Video Processing Pipeline

El proyecto consiste en el desarrollo de una base de datos para un Sistema de Procesamiento de Video que automatiza la transcodificación y conversión de archivos multimedia. Este sistema permite recibir videos en diversos formatos, procesarlos según diferentes perfiles de calidad y generar múltiples versiones optimizadas para distintos dispositivos y plataformas de streaming.

Objetivo

El objetivo principal es diseñar e implementar una base de datos que permita:

Gestión de archivos fuente: Almacenar metadatos de videos originales Control de trabajos de codificación: Administrar la cola de procesamiento Seguimiento de calidad: Registrar métricas de rendimiento y calidad Monitoreo de recursos: Controlar la utilización de servidores de procesamiento

Trazabilidad completa: Desde el archivo original hasta las versiones finales

SITUACIÓN PROBLEMÁTICA

Necesidad del Negocio

Las empresas de streaming y producción multimedia enfrentan el desafío de procesar grandes volúmenes de contenido de video para múltiples plataformas. Sin un sistema de base de datos estructurado, surgen problemas como:

Pérdida de trazabilidad en el procesamiento de archivos Duplicación de trabajo por falta de control de estado Ineficiencia en la asignación de recursos computacionales Dificultad para medir calidad y rendimiento del procesamiento Falta de visibilidad en los tiempos de procesamiento

Solución Propuesta

La implementación de esta base de datos permite:

Centralizar toda la información del pipeline de procesamiento Automatizar la gestión de colas de trabajo Proporcionar métricas detalladas de calidad y rendimiento Optimizar la utilización de recursos computacionales

MODELO DE NEGOCIO

Descripción de la Organización

El sistema está diseñado para organizaciones que manejan procesamiento de video a gran escala:

Tipos de Usuarios

OTTs: Suben videos originales a la plataforma

System Administrators: Configuran perfiles de codificación y monitorean

workers

Quality Analysts: Revisan métricas de calidad y rendimiento

Flujo de Trabajo

Ingesta: Los archivos de video se cargan y analizan automáticamente Encolado: Se crean trabajos de codificación según perfiles activos Procesamiento: Workers disponibles procesan los videos Análisis: Se calculan métricas de calidad para cada salida Distribución: Los archivos procesados están listos para distribución

Relaciones Principales

Un archivo fuente puede generar múltiples trabajos de codificación Cada trabajo se asigna a un worker y usa un perfil específico Cada trabajo genera una salida transcodificada con métricas de calidad Los workers tienen registros de rendimiento para diferentes códecs

LISTADO DE TABLAS

SOURCE FILES Almacena información de archivos de video originales

source file id - BIGINT - Identificador único - CLAVE PRIMARIA filename - VARCHAR(255) - Nombre del archivo file path - VARCHAR(500) - Ruta del archivo - UNIQUE file size bytes - BIGINT - Tamaño en bytes $\verb|duration_seconds - DECIMAL(10,3) - Duración del video|\\$ upload timestamp - TIMESTAMP - Fecha de carga checksum md5 - CHAR(32) - Hash MD5 - UNIQUE original codec - VARCHAR(50) - Códec original original resolution - VARCHAR(20) - Resolución original original bitrate - BIGINT - Bitrate original original framerate - DECIMAL(5,2) - FPS original audio channels - TINYINT - Canales de audio audio_sample_rate - INT - Frecuencia de audio container format - VARCHAR(20) - Formato contenedor metadata json - JSON - Metadatos adicionales created at - TIMESTAMP - Fecha creación updated at - TIMESTAMP - Fecha actualización

