Claims

What is claimed is:

1. A dispersion compensating optical fiber, comprising:

a relative refractive index profile having

a central core segment with a positive relative refractive index (Δ_1) and a core outer radius (r_1) ,

a moat segment surrounding the central core segment having negative relative refractive index (Δ_2) and a moat outer radius (r_2), and

a ring segment surrounding the moat segment having a positive relative refractive index (Δ_3), a ring center radius (r_3) to a center of the ring segment wherein the relative refractive index profile results in

total dispersion of less than -114 ps/nm/km and greater than -143 ps/nm/km at 1550 nm, and

kappa, defined as the total dispersion at 1550 nm divided by total dispersion slope at 1550 nm, of between 96 and 150 nm.

- 2. The optical fiber of claim 1 further comprising a kappa, defined as the total dispersion at 1550 nm divided by the total dispersion slope at 1550 nm, of between 107 and 146 nm.
- 3. The optical fiber of claim 1 further comprising a kappa, defined as the total dispersion at 1550 nm divided by the total dispersion slope at 1550 nm, of between 113 and 127 nm.
- 4. The optical fiber of claim 1 wherein the total dispersion slope at 1550 nm is less than $-0.7 \text{ ps/nm}^2/\text{km}$ and greater than $-1.5 \text{ ps/nm}^2/\text{km}$.
- 5. The optical fiber of claim 1 wherein the total dispersion at 1550 nm is less than -120 ps/nm/km and greater than -143 ps/nm/km.
- 6. The optical fiber of claim 5 wherein the total dispersion at 1550 nm is less than -120 ps/nm/km and greater than -138 ps/nm/km.

7. A dispersion compensating module including the dispersion compensating optical fiber of claim 1.

8. An optical fiber transmission system, comprising:

a single mode transmission fiber having a total dispersion between 5 and 14 ps/nm/km at 1550 nm; and

the dispersion compensating fiber of claim 1 optically coupled to the single mode transmission fiber;

wherein for all wavelengths within a transmission wavelength band between 1525 nm to 1565 nm, the transmission system exhibits a residual dispersion of less than \pm 10 ps/nm per 100 km of the single mode transmission fiber.

9. An optical fiber transmission system, comprising:

a single mode transmission fiber having a total dispersion between 5 and 14 ps/nm/km at 1550 nm; and

the dispersion compensating fiber of claim 1 optically coupled to the single mode transmission fiber;

wherein for all wavelengths within a transmission wavelength band between 1525 nm to 1625 nm, the transmission system exhibits a residual dispersion of less than \pm 20 ps/nm per 100 km of the single mode transmission fiber.

10. The optical fiber of claim 1 wherein

the core outer radius (r_1) of the central core segment is between 1.6 and 1.8 microns; and the outer radius (r_2) of the moat segment is between 4.6 and 5.0 microns.

11. The optical fiber of claim 9 wherein

the center radius (r₃) of the ring segment is between 6.5 and 7.2 microns.

- 12. The optical fiber of claim 1 wherein the ring segment includes a ring width (W_r) measured at one-half the relative refractive index (Δ_3) of the ring segment wherein the ring segment is offset from the moat outer radius (r_2) by a ring offset (X_o) of greater than 0.75 μ m, wherein $X_o = r_3 r_2 Wr/2$.
- 13. The optical fiber of claim 1 further comprising a core/moat ratio, defined as the core radius (r_1) divided by the moat outer radius (r_2) of greater than 0.32.
- 14. The optical fiber of claim 1 wherein an effective area (A_{eff}) at 1550 nm is greater than 15 μm^2 .
- 15. The optical fiber of claim 1 wherein $\Delta 1$ is greater than 1.0 % and less than 2.0 %.
- 16. The optical fiber of claim 15 wherein $\Delta 2$ is less than -0.3 %.
- 17. The optical fiber of claim 16 wherein $\Delta 3$ is greater than 0.3 %.
- 18. The optical fiber of claim 1 further comprising a ring width (Wr) measured at one-half the relative refractive index (Δ_3) of the ring segment of between 1.0 and 2.0 μ m.

19. A dispersion compensating optical fiber, comprising: a refractive index profile having

a central core segment with a relative refractive index (Δ_1) between 2.0 % and 1.5 % and an outer radius (r_1) of between 1.6 and 1.8 μ m,

a moat segment surrounding the central core segment with a relative refractive index (Δ_2) of between -0.4 and -0.6 % and a moat outer radius (r_2) between 4.6 and 5.0 μ m, and

a ring segment surrounding the moat segment with a relative refractive index (Δ_3) of between 0.3 and 0.6 %, a ring radius (r_{3}) to a center of the ring segment of between 6.5 and 7.2 μ m, and

the refractive index profile results in

a total dispersion of less than -114 ps/nm/km and greater than -143 ps/nm/km at a wavelength of 1550 nm, and

a kappa, defined as the total dispersion at 1550 nm divided by the dispersion slope at 1550 nm, of between 96 and 150 nm.

20. A dispersion compensating optical fiber, comprising: a relative refractive index profile having

a central core segment with a relative refractive index (Δ_1) between 1.5 % and 2.0 % and an outer radius (r_1) of between 1.6 and 1.8 μm ,

a moat segment surrounding the central core segment with a relative refractive index (Δ_2) of between -0.4 and -0.6 % and a moat outer radius (r_2) between 4.6 and 5.0 μ m, and

a ring segment surrounding the moat segment with a relative refractive index (Δ_3) of between 0.3 and 0.6 %, a ring radius (r_{3}) to a center of the ring segment of between 6.5 and 7.2 μ m, a ring width (W_r) measured at one-half the relative refractive index (Δ_3) of the ring segment of between 1.0 and 2.0 μ m and wherein the ring segment is offset from the moat outer radius (r_2) by a ring offset (X_0) between of between 1.0 and 1.7 μ m

wherein $X_0 = r_3 - r_2 - Wr/2$, and the relative refractive index profile results in

a total dispersion of less than -114 ps/nm/km and greater than -143 ps/nm/km at a wavelength of 1550 nm,

a total dispersion slope of less than -0.7 and greater than $-1.5 \text{ ps/nm}^2/\text{km}$ at a wavelength of 1550 nm; and

a kappa, defined as the total dispersion at 1550 nm divided by the dispersion slope at 1550 nm, of between 96 and 150 nm.