تمرین دوم داده کاوی

:۲-1

دانلود شد.

:۲-۲

```
In [3]: import numpy as np
import pandas as pd
In [4]: df = pd.read_csv('dataset_54_vehicle.csv', sep=',')
         df.head()
Out[4]:
            COMPACTNESS CIRCULARITY DISTANCE_CIRCULARITY RADIUS_RATIO PR.AXIS_ASPECT_RATIO MAX.LENGTH_ASPECT_RATIO SCATTER_RATIO ELONG
         0
                      95
                                   48
                                                         83
                                                                      178
                                                                                            72
                                                                                                                     10
                       91
                                    41
                                                         84
                                                                      141
                                                                                            57
                                                                                                                      9
                                                                                                                                   149
         2
                      104
                                   50
                                                        106
                                                                      209
                                                                                            66
                                                                                                                     10
                                                                                                                                   207
          3
                       93
                                    41
                                                         82
                                                                      159
                                                                                            63
                                                                                                                      9
                                                                                                                                   144
         4
                      85
                                   44
                                                         70
                                                                     205
                                                                                           103
                                                                                                                     52
                                                                                                                                   149
```

:۲-۳

```
In [5]: attribute = 'Class'
variables = df[attribute].unique()  #This gives different features in that attribute (like 'Sweet')
print (variables)
['van' 'saab' 'bus' 'opel']
```

:4-4:

```
In [6]: import numpy as np
    import pandas as pd
    from sklearn import preprocessing
    import matplotlib.pyplot as plt
    import seaborn as sns
%matplotlib inline
    matplotlib.style.use('ggplot')

    df = pd.read_csv('dataset_54_vehicle.csv', sep=',')
    df.head(10)
    sns.pairplot(df)

Out[6]: <seaborn.axisgrid.PairGrid at Oxle170a80da0>
```

```
In [9]: df.head()
                              heatmapl_data = pd.pivot_table(df.corr(), values='CIRCULARITY', index=['PR.AXIS_RECTANGULARITY'], columns='SCATTER_RATIons.heatmapl_data, cmap="YIGnBu")
                             4
Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x1e10392d048>
                                        0.950512444683698

0.02205601048965205

0.016333305543343416

0.07998167838794004

0.0823456296017792

0.0985190979265352

0.016186089115920543

0.2130876799283547

0.7114970566962383

0.7962819903198131

0.08133070215317019

0.08579253165194799

0.085325606484926

0.992038470966392

0.992038470966392

0.99203847096392

0.99203847096392

0.99203847096392

0.99203461880224336
                                  PR.AXIS_RECTANGULARITY
                                                                                                                                                                                                                                         - 0.4
                                                                                                                                                                                                                                          - 0.0
                                                                                                                                                                                                                                          -0.8
                                                                                                  0.973853440542633654
0.02861842046536654
0.0043717259464019
0.1060526425066019
0.1199498269155559
0.16676926638752873
0.216676926638752873
0.216676926638752873
0.216676926638752873
0.216676926638752873
0.216676926638752873
0.006476127789561
0.006931524647477049
0.0669127896561
0.97280667477049
0.0669127789561
0.956888470886392
0.99681861720656392
```

SCATTER_RATIO

In [7]: df.corr(method ='pearson').style.format("{:.2}").background_gradient(cmap=plt.get_cmap('coolwarm'), axis=1)

