Coding Exercise 1: Random Variables

1.1 Objectives

- 1. Plot the probability density function of a random variable.
- 2. Compute the mean and variance of uniformly and normally distributed random variables.
- 3. Generate an exponentially distributed random variable from uniformly distributed random variable.

1.2 MATLAB Commands

rand, randn, hist

1.3 Steps to be followed

• For Part 1:

- (a) Generate random numbers that are (i) uniformly distributed (ii) normally distributed
- (b) Plot the probability density function of the above two random variables using the histogram command in MATLAB.

• For Part 2:

(a) Compute the mean and variance of the above generated (two) random variables. Do not use inbuilt MATLAB commands of mean and variance).

• For Part 3:

Apply an appropriate transformation to generate random variable with a desired distribution starting from random variable with the given distribution.

1.4 Theory for Part 3

Exponential cumulative distribution function (cdf) with parameter λ is given by

$$F(x) = P(X \le x) = 1 - e^{-\lambda x}, x \ge 0.$$

Consider a uniform random variable $U \sim unif(0,1)$. Consider the following function of the random variable U.

$$X = F^{(-1)}(U).$$

Using the following arguments, we can show that X has exponential cdf

$$\begin{split} F_X(x) &= P(X \leq x) \\ &= P(F^{(-1)}(U) \leq x) \\ &= P(U \leq F(x)) \quad \text{(Since F is monotone increasing function)} \\ &= F(x). \end{split}$$

Also, note that $F^{(-1)}(U) = -\frac{1}{\lambda}\log_e(1-U)$. So, the procedure to generate an exponential r.v. with parameter λ from a uniform random variable is as follows:

- (i) Generate $U \sim unif(0,1)$.
- (ii) Set $X = -\frac{1}{\lambda} \log_e (1 U)$.
- (iii) Verify that X has exponential cdf and pdf.