ENCODING PROFILES Define perfiles de codificación disponibles

profile_id - INT - Identificador único - CLAVE PRIMARIA
profile_name - VARCHAR(100) - Nombre del perfil - UNIQUE
target_codec - VARCHAR(50) - Códec destino
target_resolution - VARCHAR(20) - Resolución objetivo
target_bitrate - BIGINT - Bitrate objetivo
target_framerate - DECIMAL(5,2) - FPS objetivo
audio_codec - VARCHAR(50) - Códec de audio
audio_bitrate - INT - Bitrate de audio
container_format - VARCHAR(20) - Formato final
ffmpeg_preset - VARCHAR(20) - Preset FFmpeg
quality_setting - DECIMAL(4,2) - Configuración calidad
profile_description - TEXT - Descripción
created_date - TIMESTAMP - Fecha creación
is_active - BOOLEAN - Perfil activo

```
created at - TIMESTAMP - Fecha creación
updated at - TIMESTAMP - Fecha actualización
PROCESSING WORKERS Servidores disponibles para procesamiento
worker_id - INT - Identificador único - CLAVE PRIMARIA
worker name - VARCHAR(100) - Nombre del worker - UNIQUE
server hostname - VARCHAR(255) - Nombre servidor
cpu cores - TINYINT - Núcleos CPU
ram gb - SMALLINT - Memoria RAM en GB
gpu model - VARCHAR(100) - Modelo GPU
gpu_memory_gb - SMALLINT - Memoria GPU en GB
max_concurrent_jobs - TINYINT - Máximo trabajos concurrentes
current load - TINYINT - Carga actual
worker status - ENUM - Estado worker
supported codecs - JSON - Códecs soportados
last heartbeat - TIMESTAMP - Último heartbeat
worker_type - ENUM - Tipo worker
created at - TIMESTAMP - Fecha creación
updated at - TIMESTAMP - Fecha actualización
ENCODING JOBS Tabla central que gestiona trabajos de codificación
job id - BIGINT - Identificador único - CLAVE PRIMARIA
source file id - BIGINT - Referencia archivo - CLAVE FORÁNEA 
ightarrow
source files
profile id - INT - Referencia perfil - CLAVE FORÁNEA → encoding profiles
worker id - INT - Worker asignado - CLAVE FORÁNEA → processing workers
job_priority - TINYINT - Prioridad trabajo
job status - ENUM - Estado trabajo
queued timestamp - TIMESTAMP - Momento encolado
started timestamp - TIMESTAMP - Momento inicio
\verb|completed_timestamp - TIMESTAMP - Momento finalización|\\
estimated duration - INT - Duración estimada
actual duration - INT - Duración real
retry count - TINYINT - Número reintentos
max retries - TINYINT - Máximo reintentos
created by user - VARCHAR(100) - Usuario creador
error message - TEXT - Mensaje error
progress percentage - DECIMAL(5,2) - Porcentaje progreso
created_at - TIMESTAMP - Fecha creación
updated at - TIMESTAMP - Fecha actualización
TRANSCODED OUTPUTS Archivos generados tras codificación
output id - BIGINT - Identificador único - CLAVE PRIMARIA
job id - BIGINT - Referencia trabajo - CLAVE FORÁNEA 
ightarrow encoding jobs
output_filename - VARCHAR(255) - Nombre archivo generado
output_path - VARCHAR(500) - Ruta archivo - UNIQUE
output size bytes - BIGINT - Tamaño en bytes
actual bitrate - BIGINT - Bitrate real
actual resolution - VARCHAR(20) - Resolución real
actual framerate - DECIMAL(5,2) - FPS real
encoding_time_seconds - INT - Tiempo codificación
```

```
compression ratio - DECIMAL(8,4) - Ratio compresión
output checksum - CHAR(32) - Hash MD5 - UNIQUE
created at - TIMESTAMP - Fecha creación
QUALITY METRICS Métricas de calidad calculadas
metric_id - BIGINT - Identificador único - CLAVE PRIMARIA
output id - BIGINT - Referencia salida - CLAVE FORÁNEA \rightarrow
transcoded outputs
psnr value - DECIMAL(6,3) - Valor PSNR
ssim value - DECIMAL(6,4) - Valor SSIM
vmaf score - DECIMAL(6,3) - Puntuación VMAF
bitrate efficiency - DECIMAL(8,4) - Eficiencia bitrate
visual_quality_score - DECIMAL(5,2) - Calidad visual
audio_quality_score - DECIMAL(5,2) - Calidad audio
analysis timestamp - TIMESTAMP - Momento análisis
metric version - VARCHAR(20) - Versión algoritmo
analysis duration seconds - INT - Tiempo análisis
FFMPEG COMMANDS Comandos FFmpeg utilizados
command id - BIGINT - Identificador único - CLAVE PRIMARIA
job id - BIGINT - Referencia trabajo - CLAVE FORÁNEA → encoding jobs,
UNIQUE
full command string - TEXT - Comando completo
input filters - JSON - Filtros entrada
video_filters - JSON - Filtros video
audio filters - JSON - Filtros audio
output parameters - JSON - Parámetros salida
hardware acceleration - VARCHAR(50) - Aceleración hardware
thread count - TINYINT - Número hilos
memory usage mb - INT - Uso memoria
command version - VARCHAR(20) - Versión comando
created at - TIMESTAMP - Fecha creación
PROCESSING ERRORS Errores durante procesamiento
error id - BIGINT - Identificador único - CLAVE PRIMARIA
job id - BIGINT - Referencia trabajo - CLAVE FORÁNEA → encoding jobs
error code - VARCHAR(50) - Código error
error message - TEXT - Mensaje error
error timestamp - TIMESTAMP - Momento error
ffmpeg output - TEXT - Salida FFmpeg
system resources at error - JSON - Estado recursos
recovery action - VARCHAR(100) - Acción recuperación
is resolved - BOOLEAN - Error resuelto
resolved timestamp - TIMESTAMP - Momento resolución
resolved by - VARCHAR(100) - Usuario resolvió
CODEC PERFORMANCE Métricas rendimiento de códecs
performance id - BIGINT - Identificador único - CLAVE PRIMARIA
codec name - VARCHAR(50) - Nombre códec
worker\_id - INT - Referencia \ worker - CLAVE \ FOR\'ANEA \rightarrow processing\_workers
input resolution - VARCHAR(20) - Resolución entrada
```

