

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

КУРСОВАЯ РАБОТА

HA TEMY:

Построение триангуляции Делоне методом заметающей прямой в системе Wolfram Mathematica

Студент	ФН2-51Б		В. А. Лосев
	(Группа)	(Подпись, дата)	(И. О. Фамилия)
Руководит	ель курсовой работы	(Подпись, дата)	А. Ю. Попов (И. О. Фамилия)

Оглавление 2

Оглавление

BE	ведение	3	
1.	Постановка задачи.	3	
2.	Диаграмма Вороного и триангуляция Делоне		
	2.1. Преобразование *	4	
	2.2. Основные понятия	5	
3.	Реализация метода заметающей прямой	6	
	3.1. Поиск областей и точек пересечения	6	
	3.2. Обработка случая точки пересечения гипербол	7	
	3.3. Общий алгоритм метода заметающей прямой	7	
	3.4. Основные функции и структуры в программе	9	
	3.5. Обратное преобразование	10	
4.	Экспериментальная проверка скорости работы алгоритма	11	
5.	Заключение	11	
Ст	INCOV NCHOTI ZODZUHLIV NCMOHUNVOD	19	

Введение 3

Введение

При решении различных задач механики сплошной среды (механика деформируемого твердого тела, задачи гидро- и газодинамики и другие) применяются различные численные методы. Очень многие из широко распространенных методов предполагают построение сетки в расчетной области. При построении сетки обычно стараются обеспечить ее приемлемое качество, которое можно оценить соотношением между размерами элементов, углами и другими параметрами. Особенный интерес представляет триангуляция Делоне ввиду своих особых свойств.

Триангуляция Делоне — триангуляция для заданного множества точек S на плоскости, при которой для любого треугольника все точки из S за исключением точек, являющихся его вершинами, лежат вне окружности, описанной вокруг треугольника [1]. Приведем основные свойства и теоремы.

- 1. Триангуляция Делоне обладает максимальной суммой минимальных углов всех своих треугольников среди всех возможных триангуляций.
- 2. Триангуляция Делоне обладает минимальной суммой радиусов окружностей, описанных около треугольников, среди всех возможных триангуляций.
- 3. Если никакие четыре точки не лежат на одной окружности, триангуляция Делоне единственна.

Также триангуляция Делоне имеет тесную связь с диаграммой Вороного (оба объекта показаны на рисунке 1). Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества. Если соединить рёбрами точки, области Вороного которых граничат друг с другом, полученный граф будет являться триангуляцией Делоне.

1. Постановка задачи.

Существует несколько видов алгоритмов для построения диаграммы Вороного (и, соответственно, триангуляции Делоне), к ним относятся перечисленные ниже алгоритмы, с указанием их сложности:

- 1) инкрементальный алгоритм, сложность $O(n^2)$;
- 2) алгоритм «Разделяй и властвуй», сложность $O(n \log n)$;
- 3) метод заметающей прямой (алгоритм Форчуна), сложность $O(n \log n)$. Последний алгоритм обладает преимуществами над другими алгоритмами, по-

Рис. 1. Диаграмма Вороного и триангуляция Делоне

скольку его сложность $O(n \log n)$, а также он позволяет получить решение сразу, без «сшивания» отдельных частей как, например, алгоритм «Разделяй и властвуй» [2].

Целью данной работы была реализация алгоритма Форчуна для диаграммы Вороного в системе Wolfram Mathematica и получение с помощью нее триангуляции Делоне. Дополнительно требовалось экспериментально проверить скорость работы алгоритма.

2. Диаграмма Вороного и триангуляция Делоне

2.1. Преобразование *

Метод заметающей прямой предполагает ее движение снизу вверх. При этом в прямой постановке задачи получается так, что очередной многоугольник (область диаграммы Вороного) впервые пересекается этой прямой в произвольной точке, а не в той исходной точке, которая его определяет. Это усложняет работу с областью диаграммы Вороного и возникают проблемы с определением точки, относящейся к данному многоугольнику, поэтому имеет смысл применить специальное преобразование (обозначается *).

Преобразование *: $R^2 \to R^2$ определяется следующим образом: * $(z) = (z_x, z_y +$

d(z)), где d(z) — расстояние от точки z до ближайшей из точек множества S, и является центральным в алгоритме. Преобразование * отображает точку $z \in R^2$ в самую верхнюю точку круга Вороного в точке z. Более того, преобразование * отображает каждую вертикальную прямую в себя. Рассмотрим случай, когда l — не вертикальная линия, тогда * взаимооднозначна на l и $*_p(l)$ является гиперболой.

