Indian Institute of Information Technology Ranchi

B. Tech Mid San			
B. Tech Mid Semester Examination – Spring Semester 2022-23			
		Samination – Spring Semester 2022-23	
Cou	rse Code: CS-3004	Branch: CSE	_
		Course Name: SOFTWARE ENGINE QUESTION PAPER	ERING
1: Ansv	ver the Following Quest	tions	
			[2x5=10]
45	What do you mean by S	Software Crisis?	
Which Principles are deployed by Software Engineering Techniques to Overcome Human Cognitive Limitations? Explain Structured Programming with Examples.			
e) Explain Phase Containment of Errors.			
- (a) L	Apiain Incremental Ma	del of Software Davidsoment with Mad LD:	
Increm	ental Development?	del of Software Development with Model Diagram. Which Type of	Software is Suitable for
			[5]
(b) How Incremental Model of Software Development is different from evolutionary Software Development [5]			
3: Sele	ct the Correct Option, E	Explain with reason. [(1+1)) x 5=101
		cs that every good software design needs are:	13 10
a)	□ Correctness	es that every good software design needs are:	
b)	☐ Understandability		
c)	□ Efficiency		
	□ Maintainability		
	□ All of the above		
(b) A module is said to have logical cohesion, if			
a)	□ it performs a set of tas	sks that relate to each other very loosely.	
b)	all the functions of the	e module are executed within the same time span.	
(e)	all elements of the mo	odule perform similar operations, e.g. error handling, data input, data outp	out
,	□ None of the above.	6 6 10	
 (c) Among development phases of software life cycle, which phase typically consumes the maximum effort? a) □ Requirements analysis and specification 			
,	□ Design	s and specification	
	□ Coding		
,	□ Testing		
(d) Which of the following is not an essential program constructs?			
	□ sequence		
	□ selection		
54	□ jump		
,	□ iteration		
	SRS document normally		
	☐ Functional requirement ☐ Module structure	nts of the system	
,	□ Non-functional requ	viraments of the system	
,	☐ Constraints on the sys	•	
d)	iii Constraints on the sys	icii	
A: Answer True or False, Explain with Reasons [(1+1) x 5=10]			
(a)	Functional requirements	address maintainability, portability, and usability issues. F	
(b)	The primary characterist	tic of a good design is low cohesion and high coupling. *	

(c) In the function-oriented design approach, the system state is decentralized and not shared among different functions.

- (d) Evolutionary life cycle model is ideally suited for development of very small software products typically requiring a few months
- All software engineering principles are backed by either scientific basis or theoretical proof. T 5: Find the Difference

 $[2 \times 5=10]$

(a) JOB Vs Project

- (6) Software Product Vs Software Services
- (C) Software Verification Vs Software Validation
- (d) RAD vs Prototyping
- Control Flow Graph Vs Data Flow Graph

6: DRAW CFG and Find CC

```
[2x5=10]
```

```
(b)
(a)
                                                               (c)
                               {
while (i<n-1) do 7 \
                                                               begin int x, y, power;
                                int i, j, k;
j = i + 1;
              72
                                                                  float z;
                                for (i=0; i<=N; i++)
while (j<n) do 73
                                                                  input(x, y);
                                p[i] = 1;
if A[i]<A[j] then Jy
                                                                  if(y<0)
                                for (i=2; i<=N; i++)
swap(A[i], A[j]); 🤰 🤇
                                                                  power = -y;
end do;
             3 6
                                                                  else power = y;
i=i+1;
                                  k = p[i]; j=1;
                                                                  z=1;
end do;
              77
                                  while (a[p[j-1]] > a[k] {
                                                                  while(power!=0)
                                    p[j] = p[j-1];
                                                                   { z=z*x;
                                    j--;
                                                                     power=power-1;
                                }
                                                                   } if(y<0) end
```

```
(d)
 int binsearch(int x, int v[], int n)
          int low, high, mid; low = 0;
            high = n - 1;
while (low <= high) 2
                3 | mid = (low + high)/2;
if (x < v[mid])
high = mid - 1; | 4
5 | else if (x > v[mid])
low = mid + 1; | 6
7 | else return mid;
            return -1; | 8
```

```
for all nodes, n, in the cea
    DF(n) \leftarrow \emptyset
for all nodes, n. in the cro
    If a has multiple predecessors then
         for each predecessor p of n
             runner ← p
             while runner # IDom(n)
                op(runner) ← op(runner) U [n]
                runner ← (Dom(runner)
```