Digital Circuit Fall 2019

Yuxuan Zhang, XJTU, 2160909016

Session 1 - Logical caculation and Binary code

Session 1 Notes

Logical Caculation

Basic logical operations:

NAME	OPERATOR	Example	Description
AND	×	AB	All inputs are true
OR	+	A + B	One or more inputs are true
NOT	\overline{A}	\overline{A}	Reverse input
XOR	Φ	$A \oplus B$	One and only one input is true

Important tricks:

$$\overline{AB} = \bar{A} + \bar{B} \tag{1}$$

$$\overline{A+B} = \bar{A}\,\bar{B} \tag{2}$$

$$A + \bar{A}B = A + B \tag{3}$$

$$A + AB = A \tag{4}$$

Session 1 Homework

• **Problem 1 - 2.3 (3)** Convert 145.6875_D to Binary.

For integer part:

 $145_D = 1001\ 0001_B$

For decimal part:

 $0.6875_D = 0.1011_B$

Hence:

 $145.6875_D = 1001\ 0001.1011_B$

• Problem 2 - 2.7 (4) Prove Logical Equation: BC + AD = (B+A)(B+D)(A+C)(C+D).

Proof:

LHS:

$$AB + CD = \overline{BC + AD}$$

$$= \overline{BC} \overline{AD}$$

$$= \overline{(B + \overline{C})} (\overline{A} + \overline{D})$$

$$= \overline{AB} + \overline{BD} + \overline{AC} + \overline{CD}$$

RHS:

$$(B+A)(B+D)(A+C)(C+D) = \overline{(B+A)(B+D)(A+C)(C+D)}$$

$$= \overline{(B+A)} + \overline{(B+D)} + \overline{(A+C)} + \overline{(C+D)}$$

$$= \overline{A}\overline{B} + \overline{B}\overline{D} + \overline{A}\overline{C} + \overline{C}\overline{D}$$

Hence:

LHS=RHS

Prove Complete.

• Problem 3 - 2.8 (4) Find the Reverse Expression of Logical function $L_4=(A+\bar{B})(\bar{A}+\bar{B}+C)$.

$$\overline{L_4} = \overline{(A + \bar{B})(\bar{A} + \bar{B} + C)}$$

$$= \overline{(A + \bar{B})} + \overline{(\bar{A} + \bar{B} + C)}$$

$$= \bar{A}B + (\overline{\bar{A} + \bar{B}})\bar{C}$$

$$= \bar{A}B + AB\bar{C}$$

$$= \bar{A}B + B\bar{C}$$

• **Problem 4 - 2.11** Consider a specific Logical Circuit with three input A, B and C, its output is 1 when ture inputs are more than false inputs, vice versa. Draw value chart of this circuit and find its Logic Expression.

A	B	C	Output		
0	0	0	0		
1	0	0	0		
0	1	0	0		
1	1	0	1		
0	1	1	1		
1	1	1	1		
0	0	1	0		
1	0	1	1		
L = AB + BC + AC					

• **Problem 5 - 2.13 (7)** Simplify Logical Function: $L = \overline{(AB + \bar{B}C)(AC + \bar{A}\bar{C})}$.

$$L = \overline{(AB + \bar{B}C)(AC + \bar{A}\bar{C})}$$

$$= \overline{(AB + \bar{B}C)} + \overline{(AC + \bar{A}\bar{C})}$$

$$= \overline{AB}\,\overline{B}\bar{C} + \overline{AC}\,\overline{A}\bar{C}$$

$$= (\bar{A} + \bar{B})(B + \bar{C}) + (\bar{A} + \bar{C})(A + C)$$

$$= \bar{A}B + \bar{A}\bar{C} + \bar{B}B + \bar{B}\bar{C} + \bar{A}A + \bar{A}C + \bar{C}A + \bar{C}C$$

$$= \bar{A}(\bar{C} + C) + \bar{A}B + \bar{B}\bar{C} + \bar{C}A$$

$$= \bar{A} + \bar{B}\bar{C} + \bar{C}A$$

$$= \bar{A} + \bar{B}\bar{C} + \bar{C}$$

$$= \bar{A} + \bar{B}\bar{C} + \bar{C}$$

$$= \bar{A} + \bar{C}$$

• **Problem 6 - 2.15 (6)** Use Carno Chart to simplify $L = \Sigma m(2, 3, 4, 5, 9) + \Sigma d(10, 11, 12, 13)$.

$$L = \bar{A}D + A\bar{D} + BC\bar{D}$$

Session 2 - Digital circuit architecture

Session 2 Homework

• Problem 1 - 3.11 Analyze logic circuit.

Truth Table:

$$\begin{array}{c|ccc} A & 0 & 1 \\ \hline L & 1 & 1 \end{array}$$

$$L=True$$

Wave Form $(t_{pd} = 50ns)$:

• Problem 2 - 3.15 (c) Analyze logic circuit.

