

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

THE

THERMODYNAMIC PROPERTIES OF AMMONIA

COMPUTED FOR THE USE OF ENGINEERS FROM NEW EXPERIMENTAL DATA DERIVED FROM INVESTIGATIONS MADE
AT THE MASSACHUSETTS INSTITUTE OF
TECHNOLOGY

BY

FREDERICK G. KEYES AND ROBERT B. BROWNLEE

FIRST EDITION
FIRST THOUSAND

NEW YORK

JOHN WILEY & SONS, Inc.

London: CHAPMAN & HALL, LIMITED

1916

143844

COPYRIGHT, 1916,
BY
FREDERICK G. KEYES
AND
ROBERT B. BROWNLEE

Stanbope Press
F. H. GILSON COMPANY
BOSTON, U.S.A.

PREFACE

These tables of the properties of saturated and superheated ammonia are based for the most part on an experimental investigation carried out during the course of several years in the Research Laboratory of Physical Chemistry of the Massachusetts Institute of Technology. This investigation was suggested by Professor Edward F. Miller of the Institute's Mechanical Engineering Department, which generously supplied many of the facilities needed in prosecuting the experimental investigation.

The original intention was to determine the vapor-pressure curve and the specific heat-capacity of liquid ammonia with the view of utilizing the results obtained as a partial basis for the computation of a new table of the thermodynamic properties of ammonia which would prove useful in controlling the performance of refrigerating machines. After the completion of the preliminary work, in connection with which the already existing data had been critically examined, it appeared desirable to carry out a more comprehensive experimental investigation. Throughout the whole work we have been indebted to Professor Miller for his advice and support.

The experimental work was carried out by Henry A. Babcock, Harvey S. Benson and Robert B. Brownlee, senior and graduate students in the Mechanical Engineering Department, under the direction of Frederick G. Keyes, a member of the Research Laboratory staff. Mr. Babcock took up the portion of the work bearing on the heat-capacity of liquid ammonia. Messrs. Benson and Brownlee began the determination of the vapor-pressures, the liquid specific volumes, and the isotherms of the substance and continued this work during the following year. Mr. Brownlee collaborated with Mr. Keyes in working over all the data and in constructing the necessary diagrams for the tables.

The computation of the tables was carried out by George W. Clark, Instructor in the Mechanical Engineering Department of the Institute. Mr. Clark's task was especially difficult because of the form of the equation of state employed; and it was carried out by him with great skill and intelligence. This part of the work was aided financially by a generous grant from the Rumford Fund of the American Academy. The computed values have been thoroughly and independently checked by F. G. Keyes.

The experimental methods employed and the details of the data obtained will, it is hoped, soon be ready for publication. It was decided, however, to print the tables in advance of the publication of the experi-

mental research on account of the technical need of more accurate tables than have been hitherto accessible.

The treatment of the experimental results obtained and the critical study of other observers' data have resulted in some new methods of examining experimental data which are here presented in considerable detail, for it is hoped that they will be of service to others interested in similar studies. The form of the equation of state employed is very different from those which have hitherto been employed in computing tables. The usual equations employed give the volume explicitly, while the equation used in computing the present tables possesses five values of the volume. The multiple value of the volume is an obvious physical necessity from the point of view of the continuity of the phases; and a careful study of the application of the equation, not only to the vapor phase of ammonia but also to the existing data for several other substances, has shown its use to be justified. The use of the equation for practical purposes has moreover led to the development of special methods of application which greatly lighten the labor involved in computing.

The tables have been brought into the usual forms convenient for engineering practice. In addition to the tables an accurate "Mollier" diagram has been prepared which has proved to be of very material assistance for rapidly solving engineering problems.

Frederick G. Keyes. Robert B. Brownlee.

January, 1916.

CONTENTS

	PART I. DISCUSSION OF THE DATA AND COMPUTATIONS						
		PAGE					
I.	FUNDAMENTAL THERMODYNAMIC RELATIONS	3					
2.	Functional Expressions for the Change of Vapor-Pressure with Temperature	8					
3.	THE VAPOR-PRESSURE DATA FOR AMMONIA	10					
. 4.	The Specific Volume of Liquid Ammonia.						
5.	Equations of State in General.						
6.	THE EQUATION OF STATE FOR AMMONIA VAPOR						
7.	THE HEAT OF VAPORIZATION OF LIQUID AMMONIA						
8.	THE SPECIFIC HEAT-CAPACITY OF AMMONIA VAPOR						
9.	. The Entropy of Ammonia Vapor						
10.	The Specific Heat-Capacity of Liquid Ammonia	29					
PART II. TABLES OF THE THERMODYNAMIC CONSTANTS OF AMMONIA							
DES	DESCRIPTION OF THE TABLES						
TAE	Table I. Saturated Ammonia. Temperature Table						
TAE	BLE II. SATURATED AMMONIA. PRESSURE TABLE	44					
TABLE III. SUPERHEATED AMMONIA							

PART I DISCUSSION OF THE DATA AND COMPUTATIONS

LIST OF SYMBOLS USED

- dQ: Element of heat absorbed when the work dW is represented by p dv.
- dH: Element of heat absorbed when the work dW is represented by d(bv).
- dU: Increment of the internal energy.
 - I: Subscript referring to the vapor phase.
 - 2. Subscript referring to the liquid phase.
 - s: Subscript referring to the saturation state.
 - p: Pressure (or force per unit area).
 - v: Volume of a unit of weight.
 - T: Temperature reckoned on the absolute scale or on the (substantially equivalent) hydrogen scale.
 - C: Specific heat where the heat element dQ is considered.
 - γ : Specific heat where the heat element dH is considered.
 - Φ : Entropy defined as $\int \frac{dQ}{T}$.
 - L: Heat of evaporation of unit-weight of a substance.
 - R: Absolute gas constant defined by pv = RT.
 - δ: Correction term of the volume in the equation of state.
- a and l: Constants of the cohesive pressure term $\frac{a}{(v-l)^2}$ in the equation of state.

One 15° calorie = 4.182 joules.*

One 15° B.t.u. = 777.17 standard ft. lb.

Absolute temperature of the ice-point: 273.1° C. or 459.58° F.

* This value is very nearly identical with the mean value, 4.1826 joules, obtained from a recomputation of Barnes work by A. W. Smith (*Phys. Rev.*, 1911).

The Thermodynamic Properties of Ammonia

1. FUNDAMENTAL THERMODYNAMIC RELATIONS

The First Law of Thermodynamics requires that the heat absorbed dQ from the surroundings by a system which undergoes any change in state be equal to the increase dU in its internal energy plus the work dW produced in the surroundings. Since the work commonly consists in a change in volume dv against a pressure p, this relation is commonly expressed by the equation *

$$dQ = dU + p \, dv. \tag{1}$$

The quantity dQ, although of infinitesimal magnitude, is not a differential of any finite quantity which, like the internal energy U, is fully determined by the state of the system. It is therefore convenient for many purposes to consider another energy quantity dH which is defined by the equation

$$dH = dU + d(pv) \tag{2}$$

and which therefore is related to dQ in the way expressed by the equation

$$dH = dQ + v dp.$$

The quantity dH is evidently a complete differential, — one whose value is fully determined by the change in state of the system (since the values of dU and d (pv) are so determined).

Various useful relations may be deduced from these equations by expressing the state of the substance (constituting the system) in terms of the variables p, v, and T. We shall consider in connection with equation (1) first the case where the independent variables are p and T and then the case where they are v and T.

Differentiating equation (I) with respect to T we get

$$\left(\frac{\partial Q}{\partial T}\right)_{p} = C_{p} = \left(\frac{\partial U}{\partial T}\right)_{p} + p\left(\frac{\partial v}{\partial T}\right)_{p}. \tag{3}$$

* It is customary in writing thermodynamic equations to sometimes insert a factor J or its reciprocal, depending on the units employed. In the equations here presented this factor has not been inserted. The simplification may be obtained by suitably choosing the units.

† In representing this heat-quantity Clausius wrote dQ to indicate that the quantity of heat was infinitesimal. However, dQ is not the differential of a known finite quantity Q, and some writers make use of other notations to avoid a misunderstanding of the quantity. The element dH, on the other hand, is evidently a perfect differential.

But

$$dU = \left(\frac{\partial U}{\partial T}\right)_{p} dT + \left(\frac{\partial U}{\partial p}\right)_{T} dp.$$

and it may be easily shown * that $\left(\frac{\partial U}{\partial p}\right)_T = -T\left(\frac{\partial v}{\partial T}\right)_p - p\left(\frac{\partial v}{\partial p}\right)_T$, and since $dv = \left(\frac{\partial v}{\partial T}\right)_p dT + \left(\frac{\partial v}{\partial p}\right)_T dp$, (I) may be written

$$dQ = C_p dT - T \left(\frac{\partial v}{\partial T}\right)_p dp. \tag{4}$$

From (4) may be written the specific heats along the saturation line of either the liquid or vapor,† or

$$C_{\bullet} = C_{p} - T \left(\frac{\partial v}{\partial T} \right)_{p} \frac{dp}{dT} = C_{p} - \left(\frac{\partial v}{\partial T} \right)_{p} \cdot \frac{L}{v_{1} - v_{2}}$$
 (5)

since $T\frac{dp}{dT}(v_1 - v_2) = L$. Thus the difference in the specific heats along the saturation lines of liquid and vapor may be written

$$C_{s_1} - C_{s_2} = C_{p_1} - C_{p_2} - \frac{L}{v_1 - v_2} \left[\left(\frac{\partial v_1}{\partial T} \right)_{p_2} - \left(\frac{\partial v_2}{\partial T} \right)_{p_2} \right]$$
 (6)

The specific heat of a liquid as measured is usually that defined by (5), while it is impossible to measure C_{s_1} directly. By means of the equation

$$C_{p_1} - C_{p_2} = \frac{dL}{dT} - \frac{L}{T} + T \frac{dp}{dT} \left[\left(\frac{\partial v_1}{\partial T} \right)_p - \left(\frac{\partial v_2}{\partial T} \right) \right]$$

one obtains easily from (6) $C_{s_1} - C_{s_2} = \frac{dL}{dT} - \frac{L}{T}$.

It is evident that since $\frac{dL}{dT}$ is negative, C_{s_1} may be negative or positive. If C_{s_1} is negative the vapor would superheat on compression.

From (4) the expression for the entropy becomes

$$\Phi = \int \frac{dQ}{T} = \int \frac{C_p dT}{T} - \int \left(\frac{\partial v}{\partial T}\right)_p dp + \Phi_0, \tag{7}$$

and accordingly it follows on differentiating that

$$\begin{pmatrix} \frac{\partial \Phi}{\partial T} \rangle_{p} = \frac{Cp}{T}, \\
\left(\frac{\partial \Phi}{\partial p} \right)_{T} = -\left(\frac{\partial v}{\partial T} \right)_{p}.$$
(8)

The first of these equations differentiating with respect to p and the second with respect to T may be equated, giving the equation

$$\left(\frac{\partial C_p}{\partial p}\right)_T = -T\left(\frac{\partial^2 v}{\partial T^2}\right)_p.$$

^{*} Max Planck, "Thermodynamik," 3rd ed., page 128.

[†] The subscript I will refer to the vapor phase and 2 to the liquid phase.

The first of equations (8) is a necessary condition of consistency which applies to tables of thermodynamic properties. For example, the differences in the total heats at constant pressure are the values of the mean specific heat between the two temperatures at which the difference is taken. This quantity divided by the average absolute temperature should be equal to the difference in the entropies for the corresponding temperatures.

The choice of v and T as independent variables leads to a general expression for dQ. For this purpose the definition $\left(\frac{\partial U}{\partial T}\right)_v = C_v$ and the equation $\left(\frac{\partial U}{\partial v}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_v - p$ are needed. Proceeding in the same manner as with equation (4) there is obtained

$$dQ = C_v dT + T \left(\frac{\partial p}{\partial T}\right)_v dv. \tag{9}$$

From this equation it follows at once that the specific heats along the saturation line may be written

$$C_s = C_v + T \left(\frac{\partial p}{\partial T} \right)_v \frac{dv}{dT},\tag{10}$$

and the difference of the specific heats becomes

$$C_{s_1} - C_{s_2} = C_{v_1} - C_{v_2} + T \left[\left(\frac{\partial p}{\partial T} \right)_{v_1} \cdot \frac{dv_1}{dT} - \left(\frac{\partial p}{\partial T} \right)_{v_2} \cdot \frac{dv_2}{dT} \right]$$
(11)

If C_s is replaced by C_p one obtains the familiar relation

$$C_p = C_v + T \left(\frac{\partial p}{\partial T} \right)_v \cdot \left(\frac{\partial v}{\partial T} \right)_p, \tag{12}$$

and the difference between C_{\bullet} and C_{p} is evidently

$$C_{s} - C_{p} = T \left(\frac{\partial p}{\partial T} \right)_{v} \left[\frac{dv}{dT} - \left(\frac{\partial v}{\partial T} \right)_{p} \right]$$
 (13)

The equation for the entropy and its derivatives becomes

$$\Phi = \int \frac{C_v dT}{T} + \int \left(\frac{\partial p}{\partial T}\right)_v dv + \Phi_0, \tag{14}$$

$$\begin{pmatrix}
\frac{\partial \Phi}{\partial T}\rangle_{v} = \frac{C_{v}}{T}, \\
\left(\frac{\partial \Phi}{\partial v}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{v}.$$
(15)

Applying to (15) a process similar to that employed with equations (8) leads to the equation

$$\left(\frac{\partial C_v}{\partial v}\right)_T = T \left(\frac{\partial^2 p}{\partial T^2}\right)_v \cdot$$

Returning to equation (2) it follows as with (4) that

$$dH = C_p dT - \left[T \left(\frac{\partial v}{\partial T} \right)_p - v \right] dp \tag{16}$$

and

$$dH = \left[C_v + v\left(\frac{\partial p}{\partial T}\right)_v\right]dT + \left[T\left(\frac{\partial p}{\partial T}\right)_v + v\left(\frac{\partial p}{\partial v}\right)_T\right]dv. \tag{17}$$

For the specific heats at constant pressure and constant volume the two equations lead to the equations

$$\left(\frac{\partial H}{\partial T}\right)_{p} = C_{p},
\left(\frac{\partial H}{\partial T}\right)_{v} = C_{v} + v\left(\frac{\partial p}{\partial T}\right)_{v}.$$
(18)

The specific heats at constant pressure are seen to be equivalent while the specific heat at constant volume is greater than the specific heat defined from equation (1). The specific heat along the saturation line becomes

$$\gamma_s = \frac{dH}{dT} = C_p - \left[T \left(\frac{\partial v}{\partial T} \right) - v \right] \frac{dp}{dT}$$

$$= \left[C_v + v \left(\frac{\partial p}{\partial T} \right)_v \right] + \left[T \left(\frac{\partial p}{\partial T} \right)_v + v \left(\frac{\partial p}{\partial v} \right)_T \right] \frac{dv}{dT}.$$
(19)

If the relation pv = RT is applied to (16) and (17) there results for the former $dH = C_p dT$ while (17) becomes $dH = (C_v + R) dT = C_{p_0} dT$. The difference in the saturation specific heats is

$$\gamma_{s_1} - \gamma_{s_2} = C_{p_1} - C_{p_2} - T \frac{dp}{dT} \left[\left(\frac{\partial v_1}{\partial T} \right)_p - \left(\frac{\partial v_2}{\partial T} \right)_p \right] + \frac{L}{T}. \tag{20}$$

Taking account of the equation for $C_{p_1} - C_{p_2}$ in equation (5) and L one obtains the relation

$$\gamma_{s_1} - \gamma_{s_2} = \frac{dL}{dT}.$$
 (21)

The equation $C_{s_1} - C_{s_2} = \frac{dL}{dT} - \frac{L}{T}$ provides a further relation which assists in comprehending the difference between the definition of heat contained in equations (1) and (2). Writing $\Delta C_{s_{11}}$ for this equation and $\Delta \gamma_{s_{11}}$ for (21) it follows that

$$L = T \left(\Delta \gamma_{s_{12}} - \Delta C_{s_{12}} \right). \tag{22}$$

The equations for the Joule-Thomson experiment are at once deducible from equations (16) and (17); assuming that H is constant one obtains:

$$\frac{dT}{dp} = \frac{T\left(\frac{\partial v}{\partial T}\right)_p - v}{C_p}.$$
(23)

$$\frac{dT}{dv} = \frac{T\left(\frac{\partial p}{\partial T}\right)_v + v\left(\frac{\partial p}{\partial v}\right)_T}{C_v + v\left(\frac{\partial p}{\partial T}\right)_T}.$$
(24)

The above relations serve as a general basis for using the quantity defined by either (I) or (2). The present tables are based on equation (I), which represents the heat added to a fluid within an envelope, while (2) evidently represents the quantity of heat supplied when a fluid is forced to flow from one p, v, T condition to another p, v, T condition.

