

FCC/IC - TEST REPORT

Report Number : **68.950.17.0734.01** Date of Issue: **December 8, 2017**

Model : BT adaptor

Product Type : Bluetooth adaptor

Applicant : Widex A/S

Address : Nymoellevej 6, DK-3540 Lynge, Denmark

Production Facility : Widex A/S

Address : Nymoellevej 6, DK-3540 Lynge, Denmark

Test Result : n Positive o Negative

Total pages including

Appendices : 28

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

Table of Contents

1	Table of Contents	2		
2	Details about the Test Laboratory	3		
3	Description of the Equipment Under Test	4		
4	Summary of Test Standards	5		
5	Summary of Test Results			
6	General Remarks	7		
7	Test Setups	8		
8	Systems test configuration	9		
9	Technical Requirement	10		
9	0.1 Conducted Emission	10		
9	0.2 Conducted peak output power	13		
9	0.3 Power spectral density	14		
9	0.4 6 dB Bandwidth and 99% Occupied Bandwidth	15		
9	0.5 Spurious RF conducted emissions	18		
9	0.6 Band edge	22		
9	9.7 Spurious radiated emissions for transmitter	24		
10	Test Equipment List	27		
11	System Measurement Uncertainty	28		

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint

Road 2, Nanshan District

Shenzhen 518052

P.R. China

Telephone: 86 755 8828 6998 Fax: 86 755 828 5299

FCC Registration

No.:

514049

IC Registration

10320A

No.:

3 Description of the Equipment Under Test

Product: Bluetooth adaptor

Model no.: BT adaptor

FCC ID: TTY-BA

IC ID: 5676B-BA

Options and accessories: Nil

Rating: 5.0Vdc supplied by USB port

RF Transmission

Frequency:

2402MHz-2480MHz

No. of Operated Channel: 40

Modulation: GFSK

Antenna Type: Integrated antenna

Antenna Gain: 0dBi

Description of the EUT: The Equipment Under Test (EUT) is a USB Dongle which support

Bluetooth function operated at 2.4GHz

4 Summary of Test Standards

Test Standards					
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES				
10-1-2016 Edition	Subpart C - Intentional Radiators				
RSS-Gen Issue 4	General Requirements and Information for the Certification of Radio				
November 2014	Apparatus				
RSS-247	Digital Transmission Systems (DTSS), Frequency Hopping Systems				
Issue 2 February 2017	(FHSS) and License-Exempt Local Area Network (LE-LAN) Devices				

All the test methods were according to KDB 558074 D01 DTS Measurement Guidance v04 DTS Measurement Guidance and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements							
FCC Part 15 Subpart C/ RSS-247 Issue 2/RSS-Gen Issue 4							
Total Constition			De rest		Test Result		
Test Condition		Pages	Site	Pass	Fail	N/A	
§15.207 & RSS-GEN 8.8	Conducted emission AC power port	10	Site 1	\boxtimes			
§15.247 (b) (1) & RSS-247 5.4(d)	Conducted peak output power	13	Site 1	\boxtimes			
§15.247(a)(1) & RSS-247 5.1(b)	20dB bandwidth					\boxtimes	
§15.247(a)(1) & RSS-247 5.1(b)						\boxtimes	
§15.247(a)(1)(iii) & RSS-247 5.1(d)	Number of hopping frequencies						
§15.247(a)(1)(iii) & RSS-247 5.1(d)	Dwell Time					\boxtimes	
§15.247(a)(2) & RSS-247 5.2(a) & RSS-GEN 8.8	6dB bandwidth and 99% Occupied Bandwidth	14	Site 1	\boxtimes			
§15.247(e) & RSS-247 5.2(b)	Power spectral density	15	Site 1	\boxtimes			
§15.247(d) & RSS-247 5.5 Spurious RF conducted emissions		18	Site 1	\boxtimes			
§15.247(d) & RSS-247 5.5	Band edge		Site 1	\boxtimes			
§15.247(d) & §15.209 & RSS- 247 5.5 & RSS-Gen 6.13			Site 1	\boxtimes			
§15.203 & RSS-Gen 8.3 Antenna requirement See note 1							

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an Integrated antenna, which gain is 0dBi. In accordance to §15.203 & RSS-Gen 8.3, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: BA, IC ID: 5676B-BA, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules and RSS-247, RSS-GEN.

SUMMARY:

All tests according to the regulations cited on page 5 were

- n Performed
- o Not Performed

The Equipment under Test

- n Fulfills the general approval requirements.
- O Does not fulfill the general approval requirements.

Sample Received Date: October 25, 2017

Testing Start Date: November 20, 2017

Testing End Date: November 30, 2017

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by: Prepared by:

John Zhi

Johnshi

Project Manager

Alan Xiong Project Engineer

7 Test Setups

7.1 Radiated test setups Below 1GHz

Above 1GHz

7.2 Conducted RF test setups

7.3 AC Power Line Conducted Emission test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Notebook	Lenovo	X220	

Test software: CSR tool, which used to control the EUT in continues transmitting mode.

The system was configured to channel 0, 19, and 39 for the test.

