kaviyadevi 20106064

In [42]: #to import libraries

import numpy as np import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

In [43]: #to import dataset

data=pd.read_csv(r"C:\Users\user\Downloads\19_nuclear_explosions - 19_nuclear_exp

Out[43]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Lonç
0	USA	Alamogordo	DOE	32.54	-1
1	USA	Hiroshima	DOE	34.23	1
2	USA	Nagasaki	DOE	32.45	1
3	USA	Bikini	DOE	11.35	1
4	USA	Bikini	DOE	11.35	1
2041	CHINA	Lop Nor	HFS	41.69	
2042	INDIA	Pokhran	HFS	27.07	
2043	INDIA	Pokhran	NRD	27.07	
2044	PAKIST	Chagai	HFS	28.90	
2045	PAKIST	Kharan	HFS	28.49	

2046 rows × 16 columns

#to display top 5 rows In [44]: data.head()

Out[44]:

	WEAPON SOURCE COUNTRY	WEAPON DEPLOYMENT LOCATION	Data.Source	Location.Cordinates.Latitude	Location.Cordinates.Longitu
0	USA	Alamogordo	DOE	32.54	-105.
1	USA	Hiroshima	DOE	34.23	132.
2	USA	Nagasaki	DOE	32.45	129.
3	USA	Bikini	DOE	11.35	165.:
4	USA	Bikini	DOE	11.35	165.:
4					>

DATA CLEANING AND PREPROCESSING

In [45]: #
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2046 entries, 0 to 2045
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	WEAPON SOURCE COUNTRY	2046 non-null	object
1	WEAPON DEPLOYMENT LOCATION	2046 non-null	object
2	Data.Source	2046 non-null	object
3	Location.Cordinates.Latitude	2046 non-null	float64
4	Location.Cordinates.Longitude	2046 non-null	float64
5	Data.Magnitude.Body	2046 non-null	float64
6	Data.Magnitude.Surface	2046 non-null	float64
7	Location.Cordinates.Depth	2046 non-null	float64
8	Data.Yeild.Lower	2046 non-null	float64
9	Data.Yeild.Upper	2046 non-null	float64
10	Data.Purpose	2046 non-null	object
11	Data.Name	2046 non-null	object
12	Data.Type	2046 non-null	object
1 3	Date.Day	2046 non-null	int64
14	Date.Month	2046 non-null	int64
15	Date.Year	2046 non-null	int64

dtypes: float64(7), int64(3), object(6)

memory usage: 255.9+ KB

In [46]: #to display summary of statistics(here to know min max value)
data.describe()

Out[46]:

	Location.Cordinates.Latitude	Location.Cordinates.Longitude	Data.Magnitude.Body	Data.Magni
count	2046.000000	2046.000000	2046.000000	
mean	35.462429	-36.015037	2.145406	
std	23.352702	100.829355	2.625453	
min	-49.500000	-169.320000	0.000000	
25%	37.000000	-116.051500	0.000000	
50%	37.100000	-116.000000	0.000000	
75%	49.870000	78.000000	5.100000	
max	75.100000	179.220000	7.400000	
4				•

EDA and DATA VISUALIZATION

In [49]: sns.pairplot(data)

Out[49]: <seaborn.axisgrid.PairGrid at 0x2391fe1cd30>

In [52]: | sns.distplot(data['Data.Magnitude.Surface'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[52]: <AxesSubplot:xlabel='Data.Magnitude.Surface', ylabel='Density'>

In [54]: sns.heatmap(df.corr())

Out[54]: <AxesSubplot:>

TO TRAIN MODEL

MODEL BUILDING We are going to train linear regression model; we need to split out the data into two variables x and y where x is independent variables (input) and y is dependent on x(output) we could ignore address column as it is not required for our model

```
In [17]: x=df[['Avg. Area Income', 'Avg. Area House Age', 'Avg. Area Number of Rooms',
                 'Avg. Area Number of Bedrooms', 'Area Population']]
         y=df['Price']
In [18]: #to split my dataset into trainning and test
         from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [19]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[19]: LinearRegression()
In [20]: #to find intercept
         print(lr.intercept_)
          -2631179.446847313
         coeff = pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
In [21]:
         coeff
Out[21]:
                                       Co-efficient
                     Avg. Area Income
                                         21.479593
                   Avg. Area House Age
                                     165312.826052
             Avg. Area Number of Rooms 121223.545008
          Avg. Area Number of Bedrooms
                                       2293.701818
                       Area Population
                                         15.118977
```

```
In [22]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[22]: <matplotlib.collections.PathCollection at 0x23922fedbb0>


```
In [23]: print(lr.score(x_test,y_test))
```

0.9196122061704285

RIDGE AND LASSO REGRESSION

```
In [29]: from sklearn.linear_model import ElasticNet
    en=ElasticNet()
    en.fit(x_train,y_train)

Out[29]: ElasticNet()

In [31]: print(en.coef_)
        [2.13485855e+01 1.08956510e+05 7.60150692e+04 1.48830865e+04
        1.49596622e+01]

In [33]: print(en.predict(x_test))
        [1233826.38851369 1039013.51432593 1449245.88937301 ... 1230827.74917279
        1120198.45040024 1159902.0622341 ]

In [34]: print(en.score(x_test,y_test))
        0.8832134954458345
```

EVALUATION METRICS

MODEL SAVING

```
In [58]: import pickle
In [59]: filename='predict1'
pickle.dump(lr,open(filename,'wb'))
```