

WBL Statistik 2024 — Robust Fitting

Half-Day 2: Robust Regression Estimation

Andreas Ruckstuhl Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

WBL Statistik 2024 — Robust Fitting

Half-Day 1 ● Regression Model and the Outlier Problem

- Measuring Robustness
- Location M-Estimation
- Inference
- Regression M-Estimation
- Example from Molecular Spectroscopy

Half-Day 2 • General Regression M-Estimation

- Regression MM-Estimation
- Example from Finance
- Robust Inference
- Robust Estimation with GLM

Half-Day 3 • Robust Estimation of the Covariance Matrix

- Principal Component Analysis
- Linear Discriminant Analysis
- Baseline Removal: An application of robust fitting beyond theory

2.3 General Regression M-Estimation

The regression M-estimators will fail at the presence of leverage points.

To see that,

compare the following examples (modified Air Quality data):

or check the influence function:

$$\mathit{IF}\left\langle \underline{x},y;\widehat{\underline{\theta}}_{\mathsf{M}},\mathcal{N}\right\rangle =\psi\left\langle \frac{r}{\sigma}\right\rangle \underbrace{\boldsymbol{M}\,\underline{x}}_{\mathsf{unbounded}}$$

Bound the total influence function!

A First Workaround: GM-Estimation

An simple modification of the Huber's ψ -function can remedy:

Either (Mallows)

$$\sum_{i=1}^{n} \psi_{c} \left\langle \frac{r_{i} \left\langle \widehat{\theta} \right\rangle}{\sigma} \right\rangle x_{i}^{(k)} w \left\langle d \left\langle \underline{x}_{i} \right\rangle \right\rangle = 0, \qquad k = 1, \ldots, p,$$

or (Schweppe)

$$\sum_{i=1}^{n} \psi_{c} \left\langle \frac{r_{i} \left\langle \widehat{\theta} \right\rangle}{\sigma \cdot \mathbf{w} \left\langle \mathbf{d} \left\langle \underline{\mathbf{x}}_{i} \right\rangle \right\rangle} \right\rangle x_{i}^{(k)} \mathbf{w} \left\langle \mathbf{d} \left\langle \underline{\mathbf{x}}_{i} \right\rangle \right\rangle = \sum_{i=1}^{n} \psi_{c \cdot \mathbf{w} \left\langle \mathbf{d} \left\langle \underline{\mathbf{x}}_{i} \right\rangle \right\rangle} \left\langle \frac{r_{i} \left\langle \widehat{\theta} \right\rangle}{\sigma} \right\rangle x_{i}^{(k)} = 0,$$

where $w\langle \rangle$ is a suitable weight function and $d\langle x_i \rangle$ is some measure of the "outlyingness" of x_i .

Examples for $w \langle \rangle$ and $d \langle x_i \rangle$:

- $d\langle x_i \rangle = \frac{(x_i median\langle x_k \rangle)}{MAD\langle x_i \rangle}$ or Mahalanobis distance and $w\langle d\langle x_i \rangle \rangle = \text{Huber's weight function (cf. LN 2.3.b)}$
- $w\langle x_i \rangle = 1 H_{ii}$ or $w\langle x_i \rangle = \sqrt{1 H_{ii}}$, where H_{ii} is the leverage

Example Air Quality (modified)

General Regression M-Estimation

000000

```
x.h \leftarrow 1-hat(model.matrix(y \sim x, AQ))
AQ.GMfit <rlm(y \sim x, data=AQ, weights=x.h, wt.method="case")
```


000000

General Regression M-Estimation

Example Air Quality (Initial Data)

Example Air Quality: The Map

By using robust estimation methods, we

- are able to run a regression analysis every hour automatically and
- obtain reliable estimates each time

Hence robust methods provide a sound basis for the false colour map!

Note:

General Regression M-Estimation

000000

The outliers are identified and analyse separately. The result of this outlier analysis is part of the false colour map.

Breakdown point of GM-Estimators

However, the maximum breakdown point of general regression M-estimators cannot exceed 1/p! (p is the number of variables)

Hence, it is not possible to detect clusters of leverage points with the projection matrix **H** in residual analysis.

