2 Modules

2.1 Rings and ring homomorphisms

- 1. (a) It is obvious that $C_R(S) \neq \emptyset$. For any $b_1, b_2 \in C_R(S), a \in R$, $a(b_1 b_2) = ab_1 ab_2 = b_1a b_2a = (b_1 b_2)a$, and $a(b_1b_2) = (ab_1)b_2 = b_1(ab_2) = (b_1b_2)a$. Hence $C_R(S)$ is a subring of R.
 - (b) According to the above, C(D) is a subring of D. For any $b_1, b_2 \in C(D), d \in D$, then $b_1b_2 = b_2b_1$, so C(D) is abelian. Since $b_1d^{-1} = d^{-1}b_1, b_1^{-1}d = db_1^{-1}$, i.e $b_1^{-1} \in C(D)$. Hence C(D) is a field.
 - (c) Since $E_{ii} \in M_n(P)$, $TE_{ii} = E_{ii}T$, then $t_{ij} = 0$ for $i \neq j$.

 And for $i \neq j$, $E_{ij} \in M_n(P)$, then $TE_{ij} = E_{ij}T$, then $t_{ii} = t_{ij}$.

 Hence $M_n(P) = \{kE | k \in P\}$.
- 2. For any $a, b \in R$, $(a + b)^2 = a^2 + ab + ba + b^2 = a + ab + ba + b = a + b$, so ab = -ba. Similarly, $(a b)^2 = a^2 ab ba + b^2 = a + b = a b$, then b = -b. Hence ab = -ba = ba, R is commutative.
- 3. (a) Since the sum of two subrings is a subring, S+I is a ring. While I is an ideal of R and I+S is a subring of R, so I is an ideal of I+S.

 For any $a_1, a_2 \in S \cap I$, any $b \in S$, $a_1b \in S \cap I$ and $ba_1 \in S \cap I$; moreover $a_1 a_2 \in S \cap I$. Hence $S \cap I$ is an ideal of S.

- (b) Define $\varphi: S+I \to S/(S\cap I)$, $a+I \mapsto a+(S\cap I)$ for any $a \in S$, then φ is a group epimorphism. According to the fundamental theory of homomorphism, $(S+I)/I \cong S/(S\cap I)$ as groups. For any $a_1, a_2 \in S$, $\varphi((a_1+I)(a_2+I)) = \varphi(a_1a_2+I) = a_1a_2 + (S\cap I) = (a_1 + (S\cap I))(a_2 + (s\cap I)) = \varphi(a_1+I)\varphi(a_2+I)$. Hence φ is a ring isomorphism.
- 4. (a) For any $a_1 + I$, $a_2 + I \in J/I$, and any $r + I \in R/I$, $(a_1 + I) (a_2 + I) = (a_1 a_2) + I \in J/I$, $(a_1 + I)(r + I) = (a_1r) + I \in J/I$ for $J \triangleleft R$, similarly $(r + I)(a_1 + I) = (ra_1) + I \in J/I$. Hence $J/I \triangleleft R/I$.
 - (b) Define $\varphi: R/I \to R/J$, $a+I \mapsto a+J$ for any $a \in R$, then φ is a group epimorphism. According to the fundamental theory of homomorphism, $(R/I)/(J/I) \cong R/J$ as groups. For any $a_1, a_2 \in S$, $\varphi((a_1+I)(a_2+I)) = \varphi(a_1a_2+I) = a_1a_2+J = (a_1+J)(a_2+J) = \varphi(a_1+I)\varphi(a_2+I)$. Hence φ is a ring isomorphism.
- 5. For any subring $Ker(f) \subseteq K$ of R, then $f(K) \subset S$. For any $a, b \in f(K)$, there exist $x, y \in R$, s.t. f(x) = a, f(y) = b, then $a b = f(x) f(y) = f(x y) \in f(K)$ and $ab = f(x)f(y) = f(xy) \in f(K)$, hence f(K) is a subring of S.Inverse, for any subring H of S, then $Ker(f) = f^{-1}(0) \subseteq f^{-1}(H) \subseteq R$. For any $a, b \in f^{-1}(H)$, there exist $x, y \in H$ such that f(a) = x, f(b) = y, then $f(a b) = f(a) f(b) = x y \in H$ and $f(ab) = f(a)f(b) = xy \in H$, therefore $a b \in f^{-1}(H)$ and $ab \in f^{-1}(H)$.Hence $f^{-1}(H)$ is a subring of R.

