Задачи CV

Что такое CV

Computer Vision - область компьютерных наук, включающая в себя теорию и технологию создания машин, которые могут анализировать изображения или видео (много изображений подряд).

Задачи CV

С помощью компьютерного зрения люди находят какие-либо паттерны, закономерности и особенности на изображениях.

Выделяют несколько различных разделов.

Computer Vision tasks

Semantic Segmentation Classification + Localization

Object Detection Instance Segmentation

GRASS, CAT, TREE, SKY

CAT

DOG, DOG, CAT

DOG, DOG, CAT

No objects, just pixels

Single Object

Multiple Object

This image is CC0 public domain

Классификация

Сегментация — процесс деления изображения на несколько областей (сегментов). Это позволяет упростить изображение, чтобы его было легче анализировать. Можно понимать сегментацию как попиксельную классификацию

Без нейронных сетей:

- Кластеризация
- Гистограммы
- Выделение границ
- Метод разрастания
- Деление графа

Без нейронных сетей:

- Кластеризация
- Гистограммы
- Выделение границ
- Метод разрастания
- Деление графа

С использованием нейронок:

Fully Convolutional Network (FCN)

Детектирование

Задача детектирования заключается в поиске заданных объектов на изображении и их выделении.

Детектирование

Детектирование на видео

Проблема: картинок очень много и обрабатывать отдельно каждую слишком долго.

Что делать?

Детектирование на видео

Проблема: картинок очень много и обрабатывать отдельно каждую слишком долго.

Есть 2 варианта: one-shot и two-shot. Первый неточный, второй медленный

One shot detectors

Для каждой ячейки в последнем conv слое предказываем координаты бокса и класс объекта с центром в ячейке.

R-CNN

Подход относительно прост: возьмем существующее решение (AlexNet, например) и изменим входные данные. С помощью selective search сгенерируем много различных регионов, в которых может находиться объект и будем смотреть отдельно на них.

R-CNN = Selective Search + Classification

R-CNN: Regions with CNN features

warped region

1. Input image

2. Extract region proposals (~2k)

3. Compute
CNN features

4. Classify regions

tvmonitor? no.

aeroplane? no.

person? yes.

R-CNN

Хорошо? Не очень

Получились хорошие результаты, но с очень большими затратами по времени (47 секунд на одну картинку для VGG16).

Fast/Faster R-CNN

Fast R-CNN: добавим region of interest (RoI) pooling вместо обычного

Faster R-CNN: вместо определения регионов по изначальному изображению будем это делать после CNN слоев

Fast/Faster R-CNN

Fast => Faster

Fast R-CNN => Faster R-CNN
Вычисляем proposals самой сетью.
2 секунды => 0.2 секунды (10 раз быстрее)

Все предыдущие подходы были разработаны для статичных изображений и никак не использовали факт, что в близких по времени картинках особенности будут расположены в похожих местах.

Взяли все подходы из Faster R-CNN и адаптируем их для клипов по 8 кадров (Tubes).

$$S = \frac{1}{m} \sum_{i=1}^{m} Actionness_i + \frac{1}{m-1} \sum_{j=1}^{m-1} Overlap_{j,j+1}$$
 (2)

Seq-NMS

Как работает?

Начнем с контента

$$\mathcal{L}_{\text{content}}(\vec{p}, \vec{x}, l) = \frac{1}{2} \sum_{i,j} \left(F_{ij}^l - P_{ij}^l \right)^2.$$

 \vec{p} - исходная картинка, \vec{x} - то, что мы хотим получить

Теперь стиль

$$G_{ij}^l = \sum_{l} F_{ik}^l F_{jk}^l.$$

Теперь стиль

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l.$$

$$E_{l} = \frac{1}{4N_{l}^{2}M_{l}^{2}} \sum_{i,j} (G_{ij}^{l} - A_{ij}^{l})^{2}$$

and the total style loss is

$$\mathcal{L}_{\text{style}}(\vec{a}, \vec{x}) = \sum_{l=0}^{L} w_l E_l,$$

Результаты

Что нас ждет

Вопросы

- Чем отличается сегментация от детектирования
- Что такое Rol и как работает
- Как создается представления контента и стиля в задаче переноса стиля и почему по-разному

Источники

- R-CNN https://arxiv.org/abs/1311.2524
- Fast R-CNN https://arxiv.org/abs/1504.08083
- Faster R-CNN https://arxiv.org/abs/1506.01497
- T-CNN https://arxiv.org/pdf/1703.10664.pdf
- Style transfer

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf