Bacharelado em Ciências da Computação

Disciplina

Banco de Dados

Prof. Dr. Farid Nourani (farid.nourani@unesp.br)

Universidade Estadual Paulista Campus de Rio Claro, SP IGCE – DEMAC

Aula 4

Modelo Relacional (MR)

e
Mapeamento do MER para MR

Aula 04 - MR

Modelo Relacional

Introdução

- Proposto por Edgard F. Codd (IBM) em 1970
 "A Relational Model for Large Shared Data Banks", Communications of ACM, 13:6, June 1970.
- Conceito básico: relação matemática
- Possui base teórica na <u>teoria matemática dos conjuntos</u> e na <u>lógica de primeira ordem</u>, conhecida também como cálculo de predicados de primeira ordem (lógica proposicional ou lógica sentencial).

Aula 04 - MR

Modelo Relacional

Conceitos Básicos (Termos informais - Profissionais)

- Um banco de dados relacional consiste de uma coleção de tabelas de nomes únicos.
- O conceito de tabela está intimamente ligado ao conceito de uma relação matemática – de onde se origina o nome deste modelo.
- Uma tabela é formada por um conjunto de linhas e por um conjunto de colunas.
- Cada linha é formada por um conjunto de valores interrelacionados.
- Para cada coluna existe um conjunto de valores permitidos, chamado de domínio.

Aula 04 - MR

Modelo Relacional

Conceitos Básicos (Termos Formais - Acadêmicos)

- ▶ Banco de Dados ⇒ coleção de relações (tabelas);
- Relação ⇒ um conjunto de tuplas e atributos;
- Tupla ⇒ coleção de valores de dados inter-relacionados, que representam um elemento do conjunto (linha);
- ► Atributos ⇒ representam as características do objeto a serem armazenados (colunas da tabela);
- Domínio de um atributo X (dom(X)) ⇒ conjunto de valores atômicos válidos para um atributo de uma relação;
- ► **Tupla t** \Rightarrow uma lista ordenada de valores (t = v_1 , v_2 , ..., v_n), isto é v_i = t[A_i], sendo v_i \in dom(A_i) ou é um valor nulo.

Aula 04 - MR

Modelo Relacional

Definições

Domínio

Conjunto de valores atômicos.

Relação

- Dados os domínios D₁, D₂, ..., D_n (não necessariamente distintos), R é uma relação nestes n conjuntos se ele é um conjunto de tuplas <v₁, v₂, ..., v_n> onde v₁∈D₁, v₂∈D₂, ... e v_n∈D_n
- Ou seja, uma relação R é um <u>subconjunto</u> do Produto Cartesiano dos domínios D_i (isto é, D₁XD₂X...XD_n).

Aula 04 - MR

Representação Gráfica e Textual

atributos (colunas)

► Rep. Gráfica

Relação

(Tabela)

nome da Tabela

Fornecedores

COD	Nome	Região	Cidade
F1	Cardoso	3	Rio
F2	Matos	6	São Paulo
F3	Silva	2	Campinas
F4	Jones	1	Curitiba
F5	Adams	4	Brasília

tuplas (linhas)

Aula 04 - MR

Representação Gráfica e Textual

F5

Adams

Rep. Textual

Fornecedores (COD, Nome, Região, Cidade)

Brasília

<nome da Tabela> (atrib-1, atrib-2, ..., atrib-n)

Esquema de Relação

4

Aula 04 - MR

Representação Textual

Esquema de Relação (uma Tabela)

Alunos (Mat, Nome, RG, End, Fone)

► Esquema Relacional (conj. Tabelas - Banco de Dados)

Alunos (Mat, Nome, RG, End, Fone)

Cursos (Código, Nome, Coordenador)

Disciplinas (Código, Nome, Créditos, CH)

Aula 04 - MR

Outros Conceitos

Grau

O Grau de uma relação R é o número de atributos de R.

Cardinalidade

A Cardinalidade de uma relação R é o número de tuplas de R.

