Errores Errores de Redondeo Errores de Truncamiento Error Numérico Total

Métodos Numéricos Errores de Redondeo y Truncamiento

Daniel Barragán 1

¹Escuela de Ingeniería de Sistemas y Computación Universidad del Valle

February 13, 2015

Agenda

- Errores
 - Exactitud y Precisión
 - Series de Taylor
- Errores de Redondeo
 - Definición
 - Conversiones
 - Representación
 - Operaciones Aritméticas
- Errores de Truncamiento
 - Definición
 - Series de Taylor
 - Estimación
- Error Numérico Total
 - Redondeo Vs Truncamiento

- El computador tiene un límite para representar magnitudes
- Al aproximar la derivada como una diferencia finita, la solución no es exacta. ¿Es posible cuantificar el error?
- Los métodos numéricos deben ser lo suficientemente precisos para solucionar un problema en particular

- Error de Redondeo: Esta relacionado con el error que ocurre debido a que el computador no puede representar algunas cantidades exactamente
- Error de Truncamiento: Esta relacionado con la cantidad de términos que se emplean en una serie para aproximar una solución

Exactitud:accuracy, Precisión:precision

Errores.

Exactitud y Precisión.

 Error Absoluto: Diferencia entre el valor exacto y una aproximación

$$E_t = valorverdadero - aproximacion$$

Error Relativo:

$$\varepsilon_t = \frac{valorverdadero - aproximacion}{valorverdadero} \times 100$$

• Problema: Se mide la longitud de un puente y un tornillo, obteniendo las medidas de 9999 y 9 cm respectivamente, las medidas verdaderas son de 10000 cm y 10 cm, el error en ambos casos es de 1 cm, ¿Cúal es el valor de los errores relativos?

Solución:

$$\varepsilon_{t} = \frac{\textit{valorverdadero} - \textit{aproximacion}}{\textit{valorverdadero}} \times 100$$
$$\varepsilon_{t} = \frac{10000 - 9999}{10000} \times 100 = 0,01\%$$
$$\varepsilon_{t} = \frac{10 - 9}{10} \times 100 = 10\%$$

 En los problemas donde no hay solución analítica, se estima el error aproximado

$$\varepsilon_{\textit{a}} = \frac{\textit{aproximacionactual} - \textit{aproximacionanterior}}{\textit{aproximacionactual}} \times 100$$

• El criterio de parada consiste en encontrar un error de aproximación dentro de un rango ε_s

$$|\varepsilon_{\mathsf{a}}|<\varepsilon_{\mathsf{s}}$$

Errores.

Exactitud y Precisión.

• ¿Qué valor es adecuado para ε_s ?

$$\varepsilon_s = (0.5x10^{2-n})\%$$

Donde:

n es la cantidad de cifras significativas

Errores. Series de Taylor.

 Representación de una función por medio de una suma infinita de términos, los cuales son calculados a partir de los valores de las derivadas de la función en un punto a

$$\sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n$$

Cuando a = 0, la serie es llamada serie de Maclaurin

 Problema: Desarrolle la expansion en Series de Maclaurin para e^x hasta el cuarto término y exprese la expansión como una sumatoria

Solucion:

$$e^{x} = \frac{e^{0}}{0!}x^{0} + \frac{e^{0}}{1!}x^{1} + \frac{e^{0}}{2!}x^{2} + \frac{e^{0}}{3!}x^{3}...$$

Expresando la expansion como una sumatoria se tiene:

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

• **Problema:** Estimar e^x con x = 0.5 empleando la expansión en series de Maclaurin para e^x con al menos 3 cifras significativas

$$e_x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

• **Nota**: La solución exacta es $e^{0.5} = 1.648721$.

Solución:

$$\varepsilon_s = (0.5x10^{2-n})\%$$
 $\varepsilon_s = (0.5x10^{2-3}) = 0.05\%$

Se debe llegar a un error menor del 0.05 % para garantizar una correcta aproximación con al menos 3 cifras significativas

- El primer estimado es $e^x = 1$
- El error absoluto para el primer estimado es:

$$\varepsilon_t = \frac{1.648721 - 1}{1.648721} \times 100 = 39.3\%$$

- El segundo estimado es $e^x = 1 + x = 1 + 0.5 = 1.5$
- El error absoluto y el error aproximado para el segundo estimado es:

$$\varepsilon_t = \frac{1.648721 - 1.5}{1.648721} \times 100 = 9.02\%$$

$$\varepsilon_a = \frac{1.5 - 1}{1.5} \times 100 = 33.3\%$$

El tercer estimado es

$$e^x = 1 + x + \frac{x^2}{2} = 1 + 0.5 + 0.125 = 1.625$$

 El error absoluto y el error aproximado para el tercer estimado es:

$$\varepsilon_t = \frac{1.648721 - 1.625}{1.648721} \times 100 = 1.44\%$$
$$\varepsilon_a = \frac{1.625 - 1.5}{1.625} \times 100 = 7.69\%$$

