Assignment is at the bottom!

```
In [1]: | from sklearn.linear_model import LogisticRegression
        import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline
        import numpy as np
        from pylab import rcParams
        rcParams['figure.figsize'] = 20, 10
        from sklearn.linear_model import LogisticRegression as Model
In [2]: # creating dummy dataset with 10 datapoints of 0s and 1s to set up classification
        # will treat 0s and 1s as probabilities
        y = np.concatenate([np.zeros(10), np.ones(10)])
        x = np.linspace(0, 10, len(y))
In [3]: plt.scatter(x, y, c=y)
Out[3]: <matplotlib.collections.PathCollection at 0x1e38dd46308>
         0.8
         0.6
         0.4
         0.2
In [4]: model = LogisticRegression()
In [5]: model.fit(x.reshape(-1, 1),y)
Out[5]: LogisticRegression()
```

```
In [6]: plt.scatter(x,y, c=y)
plt.plot(x, model.predict_proba(x.reshape(-1, 1)))
```



```
In [7]: # only concerned with probablity of orange line (above)
plt.scatter(x,y, c=y)
plt.plot(x, model.predict_proba(x.reshape(-1, 1))[:,1])
```

Out[7]: [<matplotlib.lines.Line2D at 0x1e38de0c588>]


```
In [8]: b, b0 = model.coef_, model.intercept_
         model.coef_, model.intercept_
 Out[8]: (array([[1.46709085]]), array([-7.33542562]))
 In [9]: # shows only half of the signoid
         plt.plot(x, 1/(1+np.exp(-x)))
 Out[9]: [<matplotlib.lines.Line2D at 0x1e38e151108>]
          1.0
          0.9
          0.8
          0.7
          0.6
          0.5
In [10]: b
Out[10]: array([[1.46709085]])
In [11]: plt.plot(x, 1/(1+np.exp(-(b[0]*x +b0))))
Out[11]: [<matplotlib.lines.Line2D at 0x1e38e745808>]
          1.0
```

```
In [12]: # 8:50 of Lecture
         from mpl toolkits.mplot3d import Axes3D # noga: F401 unused import
         import matplotlib.pyplot as plt
         from matplotlib import cm
         from matplotlib.ticker import LinearLocator, FormatStrFormatter
         import numpy as np
         fig = plt.figure()
         ax = fig.gca(projection='3d')
         # Make data.
         X = np.arange(-10, 10, 0.25)
         Y = np.arange(-10, 10, 0.25)
         X, Y = np.meshgrid(X, Y) # these are matrixes
         R = np.sqrt(X^{**2} + Y^{**2})
         \# Z = 1/(1+np.exp(-(b[0]*X +b[0]*Y +b0))) \# less steep
         \# Z = 1/(1+np.exp(-(b[0]*X +.25*b[0]*Y +b0))) \# more steep
         Z = 1/(1+np.exp(-(b[0]*X +b[0]*Y +.2*b0+2))) #moves the intercept
         surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                                 linewidth=0, antialiased=False)
```



```
In [13]: X
Out[13]: array([[-10. , -9.75, -9.5 , ...,
                                                 9.5,
                                                        9.75],
                                          9.25,
                                          9.25,
                                                 9.5,
              [-10., -9.75, -9.5, ...,
                                                        9.75],
              [-10., -9.75]
                             -9.5 , ...,
                                          9.25,
                                                 9.5,
                                                        9.75],
              [-10., -9.75, -9.5, ...,
                                                 9.5 ,
                                          9.25,
                                                        9.75],
              [-10., -9.75, -9.5, ...,
                                          9.25,
                                                 9.5,
                                                        9.75],
              [-10., -9.75, -9.5, ...,
                                          9.25,
                                                 9.5,
                                                       9.75]])
```

```
In [14]: Y
Out[14]: array([[-10. , -10. , -10. , ..., -10. , -10. , -10. ],
              [-9.75, -9.75, -9.75, ..., -9.75, -9.75,
                                                        -9.75],
              [ -9.5 , -9.5 , -9.5 , ..., -9.5 , -9.5 ,
                                                        -9.5],
                                                  9.25,
              9.25,
                        9.25,
                               9.25, ...,
                                           9.25,
                                                        9.25],
              [ 9.5,
                              9.5 , ...,
                       9.5,
                                           9.5,
                                                  9.5,
                                                        9.5],
              [ 9.75,
                        9.75,
                              9.75, ...,
                                           9.75,
                                                  9.75,
                                                         9.75]])
```

What if the data doesn't really fit this pattern?

```
In [15]: y = np.concatenate([np.zeros(10), np.ones(10), np.zeros(10)])
         x = np.linspace(0, 10, len(y))
```

```
In [16]: plt.scatter(x,y, c=y)
```

Out[16]: <matplotlib.collections.PathCollection at 0x1e38ed43fc8>


```
In [17]: model.fit(x.reshape(-1, 1),y)
```

