Also published as:

US6492915 (B2)

US2002140584 (A

JP2002237036 (A)

Patent number:

JP2002237036

Publication date:

2002-08-23

Inventor:

MAEDA TAKESHI; KATAYAMA YUKARI; MINEMURA

HIROYUKI

Applicant:

HITACHI LTD

Classification:

- international:

G11B7/004; G11B20/14

- european:

Application number: JP20010031711 20010208

Priority number(s):

Abstract of JP2002237036

PROBLEM TO BE SOLVED: To solve the problem that the signal amplitude is decreased and the error is liable to occur when the magnitude size of a minimum mark is made small.

SOLUTION: A recording mark is recorded by correcting the length so that the shortest mark and a shortest gap become to have the same length, when recording data after the asymmetric coding are recorded. Consequently, the reproduction of the signal is attained by increasing the signal amplitude and also increasing the width of a detection window.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2002-237036A) (P2002-237036A) (43)公開日 平成14年8月23日(2002.8.23)

(51) Int. C1.7

識別記号

FΙ

テーマコード(参考)

G 1 1 B 7/004

20/14

3 4 1

G 1 1 B 7/004

Z 5D044

20/14

3 4 1 A 5D090

審査請求 未請求 請求項の数9

OL

(全11頁)

(21)出願番号

特願2001-31711(P2001-31711)

(22)出願日

平成13年2月8日(2001.2.8)

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 前田 武志

東京都国分寺市東恋ケ窪一丁目280番地

株式会社日立製作所中央研究所内

(72)発明者 片山 ゆかり

神奈川県川崎市麻生区王禅寺1099番地 株

式会社日立製作所システム開発研究所内

(74)代理人 100075096

弁理士 作田 康夫

最終頁に続く

(54) 【発明の名称】情報記録方法、再生方法及び情報記録装置

(57)【要約】

【課題】最小のマークの大きさを小さくすると、信号振幅小さくなり、エラーが発生しやすくなる。

【解決手段】非対称符号後の記録データを記録するときに、最短マークと最短ギャップが同じ長さになるように記録マークを長さを補正して記録する。

【効果】信号振幅を大きく、かつ検出窓幅を大きくして、信号を再生することが可能となる。

1

【特許請求の範囲】

【請求項1】媒体上に光レーザーを用いてマークを書くことにより、情報を記録する情報記録方法において、最短マークを形成する際の記録波形に対応する第1のチャネルデータと、マーク間の最短スペースを形成する際の記録波形に対応する第2のチャネルデータとは非対称であり、前記第1のチャネルデータ及び前記第2のチャネルデータを含むチャネルデータを前記光レーザの記録波形に変換して、前記媒体に、最短マークと最短スペースの間隔が略等しくなるように記録することを特徴とする10情報記録方法。

【請求項2】媒体上に光レーザーを用いてマークを書くことにより、情報を記録する情報記録方法において、ユーザービットをチャネルビットに変換する変調符号として8-14符号を用い、前記チャネルビットを前記光レーザの記録波形に変換して、前記媒体に、最短マークとマーク間の最短スペースが略等しくなるように記録することを特徴とする情報記録方法。

【請求項3】前記チャネルデータをNRZ変換し、前記最短マークに相当するパルスの長さを検出窓幅の半分分短くすることによって、前記最短マークとマーク間の最短スペースが略等しくなるように記録することを特徴とする請求項2記載の情報記録方法。

【請求項4】媒体上に光レーザーを用いてマークを書く ことにより、情報を記録し、前記マークの反射光の強度 による再生信号から情報を再生する情報記録再生方法に おいて、最短マークを形成する際の記録波形に対応する 第1のチャネルデータと、マーク間の最短スペースを形 成する際の記録波形に対応する第2のチャネルデータと は非対称であり、前記第1のチャネルデータ及び前記第 2のチャネルデータを含むチャネルデータを前記光レー ザの記録波形に変換して、前記媒体に、最短マークと最 短スペースの間隔が略等しくなるように記録し、前記マ ークの反射光の強度による再生信号から前記再生信号の 立上り及び立ち下がりに対応した第1及び第2のタイミ ング信号を検出し、前記第1及び第2のタイミング信号 から独立に第1及び第2の同期信号及びクロック信号を 形成し、前記第1及び第2の同期信号及びクロック信号 に基づいて前記マークから得られる第1及び第2のタイ ミング信号からデータを独立に再生し、前記独立に再生 40 されたデータを合成して復調することを特徴とする情報 記録再生方法。

【請求項5】前記記録は、ユーザービットをチャネルビットに変換する変調符号として8-14符号を用いることを特徴とする請求項4記載の情報記録再生方法。

【請求項6】媒体上に光レーザーを用いてマークを書くことにより、情報を記録し、前記マークの反射光の強度による再生信号から情報を再生する情報記録再生方法において、最短マークを形成する際の記録波形に対応する第1のチャネルデータと、マーク間の最短スペースを形 50

成する際の記録波形に対応する第2のチャネルデータとは非対称であり、前記第1のチャネルデータ及び前記第2のチャネルデータを含むチャネルデータを前記光レーザの記録波形に変換して、前記媒体に、最短マークと最短スペースの間隔が略等しくなるように記録し、前記マークの反射光の強度による再生信号からパーシャルレスポンス方式を用いてデジタルデータを再生することを特徴とする情報記録再生方法。

【請求項7】前記パーシャルレスポンスのインパルス応答長は3ビット以上であることを特徴とする請求項6記載の情報記録再生方法。

【請求項8】前記記録は、ユーザービットをチャネルビットに変換する変調符号として8-14符号を用いることを特徴とする請求項6記載の情報記録再生方法。

【請求項9】記録媒体に照射するためのレーザを駆動するためのレーザ駆動回路と、ユーザーデータをチャネルデータに8-14変調する符号化回路と、前記符号化回路から受け取ったNRZ形式のデータを、最短マーク長に相当するパルス長さを検出窓幅の半分分だけ短くするマーク長補正回路と、前記マーク長補正回路からのデータを、電圧波形に変換する記録波形発生回路とを有することを特徴とする情報記録装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、DVDなどの光ディスクに情報を記録、再生する方法に関し、特に高密度化に好適で、ラン長制限符号に関するものである。

[0002]

【従来の技術】従来から光ディスク装置においては、ユ ーザデータをRLL (ラン長制限) 符号化し、それをN RZI変調で1、-1の2値データに変換し、1、-1のそれぞれをマーク、非マークに割り当てて媒体に書き 込んでいた。光ディスク用ラン長制限符号としては、C D (Compact Disk) に使用されているEF M符号(US Patent 4, 501, 000)、 DVDに使用されているEFMPlus (US Pat ent 5,696,505) 符号が有名である。EF M符号、EFMPlus符号はd=2、k=10の (d、k) RLL (ラン長制限) 符号である。ここでd =2、k=10というのは、ラン長制限符号上での1と 1の間に入る0の数の最小値と最大値である。NRZI 変調では、ラン長制限符号が1のとき、1→-1、-1 →1のように符号の反転を行い、ラン長制限符号が0 のときは符号はそのままという変換を行うので、 d+1 が最小のマーク、非マークの長さとなる。すなわちEF M符号やEFMPlus符号において最小のマーク、非 マークの長さはともに3ビットであった。

[0003]

【発明が解決しようとする課題】ここで、最小のマーク の大きさdを小さくすると、ユーザデータとラン長制限

符号の変換比m:nが小さくなり、検出窓が広がるの で、ジッターの面で有利である。しかし、光ディスクで は、最小のマークの大きさが真円に近くなるように設定 されるので、マークの長さが小さくなるとマークの幅も 小さくなり、マークの最小の大きさの信号振幅はマーク 長さの2乗に比例して小さくなるという問題があった。 たとえば同じユーザデータ密度で書き込んだ場合、d= 1の(1,7)符号は変換比が2:3であり、d=2の (2,7)符号は変換比が1:2であるが、最小のマー クの長さは(1,7)符号:(2,7)符号=8:9と 10 (1,7) 符号のほうが8/9だけ小さくなる。信号振 幅は2乗に比例するので、(1,7)符号:(2,7)*

*符号=64:81と約3/4になってしまう。信号振幅 が小さくなるとS/Nが下がり、エラーが発生しやすく なるため、dを小さくして変換比を下げ、検出窓を広げ ることができないという問題があった。

[0004]

【課題を解決するための手段】前記問題を解決するため に、マークの最小の大きさと非マークの部分の最小の大 きさを非対称とし、マークの部分の長さは3ビット以上 とする変調符号を考案した。考案した変調符号と従来の 変調符号との比較表を表1に示す。

[0005]

【表1】

表1 変調方式の比較表

変調方式		(1、7)変調	(2、10)変調	8-14非対称符号	8-15非対称符号
変換ユーザビット	n	2	8	8	8
変換チャネルビット	m	3	16	14	15
検出窓幅	Tw	2T/3=0.66T	8T/16=0.5T	8T/14=0.571T	8T/15=0.533T
	ns	16	12	14	13
基本最低周波数	fmîn	3/(32T)=0.09375/T	1/(11T)=0.091/T	4/(8+2+13T)=0.0873/1	15/(8+2+16T)=0.0586/
	MHz	3.87	3.75	2.78	2.42
基本最高周波数	fmax	3/(8T)=0.375/T	1/(3T)=0.33/T	2T:1/4Tw, 3T:1/6Tw	2T:1/4Tw, 3T:1/6Tw
	MHz	15.5	13.6	18 / 12	19.3 / 12.9
データパターン数		7	9	-	-
是短マーク間隔	Tmin M	4T/3=1.33T	3T/2≂1.5T	24T/14=1.714T	24T/15=1.6T
		2Tw	3Tw	3Tw	3Tw
	ns	32	36	42	39
最短スペース間隔	Tmin S	4T/3=1.33T	3T/2=1.5T	16T/14=1.14T	16T/15=1.06T
		2Tw	3Tw	2Tw	2Tw
	ns	32	36	28	26
平均最短間隔	Tmin ave	4T/3=1.33T	3T/2=1.5T	10T/7	4T/3
		2Tw	3Tw	2,5Tw	2.5Tw
	ns	32	36	35	32
長長エッジ間隔	Tmax	16T/3=5.33T	11T/2	104T/14=7.42T	124T/15=8,55T
		WT8	11Tw	13Tw	16Tw
	ns	129	133	180	207
クロック周波数	fc	3/(2T)=1.5/T	2/T	14/(8T)=1.75/T	15/(8Y)=1.875/T
	MHz	61.9	82.5	72.2	77.3

T[ns] = 24

ユーザビット時間をTと等しくすると、従来の(1, 7)変調符号は(2,10)変調符号に比較して検出窓 幅Twは広いが、最短マーク長(最短ギャップ長)は短 く、十分な振幅を取れないという課題があった。一方、 (2,10)変調符号は(1,7)変調符号に比較して 最短マーク長(最短ギャップ長)は長いが、検出窓幅T wは狭いという課題があった。しかし、今回考案された 非対称符号は最短マーク長が従来の(1,7)(2,1 0) に比較して長く、検出窓幅が両変調方式の中間に位 置するものである。しかし、最短ギャップは(1,7) 変調符号に比較して短くなるため、この符号方式では従 来の直接検出波形をスライスする方法では最短非マーク 部では十分な振幅がとれず、エッジ部を検出できないと いう問題が生じる。しかし、表1に示したように最短マ ーク (ギャップ) の平均間隔は従来の変調符号とほぼ同 じ値となっている。特に、8-14非対称符号の最短平 均間隔は従来の変調符号で最も長い(2,10)変調符 50 短マークとギャップが等しい間隔を持つように、本実施

号での値とほぼ等しく、かつ検出窓幅が広くなる。そこ で、記録時には、最短マーク長を短く、最短ギャップ長 を長く記録し、かつ非対称符号を検出できる方策を考案 した。本発明での最短マークと最短ギャップの組み合わ せパターンをディスク面上に記録したときの配列関係を 図1に示す。ここで、n-m変調符号の意味は、nユー ザビットをmチャネルビットットに変換する変調符号で あることを示している。図には従来の変調符号として8 -16変調符号、2-3変調符号(従来よく使用されて いる(1,7)変調符号である)を例にとり、非対称符 号としては、8-15非対称符号、8-14非対称符号 を取り上げて、ユーザビット間隔Tと各チャネルビット 間隔の関係を示した。非対称符号の上部では変調符号を そのまま記録した場合のマーク配列を示し、下部では記 録補正をする前を点線で、補正後を実線で示した。本願 では非対称符号のデータを記録する時にあらかじめ、最

