

Aprendendo Lógica de Programação com Java, C#, JavaScript e Python

Começar a programar é, antes de tudo, entender lógica, estruturas básicas e pensamento computacional.

Pensando nisso, esta sequência de **50 códigos essenciais em Java** foi cuidadosamente criada para ajudar iniciantes a desenvolver esses fundamentos de maneira prática.

Cada exemplo é posteriormente **refatorado para C#, JavaScript e Python**, permitindo comparações claras entre linguagens e facilitando o aprendizado multiplataforma.

Sugerimos que você estude cada um dos exemplos com atenção. Observe como a lógica se mantém — mas a sintaxe, os paradigmas e os recursos variam de linguagem para linguagem. Isso aumentará seu raciocínio algorítmico e sua adaptabilidade como programador.

Por que essas quatro linguagens?

- Java é amplamente usado em empresas, sistemas financeiros e desenvolvimento Android. Seu modelo orientado a objetos e sua robustez o tornam ideal para aprender boas práticas desde cedo.
- **C#** é a linguagem oficial da Microsoft para desenvolvimento na plataforma .NET, sendo muito usada em aplicações desktop, sistemas corporativos e jogos (com Unity).
- JavaScript é a linguagem da web. Nenhum site moderno funciona sem ele. Versátil e event-driven, domina o desenvolvimento de interfaces, SPAs e servidores com Node.js.
- Python é considerada uma das linguagens mais acessíveis para aprender a programar. É altamente utilizada em ciência de dados, automação, inteligência artificial e scripts simples.

Comparando suas principais aplicações

Linguagem	Vantagens Principais	Áreas de Aplicação
Java	Estável, multiplataforma, forte em OOP	Back-end corporativo, Android, APIs
C#	Intuitiva, bem integrada com o Windows	Games (Unity), aplicações desktop e web
JavaScript	Dinâmica, executa no navegador e no servidor	Web, front-end, APIs em tempo real
Python	Simples, expressiva, ótima para prototipação	IA, automação, ciência de dados, scripts

Cada exercício nesta coletânea aborda um problema prático, como verificar números primos, inverter strings, calcular médias ou ordenar arrays.

Você verá **como a mesma lógica é expressa em diferentes linguagens**, ganhando familiaridade com:

- Entrada e saída de dados
- Condições e laços
- Manipulação de strings, arrays e arquivos
- Estruturas de decisão e algoritmos clássicos

Java

```
1. Olá Mundo
public class OlaMundo {
  public static void main(String[] args) {
     System.out.println("Olá, Mundo!");
  }
}
2. Soma de dois números
import java.util.Scanner;
public class Soma {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int a = sc.nextInt();
     int b = sc.nextInt();
     System.out.println("Soma: " + (a + b));
  }
}
3. Número par ou ímpar
import java.util.Scanner;
public class ParOuImpar {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int n = sc.nextInt();
     System.out.println(n % 2 == 0 ? "Par" : "Ímpar");
}
4. Fatorial de um número
import java.util.Scanner;
public class Fatorial {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int n = sc.nextInt(), f = 1;
     for(int i = 2; i <= n; i++) f *= i;
```



```
System.out.println("Fatorial: " + f);
  }
}
5. Verificar ano bissexto
import java.util.Scanner;
public class Bissexto {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int ano = sc.nextInt();
     boolean b = (ano % 4 == 0 && ano % 100 != 0) || ano % 400 == 0;
     System.out.println(b ? "Bissexto" : "Não bissexto");
}
6. Tabuada
import java.util.Scanner;
public class Tabuada {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int n = sc.nextInt();
     for (int i = 1; i \le 10; i++)
     System.out.println(n + "x" + i + " = " + (n * i));
}
7. Contador de 1 a 10
public class Contador {
  public static void main(String[] args) {
     for(int i = 1; i \le 10; i++)
     System.out.println(i);
  }
}
8. Verificar número primo
import java.util.Scanner:
public class Primo {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int n = sc.nextInt();
     boolean primo = n > 1;
     for(int i = 2; i \le Math.sqrt(n); i++) {
       if(n \% i == 0) {
          primo = false; break;
       }
     System.out.println(primo ? "Primo" : "Não primo");
  }
}
9. Cálculo de média
import java.util.Scanner;
public class Media {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double a = sc.nextDouble();
     double b = sc.nextDouble();
     double c = sc.nextDouble();
```



```
System.out.println("Média: " + (a + b + c) / 3);
  }
}
10. Área de um círculo
import java.util.Scanner;
public class AreaCirculo {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double r = sc.nextDouble():
     System.out.println("Área: " + (Math.PI * r * r));
}
11. Conversão Celsius para Fahrenheit
import java.util.Scanner;
public class CelsiusParaFahrenheit {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double c = sc.nextDouble();
     double f = (c * 9 / 5) + 32;
     System.out.println("Fahrenheit: " + f);
}
12. Maior de três números
import java.util.Scanner;
public class MaiorDeTres {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int a = sc.nextInt(), b = sc.nextInt(), c = sc.nextInt();
     int maior = Math.max(a, Math.max(b, c));
     System.out.println("Maior: " + maior);
}
13. Calculadora básica
import java.util.Scanner;
public class Calculadora {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double a = sc.nextDouble();
     char op = sc.next().charAt(0);
     double b = sc.nextDouble();
     switch(op) {
        case '+': System.out.println(a + b); break;
        case '-': System.out.println(a - b); break;
        case '*': System.out.println(a * b); break;
        case '/': System.out.println(b != 0 ? a / b : "Erro: divisão por zero"); break;
       default: System.out.println("Operador inválido");
     }
  }
}
14. Contagem regressiva
public class ContagemRegressiva {
  public static void main(String[] args) {
     for(int i = 10; i >= 0; i--)
     System.out.println(i);
```

```
15. Inverter uma string
import java.util.Scanner;
public class InverterString {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String s = sc.nextLine();
     StringBuilder sb = new StringBuilder(s);
     System.out.println(sb.reverse());
}
16. Contar vogais em uma string
import java.util.Scanner;
public class ContarVogais {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String s = sc.nextLine().toLowerCase();
     int count = 0;
     for(char c : s.toCharArray())
     if("aeiou".indexOf(c) != -1) count++;
     System.out.println("Vogais: " + count);
}
17. Soma de elementos de um array
public class SomaArray {
  public static void main(String[] args) {
     int[] arr = {1, 2, 3, 4, 5};
     int soma = 0;
     for(int n : arr) soma += n;
     System.out.println("Soma: " + soma);
}
18. Busca linear em array
public class BuscaLinear {
  public static void main(String[] args) {
     int[] arr = \{10, 20, 30, 40\};
     int x = 30;
     boolean encontrado = false;
     for(int n : arr) if(n == x) encontrado = true;
     System.out.println(encontrado? "Encontrado": "Não encontrado");
  }
}
19. Ordenação bubble sort
import java.util.Arrays;
public class BubbleSort {
  public static void main(String[] args) {
     int[] arr = {5, 1, 4, 2, 8};
     for(int i = 0; i < arr.length - 1; i++) {
        for(int j = 0; j < arr.length - 1 - i; j++) {
          if(arr[j] > arr[j+1]) {
             int temp = arr[j];
             arr[j] = arr[j+1];
```



```
arr[j+1] = temp;
     System.out.println(Arrays.toString(arr));
}
20. Verificar palíndromo
import java.util.Scanner;
public class Palindromo {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String s = sc.nextLine();
     String reverso = new StringBuilder(s).reverse().toString();
     System.out.println(s.equals(reverso)? "Palíndromo": "Não é palíndromo");
}
21. Imprimir elementos de uma matriz
public class ImprimirMatriz {
  public static void main(String[] args) {
     int[][] matriz = {\{1, 2\}, \{3, 4\}\}};
     for(int[] linha: matriz) {
        for(int elem : linha) System.out.print(elem + " ");
        System.out.println();
     }
  }
}
22. Transposição de matriz
public class TransporMatriz {
  public static void main(String[] args) {
     int[][] matriz = {\{1, 2\}, \{3, 4\}\}};
     for(int i = 0; i < 2; i++) {
        for(int j = 0; j < 2; j++) {
          System.out.print(matriz[j][i] + " ");
        System.out.println();
     }
  }
}
23. Verificar senha forte
import java.util.Scanner;
public class SenhaForte {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String senha = sc.nextLine();
     boolean forte = senha.length() >= 8 && senha.matches(".*[A-Z].*") &&
senha.matches(".*[a-z].*") && senha.matches(".*[0-9].*");
     System.out.println(forte ? "Senha forte" : "Senha fraca");
  }
}
24. Gerar número aleatório
import java.util.Random;
public class NumeroAleatorio {
```



```
public static void main(String[] args) {
     Random rand = new Random();
     int n = rand.nextInt(100);
     System.out.println("Número aleatório: " + n);
}
25. Conversor de moedas
import java.util.Scanner;
public class ConversorMoeda {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double reais = sc.nextDouble();
     double cotacao = 5.2;
     System.out.println("USD: " + (reais / cotacao));
}
26. Verificar idade para voto
import java.util.Scanner;
public class IdadeParaVoto {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int idade = sc.nextInt();
     if(idade < 16) System.out.println("Não vota");
     else if(idade < 18 || idade > 70) System.out.println("Voto opcional");
     else System.out.println("Voto obrigatório");
}
27. Classificação de notas
import java.util.Scanner;
public class ClassificacaoNotas {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double nota = sc.nextDouble();
     if(nota >= 9) System.out.println("A");
     else if(nota >= 7) System.out.println("B");
     else if(nota >= 5) System.out.println("C");
     else System.out.println("Reprovado");
  }
}
28. Contar palavras em frase
import java.util.Scanner;
public class ContarPalavras {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String frase = sc.nextLine();
     String[] palavras = frase.trim().split("\\s+");
     System.out.println("Palavras: " + palavras.length);
}
```

