Modeling language acquisition: From phonology to meaning

Christina Bergmann (MPI Psycholinguistics, Nijmegen, NL)
christina.bergmann@mpi.nl

Chilstina. Dei ginann (annpi.

@chbergma

Overview

Day 1

- What is modeling?
- 2. Motivation: Why model at all?
- The difference between theories and models
- 4. What can you model?
- 5. How to evaluate models?
- 6. Models of language acquisition

Practical: Building a model of Saffran, Aslin, & Newport (1996)

Day 2

- 1. Models of language acquisition continued
- 2. Limitations of modeling

Practical: Predicting word acquisition order from input statistics and using model output to constrain theories

- Bridging the gap between models and infant studies
- 4. Discussion: Modeling for your own research project?

A quick bio or: Why am I teaching this?

Education:

- Cognitive Science in Osnabrück, DE
- Cognitive Neuroscience (specialization Psycholinguistics) in Nijmegen, NL
- PhD in Computational models of language acquisition

Then: post docs in Paris (ENS, LSCP, etcetc) and Nijmegen (MPI)

More on my website: https://sites.google.com/site/chbergma/

Who is a modeller?

Would you call yourself a modeller?

What is a model?

Any ideas?

Models: From simple to complex

Fun fact: A regression is a model

Models: From simple to complex

Fun fact: A regression is a model

Source: Wordbank

Who is a modeller (v2)?

Did you ever compute a regression?

Models: From simple to complex

Source: Wordbank

1. Method in language acquisition research (a <u>means</u>)

Supplement to experiments and theories

1. Method in language acquisition research (a <u>means</u>)

Supplement to experiments and theories

 \rightarrow In tandem with both:

Develop Theory Babies do X via Y

Model-first route

Method in language acquisition research (a <u>means</u>)

Supplement to experiments and theories

 \rightarrow In tandem with both:

Model-first route

Develop Theory Babies do X via Y

Feasibility

Method in language acquisition research (a means)

Supplement to experiments and theories

 \rightarrow In tandem with both:

Model-first route

Method in language acquisition research (a means)

Supplement to experiments and theories

 \rightarrow In tandem with both:

Model-first route

Develop Theory Babies do X via Y

Model: Test Feasibility

Update theory

Experiment: Test model predictions

1. Method in language acquisition research (a means)

Supplement to experiments and theories

→ In tandem with both:

Model-first route

Update theory

Experiment: Test model predictions

Develop Theory Babies do X via Y

Model: Test Feasibility

Method in language acquisition research (a means)

Supplement to experiments and theories

 \rightarrow In tandem with both:

Experiment-first route

Develop Theory Babies do X via Y

Method in language acquisition research (a means)

Supplement to experiments and theories

 \rightarrow In tandem with both:

Experiment-first route

1. Method in language acquisition research (a means)

Supplement to experiments and theories

 \rightarrow In tandem with both:

Experiment-first route

Develop Theory Babies do X via Y

Experiment: Test novel predictions

Experiment: Check theory

Model: Simulate
Data on Y with X

Method in language acquisition research (a <u>means</u>)

Supplement to experiments and theories

 \rightarrow In tandem with both:

Experiment-first route

- Method in language acquisition research (a <u>means</u>)
- An independent line of research (a <u>theme</u>)
 Goal: Optimize models → Super-human performance (SIRI, Alexa, military...)
 Independent of specific infant data
 Language acquisition: inspiration, promising ways forward

- Method in language acquisition research (a <u>means</u>)
- An independent line of research (a <u>theme</u>)
 Goal: Optimize models → Super-human performance (SIRI, Alexa, military...)
 Independent of specific infant data
 - Language acquisition: inspiration, promising ways forward

What do children learn?

How do they acquire the needed knowledge and abilities?

Which prerequisites do children bring to the task?

→ Use models to answer (parts of) those questions

What does the model learn?

How does the model acquire the needed knowledge and abilities?

Which prerequisites does the model bring to the task?

What does the model learn?

How does the model acquire the needed knowledge and abilities?

Which prerequisites does the model bring to the task?

 \rightarrow All three questions *have to* be answered.

