Graph Convolutional Networks for recommender systems

Paula Gómez Duran paulagomezduran@gmail.com

PhD student

What is a GRAPH?

A Graph is anything with nodes connected by edges.

We focus on **Graph Convolutional Networks** (GCN).

Graph Convolutional Network

$$A = \begin{bmatrix} 7 & 2 & 3 & 4 & 5 \\ 7 & 0 & 1 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 & 1 & 0 \\ 3 & 0 & 1 & 0 & 0 & 0 \\ 4 & 1 & 1 & 0 & 0 & 1 \\ 5 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

X = input features

GCN equation

Defined in: https://arxiv.org/pdf/1609.02907.pdf

D = degree matrix
A = adjacency mx
or
rating mx (R)

Symmetric normalization

New layer
$$\rightarrow$$
 H(1) \qquad Previous layer \rightarrow H(0) = X
$$H^{(l+1)} = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W(l))$$
 Weights we train

GOAL: Have, in each node, information not just about the node itself but also about correlated nodes.

GCN layer equation

$$H^{(l+1)} = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W(l))$$

GCN equation

EMBEDDINGS =
$$\hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} X W(l)$$

 $g(x) = H(1)$

We will use just one GCN layer to extract embeddings

because

more than one GCN layer is prone to overfit!

How can GCN improve embeddings?

GCN equation: $H^{(l+1)} = \hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} \quad W(l) = \mathbf{A}$

Usual embedding = W RANDOM

GCN embedding = Â * W TOPOLOGY * RANDOM

GCN embeddings lead to best performance even without training (1st epoch)!

1st epoch (no training yet):

	o_ENE	o_ESE	o_East	o_NE	o_NNE	o_NNW	o_NV	o_SW	o_South	o_Variable	o_WSW
0	1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	1	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	1	0
4	0	0	0	0	1	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0
6	0	0	0	0	1	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	1	0	0	0	0	0	0	0

USUAL EMBEDDING vs GCN EMBEDDING:

GCN vs Graph Attention Network (GAT)

$$h_i^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}(i)} rac{1}{c_{ij}} W^{(l)} h_j^{(l)}
ight) \hspace{1cm} \hspace{1cm} h_i^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}(i)} rac{lpha_{ij}^{(l)}}{a_{ij}^{(l)}} W^{(l)} h_j^{(l)}
ight)$$

$$h_i^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}(\imath)} \alpha_{ij}^{(l)} W^{(l)} h_j^{(l)}
ight)$$

NF

SOLUTION WITH FM:

D

GCN for capturing embeddings!

FM captures interactions of only second order! $(\ell = 1)$

We might want to capture high order interactions

SO

HOW CAN WE USE GCN IN RECOMMENDATION?

To incorporate GCN we should extend GCN

Extended message passing

$$\mu_{j\to i} = \frac{1}{s_{ji}} W_u h_j$$

$$\mu_{j,e,...,o\to i} = \frac{1}{s_{ji}} W_u h_j + \frac{1}{s_{ei}} W_{c_1} h_e + \dots + \frac{1}{s_{oi}} W_{c_{N-2}} h_o$$

- Sij → symmetric normalization / left normalization
- Wu → trainable weight matrix for the users factors; Wc1 for the first context factor, etc...
- hj \rightarrow input embedding for node j \rightarrow first layer hj == Xj (feature vector)

Extended message passing

	User_0 User_Nu	ltem_0 ltem_N _i	Context_0 Context_N _c		
User_0 User_N _u	0	Interactions user-item	Interactions user-context		
Item_0 Item_N _i	Interactions user-item	0	Interactions item-context		
Context_0 Context_Nc	Interactions user-context	Interactions item-context	0		

How to use GCN for embedding generation:

$$g(x) = \hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} X W(l)$$

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle g(x_i), g(x_j) \rangle x_i \, x_j$$

RECAP:

$$\mathsf{FM} \ = \frac{1}{2} \sum_{f=1}^k \left(\left(\sum_{i=1}^n v_{i,f} \, x_i \right)^2 - \sum_{i=1}^n v_{i,f}^2 \, x_i^2 \right)$$

