

fMRI unpacked: A guided tour from raw data to functional analyses

Giulia Baracchini, Ph.D.

CIHR Postdoctoral Fellow, The University of Sydney

giulia.baracchini@sydney.edu.au

Declaration of Financial Interests or Relationships

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Functional neuroimaging via fMRI

Theoretical concepts

- ❖ fMRI and the BOLD signal
- Intro to fMRI data acquisition, preprocessing & analyses

Functional neuroimaging via fMRI

Theoretical concepts

- fMRI and the BOLD signal
- Intro to fMRI data acquisition, preprocessing & analyses

Tutorials & hands on analyses

Example: from raw data to analyses

Functional neuroimaging via fMRI

Theoretical concepts

- fMRI and the BOLD signa
- Intro to fMRI data acquisition, preprocessing & analyses

Tutorials & hands on analyses

Example: from raw data to analyses

- Neuroimaging technique that allows us to image the brain at the macroscale:
 - at rest→ resting-state fMRI

Fox et al., 2005 PNAS

- Neuroimaging technique that allows us to image the brain at the macroscale:
 - at rest→ resting-state fMRI
 - during task performance → task-based fMRI

- Neuroimaging technique that allows us to image the brain at the macroscale:
 - at rest→ resting-state fMRI
 - during task performance → task-based fMRI

An automated meta-analysis of 1091 studies of working memory

Neurosynth: https://neurosynth.org

 Key to obtaining non-invasive whole-brain images at increased spatial resolution (compared to ephys)

 Key to obtaining non-invasive whole-brain images at increased spatial resolution (compared to ephys)

Petersen et al., 2024 Neuron

 Key to obtaining non-invasive whole-brain images at increased spatial resolution (compared to ephys)

What is fMRI measuring?

BOLD signal

from https://www.biorender.com/template/bold-fmri-signal-overview

= local concentrations of deoxygenated/oxygenated Hb derived from neuronal activity

What is fMRI measuring?

BOLD signal

fMRI BOLD: delayed, indirect response

Pedregosa et al., 2015 NeuroImage also Logothetis et al., 2001 Nature; Logothetis & Pfeuffer, 2004 Magnetic Resonance Imaging

Key to have in mind a clear question: good experimental design, data acquisition parameters, robust analyses*

*not unlike any other technique in (neuro)science

fMRI is like growing tomatoes ©

*any fMRI-derived metric

Resting-state fMRI workflow

Many flavours of fMRI data

These user-dependent choices impact:

- ❖ Image quality (signal-to-noise ratio, SNR):
 - Good quality signal/lots of noise (non-biological)
- ❖ Ability to image smaller brain structures
- Ability to image fast dynamics
- Scanning time

Generally, speaking:

7T:

- ❖ 2x SNR (of 3T)
- >>> signal dropout

Generally, speaking:

7T:

- **❖** 2x SNR (of 3T)
- ❖ >>> signal dropout

Smaller voxels:

❖ >>> thermal noise

Bigger voxels:

>> physiological noise

Generally, speaking:

7T:

- ❖ 2x SNR (of 3T)
- ❖ >>> signal dropout

Smaller voxels:

❖ >>> thermal noise

Bigger voxels:

>> physiological noise

Faster TRs:

<< SNR but way more data</p>

7T:

- ❖ 2x SNR (of 3T)
- ❖ >>> signal dropout

Smaller voxels:

❖ >>> thermal noise

Bigger voxels:

>> physiological noise

Faster TRs:

<< SNR but way more data</p>

Structure-specific acquisition (eg laminar fMRI):

>>> increased precision

Yet, no matter the flavour of fMRI data:

Raw fMRI data are noisy due to...

- scanner artefacts (inhomogeneities, signal drop outs)
 - participant (motion, breathing)
 - non-neuronal sources (yet biological)

Satterthwaite et al., 2019 Human Brain Mapping

Resting-state fMRI workflow

Raw data are noisy + underlying assumptions are UNTRUE:

Raw data are noisy + underlying assumptions are UNTRUE:

• For each TR, whole-brain data acquired simultaneously

Raw data are noisy + underlying assumptions are UNTRUE:

- For each TR, whole-brain data acquired simultaneously
- Data constant across time

Raw data are noisy + underlying assumptions are UNTRUE:

- For each TR, whole-brain data acquired simultaneously
- Data constant across time
- Data constant spatially across people

1

standardized, aligned data with noise

standardized, aligned data with noise

common across acquisition protocols and labs

fMRIPrep

1

motion correction
slice timing correction
distortion correction
coregistration to anatomy
spatial normalisation
brain mask extraction

Motion Correction
Corrects head movement
by aligning volumes

1

motion correction
slice timing correction
distortion correction
coregistration to anatomy
spatial normalisation
brain mask extraction

Motion Correction

Corrects head movement by aligning volumes

Slice Timing Correction

Accounts for differences in slice acquisition time by aligning slices in time

1

motion correction
slice timing correction
distortion correction
coregistration to anatomy
spatial normalisation
brain mask extraction

Motion Correction

Corrects head movement by aligning volumes

Distortion Correction

Fixes spatial warping from field inhomogeneities

Slice Timing Correction

Accounts for differences in slice acquisition time by aligning slices in time

1

motion correction
slice timing correction
distortion correction
coregistration to anatomy
spatial normalisation
brain mask extraction

Motion Correction

Corrects head movement by aligning volumes

Distortion Correction

Fixes spatial warping from field inhomogeneities

Slice Timing Correction

Accounts for differences in slice acquisition time by aligning slices in time

Coregistration to Anatomy

Aligns functional to structural images

Anatomical

Functional

1

motion correction
slice timing correction
distortion correction
coregistration to anatomy
spatial normalisation
brain mask extraction

Motion Correction

Corrects head movement by aligning volumes

Distortion Correction

Fixes spatial warping from field inhomogeneities

Spatial Normalization

Transforms brain to MNI space for group analysis

Slice Timing Correction

Accounts for differences in slice acquisition time by aligning slices in time

Coregistration to Anatomy

Aligns functional to structural images

common across acquisition protocols and labs

1

motion correction
slice timing correction
distortion correction
coregistration to anatomy
spatial normalisation
brain mask extraction

Motion Correction

Corrects head movement by aligning volumes

Distortion Correction

Fixes spatial warping from field inhomogeneities

Spatial Normalization

Transforms brain to MNI space for group analysis

Slice Timing Correction

Accounts for differences in slice acquisition time by aligning slices in time

Coregistration to Anatomy

Aligns functional to structural images

Brain Mask Extraction

Includes only brain voxels for analysis

common across acquisition protocols and labs

Summary

- · Subject ID: 003
- Structural images: 1 T1-weighted
- Functional series: 1
 - Task: rest (1 run)
- Standard output spaces: MNI152NLin6Asym, MNI152NLin2009cAsym
- · Non-standard output spaces:
- · FreeSurfer reconstruction: Not run

Anatomical Conformation

- Input T1w images: 1
- · Output orientation: RAS
- Output dimensions: 192x256x160
- Output voxel size: 1mm x 1mm x 1mm
- Discarded images: 0

This panel shows the template T1-weighted image (if several T1w images were found), with contours delineating the detected brain mask and brain tissue segmentations

Exemplar script to run fmriprep: /code/fMRIprep.sh

In your own time: /fmriprep_outputs/*.html

(to open the html you need to download the respective sub figures folder)

Section	What to Check
Overall Summary	- Sub ID correct? Freesurfer? All spaces there?
Anatomical Summary	- Conformation: one T1w image? Dimensions consistent across subs? No volumes discarded?
	- Brain mask and tissue segmentation: T1w and segmentation look okay? No distortion/cutoff?
	segmentation fits gray matter (red line) and white matter (white area surrounded by blue line)
	- Normalisation: alignment okay (grey matter, white matter, ventricles)
Functional Summary	- Check that the report is accurate (TR, sequence, slice timing/susceptibility correction, non-steady volumes)
	- Alignment func/struct: do the two (anatomical is skull stripped vs functional is not) correspond okay?
	- Check alignment based on ventricles, cingulate cortex, cerebellum
	- Brain mask and CompCor ROIs: main thing is red line includes whole BOLD image (okay if a bit cutoff)
	not okay if red line excludes cerebellum, brainstem and other cortical regions
	- BOLD Summary: okay if movement still there (will be dealt with later). Note if DVARS max > 4 and FD max > 1.
	- Carpet plot may still have some spikes/motion. If noise is regular, take note.
Overall errors	- Critical errors or warnings?

1

standardized, aligned data with noise 2

removal of noise from prepared data

common across acquisition protocols and labs

2

removal of noise from prepared data

2

nuisance regression

ICA-based regression

global signal regression

band-pass filtering

detrending

time-series normalisation

Nuisance regression

Physiological noise (white matter, CSF)

2

nuisance regression

ICA-based regression

global signal regression

band-pass filtering

detrending

time-series normalisation

Nuisance regression

Physiological noise (white matter, CSF)

ICA-based regression

Extra cleaning (ICA FIX, ICA AROMA)

2

nuisance regression

ICA-based regression

global signal regression

band-pass filtering

detrending

time-series normalisation

Nuisance regression

Physiological noise (white matter, CSF)

Global signal regression

To further control for motion/respiration etc (debatable)

ICA-based regression

Extra cleaning (ICA FIX, ICA AROMA)

2

nuisance regression

ICA-based regression

global signal regression

band-pass filtering

detrending

time-series normalisation

Nuisance regression

Physiological noise (white matter, CSF)

Global signal regression

To further control for motion/respiration etc (debatable)

ICA-based regression

Extra cleaning (ICA FIX, ICA AROMA)

Band-pass filtering

To isolate neuronal frequencies (0.01-0.08Hz)

2

nuisance regression

ICA-based regression

global signal regression

band-pass filtering

detrending

time-series normalisation

Nuisance regression

Physiological noise (white matter, CSF)

Global signal regression

To further control for motion/respiration etc (debatable)

Detrending

To reduce scanner drift

ICA-based regression

Extra cleaning (ICA FIX, ICA AROMA)

Band-pass filtering

To isolate neuronal frequencies (0.01-0.08Hz)

2

nuisance regression

ICA-based regression

global signal regression

band-pass filtering

detrending

time-series normalisation

Nuisance regression

Physiological noise (white matter, CSF)

Global signal regression

To further control for motion/respiration etc (debatable)

Detrending

To reduce scanner drift

ICA-based regression

Extra cleaning (ICA FIX, ICA AROMA)

Band-pass filtering

To isolate neuronal frequencies (0.01-0.08Hz)

TS normalisation

To enable comparison amongst voxel/vertices/regions

Resting-state fMRI workflow

03. + 04. TS Extraction + Analyses

What is my unit of interest?

Voxels? Regions? Networks? Systems?

03. + 04. TS Extraction + Analyses

Hierarchy/gradient

Network

similar function (functional connectivity)

Region/Area

average contiguous

Voxel

03. Timeseries Extraction

03. Timeseries Extraction

03. Timeseries Extraction

Timeseries normalization (zscoring)

statistical construct (Pearson's correlation)

= similarity in the activity of two units over time


```
# Since we have multiple subjects, we are going to calculate FC and store these matrices in a list
fc_matrices <- lapply(files, function(file) {
    ts <- as.matrix(read.table(file)) #convert to matrix format to do calculations

# Pearson's correlation
    cor_mat <- cor(ts)

return(cor_mat)
})

# let's look at the distribution of these FC values: let's look at subject 4
hist(fc_matrices[[4]])</pre>
```

Histogram of fc_matrices[[4]]


```
# Since we have multiple subjects, we are going to calculate FC and store these matrices in a list
fc_matrices <- lapply(files, function(file) {
    ts <- as.matrix(read.table(file)) #convert to matrix format to do calculations

# Pearson's correlation
    cor_mat <- cor(ts)

return(cor_mat)
})

# let's look at the distribution of these FC values: let's look at subject 4
hist(fc_matrices[[4]])</pre>
```

Histogram of fc_matrices[[4]]

```
# For group analyses, we need to normalise these FC values: Fisher-z transformation
z_matrices <- lapply(fc_matrices, function(correlation) {
    z_mat <- atanh(correlation)

# Clean matrix: replace Inf values that come from Fisher z-transform
    z_mat[!is.finite(z_mat)] <- NA

return(z_mat)
})

hist(z_matrices[[4]]) #let's check if normalisation worked</pre>
```

Histogram of z_matrices[[4]]


```
# Since we have multiple subjects, we are going to calculate FC and store these matrices in a list
fc_matrices <- lapply(files, function(file) {
    ts <- as.matrix(read.table(file)) #convert to matrix format to do calculations

# Pearson's correlation
    cor_mat <- cor(ts)

return(cor_mat)
})

# let's look at the distribution of these FC values: let's look at subject 4
hist(fc_matrices[[4]])</pre>
```

Histogram of fc_matrices[[4]]

```
# For group analyses, we need to normalise these FC values: Fisher-z transformation
z_matrices <- lapply(fc_matrices, function(correlation) {
    z_mat <- atanh(correlation)

# Clean matrix: replace Inf values that come from Fisher z-transform
    z_mat[!is.finite(z_mat)] <- NA

return(z_mat)
})

hist(z_matrices[[4]]) #let's check if normalisation worked</pre>
```


Fisher z values

statistical construct (Pearson's correlation)

= similarity in the activity of two units over time

Graph Theory

Node = region

Edge = connection

many metrics: e.g., nodal strength

Highly recommend checking out the work (books, articles) of Olaf Sporns; e.g., Networks of the brain, 2010

Brain Connectivity Toolbox CONN Toolbox Great guide: Andy's Brain Book

statistical construct (Pearson's correlation)

= similarity in the activity of two units over time

Canonical resting-state networks

Schaefer 200-7 Parcellation by Network

generated in R based on Schaefer et al., 2018 also check out Yeo et al., 2011

Principal gradient of brain organisation

Margulies et al., 2016 *PNAS* based on Mesulam, 1998 *Brain*

03. + 04. TS Extraction + Analyses

All materials can be found on my Github at this link:

https://github.com/giuliabaracc/teaching_fMRI

Tutorial from step 01 to 04: fMRI_restpreprocnet.html

Your turn to create brain maps: /code/Tutorial_fMRI_forstudents.R

Other useful resources (+ applications)

- Some news articles with the latest about fMRI:
 - The Transmitter is a good place: <u>here</u> and <u>here</u>
- Past, present, future of fMRI:
 - Finn, Poldrack & Shine, 2023 *Nature*
 - Biswal & Uddin, 2025 Nature
- Some cool methods/applications:
 - Shine et al., 2019 Neuron
 - Markello et al., 2022 Nature Methods
 - Baracchini et al., 2024 Aperture Neuro

Great standard sequence for whole-brain coverage

Multi-echo

Multi-band

Signal drop out

Great standard sequence for whole-brain coverage

Multi-echo

Multi-band

Signal drop out

Acquisition of multiple echo images per slice = T2* decay can be modelled at every voxel at every time point -> increased spatial resolution

Great standard sequence for whole-brain coverage

Multi-echo

Multi-band

Signal drop out

Acquisition of multiple echo images per slice = T2* decay can be modelled at every voxel at every time point -> increased spatial resolution

- + cleaner signal cause ME uses TE-dependent preprocessing strategies:
- Neuronally induced fluctuations depend on the selected TE
- Nuisance signal fluctuations are non-TE dependent

Kundu et al., 2012 & 2017 NeuroImage

Great standard sequence for whole-brain coverage

Multi-echo

Multi-band

Signal drop out

Greater spatial resolution -> slower acquisition

Acquisition of multiple echo images per slice = T2* decay can be modelled at every voxel at every time point -> increased spatial resolution

- + cleaner signal cause ME uses TE-dependent preprocessing strategies:
- Neuronally induced fluctuations depend on the selected TE
- Nuisance signal fluctuations are non-TE dependent

Wall, 2023 Aperture Neuro

Great standard sequence for whole-brain coverage

Multi-echo

Multi-band

Signal drop out

Acquisition of multiple echo images per slice = T2* decay can be modelled at every voxel at every time point -> increased spatial resolution

- + cleaner signal cause ME uses TE-dependent preprocessing strategies:
- Neuronally induced fluctuations depend on the selected TE
- Nuisance signal fluctuations are non-TE dependent

Greater spatial resolution -> slower acquisition

- = coil resonates multiple slices at the same time
- = faster volume acquisition (e.g., MB factor of 2 = halves acquisition time)

Wall, 2023 Aperture Neuro

Great standard sequence for whole-brain coverage

Multi-echo

Multi-band

Signal drop out

Acquisition of multiple echo images per slice = T2* decay can be modelled at every voxel at every time point -> increased spatial resolution

- + cleaner signal cause ME uses TE-dependent preprocessing strategies:
- Neuronally induced fluctuations depend on the selected TE
- Nuisance signal fluctuations are non-TE dependent

Greater spatial resolution -> slower acquisition

- = coil resonates multiple slices at the same time
- = faster volume acquisition (e.g., MB factor of 2 = halves acquisition time)
- Faster acquisition time
- Larger field of view or smaller voxel size

<u>BUT</u> at risk of greater noise + greater signal drop out

Wall, 2023 Aperture Neuro