1 Strings

How many different strings only contains A, B, C? And how many such strings contains at least one of each characters?

Solution: 3⁵ since each position have 3 different choices.

Let E_A be the event that character A doesn't exists in the string, similar for E_B, E_C . Then the total number of bad event is $|E_A + E_B + E_C|$

By the Principle of Inclusion and Exclusion,

$$|E_A + E_B + E_C| = |E_A| + |E_B| + |E_C| - |E_A \cap E_B| - |E_A \cap E_C| - |E_B \cap E_C| + |E_A \cap E_B \cap E_C| = 3 * 2^5 - 3 * 1 = 93$$
, so the total number of valid string is $3^5 - 93 = 150$

2 Palindromes

How many 5-digit palindromes are there? (A palindrome is a number that reads the same way forwards and backwards. For example, 27872 and 48484 are palindromes, but 28389 and 12541 are not.)

Solution:

We construct the number from left-to-right. We have 9 choices for the first digit (since it can't be 0), then 10 choices for the second digit, then 10 choices for the third digit. But now we're out of choices: the fourth digit must match the second, and the last digit must match the first. Therefore, there are $9 \cdot 10 \cdot 10 = 900$ such numbers.

3 Maze in general and Trees too!!!!

Given an maze of sidelength n where one starts at (0,0) and goes to (n,n).

- (a) How many shortest paths are there that go from (0,0) to (n,n)?
- (b) Extending the width by 1, how many shortest paths are there that go from (0,0) to (n-1,n+1).
- (c) Now consider shortest paths that meet the conditions which only use to points (x, y) where $y \le x$. That is, the path cannot cross line y = x.
 - i. Give an expression using part (a) and (b), that counts the number of paths. (Hint: consider what happens after a shortest that crosses y = x at (i, i), that is, the remaining path starting

CS 70, Fall 2020, HW 7

- from (i, i+1) and then continuing to (n, n). If in the remainder of the path, one exchanges the y-direction moves with x-direction moves and vice versa, where does one end up?
- ii. A different tack is to derive a recursive formula. We call these paths n-legal paths for a maze of sidelength n, and let F_n be the number of n-legal paths.
 - Consider a path, and let i < n be the largest value where the path contains (i,i), argue the number of paths is then $F_i * F_{n-i-1}$.
 - (Hint: if i = 0, what are your first and last moves, and where is the remainder of the path allowed to go.)
- iii. Give a recursive formula for the number of spanning trees of a complete graph K_n for $n \ge 3$, where each non-root node has degree 3 or 1, and at most 1 node has degree 2? Two trees are different if and only if either left-subtree is different or right-subtree is different.

(Notice something about your formula and the maze problem. Neat!)

Solution: Let $(x,y) \to (x+1,y)$ be a move 'right' command. And $(x,y) \to (x,y+1)$ be a move 'up' command.

- (a) It's $\binom{2n}{n}$ as there are total number of 2n moves and n of them are move 'up' command, the rest of them are move 'right' command.
- (b) It's $\binom{2n}{n-1}$ as there are n-1 move 'right' command.
 - The solution is to count the number of pathes that cross y = x. Once a path crosses y = x, we flip the later protion of the path. Let the invalid path first time crosses y = x at (i,i) and arrives at (i,i+1). Then if we do not flip the path, it will arrive (n,n) takes n-i "go right" command, and n-1-i "go up" command. If we flip these command, it will go to (i+n-1-i,i+1+n-i)=(n-1,n+1). So all invalid pathes maps to a path from (0,0) to (n-1,n+1). Next we argue that all path from (0,0) to (n-1,n+1) maps to a invalid path:

Pathes from (0,0) to (n-1,n+1) must cross the line y=x, let it first cross the line at (i,i) and arrives (i,i+1). Then it takes n-1-i go right command, and n+1-(i+1) go up command. We flip these command, n-1-i go up command, n+1-i go right command, then the path will arrive (i+n+1-(i+1),i+1+n-1-i)=(n,n) and this new path is considered as invalid path since it crosses y=x at point (i,i). So all (0,0)->(n-1,n+1) pathes can be mapped into a invalid pathes.

So there is a bijective mapping between invalid pathes and (0,0) - > (n-1,n+1) pathes. The total number is $\binom{2n}{n} - \binom{2n}{n-1}$

• Let F_n be the total number of different ways from (0,0) to (n,n) satisfies the condition above. We know $F_0 = 1$. Let (i,i) be the last point on line y = x that a path touches except for (n,n). Then total number of such path is $F_i * F_{n-1-i}$ where F_i is the total number of pathes from (0,0) to (i,i). Since (i,i) is the last boundry point it touches, so for all later steps, it must not cross the line y = x - 1, it's equivalent to say the total number of

CS 70, Fall 2020, HW 7

- pathes from (i+1,i) to (n,n-1), it's F_{n-1-i} . F_n is a summation of all these products. $F_n = \sum_{i=0}^{n-1} F_i * F_{n-1-i}$.
- Let T_n be the total number of different trees with n nodes. The number of different trees when the left subtree has size i and right subtree has size n-i-1 is T_iT_{n-i-1} . If we sum over all possible sizes of left subtrees, we can get the total number of different trees that is structurally different: $T_n = \sum_{i=0}^{n-1} T_iT_{n-i-1}$. And the same counting arguments captures totally different objects! (Maze and trees).

CS 70, Fall 2020, HW 7