 - (q_2, \gamma)||.$$

Estimation of Optimal Warping Function

- We compute optimal warping $\gamma^* \equiv \underset{\gamma \in \Gamma}{\operatorname{argmin}} \|q_1 (q_2, \gamma)\|$ using a **Dynamic Programming.**
- [0, 1] is discretized as N equally-sized time bins, and the warping function $\gamma(t)$ is approximated by a piecewise linear homomorphism with path from (1, 1) to (N, N).
- All segments in the path have positive slope.

(1,1)

Estimation of Optimal Warping Function

• Now, the problem is reduced to finding the allowable path that minimizes the energy

$$E = \int_0^1 (q_1(t) - q_2(\gamma(t)) \sqrt{\dot{\gamma}(t)})^2 dt$$

For nodes (k, l) and (i, j) where k < i and l < j, the energy in this segment is

$$E(k,l;i,j) = \int_{[k,i]} (q_1(t) - q_2(\gamma(t))) \sqrt{\frac{j-l}{i-k}})^2 dt$$

• For efficiency, we restrict (k, l) to a subset N_{i,j}. A possible choice has seven nodes (the right plot).

Estimation of Optimal Warping Function

Let H(i, j) denote the minimum energy from (1, 1) to (i, j). Then H(i, j) can be iteratively computed (computational efficiency: $O(N^2)$)

$$H(1,1) = 0$$

$$H(i,j) = E(\hat{k}, \hat{l}; i, j) + H(\hat{k}, \hat{l})$$
where $(\hat{k}, \hat{l}) = \underset{(k,l) \in N_{ij}}{\operatorname{arg min}} (E(k, l; i, j) + N(k, l))$

 Note: the algorithm works in a discretized space. The warping speed can only take the following values:

1/3, 1/2, 2/3, 1, 3/2, 2, 3.