

NATIONAL UNIVERSITY OF SAN MARCOS (The University of Peru, DEAN OF AMERICA) FACULTY OF SYSTEMS ENGINEERING AND COMPUTER SCIENCE SCHOOL OF SOFTWARE ENGINEERING

SYLLABUS

1. GENERAL INFORMATION

1.1 Course Name : Intelligent Software – Plan 2018

1.2 Course Code: 202W09081.3 Course Type: Mandatory1.4 Area of Study: Specific1.5 Number of Weeks: 16

1.6 Weekly Hours : Theory: 2, Practice: 0, Lab: 2

 1.7 Academic Semester
 : 2025-1

 1.8 Cycle
 : IX

 1.9 Credits
 : 3

 1.10 Modality
 : In person

1.11 Prerequisites : Taller Movil, Negocios, VALIDACION

1.12 Teacher(s) : Mario (mario@ejemplo.com)

Lucho Barreda (lucho.barreda@ejemplo.com)

2. COURSE SUMMARY

This course falls under the complementary studies area and is theoretical and practical in nature. Its purpose is to develop intelligent systems based on knowledge of artificial intelligence and algorithms developed in data mining: "Build, develop, and manage software solutions for managerial decision-making using international quality and data science methodologies and standards with an ethical attitude and social responsibility." The main content is: Data collection and exploration using algorithms. Use of statistical techniques for data analysis with algorithms. Machine learning algorithms, deep learning algorithms, Common KADS algorithms, and genetic algorithms.

3. GRADUATE PROFILE COMPETENCIES CONTRIBUTED BY THIS COURSE

Code	Description	Type	Level
CG3.3	Apply the capacity for analysis and critical thinking in the development of activities related to your future professional life		Avanzado
CT11.3	Implement intelligent software based on emerging development processes with an ethical, critical, and innovative attitude.	Specialty	Avanzado
CE12.3	Implements software solutions for management decision-making using international quality and data science methodologies and standards with an ethical attitude and social responsibility.		Avanzado
	_	_	

4. LEARNING ACHIEVEMENTS

CG3.3

Analyze and relate algorithms as models of human life, whose application solves real-life problems.

1

CT11.3

Develop and implement intelligent software using artificial intelligence methods, techniques, and methodologies in multidisciplinary teams with an ethical, critical, and innovative attitude.

CE12 3

Develops and implements intelligent software solutions for managerial decision-making, using international quality and data science methodologies and standards with an ethical attitude and social responsibility.

5. CAPACITIES

• Unit 1: Introduction to bio-inspired software and algorithms

Description: He is familiar with genetic algorithms and has the ability to implement solutions tailored to the needs of the environment.

• Unit 2: Neural Networks

Description: It has the ability to design neural network architectures tailored to the requirements of organizations and/or the environment.

• Unit 3: Image processing

Description: You are familiar with image classification models and algorithms and can implement intelligent software with an artificial intelligence engine based on image processing.

• Unit 4: Natural Language Processing

Description: He is familiar with natural language processing models and can implement solutions tailored to the environment's requirements.

6. CONTENT PROGRAMMING

Unit 1: Introduction to bio-inspired software and algorithms

Unit Achievement: Understands and models solutions using genetic algorithms, and designs intelligent software based on bio-inspired algorithms.

Sem	Content	Activities	Resources	Strategies
1	• Fundamentals of intelligent software development, MLops Common KADS Methodology.	Entrance assessment Syllabus sharing Group formation for the course project Presentation and discussion of content Laboratory tool recognition	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork
2	• Fundamentals of Multi-Agent Systems • Types of agents and environments • Agent architecture	Presentation and discussion of content Presentation of cases that require multi-agent systems Multi-agent systems laboratory	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork
3	Bioinspired algorithms: genetic, swarm	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require the use of bioinspired algorithms	PowerPoint presentation on the topic Texts and books Dataset Programming	• Active learning • Case analysis • Teamwork

Sem	Content	Activities	Resources	Strategies
		Genetic algorithms laboratory	language Python	
4	Data collection and exploration using algorithms	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require data collection Data collection laboratory using algorithms	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork

Unit 2: Neural Networks

Unit Achievement: dasdasdas

Sem	Content	Activities	Resources	Strategies
5	• Use of statistical techniques for inference, Machine Learning in intelligent software	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require the use of machine learning Laboratory on statistical techniques in machine learning	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork
6	• Multilayer Neural Networks	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require the use of multilayer neural networks MLP laboratory	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork
7	• Recurrent Neural Networks, LSTM	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require the use of recurrent neural network algorithms LSTM network laboratory	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork
8	Partial exam	_	_	_

Unit 3: Image processing

Unit Achievement: —

Sem	Content	Activities	Resources	Strategies	
9	Deep learning	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require the use of deep learning Deep learning architecture laboratory	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork	
10	• CNN	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require image classification Image classification laboratory	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork	
11	Image classification	Assessment of prior knowledge Presentation and discussion of	• PowerPoint presentation on the	• Active learning • Case analysis •	

Sem	Content	Activities	Resources	Strategies
		content • Presentation of cases that require image classification • Image classification laboratory	topic Texts and books Dataset Programming language Python	Teamwork
12	Advanced algorithms in image classification	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require the use of advanced algorithms in image classification Image classification laboratory	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork

Unit 4: Natural Language Processing

Unit Achievement: gdfgdf

Sem	Content	Activities	Resources	Strategies
13	• Transfer learning, pre- trained models	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require transfer learning Laboratory of pre-trained models	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork
14	Natural language processing	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require natural language processing techniques NLP Lab	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork
15	• Language models: GPT Chat, Generative AI	Assessment of prior knowledge Presentation and discussion of content Presentation of cases that require generative artificial intelligence Language models laboratory	PowerPoint presentation on the topic Texts and books Dataset Programming language Python	• Active learning • Case analysis • Teamwork
16	Final exam	_	_	_

7. TEACHING STRATEGY

The instructor promotes active student participation during the theoretical and laboratory sessions, applying problem-based learning, case methods, and project-based learning, as well as teamwork and collaborative groups. To this end, the instructor will publish the course materials, the problems and cases to be developed, and the basic team project guide in the Virtual Classroom.

8. LEARNING ASSESSMENT

EVALUATION The following instruments are considered: • Partial Exam (PE) • Final Exam (FE) • Partial Work Report 1 (TP) • Final Work Report 2 (TF) GPA calculation: N1 = PE*0.30 N2 = Average (TP, TF)*0.40 N3 = EF*0.30

Formula: PF = (N1 + N2 + N3)

• NO SUBSTITUTE EXAM WILL BE GIVEN.

Unit	Criterion	Performance	Product	Instrument
Introduction to bio- inspired software and algorithms	Understanding Bioinspired Algorithms	Foundation and knowledge of bioinspired algorithms	Deliverable Report (PE1)	Rubric Checklist
Neural Networks	Understanding Neural Networks	Understand and understand neural networks	Deliverable report Report (PE12 Midterm exam)	Rubric Checklist
Image processing	Understanding the fundamentals of image processing	Understand and understand image processing techniques	Deliverable report Report (PE12 Midterm exam)	Rubric Checklist
Natural Language Processing	Understanding and Foundation of NLP	Understand and understand NLP techniques	Deliverable report Report (PE12 Midterm exam)	Rubric Checklist

9. BIBLIOGRAPHY

- Geron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd Edition). O'Reilly Media, Inc.
- Gestal, M., Rivero, D., Rabuñal, J. R., Dorado, J., & Pazos, A. (2010). Introduction to Genetic Algorithms and Genetic Programming. Universidade da Coruña, Publications Service.
- Hastie, T., Tibshirani, R., & Friedman, J. (2008). The Elements of Statistical Learning (2nd Edition). Springer.
- Artificial Intelligence: Fundamentals, Practice, and Applications (1st Edition), Alberto García, 2012
- Marsland, S. (2015). Machine Learning: An Algorithmic Perspective (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b17476
- Python Machine Learning (1st published), Sebastian Raschka, 2016
- Python for Data Analysis. Wes McKinney. O'Reilly Media, Inc. 2013
- Sidorov, G. (2018). Artificial Intelligence (1st Edition). Alfaomega Publishing Group
- Simmon, R., & Mark, G. (2012). A First Course in Machine Learning (1st Edition). Taylor & Francis Group.
- Stuart, R., & Peter, N. (2010). Artificial Intelligence A Modern Approach (Era Edition). Pearson Education, Inc.
- The Data Warehouse Toolkit (3rd Edition), Ralph Kimball, MARGY ROSS, Wiley Computer Publishing, 2013