Lógica Computacional - Formas normais

DCC/FCUP

2020/21

Uso de conectivas

Definição: Um conjunto de conectivas C diz-se completo se e só se para qualquer $n \geq 1$ e qualquer função $f: \{\top, \bot\}^n \longrightarrow \{\top, \bot\}$ existir uma fórmula φ_f com n variáveis proposicionais p_1, \ldots, p_n envolvendo somente conectivas em C, tal que para qualquer $(v_1, \ldots, v_n) \in \{\top, \bot\}^n$ se tem $v(\varphi_f) = f(v_1, \ldots, v_n)$, onde $v(p_1) = v_1, \ldots, v(p_n) = v_n$.

Nota: Podemos restringir-nos só a conjuntos completos de conectivas. Assim podiamos ter só considerado na definição da linguagem da Lógica proposicional, apenas:

- as conectivas ∧, ∨ e ¬
- as conectivas \rightarrow e \neg
- . . .

E considerar as restantes abreviaturas.

Uma das vantagens seria ter um número menor de tipos de fórmulas o que é bom para as demonstrações...

Mais conectivas

Mas também podemos definir outras conectivas. Por exemplo, uma para cada uma das funções de verdade unárias ou binárias... As mais usuais são:

Designação	Conectiva	Fórmula semanticamente equivalente
Falso		$\phi \wedge \neg \phi$
Verdade	T	$\phi \lor \neg \phi$
Implicação	$\phi \to \psi$	$\neg\phi\vee\psi$
Equivalência	$\phi \leftrightarrow \psi$	$(\phi ightarrow \psi) \wedge (\phi ightarrow \psi)$
Ou Exclusivo	$\phi \lor \psi$	$(\phi \wedge \neg \psi) \vee (\neg \phi \wedge \psi)$
Não-e	$\phi \tilde{\wedge} \psi$	$\neg(\phi \wedge \psi)$
Não-ou	ϕ $\tilde{\lor}\psi$	$\neg(\phi\vee\psi)$

Formas normais

Vamos ver que podemos transformar fórmulas em fórmulas semânticamente equivalentes de tal modo a obter fórmulas de formas especiais e que nos permitam decidir mais facilmente sobre a satisfazibilidade ou validade das fórmulas originais... algumas dessas formas normais existem para qualquer fórmula outras apenas para certas classes de fórmulas...

Forma normal negativa

Um literal é uma variável proposicional p ou a sua negação, $\neg p$. Uma fórmula diz-se em forma normal negativa se \neg ocorre apenas em literais.

Proposição: Qualquer fórmula contendo apenas as conectivas \land , \lor e \neg é semanticamente equivalente a uma fórmula em forma normal negativa.

Demonstração.

Basta usar as Leis de DeMorgan e eliminar as duplas negações.

Forma normal negativa

Exemplo:

$$\neg((p \lor q) \land \neg p)$$

$$\neg(p \lor q) \lor \neg \neg p \qquad \text{(DeMorgan)}$$

$$(\neg p \land \neg q) \lor \neg \neg p \qquad \text{(DeMorgan)}$$

$$(\neg p \land \neg q) \lor p \qquad \text{(Dupla Negação)}$$

Forma normal disjuntiva

Uma fórmula diz-se em forma normal disjuntiva se for da forma:

$$(\alpha_{11} \wedge \ldots \wedge \alpha_{1k_1}) \vee \ldots \vee (\alpha_{n1} \wedge \ldots \wedge \alpha_{nk_n})$$

onde cada α_{ij} é um literal.

Lema: Para qualquer função $f: \{\top, \bot\}^n \longrightarrow \{\top, \bot\}$, existe uma fórmula ϕ com n variáveis proposicionais em forma normal disjuntiva, tal que $F_\phi = f$.

	$F(x_1,x_2)$	<i>X</i> ₂	<i>x</i> ₁
		\perp	\perp
$p_1 \wedge p_2$	上	Т	\perp
	上	\perp	\top
	T	T	T

Demonstração.

Se $f \in \bot$, para todos os valores dos argumentos, então $\phi = p_1 \land \neg p_1$.

