GRAFI: COMPONENTI FORTEMENTE CONNESSE

[Deme, seconda edizione] cap. 12

Sezione 12.5

[Cormen] Sezioni 22.4 e 22.5

Quest'opera è in parte tratta da (Damiani F., Giovannetti E., "Algoritmi e Strutture Dati 2014-15") e pubblicata sotto la licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 Italia.

Per vedere una copia della licenza visita http://creativecommons.org/licenses/by-nc-sa/3.0/it/.

(dall'introduzione ai grafi) Grafo fortemente connesso

Se in un grafo G (orientato) esiste un cammino da ogni vertice verso ogni altro vertice, si dice che G è fortemente connesso.

Questo grafo orientato non è connesso (*C* non è raggiungibile da nessun nodo)

Questo grafo orientato è connesso

NOTA: non ci devono essere «tutti» gli archi perché il grafo sia fortemente connesso

Connessione forte (di vertici)

In un grafo **orientato** G:

due nodi u, v si dicono (fra loro) mutuamente raggiungibili, o fortemente connessi, se ognuno dei due è raggiungibile dall'altro, cioè se esiste un cammino da u a v e un cammino da v a u, cioè se appartengono ad uno stesso ciclo.

Indichiamo la notazione di connettività forte con a notazione $u \leftrightarrow v$

Grafo fortemente connesso

(Dall'introduzione)

[...] Se in un grafo G (orientato) esiste un cammino da ogni vertice verso ogni altro vertice, si dice che G è fortemente connesso.

Riscriviamo la definizione

Un grafo orientate si dice fortemente connesso se tutti i suoi nodi sono fra loro fortemente connessi.

La connessione forte è una relazione di equivalenza

La relazione di connessione forte, che indichiamo con il simbolo infisso ↔, è una relazione di equivalenza, perché è:

```
riflessiva: u ↔ u (u raggiungibile da u con cammino nullo);
```

simmetrica: per definizione, se $u \leftrightarrow v$ allora $v \leftrightarrow u$.

transitiva: se $u \leftrightarrow v \in v \leftrightarrow w$ allora ovviamente $u \leftrightarrow w$.

Componenti fortemente connesse

Le componenti fortemente connesse (cfc) di un grafo sono le classi di equivalenza della relazione di connessione forte, cioè:

Una cfc di un grafo orientato G è un sottografo G' di G fortemente connesso e massimale

cioè un sottografo G' di G tale che:

- i nodi di G' sono tutti fra loro **fortemente connessi** (cioè mutuamente raggiungibili);
- nessun altro nodo di G è fortemente connesso con nodi di G'.

Quali sono le cfc di questo grafo?

Una proprietà delle cfc

La relazione di connettività forte è una relazione di equivalenza, e che le cfc sono le sue classi di equivalenza.

Possiamo dire qualcosa sull'insieme quoziente di queste classi di equivalenza?

Sì, l'insieme quoziente è a sua volta un grafo. È diretto ed è facilmente dimostrabile che è aciclico (altrimenti, le cfc del ciclo si potrebbero «fondere» e non sarebbero massimali).

Quindi, l'insieme quoziente è un DAG ed è possibile calcolare su di esso un ordine topologico.

Come calcolare una componente fortemente connessa - idea

(Dalla definizione) la cfc di x conterrà tutti e soli i vertici raggiungibili da x e dai quali x è raggiungibile.

Allora calcoliamo i vertici raggiungibili da x, poi quelli da cui x è raggiungibile, e facciamo **l'intersezione dei due insiemi**

Calcolare una componente fortemente connessa (algoritmo semplice)

Per trovare la cfc contenente il vertice x:

- 1. Calcoliamo i **discendenti** di x D(x), i vertici di G raggiungibili da x
- 2. Calcoliamo gli antenati di x A(x), i vertici di G che raggiungono x
- cfc[x] ovvero la componente fortemente connessa contenente x,
 è data da D(x) ∩ A(x)

Il fatto che tutti i vertici di cfc[x] siano fortemente connessi tra di loro è banalmente verificabile considerando il fatto che tutti raggiungono x e tutti sono raggiungibili da x, quindi preso un u ed un v generici appartenenti a cfc[x], u raggiunge v con il cammino $u \to x \to v$ e v raggiunge u con il cammino $v \to x \to u$.

Come calcolo D(x) e A(x)

Banalmente, D(x) si ottiene con una visita a partire da x.

A(x) si ottiene con una visita a partire da x del grafo trasposto di G, G^T. Ovvero il grafo in cui tutti gli archi sono invertiti.

$$D(1) = \{0,1,4,5,7\}$$

$$A(1) = \{0,1,2,3,4,5,6\}$$

Calcolo di tutte le cfc

Algoritmo:

```
for ogni vertice v di G non ancora marcato calcola cfc[v]
```

COSTO:

Calcolo singola cfc:

```
1. Visita G O(n+m)
```

2. Calcola G^T O(n+m)

3. Visita G^T O(n+m)

TOT: **O(n+m)**

Per n vertici, quindi O(n²+nm)

Di seguito vedremo che si può fare di meglio

Lemma del cammino fortemente connesso

Se due vertici x, y di un grafo sono in una stessa cfc, allora nessun cammino tra di essi può abbandonare tale cfc.

DIMOSTRAZIONE. x e y appartengano alla stessa cfc. Sia z tale che $x \rightarrow z$ e $z \rightarrow y$, dimostriamo che $z \in cfc[x]$

Per dimostrare che z appartiene alla stessa cfc di x (e quindi di y), ci basta dimostrare che z è raggiungibile da x e viceversa

z è banalmente raggiungibile da x per ipotesi $x \rightarrow z$.

Siccome x e y appartengono alla stessa cfc, esisterà un cammino $\mathbf{y} \to \mathbf{x}$ Esiste anche $\mathbf{z} \to \mathbf{y}$ per ipotesi.

Quindi, per concatenazione, esisterà un cammino $\mathbf{z} \to \mathbf{y} \to \mathbf{x}$ Quindi esisterà un cammino $\mathbf{z} \to \mathbf{x}$ CVD.

Teorema del sottoalbero fortemente connesso

TEOREMA. In una qualunque DFS di un grafo G orientato tutti i vertici di una cfc vengono collocati in uno stesso sottoalbero.

DIMOSTRAZIONE.

Sia r il primo vertice di una data cfc che viene scoperto nella DFS.

Da r sono raggiungibili tutti gli altri vertici della cfc (per definizione di cfc)

Poiché r è il primo, al momento della scoperta di r tutti gli altri vertici della cfc saranno bianchi.

Inoltre, tutti i cammini da r agli altri vertici della cfc conterranno solo vertici bianchi che fanno parte della cfc (perché, per il lemma precedente, dentro a tali cammini non lasciano mai la cfc).

Allora (per il Teorema del cammino bianco) tutti i vertici appartenenti alla cfc di r saranno discendenti di r nell'albero DFS. CVD.

grafo G

Le cfc del grafo sono tre: {A}, {D, B, C}, {E, F}

albero di visita DFS

Attenzione però: non vale l'inverso del teorema precedente, quindi nello stesso sottoalbero ci possono essere vertici di più componenti fortemente connesse

Idea

Ma allora, potremmo farci guidare da una visita DFS per trovare le cfc.

In particolare potremmo:

- 1. Trovare un albero DFS del grafo, contenente tutte le cfc
- 2. Tagliare l'albero in punti opportuni, partizionandolo nelle sue cfc

Si noti che partizionare l'albero nelle cfc è sempre possibile perché se in un albero della foresta u è discendente di v e u non appartiene a cfc[v], allora ogni discendente t di u, non può appartenere a cfc[v].

Problema: trovare i punti per tagliare l'albero

Ma noi non sappiamo dove tagliare l'albero!

Per fortuna, ci aiutano 2 proprietà importanti.

Proprietà 1

Esiste sempre, per ogni grafo diretto, almeno un **ordine di visita DFS** dei suoi nodi tale per cui **le cfc sono già separate** nella foresta di visita.

(è legato all'inverso di un ordine topologico del suo grafo quoziente, che noi però non abbiamo!)

Proprietà 2

Un grafo G ed il suo trasposto G^T hanno le stesse cfc.

IDEA

G è un grafo diretto, quindi la Proprietà 1 vale anche per G^T.

Siccome G e G^T hanno le stesse cfc (Proprietà 2), cerchiamo di capire se possiamo sfruttare una DFS su G per trovare un **ordine di visita DFS di G**^T tale che la foresta DFS di G^T abbia le cfc tra di loro separate (Proprietà 1).

Se così fosse, con 2 visite DFS avremmo risolto il problema.

IDEA (continua): Usare la prima visita per determinare un ordine di visita per la seconda

Dati due vertici x e y, quale visitare per primo nel grafo trasposto in maniera che x e y non stiano nello stesso sottoalbero?

Assumiamo che **x non sia nella stessa cfc di y**. Dopo la DFS sul grafo G si possono presentare i seguenti due casi:

- 1. y è discendente di x in un albero della foresta DFS di G
- x e y non sono uno discendente dell'altro nella foresta DFS di G (sono in alberi o sottoalberi distinti della foresta)

Capiamo come queste informazioni possono essere usate su G^T

Caso 1

Dati due vertici x e y (che non appartengono alla stessa cfc), quale visitare per primo nel grafo trasposto?

y è discendente di x in un albero della foresta DFS di G y non può essere discendente di x nella foresta DFS di G^T

Esiste in G un cammino da x a y.

Ma, non esisterà il cammino da y a x in G
(altrimenti x e y sarebbero nella stessa cfc).

Non esisterà il cammino da x a y in G^T .

(e, se visito prima x, neanche quello da y a x nella visita)

Quindi, se x precede y nella visita DFS di G^T, sarò sicuro che x e y non staranno nello stesso albero

Caso 2

non appartengono alla stessa cfc), quale visitare per primo nel grafo trasposto?

In G x e y non sono uno discendente dell'altro

y non può essere discendente di x nella foresta DFS di G^T

può esistere un cammino da x a y (a causa di archi di attraversamento) in G, ma non può esistere nessun cammino da y a x (altrimenti x sarebbe nel sottoalbero di y)

Non esisterà il cammino da x a y in G^T.

(e, nella visita, neanche quello da y a x, se x viene visitato prima)

Quindi, se x precede y nella visita DFS di G^T , sarò sicuro che x e y non staranno nello stesso albero

Idea

In entrambi i casi allora sarà conveniente che la visita che inizia da x G^T preceda quella che parte da y perché, se i vertici non sono nella stessa cfc, non verranno collocati nello stesso albero.

Sembra allora che i vertici nella visita di G^T debbano essere considerati:

- dall'alto verso il basso, e
- da destra verso sinistra

Idea-II

Per capire come rispettare l'ordine della slide precedente, osserviamo gli intervalli di attivazione dei due vertici nei 2 casi

nel caso 1 si ha:

In entrambi i casi f[x] > f[y] (ricorda: sono i tempi della **prima** visita)

QUINDI (nella seconda visita) i vertici vanno considerati in ordine decrescente di tempo di fine visita

Un algoritmo per il calcolo delle cfc Algoritmo di Kosaraju

Dalle osservazioni precedenti ricaviamo il seguente algoritmo

Strongly-Connected-Components (G)

- Visita G con l'algoritmo VISITA_TUTTI_I_VERTICI-DFS e costruisci una lista dei vertici in ordine decrescente dei tempi di fine visita
- 2. Costruisci G^T
- 3. Visita G^T con l'algoritmo VISITA_TUTTI_I_VERTICI-DFS considerando, nel ciclo principale dell'algoritmo, i vertici nell'ordine trovato al passo 1.

Costo: O(n+m) + O(n+m) + O(n+m) = O(n+m)

È il meglio che si possa fare? No, il libro suggerisce un algoritmo che effettua una sola visita in profondità (però con complessità sempre **O(n+m)**). Provate a leggerlo e capirlo.

Correttezza dell'algoritmo

Per dimostrare la correttezza dell'algoritmo ci servono le seguenti proprietà:

Teorema del sottoalbero fortemente connesso: In una qualunque DFS di un grafo G orientato tutti i vertici di una cfc vengono collocati in uno stesso sottoalbero. [già dimostrato]

Lemma 2. Un grafo orientato e il suo trasposto hanno le stesse cfc. [dimostrazione immediata dalla definizione di cfc]

Lemma 3. Sia A^T un albero ottenuto con la visita in profondità di G^T, considerando i vertici in ordine decrescente dei tempi di fine visita su G, e sia u la sua radice. Per ogni vertice v discendente di u in A^T, v e u appartengono alla stessa cfc.

Dimostrazione lemma 3

Dimostriamo prima di tutto che ogni discendente di u in A^T è anche un discendente di u in un albero della foresta costruita dalla visita in profondità su G.

La dimostrazione è fatta per **assurdo**.

Consideriamo un cammino sull'albero A^T a partire dalla radice u; sia v il primo vertice sul cammino per cui il lemma non vale (cioè v non è discendente di u sulla visita di G) e sia w il suo predecessore sul cammino.

Dimostrazione lemma 3 – II

Poiché v è il primo vertice per cui il lemma non vale, l'enunciato vale per w, e quindi l'attivazione di w è dentro l'attivazione di u nella visita di G:

$$d[u] \le d[w] < f[w] \le f[u]$$
 (w può anche essere u)

Siccome la visita DFS di G^T considera i vertici in ordine decrescente di fine visita (su G), per ogni discendente di u in A^T, e quindi in particolare per v, vale

Dimostrazione lemma 3 – III

Per il teorema delle parentesi, se v <u>non</u> è un discendente di u nella prima visita, i due intervalli di visita di v e u devono essere disgiunti, cioè deve valere (nella visita di G):

Ma questo è impossibile

v è <u>adiacente a w in G^T quindi w è adiacente a v in G</u>, e la visita di v <u>non può terminare prima che sia iniziata la visita di un suo adiacente</u>, cioè f[v] non può precedere d[w].

Dimostrazione lemma 3 – IV

Terminata la dimostrazione per assurdo, sappiamo che v è un discendente di u nella visita DFS di G

Quindi in G esiste un cammino da u a v.

Siccome v è discendente di u in A^T , esiste anche un cammino da u a v in G^T , e quindi da v a u in G.

Quindi v appartiene alla stessa cfc di u.

CVD.

Dimostrazione correttezza dell'algoritmo Strongly-Connected-Components

I lemmi permettono di dimostrare che ogni albero della foresta ottenuta con la visita in profondità di G^T contiene:

- tutti i vertici di una cfc di G (Teorema del sottoalbero fortemente connesso e Lemma 2)
- solo i vertici di una cfc di G (Lemma 3)

L'algoritmo Strongly-Connected-Components è

corretto

ossia, quando applicato ad un grafo orientato, restituisce una foresta i cui alberi individuano le componenti fortemente connesse del grafo.

Cosa devo aver capito fino ad ora

- Connessione forte di vertici
- Componenti fortemente connesse
- Calcolare la cfc a cui appartiene un singolo vertice
 - Algoritmo
 - Costo
- Calcolare tutte le cfc di un grafo diretto. Algoritmo semplice e costo
- Lemma del cammino fortemente connesso
- Teorema del sottoalbero fortemente connesso
- Potatura dell'albero DFS

Cosa devo aver capito fino ad ora -

- Trovare un ordine di visita del grafo trasposto per avere la foresta delle cfc
- Algoritmo di Kosaraju per il calcolo delle cfc
 - Costo
 - Correttezza
 - (Lemmi 2 e 3 con dimostrazione)
- Il grafo quoziente delle cfc è un DAG

...se non ho capito qualcosa

- Alzo la mano e chiedo
- Ripasso sul libro
- Chiedo aiuto sul forum
- Chiedo o mando una mail al docente