

Uncovering the Housing Market's Secrets: Multiple Linear Regression Analysis

Jae Heon Kim

Overview

This data science project uses multiple linear regression analysis techniques to build a reliable, statistically significant model for predicting housing prices in Kings County, Seattle. The data will contain home sale prices from May 2014 to May 2015, from King County's government records. The stakeholder is KCHA, Kings County Housing authority, a public agency that provides affordable housing options and services to low-income families, individuals, and seniors in King County. Their particular concern is providing homes for a family of five or more people. This project will help them to make data-driven well-informed decisions on making future services and polices.

Business Problem

Who is King County Housing Authority?

The KCHA is a public agency that provides affordable housing options and services to low-income families, individuals, and seniors in King County. They aim to help improve the quality of life for residents in the area by providing safe, decent, and affordable housing options, as well as supportive services and programs.

What are their headaches?

- The metropolitan area has a severe shortage of affordable housing, and KCHA is working to address this issue, possibly due to the concentration of large corporate campuses in the Seattle area.
- However, the presence of these high-earning populations and corporate campuses makes it challenging to acquire new affordable housing units, requiring extreme precise mathematical precision.
- The housing market in Seattle is experiencing significant turbulence:
 - Housing prices have seen a sharp increase following the pandemic.
 - Rising interest rates are driving up mortgage rates.
 - The potential for an economic recession adds to the uncertain outlook of the housing market.
 - The presence of nearby tech campuses and potential for tech lay-offs further complicates the situation.
- KCHA asked to provide a housing price prediction model that can accommodate a family of any size.

Why do they need this project?

- A multi-linear regression model can provide valuable insights into the factors that influence
 housing prices, helping KCHA make more informed decisions about acquiring new affordable
 housing units.
- The model can help KCHA understand the impact of changes in the housing market and make more accurate predictions about future trends, informing their strategic planning and decisionmaking.
- By providing valuable insights and predictions about the housing market, the model can help KCHA address the challenges they face in providing affordable housing in the metropolitan Seattle area.

Data Understanding

Import Packages

```
In [1]: # Import basic packages
        import numpy as np
        import pandas as pd
        # Import visualization pacakages
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        # Import math
        import math
        # Import scipy
        from scipy import stats
        # Import statsmodels
        import statsmodels.api as sm
        from statsmodels.formula.api import ols
        from statsmodels.stats.outliers influence import variance inflation factor
        from statsmodels.graphics.gofplots import qqplot
        # Import sklearn
        from sklearn.linear model import LinearRegression
        from sklearn.feature selection import RFE
        from sklearn.preprocessing import StandardScaler, OneHotEncoder, OrdinalEnc
        from sklearn.model selection import train test split
        import sklearn.metrics as metrics
        # Import warnings
        import warnings
        warnings.filterwarnings("ignore", category= FutureWarning)
        warnings.filterwarnings("ignore", category=DeprecationWarning)
        # Import miscellaneous packages
        from IPython.display import Markdown
```

Data 1: Home Sales Prices of King County in 2021 and 2022

This data was gathered from King County's official government website https://kingcounty.gov/. This is our primary dataset and it contains detailed information about features of the houses sold.

```
In [2]: # Read data
df = pd.read_csv('data/kc_house_data.csv')
df.head()
```

Out[2]:

_		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
_	0	7399300360	5/24/2022	675000.0	4	1.0	1180	7140	1.0	NO
	1	8910500230	12/13/2021	920000.0	5	2.5	2770	6703	1.0	NO
	2	1180000275	9/29/2021	311000.0	6	2.0	2880	6156	1.0	NO
	3	1604601802	12/14/2021	775000.0	3	3.0	2160	1400	2.0	NO
	4	8562780790	8/24/2021	592500.0	2	2.0	1120	758	2.0	NO

5 rows × 25 columns

Column Names and Descriptions for King County Data Set

- id Unique identifier for a house
- · date Date house was sold
- price Sale price (prediction target)
- bedrooms Number of bedrooms
- bathrooms Number of bathrooms
- sqft living Square footage of living space in the home
- sqft_lot Square footage of the lot
- floors Number of floors (levels) in house
- waterfront Whether the house is on a waterfront
 - Includes Duwamish, Elliott Bay, Puget Sound, Lake Union, Ship Canal, Lake Washington, Lake Sammamish, other lake, and river/slough waterfronts
- greenbelt Whether the house is adjacent to a green belt
- nuisance Whether the house has traffic noise or other recorded nuisances
- view Quality of view from house

- Includes views of Mt. Rainier, Olympics, Cascades, Territorial, Seattle Skyline, Puget Sound, Lake Washington, Lake Sammamish, small lake / river / creek, and other
- condition How good the overall condition of the house is. Related to maintenance of house.
 - See the <u>King County Assessor Website</u> (https://info.kingcounty.gov/assessor/esales/Glossary.aspx?type=r for further explanation of each condition code
- grade Overall grade of the house. Related to the construction and design of the house.
 - See the <u>King County Assessor Website</u> (<u>https://info.kingcounty.gov/assessor/esales/Glossary.aspx?type=r</u>) for further explanation of each building grade code
- heat source Heat source for the house
- sewer_system Sewer system for the house
- sqft_above Square footage of house apart from basement
- sqft basement Square footage of the basement
- sqft_garage Square footage of garage space
- sqft_patio Square footage of outdoor porch or deck space
- yr_built Year when house was built
- yr_renovated Year when house was renovated
- address The street address
- lat Latitude coordinate
- long Longitude coordinate

Most fields were pulled from the <u>King County Assessor Data Download</u> (https://info.kingcounty.gov/assessor/DataDownload/default.aspx).

