《量子力学教程》习题解答

郑锦阳

2023年6月17日

目录

1	波逐	数与薛定谔方程	2
	1.1	波函数的统计诠释	2
	1.2	力学量算符	3
	1.3	薛定谔方程	3
2	—维	i 势场中的粒子	9
	2.1	一维势场中粒子能量本征态的一般性质	9
	2.2	方势	11
	2.3	δ 势	13
	2.4	一维谐振子	15
3	力学	全量用算符表达	17
	3.1	算符的运算规则	17
		3.1.1 线性算符	17
		3.1.2 算符之和	17
		3.1.3 算符之积	17
		3.1.4 量子力学的基本对易式	17
		3.1.5 角动量的对易式	18
		3.1.6 逆算符	19
		3.1.7 算符的函数	19
		3.1.8 转置算符	20
		3.1.9 复共轭算符与 Hermitian 共轭算符	20
		3.1.10 转置并取复共轭	20
	3.2	Hermitian 算符的本征值与本征函数	21
		3.2.1 涨落	21
		3.2.2 本征态	21
		3.2.3 本征态简并	22
	3.3	共同本征函数	23
4	力学	全量随时间的演化与对称性	26
	4 1	字 信 量	26

5	中心力场	28
6	量子力学的矩阵形式与表象变换	29
7	微扰论	32
A	常用物理学常量	36
В	常用数学工具	36
	B.1 Fourier 变换	. 36
	B.2 δ函数	. 37
	B.3 Kronecker 函数	. 37
	B.4 Laplace 变换	. 37
	B.5 Hermite 多项式	. 38
	B.6 常用积分公式	. 38
	B.7 求矩阵的逆矩阵	. 38
	B.7.1 定义法	. 38
	B.7.2 公式法	. 39
	B.7.3 初等变换法	. 39
	B.7.4 分块矩阵法	. 39
	B.8 Virial 定理	. 39

1 波函数与薛定谔方程

1.1 波函数的统计诠释

微观粒子具有波粒二象性,其波长和频率分别为:

$$\lambda = \frac{h}{p}, \quad \nu = \frac{E}{h}$$

微观粒子的运动状态可以用平面波函数来描述

$$\psi_{\vec{p}} = A \exp \left[\frac{\mathrm{i}}{\hbar} \left(\vec{p} \cdot \vec{r} - E t \right) \right]$$

一般波函数具有常数因子不定性:

$$\left|\frac{C\psi(\vec{r}_1)}{C\psi(\vec{r}_2)}\right|^2 = \left|\frac{\psi(\vec{r}_1)}{\psi(\vec{r}_2)}\right|^2$$

一般波函数具有位相因子不定性:

$$\left|\psi(\vec{r})e^{i\alpha}\right|^2 = \left|\psi(\vec{r})\right|^2 e^{i\alpha} \cdot e^{-i\alpha} = \left|\psi(\vec{r})\right|^2$$

规范波函数必须在全空间满足归一化:

$$\iiint \left| \psi(\vec{r}) \right|^2 \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = 1$$

1.2 力学量算符

因为坐标的期望值和动量的期望值分别为

- $\langle x \rangle = \int \psi^*(x) \psi \, \mathrm{d}x$
- $\langle p \rangle = \int \psi^* \left(-i\hbar \frac{\partial}{\partial x} \right) \psi \, dx$

所有的经典力学量都可以表示为坐标和动量的函数 Q(x,p),我们只需将 Q(x,p) 中的 p 以 $\left(-i\hbar\frac{\partial}{\partial x}\right)$ 取代,即可得到任意力学量算符 $\hat{Q}(\hat{x},\hat{p})$

- 一维形式的动量算符 $\hat{p}_x = -i\hbar \frac{d}{dx}$,多维形式的动量算符 $\hat{p} = -i\hbar\nabla$
- 动能算符 $\hat{T} = \frac{\hat{p}^2}{2m} = \frac{1}{2m} (-i\hbar \nabla)^2 = -\frac{\hbar^2}{2m} \nabla^2$
- Hamilton 算符 $\hat{H} = \hat{T} + \hat{V}(\vec{r}) = -\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})$
- 角动量算符 $\hat{\pmb{l}} = \pmb{r} \times \hat{\pmb{p}} = \pmb{r} \times (-i\hbar\nabla) = \hat{l}_x \vec{e}_x + \hat{l}_u \vec{e}_u + \hat{l}_z \vec{e}_z$

1.3 薛定谔方程

一般粒子的薛定谔方程是

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\Psi(\vec{r},t)$$

设分离变量的形式为 $\Psi(x,t) = \psi(x)\varphi(t)$

$$\mathrm{i}\hbar\frac{\partial\varphi(t)}{\partial t}\psi(x) = -\frac{\hbar^2}{2m}\frac{\partial^2\psi(x)}{\partial x^2}\varphi(t) + V\psi(x)\varphi(t)$$

整理方程,左侧仅与t有关,右侧仅与x有关,想要等式成立,两侧必须同时等于某个常数E

$$\mathrm{i}\hbar\frac{1}{\varphi}\frac{\partial\varphi}{\partial t}\equiv-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}\frac{1}{\psi}+V\equiv E$$

第二、三项就是定态薛定谔方程的能量本征方程

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x) = E\psi(x)$$

而对于定态, Hamilton 算符的期望值和标准差分别为

$$\langle \hat{H} \rangle = \int \psi^* \hat{H} \psi \, \mathrm{d}x = \int \psi^* E \psi \, \mathrm{d}x = E \int \psi^* \psi \, \mathrm{d}x = E$$

$$\langle \hat{H}^2 \rangle = \int \psi^* \hat{H}^2 \psi \, \mathrm{d}x = \int \psi^* \hat{H} (\hat{H} \psi) \, \mathrm{d}x = E \int \psi^* \hat{H} \psi \, \mathrm{d}x = E^2 \int \psi^* \psi \, \mathrm{d}x = E^2$$

$$\hat{\sigma}_H = \sqrt{\langle \hat{H}^2 \rangle - \langle \hat{H} \rangle^2} = \sqrt{E^2 - E^2} = 0$$

概率流密度函数

$$\vec{j} = \frac{\mathrm{i}\hbar}{2m} \left(\psi \frac{\partial \psi^*}{\partial x} - \psi^* \frac{\partial \psi}{\partial x} \right)$$

例题

证明规范波函数的归一化不随时间变换,即

$$\frac{\partial}{\partial t} \int_{-\infty}^{+\infty} |\psi|^2 \, \mathrm{d}x = 0$$

证明. 先交換微分算符 $\frac{\partial}{\partial t}$ 和积分算符 $\int \mathrm{d}x$ 的顺序

$$\frac{\partial}{\partial t} \int |\psi|^2 dx = \int \frac{\partial |\psi|^2}{\partial t} dx = \int \frac{\partial (\psi \psi^*)}{\partial t} dx = \int \left(\frac{\partial \psi}{\partial t} \psi^* + \frac{\partial \psi^*}{\partial t} \psi\right) dx$$

再根据薛定谔方程代换 $\frac{\partial \psi}{\partial t}$ 及其复共轭

$$\frac{\partial \psi}{\partial t} = \frac{\mathrm{i}\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2} - \frac{\mathrm{i}}{\hbar} V \psi$$
$$\frac{\partial \psi^*}{\partial t} = -\frac{\mathrm{i}\hbar}{2m} \frac{\partial^2 \psi^*}{\partial x^2} + \frac{\mathrm{i}}{\hbar} V \psi^*$$

量子力学中的势能一般都是实数(即 $V^* = V$)

$$\frac{\partial}{\partial t} \int_{-\infty}^{+\infty} |\psi|^2 dx = \int_{-\infty}^{+\infty} \left(\frac{i\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2} \psi^* - \frac{i\hbar}{2m} \frac{\partial^2 \psi^*}{\partial x^2} \psi \right) dx$$
$$= \frac{i\hbar}{2m} \int_{-\infty}^{+\infty} \frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial x} \psi^* - \frac{\partial \psi^*}{\partial x} \psi \right) dx$$
$$= \frac{i\hbar}{2m} \left(\frac{\partial \psi}{\partial x} \psi^* - \frac{\partial \psi^*}{\partial x} \psi \right)_{-\infty}^{+\infty}$$

最后根据归一化波函数的性质 $\psi(-\infty)=0, \psi(+\infty)=0$,说明上式为零

$$\frac{\partial}{\partial t} \int_{-\infty}^{+\infty} |\psi|^2 dx = 0 \implies \int_{-\infty}^{+\infty} |\psi|^2 dx = C$$

这说明规范波函数的归一化不会随时间变换。

题目 1

求与下列各粒子相关的 de Broglie 波波长:

- (1) 能量为 100 电子伏特的自由电子;
- (2) 能量为 0.1 电子伏特的自由中子;
- (3) 能量为 0.1 电子伏特、质量为 1 克的自由粒子;
- (4) 温度 T = 1 k 时,具有动能 $E = \frac{3kT}{2}$ 的氦原子,其中 k 为玻尔兹曼常数.

解答 根据粒子的动能与动量之间的关系

$$E = \frac{1}{2}mv^2 = \frac{p^2}{2m} \tag{1}$$

结合德布罗意波波长的表达式

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} \tag{2}$$

(1) 题设自由电子的德布罗意波波长为

$$\lambda_e = \frac{h}{\sqrt{2m_e E_e}} = 1.23 \times 10^{-10} \,\mathrm{m}$$

5

(2) 题设自由中子的德布罗意波波长为

$$\lambda_{\rm n} = \frac{h}{\sqrt{2m_{\rm n}E_{\rm n}}} = 9.04 \times 10^{-11} \,\rm m$$

(3) 题设自由粒子的德布罗意波波长为

$$\lambda = \frac{h}{\sqrt{2mE}} = 1.17 \times 10^{-22} \,\mathrm{m}$$

(4) 氦原子包含 2 个中子和 2 个质子, 其德布罗意波波长为

$$\lambda_{\text{He}} = \frac{h}{\sqrt{2m_{\text{He}}E_{\text{He}}}} = \frac{h}{\sqrt{2 \cdot m_{\text{He}} \cdot \frac{3}{2}kT}} = \frac{h}{\sqrt{3 \cdot (4m_{\text{n}}) \cdot \frac{3}{2}kT}} = 1.25 \times 10^{-9} \,\text{m}$$

题目 2

设一电子被电势差 U 所加速,最后打在靶上. 若电子的动能转化为一光子,求当这光子相应的光波波长分别为 5000Å(可见光),1Å(X 射线),0.001Å(γ 射线)时,加速电子所需的电势差各是多少?

解答 电子的动能为

$$E_k = eU$$

光子的能量为

$$E = h\nu = \frac{hc}{\lambda}$$

电子的动能会全部转化为光子的能量, 因此电势差

$$U = \frac{hc}{e\lambda} = \frac{hc}{e} \cdot \frac{1}{\lambda} = \frac{1.24 \times 10^{-6}}{\lambda}$$

当光子对应的光波波长为 5000Å 时, 电势差为

$$U = \frac{1.24 \times 10^{-6}}{\lambda} = \frac{1.24 \times 10^{-6}}{5000 \times 10^{-10}} = 2.48 \,\mathrm{V}$$

当光子对应的光波波长为 1Å 时, 电势差为

$$U = \frac{1.24 \times 10^{-6}}{\lambda} = \frac{1.24 \times 10^{-6}}{10^{-10}} = 1.24 \times 10^4 \,\mathrm{V}$$

当光子对应的光波波长为 0.001Å 时, 电势差为

$$U = \frac{1.24 \times 10^{-6}}{\lambda} = \frac{1.24 \times 10^{-6}}{0.001 \times 10^{-10}} = 1.24 \times 10^7 \,\text{V}$$

练习5

设用球坐标表示, 粒子波函数表为 $\psi(\rho,\theta,\varphi)$, 求:

- (1) 粒子在球壳 (r, r + dr) 中被测到的概率;
- (2) 在 (θ, φ) 方向的立体角元 $d\Omega = \sin \theta \, d\theta d\varphi$ 中找到粒子的概率.

解答 粒子在 $(r \to r + dr, \theta \to \theta + d\theta, \varphi \to \varphi + d\varphi)$ 范围内被探测到的概率为

$$P = \left| \psi(r, \theta, \varphi) \right|^2 r^2 \sin \theta \, dr d\theta d\varphi$$

(1) 粒子在球壳 (r, r + dr) 中被测到的概率为

$$P = \left[\int_0^{\pi} \sin \theta \, d\theta \int_0^{2\pi} |\psi(r, \theta, \varphi)|^2 \, d\varphi \right] r^2 \, dr$$

(2) 在 (θ,φ) 方向的立体角元内找到粒子的概率为

$$P = \left[\int_0^{+\infty} |\psi(r, \theta, \varphi)|^2 r^2 dr \right] \sin \theta d\theta d\varphi$$

习题 20

设 $\varphi(x) = Ax(a-x)$, 其中 $0 \leqslant x \leqslant a$, 求:

- (1) 归一化常数 A
- (2) 在何处找到粒子的概率最大?

