Obliczenia naukowe

2017/2018

Prowadzacy: dr hab. Paweł Zieliński

czwartek TN, 11:15

Agata Jasionowska 229726

Laboratorium – Lista 3

1. Zadanie 1

1.1. Opis problemu

Implementacja funkcji rozwiązującej równanie f(x) = 0 metodą bisekcji.

1.2. Opis rozwiązania

Przebieg tej metody jest następujący:

- 1. Jeżeli funkcja f nie zmienia znaku w przedziale [a,b] zwrócenie informacji o błędzie;
- 2. Dopóki |a-b| > epsilon, obliczenie $x = \frac{a+b}{2}$;
- 3. Jeżeli f(x) = 0 to zwrócenie x jako rozwiązania;
- 4. Obranie nowego przedziału ([a, x] lub [b, x]), w którym funkcja zmienia znak na przeciwny i powrót do 2.

Niektóre elementy widocznego algorytmu warto uzupełnić dodatkowym komentarzem. Jako pierwszym ze spostrzeżeń można uczynić sposób obliczania punktu środkowego, czyli instrukcję: $r \leftarrow a + (b-a)/2$. Okazuje się, że w obliczeniach numerycznych o wiele lepszym rozwiązaniem jest obliczanie nowej wielkości poprzez niewielką poprawkę poprzedniej. Dlatego też wyżej wspomniane przypisanie nie ma postaci: $r \leftarrow (a+b)/2$. W pewnych przypadkach zastosowanie takiej konstrukcji mogłoby prowadzić do uzyskania wartości znajdującej się nawet poza przedziałem [a,b].

Drugą sprawą będzie sposób badania zmiany znaku wartości funkcji. Otóż wykorzystanie nierówności $fa \cdot fb < 0$ może prowadzić do nadmiaru lub niedomiaru spowodowanego mnożeniem. Zamiast tego skorzystano z $sgn(fa) \neq sgn(fb)$, unikając w ten sposób zbędnego działania.

Ostatnim spostrzeżeniem będzie zwrócenie uwagi na warunki zakończenia obliczeń przez funkcję. Uwzględnia ona warunek $e > \epsilon$ (czy w zadanym przedziale możliwa jest kolejna iteracja), $|e| < \delta$ (gdy uzyskano już wystarczająco mały błąd) oraz $|v| < \epsilon$ (wartość funkcji w punkcie jest dostatecznie bliska zeru). Uwzględnienie aż trzech kryteriów zakończenia pracy daje algorytmowi pewność w działaniu nawet dla przypadków patologicznych.

```
Algorytm 1: Metoda bisekcji
    Input: f- funkcja f(x) zadana jako anonimowa funkcja,
                   a, b - końce przedziału początkowego,
                   \delta,\epsilon - dokładność obliczeń
    Output: (r, v, it, err), gdzie:
                   r - przybliżenie pierwiastka równania f(x) = 0,
                   v - wartość f'(r),
                   it - liczba wykonanych iteracji,
                   err - sygnalizacja błędu:
                      0 - brak błędu,
                      1 - funkcja nie zmienia znaku w przedziale [a, b].
 1 Function mbisekcji(a, b, \delta, \epsilon)
         \mathbf{r} \leftarrow 0
         v \leftarrow 0
 3
         fa \leftarrow f(a)
 4
         fb \leftarrow f(b)
 5
         \mathsf{e} \leftarrow \mathsf{b} - \mathsf{a}
 6
         it \leftarrow 0
         \mathbf{if}\ \mathtt{sgn}(\mathsf{fa}) = \mathtt{sgn}(\mathsf{fb})\ \mathbf{then}
          return (r, v, it, 1)
 9
10
         \mathbf{end}
         while e > \epsilon do
11
              \mathsf{it} \leftarrow \mathsf{it} + 1
12
              e \leftarrow e/2
13
              \mathsf{r} \leftarrow \mathsf{a} + \mathsf{e}
14
              v \leftarrow f(r)
15
              if |e| < \delta \lor |v| < \epsilon then
16
               return (r, v, it, 0)
17
18
              end
              if sgn(v) \neq sgn(fa) then
19
                   b \leftarrow r \\
20
                    \mathsf{fb} \leftarrow \mathsf{v}
\mathbf{21}
              \mathbf{else}
\mathbf{22}
```

