Math 462: Homework 3 solutions

Paul Hacking

2/27/10

- 1. Let A, B, C be three points on a circle with center O in the plane.
 - (a) Suppose that B and O are on the same side of the line AC. Show that the angle $\angle ABC$ equals half the angle $\angle AOC$. [Hint: Draw a diagram and use the angle sum of a triangle equals π radians.]
 - (b) What about if B and O are on opposite sides of AC?
 - (a) Draw the triangle ABC and the radii OA, OB, OC. The triangles BOA and BOC are isosceles (two sides of equal length). So writing $\alpha = \angle ABO = \angle BAO$ and $\beta = \angle BCO = \angle CBO$ we have $\angle BOA = \pi 2\alpha$ and $\angle BOC = \pi 2\beta$. Now

$$\angle BOA + \angle BOC + \angle AOC = 2\pi$$
,

(this is where we use that B and O are on the same side of the line AC) so

$$\angle AOC = 2\pi - (\pi - 2\alpha) - (\pi - 2\beta) = 2(\alpha + \beta) = 2(\angle ABO + \angle CBO) = 2\angle ABC$$
 as required.

(b) In this case we have

$$\angle BOA + \angle BOC = \angle AOC$$

so

$$\angle AOC = (\pi - 2\alpha) + (\pi - 2\beta) = 2\pi - 2(\angle ABO + \angle CBO) = 2\pi - 2\angle ABC.$$

2. Show that the sum of the angles of a polygon with n sides equals $(n-2)\pi$ radians. [Hint: Subdivide the polygon into triangles.]

(There are many ways to do this, here is one possible solution.) Label the vertices of the polygon P_1, P_2, \ldots, P_n in anticlockwise order. Now draw the lines $P_1P_3, P_1P_4, \ldots, P_1P_{n-1}$. This divides the polygon into (n-2) triangles $P_1P_2P_3, P_1P_3P_4, \ldots, P_1P_{n-1}P_n$. We observe that the sum of the angles of the polygon equals the sum of the angles of all the triangles. We know that the sum of the angles of a triangle equals π . So the sum of the angles of the polygon equals $(n-2)\pi$.

3. Recall that in class Prof Urzua showed that any 3 points A, B, C lie on a circle (the *circumcircle* of the triangle ABC). What condition must the angles of the triangle ABC satisfy so that the center of the circumcircle lies inside the triangle? [Hint: Use Q1.]

From Q1 we see that if ABC is a triangle with vertices on a circle with center O, then O lies on the same side of AC as B if $\angle ABC < \frac{\pi}{2}$, on the opposite side if $\angle ABC > \frac{\pi}{2}$, and O lies on the line AC if $\angle ABC = \frac{\pi}{2}$. So the condition for the center of the circumcircle of a triangle to be contained in the triangle is that all the angles of the triangle are less than $\frac{\pi}{2}$ radians.

4.

(a) Show that if 4 points A, B, C, D lie on a circle (in that order) then the sum of the angles $\angle ABC$ and $\angle CDA$ equals π radians:

$$\angle ABC + \angle CDA = \pi$$
.

[Hint: Use Q1.]

- (b) Conversely, suppose we are given 4 points A, B, C, D such that $\angle ABC + \angle CDA = \pi$. Does it follow that A, B, C, D lie on a circle? Why?
- (a) Let O denote the center of the circle. The points B and D lie on opposite sides of the line AC. Suppose that B lies on the same side of AC as the center O (the other case can be treated in the same way). Then by Q1 parts (a) and (b) we have

$$\angle AOC = 2\angle ABC = 2\pi - 2\angle ADC.$$

So
$$\angle ABC + \angle ADC = \frac{1}{2} \angle AOC + \frac{1}{2} (2\pi - \angle AOC) = \pi.$$

