

CONTACT

EDITORS

LEGAL NOTICE

COPYRIGHT NOTICE

1. INTRODUCTION	6
1.1 STUDY OBJECTIVES	6
1.2 METHODOLOGY	6
1.3 TARGET AUDIENCE	7
1.4 USING THIS DOCUMENT	8
2. SCENARIO DESCRIPTION	9
2.1 PURPOSE AND CONTEXT	10
2.2 HIGH-LEVEL DESCRIPTION	10
2.3 ACTORS AND ROLES	12
2.4 PROCESSED DATA	13
2.5 MACHINE LEARNING ALGORITHMS	13
2.6 ASSETS	14
2.7 OVERALL PROCESS	14
2.8 PRIVACY AND CYBERSECURITY REQUIREMENTS	18
3. SECURITY AND PRIVACY THREATS AND VULNERABILITIES	22
3.1 THREAT CONTEXTUALISATION	22

WHEN NEEDED	42
4.23 IMPLEMENT A PRIVACY BY DESIGN PROCESS	42
4.24 CALL ON ETHICAL COMMITTEE AND EXTERNAL AUDITS	43
4.25 DEFINE ACCURACY CRITERIA	43
4.26 ENSURE THAT THE MODEL IS SUFFICIENTLY RESILIENT TO THE ENVIRONMENT	
IN WHICH IT WILL OPERATE	43
4.27 RAISE AWARENESS OF SECURITY AND PRIVACY ISSUES AMONG ALL STAKEHOLDERS	44
4.28 USE RELIABLE SOURCES TO LABEL DATA	44
4.29 ENSURE THAT MODELS ARE UNBIASED	44
4.30 SUMMARY	45
5. CONCLUSION	51
A ANNEX: SECURITY AND PRIVACY SCALES AND REQUIREMENTS	52
A.1 CYBERSECURITY AND PRIVACY SEVERITY SCALES	52
A.2 CYBERSECURITY SCALE OF IMPACT	53
A.3 PRIVACY SCALE OF IMPACT	53
A 4 DRIVACY DECILIDEMENTS CRITERIA	54

This new report analyses cybersecurity and privacy requirements and measures in use of AI in medical imaging diagnosis of osteoporosis. The report describes the scenario fundamental principles (assets, actors processes etc.), identifies the security and privacy risks it poses, and finally cybersecurity and privacy controls, which counteract the identified risks.

1.1 STUDY OBJECTIVES

•	medical imaging diagnosis
•	
.2 METHODOLOGY	
•	

enisa	
**	
•	
1.2.1 Description of the scenario	
•	
•	
•	
•	
•	
1.2.2 Identification of cybersecurity and privacy threats and vulnerabilities	k
vullierabilities	
1.2.3 Identification of cybersecurity and privacy controls	
•	
•	
1.3 TARGET AUDIENCE	

All actors (private or public):

•	Al technical	community, A	VI C	ybersecurity	/ and	privacy	ex /	perts	and	ΑI	expe	rts
---	--------------	--------------	------	--------------	-------	---------	------	-------	-----	----	------	-----

Cybersecurity and privacy community

1.4 USING THIS DOCUMENT

•

•

•

Figure 1:

DESCRIPTION

Osteoporosis is a major bone disease characterized by a reduction in bone mineral density (BMD) and deterioration of bone architecture, leading to an increased risk of fracture that causes significant morbidity and mortality worldwide. Considering this, a private medical practice aims to detect the presence or absence of osteoporosis in its patients much more easily. To achieve this goal, the practice uses medical imaging and machine learning to detect the disease.

DATA

Data used to build the model

- · Historical X-rays of patients with or without osteoporosis
- Data related to age, gender, and body mass index of historical patients of the medical cabinet

Data used once the model is in production

- X-rays of patients who come for consultation
- Data related to age, gender, and body mass/ Faimess index of who come for consultation

ACTORS

- Radiologists/medical practice
- Large tech companies
- Historical Patients
- New Patients
- · Cloud provider
- Data scientists
- · Developers and Data Engineers
- · System and communication network's administrator

