Prospects of Strong Horizontal Focusing Electric Ring: advantages, disadvantages

Valeri Lebedev Fermilab

> December 9-10, 2013 Storage ring EDM collaboration meeting

<u>All electric storage ring</u>

- Ring structure
 - ◆ 14 periods. Each includes:
 - 2 electric bends with R_0 =40 m and L=8.97 m
 - o Gap between plates 3 cm, $V = \pm 157$ kV,
 - \circ m = 0 (no vert. focusing)
 - 2 electric quads, one F and one D
 - \circ L=15 cm, G_F = 17.2 kV/cm, G_D = -13.8 kV/cm
 - Each quad can be independently adjusted
 - One of two 80 cm gaps between quads and bends are filled with
 - H or V corrector, skewquad corrector, F or D sextupole, and BPM
 - Other can be used by experiment, + RF cavity
- Circumference 300 m
- Kinetic energy 232.79 MeV

Transverse Focusing

- Large flexibility in choice of beam optics
- For chosen optics its parameters are:
 - β_{xmax} =29.1 m, β_{ymax} =204 m, D_{xmax} =17.35 m, Q_x =2.32, Q_y =0.31
 - Considerable space in the tune diagram
 - Distance to 4-th order resonances is ~0.06.
 It is sufficient to accommodate the space charge tune shifts

- Weak vertical focusing was chosen for control of radial magnetic field
 - It results in high sensitivity to focusing errors

<u>Longitudinal Motion Parameters and Ring</u> <u>Acceptances</u>

- Longitudinal motion parameters
 - ♦ Revolution frequency: 597.3 kHz
 - ♦ Momentum compaction: α = 0.51
 - Slip-factor: $\eta = \alpha 1/\gamma^2 = -0.132$
 - Transition energy 376 MeV
- Acceptances and rms emittances
 - \bullet The gap between plates, 2a=3 cm, determines
 - Maximum momentum deviation:

$$\Delta p/p|_{\text{max}} = \pm 8.6 \cdot 10^{-4} \text{ (versus } 3.3 \cdot 10^{-4}\text{)}$$

- Horizontal acceptance (normalized):
 - 5.8 mm mrad (versus 5 mm mrad)
- ◆ IBS determines (see below)
 - equilibrium rms momentum spread: σ_p = 2.9·10⁻⁴
 - equilibrium rms norm. horizontal emittance: 0.31 mm mrad
 - equilibrium rms norm. vertical emittance: 2.16 mm mrad

RF and Related Parameters

- Synchrotron frequency has to be large enough to minimize spin decoherence within one synchrotron period but small relative to the distance to strong resonances, Q_s =0.006 was chosen (ΔQ_{SC} ~0.02)
- Sum of bunch lengths, $n_b\sigma_s$, has to be as large as possible to reduce space charge tune shifts and IBS
 - ♦ Bucket height, $\Delta p/p|_{\text{bucket}}$, has to be only slightly larger than the longitudinal acceptance, $\Delta p/p|_{\text{max}}$, but linearity is still desirable => $\Delta p/p|_{\text{bucket}}$ / $\Delta p/p|_{\text{max}}$ =1.5
- Main parameters
 - \bullet RF voltage: V_0 =10 kV
 - ♦ Harmonic number: h=70
 - RF frequency: f_{RF} =41.81 MHz
 - Synchrotron tune: Q_s =0.006
 - Bucket height: $\Delta p/p|_{\text{bucket}} = 1.3 \cdot 10^{-3}$
 - ♦ Bucket length: 430 cm
 - Bunch length: $\sigma_s = 31$ cm

$$Q_s = \sqrt{\frac{heV_0\eta}{2\pi mc^2\gamma\beta^2}}$$

$$\frac{\Delta p}{p}\bigg|_{\text{bucket}} = \frac{2Q_s}{h\eta}$$

$$\sigma_{s} = \frac{C\eta\sigma_{p}}{2\pi Q_{s}}$$

Coupling between Transverse and Longitudinal Motions

- Large dispersion in RF cavity results in coupling between x and s motions
- However for chosen RF voltage this coupling is sufficiently small
 - ♦ It has weak dependence on number of cavities => 1 cavity looks OK
 - ♦ It results in minor changes in tunes

- and a change in the horizontal beta-function from β_x = 29.16 m to β_{x1} = 29.14 m (in Mais-Ripken representation)
- As one can see from the above eigen-vector corresponding to horizontal betatron oscillations, \mathbf{v}_1 , the betatron motion is accompanied by the longitudinal motion
 - at the cavity location the motions are shifted in phase by 90 deg.

Space Charge Tune Shifts and IBS Growth Rates

- Operation below transition greatly reduces IBS growth rates for operation in vicinity of thermal equilibrium: $\tau_{x,y,s} \approx 7500 \text{ s}$
- In this case the initial particle number of 7.10^8 per purpose bunch is set by Coulomb tune shifts of ΔQ_x =0.015 and ΔQ_y =0.027

Controlled vertical emittance blowup can lead to a controlled beam loss

Conclusion

- Judged on pure acceleration physics grounds the strong focusing ring looks better than the soft focusing ring
 - Larger momentum acceptance and particle number
 - ♦ Suppressed IBS rates
- Analysis of spin decoherence is required to see its potential for EDM

In particular, the sensitivity of spin decoherence to sextupoles

	Soft focusing	Strong focusing
Circumference, m	263	300
Qx/Qy	1.229/0.456	2.32/0.31
Particle per bunch	1.5·10 ⁸	7·10 ⁸
Coulomb tune shifts, $\Delta Q_x/\Delta Q_y$	0.0046/0.0066	0.0146/0.0265
Rms emittances, x/y, norm, µm	0.56/1.52	0.31/2.16
Rms momentum spread	1.1.10-4	2.9·10 ⁻⁴
IBS growth times, x/y/s, s	300/(-1400)/250	7500
RF voltage	13	10.3
Synchrotron tune	0.02	0.006