

CSE 151A Intro to Machine Kearning

Lecture 12 – Part 01
Support Vector
Machines

Linear Classifiers

- ► Prediction rule: $H(\vec{x}) = \vec{w} \cdot \text{Aug}(\vec{x})$
 - ▶ Predict class 1 if $H(\vec{x}) > 0$
 - ▶ Predict class -1 if $H(\vec{x}) < 0$

Decision Boundary

Aug(\vec{x}) · \vec{w} is proportional to distance from boundary.

Recall: Logistic Regression

- ► Prediction Rule: $H(\vec{x}) = \sigma(\vec{w} \cdot \text{Aug}(\vec{x}))$
- Find \vec{w} by maximizing log likelihood.
- ▶ Predict class 1 if $H(\vec{x}) > 0.5$, class -1 otherwise.
- ► But $\sigma(\vec{w} \cdot \text{Aug}(\vec{x})) > 0.5 \iff \vec{w} \cdot \text{Aug}(\vec{x}) > 0$

Recall: Logistic Regression

Recall: Logistic Regression

Recall: the Perceptron

- ► Prediction Rule: $H(\vec{x}) = \vec{w} \cdot \text{Aug}(\vec{x})$
- Find \vec{w} by minimizing perceptron risk.
- ► Theorem: if the training data is linearly separable, the perceptron algorithm find a dividing hyperplane.

Perceptron Problems

The learned perceptron may have a small margin.

Perceptron Problems

The learned perceptron may have a small margin.

We prefer large margins for generalization.

Maximum Margin Classifiers

- Assume: linear separability (for now).
- Many possible boundaries with zero error.
- ► **Goal**: Find linear boundary with largest margin w.r.t. training data.

Observation

- ► Training data: $\{(\vec{x}^{(i)}, y_i)\}$
- Classification is correct when:

$$\begin{cases} \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) > 0, & \text{if } y_i = 1 \\ \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) < 0, & \text{if } y_i = -1 \end{cases}$$

Equivalently, classification is correct if:

$$y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) > 0$$

Recall

- $y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) \propto \text{to distance from boundary.}$
- Our goal: find \vec{w} that maximizes the smallest distance.

$$\vec{w}_{\mathsf{best}} = \operatorname*{argmax}_{\vec{w} \in \mathbb{R}^{d+1}} \min_{\vec{i} \in 1, \dots, n} \left[y_i \, \vec{w} \cdot \mathrm{Aug}(\vec{x}^{(i)}) \right]$$

► This looks **hard**. But there is a **trick**.

Another Observation

ightharpoonup If linearly separable, then there is a \vec{w} such that

$$y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) > 0$$

for all i = 1, ..., n.

ightharpoonup Actually, linearly separable \implies there is a $\vec{\omega}$ s.t.

$$y_i \vec{\omega} \cdot \operatorname{Aug}(\vec{x}^{(i)}) \ge 1$$

for all i = 1, ..., n.

Why?

- Suppose \vec{w} separates, but $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = 0.01$
- Define $\vec{\omega} = \frac{1}{0.01} \vec{w} = 100 \vec{w}$.
- ► Then $y_i \vec{\omega} \cdot \operatorname{Aug}(\vec{x}^{(i)}) = 1$
 - ► **Note**: ∥ຝັ∥ is large!

Why?

- Suppose \vec{w} separates, but $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) = 0.5$
 - Define $\vec{\omega} = \frac{1}{0.5}\vec{w} = 2\vec{w}$.
- ► Then $y_i \vec{\omega} \cdot \text{Aug}(\vec{x}^{(i)}) = 1$
 - ► **Note**: ∥໔∥ is smaller!

The Trick

We will demand that

$$y_i \vec{\omega} \cdot \operatorname{Aug}(\vec{x}^{(i)}) \ge 1$$

- ▶ The larger $\|\vec{\omega}\|$, the smaller the margin.
- New Goal: Minimize $\|\vec{w}\|^2$ subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$ for all i.

Optimization

► Minimize $\|\vec{w}\|^2$ subject to $y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)}) \ge 1$ for all i.

- ► This is a **convex**, **quadratic** optimization problem.
- Can be solved efficiently with quadratic programming.
 - But there is no exact general formula for the solution

Support Vectors

A support vector is a training point $\vec{x}^{(i)}$ such that

$$y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) = 1$$

Support Vector Machines (SVMs)

- Then maximum margin solution \vec{w} is a linear combination of the support vectors.
- Let S be the set of support vectors. Then

$$\vec{w} = \sum_{i \in S} y_i \alpha_i \operatorname{Aug}(\vec{x}^{(i)})$$

Example: Irises

- ▶ 3 classes: iris setosa, iris versicolor, iris virginica
- 4 measurements: petal width/height, sepal width/height

Example: Irises

- Using only sepal width/petal width
- Two classes: versicolor (black), setosa (red)

CSE 151A Intro to Machine Learning

Lecture 12 - Part 02 Soft-Margin SVMs

Non-Separability

- So far we've assumed data is linearly separable.
- What if it isn't?