Out[17]: LogisticRegression()

```
In [19]: model1 = LogisticRegression()
    model1.fit(x[:15].reshape(-1, 1),y[:15])
Out[19]: LogisticRegression()
In [20]: model2 = LogisticRegression()
    model2.fit(x[15:].reshape(-1, 1),y[15:])
Out[20]: LogisticRegression()
```

```
In [21]: plt.scatter(x,y, c=y)
  plt.plot(x, model1.predict_proba(x.reshape(-1, 1))[:,1] * model2.predict_proba(x.
```

Out[21]: [<matplotlib.lines.Line2D at 0x1e38ecfab88>]

xt[transform_columns] = enc.transform(golden[transform_columns])

```
In [26]: df.salary.unique()
Out[26]: array([' <=50K', ' >50K'], dtype=object)
In [27]: golden.salary.replace(' <=50K.', ' <=50K').replace(' >50K.', ' >50K').unique()
Out[27]: array([' <=50K', ' >50K'], dtype=object)
In [28]: model.fit(preprocessing.scale(x.drop('salary', axis=1)), x.salary)
Out[28]: LogisticRegression()
In [29]: pred = model.predict(preprocessing.scale(x.drop('salary', axis=1)))
          pred_test = model.predict(preprocessing.scale(xt.drop('salary', axis=1)))
In [30]: |x.head()
Out[30]:
                                             education-
                                                       marital-
             age workclass
                            fnlwgt education
                                                               occupation relationship race sex
                                                        status
                                                  num
                             77516
           0
              39
                        7.0
                                         9.0
                                                    13
                                                           4.0
                                                                      1.0
                                                                                 1.0
                                                                                      4.0
                                                                                           1.0
           1
              50
                        6.0
                             83311
                                         9.0
                                                    13
                                                           2.0
                                                                      4.0
                                                                                 0.0
                                                                                      4.0
                                                                                           1.0
              38
                        4.0 215646
                                        11.0
                                                    9
                                                           0.0
                                                                      6.0
                                                                                 1.0
                                                                                      4.0
                                                                                           1.0
           2
              53
                        4.0 234721
                                         1.0
                                                    7
                                                           2.0
                                                                      6.0
                                                                                      2.0
                                                                                           1.0
           3
                                                                                 0.0
              28
                        4.0 338409
                                         9.0
                                                    13
                                                           2.0
                                                                     10.0
                                                                                 5.0
                                                                                      2.0
                                                                                           0.0
In [31]: from sklearn.metrics import (
              accuracy_score,
              classification_report,
              confusion_matrix, auc, roc_curve
In [32]: | accuracy_score(x.salary, pred)
Out[32]: 0.8250360861152913
In [33]: confusion_matrix(x.salary, pred)
Out[33]: array([[23300,
                           1420],
                 [ 4277, 3564]], dtype=int64)
```

```
In [34]: |print(classification_report(x.salary, pred))
                       precision
                                    recall f1-score
                                                       support
                  0.0
                            0.84
                                      0.94
                                                0.89
                                                         24720
                            0.72
                                      0.45
                  1.0
                                                0.56
                                                          7841
             accuracy
                                                0.83
                                                         32561
                            0.78
                                      0.70
                                                0.72
                                                         32561
            macro avg
         weighted avg
                                                0.81
                            0.81
                                      0.83
                                                         32561
In [35]: print(classification_report(xt.salary, pred_test))
                                    recall f1-score
                       precision
                                                       support
                  0.0
                            0.85
                                      0.94
                                                0.89
                                                         12435
                            0.70
                                      0.45
                                                0.55
                  1.0
                                                          3846
                                                0.82
                                                         16281
             accuracy
                            0.77
                                      0.69
                                                0.72
                                                         16281
            macro avg
         weighted avg
                            0.81
                                      0.82
                                                0.81
                                                         16281
```

Assignment

- 1. Use your own dataset (create a train and a test set) and build 2 models: Logistic Regression and Decision Tree (shallow (2-3)). Compare the test results.
- 2. Repeat 1. but let the Decision Tree be much deeper to allow over-fitting. Compare the two models' test results again, does the Logistic Regression have an improvement due to a lower variance?

```
In [36]: insurance = pd.read_csv('../data/insurance.csv')
insurance.head()
```