encoding_speed_fps - DECIMAL(8,3) - Velocidad codificación cpu_utilization - DECIMAL(5,2) - Utilización CPU memory_usage_mb - INT - Uso memoria gpu_utilization - DECIMAL(5,2) - Utilización GPU benchmark_date - TIMESTAMP - Fecha benchmark test_duration_seconds - INT - Duración prueba quality_setting - DECIMAL(4,2) - Configuración calidad sample file type - VARCHAR(50) - Tipo archivo prueba

Objetos de Base de Datos VISTAS

1. vw dashboard trabajos activos

Objetivo: Proporcionar una vista consolidada del estado actual de todos los trabajos en procesamiento para monitoreo en tiempo real. Tablas involucradas:

encoding_jobs
source_files
encoding_profiles
processing workers

Descripción: Combina información de trabajos, archivos fuente, perfiles y workers. Incluye cálculo de tiempo de procesamiento y filtra por trabajos activos ('queued', 'processing'). Ordenado por prioridad descendente y fecha de encolado.

Campos principales:

Estado del trabajo y progreso Información del archivo origen Perfil de codificación aplicado Worker asignado y su estado Tiempos estimados y reales

2. vw metricas calidad completas

Objetivo: Consolidar todas las métricas de calidad con información del trabajo y archivo original para análisis comparativo. Tablas involucradas:

quality_metrics
transcoded_outputs
encoding_jobs
source_files
encoding_profiles

Descripción: Permite análisis comparativo de calidad entre diferentes perfiles y códecs. Incluye categorización automática de calidad basada en VMAF (Excelente, Muy Buena, Buena, Aceptable, Baja). Solo muestra trabajos completados. Campos principales:

Métricas PSNR, SSIM, VMAF Comparación archivo original vs transcodificado Eficiencia de bitrate y ratio de compresión Categoría de calidad calculada

3. vw rendimiento workers

Objetivo: Analizar el rendimiento y utilización de cada worker en el sistema.

