Thermodynamics and Heat Transfer LE6 Part 2 Nguyen Xuan Binh 887799

Problem 1: Find the heat transfer per unit area through the composite wall in Figure 1. Assume one dimensional heat flow (20 points).

Figure 1

Problem 1:

Formula:
$$Q_{cond}$$
, $wall = \frac{T_1 - T_2}{R_{wall}}$, $R_{wall} = \frac{L}{kA}$

D R_{wall} , $A = \frac{0.025m}{150 \text{ W/m}^2\text{C} \times 0.1 \text{ m}^2}$ = 0.1667×10^{-2} (C/W)

D R_{wall} , $B = \frac{0.075m}{30 \text{ W/m}^2\text{C} \times (\frac{0.1}{2})\text{ m}^2}$

D R_{wall} , $C = \frac{0.05m}{50 \text{ W/m}^2\text{C} \times 0.1 \text{ m}^2}$

D R_{wall} , $C = \frac{0.075m}{50 \text{ W/m}^2\text{C} \times 0.1 \text{ m}^2}$

D R_{wall} , $D = \frac{0.075m}{70 \text{ W/m}^2\text{C} \times (\frac{0.1}{2})\text{ m}^2}$

D R_{wall} , $D = \frac{0.02143 \text{ C/W}}{70 \text{ W/m}^2\text{C} \times (\frac{0.1}{2})\text{ m}^2}$

The heat transfer per unit area through the composite wall would be: $Q_{wall} = \frac{T_1 - T_2}{7} = \frac{370^2\text{C} - 66^2\text{C}}{7} = 11398.57 \text{ W (answer)}$

Problem 2: A steel tube having $k = 46 \text{ W/m.} \cdot \text{C}$ has an inside diameter of 3.0 cm and a tube wall thickness of 2 mm. A fluid flows on the inside of the tube producing a convection coefficient of 1500 W/m₂.·C on the inside surface, while a second fluid flows across the outside of the tube producing a convection coefficient of 197 W/m₂.·C on the outside tube surface. The inside fluid temperature is 223·C while the outside fluid temperature is 57·C. Calculate the heat lost by the tube per meter of length (15 points).

Problem 2:	
k = 46 W/1	n°C, din = 3cm, thickness = 7mm =) dout = 3.4cm
	/m2°C, hour = 197 W/m2°C =) rin = 1.5cm, rout = 1.7cm
IN	3°C, Tout = 57°C =) find heat loss/meter
	total = R conv, 1 + R cyl + R conv, 2 + In(rout/rin) + 1
	(211 m L) hin 211 LK (ZTI rout L) hout
	= 1 + In(0.017/0.015) + 1 1
	[0.03 m·π·1500 2π·46 0.034 m·π·197] L
	=(0.0070735+0.000433+0.047523) ² /L
	= 0.055029 · 1/L)
The heat loss	by the tube per meter of length is $1-T\infty 2 = 223-57 = 3016.59 \text{ W/m (answer)}$ Hotal L 0.055029 L.1
Q _ Too	$1 - T \approx 2 - 223 - 57 = 3016.59 \text{ W/m (gnswer)}$
LR	total L 0.055029 L.1

Problem 3: A spherical tank, 1m in diameter, is maintained at a temperature of 120 $^{\circ}$ C and exposed to a convection environment. With h = 25 W/m_{2.°}C and T_° = 15 $^{\circ}$ C, what thickness of urethane foam should be added to ensure that the outer temperature of the insulation does not exceed 40 $^{\circ}$ C? What percentage reduction in heat loss results from installing this insulation (15 points)?

nis)?	
Pro	blem 3:
	Trank = 120°C, Too = 15°C, h = 25 W/m2°C, Kfram = 0.02 W/m°C
	Dic= ? so Tout not exceed 40°C. % reduction in Q? d= 1m
P	Heat convection
	$\dot{Q}_{conv} = hA(T_{tank} - T_{00}) = 25 \cdot (4\pi \left(\frac{1m}{2}\right)^2)(1200C - 150C)$ = 8246.68 W
	Without the insulation by we thank foam, the heat transfer rate is Q = 8246.68W
מ	With insulation by the wire thank foam
	Heat conduction: Qcond = 4TK rout rin (Ttank - Tmax)
	rest - rio
	= 471 0.02 x rout x 0.5 (120 - 40) = 10.053 rout
	rout - 0.5 rout - 0.5
-	Heat convection: Qconv = hA (Tmax - Too) = 4TT rout. h (Tmax - Too)
	= 47 rout 2 25 (40°C-15°C) - 7853,98 rout 2
	he heat transfer of the convection environment is the same as the conduction of
h	eat through the sphere =) 10.053 rout - 7853.98 rout2
	rout -0.5 =) rout = 0.502m
	=) Thickness of weethane foam should be: Doc= Yout - rin = 0. 502 - 0.5 (m)
	= 2 mm (answer)
V	with the insulation by the foam, the heat transfer rate is
	Q conv = 7853.98 rout = 7853.98 x (0.502) = 1979.234 W
f	Percentage reduction in heat loss from installing the insulation is
	% Qreduce = Qbefore - Qofter x 1000/6 - 8246-1979.234 x 100%
	C'before 8246
	= 75.99 % (answer)
	- FE - T - REG