Cloth Animation

Outline

- Overview
- Cloth Modeling
 - Static model
 - Dynamic model

Why cloth simulation?

- High demands from
 - Character animation
 - Game industry
 - Fashion industry
 - Textile industry

Challenges of Cloth Simulation

- Realistic cloth
- Interactive cloth
- Stable cloth
- Complex cloth
- Collision detection/handling

Cloth Modeling

- Textile Engineering
 - measuring mechanical properties
 - CAD/CAM and industrial applications
- Computer Graphics
 - Simulating the complex shapes and deformations of fabric and clothing
 - Geometric approaches
 - Physically-based approaches

CG Cloth Modeling

- Geometric approaches
 - Weil (1986)
- Continuum approaches
 - Feynman (1986) minimize strain energy
 - Terzopoulos et al. (1987) elasticity-based forces
 - Thalmanns (1990 on) virtual clothing

CG Cloth Modeling (cont.)

- Particle-based approaches
 - Haumann (1987) Mass-spring model
 - Breen et al. (1991-94) Particle-based model
 - Baraff & Witkin (SIGGRAPH'98) Implicit integration
- Misc.
 - Eberhardt et al. (1995) Modeling knits
 - Ko & Choi (SIGGRAPH'02) Buckling model
 - Goldenthal et al. (SIGGRAPH'07) Lagrangian mechanics
 - Kaldor, James, Marschner (SIGGRAPH'08) yarn level

Terzopoulos et al. Results

Thalmann et al. Results (2005)

 La Haute Couture Mise en Equations (https://youtu.be/Ekc_9vPDbo8)

Particle-based Approaches

Particle-based Approaches

- Breen, House, Getto, Wozny, 1992-1994
- Macroscopic behavior arises from modeling microscopic structure
- Particles based on thread-level interactions

Breen et al. "A physically-based particle model of woven cloth," 1992

Breen et al.(1994) - statics

Energy-based model

$$\boldsymbol{U}_{total_i} = \boldsymbol{U}_{repel_i} + \boldsymbol{U}_{stretch_i} + \boldsymbol{U}_{bend_i} + \boldsymbol{U}_{trellis_i}$$

 Compute final draping configuration by minimizing the total energy in the cloth

Breen et al.(1994)

- Tries to make the drape more realistic by measuring from the reality (Kawabata system)
- Fit functions to the measured data

No dynamics involved

Breen et al. Results

virtual

100% Cotton Weave

100% Wool Weave

Front view

Cotton/Polyester Weave

Breen et al. Results

Extend to include dynamics

- Add cloth springs to model
 - Stretch
 - Shearing
 - Bending

Mass-spring Model

A simple spring-damper system due to

Provot (1995)

Baraff and Witkin (1998)

- "Large steps in cloth simulation" SIGGRAPH'98
- Rapid cloth simulation with implicit integration
- Larger time steps and faster simulations
- Triangle-based representation
- Exploit sparseness of Jacobian
- Used in Maya Cloth

Baraff and Witkin Results

Newton's 2nd Law of Motion

n particles

$$\ddot{\mathbf{x}} = \mathbf{M}^{-1}\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}})$$

$$\mathbf{x}: 3n \times 1$$

 $M:3n\times 3n$ Diagonal matrix

Different Equation Basics (review)

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},\mathbf{t})$$

- x(t): a moving point.
- f(x,t): x's velocity.

$$\ddot{\mathbf{x}} = \mathbf{M}^{-1}\mathbf{f}(\mathbf{x}, \dot{\mathbf{x}})$$

$$\frac{d}{dt} \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} \mathbf{v} \\ \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}, \mathbf{v}) \end{pmatrix}$$

Explicit Euler (review)

$$\frac{d}{dt} \begin{pmatrix} \mathbf{x} \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} \mathbf{v} \\ \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}, \mathbf{v}) \end{pmatrix}$$

$$\begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{v} \end{pmatrix} = h \begin{pmatrix} \mathbf{v}_0 \\ \mathbf{M}^{-1} \mathbf{f}(\mathbf{x}_0, \mathbf{v}_0) \end{pmatrix}$$

Implicit Euler

$$\begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{v} \end{pmatrix} = h \begin{pmatrix} \mathbf{v}_0 + \Delta \mathbf{v} \\ \mathbf{M}^{-1} \mathbf{f} (\mathbf{x}_0 + \Delta \mathbf{x}, \mathbf{v}_0 + \Delta \mathbf{v}) \end{pmatrix}$$