What does <u>the model</u> learn? Goal

What does the model learn?
Goal

How does <u>the model</u> acquire the needed knowledge and abilities? Process, Algorithm

What does the model learn?
Goal

How does <u>the model</u> acquire the needed knowledge and abilities? Process, Algorithm

Which prerequisites does <u>the model</u> bring to the task? Assumptions about what is *innate*

Abstract

- General statements
- Details vague / implicit
- Informal

Abstract

- General statements
- Details vague / implicit
- Informal

Concrete

- Formalized, explicit
- Implemented:
 - All aspects have to be specified

Abstract

- General statements
- Details vague / implicit
- Informal

Global

- Describes general relationships
- Very powerful

Concrete

- Formalized, explicit
- Implemented:
 - All aspects have to be specified

Abstract

- General statements
- Details vague / implicit
- Informal

Global

- Describes general relationships
- Very powerful

Concrete

- Formalized, explicit
- Implemented:
 - All aspects have to be specified

Specific

- Feasibility:
 - Focus on single aspects, phenomena, mechanisms

Can yield a "proof of concept"

Computational level:

- Goal, structural problem
- What are input and output? Can be problem be divided into parts?

Algorithmic level:

- How can the goal be reached?
- What algorithm(s) can transform the input into the output?

Implementational level:

- How is everything physically realized?
As program (in R or python) or in a single brain

Computational level:

- Goal, structural problem
- What are input and output? Can be problem be divided into parts?

Algorithmic level:

- How can the goal be reached?
- What algorithm(s) can transform the input into the output?

Implementational level:

How is everything physically realized?
 As program (in R or python) or in a single brain

Marr's levels

Computational level:

- Goal, structural problem
- What are input and output? Can be problem be divided into parts?

Algorithmic level:

- How can the goal be reached?
- What algorithm(s) can transform the input into the output?

Implementational level:

How is everything physically realized?
 As program (in R or python) or in a single brain

Abstract

Concrete

Marr's levels extended

Note: More intermediate levels possible

No general consensus (yet), also because of range of model types / goals, but the following have been mentioned repeatedly

No general consensus (yet), also because of range of model types / goals, but the following have been mentioned repeatedly

Link to experimental data
 It is impossible to evaluate a model without (generally) comparable experimental data

No general consensus (yet), also because of range of model types / goals, but the following have been mentioned repeatedly

- Link to experimental data
 It is impossible to evaluate a model without (generally) comparable experimental data
- 2. Makes plausible assumptions Example: Does the model have to process all input of several weeks at once and several times to learn? Can it learn incrementally? Note: Not always made explicit, but read closely and you will find out!

No general consensus (yet), also because of range of model types / goals, but the following have been mentioned repeatedly

- Link to experimental data
 It is impossible to evaluate a model without (generally) comparable experimental data
- 2. Makes plausible assumptions
 Example: Does the model have to process all input of several weeks at once and several times to learn? Can it learn incrementally?
 Note: Not always made explicit, but read closely and you will find out!
- 3. Generates testable predictions (cf. model-experiment-theory cycle)

First, go through the following decision process:

1. What should be modelled? What will be excluded from the model? Not all aspects of a child's experience can be included (think audio / visual / tactile / proprioceptive input). Simplifications are necessary.

- What should be modelled? What will be excluded from the model?
 Not all aspects of a child's experience can be included (think audio / visual / tactile / proprioceptive input). Simplifications are necessary.
- 2. Which processing abilities will the model have?

 Does the model learn step by step, does it compute statistics, can it forget?

- What should be modelled? What will be excluded from the model?
 Not all aspects of a child's experience can be included (think audio / visual / tactile / proprioceptive input). Simplifications are necessary.
- 2. Which processing abilities will the model have?

 Does the model learn step by step, does it compute statistics, can it forget?
- 3. Which theories and data will the model build on?

 Data and theories can be contradictory, models need to take a stance.

- What should be modelled? What will be excluded from the model?
 Not all aspects of a child's experience can be included (think audio / visual / tactile / proprioceptive input). Simplifications are necessary.
- 2. Which processing abilities will the model have?

 Does the model learn step by step, does it compute statistics, can it forget?
- 3. Which theories and data will the model build on?

 Data and theories can be contradictory, models need to take a stance.
- 4. Which level of abstraction will be modelled?

 Is this a general proof of concept or does it simulate single infants. Does it simulate minutes (in the lab), days, months... of learning?

- 1. What should be modelled? What will be excluded from the model? Not all aspects of a child's experience can be included (think audio / visual / tactile / proprioceptive input). Simplifications are necessary.
- 2. Which processing abilities will the model have?

 Does the model learn step by step, does it compute statistics, can it forget?
- 3. Which theories and data will the model build on?

 Data and theories can be contradictory, models need to take a stance.
- 4. Which level of abstraction will be modelled?

