

Katedra za matematično in fizikalno geodezijo ter navigacijo

GEODETSKI VIDIK GNSS

Polona Pavlovčič Prešeren Fakulteta za gradbeništvo in geodezijo

> 22. Seminar radijske komunikacije Ljubljana, 3. -5. februar 2016

GNSS – Global Navigation Satellite System

Do leta 2020 predvidevajo, da bo več kot 140 satelitov namenjeno navigaciji.

Satelitski signal in vrste opazovanj GNSS...

1. merske kode

2. navigacijsko sporočilo

3. nosilno valovanje

kodna opazovanja (C/A, P)

fazna opazovanja L1, L2, L5 (GPS)

Osnovni tip opazovanj, ki omogoča pridobitev položaja

Dostopnost do kodnih opazovanj

C/A koda je namenjena civilnim uporabnikom. Vsi instrumenti imajo dostop do kode C/A satelitskega sistema GPS.

P-koda je namenjena vojaški uporabi in je direktno dostopna tako le avtoriziranim uporabnikom.

PROBLEM KODNIH OPAZOVANJ:

dosegljiva točnost položaja je v najboljšem primeru nekaj metrov!

Absolutno določanje položaja

- 1. Absolutna določitev položaja temelji na sprejemanju opazovanj GNSS z enim sprejemnikom.
- Poznamo absolutno določitev položaja s kodnimi instrumenti (C/A koda) -> vsesplošna uporaba, navigacija
- 3. Taka določitev položaja je uporabna le v navigaciji

Cenovno dostopni instrumenti delujejo na sprejemanju kodnih opazovanj in absolutni določitvi položaja.

SLABOST:

Ni direktne navezave na referenčno koordinatno osnovo, vzpostavljeno na Zemlji.

Fazna opazovanja

Sprejemnik GNSS je zmožen kakovostno določiti velikost faze v definicijskem območju ene valoven dolžine.

Celo število valov med satelitov in sprejemnikom je neznanka, ki jo razrešimo z različnimi algoritmi obdelave opazovanj GNSS.

Relativno določanje položaja

- 1. Enega izmed instrumentov postavimo na znano točko v referenčnem koordinatnem sistemu
- 2. Z obema istočasno sprejemamo opazovanja s satelitov.
- 3. Z obdelavo opazovanj pridobimo **vektor**.
- 4. Vektor prištejemo dani koordinati → koordinate nove točke.

PREDNOST:

Izboljšava točnost položaja, ker odpravimo vplive na opazovanja (istočasna izmera in obdelava, ki temelji na formiranju razlik opazovanj).

Diferencialni GNSS

Relativno položaj določamo lahko s kodnimi oziroma faznimi opazovanji.

V prvem primeru je dosegljiva točnost določitve položaja okoli 1 m, v drugem pa od nekaj cm do mm → geodetsko določanje položaja

Kako deluje diferencialni GNSS?

KOMUNIKACIJSKA ZVEZA med dano in novo točko (standard RTCM SC 104)

Na dani točki se izračunajo popravki psevdorazdalj.

Popravki so posredovani k instrumentu na novi točki.

Instrument na novi točki popravke sprejme in jih upošteva pri izboljšavi določitve položaja.

Dobimo boljši položaj kot pri absolutni določitvi s kodnimi instrumenti.

GEODETSKO DOLOČANJE POLOŽAJA

- 1. Uporabljamo fazne več-frekvenčne instrumente (vsaj L1 in L2, tudi L5 v primeru GPS)
 - → odstranitev vpliva ukrivljanja signala zaradi ionosfere
- 2. Uporabljamo relativno določanje položaja
 - → navezava na koordinatni sistem, ki upošteva lokalne geodinamične značilnosti

- 3. Obdelava temelji na visoko-natančnih podatkih in modelih vplivov na opazovanja
 - → efemeride (upoštevanje relativnostne teorije)
 - → neenakomerna rotacija Zemlje (precesija, nutacija, gibanje polov)
 - → modeli atmosfere
 - → modeli plimovanja trdne Zemlje

Vplivi na opazovanja GNSS in obdelava

V kodnih in faznih opazovanjih nastopajo neznanke/vplivi:

- napake urinih tekov satelitovih ur
- napake določitve položajev satelitov na tirnici
- napake urinih tekov ur v sprejemniku
- ionosferska refrakcija
- troposferska refrakcija
- napake odmika faznega od geometrijskega centra antene
- vpliv odboja signala od objekta
- neznano število celih valov v začetnem trenutku opazovanj
 samo v faznih opazovanjih

Vplive odstranimo z:

- boljšimi podatki (npr. efemeride)
- modeli
- s posebnimi tehnikami obdelave oz. izmere

Dosegljiva točnost metod izmere

Le z več- frekvenčnimi instrumenti in primerno metodo izmere (obdelavo) je mogoče doseči visoko točnost določitev položaja (boljšo od 1 m).

Metode izmere in točnost koordinat

Negeodetsko/geodetsko določanje položaja z GNSS:

 φ = 46° 02' 44,5<mark>2692"</mark> S

 $\lambda = 14^{\circ} 29' 42,16734'' V$

h = 366,1737 m

1' 1852 m X = ?..... 1 m

X = 0.03''

Če položaj določamo z DGNSS, bi morali geografski koordinati biti zapisani kvečjemu z dvema decimalnima mestoma sekunde!

Statična metoda izmere GNSS

- najnatančnejša metoda izmere, dosegljiva točnost boljša od cm (mm)
- uporaba v specifičnih nalogah:
 - geodezija v inženirstvu (referenčna geodetska mreža za potrebe gradnje, zakoličb, spremljanja stabilnosti objektov)
 - geodinamične naloge (plazovi, posedanja,...)
- SLABOST: časovno "potratna" (opazovanja od 1 ure do več dni)
- PREDNOST: zelo zanesljiva

Pomembna dejstva:

- 1. opazovanja izvajamo v serijah.
- 2. z vektorji gradimo mrežo.
- 3. v mreži so nadštevilni vektorji → izravnava po MNK
- 4. s statističnimi testi lahko ugotavljamo prisotnost grobih pogreškov in vplivov v mreži

Opazovanja izvajamo v serijah

$$s = \frac{m \cdot n}{r}$$

- s ... število serij
- n ... število točk v mreži
- $m{m}$... koeficient, ki pove, v najmanj koliko serijah mora biti točka opazovana
- r ... število sprejemnikov

Izračun koordinat s statično metodo

na voljo imamo natanko toliko baznih vektorjev, kot je novih točk

Če imajo vsi vektorji izhodišče v isti točki, govorimo o radialni izmeri

$$x_{nova} = x_{dana} + \Delta x$$
 $y_{nova} = y_{dana} + \Delta y$
 $z_{nova} = z_{dana} + \Delta z$

na voljo imamo VEČ baznih vektorjev, kot je novih točk

Ponavadi takrat, ko smo na točkah postavljeni neodvisno – izmera v več serijah

izravnava GNSS-mreže

Kinematična metoda izmere (naknadna obdelava)

Nepremični sprejemnik shranjuje podatke za naknadno obdelavo (datoteke RINEX).

Položaja ne dobimo v času izmere, problematična je tudi kakovost izvedbe inicializacije.

Opazovanja moramo obdelati v pisarni.

Koncept izmere v realnem času

Bazno stojišče hkrati skladišči opazovanja za naknadno obdelavo in jih pošilja premikajoči enoti (RTCM SC 104).

Prednost: opazovanja se obdelajo že na terenu.

Dobimo koordinate z natančnostjo cm.

Angleški izraz: single base solution

RTK metoda izmere – 1. različica

Bao (instrument na dani točki) postavimo sami

Zahteve za izvedbo:

- na voljo moramo imeti 2 instrumenta
- poznati moramo položaj dane točke (baznega stojišča)
- oddaljenost med dano in novo točko ne sme biti prevelika

Zagotovljen mora biti pretok podatkov opazovanj (radiomodem, GSM-modem).

