IC TESTER

SUBMITTED BY GROUP 44

16 April 2020

GROUP MEMBERS -

- 1. AETURI NAGA PAVAN KALYAN REDDY 2018A7PS0212G
- 2. RACHEPALLI PRANEETH KUMAR 2018AAPS0393G
- 3. CHENNAREDDY KRISHNA PRANAY REDDY 2018AAPS0302G
- 4. SAKETH SAI MALLEPADDI 2018A8PS1027G
- G. P. MOHITH CHOWDHARY
 2018A3PS0465G

CONTENTS

User Requirements & Technical Specifications

Assumptions & Justifications

Justification

Assumptions

Components used with justification wherever required

Address Map

Memory Map

I/O Map

Design

Flow Chart

Main Program

Flow Chart of ISR

ADC ISR

Variations in Proteus Implementation with Justification

Firmware

List of Attachments

User Requirements & Technical Specifications

Design a Microprocessor based Tester to test the logical functioning of the following chips:

- 1. 7400
- 2. 7408
- 3. 7432
- 4. 7486
- 5. 747266

Technical specifications are as follows

- The IC to be tested is inserted in a 14 pin ZIF socket. The IC number is entered via a keyboard.
- The keyboard has keys 0-9, backspace, enter and test.
- The user places the IC in the ZIF socket closes it then enters the IC No, followed by enter key.
- The IC No. is displayed on the 7-segment display.
- The testing will start once the user presses test key.
- After Test the result PASS/FAIL is displayed on the 7-segment display.

ASSUMPTIONS AND JUSTIFICATIONS

ASSUMPTIOMS

- IC that is placed in the ZIF socket should be one of the 5 chips aforementioned.
- 'Enter' button should be pressed before pressing the 'Test' button

COMPONENTS USED WITH JUSTIFICATION WHENEVER REQUIRED

- 8086 MicroProcessor (using 2-5 MHz clock)
- 74LS373 latch 5 latches used (3 used for demultiplexing address lines and 2 used for demultiplexing data lines)
- 8255 3 used (One each for display, keyboard matrix, 14 pin ZIF socket)
- 74HC138 Decoder (1) used for selecting the required 8255
- 2732 ROM 2 used smallest ROM chip available is 4K, and as we need to have even and odd bank and ROM is required at reset address which is at FFFF0 $_{\rm H}$ and 00000 $_{\rm H}$ where there is the IVT
- 6116 RAM 2 used Smallest RAM chip available is 2 K and we need odd and even bank. We need RAM for stack and temporary storage of data
- 7SEG-MPX6-CC Used for displaying the result

ADDRESS MAP

Memory Map

ROM 00000_H - 01FFF_H

 $RAM\ 02000_H$ - $02FFF_H$

* I/O Map

Keyboard - 8255

PortA 20_H

Port B 22_H

 $Port \ C \hspace{1cm} 24_{H} \hspace{0.2cm} \text{(Upper port is used for input and lower port for output)}$

CLRK 26_H

Display - 8255

 $PortA \hspace{1cm} 40_{H} \hspace{0.2cm} (Output)$

PortB 42_H

 $PortC \qquad \qquad 44_{H} \quad (Output)$

CLRD 46_H

ZIF Socket

 $PortA \hspace{1cm} 60_{H} \hspace{0.2cm} (Input)$

PortB 62_H

 $PortC \hspace{1cm} 64_{H} \hspace{0.2cm} (Output)$

CLRS 66_H

DESIGN

*** 8086 INTERFACE**

* SYSTEM BUS OF 8086 (ADDRESS)

* SYSTEM BUS OF 8086 (DATA + CONTROL)

* MEMORY LAYOUT

* I/O DECODER

* KEYBOARD 8255 INTERFACE

* DISPLAY 8255 INTERFACE

* ZIF SOCKET 8255 INTERFACE

* KEYPAD AND 7SEG-MPX6-CC DISPLAY

