Online Learning for Min-Max Discrete Problems

Theoretical Computer Science Vol. 930 (2022) 209–217. E. Bampis, D. Christou, V. Escoffier, K. T. Nguyen

Speaker: Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

August 2024

Outline

- Introduction
 - The Online Learning Framework
 - Main Contribution
- Main Theorem I
 - The Proof
 - An OGD for Online Min-Max-VC
- Main Theorem II
 - Multi-Instance Min-Max VC
 - Multi-Instance Min-Max Perfect Matching
- 4 Appendix
 - What is FTL and Why not FTL?
 - Gradient Descent for No-Regret

Outline

- Introduction
 - The Online Learning Framework
 - Main Contribution
- Main Theorem I
 - The Proof
 - An OGD for Online Min-Max-VC
- Main Theorem II
 - Multi-Instance Min-Max VC
 - Multi-Instance Min-Max Perfect Matching
- 4 Appendix
 - What is FTL and Why not FTL?
 - Gradient Descent for No-Regret

The Online Learning Framework

Online learning framework (1/4)

We focus on cost minimization problems.

- Decision space: \mathcal{X} .
- ullet State space: ${\mathcal Y}$.
- Cost function $f: \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}$.

Online learning framework (1/4)

We focus on cost minimization problems.

- Decision space: \mathcal{X} .
- ullet State space: ${\cal Y}$.
- Cost function $f: \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}$.

A perspective of an iterative adversarial game with T rounds.

- **①** The algorithm first chooses an action $\mathbf{x}^t \in \mathcal{X}$.
- **②** The (adversarial) nature reveals $\mathbf{y}^t \in \mathcal{Y}$ that could depend on \mathbf{x}^t .
- **3** The algorithm observes the state \mathbf{y}^t and suffers a loss $f^t(\mathbf{x}^t) = f(\mathbf{x}^t, \mathbf{y}^t)$.

Online learning framework (2/4)

The objective of the player: minimize the accumulative cost

$$\sum_{t=1}^{T} f(\mathbf{x}^t, \mathbf{y}^t).$$

Online Learning Algorithms

An algorithm that decides the actions \mathbf{x}^t before observing \mathbf{y}^t for each t.

• The efficiency measure: regret.

$$R_T = \sum_{t=1}^T f(\mathbf{x}^t, \mathbf{y}^t) - \sum_{t=1}^T f(\mathbf{x}^*, \mathbf{y}^t),$$

where $\mathbf{x}^* = \arg\min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{T} f(\mathbf{x}, \mathbf{y}^t)$ (static).

□ ト 4 問 ト 4 目 ト 4 目 ・ 夕 Q ○

Online learning framework (3/4)

- We aim for algorithms with $R_T = O(T^c)$, for $0 \le c < 1$.
 - Vanishing regret (or no-regret).

Online learning framework (3/4)

- We aim for algorithms with $R_T = O(T^c)$, for $0 \le c < 1$.
 - Vanishing regret (or no-regret).
- A computational efficiency concern:

Online learning framework (3/4)

- We aim for algorithms with $R_T = O(T^c)$, for $0 \le c < 1$.
 - Vanishing regret (or no-regret).
- A computational efficiency concern:
 - It coulde be NP-hard to compute \mathbf{x}_t 's even for T=1 and \mathbf{y}^1 is revealed beforehand.

A relaxed notion: α -regret

$$R_T^{\alpha} = \sum_{t=1}^T f(\mathbf{x}^t, \mathbf{y}^t) - \alpha \sum_{t=1}^T f(\mathbf{x}^*, \mathbf{y}^t).$$

• Goal: vanishing α -regret for some $\alpha \geq 1$.

The Online Learning Framework

Online learning framework (4/4)

Polynomial Time Vanishing α -Regret Algorithms

An online learning algorithm which

- computes \mathbf{x}^t in poly(n, t), where n is the input instance size.
- the (expected) regret is bounded by $poly(n)T^c$, for some constant 0 < c < 1.
- For the case $\alpha=1$, we call it a polynomial time vanishing regret algorithm.

Online learning framework (4/4)

Polynomial Time Vanishing α -Regret Algorithms

An online learning algorithm which

- computes \mathbf{x}^t in poly(n, t), where n is the input instance size.
- the (expected) regret is bounded by $poly(n)T^c$, for some constant 0 < c < 1.
- For the case $\alpha = 1$, we call it a polynomial time vanishing regret algorithm.

The regret is polynomial in n and sublinear in T.

Main Contribution

Main Contribution (1/8)

Cardinality constrained problems

Given an *n*-elements set \mathcal{U} , a set of constraints \mathcal{C} on $2^{\mathcal{U}}$, and an integer k.

Goal: Determine whether there exists a feasible solution of size $\leq k$.

Min-Max-P

Given a cardinality problem ${\cal P}$ where all the elements in ${\cal U}$ are given non-negative weights.

