Nume si prenume
Grupa:

Exercitiu	1	2	3	4	5	6	7	8	9
Punctaj									

Examen AA

- 1. (1p) Rezolvati recurenta T(n) = 2T(n/2) + n.
- 2. (1p) Determinati $|\Theta(f(n)) O(f(n))|$.

Fie Tipul de Date Abstract List, definit astfel:

 $\label{eq:Void:List} \begin{aligned} \text{Void:List} \\ \text{Ins:} & E \times \text{List} \rightarrow \text{List} \end{aligned}$

- 3. (1p) Definiti operatorul length:List $\to \mathbb{N}$.
- 4. (1p) Definiti operatorul care concateneaza doua liste: ++:List×List→List.
- 5. (1p) Demonstrati prin inductie structurala ca ∀1,1'∈List, length(1 ++ 1')
 = length(1) + length(1').
- 6. (1p) Dati un exemplu de problema din clasa P. Justificati pe scurt.

- 7. (1p) Dati un exemplu de problema din clasa $RE \setminus R$. Justificati pe scurt.
- 8. (1p) Fie Q₁ si Q₂ doua probleme astfel incat Q₁ este P-completa si Q₁ ≤p Q₂. Atunci:
 (i) Q₂ ∈ P, (ii) Q₂ ∈ NP, (iii) Q₂ este P-completa, (iv) afirmatiile (i), (ii) si (iii) nu sunt in mod necesar adevarate. Justificati pe scurt.
- 9. Fie M_1 o masina Turing nedeterminista si M_2 o masina Turing determinista. M_1 si M_2 rezolva problema Q. M_1 ruleaza in $O(n^2 \log n)$, iar M_2 ruleaza in $O(2^{\sqrt{n} \log n})$. Care afirmatii sunt corecte: (i) $Q \in EXPTIME$, (ii) $Q \in NP$, (ii) Q este NP-dura, (iii) Q este NP-completa, (iv) $Q \in P$, (v) M_1 si M_2 nu pot exista. Justificati pe scurt.