

SAS PROGRAMMING FOR BUSINESS ANALYTICS

ASSIGNMENT 2

SUBMITTED BY:

TANAY BHALERAO

U47707491

FEBRUARY 20, 2015
UNIVERSITY OF SOUTH FLORIDA
Management Information Systems

Homework 2

Refer to DOGS1 data. The investigator may want to ensure that the dogs allocated to each
treatment group were of similar compositions with respect to gender and hair coat. Use PROC
FREQ to conduct Fisher's exact test to see if the concentration of the drug received was
statistically independent of the gender of the dog. Likewise, see if the length of the coat and the
drug treatment were statistically independent with Fisher's exact test. Write your
interpretation of the results of these tests.

```
DATA infile_dogs1;
    infile
"\Client\C$\Users\Tanay\Documents\Sem2\BusinessAnalytics\dogs1.txt" LRECL=
200 firstobs=2;
    input
    dog $ 1-8 concent 16 sex $ 17 age 31-32 haircoat $ 33-37 weight 45-48;
RUN;

PROC FREQ DATA=infile_dogs1;
    TITLE "FISHER'S EXACT TEST";
    TABLES (haircoat sex)*concent /EXACT;
    RUN;
```

F	ISHER'S	EXA	CT TE	ST	
	The FRE	EQ Pro	cedure		
Frequency	Table	of hai	ircoat b	y conc	ent
Percent Row Pct			con	cent	
Col Pct	haircoat	0	1	2	Total
	Med	2	3	5	10
		8.00	12.00	20.00	40.00
		20.00	30.00	50.00	
		20.00	42.86	62.50	
	Short	8	4	3	15
		32.00	16.00	12.00	60.00
		53.33	26.67	20.00	
		80.00	57.14	37.50	
	Total	10	7	8	25
		40.00	28.00	32.00	100.00

Statistic		DF	Value	Prob
Chi-Square		2	1.2946	0.5234
Likelihood	Ratio Chi-Square	2	1.2876	0.5253
Mantel-Hae	nszel Chi-Square	1	0.1435	0.7048
Phi Coeffic	ient		0.2276	
Contingency Coefficient			0.2219	
Cramer's V			0.2276	
WARNING: 83% of the cells have expected counts les than 5. Chi-Square may not be a valid test.				
	Fisher's Exact Test			
	Table Probability (P)		720	
Pr <= P		0.5	5235	

Interpretation:

The size of the dataset is small. Using Fisher's Test for independence we are figuring out if the proportion of one nominal variable is different depending on the value of the other variable.

After carrying out the Fisher's Exact Test we can infer the following:

- The length of the coat and the drug treatment were found to be statistically **dependent** since P-value is less than 0.05 (P-Value: 0.0270). This is less than 5% and hence the null hypothesis can be rejected and the test turned out to be significant.
- Also the concentration of the drug received was found to be statistically **independent** from the sex of the dog since P-value in this case is more than 0.05(P-Value: 0.0720) i.e. more than 5%. In such a situation we do not reject the null hypothesis since the test is insignificant.
- Refer to the following data, obtained from Michael Radelet, in the book Categorical Data Analysis by Alan Agresti. The data describe the circumstances of 326 homicide cases in Florida from 1976-1977.

Defendant's race	Victim's race	Death penalty	Count
Black	White	Yes	11
Black	White	No	52
Black	Black	Yes	6
Black	Black	No	97
White	White	Yes	19
White	White	No	132
White	Black	Yes	0
White	Black	No	9

Use PROC FREQ to create appropriate tables to answer the following questions. Write down your answers to these questions, and mark (circle or highlight) those same numbers on your SAS output. (In other words, make sure that your tables explicitly show the requested percentages.)

- a. When the defendant was white and the victim was black, in what percentage of cases was the death penalty verdict given?
- b. When the defendant was black and the victim was white, in what percentage of cases was the death penalty verdict given?
- c. When the races of the victim and the defendant were the same, in what percentage of cases was the death penalty given?

```
DATA Homicide;
    infile
"\Client\C$\Users\Tanay\Documents\Sem2\BusinessAnalytics\Homicide.txt"
LRECL= 200 DLM="09"x firstobs=2;
    input
    Def_race $ Vic_race $ Death_Penalty $ Count;
RUN;

PROC FREQ DATA=Homicide;
    TITLE "HOMICIDE-DEATH PENALTY PERCENTAGES";
    TABLES Def_race*Vic_race*Death_Penalty;
    TABLES Death_Penalty /NOCUM;
    WEIGHT Count;
    RUN;
```

a) In what percentage of cases was the death penalty verdict given?11.04%

Death_Penalty	Frequency	Percent
No	290	88.96
Yes	36	11.04

b) When the defendant was white and the victim was black, in what percentage of cases was the death penalty verdict given?

