1.	Um transmissor A, com uma antena dde 6dBi, e um receptor B, com antena isotrópica, encontram-se inicialmente separados por
	uma distância r . O transmissor opera com potência $P_T = -20dBm$, de modo que a potência recebida seja $P_{R_{min}}$. Pergunta-se

(a)	Qual é o novo	valor de P_T ,	em dBm, j	para qu	ie o alcance o	da transı	nissão i	triplique,	i.e., r'	=3r,	mantendo	a mesma	$P_{R_{min}}$
	de recepção?												

Solution: Situação Original: $P_{R_{min}} = P_T \left(\frac{\lambda}{4\pi r}\right)^2 G_T$ (1)
Nova situação: $P_{R_{min}} = P_T' \left(\frac{\lambda}{4\pi r'}\right)^2 G_T$ (2)
Dividindo (1) por (2): $1 = \frac{P_T}{P_T'} \left(\frac{r_1}{r}\right)^2$

2.	Considere um motor térmico que recebe uma quantidade de calor Q_H a T_H . Se ele opera respectivamente de maneira reversív	el
	ou irreversível pode-se dizer em relação a Q_L e T_L que:	

```
\square (Q_H/T_H) > (Q_L/T_L) e (Q_H/T_H) = (Q_L/T_L)
```

$$\Box (Q_H/T_H) > (Q_L/T_L) e (Q_H/T_H) < (Q_L/T_L)$$

$$\Box (Q_H/T_H) = (Q_L/T_L) e (Q_H/T_H) > (Q_L/T_L)$$

■
$$(Q_H/T_H) = (Q_L/T_L)$$
 e $(Q_H/T_H) < (Q_L/T_L)$

$$\square$$
 $(Q_H/T_H) < (Q_L/T_L)$ e $(Q_H/T_H) = (Q_L/T_L)$

- 3. Uma quantidade de massa no interior de um sistema adiabático sofre um processo em que sua entropia aumenta ao longo do tempo. Nas hipóteses do processo ser:
 - 1. reversível
 - 2. irreversível

as taxas de geração de entropia \dot{S}_{ger} serão respectivamente:

$$\Box \dot{S}_{ger,1} > 0 \text{ e } \dot{S}_{ger,2} < 0$$

$$\Box \dot{S}_{ger,1} > 0 \text{ e } \dot{S}_{ger,2} = 0$$

$$\Box \dot{S}_{ger,1} = 0 \text{ e } \dot{S}_{ger,2} < 0$$

$$\blacksquare \dot{S}_{qer,1} = 0 \ \mathbf{e} \ \dot{S}_{qer,2} > 0$$

$$\Box \dot{S}_{qer,1} < 0 \text{ e } \dot{S}_{qer,2} > 0$$

4. A expressão da segunda lei para volume de controle a seguir pode ser utilizada:

$$\frac{\Delta S_{vc}}{dt} = \sum \dot{m}_e s_e - \sum \dot{m}_s s_s + \sum \frac{\dot{Q}_{vc}}{T}$$

□ apenas para líquidos

 \square só quando o processo é em regime permanente

 \square só quando o processo é isotérmico

■ só quando o processo é reversível

 \square em qualquer tipo de processo

5.	Considere um	ciclo um	ciclo de	Rankine idea	l apenas o	com super	aquecimento	e com	pressões	fixas na	caldeira	e no co	ndensad	lor.
	Se o ciclo for a	modifica	do com re	eaquecimento),									

□ o calor fornecido ao ciclo diminuirá.

 \square o calor rejeitado diminuirá.

 \square o trabalho realizado pela turbina diminuirá.

■ o teor de umidade na saída da turbina diminuirá.

□ o trabalho realizado sobre a bomba diminuirá.

6. Considere uma bomba de calor utilizado para aquecimento de piscina em dias frios de inverno. Qual das alternativas é verdadeira?

 \Box Dias muito úmidos podem provocar condensação da umidade do ar no condensador.

- □ Do ponto de vista da eficiência energética, é melhor utilizar um aquecedor elétrico para aquecer diretamente a água da piscina.
- □ Quanto menor a temperatura do ar externo, maior deve ser a pressão do fluido refrigerante no evaporador.
- \square A temperatura do fluido refrigerante no condensador deve ser menor do que a temperatura do ar externo.
- Quanto maior a temperatura da piscina, maior deve ser a pressão do fluido refrigerante no condensador.
- 7. Em regime permanente, um misturador realiza trabalho a uma taxa de 25~kW sobre uma pasta contida em um tanque fechado e rígido. A temperatura da superfície externa do tanque é de $150^{\circ}C$. O ambiente em torno do tanque está a $27^{\circ}C$. Determine a taxa de produção de entropia em kW/K associada à transferência de calor para o ambiente.

Solution:

$$\frac{dE}{dt} = \dot{Q} - \dot{W} = 0$$

$$\dot{\varphi} = -\frac{\dot{Q}}{T_b} = \frac{25kW}{300K}$$

$$\dot{Q} = \dot{W} = -25kW$$

$$\frac{dS}{dt} = \frac{\dot{Q}}{T_b} + \dot{\varphi} = 0$$

$$\dot{\varphi} = 0,0833 \frac{kW}{K}$$

- 8. Ar é comprimido por um compressor operando em regime permanente da pressão de 100 kPa para 210 kPa. A temperatura de entrada do ar ambiente é de 27°C. O trabalho fornecido para o compressor é de 94,6 kJ/kg de ar e calor é transferido em uma taxa de 33,6 kJ/kg de ar na superfície do compressor a uma temperatura de $T=40^{\circ}C$. Desprezando as variações de energia cinética e potencial e assumindo o ar como gás perfeito (C=1,004 kJ/kg.K, R=0,287 kJ/kg.K), a temperatura do ar na saída do compressor em °C e a taxa de geração de entropia em kJ/kg.K de ar são:
- 9. Fluido refrigerante 134a é usado como fluido de trabalho em um ciclo Rankine ideal como mostra a figura. Vapor saturado a $55^{\circ}C$ entra na turbina e o condensador opera a uma pressão de 600 kPa. A taxa de energia fornecida pela radiação solar é de $0,4~kW/m^2$ e deseja-se gerar um trabalho líquido na turbina de 1 kW. Nestas condições, a área mínima do coletor solar é:
- 10. Um ciclo de turbina a gás opera com uma relação de pressão de 12. A temperatura do ar na entrada do compressor é de 20°C e na entrada da turbina é 1200°C. A eficiência isentrópica do compressor é de 84% e da turbina é de 88%. Sabendo-se que a potência líquida do ciclo de turbina a gás é de 25 MW, determine a vazão do ar (em kg/s). Pode-se considerar propriedades do ar constantes avaliadas em 298 K.
- 11. Um ciclo de Refrigeração opera com R-134a. Líquido saturado sai do condensador à temperatura de $52,42^{\circ}C$, correspondente à pressão de saturação 1400 kPa e é estrangulado até a temperatura do evaporador de $-40^{\circ}C$. O vapor saturado que sai do evaporador é comprimido até a pressão do condensador. Considerando-se que a eficiência isentrópica do compressor é de 83%, determine o coeficiente de eficácia do ciclo