Implicit formula for Δx , Δv

Usually no close form solution for a nonlinear equation

Approximation using Taylor Series

 Recall that a Taylor series of a real function in two variables is given by

$$f(x + \Delta x, y + \Delta y) = f(x, y) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \dots$$

We can approximate f(x,v) as

$$\mathbf{f}(\mathbf{x}_0 + \Delta \mathbf{x}, \mathbf{v}_0 + \Delta \mathbf{v}) = \mathbf{f_0} + \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Delta \mathbf{x} + \frac{\partial \mathbf{f}}{\partial \mathbf{v}} \Delta \mathbf{v}$$

matrix

Approximation using Taylor Series

$$\mathbf{f}(\mathbf{x}_0 + \Delta \mathbf{x}, \mathbf{v}_0 + \Delta \mathbf{v}) = \mathbf{f_0} + \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Delta \mathbf{x} + \frac{\partial \mathbf{f}}{\partial \mathbf{v}} \Delta \mathbf{v}$$

$$\begin{pmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{v} \end{pmatrix} = h \begin{pmatrix} \mathbf{v}_0 + \Delta \mathbf{v} \\ \mathbf{M}^{-1} (\mathbf{f}_0 + \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Delta \mathbf{x} + \frac{\partial \mathbf{f}}{\partial \mathbf{v}} \Delta \mathbf{v}) \end{pmatrix}$$

Plug the first row into the second row, we can get:

$$(\mathbf{I} - \mathbf{h} \mathbf{M}^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{v}} - \mathbf{h}^2 \mathbf{M}^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}) \Delta \mathbf{v} = \mathbf{h} \mathbf{M}^{-1} (\mathbf{f}_0 + \mathbf{h} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{v}_0)$$

Solving the Implicit Integration

- $\partial \mathbf{f} \quad \partial \mathbf{f}$ • To solve for $\Delta_{\mathbf{X}}$, $\Delta_{\mathbf{V}}$, we need to compute $\partial \mathbf{v} \partial \mathbf{x}$ Easy for few springs/dampers
- Difficult for a complex model
- Compute forces from a potential energy function

$$E(\mathbf{x})$$

$$\mathbf{f} = -\frac{\partial E}{\partial \mathbf{x}}$$
Damping force cannot be derived!

Consider work generated by an external force. $w = \mathbf{f}_e \cdot \mathbf{x} \longrightarrow \mathbf{f}_e = \frac{\partial w}{\partial \mathbf{x}}$ For potential energy by internal force, $\mathbf{f}_i = -\mathbf{f}_e = -\frac{\partial U}{\partial \mathbf{x}}$ ILE5030 Computer Animation and Special Effects 24S An inaccurate but useful interpretation:

Solving the Implicit Integration

• To solve for Δx , Δv , we need to compute $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial v}$

Compute forces from a special energy function

$$E_C(\mathbf{x}) = \frac{k}{2} \mathbf{C}(\mathbf{x})^T \mathbf{C}(\mathbf{x}) \qquad \mathbf{f} = -\frac{\partial E_C}{\partial \mathbf{x}} = -k \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}}^T \mathbf{C}(\mathbf{x})$$
scalar

vector condition we want to be zero

$$\mathbf{f} \in R^{3n \times 1} \qquad \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}} \in R^{m \times 3n} \qquad \mathbf{C}(\mathbf{x}) \in R^{m \times 1}$$

Solving the Implicit Integration

• To solve for Δx , Δv , we need to compute $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial v}$

Compute forces from a special energy function

$$E_C(\mathbf{x}) = \frac{k}{2} \mathbf{C}(\mathbf{x})^T \mathbf{C}(\mathbf{x}) \qquad \mathbf{f} = -\frac{\partial E_C}{\partial \mathbf{x}} = -k \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}}^T \mathbf{C}(\mathbf{x})$$
scalar

$$\mathbf{f}_{i}, \mathbf{x}_{j} \in R^{3 \times 1} \qquad \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}_{i}} \in R^{m \times 3} \qquad \frac{\partial^{2} \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}_{i} \partial \mathbf{x}_{j}} \in R^{m \times 3}$$

$$\frac{\partial \mathbf{f}_{i}}{\partial \mathbf{x}_{j}} = -k \left(\frac{\partial \mathbf{C}(\mathbf{x})^{T}}{\partial \mathbf{x}_{i}} \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}_{j}} + \frac{\partial^{2} \mathbf{C}(\mathbf{x})^{T}}{\partial \mathbf{x}_{i} \partial \mathbf{x}_{j}} \mathbf{C}(\mathbf{x}) \right)$$

