

Analysis of Gradient Descent on Wide Two-Layer ReLU Neural Networks

Lénaïc Chizat*, joint work with Francis Bach+ August 3rd 2020 - LMS Bath Symposium

*CNRS and Université Paris-Sud +INRIA and ENS Paris

Supervised learning with neural networks

Supervised machine learning

- Consider a couple of random variables (X, Y) on $\mathbb{R}^d \times \mathbb{R}$
- Given *n* i.i.d. samples $(x_i, y_i)_{i=1}^n$, build *h* such that $h(X) \approx Y$

Wide 2-layer ReLU neural networks

Class of predictors h of the form, for some large width $m \in \mathbb{N}$,

$$h((w_j)_j, x) := \frac{1}{m} \sum_{j=1}^m \phi(w_j, x)$$

where $\phi(w,x) := c \max\{a^\top x + b, 0\}$ and $w := (a,b,c) \in \mathbb{R}^{d+2}$.

 $\rightarrow \phi$ is 2-homogeneous in w, i.e. $\phi(rw,x)=r^2\phi(w,x), \forall r>0$

Learning algorithm: selects $(w_j)_j$ using the training data

Gradient flow of the empirical risk

Empirical risk minimization

- ullet Choose a loss $\ell:\mathbb{R}^2 o\mathbb{R}$ convex & smooth in its 1^{st} variable
- "Minimize" the empirical risk with a regularization $\lambda \geq 0$

$$F_m((w_j)_j) := \underbrace{\frac{1}{n} \sum_{i=1}^n \ell(h((w_j)_j, x_i), y_i)}_{\text{empirical risk}} + \underbrace{\frac{\lambda}{m} \sum_{j=1}^m \|w_j\|_2^2}_{\text{(optional) regularization}}$$

Gradient-based learning

- Initialize $w_1(0), \ldots, w_m(0) \stackrel{\text{i.i.d}}{\sim} \mu_0 \in \mathcal{P}_2(\mathbb{R}^{d+2})$
- Decrease the non-convex objective via gradient flow, for $t \ge 0$,

$$\frac{\mathrm{d}}{\mathrm{d}t}(w_j(t))_j = -m\nabla F_m((w_j(t))_j)$$

→ in practice, discretized with variants of gradient descent

Illustration

Dynamics for a classification task: unregularized logistic loss, d=2

Space of parameters

- plot $|c| \cdot (a, b)$
- color depends on sign of c
- tanh radial scale

Space of predictors

- (+/-) training set
- color shows $h((w_j(t))_j, \cdot)$
- line shows 0 level set

Motivations

Main question

What is performance of the learnt predictor $h((w_j(\infty))_j, \cdot)$?

- Understanding 2-layer networks: when are they powerful?
 - \rightarrow role of initialization μ_0 , loss, regularization, data structure, etc.
- Understanding representation learning via back-propagation
 - → not captured by current theories for deeper models who study perturbative regimes around the initialization
- Natural next theoretical step after linear models
 - we can't understand the deep if we don't understand the shallow
- Beautiful connections with rich mathematical theories
 - → variation norm spaces, Wasserstein gradient flows

Outline

Global convergence in the infinite width limit

Generalization with regularization

Implicit bias in the unregularized case

Global convergence in the infinite width limit

Wasserstein gradient flow formulation

ullet Parameterize with a probability measure $\mu \in \mathcal{P}_2(\mathbb{R}^{d+2})$

$$h(\mu, x) = \int \phi(w, x) \, \mathrm{d}\mu(w)$$

Objective on the space of probability measures

$$F(\mu) := \frac{1}{n} \sum_{i=1}^{n} \ell(h(\mu, x_i), y_i) + \lambda \int \|w\|_2^2 d\mu(w)$$

Theorem (dynamical infinite width limit, adapted to ReLU)

Assume that

$$\operatorname{spt}(\mu_0) \subset \{|c|^2 = ||a||_2^2 + |b|^2\}.$$

As $m \to \infty$, $\mu_{t,m} = \frac{1}{m} \sum_{j=1}^m \delta_{w_j(t)}$ converges in $\mathcal{P}_2(\mathbb{R}^{d+2})$ to μ_t , the unique Wasserstein gradient flow of F starting from μ_0 .

Global convergence

Theorem (C. & Bach, '18, adapted to ReLU)

Assume that $\mu_0 = \mathcal{U}_{\mathbb{S}^d} \otimes \mathcal{U}_{\{-1,1\}}$. If μ_t converges to μ_{∞} in $\mathcal{P}_2(\mathbb{R}^{d+2})$, then μ_{∞} is a global minimizer of F.

- ullet Initialization matters: the key assumption on μ_0 is diversity
- Corollary: $\lim_{m,t\to\infty} F(\mu_{m,t}) = \min F$
- Convergence of μ_t : open question (even with compactness)

Generalization bounds?

They depend on the objective F and the data. If F is the ...

- regularized empirical risk: "just" statistics (this talk)
- unregularized empirical risk: need implicit bias (this talk)
- population risk: need convergence speed (open question)

Illustration: population risk

Stochastic gradient descent on population risk (m=100, d=1) Teacher-student setting: $X \sim \mathcal{U}_{\mathbb{S}^d}$ and $Y = f^*(X)$ where f^* is a ReLU neural network with 5 units (dashed lines) Square loss $\ell(y,y') = (y-y')^2$.

[Related work studying infinite width limits]:

Nitanda, Suzuki (2017). Stochastic particle gradient descent for infinite ensembles.

Mei, Montanari, Nguyen (2018). A Mean Field View of the Landscape of Two-Layers Neural Networks.

Rotskoff, Vanden-Eijndem (2018). Parameters as Interacting Particles [...].

Sirignano, Spiliopoulos (2018). Mean Field Analysis of Neural Networks.

Generalization with regularization

Variation norm

Definition (Variation norm)

For a predictor $h: \mathbb{R}^d \to \mathbb{R}$, its variation norm is

$$||h||_{\mathcal{F}_{1}} := \min_{\mu \in \mathcal{P}_{2}(\mathbb{R}^{d+2})} \left\{ \frac{1}{2} \int ||w||_{2}^{2} d\mu(w) ; h(x) = \int \phi(w, x) d\mu(w) \right\}$$
$$= \min_{\nu \in \mathcal{M}(\mathbb{S}^{d})} \left\{ ||\nu||_{TV} ; h(x) = \int \max\{a^{\top}x + b, 0\} d\nu(a, b) \right\}$$

Proposition

If $\mu^* \in \mathcal{P}_2(\mathbb{R}^{d+2})$ minimizes F then $h(\mu^*,\cdot)$ minimizes

$$\frac{1}{n}\sum_{i=1}^n \ell(h(x_i),y_i) + 2\lambda \|h\|_{\mathcal{F}_1}.$$

[Refs]:

Neyshabur, Tomioka, Srebro (2015). Norm-Based Capacity Control in Neural Networks. Kurkova, Sanguineti (2001). Bounds on rates of variable-basis and neural-network approximation.

Generalization with variation norm regularization

Regression of a Lipschitz function

Assume that X is bounded and $Y = f^*(X)$ where f^* is 1-Lipschitz. Error bound on $\mathbf{E}[(h(X) - f^*(X))^2]$ for any estimator h?

 \rightarrow in general $\succeq n^{-1/d}$ unavoidable (curse of dimensionality)

Anisotropy assumption:

What if moreover $f^*(x) = g(\pi_r(x))$ for some rank r projection π_r ?

Theorem (Bach '14, reformulated)

For a suitable choice of regularization $\lambda(n) > 0$, the minimizer of F with $\ell(y, y') = (y - y')^2$ enjoys an error bound in $\tilde{O}(n^{-1/(r+3)})$.

- methods with fixed features (e.g. kernels) remain $\sim n^{-1/d}$
- no need to bound the number *m* of units

Fixing hidden layer and conjugate RKHS

What if we only train the output layer?

$$\leadsto$$
 Let $\mathcal{S}:=\{\mu\in\mathcal{P}_2(\mathbb{R}^{d+2}) \text{ with marginal } \mathcal{U}_{\mathbb{S}^d} \text{ on } (a,b)\}$

Definition (Conjugate RKHS)

For a predictor $h: \mathbb{R}^d \to \mathbb{R}$, its conjugate RKHS norm is

$$\|h\|_{\mathcal{F}_2} := \min \left\{ \int |c|_2^2 d\mu(w) \; ; \; h = \int \phi(w,\cdot) d\mu(w), \; \mu \in \mathcal{S} \right\}$$

Proposition (Kernel ridge regression)

All else unchanged, fixing the hidden layer leads to minimizing

$$\frac{1}{n}\sum_{i=1}^n\ell(h(x_i),y_i)+\lambda\|h\|_{\mathcal{F}_2}.$$

- ullet Solving: \mathcal{F}_2 random features, convex optim. / \mathcal{F}_1 difficult
- Priors: \mathcal{F}_2 isotropic smoothness / \mathcal{F}_1 anisotropic smoothness $^{10/18}$

Implicit bias in the unregularized

case

Preliminary: linear classification and exponential loss

Classification task

- $Y \in \{-1,1\}$ and the prediction is sign(h(X))
- $\ell(y, y') = \exp(-y'y)$ or logistic $\ell(y, y') = \log(1 + \exp(-y'y))$
- no regularization $(\lambda = 0)$

Theorem (SHNGS 2018, reformulated)

Consider $h(w,x)=w^\intercal x$ and a linearly separable training set. For any w(0), the normalized gradient flow $\bar{w}(t)=w(t)/\|w(t)\|_2$ converges to a $\|\cdot\|_2$ -max-margin classifier, i.e. a solution to

$$\max_{\|w\|_2 \le 1} \min_{i \in [n]} y_i \cdot w^{\mathsf{T}} x_i.$$

[Refs]:

Soudry, Hoffer, Nacson, Gunasekar, Srebro (2018). The Implicit Bias of Gradient Descent on Separable Data. Telgarsky (2013). Margins, shrinkage, and boosting.

