Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Лабораторная работа № 4 "Динамические системы"

по дисциплине Практическая линейная алгебра

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Перегудин Алексей Алексеевич

B этой лабораторной мы будем работать c непрерывными $(t \in \mathbb{R})$ и дискретными $(k \in \mathbb{Z})$ линейными динамическими системами второго порядка вида

$$\begin{cases} \dot{x}_1(t) = a_1 x_1(t) + a_2 x_2(t), \\ \dot{x}_2(t) = a_3 x_1(t) + a_4 x_2(t) \end{cases}$$
 (1)

$$\begin{cases} x_1(k+1) = a_1 x_1(k) + a_2 x_2(k), \\ x_2(k+1) = a_3 x_1(k) + a_4 x_2(k) \end{cases}$$
 (2)

в более компактной форме:

$$\dot{x}(t) = Ax(t),\tag{3}$$

$$x(k+1) = Ax(k), (4)$$

где $x(\cdot) \in \mathbb{R}^2$, $\mathbb{R}^{2 \times 2}$.

1 задание. Придумать непрерывное.

Зададимся двумя неколлинеарными векторами $v_1, v_2 \in \mathbb{R}^2$, не лежащими на координатных осях:

$$v_1 = \begin{pmatrix} 1\\4 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{5}$$

Придумаем непрерывные динамические системы:

1.1

Система ассимптотически устойчива, при этом если $x(0) = v_1$, то $x(t) \in Span\{v_1\}$, а если $x(0) = v_2$, то $x(t) \in Span\{v_2\}$ при всех $t \geq 0$.

Обратимся к уравнению $\dot{x}(t)=Ax(t), \ x(0)=x_0$ и к его решению: $x(t)=e^{At}x_0.$

- 1. Система асимптотически устойчива, значит выполнено $\lim_{t \to \infty} x(t) = 0$.
- 2. Выберем матрицу с двумя совпадающими **отрицательными** собственными числами, например:

$$A = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \tag{6}$$

Собственные числа $\lambda_1=\lambda_2=-1,$ собственные векторы $w_1=\begin{pmatrix} a\\0\end{pmatrix},\,w_2=\begin{pmatrix} 0\\b\end{pmatrix},\,a,b\in\mathbb{R}.$

1.2

Cистема неустойчива, при этом у матрицы A не существует двух неколлинеарных собственных векторов.

$$A = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix} \tag{7}$$

Собственные числа: $\lambda_1=4,\ \lambda_2=4,$ собственные векторы соответственно $w_1=\binom{a}{0},\ w_2=\binom{b}{0},\ a,b\in\mathbb{R}.$

1.3

Система неустойчива, при этом если $x(0) = v_1$, то $\lim_{t \to \infty} x(t) = 0$.

$$A = \begin{pmatrix} 0 & -1 \\ -16 & 0 \end{pmatrix} \tag{8}$$

Собственные числа: $\lambda_1=4,\ \lambda_2=-4,$ собственные векторы соответственно $w_1=\begin{pmatrix} -1\\4 \end{pmatrix},\ w_2=\begin{pmatrix} 1\\4 \end{pmatrix}.$

1.4

Система асимптотически устойчива, при этом матрица $A \in \mathbb{R}^2$ имеет комплексные собственные вектора вида $v_1 \pm v_2 i \in \mathbb{C}^2$.

Сначала запишем собственные векторы искомой матрицы:

$$w_1 = \begin{pmatrix} 1+2i\\ 4+3i \end{pmatrix} \qquad w_2 = \begin{pmatrix} 1-2i\\ 4-3i \end{pmatrix}$$
 (9)

Будем искать матрицу записав ее спектральное разложение $A = V \cdot D \cdot V^{-1}$, где V – матрица, составленная из собственных векторов матрицы A, D – матрица, на главной диагонали которой расположены собственные числа.

$$A = \begin{pmatrix} 1+2i & 1-2i \\ 4+3i & 4-3i \end{pmatrix} \begin{pmatrix} -1+i & 0 \\ 0 & -1-i \end{pmatrix} \begin{pmatrix} 1+2i & 1-2i \\ 4+3i & 4-3i \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix}$$
(10)

Искомая матрица:

$$A = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} \tag{11}$$

1.5

Cистема неустойчива, при этом матрица A имеет такие же слбственные вектора, как в предыдущем пункте.