Goal: Compute a feasible solution such that the maximum weight of all its elements is minimized.

Main Contribution

Main Contribution (2/8)

Online Min-Max- \mathcal{P}

An online learning variant of min-max- \mathcal{P} such that

- ullet the set of elements in ${\cal U}$ and the set of constraints ${\cal C}$ remain static.
- ullet the weights on the elements of ${\cal U}$ change over time.

Main Contribution (2/8)

Online Min-Max- \mathcal{P}

An online learning variant of min-max- \mathcal{P} such that

- ullet the set of elements in ${\cal U}$ and the set of constraints ${\cal C}$ remain static.
- ullet the weights on the elements of ${\cal U}$ change over time.

Example: Min-Max Vertex Cover

- **Static:** Given a graph G = (V, E), where each $v \in V$ has weight $w(v) \ge 0$. Find a vertex cover $V' \subseteq V$ which minimizes $w(V') = \max\{w(v) \mid v \in V'\}$.
- Online-version:
 - There are T rounds, a weight function w^t on the vertices for each round t.
 - An algorithm has to pick a vertex cover V'_t of G and suffers a loss $w(V'_t) = \max\{w(v) : v \in V'_t\}.$

Vertex Cover (VC)

Miym, CC BY-SA 3.0, via Wikimedia Commons

Main Contribution

Static Min-Max VC is polynomial-time solvable

- VC_W : Given an integer W, determine if G has a vertex cover of maximum weight $\leq W$.
 - Pick all vertices of weight $\leq W$ and see if this is a vertex cover.

Static Min-Max VC is polynomial-time solvable

- VC_W : Given an integer W, determine if G has a vertex cover of maximum weight $\leq W$.
 - Pick all vertices of weight $\leq W$ and see if this is a vertex cover.
 - The optimum solution: find the smallest W such that VC_W is affirmative.

Static Min-Max VC is polynomial-time solvable

- VC_W : Given an integer W, determine if G has a vertex cover of maximum weight $\leq W$.
 - Pick all vertices of weight $\leq W$ and see if this is a vertex cover.
 - The optimum solution: find the smallest W such that VC_W is affirmative.
 - Check all values W in $\{w(v) : v \in V(G)\}$.

Main Contribution (3/8)

[A,B]-Gap- \mathcal{P}

- Given $0 \le A < B \le 1$.
- The decision problem where given an instance of \mathcal{P} such that $|\mathbf{x}_{opt}| \leq An$ or $|\mathbf{x}_{opt}| \geq Bn$.
- **Goal:** Decide whether $|\mathbf{x}_{opt}| < Bn$.

Main Theorem I

Assume that [A, B]-Gap- \mathcal{P} is NP-complete, for $0 \le A < B \le 1$. Then for every $\alpha < \frac{B}{A}$, there is no (randomized) polynomial-time vanishing α -regret algorithm for online min-max- \mathcal{P} unless NP = RP.

Main Contribution (4/8)

Corollary 1

- The online min-max vertex cover problem does not admit a polynomial time vanishing $(\sqrt{2} \epsilon)$ -regret algorithm unless NP = RP.
- It does not admit a polynomial time vanishing (2ϵ) -regret algorithm unless Unique Game is in RP.

Corollary 2

If a cardinality problem $\mathcal P$ is NP-complete, then there is no polynomial time vanishing regret algorithm for online min-max- $\mathcal P$ unless NP = RP.

• Set $\alpha = 1, A = \frac{k}{n}, B = \frac{k+1}{n} = A + \frac{1}{n}$ Deciding if $|\mathbf{x}_{opt}| \le k \Leftrightarrow$ deciding if $|\mathbf{x}_{opt}| \le An$ or $|\mathbf{x}_{opt}| \ge Bn$.

4 D > 4 P > 4 B > 4 B > B 9 Q P

Main Contribution (5/8)

Algorithm 2: OGD-based algorithm for Online MinMax Vertex Cover.

- **1** Select an arbitrary fractional vertex cover $x^1 \in \mathcal{Q}$.
- **2** for t = 1, 2, ... do
- **3** Round x^t to X^t : $X_i^t = 1$ if $x_i^t \ge 1/2$ and $X_i^t = 0$ otherwise.
- Play $X^t \in \{0, 1\}^n$. Observe w^t (weights of vertices) and incur the cost $f^t(X^t) = \max_i w_i^t X_i^t$.
- 5 Update $y^{t+1} = x^t \frac{1}{\sqrt{t}} g^t(x^t)$.
- **6** Project y^{t+1} to $\mathcal Q$ w.r.t the ℓ_2 -norm: $x^{t+1} = \operatorname{Proj}_{\mathcal Q}(y^{t+1}) := \arg\min_{x \in \mathcal Q} \|y^{t+1} x\|_2$.
 - We consider the relaxation:

$$\min_{\mathbf{x} \in \mathcal{Q}} \max_{i \in V} w_i x_i$$
,

- $Q := \{ \mathbf{x} : x_i + x_j \ge 1, \forall (i,j) \in E, 0 \le x_i \le 1, \forall i \in V \}.$
- a sub-gradient $g^t(\mathbf{x}^t) = [0, 0, \dots, w_i^t, 0, \dots, 0]$ with w_i in coordinate arg $\max_{1 \le i \le n} w_i^t x_i^t$ and 0 otherwise.
- Round the solution: $X_{i+1} = 1$ if $x_i^{t+1} \ge 1/2$ and 0 otherwise.

