Алгебра. КТ. Осенний семестр

ІХ. Подпространства и линейные многообразия

1. Решите С Λ АУ над $\mathbb R$, найдите Φ СР соответствующей ей однородной С Λ АУ:

a)
$$\begin{cases} x_1 - x_2 + x_3 - x_4 & = \ 4; \\ x_1 + x_2 + 2x_3 + 3x_4 & = \ 8; \\ 2x_1 + 4x_2 + 5x_3 + 10x_4 & = \ 20; \\ 2x_1 - 4x_2 + x_3 - 6x_4 & = \ 4; \end{cases}$$
 6)
$$\begin{cases} 2x_1 + 2x_2 + x_3 & = \ 2; \\ x_1 + 2x_2 - x_3 & = \ 7; \\ x_1 + x_2 + 5x_3 & = \ -7; \\ 2x_1 + 3x_2 - 3x_3 & = \ 14; \end{cases}$$
 7)
$$\begin{cases} x_1 + x_2 - 3x_3 & = \ -1; \\ 2x_1 + x_2 - 2x_3 & = \ 1; \\ x_1 + x_2 + x_3 & = \ 3; \\ x_1 + 2x_2 - 3x_3 & = \ 1; \end{cases}$$
 7)
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 & = \ 4; \\ 3x_1 + x_2 - x_3 + 2x_4 & = \ -2; \\ x_1 + 5x_2 - 3x_3 & = \ 10; \end{cases}$$
 8)
$$\begin{cases} 2x_1 + x_2 - x_3 & = \ 1; \\ x_1 - 3x_2 + 4x_3 & = \ 2; \\ 11x_1 - 12x_2 + 17x_3 & = \ 3; \end{cases}$$
 8)
$$\begin{cases} 2x_1 - x_2 + 3x_3 - 7x_4 & = \ 5; \\ 6x_1 - 3x_2 + x_3 - 4x_4 & = \ 7; \\ 4x_1 - 2x_2 + 14x_3 - 31x_4 & = \ 18. \end{cases}$$

д)
$$\left\{egin{array}{lll} 2x_1+x_2-x_3&=&1;\ x_1-3x_2+4x_3&=&2;\ 11x_1-12x_2+17x_3&=&3; \end{array}
ight.$$
 e) $\left\{egin{array}{lll} 2x_1-x_2+3x_3-7x_4&=&5\ 6x_1-3x_2+x_3-4x_4&=&7\ 4x_1-2x_2+14x_3-31x_4&=&18 \end{array}
ight.$

Пусть U — подпространство решений соответствующей однородной СЛАУ. Найдите \mathbb{R}^n/U , где n — количество неизвестных в СЛАУ.

2. При каких значениях λ С Λ АУ над $\mathbb R$

$$egin{array}{lll} \left\{egin{array}{lll} \lambda x_1 + x_2 + x_3 &=& 1; \ x_1 + \lambda x_2 + x_3 &=& 1; \ x_1 + x_2 + \lambda x_3 &=& 1; \end{array}
ight. \left\{egin{array}{lll} (3-2\lambda)x_1 + (2-\lambda)x_2 + x_3 &=& \lambda; \ (2-\lambda)x_1 + (2-\lambda)x_2 + x_3 &=& 1; \ x_1 + x_2 + (2-\lambda)x_3 &=& 1; \end{array}
ight.$$

- 1) имеет единственное решение;
- 2) имеет бесконечно много решений;
- 3) имеет ровно 2 решения;
- 4) несовместна?
- 3. Составьте СЛАУ над \mathbb{R} , задающую линейную оболочку системы векторов:
 - a) $(1, 1, 1)^{T}$, $(1, 2, 3)^{T}$;
 - 6) $(1, 1, 1, 1)^{\mathrm{T}}$, $(1, 2, 1, 3)^{\mathrm{T}}$;
 - B) $(1, 1, 2, 2)^{T}$;
 - Γ) $(1, 1, 1, 1)^{\mathrm{T}}$, $(1, 2, 1, 3)^{\mathrm{T}}$, $(1, 1, 2, 2)^{\mathrm{T}}$, $(1, 1, 1, 3)^{\mathrm{T}}$;
 - д) $(0,0,0,0)^{\mathrm{T}}$;
- 4. Найдите С Λ АУ над \mathbb{R} , задающую линейное многообразие

$$L=\left(egin{array}{c}1\1\1\1\end{array}
ight)+\left\langle\left(egin{array}{c}1\-1\1\0\end{array}
ight),\left(egin{array}{c}1\1\0\1\end{array}
ight),\left(egin{array}{c}2\0\1\1\end{array}
ight)
ight>.$$

5. Решите СЛАУ над полями \mathbb{Z}_5 и \mathbb{Z}_7 :

a)
$$\left\{ egin{array}{lll} 3x+y+2z&=&1;\ x+2y+3z&=&1;\ 4x+3y+2z&=&1; \end{array}
ight.$$
 6) $\left\{ egin{array}{lll} 3x+2y&=&1;\ 3x+2y+z&=&2;\ x+3y+4z&=&2. \end{array}
ight.$

6* Имеется С Λ АУ над $\mathbb Z$

$$\left\{ egin{array}{lll} \ldots x + \ldots y + \ldots z &=& 0; \ \ldots x + \ldots y + \ldots z &=& 0; \ \ldots x + \ldots y + \ldots z &=& 0. \end{array}
ight.$$

Матроскин и Шарик поочерёдно вписывают вместо многоточий числа. Матроскин ходит первым. Докажите, что он всегда может добиться существования у этой СЛАУ ненулевого целочисленного решения.

- 7. A и B квадратные матрицы одинакового размера. Обязательно ли $\mathrm{rk}(AB) = \mathrm{rk}(BA)$?
- 8. Может ли при элементарных преобразованиях матрицы A измениться ранг матрицы A^2 ?
- 9.* Пусть $a_{ij}=(i-j)^2$. Найдите ранг матрицы $A=(a_{ij})$ порядка $n\geqslant 3$.
- 10* Найдите наименьший возможный ранг вещественной квадратной матрицы nго порядка, у которой все диагональные элементы равны нулю, а все остальные элементы положительны.