Unidade 3

Sistemas Operacionais

Imagine a situação...

...uma calculadora e várias pessoas querendo usá-la.

Quem usaria a calculadora primeiro?

- O que você faria se alguém se apossasse da calculadora por muito tempo?
- O que você faria se eles quisessem armazenar os resultados em algum lugar?

O que é um sistema operacional?

- É o conjunto de programas que gerenciam recursos, processadores, armazenamento, dispositivos de entrada e saída e dados da máquina e seus periféricos (hardware)
- Faz comunicação entre o hardware e os demais softwares
- Cria uma plataforma comum a todos os programas utilizados
- Exemplos: DOS, Unix, Linux, Mac OS, OS-2, Windows

Principais objetivos

- Facilidade de acesso aos recursos do sistema (amigável ao usuário)
- Uso eficiente dos recursos, compartilhando-os de forma organizada e protegida

Por que existe S.O.? Se não existisse, o que aconteceria com o computador?

- Um S.O. existe para gerenciar os componentes de um computador, pois sem ele o computador só seria feito para executar uma ação e não várias simultaneamente
- A sua função é gerenciar os recursos do sistema (definir qual programa recebe atenção do processador, gerenciar memória, criar um sistema de arquivos, etc.), fornecendo uma interface entre o computador e o usuário
- Não seria possível executar multitarefas, ou seja, vários programas rodando ao mesmo tempo: seria necessário encerrar um programa para iniciar outro
- Os programas não poderiam compartilhar bibliotecas, ou seja, mesmo que dois programas diferentes usassem um conjunto de arquivos iguais, cada um tinha que ter uma cópia exclusiva

Tipos de Software

- Software de aplicação ou aplicativo
 - Realizam tarefas específicas dos usuários
- Software básico ou de sistema
 - Provê infraestrutura para os softwares de aplicação
 - Consiste do sistema operacional e dos utilitários e drivers

Tipos de Software

Exemplos de software aplicativo e de software utilitário (de sistema)

- Word
- Paint
- Browser
- Softwares de manutenção de rede
- Softwares de compressão de dados
- Software Antivírus

Composição

Funções básicas

- Inicialização do Computador (booting)
- Sistema de Arquivos (organização dos dados nas memórias)
- Gestão da Memória (Alocação, liberação)
- Gestão de Programas (carrega, finaliza, suspende, prioriza)
- Gestão dos Periféricos (alocação, configuração, liberação)
- Segurança do Sistema (perfis de permissões, registros)
- Monitoramento do Desempenho
- Interfaceamento com o Usuário

O processo de booting

Step 1: Machine starts by executing the boot loader program already in memory. Operating system is stored in mass storage.

Fonte: Brookshear, 2013

Step 2: Boot loader program directs the transfer of the operating system into main memory and then transfers control to it.

Sistema de Arquivos

É a parte do sistema responsável pela gerência dos arquivos, visando facilitar o acesso dos usuários ao seu conteúdo

- Arquivo: é constituído por informações relacionadas de forma lógica, podendo representar instruções ou dados
- Diretório: é como o sistema organiza de forma lógica os arquivos do disco
- Partição: é uma parte do disco, criada por programas, específica para o sistema operacional

Sistema de Arquivos

Sistema operacional	Tipos de sistema de arquivos suportados
Dos	FAT16
Windows 95	FAT16
Windows 95 OSR2	FAT16, FAT32
Windows 98	FAT16, FAT32
Windows NT4	FAT, NTFS (versão 4)
Windows 2000/XP	FAT, FAT16, FAT32, NTFS (versões 4 e 5)
Linux	Ext2, Ext3, ReiserFS, Linux Swap (FAT16, FAT32, NTFS)
MacOS	HFS (Hierarchical File System), MFS (Macintosh File System)
OS/2	HPFS (High Performance File System)
SGI IRIX	XFS
FreeBSD, OpenBSD	UFS (Unix File System)
Sun Solaris	UFS (Unix File System)
IBM AIX	JFS (Journaled File System)

Gerência de Memória

- Aloca espaço na memória principal
- Garante porções de memória para cada software (proteção)
- Pode criar a ilusão que o computador possui mais memória do que realmente tem (memória virtual) por trocar blocos de memória (páginas) entre a memória secundária e a principal

Segurança do sistema

- Ataques externos
 - Problemas:
 - ousuários indevidos
 - osenhas inseguras
 - osoftwares de rastreamento (sniffer)
 - Medidas de mitigação
 - operfil de usuário (permissões)
 - osoftwares de auditoria

Segurança do sistema

- Ataques internos
 - Problema: programas mal intencionados ou com erro
 - Medidas de mitigação: controle das atividades dos processos via modos privilegiados e instruções privilegiadas

Evolução dos Sistemas Operacionais

- Processamento em lote (batch)
- Processamento interativo
 - Necessita de processamento em tempo real
- Time-sharing/Multitarefa
 - Implementado pela Multiprogramação
- Computadores com Multiprocessadores