29. Criar arquivo de texto

import java.io.FileWriter; import java.io.IOException;


```
public class CriarArquivo {
  public static void main(String[] args) throws IOException {
     FileWriter writer = new FileWriter("saida.txt");
     writer.write("Olá, arquivo!");
     writer.close();
  }
}
30. Ler arquivo de texto
import java.jo.File:
import java.io.FileNotFoundException;
import java.util.Scanner;
public class LerArquivo {
  public static void main(String[] args) throws FileNotFoundException {
     File file = new File("saida.txt");
     Scanner sc = new Scanner(file);
     while(sc.hasNextLine()) {
        System.out.println(sc.nextLine());
     sc.close();
  }
}
31. Login simples
import java.util.Scanner;
public class LoginSimples {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String user = sc.nextLine();
     String pass = sc.nextLine();
     if(user.equals("admin") && pass.equals("1234"))
     System.out.println("Acesso permitido");
     System.out.println("Acesso negado");
  }
}
32. Validar CPF (formato simples)
import java.util.Scanner;
public class ValidarCPF {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String cpf = sc.nextLine();
     System.out.println(cpf.matches("\\d{11}")? "CPF válido": "CPF inválido");
  }
}
33. Gerar sequência Fibonacci
import java.util.Scanner;
public class Fibonacci {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int n = sc.nextInt();
     int a = 0, b = 1;
     for(int i = 0; i < n; i++) {
        System.out.print(a + " ");
       int temp = a;
       a = b;
```



```
b = temp + b;
34. Contar letras de uma palavra
import java.util.Scanner;
public class ContarLetras {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String palavra = sc.nextLine().replaceAll("\\s+", "");
     System.out.println("Letras: " + palavra.length());
}
35. Conversão de decimal para binário
import java.util.Scanner;
public class DecimalParaBinario {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int n = sc.nextInt();
     System.out.println("Binário: " + Integer.toBinaryString(n));
}
36. Verificar múltiplos
import java.util.Scanner;
public class VerificarMultiplos {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int a = sc.nextInt();
     int b = sc.nextInt();
     System.out.println((a % b == 0 || b % a == 0) ? "São múltiplos" : "Não são múltiplos");
}
37. Trocar valores entre variáveis
public class TrocarValores {
  public static void main(String[] args) {
     int a = 5, b = 10;
     int temp = a;
     a = b;
     b = temp;
     System.out.println("a = " + a + ", b = " + b);
  }
}
38. Média ponderada
import java.util.Scanner;
public class MediaPonderada {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double n1 = sc.nextDouble(), n2 = sc.nextDouble(), n3 = sc.nextDouble();
     System.out.println("Média: " + ((n1*2 + n2*3 + n3*5)/10));
}
```



```
39. Verificar triângulo válido
```

```
import java.util.Scanner;
public class Triangulo Valido {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int a = sc.nextInt(), b = sc.nextInt(), c = sc.nextInt();
     boolean valido = a + b > c && a + c > b && b + c > a;
     System.out.println(valido? "Triângulo válido": "Inválido");
  }
}
40. Conversor de tempo (segundos para h:min:s)
import java.util.Scanner;
public class ConversorTempo {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int seg = sc.nextInt();
     int h = seg / 3600;
     int m = (seg \% 3600) / 60;
     int s = seg \% 60;
     System.out.println(h + ":" + m + ":" + s);
  }
}
41. Simulador de dado
import java.util.Random;
public class Dado {
  public static void main(String[] args) {
     Random rand = new Random();
     System.out.println("Dado: " + (rand.nextInt(6) + 1));
  }
}
42. Conversão de número romano
import java.util.Scanner;
import java.util.Map;
import java.util.HashMap;
public class RomanoParaDecimal {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String romano = sc.nextLine().toUpperCase();
     Map<Character, Integer> mapa = Map.of('I',1,'V',5,'X',10,'L',50,'C',100,'D',500,'M',1000);
     int total = 0, prev = 0;
     for(int i = romano.length()-1; i >= 0; i--) {
       int atual = mapa.get(romano.charAt(i));
       total += (atual < prev) ? -atual : atual;
       prev = atual;
     System.out.println("Decimal: " + total);
  }
}
43. Desenhar pirâmide com asteriscos
public class Piramide {
  public static void main(String[] args) {
```



```
int altura = 5;
     for(int i = 1; i \le altura; i++) {
        for(int j = 0; j < altura - i; j++) System.out.print(" ");</pre>
        for(int j = 0; j < i * 2 - 1; j++) System.out.print("*");
        System.out.println();
     }
  }
}
44. Calcular IMC
import java.util.Scanner;
public class IMC {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double peso = sc.nextDouble();
     double altura = sc.nextDouble();
     double imc = peso / (altura * altura);
     System.out.println("IMC: " + imc);
}
45. Verificar se string contém substring
import java.util.Scanner;
public class ContemSubstring {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String texto = sc.nextLine();
     String sub = sc.nextLine();
     System.out.println(texto.contains(sub) ? "Contém" : "Não contém");
  }
}
46. Simulador de caixa eletrônico
import java.util.Scanner;
public class CaixaEletronico {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int valor = sc.nextInt();
     int[] notas = \{100, 50, 20, 10, 5, 2, 1\};
     for(int nota: notas) {
        int qtd = valor / nota;
        if(qtd > 0) {
           System.out.println(nota + " x " + qtd);
           valor %= nota;
       }
     }
  }
}
47. Contar elementos pares em lista
public class ContarPares {
  public static void main(String[] args) {
     int[] arr = \{1, 2, 3, 4, 5, 6\};
     int count = 0;
     for(int n : arr) if(n % 2 == 0) count++;
     System.out.println("Pares: " + count);
  }
}
```



```
48. Contar elementos ímpares em lista
public class ContarImpares {
  public static void main(String[] args) {
     int[] arr = {1, 2, 3, 4, 5, 6};
     int count = 0;
     for(int n : arr) if(n % 2 != 0) count++;
     System.out.println("Ímpares: " + count);
  }
}
49. Verificar número perfeito
public class NumeroPerfeito {
  public static void main(String[] args) {
     int n = 28, soma = 0;
     for(int i = 1; i < n; i++) {
        if(n \% i == 0) soma += i;
     System.out.println(soma == n ? "Perfeito" : "Não perfeito");
  }
}
50. Comparar duas strings
import java.util.Scanner:
public class CompararStrings {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String a = sc.nextLine();
     String b = sc.nextLine();
     System.out.println(a.equals(b) ? "Iguais" : "Diferentes");
}
```

Vamos evoluir para C#, JS e Python

1. Olá Mundo

```
Java:

public class OlaMundo {
    public static void main(String[] args) {
        System.out.println("Olá, Mundo!");
    }
}

C#:
using System;

public class OlaMundo
{
    public static void Main(string[] args)
    {
        Console.WriteLine("Olá, Mundo!");
    }
}

JavaScript:
console.log("Olá, Mundo!");
```



```
Python:
print("Olá, Mundo!")
2. Soma de dois números
Java:
import java.util.Scanner;
public class Soma {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int a = sc.nextInt();
     int b = sc.nextInt();
     System.out.println("Soma: " + (a + b));
C#:
using System;
public class Soma
  public static void Main(string[] args)
     Console.WriteLine("Digite o primeiro número:");
     int a = Convert.ToInt32(Console.ReadLine());
     Console.WriteLine("Digite o segundo número:");
     int b = Convert.ToInt32(Console.ReadLine());
     Console.WriteLine("Soma: " + (a + b));
  }
}
JavaScript:
// Para entrada de usuário no Node.js, você pode usar o módulo 'readline'
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o primeiro número: ', (num1) => {
 rl.question('Digite o segundo número: ', (num2) => {
  const a = parseInt(num1);
  const b = parseInt(num2);
  console.log("Soma: " + (a + b));
  rl.close();
 });
});
// Em um navegador, você usaria prompts:
const a = parseInt(prompt("Digite o primeiro número:"));
const b = parseInt(prompt("Digite o segundo número:"));
console.log("Soma: " + (a + b));
Python:
a = int(input("Digite o primeiro número: "))
```


