Key Hyperparameters of the Decision Tree Algorithm (Scikit-Learn)

The **DecisionTreeClassifier** in **Scikit-Learn** has several important hyperparameters that affect the model's performance, complexity, and generalization. Below are five key hyperparameters, their functionality, impact on the model, and how increasing/decreasing them affects performance.

max_depth → Controls the depth of the tree

- **Functionality:** Limits how deep the tree can grow. A deeper tree captures more patterns but may overfit.
- Effect on Model:
 - Low max_depth (e.g., 3-5) → Prevents overfitting, generalizes better.
 - High max_depth (e.g., 10-20 or None) → Captures more details but risks overfitting.
- Performance Impact:
 - Increasing max_depth increases training accuracy but can reduce test accuracy due to overfitting.

2 min_samples_split → Minimum number of samples required to split an internal node

- **Functionality:** Prevents the tree from making unnecessary splits when the data size is small.
- Effect on Model:
 - Low values (e.g., 2-5) → Creates a deep, complex tree (more overfitting risk).

 High values (e.g., 10-20) → Forces the tree to consider larger splits, reducing overfitting.

• Performance Impact:

- Increasing min_samples_split reduces variance, making the model more stable.
- Decreasing it allows more flexibility but can lead to overfitting.

3 min_samples_leaf → Minimum number of samples required in a leaf node

• **Functionality:** Ensures that leaf nodes contain a minimum number of samples, preventing very small, unreliable splits.

Effect on Model:

- Low values (e.g., 1-5) → Creates many small leaves (high variance, possible overfitting).
- High values (e.g., 10-50) → Enforces larger leaves (smoother decision boundaries, better generalization).

• Performance Impact:

 Increasing min_samples_leaf reduces model complexity and overfitting but might miss important patterns.

■ max_features → Number of features to consider for each split

• **Functionality:** Limits the number of features the model considers at each split, introducing randomness and reducing overfitting.

• Effect on Model:

- Low values (e.g., sqrt or log2 of total features) → Encourages diversity, helps generalization (good for large datasets).
- High values (e.g., all features) → Uses all features at every split, leading to overfitting.

Performance Impact:

Lower values help reduce overfitting and make the model more robust.

5 criterion → The function used to measure the quality of a split

• Functionality: Determines how splits are made by calculating impurity.

• Options:

- ∘ "gini" (default) → Measures impurity using **Gini index** (faster).
- "entropy" → Uses information gain, slightly slower but can be more precise in some cases.

• Performance Impact:

- "entropy" may lead to **better splits in complex datasets**, but "gini" is computationally faster.
- Choosing the right one depends on the dataset rather than tuning.

Summary of Hyperparameter Effects

Hyperparameter	Low Value Effect	High Value Effect
max_depth	Underfits (too simple)	Overfits (too complex)
min_samples_split	Overfits (too many splits)	Underfits (not enough splits)
min_samples_leaf	Overfits (small leaves)	Underfits (large leaves)
max_features	Better generalization	Overfits (too much reliance on all features)
criterion	"gini" is fast but may not always be optimal	<pre>"entropy" is slower but may create better splits</pre>

Would you like me to apply these concepts in an example with Titanic data? 🚀