4□ ▶ 4□ ▶ 4 □ ▶ 4 □ ▶ 3 ■ 900

Main Contribution (6/8)

Theorem (OGD for online Min-Max VC)

Let $W = \max_{1 \le t \le T} \max_{1 \le i \le n} w_i^t$. Then, after T steps, Algorithm 2 achieves

$$\sum_{t=1}^{T} \max_{1 \leq i \leq n} w_i^t X_i^t \leq 2 \cdot \min_{X^* \in \mathcal{X}} \sum_{t=1}^{T} \max_{1 \leq i \leq n} w_i^t X_i^* + 3W\sqrt{nT}$$

Main Contribution (7/8)

• Follow-The-Regularized-Leader (FTRL): an algorithm which is less predictable and more stable:

$$\mathbf{x}^t = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{X}} \left(\sum_{\tau=1}^{t-1} f(\mathbf{x}, \mathbf{y}^{\tau}) + R(\mathbf{x}) \right),$$

where $R(\mathbf{x})$ is the regularization term.

Main Contribution (7/8)

 Follow-The-Regularized-Leader (FTRL): an algorithm which is less predictable and more stable:

$$\mathbf{x}^t = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{X}} \left(\sum_{ au=1}^{t-1} f(\mathbf{x}, \mathbf{y}^{ au}) + R(\mathbf{x}) \right),$$

where $R(\mathbf{x})$ is the regularization term.

Need an optimization oracle over the observed history.

Main Contribution (7/8)

• Follow-The-Regularized-Leader (FTRL): an algorithm which is less predictable and more stable:

$$\mathbf{x}^t = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{X}} \left(\sum_{ au=1}^{t-1} f(\mathbf{x}, \mathbf{y}^{ au}) + R(\mathbf{x}) \right),$$

where $R(\mathbf{x})$ is the regularization term.

• Need an optimization oracle over the observed history.

Multi-instance version of min-max- \mathcal{P}

Given an integer N > 0, a set \mathcal{X} of feasible solutions, and N objective functions f_1, f_2, \ldots, f_N over \mathcal{X} .

Goal: Minimize $\sum_{i=1}^{N} f_i(\mathbf{x})$ over \mathcal{X} .

Main Contribution (8/8)

Examples:

- Min-max vertex cover
 - Weight function $w: V \mapsto \mathbb{R}^+$ on the vertices.
- Min-max perfect matching
 - Weight function $w : E \mapsto \mathbb{R}^+$ on the edges.
 - The weight of the heaviest edge on the perfect matching is minimized.
- Min-max path
 - Given a graph G = (V, E) and two vertices s, t, and a weight function $w : E \mapsto \mathbb{R}^+$ on the edges.
 - The weight of the heaviest edge in the s-t path is minimized.

Main Theorem II

The multi-instance version of min-max perfect matching, min-max path and min-max vertex cover are APX-hard.

Outline

- Introduction
 - The Online Learning Framework
 - Main Contribution
- Main Theorem I
 - The Proof
 - An OGD for Online Min-Max-VC
- Main Theorem II
 - Multi-Instance Min-Max VC
 - Multi-Instance Min-Max Perfect Matching
- 4 Appendix
 - What is FTL and Why not FTL?
 - Gradient Descent for No-Regret

Proof of Main Theorem I

Main Theorem I

Assume that the problem [A,B]-Gap- $\mathcal P$ is NP-complete, for $0 \le A < B \le 1$. Then for every $\alpha < \frac{B}{A}$, there is no (randomized) polynomial-time vanishing α -regret algorithm for online min-max- $\mathcal P$ unless NP = RP.

- Assumption: a vanishing α -regret algorithm $\mathcal O$ as an oracle for online min-max- $\mathcal P$ with $\alpha=\frac{\mathcal B}{\mathcal A}-\epsilon=(1-\epsilon')\frac{\mathcal B}{\mathcal A}$, for $\epsilon>0$.
- Devise a polynomial time algorithm that
 - ullet answers 'yes' with prob. < D < 1 if $|\mathbf{x}_{opt}| \leq An$
 - answers 'no' if $|\mathbf{x}_{opt}| \geq Bn$.
- ★ **Note:** if $|\mathbf{x}_{opt}| \ge Bn$, all the solutions \mathbf{x}_t computed by \mathcal{O} must have size $\ge Bn$.