Senão, para cada valoração v seja

$$I_i^{\mathsf{v}} = \left\{ egin{array}{ll} p_i & ext{se } v(p_i) = \top \ \neg p_i & ext{se } v(p_i) = \bot \end{array}
ight.$$

Quanto é $v(I_i^v)$? e então

$$\phi_{\mathbf{v}} = I_1^{\mathbf{v}} \wedge \ldots \wedge I_n^{\mathbf{v}}$$

Nota que $v(\phi_v) = \top$. Então, basta considerar

$$\phi = \bigvee_{f(v(p_1),...,v(p_n)) = \top} \phi_V$$

(Verifique!)

Exemplo

Para a seguinte função de verdade:

x_1	<i>X</i> ₂	<i>X</i> 3	$f(x_1, x_2, x_3)$
\top	T	T	Т
\top	\top	\perp	Т
\top	\perp	\top	Т
Т	\perp	\perp	上
\perp	T	Т	Т
\perp	T	\perp	上
\perp	\perp	\top	丄
\perp	\perp	\perp	\perp

uma fórmula em forma normal disjuntiva é:

$$(p_1 \wedge p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3) \vee (p_1 \wedge \neg p_2 \wedge p_3) \vee (\neg p_1 \wedge p_2 \wedge p_3)$$

Corolário: Qualquer fórmula é semanticamente equivalente a uma fórmula em forma normal disjuntiva.

Demonstração.

Dada uma fórmula é possível transformá-la numa semanticamente equivalente em forma normal disjuntiva, considerando os seguintes passos:

- 1. obter uma fórmula apenas com as conectivas \land , \lor e \neg
- 2. obter uma fórmula em forma normal negativa
- 3. aplicar a distributividade: $(\phi \lor \psi) \land \theta \leftrightarrow (\phi \land \theta) \lor (\psi \land \theta)$

Exemplo

Determina uma forma normal disjuntiva para

$$(p \lor r) \leftrightarrow (q \land \neg p)$$

$$(p \lor r) \leftrightarrow (q \land \neg p) \equiv$$

$$((p \lor r) \rightarrow (q \land \neg p)) \land ((q \land \neg p) \rightarrow (p \lor r)) \equiv$$

$$(\neg (p \lor r) \lor (q \land \neg p)) \land (\neg (q \land \neg p) \lor (p \lor r)) \equiv$$

$$((\neg p \land \neg r) \lor (q \land \neg p)) \land ((\neg q \lor p) \lor (p \lor r)) \equiv$$

$$(((\neg p \land \neg r) \lor (q \land \neg p)) \land (\neg q \lor p)) \lor$$

$$((((\neg p \land \neg r) \lor (q \land \neg p)) \land (p \lor r)) \equiv$$

$$(\neg p \land \neg r \land (\neg q \lor p)) \lor (q \land \neg p \land (\neg q \lor p)) \lor$$

$$(\neg p \land \neg r \land (p \lor r)) \lor (q \land \neg p \land (p \lor r)) \equiv$$

$$(\neg p \land \neg r \land \neg q) \lor (\neg p \land \neg r \land p) \lor (q \land \neg p \land \neg q) \lor (q \land \neg p \land p)$$

$$\lor (\neg p \land \neg r \land p) \lor (\neg p \land \neg r \land r) \lor (q \land \neg p \land p) \lor (q \land \neg p \land r)$$

Satisfazibilidade de fórmulas em FND

Lemma: Uma conjunção de literais $l_1 \wedge \ldots \wedge l_n$ é satisfazível se e só se para todo o $1 \leq i, j \leq n$, l_i não é $\neg l_j$.

Exemplo: Serão satisfazíveis?
$$p \land \neg q \land \neg r \land q$$

$$\neg p \land q \land \neg r \land \neg s$$

Exemplo:

$$p \wedge \neg q \wedge \neg r \wedge q$$
 Não

$$\neg p \land q \land \neg r \land \neg s$$
 Sim

Corolário: Uma fórmula ϕ em forma normal disjuntiva é satisfazível se e só se alguma das suas conjunções de literais o for. Obtemos assim um método de determinar se uma fórmula é satisfazível.

