Principle 5:

Use <u>catalysts</u>, not <u>stoichiometric reagents</u>: Minimize waste by using <u>catalytic reactions</u>. <u>Catalysts</u> are used in small amounts and can carry out a single reaction many times. They are preferable to stoichiometric reagents, which are used in excess and work only once.

Green Chemistry - Catalysis

Catalysis is described as *homogeneous* when the catalyst is soluble in the reaction medium and *heterogeneous* when the catalyst exists in a phase distinctly different from the reaction medium.

- > Catalysts increases the rates of reactions, by lowering their activation energy, thus providing a new pathway.
- ➤ Catalysts can select one out of several possible pathways thus improving the utilization of raw materials, energy and avoiding the formation of undesired by-products.
- > Only small quantities of catalysts are needed for a reaction.
- > Catalysts can be recycled for repeated use.
- ➤ In this way catalysis gives an important contribution to the development of sustainable technologies and environmentally friendly processes.

Green Chemistry - Catalysis

Turnover number (TON)

Turnover number (or) catalyst productivity is defined as the number of moles products produced with one mole of catalyst

Turnover frequency (TOF)

Turnover frequency (or) catalyst activity is defined as the number of moles of product produced per mole of the catalyst per unit time.

ADVANTAGES OF CATALYSIS

The Jones Reagent (Stoichiometric)

3 PhCH(OH)CH₃ + 2 CrO₃ + 3 H₂SO₄
$$\longrightarrow$$
 3 PhCOCH₃ + Cr₂(SO₄)₃ + 6 H₂O

Atom Economy = $(360/860) \times 100 = 42\%$

Byproduct = Cr₂(SO₄)₃ undesirable

A Catalytic Route

PhCH(OH)CH₃ +
$$1/2O_2$$
 $\xrightarrow{\text{Catalyst}}$ PhCOCH₃ + H₂O

Atom Economy = $(120/138) \times 100 = 87\%$

Byproduct = H₂O innocuous

Principle 6:

Avoid chemical derivatives: Avoid using blocking or protecting groups or any temporary modifications if possible. Derivatives use additional reagents and generate waste.

Brevetoxin B

Principle 7:

Maximize <u>atom economy</u>: Design syntheses so that the final product contains the maximum proportion of the starting materials. There should be few, if any, wasted atoms.

E-Factor

E-factor defined by the mass ratio of waste to desired product.

$$E
-factor = \frac{\text{Kilogram of byproducts}}{\text{Kilogram of products}}$$

The E-Factor

Industry segment	Product tonnage	kg byproduct / kg product
Bulk chemicals	10 ⁴ - 10 ⁶	<1-5
Fine chemicals	10 ² - 10 ⁴	5 -> 50
Pharmaceuticals	10 - 10 ³	25 - > 100

WHERE DOES ALL THIS WASTE ORIGINATE?

1. STOICHIOMETRIC BRONSTED ACIDS & BASES

- Aromatic nitrations with H₂SO₄ / HNO₃
- Acid promoted rearrangements, e.g. Beckmann (H₂SO₄)
- Base promoted condensations, e.g. Aldol (NaOH, NaOMe)

2. STOICHIOMETRIC LEWIS ACIDS

- Friedel-Crafts acylation (AlCl₃, ZnCl₂, BF₃)

3. STOICHIOMETRIC OXIDANTS & REDUCTANTS

- Na₂Cr₂O₇, KMnO₄, MnO₂
- LiAlH₄, NaBH₄, Zn, Fe/HCl

4. HALOGENATION & HALOGEN REPLACEMENT

- Nucleophilic substitutions

5. SOLVENT LOSSES

- Air emissions & aqueous effluent

Atom economy

The concept of Atom Economy was developed by Trost of Stanford University (US), for which he received the Presidential Green Chemistry Challenge Award in 1998.

It is a method of expressing how efficiently a particular reaction makes use of the reactant atoms.

Calculation of Atom Economy

% Yield =
$$\frac{\text{Actual yield of product}}{\text{Theoretical yield of product}} \times 100$$

Inherent Atom Economy

Some Atom Economic Reactions Some Atom Un-Economic Reactions

Rearrangement Substitution

Addition Elimination

Diels-Alder Wittig

Other concerted reactions Grignard

Note that atom economy can be poor even when chemical yield is near 100%

Examples of Atom Efficient Reactions

Hydrogenation:

$$Ar$$
 + H_2 catalyst

100% atom efficient

OH

Carbonylation:

Ar CO₂H

100% atom efficient

Oxidation:

87% atom efficient

Atom Economy

Oxidation of benzene to maleic anhydride, an important intermediate chemical

benzene oxygen (6 x 12) + (6 x 1) = 78 = 144
$$0 + 2CO_2 + 2H_2O$$

maleic anhydride (4 x 12) + (3 x 16) = 96

Atom economy =
$$\frac{96}{(78+144)}$$
 x 100 % = 43 %

Principle 8:

Use safer <u>solvents</u> and <u>reaction</u> conditions: Avoid using solvents, <u>separation</u> agents, or other auxiliary chemicals. If these chemicals are necessary, use innocuous chemicals. If a solvent is necessary, water is a good medium as well as certain eco-friendly solvents that do not contribute to <u>smog</u> formation or destroy the ozone.