解答 (1) 让波函数在全空间归一化

$$\int_{-\infty}^{+\infty} |\varphi(x)|^2 dx = \int_0^a |\varphi(x)|^2 dx = \int_0^a |Ax(a-x)|^2 dx = |A|^2 \left(\frac{1}{5}x^5 - \frac{1}{2}ax^4 + \frac{1}{3}a^2x^3\right)_0^a = 1$$

解得

$$A = \sqrt{\frac{30}{a^5}}$$

(2) 粒子的概率密度为

$$\rho(x) = |Ax(a-x)|^2 = \frac{30}{a^5}x^2(a-x)^2$$

对概率密度求导, 寻找极值点

$$\rho'(x) = \frac{30}{a^5} [4x^3 - 6ax^2 + 2a^2x] = \frac{60}{a^5} x(2x - a)(x - a)$$

因此, $\rho(x)$ 在 $\left(0,\frac{a}{2}\right)$ 上单调递增,在 $\left(\frac{a}{2},a\right)$ 上单调递减,在极大值点 $x=\frac{a}{2}$ 附近找到粒子的概率最大.

7

习题 21

若粒子只在一维空间中运动,它的状态可用波函数

$$\psi(x,t) = \begin{cases} A \sin \frac{\pi x}{a} e^{-\frac{i}{\hbar}Et}, & 0 \leqslant x \leqslant a \\ 0, & \text{\sharp} \text{th} \end{cases}$$

来描述,式中E和a分别为确定的常数,而A是任意常数,求:

- (1) 归一化的波函数;
- (2) 概率密度 w(x,t);
- (3) 在何处找到粒子的概率最大?
- (4) \bar{x} 和 $\overline{x^2}$ 的值.

解答 (1) 先将波函数归一化

$$\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = \int_0^a \left| A \sin \frac{\pi x}{a} \right|^2 dx = \int_0^a \frac{A^2}{2} \left(1 - \cos \frac{2\pi x}{a} \right) dx = \int_0^a \frac{A^2}{2} dx = 1$$

解得

$$A = \sqrt{\frac{2}{a}}$$

所以波函数为

$$\psi(x,t) = \begin{cases} \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a} e^{-\frac{i}{h}Et}, & 0 \leqslant x \leqslant a \\ 0, & \sharp \text{ if } \end{cases}$$

(2) 概率密度 w(x,t) 为

$$w(x,t) = |\psi(x,t)|^2 = \begin{cases} \frac{2}{a} \sin^2 \frac{\pi x}{a}, & 0 \leqslant x \leqslant a \\ 0, &$$
其他

(3) 对概率密度函数求导,寻找极值点

$$\frac{\partial w(x,t)}{\partial x} = \begin{cases} \frac{2\pi}{a^2} \sin \frac{2\pi x}{a}, & 0 \leqslant x \leqslant a \\ 0, & \text{\sharp} \text{th} \end{cases}$$

综上,w(x,t) 在 $\left(0,\frac{a}{2}\right)$ 上单调递增,在 $\left(\frac{a}{2},a\right)$ 上单调递减,在极大值点 $x=\frac{a}{2}$ 附近找到粒子的概率最大.

(4) 求物理量 g(x) 均值的通用公式是

$$\overline{g(x)} = \int_{-\infty}^{+\infty} w(x)g(x) \, \mathrm{d}x$$

参考常用积分公式B.6,分别有

$$\overline{x} = \int_0^a \frac{x}{a} \left(1 - \cos \frac{2\pi x}{a} \right) dx = \left(\frac{x^2}{2a} - \frac{a^2}{4\pi^2} \cos \frac{2\pi x}{a} + \frac{ax}{2\pi} \sin \frac{2\pi x}{a} \right) \Big|_0^a = \frac{a}{2}$$

$$\overline{x^2} = \int_0^a \frac{x^2}{a} \left(1 - \cos \frac{2\pi x}{a} \right) dx = \left(\frac{x^3}{3a} - \frac{x^2}{2\pi} \sin \frac{2\pi x}{a} - \frac{ax}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \right) \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \right) \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \right) \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \right) \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \right) \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^3}{4\pi^3} \sin \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^2}{4\pi^3} \sin \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^2}{4\pi^3} \sin \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^2}{4\pi^3} \sin \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^2}{4\pi^3} \sin \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{2\pi^2} \cos \frac{2\pi x}{a} + \frac{a^2}{4\pi^2} \cos \frac{2\pi x}{a} + \frac{a^2}{4\pi^2} \cos \frac{2\pi x}{a} \Big|_0^a = \frac{a^2}{3} - \frac{a^2}{3$$

题目 1.3

对于一维自由粒子:

(a) 设波函数为 $\psi_p(x) = \frac{1}{\sqrt{2\pi\hbar}} \mathrm{e}^{\mathrm{i}px/\hbar}$, 试用 Hamilton 算符 $\hat{H} = \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$ 对 $\psi_p(x)$ 运算,验证 $\hat{H}\psi_p(x) = \frac{p^2}{2m}\psi_p(x)$. 说明动量本征态 $\psi_p(x)$ 也是 Hamilton 量(能量)本征态,本征值为 $E = \frac{p^2}{2m}$.

- (b) 设粒子在初始 (t=0) 时刻 $\psi(x,0) = \psi_p(x)$, 求 $\psi(x,t)$.
- (c) 设波函数为 $\psi(x) = \delta(x) = \frac{1}{2\pi} \int e^{ikx} dk = \frac{1}{2\pi} \int e^{ipx/\hbar} dp$, 可以看成是无穷多个平面波 e^{ipx} 的叠加,即无穷多个动量本征态 e^{ipx} 的叠加. 试问 $\psi(x) = \delta(x)$ 是否是能量本征态?
- (d) 设粒子在 t = 0 时刻 $\psi(x, 0) = \delta(x)$, 求 $\psi(x, t)$.

解答 对于一维自由粒子:

(a) 我们将 Hamilton 算符作用于波函数

$$\hat{H}\psi_p(x) = -\frac{\hbar}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left(\frac{1}{\sqrt{2\pi\hbar}} \mathrm{e}^{\mathrm{i}px/\hbar} \right) = -\frac{\hbar^2}{2m} \left(\frac{\mathrm{i}p}{\hbar} \right)^2 \frac{1}{\sqrt{2\pi\hbar}} \mathrm{e}^{\mathrm{i}px/\hbar} = \frac{p^2}{2m} \psi_p(x)$$

这说明动量本征态 $\psi_p(x)$ 也是 Hamilton 量的本征态,且本征值为 $E=rac{p^2}{2m}$

(b) 粒子在初始时刻 $\psi(x,0) = \psi_p(x) = e^{ip_0x/\hbar}$,结合 Fourier 变换 (28)

$$\psi(p) = \mathcal{F}[\psi(x)] = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} e^{ip_0 x/\hbar} e^{-ipx/\hbar} dx = \sqrt{2\pi\hbar} \delta(p - p_0)$$

由于 $\psi(x,0)$ 是能量本征态

$$\psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \sqrt{2\pi\hbar} e^{ipx/\hbar} \delta(p - p_0) dp \cdot e^{-iEt/\hbar} = e^{-ip_0x/\hbar - iEt/\hbar}$$

(c) 对于自由粒子而言,动量本征态和能量本征态是等价的,但是题目中的 $\psi(x,0) = \delta(x)$ 是无穷多个动量本征态 e^{ipx} 的叠加(即所谓叠加态),所以显然不是能量本征态。

习题 12

由下列两个定态波函数计算几率流密度:

$$(1) \ \psi_1(r) = \frac{A}{r} e^{ikr}$$

$$(2) \psi_2(r) = \frac{A}{r} e^{-ikr}$$

从所得结果证明 $\psi_1(r)$ 表示向外传播的球面波, $\psi_2(r)$ 表示向内(即向原点)传播的平面波.

解答 概率流密度的表达式为1

$$\vec{j}(\vec{r},t) = -\frac{\mathrm{i}\hbar}{2m} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) \tag{3}$$

分别计算 $\psi_1(x)$ 和 $\psi_2(x)$ 的概率流密度

$$\vec{j}_1(\vec{r}) = -\frac{\mathrm{i}\hbar}{2m} \left\{ \left(\frac{A}{r} \mathrm{e}^{-\mathrm{i}kr} \cdot \frac{A}{r} \mathrm{e}^{\mathrm{i}kr} \mathrm{i}k \right) - \left[\frac{A}{r} \mathrm{e}^{\mathrm{i}kr} \cdot \frac{A}{r} \mathrm{e}^{-\mathrm{i}kr} (-\mathrm{i}k) \right] \right\} \vec{e}_r = \frac{\hbar}{m} \frac{A^2 k}{r^2} \vec{e}_r$$

$$\vec{j}_2(\vec{r}) = -\frac{\mathrm{i}\hbar}{2m} \left\{ \left[\frac{A}{r} \mathrm{e}^{\mathrm{i}kr} \cdot \frac{A}{r} \mathrm{e}^{-\mathrm{i}kr} (-\mathrm{i}k) \right] - \left(\frac{A}{r} \mathrm{e}^{-\mathrm{i}kr} \cdot \frac{A}{r} \mathrm{e}^{\mathrm{i}kr} \mathrm{i}k \right) \right\} \vec{e}_r = -\frac{\hbar}{m} \frac{A^2 k}{r^2} \vec{e}_r$$

综上, $\psi_1(r)$ 表示向外传播的球面波, $\psi_2(r)$ 表示向内(即向原点)传播的平面波.

2 一维势场中的粒子

2.1 一维势场中粒子能量本征态的一般性质

设质量为 m 的粒子,沿 x 方向运动,势能为 V(x),则薛定谔方程表示为

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x,t)$$
 (4)

再分离变数,保留仅与波函数 $\psi(x)$ 相关的定态薛定谔方程

$$\left[-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) \right] \psi(x) = E\psi(x) \tag{5}$$

这也是一维粒子的能量本征方程. 在量子力学中, 我们一般默认 V(x) 取实值, 即

$$V^*(x) = V(x) \tag{6}$$

定理 2.1. 设 $\psi(x)$ 是方程 (5) 的一个解,对应的能量本征值为 E,则 $\psi^*(x)$ 也是方程的一个解,对应的能量也是 E.

证明. 对方程 (5) 取复共轭

$$\left[-\frac{\hbar}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) \right] \psi^*(x) = E\psi^*(x)$$

即 $\psi^*(x)$ 也满足方程 (5), 并且对应能量本征值为 E.

定理 2.2. 对于能量的某个本征值 E, 总可以找到方程 (5) 的一组实数解,凡是属于 E 的任何解,均可表示为这一组实解的线性叠加.

证明. 设 $\psi(x)$ 是能量本征值 E 的一个解,那 $\psi^*(x)$ 也必定是能量本征值 E 的解,我们利用二者的线性 叠加构造出一组实解

$$\varphi(x) = \psi(x) + \psi^*(x), \quad \chi(x) = -i[\psi(x) - \psi^*(x)]$$

显然这组实数解也是能量本征值 E 的一组解,我们只要将这组实数解适当地线性叠加,就能得到能量本征值 E 的所有解

$$\psi = \frac{1}{2}(\varphi + i\chi), \quad \psi^* = \frac{1}{2}(\varphi - i\chi)$$

 1 球坐标系中的 ∇ 算符为

$$\nabla = \frac{\partial}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial}{\partial \theta}\vec{e}_\theta + \frac{1}{r\sin\theta}\frac{\partial}{\partial \varphi}\vec{e}_\varphi$$

定理 2.3. 设 V(x) 具有空间反射不变性,V(-x) = V(x). 如 $\psi(x)$ 是方程 (5) 的对应于能量本征值 E 的解,则 $\psi(-x)$ 也是方程 (5) 的对应于能量 E 的解.

证明. 令 x = -x, 再代回能量本征方程

$$\frac{\mathrm{d}^2}{\mathrm{d}(-x)^2} = \frac{\mathrm{d}^2}{\mathrm{d}x^2}, \quad V(-x) = V(x)$$

结合空间反射不变性

$$\left[-\frac{\hbar}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) \right] \psi(-x) = E\psi(-x)$$

显然 $\psi(-x)$ 也满足方程,能量本征值也是 E.

定理 2.4. 设 V(x) = V(-x), 则对应于任何一个能量本征值 E, 总可以找到方程组 (5) 的一组解(每一个解都有确定的字称),而属于能量本征值 E 的任何解,都可用它们来展开.

证明. 已知同属本征值 E 的一组解是 $\psi(x)$ 和 $\psi(-x)$, 我们可以通过线性叠加构造出任意一组解

$$f(x) = \psi(x) + \psi(-x), \quad g(x) = \psi(x) - \psi(-x)$$

而 f(x) 和 g(x) 各自具有确定的字称,不妨令

$$f(-x) = f(x), \quad g(-x) = -g(x)$$

由此反解出 $\psi(x)$ 和 $\psi(-x)$ 的线性表示

$$\psi(x) = \frac{1}{2}[f(x) + g(x)], \quad \psi(-x) = \frac{1}{2}[f(x) - g(x)]$$

实际上,一个实变函数总可以分解为偶函数 f(x) 和奇函数 g(x) 的和.

定理 2.5. 对于阶梯形方势

$$V(x) = \begin{cases} V_1, & x < a \\ V_2, & x > a \end{cases}$$

如果 $(V_3 - V_1)$ 有限,则能量本征方程 $\psi(x)$ 及其导数 $\psi'(x)$ 必定是连续的.