At the case of $X \to HIGH$:

$$L = Z$$

At the case of $X \to LOW$:

$$L = A\overline{B}$$

• Problem 3 - 3.16 Pull or Push.

应该选用 (a) 方案,因为 74 系列 TTL 可以接受的灌电流 $(I_{OL}=16mA)$ 远大于高电平时的极限输出电流 $(I_{OH}=-0.4mA)$,更适合驱动负载。且在本例中,考虑到 $I_{LED}=10mA$,只有 I_{OL} 满足此条件。

- Problem 4 3.20 Mulityfunctional gate array.
 - (1) Give the expression of Y (no simplification required):

$$Y = \overline{E_3 A B + E_2 \bar{A} B + E_1 A \bar{B} + E_0 \bar{A} \bar{B}}$$

(2) Give the functionality of this circuit with E_3 E_2 E_1 $E_0 \rightarrow 0000 - 0111$:

E		functionality	
0000	Y =	True	
$0\ 0\ 0\ 1$	Y =	$\overline{ar{A}ar{B}}$	=A+B
$0\ 0\ 1\ 0$	Y =	$\overline{Aar{B}}$	$= \bar{A} + B$
$0\ 1\ 0\ 0$	Y =	$\overline{ar{A}B}$	$=A+\bar{B}$
$0\ 0\ 1\ 1$	Y =	$\overline{Aar{B}+ar{A}ar{B}}$	=B
$0\ 1\ 0\ 1$	Y =	$\overline{A}B + \overline{A}\overline{B}$	=A
$0\ 1\ 1\ 0$	Y =	$\overline{A}B + A\overline{B}$	$=AB+\bar{A}\bar{B}$
$0\ 1\ 1\ 1$	Y =	$\overline{\bar{A}B + A\bar{B} + \bar{A}\bar{B}}$	=AB

(2) Caculate the value range of R according to given conditions:

First of all, we should be aware that there are AT MOST 2 Gates at LOW status. While ALL four gates may be at HIGH status. In case of 3 Highs and 1 Low, we get:

$$\begin{cases} 5V - R \cdot I_{CC} & < 0.3V \\ I_{CC} + 0.4mA \times 2 + 100\mu A \times 3 & < 8mA \end{cases}$$

In case of 4 Highs, we get:

$$\begin{cases} 5V - R \cdot I_{CC} > 3V \\ I_{CC} + 100\mu A \times 4 > 20\mu A \times 2 \end{cases}$$

Hence:

 $R > 681\Omega$

Session 3

Session 3 Homework

• Problem 1 - 4.12 Analyze waveform.

ANALYSIS:

At the down-edge of CLK1, Q1 ALWAYS flips itself; When $Q_1=1$, at the down-edge of CLK2, Q_2 flips itself;

When $Q_1 = 0$, at the down-edge of CLK_2 , Q_2 is set to 0;

When $Q_2 = 1$, Q_1 is IMMEDIATELY reset to 0;

Hence:

• Problem 2 - 5.4 Analyze logic relations.

ANALYSIS:

 $J_1\equiv K_1\equiv 1$, hence Q_1 is flipped at each down-edge of CP $J_2\equiv K_2=\bar{X}~Q_1+X~\bar{Q_1}\equiv X\oplus Q_1 \ Y=\bar{X}~Q_1~Q_2+X~\bar{Q_1}~\bar{Q_2}$

WAVEFORM:

CONCLUSION:

无论当 X = LOW 或 X = HIGH , Y 端均生成一个占空比为 25% , 频率为四分之一 CLK 频率的方波. X 的高低仅改变波的相位.

Session 4 - Digital circuit architecture

Session 4 Homework

• Problem 1 - 7.6 Analyze Specific 74LS153 Functionality.

Truth Table (1ST Enabled):

$_{CD}\backslash ^{AB}$	00	01	11	10	Functionality
00	1	1	0	1	$not(A \ and \ B)$
01	1	0	0	0	$not(A \ and \ B)$ $not(A \ or \ B)$
11	0	0	0	0	False
10	1	0	1	0	$not(A \ xor \ B)$

$$L = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}\bar{D} + \bar{A}\bar{C}\bar{D} + \bar{B}\bar{C}\bar{D} + ABC\bar{D}$$

When 1ST is Disabled:

$$L = Z$$

• Problem 2 - 7.7 Logic circuit design.

• Problem 3 - 7.8 Logic circuit design.

Session 5 - Sequential circuit and unit

Session 5 Notes

Another method to generate delayed paluse - without losing its length

Functionality analysis:

Session 5 Homework

• Problem 1 - 8.3 Analyze Logical function of the given circuit.

