TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2022

Backpropagation with Arrays and Tensors

Program Values as Objects

Consider a scalar product (x, y and z are each just real numbers).

$$z = xy$$

In a framework the values of the variables x, y z are objects in the sence of object oriented programming or Python.

In computing z value we assume that x value and y value are known. In the base case these are just inputs or parameters.

Program Values as Objects

$$z = xy$$

The forward pass calls the procedure z forward on each computed value z.

The object z holds its own inputs in its attributes.

Since z computed from a product the procedure z.forward assigns

$$z$$
.value = x .value * y .value

Backprop with Objects

$$z = xy$$

Each object x has an attribure x.grad which holds the gradient of the loss with respect to x.

We want

$$z.\operatorname{grad} = \frac{\partial \mathcal{L}}{\partial z}$$

Backpropagation calls z.backward on each computed value z in the reverse order.

For z = xy we have that z.backward does

$$x.\operatorname{grad} += y.\operatorname{value} * z.\operatorname{grad}$$

$$y.\text{grad} += x.\text{value} * z.\text{grad}$$

Handling Arrays

Consider an inner product between vectors

$$z = x^{\top} y$$

In this case case z forward does

$$z$$
.value = 0

for
$$i$$
 z.value += x.value[i] * y.value[i]

The backward procedure z.backward treats each += instruction seperately and does.

for
$$i$$
 $x.grad[i] += y.value[i] * z.grad$

for
$$i$$
 $y.grad[i] += x.value[i] * z.grad$

Handling Arrays

Now consider multiplying a vector x by a matrix W.

$$y = Wx$$

In this case case y.forward does

for
$$j$$
 y.value $[j] = 0$

for
$$i, j$$
 y.value $[j] \leftarrow W$.value $[j, i] * x$.value $[i]$

The backward procedure y.backward treats each individual += as a scalar product and does

for
$$i, j$$
 $x.grad[i] += W.value[j, i] * y.grad[j]$

for
$$i$$
 $W.grad[j, i] += x.value[i] * y.grad[j]$

A Linear Threshold Layer

$$s = \sigma \left(W^1 h - B^1 \right)$$

for
$$j \quad \tilde{s}[j] = 0$$

for
$$j, i \ \tilde{s}[j] \leftarrow W^1[j, i]h[i]$$

for
$$j$$
 $s[j] = \sigma(\tilde{s}[j] - B^1[j])$

backpropagation is also done with loops treating each individual assigningments and += instruction.

General Tensor Operations

In practice all deep learning source code can be written unsing scalar assignments and loops over scalar assignments. For example:

for
$$h, i, j, k$$
 $\tilde{Y}[h, i, j]$ += $A[h, i, k]$ $B[h, j, k]$ for h, i, j $Y[h, i, j]$ = $\sigma(\tilde{Y}[h, i, j])$

has backpropagation loops

for
$$h, i, j$$
 $\tilde{Y}.\operatorname{grad}[h, i, j]$ += $Y.\operatorname{grad}[h, i, j]$ $\sigma'(\tilde{Y}.\operatorname{grad}[h, i, j])$ for h, i, j, k $A.\operatorname{grad}[h, i, k]$ += $\tilde{Y}.\operatorname{grad}[h, i, j]$ $B[h, j, k]$ for h, i, j, k $B.\operatorname{grad}[h, j, k]$ += $\tilde{Y}.\operatorname{grad}[h, i, j]$ $A[h, i, k]$

\mathbf{END}