

Recurrences

Jurij Volčič Institut for Matematiske Fag

Outline

- Recurrences in counting problems and recursive programs
- Solving recurrences
 - Backtracking method
 - Guess + Induction method
 - Linear homogeneous recurrences
 - Recursion tree method (Tuesday)
 - Master method (Tuesday)

Reading: KBR 3.5

Take a look at CLRS 4.4. and 4.5 before tomorrow's class

Recurrence relations

Reminder: We have already seen recurrence relations as a way to define sequences. For example,

can be defined via

$$f_0 = 1, \quad f_1 = 1$$
 (initial/boundary conditions)

$$f_n = f_{n-1} + f_{n-2}$$
 (recurrence relation)

Today's goal: Express the n^{th} term as a function of n. (Solve the recurrence)

How do recurrences come up?

- In counting problems.
 - Ex: Count the number of ways to tile an 2 × n grid with 1 × 2 or 2 × 1 dominos

$$\begin{aligned} \alpha_1 &= 1, \alpha_2 = 2 \\ \alpha_n &= \alpha_{n-1} + \alpha_{n-2} \end{aligned} \qquad (n \geqslant 3)$$

- When estimating the runtime of recursive algorithms (e.g. divide-and-conquer)
 - Merge sort:

$$\begin{split} T_1 &= \Theta(1) \\ T_n &= T_{|n/2|} + T_{[n/2]} + \Theta(n) \\ \end{split} \qquad (n \geqslant 2) \end{split}$$

Divide-and-Conquer

- Divide a problem of size n into a sub-problems each of size n/h
- f(n): the cost of dividing and then re-combining the partial solutions into a full one

Runtime on input of size n:

$$T_n = \alpha T_{n/b} + f(n)$$

Counting example: Towers of Hanoi

Goal: Move the disks to the end rod using as few steps as possible.

- One step: choose one of the topmost disks and place it on top of another stack or on an empty rod.
- No larger disk may be placed on top of a smaller disk.

Towers of Hanoi

Let T_n be the number of steps needed to move n disks.

- Compute T₁, T₂, T₃.
- Express T_n in terms of T_{n-1}

Solving the recurrences

```
T_1 = 1

T_n = 2T_{n-1} + 1
```

Method 1: Backtracking

$$\begin{split} T_1 &= 1 \\ T_n &= 2T_{n-1} + 1 \end{split} \qquad n \geqslant 2 \end{split}$$

$$\begin{split} T_n &= 2T_{n-1} + 1 \\ &= 2\left(2T_{n-2} + 1\right) + 1 = 2^2T_{n-2} + 2 + 1 \\ &= 2^2\left(2T_{n-3} + 1\right) + 2 + 1 = 2^3T_{n-3} + 2^2 + 2 + 1 \\ &= 2^3\left(2T_{n-4} + 1\right) + 2 + 1 = 2^4T_{n-4} + 2^3 + 2^2 + 2 + 1 \\ &\vdots \\ &= 2^{n-1}T_{n-(n-1)} + 2^{n-2} + \ldots + 2^2 + 2 + 1 \\ &= 2^{n-1} + 2^{n-2} + \ldots + 2^2 + 2^1 + 2^0 \\ &= 2^n - 1 \end{split}$$

Reminder of useful formulas

Arithmetic progression

$$d+2d+3d+...+nd = d(1+2+...+n) = d \cdot \frac{(1+n)n}{2}$$

• Finite geometric progression $(q \neq 1)$

$$1 + q + q^{2} + ... + q^{n} = \frac{q^{n+1} - 1}{q - 1}$$

• Infinite geometric progression with |q| < 1

$$1 + q + q^2 + q^3 + \dots = \frac{1}{1 - q}$$

Method 2: Guess + Induction

- Guess the solution (Ex: T_n = 2ⁿ − 1)
- Prove that the solution is correct using induction.

Thm. $2^n - 1$ satisfies the recurrence

$$\begin{cases} T_1 = 1 \\ T_n = 2T_{n-1} + 1 & \text{for } n \geqslant 2 \end{cases}$$

Proof. (by induction on n)

Base case:
$$n = 1$$

 $T_1 \stackrel{?}{=} 2^1 - 1 \checkmark$

Induction step:

Assume $T_n=2^n-1$ for some $n\geqslant 1$. (Induction Hypothesis) Need to show: $T_{n+1}=2^{n+1}-1$.

Method 3: Linear homogeneous recurrences

Linear homogeneous recurrence relation of degree k:

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + ... + r_k a_{n-k}$$

where, r_1, \ldots, r_k are constants.

Which of the following are linear homogeneous recurrences with constant coefficients?

- **1** Fibonacci: $F_n = F_{n-1} + F_{n-2}$
- **2** Hanoi: $T_n = 2T_{n-1} + 1$
- **3 Merge Sort:** $M_n = 2M_{\lfloor n/2 \rfloor} + const \cdot n$
- $a_n = a_{n-1} + 2a_{n-5}$
- **6** Factorial: $b_n = nb_{n-1}$

Method 3: Linear homogeneous recurrences

Linear homogeneous recurrence relation of degree k:

$$\alpha_n = r_1\alpha_{n-1} + r_2\alpha_{n-2} + \ldots + r_k\alpha_{n-k}$$

where, r_1, \ldots, r_k are constants.

The recipe

Find the roots of the characteristic equation

$$x^k = r_1 x^{k-1} + \ldots + r_{k-1} x + r_k$$

- 2 For k = 2, we have two roots s_1 and s_2 .
 - If $s_1 \neq s_2$

$$a_n = us_1^n + vs_2^n$$

• If $s_1 = s_2$

$$a_n = us_1^n + vns_1^n$$

3 Use the initial conditions to find constants u, v.

Why does the recipe work? (k = 2)

two distinct solutions $s_1 \neq s_2$

Suppose $s_1 \neq s_2$ are solutions of $x^2 = r_1x + r_2$.

If for some $u,v\in\mathbb{R}$ we denote $\alpha_n=us_1^n+vs_2^n$ for every $n\in\mathbb{N},$ then

$$\begin{split} & r_1 a_{n-1} + r_2 a_{n-2} \\ &= r_1 (u s_1^{n-1} + \nu s_2^{n-1}) + r_2 (u s_1^{n-2} + \nu s_2^{n-2}) \\ &= u (r_1 s_1 + r_2) s_1^{n-2} + \nu (r_1 s_2 + r_2) s_s^{n-2} \\ &= u s_1^2 s_1^{n-2} + \nu s_2^2 s_2^{n-2} \\ &= a_n \end{split}$$

Why does the recipe work? (k = 2)

one solution $s_1 = s_2 =: s$

Suppose *s* is the sole solution of $x^2 = r_1x + r_2$.

Then $r_1 = 2s$ and $r_2 = -s^2$.

If for some $u,v\in\mathbb{R}$ we denote $\alpha_n=us^n+\nu ns^n$ for every $n\in\mathbb{N},$ then

$$\begin{split} & r_1 a_{n-1} + r_2 a_{n-2} \\ &= 2s(us^{n-1} + \nu(n-1)s^{n-1}) - s^2(us^{n-2} + \nu(n-2)s^{n-2}) \\ &= u(2s^n - s^n) + \nu(2(n-1)s^n - (n-2)s^n) \\ &= a_n \end{split}$$

Example: the Fibonacci sequence

$$F_n = F_{n-1} + F_{n-2}, \quad F_1 = F_2 = 1$$