 $K \equiv 1$, J=1 flip, J=0 reset. Q_2^N CP^N CP Q_0 Q_2 Q_0^N Q_1^N

Carno Chart:

• Problem 2 - 8.6 Design a circuit using Jump-Key flip-flop to serve given function.

• Problem 3 - 8.7 Build a 60 counter with 74LS293.

• Problem 4 - 8.12 Analyze Logical function of the given circuit.

The given circuit forms a 196 counter with initial value 60 and ending value 255.

• Problem 5 - 8.13 Give the value saved in each register according to given waveform.

CP	Reg_1	Reg_2	Reg_3	Action(s)
t0	1011	1000	0111	Chip Initialized
t1	1011	1000	1000	MOV R3,R2
t2	1011	1000	1000	Enable R3 (No ST)
t3	1011	1000	1000	No action
t4	1011	1011	1011	MOV {R2,R3},R1

• Problem 6 - 8.17 Given dseign of logical circuit:

1.List state sequence of the circuit, with initial state 0110

CP	Q_0	Q_1	Q_2	Q_3	Note
0	0	1	1	0	Initial
1	0	0	1	1	\rightarrow
2	1	0	0	1	\rightarrow
3	1	1	0	0	\rightarrow
4	0	1	1	0	Repeat CP_0

2.List the output secquence of L

CP	Q_0	Q_1	Q_2	Q_3	$D_{Selected}$	Y
0	0	1	1	0	D_3	0
1	0	0	1	1	D_1	1
2	1	0	0	1	D_4	0
3	1	1	0	0	D_6	0

Session 6 - Pulse generating and shaping

Session 6 Homework

 \bullet **Problem 1 - 9.1** Give the waveform of u_0 .

• Problem 2 - 9.5 Given a 74121 connected as shown.

1.Calculate the range of delay time

$$CR \le t_d \le C(R + R_W)$$
$$3.57ms \le t_d \le 18.97ms$$

2. What's the functionality of the resister next to R_w ?

It prevents short circuit when R_w is set to 0.

• Problem 3 - 9.8

1. Analyze the status of circuit when S is open.

When S remains open,

$$\overline{TR} \equiv V_{cc} > \frac{1}{3}V_{cc}$$

TH will be flipped to Low if it was High, and remains Low as a stable status.

Hence, u_0 holds on 0. The circuit is stable.

2. Let $C=10\,\mu F$, give the value of R so as the circuit outputs a pulse of $t_w=10s$ when S is pressed.

Since the given design is a standard monostable trigger, we can use $t_w = RC \ln 3 = 10s$.

Hence, $R = 910 k\Omega$.

3. What's the value of R if $C = 0.1 \,\mu F$, $t_w = 5 \,ms$? What value of t_w do we expect if we replace C by $1 \,\mu F$ with the same R?

$$t_w = RC \ln 3 = 5 \, ms$$

$$R = \frac{5\,ms}{0.1\,\mu F\,\cdot\,ln3} = 45.5\,k\Omega$$

$$Replace \Rightarrow C = 1\,\mu F$$

$$t_w = 50 \, ms$$

• Problem 4 - 9.13.

1. What kind of function dose each of the 555 chip serve?

Each of them is a multivibrator.

2. Analyze the status of circuit when S is set to 1.

Charging time:

(Chip1)
$$T_1 = (R_1 + R_2)C \ln 2 = 2.84 \, ms$$

$$(Chip2)$$
 $T_1 = (R_1 + R_2)C \ln 2 = 0.284 \, ms$

Discharge time:

$$(Chip1) \ T_2 = R_2 \, C \, ln \, 2 = 1.53 \, ms$$

$$(Chip2) T_2 = R_2 C \ln 2 = 0.153 ms$$

Duty cycle:

$$(Chip1)$$
 $F = 228.3 Hz$

$$(Chip2)$$
 $F = 2.283 kHz$

Ratio~65%

3. Draw the waveform of both u_0 and u_1 when S is set to 2.

Session 7 - Memory, D/A and A/D Converter

Session 7 Homework

• Problem 1 - 10.2 Bulid a RAM of 4096 Byte with 8 pieces of 1024*4b RAM and a 2-4 decoder.

• Problem 2 - 10.6 Analyze simple memory system.

One of the memory chip works when:

$$M/\bar{I}O = 1$$

$$WR = 1$$
 or $RD = 1$

 $(And,\ of\ course)\ when\ address\ is\ valid$

The valid addresses are:

 $0x00000 \sim 0x00FFF$

• Problem 3 - 11.3 Circuit Design.

• Problem 4 - 11.12 ADC circuit design principles.

Levels of measurement:

$$2^N \ge \frac{400}{0.1}$$

$$N_{min} = 12$$

Maximun converting time:

$$T_{max} = \frac{1}{32} = 31.25 \, ms$$