例では、略 0.5 Tw分だけ全てのマーク長を短く記録 しておく。このようにすると、最短マーク、最短ギャッ プの組み合わせでも記録マーク、ギャップがそれぞれ、 2. 5 Twの長さにさることから、従来の (2, 10) 変調符号と同様に最短ギャップで十分に検出できる信号 振幅を確保できることから、安定に前後のエッジを検出 できる。なお、従来の(2,10)変調符号より検出窓 幅が広いためにデータの検出信頼度も向上する。従来の (1,7)変調符号に比較しても、検出窓幅は広くない が、最短マーク、ギャップでの再生信号振幅が大きいた 10 めデータ信号検出の信頼性も優れている。再生するため の第一の方策は、マークの前後のエッジ位置を独立に検 出する方法である。光ディスクのデータ検出において は、トラックに沿って移動する読出しヘッドからトラッ ク1上に記録された情報のアナログ信号を適当な閾値4 により(ハ)に示すうな2値化信号を得、これを処理し て情報の再生が行なわれる。ところで(ロ)のアナログ 信号は、記録・再生各々の条件によって、その振幅、形 状など大きく変動する。しかし、アナログ信号波形が、 その立上り部分および立下り部分のみを調べると、同じ 20 形 (関数) で表わされるという事が解っている。なお、 立ち上がり部分の間の間隔、立下り部分の間隔が記録デ ータでの間隔と等しいことが解っている。すなわち、デ ィジタル化のための閾値とディジタル化信号の関係は、 波形の関数形を反映したものとなり、従って規則的であ るということを利用し、記録情報の前縁及び後縁に対応 した信号をそれぞれ独立に検出し、これら信号の各々か ら独立にタイミング信号の再生および前記タイミング信 号によるデータ再生を行なうことができることが知られ ている。この検出方法を本願に適用することにより前記 問題を解決できる。再生するための第2の方策は、本検 出方法に、パーシャルレスポンス再尤復号方式 (Раг tial Response Maximum Lik elihood:以後PRMLと略記する)を使用する ことである。従来から、磁気ディスクでは記録密度を向 上させるために通信分野の技術を応用したPRMLを用 いていた。パーシャルレスポンス(PR)は、符号間干 渉(隣り合って記録されているビットに対応する再生信 号同士の干渉)を積極的に利用して必要な信号帯域を圧 縮しつつデータの再生を行う方法である。またビタビ復 号方式 (ML) は、いわゆる再尤系列推定方式の1種で あって、再生波形のもつ符号間干渉の規則を有効に利用 し、複数時刻にわたる信号振幅の情報に基づいてデータ 再生を行う。PRMLに関しては、電子情報通信学会論 文誌C-II, vol. J75-C-II, No. 11 p p. 611-623「磁気ディスク用信号処理技術の 最近の展開」三田誠一"に詳細に述べられている。従来 のMRMLではマークとギャップは検出窓幅単位である ため、再生信号の再尤系列の推定は検出窓幅の間隔で判

定を行っているが、本願では最短マークと最短ギャップ 50

の長さが検出窓幅の2.5倍になっているため、従来の PRML信号処理は使えない。そこで、本願では検出窓 幅の0.5倍間隔で再尤系列の推定を行うことにする。 このようにすると、非対称符号の変換後のマーク部の長 さを一律に 0.5倍の検出窓幅分短く記録した再生信号 にPRML処理を施し、データを検出できるようにな

[0006]

【発明の実施の形態】(実施例1)図2は、本発明が適 用される光ディスク装置の概略構成を示すブロック図で ある。本例は、本発明に制限を加えるものではなく、光 ディスク装置は本例のようにコンピュータの記憶媒体と して用いられる場合もあれば、テレビと接続して据え置 き型画像、音声記録再生装置として用いられる場合もあ る。また、携帯ビデオカメラ、携帯音楽再生装置などの 記録再生装置として用いられる場合もある。図2におい て、ホストインターフェイス(ホスト I / F) 2 1 0 7 は、光ディスク装置と図示しないパーソナルコンピュー タなどのホストコンピュータとのデータ転送を制御す る。記録符号化回路2105は、ホストI/F2107 を介してホストコンピュータから受け取った記録すべき ユーザデータをあらかじめ定められた規則に従って非対 象符号に変調し、記録媒体2101に記録できるデータ に変換する (この処理を符号化という)。この変換され た記録媒体に記録できるデータをチャネルデータとい う。符号化されたデータを記録符号化回路2105から NRZ (ノンーリターンーツーゼロ) の形で受け取り、 マーク長補正回路2108において、マーク長に相当す るパルス長さを検出窓幅の半分分だけ短くし、NRZの 形で記録波形発生回路2109に送出する。なお、ここ ではマーク長に相当するパルス長さを短くするが、スペ ース長に相当するパルス長さは短くしない。記録波形発 生回路2109では記録媒体に好適な電圧波形に変換す る。例えば、特開2000-149265号に開示され たように、書き換え型相変化媒体ではマルチパルスを用 いて、記録データパターンに応じて、前記マルチパルス の時間タイミングを制御した波形を作成する。レーザ駆 動回路2110では受け取った記録波形をレーザ駆動の ための電流に変換し、記録再生ヘッド2102に送出 し、半導体レーザの発光光量を制御して記録媒体上にマ ークを書き込む。データの読み出し時には記録再生ヘッ ド2102ではレーザー光を媒体に当て、マークと非マ ークの光の反射強度の差を利用して、反射光によりデー 夕を読み出し、読み出した情報を電気情報に変換する。 再生アンプ10で適度な増幅を行った後、データ再生回 路2106へ出力する。データ再生回路2106は読み 出された信号に対して適切な帯域制限を行った後、この 信号をデジタル信号に変換する。得られたディジタルの データ列は、復号化回路2106において、符号化回路 2105と逆の復調が行われて (この処理を復号化とい

