Crouzet, Olivier

Laboratoire de Linguistique de Nantes – LLING / UMR6310, Nantes Université / CNRS, France

Introduction : la notion de matrice de confusions

- Permet de mesurer la qualité d'un système de classification [1, 2, 3].
 - ► Entrée / Sortie ;
 - ► Signal / Réponse ;
- ▶ Dans le domaine de la perception de la parole...
 - ► Typiquement mises en œuvre dans des tâches N-AFC (choix forcé à N alternatives);
 - On fait écouter des sons associés à des catégories linguistiques (catégorie d'entrée),
 - Et on recueille les jugements de catégorisation des auditeurs (réponse catégorielle de sortie);

Un exemple de matrice de confusions

Cf. Table 1 ci-contre.

Quantification des résultats

- ► Informations qualitatives fournies par une matrice de confusions : analyser la nature des erreurs / des confusions ;
- Solutions courantes pour l'analyse quantitative des résultats;
- Pourcentage de bonnes réponses (diagonale principale, « accuracy »), mais ignore la structure des erreurs / des confusions;
- Diverses mesures issues des travaux en métrologie (sensibilité, spécificité...), notamment accessibles via la bibliothèque caret;
- Solution quantitative issue de la théorie de l'information : taux de Transmission d'Information / Information Mutuelle (SHANNON [1])
 - Permet d'évaluer la « quantité d'information transmise » (en bits) à travers le canal de diffusion;
- ▶ Utilisation princeps en perception de la parole : MILLER et NICELY [2].
- ► Usages courants dans les travaux sur la perception de la parole (voir par ex. [4, 5])

Interprétation des valeurs

En perception de la parole, on utilise communément le taux de Transmission d'Information normalisé :

Si aucune information transmise (réponses aléatoires) ITn = 0:

Si information parfaitement transmise (observateur idéal) ITn=1 ou ITn=100% (selon qu'on l'exprime sur 1 ou sur 100);

Entre ces deux extrêmes Degrés variables de transmission d'information / d'Information Mutuelle relative ;

Objectifs

- 1. Proposer une bibliothèque R qui facilite l'analyse quantitative de matrices de confusions sous l'angle de la théorie de l'information;
- 2. Notamment adaptée aux travaux en phonétique / perception de la parole;
- 3. En complément aux méthodes déjà utilisées dans d'autres bibliothèques (caret...);
- 4. Principal objectif : Mise à disposition de fonctions pour le calcul du taux d'information transmise / de l'Information Mutuelle ;
- 5. Fonctions facilitant le regroupement de lignes / colonnes par trait distinctif;

État d'avancement de la bibliothèque

- Les principales fonctions de calcul des taux de transfert d'information sont fonctionnelles et leurs résultats ont été vérifiés à partir des données de Christiansen, Dau et Greenberg [5];
- À FAIRE : Mettre à disposition une première version de la bibliothèque accompagnée d'une documentation ;
- ▶ À FAIRE : Réfléchir à l'apport de méthodes permettant de faciliter la construction des classifications en traits et les implémenter si besoin ;

Références bibliographiques

[1] C. Shannon. "A Mathematical Theory of Communication". In: The Bell System Technical Journal 27 (1948), p. 399-423, 623-656. — [2] G. A. MILLER et P. E. NICELY. "An analysis of perceptual confusions among some English consonants.". In: The Journal of the Acoustical Society of America 27.2 (1955), p. 338-352. — [3] R. M. FANO. The Transmission of Information: Parts I and II (Technical Reports 65 and 149). Rapp. tech. Part I: 34 pages, Part II 29 pages. Cambridge, Massachusetts: Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), 1949-1950. — [4] T. U. CHRISTIANSEN et S. GREENBERG. "Perceptual Confusions Among Consonants, Revisited: Cross-Spectral Integration of Phonetic-Feature Information and Consonant Recognition". In: IEEE Transactions on Audio, Speech, and Language Processing 20.1 (jan. 2012), p. 147-161. — [5] T. U. CHRISTIANSEN, T. DAU et S. Greenberg. "Spectro-Temporal Processing of Speech – An information-theoretic framework.". In: Hearing – From Sensory Processing to Perception. Springer, 2007. — [6] O. CROUZET. "Perception des consonnes et voyelles nasales en parole vocodée : Analyse de la contribution des niveaux de résolution spectrale et temporelle.". In : Actes des XXXIIèmes Journées d'Études sur la Parole – JEP2018. 4–8 Juin. Aix-en-Provence, France, avr. 2018. — [7] J. Wells. "SAMPA computer readable phonetic alphabet". In: Handbook of Standards and Resources for Spoken Language Systems. Sous la dir. de D. GIBBON, R. MOORE et R. WINSKI. Berlin et New York: Mouton de Gruyter, 1997, Part IV, section B. — [8] K. ISKAROUS et al. "The coarticulation/invariance scale: Mutual information as a measure of coarticulation resistance, motor synergy, and articulatory invariance". In: The Journal of the Acoustical Society of America 134.2 (2013), p. 1271-1282. — [9] E. HUME et F. MAILHOT. "The role of entropy and surprisal in phonologization and language change". In: Origins of Sound Change. Sous la dir. d'A. C. L. Yu. Oxford University Press, jan. 2013, p. 29-48. —