Аналогично будем искать матрицу записав ее спектральное разложение $A=V\cdot D\cdot V^{-1}$, где V — матрица, составленная из собственных векторов матрицы $A,\,D$ — матрица, на главной диагонали которой расположены собственные числа.

$$A = \begin{pmatrix} 1+2i & 1-2i \\ 4+3i & 4-3i \end{pmatrix} \begin{pmatrix} 1+i & 0 \\ 0 & 1-i \end{pmatrix} \begin{pmatrix} 1+2i & 1-2i \\ 4+3i & 4-3i \end{pmatrix}^{-1} = \begin{pmatrix} 3 & -1 \\ 5 & -1 \end{pmatrix}$$
(12)

Искомая матрица:

$$A = \begin{pmatrix} 3 & -1 \\ 5 & -1 \end{pmatrix} \tag{13}$$

1.6

Система не является асимптотически устойчивой, но не является и неустойчивой, при этом матрица A имеет собственные векторы такие же, как в пункте 4.

Вновь будем искать матрицу записав ее спектральное разложение $A=V\cdot D\cdot V^{-1}$, где V – матрица, составленная из собственных векторов матрицы $A,\,D$ – матрица, на главной диагонали которой расположены собственные числа.

$$A = \begin{pmatrix} 1+2i & 1-2i \\ 4+3i & 4-3i \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} 1+2i & 1-2i \\ 4+3i & 4-3i \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix}$$
(14)

$$A = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix} \tag{15}$$

2 задание. Замоделировать непрерывное.

2.1

Система ассимптотически устойчива, при этом если $x(0) = v_1$, то $x(t) \in Span\{v_1\}$, а если $x(0) = v_2$, то $x(t) \in Span\{v_2\}$ при всех $t \ge 0$.

$$A = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \tag{16}$$

Puc. 1. Моделирование при $x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.

Puc. 2. Моделирование при $x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$.

Puc. 3. Моделирование при $x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$.

Рис. 4. Моделирование 1 при
$$1: x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \ 2: x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}, \ 3: x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}.$$

На приведенных выше графиках проиллюстрирована асимптотически устойчивая система, ведь $\lim_{t\to\infty}x_1(t)=0$ и $\lim_{t\to\infty}x_2(t)=0$.

2.2

Cистема неустойчива, при этом у матрицы A не существует двух неколлинеарных собственных векторов.

$$A = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix} \tag{17}$$

Рис. 5. Моделирование 2 при
$$1: x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \ 2: x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}, \ 3: x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}.$$

Заметим, что система является неустойчивой, так как существуют такие начальные условия, что $\lim_{t\to\infty}x_1(t)=\infty$ и $\lim_{t\to\infty}x_2(t)=\infty$.

2.3

Cистема неустойчива, при этом если $x(0)=v_1,\ mo\lim_{t\to\infty}x(t)=0.$

$$A = \begin{pmatrix} 0 & -1 \\ -16 & 0 \end{pmatrix} \tag{18}$$

Рис. 6. Моделирование 3 при $1: x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \ 2: x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}, \ 3: x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}.$

Puc. 7. Моделирование 3 при $x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.

