Prova tipo A

P4 de Álgebra Linear I-2008.2

Data: 28 de Novembro de 2008.

Nome:Assinatura:								Matrícula: Turma:					
	Du	ra	ção):	1 ł	or	a ·	50	m	inı	ıtc	S	
	Ques.	1	2.a	2.b	2.c	2.d	2.e	3.a	3.b	3.c	3.d	soma	
	Valor	3.0	1.0	1.0	0.5	0.5	0.5	1.0	1.0	0.5	1.0	10.0	
	Nota												
	Rev.												
qua	e você es adro aba	aixo		NÃ	0 (COF	RRI	GIF	?				

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas.
- Escreva de forma clara, ordenada e legível.
- O desenvolvimento de cada questão deve estar a seguir **Resposta** no lugar a ele destinado. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos!!</u>.
- Nas questões 2 e 3 <u>justifique cuidadosamente</u> todas as respostas. Responda de forma completa, ordenada e coerente.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento.

cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado.

fonte: mini-Aurélio

- 1)
- a) Considere o plano

$$\pi$$
: $x + 2y + z = 0$.

Determine a equação cartesiana de um plano ρ tal que a distância entre ρ e π seja $\sqrt{5}$.

b) Determine a equação cartesiana do plano π que contém as retas r e s,

$$r: (1+t, 2+t, 1+2t), \quad t \in \mathbb{R}, \qquad s: (1+2t, 2t, 4t), \quad t \in \mathbb{R}.$$

c) Considere a transformação linear

$$T \colon \mathbb{R}^3 \to \mathbb{R}^3$$

cuja matriz na base canônica $[T]_{\mathcal{E}}$ é o produto das matrizes

$$[T]_{\mathcal{E}} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix}^{-1}.$$

Determine uma base η da imagem de Te a equação cartesiana da imagem de T.

Lembre que a imagem de T, $\operatorname{im}(T)$, é o conjunto

$$\operatorname{im}(T) = \{ \overrightarrow{v} \in \mathbb{R}^3 \text{ tal que existe } \overrightarrow{w} \in \mathbb{R}^3 \text{ tal que } T(\overrightarrow{w}) = \overrightarrow{v} \}.$$

Não é necessário justificar esta questão.

Critério de correção: (a)=1.0, (b)=1.0, (c)=0.5+0.5.

Somente serão aceitas respostas <u>TOTALMENTE</u> corretas.

Marque as respostas a <u>caneta</u> nos retângulos

Respostas:					
(a)					
	ho:				
(b)					
	π :				
(c)					
	$\operatorname{im}(T)$:				
	base η :				

2) Considere a base β de \mathbb{R}^3 ,

$$\beta = \{(1,0,1), (1,1,0), (1,1,1)\}$$

e a transformação linear $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ que verifica

- T(1,0,1) = (2,1,1) = (1,0,1) + (1,1,0),
- T(1,1,0) = (2,2,1) = (1,1,0) + (1,1,1),
- T(1,1,1) = (2,1,2) = (1,0,1) + (1,1,1).
- a) Determine a matriz de T na base canônica.
- **b)** Determine a matriz de T na base β .
- c) Determine uma base da imagem da transformação linear T. Lembre que a imagem de T, im(T), é o conjunto

$$\operatorname{im}(T) = \{ \overrightarrow{v} \in \mathbb{R}^3 \text{ tal que existe } \overrightarrow{w} \in \mathbb{R}^3 \text{ tal que } T(\overrightarrow{w}) = \overrightarrow{v} \}.$$

- d) Determine as coordenadas do vetor $\overrightarrow{w} = (2, 0, 1)$ na base β .
- e) Determine a matriz de mudança de base da base β para a base canônica.

Observação: as coordenadas dos vetores da base β e do vetor \overrightarrow{w} estão escritas na base canônica \mathcal{E} .

 $J_{\underline{ustifique\ cuidadosamente}}\ TODOS$ os itens da sua resposta. Responda de forma completa, ordenada e coerente.

Resposta:

3) Considere uma transformação linear $T\colon\mathbb{R}^3\to\mathbb{R}^3$ cuja matriz na base canônica é

$$[T]_{\mathcal{E}} = \begin{pmatrix} 5 & -2 & -5 \\ 3 & -2 & -3 \\ 1 & -2 & -1 \end{pmatrix}.$$

- a) Determine os autovalores de T
- b) Determine uma base de autovetores de T

$$\gamma = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3\},\$$

tal que

- \overrightarrow{u}_1 é um autovetor associado a $\sigma < 0$,
- \overrightarrow{u}_2 é um autovetor associado a $\lambda > 0$,
- \overrightarrow{u}_3 é um autovetor associado a 0.
- c) Determine a matriz E de T na base γ .
- d) Considere agora a base de \mathbb{R}^3

$$\alpha = \{(1, 1, 1), (2, 1, 0), (1, 0, 1)\}.$$

Escreva a matriz P de mudança de base da base canônica para a base α

Observação: as coordenadas dos vetores da bases γ e α e do vetor \overrightarrow{w} estão escritas na base canônica \mathcal{E} .

 $J_{\underline{ustifique\ cuidadosamente}}\ TODOS$ os itens da sua resposta. Responda de forma completa, ordenada e coerente.

Resposta: