Centrale 2021

I Quelques Fonctions Auxiliaires

```
Q1. let nombre_aretes g =
        let rec length_list l =
            match 1 with
            | [] -> 0
            |h::t -> 1 + length_list t
        in
        let s = ref 0 in
        for i = 0 to Array.length(g) - 1 do
            s := !s + length_list g.(i)
        done;
        !s / 2 ;;
Q2. let g_2 = [|
        [|3; 1|];
        [|4; 0; 2|];
        [|5; 1|];
        [|0; 4|];
        [|1; 3; 5|];
        [|2; 4|];
        ];;
Q3. let adjacence g =
        let n = Array.length g in
        let adj = Array.make n [||] in
        for i = 0 to n - 1 do
            adj.(i) <- Array.of_list g.(i)</pre>
        done;
        adj ;;
\mathbf{Q4.} let rang (p, q) (s, t) =
        let is, js = s / p, s mod p in
        let it, jt = t / p, t mod p in
        if it = is + 1 then
            (q - 1) * js + is
        else if jt = js + 1 then
            p * (q - 1) + (p - 1) * is + js
        else
            failwith "Argument(s) invalide(s)" ;;
\mathbf{Q5.} let sommets (p, q) rg =
        if rg  then
            let is, js = rg \mod (q - 1), rg / (q - 1) in
            let s = is * p + js in
            (s, s + p)
        else if rg  then
            let shift = p * (q - 1) in
            let is, js = (rg - shift) \mod (p - 1), (rg - shift) / (p - 1) in
            let s = js * (q + 1) + is in
        else failwith "Argument(s) invalide(s)" ;;
Q6. let quadrillage p q =
        let graphe = Array.make (p * q) [] in
        let rec remplissage_graphe rg =
            if rg  then
                let v1, v2 = sommets (p, q) rg in
                begin
```

```
graphe.(v1) <- v2 :: graphe.(v1) ;
    graphe.(v2) <- v1 :: graphe.(v2);
    remplissage_graphe (rg + 1);
    end
in
remplissage_graphe 0 ;
graphe ;;</pre>
```

II Caractérisation des arbres

II.A - Propriétés sur les arbres

- **Q7.** Si $s, t \in S_n$, notons s * t, la relation "Il existe un chemin de s à t". Montrons que * est une relation d'équivalence sur S_n .
 - Réflexivité : soit $s \in S_n$. Par convention, il existe un chemin de s à s. Donc s * s.
 - Symétrie : soit $s, t \in S_n$, si s * t, alors il existe un chemin $c = (s, s1, \ldots, s_{k-1}, t)$. Donc $\forall i \in \{0, \ldots, k-1\}, \{s_i, s_{i+1}\} \in A \text{ donc } \{s_{i+1}, s_i\} \in A, \text{ donc le chemin } c' = (t, s_{k-1}, \ldots, s_1, s)$ existe et donc t * s
 - Transitivité: soit $s, t, u \in S_n$ tels que si s * t et t * u. Alors il existe $c1 = (s, s_1, \ldots, s_{k-1}, t)$ et $c2 = (t, t_1, \ldots, t_{i-1}, u)$.

 Donc en concaténant ces chemins, il existe $c = (s, \ldots, s_{k-1}, t, t_1, \vdots, t_{k-1}, u)$, d'où s * u.

Ainsi comme les composantes connexes de G sont les classes d'équivalence de *, elles forment une partition de S_n .

Q8. Soit s,t deux sommets tels que s*t, en notant len(c) la longueur d'un chemin c, alors $L = \{len(c) | c$ chemin de s à $t\}$ est une partie de \mathbb{N} , non-vide (puisque s*t), donc il existe un plus petit élément k_0 de L. D'où l'existence d'un plus court chemin de s à t. Soit c_0 un plus court chemin de s à t, notons le $c_0 = (s, s_1, \ldots, s_{k_0-1}, t)$. Si il existe $i \neq j$ tels que $s_i = s_j$ (on peut supposer sans perte de généralité que i < j) alors $c = (s, \ldots, s_i = s_j, s_{j+1}, \ldots, t)$, un chemin de longueur $k_0 - (j-i) < k_0$, ce qui contredit le caractère

de plus court chemin de $c_0 \to \text{absurde}$. Donc les sommets d'un plus court chemin sont distincts.

Q9. Soit $k \in [0, m]$, notons s, t les extrémités de a_k .

Supposons que s et t appartiennent à la même composante connexe de G_k , alors $s *_k t$. Ainsi en notant $c_k = (s_0 = s, s_1, \ldots, s_{i-1}, s_i = t)$ (avec i > 1), où les sommets de c_k sont adjacents dans G_k , alors il existe un chemin c dans G tel que $c = (s, \ldots, t, s)$ (car a_k relie s et t). Or $len(c) = i + 1 \ge 2$, donc il existe un cycle dans G. Or G est un arbre donc est acyclique \to absurde!

Ainsi les extrémités de a_k appartiennent à deux composantes connexes différentes de G_k .

