FRAMINGHAM HEART STUDY

Asabere Kwabena Asante

```
## load required libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, roc_curve
# import the Framingham study dataset
framingham_data = pd.read_csv(r"C:\Users\KAsab\Desktop\PORTFOLIO PROJECTS\framingham_heart_score
```

|--|

	male	age	education	${\it currentSmoker}$	${\it cigsPerDay}$	BPMeds	${\it prevalentStroke}$	${\it prevalentHyp}$	diabet
0	1	39	4.0	0	0.0	0.0	0	0	0
1	0	46	2.0	0	0.0	0.0	0	0	0
2	1	48	1.0	1	20.0	0.0	0	0	0
3	0	61	3.0	1	30.0	0.0	0	1	0
4	0	46	3.0	1	23.0	0.0	0	0	0

EDA

print(framingham_data.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4240 entries, 0 to 4239
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	4240 non-null	int64
1	age	4240 non-null	int64
2	education	4135 non-null	float64
3	currentSmoker	4240 non-null	int64
4	cigsPerDay	4211 non-null	float64
5	BPMeds	4187 non-null	float64
6	${\tt prevalentStroke}$	4240 non-null	int64
7	${\tt prevalentHyp}$	4240 non-null	int64
8	diabetes	4240 non-null	int64
9	totChol	4190 non-null	float64
10	sysBP	4240 non-null	float64
11	diaBP	4240 non-null	float64
12	BMI	4221 non-null	float64
13	heartRate	4239 non-null	float64
14	glucose	3852 non-null	float64
15	TenYearCHD	4240 non-null	int64

dtypes: float64(9), int64(7)

memory usage: 530.1 KB

None

numerical summaries of variables
print(framingham_data.describe())

	male	age	education	currentSmoker	cigsPerDay	\
count	4240.000000	4240.000000	4135.000000	4240.000000	4211.000000	
mean	0.429245	49.580189	1.979444	0.494104	9.005937	
std	0.495027	8.572942	1.019791	0.500024	11.922462	
min	0.000000	32.000000	1.000000	0.000000	0.000000	
25%	0.000000	42.000000	1.000000	0.000000	0.000000	
50%	0.000000	49.000000	2.000000	0.000000	0.000000	
75%	1.000000	56.000000	3.000000	1.000000	20.000000	
max	1.000000	70.000000	4.000000	1.000000	70.000000	

```
prevalentHyp
            BPMeds
                     prevalentStroke
                                                          diabetes
                                                                         totChol
       4187.000000
                         4240.000000
                                        4240.000000
count
                                                      4240.000000
                                                                    4190.000000
          0.029615
                             0.005896
                                            0.310613
                                                          0.025708
                                                                      236.699523
mean
std
          0.169544
                             0.076569
                                            0.462799
                                                          0.158280
                                                                       44.591284
min
          0.000000
                             0.000000
                                            0.000000
                                                          0.000000
                                                                      107.000000
25%
          0.000000
                             0.000000
                                            0.000000
                                                          0.000000
                                                                      206.000000
50%
          0.000000
                             0.000000
                                            0.000000
                                                          0.000000
                                                                      234.000000
75%
          0.000000
                             0.000000
                                            1.000000
                                                          0.000000
                                                                      263.000000
          1.000000
                             1.000000
                                            1.000000
                                                          1.000000
                                                                      696.000000
max
                                            {\tt BMI}
              sysBP
                            diaBP
                                                   heartRate
                                                                   glucose
                                   4221.000000
                                                 4239.000000
                                                               3852.000000
count
       4240.000000
                     4240.000000
        132.354599
                       82.897759
                                     25.800801
                                                   75.878981
                                                                 81.963655
mean
std
         22.033300
                       11.910394
                                      4.079840
                                                   12.025348
                                                                 23.954335
\min
         83.500000
                       48.000000
                                     15.540000
                                                   44.000000
                                                                 40.000000
25%
        117.000000
                       75.000000
                                     23.070000
                                                   68.000000
                                                                 71.000000
50%
        128.000000
                       82.000000
                                     25.400000
                                                   75.000000
                                                                 78.000000
75%
        144.000000
                       90.000000
                                     28.040000
                                                   83.000000
                                                                 87.000000
        295.000000
                      142.500000
                                     56.800000
                                                  143.000000
                                                                394.000000
max
        TenYearCHD
       4240.000000
count
mean
          0.151887
std
          0.358953
min
          0.000000
25%
          0.000000
50%
          0.000000
75%
          0.000000
max
          1.000000
```

```
## check for missing values
print(framingham_data.isnull().sum())
```