Tablas involucradas:

processing_workers
encoding_jobs
transcoded outputs

Descripción: Agrega estadísticas de trabajos completados, tiempos promedio y eficiencia por worker. Calcula tasa de éxito, horas totales de procesamiento y estado de conexión (minutos desde último heartbeat). Campos principales:

Especificaciones del worker (CPU, RAM, GPU) Total de trabajos procesados Tasa de éxito/fallo Tiempos promedio de codificación Estado de disponibilidad

4. vw_historial_errores_recientes Objetivo: Monitorear errores recientes para identificar patrones y problemas sistemáticos. Tablas involucradas:

processing_errors
encoding_jobs
source_files
processing workers

Descripción: Muestra errores de los últimos 30 días con información contextual del trabajo. Incluye cálculo de tiempo sin resolver y acciones de recuperación.

Campos principales:

Código y mensaje de error Archivo y worker afectado Estado de resolución Tiempo transcurrido sin resolver

FUNCIONES

1. fn_calcular_eficiencia_compresion(job_id)
Retorna: DECIMAL(5,2) - Porcentaje de reducción de tamaño
Objetivo: Calcular el porcentaje de reducción de tamaño tras la
compresión comparando el archivo original con el transcodificado.
Parámetros:

p_job_id (BIGINT): ID del trabajo de codificación

```
Obtiene tamaño del archivo original desde source files
Obtiene tamaño del archivo transcodificado desde transcoded outputs
Calcula: ((tamaño original - tamaño comprimido) / tamaño original) * 100
Retorna 0.00 si hay valores NULL o inválidos
Ejemplo de uso:
SELECT job id, fn calcular eficiencia compresion(job id) AS
eficiencia porcentaje
FROM encoding jobs
WHERE job status = 'completed';
2. fn obtener tiempo espera estimado (prioridad)
Retorna: INT - Minutos estimados de espera
Objetivo: Estimar tiempo de espera para trabajos en cola según su
prioridad.
Parámetros:
p prioridad (TINYINT): Prioridad del trabajo (1-10)
Lógica:
Cuenta trabajos en cola con prioridad >= a la especificada
Obtiene capacidad total de workers activos
Calcula tiempo promedio de procesamiento (últimos 7 días)
Estima: (trabajos adelante * tiempo promedio) / (capacidad total * 60)
Ejemplo de uso:
SELECT fn obtener tiempo espera estimado(8) AS
minutos espera prioridad 8;
3. fn verificar disponibilidad worker (worker id)
Retorna: TINYINT - 1 (disponible) o 0 (no disponible)
Objetivo: Verificar si un worker específico está disponible para aceptar
nuevos trabajos.
Parámetros:
p worker id (INT): ID del worker a verificar
Lógica:
Obtiene estado, carga actual y capacidad máxima del worker
Verifica si estado = 'active' y carga actual < max jobs</pre>
Retorna 1 si disponible, 0 en caso contrario
Ejemplo de uso:
SELECT worker id, worker name,
fn verificar disponibilidad worker (worker id) AS disponible
FROM processing workers;
STORED PROCEDURES
1. sp_asignar_trabajo_a_worker(job_id)
```

