Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG – LFA 2021/1 – H. Longo

(1 – 1 de 9

Roteiro

Autômatos finitos e expressões regulares (814 – 847 de 948)

Equivalência com autômato finito

Lema 5.34

▶ Se uma linguagem \mathcal{L} , sobre um alfabeto Σ , é regular, então alguma expressão regular \mathcal{R} a descreve.

Demonstração.

- \mathcal{L} regular $\Rightarrow \mathcal{L}$ é reconhecida por algum NFA.
- ► Conversão de NFA numa expressão regular equivalente:
 - 1. conversão de NFA em GNFA.
 - 2. conversão de GNFA em expressão regular.

GNFA: Generalized Nondeterministic Finite Automaton.

Equivalência com autômato finito

Lema 5.34

INF/UFG - LFA 2021/1 - H. Longo

▶ Se uma linguagem \mathcal{L} , sobre um alfabeto Σ , é regular, então alguma expressão regular \mathcal{R} a descreve.

Demonstração.

- ► Conversão de NFA numa expressão regular equivalente.
 - k-NFA : autômato finito determinístico com k estados.
 - ℓ -GNFA : autômato finito não determinístico generalizado com ℓ estados.

NFA generalizado – GNFA

Definição 5.35 (Geral)

- ► Um *GNFA* é um *NFA* onde:
 - ightharpoonup função de transição δ aceita como parâmetros um estado e uma expressão regular e tem como resultado outro estado;
 - pode haver transições do estado inicial para todos os demais;
 - sem transições dos demais estados para o estado inicial;
 - há apenas um estado final:
 - pode haver transições dos demais estados para o estado final:
 - sem transição do estado inicial (final) para o próprio; e
 - pode haver transições de cada estado para o próprio (exceto o inicial e o final).

INF/UFG - LFA 2021/1 - H. Longo

NFA generalizado – GNFA

Definição 5.36

- ▶ *NFA* definido pela quíntupla $\langle \Sigma, S, s_0, \delta, F \rangle$.
- ▶ Um *GNFA* é definido pela quíntupla $\langle \Sigma, S, s_{ini}, \delta', s_{fim} \rangle$, onde:

 Σ : o alfabeto de entrada:

 $S \neq \emptyset$: o conjunto finito de estados;

 $s_{ini} \in S$: estado inicial;

 $\delta': (S - \{s_{fim}\}) \times \mathcal{R}^* \to S - \{s_{ini}\}$: a função de transição que associa um estado

e uma expressão regular a outro estado;

 $s_{fim} \in S$: estado final;

 \mathcal{R}^* : conjunto de todas as expressões regulares

sobre o alfabeto Σ .

Autômatos finitos e expressões regulares (817 - 847 de 948)

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e expressões regulares (818 - 847 de 948

NFA generalizado – GNFA

Definição 5.37

- Alfabeto Σ.
- ▶ Cadeia $w = w_1 w_2 \dots w_k$, onde cada $w_i \in \Sigma^*$.
- $ightharpoonup GNFA\ G = \langle \Sigma, S, s_{ini}, \delta, s_{fim} \rangle.$
- ▶ G reconhece a cadeia w se existe uma sequência de estados s_1, s_2, \ldots, s_k tal que:
 - $ightharpoonup s_1 = s_{ini}$ é o estado inicial,
 - $ightharpoonup s_k = s_{fim}$ é o estado final,
 - \triangleright $\mathcal{R}_{i-1,i} = w_i$, para cada $i, 2 \le i \le k$, onde $\delta(s_{i-1}, \mathcal{R}_{i-1,i}) = s_i$.

Conversão de NFA em GNFA

- \triangleright NFA = $\langle \Sigma, S, s_0, \delta_1, F \rangle$.
- ► $GNFA = \langle \Sigma, S \cup \{s_{ini}, s_{fim}\}, s_{ini}, \delta, s_{fim} \rangle$.
 - Novo estado s_{ini} , com transição $\delta(s_{ini}, \varepsilon) = s_0$.
 - Novo estado s_{fim} , com transições $\delta(s, \varepsilon) = s_{fim}$, $\forall s \in F$.
 - União de múltiplas transições entre estados:
 - $\delta(s_i, a) = s_i \in \delta(s_i, b) = s_i \Rightarrow \delta(s_i, a \cup b) = s_i.$
 - Como considerar estado intermediário entre s_i e s_i ?

Expressão regular e autômato finito

▶ Resumo das operações de exclusão de um vértice:

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e expressões regulares (821 - 847 de 948)

Expressão regular e autômato finito

▶ Resumo das operações de exclusão de um vértice:

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e expressões regulares (822 - 847 de 948)

Conversão de GNFA em expressão regular

Algoritmo 7: ExtraiExprReg(*G*)

9 ExtraiExprReg($G' = \langle \Sigma, S', s_{ini}, \delta', s_{fim} \rangle$);

Entrada: GNFA $G = \langle \Sigma, S, s_{ini}, \delta, s_{fim} \rangle$. Saída: Expressão regular R1 $k \leftarrow |S|$; 2 se (k = 2) então $\delta(s_{ini}, \mathcal{R}) = s_{fim};$ retorna R: 5 senão $s_r \leftarrow s \in S$, tal que $s \neq s_{ini}$ e $s \neq s_{fim}$.; $\delta(s_i, \mathcal{R}_{i,i}) = s_i$.