0.0%

Frequency	Table 2 of Vic_race by Death_Penalty			
Percent Row Pct	Controlling for Def_race=White			
Col Pct	Death_Penalty			Ity
	Vic_race	No	Yes	Total
	Black	9	0	9
		5.63	0.00	5.63
		100.00	0.00	
		6.38	0.00	
	White	132	19	151
		82.50	11.88	94.38
		87.42	12.58	
		93.62	100.00	
	Total	141	19	160
		88.13	11.88	100.00

c) When the defendant was black and the victim was white, in what percentage of cases was the death penalty verdict given?

17.46%

HOMICIDE-DEATH PENALTY PERCENTAGES The FREQ Procedure Frequency Table 1 of Vic_race by Death_Penalty Percent Controlling for Def_race=Black Row Pct Col Pct Death Penalty Total Vic_race No Yes Black 97 6 103 58.43 3.61 62.05 94.17 5.83 65.10 35.29 White 52 11 63 31.33 6.63 37.95 82.54 17.46 64.71 34.90 149 17 Total 166 89.76 10.24 100.00

d) When the races of the victim and the defendant were the same, in what percentage of cases was the death penalty given?

9.84%

```
PROC FREQ DATA=Homicide;
    TITLE "HOMICIDE-DEATH PENALTY PERCENTAGES";
    TABLES Death_Penalty/NOCUM;
    WHERE Def_race=Vic_race;
    WEIGHT Count;
    RUN;
```

HOMICIDE-DEATH PENALTY PERCENTAGES The FREQ Procedure Death_Penalty Frequency Percent No 229 90.16 Yes 25 9.84

3. Refer to the HANKS data. Your task is to use a SAS program to count the number of movies in which Tom Hanks appeared in each of the years from 1984-1998, then make a scatterplot with the number of movies made in each year on the vertical axis versus the year on the horizontal axis. In some years, such as 1997, he did not appear in any movies. On the scatterplot, indicate those years by plotting a point at zero. To do this you could create another dataset with all of the years from 1984-1998 by using a Do loop, then MERGE that dataset with the dataset containing the movie counts. Then, you will need to replace missing values for movie counts with zeroes.

```
DATA Hanks;
      infile
"\\Client\C$\Users\Tanay\Documents\Sem2\BusinessAnalytics\Hanks.txt" LRECL=
200 firstobs = 2;
      Input TITLE $ 1-25 YEAR 26-30 LENGTH 34-37 MPAA $ 42-47 ACTION 50-52
DRAMA 58-60 HUMOR 66-68 SEX 74 VIOLENCE 81-83 SUSPENSE 90 OFFBEAT 98;
RUN;
PROC FREQ DATA=Hanks;
      TABLES YEAR /NOCUM NOPERCENT OUT=Hanks dataset1;
Run:
DATA Hanks dataset2;
      DO YEAR = 1984 to 1998;
      OUTPUT;
      END;
RUN;
DATA Hanks total data;
      MERGE Hanks_dataset1 Hanks_dataset2;
      BY YEAR;
      IF Count=. THEN count=0;
RUN;
SYMBOL VALUE=dot COLOR=red;
PROC GPLOT DATA=Hanks total data;
      PLOT count*YEAR;
      TITLE "SCATTER PLOT for number of Tom Hank movies per year";
RUN:
```


4. Book page 117 Questions 3.10, 3.16, 3.18

3.10)

```
DATA Carotid_Sten;
    INPUT Invasive_M1 $ Non_invasive_M2 $ Count;

DATALINES;

Occuled Occuled 15
Occuled Non-Occuled 8
Non-Occuled Occuled 10
Non-Occuled Non-Occuled 67;

RUN;

PROC FREQ DATA = Carotid_Sten;
    ITTLE "Kappa Coefficient - Carotid Stenosis";
    TABLES Invasive_M1*Non_invasive_M2 /AGREE;
    WEIGHT Count;

RUN;
```

