

# 分布拟合检验

主讲人: 刘宏志

liuhz@ss.pku.edu.cn





## 假设检验

假设检验

参数假设检验

非参数假设检验

总体分布已 知,检验关 于未知参数 的某个假设

总体分布未知时的假设检验问题



## 假设检验

- 根据样本信息检验关于总体的某个假设是否正确
- 逻辑上运用反证法,统计上依据小概率原理
- 小概率:
  - >在一次试验中,一个几乎不可能发生的事件发生的概率
  - ▶概率是0~1之间的一个数,因此小概率就是接近0的一个数
  - ▶ R. Fisher 把1/20作为标准,即比0.05小的概率被认为是小概率
- 小概率原理:
  - ▶小概率事件在一次实验中几乎是不可能发生的





## 引例:战争频率统计

北京大学

- 从1500到1931年,每年爆发战争的次数可看作一个随机变量
- 椐统计,这432年间共爆发了299次战争,数据如下:

| 战争次数X | 发生X次战争的年数 |
|-------|-----------|
| 0     | 223       |
| 1     | 142       |
| 2     | 48        |
| 3     | 15        |
| 4     | 4         |

根据先验知识,这一随机变量应该服从什么分布?

泊松分布: 描述单位时间内随机事件发生的次数

问题:以上数据能否证实X具有泊松分布?



## χ²检验

- 基本思想:
  - >总体分布未知,根据样本检验关于总体分布的假设
  - ▶ 先提出原假设:  $H_0$ : 总体X的分布函数为F(x)
- 这种检验通常被称作拟合优度检验,是一种非参数检验
- 由统计学家K.皮尔逊在1900年提出,被视为近代统计学

的开端







## χ²检验: 基本原理和步骤

- 1. 提出原假设:  $H_0$ : 总体X的分布函数为F(x)
- 2. 将总体X的取值范围划分为k个互不重迭的区间, $(a_0,a_1],...,(a_{k-1},a_k)$ ,记作 $A_1,A_2,...,A_k$
- 3. 把落入第i个区间 $A_i$ 的样本值的个数记作 $f_i$ ,称为实测频数
- 4. 根据所假设的理论分布算出总体X的值落入每个 $A_i$ 的概率 $p_i$ ,则 $np_i$ 为落入 $A_i$ 的样本值的理论频数







理论频数

 $f_i - np_i$ 

皮尔逊引进如下统计量表示经验分布与理论分布间

的差异:

 $\chi^2 = \sum_{i=1}^k \frac{(f_i - np_i)^2}{np_i}$ 

在理论分布 已知的条件下, np<sub>i</sub>是常量

$$\mathbb{E}_{i=1}^{k} \chi^{2} = \sum_{i=1}^{k} \frac{n}{p_{i}} \left( \frac{f_{i}}{n} - p_{i} \right)^{2} = \sum_{i=1}^{k} \frac{f_{i}^{2}}{n p_{i}} - n$$

统计量  $\chi^2$  的分布是什么?



### 皮尔逊定理

- 定理1: 若原假设中的理论分布F(x)已经完全给定,那么当n充分大( $n \ge 50$ )时,统计量 $\chi^2$ 近似服从自由度为k-1的 $\chi^2$ 分布
- 定理2: 如果理论分布F(x)中有r个未知参数需用相应估计量来代替,则当n充分大时,统计量 $\chi^2$ 近似服从自由度为 (k-r-1) 的 $\chi^2$ 分布.
- 皮尔逊定理是在n无限增大时推导出来的,在使用时要注意n要足够大,以及 $np_i$ 不太小这两个条件.
- 根据计算实践,要求n不小于50,以及 $np_i$ 都不小于5. 否则应适当合并区间,使 $np_i$ 满足这个要求.

DoF are the measurements of the number of values in the statistic that are free to vary without influencing the result of the statistic.





- 5. 对给定的显著性水平 $\alpha$ ,通过查 $\chi^2$ 分布表确定l值,使 $P\{\chi^2>l\}=\alpha$ ,得到拒绝域:  $\chi^2>l$
- 6. 根据所给的样本值 $x_1, x_2, \cdots, x_n$ 计算统计量 $\chi^2$
- 7.  $岩\chi^2$ 的实测值落入拒绝域,则拒绝原假设 $H_0$ ,否则就认为差异不显著而接受原假设 $H_0$





- 提出假设 $H_0$ : X服从参数为 $\lambda$ 的泊松分布
- 根据观察结果,得到参数为λ的最大似然估计:

$$\hat{\lambda} = \bar{x} = 0.69$$

• 按照参数为0.69的泊松分布,计算事件X=i的概率 $p_i$ 的估计:  $\hat{p}_i = e^{-0.69} 0.69^i/i!$ 

| 战争次数 $\boldsymbol{x}$               | 0     | 1     | 2     | 3    | 4    |                  |
|-------------------------------------|-------|-------|-------|------|------|------------------|
| 实测频数 $f_i$                          | 223   | 142   | 48    | 15   | 4    |                  |
| $\hat{m{p}}_i$                      | 0.58  | 0.31  | 0.18  | 0.01 | 0.02 |                  |
| $n\hat{p}_{i}$                      | 216.7 | 149.5 | 51.6  | 12.0 | 2,16 |                  |
| $(f_i - n\hat{p}_i)^2 / n\hat{p}_i$ | 0.183 | 0.376 | 0.251 | 1.0  | 623  | $\Sigma = 2.433$ |

将 $n\hat{p}_i < 5$ 的组予以合并,即将发生3次和4次战争的组归并为一组





## 示例:战争频率统计

- 因 $H_0$ 所假设的理论分布中有一个未知参数,故自由度为: 4-1-1=2
- 按 $\alpha$ =0.05,自由度为2 查 $\chi^2$ 分布表得  $\chi^2_{0.05}(2) = 5.991$
- 因统计量 $\chi^2$ 的观察值 $\chi^2$ =2.433<5.991,未落入 拒绝域,故认为每年发生战争的次数 $\chi$ 服从参 数为0.69的泊松分布





#### 示例: 骰子检查

• 将一颗骰子掷120次, 所得数据如下表:

| 点数i        | 1  | 2  | 3  | 4  | 5  | 6  |
|------------|----|----|----|----|----|----|
| 出现次数 $f_i$ | 23 | 26 | 21 | 20 | 15 | 15 |

问这颗骰子是否均匀、对称(取α=0.05)?

• 解: 若这颗骰子是均匀、对称的,则1~6点中每点出现的可能性相同,都为1/6.如果用 $A_i$ 表示第i点出现,则待检假设:

$$H_0$$
:  $P(A_i)=1/6$ ,  $i=1,2,...,6$ 

- 在 $H_0$ 成立的条件下,理论概率 $p_i=p(A_i)=1/6$
- 由n=120得频率 np<sub>i</sub>=20



| i  | $f_i$ | $p_{i}$ | $np_i$ | $(f_i - np_i)^2 / (np_i)$ |
|----|-------|---------|--------|---------------------------|
| 1  | 23    | 1/6     | 20     | 9/20                      |
| 2  | 26    | 1/6     | 20     | 36/20                     |
| 3  | 21    | 1/6     | 20     | 1/20                      |
| 4  | 20    | 1/6     | 20     | 0                         |
| 5  | 15    | 1/6     | 20     | 25/20                     |
| 6  | 15    | 1/6     | 20     | 25/20                     |
| 合计 | 120   |         |        | 4.8                       |

此分布不含未知参数,k=6, $\alpha=0.05$ ,查表得:  $\chi^2_{\alpha}(k-1)=\chi^2_{0.05}(5)=11.071$ 上表:  $\chi^2=\sum_{i=1}^6\frac{(f_i-np_i)^2}{np_i}=4.8<11.071$ ,故接受 $H_0$ ,即骰子是均匀对称的

## 示例:遗传规律

- 生物学家孟德尔进行了八年的豌豆杂交试验,并根据试验结果,运用他的数理知识,发现了遗传的基本规律
- 理论: 黄、绿豌豆杂交, 子二代中, 黄、绿之比为3:1
- 一组观察结果为: 黄: 70、绿: 27, 是否符合理论?





孟德尔





## 示例:遗传规律

由于随机性,观察结果与3:1 总有些差距,因此有必要考察某一大小的差异是否已构成否定3:1理论的充分根据.

检验孟德尔的3:1理论:

提出假设 $H_0$ :  $p_1=3/4$ ,  $p_2=1/4$ 

这里, *n*=70+27=97, *k*=2,

理论频数为:  $np_1=72.75$ ,  $np_2=24.25$ 

实测频数为: 70, 27.



统计量  $\chi^2 = \sum_{i=1}^2 \frac{(f_i - np_i)^2}{np_i} \sim \chi^2$  自由度为 k-1=1

按  $\alpha$ =0.05,自由度为1,查 $\chi^2$  分布表得

$$\chi^2_{0.05}(1)=3.841$$

由于统计量 $\chi^2$ 的实测值

$$\chi^2 = 0.4158 < 3.841$$

未落入拒绝域.

故认为试验结果符合孟德尔的3:1理论.



## Kolmogorov-Smirnov检验

- 简写为K-S检验, 亦称D检验法
- 一种拟合优度检验法
- 检验一组样本数据的实际分布与某一指定的理论分布是否相符
- 基本原理:
  - ▶ 将理论分布下的累积分布与观察到的累积分布相比较,找出它们间最大的差异点,并参照抽样分布,定出这样大的差异是否处于偶然



## Kolmogorov-Smirnov检验

题北京大学

- 提出原假设 $H_0$ :总体X的分布函数为F(x)
- 2. 计算样本累计频率与理论分布累计概率的绝对差,令最大的绝对差为 $D_n$ :

$$D_n = \max_{1 \le i \le n} \{ |F(x) - F_n(x)| \}$$

3. 用样本容量n和显著水平 $\alpha$ 查表得临界值 $D_n^a$ 

通过 $D_n$ 与 $D_n^a$ 的比较做出判断,若 $D_n$ < $D_n^a$ ,则认为拟合是满意的。



Each table entry is the value of a Kolmogorov-Smirnov one-sample statistic  $D_n$  for sample size n such that its right-tail probability is the value given on the top row.

| n  | .200 | .100 | .050 | .020 | .010 | n  | .200 | .100 | .050 | .020 | .010 |
|----|------|------|------|------|------|----|------|------|------|------|------|
| 1  | .900 | .950 | .975 | .990 | .995 | 21 | .226 | .259 | .287 | .321 | .344 |
| 2  | .684 | .776 | .842 | .900 | .929 | 22 | .221 | .253 | .281 | .314 | .337 |
| 3  | .565 | .636 | .780 | .785 | .829 | 23 | .216 | .247 | .275 | .307 | .330 |
| 4  | .493 | .565 | .624 | .689 | .734 | 24 | .212 | .242 | .269 | .301 | .323 |
| 5  | .447 | .509 | .563 | .627 | .669 | 25 | .208 | .238 | .264 | .295 | .317 |
| 6  | .410 | .468 | .519 | .577 | .617 | 26 | .204 | .233 | .259 | .290 | .311 |
| 7  | .381 | .436 | .483 | .538 | .576 | 27 | .200 | .229 | .254 | .284 | .305 |
| 8  | .358 | .410 | .454 | .507 | .542 | 28 | .197 | .225 | .250 | .279 | .300 |
| 9  | .339 | .387 | .430 | .480 | .513 | 29 | .193 | .221 | .246 | .275 | .295 |
| 10 | .323 | .369 | .409 | .457 | .489 | 30 | .190 | .218 | .242 | .270 | .290 |
| 11 | .308 | .352 | .391 | .437 | .468 | 31 | .187 | .214 | .238 | .266 | .285 |
| 12 | .296 | .338 | .375 | .419 | .449 | 32 | .184 | .211 | .234 | .262 | .281 |
| 13 | .285 | .325 | .361 | .404 | .432 | 33 | .182 | .208 | .231 | .258 | .277 |
| 14 | .275 | .314 | .349 | .390 | .418 | 34 | .179 | .205 | .227 | .254 | .273 |
| 15 | .266 | .304 | .338 | .377 | .404 | 35 | .177 | .202 | .224 | .251 | .269 |
| 16 | .258 | .295 | .327 | .366 | .392 | 36 | .174 | .199 | .221 | .247 | .265 |
| 17 | .250 | .286 | .318 | .355 | .381 | 37 | .172 | .196 | .218 | .244 | .262 |
| 18 | .244 | .279 | .309 | .346 | .371 | 38 | .170 | .194 | .215 | .241 | .258 |
| 19 | .237 | .271 | .301 | .337 | .361 | 39 | .168 | .191 | .213 | .238 | .255 |
| 20 | .232 | .265 | .294 | .329 | .352 | 40 | .165 | .189 | .210 | .235 | .252 |

For n > 40, right-tail critical values based on the asymptotic distribution can be calculated as follows:

| .200            | .100            | .050            | .020            | .010            |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| $1.07/\sqrt{n}$ | $1.22/\sqrt{n}$ | $1.36/\sqrt{n}$ | $1.52/\sqrt{n}$ | $1.63/\sqrt{n}$ |

Source: Adapted from L. H. Miller (1956), Table of percentage points of Kolmogorov statistics, Journal of the American Statistical Association, 51, 111–121, with permission.



### 实例: 正态拟合

• 某织布厂工人执行的生产定额(织机每小时生产织物的米数)情况如下表,试检验这些样本数据能否服从正态分布?

| 按定额执行情况分组 | 工人数  |
|-----------|------|
| 3.75~4.25 | 20   |
| 4.25~4.75 | 372  |
| 4.75~5.25 | 498  |
| 5.25~5.75 | 103  |
| 5.75~6.25 | 7    |
|           | 1000 |





## 实例: 正态拟合

• 首先,计算样本均值和标准差:  $\bar{x}$ =4.85; s=0.352, 作为总体均值和标准差的估计

#### • 建立假设:

▶H<sub>0</sub>: 样本数据服从均值为4.85,标准差为0.352 的正态分布

| 按定额执行情况分组                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 工人数           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 3.75~4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20            |
| 4.25~4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 372           |
| 4.75~5.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 498           |
| 5.25~5.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103           |
| 5.75~6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000          |
| A A A TOTAL STATE OF THE STATE | <b>然</b> 北京大学 |

#### 正态拟合计算表

| X的组限      | 标准化             | 标准正<br>态概率 | 累计概<br>率(理<br>论概率) | 累计<br>工人<br>数 | 实际累<br>计频率 | (2)-(4)<br>的绝 对<br>值 |
|-----------|-----------------|------------|--------------------|---------------|------------|----------------------|
| 甲         | 乙               | (1)        | (2)                | (3)           | (4)        | (5)                  |
| 不足4.25    | <b>-∞~-1.70</b> | 0.045      | 0.045              | 20            | 0.020      | 0. 025               |
| 4.25-4.75 | -1.70~-0.28     | 0.345      | 0. 390             | 392           | 0. 392     | 0.002                |
| 4.75-5.25 | -0.28~1.14      | 0. 483     | 0.873              | 890           | 0.890      | 0. 017               |
| 5.25-5.75 | 1.14~2.56       | 0. 122     | 0. 995             | 993           | 0. 993     | 0.002                |
| 5.75-6.25 | 2.56-+∞         | 0.005      | 1.000              | 1000          | 1.000      | 0.000                |

$$D_{(1000,0.05)} = \frac{1.36}{\sqrt{1000}} = 0.043 > 0.025$$
无法拒绝H<sub>0</sub>

无法拒绝H<sub>0</sub>

#### A-D检验和 CM准则

$$n\int_{-\infty}^{\infty} [Fn(x) - F(x)]^2 \omega(x) dF(x)$$

• Cramér-von Mises 准则: w(x)=1

$$w^2 = n \int_{-\infty}^{\infty} [Fn(x) - F(x)]^2 dF(x)$$

• Anderson–Darling  $\&\&: \omega(x) = F(x)(1 - F(x))$ 

$$A = n \int_{-\infty}^{\infty} \frac{[Fn(x) - F(x)]^2}{F(x)(1 - F(x))} dF(x)$$

$$A^{2}=-n-S,$$

$$S = \sum_{i=1}^{n} \frac{(2i-1)}{n} \left[ \ln F(x_i) + \ln \left( 1 - F(x_{n+1-i}) \right) \right]$$



## 正态性检验: J-B检验

- 正态分布的性质:
  - ▶偏度(三阶中心矩): S=0; 峰度(四阶中心矩): K=3
- 基本思想:
  - ▶若样本来自正态总体,则其偏度和峰度应该在0,3附近
- J-B统计量:  $JB = \frac{n}{6} [S^2 + \frac{(K-3)^2}{4}]$ , n为样本容量

$$S = \frac{\widehat{\mu}_3}{\widehat{\sigma}^3} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^3}{\left(\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2\right)^{3/2}}$$

$$K = \frac{\widehat{\mu}_4}{\widehat{\sigma}^4} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^4}{\left(\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2\right)^2}$$



在正态分布的假设下,JB统计量渐进地服从自由度为2的卡方分布