Aula 04 - MR

Outros Conceitos

Chave

Uma chave é um atributo (ou um conjunto <u>mínimo</u> de atributos) que identifica univocamente cada tupla.

Aula 04 - MR

Outros Conceitos

Chave

Uma chave é um atributo (ou um conjunto <u>mínimo</u> de atributos) que identifica univocamente cada tupla.

Seja R um esquema de relação. Se dissermos que um subconjunto K de atributos de R é uma chave para R, estamos considerando restrições para instâncias de R (r(R)), nas quais não existem duas tuplas distintas com mesmos valores em todos os atributos de K. Isto é, se t₁ e t₂ estão em r e t₁ <> t₂, então t₁[K] <> t₂[K].

Aula 04 - MR

Tipos de Chave

- 1. Chave de Acesso
- 2. Chave Estrangeira

Aula 04 - MR

Tipos de Chave

1. Chave de Acesso

- Chave Primária
- Chave Secundária (Chaves candidatas)

Envolve o conceito de **Integridade de Identidade**, que garante a correta identificação das tuplas da relação.

Aula 04 - MR

Tipos de Chave

1. Chave de Acesso

- Chave Primária
- Chave Secundária (Chaves candidatas)

Envolve o conceito de **Integridade de Identidade**, que garante a correta identificação das tuplas da relação.

2. Chave Estrangeira

Envolve o conceito de **Integridade Referencial**, que proporciona o correto estabelecimento de ligações entre tuplas de duas relações (ou duas tuplas de uma mesma relação).

Aula 04 - MR

Tipos de Chave

1. Chave de Acesso

- Chave Primária
- Chave Secundária (Chaves candidatas)

Restrições de Integridade do MR

Envolve o conceito de **Integridade de Identidade**, que garante a correta identificação das tuplas da relação.

2. Chave Estrangeira

Envolve o conceito de **Integridade Referencial**, que proporciona o correto estabelecimento de ligações entre tuplas de duas relações (ou duas tuplas de uma mesma relação).

Restrições de Integridade

► Integridade de Identidade

- Chave Candidata Qualquer atributo ou conjunto mínimo de atributos, cujo valor identifica somente uma tupla.
- Chave Primária Uma entre as chaves candidatas.
 Selecionada pelo projetista por conveniência de desempenho.
 Cada relação possui uma e somente uma chave primária.
- Chave Secundária (Alternativa) Qualquer chave candidata que não for selecionada como chave primária pode ser definida como chave secundária, a critério do projetista, possibilitando um acesso alternativo às tuplas da relação.
- Restrição do valor nulo Nenhum atributo pertencente a uma chave candidata pode ter valor nulo.

Aula 04 - MR

Tipos de Chaves

Chave Primária/Secundária

☐ Representação Gráfica

Peças

COD	Nome		Cor	P	eso	Cidade
P1 1	Porca C	2	Verm	1	.3	Campinas
P2	Trinco		Verde	1	6	São Paulo
Р3	Parafuso		Azul	1	2	Brasília
P4	Parafuso		Verm	1	0	Curitiba
P5	Rosca		Azul	1	4	Rio Claro
P6	Prego		Preta	2	.0	Londrina

Chaves candidatas:

(COD), (Nome, Cor)

Chave Primária: (COD)

Chave Secundária: (Nome, Cor)

Aula 04 - MR

Tipos de Chaves

- Chave Primária/Secundária
- ☐ Representação Gráfica

P	e	Ç	a	S
Ρ	e	Ç	a	S

COD Nome			Cor		Peso	Cidade	
P1 1		Porca C	2	Verm		13	Campinas
P2		Trinco		Verde		16	São Paulo
Р3		Parafuso		Azul		12	Brasília
P4		Parafuso		Verm		10	Curitiba
P5		Rosca		Azul		14	Rio Claro
P6		Prego		Preta	2	20	Londrina

Chaves candidatas:

(COD), (Nome, Cor)

Chave Primária: (COD)

Chave Secundária: (Nome, Cor)

Representação Textual

Peças (<u>COD</u>, <u>Nome, Cor</u>, Peso, Cidade)

Tipos de Chaves

- Chave Primária/Secundária
- □ Representação Textual

Aula 04 - MR

Tipos de Chaves

- ► Chave Estrangeira (Restrição de Integridade Referencial)
 - Uma chave estrangeira de uma relação R, quando existe, é um atributo (ou conjunto de atributos) de R, que referencia a chave primária de uma outra relação S, do mesmo esquema relacional.
 - Serve para estabelecer associação (ligação) entre dados de duas tabelas.
 - Corresponde ao conceito de Relacionamento do MER.

Aula 04 - MR

Tipos de Chaves

- ► Chave Estrangeira (Restrição de Integridade Referencial)
 - Uma chave estrangeira de uma relação R, quando existe, é um atributo (ou conjunto de atributos) de R, que referencia a chave primária de uma outra relação S, do mesmo esquema relacional.
 - Serve para estabelecer associação (ligação) entre dados de duas tabelas.
 - Corresponde ao conceito de Relacionamento do MER.

Representação gráfica:

Alunos (<u>Mat</u>, <u>Nome</u>, <u>RG</u>, End, Fone, <u>Curso</u>)

Cursos (<u>Código</u>, <u>Nome</u>, Coordenador)

Aula 04 - MR

Representação gráfica:

Alunos (<u>Mat</u>, <u>Nome</u>, <u>RG</u>, End, Fone, <u>Curso</u>)

Cursos (<u>Código</u>, <u>Nome</u>, Coordenador)

Alunos (<u>Mat</u>, <u>Nome</u>, <u>RG</u>, End, Fone, <u>Curso</u>)

Cursos (<u>Código</u>, <u>Nome</u>, Coordenador)

Alunos (<u>Mat</u>, <u>Nome</u>, <u>RG</u>, End, Fone, <u>Curso</u>)

Cursos (<u>Código</u>, <u>Nome</u>, Coordenador)

Aula 04 - MR

Exemplo de um Esquema Relacional

Outro Exemplo de um Esquema Relacional

Funcionários (Matrícula, Nome, RG, CPF, Cod-Depto, Função)

Departamentos (Código, Nome, Matrícula-Chefe)

Projetos (Código, Nome, Depto, Dt-Inic, Coordenador)

Trabalha-Em (Mat-F, Cod-P, Horas, Função)

Aula 04 - MR

Formas alternativas de representar Chaves Estrangeiras

1. Representação Textual

Usar uma notação semelhante à SQL

Após a definição da tabela usar a expressão:

<atributo> referencia <tabela-e-atributo-referenciado>

Ex:

Aula 04 - MR

Formas alternativas de representar Chaves Estrangeiras

1. Representação Textual

Uma simplificação:

Alunos (Mat, Nome, RG, End, Fone, Curso) Curso referencia Cursos (Código)

Cursos (<u>Código</u>, <u>Nome</u>, Coordenador)

Como uma chave estrangeira **SEMPRE** referência a **Chave Primária** de uma outra relação, então é possível simplificar a representação:

Alunos (Mat, Nome, RG, End, Fone, Curso) Curso referencia Cursos

Cursos (<u>Código</u>, <u>Nome</u>, Coordenador)

Aula 04 - MR

Formas alternativas de representar Chaves Estrangeiras

2. Usar atributo qualificado

O atributo que desempenha o papel da Chave Estrangeira numa tabela mantém o mesmo nome na tabela onde ele é Chave Primária (tabela referenciada), sendo aqui qualificado pelo nome da tabela referenciada.

