Statistical Theory and Modeling (ST2601) Lecture 12 - Autocorrelation and autoregressive models for time series

Mattias Villani

Department of Statistics Stockholm University

Overview

- **Time series**
- Autocorrelation function
- Autoregressive models

Time series data are special

- **Time series**: data measured over time y_t , t = 1, 2, ...
- Cross-sectional data measured over time. Time series regression.
- Time series are special:
 - ► Trend, seasonality.
 - **Dependent observations** over time. Yesterday's value y_{t-1} can predict today's value y_t . **Autocorrelation**.
 - ► Sometimes the observations are **not equi-distant in time**.
- Monte Carlo methods like MCMC and HMC (see Bayes course!) give dependent simulated draws. Time series methods useful for measuring efficiency and diagnosing convergence problems.

Example time series

Particle matter (PM2.5) at the street Hornsgatan

Repetition - sample correlation

Covariance between two variables

$$s_{xy} = cov(x, y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n - 1}$$

Correlation between two variables:

$$r_{xy} = \operatorname{corr}(x, y) = \frac{s_{xy}}{s_x s_y}$$

where

$$s_x^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$

Repetition - sample correlation

Autocorrelation of order 1

- Observations in a time series y_t are often dependent/correlated.
- Autocorrelation of order 1:

$$r_1 = \operatorname{corr}(y_t, y_{t-1})$$

- "Correlation between today's and yesterday's value."
- "Correlation between this month and the previous month."
- First lag": y_{t-1} .

Inflation

Lagged variables - inflation

	А	В	С	D	Е	F
1	Månad	Inflation(t)	Inflation(t-1)	Inflation(t-2)	Inflation(t-3)	Inflation(t-4)
2	1995-05-01	2.96				
3	1995-06-01	2.88	2.96			
4	1995-07-01	2.79	2.88	2.96		
5	1995-08-01	2.68	2.79	2.88	2.96	
6	1995-09-01	2.39	2.68	2.79	2.88	2.96
7	1995-10-01	2.58	2.39	2.68	2.79	2.88
8	1995-11-01	2.65	2.58	2.39	2.68	2.79
9	1995-12-01	2.6	2.65	2.58	2.39	2.68
10	1996-01-01	1.75	2.6	2.65	2.58	2.39
11	1996-02-01	1.47	1.75	2.6	2.65	2.58
12	1996-03-01	1.56	1.47	1.75	2.6	2.65
13	1996-04-01	1.31	1.56	1.47	1.75	2.6
14	1996-05-01	1.06	1.31	1.56	1.47	1.75
15	1996-06-01	1.04	1.06	1.31	1.56	1.47
16	1996-07-01	0.88	1.04	1.06	1.31	1.56
17	1996-08-01	0.66	0.88	1.04	1.06	1.31
18	1996-09-01	0.25	0.66	0.88	1.04	1.06
19	1996-10-01	0.03	0.25	0.66	0.88	1.04
20	1996-11-01	-0.05	0.03	0.25	0.66	0.88
21	1996-12-01	0.12	-0.05	0.03	0.25	0.66
22	1997-01-01	0.69	0.12	-0.05	0.03	0.25

Inflation - autocorrelation lag 1

Autocorrelation of order 2

Autocorrelation of order 2:

$$r_2 = \operatorname{corr}(y_t, y_{t-2})$$

- "Correlation between today's value and the value two days back."
- "Correlation between this month's value and the value two months back."
- Second lag": y_{t-2} .

Autocorrelation lag 2

Autocorrelation function

Autocorrelation of order *k*

$$r_k = \operatorname{corr}(y_t, y_{t-k})$$

- "Correlation between this month's value and k months back in time."
- **Autocorrelation function (ACF)** is r_k as a function of the time delay, k.

Inflation - autokorrelationsfunktion

Autoregressive models

Autoregressive model of order 1 (AR(1))

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

- lack AR(1) is a regression with y_{t-1} as explanatory variable!
- Fit with the least squares method

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$$

Autoregressiv modell av ordning p(AR(p))

$$y_t = \beta_0 + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

AR(p) is a **multiple regression** with the p explanatory variables $y_{t-1}, ..., y_{t-p}$.

AR(1) for inflation - R

```
> library(SUdatasets)
> arimafit = arima(swedinfl$KPIF, order = c(1,0,0))
> arima coef summary(arimafit)
Parameter estimates
    Estimate Std. Error z-ratio Pr(>|z|) 2.5 % 97.5 %
     0.91801 0.022383 41.0135 0 0.87414 0.96188
аг1
mean 1.43624 0.165006 8.7042 0 1.11282 1.75965
```

AR(4) for inflation - R

-0.0405666 mean 1.4334525

ar4

```
> library(SUdatasets)
> arimafit = arima(swedinfl$KPIF, order = c(4,0,0))
> arima_coef_summary(arimafit)
Parameter estimates
      Estimate Std. Error z-ratio Pr(>|z|) 2.5 % 97.5 %
ar1
     0.8900015
                0.055640 15.995742 0.00000 0.780947 0.999056
ar2 0.0586250
                0.075101 0.780619 0.43503 -0.088572 0.205822
ar3 0.0062025 0.076370 0.081216 0.93527 -0.143483 0.155888
```

0.057249 -0.708605 0.47857 -0.152774 0.071641

0.158225 9.059583 0.00000 1.123331 1.743573

Autocorrelation function AR(1)

■ AR(1)

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

Population autocorrelation function (ACF) for AR(1)

$$\rho_{\mathbf{k}} = \beta^{\mathbf{k}}, \text{ for } \mathbf{k} = 1, 2, \dots$$

Autoregressiva modeller - stationäritet

■ AR(1) is a **stationary** (non-explosive) model if $-1 < \beta_1 < 1$.

Prediction with an AR(1) model

Fitted AR(1)-model

$$y_t = \hat{\beta}_0 + \hat{\beta}_1 \cdot y_{t-1}$$

At time T, prediction for next month T+1

$$\hat{y}_{T+1} = \hat{\beta}_0 + \hat{\beta}_1 \cdot y_T$$

Prediction for T+2

$$\hat{\mathbf{y}}_{T+2} = \hat{\beta}_0 + \hat{\beta}_1 \cdot \hat{\mathbf{y}}_{T+1}$$

Prediction with an AR(2) model

Fitted AR(2)-model

$$y_{t} = \hat{\beta}_{0} + \hat{\beta}_{1} \cdot y_{t-1} + \hat{\beta}_{2} \cdot y_{t-2}$$

At time T, prediction for next month T+1

$$\hat{y}_{T+1} = \hat{\beta}_0 + \hat{\beta}_1 \cdot y_T + \hat{\beta}_2 \cdot y_{T-1}$$

Prediction for T+2

$$\hat{y}_{T+2} = \hat{\beta}_0 + \hat{\beta}_1 \cdot \hat{y}_{T+1} + \hat{\beta}_2 \cdot y_T$$

Prediction for T+3

$$\hat{y}_{T+3} = \hat{\beta}_0 + \hat{\beta}_1 \cdot \hat{y}_{T+2} + \hat{\beta}_2 \cdot \hat{y}_{T+1}$$