Система неустойчива в общем случае, но при $x(0) = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \ \lim_{t \to \infty} x(t) = 0$

2.4

Система асимптотически устойчива, при этом матрица $A\in\mathbb{R}^2$ имеет комплексные собственные вектора вида $v_1\pm v_2i\in\mathbb{C}^2.$

$$A = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} \tag{19}$$

Рис. 8. Моделирование 4 при
$$1: x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \ 2: x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}, \ 3: x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}.$$

Рис. 9. Моделирование 4, только зависимости x(t), при $1: x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \ 2: x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}, \ 3: x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}.$

Полученные графики подтверждают асимптотическую устойчивость системы, $\lim_{t\to\infty}x_1(t)=0$ и $\lim_{t\to\infty}x_2(t)=0$.

2.5

Система неустойчива, при этом матрица А имеет такие же собственные вектора, как в предыдущем пункте.

$$A = \begin{pmatrix} 3 & -1 \\ 5 & -1 \end{pmatrix} \tag{20}$$

Рис. 10. Моделирование 5 при $1: x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, 2: x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}, 3: x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}.$

 $Puc.\ 11.\ Modeлирование\ 5,\ moлько\ зависимости\ <math>x(t),$ $npu\ 1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

Заметим, что система действительно является неустойчивой, так как кривые $x_1(t),\,x_2(t)$ стремятся к $-\infty$ для заданных начальных условий.

2.6

Система не является асимптотически устойчивой, но не является и неустойчивой, при этом матрица A имеет собственные векторы такие же, как в пункте 4.

$$A = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix} \tag{21}$$

Рис. 12. Моделирование 6 при 1:
$$x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
, 2: $x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$, 3: $x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$.

 $Puc.\ 13.\ Modenuposahue\ 6,\ moлько зависимости <math>x(t),$ $npu\ 1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

 $Puc.\ 14.\ Modeлирование\ 6,\ moлько зависимости <math>x_2(x_1),$ $npu\ 1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

Система является не является ни асимптотически устойчивой, ни неустойчивой. Во-первых, функции $x_1(t), x_2(t)$ не стремятся ни к нулю, ни к бесконечности при $t \to \infty$, а траектории $x_2(x_1)$ замкнуты, значит система обладает просто устойчивостью.

3 задание. Придумать дискретное.

Придумать дискретные динамические системы, обладающие следующими собственными числами (при этом ни одна из придуманных матриц А не должна быть диагональной:

3.1 $\lambda_{1,2} = -1$

$$A = \begin{pmatrix} -1 & 1\\ 0 & -1 \end{pmatrix} \tag{22}$$

 $Puc.\ 15.\ Изображение\ собственных\ чисел\ w_{1,2}\ (\lambda_{1,2})$ на комплексной плоскости.

3.2
$$\lambda_{1,2} = -\frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}}i$$

$$\left(\lambda + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) \left(\lambda + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) = 0$$

$$\lambda \left(\lambda + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) + \frac{1}{\sqrt{2}}\left(\lambda + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) - \frac{1}{\sqrt{2}}i\left(\lambda + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) = 0$$

$$\lambda^2 + \frac{1}{\sqrt{2}}\lambda + \frac{1}{\sqrt{2}}i\lambda + \lambda\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}i - \frac{1}{\sqrt{2}}i\lambda - \frac{1}{\sqrt{2}}i\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\frac{1}{\sqrt{2}}i = 0$$

$$(23)$$

$$\lambda^2 + \frac{2\lambda}{\sqrt{2}} + 1 = 0 \tag{26}$$

$$\left(\lambda^2 + \frac{2\lambda}{\sqrt{2}} + \frac{1}{2}\right) + \frac{1}{2} = 0 \tag{27}$$

$$\left(\lambda + \frac{1}{\sqrt{2}}\right)^2 + \frac{1}{2} = 0\tag{28}$$

Искомая матрица:

$$A = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\ 1 & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
 (29)

 $Puc.\ 16.\ Изображение\ coбственных\ чисел\ w_{1,2}\ (\lambda_{1,2})\ на\ комплексной\ плоскости.$