(b) The answer is yes if we assume that B and D lie on opposite sides of the line AC (otherwise the answer is no in general): Suppose that $\angle ABC \leq \frac{\pi}{2}$ (the other case $\angle CDA \leq \frac{\pi}{2}$ can be treated the same way). The circle passing through A, B, C has center O the point on the perpendicular bisector of AB such that $\angle AOC = 2\angle ABC$ and O lies on the same side of AC as B. (Note that this determines O and the radius of the circle uniquely). Similarly the circle passing through A, D, C has center O' the point on the perpendicular bisector of AB such that $\angle AO'C = 2\pi - 2\angle ADC$ and O' lies on the opposite side of AC to D (note $\angle ADC = \pi - \angle ABC \geq \frac{\pi}{2}$ by assumption). Now since $\angle ABC + \angle ADC = \pi$ and B and D lie on opposite sides of AC we see that the points O and O' coincide, and so the two circles also coincide, that is, there is a circle through all 4 points A, B, C, D.

5.

(a) Show that the rotation $T = \text{Rot}(\mathbf{c}, \theta)$ of \mathbb{R}^2 about a point \mathbf{c} through angle θ anticlockwise is given by the formula

$$T(\mathbf{x}) = A(\mathbf{x} - \mathbf{c}) + \mathbf{c}$$

where

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

is the matrix defining the rotation about the origin through angle θ anticlockwise. [Hint: Draw a picture.]

(b) Let P, Q be points in \mathbb{R}^2 . Show that the composition

$$Rot(Q, -\theta) \circ Rot(P, \theta)$$

of rotation about P through angle θ anticlockwise followed by rotation about Q through angle θ clockwise is a translation. What is the translation vector? Explain geometrically what happens if $\theta = \pi$. Show that if θ is small, then the translation vector has length approximately $\theta \cdot d(P,Q)$ and its direction is approximately perpendicular to PQ. [Hint: To make things easier, we can choose coordinates so that P is the origin and $Q = \mathbf{c} = \begin{pmatrix} c \\ 0 \end{pmatrix}$ is a point on the x-axis. Now use the formula from part (a).]

- (a) We write $\mathbf{x} = \mathbf{c} + (\mathbf{x} \mathbf{c})$. The effect of rotation about \mathbf{c} on the point \mathbf{x} is to rotate the vector $(\mathbf{x} \mathbf{c})$ through angle θ . This gives $T(\mathbf{x}) = \mathbf{c} + A(\mathbf{x} \mathbf{c})$.
- (b) Choose P as the origin and write **c** for the vector \overrightarrow{PQ} . Then

$$Rot(P, \theta)(\mathbf{x}) = A\mathbf{x}$$

and

$$Rot(Q, -\theta)(\mathbf{x}) = A^{-1}(\mathbf{x} - \mathbf{c}) + \mathbf{c}$$

by part (a), so the composition

$$\operatorname{Rot}(Q, -\theta) \circ \operatorname{Rot}(P, \theta)(\mathbf{x}) = \operatorname{Rot}(Q, -\theta)(A\mathbf{x})$$

$$= A^{-1}(A\mathbf{x} - \mathbf{c}) + \mathbf{c} = \mathbf{x} + (\mathbf{c} - A^{-1}\mathbf{c}).$$

is translation by the vector $\mathbf{d} = \mathbf{c} - A^{-1}\mathbf{c}$. To compute \mathbf{d} in coordinates, assume $\mathbf{c} = \begin{pmatrix} c \\ 0 \end{pmatrix}$ (by choosing coordinates appropriately). Then

$$\mathbf{d} = \begin{pmatrix} c \\ 0 \end{pmatrix} - \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} c \\ 0 \end{pmatrix} = c \begin{pmatrix} 1 - \cos \theta \\ \sin \theta \end{pmatrix}.$$

If $\theta = \pi$, we find $\mathbf{d} = c \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2\mathbf{c}$. (To see why, draw a picture.) If θ is small, then

$$\cos\theta = 1 - \frac{\theta^2}{2} + \dots \approx 1$$

and

$$\sin \theta = \theta - \frac{\theta^3}{6} + \dots \approx \theta,$$

so

$$\mathbf{d} \approx c \begin{pmatrix} 0 \\ \theta \end{pmatrix}.$$

This is a vector perpendicular to $\mathbf{c} = \overrightarrow{PQ}$ of length $c\theta = d(P, Q) \cdot \theta$.