

K. J. Somaiya College of Engineering, Mumbai-77

(Autonomous College Affiliated to University of Mumbai)

Batch: A1 Roll No.: 1611011

Experiment No. 02

Grade: AA/AB/BB/BC/CC/CD/DD

Title: Database Design and Implementation Process	
Objective: • Implement Database System Life Cycle.	
Expected Outcome of Experiment:	
CO1: Design and tune database.	
Books/ Journals/ Websites referred:	
 Elmasri&Navathe" fundamentals of Database Syste Korth, Silberschatzsudarshan "Database systems, c Raghu Ramkrishnan& Johannes Gehrke "Database edition. 	oncepts" 5 th edition McGraw Hill.
Pre Lab/ Prior Concepts:	
Database System, ER diagram and Relation mapping, S	QL

Case Study of large database system

Virtual Classroom:

Online learning tool for Students.

Functionality:

- 1. A faculty creates course and uploads course contents to be available for enrolled students
- 2. A student can enroll in a course, view course details, access content
- 3. Faculty can create assignments and quiz based on the course
- 4. Student can answer quiz and upload answers to assignments
- 5. Student can interact and ask doubts to other students or faculty through discussion forum
- 6. System generates grade based on quiz answers and assignments graded by Faculty
- 7. Certificate is generated for successful completion of course

Database Design and Implementation System Life Cycle

Phases w.r.t to case study

Figure 10.1

Implementation details

1. Requirement Collection (Screenshots of UML Diagram)

Class diagram:

Object diagram:

Sequence diagram:

(Autonomous College Affiliated to University of Mumbai)

Composite diagram:

Composite diagram:

Component diagram:

(Autonomous College Affiliated to University of Mumbai)

Package diagram:

(Autonomous College Affiliated to University of Mumbai)

Activity diagram:

(Autonomous College Affiliated to University of Mumbai)

Deployment diagram;

State machine diagram:

Use case diagram:

Text

(Autonomous College Affiliated to University of Mumbai)

2. Conceptual Database(Screenshots of EER)

(Autonomous College Affiliated to University of Mumbai)

3. Relational Database(Screenshots)

Relational Mode Student :	el (Virtual Clas	ssroom):					
Student.							
Student id	First_Name	Last_Name		email	ı	password	
Faculty:							
Faculty id	First_Name	Last	_Name	Unive	rsity	email	password
Course :							
Course id	<u>Faculty id</u>			Name	Star	t_Date	End_Date
Course_enrol	led :						
Studen	t_id (Course_id		Completion_Status		nal_Grade	
Course_Conto	ent :				·		_
Course	id	File		<u>TimeStamp</u>		e_Type	
Discussion_F	orum_Question	n :			•		_
Course_id	Student_id	Thread_id		Question			

Discuss	sion_For			ouncge		o emversity	,	,	
Course_id		ld <u>Threa</u>		<u>d_id</u> Answer		User_Type			
Assign	nent_Qu	estion:							
Course_ic	Course_id <u>Assignment_id</u>			Que	estion				
Assigni	Assignment_Answer:								
Assignme	ent_id St	udent_ic	t	Answ	er (Grade			
Quiz_Q	Quiz_Question:								
Course id	Quiz id		tion_n	Quest	i Option_	Option_ B	Option_	Option_	Correct_Ans
Quiz_A	Quiz_Answer:								
Quiz_id	<u>Course_id</u>		Studen	t_id	Question_n	<u>o</u> Aı	nswer		
Quiz_G	Frade :								
Quiz_id		Student	<u>id</u>	Cours	e_id	Grade			
Primary	y Keys :								

(Autonomous College Affiliated to University of Mumbai)

Table Foreign Key

Course Faculty → Faculty_id

Course_enrolled Student → Student_id, Course → Course_id

Course_Content Course_id

Discussion_forum_question Course → Course_id, Student → Student_id

Discussion_forum_ans Course → Course id, Depending on value of attribute 'UserType'

, 'id' becomes foreign key of Student or Faculty.

Student → Student_id, Faculty → Faculty_id

Assignment_Question Course → Course_id

Assignment_Answer Assignment_id, Student → Student_id

Quiz_Question Course → Course_id

Quiz_Answer Student_id, Quiz → Quiz_id, Course → Course_id

Quiz_Grade Student_id, Quiz → Quiz_id, Course_id

4. Physical Database(Screenshots of database tables)

Physical Tables Implementation:

(Autonomous College Affiliated to University of Mumbai)

Conclusion:

Design and implementation of database was done successfully.

Post Lab Descriptive Questions:

1. What are the strategies used schema design Ans:

Following are strategies used in schema design:

- i) Naming conventions:
 - a) Avoid using just ID as the PK of each table. It will lead to lots of aliasing when joining other tables and returning multiple IDs from several tables.

(Autonomous College Affiliated to University of Mumbai)

- b) Beware of using SQL Server reserved words (User, Date, etc.) in table names, column names and elsewhere. Use of a reserved word will give a syntax error unless you specify [square brackets] around the value, making development slower and the statements longer.
- c) Don't use hyphens, spaces, quotes, etc. Because they will be invalid or require [square brackets]. e.g. SELECT [category-id] FROM [custom-category]
- d) Name the tables in the singular, not plural. For example, name the table Customer and Order rather than Customers and Orders. It is obvious that a table contains multiple customers and hopefully not a single row, so the plurality is somewhat redundant and may introduce inconsistency issues with some table names.

ii) Using proper constraints:

Constraints such as required fields, unique values, allowed values, etc., at the database level can perform additional validation to ensure the integrity of the data. These checks should not be the only place where validation occurs. Validation should be baked into the front end application as well. If the application catches a validation issue, a "pretty" error can be displayed to the end user.

2. What are the strategies used for View Integration explain w.r.t your case study

Ans:

View integration used in our table is N-ary integration for as multiple user schemas merge into one. Views are used in our case study to show only the required tables as per the user type. Like, assignment answer of students shouldn't be viewed by other students but only the faculty.

3. Why it is important to design the schema and applications in Parallel w.r.t. database applications and data contents?

Ans:

Database design coordinates with the actual view of the database in the system and how it is going to look on the server side. Making factual views of database in the form of various diagrams mentioned above is a process of database design. This is an equally important step apart from implementation because it simplifies the efforts and confusions created while actual implementation. Database implementation is actual database creation on the physical level with the help of database querying languages like SQL or MongoDB. For implementing the database one needs to have a clear view of the system he/she is going to build thus database implementation and design should go hand in hand. When the system is live and we need to add some transactions or constraints onto the database, we again need to make the changes in the physical view.

Date: 28/08/18