

#### CS 6301.007

#### Machine Learning in Cyber Security

Wei Yang

Department of Computer Science University of Texas at Dallas



# What is the difference between adversarial examples and test error?

#### Gaussian noise





- InceptionV3: 13.2% test accuracy at sigma=.4
- (76.2% clean test accuracy)

# Salt-and-pepper noise





InceptionV3: 5.4% test accuracy at p=.3

#### Video Robustness











Thanks to Keren Gu for this example!

#### Naïve data augmentation doesn't help





# Compress noice != white noise





### Data augmentation can even hurt you





# **Corruption Robustness**



- Goal: Measure and improve model robustness to distributional shift.
- Corruptions are not worst-case.
- Test examples are randomly sampled to best estimate probability of an error.



# Progress is being made...



#### Training on randomized textures helps







# What is the difference between adversarial examples and test error?

## Adversarial Examples - Security



```
Here at World Stock Report we work on
what we here from the street.
Trade Date:
                Monday, Dec 11, 2006
Company:
                 AMEROSSI INTL GRP
Symbol:
                 amsn
Current Price:
                 $0,0006
Target Price:
                 $0.005
STRONG BUY
Recommendation:
Rating:
                MAX
We assume many of you
the promotion" and may have made some
big, fast money doing so.
```

# **Adversarial Examples - Security**





https://qz.com/721615/smart-pirates-are-fooling-youtubes-copyright-bots-by-hiding-movies-in-360-degree-videos/

#### Questions for Design a Secure ML System



- How do adversaries typically break systems?
- How would you measure test error?
- Are you secure if test error > 0?
- How do we deal with out-of-distribution generalization?





Why do our models have adversarial examples? A: ???

What are adversarial examples?

A: The nearest test error





Why do our models have test error?

What are adversarial examples?

A: ???

A: The nearest test error



57.7% confidence



"panda" "gibbon"



99.3% confidence



Why do our models have test error?

A: ???

What are adversarial examples?

A: The nearest test error



- In high dimensions, what does .1% test error look like?
- How close should the nearest test error be? (Assuming we sample infinitely)

# High Dimensional Gaussians







- sigma=.2
- n=299\*299\*3
- 270,000 dimensional sphere
- radius ~ 103





#### Linear Models To COMPUTER SCIENCE



$$q(x) = x + N(0, sigma^2 I)$$





Theorem: A linear model with error rate mu in distribution q, has its nearest error at distance  $\sigma\Phi^{-1}(\mu)=O(\sigma)$ 

- sigma=.2
- .1% error -> d = .62
- 10^-9 error -> d = 1.2

https://arxiv.org/pdf/1608.08967.pdf

#### Where is .1% Test Error?





#### Where is .1% Test Error?





#### Where is .1% Test Error?





### Church Window Plot





# InceptionV3: RING AND COMPUTER SCIENCE





# InceptionV3 and computer science





#### Resnet-50 GINEERING AND COMPUTER SCIENCE





sigma=.04 (R=2.2) error rate .2% d = .16 predicted d = .08













# Adversarial Defenses – Why?



Why are we trying to "defend" against the nearest test error?



# Adversarial Defenses – Why?





Better robustness to noise, blurring, fog, snow, brightness changes, contrast...



#### Successful Defenses Improve Robustness







https://arxiv.org/pdf/1706.06083.pdf

#### Failed Defenses Don't Improve Robustness





# The Wrong Mental Model



"[One] Possible explanation is that the **set of adversarial negatives** is of extremely low probability, and thus is never (or rarely) observed in the test set, yet it is dense (**much like the rational numbers**), and so it is found near every virtually every test case."



# The Wrong Mental Model



"[One] Possible explanation is that the **set of adversarial negatives** is of extremely low probability, and thus is never (or rarely) observed in the test set, yet it is dense (**much like the rational numbers**), and so it is found near every virtually every test case."



### The Right Mental Model



- Adversarial examples are the nearest test error.
- Test error measures the amount of errors.
- The nearest error is not surprisingly close given the amount of errors.
- We can measure test error outside the natural distribution.
- There is always going to be a nearest error.



#### **Evaluate Robustness to Distributional Shift**



- Robustness to distributional shift is the real problem here.
- If you disagree, at least measure both for the sake of science.
- It's a critical sanity check for the vanishing gradient problem.



Hendrycks et. al.