Traitement de données réelles

Données brutes collectées dans le cadre d'une recherche sur la perception des voyelles avec des simulations d'implants co-chléaires [6];

- ► Tâche de classification à choix forcé à 13 alternatives ;
- Voyelles isolées;
- ➤ Simulations d'implants cochléaires avec manipulation de différents paramètres acoustiques ;
- ► Le dataset d'exemple est composé au total de 1170 réponses / observations (dont 3 données manquantes en raison d'une absence de réponse pour les essais concernés), réparties sur 6 auditeurs ayant été soumis à 15 conditions de simulations acoustiques différentes;

La structure du dataset

Ci-dessous, un extrait aléatoire du dataset restreint à quelques principales colonnes pertinentes (toutes conditions expérimentales confondues, les transcription phonétiques suivent la convention SAMPA (Speech Assessment Methods Phonetic Alphabet, [7]):

sujet	SAMPA	reponse	success
Axe0	У	У	1
coc5	0	0	1
coc5	2	0~	0
erw3	Е	E∼	0
erw3	U	U	1
erw3	i	е	0
fra4	0~	a~	0
fra4	a~	9	0
fra4	а	а	1
man2	a~	a~	1

Obtention de la matrice de confusions complète

- Pour chaque catégorie d'entrée...
- ➤ On mesure combien de réponses ont été données pour chacune des catégories de sortie;
- > confusion <- table(dataV\$SAMPA, dataV\$reponse)</pre>

Table 1 – Matrice de confusions

	i	е	Ε	а	У	2	9	u	0	0	E~	a~	0~
i	26	5	0	3	8	1	3	8	18	4	2	1	10
е	22	8	1	5	8	3	8	9	11	6	3	4	2
Ε	7	13	9	5	4	7	9	3	6	6	8	8	5
а	8	4	4	41	2	5	9	2	1	1	8	2	3
У	22	6	3	5	20	2	1	10	8	4	4	1	4
2	10	0	1	6	4	9	6	10	17	5	6	5	11
9	7	0	6	14	5	10	15	2	9	7	4	4	6
U	6	0	3	7	9	3	12	7	24	6	3	4	6
0	6	2	4	4	3	6	10	4	23	10	7	5	6
0	7	1	3	20	0	14	11	5	8	9	3	4	5
E~	8	2	4	22	3	9	15	3	4	5	6	4	4
a~	7	3	1	19	1	4	14	5	11	6	11	5	3
0~	8	3	0	9	7	10	10	5	15	6	6	7	4

Génération de matrices de confusions spécifiques

Typiquement, on souhaite travailler sur les confusions en termes de traits linguistiques abstraits (liés à des contrastes phonologiques comme la nasalité, le degré d'aperture...)

- ➤ On a donc besoin de classifier les données en fonction de différents critères phonétique / phonologiques;
- On regroupe les lignes / colonnes en « sur-catégories » plus abstraites
 - ex. 1 : les voyelles nasales vs. les voyelles orales : quel est le taux de transmission d'information du contraste de nasalité?

	+nas	-nas
+nas	50	219
-nas	144	754

ex. 2 : les voyelles fermées / moyennes / ouvertes : quel est le taux de transmission d'information du contraste de degré d'aperture?

	close	mid	open
close	160	162	37
mid	169	349	110
open	31	82	67

- ...
- ► La fonction factor() permet assez simplement de générer le codage en termes de traits phonologiques associés;
- ► Il faut l'appliquer aussi bien sur la variable d'entrée que sur la variable de sortie :
- ▶ Il ne reste ensuite qu'à utiliser la fonction table() pour générer la matrice de confusions associée;

Formule du taux de Transmission d'Information

L'expression du taux d'Information Transmise repose sur le calcul de la co-variance entre chaque catégorie de stimulus et chaque catégorie de réponse. $T_{(c)}$ est le nombre de bits par trait transmis à travers le canal c.