The following example gives some insight why this happens: Look at the "Residuals vs Leverage" plots, where one, two and three outliers are put at the outlying leverage point:

2.4 Robust Regression MM-estimation

Regressions M-Estimator with Redescending ψ

- Computational Experiments show: Regression M-estimators are robust if distant outliers are rejected completely!
- Theoretically and computationally more convenient: Ignore influence of distant outliers gradually

For example by a so-called **redescending** ψ functions like Tukey's biweight function (ψ function (left) and corresponding weight function (right))

- But the equation defining the M-estimator has many solutions and only one may identify the outliers correctly.
- Solution depends on starting value! Good initial values are required!

Robust Estimator With High Breakdown Point

Regression estimators with high breakdown point are e.g. the **S-estimator**. Instead of

$$\sum_{i=1}^{n} \left(\frac{r_i \langle \underline{\theta} \rangle}{\sigma} \right)^2 \stackrel{!}{=} \min_{\underline{\theta}} \qquad \text{solve} \quad \frac{1}{n-p} \sum_{i=1}^{n} \rho \left\langle \frac{y_i - \underline{x}_i^T \underline{\theta}}{s} \right\rangle = 0.5 \,,$$

where s must be as small as possible

(i.e. the equation should have a solution in $\underline{\theta}$).

A high breakdown point implies that $\rho\langle\cdot\rangle$ must be symmetric and bounded.

The function $\rho\langle\cdot\rangle$ can be

$$ho \left< \cdot \right> =
ho_{b_o} \left< u \right> := egin{cases} 1 - \left(1 - \left(rac{u}{b_o}
ight)^2
ight)^3 & ext{ if } |u| < b_o \ 1 & ext{ otherwise} \end{cases}$$

(its derivative is Tukey's bisquare function). To get a breakdown point of 0.5 the tuning constant b_o must be 1.548.

 ρ function of the least squares estimator (left) and of Tukey's bisquare function (right)

high breakdown point of (about) 0.5

 computable (at least approximately for small data set, i.e. a few thousand observations and about 20 – 30 predictor variables).

Cons:

- efficiency of just 28.7% at the Gaussian distribution!
- challenging computation basically done by a random resampling algorithm. Such an approach may result in different solutions when the algorithm is run twice or more times with the same data except but different seeds.

Regression MM-Estimator

We have

- a redescending M-etimator which is highly resistant and highly efficient but requires suitable starting values
- an S-estimator which is highly resistant but very inefficient

Combining the strength of both estimators yields the **regression MM-estimator** (modified **M**-estimator):

- An S-estimator with breakdown point $\varepsilon^*=1/2$ is used as initial estimator Tukey's bisquare function with $\rho_{b_o=1.548}$: $\widehat{\underline{\theta}}^{(o)}$ and s_o
- The redescending regression M-estimator is applied using Tukey's bisquare ψ -function $\psi_{b_1=4.687}$ and fixed scale parameter $\sigma=s_o$ from the initial estimation; starting value is $\widehat{\underline{\theta}}^{(o)}$.

The regression MM-estimator has a breakdown point of $\varepsilon^* = 1/2$ and an efficiency and an asymptotic distribution like the regression M-estimator.

Example from Finance

Return-Based Style Analysis of Fund of Hedge Funds (Joint work with P. Meier and his group)

A fund of hedge funds (FoHF) is a fund that invests in a portfolio of different hedge funds to diversify the risks associated with a single hedge fund.

A hedge fund is an investment instrument that undertakes a wider range of investment and trading activities in addition to traditional long-only investment funds.

One of the difficulties in risk monitoring of Fund of Hedge Funds (FoHF) is their limited transparency.

- Many FoHF will only disclose partial information on their underlying portfolio
- The underlying investment strategy (style of FoHF), which is the crucial characterisation of FoHF, is self-declared

A return-based style analysis searches for the combination of indices of sub-styles of hedge fund that would most closely replicate the actual performance of the FoHF over a specified time period.

$$R_t = \alpha + \sum_{k=1}^{p} \beta_k I_{k,t} + E_t$$

where

 $R_t = \text{return on the FoHF at time } t$

 $\alpha =$ the excess return (a constant) of the FoHF

 $I_{k,t}$ = the index return of sub-style k (= factor) at time t

 β_k = the change in the return on the FoHF per unit change in factor k

p = the number of used sub-indices

 E_t = residual (error) which cannot be explained by the factors

Residuals VS Time

Robust MM-fit identifies clearly two different investment periods: one before April 2000 and one afterwards.