En notant pout tout $i \in [0, m]$, $\varphi(i)$ le nombre de composantes connexes de G_i , alors $\phi(0) = n$ (G_0 est composé de n sommets non reliés) et $\varphi(m) = 1$ ($G_m = G$ est un arbre, donc connexe).

Donc si $k \in [0, m[$ et $a_k = \{s, t\}$, alors d'après ce qu'on a fait juste avant, s et t sont dans deux composantes connexes différentes de G_k et dans la même dans G_{k+1} . Les composantes connexes étant disjointes, si $u \in S_n$ tel que $C_{u_k} \neq C_{s_k}$ et $C_{u_k} \neq C_{t_k}$, alors $C_{u_k} = C_{u_{k+1}}$, (les C_{i_k} étant les composantes connexes de G_k contenant i), d'où finalement $\varphi(k+1) = \varphi(k) - 1$

Par une récurrence immédiate, $\varphi(m) = \varphi(0) - m$, d'où m = n - 1 et donc le résultat.

Q10. D'après **Q9.**, $(i) \implies (ii)$ et $(i) \implies (iii)$ Si (ii), notons $\mathcal{H} = \{H \mid H = (S_n, B), B \subset A \text{ et H connexe}\},$

Comme $G \in \mathcal{H}$, alors \mathcal{H} non vide, en particulier, l'ensemble des cardinaux des aretes est une partie non-vide de \mathbb{N} , on peut donc considérer $H = (S_n, B)$ avec B de cardinal minimal.

Supposons par l'absurde que H possède un cycle, alors en supprimant une arete quelconque de ce cycle, H reste connexe et possède |B|-1 < |B| aretes \to absurde car B est de cardinal minimal. Donc H est acyclique et finalement H est un arbre, d'où |B|=n-1 (d'après $\mathbf{Q9.}$) et donc finalement H=G.

Ainsi G est un arbre donc $(ii) \implies (i)$

Si (iii), notons de même $\mathcal{H} = \{H \mid H = (S_n, B), A \subset B \text{ et } H \text{ acyclique}\},$

Comme $G \in \mathcal{H}$, alors \mathcal{H} non vide, alors on peut de même considérer $H = (S_n, B)$ de avec |B| minimal.

Supposons par l'absurde que H ne soit pas connexe, alors il existe C_1, \ldots, C_p $(p \ge 2)$ composantes connexes de H. Notons n_i et m_i le nombres de sommets et d'aretes de C_i . Alors comme les C_i sont connexes et acycliques, ce sont des arbres, donc possèdent $m_i = n_i - 1$ aretes d'après **Q9**.

Donc $|B| = \sum_{k=1}^{p} m_k = \sum_{k=1}^{p} n_i - 1 = n - p < n - 1 \rightarrow \text{absurde car } |B| \geqslant n - 1$. Donc finalement H est connexe et acyclique, donc est un arbre, donc possède |B| = n - 1 aretes.

Donc finalement H = G et donc G est un arbre, d'où $(iii) \implies (i)$

```
Q11. let rec representant partition sommet =
    if partition.(sommet) < 0 then sommet
    else representant partition partition.(sommet)
```

```
else representant partition partition.(sommet)

Q12. let union partition sommet1 sommet2 =
    let h_sommet1 = - partition.(sommet1) - 1 in
    let h_sommet2 = - partition.(sommet2) - 1 in
    if h_sommet1 > h_sommet2 then
        partition.(sommet2) <- sommet1
    else if h_sommet1 = h_sommet2 then
        begin
        partition.(sommet1) <- sommet2;
        partition.(sommet2) <- partition.(sommet2) - 1
        end
    else
        partition.(sommet1) <- sommet2;;</pre>
```

Q13. Montrons le résultat sur k le nombre de réunions réalisés:

Notons H_k : "Après k réunions, si s représentant de $X \in \mathcal{P}$, alors $|X| \geq 2^{h(s)}$ "

- Si k=0, alors $\mathscr{P}=\mathscr{P}_n^{(0)}$, donc si $X\in\mathscr{P},\,X=\{s\}$ et h(s)=0 ainsi $|X|=1\geq 2^{h(s)}$, d'où H_0
- Soit $k \in \mathbb{N}^*$, supposons H_{k-1} , montrons H_k .

Si $\mathscr{P} = \{X_1, \dots, X_p\}$ une partition ayant subi k-1 réunions depuis $\mathscr{P}_n^{(0)}$. Soit \mathscr{P}' ayant subi une réunion depuis \mathscr{P} . Notons $\mathscr{P}' = \{X'_1, \dots, X'_{p-1}\}$.

Soit $i \in [0, p[$, alors si X_i' n'a pas subi de réunion, alors il existe j tel que $X_i' = X_j$ et donc si s est un représentant de X_i' , alors h'(s) = h(s) et donc $|X_i'| = |X_j| \ge 2^{h(s)} = 2^{h'(s)}$.

Sinon, X_i' a subi une réunion et donc il existe $j \neq m$ tels que $X_i' = X_j \cup X_m$.

Notons s, s_j, s_m les représentants respectifs de X_i', X_j, X_m . Lors de la réunion, la hauteur de s ne peut qu'augmenter de 1, donc $h'(s) \leq 1 + h(s_j)$ et $h'(s) \leq 1 + h(s_m)$.

