

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Campus de São José dos Campos Instituto de Ciência e Tecnologia

Interpolação Polinomial

Prof. Dr. Rogério Galante Negri

Motivação

 Interpolar é aproximar (representar de forma parecida) uma função através de outra função

- A nova função é geralmente mais simples
- Motivação quanto o uso de interpolação:
 - Conhecemos o valor de uma dada função em apenas alguns pontos, e gostaríamos de conhecer em outro ponto desconhecido
 - Quando a função é muito difícil ou quase impossível de derivar/integrar
- Existem casos em que a interpolação não é indicada...

Conceito geral

"nós da interpolação"

- Dados (n + 1) pontos distintos $x_0, x_1, ..., x_n$, e respectivos valores $f(x_0), f(x_1), ..., f(x_n)$
- A interpolação de f(x) consiste em determinar g(x) que:

$$\begin{cases} g(x_0) = f(x_0) \\ g(x_1) = f(x_1) \\ \vdots \\ g(x_n) = f(x_n) \end{cases}$$

- Nas definições a seguir, g(x) é polinomial
- g(x) poderia ser uma função racional, trigonométricas, etc
- Existem diferentes formas de obter g(x)

Interpolação Polinomial

Teorema: Existe um único polinômio $p_n(x)$, de grau $\leq n$, tal que $p_n(x_i) = f(x_i)$, para i = 0, ..., n e desde que $x_i \neq x_j$ se $i \neq j$

• A partir de n+1 pontos: $(x_0, f(x_0)), \dots, (x_n, f(x_n)),$ queremos $p_n(x)$, de grau $\leq n$, dado por: $p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$

tal que $p_n(x_k) = f(x_k)$. Logo, podemos formular:

$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = f(x_0) \\ a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = f(x_1) \\ \vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = f(x_n) \end{cases}$$

n + 1 equações n + 1 <u>variáveis</u>

Interpolação Polinomial

· No SL anterior, A é uma Matriz de Vandermonde:

$$\mathbf{A} = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} & x_n^n \end{pmatrix}$$

- Se $x_0, ..., x_n$ são distintos, então det $(\mathbf{A}) \neq 0$, logo, a solução do SL é única!
- Solução é única implica $a_0, a_1, ..., a_n$ únicos
- Logo $p_n(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ é único [o que demonstra o teorema]

Exercício (do livro)

• Determine o polinômio de grau ≤ 2 que interpola os pontos:

x	-1	0	2
f(x)	4	1	-1

Outras formas de obter o polinômio interpolador

• A partir da aplicação direta do teorema, fazendo a resolução do SL, conseguimos obter o polinômio interpolador $p_n(x)$

- Existem ainda outras maneiras:
 - Forma de Lagrange
 - Forma de Newton

Forma de Lagrange

• Dados $x_0, x_1, ..., x_n$ todos distintos e $y_i = f(x_i)$ para i = 0, ..., n e $p_n(x)$, o polinômio interpolador $p_n(x)$, de grau $\leq n$, é representado na forma:

$$p_n(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$$

onde $L_k(x)$, para k = 0, ..., n, são de grau n

• Observando \star , para termos $p_n(x_i) = y_i$ basta que:

$$L_k(x_i) = \begin{cases} 0 \text{ se } k \neq i \\ 1 \text{ se } k = i \end{cases}$$

• Uma expressão que atende a essas condições é:

$$L_k(x) = \frac{(x - x_0)(x - x_1)\cdots(x - x_{k-1})(x - x_{k+1})\cdots(x - x_n)}{(x_k - x_0)(x_k - x_1)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)}$$

Forma de Lagrange

- Não há dificuldades observar que:
 - $L_k(x_k) = 1$ Numerador torna-se igual ao denominador
 - $L_k(x_i) = 0$

A *i*-ésima parcela do numerados torna-se nula, anulando assim todo o numerador

- É direto notar: $p_n(x_i) = \sum_{k=0}^n y_k L_k(x_i) = y_i L_i(x_i) = y_i$
- Como $L_k(x)$ é de grau n, $p_n(x)$ é de grau n também, pois:

$$p_n(x) = \sum_{k=0}^n y_k L_k(x)$$

Esta é a "Forma de Lagrange" para o polinômio interpolador

Exemplo (do livro)

• Segundo a forma de Lagrange, adotando dois pontos genéricos quaisquer, x_0 e x_1 , obtenha a expressão do polinômio que interpola tais pontos.

Exercício (do livro)

• Utilizando a Forma de Lagrange, determine o polinômio que interpola os pontos:

x	-1	0	2
f(x)	4	1	-1

Diferenças Divididas (Operador)

- Sejam $x_0, ..., x_n$ pontos distintos onde f(x) é conhecido
- O Operador Diferenças Divididas é definido por:
 - Ordem 0: $f[x_0] = f(x_0)$
 - Ordem 1: $f[x_0, x_1] = \frac{f[x_1] f[x_0]}{x_1 x_0} = \frac{f(x_1) f(x_0)}{x_1 x_0}$
 - Ordem 2: $f[x_0, x_1, x_2] = \frac{f[x_1, x_2] f[x_0, x_1]}{x_2 x_0}$
 - Ordem n: $f[x_0, x_1, x_2, ..., x_n] = \frac{f[x_1, x_2, ..., x_n] f[x_0, x_1, ..., x_{n-1}]}{x_n x_0}$

 $f[x_0, x_1, x_2, ..., x_k]$ é a Diferença Dividida de ordem k de f(x) sobre os k+1 pontos $x_0, x_1, ..., x_k$

Diferença Dividida (Tabela)

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3	•••	Ordem n
x_0	$f[x_0]$					
		$f[x_0, x_1]$				
x_1	$f[x_1]$		$f[x_0, x_1, x_2]$			
		$f[x_1, x_2]$		$f[x_0, x_1, x_2, x_3]$		
x_2	$f[x_2]$		$f[x_1, x_2, x_3]$		٠.	
		$f[x_2, x_3]$		$f[x_1, x_2, x_3, x_4]$		$f[x_0, \dots, x_n]$
x_3	$f[x_3]$		$f[x_2, x_3, x_4]$:	.••	
		$f[x_3, x_4]$:	:		
x_4	$f[x_4]$:	:	$f[x_{n-3}, x_{n-2}, x_{n-1}, x_n]$		
:	:	:	$f[x_{n-2}, x_{n-1}, x_n]$			
:	:	$f[x_{n-1}, x_n]$				
x_n	$f[x_n]$					

A Diferença Dividida é simétrica, ou seja, $f[x_0, x_1, x_2, ..., x_k] = f[x_{j_0}, x_{j_1}, x_{j_2}, ..., x_{j_k}]$ para qualquer permutação $x_{j_0}, x_{j_1}, x_{j_2}, ..., x_{j_k}$ dos pontos $x_i, i = 0, ..., k$

Exercício (do livro)

• Construa a Tabela de Diferenças Divididas a partir dos seguintes valores tabelados:

x	-1	0	1	2	3
f(x)	1	1	0	-1	-2

Forma de Newton

Dados $x_0, x_1, ..., x_n$ todos distintos e $y_i = f(x_i)$ para i = 0, ..., n, o polinômio interpolador na Forma de Newton é representado por:

$$p_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \cdots$$
$$\cdots + d_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

onde:

• d_k é o <u>operador de diferenças divididas de ordem</u> k, que envolve os pontos $(x_i, f(x_i))$, com j = 0, 1, ..., k

Forma de Newton — grau 0

- Seja $p_0(x)$ o polinômio de grau 0 que interpola f(x) em $x = x_0$
- Logo, $p_0(x) = f(x_0) = f[x_0]$
- Para todo $x \in [a, b]$ e $x \neq x_0$:

$$f[x_0, x] = \frac{f[x] - f[x_0]}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \Rightarrow$$

$$\Rightarrow f(x) = f(x_0) + (x - x_0)f[x_0, x]$$

$$p_0(x) \qquad E_0(x) \qquad E_{0}(x) \qquad f(x) \text{ por } p_0(x)$$

f(x) por $p_0(x)$

Forma de Newton – grau 1

• Seja $p_1(x)$ o polinômio de grau 1 que interpola f(x) em x_0 e x_1 , logo:

$$f[x_0, x_1, x] = f[x_1, x_0, x] = \frac{f[x_0, x] - f[x_1, x_0]}{x - x_1} = \frac{f(x) - f(x_0)}{x - x_0} - f[x_1, x_0] = \frac{f(x) - f(x_0) - (x - x_0)f[x_1, x_0]}{(x - x_1)(x - x_0)}$$

$$f(x) = \underbrace{f(x_0) + (x - x_0)f[x_1, x_0]}_{p_1(x)} + \underbrace{(x - x_1)(x - x_0)f[x_0, x_1, x]}_{E_1(x)}$$

