Electrochemistry in Solids

Thermodynamics and Kinetics

Electrochemistry at the other side of the interface

SEPTEMBER 17-20, 2018SALA D'ACTES CARLES MIRAVITLLES ICMAB-CSIC, Bellaterra, Spain

Ions can be mobile in a solid lattice - as in Solid Electrolytes

e.g. Interstitial type, β -Alumina

e.g. Vacancy type, Yttria stabilized zirconia (YSZ)

Insertion Electrodes in Cells

Conversion of potentials

For a potential value equal to 0.77 V vs SHE, convert it to the Li scale taking into account that Li equals -3.04 V vs. SHE

THERMODYNAMICS The Classical Nernst equation for single reactant and product

$$Ox + ne^{-} \rightarrow R$$

$$E_e = E^0 - \frac{RT}{nF} \ln \frac{a_R}{a_{Ox}} = E^0 + \frac{RT}{nF} \ln \frac{a_{Ox}}{a_R}$$

 E_e : equilibrium potential

 E^0 : standard potential

 a_{Ox}, a_R : activities of oxidized and reduced species

For *ideal* solutions $a = c/c^0$, e.g. where $c^0 = 1$ M

The standard potential, E^0 , equals the equilibrium potential under conditions of unity activity of all reactants and products

The General Nernst equation

$$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$$

$$E_e = E^0 + \frac{RT}{nF} \ln \frac{\prod a_{Ox}}{\prod a_R} = E^0 + \frac{RT}{4F} \ln \frac{a_{O_2} a_{H^+}^4}{a_{H_2O}^2}$$

 E_e : equilibrium potential

 E^0 : standard potential

What is the activity?

- For *ideal* solutions $a = c/c^0$, where c^0 could be 1M
- activity expresses the effective concentration, pressure, or any other deviation from the standard state.
- For real solutions the activity is obtained from the concentration through the activity coefficient γ which describes a surprised or enhanced reactivity for values less than or greater than 1.

$$a = \gamma (c/c^{\circ})$$

- If the concentration of a component is constant, e.g. due to a 2-phase equilibrium, we can set the standard state ΔG° so that a=1.
- In solid state electrochemistry we often use the thermodynamic factor (d ln a/d ln c) to express non ideality c.f. ideal solutions in which (d ln a/d ln c) = 1 (see later)

For the reaction:

$$Host + xLi^+ + xe^- \rightarrow Li_x(Host)$$

The lattice gas model results in a Nernst-like expression:

$$E_{e} = E^{0} - \frac{RT}{F} ln \left(\frac{x}{1-x}\right)$$

$$0 \qquad x \qquad 1$$

Host $\text{Li}_{x}(\text{Host})$

(The Lattice Gas Model)

Also the Langmuir Isotherm has

$$E_e = E^0 - \frac{RT}{F} ln \left(\frac{x}{1 - x} \right)$$

$$S_{sol} + * +e^{-} \rightarrow S_{ads}$$
free site

(The Lattice Gas Model)

Here comes non-ideality:

$$E_e = E^0 - \frac{RT}{F} ln \left(\frac{x}{1-x}\right) + kx$$

Host

 $Li_x(Host)$

$$Host + xLi^+ + xe^- \rightarrow Li_x(Host)$$

interactions

(The Lattice Gas Model)

$$E_e = E^0 - \frac{RT}{F} ln \left(\frac{x}{1-x} \right) + kx$$
 interactions

Attractive interactions can lead to phase separation

$$FePO_4 + xLi^+ + xe^- \rightarrow Li_x FePO_4$$

Gibbs phase rule: F=C-P+2

Converiant 20176

Slow cyclic voltammetry of battery electrodes

$$LiCoO_2 \rightleftharpoons Li_{1-x}CoO_2 + x Li^+ + x e^-$$

 $LiFePO_4 \rightleftharpoons FePO_4 + Li^+ + e^-$

Solid redox reactions need solid diffusion

SOLUTION

The redox reagent is initially in the solution. It diffuses to the interface, reacts, then returns to the solution,

transfer

Kinetics in Solid State Electrochemistry

Potential Dependent Rate Constant

$$k_c = k_{\rm s} e^{\frac{-\alpha_c nF(E - E^0)}{RT}}$$

Rate =
$$kc$$

$$k_a = k_{\rm s} e^{\frac{\alpha_{\rm a} nF (E - E^0)}{RT}}$$

Butler Volmer Kinetics

The kinetics of electron transfer shown above are expressed by the **Butler Volmer equation**

$$j = j_0 \left[\exp \left(\frac{\alpha_a nF}{RT} \eta \right) - \exp \left(\frac{-\alpha_c nF}{RT} \eta \right) \right]$$

where

Overpotential $\eta = E - E_e$

 $j_o = exchange current at equilibrium$

Relevance of Butler -Volmer Kinetics for batteries

$$j = j_0 \left[\exp \left(\frac{\alpha_a nF}{RT} \eta \right) - \exp \left(\frac{-\alpha_c nF}{RT} \eta \right) \right]$$

For a simple one-electron transfer reaction α_{a} + α_{c} =1

- Typically the current should increase 10x for each 30 mV increase in overpotential - i.e. kinetics can be accelerated at low cost!
- j_o is proportional to c, so the rate slows toward zero as reactant depletes at end of discharge an essential feature of a realistic model.

Also - Resistance limitations

 R= ionic resistance of the electrolyte + electronic resistance of the electrode

 I_{sc}

We need better electrolytes!