General Formulæ Deducible from Equation (1)

Independent Variables v. T. Independent Variables p, T. $dQ = C_p dT - T \left(\frac{\partial v}{\partial T}\right) dp.$ $dQ = C_v dT + T\left(\frac{\partial p}{\partial T}\right) dv.$ $C_s = C_p - T\left(\frac{\partial v}{\partial T}\right) \frac{dp}{dT}.$ $C_s = C_v + T\left(\frac{\partial p}{\partial T}\right) \frac{dv}{dT}$ $\left(\frac{\partial U}{\partial p}\right)_{r} = -T\left(\frac{\partial v}{\partial T}\right) - p\left(\frac{\partial v}{\partial p}\right)_{r}$ $\left(\frac{\partial U}{\partial v}\right)_{T} = T\left(\frac{\partial p}{\partial T}\right) - p.$ $\Phi = \int \frac{C_p dT}{T} - \int \left(\frac{\partial v}{\partial T}\right) dp + \Phi_0.$ $\Phi = \int \frac{C_v dT}{T} + \int \left(\frac{\partial p}{\partial T}\right) dv + \Phi_0.$ $\left(\frac{\partial \Phi}{\partial T}\right) = \frac{C_v}{T}.$ $\left(\frac{\partial\Phi}{\partial T}\right) = \frac{C_p}{T}$ $\left(\frac{\partial \Phi}{\partial T}\right)_{TT} = \left(\frac{\partial p}{\partial T}\right)_{TT}$ $\left(\frac{\partial \Phi}{\partial p}\right)_{T} - \left(\frac{\partial v}{\partial T}\right)_{T}$ $\left(\frac{\partial C_p}{\partial D}\right)_T = -T\left(\frac{\partial^2 v}{\partial T^2}\right)$ $\left(\frac{\partial C_v}{\partial T_v}\right)_{T} = T\left(\frac{\partial^2 p}{\partial T^2}\right)_{T}$

For Q Constant

For O Constant

$$\left(\frac{dT}{dp}\right)_{Q} = \frac{T\left(\frac{\partial v}{\partial T}\right)_{p}}{C_{p}} \cdot \left(\frac{\partial p}{\partial T}\right)_{p} \cdot \left(\frac{\partial p}{\partial v}\right)_{T} \cdot \left(\frac{\partial T}{\partial p}\right)_{v} = -\mathbf{I}.$$

$$\left(\frac{\partial v}{\partial T}\right)_{p} \cdot \left(\frac{\partial p}{\partial v}\right)_{T} \cdot \left(\frac{\partial v}{\partial p}\right)_{v} = -\mathbf{I}.$$

$$C_{p} - C_{v} = T\left(\frac{\partial p}{\partial T}\right)_{v} \cdot \left(\frac{\partial v}{\partial T}\right)_{p} = -T\left(\frac{\partial p}{\partial v}\right)_{T} \cdot \left(\frac{\partial v}{\partial T}\right)_{p}^{2} \cdot$$

$$C_{p_{1}} - C_{p_{2}} = \frac{dL}{dT} - \frac{L}{T} + \frac{L}{v_{1} - v_{2}} \left[\left(\frac{\partial v_{1}}{\partial T}\right)_{p} - \left(\frac{\partial v_{2}}{\partial T}\right)_{p}\right] \cdot$$

$$C_{s_{1}} - C_{s_{2}} = \frac{dL}{dT} - \frac{L}{T} \cdot$$

General Formulæ Deducible from Equation (2)

Independent Variables
$$p$$
, T .
$$dH = \begin{bmatrix} Independent \ Variables \ v, \ T. \end{bmatrix} dH = \begin{bmatrix} C_v + v \left(\frac{\partial p}{\partial T} \right)_v \end{bmatrix} dT + \begin{bmatrix} T \left(\frac{\partial p}{\partial T} \right)_v + v \left(\frac{\partial p}{\partial v} \right)_T \end{bmatrix} dv.$$

$$\gamma_s = \begin{bmatrix} C_v + v \left(\frac{\partial p}{\partial T} \right)_v \end{bmatrix} + \begin{bmatrix} T \left(\frac{\partial p}{\partial T} \right)_v + v \left(\frac{\partial p}{\partial v} \right)_T \end{bmatrix} \frac{dv}{dT}.$$

$$\left(\frac{\partial H}{\partial T} \right)_p = \left(\frac{\partial Q}{\partial T} \right)_p = C_p.$$

$$\left(\frac{\partial H}{\partial T} \right)_v = C_v + v \left(\frac{\partial p}{\partial T} \right)_v + v \left(\frac{\partial p}{\partial v} \right)_T \end{bmatrix} \frac{dv}{dT}.$$

$$\left(\frac{\partial H}{\partial T} \right)_p = \left(\frac{\partial \Phi}{\partial T} \right)_p = \frac{C_p}{T}.$$

$$\left(\frac{\partial H}{\partial T} \right)_v = \left(\frac{\partial \Phi}{\partial T} \right)_v + \frac{v}{T} \left(\frac{\partial p}{\partial T} \right)_v.$$

$$\left(\frac{\partial T}{\partial p} \right)_H = \frac{T \left(\frac{\partial v}{\partial T} \right)_p - v}{C_p} = \mu.$$

$$\left(\frac{\partial T}{\partial v} \right)_H = -\frac{T \left(\frac{\partial p}{\partial T} \right)_v + v \left(\frac{\partial p}{\partial v} \right)_T}{C_v + v \left(\frac{\partial p}{\partial v} \right)_T}.$$

$$\left(\frac{\partial H}{\partial p} \right)_T = -\left[T \left(\frac{\partial v}{\partial T} \right)_p - v \right] = -C_p \mu.$$

$$\left(\frac{\partial H}{\partial v} \right)_T = T \left(\frac{\partial p}{\partial T} \right)_v + v \left(\frac{\partial p}{\partial v} \right)_T.$$

$$\gamma_{s_1} - \gamma_{s_2} = \frac{dL}{dT}.$$

$$H_1 - H_2 = U_1 - U_2 + p_1 v_1 - p_2 v_2.$$

2. FUNCTIONAL EXPRESSIONS FOR THE CHANGE OF VAPOR-PRESSURE WITH THE TEMPERATURE

A knowledge of the relation between the pressure and the temperature along the saturation line is of first importance in constructing a table of thermodynamic quantities. From this relation may be obtained: (I) the specific volumes of the saturated vapor through the equation of state of the vapor phase; (2) values of $\frac{dp}{dT}$ for use in calculating the heat of evaporation by the Clapeyron Equation. The problem of obtaining accurate values of $\frac{dp}{dT}$ depends evidently upon the accuracy with which it is possible to relate p to T by means of a suitable equation. Considerable attention has in the past been devoted to this subject, but most of the methods of

* Since
$$\left(\frac{\partial p}{\partial T}\right) = \frac{p}{T} = \frac{R}{v}$$
 from $pv = RT$ it follows that for a perfect gas
$$\left(\frac{\partial H}{\partial T}\right)_v = T\left(\frac{\partial \Phi}{\partial T}\right)_v + R = C_v + R = C_{p_0},$$

where C_{p_0} refers to the specific heat at constant pressure as the pressure approaches zero. It may be further observed that on applying the same pressure volume relation to $\left[T\left(\frac{\partial v}{\partial T}\right)_p - v\right]$ the specific heat γ_s becomes equivalent to C_p . C_{s_1} on the other hand reduces to $C_{s_1} = C_{p_1} - R \frac{d \log p}{d \log T}$.

attacking the problem have their starting point in certain integrations of the Clapeyron equation $L = T \frac{dp}{dT} (v_1 - v_2)$, which may also be written:

 $dp = \frac{L}{T(v_1 - v_2)} dT$. It is easily seen, for example, that the latter equation, L being represented by $L_0 + a_1T + a_2T^2 + \cdots + a_nT^n$, v_1 by $\frac{RT}{p}$, and neglecting v_2 , leads to the expression

$$\log p = \int \frac{L_0 + a_1 T + a_2 T^2 + \dots + a_n T^n}{RT^2} dT + m \dots$$

$$= -\frac{L_0'}{T} + a_1 \log T + a_2' T + \dots + a_n' T^{n-1} + m, \qquad (25)$$

where $L_0' = \frac{L_0}{R}$ and a_1' , a_2' have an obvious significance, m being a constant of integration calculable from a single value of p at a definite temperature.

In practice the constants of formula (25) are evaluated from several smoothed data suitably spaced with reference to the temperature. Consideration reveals at once, however, that a method of evaluating the constants is to be preferred whereby the inevitable inconsistencies of the experimental data will be disclosed and eliminated. The following method of procedure was accepted in the case of ammonia as a means of accomplishing this object.

Van der Waals inferred from certain considerations relative to his equation of state that

$$\log \frac{p_c}{p} = a \left(\frac{T_c}{T} - 1 \right) \tag{26}$$

should be valid where a is a constant. It is well known, however, that a is not constant, but varies with T.* If, however, it is possible to represent a accurately as a function of T the correct relation between p and T will result. Writing (26) as $T\left(\frac{\log p_c/p}{T_c-T}\right)=a$ it is possible to calculate values of a throughout the extent of the vapor-pressure data available. For a number of substances a lies on a curve resembling a parabola.

It is a matter of experience that it is impossible to draw a representative curve through experimental data where a minimum occurs, but to avoid this difficulty it is only necessary to plot the a's with $(T_c - T)$ as an ordinate and by extrapolation obtain the value of a indefinitely near the critical temperature. This section of the curve is fortunately very nearly linear. Assuming that a may be represented as

$$a_0 + a_1 (T_c - T) + a_2 (T_c - T)^2 + \cdots + a_n (T_c - T)^n$$
,

^{*} See H. Happel, Ann. d. Physik, 13, 340 (1904); also Marks, Jour. Am. Soc. Mech. Eng., 33, 563 (1911).

10

 a_0 would be the value of a indefinitely near the critical temperature. I now the variable is changed to

$$Z = \frac{a - a_0}{T_c - T} = a_1 + \cdots + a_n (T_c - T)^{n-1},$$

the difficulty of being obliged to draw a smooth curve through a minimum will be avoided.*

Rewriting (26), taking account of the Z function, there results

$$\log p = -\frac{Z(T_e - T)^2 + a_0 T_e}{T} + (\log p_e + a_0);$$

writing

$$a_0 T_c = \omega$$
 and $(\log p_c + a_0) = m$,
 $\log p = -\frac{Z(T_c - T)^2 + \omega}{T} + m$. (27)

This equation in practice is most convenient for calculations since $Z(T_c-T)^2$ may be obtained with sufficient accuracy with a 20-inch slide rule; there remaining only the division of $\omega + Z(T_c-T)^2$ by T to be carried out by logarithms. If desired, the critical constants may be absorbed in the constants of the equation

$$\log p = -\frac{b}{T} + C + dT + eT^2 + \cdot \cdot \cdot$$
 (28)

3. THE VAPOR-PRESSURE DATA FOR AMMONIA

The most reliable and systematic data in connection with the vapor-pressure of ammonia are due to Regnault.† Other measurements have been made at isolated sections of the vapor-pressure temperature curve by Faraday,‡ Blumcke,§ Brill, \parallel and Davies.¶ The data due to all these observers have been admirably treated by Goodenough and Mosher** and also recently by Holst.†† In the Holst treatment of the data a few new measurements carried out by Holst were included. These additions consist of three measurements between -32° and -44° C. and also one each at 19.58° and 45.05° C. The Holst treatment, however, does not lead to values which differ materially from the Mosher values although Holst perceived that the Regnault pressures above zero were too low.

The vapor-pressure values used in the present tables depend entirely on the data obtained at the Research Laboratory of Physical Chemistry of the Massachusetts Institute of Technology. Measurements of pressure were made by equilibrating the pressure exerted by the ammonia

^{*} Sometimes, owing to inaccurate data, the value of a_0 at the critical temperature is difficult to determine. For several substances, however, it has been found that no appreciable error is made by assuming 3.00 as the value of a_0 .

[†] Mem. de l'Inst. de France, 26, 598 (1847).

[¶] Proc. Roy. Soc., 78-A, 41 (1906). ∥ Ann. der Physik, 21, 170 (1906).

[‡] Phil. Trans., 135, 170 (1845). § Wiedemann's Annalen, 34, 10 (1888).

^{**} Univ. of Illinois Bull., 18 (1913).

^{††} Les prop. therm. de l'ammoniaque et du chlorure de methyle, Leiden (1914).

Fig. 1.

against a piston by means of weights, and the final temperature measurements were made with a platinum resistance thermometer. The calibration of the pressure piston was accomplished by direct comparison with a column of mercury 12.8 meters in length. The device used for determining the equilibrium of the piston is illustrated in Fig. 1.

The mercury-in-glass column is indicated at H and communicates with the mercury in the steel cylinder at M. Leading from the cover of the steel cylinder are two steel tubes, one of which passes to the Cailletet pump which serves to elevate the mercury in the column M, while the other leads from the mercury to the steel device Λ . From Λ the oil tube connects with the pressure-measuring piston E, which has attached a motor-driven device at R for reciprocating the piston through an angle regularly. The adjusting of the oil on the piston side of Λ is accomplished by the screw-pump D. The temperature of the mercury column was read by means of thermometers placed at intervals along the column. The average temperature was then obtained by graphically determining the area on a rectangular diagram between the curve drawn through the temperature readings and the axis of column length. Division of the area by the column length thus gives the true average temperature.

It has always been customary to consider the piston in equilibrium when the piston appeared to neither rise nor fall. Since the correct calibration of the piston was a matter of primary importance considerable study was devoted to the problem of investigating the sources of error that attend detecting the true equilibrium of the piston. The method finally adopted consisted in observing the motion of the mercury at its junction with the oil at N in the steel capillary A by means of a telephone receiver connected in series with the secondary of a small induction coil adjusted to the proper frequency. The connections of the circuit are evident from the drawing. An insulating joint is provided at I through which passes the pointed platinum wire (p). When the weights on the scale pan S are insufficient the mercury will rise in the capillary at N and excite the telephone receiver. If it is desired to confirm the observation the circuit is broken by the injection of a minute quantity of oil by means of the pump D. The weights are adjusted until the removal of 0.1 gram causes contact to be made and the addition of o.i gram permanently prevents contact. Since the diameter of the capillary was about 0.15 cm. while the diameter of the piston was about 0.476, a motion of 0.1 cm. of mercury in the capillary corresponds with only 0.01 cm. vertical motion of the measuring piston. The leak of oil at the piston, of course, would cause the mercury to make contact even if equilibrium had been attained. The diameter of the hole into which the piston was fitted, however, was only 0.01 mm. greater than the piston and observations on the rate of leak were made. The rate of leak under the calibrating pressures was 7×10^{-4} c.c. per hour per atmosphere and thus the arrangement permitted readings being taken rapidly and accurately. The average of two sets of the gauge calibrations agreed to about one part in eight thousand. The telephone device was employed in all the final vapor-pressure measurements and an improved thermostatic arrangement, containing the ammonia under measurement, permitted a given temperature to be maintained constant to within 0.005° C. for long periods of time. The real difficulty in making

accurate measurements lies, however, in securing true equilibrium between the vapor and liquid. To aid in securing equilibrium, the ammonia in the container was agitated by shaking the container during the course of the measurements.

The data of other observers in relation to the measurements carried out at the Research Laboratory of Physical Chemistry is illustrated in a Z plot, Fig. 2. It will be noted that the Z function serves well in making evident inconsistencies in the trend of the various observations.

The equations of the vapor pressure are as follows:

$$\log_{10} p = 7.91121 - \frac{1209.88 + Z (T_c - T)^2}{T}.$$
 (29)

 $Z = 10^{-4} [-11.901 + 1.0018 \cdot 10^{-2} (T_c - T) + 3.2715 \cdot 10^{-4} (T_c - T)^2],$ or eliminating the critical constant T_c ,

$$\log_{10} p = -\frac{1969.65}{T} + 16.19785 - 0.0423858 T + 5.4131 \cdot 10^{-5} T^{2} - 3.2715 \cdot 10^{-8} T^{3}.$$
(30)

The critical constants are as follows:

 $T_c = 132.9^{\circ} \text{ C.}$ $p_c = 112.31 \text{ atmos.}$ $v_c = 4.236 \text{ cc. per gram.}$

The value given of the critical volume was derived from the vapor and liquid saturation specific volumes by means of the rule of the "rectilinear diameter."* The formula for $\frac{dp}{dT}$ follows from the above vapor-pressure equation in its second form and reads:

$$\frac{dp}{dT} = p \left[\frac{4535.28}{T^2} - 0.074571 + 2.49282 \cdot 10^{-4} T - 2.25987 \cdot 10^{-7} T^2 \right] \cdot (31)$$

4. THE SPECIFIC VOLUME OF THE LIQUID AMMONIA

Before discussing the experimental data the question of the empirical equation which is to represent the specific volumes of the liquid may be considered. After modifying it somewhat the equation of Avenarius seemed to be the best suited for the purpose. The Avenarius equation reads:

$$v = a + b \log (T_c - T), \tag{32}$$

where T_c is the critical temperature. Any empirical equation must satisfy the terminal conditions of the curve at the critical temperature, and must yield a finite value for the specific volume at absolute zero, assuming that superfusing could, of course, take place to that extent. The equation does satisfy the latter condition, but gives an infinite value to the volume at the critical temperature. Granting its validity, if v is plotted with the logarithm of $(T_c - T)$ on a rectangular diagram a straight line should result. It is needless to state that such a condition could scarcely be expected to hold. Since, however, the Avenarius form of equation does rectify the v, T curve to a considerable extent, the procedure adopted for the ammonia liquid volumes was to assume the equation $v = a - \log (\alpha - T)$, where α is a function of the temperature. To use the equation it is merely necessary to determine the constant a for some accurately known specific volume far below the critical temperature, arbitrarily assuming α to have the same numerical value as the critical temperature. Values of α for all the remaining data can then be calculated and plotted with the temperature as a coördinate. The curve for ammonia resembles a parabola with a minimum at about 48 degrees. The total change in α is only a few per cent, and its representation as a function of the temperature is comparatively easy. The particular advantage of the method lies in the fact that slight inconsistencies in the experimental data become at once evident. In Fig. 3 the α values corresponding to the experimental data of Dieterici and Lange are plotted on

^{*} Compt. rend. 102, 1202 (1886); Compt. rend. 104, 1563 (1887); Phil. Mag., 50, 291 (1900).

the same scale as the Research Laboratory experimental data, the latter being represented by the curve. The dotted line represents the smoothed data as given by Mosher.

It is evident that there is lack of agreement between the Lange data and the present work. It is also evident from the figure that the specific

volume curve can be accurately obtained from about five exact measurements of the specific volume at suitably selected temperatures. This latter fact led Mr. Brownlee to measure accurately the volumes at the temperatures -33.5° , 0° , 35° , 68° , 110° , 120° , 125° , and the full line in the figure is drawn through the volumes found at these temperatures.

TABLE I. SPECIFIC VOLUME OF LIQUID AMMONIA

emperature,°C.	α from R. L. of P. C. Data	Dieterici	Lange	Brownlee
-50	133.22		1.4375	1.4227
30	132.61		1.4895	1.4745
-10	132.06		1.5480	1.5332
D	131.83	1.5656	1.5795	1.5657
+20	131.42	1.6342	1.6503	1.6387
40	131.21	1.7227	1.7383	1.7256
60	131.225	1.8250	1.8487	1.8331
80	131.40	1.9595	1.9982	1.9747
100	131.775	2.1525		2.1836
120	132.40			2.5891

Table I gives a survey of the agreement between the Lange* and Dieterici values and the values based on the Research Laboratory measurements. Attention may be directed to the agreement in the value obtained by Dieterici at o° C. The deviations in the Dieterici measurements and the recent measurements lie in the direction of the difference between the hydrogen scale and the mercury scale. The two latter scales, of course, agree at the freezing point and the boiling point of water. Without knowing the kind of glass from which the mercury thermometer was constructed it would be difficult to correct the Dieterici data. The maximum difference between the two thermometer scales occurs at about 40° C. and would likely not exceed 0.12° C.† A greater error than the thermometric error, however, would result from the temperature expansion of the glass container used and its dilation due to pressure. The latter cannot be calculated but must be determined experimentally, and even then the glass used must be carefully annealed after having been blown. The temperature expansion of German soda glass is about 3.0×10^{-5} , which gives 0.0021 as the correction due to temperature expansion. The thermometric error amounts to 0,0006 c.c., thus giving a total of 0.0027 c.c. as the amount by which the Dieterici value is too small. Dieterici‡ gives 1.7227 as the result of smoothing his experimental data. The value arrived at in the recent work is 1.7255 c.c. Correcting the Dieterici value leads to the value 1.7254 c.c. The attempt to correct the Dieterici work at higher temperatures is difficult owing to the unknown stretch of the glass due to the increasing pressure. It will be noticed from the α figure that the Dieterici experimental values become increasingly small as the temperature increases, which would be predicted in fact owing to the pressure and temperature dilation effect.

5. EQUATIONS OF STATE IN GENERAL

The state of any substance in either of its three phases may be represented as some function of the variables p, v, and T, but for practical requirements in connection with ammonia refrigeration machines it is the vapor phase which is required to be accurately represented by such a function. The number of formulas proposed are very numerous, but

† See Guillaume: "Traité Pratique de la thermométrie de précision."

‡ Winkelmann, Handbuch der Physik, 3, 965.

§ Starting with the general equation of the Joule-Thomson experiment (23) the Callendar equation may be derived by assuming μ to depend on the temperature; as $\frac{\alpha}{T^n}$, and independent of the pressure. For example:

$$\frac{T\left(\frac{\partial v}{\partial T}\right)_{p} - v}{C_{p}} = \frac{dT}{dp} = \mu = \frac{\alpha}{T^{n}}.$$

If C_p be assumed constant the equation may be written $\frac{T\,dv-v\,dT}{T^2}=C_p\frac{\alpha}{T^{n+2}}$. Integrating

 $^{^*}$ The volumes inserted in the table were calculated from Fig. 3 by drawing a representative line through the Lange values.

equations of the general form suggested by Callendar* seem to have received the preference. It seems not unlikely that this preference may be attributed to the fact that formulæ of the Callendar type give the volume explicitly, and such an equation is most convenient in preparing tables of "properties" since volumes at constant pressure are desired. The matter of primary importance would appear, however, to concern the general consistency of the deductions and inferences which follow from the proposed equation rather than the saving of labor to the calculator in preparing tables of "properties."

