

Identification and Authentication 2

Prof. F. Parisi Presicce

UnitelmaSapienza.it

Why Authentication?

- Common policy requirement: restrict the behavior of a user
 - To permit different users to do different things, we need a way to identify or distinguish between users
 - Identification mechanisms to indicate/provide identity
 - Authentication mechanisms to validate identity
- When logging on to a computer you enter
 - user name and
 - password
- The first step is called identification:
 - You announce who you are.
- The second step is called authentication;
 - You prove that you are who you claim to be.

User Authentication

Common mechanisms for "proving" user identity

- where the user is
 - access to the keyboard or IP address
- what the user knows
 - passwords, personal information
- what the user possesses
 - a physical key, a ticket, a passport, a token, a smart card, a badge
- what the user is (biometrics)
 - fingerprints, voiceprint, signature dynamics
- ... or some combination of these

Problems with Possession- or Knowledge-based Approaches

- Card may be lost, stolen or forgotten
 - Password or PIN may be forgotten or guessed by the imposters
- ~25% of people seem to write their PIN on their ATM card
- Estimates of annual identity fraud:
 - More than 11 million adults became victims of identity fraud in 2011
 - \$1 billion in fraudulent cellular phone use
 - \$3 billion in ATM withdrawals
- The traditional approaches are unable to differentiate between an authorized person and an impostor

Estimates of annual identity fraud

Source: Javelin Strategy & Research, 2020

• Javelin Strategy & Research, 2020 Identity Fraud Report

UnitelmaSapienza.it 26/02/21 5

"Something about you"

- Biometrics are increasingly common as identification rates improve.
 - fingerprints
 - retinal scan, iris scan
 - facial heat
 - voice pattern/recognition
 - signatures (handwriting)
 - typing
- See also:
 - U.S. National Biometric Test Center; San Jose State Univ. (CA)
 - www.nist.gov/biometrics

What are Biometrics?

- Biometrics science, which deals with the <u>automated</u> recognition of individuals (or plants/animals) based on biological and behavioral characteristics
 - Identification or verification
- Biometry mathematical and statistical analysis of biological data
- Biometric system a pattern recognition system that recognizes a person by determining the authenticity of a specific biological and/or behavioral characteristic (biometric)
- Anthropometry—measurement techniques of human body and its specific parts
- Forensic (judicial) anthropometry
 identification of criminals by these measurement techniques

Biometrics is Not New!!

- Bertillon system (1882) took a subject's photograph, and recorded height, the length of foot, arm and index finger
- Galton/Henry system of fingerprint classification adopted by Scotland Yard in 1900
- FBI set up a fingerprint identification division in 1924
- AFIS installed in 1965 with a database of 810,000 fingerprints
- First face recognition paper published in 1971
- FBI installed IAFIS in ~2000 with a database of 47 million prints; average of 50,000 searches per day; 2 hour response time for criminal search

Emphasis now is to automatically perform reliable person identification in unattended mode, often remotely (or at a distance)

Requirements for an Ideal Biometric Identifier

1. Universality

- Every person should have the biometric characteristic

2. Uniqueness

 No two persons should be the same in terms of the biometric characteristic

3. Performance

The biometric characteristic should be invariant over time

4. Collectability

 The biometric characteristic should be measurable with some (practical) sensing device

5. Acceptability

 One would want to minimize the objections of the users to the measuring/collection of the biometric

Identifiable Biometric Characteristics

Biological traces

DNA, blood, saliva,etc.

Biological (physiological) characteristics

 fingerprints, eye irises and retinas, hand palms and geometry, and facial geometry

Behavioral characteristics

 dynamic signature, gait, keystroke dynamics, lip motion

Combined

voice

Biometrics

2 Categories of Biometrics

- Physiological also known as static biometrics:
 Biometrics based on data derived from the
 measurement of a part of a person's anatomy,
 e.g., fingerprints and iris patterns, facial features,
 hand geometry and retinal blood vessels
- Behavioral biometrics based on data derived from measurement of an action performed by a person, indirectly measuring human characteristics. Essential to incorporate time, e.g. voice (speaker verification), signature

Using Biometrics

Process flow includes enrollment, and verification/identification.

- Enrollment
 - Person entered into the database
 - Biometric data provided by a user is converted into a template.
 - Templates are stored in a biometric systems for the purpose of subsequent comparison.
 - Size of template quite large compared with password, and not directly related to accuracy
- Verification: Are you who you claim to be?
 - One to one comparison: confirm or deny the specific identification claim of a person.
- Identification: Who are you?
 - One to many comparison: determine identity of a person from biometric database without the person first claiming identity.

Verification and Identification

Verification system answers the question: "Are you who you claim to be?"

- The answer returned by the system is <u>match</u> or <u>no</u> <u>match</u> (in biometric systems a score, which may indicate <u>inconclusive</u>)
- Identification system requires more computational power than verification systems, and has more opportunities to err.

Identification systems answers the question: "Who are you?"

 The answer returned by the system is <u>an</u> <u>identity</u> (name or ID number).

