GIẢI ĐỀ 4 – THPT VIỆT NAM BA LAN

BÅNG ĐÁP ÁN

1.D	2.D	3.C	4.A	5.D	6.C	7.C	8.C	9.D	10.A
11.C	12.C	13.D	14.A	15.C	16.A	17.C	18.B	19.D	20.B
21.B	22.B	23.B	24.C	25.B	26.D	27.C	28.B	29.B	30.D
31.A	32.A	33.A	34.D	35.A	36.A	37.B	38.B	39.D	40.A
41.A	42.A	43.B	44.A	45.D	46.B	47.C	48.C	49.D	50.C

Câu 1:+ Ta có:
$$\lim \left(u_n + \frac{n+1}{n^2 + 2}\right) = \lim u_n + \lim \frac{n+1}{n^2 + 2} = 2 + \lim \frac{\frac{1}{n} + \frac{1}{n^2}}{1 + \frac{2}{n^2}} = 2 + \frac{0}{1} = 2$$
. **Chọn D.**

Câu 2: + Ta có:
$$\lim_{x\to 2} \sqrt{2x-3} = \sqrt{2.2-3} = 1$$
. **Chọn D.**

Câu 3: +
$$y' = \frac{-2}{(x-1)^2}$$

+
$$x-2y-18=0 \Leftrightarrow y=\frac{1}{2}x-9$$

- + Gọi x_0 là tiếp điểm của đồ thị hàm số (C) và tiếp tuyến Δ .
- + Do tiếp tuyến ∆ vuông góc với đường thẳng nên ta có:

$$f'(x_0) \cdot \frac{1}{2} = -1 \Leftrightarrow f'(x_0) = -2 \Leftrightarrow \frac{-2}{(x_0 - 1)^2} = -2 \Leftrightarrow (x_0 - 1)^2 = 1 \Leftrightarrow \begin{bmatrix} x_0 = 2 \\ x_0 = 0 \end{bmatrix}.$$
 Chọn C.

Câu 4: + Ta có:
$$\begin{cases} f(0) = 4.0^2 + 5b = 5b \\ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{ax+1} - 1}{x} = \lim_{x \to 0} \frac{ax}{x(\sqrt{ax+1} + 1)} = \lim_{x \to 0} \frac{a}{\sqrt{ax+1} + 1} = \frac{a}{2}. \end{cases}$$

+ Để hàm số đã cho liên tục tại x = 0 thì:

$$\lim_{x\to 0} f(x) = f(0) \Leftrightarrow \frac{a}{2} = 5b \Leftrightarrow a = 10b. \text{ Chọn } \underline{\mathbf{A}}.$$

Câu 5: + Ta có:
$$y' = (x^3 - 2x + 3)' = 3x^2 - 2 \Rightarrow y'(1) = 1$$
.

+ Phương trình tiếp tuyến của đồ thị hàm số tại M(1;2) là:

(d):
$$y = y'(1)(x-1) + y(1) = 1(x-1) + 2 \Leftrightarrow (d)$$
: $y = x+1$. Chọn D.

Câu 6:

+Ta có:
$$SA \perp (ABCD) \Rightarrow (SAB) \perp (ABCD)$$
.

Mệnh đề A đúng.

+Ta có:
$$\begin{cases} DC \perp SA \\ DC \perp DA \end{cases} \Rightarrow DC \perp (SAD) \Rightarrow (SCD) \perp (SAD).$$

Mệnh đề B đúng.

+ Ta có:
$$\begin{cases} AB \perp SA \\ AB \perp AD \end{cases} \Rightarrow AB \perp (SAD) \Rightarrow (SAB) \perp (SAD).$$

Mệnh đề D đúng.