The history of the subject of equations of state may be considered as included in the much broader attempt to increase our understanding concerning the continuity of matter from the point of view of an explanation of the phenomena in terms of the motion of the discreet particles of which the substances are assumed to be composed. Van der Waals,† considerations led him to a rational equation which represented the continuity of the vapor and liquid phases in its general aspects. The equation of van der Waals, however, while leading to many generalizations fails to represent accurately the p, v, T relations, even in the vapor phase, with sufficient accuracy. Many of the numerous formulæ, for the most part wholly empirical, which have appeared since van der Waals' work was published, may accordingly be regarded as an attempt to provide an equation which would represent with sufficient accuracy the p, v, T relations of substances required in technical work. The vapor phase of water for example has received much attention on account of its technical importance, and an empirical equation due to Knoblauch, Linde, and Klebe! has been accepted as representing the vapor phase accurately within the range required in engineering practice. The equation reads:

$$v = \frac{BT}{p} - (\mathbf{I} + ap) \left[C \left(\frac{373}{T} \right)^3 - D \right] \cdot$$

this equation there results

$$\frac{v}{T} = f(p) - \frac{C_p}{n+1} \frac{\alpha}{T^{n+1}}.$$

When the temperature is high and the volume large pv = RT may be assumed to represent the behavior of the gas. This identifies f(p) with $\frac{R}{p}$.

The complete Callendar equation may then be written

$$v = \frac{RT}{p} - C_p \frac{\alpha}{n+1} \frac{1}{T^n}.$$

* Proc. Roy. Soc., 67, 266 (1900).

† J. D. van der Waals, Kontinuität, 1872. See also the Van't Hoff lectures.

Note. — The van der Waals equation reads

$$p = \frac{RT}{v - b} - \frac{a}{v^2}$$
, where a and b are constants.

[†] Verein deutscher Ingenieure, Heft, 21 (1905). Berlin. Also see Winkelmann, Handbuch der Physik, Vol. III, 1121.

This equation represents the somewhat restricted range of the measurements made by Knoblauch, Linde, and Klebe, but begins to fail as small volumes are approached.* If $\frac{\partial^2 p}{\partial T^2}$ is formed from the equation above it turns out to be a function of p and T. Examination of the Linde data just mentioned shows on the other hand that the pressure is a linear function of the temperature which would make $\frac{\partial p^2}{\partial T^2}$ equal to zero. The consequence of $\frac{\partial^2 p}{\partial T^2}$ being equal to zero or a function of the temperature is of considerable significance because of its relation to the general equation:

$$\left(\frac{\partial C_v}{\partial v}\right)_T = T\left(\frac{\partial^2 p}{\partial T^2}\right)_v.$$

If $\left(\frac{\partial^2 p}{\partial T^2}\right)_v$ is a function of the volume, $[C_v]_T$ must be a function of the volume; but if the second derivative of the pressure is zero, C_v is a function of the temperature solely. Unfortunately it is not easy to measure C_v^{\dagger} and therefore C_p is measured. The general relation $C_v = C_p - T\left(\frac{\partial p}{\partial T}\right)_v \cdot \left(\frac{\partial v}{\partial T}\right)_p$ permits on the other hand the computation of C_v only when $T\left(\frac{\partial p}{\partial T}\right)_v \cdot \left(\frac{\partial v}{\partial T}\right)_p$ is accurately known. The strongest proof of the independence of C_v from the volume is therefore at present furnished by the linear increase of the pressure when the vapor is heated at constant volume.

^{*} Mr. R. D. Mailey, at the Research Laboratory, has made a very careful study of the properties of water, liquid, and vapor phase, and over a range of temperature exceeding the critical temperature and to pressures above 500 atmospheres. One of the writers has had the privilege of examining the data in the vapor phase and finds the equation used in these tables to apply. This would indicate that equations of the type of the Linde Equation are defective in form.

[†] J. Joly. Proc. Roy. Soc., **41**, 352 (1886), (1887); Chem. News, **58**, 271 (1888); Proc. Roy. Soc., **45**, 218 (1890); Phil. Trans., **182**a, 73 (1892), **185**a, 943 (1894); Proc. Roy. Soc., **55**, 390 (1894).

Joly employing his steam calorimeter measured the specific heat at constant volume of air, carbon dioxide, and hydrogen. The measurements of the latter substance were not carried to completion. A. Winkelmann (Winkelmann, Handbuch der Physik, Vol. III, 228) discusses the air data and points out that Joly's values are too large from a comparison of the ratio C_p/C_v . This latter quantity has been measured by a number of observers and the ratio is close to I.405. The Joly values of C_v on the other hand lead to I.390. The values obtained by Joly moreover seem to indicate that C_v is a function of the volume. Consideration shows, however, that Joly's C_v is in reality $C_v + T\left(\frac{\partial p}{\partial T}\right)_v \frac{dv}{dT} + \Delta H$, where dv is the sum of combined thermal expansion and pressure expansion of the copper sphere which was used to contain the gas under measurements. The term ΔH represents a quantity of heat absorbed by the copper sphere containing the gas, which results from the altered heat capacity of copper under tension and also the absorption of heat due to the stretching of the copper sphere when the pressure increases from the pressure at ordinary temperature to the pressure at the final temperature of the steam. The latter quantity is small, but becomes significant at the higher pressures employed by Joly. A note discussing and recalculating Joly's experiments is in course of preparation.

The Joule-Thomson measurements* have been frequently regarded as furnishing a crucial test of the correctness of form or the accuracy with which the constants may have been determined in an accepted equation of state. The Joule-Thomson numbers indeed do furnish a sound basis for testing equations of state, but the measurements are unfortunately most difficult to make and experimenters who have occupied themselves with the problem have not always arranged to carry out the measurements in such a way as to yield numbers readily interpreted in connection with the Joule-Thomson thermodynamic equation of the porous plug experiment. For example, while the equation requires the difference in temperature of the gas before and after the plug for a small difference in pressure very often what has been measured is the difference in temperature corresponding to a large difference in pressure.†

The Joule-Thomson measurements in the case of ammonia are due to Wobsa.‡ Wobsa's measurements exhibit the anomaly of making the coefficient μ diminish with increasing pressure at constant temperature which would lead to the inference that ammonia vapor compressed at constant temperature approaches more nearly the ideal gas state.§ From measurements of the boiling point of liquid ammonia supplied in wrought iron cylinders it is possible to compute the per cent of water present by means of the Van't Hoff formula. The per cent of water appears to be of the order of 0.5 to 0.7 per cent. The presence of water accordingly in the commercial ammonia employed by Wobsa may possibly account in part for the apparently anomalous trend in the measurements.¶ The Wobsa measurements have been admirably discussed by Goodenough and Mosher and nothing can be added to their treatment until further measurements have been made.

- * A lucid discussion of this quantity is given in Noyes and Sherrill's General Principles of Chemistry.
 - † W. P. Bradley and C. F. Hale, Phys. Rev., 29, 258 (1909).
 - ‡ Zeitschr. f. d. ges. Kalte Industrie, 61 (1907).
 - § An ideal gas is one following the equation pv = RT for which μ would be zero.
- ¶ In a mixture of two gases the constants of the equation (33) for any given constant composition would be a function of the constants of the components. For example, assume that (a) of the cohesive pressure term may be written, where x is the fraction of the first component:

$$a_x = a_1(x)^2 + 2 a_{12}(x) (1 - x) + a_2 (1 - x)^2,$$

 a_{12} being the cohesive pressure constant for the unlike molecules. If the attraction were large between unlike molecules, as is the case for ammonia and water, a_{12} would be many times larger than either a_1 or a_2 . The equation (33) used in connection with the Joule-Thomson equation (23) gives for moderate pressures:

$$\frac{dT}{dp} = \frac{\frac{2}{RT} - \beta}{C_{p_0}}.$$

Now $\frac{2a}{RT}$ is the principal term of the numerator, and in a mixture, a and β would be replaced by a_x , β_z . From the comment above it is easily seen that a_x might be larger for a mixture than it would be for either pure substance alone since ammonia and water have considerable mutual affinity.

6. THE EQUATION OF STATE FOR AMMONIA VAPOR

The equation of state used in the computation of the present tables has already been briefly discussed in connection with a number of other substances.* The equation reads:

$$p = \frac{R}{v - \delta} T - \frac{a}{(v - l)^2}$$
 (33)

The constants of this equation for ammonia vapor have been derived from the measurements made at the Research Laboratory of Physical Chemistry of the Massachusetts Institute of Technology. The values of these constants are:

$$R = 4.8177;$$

$$\log_{10}\delta = 0.98130 - \frac{3.08}{v}$$

$$\stackrel{\circ}{\mathfrak{L}} a = 34610.1; \text{ and } l = -1.173.$$

Small volumes and high pressures are best suited for the purpose of determining the constants since the deviations from the relation pv = RT are greatest at small volumes. In the present case volumes less than 15 c.c. were not used in evaluating the constants of the equation above. A number of measurements were made at large volumes, but great difficulty was experienced in obtaining accurate data owing apparently to the adsorption phenomena due to the steel walls of the container.

The comparison of the work of other observers may be most

^{*} Frederick G. Keyes, A. S. R. E. Journal, Vol. 1, 9 (1914).

easily compared with equation (33) by substituting the measured volumes and temperatures in the equation and comparing the pressures. It is perhaps better in the present instance, however, to compute the volumes for the measured pressures and temperatures. The result of such a comparison is given in Fig. 4, where the per cent volume difference is given at the calculated volumes. The Onnes* groups of data are substantially at constant temperature while the Perman and Davies measurements are at one atmosphere pressure. Holst states that the isotherm in the Onnes data at 45 degrees is in error. The magnitude or the nature of the error is not stated however. It is well known that ammonia is adsorbed on glass surfaces to a more marked extent than any other gas, consequently there exists the possibility that the somewhat erratic trend of the Onnes measurements may be due to this disturbing effect. If this were true it may be stated that as the temperature falls, increased adsorption would cause the volume to grow small too rapidly at constant pressure, while heating the glass bulb loaded at room temperature would cause ammonia to be given up and hence give too large a volume. Perman and Daviest

* H. Kamerlingh Onnes' "Report of the Third International Congress of Refrigeration," Sept. 15 to Oct. 1, 1913.

† Perman and Davies, to satisfy themselves that there was no adsorption, measured the density in two glass globes of different capacities. One bulb had a volume of about 0.5 liter, surface 3.22 dm², and the other 1.77 liters, surface 7.10 dm². The ratio of surfaces, accordingly, of the larger globe to the smaller is 2.2 times. Langmuir has measured the total quantity of water vapor evolved in a good vacuum from a glass surface, in passing to 360° C. The globe was a 40-watt tungsten lamp, which has a surface of approximately 1.61 dm², and the quantity of water vapor evolved amounted to 0.3 c.c. 0°/760 or about 2.41 × 10⁻⁴ grams. The weight of water is accordingly 1.5 × 10⁻⁴ grams per dm². If it is assumed that ammonia dissolves in the water film in the same manner as in liquid water, there would be 1.35 × 10⁻⁴ grams of ammonia adsorbed per dm². If ρ is the true density of the ammonia, ν the volume of the globe in which it is proposed to measure the density of the ammonia, ν the weight of ammonia adsorbed per square dm. of surface, and ν the surface of the globe, we may write:

Total weight of ammonia in the globe is $\rho V + \omega s = W$ or $\rho = \frac{W}{V} - \omega \frac{S}{V}$.

Let the subscript I denote a globe of radius r_1 , and subscript 2 denote a second sphere of larger size and radius r_2 , then $\frac{W_1}{V_1}$, the apparent density obtained in the first bulb, is equal to $\rho + \omega \frac{S_1}{V_1}$ and, similarly, $\frac{W_2}{V_2} = \rho + \omega \frac{S_2}{V_2}$.

If Δ is the difference in the measured densities,

$$\Delta = \frac{W_1}{V_1} - \frac{W_2}{V_2} = \left(\rho + \omega \frac{S_1}{V_1}\right) - \left(\rho + \omega \frac{S_2}{V_2}\right) = \omega \left(\frac{S_1}{V_1} - \frac{S_2}{V_2}\right) = 3 \omega \left(\frac{1}{r_1} - \frac{1}{r_2}\right). \tag{a}$$

The value of the density calculated by the equation of state is 0.76994, while the density found by Perman and Davies is 0.77085, the difference being 0.00091 gram. From the equation above,

$$\omega = \left(\frac{W}{V} - \rho\right) \frac{V}{S} = 0.00091 \left(\frac{V}{S}\right).$$

Now for a liter sphere $r = 0.621 \text{ dm}^2$. Since $\frac{V}{S} = \frac{1}{3}r$ or 0.207, $\omega = 0.000188$ gram per dm². The number obtained above by means of the Langmuir datum is of the same order of magnitude

work was carried out with the greatest care and the average of two series of duplicate measurements at zero degrees and one atmosphere are in good agreement.

Measurements have been made by Dieterici* of the specific volumes of the vapor along the saturation curve. The measurements were made in

glass† and depend on the accuracy with which the liquid volumes are known. Holst has also computed by means of the Onnes virial equation

(0.000135). Applying the values to the two spheres used by Perman and Davies there results:

$$\begin{cases} \omega_L = 0.000135, \\ \omega_{\text{P.D.}} = 0.000188, \\ r_1 = 0.4925 \, \text{dm}^2, \\ r_2 = 0.7510 \, \text{dm}^2. \end{cases} \qquad \Delta_{\text{P.D.}} = 3 \, \omega_{\text{P.D.}} \left(\frac{r_2 - r_1}{r_1 r_2} \right) = + 0.000327.$$

The difference in the apparent densities therefore would amount to only about a quarter of a milligram. In view of the difficulties attending the accurate weighing of large globes it would appear that the detection of adsorption by varying the surface is not very sensitive at one atmosphere pressure and zero degrees.

^{*} Dieterici, Zeit. für die Desam. Kalte Industrie, 21 (1904).

[†] Young, Trans. Chem. Soc., 59, 37, 126, 929 (1891).

the specific volumes of the saturated vapor,* the constants of the equation being based on the measurements of the vapor phase isotherms obtained at the Leiden Laboratory. The saturated specific volumes used in the present tables were computed by means of the equation of state (33). This computation requires the saturation pressures which were determined from the vapor-pressure equation (31). In Fig. 5 the full line is drawn through the computed saturation specific volumes while the experimental values of Dieterici are entered as indicated together with the values computed by Holst. The full line is a representative line through the Dieterici and Holst values up to about 70 degrees, when the Dieterici data assumes a distinctly different trend. The specific volumes of the liquid obtained by Dieterici on the other hand show a trend in the opposite direction.

7. THE HEAT OF VAPORIZATION OF LIQUID AMMONIA

Measurements involving the heat of vaporization of ammonia were made by Regnault, and of these measurements twelve† survived the reign of the Commune and were later published. A careful consideration of Regnault's data involving the heat of vaporization of liquid ammonia has been given by Jacobus and Denton. Franklin and Kraus measured the quantity at the boiling point of liquid ammonia (-33.2), their value differing considerably from the value obtained by Estreicher and Schuerr. The original communication containing the Estreicher and Schuerr measurements is not available and hence a critical examination of the method used or a review of the data used in making necessary corrections is precluded. The method pursued by Franklin and Kraus consisted in vaporizing a definite volume of liquid ammonia at atmospheric pressure by supplying heat electrically. The calculation of the heat of vaporization requires the electrical energy, the density of liquid ammonia at -33.2° C., and the value of the calorimetric equivalent of the joule at 15 degrees. The value of the electrochemical equivalent of copper used by Franklin and Kraus was retained in the recalculation. The recomputed mean of the Franklin and Kraus measurements using the latest density data and the 15 degree cal. employed in the present tables accordingly is 336.58 Cal. at -33.2 degrees. A confirmation of the general correctness of this value may be obtained from the data concerning the elevation of the boiling point of liquid ammonia. The data in this connection is also due to Franklin and Kraus. The mean value of

* The Onnes equation reads:

$$pv = RT + \frac{a_1}{V} + \frac{a_2}{V^2} + \cdots$$

[†] Ann. de Chim. et de Physique (4) 24, 375 (1871).

¹ Jacobus, Trans. Am. Soc. Mech. Eng., 12, 307 (1891).

[§] Jour. Phys. Chem., 2, 555 (1907).

^{||} Acad. Soc. Cracovie, Bull., 7A, 345 (1910).

[¶] Am. Chem. Jour., 20, 841 (1898).

k in Van't Hoff's formula $\left(L=\frac{0.019885\ T^2}{k}\right)$, taken from the elevation of the boiling point where water and alcohol were used as solutes, is 3.398. The Van't Hoff formula leads to the value 336.8 Cal. as the heat of vaporization at -33.2 degrees. The value obtained by means of the Clapeyron-Clausius relation, $T\frac{dp}{dT}(v_1-v_2)=L$, where the quantities on the left of the equation are obtained from the vapor-pressure equation (30), the equation of state (33), and the equation of the liquid volume, leads to the value 336.5 at -33.2 degrees.

The equation relating the heat of vaporization of liquid ammonia to the temperature depends on the heats of vaporization calculated by means of the Clapeyron-Clausius equation from the data obtained at the Research Laboratory. The value of L was computed at 80°, 40°, 0°, and at -70° C. The value of L at -70 degrees, on account of the uncertainty of the vapor-pressure equation at the lowest temperatures, cannot be considered to possess the same relative accuracy as the values of the heat of vaporization computed for the higher temperatures. The values calculated, however, at the temperatures mentioned were related to the temperature by means of a modified formula due to Thiesen. The Thiesen formula connecting the heat of vaporization with the temperature is $L = C (T_c - T)^n$, where c and n are constants and T_c the critical temperature. The equation satisfies the current ideas concerning the terminal conditions of the curve (L, T) — namely, it yields a finite value of the heat of vaporization at the absolute zero and a zero value at the critical temperature. Taking logarithms of both sides of the equation there results $\log L = \log C + n \log (T_c - T)$, consequently the logarithm of L is a linear function of the logarithm of log $(T_c - T)$ and $\frac{d \log L}{d \log T} = n$.

The equation was not found to hold strictly for liquid ammonia although it does satisfy the values very nearly. To modify the equation it was assumed that the differential could be expressed as $\frac{d \log L}{d \log T} = a + b (T_c - T)$.

The resulting equation was then integrated, yielding the equation

$$\log_{10} L = 1.56817 - 2.822 \cdot 10^{-5} (T_c - T) + 0.43387 \log_{10} (T_c - T).$$
 (34)

The values of L calculated by the latter equation together with the Regnault-Jacobus and Kraus values are given in Table 2.

Gilles Holst,* in a recent publication concerning the properties of ammonia, computed the heats of vaporization of liquid ammonia from Regnault's data, using the more accurate Dieterici specific heat values now available in computing the corrections. The average temperature of Regnault's twelve measurements is 11.68° C., and the rate of change of the heat of vaporization with temperature may be taken from equation

^{*} Gilles Holst, Les propriétés thermiques de l'ammoniaque et du Chlorure de méthyle, Leiden (1914).

(34) to reduce each of Regnault's measurements to the average temperature. The result of this averaging is 295.7 Cal., whereas equation (34) leads to the value 294.3 Cal. at 11.68 degrees. The average Regnault value is accordingly 0.5 per cent higher than the value derived from the equation.

TABLE 2. VALUES OF HEAT OF VAPORIZATION L

Temperature	Calculated by equation (34)	Observed	Percentage difference	Observer
-33.4 -33.2 -33.2 -23.71 -19.55 -9.72 7.80 9.52 10.15 10.73 10.90 10.99 11.00 11.04 11.90 12.60 12.94 15.53 16.00 17.00 19.53 28.18 29.22 30.92	336.7 336.5 336.5 328.1 324.5 316.0 298.4 296.7 296.0 295.4 295.3 295.1 295.1 295.1 294.8 293.5 293.1 290.4 289.9 286.0 276.4 275.4	321.3 336.6 336.8 316.1 335.1 317.0 293.0 295.0 292.4 288.1 287.0 293.3 291.3 292.5 285.8 291.6 283.8 285.2 294.0 296.5 292.0 291.8 285.0	-4.58 +0.03 +0.08 -3.6 +3.2 +0.3 -1.8 -0.6 -1.2 -2.5 -2.8 -0.6 -1.3 -0.9 -0.6 -3.1 -1.8 +1.4 +2.7 +3.7 +5.8 +5.3 +4.2	Estreicher and Schuerr Franklin and Kraus measured Franklin and Kraus from ebul- lioscopic constant Regnault—Jacobus—Denton Regnault—Jacobus Regnault—Jacobus—Denton

Holst in his summing up of the properties of ammonia has computed the heats of vaporization by means of the Clapeyron equation, using the specific volumes of the saturated vapor based on the Onnes "virial" equation of state and using values of $\frac{dp}{dT}$ derived from a careful study of Regnault's vapor-pressure measurements. Table 3 contains the Holst values compared with the values computed by means of equation (34).

TABLE 3

Percentage difference -3.9 -3.3 -2.4	
-3.3 -2.4	Temperature
-2.4	-40
	-30
	- 20
-2.1	-10
-1.5	. 0
-0.9	+10
-0.4	+20
+0.14 +0.67	+30 +40

Regnault's values of the vapor-pressure were perceived to be low by Holst, and it is now known that the corrections applied by Regnault to his mercury thermometer below zero were in error. This circumstance would make uncertain values of $\frac{dp}{dT}$ resulting from the vapor-pressure curve and also the values of L calculated by means of the Clapeyron equation. A glance at the L diagram makes evident at once the erratic trend of the Regnault data.

Accurate experimental values of the heat of vaporization of liquid ammonia are necessary in the temperature interval between o degrees and 20 degrees; however, the Franklin-Kraus value at the boiling point and the mean Regnault value at 11.68 would indicate that equation (34) represents the heat of vaporization with substantial accuracy.

8. THE SPECIFIC HEAT-CAPACITY OF AMMONIA VAPOR

The measurements of the specific heat-capacity of ammonia have been reviewed by Nernst* and the results summarized in the equation:

$$C_{p, 1 \text{ atm.}} = 8.62 + 0.002 t + 7.2 \cdot 10^{-7} t^3.$$
 (35)

The equation gives the heat-capacity for one formula weight or 17.034 grams. The equation of state (33) applied in connection with the equation $C_v = C_p - T\left(\frac{\partial p}{\partial T}\right) \left(\frac{\partial v}{\partial T}\right)$ leads to the equation for C_v as follows:

$$C_v = 0.35116 + 1.055 \cdot 10^{-4} T + 6.05 \cdot 10^{-8} T^2.$$
 (36)

Accordingly, the specific heat at constant pressure is given by the equation

$$C_p = 0.35116 + 1.055 \cdot 10^{-4} T + 6.05 \cdot 10^{-8} T^2 + \frac{R}{\left(1 - \frac{\alpha \delta}{v^2}\right) - \frac{2 a}{RT} \frac{(v - \delta)^2}{(v - l)^3}}, (37)$$

since
$$\left(\frac{\partial p}{\partial T}\right)_v = \frac{R}{(v-\delta)}$$
 and $\left(\frac{\partial v}{\partial T}\right)_p = \frac{v-\delta}{T} \left(\frac{1}{\left(1-\frac{\alpha\delta}{v^2}\right)-\frac{2a}{RT}\frac{(v-\delta)^2}{(v-l)^3}}\right)$

The quantity $\int C_p dT$ or the integral heat along a constant pressure curve must be obtained by integrating graphically the term

$$\frac{R dT}{\left(1 - \frac{\alpha \delta}{v^2}\right) - \frac{2 a}{RT} \frac{(v - \delta)^2}{(v - l)^3}}.$$

Fig. 6 gives a picture of the C_p field. At high temperatures and low pressures the equation (37) tends to resolve into $C_p = C_v + R$ as in fact the diagram illustrates.

^{*} Zeitschr. f. Electrochemie, 16, 96 (1910).

9. THE ENTROPY OF AMMONIA VAPOR

Equation (14) gives for the entropy $\Phi = \int \frac{C_v dt}{T} + R \int \frac{dv}{(v-\delta)} + \Phi_0$. The main difficulty that arises in the use of this equation is the integration of $\frac{dv}{v-\delta}$ which contains the transcendental δ . Up to the present time no integral has been found for this expression in terms of ordinary functions. One method, however, of integrating the function is as follows:

assume
$$\int \frac{dv}{v - \delta} = \log(v - \delta) + \alpha\beta \int \frac{I}{v^2} \cdot \frac{e^{-\frac{\alpha}{v}} dv}{(v - \delta)}.$$
 (38)

The problem now is reduced to the integration of the second term of the right-hand member, and since $d\frac{I}{v} = d\rho = -\frac{I}{v^2} dv$ it follows that

$$\alpha\beta \int \frac{\rho \, d\rho}{e^{\alpha\rho}} \cdot \frac{1}{1 - \frac{\beta\rho}{e^{\alpha\rho}}} = \alpha \left[\int \frac{\beta\rho \, d\rho}{e^{\alpha\rho}} + \int \left(\frac{\beta\rho}{e^{\alpha\rho}}\right)^2 d\rho + \cdots + \int \left(\frac{\beta\rho}{e^{\alpha\rho}}\right)^n d\rho \right] \cdot (39)$$

It can be easily shown that the series part of (38) converges for all values of the variable ρ .

Let $e^{\alpha \rho} = z$, whence

$$\int \frac{\beta \rho}{e^{\alpha \rho}} d\rho = \frac{\beta}{\alpha^2} \int \frac{\log z}{z^2} dz,$$

and integrating this equation in z there results

$$\int \frac{(\log z)^n}{z^{n+1}} dz = -\left[\frac{1}{n} \left(\frac{\log z}{z}\right)^n + \frac{1}{n} \left(\frac{\log z}{z}\right)^{n-1} \frac{1}{z} + \frac{n-1}{n^2} \left(\frac{\log z}{z}\right)^{n-2} \frac{1}{z^2} + \frac{(n-1)(n-2)}{n^3} \left(\frac{\log z}{z}\right)^{n-3} \frac{1}{z^3} + \cdots + (n+1) \text{ terms.}$$
(40)

Applying (40) to each member of the series, collecting and rearranging, leads to the expression

$$\alpha \left[\int \frac{\beta \rho}{e^{\alpha \rho}} d\rho + \cdots \right] = \log \left(\mathbf{I} - \frac{\beta \rho}{e^{\alpha \rho}} \right) - \begin{cases} + \left(k + \frac{\mathbf{I}}{2 \cdot 2} k^2 + \cdots \cdot \frac{(n-1)!}{n^n} \cdot k^n \right), \\ \rho \left(\frac{\mathbf{I}}{2} k + \frac{2!}{3 \cdot 3} k^2 + \cdots + \frac{n!}{(n+1)^n} k^n \right) \\ + p^2 \left(\frac{\mathbf{I}}{3} k + \frac{\mathbf{I}}{2!} \cdot \frac{3!}{4 \cdot 4} k^2 + \cdots + \frac{(n+1)!}{2! (n+2)^n} \cdot k^n \right) \\ + \frac{(n+1)!}{2! (n+2)^n} \cdot k^n \right) \\ + p^m \left(\frac{\mathbf{I}}{m+1} k + \cdots + \frac{\mathbf{I}}{m!} \frac{(n+m-1)}{(n+m)^n} k^n \right) \\ = \sum f(\rho), \end{cases}$$

where
$$p = \frac{\beta}{\alpha} \cdot \frac{\log z}{z}$$
, $k = \frac{\beta}{\alpha} \cdot \frac{I}{z}$.

Table 4 represents the values of these series terms for various values of the density ρ of ammonia. In spite of the somewhat formidable appearance of the series portion of the integral it is seen that the series converge with such rapidity that the labor of calculating is not excessive. The computation of the series at 25 c.c., 50 c.c., 100 c.c., and 500 c.c. is sufficient, since beyond 500 c.c. the series gives a constant. In practice a plot of $\Sigma f(\rho)$ is most convenient. The complete expression for the entropy may be written as follows:

$$\Phi = 0.80859 \log_{10} T + 1.055 T \cdot 10^{-4} + 3.025 T^{2} \cdot 10^{-8} + 0.2688 \log_{10} (v - \delta) + R\Sigma f(\rho) + \Phi_{0}.$$
 (41)

For volumes greater than 200 c.c. per gram $R\Sigma f(\rho)$ may with sufficient accuracy be assured constant.

TABLE 4

ρ=0.05	ρ=0.02	ρ=0.0Ι	ρ=0,002	ρ=0,001	ρ=0.0002	Series Equation Above
1.26177 0.27012 0.07114 0.02026 0.00608 0.00182 0.00055 0.00016	1.70690 0.02732 0.00407 0.00063 0.00010 	1.9020 0.00935 0.00077 0.00006 	2.0802 0.00042 0.00001 0.02904	2.1057 0.00011 0.01465 0.00956	0.00297	k series p series p^2 series p^3 series p^5 series p^5 series p^5 series p^7 series p^7 series
2.04122	2.11671	2.12702	2.12876	2.12902		$\Sigma f(\rho)$

10. THE SPECIFIC HEAT-CAPACITY OF LIQUID AMMONIA

In carrying out accurate heat-capacity measurements by the method of mixtures, it is necessary to have a large difference of temperature between the thermostat and the calorimeter, in order that the resulting temperature-change may be sufficiently large to permit the necessary percentage accuracy. There is considerable difficulty involved in obtaining the precise value for the water-equivalent of the calorimeter, and also in obtaining the value of the specific heat of the steel container or other receptacle containing the ammonia to be experimented on.

The following method of measuring heat-capacities was suggested by Dr. Charles A. Kraus of the Research Laboratory. A steel bomb containing liquid ammonia under the pressure of its saturated vapor is brought to a constant temperature in a thermostat above the calorimeter; it is then dropped into a calorimeter containing a definite weight of water, and the temperature-change of the calorimeter is observed. Another steel bomb identical with the first, but containing water under the pressure of its saturated vapor, is placed in the thermostat and dropped into the calorimeter. The weight of water in the water bomb is adjusted by repeated experiments until it gives practically the same temperature-change as the ammonia bomb. Omitting corrections, the specific heat-capacity of the ammonia would vary as the ratio of the weight of water to the weight of ammonia multiplied by the heat-capacity of the water.

This method does away with many of the objections to the method of mixtures. It is, of course, dependent for operation on a large temperature-difference between the thermostat and the calorimeter, but the errors are the same or nearly the same for both the ammonia and the water experiments and consequently compensate.

Mr. Henry A. Babcock after having completed the measurements of the specific heat-capacity by the method already outlined undertook the development of a method which would permit the measurement of the heat-capacity over very small temperature intervals and at various temperatures approaching the critical temperature. The method consisted essentially in rotating a steel ammonia container submerged in oil in a silvered Dewar tube. Measured amounts of electrical energy were introduced by means of a combined platinum resistance heater and thermometer. The amount of energy necessary to heat the oil and container was determined at a number of intervals between 20 and 120 degrees. The electrical energy necessary to raise the apparatus through one degree with the ammonia present was then obtained. The heat capacity of the

ammonia, after making the necessary corrections, is thus the difference between the two series of measurements at corresponding temperatures. These latter measurements have not been included in the equation used in the present tables, since the two more accurate values obtained by Mr. Babcock cover the practical range of temperature required in engineering work.

The equation taken to represent the saturation liquid specific heat-capacity is somewhat arbitrary. It seems probable that the heat-capacity, because of the term $\frac{dv}{dT}$, becomes infinite at the critical temperature. For this reason the empirical equation chosen to represent the heat capacity was

$$C_{e_1} = 1.13747 - \frac{5.7575}{(T_c - T)} + \frac{898.53}{(T_c - T)^2}$$
 (42)

This equation passes through the two measurements made by Mr. Babcock. The course of the values is illustrated by Fig. 7 in which have been inserted the values reported by Dieterici. The equation for the integral heat referred to o° C. is

$$\int_{273.1}^{T} C_{s_2} dT = 1.13747 T + 13.257 \log_{10} (T_c - T) + \frac{898.53}{T_c - T} - 345.556.$$
 (43)

Table 5 gives a list of values as smoothed by Dieterici and reported in the "Landolt and Bornstein Tabellen." The Dieterici or Drewes values should be increased by about one per cent because of the calorie in which the results are expressed. The values given by other observers are also included for comparison.

TABLE 5. SPECIFIC HEAT-CAPACITY OF LIQUID AMMONIA

Drewes.	o° C.	0.876	1.1450
Drewes	10	1.140	1.1501
Elleau & Ennis	10	1.02	1.1501
Drewes	20	1.19	1.1570
Ludeking & Starr	28	0.886	1.1642
Drewes	30	1.218	1.1664
Drewes	40	1.231	1.1796
von Strombeck	45	1.229	1.1883
Drewes	. 50	1.239	1.1988
Drewes	60	1.240	1.2275

PART II

TABLES OF THE THERMODYNAMIC CONSTANTS OF AMMONIA

DESCRIPTION OF THE TABLES

Table I gives the thermodynamic properties of saturated ammonia with the temperature as the argument, while Table II gives the properties with the pressure as the argument. The lower limit of the temperature table is -100° F.; the values being tabulated for each degree to 150° and to 200° for each five degrees.

The pressure table (Table II) is complete for every pound pressure from five to two hundred pounds pressure, from two hundred pounds for every two pounds to three hundred pounds pressure, for every ten pounds to five hundred pounds pressure, and for every twenty-five pounds to seven hundred pounds pressure.

The superheat table (Table III) gives the temperature, the total heat of the liquid, the vapor volume of liquid and vapor, and the entropies of the liquid and vapor corresponding from the saturation pressure to four hundred pounds. The total heat, the volume of the vapor and the entropy of the vapor is extended into the superheat three hundred degrees, every ten degrees of superheat being tabulated to two hundred degrees and every fifty degrees from two hundred degrees to three hundred degrees superheat.

In calculating the various quantities appearing in the tables large graphs were constructed from the values calculated from the equations already discussed. The vapor pressures were calculated corresponding to each 18° F. interval using equation (30). A check on the values tabulated from the graphs was subsequently obtained by calculating the pressure at temperatures nine degrees from the pressures which served to construct the graph.

The heat of the liquid was obtained by calculating the values needed for the graph from equation (43). This equation is obtained by integrating equation (42) with respect to the temperature. The values of entropy of the liquid are given by the equation which results from the integration of (42), after first dividing by the temperature. A general check on the values obtained by the method outlined was subsequently obtained by calculating the rates of change of the quantities from the corresponding equations which result by differentiation with respect to the temperature and comparing these calculated rates of change with the successive differences of the tabulated quantities.

The volumes at constant superheat (Table III) were calculated at suitable intervals from equation (33) and their reciprocal, or the density plotted against the saturation pressure. The resulting graph is nearly

a straight line which greatly facilitated the reading of the densities. The densities were afterward converted into volumes by means of a table of reciprocals.

The total heat was obtained by graphically integrating the graph of the specific heat-capacity of the vapor plotted against the temperature and adding the quantities so found to the total heat of the saturated vapor. The graph of the entropy of the vapor was calculated from equation (41).

The consistence of the superheat table was checked by applying the equation $\left(\frac{\partial \phi}{\partial T}\right)_p = \frac{C_p}{T}$ in the following manner: Values of C_p were calculated for the vapor and compared with the differences in the total heat quantities at constant pressure. These values divided by the average absolute temperature were then compared with the differences in the tabulated entropy at constant pressure.

The Mollier Chart. — The solution of many refrigeration problems is greatly facilitated by the use of the usual heat content-entropy or Mollier diagram. The diagram accompanying the tables, I, II, and III, has curves at constant pressure, curves at constant quality, and constant temperature. The ordinates are heat contents and the abscissæ are entropies.

To bring the diagram into convenient compass oblique coördinates have been used. The horizontal lines are lines of constant heat content. The oblique lines are inclined at an angle of thirty degrees to the horizontal axis. Attention is directed to the fact that twice the vertical distances are equal to distances along the oblique lines.