Triangle-based Cloth Model

- Particles are linked like a triangular mesh
- Energy defined over finite regions
- How do we determine stretch and shear on triangles?

$$C(\mathbf{x}) = ?$$

Basic Idea

- Represent cloth surface as a triangular surface embedded in 3D
 - Locally linear mapping w(u,v)
- Measure deformation using $\mathbf{w_u} = \frac{\partial w}{\partial x}$, $\mathbf{w_v} = \frac{\partial w}{\partial y}$

Stretch/Compression Measure

• Represent $(\triangle x, \triangle y, \triangle z)$ using $(\triangle u, \triangle v)$

Again, we'll use Taylor series!

$$\mathbf{w}(u + \Delta u, v + \Delta v) = \begin{bmatrix} w_x(u + \Delta u, v + \Delta v) \\ w_y(u + \Delta u, v + \Delta v) \\ w_z(u + \Delta u, v + \Delta v) \end{bmatrix} \approx \mathbf{w}(u, v) + \mathbf{J}_{\mathbf{w}}(u, v) \begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix}$$

$$\mathbf{w}(u + \Delta u, v + \Delta v) = \begin{bmatrix} w_x(u + \Delta u, v + \Delta v) \\ w_y(u + \Delta u, v + \Delta v) \\ w_z(u + \Delta u, v + \Delta v) \end{bmatrix} \approx \mathbf{w}(u, v) + \mathbf{J}_{\mathbf{w}}(u, v) \begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix}$$

• The Jacobian is formed by $\mathbf{w_u} = \frac{\partial w}{\partial u}, \mathbf{w_v} = \frac{\partial w}{\partial v}$

$$\Delta \mathbf{x} = \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix} = \mathbf{w}(u + \Delta u, v + \Delta v) - \mathbf{w}(u, v) \approx \mathbf{J}_{\mathbf{w}}(u, v) \begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} = \begin{bmatrix} \mathbf{w}_{\mathbf{u}} & \mathbf{w}_{v} \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix}$$

With locally linear assumption,

$$\Delta \mathbf{x}_{1} = \mathbf{w}_{\mathbf{u}} \Delta u_{1} + \mathbf{w}_{\mathbf{v}} \Delta v_{1}$$

$$\Delta \mathbf{x}_{2} = \mathbf{w}_{\mathbf{u}} \Delta u_{2} + \mathbf{w}_{\mathbf{v}} \Delta v_{2}$$

$$[\mathbf{w}_{u} \quad \mathbf{w}_{v}] = [\Delta \mathbf{x}_{1} \quad \Delta \mathbf{x}_{2}] \begin{bmatrix} \Delta u_{1} & \Delta u_{2} \\ \Delta v_{1} & \Delta v_{2} \end{bmatrix}^{-1}$$

Fixed value during simulation

Forces as Energy Functions

Condition for stretch forces

Shear Forces

$$C(\mathbf{x}) = aw_u(\mathbf{x})^T w_v(\mathbf{x})$$
measured by the inner product

Bending Forces

$$C(\mathbf{x}) = \theta$$

Damping Forces

- Important both for realism and numerical stability
- Instead of deriving from E,
- Baraff and Witkin differentiate C

$$\mathbf{d} = -k_d \frac{\partial \mathbf{C}(\mathbf{x})}{\partial \mathbf{x}} \dot{\mathbf{C}}(\mathbf{x})$$

$$\uparrow \quad \text{velocity}$$
direction of force

$$\frac{dE}{dt} = \left(\frac{\partial E}{\partial \mathbf{x}}\right)^T \frac{d\mathbf{x}}{dt} = 0$$

Gradient of E = 0 when E is at its minimum \rightarrow damping force is always zero at the rest state!

- Act in direction of corresponding elastic force
- Proportional to the velocity in that direction

Constraints

- May choose
 - penalty method
 - → stiff system
 - Lagrange multipliers
 - → need compute constraint force
 - Parametric constraint (reduced coordinate)
 - → infeasible for dynamic contact constraints
- Baraff & Witkin introduced a new approach by modifying mass matrix

Zero-acceleration Constraints

- Basic idea:
 Enforcing constraints by mass modification
- e.g. zero acceleration along z-axis

$$\ddot{\mathbf{x}}_{i} = \begin{pmatrix} \frac{1}{m_{i}} & 0 & 0\\ 0 & \frac{1}{m_{i}} & 0\\ 0 & 0 & 0 \end{pmatrix} \mathbf{f}_{i} \rightarrow \ddot{\mathbf{x}}_{i} = \mathbf{W}_{ii}\mathbf{f}_{i}$$

$$\mathbf{W}_{ii} = \frac{1}{m_{ii}}\mathbf{S}_{i} \in R^{3\times3}$$

Non-axis zero acceleration constraints

• For the *i*th particle

$$\ddot{\mathbf{x}}_{i} = \mathbf{W}_{ii}\mathbf{f}_{i} \qquad \mathbf{W}_{ii} = \frac{1}{m_{ii}}\mathbf{S}_{i} \in R^{3\times3}$$

$$\mathbf{S}_{i} = \begin{cases} \mathbf{I} & \text{if } \operatorname{ndof}(i) = 3\\ (\mathbf{I} - \mathbf{p}_{i}\mathbf{p}_{i}^{T}) & \text{if } \operatorname{ndof}(i) = 2\\ (\mathbf{I} - \mathbf{p}_{i}\mathbf{p}_{i}^{T} - \mathbf{q}_{i}\mathbf{q}_{i}^{T}) & \text{if } \operatorname{ndof}(i) = 1\\ 0 & \text{if } \operatorname{ndof}(i) = 0 \end{cases}$$

$$\|\mathbf{p}_{i}\| = \|\mathbf{q}_{i}\| = 1 \qquad \mathbf{p}_{i} \perp \mathbf{q}_{i}$$

Verification
$$S_i = (I - p_i p_i^T)$$

• Consider $\mathbf{f}_i = \alpha \mathbf{p}_i$ $\ddot{\mathbf{x}}_i = \mathbf{W}_{ii}\mathbf{f}_i = \frac{1}{(\mathbf{I} - \mathbf{p}_i\mathbf{p}_i^T)}\alpha\mathbf{p}_i$ $= \frac{\alpha}{m_i} (\mathbf{p}_i - \mathbf{p}_i \mathbf{p}_i^T \mathbf{p}_i) = 0$

Particle i is constrained to be moved perpendicular to P_i

Arbitrary Velocity Constraints

No constraints

$$(\mathbf{I} - \mathbf{h} \mathbf{M}^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{v}} - \mathbf{h}^2 \mathbf{M}^{-1} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}) \Delta \mathbf{v} = \mathbf{h} \mathbf{M}^{-1} (\mathbf{f}_0 + \mathbf{h} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{v}_0)$$

With constraints

$$(\mathbf{I} - \mathbf{h} \mathbf{W} \frac{\partial \mathbf{f}}{\partial \mathbf{v}} - \mathbf{h}^2 \mathbf{W} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}) \Delta \mathbf{v} = \mathbf{h} \mathbf{W} (\mathbf{f}_0 + \mathbf{h} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{v}_0) + \mathbf{z}$$
Mass-modified matrix for constraints
$$\mathbf{W}_{ii} = \frac{1}{m_{ii}} \mathbf{S}_i$$

Arbitrary velocity constrain

Higher-order implicit methods

- Implicit Euler has only first-order accuracy
- 2nd-order implicit method is used in
 - Ko & Choi, SIGGRAPH'02
 - Bridson, Marino, & Fedkiw, SCA'03 (mixed explicit / implicit method)

Miscellaneous Approaches

Eberhardt et al. (1995)

- Focus on knits, instead of woven cloth
- Particle system with measured energies
- Volumetric approach to rendering knits
 - Represent microstructure
 - Sweep density distributions along yarns

Eberhardt et al. Results

Avoiding Stiffness

- Apply only non-stiff spring forces and then "fix" the solution at the end of time step
 - Provot (1995)
 - Desbrun et al. (1999)
 - Bridson et al. (2002)
- Popular for interactive applications

Ko, Choi (SIGGRAPH 2002)

- Cloth property
 - Weak resistance to bending
 - Strong resistance to tension

- Problem in spring-mass model
 - Stiff system for non-stretch
 - Need large compression forces for out-of-plane motion

Ko, Choi (2002)

- Use column buckling as their basic model
- Replace bend and compression forces with a single nonlinear model

Ko and Choi results

https://www.youtube.com/watch?v=u6hHrkMQNZs

Cloth Model Based on Constrained Lagrange Mechanics

- Goldenthal et al., "Efficient Simulation of Inextensible Cloth," SIGGRAPH'07
- Inextensibility is important for cloth animation!

 An alternative to implicit integration for stiff system—reformulate it as constraints.

Quick Tutorial on Lagrangian Mechanics

- Lagrangian mechanics is just another form of Newtonian mechanics
- Newtonian mechanics describes motion in Cartesian coordinate (vector) → coordinate transformation is hard
- Lagrangian mechanics describes motion via energy → coordinate transformation is easy
 - generalized coordinate

Quick Tutorial on Lagrangian Mechanics

- Reformulation of classical mechanics
- Lagrangian of a dynamical system

$$L(\mathbf{x}, \mathbf{v}) = \text{Kinetic Energy} - \text{Potential Energy}$$

= $T(\mathbf{x}, \mathbf{v}) - V(\mathbf{x}, \mathbf{v})$

The equation of motion is defined as

$$\frac{d}{dt}\frac{\partial L}{\partial \mathbf{v}} - \frac{\partial L}{\partial \mathbf{x}} = 0$$

Cloth Model Based on Constrained Lagrange Mechanics

Augment Lagrange equation with constraints
 Constraints

$$\mathbf{L}(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \mathbf{v}^T \mathbf{M} \mathbf{v} - V(\mathbf{x}) - \mathbf{C}(\mathbf{x})^T \lambda \quad \text{Lagrange Multipliers}$$

Potential energy: stretch, bending, shear

Constrained dynamics equation

$$\mathbf{M}\dot{\mathbf{v}} + \nabla V(\mathbf{x}) + \nabla \mathbf{C}(\mathbf{x})^T \lambda = 0$$
$$\mathbf{C}(\mathbf{x}) = 0$$

Hybrid Scheme ODE solver

$$\mathbf{M}\dot{\mathbf{v}} + \nabla V(\mathbf{x}) + \nabla \mathbf{C}(\mathbf{x})^T \lambda = 0 \qquad \mathbf{C}(\mathbf{x}) = 0$$

- Potential and constraint equations may be integrated using different explicit or implicit schemes
- Implicit Constraint Direction (ICD) scheme

$$\mathbf{v}^{n+1} = \mathbf{v}^n - h\mathbf{M}^{-1} \left(\nabla V(\mathbf{x}^n) + \nabla \mathbf{C}(\mathbf{x}^{n+1})^T \boldsymbol{\lambda}^{n+1} \right)$$
$$\mathbf{x}^{n+1} = \mathbf{x}^n + h\mathbf{v}^{n+1} ,$$
$$\mathbf{C}(\mathbf{x}^{n+1}) = \mathbf{0} .$$

Step and Project (SAP)

- Solving ICD is computationally expensive
 - needs to find roots of an equation of 5N variables
 - − *N* is the number of vertices
- Alternative
 - Step forward only the potential forces to unconstrained position \mathbf{X}_0^{n+1}
 - Enforce the constraints by projecting \mathbf{x}_0^{n+1} onto the constraint manifold $\{\mathbf{x}^{n+1} \mid \mathbf{C}(\mathbf{x}^{n+1}) = \mathbf{0}\}$, i.e., find \mathbf{x}^{n+1} that is close to \mathbf{x}_0^{n+1}

Efficient Simulation of Inextensible Cloth

Video (https://youtu.be/B2t6x-D6Om0)

Subspace clothing simulation using adaptive bases

- Siggraph 2014 (https://youtu.be/uADrduZWX74)
- Simulation using low-dimensional linear subspaces with temporally adaptive bases

Subspace Clothing Simulation Using Adaptive Bases

Fabian Hahn^{1,2} Bernhard Thomaszewski² Stelian Coros³ Robert W. Sumner² Forrester Cole³ Mark Meyer³ Tony DeRose³ Markus Gross^{1,2}

¹ETH Zurich

²Disney Research Zurich

³Pixar Animation Studios

@ Disney

A perceptual control space for garment simulation, Siggraph 2015

- Provide intuitive and art-directable control
- Learned mapping from common descriptors to simulation parameters
- https://youtu.be/LJ_zxvsdcrw