CYBERSECURITY AND PRIVACY REQUIREMENTS

Cyber requirements

Availability
 Integrity
 Confidentiality
 Traceability

Privacy Requirements

- Availability Integrity Confidentiality Traceability
- Lawfulness

MEDICAL IMAGING

- Transparency
- Purpose limitation
- Data minimization
- Accuracy
- Storage limitation
- Security of personal data
- Database creation
- Compliance of the training model

ASSETS

- CNN-algorithm used
- Data lake in the cloud

● Critical ● High ● Low

- Model server in the cloud
- Scanner
- X-ray computer-aided diagnostic system. on-premises
- Integrated Development Environment
- Libraries
- · Communication protocols and network

2.1 PURPOSE AND CONTEXT

-	

•

2.2 HIGH-LEVEL DESCRIPTION

to detect the potential presence of osteoporosis by giving the radiologist a probability that the bone contains the disease

- •
- •
- •
- •
- •

Figure 2:

2.3 ACTORS AND ROLES

Figure 3:

Actor	Role	Description
Radiologists/medical practice	End Users and Data Owner (Data Controller)	
Large tech companies	Model Provider	
Historical Patients (before the occurrence of the diagnosis)	Data Provider	
New Patients (during the occurrence of the diagnosis)	Data Provider	
Cloud Provider	Cloud Provider	
Data Scientists	Data Scientists	
Developers and Data Engineers	Developers and Data Engineers	

2.4 PROCESSED DATA

Figure 4:

Data	Data type	Source / data provider	Data Procurement
onymised		historical patients' radiographies former patients.	
pseudonymised		former patients.	
		patients.	
		panerio.	
		patient	

Convolutional Neural Network

2.5 MACHINE LEARNING ALGORITHMS

(CNN)	
Augmenting Osteoporosis Imaging with Machine Learning.	
	

Figure 5:

Learning paradigm	Subtype	Algorithm	Type of data ingested	Description

2.6 ASSETS

Figure 6:

Type of asset	Asset	Description
Models		
Environment tools	in the cloud in the	
	premises – on-	

2.7 OVERALL PROCESS

which must be annotated

Data cleaning and data pre-processing cleaned pre-processing.

Model design and implementation

Figure 7:

The input of the network

the output of the network

Model training, model testing and optimisation the training method

Model Evaluation evaluate the model

Model Deployment

Monitoring and inference

Figure 8:

Steps	Description	Actors	Assets
Data Collection			
Data Cleaning			
Data pre-processing			
Model design and implementation			
Model training			

Model testing		
Optimization		
Model evaluation		
Model deployment		
Monitoring and inference		

2.8 PRIVACY AND CYBERSECURITY REQUIREMENTS

Cybersecurity requirements

Figure 9:

	Level	Explanation
Availability	Low	
Integrity	Critical	
Confidentiality	Critical	

Privacy requirements

personal data are processed when patients come to the practice and are diagnosed for osteoporosis, adding information like last name, name, and consultation date in the patient's file

the following privacy requirements and

recommendations should be satisfied

Figure 10:

Requirements	Explanation
Lawfulness, fairness, and transparency	Lawfulness: Fairness: Transparency:
Purpose limitation	

Data minimisation	
Accuracy	
Storage limitation	
Security of personal data (Integrity and Confidentiality)	

Figure 11:

Recommendations	Explanation
Database creation	
Compliance of the training model (i.e. before production)	

Figure 12:

Criteria	Does it match the criteria?	Justification

Figure 13:

	Level	Explanation
Availability	Low	
Integrity	Critical	
Confidentiality	Critical	
Traceability	High	

3.1 THREAT CONTEXTUALISATION

reputation degradation lawsuit company and physical and permanent injury for the patient

•

•

reputation

degradation and a lawsuit,

Phishing attempts,

targeted advertising. Uniqure a07.7 (alnt)-5 0.7 (r) 5.41 1 Tf-5 (and)TJh onl(al)-1 ((e)-7 (d gc)-3 (asv-5 (o per)-n 5 (y)-3 (of

Figure 14:

COMPROMISE OF DIAGNOSTIC SYSTEM COMPONENTS

LOSS REP INV PHISH

- · Weak access control
- Use of vulnerable components
- Poor access rights management process

DATA DISCLOSURE

LOSS REP INV PHISH

- Disclosure of sensitive data for ML algorithm training
- Lack of control of Data processor (including external stakeholder)
- · Poor data management

LACK OF TRANSPARENCY

INV

- Lack of controls to ensure the adequacy of the purpose and its current use
- Lack of detail on the purposes and justification for their legitimacy
- Lack of privacy by design

NO RESPECT OF STORAGE LIMITATION

PHYS

- Lack of accuracy criteria
- Poor data management
- Lack of privacy by design

EVASION

REP PHYS

- Lack of detection of abnormal inputs
- Lack of training based on adversarial attacks
- Use of a widely known model allowing the attacker to study it

POISONING

REP PHYS

- Lack of control for poisoning
- No detection of poisoned samples in the training dataset
- Use of uncontrolled data

DIVERSION OF PURPOSE

LOSS INV PHISH

- Existing biases in the ML model or in the data
- Lack of controls to ensure that data is used only for the purposes defined
- Lack of privacy by design

NO RESPECT OF STORAGE LIMITATION

LOSS PHISH

- Lack of data deletion mechanisms
- Lack of data retention policy
- Lack of privacy by design

HUMAN ERROR

LOSS REP INV PHISH

- Lack of security by design
- · Weak access control
- Poor data management

UNLAWFUL AND UNFAIR PROCESSING

NV FFFI

- Absence of an identified data controller
- Lack of practical means and justification for the legal basis
- Lack of privacy by design

NO RESPECT OF DATA MINIMIZATION

IN۷

- Lack of measures to prevent further Lack of controls to ensure that the data collected are minimal for the purposes intended
- Lack of necessary data selection
- Lack of pseudonymization

NO RESPECT NO RESPECT OF COMPLIANCE OF THE TRAINING MODEL

LOSS REP INV

- Lack of review of treatment by a dedicated committee to check fairness
- Lack of privacy by design

IMPACTS

LOSS: loss of unique targeted opportunities

REP: Reputation degradation

PHISH: Phishing attempts, targeted advertising PHYS: Physical and permanent injury

FEEL: feeling of infringement of fundamental rights INV: Significant sense of invasion of privacy

3.1.1 Compromise of diagnostic system components

degradation lawsuit privacy phishing attempts, or targeted advertising opportunities.

reputation significant feeling of invasion of unique targeted

3.1.2 Evasion

reputation degradation, lawsuit, and physical and permanent

injury

3.1.3 Human error

reputation degradation and lawsuit significant feeling of invasion of privacy phishing attempts, or targeted advertising loss of unique targeted opportunities

reputation degradation significant feeling of invasion of privacy phishing attempts, or targeted advertising unique targeted opportunities

3.1.4 Data disclosure

- •
- •
- •

reputation degradation and lawsuit serious feeling of invasion of privacy phishing attempts, targeted advertising loss of unique targeted opportunities .

3.1.5 Poisoning (by label modification)

reputation degradation lawsuit physical and permanent injury

3.1.6 Unlawful Processing

a significant feeling of invasion of privacy

3.1.7 Unfair processing

with discriminations created by the treatment such as better diagnosis of osteoporosis for men than for women, for example.

a feeling of infringement of fundamental rights.

3.1.8 Lack of transparency

significant feeling of invasion of privacy.

3.1.9 Diversion of purpose

targeted advertisements significant feeling of invasion of privacy targeted opportunities.

unique

3.1.10 No respect of data minimisation

significant feeling of invasion of privacy

3.1.11 No respect of accuracy

temporary or permanent physical injury of the patient.

3.1.12 No respect of storage limitation

targeted advertising unique targeted opportunities.

3.1.13 No respect of compliance of the training model

reputation degradation lawsuit significant feeling of invasion of privacy phishing attempts, or targeted advertising unique targeted opportunities.

3.1.14 Synthesis of possible impacts and associated threats

Figure 1:

Impact	Severity	Туре	Associated Threats
Physical and permanent injury and harm	High		
Lawsuit	High		
Reputation degradation	High		
Phishing attempts, targeted advertising	High		
Loss of unique targeted opportunities	High		

Significant feeling of invasion of privacy	Moderate	
Feeling of infringement of fundamental rights	Moderate	

3.2 VULNERABILITIES ASSOCIATED TO THREATS AND AFFECTED ASSETS

Figure 2:

Vulnerabilities	Threats	Actors	Assets Involved
Absence of an identified data controller			
Contract with a low security third party			
Disclosure of sensitive data for ML algorithm training			
Existing biases in the ML model or in the data			
Lack of auditability of processing			
Lack of accuracy criteria			
Lack of documentation			

Lack of pseudonymisation		
Lack of consideration of attacks to which diagnostic systems could be exposed		
Lack of consideration of real-life conditions in training the model		
Lack of control for poisoning		
Lack of control of Data processor (including external stakeholder)		
Lack of control over model performance		
Lack of controls to ensure that data is used only for the purposes defined		
Lack of controls to ensure that the data collected are minimal for the purposes intended		
Lack of controls to ensure the adequacy of the purpose and its current use		

Lack of data deletion		
mechanisms		
Lack of data for increasing robustness to poisoning		
Lack of data retention policy		
Lack of detail on the purposes and justification for their legitimacy		
Lack of detection of abnormal inputs		
Lack of justification and traceability of decisions taken		
Lack of justification for the collection of individual personal data collected		
Lack of measures to prevent further data collection		
Lack of necessary data selection		
Lack of practical means and justification for the legal basis (legitimate interest)		
Lack of security by design		
Lack of privacy by design		
Lack of review of treatment by a dedicated committee to check fairness		

	1	l
Lack of security process to maintain a good security level of the components of the diagnostic system		
Lack of traceability of actions and/or modifications made to the assets on which rely personal data		
Lack of training based on adversarial attacks		
Lack of transparency on the purpose, the exact data that are collected, and how they are processed.		
Lack of verification that the data is adequate, relevant and not excessive for the purpose of making a diagnostic		
Model easy to poison		
No detection of poisoned samples in the training dataset		
Poor consideration of evasion attacks in the model design implementation		
Poor access rights management process		

Too much information available on the model
Unprotected sensitive data on test environments
Use of uncontrolled data
Use of unreliable sources to label data
Use of unsafe data or models (e.g., with transfer learning)

Figure 17:

Pseudonymize data coming from the Historical patient

· Replace names of patients by

Ensure all systems and devices comply with authentication, and access control policies

SPECIFIC CONTROLS

ъ∆ctive Dikactogs vMEA Jabanf $\triangle C$ denoted

Use reliable sources to label data

· Reliable radiologist rgasisbul thanks.

Idd some adversarial examples

to the dataset

- include adversarial examples to the algorithm's training
- No impact on performance

Choose and define a more resilient model design

- · Perform defensive distillation to avoid evasion attacks
- · No impact on performance

Integrate poisoning control

- · Employ the STRIP technique
- · No impact on performance

Enlarge the training dataset

- Train the model with medical data collected during several years
- Privacy impacts (more personal

Secure the transit of the

- End-to-end encryption using TLS 1.3 to avoid loss of integrity and confidentiality
- · No impact on performance

identify all the data processors and perform the control actions mecessary to give reasonable assurance that they are

- compliant Contractual clauses, internal and
- Impacts resulting in loss of time and energy

Formalize a LIA (Legitimate Interest Assessment)

• Justify the legal basis

external audits

· Impacts resulting in loss of time and energy

Ensure that the model is sufficiently resilient to the environment in which it will operate

- Use real data to train the model, test the model in real life
- Privacy impacts (more personal data collected)

components

 Regular security audits, nerabilities scans, automatic patch management

Check the vulnerabilities of th

Impact on the availability of the system

Monitor the performance of the

- · Ensure the reliability of the mod be sure of the intelligence of the model by selecting quality data, always train and evaluate the
- · Improve the performance of the

Minimize data at each step of t processing

- · Study the necessity of collecting data such as age and body weig proof the necessity of collecting such data
- · Impact on security in case of forensic analysis

collected data

GENERIC CONTROLS

- Implement a security by design process
- Implement a privacy by design process
- · Generate logs and perform internal audit
- Document the diagnostic system
- Control all data used by the ML Model
- Reduce all the available information about the model
- · Define and implement a data retention policy
- · Identify a data controller

• Define accuracy criteria

- Raise awareness of security and privacy issues among all stakeholders
- Study on data fields necessity and justification in the privacy anticipation
- Perform a privacy Impact assessment
- · Call on ethical committee and external audits
- · Implement access right management process
- Ensure that models are unbiased

el,

he

ht.

4.1 IMPLEMENT A SECURITY BY DESIGN PROCESS

Туре	Associated Vulnerabilities	Threats it mitigate
		•
		•
		•
		<u> </u>

4.2 DOCUMENT THE DIAGNOSTIC SYSTEM

Туре	Associated Vulnerabilities	Threats it mitigate
		:
		•
		•
		•

This control does not

impact system performance, cybersecurity, or privacy.

4.3 CHECK THE VULNERABILITIES OF THE COMPONENTS USED AND IMPLEMENT PROCESSES TO MAINTAIN SECURITY LEVELS OF ML COMPONENTS OVER TIME

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
		•
	•	•
	•	

This control would impact the availability of the system, thus its performance, as it may be audited or even updated.

4.4 ADD SOME ADVERSARIAL EXAMPLES TO THE DATASET

Туре	Associated Vulnerabilities	Threats it mitigate

This control does not impact performance or privacy.

4.5 CHOOSE AND DEFINE A MORE RESILIENT MODEL DESIGN

Туре	Associated Vulnerabilities	Threats it mitigate

This control does not impact

performance or privacy.

4.6 INTEGRATE POISONING CONTROL IN THE TRAINING DATASET

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
	•	

This control does not

impact system performance, cybersecurity, or privacy.

4.7 ENLARGE THE TRAINING DATASET

Туре	Associated Vulnerabilities	Threats it mitigate

In this case, privacy is negatively impacted because enlarging the data set means taking even more personal data which could be stolen by an attacker.

4.8 SECURE THE TRANSIT OF THE COLLECTED DATA

Туре	Associated Vulnerabilities	Threats it mitigate
------	----------------------------	---------------------

This control won't have any impact on

privacy or performance of the system.

4.9 CONTROL ALL DATA USED BY THE ML MODEL

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
	•	

4.10 IMPLEMENT ACCESS RIGHT MANAGEMENT PROCESS

Туре	Associated Vulnerabilities	Threats it mitigate
		•
		•
		•
		•

4.11 ENSURE ALL SYSTEMS AND DEVICES COMPLY WITH AUTHENTICATION, AND ACCESS CONTROL POLICIES

Туре	Associated Vulnerabilities	Threats it mitigate
	•	•
		•
		•
		•

4.12 MONITOR THE PERFORMANCE OF THE MODEL

Туре	Associated Vulnerabilities	Threats it mitigate
Cybersecurity		•
Cybersecurity		•

This will have an impact on the performance of the model in the sense that by applying this control, the model is always efficient and reliable.

4.13 REDUCE THE AVAILABLE INFORMATION ABOUT THE MODEL

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
	•	

This control could have an impact on privacy

4.14 IDENTIFY A DATA CONTROLLER FOR THE MEDICAL DATA

PROCESSING

Туре	Associated Vulnerabilities	Threats it mitigate
		•
		•
		•

the control improves the privacy of users

without impacting the performance of the model.

4.15 PSEUDONYMISE DATA COMING FROM THE HISTORICAL

PATIENT

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
	•	

This control

does not impact on security or performance.

4.16 GENERATE LOGS AND PERFORM INTERNAL AUDIT

Туре	Associated Vulnerabilities	Threats it mitigate
	•	•
	•	:
		:
	•	•

4.17 IDENTIFY ALL THE DATA PROCESSORS FOR THE MEDICAL DATA PROCESSING AND PERFORM THE CONTROL ACTIONS NECESSARY TO GIVE REASONABLE ASSURANCE THAT THEY ARE COMPLIANT

Туре	Associated Vulnerabilities	Threats it mitigate
	•	•
	•	•

The impact this

control could have for the medical practice would be a loss of time and energy spent to formalise documents, and complete the assessments and audits.

4.18 PERFORM A PRIVACY IMPACT ASSESSMENT

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
	•	
	•	

Such analysis may possibly impact the performance of the scenario

4.19 DEFINE AND IMPLEMENT A DATA RETENTION POLICY

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
	•	

this control can have an impact on the performance

of this scenario.

4.20 STUDY ON DATA FIELDS NECESSITY AND JUSTIFICATION IN THE PRIVACY POLICY

Туре	Associated Vulnerabilities	Threats it mitigate
	•	•
	•	•
		•

4.21 FORMALIZE A LIA (LEGITIMATE INTEREST ASSESSMENT)

Туре	Associated Vulnerabilities	Threats it mitigate
	•	
Privacy	•	

•	

4.22 MINIMISE DATA AT EACH STEP OF THE PROCESSING; COLLECT ONLY WHAT IS NEEDED WHEN NEEDED

Туре	Associated Vulnerabilities	Threats it mitigate	
	•		
	•		
	•		

4.23 IMPLEMENT A PRIVACY BY DESIGN PROCESS

Туре	Associated Vulnerabilities	Threats it mitigate	
		•	
		•	
		•	
		•	
		•	

4.24 CALL ON ETHICAL COMMITTEE AND EXTERNAL AUDITS

Туре	Associated Vulnerabilities	Threats it mitigate

4.25 DEFINE ACCURACY CRITERIA

Туре	Associated Vulnerabilities	Threats it mitigate	

Such a measure

does not affect this scenario.

4.26 ENSURE THAT THE MODEL IS SUFFICIENTLY RESILIENT TO THE ENVIRONMENT IN WHICH IT WILL OPERATE

Туре	Associated Vulnerabilities	Threats it mitigate

•

•

•

4.27 RAISE AWARENESS OF SECURITY AND PRIVACY ISSUES AMONG ALL STAKEHOLDERS

Туре	Associated Vulnerabilities	Threats it mitigate	
		•	
		•	
		•	
		•	
		•	
		•	

This control does not directly impact performance of the system.

4.28 USE RELIABLE SOURCES TO LABEL DATA

Type	Associated Vulnerabilities	Threats it mitigate	

This control will

have a positive impact on accuracy since the dataset will be correctly labelled.

4.29 ENSURE THAT MODELS ARE UNBIASED

Туре	Associated Vulnerabilities	Threats it mitigate	

This privacy

control could improve performance of the system over longer periods

4.30 SUMMARY

Figure 18:

Control name and type	Associated Vulnerabilities	Threat mitigated	Privacy and security requirements addressed

n	nedical imaging in osteoporosis diagnosis supported by Artificia
Intelligence (AI) is prese	nted

Al can be very beneficial for the industries areas it applies to, it can also have quite a significant impact for security and privacy

depending on the context of the scenario, the same threats apply differently and have different levels of impact.

the entire cybersecurity and privacy context (requirements, threats, vulnerabilities, and controls) must be adapted to the context and reality of the individual organization

A.1 CYBERSECURITY AND PRIVACY SEVERITY SCALES

	Availability
Low	few days or less
Moderate	a day or less
High	half a day or less
Critical	few hours or less

	Integrity		
Low	does not need to be identified or corrected		
Moderate	must be identified but not necessarily corrected		
High	must be identified and corrected		
Critical	No degradation		

Confidentiality		
Low	accessed by everyone	
Moderate	restricted to internal staff and trusted partners	
High	restricted to employees having an organisation or functional link with the process	
Critical	restricted to a very limited number of individuals	

Traceability				
Low	absence o	f traces		is acceptable
Moderate	Actions		identifie	d
High	actions dated	imputable	actors	identified and
Critical		actions probative valu	legally enforceable ue	time stamped

A.2 CYBERSECURITY SCALE OF IMPACT

	Severity ²⁹
1 - Low	
2 - Moderate	
3 - High	
4 - Critical	

A.3 PRIVACY SCALE OF IMPACT

Severity ³⁰		
1 - Low		
2 - Moderate		
3 - High		
4 - Critical		

A.4 PRIVACY REQUIREMENTS CRITERIA

Requirements	Article
Lawfulness, fairness and transparency	
Purpose limitation	
Data minimisation	
Accuracy	
Storage limitation	
Security of personal data (integrity and confidentiality)	

Database creation

Compliance of the training model (i.e. before production)

ABOUT ENISA

ENISA

European Union Agency for Cybersecurity

Athens Office

Agamemnonos 14, Chalandri 15231, Attiki, Greece

Heraklion Office

95 Nikolaou Plastira 700 13 Vassilika Vouton, Heraklion, Greece