 $\mathsf{a} \leftarrow \mathsf{r}$

 $\mathsf{fa} \leftarrow \mathsf{v}$

return (r, v, it, 0)

 $\quad \text{end} \quad$

end

23

24

25

26

27

2.1. Opis problemu

Implementacja funkcji rozwiązującej równanie f(x) = 0 metodą stycznych (Newtona).

2.2. Opis rozwiązania

Przebieg tej metody jest następujący:

- 1. Za x_1 przyjmowany jest punkt przecięcia stycznej wyprowadzonej dla x_0 z osią OX ;
- 2. Dopóki nie osiągnięto wymaganego przybliżenia, $x_0 = x_1$; 3. Kolejne przybliżenie obliczane jest ze wzoru: $x_1 = x_0 \frac{f(x_0)}{pf(x_0)}$, powrót do kroku 2;
- 4. Jeżeli $f(x_0) > epsilon$ zwracany jest błąd, w przeciwnym przypadku rozwiązaniem jest x_0 .

```
Algorytm 2: Metoda stycznych
```

```
Input: f, pf - funkcja f(x) oraz f'(x) zadane jako anonimowe funkcje,
               x_0 - przybliżenie początkowe,
               \delta, \epsilon - dokładność obliczeń
               maxit - maksymalna dopuszczalna liczba iteracji
    Output: (r, v, it, err), gdzie:
               r - przybliżenie pierwiastka równania f(x) = 0,
               v - wartość f(r),
               it - liczba wykonanych iteracji,
               err - sygnalizacja błędu:
                  0 - metoda zbieżna,
                  1 - nie osiągnięto wymaganej dokładności w maxit iteracji,
                  2 - pochodna bliska zeru.
 1 Function mstycznych(f, pf, x_0, \delta, \epsilon, maxit)
        r \leftarrow x_0
 \mathbf{2}
        v \leftarrow f(r)
 3
        it \leftarrow 0
 4
        if |pf(r)| < \epsilon then
 5
           return (r, v, it, 2)
 6
        end
 7
        for it \leftarrow 1 to maxit do
 8
            x \leftarrow r - (v/pf(r))
 9
10
            if |\mathbf{r} - \mathbf{x}| < \delta \lor |\mathbf{v}| < \epsilon then
11
12
                return (r, v, it, 0)
13
            end
14
            r \leftarrow x
15
        end
16
        return (r, v, it, 1)
17
```

3.1. Opis problemu

Implementacja funkcji rozwiązującej równanie f(x) = 0 metodą siecznych (Eulera).

3.2. Opis rozwiązania

Przebieg tej metody jest następujący:

- 1. Obliczane są wartości $f_1 = f(x_1)$ oraz $f_2 = f(x_2)$;
- 2. Dopóki nie osiągnięto wymaganej liczby iteracji, $x_0 = x_1 f_1 \cdot \frac{x_1 x_2}{f_1 f_2}$, $f_0 = f(x_0)$;
- 3. Jeżeli $|x_1 x_2| < epsilon$, zwrócenie x_0 i zakończenie działania;
- 4. Zamiana parametrów i wartości funkcji odpowiednio dla $x_2 \leftarrow x_1$ oraz $x_1 \leftarrow x_0$, powrót do kroku 2.

```
Algorytm 3: Metoda siecznych
```

```
Input: f - funkcja f(x) zadana jako anonimowa funkcja,
                 x_0, x_1 - przybliżenia początkowe,
                 \delta, \epsilon - dokładność obliczeń
                 maxit - maksymalna dopuszczalna liczba iteracji
    Output: (r, v, it, err), gdzie:
                 r - przybliżenie pierwiastka równania f(x) = 0,
                 v - wartość f(\mathbf{r}),
                 it - liczba wykonanych iteracji,
                 err - sygnalizacja błędu:
                    0 - metoda zbieżna,
                    1 - nie osiągnięto wymaganej dokładności w maxit iteracji.
 1 Function msiecznych(f, x_0, x_1, \delta, \epsilon, maxit)
 \mathbf{2}
        a \leftarrow x_0
        b \leftarrow x_1
 3
        fa \leftarrow f(a)
 4
        fb \leftarrow f(b)
 \mathbf{5}
 6
        it \leftarrow 0
        for it \leftarrow 1 to maxit do
 7
             \mathbf{if} |\mathsf{fa}| > |\mathsf{fb}| \mathbf{then}
 8
                  swap(a, b)
 9
                  swap(fa, fb)
10
11
             s \leftarrow (b-a)/(fb-fa)
12
             b \leftarrow a
13
             fb \leftarrow fa
14
             a \leftarrow a - (fa \cdot s)
15
             fa \leftarrow f(a)
16
             if |fa| < \epsilon \lor |b-a| < \delta then
17
                 return (a, fa, it, 0)
18
19
             end
        \quad \text{end} \quad
20
        return (a, fa, it, 1)
\mathbf{21}
```

4.1. Opis problemu

Przy użyciu metod zaprogramowanych w poprzednich zadaniach wyznaczenie pierwiastka równania $\sin x - (\frac{1}{2}x)^2 = 0$ dla poniższych danych:

- 1. Metodą bisekcji z przedziałem początkowym [1.5,2], $\delta=\frac{1}{2}10^{-5},\ \epsilon=\frac{1}{2}10^{-5};$ 2. Metodą Newtona z przybliżeniem początkowym $x_0=1.5,\ \delta=\frac{1}{2}10^{-5},\ \epsilon=\frac{1}{2}10^{-5};$ 3. Metodą siecznych z przybliżeniem początkowym $x_0=1,\ x_1=2,\ \delta=\frac{1}{2}10^{-5},\ \epsilon=\frac{1}{2}10^{-5}.$

4.2. Opis rozwiązania

Zastosowanie funkcji utworzonych w zadaniach 1-3. Miejsca zerowe zadanej funkcji widoczne są na Rysunku 1.

Rysunek 1: Wykres funkcji $\sin x - (\frac{1}{2}x)^2 = 0$.

4.3. Wyniki

Uzyskane rezultaty widoczne są w Tabeli 1.

podpunkt	x_0	$f(x_0)$	liczba iteracji
1.	1.9337539672851562	$-2.7027680138402843 \times 10^{-7}$	16
2.	1.933753779789742	$-2.2423316314856834 \times 10^{-8}$	4
3.	1.9337509005356321	$3.783706985283075 \times 10^{-6}$	4

Tabela 1: $\sin x - (\frac{1}{2}x)^2 = 0$ dla danych z zadania.

4.4. Wnioski

Funkcja metody biekcji wykonała znacznie więcej iteracji, bo aż 17. Jednak w efekcie końcowym to ona zwróciła wynik z najmniejsza dokładnością. O wiele lepiej radzą tu sobie funkcje siecznych oraz stycznych, osiągając wymaganą dokładność już po 4 iteracjach. Jako zwycięzce wytypować można metodę Newtona, bowiem osiągnęła ona najdokładniejszy wynik.

5.1. Opis problemu

Wyznaczenie przy pomocy metody bisekcji wartości zmiennej x, dla której następuje przecięcie wykresów funkcji y=3x oraz $y=\exp^x$ dla dokładności $\delta=10^{-4},\ \epsilon=10^{-4}$.

