Kapitel 3

Interpolation und Approximation I: Polynome

- 3.1 Polynominterpolation
- 3.2 Anwendung: Richardson-Extrapolation
- 3.3 Gauß-Approximation, Orthogonal polynome

Wir behandeln in diesem Kapitel zwei Problemstellungen:

I. Interpolation: Gegeben ist eine Messreihe von Daten (x_j, y_j) oder eine Funktion $f: [a, b] \to \mathbb{R}$ sowie "Interpolationsknoten" $x_j \in [a, b], j = 0, \ldots, n$. Man bestimme ein Polynom p vom Grad n mit

$$p(x_j) = y_j$$
 bzw. $p(x_j) = f(x_j), \quad j = 0, ..., n.$

II. $Gau\beta$ -Approximation: Gegeben ist eine Funktion $f:[a,b]\to\mathbb{R}$. Man bestimme ein Polynom p vom Grad n so, dass die Fehlerfunktion f-p im quadratischen Mittel möglichst klein ist, d.h.

$$\int_{a}^{b} (f(x) - p(x))^{2} dx = \min_{q \in \mathcal{P}_{n}} \int_{a}^{b} (f(x) - q(x))^{2} dx.$$

Weitere Verfahren der Interpolation (mit Splinefunktionen oder trigonometrischen Funktionen) und der Approximation (bzgl. der Maximumsnorm auf [a, b]) werden in einem späteren Kapitel behandelt.

Matlab/Octave stellt mit polyfit eine Funktion zur Verfügung, die bei geeigneter Angabe des Grades n die Interpolationsaufgabe löst: Interpolation von 4 Messwerten durch ein kubisches Polynom (n=3)

```
x=[0,1,2,3]; % Interpolationsknoten
y=[1,-1,1,-1]; % oder y=cos(pi*x)
c=polyfit(x,y,3); % kubisches Interpolationspolynom
xx=linspace(0,3,101);
plot(x,y,'o'); % markiere Interpolationspunkte
hold on
plot(xx,polyval(c,xx)); % zeichne Interpolationspolynom
```

Demgegenüber berechnet polyfit zu N > n Daten (x_j, y_j) das lineare Ausgleichspolynom vom Grad n aus Beispiel 2.4.2: Approximation der Bevölkerungszahl der USA 1790-1990 durch ein quadratisches Polynom (n = 2)

```
load census; % laedt 'cdate' und 'pop'
c=polyfit(cdate,pop,2); % quadratisches Ausgleichspolynom
xx=linspace(1790,1990,101);
plot(cdate,pop,'o');
hold on
plot(xx,polyval(c,xx));
```

Erinnerung: Horner-Schema und vollständiges Hornerschema

Zur Berechnung von

$$p(x) = a_0 + a_1 x + \dots + a_n x^n = a_0 + x \cdot (a_1 + x (a_2 + \dots + x (a_{n-1} + x a_n) \dots))$$

an der Stelle ξ verwendet man das Horner-Schema (vgl. Kapitel 1):

- Eingabe: $a_k^{(0)} = a_k, k = 0, \dots, n$, und Stelle ξ
- Setze $a_n^{(1)} = a_n^{(0)}$. Berechne für $k = n - 1, \dots, 0$

$$a_k^{(1)} = a_k^{(0)} + \xi a_{k+1}^{(1)}.$$

• Ergebnis: $p(\xi) = a_0^{(1)}$

Der Rechenaufwand besteht aus n Multiplikationen und Additionen.

Das vollständige Horner-Schema (vgl. Übungsblatt 1) berechnet die Taylor-Entwicklung von

$$p(x) = a_0 + a_1 x + \dots + a_n x^n = b_0 + b_1 (x - \xi) + \dots + b_n (x - \xi)^n$$

an der Stelle ξ :

- Eingabe: $a_k^{(0)} = a_k$ für k = 0, ..., n, und Stelle ξ
- Für $j = 0, \dots, n-1$, setze $a_n^{(j+1)} = a_n^{(j)}$, berechne für $k = n-1, \dots, j$

$$a_k^{(j+1)} = a_k^{(j)} + \xi a_{k+1}^{(j+1)}.$$

• Ergebnis: $b_i = a_i^{(j)}$

Der Rechenaufwand besteht aus n(n+1)/2 Multiplikationen und Additionen.

3.1 Polynominterpolation

Wir verwenden die Bezeichnung

$$\mathcal{P}_n = \{ p : \mathbb{R} \to \mathbb{R} \mid p(x) = a_0 + a_1 x + \dots + a_n x^n, \ a_j \in \mathbb{R} \}$$

für den Vektorraum der Polynome mit $\operatorname{Grad}(p) \leq n$. Der Koeffizient a_n heißt $H\"{o}chstkoeffizient$ von $p \in \mathcal{P}_n$. Der Vektorraum \mathcal{P}_n hat die Dimension n+1 und die $Monome\ e_j: \mathbb{R} \to \mathbb{R}$ mit $e_j(x) = x^j,\ j = 0, \ldots, n$, sind eine Basis von \mathcal{P}_n .

Wir behandeln nun die sogenannte *Lagrange-Interpolation* mit Polynomen.¹ Dabei wird zu gegebenen diskreten Daten (z. B. Messwerten) eine stetige Funktion (hier ein Polynom) gesucht, die diese Daten interpoliert.

3.1.1 Definition: Interpolationspolynom

Gegeben seien Punkte $(x_j, y_j) \in \mathbb{R}^2, j = 0, \dots, n$, mit paarweise verschiedenen $x_j \in \mathbb{R}$.

- Die Zahlen x_i heißen die Stützstellen (oder Knoten) der Lagrange-Interpolation.
- Die Zahlen y_j heißen die *Daten* (oder *Knotenwerte*).
- Ein Polynom $p \in \mathcal{P}_n$ mit $p(x_j) = y_j$ für alle $j = 0, \ldots, n$ heißt Interpolationspolynom.

3.1.2 Hauptsatz zur Lagrange-Interpolation:

Die Lagrange-Interpolationsaufgabe ist eindeutig lösbar. D.h. zu paarweise verschiedenen Stützstellen $x_j \in \mathbb{R}$, j = 0, ..., n, und beliebigen Daten $y_j \in \mathbb{R}$ existiert genau ein Polynom $p \in \mathcal{P}_n$ mit $p(x_j) = y_j$ für alle j = 0, ..., n.

¹Joseph-Louis de Lagrange, 1736-1813, italienischer Mathematiker, er wirkte lange in Frankreich

4 Varianten zur Darstellung/Berechnung des Interpolationspolynoms $p \in \mathcal{P}_n$ liefern jeweils unterschiedliche Beweise von Satz 3.1.2. Zuerst finden wir die Darstellung des Interpolationspolynoms in der Monom-Basis.

3.1.3 Das Interpolationspolynom in der Monombasis

Zu paarweise verschiedenen Stützstellen $x_j \in \mathbb{R}, j = 0, ..., n$, und beliebigen Daten $y_j \in \mathbb{R}$ ist das Interpolationspolynom gegeben durch $p(x) = \sum_{k=0}^{n} a_k x^k$, wobei der Koeffizientenvektor $(a_0, a_1, ..., a_n)^T \in \mathbb{R}^{n+1}$ die eindeutige Lösung des linearen Gleichungssystems

$$M\vec{a} = \vec{y}, \qquad M = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & & & & \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}, \quad \vec{y} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

ist. Die Matrix M ist regulär und hat die Vandermonde-Determinante

$$\det M = \prod_{0 \le i < j \le n} (x_j - x_i).$$

Beweis: Der Determinanten-Multiplikationssatz ergibt

$$\det M = \det \begin{pmatrix} 1 & & \\ -1 & 1 & \\ \vdots & \ddots & \\ -1 & & 1 \end{pmatrix} \underbrace{\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & & & \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}}_{1} \begin{pmatrix} 1 & -x_0 & & \\ & \ddots & \ddots & \\ & & 1 & -x_0 \\ & & & 1 \end{pmatrix}$$

$$= \underbrace{\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & x_1 - x_0 & x_1(x_1 - x_0) & \cdots & x_1^{n-1}(x_1 - x_0) \\ \vdots & & & & \\ 1 & x_n - x_0 & x_n(x_n - x_0) & \cdots & x_n^{n-1}(x_n - x_0) \end{pmatrix}}_{1}$$

$$= \det \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & x_1 - x_0 & x_1(x_1 - x_0) & \cdots & x_1^{n-1}(x_1 - x_0) \\ \vdots & & & & \\ 0 & x_n - x_0 & x_n(x_n - x_0) & \cdots & x_n^{n-1}(x_n - x_0) \end{pmatrix}}_{j=1} = \prod_{j=1}^{n} (x_j - x_0) \cdot \det \widetilde{M},$$

wobei M die Vandermonde-Matrix zu den Knoten x_1, \ldots, x_n ist. Das Herausziehen des Produktes erfolgt mit der Linearität von det A bezüglich jeder Zeile von A. Die Aussage des Satzes folgt per Induktion.

Die zweite Konstruktion basiert auf Wahl einer anderen Basis von \mathcal{P}_n , mit deren Hilfe das Interpolationspolynom sofort als Linearkombination angegeben werden kann.

3.1.4 Das Interpolationspolynom in der Lagrange-Basis

Zu n+1 paarweise verschiedenen Stützstellen $x_j \in \mathbb{R}, j=0,\ldots,n$, definieren wir die Lagrange-Grundpolynome

$$L_{n,k}(x) = \prod_{\substack{j=0 \ j \neq k}}^{n} \frac{x - x_j}{x_k - x_j} \in \mathcal{P}_n, \quad k = 0, \dots, n.$$

- a) Die Lagrange-Grundpolynome $\{L_{n,k}: k=0,\ldots,n\}$ bilden eine Basis von \mathcal{P}_n .
- b) Es gilt

$$L_{n,k}(x_j) = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

c) Das Interpolationspolynom zu den Stützstellen $x_j, j = 0, ..., n$, und Daten $y_j \in \mathbb{R}$ ist

$$p(x) = \sum_{k=0}^{n} y_k L_{n,k}(x).$$

3.1.5 Bemerkung:

(i) Mit dem Ansatz $p(x) = \sum_{k=0}^{n} c_k L_{n,k}(x)$ ergeben die Interpolationsbedingungen das lineare Gleichungssystem

$$A\vec{c} = \vec{y}, \qquad A = (L_{n,k}(x_j))_{j,k=0,\dots,n} = I_{n+1},$$

dessen Lösung $\vec{c} = \vec{y}$ sofort abzulesen ist.

(ii) Kurz-Schreibweise für die Lagrange-Grundpolynome: mit Hilfe des Knotenpolynoms

$$w(x) = \prod_{j=0}^{n} (x - x_j) \in \mathcal{P}_{n+1}$$

ist

$$L_{n,k}(x) = \frac{w(x)}{(x - x_k)w'(x_k)}, \quad k = 0, \dots, n.$$

- (iii) Der Nachteil der Lagrange-Darstellung des Interpolationspolynoms $p \in \mathcal{P}_n$ ist, dass bei Hinzunahme eines weiteren Stützpunktes (x_{n+1}, y_{n+1}) oder bei der Änderung einer Stützstelle x_j die Basisfunktionen $L_{n,k}$ sich völlig ändern. Deshalb ist diese Darstellung des Interpolationspolynoms für die meisten praktischen Zwecke zu aufwändig.
- (iv) Kondition: Bei einer Störung der Daten $\widetilde{y}_j = y_j + \epsilon_j$ wird der **absolute Fehler** des Interpolationspolynoms an der Stelle x höchstens

$$\sum_{k=0}^{n} |\epsilon_k L_{n,k}(x)| \le \max_{1 \le k \le n} |\epsilon_k| \cdot \Lambda(x);$$

hierbei ist $\Lambda(x) = \sum_{k=0}^{n} |L_{n,k}(x)|$ die sog. Lebesgue-Funktion zu den Knoten x_0, \ldots, x_n . In den Programmieraufgaben vergleichen wir das Maximum von Λ für verschiedene Sorten von Knoten auf dem Intervall [-1,1].

Die dritte Konstruktion führt eine weitere Basis von \mathcal{P}_n ein und hat den Vorteil, dass die Hinzunahme weiterer Daten (x_{n+1}, y_{n+1}) durch die Ergänzung des Berechnungsschemas erfolgt. Zur Vorbereitung führen wir den folgenden Begriff sowie ein Berechnungsschema der dividierten Differenzen ein.

3.1.6 Definition: dividiente Differenzen

Zu n+1 paarweise verschiedenen Stützstellen $x_j \in \mathbb{R}$, $j = 0, \ldots, n$, und Daten y_j sind die dividierten Differenzen rekursiv definiert durch

• Ordnung k = 0:

$$y[x_j] = y_j, \quad j = 0, \dots, n,$$

• Ordnung 1 < k < n:

$$y[x_j, \dots, x_{j+k}] = \frac{y[x_{j+1}, \dots, x_{j+k}] - y[x_j, \dots, x_{j+k-1}]}{x_{j+k} - x_j}, \quad j = 0, \dots, n-k.$$

Berechnungs-Schema:

In der ersten Zeile des Schemas sind nun die Koeffizienten in der Darstellung des Interpolationspolynoms in der folgenden Basis gegeben.

3.1.7 Das Interpolationspolynom in der Newton-Basis

Zu n+1 paarweise verschiedenen Stützstellen $x_j \in \mathbb{R}, j=0,\ldots,n$, definieren wir die Newton-Grundpolynome

$$N_0(x) = 1;$$
 $N_k(x) = \prod_{j=0}^{k-1} (x - x_j) \in \mathcal{P}_k, \quad k = 1, \dots, n.$

- a) Die Newton-Grundpolynome $\{N_k : k = 0, ..., n\}$ bilden eine Basis von \mathcal{P}_n .
- b) Es gilt

$$N_k(x_j) = 0$$
 für $k > j$.

c) Das Interpolationspolynom zu den Stützstellen $x_j, j = 0, ..., n$, und Daten $y_j \in \mathbb{R}$ ist

$$p(x) = \sum_{k=0}^{n} y[x_0, \dots, x_k] N_k(x).$$

Die Teile a) und b) sind leicht zu beweisen. Zum Beweis von Teil c) geben wir ein noch allgemeineres Resultat an.

3.1.8 Lemma (zur Newton-Darstellung des Interpolationspolynoms):

Es seien n+1 paarweise verschiedene Stützstellen $x_j \in \mathbb{R}, j=0,\ldots,n$, und Daten $y_j \in \mathbb{R}$ gegeben. Mit

$$p_{i,j+k} \in \mathcal{P}_k, \qquad 0 \le k \le n, \quad 0 \le j \le n-k$$

bezeichnen wir das Interpolationspolynom zu den Punkten

$$(x_j,y_j),\ldots,(x_{j+k},y_{j+k}).$$

Dann gilt

$$p_{j,j+k}(x) = y[x_j] + y[x_j, x_{j+1}](x - x_j) + \dots + y[x_j, \dots, x_{j+k}](x - x_j) \cdot \dots (x - x_{j+k-1}).$$

Die Behauptung von Satz 3.1.7c) folgt dann durch Einsetzen von j = 0 und k = n.

Beweis von 3.1.8: Induktion nach k:

- Für k = 0 und $0 \le j \le n$ ist $p_{j,j}(x) = y_j = y[x_j]$ das konstante Interpolationspolynom zum Punkt (x_j, y_j) .
- Sei $k \ge 1$ und $0 \le j \le n k$. Nach Induktionsannahme interpoliert

$$p_{i,j+k-1}(x) = y[x_j] + \dots + y[x_j, \dots, x_{j+k-1}](x - x_j) \cdots (x - x_{j+k-2}) \in \mathcal{P}_{k-1}$$

die Punkte $(x_j, y_j), \dots, (x_{j+k-1}, y_{j+k-1})$, und ebenso interpoliert

$$p_{i+1,i+k}(x) = y[x_{i+1}] + \dots + y[x_{i+1},\dots,x_{i+k}](x-x_{i+1}) \cdots (x-x_{i+k-1}) \in \mathcal{P}_{k-1}$$

die Punkte $(x_{j+1}, y_{j+1}), \ldots, (x_{j+k}, y_{j+k})$. Deshalb interpoliert

$$q(x) = \frac{(x - x_j)p_{j+1,j+k}(x) + (x_{j+k} - x)p_{j,j+k-1}(x)}{x_{j+k} - x_j}$$

die Punkte $(x_j, y_j), \ldots, (x_{j+k}, y_{j+k})$, ist also das gesuchte Interpolationspolynom $p_{j,j+k}$. Der Höchstkoeffizient von q (also der Vorfaktor von x^k) berechnet sich aus den Höchstkoeffizienten von $p_{j,j+k-1}$ und $p_{j+1,j+k}$,

$$a := HK(q) = \frac{y[x_{j+1}, \dots, x_{j+k}] - y[x_j, \dots, x_{j+k-1}]}{x_{j+k} - x_j} = y[x_j, \dots, x_{j+k}].$$

Andererseits gilt (durch Hinzunahme des Punktes (x_{j+k}, y_{j+k}) zu $p_{j,j+k-1}$, siehe Bemerkung 3.1.9(ii))

$$q(x) = p_{i,i+k}(x) = p_{i,i+k-1}(x) + a(x - x_i) \cdots (x - x_{i+k-1}).$$

Damit hat $p_{j,j+k}$ die behauptete Form.

3.1.9 Bemerkung:

(i) Mit dem Ansatz $p(x) = \sum_{k=0}^{n} c_k N_k(x)$ ergeben die Interpolationsbedingungen das lineare Gleichungssystem

$$A\vec{c} = \vec{y}, \qquad A = (N_k(x_j))_{j,k=0,...,n};$$

die Matrix A ist eine untere Dreiecksmatrix. Das Berechnungsschema der dividierten Differenzen löst dieses Gleichungssystem direkt, anstatt das Vorwärtseinsetzen 2.2.6 anzuwenden.

(ii) In der Newton-Darstellung ist die Teilsumme

$$p_{0,m}(x) = \sum_{k=0}^{m} y[x_0, \dots, x_k] N_k(x) \in \mathcal{P}_m, \quad 0 \le m \le n,$$

das Interpolationspolynom zu den Daten $(x_0, y_0), \ldots, (x_m, y_m)$.

Deshalb kann auch ein weiterer Punkt (x_{n+1}, y_{n+1}) leicht hinzugenommen werden: das neue Interpolationspolynom $p_{0,n+1}$ lautet

$$p_{0,n+1}(x) = p_{0,n}(x) + y[x_0, \dots, x_{n+1}]N_{n+1}(x).$$
(3.1)

Es muss also im Berechnungsschema eine weitere Zeile unten angefügt werden, die mit x_{n+1} und y_{n+1} initialisiert wird.

Als vierte Version stellen wir ein Verfahren vor, das die Auswertung des Interpolationspolynoms an einer Stelle ξ rekursiv vornimmt. Es berechnet tatsächlich die Werte $p_{j,j+k}(\xi)$ aller Polynome in Lemma 3.1.8.

3.1.10 Das Interpolationspolynom in der Neville-Aitken-Form

Zu n+1 paarweise verschiedenen Stützstellen $x_j \in \mathbb{R}, j=0,\ldots,n$, und Daten y_j berechnet man den Wert $p(\xi) = p_{0,n}(\xi)$ des Interpolationspolynoms rekursiv gemäß

•
$$k = 0$$
: $p_{j,j}(\xi) = y_j \text{ für } j = 0, \dots, n,$

•
$$1 \le k \le n$$
: $p_{j,j+k}(\xi) = p_{j,j+k-1}(\xi) + (\xi - x_j) \frac{p_{j+1,j+k}(\xi) - p_{j,j+k-1}(\xi)}{x_{j+k} - x_j}$
für $j = 0, \dots, n - k$.

Schema:

Bisher haben wir die Berechnungsschemata des Interpolationspolynoms vorgestellt. Nun folgt der Zusammenhang zur Interpolation stetiger Funktionen und die Untersuchung des Interpolationsfehlers.

Erweiterte Problemstellung:

- Gegeben sei eine Funktion $f \in C[a, b]$ sowie paarweise verschiedene Stützstellen $x_j \in [a, b]$.
- $p_f \in \mathcal{P}_n$ ist das Interpolationspolynom zu den Punkten $(x_j, f(x_j)), j = 0, \ldots, n,$ d.h. die Daten (x_j, y_j) der Interpolationsaufgabe werden dem Graphen von f entnommen:

$$p_f(x) = \sum_{k=0}^n f(x_k) L_{n,k}(x) = \sum_{k=0}^n f[x_0, \dots, x_k] N_k(x).$$

Hierbei sind $f[x_0, \ldots, x_k]$ die dividierten Differenzen zu den gegebenen Daten.

• Die Interpolationsbedingungen $p_f(x_j) = f(x_j)$ besagen, dass sich die Graphen von f und p_f in diesen Punkten schneiden.

In der folgenden Graphik vergleichen wir $f(x) = \log_{10}(x)$ (schwarz) und das quadratische Interpolationspolynom p_f zu den Stützstellen $x_j = 1, 5, 10$ (cyan) auf [a, b] = [1, 10].

Abbildung 3.1: Quadratisches Interpolationspolynom zu $f(x) = \log_{10}(x)$

Die Abweichung

$$f(x) - p_f(x), \qquad x \in [a, b],$$

bezeichnen wir als den *Interpolationsfehler*. Mit Hilfe der Newton-Polynome finden wir eine genaue Darstellung. Für (n+1)-mal differenzierbare Funktionen lässt sich hieraus eine handliche Formel herleiten.

3.1.11 Satz: Interpolationsfehler

Es seien $f:[a,b] \to \mathbb{R}$ und paarweise verschiedene Stützstellen $x_0,\ldots,x_n \in [a,b]$ gegeben. $p_f \in \mathcal{P}_n$ sei das Interpolationspolynom zu den Punkten $(x_j, f(x_j)), j = 0,\ldots,n$. Weiter sei $x \in [a,b]$.

Dann ist der Interpolationsfehler $f(x) - p_f(x)$ gegeben in Newton-Form

$$f(x) - p_f(x) = f[x_0, \dots, x_n, x] \prod_{j=0}^{n} (x - x_j),$$
 (3.2)

mit der dividierten Differenz der Ordnung n+1 zu den Punkten

$$(x_0, f(x_0)), \dots, (x_n, f(x_n)), (x, f(x)),$$
 (3.3)

bzw. in Lagrange-Form

$$f(x) - p_f(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$
 (3.4)

mit einem $\xi = \xi(x) \in \text{conv}(x_0, \dots, x_n, x)$, falls $f \in C^{n+1}[a, b]$ gilt. Hierbei ist $\text{conv}(x_0, \dots, x_n, x)$ das kleinste Intervall, das alle Stützstellen x_j sowie den Punkt x enthält.

