示例-给定电路分析功能(续)

$$X = A$$

$$Y = A \oplus B$$

$$Z = A \oplus C$$

- 列写真值表
- 确定电路逻辑功能

电路实现功能:

将三位二进制原码转 换为三位二进制反码

真值表

В	С	X	Y	Z
0	0	0	0	0
0	1	0	0	1
1	0	0	1	0
1	1	0	1	1
0	0	1	1	1
0	1	1	1	0
1	0	1	0	1
1	1	1	0	0
	0 0 1 1 0 0	 0 0 1 1 0 0 1 1 0 0 	0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 1	0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0

组合逻辑电路设计

根据实际逻辑问题,求出实现所要求逻辑功能 的最简逻辑电路

逻辑功能 逻辑图

• 设计步骤

- 分析实际逻辑问题的因果关系,确定输入/输出变量,定义逻辑 状态含义,列出真值表
- 由真值表写出逻辑函数式
- 根据选用器件类型,化简和变换逻辑函数式
- 画出逻辑电路图

示例-给定逻辑问题设计电路

· 设计三人多数表决电路 假设输入变量A、B、C

1--赞成, 0--否决

输出变量Y

1--通过, 0--未通过

$$Y = AB + AC + BC$$

$$Y = (A + B)(A + C)(B + C)$$

真值表

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Y(A,B,C) = \sum m(3,5,6,7)$$

示例-给定逻辑问题设计电路(续)

与或式实现

$$Y = AB + AC + BC$$

或与式实现

$$Y = (A + B)(A + C)(B + C)$$

逻辑门等效符号

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A \cdot B} = \overline{A} \cdot \overline{B}$$

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$