Representational Similarity Analysis Using MNE-RSA

Program for this afternoon

- 1. Lecture on RSA (30 mins)
- 2. Hands-on RSA exercise (45 mins)
- 3. RSA wrap-up, Q&A (15 mins)
- 4. Break (20 mins)
- 5. Lecture on statistics (30 mins)
- 6. Hands-on statistics exercise (45 mins)
- 7. Statistics wrap-up, Q&A (15 mins)

Instead of activations...

...think in terms of representations

"representation" is a very vague concept

pixel values

0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	2
0	0	0	0	1	2	1	2
0	0	1	0	2	2	3	3
0	0	0	2	2	3	3	4

word identity
/CUP/

semantic features

√ is round

√ holds liquid

X is alive

X is expensive

speech waveform

so how to formalize it?

"pixel" representation

semantic representation

"dog"

"dog"

Alternative way to visualize RDMs

Multi-Dimensional Scaling

Representational Dissimilarity
Matrix

RDM based on MEG data

MDS on RDMs obtained from MEG

Kietzmann et al. 2019

RSA is distance between RDMs

= metric for similarity of two representations

RSA across the cortex

RSA across the cortex

Most important ingredient:

The model RDM

your hypothesis of representations in the brain

How to compute an RDM?

1. Start with a matrix, where each row represents a stimulus in some way:

2. Compute all-to-all distances between the rows of the matrix.

Use a metric like correlation, Euclidean distance, whatever you want.

Properties of RDMs

- Records dissimilarity (1 similarity) to be analogous to distance.
 - 0 = identical representations
 - 1 = completely different representations
- Is a signature of the population code
 - Which stimulus "directions" are emphasized/de-emphasized?
 - Bit similar to "tuning" of cells
- The dimensions of RDMs are (stimuli x stimuli)
 - can be directly compared regardless of creation method

Comparing models to brain activity

RSA between model and fMRI

RSA between model and fMRI

Searchlight

Reason MNE-RSA exists

- Because we needed to do RSA for a project
- Official RSA toolbox used to be MATLAB only
 - New version just dropped in Python
 - Low-level API operating on NumPy arrays

Convenient API

- for computing searchlight patches
- for operating on MNE-Python datatypes
- Easy parallelization (n_jobs > 1)
- Easy access to "advanced" things:
 - whitening, cross-validation, partial correlations, etc.

MNE-RSA pipeline

MNE-RSA using MNE-Python objects

Time to get to work!

In the repository:

rsa/index.ipynb

make sure mne-rsa version 0.9 is installed!

