Matlab + CUDA Bistatic SAR Simulation: IPR, PSF, and K-Space Transfer Function Across Agile and Non-Agile Waveforms

John Summerfield

October 9, 2025

Outline

- Motivation and References
- 2 Geometry and K-Space Description
- 3 PSF, IPR, and TF
- 4 Waveforms: Constant vs Agile
- 5 Simulation Files & Execution Flow
- 6 Simulation Pipeline
- Illustrative Results (Placeholders)
- Case Studies and Parameters
- Limitations and Future Work
- Summary

Motivation

- Unified Matlab+CUDA simulation for non-traditional SAR geometries (forward-looking, highly squinted, bistatic) and waveform strategies (constant vs. frequency-agile).
- Predict/interpret impulse response (IPR), spatially variant point spread function (PSF), and the Fourier-domain transfer function (TF/passband).
- Provide geometry—waveform design knobs to shape sidelobe axes and mitigate skew in passband coverage.

Key Publications

J. Summerfield, D. Kasilingam, and A. Gatesman, "Bistatic SAR Point Spread Function Analysis for Close Proximity Geometries," *IEEE Trans. Geosci. Remote Sens.*, vol. 60, pp. 1–15, 2022, Art. no. 5236715.

J. Summerfield, L. Harcke, B. Conder, and E. Steinbach, "Bistatic SAR Flight Demonstration Using Agile Frequency Waveforms to Achieve Orthogonal Sidelobe Axes," *IEEE RadarConf24*, Denver, CO, 2024, pp. 1–6.

J. Summerfield, L. Harcke, B. Conder, and D. Kasilingam, "Maximizing the Radar Generalized Image Quality Equation for Bistatic SAR Using Waveform Frequency Agility," *IEEE Trans. Geosci. Remote Sens.*, vol. 62, pp. 1–18, 2024, Art. no. 5218918.

Platforms and Trajectories

Two platforms: transmitter (TX) and receiver (RX). Trajectories include:

- Straight-and-level, constant-velocity lines at altitude.
- Circles about scene center (at altitude).
- Conical log-spiral paths (constant squint, constant elevation).
- Zero-squint, constant-elevation direct passes.

Kinematics and LOS Quantities

$$\overrightarrow{Pos}_{\mathsf{TX}}(t), \ \overrightarrow{Vel}_{\mathsf{TX}}(t), \ \overrightarrow{LOS}_{\mathsf{TX}}(t), \ \overrightarrow{LOS}_{\mathsf{TX}}(t)$$

$$\overrightarrow{Pos}_{\mathsf{RX}}(t), \ \overrightarrow{Vel}_{\mathsf{RX}}(t), \ \overrightarrow{LOS}_{\mathsf{RX}}(t), \ \overrightarrow{LOS}_{\mathsf{RX}}(t)$$

Bistatic range gradient and rate gradient:

$$\overrightarrow{\nabla R}(t) = \overrightarrow{LOS}_{\mathsf{TX}}(t) + \overrightarrow{LOS}_{\mathsf{RX}}(t),$$

$$\overrightarrow{\nabla R}(t) = \overrightarrow{LOS}_{\mathsf{TX}}(t) + \overrightarrow{LOS}_{\mathsf{RX}}(t).$$

Move-Stop-Move and Stepped-Frequency Modeling

- Move—Stop—Move: At each slow-time sample, platforms treated as stationary for RF propagation; phase delay from bistatic range, no Doppler time-scaling term.
- Wideband via Stepped-Frequency: Wideband waveforms approximated by stepped narrowband tones across $f \in [f_{min}(t), f_{max}(t)]$.
- Valid for slow-moving platforms and moderate bandwidth—time products; to be extended for high-speed and modern wideband designs.

