6LoWPan

Protocolos de Aplicação e Pilhas de Implementação

Agenda

1. Protocolos de Aplicação

- 1.1. Real-time Streaming
- 1.2. Publish/Subscribe
- 1.3. Web Services
- 1.4. Protocolos Industriais
- 1.5. Outros Protocolos

2. Usando 6LoWPAN

- 2.1. Arquiteturas
- 2.2. Pilhas de Implementação
- 2.3. Integração do Edge Router

- 6LoWPAN possibilita a utilização de qualquer protocolo de aplicação compatível com rede IP
- Grande variedade de protocolos existentes
- Nem todos os protocolos de aplicação existentes são adequados
 - Pacotes grandes
- Necessário atender alguns requisitos para obter um bom funcionamento da rede 6LoWPAN

- Link Layer utiliza IEEE 802.15.4
 - Possibilita uma perda de pacotes elevada
 - Pouco espaço para payload no pacote (127 bytes)
 - Baixa taxa de transmissão (20 250 Kbit/s)
- Para se encaixar nessas restrições os protocolos de aplicação devem:
 - Pequenos cabeçalhos em formato binário
 - Trabalhar com pequenos tamanhos de payload
 - Possibilidade de compressão é favorável

- Dar prioridade a protocolos que sejam baseados UDP na camada de transporte
 - 6LoWPAN já possui um algoritmo eficiente de compressão
- Utilização do range de portas específicos da compressão UDP
- Apesar dos benefícios bem conhecidos do TCP ele não se encaixa bem com as demandas básicas do 6LoWPAN

- Apesar da capacidade de fragmentação bem definida na RFC 4944 é interessante evitá-la ao máximo
- Aumenta a performance da rede em relação a batería
 - Menos esforço para realizar a fragmentação
 - Menos pacotes para serem enviados
 - Menor a taxa de retransmissão

Real-time Streaming

- RTP (Real-time Transport Protocol)
 - Baseado em UDP/IP
 - Cabeçalho pequeno
 - Permite criação de perfis de tráfego adequados a baixa taxa de transmissão
- RTCP (Real-time Transport Control Protocol)
 - Protocolo de controle sobre o RTP
 - Também baseado em UDP

Real-time Streaming

- SIP (Session Initiation Protocol)
 - Utilizado para iniciar e finalizar conexões
 - Muito utilizado em VoIP
 - Baseado em UDP/IP
 - Problema: Cabeçalho grande demais para 6LoWPAN
 - Alternativa é utilizar TinySIP implementado pelo TinyOS
 - Utiliza um conjunto de mensagens mais compacto
 - Necessário utilizar um gateway para traduzir as mensagens TinySIP para SIP padrão

Publish/Subscribe

- MQTT (MQ Telemetry Transport)
 - Protocolo baseado em publish/subscribe
 - Apesar de ser leve é baseado em TCP e tem pacotes grandes
- MQTT-S
 - Adaptação do protocolo MQTT
 - Funciona sobre UDP
 - Adaptação dos pacotes para serem menores
 - Compatível com MQTT ao utilizar um gateway MQTT-S

Webservices

- Protocolos existentes não se adequam (SOAP, REST)
 - Cabeçalhos HTTP muito grandes e difíceis de parsear
 - Baseados em TCP
 - Payloads em XML e JSON comumente utilizados muito grandes para o payload dos pacotes
- O livro propõe a utilização de abordagens alternativas
 - Utilização de um gateway específico no Edge Router
 - Utilização de compressão fim a fim
- Quando o livro foi escrito (2011) ainda não existia o protocolo COAP (2014)

Webservices

- COAP (Constrained Application Protocol)
 - Desenvolvido pensando em redes de sensores
 - Protocolo leve com baixo overhead
 - Funciona sobre UDP
 - Utilização muito similar aos webservices já existentes

Protocolos Industriais

- BACnet (Building Automation and Control Networks)
 - Pode funcionar sobre UDP/IP
 - Suporte IPv6 sendo desenvolvido
 - Desenvolvido para operar com baixo consumo de banda
 - Interessante para automação predial utilizando 6LoWPAN
- KNK (Konnex)
 - Protocolo para automação residencial e predial
 - Pode funcionar sobre Par Trançado, Power Line, RF e IP
- oBIX (Open Building Information Exchange)
 - Protocolo baseado em webservice para controle predial

Outros Protocolos

- CAP (ZigBee Compact Application Protocol)
 - Design original para rodar sobre frames IEEE 802.15.4
 - Adaptação do Zigbee Application Protocol para rodar sobre UDP/IP
 - Principal modificação é a utilização dos endereços IP ao invés dos endereços IEEE 802.15.4
 - Mensagens do ZigBee Application Protocol s\u00e3o colocadas dentro dos datagramas UDP ao inv\u00e9s de na camada de rede ZigBee

Usando 6LoWPAN

- Uma solução 6LoWPAN necessita de três componentes:
 - **Transceiver:** Recebe e envia frames IEEE 802.15.4
 - **6LoWPAN Stack:** Implementação dos protocolos necessários
 - Applications: Lógica de aplicação dos dispositivos
- Existem três tipos de arquitetura possíveis para criar uma rede 6LoWPAN:
 - Single Chip Solution
 - Two Chip Solution
 - Network Processor Solution

Single Chip Solution

- Possui os três componentes necessários em um único chip
- Menor tamanho dos devices e menor custo do chip
- Baixo poder de processamento disponível
- A grande parte das pilhas de implementação 6LoWPAN suportam essa abordagem
- Maior complexidade de desenvolvimento
 - Dificuldade na integração da aplicação com as pilhas 6LoWPAN

Single Chip Solution

System-on-a-chip radio

Single Chip Solution

- Alguns chips disponíveis no mercado
- Texas Instruments
 - CC2530
 - CC1110
- Jennic
 - JN5139

Two Chip Solution

- A aplicação e a pilha 6LoWPAN ficam em um chip enquanto que o transceiver fica em outro
- Maior liberdade na escolha do microcontrolador
 - Maior poder de processamento
- Comunicação com o transceiver baseada em UART/SPI
- Nessa abordagem ainda temos dificuldade de integração
 - Difícil comunicação entre a pilha e a aplicação

Two Chip Solution

Application microcontroller

Two Chip Solution

- Alguns Chips (transceivers) disponíveis no mercado
- Texas Instruments
 - CC2520
- Atmel
 - AT86RF231

Network Processor Solution

- Também é uma abordagem que utiliza dois chips
- Nesse caso o transceiver e a pilha 6LoWPAN ficam juntas enquanto que a aplicação fica isolada
- Major liberdade na escolha do microcontrolador
 - Maior poder de processamento
- Comunicação com o transceiver baseada em UART/SPI
- Nessa abordagem temos mais facilidade no desenvolvimento da aplicação
 - Pilha isolada da aplicação

Network Processor Solution

Network Processor Solution

- Pontos fracos da abordagem
 - Necessário a utilização de dois chips
 - Torna a solução mais cara
 - Tamanho físico dos devices maior
- O transceiver e a pilha utilizam os chips apresentados na abordagem single chip

Pilhas de Implementação

- O modo mais fácil de utilizar 6LoWPAN é se aproveitar das implementações já presentes no mercado
- Minimamente uma pilha deve ter suporte a:
 - Drivers de rádio
 - MAC (IEEE 802.15.4)
 - IPv6 com 6LoWPAN [RFC 4944]
 - UDP
 - ICMPv6
 - Neighbour Discovery
 - Comunicação via socket ou outro tipo de API disponível

Pilhas de Implementação

- As pilhas podem conter também um ou mais protocolos de roteamento
 - RPL
- Suporte a TCP e outros protocolos comuns também podem ser incluídos
- A maioria das pilhas são bem compactas em termos de espaço
 - 15 20 Kb em memória flash
- Comumente as pilhas oferecem uma API socket-like via um barramento de comunicação ou chamadas da própria biblioteca

Contiki (uIPv6)

- Contiki é um sistema operacional open source para microcontroladores
 - Licença BSD
- Utilizado por centenas de projetos e empresas
- Último release em agosto de 2015
- Módulo para gestão da camada L2 (Rime)
 - Suporte a IEEE 802.15.4
- Inclui implementação de 6LoWPAN (uIPv6)
- Fornece API socket-like

Contiki (uIPv6)

- Suporte a compressão stateless e stateful
 - RFC 4944 e RFC 6282
- Suporte ao protocolo de roteamento RPL
 - RFC 6550
- Suporte a outros protocolos:
 - COAP, MQTT-S

User apps			Built-in apps
ulPv6			
Socket-like API			
UDP	TCP	ICMP	Contiki OS
IPv6 LoWPAN			
Rime (MAC)			
Platform			CPU
Hardware drivers			

TinyOS (BLIP)

- TinyOS é um sistema operacional open source para microcontroladores
 - Licença BSD
- Mais voltado para academia
- Último release em agosto de 2012
- Possui implementação 6LoWPAN (BLIP)
 - Desenvolvida pela Universidade de Berkeley

TinyOS (BLIP)

- Suporte a compressão stateless
 - RFC 4944
- Suporte ao protocolo de roteamento RPL
 - RFC 6550
- Suporte a outros protocolos:
 - COAP

Sensinode (NanoStack)

- Inicialmente NanoStack era uma pilha proprietária da empresa Sensinode
- Em 2013 a empresa ARM comprou a Sensinode e abriu o código da pilha
 - Objetivo foi acelerar o desenvolvimento em IoT
- Documentação excelente
- Roda sobre ARM mbed OS
 - Sistema operacional open source voltado para redes de sensores
- Último release em Julho de 2016

Sensinode (NanoStack)

- Suporte a compressão stateless e stateful
 - RFC 4944 e RFC 6282
- Suporte ao protocolo de roteamento RPL
 - RFC 6550
- ARM mbed OS também possui suporte a outros protocolos:
 - COAP, MQTT-S

Jennic (JenNetIP)

- Empresa especializada em desenvolver chips IEEE 802.15.4 para arquiteturas single chip
- Primeiro fabricante a oferecer uma pilha 6LoWPAN
- Diferencial é a utilização de um protocolo de roteamento mesh under
- Funciona apenas em chips especificos

Integração Edge Router

- Edge router deve ter um comportamento diferente dos demais devices
- Utilização de pilha 6LoWPAN para recepção e tratamento dos pacotes da rede de sensores
- Enviar pacotes tratados como IPv6 puros por outra interface externa
- Pode oferecer outros tipos de serviço como:
 - Firewall
 - Controle de acesso
 - Serviços de gerência

Referências

- 6LoWPAN The Wireless Embedded Internet
- Contiki http://contiki-os.org/index.html
- TinyOS http://www.tinyos.net/
- Sensinode https://docs.mbed.com/docs/arm-ipv66lowpan-stack/en/latest
- Jennic http://cache.nxp.com/documents/user_manual/JN-UG-3080.pdf