Residual Analysis with MM-Fit

plot(FoHF.rlm)

2.5 Robust Inference and Variable Selection

- Outliers may also influence the result of a classical test crucially.
 It might happen that the null hypothesis is rejected, because an interfering alternative H_I (outliers) is present. That is, the rejection of the null hypothesis is justified but accepting the actual alternative H_A is unjustified.
- To understand such situations better, one can explore the effect of contamination on the level and power of hypothesis tests.
- Heritier and Ronchetti (1994) showed that the effects of contamination on both the level and power of a test are inherited from the underlying estimator (= test statistic).

That means that

the test is robust if its test statistic is based on a robust estimator.

Asymptotic Distribution of the MM-estimator

The Regression MM-estimator is asymptotically Gaussian distributed with

Robuste Inferenz 000000000000000

- mean (expectation) θ and
- covariance matrix $\sigma^2 \tau \mathbf{C}^{-1}$, where $\mathbf{C} = (1/n) \sum_i x_i x_i^T$.

The covariance matrix of $\widehat{\theta}$ is estimated by

$$\widehat{\mathbf{V}} = \frac{s_o^2}{n} \,\widehat{\tau} \,\widehat{\mathbf{C}}^{-1}$$

where
$$\widehat{\pmb{C}} = \frac{\frac{1}{n} \sum_{i} w_{i} \underline{x}_{i} \underline{x}_{i}^{T}}{\frac{1}{n} \sum_{i} w_{i}}, \qquad \widehat{\tau} = \frac{\frac{1}{n} \sum_{i=1}^{n} \left(\psi_{b_{1}} \left\langle \widetilde{r}_{i} \right\rangle \right)^{2}}{\left(\frac{1}{n} \sum_{i=1}^{n} \psi' \left\langle \widetilde{r}_{i} \right\rangle \right)^{2}}$$
with
$$\widetilde{r}_{i} := \frac{y_{i} - \underline{x}_{i}^{T} \widehat{\pmb{\theta}}^{(o)}}{\underline{s}_{i}}, \qquad w_{i} := \frac{\psi_{b_{1}} \left\langle \widetilde{r}_{i} \right\rangle}{\underline{s}_{i}}$$

Note that $\widehat{\theta}^{(o)}$ and s_o come from the initial estimation.

Robuste Inferenz

A Further Modification to the MM-Estimator

- The estimated covariance matrix $\widehat{\boldsymbol{V}}$ depends on quantities $(\widehat{\underline{\theta}}^{(o)})$ and s_o from the initial estimator
- The initial S-estimator, however, is known to be very inefficient.
- Koller and Stahel (2011, 2014) investigated the effects of this construction on the efficiency of the estimated confidence intervals . . .

... and, as a consequence, came up with an additional modification:

Extend the current regression MM-estimator by two additional steps:

- replaces s_o by a more efficient scale estimator
- Then apply another M-estimator but with a more slowly redescending psi-function.

They called this estimation procedure **regression SMDM-estimator** and it is implemented in lmrob(..., setting="KS2014").

Example from Finance with another target FoHF

Return-Based Style Analysis of Fund of Hedge Funds - RBSA2

	Im(FoHF \sim . , data=FoHF2)			${\sf Imrob(FoHF} \sim ., {\sf data=FoHF2, setting="KS2014"})$		
	Estimate	se	$\Pr(> t)$	Estimate	se	$\Pr(> t)$
(1)	-0.0019	0.0017	0.2610	-0.0030	0.0014	0.0377
RV	0.0062	0.3306	0.9850	0.3194	0.2803	0.2564
CA	-0.0926	0.1658	0.5780	-0.0671	0.1383	0.6280
FIA	0.0757	0.1472	0.6083	-0.0204	0.1279	0.8730
EMN	0.1970	0.1558	0.2094	0.2721	0.1328	0.0430
ED	-0.3010	0.1614	0.0655	-0.4763	0.1389	0.0009
EDD	0.0687	0.1301	0.5986	0.1019	0.1112	0.3611
EDRA	0.0735	0.1882	0.6971	0.0903	0.1583	0.5689
LSE	0.4407	0.1521	0.0047	0.5813	0.1295	2.05e-05
GM	0.1723	0.0822	0.0390	-0.0159	0.0747	0.8319
EM	0.1527	0.0667	0.0245	0.1968	0.0562	0.0007
SS	0.0282	0.0414	0.4973	0.0749	0.0356	0.0378
	Residual st	tandard erro	r: 0.009315	Residual standard error: 0.007723		

The 95% confidence interval of $\beta_{\rm SS}$ is

 $0.028 \pm 1.99 \cdot 0.041 = [-0.054, 0.110] \parallel 0.075 \pm 1.96 \cdot 0.036 = [0.004, 0.146]$

Example from Finance: RBSA2 (cont.)

A fund of hedge funds (FoHF) may be classified by the style of their target funds into *focussed directional*, *focussed non-directional* or *diversified*.

If our considered FoHF is a *focussed non-directional* FoHF, then it should be invested in LSE, GM, EM, SS and hence the other parameter should be zero.

Goal: We want to test the hypothesis that q < p of the p elements of the parameter vector $\underline{\theta}$ are zero.

First, let's introduce some notation to express the results more easily:

- There is no real loss of generality if we suppose that the model is parameterized so that the null hypothesis can be expressed as $H_0: \underline{\theta}_1 = \underline{0}$ where $\underline{\theta} = (\underline{\theta}_1^T, \underline{\theta}_2^T)^T$.
- Further, let \hat{V}_{11} be the quadratic submatrix containing the first q rows and columns of \hat{V} .

The so-called **Wald-type test statistic** can now be expressed as

$$W = \underline{\theta}_1^T (\widehat{\mathbf{V}}_{11})^{-1} \underline{\theta}_1.$$

It can be shown, that this test statistic is asymptotically χ^2 distributed with q degrees of freedom.

This test statistic also provides the basis for confidence intervals of a single parameter θ_k :

$$\widehat{ heta}_k \pm q_{1-lpha/2}^{\mathcal{N}} \cdot \sqrt{\widehat{V}_{kk}}$$

where $q_{1-\alpha/2}^{\mathcal{N}}$ is the $(1-\alpha/2)$ quantil of the standard Gaussian distribution.

Comments:

- Since we have estimated the covariance matrix $\operatorname{Cov}\left\langle \widehat{\underline{\theta}}\right\rangle$ by $\widehat{\boldsymbol{V}}$, it seems obvious from classical regression inference that replacing χ_q^2 by $F_{q,\;n-p}$ is a reasonable adjustment in the distribution of the test statistic for estimating the variance σ^2 .
- However, to do so has no formal justification and it would be better to avoid too small sample sizes because all results are asymptotical in their nature anyway (and then $\frac{1}{a} \cdot \chi_q^2 \approx F_{q, n-p}$).

Robuste Inferenz

For an MM-estimator, we may define a **robust deviance** by

$$D\left\langle \underline{y},\, \widehat{\underline{\theta}}_{\mathrm{MM}} \right
angle := 2\cdot s_o^2 \cdot \sum_{i=1}^n
ho \left\langle rac{y_i - \underline{x}_i^T\, \widehat{\underline{\theta}}_{\mathrm{MM}}}{s_o}
ight
angle \quad ext{with } s_o^2 ext{ from the initial estimator} \, .$$

Similar to generalised linear models: The robust generalisation of the F-test,

$$\frac{\left(SS_{reduced} - SS_{full}\right) / q}{SS_{full} / (n - p)} = \frac{\left(SS_{reduced} - SS_{full}\right) / q}{\widehat{\sigma}^2}$$

is to replace the sum of squares by the robust deviance so that we obtain the test statistic

$$\begin{split} \Delta^* &= \tau^* \cdot \frac{D\left\langle \underline{y}, \, \widehat{\underline{\theta}}_{\text{MM}}^f \right\rangle - D\left\langle \underline{y}, \, \widehat{\underline{\theta}}_{\text{MM}}^f \right\rangle}{s_o^2} \\ &\text{with} \quad \tau^* = \left(\frac{1}{n} \sum_{i=1}^n \psi_{b_1}' \langle \tilde{r}_i \rangle \, \right) \bigg/ \left(\frac{1}{n} \sum_{i=1}^n \left(\psi_{b_1} \langle \tilde{r}_i \rangle \, \right)^2 \right). \end{split}$$

Then $\Delta^* \stackrel{a}{\sim} \chi_q^2$ under the null hypothesis.

Robuste Inferenz 000000000000000

Example from Finance - RBSA2

```
# Least squares estimator:
> FoHF2.lm1 < - lm(FoHF \sim ... data=FoHF2)
> FoHF2.lm2 < - Im(FoHF \sim LSE + GM + EM + SS, data=FoHF2)
> anova(FoHF2.lm2, FoHF2.lm1)
Analysis of Variance Table
Model 1: FoHF \sim LSE + GM + EM + SS
Model 2: FoHF \sim RV + CA + FIA + EMN + ED + EDD + EDRA + LSE + GM + EM + SS
                              Sum of Sq F Pr(>F)
     Res.Df
                    RSS
                          Df
 1
         96
             0.0085024
              0.0077231 7
         89
                                0.00077937
                                             1 2831
                                                        0.2679
# Robust with SMDM-estimator (i.e., setting="KS2014")
> FoHF2.rlm1 < - Imrob(FoHF ~ ., data=FoHF2, setting="KS2014")
> anova(FoHF.rlm1, FoHF \sim LSE + GM + EM + SS, test="Wald")
Robust Wald Test Table
Model 1: FoHF \sim RV + CA + FIA + EMN + ED + EDD + EDRA + LSE + GM + EM + SS
Model 2: FoHF \sim LSE + GM + EM + SS
Largest model fitted by Imrob(), i.e. SMDM
     pseudoDf Test.Stat Df Pr(> chisa)
           89
```

0.0007388

25 066

Example from Finance - RBSA2 (cont.)

> FoHF2.rlm1 < - Imrob(FoHF \sim .. data=FoHF2. setting="KS2014") > anova(FoHF2.rlm1, FoHF \sim LSE + GM + EM + SS, test="Wald")

Test.Stat Df Pr(> chisq)

7

25.089

Robust with SMDM-estimator and Wald test

```
Robust Wald Test Table
Model 1: FoHF \sim RV + CA + FIA + EMN + ED + EDD + EDRA + LSE + GM + EM + SS
Model 2: FoHF \sim LSE + GM + EM + SS
Largest model fitted by Imrob(), i.e. SMDM
     pseudoDf
               Test.Stat Df Pr(> chisq)
 1
            89
            96
                   24.956
                             7
                                   0.0007388
# Robust with SMDM-estimator and Deviance test
> anova(FoHF2.rlm1, FoHF \sim LSE + GM + EM + SS, test="Deviance")
Robust Deviance Table
Model 1: FoHF \sim RV + CA + FIA + EMN + ED + EDD + EDRA + LSE + GM + EM + SS
Model 2: FoHF \sim LSE + GM + EM + SS
Largest model fitted by Imrob(), i.e. SMDM
```

0.0007318

89

pseudoDf

1

2

Example from Finance - RBSA2 (i.e., SLIDE 21 again)