RTK metoda izmere – 2. različica

Nadgradnja: bazno stojišče je stalna postaja

Prednost:

- ni nam več potrebno imeti na voljo dveh sprejemnikov (prihranek stroškov)
- ni na potrebno predhodno zagotavljati dobrega položaja baznega stojišča

Omejitve:

 še vedno smo vezani na izmero blizu baznega stojišča

RTK metoda izmere – 3. različica

Nadgradnja: ni omejitev glede oddaljenosti od stalnih postaj

Prednost:

- ni nam več potrebno imeti na voljo dveh sprejemnikov
- ni na potrebno predhodno zagotavljati dobrega položaja baznega stojišča
- ni potrebno ugotavljati razdaljo od stalne postaje

Problematični so stroški pretoka podatkov oziroma območja, kjer nimamo dobre povezave z mobilnim omrežjem.

Omrežje SIGNAL

Slovenija-Geodezija-Navigacija-Lokacija

Postaje omrežja:

- 16 v SLO
- 5 v Avstriji
- 1 na Madžarskem
- 7 na Hrvaškem

Koordinate postaj določene v ETRS89:

- ETRF96 (1995.55)
- D96/TM

Centralno umeščena ljubljanska postaja je vključena tudi v evropsko mrežo stalnih postaj EPN (angl. European Permanent Network), ki je fizična osnova evropskega terestričnega referenčnega sistema.

NOVOST:

Od novembra 2014 imamo v omrežju novo stalno postajo v IDRIJI

Omrežja stalnih postaj GNSS

Topologija omrežja:

- omrežje GNSS sestavlja množica stalno delujočih postaj, ki so opremljene z infrastrukturo za pretok podatkov v realnem času
- v centru je nameščena programska oprema za:
 - a) upravljanje omrežja
 - b) mrežno analizo
 - c) distribucijo podatkov

Vir: geoservis.si (2014)

Omrežja so lahko v državni ali v privatni lasti.

Za zanesljivo delovanje omrežja GNSS so lahko referenčne postaje med seboj oddaljene od 50 do 70 km.

Virtualno referenčno stojišče - VRS

Formati in standardi pretoka opazovanj GNSS

RINEX (angl. Receiver Independent Exchange format)

Je samo format zapisa (arhiviranja) opazovanj GNSS v neodvisni obliki zapisa (ASCII).

NMEA (angl. National Marine Electronic Association)

Industrijski standard, ki služi za komunikacijo v realnem času. Navezuje se na podatkovno komunikacijo med GNSS in drugimi napravami, kjer kot oddajnik služi instrument GNSS, druge naprave so sprejemniki.

RTCM SC-104 (angl. Radio Technical Commission for Maritime Services)

Standard, namenjen prenosu podatkov ali opazovanj GNSS od ene referenčne točke GNSS proti enemu ali več premikajočim sprejemnikom. Služi za določitev koordinat v realnem času (DGNSS in RTK).

Referenčna ploskev pri GNSS

Referenčna ploskev pri določanju položaja je rotacijski elipsoid. Kateri?

GPS – tu poznamo dva elipsoida:

WGS-84 (angl. World Geodetic System 1984) GRS-80 (angl. Geodetic Reference System 1980)

Majhna razlika < 0,1 mm v mali polosi $b_{WGS84} = 6356752.31425$

b_{GRS 80}= 6356752.31414

GLONASS – določa položaj na elipsoidu PZ-90 (rus. Parametry Zemli 1990)

)	elipsoid	velika polos a	sploščenost 1/f
	WGS-84	6.378.137,000 m	298,257223563
	GRS-80	6.378.137,000 m	298,257222101
	PZ-90	6.378.136,000 m	298,2578393

Problem višin, določenih z GNSS

Izhodišče za določanje višin je Zemljina referenčna ploskev – geoid.

Z GNSS določene elipsoidne višine se od nadmorskih v Sloveniji razlikujejo od 44 do 48 m!

Geodetsko določanje položaja danes...

- Navezujemo se na moderne referenčne koordinatne sistem
- Koordinatno osnovo vzpostavimo z najboljšimi GNSS-metodami izmere
- Določitev položaja poteka z navezavo na omrežje SIGNAL
- 4. Nadaljnje meritve potekajo s kinematičnimi metodami izmere
- 5. V kolikor je onemogočen sprejem satelitskega signala, uporabimo klasične metode izmere (merjenje kotov, dolžin...)
- Klasična opazovanja reduciramo za vplive (meteorološke, ukrivljenost Zemlje, težnost...)

GNSS-instrument, GSM povezava z omrežje SIGNAL

HVALA ZA POZORNOST!