 Is this a general proof of concept or does it simulate single infants. Does it simulate minutes (in the lab), days, months... of learning?
- 5. How will the model be evaluated?

Key aspects of a model

- What should be modelled? What will be excluded from the model?
 Goal
- 2. Which **processing abilities** will the model have?
- 3. Which **theories and data** will the model build on? Prerequisites, innate knowledge
- 4. Which **level of abstraction** will be modelled?
- 5. How will the model be **evaluated**?

Example 1: Phoneme acquisition

- Categorical perception from birth on
- Category boundaries move (or disappear) based on native language input
- Theory: Speech statistics move boundaries

Concretely: Kuhl's (1991) perceptual magnet effect

Goal

- Native language sound categorization
- Input: Sounds (Vowels, 1st /2nd formant), Output: Sound category membership

Goal

- Native language sound categorization
- Input: Sounds (Vowels, 1st /2nd formant), Output: Sound category membership

Processing abilities

- Process: Neuron(al groups) move their perceptual fields
 (Self-Organizing Map; SOM demo: https://irath96.github.io/som-demo/)
- General statistical processing

Goal

- Native language sound categorization
- Input: Sounds (Vowels, 1st /2nd formant), Output: Sound category membership

Processing abilities

- Process: Neuron(al groups) move their perceptual fields
 (Self-Organizing Map; SOM demo: https://irath96.github.io/som-demo/)
- General statistical processing

Level of abstraction

- Neural assemblies (algorithmic-implementational)

Goal

- Native language sound categorization
- Input: Sounds (Vowels, 1st /2nd formant), Output: Sound category membership

Processing abilities

- Process: Neuron(al groups) move their perceptual fields
 (Self-Organizing Map; SOM demo: https://irath96.github.io/som-demo/)
- General statistical processing

Level of abstraction

- Neural assemblies (algorithmic-implementational)

Evaluation

- Correct categorization performance

Guenther, F. H., & Gjaja, M. N. (1996). The perceptual magnet effect as an emergent property of neural map formation. *The Journal of the Acoustical Society of America*, 100(2), 1111-1121.

Guenther, F. H., & Gjaja, M. N. (1996). The perceptual magnet effect as an emergent property of neural map formation. *The Journal of the Acoustical Society of America*, 100(2), 1111-1121.

Guenther, F. H., & Gjaja, M. N. (1996). The perceptual magnet effect as an emergent property of neural map formation. *The Journal of the Acoustical Society of America*, 100(2), 1111-1121.

Strengths

Strengths

- Simple, intuitive
- Concrete, testable predictions: e.g., effects of sound distance / frequency

Strengths

- Simple, intuitive
- Concrete, testable predictions: e.g., effects of sound distance / frequency

Weaknesses

Strengths

- Simple, intuitive
- Concrete, testable predictions: e.g., effects of sound distance / frequency

Weaknesses

- Input highly simplified

Are formants sufficient to learn vowel categories?

What about consonants?

→ How do infants know what aspects of the acoustics to pay attention to?

Strengths

- Simple, intuitive
- Concrete, testable predictions: e.g., effects of sound distance / frequency

Weaknesses

Input highly simplified

Are formants sufficient to learn vowel categories?

What about consonants?

→ How do infants know what aspects of the acoustics to pay attention to?

Which **theories** about speech perception does the model build on?

Transitional probability (TP)

Lookattheprettybaby.

Isthatmybabyboy?

Hearthebabycrying.

Transitional probability (TP)

TP (XY) = P(Y | X) =
$$\frac{P(XY)}{P(X)}$$

0.5 0.45 0.4 0.35 0.65

Lookattheprettybaby.

Isthatmybabyboy?

Hearthebabycrying.

Saffran, J.R., Aslin, R.N., & Newport, E.L. (1996). Science. 1926-8.

bidukapolimatifagerunosapolimarunosabidukatifage

bi-du-ka-po-li-ma-ti-fa-ge-ru-no-sa-po-li-ma-ru-no-sa-bi-du-ka-ti-fa-ge

TP (XY) = P(Y | X) =
$$\frac{P(XY)}{P(X)}$$

Transitional probability (TP)

Goal

 Input: Stream of syllables, Output: Probability of a syllable sequence being a "word"

Goal

 Input: Stream of syllables, Output: Probability of a syllable sequence being a "word"

Processing abilities

- Calculate Transitional Probabilities
- General statistical processing properties: computed over pairs of syllables
- Perceive syllables

