Discrete Mathematics #3

20192208 김형훈

8.3

In Exercises 29–33, assume that f is an increasing function satisfying the recurrence relation $f(n)=af(\frac{n}{b})+cn^d$, where $a\geq 1,b$ is an integer greater than 1, and c and d are positive real numbers. These exercises supply a proof of Theorem 2.

Problem 29

Let's prove this by induction on k where $n=b^k$.

Base case: When k=0, n=1 f(1)=f(1) which satisfies the equation since $\log_b 1=0$ Inductive step: Assume the formula holds for some $k\geq 0$ For $n=b^{k+1}$:

$$\begin{split} &f(b^{k+1}) = af(\frac{b^{k+1}}{b}) + c(b^{k+1})^d \\ &= b^d f(b^k) + cb^{(k+1)d} \, (\text{since} \, a = b^d) \\ &= b^d [f(1)(b^k)^d + c(b^k)^d \log_b b^k] + cb^{(k+1)d} \, (\text{by inductive hypothesis}) \\ &= f(1)b^{(k+1)d} + cb^{(k+1)d}k + cb^{(k+1)d} \\ &= f(1)b^{(k+1)d} + cb^{(k+1)d}(k+1) \\ &= f(1)(b^{k+1})^d + c(b^{k+1})^d \log_b b^{k+1} \end{split}$$

Therefore, the formula holds for all powers of b.

Problem 30

From Problem 29, we know that for powers of b: $f(n) = f(1)n^d + cn^d \log_b n$

Since
$$f(1)$$
 and c are constants: $f(n) = O(n^d) + O(n^d \log_b n) = O(n^d \log n)$

For values of n that are not powers of b, since f is increasing: $f(n) \leq f(b^{\lceil \log_b n \rceil}) = O((b^{\lceil \log_b n \rceil})^d \log b^{\lceil \log_b n \rceil}) = O(n^d \log n)$

Therefore, f(n) is $O(n^d \log n)$ for all positive integers n.

Problem 31

Let's verify this solution satisfies the recurrence relation. Substitute n/b for n:

$$\begin{split} f(n) &= af(\frac{n}{b}) + cn^d \\ &= a[C_1(\frac{n}{b})^d + C_2(\frac{n}{b})^{log_ba}] + cn^d \\ &= aC_1\frac{n^d}{b^d} + aC_2\frac{n^{log_ba}}{b^{log_ba}} + cn^d \\ &= \frac{aC_1}{b^d}n^d + C_2n^{log_ba} + cn^d \end{split}$$

For this to match our proposed solution: $C_1 = \frac{aC_1}{b^d} + c$

Solving for
$$C_1$$
 : $C_1(1-\frac{a}{b^d})=c$ $C_1=\frac{b^dc}{b^d-a}$

And ${\cal C}_2$ can be determined from the initial condition $f(1)={\cal C}_1+{\cal C}_2.$

Problem 32

From Problem 31, we have: $f(n) = C_1 n^d + C_2 n^{\log_b a}$

When $a < b^d$, we have $log_b a < d$

Therefore, n^{log_ba} grows slower than \boldsymbol{n}^d

Thus,
$$f(n) = C_1 n^d + C_2 n^{log_b a} = O(n^d)$$

Problem 33

From Problem 31, we have: $f(n) = C_1 n^d + C_2 n^{\log_b a}$

When $a>b^d$, we have $log_ba>d$

Therefore, n^{log_ba} grows faster than n^d

Thus,
$$f(n) = C_1 n^d + C_2 n^{log_b a} = O(n^{log_b a})$$