う)、元のデータが復元される。光ディスク装置では、 以上のような手順によってデータの記録再生が行われ る。

(実施例2)第1の再生方式について以下詳細に述べ る。図3は本発明を実施するデータ再生回路のプロック 構成図を示す。10は再生アンプで媒体の記録情報(例 えば、光ディスクに記録されたピット)に従って図4 (イ) に示すようなアナログ信号波形3が出力される。 11は2値化回路で図4(イ)の閾値4とアナログ波形 3とから、図4(口)に示す2値化パルス5を出力す る。20は2値化パルス5の立上り部分に対応したパル 値化パルス5の立下り部分に対応したパルス5-2(図 4 (二)) を取出す回路である。図4に於て5-1は2 値化パルス5の立上りエッジに対応したパルス、5-2 は立下りエッジに対応したパルスであり、これをエッジ パルスまたはデータパルスと呼ぶことにする。21,3 1はそれぞれタイミング再生回路で、例えばPLL(P hase Locked Loop) 回路である。即ち 立上りエッジ検出回路20および立下りエッジ検出回路 30の出力は、それぞれ前記2値化パルス5の立上りタ イミング、立下りタイミングに対応した連続クロックが 再生される。22,32はデータ検出回路で、PLL回 路21、31で再生されたクロックの各タイミングに於 て、データパルスの有無を判定する。すなわち回路22 では立上りエッジパルスから作られたクロックで、立上 りエッジに対応したデータパルスを判定する。回路32 では立下りエッジについて同様な処理をする。40は前 記2つのエッジパルスの処理結果を合成する回路であ る。これは単に各々のクロック信号で取込まれ、出力は 前記クロックのいずれかまたは第3のクロックで取出せ るようにしたレジスタで良い。50は前記のデータ系列 からデータを復調するデコーダでありこれは特に本発明 に特有である必要はない。すなわち従来装置と同様のデ コーダ(復号器)でよい。前記立上りエッジパルス5-1あるいは立下りエッジパルス5-2の処理回路の具体 的一例を図5に示す。12は正、補2出力をもつゲー ト、22,32はフリップフロップ42はオアゲート、 41はレジスタ、43はクロック信号である。以上説明 した図3の実施例によれば、立上り、立下りエッジパル 40 スを別々に処理し、2値化後のデータで合成するため、 ディスク上のマークが短く記録されていても、合成後の データを復号に使用することにより、非対称符号の変調 データの再生が可能となる。

(実施例3)もう一つの再生方法について図6を用いて詳細に述べる。ディスクからの読み出し信号である再生プリアンプ2103の出力を前置等化器301によりアナログ信号のままトランスパーサルフィルタを用いて、後述するクロック作成のためのPLL回路が動作できるような波形にしておく。前置等化器301の出力信号を50

振幅を一定にする自動利得制御回路302に入力し、後 述のビタビ復号が容易にできるように信号振幅が一定に なりようにゲインを制御する。自動利得制御回路302 の出力信号を低域フィルタ303に入力し、雑音と信号 の帯域を制限した後、低域フィルタの出力をA-D変換 器304とPLL回路307に入力する。A-D変換後 のディジタル信号をPR等化器305に入力し、ディジ タルフィルタを用いて、前置等化器の等化特性とディジ タルフィルタの特性を合わせて、所定のパーシャルレス 10 ポンス特性となるようにディジタルフィルタの特性を構 成する。PR等化器305の出力を、ビタビ復号器30 6に入力し、ビタビ復号処理を行う。ビタビ信号処理は 以下の動作を行う。詳細に付いては、江藤、三田、土居 共著、「ディジタルビデオ記録技術」、1990年日刊 工業新聞社刊に述べてある。データの間に相関がある と、理想的は再生波形は限られたパターンしか描かな い。雑音を含む実際の再生波形はこのパターンから外れ ることがあるが、最も近いパターンを選ぶことで、一番 確からしいデータ列を見つける。PR(パーシャルレス ポンス) 方式をつかって等化した波形は符号間干渉によ ってデータの間に相関を持たせているので、ビタビ復号 ができる。PR信号処理後の波形を在る時点nでサンプ リングした信号 (ynとする) はその時点以前のデータ による干渉と、その時刻に再生すべきデータ anによ って雑音を含まない場合には決まる。他の時刻のデータ による干渉状態を状態Snと定義すると、Sが取りうる 値は限られているので、Sn、an, ynとを使って 状態の遷移を表せる。この状態遷移を時間ごとに予測さ れるあらゆる (yn, an) の組み合わせと実際にサン プリングした値を比較して、値がより近い(yn、a n) の組の遷移履歴を残す。各時刻でこの操作を繰り返 すと次第にひとつの履歴のみが残るようになる。この履 歴のan列がもっとも確からしいデータ列となる。この 処理のサンプリングタイミングを決めるのがPLLから 作成したクロックである。

(実施例4)本発明の、マークの部分の最小の長さが3で非マークの部分の最小の長さが2の、ラン長制限符号の構成方法および符号化回路について詳細に説明する。ここでは、マークの部分の最小のピット数は3、非マークの部分の最小のピット数は2となるように作られ、符号のDC成分を抑制する機能を持った符号化器の例を説明する。本符号化回路の出力符号列の0の部分はマーク、1の部分は非マークになるように、構成される。符号化回路2105の詳細ブロック図を図7に示す。信号線4404を通して、ユーザデータはホストI/Fから送られる。次ステートレジスタ4402及びDSVカウンター44060値と信号線4404を通して与えられたユーザデータにより、図10から図15に示すテーブルの

30

変換が行われる。まず、DSVカウンタ4406の値が 正のときは、図10から図15のテーブルAを用いて変 換し、DSVカウンタ4406の値が0または負のとき は、図10から図15の変換テーブルBにしたがって変 換する。図10から図15の左の5列がテーブルAであ り、右の5列がテーブルBである。このテーブルは符号 語を10進で表している。テーブルAとテーブルBは網 掛けの部分は互いに異なり、網掛けでない部分は同じ符 号語で構成されている。テーブルAの網掛けの部分は1 4ビットの符号語中の1の数が0の数に比べて極端に少 ない符号語のみ、すなわち1の数が5以下の符号語のみ で構成されている。変換テーブルBの網掛けの部分は 14ビットの符号語中の1の数が0の数に比べて多い符 号語のみ、すなわち1の数が8以上の符号語のみで構成 されている。したがって、マークの部分を-1,非マー クの部分を1とおいたときの累積値RDS (Runni ng Digital Sum) を網掛けの符号が選択 される場合には制御することができ、低周波成分を制御 できる。次ステートレジスタでは、次の変換で用いるス テートが下記のように設定される。8-14変換器44 01の出力符号列の最後の2ビットが"11"で終わっ ていれば、次ステートレジスタ4402の示すステート は0にセットされる。8-14変換器4401の出力符 号列の最後の2ビットが"01"で終わっていれば、ス テートは1にセットされる。8-14変換器4401の 出力符号列の最後の2ビットが"10"で終わっていれ ば、ステートは2にセットされる。8-14変換器44 01の出力符号列の最後の3ビットが"100"で終わ っていれば、ステートは3にセットされる。8-14変 換器4401の出力符号列の最後の3ピットが"00 0"で終わっていれば、ステートは4にセットされる。 DSVカウンタ4406では、8-14変換器4401 の出力符号列に従い、(1の数)×1+(0の数)× (-1) + 2をDSVカウンタ値に加える。図10から図15に示すテーブルにおいて、前の符号列が"11" で終了するステート0の出力符号列には最初の3ピット が"100"、"110"、"000"で始まり、上記 の制約(1は必ず2ピット以上続き、0は必ず3ピット 以上続く)を満たす符号列が各ユーザデータにユニーク に割り当てられている。前の符号列が"01"で終了す るステート1の出力符号列には最初の3ビットが"10 0"、"110"、"111"で始まり、上記の制約 (1は必ず2ビット以上続き、0は必ず3ビット以上続 く)を満たす符号列が各ユーザデータにユニークに割り 当てられている。前の符号列が"100"で終了するス

