```
import functions as fn
import numpy as np; import matplotlib.pyplot as plt; import pandas as pd
from sklearn.preprocessing import scale
%matplotlib inline
```

Filtrado de datos atípicos

Características del filtrado de outliers

Para el filtrado de outliers se toma como base el volúmen y el rendimiento obtenidos a partit de la serie de datos del NASDAQ.

```
In [ ]: plt.rcParams.update({'font.size': 11})
        serie price original = pd.read csv('datos.csv')
        serie price = serie price original.copy()
        serie_price_original = serie_price_original[1:]
        vol_escalado = scale(X=serie_price['Volume'], axis=0, with_mean=True, with_std=True)
        serie price['Volume est'] = vol escalado
        serie_price['rdto'] = (serie_price['Close'] / serie_price['Close'].shift(1) - 1) * 100
        serie_limpia = serie_price[['Volume_est', 'rdto']][1:]
        serie limpia.reset index(drop = True)
        serie_price_original['rdto'] = serie_price['rdto']
        serie_price_original.reset_index(drop = True)
        c:\Users\camil\Documents\PYTHON\py-dev\lib\site-packages\sklearn\preprocessing\ data.
        py:239: UserWarning: Numerical issues were encountered when centering the data and mi
        ght not be solved. Dataset may contain too large values. You may need to prescale you
        r features.
          warnings.warn(
```

Out[]:		Date	Open	High	Low	Close	Adj Close	Volume	rdto
	0	2014- 09-03	4610.140137	4610.140137	4565.379883	4572.560059	4572.560059	1897450000	-0.557391
	1	2014- 09-04	4581.520020	4603.149902	4553.310059	4562.290039	4562.290039	1728700000	-0.224601
	2	2014- 09-05	4560.629883	4583.000000	4542.740234	4582.899902	4582.899902	1641830000	0.451744
	3	2014- 09-08	4579.060059	4600.399902	4570.229980	4592.290039	4592.290039	1670210000	0.204895
	4	2014- 09-09	4588.830078	4599.029785	4544.439941	4552.290039	4552.290039	1956550000	-0.871025
	•••								
	1336	2019- 12-23	8950.200195	8956.639648	8934.549805	8945.650391	8945.650391	2025450000	0.231827
	1337	2019- 12-24	8955.009766	8957.120117	8934.360352	8952.879883	8952.879883	1014520000	0.080816
	1338	2019- 12-26	8970.209961	9022.459961	8968.459961	9022.389648	9022.389648	1634920000	0.776396
	1339	2019- 12-27	9049.469727	9052.000000	8987.320313	9006.620117	9006.620117	1832200000	-0.174782
	1340	2019- 12-30	9004.450195	9006.360352	8909.190430	8945.990234	8945.990234	2042420000	-0.673170
	1341 r	ows × 8	3 columns						

Estimación de la matriz de covarianza

Para estimar la matriz de covarianza se hace uso del estimador bien condicionado para matrices de covarianza de Ledoit y Wolf. Por medio de esta se mejora la estimación de la matriz de covarianza de los datos. Como se muestra a continuación, el número de condición de la matriz de covarianza estimada con Ledoit y Wolf, es ligeramente menor que la estimada convencionalmente.

```
In [ ]: # Estimación de la matriz de covarianza y filtrado de outliers con la distancia de Mar
# cv = 0 --> Estimación Ledoit Wolf
# cv = 1 --> Estimación convencional
mahal_serie_limpia = fn.outliers(serie_limpia, lam = 0.2, cv = 1)
mahal_serie_limpia = fn.outliers(serie_limpia, lam = 0.2, cv = 0)
Condición 1.3235019180801588
Condición 1.2377186258663422
```

Análisis del número de condición y del

determinante de la matriz de covarianza

Invertibilidad

Se percibe que la invertibilidad de la matriz de covariaza mejora al sumarle lambda veces la identidad. Esto se ve reflejado con la disminución del número de condición y el incremento del determinante a medida que aumenta el valor de lambda. Para este caso se selecciona un lambda que varía entre 0 y 2. La matriz de covarianza original sin el encogimiento, ya presenta un número de condición pertinente para continuar con el análsis. Sin embargo, se selecciona un lambda con un valor de 1.75, y que con este encogimiento la matriz de covarianza mejora notablemente su invertibilidad (ver la siguiente figura). Esto con la intención de mejorar los resultados del filtrado de outliers con la distancia de Mahalanobis, la cual incluye la inversa de la matriz de covarianza.

Para el caso de la inversa, esta se desarrolla con la inversa generalizada de la matriz de covarianza, siguiendo la expresión matemática a continuación:

$$A^{-1} = A^T (AA^T)^{-1},$$

donde A representa la matriz de covarianza.

```
In [ ]: t = np.linspace(0,2,50)

condi = []
date = []

for i in range(len(t)):
        [s, c, d] = fn.cov1(serie_limpia, t[i])
        condi.append(c)
        date.append(d)

plt.figure()
    plt.minorticks_on(); plt.grid(which='major', zorder = -10); plt.grid(which='minor', alplt.plot(t, condi, 'k')
    plt.plot(t, date, 'r-.')
    plt.xlabel('Lambda'); plt.ylabel('Número'); plt.legend(['No. Condición', 'Determinante')

Out[ ]: 

cmatplotlib.legend.Legend at 0x22f76df8ee0>
```


Resultado de filtrado de outliers

En la siguiente figura se puede evidenciar los datos atipicos que fueron detectados por el algoritmo con las características definidas anteriormente. En la subfigura de la izquierda se encuentran los datos sin aplicar la detección de ourliers y en la figura de la derecha se encuentran los datos atípicos removidos por el algoritmo con la distancia de Mahalanobis.

```
limit = np.percentile(mahal_serie_limpia, 98)
In [ ]:
        outliers datos = serie limpia[mahal serie limpia > limit]
        plt.figure(figsize=(10,4))
        plt.subplot(1,2,1)
        plt.scatter(serie_limpia['Volume_est'], serie_limpia['rdto'], zorder = 10)
        plt.xlabel('Volúmen'); plt.ylabel('Rendimiento')
        plt.minorticks on(); plt.grid(which='major', zorder=0); plt.grid(which='minor', alpha
        plt.subplot(1,2,2)
        plt.scatter(serie_limpia['Volume_est'], serie_limpia['rdto'], zorder=10)
        plt.scatter(outliers_datos['Volume_est'], outliers_datos['rdto'], c = 'r', zorder=10)
        plt.plot(np.median(serie_limpia['Volume_est']), np.median(serie_limpia['rdto']), 'ko',
        plt.xlabel('Volúmen'); plt.ylabel('Rendimiento')
        plt.minorticks_on(); plt.grid(which='major', zorder=0); plt.grid(which='minor', alpha-
        plt.legend(['Datos', 'Outliers', 'Mediana'])
        plt.savefig('test.png',bbox_inches='tight')
```



```
dataset_limpio = serie_price_original[mahal_serie_limpia < limit]</pre>
In [ ]:
        dataset limpio = dataset limpio.reset index(drop = True)
        positive treshold = 0.000000001
        negative treshold = -0.0000000001
        dataset limpio['rdto 5D'] = (dataset limpio['Close'] / dataset limpio['Close'].shift(5
        dataset_limpio['rdto_10D'] = (dataset_limpio['Close'] / dataset_limpio['Close'].shift(
        dataset_limpio['rdto_30D'] = (dataset_limpio['Close'] / dataset_limpio['Close'].shift(
        dataset_limpio['rdto_90D'] = (dataset_limpio['Close'] / dataset_limpio['Close'].shift(
        def mean_vol_ventana(df_volume, dias):
          mean volume = ['nan'] * (dias)
          tb_vol_i = ['nan'] * (dias)
           print(len(df_volume))
          for i in range (dias, len(df_volume)):
            mean_volume_i = np.mean(df_volume[i-dias:i])
            mean volume.append(mean volume i)
            condition = (df_volume[i]/mean_volume_i) - 1
            if condition > positive_treshold:
              tb_vol_i.append(1)
            else:
              tb vol i.append(0)
          return pd.DataFrame(tb_vol_i)
        dataset limpio['volume 5D'] = mean vol ventana(dataset limpio['Volume'],5)
        dataset limpio['volume 10D'] = mean vol ventana(dataset limpio['Volume'],10)
        dataset_limpio['volume_30D'] = mean_vol_ventana(dataset_limpio['Volume'],30)
        dataset_limpio['volume_90D'] = mean_vol_ventana(dataset_limpio['Volume'],90)
        dataset limpio = dataset limpio[:][90:]
        dataset_limpio['t_rdto_1D'] = dataset_limpio.apply(lambda row: 1 if row['rdto']>positi
        dataset_limpio['t_rdto_5D'] = dataset_limpio.apply(lambda row: 1 if row['rdto_5D']>pos
        dataset limpio['t rdto 10D'] = dataset limpio.apply(lambda row: 1 if row['rdto 10D']>r
        dataset limpio['t rdto 30D'] = dataset limpio.apply(lambda row: 1 if row['rdto 30D']>r
        dataset_limpio['t_rdto_90D'] = dataset_limpio.apply(lambda row: 1 if row['rdto_90D']>r
        dataset_limpio = dataset_limpio.drop(['rdto_5D', 'rdto_10D', 'rdto_30D', 'rdto_90D'],
        dataset_limpio = dataset_limpio.reset_index(drop = True)
        dataset_limpio.set_index('Date', inplace = True)
```

> dataset_limpio.to_csv('dataset_limpio_98.csv') dataset_limpio

Out[]:		Open	High	Low	Close	Adj Close	Volume	rdto	volu		
	Date										
	2015- 01-12	4714.069824	4715.810059	4650.649902	4664.709961	4664.709961	1861960000	-0.836719			
	2015- 01-13	4708.740234	4751.339844	4624.279785	4661.500000	4661.500000	2162180000	-0.068814			
	2015- 01-14	4610.759766	4655.370117	4595.979980	4639.319824	4639.319824	2073810000	-0.475816			
	2015- 01-15	4657.459961	4663.959961	4567.390137	4570.819824	4570.819824	1976260000	-1.476510			
	2015- 01-16	4566.379883	4635.819824	4563.109863	4634.379883	4634.379883	1970520000	1.390561			
	•••										
	2019- 12-23	8950.200195	8956.639648	8934.549805	8945.650391	8945.650391	2025450000	0.231827			
	2019- 12-24	8955.009766	8957.120117	8934.360352	8952.879883	8952.879883	1014520000	0.080816			
	2019- 12-26	8970.209961	9022.459961	8968.459961	9022.389648	9022.389648	1634920000	0.776396			
	2019- 12-27	9049.469727	9052.000000	8987.320313	9006.620117	9006.620117	1832200000	-0.174782			
	2019- 12-30	9004.450195	9006.360352	8909.190430	8945.990234	8945.990234	2042420000	-0.673170			
	1224 rows × 16 columns										