Exemplo

Determina se é satisfazível

$$(p \lor r) \leftrightarrow (q \land \neg p)$$

$$(p \lor r) \leftrightarrow (q \land \neg p) \equiv (\neg p \land \neg r \land \neg q) \lor (\neg p \land \neg r \land p) \lor (q \land \neg p \land \neg q) \lor (q \land \neg p \land \neg q) \lor (q \land \neg p \land p) \lor (\neg p \land \neg r \land p) \lor (\neg p \land \neg r \land r) \lor (q \land \neg p \land p) \lor (q \land \neg p \land r)$$

$$(p \lor r) \leftrightarrow (q \land \neg p) \equiv (\neg p \land \neg r \land \neg q) \lor (\neg p \land \neg r \land p) \lor (q \land \neg p \land \neg q) \lor (q \land \neg p \land p) \lor (\neg p \land \neg r \land r) \lor (q \land \neg p \land p) \lor (q \land \neg p \land p) \lor (q \land \neg p \land r)$$

Sim

Forma normal conjuntiva

Uma fórmula diz-se em forma normal conjuntiva se for da forma:

$$(\alpha_{11} \vee \ldots \vee \alpha_{1k_1}) \wedge \ldots \wedge (\alpha_{n1} \vee \ldots \vee \alpha_{nk_n})$$

onde cada α_{ij} é um literal.

Por dualidade temos

Lemma: Uma disjunção de literais $l_1 \vee \ldots \vee l_n$ é uma tautologia se e só se para algum $1 \leq i, j \leq n$, l_i é $\neg l_j$.

Então é fácil determinar se uma fórmula em forma normal conjuntiva é uma tautologia: verificar se todas as disjunções são tautologias, pelo método dado no Lema anterior.

Mas como obter uma fórmula em forma normal conjuntiva?

- 1. se tivermos a tabela de verdade, por um método dual ao da forma normal disjuntiva: isto é, escolher as linhas que correspondem a \bot considerar para cada uma a disjunção de literais tal que se $x_i = \top$ coloca-se $\neg p_i$ e se $x_i = \bot$ coloca-se p_i ; e finalmente tomar a conjunção dessas disjunções.
- 2. adaptar o método dado para a forma normal disjuntiva,usando a distributividade para a conjunção: $(\phi \land \psi) \lor \theta \equiv (\phi \lor \theta) \land (\psi \lor \theta)$

Exercícios

Obtenha uma fórmula em forma normal conjuntiva correspondente à tabela de verdade

x_1	x_2	<i>X</i> 3	$f(x_1,x_2,x_3)$
Т	T	T	Т
Т	Т	\perp	Т
Т	\perp	\top	Т
Т	\perp	\perp	丄
\perp	T	Т	Т
\perp	T	\perp	\perp
\perp	\perp	\top	\perp
\perp	\perp	\perp	上

$$(\neg p_1 \lor p_2 \lor p_3) \land (p_1 \lor \neg p_2 \lor p_3) \land (p_1 \lor p_2 \lor \neg p_3) \land (p_1 \lor p_2 \lor p_3)$$

Exercícios

Determine uma forma normal conjuntiva para a fórmula abaixo e verifique se é uma tautologia

$$(p \lor r) \leftrightarrow (q \land \neg p)$$

$$\begin{aligned} &(p \lor r) \leftrightarrow (q \land \neg p) \equiv \\ &((p \lor r) \rightarrow (q \land \neg p)) \land ((q \land \neg p) \rightarrow (p \lor r)) \equiv \\ &(\neg (p \lor r) \lor (q \land \neg p)) \land (\neg (q \land \neg p) \lor (p \lor r)) \equiv \\ &((\neg p \land \neg r) \lor (q \land \neg p)) \land ((\neg q \lor p) \lor (p \lor r)) \equiv \\ &((\neg p \land \neg r) \lor q) \land ((\neg p \land \neg r) \lor \neg p) \land (\neg q \lor p \lor p \lor r) \equiv \\ &(\neg p \lor q) \land (\neg r \lor q) \land (\neg p \lor \neg p) \land (\neg r \lor \neg p) \land (\neg q \lor p \lor p \lor r) \end{aligned}$$

Não