Algorithm for the [A, B]-Gap- \mathcal{P}

- **1** for t = 1, 2, ..., T do
 - Choose $\mathbf{x}^t \in \mathcal{X}$ according to the random distribution given by \mathcal{O} .
 - if $|\mathbf{x}^t| < Bn$ then return 'yes' (i.e., $|\mathbf{x}_{opt}| \le An$).
 - Fix a weight vector w^t by assigning weight 1 to an element of \mathcal{U} chosen uniformly at random and weight 0 to all other elements.
 - Feed the weight vector and the cost $f^t(\mathbf{x}^t) = \max_{u \in \mathbf{x}^t} w^t(u)$ back to \mathcal{O} .
- **2** return 'No' (i.e., $|\mathbf{x}_{opt}| \geq Bn$).

- Assume that $|\mathbf{x}_{opt}| \leq An$.
- Let E be the event that the algorithm returns 'No'.
 - It finds $|\mathbf{x}_t| \geq Bn$ at each step $t \in [T]$.
- We get

$$\Pr[E] = \Pr\left[\bigcap_{t=1}^{I} \{|\mathbf{x}^{t}| \geq Bn\}\right]$$

- Assume that $|\mathbf{x}_{opt}| \leq An$.
- Let E be the event that the algorithm returns 'No'.
 - It finds $|\mathbf{x}_t| \geq Bn$ at each step $t \in [T]$.
- We get

$$\Pr[E] = \Pr\left[\bigcap_{t=1}^{I} \left\{ |\mathbf{x}^{t}| \ge Bn \right\} \right] \le \Pr[X \ge TBn]$$

The Proof

Proof of Main Theorem I (contd.)

- Assume that $|\mathbf{x}_{opt}| \leq An$.
- ullet Let E be the event that the algorithm returns 'No'.
 - It finds $|\mathbf{x}_t| \geq Bn$ at each step $t \in [T]$.
- We get

$$\Pr[E] = \Pr\left[\bigcap_{t=1}^{T} \left\{ |\mathbf{x}^{t}| \ge Bn \right\} \right] \le \Pr[X \ge TBn] \le \frac{\mathbf{E}[X]}{TBn}$$
$$= \frac{\sum_{t=1}^{T} \mathbf{E}[|\mathbf{x}^{t}|]}{TBn} = \frac{\sum_{t=1}^{T} \mathbf{E}[f^{t}(\mathbf{x}^{t})]}{TB}.$$

where
$$X = \sum_{t=1}^{T} |\mathbf{x}^t|$$
, and $\mathbf{E}[f^t(\mathbf{x}^t)] = \mathbf{E}[|\mathbf{x}^t|]/n$.

The Proof

Proof of Main Theorem I (contd.)

Note:

- $|\mathbf{x}_{opt}| \leq An$ (by assumption).
- Only one element of weight 1 is picked uniformly at random at each time t

Hence,
$$\Pr[f^t(\mathbf{x}_{opt}) = 1] \leq A$$

Note:

- $|\mathbf{x}_{opt}| \leq An$ (by assumption).
- Only one element of weight 1 is picked uniformly at random at each time t

Hence,
$$\Pr[f^t(\mathbf{x}_{opt}) = 1] \leq A \Rightarrow \sum_{t=1}^T \mathbf{E}[f^t(\mathbf{x}_{opt})] \leq AT$$
.

• Since $\mathcal O$ is a vanishing lpha-regret algorithm with $lpha=(1-\epsilon')\frac{B}{A}$,

Note:

- $|\mathbf{x}_{opt}| \leq An$ (by assumption).
- Only one element of weight 1 is picked uniformly at random at each time t

Hence,
$$\Pr[f^t(\mathbf{x}_{opt}) = 1] \leq A \Rightarrow \sum_{t=1}^T \mathbf{E}[f^t(\mathbf{x}_{opt})] \leq AT$$
.

• Since ${\mathcal O}$ is a vanishing ${\alpha}$ -regret algorithm with ${\alpha}=(1-\epsilon')\frac{B}{A}$,

$$\sum_{t=1}^{T} \mathbf{E}[f^{t}(\mathbf{x}^{t})] \leq \alpha \sum_{t=1}^{T} \mathbf{E}[f^{t}(\mathbf{x}_{opt})] + poly(n)T^{c}$$
$$\leq (1 - \epsilon')BT + poly(n)T^{c}.$$

Hence,

The Proof

$$\Pr[E] \leq \frac{(1-\epsilon')BT + \operatorname{poly}(n)T^c}{BT} = (1-\epsilon') + \frac{\operatorname{poly}(n)T^{c-1}}{B}.$$

Proof of Main Theorem I (contd.)

