

## Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio Departamento Acadêmico de Matemática

## Lista 03

| Dados de Identificação |                             |
|------------------------|-----------------------------|
| Professor:             | Matheus Pimenta             |
| Disciplina:            | Matemática Discreta - EC34G |
| Aluno:                 |                             |

- 1. Explique a diferença principal entre um par ordenado (a,b) e um conjunto  $\{a,b\}$  com dois elementos.
- 2. Determine  $x \in y$  onde (3x, x 2y) = (6, -8).
- 3. Determine o número de relações de  $A = \{a, b, c\}$  e  $B = \{1, 2\}$ . R: 64
- 4. Seja R uma relação definida no conjunto  $X = \{0, 1, 2, 3, ...\}$  dos números inteiros não negativos definidos pela equação  $x^2 + y^2 = 25$ . Determine R.  $\mathbf{R} \colon R = \{(0, 5), (3, 4), (4, 3), (5, 0)\}$
- 5. Suponha que A é um conjunto qualquer finito. Determine o número m de relações em A onde:
  - (a) A possui três elementos; **R**: 512
  - (b) A possui n elementos;  $\mathbf{R} : m = 2^{n^2}$
- 6. Seja R e S relações sobre  $A = \{1, 2, 3\}$  dadas por:  $R = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 3)\}$  e  $S = \{(1, 2), (1, 3), (2, 1), (3, 3)\}$ . Determine:  $R \cap S$  e  $R \cup S$ .
- 7. Determine o grafo da relação R no conjunto  $A=\{1,2,3,4\}$  onde  $R=\{(1,2),(2,2),(2,4),(3,2),(3,4),(4,1),(4,3)\}$
- 8. Seja S uma relação sobre  $X = \{a, b, c, d, e, f\}$  definido por:  $S = \{(a, b), (b, b), (b, c), (c, f), (d, b), (e, a), (e, b), (e, f)\}$  Determine o seu grafo.
- 9. Considere as seguintes relações sobre o conjunto  $A = \{1, 2, 3\}$ 
  - $R = \{(1,1), (1,2), (1,3), (3,3)\}$
- Ø (relação vazia)
- $S = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}$
- $T = \{(1,1), (1,2), (2,2), (2,3)\}$
- $A \times A$  (relação universal)

Quais relações são:

(a) Reflexivas.

$$\mathbf{R}$$
:  $S$ ,  $A \times A$ 

(b) Simétricas.

$$\mathbf{R} \colon S, \emptyset \in A \times A$$

(c) Transitivas.

 $\mathbf{R}$ : A única que não é transitiva é T.

(d) Antissimétricas.

$$\mathbf{R}$$
:  $S$  e  $A \times A$  não são antissimétricas.

10. Considere o conjunto  $A = \{1, 2, 3\}$  dê exemplos de relações R que são:

(a) R é simétrica e antissimétrica.

**R**: 
$$R = \{(1,1), (2,2)\}$$

(b) R não é nem simétrica e nem antissimétrica

**R**: 
$$R = \{(1,2), (2,1), (2,3)\}$$

(c) R é transitiva, porém  $R \cup R^{-1}$  não é transitiva

**R**: 
$$R = \{(1,2)\}$$

11. Sejam as relações R, S e T sobre o conjunto  $A = \{1, 2, 3\}$  definidas por:

$$R = \{(1,1), (2,2), (3,3)\} = \Delta_A$$

$$S = \{(1,2), (2,1), (3,3)\}$$

$$T = \{(1,2), (2,3), (1,3)\}$$
 Quais relações são:

(a) Reflexivas.

$$\mathbf{R}$$
:  $\Delta_A$ 

(b) Simétricas.

$$\mathbf{R} \colon R \in S$$

(c) Transitivas.

$$\mathbf{R} \colon R \in T$$

(d) Antissimétricas.

$$\mathbf{R} \colon R \in T$$

12. Considere a relação | divisão no conjunto N. Determine se a | é uma relação: reflexiva, simétrica, antissimétrica ou transitiva.

