

UNIVERSIDAD TECNICA NACIONAL INGENIERIA ELECTRONICA

Tarea 3

Angie Marchena Mondell

Teoría electromagnética

$$f_V = \nabla \cdot \vec{p}$$

$$P_{v} = \frac{\partial}{\partial x} D_{x} + \frac{\partial}{\partial y} D_{y} + \frac{\partial}{\partial z} D_{z}$$

$$\int V = \frac{\partial}{\partial x} \left(\frac{3y}{z} \right)^2 + \frac{\partial}{\partial y} 2y + \frac{\partial}{\partial z} \left(\frac{x-y}{z} \right)^3$$

$$p_{v} = \frac{\partial}{\partial y} 2y = 21 \frac{c}{m^3}$$

1-
$$\vec{D}$$
 = $(3yz)^2 \vec{a}_{\infty} + 2y \vec{a}_{\gamma} + (x-y)^3 \vec{a}_{z}$
a) $\vec{Q} = \oint \rho_{\nu} dV$
$$\begin{cases} 1 \le x \ne 2 \\ 0 \le y \le 3 \\ 2 \le z \le 4 \end{cases}$$

fronte => d\$= dydz az derechu=> d\$ = dxdz az arnba => d\$ = dxdy az

frente
$$Q_1 = \begin{cases} Q_x \cdot dy dz \\ x=2 \end{cases}$$

$$Q_2 = \int_{2}^{4} \int_{3}^{3} (3yz)^2 dydz$$

Oi y az ser iguales pero signo contrario...

Derechou

$$a_3 = \int \int D_Y dx dz$$
 $a_4 = -\int \int D_Y dz dz$
 $a_4 = -\int \int D_Y dx dz$
 $a_5 = \int \int 2 x y dy dz$
 $a_4 = -\int \int 2 y dx dz$
 $a_5 = \int \int 2 x y dx dz$
 $a_4 = -\int \int 2 x y dx dz$
 $a_5 = \int \int 2 x y dx dx$
 $a_6 = \int \int 2 x y dx dx$
 $a_6 = \int \int 2 x y dx dx$
 $a_6 = \int \int 2 x y dx dx$
 $a_6 = \int \int 2 x dx dx$
 $a_6 = \int 2 x dx dx$

2-
$$\vec{D} = \vec{V} - \vec{a_v} + sen \vec{\varphi} \cdot \vec{a_y} + \vec{z} \cdot \vec{a_z} = \rho(1, 15^{\circ}, 3)$$

$$\Rightarrow VD = \frac{1}{r} \frac{\partial}{\partial r} (r \cdot r^{2}) + \frac{1}{r} \frac{\partial}{\partial p} (senp) + \frac{2}{\partial z} (z^{-\frac{1}{3}})$$

$$VD = -\frac{1}{r^3} - \frac{1}{3z^{\frac{1}{3}}}$$

$$\nabla D(P) = \frac{1}{(1)^3} = \frac{1}{3 \cdot (3)}$$

Densided en el purto
$$P = -1,07\frac{C}{m^2}$$

a) Govss
$$\int \pm ds = \frac{4en}{6e}$$
 $\beta = 70$

$$\sqrt{D} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 r') + \frac{1}{r sen \theta} \frac{\partial}{\partial \theta} (sen \theta \cdot cos \theta) + \frac{1}{r sen \theta} \frac{\partial}{\partial \phi} (y \cos \theta \cdot sen \psi)$$

$$\sqrt{10} = \frac{r(05(20)(500+1)}{r^2}$$

$$4. \quad \forall \cdot D = \frac{dD_x}{dx} = 4p C/m^3$$

$$0x = 5_{en} = 200 fc$$

$$Q = \int_{0}^{12} \int_{0}^{13} \int_{0}^{13} \frac{40p^{2}}{m^{3}} dx dy dz$$