- Instrucciones Scilab:
 - funcionexp.sce

Términos	Aproximación	$arepsilon_{t}$	$arepsilon_{m{a}}$
1	1	39.3	
2	1.5	9.02	33.3
3	1.625	1.44	7.69
4	1.645833333	0.175	1.27
5	1.648437500	0.0172	0.158
6	1.648697917	0.00142	0.0158

Definición Conversiones Representación Operaciones Aritméticas

Errores de Redondeo. Definición.

 Error de Redondeo: Resultan de la limitación que tienen los computadores para representar magnitudes

Conversión Decimal a Binario.

• Representar el número decimal (173)₁₀ en formato binario

 $(10101101)_2$

Conversión Binario a Decimal.

 Representar el número binario (10101101)₂ en formato decimal

$$(10101101)_2$$

 $2^7 + 2^5 + 2^3 + 2^2 + 2^0$
 $128 + 32 + 8 + 4 + 1$
 $(173)_{10}$

Representación del Computador.

- ¿Cuántos bits son necesarios para representar el número binario (10101101)₂
- ¿Como se representa el número binario (10101101)₂ en un computador de 16 bits?

Representación Signo-Magnitud.

 Representación en Signo-Magnitud de (10101101)₂ en un computador de 16 bits

Signo		Magnitud													
0	0	0	0	0	0	0	0	1	0	1	0	1	1	0	1

Representación Signo-Magnitud.

 Mayor número positivo que se puede representar con 16 bits

Signo		Magnitud													
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

$$2^{15} - 1$$

Representación Signo-Magnitud.

 Menor número negativo que se puede representar con 16 bits

Signo	Magnitud														
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$$-2^{15}$$

Representación Punto Flotante.

• Formato de representación de punto flotante

$$\pm s \times b^e$$

Donde:

s es la mantisa b es la base del sistema numérico empleado e es el exponente

- **Ejemplo:** El número 0.005678 se representa como 5.678×10^{-3} (forma normalizada)
- Nota: Se evita el almacenamiento en memoria de ceros no significativos como en el caso de 0.005678 × 10⁰

Definición Conversiones Representación Operaciones Aritméticas

Errores de Redondeo.

- Problema: Expresar en forma normalizada:
 - 0.000000000000395

Definición
Conversiones
Representación
Operaciones Aritméticas

Errores de Redondeo.

- Solución:
 - \bullet 0.000000000000395 = 3.95 \times 10⁻¹⁴

- Problema: Suponga que existe un computador que opera en base 10 y puede representar cantidades con 5 dígitos.
 Se emplea: un dígito para el signo, dos para la mantisa, uno para el signo del exponente y uno para el exponente.
 - ¿Cuál es el valor positivo más grande que se puede representar?
 - ¿Cuál es el valor positivo más pequeño que se puede representar?
 - ¿Qué trae más ventajas al sistema, aumentar un dígito a la mantisa ó un dígito al exponente?

Representación Punto Flotante.

Solución:

Representación: $s_1 d_1 d_2 \times 10^{s_0 d_0}$

Número positivo más grande: $+9.9 \times 10^{+9}$ Número positivo más pequeño: $+1.0 \times 10^{-9}$

Al aumentar un dígito a la mantisa, aumenta la precisión:

 $+9.99 \times 10^{+9}$

Al aumentar un dígito al exponente, aumenta el rango:

$$+9.9 \times 10^{+99}$$

Representación Punto Flotante.

• **Problema:** ¿Cuál es el error de redondeo (error relativo) al expresar el número 0.03125 en el sistema con representación $s_1 d_1.d2 \times 10^{s_0 d_0}$?

Representación Punto Flotante.

Solución:

El número 0.03125 se representa como:

$$+3.1 \times 10^{-2}$$

El error de redondeo (error relativo) corresponde a:

$$\frac{0.03125-0.031}{0.03125}\times 100=0.8\%$$

Representación Punto Flotante.

• Representación de números binarios en punto flotante

$$\pm(1+f)\times 2^e$$

Donde:

f es la mantisa (parte fraccionaria, el 1 no se almacena)

Definición
Conversiones
Representación
Operaciones Aritméticas

Errores de Redondeo.

