

Intercomparison of remote sensing measurements at a rural site in China: Implications for satellite measurement uncertainty and production of HONO and HCHO from fires

Yuhang Wang¹, Kezhen Cong¹, Chen Liu², Xinmin Wang³, Folkert Boserma⁴

¹Georgia Institute of Technology

²University of Science and Technology of China

³Gongzhou Institute of Geochemistry

⁴KNM

Data: Ground based MAX-DOAS

Ozone Photochemistry and Export from China Experiment (OPECE)

- March to April 2018
- Rural site in Dongying, Shandong, China.
- Downwind from megacities in the North China Plain (NCP)
- Ground based MAX-DOAS
- Satellite data (OMI and TROPOMI)

Daily Evolutions of observed TVCDs

Weekly cycle is insignificant due to pollutant transport

Comparison of OMI and TROPOMI NO₂ TVCDs to MAX-DOAS

TROPOMI: too low

KNMI-OMI: low

NASA-OMI: too high

Method: calculate AMF based on REAM profiles

- Regional chemical transport model (REAM)
 - 36km × 36km, 30 layers in troposphere
 - Driven by meteorological conditions from the Weather Research and Forecasting version 4.0 (WRFv4.0)
 - Chemicla boundary conditions from GEOS-Chem simulation

Comparison of OMI and TROPOMI NO₂ TVCDs to MAX-DOAS

Comparison of OMI and TROPOMI NO₂ TVCDs to MAX-DOAS

Intercomparisons of TROPOMI with OMI

NASA OMI and TROPOMI vs. KNMI OMI TSCDs

NASA OMI and TROPOMI vs. KNMI OMI AMFs

OMI scattering weight vertical profiles from NASA and KNMI

$$TVCD_{REAM} = \frac{SCD}{AMF_{REAM}}$$
$$AMF_{REAM} = \frac{\sum_{i} V_{i,REAM} W_{i}}{\sum_{i} V_{i,REAM}}$$

Below 800hP, w from NASA is 30% lower than that from KNMI.

Intercomparison of HCHO TVCDs

The comparisons for OMI and TROPOMI HCHO
TVCDs are considerable worse than those of NO₂

Intercomparisons of NO₂ vs. HCHO TVCDs

Biomass burning impacts on HONO and HCHO

FIRMS observed fire hotspots

(BB) in clean and polluted days

NO2

HONO

HCHO

ΑĖС

-0.6

Conclusions

- Unifying prior profiles improves the consistency among satellite NO₂ and HCHO TVCD products
- OMI and TROPOMI NO₂ TVCD data are in good agreement with MAX-DOAS
- In comparison, OMI and even TROPOMI HCHO daily TVCD products are not as well correlated with MAX-DOAS as NO₂; TROPOMI data have a higher correlation coefficient and less scattering than OMI data
- Biomass burning can significantly enhance HONO and HCHO above the surface layer, which will significantly enhance photochemical oxidation. Fire production of HONO is more variable than HCHO

