

Advance Technical Data

High Voltage IGBT

IXGH 16N170A IXGT 16N170A

Symbol	Test Conditions		Maximum Ratings	
V _{CES}	T _J = 25°C to 150°C		1700	V
V _{CGR}	$T_{_{\rm J}}$ = 25°C to 150°C; $R_{_{\rm GE}}$ = 1 M Ω		1700	V
V _{GES}	Continuous		±20	V
V _{GEM}	Transient		±30	V
I _{C25}	T _C = 25°C		16	A
I _{C90}	T _C = 90°C		8	Α
I _{CM}	$T_{c} = 25^{\circ}C$, 1 ms		40	Α
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 10 Ω Clamped inductive load		I _{CM} = 40 @ 0.8 V _{CES}	A
t _{sc}	$T_J = 125^{\circ}C, V_{CE} = 1200 \text{ V}; V_{GE} = 1$	5 V, R _G = 22	Ω 10	μs
P _c	T _C = 25°C		190	W
$\overline{T_{J}}$			-55 +150	°C
T _{JM}			150	°C
T_{stg}			-55 +150	°C
M _d	Mounting torque (M3)	(TO-247)	1.13/10Nn	n/lb.in.
	ead temperature for soldering 062 in.) from case for 10 s		300	°C
Weight		TO-247	6	g
		TO-268	4	g

l _{C25}	$T_{c} = 25^{\circ}C$		16	Α
I _{C90}	$T_{c} = 90^{\circ}C$		8	Α
I _{CM}	$T_{\rm C}$ = 25°C, 1 ms		40	Α
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 10 Clamped inductive load	Ω	I _{CM} = 40 @ 0.8 V _{CES}	A
t _{sc}	$T_J = 125$ °C, $V_{CE} = 1200$ V; $V_{GE} = 1200$ V; $V_{GE} = 1200$ V; $V_{CE} = 1200$	= 15 V, $R_{\rm G} = 22\Omega$	10	μs
P _c	T _C = 25°C		190	W
T_{J}			-55 +150	°C
T_{JM}			150	°C
T_{stg}			-55 +150	°C
M _d	Mounting torque (M3)	(TO-247)	1.13/10Nn	n/lb.in.
	ead temperature for soldering 062 in.) from case for 10 s		300	°C
Weight		TO-247	6	g
		TO-268	4	g
Cymphal	Toot Conditions	Ch	arastariatia \/	مميياه

Symbol	Test Conditions Cha $(T_J = 25^{\circ}C, \text{ unless o min.})$		ristic Val se specif max.	
BV _{CES}	$I_{C} = 250 \mu\text{A}, V_{GE} = 0 \text{V}$ 1700 $I_{C} = 250 \mu\text{A}, V_{CE} = V_{GE}$ 3.0		5.0	V V
I _{CES}	$V_{CE} = 0.8 \cdot V_{CES}$ $T_{J} = 25^{\circ}C$ $V_{GE} = 0 V$ Note 1 $T_{J} = 125^{\circ}C$		50 750	μ Α μ Α
GES	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$		±100	nΑ
V _{CE(sat)}	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$ $T_{J} = 125^{\circ}\text{C}$	4.0 4.8	5.0	V V

TO-268 (IXGT)

Features

- International standard packages JEDEC TO-268 and JEDEC TO-247 AD
- High current handling capability
- MOS Gate turn-on
- drive simplicity
- Rugged NPT structure
- Molding epoxies meet UL 94 V-0 flammability classification

Applications

- Capacitor discharge & pulser circuits
- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switched-mode and resonant-mode power supplies

Advantages

- · High power density
- Suitable for surface mounting
- Easy to mount with 1 screw, (isolated mounting screw hole)

Symbol		Characteristic Values (T ₁ = 25°C, unless otherwise specified)		
	(1 _J = 25°C, unless to min.	typ.	max.	
g _{fs}	$I_{C} = I_{C25}$; $V_{CE} = 10 \text{ V}$ Note 2	10	S	
\mathbf{C}_{ies}		1700	pF	
\mathbf{C}_{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	83	pF	
\mathbf{C}_{res}	J	30	pF	
\mathbf{Q}_{g}		65	nC	
\mathbf{Q}_{ge}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{V}, V_{\rm CE} = 0.5 \text{V}_{\rm CES}$	13	nC	
\mathbf{Q}_{gc})	24	nC	
$\mathbf{t}_{d(on)}$	Inductive load, T _J = 25°C	36	ns	
t _{ri}	$I_{\rm C} = I_{\rm C25}, V_{\rm GE} = 15 \rm V$	57	ns	
$\mathbf{t}_{\text{d(off)}}$	$R_{\rm G} = 10 \Omega, V_{\rm CE} = 0.8 V_{\rm CES}$	200	350 ns	
t _{fi}	Note 3	40	150 ns	
E _{off}		0.9	1.5 mJ	
t _{d(on)}	Inductive load, T _J = 125°C	38	ns	
t _{ri}	$I_{\rm C} = I_{\rm C25}, V_{\rm GE} = 15 \rm V$	59	ns	
E _{on}	$R_{\rm G}$ = 10 Ω , $V_{\rm CE}$ = 0.8 $V_{\rm CES}$	1.5	mJ	
t _{d(off)}	/ Note 3	200	ns	
t _{fi}		55	ns	
E _{off}		1.1	mJ	
R _{thJC}			0.65 K/W	
R _{thCK}	(TO-247)	0.25	K/W	

- Notes: 1. Device must be heatsunk for high temperature leakage current measurements to avoid thermal runaway.
 - 2. Pulse test, $t \le 300 \mu s$, duty cycle $\le 2 \%$
 - 3. Switching times may increase for V_{CE} (Clamp) > 0.8 V_{CES} , higher T_J or increased R_G.

TO-247 AD Outline Dim. Millimeter Inches Max. Max. Min. Min. .209 4.7 5.3 .185 2.54 .087 .102 2.2 2.6 .059 .098 1.0 1.4 .040 .055 1.65 2.13 .065 .084 3.12 .123 С .016 .031 D 20.80 21.46 .819 .845 Е 15.75 16.26 .610 .640 0.205 0.225 e L 5.20 5.72

19.81

3.55

5.89

4.32

6.15 BSC

L1

ØP

Q

R

20.32

4.50

3.65

6.40

5.49

.780

.140

.170

0.232 0.252

242 BSC

.800

.177

.144

.216

Α	4.9	5.1	.193	.201	
A₁	2.7	2.9	.106	.114	
A ₂	.02	.25	.001	.010	
b	1.15	1.45	.045	.057	
b ₂	1.9	2.1	.75	.83	
С	.4	.65	.016	.026	
D	13.80	14.00	.543	.551	
E	15.85	16.05	.624	.632	
E₁	13.3	13.6	.524	.535	
е	5.45	BSC	.215 BSC		
Н	18.70	19.10	.736	.752	
L	2.40	2.70	.094	.106	
L1	1.20	1.40	.047	.055	
L2	1.00	1.15	.039	.045	
L3	0.2	5 BSC	.010 BSC		
L4	3.80	4.10	.150	.161	

5,486,715