Importing Libraries

```
In [1]:

    import pandas as pd

           import numpy as np
           import matplotlib.pyplot as plt
           %matplotlib inline
           import seaborn as sns

▶ | df=pd.read_csv("Diwali Sales Data.csv", encoding= 'unicode_escape')
In [2]:
       Getting number of Rows and Columns
In [3]:
        Out[3]: (11251, 15)
In [4]:

    df.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 11251 entries, 0 to 11250
           Data columns (total 15 columns):
                                Non-Null Count Dtype
               Column
               -----
                                -----
            0
              User_ID
                                11251 non-null int64
                                11251 non-null object
            1
              Cust name
            2
               Product_ID
                                11251 non-null object
               Gender
                                11251 non-null object
               Age Group
                               11251 non-null object
                                11251 non-null int64
               Age
               Marital_Status
                                11251 non-null int64
            6
            7
               State
                                11251 non-null object
                                11251 non-null object
            8 Zone
               Occupation
                               11251 non-null object
            10 Product_Category 11251 non-null object
            11 Orders
                                11251 non-null
                                              int64
            12 Amount
                                11239 non-null float64
            13 Status
                                0 non-null
                                              float64
            14 unnamed1
                                0 non-null
                                              float64
           dtypes: float64(3), int64(4), object(8)
           memory usage: 1.3+ MB
       Drop Blank Columns
        In [5]:
```

```
In [6]:
           ▶ pd.isnull(df).sum()
     Out[6]: User ID
                                      0
              Cust_name
                                      0
              Product_ID
                                      0
                                      0
              Gender
              Age Group
                                      0
              Age
                                      0
              Marital_Status
                                      0
              State
                                      0
              Zone
                                      0
              Occupation
                                      0
              Product_Category
                                      0
              Orders
                                      0
              Amount
                                    12
              dtype: int64
          Drop Null Values
 In [7]:

    df.dropna(inplace=True)

              #changing 'Amount' data type to integer
 In [8]:
              df['Amount']=df['Amount'].astype('int')

    df['Amount'].dtypes

 In [9]:
     Out[9]: dtype('int32')
In [10]:
              #Column Details
           H
              df.columns
    Out[10]: Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
                      'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
                       'Orders', 'Amount'],
                     dtype='object')
In [11]:
              df.head()
    Out[11]:
                                                          Age
                  User_ID Cust_name Product_ID Gender
                                                               Age Marital_Status
                                                                                          State
                                                                                                   Zone
                                                        Group
               0 1002903
                             Sanskriti
                                      P00125942
                                                     F
                                                         26-35
                                                                28
                                                                               0
                                                                                     Maharashtra
                                                                                                 Western
               1 1000732
                               Kartik
                                      P00110942
                                                     F
                                                         26-35
                                                                 35
                                                                               1 Andhra Pradesh
                                                                                                Southern
               2 1001990
                                      P00118542
                                                                                    Uttar Pradesh
                               Bindu
                                                     F
                                                         26-35
                                                                 35
                                                                               1
                                                                                                  Central
               3 1001425
                                      P00237842
                                                          0-17
                                                                               0
                                                                                      Karnataka
                                                                                                Southern
                              Sudevi
                                                     M
                                                                 16
                                 Joni
                                     P00057942
                 1000588
                                                     Μ
                                                         26-35
                                                                 28
                                                                               1
                                                                                         Gujarat
                                                                                                 Western
```

			11247	1004089	Reichenbach	P001	71342	М	26-35	33	0	Haryana	Norther
			11248	1001209	Oshin	P002	201342	F	36-45	40	0	Madhya Pradesh	Centra
			11249	1004023	Noonan	Noonan P000		М	36-45	37	0	Karnataka	Souther
			11250	1002744	Brumley	Brumley P002		F	18-25	19	0	Maharashtra	Wester
			4										•
Viewing Statistical information of Numeric Data													
In	[13]: ► df.describe()												
	Out[13	13]: User_ID		r_ID	Age		Status	Orders		Amount			
		count 1.123900e+0		+04 11239.0	11239.000000		000000	11239.000000		11239.000000			
		mean 1.003004e+06		+06 35.4	35.410357		0.420055		39634	9453.610553			
			std	1.716039e	+03 12.7	12.753866		493589	1.114967		5222.355168		
			min	1.000001e	+06 12.0	00000	0.0	000000	1.000000		188.000000		
			25%	1.001492e	+06 27.0	27.000000		000000	2.000000		5443.000000		
			50%	1.003064e	+06 33.0	33.000000		000000	2.000000		8109.000000		
			75%	1.004426e	+06 43.0	43.000000		000000	3.000000		12675.000000		
			max	1.006040e	+06 92.0	92.000000		000000	4.00	00000	23952.000000		
In	[14]:	4]: #describe() for specific columns df[['Age','Orders','Amount']].describe()											
	Out[14	ut[14]: Age		Age O	Orders		Amount						
			count	11239.000	000 11239.00	00000	11239.00	00000					
			mean	35.410	357 2.48	39634	9453.6	10553					
			std	12.753	866 1.1 ⁻	14967	5222.3	55168					
			min	12.000	000 1.00	00000	188.00	00000					
			25%	27.000	000 2.00	00000	5443.00	00000					
			50%	33.000	000 2.00	00000	8109.00	00000					
			75%	43.000	000 3.00	00000	12675.00	00000					
			max	92.000	000 4.00	00000	23952.00	00000					

Age Group

18-25

19

Age Marital_Status

State

Maharashtra

Zon

Wester

User_ID Cust_name Product_ID Gender

Manning

P00296942

Exploratory Data Analysis (EDA)

In [12]:

Out[12]:

▶ df.tail()

11246 1000695

Gender


```
In [16]:  #Bar chart for gender vs total amount
    sales_gender=df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values()
    sns.barplot(x='Gender',y='Amount',data=sales_gender)
```

Out[16]: <Axes: xlabel='Gender', ylabel='Amount'>

From the above graphs we can see that most of the buyers are females and even the purchasing power of females is greater than man

Age


```
In [18]: #Total Amount vs Age Group
sales_age=df.groupby(['Age Group'],as_index=False)['Amount'].sum().sort_values(b)
sns.barplot(x='Age Group', y='Amount', data=sales_age)
```

Out[18]: <Axes: xlabel='Age Group', ylabel='Amount'>

State

Out[19]: <Axes: xlabel='State', ylabel='Orders'>

Out[20]: <Axes: xlabel='State', ylabel='Amount'>

Marital Status

<Figure size 700x500 with 0 Axes>

```
In [22]: N sales_state = df.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount']
    plt.figure(figsize=(6,5))
    sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')
```

Out[22]: <Axes: xlabel='Marital_Status', ylabel='Amount'>

From the above graphs we see that most of the buyers are married women and they have high purchasing power.

Occupation


```
In [24]: N sales_state=df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_value
    plt.figure(figsize=(20,5))
    sns.barplot(data=sales_state, x='Occupation', y='Amount')
Out[24]: <Axes: xlabel='Occupation', ylabel='Amount'>
```


From the above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector.

Product Category

```
In [26]: N sales_state=df.groupby(['Product_Category'], as_index=False)['Amount'].sum().sor
plt.figure(figsize=(20,5))
sns.barplot(data=sales_state, x='Product_Category', y='Amount')
```

Out[26]: <Axes: xlabel='Product_Category', ylabel='Amount'>

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category


```
In [28]: #top 10 most sold products

fig1, ax1 = plt.subplots(figsize=(12,7))
    df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False)
```


Conclusion:

Married women in the age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category.