The address, lat, and long fields have been retrieved using a third-party geocoding API (https://docs.mapbox.com/api/search/geocoding/). In some cases due to missing or incorrectly-entered data from the King County Assessor, this API returned locations outside of King County, WA. If you plan to use the address, lat, or long fields in your modeling, consider identifying outliers prior to including the values in your model.

Data 2: Reported Incidents in King County up to 2019

This data was gathered from King County's official government website https://kingcounty.gov/. This is our supporting dataset and it contains detailed information about reported incidents in King County all the way to 2019. This information can be useful in creating new columns that tell how many incidents occurred in different regions.

```
In [3]: # Read Data
    df_incident = pd.read_csv('data/KCSO_Incident_Dataset__Historic_to_2019.csv
    df_incident.head()
```

Out[3]:

	case_number incident_datetime		incident_type	FCR	address_1	city	state	zip	created_
0	C19046940	12/09/2019 09:02:00 AM	Other	503	1 Block AVE & YESLER WAY	SEATTLE	WA	98104	12/12/20 06:19: F
1	C19046039	12/02/2019 06:01:00 PM	Other	162	19700 Block 635TH PL NE	BARING	WA	98224	12/05/20 05:15: F
2	C19026684	07/14/2019 01:29:00 AM	Vehicle Recovery	311	1 Block PL S & DES MOINES MEMORIAL DR S	BURIEN	WA	98168	07/15/20 05:45: /
3	C19043968	11/16/2019 10:07:00 PM	Traffic	404	RAINIER AVE N & RENTON AVE S	SKYWAY	WA	98178	11/19/20 04:30: F
4	C19042199	11/04/2019 07:18:00 AM	Property Crime	313	1 Block PL S & DES MOINES MEMORIAL DR S	BURIEN	WA	98168	11/05/20 04:35: F

Data 3: Reported Offenses in King County from 2020

This data was gathered from King County's official government website https://kingcounty.gov/. This is our supporting dataset and it contains detailed information about reported offenses in King County since 2020. This information can be useful in creating new columns that tell how many offenses occurred in different regions.

```
In [4]: # Read data
    df_offense = pd.read_csv("data/KCSO_Offense_Reports__2020_to_Present.csv")
    df_offense.head()
```

Out[4]:

	case_number	incident_datetime	nibrs_code	nibrs_code_name	block_address	
0	C21034525	10/29/2021 11:21:00 AM	120	Robbery	14900 Block 4TH AVE SW	BUF
1	C21034462	10/28/2021 08:10:00 PM	290	Destruction/Damage/Vandalism of Property	17600 Block 152ND PL SE	REN
2	C21034548	10/29/2021 12:30:00 AM	240	Motor Vehicle Theft	100 Block SW 112TH ST	SEAT
3	C21034576	10/28/2021 05:00:00 PM	13B	Simple Assault	14400 Block 162ND AVE SE	REN
4	C22012227	04/12/2022 08:36:00 PM	13B	Simple Assault	2800 Block NE 200TH ST	SHORE

Data 4: Population, City, County by Zipcode

This data was gathered from King County's official government website https://kingcounty.gov/. This is our supporting dataset and it contains a conversion table for zipcode, population and city.

```
In [5]: # Read data
df_county = pd.read_csv("data/kc_zipcode.csv")
df_county.head()
```

Out[5]:

	zip	population	city	county
0	99301	81583	Pasco	Franklin
1	98052	71940	Redmond	King
2	98012	70009	Bothell	Snohomish
3	98682	63768	Vancouver	Clark
4	98208	58211	Everett	Snohomish

We will extract zipcode from 'address' attribute of 'df' and make conversion by accessing 'df_county'.

```
In [6]: # Change attribute's name, and dtype.
    df_county['zipcode'] = df_county['zip']
    df_county['zipcode'] = df_county['zipcode'].astype(str)
    df_county = df_county[['population', 'city', 'county', 'zipcode']]
    df_county.head()
```

Out[6]:

	population	city	county	zipcode
0	81583	Pasco	Franklin	99301
1	71940	Redmond	King	98052
2	70009	Bothell	Snohomish	98012
3	63768	Vancouver	Clark	98682
4	58211	Everett	Snohomish	98208

Data Preparation

In this step, we will explore data and clean them so they are ready for multi-regressional analysis.

Dealing with Missing Values

We will thoroughly survey each column for missing values, and fill them after analyzing each attribute's distribution.

In [7]: # Display all missing values. display(df.info(), df.isna().any())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30155 entries, 0 to 30154
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtypo
<i>₩</i>	COLUMNI	Non-Null Count	Dtype
0	id	30155 non-null	int64
1	date	30155 non-null	
2	price	30155 non-null	_
3	bedrooms	30155 non-null	
4	bathrooms	30155 non-null	
5	sqft living	30155 non-null	
6	sqft lot	30155 non-null	
7	floors	30155 non-null	
8	waterfront	30155 non-null	
9	greenbelt	30155 non-null	-
10	nuisance	30155 non-null	-
11	view	30155 non-null	-
12	condition	30155 non-null	object
13	grade	30155 non-null	object
14	heat_source	30123 non-null	object
15	sewer_system	30141 non-null	object
16	sqft_above	30155 non-null	int64
17	sqft_basement	30155 non-null	int64
18	sqft_garage	30155 non-null	int64
19	sqft_patio	30155 non-null	int64
20	<pre>yr_built</pre>	30155 non-null	int64
21	<pre>yr_renovated</pre>	30155 non-null	int64
22	address	30155 non-null	object
23	lat	30155 non-null	float64
24	long	30155 non-null	float64
dtype	es: float64(5),	int64(10), obje	ect(10)
memoi	ry usage: 5.8+ N	MB	

None

```
price
                          False
        bedrooms
                          False
                          False
        bathrooms
        sqft_living
                          False
        sqft_lot
                          False
        floors
                          False
        waterfront
                          False
        greenbelt
                          False
        nuisance
                          False
        view
                          False
        condition
                          False
        grade
                          False
        heat_source
                          True
        sewer_system
                          True
        sqft_above
                          False
        sqft_basement
                          False
        sqft_garage
                          False
        sqft_patio
                          False
        yr_built
                          False
        yr_renovated
                          False
        address
                          False
        lat
                          False
        long
                          False
        dtype: bool
In [8]: # Study the nature of the attribute 'heat source'
        display(df.heat source.unique(), df.heat source.value counts(), df.heat sou
        array(['Gas', 'Oil', 'Electricity', 'Gas/Solar', 'Electricity/Solar',
                'Other', nan, 'Oil/Solar'], dtype=object)
        Gas
                              20583
        Electricity
                               6465
        Oil
                               2899
        Gas/Solar
                                 93
        Electricity/Solar
                                 59
```

The distribution is extremely unimodal so it will be filled with the mode.

20

Name: heat source, dtype: int64

id

date

Other

32

Oil/Solar

False

False

```
In [9]: # Fill missing values
df['heat_source'] = df['heat_source'].fillna('Gas')
```

This is an even more extreme unimodal distribution. Fill-in with 'PUBLIC'.

```
In [11]: # Fill-in missing values
df['sewer_system'] = df['sewer_system'].fillna('PUBLIC')
```

Dropping Outliers

Since we are predicting on 'price', we will study deeper into its distribution and check for potential outliers that are better removed.

```
In [12]: print('1st percentile:
                                     ', round(df.price.quantile(0.01)))
         print('2nd percentile:
                                     , round(df.price.quantile(0.02)))
                                     , round(df.price.quantile(0.03)))
         print('3rd percentile:
         print('4th percentile:
                                     , round(df.price.quantile(0.04)))
                                      , round(df.price.quantile(0.05)), '\n')
         print('5th percentile:
         print('average:
                                     , round(df.price.mean()))
         print('median:
                                     , round(df.price.median()))
                                     , round(df.price.max()))
         print('maximum:
         print('std. dev.:
                                     , round(df.price.std()), '\n')
                                     , round(df.price.quantile(0.95)))
         print('95th percentile:
         print('96th percentile:
                                     , round(df.price.quantile(0.96)))
         print('97th percentile:
                                     , round(df.price.quantile(0.97)))
         print('98th percentile:
                                    ', round(df.price.quantile(0.98)))
         print('99th percentile:
                                     ', round(df.price.quantile(0.99)))
                                    ', round(df.price.quantile(0.995)))
         print('99.5th percentile:
         sns.histplot(df.price)
         plt.title("Distribution of Home Sales Price in Kings County 2021-2022")
         plt.xlabel("Price in USD (in millions)")
         plt.show()
```

1st percentile: 200000.0 2nd percentile: 308264.0 3rd percentile: 370000.0 4th percentile: 400000.0 5th percentile: 425000.0 1108536.0 average: median: 860000.0 maximum: 30750000.0 std. dev.: 896386.0 95th percentile: 2500000.0 96th percentile: 2700000.0 97th percentile: 2976900.0 98th percentile: 3450000.0 99th percentile: 4300000.0 99.5th percentile: 5658970.0

The distribution of the data is right-skewed, but it follows a normal distribution if the extreme values are removed. The presence of these extreme values is greatly distorting the distribution of the data, so we will remove them. The upper outliers are far more extreme than the lower outliers, so we will exclude them from the analysis by setting a threshold at the 99th percentile. The lower outliers are also meaningless for our study since they represent the cheapest homes that only hold minimal value for property contractors. The prices of these homes reflect the value of the lot rather than the value of the property itself. Therefore, we will exclude the lower outliers from our analysis as well at a threshold of 2nd percentile.

Distribution of Home Sales Price in Kings County 2021-2022 After Outliers Removed

We have flattened the distribution into a more normal looking shape. The log-transformation histogram show us we can employ this transformation in the future.

