ECE/PHY 235: Introduction to Solid State Electronics, Fall 2024 University of Wisconsin, Madison Homework #8, Instructor Ying Wang Due Thursday, Dec 5th, 11:59 PM, by electronic upload

PN junction

1. Given the width of the depletion region (W) as: $W = \sqrt{\frac{2\varepsilon_s}{q} \frac{(N_A + N_D)}{N_A N_D} V_{bi}}$, where N_A and N_D are the doping concentrations, V_{bi} is the build-in potential, and ε_s is the permittivity of the semiconductor.

A silicon PN junction has $N_A=10^{16}$ cm⁻³, $N_D=10^{15}$ cm⁻³, and the intrinsic carrier concentration $n_i=1.5\times 10^{10}$ cm⁻³. The permittivity of silicon is $\varepsilon_S=11.7\varepsilon_0$ and $\varepsilon_0=8.85\times 10^{-14} F/cm$.

- a) Calculate the built-in potential $V_{\rm bi}$
- b) Calculate the depletion region width at equilibrium.
- 2. Electric Field in the Depletion Region, the expression for the maximum electric field in the depletion region is $E_{max} = \frac{qN_AW_P}{\varepsilon_S} = \frac{qN_DW_N}{\varepsilon_S}$, where W_P and W_N are the widths of the depletion region on the P and N sides, respectively.
 - a) Using the information from problem 1, calculate the maximum electric field at equilibrium
 - b) Show that the built-in potential V_{bi} is the integral of the electric field across the depletion region:

$$V_{bi} = \int_0^w E(x) dx$$

Please upload a write-up of your solution as a single PDF file. Name the file "Lastname_HW8.pdf"