Статистика, прикладной поток

Практическое задание

В данном задании вы изучите свойства метода Монте-Карло, сравнив его с методом прямоугольков. Также с помощью метода Монте-Карло вы решите задачу, которая возникает при составлении проекта по разработке нефтяного месторождения. Знания физики или экономики не требуются.

Правила:

- Дедлайн **26 сентября 23:59**. После дедлайна работы не принимаются кроме случаев наличия уважительной причины.
- Выполненную работу нужно отправить на почту mipt.stats@yandex.ru, указав тему письма "[applied] Фамилия Имя - задание 1". Квадратные скобки обязательны.
- Прислать нужно ноутбук и его pdf-версию (без архивов). Названия файлов должны быть такими: 1.N.ipynb и 1.N.pdf, где N ваш номер из таблицы с оценками.
- Решения, размещенные на каких-либо интернет-ресурсах не принимаются. Кроме того, публикация решения в открытом доступе может быть приравнена к предоставлении возможности списать.
- Для выполнения задания используйте этот ноутбук в качествие основы, ничего не удаляя из него.
- Никакой код из данного задания при проверке запускаться не будет.

Баллы за задание:

- Задача 1 1 балл
- Задача 2 10 баллов
- Задача 3 10 баллов
- Задача 4 5 баллов
- Задача 5 20 баллов

Все задачи имеют тип ОЗ. Подробнее см. в правилах выставления оценки.

Задача 1. Найдите книгу Савельев В. "Статистика и котики" и прочитайте главы 1 и 2. Какие выводы можно сделать?

Вывод: С помощью мер центральной тенденции(медиана, мода, среднее) мы можем узнать как выглядят типичные данные, а с помощью мер изменчивости(межквартильный размах, дисперсия, стандартное отклонение) можно узнать разброс в данных. В зависимости от ситуации, выбираются различные меры центр. тенденции и меры изменчивости, и совместно они используются для описания группы данных.

Для того, чтобы наглядно просмотреть, как выглядят данные, прибегают в различным средствам визуализации данных(таблицы частот, диаграммы, боксплот). Кроме того, с помощью средств визуализации можно при неправильной интерпретации легко исказить представление о данных, чем часто пользуются, чтобы придумать какие либо тенденции в данных, где их на самом деле нет. Самые распространенные способы - испольщование процентов вместо абсолютных величин, сдвиги шкалы, сокрытие данных, изменение масштабов и т.д.

Задача 2. Реализуйте метод Монте-Карло и метод прямоугольников численного интегрирования функции. Реализация должна уметь вычислять интеграл вида:

$$\int_{l_1}^{h_1} \dots \int_{l_d}^{h_d} f(x_1, \dots, x_d) dx_1 \dots dx_d$$

Детали реализации: на вход функции подаются векторы $l=(l_1,\ldots,l_d)$ и $h=(h_1,\ldots,h_d)$, число n -- максимальное допустимое число вызовов функции f (если вы не делаете лишних вызовов, оно равно числу точек-центров отрезков, прямоугольников, параллелипипедов, и т.д. в многомерных случаях). Использование циклов, кроме циклов по числу интегралов d, наказуемо. Используйте функции numpy.meshgrid и numpy.vectorize для быстрой скорости работы.

In [3]:

import numpy as np
import scipy.stats as sps
import matplotlib.pyplot as plt
%matplotlib inline

import time

Пример использования <u>`numpy.vectorize` (https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html)</u>.

```
In [4]:
```

multi_unif_rvs([1, 2], [1, 2], 3).T.mean()

Out[8]:

