МАТЕМАТИКА В ШКОЛАХ УКРАЇНИ

ТРИЛИСНИК У ХХІ СТОЛІТТІ

І. А. Кушнір, заслужений учитель України, м. Київ

Трикутник ABC вписаний у коло з центром у точці O. Точка I — інцентр, центр вписаного кола. Упевнений, що в Давній Греції була відома залежність $IW_1 = BW_1 = CW_1$, де W_1 , W_2 — середини дуг BC, AC (puc. 1).

Тільки зараз цю залежність я запропонував піднести до рівня теореми і назвав її «теорема трилисника». Іноді її називають «теоремою тризуба».

Разом із назвою було запропоновано нове доведення.

Побудуємо точку W_2 . Трикутники W_1IW_2 і W_1CW_2 рівні, а отже, теорема доведена.

Відрізки IW_1 , BW_1 , CW_1 назвемо листами трилисника і доведемо їхні властивості.

Властивість 1

 $CW_1^{\ 2} = 2R \cdot M_1 W_1$, де M_1 — середина BC, R — радіус описаного кола.

Доведення випливає з прямокутного трикутника CDW_1 (W_1D — діаметр).

Властивість 2

$$CW_1^2 = AW_1 \cdot W_1 L_1$$
.

Справді, трикутники CW_1L_1 і CW_1A подібні, BC — радіус описаного кола ($puc.\ 2$):

$$\frac{\overrightarrow{CW_1}}{W_1L_1} = \frac{AW_1}{CW_1}.$$

Рис. 2

Властивість 3

 $IW_1 \cdot AI = 2Rr$, де r — радіус вписаного кола.

Доведення

Очевидно, що $AI = \frac{r}{\sin{\frac{A}{2}}}$ (із трикутника

 AIK_{3}) (puc. 3, $\partial u s. c. 22$).

 $IW_1 = CW_1 = 2R \cdot \sin \frac{A}{2}$ (із трикутника CDW_1).

Отже,
$$IW_1 \cdot AI = 2R \cdot \sin \frac{A}{2} \cdot \frac{r}{\sin \frac{A}{2}} = 2Rr$$
.

Теорема трилисника зустрічатиметься неодноразово, а з уведенням центра I_a — центра зовнівписаного кола, що дотикається до сторони BC, і теореми Мансіона ($IW_1 = W_1I_a$) ($puc.\ 4,\ \partial us.\ c.\ 22$).

Трилисник перетворюється на «чотирилисник»:

$$IW_{1} = BW_{1} = CW_{1} = W_{1}I_{a}$$
.

Сьогодні отримане «сенсаційне» повідомлення — три формули Ейлера:

$$OI^2 = R^2 - 2Rr, \tag{1}$$

$$OI_a^2 = R^2 + 2Rr_a,$$
 (2)

$$II_a^2 = 4R(r_a - r) \tag{3}$$

доводяться простіше завдяки формулам листків трилисника.

Переконайтесь у цьому самостійно!

Доведемо формулу Ейлера $OI^2=R^2-2Rr$ за допомогою першої властивості листка трилисника і залежності $IW_1=CW_1$.

У трикутнику OIW_1 за теоремою косинусів (puc. 5):

$$OI^2 = R^2 - 2R \cdot IW_1 \cos \varphi + IW_1^2 \ (\varphi = \angle OW_1 I).$$

Ураховуючи, що

$$IW_{_{1}}=CW_{_{1}} \ \text{i} \ CW_{_{1}}{^{2}}=2R\cdot M_{_{1}}W_{_{1}},$$

маємо:

$$OI^2 = R^2 - 2R(IW_1 \cos \varphi - CW_1^2) =$$

= $R^2 - 2R(FW_1 - M_1W_1) = R^2 - 2Rr$.

Доведемо формулу (1) за допомогою третьюї властивості $AI \cdot IW_1 = 2Rr$.

Із трикутника OIW_1 (рис. 5) маємо:

$$OI^2 = OW_1^2 + IW_1^2 - 2OW_1 \cdot IW_1 \cos \varphi$$

або

$$OI^2 = R^2 - IW_1(R\cos\varphi - IW).$$

Оскільки $2R \cdot \cos \varphi = AW_1$ (із трикутника ADW_1), то

$$OI^2 = R^2 - 2IW_1(AW_1 - IW_1) =$$

= $R^2 - IW_1 \cdot AI = R^2 - 2Rr$.

Доведемо другу формулу Ейлера

$$OI_a^2 = R^2 + 2Rr_a$$
.

Розглянемо властивість, аналогічну до третьої:

$$AI_a \cdot I_a W_1 = 2R \cdot r_a$$
.

За теоремою Мансіона $IW_1 = I_a W_1$ (puc. 6), отже,

$$I_a W_1 = CW_1 = 2R \sin \frac{A}{2}$$
.

Оскільки
$$AI_a=rac{2R}{\sinrac{A}{2}},$$
 то
$$AI_a\cdot I_aW_1=2Rr_a, \eqno(1^0)$$

Перейдемо до доведення формули (2):

$$OI_a^2 = R^2 + 2Rr_a$$
.

Із трикутника OW_1I_a :

$$O{I_a}^2 = R^2 + I_a W_1^2 + 2R \cdot I_a W_1 \cdot \cos \varphi =$$

$$=R^{2}+I_{a}W_{1}\left(\underbrace{I_{a}W_{1}+AW_{1}}_{AI_{a}}\right)=R^{2}+2Rr_{a}.$$

Доведемо формулу (3):

$$II_a^2 = 4R(r_a - r).$$

Рис. 6

За теоремою Мансіона:

$$II_a = 2IW_1$$
.

Оскільки
$$IW_1=CW_1$$
 і $CW_1^{\,2}=2R\cdot M_1W_1$, а $M_1W_1=rac{r_a-r}{2}$ (доведіть!), то:

$$I{I_a}^2 = 4I{W_1}^2$$
, and $I{I_a}^2 = 4R(r_a - r)$.

Авторські думки

Геометрія — головний предмет у школі, оскільки створений для тренування мозку.

* * *

Дошка, крейда і... серце — це урок!

Основа уроку — навчання задачею.

I. Кушнір