Vậy mệnh đề C sai. **Chọn** <u>C.</u>

Câu 7:
$$+ y' = ((1+x)\sqrt{1-x})' = (1+x)'.\sqrt{1-x} + (\sqrt{1-x})'(1+x) = \sqrt{1-x} - \frac{x+1}{2\sqrt{1-x}} = \frac{1-3x}{2\sqrt{1-x}}$$

Mà $y' = \frac{ax+b}{2\sqrt{1-x}} \Rightarrow a = -3; b = 1 \Rightarrow a+b = -3+1 = -2$. Chọn C.

Câu 8: + Phương trình vận tốc theo thời gian là: v(t) = s'(t) = 2t - 2. + Vận tốc của vật tại thời điểm t = 3s là: v(3) = 2.3 - 2 = 4 (m/s). **Chọn <u>C.</u>**

Câu 9: $+ y' = (\sin 3x)' = (3x)' \cdot \cos 3x = 3\cos 3x$. Chọn <u>D.</u>

Câu 10: + Theo định nghĩa đạo hàm ta có: $f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$. Chọn <u>A.</u>

Câu 11: + $y' = (-2x^5 + 4\sqrt{x})' = -2(x^5)' + 4(\sqrt{x})' = -10x^4 + \frac{2}{\sqrt{x}}$. Chọn <u>C.</u>

Câu 12: + Ta có: y' = (cos(5-3x))' = (5-3x)' - sin(5-3x) = 3sin(5-3x).

+ Vi phân của hàm số y = cos(5-3x) là: dy = 3sin(5-3x)dx. Chọn <u>C.</u>

Câu 13: + Ta có:
$$\lim_{x \to -\infty} \left(\frac{x - m\sqrt{x^2 + 2}}{x + 2} \right) = \lim_{x \to -\infty} \left(\frac{\frac{x - m\sqrt{x^2 + 2}}{|x|}}{\frac{x + 2}{|x|}} \right) = \lim_{x \to -\infty} \left(\frac{-1 - m\sqrt{1 + \frac{2}{x^2}}}{-1 - \frac{2}{x}} \right) = \frac{-m - 1}{-1} = m + 1.$$

 $\Rightarrow m+1=2 \Rightarrow m=1$. Chọn <u>D.</u>

Câu 14: + Tập xác định của hàm số: $y = \frac{1}{x+2}$ là: $D = \mathbb{R} \setminus \{-2\}$ nên hàm số gián đoạn tại x = -2. **Chọn A.**

Câu 15: + Hàm số $y = -x^5 + x^3 - 2x - 1$ liên tục trên \mathbb{R} và y(-1).y(0) = 1.-1 < 0 nên ta suy ra: Phương trình $-x^5 + x^3 - 2x - 1 = 0$ có một nghiệm x_0 thuộc khoảng (-1;0). **Chọn** \underline{C} .

Câu 16: + Ta có: $y' = \left(\frac{1}{4}x^4 - 3x^2 + 5\right)' = x^3 - 6x$.

+ Hệ số góc của tiếp tuyến tại điểm có hoành độ $x_0 = 3$ là: $y'(3) = 3^3 - 6.3 = 9$. Chọn A.

Câu 17:
$$+\lim_{x\to +\infty} \left(\sqrt{x+1} - \sqrt{x-3}\right) = \lim_{x\to +\infty} \frac{x+1-(x-3)}{\sqrt{x+1} + \sqrt{x-3}} = \lim_{x\to +\infty} \frac{4}{\sqrt{x+1} + \sqrt{x-3}} = 0$$
. Chọn C.

Câu 18:

+ Gọi chóp tứ giác đều là: S.ABCD.

+ O là giao hai đường chéo của hình vuông đáy ABCD.

+ Khi đó góc α giữa cạnh bên và mặt đáy sẽ là góc SAO.

$$\Rightarrow \cos SAO = \frac{AO}{SA} = \frac{\frac{AC}{2}}{SA} = \frac{a\sqrt{2}}{2} = \frac{1}{2}.$$

Chọn B.

Online: tuyensinh247.com

Câu 19:

+ Gọi *I* là trung điểm của *AC*.