1.8761601834046717

```
def vector function(x):
    """Получает на вход вектор некоторой длины п, возвращает число.
    Сигнатуру можно записать как (n)->()""
    return x.sum()
f = np.vectorize(vector_function, signature="(n)->()")
arg = np.arange(10).reshape(-1, 2)
arg
Out[4]:
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7],
       [8, 9]])
In [5]:
f(arg) # вычисляет суммы по строкам
Out[5]:
array([ 1, 5, 9, 13, 17])
Пример использования `numpy.meshgrid` (https://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html). Как
всегда, настоятельно советуем читать документацию.
In [6]:
# координаты точек на некоторой координатной оси
linspace_x = [1, 2, 3]
linspace y = [-1, -2, -3]
# возвращает матрицы с координатами сетки,
# задаваемой проекциями точек на оси координат
X, Y = np.meshgrid(linspace_x, linspace_y)
# преобразуем исходный формат к вектору точек
np.stack([X, Y]).reshape(2, -1).T
Out[6]:
array([[ 1, -1],
[ 2, -1],
       [ 3, -1],
       [ 1, -2],
       [ 2, -2],
       [ 3, -2],
[ 1, -3],
       [2, -3],
       [ 3, -3]])
In [7]:
multi unif rvs = np.vectorize(lambda loc, scale, size: sps.uniform(loc, scale).rvs(size),
                                                         signature='(),(),()->(m)')
In [8]:
```

```
class Integrator:
   @staticmethod
   def integrate(f, low, high, n, method="rectangle"):
        """Вычисление интеграла.
        f - функция многих переменных, на вход принимает вектор;
        low - нижние границы (в том же порядке, в котором
                             функция принимает аргументы);
       high - верхние границы (аналогично);
       n - максимальное число вызовов функции f;
       method - метод ("rectangle" или "monte carlo",
                            см. Integrator.methods);
        assert len(low) == len(high)
        low, high = map(np.array, [low, high])
        n = int(n)
        return Integrator.methods[method](f, low, high, n)
   def integrate_monte_carlo(f, low, high, n):
        """Метод монте-карло""
       # случайные точки, в которых будем вычислять функцию
       multi_unif_rvs = np.vectorize(lambda loc, scale, size: sps.uniform(loc, scale).rvs(size),
                                                      signature='(),(),()->(m)')
        f vectorized = np.vectorize(f, signature='(n)->()')
       dots = multi unif rvs(low, high-low, n).T
       # вычисление функции в случайных точках
        return (high-low).prod()*f_vectorized(dots).mean()
   def integrate_rectangle(f, low, high, n):
        """Метод прямоугольников""
       # Если хотите - стирайте всё и пишите по-своему
       # число точек для каждой координаты
       n for one dim = int(n^{**}(1./len(low)))
       # разбиения отрезков интегрирования на равные отрезки
       vec_get_segment = np.vectorize(lambda low, high, n: np.linspace(low, high, n),
                                                                    signature='(),(),()->(n)')
       #там и концы отрезков, и их середины
        ranges = vec_get_segment(low, high, 2*n_for_one_dim+1)
        # вычисление центров этих разбиений
        ranges of centers = ranges[:, 1::2]
       # получение всех точек сетки через вызов np.meshgrid
        centers = np.array(np.meshgrid(*ranges_of_centers)).reshape(len(low), -1).T
        # длины отрезков по каждой координате
        block lengths = (high - low) / float(n for one dim)
       # вычисление значение функции в точках сетки
        f vectorized = np.vectorize(f, signature='(n)->()')
        f values = f vectorized(centers)
       return (f values*block lengths.prod()).sum()
   methods = {
        "rectangle": integrate rectangle,
        "monte_carlo": integrate_monte_carlo
   }
```

Вычислите $\int_{0.5}^{14} (x^2 + y^2) dx dy$ на миллионе запусков функции $f(x, y) = x^2 + y^2$ двумя рассмотренными методами. Измерьте время работы методов и сравните результат с истинными значением интеграла. Различается ли время работы методов?

```
In [177]:
```

rectangle :12.666666499999998 : time :5.1851418018341064 monte-carlo :12.668798711661205 : time :5.663424253463745

Комментарий: истинное значение $\frac{38}{3} = 12$, (6) . Результаты действительно близки к истинному значению интеграла, монте-карло с точностью до 10^{-3} , а метод прямогуольников - до 10^{-7} . Время работы монте-карло всякий раз немного медленней на несколько десятых секунд, чем метод прямоугольников

Задача 3. Для d=1...8 оцените скорость сходимости методов для интеграла

$$\int_{0}^{1} \dots \int_{0}^{1} \sum_{i=1}^{d} x_{i}^{2} \prod_{i=1}^{d} dx_{i}$$

Т.е.
$$\int_{0}^{1} x_{1}^{2} dx_{1}$$
, $\int_{0}^{11} \left(x_{1}^{2} + x_{2}^{2}\right) dx_{1} dx_{2}$ и так далее.