}

```
b = int(input("Digite o segundo número: "))
print("Soma:", (a + b))
3. Número par ou ímpar
import java.util.Scanner;
public class ParOuImpar {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int n = sc.nextInt();
     System.out.println(n % 2 == 0 ? "Par" : "Ímpar");
C#:
using System;
public class ParOuImpar
  public static void Main(string[] args)
     Console.WriteLine("Digite um número:");
     int n = Convert.ToInt32(Console.ReadLine());
     Console.WriteLine(n % 2 == 0 ? "Par" : "Ímpar");
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite um número: ', (inputNum) => {
 const n = parseInt(inputNum);
 console.log(n % 2 === 0 ? "Par" : "Ímpar");
 rl.close();
});
Python:
n = int(input("Digite um número: "))
print("Par" if n % 2 == 0 else "Impar")
4. Fatorial de um número
Java:
import java.util.Scanner;
public class Fatorial {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int n = sc.nextInt(), f = 1;
     for(int i = 2; i \le n; i++) f *= i;
     System.out.println("Fatorial: " + f);
```

```
C#:
using System;
public class Fatorial
  public static void Main(string[] args)
     Console.WriteLine("Digite um número para calcular o fatorial:");
     int n = Convert.ToInt32(Console.ReadLine());
     long f = 1;
     for (int i = 2; i <= n; i++)
       f *= i;
     Console.WriteLine("Fatorial: " + f);
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite um número para calcular o fatorial: ', (inputNum) => {
 const n = parseInt(inputNum);
 let f = 1;
 for (let i = 2; i \le n; i++) {
  f *= i;
 }
 console.log("Fatorial: " + f);
 rl.close();
});
Python:
n = int(input("Digite um número para calcular o fatorial: "))
for i in range(2, n + 1):
  f *= i
print("Fatorial:", f)
5. Verificar ano bissexto
Java:
import java.util.Scanner;
public class Bissexto {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int ano = sc.nextInt();
     boolean b = (ano % 4 == 0 && ano % 100 != 0) || ano % 400 == 0;
     System.out.println(b ? "Bissexto" : "Não bissexto");
}
C#:
using System;
```



```
public class Bissexto
  public static void Main(string[] args)
     Console.WriteLine("Digite um ano:");
     int ano = Convert.ToInt32(Console.ReadLine());
     bool b = (ano % 4 == 0 && ano % 100 != 0) || ano % 400 == 0;
     Console.WriteLine(b ? "Bissexto" : "Não bissexto");
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite um ano: ', (inputAno) => {
 const ano = parseInt(inputAno);
 const b = (ano % 4 === 0 && ano % 100 !== 0) || ano % 400 === 0;
 console.log(b ? "Bissexto" : "Não bissexto");
 rl.close();
});
Python:
ano = int(input("Digite um ano: "))
b = (ano % 4 == 0 and ano % 100 != 0) or ano % 400 == 0
print("Bissexto" if b else "Não bissexto")
6. Tabuada
Java:
import java.util.Scanner;
public class Tabuada {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int n = sc.nextInt();
     for (int i = 1; i \le 10; i++)
     System.out.println(n + x + i + i = + (n * i));
  }
}
C#:
using System;
public class Tabuada
  public static void Main(string[] args)
     Console.WriteLine("Digite um número para ver a tabuada:");
     int n = Convert.ToInt32(Console.ReadLine());
     for (int i = 1; i <= 10; i++)
        Console.WriteLine(\P\{n\} \times \{i\} = \{n * i\});
}
```



```
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
rl.question('Digite um número para ver a tabuada: ', (inputNum) => {
 const n = parseInt(inputNum);
 for (let i = 1; i \le 10; i++) {
  console.log(\$\{n\} \times \$\{i\} = \$\{n * i\}`);
 rl.close();
});
Python:
n = int(input("Digite um número para ver a tabuada: "))
for i in range(1, 11):
   print(f''\{n\} x \{i\} = \{n * i\}'')
7. Contador de 1 a 10
Java:
public class Contador {
   public static void main(String[] args) {
     for(int i = 1; i \le 10; i++)
      System.out.println(i);
  }
}
C#:
using System;
public class Contador
   public static void Main(string[] args)
     for (int i = 1; i <= 10; i++)
        Console.WriteLine(i);
     }
  }
}
JavaScript:
for (let i = 1; i \le 10; i++) {
 console.log(i);
Python:
Python
for i in range(1, 11):
  print(i)
8. Verificar número primo
Java:
import java.util.Scanner;
public class Primo {
```

