Numerical Methods

Lost time: fixed point formulations: $f(x)=0 \iff \phi(x)=\infty$ Fixed point iteration: $\chi_{k+1}=\phi(\chi_k)$, k=0,1,2,...Flobal linear convergence: CMT ($\phi:[a,b]=s[a,b]$ Strict contraction)

Local linear convergence: ϕ continuously differentiable

and $|\phi'(\alpha)| < |\phi(\alpha)| = \infty$

Correction: I forgot to prove linear convergence in my proof of CMT. $|x_{k+1}-\alpha|=|\phi(x_k)-\phi(\alpha)|\leqslant \int_{-\infty}^{\infty}|x_k-\alpha|.$ In local convergence result we had $\lim_{k\to\infty}\frac{x_{k+1}-\alpha}{x_k-\alpha}=\phi'(\alpha).$ Q: If $\phi'(\alpha)=0$, is convergence super-linear?
A: Yes, if ϕ is smooth enough.

Proof: Since
$$|\phi'(\alpha)| = 0 < 1$$
 we have local linear convergence.

Taylor expansion of $\phi(x_k)$ around α gives:

 $\chi_{k+1} - \alpha = \phi(\chi_k) - \phi(\alpha) = \phi'(\alpha)(\chi_k - \alpha) + \phi''(\xi_k)(\chi_k - \alpha)$,

for some ξ_k between χ_k and α .

Assuming $\chi_k \neq \alpha$ for any k , continuity of ϕ'' and convergence of $\chi_k - \alpha$.

 $\chi_{k+1} - \kappa = \phi''(\xi_k) - \chi_{k+1} - \kappa = \phi''(\xi_k) - \chi_{k+1} - \kappa$.

 $\chi_{k+1} - \kappa = \phi''(\xi_k) - \chi_{k+1} - \kappa = \phi''(\xi_k) - \chi_{k+1} - \kappa$.

 $\chi_{k+1} - \kappa = \phi''(\xi_k) - \chi_{k+1} - \kappa = \phi''(\xi_k) - \chi_{k+1} - \kappa$.

Example: Newton's method. (for
$$f(x) = 0$$
)

 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$, $k = 0, 1, ...$

Where does this come from? $f(x_k) = 0$.

Taylor gives $0 = f(x) = f(x_k) + f'(x_k)(x_k - x_k) + R$

with $R_1(x_1 x_k) = 0(x_1 - x_k)$ as $x_1 + x_k = 0$.

Rearranging gives $\alpha = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{R_1(x_1 x_k)}{f'(x_k)}$

Newton comes from throwing away this term

• Another interpretation:
$$x_{k+1}$$
 is the root of the best linear approximation to $f(x)$ at $x = x_k$.

Newton's method is a fixed point method for
$$\phi(x) = x - \frac{f(x)}{f'(x)}$$

If f is twice differentiable and $f'(z) \neq 0$ then $\phi'(x) = \frac{f(x) + f''(x)}{(f'(x))^2}$ (quotient rule)

Hence if f(x) = 0 and $f'(x) \neq 0$ then $\phi'(x) = 0$.

Then iteration is locally linearly convergent, if f truice continuously diff.

If f is three times continuously differentiable then

The expect quadratic convergence. (since then ϕ'' is cts)

But in fact this isn't necessary.

Theorem (local gradiatic conjugace of Newton)

Let $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Let $\alpha \in (a_1b)$ satisfy $f(\alpha) = 0$ and $f'(\alpha) \neq 0$.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Then $f: [a_1b] \to \mathbb{R}$ be twice continuously differentiable.

Proof: Since f'(x) is catinous on $[a,b]_{x}$, f(x) = 0 and f'(x) = 0 and f'(x) = 0 and f'(x) = 0 and f'(x) = 0. Also, since f''(x) = 0 is continuous on $[a,b]_{x} = 0$. Define g(x) = 0 and g(x) = 0 and g(x) = 0. Claim: g(x) = 0 and g(x) = 0 and g(x) = 0. Claim: g(x) = 0 and g(x) = 0 and g(x) = 0. Proof by induction: if g(x) = 0 and g(x) = 0 and g(x) = 0. Hence g(x) = 0 and g(x) = 0 and g(x) = 0 and g(x) = 0. Hence g(x) = 0 and g(x) = 0 and g(x) = 0 and g(x) = 0.

Re(al that
$$\alpha = x_k - \frac{f(x_k)}{f'(x_k)} - \frac{R_1(\alpha, x_k)}{f'(x_k)}$$

$$= x_{k+1}$$

Since f is twice diff., $R_1(\alpha, x_k) = \frac{f''(x_k)}{f'(x_k)} = \frac{f''(x_k)}{f$

Note that the inequality (#) gives
$$|x_{k+1}-\alpha| \leq \frac{1}{2}|x_k-\alpha|$$
, giving finear convergence. But furthermore we have $|x_{k+1}-\alpha| \leq \frac{C}{2M}|x_k-\alpha|^2$, giving quadratic convergence.

And furthermore $\frac{x_{k+1}-\alpha}{(x_k-\alpha)^2} = \frac{f''(g_k)}{2f'(x_k)} \longrightarrow \frac{f''(\alpha)}{2f'(\alpha)}$ as $k \to \infty$.

(since $x_k \to \alpha = 5 \ g_k \to \alpha$ and both f' and f'' are continuous, and $f'(\alpha) \neq 0$.

Remark: Take-home message is that Newton is fast!

But: requires smoothness of f, and $f'(x) \neq 0$.

in general we can't compute δ .

So we don't know whether a given x_0 is "close enough" to give convergence.

Examples of divergence of Newton: $\int_{X}^{\infty} f(x) dx$