#university #in-class #subject-1202

2023-03-06

El Fondamenti di Informatica

Linguaggi Formali

Applicazioni d'esempio:

- Ricerca di una parola in un testo (usa proprietà dei linguaggi formali)
- II DNA
- I compilatori

Alfabeto: insieme finito di simboli (si indica con Σ). **es.** $\Sigma = \{a, b\}$

Linguaggio formale (vedi sotto definizione formale): insieme di parole di lunghezza finita costruite a partire da un determinato alfabeto.

Stringa = **Parola**: sequenza (di lunghezza finita) di simboli dell'alfabeto.

Quante sono le combinazioni di parole (lunghezza finita) rispetto a un alfabeto (finito)?: sono infinite. Basti pensare a quanti numeri esistono. Numeri finiti con numero di cifre finito.

Stringhe particolari:

- Stringa vuota: stringa che non contiene nessun simbolo (si indica con ε , oppure λ)
 - Es. $aab\varepsilon = aab$

Nota: per notazione vengono usate x, y, z per indicare parole e a, b, c per indicare simboli.

Dato un alfabeto Σ , l'insieme delle stringhe costruite su Σ si indica con Σ^* , ed è così definito:

- 1. $\varepsilon \in \Sigma^*$
- 2. Se $x \in \Sigma^*$ e $a \in \Sigma$, allora $xa \in \Sigma^*$

Esercizio: dato $\Sigma = \{a, b, c\}$, dimostriamo che $aab \in \Sigma^*$

- 1. $\varepsilon \in \Sigma^*$ e $a \in \Sigma$.
- $2. a \in \Sigma^* e a \in \Sigma.$
- 3. $aa \in \Sigma^*$ e $b \in \Sigma$.
- Quindi $aab \in \Sigma^*$. Si può dimostrare anche al contrario andando ricorsivamente

Sia Σ alfabeto e $x, y \in \Sigma^*$, la concatenazione di x e y si indica con $x \cdot y$ ed è la stringa data da xy.

- La concatenazione è **chiusa** rispetto a Σ^* .
- ε è l'elemento neutro della concatenazione.
- · Vale la proprietà associativa.
- Possiamo quindi dire che $(\Sigma^*, \cdot, \varepsilon)$ è un **monoide** (rispetto al gruppo il monoide non ha l'inverso)

Lunghezza di una parola: dato Σ alfabeto, la lunghezza di una parola $w \in \Sigma$ si indica con |w| ed è così definita:

- 1. Se w=arepsilon allora |w|=0.
- 2. Se w=xa dove $x\in \Sigma^*$ e $a\in \Sigma$ allora |w|=|x|+1.

Dato
$$x \in \Sigma^*$$
 e $w = x \cdot x \cdot x \cdots = x^n$, se $n = 0$ allora $w = arepsilon$

Definizione di **Linguaggio Formale**: dato un alfabeto Σ , un linguaggio formale su Σ è un qualsiasi sottoinsieme di Σ^* .

Linguaggi particolari:

• Linguaggio vuoto ($\Lambda \neq \{\varepsilon\}$): **non** è un insieme vuoto, ma un insieme che contiene ε

Concatenazione di linguaggi

$$L_1=\{ab,a\}$$
, $L_2=\{a,b\}$ da finire