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

M/N : BT adaptor

Operating Condition : Normal Working with Bluetooth transmit

Comment : AC 120V/60Hz

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.182000	51.75		64.39	12.65	L1	10.2
0.238000	44.33		62.17	17.84	L1	10.2
1.534000	38.96		56.00	17.04	L1	10.2
1.926000	44.01		56.00	11.99	L1	10.3
3.282000	37.26		56.00	18.74	L1	10.3
3.998000	35.94		56.00	20.06	L1	10.3

Remark: Correct factor=cable loss + LISN factor

M/N : BT adaptor

Operating Condition : Normal Working with Bluetooth transmit

Comment : AC 120V/60Hz

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.178000	52.64		64.58	11.93	N	10.3
0.202000	49.93		63.53	13.60	N	10.3
0.302000	43.39		60.19	16.79	N	10.3
0.390000	39.15		58.06	18.91	N	10.3
2.009500		27.23	46.00	18.77	N	10.4
2.009500	39.25		56.00	16.75	N	10.4
3.794000	42.56		56.00	13.44	N	10.5

Remark: Correct factor=cable loss + LISN factor

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings:
 RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
 Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

According to §15.247 (b) (1) & RSS-247 5.4(d), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table

Frequency	Conducted Peak Output Power	Result
MHz	dBm	
Bottom channel 2402MHz	-2.63	Pass
Middle channel 2440MHz	2.34	Pass
Top channel 2480MHz	0.45	Pass

9.3 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

	Limit [dBm]	
-	<u>≤8</u>	
	≥8	

Test result

	Power spectral	
Frequency	density	Result
MHz	dBm	
Top channel 2402MHz	-12.40	Pass
Middle channel 2440MHz	-10.80	Pass
Bottom channel 2480MHz	-11.60	Pass

9.4 6 dB Bandwidth and 99% Occupied Bandwidth

Test Method

1. Use the following spectrum analyzer settings:

RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold

- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

				-
L	n	n	I	t

Limit [kHz]
≥500

Test result

Frequency MHz	6dB bandwidth kHz	99% bandwidth kHz	Result
Bottom channel 2402MHz	703.3	1055.0	Pass
Middle channel 2440MHz	694.6	1046.3	Pass
Top channel 2480MHz	699.0	1050.7	Pass

6 dB Bandwidth and 99% Bandwidth

6 dB Bandwidth and 99% Bandwidth

9.5 Spurious RF conducted emissions

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz		Limit (dBc)
30-250	000	-20

Spurious RF conducted emissions

Spurious RF conducted emissions

Spurious RF conducted emissions

9.6 Band edge

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Band edge testing

Page 24 of 28

9.7 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).
- 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at requencyabove1GHz

Spurious radiated emissions for transmitter

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

Low channel 2402MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
	626.310	30.42	Н	46	QP	15.58	26.6	Pass
30-	959.44	35.17	Н	46	QP	10.83	31.5	Pass
1000MHz	300.81	27.84	V	46	QP	18.16	19.4	Pass
	941.50	35.72	V	46	QP	10.28	31.6	Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

Middle channel 2440MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

High channel 2480MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB)	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
			Н	74	PK			Pass
1000-			Н	54	AV			Pass
25000MHz			V	74	PK			Pass
			V	54	AV			Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

10 Test Equipment List

List of Test Instruments

Radiated Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-14
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-7-14
Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-14
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2018-7-14
Signal Generator	Rohde & Schwarz	SMY01	839369/005	2018-7-7
Attenuator	Agilent	8491A	MY39264334	2018-7-7
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

Conducted Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2018-7-14
LISN	Rohde & Schwarz	ENV4200	100249	2018-7-14
LISN	Rohde & Schwarz	ENV432	101318	2018-7-14
LISN	Rohde & Schwarz	ENV216	100326	2018-7-14
ISN	Rohde & Schwarz	ENY81	100177	2018-7-14
ISN	Rohde & Schwarz	ENY81-CA6	101664	2018-7-14
High Voltage Probe	Rohde & Schwarz	TK9420(VT94 20)	9420-584	2018-7-14
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2018-7-14
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2018-7-7
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A

TS8997 Test System

Description	Manufacturer	Model no.	Serial no.	cal. due date
Signal Generator	Rohde & Schwarz	SMB100A	108272	2018-7-7
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2018-7-7
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2018-7-7
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2018-7-7
Power Splitter	Weinschel	1580	SC319	2018-7-7
10dB Attenuator	Weinschel	56-10	58764	2018-7-14
10dB Attenuator	R&S	DNF	DNF-001	2018-7-14
10dB Attenuator	R&S	DNF	DNF-002	2018-7-14
10dB Attenuator	R&S	DNF	DNF-003	2018-7-14
10dB Attenuator	R&S	DNF	DNF-004	2018-7-14
Test software	Rohde & Schwarz	EMC32	Version 9.26.01	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Conducted Emission 150kHz-30MHz (for test using High Voltage Probe TK9420(VT9420))	2.92 dB			
Uncertainty for Radiated Spurious Emission 25MHz-3000MHz	Horizontal: 4.98dB; Vertical: 5.06dB;			
Uncertainty for Radiated Spurious Emission 3000MHz-18000MHz	Horizontal: 4.95dB; Vertical: 4.94dB;			
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 5.14dB; Vertical: 5.12dB;			
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 2.06dB Frequency test involved: 1.16×10 ⁻⁷			