证明. 对能量本征方程的两边同乘 dx

$$d\left[\frac{d\psi(x)}{dx}\right] = -\frac{2m}{\hbar}[E - V(x)]\psi(x) dx$$

对于 $\forall \varepsilon > 0$, 我们在区间 $[a - \varepsilon, a + \varepsilon]$ 上对 x 积分

$$\int_{a-\varepsilon}^{a+\varepsilon} d\left[\frac{d\psi(x)}{dx}\right] = -\frac{2m}{\hbar} \int_{-\varepsilon}^{+\varepsilon} [E - V(x)]\psi(x) dx$$

两边对 ε 取极限

$$\lim_{\varepsilon \to 0^+} \int_{a-\varepsilon}^{a+\varepsilon} \mathrm{d}\left[\psi'(x)\right] = -\frac{2m}{\hbar} \lim_{\varepsilon \to 0^+} \int_{-\varepsilon}^{+\varepsilon} [E-V(x)] \psi(x) \, \mathrm{d}x$$

其中 $[E-V(x)]\psi(x)$ 有限,所以方程右侧为零,进而有

$$\psi'(a+0^+) - \psi'(a-0^+) = 0$$

这说明一阶导函数 $\psi'(x)$ 在跳跃点 x = a 处存在, 所以原函数 $\psi(x)$ 必定连续.

定理 2.6. 对于一维粒子, 设 $\psi_1(x)$ 与 $\psi_2(x)$ 均为方程 (5) 的属于同一能量 E 的解, 则

$$\psi_1 \psi_2' - \psi_2 \psi_1' = \text{Const}$$

且与x无关.

证明.

定理 2.7. 设粒子在规则势场 V(x) 中运动, 如存在束缚态, 则必定是不简并的.

证明.

2.2 方势

P32 练习:一维无限深方势阱问题

试取无限深方势阱的中心为坐标原点,即

$$V(x) = \begin{cases} 0, & |x| < \frac{a}{2} \\ \infty, & |x| \geqslant \frac{a}{2} \end{cases}$$

证明粒子的能量仍为

$$E = E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}, \quad n = 1, 2, 3, \dots$$

但波函数表示为

$$\psi_n(x) = \begin{cases} \sqrt{\frac{a}{2}} \cos\left(\frac{n\pi x}{a}\right), n = 1, 3, 5, \dots, & |x| < \frac{a}{2} \\ \sqrt{\frac{a}{2}} \sin\left(\frac{n\pi x}{a}\right), n = 2, 4, 6, \dots, & |x| < \frac{a}{2} \\ 0, & |x| \geqslant \frac{a}{2} \end{cases}$$

解答 粒子的定态薛定谔方程为

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x) = E\psi(x)$$

由此得到粒子在方势阱内($|x| < \frac{a}{2}, V = 0$)的能量本征方程

$$\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + \frac{2mE}{\hbar^2}\psi(x) = 0$$

这个微分方程的解形如

$$\psi(x) = c_1 \sin kx + c_2 \cos kx, \quad \left(k = \sqrt{\frac{2mE}{\hbar^2}}\right)$$

在无限深方势阱内部 $\psi(x)\neq 0$,方势阱外部 $\psi(x)\equiv 0$,考虑到边界条件 $\psi\left(\pm\frac{a}{2}\right)=0$,如果是奇宇称,则 $k=\frac{(2n+1)\pi}{a}$;如果是偶宇称,则 $k=\frac{(2n)\pi}{a}$,但无论如何,粒子的能量都可以写成

$$E = E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}, \quad n = 1, 2, 3, \dots$$

此外,能量本征值 E_n 对应的本征波函数还要满足归一化条件

$$\int_{-\frac{a}{2}}^{+\frac{a}{2}} |\psi_n(x)|^2 dx = \int_{-\frac{a}{2}}^{+\frac{a}{2}} \left| A \sin \frac{2n\pi x}{a} \right|^2 dx = A^2 \int_{-\frac{a}{2}}^{+\frac{a}{2}} \frac{1}{2} \left(1 - \cos \frac{2n\pi x}{a} \right) dx = 1$$

解得 $A = \frac{a}{2}$,并且

$$\psi_n(x) = \begin{cases} \sqrt{\frac{a}{2}} \cos\left(\frac{n\pi x}{a}\right), n = 1, 3, 5, \dots, & |x| < \frac{a}{2} \\ \sqrt{\frac{a}{2}} \sin\left(\frac{n\pi x}{a}\right), n = 2, 4, 6, \dots, & |x| < \frac{a}{2} \\ 0, & |x| \geqslant \frac{a}{2} \end{cases}$$

习题 2.1

设粒子限制在矩形匣子中运动,即

$$V(x) = \begin{cases} 0, & 0 < x < a, 0 < y < b, 0 < z < c \\ \infty, & 其它位置 \end{cases}$$

求粒子的能量本征值和本征波函数. 如 a=b=c, 讨论能级的简并度.

解答 粒子在矩形匣子中运动时,满足能量本征方程2

$$\nabla^2 \psi(x, y, z) + \frac{2mE}{\hbar^2} \psi(x, y, z) = 0$$

方程的解可以写成分离变数的形式

$$\psi(x, y, z) = A\sin(k_1x + \delta_1)\sin(k_2y + \delta_2)\sin(k_3z + \delta_3)$$

粒子被限制在矩形匣中运动,根据边界条件 $\psi(0,0,0)=0$ 确定 $\delta_1=\delta_2=\delta_3=0$,再代入 $\psi(a,b,c)=0$

$$\begin{cases} \sin(k_1 a) = 0 \\ \sin(k_2 b) = 0 \\ \sin(k_3 c) = 0 \end{cases} \implies \begin{cases} k_1 a = n_1 \pi, & n_1 = 1, 2, 3, \dots \\ k_2 b = n_2 \pi, & n_2 = 1, 2, 3, \dots \\ k_3 c = n_3 \pi, & n_3 = 1, 2, 3, \dots \end{cases} \begin{cases} k_1 = \frac{n_1 \pi}{a}, & n_1 = 1, 2, 3, \dots \\ k_2 = \frac{n_2 \pi}{b}, & n_2 = 1, 2, 3, \dots \\ k_3 = \frac{n_3 \pi}{c}, & n_3 = 1, 2, 3, \dots \end{cases}$$

所以粒子的能量本征值为

$$E = E_{n_1 n_2 n_3} = \frac{\hbar^2 \pi^2}{2m} \left(\frac{n_1^2}{a^2} + \frac{n_2^2}{b^2} + \frac{n_3^2}{c^2} \right)$$

再归一化能量本征函数

$$\iiint_{-\infty}^{+\infty} |\psi(x,y,z)|^2 dx dy dz = A^2 \int_0^a \left| \sin \frac{n_1 \pi x}{a} \right|^2 dx \int_0^b \left| \sin \frac{n_2 \pi y}{b} \right|^2 dy \int_0^c \left| \sin \frac{n_3 \pi z}{a} \right|^2 dz = 1$$

得到

$$\psi_{n_1 n_2 n_3}(x, y, z) = \sqrt{\frac{8}{abc}} \sin \frac{n_1 \pi x}{a} \sin \frac{n_2 \pi y}{a} \sin \frac{n_3 \pi z}{a}$$

如果匣子恰巧是边长为 a 的立方体,则

$$E\psi(x,y,z) + \frac{\hbar^2 \pi^2}{2ma^2} \left(n_1^2 + n_2^2 + n_3^2 \right) = 0$$

则此时的能级简并条件退化为

$$n_1^2 + n_2^2 + n_3^2 = \frac{2ma^2E}{\hbar^2\pi^2}$$

$$-\frac{\hbar^2}{2m}\nabla^2\psi(x,y,z) = E\psi(x,y,z)$$

²本质上来说,就是三维形式的薛定谔方程

13

习题 2.2

设粒子处于一维无限深方势阱中,

$$V(x) = \begin{cases} 0, & 0 < x < a \\ \infty, & x < 0, x > a \end{cases}$$

证明处于能量本征态 $\psi_n(x)$ 的粒子

1.
$$\overline{x} = \frac{a}{2}$$

2.
$$\overline{(x-\overline{x})^2} = \frac{a^2}{12} \left(1 - \frac{6}{n^2 \pi^2} \right)$$

3. 讨论 $n \to \infty$ 的情况,并与经典力学计算结果比较.

解答 首先求解粒子的本征函数

$$\psi_n(x) = \sqrt{\frac{a}{2}} \sin\left(\frac{n\pi x}{a}\right)$$

所以

$$\overline{x} = \int_0^a x |\psi(x)|^2 dx = \frac{a}{2} \int_0^a \frac{x^2}{2} \left(1 - \cos \frac{2n\pi x}{a} \right) dx = \frac{a}{2}$$

$$\overline{x^2} = \int_0^a x^2 |\psi(x)|^2 dx = \frac{a}{2} \int_0^a \frac{x^2}{2} \left(1 - \cos \frac{2n\pi x}{a} \right) dx = \frac{a^3}{3} - \frac{a^2}{2n^2\pi^2}$$

$$\overline{(x - \overline{x})^2} = \overline{x^2} - \overline{x}^2 = \frac{a^2}{12} \left(1 - \frac{6}{n^2\pi^2} \right)$$

而在经典力学的范畴内, 粒子没有波动性

$$\overline{x} = \int_0^a \frac{x}{a} dx = \frac{a}{2}$$

$$\overline{x^2} = \int_0^a \frac{x^2}{a} dx = \frac{a^2}{3}$$

$$\overline{(x - \overline{x})^2} = \overline{x^2} - \overline{x}^2 = \frac{a^2}{12}$$

可见, 当 $n \to \infty$ 时, 量子力学结果与经典力学结果一致.

2.3 δ 势

我们假设一个质量为m的粒子(能量E>0)从左入射,碰到 δ 势垒

$$V(x) = \gamma \delta(x)$$

代入不含时薛定谔方程

$$-\frac{\hbar}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) = [E - \gamma\delta(x)]\psi(x)$$

注意到 x=0 是方程的奇点,波函数在 x=0 处的一阶导数 ψ' 不连续,二阶导数 ψ'' 不存在.

14

证明. 对方程两边同乘 dx

$$d\left[\frac{d\psi(x)}{dx}\right] = -\frac{2m}{\hbar}[E - \gamma\delta(x)]\psi(x) dx$$

对于 $\forall \varepsilon > 0$,我们在区间 $[0 - \varepsilon, 0 + \varepsilon]$ 上对 x 积分,结合公式 (31)

$$\int_{-\varepsilon}^{+\varepsilon} d\left[\frac{d\psi(x)}{dx}\right] = -\frac{2m}{\hbar} \left[\int_{-\varepsilon}^{+\varepsilon} E\psi(x) dx - \gamma \psi(0)\right]$$

两边对 ε 取极限

$$\lim_{\varepsilon \to 0^+} \int_{-\varepsilon}^{+\varepsilon} \mathrm{d}\left[\psi'(x)\right] = -\frac{2m}{\hbar} \left[\lim_{\varepsilon \to 0^+} \int_{-\varepsilon}^{+\varepsilon} E\psi(x) \, \mathrm{d}x - \gamma \psi(0) \right]$$

化简得(此处要结合公式(31))

$$\psi'(0^+) - \psi'(0^-) = -\frac{2m}{\hbar^2} [0 - \gamma \psi(0)] \neq 0$$
(7)

这说明 $\psi'(x)$ 在 x=0 处一般不连续 (除非 $\psi(0)=0$), 公式 (7) 也被称为 δ 势中 ψ' 的跃变条件. \Box

题目 2.6

设粒子(能量 E > 0)从左入射,碰到如图所示的势阱,求透射系数与反射系数.

解答 透射系数和反射系数为

$$T = \frac{4k/k'}{(1+k/k')^2}, \quad R = \frac{(1-k/k')^2}{(1+k/k')^2}.$$

其中

$$k = \frac{\sqrt{2mE}}{\hbar}, \quad k' = \frac{\sqrt{2m(E+V_0)}}{\hbar}.$$

不难验证

$$R + T = 1.$$

题目 2.9

谐振子处于 ψ_n 态下, 计算

$$(1) \ \Delta x = \sqrt{\overline{(x-\bar{x})^2}}$$

$$(2) \ \Delta p = \sqrt{\overline{(p-\bar{p})^2}}$$

(3) $\Delta x \Delta p$

解答 己知 Hermite 多项式的递推关系

$$H_{n+1}(x) - 2xH_n(x) + 2nH_{n-1}(x) = 0$$

结合波函数的递推关系

$$\psi_{n-1}(x) = \sqrt{\frac{\alpha}{\sqrt{\pi}2^{n-1}(n-1)!}} e^{-\frac{\alpha^2 x^2}{2}} H_{n-1}(\alpha x)$$

$$\psi_n(x) = \sqrt{\frac{\alpha}{\sqrt{\pi}2^n n!}} e^{-\frac{\alpha^2 x^2}{2}} H_n(\alpha x)$$

$$\psi_{n+1}(x) = \sqrt{\frac{\alpha}{\sqrt{\pi}2^{n+1}(n+1)!}} e^{-\frac{\alpha^2 x^2}{2}} H_{n+1}(\alpha x)$$

得到

$$x\psi_n(x) = \frac{1}{\alpha} \left[\sqrt{\frac{n}{2}} \psi_{n-1}(x) + \sqrt{\frac{n+1}{2}} \psi_{n+1}(x) \right]$$

利用本征函数之间的正交性,得到

$$\overline{x} = 0$$

另外

$$x^{2}\psi_{n}(x) = \frac{1}{2\alpha^{2}} \left[\sqrt{n(n-1)}\psi_{n-2}(x) + (2n+1)\psi_{n}(x) + \sqrt{(n+1)(n+2)}\psi_{n+2}(x) \right]$$