Beweis: Die Newton-Form des Interpolationsfehlers ergibt sich aus Satz 3.1.7. Dazu betrachten wir für festes x das Interpolationspolynom q_f vom Grad n+1 zu den Punkten in (3.3), also wie in (3.1)

$$q_f(y) = p_f(y) + f[x_0, \dots, x_n, x] \prod_{j=0}^{n} (y - x_j).$$

Das letzte Produkt ist das zugehörige Basis-Polynom $N_{n+1}(y)$ vom Grad n+1 in 3.1.7. Einsetzen von y=x und die Interpolationsbedingung $f(x)=q_f(x)$ ergeben

$$0 = f(x) - q_f(x) = f(x) - p_f(x) - f[x_0, \dots, x_n, x] N_{n+1}(x).$$

Das beweist (3.2). Weiterhin gilt auch

$$0 = f(x_j) - q_f(x_j), \qquad j = 0, \dots, n.$$

Die Funktion $f - q_f$ hat also (mindestens) n + 2 Nullstellen im Intervall $I = \text{conv}(x_0, \dots, x_n, x)$. Für $f \in C^{n+1}$ wenden wir den Satz von Rolle n + 1-mal hintereinander an und erhalten mindestens **eine** Nullstelle $\xi \in I$ für die (n + 1)-te Ableitung, d.h.

$$0 = f^{(n+1)}(\xi) - q_f^{(n+1)}(\xi) = f^{(n+1)}(\xi) - (n+1)! \ f[x_0, \dots, x_n, x].$$

Der letzte Term ergibt sich dadurch, dass q_f ein Polynom vom Grad n+1 mit dem Höchstkoeffizienten $a_{n+1}=f[x_0,\ldots,x_n,x]$ ist.

3.1.12 Diskussion zum Interpolationsfehler

Die Größe des Interpolationsfehlers wird im Wesentlichen durch zwei Faktoren beeinflusst:

- die Größe von $|w_{n+1}(x)| = \prod_{k=0}^{n} |x x_k|$, also die Lage der Stützstellen,
- die Größe der (n+1)-ten Ableitung von f.

Wir betrachten das Intervall [-1, 1]. Für äquidistante Knoten

$$x_k = -1 + kh, k = 0, \dots, n, h = \frac{2}{n},$$

kann w_{n+1} ungefähr die Größenordnung

$$\max_{x \in [-1,1]} |w_{n+1}(x)| \approx |w_{n+1}(-1+h/2)| = \frac{h}{2} \frac{h}{2} \frac{3h}{2} \cdots \frac{(2n-1)h}{2} = \left(\frac{1}{n}\right)^{n+1} \frac{(2n)!}{2^n n!}$$

annehmen. Mit der Stirlingschen Formel erkennt man die Größenordnung

$$\frac{\sqrt{4\pi n}(2n)^{2n}}{n^{n+1}2^n\sqrt{2\pi n}n^ne^n} = \frac{2^{n+1/2}}{ne^n}.$$

Im Vergleich dazu erhalten wir bei den sogenannten Tschebyscheff-Knoten (vgl. Programmierübungen sowie Abschnitt 3.3)

$$x_k = \cos\left(\frac{(2(n-k)+1)\pi}{2(n+1)}\right), \qquad k = 0, \dots, n,$$

die Größenordnung

$$\max_{x \in [-1,1]} |w_{n+1}(x)| = |w_{n+1}(-1)| = 2^{-n}.$$

Wir stellen eine rein heuristische Betrachtung an, was passiert, wenn wir an immer mehr Stützstellen $(n \to \infty)$ interpolieren. Dazu sei $f \in C^{\infty}[-1,1]$. Mit p_n bezeichnen wir das Interpolationspolynom vom Grad n zu n+1 Stützstellen, das Knotenpolynom bezeichnen wir wieder mit w_{n+1} . Weiter sei

$$M_{n+1} = \max_{x \in [-1,1]} |f^{(n+1)}(x)|.$$

• Im Fall

$$\frac{M_{n+1}}{(n+1)!} \le C \quad \text{für alle} \quad n \in \mathbb{N}_0$$

erhalten wir mit dem Lagrange-Restglied

$$|f(x) - p_n(x)| \le C|w_{n+1}(x)|, \quad x \in [-1, 1].$$

Für beide oben betrachteten Knotensysteme (äquidistant bzw. Tschebyscheff) erhalten wir die gleichmäßige Konvergenz der Interpolationspolynome p_n gegen f, die Konvergenzgeschwindigkeit ist bei den beiden Knotensystemen unterschiedlich.

• Wir betrachten nun den Fall, dass M_{n+1} exponentiell wächst. Ein klassisches Beispiel von Runge ist die rationale Funktion

$$f: [-1,1] \to \mathbb{R}, \qquad f(x) = \frac{1}{1 + 25x^2}.$$

Interpolation mit äquidistanten Knoten $x_j = -1 + jh$, j = 0, ..., n, h = 2/n, führt zu Interpolationspolynomen p_n , die sich immer weiter von f unterscheiden, die Maximumsnorm $||f - p_n||_{\infty}$ auf dem Intervall [-1, 1] wächst sogar exponentiell. Die folgende Abbildung zeigt f und die Interpolationspolynome p_4 und p_{10} .

Abbildung 3.2: Interpolationspolynome vom Grad 4 und 10 zu $f(x)=1/(1+25x^2)$ auf dem Intervall [-1,1]

3.1.13 Bemerkung: Der Interpolationsoperator

In mathematisch abstrakter Sprechweise haben wir in diesem Abschnitt den Interpolationsoperator

$$J_n: C[a,b] \to \mathcal{P}_n, \qquad f \mapsto J_n(f) = p_f$$

betrachtet, der jedem $f \in C[a, b]$ das eindeutig bestimmte Interpolationspolynom $p_f \in \mathcal{P}_n$ mit $p_f(x_j) = f(x_j)$, $j = 0, \ldots, n$, zuordnet. Das Wort "Operator" steht hier für den Begriff der Abbildung, die *jedem* Element des Definitionsbereichs (hier C[a, b]) genau ein Element des Wertevorrats (hier \mathcal{P}_n) zuordnet. Einfach zu beweisen sind die folgenden Eigenschaften:

• J_n ist linear, d.h. für alle $f, g \in C[a, b]$ und $\alpha, \beta \in \mathbb{R}$ ist

$$J_n(\alpha f + \beta g) = \alpha J_n(f) + \beta J_n(g).$$

• J_n ist eine Projektion, d.h. für alle $p \in \mathcal{P}_n$ gilt $J_n(p) = p$. (Mit anderen Worten: es gilt $J_n \circ J_n = J_n$).

In Analogie zu den natürlichen Matrix
normen in Kapitel 2 definieren wir die Operatornorm von J_n als

$$||J_n||_{\text{op}} = \max\{||J_n f||_{\infty} : f \in C[a, b], ||f||_{\infty} = 1\}.$$

Hierbei wird jeweils die Maximumsnorm $\|\cdot\|_{\infty}$ auf dem Intervall [a,b] verwendet. In den Übungen beweisen wir

$$||J_n||_{\text{op}} = \max_{x \in [a,b]} \Lambda(x) = \max_{x \in [a,b]} \sum_{k=0}^n |L_{n,k}(x)|$$

mit der Lebesgue-Funkton Λ in Bemerkung 3.1.5(iv) (und den Lagrange-Grundpolynomen $L_{n,k}$). Dass diese Norm für wachsendes n groß wird, betrachten wir in den Programmierübungen. Dort sieht man auch deutlich, dass $||J_n||_{\text{op}}$ von der speziellen Wahl der Knoten x_0, \ldots, x_n abhängt. Man kann beweisen,

- dass für C[-1, 1] die Tschebyscheff-Knoten in dem Sinne optimal sind, dass $||J_n||_{\text{op}}$ den kleinsten Wert unter allen möglichen Stützstellen $a \le x_0 < x_1 < \cdots < x_n \le b$ annimmt (Vermutung von Bernstein (1931), bewiesen von Kilgore (1978) und de Boor, Pinkus (1978)),
- \bullet selbst für diese optimalen Knoten die Operatornorm noch wie $\ln n$ wächst.

Einschub: Die dividierten Differenzen treten auch in anderen Bereichen der Analysis und Numerik auf, z.B. ist die div. Differenz der Ordnung 1 gerade der Differenzenquotient

$$y[x_j, x_{j+1}] = \frac{y_{j+1} - y_j}{x_{j+1} - x_j}, \qquad x_j \neq x_{j+1},$$

also die Steigung der Geraden, die die Punkkte (x_j, y_j) und (x_{j+1}, y_{j+1}) verbindet. Die folgenden Eigenschaften folgen aus dem Zusammenhang der dividierten Differenzen und der Lagrange-Interpolation.

3.1.14 Eigenschaften der dividierten Differenzen:

- a) Die dividierte Differenz $y[x_0, \ldots, x_n]$ ist der Höchstkoeffizient des Interpolationspolynoms $p \in \mathcal{P}_n$ zu den Punkten $(x_0, y_0), \ldots, (x_n, y_n)$. Dies ist auch eine gültige Definition der dividierten Differenz der Ordnung n.
- b) Die dividierte Differenz $y[x_0, \ldots, x_n]$ ist invariant gegenüber einer Index-Permutation in der Aufzählung der Punkte $(x_0, y_0), \ldots, (x_n, y_n)$. Insbesondere brauchen die Stützstellen x_j nicht sortiert vorzuliegen.
- c) Für $f \in C^n[a, b]$ und $x_0, \ldots, x_n \in [a, b]$ existiert $\xi \in \text{conv}(x_0, \ldots, x_n)$ mit

$$f[x_0,\ldots,x_n] = \frac{f^{(n)}(\xi)}{n!}$$

d) Für $n \geq 1$ gilt die Formel von Hermite und Genocchi

$$f[x_0, \dots, x_n] = \int_0^1 \int_0^{t_1} \dots \int_0^{t_{n-1}} f^{(n)}(x_0 + t_1(x_1 - x_0) + \dots + t_n(x_n - x_{n-1})) dt_n \dots dt_2 dt_1.$$

Teil c) folgt direkt aus der Lagrange-Darstellung des Restgliedes, wenn wir das Interpolationspolynom vom Grad n-1 um die Stützstelle $x=x_n$ erweitern.

Teil d): Der Integrationsbereich beschreibt den Standardsimplex

$$\Sigma_n = \{(t_1, \dots, t_n) \in \mathbb{R}^n : 0 \le t_1, \dots, t_n \le 1, \ t_1 + \dots + t_n \le 1\}.$$

Wir führen die innere Integration aus und erhalten

$$(x_{n}-x_{n-1})\int_{0}^{1}\int_{0}^{t_{1}}\cdots\int_{0}^{t_{n-1}}f^{(n)}(x_{0}+t_{1}(x_{1}-x_{0})+\ldots+t_{n}(x_{n}-x_{n-1}))dt_{n}\cdots dt_{2}dt_{1}=$$

$$\int_{0}^{1}\int_{0}^{t_{1}}\cdots\int_{0}^{t_{n-2}}\left(f^{(n-1)}(x_{0}+t_{1}(x_{1}-x_{0})+\ldots+t_{n-1}(x_{n}-x_{n-2}))-f^{(n-1)}(x_{0}+t_{1}(x_{1}-x_{0})+\ldots+t_{n-1}(x_{n-1}-x_{n-2}))\right)dt_{n-1}\cdots dt_{2}dt_{1}=$$

$$f[x_{0},x_{1},\ldots,x_{n-2},x_{n}]-f[x_{0},x_{1},\ldots,x_{n-2},x_{n-1}]= \text{nach Ind.-Annahme}$$

$$f[x_{0},x_{1},\ldots,x_{n-2},x_{n}]-f[x_{n-1},x_{0},x_{1},\ldots,x_{n-2}] \text{ Vertauschung der Stützstellen}$$

Division durch $(x_n - x_{n-1})$ ergibt auf der rechten Seite den Ausdruck in der rekursiven Definition der dividierten Differenz $f[x_{n-1}, x_0, x_1, \dots, x_{n-2}, x_n]$. Umordnen der x_j ergibt die Behauptung.