Creating New Column 1: zipcode, city, population, county

We will create new columns that can be meaningfully interpreted.

```
In [14]: # See address attribute
display(df.address.head(), df.address[0])

0     2102 Southeast 21st Court, Renton, Washington ...
1     11231 Greenwood Avenue North, Seattle, Washing...
2     8504 South 113th Street, Seattle, Washington 9...
3     4079 Letitia Avenue South, Seattle, Washington...
4     2193 Northwest Talus Drive, Issaquah, Washingt...
Name: address, dtype: object

'2102 Southeast 21st Court, Renton, Washington 98055, United States'
```

It's in string format so we will extract this and create a new attribute 'zipcode' to hold the value.

```
In [15]: # Extract zipcodes and and create a new column to store them
    df['last_25'] = df['address'].str[-20:]
    df['zipcode'] = df['last_25'].str.extract(r'([0-9]{5})')
    df.drop('last_25', axis=1, inplace=True)
    df['zipcode'] = df['address'].str[-20:-15]
    df['zipcode'].unique()
```

```
Out[15]: array(['98055', '98133', '98178', '98118', '98027', '98166', '98030',
                   '98023', '98019', '98144', '98031', '68106', '98092', '98103',
                   '98006', '98136', '98007', '98038', '98057', '98077', '98126',
                   '98053', '98107', '98008', '98155', '98168', '98199', '98004',
                   '98045', '98052', '98011', '98002', '98033', '98116',
                                                                                '08360',
                   '98198', '98125', '98001', '62859', '98112', '98034', '98059',
                   '98005', '98040', '98014', '98106', '98029', '98122', '98003', '98117', '98042', '98119', '98065', '98022', '98072', '98039',
                   '98058', '98056', '98108', '98115', '98074', '98105', '98024',
                   '07087', '98146', '11704', '68123', '98102', '52405', '02066',
                   '80501', '91343', '19131', '98028', '98188', '55417', '98177', '98075', '98010', '98148', '53158', '98047', '15120', '98109', '98032', '97210', '98070', '11105', '91730', '68410', '58490',
                   '68048', '62703', '68601', '61108', '96816', '47060', '98288',
                   '48503', '55901', '11703', '98051', '63653', '63601', '46554',
                   '80401', '07111', '34601', '02916', '07103', '97221', '85296',
                   '43211', '68133', '55382', '84790', '45831', '29582', '47714',
                   '96064', '08752', '52040', '69154', '98354', '90605', '98272',
                   '33054', '61104', '75050', '91910', '52241', '07712', '68132'
                   '63624', '45856', '92879', '68651', '11510', '68972', '49090',
                   '98296', '58261', '11106', '79339', '53142', '68502', '93033',
                   '80631', '34698', '97214', '64503', '25177', '98271', '43210',
                   '98050', '08008', '48336', '46403', '68307', '78216', '52732',
                   '46929', '58558', '63090', '61244', '45403', '19129', '55112',
                   '61201', '68632', '59102', '07719', '98387', '47805', '46312',
                   '63640', '07063', '02568', '56464', '11762', '49858', '58102',
                   '54002', '78257', '07107', '62896', '85040', '55929', '33147',
                   '63014', '54751', '87507', '64124', '07006', '60088', '55406',
                   '53095', '55404', '15301', '55407', '83712', '08054',
                                                                                '70584',
                   '98251', '98223', '11204', '50325', '15010', '55912', '99701',
                   '98338', '02790', '56549', '98224', '56472', '53081', '72751', '56387', '45044', '16001', '97201', '66503', '58203', '19139',
                   '07504', '19104', '29405', '02134', '84115', '02852', '58104',
                   '83687', '68654', '11501', '11772', '66102', '53208', '62205',
                   '66109', '16601', '07079', '66104', '11731', '94403', '47575', '15223', '68628', '50161', '61933', '64641', '76205', '98372', '11706', '99504', '89108', '53213', '33619', '79423', '54007',
                   '62204', '12546', '68862', '98663', '85207', '99202', '64119',
                   '58801', '61264', '53214', '44714', '68347', '80904', '85295',
                   '85705', '68788', '47546', '59405', '32609', '50644', '56560',
                   '95822', '60155', '73064', '33138', '58059', '07513', '17922', '64156', '52172', '11363', '55411', '02341', '17702', '68455',
                   '64649', '58042', '56364', '46032', '99705', '45659', '11980',
                   '21702', '15064', '01541', '93041', '58270', '68660', '10011',
                   '99403', '47265', '34116', '56027', '18052', '46151', '02149',
                   '55117', '10550', '94607', '13205', '49051', '55063', '58018',
                   '59501', '54736', '98422', '84104', '95205', '95240', '58212',
                   '80238', '07031', '08260', '68652', '55369', '18960', '11373',
                   '19146', '08096', '67846', '94530', '02645', '63301', '33179',
                   '08204', '11717', '11370', '68504', '68305', '34208', '56537',
                   '68970', '64116', '62281', '97006', '68031', '17111', '99203',
                   '52590', '55021', '92250', '68826', '55412', '68354', '55379',
                            '56303', '58504', '07650', '58503', '45039', '99223',
                   '90063',
                   '55356', '80210', '47272', '55734', '67801', '68643', '60411',
                   '50237', '97459', '49783', '11369', '99501', '58572', '62401',
                   '98270', '93523', '08520', '11360', '53215', '84403', '11215',
```

```
'56251', '73118', '65049', '94122', '85210', '34470'], dtype=objec
          t)
In [16]: # Merge dataframes so that 'df' now has added column values for df county.c
          df = pd.merge(df, df_county, on='zipcode')
          df.head()
Out[16]:
                     id
                             date
                                     price bedrooms bathrooms sqft_living sqft_lot floors waterfront
           0 7399300360 5/24/2022 675000.0
                                                  4
                                                           1.0
                                                                   1180
                                                                          7140
                                                                                  1.0
                                                                                           NO
           1 3340401570
                          3/2/2022 750000.0
                                                  3
                                                          2.0
                                                                   1830
                                                                          7969
                                                                                  1.0
                                                                                           NO
           2 7399301200 3/29/2022 728000.0
                                                  4
                                                           2.0
                                                                   2170
                                                                          7520
                                                                                  1.0
                                                                                           NO
           3 9899200050 3/24/2022 565000.0
                                                  4
                                                           2.0
                                                                   1400
                                                                         10364
                                                                                  1.5
                                                                                           NO
```

