

் fi) Int. Cl.⁶:

19 BUNDESREPUBLIK DEUTSCHLÄND

® Offenlegungsschrift

_® DE 198 06 482 A 1

PATENT- UND MARKENAMT

- (21) Aktenzeichen: ② Anmeldetag:
- (43) Offenlegungstag:
- 198 06 482.9
- 17. 2.98
- 19. 8.99

C 08 F 220/34 C 08 F 220/10 C 04 B 24/26

C 08 F 220/58 C 08 F 220/52 C 09 D 133/26 C 09 D 133/14

- (71) Anmelder: SKW Trostberg AG, 83308 Trostberg, DE
- (7) Erfinder:

Albrecht, Gerhard, Dr., 83342 Tacherting, DE; Huber, Christian, 84518 Garching, DE; Schuhbeck, Manfred, 83308 Trostberg, DE; Weichmann, Josef, Dr., 84568 Pleiskirchen, DE; Kern, Alfred, Dr., 84558 Kirchweidach, DE

66) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE	37 07 627 C2
DE	34 02 935 C2.
DE	196 08 910 A1
DÉ	39 32 440 A1
DE	39 05 915 A1
DE	33 02 168 A1
US	52 94 651
US	50 25 040
US	47 41 843

US 46 74 574 EP 06 48 823 A1 EP 02 91 590 A1 EP 02 17 608 A2 ΕP 01 96 689 A1 EP 01 57 055 A3 EP 01 57 055 A2 WO 92 17 417 A1 WO 85 00 802 A1

JP Patent Abstracts of Japan: 09087576 A; 09111180 A;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Wasserlösliche oder wasserquellbare sulfogruppenhaltige Copolymere, Verfahren zu deren Herstellung und ihre Verwendung
- Es werden wasserlösliche oder wasserquellbare sulfogruppenhaltige Copolymere auf Basis von (Meth-)Acrylamid-alkylsulfonsäuren und (Meth-)Acrylamid bzw. N-Vinyl-Verbindungen beschrieben sowie deren Verwendung als Zusatzmittel für wäßrige Baustoffsysteme oder für wasserbasierende Anstrich- und Beschichtungssysteme. Die erfindungsgemäßen Copolymere stellen auch bei relativ geringen Einsatzmengen hochwirksame und gut verträgliche Wasserretentionsmittel in solchen Baustoff- und Anstrichsystemen dar.

Beschreibung

Die vorliegende Erfindung betrifft wasserlösliche oder wasserquellbare sulfogruppenhaltige Copolymere, Verfahren zu deren Herstellung und die Verwendung dieser Copolymere in wäßrigen Baustoffsystemen auf der Basis hydraulischer Bindemittel wie Zement, Kalk, Gips, Anhydrit usw. sowie in wasserbasierenden Anstrich- und Beschichtungssystemen.

Üblicherweise werden wasserlösliche nichtionische Abkömmlinge von Polysacchariden, insbesondere Cellulose- und Stärkederivate, in wäßrigen Baustoffmischungen verwendet, um das unerwünschte Verdunsten des für die Hydratation und Verarbeitung erforderlichen Wassers bzw. dessen Abfließen in den Untergrund zu verzögern bzw. zu verhindern.

Die Möglichkeit, den Wasserhaushalt in Anstrichsystemen, Putzen, Klebemörteln, Spachtelmassen und Fugenfüllern, aber auch in Spritzbetonen für den Tunnelbau sowie in Unterwasserbetonen durch derartige Zusätze zu kontrollieren, hat weitreichende praktische Konsequenzen. Es werden hierdurch nämlich sowohl die Bigenschaften des Baustoffs im Zustand seiner Verarbeitung als auch seine Eigenschaften im erhärteten bzw. getrockneten Zustand maßgeblich beeinflußt. Über die zentrale Funktion Wasserretention beeinflussen derartige Zusätze daher auch Konsistenz (Plastizität), offene Zeit, Glättvermögen, Segregation, Klebrigkeit, Haftung (am Untergrund und am Werkzeug), Standfestigkeit und Abrutschwiderstand sowie Haftzug- und Druckfestigkeit bzw. Schwindung.

Die gemäß Ullmann's Enzyklopädie der Technischen Chemie (4. Auflage, Band 9, Seiten 208–210, Verlag Chemie Weinheim) gebräuchlichsten Wasserretentionsmittel sind synthetisch erzeugte nichtionische Cellulose und Stärkederivate wie Methylcellulose (MC), Hydroxyethylcellulose (HEC), Hydroxyethylmethylcellulose (HEMC). Aber auch mikrobiell erzeugte Polysaccharide wie Welan gum und natürlich vorkommende extraktiv isolierte Polysaccharide (Hydrocolloide) wie Alginate, Xanthane, Carageenane, Galactomannane usw., werden entsprechend dem Stand der Technik zur Regelung des Wasserhaushaltes und der Rheologie von wäßrigen Baustoff- und Anstrichsystemen verwendet.

In der DE-OS 43 35 437 wird die Herstellung von Alkylcellulosen, z. B. Methylcellulose, aus Natriumcellulose und Methylchlorid beschrieben.

Die EP-A 292 242 offenbart die Synthese von Hydroxypropylmethylcellulose aus Baumwollinters, Methylchlorid und Propylenoxid, während für die Herstellung der in der DE-OS 33 16 124 beschriebenen HEMC-Derivate Ethylenoxid anstelle von Propylenoxid verwendet wird.

Nachteilig bei diesen Produkten ist die Verwendung von bekanntermaßen physiologisch bedenkliche Rohstoffen wie Ethylenoxid, Propylenoxid und Methylchlorid im Herstellprozeß.

Der Einsatz von nichtionischen Cellulosederivaten im Baustoff- und Anstrichsektor wird in einer Reihe von Druckschriften, so in der DE-OS 39 34 870 beschrieben. Derartige Produkte weisen niedrige thermische Flockungspunkte auf, was dazu führt, daß das Wasserretentionsvermögen bei Temperaturen oberhalb von 30°C drastisch zurückgeht. Darüber hinaus ist das rheologische Eigenschaftsprofil dieser Produkte in Anstrichsystemen unzureichend, da Pigmente aufgrund fehlender adsorptiver Kräfte der Additive ungenügend dispergiert werden. Durch die Verwendung von Celluloseethern, welche ionische Gruppen enthalten, können diese Probleme gelöst werden.

So werden z. B. in der US-PS 5,372,642 Methylhydroxyalkylcarboxymethylcellulosen beschrieben, die in kalk- und zementhaltigen Mischungen keinen Abfall der Wasserretention ergeben, wenn die Anwendungstemperatur von 20 auf 40°C erhöht wird. Bine generelle Unverträglichkeit mit mehrwertigen Kationen, wie Ca²⁺ und Al³⁺ läßt sich jedoch nicht grundsätzlich ausschließen, was zur Ausflockung und damit zur Unwirksamkeit dieser Produkte führen kann.

Sulfoalkylierte Cellulosederivate werden u. a. in der EP-A 554 749 beschrieben. Sie weisen im Vergleich zu carboxymethylierten Produkten eine ausgezeichnete Verträglichkeit mit mehrwertigen Kationen auf, zeigen jedoch bei Anwendung in Klebemörteln und Putzen abbindeverzögernde Eigenschaften. Ein weiterer Nachteil derartiger Produkte ist die unzureichend hohe Standfestigkeit in Klebemörteln, insbesondere bei Verwendung schwerer Fliesen.

Eine Erhöhung der Standfestigkeit erreicht man, wie in der US-PS 4,021,257 beschrieben, durch Modifizierung oder Formulierung der Celluloseether mit Polyacrylamid. Nachteilig hierbei ist die Tatsache, daß Polyacrylamid unter alkalischen Bedingungen Ammoniak freisetzt, wodurch die Anwendung im Innenbereich problematisch erscheint.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, wasserlösliche oder wasserquellbare Copolymere zu entwickeln, welche die genannten Nachteile des Standes der Technik nicht aufweisen, sondern auch bei vergleichsweise hohen Temperaturen wirken, einfach und umweltverträglich herstellbar sind und darüber hinaus Baustoff- und Anstrichsystemen ausgezeichnete anwendungstechnische Eigenschaften im Verarbeitungs- und erhärteten bzw. getrockneten Zustand verleihen.

Diese Aufgabe wurde erfindungsgemäß durch die Copolymere entsprechend Anspruch 1 gelöst.

Es hat sich nämlich überraschenderweise gezeigt, daß die erfindungsgemäßen sulfogruppenhaltigen Copolymere auch bei relativ geringen Einsatzmengen hochwirksame und gut verträgliche Wasserretentionsmittel in Baustoff- und Anstrichsystemen darstellen und dabei verbesserte Eigenschaften gegenüber derzeit verwendeten Produkten aufweisen.

Die Copolymere entsprechend der vorliegenden Erfindung bestehen aus mindestens vier Baugruppen a), b), c) und d).
Die erste Baugruppe stellt ein sulfogruppenhaltiges substituiertes Acryl- oder Methacrylderivat der Formel I dar:

mit R^1 = Wasserstoff oder Methyl, R^2 , R^3 , R^4 = Wasserstoff, aliphatischer Kohlenwasserstoffrest mit 1 bis 6 C-Atomen, ggf. mit Methylgruppen substituierter Phenylrest und M = Wasserstoff, ein- oder zweiwertiges Metallkation, Ammonium bzw. ein organischer Aminrest sowie a = ½ oder 1. Als ein- oder zweiwertiges Metallkation finden vorzugsweise Natrium-, Kalium-, Calcium- oder Magnesiumionen Verwendung. Als organische Aminreste werden vorzugsweise substituierte Ammoniumgruppen eingesetzt, die sich ableiten von primären, sekundären oder tertiären C_1 - bis C_{20} -Alkylaminen, C_1 - bis C_{20} -Alkanolaminen, C_5 - bis C_8 -Cycloalkylaminen und C_6 - bis C_{14} -Arylaminen. Beispiele für entsprechende Amine sind Methylamin, Dimethylamin, Trimethylamin, Ethanolamin, Diethanolamin, Triethanolamin, Cyclohexylamin, Dicyclohexylamin, Phenylamin sowie Diphenylamin in der protonierten Ammoniumform.

25

30

50

Die Baugruppe a) leitet sich ab von Monomeren wie 2-Acrylamido-2-methylpropansulfonsäure, 2-Methacrylamido-2-methylpropansulfonsäure, 2-Acrylamidobutansulfonsäure, 3-Acrylamido-3-methylbutansulfonsäure, 2-Acrylamido-2,4,4-trimethylpentansulfonsäure. Besonders bevorzugt ist 2-Acrylamido-2-methylpropansulfonsäure.

Die zweite Baugruppe b) entspricht der Formel IIa) und/oder IIb):

mit der oben beschriebenen Bedeutung für R¹, R⁵ und R⁸ stehen unabhängig voneinander für Wasserstoff, einen aliphatischen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 5 bis 8 C-Atomen oder einen Arylrest mit 6 bis 14 C-Atomen. Diese Reste können ggf. mit Hydroxyl-, Carboxyl- oder Sulfonsäuregruppen substituiert sein.

Q bedeutet in Formel IIb) Wasserstoff oder -CHR⁵R⁷. Im Falle von $Q \neq H$ können R⁵ und R⁸ außerdem in der Struktur IIb) zusammen für eine -CH₂-(CH₂)_y-Methylengruppe mit y = 1 bis 4 stehen, die unter Einschluß des Restes der Formel

einen fünf- bis achtgliedrigen heterozyklischen Ring bilden. R⁷ kann ein Wasserstoffatom, einen C₁- bis C₄-Alkylrest, eine Carboxylsäure- oder eine Carboxylatgruppe -COOM_a darstellen, wobei M und a die oben genannte Bedeutung besitzen.

Als Monomere, die die Struktur IIa) bilden, kommen vorzugsweise folgende Verbindungen in Frage: Acrylamid, Me-

thacrylamid, N-Methylacrylamid, N,N-Dimethylacrylamid, N-Ethylacrylamid, N-Cyclohexylacrylamid, N-Benzylacrylamid, N-Methylolacrylamid, N-tertiär Butylacrylamid usw. Beispiele für Monomere als Basis für die Struktur IIb) sind N-Methyl-N-vinylformamid, N-Methyl-N-vinylacetamid, N-Vinylpyrrolidon, N-Vinylcaprolactam, N-Vinylpyrrolidon-5-carbonsäure u. a.

Die dritte Baugruppe c) entspricht der Formel III:

mit X = Halogen (vorzugsweise Cl, Br), C_1 - bis C_4 -Alkylsulfat oder C_1 - bis C_4 -Alkylsulfonat, x = 1 bis 6, Y = O, NH oder NR⁸ mit R⁸ = R⁵ bzw. R⁶ und der oben angegebenen Bedeutung für R⁵ und R⁸. Als Monomere, die die Struktureinheit c) bilden können, kommen insbesondere folgende Verbindungen in Frage: [2-(Acryloylo::y)-ethyl]-trimethyl-ammoniumchlorid, [2-(Acryloylamino)-ethyl]-trimethyl-ammoniumchlorid, [2-(Acryloyloxy)-ethyl]-trimethyl-ammoniumchlorid bzw. -methosulfat und [3-(Methacryloylamino)-propyl]-trimethylammoniumchlorid.