+ Tam giác ABC cân ở B nên: $BI \perp AC$.

Lại có: $SA \perp BI$ (do SA vuông với (ABC)) nên:

 $\Rightarrow BI \perp (SAC)$.

$$\Rightarrow d(B/(SAC)) = BI = \sqrt{AB^2 - AI^2} = 4.$$

Chọn D.

Câu 20: + Ta có: $\lim (-3n^4 + 2n^2 + 1) = -\infty$. Chọn <u>B.</u>

Câu 21: + Gọi x_0 là tiếp điểm của tiếp tuyến cần tìm với đồ thị hàm số (C), ta có:

+ Do tiếp tuyến song song với y = 9x + 5 nên:

$$y'(x_0) = 9 \Leftrightarrow 3x_0^2 - 6x_0 = 9 \Leftrightarrow 3(x_0 + 1)(x_0 - 3) = 0 \Leftrightarrow \begin{bmatrix} x_0 = -1 \\ x_0 = 3 \end{bmatrix}.$$

+ Với $x_0 = -1$: Phương trình tiếp tuyến thu được là: y = 9x + 5 (loại do trùng với y = 9x + 5).

+ Với $x_0 = 3$: Phương trình tiếp tuyến thu được là: y = 9x - 27.

Vậy có duy nhất một tiếp tuyến thỏa mãn. **Chọn** <u>B.</u>

Câu 22: +
$$\lim \frac{1+5^n}{5^{n+1}} = \lim \frac{\frac{1+5^n}{5^n}}{\frac{5^{n+1}}{5^n}} = \lim \frac{\frac{1}{5^n}+1}{5} = \frac{1}{5}$$
. Chọn B.

Câu 23: + Hàm số $y = x^2 - 3$ xác định và liên tục với mọi $x \in \mathbb{R}$ **Chọn B.**

Câu 24: + Ta có:
$$\lim_{x \to 3^+} (4x - 3) = 9 > 0; x - 3 > 0 \forall x > 3$$
 nên: $\lim_{x \to 3^+} \frac{4x - 3}{x - 3} = +\infty$. **Chọn** C.

Câu 25:

+ Ta có: BF là cạnh bên của hình lập phương ABCD.EFGH nên:

$$BF \perp (ABCD) \Rightarrow BF \perp AD$$
. Chọn B.

Câu 26:

+ Ta có: $SO \perp (ABC) \Rightarrow SO \perp AB$. Khẳng định B đúng.

+
$$\begin{cases} SO \perp BC \\ AO \perp BC \end{cases} \Rightarrow (SAO) \perp BC \Rightarrow SA \perp BC$$
. Khẳng định A đúng.

+ Tam giác ABC đều tâm O nên: $OB \perp AC$. Khẳng định C đúng.

Vậy D sai. **Chọn D.**

Câu 27: + Ta có:

$$f'(x) = \frac{(\cos x)' \cdot (1 + 2\sin x) - (1 + 2\sin x)' \cdot \cos x}{(1 + 2\sin x)^2} = \frac{-\sin x \cdot (1 + 2\sin x) - 2\cos^2 x}{(1 + 2\sin x)^2} = \frac{-\sin x - 2}{(1 + 2\sin x)^2}.$$

$$\Rightarrow f'\left(\frac{\pi}{6}\right) = -\frac{5}{8}$$
. Vậy C sai. **Chọn** C.

Câu 28:

+ Ta có:
$$\begin{cases} BC \perp AB \\ BC \perp SA \end{cases} \Rightarrow BC \perp (SAB). \text{ Chọn } \underline{\mathbf{B.}}$$

Online: tuyensinh247.com

Câu 29:
$$f(x) = \frac{x^2 + 1}{x^2 + 5x + 6}$$

+ DK:
$$x^2 + 5x + 6 \neq 0 \Leftrightarrow \begin{bmatrix} x \neq -2 \\ x \neq -3 \end{bmatrix}$$

+ ĐKXĐ:
$$D = \mathbb{R} \setminus \{-2; -3\}$$
.

