CE394M: Stress-strain-strength relationship of clay

Krishna Kumar

University of Texas at Austin krishnak@utexas.edu

April 21, 2019

Krishna Kumar (UT Austin)

CE394M: Stress-strain-strengt

A---II 01 0010

Overview

- Stress-strain-strength relationship
- Simple shear

L-soil v D-soil

L-soils:

D-soils:

Krishna Kumar (UT Austin)

Simple shear

Initial consolidation Void ratio e_n

 $\sigma = \text{const.}$

Undrained test

 $\sigma_0' = \sigma - u = changes$ $u_0 + \Delta u$ Pore pressure

changes No volume change

Krishna Kumar (OT Austin) CE394W: Stress-strain-streng

il 21, 2019 5 / 22

NCL: L-soil (drained v undrained)

SS: LOC-soil (L-soils)

Krishna Kumar (UT Austin)

CE394M: Stress-strain-strengtl

April 21 201

7 / 22

SS: LOC-soil (L-soils) (drained v undrained)

Krishna Kumar (UT Austin) CE394M: Stress-strai

1 21, 2019 9 / 22

SS: HOC-soil (D-soils) (drained v undrained)

TXC: Drained strength and volume at failure using CS

Krishna Kumar (UT Austin)

CE394M: Stress-strain-strength

April 21, 2019

11 /00

TXC: Drained (Mohr-Coulomb ESA)

TXC: Drained Cam-Clay yield and failure

Krishna Kumar (UT Austin)

CE394M: Stress-strain-strengt

April 21, 2019

13 / 22

TXC Drained (axial loading)

TXC Drained (axial loading)

Krishna Kumar (UT Austin)

CE394M: Stress-strain-strength

April 21, 2019

15 / 22

TXC: Undrained strength and excess PWP at failure

TXC: Undrained (Mohr-Coulomb ESA)

Krishna Kumar (UT Austin)

CE394M: Stress-strain-strength

neil 21 2010 17 / 22

TXC Undrained (axial loading)

TXC Undrained (axial loading)

Krishna Kumar (UT Austin)

CE394M: Stress-strain-streng

April 21, 2019

10 /00

Critical state concept

Critical state concept

Interchangeable parameters for stress at yield and $d\varepsilon^p$.

System	Effective normal stress	Plastic normal strain	Effective shear stress	Plastic shear strain	Critical stress ratio	Plastic normal stress	Critical normal stress
General	σ*	8*	τ*	γ*	μ* _{crit}	σ*.	σ* _{crit}
SSA	σ΄	ε	τ	γ	tan φ _{crit}	σ',	σ' _{erit}
BA-PS	s'	$\epsilon_{\rm v}$	t	ϵ_{γ}	sin ф _{crit}	s′ c	s' crit
TA-AS	p'	$\epsilon_{\rm v}$	q	$\epsilon_{\rm s}$	М	p′ c	p' crit

Plastic work and dissipation: $\sigma^*\partial \varepsilon^* + \tau^*\partial \gamma^* = \mu^*_{crit}\sigma^*\partial \gamma^*$. General yield surface: $\frac{\tau^*}{\sigma^*} = \mu^* = \mu^*_{crit} \ln \left[\frac{\sigma^*_c}{\sigma}\right]$

Krishna Kumar (UT Austin)

CE394M: Stress-strain-strength

April 21, 2019

21 / 22

Critical state concept: 1D compression

Plastic compression stress σ_c' is taken as the larger of the initial aggregate crushing stress and the historic maximum effective vertical stress. Clay muds are taken to begin with $\sigma_c'=1$ kPa.

Plastic compression (normal compression line): $v=v_lambda-\lambda \ln \sigma'$ for $\sigma'=\sigma'_c$.

Elastic swelling and recompression line $(\kappa$ -line): $v = v_c + \kappa (\ln \sigma'_c - \ln \sigma'_v)$.