Die Hermite-Interpolation von Funktionswerten und Ableitungen

Die Definition der dividierten Differenz von $f \in C^n[a,b]$ für zusammenfallende Knoten geschieht mittels Grenzwertbildung ("Konfluenz" von Knoten): für zusammenfallende Knoten $x_j = x_{j+1}$ setzen wir

$$f[x_j, x_{j+1}] = \lim_{h \to 0} f[x_j, x_j + h] = \lim_{h \to 0} \frac{f(x_j + h) - f(x_j)}{h} = f'(x_j).$$

Bei mehrfacher Wiederholung der Stützstelle $x_j = \cdots = x_{j+k}$ ist die dividierte Differenz der Ordnung k

$$f[\underbrace{x_j, \dots, x_j}_{(k+1)-\text{mal}}] = \frac{f^{(k)}(x_j)}{k!}.$$
 (3.5)

Dies stimmt mit dem Grenzübergang in der Darstellung 3.1.14c) überein, wenn wir k+1paarweise verschiedene Knoten in x_i zusammenfließen lassen. Auch die Integraldarstellung von Hermite und Genocchi 3.1.14d) bleibt erhalten, weil

$$\int_0^1 \int_0^{t_1} \cdots \int_0^{t_{k-1}} f^{(k)}(x_j) dt_k \cdots dt_2 dt_1 = \frac{f^{(k)}(x_j)}{k!}$$

gilt. Auf der linken Seite steht das Integral über die Konstante $f^{(k)}(x_i)$, der Integrationsbereich ist ein Standardsimplex der Dimension k, hat also das Volumen 1/(k!).

Allgemein: Sind die Stützstellen $x_0 \leq x_1 \leq \cdots \leq x_n$ angeordnet, so werden im Schema 3.1.6 die nicht-existierenden Quotienten ("Division durch Null") durch die entsprechenden Ableitungsterme ersetzt. Dadurch bleibt die rekursive Berechnung von $f[x_0, \ldots, x_n]$ gültig, auch wenn einige Stützstellen zusammenfallen.

Für mehrfach auftretende Stützstellen wird eine modifizierte Interpolationsaufgabe gestellt, in der auch Ableitungswerte von p vorgeschrieben werden. Die Lösung schreibt man genau wie in 3.1.7 in der Newton-Form mit der obigen Definition der dividierten Differenzen bei mehrfachen Stützstellen.

3.1.15Hermite-Interpolation

Es seien

Stützstellen $\xi_0, \dots, \xi_m \in \mathbb{R}$ paarweise verschieden,

Vielfachheiten $\mu_0, \dots, \mu_m \in \mathbb{N}$ und Daten $y_j^{(k)}$ für $j = 0, \dots, m, k = 0, \dots, \mu_j - 1$

gegeben. Weiter sei $n = \left(\sum_{j=1}^{m} \mu_j\right) - 1.$

Ein Polynom $p \in \mathcal{P}_n$ mit

$$p^{(k)}(\xi_j) = y_j^{(k)}$$
 für alle $j = 0, \dots, m, k = 0, \dots, \mu_j - 1,$

heißt Hermite-Interpolationspolynom.

3.1.16 Satz zur Hermite-Interpolation

Die Hermite-Interpolationsaufgabe ist eindeutig lösbar. Das Interpolationspolynom $p \in \mathcal{P}_n$ ist

$$p(x) = \sum_{k=0}^{n} y[x_0, \dots, x_k](x - x_0) \cdots (x - x_{k-1})$$

mit dem erweiterten Knotenvektor (x_0, \ldots, x_n) , in dem jedes ξ_j genau μ_j -mal wiederholt wird. Dabei werden die dividierten Differenzen mit gleichem Knoten ξ_j und die Daten für die Ableitungen interpretiert wie in (3.5), also

$$y[\underbrace{\xi_j, \dots, \xi_j}_{(k+1)-\text{mal}}] = \frac{y_j^{(k)}}{k!}.$$

Beispiel: Mit $\xi_0=-1,\,\xi_1=3,\,\xi_2=7$ und $\mu_0=2,\,\mu_1=1,\,\mu_2=3$ ist der erweiterte Knotenvektor

$$(-1, -1, 3, 7, 7, 7)$$
.

Die "neuen" dividierten Differenzen im Schema sind gegebene Daten

$$y[-1,-1] = y_0^{(1)}, \quad y[7,7] = y_2^{(1)}, \quad y[7,7,7] = \frac{y_2^{(2)}}{2}.$$

Man beachte den Nenner 2 = 2! in der dividierten Differenz der Ordnung 2.

Das Hermite-Interpolationspolynom hat den Grad n = (2 + 1 + 3) - 1 = 5, die Interpolationsbedingungen werden gestellt für p(-1), p'(-1), p(3), p(7), p'(7), p''(7).

3.1.17 Bemerkung:

(i) Die Darstellungen des Interpolationsfehlers für Daten

$$y_j^{(k)} = f^{(k)}(x_j), \quad j = 0, \dots, m, \quad k = 0, \dots, \mu_j - 1,$$

bleiben exakt wie in Satz 3.1.11 erhalten.

(ii) Speziell wenn alle Knoten gleich sind, $\xi_0 = x_0 = x_1 = \cdots = x_n$ (also $\mu_0 = n + 1$), ist das Hermite-Interpolationspolynom das Taylorpolynom von f:

$$p(x) = \sum_{k=0}^{n} \frac{f^{(k)}(\xi_0)}{k!} (x - \xi_0)^k.$$

Aus der Analysis kennen wir bereits das Lagrange-Restglied in diesem Spezialfall.

3.2 Anwendung: Richardson-Extrapolation

Wir behandeln nun eine Anwendung des Neville-Aitken Schemas zur Interpolation. Gesucht ist der Funktionswert f(0) einer differenzierbaren Funktion, zur Verfügung stehen die Daten $(h_j, f(h_j))$ mit $h_0 > h_1 > \cdots > h_n > 0$. Weil die Stelle $\xi = 0$ zur Auswertung außerhalb des Knotenintervalls $[h_n, h_0]$ liegt, spricht man von Extrapolation.

Für diesen Spezialfall schreiben wir die Rekursion im Neville-Aitken Schema neu in der Form

$$p_{j,j+k}(0) = p_{j,j+k-1}(0) - \frac{x_j(p_{j+1,j+k}(0) - p_{j,j+k-1}(0))}{x_{j+k} - x_j} = p_{j+1,j+k}(0) + \frac{p_{j+1,j+k}(0) - p_{j,j+k-1}(0)}{\frac{x_j}{x_{j+k}} - 1}.$$

3.2.1 Beispiel (vgl. 1. Beispiel der Einleitung):

Berechne: $a_0 = \lim_{h \to 0} f(h)$ für $f(x) = \frac{\tan x - x}{x^3}$.

• Numerische Rechnung (doppelt genau) ergibt für $h_0 = 1/10$, $h_1 = 1/20$, $h_2 = 1/40$ die Ergebnisse

0.334672085450544, 0.333667004310312, 0.333416687753330.

• Mit der Taylor-Reihe von tan x,

$$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{17}{315}x^7 + \cdots$$

ergibt sich durch einfache Rechnung die Taylorreihe von f

$$f(h) = \frac{1}{3} + \frac{2}{15}h^2 + \frac{17}{315}h^4 + \frac{62}{2835}h^6 + \cdots;$$

insbesondere treten nur gerade Potenzen von h auf, weil f eine gerade Funktion ist (d.h. f(-x) = f(x)).

Daher ist es sinnvoll, a_0 anzunähern durch Werte $a_{j+k,k} = p_{j,j+k}(0)$ der Interpolationspolynome zu den Punkten $(h_0^2, f(h_0)), (h_1^2, f(h_1))$ und $(h_2^2, f(h_2)),$ also nach dem Neville-Aitken-Schema mit den Stützstellen $x_j = h_j^2, j = 0, 1, 2.$

• Die Werte im Neville-Aitken Schema sind

Wir schreiben das Dreiecksschema in der obigen Form (mit nach unten verschobenen Spalten im Vergleich zum Neville-Aitken Schema) im Einklang mit der Literatur.

Diese Verschiebung der Spalten wurde in der Bezeichnung $a_{j+k,k} = p_{j,j+k}(0)$ bereits angedeutet.

Beobachtung: Die Extrapolation ergibt bereits 9 exakte Stellen von 1/3. Verglichen mit dem Wert $f(h_2)$ ist dies eine Verbesserung um 6 Stellen, ohne dass wir weitere Auswertungen von f vorgenommen haben.

 \bullet Der Genauigkeitsgewinn lässt sich mathematisch begründen, indem wir die Reihenentwicklung von f in das Neville-Schema einsetzen. Dies ergibt

$$p_{0,1}(0) = f(h_1) + \frac{1}{(h_0/h_1)^2 - 1} \left(f(h_1) - f(h_0) \right) = \frac{1}{3} - \frac{17}{315} h_0^2 h_1^2 - \frac{62}{2835} \left(h_0^4 h_1^2 + h_0^2 h_1^4 \right) + \cdots$$

und ganz analog

$$p_{1,2}(0) = f(h_2) + \frac{1}{(h_1/h_2)^2 - 1} \left(f(h_2) - f(h_1) \right) = \frac{1}{3} - \frac{17}{315} h_1^2 h_2^2 - \frac{62}{2835} (h_1^4 h_2^2 + h_1^2 h_2^4) + \cdots$$

Im nächsten Schritt erhalten wir für das quadratische Interpolationspolynom

$$p_{0,2}(0) = p_{1,2}(0) + \frac{1}{(h_0/h_2)^2 - 1}(p_{1,2}(0) - p_{0,1}(0)) = \frac{1}{3} + \frac{62}{2835}h_0^2h_1^2h_2^2 + \cdots$$

Wir erkennen, dass in jedem Schritt ein Koeffizient der Taylor-Entwicklung von f ausgelöscht wird und der nachfolgende Koeffizient mit dem Produkt der Stützstellen $h_i^2 \cdots h_{i+k}^2$ der dominante Term in der Fehlerbetrachtung ist.

3.2.2 Beispiele: Differenzenquotienten

Wir wollen die Ableitung $f'(x_0)$ einer (r+1)-mal stetig differenzierbaren Funktion $f:[a,b]\to\mathbb{R}$ an der Stelle x_0 mit zwei verschiedenen Differenzenquotienten annähern.

