Generative Adversarial Networks Models That Create

Dan Becker

Welcome

Do two things:

1. Download slides from https://github.com/dansbecker/odsc_2018

- 2. Ensure you have a **verified** Kaggle account
 - Verify by visiting <u>kaggle.com/kernels</u>, selecting "New Kernel" and then selecting Notebook.

This Workshop

Learning Approach

Ideal Background

Use Cases

Tools Covered

WHAT IS A GAN?

Generative vs Discriminative Models

A dog G: A dog

Intuition for GANs

GAN Structure

- Data distribution
- Noise distribution

Discriminator

Conditional GANs

Conditional GANs

EXAMPLE APPLICATIONS

Image to Image Translation (Isola et al, 2016)

Unpaired Image Translation (Zhu et al, 2017)

Superresolution (Ledig et al, 2016)

original

Text-to-image Synthesis (Zhang et al, 2016)

This bird is blue with white and has a very short beak

This flower has petals that are yellow with shades of orange

A white bird with a black crown and yellow beak

Stage-II images

Google Photos Demo (2017)

THE GENERATOR

GAN Structure

Deconvolutions and The Generator

Deconvolutions and The Generator

Convolution Review

Convolution Review

Image

200	200	•••	•••	•••
0	0	•••	•••	•••
•••	•••	•••	•••	•••
•••	•••	•••	•••	•••
•••	•••	•••	•••	•••

Convolution

1.5	1.5
-1.5	-1.5

Output

600	?
?	?

Deconvolution (Transposed Convolution)

Image

200			•••	
•••	•••	•••	•••	
•••	•••	•••	•••	•••
•••	•••	•••	•••	•••
•••	•••	•••	•••	•••

Convolution

1.5	1.5
-1.5	-1.5

Output

300	300	?
-300	-300	?
?	?	?

Generator (Radford et al, 2015)

THE DISCRIMINATOR

GAN Structure

Discriminator

Standard classifier architecture

Results in high perceptual quality

CODING

TFGAN - A Framework for Training GANs

You Specify

- Generator and Discriminator Models
- Real data and random noise
- Loss Functions
- Optimizer Settings
- Training Sequence

Simple GAN

Conditional GAN

• Image Translation (Pix2Pix)

https://www.kaggle.com/dansbecker/running-your-first-gan

Conditional Gans

Image Translation (Pix2Pix)

https://github.com/Kaggle/learntools/tree/master/learntools/gans

https://www.kaggle.com/dansbecker/running-your-first-gan

https://www.kaggle.com/dansbecker/conditional-gans

Image Translation (Pix2Pix)

https://github.com/Kaggle/learntools/tree/master/learntools/gans

https://www.kaggle.com/dansbecker/running-your-first-gan

https://www.kaggle.com/dansbecker/conditional-gans

https://www.kaggle.com/dansbecker/image-translation

https://github.com/Kaggle/learntools/tree/master/learntools/gans

Encoder-Decoder Framework

What Next

- Bigger Networks
- U-Net
- PatchGan

- CycleGan
- Creative/Interesting Applications

