

Année universitaire 2015-2016

Site: $\boxtimes Luminy \boxtimes St$ -Charles $\square St$ -Jérôme $\square Cht$ -Gombert $\boxtimes Aix$ -Montperrin $\square Aubagne$ -Satis Sujet session : $\square 1er$ semestre - $\square 2$ ème semestre - $\boxtimes Session 2$ Durée de l'épreuve : 2h Examen de : $\boxtimes L1 / \square L2 / \square L3$ - $\square M1 / \square M2$ - $\square LP$ - $\square DU$ Nom diplôme: Licence IM Code Apogée du module : 2h SMI1U3T Libellé du module: Géométrie et arithmétique 1 Documents autorisés : 2h OUI - 2h ON

Ce sujet comporte 1 page. Dans l'exercice 1, une équation désigne en fait un système d'équations.

Exercice 1. Soit \mathcal{D}_1 la droite passant par le point $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ de vecteur directeur $u_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ et soit \mathcal{D}_2 la droite d'équation cartésienne $\begin{cases} x-y = 0 \\ z = 0 \end{cases}$ dans l'espace \mathbb{R}^3 .

- 1. Donner une équation paramétrique de \mathcal{D}_1 .
- 2. Donner un vecteur directeur u_2 et une équation paramétrique de \mathcal{D}_2 .
- 3. Déterminer l'ensemble $\mathcal{D}_1 \cap \mathcal{D}_2$.
- 4. Calculer un point P de \mathcal{D}_1 et un point Q de \mathcal{D}_2 tels que l'unique droite \mathcal{D} passant par ces deux points soit orthogonale à \mathcal{D}_1 et \mathcal{D}_2 .

Exercice 2. On considère l'application $f: \mathbb{C} \longrightarrow \mathbb{C}$ définie par f(z) = iz + 2.

- 1. Résoudre l'équation f(z) = z.
- 2. Montrer que f est une similitude, dont on donnera le centre, l'angle, et le rapport.
- 3. On fixe un réel r > 0 et on pose $C = \{1 + i + re^{i\theta} \mid \theta \in \mathbb{R}\}.$ Quelle est l'interprétation géométrique de cet ensemble?
- 4. Quelle est l'image de \mathcal{C} par f?

Exercice 3. On fixe un entier n > 0 et un complexe $c \neq 0$.

- 1. Rappeler la définition des racines n-ièmes de c. Combien y en a-t-il ?
- 2. Calculer les racines cubiques de c = 8i en forme exponentielle, puis en forme algébrique.

Exercice 4. On considère les polynômes $P(X) = X^6 + X^5 - 4X^4 + 2X^3 - 11X^2 + X - 6$ et $A(X) = 6X^3 + 5X^2 - 22X + 1$.

- 1. Calculer le polynôme dérivé P' de P.
- 2. Calculer le quotient Q et le reste de la division euclidienne de P' par A.
- 3. Quelles sont les racines complexes de Q?
- 4. Montrer que ce sont aussi des racines de P, et donc en fait des racines multiples de P.
- 5. Calculer le quotient et le reste de la division euclidienne de P par Q^2 .
- 6. En déduire la décomposition de P en facteurs irréductibles dans $\mathbb{R}[X]$, puis dans $\mathbb{C}[X]$.