(i) Der gewöhnliche Differenzenquotient ist

$$a(h) := \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + \sum_{k=1}^r \frac{f^{(k+1)}(x_0)}{(k+1)!} h^k + \mathbf{o}(h^r).$$

Für verschiedene Werte $h_j>0,\ j=0,\ldots,r,$ stellt man das Neville-Schema zur Berechnung von

$$a_{i+k,k} = p_{i,i+k}(0)$$
 mit den Daten $(h_0, a(h_0)), \dots, (h_r, a(h_r))$

auf. Hier sind die Stützstellen $x_j = h_j$ gewählt, weil die Entwicklung von a(h) alle Potenzen h^k enthält. Die Rekursion zur Berechnung der $a_{j+k,k}$ lautet also

$$a_{j+k,k} = p_{j,j+k}(0) = a_{j+k,k-1} + \frac{1}{(h_j/h_{j+k}) - 1}(a_{j+k,k-1} - a_{j+k-1,k-1})$$

für $1 \le k \le r$ und $0 \le j \le r - k$ mit den Startwerten $a_{j,0} = a(h_j)$ für $0 \le j \le r$.

(ii) Der symmetrische Differenzenquotient (für 2r + 1-mal differenzierbares f) ist

$$b(h) := \frac{f(x_0 + h) - f(x_0 - h)}{2h} = f'(x_0) + \sum_{k=1}^r \frac{f^{(2k+1)}(x_0)}{(2k+1)!} h^{2k} + \mathbf{o}(h^{2r}).$$

Das Neville-Schema zur Berechnung von

$$b_{j+k,k} = q_{j,j+k}$$
 mit den Daten $(h_0^2, b(h_0)), \dots, (h_r^2, b(h_r)),$

wird verwendet, weil die Entwicklung von b(h) wie im ersten Beispiel nur gerade Potenzen h^{2k} enthält. Die Rekursion lautet dann

$$b_{j+k,k} = q_{j,j+k}(0) = b_{j+k,k-1} + \frac{1}{(h_j/h_{j+k})^2 - 1}(b_{j+k,k-1} - b_{j+k-1,k-1})$$

für $1 \le k \le r$ und $0 \le j \le r - k$ mit den Startwerten $b_{j,0} = b(h_j)$ für $0 \le j \le r$.

Beispiel: Wir betrachten $f(x) = e^x$ an der Stelle $x_0 = 0$ und Schrittweiten $h_j = 2^{-j}$ für $j = 1, \ldots, 5$:

• Extrapolation für Differenzenquotienten (q = 1 in Satz 3.2.2) ergibt die Werte $a_{j+k,k}$, $k = 0, \ldots, 4$, in der unteren Hälfte der Matrix

tab=extrapolation_tab('bsp_diffqu_exp',2.^-[1:5],1)

tab =

1.29744254140026	0	0	0	0
1.13610166675097	0.97476079210167	0	0	0
1.06518762453461	0.99427358231826	1.00077784572378	0	0
1.03191134268575	0.99863506083689	1.00008888700977	0.99999046433634	0
1.01578903997129	0.99966673725682	1.00001062939680	0.99999944973780	1.00000004876457

• Extrapolation für symmetrische Differenzenquotienten (q=2 in Satz 3.2.2) ergibt die Werte $b_{j+k,k}$, $k=0,\ldots,4$, in der unteren Hälfte der Matrix

tab=extrapolation_tab('bsp_symdiffqu_exp',2.^-[1:5],2)

tab =

1.04219061098749	0	0	0	0
1.01044926723267	0.99986881931440	0	0	0
1.00260620192892	0.99999184682767	1.00000004866189	0	0
1.00065116883507	0.99999949113712	1.0000000075775	0.9999999999737	0
1 00016276836414	0 99999996820716	1 0000000001183	0 999999999999	1 000000000000000

Die Beobachtungen werden nun mathematisch genau begründet. Wichtig in der Voraussetzung des folgenden Satzes ist der Faktor q im Exponenten: im Beispiel hatten wir bereits q=1 bzw. q=2 gesehen, q kann aber auch rational oder reell sein. Wichtig ist die Entwicklung von a nach linear wachsenden Potenzen h^{jq} .

3.2.3 Satz: Richardson-Extrapolation

Die Funktion $a: \mathbb{R}_+ \to \mathbb{R}$ besitze die Entwicklung

$$a(h) = a_0 + \sum_{m=1}^{n+1} a_m h^{m \cdot q} + \mathbf{o}(h^{(n+1)q}), \qquad h \to 0.$$

Hierbei sind q > 0 und $a_m \in \mathbb{R}, m = 0, \dots, n + 1$.

Weiter sei $(h_i)_{i\in\mathbb{N}_0}$ eine monoton fallende Folge positiver Zahlen mit

$$0 < \frac{h_{j+1}}{h_j} \le \rho < 1, \quad j \in \mathbb{N}_0.$$

Dann erfüllt das Interpolationspolynom

$$p_{j,j+n} \in \mathcal{P}_n$$
 zu den Punkten $(h_j^q, a(h_j)), \dots, (h_{j+n}^q, a(h_{j+n}))$

die Beziehung

$$a(0) - p_{j,j+n}(0) = \mathcal{O}(h_j^{(n+1)q}), \quad j \to \infty.$$

Zum Beweis benötigen wir das folgende Lemma. Es beschreibt die Lagrange-Interpolation der Funktionen $f(x) = x^k$ mit $0 \le k \le n+1$.

3.2.4 Lemma

Die Lagrange-Grundpolynome $L_{n,j}$ zu paarweise verschiedenen Stützstellen $x_0, \ldots, x_n \in \mathbb{R}$ erfüllen

$$\sum_{j=0}^{n} x_{j}^{k} L_{n,j}(x) = \begin{cases} x^{k}, & \text{für } 0 \le k \le n, \\ x^{n+1} - \prod_{j=0}^{n} (x - x_{j}), & \text{für } k = n + 1. \end{cases}$$

Beweis: Auf der linken Seite steht das Interpolationspolynom zum Monom $e_k(x) = x^k$ mit $0 \le k \le n+1$. Auf der rechten Seite steht ein Polynom vom Grad n (auch für k = n+1, weil die höchste Potenz x^{n+1} durch die Subtraktion wegfällt). Einsetzen von x_j zeigt, dass die Interpolationsbedingungen erfüllt sind, also auf beiden Seiten das Interpolationspolynom von e_k steht. Dies zeigt die Gleichheit beider Seiten.

Beweis von Satz 3.2.3:

Die Stützstellen des Interpolationspolynoms $p_{j,j+n}$ sind $x_k = h_{j+k}^q$, $0 \le k \le n$. Sie sind nach Voraussetzung monoton fallend und positiv. Die Voraussetzung an a(h) verwenden wir in der Form

$$a(h_{j+k}) = a_0 + \sum_{m=1}^{n+1} a_m x_k^m + \epsilon_{j+k} x_k^{n+1},$$

wobei $(\epsilon_r)_{r\in\mathbb{N}}$ eine Nullfolge ist. (Hier wird also die Landau-Notation korrekt übersetzt.) Die Lagrange-Form von $p_{j,j+n}$ ist

$$p_{j,j+n}(x) = \sum_{k=0}^{n} a(h_{j+k}) L_{n,k}(x) = \sum_{k=0}^{n} \left(a_0 + \sum_{m=1}^{n+1} a_m x_k^m + \epsilon_{j+k} x_k^{n+1} \right) L_{n,k}(x).$$

Mit dem Lemma folgt

$$p_{j,j+n}(x) = a_0 + \sum_{m=1}^{n} a_m x^m + a_{n+1} \left(x^{n+1} - \prod_{r=0}^{n} (x - x_r) \right) + \sum_{k=0}^{n} \epsilon_{j+k} x_k^{n+1} L_{n,k}(x).$$

Einsetzen von x = 0 ergibt

$$p_{j,j+n}(0) = a_0 + (-1)^n a_{n+1} \prod_{r=0}^n x_r + \sum_{k=0}^n \epsilon_{j+k} x_k^{n+1} L_{n,k}(0).$$

Wegen der Monotonie der Stützstellen gilt

$$\prod_{r=0}^{n} x_r \le x_0^{n+1} = h_j^{(n+1)q},$$

und dies liefert den $\mathcal{O}(h_j^{(n+1)q})$ -Term in der Behauptung. Wir müssen also noch eine Abschätzung der letzten Summe erzielen, insbesondere für die Lagrange-Grundpolynome an der Stelle x=0

$$|L_{n,k}(0)| = \prod_{\substack{r=0 \ r \neq k}}^{n} \frac{|0 - x_r|}{|x_k - x_r|}.$$

Dazu nutzen wir die Zusatzvoraussetzung an die Schrittweiten und deren Monotonie. Für $0 \le r < k$ ist

$$\frac{x_r}{|x_k - x_r|} = \frac{1}{1 - \frac{x_k}{x_r}} \le \frac{1}{1 - \frac{x_k}{x_{k-1}}} \le \frac{1}{1 - \rho^q}.$$

Für $k < r \le n$ erhalten wir analog

$$\frac{x_r}{|x_k - x_r|} = \frac{x_r}{x_k (1 - \frac{x_r}{x_k})} \le \frac{1}{1 - \frac{x_{k+1}}{x_k}} \le \frac{1}{1 - \rho^q}.$$

Also gilt

$$|L_{n,k}(0)| \le \frac{1}{(1-\rho^q)^{n+1}}$$
 für $k = 0, \dots, n$,

und dies ist gültig für alle $j \in \mathbb{N}$ (die Stützstellen x_k hingen ja noch von j ab!). Insgesamt haben wir dadurch gezeigt, dass

$$|a(0) - p_{j,j+n}(0)| \le |a_{n+1}| h_j^{(n+1)q} + \frac{1}{(1 - \rho^q)^{n+1}} \sum_{k=0}^n |\epsilon_{j+k}| h_{j+k}^{(n+1)q} = |a_{n+1}| h_j^{(n+1)q} + \mathbf{o}(h_j^{(n+1)q}), \qquad j \to \infty.$$

3.2.5 Extrapolations-Tafel: Das folgende Schema berechnet $a_{j+k,k} := p_{j,j+k}(0) \approx a(0)$ in der **unteren** Dreiecksmatrix. Es entspricht dem Neville-Aitken Schema mit Stützstellen h_j^q anstatt h_j .

h_j	$x_j = h_j^q$	$a_{j0} = a(h_j)$	$a_{j+1,1}$	$a_{j+2,2}$			
h_0	h_0^q	a_{00}					
h_1	h_1^q	a_{10}	a_{11}				
h_2	h_2^q	a_{20}	a_{21}	a_{22}			
:	:	÷	÷	÷	٠.		
h_j	h_j^q	a_{j0}	a_{j1}	a_{j2}		$a_{j,j}$	
÷	:	:	:	:		:	٠

mit Hilfe der Rekursion mit dem entsprechenden q in Satz 3.2.3

$$j = 0, 1, 2 \dots$$
: $a_{j0} = a(h_j)$
 $k = 1, \dots, j$: $a_{jk} = a_{j,k-1} + \frac{1}{(h_{j-k}/h_j)^q - 1} (a_{j,k-1} - a_{j-1,k-1})$.

