Calorimetria analisi dati

Ali Matteo, Broggi Diana, Cantarini Giulia

strumenti

calorimetro delle mescolanze di Regnault bilancia con sensibilità pari a 0.01g termometro con sensibilità di 0.05 °C alimentatore a corrente continua con sensibilità 1 Volt cronometro con sensibilità 1 sec

Stima della massa equivalente: $m_e = m_2 \frac{(T_2 - T_{eq})}{(T_{eq} - T_1)} - m_1$

	I misura	II misura	III misura	IV misura
$m_1 \text{ (Kg)}$	0.09972	0.09075	0.09975	0.14294
$m_2 \text{ (Kg)}$	0.10343	0.09253	0.10040	0.08663
T_1 (°C)	24.50	23.66	23.64	22.00
$T_2 (^{\circ}C)$	85.50	40.30	53.20	88.00
T_{eq} (°C)	50.00	32.10	39.30	44.50

per l'incertezza su tali misure abbiamo considerato la sensibilità dello strumento utilizzato $\,$

$$\sigma_{m_e} = \sqrt{\left(\frac{\partial m_e}{\partial m_1}\right)^2 \sigma_{m_1}^2 + \left(\frac{\partial m_e}{\partial m_2}\right)^2 \sigma_{m_2}^2 + \left(\frac{\partial m_e}{\partial T_1}\right)^2 \sigma_{T_1}^2 + \left(\frac{\partial m_e}{\partial T_2}\right)^2 \sigma_{T_2}^2 + \left(\frac{\partial m_e}{\partial T_{eq}}\right)^2 \sigma_{T_{eq}}^2}$$

	I misura	II misura	III misura	IV misura
m_e (Kg)	0.0443 ± 0.0006	-0.0009 ± 0.0013	-0.0106 ± 0.0007	0.0245 ± 0.0007

calcolo della media pesata:
$$\bar{m_e} = \frac{\sum m_i w_i}{\sum w_i} \pm \frac{1}{\sqrt{\sum w_i}} = (0.0213 \pm 0.0004) Kg$$

determinazione del calore specifico del rame

Calcolo del calore specifico: $c_s = \frac{c_{acqua}(T_{eq}-T_1)(m_1+m_e)}{(T_s-T_{eq})m_s}$

	I misura	II misura	III misura
$m_1 \text{ (Kg)}$	0.190740 ± 0.000008	0.22346 ± 0.00001	0.24877 ± 0.00001
m_s (Kg)	0.129920 ± 0.000014	0.129920 ± 0.000014	0.129920 ± 0.000014
$T_1 (^{\circ}C)$	22.50 ± 0.05	22.30 ± 0.05	22.50 ± 0.05
T_2 (°C)	100.00 ± 0.05	100.00 ± 0.05	100.00 ± 0.05
T_{eq} (°C)	26.00 ± 0.05	25.50 ± 0.05	25.40 ± 0.05

$$\sigma_{c_s} = \sqrt{\left(rac{\partial c_s}{\partial m_1}
ight)^2 \sigma_{m_1}^2 + \left(rac{\partial c_s}{\partial m_s}
ight)^2 \sigma_{m_s}^2 + \left(rac{\partial c_s}{\partial T_1}
ight)^2 \sigma_{T_1}^2 + \left(rac{\partial c_s}{\partial T_s}
ight)^2 \sigma_{T_s}^2 + \left(rac{\partial c_s}{\partial T_{eq}}
ight)^2 \sigma_{T_{eq}}^2}$$

	I misura	II misura	TIT IIIIO GIT G
$c_s (J/Kg^{\circ}C)$	322.7 ± 4.7	338.3 ± 5.3	337.8 ± 5.8

calcolo della media pesata:
$$\bar{c_s} = \frac{\sum cs_i w_i}{\sum w_i} \pm \frac{1}{\sqrt{\sum w_i}} = (331.7 \pm 3.0) \text{J/Kg}^{\circ} C$$

Il valore atteso per il calore specifico del rame è 385 J/Kg°C, test di accuratezza: $t=\frac{|c_{satteso}-c_{sosservato}|}{\sigma_{cs}}=18 \rightarrow$ la probabilità che la discrepanza con il valore atteso sia dovuta solo ad errori casuali è inferiore al 0.3 %.