Lógica:

```
Objetivo: Asignar automáticamente un trabajo en cola al worker más
apropiado.
Parámetros:
p job id (BIGINT): ID del trabajo a asignar
Tablas afectadas:
encoding jobs (UPDATE)
processing_workers (UPDATE - incrementa current_load)
Descripción:
Selecciona el worker óptimo basándose en:
Estado activo
Capacidad disponible
Soporte del códec requerido
Mayor capacidad disponible (max_jobs - current_load)
Mayor número de CPU cores
Actualiza el trabajo a estado 'processing' y asigna el worker,
incrementando su carga.
Ejemplo de uso:
CALL sp asignar trabajo a worker(13);
Salida:
resultado: Mensaje de éxito o error
worker id: ID del worker asignado (o NULL si no hay disponibles)
2. sp reporte rendimiento periodo (fecha inicio, fecha fin)
Objetivo: Generar reporte completo de rendimiento del sistema en un
período específico.
Parámetros:
p fecha inicio (DATETIME): Fecha inicio del período
p fecha fin (DATETIME): Fecha fin del período
Tablas consultadas:
encoding_jobs
transcoded outputs
quality metrics
encoding profiles
processing workers
Descripción:
Retorna 4 conjuntos de resultados:
RESUMEN TRABAJOS: Total, completados, fallidos, cancelados, duración
promedio, tasa de éxito
METRICAS CALIDAD: Promedios de VMAF, PSNR, SSIM, calidad visual,
eficiencia
RENDIMIENTO POR PERFIL: Estadísticas por perfil de codificación
```

```
TOP WORKERS: Top 5 workers más productivos
Ejemplo de uso:
CALL sp reporte rendimiento periodo('2025-01-15 00:00:00', '2025-01-30
23:59:59');
3. sp reintentar trabajos fallidos (horas limite)
Objetivo: Reintentar automáticamente trabajos fallidos que no hayan
superado el límite de reintentos.
Parámetros:
p horas limite (INT): Límite de horas desde el fallo para considerar el
reintento
Tablas afectadas:
encoding jobs (UPDATE)
Descripción:
Resetea el estado de trabajos fallidos elegibles:
Cambia status a 'queued'
Limpia worker id y started timestamp
Incrementa retry count
Resetea progress percentage a 0
Solo procesa trabajos donde retry count < max retries
Ejemplo de uso:
CALL sp reintentar trabajos fallidos (48);
Salida:
trabajos reintentados: Número de trabajos reintentados
mensaje: Mensaje descriptivo
TRIGGERS
1. trg validar worker antes asignacion
Tipo: BEFORE UPDATE
Tabla: encoding jobs
Objetivo: Validar que el worker asignado esté activo y tenga capacidad
disponible antes de asignar un trabajo.
Descripción:
Se ejecuta antes de actualizar un encoding job. Valida:
Worker tiene estado 'active'
Worker tiene capacidad disponible (current load < max concurrent jobs)
Genera error (SQLSTATE '45000') si alguna validación falla, cancelando la
operación.
Casos de uso:
Prevenir asignación a workers en mantenimiento
Prevenir sobrecarga de workers
Garantizar integridad en la asignación automática
```

2. trg actualizar carga worker completado

Tipo: AFTER UPDATE
Tabla: encoding_jobs

Objetivo: Decrementar automáticamente la carga del worker cuando un trabajo se completa.

Descripción:

Se ejecuta después de actualizar un encoding_job. Cuando un trabajo pasa de 'processing' a estado final ('completed', 'failed', 'cancelled'):

Decrementa current_load del worker en 1 Usa GREATEST para evitar valores negativos Actualiza updated at del worker

Beneficio: Mantiene automáticamente la carga de workers actualizada sin intervención manual.

3. trg registrar error trabajo fallido

Tipo: AFTER UPDATE
Tabla: encoding jobs

Objetivo: Registrar automáticamente un error cuando un trabajo cambia a estado fallido.

Descripción:

Se ejecuta después de actualizar un encoding_job. Cuando un trabajo cambia a estado 'failed':

Crea registro en processing_errors
Usa el error_message del trabajo o mensaje por defecto
Determina recovery_action según retry_count vs max_retries
Marca error como no resuelto (is resolved = FALSE)

Beneficio: Trazabilidad completa de errores sin necesidad de código adicional.

4. trg validar metricas calidad

Tipo: BEFORE INSERT
Tabla: quality_metrics

Objetivo: Validar que las métricas de calidad estén dentro de rangos

válidos antes de insertarlas.

Descripción:

Se ejecuta antes de insertar en quality metrics. Valida:

PSNR: 0-100 (típicamente 20-60 dB)

SSIM: 0-1 VMAF: 0-100

Establece metric_version = '1.0' por defecto si es NULL. Genera error (SQLSTATE '45000') si valores están fuera de rango. Beneficio: Garantiza integridad de datos de calidad y previene valores imposibles.