3.2.6 Bemerkung: Schrittweiten-Folgen und monotone Konvergenz

(i) Gebräuchliche Schrittweiten-Folgen $(h_j)_{j\geq 0}$ sind

$$h_j = 2^{-j} h_0$$
 (Schrittweiten-Halbierung),

oder $h_j = h_0/n_j$ mit der Bulirsch-Folge

$$n_0 = 1,$$
 $n_j = \begin{cases} 2^{(j+1)/2}, & j \ge 1 \text{ ungerade,} \\ 3 * 2^{(j-2)/2}, & j \ge 2 \text{ gerade,} \end{cases}$

also mit $\rho = 3/4$ in Satz 3.2.3. Unzulässig ist die Folge $\left(\frac{1}{j}\right)_{j \in \mathbb{N}}$, weil $\lim_{j \to \infty} \frac{j}{j+1} = \rho = 1$.

(ii) Nach Satz 3.2.3 gilt für die Einträge der n-ten Spalte

$$a_{j+n,n} - a(0) = \mathcal{O}(h_j^{(n+1)q}), \quad j \to \infty,$$

falls die Schrittweiten-Folge $(h_j)_{j\geq 0}$ die Voraussetzungen des Satzes erfüllt. Noch genauer ist sogar für (unbekanntes!) $a_{n+1}\neq 0$

$$a_{j+n,n} - a(0) = (-1)^n a_{n+1} \prod_{r=j}^{j+n} h_r^q + \mathbf{o}(h_j^{(n+1)q}), \quad j \to \infty,$$

woraus man auf "schließlich monotone" Konvergenz der Folgenglieder $(a_{j+n,n})_{j\geq 0}$ in der n-ten Spalte des Schemas schließen kann.

(iii) Führt man zusätzlich die Folge

$$b_{i+n,n} = 2a_{i+n+1,n} - a_{i+n,n}, \qquad j \ge 0,$$

mit, so ergibt sich wegen $|a_{j+n+1,n}-a(0)| \ll |a_{j+n,n}-a(0)|$ die Beziehung

$$b_{j+n,n} - a(0) \approx a(0) - a_{j+n,n}$$

also (heuristisch) eine Einschließung

$$a_{j+n,n} \le a(0) \le b_{j+n,n}$$
 oder $a_{j+n,n} \ge a(0) \ge b_{j+n,n}$.

Dies ist sehr nützlich für ein "a-posteriori" Abbruchkriterium, d.h. eine Abfrage im Laufe der Rechnung, ob die gewünschte Genauigkeit erreicht ist.

Besitzt die Funktion a sogar eine Reihenentwicklung

$$a(h) = a(0) + \sum_{k=1}^{\infty} a_k h^{qk}$$

(z.B. falls a analytisch ist), so kann auch der Grenzwert $\lim_{j\to\infty} a_{jj}$ entlang der Diagonalen der Extrapolations-Tafel betrachtet werden.

3.2.7 Satz: Konvergenz entlang der Diagonalen

Falls in der Reihenentwicklung unendlich viele $a_k \neq 0$ sind und falls

$$\inf_{j\in\mathbb{N}_0}\frac{h_{j+1}}{h_j}>0\quad\text{und}\quad\sup_{j\in\mathbb{N}_0}\frac{h_{j+1}}{h_j}<1,$$

so konvergiert die Folge $(a_{jj})_{j\geq 0}$ der Diagonalelemente der Extrapolations-Tafel schneller gegen a(0) als die Folge $(a_{j+n_0,n_0})_{j\geq 0}$ entlang einer festen Spalte n_0 ; d.h.

$$\lim_{j \to \infty} \frac{|a_{j+n_0,j+n_0} - a(0)|}{|a_{j+n_0,n_0} - a(0)|} = 0.$$

3.3 Gauß-Approximation, Orthogonal polynome

Wir betrachten nun die Approximation von Funktionen im Vektorraum

$$C[a,b] = \{f : [a,b] \to \mathbb{K} : f \text{ ist stetig}\}$$

durch Polynome vom Grad n. Anders als bei der Interpolation wird die Funktion f als bekannt auf dem ganzen Intervall [a, b] vorausgesetzt. Unser Ziel ist die Bestimmung eines Polynoms $p^* \in \mathcal{P}_n$ so, dass der Abstand $||f-p^*||$ minimal ist. Die hierbei verwendete Norm wird dabei speziell gewählt. Sie ist von einem Skalarprodukt induziert und ermöglicht die geometrische Interpretation, dass p^* durch die Orthogonalprojektion von f auf den Polynomraum \mathcal{P}_n bestimmt ist. Durch die Verwendung einer Orthonormalbasis von \mathcal{P}_n (den Orthogonalpolynomen) lässt sich p^* sogar leicht angeben.

Bevor wir mit den genaueren Spezifikationen beginnen, sei vorausgeschickt, dass

- C[a,b] ein unendlich-dimensionaler K-Vektorraum ist,
- \mathcal{P}_n (genauer die Einschränkung der Polynome vom Grad kleiner oder gleich n auf [a,b]) ein (n+1)-dimensionaler Teilraum von C[a,b] ist.

3.3.1 Definition: Skalarprodukt

Es sei V ein \mathbb{K} -Vektorraum. Eine Abbildung $s:V\times V\to \mathbb{K}$ heißt Skalarprodukt auf V, wenn

(S1)
$$s(\alpha x + \beta y, z) = \alpha s(x, z) + \beta s(y, z)$$
 für alle $x, y, z \in V, \alpha, \beta \in \mathbb{K}$;

(S2)
$$s(x,y) = \overline{s(y,x)}$$
 für alle $x,y \in V$;

(S3)
$$s(x,x) > 0$$
 für alle $x \in V \setminus \{0\}$.

(V,s) heißt Skalarproduktraum oder $Pr\ddot{a}$ -Hilbertraum, speziell für $\mathbb{K}=\mathbb{R}$ auch $eukli-discher\ Raum$ und für $\mathbb{K}=\mathbb{C}\ unit\ddot{a}rer\ Raum$.

Schreibweise: $\langle x, y \rangle = s(x, y)$

3.3.2 Ergänzung: Es sei V ein \mathbb{K} -Vektorraum mit Skalarprodukt $\langle \cdot, * \rangle$.

(i) Das Skalarprodukt induziert eine Norm

$$||x|| = \sqrt{\langle x, x \rangle}, \quad x \in V.$$

Die Norm-Axiome (N1) und (N2) in 1.2.1 prüft man leicht nach. Die Dreiecksungleichung (N3) beweist man mit Hilfe der folgenden wichtigen Ungleichung.

(ii) Es gilt die Cauchy-Schwarz-Ungleichung

$$|\langle x, y \rangle| < ||x|| ||y||, \quad x, y \in V.$$

Beweis: Klar für x=0 oder y=0. Für $x,y\neq 0$ betrachten wir zuerst x,y mit ||x||=||y||=1. Wir erhalten für $z=x-\langle x,y\rangle y$ mit (S3) die Ungleichung $0\leq \langle z,z\rangle$ und durch "Ausmultiplizieren" mit (S1), (S2)

$$0 \le \langle z, z \rangle = \underbrace{\langle x, x \rangle}_{=1} - \underbrace{\langle x, y \rangle \langle y, x \rangle}_{=|\langle x, y \rangle|^2} - \underbrace{\overline{\langle x, y \rangle} \langle x, y \rangle}_{=|\langle x, y \rangle|^2} + |\langle x, y \rangle|^2 \underbrace{\langle y, y \rangle}_{=1} = 1 - |\langle x, y \rangle|^2.$$

Dies ergibt die Cauchy-Schwarz Ungleichung für ||x|| = ||y|| = 1. Für beliebige $x, y \neq 0$ folgt die Ungleichung durch den Übergang zu $\tilde{x} = \frac{1}{||x||} x$ und $\tilde{y} = \frac{1}{||y||} y$ mit Hilfe der Eigenschaften (S1) und (N2).

Beweis der Dreiecksungleichung: Ausmultiplizieren mit (S1), (S2) ergibt

$$||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2 + 2\operatorname{Re}(\langle x, y \rangle).$$

Hier wurde für Rechnung im Komplexen $z+\overline{z}=2\mathrm{Re}(z)$ verwendet. Die Cauchy-Schwarz-Ungleichung ergibt

$$||x + y||^2 \le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2,$$

und hieraus folgt die Dreiecksungleichung

3.3.3 Bemerkung und Bezeichnungen: Es sei V ein reeller Skalarproduktraum, also $\mathbb{K} = \mathbb{R}$.

(i) Es gilt die Parallelogramm-Identität

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2), \quad x, y \in V.$$

Umgekehrt: Falls eine Norm auf V die Parallelogramm-Identität erfüllt, so ist durch

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

ein Skalarprodukt auf $V \times V$ definiert, das diese Norm induziert; man nennt dies Polarisierung.

(ii) Der Cosinus des Winkels zwischen $x, y \in V$ mit $x, y \neq 0$ ist

$$\cos \angle(x, y) = \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$

Einfache Umformung ergibt den "Cosinus-Satz" für die Kantenlängen im Dreieck

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \angle(x, y).$$

(iii) $x, y \in V$ sind orthogonal, wenn $\langle x, y \rangle = 0$ gilt. (Hier ist auch x = 0 oder y = 0 erlaubt, die Definition wird auch für komplexe Skalarprodukträume verwendet.) Der Satz des Pythagoras im reellen Fall lautet

$$\langle x, y \rangle = 0 \iff ||x + y||^2 = ||x||^2 + ||y||^2.$$

Unser Interesse in diesem Abschnitt gilt dem Vektorraum C[a, b] der stetigen Funktionen auf dem reellen Intervall [a, b]. Für die Elemente dieses Vektorraums verwenden wir wie üblich die Buchstaben f, g (und nicht wie vorher x, y etc.).

3.3.4 Beispiel: Skalarprodukte auf C[a, b]

Es seien $a,b \in \mathbb{R}$ mit a < b und C[a,b] der Vektorraum der stetigen Funktionen mit Werten in \mathbb{C} .

a) Das "Standard-Skalarprodukt" auf C[a, b] ist

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \, dx.$$

(S1) und (S2) sind sofort klar, (S3) folgt aus der Stetigkeit: für $f \neq 0$ existiert ein Intervall $U = [x_0 - \delta, x_0 + \delta] \cap [a, b]$ mit |f(x)| > 0 für alle $x \in U$, also ist $\int_a^b |f(x)|^2 dx > 0$ für $f \neq 0$.