Disadvantage of Organic Solvents

- * Toxicity
- * High volatality
- * Fire hazard
- * Cost

Solvent Selection Guide

Preferred	Usable	Undesirable	
Water Acetone Ethanol 2-propanol Ethyl acetate Isopropyl acetate Methanol Metyl ethyl ketone 1-Butanol	Cyclohexane Heptane Toluene Methylcyclohexane	Pentane Hexane Di-isopropyl ether Diethyl ether Dichloromethane Dichloroethane Chloroform Dimethyl formamide N-Methylpyrrolidinone Pyridine	MORE HAZAR
t-Butanol	Aylenes Dimethyl sulphoxide Acetic acid Ethylene glycol		R D O U S

Green Chem., 2008, 10, 31-36

Solvent Replacement Table

Dichloromethane (chromatography)

Benzene

Undesirable solvents	Better Alternative
Pentane	Heptane
Hexane(s)	Heptane
Di-isopropyl ether or diethyl ether	2-MeTHF or tert-butyl methyl ether
Dioxane or dimethoxyethane	2-MeTHF or tert-butyl methyl ether
Pyridine	Triethyl amine (base)
Dichloromethane (extractions)	EtOAc, MTBE, toluene, 2-MeTHF

EtOAc/heptane

Toluene

Non-organic Alternative Green Reaction Medium

- i) Water
- ii) Supercritical Fluids
- iii) Ionic Liquids
- iv) Solid Surface
- v) Neat

Ionic liquids (IL's)

• Typically consist of organic cation (often ammonium or phosphonium salt) and inorganic anion

1. Ethylmethylimidazolium tetrafluoroborate, [emim][BF₄]

2. Choline chloride/Zinc chloride ionic liquid

- Usually only consider IL's which are liquid at room temperature
- Great variety of structures possible
- Very low vapour pressure attractive alternative to VOCs.

Principle 9:

Increase <u>energy efficiency</u>: Run chemical reactions at <u>ambient temperature</u> and <u>pressure</u> whenever possible.

Principle 10:

Design chemicals and products to <u>degrade</u> after use: Design chemical products to break down to innocuous substances after use so that they do not accumulate in the environment.

WHY BIOREFINERY?

- Biorefinery converts Biomass into Fuels, Chemicals & Materials, Energy, Feed, etc.
- Depleting Oil & Gas Resources & Increasing Costs to discover & Use these.
- National Energy Security.
- Need for Environmental Sustainability.
- Growing Aspiration of Developing Countries.

BIO-REFINERY PROCESS

FOUR TYPES OF BIO-REFINERY

- 1ST Generation: Ethanol from sugar cane, beat root, etc.
- 2nd Generation: Plant Oil based.
- 3rd Generation: Ethanol from Cellulosics.
- 4th Generation: Ethanol, Polymers from Algae & Microbes.

CASTOR BIOREFINERY **CASTOR PLANT** Cake Eri Silk **Eri Pupal Protein** Protein, **Eri Pupal Oil** Starch, Oil **Fatty Acid Alkyl** Crude **Glycerol** Esters Surfactants, Lubricants Variety of Value-Fertilizer etc., added Products Biodiesel, Lubricants,

Different Grades

of Glycerol

Additives etc.,

Variety of Value-

added Products

Principle 11:

Analyze in real time to prevent <u>pollution</u>: Include inprocess real-time monitoring and control during syntheses to minimize or eliminate the formation of byproducts.

Principle 12:

Minimize the potential for accidents: Design chemicals and their forms (solid, liquid, or gas) to minimize the potential for chemical accidents including explosions, fires, and releases to the environment.

A carbon footprint is the total amount of carbon dioxide a person contributes to the environment

Reducing Carbon Foot print

- Planting a Tree
- Ceiling fans instead of AC
- Read online newspaper
- Eat in season (veg.) produce
- Use energy efficient appliances
- Use microwave heating
- Use hybrid vehicle
- Use rechargeable batteries
- Take Shower
- Cold water bath

- Create wormery
- Switch to renewable energy
- Take a train than flight
- Shifting gear sooner
- Replace CFL bulbs
- Filter your own water
- Carpool
- Plant an Organic garden
- Unplug phone charger
- Use laptop and not desktop