CS6375: Machine Learning Gautam Kunapuli

Ensemble Methods: Boosting

THE UNIVERSITY OF TEXAS AT DALLAS

Erik Jonsson School of Engineering and Computer Science

Ensemble Methods

Idea: Train models on different data set samples to reduce the model variance and/or bias Problem: Only one training set; where do multiple models come from? Solution: Take a **single** learning algorithm and generate multiple variations called **ensembles**

Bagging

- Uses bootstrap sampling to learn many (strong) models, whose predictions can be aggregated
- bagging reduces **variance** (and in practice, maybe increases bias slightly)
- bagging learns with bootstrap samples of the same size as the original data set
 - with decision trees, typically learns full trees
 - computational complexity is higher
- each model is learned independently of other models
 - insight from one model does not influence the learning of the next model

Boosting

- · uses weak learners that have high bias
 - e.g., decision stumps (decision trees with depth 1)
- boosting reduces both bias and variance
- iterative algorithm that increases weights on hard examples
 - insight from previous iterations guides learning

AdaBoost: Adaptive Boosting

Basic idea behind Boosting: examples are given weights: at each iteration, a new hypothesis is learned and examples are reweighted to enable focus on examples that most recently learned classifier got wrong

Basic Algorithm for Boosting:

Initialize: set all examples to have equal weights for each $t=1,\ldots,T$, Learn a hypothesis h_t from weighted examples Decrease weights of examples h_t classifies correctly Calculate α_t , the weight of the current weak learner, h_t return $h(x) = \sum_{t=1}^T \alpha_t h_t(x)$

Weighted examples: Base (weak) learner must focus on correctly classifying the most highly weighted examples while strongly avoiding over-fitting.

Weighted Hypotheses: During testing, each of the *T* hypotheses get a weighted vote proportional to their accuracy on the training data.

- Originally developed by computational learning theorists to guarantee performance improvements on fitting training data for a weak learner
 - a weak learner only needs to generate a hypothesis with a training accuracy greater than 0.5 (Schapire, 1990);
 - often, weak learners are only slightly better than random
- practical algorithm, AdaBoost, for building ensembles that empirically improves generalization (Freund & Schapire, 1996).

CS6375: Machine Learning

AdaBoost: Weak Learners

Basic Algorithm for Boosting:

Initialize: set all examples to have equal weights

for each t = 1, ..., T,

Learn a hypothesis h_t from weighted examples

Decrease weights of examples h_t classifies correctly

Calculate α_t , the weight of the current weak learner, h_t

return $h(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$

Decision stumps are classical and often-used weak learners; Naïve Bayes, Logistic Regression also return probability of classification

a **weak learner** is typically easy to train and is simple, that is, of low complexity

- high bias, low variance
- boosting takes a weak learner and converts it to a strong learner
- just has to achieve an accuracy slightly better than random guessing, that is, error $\epsilon < 0.5$
- a weak learner achieves accuracy-to-error ratio:

$$\frac{1-\epsilon}{\epsilon} > 1$$

 we can make the weight of a weak learner during boosting depend on its accuracy

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon}{\epsilon} \right) > 0$$

• stronger learners have higher weights

Weak learners commonly used in practice:

- Decision stumps (axis parallel splits)
- Shallow decision trees
- Multi-layer neural networks
- Radial basis function networks

Note: There is nothing inherently weak about weak learners – we just think of them this way. In fact, **any learning algorithm** can be used as a weak learner.

Ensemble Methods

AdaBoost: Training Set Distributions

Basic idea behind AdaBoost: maintain a distribution over examples that reflects their ``hardness" of classification; a new hypothesis is learned and the distribution is updated to enable focus on examples that most recently learned classifier got wrong

Basic Algorithm for Boosting:

Initialize: set all examples to have equal weights for each t = 1, ..., T,

Learn a hypothesis h_t from weighted examples **Decrease weights** of examples h_t classifies **correctly** Calculate α_t , the weight of the current weak learner, h_t **return** $h(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$

weights on examples can be converted to a **distribution** that reflects their "hardness of classification"

thus, each training example (x_i, y_i) has weights D(i), with $\sum_{i=1}^{n} D(i) = 1$

- most misclassified points get highest weights
- this ensures that the algorithm can focus on training examples with higher weights

For boosting, we need a weak learner that can

- handle weighted examples/distributions
- alternately, sample training examples according to the distribution (more on next slide)
 - contrast this with bagging!