Die induzierte Norm ist die L_2 -Norm

$$||f|| = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}.$$

Der "Abstand"

$$||f - g|| = \left(\int_a^b |f(x) - g(x)|^2 dx\right)^{1/2}$$

misst die Abweichung von f und g im quadratischen Mittel. Zwei Funktionen f, g sind genau dann orthogonal (bzgl. des Standard-Skalarprodukts), wenn

$$\int_{a}^{b} f(x)\overline{g(x)} \, dx = 0$$

gilt. Z.B. sind die Funktionen $f(x)=x^2$ und $g(x)=x^3$ auf dem Intervall [-1,1] orthogonal, denn

$$\int_{-1}^{1} x^2 \cdot x^3 \, dx = \int_{-1}^{1} x^5 \, dx = 0.$$

b) Das gewichtete Skalarprodukt auf C[a,b]: Die Funktion $\omega:(a,b)\to\mathbb{R}$ erfülle

$$\omega(x) > 0$$
 für alle $x \in (a, b), \qquad \int_a^b \omega(x) \, dx < \infty.$

 ω heißt Gewichtsfunktion. Der uneigentliche Grenzwert $\lim_{x\to a}\omega(x)=\infty$ (entsprechend bei b) ist erlaubt, solange das uneigentliche Integral beschränkt ist. Dann ist

$$\langle f, g \rangle_{\omega} = \int_{a}^{b} f(x) \overline{g(x)} \ \omega(x) \, dx$$

ein Skalarprodukt auf C[a,b] mit induzierter Norm

$$||f||_{\omega} = \left(\int_a^b |f(x)|^2 \,\omega(x) \,dx\right)^{1/2}.$$

3.3.5 Beispiel: Der Vektorraum C[-1,1] mit dem Tschebyscheff-Gewicht:

Für C[-1,1] ergibt sich mit der Gewichtsfunktion $\omega(x) = \frac{1}{\sqrt{1-x^2}}$

$$\langle f, g \rangle_{\omega} = \int_{-1}^{1} f(x) \overline{g(x)} \frac{dx}{\sqrt{1 - x^2}}$$

Die Funktionen

$$T_n(x) = \cos(n\arccos(x)) \in C[-1,1], \quad n \in \mathbb{N}_0,$$

heißen $Tschebyscheff-Polynome\ 1.$ Art. T_n ist tatsächlich ein Polynom vom Grad n: es gilt

$$T_0(x) = 1, \quad T_1(x) = x,$$

 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \qquad n \ge 1.$ (3.6)

(Zeige dies mit dem Additionstheorem für die Cosinus-Funktion in der Form $T_{n+1}(x) + T_{n-1}(x) = 2T_1(x)T_n(x)$.) Konkret erhalten wir für n = 2, 3, 4, 5

$$T_2(x) = 2x^2 - 1$$
, $T_3(x) = 4x^3 - 3x$, $T_4(x) = 8x^4 - 8x^2 + 1$, $T_5(x) = 16x^5 - 20x^3 + 5x$.

(Natürlich sind die Polynome auf ganz \mathbb{R} (sogar \mathbb{C}) mittels der Rekursion definiert, aber die Definition mit der Arccos-Funktion gilt nur auf [-1,1].)

Die Polynome T_n sind paarweise orthogonal, denn für $n \neq m$ ist

$$\int_{-1}^{1} T_n(x) T_m(x) \frac{dx}{\sqrt{1-x^2}} = \int_{0}^{\pi} \cos(nt) \cos(mt) dt = \frac{1}{2} \int_{0}^{\pi} \left(\cos((n+m)t) + \cos((n-m)t)\right) dt = 0.$$

Die Norm dieser Funktionen berechnet man aus

$$||T_n||_{\omega}^2 = \int_{-1}^1 (T_n(x))^2 \frac{dx}{\sqrt{1-x^2}} = \int_0^{\pi} \cos^2(nt) \, dt = \frac{1}{2} \int_0^{\pi} (\cos(2nt) + 1) \, dt = \begin{cases} \pi, & \text{für } n = 0, \\ \frac{\pi}{2}, & \text{für } n > 0. \end{cases}$$

Die Gauß-Approximation von Funktionen $f \in C[a,b]$ lässt sich am besten in der Sprechweise der Linearen Algebra beschreiben. Deshalb führen wir die Darstellung für allgemeine Skalarprodukträume weiter fort und kommen erst später auf die Funktionenräume C[a,b] zurück.

3.3.6 Satz: Die Orthogonalitätsbedingung

Es sei V ein Skalarproduktraum, $S \leq V$ ein endlichdimensionaler Teilraum und $f \in V$. Dann gilt:

a) Es existiert genau ein $p \in S$ mit

$$||f - p|| = \min_{q \in S} ||f - q||.$$

Man nennt p die Orthogonalprojektion oder auch Gauß-Approximation von f in S.

b) Die Orthogonalprojektion $p \in S$ von f ist charakterisiert durch die Orthogonalitätsbedingung

$$\langle f - p, q \rangle = 0$$
 für alle $q \in S$.

Bemerkung: In der Approximationstheorie und der Funktionalanalysis wird gezeigt, dass die Äquivalenz sogar für jeden **abgeschlossenen** Teilraum (auch mit dim $S = \infty$) eines Hilbertraumes gilt.

Der Beweis ist konstruktiv, indem das Element $p \in S$ mit Hilfe einer gegebenen Basis von S dargestellt wird. Zunächst definieren wir die folgende Matrix.

3.3.7 Definition und Satz: Gram-Matrix

Es seien V ein Skalarproduktraum, S ein endlich-dimensionaler Teilraum mit dim S = n sowie $\psi_1, \ldots, \psi_n \in S$. Die Matrix

$$M = (m_{ik})_{i,k=1,\ldots,n}, \qquad m_{ik} = \langle \psi_k, \psi_i \rangle$$

heißt Gram-Matrix der Elemente ψ_1,\ldots,ψ_n . Es gilt:

- a) M ist hermitesch (für $\mathbb{K} = \mathbb{C}$) bzw. symmetrisch (für $\mathbb{K} = \mathbb{R}$) und positivsemidefinit.
- b) M ist genau dann positiv-definit, wenn die Familie (ψ_1, \dots, ψ_n) eine Basis von S ist.

Beweis: Dass M hermitesch bzw. symmetrisch ist, folgt aus (S2). Positive Semi-Definitheit ergibt sich durch

$$c^*Mc = \sum_{j,k=1}^n \overline{c_j} c_k m_{jk} = \left\langle \sum_{k=1}^n c_k \psi_k, \sum_{j=1}^n c_j \psi_j \right\rangle \ge 0$$

für alle $c \in \mathbb{K}^n$. Die positive Definitheit ist wegen (S3) äquivalent zur linearen Unabhängigkeit der ψ_1, \ldots, ψ_n , also aus Dimensionsgründen zur Basiseigenschaft.

3.3.8 Satz: Konstruktion der Orthogonalprojektion

Es seien V ein Skalarproduktraum, S ein endlich-dimensionaler Teilraum mit dim S = n sowie $\psi_1, \ldots, \psi_n \in S$ eine Basis von S. Weiter sei $f \in V$.

Dann ist die Orthogonalprojektion $p \in S$ von f gegeben durch

$$p = \sum_{j=1}^{n} c_j \psi_j,$$

wobei der Vektor $\vec{c} = (c_j)_{j=1,\dots,n}$ die eindeutige Lösung des linearen Gleichungssystems

$$M\vec{c} = \vec{y}, \qquad y_i = \langle f, \psi_i \rangle$$

mit der Gramschen Matrix M zur Basis ψ_1, \ldots, ψ_n ist.

Beweis: Wir zeigen zuerst die Orthogonalitätsrelation $\langle f - p, q \rangle = 0$ für alle $q \in S$. Es genügt, dies nur für $q = \psi_j$, $1 \le j \le n$, zu prüfen (Lineare Algebra). Hinschreiben liefert

$$\langle f - p, \psi_j \rangle = y_j - \sum_{k=1}^n c_k \langle \psi_k, \psi_j \rangle = y_j - \sum_{k=1}^n m_{jk} c_k = 0.$$

Weiterhin folgt nun für jedes $q \in S$, $q \neq p$, aus dem Satz des Pythagoras

$$||f - q||^2 = ||f - p||^2 + ||p - q||^2 > ||f - p||^2.$$

Also ist das konstruierte p die Orthogonalprojektion von f auf S im Sinne von Satz 3.3.6. Die letzte Ungleichung zeigt, dass p durch die Minimalität des Abstandes von f zu S eindeutig bestimmt ist.

Der obige Beweis hat gleichzeitig die Aussage von Satz 3.3.6 bewiesen.

3.3.9 Bemerkung: Besonders einfach ist die Orthogonalprojektion auf S zu bestimmen, wenn die Basis ψ_1, \ldots, ψ_n ein Orthogonalsystem ist, also

$$m_{jk} = \langle \psi_k, \psi_j \rangle = \begin{cases} 0, & \text{für } j \neq k, \\ \|\psi_j\|^2, & \text{für } j = k, \end{cases}$$

gilt. Dann ist die zugehörige Gram-Matrix eine Diagonalmatrix mit $m_{jj} > 0$ und die Koeffizienten von p sind

$$c_j = \frac{1}{m_{jj}} \langle f, \psi_j \rangle, \qquad 1 \le j \le n.$$

Dieser Fall wird im Beispiel 3.3.10 betrachtet.

Wir geben nun Beispiele an, bei denen V = C[a, b] und $S = \mathcal{P}_n$ der Polynomraum der Dimension n + 1 ist.

3.3.10 Beispiel: Gauß-Tschebyscheff-Approximation

Verwenden wir auf dem \mathbb{R} -Vektorraum C[-1,1] das Skalarprodukt

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \frac{dx}{\sqrt{1 - x^2}},$$

so nennen wir die Orthogonalprojektion auf \mathcal{P}_n auch $Gau\beta$ -Tschebyscheff-Approximation. Wir haben bereits in 3.3.5 festgestellt, dass die Tschebyscheff-Polynome T_0, \ldots, T_n paarweise orthogonal sind, die Gramsche Matrix ist also diagonal. Ihre Einträge sind

$$m_{11} = \pi,$$
 $m_{jj} = \frac{\pi}{2}$ für $j = 2, \dots, n+1$.

Die Gauß-Tschebyscheff-Approximation von $f \in C[-1,1]$ ist also

$$p(x) = \frac{c_0}{2} + \sum_{k=1}^{n} c_k T_k(x)$$
 mit $c_k = \frac{2}{\pi} \int_{-1}^{1} f(y) T_k(y) \frac{dy}{\sqrt{1 - y^2}}$

für $k = 0, \ldots, n$.

3.3.11 Beispiel: Gauß-Approximation mit Monomen

Auf dem \mathbb{R} -Vektorraum C[0,1] sei das Standardskalarprodukt

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$$

definiert. Zur Monom-Basis $e_k:[0,1]\to\mathbb{R},\,e_k(x)=x^k,\,k=0,\ldots,n,$ von \mathcal{P}_n gehört die Gram-Matrix

$$H_{n+1} = \left(\frac{1}{j+k-1}\right)_{j,k=1,...,n+1}.$$

Dies ist die Hilbert-Matrix, die in den Programmierübungen auftrat. Die Symmetrie von H_{n+1} ist klar, die positive Definitheit folgt hier leicht, weil wir wissen, dass die Monome e_k , $0 \le k \le n$, linear unabhängig sind. H_{n+1} ist bereits für $n \ge 10$ sehr schlecht konditioniert. Für die Gauß-Approximation sollte man also eine andere Methode als in Satz 3.3.8 verwenden! Wir führen dazu in Beispiel 3.3.13 eine Orthogonalbasis von \mathcal{P}_n ein. (Stichwort: Legendre-Polynome).

Als Zwischenschritt vor der Ausführung der Gauß-Approximation könnte man aus der gegebenen Basis von \mathcal{P}_n eine Orthogonalbasis herstellen. Hierzu steht das Orthogonalierungsverfahren von Gram-Schmidt zur Verfügung, das genau so abläuft wie beim Orthogonalisieren von Vektoren im \mathbb{R}^n .

3.3.12 Zwischenschritt: Gram-Schmidt-Orthogonalisierung

Es sei V ein Skalarproduktraum und $\psi_1, \ldots, \psi_n \in V \setminus \{0\}$. Weiter sei

$$S = \operatorname{Span}(\psi_1, \dots, \psi_n), \qquad 1 \le r = \dim S \le n.$$

Der folgende Algorithmus liefert eine Orthonormalbasis ϕ_1, \ldots, ϕ_r von S (mit Aussortieren linear abhängiger ψ_j):

1. Setze
$$k = 1$$
 und $\phi_1 = \frac{1}{\|\psi_1\|} \psi_1$.

2. Für
$$j = 2, ..., n$$

$$\tau = \psi_j - \sum_{\ell=1}^k \langle \psi_j, \phi_\ell \rangle \phi_\ell.$$

Falls
$$\tau \neq 0$$
 setze $k = k + 1$ und $\phi_k = \frac{1}{\|\tau\|} \tau$.