Вычислите точное значение этого интеграла и для каждого d постройте график зависимости вычисленного значения интеграла от числа $n=d\times 1000$ вызовов подынтегральной функции (в корректном решении равно числу точек-центров), которое разрешено использовать для каждого метода вычисления интеграла. На графике укажите точное значение интеграла. Для наглядности графики рекомендуется расположить в два столбика.

Какой метод и при каких d сходится быстрее? Предположите, в каком случае выгоднее использовать тот или иной метод.

In [222]:

```
def plot_convergence(f, low, high, n_list, theoretical_value):
    Строим графики сходимости.
    f - функция многих переменных, на вход принимает вектор;
    low - нижние границы (в том же порядке, в котором
                          функция принимает аргументы);
   high - верхние границы (аналогично);
   n list - список;
    theoretical_value - точное значение интеграла.
   plt.subplot(4, 2, len(low))
    plt.title('dimension - {}'.format(len(low)))
    plt.plot(n_list, list(map(lambda n :Integrator.integrate(f, low, high, n, method='rectangle'), n list))
             label='rectangle')
    plt.plot(n list, list(map(lambda n :Integrator.integrate(f, low, high, n, method='monte carlo'), n list)
),
                label='monte-carlo')
    plt.plot(n list, np.ones(shape=len(n list))*theoretical value, linestyle='--', lw=3, label='theor-value'
)
    plt.grid(True)
    plt.legend()
plt.figure(figsize=(20, 20))
for d in range(1, 9):
    n_{list} = np.linspace(1, d*1000, 20)
    plot convergence(lambda x: np.sum(x**2), np.zeros(d), np.ones(d), n list, d/3.)
plt.show()
```


dimension - 2

dimension - 1

0.9

Вывод: При маленьких размерностях d, а именно $d \le 3$ выгодней использовать метод прямоугольников, так как он сходится при меньших n, гораздо быстрее, чем метод монте-карло. А уже при больших размерностях монте-карло, наоборот сходится быстрее чем прямоугольниках, поэтому выгодней испольщовать как раз монте-карло

Задача 4. Вам предлагается численно вычислить многомерный интеграл Пуассона для d=5 и некоторой симметричной положительно определенной матрицы A, которую вы выберете сами. Зависит ли интеграл от выбора A?

$$\int_{\mathbb{R}^n} exp(-x^T Ax) dx$$

Сравните результаты двух методов с истинным значением интеграла. Как вы думаете, какой метод выдает более точный результат? Количество итераций каждого метода должно быть не менее 10^6 .

In [267]:

```
A = np.diag([1, 2, 3, 3, 2])
'rectangle'))
'monte carlo'))
```

- 2.9896068153024578
- 3.0427557671469567

In [264]:

np.pi**(2.5)/6

Out[264]:

2.9155697212708103

Комментарий: Истинное значение ≈ 2.91557 , Притом Монте-Карло ≈ 3.042756 , а метод прямоугольников = 2.98961. Я считал значения на $[-6,6]^5$, так как в силу распределения, уже при $|x| \geq 3$, значения функции $exp(-x^TDiag([1,2,3,3,2])x)$ уже будут крайне маленькими, меньше 10^{-6} . Если брать большие пределы, то точность будет теряться, так как как в Монте-Карло, так и в методе прямоугольников мы выбираем точки на всем промежутке, доля точек, имеющих большие значения, будет мала(особенно характерно для Монте-Карло), поэтому результат будет ошибочным, выраждаться в ноль.

Мне кажется, что лучше работает метод прямоугольников, так как у нас n = 1000000, и он уже успел близко сойтись к истинному значению, а метод монте-карло подвержен случайностям.

Рассмотрим отношение интегралов

$$F(t) = \frac{\int\limits_{-\infty}^{t_1} \dots \int\limits_{-\infty}^{t_k} exp\left(-\frac{1}{2}x^T A x\right) dx}{\int\limits_{\mathbb{R}^n} exp\left(-\frac{1}{2}x^T A x\right) dx}$$

В чем его вероятностный смысл?