Learning with Weighted Training Examples

In a **weighted dataset** we have a weight associated with each training example:

- D(i) is the weight of *i*-th training example (x_i, y_i)
- i-th training example counts as D(i) training examples; if we "resampled" data, we would get more samples of "heavier" data points
- Now, in all calculations, the i-th training example counts as D(i) "examples"

Example 1: in Maximum Likelihood Estimation

Unweighted data: $\#(y = c) = \sum_{i} \mathbf{1}(y = c)$

Weighted data: $\#(y = c) = \sum_i D(i) \mathbf{1}(y = c)$

• first, when computing $H(Y) = -\sum_{y} P(Y = c) \log_2 P(Y = c)$ for a class c, use the weights; for instance, in the binary classification case:

$$P(y=0) = \frac{\#(y=0)}{\#(y=0) + \#(y=1)} \text{ (unweighted)} \qquad P(y=0) = \frac{\sum w(y=0)}{\sum w(y=0) + \sum w(y=1)} \text{ (weighted)}$$

- second, when computing $H(Y|X) = -\sum_{x} P(X=x) \sum_{y} P(Y=c \mid X=x) \log_2 (Y=c \mid X=x)$
- alternately, since decision stumps are easy to compute, simply compute all possible decision stumps and select the one with the smallest weighted error as the best weak learners

AdaBoost: Full Algorithm

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$.

For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Get weak hypothesis $h_t: X \to \{-1, +1\}$ with error

best decision stump is the one that minimizes the weighted training error

$$\begin{cases} -1, +1 \} \text{ with error} \\ \epsilon_t = \frac{1}{\sum_{i=1}^n D_t(i)} \sum_{i=1}^n D_t(i) \cdot \llbracket h_t(\mathbf{x}_i) \neq y_i \rrbracket \\ \epsilon_t = \Pr_{i \sim D_t} \left[h_t(\mathbf{x}_i) \neq y_i \right]. \end{cases}$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$

$$= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \qquad \text{re-normalize the weights into a distribution}$$

$$Z_t = \sum_{i=1}^n D_t(i) \cdot \exp(-\alpha_t y_i h_t(\mathbf{x}_i))$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

AdaBoost: Example

AdaBoost: Example

Boosting Optimizes Exponential Loss

In 2000, Friedman et al. interpreted AdaBoost as stagewise forward additive model that actually minimizes the exponential loss function, $L(y, f(x)) = E[e^{-yf(x)}]$

Split the exponential loss into positive and negative components $E[e^{-yf(x)}] = e^{f(x)}P(y=-1) + e^{-f(x)}P(y=1)$

Take the gradient and set to zero

$$\frac{d}{df(x)}E[e^{-yf(x)}] = e^{f(x)}P(y = -1) - e^{-f(x)}P(y = 1)$$

Boosting learns f(x) as below (compare with α_t on Slide 7)

$$f(x) = \frac{1}{2} \log \frac{P(y=1)}{P(y=-1)}$$

Logistic regression:

Minimize log loss

$$\sum_{i=1}^{m} \ln(1 + \exp(-y_i f(x_i)))$$

Define

$$f(x) = \sum_{j} w_j x_j$$

where x_j predefined features

(linear classifier)

 Jointly optimize over all weights wo, w1, w2...

Boosting:

Minimize exp loss

$$\sum_{i=1}^{m} \exp(-y_i f(x_i))$$

Define

$$f(x) = \sum_{t} \alpha_t h_t(x)$$

where $h_t(x)$ defined dynamically to fit data

(not a linear classifier)

• Weights α_t learned per iteration t incrementally

Boosting Increases The Margin

We can write the **combined classifier** in a more useful form by dividing the predictions by the "total number of votes":

$$h_{t+1}(\boldsymbol{x}_i) = \frac{\alpha_1 h_1(\boldsymbol{x}_i) + \dots + \alpha_t h_t(\boldsymbol{x}_i)}{\alpha_1 + \dots + \alpha_t}$$

• This allows us to define a clear notion of "voting margin" that the combined classifier achieves for each training example:

$$margin(\mathbf{x}_i) = y_i h_{t+1}(\mathbf{x}_i)$$

- The margin lies in [-1, 1] and is negative for all misclassified examples.
- Successive boosting iterations improve the majority vote or margin for the training examples

the margin of a single data point is defined to be the distance from the data point to the decision boundary

Boosting: Pros and Cons

Pros

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible can combine with any learning algorithm
 weak classifiers too complex (! overfitting)
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
- shift in mind set goal now is merely to find classifiers barely better than random guessing
- versatile
- can use with data that is textual, numeric, discrete, etc.
- has been extended to learning problems well beyond binary classification

Cons

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
- weak classifiers too weak (! underfitting)
- empirically, AdaBoost seems especially susceptible to uniform noise

Good : Can identify outliers since focuses on examples that are hard to categorize

Bad @: Too many outliers can degrade classification performance dramatically increase time to convergence

