AME 60614: Numerical Methods Fall 2021

Problem Set 1

Qihao Zhuo

All revised codes are included in tar file. There are statements describing which parts were revised at the beginning of each problem.

1 Finite-Difference Schemes

In my former homework, I got full points in Problem 1 so I did not revise this problem.

1.1 $f_{i-2}, f_{i-1}, f_i, f_{i+1}, f_{i+2}$

With the MATLAB scripts $p1_1.m$, coefficients solved by corresponding matrix equation are shown in the Tab. 1.

Table 1: Output of First Group

	a_1	a_2	a_3	a_4	a_5	TruncationError	Accuracy
$\overline{f_i^{''}}$	$\frac{-1}{12h^2}$	$\frac{4}{3h^2}$	$\frac{-5}{2h^2}$	$\frac{4}{3h^2}$	$\frac{-1}{12h^2}$	$\frac{h^4}{90}f_i^6$	$O\left(h^4\right)$
f_i^{iv}	$\frac{1}{h^4}$	$\frac{-4}{h^4}$	$\frac{6}{h^4}$	$\frac{-4}{h^4}$	$\frac{1}{h^4}$	$\frac{-h^2}{6}f_i^6$	$O\left(h^2\right)$
$f_i^{'''}-3f_i^{'}$	$\frac{-\left(h^2+2\right)}{4h^3}$	$\frac{2h^2+1}{h^3}$	0	$\frac{-\left(h^2+1\right)}{h^3}$	$\frac{h^2+2}{4h^3}$	$\left(\frac{2h^2(h^2+2)}{15} - \frac{h^2(2h^2+1)}{60}\right)f_i^5$	$O\left(h^2\right)$

1.2 $f_i, f_{i+1}, f_{i+2}, f_{i+3}, f_{i+4}$

With the MATLAB scripts $p1_2.m$, coefficients are shown in the Tab. 2.

Table 2: Output of Second Group

	a_1	a_2	a_3	a_4	a_5	Truncation Error	Accuracy
$\overline{f_i^{''}}$	$\frac{35}{12h^2}$	$\frac{-26}{3h^2}$	$\frac{19}{2h^2}$	$\frac{-14}{3h^2}$	$\frac{11}{12h^2}$	$-\frac{5h^3}{6}f_i^5$	$O(h^3)$
f_i^{iv}	$\frac{1}{h^4}$	$\frac{-4}{h^4}$	$\frac{6}{h^4}$	$\frac{-4}{h^4}$	$\frac{1}{h^4}$	$-2hf_i^5$	O(h)
$f_{i}^{'''}-3f_{i}^{'}$	$\frac{5(5h^2-2)}{4h^3}$	$\frac{-3(4h^2-3)}{h^3}$	$\frac{3(3h^2-4)}{h^3}$	$\frac{-(4h^2-7)}{h^3}$	$\frac{3(h^2-2)}{4h^3}$	Eq. 1	$O(h^2)$

$$TE = -\left(\frac{32h^2(h^2 - 2)}{5} + \frac{4h^2(3h^2 - 4)}{5} - \frac{h^2(4h^2 - 3)}{40} - \frac{81h^2(4h^2 - 7)}{40}\right)f_i^5 \tag{1}$$

1.3 $f_{i-4}, f_{i-3}, f_{i-2}, f_{i-1}, f_i$

With the MATLAB scripts $p1_3.m$, coefficients are shown in the Tab. 3

Table 3: Output of Third Group

$$TE = -\left(\frac{32h^2(h^2 - 2)}{5} + \frac{4h^2(3h^2 - 4)}{5} - \frac{h^2(4h^2 - 3)}{40} - \frac{81h^2(4h^2 - 7)}{40}\right)f_i^5 \tag{2}$$

1.4 $f_{i-1}, f_i, f_{i+1}, f'_{i-1}, f'_i, f'_{i+1}$

With the MATLAB scripts $p1_4.m$, coefficients are shown in the Tab. 4.

Table 4: Output of Fourth Group

	a_1	a_2	a_3	a_4	a_5	a_6	Truncation Error	Accuracy
$\overline{f_i^{''}}$	$\frac{2}{h^2}$	$\frac{-4}{h^2}$	$\frac{2}{2h^2}$	$\frac{1}{2h}$	0	$\frac{-1}{2h}$	$\frac{h^4}{360}f_i^6$	$O\left(h^4\right)$
f_i^{iv}	$\frac{-12}{h^4}$	$\frac{24}{h^4}$	$\frac{-12}{h^4}$	$\frac{-6}{h^3}$	0	$\frac{6}{h^3}$	$-\frac{h^2}{15}f_i^6$	$O\left(h^2\right)$
$f_{i}^{\prime\prime\prime}-3f_{i}^{\prime}$	$\frac{15}{2h^3}$	0	$\frac{15}{2h^3}$	$\frac{-3}{2h^2}$	$\frac{-3(h^2+4)}{h^2}$	$\frac{-3}{2h^2}$	$\frac{h^4}{840}f_i^7$	$O\left(h^4\right)$

2 Richardson Extrapolation

I used explicit formula for even 10-order scheme, which will made too small fractions. So I revised this problem with solution's idea. To use vector easily, I wrote a new matlab code $p2_2_rev.m$ to solve this problem.

2.1 a

For fourth-order central-difference scheme, fivr points are required. Modifying codes in Sec. 1 to solve named the scheme with points of x - 2h, x - h, x, x + h, x + 2h.

$$\frac{1}{12h}f_{i-2} - \frac{2}{3}f_{i-1} + \frac{2}{3}f_{i+1} - \frac{1}{12}f_{i+2} = f_{i}^{'} - \frac{h^{4}}{30} - \frac{h^{6}}{252} - \frac{h^{8}}{4320} - \frac{17h^{10}}{1995840}$$

$$D_{i} = f_{i}^{'}$$

Under central-difference scheme, the odd-order terms are zero. So to get sixth-, eighth- and tenth- order schemes, solving corresponding linear equations need two, three and four expressions.

$$\begin{split} D_1 &= D - c_1 h^4 - c_2 h^6 - c_3 h^8 - c_4 h^{10} + \dots \\ D_{12} &= \frac{16D_2 - D_1}{15} = D + c_2 \frac{h^6}{20} + c_3 \frac{h^8}{16} + c_4 \frac{21h^{10}}{320} + \dots \\ D_{123} &= \frac{64D_{23} - D_{12}}{63} = D - c_3 \frac{h^8}{1344} - c_4 \frac{h^{10}}{1024} + \dots \\ D^{1234} &= \frac{256D_{234} - D_{123}}{255} = D + c_4 \frac{h^{10}}{208896} + \dots \end{split}$$

2.2 b

With $p2_2_rev.m$, output of different schemes under x=1 and h=0.5, 0.25, 0.1, 0.05, 0.025 is shown in Fig. 1.

Figure 1: $\log |\epsilon| - \log h$ of different h and different schemes

$$|\epsilon| \propto h^2$$
$$\log |\epsilon| \propto \log h^2 = 2 \log h$$

The slopes of different lines of D_1 , D_{12} , D_{123} , D_{1234} are about 4, 6, 8, 10 correspondingly, which implies those schemes have the correct accuracy.

3 Integral Equations

In this problem, I just modied my code to output errors of different x_i and N. The algorithm is almost correct.

3.1 a

With the trapezoid method, the integral term could be approximated,

$$\int_{0}^{x} K(x,t) f(t) dt \approx \frac{\Delta t}{2} \left[K(x,t_{0}) f(t_{0}) + 2K(x,t_{1}) f(t_{1}) + \dots + 2K(x,t_{n-1}) f(t_{n-1} + K(x,t_{n}) f(t_{n})) \right]$$

Taking $f(t_i) = f_i$, $g(x_i) = g_i$ and $K_{ij} = K(x_i, t_j)$.

$$f_0 = g_0$$

$$f_1 + \frac{\Delta t}{2} \left(K_{10} f_0 + K_{11} f_1 \right) = g_1$$

$$f_2 + \frac{\Delta t}{2} \left(K_{20} f_0 + 2K_{21} f_1 + K_{22} f_2 \right) = g_2$$
 ...
$$f_n + \frac{\Delta t}{2} \left(K_{n0} f_0 + 2K_{n1} f_1 + \dots + 2K_{n,n-1} f_{n-1} + K_{n,n} f_n \right) = g_n$$

Adding f_i term into the trapezoid term,

$$\begin{split} f_0 &= g_0 \\ \frac{\Delta t}{2} \left[K_{10} f_0 + \left(K_{11} + 1 \right) f_1 \right] &= g_1 \\ \frac{\Delta t}{2} \left[K_{20} f_0 + 2 K_{21} f_1 + \left(K_{22} + 1 \right) f_2 \right] &= g_2 \\ & \dots \\ \frac{\Delta t}{2} \left[K_{n0} f_0 + 2 K_{n1} f_1 + \dots + 2 K_{n,n-1} f_{n-1} + \left(K_{n,n} + 1 \right) f_n \right] &= g_n \end{split}$$

Those equations could be seen as a linear equations system.

$$oldsymbol{M} oldsymbol{f} = oldsymbol{g} \ oldsymbol{f} = oldsymbol{M}^{-1} oldsymbol{g}$$

Through solving such matrix equation, a discret set of approximate values of f(x) will be given. The trapezoid method has a accuracy of $O(h^2)$. From the matrix equation, accuracy of f(x) also has the accuracy of $O(h^2)$.

3.2 b

The analytical solution is unknown, so pseudo-error is used. An approximation under grid spacing h can be written as:

$$f_h^* = f_e + c_1 h^n$$

Where f_e is the exact value. For grid spacing h/2, the approximation is,

$$f_{h/2}^* = f_e + c_1 \left(\frac{h}{2}\right)^n$$

So the pseudo-error could be derived.

$$\epsilon = f_h^* - f_{h/2}^* = c_1 (1 - 2^{-n}) h^n = c_2 h^n$$

In that probelm, the algorithm has accuracy of $O(h^2)$.

$$\begin{aligned} |\epsilon| \propto h^2 \\ \log|\epsilon| \propto \log h^2 &= 2\log h = 2\log\frac{L}{N} \\ \log|\epsilon| \propto -2\log N \end{aligned}$$

Therefore the $\log \epsilon - \log N$ plots should be linear and the slope should be -2.

Using $p3_1_{rev}.m$, the algorithm defined above is written as a function. Different cases are simulated under N=10,100,500,1000,5000,10000 and $x_i=0.2,0.5,1.0$, and $\log \epsilon - \log N$ plots are shown in Fig. 3. The f(x) under N=10000 is shown in Fig. 2.

Figure 2: Figure of f(x) under N = 10000

The $\log \epsilon - \log N$ plots are linear and the slope is nearly -2, so the algorithm in this problem has accuracy of $O(h^2)$.

4 Gauss-Hermite Quadrature

In my former work, the Gauss-Hermite Quadrature part is totally correct. So I just revised this problem on the Simpson part with solution's idea. I also refer to points setting in the solution, but my results are good enough.

Figure 3: $\log |\epsilon| - \log N$ under N = 10, 100, 500, 1000, 5000, 100000 and x = 0.2, 0.5, 1.0

4.1 a

The original integral interval is $(-\infty, \infty)$, which cannot be achieved by simulations. So a transform should be used

$$\xi = \tanh x$$

$$x = \tanh^{-1} \xi$$

$$dx = \frac{1}{1 - \xi^2} d\xi$$

So that the integral interval becomes [-1, 1].

$$I = \int_{-1}^{1} F(\xi) d\xi = \int_{-1}^{1} f(\tanh^{-1} \xi) \left[\frac{1}{\sqrt{2\pi}} e^{-(\tanh^{-1} \xi)^{2}/2} \right] \frac{1}{1 - \xi^{2}} d\xi$$

$$I_{Simpson} = \frac{h}{3} \left(F_{0} + F_{n} + 4 \sum_{j=1, odd}^{n-1} F_{j} + 2 \sum_{j=2, even}^{n-2} F_{j} \right)$$

With code of Simpson's rule, $p4_1_rev.f90$, the three numerical integrals are shown in Tab. 5. From Tab. 5, the points required to achieve the error of $\epsilon = 10^{-6}$ for each case are also shown.