Пусть прямая l задана уравнением y = mx + b. Результат ее преобразования с помощью * относительно точки p следующий (иллюстрация приведена на рисунке 2):

$$*_p(l) = (x, z) : z = mx + b + ((mx + b - p_y)^2 + (x - p_x)^2)^{\frac{1}{2}}.$$
 (1)

Таким образом получаем уравнение гиперболы

$$(y - mx - b)^2 = (mx + b - p_y)^2 + (x - p_x)^2$$

Рис. 2. Преобразование * для прямой и точки

Смысл преобразования * заключается в том, что исходная точка множества S остается на месте, а все остальные переходят выше нее с сохранением координаты x. Это приводит к тому, что в преобразованном пространстве заметающая прямая впервые пересечет область именно в исходной точке.

2.2. Основные понятия

Точки p_1, p_2, \ldots, p_n – исходные точки (sites), относительно которых надо построить диаграмму Вороного и триангуляцию Делоне. В программе следует их записать в массив, отсортировав в лексикографическом порядке по возрастанию y-координаты. Серединный перпендикуляр (bisector) $B_{q,p}$ для точек p,q, где $q_y < p_y$, — прямая, которая перпендикулярна отрезку pq и проходит через его середину. Гиперболой $C_{q,p}$ назовем гиперболу, заданную уравнением (1), что является преобразованием * для срединного перпендикуляра $B_{q,p}$. Точка $p, p_y > q_y$ является вершиной соответствующей гиперболы и условно делит ее на две ветви: $C_{q,p}^-$, $C_{q,p}^+$, лежащие слева и справа от точки p, соответственно (как показано на рисунке 3). Также в работе алгоритма используется очередь (queue) из точек, обрабатываемых программой, и список L, содержащий ветви гипербол и области пространства R_q .

Рис. 3. Основные понятия

3. Реализация метода заметающей прямой

3.1. Поиск областей и точек пересечения

По мере движения заметающей прямой вверх обрабатываются точки исходного множества S, для каждой из них сначала следует найти области R_q , которой принадлежит эта точка. В системе Wolfram Mathematica программно это реализуется с помощью функции Findregion[point], про которую будет написано ниже. В данном случае под областью понимается множество точек, лежащих между ветвями гиперболы. Первая гипербола будет построена относительно первой и второй точки. Второй индекс гиперболы — рассматриваемая точка, первый индекс — индекс точки, в области которой находится рассматриваемая точка (см. рисунок 4). В результате построенные гиперболы имеют точки пересечения друг с другом, которые будут записаны в очередь и также будут обработаны в программе.

Рис. 4. Поиск областей

3.2. Обработка случая точки пересечения гипербол

Если у двух гипербол есть общий индекс $(C_{p,s}$ и $C_{s,q}$, например), то точка их пересечения является вершиной диаграммы Вороного в пространстве V^st и треугольник из точек $\{p,q,s\}$ будет добавлен в триангуляцию Делоне, то есть будет являться элементом массива vertex в программе, куда по результатам работы программы будут записаны вершины триангуляции Делоне для заданного множества точек. Далее строим гиперболу относительно несовпадающих индексов (рисунок 5), а две исходные гиперболы не продлеваем после точки пересечения. Если пересечение образовано ветвями разных знаков, то если $q_y < p_y$ и при этом $q_x < p_x$, оставляем у гиперболы $C_{p,q}$ только левую ветвь $C_{p,q}^-$, если $q_x>p_x$ — правую. При пересечении ветвей с одинаковыми знаками оставляем у новообразованной гиперболы ветвь того же знака. Далее продолжаем процесс нахождения точек пересечения с совпадающими индексами. Таким образом, каждая вершина диаграммы Вороного в пространстве V^* будет образована пересечением трех гипербол. С помощью этого можно получить список вершин треугольника Делоне, для этого нужно извлечь индексы пересекающихся гипербол с устранением повторений. Промежуточный результат построения приведен на рисунке 6.

3.3. Общий алгоритм метода заметающей прямой

- 1. Создаем массив queue и записываем туда отсортированные исходные точки.
- 2. Отбрасываем первую точку, начинаем обработку остальных элементов из queue до тех пор, пока список не станет пустым.

Рис. 5. Построение новой гиперболы

Рис. 6. Нахождение вершин диаграммы Вороного

- 3. Если элемент p_i из queue является точкой исходного множества, находим область R_q^* , к которой он относится.
- 4. После нахождения области строим гиперболу $C_{p,q}$.
- 5. Вместо R_q^* в список L записываем $R_q^*, C_{p,q}^-, R_p^*, C_{p,q}^+, R_q^*$.
- 6. Удаляем из **queue** пересечения между левой и правой границей R_q^* , если такие имеются.
- 7. Добавляем в **queue** пересечение между $C_{p,q}^-$ и его соседом в L слева и пересечение между $C_{p,q}^+$ и его соседом в L справа, если такие имеются.

- 8. Следующие шаги выполняются в том случае, если точка p это пересечение $C_{a,r},\,C_{r,s}.$
- 9. Строим гиперболу $C_{q,s}$.
- 10. Заменяем $C_{q,r}, R_r^*, C_{r,s}$ в L на $C_{q,s}^-$ или $C_{q,s}^+$ в зависимости от значений координат точек q и s и знаков у пересекающихся ветвей.
- 11. Удаляем из queue пересечения между $C_{q,r}$ и его соседом слева и между $C_{r,s}$ и его соседом справа.
- 12. Добавляем в queue пересечения $C_{q,s}$ с соседями справа и слева из L.
- 13. Отмечаем p точку пересечения $C_{q,r}, C_{r,s}, C_{q,s}$ как вершину диаграммы Вороного, $\{q,r,s\}$ точки, соответствующие треугольнику Делоне.

3.4. Основные функции и структуры в программе

При реализации программы в системе компьютерной алгебры были созданы некоторые функции, без которых реализация была бы трудно выполнима. Одними из самых главных функций являются следующие.

- 1) Bisector[point1,point2] функция для построения гиперболы по формуле (1), соответствующей $B_{p1,p2}$. На вход передаем координаты точек, на выходе получаем уравнение нужной нам гиперболы.
- 2) Findregion[point] функция для поиска области, содержащей данную точку, координаты которой подаем на вход. Для этого мы строим горизонтальную прямую (по сути заметающую прямую в данный момент), соответствующую координате y данной точки, и находим пересечения с построенными гиперболами. Область можно найти путем выбора пересечения с максимальным значением координаты x из всех пересечений, образовавшихся слева от точки и пересечение с минимальным значением x, образовавшихся справа от точки.
- 3) Sortfunction[sites] функция для сортировки точек в лексикографическом порядке по возрастанию y-координаты.

Также не обойтись и без определенных структур, центральной из которых является очередь queue, хранящая в себе исходные точки и, в дополнение к ним, получившиеся точки пересечения гепербол. После обработки каждого элемента этого массива, он удаляется из queue и программа выполняется до тех пор, пока список queue не пустой. Результатом работы программы станет массив vertex, каждый элемент которого состоит из номеров трех различных точек, которые входят в индексы пересекающихся гипербол. Каждый элемент данного массива является списком вершин одного треугольника в треангуляции Делоне.

3.5. Обратное преобразование

После построения диаграммы Вороного в пространстве V^* выполним обратное преобразование. Для этого проведем срединные перпендикуляры, соответствующие конкретным гиперболам ($C_{p,q} \to B_{p,q}$) до x-координаты вершины диаграммы Вороного в пространстве V^* , то есть до пересечения гипербол из V^* (рисунок 7). Диаграмма Вороного и триангуляция Делоне взаимно однозначны. В двумерном случае вершины Вороного соединены ребрами, которые могут быть получены из отношений смежности треугольников Делоне: если два треугольника имеют общее ребро в триангуляции Делоне, их окружности должны быть соединены с ребром в диаграмме Вороного. Таким образом, если многоугольники в диаграмме Вороного имеют общее ребро, то соединив исходные точки, соответствующие этим многоугольникам, получим триангуляцию Делоне для набора исходных точек (рисунок 8).

Рис. 7. Диаграмма Вороного

Рис. 8. Диаграмма Вороного и триангуляция Делоне

4. Экспериментальная проверка скорости работы алгоритма

Сложность алгоритма Форчуна для диаграммы Вороного и, соответственно, триангуляции Делоне — $O(n \log n)$. Проверим это экспериментально, для этого измерим время для набора задач с произвольным набором исходных данных для различного числа исходных точек и проведем интерполяцию по полученным результатам. Проведены замеры времени для набора задач с n=10,20,30,40,50,100, путем интерполяции получена зависимость $y=0.37-0.041n-0.053\log n+0.025n\log n$, график которой приведен на рисунке 9. По полученным результатам видим, что временная сложность алгоритма близка к $O(n \log n)$.

Рис. 9. Зависимость времени от входных данных

5. Заключение

Таким образом, в рамках данной работы в системе компьютерной алгебры Wolfram Mathematica был реализован метод заметающей прямой (алгоритм Форчуна) для построения триангуляции Делоне, которая в основном используется в сеточных методах решения задач. Также экспериментально проверена сложность его работы. Дополнительно реализована проверка, удовлетворяют ли треугольники условию Делоне: рассматриваются два треугольника ABD и BCD с общим ребром BD, если сумма углов α и γ (рисунок 10) меньше или равна 180° , треугольники удовлетворяют условию Делоне.

Рис. 10. Проверка триангуляции Делоне

Список использованных источников

- 1. Скворцов А.В. Триангуляция Делоне и её применение. Томск: Изд-во Томского университета, 2002. 128 с.
- 2. Wong K. An Efficient Implementation of Fortune's Plane-Sweep Algorithm for Voronoi Diagrams. URL: http://www.rigi.cs.uvic.ca/downloads/papers/pdf/cg.pdf (Дата обращения: 18.12.2021).
- 3. Fortune S. A sweepline algorithm for Voronoi diagrams // Algorithmica. 1987. P. 153–174.