MI11 Systèmes temps réel critique Jérôme De Miras Poste : 59 02 e-Mail : demiras@hds.utc.fr Bibliographie « Real-Time Systems : design principles for distributed embedded applications Hermann Kopetz Kluwer Academic Publishers **Panorama** général

Définitions de base Un système informatique temps réel doit être évaluer non seulement sur la validité des résultats logiques qu'il produit mais aussi par rapport au moment où il est capable de les délivrer Un système temps réel dit répondre aux stimuli de son environnement dans un temps donné: l'échéance En fonction des contraintes sur les échéances, un système informatique temps réel peut être dur (hard) ou mou (soft)

Exigence	es.
 A : Exigences fonctionnelles : les fonctions qu doit remplir un système informatique temps r 	
□ B : Exigences temporelles : les contraintes de temps à respecter	
□ C :Exigences de fiabilité (dependability)	
MI11 utc Printenus 2017	9

A Exigences fonctionnelles Les fonctions que doit remplir un système informatique temps réel peuvent se grouper en trois classes : collecte de données pilotage de l'environnement interactions homme machine

10

А	Entités TR Collecte de données	
 Seul un sous ensemble des variables sont pertinentes pour l'application : Entités Temps Réelles 		
 Chaque entité TR appartient à une sphère de contrôle où elle peut être modifiée 		
 En dehors de cette sphère, entité TR uniquement observable 		
Mili	12	

Α	Relation au temps Collecte de données
 Toute propriété d'une un intervalle est un au 	e entité TR qui reste valide pendant <i>ttribut d'état</i>
Un changement d'état	t est un <i>événement</i>
 Une observation est u l'acquisition de l'état 	n événement qui permet d'une entité TR à un instant donné
 L'horloge découpe la appelé granules de te 	ligne de temps en portion égales <i>emps de l'horloge</i>
 Les granules de tempe les ticks d'horloge 	s sont séparés par des événements :
Un trigger est un évér	nement qui déclenche une action
Ml11	
utc Printemps 2017	15

A Contrôle numérique □ Calculer le point de fonctionnement pour un actionneur en fonction de la BDTR □ Tâche répétitive et régulière ⇒ problème de l'automatique ⇒ exigences temporelles

B Résumé exigences temporelle				
	Variables	Sphère de contrôle	Relations	
	d ^{object}	Délai de l'objet contrôlé	Process physique	
	drise	Temps de réponse	Process physique	
	d ^{sample}	Période d'échantillonnage	d ^{sample} ≪ d ^{rise}	
	dcomputer	Temps de réponse calculateur	d ^{computer} < d ^{sample}	
	∆d ^{computer}	Gigue sur le calcul	$\Delta d^{computer} \ll d^{computer}$	
	d ^{deadtime}	Temps mort	d ^{computer} + d ^{object}	
 Critères : On suppose la gigue minimal car en contrôle on sait compenser les délais fixes La gigue apporte du bruit sur les mesures La détection d'une erreur doit se faire dans un temps compatible avec la période d'échantillonnage (minimiser la latence de détection qui dépend de la gigue) 				
	compat	ible avec la période d'échanti	llonnage	

С	Fiabilité (reliability)	
	babilité que le système fournisse le	- <u></u>
Service at	u temps t sachant son état au temps t_0	
	$R(t) = \exp(-\lambda(t-t_0))$	
	de pannes TF (main time to failure)	
Ml11		
utC Printemps 2017	22	J
С	Sureté (safety)	7
☐ Modes cr	itiques des pannes	
Une panr	ne critique est dite maligne me « safety critical » doit avoir un taux	
de panne	e extrêmement bas (10 ⁻⁹ panne/h)	
□ Sous-s	ion du système : ystème critique protégés par des interfaces	
□ Tous le	qui empêchent la propagation d'une erreur es scénarios sont gérable sans argument iliste ⇒ design des ressources	
L'archit	tecture est compatible avec un processus de ation incrémental	
MI11	23	
utc Printemps 2017		J
С	Sureté (2)]
□ Propriété	s requises :	-
□ Un mod	dèle de sureté peut être produit	
	s paramètres non déduits analytiquement esurables en un temps raisonnable	
d'état d	lèle de fiabilité n'inclut pas de transition :orrespondant à un défaut de conception ⇒ à prouver analytiquement	
Choisir	un design qui minimise le modèle	
MI11	24	

« Réponse garantie » contre
« meilleur effort possible »

□ Le design exclu toute notion de réponse
probable (fautes et pics de charge inclus)
⇒ Garantie sur la réponse

□ Sinon on fait au mieux
⇒ Validation du design par des tests
(économiquement plus attrayant)

« ressources adéquates » contre	
« ressources inadéquates »	
□ Un système TR critique a besoin d'être	
dimensionné pour le pire cas	-
formamiquement nou anviable	
Économiquement peu enviable	
Min	-
utc Printemps 2017	
« Event triggered » contre	
« time triggered »	-
 Deux approches possibles en fonction du mode de déclenchement des communication et de l'activité de 	
calcul	
☐ Event triggered : le mécanisme de l'interruption	
permet de répondre à l'événement	
time triggered : seule la progression du temps fait	-
évoluer le système	
disposer d'un temps global (granularité ?)	
ulc Printemps 2017	
Systèmes temps réel embarqués	
□ Eléments pertinents pour le design d'un système	
□ Production de masse	
□ Structure statique	
□ Interface homme machine	
□ Support de stockage du logiciel	-
□ Stratégie de maintenance	
□ Capacité de communication	
Min	
33	