3.3 $\lambda_{1,2} = \pm i$

$$(\lambda + i)(\lambda - i) = 0 \tag{30}$$

$$\lambda^2 + 1 = 0 \tag{31}$$

Пусть искомая матрица имеет вид:

$$A = \begin{pmatrix} a & c \\ 1 & b \end{pmatrix} \tag{32}$$

Тогда характеристический полином:

$$(a - \lambda)(b - \lambda) - c = 0 \tag{33}$$

$$\lambda^{2} - \lambda(a+b) + ab - c = \lambda^{2} + 1 = 0$$
(34)

$$\begin{cases} a = -b \\ ab - c = 1 \end{cases} \rightarrow \begin{cases} a = -b \\ -a^2 - c = 1 \end{cases}$$
 (35)

Пусть a=1, тогда $b=-1,\, c=-2.$

$$A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} \tag{36}$$

 $Puc.\ 17.\ Изображение\ собственных\ чисел\ w_{1,2}\ (\lambda_{1,2})\ на\ комплексной\ плоскости.$

3.4
$$\lambda_{1,2} = \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}}i$$

$$\left(\lambda - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)\left(\lambda - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) = 0\tag{37}$$

$$\lambda \left(\lambda - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i \right) - \frac{1}{\sqrt{2}} \left(\lambda - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i \right) - \frac{1}{\sqrt{2}} i \left(\lambda - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i \right) = 0 \tag{38}$$

$$\lambda^2 - \frac{\lambda}{\sqrt{2}} + \frac{\lambda}{\sqrt{2}}i - \frac{\lambda}{\sqrt{2}}i + \frac{1}{2}i - \frac{\lambda}{2}i - \frac{\lambda}{\sqrt{2}}i + \frac{1}{2}i + \frac{1}{2}i = 0 \tag{39}$$

$$\lambda^2 - \frac{2\lambda}{\sqrt{2}} + 1 = 0 \tag{40}$$

$$\left(\lambda^2 - \frac{2\lambda}{\sqrt{2}} + \frac{1}{2}\right) + \frac{1}{2} = 0\tag{41}$$

$$\left(\lambda - \frac{1}{\sqrt{2}}\right)^2 + \frac{1}{2} = 0\tag{42}$$

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -1 & \frac{1}{\sqrt{2}} \end{pmatrix} \tag{43}$$

 $Puc.\ 18.\ Изображение\ собственных\ чисел\ w_{1,2}\ (\lambda_{1,2})\ на\ комплексной\ плоскости.$

3.5 $\lambda_{1,2} = 1$

$$(\lambda - 1)^2 = \lambda^2 - 2\lambda + 1 = 0 \tag{44}$$

Пусть искомая матрица имеет вид:

$$A = \begin{pmatrix} a & c \\ 1 & b \end{pmatrix} \tag{45}$$

Тогда характеристический полином:

$$(a - \lambda)(b - \lambda) - c = 0 \tag{46}$$

$$\lambda^{2} - \lambda(a+b) + ab - c = \lambda^{2} - 2\lambda + 1 = 0 \tag{47}$$

$$\begin{cases} a+b=2\\ ab-c=1 \end{cases} \tag{48}$$

Пусть $a = \frac{1}{2}, b = \frac{3}{2}$, тогда $c = -\frac{1}{4}$.

$$A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} \\ 1 & \frac{3}{2} \end{pmatrix} \tag{49}$$

 $Puc.\ 19.\ Изображение\ coбственных\ чисел\ w_{1,2}\ (\lambda_{1,2})\ на\ комплексной\ плоскости.$

Для следующих пунктов выберем константы: $c=\frac{1}{2},\ d=2.$

3.6
$$\lambda_{1,2} = -\frac{1}{2}$$

$$A = \begin{pmatrix} -\frac{1}{2} & 1\\ 0 & -\frac{1}{2} \end{pmatrix} \tag{50}$$

 $Puc.\ 20.\ Изображение\ coбственных\ чисел\ w_{1,2}\ (\lambda_{1,2})\ на\ комплексной\ плоскости.$