Tipos (classificação)

Sistemas Monoprogramáveis/ Monotarefa

- Execução de um único programa
- Qualquer outro programa deveria aguardar o término do programa concorrente
- Relacionado ao surgimento dos mainframes

Processamento em lote (batch)

Fonte: Brookshear, 2013

Sistemas Multiprogramáveis/ Multitarefa

- Complexos e eficientes
- Divisão de recursos entre as tarefas/processos
- Aumento da produtividade dos usuários e redução de custos
- Timesharing, real time

Processamento interativo

Programs, data, directions, and results

User domain

Machine domain

Fonte: Brookshear, 2013

Por meio da multiprogramação (tempo compartilhado) e interrupções

Tempo compartilhado entre os processos A e B

Fonte: Brookshear, 2013

Interrupção

- Mecanismo que permite a interrupção da sequência de instruções a serem executadas pela CPU
- Instruction-pointer: próxima instrução a ser executada
- Peripheral interrupt controller: controlador de interrupção periférica – define a prioridade de atendimento dos dispositivos por parte da CPU

PICs Típicos

```
IRQ 0 – Sinal de clock da placa mãe (fixo)
IRQ 1 - Teclado (fixo)
IRQ 2 - Cascateador de IRQs (fixo)
IRQ 3 - Livre (serial 2 desativada)
IRQ 4 - Modem
IRQ 5 - Livre
IRQ 6 – Drive de disquetes
IRQ 7 - Livre (porta paralela desativada)
IRQ 8 - Relógio do CMOS (fixo)
IRQ 9 – Placa de som, placa de rede (1), placa de rede (2)
IRQ 10 – Placa de vídeo
IRQ 11 – Controlador USB (Mouse, impressora e scanner)
IRQ 12 - Porta PS/2
IRQ 13 - Coprocessador aritmético
IRQ 14 - IDE Primária
IRQ 15 – Livre (IDE Secundária desativada)
```

Exercício: suponha que um sistema operacional de multiprogramação tenha alocado fatias de tempo de 10 milissegundos e que a máquina tenha executado uma média de 5 instruções por nanossegundo. Quantas instruções poderiam ser executadas em uma única fatia de tempo?

Exercício: suponha que um sistema operacional de multiprogramação tenha alocado fatias de tempo de 10 milissegundos e que a máquina tenha executado uma média de 5 instruções por nanossegundo. Quantas instruções poderiam ser executadas em uma única fatia de tempo?

```
1000 ms = 1 s

1000 us = 1 ms

1000 ns = 1 us

Alocação de 10 ms

1 ns = 5 instruções

10 ms = 10.000.000 ns

5 X 10.000.000 = 50.000.000 instruções
```

Sistemas com Múltiplos Processadores

- Possuem duas ou mais CPUs interligadas, trabalhando em conjunto
- o Pode ser:
 - Fortemente acoplado: vários processadores compartilhando uma única memória física e dispositivos de E/S gerenciados por um SO
 - Fracamente acoplado: dois ou mais sistemas computacionais conectados, sendo que cada sistema possui seu SO

Market share por categoria

Category	Source	Date	<u>Linux</u> based	Mac and Other <u>Unix</u>	<u>Windows</u>	In- House	Other
Desktop, laptop	Net Applications[207]	Sep 2018	2.21% (excl. Chrome OS) plus 0.29% ChromeOS	9.52% (macOS)	87.56% (all versions)		0.37%
Smartphone, tablet	StatCounter Global Stats[208]	Sep 2018	73.19% (<u>Android</u>)	24.26% (<u>iOS</u>)	0.36%		2.19%
Server (web)	W3Techs	Apr 2017	66.6–37% (<u>Ubuntu</u> 35.8%, <u>Debian</u> 31.9%, <u>CentOS</u> 20.6%, Red Hat (<u>RHEL</u>) 3.3%, <u>Gentoo</u> , 2.7%, <u>Fedora</u> 0.9%)	c. 1% (<u>BSD</u>)	33.5% (2016, 2012, 2008)		
<u>Supercomputer</u>	<u>TOP500</u>	Nov 2017	100% (<u>Custom</u>)				
<u>Mainframe</u>	<u>Gartner</u>	Dec 2008	28% (<u>SLES</u> , <u>RHEL</u>)	72% (<u>z/OS</u>) UNIX System Services			
Gaming console, Handheld game console (7th & 8th generation only)	<u>VGChartz</u>	Jan 2018		35.04% (<u>PS4</u> , <u>PS3</u> , <u>Vita</u> , <u>PSP</u>)	16.63% (<u>Xbox One,</u> <u>Xbox 360</u>)	48.32% (<u>Switch</u> , <u>Wii U</u> , <u>Wii,</u> <u>3DS</u> , <u>DS</u>)	
<u>Embedded</u>	UBM Electronics[219]	Mar 2012	29.44% (Android plus other non-Android Linux)	4.29% (<u>QNX</u>)	11.65% (WCE 7)	13.5%	41.1%