

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Semantics – Undecidability: Proof by Diagonalization

23-10-2018 Sundar B. CS&IS, BITS Pilani 0

- Theorem:
 - Validity of formulas in Predicate Logic is undecidable.
- Proof:
 - By diagonalization.
- Note:
 - The complete proof is tedious.
 - A sketch of the proof adapted from Enderton's <u>Mathematical Introduction to Logic</u> follows.

Size of the set of well-formed formulas

- **Lemma**: The <u>set of all well-formed-formulas</u> in Predicate Logic is <u>countably infinite</u>.
- Proof:
 - Use an encoding of formulas into numbers the way we encoded C programs.

Proof Sketch:

- Let each well-formed-formula be assigned a unique natural number, say j,
 - and we can index that formula using j i.e. we can refer to ϕ_j
- Define a <u>binary relation</u> **p** on natural numbers:
 - (m,n) in p iff
 - ϕ_m is a formula with a single free variable **V1**, and
 - $|=^{N}_{[V1 | -> n]} \phi_{m}$
 - i.e. ϕ_m is true under
 - the model N, the set of natural numbers, and
 - the lookup table which maps V1 to n

- Proof Sketch (continued):
 - Then for any natural number i in N, define the set S_i :
 - S_i = { j | (i,j) in p }
 - i.e. the set of all numbers j such that ϕ_i evaluates to **true** under N when V1 is mapped to j
 - i.e. we have one set S_i defined for each i and any subset of N corresponds to some such S_i
 - Why?

- Proof Sketch (continued):
 - Now we diagonalize:
 - D = { j | (j,j) not in p }
 - i.e. $\mathbf{j} \in \mathbf{D}$ iff ϕ_j evaluates to false when V1 is mapped to j
 - What is k, such that S_k = D?
 - No such k exists because:
 - $k \in D <==> (k,k)$ not in p (by definition of D) $<==> k \notin S_k$ (by definition of S_k)

[Exercise:

Draw the (infinite) matrix and identify the diagonal to visualize the proof.]

- Proof Sketch (continued):
 - i.e. <u>there exist formulas for which the set of numbers</u> <u>evaluating to true cannot be computed</u>. (even with one variable under one model).
 - i.e. validity is not decidable.

- Note:
 - What we actually proved is this:
 - set of values (assigned to a free variable) for which a formula evaluates to true, under the model of natural numbers, is not computable.

Relation between Countability and Computability

- Theorem:
 - If a decision problem π is decidable,
 - then $L_{\pi} = \{ x \mid \pi(x) \text{ is true } \} \text{ is countable.}$
 - Why?
- Corollary?