利用 Hermite 多项式之间的求导递推关系

$$H_n'(x) = 2nH_{n-1}(x)$$

得到

$$\frac{\mathrm{d}}{\mathrm{d}x}\psi_n(x) = \frac{\alpha^2}{2} \left[\sqrt{n(n-1)}\psi_{n-2}(x) - (2n+1)\psi_n(x) + \sqrt{(n+1)(n+2)}\psi_{n+2}(x) \right]$$

于是得到

$$\overline{p^2} = \int_{-\infty}^{+\infty} \psi_n^*(x) \left(-\hbar^2 \frac{\partial^2}{\partial x^2} \right) \psi_n(x) \, \mathrm{d}x = \frac{\hbar^2 \alpha^2}{2} (2n+1)$$

(1) 对于 Δx

$$\Delta x = \sqrt{\overline{x^2} - \overline{x}^2} = \sqrt{\frac{1}{2\alpha^2}(2n+1) - 0} = \frac{1}{\alpha}\sqrt{\frac{2n+1}{2}}$$

(2) 对于 Δp

$$\Delta p = \sqrt{\overline{p^2} - \overline{p}^2} = \sqrt{\frac{\alpha^2 \overline{h}^2}{2} (2n+1) - 0} = \alpha \overline{h} \sqrt{\frac{2n+1}{2}}$$

(3) 对于 $\Delta x \Delta p$

$$\Delta x \Delta p = \frac{2n+1}{2} \hbar$$

2.4 一维谐振子

利用一维谐振子回复力 F=-kx 和固有频率 $\omega=\sqrt{rac{k}{m}}$ 的关系,得到一维谐振子的势能

$$V(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$$

再求解一维谐振子的定态薛定谔方程

$$\frac{1}{2m} \left[\hat{p}^2 + (m\omega x)^2 \right] \psi = E\psi$$

我们在此处定义升阶算符 a_+ 和降阶算符 a_-

$$a_{\pm} \equiv \frac{1}{\sqrt{2m\omega\hbar}} \left(\mp \mathrm{i}p + m\omega x \right)$$

16

可以证明 $(a_+\psi)$ 是薛定谔方程的解,其对应能量为 $(E+\hbar\omega)$; 同时 $(a_-\psi)$ 也是薛定谔方程的解,其对应能量为 $(E-\hbar\omega)$ 。在反复使用降阶算符后,我们会得到一个最低能量 $a_-\psi_0=0$

$$\frac{1}{\sqrt{2m\omega\hbar}} \left(\hbar \frac{\mathrm{d}}{\mathrm{d}x} + m\omega x \right) \psi_0 = 0$$

解得通解 $\psi_0(x)=A\mathrm{e}^{-\frac{m\omega}{2\hbar}x^2}$ 并归一化 $\psi_0(x)=\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}\mathrm{e}^{-\frac{m\omega}{2\hbar}x^2}$

题目 2.10

电荷 q 的谐振子, 受到外电场 \mathcal{E} 的作用

$$V(x) = \frac{1}{2}m\omega^2 x^2 - q\mathscr{E}x$$

求能量本征值和本征函数.

解答 首先对势能 V(x) 配方

$$V(x) = \frac{1}{2}m\omega^{2}(x - x_{0})^{2} - \frac{1}{2}m\omega^{2}x_{0}^{2}, \quad x_{0} = \frac{q\mathscr{E}}{m\omega^{2}}$$

能量本征值为

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{q^2\mathcal{E}^2}{2m\omega^2}, \quad n = 0, 1, 2, \dots$$

本征函数为

$$\varphi_n(x) = \psi_n(x - x_0) = \sqrt{\frac{\alpha}{2\sqrt{\pi}2^n n!}} e^{-\frac{\alpha^2(x - x_0)^2}{2}} H_n[\alpha(x - x_0)]$$

题目 2.11

设粒子在下列势阱中运动, 求粒子的能级

$$V(x) = \begin{cases} \infty, & x < 0\\ \frac{1}{2}m\omega^2 x^2, & x > 0 \end{cases}$$

解答 在 x < 0 的部分, 势函数 V(x) 无穷大, 粒子无法穿过势阱, 所以

$$\psi(x) = 0, \quad (x < 0)$$

在 x > 0 的部分, 粒子运动的薛定谔方程为

$$\left[-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2} m\omega^2 x^2 \right] \psi(x) = E\psi(x)$$

这个变系数微分方程想要得到多项式解, 必须满足

$$\frac{E}{\frac{1}{2}\hbar\omega} - 1 = 2n$$

此时方程的解形如

$$\psi_n(x) = A_n H_n(\alpha x) e^{-\frac{\alpha^2 x^2}{2}}$$

同时波函数必须连续

$$\psi(0-) = \psi(0+) = 0$$

也即 Hermite 多项式必须为零,所以 n 只能取奇数 $(n = 1, 3, 5, \cdots)$ 此时谐振子的能级为

$$E_n = \frac{2n+1}{2}\hbar\omega, \quad n = 1, 3, 5, \cdots$$

3 力学量用算符表达

3.1 算符的运算规则

以下所有的讨论都要建立在「对任意波函数和任意常数都成立」这一前提上.

3.1.1 线性算符

$$\hat{A}(c_1\psi_1 + c_2\psi_2) = c_1\hat{A}\psi_1 + c_2\hat{A}\psi_2 \tag{8}$$

3.1.2 算符之和

$$\left(\hat{A} + \hat{B}\right)\psi = \hat{A}\psi + \hat{B}\psi \tag{9}$$

3.1.3 算符之积

$$\left(\hat{A}\hat{B}\right)\psi = \hat{A}\left(\hat{B}\psi\right) \tag{10}$$

3.1.4 量子力学的基本对易式

量子力学中最基本的对易关系是3

$$x_{\alpha}\hat{p}_{\beta} - \hat{p}_{\beta}x_{\alpha} = i\hbar\delta_{\alpha\beta}, \quad \alpha, \beta = x, y, z$$

抽象但普遍的量子力学对易式

$$\left[\hat{A},\hat{B}\right] \equiv \hat{A}\hat{B} - \hat{B}\hat{A} \tag{11}$$

而对易式满足下列恒等式:

$$\left[\hat{A}, \hat{B}\right] = -\left[\hat{B}, \hat{A}\right] \tag{12}$$

$$\left[\hat{A}, \hat{B} + \hat{C}\right] = \left[\hat{A}, \hat{B}\right] + \left[\hat{A}, \hat{C}\right] \tag{13}$$

$$\left[\hat{A}, \hat{B}\hat{C}\right] = \hat{B}\left[\hat{A}, \hat{C}\right] + \left[\hat{A}, \hat{B}\right]\hat{C} \tag{14}$$

$$\left[\hat{A}\hat{B},\hat{C}\right] = \hat{A}\left[\hat{B},\hat{C}\right] + \left[\hat{A},\hat{C}\right]\hat{B} \tag{15}$$

$$\hat{p} = i\hbar \left(\frac{\partial}{\partial x} \hat{e}_x + \frac{\partial}{\partial y} \hat{e}_y + \frac{\partial}{\partial z} \hat{e}_y \right)$$

Kronecker 函数的含义是

$$\delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

³动量算符表示为

进一步可以证明 Jacobi 恒等式4

$$\left[\hat{A}, \left[\hat{B}, \hat{C}\right]\right] + \left[\hat{B}, \left[\hat{C}, \hat{A}\right]\right] + \left[\hat{C}, \left[\hat{A}, \hat{B}\right]\right] = 0 \tag{16}$$

3.1.5 角动量的对易式

角动量算符定义为

$$\hat{m{l}} = m{r} imes \hat{m{p}}$$

各个分量表示为

$$\hat{l}_x = y\hat{p}_z - z\hat{p}_y = -i\hbar \left(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y} \right)$$

$$\hat{l}_y = z\hat{p}_x - x\hat{p}_z = -i\hbar \left(z\frac{\partial}{\partial x} - x\frac{\partial}{\partial z} \right)$$

$$\hat{l}_z = x\hat{p}_y - y\hat{p}_x = -i\hbar \left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x} \right)$$

不难证明

$$\left[\hat{l}_{\alpha}, x_{\beta}\right] = \varepsilon_{\alpha\beta\gamma} i\hbar x_{\gamma} \tag{17}$$

上式中的 $\varepsilon_{\alpha\beta\gamma}$ 称为 Levi-Civita 符号

$$\begin{cases} \varepsilon_{\alpha\beta\gamma} = -\varepsilon_{\beta\alpha\gamma} = -\varepsilon_{\alpha\gamma\beta} \\ \varepsilon_{123} = 1 \end{cases}$$
 (18)

类似地,还可以证明

$$\left[\hat{l}_{\alpha},\hat{p}_{\beta}\right] = \varepsilon_{\alpha\beta\gamma}i\hbar\hat{p}_{\gamma} \tag{19}$$

$$\left[\hat{l}_{\alpha},\hat{l}_{\beta}\right] = \varepsilon_{\alpha\beta\gamma}i\hbar\hat{l}_{\gamma} \tag{20}$$

证明题

定义 $\hat{\mathbf{l}}^2 = \hat{l}_x^2 + \hat{l}_y^2 + \hat{l}_z^2$, 试证明:

$$\left[\hat{\boldsymbol{l}}^2, \hat{l}_{\alpha}\right] = 0, \quad \alpha = x, y, z$$

提示: 利用基本对易关系能在很大程度上简化问题

解答 先证明 $\alpha = x$ 的情形

$$\begin{split} LHS &= \left[\hat{l}^{2}, \hat{l}_{x} \right] = \left[\left(\hat{l}_{x}^{2} + \hat{l}_{y}^{2} + \hat{l}_{z}^{2} \right), \hat{l}_{x} \right] \\ &= \left[\hat{l}_{x}^{2}, \hat{l}_{x} \right] + \left[\hat{l}_{y}^{2}, \hat{l}_{x} \right] + \left[\hat{l}_{z}^{2}, \hat{l}_{x} \right] \\ &= 0 + \hat{l}_{y} \left[\hat{l}_{y}, \hat{l}_{x} \right] + \left[\hat{l}_{y}, \hat{l}_{x} \right] \hat{l}_{y} + \hat{l}_{z} \left[\hat{l}_{z}, \hat{l}_{x} \right] + \left[\hat{l}_{z}, \hat{l}_{x} \right] \hat{l}_{z} \\ &= -i\hbar \hat{l}_{y} \hat{l}_{z} - i\hbar \hat{l}_{z} \hat{l}_{y} + i\hbar \hat{l}_{z} \hat{l}_{y} + i\hbar \hat{l}_{y} \hat{l}_{z} \\ &= 0 \end{split}$$

以上过程需要利用角动量算符的基本对易关系

$$\left[\hat{l}_{\alpha},\hat{l}_{\beta}\right]=\varepsilon_{\alpha\beta\gamma}\mathrm{i}\hbar\hat{l}_{\gamma}$$

⁴李代数是满足 Jacobi 恒等式代数结构的一个主要例子

同理也可以证明

$$\left[\hat{\boldsymbol{l}}^2, \hat{l}_y\right] = 0, \quad \left[\hat{\boldsymbol{l}}^2, \hat{l}_z\right] = 0.$$

这说明角动量的平方算符 $\hat{\pmb{l}}^2$ 与角动量的任意分量算符 \hat{l}_{α} $(\alpha=x,y,z)$ 相互对易.

证明题

定义

$$\hat{l}_{+} = \hat{l}_{x} \pm i\hat{l}_{y}$$

证明:

(19)
$$\hat{l}_z\hat{l}_\pm=\hat{l}_\pm\left(\hat{l}_z\pm\hbar\right)$$
, $\mathbb{P}\left[\hat{l}_z,\hat{l}_\pm\right]=\pm\mathrm{i}\hbar\hat{l}_\pm$

(20)
$$\hat{l}_{\pm}\hat{l}_{\mp} = \hat{l}^2 - \hat{l}_z^2 \pm \hbar \hat{l}_z$$

$$(21) \ \left[\hat{l}_{+}, \hat{l}_{-}\right] = 2\hbar \hat{l}_{z}$$

解答 (19) 根据 \hat{l}_{\pm} 的定义和量子力学的基本对易式⁵

$$\left[\hat{l}_z,\hat{l}_\pm\right] = \left[\hat{l}_z,\hat{l}_x \pm \mathrm{i}\hat{l}_y\right] = \left[\hat{l}_z,\hat{l}_x\right] \pm \mathrm{i}\left[\hat{l}_z,\hat{l}_y\right] = \mathrm{i}\hbar\hat{l}_y \pm \mathrm{i}(-\mathrm{i}\hbar)\hat{l}_x = \pm \mathrm{i}\hbar\hat{l}_\pm$$

(20) 根据 \hat{l}_{\pm} 的定义,先证明

$$\left(\hat{l}_x+\mathrm{i}\hat{l}_y\right)\left(\hat{l}_x-\mathrm{i}\hat{l}_y\right)=\hat{l}_x^2+\mathrm{i}\left(-\hat{l}_x\hat{l}_y+\hat{l}_y\hat{l}_x\right)+\hat{l}_y^2=\hat{l}^2-\hat{l}_z^2+\mathrm{i}\left[\hat{l}_y,\hat{l}_x\right]=\hat{l}^2-\hat{l}_z^2+\hbar\hat{l}_z$$

同理可证

$$\left(\hat{l}_x - i\hat{l}_y\right)\left(\hat{l}_x + i\hat{l}_y\right) = \hat{l}^2 - \hat{l}_z^2 - \hbar\hat{l}_z$$