41	
	4

	Vapor	φ1													2 2	1.31/1	1.3141	1.3112	1.3083	1.3054	1000	1.3025	1.2990	1.2907	1.2930	1.2910	1.2882	1.2854	T.2826	T 2700	2000	7//7:1	1.2745	1.2718	1.2601	T. 2664	1.2628	25020
Entropy	Evap.	7164	0	1.0437	1.8094	1.7750	1.7415	1.7080	- 7-7 -	1.0705	1.0452	1.0142	1.5842	1.5547	1	1.5247	1.5109	1.5132	1.5075	1.5019	- 4060	1.4903	1.4907	1.4051	1.4795	1.4740	1.468€	1.4620	1.4575	T 4521	1964	1.440/	I.44I3	T.4250	1.4305	1 4252	1 4100	1.4199
	Liquid	φ2				:	:	:		:	:		:	:	7	-0.2070	2048	.2020	1992	1965	0	-0.1938			1857	1830	-0.1802	9221	0//1:			1095	-0.1668	1641			1921	
ergy B.t.u.	Vapor	Uı											:		2.0.	463.0	483.8	484.0	484.2	484.4	7.0.	484.0	484.8	485.0	485.2	485.4	185.6	0000	186.0	286.0	7.004	400.4	486.6	486.8	287	0.10	401.2	407.4
Internal energy B.t.u.	Evap.	\mathbf{U}_{2}		021.7	017.3	612.9	608.4	603.0		599.4	594.9	590.4	585.9	581.3	0	570.8	575.8	574.9	574.0	573.0		572.I	571.2	570.2	500.3	508.4	1 492	4.700	200.2	202.0	504.0	503.7	8 692	00 TOT	2000	200.0	2000	559.0
nt heat Heat content	or vapor	Q ₁				:	:	:		:	:	:		:		531.0	531.3	531.6	531.9	532.3		532.0	532.9	533.2	533.5	533.8	1 102	234.1	534.4	554.7	533.0	535.3	625	0.000	233.9	550.2	530.4	530.7
Latent heat	or evap.	Г		003.4	0.650	655.8	652.0	648.I	,	044.2	040.3	636.3	632.3	628.3	,	024.2	623.4	622.5	621.7	620.0	,	020.I	619.3	618.4	017.5	610.7	6160	612.0	613.1	6.4.3	013.4	012.0	611 7	6200	610.0	010.1	000.5	008.3
Heat content	of liquid	03		:		:				:	:		:			-93.2	-92.I	6.06-	8.68-	-88.6	(-87.5	4.08-	-85.2	-84.0	-82.9	0 10	0.100	100.	0.67	4.0.4	-77.3	- 26 2	1 2 2	75.0	2.5.0	72.0	-71.0
Density, 1b.	per cu. it.	V ₁		0.00508	61900.	.00757	71000.	00110.		0.01313	.01558	.01834	.02170	.02532		0.02050	.03042	.03136	.03229	.03323		0.03420	.03519	.0362I	1.03726	.03833	0.0000	0.03943	.04057	2/140.	.04290	.04411	0 0 0 0 0 0	01910	0,040,0	.04/0/	61640.	.05053
Sp. vol., cu.	it, per lb.	VI		190.9	161.5	132.1	1.001	6.06	,	76.16	04.20	54.20	46.09	39.50		33.90	32.87	31.89	30.97	30.00		29.24	28.42	27.62	26.84	26.09	90 20	25.50	24.05	23.97	23.31	22.07	9000	2 2 2 2	14.17	20.09	20.33	19.79
Pressure, 1b.	per sq. ın.	ď		I.132	1.408	1.740	2.134	2.595	(3.108		4.533	5.378	6.373		7.513	7.761	8.014	8.272	8.541	0	8.810	9.088	9.377	9.075	9.974	10 282	10,000	10.000	10.930	102.11	II.00I	TTOES	10000	10.312	12.002	13.050	13.439
Temp.	±,			100	- 95	06	- 85	08		- 75	1 70	- 65	9 1	- 55		- 50	- 46	- 48		- 46	Traffic articular	- 45				_ 4I	1	1	2000	30			1 25	25.	96		32	

TEMPERATURE. - Continued

Temp.	Pressure, 1b.	Sp. vol., cu.	Density, 1b.	Heat content	Latent heat of evap.	Heat content	Internal	Internal energy B.t.u.		Entropy	
							Evap.	·Vapor	Liquid	Evap.	Vapor
+	ď	ν,	н П	Q ₂	L	Q ₁	U ₃	U1	φ2	HIE	φ1
	C		(,		(
- 30	13.830	19.27	0.05189	- 70.5	607.5	537.0	558.1	487.0	-0.1535	1.4140	I.20II
- 29	14.232	18.77	.05328	-69.3	9.909	537.3	557.2	487.8	1509	1.4093	1.2554
- 28	14.645	18.28	.05470	-68.2	605.8	537.6	556.2	488.0	1482	1.4040	1.2558
- 27	15.067	17.80	81950.	-67.0	604.0	5.37.9	555.2	488.2	1455	1.3987	1.2532
- 26	15.400	17.33	05770	-65.0	604.1	538.2	554.3	488.4	1429	1.3935	1.2506
				,							
	15.040	16.88	0.05024	-64.8	602.2	528.4	552.2	488.6	-0.1403	1.3883	1.2480
3 6	10001	26.01	476000	9:40	600	1000	2000	488 8	1276	1 2821	T. DAKE
	16.03	10.43	00000	63.0	602.3	220.7	4:400	0.004	0/61	1 2770	T 2420
	10.053	10.03	.00238	-02.5	001.5	539.0	551.5	409.0	1330	1.3//9	67477
- 22	17.320	15.62	.06402	-61.3	0.000	539.2	550.5	489.2	1324	1.3727	1.2403
21	17.810	15.22	.06570	-60.2	599.7	539.5	549.6	489.4	1298	1.3676	. I.2378
	0				C	C	0.1	1 -0		- 26.00	1
	10.304	14.84	0.00738	- 59.I	598.9	539.8	540.0	409.5	-0.1272	1.3025	1.2353
6I -	18.808	14.47	01600.	-58.0	598.0	540.0	547.0	489.0	1240	1.3574	1.2320
100	19.320	14.11	78070.	-56.9	597.1	540.2	546.7	489.8	122I	1.3523	1.2302
LI -	19.840	13.76	.07267	-55.7	596.2	540.5	545.7	490.0	2611	1.3472	1.2277
91 -	20.37I	13.43	.07446	-54.6	595.4	540.8	544.8	490.2	6911	1.3422	1.2253
											•
15	20.012	13.11	0.07628	-53.5	594.5	541.0	543.8	490.3	-0.1144	1.3372	1.2228
	21.465	12.79	61870.	-52.3	593.6	541.3	542.8	490.5	6111	1.3322	1.2203
- 13	22.037	12.48	.08013	-51.2	592.7	541.5	541.9	490.7	1093	1.3272	1.2179
	22.619	12.18	.08210	-50.0	591.8	541.8	540.0	400.0	8901	I.3222	1.2154
11 -	23.210	11.89	.08410	-48.9	590.0	542.0	539.9	491.0	1042	1.3172	1.2130
IO	23.810	11.60	0.08620	-47.8	500.I	542.3	538.0	401.1	-0.1017	1.3123	1.2106
0	24.420	TT 22	08824	- 46 7	2001	2 0 2 2	5270	40T.2	0003	1.3075	1.2082
1	25.052	11.05	02000	9.24-	0000	542.7	527.0	401.4	8900	1.3026	1.2058
1	25.602	10.70	000200	- 44.4	2027	242.0	526.0	9.101	0043	1.2077	I.2034
و.	26 363	77.01	00.400	1 42 2	1000	247.0	1000	401 8	2100	T.2028	1.2010
	10.00	10.34	6/460.	45.3	300.3	243.2	253.1	491.0		0161	
10	27.027	10.30	0.00000	-42.I	585.6	543.5	534.1	402.0	-0.0893	1.2880	1.1987
4	27.710	10.00	000040	-41.0	584.7	543.7	533.I	402.I	8980	1.2831	1.1963
	28.41	0.84	9101.	- 30.8	2,00	544.0	532.I.	402.3	0843	1.2783	1.1940
2	20.12	19.0	.1040	- 38.7	582.0	544.2	53I.2	402.5	8180	1.2735	1.1917
1 1	20.84	0.30	.To65	-37.6	582.0	544.4	530.2	402.6	0703	I.2687	1.1894
	1	200	0000	2.10	2000	ト・トトつ	23000	2111	061-		-

TEMPERATURE. — Continued

p v ₁	Temp. Pr	Pressure, 1b.	Sp. vol., cu.	Density, lb.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
p v, v, v, v, u, v, u, v, u, v, u, u, v, u, u, </th <th></th> <th>per sq. in.</th> <th>it, per lb.</th> <th>per cu. it.</th> <th>oi liquid</th> <th>of evap.</th> <th>or vapor</th> <th>Evap.</th> <th>Vapor</th> <th>Liquid</th> <th>Evap.</th> <th>Vapor</th>		per sq. in.	it, per lb.	per cu. it.	oi liquid	of evap.	or vapor	Evap.	Vapor	Liquid	Evap.	Vapor
30.57 9.18 0.1089 -36.5 58.1 544.8 529.2 31.39 8.77 .1105 -34.2 578.3 544.8 528.2 32.09 8.77 .1105 -34.2 578.3 544.8 527.2 32.09 8.77 .1102 -31.9 577.4 545.0 527.2 34.47 8.20 .1102 -30.8 576.5 545.3 526.2 35.10 7.84 .1275 -20.7 576.5 545.7 545.3 36.14 7.84 .1275 -27.4 576.5 545.7 532.3 36.14 7.67 .1334 -27.4 575.6 545.7 545.3 36.14 7.5 .134 -27.4 575.6 545.7 545.3 36.14 7.5 .1334 -27.4 577.6 546.1 527.3 36.16 7.19 -142.2 577.0 546.3 558.4 558.4 41.54 6.78 .142.2 -27.4 577.0 547.0 546.1 41.54 6.78		d	V1	$\frac{1}{v_1}$	Q ₂	ı	01	U ₂	U ₁	φ2	JIE	φ1
31.33 8.97 .1115 -34.2 579.2 544.8 528.2 31.209 8.77 .1129 -34.2 579.2 544.8 526.2 32.209 8.77 .1129 -34.2 579.2 545.0 545.2 32.209 8.77 .1165 -3.9 577.4 545.0 526.2 33.66 8.39 .1165 -3.9 577.4 545.3 526.2 35.20 .1247 -20.7 576.5 545.7 526.3 575.3 36.24 .7.8 .1247 -20.7 576.5 545.7 526.3 545.7 37.87 .7.57 .1334 -26.2 577.6 546.1 521.4 37.87 .7.57 .1334 -26.2 577.6 546.1 521.4 41.54 6.8 .142.2 -27.4 577.7 546.1 517.4 41.54 6.8 .142.2 -27.4 577.0 547.4 517.4 41.54 6.8 .142.2 -27.4 577.0 547.4 517.4 41.54		30.57	0.18	0.1080	-36.5	481.I	544.6	\$20.2	402.7	-0.0768	1.2640	1.1872
32.87 8.77 1115 35.3 550.1 557.2 557.2 557.2 577.4 527.2 577.2 577.4 527.2 577.4 527.2 577.2 577.4 527.2 577.2 577.4 527.2 577.2 577.4 527.2 57		20.00	200	N 1		000	00	0000	4000	- 07.42	T 2502	1.1850
32.89 32.89 32.89 32.89 32.89 32.89 32.89 32.89 33.66 33.60		51.53	/6.0	5111.	33.3	500.1	0.44.0	320.2	492.9	24/0	1 27.46	2007
32.87 8.58 .1105 -33.0 578.3 520.2 33.66 8.39 .1102 -31.9 577.4 545.5 520.2 34.47 8.20 .1102 -20.7 576.5 545.7 523.3 36.14 7.84 .1247 -20.7 575.6 545.7 522.3 36.14 7.84 .1304 -27.4 577.6 545.7 522.3 37.87 7.51 .1304 -27.4 577.6 546.1 522.3 38.76 7.35 .0.1360 -25.1 570.0 546.1 522.3 38.76 7.35 .0.1360 -25.1 570.0 546.1 522.3 40.61 7.03 .1453 -22.4 570.0 546.2 517.4 40.61 6.88 .1453 -22.4 570.0 547.2 517.4 41.54 6.88 .1453 -21.7 560.1 547.2 517.4 42.49 6.73 .1486 -10.4 567.2 547.2 517.4 45.46 6.530 .156	~	32.09	0.77	6211.	34.2	579.2	545.0	27.7.5	493.0	01/0	1.2340	1.1020
33.66 8.39 .1192 -31.9 577.4 545.5 525.3 34.47 8.20 .1247 -29.7 577.4 545.7 524.3 35.29 .1247 -29.7 577.6 545.7 524.3 30.14 7.84 .1275 -29.7 577.6 546.3 522.3 37.80 7.51 .1304 -27.4 577.9 546.6 520.4 37.87 7.51 .1333 -26.2 577.9 546.6 520.4 38.76 7.35 .1333 -26.2 577.9 546.6 520.4 40.61 7.03 .1422 -27.4 577.9 546.6 520.4 40.61 7.03 .1422 -22.8 570.0 547.6 518.4 40.61 7.03 .1442 -22.6 570.0 547.6 517.4 41.54 6.88 .1443 -22.6 570.0 547.6 517.4 42.49 6.88 .158.2 -17.2 569.1 517.4 517.4 44.45 6.456 .158.2	~	32.87	8.58	.1105	-33.0	578.3	545.3	520.2	493.2	0093	1.2500	1.1007
34.47 8.20 -130.8 576.5 545.7 524.3 35.29 8.02 -1247 -20.7 575.6 545.9 523.3 36.14 7.84 -1247 -20.7 575.6 546.9 523.3 37.00 7.67 -1334 -27.4 573.7 546.3 522.4 37.87 7.51 -1334 -27.4 573.7 540.6 522.4 39.68 7.19 -1334 -27.4 571.0 540.6 520.4 40.61 7.03 -134.2 -22.8 570.0 547.2 517.4 40.61 7.03 -145.3 -22.8 570.0 547.4 516.4 41.54 6.73 -144.6 570.0 547.4 516.4 516.4 43.47 6.594 -1549 -110.2 560.1 547.6 517.4 516.4 44.45 6.456 -1549 -110.2 560.2 547.6 517.4 517.4 45.46 6.594 -152 -110.2 560.2 547.9 517.4 517.4	-	33.66	8.39	.1192	-31.9	577.4	545.5	525.3	493.4	6990. –	1.2454	1.1785
35.29 35.29 35.24 36.14 7.84 7.57 1.275 36.24 7.57 37.00 7.67 1.334 7.20. 28.7 37.00 7.67 1.334 7.20. 28.7 38.76 7.51 1.333 7.20. 28.7 38.76 7.35 0.1360 7.35 0.1360 7.39 1.422 7.21 2.2.6 2.2 2.2.7 2.2.7 2.2.6 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	1	24 47	000	O 1220	- 20 8	2 942	7 2 7 2 7	224.2	402.5	-0.0644	1.2407	1.1763
3539 30.44 7.84 -1247 -29.7 545.9 545.9 36.14 7.67 -1247 -27.4 546.3 545.9 545.9 37.09 7.67 -1342 -27.4 572.8 546.6 520.4 37.08 7.35 0.1360 -25.1 571.9 546.6 520.4 39.68 7.19 -1391 -24.0 571.0 546.8 520.4 40.61 7.03 -1422 -22.8 571.0 547.0 546.6 517.4 40.61 6.88 -1453 -22.8 570.0 547.0 547.0 547.4 517.4 41.54 6.88 -1453 -22.8 570.0 547.0 547.4 516.4 42.49 6.73 -1486 -20.6 568.2 547.6 517.4 5	010	14.40	0.50	0.122	30.00	2/0.2	7.040	2-4-5	493.3	0190	1 2260	T. T. 7.A.T.
38.76 37.00 37.00 37.00 37.00 37.00 37.00 38.76 37.31 38.76 38.77		55.29	0.02	1571.	7.63.	5/5.0	545.9	5.5.5	493.0	2020	1 2214	1.1710
37.00 7.07 .1334 -27.4 573.7 540.3 520.4 37.87 7.51 .1333 -26.2 573.7 540.6 520.4 39.68 7.19 .191 -24.0 571.0 547.0 540.6 520.4 40.61 7.03 .1422 -22.8 571.0 547.2 517.4 41.54 6.88 .1423 -21.7 560.1 547.4 516.4 42.49 6.73 .1486 -20.6 560.2 547.4 516.4 43.47 6.594 .01516 -19.4 560.2 547.4 516.4 44.45 6.456 .1549 -16.2 567.2 547.6 517.4 44.45 6.594 .0168 -16.2 567.2 547.6 517.4 45.46 6.504 .166 -16.2 564.3 548.1 512.4 45.50 6.189 .1050 -14.8 565.3 548.5 510.4 45.60 5.01 .1721 -12.6 561.3 548.5 590.1 50.70		30.14	40./	.12/3	5.07	2/4.0	240.1	344.3	493.0	3600	47071	5+1+++
38.76 7.51 .1333 -20.2 572.6 540.0 520.4 38.76 7.35 0.1360 -25.1 571.9 546.8 519.4 40.61 7.03 .1422 -24.6 571.0 547.2 518.4 40.61 7.03 .1433 -21.7 569.1 547.4 516.4 41.54 6.88 .1453 -21.7 569.1 547.4 516.4 42.49 6.73 .1486 -20.6 569.1 547.4 516.4 44.45 6.594 0.1516 -19.4 567.2 547.4 516.4 44.45 6.486 -158 -178.3 548.2 516.4 516.4 44.45 6.594 0.156 -16.0 564.3 548.3 513.4 45.46 6.58 -16.0 564.3 548.3 510.4 45.54 6.061 -16.0 564.3 548.5 510.4 45.54 6.061 -16.0 564.3 548.5 510.4 45.65 5.61 -17.2 562.4 548.5 <td>~</td> <td>37.00</td> <td>7.07</td> <td>.1304</td> <td>-27.4</td> <td>573.7</td> <td>540.3</td> <td>521.4</td> <td>494.0</td> <td>0570</td> <td>1.2207</td> <td>1.1097</td>	~	37.00	7.07	.1304	-27.4	573.7	540.3	521.4	494.0	0570	1.2207	1.1097
38.76 7.35 0.1360 -25.1 571.9 546.8 519.4 39.68 7.03 .1422 -24.0 571.0 547.2 518.4 40.61 7.03 .1422 -22.8 570.0 547.2 517.4 41.54 6.88 .1423 -21.7 569.1 547.6 517.4 42.49 6.73 .1486 -20.6 568.2 547.6 515.4 44.45 6.594 0.1516 -10.4 567.2 547.6 515.4 44.45 6.456 .1582 -17.2 566.2 547.6 515.4 44.45 6.456 .1582 -17.2 566.2 547.6 515.4 45.40 6.180 -16.3 -16.3 566.2 547.6 513.4 47.54 6.061 .1650 -14.8 565.3 548.1 510.4 47.54 6.061 .1650 -13.7 562.4 548.5 510.4 49.68 5.81 .1757 -11.4 560.5 549.3 506.3 51.90 5.75 </td <td>_</td> <td>37.87</td> <td>7.51</td> <td>.1333</td> <td>-20.2</td> <td>572.8</td> <td>540.0</td> <td>520.4</td> <td>494.2</td> <td>0540</td> <td>1.2221</td> <td>701.1</td>	_	37.87	7.51	.1333	-20.2	572.8	540.0	520.4	494.2	0540	1.2221	701.1
39.08 7.03 1.30 -2.2.8 571.0 547.0 518.4 40.61 7.03 1.422 -2.2.8 570.0 547.4 517.4 40.61 6.88 1.443 -2.2.8 570.0 547.4 517.4 41.54 6.594 1.486 -20.6 568.2 547.6 517.4 44.45 6.594 1.650 -10.4 567.2 547.6 517.4 44.45 6.456 1.1582 -10.4 566.2 547.6 515.4 44.45 6.456 1.650 -18.3 566.2 547.6 515.4 45.40 6.73 1.652 -17.2 566.2 547.6 515.4 46.50 6.061 1.650 -14.8 566.2 548.1 511.4 47.54 6.061 1.650 -14.8 563.3 548.5 510.4 47.54 6.061 1.757 -11.4 560.5 548.8 508.4 50.73 1.757 -11.4 560.5 549.1 506.3 51.90 5.245 1.1		28.76	7 25	0 1260	- 2E T	0 142	8,46.8	STO.A	404.3	-0.0522	1.2176	1.1654
43.47 6.594 -12.2 547.2 547.4 41.54 6.88 -1452 -21.7 569.1 547.4 510.4 41.54 6.88 -1453 -21.7 569.1 547.4 515.4 42.49 6.73 -1486 -21.7 569.1 547.4 516.4 44.45 6.456 -1594 -16.9 566.2 547.8 516.4 45.46 6.456 -1589 -17.2 566.2 547.8 516.4 45.50 6.189 -16.9 566.2 548.8 511.4 47.54 6.061 -16.9 566.2 548.8 511.4 47.54 6.061 -16.9 566.3 548.8 510.4 46.50 6.189 -16.0 564.3 548.5 510.4 47.54 6.061 -172 562.4 548.5 510.4 48.60 5.811 -1721 -11.4 560.5 548.8 509.4 50.78 5.591 -17.2 559.5 549.5 509.3 51.90 5.245 <td>_</td> <td>20.68</td> <td>7 10</td> <td>TOOL</td> <td>1 20 0</td> <td>277.0</td> <td>0.447</td> <td>N X L</td> <td>404.4</td> <td>0408</td> <td>1.2130</td> <td>1.1632</td>	_	20.68	7 10	TOOL	1 20 0	277.0	0.447	N X L	404.4	0408	1.2130	1.1632
43.47 6.594 0.1516 -19.4 569.2 547.6 515.4 44.45 6.73 .1453 -20.6 568.2 547.6 515.4 44.45 6.594 0.1516 -19.4 567.2 547.8 514.4 44.45 6.456 6.189 .1650 -19.4 566.2 547.6 513.4 45.46 6.189 .1650 -16.0 564.3 548.1 512.4 46.50 6.189 .1650 -16.0 564.3 548.3 512.4 47.54 6.061 .1650 -16.0 564.3 548.5 510.4 48.60 5.934 0.1685 -13.7 562.4 548.8 508.4 49.68 5.811 .1727 -11.4 560.5 549.1 509.4 49.68 5.812 .1757 -11.4 560.5 549.1 509.3 51.90 5.576 .1933 -10.3 559.6 549.3 505.3 51.90 5.576 .1934 -10.3 559.6 549.5 505.3 55.90 5.352 0.1868 - 8.1 557.8 559.0 505.3 55.90 5.375 .1046 - 5.7 555.8 550.1 500.2 55.77 5.139 .1046 - 5.7 555.8 550.1 500.2		39.00	20.7	1951	000	3/2	0.747	4 2 1 2	9 707	NT NO -	1.2084	1.1610
42.49 6.73 1.486 -20.6 509.1 547.4 515.4 44.45 6.594 0.1516 -19.4 567.2 547.8 513.4 44.45 6.456 1.599 -18.3 566.2 547.9 513.4 44.45 6.456 1.590 -18.3 566.2 547.9 513.4 45.46 6.189 1.650 -14.8 567.3 548.3 514.4 47.54 6.061 1.650 -14.8 563.3 548.3 511.4 47.54 6.061 1.721 -13.7 562.4 548.8 509.4 49.68 5.81 1.721 -12.6 561.5 549.3 506.3 50.78 5.691 1.757 -11.4 560.5 549.3 506.3 51.90 5.576 1.193 -10.3 559.6 549.5 505.3 51.90 5.352 0.1868 - 8.1 557.8 559.7 504.3 55.37 5.32 0.1868 - 8.1 557.8 559.7 503.2 56.57 5.33 1.096 - 5.7 555.8 550.1 502.2		10:04	500 4	2741.	0.77	2,007	24/-2	4.7.7	2,464	+/+0: -	1 2020	TIES
42.49 0.73 .1400 -20.0 500.2 547.0 515.4 43.47 6.594 0.1516 -10.4 567.2 547.8 514.4 44.45 6.456 .1582 -17.2 565.3 547.8 513.4 46.50 6.189 .1650 -16.0 566.2 547.8 512.4 46.50 6.189 .1650 -16.0 564.3 548.1 512.4 47.54 6.061 .1650 -14.8 565.3 548.5 510.4 47.54 6.061 .1650 -14.8 563.3 548.5 510.4 48.60 5.934 0.1685 -13.7 562.4 548.5 510.4 49.68 5.81 .1721 -11.4 560.5 548.6 509.4 56.78 5.691 .1737 -11.4 560.5 549.3 506.3 51.90 5.576 .1793 -10.3 559.6 549.3 506.3 54.19 5.245 .1906 - 6.9 556.8 549.5 505.3 56.57 5.		41.34	0.00	.1455	/177	500.1	54/.4	510.4	1.464	90,00	1 1004	11500
43.47 6.594 0.1516 -19.4 567.2 547.8 514.4 44.45 6.456 .1582 .1582 -17.2 566.2 547.9 513.4 45.46 6.320 .1582 -17.2 565.3 548.1 512.4 46.50 6.189 .1016 -16.0 564.3 548.3 511.4 47.54 6.061 .1650 -14.8 563.3 548.5 510.4 48.60 5.934 0.1685 -13.7 562.4 548.6 599.4 49.68 5.811 .1721 -12.6 561.5 548.8 599.4 50.78 5.61 .173 -10.3 559.5 549.3 509.4 51.90 5.576 .1793 -10.3 559.6 549.3 506.3 51.90 5.345 .1930 - 9.2 558.7 549.5 505.3 54.19 5.245 .1946 - 6.9 556.8 549.5 502.2 56.57 5.345 .1046 - 5.7 555.8 502.2 502.2 57	-	42.49	0.73	.1480	- 20.0	508.2	547.0	515.4	494.0	02450	1.1994	1.1300
44.45 6.456 .1549 -18.3 566.2 547.9 513.4 45.46 6.320 .1582 -17.2 565.3 548.1 512.4 46.50 6.189 .1650 -16.0 564.3 548.5 512.4 47.54 6.061 .1650 -14.8 565.3 548.5 510.4 48.60 5.934 0.1685 -13.7 562.4 548.5 510.4 49.68 5.811 .1721 -11.4 560.5 548.8 509.4 50.78 5.691 .1793 -10.3 559.6 549.3 506.3 51.90 5.576 .1793 -10.3 559.6 549.3 506.3 51.90 5.352 0.1868 -8.1 557.8 549.5 505.3 55.37 5.245 .1906 -6.9 556.8 549.7 505.3 56.57 5.345 .1946 -5.7 557.8 549.9 502.2 57.70 5.037 .1046 -5.7 555.8 550.1 502.2 50.57 5.34		43.47	6.504	0.1516	-10.4	567.2	547.8	514.4	405.0	-0.0402	1.1949	1.1547
45.40 6.320 .1582 -17.2 565.3 548.1 512.4 46.50 6.189 .1016 -16.0 564.3 548.3 511.4 47.54 6.061 .1050 -14.8 564.3 548.5 511.4 48.60 5.934 .1650 -12.6 562.4 548.5 510.4 49.68 5.811 .1721 -12.6 561.5 548.8 509.4 50.78 5.591 .1737 -11.4 560.5 549.1 509.3 51.90 5.576 .1793 -10.3 559.6 549.3 506.3 53.03 5.463 .1830 - 9.2 558.7 549.5 505.3 55.77 .1046 - 8.1 557.8 549.5 504.3 505.3 56.57 5.245 .1046 - 6.9 556.8 559.0 504.3 502.2 56.57 5.37 .1046 - 5.7 555.8 550.1 502.2 57.70 5.037 .1046 - 5.7 556.8 550.1 502.2		44.45	6.456	.1540	-18.3	566.2	547.0	513.4	495.I	0378	1.1905	1.1527
46.50 6.789 .1616 -16.0 564.3 548.3 511.4 47.54 6.061 .1650 -14.8 564.3 548.5 511.4 48.60 5.934 .1650 -13.7 562.4 548.5 510.4 49.68 5.81 .1721 -12.6 561.5 548.8 509.4 50.78 5.691 .1757 -11.4 560.5 549.8 508.4 51.90 5.576 .1793 -10.3 559.6 549.3 506.3 51.90 5.463 .1830 - 9.2 558.7 549.5 505.3 54.19 5.352 0.1868 - 8.1 557.8 549.5 504.3 55.37 5.245 .1046 - 6.9 556.8 550.1 502.2 56.57 5.37 .1046 - 5.7 555.8 550.1 502.2 56.57 5.32 .1046 - 5.7 556.8 550.1 502.2	_	45.46	6.320	.1582	-17.2	565.3	548.1	512.4	405.2	0354	1.1860	1.1506
47.54 6.061 .1650 -14.8 563.3 548.5 510.4 48.60 5.934 0.1685 -13.7 562.4 548.8 509.4 49.68 5.811 .1721 -12.6 561.5 548.8 508.4 50.78 5.691 .1737 -11.4 560.5 549.1 507.3 51.90 5.576 .1793 -10.3 559.6 549.3 505.3 53.03 5.463 .1830 - 9.2 558.7 549.5 505.3 54.19 5.352 0.1868 - 8.1 557.8 549.7 504.3 55.37 5.245 .1966 - 6.9 556.8 550.1 502.2 56.57 5.245 .1946 - 5.7 555.8 550.1 502.2	~	46.50	6.180	9191.	-16.0	564.3	548.3	511.4	405.4	0331	1.1815	1.1484
48.60 5.934 0.1685 -13.7 562.4 548.6 500.4 49.68 5.811 .1721 -12.6 501.5 548.8 508.4 50.78 5.691 .1757 -11.4 560.5 549.1 507.3 51.90 5.576 .1793 -10.3 559.6 549.3 506.3 53.03 5.463 .1830 - 9.2 558.7 549.5 505.3 54.19 5.352 0.1868 - 8.1 557.8 549.5 504.3 55.37 5.245 .1046 - 6.9 556.8 550.1 502.2 56.57 5.33 .1046 - 5.7 555.8 550.1 502.2 56.57 5.32 .1046 - 5.7 555.8 550.1 502.2	_	47.54	190.9	.1650	-14.8	563.3	548.5	510.4	495.5	0307	1.1770	1.1463
49.68 5.81 .1721 -12.6 561.5 548.8 508.4 50.78 5.601 .1757 -11.4 560.5 549.1 507.3 51.90 5.576 .1793 -10.3 559.6 549.3 506.3 53.03 5.463 .1830 - 9.2 558.7 549.5 505.3 54.19 5.352 0.1868 - 8.1 557.8 549.5 504.3 55.37 5.245 .1046 - 6.9 556.8 550.1 503.2 56.57 5.33 .1046 - 5.7 555.8 550.1 502.2 57.70 5.037 .1046 - 5.7 555.8 550.1 502.2	0	48.60	5.034	0.1685	-13.7	562.4	548.6	500.4	405.6	-0.0283	1.1725	1.1442
50.78 5.601 1.757 -11.4 560.5 540.1 507.3 51.90 5.576 1.793 -10.3 559.6 540.3 559.6 540.3 559.6 540.3 559.6 540.5 559.6 540.5 559.6 540.5 559.6 540.5 559.7 559.7 559.8 559.7 559.8 559.7 559.8 559.7 559.8 559.7 559.8 559.7 559.8 550.1 559.8 559.8 550.1 559.8	_	40.68	110.5	1727	-12.6	201.5	00,00	500.4	405.7	0250	1.1681	I.1422
5.576 .1793 -10.3 559.6 549.5 505.3 53.03 5.363 .1830 -9.2 558.7 549.5 505.3 505.3 559.6 549.5 505.3 559.6 559.7 5.37 5.345 .1906 -6.9 555.8 550.8 550.1 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 503.2 555.8 550.3 550.3 555.8 550.3 550	. ~	50.78	2.601	1757	-11.4	500.5	540.I	507.2	405.0	0235	1.1637	1.1401
53.03 5.463 .1830 - 9.2 558.7 549.5 505.3 558.7 5.352 0.1868 - 8.1 557.8 559.7 504.3 505.3 55.37 5.345 .1906 - 6.9 556.8 550.1 500.2 503.2 503.2 57.70 5.037 1.084 - 5.7 555.8 550.1 502.2	~	51.00	5.576	1703	-10.3	550.6	540.3	506.3	406.0	0212	1.1503	1.1381
54.19 5.352 0.1868 - 8.1 557.8 549.7 504.3 55.37 5.245 .1906 - 6.9 556.8 549.9 503.2 56.57 5.39 .1946 - 5.7 555.8 550.1 502.2 57.70 5.037 .1084 - 5.7 555.8 550.1 502.2		53.03	5.463	.1830	- 9.2	558.7	549.5	505.3	496.I	8810	1.1549	1.1361
54.19 5.352 0.1868 — 8.1 557.8 549.7 504.3 55.37 5.245 .1906 — 6.9 556.8 549.9 503.2 50.57 5.39 .1046 — 5.7 555.8 550.1 502.2 57.70 5.037 .1084 — 5.7 556.8 550.1 502.2									,	,		
55.37 5.245 .1006 - 6.9 556.8 549.9 503.2 56.57 5.139 .1046 - 5.7 555.8 550.1 502.2 57.70 5.037 .1085 - 4.6 550.2	10	54.19	5.352	0.1868	1.00	557.8	549.7	504.3	496.2	-a.o105	1.1505	1.1340
56.57 5.139 .1946 - 5.7 555.8 550.1 502.2 57.70 5.037 .1084 - 4.6 554.8 550.2 501.2	2	55.37	5.245	9061.	6.9 -	556.8	549.9	503.2	490.3	014I	1.1401	1.1320
57.70 5.037 .1085 — 4.6 554.8 550.2	7	56.57	5.139	1946	- 5.7	555.8	550.I	502.2	496.5	7110	1.1417	1.1300
The state of the s	00	57.79	5.037	1985	9.4 -	554.8	550.2	501.2	9.964	4600	1.1374	1.1280
50.03		50.03	4.026	9000	1 2 5	0000	4 Ch 2	6000	400	1700	I.I 2 2 I	1.1260

