Assignment 5

$Computational\ Intelligence,\ SS2018$

Team Members		
Last name	First name	Matriculation Number
Lee	Eunseo	11739623
Shadley	Alex	11739595
Lee	Dayeong	11730321

1 Classication/ Clustering

1.1 2 dimensional feature

- 1.1.1 Perform all of the above-mentioned tasks for the EM algorithm.
- 1.1.2 Perform all of the above-mentioned tasks for the K-means algorithm
- 1.1.3 You may additionally choose any other pair of features; how would this change the classication accuracy

1.2 4 dimensional feature

- 1.2.1 How do the convergence properties and the accuracy of you classication change in comparison to scenario 2.1?
- 1.2.2 Within your EM-function conne the structure of the covariance matrices to diagonal matrices! What is the inuence on the result.

1.3 Processing the data with PCA

- 1.3.1 How much of the variance in the data is explained this way?
- 1.3.2 How does the performance of your algorithms compare to scenario 2.1 and scenario 2.2?
- 1.3.3 Apply PCA with whitening, so that the transformed data has zero mean and a unit covariance matrix. How does this inuence the choice of your initialization?

2 Samples from a Gaussian Mixture Model

- 2.1 Write a function Y = sample-GMM(alpha, mu, cov, N)
- 2.2 Using a GMM of your choice (K > 3), demonstrate the correctness of your function