(21) 根据 \hat{l}_{\pm} 的定义

$$\begin{split} \left[\hat{l}_{+}, \hat{l}_{-} \right] &= [\hat{l}_{x} + \mathrm{i} \hat{l}_{y}, \hat{l}_{x} - \mathrm{i} \hat{l}_{y}] \\ &= [\hat{l}_{x}, \hat{l}_{x}] - \mathrm{i} [\hat{l}_{x}, \hat{l}_{y}] + \mathrm{i} [\hat{l}_{y}, \hat{l}_{x}] + [\hat{l}_{y}, \hat{l}_{y}] \\ &= 0 - \mathrm{i} (\mathrm{i} \hbar \hat{l}_{z}) + \mathrm{i} (-\mathrm{i} \hbar \hat{l}_{z}) + 0 \\ &= 2 \hbar \hat{l}_{z} \end{split}$$

3.1.6 逆算符

$$\hat{A}\psi = \phi \iff \hat{A}^{-1}\phi = \psi$$

3.1.7 算符的函数

类比泰勒级数展开,可以得到算符 \hat{A} 的函数

$$F\left(\hat{A}\right) = \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} \hat{A}^n \tag{21}$$

进一步,还能得到位移算符

$$e^{a\frac{d}{dx}}\psi(x) = \psi(x+a)$$

$$5\left[\hat{l}_{\alpha},\hat{l}_{\beta}\right]=arepsilon_{lphaeta\gamma}\mathrm{i}\hbar\hat{l}_{\gamma}$$

3.1.8 转置算符

算符 Â 的转置算符定义为

$$\int d\tau \, \psi^* \tilde{\hat{A}} \varphi = \int d\tau \, \varphi \hat{A} \psi$$

表示为

$$\left(\psi, \tilde{\hat{A}}\varphi\right) = \left(\varphi^*, \hat{A}\psi^*\right) \tag{22}$$

3.1.9 复共轭算符与 Hermitian 共轭算符

算符 Â 的复共轭算符定义为

$$\hat{A}^*\psi = \left(\hat{A}\psi^*\right)^*\tag{23}$$

算符 \hat{A} 的 Hermitian 共轭算符定义为

$$\left(\psi, \hat{A}^{\dagger} \varphi\right) = \left(\hat{A} \psi, \varphi\right) \tag{24}$$

3.1.10 转置并取复共轭

$$\langle \varphi | \hat{A} | \psi \rangle = \overline{\langle \psi | \hat{B} | \varphi \rangle}$$

题目 3.1

设 A 与 B 为 Hermitian 算符,则 $\frac{1}{2}(AB+BA)$ 和 $\frac{1}{2\mathrm{i}}(AB-BA)$ 也是 Hermitian 算符. 由此证明:任何一个算符 F 均可分解为 $F=F_++\mathrm{i}F_-$

$$F_{+} = \frac{1}{2}(F + F^{\dagger}), \quad F_{-} = \frac{1}{2i}(F - F^{\dagger})$$

 F_+ 与 F_- 均为 Hermitian 算符.

解答 己知 A 与 B 都是 Hermitian 算符 (自伴算符)

$$A^{\dagger} = A, \quad B^{\dagger} = B, \quad (AB)^{\dagger} = B^{\dagger}A^{\dagger} = BA$$

对于

$$\frac{1}{2}(AB + BA)^{\dagger} = \frac{1}{2} \left(B^{\dagger} A^{\dagger} + A^{\dagger} B^{\dagger} \right) = \frac{1}{2} (BA + AB) = \frac{1}{2} (AB + BA)$$
$$\left[\frac{1}{2i} (AB - BA) \right]^{\dagger} = -\frac{1}{2i} \left(B^{\dagger} A^{\dagger} - A^{\dagger} B^{\dagger} \right) = -\frac{1}{2i} \left(BA - AB \right) = \frac{1}{2i} \left(AB - BA \right)$$

这说明以上两个算符都是 Hermitian 算符,根据这一结论,我们再对任一算符 F 分解

$$F = \frac{F}{2} + \frac{F}{2} = \frac{1}{2} (F + F^{\dagger}) + \frac{1}{2} (F - F^{\dagger}) = F_{\dagger} + iF_{-}$$

这说明 F_+ 和 F_- 都是 Hermitian 算符.

题目 3.4

定义反对易式

$$[A, B]_{\dagger} \equiv AB + BA$$

再证明

$$[AB, C] = A[B, C]_{\dagger} - [A, C]_{\dagger}B$$
$$[A, BC] = [A, B]_{\dagger}C - B[A, C]_{\dagger}$$

解答 (1) 根据反对易式的定义

$$\begin{cases} LHS = A[B,C] + [A,C]B = A(BC-CB) + (AC-CA)B = ABC-CAB \\ RHS = A(BC+CB) - (AC+CA)B = ABC-CAB \end{cases}$$

(2) 类似地

$$\begin{cases} LHS = B[A,C] + [A,B]C = B(AC-CA) + (AB-BA)C = ABC-BCA \\ RHS = (AB+BA)C - B(AC+CA) = ABC-BCA \end{cases}$$

以上两式均有 LHS = RHS, 证毕.

3.2 Hermitian 算符的本征值与本征函数

3.2.1 涨落

对于处于量子态 ψ 的体系,力学量 A 的测量结果会围绕平均值涨落,即:

$$\overline{\Delta A^2} = \overline{\left(\hat{A} - \overline{A}\right)^2} = \int \psi^* \left(\hat{A} - \overline{A}\right)^2 \psi \, \mathrm{d}\tau$$

因为 \hat{A} 是 Hermitian 算符, \overline{A} 必为实数,因此 $\overline{\Delta A} = \left(\hat{A} - \overline{A}\right)$ 仍然是 Hermitian 算符

$$\overline{\Delta A^2} = \int \left| \left(\hat{A} - \overline{A} \right) \psi \right|^2 d\tau \geqslant 0$$

3.2.2 本征态

我们把测量结果永远不变的特殊量子态被称为本征态

$$\overline{\Delta A^2} = 0 \implies \left(\hat{A} - \overline{A}\right)\psi = 0$$

记常数 \overline{A} 为 A_n , 本征态为 ψ_n , 整理得到算符 \hat{A} 的本征方程

$$\hat{A}\psi_n = A_n\psi_n$$

其中 A_n 称为算符 \hat{A} 的一个本征值, ψ_n 为相应的本征态.

定理 3.1. Hermitian 算符的本征值必为实.

证明. 在本征态 ψ_n 下

$$\overline{A} = (\psi_n, \hat{A}\psi_n) = A_n(\psi_n, \psi_n) = A_n$$

因为 \overline{A} 必为实数,所以本征值 A_n 也一定是实数.

定理 3.2. Hermitian 算符的属于不同本征值的本征函数,彼此正交.

证明. 设量子态 ψ 的两个本征值分别为 A_m 和 A_n ,对应的本征函数分别为 ψ_m 和 ψ_n

3.2.3 本征态简并

本征态简并往往与体系的对称性密切相关,在能级简并的情况下,仅根据能量本征值并不能完全确定各能量简并态.

设力学量 Â 的本征方程为

$$\hat{A}\psi_{n\alpha} = A_n\psi_{n\alpha}, \quad \alpha = 1, 2, \cdots, f_n$$

即属于本征值 A_n 的本征态有 f_n 个,本征值 A_n 为 f_n 重简并.

在出现简并态时,简并态的选择并不唯一,而且往往也不彼此正交,但只要把它们适当地线性叠加, 就能获得一组彼此正交的简并态

$$\phi_{n\beta} = \sum_{\alpha}^{f_n} \alpha_{\beta\alpha} \hat{A} \psi_{n\alpha}, \quad \beta = 1, 2, \cdots, f_{\alpha}$$

容易证明 $\phi_{n\beta}$ 仍为 \hat{A} 的本征态,相应的本征值仍为 A_n ,因为

$$\hat{A}\phi_{n\beta} = \sum_{\alpha} a_{\beta\alpha} \hat{A}\psi_{n\alpha} = A_n \sum_{\alpha} a_{\beta\alpha}\psi_{n\alpha} = A_n \phi_{n\beta}$$

问题转化为:能否找到合适的 $\alpha_{\beta\alpha}$,使 $\phi_{n\beta}$ 具有正交性?也即下列方程组是否有解的问题

$$(\phi_{n\beta},\phi_{n\beta'})=\delta_{\beta\beta'}$$

实际上,我们目前有 $\frac{1}{2}f_n(f_n-1)+f_n=\frac{1}{2}f_n(f_n+1)$ 个线性方程,而待解系数 $a_{\beta\alpha}$ 只有 f_n^2 个,根据

$$f_n^2 \geqslant \frac{1}{2} f_n(f_n + 1)$$

可以说明线性方程组个数多于系数个数,方程组显然有解,也即一定能找到合适的 $a_{\beta\alpha}$ 使正交性条件得到满足.

习题集 Ex.43

求算符 $\hat{F} = -ie^{ix} \frac{d}{dx}$ 的本征函数

解答 设量子本征态为 $\psi_n(x)$,本征值为 F_n ,本征方程为

$$\hat{F}\psi_n(x) = -ie^{ix}\frac{d\psi_n(x)}{dx} = F_n\psi_n(x)$$

分离变量并两边积分,得到

$$\psi_n(x) = C \exp\left(-F_n e^{-ix}\right)$$

还没有归一化

习题集 Ex.44

对于一维运动, 求算符 $\hat{F} = \hat{p} + x$ 的本征值和本征函数.

解答 设量子本征态为 $\psi(x)$,本征值为 λ ,本征方程为

$$\hat{F}\psi(x) = (\hat{p} + x)\psi(x) = \lambda\psi_n(x)$$

代入动量算符,得到

$$-i\hbar \frac{d\psi(x)}{dx} + (x - \lambda)\psi(x) = 0$$

分离变量后两边积分得到本征函数

$$\psi(x) = C \exp\left[-\frac{\mathrm{i}x}{2\hbar}(x-2\lambda)\right]$$

对于所有实数 λ ,波函数 $\psi(x)$ 均满足标准条件。

习题集 Ex.48

若算符 \hat{K} 有属于本征值为 λ 的本征函数 ϕ ,且有 $\hat{K}=\hat{A}\hat{B}$ 和 $\hat{A}\hat{B}-\hat{B}\hat{A}=1$,试证明 $u_1=\hat{A}\phi$ 和 $u_2=\hat{B}\phi$ 也是算符 \hat{K} 的本征函数,且对应的本征值分别为 $\lambda-1$ 和 $\lambda+1$.

解答 (1) 对于算符 \hat{K} 和函数 $u_1 = \hat{A}\phi$

$$\hat{K}u_{1} = \hat{K}\hat{A}\phi = \hat{A}\hat{B}\hat{A}\phi = \hat{A}\left(\hat{A}\hat{B} - 1\right)\phi = \hat{A}\left(\hat{K} - 1\right)\phi$$

设本征值为 E_1 ,则本征方程为

$$\hat{A}\left(\hat{K}-1\right)\phi = \hat{A}\left(\lambda-1\right)\phi = E_1\hat{A}\phi$$

两边左乘 \hat{A}^{-1} ,于是

$$E_1 = \lambda - 1$$

(2) 对于算符 \hat{K} 和函数 $u_2 = \hat{B}\phi$

$$\hat{K}u_2 = \hat{A}\hat{B}\hat{B}\phi = \left(1 + \hat{B}\hat{A}\right)\hat{B}\phi = \hat{B}\left(1 + \hat{A}\hat{B}\right)\phi = \hat{B}\left(1 + \hat{K}\right)\phi$$

设本征值为 E_2 ,则本征方程为

$$\hat{B}\left(1+\hat{K}\right)\phi = \hat{B}\left(1+\lambda\right)\phi = E_2\hat{B}\phi$$

两边左乘 \hat{B}^{-1} ,于是

$$E_2 = \lambda + 1$$

3.3 共同本征函数

题目 3.14

证明在 l_z 的本征态下, $\overline{l_x} = \overline{l_y} = 0$. (提示:利用 $l_y l_z - l_z l_y = \mathrm{i} \hbar l_x$,求平均)

解答 对于球谐函数 Y_{lm}

$$l_z Y_{lm} = m\hbar Y_{lm}, \quad m = l, l - 1, \dots, -l + 1, -l$$

设 ψ_m 是 l_z 的本征态,且相应的本征值是 $m\hbar$

$$l_z \psi_m = m\hbar \psi_m$$

根据角动量的对易关系

$$l_y l_z - l_z l_y = i\hbar l_x$$

得到

$$\overline{l_x} = \frac{1}{i\hbar} \int \psi_m^* (l_y l_z - l_z l_y) \psi_m \, dx$$

$$= \frac{1}{i\hbar} \left[\int \psi_m^* l_y l_z \psi_m \, dx - \int \psi_m^* l_z l_y \psi_m \, dx \right]$$

$$= \frac{1}{i\hbar} \left[m\hbar \int \psi_m^* l_y \, dx - \int (l_z \psi_m)^* l_y \psi_m \, dx \right]$$

$$= \frac{1}{i\hbar} m\hbar \left[\overline{l_y} - \overline{l_z} \right]$$

$$= 0$$

题目 3.15

设粒子处于 $Y_{lm}(\theta,\varphi)$ 状态下, 求 $\overline{(\Delta l_x)^2}$ 和 $\overline{(\Delta l_y)^2}$.