Representación Punto Flotante.

 Problema: Expresar en formato de punto flotante el número binario 1101.1

Representación Punto Flotante.

Solución:

$$\begin{aligned} 1.1011 \times 2^3 \\ (1+0.1011) \times 2^3 \end{aligned}$$

Representación Punto Flotante IEEE-754.

Representación Punto Flotante IEEE-754

sig	n (s)	biased exponent (e')	mantissa (m)
1	bit	8 bit	23 bits

$$value = (-1)^s \times (1.m)_2 \times 2^{e'-127}$$

Definición Conversiones Representación Operaciones Aritméticas

Errores de Redondeo. Representación Punto Flotante IEEE-754.

rtepresentación i unto i lotante iEEE-734

 Problema: Encontrar el valor decimal que corresponde al siguiente número binario en formato IEEE-754

```
1 | 10100010 | 10100000000000000000000
```

Representación Punto Flotante IEEE-754.

Solución:

$$value = (-1)^{s} \times (1.m)_{2} \times 2^{e^{s'}-127}$$

$$value = (-1)^{1} \times (1.101)_{2} \times 2^{(10100010)_{2}-127}$$

$$value = (-1)^{1} \times (1.625) \times 2^{162-127}$$

$$value = (-1)^{1} \times (1.625) \times 2^{35}$$

$$value = -5.5834 \times 10^{10}$$

Representación Punto Flotante IEEE-754.

 ¿Cómo es posible pasar de un valor en formato decimal a un valor en formato IEEE-754?

$$-5.5834\times 10^{10} = (-1)^1\times (1.?)_2\times 2^{\pm?}$$

Tarea Opcional: Desarrolle un programa en scilab que permita realizar la conversión

Representación Punto Flotante IEEE-754.

 Biased Exponent: Es una forma que permite representar cantidades negativas sin tener un bit de signo en el exponente

Rango posible con 8bits : $0 \le e' \le 255$

Bias : $-127 \le e \le 128$

Rango actual : $1 \le e' \le 254$

Bias : $-126 \le e \le 127$

Representación Punto Flotante IEEE-754.

S	e'	m	Representa
0	Todos Ceros	Todos Ceros	0
1	Todos Ceros	Todos Ceros	-0
0	Todos Unos	Todos Ceros	∞
1	Todos Unos	Todos Ceros	$-\infty$
1 ó 0	Todos Unos	Diferente a Cero	NaN

La edición 1984 de IEEE-754 introdujo los números especiales.

Representación Punto Flotante IEEE-754.

Problema:

- ¿Cuál es el valor positivo más grande que se puede representar con el formato IEEE-754?
- ¿Cuál es el valor positivo más pequeño que se puede representar con el formato IEEE-754?
- ¿Cuál es el valor del machine epsilon?

Representación Punto Flotante IEEE-754.

Solución:

Número positivo más grande:

$$+1.1...1 \times 2^{+127} = 3.4 \times 10^{38}$$

Número positivo más pequeño:

$$+1.0...0\times 2^{-126}=1.175\times 10^{-38}$$

Machine epsilon:

$$\varepsilon_{mach} = 2^{-23} = 1.19 \times 10^{-7}$$

Operaciones Aritméticas.

- Son operaciones que ocasionan errores de redondeo:
 - Restar cantidades pequeñas muy cercanas (subtractive cancellation)

$$0.7642 \times 10^3 - 0.7641 \times 10^3 = 0.0001 \times 10^3$$

Adicionar un número grande a uno pequeño

$$0.4000 \times 10^4 - 0.0000001 \times 10^4 = 0.4000001 \times 10^4$$

Errores de Truncamiento. Definición.

 Error de Truncamiento: Resultan de usar una aproximación en lugar de una solución matemática exacta

Errores de Truncamiento. Definición.

 En la siguiente ecuación se introduce un error de truncamiento, ya se que solo se esta aproximando el valor verdadero de la derivada

$$\frac{dv}{dt} \cong \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}$$

• ¿Cómo estimar el valor de la función en el punto $x_{i+1}(x=1)$ partiendo de $x_i(x=0)$?

$$f(x_{i+1}) \cong f(x_i)$$

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)h$$

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2$$

Aproximación de $f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$ en x = 1 en expansión de Series de Taylor

Expansión completa de los términos de la Serie de Taylor

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f^3(x_i)}{3!}h^3 + \dots + \frac{f^n(x_i)}{n!}h^n + R_n$$
$$R_n = \frac{f^{n+1}(\xi)}{(n+1)!}h^{n+1}$$

Donde:

 ξ es un valor de x que esta entre x_i y x_{i+1}

 Problema: Utilice la expansión en series de Taylor hasta el orden 3, para predecir f(3) en:

$$f(x) = 25x^3 - 6x^2 + 7x - 88$$

Empleando como punto base x = 1. Encuentre el error relativo para cada aproximación

Errores de Truncamiento. Orden del Error.