5 rows × 29 columns

In [17]: # Check values for attribute 'county' display(df.county.value_counts(), df.county.isna().sum(), len(df))

3

2.0

1520

8250

1.0

NO

King 27695
Pierce 28
Snohomish 20
Spokane 3
Clark 2
Asotin 1

Name: county, dtype: int64

4 6673070070 12/28/2021 645000.0

0

27749

```
In [18]: # Drop all data points outside King County
df = df.loc[df['county'] == 'King']
display(df.head(), len(df))
```

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
•	o 7399300360	5/24/2022	675000.0	4	1.0	1180	7140	1.0	NO
	1 3340401570	3/2/2022	750000.0	3	2.0	1830	7969	1.0	NO
2	2 7399301200	3/29/2022	728000.0	4	2.0	2170	7520	1.0	NO
;	3 9899200050	3/24/2022	565000.0	4	2.0	1400	10364	1.5	NO
	4 6673070070	12/28/2021	645000.0	3	2.0	1520	8250	1.0	NO

5 rows × 29 columns

27695

New Column 2: zip_incident

We will create a new column 'zip_incident' that displays number of reported incidents in a certain zipcode.

```
In [19]: # Create 'zip_incident'
    df_incident['zipcode'] = df_incident['zip']
    df_incident.drop('zip', axis=1, inplace=True)

dict_incident = dict(df_incident.zipcode.value_counts())

df['zip_incident'] = df['zipcode'].apply(lambda x: dict_incident[x] if x in
```

New Column 3: zip_offense

We will create a new column 'zip_offense' that displays number of reported offenses in a certain zipcode.

```
In [20]: # Create 'zip_offense'
    df_offense['zipcode'] = df_offense['zip']
    df_offense.drop('zip', axis=1, inplace=True)

dict_offense = dict(df_offense.zipcode.value_counts())

df['zip_offense'] = df['zipcode'].apply(lambda x: dict_offense[x] if x in d
```

New Colum 4: age

We will create a new column 'age' that displays the house age at the time of the sale.

```
In [21]: # Change date's dtype to datetime, keep only the year, then change to integ
    df['date'] = pd.to_datetime(df['date']).dt.year
    df.date = df.date.astype(int)

# Compute age of the house
    df['age'] = df['date'] - df['yr_built']

# For any negative value, change the year to 0
    df.loc[df['age'] < 0, 'age'] = 0</pre>
```

Negative values of 1 are not dropped because they were homes built in 2022.

New Colum 5: min_dist

We will create a new column that tracks the minimum distance to important headquarters in King County.

```
In [22]: def haversine(lat, long):
             # Latitude and longitude coordinates of the headquarters
             amazon = (47.6062, -122.3321)
             microsoft = (47.6395, -122.1282)
             starbucks = (47.5906, -122.3331)
             boeing = (47.5301, -122.0326)
             costco = (47.8107, -122.3774)
             # List of coordinates of the headquarters
             coordinates = [amazon, microsoft, starbucks, boeing, costco]
             R = 6371 # radius of the earth in kilometers
             distances = []
             # Compute distances to all headquarters
             for c in coordinates:
                 dlat = math.radians(c[0] - lat)
                 dlon = math.radians(c[1] - long)
                 a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat
                     * math.cos(math.radians(c[0])) * math.sin(dlon/2) * math.sin(dl
                 c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))
                 distance = R * c
                 distances.append(distance)
             # Return the minimum distance
             return min(distances)
         df['min dist'] = df.apply(lambda row: haversine(row['lat'], row['long']), a
```

Before moving on, check for missing values again after data cleaning.

```
In [23]: df.isna().any()
Out[23]: id
                         False
         date
                         False
         price
                         False
         bedrooms
                         False
         bathrooms
                         False
         sqft_living
                         False
         sqft lot
                         False
         floors
                         False
         waterfront
                         False
         greenbelt
                         False
         nuisance
                         False
         view
                         False
         condition
                         False
         grade
                         False
         heat_source
                        False
         sewer_system
                        False
         sqft_above
                        False
         sqft basement
                         False
         sqft_garage
                         False
```

We are ready to create the baseline model. Before doing that, we will create pairplots and correlation heatmaps to gain insights for future modeling.

Pre-work for Ordinal Values

We will use OrdinalEncoder() later when creating multi-linear regression model.