public static void main(String[] args) {


```
Scanner sc = new Scanner(System.in);
     int n = sc.nextInt();
     boolean primo = n > 1;
     for(int i = 2; i \le Math.sqrt(n); i++) {
        if(n \% i == 0) {
          primo = false;
          break;
       }
     System.out.println(primo ? "Primo" : "Não primo");
  }
}
C#:
using System;
public class Primo
   public static void Main(string[] args)
     Console.WriteLine("Digite um número para verificar se é primo:");
     int n = Convert.ToInt32(Console.ReadLine());
     bool primo = n > 1;
     for (int i = 2; i \le Math.Sqrt(n); i++)
        if (n \% i == 0)
          primo = false;
          break;
        }
     Console.WriteLine(primo? "Primo": "Não primo");
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite um número para verificar se é primo: ', (inputNum) => {
 const n = parseInt(inputNum);
 let primo = n > 1;
 for (let i = 2; i \le Math.sqrt(n); i++) {
  if (n \% i === 0) {
    primo = false;
    break;
  }
 console.log(primo ? "Primo" : "Não primo");
 rl.close();
});
Python:
import math
n = int(input("Digite um número para verificar se é primo: "))
```



```
primo = n > 1
for i in range(2, int(math.sqrt(n)) + 1):
  if n \% i == 0:
     primo = False
     break
print("Primo" if primo else "Não primo")
9. Cálculo de média
Java:
import java.util.Scanner;
public class Media {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double a = sc.nextDouble();
     double b = sc.nextDouble();
     double c = sc.nextDouble();
     System.out.println("Média: " + (a + b + c) / 3);
}
C#:
using System;
public class Media
  public static void Main(string[] args)
     Console.WriteLine("Digite a primeira nota:");
     double a = Convert.ToDouble(Console.ReadLine());
     Console.WriteLine("Digite a segunda nota:");
     double b = Convert.ToDouble(Console.ReadLine());
     Console.WriteLine("Digite a terceira nota:");
     double c = Convert.ToDouble(Console.ReadLine());
     Console.WriteLine("Média: " + (a + b + c) / 3);
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite a primeira nota: ', (inputA) => {
 rl.question('Digite a segunda nota: ', (inputB) => {
  rl.question('Digite a terceira nota: ', (inputC) => {
    const a = parseFloat(inputA);
    const b = parseFloat(inputB);
    const c = parseFloat(inputC);
    console.log("Média: " + (a + b + c) / 3);
    rl.close();
  });
 });
});
Python:
a = float(input("Digite a primeira nota: "))
```



```
b = float(input("Digite a segunda nota: "))
c = float(input("Digite a terceira nota: "))
print("Média:", (a + b + c) / 3)
10. Área de um círculo
Java:
import java.util.Scanner;
public class AreaCirculo {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double r = sc.nextDouble();
     System.out.println("Área: " + (Math.PI * r * r));
}
C#:
using System;
public class AreaCirculo
  public static void Main(string[] args)
     Console.WriteLine("Digite o raio do círculo:");
     double r = Convert.ToDouble(Console.ReadLine());
     Console.WriteLine("Área: " + (Math.PI * r * r));
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
rl.question('Digite o raio do círculo: ', (inputR) => {
 const r = parseFloat(inputR);
 console.log("Área: " + (Math.PI * r * r));
 rl.close();
Python:
import math
r = float(input("Digite o raio do círculo: "))
print("Área:", (math.pi * r * r))
11. Conversão Celsius para Fahrenheit
Java:
import java.util.Scanner;
public class CelsiusParaFahrenheit {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double c = sc.nextDouble();
     double f = (c * 9 / 5) + 32;
     System.out.println("Fahrenheit: " + f);
  }
```

```
C#:
using System;
public class CelsiusParaFahrenheit
  public static void Main(string[] args)
     Console.WriteLine("Digite a temperatura em Celsius:");
     double c = Convert.ToDouble(Console.ReadLine());
     double f = (c * 9 / 5) + 32;
     Console.WriteLine("Fahrenheit: " + f);
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite a temperatura em Celsius: ', (inputC) => {
 const c = parseFloat(inputC);
 const f = (c * 9 / 5) + 32;
 console.log("Fahrenheit: " + f);
 rl.close();
});
Python:
c = float(input("Digite a temperatura em Celsius: "))
f = (c * 9 / 5) + 32
print("Fahrenheit:", f)
12. Maior de três números
Java:
import java.util.Scanner;
public class MaiorDeTres {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     int a = sc.nextInt(), b = sc.nextInt(), c = sc.nextInt();
     int maior = Math.max(a, Math.max(b, c));
     System.out.println("Maior: " + maior);
}
C#:
using System;
public class MaiorDeTres
  public static void Main(string[] args)
     Console.WriteLine("Digite o primeiro número:");
     int a = Convert.ToInt32(Console.ReadLine());
```



```
Console.WriteLine("Digite o segundo número:");
     int b = Convert.ToInt32(Console.ReadLine());
     Console.WriteLine("Digite o terceiro número:");
     int c = Convert.ToInt32(Console.ReadLine());
     int maior = Math.Max(a, Math.Max(b, c));
     Console.WriteLine("Maior: " + maior);
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o primeiro número: ', (inputA) => {
 rl.question('Digite o segundo número: ', (inputB) => {
  rl.question('Digite o terceiro número: ', (inputC) => {
    const a = parseInt(inputA);
    const b = parseInt(inputB);
    const c = parseInt(inputC);
    const maior = Math.max(a, Math.max(b, c));
    console.log("Maior: " + maior);
    rl.close();
  });
 });
});
Python:
a = int(input("Digite o primeiro número: "))
b = int(input("Digite o segundo número: "))
c = int(input("Digite o terceiro número: "))
maior = max(a, b, c)
print("Maior:", maior)
13. Calculadora básica
Java:
import java.util.Scanner;
public class Calculadora {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double a = sc.nextDouble();
     char op = sc.next().charAt(0);
     double b = sc.nextDouble();
     switch(op) {
        case '+': System.out.println(a + b); break;
       case '-': System.out.println(a - b); break;
       case '*': System.out.println(a * b); break;
       case '/': System.out.println(b != 0 ? a / b : "Erro: divisão por zero"); break;
       default: System.out.println("Operador inválido");
  }
using System;
```



```
public class Calculadora
  public static void Main(string[] args)
     Console.WriteLine("Digite o primeiro número:");
     double a = Convert.ToDouble(Console.ReadLine());
     Console.WriteLine("Digite o operador (+, -, *, /):");
     char op = Convert.ToChar(Console.ReadLine());
     Console.WriteLine("Digite o segundo número:");
     double b = Convert.ToDouble(Console.ReadLine());
     switch (op)
       case '+':
          Console.WriteLine(a + b);
          break;
       case '-':
          Console.WriteLine(a - b);
          break:
       case '*':
          Console.WriteLine(a * b);
          break;
       case '/':
          Console.WriteLine(b != 0 ? a / b : "Erro: divisão por zero");
          break;
       default:
          Console.WriteLine("Operador inválido");
     }
  }
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o primeiro número: ', (inputA) => {
 rl.question('Digite o operador (+, -, *, /): ', (inputOp) => {
  rl.question('Digite o segundo número: ', (inputB) => {
    const a = parseFloat(inputA);
   const op = inputOp;
    const b = parseFloat(inputB);
    switch (op) {
     case '+':
      console.log(a + b);
      break;
     case '-':
      console.log(a - b);
      break;
     case '*':
      console.log(a * b);
      break;
     case '/':
      console.log(b !== 0 ? a / b : "Erro: divisão por zero");
      break;
```



```
default:
       console.log("Operador inválido");
    rl.close();
  });
 });
});
Python:
a = float(input("Digite o primeiro número: "))
op = input("Digite o operador (+, -, *, /): ")
b = float(input("Digite o segundo número: "))
if op == '+':
  print(a + b)
elif op == '-':
   print(a - b)
elif op == '*':
   print(a * b)
elif op == '/':
  print(a / b if b != 0 else "Erro: divisão por zero")
print("Operador inválido")
14. Contagem regressiva
public class ContagemRegressiva {
   public static void main(String[] args) {
     for(int i = 10; i >= 0; i--)
     System.out.println(i);
  }
}
C#:
using System;
public class ContagemRegressiva
   public static void Main(string[] args)
     for (int i = 10; i >= 0; i--)
        Console.WriteLine(i);
  }
}
JavaScript:
for (let i = 10; i >= 0; i--) {
 console.log(i);
Python:
for i in range(10, -1, -1):
   print(i)
15. Inverter uma string
import java.util.Scanner;
public class InverterString {
   public static void main(String[] args) {
```



```
Scanner sc = new Scanner(System.in);
     String s = sc.nextLine();
     StringBuilder sb = new StringBuilder(s);
     System.out.println(sb.reverse());
  }
}
C#:
using System;
using System.Ling;
public class InverterString
  public static void Main(string[] args)
     Console.WriteLine("Digite uma string para inverter:");
     string s = Console.ReadLine();
     char[] charArray = s.ToCharArray();
     Array.Reverse(charArray);
     string reversedString = new string(charArray);
     Console.WriteLine(reversedString);
}
JavaScript:
Snippet de código
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite uma string para inverter: ', (s) => {
 const reversedString = s.split(").reverse().join(");
 console.log(reversedString);
 rl.close();
});
Python:
s = input("Digite uma string para inverter: ")
print(s[::-1])
16. Contar vogais em uma string
Java:
import java.util.Scanner;
public class ContarVogais {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String s = sc.nextLine().toLowerCase();
     int count = 0;
     for(char c : s.toCharArray())
     if("aeiou".indexOf(c) != -1) count++;
     System.out.println("Vogais: " + count);
}
C#:
using System;
```



```
public class ContarVogais
  public static void Main(string[] args)
     Console.WriteLine("Digite uma string para contar as vogais:");
     string s = Console.ReadLine().ToLower();
     int count = 0;
     foreach (char c in s)
       if ("aeiou".Contains(c))
          count++;
       }
     Console.WriteLine("Vogais: " + count);
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite uma string para contar as vogais: ', (s) => {
 const lowerS = s.toLowerCase();
 let count = 0;
 const vowels = "aeiou";
 for (const char of lowerS) {
  if (vowels.includes(char)) {
    count++;
  }
 }
 console.log("Vogais: " + count);
 rl.close();
});
Python:
s = input("Digite uma string para contar as vogais: ").lower()
count = 0
vowels = "aeiou"
for char in s:
  if char in vowels:
     count += 1
print("Vogais:", count)
17. Soma de elementos de um array
public class SomaArray {
  public static void main(String[] args) {
     int[] arr = \{1, 2, 3, 4, 5\};
     int soma = 0;
     for(int n : arr) soma += n;
     System.out.println("Soma: " + soma);
}
```



```
C#:
using System;
using System.Linq;
public class SomaArray
  public static void Main(string[] args)
     int[] arr = { 1, 2, 3, 4, 5 };
     int soma = arr.Sum();
     Console.WriteLine("Soma: " + soma);
}
JavaScript:
const arr = [1, 2, 3, 4, 5];
const soma = arr.reduce((acc, curr) => acc + curr, 0);
console.log("Soma: " + soma);
Python:
arr = [1, 2, 3, 4, 5]
soma = sum(arr)
print("Soma:", soma)
18. Busca linear em array
public class BuscaLinear {
  public static void main(String[] args) {
     int[] arr = \{10, 20, 30, 40\};
     int x = 30;
     boolean encontrado = false;
     for(int n : arr) if(n == x) encontrado = true;
     System.out.println(encontrado? "Encontrado": "Não encontrado");
  }
}
C#:
using System;
using System.Linq;
public class BuscaLinear
  public static void Main(string[] args)
     int[] arr = { 10, 20, 30, 40 };
     int x = 30:
     bool encontrado = arr.Contains(x);
     Console.WriteLine(encontrado? "Encontrado": "Não encontrado");
}
JavaScript:
const arr = [10, 20, 30, 40];
const x = 30;
const encontrado = arr.includes(x);
console.log(encontrado? "Encontrado": "Não encontrado");
Python:
arr = [10, 20, 30, 40]
```


x = 30encontrado = x in arrprint("Encontrado" if encontrado else "Não encontrado") 19. Ordenação bubble sort Java: import java.util.Arrays; public class BubbleSort { public static void main(String[] args) { $int[] arr = {5, 1, 4, 2, 8};$ for(int i = 0; i < arr.length - 1; i++) { for(int j = 0; j < arr.length - 1 - i; j++) { if(arr[j] > arr[j+1]) { int temp = arr[j]; arr[j] = arr[j+1];arr[j+1] = temp;} System.out.println(Arrays.toString(arr)); C#: using System; using System.Linq; public class BubbleSort public static void Main(string[] args) $int[] arr = { 5, 1, 4, 2, 8 };$ for (int i = 0; i < arr.Length - 1; i++) for (int j = 0; j < arr.Length - 1 - i; j++) if (arr[j] > arr[j + 1])int temp = arr[j]; arr[j] = arr[j + 1];arr[j + 1] = temp;}

JavaScript:

}

```
const arr = [5, 1, 4, 2, 8];
const n = arr.length;
for (let i = 0; i < n - 1; i++) {
 for (let j = 0; j < n - 1 - i; j++) {
   if (arr[j] > arr[j + 1]) {
    // Troca os elementos
    [arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];
 }
}
```

Console.WriteLine(string.Join(", ", arr));


```
console.log(arr);
Python:
arr = [5, 1, 4, 2, 8]
n = len(arr)
for i in range(n - 1):
  for j in range(n - 1 - i):
     if arr[j] > arr[j + 1]:
       arr[j], arr[j + 1] = arr[j + 1], arr[j]
print(arr)
20. Verificar palíndromo
import java.util.Scanner;
public class Palindromo {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     String s = sc.nextLine();
     String reverso = new StringBuilder(s).reverse().toString();
     System.out.println(s.equals(reverso)? "Palíndromo": "Não é palíndromo");
}
C#:
using System;
using System.Ling;
public class Palindromo
  public static void Main(string[] args)
     Console.WriteLine("Digite uma string para verificar se é um palíndromo:");
     string s = Console.ReadLine();
     char[] charArray = s.ToCharArray();
     Array.Reverse(charArray);
     string reverso = new string(charArray);
     Console.WriteLine(s.Equals(reverso)? "Palíndromo": "Não é palíndromo");
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite uma string para verificar se é um palíndromo: ', (s) => {
 const reverso = s.split(").reverse().join(");
 console.log(s === reverso ? "Palíndromo" : "Não é palíndromo");
 rl.close();
});
Python:
s = input("Digite uma string para verificar se é um palíndromo: ")
reverso = s[::-1]
```


print("Palíndromo" if s == reverso else "Não é palíndromo")

21. Imprimir elementos de uma matriz

```
Java:
public class ImprimirMatriz {
  public static void main(String[]
  args) {
     int[][] matriz = {{1,}
     2}, {3, 4}};
     for(int[] linha:
     matriz) {
        for(int elem:
        linha) System.out.print(elem + " ");
        System.out.println();
  }
}
C#:
using System;
public class ImprimirMatriz
  public static void Main(string[] args)
     int[,] matriz = \{ \{ 1, 2 \}, \{ 3, 4 \} \};
     for (int i = 0; i < matriz.GetLength(0); i++)
        for (int j = 0; j < matriz.GetLength(1); j++)
           Console.Write(matriz[i, j] + " ");
        Console.WriteLine();
  }
}
JavaScript:
const matriz = [[1, 2], [3, 4]];
for (const linha of matriz) {
 console.log(linha.join(" "));
}
Python:
matriz = [[1, 2], [3, 4]]
for linha in matriz:
  print(*linha) # Desempacota a lista para imprimir os elementos separados por espaço
22. Transposição de matriz
Java:
public class TransporMatriz {
  public static void main(String[] args) {
     int[][] matriz = {{1,}
     2}, {3, 4}};
     for(int i = 0; i < 2;
     i++) {
        for(int j = 0; j
        < 2; j++) {
```

System.out.print(matriz[j][i] + " ");


```
System.out.println();
  }
}
C#:
using System;
public class TransporMatriz
  public static void Main(string[] args)
     int[,] matriz = \{ \{ 1, 2 \}, \{ 3, 4 \} \};
     int linhas = matriz.GetLength(0);
     int colunas = matriz.GetLength(1);
     Console.WriteLine("Matriz original:");
     for (int i = 0; i < linhas; i++)
        for (int j = 0; j < columns; j++)
        {
           Console.Write(matriz[i, j] + " ");
        Console.WriteLine();
     }
     Console.WriteLine("\nMatriz transposta:");
     for (int i = 0; i < columns; i++)
     {
        for (int j = 0; j < linhas; j++)
        {
           Console.Write(matriz[j, i] + " ");
        Console.WriteLine();
  }
}
JavaScript:
const matriz = [[1, 2], [3, 4]];
const linhas = matriz.length;
const colunas = matriz[0].length;
const transposta = Array.from({
 length: colunas
}, () => Array(linhas).fill(0));
for (let i = 0; i < linhas; i++) {
 for (let j = 0; j < columns; j++) {
  transposta[j][i] = matriz[i][j];
 }
}
console.log("Matriz original:");
matriz.forEach(row => console.log(row.join(" ")));
console.log("\nMatriz transposta:");
transposta.forEach(row => console.log(row.join(" ")));
```



```
Python:
matriz = [[1, 2], [3, 4]]
linhas = len(matriz)
colunas = len(matriz[0])
transposta = [[0 for _ in range(linhas)] for _ in range(colunas)]
for i in range(linhas):
  for j in range(colunas):
     transposta[j][i] = matriz[i][j]
print("Matriz original:")
for linha in matriz:
  print(*linha)
print("\nMatriz transposta:")
for linha in transposta:
  print(*linha)
23. Verificar senha forte
Java:
import java.util.Scanner;
public class SenhaForte {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     String senha = sc.nextLine();
     boolean forte =
     senha.length() >= 8 && senha.matches(".*[A-Z].*")
     && senha.matches(".*[a-z].*") &&
     senha.matches(".*[0-9].*");
     System.out.println(forte
     ? "Senha forte" : "Senha fraca");
  }
}
C#:
using System;
using System.Text.RegularExpressions;
public class SenhaForte
  public static void Main(string[] args)
     Console.WriteLine("Digite uma senha para verificar se é forte:");
     string senha = Console.ReadLine();
     bool forte = senha.Length >= 8 &&
     Regex.IsMatch(senha, @".*[A-Z].*") &&
     Regex.IsMatch(senha, @".*[a-z].*") &&
     Regex.IsMatch(senha, @".*[0-9].*");
     Console.WriteLine(forte? "Senha forte": "Senha fraca");
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
```



```
input: process.stdin,
 output: process.stdout
});
rl.question('Digite uma senha para verificar se é forte: ', (senha) => {
 const forte = senha.length >= 8 &&
  /[A-Z]/.test(senha) &&
  /[a-z]/.test(senha) &&
  /[0-9]/.test(senha);
 console.log(forte? "Senha forte": "Senha fraca");
 rl.close();
});
Python:
import re
senha = input("Digite uma senha para verificar se é forte: ")
forte = len(senha) >= 8 and \
     re.search(r'[A-Z]', senha) and \
     re.search(r'[a-z]', senha) and \
     re.search(r'[0-9]', senha)
print("Senha forte" if forte else "Senha fraca")
24. Gerar número aleatório
Java:
import java.util.Random;
public class NumeroAleatorio {
  public static void main(String[] args) {
     Random rand = new
     Random();
     int n =
     rand.nextInt(100);
     System.out.println("Número aleatório: " + n);
}
C#:
using System;
public class NumeroAleatorio
  public static void Main(string[] args)
     Random rand = new Random();
     int n = rand.Next(100);
     Console.WriteLine("Número aleatório: " + n);
}
JavaScript:
const n = Math.floor(Math.random() * 100); // Gera um número inteiro entre 0 e 99
console.log("Número aleatório: " + n);
Python:
import random
n = random.randint(0, 99)
print("Número aleatório:", n)
```


25. Conversor de moedas

```
Java:
import java.util.Scanner;
public class ConversorMoeda {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     double reais =
     sc.nextDouble();
     double cotacao = 5.2;
     System.out.println("USD: " + (reais / cotacao));
}
C#:
using System;
public class ConversorMoeda
  public static void Main(string[] args)
     Console.WriteLine("Digite o valor em Reais:");
     double reais = Convert.ToDouble(Console.ReadLine());
     double cotacao = 5.2;
     Console.WriteLine($"USD: {reais / cotacao:F2}");
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o valor em Reais: ', (inputReais) => {
 const reais = parseFloat(inputReais);
 const cotacao = 5.2; // Exemplo de cotação
 console.log("USD: " + (reais / cotacao).toFixed(2));
 rl.close();
});
Python:
reais = float(input("Digite o valor em Reais: "))
cotacao = 5.2
print(f"USD: {(reais / cotacao):.2f}")
26. Verificar idade para voto
Java:
import java.util.Scanner;
public class IdadeParaVoto {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     int idade =
```



```
sc.nextInt();
     if(idade < 16)
     System.out.println("Não vota");
     else if(idade < 18 ||
     idade > 70) System.out.println("Voto opcional");
     System.out.println("Voto obrigatório");
  }
}
C#:
using System;
public class IdadeParaVoto
  public static void Main(string[] args)
     Console.WriteLine("Digite sua idade:");
     int idade = Convert.ToInt32(Console.ReadLine());
     if (idade < 16)
        Console.WriteLine("Não vota");
     else if (idade < 18 || idade > 70)
     {
        Console.WriteLine("Voto opcional");
     }
     else
     {
        Console.WriteLine("Voto obrigatório");
  }
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite sua idade: ', (inputIdade) => {
 const idade = parseInt(inputIdade);
 if (idade < 16) {
  console.log("Não vota");
 } else if (idade < 18 || idade > 70) {
  console.log("Voto opcional");
 } else {
  console.log("Voto obrigatório");
 rl.close();
});
Python:
idade = int(input("Digite sua idade: "))
if idade < 16:
  print("Não vota")
```



```
elif idade < 18 or idade > 70:
  print("Voto opcional")
else:
print("Voto obrigatório")
27. Classificação de notas
import java.util.Scanner;
public class ClassificacaoNotas {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     double nota =
     sc.nextDouble();
     if(nota >= 9)
     System.out.println("A");
     else if(nota >= 7) System.out.println("B");
     else if(nota >= 5)
     System.out.println("C");
     System.out.println("Reprovado");
}
C#:
using System;
public class ClassificacaoNotas
  public static void Main(string[] args)
     Console.WriteLine("Digite a nota:");
     double nota = Convert.ToDouble(Console.ReadLine());
     if (nota >= 9)
       Console.WriteLine("A");
     else if (nota >= 7)
       Console.WriteLine("B");
     }
     else if (nota >= 5)
       Console.WriteLine("C");
     }
     else
       Console.WriteLine("Reprovado");
     }
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
```



```
rl.question('Digite a nota: ', (inputNota) => {
 const nota = parseFloat(inputNota);
 if (nota >= 9) {
   console.log("A");
 } else if (nota >= 7) {
   console.log("B");
 } else if (nota >= 5) {
   console.log("C");
 } else {
   console.log("Reprovado");
 rl.close();
});
Python:
nota = float(input("Digite a nota: "))
if nota >= 9:
   print("A")
elif nota >= 7:
   print("B")
elif nota >= 5:
   print("C")
else:
print("Reprovado")
28. Contar palavras em frase
Java:
import java.util.Scanner;
public class ContarPalavras {
   public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     String frase =
     sc.nextLine();
     String[] palavras =
     frase.trim().split("\\s+");
     System.out.println("Palavras: " + palavras.length);
  }
}
C#:
using System;
using System.Ling;
public class ContarPalavras
   public static void Main(string[] args)
     Console.WriteLine("Digite uma frase:");
     string frase = Console.ReadLine();
     string[] palavras = frase.Trim().Split(new char[] { ' ' },
StringSplitOptions.RemoveEmptyEntries);
     Console.WriteLine("Palavras: " + palavras.Length);
}
JavaScript:
const readline = require('readline');
```



```
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
rl.question('Digite uma frase: ', (frase) => {
 const palavras = frase.trim().split(\/s+/).filter(Boolean); // .filter(Boolean) remove strings vazias
resultantes de múltiplos espaços
 console.log("Palavras: " + palavras.length);
 rl.close();
});
Python:
frase = input("Digite uma frase: ")
palavras = frase.strip().split()
print("Palavras:", len(palavras))
29. Criar arquivo de texto
Java:
import java.io.FileWriter;
import java.io.IOException;
public class CriarArquivo {
  public static void main(String[] args) throws IOException {
     FileWriter writer = new
     FileWriter("saida.txt");
     writer.write("Olá,
     arquivo!");
     writer.close();
}
C#:
using System;
using System.IO;
public class CriarArquivo
  public static void Main(string[] args)
     try
     {
        File.WriteAllText("saida.txt", "Olá, arquivo!");
        Console.WriteLine("Arquivo 'saida.txt' criado com sucesso!");
     catch (IOException e)
        Console.WriteLine("Ocorreu um erro ao criar o arquivo: " + e.Message);
     }
JavaScript:
const fs = require('fs');
const filename = 'saida.txt';
const content = 'Olá, arquivo!';
fs.writeFile(filename, content, (err) => {
```



```
if (err) {
  console.error('Erro ao criar o arquivo:', err);
 } else {
  console.log(`Arquivo '${filename}' criado com sucesso!`);
});
Python:
try:
  with open("saida.txt", "w") as f:
     f.write("Olá, arquivo!")
  print("Arquivo 'saida.txt' criado com sucesso!")
except IOError as e:
  print(f"Ocorreu um erro ao criar o arquivo: {e}")
30. Ler arquivo de texto
Java:
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
public class LerArquivo {
  public static void main(String[] args) throws FileNotFoundException {
     File file = new
     File("saida.txt");
     Scanner sc = new
     Scanner(file);
     while(sc.hasNextLine())
        System.out.println(sc.nextLine());
     }
     sc.close();
}
C#:
using System;
using System.IO;
public class LerArquivo
  public static void Main(string[] args)
     try
     {
       string[] linhas = File.ReadAllLines("saida.txt");
       foreach (string linha in linhas)
          Console.WriteLine(linha);
       }
     catch (FileNotFoundException)
     {
        Console.WriteLine("Arquivo 'saida.txt' não encontrado.");
     catch (IOException e)
     {
        Console.WriteLine("Ocorreu um erro ao ler o arquivo: " + e.Message);
```

```
E C.
```

```
JavaScript:
const fs = require('fs');
const filename = 'saida.txt';
fs.readFile(filename, 'utf8', (err, data) => {
 if (err) {
  if (err.code === 'ENOENT') {
    console.error(`Arquivo '${filename}' não encontrado.`);
    console.error('Erro ao ler o arquivo:', err);
 } else {
  console.log(data);
});
Python:
try:
  with open("saida.txt", "r") as f:
     for linha in f:
        print(linha.strip()) # .strip() remove a quebra de linha extra
except FileNotFoundError:
  print("Arquivo 'saida.txt' não encontrado.")
except IOError as e:
  print(f"Ocorreu um erro ao ler o arquivo: {e}")
31. Login simples
Java:
import java.util.Scanner;
public class LoginSimples {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     String user =
     sc.nextLine();
     String pass =
     sc.nextLine();
     if(user.equals("admin") &&
     pass.equals("1234"))
     System.out.println("Acesso permitido");
     System.out.println("Acesso negado");
}
C#:
using System;
```

public class LoginSimples

```
E Colle
```

```
public static void Main(string[] args)
     Console.WriteLine("Digite o usuário:");
     string user = Console.ReadLine();
     Console.WriteLine("Digite a senha:");
     string pass = Console.ReadLine();
     if (user == "admin" && pass == "1234")
       Console.WriteLine("Acesso permitido");
     }
     else
       Console.WriteLine("Acesso negado");
     }
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o usuário: ', (user) => {
 rl.question('Digite a senha: ', (pass) => {
  if (user === "admin" && pass === "1234") {
    console.log("Acesso permitido");
  } else {
   console.log("Acesso negado");
  rl.close();
 });
});
Python:
user = input("Digite o usuário: ")
passw = input("Digite a senha: ")
if user == "admin" and passw == "1234":
  print("Acesso permitido")
else:
print("Acesso negado")
32. Validar CPF (formato simples)
import java.util.Scanner;
public class ValidarCPF {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     String cpf =
     sc.nextLine();
     System.out.println(cpf.matches("\\d{11}")? "CPF válido": "CPF inválido");
}
```


using System;

```
C#:
using System;
using System.Text.RegularExpressions;
public class ValidarCPF
  public static void Main(string[] args)
     Console.WriteLine("Digite o CPF (somente números):");
     string cpf = Console.ReadLine();
     Console.WriteLine(Regex.IsMatch(cpf, @"^\d{11}$")? "CPF válido": "CPF inválido");
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o CPF (somente números): ', (cpf) => {
 console.log(/^\d{11}$/.test(cpf) ? "CPF válido" : "CPF inválido");
 rl.close();
});
Python:
import re
cpf = input("Digite o CPF (somente números): ")
print("CPF válido" if re.fullmatch(r'\d{11}', cpf) else "CPF inválido")
33. Gerar sequência Fibonacci
Java:
import java.util.Scanner;
public class Fibonacci {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     int n = sc.nextInt();
     int a = 0, b = 1;
     for(int i = 0; i < n;
     i++) {
        System.out.print(a +
       " ");
       int temp = a;
       a = b;
       b = temp + b;
```



```
public class Fibonacci
  public static void Main(string[] args)
     Console.WriteLine("Quantos termos da sequência Fibonacci você quer gerar?");
     int n = Convert.ToInt32(Console.ReadLine());
     int a = 0, b = 1;
     for (int i = 0; i < n; i++)
        Console.Write(a + " ");
       int temp = a;
       a = b;
       b = temp + b;
     Console.WriteLine();
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
rl.question('Quantos termos da sequência Fibonacci você quer gerar?', (inputN) => {
 const n = parseInt(inputN);
 let a = 0,
  b = 1;
 let result = [];
 for (let i = 0; i < n; i++) {
  result.push(a);
  const temp = a;
  a = b;
  b = temp + b;
 console.log(result.join(" "));
 rl.close();
});
Python:
n = int(input("Quantos termos da sequência Fibonacci você quer gerar? "))
a, b = 0, 1
fib_sequence = []
for _ in range(n):
  fib_sequence.append(a)
  a, b = b, a + b
print(*fib_sequence)
34. Contar letras de uma palavra
import java.util.Scanner;
public class ContarLetras {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     String palavra =
     sc.nextLine().replaceAll("\\s+", "");
```



```
System.out.println("Letras: " + palavra.length());
}
C#:
using System;
using System.Text.RegularExpressions;
public class ContarLetras
  public static void Main(string[] args)
     Console.WriteLine("Digite uma palavra ou frase para contar as letras:");
     string palavra = Console.ReadLine().Replace(" ", "");
     Console.WriteLine("Letras: " + palavra.Length);
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
rl.question('Digite uma palavra ou frase para contar as letras: ', (palavra) => {
 const cleanedPalavra = palavra.replace(/\s+/g, ");
 console.log("Letras: " + cleanedPalavra.length);
 rl.close();
});
Python:
palavra = input("Digite uma palavra ou frase para contar as letras: ").replace(" ", "")
print("Letras:", len(palavra))
35. Conversão de decimal para binário
Java:
import java.util.Scanner;
public class DecimalParaBinario {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     int n = sc.nextInt();
     System.out.println("Binário: " + Integer.toBinaryString(n));
  }
}
C#:
using System;
public class DecimalParaBinario
  public static void Main(string[] args)
     Console.WriteLine("Digite um número decimal:");
     int n = Convert.ToInt32(Console.ReadLine());
     Console.WriteLine("Binário: " + Convert.ToString(n, 2));
  }
```

```
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite um número decimal: ', (inputN) => {
 const n = parseInt(inputN);
 console.log("Binário: " + n.toString(2));
 rl.close();
});
Python:
n = int(input("Digite um número decimal: "))
print("Binário:", bin(n)[2:]) # [2:] remove o prefixo "0b"
36. Verificar múltiplos
Java:
import java.util.Scanner;
public class VerificarMultiplos {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     int a = sc.nextInt();
     int b = sc.nextInt();
     System.out.println((a %
     b == 0 || b % a == 0) ? "São múltiplos" : "Não são
     múltiplos");
}
C#:
using System;
public class VerificarMultiplos
  public static void Main(string[] args)
     Console.WriteLine("Digite o primeiro número:");
     int a = Convert.ToInt32(Console.ReadLine());
     Console.WriteLine("Digite o segundo número:");
     int b = Convert.ToInt32(Console.ReadLine());
     Console.WriteLine((a % b == 0 || b % a == 0) ? "São múltiplos" : "Não são múltiplos");
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o primeiro número: ', (inputA) => {
```



```
rl.question('Digite o segundo número: ', (inputB) => {
  const a = parseInt(inputA);
  const b = parseInt(inputB);
  console.log((a % b === 0 || b % a === 0) ? "São múltiplos" : "Não são múltiplos");
 });
});
Python:
a = int(input("Digite o primeiro número: "))
b = int(input("Digite o segundo número: "))
print("São múltiplos" if a % b == 0 or b % a == 0 else "Não são múltiplos")
37. Trocar valores entre variáveis
Java:
public class TrocarValores {
  public static void main(String[] args) {
     int a = 5, b = 10;
     int temp = a;
     a = b;
     b = temp;
     System.out.println("a = " + a + ", b = " + b);
}
C#:
using System;
public class TrocarValores
  public static void Main(string[] args)
     int a = 5, b = 10;
     Console.WriteLine(<span class="math-inline">"Valores iniciais\: a \setminus \{a\}, b \setminus \{b\}"\);
     int temp = a;
     a \= b;
     b = temp;
     Console\.WriteLine\(</span>"Valores trocados: a = \{a\}, b = \{b\}");
  }
}
JavaScript:
let a = 5;
let b = 10;
console.log('Valores iniciais: a = \{a\}, b = \{b\}');
[a, b] = [b, a]; // Troca de valores usando desestruturação de array
console.log(\Valores\ trocados: a = \{a\}, b = \{b\}\);
Python:
a, b = 5, 10
print(f"Valores iniciais: a = {a}, b = {b}")
a, b = b, a # Troca de valores em Python
print(f"Valores trocados: a = \{a\}, b = \{b\}")
38. Média ponderada
Java:
import java.util.Scanner;
public class MediaPonderada {
  public static void main(String[] args) {
```



```
Scanner sc = new
     Scanner(System.in);
     double n1 = sc.nextDouble(),
     n2 = sc.nextDouble(), n3 = sc.nextDouble();
     System.out.println("Média: " + ((n1*2 + n2*3 + n3*5)/10));
  }
}
C#:
using System;
public class MediaPonderada
  public static void Main(string[] args)
     Console.WriteLine("Digite a primeira nota:");
     double n1 = Convert.ToDouble(Console.ReadLine());
     Console.WriteLine("Digite a segunda nota:");
     double n2 = Convert.ToDouble(Console.ReadLine());
     Console.WriteLine("Digite a terceira nota:");
     double n3 = Convert.ToDouble(Console.ReadLine());
     Console.WriteLine("Média: " + ((n1 * 2 + n2 * 3 + n3 * 5) / 10));
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite a primeira nota: ', (inputN1) => {
 rl.question('Digite a segunda nota: ', (inputN2) => {
  rl.question('Digite a terceira nota: ', (inputN3) => {
    const n1 = parseFloat(inputN1);
    const n2 = parseFloat(inputN2);
    const n3 = parseFloat(inputN3);
    console.log("Média: " + ((n1 * 2 + n2 * 3 + n3 * 5) / 10));
    rl.close();
  });
 });
});
Python:
n1 = float(input("Digite a primeira nota: "))
n2 = float(input("Digite a segunda nota: "))
n3 = float(input("Digite a terceira nota: "))
print("Média:", (n1 * 2 + n2 * 3 + n3 * 5) / 10)
39. Verificar triângulo válido
Java:
import java.util.Scanner;
public class TrianguloValido {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     int a = sc.nextInt(), b
```



```
= sc.nextInt(), c = sc.nextInt();
     boolean valido = a + b
     > c && a + c > b && b + c > a;
     System.out.println(valido? "Triângulo válido":
     "Inválido");
  }
}
C#:
using System;
public class Triangulo Valido
  public static void Main(string[] args)
     Console.WriteLine("Digite o comprimento do lado A:");
     int a = Convert.ToInt32(Console.ReadLine());
     Console.WriteLine("Digite o comprimento do lado B:");
     int b = Convert.ToInt32(Console.ReadLine());
     Console.WriteLine("Digite o comprimento do lado C:");
     int c = Convert.ToInt32(Console.ReadLine());
     bool valido = a + b > c && a + c > b && b + c > a;
     Console.WriteLine(valido? "Triângulo válido": "Inválido");
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o comprimento do lado A: ', (inputA) => {
 rl.question('Digite o comprimento do lado B: ', (inputB) => {
  rl.question('Digite o comprimento do lado C: ', (inputC) => {
    const a = parseInt(inputA);
    const b = parseInt(inputB);
    const c = parseInt(inputC);
    const valido = a + b > c && a + c > b && b + c > a;
    console.log(valido? "Triângulo válido": "Inválido");
    rl.close();
  });
 });
});
Python:
a = int(input("Digite o comprimento do lado A: "))
b = int(input("Digite o comprimento do lado B: "))
c = int(input("Digite o comprimento do lado C: "))
valido = a + b > c and a + c > b and b + c > a
print("Triângulo válido" if valido else "Inválido")
40. Conversor de tempo (segundos para h:min:s)
import java.util.Scanner;
```



```
public class ConversorTempo {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     int seg = sc.nextInt();
     int h = seg / 3600;
     int m = (seg \% 3600) /
     int s = seg \% 60;
     System.out.println(h +
     ":" + m + ":" + s);
  }
}
C#:
using System;
public class ConversorTempo
  public static void Main(string[] args)
     Console.WriteLine("Digite o número de segundos:");
     int seg = Convert.ToInt32(Console.ReadLine());
     int h = seg / 3600;
     int m = (seg \% 3600) / 60;
     int s = seg \% 60;
     Console.WriteLine($"{h:D2}:{m:D2}:{s:D2}");
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o número de segundos: ', (inputSeg) => {
 const seg = parseInt(inputSeg);
 const h = Math.floor(seg / 3600);
 const m = Math.floor((seg % 3600) / 60);
 const s = seg \% 60;
 const formatTwoDigits = (num) => String(num).padStart(2, '0');
 console.log(`${formatTwoDigits(h)}:${formatTwoDigits(m)}:${formatTwoDigits(s)}`);
 rl.close();
});
Python:
seg = int(input("Digite o número de segundos: "))
h = seg // 3600
m = (seg \% 3600) // 60
s = seg \% 60
print(f"{h:02}:{m:02}:{s:02}")
```


41. Simulador de dado

```
Java:
import java.util.Random;
public class Dado {
  public static void main(String[] args) {
     Random rand = new
     Random();
     System.out.println("Dado: " + (rand.nextInt(6) + 1));
}
C#:
using System;
public class Dado
  public static void Main(string[] args)
     Random rand = new Random();
     Console.WriteLine("Dado: " + (rand.Next(1, 7)));
JavaScript:
const randomNumber = Math.floor(Math.random() * 6) + 1; // Gera um número inteiro entre 1 e
console.log("Dado: " + randomNumber);
Python:
import random
print("Dado:", random.randint(1, 6))
42. Conversão de número romano
Java:
import java.util.Scanner;
import java.util.Map;
import java.util.HashMap;
public class RomanoParaDecimal {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     String romano =
     sc.nextLine().toUpperCase();
     Map<Character.
     Integer> mapa = Map.of('I',1,'V',5,'X',10,'L',50,'C',100,'D',500,'M',1000);
     int total = 0, prev = 0;
     for(int i =
     romano.length()-1; i \ge 0; i--) {
       int atual =
       mapa.get(romano.charAt(i));
       total += (atual <
       prev) ? -atual : atual;
       prev = atual;
     System.out.println("Decimal:
     " + total);
```

```
C#:
using System;
using System.Collections.Generic;
public class RomanoParaDecimal
  public static void Main(string[] args)
     Console.WriteLine("Digite um número romano:");
     string romano = Console.ReadLine().ToUpper();
     Dictionary<char, int> mapa = new Dictionary<char, int>
        {'I', 1}, {'V', 5}, {'X', 10}, {'L', 50}, {'C', 100}, {'D', 500}, {'M', 1000}
     };
     int total = 0;
     int prev = 0;
     for (int i = romano.Length - 1; i >= 0; i--)
        int atual = mapa[romano[i]];
        total += (atual < prev) ? -atual : atual;
        prev = atual;
     Console.WriteLine("Decimal: " + total);
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite um número romano: ', (romano) => {
 const romanMap = {
  'l': 1,
  'V': 5,
  'X': 10,
  'L': 50,
  'C': 100,
  'D': 500,
  'M': 1000
 };
 let total = 0;
 let prev = 0;
 for (let i = romano.length - 1; i >= 0; i--) {
  const current = romanMap[romano[i].toUpperCase()];
  if (current < prev) {
    total -= current;
```

} else {

total += current;

```
E & Com
```

```
prev = current;
 console.log("Decimal: " + total);
 rl.close();
});
Python:
romano = input("Digite um número romano: ").upper()
roman_map = {
  'l': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000
}
total = 0
prev = 0
for char in reversed(romano):
  atual = roman_map[char]
  if atual < prev:
     total -= atual
else:
total += atual
prev = atual
print("Decimal:", total)
43. Desenhar pirâmide com asteriscos
public class Piramide {
  public static void main(String[] args) {
     int altura = 5;
     for(int i = 1; i \le 1
     altura; i++) {
        for(int j = 0; j
        < altura - i; j++) System.out.print(" ");
        for(int j = 0; j
        < i * 2 - 1; j++) System.out.print("*");
        System.out.println();
     }
  }
}
C#:
using System;
public class Piramide
  public static void Main(string[] args)
     int altura = 5;
     for (int i = 1; i \le altura; i++)
        for (int j = 0; j < altura - i; j++)
        {
           Console.Write(" ");
        for (int j = 0; j < i * 2 - 1; j++)
           Console.Write("*");
        Console.WriteLine();
```

```
JavaScript:
const altura = 5;
for (let i = 1; i \le altura; i++) {
 let line = ' '.repeat(altura - i);
 line += '*'.repeat(i * 2 - 1);
 console.log(line);
}
Python:
altura = 5
for i in range(1, altura + 1):
  spaces = " " * (altura - i)
  asterisks = "*" * (i * 2 - 1)
  print(spaces + asterisks)
44. Calcular IMC
Java:
import java.util.Scanner;
public class IMC {
  public static void main(String[] args) {
     Scanner sc = new Scanner(System.in);
     double peso =
     sc.nextDouble();
     double altura =
     sc.nextDouble();
     double imc = peso /
     (altura * altura);
     System.out.println("IMC: " + imc);
}
```

C#:

using System;

```
public class IMC
{
   public static void Main(string[] args)
   {
      Console.WriteLine("Digite seu peso em kg:");
      double peso = Convert.ToDouble(Console.ReadLine());
      Console.WriteLine("Digite sua altura em metros:");
      double altura = Convert.ToDouble(Console.ReadLine());
      double imc = peso / (altura * altura);
      Console.WriteLine($"IMC: {imc:F2}");
   }
}
```

JavaScript:

```
const readline = require('readline');
const rl = readline.createInterface({
  input: process.stdin,
  output: process.stdout
});
```



```
rl.question('Digite seu peso em kg: ', (inputPeso) => {
 rl.question('Digite sua altura em metros: ', (inputAltura) => {
  const peso = parseFloat(inputPeso);
  const altura = parseFloat(inputAltura);
  const imc = peso / (altura * altura);
  console.log("IMC: " + imc.toFixed(2));
  rl.close();
 });
});
Python:
peso = float(input("Digite seu peso em kg: "))
altura = float(input("Digite sua altura em metros: "))
imc = peso / (altura * altura)
print(f"IMC: {imc:.2f}")
45. Verificar se string contém substring
Java:
import java.util.Scanner;
public class ContemSubstring {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     String texto =
     sc.nextLine();
     String sub = sc.nextLine();
     System.out.println(texto.contains(sub) ? "Contém" : "Não
     contém");
}
C#:
using System;
public class ContemSubstring
  public static void Main(string[] args)
     Console.WriteLine("Digite o texto principal:");
     string texto = Console.ReadLine();
     Console.WriteLine("Digite a substring a ser procurada:");
     string sub = Console.ReadLine();
     Console.WriteLine(texto.Contains(sub)? "Contém": "Não contém");
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite o texto principal: ', (texto) => {
 rl.question('Digite a substring a ser procurada: ', (sub) => {
```



```
console.log(texto.includes(sub)? "Contém": "Não contém");
  rl.close();
 });
});
Python:
texto = input("Digite o texto principal: ")
sub = input("Digite a substring a ser procurada: ")
print("Contém" if sub in texto else "Não contém")
46. Simulador de caixa eletrônico
Java:
import java.util.Scanner;
public class CaixaEletronico {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     int valor =
     sc.nextInt();
     int[] notas = {100, 50,}
     20, 10, 5, 2, 1};
     for(int nota: notas) {
        int qtd = valor /
        nota;
        if(qtd > 0) {
          System.out.println(nota + " x " + qtd);
          valor %= nota;
        }
     }
  }
}
C#:
using System;
public class CaixaEletronico
  public static void Main(string[] args)
     Console.WriteLine("Digite o valor para sacar:");
     int valor = Convert.ToInt32(Console.ReadLine());
     int[] notas = { 100, 50, 20, 10, 5, 2, 1 };
     foreach (int nota in notas)
        int qtd = valor / nota;
        if (qtd > 0)
          Console.WriteLine($"{nota} x {qtd}");
          valor %= nota;
     }
  }
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
```



```
input: process.stdin,
 output: process.stdout
});
rl.question('Digite o valor para sacar: ', (inputValor) => {
 let valor = parseInt(inputValor);
 const notas = [100, 50, 20, 10, 5, 2, 1];
 for (const nota of notas) {
  const qtd = Math.floor(valor / nota);
  if (qtd > 0) {
    console.log(`${nota} x ${qtd}`);
    valor %= nota;
 }
 rl.close();
});
Python:
valor = int(input("Digite o valor para sacar: "))
notas = [100, 50, 20, 10, 5, 2, 1]
for nota in notas:
  qtd = valor // nota
  if qtd > 0:
     print(f"{nota} x {qtd}")
     valor %= nota
47. Contar elementos pares em lista
Java:
public class ContarPares {
  public static void main(String[] args) {
     int[] arr = {1, 2, 3, 4,}
     5, 6};
     int count = 0;
     for(int n : arr) if(n %
     2 == 0) count++;
     System.out.println("Pares: " + count);
  }
}
C#:
using System;
using System.Ling;
public class ContarPares
  public static void Main(string[] args)
     int[] arr = { 1, 2, 3, 4, 5, 6 };
     int count = arr.Count(n => n % 2 == 0);
     Console.WriteLine("Pares: " + count);
}
JavaScript:
const arr = [1, 2, 3, 4, 5, 6];
const count = arr.filter(n => n % 2 === 0).length;
console.log("Pares: " + count);
Python:
```



```
arr = [1, 2, 3, 4, 5, 6]
count = sum(1 \text{ for n in arr if n } \% 2 == 0)
print("Pares:", count)
48. Contar elementos ímpares em lista
public class ContarImpares {
  public static void main(String[] args) {
     int[] arr = {1, 2, 3, 4,}
     5, 6};
     int count = 0;
     for(int n : arr) if(n %
     2 != 0) count++;
     System.out.println("Ímpares: " + count);
}
C#:
using System;
using System.Linq;
public class ContarImpares
  public static void Main(string[] args)
     int[] arr = { 1, 2, 3, 4, 5, 6 };
     int count = arr.Count(n \Rightarrow n \% 2! = 0);
     Console.WriteLine("Ímpares: " + count);
  }
}
JavaScript:
const arr = [1, 2, 3, 4, 5, 6];
const count = arr.filter(n => n % 2 !== 0).length;
console.log("Ímpares: " + count);
Python:
arr = [1, 2, 3, 4, 5, 6]
count = sum(1 \text{ for n in arr if n } \% 2 != 0)
print("Ímpares:", count)
49. Verificar número perfeito
public class NumeroPerfeito {
  public static void main(String[] args) {
     int n = 28, soma = 0;
     for(int i = 1; i < n;
     i++) {
        if(n \% i == 0) soma
        += i;
     System.out.println(soma
     == n ? "Perfeito" : "Não perfeito");
}
C#:
using System;
public class NumeroPerfeito
```



```
public static void Main(string[] args)
     Console.WriteLine("Digite um número para verificar se é perfeito:");
     int n = Convert.ToInt32(Console.ReadLine());
     int soma = 0;
     for (int i = 1; i < n; i++)
        if (n \% i == 0)
        {
          soma += i;
       }
     Console.WriteLine(soma == n ? "Perfeito" : "Não perfeito");
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite um número para verificar se é perfeito: ', (inputN) => {
 const n = parseInt(inputN);
 let soma = 0;
 for (let i = 1; i < n; i++) {
  if (n \% i === 0) {
    soma += i;
  }
 console.log(soma === n ? "Perfeito" : "Não perfeito");
 rl.close();
});
Python:
n = int(input("Digite um número para verificar se é perfeito: "))
soma = 0
for i in range(1, n):
  if n % i == 0:
     soma += i
print("Perfeito" if soma == n else "Não perfeito")
50. Comparar duas strings
Java:
import java.util.Scanner;
public class CompararStrings {
  public static void main(String[] args) {
     Scanner sc = new
     Scanner(System.in);
     String a =
     sc.nextLine();
     String b =
     sc.nextLine();
     System.out.println(a.equals(b) ? "Iguais" :
     "Diferentes");
  }
```

```
C#:
using System;
public class CompararStrings
  public static void Main(string[] args)
     Console.WriteLine("Digite a primeira string:");
     string a = Console.ReadLine();
     Console.WriteLine("Digite a segunda string:");
     string b = Console.ReadLine();
     Console.WriteLine(a.Equals(b)? "Iguais": "Diferentes");
  }
}
JavaScript:
const readline = require('readline');
const rl = readline.create('readline');
const rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});
rl.question('Digite a primeira string: ', (a) => {
 rl.question('Digite a segunda string: ', (b) => {
  console.log(a === b ? "Iguais" : "Diferentes");
  rl.close();
 });
});
Python:
```

Lembre-se

a = input("Digite a primeira string: ")
b = input("Digite a segunda string: ")
print("Iguais" if a == b else "Diferentes")

Aprender lógica de programação por meio de exemplos práticos em Java, C#, JavaScript e Python é uma forma poderosa de construir uma base sólida e duradoura.

Essa coletânea de 50 exercícios não apenas ensina estruturas fundamentais — como variáveis, condicionais, laços e funções — mas também estimula o pensamento algorítmico e a capacidade de adaptação a diferentes linguagens e paradigmas.

Ao comparar soluções equivalentes entre linguagens, o aluno desenvolve uma visão mais ampla da programação, compreendendo que, embora a sintaxe varie, a lógica permanece.

Essa habilidade é essencial em um mundo onde a tecnologia muda rapidamente e exige programadores cada vez mais flexíveis e preparados para atuar em múltiplas plataformas.

Dominar essas linguagens é dar os primeiros passos rumo à proficiência, à autonomia e à criatividade no desenvolvimento de software.

Continue praticando, refatorando e explorando e lembre-se que seu próximo grande projeto começa aqui.

EducaCiencia FastCode para a comunidade