テート2の出力符号列には最初の3ビットが"00

0"、"001"、"011"で始まり、上記の制約

(1は必ず2ビット以上続き、0は必ず3ビット以上続

く)を満たす符号列が各ユーザデータにユニークに割り

テート2の出力符号列には最初の3ビットが"00 0"、"001"、"011"、"11"で始まり、上 記の制約(1は必ず2ビット以上続き、0は必ず3ビッ ト以上続く)を満たす符号列が各ユーザデータにユニー クに割り当てられている。前の符号列が"10"で終了 するステート2の出力符号列には最初の3ビットが"0 00"、"001"、"011"で始まり、上記の制約 (1は必ず2ビット以上続き、0は必ず3ビット以上続 く)を満たす符号列が各ユーザデータにユニークに割り 当てられている。このような変換を行うと、前の出力符 号列が"10"で終了し、後の出力符号列が"011" で始まる場合には、上記制約(1は必ず2ビット以上続 き、0は必ず3ビット以上続く)を満たさなくなる。し たがって、接続部変換器4403にて前の出力符号列 が"10"で終了し、後の出力符号列が"011"で始 まる場合には、この5ビットを"11"と"111"に 変換する。接続変換器203は、以下のように動作す る。信号線4431から与えられる8-14変換器44 01の出力符号列の最初の3ビットとレジスタ4432 に貯えられた1ステップ前の出力符号列の最後の2ビッ トを見て、8-14変換器201の出力符号列の最初の 3ピットが"011"でないか、またはレジスタ443 2に貯えられた1ステップ前の出力符号列の最後の2ビ ットが"10"でない場合には、レジスタ4432に貯 えられた1ステップ前の出力符号列を符号器出力とし て、そのまま記録再生アンプ2103に出力する。ま た、8-14変換器4401の出力符号列をそのままレ ジスタ4432に格納する。8-14変換器4401の 出力符号列の最初の3ビットが"011"で、レジスタ 4432に貯えられた1ステップ前の出力符号列の最後 の2ビットが"10"の場合には、レジスタ4432に 貯えられた1ステップ前の出力符号列の最後の2ピット を"10"→"11"に変換して、符号器出力として再 生アンプ2103に出力する。また、8-14変換器4 401の出力符号列の最初の3ビットを"011"→" 111"に変換してレジスタ4432に格納する。元 々、ステート0、"11"で終了した後の符号列には" 111"で始まる符号列は入っていないため、このよう な変換を行うことにより、本符号化回路2105が出力 する符号列は上記の制約を満たす符号語になり、ユーザ データをユニークに変換することができる。このような 変換を行うことにより、本符号化回路2105が出力す る符号列は上記の制約を満たす符号語になり、ユーザデ ータをユニークに変換することができる。また、1ステ ップごとにDSVをチェックし、使用する表を使い分 け、DSVが正のときに使用する表、TableAに は"0"の数が"1"の数+2より多い符号語をなるべ く配置し、DSVが負または0のときに使用する表、T ableBには、"1"の数+2が"0"の数より多い 当てられている。前の符号列が"000"で終了するス 50 符号語をできる限り配置しているので符号語のDC成分

を制御できる。図8は本実施例の復号化回路2106の 詳細ブロック図である。データ再生回路2104によ り、マークの部分は0、非マークの部分は1として再生 されたデータ列が14ビットごとに本復号化回路に入力 される。接続部変換器に信号線4505を通してデータ が入力されると変換器4531は、レジスタ4532に 貯えられた1ステップ前の出力符号列の最後の2ビット が"11"で、信号線4505から入力された符号列の 最初の3ピットが"111"の場合には、レジスタ45 32に貯えられた1ステップ前の出力符号列を最後の2 10 ビットを"10"に変換して、14-8変換器4501 に出力する。信号線4505から入力された符号列を最 初の3ビットを"011"に変換してレジスタ4532 に格納する。入力データの最初の3ビットおよびレジス タ4532の最後の2ビットが"11""111"でな いときは、レジスタ4532の値をそのまま14-8変 換器4501に出力し、入力データの値をそのままレジ スタ4532に格納する。14-8変換器4501で は、8-14変換器4401と逆の変換が行われる。次 ステートレジスタ4502は最初0に初期化されてい る。14ビットのデータが入力されると、図10から図 15に示す表のステートと14ビットデータにしたがっ て、ユーザーデータが信号線4504に出力される。次 ステートレジスタ4502は、符号化回路4405の場 合と同様、14ビットの入力符号列の最後の2ビット が"11"で終わっていれば、0にセットされ、14ビ ットの入力符号列の最後の2ビットが"01"で終わっ ていれば1、"10"で終わっていれば2、14ビット の入力符号列の最後の3ビットが"100"で終わって いれば3、"000"で終わっていれば4にセットされ 30 る。このように動作することにより、ユーザデータが復 号できる。図10から図15のTableAとTabl eBは、重複するものは同じユーザデータに割り当てら れており、各ステートの中にも重複するものがないの で、ユニークに復号できる。またDSVカウンタでは、 1変換毎に実際のDSV値に2だけ多く加算し、DSV カウンタが 0 以下ならば比較的、"1"の数+2が" 0"の数よりも多い符号で構成されているテーブルBか ら、DSVカウンタが0より大ならば、"1"の数+2 が"0"の数よりも少ない符号を満たす符号で比較的構 40 成されるテーブルAから、選択されるので、符号の実際 のDSV値は図9に示されるように14チャネルビット 毎に-2だけ小さくなる線を中心として、制御される。 [0007]

【発明の効果】以上説明した如く本発明によれば、非対

称符号を用いても、情報記録媒体に記録された情報からの読出し信号の前縁、後縁に対応した信号(立上りエッジ、立下りエッジ)を取出し、セルフクロッキング方式 (記録データ自体から再生のためのクロックを再生する方式)でデータを再生する装置に於て前記両信号をそれぞれ独立に処理するため、記録時のマークが非対称符号から決まるマーク長よりも短く、ギャップ部が長く記録されても、それに影響されることなくデータ再生が可能となり、非対称符号を光ディスク装置に適用し、高密度データ記録再生システムを実現することができる。