Interpretation as online optimization

• look at $w'(t) = \nabla F_1(w(t))$, where F_{β} is the smooth-margin:

$$F_{\beta}(w) = -\frac{1}{\beta} \log \left(\frac{1}{n} \sum_{i=1}^{n} \exp(-\beta y_i \cdot w^{\mathsf{T}} x_i) \right) \xrightarrow{\beta \to \infty} \min_{i} y_i \cdot w^{\mathsf{T}} x_i$$

- prove that $\|w(t)\| \to \infty$ if the training set is linearly separable
- denoting $\bar{w}(t) = w(t)/\|w(t)\|_2$, it holds

$$\frac{d}{dt}\bar{w}(t) = \frac{1}{\|w(t)\|} \nabla F_{\|w(t)\|}(\bar{w}(t)) - \alpha_t \bar{w}(t)$$

for some $\alpha_t > 0$ that constraints $\bar{w}(t)$ to the sphere

• "thus" $\bar{w}(t)$ performs online projected gradient ascent on the sequence of objectives $F_{||w(t)||}$ which converge to the margin.

Implicit bias of two-layer neural networks

Let us go back to wide two-layer ReLU neural networks.

Theorem (C. & Bach, 2020)

Assume that $\mu_0 = \mathcal{U}_{\mathbb{S}^d} \otimes \mathcal{U}_{\{-1,1\}}$, that the training set is consistant $([x_i = x_j] \Rightarrow [y_i = y_j])$ and that μ_t and $\nabla F(\mu_t)$ converge in direction (i.e. after normalization). Then $h(\mu_t, \cdot) / \|h(\mu_t, \cdot)\|_{\mathcal{F}_1}$ converges to the \mathcal{F}_1 -max-margin classifier, i.e. it solves

$$\max_{\|h\|_{\mathcal{F}_1} \le 1} \min_{i \in [n]} y_i h(x_i).$$

- no efficient algorithm is known to solve this problem
- ullet fixing the hidden layer leads to the \mathcal{F}_2 -max-margin classifier

[Refs]:

Chizat, Bach. Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks [...].

Illustration

 $h(\mu_t, \cdot)$ for the logistic loss, $\lambda = 0$ (d = 2)

Statistical efficiency

Assume that $||X||_2 \le R$ a.s. and that, for some $r \le d$, it holds a.s.

$$\Delta(\mathbf{r}) \leq \sup_{\pi} \left\{ \inf_{y_i \neq y_{i'}} \|\pi(x_i) - \pi(x_{i'})\|_2 ; \ \pi \text{ is a rank } \mathbf{r} \text{ projection} \right\}.$$

Theorem (C. & Bach, 2020)

The \mathcal{F}_1 -max-margin classifier h^* admits the risk bound, with probability $1-\delta$ (over the random training set),

$$\underbrace{\mathbf{P}(Y\,h^*(X)<0)}_{\textit{proportion of mistakes}}\lesssim \frac{1}{\sqrt{n}}\Big[\Big(\frac{R}{\Delta(\textbf{r})}\Big)^{\frac{\textbf{r}}{2}+2}+\sqrt{\log(1/\delta)}\Big].$$

- this is strong dimension independent non-asymptotic bound
- for learning in \mathcal{F}_2 only the bound with r=d is true
- this task is asymptotically easy (the rate $n^{-1/2}$ is suboptimal)

[Refs]:

Numerical experiments

Setting

Two-class classification in dimension d = 15:

- two first coordinates as shown on the right
- all other coordinates uniformly at random

Coordinates 1 & 2

(a) Test error vs. n

(b) Margin vs. m (n = 256)

Two implicit biases in one dynamics (I)

Lazy training (informal)

All other things equal, if the variance at initialization is large and the step-size is small then the model behaves like its first order expansion over a significant time.

- Each neuron hardly moves but the total change in $h(\mu_t, \cdot)$ is significant
- Here the linearization converges to a max-margin classifier in the tangent RKHS (similar to \mathcal{F}_2)
- ullet Eventually converges to \mathcal{F}_1 -max-margin

[Refs]:

Jacot, Gabriel, Hongler (2018). Neural Tangent Kernel: Convergence and Generalization in Neural Networks. Chizat, Oyallon, Bach (2018). On Lazy Training in Differentiable Programming.

Woodworth et al. (2019). Kernel and deep regimes in overparametrized models.

Two implicit biases in one dynamics (II)

Space of parameters

Space of predictors

Conclusion

- Generalization guarantees for gradient methods on neural nets
- Analysis via Wasserstein gradient flow with homogeneity

Perspectives

- Proof of convergence, quantitative results
- More complex architectures

[Papers :]

- Chizat and Bach (2018). On the Global Convergence of
- Over-parameterized Models using Optimal Transport
- Chizat (2019). Sparse Optimization on Measures with
- Over-parameterized Gradient Descent
- Chizat, Bach (2020). Implicit Bias of Gradient Descent for Wide
- Two-layer Neural Networks Trained with the Logistic Loss

[Blog post:]

- https://francisbach.com/