解答 球谐函数 $Y_{lm}(\theta,\varphi)$ 是 l^2 和 l_z 的本征函数

$$l^{2}Y_{lm}(\theta,\varphi) = l(l+1)\hbar^{2}Y_{lm}(\theta,\varphi),$$

$$l_{z}Y_{lm}(\theta,\varphi) = m\hbar^{2}Y_{lm}(\theta,\varphi)$$

考虑到球谐函数的对称性,有

$$\overline{l_x} = \overline{l_y} = 0$$

$$\overline{l_x^2} = \overline{l_y^2} = \frac{1}{2} \overline{\left(l^2 - l_z^2\right)} = \frac{\hbar^2}{2} \left[l(l+1) - m^2\right]$$

根据概率统计的相关知识

$$\overline{(\Delta l_x)^2} = \overline{(\Delta l_z)^2} = \frac{\hbar^2}{2} \left[l(l+1) - m^2 \right]$$

题目 3.16

设体系处于 $\psi = c_1 Y_{11} + c_2 Y_{20}$ 状态(已归一化,即 $|c_1|^2 + |c_2|^2 = 1$),求:

- 1. l_z 的可能测值及平均值;
- 2. l^2 的可能测值及相应的概率;
- $3. l_x$ 的可能测值及相应的概率.

解答 按照态叠加原理,体系的任何一个状态 ψ 都可以用 $\{\phi_{\alpha}\}$ 展开,并且利用 ψ_{α} 的正交归一性,可以求出展开系数 a_{α}

$$\psi = \sum_{\alpha} a_{\alpha} \psi_{\alpha}$$

(1) l_z 的可能测值和对应概率为

$$E_{11} = \hbar, \quad P_{11} = |c_1|^2$$

 $E_{20} = 0, \quad P_{20} = |c_2|^2$

(2) l^2 的可能测值和对应概率为

$$E_{11} = 2\hbar^2$$
, $P_{11} = |c_1|^2$
 $E_{20} = 6\hbar$, $P_{20} = |c_2|^2$

习题 Ex55

线性谐振子在初始时刻处于下面归一化状态:

$$\psi(x) = \sqrt{\frac{1}{5}}\psi_0(x) + \sqrt{\frac{1}{2}}\psi_2(x) + c_5\psi_5(x)$$

式中 $\psi_n(x)$ 表示谐振子第 n 个定态波函数, 求:

- (1) 系数 c_5 ;
- (2) t 时刻的波函数;
- (3) t = 0 时刻谐振子能量的可能取值及其相应几率,并求其平均值;
- (4) t 时刻谐振子能量的可能取值及其相应的几率,并求其平均值.

解答 (1) 利用归一化条件

$$\left(\sqrt{\frac{1}{5}}\right)^2 + \left(\sqrt{\frac{1}{2}}\right)^2 + c_5^2 = 1$$

得到

$$c_5 = \sqrt{\frac{3}{10}}$$

(2) 定态波函数为

$$\psi_n(x,t) = \psi_n(x) e^{-\frac{i}{\hbar}E_n t}$$

而 t 时刻的波函数为

$$\psi_n(x,t) = \sqrt{\frac{1}{5}}\psi_0(x)\mathrm{e}^{-\frac{\mathrm{i}}{2}\omega t} + \sqrt{\frac{1}{2}}\psi_2(x)\mathrm{e}^{-\frac{5\mathrm{i}}{2}\omega t} + \sqrt{\frac{3}{10}}\psi_5(x)\mathrm{e}^{-\frac{11\mathrm{i}}{2}\omega t}$$

4 力学量随时间的演化与对称性

4.1 守恒量

力学量 A 的平均值表示为6

$$\bar{A}(t) = (\psi(t), A\psi(t))$$

所以

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{A}(t) = \left(\frac{\partial\psi}{\partial t}, A\psi\right) + \left(\psi, A\frac{\partial\psi}{\partial t}\right) + \left(\psi, \frac{\partial A}{\partial t}\psi\right)$$

利用薛定谔方程

$$\mathrm{i}\hbar\frac{\partial\psi}{\partial t}=\hat{H}\psi$$

对 $\frac{\partial \psi}{\partial t}$ 进行代换

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\bar{A}(t) &= \left(\frac{H\psi}{\mathrm{i}\hbar},A\psi\right) + \left(\psi,A\frac{H\psi}{\mathrm{i}\hbar}\right) + \left(\psi,\frac{\partial A}{\partial t}\psi\right) \\ &= \frac{1}{-\mathrm{i}\hbar}(\psi,HA\psi) + \frac{1}{\mathrm{i}\hbar}(\psi,AH\psi) + \left(\psi,\frac{\partial A}{\partial t}\psi\right) \\ &= \frac{1}{\mathrm{i}\hbar}(\psi,[A,H]\psi) + \left(\psi,\frac{\partial A}{\partial t}\psi\right) \\ &= \frac{1}{\mathrm{i}\hbar}\overline{[A,H]} + \frac{\overline{\partial A}}{\partial t} \end{split}$$

如果力学量 A 不显含 t,则 $\frac{\partial A}{\partial t} = 0$

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{A}(t) = \frac{1}{\mathrm{i}\hbar}\overline{[A,H]} \tag{25}$$

如果恰好有 [A,H]=0(即力学量 A 恰好与 H 对易),则 $\frac{\mathrm{d}}{\mathrm{d}t}\bar{A}=0$,这说明力学量 A 在任何量子态下的平均值都不会随时间改变,这是体系的一个守恒量.

题目 4.2

设体系有两个粒子,每个粒子可处于三个单粒子态 φ_1 , φ_2 , φ_3 中的任何一个态。试求体系可能的态数目,分三种情况讨论:两个全同玻色子、两个全同费米子、两个不同粒子。

解答 两个全同玻色子:对于全同玻色子,每个粒子都可以处于三个单粒子态中的任意一个,且两个粒子可以占据同一个态。因此,对于每个粒子,有三种选择,总共有 $3 \times 3 = 9$ 种可能的组合。然而,由于玻色子是全同的,这些组合中的重复状态需要被排除。我们知道,当两个玻色子占据同一个态时,它们是不可分辨的,因此只计算一次。因此,最终可能的态数目为 9-1=8。

两个全同费米子:对于全同费米子,根据泡利不相容原理,两个费米子不能同时占据同一个态。因此,对于第一个粒子,有三种选择,而对于第二个粒子,只剩下两种选择(除去第一个粒子占据的态)。因此,可能的态数目为 $3\times 2=6$ 。

$$(\psi,\varphi) = \int \psi^* \varphi \, \mathrm{d}\tau$$

⁶波函数的标积定义为

两个不同粒子:对于不同的粒子,每个粒子都可以处于三个单粒子态中的任意一个,且它们之间没有交换对称性的限制。因此,对于每个粒子,有三种选择,总共有 $3 \times 3 = 9$ 种可能的组合。由于粒子是不同的,这些组合中的重复状态不需要排除。因此,可能的态数目为9。

所以,根据上述讨论,根据粒子的全同性质,两个粒子的可能态数目分别为:

- 全同玻色子: 8 个态
- 全同费米子: 6 个态
- 不同粒子: 9 个态

题目 4.3

解答 如果不考虑波函数的交换对称性,其可能的态数目为

$$3^3 = 27$$

如果要求波函数是交换反对称的, 其可能的态数目为

1

如果要求波函数是交换对称的, 其可能的态数目为

$$1 + 6 + 3 = 10$$

题目 4.4

设力学量 A 不显含 t, H 为体系的 Hamilton 量,证明:

$$-\hbar^2 \frac{\mathrm{d}^2}{\mathrm{d}t^2} \bar{A} = \overline{[[A, H], H]}.$$

解答 因为力学量 A 不显含 t

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{A} = \frac{1}{\mathrm{i}\hbar}\overline{[A,H]}$$

上式两边再对 t 求导,则有

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\bar{A} = \frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{\mathrm{i}\hbar}\overline{[A,H]} = \frac{1}{\mathrm{i}\hbar}\overline{\left[\frac{1}{\mathrm{i}\hbar}[A,H],H\right]} = -\frac{1}{\hbar^2}\overline{[[A,H],H]}$$

简单整理得到

$$-\hbar^2 \frac{\mathrm{d}^2}{\mathrm{d}t^2} \bar{A} = \overline{[[A, H], H]}$$

证毕.

题目 4.5

设力学量 A 不显含 t, 证明在束缚定态下

$$\frac{\mathrm{d}\bar{A}}{\mathrm{d}t} = 0$$

解答 定态 ψ 是体系的能量本征态,且束缚态可以归一化

$$(\psi, \psi) =$$
有限值

因为力学量 A 不显含 t

$$\frac{\mathrm{d}\bar{A}}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar} \overline{[A, H]}$$

所以

$$\frac{\mathrm{d}\bar{A}}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar} \frac{(\psi, [A, H]\psi)}{(\psi, \psi)} = \frac{1}{\mathrm{i}\hbar} \frac{(\psi, AH\psi) - (\psi, HA\psi)}{(\psi, \psi)}$$

利用能量本征方程和 Hermite 算符的性质

$$(\psi,AH\psi)=(\psi,AE\psi)$$

$$(\psi, HA\psi) = (H\psi, A\psi)$$

得到

$$\frac{\mathrm{d}\bar{A}}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar} \frac{(\psi, AE\psi) - (H\psi, A\psi)}{(\psi, \psi)} = \frac{E}{\mathrm{i}\hbar} \frac{(\bar{A} - \bar{A})}{(\psi, \psi)} = 0$$

证毕.

5 中心力场

题目 5.1

利用 5.1.3 节中的式 (17) 和式 (18), 证明下列关系式:

1. 相对动量

$$\vec{p} = \mu \dot{\vec{r}} = \frac{1}{M} (m_2 \vec{p_1} - m_1 \vec{p_2})$$

2. 总动量

$$\vec{P} = M\dot{\vec{R}} = \vec{p_1} + \vec{p_2}$$

3. 总轨道角动量

$$\vec{L} = \vec{l_1} + \vec{l_2} = \vec{r_1} \times \vec{p_1} + \vec{r_2} \times \vec{p_2} = \vec{R} \times \vec{P} + \vec{r} \times \vec{p}$$

4. 总动能

$$T = \frac{\vec{p}_1^2}{2m_1} + \frac{\vec{p}_2^2}{2m_2} = \frac{\vec{P}^2}{2M} + \frac{\vec{p}^2}{2m}$$

反之,有

$$\begin{split} \vec{r}_1 &= \vec{R} + \frac{\mu}{m_1} \vec{r}, \quad \vec{r}_2 = \vec{R} - \frac{\mu}{m_2} \vec{r} \\ \vec{p}_1 &= \frac{\mu}{m_2} \vec{P} + \vec{p}, \quad \vec{p}_2 = \frac{\mu}{m_1} \vec{P} - \vec{p} \end{split}$$

以上各式中

$$M = m_1 + m_2, \quad \mu = \frac{m_1 m_2}{m_1 + m_2}$$

解答 质心坐标表示为

$$\vec{R} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$$

相对半径表示为

$$\vec{r} = \vec{r}_1 - \vec{r}_2$$

(1) 相对动量

$$\vec{p} = \mu \dot{\vec{r}} = \frac{m_1 m_2}{m_1 + m_2} \left(\dot{\vec{r}}_1 - \dot{\vec{r}}_2 \right) = \frac{1}{M} [m_2 (m_1 \dot{\vec{r}}_1) - m_1 (m_2 \dot{\vec{r}}_2)] = \frac{1}{M} (m_2 \vec{p}_1 - m_1 \vec{p}_2)$$

(2) 总动量

$$\vec{P} = M\dot{\vec{R}} = M\frac{m_1\dot{\vec{r}}_1 + m_2\dot{\vec{r}}_2}{M} = \vec{p}_1 + \vec{p}_2$$

(3) 总轨道角动量

$$\begin{split} \vec{R} \times \vec{P} + \vec{r} \times \vec{p} &= \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2} \times (\vec{p}_1 + \vec{p}_2) + (\vec{r}_1 - \vec{r}_2) \times \frac{1}{M} \left(m_2 \vec{p}_1 + m_1 \vec{p}_2 \right) \\ &= \frac{1}{M} [(m_1 + m_2) \vec{r}_1 \times \vec{p}_1 + (m_1 + m_2) \vec{r}_2 \times \vec{p}_2] \\ &= \vec{r}_1 \times \vec{p}_1 + \vec{r}_2 \times \vec{p}_2 = \vec{l}_1 + \vec{l}_2 = \vec{L} \end{split}$$

(4) 总动能

$$T = \frac{\vec{p}_1^2}{2m_1} + \frac{\vec{p}_2^2}{2m_2}$$

6 量子力学的矩阵形式与表象变换

题目 7.3

设一维粒子 Hamilton 量为 $H = \frac{p^2}{2m} + V(x)$. 写出 x 表象中 x, p, H 的矩阵元.