+ Vậy hàm số
$$f(x)$$
 liên tục trên (2;3). **Chọn B**.

Câu 30: + Phương trình vận tốc theo thời gian của chất điểm là: $v(t) = s'(t) = 3t^2 - 6t + 5(m/s)$.

+ Phương trình gia tốc theo thời gian của chất điểm chuyển động là:

$$a(t) = v'(t) = 6t - 6(m/s^2).$$

+ Gia tốc của chuyển động tại thời điểm t=3s là: $a(3)=6.3-6=12(m/s^2)$. Chọn <u>D.</u>

Câu 31: + Ta có:
$$f'(x) = (5(x+1)^3 + 4(x+1))' = 15(x+1)^2 + 4$$

+
$$f''(x) = (f'(x))' = (15(x+1)^2 + 4)' = 30(x+1).$$

+
$$f''(x) = 0 \Leftrightarrow 30(x+1) = 0 \Leftrightarrow x = -1$$
. Chọn A.

Câu 32:

+ Tam giác ABC đều nên: $AM \perp BC$.

+ Tam giác SBC cân ở S nên: $SM \perp BC$.

Lại có: $(SBC) \cap (ABC) = BC$ nên:

$$\Rightarrow$$
 $((SBC); (ABC)) = \angle SMA$. Chọn A.

Câu 33: + Mệnh đề A sai vì khoảng cách giữa hai đường chéo nhau là độ dài đoạn thẳng vuông góc chung của hai đường đó. **Chọn** <u>A.</u>

Câu 34: + Qua một điểm và một đường cho trước, tồn tại **duy nhất** một mặt phẳng đi qua điểm đã cho và vuông góc với đường thẳng đã cho. **Chọn** <u>D.</u>

Câu 35: + Hai mặt phẳng vuông góc khi góc giữa chúng bằng 90°. Chọn A.

Câu 36:

+ Gọi O là trung điểm của BD, ta có:

 $\Delta A'BD$ cân tại A' nên: $A'O \perp BD$.

 ΔMBD cân tại M nên: $MO \perp BD$.

+ Gọi α là số đo góc giữa hai mặt phẳng

(A'BD); (MBD), khi đó ta có:

$$\cos\alpha = |\cos A'OM| = 0.$$

 $\Rightarrow \Delta A'OM$ vuông tại O.

+ Ta có: ABCD là hình vuông nên O là tâm của ABCD:

$$\Rightarrow AO = BO = CO = DO = \frac{AC}{2} = \frac{AB\sqrt{2}}{2} = \frac{a\sqrt{2}}{2}.$$

$$A'O = \sqrt{A'A^2 + AO^2} = \sqrt{b^2 + \frac{a^2}{2}}$$

$$\Rightarrow \begin{cases} A'O = \sqrt{A'A^2 + AO^2} = \sqrt{b^2 + \frac{a^2}{2}} \\ MO = \sqrt{MC^2 + CO^2} = \sqrt{\frac{b^2}{4} + \frac{a^2}{2}} \end{cases}.$$

+ Gọi N là trung điểm của A'A:

$$\Rightarrow MN = AC = a\sqrt{2}$$

$$\Rightarrow A'M = \sqrt{A'N^2 + NM^2} = \sqrt{\frac{b^2}{4} + 2a^2}.$$

Tam giác A'OM vuông tại O nên:

$$A'O^2 + OM^2 = A'M^2$$

$$\Rightarrow b^2 + \frac{a^2}{2} + \frac{b^2}{4} + \frac{a^2}{2} = \frac{b^2}{4} + 2a^2.$$

$$\Rightarrow b^2 = a^2 \Rightarrow \frac{a}{b} = 1$$
. Chọn A.

