The draft genome of tropical fruit durian (Durio zibethinus)

Genome Analysis 2023
Paper IV
Andreas Bergfeldt

What is a Durian and why do this assembly?

- What?
 - Fruit popular in southeast asia
 - Pungent odor, not allowed in some public spaces

- Why?
 - o 2016 China imported 600 mUSD
 - Almost non existent genetic research

My assembly

- One scaffold
 - Scaffold 10
- Too much to do whole genome
 - Computing power
 - o Time

Workflow - simplified

Pre-processing - Trimmomatic

- Pre-trimmed data
 - Trimmed again to make sure it is good
- Trimming to remove adapters and low quality bases

- ILLIUMINACLIP = TruSeq3-SE:2:30:10
- LEADING = 3
- TRAILING = 3
- SLIDINGWINDOW= 4:15
- MINLEN = 36

Pre-processing - FastQC

Important to check data before proceeding!

Quality deemed good enough

Pictures are from after trimming

Assembly - Canu

Assembly of the long reads

o corrMaxEvidanceErate parameter

• useGrid for running in UPPMAX

Parameters - Canu

- useGrid = false
- genomeSize = 30m
- corMaxEvidenceErate = 0.15

Assembly - BWA (+ samtools)

- BWA
- Mapping short reads to long reads
 - Necessary for polishing later
- Manipulating BWA output with samtools to get .bam file
 - \circ .fasta \rightarrow .sai \rightarrow .sam \rightarrow .bam

Assembly - Pilon

- Pilon
- Polishing assembly with short read data
 - Higher accuracy to long scaffolds

- o Total Reads: 18201
- Confirmed 177014 of 192342 bases (92.03%)
- Corrected 11 snps; 0 ambiguous bases
 corrected 96 small insertions totaling 102 bases
 41 small deletions totaling 42 bases

Assembly QC - QUAST

• Was the assembly any good?

	Statistics without reference	durian_pilon
pilon	# contigs	608
	# contigs (>= 0 bp)	608
	# contigs (>= 1000 bp)	608
	# contigs (>= 5000 bp)	551
	# contigs (>= 10000 bp)	433
	# contigs (>= 25000 bp)	199
	# contigs (>= 50000 bp)	114
	Largest contig	826 217
	Total length	25 217 558
	Total length (>= 0 bp)	25 217 558
	Total length (>= 1000 bp)	25 217 558
	Total length (>= 5000 bp)	25 033 298
	Total length (>= 10000 bp)	24 133 282
	Total length (>= 25000 bp)	20 443 885
	Total length (>= 50000 bp)	17 656 612
	N50	120 097
	N90	14 884
	auN	198 308
	L50	48
	L90	318
	GC (%)	31.45
	Mismatches	
	# N's per 100 kbp	0
	# N's	0
ı		

Annotation - Trimmomatic +

repeat Maske Before annotation

• Trimmomatic → same as before

RepeatMasker

- softmasking repeats for better annotation
- Important to specify softmasking

Softmasking

- Identifies and "masks" repeats
- Changes bases in the fasta file from uppercase to lowercase
- Hardmasking removes info, softmasking does not

Structural annotation - BRAKER

- Pipeline consisting of Augustus and GeneMark
- Annotates based on reference genome (masked assembly), and transcriptomic data

BRAKER results

- Hardmasked scaffold → 96 genes identified
- Softmasked scaffold \rightarrow 110 genes identified
- What are the genes?
 - o who knows...
 - will come later

Functional annotation - eggNOG-mapper

Web based UI

Loads of information about found hits

- Does not say a lot at this stage
 - Vital for differential expression analysis
 - Yes more patience is needed...

Counting reads - STAR and HTSeq

- For transcriptomic reads to be counted they first need to be aligned
 - Done with STAR

HTSeq results

- 8 files with reads of varying length
- Total 29 269 185 record pairs
- 835 record pairs with missing mate record
 - \circ 0.003% of total record pairs

Differential expression analysis

• R-module for expression analysis

Finally some tangible results!

The analysis in short

(In depth on future slides)

- 2 different species
 - Musang King and Mothong
- 2 different type of analysis
 - Between species (Musang king, Mothong)
 - Within species (Musang King)
 - Different plant organs (aril, stem, leaf, root)
- Types of visualization
 - PCA
 - Heatmap

DE - Between species - PCA

DE - Between species - Heatmap

- Overall hard to separate the two species
- On PCA the grouping is not good
 - o Groups Musang with Mothong
 - O Does not group all of same species

 The heatmap does not show any patterns in which the species can be separated

DE - Within species - PCA

DE - Within species - Heatmap

- Better separation between plant organs compared to plant species
 - PCA did okay
 - Possible separations at least

- Some patterns can be seen that separates arils from the rest of the plant organs
 - Eg. methionine and xyloglucan

DE - Biological conclusions

- Methionine converted to methanethiol
 with the enzyme methionine γ-lyase
 - o Methanethiol has key role in odor of durian
- Xyloglucan building block of cell wall 2
 - "interlace cellulose microfibrils in most flowering plants."
 - Genes with association to cell wall 2 upregulated in arils

Figures from paper IV

Thank you for your attention!

For more in depth information about programs etc. please look at my github wiki for this project: https://github.com/A-Bergfeldt

