$\mathbf{DM} \,\, \mathbf{E}\chi \,\, \mathbf{02}$

isagila

@pochtineploho

@DUBSTEPHAVEGUN

Собрано 21.06.2023 в 18:13

Содержание

1.	Teop	рия графов	
	1.1.	Основные определения.	
	1.2.	Морфизмы графов	
	1.3.	Маршруты, пути, цепи и циклы	
	1.4.	Эйлеровы графы	
	1.5.	Гамильтоновы графы	
	1.6.	Деревья	
	1.7.	Двудольные графы.	
	1.8.	Теорема Холла	
	1.9.	Теорема Татта.	
	1.10.	Связность	
	1.11.	Теорема Уитни	
	1.12.	Теорема Менгера	
	1.13.	Алгоритм Дейкстры	
	1.14.	Алгоритм Форда-Белмана.	
	1.15.	Алгоритм Флойда-Уоршелла	
		Иерархическая кластеризация	
2 .		бинаторика	
	2.1.	Упорядоченные и неупорядоченные размещения	
	2.2.	Разбиения и композиции	
	2.3.	Принцип включения-исключения	
3.	Кон	Конечные автоматы	
	3.1.	Формальные и регулярные языки	
	3.2.	Детерминированный и недетерминированный конечные автоматы	
	3.3.	Преобразование НКА в ДКА	
	3.4.	arepsilon -HKA. Преобразование $arepsilon$ -HKA в HKA	
	3.5.	Построение ε -НКА по регулярному выражению (построение Томпсона)	
	3.6.	Теорема Клини	
1	Poki	уррентные соотношения	
4.	4.1.	Реккурентные соотношения. Характеристические уравнения	
	4.1.	Асимптотический анализ	
	4.2.	Мастер теорема	
	4.3. 4.4.		
		Meтод Акра -Бацци	
	4.5.	Производящие функции	
	4.6.	Операторы и аннигиляторы	

1. Теория графов

1.1. Основные определения.

- **Def 1.1.1.** Граф это упорядоченная пара вида $G = \langle V, E \rangle$, где $V = \{v_1, \dots, v_n\}$ это множество вершин, а $E = \{e_1, \dots, e_n\}$ это множество ребер.
- **Def 1.1.2.** Порядком графа называется число его вершин |V|.
- **Def 1.1.3.** Размером графа называется количество его ребер |E|.

У неориентированного графа $E\subseteq V^{(2)}$, где $V^{(2)}$ это множество всех непустых подмножеств размера не более двух. Таким образом каждое ребро обозначается как $\{u,v\}\in V^{(2)}$ (если $u\neq v$) или $\{v\}\in V^{(2)}$ (если данное ребро это петля).

У ориентированного графа $E \subseteq V^2$, т.е. каждое ребро это упорядоченная пара вида $\langle u,v \rangle$. Ребра ориентированного графа также называют дугами.

- Def 1.1.4. Петля это ребро, которое соединяет вершину саму с собой.
- Def 1.1.5. Мультиребра это ребра, у которых общее начало и общий конец.
- Def 1.1.6. Граф называется простым, если в нем нет мультиребер и петель.
- **Def 1.1.7.** Мультиграф это граф с мультиребрами.
- Def 1.1.8. Псевдограф это мультиграф с петлями.
- Def 1.1.9. Гиперграф это граф, в котором ребро может соединять несколько вершин одновременно.
- Def 1.1.10. Нулевой граф это граф, который не содержит вершин.
- Def 1.1.11. Пустой граф это граф, которые не содержит ребер.
- Def 1.1.12. Граф-синглтон (тривиальный граф) это граф состоящий только из одной вершины.
- **Def 1.1.13.** Полный граф K_n это простой граф, в котором каждая пара различных вершин соединена ребром.
- **Def 1.1.14.** Взвешенный граф $G = \langle V, E, w \rangle$ это граф, в котором каждому ребру сопоставляется некоторое числовое значение (вес), которое определяется весовой функцией $w \colon E \to \text{Num}$.
- Def 1.1.15. Граф называется планарным, если его можно изобразить на плоскости без пересечения ребер.
- **Def 1.1.16.** Граф называется плоским, если он *уже* изображен на плоскости без пересечения ребер.
- **Def 1.1.17.** Подграфом графа $G = \langle V, E \rangle$ называется граф $G' = \langle V', E' \rangle$ такой, что $V' \subseteq V$ и $E' \subseteq E$.
- Def 1.1.18. Подграф называется остовным, если он содержит все вершины исходного графа.
- **Def 1.1.19.** Индуцированный подграф это подграф, который получается из некоторого подмножества вершин исходного графа $V' \subseteq V$ и **всех** ребер исходного графа, соединяющих эти вершины.
- Def 1.1.20. Две вершины называются смежными (соседними), если между ними есть ребро.