Aula 04 - MR

Formas alternativas de representar Chaves Estrangeiras

1. Usar uma notação semelhante à SQL

Mais Usada

2. Usar atributo qualificado

Menos Comum

Aula 04 - MR

Exemplo de um Esquema Relacional

- **Profs** (<u>nome</u>, área-interesse, titulação, depto) depto referencia **Deptos** (**nome**)
- **Deptos** (<u>nome</u>, qtd-docentes, qtd-cursos, chefe) chefe referencia **Profs** (**nome**)
- Cursos (<u>código</u>, nome, duração, depto, coordenador) coordenador referencia **Profs (nome)** depto referencia **Deptos (nome)**
- **Displs** (<u>código</u>, nome, num-creditos, carga-h, responsável) responsável referencia **Profs (nome)**
- Grade_Curricular (<u>Curso, Disciplina</u>)
 curso referencia Cursos (código)
 disciplina referencia **Displs (código)**

Aula 04 - MR

Exemplo de um Esquema Relacional

Profs (<u>nome</u>, área-interesse, titulação, Deptos.nome)

Deptos (<u>nome</u>, qtd-docentes, qtd-cursos, Profs.nome)

Cursos (código, nome, duração, Deptos.nome, Profs.nome)

Displs (<u>código</u>, nome, num-creditos, carga-h, Profs.nome)

Grade_Curricular (Cursos.código, Displs.código)

Aula 04 - MR

Exemplo de um Esquema Relacional

JUIZES (MAT, NOME, FONE)

PROMOTORES (MAT, NOME, FONE)

ADVOGADOS (MAT, NOME, END, FONE, SUPERVISOR)

SUPERVISOR referencia ADVOGADOS (MAT)

PESSOAS (RG, NOME, END, ADVOGADO)

ADVOGADO referencia ADVOGADOS (MAT)

PROCESSOS (NUMERO, JUIZ, ADVOGADO, PROMOTOR, PESSOA, VARA)

1

2

JUIZ referencia JUIZES (MAT); ADVOGADO referencia ADVOGADOS (MAT); PROMOTOR referencia PROMOTORES (MAT); PESSOA referencia PESSOAS (RG)

Aula 04 - MR

Exemplo de um Esquema Relacional

Deptos (<u>nome</u>, área, qtd-docentes, qtd-cursos, nome_chefe)

Profs (nome, área-interesse, titulação, Deptos.nome)

Cursos (nome, duração, depto, nome coordenador) depto referencia Deptos (nome)

Discipls (nome, num-cr,ditos, carga-h, programa)

Alunos (Matric, nome, end, fone, Cursos.nome)

Notas (turma, aluno, nota)

Turmas (código, Cursos.nome, Discipls.nome, Profs.nome, qtd-alunos)

Grade_Curricular (curso, disciplina) curso referencia Cursos, disciplina referencia Discipls

Aula 04 - MR

Exemplo de um Esquema Relacional

Filmes (<u>código</u>, <u>nome</u>, diretor, produtor, categoria, ano, idioma)

Mídias (código, Filmes.código, estado, data-aquisição, fornecedor, preço)

Fornecedores (<u>código</u>, <u>nome</u>, endereço, fone, email, cidade)

Artistas (<u>nome</u>, data-nascim, sexo, nacionalidade)

Clientes (código, nome, CPF, RG, endereço, cidade, cep, fone)

Dependentes (CPF, RG, nome, Responsável) Responsável referencia Clientes

Locações (código, Clientes.código, Mídias.código, data-retirada, data-devolução, valor-locação)

Locados (Clientes.código, Mídias.código, locação, data-retirada, previsão-retorno)

Atuações_em_Filmes (Artista, Filme, papel) Artista referencia Artistas; Filme referencia Filmes (código)

Modelo Relacional (MR)

Mapeamento do MER para MR

Aula 04 - MR

Mapeamento do MER ⇒ MR

Primitivas do MER	Primitivas do MR
1. Entidade	1. Relação
2. Relacionamento	2. Chave Estrangeira
3. AtributoAtributo IdentificadorMultivalorado/Composto/Derivável	3. Atributo • Chave (de Acesso) • ——
4. Cardinalidade	4. —— (parcialmente Por Chave Estrangeira)
 Participação da Entidade no Relacionamento (total/parcial) 	5. —— (parcialmente Por Chave Estrangeira)
6. Classificação	6. coleção de Relações
7. Entidade Associativa (Agregação)	7. Relação