Orden del error de truncamiento

$$R_n = \frac{f^{n+1}(\xi)}{(n+1)!}h^{n+1}$$

Se puede expresar como:

$$R_n = O(h^{n+1})$$

Proporciona una idea del error en relación a la cantidad de términos que se emplean para la estimación

Errores de Truncamiento. Residuo.

 Al emplear una cantidad finita de términos de la Serie de Taylor para estimar una función, una parte infinita de términos es truncada

Errores de Truncamiento. Residuo.

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f^3(x_i)}{3!}h^3 + \dots + \frac{f^n(x_i)}{n!}h^n + R_n$$

 Por ejemplo, al truncar la expansion en Series de Taylor después del término de orden cero, se tiene:

$$f(x_{i+1}) \cong f(x_i)$$

$$R_0 = f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f^3(x_i)}{3!}h^3 + \dots$$

Errores de Truncamiento. Residuo.

$$R_0 = f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f^3(x_i)}{3!}h^3 + \dots$$

 Puesto que los términos de menor orden son más significativos para la solución final, se suele truncar el residuo

$$R_0 \cong f'(x_i)h$$

 Las Series de Taylor son útiles para calcular los errores de truncamiento

• En el ejemplo de caida libre v(t) puede expandirse en una Serie de Taylor

$$v(t_{i+1}) \cong v(t_i) + v'(t_i)(t_{i+1} - t_i) + \frac{v''(t_i)}{2!}(t_{i+1} - t_i)^2 + ... + R_n$$

Truncando después del término de la primera derivada y despejando $v'(t_i)$:

$$v(t_{i+1}) \cong v(t_i) + v'(t_i)(t_{i+1} - t_i) + R_1$$
$$v'(t_i) = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i} - \frac{R_1}{t_{i+1} - t_i}$$

 En la formula se aprecia la aproximación junto con el error de truncamiento

$$v'(t_i) = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i} - \frac{R_1}{t_{i+1} - t_i}$$

Empleando la ecuación:

$$R_n = \frac{f^{n+1}(\xi)}{(n+1)!}h^{n+1}$$

Se tiene:

$$R_1 = \frac{v''(\xi)}{2!}(t_{i+1} - t_i)^2$$
$$\frac{R_1}{t_{i+1} - t_i} = O(t_{i+1} - t_i)$$

• La estimación tiene un error de orden $t_{i+1} - t_i$. Al reducir el tamaño del stepsize a la mitad, se reduce el error de truncamiento a la mitad

Redondeo Vs Truncamiento.

 Como puede concluirse de los ejercicios anteriores una disminución en el valor de h disminuye el error de truncamiento, sin embargo, el disminuir h puede ocasionar que el valor de f(x) entre iteraciones sea muy cercano y produzca errores de redondeo en las operaciones aritméticas

Control de Errores I

- Evite realizar restas de cantidades muy cercanas e incurrir en errores de redondeo
- Si los resultados son de uso crítico (medicina, finanzas), asigne un par de grupos para resolver el mismo problema y compare sus resultados.
- Adquiera experiencia resolviendo ejercicios y probando las soluciones para diferentes stepsizes y diferentes métodos

Tipos de Error I

- Error humano
- Error del modelo
- Incertidumbre en los datos

Problemas I

 Problema: Encontrar el valor decimal que corresponde al siguiente número binario en formato IEEE-754

 Problema: Desarrolle la expansion en Series de Maclaurin para el seno(x) y el coseno(x) y exprese cada expansión como una sumatoria

Problemas I

• **Problema:** Evalue el siguiente polinomio en x = 1.37:

$$y = x^3 - 7x^2 + 8x - 0.35$$

Utilice aritmética de 3 cifras significativas con **corte** (ejemplo de corte: $2.437 \Rightarrow 2.43$)

• **Problema:** Repita el punto anterior expresando *y* como:

$$y = ((x-7)x+8)x-0.35$$

Encuentre el error relativo para ambos casos y comparelos

Bibliografía I

S. Chapra.

Applied Numerical Methods with MATLAB For Engineers and Scientists, Sixth Edition.

Mac Graw Hill, 2010.