male	0
age	0
education	105
currentSmoker	0
cigsPerDay	29
BPMeds	53
prevalentStroke	0
prevalentHyp	0
diabetes	0

```
totChol
                    50
sysBP
                    0
diaBP
                    0
BMI
                   19
heartRate
                   1
glucose
                  388
TenYearCHD
                    0
dtype: int64
## group variables
categorical_features = ['male','currentSmoker','BPMeds','prevalentStroke','prevalentHyp','dia
numeric_features = ['age', 'cigsPerDay', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'g
framingham_data[numeric_features].hist(
   figsize=(16,12),
    edgecolor = "black",
   bins=30,
   grid=False
plt.grid(True, linestyle='--', alpha=0.6)
plt.suptitle('Distribution of Continuous Variables', fontsize=20, y=1.02)
plt.tight_layout()
plt.show()
```

Distribution of Continuous Variables

The distribution of the target variable shows class imbalance with the negative class considerably higher in proportion.

Preprocessing

```
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.model_selection import train_test_split
# Numeric pipeline
numeric_pipeline = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='mean')),
    ('scaler', StandardScaler())
])
# Categorical pipeline
categorical_pipeline = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')),
    ('encoder', OneHotEncoder(handle_unknown='ignore',sparse_output=False))
])
# ColumnTransformer
preprocessor = ColumnTransformer(transformers=[
    ('num', numeric_pipeline,make_column_selector(dtype_include=np.number)),
    ('cat', categorical_pipeline,make_column_selector(dtype_include=object))
1)
# Fit and transform training data, transform test data
X_train_processed = preprocessor.fit_transform(X_train)
X_test_processed = preprocessor.transform(X_test)
```

Model Training

Due to class imbalance of the target variable, SMOTE(Synthetic Minority Oversampling Technique) will be incorporated into the model training pipeline

```
{'clf_C': [0.01, 0.1, 1, 10]}
    ),
    "Random Forest": (
        ImbPipeline([
            ('preprocess', preprocessor),
            ('smote', SMOTE(random_state=42)),
            ('clf', RandomForestClassifier(random_state=42))
        ]),
        {'clf__n_estimators': [100, 200], 'clf__max_depth': [5, 10, None]}
    ),
    "XGBoost": (
        ImbPipeline([
            ('preprocess', preprocessor),
            ('smote', SMOTE(random_state=42)),
            ('clf', XGBClassifier(eval_metric='logloss', use_label_encoder=False))
        ]),
        {'clf_n_estimators': [100, 200], 'clf_max_depth': [3, 5, 7]}
    )
}
best_model = None
best auc = 0
for name, (pipeline, param_grid) in models.items():
    grid = GridSearchCV(pipeline, param_grid, cv=5, scoring='roc_auc', n_jobs=-1)
    grid.fit(X_train, y_train)
    y_pred = grid.predict(X_test)
    y_proba = grid.predict_proba(X_test)[:, 1]
    auc = roc_auc_score(y_test, y_proba)
   print(f"\n{name} Best Params: {grid.best_params_}")
    print(classification_report(y_test, y_pred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
   print(f"ROC AUC: {auc:.4f}")
    fpr, tpr, _ = roc_curve(y_test, y_proba)
   plt.plot(fpr, tpr, label=f"{name} (AUC={auc:.2f})")
    if auc > best_auc:
```

best_auc = auc

best_model = grid.best_estimator_

```
# ROC Curve
plt.plot([0, 1], [0, 1], "k--")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve with SMOTE")
plt.legend()
plt.show()
```

Logistic Regression Best Params: {'clf__C': 0.01}

	precision	recall	f1-score	support
0	0.91	0.68	0.78	719
1	0.25	0.60	0.36	129
accuracy			0.67	848
macro avg	0.58	0.64	0.57	848
weighted avg	0.81	0.67	0.71	848

Confusion Matrix:

[[490 229] [51 78]] ROC AUC: 0.6972

Random Forest Best Params: {'clf__max_depth': 5, 'clf__n_estimators': 200} precision recall f1-score support 0.74 0 0.89 0.81 719 1 0.26 0.51 0.35 129 accuracy 0.71 848 macro avg 0.58 0.63 0.58 848 0.74 weighted avg 0.80 0.71 848

Confusion Matrix:

[[532 187] [63 66]] ROC AUC: 0.6760

0	0.86	0.88	0.87	719
1	0.21	0.18	0.19	129
accuracy			0.77	848
macro avg	0.53	0.53	0.53	848
weighted avg	0.76	0.77	0.76	848

Confusion Matrix:

[[631 88] [106 23]] ROC AUC: 0.6138

ROC Curve with SMOTE 1.0 0.8 True Positive Rate 0.6 0.4 0.2 Logistic Regression (AUC=0.70) Random Forest (AUC=0.68) XGBoost (AUC=0.61) 0.0 0.2 0.0 0.4 0.6 0.8 1.0 False Positive Rate

best_model

```
Pipeline(steps=[('imputer',
                                                                    SimpleImputer()),
                                                                    ('scaler',
                                                                     StandardScaler())]),
                                                   <sklearn.compose._column_transformer.make_</pre>
                                                  ('cat',
                                                   Pipeline(steps=[('imputer',
                                                                    SimpleImputer(strategy='m
                                                                    ('encoder',
                                                                     OneHotEncoder(handle_unkn
                                                                                   sparse_outp
                                                   <sklearn.compose._column_transformer.make_</pre>
                ('smote', SMOTE(random_state=42)),
                ('clf', LogisticRegression(C=0.01, max_iter=1000))])
fitted_models = {}
for name, (pipeline, param_grid) in models.items():
    grid = GridSearchCV(pipeline, param_grid, cv=5, scoring='roc_auc', n_jobs=-1)
    grid.fit(X_train, y_train)
    fitted_models[name] = grid.best_estimator_ # Save fitted model
    y_pred = grid.predict(X_test)
    y_proba = grid.predict_proba(X_test)[:, 1]
    print(f"\n{name} Best Params: {grid.best_params_}")
    print(classification_report(y_test, y_pred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
    print(f"ROC AUC: {auc:.4f}")
    fpr, tpr, _ = roc_curve(y_test, y_proba)
    plt.plot(fpr, tpr, label=f"{name} (AUC={auc:.2f})")
    if auc > best_auc:
        best_auc = auc
        best_model = grid.best_estimator_
# ROC Curve
plt.plot([0, 1], [0, 1], "k--")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
```

```
plt.title("ROC Curve with SMOTE")
plt.legend()
plt.show()
```

Logistic Regi	ression Best	Params: {	'clfC':	0.01}
	precision	recall	f1-score	support
0	0.91	0.68	0.78	719
1	0.25	0.60	0.36	129
accuracy			0.67	848
macro avg	0.58	0.64	0.57	848
weighted avg	0.81	0.67	0.71	848

0.58

0.80

Confusion Matrix:

[[490 229] [51 78]] ROC AUC: 0.6138

Random Forest Best Params: {'clf__max_depth': 5, 'clf__n_estimators': 200} precision recall f1-score support 0.89 0.74 0.81 719 1 0.26 0.51 0.35 129 0.71 848 accuracy

0.58

0.74

848

848

Confusion Matrix:

macro avg

[[532 187] [63 66]]

weighted avg

ROC AUC: 0.6138

0.63

0.71

accuracy			0.77	848
macro avg	0.53	0.53	0.53	848
weighted avg	0.76	0.77	0.76	848

Confusion Matrix:

[[631 88] [106 23]] ROC AUC: 0.6138


```
### Precision-Recall Curve

plt.figure(figsize=(8,6))
for name, model in fitted_models.items():
    y_proba = model.predict_proba(X_test)[:, 1]
    plot_precision_recall_curve(y_test, y_proba, name)

plt.xlabel("Recall")
```

```
plt.ylabel("Precision")
plt.title("Precision-Recall Curve")
plt.legend()
plt.grid(True, linestyle="--", alpha=0.6)
plt.tight_layout()
plt.show()
```

