Lição 6

Grafos

Objetivos

Ao final desta lição, o estudante será capaz de:

- Explicar conceitos básicos e definições de grafos
- Discutir métodos de representação de grafos: matriz de adjacência e lista de adjacência
- Grafos Transversais usando os algoritmos depth first search (busca em primeira profundidade) e breadth first search (busca em primeira largura)
- Entender árvores geradoras de custo mínimo para grafos nãodirigidos usando o algoritmo de Prim e de Kruskal
- Resolver o problema de menor caminho com início único usando o algoritmo de *Dijkstra*
- Resolver o problema menor caminho para todos os pares usando o algoritmo de Floyd

Grafo não-direcionado

$$V = \{1, 2, 3, 4\}$$

 $E = \{(1, 4), (2, 3), (3, 4)\}$

Dois vértices

Grafo não-direcionado completo

• Grafo direcionado (ou dígrafo)

Grafo direcionado completo

$$V = \{ 1, 2, 3 \}$$

 $E = \{ <1, 2>, <1, 3>, <2, 1>, <2, 3> \}$

Subgrafo

Subgraph G'

- Caminho simples
- Ciclo simples
- Conexão dos vértices
- Grafo ponderado

• Árvore de Abrangência

$$Cost = 18$$

•Representações de Grafos

Matriz de Adjacência para Grafos Direcionados

_	1	2	3	4	5
1	0	1	∞	9	∞
2	Ø	0	2	5	10
3	Ø	8	0	∞	3
4	Ø	8	4	0	8
5	6	8	∞	∞	0

Representações de Grafos

Lista de Adjacência para Grafos Direcionados

Representações de Grafos

Matriz de adjacência para Grafos Não Direcionados

	1	2	3	4	5
1	0	*	*	*	*
2	0	0	*	*	*
3	0	1	0	*	*
4	1	0	1	0	*
5	1	1	0	0	0

•Representações de Grafos

Lista de Adjacência para Grafos Não Direcionados

• Busca em Primeira Profundidade (DFS)

• Busca em Primeira Profundidade (DFS)

Busca em Primeira Largura (BFS)

Queue: 9 6 7 8

Busca em Primeira Largura (BFS)

Queue: 4 10 3

Busca em Primeira Largura (BFS)

Queue: 10 3

Queue: 3

1 2 5 9 6 7 8 4 10 3

- Greedy Approach
- Teorema MST

Algoritmo de Prim

• Algoritmo de Prim

Algoritmo de Kruskal

Problemas de Menor Caminho para Grafos Direcionados

- Problema de Menor Caminho de Início Único (Single Source Shortest Paths – SSSP)
- Problema de Menor Caminho para Todos os Pares (All-Pairs Shortest Paths - APSP)

Problemas de Menor Caminho para Grafos Direcionados

Algoritmo de Dijkstra para o Problema SSSP

Problemas de Menor Caminho para Grafos Direcionados

Algoritmo de Floyd para o problema APSP

Sumário

- Definição e Conceitos Relacionados
- Representações de Grafos
- Grafos Transversais
- Árvore de Abrangência de Custo Mínimo para Grafos não Direcionados
- Problemas de Menor Caminho para Grafos Direcionados

Parceiros

 Os seguintes parceiros tornaram JEDITM possível em Língua Portuguesa:

