Лабораторна робота №5

ІПЗ-21-5 Пархомчук Іван

Мета: використовуючи спеціалізовані бібліотеки та мову програмування Python дослідити методи ансамблів у машинному навчанні.

Завдання 1. Створення класифікаторів на основі випадкових та гранично випадкових лісів

```
import argparse
import matplotlib.pyplot as plt
from utilities import visualize classifier
def build arg parser():
   plt.figure()
```

```
plt.title('Input data')
visualize classifier(classifier, X train, y train, 'Training dataset')
y test pred = classifier.predict(X test)
plt.show()
```


Class-0	0.92	0.85	0.88	79
Class-1	0.86	0.84	0.85	70
Class-2	0.84	0.92	0.88	76
accuracy			0.87	225
macro avg	0.87	0.87	0.87	225
weighted avg	0.87	0.87	0.87	225

Training dataset

Classifier pe	rformance on	test dat	aset	
	precision	recall	f1-score	support
Class-0	0.92	0.85	0.88	79
Class-1	0.84	0.84	0.84	70
Class-2	0.85	0.92	0.89	76
accuracy			0.87	225
macro avg	0.87	0.87	0.87	225
weighted avg	0.87	0.87	0.87	225

Test datapoints

Confidence measure:

Datapoint: [5 5]

Predicted class: Class-0

Datapoint: [3 6]

Predicted class: Class-0

Datapoint: [6 4]

Predicted class: Class-1

Datapoint: [7 2]

Predicted class: Class-1

Datapoint: [4 4]

Predicted class: Class-2

Datapoint: [5 2]

Predicted class: Class-2

Test datapoints


```
Confidence measure:
Datapoint: [5 5]
Predicted class: Class-0
Datapoint: [3 6]
Predicted class: Class-0
Datapoint: [6 4]
Predicted class: Class-1
Datapoint: [7 2]
Predicted class: Class-1
Datapoint: [4 4]
Predicted class: Class-2
Datapoint: [5 2]
Predicted class: Class-2
```

Завдання 2. Обробка дисбалансу класів.

```
import sys
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

from utilities import visualize_classifier

# Завантаження вхідних даних
input_file = 'data_imbalance.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]

# Поділ вхідних даних на два класи на підставі міток
class_0 = np.array(X[y == 0])
class 1 = np.array(X[y == 1])
```

```
plt.figure()
plt.scatter(class 0[:, 0], class 0[:, 1], s=75, facecolors='black',
plt.scatter(class 1[:, 0], class 1[:, 1], s=75, facecolors='white',
plt.title('Input data')
params = {'n estimators': 100, 'max depth': 4, 'random state': 0}
        raise TypeError("Invalid input argument; should be 'balance'")
classifier = ExtraTreesClassifier(**params)
visualize classifier(classifier, X train, y train, 'Training dataset')
class names = ['Class-0', 'Class-1']
print("\n" + "#" * 40)
print("\nClassifier performance on training dataset\n")
print(classification report(y train, classifier.predict(X train),
print(\overline{"}#" * 40 + \overline{"}n")
print("#" * 40)
print("\nClassifier performance on test dataset\n")
print(classification report(y test, y test pred, target names=class names))
print("#" * 40 + "\n")
plt.show()
```


Classifier pe	erformance on	training	dataset		
	precision	recall	f1-score	support	
Class-0	1.00	0.01	0.01	181	
Class-1	0.84	1.00	0.91	944	
accuracy			0.84	1125	
macro avg	0.92	0.50	0.46	1125	
weighted avg	0.87	0.84	0.77	1125	
#############		"""""""""	#####		
#############	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"""""""""	#####		
Classifier performance on test dataset					
	precision	recall	f1-score	support	
Class-0	0.00	0.00	0.00	69	
Class-1	0.82	1.00	0.90	306	
accuracy			0.82	375	
macro avg		0.50		375	
weighted avg	0.67	0.82	0.73	375	
##############	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#####		

Завдання 3. Знаходження оптимальних навчальних параметрів за допомогою сіткового пошуку.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
import pandas as pd

from utilities import visualize_classifier

input_file = 'data_random_forests.txt'
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1]

# POSGUTTS ДаНИХ НА ТРИ КЛАСИ НА ПІДСТАВІ МІТОК
class_0 = np.array(X[y == 0])
class_1 = np.array(X[y == 1])
class_2 = np.array(X[y == 2])
```

```
##### Searching optimal parameters for precision_weighted
   param_max_depth param_n_estimators
                                100 {'max_depth': 2, 'n_estimators': 100}
                                100 {'max_depth': 4, 'n_estimators': 100}
                                100 {'max_depth': 7, 'n_estimators': 100}
                                100 {'max_depth': 12, 'n_estimators': 100}
                               100 {'max_depth': 16, 'n_estimators': 100}
                                25 {'max_depth': 4, 'n_estimators': 25}
                                 50 {'max_depth': 4, 'n_estimators': 50}
                                100 {'max_depth': 4, 'n_estimators': 100}
                                250 {'max_depth': 4, 'n_estimators': 250}
Best parameters: {'max_depth': 2, 'n_estimators': 100}
Performance report:
             precision recall f1-score support
                 0.81
                           0.86
                                     0.83
        1.0
                                    0.86
   accuracy
                 0.86
                           0.86
                                    0.86
   macro avg
weighted avg
```

```
##### Searching optimal parameters for recall_weighted
  param_max_depth param_n_estimators
                                                               params
                     100 {'max_depth': 2, 'n_estimators': 100}
                            100 {'max_depth': 4, 'n_estimators': 100}
                             100 {'max_depth': 7, 'n_estimators': 100}
                              100 {'max_depth': 12, 'n_estimators': 100}
                             100 {'max_depth': 16, 'n_estimators': 100}
                              25 {'max_depth': 4, 'n_estimators': 25}
                              50 {'max_depth': 4, 'n_estimators': 50}
                              100 {'max_depth': 4, 'n_estimators': 100}
                              250 {'max_depth': 4, 'n_estimators': 250}
Best parameters: {'max_depth': 2, 'n_estimators': 100}
Performance report:
            precision recall f1-score support
       0.0
               0.94
                         0.81
                                 0.87
                0.81
                         0.86
                                  0.83
       2.0
                0.83
                         0.91
                                  0.87
                                  0.86
   accuracy
                0.86
                         0.86
                                  0.86
  macro avg
weighted avg 0.86 0.86 0.86
```

##### Searchi	ing optimal p	arameters fo	or precis	sion_weighted	
param_max_depth param_n_estimators params					
0		100	{'max	_depth': 2, 'n_estimators': 100}	
1		100	{'max	_depth': 4, 'n_estimators': 100}	
2		100	{'max_	_depth': 7, 'n_estimators': 100}	
3	12	100	{'max_0	depth': 12, 'n_estimators': 100}	
4	16	100	{'max_0	{'max_depth': 16, 'n_estimators': 100}	
5		25	{'max_depth': 4, 'n_estimators': 25}		
6		50	{'max	x_depth': 4, 'n_estimators': 50}	
7		100	{'max	_depth': 4, 'n_estimators': 100}	
8		250	{'max	_depth': 4, 'n_estimators': 250}	
Best paramete	ers: {'max_de	pth': 2, 'n_	_estimato	ors': 100}	
Performance r	report:				
	precision	recall fi	l-score	support	
1000 - 1501 H					
0.0	0.94	0.81	0.87	79	
1.0	0.81	0.86	0.83	70	
2.0	0.83	0.91	0.87	76	
accuracy			0.86	225	
macro avg	0.86	0.86	0.86	225	
weighted avg	0.86	0.86	0.86	225	

```
#### Searching optimal parameters for recall_weighted
 param_max_depth param_n_estimators
                                                            params
                     100 {'max_depth': 2, 'n_estimators': 100}
                          100 {'max_depth': 4, 'n_estimators': 100}
                           100 {'max_depth': 7, 'n_estimators': 100}
                          100 {'max_depth': 12, 'n_estimators': 100}
                           100 {'max_depth': 16, 'n_estimators': 100}
                            25 {'max_depth': 4, 'n_estimators': 25}
                            50 {'max_depth': 4, 'n_estimators': 50}
                           100 {'max_depth': 4, 'n_estimators': 100}
                            250 {'max_depth': 4, 'n_estimators': 250}
Best parameters: {'max_depth': 2, 'n_estimators': 100}
Performance report:
            precision recall f1-score support
              0.94 0.81 0.87
       0.0
                       0.86
                                0.83
              0.81
       1.0
       2.0 0.83 0.91 0.87
                                 0.86
   accuracy
                0.86
                        0.86
                                 0.86
  macro avq
eighted avg
                        0.86
                                 0.86
```

Для метрики recall було отримано іншу комбінацію, що ε логічним, оскільки точність і recall представляють різні показники, які вимагають різних налаштувань параметрів.

Завдання 4. Обчислення відносної важливості ознак.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_squared_error, explained_variance_score
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle

# Завантаження даних із цінами на нерухомість
housing_data = fetch_california_housing()

# Перемішування даних
X, y = shuffle(housing_data.data, housing_data.target, random_state=7)

# Розбиття даних на навчальний та тестовий набори
```

```
regressor = AdaBoostRegressor(DecisionTreeRegressor(max depth=4),
mse = mean squared error(y test, y pred)
evs = explained variance score(y test, y pred)
print("\nADABOOST REGRESSOR")
print("Mean squared error =", round(mse, 2))
print("Explained variance score =", round(evs, 2))
feature names = housing data.feature names
pos = np.arange(index sorted.shape[0]) + 0.5
plt.figure()
plt.bar(pos, feature importances[index sorted], align='center')
plt.xticks(pos, feature names[index sorted])
plt.ylabel('Relative Importance')
plt.show()
```



```
ADABOOST REGRESSOR

Mean squared error = 1.18

Explained variance score = 0.47
```

Згідно з цим аналізом, функція LSTAT ϵ найбільш значущою в цьому наборі даних.

Завдання 5. Прогнозування інтенсивності дорожнього руху за допомогою класифікатора на основі гранично випадкових лісів.

```
import numpy as np
data = []
data = np.array(data)
X encoded = np.empty(data.shape)
```

```
regressor.fit(X_train, y_train)

# Обчислення характеристик ефективності регресора на тестових даних
y_pred = regressor.predict(X_test)
print("Mean absolute error:", round(mean_absolute_error(y_test, y_pred), 2))

# Тестування кодування на одиночному прикладі
test_datapoint = ['Saturday', '10:20', 'Atlanta', 'no']
test_datapoint_encoded = [-1] * len(test_datapoint)
count = 0

for i, item in enumerate(test_datapoint):
    if item.isdigit():
        test_datapoint_encoded[i] = int(test_datapoint[i])
    else:
        test_datapoint_encoded[i] =
int(label_encoder[count].transform([test_datapoint[i]]))
        count = count + 1
test_datapoint_encoded = np.array(test_datapoint_encoded)

# Прогнозування результату для тестової точки даних
print("Predicted traffic:", int(regressor.predict([test_datapoint_encoded])[0]))
```

Mean absolute error: 7.42 Predicted traffic: 26

Висновок: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідив методи ансамблів у машинному навчанні.