EDA - Assessment to be continued

February 28, 2020

1 Exercise:

- Download Haberman Cancer Survival dataset from Kaggle. You may have to create a Kaggle account to donwload data. (https://www.kaggle.com/gilsousa/habermans-survival-dataset)
- 2. Perform a similar alanlaysis as above on this dataset with the following sections:
- High level statistics of the dataset: number of points, numer of features, number of classes, data-points per class.
- Explain our objective.
- Perform Univaraite analysis(PDF, CDF, Boxplot, Voilin plots) to understand which features are useful towards classification.
- Perform Bi-variate analysis (scatter plots, pair-plots) to see if combinations of features are useful in classification.
- Write your observations in english as crisply and unambigously as possible. Always quantify your results.
- 2 1. Download Haberman Cancer Survival dataset from Kaggle. You may have to create a Kaggle account to donwload data. (https://www.kaggle.com/gilsousa/habermans-survival-data-set)

```
In [2]: import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import numpy as np
       haberman = pd.read_csv(r"C:\Users\ASUS\Downloads\Applied AI\Assignments - Applied AI\Delta
        haberman
Out[2]:
             age year nodes status
              30
                    64
                          1
        0
        1
              30
                    62
                            3
```

1

1

1

0

2

30

31

31

3

65

59

65

5				
	33	58	10	1
6	33	60	0	1
7	34	59	0	2
8	34	66	9	2
9	34	58	30	1
10	34	60	1	1
11	34	61	10	1
12	34	67	7	1
13	34	60	0	1
14	35	64	13	1
15	35	63	0	1
16	36	60	1	1
17	36	69	0	1
18	37	60	0	1
19	37	63	0	1
20	37	58	0	1
21	37	59	6	1
22	37	60	15	1
23	37	63	0	1
24	38	69	21	2
25	38	59	2	1
26	38	60	0	1
27	38	60	0	1
28	38	62	3	1
29	38	64	1	1
276	67	66	0	1
277	67	61	0	1
278	67	65	0	1
279	68	67	0	1
280	68	68	0	_
			U	1
281	69	67	8	1 2
281 282	69 69			
		67	8	2
282	69	67 60	8 0	2 1
282 283	69 69	67 60 65	8 0 0	2 1 1
282 283 284	69 69 69	67 60 65 66	8 0 0 0	2 1 1 1
282 283 284 285	69 69 69 70	67 60 65 66 58	8 0 0 0	2 1 1 1 2
282 283 284 285 286	69 69 69 70 70	67 60 65 66 58	8 0 0 0 0 0 4	2 1 1 2 2
282 283 284 285 286 287	69 69 69 70 70	67 60 65 66 58 58	8 0 0 0 0 4 14	2 1 1 2 2 1
282 283 284 285 286 287 288	69 69 70 70 70	67 60 65 66 58 58 66 67	8 0 0 0 0 4 14 0	2 1 1 1 2 2 1
282 283 284 285 286 287 288 289	69 69 70 70 70 70	67 60 65 66 58 58 66 67	8 0 0 0 0 4 14 0	2 1 1 1 2 2 1 1
282 283 284 285 286 287 288 289 290	69 69 70 70 70 70 70	67 60 65 66 58 58 66 67 68	8 0 0 0 0 4 14 0	2 1 1 2 2 1 1 1
282 283 284 285 286 287 288 289 290 291	69 69 70 70 70 70 70 70	67 60 65 66 58 58 66 67 68 59	8 0 0 0 0 4 14 0 0 8	2 1 1 2 2 1 1 1 1
282 283 284 285 286 287 288 289 290 291 292	69 69 70 70 70 70 70 70 70	67 60 65 66 58 58 66 67 68 59 63 68	8 0 0 0 0 4 14 0 0 8 0	2 1 1 2 2 1 1 1 1 1
282 283 284 285 286 287 288 289 290 291 292 293	69 69 70 70 70 70 70 70 71 72	67 60 65 66 58 58 66 67 68 59 63 68	8 0 0 0 4 14 0 0 8 0 2	2 1 1 2 2 1 1 1 1 1 1 2
282 283 284 285 286 287 288 289 290 291 292 293 294	69 69 70 70 70 70 70 70 71 72 72	67 60 65 66 58 58 66 67 68 59 63 68 63 58	8 0 0 0 4 14 0 0 8 0 2 0	2 1 1 2 2 1 1 1 1 1 2 1

```
298
      73
              68
                       0
                                 1
299
      74
              65
                       3
                                 2
300
      74
              63
                       0
                                 1
301
      75
              62
                       1
                                 1
302
      76
              67
                       0
                                 1
303
      77
              65
                       3
                                 1
304
      78
              65
                       1
                                 2
305
              58
                                 2
```

[306 rows x 4 columns]

3 2. Perform a similar alanlaysis as above on this dataset with the following sections:

a) High level statistics of the dataset: number of points, numer of features, number of classes, data-points per class.

```
In [3]: # (Q) how many data-points and features?
        print (haberman.shape)
(306, 4)
In [4]: haberman.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 306 entries, 0 to 305
Data columns (total 4 columns):
          306 non-null int64
age
          306 non-null int64
year
nodes
          306 non-null int64
status
          306 non-null int64
dtypes: int64(4)
memory usage: 9.6 KB
In [5]: haberman.head()
Out [5]:
           age
                year
                       nodes
                              status
        0
            30
                   64
                           1
                           3
        1
            30
                   62
                                    1
        2
            30
                   65
                           0
                                   1
        3
                   59
                           2
            31
                                    1
                                    1
            31
                   65
```

In [6]: haberman.describe()

```
Out [6]:
                                             nodes
                      age
                                 year
                                                        status
               306.000000
        count
                           306.000000
                                       306.000000 306.000000
                52.457516
                            62.852941
                                         4.026144
                                                      1.264706
        mean
        std
                10.803452
                             3.249405
                                         7.189654
                                                      0.441899
        min
                30.000000
                            58.000000
                                         0.000000
                                                      1.000000
        25%
                                         0.000000
                44.000000
                            60.000000
                                                      1.000000
        50%
                52.000000
                            63.000000
                                         1.000000
                                                      1.000000
        75%
                60.750000
                            65.750000
                                         4.000000
                                                      2.000000
                83.000000
                            69.000000
                                        52.000000
                                                      2.000000
        max
In [7]: haberman["status"].value_counts() #number of classes and number of datapoints per clas
Out[7]: 1
             225
              81
        Name: status, dtype: int64
In [8]: haberman.columns
Out[8]: Index(['age', 'year', 'nodes', 'status'], dtype='object')
```

4 2. Perform a similar alanlaysis as above on this dataset with the following sections:

b) Explain our objective.

Obective: classify the persons who are survived after the surgery and who are not.

since, I was looking for more insights on the data, there was it poped #https://www.kaggle.com/vj1998/haberman-s-survival-exploratory-data-analysis. I just took the objective from it, rest I had gone through the sample code of EDA and from some other seaborn datasets for graph.

5 2. Perform a similar alanlaysis as above on this dataset with the following sections:

c) Perform Univaraite analysis(PDF, CDF, Boxplot, Voilin plots) to understand which features are useful towards classification.

Histogram

Observation: From this above figure, we can come to an assumption that as the number of nodes are less chances of survival is more

Obervations from Histogram: figure 2 gives us information on the dataset, rest of the figures are quite complex to interpret the information.