Conversão de GNFA em expressão regular

Lema 5.38

▶ Seja G um GNFA e G' o GNFA obtido a partir de G em uma iteração do Algoritmo 7, então G e G' são equivalentes.

Demonstração.

▶ Indução no número k de estados de G':

Base: $k = 2 \Rightarrow S = \{s_{ini}, s_{fim}\} \Rightarrow \delta(s_{ini}, \mathcal{R}) = s_{fim}$.

Conversão de GNFA em expressão regular

Lema 5.38

▶ Seja G um GNFA e G' o GNFA obtido a partir de G em uma iteração do Algoritmo 7, então G e G' são equivalentes.

Demonstração.

▶ Indução no número k de estados de G':

Passo 1: Suponha que *G* aceita uma cadeia *w*:

$$ightharpoonup \exists s_{ini} \equiv s_1, s_2, s_3, \dots, s_q \equiv s_{fim}$$

$$ightharpoonup s_r \neq s_2, s_3, \dots, s_{q-1} \Rightarrow G'$$
 aceita w

$$ightharpoonup s_r = s_p, 2 \leqslant p \leqslant q-1 \Rightarrow \delta'(s_i, \mathcal{R}') = s_j \text{ descreve } w \text{ } (G' \text{ aceita } w).$$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e expressões regulares (825 - 847 de 948)

Conversão de GNFA em expressão regular

Lema 5.38

▶ Seja G um GNFA e G' o GNFA obtido a partir de G em uma iteração do Algoritmo 7, então G e G' são equivalentes.

Demonstração.

▶ Indução no número k de estados de G':

Passo 2: Suponha que G' aceita uma cadeia w:

• $\delta'(s_i, \mathcal{R}') = s_i$) $\Rightarrow \mathcal{R}'$ descreve coleção de cadeias reconhecidas entre s_i e s_i em G, passando ou não por s_r .

 $G \in G'$ são equivalentes.

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e expressões regulares (826 - 847 de 948

Conversão de GNFA em expressão regular

Exemplo 5.39

Conversão de GNFA em expressão regular

Exemplo 5.39

Conversão de GNFA em expressão regular $\underbrace{s_{ini}}_{s_{ini}} \underbrace{s_{ini}}_{s_{ini}} \underbrace{s_{in$

Conversão de GNFA em expressão regular

Exemplo 5.40

INF/UFG - LFA 2021/1 - H. Longo

Conversão de NFA em expressão regular

- A mesma técnica descrita para converter gramática regular em expressão regular pode ser usada a partir de um NFA!
- ▶ Seja o NFA $N = \langle \Sigma, S = \{s_0, s_1, \dots, s_n\}, s_0, \delta, F \rangle$ sem transições ε .
- ▶ Definem-se expressões $S_0, ..., S_n$, de modo que cada S_i gere todas as cadeias que são aceitas por N a partir do estado s_i . Obviamente, $\mathcal{L}(S_0) = \mathcal{L}(N)$.
- Sistema de equações:

INF/UFG - LFA 2021/1 - H. Longo

$$S_i = \bigcup_{\delta(s_i,a)=s_j} aS_j \quad \bigcup_{s_i \in F} \varepsilon.$$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e expressões regulares (842 - 847 de 948)

Autômato finito e sistema de equações

Exemplo 5.41

► Autômato finito *N*:

Sistema de equações:

$$S_0 = aS_1 \cup bS_2 \cup \varepsilon \tag{1}$$

$$S_1 = aS_2 \cup bS_0$$

$$S_2 = aS_0 \cup bS_1 \tag{3}$$

(2)

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e expressões regulares (845 - 847 de 948)

Autômato finito e sistema de equações

Exemplo 5.41

Solução:

$$(3) \to (1) e (3) \to (2)$$
:

$$S_0 = aS_1 \cup b(aS_0 \cup bS_1) \cup \varepsilon$$

$$= (a \cup bb)S_1 \cup baS_0 \cup \varepsilon \tag{4}$$

$$\mathcal{S}_1 = a(a\mathcal{S}_0 \cup b\mathcal{S}_1) \cup b\mathcal{S}_0$$

$$=ab\mathcal{S}_1 \cup (aa \cup b)\mathcal{S}_0 \tag{5}$$

INF/UFG - LFA 2021/1 - H. Longo

Autômatos finitos e expressões regulares (846 - 847 de 948)

Autômato finito e sistema de equações

Exemplo 5.41

Solução:

Lema de Arden em (5):

$$S_0 = (a \cup bb)S_1 \cup baS_0 \cup \varepsilon$$

$$S_1 = (ab)^* (aa \cup b) S_0 \tag{6}$$

 $(6) \to (4)$:

$$S_0 = (a \cup bb)(ab)^*(aa \cup b)S_0 \cup baS_0 \cup \varepsilon$$
$$= ((a \cup bb)(ab)^*(aa \cup b) \cup ba)S_0 \cup \varepsilon \tag{7}$$

Lema de Arden em (7):

$$S_0 = ((a \cup bb)(ab)^*(aa \cup b) \cup ba)^*$$

(8)

(4)

Livros texto

R. P. Grimaldi

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It - A Structured Approach. Cambridge University Press, 1996.

Introdução à Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

T. A. Sudkamp.

Languages and Machines - An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata - With an Introduction to Formal Languages.

Introduction to the Theory of Computation. PWS Publishing Company, 1997

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000