5.2. Opis rozwiązania

W celu rozwiązania zadania zastosowano metodę mbisekcji utworzoną w zadaniu 1. Aby określić miejsce przecięcia zadanych funkcji należy znaleźć taki punkt, dla którego przyjmują one identyczną wartość dla tego samego argumentu, czyli $f(x) = 3x - \exp^x$.

Najprostszym sposobem określenia przedziałów początkowych będzie analiza wykresu obu funkcji. Z Rysunku 2 wywnioskować można, iż poszukiwane wyniki znajdą się w przedziałach [0.0, 1.0] oraz [1.0, 2.0].

Rysunek 2: Wykres funkcji y = 3x oraz $y = \exp^x$.

5.3. Wyniki

Poniższa tabela prezentuje otrzymane rozwiązania:

przedział	x	liczba iteracji
$[0.0, 1.0] \\ [1.0, 2.0]$	$0.619140625\\1.5120849609375$	9 13

Tabela 2: ...

5.4. Wnioski

Ważnym czynnikiem wpływającym na pomyślne znalezienie pierwiastków funkcji metodą bisekcji jest umiejętny dobór przedziału początkowego. Należy zwrócić uwagę, iż w tym przypadku uruchomienie jej dla przedziału [0.0, 2.0] zwróci błąd związany z niezmiennością znaku. Jednak po wyszczególnieniu [0.0, 1.0] i [1.0, 2.0] znalezienie miejsc zerowych f(x) nie nastręcza problemów. Pomocne w czynności wyboru startowego przedziału może być na przykład analiza wykresu funkcji.

6.1. Opis problemu

Znalezienie pierwiastków funkcji $f_1(x) = \exp^{1-x} - 1$ oraz $f_2(x) = x \exp^{-x}$ przy pomocy metod: bisekcji, stycznych oraz siecznych z dokładnością obliczeń $\delta = 10^{-4}$, $\epsilon = 10^{-4}$. Należy zadbać o dobór odpowiedniego przedziału oraz przybliżeń początkowych.

6.2. Opis rozwiązania

W rozwiązaniu zadania zastosowano metody mbisekcji, msiecznych oraz mstycznych, utworzone w zadaniach 1-3. Rozpoczęto od przeprowadzenia analizy wykresów (Rysunek 3) zadanych funkcji w celu określenia trafnych parametrów.

Rysunek 3: ...

1) $f_1(x)$

Z wykresu z łatwością można odczytać prawidłowe rozwiązanie, jakim jest x=1.0. Dla metody bisekcji unikano sytuacji, gdy pierwiastek znajduje się w środku przedziału początkowego. Wykonywanie funkcji kończy się wtedy już po pierwszej iteracji, co nie jest interesujące w tym zadaniu. Podczas używania metody Newtona należało uważać przy dobieraniu x_0 , gdyż pochodna dąży do 0, co jest niepożądane dla tej metody. W funkcji metody siecznych wybranie zbyt dużych wartości przybliżeń sprawi, że obliczenia wykonane są na bliskich sobie wartościach i działanie zakończy się szybko ze względu na osiągnięcie założonej precyzji.

2) $f_2(x)$

Już sam wzór funkcji wskazuje właściwy pierwiastek, czyli x=0.0. Podczas używania metody bisekcji ponownie unikano obierania takich przedziałów, że pierwiastek leżał dokładnie w ich połowie. Tym razem jednak wybrano przedział, w którym wartość 0.0 znajduje się znacznie bliżej środka niż dla funkcji $f_1(x)$. Dla pozostałych dwóch metod zastosowano podobne środki ostrożności co w przypadku funkcji z punktu 1).