Some typical biometrics

- Primarily Physical Features
 - Hand based
 - Fingerprint or finger-scan
 - Hand geometry
 - Face/eye
 - Facial recognition
 - Retinal scans / Iris scans
- Strong Behavioral Component
 - Voice recognition
 - Signature recognition, including how the signature is produced (pressure, speed, stroke order) and not just how the signature looks
 - Typing style, including speed and rhythm of key pressure

Forged Fingers

- Fingerprints, and biometric traits in general, may be unique but are no secrets.
- we leave fingerprints in many places.
 - http://www.ccc.de/updates/2008/schaubles-finger (in German)
- Rubber fingers have defeated many commercial fingerprint recognition systems in the past.
 - Minor issue if authentication takes place in presence of security personnel.
 - When authenticating remote users, additional precautions taken to counteract this type of fraud.
- User acceptance: so far fingerprints have been used for tracing criminals.

Other Characteristics

Can use several other characteristics

- Eyes: patterns in irises unique
 - Measure patterns, determine if differences are random; or correlate images using statistical tests
- Faces: image, or specific characteristics like distance from nose to chin
 - · Lighting, view of face, other noise can hinder this
- Keystroke dynamics: believed to be unique
 - Keystroke intervals, pressure, duration of stroke, where key is struck
 - Statistical tests used at enrollment

How does this work?

Some aspects are quite similar to standard authentication procedures information

- Calibrate and store user
 - Storage styled vary: 20 years ago, common to encrypt bio info and store it; alternatively, store a validator (hash) of the information. Now templates are used (sometimes several times) at enrollment.
- Authenticate "as usual":
 - user 'inputs' biometric information (may not be overt and may not be single event) and then proceed by matching verification template with stored template.

Devices Usually Required

- The device collecting the data is often proprietary and/or uses proprietary algorithms
- Patents protect much of the technology
- There may be considerable computation involved in computing a "validator" or template for storage (far beyond the Unix validator)
- Sometimes the biometric requires local installation of a specialized reader device (such as for fingerprints, but not for voice)

Matches are probabilities

Identifying information is not typed in, but obtained by a device (imprecise measurement)

- Characteristics mapped from analog to digital and not all of the original information is retained
- Devices for most common biometrics may not produce identical results or even identically repeatable results
 - Ex: fingerprint readers depend on environmental factors such as the positioning of the finger, the "moisture" of the hand, oils, and occupational issues which may cause a print to be roughened over time

Effectiveness

- Two types of errors for Authentication
 - False Acceptance (FA)
 - Let imposters in
 - FAR: probability that an imposter is authenticated
 - False Rejection (FR)
 - Keep authorized users out
 - FRR: probability that an authorized user is rejected
- Another type of error for identification
 - False Match (FM)
 - One user is mistaken for another (legitimate) user
 - FMR: probability that a user is incorrectly matched to a different user's profile
- No technique is perfect

Equal-error Rate

- By setting matching threshold (FAR=FRR), trade off lower false acceptance rate against higher false rejection rate, and vice versa.
- Finding right balance between those two errors depends on application.
- Equal error rate (EER): given by threshold value where FAR=FRR.
- Currently, best state-of-the-art fingerprint recognition schemes have EER of about 0.5 - 2%.
- Iris pattern recognition has a superior performance.
- http://bias.csr.unibo.it/fvc2006/

How you do it

- People perform mechanical tasks in way both repeatable and specific to individual.
- Experts look at dynamics of handwriting to detect forgeries.
- Users could sign on special pad that measures attributes like writing speed pressure.
- On keyboard, typing speed and key strokes intervals used to authenticate individual users.

Multimodal Biometrics

Use multiple biometrics together

- AND: accept only when all checks are successful
- OR: accept as long as one is successful
- other possible combinations

Any of these can be fooled!

- Assumes biometric device accurate in the environment it is being used in!
- Transmission of data to validator is tamperproof, correct

Identity

Authentication is the binding of an identity to a subject But what is identity?

 A set of properties/attributes characteristic of a principal (subject or object)

How to represent identity?

- randomly chosen: not useful to humans
- user chosen: probably not unique globally
- hierarchical system: used to disambiguate
 - file system
 - X.500
 - IP address

Anonymity

What if identity not needed?

- Web browsing
- Complaints about assignments

Removing identity not as easy as it sounds

- · I can send email without my userid
- But it still traces back to my machine

Solution: anonymizer

- Strips identity from message
- Replaces with (generated) id
- Send to original destination
- Response: map generated id back to original identity

Anonymity

Problem: Anonymizer knows identity

- Can it be trusted?
- Courts say no!

Solution: multiple anonymizers

- Onion Routing
- Crowds

Key Points

- Authentication is not (precise as) cryptography
- Passwords will still be used
 - provide a basis for most forms of authentication
- Protocols used are important
 - making masquerading harder
- Authentication methods can be combined
- Hiding Identity, instead of verifying it, is sometimes preferable
 - https://ifip-summerschool2021.uni.lu/