TP4 L'amplificateur opérationnel (bases)

But de la manipulation :

- Utiliser l'amplificateur opérationnel dans des circuits d'amplification de base.
- Connaître le branchage standard des amplificateurs opérationnels.
- Utiliser les montages de base de la contre-réaction.
- Calcul exact du gain d'un amplificateur et des tensions présentes dans les circuits à contreréaction.
- Utiliser l'amplificateur opérationnel avec une alimentation mono polaire et utiliser des condensateurs de couplage.

Préparation:

1)

- Que vaut U_{R1} et I_{R1} ?
- Que vaut U_{R2} et I_{R2} ?
- Que vaut le potentiel au point A?
- Que vaut U_{R3} et I_{R3} ?
- Que vaut U_{R4} et I_{R4} ?
- Que vaut U sortie?

• On a :
$$U_{R1} = U_{entrée} - V^{-}$$
 Or $V^{-} = V^{+} = 0 V$ et $U_{entrée} = 1 V$

$$= > U_{R1} = U_{entrée} = 1 V.$$

$$\begin{array}{ll} \mbox{D'après la loi d'Ohm on} & \mbox{$I_{R1} = U_{R1}/R1$} \\ ==> & \mbox{$I_{R1} = 0,1$ mA.} \end{array}$$

• D'après la deuxième règle du AOP : $i^- = i^+ = 0$ A. ==> $I_{R1} = I_{R2} = 0,1$ mA.

Donc $U_{R2} = -I_{R2} R2 = 1 V$.

•
$$U_{R2} = 0 V - U_A = - U_A = -1 V.$$

$$\bullet \quad U_{R3} = 0 \ V - U_A \qquad \qquad ==> \qquad U_{R3} = 1 \ V.$$

$$\begin{array}{lll} I_{R3} = U_{R3} \ / \ R3 & ==> & I_{R3} = \ 0.1 \ mA. \\ \bullet & I_{R4} = I_{R2} + I_{R3} & ==> & I_{R4} = 0.2 \ mA. \\ & U_{R4} = I_{R4} \ R4 & ==> & U_{R4} = 2 \ V. \end{array}$$

$$U_{\text{sortie}} = -(U_{\text{R4}} + U_{\text{R2}})$$
 ==> $U_{\text{sortie}} = -3 \text{ V}.$

- Que vaut I_{R1} , I_{R2} et I_{R3} ?
- Que vaut I_{Rf} et U_{Rf} ?
- Que vaut Uout?

• On a :
$$U_{R1} = U_{entrée} - V^{-}$$

Or
$$V^- = V^+ = 0 V$$
 et $U_{\text{entrée}} = 1 V$.

$$U_{R1} = U_{entrée} = 1 V.$$

D'où
$$I_{R1} = 0.1 \text{ mA}.$$

De même
$$U_{R2} = 2 V$$
.

et
$$U_{R3} = 3 \text{ V}$$
.

Donc
$$I_{R2} = 0.2 \text{ mA}$$
. et $I_{R3} = 0.3 \text{ mA}$.

$$I_{R3} = 0.3 \text{ mA}.$$

• On a :
$$I_{Rf} = I_{R1} + I_{R2} + I_{R3}$$

$$==> I_{Rf} = 0.6 \text{ mA}.$$

$$U_{Rf} = I_{Rf} Rf$$

$$==> U_{Rf} = 6 V.$$

•
$$U_{out} = - U_{Rf}$$

$$==> I_{Rf} = -6 \text{ V}.$$

3)

- Que vaut Uout , U_A et U_B ?
- Que vaut U_{R1} et I_{R1}?
- Que vaut U_{R2} et I_{R2}?
- Que vaut U sortie ? (Kirchhoff)

$$\begin{array}{lll} \bullet & U_{R1} = V1 - U_{B} & ==> U_{R1} = 1 \ V. \\ & I_{R1} = U_{R1} \ / \ R1 & ==> I_{R1} = 0,1 \ mA. \end{array}$$

•
$$I_{R1} = I_{R2} = 0,1 \text{ mA}.$$
 ==> $U_{R2} = I_{R2} R2 = 1 V.$

•
$$U_{sortie} = U_B - U_{R2}$$
. $\Longrightarrow U_{sorti} = 1 \text{ V}$.

Manipulation:

Brochage des amplificateurs utilisés :

• En utilisant les feuilles de caractéristiques, donnez le brochage d'un $\mu A741$ et d'un TL072 ?

μΑ741

- 1) Ajustement du décalage.
- 2) Entée inverseuse.
- 3) Entée non inverseuse.
- 4) Vcc.
- 5) Ajustement du décalage.
- 6) Sortie.
- 7) + Vcc.
- 8) Non branchée.

TL072

- 1) Sortie 1.
- 2) Entée inverseuse1.
- 3) Entée non inverseuse1.
- 4) Vcc.
- 5) Entée non inverseuse2.
- 6) Entée inverseuse2.
- 7) Sortie2.
- 8) + Vcc.

N.B:

Pour les graphiques concernant les différents montages cf. les figures sur les pièces jointes. 1- Le montage non inverseur :

• Quelle est la valeur de la résistance R3 qui permet d'obtenir un gain de 4?

 $R3 = 3 K\Omega$.

• Quelle est l'impédance d'entrée de ce montage ?

L'impédance d'entrée de ce montage est de 20 K Ω .

Test	U entrée	U sortie	Uf	Av
#1	2 V c-à-c (sinus), 1kHz	21 V c-à-c	2 V c-à-c	10,5
#2	1 V C.C	11 V	+1 V	11
#3	-1 V C.C	-11 V	-1 V	11

2- Le montage non inverseur :

• Quelle est la valeur de la résistance R2 qui permet d'obtenir un gain de -5 ?

 $R2 = 100 \Omega$.

• Quelle est l'impédance d'entrée de ce montage ?

L'impédance d'entrée de ce montage est de $20 \text{ K}\Omega$.

		Test	U entrée	U sortie	Uf	Av
--	--	------	----------	----------	----	----

#1	2 V c-à-c (sinus), 1kHz	20 V c-à-c	0 V	-10
#2	1 V C.C	-10 V	0 V	-10
#3	-1 V C.C	10 V	0 V	-10

3- Le montage mélangeur (ou additionneur) :

Test	U entrée1	U entrée2	U sortie
#1	1 V c-à-c (sinus), 1kHz	1 V c-à-c (triangle), 10kHz	Forme d'onde
#2	1 V c-à-c (sinus), 1kHz	1 V C.C	Forme d'onde
#3	2 V C.C	1 V C.C	-2,8 V
#4	-2 V C.C	+ 2 V C.C	0,16 V

4- Le montage suiveur :

Test	U entrée	U sortie	Av	
#1	2 V c-à-c (sinus), 1kHz	2 V c-à-c	1	
#2	1 V C.C	1 V	1	

5- Montage mono polaire:

U entrée	UA		UB		UC		UD	
1 V c-à-c (sinus), 1kHz	CA	CC	CA	CC	CA	CC	CA	CC
	0,95 V c-à-c	4,48 V	0,95 V c-à-c	4,5 V	4,8 V c-à-c	4,51 V	4,8 V c-à-c	0 V

[•] Expliquez le fonctionnement de ce circuit.