$$T(c) = -\sum_{i,j} p_{ij} log_2 \frac{p_i p_j}{p_{ij}}$$
 (1)

Rencontres R 2025 – Mons, Belgique – 19-21 Mai 2025

- p_i Probabilité d'occurence de chaque classe i (entrée, probabilité d'observer une ligne = une catégorie en entrée);
- p_j Probabilité d'occurence de chaque réponse j (sortie, probabilité d'observer une colonne = une catégorie de réponse);
- p_{ij} Probabilité de co-occurence d'une catégorie de réponse (j) pour une entrée donnée (i);
- Cette formule permet d'estimer le taux de Transmission d'Information « brut », ou « Information Mutuelle » ;
 - Cette valeur est influencée par un certain nombre de paramètres de l'analyse (nombre de catégories, entropie de l'entrée);
- ► Un calcul supplémentaire permet d'exprimer l'Information Mutuelle comme un taux (entre 0 et 1) ou comme un pourcentage (entre 0 et 100) : leCoefficient d'Incertitude (qu'on nomme aussi taux d'Information Transmise normalisé).
- On doit pour celà calculer l'entropie de l'entrée (l'incertitude dans les données) :

$$H(i) = -\sum_{i} p_{i} \log_{2}(p_{i})$$
 (2)

► Finalement, ce qu'on appelle « taux de Transfert d'Information normalisé, ITn » (ou Coefficient d'Incertitude) est la division de l'Information Mutuelle par l'Entropie de l'entrée :

$$ITn = \frac{T(c)}{H(i)} = \frac{-\sum\limits_{i,j} p_{ij} \log_2 \frac{p_i \times p_j}{p_{ij}}}{-\sum\limits_{i} p_i \log_2(p_i)} \tag{3}$$

Illustration

Pour les données d'exemple restreintes au sous-ensemble le moins dégradé (mais néanmoins représentatif des difficultés que peuvent rencontrer des personnes sourdes portant un implant cochléaire)...

	i	е	Ε	а	У	2	9	u	0	0	E~	a~	0~
i	4	1	0	1	2	1	0	3	4	1	0	0	1
е	5	2	0	0	3	1	0	2	1	2	0	1	1
Е	0	4	0	1	2	2	1	0	3	1	3	1	0
а	0	0	1	11	0	0	4	0	1	0	0	1	0
У	0	1	1	0	12	0	0	0	2	1	0	0	1
2	0	0	1	0	1	1	2	5	5	2	0	0	1
9	0	0	2	3	1	2	3	0	3	3	0	1	0
U	0	0	0	1	1	0	1	4	9	1	0	0	1
0	0	0	0	0	0	1	1	0	9	5	1	1	0
0	0	0	1	1	0	6	2	0	4	4	0	0	0
E~	0	0	0	3	1	4	4	0	1	3	0	1	1
a~	0	0	0	6	0	1	2	0	3	1	4	1	0
0~	0	0	0	0	3	1	4	2	2	3	1	0	2

66
open
2
13
19

+nas -nas

- Pour obtenir le Taux d'Information normalisé (ou « Coefficient d'Incertitude »), on utilise la fonction iteR::ITnorm() avec comme argument la matrice de confusions considérée :
- > res <- iteR::ITnorm(confMatAperture)
 > res\$ITnorm*100
- La fonction renvoie une liste qui contient différents objets utiles (matrice originale, IT brut, IT normalisé...);
- Exemple de résultat :
- Pour le contraste de nasalité, on observe ici un taux de Transmission d'Information normalisé de 1.83%;
 Pour le contraste d'aperture, on observe ici un taux de Transmission
- d'Information normalisé de 16%;
 Malgré la valeur faible de chacun de ces taux, leur comparaison suggère que le contraste de nasalité est considérablement moins bien
- transmis / perçu que la différenciation des voyelles sur la base de leur degré d'aperture;
 On pourrait appliquer ces calculs pour chacune des conditions expérimentales étudiées afin de caractériser leur impact sur la

Perspectives

 Élargir l'application à des usages complémentaires en phonétique / phonologie

perception des différents contrastes phonologiques;

- 1. Sur des données de position des articulateurs consonantiques en fonction de la voyelle contextuelle afin de rendre compte des effets coarticulatoires en production (ISKAROUS et al. [8]);
- 2. Sur la relation entre probabilité d'occurrence de certaines séquences phonologiques dans une langue et diachronie (changement linguistique au cours du temps, HUME et MAILHOT [9]);

