Real Analysis: Exam 2

Paul Beggs

November 6, 2024

"All work on this take-home exam is my own."

Signature: Paul Beggs

Part 1. These two problems will give results that are useful in the next part. Throughout this test, $f^{(j)}(x)$ denotes the j^{th} derivative of f at x.

(1) Let $c_0, c_1, c_2, \ldots, c_k$ be real numbers. Prove there exists a unique polynomial p(x) of order at most k such that for each integer j between 0 and k, $p^{(j)}(0) = c_j$. In other words,

$$p(0) = c_0,$$
 $p'(0) = c_1,$ $p''(0) = c_2,$..., $p^{(k)}(0) = c_k.$

If $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$, give formulas for a_0, \dots, a_k in terms of c_0, \dots, c_k .

(2) Let φ be a function that is differentiable k+1 times on an interval [a,b]. This means $\varphi', \varphi'', \ldots, \varphi^{k+1}$ all exist on [a,b]. Assume that

$$\varphi(a) = 0$$
 and $\varphi(b) = 0$.
 $\varphi'(a) = 0$
 \vdots
 $\varphi^{(k)}(a) = 0$

Prove there exists a point $c \in (a, b)$ such that $\varphi^{k+1}(c) = 0$.

Part 2. These problems will walk you through an important concept and result in Calculus.

Let I be an interval with zero in its interior and f(x) be a function that is k+1 times differentiable on I.

- (3) Construct the unique polynomial $P_k(x)$ of order at most k which satisfies that for all integers j between 0 and k, $P_k^{(j)}(0) = f^{(j)}(0)$. This should be a direct application of Problem (1).
- (4) Let x be a fixed nonzero point in I. Define a new function g on I as follows:

$$g(t) = f(t) - P_k(t) - \left(\frac{f(x) - P_k(x)}{x^{k+1}}\right) t^{k+1}.$$

Show that

$$g(0) = 0$$
 and $g(x) = 0$.
 $g'(0) = 0$
 \vdots
 $g^{(k)}(0) = 0$

Conclude there exists a point c between 0 and x such that $q^{(k+1)}(c) = 0$.

(5) Use the above problem to prove the existence of a point c between 0 and x for which

$$f(x) = P_k(x) + \frac{f^{(k+1)}(c)}{(k+1)!}x^{k+1}.$$

(6) This polynomial P_k is used as an approximation of f. If it is known that $|f^{(k+1)}|$ is bounded by some number M on the interval I, prove the error bound formula

$$|f(x) - P_k(x)| \le \frac{M|x|^{k+1}}{(k+1)!}.$$

Part 3. Now you get to enjoy using your result!

(7) Consider the function $f(x) = e^x$. Give the expression of the polynomial approximation P_k for an arbitrary $k \in \mathbb{N}$. Use what you know about f and its derivatives on the interval [0,1] to determine an integer k for which you can guarantee that $|f(1) - P_k(1)| < 10^{-12}$. Use this (and a calculator) to generate an approximation of e to 12 decimal places.

Solutions

(1) To ensure that we have a polynomial with at order of at most k, we need to observe some behaviors of derivatives. For example, for the polynomial x^{j} ,

$$(x^{j})' = jx^{j-1}$$

 $(x^{j})'' = j(j-1)x^{j-2}$
 \vdots
 $(x^{j})^{(j)} = j! \cdot x^{0} = j!$

Notice the factorial arises from the recursive application of the power rule. Thus, when we combine this with the coefficients a_0, a_1, \ldots, a_k , we get,

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$

$$p'(x) = a_1 + (a_2 \cdot 2) x + (a_3 \cdot 3) x^2 + \dots + (a_k \cdot k) x^{k-1}$$

$$\vdots$$

$$p^{(j)}(x) = a_j \cdot j! + \dots$$

To solve this problem, we'll determine the coefficients a_0, a_1, \ldots, a_k in terms of c_0, c_1, \ldots, c_k . Step 1: Calculate the derivatives of p(x) at x = 0. Given:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$

Compute the j-th derivative of p(x):

- The j-th derivative $p^{(j)}(x)$ is:

$$p^{(j)}(x) = a_j \cdot j! + \text{terms involving higher powers of } x$$

- Evaluated at x=0:

$$p^{(j)}(0) = a_j \cdot j!$$

Step 2: Solve for a_j using $p^{(j)}(0) = c_j$.

Since $p^{(j)}(0) = c_j$, we have:

$$c_j = a_j \cdot j!$$

Therefore:

$$a_j = \frac{c_j}{j!}$$

for each j = 0, 1, 2, ..., k.

Final Result:

The coefficients are:
$$-a_0 = c_0 - a_1 = \frac{c_1}{1!} - a_2 = \frac{c_2}{2!} - \vdots - a_k = \frac{c_k}{k!}$$

Conclusion:

- **Existence:** The polynomial p(x) exists with coefficients defined by $a_j = \frac{c_j}{j!}$. - **Uniqueness:** The polynomial is unique because each a_j is uniquely determined by c_j .

This shows that there exists a unique polynomial p(x) of degree at most k satisfying the given conditions, with coefficients explicitly given in terms of c_i .