MATH 255 PSET 5

February 21, 2025

1.

To prove that E is open, we WTS $\forall (a,b) \in E$, (a,b) is an interior point of E. Pick $(a,b) \in E$. Because $(a,b) \in E \implies a < b$ and so we can define h = b - a > 0. We now need to show that we can create a neighborhood around (a,b) that is $\subset E$. Let us define $\epsilon = \frac{h}{2} > 0$ and create the following neighborhood:

$$N_{\epsilon}((a,b)) = \{(x,y) : \sqrt{(a-x)^2 + (y-b)^2} < \epsilon\}$$

We now need to show that $N_{\epsilon}((a,b)) \subset E \implies \forall (x,y) \in N_{\epsilon}((a,b)), (x,y) \in E$. Pick $(x,y) \in N_{\epsilon}((a,b))$. This implies the following two statements: (i) $(a-x)^2 < \epsilon^2 \implies |a-x| < \epsilon$ and (ii) $(b-y)^2 < \epsilon^2 \implies |b-y| < \epsilon$. Note that $|a-x| < \epsilon \implies -\epsilon < a-x < \epsilon \implies a-\epsilon < x < a+\epsilon$ and with the same logic $b-\epsilon < y < b+\epsilon$. Substituting ϵ for 0.5h, we know the following: $x < a+\epsilon \implies x < a+\frac{h}{2}$ and $y > b+\epsilon \implies y > b-\frac{h}{2}$. Note that b=a+h and so $y > b-\frac{h}{2} \implies y > a+\frac{h}{2} > x \implies y > x \implies x < y \implies (x,y) \in E$. Thus, we have shown $N_{\epsilon}((a,b)) \subset E$ and so we have proven $\forall (a,b) \in E, \exists \epsilon > 0$ s.t. $N_{\epsilon}((a,b)) \subset E \implies E$ is open.

2.

Let us define C_1, \ldots, C_k to be k compact sets. Let us define set $C = \bigcup_{i=1}^k C_i$. We WTS that C is compact, or that any open cover of C has a finite subcover. Let $\{S_j\} \supset C$ be an open cover of C. Because $\forall \ 1 \leq i \leq k, \{S_j\} \supset C \supset C_i \Longrightarrow \{S_j\} \supset C_i, \{S_j\}$ serves as an open cover for each C_i . Because each C_i is compact, any open cover of C_i has a finite subcover. Thus, for each C_i , its open cover $\{S_j\}$ has a finite subcover $\{F_z^{(i)}\} \supset C_i$ where $\{F_z^{(i)}\} \subset \{S_j\}$.

Let us define $F = \bigcup_{i=1}^k \{F_z^{(i)}\}$ to be the union of all these finite subcovers of C_i . We now WTS that F is a finite subcover of C. To do so, we need to show the following:

1. F is an open cover of C

Because $\forall x \in C, x \in \text{some } C_i \implies x \in \text{some } \{F_z^{(i)}\} \implies x \in F$, we have $C \subset F$, meaning that F is a (finite) open cover of C.

¹Because each finite subcover is finite, a union of these finite sets (i.e. F) will also be finite.

2. F is a finite subcover of open cover $\{S_i\}$ of C

Because $\forall \{F_z^{(i)}\} \in F, \{F_z^{(i)}\} \in \{S_i\}, F \text{ is a subcover of open cover } \{S_i\} \text{ of } C.$

Thus, we have proven any open cover of C, a union of finitely many compact sets, has a finite subcover $\implies C$ is compact.

