Miniproject - Introduction to Schemes

Simon Pohmann

March 19, 2022

1 Definition of Proj

This section is based on [Har77, p. II.2]

Definition 1. A graded ring S is a ring S with a decomposition $S = \bigoplus_{d \in \mathbb{Z}} S_d$ into groups $S_i \subseteq S$ (w.r.t. addition in S) such that $S_i S_j \subseteq S_{i+j}$ for all $i, j \in \mathbb{Z}$. If all $S_d = \{0\}$ for d < 0, call S naturally graded ring. Write further $S_+ := \sum_{d \neq 0} S_d$. For a homogeneous $f \in S_d$ say that $\deg(f) := d$ is its degree.

An element $f \in S$ is called *homogeneous* (of degree n), if $f \in S_n$. An ideal $I \leq S$ is called *homogeneous*, if it has a set of homogeneous generators.

Definition 2. For a naturally graded ring S, define the set

$$\operatorname{Proj}(S) := \{ \mathfrak{p} \in \operatorname{Spec}(S) \mid \mathfrak{p} \text{ homogeneous, } S_{+} \not\subseteq \mathfrak{p} \}$$

of homogeneous prime ideals not containing S_{+} .

This becomes a topological space by endowing it with the Zariski-topology on Proj(S), given by the open sets

$$D_{\mathfrak{a}} := \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{a} \not\subseteq \mathfrak{p} \}$$

for any homogeneous ideal $\mathfrak{a} \leq S$.

From now on let S be a naturally graded ring.

Proposition 3. The above definition is well-defined, i.e. the sets $D_{\mathfrak{a}}$ indeed form a topology on $\operatorname{Proj}(S)$.

Proof. Clearly $\operatorname{Proj}(S) = D_{\langle 1 \rangle}$ and $\emptyset = D_{\langle 0 \rangle}$ are open. Furthermore, for open sets $D_{\mathfrak{a}}$ and $D_{\mathfrak{b}}$, have that

$$D_{\mathfrak{a}} \cap D_{\mathfrak{b}} = \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{a}, \mathfrak{b} \not\subseteq \mathfrak{p} \} = \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{ab} \not\subseteq \mathfrak{p} \} = D_{\mathfrak{ab}}$$

This holds, as $\mathfrak{a}, \mathfrak{b} \not\subseteq \mathfrak{p}$ implies that there are $f \in \mathfrak{a}$ and $g \in \mathfrak{b}$ with $f, g \notin \mathfrak{p}$. However, then $fg \notin \mathfrak{p}$ as \mathfrak{p} is prime. Obviously \mathfrak{ab} is homogeneous, and so $D_{\mathfrak{a}} \cap D_{\mathfrak{b}}$ is open.

Finally, given a collection \mathcal{A} of homogeneous ideals in S, have that

$$\bigcup_{\mathfrak{a}\in\mathcal{A}}D_{\mathfrak{a}}=\{\mathfrak{p}\in\operatorname{Proj}(S)\mid\exists\mathfrak{a}\in\mathcal{A}:\ \mathfrak{a}\not\subseteq\mathfrak{p}\}=\{\mathfrak{p}\in\operatorname{Proj}(S)\mid\exists\mathfrak{a}\in\mathcal{A}\exists f\in\mathfrak{a}:\ f\notin\mathfrak{p}\}$$

$$= \Bigl\{ \mathfrak{p} \in \operatorname{Proj}(S) \ \Bigl| \ \exists f \in \sum_{\mathfrak{a} \in \mathcal{A}} \mathfrak{a} : \ f \notin \mathfrak{p} \Bigr\} = D_{\mathfrak{b}} \quad \text{for } \mathfrak{b} = \sum_{\mathfrak{a} \in \mathcal{A}} \mathfrak{a}$$

Clearly \mathfrak{b} is again homogeneous, and so $\bigcup_{\mathfrak{a}\in\mathcal{A}} D_{\mathfrak{a}}$ is open.

Proposition 4. The sets $D_f := D_{\langle f \rangle}$ for homogeneous $f \in S$ form a basis of the topology on Proj(S).

Proof. Clearly $\langle f \rangle$ is a homogeneous ideal, so D_f is open. For any homogeneous ideal $\mathfrak{a} = \langle f_i \mid i \in I \rangle$ with $f_i \in S$ homogeneous have

$$\mathfrak{a} = \bigcup_{i \in I} D_{f_i}$$

as $\mathfrak{a} \not\subseteq \mathfrak{p}$ implies there is some $g = \sum_{i \in I} g_i f_i \notin \mathfrak{p}$, with $g_i \in S$. Hence, at least one $g_j f_j \notin \mathfrak{p}$ and so $f_j \notin \mathfrak{p}$, thus $\mathfrak{p} \in D_{f_j}$. It follows that the D_f generate the topology on $\operatorname{Proj}(S)$, so it is left to show that they are a basis.

Consider $\mathfrak{p} \in D_f \cap D_g$, so $f, g \notin \mathfrak{p}$. Since \mathfrak{p} is prime, it follows that $fg \notin \mathfrak{p}$ and so $D_{fg} \subseteq D_f \cap D_g$ is an open neighborhood of \mathfrak{p} .

Lemma 5. Let S be a graded ring (not necessarily naturally graded) and $f \in S$ be homogeneous. Then S_f becomes a graded ring via

$$(S_f)_d = \{ \frac{g}{f^n} \mid g \in S_{d+n} \}$$

Proof. Clearly $(S_f)_i(S_f)_j \subseteq (S_f)_{i+j}$. To see that $(S_f)_d$ is a subgroup of S, consider $g/f^n, h/f^m \in (S_f)_d$. wlog n = m as we can replace g by gf^{m-n} resp. h by hf^{n-m} . Now have that $\deg(g) = \deg(h) = d + n$ and so $g + h \in S_{d+n}$. Thus

$$\frac{g}{f^n} + \frac{h}{f^n} = \frac{g+h}{f^n} \in (S_f)_d$$

Finally, we show that $(S_f)_i \cap (S_f)_j = \{0\}$ for $i \neq j$. Assume there is $g/f^i = h/f^j \in (S_f)_n \cap (S_f)_m$. Then there exists $t = f^d$ such that

$$0 = t(gf^j - hf^i) = \underbrace{gf^{j+d}}_{\in S_{(j+d)\deg(f) + \deg(g)}} - \underbrace{hf^{i+n}}_{\in S_{(i+d)\deg(f) + \deg(h)}}$$

Thus either $(j+d)\deg(f)+\deg(g)=(i+d)\deg(f)+\deg(h)$ or $gf^{j+d}=hf^{i+d}=0$. However have that $\deg(g)=n-\deg(f)i$ and $\deg(h)=m-\deg(f)j$, so

$$(j+d-i)\deg(f) + n \neq (i+d-j)\deg(f) + n$$

as $i \neq j$. So $gf^{j+d} = hf^{i+d} = 0$ and hence $g/f^i = hf^j = 0$. Therefore we have $(S_f)_i \cap (S_f)_j = \{0\}$ as claimed.

Lemma 6. Let $\mathfrak{p} \leq S$ be a prime ideal. Then

$$\mathfrak{p}' := \langle f \in \mathfrak{p} \mid f \ homogeneous \rangle \leq S$$

is a (homogeneous) prime ideal.

Proof. Consider $f, g \in S$ with $fg \in \mathfrak{p}'$ and assume $f, g \notin \mathfrak{p}'$. Write $f = \sum_d f_d$ and $g = \sum_d g_d$ with $f_d, g_d \in S_d$. So

$$\sum_{i,j} f_i g_j = \sum_{n} \sum_{i+j=n} f_i g_j \in \mathfrak{p}'$$

Since \mathfrak{p}' is homogeneous, it follows that

$$\sum_{i+j=n} f_i g_j \in \mathfrak{p}'$$

for all $n \in \mathbb{Z}$.

Let now d resp. e be maximal such that $f_d \notin \mathfrak{p}'$ resp. $g_e \notin \mathfrak{p}'$. We have

$$f_d g_e + \sum_{\substack{i+j=d+e\\(i,j)\neq(d,e)}} \underbrace{f_i g_j}_{\in \mathfrak{p}'} = \sum_{\substack{i+j=d+e}} f_i g_j \in \mathfrak{p}'$$

and so $f_d g_e \in \mathfrak{p}' \subseteq \mathfrak{p}$. Since \mathfrak{p} is prime, it follows that $f_d \in \mathfrak{p}$ or $g_e \in \mathfrak{p}$. However both f_d and g_e are homogeneous, so $f_d \in \mathfrak{p}'$ or $g_e \in \mathfrak{p}'$, a contradiction.

Lemma 7. If $D_g \subseteq D_f$ then there is a homogeneous $h \in S$ such that $g^n = fh$ for some $n \in \mathbb{N}$.

Proof. Assume not, then f is not a unit in S_g . Hence, there is a maximal ideal $\mathfrak{m} \leq S_g$ such that $f \in \mathfrak{m}$. Now let \mathfrak{p} be the preimage of \mathfrak{m} under the localization map $S \to S_g$. Since \mathfrak{m} is maximal, we see that \mathfrak{p} is prime.

Now apply Lemma 6 and see that also

$$\mathfrak{p}' = \langle f \in \mathfrak{p} \mid f \text{ homogeneous} \rangle \subseteq \mathfrak{p}$$

is prime. Furthermore, $g \notin \mathfrak{p}$ and so $g \notin \mathfrak{p}'$. wlog we have that $g \in S_+$, so $S_+ \not\subseteq \mathfrak{p}'$. Since now \mathfrak{p}' is a homogeneous prime ideal, it follows that $\mathfrak{p}' \in \operatorname{Proj}(S)$.

Finally, observe that $f \in \mathfrak{p}'$ as $f \in \mathfrak{p}$ and f is homogeneous. Hence, we have that $\mathfrak{p}' \notin D_f$ and $\mathfrak{p}' \in D_g$, which contradicts the assumption that $D_g \subseteq D_f$.

Proposition 8. Let $B = \{D_f \mid f \in S \text{ homogeneous}\}$. The functor

$$\mathcal{F}: \operatorname{Top}(\operatorname{Proj}(S))|_{B} \to \mathbf{Ring}, \quad D_{f} \mapsto (S_{f})_{0}$$

$$(D_{fg} \subseteq D_{f}) \mapsto \left(\frac{s}{f^{n}} \mapsto \frac{sg^{n}}{(fg)^{n}}\right)$$

is a B-sheaf on B (here Top(X) is the category given by the open sets of X and their inclusion, as defined in the lecture).

Proof. Clearly, \mathcal{F} is a functor and thus a presheaf. Hence, we have to show the local-to-global property.

Let $D_f = \bigcup_{i \in I} D_{g_i f}$ be a cover and $s_i \in \mathcal{F}(D_{g_i f})$ such that

$$\forall x \in D_{g_if} \cap D_{g_jf} \ \exists V \in B: \ V \subseteq D_{g_if} \cap D_{g_jf}, \ x \in V, \ \frac{s_i}{1} = \frac{s_j}{1} \in \mathcal{F}(V)$$

References

[Har77] Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer, 1977.