Reg. No.	
----------	--

B.Tech. / M.Tech. (Integrated) DEGREE EXAMINATION, JANUARY 2024

First Semester

21MAB101T - CALCULUS AND LINEAR ALGEBRA

(For the candidates admitted from the academic year 2023 - 2024)

Note:

(i) **Part - A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii) Part - B and Part - C should be answered in answer booklet

Tim	ie: 3	Hou	rs				Max.	Ma	rks: 75
			PART - A (20			•	Marks	BL	со
	· 1	Answer ALL Questions The number of positive terms in the canonical form is called							1
			Signature			Index			
			Rank			Positive definite			
	2.			[3	2	4]	1	3	1
		Fine	d the eigen values of A^2 if A	= 0	2.	6			
		2 1110	d the eigen values of A^2 if A	0	0	5			
			6,2,5 9,4,5		(D)	9,4,25 3,2,5			
		(C)	9,4,3		(D)	5,2,5			
	3.		o of the eigen values of 3×3 ren value	matrix	хΑз	are 2, 1 and $ A =12$. Find the third	1	3	1
		(A)			(B)	3			
		(C)			(D)	1			
	4.	If A	is an orthogonal matrix then	1			1	1	1
			A =0		(B)	$A^2=I$			
		(C)	$A^{T}=A^{-1}$			A is non-singular			
	5	If v	$t-s^2 < 0$ at (a,b) then the po	int is			1	1	2
	٠.		, ,			Minimum noint			
			Maximum point Saddle point			Minimum point Discontinuous point			
		(C)	Saddle politi		(D)	Discontinuous point			
	6.	6. If u and v are functionally dependent then their Jacobian value is							2
		(A)			(B)				
		(C)	-1		(D)	2			
	7	TE A	$(x, y) = e^x \cos y$ then $y = e^x \sin y$, f (U U)	.9	1	2	2
	I _{st}		$f(x,y) = e^x \cos y$ then what is						
		(A)	1		(B)				

(D) 2

(C) 0

- If f(x, y) is an implicit function then $\frac{dy}{dx} = ?$

- (B) $\frac{\left(\frac{\partial f}{\partial x}\right)}{\left(\frac{\partial f}{\partial y}\right)}$ (D) $\frac{\left(\frac{\partial f}{\partial y}\right)}{\left(\frac{\partial f}{\partial x}\right)}$
- 9. The complementary function of $(D^2 4D + 5)y = 4e^x$ is

3 3

2

1

- (B) $Ae^{-x} + Be^{5x}$
- (A) $Ae^{x} + Be^{-5x}$ (C) $e^{-2x} (A\cos x + B\sin x)$
- (D) $e^{2x} (A\cos x + B\sin x)$
- 10. The particular integral of $(D^2 + 1)y = \cos(2x)$ is

1 3 2

(A) $x \sin x$

(C) $\frac{\cos 2x}{-3}$

- (B) $\frac{\cos 2x}{3}$ (D) $\frac{x \cos x}{2}$
- 11. Convert the equation $(5+2x)^2 y'' 6(5+2x)y' + 8y = 0$ to an equation with 2 constant coefficient by using the transformation $z = \log(5 + 2x)$
 - (A) $(\theta^2 + 4\theta + 2)y = 0$
- (C) $(\theta^2 + 4\theta + 4)y = 0$
- (B) $(\theta^2 4\theta + 2)y = 0$ (D) $(\theta^2 + 4\theta 2)y = 0$
- 12. If $1\pm 2i$ are the roots of A.E of a differential equation f(D)y=0 then the 2 general solution is
 - (A) $e^{-2x} (A\cos x B\sin x)$
- (B) $Ae^{x} + Be^{-2x}$
- (C) $e^x (A\cos 2x + B\sin 2x)$
- (D) $Ae^{2x} + Be^{5x}$
- 13. The locus of center of curvature is called

1 1

(A) Involute

- (B) Evolute
- (C) Radius of curvature
- (D) Envelope
- 14. The radius of curvature in polar coordinates is

1

- (A) $\rho = \frac{\left(r^2 + (r')^2\right)^{3/2}}{r^2 rr' + 2(r')^2}$ (C) $\rho = \frac{\left(r^2 (r'')^2\right)^{3/2}}{r^2 rr' + 2(r')^2}$
- (B) $\rho = \frac{\left(r^2 (r')^2\right)^{3/2}}{r^2 rr' + 2(r')^2}$ (D) $\rho = \frac{\left(r^2 + (r')^2\right)^{3/2}}{r^2 rr'' + 2(r')^2}$

