Digital Image Processing

Image Enhancement: Filtering in the Frequency Domain

The Discrete Fourier Transform (DFT)

The Discrete Fourier Transform of f(x, y), for x = 0, 1, 2...M-1 and y = 0, 1, 2...N-1, denoted by F(u, v), is given by the equation:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}$$

for u = 0, 1, 2...M-1 and v = 0, 1, 2...N-1.

DFT & Images

The DFT of a two dimensional image can be visualised by showing the spectrum of the images component frequencies

DFT & Images

DFT & Images

DFT & Images (cont...)

Scanning electron microscope image of an integrated circuit magnified ~2500 times

Fourier spectrum of the image

DFT & Images (cont...)

DFT & Images (cont...)

The Inverse DFT

It is really important to note that the Fourier transform is completely **reversible**The inverse DFT is given by:

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)}$$

for x = 0, 1, 2...M-1 and y = 0, 1, 2...N-1

The DFT and Image Processing

To filter an image in the frequency domain:

- 1. Compute F(u,v) the DFT of the image
- 2. Multiply F(u,v) by a filter function H(u,v)
- 3. Compute the inverse DFT of the result

Frequency domain filtering operation Filter Inverse Fourier function Fourier transform H(u, v)transform F(u, v)H(u,v)F(u,v)Pre-Postprocessing processing f(x, y)g(x, y)Input Enhanced image image

Some Basic Frequency Domain Filters

Low Pass Filter

Some Basic Frequency Domain Filters

Some Basic Frequency Domain Filters

Smoothing Frequency Domain Filters

Smoothing is achieved in the frequency domain by dropping out the high frequency components The basic model for filtering is:

$$G(u,v) = H(u,v)F(u,v)$$

where F(u,v) is the Fourier transform of the image being filtered and H(u,v) is the filter transform function

Low pass filters – only pass the low frequencies, drop the high ones

Ideal Low Pass Filter

Simply cut off all high frequency components that are a specified distance D₀ from the origin of the transform

changing the distance changes the behaviour of the filter

The transfer function for the ideal low pass filter can be given as:

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le D_0 \\ 0 & \text{if } D(u,v) > D_0 \end{cases}$$

where D(u,v) is given as:

$$D(u,v) = [(u-M/2)^2 + (v-N/2)^2]^{1/2}$$

Above we show an image, it's Fourier spectrum and a series of ideal low pass filters of radius 5, 15, 30, 80 and 230 superimposed on top of it

Original image

Result of filtering with ideal low pass filter of radius 5

Result of filtering with ideal low pass filter of radius 15

Result of filtering with ideal low pass filter of radius 30

Result of filtering with ideal low pass filter of radius 80

Result of filtering with ideal low pass filter of radius 230

Result of filtering with ideal low pass filter of radius 5

Result of filtering with ideal low pass filter of radius 15

Butterworth Lowpass Filters

The transfer function of a Butterworth lowpass filter of order n with cutoff frequency at distance D_0 from the origin is defined as:

$$H(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$$

Butterworth Lowpass Filter (cont...)

Original image

Result of filtering with Butterworth filter of order 2 and cutoff radius 5

Result of filtering with Butterworth filter of order 2 and cutoff radius 15

Result of filtering with Butterworth filter of order 2 and cutoff radius 30

Result of filtering with Butterworth filter of order 2 and cutoff radius 80

Result of filtering with Butterworth filter of order 2 and cutoff radius 230

Butterworth Lowpass Filter (cont...)

Result of filtering with Butterworth filter of order 2 and cutoff radius 5

Butterworth Lowpass Filter (cont...)

Result of filtering with Butterworth filter of order 2 and cutoff radius 15

Gaussian Lowpass Filters

The transfer function of a Gaussian lowpass filter is defined as:

$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$

Gaussian Lowpass Filters (cont...)

Original image

Result of filtering with Gaussian filter with cutoff radius 5

Result of filtering with Gaussian filter with cutoff radius 15

Result of filtering with Gaussian filter with cutoff radius 30

Result of filtering with Gaussian filter with cutoff radius 85

Result of filtering with Gaussian filter with cutoff radius 230

Lowpass Filters Compared

Result of filtering with ideal low pass filter of radius 15

Result of filtering with Butterworth filter of order 2 and cutoff radius 15

Result of filtering with Gaussian filter with cutoff radius 15

Lowpass Filtering Examples

A low pass Gaussian filter is used to connect broken text

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

C C

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Lowpass Filtering Examples

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Lowpass Filtering Examples (cont...)

Different lowpass Gaussian filters used to remove blemishes in a photograph

Lowpass Filtering Examples (cont...)

Lowpass Filtering Examples (cont...)

Original image

Gaussian lowpass filter

Spectrum of original image

Processed image

Sharpening in the Frequency Domain

Edges and fine detail in images are associated with high frequency components

High pass filters – only pass the high frequencies, drop the low ones

High pass frequencies are precisely the reverse of low pass filters, so:

$$H_{hp}(u, v) = 1 - H_{lp}(u, v)$$

Ideal High Pass Filters

The ideal high pass filter is given as:

$$H(u,v) = \begin{cases} 0 & \text{if } D(u,v) \le D_0 \\ 1 & \text{if } D(u,v) > D_0 \end{cases}$$

where D_0 is the cut off distance as before

Ideal High Pass Filters (cont...)

Results of ideal high pass filtering with $D_0 = 15$

Results of ideal high pass filtering with $D_0 = 30$

Results of ideal high pass filtering with $D_0 = 80$

Butterworth High Pass Filters

The Butterworth high pass filter is given as:

$$H(u,v) = \frac{1}{1 + [D_0/D(u,v)]^{2n}}$$

where n is the order and D_0 is the cut off distance as before

Butterworth High Pass Filters (cont...)

Results of Butterworth high pass filtering of order 2 with $D_0 = 15$

Results of Butterworth high pass filtering of order 2 with $D_0 = 80$

Results of Butterworth high pass filtering of order 2 with $D_0 = 30$

Gaussian High Pass Filters

The Gaussian high pass filter is given as:

$$H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$$

where D_0 is the cut off distance as before

Gaussian High Pass Filters (cont...)

Results of Gaussian high pass filtering with $D_0 = 15$

Results of Gaussian high pass filtering with $D_0 = 80$

Results of Gaussian high pass filtering with $D_0 = 30$

Results of ideal high pass filtering with $D_0 = 15$

Results of Butterworth high pass filtering of order 2 with D_0 = 15

Results of Gaussian high pass filtering with $D_0 = 15$

Results of ideal high pass filtering with $D_0 = 15$

Results of Butterworth high pass filtering of order 2 with $D_0 = 15$

Results of Gaussian high pass filtering with $D_0 = 15$

Results of ideal high pass filtering with $D_0 = 15$

Results of Butterworth high pass filtering of order 2 with $D_0 = 15$

Results of Gaussian high pass filtering with $D_0 = 15$

Images taken from Gonzalez & Woods, Digital Image Processing (2002)

Highpass Filtering Example

After histogram

High frequency emphasis result

Original image

Laplacian In The Frequency Domain

Zoomed section of

the image on the

left compared to

spatial filter

Imteresting Application Of Frequency Domain Filtering

Interesting Application Of Frequency Domain Filtering