Table 5: Simpson method for different moments

	$I_{Simpson}$	I_{exact}	Ab solute Error	Relative Error	n
1	1.0000009915918198	1	9.9159181976560262E-007	9.9159181976560262E-007	5900
x^2	1.0000009526069624	1	9.5260696242327469E-007	9.5260696242327469E-007	24000
x^4	3.0000009925061115	3	9.9250611151902035E-007	3.3083537050634010E-007	90000

4.2 b

The general form of Gauss-Hermite Quadrature is using e^{-x^2} , so a variable changing of $x = \sqrt{2}t$ is used to modify the function form.

$$\int_{-\infty}^{\infty} \left[\frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \right] dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-t^2} dt$$

$$\int_{-\infty}^{\infty} x^2 \left[\frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \right] dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} 2t^2 e^{-t^2} dt$$

$$\int_{-\infty}^{\infty} x^4 \left[\frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \right] dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} 4t^4 e^{-t^2} dt$$

$$\int_{-\infty}^{\infty} \cos x \left[\frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \right] dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \cos \left(\sqrt{2}t \right) e^{-t^2} dt$$

For $f(x) = x^2$, $2N + 1 = 2 \Rightarrow N + 1 = 1.5$. So 2 points would be required to exactly compute it.

For $f(x) = x^4$, $2N + 1 = 4 \Rightarrow N + 1 = 2.5$. So 3 points would be required to exactly compute it.

The output of Gauss-Hermite Quadrature of second moments with 2 points and fourth moments with 4 points is shown in Tab. 6. The conclusion is <u>verified</u>.

Table 6: Gauss-Hermite Quadrature for different moments

	I_{G-H}	I_{exact}	Ab solute Error	Quadrature Points
x^2	1	1	0	2
x^4	3	3	0	3

4.3 c

Modifying $p4_2.mlx$ and $p4_1_rev.f90$, output is shown in Tab. 7 and points required to achive the error of $\epsilon = 10^{-6}$ for each case are also shown. For Simpson, 5200 points are required. For Gauss-Heremite Quadrature, N=6 leads to an error more than 10^{-6} and N=7 leads to an error of 8th-order, so 7 points are needed.

Table 7: Two Numerical Integrals of $\cos x$

	$I_{numerical}$	I_{exact}	Ab solute Error	Quadrature Points
Simpson	0.60652973048638359	$e^{-1/2}$	9.3586493477015864E-007	5200
Gauss-Hermite	0.606529472609343	$e^{-1/2}$	$1.18710329088945 \hbox{E-}006$	6
Gauss-Hermite	0.606530705309636	$e^{-1/2}$	4.559700306217 E-008	7

5 Appendix

 $p1_1.m, p1_2.m, p1_3.m, p1_4.m$ are four Matlab scripts to solve matrix equations for coefficients and truncation errors in Problem 1. The matrix equations come from Taylor series. In $p1_4.m$ the matrices are modified because of the first derivative terms. Scripts and output are included in p1 folder.

- $p2_2_rev.m$ is used to calculate numerical derivatives with Richardson Extrapolation. All results are within one run of that code.
- $p3_1_rev.m$ is a Matlab script used to realize the algorithm of solving the Volterra integral equation with trapezoid method. M and g are set up through loops and the values come from the trapezoid method. In the end, the script solve the matrix equation to get a set of discrete values of f. And then errors of different N are also calculated.
- $p4_1.f90$ is a Fortran code for Simpson rule. For different functions, the expressions should be modified separately. $p4_2.mlx$ is a Matlab script of Gauss-Hermite Quadrature, in which there is a function module to solve weights and abscissas. In the main part, number of quadrature points and function expressions could be user-defined.

Latex files are include in the tex folder.