Aula 04 - MR

Mapeamento do MER ⇒ MR — Representação Gráfica

Primitivas do MER		Primitivas do MR	
1.	Entidade Pessoas	1.	Relação Pessoas ()
2.	Relacionamento R	2.	Chave Estrangeira
3.	Atributo • Identificador	3.	Atributo • <u>Chave</u> (de Acesso)
4.	Cardinalidade	4.	— (parcialmente Por Chave Estrangeira)
5.	Participação	5.	— (parcialmente Por Chave Estrangeira)
6.	Classificação	6.	Relações
7.	Agregação	7.	Relação 37
		I	J/

Aula 04 - MR

Entidade ⇒ Mapear para uma Relação

Exemplo:

Alunos (Matrícula, Nome, Endereço, Fone)

Aula 04 - MR

Relacionamento ⇒ Mapear usando **Chaves Estrangeiras**

Relacionamento 1 : N

Incluir <u>uma Chave Estrangeira</u> na tabela que representa a entidade com **uma associação** no relacionamento ("a entidade do lado de N da cardinalidade").

Exemplo:

Alunos (<u>Mat</u>,, Curso)

Cursos (<u>Código</u>,)

Aula 04 - MR

Exemplo:

Alunos (Matrícula, Nome, Endereço, Fone, Curso, Data-Insc)

Cursos (Código, Nome, CHT)

OBS: Os atributos de relacionamentos, quando existirem, **sempre** acompanham a chave estrangeira.

Aula 04 - MR

Relacionamento 1:1

Incluir <u>uma Chave Estrangeira</u> em uma das tabelas.

Em qual Tabela?

- Se uma das entidades tiver participação total no relacionamento, a chave estrangeira será incluída na tabela que representa esta entidade.
- Se ambas as entidades tiverem participação total ou parcial no relacionamento, incluir a chave estrangeira na tabela que possivelmente terá menor número de tuplas.
- Caso em que esta última questão for equivalente, levar em conta a natureza das consultas e o tempo de resposta esperado, bem como outros detalhes do modelo físico, visando sempre o melhor desempenho.

Aula 04 - MR

Relacionamento 1:1

Exemplo:

Funcionários (<u>Matrícula</u>, <u>Nome</u>, RG, Salário)

Departamentos (<u>Código</u>, <u>Nome</u>, Localização, Gerente)

Aula 04 - MR

Relacionamento M: N (ou qq. Relacionam. Não Binário)

Criar uma NOVA tabela, contendo os atributos identificadores das entidades envolvidas. A Chave Primária desta nova tabela será uma chave composta, representada pela concatenação dos identificadores das tabelas e eventuais outros atributos que compõem o identificador do Relacionamento. Os atributos identificadores das tabelas, isoladamente, desempenham o papel de chaves estrangeiras da relação. Demais atributos do relacionamento, se existirem, ficarão também nesta NOVA relação.

Aula 04 - MR

Relacionamento M: N

Funcionários (Matrícula, Nome, RG, Salário)

Projetos (<u>Código</u>, <u>Nome</u>, Duração)

Atuam (Func, Proj) Func referencia Funcionários Proj referencia Projetos

Aula 04 - MR

Relacionamento M: N

Exemplo:

Funcionários (Matrícula, Nome, RG, Salário)

Projetos (<u>Código</u>, <u>Nome</u>, Duração)

Atuam (Func, Proj, Função) Func referencia Funcionários Proj referencia Projetos

Aula 04 - MR

Relacionamentos não Binários

Cidades (Nome, População, Área)

Distribuidores (<u>CNPJ</u>, <u>Nome</u>, End, Fone)