Ответ:

$$F(t) = \frac{\int_{-\infty}^{t_1} \dots \int_{-\infty}^{t_k} exp\left(-\frac{1}{2}x^T Ax\right) dx}{\int_{\mathbb{R}^n} exp\left(-\frac{1}{2}x^T Ax\right) dx} = \frac{\int_{-\infty}^{t_1} \dots \int_{-\infty}^{t_k} exp\left(-\frac{1}{2}x^T Ax\right) dx}{(2\pi)^{\frac{n}{2}} \frac{1}{\sqrt{\det A}}} = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{1}{\sqrt{\det A^{-1}}} \int_{-\infty}^{t_1} \dots \int_{-\infty}^{t_k} exp\left(-\frac{1}{2}x^T Ax\right) dx$$

Это функция распределения многомерного нормального распределения с нулевым мат ожиданием и матрицей ковариаций A^{-1}

Задача 5. В заключении рассмотрения метода Монте-Карло вам предлагается реальная практическая задача.

Ha основе http://ecsocman.hse.ru/data/819/759/1219/Monte_Karlo_dlya_analitikov.pdf (http://ecsocman.hse.ru/data/819/759/1219/Monte_Karlo_dlya_analitikov.pdf)

Рассмотрим проект по разработке нефтяного месторождения. В основе модели проекта лежат предварительные данные о величине резервов месторождения.

Замечание. Знания физики или экономики не требуются.

Формулировка задачи от заказчика: Общая задача анализа --- основываясь на величине запасов и проценте нефтеотдачи рассчитать NPV (чистая приведенная стоимость) проекта, а точнее, 0.1-квантиль ее распределения. Следующим этапом мы хотим использовать ее в качестве критерия оптимизации, то есть максимизировать такое значение NPV, которого мы можем достигнуть или превысить с 90%-й вероятностью, подобрав при этом оптимальное количество скважин на месторождении.

Предположим, что на месторождении есть 25 скважин. Эти скважины добывают некоторую смесь, которая состоит из воды, нефти и различных примесей. Доля нефти из добытого материала называется коэффициентом нефтеотдачи (https://ru.wikipedia.org/wiki/Heфтеотдача) k. Мы будем считать, что этот коэффициент является одинаковым для всего месторождения и имеет нормальное распределение со средним 42% и стандартным отклонением 1.2%.

Добыча нефти скважиной за год

Разработка месторождения (http://vseonefti.ru/upstream/stadii-razrabotki.html) включает три этапа:

- 1. фаза роста добычи --- период введения в работу новых скважин;
- 2. фаза плато: после достижения определенного уровня добычи, она некоторое время продолжается на постоянном уровне;
- 3. фаза снижения добычи --- период, когда темпы добычи экспоненциально снижаются с течением времени.

Для упрощения задачи мы пропустим два первых этапа и рассмотрим только последний.

Каждая скважина j характеризуется параметром q_j --- темп добычи из скважины, определяемый объемом вещества (смесь нефти, воды и др.), добываемого скважиной за сутки. Будем считать, что этот параметр является одинаковым для скважины в течении всего периода разработки и имеет нормальное распределение со средним 10 тыс. баррелей и стандартным отклонением 3 тыс. баррелей. Темпы добычи для разных скважин считаются независимыми случайными величинами.

Соответственно, за год t скважина добывает $Q_{ij} = 365 \cdot k \cdot q_j \cdot e^{-0.2(t-1)}$ тыс. баррелей нефти, где экспонента отвечает за снижение добычи с течением времени. Всего за год t на месторождении добывается $Q_t = \sum_{i=1}^{25} Q_{ij}$ тыс. баррелей нефти.

Прибыль

Стоимость барреля нефти будем считать постоянной и равной c=70 долларов за баррель. Однако, для расчета стоимости нужно учесть <u>ставку дисконтирования (https://ru.wikipedia.org/wiki/Ставка_дисконтирования)</u> --- процентная ставка, используемая для пересчета будущих потоков доходов в единую величину текущей стоимости (см. формулу далее). Обозначим ее i и будем считать, что она имеет нормальное распределение со средним 10% и стандартным отклонением 1.2%.

Стоимость добытой нефти за год t составит (тыс. баррелей)

$$\frac{c \cdot Q_t}{(1+i)^{t-1}}.$$

Будем считать, что разработка месторождения прекращается, если за год на всем месторождении было добыто менее 100 тыс. баррелей нефти. Последний год разработки обозначим T.

