$$i = \int_{-1}^{\infty} e \left( i, k \right) \rightarrow \left( n, m \right)$$

## Stability Analysis

By expressing  $S:=n\delta S$  and  $t:=m\delta t$ , we will obtain a difference equation for the Black-Scholes equation.

$$V(S,t) = V(n\delta S, m\delta t) = V_n^m.$$

 $\delta S = \frac{S^*}{N}$  where  $S^* \gg E$  is a suitably large value of S ;  $\delta t = \frac{T}{M}.$  Taking N and M steps for S and t respectively, so

$$S := n\delta S$$
  $0 \le n \le N$   $t := -m\delta t$   $0 \le m \le M$ .

$$\int \frac{V_n^m - V_n^{m+1}}{\delta t} + \frac{1}{2}n^2 \sigma^2 \left( V_{n-1}^m - 2V_n^m + V_{n+1}^m \right) + \frac{1}{2}(r-D) n \left( V_{n+1}^m - V_{n-1}^m \right) - rV_n^m = 0$$

and rearrange to obtain a *forward marching* scheme in time

$$V_{n}^{m+1} = V_{n}^{m} + \delta t \left( \frac{1}{2} n^{2} \sigma^{2} \left( V_{n-1}^{m} - 2V_{n}^{m} + V_{n+1}^{m} \right) \right)$$

$$+ \delta t \left( \frac{1}{2} (r - D) n \left( V_{n+1}^{m} - V_{n-1}^{m} \right) - r V_{n}^{m} \right)$$

$$\equiv F \left( V_{n-1}^{m}, V_{n}^{m}, V_{n+1}^{m} \right)$$

Now for the RHS collect coefficients of each variable term V, to get

$$V_n^{m+1} = \alpha_n V_{n-1}^m + \beta_n V_n^m + \gamma_n V_{n+1}^m$$
 (1)

where

$$V_n^{m+1} = \alpha_n V_{n-1}^m + \beta_n V_n^m + \gamma_n V_{n+1}^m$$

$$\alpha_n = \frac{1}{2} \left( n^2 \sigma^2 - n (r - D) \right) \delta t,$$

$$\beta_n = 1 - \left( r + n^2 \sigma^2 \right) \delta t,$$

$$\gamma_n = \frac{1}{2} \left( n^2 \sigma^2 + n (r - D) \right) \delta t$$
(2)

Fourier Stability (Von Neumann's) Method

A method is called step-wise unstable if for a fixed grid (i.e.  $\delta t$ ,  $\delta S$  constant) there exists an initial perturbation which "blows up" as  $t \to \infty$ , i.e. as we march in time. Here in a forward marching scheme. The question we wish to answer is "do small errors propagate along the grid and grow exponentially?".

Assume an initial disturbance which is proportional to  $\exp(in\omega)$ . We therefore study the propagation of perturbations created at any given point in time.

G.D. Jmith (Oxford) Numerical Methods  $^{2}$   $f_{r}$   $PD \in \mathcal{A}$ 



If  $\widehat{V}_n^m$  is an approximation to the exact solution  $V_n^m$  then

 $\frac{\partial \sigma}{\partial \sigma} = \frac{1}{1} g_{x} \frac{\partial \sigma}{\partial \sigma}$ 

$$\hat{V}_n^m = V_n^m + E_n^m$$

where  $E_n^m$  is the associated error. Then  $E_n^m$  also satisfies the difference equation (4) to give

which is oscillatory of amplitude  $\overline{a}$  and frequency  $\omega$ . Substituting (3) into (1) gives

$$\overline{a}^{n+1}e^{(in\omega)} = \alpha_n \overline{a}^{n}e^{i(n-1)\omega} + \beta_n \overline{a}^{n}e^{in\omega} + \gamma_n \overline{a}^{n}e^{i(n+1)\omega}$$

which becomes

 $\overline{a} = \alpha_n e^{-i\omega} + \beta_n + \gamma_n e^{i\omega}.$ 

Now stability criteria arises from the balancing of the time dependency and diffusion terms, so that

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = 0$$

From (2) we take the following contributions  $\frac{\partial v}{\partial t} = \frac{\partial v}{\partial t}$ 

$$\alpha_n = \frac{1}{2}n^2\sigma^2\delta t, \ \beta_n = 1 - n^2\sigma^2\delta t, \ \gamma_n = \frac{1}{2}n^2\sigma^2\delta t$$

Cosx: 
$$\frac{e^{x} + e^{-ix}}{2}$$
 $\frac{1}{2}n^{2}\sigma^{2}\delta t \left(e^{i\omega} + e^{-i\omega}\right) + 1 - n^{2}\sigma^{2}\delta t$ 
 $\frac{1}{2}n^{2}\sigma^{2}\delta t \left(\cos \omega - 1\right) + 1$ . Cosc comes we have

 $\frac{1}{a} = 1 - \frac{1}{2}n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 

For stability  $\overline{a}$  must be bounded, i.e.  $|\overline{a}| < 1$ 

which upon simplifying we find is

 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 

which upon simplifying we find is

 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e^{i\omega} + e^{-i\omega}\right)$ 
 $\frac{1}{a} = 1 - 2n^{2}\sigma^{2}\sin^{2}\frac{\omega}{2}\delta t - \frac{1}{2}\left(e$