- 3. An open cover of $(0,1) \subset \mathbb{R}$ can be given by $\mathbb{R} \supset \{G_{\alpha} : \alpha \in \mathbb{N}\} \supset (0,1)$, where open set $G_{\alpha} = (\frac{1}{\alpha}, 1)$. We WTS $(0,1) \subset \mathbb{R}$ is not compact by showing that this open cover does not have a finite subcover (as this implies that not all open covers of $(0,1) \subset \mathbb{R}$ have a finite subcover $\Longrightarrow (0,1) \subset \mathbb{R}$ is not compact).
 - We now prove that there is no finite subcover of $\{G_{\alpha}\}$. We prove this by contradiction and assume that there is a finite subcover of $\{G_{\alpha}\}$, given by $\{G_k\} = \bigcup_{i=1}^k (\frac{1}{n_i}, 1) \subset \{G_{\alpha}\}$ where $n_1, \ldots, n_k \in \mathbb{N}$. Because n_1, \ldots, n_k form a (finite) subset of \mathbb{N} , they have a minimum which we can call $n' = \min(n_1, \ldots, n_k)$. This means that the interval $\{G_k\} = \bigcup_{i=1}^k (\frac{1}{n_i}, 1)$ can be simplified to $(\frac{1}{n'}, 1)$. Because $\exists n'' > n'$ where $(\frac{1}{n''}, 1) \subset (0, 1)$ but $\not\subset \{G_k\} = (\frac{1}{n'}, 1)$, G_k is not an open cover of $\{0, 1\}$ $\Longrightarrow \{G_k\}$ is not a finite subcover of $\{G_{\alpha}\}$. Thus, we have proved by contradiction that the open cover $\{G_{\alpha}\}$ has no finite subcover $\Longrightarrow (0, 1) \subset \mathbb{R}$ is not compact.
- 4. (1) If A and B are disjoint sets then $A \cap B = \emptyset$. Furthermore, if A and B are closed that means $A = \bar{A}$ and $B = \bar{B}$. Thus $A \cap \bar{B} = A \cap B = \emptyset$ and $\bar{A} \cap B = A \cap B = \emptyset$, and so we know A and B are separated.
 - (2) Let us define A, B as two disjoint open sets. We WTS that $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$. To do so, we prove that no limit points of B are in A and no limit points of A are in B.

WLOG, let us prove why no limit points of B are in A. We prove this by contradiction and assume that for a limit point x of B, $x \in A$. This means $\forall \epsilon > 0$, $N_{\epsilon}(x)$ contains some $b \neq x$ s.t. $b \in B$. However, because $x \in A$ and A is open $\implies x$ is an interior point $\implies \exists \ \epsilon > 0$ s.t. $N_{\epsilon}(x) \subset A$. Thus, this means that $N_{\epsilon}(x)$, which will contain some $b \neq x \in B$ by virtue of x being a limit point of B, is fully contained in $A \implies \exists \ b \in B$ and $A \implies A \cap B \neq \emptyset$, which is a contradiction of A and B being disjoint. Thus, we have proven that no limit points of B are in A and that no limit points of A are in B.

Let us define A' and B' to be the limit points of A and B, respectively. Based on our proof above we know $B' \cap A = \emptyset$ and $A' \cap B = \emptyset$. Thus, we have:

$$A \cap \bar{B} = A \cap (B \cup B') = (A \cap B) \cup (A \cap B') = \emptyset \cup \emptyset = \emptyset$$

$$\bar{A} \cap B = (A \cup A') \cap B = (A \cap B) \cup (A' \cap B) = \emptyset \cup \emptyset = \emptyset$$

Thus, $A \cap \bar{B} = \emptyset$ and $\bar{A} \cap B = \emptyset \implies A$ and B are separated.

(3) $\forall x \in A, d(p, x) < \delta \implies d(p, x) \not> \delta \implies x \notin B$. The same applies in the other direction to show $\forall x \in B, x \notin A$ and so we have $A \cap B = \emptyset \implies A$ and B are disjoint.

We now prove that A and B are open. We first prove A is open. Note that A is essentially $N_{\delta}(p)$. As we have proved, any neighborhood of a point is open $\Longrightarrow A = N_{\delta}(p)$ is open.

We now prove that B is open, or that all its points are interior points of B. Pick $x \in B$. To show x is an interior point, we must find some $\epsilon > 0$ s.t. $N_{\epsilon}(x) \subset B$. Note that because $x \in B \implies d(p,x) > \delta$. Consider $\epsilon = d(p,x) - \delta > 0$. We now aim to show that $\forall z \in N_{\epsilon}(x), z \in B$. Pick $z \in N_{\epsilon}(x)$. By Triangle Inequality we have:

$$d(p, x) \le d(p, z) + d(z, x)$$

$$d(p, z) \ge d(p, x) - d(z, x)$$

Because $z \in N_{\epsilon}(x), d(z, x) < \epsilon \implies d(z, x) < d(p, x) - \delta \implies -d(z, x) > \delta - d(p, x)$. Thus, we get:

$$d(p,z) \ge d(p,x) - d(z,x)$$

$$d(p,z) \ge d(p,x) - d(z,x) > d(p,x) + \delta - d(p,x)$$

$$d(p,z) > d(p,x) + \delta - d(p,x)$$

$$d(p,z) > \delta$$

Thus, $d(p,z) > \delta \implies z \in B \implies \forall z \in N_{\epsilon}(x), z \in B \implies N_{\epsilon}(x) \subset B \implies \text{all points of } B \text{ are interior points } \implies B \text{ is open.}$

Thus, we have proven that A and B are disjoint open sets. By our proof in part (2), this means that A and B are separated.

(4) We prove this statement by contradiction and thus assume that this connected metric space X with at least two points is not uncountable $\Longrightarrow X$ is at most countable. Let us define set $D = \{d((p,q)) : (p,q) \in X \times X\} \subset \mathbb{R}^+$. Because X is at most countable $\Longrightarrow X \times X$ is at most countable $\Longrightarrow D$ is at most countable². We aim to find a $\delta > 0 \notin D$ where $\exists m \in D$ s.t. $m > \delta$. We proceed with casework on D's cardinality:

(i) Case One: If D is finite

Let us fix points $p, p' \in X$. D is guaranteed to contain these two elements: d(p,p) = d(p',p') = 0 and d(p,p'). Listing all elements of D in increasing order as so: d_1, \ldots, d_n , we can select i from 1 to n-1 and choose $\delta = \frac{d_i + d_{i+1}}{2}$. We are guaranteed this element does not exist in the finitely many elements of D by virtue of it existing in between two consecutive elements d_i and d_{i+1} in D. Because this element is not the maximum of D (i.e. $\delta < d_n$) $\Longrightarrow \exists m \in D$ s.t. $m > \delta$. Furthermore, δ is an average of two non-negative numbers, where only one can be zero³ $\Longrightarrow \delta > 0$.

This is because set D cannot have more elements than $X \times X$ as it is simply applying the distance function d to every element of $X \times X$.

 $^{^{3}}$ This is because D is a set and thus there are no repeat elements.

(ii) Case Two: If D is countable

Here, we use a familiar intervals argument to find δ . Fix $p, p' \in X$ and define $a_1 = 0$ and $b_1 = d(p, p')$. Because D is countable, we can write a sequence (q_n) that defines every element of D. Let us first define interval $I_1 = [a_1, b_1]$. Then for q_2, q_3, \ldots , we can construct closed interval $I_i = [a_i, b_i]$ with nonzero length where $I_{i+1} \subset I_i$ and $q_i \notin I_i$.

Defining $\delta = \sup(\{a_i : i \in \mathbb{N}\})$, δ exists in all intervals I_i but does not exist in D. Furthermore, because $\forall i, \delta \in I_i$ we know the following two things: (i) $\delta < b_1 = d(p,q) \implies \exists m \in D \text{ s.t. } m > \delta \text{ and (ii) } \delta > a_i \implies \delta > 0.$

Because $\delta \notin D \implies \forall p, q \in X, d(p,q) \neq \delta \implies X = \{q \in X : d(p,q) < \delta\} \cup \{q \in X : d(p,q) > \delta\}$. Let us define set $A = \{q \in X : d(p,q) < \delta\}$ and set $B = \{q \in X : d(p,q) > \delta\}$ where, as per our previous sentence, $X = A \cup B$. Note that because $\exists m \in D \text{ s.t. } m > \delta \implies \exists q \in X \text{ s.t. } d(p,q) > \delta \implies q \in B \implies B \text{ is non-empty.}$ Also note A is guaranteed to be non-empty as $d(p,p) = 0 < \delta \implies p \in A$.