Hence,

$$\Pr[E] \leq \frac{(1-\epsilon')BT + \mathsf{poly}(n)T^c}{BT} = (1-\epsilon') + \frac{\mathsf{poly}(n)T^{c-1}}{B}.$$

We can choose
$$T = \left(\frac{B\epsilon'}{2\mathsf{poly}(n)}\right)^{\frac{1}{c-1}} = \left(\frac{A\epsilon}{2\mathsf{poly}(n)B}\right)^{\frac{1}{c-1}}$$
, then

$$\Pr[E] \le 1 - \frac{\epsilon'}{2} = 1 - \frac{A\epsilon}{2B}.$$

(constant; strictly smaller than 1)

Proof of Main Theorem I (contd.)

Hence,

$$\Pr[E] \leq \frac{(1-\epsilon')BT + \mathsf{poly}(n)T^c}{BT} = (1-\epsilon') + \frac{\mathsf{poly}(n)T^{c-1}}{B}.$$

We can choose
$$T = \left(\frac{B\epsilon'}{2\mathsf{poly}(n)}\right)^{\frac{1}{c-1}} = \left(\frac{A\epsilon}{2\mathsf{poly}(n)B}\right)^{\frac{1}{c-1}}$$
, then

$$\Pr[E] \le 1 - \frac{\epsilon'}{2} = 1 - \frac{A\epsilon}{2B}.$$

(constant; strictly smaller than 1)

• We've (roughly) shown that the [A, B]-Gap- \mathcal{P} is in RP.

- (ロト(間) (注) (注) (注) (注) かく(C)

The hardness result for online Min-Max VC is tight

Algorithm 2: OGD-based algorithm for Online MinMax Vertex Cover.

- **1** Select an arbitrary fractional vertex cover $x^1 \in \mathcal{Q}$.
- **2** for t = 1, 2, ... do
- **3** Round x^t to X^t : $X_i^t = 1$ if $x_i^t \ge 1/2$ and $X_i^t = 0$ otherwise.
- Play $X^t \in \{0, 1\}^n$. Observe w^t (weights of vertices) and incur the cost $f^t(X^t) = \max_i w_i^t X_i^t$.
- 5 Update $y^{t+1} = x^t \frac{1}{\sqrt{t}}g^t(x^t)$.
- **6** Project y^{t+1} to $\mathcal Q$ w.r.t the ℓ_2 -norm: $x^{t+1} = \operatorname{Proj}_{\mathcal Q}(y^{t+1}) := \arg\min_{x \in \mathcal Q} \|y^{t+1} x\|_2$.

Theorem (OGD for online Min-Max VC)

Let $W = \max_{1 \le t \le T} \max_{1 \le i \le n} w_i^t$. Then, after T steps, Algorithm 2 achieves

$$\sum_{t=1}^{T} \max_{1 \leq i \leq n} w_i^t X_i^t \leq 2 \cdot \min_{X^* \in \mathcal{X}} \sum_{t=1}^{T} \max_{1 \leq i \leq n} w_i^t X_i^* + 3W\sqrt{nT}$$

4 D > 4 B > 4 E > 4 E > 9 Q O

Proof of the tightness

The guarantee from the OGD algorithm:

$$\sum_{t=1}^{T} \max_{1 \leq i \leq n} w_i^t x_i^t \leq \min_{X^* \in \mathcal{Q}} \sum_{t=1}^{T} \max_{1 \leq i \leq n} w_i^t x_i^* + \frac{3DG}{2} \sqrt{T}$$

- $D \le \sqrt{n}$ (diameter of Q).
- $G \leq W$: Lipschitz constant of g^t .
- $\max_{1 \le i \le n} X_i^t w_i^t \le 2 \max_{1 \le i \le n} x_i^t w_i^t$ by the rounding procedure.

Outline

- Introduction
 - The Online Learning Framework
 - Main Contribution
- 2 Main Theorem
 - The Proof
 - An OGD for Online Min-Max-VC
- Main Theorem II
 - Multi-Instance Min-Max VC
 - Multi-Instance Min-Max Perfect Matching
- 4 Appendix
 - What is FTL and Why not FTL?
 - Gradient Descent for No-Regret

Recall Main Theorem II

• Follow-The-Regularized-Leader (FTRL): an algorithm which is less predictable and more stable:

$$\mathbf{x}^t = \operatorname*{arg\,min}_{\mathbf{x} \in \mathcal{X}} \left(\sum_{ au=1}^{t-1} f(\mathbf{x}, \mathbf{y}^ au) + R(\mathbf{x}) \right),$$

where $R(\mathbf{x})$ is the regularization term.

Need an optimization oracle over the observed history.

Multi-instance version of min-max-P

Given an integer N > 0, a set \mathcal{X} of feasible solutions, and N objective functions f_1, f_2, \ldots, f_N over \mathcal{X} .

Goal: Minimize $\sum_{i=1}^{N} f_i(\mathbf{x})$ over \mathcal{X} .

Remark

Main Theorem II

The multi-instance version of min-max perfect matching, min-max path and min-max vertex cover are APX-hard.

- \bullet The problems ${\cal P}$ could be polynomially solvable when using a "sum" objective.
 - Main Theorem I cannot be applied.

Remark

Main Theorem II

The multi-instance version of min-max perfect matching, min-max path and min-max vertex cover are APX-hard.

- ullet The problems ${\mathcal P}$ could be polynomially solvable when using a "sum" objective.
 - Main Theorem I cannot be applied.
- Main Theorem II shows that FTRL fails to efficiently solve the online min-max-P.

Multi-Instance Min-Max VC

- A straightforward reduction from VC (since VC is APX-hard).
- Let's say $V = \{v_1, v_2, \dots, v_n\}$.

Construct n weight functions $w^1, w^2, \ldots, w^n : V \mapsto \mathbb{R}$ such that

• In w^i : we set $w^i(v_i) = 1$ and $w^i(v) = 0$ for $v \neq v_i$.

Multi-Instance Min-Max VC

- A straightforward reduction from VC (since VC is APX-hard).
- Let's say $V = \{v_1, v_2, \dots, v_n\}$. Construct n weight functions $w^1, w^2, \dots, w^n : V \mapsto \mathbb{R}$ such that
 - In w^i : we set $w^i(v_i) = 1$ and $w^i(v) = 0$ for $v \neq v_i$.
- Any vertex cover has total cost equal to its size.

Perfect Matching

Miym, CC BY-SA 3.0, via Wikimedia Commons

- Maximum cardinality matchings.
- Only in (b) there is a perfect matching.

Multi-Instance Min-Max Perfect Matching (1/3)

- Reduction from the Max-3-DNF problem.
 - A 3-DNF formula: $(x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_3 \land x_4)$.
 - $(x_1 \wedge x_2 \wedge x_3)$: a clause
 - x_1 or $\neg x_2$: literals

Multi-Instance Min-Max Perfect Matching (1/3)

- Reduction from the Max-3-DNF problem.
 - A 3-DNF formula: $(x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge \neg x_2 \wedge \neg x_3) \vee (x_1 \wedge x_3 \wedge x_4)$.
 - $(x_1 \wedge x_2 \wedge x_3)$: a clause
 - x_1 or $\neg x_2$: literals
- Given
 - *n* Boolean variables $X = \{x_1, x_2, \dots, x_n\}$
 - m clauses C_1, C_2, \ldots, C_m (conjunctions of 3 literals of X)

Goal: Determine a truth assignment $\sigma : X \mapsto \{T, F\}$ such that the number of satisfied clauses is maximized.

Multi-Instance Min-Max Perfect Matching

Multi-Instance Min-Max Perfect Matching (2/3)

An instance \mathcal{I} of Max-3-DNF $\Rightarrow G(V, E)$ and m weight functions:

Multi-Instance Min-Max Perfect Matching (2/3)

An instance \mathcal{I} of Max-3-DNF $\Rightarrow G(V, E)$ and m weight functions:

• Each x_i is associated a 4-cycle on vertices $(u_i, u_i^t, \bar{u}_i, u_i^f)$.

- Weight function corresponds to clause C_j :
 - $w^j(u_iu_i^t) = 1$ if $\neg x_i \in C_i$, otherwise $w^j(u_iu_i^t) = 0$.
 - $w^j(u_iu_i^f) = 1$ if $x_i \in C_i$, otherwise $w^j(u_iu_i^f) = 0$. Edges incident to vertices \bar{u}_i always get weight 0.
- * The instance \mathcal{I}' of multi-instance min-max matching is constructed (in polynomial time).

Multi-Instance Min-Max Perfect Matching (3/3)

- A truth assignment σ of $\mathcal I$ corresponds to a matching M_σ of G.
- $\mathsf{value}(\mathcal{I}, \sigma) = m \mathsf{value}(\mathcal{I}', M_{\sigma})$

Multi-Instance Min-Max Perfect Matching (3/3)

- A truth assignment σ of $\mathcal I$ corresponds to a matching M_σ of G.
- $\mathsf{value}(\mathcal{I}, \sigma) = m \mathsf{value}(\mathcal{I}', M_{\sigma})$
- Assume that there exists a $(1+\epsilon)$ -approximation algorithm for multi-instance min-max perfect matching, then we can get a $(1-\rho\epsilon)$ approximation algorithm for Max-3-DNF for some constant ρ .
 - PTAS-reduction.

Multi-Instance Min-Max Perfect Matching (3/3)

- A truth assignment σ of $\mathcal I$ corresponds to a matching M_σ of G.
- $\mathsf{value}(\mathcal{I}, \sigma) = m \mathsf{value}(\mathcal{I}', M_{\sigma})$
- Assume that there exists a $(1+\epsilon)$ -approximation algorithm for multi-instance min-max perfect matching, then we can get a $(1-\rho\epsilon)$ approximation algorithm for Max-3-DNF for some constant ρ .
 - PTAS-reduction.
- Thus, multi-instance min-max perfect matching is APX-hard.