Die vierte Baugruppe d) entspricht der Formel IV

40

mit der oben angegebenen Bedeutung für R^1 sowie $Z = -COO(C_m H_{2m}O)_n R^5$ und $-(CH_2)_p O(C_m H_{2m})_n R^5$ mit p=0 bis 20, m=2 bis 4 und n=0 bis 200. Die Baugruppe d) leitet sich insbesondere ab von Monomeren wie Methylpolyethylenglykol-750-methacrylat, Polyethylenglykol-500-acrylat, Allylpolyethylenglykol-350, Methylpolyethenglykol-2000-monovinylether, Phenyltriethylenglykolacrylat, Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxypropylmethacrylat, Polyethylenglykol-500-vinyloxy-butylether, Methylpolyethylenglykol-block-propylenglykolallylether usw.

Bei den Monomeren, die die Baugruppen a) bis d) bilden, handelt es sich ausschließlich um einfach ungesättigte Verbindungen, die einen im wesentlichen linearen Aufbau der makromolekularen Struktur ergeben. Für bestimmte Anwendungsgebiete kann jedoch eine Verzweigung oder Vernetzung der Polymerketten von Vorteil sein. Um derartige Strukturen zu bilden, können die erfindungsgemäßen Copolymere von 0,0001 bis 50 Mol-% der Baugruppe e) enthalten, die sich bspw. von Monomeren mit mehr als einer Doppelbindung ableiten, nämlich von di- und triolefinischen Verbindungen mit einem bevorzugten Anteil von 0,001 bis 5 Mol-%. Beispiele für derartige Verbindungen sind Diacrylat- oder Dimethacrylatester von Ethylenglykol, Diethylenglykol, Polypthylenglykol, Propylenglykol, Polypropylenglykol oder Blockcopolymeren aus Ethylen- und Propylenglykol, Diallyl- bzw. Divinylether von Ethylenglykol oder Propylenglykol, 1,4-Butandiol, 1,5-Pentandiol oder 1,6-Hexandiol. Weiterhin verwendbar sind N,N'-Methylen-bis-acrylamid, N,N'-Methylenbis-methacrylamid als diolefinische Verbindungen sowie z. B. Trimethylolpropantriacrylat und Triallylisocyanurat als triolefinische Monomere.

Außerdem kann sich die Baugruppe e) auch von monoolefinischen polymerisationsfähigen Verbindungen bspw. auf Acryl- oder Vinylbasis mit einem bevorzugten Anteil von 0,1 bis 30 Mol-% ableiten. Als Beispiele seien genannt: Acrylnitril, Styrol, Ethylen, Butadien, Propylen, Isobuten, Vinylacetat, Acrylsäure, Methacrylsäure, Methylacrylat, Ethylacrylat, Ethylacrylat, Ethylacrylat, Allylacetat, Maleinsäure, Maleinsäureanhydrid, Maleinsäurediethylester, Maleinsäurediethylester, Fumarsäure, Itakonsäure, Dodecenylbernstein-säureanhydrid, Vinylsulfonsäure, Styrolsulfonsäure usw.

Es ist als erfindungswesentlich anzusehen, daß die Copolymere aus 3 bis 96 Mol-% der Baugruppe a), 3 bis 96 Mol-% der Baugruppe b) und 0,05 bis 75 Mol-% der Baugruppe c), 0,01 bis 50 Mol-% der Baugruppe d) bestehen. Vorzugsweise verwendete Polymere enthalten 40 bis 80 Mol-% a), 15 bis 55 Mol-% b), 2 bis 30 Mol-% c) und 0,5 bis 10 Mol-% d).

Die Anzahl der sich wiederholenden Strukturelemente in den erfindungsgemäßen Copolymeren ist nicht eingeschränkt und hängt sehr stark vom jeweiligen Anwendungsgebiet ab. Es hat sich allerdings als vorteilhaft erwiesen, die

Anzahl der Struktureinheiten so einzustellen, daß die Copolymere ein zahlenmittleres Molekulargewicht von 50 000 bis 5 000 000 aufweisen.

Die Herstellung der erfindungsgemäßen Copolymere erfolgt in an sich bekannter Weise durch Verknüpfung der die Strukturen a) bis d) bildenden Monomere durch radikalische, ionische oder komplex koordinative Substanz-, Lösungs-, Gel-, Emulsions-, Dispersions- oder Suspensionspolymerisation. Da es sich bei den erfindungsgemäßen Produkten um wasserlösliche oder wasserquellbare Copolymere handelt, ist die Polymerisation in wäßriger Phase, die Polymerisation in umgekehrter Emulsion bzw. die Polymerisation in inverser Suspension bevorzugt. In besonders bevorzugten Ausführungsformen erfolgt die Umsetzung als wäßrige Lösungs- bzw. Gelpolymerisation oder als inverse Suspensionspolymerisation in organischen Lösemitteln. Wird das Verfahren in wäßriger Phase durchgeführt, so ist insbesondere bei der Herstellung von Copolymeren im oberen Molekulargewichtsbereich, wie sie bspw. in Klebemörteln und im Unterwasserbeton verwendet werden, die Gelpolymerisation bevorzugt. Aufgrund äußerst hoher Lösungsviskositäten derartiger Produkte und des damit erforderlichen hohen Verdünnungsgrades wäre eine Lösungspolymerisation unwirtschaftlich.

Die Herstellung von erfindungsgemäßen Copolymeren, deren Molekulargewicht im unteren oder mittleren Bereich liegt (Anwendbarkeit in Putzen und Anstrichsystemen), kann demgegenüber durchaus in Form einer wäßrigen Lösungspolymerisation erfolgen.

Die Umsetzung der Monomere wird bei Temperaturen von –20 bis 250°C vorgenommen. Vorzugsweise erfolgt die Polymerisation bei 20 bis 120°C unter Zuhilfenahme üblicher Radikalstarter wie Wasserstoffperoxid, Natrium-, Kaliumoder Ammoniumperoxodisulfat, Dibenzoylperoxid, 2,2'-Azo-bis-(2-amidinopropan)-dihydrochlorid, Azo-bis-(isobuty-ronitril) tert.-Butylhydroperoxid oder auf physikalischem Wege durch Bestrahlung oder elektrochemisch. Es ist ebenso möglich, die oben genannten Initiatoren mit Reduktionsmitteln wie Dibutylaminhydrochlorid, Na-Hydroxymethansulfinatdihydrat, Alkalimetallsulfiten und -metabisulfiten, Thioharnstoff, Übergangsmetallsalzen, die in der reduzierten Form vorliegen wie Eisen-2-sulfatheptahydrat u. a., zu Redoxsystemen zu kombinieren. Auch die Verwendung sonstiger Hilfsmittel, wie Molekulargewichtsreglern, z. B. Thioglykolsäure, Mercaptoethanol und Natriumhypophosphit, ist möglich.