3.7 $\lambda_{1,2} = \pm \frac{i}{2}$

$$\left(\lambda + \frac{i}{2}\right)\left(\lambda - \frac{i}{2}\right) = 0\tag{51}$$

$$\lambda^2 + \frac{1}{4} = 0 \tag{52}$$

Пусть искомая матрица имеет вид:

$$A = \begin{pmatrix} a & c \\ 1 & b \end{pmatrix} \tag{53}$$

Тогда характеристический полином:

$$(a - \lambda)(b - \lambda) - c = 0 \tag{54}$$

$$\lambda^{2} - \lambda(a+b) + ab - c = \lambda^{2} + \frac{1}{4} = 0$$
 (55)

$$\begin{cases} a = -b \\ ab - c = \frac{1}{4} \end{cases} \to \begin{cases} a = -b \\ -a^2 - c = \frac{1}{4} \end{cases}$$
 (56)

Пусть a=1, тогда $b=-1,\, c=-\frac{5}{4}.$

$$A = \begin{pmatrix} 1 & -\frac{5}{4} \\ 1 & -1 \end{pmatrix} \tag{57}$$

 $Puc.\ 21.\ Изображение\ собственных\ чисел\ w_{1,2}\ (\lambda_{1,2})\ на\ комплексной\ плоскости.$

3.8 $\lambda_{1,2} = \frac{1}{2}$

$$\left(\lambda - \frac{1}{2}\right)^2 = \lambda^2 - \lambda + \frac{1}{4} = 0 \tag{58}$$

Пусть искомая матрица имеет вид:

$$A = \begin{pmatrix} a & c \\ 1 & b \end{pmatrix} \tag{59}$$

Тогда характеристический полином:

$$(a - \lambda)(b - \lambda) - c = 0 \tag{60}$$

$$\lambda^{2} - \lambda(a+b) + ab - c = \lambda^{2} - \lambda + \frac{1}{4} = 0$$
 (61)

$$\begin{cases} a+b=1\\ ab-c=\frac{1}{4} \end{cases}$$
 (62)

Пусть $a=\frac{1}{4},\,b=\frac{3}{4},$ тогда $c=-\frac{1}{16}.$

$$A = \begin{pmatrix} \frac{1}{4} & -\frac{1}{16} \\ 1 & \frac{3}{4} \end{pmatrix} \tag{63}$$

 $Puc.\ 22.\ Изображение\ собственных\ чисел\ w_{1,2}\ (\lambda_{1,2})\ на\ комплексной\ плоскости.$

3.9 $\lambda_{1,2} = -2$

 $Puc.\ 23.\ Изображение\ собственных\ чисел\ w_{1,2}\ (\lambda_{1,2})$ на комплексной плоскости.

3.10 $\lambda_{1,2} = \pm 2i$

$$(\lambda + 2i)(\lambda - 2i) = 0 \tag{65}$$

$$\lambda^2 + 4 = 0 \tag{66}$$

Пусть искомая матрица имеет вид:

$$A = \begin{pmatrix} a & c \\ 1 & b \end{pmatrix} \tag{67}$$

Тогда характеристический полином:

$$(a - \lambda)(b - \lambda) - c = 0 \tag{68}$$

$$\lambda^{2} - \lambda(a+b) + ab - c = \lambda^{2} + 4 = 0$$
 (69)

$$\begin{cases} a = -b \\ ab - c = 4 \end{cases} \rightarrow \begin{cases} a = -b \\ -a^2 - c = 4 \end{cases}$$
 (70)

Пусть a=1, тогда $b=-1,\, c=-5.$

$$A = \begin{pmatrix} 1 & -5 \\ 1 & -1 \end{pmatrix} \tag{71}$$

 $Puc.\ 24.\ Изображение\ coбственных\ чисел\ w_{1,2}\ (\lambda_{1,2})\ на\ комплексной\ плоскости.$

3.11 $\lambda_{1,2} = 2$

 $Puc.\ 25.\$ Изображение собственных чисел $w_{1,2}\ (\lambda_{1,2})$ на комплексной плоскости.

