UFRN - IMD - EDBII

LISTA 2

- 1) Considere o seguinte algoritmo.
 - a) Escreva a equação de recorrência que fornece o tempo T(n) de uma camada a DC(n).
 - b) Resolva a equação de recorrência, empregando o método da equação característica.
 - c) Determine a complexidade do algoritmo a partir do resultado obtido em b).
 - d) É possível empregar o método mestre para obter a complexidade do algoritmo? Justifique.

Procedimento
$$DC(n)$$

se $n \le 1$ então retorne
para $i \leftarrow 1$ até 8 faça $DC(n \div 2)$
para $i \leftarrow 1$ até n^3 faça $dummy \leftarrow 0$

- 2) O tempo de execução de um algoritmo A é descrito pela recorrência $T(n) = 7T(n/2) + n^2$. Um algoritmo concorrente A' tem um tempo de execução $T'(n) = aT'(n/4) + n^2$. Qual é o maior valor de a tal que A' seja assintoticamente mais rápido que A?
- 3) Resolva as seguintes recorrências.

Resolva as seguintes recorrencias.
$$t_{n} = \begin{cases} n & n = 0,1 \\ 5t_{n-1} - 6t_{n-2} & c.c. \end{cases}$$

$$t_{n} = \begin{cases} 9n^{2} - 15n + 106 & n = 0,1,2 \\ t_{n-1} + 2t_{n-2} - 2t_{n-3} & c.c. \end{cases}$$

$$t_n = \begin{cases} 1 & n=1\\ 3/2 & n=2\\ \frac{3}{2}T(n/2) - \frac{1}{2}T(n/4) - \frac{1}{n} & c.c. \end{cases}$$

- 4) Use o Teorema Mestre para obter limites assintóticos justos para as seguintes recorrências:
 - a) T(n) = 2T(n/4)+1
 - b) $T(n) = 2T(n/4) + \sqrt{n}$
 - c) T(n) = 2T(n/4) + n
 - d) $T(n) = 2T(n/4) + n^2$
- 5) Estabeleça um limite assintótico superior (Notação O) para a recorrência.

$$T(n) = T(\sqrt{n}) + lg(n)$$

6) Determine um limite assintótico superior usando árvore de recursão para a recorrência

$$T(n) = \begin{cases} 1, n=1 \\ T(n-1)+1, cc \end{cases}$$

7) Use o método da iteração para resolver a recorrência.

$$T(n) = \begin{cases} 1, n=1 \\ T(n-1) + n, cc \end{cases}$$