Relatório 3º projeto ASA 2023/2024

Grupo: AL017

Aluno(s): Rodrigo Perestrelo (ist1106074) e Cristiano Pantea (ist1106324)

Descrição do Problema e da Solução

O problema consiste em desenvolver um programa que permita aferir o lucro máximo que pode ser obtido com a produção e venda de brinquedos durante o Natal.

A empresa produz diariamente um conjunto de brinquedos de madeira, onde cada brinquedo tem um lucro. Para além de um limite máximo de produção de cada brinquedo, a empresa está limitada a uma quantidade máxima total de brinquedos que podem ser produzidos por dia. A empresa, para além de vender cada brinquedo individualmente, pode vender também pacotes especiais contendo três brinquedos distintos, cujo lucro é maior do que a soma dos lucros individuais dos brinquedos que o constituem.

A nossa implementação da solução consiste na utilização da biblioteca PuLP de Python para resolver o problema de programação linear.

Identificação das variáveis do problema:

- **X₁, X₂, ..., X_t** : representam os brinquedos produzidos, onde t é o número de brinquedos individuais produzidos.
- y_1 , y_2 , ..., y_p : representam os pacotes produzidos, onde p é o número de pacotes produzidos.

Especificação do programa linear em função das variáveis do problema:

$$\begin{array}{ll} \max & \sum_{i=1}^t & (\mathbf{x_i} * \mathsf{lucro_i}) + \sum_{j=1}^p & (\mathbf{y_j} * \mathsf{lucro_j}) \\ \mathbf{s.a.} & \sum_{i=1}^t & \mathbf{x_i} + \sum_{j=1}^p & (3 * \mathbf{y_j}) <= \mathsf{max_brinquedos} \\ & \sum_{i=1}^t & (\mathbf{x_i} + \mathsf{lpSum(pacotes_brinquedo[i])}) <= \mathsf{max_brinquedo[i]}, \mathsf{sse} \\ \mathsf{pacotes brinquedo[i]} \; \mathsf{n\~ao} \; \mathsf{for vazio}. \end{array}$$

$$x_i >= 0$$
 (lowBound) $\land x_i <= max_brinquedo[i]$ (upBound), $\forall i \in [0, t]$ $y_j >= 0$ (lowBound) $\land y_j <= min(x_1, x_2, x_3)$ (upBound), $\forall j \in [0, p]$

t \rightarrow número de brinquedos produzidos; p \rightarrow número de pacotes produzidos; max_brinquedos \rightarrow número máximo de brinquedos que podem ser produzidos; pacotes_brinquedo \rightarrow vetor que tem em cada posição i uma lista com os pacotes que contêm o brinquedo i; x_1 , x_2 , $x_3 \rightarrow$ upperbounds dos 3 brinquedos do pacote

Análise Teórica

Complexidade da codificação em função dos parâmetros do problema (número de brinquedos (n) e número de pacotes (p)):

- ullet O número de variáveis do programa linear é $O(n+p) \to brinquedos$ e pacotes.
- ullet O número de restrições do programa linear é O(3n + 2p + 1) \to uma restrição para cada brinquedo e os pacotes no qual o mesmo está inserido mais a restrição do número máximo de brinquedos.

Avaliação Experimental dos Resultados

Numa primeira experiência realizámos um gráfico do tempo (eixo do YYs) em função do tamanho do programa linear codificado (número de variáveis + número de restrições); ou seja, foi colocado o eixo dos XX a variar com o tamanho dos programas lineares gerados, onde o tamanho de um programa linear corresponde à soma do seu número de variáveis com o seu número de restrições.

Numa segunda experiência realizámos um gráfico do tempo (eixo do YYs) em função dos parâmetros do problema: número de brinquedos (n) e número de pacotes (p); ou seja, colocar o eixo dos XX a variar com a soma do número de brinquedos com o número de pacotes.