Lembre-se: a divisão x|y é quando existe z tal que xz=y.

13. Seja R uma relação sobre  $A = \{1, 2, 3\}$  definida por

$$R = \{(1,1), (1,2), (2,3)\}$$
. Determine:

(a) O fecho reflexivo de R.

**R:** O fecho será o conjunto 
$$\{(1,1),(1,2),(2,3),(2,2),(3,3)\}$$

(b) O fecho simétrico de R.

**R**: O fecho será o conjunto 
$$\{(1,1),(1,2),(2,3),(2,1),(3,2)\}$$

14. Seja  $R = \{(1,1), (1,3), (3,1), (3,3)\}$ . R é uma relação de equivalência em  $A = \{1,2,3\}$ ? E em  $B = \{1,3\}$ ?

15. Seja A o conjunto de todos os números inteiros não nulos e seja  $\simeq$  uma relação sobre  $A\times A$  definida por:

$$(a,b) \simeq (c,d)$$
 sempre que  $ad = bc$ 

Prove que  $\simeq$  é uma relação de equivalência.

16. Seja A o conjunto dos inteiros e seja  $\sim$  uma relação sobre  $A \times A$  definida por:

$$(a, b) \sim (c, d)$$
 se  $a + d = b + c$ 

- . Prove que  $\sim$  é uma relação de equivalência.
- 17. Defina igualdade de funções.
- 18. Seja  $X = \{1, 2, 3, 4\}$ . Determine se as relações abaixo (são pares ordenados) é uma função de X em X.