Donc, \mathscr{P} étant une partition, $X_j \cap X_m = \emptyset$ et donc,

$$|X'_i| = |X_j| + |X_m|$$

$$\geq 2^{h(s_j)} + 2^{h(s_m)}$$

$$\geq 2^{h(s)-1} + 2^{h(s)-1}$$

$$= 2^{h(s)}$$

D'où H_k , et donc le résultat.

Q14. Si \mathscr{P} est une partition construite depuis $\mathscr{P}_n^{(0)}$, alors dans le pire des cas, trouver le représentant s de $x \in S_n$ se fait en h(s) appels récursifs. Or d'après **Q13.**, $h(s) \leq \log_2 |X|$, et $|X| \leq n$ (dans le pire des cas c'est une égalité). Donc la complexité de représentant est $\mathcal{O}(\log_2 n)$

La fonction union ne fait que des opérations élémentaires sur des array donc est en $\mathcal{O}(1)$

Q15. Pour vérifier que G est un arbre, on vérifie qu'il possède n-1 aretes et qu'il est connexe.

```
let count_composantes_connexes graphe =
         let n = Array.length graphe in
         let count = ref 0 in
         let partition = Array.make n (-1) in
         for sommet1 = 0 to n - 1 do
              List.iter (fun sommet2 ->
                      let representant_sommet1 = representant partition sommet1 in
                      let representant_sommet2 = representant partition sommet2 in
                      if representant_sommet1 <> representant_sommet2 then
                          union partition representant_sommet1 representant_sommet2)
                      graphe.(sommet1)
         done;
         for sommet = 0 to n - 1 do
              if partition.(sommet) < 0</pre>
                  then incr count
         done;
         !count ;;
     let est_arbre graphe =
          let n = Array.length graphe in
          (nombre_aretes graphe = n - 1) && (count_composantes_connexes graphe = 1)
Q16. Il correspond au chemin 1-2-5-4
Q17. L'algorithme ne termine pas toujours, en effet si G = G_{3,2} et \mathcal{T} = (\{0\}, \emptyset), alors si s = 5, il se peut
     que l'algorithme fasse le chemin 1-2-6-5 en boucle, le choix étant aléatoire, et donc l'extrémité
     d'un tel chemin ne se trouvera jamais dans \mathcal{T}.
Q18. let marche_aleatoire adj parent sommet =
         let chemin = {debut = sommet ; fin = sommet ;
         suivant = Array.make (Array.length adj) 0} in
         while parent.(chemin.fin) = -2 do
              begin
              let nombre_voisins = Array.length adj.(chemin.fin) in
              let indice_voisin_aleatoire = Random.int nombre_voisins in
              let voisin_aleatoire = adj.(chemin.fin).(indice_voisin_aleatoire) in
              chemin.suivant.(chemin.fin) <- voisin_aleatoire; (*si u est dans le cycle,
                 cette modification n'importe pas*)
              chemin.fin <- voisin_aleatoire;</pre>
              end
         done;
         chemin ;;
Q19. let greffe parent chemin =
         let sommet = ref chemin.debut in
         while !sommet <> chemin.fin do (*chemin.fin etant dans T, on a pas à
          → l'ajouté*)
              let suivant = chemin.suivant.(!sommet) in
              parent.(!sommet) <- suivant;</pre>
              sommet := suivant
         done;
Q20. let wilson g r =
         let n = Array.length g in
         let adj = adjacence g in
         let parent = Array.make n (-2) in
         parent.(r) < -1;
         for sommet = 0 to n - 1 do
              if parent.(sommet) < 0 then</pre>
                  let chemin = marche_aleatoire adj parent sommet in
                  greffe parent chemin
         done;
         parent ;;
```

Q21.

Q22.

Q23. Si s un sommet de \mathcal{T} , alors les coordonnées de s dans $G_{p,q}$ sont $(i = \lfloor s/p \rfloor, j = s \mod p)$. Comme $G_{p,q}$ ne garde que les cases noires, les coordonnées correspondantes dans $E_{p,q}$ sont (2i,2j). Ainsi en fonction de la direction du domino dans la case noire (2i,2j), on obtient les coordonnées de s', le père de s:

- Si la direction est OUEST, alors s' = ip + (j-1)
- Si la direction est NORD, alors s' = (i+1)p + j
- Si la direction est SUD, alors s' = (i-1)p + j
- Si la direction est EST, alors s' = ip + (j + 1)

```
Q24. let coord_noire sommet =
    let i, j = sommet / p, sommet mod p in
    (i * 2, j * 2)
```

```
Q25. let sommet_direction sommet direction = let i, j = sommet / p, sommet mod p in match direction with  |N -> \text{ if } i >= (q-1) \text{ then } -1 \text{ else } (i+1)*p+j \\ |S -> \text{ if } i <= 0 \text{ then } -1 \text{ else } (i-1)*p+j \\ |W -> \text{ if } j <= 0 \text{ then } -1 \text{ else } i*p+j-1 \\ |E -> \text{ if } j >= (p-1) \text{ then } -1 \text{ else } i*p+j+1
```