集成电路原理与设计

宋爽 2024 年 10 月

Exercise 4

Table 4.1

		14010 7.1		
		Typical Parameter Value		
Parameter Symbol	Parameter Description	n-Channel	p-Channel	Units
V_{T0}	Threshold	0.7	-0.8	V
	voltage(V _{BS} =0)			
K	Transconductance	134	50	μ Α /V²
	parameter(in			
	saturation)			
γ	Bulk threshold	0.45	0.4	$V^{1/2}$
	parameter			
λ	Channel length	0.1	0.2	V-1
	modulation parameter			
$2 \varphi_F $	Surface potential at	0.9	0.8	V
	strong inversion			

 $[*]K = \mu C_{OX}$

4-1 For the circuit in Fig.4.1(a) assume that there are no capacitance parasitics associated with M1. The voltage source v_{in} is a small-signal value, whereas voltage source V_{DC} has a dc value of 3 V. Design M1 to achieve the asymptotic frequency response shown in Fig.4.1(b).

4-2 Fig.4.2 illustrates a source-degenerated current source. M1 with W/L=2u/1u, I_D =10 μ A,.

- (a) Using Table 4.1 model parameters, calculate the output resistance at the given current bias.
- (b) Calculate the minimum output voltage required to keep the device in saturation.

4-3 Calculate the output resistance and the minimum output voltage, while maintaining all devices in saturation, for the circuits shown in Fig.4.3. Assume that i_{OUT} is actually $10\mu\text{A}$, γ =0. Use Table 4.1 for device model information.

Fig .4.3

4-4 A reference circuit is shown in Fig.4.4, assume that $(W/L)_1=(W/L)_2=(W/L)_3=4$, $(W/L)_4=1$, please derive a symbolic expression of V_{REF} . (已知各管处于饱和区且各管阈值电压为 V_{Ti})

- 4-5 As the circuits shown in Fig.4.5, I_{REF} =0.3mA and γ =0. Using the model parameters in Table 4.1,
- (a)Calculate the voltage V_b when $V_X=V_Y$;
- (b) If V_b is 100mV smaller than the value in (a), calculate the deviation of I_{out} from 300 μ A.

Fig.4.5

4-6 Design M3 and M4 of Fig.4.6(a) so that the output characteristics are identical to the circuit shown in Fig.4.6(b). It is desired that i_{OUT} is ideally 10uA.

Fig.4.6