- 15. A curve which touches each member of a family of the curves is called of that family.
 - (A) Evolute

- (B) Envelope
- (C) Circle of curvature
- (D) Radius of curvature

16.	The value of $\Gamma\left(\frac{1}{2}\right)$ is		*	1	1	4
	(A) $\sqrt{\pi}$	(B)	π^2			
	(C) π	(B) (D)	2π			
17:	The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if			1	1	5
	(A) p=1	(B)	p>1 p<1			
	(C) p=0	(D)	p<1			
18.	The sequence $4(-1)^n$ is			1	1	5
	(A) Oscillating	(B)	Convergent			
	(C) Divergent	(D)	Monotonic			
19.	$\sum (-1)^n \sin\left(\frac{1}{n}\right)$ converges by the for	llowir	ng test	1	2	5
	(A) Leibnitz's test		Ratio test			
	(C) Root test	(D)	Raabe's test			
20.	The series $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots \infty$ is			1	1	5
	(A) Divergent(C) Absolutely convergent	. ,	Convergent Conditionally convergent			
	$PART - B (5 \times 8 = Answer ALL C)$			Marks	BL	со
21. a.	$PART - B (5 \times 8 = Answer ALL C)$	uesti	ons	Marks 8	BL 3	co
21. a.	$PART - B (5 \times 8 = Answer ALL C)$	uesti	ons			
21. a.	$PART - B (5 \times 8 =$	uesti	ons			
21. a.	PART – B (5 × 8 = Answer ALL C) Find Eigen values and Eigen vectors (OR)	of the	ons e matrix $\begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$.	8	3	
21. a. b.	PART – B (5 × 8 = Answer ALL C) Find Eigen values and Eigen vectors (OR)	of the	ons e matrix $\begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$.			
	PART – B (5 × 8 = Answer ALL C) Find Eigen values and Eigen vectors (OR)	of the	ons e matrix $\begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$.	8	3	
	PART – B (5 × 8 = Answer ALL Q	of the	ons e matrix $\begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$.	8	3	
b.	PART – B (5 × 8 = Answer ALL Q Find Eigen values and Eigen vectors (OR) Using the Cayley-Hamilton theorem	of the	ons $e \text{ matrix} \begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}.$ $A^{-1} \text{ when } A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$	8	3	
	PART – B (5 × 8 = Answer ALL C) Find Eigen values and Eigen vectors (OR)	of the	ons $e \text{ matrix} \begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}.$ $A^{-1} \text{ when } A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$	8	3	
b.	PART – B (5 × 8 = Answer ALL Quantum Answer ALL Qu	of the	ons $e \text{ matrix} \begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}.$ $A^{-1} \text{ when } A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$	8	3	
b. 22. a.	PART – B (5 × 8 = Answer ALL Quantum Answer ALL Qu	of the	e matrix $\begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$. A ⁻¹ when $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$ and $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	8	3	
b. 22. a.	PART – B (5 × 8 = Answer ALL Quantum Answer ALL Qu	of the	e matrix $\begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$. A ⁻¹ when $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$ and $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	8	4	
b. 22. a. b.	PART – B (5 × 8 = Answer ALL Quantum Answer ALL Qu	of the	e matrix $\begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$. A ⁻¹ when $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$ and $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	8	4	
b. 22. a. b.	PART – B (5 × 8 = Answer ALL Quantum Answer ALL Qu	of the	e matrix $\begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 4 \\ 1 & -1 & 3 \end{bmatrix}$. A ⁻¹ when $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \end{bmatrix}$ and $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	8 8	4	

Page 3 of 4

- b. Solve $(D^2 + 4)y = \tan 2x$ by the method of variation of parameter.
- 24. a. Find the equation of the evolute of the parabola $y^2=4ax$.

(OR)

- b. Find the equation of the circle of curvature at (c,c) on $xy=c^2$.
- 25. a. Test the convergence or divergence of the series $\frac{x}{12} + \frac{x^2}{23} + \frac{x^3}{34} + \dots \infty, x > 0$.

b.i. Test the convergence of $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{-n^2}$.

ii. Test the convergence of the series $1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \dots$

PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions

Marks

- 26. Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12xy 8yz + 4xz$ to canonical form by an orthogonal reduction. Also find the rank, index signature and nature of the quadratic form.
- 27. The temperature T at any point (x,y,z) in space is T=400 xyz^2 . Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.

* * * * *

CO