

- If you completed the practice midterm, turn it in before beginning this exam.
- This exam is closed-note and closed-book.
- The withdrawal deadline is the evening of Tuesday, October 7. If you need me to post your grade to Canvas before the deadline, please mark this circle:
 - O POST GRADE BEFORE WITHDRAWAL DEADLINE

Good luck! Here are the series tests in case you need them:

Test	When to Use	Conclusion
Geometric Series	$\sum_{k=1}^{\infty} ar^k$	Converges to $\frac{a}{1-r}$ if $ r < 1$; diverges if $ r \ge 1$.
Divergence Test	All Series	If $\lim_{k\to\infty} a_k \neq 0$, the series diverges.
Integral Test	$\sum_{k=1}^{\infty} a_k$ where $f(k) = a_k$ and	$\sum_{k=1}^{\infty} a_k$ and $\int_1^{\infty} f(x) dx$
	f is continuous, decreasing, and $f(x) \geq 0$	both converge or both diverge.
p-series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	Converges for $p > 1$, diverges for $p \le 1$.
Comparison Test	$\sum_{k=1}^{\infty} a_k \text{ and } \sum_{k=1}^{\infty} b_k, \text{ where } 0 \leq a_k \leq b_k$	If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges. If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.
Limit Comparison Test	$\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$, where	$\sum_{k=1}^{\infty} a_k \text{ and } \sum_{k=1}^{\infty} b_k$
	$a_k, b_k > 0$ and $\lim_{k \to \infty} \frac{a_k}{b_k} = L > 0$	both converge or both diverge.
Alternating Series Test	$\sum_{k=1}^{\infty} (-1)^{k+1} a_k \text{ where } a_k > 0 \text{ for all } k$	If $\lim_{k\to\infty} a_k = 0$ and $a_{k+1} \le a_k$ for all k ,
		then the series converges.
Absolute Convergence	Series with some positive and some	If $\sum_{k=1}^{\infty} a_k $ converges, then
	negative terms (including alternating series)	$\sum_{k=1}^{\infty} a_k$ converges (absolutely).
Ratio Test	Any Series (especially those involving exponentials and/or factorials)	For $\lim_{k\to\infty} \left \frac{a_{k+1}}{a_k} \right = L$,
		if $L < 1$, $\sum_{k=1}^{\infty} a_k$ converges absolutely,
		if $L > 1$, $\sum_{k=1}^{\infty} a_k$ diverges,
		if $L=1$, no conclusion.
Root Test	Any Series (especially those involving exponentials)	For $\lim_{k\to\infty} \sqrt[k]{ a_k } = L$,
		if $L < 1$, $\sum_{k=1}^{\infty} a_k$ converges absolutely,
		if $L > 1$, $\sum_{k=1}^{\infty} a_k$ diverges,
		if $L=1$, no conclusion.

Multiple Choice (10 points total)

Please only mark the correct choice for each question.

1. (3 points) Nick Saban wrote the following¹:

"Since
$$\lim_{n\to\infty} \frac{n}{n^2+1} = 0$$
, the series $\sum_{n=0}^{\infty} \frac{n}{n^2+1}$ converges."

Why is this horribly wrong?

- \bigcirc The limit $\lim_{n\to\infty} \frac{n}{n^2+1}$ is $\frac{1}{2}$, not 0.
- \bigcirc Since $\lim_{n\to\infty}\frac{n}{n^2+1}=0$, the series $\sum_{n=0}^{\infty}\frac{n}{n^2+1}$ diverges.
- The Divergence Test requires that the limit be different from 0, and cannot prove that a series converges.
- O The Divergence Test doesn't work on a series with only positive terms.

2. (3 points) Integration by parts is the reverse version of which rule?

- \bigcirc Chain Rule $\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$
- \bigcirc Power Rule $\frac{d}{dx}[x^p] = px^{-1}$
- Product Rule $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$
- \bigcirc Exponential Rule $\frac{d}{dx}[b^x] = b^x \ln b$

3. (4 points) Since $\sin(x)$ has the MacLaurin Series $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$, which of these is the best approximating polynomial for the value of $\sin(x)$ when x is close to 0?

$$\bigcirc 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720}$$

$$\bigcirc 1 + x^2 + x^3 + x^4$$

$$x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040}$$

$$\bigcirc 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

¹I can't back that up, but I feel like he would, y'know?

Full Solutions (90 points total)

Please show all work and draw a box around your final answer, if appropriate. Solutions will be graded according to the rubrics given in the practice midterm.

1. (10 points) Find a general formula for the sequence $\left\{\frac{3}{2}, -\frac{4}{4}, \frac{5}{8}, -\frac{6}{16}, \frac{7}{32}, \dots\right\}$.

or possibly others ...

2. (10 points) Does the series $\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{3^n}$ converge or diverge? If it converges, give its sum.

$$= \frac{5}{5!} \left(\frac{1}{3}\right) \left(-\frac{2}{3}\right)^{n-1} = \frac{\frac{1}{3}}{1 - \left(\frac{2}{3}\right)} = \frac{\frac{1}{3}}{\frac{5}{3}} = \frac{\frac{1}{3}}{\frac{5}} = \frac{\frac{1}{3}}{\frac{5}{3}} = \frac{\frac{1}{3}}{\frac{5}{3}} = \frac{\frac{1}{3}}{\frac{5}{3}} = \frac{\frac{1}{3}}{\frac{5}$$

3. (10 points) Determine whether or not $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ is absolutely convergent, conditionally convergent, or divergent.

$$\frac{2}{2}\left|\frac{(-1)^{n-1}}{\sqrt{n}}\right| = \frac{2}{2}\frac{1}{n^{1/2}} \leftarrow \text{divergent } p\text{-Series}$$

thus it converges by A.S.T.