Fourier-Domain Surfaces and Modulation Vectors

Define surfaces (passband parameterizations):

$$\overrightarrow{F}(f,t) = \frac{2\pi f}{c} \overrightarrow{\nabla R}(t), \quad \text{(constant waveform parameters)}$$

$$\overrightarrow{G}(f,t) = \text{agile variant with time-varying } f_-\min(t), f_-\max(t).$$

Instantaneous modulation vectors:

$$\overrightarrow{F}_{-}f(f,t) = \frac{\partial \overrightarrow{F}}{\partial f}, \qquad \overrightarrow{F}_{-}t(f,t) = \frac{\partial \overrightarrow{F}}{\partial t},$$

$$\overrightarrow{G}_{-}f(f,t) = \frac{\partial \overrightarrow{G}}{\partial f}, \qquad \overrightarrow{G}_{-}t(f,t) = \frac{\partial \overrightarrow{G}}{\partial t}.$$

Differential motion in \overrightarrow{K} -space:

$$d\overrightarrow{K} = \overrightarrow{F}_{-}f df + \overrightarrow{F}_{-}t dt$$
 (constant),
 $d\overrightarrow{K} = \overrightarrow{G}_{-}f df + \overrightarrow{G}_{-}t dt$ (agile).

Skew and Orthogonality

- With fixed per-pulse frequency parameters, highly squinted monostatic and most bistatic geometries yield skewed passbands.
- Frequency agility can be designed such that $\langle \overrightarrow{F}_{-}f, \overrightarrow{F}_{-}t \rangle = 0$ (or $\langle \overrightarrow{G}_{-}f, \overrightarrow{G}_{-}t \rangle = 0$) for all (f, t), producing non-skewed coverage and orthogonal sidelobe axes.

Spatially Variant PSF

SAR image formation is expressed as a non-stationary spatial integral:

$$ilde{
ho}(ec{r}) = \int_{ec{r}'}
ho(ec{r}') \, extstyle{psf}(ec{r}',ec{r}) \, |dec{r}'|.$$

Point Spread Function (PSF): Neglecting amplitude terms,

$$psf(\vec{r}', \vec{r}) = \frac{\int_{t_{\min}}^{t_{\max}} \int_{f_{\min}(t)}^{f_{\max}(t)} \exp\left[j\frac{2\pi f}{c} \left(R(t, \vec{r}) - R(t, \vec{r}')\right)\right] df dt}{\int_{t_{\min}}^{t_{\max}} BW(t) dt}$$

Interpretation:

- Waveform frequency diversity is captured by integrating over frequency $f \in [f_{\min}(t), f_{\max}(t)]$, where $BW(t) = f_{\max}(t) f_{\min}(t)$ may vary with slow-time.
- Geometric diversity arises from the time-varying difference in bistatic range signatures $R(t, \vec{r}) R(t, \vec{r}')$ over the aperture interval $t \in [t_{\min}, t_{\max}]$.
- Together, these diversity sources shape the spatial extent, sidelobe structure, and anisotropy of the PSF.

Impulse Response Approximation

Localized approximation of the PSF around the origin:

$$psf\left(\overrightarrow{O}-\frac{\overrightarrow{\gamma}}{2},\ \overrightarrow{O}+\frac{\overrightarrow{\gamma}}{2}\right)pprox ipr(\overrightarrow{\gamma})$$

$$ipr(\overrightarrow{r}) = \frac{\int_{t_{\min}}^{t_{\max}} \int_{f_{\min}(t)}^{f_{\max}(t)} \exp\left[j\left\langle \overrightarrow{r}, \overrightarrow{F}(f, t)\right\rangle\right] df dt}{\int_{t_{\min}}^{t_{\max}} BW(t) dt} \overrightarrow{F}(f, t) = \frac{2\pi f}{c} \overrightarrow{\nabla R}(t)$$

Interpretation:

- Waveform frequency diversity is described by integrating over $f \in [f_{\min}(t), f_{\max}(t)]$, where BW(t) may vary with slow-time t.
- Geometric diversity is captured by slow-time variation in the length and direction of the bistatic range gradient $\overrightarrow{\nabla R}(t)$, which modulates $\overrightarrow{F}(f,t)$ and shapes the impulse response.
- Together, frequency and geometric diversity determine the IPR mainlobe width, sidelobe structure, and anisotropy.

Transfer Function / Passband

The transfer function (TF) is the spatial Fourier transform of the impulse response:

$$TF(\overrightarrow{K}) = \mathcal{F}_{\overrightarrow{r}}[ipr(\overrightarrow{r})] = \int_{t_{\min}}^{t_{\max}} \int_{f_{\min}(t)}^{f_{\max}(t)} \delta(\overrightarrow{K} - \overrightarrow{F}(f, t)) df dt$$

Interpretation:

- The set of instantaneous spatial frequency positions $\{\overrightarrow{F}(f,t)\}\$ (or $\{\overrightarrow{G}(f,t)\}\$) traces a surface in \overrightarrow{K} -space.
- The transfer function is the energy distribution along this surface the SAR system's spatial frequency response.
- Density depends on geometric diversity through the variation of $\overrightarrow{\nabla R}(t)$ and on frequency diversity through $f \in [f_{\min}(t), f_{\max}(t)]$.

Frequency Limits

Constant:
$$f_{\min}(t) = f_{\min}$$
, $f_{\max}(t) = f_{\max}$.

Agile:
$$f_{-}\min(t) = \frac{C_{-}\min}{\left\|\overrightarrow{\nabla R}(t) \times \widehat{Z}\right\|}, \ f_{-}\max(t) = \frac{C_{-}\max}{\left\|\overrightarrow{\nabla R}(t) \times \widehat{Z}\right\|}.$$

Design goal: make $\overrightarrow{F}_{-}f$ and $\overrightarrow{F}_{-}t$ (or $\overrightarrow{G}_{-}f$ and $\overrightarrow{G}_{-}t$) orthogonal over (f,t) to reduce passband skew and align sidelobe axes.

Batch Wrapper: AmbiguityGenBatch.m

- Starting point: lets the user define geometry, frequency, scene, and desired resolution parameters.
- Supports running sets of parameters; a for-loop iterates each combination in the set.
- For each configuration, packages inputs and calls Sim_Main.m.

Core Orchestrator: Sim_Main.m

- Generates TX/RX trajectories and slow-time grid; constructs **K-space sample points**.
- Manages device memory for per-kernel inputs and dispatch order.
- ullet Calls CUDA sequence: PSF o IPR o Phase History o Matched-Filter image.

CUDA PSF: PSF Kernel.cu

Purpose: Simulate spatially variant PSF by integrating phase over (t, f) for each PSF pixel.

- ullet Inputs to GPU: platform position timelines (TX/RX), frequency signatures, PSF pixel coordinates.
- Kernel: accumulates complex phase terms and writes PSF tiles / full grid.

CUDA IPR: IPR_Kernel.cu

Purpose: Simulate localized impulse response (IPR).

- Inputs to GPU: bistatic range gradient samples $\overrightarrow{\nabla R}(t)$, frequency signatures, IPR pixel coordinates.
- Kernel: accumulates complex exponentials across (t, f) for each IPR pixel.

CUDA Phase History: PhaseHist_Kernel.cu

Purpose: Generate raw phase history from the scene and platform timelines.

- Inputs to GPU: target positions/reflectivities, platform positions, frequency signatures, slow-time sampling.
- Kernel: computes bistatic ranges to each target and accumulates complex samples per (t, f).

CUDA Matched Filter Image: MF_Kernel.cu

Purpose: Form the SAR image using the simulated phase history.

- Inputs to GPU: phase history (already on device), platform positions, image pixel grid, frequency signatures.
- Kernel: matched filter / back-projection accumulation per pixel over (t, f); outputs complex image.

What is Simulated

- Sparse scene: a few point targets near scene center.
- 2 TX/RX flight paths and velocity vectors.
- 3 LOS vectors and time-derivatives for both platforms.
- \bullet $\overrightarrow{\nabla R}(t)$ and $\overrightarrow{\nabla R}(t)$.
- Two stepped-frequency waveform sets: constant vs agile.
- \bullet \overrightarrow{K} -space surfaces $\overrightarrow{F}(f,t)$ and $\overrightarrow{G}(f,t)$.
- Spatially variant PSF and localized IPR.
- Phase history from point targets.
- Matched-filter (back-projection) image formation.

Matlab + CUDA Implementation (High Level)

Matlab

- Geometry generation, trajectories, LOS/LOS.
- Waveform scheduling and stepped-frequency grids.
- Phase-history synthesis from point targets.
- IPR/PSF/TF integrals (CPU vectorized where feasible).
- Orchestration of GPU kernels and data movement.

CUDA Kernels

- Range-phase accumulation per scatterer per (f, t) tile.
- Back-projection / matched filtering accumulator.
- Optional K-space density estimation for passband visualization.

CUDA Back-Projection Sketch

```
// Kernel signature (illustrative)
__global__ void backproject(const float* __restrict__ ph_real,
                             const float* __restrict__ ph_imag.
                             const float* __restrict__ posTX.
                             const float * __restrict__ posRX.
                             const float* __restrict__ gridX.
                             const float* __restrict__ gridY,
                             cuFloatComplex* __restrict__ img,
                             int Npix, int Nt, int Nf) {
  int p = blockldx.x * blockDim.x + threadIdx.x;
  if (p >= Npix) return:
  cuFloatComplex acc = make\_cuFloatComplex(0.f. 0.f);
  // loop over (t,f) tiles
  for (int it=0; it<Nt; ++it) {
    for (int k=0; k<Nf; ++k) {
      // compute bistatic range for pixel p, time it
      // fetch phase history sample and accumulate
```

Passband Surfaces (Placeholders)

Modulation Vectors and Orthogonality (Placeholders)

IPR/PSF Comparisons (Placeholders)

Matched-Filter Images (Placeholders)

Representative Geometries

- Forward-looking monostatic (log-spiral, constant squint/elevation).
- Highly squinted monostatic (straight pass, large yaw).
- Bistatic close-proximity (TX/RX near scene, non-colocated).

Each case run with constant and agile waveform sets for contrast.

Example Parameters (Edit as Needed)

Center frequency	$1.0000\times10^{10}~\text{Hz}$
Bandwidth (const)	$5.9567 imes 10^8 \; Hz$
Pulses per aperture	256
TX range	20 km
RX range	8 km
Platform speed (TX/RX)	100 m/s
Scene size	$20\mathrm{m} imes 20\mathrm{m}$
Agile constants	C_{\min} , C_{\max} (user-defined)

Current Approximations

- Move-stop-move (no Doppler time-scaling during each tone).
- Wideband modeled as stepped narrowband tones.

Planned updates:

- High-speed platform corrections (time-scaling, higher-order kinematics).
- Continuous wideband models and modern waveform families.
- Rigorous PSF stationarity analysis and compensation.

Summary

- ullet Unified pipeline links geometry, waveform agility, and \overrightarrow{K} -space passband structure.
- Orthogonal modulation-vector design reduces passband skew and aligns sidelobe axes.
- CUDA-accelerated back-projection enables tractable exploration of non-traditional geometries.

Notation

$\overrightarrow{Pos}_{T}TX/RX(t)$	Platform position vectors
$\overrightarrow{Pos}_{-}TX/RX(t)$ $\overrightarrow{Vel}_{-}TX/RX(t)$	Platform velocity vectors
$\overrightarrow{LOS}_{-}TX/RX(t)$	Unit LOS vectors to scene center
$\overrightarrow{LOS}_{-}TX/RX(t)$	Slow-time derivatives of LOS
$\overrightarrow{\nabla R}(t)$	${\sf Bistatic\ range\ gradient} = {\sf LOS_TX} + {\sf LOS_RX}$
$\overrightarrow{\nabla R}(t)$ $\overrightarrow{\nabla R}(t)$	${\sf Bistatic\ range-rate\ gradient} = {\sf LOS_TX} + {\sf LOS_RX}$
$\overrightarrow{F}(f,t)$ $\overrightarrow{G}(f,t)$ $\overrightarrow{F}_{-}f,\overrightarrow{F}_{-}t$	$rac{2\pi f}{c} \overrightarrow{ abla} \overrightarrow{R}(t)$ (constant waveform case)
$\overrightarrow{G}(f,t)$	Agile surface (time-varying freq. limits)
$\overrightarrow{F}_{-}f, \overrightarrow{F}_{-}t$	$\partial \overrightarrow{F}/\partial f, \ \partial \overrightarrow{F}/\partial t$
$\overrightarrow{G}_{-}f$, $\overrightarrow{G}_{-}t$	$\partial \overrightarrow{G}/\partial f, \ \partial \overrightarrow{G}/\partial t$

References

See $\mathit{Key Publications}$ slide for full citations. Add additional related works as needed.