Let's clean ordinal columns so that they are ready for ordinal encoding.

```
In [27]: # Display information about ordinal columns
        display(df[ordinal_columns].info(), df[ordinal_columns].isna().any())
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 27695 entries, 0 to 27738
        Data columns (total 3 columns):
             Column Non-Null Count Dtype
         --- -----
                       -----
         0
           condition 27695 non-null object
         1
             grade 27695 non-null object
                       27695 non-null object
             view
        dtypes: object(3)
        memory usage: 865.5+ KB
        None
        condition
                    False
        grade
                    False
        view
                    False
        dtype: bool
```

There are no missing values to fill. We will now change ordinal columns' category to dtype category and then assign the order of magnitude to each category.

```
In [28]: # Change data type
         df['condition'] = df['condition'].astype('category')
         df['grade'] = df['grade'].astype('category')
         df['view'] = df['view'].astype('category')
         # Display ordinal columns so that order can be arranged
         display(df.condition, df.grade, df.view)
         0
                       Good
         1
                    Average
         2
                    Average
         3
                       Good
         4
                    Average
         27690
                    Average
         27691
                    Average
         27725
                  Very Good
         27726
                  Very Good
         27738
                    Average
         Name: condition, Length: 27695, dtype: category
         Categories (5, object): ['Average', 'Fair', 'Good', 'Poor', 'Very Good']
         0
                      7 Average
         1
                      7 Average
         2
                      7 Average
         3
                  6 Low Average
                         8 Good
         27690
                      7 Average
         27691
                         8 Good
         27725
                       9 Better
         27726
                  6 Low Average
         27738
                  6 Low Average
         Name: grade, Length: 27695, dtype: category
         Categories (13, object): ['1 Cabin', '10 Very Good', '11 Excellent', '12
         Luxury', ..., '6 Low Average', '7 Average', '8 Good', '9 Better']
         0
                       NONE
         1
                       NONE
         2
                       NONE
         3
                       NONE
                       NONE
         27690
                       NONE
         27691
                  EXCELLENT
         27725
                       GOOD
         27726
                       NONE
         27738
                       NONE
         Name: view, Length: 27695, dtype: category
```

Categories (5, object): ['AVERAGE', 'EXCELLENT', 'FAIR', 'GOOD', 'NONE']

Pre-work for Nominal Values

grade_list = df.grade.cat.categories.tolist()
view list = df.view.cat.categories.tolist()

Now that pre-work for ordinal encoding is done, we will do the same for nominal encoding.

```
In [31]: # Change data type for nominal categorical data
df['zipcode'] = df['zipcode'].astype('category')
df['city'] = df['city'].astype('category')
```

Evaluation/Modeling

We will now start making multi-linear regression models for price prediction. We will explore different possibilities and finish by choosing the best model.

```
In [32]: # Create a list 'results' that store r-squared and rmse of different regres
results = []
```

Baseline: Most Correlated Varaibles

Based on the correlation heatmap, two most correlated variables to the price are 'sqft_living' and 'sqft_above'. We will start our regression models with a baseline model that uses these two as predictor variables for the target variable 'price'.

```
In [33]: # Define Predictor variable X and target variable y
X = df[['sqft_living', 'sqft_above']]
y = df['price']
```

```
In [34]: # Train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ra
```

```
In [36]: # Fit the model, predict, evaluate
baseline = LinearRegression()
baseline.fit(X_train_final, y_train)
y_hat = baseline.predict(X_test_final)
residual = y_test-y_hat

r2 = metrics.r2_score(y_test, y_hat)
rmse = metrics.mean_squared_error(y_test, y_hat, squared=False)
result_baseline = [r2, rmse]
results.append(result_baseline)

print('R^2: ', r2)
print('RMSE: ', rmse)
```

R^2: 0.42557063181769383 RMSE: 476488.2144957241

RMSE is still high, and only 42% of the variation in target variable is explained by our model. We will work to increase these numbers.

First Model: Newly Created Variables

We will only put newly created variables into the first model, to see their impacts only on the target variable.

```
In [37]: # Define predictor variable and target variable
    X = df[['zip_incident', 'zip_offense', 'age', 'min_dist']]
    y = df['price']

In [38]: # Tran test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ra
```

```
In [40]: # Fit / predict / evaluate
model_1 = LinearRegression()
model_1.fit(X_train_final, y_train)
y_hat = model_1.predict(X_test_final)
residual = y_test-y_hat

r2 = metrics.r2_score(y_test, y_hat)
rmse = metrics.mean_squared_error(y_test, y_hat, squared=False)
result_model_1 = [r2, rmse]
results.append(result_model_1)

print('R^2: ', r2)
print('RMSE: ', rmse)
```

R^2: 0.23319379901140724 RMSE: 550524.5031316202

Their impacts are meaningful, but not strong enough by themselves.

Second Model: All Numerical Variables

In this model we will include all numeric data to see the maximum level which it can predict the target variable with numeric predictors only.

```
In [41]: # Define predictor variables and target variable
X = df[numeric_columns]
y = df['price']
```

```
In [42]: # Train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ra
```

```
In [44]: # Fit / predict /evaluate
    model_2 = LinearRegression()
    model_2.fit(X_train_final, y_train)
    y_hat = model_2.predict(X_test_final)
    residual = y_test-y_hat

r2 = metrics.r2_score(y_test, y_hat)
    rmse = metrics.mean_squared_error(y_test, y_hat, squared=False)
    result_model_2 = [r2, rmse]
    results.append(result_model_2)

display(r2, rmse)
```

0.6161450190214732 389508.9451005957

Our studies have progressed much. Now let's introduce nominal variables and ordinal variables separately, and eventually add them all together.