Câu 37: + Ta có:
$$(1+x)^{2019} = \sum_{k=0}^{2019} C_{2019}^k . x^k$$

+ Xét:
$$((1+x)^{2019})' = \left(\sum_{k=0}^{2019} C_{2019}^k.x^k\right)'$$

$$\Rightarrow 2019 (1+x)^{2018} = \sum_{k=1}^{2019} C_{2019}^k .k. x^{k-1}$$

+ Thay x = 3 vào cả 2 vế

$$\Rightarrow 2019(1+3)^{2018} = \sum_{k=1}^{2019} C_{2019}^k.k.3^{k-1}$$

$$\Leftrightarrow$$
 2019.4²⁰¹⁸ = $C_{2019}^1 + 6.C_{2019}^2 + ... + 2019.3^{2018}.C_{2019}^{2019}$

$$\Leftrightarrow$$
 2019.2⁴⁰³⁶ = $C_{2019}^1 + 6.C_{2019}^2 + ... + 2019.3^{2018}.C_{2019}^{2019}$

Chọn B.

Câu 38:

+ Gọi G là trọng tâm của tam giác BAD, khi đó ta có: SA = SB = SD và tam giác BAD đều nên:

$$SG \perp (ABCD)$$
.

+ Gọi O là giao điểm của AC và BD, ta có:

$$AC \perp BD = \{O\}.$$

+ Tam giác SBD cân ở S nên: $SO \perp BD$.

$$\Rightarrow \tan \varphi = \tan SOG = \frac{SG}{GO}.$$

+ Tam giác ABD đều nên:

$$OG = \frac{AO}{3} = \frac{AB\sqrt{3}}{6} = \frac{a\sqrt{3}}{6}.$$

$$SG = \sqrt{SA^2 - AG^2} = \sqrt{\left(a\sqrt{2}\right)^2 - \left(\frac{a\sqrt{3}}{3}\right)^2} = \frac{a\sqrt{15}}{3}.$$

$$\Rightarrow \tan \varphi = \frac{SG}{GO} = 2\sqrt{5}$$
. Chọn B.

$$y = \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\cos x}}} = \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\cos \frac{x}{2}}} = \dots = \cos \frac{x}{8}.$$

$$\Rightarrow y' = \left(\cos\frac{x}{8}\right)' = \left(\frac{x}{8}\right)' - \sin\frac{x}{8} = \frac{-1}{8}\sin\frac{x}{8}.$$

$$\Rightarrow a = -\frac{1}{8}$$
. Chọn D.

Câu 40:

+ Gọi M là trung điểm của BC.

+ Ta có:
$$\begin{cases} AM \perp BC \\ A'G \perp BC \end{cases} \Rightarrow (A'AM) \perp BC$$

$$\Rightarrow A'M \perp BC$$

$$\Rightarrow ((ABC); (A'BC)) = \angle A'MA = 60^{\circ}.$$

$$\Rightarrow$$
 A'G = GM. tan A'MA = GM. tan 60° = GM $\sqrt{3}$.

Mà
$$MG = \frac{AM}{3} = \frac{a\sqrt{3}}{6} \Rightarrow A'G = GM\sqrt{3} = \frac{a}{2}$$
.

Chọn A.

Câu 41:

+ Gọi
$$N = AC \cap BD \Rightarrow \begin{cases} SN \perp (ABCD) \\ \frac{NC}{NA} = \frac{BC}{AD} = \frac{1}{2} \end{cases}$$
. Kẻ $MN / BC(M \in AB)$

$$\Rightarrow MN \perp AB \Rightarrow ((SAB); (ABCD)) = SMN = 60^{\circ}$$

$$+\frac{MN}{BC} = \frac{AN}{AC} = \frac{2}{3} \Rightarrow MN = \frac{2a}{3}$$

+
$$\tan SMN = \frac{SN}{MN} \Rightarrow SN = \frac{2a\sqrt{3}}{3}$$
.