TEMPERATURE. - Continued

per sq. in.	Sp. vol., cu. ft. per lb.	Density, 1b.	Heat content of liquid	Latent heat of evap.	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
						Evap.	Vapor	Liquid	Evap.	Vapor
	V1	W H	Q ₂	ı	Q ₁	U ₂	U1	φ2	HIE	φ
60.20	4.838	0.2067	- 2.3	552.8	550.5	400.2	406.0	-6.0047	1.1288	1.1241
	4.743	.2108	- I.2	551.9	550.7	408.1	406.0	0023	1.1245	1.1222
	4.650	.2151	+ 0.0	550.0	550.0	497.1	497.1	00000 +	1.1202	1.1202
	4.559	.2193	I.I	540.0	551.0	406.2	407.3	.0023	1.1160	1.1183
	4.469	.2238	2.2	549.0	551.2	495.1	497.3	.0047	1.1117	1.1164
	4 282	0 228T	2.4	0 777	2 177	104	7 104	0,000	1011	T TTAE
	4.302	2227	4.0	247.9	234.3	494.1	407.6	5,000	1.10/3	11706
	4.216	2272	, v	546.0	551.5	493.1	9.704	Sepo-	1.1033	1.1107
71.08	4.135	2418	0.00	545.0	551.8	401.0	407.8	.0130	1.0040	1.1088
72.54	4.056	.2465	8.0	543.9	551.9	490.0	498.0	1910.	1.0907	1.1068
	3.979	0.2513	0.2	542.0	552.1	488.0	408.I	0.0184	1.0865	1.1040
	3.904	.2561	10.3	542.0	552.3	487.8	408.I	.0207	1.0823	1.1030
	3.830	.2611	11.5	541.0	552.5	486.7	498.2	.0230	1.0781	I.IOI.I
78.57	3.758	.2661	12.6	540.0	552.6	485.7	498.3	.0253	1.0740	1.0993
	3.688	.2711	13.7	539.0	552.7	484.7	498.4	.0276	1.0699	1.0975
81.73	3.619	0.2763	14.9	537.9	552.8	483.6	498.5	0.0298	1.0658	1.0956
	3.552	.2815	0.01	537.0	553.0	482.6	498.6	.0321	1.0617	1.0938
	3.486	.2869	17.2	535.9	553.I	481.5	498.7	.0344	1.0576	1.0920
	3.422	.2922	18.3	534.9	553.2	480.5	498.8	.0366	I.0535	1.0902
	3.359	.2977	19.5	533.8	553.3	479.5	499.0	.0389	1.0495	1.0884
90.04	3.298	0.3032	20.7	532.8	553.5	478.4	499.I	0.0412	1.0454	1.0866
	3.239	.3087	21.8	531.8	553.7	477.3	499.2	.0434	1.0414	I.0848
	3.181	.3144	23.0	530.8	553.8	476.3	499.3	.0457	1.0374	1.0830
	3.124	.320I	24.I	529.8	553.9	475.3	4.664	.0479	1.0333	1.0812
97.10	3.067	.3259	25.3	528.7	554.0	474.2	499.5	.0502	1.0292	1.0794
98.93	3.011	0.3321	26.4	527.7	554.1	473.1	400.5	0.0524	1.0252	1.0776
	2.957	.3382	27.5	526.7	554.2	472.0	400.5	.0547	I.0212	1.0759
	2.904	.3444	28.7	525.6	554.3	470.9	499.6	09800	1.0172	1.0741
104.60	2.852	.3506	29.6	524.5	554.4	469.9	400.8	,0592	1.0132	1.0724
106.55	2.802	.3569	31.0	523.5	554.5	8.898	8 000	.0614	I.0002	1.0706

TEMPERATURE. - Continued

Temp.	Pressure, 1b.	Sp. vol., cu.	Density, 1b.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
	per sq. m.	ii. per ib.	per cu. 10.	ninhii io	or evap.	or vapor	Evap.	Vapor	Liquid	Evap.	Vapor
	d	V1		03	L	O ₁	U ₂	Uı	φ2	אור	φı
0	108.54	2.752	0.3633	+32.2	522.4	554.6	467.7	499.9	+0.0636	1.0052	1.0688
1=1	110.53	2.704	.3698	33.3	521.4	554.7	466.6	499.9	.0659	1.0012	1,0671
2	112.51	2.657	.3764	34.5	520.3	554.8	465.5	500.0	1890.	.9973	1.0654
3	114.60	2.610	.3831	35.6	519.3	554.0	464.4	500.0	.0703	.9934	1.063
64	116.7	2.564	.3900	36.7	518.2	554.9	463.4	500.I	.0725	.9895	1.062
10	118.9	2.520	0.3968	37.9	517.1	555.0	462.3	500.2	0.0747	0.9856	1.0603
9	121.1	2.477	.4037	39.0	516.0	555.I	461.3	500.3	6920	7186.	1.058
7	123.3	2.434	.4108	40.2	514.9	555.1	460.2	500.4	1670.	8776.	1.056
89	125.4	2.393	.4179	41.4	513.8	555.2	459.I	500.5	.0813	.9739	1.055
6	127.6	2.352	.4252	42.6	512.7	555.3	458.0	500.6	.0835	0026.	1.053
0	129.0	2.311	0.4327	43.8	511.6	555.4	456.9	500.7	.0857	1996.0	1.0518
н	132.2	2.272	.4401	44.9	510.5	555.4	455.8	500.7	6280.	.9622	1.0501
2	134.6	2.233	.4478	46.I	509.4	555.5	454.7	500.8	1000.	.9583	I.048
3	136.9	2.196	.4554	47.2	508.3	555.5	453.6	500.8	1 .0923	.9544	1.046
74	139.3	2.159	.4632	48.4	507.2	555.6	452.5	500.0	.0944	9056.	1.0450
25	141.7	2.123	0.4710	49.5	506.1	555.6	451.4	500.0	9960.	0.9468	1.0434
9	144.2	2.087	.4792	50.7	505.0	555.7	450.3	501.0	8860.	.9430	1.0418
7	146.7	2.052	.4873	51.9	. 503.9	555.8	449.1	501.0	oloi.	-9392	1.040
00	149.2	2.018	.4955	53.1	502.8	555.9	448.0	501.1	.1032	.9354	1.038
62	151.8	1.984	.5040	54.2	501.7	555.9	446.9	501.1	.1054	.9316	1.0370
0	154.4	1.952	0.5123	55.4	500.6	556.0	445.8	501.2	0.1075	0.9278	1.0353
н	157.0	1.920	.5208	56.6	499.5	556.1	444.7	501.3	7601.	.9240	1.033
2	159.6	1.889	.5294	57.7	498.4	556.I	443.6	501.3	6111.	.9202	1.032
83	162.3	1.859	.5379	58.9	497.3	556.2	442.5	501.4	.1141	-9164	1.0305
4	165.0	1.820	.5470	0.00	406.2	556.2	441.4	501.4	.1163	.0126	1.028