Third Model: Nominal Variables

In this model, we will try to predict target variable with the help of nominal variable only.

```
In [47]: # Train test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ra
In [48]: # Use OneHotEncoder
         X_train_nominal = X_train[nominal_columns]
         X_test_nominal = X_test[nominal_columns]
         ohe = OneHotEncoder(sparse=False , handle_unknown='ignore')
         X_train_ohe = ohe.fit_transform(X_train_nominal)
         X_test_ohe = ohe.transform(X_test_nominal)
         X_train_ohe = pd.DataFrame(X_train_ohe, columns=ohe.get_feature_names())
         X_test_ohe = pd.DataFrame(X_test_ohe, columns = ohe.get_feature_names())
         X_train_final = X_train_ohe
         X_test_final = X_test_ohe
In [49]: # Fit and Predict
         model_3 = LinearRegression()
         model_3.fit(X_train_final, y_train)
         y_hat = model_3.predict(X_test_final)
         residual = y_test-y_hat
         r2 = metrics.r2_score(y_test, y_hat)
         rmse = metrics.mean_squared_error(y_test, y_hat, squared=False)
         result model 3 = [r2, rmse]
         results.append(result_model_3)
         print('R^2: ', r2)
         print('RMSE: ', rmse)
         R^2:
                0.046905004227658864
```

RMSE: 613764.7470465882

Nominal variables aren't as powerful as expected.

Fourth Model: Ordinal Variables

Now we will evaluate the impact of ordinal predictor variables on the target variable.

```
In [50]: # Define predictor variables and target variable
    X = df[ordinal_columns]
    y = df['price']

In [51]: # Train test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ra
```

```
In [52]: # Process ordinal data
  oe = OrdinalEncoder(categories = [condition_list, grade_list, view_list])

X_train_oe = oe.fit_transform(X_train)
X_test_oe = oe.transform(X_test)

X_train_oe = pd.DataFrame(X_train_oe, columns=X_train.columns)
X_test_oe = pd.DataFrame(X_test_oe, columns=X_test.columns)

X_train_final = X_train_oe
X_test_final = X_test_oe
```

```
In [53]: # Fit / transform / predict
    model_4 = LinearRegression()
    model_4.fit(X_train_final, y_train)
    y_hat = model_4.predict(X_test_final)
    residual = y_test - y_hat

    r2 = metrics.r2_score(y_test, y_hat)
    rmse = metrics.mean_squared_error(y_test, y_hat, squared=False)
    result_model_4 = [r2, rmse]
    results.append(result_model_4)

print('R^2: ', r2)
    print('RMSE: ', rmse)
```

R^2: 0.42748099991875543 RMSE: 475695.23104822653

We have much stronger results with this model than we did with nominal data only.

Fifth Model

This time we will use all columns of different data types together for the first time.

```
In [55]: # Define predictor variables and target variable
X = df[predictor_columns]
y = df['price']
```

```
In [56]: # Train test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ra
In [57]: # Process numerical data
         ss = StandardScaler()
         X_train_scaled = ss.fit_transform(X_train[numeric_columns])
         X_test_scaled = ss.transform(X_test[numeric_columns])
         X_train_scaled = pd.DataFrame(X_train_scaled,
                                       columns=X_train[numeric_columns].columns,
                                       index=X_train.index)
         X_test_scaled = pd.DataFrame(X_test_scaled,
                                      columns=X_test[numeric_columns].columns,
                                      index=X_test.index)
In [58]: # Process ordinal data
         oe = OrdinalEncoder(categories = [condition list, grade list, view list])
         X_train_oe = oe.fit_transform(X_train[ordinal_columns])
         X_test_oe = oe.transform(X_test[ordinal_columns])
         X train oe = pd.DataFrame(X train oe, columns=X train[ordinal columns].colu
         X_test_oe = pd.DataFrame(X_test_oe, columns=X_test[ordinal_columns].columns
In [59]: # Process nominal data
         ohe = OneHotEncoder(sparse=False , handle unknown='ignore')
         X_train_ohe = ohe.fit_transform(X_train[nominal_columns])
         X_test_ohe = ohe.transform(X_test[nominal_columns])
         X train ohe = pd.DataFrame(X train ohe, columns = ohe.get feature names())
         X_test_ohe = pd.DataFrame(X_test_ohe, columns = ohe.get_feature_names())
In [60]: # Concatenate all the processed data
         X train scaled.index = X train.index
         X_train_oe.index = X_train.index
         X_train_ohe.index = X_train.index
         X train final = pd.concat([X train scaled, X train oe, X train ohe], axis=1
         X_test_scaled.index = X_test.index
         X test oe.index = X test.index
         X_test_ohe.index = X_test.index
         X_test_final = pd.concat([X_test_scaled, X_test_oe, X_test_ohe], axis=1)
```

```
In [61]: # Fit / Predict / Results
    model_5 = LinearRegression()
    model_5.fit(X_train_final, y_train)
    y_hat = model_5.predict(X_test_final)
    residual = y_test - y_hat

    r2 = metrics.r2_score(y_test, y_hat)
    rmse = metrics.mean_squared_error(y_test, y_hat, squared=False)
    result_model_5= [r2, rmse]
    results.append(result_model_5)

print('R^2: ', r2)
    print('RMSE: ', rmse)
```

R^2: 0.6553421256465599 RMSE: 369086.3195849872

We are happier with improved R^2 but we will go for higher by possible transformation or introduction of new variables.

```
In [62]: # Draw residual plot
fig, ax = plt.subplots()
ax.scatter(x=range(y_hat.shape[0]),y=residual, alpha=0.1)
ax.axhline(y=0, color='red', linestyle='--')
plt.title("Distribution of Residuals")
plt.xlabel("Fitted Values")
plt.ylabel("Residuals")
plt.show()
```


Consistent distribution of residuals is one of the assumptions of linear regression and it's clearly present with our fifth model.