Online Learning for Min-Max Problems

Main Theorem II

Multi-Instance Min-Max Perfect Matching

Discussion

• How about just following the one with best performance?

What is FTL and Why not FTL?

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

That is, the best solution for the previous t-1 steps.

- How about just following the one with best performance?
 - Follow The Leader (FTL) Algorithm.
- First, we assume to make no assumptions on \mathcal{K} and $\{f_t : L \mapsto \mathbb{R}\}$.
- At time t, we are given previous cost functions f_1, \ldots, f_{t-1} , and then give the solution

$$\mathbf{x}_t := \arg\min_{\mathbf{x} \in \mathcal{K}} \sum_{k=1}^{t-1} f_k(\mathbf{x}).$$

That is, the best solution for the previous t-1 steps.

• It seems reasonable and makes sense, doesn't it?

FTL leads to "overfitting"

t: 1 $\mathbf{x}_{t}: \qquad (0.5, 0.5)$ $\ell_{t}: \qquad (0, 0.5)$ $f_{t}(\mathbf{x}_{t}): \qquad 0.25$ $\arg\min_{\mathbf{x}} \sum_{k=1}^{t} f_{k}(\mathbf{x}): \qquad (1, 0)$

t: 1 2
$$\mathbf{x}_{t}: \qquad (0.5, 0.5) \quad (1, 0)$$

$$\ell_{t}: \qquad (0, 0.5) \quad (1, 0)$$

$$f_{t}(\mathbf{x}_{t}): \qquad 0.25 \qquad 1$$

$$\arg\min_{\mathbf{x}} \sum_{k=1}^{t} f_{k}(\mathbf{x}): \qquad (1, 0) \quad (0, 1)$$

t: 1 2 3
$$\mathbf{x}_{t}: \qquad (0.5, 0.5) \quad (1, 0) \quad (0, 1)$$

$$\ell_{t}: \qquad (0, 0.5) \quad (1, 0) \quad (0, 1)$$

$$f_{t}(\mathbf{x}_{t}): \qquad 0.25 \qquad 1 \qquad 1$$

$$\arg\min_{\mathbf{x}} \sum_{k=1}^{t} f_{k}(\mathbf{x}): \qquad (1, 0) \quad (0, 1) \quad (1, 0)$$

t: 1 2 3 4
$$\mathbf{x}_{t}: \qquad (0.5, 0.5) \quad (1, 0) \quad (0, 1) \quad (1, 0)$$

$$\ell_{t}: \qquad (0, 0.5) \quad (1, 0) \quad (0, 1) \quad (1, 0)$$

$$f_{t}(\mathbf{x}_{t}): \qquad 0.25 \qquad 1 \qquad 1$$

$$\arg\min_{\mathbf{x}} \sum_{k=1}^{t} f_{k}(\mathbf{x}): \qquad (1, 0) \quad (0, 1) \quad (1, 0) \quad (0, 1)$$

t: 1 2 3 4 5

$$\mathbf{x}_t$$
: (0.5,0.5) (1,0) (0,1) (1,0) (0,1)
 ℓ_t : (0,0.5) (1,0) (0,1) (1,0) (0,1)
 $f_t(\mathbf{x}_t)$: 0.25 1 1 1 1 arg min_x $\sum_{k=1}^{t} f_k(\mathbf{x})$: (1,0) (0,1) (1,0) (0,1) (1,0)

t: 1 2 3 4 5 ...

$$\mathbf{x}_t$$
: (0.5,0.5) (1,0) (0,1) (1,0) (0,1) ...

 ℓ_t : (0,0.5) (1,0) (0,1) (1,0) (0,1) ...

 $f_t(\mathbf{x}_t)$: 0.25 1 1 1 ...

arg min _{\mathbf{x}} $\sum_{k=1}^{t} f_k(\mathbf{x})$: (1,0) (0,1) (1,0) (0,1) (1,0) ...

t:

FTL leads to "overfitting"

optimum loss: $\approx T/2$.

FTL's loss: $\approx T$.

regret: $\approx T/2$ (linear).

Remark

- Note that the first example of no-regret analysis in this course uses a special kind of loss function.
 - Squared difference: $\|\mathbf{x}_t \mathbf{y}_t\|_2^2$.

