$N\acute{e}v$: .	,	$NEPTUN-k\acute{o}d$
Csopo	rt, gyak.vez.:	
Ponts	zám:	

Programtervező informatikus szak I. évfolyam Matematikai alapok javító zárthelyi a 3. zh anyagából 2020. január 3.

Minden feladathoz indoklást, levezetést kérünk.

Az 5. feladat (tételkimondás és bizonyítás) megoldását csak e feladatlap hátoldalára írva fogadjuk el.

1. (11 pont) Határozzuk meg az alábbi mátrix sajátértékeit és sajátvektorait, majd vizsgáljuk meg a mátrixot diagonalizálhatóság szempontjából (diagonalizáló mátrix, diagonális alak):

$$A = \begin{bmatrix} 3 & -1 & -1 \\ 3 & -1 & -3 \\ -1 & 1 & 3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

2. Adott az alábbi lineárisan független vektorrendszer az \mathbb{R}^4 vektortérben:

$$b_1 = (-1, 0, 1, 2), \quad b_2 = (-2, -1, 2, 1), \quad b_3 = (-1, 1, 3, 1),$$

továbbá legyen $W = \operatorname{Span}(b_1, b_2, b_3)$.

- a) (8 pont) Adjunk meg ortogonális és ortonormált bázist a W altérben.
- b) (6 pont) Bontsuk fel az x=(1,0,0,1) vektort a W altér szerint párhuzamos és merőleges komponensekre.
- 3. (8 pont) Adott az alábbi $\mathbb{R} \to \mathbb{R}$ típusú függvény:

$$f(x) = \frac{3x+1}{x-2}$$
 $(x \in (3; +\infty))$

Igazoljuk, hogy f invertálható, továbbá adjuk meg a $D_{f^{-1}}$, $R_{f^{-1}}$ halmazokat és $y \in D_{f^{-1}}$ esetén az $f^{-1}(y)$ függvényértéket.

4. (8 pont) A definíció alapján igazoljuk, hogy

$$\lim_{x \to +\infty} \frac{x^4 - x^3 - x^2 - 1}{2x^3 + 3x^2 + x + 4} = +\infty$$

5. (9 pont) Tételkimondás és bizonyítás (a megoldást kérjük e feladatlap hátoldalára írni):
A felbontási tétel (euklideszi terekben).