

Estado alimentado e jejum

Prof. Dr. Rodrigo JS Dalmolin Março de 2016

- Carboidratos
- " Proteínas
- " Gorduras

Hormônios anabólicos

" Insulina

Hormônios contra-regulatórios

- " Glucagon
- " Glicocorticoides
- Catecolaminas

Modificado de Lehninger, 2006.

Destinos da glicose

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

Glicólise: Destinos do piruvato

Condições anaeróbias:

Condições aeróbias:

- . Descarboxilado a acetil- CoA
- Carboxilado a oxaloacetato

Glicólise: Destinos do NADH

Condições anaeróbias:

Condições aeróbias:

Oxidação de ácidos graxos

Oxidação de substratos energéticos:

Ciclo de Krebs

Net reaction

Acetyl CoA +
$$3NAD^+$$
 + FAD \longrightarrow $2CO_2$ + CoASH + $3NADH$ + $3H^+$ + GDP + P_i + $2H_2O$ + FAD (2H) + GTP Smith; Marks. 2007.

Ciclo de Krebs: Regulação

Ciclo de Krebs: Reações anapleróticas U

Oxidação de substratos energéticos: Cadeia transportadora de elétrons

Fosforilação oxidativa

Estado alimentado

Rodrigo JS Dalmolin, março de 2016

Até aqui:

Síntese de ácidos graxos

Estado alimentado

Rotas ativas

- 1- Glicólise
- 2- Glicogênese
- 3- Síntese de ácidos graxos

Rotas inibidas

- 1- Gliconeogênese
- 2- Glicogenólise
- 3-β-oxidação

1- Síntese e estocagem de triacilglicerois

Estado alimentado

1- Síntese de glicogênio e oxidação da glicose

2- Síntese proteica

- " Diminuição da concentração de insulina
- Diminuição da concentração de glicose
- Elevação da concentração de glucagon

Gliconeogênese

Rodrigo JS Dalmolin, março de 2016

Oxidação de substratos energéticos: Oxidação de Aminoácidos

Oxidação de substratos energéticos: Oxidação de Aminoácidos

Rotas ativas

- 1- Glicogenólise
- 2- Gliconeogênese
- 3- β-oxidação
- 4- Síntese de corpos cetônicos

Rotas inibidas

- 1- Glicogênese
- 2- Glicólise
- 3- Síntese de ácidos graxos

1- Libração de ácidos graxos e glicerol

1- Oxidação de ácidos graxos e corpos cetônicos

2- Degradação proteica

1- Cérebro: glicólise, TCA e fosforilação oxidativa

2- Hemácias: glicólise

3- Hemácias: liberação de lactato

4- Aumento da produção de urina

Produção de Corpos Cetônicos

Jejum prolongado

Rodrigo JS Dalmolin, março de 2016