Produtos (Código, Desc, Peso)

Alocação (Cid, Dist, Prod) Cid referencia Cidades, Dist referencia Distribuidores, Prod referencia Produtos

Aula 04 - MR

Relacionamentos não Binários

Peças (<u>Código</u>, Desc, Preço)

Fornecedores (<u>CNPJ</u>, <u>Nome</u>, End, Fone)

Projetos (Código, Nome, Resp)

Fornecimento (Peça, Fornec, Proj, Qtd)

Peça referencia Peças (Código), Fornec referencia Fornecedores, Proj referencia Projetos

Aula 04 - MR

Relacionamentos não Binários

Peças (Código, Desc, Preço)

Fornecedores (CNPJ, Nome, End, Fone)

Projetos (Código, Nome, Resp)

Fornecimento (Peça, Fornec, Proj, Qtd)

Peça referencia Peças (Código), Fornec referencia Fornecedores, Proj referencia Projetos

Aula 04 - MR

Relacionamentos não Binários

Peças (Código, Desc, Preço)

Fornecedores (<u>CNPJ</u>, <u>Nome</u>, End, Fone)

Projetos (Código, Nome, Resp)

Fornecimento (Peça, Fornec, Proj, Data, Qtd)

Peça referencia Peças (Código), Fornec referencia Fornecedores, Proj referencia Projetos

Aula 04 - MR

Relacionamentos não Binários

Pessoas (<u>CPF</u>, <u>RG</u>, <u>Nome</u>, Nascimto, Renda)

Veículos (<u>Placa</u>, <u>Chassi</u>, Marca, Modelo, Ano-Fab)

Coberturas (<u>Código</u>, Tipo, Franquia)

Apólices (<u>CPF, Placa, Cobertura, Data</u>, Validade) CPF referencia Pessoas, Placa referencia Veículos, Cobertura referencia Coberturas

Aula 04 - MR

Auto-Relacionamento

Exemplo:

Funcionários (Matrícula, Nome, RG, Salário, Supervisor)

Supervisor referencia Funcionários

Aula 04 - MR

Exercício 4.1:

Aula 04 - MR

Solução do Ex. 4.1:

Especificidades:

Atributo Multivalorado: Estimar um determinado numero de valores. Neste caso assumiu-se 2 telefones diferentes.

Atributo Composto: Mapear somente os sub atributos.

Produtos (Código, Nome, Preço)

Pedidos (Controle, Data, Tipo-Pagto, Valor-Total, Cliente) Cliente referencia Clientes

Compra (<u>Pedido, Produto</u>) Pedido referencia Pedidos, Produto referencia Produtos

Clientes (<u>Código</u>, Nome, Sobrenome, Fone-1 Fone-2, rua, num, bairro, cidade, CEP, UF)

Aula 04 - MR

Exercício 4.2:

Aula 04 - MR

Solução do Ex. 4.2:

Especificidades:

Atributo Multivalorado:

Estimar um determinado numero de valores. Neste caso assumiu-se 2 telefones diferentes.

Existência de mais de um Identificador:

Escolher um deles e mapear como Chave Primária e os demais mapear como chaves secundárias.

Atributo Derivável:

Não é mapeado, pois, não é armazenado. A aplicação deve se encarregar de prover esta informação.

Projetos (<u>Código</u>, <u>Nome</u>, Duração, Depto-Coord) Depto-Coord referencia Departamentos

Departamentos (<u>Código</u>, <u>Nome</u>, Localização, Gerente) Gerente referencia Funcionários

Funcionários (Matrícula, Nome, RG, Salário, Fone-1 Fone-2, Depto, Supervisor) Depto

1 referencia Departamentos, Supervisor referencia Funcionários

Atuam (Func-Mat, Proj-Cod) Func-Mat referencia Funcionários, Proj-Cod referencia

Projetos

Aula 04 - MR

Aula 04 - MR

Solução do Ex. 4.3:

Especificidades:

Classificação:

Mapear todas as classes como relações, onde a chave primária das relações que representam as sub-classes desempenham também o papel de chave estrangeira, referenciando a relação correspondente à super classe.