解答 坐标 x 在坐标表象中表示为

$$\langle x'|x|x''\rangle = x'\delta(x'-x'')$$

势能 V(x) 在坐标表象中表示为

$$\langle x'|V(x)|x''\rangle = V(x')\delta(x'-x'')$$

由此可得各种矩阵元

$$(x)_{x'x''} = \langle x'|x|x''\rangle = \int \delta(x - x')x\delta(x - x'') \, \mathrm{d}x = x'\delta(x' - x'')$$

$$(p)_{x'x''} = \langle x'|p|x''\rangle = \int \delta(x - x') \left(-\mathrm{i}\hbar \frac{\partial}{\partial x}\right) \delta(x - x'') \, \mathrm{d}x$$

$$= -\mathrm{i}\hbar \frac{\partial}{\partial x'} \int \delta(x - x')\delta(x - x'') \, \mathrm{d}x$$

$$= -\mathrm{i}\hbar \frac{\partial}{\partial x'} \delta(x' - x'')$$

$$(H)_{x'x''} = \langle x'|H|x''\rangle = \int \delta(x - x')H\delta(x - x'') \, \mathrm{d}x$$

$$= \int \delta(x - x') \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)\right] \delta(x - x'') \, \mathrm{d}x$$

$$= -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x'^2} \delta(x' - x'') + V(x')\delta(x' - x'')$$

习题集 Ex94

已知在 $\sigma^2 - \sigma_z$ 表象中,算符 $\hat{\sigma}_x$ 和 $\hat{\sigma}_y$ 的矩阵形式为

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

- 1. 求它们的本征值与本征函数.
- 2. 写出在 $\sigma^2 \sigma_z$ 表象中,算符 $\hat{\sigma}_x$ 的矩阵形式及其本征函数形式.

解答 (1) 对于算符 $\hat{\sigma}_x$, 其本征方程 $\hat{\sigma}_x | \psi \rangle = \lambda | \psi \rangle$ 的矩阵形式为

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \end{pmatrix}$$

也即方程组

$$b = \lambda a, \quad a = \lambda b$$

解得

$$\lambda_1 = 1, \quad |\psi_1\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\lambda_2 = -1, \quad |\psi_2\rangle = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

类似地,算符 $\hat{\sigma}_y$ 的本征值和对应的本征函数为

$$\lambda_1 = 1, \quad |\psi_1\rangle = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

$$\lambda_2 = -1, \quad |\psi_2\rangle = \begin{pmatrix} -1 \\ i \end{pmatrix}$$

(2) 在 $\sigma^2 - \sigma_z$ 表象中,算符 $\hat{\sigma}_x$ 的矩阵形式可以通过变换矩阵 U 得到

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

算符 $\hat{\sigma}_x$ 在 $\sigma^2 - \sigma_z$ 表象中的矩阵形式

$$\hat{\sigma}_x' = U\sigma_x U^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

而 $\hat{\sigma}_x$ 在此表象中的本征函数为

$$|\psi_1\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \quad |\psi_2\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

题目 8.1

- 1. 在 σ_z 表象中, 求 σ_x 的本征态;
- 2. 求 σ_z 表象变换到 σ_x 表象的变换矩阵;
- 3. 验证

$$S\sigma_x S^{-1} = S \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} S^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

解答

题目 8.3

在
$$s_z$$
 本征态 $\chi_{1/2}(s_z) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 下,求 $\overline{(\delta s_x)^2}$ 和 $\overline{(\delta s_y)^2}$.

解答

Ex103

设两电子在弹性辏力场中运动,每个电子的势能为

$$u(r) = \frac{1}{2}\mu\omega^2 r^2$$

如果电子之间的库仑能与 u(r) 相比可以忽略,求当一个电子处在基态,另一电子处于沿 x 方向运动时的第一激发态时,两电子组成体系的波函数。

解答 设两个电子的坐标为 r_1 和 r_2 ,则体系的总哈密顿算符为

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + \frac{1}{2}m\omega^2(r_1^2 + r_2^2)$$

其中 m 是电子的质量, ω 是弹性势场的频率。可以用质心坐标 $R=\frac{r_1+r_2}{2}$ 和相对坐标 $r=r_1-r_2$ 将哈密顿算符分解为

$$H = H_R + H_r = \frac{P_R^2}{4m} + \frac{p_r^2}{m} + m\omega^2 R^2 + \frac{1}{4}m\omega^2 r^2$$

其中 $P_R = p_1 + p_2$ 是质心动量, $p_r = \frac{p_1 - p_2}{2}$ 是相对动量。由于质心运动和相对运动是分离的,可以分别求解它们的本征态和本征值。质心运动部分是一个一维谐振子,其本征态为

$$\psi_n(R) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n(\sqrt{m\omega/\hbar}R) e^{-m\omega R^2/2\hbar}$$

其中 $n=0,1,2,\ldots$, $H_n(x)$ 是 n 阶厄米多项式, 本征值为

$$E_n = \hbar\omega(n+1/2)$$

相对运动部分是一个二维谐振子,其本征态为

$$phi_{nm}(r) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/2} \frac{1}{\sqrt{2^n n! 2^m m!}} H_n(\sqrt{m\omega/\hbar}x) H_m(\sqrt{m\omega/\hbar}y) e^{-m\omega r^2/4\hbar}$$

7 微扰论 32

其中 n, m = 0, 1, 2, ...,本征值为

$$E_{nm} = 2\hbar\omega(n+m+1)$$

由于电子是费米子,它们的总波函数必须是反对称的。因此,如果一个电子处在基态 $\psi_0(R)\phi_{00}(r)$,另一个电子处于沿 x 方向运动的第一激发态 $\psi_0(R)\phi_{10}(r)$,则两电子组成体系的波函数为

$$\Psi(r_1, r_2) = A[\psi_0(R)\phi_{00}(r)\chi_{+-}(s) - \psi_0(R)\phi_{10}(r)\chi_{-+}(s)]$$

其中 A 是归一化常数, $\chi_{+-}(s)$ 和 $\chi_{-+}(s)$ 是自旋单态波函数。这个波函数满足交换反对称性:

$$\Psi(r_1, r_2) = -\Psi(r_2, r_1)$$

7 微扰论

Ex85

设哈密顿量在能量表象中的矩阵形式为

$$H = \begin{pmatrix} 1 & c & 0 \\ c & 3 & 0 \\ 0 & 0 & c - 1 \end{pmatrix}$$

- 1. 求 H 的精确本征值;
- 2. 设 $c \ll 1$,利用微扰法理论求能量至二级修正;
- 3. 在什么条件下上述两种结果一致?

解答 (1) 解本征值问题等价于求解特征方程 $\det(H - EI) = 0$,其中 I 是单位矩阵。代入给定的哈密顿量矩阵 H,我们得到:

$$\begin{vmatrix} 1 - E & c & 0 \\ c & 3 - E & 0 \\ 0 & 0 & c - 1 - E \end{vmatrix} = 0$$

计算行列式后化简得到:

$$(1-E)[(3-E)(c-1-E)-0]-c[c(c-1-E)]=0$$

展开化简后得到:

$$(1 - E)(3c - 3E - cE + E^2 - cE + c^2) = 0$$

化简得到:

$$(1-E)(E^2 - (3+2c)E + 3c - c^2) = 0$$

解这个二次方程可以得到三个本征值

$$E_1$$
, E_2 , E_3

(2) 对于微扰参数 $c \ll 1$,我们将哈密顿量表示为 $H = H^{(0)} + cH^{(1)}$,其中 $H^{(0)}$ 是未受微扰的哈密顿量, $H^{(1)}$ 是微扰项。

7 微扰论 33

- 在零级近似下,我们使用未受微扰的哈密顿量 $H^{(0)}$ 的本征值 $E^{(0)}$ 和本征态 $\psi^{(0)}$;
- 在一级近似下,我们使用微扰项 $H^{(1)}$ 对本征值进行修正。能量修正为:

$$\Delta E_n^{(1)} = \langle \psi_n^{(0)} | H^{(1)} | \psi_n^{(0)} \rangle$$

• 在二级近似下,能量修正为:

$$\Delta E_n^{(2)} = \sum_{m \neq n} \frac{|\langle \psi_m^{(0)} | H^{(1)} | \psi_n^{(0)} \rangle|^2}{E_n^{(0)} - E_m^{(0)}}$$

在一级近似下,我们需要计算能量的修正项 $\Delta E_n^{(1)}$ 。根据微扰理论,我们有:

$$\Delta E_n^{(1)} = \langle \psi_n^{(0)} | H^{(1)} | \psi_n^{(0)} \rangle$$

代入给定的哈密顿量矩阵形式,我们可以计算一级修正项为:

$$\Delta E_n^{(1)} = \langle \psi_n^{(0)} | cH^{(1)} | \psi_n^{(0)} \rangle$$

根据矩阵乘法的定义,我们可以将上式展开为:

$$\Delta E_n^{(1)} = c \sum_{i,j} \psi_n^{(0)*}(i) H^{(1)}(i,j) \psi_n^{(0)}(j)$$

(3) 在二级近似下,我们需要计算能量的二级修正项 $\Delta E_n^{(2)}$ 。根据微扰理论,我们有:

$$\Delta E_n^{(2)} = \sum_{m \neq n} \frac{|\langle \psi_m^{(0)} | H^{(1)} | \psi_n^{(0)} \rangle|^2}{E_n^{(0)} - E_m^{(0)}}$$

代入给定的哈密顿量矩阵形式,我们可以计算二级修正项为:

$$\Delta E_n^{(2)} = \sum_{m \neq n} \frac{|c\psi_m^{(0)*}(i)H^{(1)}(i,j)\psi_n^{(0)}(j)|^2}{E_n^{(0)} - E_m^{(0)}}$$

根据微扰理论的前提,微扰项应当是一个较小的修正。因此,当微扰参数 c 足够小的时候,即 $c \ll 1$,才能保证一级和二级修正项都是可靠的近似。

Ex86

设哈密顿量在能量表象中的矩阵形式为

$$H = \begin{pmatrix} A+B & A-B \\ A-B & A+B \end{pmatrix}$$

其中 A、B 为实数, 求:

- 1. 若 $A + B \gg A B$,用微扰法求能量至一级修正;
- 2. 直接求能量本征值并和 1 所得结果进行比较。

解答 (1) 根据微扰理论,我们将哈密顿量表示为 $H = H^{(0)} + \lambda H^{(1)}$,在零级近似下,我们使用未受微扰的哈密顿量 $H^{(0)}$ 的本征值 $E^{(0)}$ 和本征态 $\psi^{(0)}$;在一级近似下,能量修正为:

$$\Delta E_n^{(1)} = \langle \psi_n^{(0)} | H^{(1)} | \psi_n^{(0)} \rangle$$

对于给定的哈密顿量矩阵, 我们可以将其分解为 $H = H^{(0)} + \lambda H^{(1)}$, 其中:

$$H^{(0)} = \begin{pmatrix} A & A \\ A & A \end{pmatrix} \quad H^{(1)} = \begin{pmatrix} B & -B \\ -B & B \end{pmatrix}$$

在零级近似下,本征值为 $E_1^{(0)} = E_2^{(0)} = A$,对应的本征态分别为

$$\psi_1^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \psi_2^{(0)} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

在一级近似下,我们计算能量的修正项 $\Delta E_n^{(1)}$, 其中 n=1,2:

$$\Delta E_1^{(1)} = \langle \psi_1^{(0)} | H^{(1)} | \psi_1^{(0)} \rangle = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} B & -B \\ -B & B \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2B$$

$$\Delta E_2^{(1)} = \langle \psi_2^{(0)} | H^{(1)} | \psi_2^{(0)} \rangle = \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} B & -B \\ -B & B \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -2B$$

因此,能量修正项为

$$\Delta E_1^{(1)} = 2B \quad \Delta E_2^{(1)} = -2B$$

(2) 设对角化矩阵为S,即

$$S^{-1}HS = \begin{pmatrix} E_1^{(0)} & 0\\ 0 & E_2^{(0)} \end{pmatrix}$$

将哈密顿量矩阵 H 代入上式, 我们可以得到

$$S^{-1}HS = \begin{pmatrix} A+B & A-B \\ A-B & A+B \end{pmatrix} = \begin{pmatrix} E_1^{(0)} & 0 \\ 0 & E_2^{(0)} \end{pmatrix}$$

由此可知

$$S = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

将 S 矩阵代入上式, 我们可以得到以下方程组

$$\begin{cases} (A+B)a + (A-B)c = E_1^{(0)}a \\ (A+B)b + (A-B)d = E_1^{(0)}b \\ (A+B)a - (A-B)c = E_2^{(0)}c \\ (A+B)b - (A-B)d = E_2^{(0)}d \end{cases}$$

由于题目中给定的条件是 $A + B \gg A - B$,我们可以做近似处理。在这种情况下,等式组的解可以近似为:

$$\begin{cases} a \approx 1 \\ b \approx 0 \\ c \approx 0 \\ d \approx 1 \end{cases}$$

7 微扰论 35

因此,本征态矩阵 S 近似为:

$$S \approx \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

接下来,我们将微扰哈密顿量 H' 写成本征态的形式:

$$H' = S^{-1}HS - \begin{pmatrix} E_1^{(0)} & 0\\ 0 & E_2^{(0)} \end{pmatrix}$$

Ex75

转动惯量为 I,电矩为 \vec{D} 的平面转子处在均匀电场 ε 中,电场是在转子运动的平面上,用微扰法求转子能量的修正值。

解答 在这个问题中,转子的零级近似哈密顿量是转子的动能和势能之和:

$$H^{(0)} = \frac{1}{2I}L^2$$

其中 L 是转子的角动量算符,I 是转子的转动惯量。微扰项由转子的电矩 \vec{D} 和均匀电场 ε 组成:

$$H' = -\vec{D} \cdot \varepsilon$$

能量的一级修正可以表示为:

$$E^{(1)} = \langle \psi^{(0)} | H' | \psi^{(0)} \rangle$$

其中 $|\psi^{(0)}\rangle$ 是转子的零级近似能量本征态。

转子的零级近似能量本征态是转子的角动量本征态,即 L^2 的本征态。因此,我们可以将 $|\psi^{(0)}\rangle$ 表示为 $|l,m\rangle$,其中 l 是角动量量子数,m 是角动量在 z 方向上的投影量量子数。

