Image classification

Raúl Alonso Calvo

Required steps

- Image Preprocessing
- Detection of ROI or objects
- Feature definition and extraction
- Training and Classification

Training and Classification

- You will find that classification on images could be performed using
 - Statistical methods such as:
 - Support Vector Machine
 - Decision Tree
 - Clustering
 - Machine learning methods
 - Artificial Neural Networks

Clustering

- Probably you have learned about these algorithms in other courses
- The important point is adapting the data
 - Image -> to numbers
- We will perform a Color Quantization
 - reducing number of colors in an image

Clustering

- OpenCV provides K-means algorithm
- Data in RGB -> each data value (pixel) will be composed of three features:
- Usual example of clustering algorithm with two features:

5

Practice 1

- Clustering example proposed in moodle:
 - https://moodle.upm.es/titulaciones/oficiales/mod/page/view.php?id=1326191
- Can we use a different color-space
- Could we adapt the code for using in other color-space?

Neural Networks

- Trending topic for classification and prediction nowadays
- Special data need adaptations of classical NN
- Convolutional Neural Networks
 - Adds pre-processing layers for feature extraction
 - Final features are the input to a NN

- Image segmentation aims to obtain regions of interest (ROIs) from an input image
- Regions obtained in segmentation aid to represent the image as a sum of pixel sets
- These sets represent objects or parts of objects
- Each region is a set of pixels
 - we could say that image segmentation order pixels into larger components

- Current trends in image analysis are:
 - Classification categorizing the image into a class such as "people", "animals"
 - Object detection detecting objects within an image and drawing a rectangle around them
 - Segmentation identifying parts of the image and understanding what object they belong to

- Inside the image segmentation research are, we can even distinguish:
 - Semantic segmentation which classifies pixels of an image into meaningful classes, and
 - Instance segmentation which identifies the class of each object in the image.

- Is a deep learning algorithm whose structure imitates the visual cortex of the human eye to distinguish different characteristics from input image
- The goal of identifying objects appearing in the image
- These CNN are based in work performed by Hubel and Wiesel in the 1950s, studying cat and monkey visual cortexes and neurons

- CNNs can receive a source image (or a sequence)
- And assign biases and weights to the different types of objects appearing in the image

To discriminate between such object categories

- Therefore, a CNN receives as input one tensor
 - with (number of images) x (image width) x (image height) x (image depth)

- The architecture of a CNN is composed of several hidden hierarchical layers
 - the first layers are able to identify simple shapes such as lines
 - the following layers specialize in recognizing objects in increasing order of complexity
- As any other neural network based-method, the specialization is achieved by training the CNN
 - often using hundreds or thousands of object instances for each class (type of object)
 - regardless the object's colour or perspective

- Notes
 - In order to enhance CNN performance usually original dataset should contain a lot of examples
 - Data augmentation
 - Usually CNN cannot process the input image as a whole
 - CNN implementations define tensor input
 - Sliding window techniques

- If we plan to work with images of 28×28 pixels we would need a NN with 784 input neurons for each band
 - For three 3 channels (red, green, blue) will need 28x28x3 = 2352
- Also we would usually need to normalize values
 - "value/255" for obtaining values in range 0 to 1

- The distinctive characteristic from CNN is the convolution
- A kernel is applied to input image
 - A matrix operator
 - Involves surrounding pixels
 - Generates an output image

- The distinctive characteristic from CNN is the convolution
- A kernel is applied to input image
 - A matrix operator
 - Involves surrounding pixels
 - Generates an output image

- Each kernel is defined to extract a characteristc
- When multiple convolutional kernels are applied within a convolutional layer
 - many channels/feature maps are created
 - one from each convolutional kernel
 - An activation function (usually ReLU) is used for each feature map

- Then we can 'reduce' the feature maps using a Pooling Layer
- It is used to generalize: is a destructive which aims to reduce overfitting
- A function for summarizing each feature map
 - Average pooling
 - Min pooling
 - Max pooling:

- Architecture:
- A set of:
 - Two or more of convolutional layers
 - A pooling layer
- Finally a fully connected layer is used at the output
 - May be stacked one, two or more deep

- Convolutional Layer:
 - Input from the layer
 - Apply kernel to obtain feature map
 - Apply pooling to reduce dimensions

- Fully connected Layer
 - we can flatten out the square feature maps into a traditional flat fully connected layer
 - I.e.: For 10 features, downsized to 14x1
 - we can define the fully connected layer with 200 hidden neurons each with input connections
 - 1960 + 1 weights per neuron
 - that is a total of 392,200 connections and weights to learn in this layer
 - We can use a sigmoid or softmax transfer function to output probabilities of class values directly.

CNN

CNN

Practice 2

- Semantic segmentation exercise to upload to moodle
- Test Yolo3, guide available in moodle
- Explore Yolov5!
 - https://github.com/ultralytics/yolov5
 - https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data

Other methods

https://docs.opencv.org/master/d1/d73/tutorial_introduction_to_s
https://docs.opencv.org/master/d1/d73/tutorial_introduction_to_s
https://docs.opencv.org/master/d1/d73/tutorial_introduction_to_s
https://docs.opencv.org/master/d1/d73/tutorial_introduction_to_s

• https://www.geeksforgeeks.org/license-plate-recognition-with-opency-and-tesseract-ocr/

Other links

- https://towardsdatascience.com/visual-interpretability-for-convolutional-neural-networks-2453856210ce
- https://www.analyticsvidhya.com/blog/2021/03/introduction-to-the-architecture-of-alexnet/
- https://towardsdatascience.com/visual-interpretability-forconvolutional-neural-networks 2453856210ceinc.com/es/es/blog/machine-learning-supportvector-machines