Return-Based Style Analysis of Fund of Hedge Funds

	lm(FoH	IF \sim . , dat	a=FoHF)	$Imrob(FoHF \sim ., data = FoHF, {\tiny setting="KS2014"})$		
	Estimate	se	Pr(> t)	Estimate	se	$\Pr(> t)$
(1)	-0.0019	0.0017	0.2610	-0.0030	0.0014	0.0377
RV	0.0062	0.3306	0.9850	0.3194	0.2803	0.2564
CA	-0.0926	0.1658	0.5780	-0.0671	0.1383	0.6280
FIA	0.0757	0.1472	0.6083	-0.0204	0.1279	0.8730
EMN	0.1970	0.1558	0.2094	0.2721	0.1328	0.0430
ED	-0.3010	0.1614	0.0655	-0.4763	0.1389	0.0009
EDD	0.0687	0.1301	0.5986	0.1019	0.1112	0.3611
EDRA	0.0735	0.1882	0.6971	0.0903	0.1583	0.5689
LSE	0.4407	0.1521	0.0047	0.5813	0.1295	2.05e-05
GM	0.1723	0.0822	0.0390	-0.0159	0.0747	0.8319
EM	0.1527	0.0667	0.0245	0.1968	0.0562	0.0007
SS	0.0282	0.0414	0.4973	0.0749	0.0356	0.0378
	Residual st	tandard err	or: 0.009315	Residual standard error: 0.007723		

Robust MM-fit identifies clearly two outliers.

Robuste Inferenz 0000000000000000

Example from Finance - RBSA2: Residual Analysis with Robust Fit

Robuste Inferenz 000000000000000

Robuste Inferenz 000000000000000

Variable Selection

A variable selection criterion that is based on robust principles is the robustified version of Akaike's "final prediction error" criterion (not to be confused with AIC):

$$\mathsf{RFPE}\langle C\rangle := \frac{1}{n} \sum_{i=1}^{n} \rho \left\langle \frac{r_{i}^{C}}{\widehat{\sigma}_{f}} \right\rangle + \frac{q}{n} \widehat{\tau}$$

with C the set of variables considered, q the number of variables considered, and $\widehat{\sigma}_f$ the robust scale estimate based on the full set of variables. The correction factor $\hat{\tau}$ is calculated as on Slide 26. HD1. except that $\widehat{\sigma}$ is replaced by $\widehat{\sigma}_f$.

Example Fund of Hedge Funds II

```
## Classical variable selection with AIC
> step(FoHF2.lm1) # ...output shortened ...
FoHF \sim EMN + ED + LSE + GM + EM
          Df
                                   RSS
                Sum of Sa
                                             AIC
                             0.0078582
 <none>
                                         -943.59
 - EMN
               0.00032529
                           0.0081835
                                         -941.50
 - ED
             0.00043180 0.0082900
                                        -940.19
 - GM
           1 0.00049510 0.0083533
                                        -939.42

    EM

           1 0.00059036 0.0084486
                                         -938.28
 - LSE
               0.00123463 0.0090928
                                         -930.85
## Robust variable selection criterion
> library(RobStatTM)
> h.cont <- lmrobdet.control(bb=0.5, efficiency=0.85, family="bisquare")
> FoHF2.rlm1 <- lmrobdetMM(FoHF \sim . , data=FoHF2, control=h.cont)
> step.lmrobdetMM(FoHF2.rlm1) # ...output shortened ...
Model: FoHF \sim RV + EMN + ED + LSE + EM + SS
scale: 0.007999167
          Df
                  RFPE
               0.20127
 <none>
 R.V
               0.20384
 EMN
               0.20371
 ED
               0.22507
 LSE
              0.23117
 EM
               0.22365
```

This two procedures do not select the same variables, but agree on 4 variables.

0.20724

SS

3.1 Unified Model Formulation

Generalized linear models were formulated by John Nelder and Robert Wedderburn as a way of unifying various statistical regression models, including linear regression, logistic regression, Poisson regression and Gamma regression.

The generalization is based on a refomulation of the linear regression model. Instead of

$$Y_i = \theta_0 + \theta_1 \cdot x_i^{(1)} + \ldots + \theta_p \cdot x_i^{(p)} + E_i$$
, $i = 1, \ldots n$, with E_i ind. $\sim \mathcal{N} \left\langle 0, \sigma^2 \right\rangle$

use

$$Y_i$$
 ind. $\sim \mathcal{N}\left\langle \mu_i, \sigma^2 \right\rangle$ with $\mu_i = \theta_0 + \theta_1 \cdot x_i^{(1)} + \ldots + \theta_p \cdot x_i^{(p)}$

The expectation μ_i may be linked to the linear predictor $\eta_i = \theta_0 + \theta_1 \cdot x_i^{(1)} + \ldots + \theta_p \cdot x_i^{(p)}$ by another function than the identity function. In general, we assume

$$g\langle\mu_i\rangle=\eta_i$$

Discrete Generalised Linear Models

The two discrete generalised linear models are the **binary / binomial** regression model and Poisson regression model.