Wird das Verfahren als wäßrige Lösungspolymerisation durchgeführt, so erfolgt die Polymerisation vorzugsweise bei 20 bis 100°C, wobei die Konzentration der wäßrigen Lösung bevorzugt auf 5 bis 20 Gew.-% eingestellt wird. Zur Durchführung der Polymerisation gemäß einer bevorzugten Ausführungsform wird das Sulfoalkylacrylamid in Form seiner handelsüblichen Säureform in Wasser gelöst, durch Zugabe eines Alkalimetallhydroxids neutralisiert, unter Rühren mit weiteren erfindungsgemäß zu verwendenden Monomeren sowie mit Puffern, Molekulargewichtsreglern u. a. Polymerisationshilfsmitteln vermischt. Nach Einstellung des Polymerisations-pH-Wertes, der vorzugsweise zwischen 4 und 9 liegt, erfolgt eine Spülung des Gemisches mit einem Schutzgas wie Helium oder Stickstoff und anschließend die Aufheizung auf die entsprechende Polymerisationstemperatur. Die Polymerisation wird durch Zugabe des Polymerisationsinitiators gestartet und bis zum vollständigen Umsatz der Monomere weitergeführt. Die als viskose wäßrige Lösungen anfallenden Copolymere können direkt oder aber in getrockneter Form ihrer erfindungsgemäßen Verwendung zugeführt werden.

Wird zur Herstellung der Copolymere das Verfahren der wäßrigen Gelpolymerisation angewendet, so kann die Monomerkonzentration im Bereich von 15 bis 60 Gew.-% liegen. Bevorzugter Temperaturbereich sind 20 bis 100°C. Es wird bevorzugt so wie bei der wäßrigen Lösungspolymerisation verfahren, jedoch fällt das Copolymerisat aufgrund der verwendeten geringeren Wassermenge als Gel an, welches vorzugsweise als zerkleinertes und getrocknetes Pulver angewendet wird.

In einer weiteren bevorzugten Ausführungsform erfolgt die Copolymerisation als inverse Suspensionspolymerisation der wäßrigen Monomerphase in einem organischen Lösemittel. Hierbei wird bevorzugt so verfahren, daß man das in Wasser gelöste und ggf. neutralisierte Monomergemisch in Gegenwart eines organischen Lösemittels, in welchem die wäßrige Monomerphase nicht oder schwer löslich ist, polymerisiert. Vorzugsweise wird in Gegenwart von "Wasser in Öl"-Emulgatoren (W/O-Emulgatoren) und/oder Schutzkolloiden auf Basis nieder- oder hochmolekularer Verbindungen gearbeitet, die in Anteilen von 0,05 bis 20 Gew.-% bezogen auf die Monomere verwendet werden. Beispiele für derartige Stabilisatoren sind Hydroxypropylcellulose, Ethylcellulose, Methylcellulose, Celluloseacetatbutyratmischether, Copolymere aus Ethylen und Vinylacetat, Styrol und Butylacrylat, Polyoxyethylensorbitanmonooleat, -laurat, bzw. -stearat, Blockcopolymere aus Propylen- und Ethylenoxid u. a.

Als organische Lösemittel kommen u. a. in Frage lineare aliphatische Kohlenwasserstoffe wie n-Pentan, n-Hexan, n-Heptan, verzweigte aliphatische Kohlenwasserstoffe (Isoparaffine), cycloaliphatische Kohlenwasserstoffe wie Cyclohexan und Decalin sowie Aromaten wie Benzol, Toluol und Xylol. Darüber hinaus eignen sich Alkohole, Ketone, Carbonsäureester, Nitroverbindungen, halogenhaltige Kohlenwasserstoffe, Ether und viele andere Solventien. Bevorzugt sind solche organischen Lösemittel, die mit Wasser azeotrope Gemische bilden.

Die wasserlöslichen oder wasserquellbaren Copolymere fallen zunächst in gelöster Form als feinverteilte wäßrige Tröpfehen im organischen Suspensionsmedium an und werden vorzugsweise durch Entfernen des Wassers als feste kugelförmige Partikel im organischen Suspensionsmittel isoliert. Nach Abtrennung des Suspensionsmittels und Trocknung verbleibt ein granulatförmiger Feststoff, der direkt oder in vermahlener Form seiner erfindungsgemäßen Verwendung zugeführt wird.

Die erfindungsgemäßen Polymerverbindungen eignen sich hervorragend als Zusatzmittel für wäßrige Baustoffsysteme, die hydraulische Bindemittel wie Zement, Kalk, Gips, Anhydrit usw. enthalten. Darüber hinaus sind sie in wasserbasierenden Anstrich- und Beschichtungssystemen anwendbar.

Die bevorzugten Einsatzmengen der erfindungsgemäßen Copolymere liegen in Abhängigkeit von der Verwendungsart zwischen 0,05 und 5 Gew.-% bezogen auf das Trockengewicht des Baustoff-, Anstrich- bzw. Beschichtungssystems.

Die Copolymere besitzen ausgezeichnete wasserrückhaltende Eigenschaften auch bei relativ hohen Anwendungstemperaturen und verleihen pigmenthaltigen Anstrichstoffen, Putzen, Klebemörteln, Spachtelmassen, Fugenfüllern, Spritzbeton, Unterwasserbeton, Erdölbohrzementen u. a. hervorragende anwendungstechnische Eigenschaften sowohl im Verarbeitungszustand als auch im erhärteten bzw. getrockneten Zustand (Haftzugfestigkeit von Klebemörtel nach Naßlagerung).

Die folgenden Beispiele sollen die Erfindung näher erläutern.

Beispiel 1 (Lösungspolymerisation)

In einem 1 1-Polymerisationsreaktor mit Rührer, Rückflußkühler, Thermometer und Inertgasanschluß wurden 550 g Wasser vorgelegt. Unter Rühren wurden 20,61 g (0,0994 Mol) 2-Acrylamido-2-methylpropansulfonsäure zugegeben und bis zum Erhalt einer klaren Lösung gerührt. Nach Zusatz von 0,50 g Citronensäurehydrat wurden unter Rühren und Kühlen 78,22 g 5 Gew.-%ige wäßrige Natronlauge zugesetzt und ein pH-Wert von 4,60 eingestellt. Anschließend wurden nacheinander 20,61 g (0,2079 Mol) N,N-Dimethylacrylamid, 3,05 g (0,011 Mol) [2-(Methacryloyloxy)-ethyl]trimethylammoniumchlorid (75 Gew.-%ige Lösung in Wasser) sowie 1,40 g (0,0017 Mol) Methylpolyethylenglykol-750-methacrylat zugesetzt, wobei der pH-Wert auf 4,75 anstieg. Die Lösung wurde durch 30 minütige Spülung mit Stickstoff inertisiert und auf 40°C erwärmt. Anschließend wurden nacheinander 4,4 mg Eisensulfatheptahydrat und 0,76 g 30 Gew.-%iges wäßriges Wasserstoffperoxid zugesetzt. Die Polymerisation wurde durch Zugabe einer Lösung aus 0,57 g Natriumhydroxymethansulfinatdihydrat in 44,19 g Wasser gestartet. Es wurde Z Stunden bei 40°C gerührt, um die Polymerisation zu vervollständigen. Die hochviskose Lösung, die einen Feststoffgehalt von 6,3 Gew.-% aufwies, wurde im Vakuum eingeengt.

Es wurden 45 g eines weißen, harten Granulats erhalten, welches mit Hilfe einer Schlagmühle in einen pulverigen Zu-

stand überführt wurde.

Beispiel 2 (Gelpolymerisation)

In einem zylindrischen doppelwandigen 1 l-Polymerisationskolben wurden bei 25°C 70,07 g (0,3381 Mol) 2-Acrylamido-2-methylpropansulfonsäure sowie 1,00 g Citronensäuremonohydrat in 350 g Wasser vorgelegt. Anschließend wurden unter Kühlen und Rühren 67,81 g 20 Gew.-%ige wäßrige Natronlauge zugegeben und ein pH-Wert von 4,50 eingestellt. Die klare Monomerlösung wurde mit 12,37 g (0,1248 Mol) N,N-Dimethylacrylamid, 9,41 g (0,0266 Mol) [2-(Methacryloyloxy)-ethyl]-trimethylammoniummethosulfat (80 Gew.-% in Wasser) und 0,95 g (0,0017 Mol) Allylpolyethylenglykol-550 versetzt. Das Gemisch wurde 35 Minuten mit Stickstoff gespült und daraufhin wurden nacheinander 8,8 mg Eisensulfatheptahydrat, 1,52 g 30 Gew.-%iges wäßriges Wasserstoffperoxid und 1,90 g einer 10 Gew.-%igen wäßrigen Natriumhydroxymethansulfinatdihydrat-Lösung zugegeben. Der Ansatz wurde unter Stickstoffspülung auf eine Innentemperatur von 40°C aufgeheizt. Sofort nach Erreichen dieser Temperatur setzte die Polymerisation, erkennbar an einer starken Exothermie und einem merklichen Viskositätsanstieg, ein. Nach Erreichen des Temperaturmaximums von 65°C wurde weitere 4 Stunden bei 40°C Reaktormanteltemperatur getempert und auf Raumtemperatur abgekühlt.

Das erhaltene wasserklare Gel wurde zerkleinert und bei 90°C im Vakuum bis zur Gewichtskonstanz getrocknet. Nach der Vermahlung wurde ein weißes, sprödes Pulver in einer Ausbeute von 94,8 g erhalten.

Beispiel 3 (Inverse Suspensionspolymerisation)

In einem 500 ml-Vierhalskolben mit Thermometer, Rührer, Rückflußkühler und Inertgasanschluß wurden 200 g Cyclohexan und 1,50 g Ethylcellulose (Ethoxylgehalt ca. 48,5%, Substitutionsgrad ca. 2,50) vorgelegt. Nach 30 minütiger Inertisierung wurde der Reaktorinhalt auf die Rückflußtemperatur von 80°C gebracht und über einen Zeitraum von 1 Stunde wurde eine wäßrige Lösung aus 38,80 g (0,1872 Mol) 2-Acrylamido-2-methylpropansulfonsäure, 6,30 g (0,0636 Mol) N,N-Dimethylacrylamid, 4,05 (0,0092 Mol) [3-(Methacryloylamino)-propyl]-trimethylammoniumchlorid (50 Gew.-% in Wasser), 1,99 g (0,004 Mol) Methylpolyethylenglykol-500-monovinylether, 35,95 g 20 Gew.-%iger wäßriger Natronlauge, 0,012 g 2,2'-Azo-bis-(2-amidinopropan)-dihydrochlorid und 6 g Wasser zugeführt. Nach Ende der Dosierung wurde noch weitere 2,5 Stunden bei 75 bis 80°C kräftig gerührt und anschließend über einen Zeitraum von ca. 2 Stunden das Wasser azeotrop entfernt. Nach Abkühlung auf Raumtemperatur wurde der Feststoff in Form von spherisch geformten Partikeln abfiltriert, mit wenig Cyclohexan gewaschen und im Vakuum getrocknet.

Es verblieben 54,3 g eines feinen glasartigen Granulates, welches durch Mahlung in ein weißes, feinkörniges Pulver

überführt wurde.

Beispiel 4

Nach dem Verfahren einer wäßrigen Lösungspolymerisation wurde, analog Beispiel 1, ein Gemisch der folgenden Zusammensetzung polymerisiert:

5,51 g (0,0266 Mol) 2-Acrylamido-2-methylpropansulfonsäure, die mit

21,26 g 5 Gew.-%iger wäßriger Natronlauge neutralisiert wurde.

35,71 g (0,5024 Mol) Acrylamid

7,39 g (0,0220 Mol) [2-(Acryloyloxy)-ethyltrimethylammoniummethosulfat (80 Gew.-%ig)

3,97 g (0,0047 Mol) Methylpolyethylenglykol-750-methacrylat

11,2 mg Eisensulfatheptahydrat

2,03 g 30 Gew.-%iges wäßriges Wasserstoffperoxid

0,86 g Natriumhydroxymethansulfinatdihydrat

750 g Wasser.

Nach Entfernung des Wassers aus der hochviskosen Polymerlösung verblieben 49,8 g eines spröden, weißen Rückstandes, der durch Mahlung in ein Pulver überführt wurde.

Beispiel 5

Es wurde verfahren wie im Beispiel 2 (Gelpolymerisation) beschrieben, jedoch unter Einsatz des folgenden Polyme-	- 1m+
risationsgemisches: 15,00 g (0,0724 Mol) 2-Acrylamido-2-methylpropansulfonsäure, die mit 13,50 g 20 Gew%iger wäßriger Natronlauge auf pH 4,5 neutralisiert wurde	5
150,00 g (1,7624 Mol) Methacrylamid 1,73 g (0,0049 Mol) [2-(Methacryloyloxy)-ethyl]-trimethylammoniummethosulfat (80 Gew% in Wasser) 0,49 g (0,0008 Mol) Methylpolyethylenglykol-500-maleinat	
550 g Wasser.	10
Das Gemisch wurde inertisiert, auf 80°C erwärmt und durch Zugabe von 0,0822 g Ammoniumperoxodisulfat wurde die Polymerisation gestartet. Es wurde 4 Stunden bei 80°C getempert und anschließend auf Raumtemperatur abgekühlt. Das erhaltene wasserklare Gel wurde zerkleinert, getrocknet und gemahlen (Ausbeute: 165,9 g).	• ••
Beispiel 6	15
Beispiel 3 wurde wiederholt, jedoch wurde das dort verwendete N,N-Dimethylacrylamid durch 6,30 g (0,0636 Mol) N-Methyl-N-vinylacetamid ersetzt. Es wurden 52,9 g eines weißen, harten Pulvers erhalten.	
Beispiel 7	20
Anstelle von N,N-Dimethylacrylamid im Beispiel 3 wurden 6,30 g (0,0567 Mol) N-Vinylpyrrolidon eingesetzt. Die Ausbeute des erhaltenen weißen, spröden Endproduktes lag bei 53,3 g.	
Beispiel 8	25
Es wurde analog Beispiel 3 verfahren, jedoch wurde Toluol anstelle von Cyclohexan als organisches Suspensionsmittel benutzt. Als Initiator dienten 0,012 g Ammoniumperoxodisulfat. Die Polymerisation wurde bei 110°C über einen Zeitraum von 5 Stunden durchgeführt. Nach dem vollständigen Entfernen des Wassers und der Abtrennung des Feststoffes vom Toluol wurde dieser mit wenig Toluol gewaschen, getrocknet und gemahlen. Es verblieben 56,0 g eines weißen Pulvers.	30
Beispiel 9	
Die im Beispiel 3 beschriebene Synthese wurde wiederholt, jedoch wurde das dort verwendete Schutzkolloid Ethylcellulose durch eine Mischung aus 1,6 g Polyoxyethylen-20-sorbitanmonooleat und 0,8 g Sorbitanmonostearat ersetzt. Es wurde ein weißes Endprodukt in einer Menge von 54,0 g erhalten.	35
Beispiel 10	
Analog der in Beispiel 3 angegebenen Verfahrensweise wurde als Suspensionsstabilisator eine Mischung aus 1,7 g Polyoxyethylen-20-sorbitanmonooleat, 0,1 g Ethylcellulose und 0,3 g eines Blockcopolymerisats aus Ethylenoxid (EO) und Propylenoxid (PO) mit 20 Mol-% EO und einem Molekulargewicht von ca. 12000 g/Mol verwendet. Die Ausbeute betrug 55,7 g.	40
	45
Vergleichsbeispiel 1	
Handelsübliche Methylhydroxypropylcellulose mit einer Lösungsviskosität von 790 mm²/s (gemessen als 1%ige wäßrige Lösung bei 20°C nach Ubbelohde).	
Vergleichsbeispiel 2	50
Hydroxyethylsulfoethylcellulose gemäß EP-A 554 749 (1110 mm²/s, 20°C, Ubbelohde).	
Vergleichsbeispiel 3	55
Handelsübliche Methylhydroxyethylcellulose mit einer Lösungsviskosität von 1950 mm²/s (1%ige Lösung, 20°C, Ubbelohde).	
Anwendungsbeispiele	60
Die anwendungstechnische Beurteilung der erfindungsgemäßen Copolymere erfolgte anhand von Testgemischen aus dem Bereich Maschinen- und Kombinationsputz sowie Fliesenklebemörtel. Hierzu wurde praxisnah geprüft unter Einsatz gebrauchsfertig formulierter Trockenmischungen, denen die erfindungsgemäßen Additive bzw. die Vergleichsprodukte in fester Form zugemischt wurden. Im Anschluß an die Trockenvermischung wurde eine bestimmte Wassermenge zugegeben und mittels Handmixer intensivverrührt (Dauer ca. 15 bis 45 Se-	65
kunden, je nach Anwendung). Anschließend wurde die Mischung zwischen 2 Minuten (Putz) und 15 Minuten (Klebemörtel) reifen gelassen und einer ersten visuellen Prüfung unterzogen. Danach erfolgte die normgerechte Bestimmung	

von Konsistenz (Ausbreitmaß gemäß DIN 18555, Teil 2), Luftporengehalt, Standfestigkeit (Abrutschen) eingelegter Fliesen (10×10 cm) nach 30 Sekunden, Wasserretention gemäß DIN 18555, Teil 7 und Erhärtungsverhalten (qualitativ). Die Zusammensetzung des Maschinen- und Kombinationsputzes bzw. des Fliesenklebemörtels ist aus Tabelle 1 zu entnehmen.

Die erhaltenen Ergebnisse sind in den Tabellen 2 (Maschinenputz), 3 (Kombinationsputz) und 4 (Fliesenklebemörtel) dargestellt.

Tabelle 1

Zusammensetzung der Mörtelsysteme (in Gew.-%)

	Komponente	Maschinenputz	Kombinationsputz	Klebemörtel
	Portlandzement		12,00 ¹⁾	36,00 ²⁾
15	Kalkhydrat	10,00	8,00	<u>-</u>
	Kalksteinsand (0,1 - 1 mm)	50,68	77,62	<u>-</u>
20	Stuckgips (bzw. Gipshalbhydrat) Quarzsand (0,05 - 0,4 mm)	39,00	_	- 56,90
,	Weißpigment 3)	-	-	5,50
25	Cellulosefasern 4)	-	-	0,50
	Dispersionspulver 5)	-	2,00	-
30	Abbindebeschleuniger 6)	-		0,80
, V	Luftporenbildner 7)	0,02	0,03	_
	Wasserrückhaltemittel	0,20	0,30	0,30
35	Abbindeverzögerer 8)	0,10	0,05	-

- 1) CEM II 32,5 R
- ⁴⁰ 2) CEM II 42,5 R
 - 3) Ulmer weiß "Juraperle MHS"
 - 4) Arbocel HHC 200
 - 5) Mowilith DM 200
 - 6) Calciumformiat
- 50 7) Hostapon OSB
 - 8) Weinsäure

Tabelle 2

Verarbeitungs- und Erhärtungseigenschaften eines Maschinenputzes auf Kalk-Gips-Basis mit erfindungsgemäßen Copolymeren im Vergleich zu herkömmlichen Additiven

												<u> </u>
Härte nach 24 h (visuell)	hart	hart	hart	hart	hart	hart	hart	hart	hart	hart	hart	hart
Wasserretention (%)	L'86	6'86	99,4	98,1	6'86	99,4	8,66	0,66	8,86	98,5	0'86	97,1
Luftporen (Vol%)	19,3	17,0	20,9	19,9	16,4	21,3	20,0	24,8	25,2	20,1	23,7	8'6
Ausbreitmaß (cm)	14,3	15,0	13,9	15,0	13,9	14,4	15,0	14,9	14,1	14,0	14,2	14,0
Wassermenge (g)	069	700	770	200	200	765	715	700	790	785	715	705
Lösungs- viskosität * (1 %: mm²/s)	490	950	1 870	730	800	1 510	1 320	066	1 700	1 820	790	0101
Zusatzmittel (Beispiel-Nr.)	1	03	က	4		9	Z	. 80	О	10	Vergleich 1	Vergleich 2

 * 20 °C, Ubbelohde, Lösungsmittel: $\mathrm{H}_{2}\mathrm{O}$

Dosierung: 0,20 Gew.-% (zuzüglich 0,02 Gew.-% Luftporenbildner)

Trockenmörtel: 2 000 g

•

10

15

20

25

30

35

40

50

55

60

Tabelle 3

Verarbeitungseigenschaften eines zementären Kombinationsputzes mit erfindungsgemäßen Copolymeren und Vergleichsprodukten

Zusatzmittel Wasser-Ausbreitmaß Luftporen Wasser-(Beispiel-Nr.) menge (cm) (Vol.-%) retention (g) (%) 570 15,4 14,9 99,1 560 15,4 15,7 99,3 540 15,7 13,0 99,4 600 15,0 15,9 99,6 550 14,9 8 14.0 99,0 Vergleich l 540 15,6 13,4 98,4 Vergleich 2 580 15,0 11,0 97,9

Dosierung: 0,30 Gew.-%

Trockenmörtel: 2 000 g

Tabelle 4

30

10 .

15

20

25

Verarbeitungseigenschaften eines Klebemörtels für Keramikfliesen, der mit erfindungsgemäßen und dem Stand der Technik entsprechenden Polymerisaten modifiziert wurde

-35	Zusatzmittel (Beispiel-Nr.)	Wasser- menge (g)	Ausbreit- maß (cm)	Luftporen (Vol%)	Wasser- retention (%)	Abrutschen (mm)
	2	540	14,9	13,0	97,8	1
40	3	560	14,6	15,8	98,4	0
	6	530	15,0	14,2	97,9	0
	7	540	15,2	12,7	98,0	1
45	8	530	15,0	13,7	97,4	1
	9	540	14,6	15,9	98,2	0
50	10	570	14,7	16,9	98,3	0
	Vergleich 2	530	15,6	10,9	97,7	2
	Vergleich 3	540	14,9	17,0	98,1	1

Dosierung: 0,30 Gew.-%

Klebemörtel: 2000 g

Darüber hinaus wurden die Abschlag- und Haftzugeigenschaften von Klebemörteln, die mit erfindungsgemäßen Copolymeren modifiziert waren, im Vergleich zu Formulierungen, die dem Stand der Technik entsprechen, ermittelt. Die Ergebnisse sind in Tabelle 5 zusammengestellt.

Tabelle 5

Erhärtungseigenschaften von Fliesenklebern in Gegenwart erfindungsgemäßer Copolymere im Vergleich zu herkömmlichen Zusatzmitteln

Zusatzmittel (Beispiel-Nr.)	Abschlag- widerstand (qualitativ)	Kratzfestigkeit (visuell)	Benetzung (visuell)	Haftzugfestig- keit 28 d (N/mm²)	
2	hoch	gut - mittel	gut	1,04	10
3	sehr hoch	gut	sehr gut	1,57	
6	sehr hoch	gut	sehr gut	1,63	,,
7	sehr hoch	gut	sehr gut	1,11	15
8	hoch	gut	gut	0,99	
9	sehr hoch	gut	sehr gut	1,50	20
10	sehr hoch	gut	sehr gut	1,06	
Vergleich 2	hoch	gut	gut	0,89	
Vergleich 3	mittel	gut - mittel	gut	0,82	25
		i			

Dosierung: 0,30 g

Klebemörtel: 2 000 g

Schließlich wurde die Wasserretention der erfindungsgemäßen Produkte auch bei einer erhöhten Anwendungstemperatur von 40°C in einem Maschinenputz bestimmt und mit den Resultaten der Prüfung herkömmlicher Additive auf Cellulosebasis verglichen. Hierzu wurden der Trockenmörtel, das Anmachwasser sowie die verwendeten Apparaturen durch sechsstündige Vorbehandlung auf 40°C aufgeheizt. Tabelle 6 zeigt die Ergebnisse dieser Tests.

35

40

45

50

55

60

E CLASS

Wasserretention erfindungsgemäßer Copolymere in Maschinenputzen bei erhöhter Temperatur im Vergleich zum Stand der Tabelle 6 Technik

20

25

30

Zusatzmittel	Lösungsviskosität *	Wasser	23	20 ೦೭	4(40 °C
(Beispiel-Nr.)	(1 %, mm ² /s)	(g)	Ausbreitmaß	Wasserretention	Ausbreitmaß	Wasserretention
			(cm)	(%)	(cm)	(%)
1	490	069	14,3	98,7	13,7	0'86
တ	1 870	02.2	13,9	99,4	13,6	98,4
9	1 510	765	14,4	99,4	13,9	6'86
- ω	066	Z00	14,9	0'66	14,1	986
6	1 700	790	14,1	98,8	13,5	8,86
10	1 820	785	14,0	98,5	13,9	98,7
Vergleich l	790	715	14,2	98,0	13,4	97,1
Vergleich 2	1 010	Z05	14,0	97,1	13,9	89,0

 * 20 $^{\circ}$ C, Ubbelohde, H $_{2}$ O

Dosierung: 0,20 Gew.-% (zuzüglich 0,02 Gew.-% Luftporenbildner)

Trockenmörtel: 2 000 g

Patentansprüche

 Wässerlösliche oder wasserquellbare sulfogruppenhaltige Copolymere bestehend aus a) 3 bis 96 Mol-% Baugruppen der Formel I

wobei R1 = Wasserstoff oder Methyl

R², R³, R⁴ = Wasserstoff, aliphatischer Kohlenwasserstoffrest mit 1 bis 6 C-Atomen, ggf. mit Methylgruppen substituierter Phenylrest

M = Wasserstoff, ein- oder zweiwertiges Metallkation, Ammonium oder ein organischer Aminrest

 $a = \frac{1}{2}$ oder 1 bedeuten.

b) 3 bis 96 Mol-% Baugruppen der Strukturformel IIa und/oder IIb

worin R^5 und R^6 = Wasserstoff, ggf. substituierter aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, cycloaliphatischer Kohlenwasserstoffrest mit 5 bis 8 C-Atomen, Arylrest mit 6 bis 14 C-Atomen und Q = Wasserstoff sowie -CHR⁵R⁷ bedeuten sowie im Falle von $Q \neq H$ R⁵ und R⁶ in IIb zusammen eine -CH₂-(CH₂)_y-Methylengruppe mit y = 1 bis 4 bilden,

R⁷ = Wasserstoff, aliphatischer Kohlenwasserstoffrest mit 1 bis 4 C-Atomen, -COOH oder -COO-M_a darstellt

R¹, M und a oben genannte Bedeutung besitzen,

c) 0,05 bis 75 Mol-% Baugruppen der Formel 111

60

55

30

worin Y = O, NH oder NR⁵ $R^8 = R^5$ bzw. R^6 X = Halogen, C_1 - bis C_4 -Alkylsulfat oder C_1 - bis C_4 -Alkylsulfonat x = 1 bis 6 und R^1 , R^5 und R^6 oben genannte Bedeutung besitzen, d) 0,01 bis 50 Mol-% Baugruppen der Formel IV

--- CH₂ ---- CR¹ ----

mit $Z = COO(C_mH_{2m}Q)_n-R^5$, $-(CH_2)_p-O(C_mH_{2m}O)_n-R^5$ m = 2 bis 4

30

45

50

55

65

n = 0 bis 200

p = 0 bis 20

und R1 oben genannte Bedeutung besitzt.

2. Copolymere nach Anspruch 1, dadurch gekennzeichnet, daß das ein- oder zweiwertige Metallkation aus Natrium, Kalium, Calcium oder Magnesium besteht.

(IV)

3. Copolymere nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die organischen Aminreste vorzugsweise substituierte Ammoniumgruppen darstellen, die sich ableiten von primären, sekundären oder tertiären C₁- bis C₂₀-Alkylaminen, C₁- bis C₂₀-Alkanolaminen, C₅- bis C₈-Cycloalkylaminen und C₆- bis C₁₄-Arylaminen.

4. Copolymere nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Kohlenwasserstoff- oder Arylreste von R⁵ und R⁶ noch mit Hydroxyl-, Carboxyl- oder Sulfonsäuregruppen substituiert sind,

5. Copolymere nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß X = Chlor oder Brom darstellt.

6. Copolymere nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß sie noch zusätzlich 0,0001 bis 50 Mol-% der Baugruppen e) enthalten, die sich von mono-, di- und triolefinischen polymerisationsfähigen Verbindungen ableiten.

7. Copolymere nach Anspruch 6, dadurch gekennzeichnet, daß die diolefinischen Verbindungen aus Diacrylatoder Dimethylacrylatestern bestehen.

8. Copolymere nach Anspruch 6, dadurch gekennzeichnet, daß als triolefinische Monomere Trimethylolpropantriacrylat und Triallylisocyanurat eingesetzt werden.

9. Copolymere nach Anspruch 6, dadurch gekennzeichnet, daß die monoolefinischen Verbindungen Acryl- oder Vinvlderivate darstellen.

10. Copolymere nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß sie aus 40 bis 80 Mol-% der Baugruppe a), 15 bis 55 Mol-% der Baugruppe b), 2 bis 30 Mol-% der Baugruppe c) und 0,5 bis 10 Mol-% der Baugruppe d) bestehen.

11. Copolymere nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß sie ein zahlenmittleres Molekulargewicht von 50 000 bis 5 000 000

aufweisen.

12. Verfahren zur Herstellung der Copolymere nach den Ansprüchen 1 bis 1 1, dadurch gekennzeichnet, daß eine wäßrige Lösemittel- oder Gelpolymerisation oder eine inverse Suspensionspolymerisation in organischen Lösemitteln bei Temperaturen von –20 bis 250°C unter Zuhilfenahme der üblichen Radikalstarter und sonstiger Hilfsmittel durchgeführt wird.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die wäßrige Lösemittelpolymerisation bei 20 bis

	יוע	170 00	102					
100°C und einer Konzentration von 14. Verfahren nach Anspruch 13, c	dadurch	20 Gew% erfo gekennzeichn	olgt. et, daß n	nan den pH-W	ert auf e	inen Wert	zwischen 4 und	9
einstellt. 15. Verfahren nach Anspruch 12, turen von 20 bis 100°C und in eine 16. Verfahren nach Anspruch 12, nem organischen Lösemittel in Ge	dadurch m Kon dadurch	h gekennzeicht zentrationsberch h gekennzeicht t von W/O-Em	eich von net, daß i ulgatore	man die wäßr 15 bis 60 Gev man die inver n und/oder So	ige Gelpe w% dure se Suspe thutzkolle	entuntt. Insionspol oiden durc	ymerisation in ei chführt.	i-
17. Verfahren nach Anspruch 16, Anteilen von 0,05 bis 20 Gew% t 18. Verfahren nach den Ansprüche tische, cycloaliphatische oder aron 19. Verwendung der Copolymere	dadurel bezoger en 16 ur natische	h gekennzeicht n auf die Mono nd 17, dadurch e Kohlenwasse	net, daß o mere ver gekennz rstoffe ve	tie W/O-Emu wendet werd eichnet, daß n erwendet.	ilgatoren en. nan als or	und/oder ganische	Lösemittel alipha	a- 10
hydraulische Bindemittel wie Zem 20. Verwendung der Copolymere und Beschichtungssysteme. 21. Verwendung der Copolymere von 0,05 bis 5 Gew% bezogen au	ent, Ka nach d nach de	alk, Gips, Anhy len Ansprücher en Ansprüchen	drit usw 1 1 bis 1 19 und 2	, enthalten. 1 als Zusatzm 0, dadurch ge	ittel für kennzeic	wasserbas	sierende Anstrich sie in einer Meng	n- 15 ge
gesetzt werden.							•	
				,				20
•							•	
			**					25
·								
e e			•	•	•			
							•	
		,						30
•					•			
			,	•		·		
	•							
								35
			*				•	
·		,		*				
• • •								40
		•				•		
* :								
						•		."
		,				•		45
;		100						
				•				
								50
				·				
<i></i>		٠.						5.5
		•						55
•								
•						-		60
								-
							•	

- Leerseite -

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнев.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.