3.12 $\lambda_{1,2} = 0$

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \tag{73}$$

 $Puc.\ 26.\ Изображение\ собственных\ чисел\ w_{1,2}\ (\lambda_{1,2})\ на\ комплексной\ плоскости.$

4 задание. Замоделировать дискретное.

4.1 $\lambda_{1,2} = -1$

$$A = \begin{pmatrix} -1 & 1\\ 0 & -1 \end{pmatrix} \tag{74}$$

 $Puc.\ 27.\ Moделирование\ 1,\ графики зависимости <math>x_1\left(k
ight),\ x_2\left(k
ight)$ $npu\ 1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

4.2
$$\lambda_{1,2} = -\frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}}i$$

$$A = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{2} \\ 1 & -\frac{1}{\sqrt{2}} \end{pmatrix} \tag{75}$$

 $Puc.\ 28.\ Modeлирование\ 2,\ графики зависимости <math>x_1\left(k
ight),\ x_2\left(k
ight)$ $npu\ 1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

4.3 $\lambda_{1,2} = \pm i$

$$A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} \tag{76}$$

 $Puc.\ 29.\ Modenupoвaниe\ 3,$ графики зависимости $x_1\left(k\right),\ x_2\left(k\right)$ при $1:\ x_0=\begin{pmatrix}1\\4\end{pmatrix},\ 2:\ x_0=\begin{pmatrix}-2\\7\end{pmatrix},\ 3:\ x_0=\begin{pmatrix}9\\3\end{pmatrix}.$

4.4
$$\lambda_{1,2} = \frac{1}{\sqrt{2}} \pm \frac{1}{\sqrt{2}}i$$

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -1 & \frac{1}{\sqrt{2}} \end{pmatrix} \tag{77}$$

Рис. 30. Моделирование 4, графики зависимости $x_1\left(k\right),\,x_2\left(k\right)$ при $1:\,x_0=\begin{pmatrix}1\\4\end{pmatrix},\,2:\,x_0=\begin{pmatrix}-2\\7\end{pmatrix},\,3:\,x_0=\begin{pmatrix}9\\3\end{pmatrix}.$

4.5 $\lambda_{1,2} = 1$

$$A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} \\ 1 & \frac{3}{2} \end{pmatrix} \tag{78}$$

Puc.~31.~Moделирование~5, графики зависимости $x_1\left(k\right),~x_2\left(k\right)$ при $1:~x_0=inom{1}{4},~2:~x_0=inom{-2}{7},~3:~x_0=inom{9}{3}.$

4.6
$$\lambda_{1,2} = -\frac{1}{2}$$

$$A = \begin{pmatrix} -\frac{1}{2} & 1\\ 0 & -\frac{1}{2} \end{pmatrix} \tag{79}$$

 $Puc.\ 32.\ Modeлирование\ 6,\ графики зависимости <math>x_1\left(k
ight),\ x_2\left(k
ight)$ $npu\ 1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

4.7
$$\lambda_{1,2} = \pm \frac{i}{2}$$

$$A = \begin{pmatrix} 1 & -\frac{5}{4} \\ 1 & -1 \end{pmatrix} \tag{80}$$

Рис. 33. Моделирование 7, графики зависимости $x_1\left(k\right), x_2\left(k\right)$ при $1: x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, 2: x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}, 3: x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}.$

4.8
$$\lambda_{1,2} = \frac{1}{2}$$

$$A = \begin{pmatrix} \frac{1}{4} & -\frac{1}{16} \\ 1 & \frac{3}{4} \end{pmatrix} \tag{81}$$

 $Puc.\ 34.\ Modeлирование\ 8,\ графики зависимости <math>x_1\left(k
ight),\ x_2\left(k
ight)$ $npu\ 1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