PDF & CDF

```
# Not survived
         counts, bin_edges = np.histogram(haberman_notsvd['nodes'], bins=10,
                                           density = True)
         pdf = counts/(sum(counts))
         print(pdf);
         print(bin_edges)
         cdf = np.cumsum(pdf)
         plt.plot(bin_edges[1:],pdf)
         plt.plot(bin_edges[1:], cdf)
         plt.title('PDF & CDF')
         #plt.legend('nodes_status')
        plt.legend(['Svd_PDF', 'Svd_CDF', 'notSvd_PDF', 'notSvd_CDF'])
         plt.xlabel("Status")
        plt.show();
[0.8355556 0.08
                       0.02222222\ 0.02666667\ 0.01777778\ 0.00444444
0.00888889 0.
                                   0.00444444]
      4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46.]
 \hbox{\tt [0.56790123\ 0.14814815\ 0.13580247\ 0.04938272\ 0.07407407\ 0.} 
0.01234568 0.
                                   0.01234568]
                       0.
[ 0.
      5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52. ]
```



```
In [15]: import numpy as np
         haberman_svd = haberman.loc[haberman["status"] == 1];
         haberman_notsvd = haberman.loc[haberman["status"] == 2];
         # Survived.
         counts, bin_edges = np.histogram(haberman_svd['age'], bins=10,
                                          density = True)
         pdf = counts/(sum(counts))
         print(pdf);
         print(bin_edges)
         cdf = np.cumsum(pdf)
         plt.plot(bin_edges[1:],pdf)
         plt.plot(bin_edges[1:], cdf)
         # Not survived
         counts, bin_edges = np.histogram(haberman_notsvd['age'], bins=10,
                                          density = True)
         pdf = counts/(sum(counts))
         print(pdf);
         print(bin edges)
         cdf = np.cumsum(pdf)
         plt.plot(bin_edges[1:],pdf)
         plt.plot(bin_edges[1:], cdf)
         plt.title('PDF & CDF')
         #plt.legend('status')
         plt.legend(['Svd_PDF', 'Svd_CDF', 'notSvd_PDF', 'notSvd_CDF'])
         plt.xlabel("Age_Status")
         plt.show();
[0.05333333 0.10666667 0.12444444 0.09333333 0.16444444 0.1644444
0.09333333 0.11111111 0.06222222 0.02666667]
[30. 34.7 39.4 44.1 48.8 53.5 58.2 62.9 67.6 72.3 77.]
[0.03703704 0.12345679 0.19753086 0.19753086 0.13580247 0.12345679
0.09876543 0.04938272 0.02469136 0.01234568]
[34. 38.9 43.8 48.7 53.6 58.5 63.4 68.3 73.2 78.1 83.]
```


Observations from PDF & CDF are: Figure 1 - we can come to an assumption that nodes size is small, chances of survival is high figure 2 - chances of survival is nominal if the age is less (quite contradicting)

Box plot and Whiskers

Observations: 1) 25th and 50th percentiles are overlapped - skewed to left - nodes are less for more than 50% of data we can say that survival is more 2) 25th, 50th and 75th percentiles are visible.

In [21]: # A violin plot combines the benefits of the previous two plots # and simplifies them

Denser regions of the data are fatter, and sparser ones thinner # in a violin plot

sns.violinplot(x="status", y="nodes", data=haberman, size=8)
plt.show()

Observations: 50th percentile of survivors have 0 positive nodes, 75th percentile of survivors have less than 3 positive axilary nodes 25th percentile of dead have 1 positive axilary node, 50th percentile of dead have positive axilary nodes below 4,

6 2. Perform a similar alanlaysis as above on this dataset with the following sections:

d) Perform Bi-variate analysis (scatter plots, pair-plots) to see if combinations of features are useful in classfication.

2-D Scatter Plot

```
In [22]: # 2-D Scatter plot with color-coding for each flower type/class.
    # Here 'sns' corresponds to seaborn.
    sns.set_style("whitegrid");
    sns.FacetGrid(haberman, hue="status", size=4) \
        .map(plt.scatter, "age", "nodes") \
        .add_legend();
    plt.show();

# Notice that the blue points can be easily seperated
    # from red and green by drawing a line.
# But red and green data points cannot be easily seperated.
# Can we draw multiple 2-D scatter plots for each combination of features?
# How many cobinations exist? 4C2 = 6.
```


Pair-plot

plt.show()
NOTE: the diagnol elements are PDFs for each feature. PDFs are expalined below.

Observations from Pair plot: It is very difficult fr us to interpret on the plots, all the plots are very complex to interpret.

Joint plots

Observation : Chances of survival is high if the number of nodes are less and we could conclude that "as number of nodes are less the chances of survival is high"

