Formulaire de primitives

Primitives des fonctions usuelles

Fonction	Primitives	Domaine
$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1} + C, \ C \in \mathbb{R}$	\mathbb{R}
$\frac{1}{x^n}, n \in \mathbb{N} \setminus \{0, 1\}$	$-\frac{1}{(n-1)x^{n-1}} + C, C \in \mathbb{R}$	$]-\infty,0[\text{ ou }]0,+\infty[$
$\frac{1}{x}$	$\ln(x) + C, \ C \in \mathbb{R}$]0,+∞[
$x^n, n \in \mathbb{Z} \setminus \{-1\}$	$\frac{x^{n+1}}{n+1} + C, \ C \in \mathbb{R}$	
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + C, C \in \mathbb{R}$]0,+∞[
e ^x	$e^x+C,C\in\mathbb{R}$	\mathbb{R}
$\cos(x)$	$\sin(x) + C, \ C \in \mathbb{R}$	\mathbb{R}
$\sin(x)$	$-\cos(x) + C, C \in \mathbb{R}$	\mathbb{R}

Primitives et opérations

- \bullet Si f et g sont continues sur I et si F et G sont des primitives sur I de f et g respectivement, F + G est une primitive de f + g sur I.
- Si f est continue sur I, si F est une primitive de f sur I et si λ est un réel, λ F est une primitive de λ f sur I.
- \bullet Sinon, on a le tableau suivant dans lequel f désigne systématiquement une fonction dérivable sur un intervalle I dont la dérivée f' est continue sur I :

Fonction	Primitives Primitives Primitives	Conditions sur f et I
$f'f^n, n \in \mathbb{N}$	$\frac{f^{n+1}}{n+1} + C, \ C \in \mathbb{R}$	
$\frac{f'}{f^n}, n \in \mathbb{N} \setminus \{0, 1\}$	$-\frac{1}{(n-1)f^{n-1}}+C,\ C\in\mathbb{R}$	f ne s'annule pas sur I
$f'f^n, n \in \mathbb{Z} \setminus \{-1\}$	$\frac{f^{n+1}}{n+1} + C, \ C \in \mathbb{R}$	
$\frac{f'}{f}$	$\ln(f)+C,C\in\mathbb{R}$	f est strictement positive sur I
$\frac{f'}{\sqrt{f}}$	$2\sqrt{f}+C,\ C\in\mathbb{R}$	
f'e ^f	$e^f+C,C\in\mathbb{R}$	
$f'\cos(f)$	$\sin(f) + C, C \in \mathbb{R}$	
$f'\sin(f)$	$-\cos(f) + C, C \in \mathbb{R}$	