Therefore, the series is | conditionally convergent.

(Compare to

$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} divergent$$
)

4. (10 points) Determine whether the series $\sum_{n=0}^{\infty} \frac{3n^2}{n^3+1}$ converges or diverges.

$$\frac{1}{100} \frac{3n^2}{100} = \frac{1}{100} \frac{3n^3}{100} = \frac{3}{100} = \frac{$$

Thus the series match, so $\sum_{n=0}^{\infty} \frac{3n^2}{n^3+1}$ also diverges

$$\frac{DCT}{2} = \frac{3n^2}{34n^3} = \frac{3n^2}{n^3 + \frac{1}{2}n^3} \le \frac{3n^2}{n^3 + 1}$$

Since Sin diverges, the larger Single also diverges.

$$\frac{\left|\lim_{b\to\infty} \frac{5}{3x^2} dx = \lim_{b\to\infty} \left[\ln \left| x^3 + 1 \right| \right] \right|^b = \lim_{b\to\infty} \left[\ln \left| x^3 + 1 \right| \right]$$

Thus Singles diverges.

5. (10 points) Determine whether the series $\sum_{n=2}^{\infty} \frac{\sqrt{n-1}}{2+n^2}$ converges or diverges.

$$\frac{\sqrt{n-1}}{\sqrt{1+n^2}} \leq \frac{\sqrt{n}}{\sqrt{n}} = \frac{1}{\sqrt{3/2}}$$

$$\frac{1}{100} \frac{\sqrt{1-1}}{2+n^2} = \lim_{n \to \infty} \frac{\sqrt{3/2}\sqrt{1-1}}{2+n^2} = \lim_{n \to \infty} \frac{\sqrt{3/2}\sqrt{1-1}}{\sqrt{3/2}} = \lim_{n \to \infty} \frac{\sqrt{3/2}\sqrt{1-1}}{2+n^2} = \lim_{n \to \infty} \frac{\sqrt{3/2}\sqrt{1-1}}{\sqrt{3/2}} = \lim_{n \to \infty} \frac{\sqrt{3/2}\sqrt{1-1}}{\sqrt{1-1}} = \lim_{n \to \infty} \frac{\sqrt{1-1}}{\sqrt{1-1}} = \lim_{n \to \infty} \frac{\sqrt{3/2}\sqrt{1-1}}{\sqrt{1-1}} = \lim_{n \to \infty} \frac{\sqrt{1-1}}{\sqrt{1-1}} =$$

6. (10 points) For what values of x is the series $\sum_{n=0}^{\infty} \frac{(1-x)^n}{n+1}$ convergent? What is its radius of convergence?

$$\frac{1}{100} \left[\frac{(1-x)^{n+1}}{n+2} \right] = \lim_{n \to \infty} \frac{1-x|_{n+1}}{n+2} = \lim_{n \to \infty} \frac{1-x|_{n+1}$$

7. (10 points) Give a power series representing the function $f(x) = \frac{1}{1+3x}$ and its radius of convergence.

$$f(x) = \frac{1}{1 - (-3x)} = \sum_{n=0}^{\infty} (1)(-3x)^n = \sum_{n=0}^{\infty} (-3)^n x^n$$

8. (10 points) Find the Maclaurin series representing the "hyperbolic cosine" function

$$f(x) = \cosh(x) = \frac{e^{x} + e^{-x}}{2}$$

$$f(x) = \cosh(x) = \frac{e^{x} + e^{-x}}{2}$$

$$f(x) = \cosh(x) = \frac{e^{x} + e^{-x}}{2}$$

$$f(x) = \cosh(x) = \frac{e^{x} + e^{-x}}{2} = 1$$

$$f(x) = \frac{1 + 1}{2} = 1$$

$$f(x) = \frac{1 + 1}{2} = 0$$

$$f(x) = \frac{1 + 1}{2$$

9. (10 points) Evaluate
$$\int 4xe^x dx$$
,

Let $u = 4x$ $v = e^x$
 $du = 4dx$ $dv = e^x dx$

$$= 4xe^x - 4e^x + C$$

$$= 4xe^x - 4e^x + C$$

10. (5 points) (BONUS - no partial credit)

A common mistake I see Calculus I students do when taking derivatives is the following:

$$\frac{d}{dx}\left[x^2\sin(x)\right] \neq \frac{d}{dx}\left[x^2\right]\frac{d}{dx}\left[\sin(x)\right] = 2x\cos(x)$$

instead of using the product rule to get the correct answer $x^2 \cos(x) + 2x \sin(x)$. Prove that this "freshman product rule"

$$\frac{d}{dx}\left[f(x)g(x)\right] = f'(x)g'(x)$$

actually works if $g(x) = e^{\int \frac{f'(x)}{f'(x) - f(x)} dx}$. (An example is when $f(x) = g(x) = e^{2x}$.)

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x)$$

$$= f(x) \frac{f'(x)}{f'(x) - f(x)} e^{\int \frac{f'(x)}{f'(x) - f(x)} dx} + f'(x)e^{\int \frac{f'(x)}{f'(x) - f(x)} dx}$$

$$= \frac{f(x)f'(x)}{f'(x) - f(x)} e^{\int \frac{f'(x)}{f'(x) - f(x)} dx} + \frac{f'(x)f'(x) - f'(x)f(x)}{f'(x) - f(x)} e^{\int \frac{f'(x)}{f'(x) - f(x)} dx}$$

$$= f'(x) \frac{f'(x)}{f'(x) - f(x)} e^{\int \frac{f'(x)}{f'(x) - f(x)} dx}$$

$$= f'(x) g'(x) \qquad \square$$