verifica del valore della costante di Joule

Calcolo della costante di Joule: $J = \frac{IV\Delta t}{c_{acqua}(m_1 + m_e)}$

$$T_{iniziale} = 25 \, ^{\circ}C$$

	I misura	II misura	III misura	IV misura	totale
$T_{finale} (^{\circ}C)$	27.5	30.5	33	36.5	
$c_{acqua} (J/Kg^{\circ}C)$	4180.0	4178.8	4178.3	4178.3	4180.0
$\Delta T \ (^{\circ}C)$	2.5	3.0	2.5	3.5	11.5
Δt (s)	120	120	120	120	480

costanti: $m_1 = (0.30998 \pm 0.00001)$ Kg, $I = (2.2 \pm 0.1)$ A, $V = (15 \pm 1)$ Volt

$$\sigma_{J} = \sqrt{\left(\frac{\partial J}{\partial \Delta T}\right)^{2} \sigma_{\Delta T}^{2} + \left(\frac{\partial J}{\partial \Delta t}\right)^{2} \sigma_{\Delta t}^{2} + \left(\frac{\partial J}{\partial m_{1}}\right)^{2} \sigma_{m_{1}}^{2} + \left(\frac{\partial J}{\partial I}\right)^{2} \sigma_{I}^{2} + \left(\frac{\partial J}{\partial V}\right)^{2} \sigma_{V}^{2}}$$

	I misura	II misura	III misura	IV misura	totale
J	1.1 ± 0.1	0.95 ± 0.08	1.1 ± 0.1	0.82 ± 0.07	0.99 ± 0.08

calcolo della media pesata:
$$\bar{J}=\frac{\sum m_i w_i}{\sum w_i}\pm\frac{1}{\sqrt{\sum w_i}}=(0.97\pm0.04)Kg$$

conversione da J/J in J/Cal: $J = (4076.7 \pm 159.8)$ J/Cal

.

Confronto con il valore atteso di 4.186 J/cal: $t=\frac{|J_{atteso}-J_{osservato}|}{\sigma_J}=0.68 \rightarrow$ l'accuratezza di tale misura è pari al 74.2%.

misura del calore latente del ghiaccio

Calcolo del calore latente del ghiaccio: $\lambda = \frac{(m_1 + m_e)c_{acqua(26^{\circ}C)}(T_1 - T_{eq}) - m_2c_{ghiaccio}(T_0 - T_2) - m_2(T_{eq} - T_0)c_{acqua(0^{\circ}C)}}{m_2}$

$\overline{m_1}$	$0.24098 \; \mathrm{Kg}$
m_2	$0.01420 \; \mathrm{Kg}$
T_1	$26.00~^{\circ}C$
T_2	$-17.00~^{\circ}C$
T_{eq}	19.50 ° C
$c_{acqua(26^{\circ}C)}$	$4179 \text{ J/Kg}^{\circ}C$
$c_{acqua(0 \circ C)}$	$4217.7 \text{ J/Kg}^{\circ}C$

l'incertezza su tali misure è pari alla sensibilità dello strumento utilizzato

$$\sigma_{\lambda} = \sqrt{\left(\frac{\partial \lambda}{\partial m_{1}}\right)^{2} \sigma_{m_{1}}^{2} + \left(\frac{\partial \lambda}{\partial m_{2}}\right)^{2} \sigma_{m_{2}}^{2} + \left(\frac{\partial \lambda}{\partial T_{1}}\right)^{2} \sigma_{t_{1}}^{2} + \left(\frac{\partial \lambda}{\partial T_{2}}\right)^{2} \sigma_{T_{2}}^{2} + \left(\frac{\partial \lambda}{\partial T_{eq}}\right)^{2} \sigma_{T_{eq}}^{2}}$$

Risultato: $\lambda = 384678.2 \pm 1383.1 = (3.847 \pm 0.014) \cdot 10^5 \text{ J/Kg}$

Confronto con il valore atteso di 333 ·10³ J/Kg: $t = \frac{|\lambda_{atteso} - \lambda_{osservato}|}{\sigma_{\lambda}} = 37 \rightarrow$ la probabilità che la discrepanza sia dovuta ad errori casuali è inferiore al 0.3%.