Forma de Newton – grau n

- Observa-se que $p_k(x) = p_{k-1}(x) + q_k(x)$
- Indutivamente:

$$p_n(x) = f(x_0) + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \cdots$$

$$\cdots + (x - x_0)(x - x_1)\cdots(x - x_{n-1})f[x_0, x_1, \dots, x_n]$$

• O erro de aproximação é dado por:

$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) f[x_0, x_1, \dots, x_n, x]$$

É fácil verificar que nos nós o erro de $p_n(x)$ é nulo!

Exercício (do livro)

• Use a Forma de Newton para obter o polinômio $p_2(x)$ que interpola f(x) no pontos:

x	-1	0	2
f(x)	4	1	-1

Erro na interpolação

• O erro cometido ao aproximar uma função por um polinômio de grau $\leq n$ é dado por:

$$E_n(x) = f(x) - p_n(x)$$

• O seguinte teorema define exatamente o erro:

Sejam $a = x_0 < x_1 < \dots < x_n = b$, (n + 1) e f(x) com derivadas de até ordem (n + 1) para os pontos em [a, b]. Seja ainda $p_n(x)$ o polinômio interpolador de f(x) nos pontos dados.

Para qualquer ponto em [a, b], o erro é expresso por:

$$E_n(x) = (x - x_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$
$$com \ \xi_x \in [a, b]$$

Te<mark>orema da Última Diferença</mark> Dividida (... n-ésima mais uma)

Para qualquer $x \in [x_0, x_n]$, existe $\xi_x \in [x_0, x_n]$ tal que:

$$f[x_0, x_1, x_2, ..., x_n, x] = \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$

Limitante Superior para o Erro

Conhecemos a expressão do erro:

$$E_n(x) = (x - x_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$

- Porém, como desconhecemos $f^{(n+1)}(x)$ e ξ_x que satisfaça a expressão acima, a importância de tal expressão é puramente teórica
- Mas podemos adotar a mesma abordagem usada no início do curso, em Análise de Erros!

CONSIDERAR O PIOR CASO...

Limitante Superior para o Erro

•
$$E_n(x) = (x - x_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}$$

$$|E_n(x)| = |f(x) - p_n(x)| \le$$

$$\le |(x - x_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_n)| \cdot \overline{M}_{n+1}$$

onde \overline{M}_{n+1} é o maior valor em módulo dentre as diferenças divididas de ordem n+1

Exercício (claro, do livro)

• Dado:

x	0.2	0.34	0.4	0.52	0.6	0.72
f(x)	0.16	0.22	0.27	0.29	0.32	0.37

- a) Obtenha f(0.47) via $p_2(x)$
- b) Dê um estimativa do erro

Interpolação Inversa

• Dado $\bar{y} \in [f(x_0), f(x_n)]$, qual seria \bar{x} tal que $f(\bar{x}) = \bar{y}$? (Problema de Interpolação Inversa)

- Para resolver este problema:
 - Podemos obter $p_n(x)$ e em seguida encontrar $p_n(\bar{x}) = \bar{y}$
 - Interpolar os valores de f(x) tabelados, isto é:
 - Considerar que *x* é função de *y*
 - Assegurar que f(x) seja monótona crescente/decrescemte, o que garante que f^{-1} existe

Exercício (do livro)

• Dado:

x	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obtenha x tal que $e^x = 1.3165$ com uso de $p_2(x)$ e do conceito de interpolação inversa

Bibliografia da aula

RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo
 Numérico - Aspectos Teóricos e Computacionais, 2ª Ed.
 Pearson, 1996.