The distribution of residuals isn't strictly normal. However, it's closer to normal shape than before.

```
In [64]: sns.displot(residual)
  plt.title("Distribution of Residuals")
  plt.xlabel("Errors")
  plt.show()
```


Sixth Model

In [67]: # Define predictor and target variables

X = df[predictor columns]

y = df['log price']

In this model, we will log-transform the target variable, to see if this can result in a more accurate prediction model.

```
In [68]: # Train test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ra
In [69]: # Process numeric train
         ss = StandardScaler()
         X_train_scaled = ss.fit_transform(X_train[numeric_columns])
         X_test_scaled = ss.transform(X_test[numeric_columns])
         X_train_scaled = pd.DataFrame(X_train_scaled,
                                       columns=X_train[numeric_columns].columns,
                                       index=X_train.index)
         X_test_scaled = pd.DataFrame(X_test_scaled,
                                      columns=X_test[numeric_columns].columns,
                                      index=X_test.index)
In [70]: # Process ordinal train
         oe = OrdinalEncoder(categories = [condition_list, grade_list, view_list])
         X_train_oe = oe.fit_transform(X_train[ordinal_columns])
         X_test_oe = oe.transform(X_test[ordinal_columns])
         X train oe = pd.DataFrame(X train oe, columns=X train[ordinal columns].colu
         X_test_oe = pd.DataFrame(X_test_oe, columns=X_test[ordinal_columns].columns
In [71]: # Concatenate the processed trains
         X train scaled.index = X train.index
         X train oe.index = X train.index
         X train final = pd.concat([X train scaled, X train oe], axis=1)
         X test scaled.index = X test.index
         X test oe.index = X test.index
         X test final = pd.concat([X test scaled, X test oe], axis=1)
         X_train_final = pd.concat([X_train_scaled, X_train_oe], axis=1)
         X_test_final = pd.concat([X_test_scaled, X_test_oe], axis=1)
In [72]: # Fit / Predict / Results
         model 6 = LinearRegression()
         model_6.fit(X_train_final, y_train)
         y_hat = model_6.predict(X_test_final)
         residual = y_test - y_hat
         r2 = metrics.r2_score(y_test, y_hat)
         rmse = metrics.mean squared error(np.exp(y test), np.exp(y hat), squared=Fa
         result model 6 = [r2, rmse]
         results.append(result_model_6)
         print('R^2: ', r2)
         print('RMSE: ', rmse)
                0.6950602984195035
         R^2:
         RMSE: 485840.57251121226
```

After obtaining the best result so far, we will now proceed to check the assumptions of linear regression for reference. Since we have an R-squared value of 0.7, we can assume that there is a strong linear relationship between the dependent and independent variables. Additionally, we know that the samples contained in the data are independent of one another. We will now check for no muliti-collinearity, normality of residuals and homoskedasticity.

```
In [73]: # Create vif dataframe
vif = pd.DataFrame()
vif["VIF Factor"] = [variance_inflation_factor(X_train_final.values, i) for
vif["features"] = X_train_final.columns
vif.sort_values('VIF Factor', ascending=False)
```

Out[73]:

	VIF Factor	features
10	13.868745	grade
9	13.546238	condition
2	2.739769	sqft_living
0	1.813139	bedrooms
7	1.802022	age
1	1.747221	floors
4	1.536408	sqft_basement
11	1.312958	view
5	1.246250	sqft_patio
8	1.226261	min_dist
6	1.092761	zip_incident
3	1.075326	sqft_lot

'grade' and 'condition' higher variance inflation factor but not high enough to discredit the model. Other variables have satisfying variance inflation factor. There is no multi-collinearity among predictor variables.

Final Model

We will create results of our models into bar graphs for comparison.

```
In [75]: # Define the x-coordinates, heights and colors of the bars
x = ['baseline', 'first', 'second', 'third', 'fourth', 'fifth', 'sixth']
heights = [result[0] for result in results]

# Create an axis object and plot the bar chart
fig, ax = plt.subplots()
ax.bar(x, heights)

# Plot
ax.set_xlabel('Models')
ax.set_ylabel('R-sqaured value')
ax.set_title('Comparison of Different Models')
plt.show()
```



```
In [76]: # Define the x-coordinates and heights of the bars
    x = ['baseline', 'first', 'second', 'third', 'fourth', 'fifth', 'sixth']
    heights = [result[1] for result in results]

# Create an axis object and plot the bar chart
    fig, ax = plt.subplots()
    ax.bar(x, heights)

# Plot
    ax.set_xlabel('Models')
    ax.set_ylabel('RMSE value')
    ax.set_title('Comparison of Different Models')
    plt.show()
```


The last two models are by far the best, I will choose the fifth as the final model. While slightly less impressive in accuracy of prediction, the fifth model compensates for it by providing way less errors associated with its prediction.

Conclusion

We have developed a model for predicting housing prices in King County, and have seen a significant improvement in prediction accuracy from 42% to 70%. While this is a notable improvement, we acknowledge that the model can be further enhanced by incorporating additional datasets and introducing new predictor variables. With continued refinement, it is possible to achieve even higher levels of accuracy. I remain committed to this effort, and will provide updates on any further improvements that are made to the model.