TEMPERATURE. - Continued

Temp.	Pressure, 1b.	Sp. vol., cu.	Density, 1b.	Heat content	Latent heat	Heat content	Internal er	Internal energy, B.t.u.		Entropy	
	per sq. in.	it. per 10.	per cur un	Pin In			Evap.	Vapor	Liquid	Evap.	Vapor
	d	V _I	V ₁	Q2	מ	O ₁	U ₂	U1	φ2	716	φ1
1/3	167.8	1.799	0.5559	61.2	495.1	556.3	440.2	501.4	0.1184	0.9088	1.027
	170.5	1.770	.5650	62.4	494.0	556.4	439.1	501.5	.1206	.9050	1.0256
	173.3	1.742	.5744	63.6	492.8	556.4	437.9	Soi.5	.1227	.9013	I.0240
	176.2	1.714	.5834	64.8	491.7	556.5	436.7	501.5	.1249	9268.	1.022
	179.1	1.687	.5928	0.99	490.5	556.5	435.6	901.6	.1270	8939	1.0200
	182.0	1.660	0.6028	67.I	489.4	556.5	434.5	501.6	0.1291	u.8902	1.0193
	185.0	1.633	.6124	68.3	488.2	556.5	433.3	901.6	.1312	.8865	1.017
	188.0	1.607	.6223	69.5	487.0	556.5	432.2	501.7	.1333	.8828	1.016
	0.191	1.581	.6325	70.7	485.9	556.6	431.0	501.7	.1354	.8789	1.0143
45	194.1	1.556	.6427	71.9	484.7	556.6	429.8	501.7	.1375	.8752	1.012
	197.2	1.532	0.6527	73.1	483.5	556.6	428.7	So1.8	0.1396	0.8715	1110.1
	200.4	1.508	.6636	74.2	482.4	556.6	427.6	501.8	.1417	8678	1.0005
	203.6	1.484	.6739	75.4	481.2	556.6	426.4	501.8	.1438	.8641	1.0079
	206.9	1.461	.6845	9.92	480.0	556.6	425.2	501.8	.1459	.8605	1.006
66	210.1	1.437	6269.	7.77	478.8	556.5	424.I	501.8	.1480	.8569	1.0049
8	213.4	1.414	0.707	78.9	477.6	556.5	422.9	501.8	0.1500	0.8533	1.0033
	216.7	1.392	.718	80.0	476.5	556.5	421.8	501.8	.1521	.8497	1.0018
	220.I	1.370	.730	81.2	475.3	556.5	420.6	501.8	.1542	.8461	1.0003
	223.5	1.350	.741	82.4	474.I	556.5	419.4	5or.8	.1563	.8425	866.
104	226.9	1.330	.752	83.6	472.9	556.5	418.2	501.8	.1584	.8389	.9973
	230.4	1.310	0.763	84.7	471.7	556.4	417.1	501.8	0.1605	0.8353	0.0958
	233.9	1.290	922.	85.0	470.5	556.4	415.9	501.8	.1625	.8317	.9942
	237.4	1.270	.787	87.1	469.2	556.3	414.7	501.8	.1646	.8281	.992
801	241.0	1.251	662.	88.3	468.0	556.3	413.5	501.8	9991.	.8245	1166.
100	244.7	I.232	.812	80.4	466.8	556.2	412.3	501.7	.1687	.8200	080.

TEMPERATURE. - Continued

EMPERATURE. - Concluded

Temp.	Pressure, 1b.	Sp. vol., cu.	Density, 1b.	Heat content	Latent heat	Heat content	Internal	Internal energy, B.t.u.		Entropy	
	ber set. III.	it, per in.	per cut to	The state of the s	of sales	of taken	Evap.	Vapor	Liquid	Evap.	Vapor
	d	V1	н ₁	Q2	H	O ₁	Ū,	Ū,	φ3	JIL	φı
10	355-5	0.836	1.196	120.6	433.I	553.7	379.9	500.5	0.2226	0.7277	0.950
2	360.4	.824	1.214	121.8	431.7	553.5	378.6	500.4	.2247	.7242	.9489
7	365.4	.812	1.233	123.0	430.3	553.3	377.3	500.3	.2267	.7207	.947
~	370.4	.800	1.252	124.2	428.9	553.1	376.0	500.2	.2287	.7172	.945
139	375.4	.788	1.269	125.4	427.6	553.0	374.7	500.1	.2308	-7137	.9445
0	380.6	0.777	1.287	126.6	426.2	552.8	373.4	500.0	0.2328	0.7102	0.0430
	385.7	.765	1.307	127.8	424.8	552.6	372.1	499.9	.2349	1901.	9416
~	390.0	.754	1.326	129.0	423.4	552.4	370.8	499.8	.2370	.7032	.040
~	396.2	.743	1.346	130.2	422.0	552.2	369.5	499.7	.2390	2669.	.038
144	401.5	.732	1.366	131.5	420.5	552.0	368.1	499.6	.2410	.6962	.9372
10	406.9	0.722	1.386	132.8	419.0	551.8	366.7	499.5	0.2430	0.6927	0.0357
	412.3	.712	1.406	134.0	417.6	551.6	365.4	499.4	.2450	.6892	.0342
7	417.8	.702	1.426	135.2	416.2	551.4	364.0	499.3	.2470	.6857	.932
~	423.3	.692	1.446	136.4	414.8	551.2	362.7	499.2	.2490	.6822	.031
149	428.9	.682	1.467	137.7	413.3	551.0	361.3	499.I	.2510	.6787	-9297
0	434.5	0.672	1.488	139.0	411.8	550.8	360.0	499.0	0.2530	0.6752	0.0282
10	463.6	.626	1.597	145.0	404.5	549.5	353.1	498.I	.2635	.6577	.9212
0	494.0	.584	1.712	151.3	396.9	548.2	346.0	497.3	.2739	.64oI	.914
10	526.0	.544	1.838	157.7	389.1	546.8	338.8	496.5	.2843	.6225	906.
170	559.4	.506	1.976	164.2	381.1	545.3	331.4	495.7	.2947	.6049	9668.
175	594.4	0.472	2.119	170.9	372.8	543.7	323.9	494.9	0.3052	0.5872	0.802
0	631.2	.441	2.268	177.7	364.3	542.0	316.3	404.I	.3157	.5695	000
10	669.5	.412	2.427	184.8	355.6	540.4	308.4	493.3	.3265	.5516	.00700
0	709.5	.385	2.597	192.2	346.5	538.7	300.3	492.5	.3376	.5335	1178.
10	751.4	.358	2.793	199.9	337.2	537.1	291.9	491.8	.3489	.5152	.864
_	795.1	.334	2.994	207.9	327.5	535.4	283.2	401.I	.3605	9906.	.877

PRESSURE TABLE

E H004		100 100	ner cil. it.	of light	of liquid	of vapor					
	+	Þ	H	°O	1	ő	Evap.	Vapor U,	Liquid	Evap.	Vapor
			Vı							T	
	-102.65	219	:	:		:			:		
	- 86.53	115		:		:					
	- 76.28	80									
1	- 68.55	61.2									
2	- 62.13	49.72	0.02013	-106.2	633.5	527.5	588.5	482.3	-0.2407	1.5940	1.3533
	- 56 84	AT 70	0.02202	1001	620.8	2000	582.0	182.5	-0.226T	1.5661	T. 2400
		6/114	002203	4.20.4	6.620	2000	2000	183.5	1010	1 5405	1 2270
		21.05	02/20	2000	622 2	230.3	519.0	4 200	2022	1.5165	1.2142
		28.75	.03478	1 86.5	620.1	532.6	572.7	486.2	0101. —	1.4045	1.3026
	- 40.91	26.05	.03839	- 82.9	617.3	533.8	569.8	486.9	1826	1.4745	1.2919
	- 37.76	23.84	0.04195	- 79.3	614.6	534.8	566.8	487.5		1.4570	1.2827
		21.99	.04548		0.110	535.8	503.8	487.8	- 1005	1.4407	1.2742
	- 32.10	20.40	.04902		0.000	530.0	501.3	488.2		1.4259	1.2007
14	29.55	19.02	.05250	70.2	007.3	537.5	550.0	400.0	1523	1.4122	1.2599
_		10./1	.05015	5./0	003.1	530.3	220.7	409.2	1450	1.3993	1.233/
. 9I	- 24.87	16.78	0.05959	- 65.0	603.1	538.7	554.5	489.5	-0.1399	1.3872	1.2473
. 21		15.85	.06309	- 62.4	1.100	539.5	552.2	489.8	1343	1.3759	1.2416
_		15.02	.06658	I.00 -	599.2	540.0	550.2	490.I	.1289	1.3650	1.2361
. 61	- 18.63	14.30	.06993	- 57.9	597.4	540.5	548.3	4004	1238	1.3549	1.2311
		13.66	.07321	- 55.7	595.6	541.0	546.4	490.7	8811. –	I.3450	1.2262
21	- 14.84	13.025	0.07680	- 53.6	594.0	541.4	544.5	0.164	-0.1141	1.3358	1.2217
22	- 13.07	12.470	61080.	- 51.6	592.4	541.7	542.8	491.3	9601	1.3269	1.2173
_	- II.36	11.965	.08354	- 49.6	590.8	542.2	541.1	491.5	1053	1.3182	1.2139
_	69.6 -	11.490	.08703	- 47.7	589.4	542.6	539.4	491.7	IIOI. —	1.3102	1.2091
25	8.08	11.065	.09033	- 45.9	588.0	543.0	537.8	491.9	0260. —	1.3023	1.2053
26	6.54	10.682	0,00363	_ 44.2	586.6	543.3	536.3	402.1	-B.0032	1.2050	1.2018
_		10.308	00000		200	543.6	534.8	402.3	0805	1.2877	1.1082
200	3.50	0.000	.1003	1 40.00	584.0	543.9	533.4	492.5	0859	I.2805	1.1946
	2.17	0.640	.1036	- 30.2	582.7	544.2	532.0	492.7	0823	1.2740	1.1917
		9.344	0/01.	- 37.6	581.4	544.5	530.6	492.9	6840	1.2673	1.1884

PRESSURE TABLE. -- Continued

Density, 1b. Heat content per cu. ft. of liquid
v ₁ Q ₃
0.1104 -36.1
.1137 -34.6
_
.1205 -31.7
.1238 -30.3
0.1271 -28.9
_
.1337 -26.3
.1403 -23.7
0.1438 -22.4
.1471 -21.2
_
.1570 -17.7
0.1603 -16.6
_
1099 -13.3
1828
.1860 - 8.2
.1893 - 7.2
0.1925 - 6.2
1
4.4
1
.2057

PRESSURE TABLE.—Continued

o Di	Sp. vol.,	Density, 1b.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
4	ca. ic. pei ib.	per cu. 10:	ninhii io		O. S.	Evap.	Vapor	Liquid	Evap.	Vapor
t	V1	$\frac{x}{v_1}$	Q ₃	T	01	U ₂	U ₁	φ*	HE	ϕ_1
7	0			3	(1)	9 800	2 907	1	1901 1	1001
30.50	4.784	0.2000	_ I.7	552.I	550.4	490.0	490.7	10.0035	1.1201	1.1227
31.34	4.711	.2123		551.3	550.5	497.8	400.8	7100	1.1227	1.1211
32.11	4.640	.2155	+ 0.1	550.6	550.7	497.0	496.9	+ .0002	1.1194	9611.1
22.87	4.571	.2188		540.0	550.0	406.2	407.0	.0020	1.1162	1,1181
33.62	4.505	.2220	6.I	549.2	551.1	495.4	497.I	.0038	1.1130	1.1166
						,				
34.36	4.440	0.2252	2.7	548.5	551.2	494.6	497.2	0.0055	1.1008	1.1151
35.10	4.378	.2284	3.5	547.8	551.3	493.9	497.3	.0072	1.1066	1.1137
35.81	4.317	.2316	4.3	547.I	551.4	493.2	497.4	.0089	1.1036	1.1123
36.51	4.256	.2350	1. K	546.4	551.5	492.5	497.5	.0105	1.1005	1.1109
37.22	4.197	.2383	5.9	545.7	551.6	491.8	497.6	.0121	1.0984	1.1096
27.00	4 120	9770	7	2 2 2 2	n L	40T.T	407.7	0.0127	T.0047	1.1082
28.64	4.1.50	2440	2	543.0	200	400.4	407.8	.0152	1.00.1	1.1070
30.04	4:004	1870	, o	244.3	0.101	780.7	107.0	0010	1.0880	1.1057
40.00	2000	ATTC.	5:0	243.0	22.00	480.0	408.0	0185	1.0860	1.1044
40.66	3.027	.2546	0.0	542.2	552.I	488.3	498.1	.0200	1.0832	1.1032
			`)					
41.32	3.879	0.2578	10.7	541.5	552.2	487.6	498.2	0.0215	1.0804	1.1020
41.97	3.832	.2610	11.5	540.0	552.4	486.9	498.3	.0230	1.0777	1.1008
42.67	3.785	.2642	12.2	540.3	552.5	486.2	498.3	.0245	I.0750	1.0996
43.28	3.740	.2674	12.9	539.7	552.6	485.5	408.4	.0200	1.0723	1.0984
43.88	3.696	.2706	13.6	539.I	552.7	484.8	498.4	.0275	1.0706	1.0972
44.54	3.643	6.2737	14.3	538.5	552.8	484.2	408.5	0.0280	1,0671	1,0961
45.17	3.610	.2770	15.0	537.0	552.0	483.5	408.5	.0303	1.0646	1.0950
45.80	3.568	2803	15.7	527.3	553.0	482.0	408.6	.0317	1.0621	1.0040
46.41	2.527	2825	1.6.4	526.6	553.0	482.2	408.6	.0331	1.0596	1.0028
47.02	2.48%	2868	17.2	535.0	553.I	481.5	408.7	.0345	1.0572	1.0017
-0./+	604.6		!	6.000	1.000				5	`
47.63	3.446	0.2002	17.9	535.3	553.2	480.9	498.8	0.0359	1.0547	3000 I
48.23	3.407	.2935	18.5	534.8	553.3	480.3	498.8	.0372	1.0523	1.0895
48.82	3.370	.2967	19.2	534.2	553.4	479.8	499.0	.0385	1.0499	1.0884
49.39	3.335	.2999	20.0	533.5	553.5	479.0	499.0	.0398	I.0475	1.0873
40.04	000	0000	200	200	L	478.4	400.I	1170	1.0462	1.0863

PRESSURE TABLE.—Continued

	Vapor	ϕ_1	0	1.0053	T.0843	1.0833	1.0823	1.0813		1.0803	1.0794	I.0785	1.0776	1.0767	8240	1 0740	1.0749	1.0/40	1.0731	1.0722	1.0713	1.0704	1.0695	1.0686	1.0677	1.0669	0990·I	1.0649	1.0640	1.0632	,	I.0024	1.0010	1.0008	I.0000	1.0502
Entropy	Evap.	116	(1.0429	1.0400	1.0383	1.0361	I.0339		1.0317	1.0295	1.0273	1.0252	1.0232	0100 1	02201	6010.1	010.1	1.0147	1.0120	1.0105	I.0085	1.0065	1.0045	1.0028	1.0006	.9985	.9965	.0045	.9926		0.9908	0686.	.9872	.9854	.9841
	Liquid	φ2		0.0424	.0437	.0450	.0463	.0476		0.0489	.05oi	.0513	.0525	.0537	0710	79.0	1000	05/3	*0504	.0590	0.0607	8190.	.0629	.0640	.0651	0.0662	.0673	.0684	5090	90200		0.0717	.0728	.0738	.0748	.0758
rgy, B.t.u.	Vapor	U,		499.1	499.2	499.2	499.3	499.4		400.4	499.5	499.5	499.5	499.5	1 004	499.5	499.0	499.0	499.7	499.7	499.8	499.8	499.9	499.9	499.9	400.0	400.0	500.0	400.0	500.0	,	500.0	500.I	500.I	500.2	500.2
Internal energy, B.t.u.	Evap.	U2		477.7	477.3	476.6	476.0	475.5		474.9	474.2	473.6	473.I	472.4	0	4/1.9	4.1.4	470.0	470.I	469.7	469.2	468.7	468.I	467.5	466.9	466.4	465.8	465.3	464.7	464.2		463.7	463.3	462.7	462.3	461.7
Heat content		01		553.0	553.7	553.8	553.8	553.9		553.9	554.0	554.0	554.1	554.1	1	2.4.6	554.2	554.3	554.4	554.4	554.5	554.5	554.6	554.6	554.7	5.54.7	8.4.8	554.8	554.8	554.9		554.9	554.9	555.0	555.0	555.1
Latent heat	Pin bir	ı		532.2	531.8	531.2	530.5	530.0		529.4	528.7	528.I	527.7	527.0	7 402	320.0	520.0	525.5	525.0	524.4	523.9	523.4	522.8	522.2	521.7	521.2	520.7	520.1	\$10.5	519.1		518.6	518.1	517.6	517.1	516.6
Heat content	nin bir 10	Q ₂		21.4	21.9	22.6	23.3	23.0	,	24.5	25.3	25.0	26.4	27.I	1	20.00	20.2	28.8	29.4	30.0	30.6	31.1	31.8	32.4	33.0	33	34.1	34.7	25.2	3.00	3	36.3	36.8	37.4	37.9	38.5
Density, 1b.	per cu. 1c.	$\frac{r}{v_1}$,	0.3003	.3095	.3126	.3150	1918.	,	0.3223	.3257	.3291	.3323	.3356	0000	0.5500	.3420	.3452	.3484	.3516	0.3550	.3583	:3617	.3650	.3682	0.3715	.3747	.3770	2811	.3843	2	0.3876	.3908	.3940	.3973	.4005
Sp. vol.,	cu. it. per in.	Vı	,	3.205	3.231	3.100	3.166	3.134		3.102	3.070	3.030	3.000	2.980	1	2.952	2.024	2.897	2.870	2.844	2.817	2.701	2.765	2.740	2.716	2.602	2.660	2.646	2.624	2.602		2.580	2.559	2.538	2.517	2.497
Temp.,	4	t		50.55	51.13	51.70	52.27	52.83	,	53.30	53.05	54.50	55.04	55.58	4	50.10	50.02	57.13	57.03	58.14	58.65	50.15	59.66	91.09	60.67	61.18	61.68	62.10	62.60	63.19)	63.61	64.14	64.50	65.02	62.49
Pressure,	·or	p.		16	92	0.3	04	0.50	2	90	07	000	00	100	1	101	102	103	104	105	901	107	108	100	011	III	112	II3	114	11.5	>	911	LIZ	811	611	120

