みんなのデータ構造 (Pat Morin) exercises

37zigen

2020年9月4日

1	スケ	ープコ	` —	トオ	K
_	/\/			•	

- 1.1
- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- 1.7
- 1.8

 $\operatorname{size}(\mathbf{u}) \leq (2/3)\operatorname{size}(\mathbf{u}.\operatorname{parent})$ () より、根の高さ h と頂点数 n は $(3/2)^h \leq n$ の関係にあるから、 $h \leq \log_{3/2} n$ となる.木の高さが $O(\log n)$ だから add と remove は $O(\log n)$ で実行できる.

add または remove を実行後, が満たされていない頂点 v を根とする部分 木を完全二分木に構成する計算量を解析する. $\mathrm{size}(\mathrm{v.left}) > (2/3)\mathrm{size}(\mathrm{v})$ と 仮定しても一般性を失わない.

$$\mathrm{size}(v.\mathrm{left}) - \mathrm{size}(v.\mathrm{right}) = 2\mathrm{size}(v.\mathrm{left}) - \mathrm{size}(v) + 1 > (1/3)\mathrm{size}(v)$$

の直後 $size(v.left) - size(v.right) \le 1$ だからその後 (1/3)size(v) 回以上 add または remove が行われている. よって rebuild の計算量は均し $O(\log n)$.

- 1.9
- 1.10

面白そうだが、どうすればよいか分からない。

2 整列アルゴリズム
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
高さ h の二分木の葉の数は完全二分木のとき最大で 2^h 個. $2^h \geq k \Leftrightarrow h \geq \log_2 k$.
2.12
2.13
2.14
2.15
2.16
2.17
要素 a と b $(a < b)$ が比較される確率は $2/(b-a+1)$. $d=b-a+1$ 毎に和を取ると $\sum_{d=2}^n (2/d)(n-d+1) = 2(n+1)H_n - 4n$. 要素 a がピボット a と比較される確率は $a \in \{0,n-1\}$ のとき $1/2$, そうで
ないとき $2/3$. 和は $(2/3)n-1/3$.

答えは n>2 のとき $2(n+1)H_n-4n+(2/3)n-1/3=2(n+1)H_n-4n+(2/3)H_n-4n$

(10/3)n - 1/3. n = 1 のとき 0.