Entidade Associativa:

Mapear como uma relação onde a chave primária é o identificador do relacionamento que engloba.

Profs (Mat, Nome)

Prog-Tutoria (<u>Cod</u>, Nome Nat)

Alunos (Mat, Nome, RG, Curso) Curso referencia Cursos

Alunos-Grad (Mat, TCC) Mat referencia Alunos

Alunos-Pos (Mat, Proj-P, Orientador) Mat referencia Alunos, Orientador referencia Profs

Cursos (Cod, Nome, CH, Coord) Coord referencia Profs

Tutorias (Aluno-Mat, Prof-Mat, Programa-Tut) Programa-Tut referencia Prog-Tutoria

Tutor (<u>Aluno-Mat, Prof-Mat</u>) — **Esta relação é redundante**. Pois a relação Tutorias já representa esta associação. Por isso, a relação Tutor não entra neste esquema relacional.

Aula 04 - MR

Aula 04 - MR

Solução do Ex. 4.3-a:

Especificidades:

Agregação:

O relacionamento englobado pela agregação tem cardinalidade (1:N) diferente do caso anterior (M:N).

Maricula Cursos Alunos MAT Proi-P TCC MAT D Coord Alunos-Pos Alunos-Grad O Nat Tutor Prog-Tutoria Tutorias Mat Orientados Profs O Nome

Profs (Mat, Nome)

Prog-Tutoria (Cod, Nome, Nat)

Alunos (Mat, Nome, RG, Curso) Curso referencia Cursos

Alunos-Grad (Mat, TCC, Tutor) Mat referencia Alunos, Tutor referencia Profs

Alunos-Pos (Mat, Proj-P, Orientador) Mat referencia Alunos, Orientador referencia Profs

Cursos (Cod, Nome, CH, Coord) Coord referencia Profs

Tutorias (Aluno-Mat, Prof-Mat, Programa-Tut) Programa-Tut referencia Prog-Tutoria

Aula 04 - MR

Solução do Ex. 4.3-a:

Especificidades:

Agregação:

O relacionamento englobado pela agregação tem cardinalidade (1:N) diferente do caso anterior (M:N).

Maricula Cursos Alunos MAT Proi-P TCC MAT D Coord Alunos-Pos Alunos-Grad O Nat Tutor Prog-Tutoria Tutorias Mat Orientados Profs O Nome

Profs (Mat, Nome)

Prog-Tutoria (Cod, Nome, Nat)

Alunos (Mat, Nome, RG, Curso) Curso referencia Cursos

Alunos-Grad (Mat, TCC, Tutor, Programa-Tut) Mat referencia Alunos, Tutor referencia Profs, Programa-Tut referencia Prog-Tutoria

Alunos-Pos (<u>Mat</u>, Proj-P, Orientador) Mat referencia Alunos, Orientador referencia Profs Cursos (<u>Cod</u>, Nome, CH, Coord) Coord referencia Profs

Aula 04 - MR

Aula 04 - MR

Solução do Ex. 4.4:

Profes (Mat, Nome, Tit, Depto) Depto referencia Deptos

Alunos (Mat, Nome, End, Curso) Curso referencia Cursos

Deptos (Cod, Nome, Fone, Chefe, Dt-Inic) Chefe referencia Profes

Discips (Cod, Nome, CH, Depto, Prof) Depto referencia Deptos, Prof referencia Profes

Pré-Requisito (Discip, Pre-Req) Discip referencia Discips, Pre-Req referencia Discips

Grade-Curricular (Discip, Curso) Discip referencia Discips, Curso referencia Cursos

Cursos (<u>Cod</u>, Nome, CHT, Depto, Coord, Dt-Inic) Depto, referencia Deptos, Coord referencia Profes