Out[7]:						
	COMPACTNESS	CIRCULARITY	DISTANCE_CIRCULARITY	RADIUS_RATIO	PR.AXIS_ASPECT_RATIO	MAX.LENGTH_ASPECT_RA

COMPACTNESS	1.0	0.69	0.79	0.69	0.093	
CIRCULARITY	0.69	1.0	0.8	0.62	0.15	(
DISTANCE_CIRCULARITY	0.79	0.8	1.0	0.77	0.16	(
RADIUS_RATIO	0.69	0.62	0.77	1.0	0.67	ı
PR.AXIS_ASPECT_RATIO	0.093	0.15	0.16	0.67	1.0	ı
MAX.LENGTH_ASPECT_RATIO	0.15	0.25	0.26	0.45	0.65	
SCATTER_RATIO	0.81	0.86	0.91	0.74	0.11	
ELONGATEDNESS	-0.79	-0.83	-0.91	-0.79	-0.19	-(
PR.AXIS_RECTANGULARITY	0.81	0.86	0.9	0.71	0.08	ı
MAX.LENGTH_RECTANGULARITY	0.68	0.97	0.77	0.57	0.13	ı
SCALED_VARIANCE_MAJOR	0.76	0.81	0.86	0.8	0.27	ı
SCALED_VARIANCE_MINOR	0.82	0.85	0.89	0.73	0.092	(
SCALED_RADIUS_OF_GYRATION	0.59	0.94	0.71	0.54	0.12	ı
SKEWNESS_ABOUT_MAJOR	-0.25	0.059	-0.23	-0.18	0.15	· ·
SKEWNESS_ABOUT_MINOR	0.23	0.15	0.12	0.051	-0.057	0.
KURTOSIS_ABOUT_MAJOR	0.16	-0.015	0.26	0.17	-0.034	0.
KURTOSIS_ABOUT_MINOR	0.3	-0.11	0.15	0.38	0.24	-0.
HOLLOWS_RATIO	0.37	0.039	0.34	0.47	0.27	(

۵-۲ ---- ۶-۲: با هم انجام شده است:

```
In [5]: import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

df = pd.read_csv('dataset_54_vehicle.csv', sep=',')
#print(df.head().T)
print(df.shape)
data = df.iloc[:,:-1]
label = df.iloc[:,:18]
data_train, data_test, labels_train, labels_test = train_test_split(data, label, test_size=0.2, random_state=42)
print(data_train.shape)
print(data_test.shape)

(846, 19)
(676, 18)
(170, 18)
```

: - 7

:Y-A

٢-٩: ---- ٢-١٠: با هم انجام شده است:

```
In [30]: from scipy.stats import randint
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import RandomizedSearchCV

# Instantiate a Decision Tree classifier: tree
    tree = DecisionTreeClassifier()

# Instantiate the RandomizedSearchCV object: tree_cv
    tree_cv = RandomizedSearchCV(tree, params, cv=5)

# Fit it to the data
    tree_cv.fit(data, label)

# Print the tuned parameters and score
    print("Tuned Decision Tree Parameters: {}".format(tree_cv.best_params_))
    print("Best score is {}".format(tree_cv.best_score_))

Tuned Decision Tree Parameters: {'max_depth': None, 'max_features': 5, 'min_samples_leaf': 3}
    Best score is 0.6832151300236406
```

:1-11

هر چه cv بالا برود مدل بهتر آموزش میبیند.

:1-14

```
In [32]: import numpy as np
    import pandas as p
    from skiearn.tree import becisionTreeClassifier
    from skiearn.tree import tree
    model = tree.DecisionTreeClassifier( max_depth = None, max_features= 5,min_samples_leaf= 3)
    model.fitidats(label)
    model.predict(data_test)

Out[32]: array(['bus', 'van', 'bus', 'saab', 'bus', 'van', 'van', 'saab', 'bus',
    'spab', 'saab', 'bus', 'saab', 'opel', 'van', 'van', 'saab', 'bus',
    'saab', 'opel', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'saab', 'opel', 'van', 'van', 'van', 'van', 'van',
    'van', 'saab', 'pel', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'saab', 'pel', 'van', 'van', 'van', 'van', 'bus', 'van',
    'van', 'saab', 'van', 'van', 'van', 'van', 'van', 'bus', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'bus', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'bus', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'bus', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'bus', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'bus', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van', 'van',
    'van', 'van', 'van', 'van', 'van', 'van', 'van
```

۲-۱۴: ---- ۲-۱۵: ---- ۲:۱۶: باهم انجام شده است: