Tathagata Karmakar

Andrew N. Jordan ♂ group

+1 585-967-8496 tkarmaka@ur.rochester.edu

https://tathagata-karmakar.github.io/

EXPERTISE

Quantum optics, open quantum systems, optimal control, continuous measurements, machine learning approaches in physics, superresolution imaging, quantum thermal machines.

EDUCATION

Ongoing Ph.D., Physics and Astronomy, University of Rochester. 2020 M.A., Physics and Astronomy, University of Rochester.

2018 BS, Physics CPI: 9.9/10, IIT Kanpur.

PROFESSIONAL APPOINTMENTS

2021-Ongoing Affiliated student researcher, Chapman University.
Jul.-Sep. 2023 Research Intern, PHI Lab, NTT Research, Inc., CA.
2017 Summer research assistant, CCA, Simons Foundation.

PUBLICATIONS

- [1] **T. Karmakar**, É. Jussiau, S. K. Manikandan, and A. N. Jordan, "Cyclic superconducting refrigerators using guided fluxon propagation", Phys. Rev. Research **6**, 013085 (2024).
- [2] Sethuraj K. R., **T. Karmakar**, A. N. Jordan and A. N. Vamivakas, and "Experimental realization of supergrowing fields", arXiv: 2309.00016 (2023).
- [3] T. Karmakar, A. Chakraborty, A. N. Vamivakas and A. N. Jordan, "Supergrowth and sub-wavelength object imaging", Opt. Exp. 31, 37174-37185 (2023).
- [4] **T. Karmakar** and A. N. Jordan, "Beyond Superoscillation: General Theory of Approximation with Bandlimited Functions", J. Phys. A: Math. Theor., **56** 495204 (2023).
- [5] **T. Karmakar**, P. Lewalle, and A. N. Jordan, "Stochastic path-integral analysis of the continuously monitored quantum harmonic oscillator", PRX Quantum **3**, 010327 (2022).
- [6] **T. Karmakar**, S. Genel, and R. S. Somerville, "The relationship between galaxy and halo sizes in the Illustris and IllustrisTNG simulations", Monthly Notices of the Royal Astronomical Society, **520**, 1630 (2023).
- [7] **T. Karmakar** and T. Sarkar, "Distinguishing Between Kerr and Rotating JNW Space-Times via Frame Dragging and Tidal Effects", General Relativity and Gravitation **50**, 85 (2018).

RESEARCH EXPERIENCE

2023-Ongoing ML based Model reduction in nonlinear optics, NTT Research, Inc.

Built a physics-informed neural operator based learning architecture that approximates the unitary propagator for quantum harmonic oscillators, capable of solving for the dynamics of 256 separate initial conditions simultaneously.

2022-2023 Superoscillations and supergrowth [2–4]

Developed an algorithm to generate functions with arbitrary superoscillation/supergrowth by choosing the values of only the first two coefficients in a series expansion.

Developed an algorithm to reconstruct objects that are an order of magnitude smaller than the illuminating wavelength.

Collaborated on the experimental realization of supergrowing optical fields.

2021-2022 Fluxon refrigerator [1]

Devised a refrigeration scheme utilizing the flow of magnetic field vortices along a magnetic field gradient in a type-II superconducting device.

2020-2021 Stochastic path integral [5]

Formulated a stochastic action principle-based description of the optimal evolution of continuously monitored harmonic oscillators.

TALKS

Oct. 2023	Supergrowing Optical Fields: Subwavelength Imaging and Experimental Synthesis
Aug. 2023	A discussion on quantum convolutional neural networks, PHI Lab, NTT Research, Inc.
Mar. 2023	Cyclic superconducting quantum refrigerators using guided fluxon propagation, APS March Meeting.
Jun. 2022	Stochastic path integral analysis of a harmonic oscillator \square , Quantum Thermodynamics Conference.
Mar. 2022	Tomography of a Continuously Monitored Qubit, APS March Meeting.
Sep. 2021	Stochastic path integral analysis of a harmonic oscillator undergoing simultaneous continuous position and momentum measurements $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Mar. 2021	Stochastic Path Integral Analysis of the Continuously Monitored Simple Harmonic Oscillator, APS March Meeting.
Jan. 2021	Optical Field Quadrature Measurements: Introduction to Homodyne and Heterodyne Detections, with Dr. Philippe Lewalle, University of Rochester.

PROGRAMMING EXPERIENCE

Python (5+yrs, PyTorch, JAX), Mathematica (5+ yrs), QuTiP, Fortran, C.

AWARDS AND FELLOWSHIPS

2020	Okubo Prize, Department of Physics and Astronomy, UR.
2018-2020	Robert L. and Mary L. Sproull fellow, UR.
2017	S. N. Bose Scholar (WSF, DST Govt. of India, IUSSTF).
2016	Academic Excellence Award (dean's office, IIT Kanpur).
2015	Academic Excellence Award (dean's office, IIT Kanpur).

2014-2018 KVPY fellow, DST, Govt. of India.

SUMMER SCHOOLS

Jun. 2023	Quantum Connections, Stockholm, Sweden.
Jun. 2022	Solstice of Foundations, ETH Zürich.

Aug. 2021 Quantum Thermodynamics (online), ETH Zürich.

TEACHING EXPERIENCE

Jan.-Apr. 2019 Teaching assistant, 20th Century Physics.

Aug.-Nov. 2018 Teaching assistant, Gravitation and General Relativity.

PEER-REVIEWER/REFEREE

Optics Express, Phys. Rev. A, Annals of Physics, npj Quantum Information, Applied Physics Letters.

SELECTED COURSEWORK

Quantum optics I and II (UR), Computational Physics (IITK).