- 6. Let $\Omega = \{I | I \lhd R, Iisnilpotent\}$, for any $I_1, I_2 \in \Omega$, there exist $n_1, n_2 \in \mathbb{Z}$ such that $I_1^{n_1} = I_2^{n_2} = 0$, then $(I_1 + I_2)^{n_1 + n_2} = \{\sum a_{i_1} ... a_{i_{n_1 + n_2}} | a_{i_j} \in I_1 \cap I_2 \}$. In product $a_{i_1} ... a_{i_{n_1 + n_2}}$, there are at least n_1 elements belong to I_1 , since I_1 is an ideal, $a_{i_1} ... a_{i_{n_1 + n_2}} \in I_1^{n_1} = 0$; or there are at least n_2 elements belong to I_2 , since I_2 is an ideal, $a_{i_1} ... a_{i_{n_1 + n_2}} \in I_2^{n_2} = 0$. Therefore $I_1 + I_2 \in \Omega$. Since R is a finite ring, there exists a only ideal I which contains the most elements, for any other ideal $I \in \Omega$, $I + I \in \Omega$ and $I + I \supseteq I$, hence I + I = I. If I + I = I is a nilpotent ideal of I + I = I in the exists I + I = I is a nilpotent ideal of I + I = I. If I + I = I is a nilpotent ideal of I + I = I in the exists I + I = I is a nilpotent ideal of I + I = I. If I + I = I is a nilpotent ideal of I + I = I in the exists I + I = I is a nilpotent ideal of I + I in the exists I + I = I is a nilpotent ideal of I + I in the exists I + I = I is a nilpotent ideal of I + I in the exists I + I = I is a nilpotent ideal of I + I in the exists I + I = I is a nilpotent ideal of I + I in the exists I + I = I is a nilpotent ideal of I + I in the exists I + I = I is a nilpotent ideal of I + I in the exists I + I = I in the exist I + I = I is a nilpotent ideal of I + I in the exist I + I = I in the exist I + I = I is a nilpotent ideal of I + I in the exist I + I = I in
- 7. According to exercise 2.1.5, there is a bijection between the set of all subrings of R which contain Ker(f) and the set of all subrings of S. Thus there exists corresponding subring $f^{-1}(H)$ of R for any subring H of S. Since R is PID, then $f^{-1}(H)$ is principal, i.e. there exists $a \in f^{-1}(H)$ such that $f^{-1}(H) = \langle a \rangle$, then $H = f(f^{-1}(H)) = \langle f(a) \rangle$. Hence every ideal of S is principal.
- 8. (a) If there is not a least positive integer n such that $n \cdot a = 0$ for any $a \in R$, then char(R) = 0. Otherwise, if char(R) = n is not prime and n = sr where 1 < s, r < n, then $ra \neq 0$, $sa \neq 0$ and $ra \cdot sa = rsa \cdot a = 0$, but R is a domain, therefore char(R) is prime.

(b) For any $(\overline{a}, b), (\overline{c}, d), (\overline{e}, f) \in S$,

$$((\overline{a}, b)(\overline{c}, d))(\overline{e}, f) = (\overline{ac}, ad + cb + bd)(\overline{e}, f)$$
$$= (\overline{ace}, acf + ead + ecb + ebd + adf + cbf + bdf)$$

$$(\overline{a}, b)((\overline{c}, d)(\overline{e}, f)) = (\overline{a}, b)(\overline{ce}, cf + ed + df)$$
$$= (\overline{ace}, acf + ead + ecb + ebd + adf + cbf + bdf)$$

then
$$((\overline{a}, b)(\overline{c}, d))(\overline{e}, f) = (\overline{a}, b)((\overline{c}, d)(\overline{e}, f));$$

$$(\overline{a}, b)((\overline{c}, d) + (\overline{e}, f)) = (\overline{a}, b)(\overline{c + e}, d + f)$$

$$= (\overline{a(c + e)}, ad + af + cb + eb + bd + bf)$$

$$= (\overline{a}, b)(\overline{c}, d) + (\overline{a}, b)(\overline{e}, f)$$

then $(\overline{a}, b)((\overline{c}, d) + (\overline{e}, f)) = (\overline{a}, b)(\overline{c}, d) + (\overline{a}, b)(\overline{e}, f);$ similarly, $((\overline{a}, b) + (\overline{c}, d))(\overline{e}, f) = (\overline{a}, b)(\overline{e}, f) +$ $(\overline{c}, d)(\overline{e}, f).$ And there are $(\overline{1}, 0) \in S$ such that $(\overline{a}, b)(\overline{1}, 0) = (\overline{1}, 0)(\overline{a}, b) = (\overline{a}, b).$ Hence S is a ring with identity.

- (c) It is obvious that φ is injective. For any $a, b \in R$, $\varphi(a+b) = (0,a+b) = (0,a) + (0,b) = \varphi(a) + \varphi(b)$ and $\varphi(a)\varphi(b) = (0,a)(0,b) = (0,ab) = \varphi(ab)$, therefore φ is a ring monomorphism.
- 9. Since F is a field, for any $a, b \in F$, ab = ba, then $(a + b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$, in particular, $(a + b)^p = \sum_{k=0}^n C_n^k a^{n-k} b^k$

 $\sum_{k=0}^{p} C_p^k a^{p-k} b^k. \text{ Then } C_p^k a^{p-k} b^k = 0, 1 \leq k \leq p-1 \text{ for } p \mid C_k^p, 1 \leq k \leq p-1. \text{ Thus } (a+b)^p = a^p + b^p \text{ and } (ab)^p = a^p b^p, \text{ therefore } \varphi \text{ is a ring endomorphism of } F. \text{ While } Ker \varphi \lhd F, \text{ then } Ker \varphi = 0 \text{ or } Ker \varphi = F.$ While for any $0 \neq a \in F$, $\varphi(a) = a^p \neq 0$, thus

- $Ker\varphi = 0$, i.e. φ is injective. Hence when F is a finite domain, φ is surjective. Therefore F is perfect.
- 10. If $a+b\sqrt{p}=0$ where $a,b\in\mathbb{Q}$, then $\sqrt{p}=-\frac{a}{b}\in\mathbb{Q}$ or b=0, thus a=0, therefore $1,\sqrt{p}$ is linear independent in \mathbb{Q} . Similarly, $1,\sqrt{q}$ is linear independent in \mathbb{Q} . Since $\mathbb{Q}[\sqrt{p}],\mathbb{Q}[\sqrt{q}]$ both are linear spaces in \mathbb{Q} of dimension 2. Thus they are isomorphic as linear spaces in \mathbb{Q} . If there is an isomorphism $\varphi:\mathbb{Q}[\sqrt{p}]\to\mathbb{Q}[\sqrt{q}]$, then $\varphi(\sqrt{p}^2)=\varphi(p)=\varphi(1)+\cdots+\varphi(1)=p$, thus $\varphi(\sqrt{p})=\pm\sqrt{p}=\mathbb{Z}[\sqrt{q}]$, therefore $\pm\sqrt{p}=a+b\sqrt{q}$, then $p=a^2+2ab\sqrt{q}+b^2q$, thus $2ab\sqrt{q}=p-a^2-b^2q$ is rational number. If a=0, then $\pm\sqrt{p}=b\sqrt{q}$, thus $p=b^2q$, then $p\mid b$, therefore b=kp, hence $k^2q=1$, it is a contradiction. If b=0, then $\pm\sqrt{p}=a$ is rational number, it is a contradiction. Thus $\pm\sqrt{p}\notin\mathbb{Z}[\sqrt{q}]$, hence φ is not a ring isomorphism.
- 11. (a) Define $\varphi : F[x] \setminus 0 \to \mathbb{N}, \ \varphi(f(x)) = deg(f(x))$ for any $f(x) \in F[x]$. For $f(x), g(x) \in F[x]$, and $f(x)g(x) \neq 0$, then $deg(f(x)g(x)) = deg(f(x)) + deg(g(x)) \geq deg(f(x))$. For $f(x), g(x) \in F[x]$, and $g(x) \neq 0$, according to division algorithm, then φ satisfied the conditions of Euclidean ring. And for any subring H, there exists a element g(x) of least degree such that $H = \langle g(x) \rangle$, then F[x] is an ED.
 - (b) Define $\varphi : \mathbb{Z} \setminus 0 \to \mathbb{N}$, $\varphi(a) = |a|$ for any $a \in \mathbb{Z}$. For $a, b \in \mathbb{Z}$, and $ab \neq 0$, then $|ab| = |a||b| \geq |a|$ for $|b| \neg 1$. For $a, b \in F[x]$, and $b \neq 0$, according to division algorithm, then φ satisfied the condi-

