





Курс "Машинное обучение" Лабораторная работа

# Bias-Variance decomposition

Глушков А.Е., M21-524 Вариант 1-01

## Исходные данные



|        |       | x            | у          |         |
|--------|-------|--------------|------------|---------|
|        | count | 300.000000   | 300.000000 |         |
|        | mean  | -0.000178    | 0.907282   |         |
|        | std   | 1.437335     | 2.540319   |         |
|        | min   | -2.476800    | -4.940000  |         |
|        | 25%   | -1.293675    | -0.912722  |         |
|        | 50%   | -0.048087    | 0.912895   |         |
|        | 75%   | 1.276550     | 2.719525   |         |
|        | max   | 2.480700     | 6.987700   |         |
|        |       |              |            |         |
| Column |       | Non-Null     | Count      | Dtype   |
|        |       |              |            |         |
| X      |       | 300 non-null |            | float64 |
| v      |       | 300 non-null |            | float64 |

## Используемые методы и формулы

Simple Linear Regression:

Regression function:

Regression models class:

Least-squares criterion:

Risk of the model h at given  $x \in \mathcal{X}$  (expectation over training samples  $\mathcal{D}_T$ ):

$$Y|_{x} = \beta_{0} + \beta_{1}x + \varepsilon(x)$$

$$\varphi(x) = M[Y|_x] = \beta_0 + \beta_1 x$$

$$h(x) = \beta_0 + \sum_{i=1}^{m} \beta_i x^i$$

$$E(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h(x_i))^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i \beta)^2 \to min_{\beta}$$

$$R(h,x) = (M[h(x, \mathcal{D}_T)] - M[Y|_x])^2 + D[h(x, \mathcal{D}_T)] + \sigma_x^2$$

$$R(h,x) = Bias^2[h] + D[h] + \sigma_x^2$$





Графики зависимостей MSE модели от объёма обучающей выборки











### Выводы

- Высокий bias говорит об underfitting;
- Высокий variance говорит об overfitting;
- При увеличении числа регрессоров ошибка на обучающей выборке уменьшается;

• При увеличении числа регрессоров *m bias* уменьшается, а *variance* 

увеличивается.