Goal

 Input: Stream of syllables, Output: Probability of a syllable sequence being a "word"

Processing abilities

- Calculate Transitional Probabilities
- General statistical processing properties: computed over pairs of syllables
- Perceive syllables

Level of abstraction

No direct link to biology (algorithmic)

Goal

- Input: Stream of syllables, Output: Probability of a syllable sequence being a "word"

Processing abilities

- Calculate Transitional Probabilities
- General statistical processing properties: computed over pairs of syllables
- Perceive syllables

Level of abstraction

- No direct link to biology (algorithmic)

Evaluation

- Probabilities of syllable sequences

Try simplest implementation: Implement basic TP formula

TP (XY) = P(Y | X) =
$$\frac{P(XY)}{P(X)}$$

Time to code!

Try simplest implementation: Implement basic TP formula

TP (XY) = P(Y | X) =
$$\frac{P(XY)}{P(X)}$$

Results for words (by design) 1.0

Results for non-words (by design) 0.0

Results for part words around 0.33

Strengths

- Simple, intuitive
- Very powerful process, also works for Italian (e.g., Pelucchi, Hay, & Saffran, 2009)

- Can be applied to natural language corpora to find "probable word chunks"
 - As predicted by the model, children react to highly probable syllable streams similarly independent of whether they correspond to words or not! (Ngon et al., 2013)

Weaknesses

- Does not explain all experimental data
 - Children cannot learn words when word lengths are mixed (2- and 3-syllable "words") \rightarrow The model is too "smart"
 - Cannot account for word stress and prosody, which are also important cues to word boundaries
 - Only looks at *pairs* of syllables. What about longer ranging dependencies? Think about rule learning, is it a different process?
- Probabilities were calculated based on the WHOLE experimental input (2 minutes)
 - Do children have such efficient memory capacities?
 - Not a learning mechanism in the narrow sense

Alternative models: PUDDLE + Chunk-based learner

→ Scale to corpora of infant-directed speech

Goal

- Input: Stream of sounds, Output: "Chunks" (i.e. words)

Goal

- Input: Stream of sounds, Output: "Chunks" (i.e. words)

Processing abilities

- Compute frequencies, store sequences at utterance boundaries
- Perceive phonemes (not phones, acoustics), utterance boundaries

Goal

- Input: Stream of sounds, Output: "Chunks" (i.e. words)

Processing abilities

- Compute frequencies, store sequences at utterance boundaries
- Perceive phonemes (not phones, acoustics), utterance boundaries

Level of abstraction

No direct link to biology (algorithmic)

Goal

Input: Stream of sounds, Output: "Chunks" (i.e. words)

Processing abilities

- Compute frequencies, store sequences at utterance boundaries
- Perceive phonemes (not phones, acoustics), utterance boundaries

Level of abstraction

No direct link to biology (algorithmic)

Evaluation

- Real word boundaries found

	Stage	INPUT BUFFER	CHUNK INVENTORY		
	1	thedogbelongstopeter	the	3	
D			peter	2	
Examp	2	thedogbelongstopeter	the	3	L)
			peter	2	
	2	the dogbelongstopeter	the	4	
			peter	2	
	3	the dogbelongstopeter	the	4	
			peter	2	
	4	the dogbelongstopeter	the	4	
			peter	2	
	14	the dogbelongstopeter	the	4	
			peter	2	
	14	the dogbelongsto peter	the	4	
			peter	3	
	14	the dogbelongsto peter	the	4]
	14	and dogstrongoto peter	peter	3	
			dogbelongs		
				encentral Add II	J

Results

The twenty most highly activated items in the PUDDLE chunk inventory after 1000 and 10,000 utterances during the course of the dense corpus simulation

Results

1000 Utterances	10000 Utterances		
no	the		
oh	а		
this	no		
dear	oh		
and	and		
hat	you		
thomas	this		
it	that		
what	ee		
grapes	it		
ahh	to		
there	are		
oops	on		
where	dear		
two	what		
ooh	thomas		
look	two		
a_hat	is		
blue	what's		
what's_this	there		

Strengths

- Stepwise processing
- Realistic memory assumptions
- Consideration of possible words / phonotactics

Weaknesses

- Lots of processing needed (comparing input with all stored items)
- What about overlapping words?
 - hand vs handy

Summary

Models are a useful tool in language (acquisition) research

Important to pay attention to implicit assumptions!

Plan for tomorrow

- 1. Let's look at word learning
- 2. Limitations
- 3. Bridging the gap between models and infant studies