3.3.13 Beispiel: Gauß-Legendre-Approximation auf [-1, 1]

C[-1,1] als \mathbb{R} -Vektorraum mit dem Standardskalarprodukt

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$$

besitzt die Monom-Basis $e_k: [-1,1] \to \mathbb{R}, e_k(x) = x^k$, für $k = 0, 1, \dots, n$.

Gram-Schmidt-Orthonormalisierung ergibt (verwende L_j für die τ im Algorithmus 3.3.12):

$$L_0(x) = 1,$$
 $\phi_0(x) = \sqrt{1/2},$
 $L_1(x) = x,$ $\phi_1(x) = \sqrt{3/2} x.$

Für Grad 2 und höher gibt es eine schöne Rekursionsformel, wir brauchen also den Gram-Schmidt-Algorithmus nicht weiter rechnen, sondern wenden den folgenden Satz 3.3.14 an:

$$L_{k+1}(x) = x \cdot L_k(x) - \frac{k^2}{4k^2 - 1} \cdot L_{k-1}(x), \qquad k = 1, 2, \dots$$

$$\phi_k(x) = \frac{(2k)!}{(k!)^2} \sqrt{\frac{2k+1}{2^{2k+1}}} L_k(x).$$

Für n = 2, 3, 4, 5 ist

$$L_2(x) = x^2 - \frac{1}{3}$$
, $L_3(x) = x^3 - \frac{3}{5}x$, $L_4(x) = x^4 - \frac{6}{7}x^2 + \frac{3}{35}$, $L_5(x) = x^5 - \frac{10}{9}x^3 + \frac{5}{21}x$.

Damit ist die Gauß-(Legendre)-Approximation von f durch Polynome vom Grad n gegeben durch

$$p = \sum_{k=0}^{n} c_k \phi_k$$

mit den Koeffizienten

$$c_k = \int_{-1}^{1} f(x)\phi_k(x) dx$$
 für $k = 0, \dots, n$.

3.3.14 Satz: 3-Term Rekursion der Orthogonalpolynome

Das Skalarprodukt $\langle \cdot, \cdot \rangle$ auf C[-1, 1] besitze die Symmetrie-Eigenschaft

$$\langle p, xq \rangle = \langle xp, q \rangle$$
 für alle Polynome p, q .

Dann führt die Gram-Schmidt-Orthogonalisierung der Monom-Basis $\{1, x, \dots, x^n\}$ auf die folgenden Polynome \widetilde{p}_k (mit Höchstkoeffizient 1) und ϕ_k (mit $\|\phi_k\| = \sqrt{\langle \phi_k, \phi_k \rangle} = 1$):

$$\widetilde{p}_{0}(x) = 1, \quad \widetilde{p}_{1}(x) = x - \beta_{0},
\widetilde{p}_{k+1}(x) = (x - \beta_{k})\widetilde{p}_{k}(x) - \gamma_{k}\widetilde{p}_{k-1}(x), \quad k = 1, 2, ...,
\phi_{k} = \frac{1}{\|\widetilde{p}_{k}\|}\widetilde{p}_{k}, \quad k = 0, 1, 2, ...$$
(3.7)

mit

$$\beta_k = \frac{\langle x \widetilde{p}_k, \widetilde{p}_k \rangle}{\|\widetilde{p}_k\|^2} \quad \text{für } k \ge 0, \qquad \gamma_k = \frac{\|\widetilde{p}_k\|^2}{\|\widetilde{p}_{k-1}\|^2} \quad \text{für } k \ge 1$$

Achtung: $||p||^2 = \langle p, p \rangle$ mit dem **gegebenen** Skalarprodukt berechnen!

Beweis: $\widetilde{p}_0 = 1$ und $\widetilde{p}_1(x) = x - \langle x, \phi_0 \rangle \phi_0 = x - \beta_0$ sind anhand der Definitionen abzulesen.

Für $k \ge 1$ setze

$$q_{k+1}(x) = (x - \beta_k)\widetilde{p}_k(x) - \gamma_k\widetilde{p}_{k-1}(x).$$

Dann ergibt die Orthogonalität $\widetilde{p}_k \perp \mathcal{P}_{k-1}$

$$\begin{split} \langle q_{k+1}, \widetilde{p}_k \rangle &= \langle x \widetilde{p}_k, \widetilde{p}_k \rangle - \beta_k \| \widetilde{p}_k \|^2 - \gamma_k \underbrace{\langle \widetilde{p}_{k-1}, \widetilde{p}_k \rangle}_{=0} = 0, \\ \langle q_{k+1}, \widetilde{p}_{k-1} \rangle &= \langle x \widetilde{p}_k, \widetilde{p}_{k-1} \rangle - \beta_k \underbrace{\langle \widetilde{p}_k, \widetilde{p}_{k-1} \rangle}_{=0} - \underbrace{\gamma_k \| \widetilde{p}_{k-1} \|^2}_{=\langle \widetilde{p}_k, \widetilde{p}_k \rangle} \\ &= \langle \widetilde{p}_k, \underbrace{x \widetilde{p}_{k-1} - \widetilde{p}_k}_{\in \mathcal{P}_{k-1}, \text{ betrachte HK}} \rangle = 0. \end{split}$$

Weiterhin ergibt sich für j < k-1 sofort $\langle q_{k+1}, \widetilde{p}_j \rangle = 0$.

Wir haben gezeigt, dass q_{k+1} ein Polynom vom Grad k+1 mit dem Höchstkoeffizienten 1 ist, das orthogonal zu \mathcal{P}_k ist. Weil das orthogonale Komplement von \mathcal{P}_k in \mathcal{P}_{k+1} eindimensional ist, folgt also $q_{k+1} = \widetilde{p}_{k+1}$.

3.3.15 Beispiel: Normierung der Legendre-Polynome auf [-1,1]

Die Normalisierungskonstante der ϕ_k berechnet man z.B. mit der sog. Rodriguez-Formel.

• Für die Legendre-Polynome gilt

$$L_n(x) = \frac{n!}{(2n)!} \frac{d^n}{dx^n} [(x^2 - 1)^n].$$

Beachte: Der Höchstkoeffizient ist gleich dem Höchstkoeffizienten von $\frac{n!}{(2n)!} \frac{d^n}{dx^n} x^{2n}$, also 1. Mit partieller Integration (alle Randterme sind Null) ergibt sich

$$\langle L_n, L_n \rangle = \frac{(n!)^2}{((2n)!)^2} \int_{-1}^1 \frac{d^n}{dx^n} \left[(x^2 - 1)^n \right] \frac{d^n}{dx^n} \left[(x^2 - 1)^n \right] dx$$

$$= (-1)^n \frac{(n!)^2}{((2n)!)^2} \int_{-1}^1 (x^2 - 1)^n \underbrace{\frac{d^{2n}}{dx^{2n}} \left[(x^2 - 1)^n \right]}_{=(2n)!} dx$$

$$= (-1)^n \frac{(n!)^2}{(2n)!} \int_{-1}^1 (x - 1)^n (x + 1)^n dx$$

$$= \frac{(n!)^2}{(2n)!} \frac{(n!)^2}{(2n)!} \int_{-1}^1 (x + 1)^{2n} dx$$

$$= \frac{(n!)^4}{((2n)!)^2} \frac{2^{2n+1}}{2n+1},$$

und daraus die Normierung der ϕ_k in Beispiel 3.3.13.

ullet Eine andere Normalisierung der Legendre-Polynome, nämlich $\widetilde{L}_n(1)=1,$ erzielt man mit der Rekursion

$$\widetilde{L}_0(x) = 1, \qquad \widetilde{L}_1(x) = x,$$

$$\widetilde{L}_{k+1}(x) = \frac{2k+1}{k+1} x \widetilde{L}_k(x) - \frac{k}{k+1} \widetilde{L}_{k-1}(x).$$

Hierbei ist

$$\langle \widetilde{L}_k, \widetilde{L}_k \rangle = \frac{2}{2k+1},$$

also ist ϕ_k in 3.3.13

$$\phi_k(x) = \sqrt{\frac{2k+1}{2}} \ \widetilde{L}_k(x).$$

Für n=2,3,4,5 ist

$$\widetilde{L}_2(x) = \frac{3}{2}x^2 - \frac{1}{2}, \quad \widetilde{L}_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x, \quad \widetilde{L}_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}, \quad \widetilde{L}_5(x) = \frac{63}{8}x^5 - \frac{35}{4}x^3 + \frac{15}{8}x.$$

3.3.16 Bemerkung: Durch die Koordinatentransformation

$$y = \frac{2x - a - b}{b - a} \in [-1, 1], \qquad x = \frac{b + a}{2} + \frac{b - a}{2} \cdot y \in [a, b]$$

werden die Orthogonal-Polynome von [-1,1] auf das Intervall [a,b] transformiert. Beispiele:

(i) Das Standard-Skalar
produkt auf ${\cal C}[a,b]$ verwendet die Orthonormalbasis

$$\phi_k(x) = \sqrt{\frac{2k+1}{b-a}} \ \widetilde{L}_k\left(\frac{2x-a-b}{b-a}\right).$$

Bei der Gauß-Legendre-Approximation bzgl. des Standard-Skalarprodukts wird die L^2 -Norm $\|f - p\|_2$ (also das quadratische Mittel $\int_a^b (f(x) - p(x))^2 dx$) minimiert. Dabei wird die Maximalabweichung

$$||f - p||_{\infty} = \max_{x \in [a,b]} |f(x) - p(x)|$$

häufig insbesondere in der Nähe der Intervallenden groß.

(ii) Deshalb verwendet man gerne die Gauß-Tschebyscheff-Approximation. Für C[a,b] lautet das gewichtete Skalarprodukt

$$\langle f, g \rangle_{\omega} = \int_{a}^{b} f(x) \overline{g(x)} \frac{dx}{\sqrt{(x-a)(b-x)}}.$$

Man erkennt sofort, dass die Abweichung (f-p)(x) am Rand höher gewichtet wird als in der Mitte des Intervalls [a, b].

Die Orthogonalpolynome zu diesem Skalarprodukt sind

$$T_{n,[a,b]}(x) = T_n\left(\frac{2x-a-b}{b-a}\right)$$

mit den Normalisierungskonstanten

$$||T_{n,[a,b]}||^2 = \int_a^b \left(T_n(\frac{2x-a-b}{b-a}) \right)^2 \frac{dx}{\sqrt{(x-a)(b-x)}} = \begin{cases} \pi, & \text{für } n=0, \\ \frac{\pi}{2}, & \text{für } n>0. \end{cases}$$

3.3.17 Beispiel: Wir berechnen mit matlab die Gauß-Approximation der Funktion $f(x)=\frac{1}{1+25x^2}$ auf dem Intervall [-1,1]. Dabei werden das Standardgewicht $\omega(x)=1$ (links) und das Tschebyscheff-Gewicht $\omega(x)=\frac{1}{\sqrt{1-x^2}}$ (rechts) verwendet.

Abbildung 3.3: Die Gauß-Legendre Approximation (links) und die Gauß-Tschebyscheff Approximation (rechts) von $f(x) = 1/(1 + 25x^2)$