- tions of Euclidean ring. And for any subring H, there exists a element b of least absolute value such that $H = \langle b \rangle$, then \mathbb{Z} is an ED.
- (c) Define $\varphi: \mathbb{Z}[\sqrt{-1}] \setminus 0 \to \mathbb{N}, \ \varphi(a+b\sqrt{-1}) = a^2+b^2$ for any $a+b\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$, For $a+bi, c+di \in \mathbb{Z}$, and $(a+bi)(c+di) = (ac-bd) + (ad+bc)i \neq 0$, then $(ac-bd)^2 + (ad+bc)^2 = (a^2+b^2)(c^2+d^2) \geq a^2+b^2$. For $a+bi, c+di \in \mathbb{Z}$, and $c+di \neq 0$, denote $p+qi=\frac{a+bi}{c+di}$ where $p,q\in \mathbb{Q}$, then there are $s,r\in \mathbb{Z}$ such that $|s-p|\leq \frac{1}{2}$ and $|r-q|\leq \frac{1}{2}$, thus a+bi=(s+ri)(c+di)+k+li, and $k^2+l^2=((p-s)^2+(q-r)^2)(c^2+d^2)\leq \frac{1}{2}(c^2+d^2)$, then φ satisfied the conditions of Euclidean ring. And for any subring H, there exists a element $c+d\sqrt{-1}$ of least modulus such that $H=< c+d\sqrt{-1} >$, then $\mathbb{Z}[\sqrt{-1}]$ is an ED.
- 12. $(\frac{1+\sqrt{-19}}{2})^0 = 1$, therefore $R = <(\frac{1+\sqrt{-19}}{2})>$, i.e. R is a PID. Since every Euclidean ring is unique factorization domain, but $((\frac{1+\sqrt{-19}}{2})(\frac{-3-\sqrt{-19}}{2})) = 5 = 5 \cdot 1$, hence R is not a Euclidean domain.
- 13. $(\Rightarrow):J$ is an ideal of $M_n(R)$, $I'=e_{11}Je_{11}$, define

$$I = \{a | e_{11}a'e_{11} = \begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, a' \in J\},$$

where
$$e_{11} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
. It is obvious

that $(I, +) \leq (R, +)$, for any $a \in I$ and any $r \in R$,

 $e_{11}a'e_{11}\cdot(rE)=are_{11}=e_{11}a'(rE)e_{11}$ where $a'=(a_{ij})$ and $a_{11}=a$. Thus $ar\in I$, similarly, $ra\in I$, hence $I\vartriangleleft R$. Since $e_{11}a'e_{11}\in J$, $e_{11}a'e_{11}=ae_{11}\in J$ for any $a\in I$, while $e_{i1}ae_{11}e_{1j}=ae_{ij}\in J$, then $M_n(I)\subset J$. For any $A=(a_{ij})\in J$, $a_{ij}\neq 0$, then $e_{1i}Ae_{j1}=a_{ij}e_{11}\in J$, thus $a_{ij}\in I$, therefore $J\subset M_n(I)$, hence $J=M_n(I)$.

 (\Leftarrow) : For any $(a_{ij}) \in M_n(\mathbb{R})$, $a_{ij} \in \mathbb{R}$, and any $(b_{ij}) \in M_n(\mathbb{I})$, $b_{ij} \in \mathbb{I}$, $(a_{ij})(b_{ij}) = (c_{ij})$, $c_{ij} = \sum_{k=1}^n a_{ik}b_{kj}$, since $I \triangleleft R$, $(c_{ij}) \in M_n(\mathbb{I})$. Similarly, $(b_{ij})(a_{ij}) = (d_{ij})$, $d_{ij} = \sum_{k=1}^n b_{ik}a_{kj}$, hence $J \triangleleft M_n(\mathbb{R})$.

14. If there are $I \triangleleft M_n(R)$ such that $I \neq 0$ and $I \neq R$, then there are $0 \neq (a_{ij}) \in I$, according to Exercise 2.1.13, $M_n(R)$ is simple.

15.

$$\pi_i((a_i)_{i \in I}(b_i)_{i \in I}) = \pi_i((a_ib_i)_{i \in I})$$

= $a_ib_i = \pi_i((a_i)_{i \in I})\pi_i((b_i)_{i \in I})$

Since π_i is a abelian group homomorphism, π_i is a ring homomorphism. Similarly, we can proof that ι_i is a ring homomorphism.

