

PERSONAL INFO

+918755105252

nehaljain40@gmail.com

Kotdwar, Uttarakhand

EDUCATION

Bachelor in Computer Science 2015 - 2019 **GD** Goenka University Grade: 8.6 CGPA

XII 2015

DAV Public School Grade: 77.4%

Х 2013

Blooming Vale Public School Grade: 9.6 CGPA

SKILLS

Machine Learning NLP Python SQL Spark Alteryx **PowerBI** Tableau MS Office

NEHAL JAIN

Data Scientist

ABOUT ME

Data Scientist with 4 years of experience in the field of Data Science & Analytics, executing data-driven solutions that yield substantial benefits for both the Company & its Customers.

Experienced at crafting Predictive models, Machine Learning algorithms and NLP based models to extract insights and drive action oriented solutions to complex Business problems.

EXPERIENCE

Data Scientist KPMG, Gurgaon

Jan'23 - Present

Client - Maruti Suzuki India Limited

❖ Developed an automated **NLP-driven Hazard Recommendation** System, designed to proactively detect safety hazards in realtime at Construction and Manufacturing sites and recommend safety measures against those hazards and type of field work. Leveraged advanced techniques including **BERT** for robust **text** embedding, alongside a clustering algorithm for text data grouping. Utilized Cosine Similarity to quantify text similarity, resulting into 85% accurate hazard recommendations. This initiative substantially enhanced worker safety and minimized potential risks.

Data Scientist

Volvo Eicher Commercial Vehicles LTD, Gurgaon

July'19 - Dec'23

- Customer Voice Analysis using NLP to find out major Customer **Concerns** related to **vehicle breakdowns** & take pro-active measures, resulting in a significant reduction of unplanned **services by 40%** and enhancing overall customer satisfaction.
- Utilized Supervised Machine Learning algorithms to classify top vehicle failures based on vehicle parameter data & driving behavior, thus proactively preventing major breakdowns.
- Implemented **Density based Clustering** algorithm to identify major vehicle breakdown locations and further enabling targeted deployment of service vans. This tactical approach ensured timely repairs maintenance interventions.
- ▶ Developing Customer Dashboards & Driver Scorecards using **Power BI**, providing comprehensive insights into **driving behavior** metrics such as **fuel efficiency**, instances of **overspeeding**, **sweet spot** adherence and other key parameters, resulting into improved fleet performance.