Для иллюстрации отношения смежности обычно используют матрицу смежности. Это квадратная матрица размера $V \times V$, ячейки которой содержат:

- 0 или 1 для простых графов
- -1,0,1 для ориентированных графов
- ullet \mathbb{N} для взвешенных графов

Однако описанные выше правила не строгие: в разных задачах числа в матрице смежности могу обозначать разные вещи.

Def 1.1.21. Вершина и ребро называются инцидентными, если вершина является одним из концов ребра.

Для иллюстрации отношения инцидентности обычно используют матрицу инцидентности. Это прямоугольная матрица размера $V \times E$, строки которой соответствуют вершинам, а столбцы — ребра. Ячейки этой матрицы могут содержать:

• 1 если вершина и ребро инциденты и 0 в противном случае — для неориентированных графов.

• -1, если ребро выходит из данной вершин, и 1 если входит, 0 если ребро и вершина неинцидентны — для ориентированных графов.

Петля в матрице инцидентности обычно обозначается двойкой. Но, как и в случае с матрицей смежности, описанные правила не являются строгими.

Def 1.1.22. Степенью вершины $\deg u$ называется количество инцидентных ей ребер (петли учитываются дважды).

Со степенью вершины также связны такие понятия как:

- Минимальная степень вершины в графе $\delta(G) = \min_{v \in V} \deg v$.
- Максимальная степень вершины в графе $\Delta(G) = \max_{v \in V} \deg v$.

<u>Lm</u> 1.1.23. Лемма о рукопожатиях.

$$\sum_{v \in V} \deg v = 2|E|$$

Доказательство. Т.к. каждое ребро инцидентно ровно двум ребрам, то сложив все степени вершин мы учтем каждое ребро дважды (по одному разу для каждой из его концевых вершин). ■

Def 1.1.24. Граф называется r-регулярным, если степень каждой из его вершин равна r.

- 1.2. Морфизмы графов.
- 1.3. Маршруты, пути, цепи и циклы.
- 1.4. Эйлеровы графы.
- 1.5. Гамильтоновы графы.
- 1.6. Деревья.
- 1.7. Двудольные графы.
- 1.8. Теорема Холла.
- 1.9. Теорема Татта.
- 1.10. Связность.
- 1.11. Теорема Уитни.
- 1.12. Теорема Менгера.
- 1.13. Алгоритм Дейкстры.
- 1.14. Алгоритм Форда-Белмана.
- 1.15. Алгоритм Флойда-Уоршелла.
- 1.16. Иерархическая кластеризация.

2. Комбинаторика

- 2.1. Упорядоченные и неупорядоченные размещения.
- 2.2. Разбиения и композиции.
- 2.3. Принцип включения-исключения.

3. Конечные автоматы

- 3.1. Формальные и регулярные языки.
- 3.2. Детерминированный и недетерминированный конечные автоматы.
- 3.3. Преобразование НКА в ДКА.
- 3.4. ε -HKA. Преобразование ε -HKA в HKA.
- 3.5. Построение ε -HKA по регулярному выражению (построение Томпсона).
- 3.6. Теорема Клини.

4. Рекуррентные соотношения

- 4.1. Реккурентные соотношения. Характеристические уравнения.
- 4.2. Асимптотический анализ.
- 4.3. Мастер теорема.
- 4.4. Метод Акра -Бацци.
- 4.5. Производящие функции.
- 4.6. Операторы и аннигиляторы.