Let Y_i , $i=1,\ldots,n$ be the response and $\eta_i=\underline{x}_i^T\underline{\theta}=\sum_{i=1}^p x_i^{(j)}\cdot\theta_j$ its linear predictor. Then

Binary / Binomial Regression Y_i indep. $\sim \mathcal{B}\langle \pi_i, m_i \rangle$ with

$$\mathsf{E}\left\langle \frac{Y_i}{m_i} | \underline{x}_i \right\rangle = \pi_i$$

$$\mathsf{Var}\left\langle \frac{Y_i}{m_i} | \underline{x}_i \right\rangle = \frac{\pi_i \cdot (1 - \pi_i)}{m_i}$$

Poisson Regression

 Y_i indep. $\sim \mathcal{P}\langle \lambda_i \rangle$ with

$$\mathsf{E} \langle Y_i | \underline{x}_i \rangle = \lambda_i$$
 $\mathsf{Var} \langle Y_i | \underline{x}_i \rangle = \lambda_i$

The mean response π_i and λ_i , respectively, are related to the linear predictor η_i by the link function $g\langle\cdot\rangle$: $g\langle\pi_i\rangle=\eta_i$. The canonical links are

$$g\left\langle \pi_{i}\right\rangle =\log\left\langle \pi_{i}/(1-\pi_{i})\right\rangle \ \ \text{(Logit model)} \qquad \qquad g\left\langle \lambda_{i}\right\rangle =\log\left\langle \lambda_{i}\right\rangle \ \ \text{(log-linear model)}$$

Other choices for the link functions are possible.

Gamma Regression

Let Y_i , $i=1,\ldots,n$ be the response and $\eta_i=\underline{x}_i^T\underline{\theta}=\sum_{j=1}^p x_i^{(j)}\cdot\theta_j$ its linear predictor. Then

$$\begin{array}{ll} Y_i \text{ indep.} \sim \operatorname{Gamma} \left<\alpha_i,\beta_i\right> \text{ with} \\ \operatorname{E}\left< Y_i | \underline{x}_i\right> &= \frac{\alpha_i}{\beta_i} \\ \operatorname{Var}\left< Y_i | \underline{x}_i\right> &= \frac{\alpha_i}{\beta_i^2} \end{array}$$

Common link functions are

$$g\langle \mu_i \rangle = \frac{1}{\mu_i}$$
 inverse (canonical)

$$g\langle \mu_i \rangle = \log \langle \mu_i \rangle$$

$$g\langle \mu_i \rangle = \mu_i$$
 identity.

In GLM it is assumed that

- the response Y_i is independently distributed according to a distribution from the exponential family with expectation E ⟨Y_i⟩ = μ_i.
- The expectation μ_i is linked by a function g to the linear predictor $\underline{x}_i^T \underline{\beta}$: $g \langle \mu_i \rangle = \underline{x}_i^T \beta$
- The variance of the response depends on $\mu_i = \mathsf{E} \langle Y_i \rangle$: $\mathsf{Var} \langle Y_i \rangle = \phi \, V \, \langle \mu_i \rangle$. The so-called variance function $V \, \langle \mu_i \rangle$ is determined by the distribution. ϕ is the dispersion parameter.

Estimating Equation

The estimating equations of GLM can be written in a unified form.

$$0 = \sum_{i=1}^{n} \frac{y_{i} - \mu_{i}}{V \langle \mu_{i} \rangle} \, \mu'_{i} \, \underline{x}_{i} = \sum_{i=1}^{n} \frac{y_{i} - \mu_{i}}{\sqrt{V \langle \mu_{i} \rangle}} \, \frac{\mu'_{i}}{\sqrt{V \langle \mu_{i} \rangle}} \, \underline{x}_{i}$$

where $\mu'_i = \partial \mu \langle \eta_i \rangle / \partial \eta_i$ is the derivative of the inverse link function.

 $\frac{y_i - \mu_i}{\sqrt{V(\mu_i)}}$ are called **Pearson residuals**.