Outline

- Introduction
 - The Online Learning Framework
 - Main Contribution
- 2 Main Theorem I
 - The Proof
 - An OGD for Online Min-Max-VC
- Main Theorem II
 - Multi-Instance Min-Max VC
 - Multi-Instance Min-Max Perfect Matching
- 4 Appendix
 - What is FTL and Why not FTL?
 - Gradient Descent for No-Regret

Online Gradient Descent (GD)

- **1 Input:** convex set K, T, $\mathbf{x}_1 \in K$, learning rate $\{\eta_t\}$.
- ② for $t \leftarrow 1$ to T do:
 - Play \mathbf{x}_t and observe cost $f_t(\mathbf{x}_t)$.
 - Opposite and Project:

$$\mathbf{y}_{t+1} = \mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t)$$

 $\mathbf{x}_{t+1} = \Pi_{\mathcal{K}}(\mathbf{y}_{t+1})$

end for

GD for online convex optimization is of no-regret

Theorem A

Online gradient descent with learning rate $\{\eta_t = \frac{D}{G\sqrt{t}}, t \in [T]\}$ guarantees the following for all $T \geq 1$:

$$\operatorname{regret}_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \min_{\mathbf{x}^{*} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x}^{*}) \leq \frac{3}{2} GD\sqrt{T}.$$

- D: the diameter of K.
- Assume that $\nabla f_t(\mathbf{x}) \leq G$ for each $\mathbf{x} \in \mathcal{K}$.

- Let $\mathbf{x}^* \in \operatorname{arg\,min}_{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^T f_t(\mathbf{x})$.
- Since f_t is convex, we have

$$f_t(\mathbf{x}_t) - f_t(\mathbf{x}^*) \leq (\nabla f_t(\mathbf{x}_t))^{\top} (\mathbf{x}_t - \mathbf{x}^*).$$

ullet By the updating rule for $oldsymbol{x}_{t+1}$ and the Pythagorean theorem, we have

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 = \|\Pi_{\mathcal{K}}(\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t)) - \mathbf{x}^*\|^2 \le \|\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t) - \mathbf{x}^*\|^2.$$

Hence

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \le \|\mathbf{x}_t - \mathbf{x}^*\|^2 + \eta_t^2 \|\nabla f_t(\mathbf{x}_t)\|^2 - 2\eta_t (\nabla f_t(\mathbf{x}_t))^\top (\mathbf{x}_t - \mathbf{x}^*)$$
$$2(\nabla f_t(\mathbf{x}_t))^\top (\mathbf{x}_t - \mathbf{x}^*) \le \frac{\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2}{\eta_t} + \eta_t G^2.$$

• Summing above inequality from t=1 to T and setting $\eta_t=\frac{D}{G\sqrt{t}}$ and $\frac{1}{\eta_0}:=0$ we have :

$$2\left(\sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{x}^{*})\right) \leq 2\sum_{t=1}^{T} (\nabla f_{t}(\mathbf{x}_{t}))^{\top} (\mathbf{x}_{t} - \mathbf{x}^{*})$$

$$\leq \sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \sum_{t=1}^{T} \|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq D^{2} \sum_{t=1}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq D^{2} \frac{1}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq 3DG\sqrt{T}.$$

Gradient Descent for No-Regret

Proof of Theorem A (4/4)

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\begin{split} & \sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t} \\ & = & \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots \end{split}$$

$$\begin{split} & \sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t} \\ & = \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots \\ & + \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t} \end{split}$$

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\begin{split} & \sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t} \\ = & \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots \\ & + \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t} \\ \leq & \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t} \\ \leq & \frac{D^{2}}{\eta_{1}} + D^{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t} \end{split}$$

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{D^{2}}{\eta_{1}} + D^{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{D^{2}}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \frac{D}{G\sqrt{t}} \leq$$

Note that we can also deduce in this way

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{D^{2}}{\eta_{1}} + D^{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{D^{2}}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \frac{D}{G\sqrt{t}} \leq \frac{D^{2}}{D/(G\sqrt{T})} + DG(2\sqrt{T} - 1)$$

- (ロ) (個) (重) (重) (重) の(()

$$\sum_{t=1}^{T} \frac{\|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2}}{\eta_{t}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + \|\mathbf{x}_{2} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{2}} - \frac{1}{\eta_{1}}\right) + \|\mathbf{x}_{3} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{3}} - \frac{1}{\eta_{2}}\right) + \cdots$$

$$+ \|\mathbf{x}_{T} - \mathbf{x}^{*}\| \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{T-1}}\right) - \frac{\|\mathbf{x}_{T} - \mathbf{x}^{*}\|}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2}}{\eta_{1}} + D^{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$\leq \frac{D^{2}}{\eta_{1}} + D^{2} \left(\frac{1}{\eta_{T}} - \frac{1}{\eta_{1}}\right) + G^{2} \sum_{t=1}^{T} \eta_{t}$$

$$= \frac{D^{2}}{\eta_{T}} + G^{2} \sum_{t=1}^{T} \frac{D}{G\sqrt{t}} \leq \frac{D^{2}}{D/(G\sqrt{T})} + DG(2\sqrt{T} - 1) \leq 3DG\sqrt{T}.$$