Our proof in part (c) applies and so we get that A and B are separated $\Longrightarrow \exists$ non-empty sets A, B s.t. $X = A \cup B$ where $\bar{A} \cap B = A \cap \bar{B} = \emptyset \Longrightarrow X$ is disconnected, which is a contradiction to our given that X is connected.

- 5. To prove that \mathbb{Q} is dense in \mathbb{R} , we aim to prove that $\overline{\mathbb{Q}} = \mathbb{R}$. We prove both directions of this statement below:
 - (a) $\bar{\mathbb{Q}} \subset \mathbb{R}$

Pick $x \in \mathbb{Q}$. This means that at least one of the two cases is true:

- 1. Case One: $x \in \mathbb{Q}$ If $x \in \mathbb{Q} \implies x \in \mathbb{R}$.
- 2. Case Two: x is a limit point of \mathbb{Q}

If x is a limit point of \mathbb{Q} , that means $\forall \epsilon > 0, N_{\epsilon}(x)$ contains some $q \neq x$ s.t. $q \in \mathbb{Q}$. Because $\mathbb{Q} \subset \mathbb{R}$, this means that $\forall \epsilon > 0, N_{\epsilon}(x)$ contains some $q \neq x$ s.t. $q \in \mathbb{R} \implies x$ is a limit point of \mathbb{R} . Because \mathbb{R} is closed, this means that $x \in \mathbb{R}$.

Thus we have shown in both cases that $x \in \mathbb{R}$ and so we have shown $\forall x \in \overline{\mathbb{Q}}, x \in \mathbb{R} \implies \overline{\mathbb{Q}} \subset \mathbb{R}$.

(b) $\mathbb{R} \subset \bar{\mathbb{Q}}$

Pick $x \in \mathbb{R}$. We perform casework:

- 1. Case One: $x \in \mathbb{Q}$ If $x \in \mathbb{Q} \implies x \in \bar{\mathbb{Q}}$.
- 2. Case Two: $x \notin \mathbb{Q}$

We know that $\forall x \in \mathbb{R}, x$ is a limit point of \mathbb{R} . Proof⁴. Thus, $\forall x \in \mathbb{R}$ we know that $\forall \epsilon > 0, N_{\epsilon}(x)$ contains some $y \neq x$ s.t. $y \in \mathbb{R}$. Because $x \neq y \implies$ either x < y or x > y because \mathbb{R} is an ordered field $\implies \min(x, y) \neq \max(x, y) \implies \min(x, y) < \max(x, y)$.

⁴Pick $x \in \mathbb{R}$ and define $\epsilon > 0 \in \mathbb{R}$. Then $N_e(x) = (x - \epsilon, x + \epsilon)$, which contains $x + 0.5\epsilon$. Because x and 0.5ϵ exist in \mathbb{R} and \mathbb{R} is closed under addition because it is a field $\implies x + 0.5\epsilon \in \mathbb{R} \implies \forall \epsilon > 0, N_e(x)$ contains some $x' \neq x$ s.t. $x' \in \mathbb{R} \implies \forall x \in \mathbb{R}, x$ is a limit point of \mathbb{R} .

Let us define $\alpha = \min(x, y)$ and $\beta = \max(x, y)$. Because $x, y \in \mathbb{R} \implies \alpha, \beta \in \mathbb{R}$. Thus, the density of rationals proof (Prop 3.45) applies: we know there exists some rational $r \in \mathbb{Q}$ s.t. $\alpha < r < \beta$. Thus, this means $\forall \epsilon > 0, N_{\epsilon}(x)$ contains some $r \neq x$ s.t. $r \in \mathbb{Q}$. This implies x is a limit point of $\mathbb{Q} \implies x \in \mathbb{Q}$.

Thus, we have shown in either case, $x \in \bar{\mathbb{Q}} \implies \forall x \in \mathbb{R}, x \in \bar{\mathbb{Q}} \implies \mathbb{R} \subset \bar{\mathbb{Q}}$