The Problem

- ▶ **Old Goal**: Minimize $\|\vec{w}\|^2$ subject to $y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) \ge 1$ for all i.
- ► This **no longer makes sense**.

Cut Some Slack

▶ **Idea**: allow some classifications to be ξ_i wrong, but not too wrong.

Cut Some Slack

▶ New problem. Fix some number $C \ge 0$.

$$\min_{\vec{W} \in \mathbb{R}^{d+1}, \vec{\xi} \in \mathbb{R}^n} \|\vec{w}\|^2 + C \sum_{i=1}^n \xi_i$$

subject to $y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all $i, \vec{\xi} \ge 0$.

The Slack Parameter, C

C controls how much slack is given.

$$\min_{\vec{w} \in \mathbb{R}^{d+1}, \vec{\xi} \in \mathbb{R}^n} \|\vec{w}\|^2 + C \sum_{i=1}^n \xi_i$$

subject to $y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all $i, \vec{\xi} \ge 0$.

- Large C: don't give much slack. Avoid misclassifications.
- Small C: allow more slack at the cost of misclassifications.

Example: Small C

Example: Large C

Soft and Hard Margins

- Max-margin SVM from before has hard margin.
- Now: the **soft margin** SVM.
- ► As $C \rightarrow \infty$, the margin hardens.

Another View: Loss Functions

Recall our problem:

$$\min_{\vec{W} \in \mathbb{R}^{d+1}, \vec{\xi} \in \mathbb{R}^n} \|\vec{w}\|^2 + C \sum_{i=1}^n \xi_i$$

subject to $y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all $i, \vec{\xi} \ge 0$.

Note: if $\vec{x}^{(i)}$ is misclassified, then

$$\xi_i = 1 - y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)})$$

Another View: Loss Functions

► New problem:

$$\min_{\vec{w} \in \mathbb{R}^{d+1}, \vec{\xi} \in \mathbb{R}^n} \|\vec{w}\|^2 + C \sum_{i=1}^n \max\{0, 1 - y_i \vec{w} \cdot \vec{x}^{(i)}\}$$

 $\longrightarrow \max\{0, 1 - y_i \vec{w} \cdot \vec{x}^{(i)}\}$ is called the hinge loss.

Another Way to Optimize

We can use subgradient descent to minimize SVM risk.

CSE 151A Intro to Machine Learning

Lecture 12 – Part 03 Sentiment Analysis

Why use linear predictors?

- Linear classifiers look to be very simple.
- ► That can be both **good** and **bad**.
 - ▶ **Good**: the math is tractable, less likely to overfit
 - Bad: may be too simple, underfit
- They can work surprisingly well.

Sentiment Analysis

Given: a piece of text.

Determine: if it is **postive** or **negative** in tone

Example: "Needless to say, I wasted my money."

The Data

- Sentences from reviews on Amazon, Yelp, IMDB.
- Each labeled (by a human) positive or negative.
- Examples:
 - "Needless to say, I wasted my money."
 - "I have to jiggle the plug to get it to line up right."
 - "Will order from them again!"
 - "He was very impressed when going from the original battery to the extended battery."

The Plan

- We'll train a soft-margin SVM.
- Problem: SVMs take fixed-length vectors as inputs, not sentences.

Bags of Words

To turn a document into a fixed-length vector:

- First, choose a **dictionary** of words:
 - ► E.g.: ["wasted", "impressed", "great", "bad", "again"]
- Count number of occurrences of each dictionary word in document.
 - "It was bad. So bad that I was impressed at how bad it was." $\rightarrow (0, 1, 0, 3, 0)^T$
- This is called a bag of words representation.

Choosing the Dictionary

- Many ways of choosing the dictionary.
- Easiest: take all of the words in the training set.
 - Perhaps throw out stop words like "the", "a", etc.

Resulting dimensionality of feature vectors: large.

Experiment

- Bag of words features with 4500 word dictionary.
- 2500 training sentences, 500 test sentences.
- Train a soft margin SVM.

Choosing C

- ▶ We have to choose the slack parameter, C.
- ► Use cross validation!

Cross Validation

Results

► With C = 0.32, test error $\approx 15.6\%$.

С	training error (%)	test error (%)	# support vectors
0.01	23.72	28.4	2294
0.1	7.88	18.4	1766
1	1.12	16.8	1306
10	0.16	19.4	1105
100	0.08	19.4	1035
1000	0.08	19.4	950