6.3. Wyniki

6.4. Wnioski

Zestawienie wyników z tabel widocznych powyżej pozwala na wyciągnięcie kilku wniosków. Otóż metoda bisekcji nie ma żadnych ograniczeń związanych z przebiegiem zadanej funkcji oraz jej pochodnej (w przeciwieństwie np. do metody Newtona). Niezależnie od przesunięć przedziału

metoda	początkowe dane	x	f(x)	liczba iteracji
bisekcji	[a, b] = [0.1, 1.2]	0.9999938964843748	6.103534251789 $\times 10^{-6}$	14
stycznych	$x_0 = 0.3$	0.9999999866969493	$1.3303050661050975\times10^{-8}$	
siecznych	$x_0 = -0.4, \ x_1 = 1.3$	1.0000026160714057	-2.6160679837961 $\times10^{-6}$	
siecznych	$x_0 = -2.0, \ x_1 = 2.0$	1.0000063854903036	$-6.385469916381226 \times 10^{-6}$	23

Tabela 3: $f_1(x) = \exp^{1-x} -1$.

metoda	początkowe dane	x	f(x)		liczba iteracji
bisekcji	[a, b] = [-0.4, 0.7]		$4 \times 10^{-6} - 4.577657673545798$		
stycznych			$\times 10^{-6} - 8.879059818213929$		
			$\times 10^{-6}$ 9.441 255 115 175 028		
siecznych	$x_0 = -0.1, \ x_1 = 0.9$	1.10233618098865	$\times 10^{-6}$ 1.102 334 965 844 264	$\times 10^{-6}$	6

Tabela 4: $f_2(x) = x \exp^{-x}$.

x_0	x	f(x)	liczba iteracji
1.5	0.9999999810061002	$1.8993900008368314\times10^{-8}$	5
2.5	0.9999999710783241	$2.892167638712806 \times 10^{-8}$	9
4.5	0.9999999995278234	$4.721765201054495 \times 10^{-10}$	21
5.0	0.9999996427095682	$3.572904956339329 \times 10^{-7}$	54
7.5	0.9999999573590406	$4.264096031825204 \times 10^{-8}$	
10.0	0.9999999484165362	$5.15834650549607 \times 10^{-8}$	401

Tabela 5: Metoda Newtona dla $f_1(x) = \exp^{1-x} -1$ i $x_0 \in (1, \infty)$.

x_0	x	f(x)	liczba iteracji
2.0	0.9999999810061002	$1.8993900008368314\times10^{-8}$	5
3.0	0.9999999710783241	$2.892167638712806 \times 10^{-8}$	9
4.0	0.9999999995278234	$4.721765201054495 \times 10^{-10}$	21
5.0	0.9999996427095682	$3.572904956339329 \times 10^{-7}$	54
6.0	0.9999999573590406	$4.264096031825204 \times 10^{-8}$	147
7.0	0.9999999484165362	$5.15834650549607 \times 10^{-8}$	401

Tabela 6: Metoda Newtona dla $f_2(x) = x \exp^{-x}$ i $x_0 > 1.$

względem poprawnego pierwiastka wylicza wynik w tym samym tempie zależnym od wielkości przedziału (ma to sens, gdyż metoda ta polega na sukcesywnym dzieleniu przedziału na pół aż do momentu uzyskania takiego o satysfakcjonująco małym rozmiarze). Metoda stycznych najlepiej radzi sobie z wyznaczaniem pierwiastka, gdy kluczem jest szybkość — ze wszystkich badanych metod zwracała ona rozwiązanie po najmniejszej liczbie wykonanych iteracji. Nie oznacza to jednak, że jest najlepszym wyborem w każdej sytuacji — należy brać pod uwagę jej ograniczenia, nakładane przez konieczność obliczania pochodnej funkcji.

TEMP NOTES:

Wnioski dla wyników metody Newtona przy szczególnych argumentach!!! Dla pierwszego: nie udało się wyliczyć dla $x_0=8$ - wciąż niewystarczająca była obrana liczba iteracji wynosząca it=10000000000. Dla drugiego: podanie argumentu początkowego $x_0=1.0$ powodowało zwrócenie błędu — pochodna bliska wartości 0.0.