【図面の簡単な説明】

- 【図1】情報再生の過程を示す説明図。
- 【図2】本発明と従来変調符号の記録マークを説明する図。
- 【図3】本発明の第1の実施例を示すブロック図。
- 【図4】図3の動作を説明する図。
- 【図5】図3の具体的な回路の実施例を示すブロック図。
- 【図6】図6は本発明の実施例3を示すブロック図であ 20 る。
 - 【図7】図7は本発明の実施例4の符号器のブロック図である。
 - 【図8】図8は本発明の実施例4の復号器のブロック図である。
 - 【図9】図9は本発明の実施例4のDSV値を示す概念図である。
 - 【図10】本発明の実施例4の符号変換表の一部であ
 - 【図11】本発明の実施例4の符号変換表の一部である。
 - 【図12】本発明の実施例4の符号変換表の一部である
 - 【図13】本発明の実施例4の符号変換表の一部である。
 - 【図14】本発明の実施例4の符号変換表の一部である。
 - 【図15】本発明の実施例4の符号変換表の一部である。

【符号の説明】

1:トラック、2:記録情報、3:読出アナログ波形、4:閾値、5:ディジタル化出力、10:再生アンプ、11:ディジタル化回路、20,30:エッジ検出回路、21,31:PLL、22,32: データ検出回路、40:データ合成回路、50、51、52:デコーダ。

【図6】

【図7】

【図8】

【図10】

[図11]

7ED	-	4
1471	7	ſ
2	•	•

htr_			Table A			↓		Teble.	B	L
	atateO_			Estotal	Intates				Scinte.	state4
0	8193						1216	7199	8177	817
	B1 85			. 3078	3075	12415	_8195	3075	8176	817
2	8198			3078	3078	12542		3078	8161	816
	8204	B190		3079	3078	12798		6207	6207	920
4	8207	B204	3064	3084	3084	8207		3084	8134	813
8	8210	B20E,	3000	3088	3086	511		2040	2040	204
	2220	8207	_2087	3087	3087	8220		3087	3087	1832
	8222	8193	3096	309\$	3016	8227		3030	8131	813
8	8223	_8270	3100	_2100	3100	8223		2100	3100	123
9	8240	8222	3100	3102	3102	12351		1102	1102	183
	8241,	8223	2103	3103	12285	2040		2103	3103	310
_11	_8248	8240	3120	3120	3120	8248		3120	807B	80
	R252	8241	3121	B121		R952	R241		3121	1245
13	B254	8748	3128	3128		8254		3178	3128	1241
14	8258	B252	3132	3132		8255	8752		3132	
15	8268	B254	.3134		12302	2033		3134		1632
16	_8268	8255	3135		12291	8285	1955	3135	3134	313
17	8281	A288	3168	3168	3168	8291	8288		3135	312
18	_8304	A249	3169	3169		8304	A2RB		8071	807
	8305	8291	3171	3171		8305	8291		1169	1254
20	8312	8304	3164	3184		8312			_317L	1632
21	8316	8305	2185	2185		8318	B3D4		3164	1254
22	B318	A112	3192	1192		6318	2005		3785	1827
23	769	8316	2196	3158	12315	8315	E312		3182	10Z7
24	8384	B318	3198		12234	2019	8316		3196	319
25	8385	8310	3585	3585	3585	_ B385	831B 831B		3198	319
26	8387	8144	2587	3587	3587	8187	8334		7968	786
27	8190	8385	1590	3590	3590	8390			_2587_	1254
28	B381	8387	3591	3591	3591		A385		3590	1268
29	B410	8390	3500	3596	3596	B391	8387		3591	1626
30	8417	8391	3598	1598	3898	8418	R390		3598	1278
31	8410	8416	354B		12337		8391		3588	1826
32	8432	B417	3008	3608	3508	8419	_841B		3599	350
33	8413	8418	3612	3812		8432	8417		7008	1279
36	8440	8432	3814		3012	8433	8419		2812	361.
25	8444	B433	3615	3814		8440	B432		3814	341
36	1537_	B440	3632	_3115. _3432		8444 L	B431		3815	361
37	B577	8444	3633	2631	3832 3833	8448	B440 .		3632	1279
38	8570	8448	3840	3040		8577	8444		3632	303
39	8582	8447	3644			8579	FLAS :		3643	3640
40	A583	2577			123BS	R582	8457		3844	3644
41	858B	B579	3646	3646		8589		3646	3645	3846
42	8590	8582		3841	3841	8582	E578 :		3841	14387
43	8591	8583	3843	3843	3843	ASRO	4582		3843	3843
44	8640	8588	3846	_384BJ	3846	R591	_B583 _:		3846	3846
	down	N. HAL	3847	3847	LZ400 L	8840	858B	647	3847	2847

図11

入力益	⊢_		Table A		_			Table	B	
	stata0	state 1_	state2	StateS.		stateO	state1	btate2	Eatsta3	Stated
45	8841	8590	3852	3852	3852	8641	859O	3852	3852	265
	8843				12481		4591			
.47	864B	8540	3855		12336		2640			
48	8647	8641			3864	8847		3884		
					12512		8643			
				3470			8546			
51	A675				3969					
	ASAB				12073		B547.			
53	8689				12738					
- 54	8696				12480		9671.			
55	8188						B676			
58					14339	8700		3980	3980	
57	A961					8951.	8689.	3982	3982	
5A	8200		9032			8983		40.32		
59		BTD3			14342	68.66.	8700.		4003_	
80	8972				14348	_89A7_				
61				4038		B972	B)	4034.	403B.	
	B97,4.			4054	14384		63			
82		89.60			14432	8975	1916		4055	4085
63	B884				14528	8884		4060		4080
64	8988.			\$6	96	8988,		1.12_		15920
65		8974		97	97	BP9Q		120.	8163	8163
6 8	8091		9	99	98	6221	AR75.	89	7951	7951
	2CJLG (8884	387	112	112	8089	8984	367	8135	8135
BA			96	113	113	9091		<i>T74</i> 2	7742	7742
08			97	120	120	_8C84	8900	7711	7711	7711
70		BQ91.i	124	124,	124	PO95	6991		124	12799
21	B100 ;	9089		126.i	120	R100 !	9CB8	128	126	120
		9091	127.)	127	15201	9102		_127	127	127
73		9094	240	102	192	2103		240		8188
74	9152	9095	225	193	193		9095		8079	8078
75		9100.	384	195	196				7294	7294
76	9155		385	198	198		9102		7231	7231
77	916E	giga!	199	198	199	9158	9103		199	14388
78		91.52	224	224	224	B159	9152.		1023	1023
79	9184	9153.	193	225	225	9184	B153		6398	6398
80	#145 i	B156	227	227	227	AIRS:	9155		227	14389
B1		9158.	192	240	240	9187	A158		6271	8171
	8200 £	B159	241	241.	241		9159			14460
	8208	9184	248	243_	248	9201		248	248	14462
84		9145	252	252	252		9185		252	252
R5		9147	254		12303	1891		754	254	254
RB	.12293		256			12291	9200		255	255
67	12294		195	384		12294		_195	81B4	B184
M	.12283		198	385		12295	9208	188	7967	
	12300		112	387		12300			2044	7967
	12302	9215	390	. 390		12302				2044
			4114			12:307 i	9215	511	511	511

【図12】

【図13】

IV.	1	2

入力質			Table A			_		Table		
	state().	state1	state?	Leteta	atet 4	stateO			state3	
91	12303	12289	391		391	12303	12289			1448
92	_12312	12291	396	396	396		12291		4088	406
93	12318	12294	398	398	398	12316	12294	398	398	1457
84	12318	12295					12295			
95	12319	12300	44B	448	448	12319	12300		4092	
98	12338	12302	449	449	448	12336	12302	4081	4081	409
97	12337	12303	451	451		12337	12300	451	451	
98	12344	12312	454	454	454	12344	12312	454	454	1458
99	12348	12318	455	455		12348	12316			1458
100	12350	12318	480	480	460		12318	4067	4017	
101	12384	12319	481	481	481	12354	12319	481	441	406
102	12365	12318	483	483		12385	12338	483	493	1459
103	12387	12337	496	498	496	12397	12337	496	416	48
104	12/400	12344	497	497	487		12344	487	497	1537
105	12401	12348	504	504		12401	12344	_604	93 / 504	49
106	12408	12350	508	508	12348	12408	12350			50 50
107	12412	12351	709	769	789	12412	12351		7743	
108	12414	12384	771	777	771	12414	12:184		4039	774
109	12480	12385	774	774	774	12480	12385		JES	403 398
110	12481	12387	775		175	12481	12387	775		
	12483	12400	790	780	780	12403	12400	3871	3871	1459
112	12486	12401	782	782	782		12601	782		367 15390
113	12487	12408	783	783		12487	12406	783	783	
114	(2512	12412	2647	792	792		12412	3647	3647	78
115	12513	12414	796	798	786		12414	796		364 1539
116	12515	12415	798	79B	798	17515	12413	798	798	781
117	12528	12480	799		12387	12528	1248D	. 799	799	79
118	12529	12481	2189	897	897	12529	12481	3199	3199	3191
119	12536	12483	899	899		12536	12483	191	868	15420
120	12540	12486	902	602	802	12540	12488	802	902	15422
121	12673	17487	903	903	803	12673	12487	903	903	
122	12675	12512	908	808	908	12675	12512	808	9CB	903 15423
123	12678	12513	910	910		1267B	12513	_910		15423
124	12879	12515	911	911	12401	12679	12515	811	911	911
125	12884	12578	B6D	860	980	12884	12528	_98Q	8150	8100
128	12886	12529	961	951	861	17586	12529	951	901	15473
127	12738	12538	983	983	. P63	12735	12536	963	P63	15472
128	12737	12540	958	988	986	12737	12540	258	968	968
129	12739	12542	907		12408	12739	12542	987	282	
130	12742	12543	932	892	992	12742	12543	992	882	967 15480
131	12768	12073	893	893	993	12768	12073	993	891	
132	12769	12675	295		12483	12759	12875	895	885	893
133	12784	1267B	1008	1008		12784	12678	1008	100a	995
134		12678	1009		12486	12789	12879	1009	1009	1008
135	ă.	12684	1016	1018	12513	12780 . A703	12624	1015	1016	1009

図13

7.力性		<u> </u>	Table A					Table I		
		state1		mtmtm3_	rinted.	utateO.	state1	stata7	state3	atman4
134		12686			12628	1935	_12585	1020	1020	1020
137_		_12627	1537	1537	1537	12543	12887.	7295	7295	7295
138		_12736	1539		1539	1823	_12736	1539	8129	8126
139		L12747	1542	1542	1542	15	12737	1542	8076	8076
		_12738	_1543		1543	1023		1542	1543	15484
	28		1546_	1548	1548	1599	_12742		8070	8070
142		12743	1550	1550		- 30			_1550	15488
143		12765	_1551			31			1551	
144		12709	1560	1560	1580	2044			8067	8087
145.		_12771_	1554	1564	1584				_1584	15487
141	36	12784	1566	158#			J 2784		_1566	1588
147	60	12765	1567	1587			12785		1587	1547
148 .	62	12792	1544	1584	1584	42	12782		7984	7944
149	63	12796	1585	1585		63	_12731		_1585_	15879
150_		_12799	_1592	1592	1592	8447	12799		_1592	15886
15L	97	14337	_1595	1596		12792	14337.		1598	1596
152		L14339	1.50A		12078		14339		_1558	1698
153_	112	14342	_1599		12684	12785	14342		1599	1589
	1,18,		627Q	1793	1793	113	14141		6270	6270
155	120	1434B		1795_		120	_14346		1795	15887
15f	124	_14350	_1790	_1794	1798	124	_14350		_1798	15900
	126		1799	1759			_14351		_1.799	1789
158		14380	_1804	1804	1804	127	_14360		_1804_	15902
159.		_14364_	1808	1B0d		9212	_14384		1604	
160_	193	14100.			12737	12771	_14366		1507	1807
	185	14387	_1814		1816	195	_14387_		_1816,	15903
182.	198	14384	1820		1820	198	_14384		1820	1820
153_		14385	1822		12788	199	14345		1822	1822
<u>104.</u> 105.	224 225	_14392	_1823		14343	12743	14392		1823	1823
166	227	14396	1921	1821	1921	225	_14396		_1921_	15921
107	240	14399	1926	_1923	1923	227	_14398_		1923	1923
168	241	14432	1827		1926	240	14398		1925	1926
169	248	14433	1932		14350	241	14512		1927	1927
170	252	14435			1932	248	14432		_1832	1932
171		14448	1234		14384	252	14435		1934	1934
172	185	14440	_1935		14385	254	14448		1935.	1835
173	3B7[14450	1984	1884		12887	14448		1984	15028
174	350		1985		1985	387	14458		1985	1985
		1443D	1987		14392	390	_14450		1987	1987
175 176	391	14402	1990		14433	391		1860	_1992_	1990
	39R	_14528	_1991_		14448	398	14463	1891	_1891	1991
			_2018	2016		398	_14528		2015	2018
178 -	3719	_1452B	2017		14529	399	14529		_2012.	2017
1Z0	449	_14531	2019		14560	449	14531		2019.	2018
160	_451	.14534	2032	71777	15363	451	14534	2022	2032	2033

