北京师范大学 2024 - 2025 学年第 1 学期期末考试试卷 (A卷)

课程名称:	常微分方程		任课教师姓名:			
卷面总分:	100 分 考试时长: 1	20 分钟	考试类别:闭卷 ✓	开卷		其他 🗆
院(系):	数学科学学院	专业:	数学与应用数学	年	级:	2023
姓名: _			学号;		_	

- 1 (20分,每小题5分)判断下列命题是否正确(不用叙述理由).
- (1) 设 $y_1(x)$, $y_2(x)$ 是方程 $y'' + a_1(x)y' + a_2(x)y = 0$ 的解, 且 $y_1(x_0) = y_2(x_0) = 0$, 其中 $a_1(x)$, $a_2(x)$ 是连续函数. 则 $y_1(x)$ 与 $y_2(x)$ 线性相关
 - (2) 方程 $x'' + \omega^2 x = \cos \omega t$ 没有周期解.
 - (3) 设a,b为常数.则初值问题

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = x + a\sin^2 y, \quad y(0) = y_0, \ y'(0) = b$$

有唯一解.

(4) 设 $f(x,y,\lambda)$ 是 \mathbb{R}^3 上的连续函数,且对y 和 λ 有连续偏导数.则初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \quad y(x_0) = y_0$$

的解 $y = \phi(x, x_0, y_0, \lambda)$ 对 x_0 的偏导数 $z = \frac{\partial \phi}{\partial x_0}$ 满足初值问题

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\partial f}{\partial y} (x, \phi(x, x_0, y_0, \lambda), \lambda) z, \quad z(x_0) = 1.$$

- 2 (20分,每小题5分)简答题(只写出结果,不需给出证明).
- (1) 设 $\phi_1(x)$, $\phi_2(x)$ 是齐次方程 $y'' + a_1(x)y' + a_2(x)y = 0$ 的一个基本解组, 其中 $a_1(x)$, $a_2(x)$ 是连续函数. 写出非齐次方程 $y'' + a_1(x)y' + a_2(x)y = f(x)$ 的通解.
 - (2) 写出方程 $y = xy' + \sqrt{1 + y'^2}$ 的奇解.
 - (3) 写出方程

$$x' = f(x) = \begin{cases} 0, & x = 0, \\ -x^3 \sin \frac{1}{x}, & x \neq 0 \end{cases}$$

的渐近稳定平衡点.

(4) 判断方程组

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -3x + y + x^2 \sin y, \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -2x - 3y + y^2 \mathrm{e}^x \end{cases}$$

的零解的稳定性.

3. (15分)解微分方程: $y'' - 2y' + 2y = xe^x \cos x$.

4. (15分) 求方程组

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -y + (x-1)^3, \\ \frac{\mathrm{d}y}{\mathrm{d}t} = x - 1 + y^3 \end{cases}$$

的平衡点,并研究其稳定性.

5. (15分) 考查Hermite方程:

$$y'' - 2xy' + \lambda y = 0, \qquad \lambda$$
 是常数.

(1) 证明: 当 $\lambda = 2n (n = 0, 1, 2, \cdots)$ 时, Hermite方程有一个解是n次多项式。除了一个常数因子外, 上述多项式解可写成统一的形式:

$$H_n(x) = \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^k n!}{k!(n-2k)!} (2x)^{n-2k},$$

其中 $\left[\frac{n}{2}\right]$ 表示 $\frac{n}{2}$ 的整数部分, $H_n(x)$ 称为Hermite多项式.

(2) 证明:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}).$$

(3) 证明:

$$\int_{-\infty}^{+\infty} H_n(x)H_m(x)e^{-x^2}dx = \begin{cases} 0, & n \neq m, \\ 2^n n! \sqrt{\pi}, & n = m. \end{cases}$$

6. (15分) 设 f(x,y) 是 \mathbb{R}^2 上的有界连续函数,且对 y 满足Lipschitz条件. 证明: 存在点 $(0,\xi)$,使得初值问题

 $\frac{\mathrm{d}y}{\mathrm{d}x} = y^3 + f(x,y), \quad y(0) = \xi$

的解的最大存在区间是 $(-\infty, +\infty)$.