Convex optimization based on global lower second-order models

Nikita Doikov Yurii Nesterov

UCLouvain, Belgium

NeurIPS 2020

Problem

Composite convex optimization problem:

$$\min_{x} F(x) \stackrel{\text{def}}{=} f(x) + \psi(x)$$

- f is convex, differentiable.
- $\psi: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is convex, simple.
- ▶ dom ψ is bounded. $D \stackrel{\text{def}}{=} \operatorname{diam} (\operatorname{dom} \psi)$.

Example:

$$\psi(x) = \begin{cases} 0, & \|x\| \le \frac{D}{2}, \\ +\infty, & \text{otherwise.} \end{cases}$$

⇒ The problem with ball-regularization:

$$\min_{\|x\| \leq \frac{D}{2}} f(x)$$

Review: Gradient Methods

Let ∇f be Lipschitz continuous: $\|\nabla f(y) - \nabla f(x)\|_* \le L\|y - x\|$.

The Gradient Method:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{L}{2} \|y - x_k\|^2 + \psi(y) \Big\}.$$

▶ Global convergence: $F(x_k) - F^* \le O(\frac{1}{k})$.

The Conditional Gradient Method [Frank-Wolfe, 1956]:

$$v_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \psi(y) \Big\},$$

$$x_{k+1} = \gamma_k v_{k+1} + (1 - \gamma_k) x_k.$$

▶ Set $\gamma_k = \frac{2}{k+2}$. Then $F(x_k) - F^* \leq O(\frac{1}{k})$.

Note: Near-optimal for $\|\cdot\|_{\infty}$ -balls [Guzmán-Nemirovski, 2015].

Review: Second-Order Methods

Let $\nabla^2 f$ be Lipschitz continuous: $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x - y\|$.

Newton Method:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(y - x_k), y - x_k \rangle + \psi(y) \Big\}.$$

- ▶ Quadratic convergence (if $\nabla^2 f(x^*) \succ 0$ and x_0 close to x^*).
- No global convergence. A heuristic: use line-search in practice.

Newton Method with Cubic Regularization:

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k) (y - x_k), y - x_k \rangle + \frac{L}{6} \|y - x_k\|^3 + \psi(y) \Big\}.$$

▶ Global rate: $F(x_k) - F^* \le O(\frac{1}{k^2})$ [Nesterov-Polyak, 2006].

Overview of the Contributions

New second-order algorithms with global convergence proofs.

- ► The methods are universal (no unknown parameters).
- Affine-invariant (the norm is not fixed).

Stochastic methods (basic and with the variance reduction).

Numerical experiments.

Second-Order Lower Model

- 1. f is convex: $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$.
- **2.** $\nabla^2 f$ is Lipschitz continuous:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x - y\|.$$

Convexity + Smoothness \Rightarrow tighter lower bound: $\forall t \in [0,1]$

$$f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{t}{2} \langle \nabla^2 f(x)(y - x), y - x \rangle - \frac{t^2 L \|y - x\|^3}{6}.$$

New Algorithm

Contracting-Domain Newton Method:

$$v_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{\gamma_k}{2} \langle \nabla^2 f(x_k)(y - x_k), y - x_k \rangle \\ + \psi(y) \Big\},$$

$$x_{k+1} = \gamma_k v_{k+1} + (1 - \gamma_k) x_k.$$

Trust-Region Interpretation

Contracting-Domain Newton Method (reformulation):

$$x_{k+1} = \underset{y}{\operatorname{argmin}} \Big\{ \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k)(y - x_k), y - x_k \rangle + \gamma_k \psi(x_k + \frac{1}{\gamma_k}(y - x_k)) \Big\}.$$

Regularization of quadratic model by the asymmetric trust region.

Global Convergence

Let $\nabla^2 f$ be Lipschitz continuous: $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x - y\|$ (w.r.t. arbitrary norm).

Theorem 1. Set $\gamma_k = \frac{3}{k+3}$. Then

$$F(x_k) - F^* \leq O(\frac{LD^3}{k^2}).$$

Theorem 2. Let ψ be strongly convex with parameter $\mu > 0$.

▶ Set $\gamma_k = \frac{5}{k+5}$. Then

$$F(x_k) - F^* \leq O(\frac{LD}{\mu} \cdot \frac{LD^3}{k^4}).$$

Set $\gamma_k = \frac{1}{1+\omega}$, where $\omega \stackrel{\text{def}}{=} \left[\frac{LD}{2\mu}\right]^{\frac{1}{2}}$. Then

$$F(x_k) - F^* \le \exp\left(-\frac{k-1}{1+\omega}\right) \frac{LD^3}{2}.$$

Experiments: Logistic Regression

$$\min_{\|x\|_2 \leq \frac{D}{2}} \sum_{i=1}^{M} f_i(x), \qquad f_i(x) = \log(1 + \exp(\langle a_i, x \rangle)).$$

D plays the role of regularization parameter.

For bigger *D* the problem becomes more *ill-conditioned*.

Stochastic Methods for Logistic Regression

Approximate $\nabla f(x)$, $\nabla^2 f(x)$ by stochastic estimates.

The problem with big dataset size (M = 463715) and small dimension (n = 90).

Conclusions

Second-order information helps in a case of

- ill-conditioning;
- small or moderate dimension (the subproblems are more expensive).

No need to tune stepsize.

Can be preferable for solving problems over the sets with a non-Euclidean geometry.

Follow Up Results

Nikita Doikov and Yurii Nesterov. "Affine-invariant contracting-point methods for Convex Optimization". In: arXiv:2009.08894 (2020)

- General framework of Contracting-Point Methods.
- ► Contracting-Point Tensor Methods of order $p \ge 1$:

$$F(x_k) - F^* \leq O(\frac{1}{k^p}).$$

► Affine-invariant smoothness condition ⇒ Affine-invariant analysis.

Thank you for your attention!