Statistics for Table of Invasive_M1 by Non_invasive_M2

McNemar's Test		
Statistic (S)	0.2222	
DF	1	
Pr > S	0.6374	

Simple Kappa Coefficient		
Карра	0.5068	
ASE	0.1008	
95% Lower Conf Limit	0.3092	
95% Upper Conf Limit	0.7045	

Sample Size = 100

```
3.16) DATA Clinical_trial;
    INPUT TABLET_GR $ OUTCOME $ COUNT_HEART_ATTACK COUNT_STROKE;
DATALINES;
ASPIRIN 1-YES 80 65
ASPIRIN 2-NO 920 935
PLACEBO 1-YES 240 165
PLACEBO 2-NO 1760 1835
;
PROC FREQ DATA=Clinical_trial;
    TITLE "Problem Clinical_trial Data-MI";
```

```
TABLES TABLET_GR*OUTCOME /CMH;
WEIGHT COUNT_HEART_ATTACK;
RUN;
PROC FREQ DATA=Clinical_trial;
TITLE "Problem Clinical_trial Data-Stroke";
TABLES TABLET_GR*OUTCOME /CMH;
WEIGHT COUNT_STROKE;
RUN;
```

Problem Clinical_trial Data-MI

Common Odds Ratio and Relative Risks				
Statistic	Method Value 95% Confidence Lim			ence Limits
Odds Ratio	Mantel-Haenszel	0.6377	0.4891	0.8314
	Logit	0.6377	0.4891	0.8314
Relative Risk (Column 1)	Mantel-Haenszel	0.6667	0.5237	0.8487
	Logit	0.6667	0.5237	0.8487
Relative Risk (Column 2)	Mantel-Haenszel	1.0455	1.0202	1.0713
	Logit	1.0455	1.0202	1.0713

Total Sample Size = 3000

Problem Clinical_trial Data-Stroke

Common Odds Ratio and Relative Risks				
Statistic	Method	Value	95% Confide	ence Limits
Odds Ratio	Mantel-Haenszel	0.7731	0.5741	1.0411
	Logit	0.7731	0.5741	1.0411
Relative Risk (Column 1)	Mantel-Haenszel	0.7879	0.5974	1.0391
	Logit	0.7879	0.5974	1.0391
Relative Risk (Column 2)	Mantel-Haenszel	1.0191	0.9979	1.0407
	Logit	1.0191	0.9979	1.0407

Total Sample Size = 3000

The Relative Risk of Aspirin with respect to heart attack is 0.667 while with respect to stroke is 0.7879. Both of which are statistically insignificant.

3.18)

```
Data MAG SUR;
      INPUT STUDY $ OUTPUT $ DRUG TYPE$ COUNT;
Datalines;
one survived mgso 20
one survived placebo 25
one died mgso 100
one died placebo 155
two survived mgso 25
two survived placebo 21
two died mgso 150
two died placebo 150
three survived mgso 30
three survived placebo 28
three died mgso 200
three died placebo 240
PROC FREQ DATA = MAG SUR;
      TITLE "Conducting meta-analysis to determine effect of MGSO4";
      TABLES STUDY*DRUG TYPE*OUTPUT /ALL;
      WEIGHT COUNT;
RUN;
```

Common Odds Ratio and Relative Risks				
Statistic	Method	Value	95% Confide	ence Limits
Odds Ratio	Mantel-Haenszel	0.8050	0.5695	1.1379
	Logit	0.8050	0.5695	1.1378
Relative Risk (Column 1)	Mantel-Haenszel	0.9721	0.9288	1.0174
	Logit	0.9722	0.9291	1.0172
Relative Risk (Column 2)	Mantel-Haenszel	1.2070	0.8942	1.6294
	Logit	1.2068	0.8940	1.6289

Breslow-Day Test for Homogeneity of the Odds Ratios			
Chi-Square 0.033			
DF	2		
Pr > ChiSq	0.9836		

Total Sample Size = 1144

The Overall Relative Risk is <u>0.9721</u> with lower 95% confidence Interval: <u>0.9288</u> and higher 95% confidence Interval: <u>1.01174</u>. Also the Breslow Day Statistic for Homogeneity of the odds is <u>0.9836</u>