Problem Set 02

[15] 1. O & N: Chapter 3: Homework Problems: 1 Find \bar{v} and the generation time Λ for thermal neutrons. Calculate \bar{v} as the spectrum average for a normalized Maxwell spectrum:

$$\phi(E)dE = \frac{E}{kT}e^{-\frac{E}{kT}}\frac{dE}{kT}$$

Use T = 900 K and $\nu \Sigma_f = 0.3/\text{cm}$.

2. O & N: Chapter 3: Homework Problems: 2 Find \bar{v} and $\left(\frac{1}{v}\right)$ for a two group representation of a thermal reactor spectrum, composed for simplicity of a Maxwellian and a $\frac{1}{E}$ spectrum:

$$\phi_1(E) = \frac{a}{E}$$

$$\phi_2(E) = \frac{b E}{(k T)^2} e^{-\frac{E}{k T}}$$

$$, for 0.2 \text{ eV} \le E \le 2 \text{ MeV}$$

$$, for 0 \le E \le \infty$$

- [5] (a) Find a and b such that the two components of the normalized $\phi(E)$ provide equal contributions to the energy integral.
- [4] (b) Find the average velocities for both groups (\bar{v}_1 and \bar{v}_2). If necessary, leave as a function of temperature, T, in [K].
- [4] (c) Express the two group definitions of \bar{v} and $\overline{\left(\frac{1}{v}\right)}$ as functions of temperature, T, in [K].
- [2] (d) Find the corresponding numerical values for T = 900 [K].
- [5] 3. O & N: Chapter 3: Review Questions: 6 Give two equivalent differential equations for the power of a nuclear reactor. Have one equation use k & l and the other use ρ & Λ . Treat all neutrons as prompt and neglect external sources.
 - 4. Using the answer from Question 3 that contains $\rho \& \Lambda$, account for the presence of a constant external source of neutrons in the reactor by introducing S_o , expressed in [J], into the differential equation.

- [1] (a) What is the differential equation describing this new system? Be sure to provide the initial condition.
- [5] (b) Solve the differential equation for a constant ρ , such that $k \neq 1$.
- [5] (c) Solve the differential equation for k = 1.
- [2] (d) What is the value of k that renders a steady state solution for a source S_o ?
- [1] (e) What is the steady state multiplication factor, M, for the reactor in terms of k?

 Note: $M = \frac{P_o}{S_o}$
- [1] (f) Plot $\frac{M}{l}$ vs. k.