16. If $e_i = (0, \dots, 0, 1_{R_i}, 0, \dots, 0)$, then $e_1 + \dots + e_n = 1_R$. Define $A_i = \pi_i(e_i(I)) = \pi_i(I)$ where π_i is a canonical projection. For any $a \in R_i$ and any $b \in A_i$, then $a = \pi_i \iota_i(a), a \cdot b = \pi_i(\iota_i(a))\pi_i(e_ix) = \pi_i(\iota(a)e_ix)$ where $\pi_i(e_ix) = b, x \in I$, thus $ab \in A_i$, similarly, $ba \in A_i$, this means $A_i \triangleleft R_i$. Let $I' = A_1 \times \dots \times A_n$, for any $a \in I$, $a = (\pi_1(a), \pi_2(a), \dots, \pi_n(a)) \in I'$, then $I \subset I'$. For any $(a_1, \dots, a_n) \in I'$, then there are

 $b_i \in I$ such that $\pi_i(b_i) = a_i$, let $a = \sum_{i=1}^n e_i b_i \in I$, then $(a_1, \dots, a_n) = (\pi_1(a), \dots, \pi_n(a)) \in I'$. Hence $I = A_1 \times \dots \times A_n$.

For example, $R = \mathbb{Z} \times \mathbb{Z}$ is a group about additive and define multiplication $(a,b) \cdot (c,d) = (0,0)$, and $I = \{(3n,9n)|n \in \mathbb{Z}\} \triangleleft R$, but there isn't I_1, I_2 such that $I = I_1 \times I_2$.

- 17. (1) \Rightarrow (2):Let $e_i = (0, \dots, 0, 1_{R_i}, 0, \dots, 0)$, then $e_i e_j = \delta_{ij} e_i$, $e_i (a_1, \dots, a_n) = (0, \dots, 0, a_i, 0, \dots, 0) = (a_1, \dots, a_n) e_i$ and $\sum_{i=1}^n e_i = (1, \dots, 1)$ is an identity of $R_1 \times \dots \times R_n$.
 - $(2)\Rightarrow(1)$:Let $R_i = e_i R$, then $R = \sum_{i=1}^n R_i$. For any $a \in R_1 \cap \sum_{i=2}^n R_i$, then $a = \sum_{i=1}^n e_i a = e_1 a + \dots + e_n a$, thus $e_1 a = a$ and $e_2 a + \dots + e_n a = 0$, while $e_i (e_2 a + \dots + e_n a) = e_i a = e_i 0 = 0$, and $a = e_1 a = e_2 b_2 + \dots + e_n b_n$, therefore $a = e_1 a = e_1 (e_2 b_2 + \dots + e_n b_n) = 0$, hence $R_1 \cap \sum_{i=2}^n R_i = 0$. Similarly, $R_i \cap \sum_{\substack{j=1 \ i \neq i}}^n R_j = 0$. Thus $R = \sum_{\substack{j=1 \ i \neq j}}^n R_j = 0$.

 $\bigoplus_{i=1}^{n} R_i \text{ as abelian group. While } Re_i R = e_i R^2 \subset e_i R,$ $e_i R \cdot R \subset e_i R, \text{ thus } e_i R \triangleleft R, \text{ hence } R \simeq R_1 \times \cdots \times R_n.$

- 18. According to Exercise 2.1.11, $\mathbb{Z}[i]$ is an ED. Since $\mathbb{Z}[i] \simeq \mathbb{Z}[x]/(x^2+1)$, $\mathbb{Z}[i]/(p) \simeq \mathbb{Z}[x]/(p, x^2+1) \cong (\mathbb{Z}[x]/(p))/((x^2+1,p)/(p)) \simeq \mathbb{Z}_p[x]/(x^2+1)$.
- 19. If $R = \{a_1, \dots, a_n\}$ is a finite domain, then for any $a, b \in R$, if $aa_i = aa_j$, then $a(a_i a_j) = 0$, thus $a_i = aa_j$

 a_j for R is a domain. This means $\{aa_1, \dots, aa_n\} = R = \{a_1, \dots, a_n\}$. Since $b \in R$, there is $a_i \in R$ such that $aa_i = b$, similarly, there is $a_j \in R$ such that $a_ja = b$. Since there is $e \in R$ such that ea = a for any $a \in R$, and there is $c \in R$ such that bc = a, ea = eba = bc = a. Moreover, for any $a \in R$, there is $a' \in R$ such that a'a = e. According to Exercise 1.1.6, (R, \cdot) is a group. Hence R is a field.