

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER
GRAPHICS & INTERACTIVE TECHNIQUES

Helix-Free Stripes for Knit Graph Design

Rahul Mitra¹, Liane Makatura², Emily Whiting¹, Edward Chien¹

Massachusetts Institute of Technology

→ Knit Graph Abstraction

Flat geometry¹

Stitch irregularities induce curvature²

Goal: Given a 3D mesh, generate a helix-free knit graph over it

Must be helix-free!

¹ from *Visual Knitting Machine Programming (2019)*

²from Knit Sketching: from Cut and Sew Patterns to Machine-Knit Garments (2021)

\rightarrow

Positioning our work

- Our goal (similar to Autoknit [Naryanan et al. 2018]):
 - Automatic generation of machine-knittable graphs from input triangle meshes
 - Precise control over helices

 1-form-based framework produces more globally-informed stitch patterns

Optimization allows incorporation of linear user-specified constraints

¹ from https://github.com/textiles-lab/autoknit

>

Positioning our work

- We follow a stripes-based methodology
 - Evenly-spaced stripes ← evenly-spaced course rows and wale columns

- KnitKit [Nader et al. 2021] is only other work to consider this
 - They intersect stripes produced by [Knoppel et al. 2015], which often contain helices
 - Removal attempted via quad mesh operations [Bommes et al. 2011], but no guarantees
 - Our constraints can be used to guarantee helix removal

→

σ : The Stripe Texturing Function

• 1 form $\sigma: E \to \mathbb{R}$ a discretization of a vector field

- If $(d_1\sigma)_m=0$ vector field is integrable to a local linear function
 - Striping red if pixel value $\in (0, \pi) \pmod{2\pi}$, pink if value $\in (\pi, 2\pi) \pmod{2\pi}$

- Can still get local function from triangle to §¹
- Allows for global striping

Optimizing for σ directly

- ullet We optimize directly for $\,\sigma\,$
 - [Noma et al. 2022] optimize in the space of 1-forms but do not explore knitting applications

- The gradient of a harmonic interpolation $h:V\to\mathbb{R}\in[0,1]$ guides the 1-form optimization
 - Linear constraints achieve all the desiderata

$$\underbrace{||W(\sigma_c - \omega_c)||^2}$$

Quadratic minimization objective for course rows

$$(\omega_c)_{ij} = \underbrace{\frac{1}{2} \left(\frac{(\nabla h)_l}{||(\nabla h)_l||} + \frac{(\nabla h)_r}{||(\nabla h)_r||} \right) \cdot \mathbf{e}_i}_{\text{integral of normalized } \nabla h \text{ along } e_{ii}}$$

→ Constraints Examples

Stripe irregularity/short row placement

$$(d_1\sigma)_m=(2\pi)k, k\in\mathbb{Z}^{|F|}$$

Direct use of [Knoppel et al. 2015]

Tightness to boundaries through stripe alignment

$$\sigma_c|_{\partial M}=0$$

→

Constraints Examples

Stripe alignment constraint (blue)

Open level set constraint (dark blue)

 $\int_{\gamma_{
m open}} \sigma = 0$

Separating helix ends with γ loops eliminates them

This level of granular control not achievable with linear constraints in [Knoppel et al. 2015]

Optimization problems and strategies

Both: Quadratic Mixed Integer problems with linear constraints

Missing: Wale constraints

Strategy 1:

$$\min_{\sigma_c} \qquad ||W(\sigma_c - \omega_c)||^2$$
 subject to $\sigma_c|_{\partial M} = 0$, $d_1\sigma_c = (2\pi)\mathbf{k} + \mathbf{linear}$ user constraints

Integer variables ~ O(#boundaries)

Strategy 2:

$$\min_{\sigma_c, \mathbf{k}} \qquad ||W(\sigma_c - \omega_c)||^2$$
 abject to $\sigma_c|_{\partial M} = 0$, $d_1\sigma_c = (2\pi)\mathbf{k}$ + linear user constraints

Integer variables ~ O(#faces)

Fabricated Results

Thanks to Yuxuan Mei in Adriana Schulz's group at UW for help with fabricating!

→ Conclusion

- Presented a stripes-based framework for global stitch structure specification, operating in the space of discrete 1-forms
- Results in quadratic mixed-integer optimization with linear constraints for:
 - Removal of helices
 - Placement of stitch irregularities
 - Alignment of course rows and wale columns to feature curves
- Constraints are directly incorporated into a global structure optimization
 - Most previous works incorporate user constraints via post-processing

>

Future and ongoing work

- We would like to develop a UI for this framework
 - Inspired by many amazing UI-focused works: [Naryanan et al. 2019], [Jones et al. 2022], [Kaspar et al. 2019, 2021]
 - Or incorporate some of our insights into these works
- A more efficient strategy for stitch irregularity placement
- Joint optimization of course rows and wale columns

Potentially avoids the need for a knit graph tracing procedure

SIGGRAPH 2023 LOS ANGELES+ 6-10 AUG

Thank you for listening!

(Slides that follow are for clarifying question)

Why do knit graphs need to be helix-free?

- Knitting schedulers [Naryanan et al. 2018] trace the graph in a natural spiralling/helical pattern
 - Helices in the generated graph would result in an incorrect amount (i.e., too much) helicing

¹from Automatic Machine Knitting of 3D Meshes(2018)

Why is helicing bad?

Upshot: helicing by the exact right amount is hard

Level Set (path integral constraints)

- Can specify path integral of σ along a specified polyline γ
 - Constrains same stripe level set to pass through polyline endpoints
 - Non-trivial constraints applied to the wale stripes to ensure stripes "close up" on the boundary

$$\int_{\gamma} \sigma = \sum_{i=0}^{n-1} -s_i^{i+1} \sigma_{e_i} r_i^{i+1} + s_{i+1}^i \sigma_{e_{i+1}} r_{i+1}^i = C, C \in \mathbb{R}$$

• When C=0 and γ is a closed loop of mesh edges, ensures that a stripe level set does not cross the loop without returning back to its side of origin i.e., helix removal

Constraints in the wale direction

$$(\omega_w)_{ij} = rac{1}{2} \left(rac{(
abla h)_l^T}{||(
abla h)_l^T||} + rac{(
abla h)_r^T}{||(
abla h)_r^T||}
ight) \cdot \mathbf{e}_{ij}$$

$$\int_{(\partial M)^i} \sigma_w = (2\pi) k^i$$
 Specified on N-1 boundaries

- Need to only consider irregularity placement and possible stripe alignment constraints
 - No helices in the wale direction

→

Runtime statistics

Table 1: Run time statistics.

Model	Strategy	#V	#F	# Int.	MIP Solve
				Vars.	Time, s
Curved	S2	54	96	97	< 5
Cylinder (Fig. 7)					
Hemisphere	S2	224	384	385	40
(Fig. 9(e))					
Sock (Fig. 1)	S2	279	538	98	21
Sock	S1	279	538	2	< 1
(Fig. 9(d))					
Cylinder	S1	270	580	3	< 1
(Fig. 6, middle)					
Cactus	S2	391	736	738	35
(Fig. 9(c))					
Bunny	S2	2669	5228	5230	287
(Fig. 4, right)					

→ Skipping tracing & exact helicing example

