Complex Numbers

1. Definition:

A complex number, z, is expressed in the form

$$z = a + jb$$

where a and b are real numbers, j (sometimes we use i) is the imaginary unit that satisfies the relation

$$j^2 = -1$$

- a is called the real part of z, Re(z) = a,
- b is called the imaginary part of z, Im(z) = b.

2. Properties:

- (a) Two complex numbers, $z_1 = a_1 + jb_1$ and $z_2 = a_2 + jb_2$ are equal if and only if $a_1 = a_2$ and $b_1 = b_2$.
- (b) Arithmetic operations on complex numbers. Consider two complex numbers, $z_1 = a_1 + jb_1$ and $z_2 = a_2 + jb_2$,
 - Addition/Subtraction:

$$z_1 \pm z_2 = (a_1 + jb_1) \pm (a_2 + jb_2) = (a_1 \pm a_2) + j(b_1 \pm b_2)$$

• Multiplication:

$$z_1 z_2 = (a_1 + jb_1)(a_2 + jb_2)$$

$$= a_1 a_2 + ja_1 b_2 + ja_2 b_1 - b_1 b_2$$

$$= (a_1 a_2 - b_1 b_2) + j(a_1 b_2 + a_2 b_1)$$

• Division:

$$\frac{z_1}{z_2} = \frac{a_1 + jb_1}{a_2 + jb_2}
= \frac{(a_1 + jb_1)(a_2 - jb_2)}{(a_2 + jb_2)(a_2 - jb_2)}
= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + j\frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}$$

Exercise: Solve
$$\frac{(-1+5j)^2(3-4j)}{1+3j} + \frac{10+7j}{5j}$$
.
Ans: $10+38.2j$

- Calculation with complex numbers are reduced to calculation with real numbers.
- Addition and multiplication are commutative and associative, i.e.

$$z_1 + z_2 = z_2 + z_1$$

 $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$

• Distributive law also holds

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$$

(c) Argand Diagram:

Complex numbers can be represented as points in the x-y plane (the complex plane) as shown in Figure 1. The x-axis is called the real axis (Re) and the y-axis the imaginary axis (Im).

Figure 1: Argand diagram

Exercise: Given the $\arg(a+jb)=\theta$, where a>0,b>0, find in terms of θ and π , the value of (a) $\arg(a-jb)$, (b) $\arg(-a+jb)$ and (c) $\arg(-a-jb)$.

From Figure 1, we can also represent the complex number in polar notation where r is the radius (magnitude) and angle (phase or argument) of the complex number in the form: $r \angle \theta$. The two representations are related by

$$r = \sqrt{a^2 + b^2}$$

$$\theta = \tan^{-1} \left(\frac{b}{a}\right)$$

$$a = r\cos\theta$$

$$b = r\sin\theta$$

3. Euler's formula

Euler's formula relates complex exponentials and trigonometric functions:

$$e^{j\theta} = \cos\theta + j\sin\theta$$

•
$$e^{j\pi} = -1$$
, $e^{j\pi/2} = j$, $e^{j3\pi/2} = e^{j\pi/2} = -j$. (see Figure 1)

• If we multiply Euler's formula by a constant, r > 0, we get the two forms of complex numbers:

$$z = re^{j\theta} = r\cos\theta + jr\sin\theta$$

• Examples:

Convert the following complex numbers from rectangular to polar form:

(a)
$$1 + j$$

(b)
$$-1 - j$$

(c)
$$-5 + j12$$

Convert the following complex numbers from polar to rectangular form:

(a)
$$5e^{j\pi/4}$$

(b)
$$e^{-3\pi/2}$$

(c)
$$10e^{j2.618}$$

• More examples on arithmetric operations:

Addition and subtraction is easy in rectangular form.

Multiplication and division is easier in polar form.

$$r_1 e^{j\theta_1} r_2 e^{j\theta_2} = (r_1 r_2) e^{j(\theta_1 + \theta_2)}$$

Note that the magnitude of a product is the product of the magnitudes. Argument of the product of complex numbers is the sum of the arguments.

Solve (a)
$$5e^{j0.927} + e^{j\pi/4}$$
, (b) $(4+3j)(1-j)$ and (c) $(5+j12)/(1+j)$

• <u>De Moivre's Theorem</u>

Let n be a real rational number, then

$$(\cos\theta + j\sin\theta)^n = \cos n\theta + j\sin n\theta$$

This is equivalent to

$$(e^{j\theta})^n = e^{jn\theta}$$

Exercise: Use De Moivre's Theorem to evaluate $\frac{(1+j)^{11}}{(1-j)^9}$.

Ans: -2.

4. Complex Conjugates

Let z = a + jb, the complex conjugate of z, denoted by z^* , is defined as

$$z^* = a - jb$$

Note that z^* is the reflection of z on the x-axis, and, $|z^*| = |z|$, $\arg(z^*) = -\arg(z) = -\theta$.

- Properties of conjugates:
 - (a) $z + z^* = 2Re(z) = 2a$
 - (b) $z z^* = j2Im(z) = j2b$
 - (c) $zz^* = |z|^2 = a^2 + b^2$
 - (d) $(z^*)^* = z$
 - (e) $(z_1 + z_2)^* = z_1^* + z_2^*$
 - (f) $(z_1 z_2)^* = z_1^* z_2^*$

5. Complex numbers as vectors

In an Argand diagram, let the points Z and W represent the complex numbers z and w respectively. Then \overrightarrow{OZ} and \overrightarrow{OW} are the corresponding vectors representing z and w.

Figure 2: Complex numbers and Vectors

The sum of two complex numbers, z + w, is equivalent to the vector sum $\overrightarrow{OZ} + \overrightarrow{OW}$, which is given by the parallelogram of vectors addition.

The difference, z-w, is the vector \overrightarrow{WZ} according to the triangle law of vector addition.

Exercise: The complex number $z = e^{j\theta}$ where $-\pi < \theta \le -\pi/2$. The complex number, w_1 is such that $w_1 = -j2z$.

- State the modulus of w_1 and express the argument of w_1 in terms of θ . (Ans: $\arg(w) = 1.5\pi \theta$)
- In an Argand diagram with origin O, the points P, Q, and R are represented by z, w_1 and $w_1 z$ respectively. Show these points on a diagram. State the shape of OPQR.
- The point S is represented by $z + w_1$. Show this point on the same Argand diagram and find its area. (Ans: 2)

Let Z represent the **variable** complex number z and W, W_1 and W_2 represent **fixed** complex numbers w, w_1 and w_2 respectively.

Equation	Type of locus	Diagram
$ z - w_1 = r$ Or $z = w_1 + re^{i\theta}, 0 < \theta < 2\pi$	Circle with radius r , centre w_1	Im(z)
$ z-w_1 = z-w_2 $	Perpendicular bisector of the line $W_1 W_2$	Im(z) \bigwedge locus of z W_1 W_2 W_1 $Re(z)$
$\arg(z - w_1) = \alpha$ Or $z = w_1 + re^{i\alpha}, r \in \mathbb{R}^+$	Half-line with end-point W, inclined at an angle α to the Re-axis	Im(z)

Some examples:

Figure 3: Locus

6. Solving Polynomial Equations

Note that for a polynomial equation with all real coefficients, complex roots occur in conjugate pairs, i.e., if z is a complex root of the polynomial equation, then z^* is also a complex root of the polynomial equation

• Solve $z^2 + 2z + 3$.

This is a second-order polynomial, the roots are given by the formula $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, hence we have

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{4 - 12}}{2}$$
$$= -1 \pm \sqrt{-2}$$
$$= -1 \pm j\sqrt{2}$$

• Verify that z = j2 is a root of the equation $z^4 - 2z^3 + 7z^2 - 8z + 12 = 0$. Hence, determine the other roots.

7. MA1301 Proficiency test questions

• July 2012

Express the complex number $z = \frac{(1-\sqrt{3}i)^4}{(1+i)^2}$ in the form $r(\cos\theta+i\sin\theta)$, where r>0 and $-\pi<\theta\leq\pi$.

On an Argand diagram, the point P represents the complex number z and the point Q represents the complex number w. Given the triangle OPQ oriented in the clockwise sense is equilateral, find the modulus and argument of w.

• July 2011

Let $z_1=2+i,\ z_2=12-4i$ and $z_3=\frac{z_2}{z_1}$. On the Argand diagram, $z_1,\ z_2$ and z_3 are represented by the points P, Q and R respectively.

- Express z_3 in the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $-\pi < \theta \le \pi$.
- Calculate the exact area of triangle PQR.