AP Calculus AB

Chapter 4 More Derivatives Review

1. Given $y = \frac{1}{2}(2x+5)^3$. Determine $\frac{dy}{dx}$.

(A)
$$\frac{3}{2}(2x+5)^3$$

(B)
$$3(2x+5)^2$$

(C)
$$3(2x+5)$$

(D)
$$\frac{3}{2}(2x+5)$$

(E)
$$6(2x + 5)$$

$$\frac{dy}{dx} = 3(2x + 5)^2$$

2. If $v(t) = \ln(t^2 + t + 1)$, then v'(1) =

(A)
$$\frac{1}{3}$$

(B)
$$-\frac{2}{3}$$

(A)
$$\frac{1}{3}$$
 (B) $-\frac{2}{3}$ (C) 1 (D) $\frac{4}{3}$

(D)
$$\frac{4}{3}$$

$$V'(t) = \frac{1}{t^2+t+1} \cdot 2t+1 = \frac{2t+1}{t^2+t+1}$$

$$V'(1) = \frac{2(1)+1}{(1)^2+(1)+1} = \frac{2+1}{1+1+1} = \frac{3}{3} = 1$$

3. Selected function and derivative values for the differentiable functions f(x) and g(x) are given in the table below.

. x	f(x)	g(x)	f'(x)	g'(x)
0	$^{1}/_{2}$	-2	$^{3}/_{2}$	-1
1	$^{1}/_{3}$	1	⁵ / ₃	$^{2}/_{3}$
2	1	$-\frac{1}{2}$	1/4	-4
3	-1	2	0	-3
4	3	$-\frac{1}{3}$	$-\frac{4}{5}$	$-\frac{1}{3}$

If $p(x) = g(x) \cdot f(x) - g(2x - 3)$, then p'(3) =

$$p'(x) = g(x) \cdot f'(x) + f(x) \cdot g'(x) - g'(2x-3) \cdot 2$$

 $p'(3) = g(3) \cdot f'(3) + f(3) \cdot g'(3) - g'(2(3)-3) \cdot 2$
 $p'(3) = 2 \cdot 0 + (-1) \cdot (-3) - (-3) \cdot 2 = 3 + 6 = 9$

4. Find the second derivative of
$$f(x)$$
 if $f(x) = (2x^2 + 5)^3$

$$f'(x) = 3(2x^2 + 5)^2 \cdot 4x = 12 \times (2x^2 + 5)^2$$

$$f''(x) = 12 \times (2(2x^2 + 5) \cdot 4x + (2x^2 + 5)^2 \cdot 12)$$

$$f''(x) = 96 \times^2 (2x^2 + 5) + 12(2x^2 + 5)^2$$

Use the given information about differentiable functions f(x) and g(x) at x = 1 and x = 2 for problem 5.

х	f(x)	g(x)	f'(x)	g'(x)
1	3	2	12	-8
2	$\sqrt{7}$	π	-9	10

5. Find
$$\frac{d}{dx} \{ f(g(x)) \}$$
 at $x = 1$
= $f'(g(x)) \cdot g'(x)$ = $[-9) \cdot (-8)$
= $f'(g(1)) \cdot g'(1)$ = $[72]$
= $f'(2) \cdot (-8)$

For problems
$$6-11$$
, find the derivative. Do not leave negative or rational exponents in your answer.

6. $s(x) = \sqrt{\frac{4+x}{5-x}} = \left(\frac{9+x}{5-x}\right)^{1/2}$

A can also be: 9

$$2\sqrt{9+x} = \sqrt{\frac{9+x}{5-x}}$$

$$5'(x) = \sqrt{\frac{9+x}{5-x}} = \sqrt{\frac{9+x}{5-x}}$$

$$(5-x)(1) - (9+x)(-1)$$

$$(5-x)^{2}$$

$$(5-x)^{2}$$

$$(5-x)^{2} = \sqrt{\frac{9+x}{5-x}} = \sqrt{\frac{9+x}{5-x}}$$

$$(5-x)(1) - (9+x)(-1)$$

$$(5-x)^{2} = \sqrt{\frac{9+x}{5-x}} = \sqrt{\frac{9+x}{5-x}}$$

$$(5-x)^{2} = \sqrt{\frac{9+x}{5-x}} = \sqrt{\frac{9+x}{5-x}}$$

$$(5-x)^{2} = \sqrt{\frac{9+x}{5-x}} = \sqrt{\frac{9+x}{5-x}}$$

$$(5-x)^{2} = \sqrt{\frac{9+x}{5-x}} = \sqrt{\frac{9+x}{5-x}} = \sqrt{\frac{9+x}{5-x}} = \sqrt{\frac{9+x}{5-x}}$$

$$(5-x)^{2} = \sqrt{\frac{9+x}{5-x}} = \sqrt{\frac{9+x}{5-$$

8.
$$y = e^{5x-3} \cdot x^4$$

$$y' = e^{5x-3} \cdot 4x^3 + x^4 \cdot e^{5x-3} \cdot 5 = 4x^3 e^{5x-3} + 5x^4 e^{5x-3}$$

$$y' = x^3 e^{5x-3} (5x+4)$$
9. $y = \sin^{-1}(2-x)$

$$y' = \frac{1}{\sqrt{1-(2-x)^2}} \cdot (-1) = -\frac{1}{\sqrt{1-(2-x)^2}}$$

$$y' = -\frac{1}{\sqrt{1-y+4x-x^2}} = -\frac{1}{\sqrt{1-x^2+4x-3}}$$

$$y' = 13^{-2x} (\ln 13) (-2) = (13^{-2})^x (\ln 13)(-2) = (\frac{1}{13^2})^x (\ln 13)(-2)$$

$$y' = -2 \ln 13 \cdot (\frac{1}{13^2})^x = -2 \ln 13 \cdot (\frac{1}{149})^x$$

$$y' = \frac{1}{(3x+2) \ln 4} \cdot \frac{3}{(1+x^2) (3x+2)} = \frac{3}{(2 \ln 2) (3x+2)}$$

$$y' = \frac{3}{(2 \ln 2) (3x+2)}$$

12. Let g be the function defined by $g(x) = x^5 + x$. If $f(x) = g^{-1}(x)$ and g(1) = 2, what is the value of

$$f'(2)$$
?

 $g'(x) = 5x^{4} + 1$
 $g'(1) = 5(1)^{4} + 1$
 $g'(x) = 6$

$$f'(2)=1$$

$$\frac{g(x)}{(1,2), m=6} \frac{f(x)}{(2,1), m=\frac{1}{6}}$$

again, this could go

on forever

13. If
$$\tan(x^2y) = 2x$$
, then $\frac{dy}{dx} =$

$$\int_{X} (\tan(x^2y)) = \int_{X} (2x)$$

$$\int_{X} (2x) = \int_{X} (2x)$$

$$\int_{X} (2x) = \int_{X} (2x) = \int_{X} (2x)$$

$$\int_{X} (2x) = \int_{X} (2x) = \int_{X}$$

15. What is the slope of the line tangent to the curve defined by
$$x^4 - 3x^2y^2 + 4y^2 = 5$$
 at the point $(1,2)^7$

$$\frac{1}{3}(x^4 - 3x^2y^2 + 4y^2) = \frac{1}{3}(5)$$

$$\frac$$

16. Given the circle: $x^2 + y^2 = 100$

$$f_{x}(x^{2}+y^{2}) = f_{x}(100)$$

b) Find
$$\frac{d^2y}{dx^2}$$
 evaluated at (-6,8).

$$\frac{4x}{4x} = -\frac{x}{x} = 0$$

$$0^{2} + y^{2} = 100$$

$$\sqrt{y^{2}} = 100$$

$$y = \pm 10$$

$$\frac{d^2y}{dx^2} = \frac{y(-1) - (-x)}{\sqrt{2x}} \frac{dy}{\sqrt{2x}}$$

$$\frac{d^2y}{dx^2} = \frac{-y + x(-\frac{x}{y})}{y^2}$$

$$\frac{4^{2}y}{4x^{2}}\Big|_{(-6,8)} = \frac{[-8-6(\frac{6}{8})]}{8^{2}} = \frac{-8-\frac{36}{8}}{6^{4}} = \frac{-6^{4}}{8} = \frac{36}{8} = \frac{-100}{8}$$

$$\frac{-8 - \frac{36}{8} - \frac{64}{9} \cdot \frac{36}{8} - \frac{10}{8}}{64}$$

$$=\frac{-100}{9}, \frac{1}{64} = \frac{-100}{512}$$