+ Lấy I là trung điểm của $AD \Rightarrow AICB$ là hình vuông, IDCB là hình bình hành . Lấy O là tâm hình vuông

$$AICB \Rightarrow NO = OC - NC = \frac{AC}{6} = \frac{a\sqrt{2}}{6}$$

+ Ta có:
$$CD//BI \Rightarrow CD//(SBI) \Rightarrow d(CD;SB) = d(C;(SBI)) = \frac{CO}{NO}d(N;(SBI)) = 3d(N;(SBI))(1)$$

+ Kẻ
$$NH \perp SO$$
. Ta có: $\begin{cases} BI \perp AC \\ BI \perp SN \end{cases} \Rightarrow BI \perp (SON) \Rightarrow BI \perp HN \Rightarrow NH \perp (SBI) \Rightarrow NH = d(N;(SBI))$

$$+\frac{1}{NH^2} = \frac{1}{NO^2} + \frac{1}{NS^2} \Rightarrow NH = \frac{2a\sqrt{3}}{15}$$
 (2)

+ Từ (1) và (2)
$$\Rightarrow d(CD;SB) = \frac{2a\sqrt{3}}{5}$$
. Chọn A.

Câu 42: + Ta có: $\lim_{x \to 1} (x-1) = 0$ mà $\lim_{x \to 1} \frac{f(x) - 9}{x - 1}$ xác định hữu hạn nên: $\lim_{x \to 1} f(x) = 9$.

+ Ta có:
$$\frac{\sqrt[3]{7f(x)+1}-4}{x^2+2x-3}$$

$$= \frac{7f(x)+1-64}{(x-1)(x+3)\left(\left(\sqrt[3]{7}f(x)+1\right)^2+4\sqrt[3]{7}f(x)+1+16\right)}$$

$$= \frac{f(x)-9}{x-1} \cdot \frac{7}{(x+3)\left(\sqrt[3]{7}f(x)+1\right)^2 + 4\sqrt[3]{7}f(x)+1 + 16}$$

$$\Rightarrow \lim_{x \to 1} \frac{\sqrt[3]{7f(x)+1}-4}{x^2+2x-3} = \lim_{x \to 1} \frac{f(x)-9}{x-1} \cdot \lim_{x \to 1} \frac{7}{(x+3)\left(\left(\sqrt[3]{7f(x)+1}\right)^2+4\sqrt[3]{7f(x)+1}+16\right)}.$$

$$\operatorname{Ma:} \begin{cases}
\lim_{x \to 1} \frac{7}{(x+3)\left(\left(\sqrt[3]{7}f(x)+1\right)^2 + 4\sqrt[3]{7}f(x)+1 + 16\right)} = \frac{7}{(1+3)\left(\left(\sqrt[3]{7}\cdot 9+1\right)^2 + 4\cdot\sqrt[3]{7}\cdot 9+1 + 16\right)} = \frac{7}{192}. \\
\lim_{x \to 1} \frac{f(x)-9}{x-1} = 6.
\end{cases}$$

$$\Rightarrow I = 6.\frac{7}{192} = \frac{7}{32}$$
. Chọn A.

Câu 43: + Ta có:
$$y' = 3x^2 - 4x + m - 1 = 3\left(x - \frac{2}{3}\right)^2 + m - \frac{7}{3} \ge m - \frac{7}{3}$$
.

+Vậy hệ số góc nhỏ nhất của các tiếp tuyến là: $k = m - \frac{7}{3}$.

+ Do tiếp tuyến đó vuông góc với Δ : y = 2x + 1 nên:

$$k.2 = -1 \Leftrightarrow k = \frac{-1}{2} \Leftrightarrow m - \frac{7}{3} = -\frac{1}{2} \Leftrightarrow m = \frac{11}{6}$$
. Chọn B.

Câu 44: + Với
$$m=0 \Rightarrow f(x)=-x+1; f'(x)=-1<0 \forall x \in \mathbb{R}$$
 nên $m=0$ thỏa mãn.

+ Với
$$m \ne 0$$
, ta có: $f'(x) = mx^2 - 2mx + 3m - 1$.

$$f'(x) \leq 0 \forall x \in \mathbb{R} \Leftrightarrow mx^2 - 2mx + 3m - 1 \leq 0 \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} m < 0 \\ \Delta' \leq 0 \end{cases} \Leftrightarrow \begin{cases} m < 0 \\ m^2 - m(3m - 1) \leq 0 \end{cases} \Leftrightarrow m < 0.$$

Vậy để y'≤0 thì m≤0. **Chọn** <u>A.</u>

Câu 45: + Ta có:

$$f'(x) = -2\sin\left(2x - \frac{\pi}{3}\right); f''(x) = -4\cos\left(2x - \frac{\pi}{3}\right); f^{(3)}x = 8\sin\left(2x - \frac{\pi}{3}\right); f^{(4)}x = 16\cos\left(2x - \frac{\pi}{3}\right).$$

+ Khi đó:

$$f^{(4)}x = -8$$

$$\Leftrightarrow 16\cos\left(2x-\frac{\pi}{3}\right)=-8$$

$$\Leftrightarrow cos\left(2x - \frac{\pi}{3}\right) = \frac{-1}{2} = cos\left(\frac{2\pi}{3}\right)$$

$$\Leftrightarrow \begin{bmatrix} 2x - \frac{\pi}{3} = \frac{2\pi}{3} + 2k\pi \\ 2x - \frac{\pi}{3} = -\frac{2\pi}{3} + 2k\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} x = \frac{\pi}{2} + k\pi \\ x = \frac{-\pi}{6} + k\pi \end{cases}.$$

Mà
$$x \in \left[0; \frac{\pi}{2}\right]$$
 nên: $x = \frac{\pi}{2}$. Chọn D.

Câu 46: + Gọi x_0 là tiếp điểm, khi đó ta có: Phương trình tiếp tuyến tại x_0 là:

$$(d): y = y'(x_0)(x - x_0) + y(x_0) = \left(\frac{x_0}{2} - 1\right)(x - x_0) + \frac{x_0^2}{4} - x_0 + 1.$$

+ Do tiếp tuyến đi qua điểm M(2;-1) nên:

$$-1 = \left(\frac{x_0}{2} - 1\right)(2 - x_0) + \frac{x_0^2}{4} - x_0 + 1 \Leftrightarrow x_0^2 - 4x_0 = 0 \Leftrightarrow \begin{bmatrix} x_0 = 0 \\ x_0 = 4 \end{bmatrix}$$

+ Với
$$x_0 = 0 \Longrightarrow (d)$$
: $y = -x + 1$.

+ Với
$$x_0 = 4 \Longrightarrow (d)$$
: $y = x - 3$.

Chọn B.

B

Câu 47:

+ Ta có:
$$AD//BC \Rightarrow AD//(SBC)$$

 $\Rightarrow d(AD;SB) = d(AD;(SBC)) = d(A;(SBC))$
+ Kê $AH \perp SB = H$. Ta có:
 $\begin{cases} BC \perp AB \\ BC \perp SA \end{cases} \Rightarrow BC \perp (SAB) \Rightarrow BC \perp AH$
 $\begin{cases} AH \perp BC \\ AH \perp SB \end{cases} \Rightarrow AH \perp (SBC) \Rightarrow AH = d(A;(SBC))$
+ $\frac{1}{AH^2} = \frac{1}{SA^2} + \frac{1}{AB^2} = \frac{1}{3a^2} + \frac{1}{a^2} \Rightarrow AH = \frac{a\sqrt{3}}{2}$. Chọn C.

M

Câu 48:

+ Gọi I là trung điểm $AD \Rightarrow AICB$ là hình vuông và ΔCID là tam giác vuông cân

$$\Rightarrow ACD = ACI + ICD = 45^{\circ} + 45^{\circ} = 90^{\circ} \Rightarrow CD \perp AC + \begin{cases} CD \perp AC \\ CD \perp SA \end{cases} \Rightarrow CD \perp (SAC)$$

+ Kẻ $AH \perp SC$ kết hợp với $CD \perp AH(AH \subset (SAC))$ $\Rightarrow AH \perp (SCD)$

+ Vậy mặt phẳng (P) là (ABH). Kẻ $Sd//BC \Rightarrow Sd$ là giao tuyến của (SBC) và (SAD).

+ $BH \cap Sd = T$; $AT \cap SD = M \Rightarrow AMHB$ là thiết diện cần tìm

$$+ \frac{1}{AM^{2}} = \frac{1}{SA^{2}} + \frac{1}{AD^{2}} \Rightarrow AM = \frac{2a\sqrt{3}}{3}; \frac{1}{AH^{2}} = \frac{1}{SA^{2}} + \frac{1}{AC^{2}} \Rightarrow AH = a$$

$$+ \text{Ta c\'o: } AH \perp HM \Rightarrow \begin{cases} HM = \sqrt{AM^{2} - AH^{2}} = \frac{a\sqrt{3}}{3} \\ S_{AHM} = \frac{1}{2}AH.HM = \frac{1}{2}.a.\frac{a\sqrt{3}}{3} = \frac{a^{2}\sqrt{3}}{6} \end{cases}$$

+ ΔSAC vuông cân tại $A \Rightarrow H$ là trung điểm SC. Mà

$$\begin{cases} BC \perp AB \\ BC \perp SA \end{cases} \Rightarrow BC \perp (SAB) \Rightarrow BC \perp SB \Rightarrow \Delta SBC \text{ vuông } \Rightarrow BH = \frac{SC}{2} = a \Rightarrow \Delta BHA \text{ d'êu có cạnh}$$

bằng
$$a \Rightarrow S_{BHA} = \frac{a^2 \sqrt{3}}{4}$$

$$\Rightarrow$$
 Diện tích thiết diện là: $S = S_{BHA} + S_{AHM} = \frac{a^2\sqrt{3}}{4} + \frac{a^2\sqrt{3}}{6} = \frac{5a^2\sqrt{3}}{12}$. Chọn C.

Câu 49:
$$+ f^3(2-x)-2f^2(2+3x)+36x=0(1)$$

$$\Rightarrow (2-x)'3f^2(2-x)f'(2-x)-4(2+3x)'f(2+3x).f'(2+3x)+36=0$$

$$\Leftrightarrow -3f^2(2-x)f'(2-x)-12f(2+3x).f'(2+3x)+36=0(2)$$

+ Thay
$$x = 0$$
 vào (1) ta có: $f^{3}(2) - 2f^{2}(2) = 0 \Leftrightarrow \begin{cases} f(2) = 0 \\ f(2) = 2 \end{cases}$

+ Với f(2) = 0, thay x = 0 vào (2) ta có: $-3.0 - 12.0 + 36 = 0 \Leftrightarrow 36 = 0$ (Vô lý)

+ Với f(2) = 2, thay x = 0 vào (2) ta có: $-3.2^2 f'(2) - 12.2.f'(2) + 36 = 0 \Leftrightarrow f'(2) = 1$ (Vô lý)

+ Phương trình tiếp tuyến tại điểm $x_0 = 2$ là: y = f'(2)(x-2) + f(2) = 1(x-2) + 2 = x.

Chọn D.

Câu 50:

+ Ta có: $\overrightarrow{AD}//\overrightarrow{A'D'}$. Mà $\overrightarrow{A'D'}, \overrightarrow{CA'}, \overrightarrow{CD'}$ cùng thuộc mặt phẳng (A'D'C) nên $\overrightarrow{AD}, \overrightarrow{CA'}, \overrightarrow{CD'}$ đồng phẳng.

Chọn <u>C</u>.

