A Book of Abstract Algebra (2nd Edition)

Chapter 29, Problem 2EB

Bookmark

Show all steps: ON

Problem

Let F be a field of characteristic \neq 2. Let $a \neq b$ be in F.

Prove that if $b \neq x^2 a$ for any $x \in F$, then $\sqrt{b} \notin F(\sqrt{a})$. Conclude that $F(\sqrt{a}, \sqrt{b})$ is of degree 4 over F.

Step-by-step solution

Step 1 of 3

Consider a field F of characteristic $\neq 2$. Suppose that $a \neq b \in F$. Objective is to prove that if $b \neq x^2 a$ for any $x \in F$, then $\sqrt{b} \notin F(\sqrt{a})$. Also show that degree of $F(\sqrt{a}, \sqrt{b})$ over F is 4.

Suppose, for the sake of contradiction, that $\sqrt{b} \in F(\sqrt{a})$. By the definition of extension field, the elements of $F(\sqrt{a})$ will be of the following form:

$$F(\sqrt{a}) = \{x + y\sqrt{a} : x, y \in F\}$$

Comment

Step 2 of 3

Since $\sqrt{b} \in F(\sqrt{a})$, therefore $\sqrt{b} = x + y\sqrt{a}$. On squaring both the sides, one get $b = \left(x + y\sqrt{a}\right)^2$ $= x + ay^2 + 2xy\sqrt{a}$ $\sqrt{a} = \frac{b - \left(x + ay^2\right)}{2xy}.$

This shows that \sqrt{a} can be rational, which is not possible for any field F.

Thus, $\sqrt{b} \notin F(\sqrt{a})$.

Comment

Step 3 of 3

Since $\sqrt{b} \notin F\left(\sqrt{a}\right)$, therefore \sqrt{b} cannot be a root of a polynomial of degree 1 over $F\left(\sqrt{a}\right)$ (such polynomial would have to be $x-\sqrt{b}$). But \sqrt{b} is a root of x^2-b , which is therefore the minimal polynomial of \sqrt{b} over $F\left(\sqrt{a}\right)$. Thus, $F\left(\sqrt{a},\sqrt{b}\right)$ is of degree 2 over $F\left(\sqrt{a}\right)$. And therefore by theorem, $F\left(\sqrt{a},\sqrt{b}\right)$ is of degree 4 over F.

Comment