现在,我们将 H' 展开为 $H'=-D\varepsilon\cos\theta$,其中 θ 是转子运动平面与电场方向的夹角, $D=|\vec{D}|$ 是电矩的大小。

代入上述表达式,我们可以计算能量的一级修正 $E^{(1)}$:

$$E^{(1)} = \langle l, m | - D\varepsilon \cos \theta | l, m \rangle$$

由于 $|l,m\rangle$ 是角动量的本征态, $\cos\theta$ 是常数, 我们可以将 $\cos\theta$ 移至左侧, 得到:

$$E^{(1)} = -D\varepsilon\cos\theta\langle l, m|l, m\rangle$$

由于 $|l,m\rangle$ 是正交归一的,即 $\langle l,m|l,m\rangle=1$,因此能量的一级修正简化为:

$$E^{(1)} = -D\varepsilon\cos\theta$$

这是转子能量的一级修正值。注意,这里的修正值是一个常数,不依赖于角动量量子数 l 和 m。

Ex76

转动惯量为 I,电矩为 \vec{D} 的平面转子处在均匀弱电场 ε 中,电场是在转子运动的平面上,用微扰法求转子能量的修正值。

A 常用物理学常量 36

解答 在这个问题中,转子的零级近似哈密顿量是转子的转动能量:

$$H^{(0)} = \frac{L^2}{2I}$$

微扰项由转子的电矩 \vec{D} 和均匀弱电场 ε 组成:

$$H' = -\vec{D} \cdot \vec{\varepsilon}$$

能量的一级修正可以表示为:

$$E^{(1)} = \langle \psi^{(0)} | H' | \psi^{(0)} \rangle$$

现在,我们将 H' 展开为 $H'=-D\varepsilon\cos\theta$,其中 θ 是电场矢量和转子角动量矢量的夹角, $D=|\vec{D}|$ 是电矩的大小。代入上述表达式,我们可以计算能量的一级修正 $E^{(1)}$:

$$E^{(1)} = \langle l, m | - D\varepsilon \cos \theta | l, m \rangle$$

由于 $|l,m\rangle$ 是角动量的本征态, $\cos\theta$ 是常数,我们可以将 $\cos\theta$ 移至左侧,得到:

$$E^{(1)} = -D\varepsilon\cos\theta\langle l, m|l, m\rangle$$

由于 $|l,m\rangle$ 是归一化的本征态, 即 $\langle l,m|l,m\rangle=1$, 因此能量的一级修正简化为:

$$E^{(1)} = -D\varepsilon\cos\theta$$

这是转子能量的一级修正值。修正值与角动量量子数 l 和 m 无关,仅依赖于电矩的大小 D、电场的大小 ε 和电场方向与转子运动平面的夹角 θ 。

A 常用物理学常量

- 1. 电子的带电量为 $e = -1.602 \times 10^{-19} \,\mathrm{C}$
- 2. 电子质量 $m_e = 9.1093837 \times 10^{-31} \,\mathrm{kg}$
- 3. 中子质量 $m_n = 1.6749286 \times 10^{-27} \,\mathrm{kg}$
- 4. 氦原子质量 $m_{\text{He}} = 6.6464731 \times 10^{-27} \, \text{kg}$
- 5. 普朗克常量 $h = 6.626\,070\,15 \times 10^{-34}\,\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-1}$
- 6. 玻尔兹曼常量 $k = 1.380649 \times 10^{-23} \,\mathrm{m}^2 \cdot \mathrm{kg} \cdot \mathrm{s}^{-2} \cdot \mathrm{K}^{-1}$
- 7. 电子伏特和焦耳的换算 $1 \, \text{eV} = 1.60217662 \times 10^{-19} \, \text{J}$

B 常用数学工具

B.1 Fourier 变换

1. 实数形式的傅里叶正弦变换

$$\begin{cases} f(x) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} B(\omega) \sin \omega x \, dx \\ B(\omega) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(\xi) \sin \omega \xi \, d\xi \end{cases}$$
 (26)

2. 实数形式的傅里叶余弦变换

$$\begin{cases} f(x) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} A(\omega) \cos \omega x \, dx \\ A(\omega) = \sqrt{\frac{2}{\pi}} \int_0^{+\infty} f(\xi) \cos \omega \xi \, d\xi \end{cases}$$
 (27)

3. 复数形式的傅里叶变换

$$\begin{cases} F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) \left[e^{i\omega x} \right]^* dx \\ f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\omega) e^{i\omega x} d\omega \end{cases}$$
 (28)

B.2 δ 函数

虽然 δ 函数并没有具体解析式,但有一种十分符合物理直觉的定义

$$\delta(x - x_0) = \begin{cases} \infty, & x = x_0 \\ 0, & x \neq x_0 \end{cases} \int_{-\infty}^{+\infty} \delta(x - x_0) dx = 1$$

1. 原函数

$$H(x) = \int_{-\infty}^{x} \delta(t) dt = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}$$
 (29)

2. 奇偶性

$$\delta(-x) = \delta(x)$$

$$\delta'(-x) = -\delta'(x)$$
(30)

3. 挑选性

$$\int_{a}^{b} \delta(x - x_{0}) f(x) dx = \begin{cases} f(x_{0}), & x_{0} \in (a, b) \\ 0, & x_{0} \notin (a, b) \end{cases}$$
(31)

B.3 Kronecker 函数

$$\delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases} \tag{32}$$

B.4 Laplace 变换

$$\begin{cases} \bar{f}(p) = \int_0^{+\infty} f(t)e^{-pt} dt \\ f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \bar{f}(p)e^{pt} dp \end{cases}$$
(33)

B.5 Hermite 多项式

变系数微分方程

$$u'' - 2zu' + (\lambda - 1)u = 0 (34)$$

的系数必须满足

$$\lambda - 1 = 2n, \quad n = 0, 1, 2 \cdots \tag{35}$$

其无穷级数解才会中断为一个多项式, 多项式的生成函数为

$$e^{-s^2 + 2zs} = \sum_{n=0}^{\infty} \frac{H_n(z)}{n!} s^n$$
 (36)

由此可以证明 Hermite 多项式的正交归一性

$$\int_{-\infty}^{+\infty} H_m(z) H_n(z) e^{-z^2} dz = \sqrt{\pi} 2^n \cdot n! \delta_{mn}$$
(37)

和递推关系

$$H_{n+1}(z) - 2zH_n(z) + 2nH_{n-1}(z) = 0 (38)$$

$$H_n'(z) = 2nH_{n-1}(z) (39)$$

B.6 常用积分公式

$$\int x \sin ax \, dx = \frac{1}{a^2} \sin ax - \frac{1}{a} x \cos ax + C \tag{40}$$

$$\int x^{2} \sin ax \, dx = -\frac{1}{a} x^{2} \cos ax + \frac{2}{a^{2}} x \sin ax + \frac{2}{a^{3}} \cos ax + C$$
 (41)

$$\int x \cos ax \, dx = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax + C \tag{42}$$

$$\int x^{2} \cos ax \, dx = \frac{1}{a} x^{2} \sin ax + \frac{2}{a^{2}} x \cos ax - \frac{2}{a^{3}} \sin ax + C$$
 (43)

B.7 求矩阵的逆矩阵

求逆矩阵的相关方法大致可以分为四类

B.7.1 定义法

寻找一个与 A 同阶的方阵 B, 使得

$$AB = E$$
, $BA = E$

B.7.2 公式法

可利用矩阵行列式和代数余子式构成的伴随矩阵来求逆矩阵

$$\boldsymbol{A}^{-1} = \frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^*$$

例如矩阵 $\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$ 的伴随矩阵为

$$\mathbf{A}^* = \begin{pmatrix} M_{11} & -M_{12} \\ -M_{21} & M_{22} \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}$$

于是逆矩阵为

$$\boldsymbol{A}^{-1} = \frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^* = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix}$$

B.7.3 初等变换法

$$egin{pmatrix} oldsymbol{A} & dots & oldsymbol{E} \end{pmatrix} \xrightarrow{ ext{NISTORY}} egin{pmatrix} oldsymbol{E} & dots & oldsymbol{A}^{-1} \end{pmatrix} \ egin{pmatrix} oldsymbol{A} & dots & dots$$

B.7.4 分块矩阵法

当 A, B 均可逆时

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix}, \quad \begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} \begin{pmatrix} O & A^{-1} \\ B^{-1} & O \end{pmatrix}$$

B.8 Virial 定理

Virial 定理

当体系处于定态时,有

$$2\overline{T} = \overline{r \cdot \nabla V(r)}$$

其中 $T = \frac{p^2}{2m}$ 是粒子动能, $V(\mathbf{r})$ 是势能.

证明. 系统的 Hamilton 算符为

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\boldsymbol{r})$$

考虑 $r \cdot p$ 的平均值随时间演化⁷

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}(\boldsymbol{r}\cdot\boldsymbol{p})=\overline{[\boldsymbol{r}\cdot\boldsymbol{p},H]}=\frac{1}{2m}\overline{[\boldsymbol{r}\cdot\boldsymbol{p},\hat{p}^2]}+\overline{[\boldsymbol{r}\cdot\boldsymbol{p},V(\boldsymbol{r})]}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{A} = \frac{1}{\mathrm{i}\hbar}\overline{[A,H]}$$

 $^{^{7}}$ 不显含 t 的力学量 A,其平均值随时间演化

对于第一项 因式 $[\mathbf{r} \cdot \mathbf{p}, \hat{p}^2]$ 可以写为

$$\left[\boldsymbol{r} \cdot \hat{\boldsymbol{p}}, \hat{p}^2 \right] = \left[x \hat{p}_x + y \hat{p}_y + z \hat{p}_z, \hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2 \right] = \left[x \hat{p}_x, \hat{p}_x^2 \right] + \left[y \hat{p}_y, \hat{p}_y^2 \right] + \left[z \hat{p}_z, \hat{p}_z^2 \right]$$

这显然具有极佳的轮换对称性,我们根据对易式的代数恒等式

$$\left[\hat{A}\hat{B},\hat{C}\right] = \hat{A}\left[\hat{B},\hat{C}\right] + \left[\hat{A},\hat{C}\right]\hat{B}$$

处理其中一项

$$\begin{split} \left[x \hat{p}_{x}, \hat{p}_{x}^{2} \right] &= x \left[\hat{p}_{x}, \hat{p}_{x}^{2} \right] + \left[x, \hat{p}_{x}^{2} \right] \hat{p}_{x} \\ &= 0 + \left[x, \hat{p}_{x}^{2} \right] \hat{p}_{x} \\ &= 0 + \left[x, \hat{p}_{x} \hat{p}_{x} \right] \hat{p}_{x} \\ &= 0 + \hat{p}_{x} \left[x, \hat{p}_{x} \right] \hat{p}_{x} + \left[x, \hat{p}_{x} \right] \hat{p}_{x}^{2} \end{split}$$

再利用量子力学的基本对易式 $[x,\hat{p}_x] = i\hbar$, 得到

$$\left[x\hat{p}_x,\hat{p}_x^2\right] = \hat{p}_x(\mathrm{i}\hbar)\hat{p}_x + (\mathrm{i}\hbar)\hat{p}_x^2 = 2\mathrm{i}\hbar\hat{p}_x^2$$

同理可得

$$\left[y\hat{p}_{y},\hat{p}_{y}^{2}\right]=2\mathrm{i}\hbar\hat{p}_{y}^{2}\quad\left[z\hat{p}_{z},\hat{p}_{z}^{2}\right]=2\mathrm{i}\hbar\hat{p}_{z}^{2}$$

于是

$$\left[\boldsymbol{r}\cdot\hat{\boldsymbol{p}},\hat{p}^{2}\right]=2\mathrm{i}\hbar\left(\hat{p}_{x}^{2}+\hat{p}_{y}^{2}+\hat{p}_{z}^{2}\right)=2\mathrm{i}\hbar\hat{p}^{2}$$

对于第二项 也利用相同的对易代数恒等式展开

$$\left[\boldsymbol{r}\cdot\boldsymbol{p},V(\boldsymbol{r})\right]=\boldsymbol{r}\left[\boldsymbol{p},V(\boldsymbol{r})\right]+\left[\boldsymbol{r},V(\boldsymbol{r})\right]\boldsymbol{p}$$

显然 r 和 V(r) 相互对易

$$[\boldsymbol{r}, V(\boldsymbol{r})] = 0$$

再将算符 r[p, V(r)] 作用在任意波函数 ψ 上

$$\begin{aligned} \boldsymbol{r} \left[\boldsymbol{p}, V(\boldsymbol{r}) \right] \psi &= \hat{p} [V(\boldsymbol{r}) \psi] - V(\boldsymbol{r}) \hat{p} \psi \\ &= -\mathrm{i} \hbar \nabla [V(\boldsymbol{r}) \psi] + \mathrm{i} \hbar V(\boldsymbol{r}) \nabla \psi \\ &= -\mathrm{i} \hbar V(\boldsymbol{r}) \nabla \psi - \mathrm{i} \hbar \psi \nabla [V(\boldsymbol{r})] + \mathrm{i} \hbar V(\boldsymbol{r}) \nabla \psi \\ &= -\mathrm{i} \hbar \psi [\nabla V(\boldsymbol{r})] \end{aligned}$$

所以这个算符的本质是

$$[\hat{\boldsymbol{p}}, V(\boldsymbol{r})] = -\mathrm{i}\hbar\nabla V(\boldsymbol{r})$$