電感耦合電漿 質譜法(ICP-MS) 教程

AtomSolve 元析科技

工作原理

ICP-MS 的工作原理如圖 1 所示。液態樣品首先被引入霧化器,在那裡轉化為氣溶膠,並被輸送至電漿炬。在電漿炬中,感應耦合電漿被產生,將樣品中的元素原子化並電離成自由離子。這些離子經由採樣介面被抽取出來,並由離子透鏡系統引導,該系統負責聚焦並調整離子的飛行軌跡。接著,離子進入四極桿質量過濾器,根據其質荷比($\frac{m}{q}$)進行分離。選出的離子通過四極桿後被檢測器檢測,信號隨後被放大並進行測量。

儀器的輸出以每秒計數(cps)表示。為了確定原始液態樣品中各元素的濃度,需將所測得的 cps 與已知濃度的標準溶液所建立的校正曲線進行比較。此技術可實現兆分之一(ppt)級別的檢測 靈敏度。

Figure 1: The schematic of ICP-MS equipment.

實驗流程

Sequence	Sample	Annotation
1	1% HNO ₃	washing, CPS data not recorded
2	1% HNO ₃	washing, CPS data not recorded
3	UPW	washing, CPS data recorded
4	1% HNO ₃	ref point 1, blank data (0,0)
5	100 ppt	ref point 2
6	200 ppt	ref point 3
7	500 ppt	ref point 4
8	1000 ppt	ref point 5
9	UPW	washing before QC
10	QC1	quality control
11	SAMPLE	the real sample to be measured
12	UPW	washing, CPS data recorded
13	UPW	washing, CPS data recorded
14	UPW	washing, CPS data recorded

Table 1: The experiment process

校正曲線

在本節中,我們將以 Mg^{2+} 為例,說明如何建立校正曲線(Reference Line)。表 2 顯示了用於生成 Mg^{2+} 校正曲線的數據。ReferLine ID 表示設計的濃度(單位: ppt)等級; Weight conc. 為實際的重量濃度,這取決於天平的稱重精度; CPS 表示樣品檢測到的通量(每秒計數);Regression conc. 的數值則是將五個 CPS 數據點作為自變量輸入後,反算得到的「x」結果。

ReferLine ID	weight conc.(ppt)	CPS	regress conc.(ppt)
0	0	3.67	-1.743352949
100	101.1570672	4548.38	102.7007552
200	170.7122409	7597.66	172.7776864
500	504.8849092	21927.85	502.1064916
1000	979.6110274	42745.37	980.5236645

Table 2: The data for generating the reference line.

回歸方程式 y = ax + b 的參數列於表 3 中。

a	43.51332
b	79.52908
Correlation Coefficient	0.999986

Table 3: Linear Regression Parameters

圖 2 顯示了 Mg²⁺ 離子的校正曲線。圖中的藍線為由五個重量濃度(藍點)數據點進行線性回歸得到的校正曲線;紅色方塊所示的回歸濃度值則是將五個 CPS 數據點作為自變量輸入後所計算的「x」結果。此線性回歸用於說明重量濃度與 CPS 數據之間的精確對應關係。

Figure 2: The Reference Line (blue line), the weight concentration (blue dots) and the regression concentration values (red squares).

品質控制

品質控制(Quality Control, QC)是在測量真實樣品之前所進行的預檢測。QC 樣品的濃度應位於校正範圍內(即 0 至 1000 ppt)。將實測的 CPS 代入回歸方程式,可得到回歸濃度。如果回歸濃度與實際重量濃度之間的差異小於 0.2(即 20%),則該校正曲線可作為可靠的參考依據。在此, Mg^{2+} 的偏差為 0.0153。

weight conc.(ppt)	CPS	regress conc.(ppt)	deviation
604.8263382	26800.32	614.0830057	0.01530467

Table 4: The QC results of Mg²⁺.

分析結果

步驟 11 是此次測量中的實際樣品。樣品中 Mg^{2+} 的實測 CPS 為 11.33,這是三次重複測量結果(13、10 和 11)的平均值。將 11.33 代入回歸方程式 y=ax+b,可得其回歸濃度為 0.176 ppt。以相同方法,可得其他元素的濃度,如表 5 所示。

Element	Regress Conc. (ppt)	Element	Regress Conc. (ppt)
7 Li [Warm H2]	-0.022	89 Y [HEHe]	-0.026
9 Be [No Gas]	-0.204	90 Zr [He]	2.743
11 B [No Gas]	16.336	93 Nb [HEHe]	0.297
23 Na [Warm H2]	1.157	95 Mo [HEHe]	0.411
24 Mg [Warm H2]	0.176	105 Pd [HEHe]	0.204
27 Al [Warm H2]	0.4	105 Pd [He]	0.078
39 K [Warm H2]	0.921	107 Ag [He]	1.658
40 Ca [Warm H2]	3.779	111 Cd [HEHe]	-0.09
48 Ti [HEHe]	0.165	115 In [HEHe]	1.605
51 V [He]	-0.04	118 Sn [Warm H2]	1.377
52 Cr [Warm H2]	0.111	118 Sn [HEHe]	0.729
55 Mn [Warm H2]	0.1	121 Sb [HEHe]	0.728
56 Fe [Warm H2]	0.59	138 Ba [HEHe]	-0.029
58 Ni [Warm H2]	-0.712	181 Ta [HEHe]	0.099
59 Co [Warm H2]	0.07	182 W [He]	0.68
63 Cu [Warm H2]	0.224	195 Pt [No Gas]	-6.325
64 Zn [He]	0.589	197 Au [He]	4.421
71 Ga [Warm H2]	0.035	201 Hg [HEHe]	1.204
72 Ge [HEHe]	0.624	205 TI [He]	0.732
75 As [He]	-0.294	208 Pb [HEHe]	7.721
88 Sr [HEHe]	0	209 Bi [He]	1.195

Table 5: The concentration of elements

在此表中,「Element」欄包含所測元素的同位素質量、元素符號及使用的反應氣體。反應氣體 用於消除干擾,可降低檢測極限,並提升對某些難測分析物的檢測準確度。

Figure 3: The mass spectrum

作為一種質譜技術,ICP-MS 也可以分離並測量元素的各個同位素,因此可用於研究同位素豐度或同位素比值等應用。「圖 3 所示為一張『質譜圖』,簡明地呈現了在不同質荷比下的元素濃度。圖中分離出的『峰』對應於不同的元素或同位素。」

聯繫方式

方自仁,業務經理

Email: tjfang@gmail.com Tel: +886.932.186.234

涂遠, Ph.D., 業務技術經理 Email: ytujimmy@gmail.com

元析科技股份有限公司

統編: 60702634

地址: 台南市仁德區義林路 256 巷 168 號

Web: https://www.atomsolve.com

聲明

此教程中的內容為公開資訊。請自由將本報告轉發給您的同仁。

Appendix-Relative Isotopic Abundance Table

Figure 4: Isotopic abundance table from the **Agilent** Mass Spectrometer manual.

其它技術

橢偏儀 Spectroscopic Ellipsometry
 https://www.atomsolve.com/detailed-introductions/se-details

聚焦離子束掃描電鏡 FIB-SEM
 https://www.atomsolve.com/detailed-introductions/fib

• 穿透式電子顯微鏡 Transmission Electron Microscopy
https://www.atomsolve.com/detailed-introductions/tem-details

3D 建模與仿真 3D modeling and simulation
 https://www.atomsolve.com/detailed-introductions/3drendering

Public TN01250711T0002-6