Затраты

Затраты на месторождение (кроме скважин) составляют $C_{\text{мест.}} = 200$ млн. долларов в год. Будем считать, что издержки на содержание скважины j за весь период разработки имеют треугольное распределение (scipy.stats.triang (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.triang.html)) с минимальным значением 90 млн. долларов, максимальным значением 120 млн. долларов и модой (наиболее вероятное значение) 100 млн. долларов. Обозначим эти случайные величины C_{CKB}^{j} и будем считать их независимыми.

NPV

Теперь мы можем написать формулу NPV

$$NPV = \sum_{t=1}^{T} \frac{c \cdot Q_t}{(1+i)^{t-1}} - T \cdot C_{\text{Mect.}} - \sum_{j=1}^{25} C_{\text{CKB.}}^{j}.$$

Задание

С помощью метода Монте-Карло требуется найти число x, при котором

$$P(NPV < x) = 0.1.$$

Количество итераций метода должно быть не менее $100\,000$. На основе проделанных итераций оцените также среднее значение NPV и вероятность, с которой NPV будет положительна. Кроме того, постройте нормированную гистограмму значений NPV с помощью plt.hist(values, bins=200, normed=True).

Перечислим еще раз все случайные параметры:

- Коэффициент нефтеотдачи k имеет нормальное распределение со средним 42% и стандартным отклонением 1.2%;
- q_1, \ldots, q_{25} --- темпы добычи из скважин --- независимые нормальные случайные величины со средним 10 тыс. баррелей и стандартным отклонением 3 тыс. баррелей;
- Ставка дисконтирования i имеет нормальное распределение со средним 10% и стандартным отклонением 1.2%;
- $C_{\text{скв.}}^1,\dots,C_{\text{скв.}}^{25}$ --- затраты на каждую скважину --- независимые случайные величины, имеющие треугольное распределение с минимальным значением 90 млн. долларов, максимальным значением 120 млн. долларов и модой (наиболее вероятное значение) 100 млн. долларов. (используйте sps.triang(loc=90, c=1/3, scale=30))

Фиксированные параметры:

- 25 скважин;
- 365 дней в году;
- с=70 долларов за баррель --- стоимость нефти;
- 100 тыс. баррелей --- объем добытой нефти за год, при котором разработка месторождения прекращается.
- 200 млн. долларов в год --- затраты на месторождение.

```
In [195]:
```

```
# общая прибыль, без затрат

def income(k, q, i, t):
    inco = list(map(lambda x : 70*365*k*q*(np.exp(-0.2)/(1 + i))**(x-1), np.arange(1, t+1)) )
    return np.array(inco).sum()

vect_income = np.vectorize(income, signature='(),(),(),(),->()')
```

In [196]:

```
k = sps.norm(loc=0.42, scale=0.012).rvs(100000)

q = sps.norm(loc=10, scale=3).rvs(size=(100000, 25))
q[q < 0] = 0
q = q.sum(axis=1)

i = sps.norm(loc=0.1, scale=0.012).rvs(100000)

C_borehole = sps.triang(loc=90, c=1/3, scale=30).rvs(size=(100000, 25)).sum(axis=1)

c = 70 # долларов

T = (5*(np.log(365*k*q) - np.log(100)) ).astype(int) + 2</pre>
```

In [197]:

```
NVP = vect_income(k, q*0.001, i, T) - T*2e2 - C_borehole

quantile = np.percentile(NVP, 10)

mean = NVP.mean()
probabily_if_positive = len(NVP[NVP > 0])/(len(NVP))

print('0.1 квантиль(в млн. долларах) : ', quantile)
print('среднее (в млн. долларах): ',mean)
print('P(NVP > 0) = ', probabily_if_positive)
```

0.1 квантиль(в млн. долларах): 743.8988624562139 среднее (в млн. долларах): 1684.3207236310548 P(NVP > 0) = 0.99368

In [198]:

/home/ilya/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been "

Вывод:

В данной практической задаче с помощью метода Монте-Карло мы нашли распределение экономической величины - так называемой NVP, нашли ее среднее и ряд других величин, которые помогли нам в решении задачи. Отсюда можно сделать вывод, что Монте-Карло можно активно применять на практите, во многих экономических задачах, чтобы моделировать поведение некого необходимого нам параметра.