If there are no leverage points, their variance is approximately constant,

that is
$$\operatorname{Var}\left\langle rac{y_i - \mu_i}{\sqrt{V\left\langle \mu_i
ight
angle}}
ight
angle pprox \phi \, \sqrt{1 - H_{ii}} \, .$$

In R use $glm(Y \sim ..., family=..., data=...)$ to fit a GLM to data.

If only two observations are misclassified (magenta points) ...

Mallows type (robust) quasi-likelihood estimator (Mqle)

Cantoni and Ronchetti (2001) suggested a Mallows type robustification of the estimating equation of the GLM-estimator:

$$\underline{0} = \sum_{i=1}^{n} \left(\psi_{c} \langle r_{i} \rangle \frac{\mu_{i}'}{\sqrt{V \langle \mu_{i} \rangle}} \underline{x}_{i} \mathbf{w} \langle \underline{x}_{i} \rangle - \underline{\text{fcc}} \langle \underline{\theta} \rangle \right) ,$$

where $\psi_c\langle\rangle$ is the Huber function and the vector constant $\underline{\text{fcc}}\langle\underline{\theta}\rangle$ ensures the Fisher consistency of the estimator.

- The "weights" $w\langle x_i \rangle$ can be used to down-weight leverage points.
- If $w \langle \underline{x}_i \rangle = 1$ for all observations i then the influence of position is not bounded (cf. regression GM-estimator).
- To bound the total influence, one may, e.g., use $w\langle \underline{x}_i \rangle = \sqrt{1 H_{ii}}$. Since such an estimator will not yet have high breakdown point, we better use the inverse of the Mahalanobis distance for \underline{x}_i which is based on a robust covariance estimator with high breakdown point (cf. Chap. 4).

Inference

The advantage of this approach is that inference results are available based

- on the asymptotic Gaussian distribution of the estimator (i.e., on $\mathcal{N}\langle\theta,\mathbf{\Omega}\rangle$) and
- on robust quasi-deviances, i.e., on $\widehat{\Lambda} = D\left\langle \underline{y}, \widehat{\theta}_{\mathsf{Mqle}}^{\mathsf{red}} \right\rangle D\left\langle \underline{y}, \widehat{\theta}_{\mathsf{Mqle}}^{\mathsf{full}} \right\rangle$.
- I do not dare to present the formulas for Ω and $D\left\langle \underline{y},\,\widehat{\underline{\theta}}_{\mathsf{Mqle}}\right\rangle$, because they look frightening, but cf. LN 3.2.c,d.
- The test statistic $\widehat{\Lambda}$ is not just χ^2 distributed but it is rather distributed like a linear combination of χ_1^2 distributions.
- Because the calculation of $\hat{\Lambda}$ is challenging, there is also an approximate version available, which is asymptotically χ^2 distributed.

Implementation

Theory and implementation in R cover responses which are **Poisson**, **binomial**, **gamma** or **Gaussian** (i.e., linear regression GM-estimator) distributed.

- Fitting in R is done by
 glmrob(Y ~ ..., family=..., data=...,
 weights.on.x=c("none", "hat", "robCov", "covMcd"))
- Testing in R is done by anova(Fit1, Fit2, test=c("Wald", "QD", "QDapprox"))
 - "QD"= robust quasi-deviance; "QDapprox"= approximate version of "QD"

Take Home Message Half-Day 2

- Least-squares estimation are unreliable if contaminated observations are present
- Better use a Regression MM- (or SMDM-) Estimator in the presence of potential leverage points
 - In the R packages robustbase you find:

```
lmrob(...)
lmrob(..., setting="KS2014")
anova(...)
plot(''lmrob object'')
Regression MM-Estimator
Regression SMDM-Estimator
Comparing models using robust procedures
graphics for a residual analysis
```

Remark: lmrob(...) is based on an improved algorithm (since robustbase 0.9-2) and can handle both numeric and factor variables as exploratory variables.

- Robust GM-estimators are also available for generalised linear models (GLMs)
 - In the R packages robustbase you find:

```
glmrob(...) (Mallows type) Regression GM-Estimators anova(...) Comparing models using robust procedures
```