L	Т	Р	С
3	0	0	3

Course Code: CSE316

Semester: IV

SOFTWARE DESIGN WITH UML

Course Objectives:

This course will help the learner to understand the concepts of object-oriented technologies and unified modeling language to design the software in the aspects of interactions between use-cases, classes, packages, states, components, and execution architecture.

UNIT - I 11 Periods

Introduction. Software development process: The Waterfall Model vs. The Spiral Model. The Software Crisis, description of the real world using the Objects Model, Quality software characteristics. **Object oriented technologies:** Classes, inheritance and multiple configurations. Description of the Object-Oriented Analysis process vs. the Structure Analysis Model. The process of Object-oriented software development. Description of Design Patterns. Technological Description of Distributed Systems. **UML Language:** Standards - Elements of the language - General description of various models.

UNIT - II 12 Periods

Requirements Analysis Using Case Modeling. Analysis of system requirements. Actor definitions - Writing a case goal - Use Case Diagrams -Use Case Relationships.

Interaction diagrams (Transfer from Analysis to Design in the Characterization Stage). Description of goal - Defining UML Method, Operation, Object Interface, Class. **Sequence Diagram**. Finding objects from Flow of Events - Describing the process of finding objects using a Sequence Diagram - Describing the process of finding objects using a Collaboration Diagram.

UNIT - III 11 Periods

The Static Structure Diagrams (The Logical View Design Stage). The Class Diagram Model - Attributes descriptions - Operations descriptions - Connections descriptions in the Static Model. - Association, Generalization, Aggregation, Dependency, Interfacing, Multiplicity.

Package Diagram Model. Description of the model - White box, black box - Connections between packagers – Interfaces - Create Package Diagram - Drill Down.

UNIT - IV 11 Periods

State Diagram / Activity Diagram (Dynamic Model). Description of the State Diagram - Events Handling - Description of the Activity Diagram - Exercise in State Machines.

Component Diagram Model. Physical Aspect - Logical Aspect - Connections and Dependencies - User face-Initial DB design in a UML environment.

Deployment Model. Processors – Connections – Components – Tasks – Threads - Signals and Events.

TEXTBOOKS

- 1. Bernd Bruegge and Allen H. Dutoit, *Object-Oriented Software Engineering: using UML, Patterns and Java*, Pearson publishers, 3rd Edition, 2011.
- 2. Martin Fowler, *UML Distilled*, Addison-Wesley Professional, 3rd edition, 2018.

REFERENCE

1. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides, *Design Patterns: Elements of Reusable Object-Oriented Software*, Addison-Wesley Professional, 1st Edition, 1995.

UNITWISE LEARNING OUTCOMES

Upon successful completion of each unit, the learner will be able to

Unit I	Explain the software development process models and object-oriented technologies
	 Describe the standards and elements of the unified modelling language used for different models
Unit II	Prepare software requirements specification document for a given problem
	Represent the relationships between the use-cases using diagrams
	Design the interaction between the use-cases using sequence diagrams
Unit III	Depict the classes with attributes and operations and establish the relationship between them
	Combine the classes as packages and design the interactions between the as a diagram
Unit IV	Model the system based on the activities and number of states
	Draw component diagram and deployment diagram for the system under study