1 Commande optimale

Système dynamique régulier :

 $\dot{x}(t) = f(x(t), u(t))$

Condition initiale fixe

 $x(0) = x_0$

Un ensemble de commandes optimales possibles

 $u(t) \in U$

Et une fonction de coût

$$J = \psi(x(T)) + \int_0^T l(x(t), u(t))dt$$

Le but est de trouver un u(t) pour optimiser la fonction de coût. Pour cela on exploite la structure du problème

1.1 Approche variationnelle

On utilise une fonction de coût indépendante des changement de trajectoire

$$\bar{J} = J - \int_0^T \lambda(t)^T \left[\dot{x}(t) - f(x(t), u(t)) \right] dt$$

Fonction hamiltonienne

$$H(\lambda, x, u) = \lambda^T f(x, u) + l(x, u)$$

1.2 Principe d'optimalité de Pontryagin

Si u(t) est maximal alors pour tout t

$$H(\lambda, x, v) \le H(\lambda, x, u)$$

Il existe une trajectoire $\lambda(t)$ tels qu'ensemble u(t), x(t) et $\lambda(t)$ vérifient

$$\dot{x}(t) = f(x(t), u(t))$$

$$x(0) = x_0$$

$$-\dot{\lambda}^T = \lambda^T \nabla_x f(x(t), u(t)) + \nabla_x l(x(t), u(t))$$

Condition de maximalité :

$$H(\lambda(t), x(t), v(t)) \le H(\lambda(t), x(t), u(t))$$

1.3 Systèmes linéaires à coût quadratique

Système linéaire :

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

On peut mettre la commande sous forme de feedback linéaire. La fonction de coût est quadratique

$$J = \frac{1}{2} \int_0^T (x(t)^T Q(t) x(t) + u(t)^T R(t) u(t)) dt$$