<u>U18ISI6204 – Machine Learning Techniques</u>

LAB EXPERIMENT 4

NAME: Aaron Mathew

ROLL NO: 20BIS001

Write a Program to implement Logistic Regression by plotting the decision boundary and use it to classify spam mail

INTRODUCTION

In this experiment, we have to perform Logistic regression on the covid dataset.

Logistic regression is a <u>statistical model</u> that in its basic form uses a <u>logistic function</u> to model a <u>binary dependent variable</u>, although many more complex <u>extensions</u> exist. In <u>regression</u> analysis, **logistic regression** (or **logit regression**) is <u>estimating</u> the parameters of a logistic model (a form of <u>binary regression</u>).

Linear Regression Equation:

$$y = \beta 0 + \beta 1X1 + \beta 2X2 + \ldots + \beta nXn$$

Where, y is dependent variable and x1, x2 ... and Xn are explanatory variables.

Sigmoid Function:

$$p = 1/1 + e^{-y}$$

Apply Sigmoid function on linear regression:

$$p = 1/1 + e^{-(\beta 0 + \beta 1X1 + \beta 2X2.....\beta nXn)}$$

OBJECTIVE OF THE EXERCISE/EXPERIMENT

To perform Logistic regression on the given dataset, using scikit library

ACQUISITION PROCEDURE:

STEP-1: Start the program.

STEP-2: import all the necessary libraries

- i) Numpy array manipulation
- ii) Pandas dataframe manipulation
- iii) Matplotlib and seaborn for data visualization
- iv) Sklearn.model_selection train test data split
- v) Sklearn.metrics f1 score.
- vi) Sklearn,linear_model for logistic regression

STEP-3: Loading the dataset using read_csv method in pandas module.

STEP-4: Analyze the dataset using info method, which gives its data types and number of non- null values in each columns.

STEP-5: Perform basic statistic operation using describe() method.

STEP-6: Use heatmaps, correlation matrix, regression plots and pairplots in seaborn to find the relationship between features.

STEP-7: Implement Logistics regression(logreg) with all variable and calculate the f1 score.

STEP-8: Stop the program.

PROGRAM:

Importing libraries

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

Loading dataset

df = pd.read_csv('qt_dataset.csv')
df.head()

Basic statistics operations

Printf(df.info())
df.describe()

```
print(df.info())
df.describe()
```

	ID	0ху	Pulse	Temp
count	10000.00000	10000.000000	10000.000000	10000.000000
mean	4999.50000	92.548900	84.976600	100.000700
std	2886.89568	4.611197	26.305841	3.185045
min	0.00000	85.000000	40.000000	95.000000
25%	2499.75000	88.000000	63.000000	97.000000
50%	4999.50000	93.000000	85.000000	100.000000
75%	7499.25000	97.000000	108.000000	103.000000
max	9999.00000	100.000000	130.000000	105.000000

Correlation between columns

Sns.heatmap(df.corr(), annot = True)

Pairplots.

Sns.pairplot(df,hue = 'Result')

Train test split.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train,y_test = train_test_split(X,y,test_size=0.2, random_state =4)

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=4)
```

Logistic regression:

From sklearn.linear_model import LogisticRegression logreg = LogisticRegression() logreg.fit(X_train, y_train) y_pred = logreg.predict(X_test)

```
from sklearn.metrics import f1_score
print('f1 Score :' ,f1_score(y_test,y_pred,average ='micro'))
```

```
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)

from sklearn.metrics import f1_score
print('f1 Score : ',f1_score(y_test, y_pred,average='micro'))
f1 Score : 0.9195
```