Zde je důležité si všimnout toho, že aby $p_i \& p_{i+1} > p_i \oplus p_{i+1}$, musí čísla p_i a p_{i+1} mít v bitové reprezentaci nejvýznamější bit na stejném indexu. To zjistíme pro hodnotu x tak, že zjistíme hodnotu $\lfloor \log_2 x \rfloor$, což jsme schopni schopni spočítat v logaritmickém čase vůči velikosti x. Pak v staticky alokovaném poli o velikosti $32 \ A$ budeme ukládat počet předmětů, jejichž číslo má nejvýznamější bit v určitém indexu. Výsledek pak bude:

$$\sum_{i=0}^{31} \binom{A_i}{2} = \sum_{i=0}^{31} \frac{A_i(A_i - 1)}{2}$$

Protože takhle zjistíme počet možných kombinací. Protože nad každým číslem p_i vypočítáme $\lfloor \log_2 p_i \rfloor$, bude celková složitost $\mathcal{O}(n \log p)$, kde p je maximální velikost čísla. A poněvadž alokujeme pořád stejně velké pole, pamětová složitost bude konstantní při načteném vstupu.