Out[36]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

```
In [37]: insurance.dtypes
Out[37]: age
                         int64
                        object
          sex
          bmi
                       float64
          children
                         int64
          smoker
                        object
          region
                        object
          charges
                       float64
          dtype: object
In [38]: from sklearn import preprocessing
          enc = preprocessing.OrdinalEncoder()
In [39]: |transform_columns = ['sex', 'smoker', 'region']
In [40]: x = insurance.copy()
          x[transform columns] = enc.fit transform(insurance[transform columns])
Out[40]:
                age sex
                            bmi children smoker region
                                                           charges
              0
                     0.0 27.900
                                      0
                                            1.0
                                                   3.0 16884.92400
                 19
              1
                 18
                     1.0 33.770
                                      1
                                            0.0
                                                   2.0
                                                        1725.55230
                     1.0 33.000
              2
                 28
                                      3
                                            0.0
                                                   2.0
                                                        4449.46200
              3
                 33
                     1.0 22.705
                                      0
                                            0.0
                                                   1.0 21984.47061
                 32
                     1.0 28.880
                                      0
                                            0.0
                                                   1.0
                                                        3866.85520
                     1.0 30.970
                                                   1.0 10600.54830
           1333
                 50
                                      3
                                            0.0
                     0.0 31.920
                                            0.0
                                                        2205.98080
           1334
                 18
                                      0
                                                   0.0
                                                        1629.83350
           1335
                 18
                    0.0 36.850
                                      0
                                            0.0
                                                   2.0
           1336
                 21
                     0.0 25.800
                                      0
                                            0.0
                                                   3.0
                                                        2007.94500
           1337
                 61
                     0.0 29.070
                                      0
                                            1.0
                                                   1.0 29141.36030
          1338 rows × 7 columns
In [41]: from sklearn.model selection import train test split
          x_train, x_test, y_train, y_test = train_test_split(x.drop('smoker', axis=1), x.s
In [42]: from sklearn.linear model import LogisticRegression
          model = LogisticRegression()
In [43]: model.fit(preprocessing.scale(x train), y train)
          model.coef_, model.intercept_
Out[43]: (array([[-1.07041457, 0.10937251, -1.66413989, -0.22858889, 0.08491027,
                     3.89658144]]),
           array([-3.44537705]))
```

```
In [44]: | pred = model.predict(preprocessing.scale(x_train))
         pred test = model.predict(preprocessing.scale(x test))
In [45]: from sklearn.metrics import (
             accuracy score,
             classification_report,
             confusion matrix, auc, roc curve
         )
In [46]: | accuracy_score(y_train, pred)
Out[46]: 0.9601196410767697
In [47]: |accuracy_score(y_test, pred_test)
Out[47]: 0.9522388059701492
In [48]: confusion_matrix(y_test, pred_test)
Out[48]: array([[258,
                [ 7, 61]], dtype=int64)
In [49]: | print(classification_report(y_test, pred_test))
                        precision
                                     recall f1-score
                                                        support
                             0.97
                                       0.97
                                                 0.97
                  0.0
                                                            267
                  1.0
                             0.87
                                       0.90
                                                 0.88
                                                             68
                                                 0.95
                                                            335
             accuracy
                                                 0.93
            macro avg
                            0.92
                                       0.93
                                                            335
         weighted avg
                            0.95
                                       0.95
                                                 0.95
                                                            335
```

Decision Tree at 2 levels

```
In [50]: from sklearn.tree import DecisionTreeClassifier
In [51]: model = DecisionTreeClassifier(criterion='entropy', max_depth=2)
    model.fit(x_train, y_train)
Out[51]: DecisionTreeClassifier(criterion='entropy', max_depth=2)
In [52]: model.tree_.node_count
Out[52]: 7
In [53]: pred = model.predict(x_train)
    pred_test = model.predict(x_test)
```

```
In [54]: | accuracy_score(y_train, pred)
Out[54]: 0.9292123629112662
In [55]: |accuracy_score(y_test, pred_test)
Out[55]: 0.9104477611940298
In [56]: print(classification_report(y_test, pred_test))
                       precision
                                    recall f1-score
                                                      support
                            1.00
                                     0.89
                                               0.94
                  0.0
                                                          267
                           0.69
                                     1.00
                                               0.82
                  1.0
                                                           68
                                               0.91
                                                          335
             accuracy
                         0.85 0.94
0.94 0.91
            macro avg
                                               0.88
                                                          335
                                               0.92
         weighted avg
                           0.94
                                     0.91
                                                          335
```

Comparison

The logistic model is more accurate, however, the two level decision tree successful predicts true positives and true negatives but poorly predicts false positives.

2. Repeat 1. but let the Decision Tree be much deeper to allow over-fitting. Compare the two models' test results again, does the Logistic Regression have an improvement due to a lower variance?

```
In [57]: model = DecisionTreeClassifier(criterion='entropy', max_depth=10)
    model.fit(x_train, y_train)

Out[57]: DecisionTreeClassifier(criterion='entropy', max_depth=10)

In [58]: model.tree_.node_count

Out[58]: 61

In [59]: pred = model.predict(x_train)
    pred_test = model.predict(x_test)

In [60]: accuracy_score(y_train, pred)

Out[60]: 0.9920239282153539

In [61]: accuracy_score(y_test, pred_test)

Out[61]: 0.9582089552238806
```

In [62]: print(classification_report(y_test, pred_test))

	precision	recall	f1-score	support
0.0	0.97	0.98	0.97	267
1.0	0.92	0.87	0.89	68
accuracy			0.96	335
macro avg	0.94	0.92	0.93	335
weighted avg	0.96	0.96	0.96	335

Comparison

The 10 level decision tree performs better that prior logistic and two level decision tree, with higher accuracy, precision, and recall. However, the deeper model likely over-fits and may not perform well on new data.