Bone Age Prediction

Abhishek Nimmakayala Akhil Kumar Baipaneni

Outline

- Introduction
- Problem Statement
- Data set description
- Exploratory Data Analysis
- Preliminary model
- CNN Model
- Conclusions
- Future work

Introduction

A bone age study helps doctors estimate the maturity of a child's skeletal system. It's usually done by taking a single X-ray of the left wrist, hand, and fingers.

A child's bone age (also called the skeletal age) is assigned by determining which of the standard X-ray images in the atlas most closely match the appearance of the child's bones on the X-ray.

Problem Statement & Motivation

In this project we aim to train a model on the x-ray images of childrens hands and predict the bone age of children, by doing so we can find any abnormalities in the growth of a child's bone and also find difference between a child's bone age and his or her chronological age which might indicate a growth problem

Data set description

- The data set is obtained from kaggle and holds 9 GB of data.
- A total of 12611 images are available.
- Good resolution images (1514*2044 pixels)
- .CSV file which has image id, bone age, gender

Exploratory data analysis

EDA Contd...

Glimpse into the dataset

Image 1

Image 2

Image 3

Image 4

Image data generator

Parameters used:

rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, zoom_range=0.3, horizontal_flip=True, brightness_range=[0.5, 1]

Preliminary model Architecture

Input	Drop Out (0.3)	512 (Leak y Relu)	Batch Norm	256 (Leak y Relu)	Batch Norm	128 (Sigm oid)	Drop out (0.5)	Batch Norm	64 (Sigm oid)	Batch Norm	1 (Line ar)

Preliminary model results

CNN Model

		======		
conv2d_7 (Conv2D)	(None,	50, 50,	32)	896
conv2d_8 (Conv2D)	(None,	48, 48,	32)	9248
max_pooling2d_4 (MaxPooling2	(None,	24, 24,	32)	
dropout_7 (Dropout)	(None,	24, 24,	32)	
conv2d_9 (Conv2D)	(None,	24, 24,	64)	18496
conv2d_10 (Conv2D)	(None,	22, 22,	64)	36928
max_pooling2d_5 (MaxPooling2	(None,	11, 11,	64)	
dropout_8 (Dropout)	(None,	11, 11,	64)	
conv2d_11 (Conv2D)	(None,	11, 11,	128)	73856
conv2d_12 (Conv2D)	(None,	9, 9, 1	28)	147584
max_pooling2d_6 (MaxPooling2	(None,	4, 4, 1	28)	
dropout_9 (Dropout)	(None,	4, 4, 1	28)	
flatten_3 (Flatten)	(None,	2048)		0
dense_8 (Dense)	(None,	512)		1049088
dropout_10 (Dropout)	(None,	512)		
dense_9 (Dense)	(None,	1)		513

CNN results

Train vs validation Mean absolute error

Xception Pre trained model

Conclusions

- The simple MLP model had a validation loss of 0.25, validation MAE of 0.49, and validation MSE of 0.24
- The CNN model has a validation loss of 0.17, validation MAE of 0.34 and validation MSE of 0.18
- The Xception model has a validation loss of 0.15, MAE in months is 13.9
- The Pre trained model had the least loss when compared among all the models

Future work

- We would like to use the gender information as well for training and see how it impacts the results
- Use different pre-trained models to our data and experiment
- Convert the bone age data into appropriate bins and build a model

THANK YOU...!