Exercises for Sept. 8^{th}

1. Declare a recursive function f: int -> int, where

$$f(n) = 1 + 2 + \cdots + (n-1) + n$$

for $n \geq 0$. (Hint: use two clauses with 0 and n as patterns.) State the recursion formula corresponding to the declaration. Give an evaluation for f(4).

2. Declare a recursive function sum: int * int -> int, where

$$sum(m,n) = m + (m+1) + (m+2) + \dots + (m+(n-1)) + (m+n)$$

for $m \ge 0$ and $n \ge 0$. (Hint: use two clauses with (m,0) and (m,n) as patterns.) Give the recursion formula corresponding to the declaration.

3. The following figure gives the first part of Pascal's triangle:

The entries of the triangle are called *binomial* coefficients. The k'th binomial coefficient of the n'th row is denoted $\binom{n}{k}$, for $n \geq 0$ and $0 \leq k \leq n$. For example, $\binom{2}{1} = 2$ and $\binom{4}{2} = 6$. The first and last binomial coefficients, that is, $\binom{n}{0}$ and $\binom{n}{n}$, of row n are both 1. A binomial coefficient inside a row is the sum of the two binomial coefficients immediately above it. These properties can be expressed as follows:

$$\left(\begin{array}{c} n \\ 0 \end{array}\right) = \left(\begin{array}{c} n \\ n \end{array}\right) = 1$$

and

$$\left(\begin{array}{c} n \\ k \end{array}\right) = \left(\begin{array}{c} n-1 \\ k-1 \end{array}\right) + \left(\begin{array}{c} n-1 \\ k \end{array}\right) \text{ if } n \neq 0, \, k \neq 0, \, \text{and } n > k.$$

Declare an F# function bin: int * int -> int to compute binomial coefficients.

- 4. Declare an F# function $\operatorname{multiplicity}(x, ys)$ to find the number of times the value x occurs in the list ys. For example, $\operatorname{multiplicity}(2, [2; 4; 2; 10; 1; 2]) = 3$.
- 5. Declare a function mulC: int * int list -> int list that multiplies every element of an integer list by a constant. For example, mulC(2, [4; 10; 1]) = [8; 20; 2].
- Declare a function addE: int list * int list -> int list that adds the elements
 of two integer lists element by element. For example,

$$\begin{array}{lll} \mathtt{addE}([1;2;3],[4;5;6]) &=& [5;7;9] \\ \mathtt{addE}([1;2],[3;4;5;6]) &=& [4;6;5;6] \\ \mathtt{addE}([1;2;3;4],[5;6]) &=& [6;8;3;4] \end{array}$$

7. We represent the polynomial $a_0 + a_1 \cdot x + ... + a_n \cdot x^n$ with integer coefficients $a_0, a_1, ..., a_n$ by the list $[a_0; a_1; ...; a_n]$. For instance, the polynomial $2 + x^3$ is represented by the list [2; 0; 0; 1].

Note that the function mulC above implements multiplication of a polynomial by a constant. For example, $2 \cdot (2 + x^3) = 4 + 2x^3$ and mulC(2, [2; 0; 0; 1]) = [4; 0; 0; 2].

Furthermore, the function addE above implements addition af two polynomials. Compare, for example, the addition $(1+2x) + (3+4x+5x^2+6x^3) = 4+6x+5x^2+6x^3$ with the second example given above.

- (a) Declare a F# function mulX for multiplying a polynomial Q(x) by x. For example, $x \cdot (2 + x^3) = 2x + x^4$. That is, mulX[2; 0; 0; 1] should be [0; 2; 0; 0; 1].
- (b) Declare a function **mul** for multiplication of polynomials in the chosen representation. The following properties are useful when defining the multiplication:

$$0 \cdot Q(x) = 0
(a_0 + a_1 \cdot x + \dots + a_n \cdot x^n) \cdot Q(x)
= a_0 \cdot Q(x) + x \cdot ((a_1 + a_2 \cdot x + \dots + a_n \cdot x^{n-1}) \cdot Q(x))$$

For example, $(2+3x+x^3)\cdot(1+2x+3x^2)=2+7x+12x^2+10x^3+2x^4+3x^5$.

(c) Declare a function to give a textual representation of a polynomial.