(a) 
$$f = \{(2,3), (1,4), (2,1), (3,2), (4,4)\}$$

(b) 
$$g = \{(3,1), (4,2), (1,1)\}$$
  
**R:** Não

(c) 
$$h = \{(2,1), (3,4), (1,4), (2,1), (4,4)\}$$

R: Sim

19. Seja  $W = \{a, b, c, d\}$ . Determine quais conjuntos de pares ordenados abaixo são funções de W em W.

(a) 
$$\{(b,a),(c,d),(d,a),(c,d),(a,d)\}$$

(b) 
$$\{(d,d),(c,a),(a,b),(d,b)\}$$

R: Não

(c) 
$$\{(a,b),(b,b),(c,b),(d,b)\}$$

R: Sim

(d) 
$$\{(a,a),(b,a),(a,b),(c,d),(d,a)\}$$

R: Não

20. Determine o domínio D das funções abaixo:

(a) 
$$f(x) = \frac{1}{x-2}$$
  
 $\mathbf{R} \colon D = \mathbb{R} \setminus \{2\}$ 

(b) 
$$g(x) = x^2 - 5x - 4$$

$$\mathbf{R} \colon D = \mathbb{R}$$

(c) 
$$h(x) = \sqrt{25 - x^2}$$

**R:** 
$$D = [-5, 5]$$

21. Sendo  $f(x) = x^3 + 2x^2 - 4$ , calcule:

(a) 
$$f(0)$$
 R=-4

(c) 
$$f(\frac{1}{2}) R = -\frac{27}{8}$$

(b) 
$$f(2)$$
 R=12

(d) 
$$f(\sqrt{x})$$

22. Determine a função inversa em cada um dos exercícios. Faça seus gráficos e restrinja o domínio, se necessário:

(a) 
$$f(x) = x - 4 \text{ R}$$
:  $f^{-1}(x) = x + 4$ 

(d) 
$$f(x) = \log(\frac{x}{3}) \text{ R:} f^{-1}(x) = 3 \cdot 10^x$$

(b) 
$$f(x) = x^2 + 1 \text{ R:} f^{-1}(x) = \sqrt{x-1}$$

(c) 
$$f(x) = e^{4x} R: f^{-1}(x) = \frac{1}{4} \ln(x)$$

(e) 
$$f(x) = \arctan(8x) \text{ R:} f^{-1}(x) = \frac{\tan(x)}{8}$$

23. Determine o domínio das seguintes funções de uma variável real:

(a) 
$$f(x) = \sqrt{(x-4)(x+3)}$$
  
  $R:D(f) = \{x \in \mathbb{R}; x \le -3 \lor x \ge 4\}$ 

(c) 
$$f(x) = \sqrt{\frac{x}{x+1}}$$
  
  $R: D(f) = \{x \in \mathbb{R}; x < -1 \lor x \ge 0\}$ 

(b) 
$$f(x) = \frac{\sqrt{2x}}{\sqrt{x^2 - 9}}$$
  
  $R: D(f) = \{x \in \mathbb{R}; x > 3\}$ 

(d) 
$$f(x) = \log(\frac{x^2 - 3x + 2}{x + 1})$$
  
 $R: D(f) = \{x \in \mathbb{R}; -1 < x < 1 \lor x > 2\}$ 

24. Se  $f(x) = \frac{3x-1}{x-7}$  determine:

(a) 
$$\frac{5(f(-1))-2(f(0))+3f(5)}{7}$$

(c) 
$$f(3x-2)$$

(b) 
$$f(-\frac{1}{2})$$

(d) 
$$f[f(5)]$$

25. Dadas as funções  $f(x) = x^2 - 1$  e g(x) = 2x - 1:

- (a) Determine o domínio e o conjunto imagem de f(x);
- (c) Construa os gráficos de f(x) e g(x);
- (b) Determine o domínio e o conjunto imagem de g(x);
- (d) Calcule: f(x) + g(x), f(x) g(x),  $f(x) \cdot g(x)$ ,  $\frac{f(x)}{g(x)}$ ,  $g \circ f \in f \circ g$ .

26. Determine 
$$(g \circ f)^{-1}$$
 onde  $f(x) = \frac{2+x}{3}$  e  $g(x) = \frac{2x+3}{5}$ : R: $\frac{15x-13}{2}$ 

27. Sejam as funções reais  $f(x) = x^2 + 4x - 5$  e g(x) = 2x - 3

- (a) Obtenha  $f \circ g \in g \circ f$ ;
- (b) Calcule  $(f \circ g)(2)$  e  $(g \circ f)(2)$
- (c) Determine os valores do domínio de  $f \circ g$  que produzem como imagem 16.

28. Dada a função  $f(x) = \frac{x}{3x-1}$ . Determine:

- (a) O domínio D.
- (b) f(x) é injetora? Prove sua resposta.

29. Dadas as funções abaixo. Mostre ou de um contra-exemplo para a injetividade e sobrejetividade delas.

(a) 
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x - |x|$$

(b) 
$$f:(0,1] \to [1,+\infty), f(x) = \frac{1}{x}$$

30. Mostre que uma função afim qualquer  $(a \neq 0)$  é injetiva.

31. Mostre que  $f: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{2\}$  definida por  $f(x) = \frac{2x+1}{x-1}$  é injetora.

32. Mostre que uma função afim qualquer  $(a \neq 0)$  é sobrejetora.

33. Mostre que a + a = a e  $a \cdot a = a$ ,  $\forall a \in B$ 

- 34. Mostre que a+1=1 ,  $a\cdot 0=0,\,\forall a\in B$
- 35. Mostre que  $a+(a\cdot b)=a,\, a\cdot (a+b)=a$
- 36. Mostre que  $a + (a' \cdot b) = a + b$
- 37. Mostre que o complemento de cada elemento de uma álgebra de Boole é único.
- 38. Mostre que (a')' = a.
- 39. Mostre que ab + ab' = a
- 40. Mostre que 0' = 1 e 1' = 0
- 41. Mostre a Lei de Morgan.  $(a\cdot b)'=a'+b'$ e  $(a+b)'=a'\cdot b'$
- 42. Mostre que ab + a'c + bc = ab + a'c