Plane Truss Optimization using Genetic Algorithm

Kamesh K - MM16B107

Nithin K - ED19S015

IIT Madras

January 8, 2021

- 1 Introduction to Truss Optimization
 - Overview of Truss Structures
 - Need for Truss Optimization
 - Truss Optimization Techniques
- 2 Methodology
 - Problem Definition
 - Formulation of Optimization
 - Genetic Algorithm Approach
- 3 Outcomes
 - Results
 - Conclusions

Introduction to Truss Optimization

Introduction to Truss Optimization

0000

Methodology

Truss Structures

What is a Truss Structure?

Truss is a two or three dimensional structure composed of linear elements connected at nodes to sustain load subjected to tension and compression

How is a Truss analyzed?

- Common approach is to implement Finite element method by modelling the truss as a simpler set of elements interconnected at nodes.
- The global stiffness matrix is computed and the displacements and forces are determined.

Figure: Bridge - A real life example of Truss

What is Truss Optimization?

Optimization in Truss Structures

- Every structure should have to fulfil the structural and economic requirement
- The optimum design of the structure should satisfy various constraints such as displacement, allowable stresses in members and local stability constraints
- In order to incorporate the constraints and make the system economic, we need optimization

Figure: Need for Truss Optimization

5/16

Classification of Truss Optimization Techniques

Figure: Size Optimization

Figure: Shape Optimization

Figure: Topology Optimization

Size Optimization

Changing cross-sectional areas of elements

Shape Optimization

Shifting Coordinates of elements

Topology Optimization

Addition or removal of elements

Problem Definition

Problem Definition

The adjacent truss is considered for optimization, the objective is to minimize weight based on constraints on maximum stress and displacements

Objective

Minimize the weight by optimizing the cross-sectional area of elements using genetic algorithm

Figure: 6 Node, 10 Element Truss

Objective and Constraint Formulation

Formulation of Optimization

Minimize F(A) where

$$F(A) = \sum_{i=1}^{n} A_i \rho_i L_i$$

Subjected to constraints,

Stress Constraint
$$|\sigma_i| - \sigma_i^{max} \leq 0$$

Displacement Constraint $|\delta_i| - \delta_i^{max} \leq 0$

Flowchart of Genetic Algorithm approach

Figure: Flowchart of Genetic Algorithm approach

Results

Figure: Truss with Area as linewidth

Figure: Best and mean fitness vs. Generations

Outcomes

Conclusion and Summary

Conclusion

Introduction to Truss Optimization

- Four of the elements have minimal area compared to the other elements
- The area of elements have been optimized and the total weight of the truss has been reduced to 7.226 Kgs.

Summary

The benchmark truss problem of 6 node, 10 element problem can be optimized using genetic algorithm. Moreover the area leading to a very small value can imply that the element maybe removed without causing any effects on the truss.

References I

- [1] Vu Thi Bich Quyen et al. "A New Algorithm for Size Optimization of the Truss Structures with Buckling Constraint using Finite Element Method". In: IOP Conference Series: Materials Science and Engineering 661.1 (2019). ISSN: 1757899X. DOI: 10.1088/1757-899X/661/1/012041.
- Razvan Cazacu and Lucian Grama. "Steel Truss Optimization Using Genetic Algo-[2] rithms and FEA". In: Procedia Technology 12 (2014), pp. 339–346. ISSN: 22120173. DOI: 10.1016/j.protcy.2013.12.496. URL: http://dx.doi.org/10. 1016/j.protcv.2013.12.496.
- [3] D Kalyanmoy and G Surendra. "Design of truss-structures for minimum weight using genetic algorithms". In: Finite Elements in Analysis and Design 37.5 (2001), pp. 447-465. URL: http://www.sciencedirect.com/science/article/ B6V36-42T4F89-7/2/70e7910b39c47a2eee83a6c6cdbdf3b9.
- [4] S. D. Rajan. "Sizing, Shape, and Topology Design Optimization of Trusses Using Genetic Algorithm". In: Journal of Structural Engineering 121.10 (1995), pp. 1480-1487. ISSN: 0733-9445. DOI: 10.1061/(asce) 0733-9445(1995) 121:10(1480).
- [5] Ghanshyam G Tejani, Vimal Savsani, and Bureerat Sujin. "Truss Topology Optimization: A Review". In: International Book Market Ltd July (2018), p. 122.

References

Methodology Outcomes References

OOO OO O

References II

References

[6] Huaguo Wang and Hiroshi Ohmori. "Truss optimization using genetic algorithm, considering construction process". In: International Journal of Space Structures 25.4 (2010), pp. 205–215. ISSN: 09560599. DOI: 10.1260/0266-3511.25.4.205.

15 / 16

S Optimization Methodology Outcomes References

Thank You

Kamesh K & Nithin K

References

AM5450