4.9 $\lambda_{1,2} = -2$

$$A = \begin{pmatrix} -2 & 1\\ 0 & -2 \end{pmatrix} \tag{82}$$

 $Puc.\ 35.\ Modeлирование\ 9,\ графики зависимости <math>x_1\left(k\right),\ x_2\left(k\right)$ $npu\ 1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

4.10 $\lambda_{1,2} = \pm 2i$

$$A = \begin{pmatrix} 1 & -5 \\ 1 & -1 \end{pmatrix} \tag{83}$$

 $Puc.\ 36.\ Modeлированиe\ 10,\ графики зависимости <math>x_1\left(k\right),\ x_2\left(k\right)$ $npu\ 1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

4.11 $\lambda_{1,2} = 2$

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \tag{84}$$

Рис. 37. Моделирование 11, графики зависимости $x_1\left(k\right)$, $x_2\left(k\right)$ при $1: x_0 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \ 2: x_0 = \begin{pmatrix} -2 \\ 7 \end{pmatrix}, \ 3: x_0 = \begin{pmatrix} 9 \\ 3 \end{pmatrix}.$

4.12 $\lambda_{1,2} = 0$

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \tag{85}$$

 $Puc.\ 38.\ Modeлированиe\ 12$, графики зависимости $x_1\left(k\right)$, $x_2\left(k\right)$ при $1:\ x_0=inom{1}{4},\ 2:\ x_0=inom{-2}{7},\ 3:\ x_0=inom{9}{3}.$

Графики иллюстрируют соответствие условия асимптотической устойчивости $|\lambda|<1$ и полученных характеристик движения систем (например, под номерами $6,\,7,\,8,\,12$).

5 задание. Осциллятор?

Рассмотрим непрерывную систему вида

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = ax_1 + bx_2 \end{cases} \tag{86}$$

Запишем соответствующую данной системе матрицу А:

$$A = \begin{pmatrix} 0 & 1\\ a & b \end{pmatrix} \tag{87}$$

И характеристический полином:

$$\lambda \left(\lambda - b \right) - a = 0 \tag{88}$$

$$\lambda^2 - b\lambda - a = 0 \tag{89}$$

$$\lambda_{1,2} = \frac{b}{2} \pm \frac{\sqrt{4a - b^2}i}{2} \tag{90}$$

Проанализируем устойчивость и характер движения данной системы при

5.1 a < 0, b = 0

Соотвествующий характеристический полином:

$$\lambda^2 - a = 0 \tag{91}$$

Собственные значения: $\lambda_{1,2} = \pm \sqrt{ai}$, система устойчива, так как $Re(\lambda_{1,2}) = 0$.

Физическая система: математический маятник без трения.

5.2 a < 0, b < 0

Система будем неустойчивой.

$$\lambda_{1,2} = \frac{b}{2} \pm \frac{\sqrt{4a - b^2}i}{2} = \frac{b}{2} \pm \frac{\sqrt{-(4|a| + b^2)}i}{2} = \frac{b}{2} \mp \frac{\sqrt{4|a| + b^2}}{2}$$
(92)

Отсюда $Re\left(\lambda_{2}\right)=rac{b}{2}+rac{\sqrt{4|a|+b^{2}}}{2}>0$

Физическая система: обратный маятник без трения.

5.3 a > 0, b = 0

Соотвествующий характеристический полином:

$$\lambda^2 - a = 0 \tag{93}$$

Собственные значения: $\lambda_{1,2}=\pm\sqrt{a},$ система неустойчива, так как хотя бы один из $\lambda>0.$

Физическая система: обратный маятник без трения.

5.4 a > 0, b < 0

Система будем асимптотически устойчивой, так как $Re(\lambda_{1,2})=rac{b}{2}<0.$ Физическая система: математический маятник с трением.

Для визуализации был написан код на языке *Python*. Код расположен на **GitHub**.