図14

入力值			Table /					Tablo	A.	
	state0	state1		state3	state4	stateO	state 1		fatel	reates#
181	454		2033		12289	454	14535		2033	2033
1.R2	455	14580	6145	8145	6145		14560		8399	6389
183	480		_8147		8147		14581		7950	7950
184	481	14563	8150	6150	6150		14563		7943	7943
185	483	14578	8151		B151	483	_14578		8151	15932
186	498	14577	_2740	6158	6156	498	14577		7740	7740
187	497	14584	6158	8158	8158	497	14584		4158	15934
188	504	14588	6159			504	14588		6159	
180	50A	14580	_7710	8168	6168	508	14690		7710	7710
190	771	14591	6172	6172	6172	771	14591		8172	15935
191	774	15381	6174	6174		774	15161		6174	
192	275	15363	8175		15366	775	15383		6175	6175
193	780	15366	7695	6192	6192	780	15168		7695	7695
194	782	15362	6193	_6193	6193	782	15307		6193	16131
195	783	15372	6200	R200	6200	783	15777		8200	18134
198	792	15374	_6204	B204	6204	792	15374		6204	8204
197	796	15375	6206	8208	15372	796	15375		6206	6206
198	798	15384	7292	B240	6240	788	15384		7292	7282
199	799	_15386	6241	6241	6241	789	15388		6241	18135
200	897	15390	6243	6243	6243	897	15390		6243	8243
	899	15791	6256	825B	6256	R99	15381		6258	18140
202	902	_1 5408	6287	6257	6257	902	15408		6257	6257
201	903	_15408	6264	_6284	8264	903	15409	5264	6284	6264
204	908	15418	_6268	6268	15384	808	15418	6268	6268	6268
205	810	15420	_7230,	6336	6338	910	15420	7230.	7230	7230
208	- 911	15422	8337	6337	6337	811	15422	A337	6337	16142
207	960	15423	- 83339	6339	6338	960	15423	6339	8339	6329
208	961	15456	8342	8342	8342	981	15456	5342	6342	8342
_209		15457	- 6343	_8343	15408	983	15457	5343	6343	8343
210	966	15459	8358	_6368	6368	968	15459	8368	6368	10143
21,1		15472	-8359	8369	6369	967	15472	6369	_636 <u>8</u>	6369
	992	.15473	-6371	_6371,	15458	P92	15473	6371	6371	6371
213	893	15480	-8384	_6384	8384	993	15480		_6384	6384
214	995	15484	_6385	_8385,		. 995	15484		4385	6385
215	1008	15486	6392	6392	6392	1009	15486		63921	6392
216	1009	15487	6398	7169	7169		15487		8396	6396
217	1016	15873	7171	7171	7171		_15873		719B	7198
218	1539	15875	7174	71.74	7174		-15875		_7174,	16152
219	1562	15878	_7175	21.75	7175	15(2	15878		7175	7175
220	1543	15879	7180	7180	7180	1547	16879		7180	18156
221	1548	15684	7182	7182	7182	1548	_16884		7182	Z1B2
222	1550	15886	7183	_7183	7183	_1550	-15886		7183	7183
<u>223</u>	1551	15887	7192	2192	7192	_1551		2192	7192	16158
224	1560	15998	7196	7196	_2186}	_1580	_15896		2198	7198
225	_15641	15900	7,198	7198	7188	1564	15800	7198	2198	719R

【図15】

⊠15

力益	├	<u> </u>	Table		!		!	Lable	Я	
	atateQ_	statel	stole2	atateS_	stated,	etate0	statel	state	state3	state4
226	_1565	16902	7218	7216	7216	1588	15902	7218	7716	. 1815
227	1567	_15903	7217	7717	7217	1587	15903	7217	7217	721
228	1584	15920	_7224	7224	7224	1584	15920	7224	7224	722
,22P	1585	15921	J2228	7278	722B	1585	15921	722B	7223	
230	_1592	15928	7264	7284	7264	1592	15828		7204	1625
23[1596	15932	7285	2265	7265	1596	15932	7265		
232	1598	15934	2267	7767	7267	1598	15934	7767	7267	726
232	_1780	15925	2280	7290	7280	1183	15935			120
234	1795	16129	7281	7281	7781	1783	16129		_72B1	728
235	1786	18131	7288	7288	7288	1788	18131	72B8	7288	
238	1799	18134	7681	7081	76B1	1799	16134	7681	7681	1625
237	1804	18135	7533	7683	7683	1804	18135	7683	7683	762
238	1806	LB L4Q	7636	2080	7636	1806	16140	7686	7686	788
239	807	16142	. 7687	76A2	7687	1807	18142	7087	7847	789
240		16143	7692	7692	7982	1816	18143	7692	7692	799
241	1820	16152	7694	7694	2694	1820	16152	7694	7894	769
842	1872	_16156	7704	.7704	7704	1822	16156	7704	7704	270
243	1921	16158	7208	2708	7706	1921	18158	7708	270B	770
244	1923	16159	7728	_777R	7728	1923	18159	277B	772B	172
245	1926	18257	_7729	7729	7729	1976	L#257	7729	7779	772
248	1027	_1825B	_7736	7738	7736	1927	18759		7736	773
247	_193Z	15282	_8336	7938	7838	1917	16252	0336	7936	1626
248	1934	15263	8240	7837 [7937	1934		6240	7937	793
249	1984	18288	8192	7938	7939	1984	15258		7939	793
250	1985	16270	6168	7842	7942	_1965	16270		7942	
261	1987	18271	_0156	_794R	7948	1987		B154	7948	794
252	1990	16320	7169	7960	7960	1 990	18320		7980	796
253	2018	16321	1793	8004	BO64	2018	16321		8064	ana.
254	2017	16323	792	8065	8065	2017	18191	782	4065	806
255	2032	18327	997	8128	812B	2032	16327	897	A128	812

フロントページの続き

(72)発明者 峯邑 浩行

東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内

Fターム(参考) 5D044 BC06 CC04 GL10 GL12 GL31 GL32 5D090 AA01 BB04 CC01 CC05 DD03

EE13 FF11 FF42