PRESSURE TABLE -- Continue

B.t.u. Entropy	Vapor Liquid Evap.	500.3 500.3 500.3 500.4 500.4 500.4 500.4 500.4 500.4 500.5 500.4 500.6 500.4 500.6 500.7 500.7 500.8 50	500.5 0.0818 0.09729 1.0539 500.6 .0828 .9711 1.0539 500.6 .0838 .9693 1.0531 500.6 .0848 .9676 1.0524 500.7 .0858 .9659 1.0517	500.7 0.0868 0.09642 1.0510 500.7 .0878 .9625 1.0503 500.7 .0887 .9608 1.0495 500.8 .0896 .9591 1.0487 500.8 .0905 1.0480	500.8 0.0914 0.0559 1.0466 500.8 .0923 .9543 1.0469 500.8 .0932 .9527 1.0459 500.9 .0941 .9510 1.0451 500.9 .0950 .9497 1.0444	500.9 0.0959 0.0478 1.0430 500.9 .9462 1.0430 501.0 .9977 .9447 1.0424 501.0 .0986 .9432 1.0418 501.0 .9995 .9417 1.0418	501.0 0.1004 0.0402 1.0406 501.0 .1013 .9387 1.0400 501.1 .1022 .9372 1.0394
Internal energy, B.t.u.	Evap.	461.3 460.8 460.4 459.9 459.4	458.8 458.4 457.8 456.8	456.4 455.9 455.1 454.5	454.0 453.6 453.1 452.7 452.2	451.7 451.2 450.8 450.4 449.9	449.4 449.0 448.6
Heat content	o,	\$55.1 \$55.1 \$55.1 \$55.1	ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស	22222222 2222222 244442	សង្គម មក មានមានមា មានមានមា មានមានមា មានមានមា	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0, 00, 00, 00, 00, 00, 00, 00, 00, 00,
Latent heat of liquid	T	\$16.1 \$15.6 \$15.1 \$14.6 \$14.1	513.5 513.1 512.5 512.0 511.4	511.1 510.6 510.2 509.7 509.2	508.7 508.3 507.8 507.4	506.4 506.0 505.5 505.1 504.7	504.2
Heat content of liquid	60	39.0 39.5 40.0 40.5 41.1	4 4 4 5	444 4.774 4.7.60 4.7.60	46.8 47.7 48.2 7.84	49.2 49.6 50.1 50.6 51.1	\$1.6 \$2.0 \$2.5
Density, Ib.	H A	0.4037 .4070 .4103 .4136	0.4198 .4232 .4266 .4297 .4330	0.4363 .4396 .4427 .4458	0.4543 .4554 .4587 .4621 .4653	0.4686 .4719 .4751 .4785	0.4847
Sp. vol., cu. ft. per lb.	A ³	2.457 2.457 2.437 2.418	2.382 2.363 2.345 2.327 2.309	2.292 2.275 2.259 2.243	2.201 2.196 2.180 2.164 2.149	2.134 2.119 2.105 2.090 2.076	2.063 2.049 2.035
Temp.	÷	65.94 66.41 66.85 67.33 67.33	68.27 68.7 69.2 70.1	70.5 71.3 71.7 72.2	72.6 73.0 73.4 74.2	74.7 75.1 75.9 76.3	76.7
Pressure,	Q.	121 122 123 124 125	126 127 128 129 130	131 132 133 134 135	136 137 138 139 140	141 142 143 144 145	146 147 148

PRESSURE TABLE. -- Continued

	Vapor	ϕ_1	1.0374	1.0267	1,0361	1 0255	1.0348	1.0342	1.0336	1.0330	1.0324	1.0318	1 0210	1.0312	1.0300	1.0300	1.0294	1.0288	1.0282	1.0277	1.0271	1.0265	1.0259	1.0252	1.0248	1.0243	1.0237	T.002T	-	1.0226	I.0220	1.0215	1.0200	1.0204
Entropy	Evap.	JIE	0.0326	.03TT	.0206	1800	.9266	0.9252	.9238	.9224	.9210	6616.	0.0183	2016.0	0010.	.9154	.9140	.9120	0.0113	6606.	.9085	1200.	.9062	. 0.0045	.0032	0100.	9000	8002	-660	a.8979	.8965	.8952	.8939	.8920
	Liquid	φ2	0.1048	1056	1065	1074	.1082	0001.0	8601.	9011.	1114	.1122	000	0.1130	11.50	.1140	·1154	.1162	0.1170	8711.	9811.	1194	.1201	0.1208	.1216	.1224	.1231	1220	60-1	0.1247	.1255	.1263	.1270	.1277
ergy, B.t.u.	Vapor	\mathbf{U}_1	1.105	T. TOZ	501.2	2010	501.2	501.2	501.3	501.3	501.3	501.3	2	501.3	501.4	501.4	5o1.4	501.4	501.4	501.4	501.4	501.4	501.5	201.2	501.5	501.5	501.5	201.5	55	501.5	501.5	501.5	501.6	501.6
Internal energy, B.t.u.	Evap.	U ₂	447.3	246	446.4	4460	445.5	445.1	444.7	444.3	443.9	443.5	0	443.0	442.0	442.2	441.8	441.3	440.0	440.5	440.1	439.7	439.3	728	438.4	428.0	437.6	457.0	43/15	436.8	436.4	436.0	435.6	435.3
Heat content		Q ₁	עעעע	0.000	223.9	2000	556.0	556.0	556.I	556.1	556.I	556.1	1	220.2	550.2	550.2	556.2	556.3	556.3	556.3	556.3	556.4	556.4	256.4	556.4	556.4	556.4	4 922	230:4	556.5	556.5	556.5	2.955	556.5
Latent heat		ı	502.1	50T 6	501.2	8 00 1	500.3	499.9	499.5	1.664	498.7	498.3	100	6./64	497.4	497.0	496.6	496.2	405.8	405.4	405.0	494.6	494.2	402.7	403.3	402.0	402.5	400 T	4.164	8.164	401.4	491.0	400.6	490.2
Heat content		Q ₂	43.8	2 7 2	24.8	0 0	55.7	56.1	56.6	57.0	57.4	57.8	O L	20.0	50.0	59.5	59.0	1.00	60.5	60.09	61.3	61.7	62.2	62.7	62.1	63.5	63.0	64.2	2	64.7	65.1	65.5	65.0	66.3
Density, 1b.		$\frac{r}{v_1}$	0.5013	2002	.5070	CITA	.5144	0.5179	.5211	.5244	.5277	.5305	2	5333	.5373	.5400	.5441	.5470	0.5504	.5537	.5568	.5599	.5631	0.5663	.5605	.5727	.5760	1073	+6/6	G. 5828	.5862	.5896	.5028	.5963
Sp. vol.,		V1	1.005	1.082	1.060	1.057	1.944	1.931	1.919	1.907	1.895	1.885	1 843	5/001	1.001	1.049	1.838	1.828	1.817	1.806	962.1	1.786	1.776	1.766	1.756	1.746	1.736	1.726	200	1.716	1.706	969.I	1.687	1.677
Temp.,		4	78.7	70.1	70.4	20.02	80.2	9.08	81.0	81.3	81.7	82.1	200	0.20	62.9	03.3	83.7	84.0	84.4	84.8	85.1	85.4	85.8	86.2	86.5	86.0	87.2	87.6		87.9	88.3	88.6	89.0	89.3
Pressure,		ф	ISI	152	153	154	155	156	157	158	159	091	191	101	162	103	104	105	991	167	891	691	170	171	172	173	174	175	2	9/1	177	178	179	180

PRESSURE TABLE - Continued

Pressure,	Temp.,	Sp. vol.,	Density, 1b.	Heat content	Latent heat	Heat content	Internal er	Internal energy, B.t.u.		Entropy	
Q.	, ا ب	Ā	HI	0,0	7	0.	Evap.	Vapor Tr.	Liquid	Evap.	Vapor
			VI	;			22		-		
181	89.7	1.668	a.5995	66.7	489.8	556.5	435.9	501.6	0.1284	0.8914	1.0198
2	0.00	1.659	.6028	67.1	489.4	556.5	434.5	501.6	.1201	.8002	1.010
3	90.4	1.650	1909.	67.5	489.0	556.5	434.I	501.6	.1298	.8889	1.0187
4	600.7	1.641	4609.	6.79	488.6	556.5	433.7	501.6	.1205	.8877	1.018
25	0.10	1.633	.6124	68.3	488.2	556.5	433.3	501.6	.1312	.8863	1.0177
9	91.4	1.624	0.6158	68.7	487.8	556.5	433.0	501.7	0.1310	0.8852	1.017
1	7.16	1.615	.6192	1.69	487.4	556.5	432.6	501.7	.1327	.8830	1.0166
00	92.0	1.606	.6227	69.5	487.0	556.5	432.2	501.7	.1334	.8827	1010.1
6	92.4	1.597	.6262	6.69	486.6	556.5	431.8	501.7	.1341	.8814	1.0155
0	92.7	1.589	.6293	70.3	486.2	556.5	431.4	501.7	.1348	.8804	1.0149
161	93.0	1.581	0.6325	70.7	485.0	556.6	431.0	501.7	0.1354	0.8780	1.0143
2	93.4	1.573	.6357	71.1	485.5	556.6	430.6	501.7	.1361	.8777	1.0138
3	93.7	1.565	.6390	71.5	485.1	556.6	430.2	501.7	.1368	.8765	1.013
4	0.40	1.557	.6423	71.9	484.7	556.6	429.8	501.7	.1374	.8753	1.012
n	94.3	1.549	.6456	72.3	484.3	556.6	429.4	501.7	.1381	.8741	1.0122
961	94.6	1.541	0.6489	72.7	483.0	556.6	420.0	501.7	0.1388	0.8720	1.0117
7	94.9	1.533	.6523	73.1	483.5	556.6	428.6	501.7	.1304	8718.	I.OII2
00	95.2	1.525	.6557	73.5	483.I	556.6	428.3	501.8	1401	9028.	1.0107
6	95.5	1.517	.6592	73.8	482.8	556.6	428.0	501.8	.1408	8604	1.0102
0	95.9	1.510	.6623	74.1	482.5	556.6	427.7	501.8	.1414	.8685	1.0007
202	96.5	1.495	0899.0	74.9	481.7	556.6	426.9	501.8	.1428	G.8659	1.0087
4	1.76	1.480	.6757	75.6	481.0	556.6	426.2	501.8	.1441	.8636	1.0077
9	8.76	1.466	.6821	76.3	480.3	556.6	425.5	8.105	.1454	.8613	1.0067
208	98.4	1.452	7889.	77.0	479.6	556.6	424.8	Sor.8	.1467	.8591	1.0058
0	0.00	1.428	£200°.	77.7	X X X X	בעט ב	T NON	O LOL	1470	Sefo	T DOAS

PRESSURE TABLE. -- Continued

Pressure,	Temp.,	Sp. vol.,	Density, 1b.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
G	4	cu. It. per 10.	per cu. 16.	pinhi io	Dinhi io	or vapor	Evap.	Vapor	Liquid	Evap.	Vapor
Q.	t	V1	T VI	Q ₃	L	Q ₁	υ,	$\overline{\mathbf{U}}_1$	φ2	JIE	φ1
212	9.66	1.424	0.7022	78.4	478.I	556.5	423.4	501.8	0.1492	0.8547	1.0039
214	100.2	1.410	.7092	79.1	477.4	556.5	422.7	501.8	.1505	.8525	1.0030
216	100.8	1.397	.7158	8.64	476.7	556.5	422.0	501.8	.1517	.8504	1.0021
812	10I.4	1.384	.7225	80.5	476.0	556.5	421.3	501.8	.1529	.8483	1.0012
220	102.0	1.371	.7294	81.2	475.3	556.5	420.6	501.8	.1541	. 8462	I.0003
222	102.6	1.358	0.7364	81.0	474.6	556.5	419.9	501.8	0.1554	0.8440	0.0004
224	103.2	1.346	.7420	82.6	473.9	556.5	419.2	501.8	.1566	.8419	.9985
226	103.7	1.334	.7496	83.3	473.2	556.5	418.5	501.8	.1578	.8398	9466.
228	104.3	1.323	.7559	84.0	472.5	556.5	417.8	501.8	.1590	.8377	1966.
230	104.9	1.312	.7622	84.6	471.8	556.4	417.2	501.8	.1602	.8357	-9959
22	105.6	1,200	0.7602	00	1.174	556.4	416.5	8.105	0.1614	0.8336	0.0050
2.4	1060	1.280	7778	0.25	470.5	556.4	415.0	501.8	.1626	.8316	.0042
336	106.6	1.278	.7825	86.6	469.8	556.4	415.2	501.8	.1637	.8296	.9933
238	107.2	1.267	.7803	87.2	469.1	556.3	414.6	501.8	.1649	.8276	.9925
240	107.7	1.256	.7962	87.9	468.4	556.3	413.9	501.8	0991.	.8256	9166.
242	108.2	1.245	0.8032	88.5	467.7	556.2	413.2	501.7	.0.1672	0.8236	8066.0
244	108.8	I.234	8104	89.2	467.0	556.2	412.5	501.7	.1683	.8216	6686.
246	109.3	1.224	.8170	89.8	466.3	556.I	411.9	501.7	1695	9618.	1686.
248	100.0	1.214	.8237	90.5	465.6	556.1	411.2	501.7	90/1.	9218.	.9882
250	110.4	1.204	.8306	1.19	464.9	556.0	410.6	501.7	7171.	7818.	-9874
252	0.111	1.195	0.8368	7.16	464.3	556.0	410.0	501.7	0.1728	0.8138	0.9866
254	111.5	1.185	.8439	92.3	463.7	555.0	400.4	501.7	.1739	6118.	.9858
256	112.0	1.176	.8503	92.9	463.0	555.9	408.8	501.7	.1750	.8100	.9850
258	112.5	1.167	.8569	93.6	462.3	555.9	408.1	501.7	1921.	1808.	.9842
260	113.1	1.158	.8636	04.2	461.7	555.0	407.5	501.7	1771.	.8063	.9834

PRESSURE TABLE. -- Continued

Pressure,	Temp.,	Sp. vol.,	Density, 1b.	Heat content	Latent heat	Heat content	Internal en	Internal energy, B.t.u.		Entropy	
			T T			o vapor	Evap.	Vapor II.	Liquid	Evap.	Vapor
			\mathbf{v}_1	5	4	5	5	5	4-2	T	
62	113.6	1.140	0.8703	94.8	461.0	55.55	406.9	501.7	0.1782	0.8044	0.9826
64	114.1	1.140	.8772	95.4	400.4	555.8	406.2	301.6	.1792	.8026	8186.
99	114.6	1.131	.8842	0.96	459.7	555.7	405.6	501.6	.1803	.8007	0186.
28	115.1	1.122	.8913	9.96	459.I	555.7	405.0	9.105	.1813	6864.	.9802
270	115.6	1.113	.8985	97.2	458.5	555.7	404.4	501.6	.1824	1797.	.9795
72	116.1	1.104	0.0058	97.8	457.8	555.6	403.8	501.6	0.1834	0.7953	0.9787
74	0.911	1.096	.9124	98.4	457.2	555.6	403.1	501.5	.1845	.7935	08/6.
276	117.1	1.088	1616.	0.66	456.5	555.5	402.5	501.5	.1855	71917	.9772
28	9.711	1.080	.9259	9.66	455.9	555-5	401.9	501.5	9981.	6684.	-9765
8	118.1	1.072	.9328	100.2	455.3	555.5	401.2	501.4	1876	.7881	.9757
82	118.6	1.064	0.0308	100.8	454.6	555.4	400.6	501.4	0.1887	0.7863	0.9750
34	1.911	1.056	.9470	101.3	454.0	555.3	400.0	501.3	7681.	.7846	.9743
36	119.5	I.049	.9533	6.101	453.4	555.3	399.4	501.3	9061	.7829	.9735
000	120.0	1.043	9096.	102.4	452.9	555.3	398.8	501.2	9161.	.7812	.9728
8	120.5	1.034	1296.	103.0	452.2	555.2	398.2	501.2	.1926	.7795	.9721
32	121.0	1.026	0.9747	103.6	451.6	555.2	397.6	501.2	0.1936	0.7778	0.9714
94	121.4	1.019	9814	104.1	451.0	555.1	397.1	501.2	1946	1922	1026.
96	121.9	1.012	1886.	104.7	450.4	555.1	396.5	501.2	.1956	.7744	00/6:
98	122.4	1,005	.9950	105.3	440.8	555.I	395.9	501.2	9961.	.7727	.9693
300	122.9	0.998	1.002	105.9	449.2	555.0	395.3	501.2	9261.	0177.	9896.
310	125.2	0.965	1.036	108.6	446.2	554.8	392.5	501.1	0.2023	0.7626	0.0649
20	127.4	.932	1.073	111.3	443.2	5.54.5	389.6	500.0	.2069	.7545	4196.
30	129.6	406.	1.106	114.1	440.3	554.4	386.8	500.0	.2115	.7468	.9583
40	131.8	.876	1.142	116.7	437.4	554.I	384.1	500.8	.2160	.7390	.9550
20	133.0	.840	1.178	110.2	424.6	25.00	281.4	9.005	.2203	.7316	0150.

PRESSURE TABLE. - Concluded

	Vapor	φ1	0.0480	0940	0046.	-9432	.9404	.9376	0.9349	.9322	.9295	.9269	.9244	0.9220	7616.	.9173	.9150	.9127	0.9070	.9015	.8963	.8913	0.8865	88188.	.8772	.8728
Entropy	Evap.	JIF	0.7244	24.44	5/1/2	0012.	.7038	.6972	8069.0	.6844	.6780	8179.	.6657	0.6598	.6540	.6482	.6424	.6368	0.6232	6609.	.5970	.5845	0.5724	.5005	.5489	.5378
	Liquid	φ1	G.2245	7 1	5077	.2320	.2366	.2404	0.2441	.2478	.2515	.2551	.2587	0.2622	.2657	1692.	.2726	.2759	0.2838	9162.	.2993	.3068	0.3141	.3213	.3283	.3350
rgy, B.t.u.	Vapor	\mathbf{U}_1	7002	4:000	500.2	500.0	8.664	9.664	499.4	409.I	498.9	498.7	498.5	498.2	408.0	497.7	407.4	1.264	496.5	495.9	495.3	494.7	494.2	493.7	493.2	492.7
Internal energy, B.t.u.	Evap.	U ₂	24%	3/0.0	370.1	373.5	371.0	368.5	365.9	363.4	361.0	358.6	356.3	354.0	351.7	349.3	347.0	344.6	339.0	333.5	328.1	322.8	317.6	312.4	307.3	302.2
Heat content	or vapor	Q ₁	. 677	4.000	553.1	552.8	552.4	552.0	551.7	551.3	550.9	550.5	550.1	549.6	540.2	548.8	548.3	547.9	546.7	545.6	544.5	543.4	542.3	541.2	540.I	530.I
Latent heat	Dimbir 10	L	421.8	431.0	429.0	426.3	423.6	420.9	418.2	415.6	413.0	410.4	407.9	405.4	402.0	400.4	397.9	395.4	389.2	383.2	377.3	371.5	365.7	359.9	354.2	348.6
Heat content	Diagram of the control of the contro	Q ₂	1216	0.177	124.1	126.5	128.8	131.1	133.5	135.7	137.9	140.1	142.2	144.2	146.3	148.4	150.4	152.5	157.5	162.4	167.2	6.171	176.6	181.3	185.9	100.5
Density, 1b.	per cur in:	$\frac{\pi}{v_1}$	1 214	417.1	1.250	1.287	1.323	1.359	1.395	1.433	1.471	1.511	1.548	1.585	1.621	1.658	1.698	1.736	1.835	1.934	2.033	2.14i	2.237	2.342	2.451	2.558
Sp. vol.,	cu. it. per io.	V ₁	800	470.0	008.	.777	.756	.736	0.717	809.	.680	.662	.646	0.631	719.	.603	.589	.576	0.545	.517	.492	.467	0.447	.427	.408	.301
Temp.,	4	₩	125	133.9	137.9	139.9	141.8	143.7	145.6	147.4	149.2	151.0	152.7	154.4	156.1	157.8	159.4	160.9	164.8	168.6	172.3	175.8	179.2	182.5	185.7	188.8
Pressure,	.0.	d.	090	300	370	380	390	400	410	420	430	440	450	460	470	480	400.	200	525	550	575	0009	625	650	675	700

SUPERHEATED AMMONIA (Nos. 5 to 12)

		Liquid	Vapor	10°	20°	30°	40°	50°	°09	°07	80°	°06	100°
v	Temp. Q Vol.	-106.2 0.02260 2407	527.5 49.72 1.3533	-52.13 532.5 50.996 1.3658	-42.13 537.4 52.271 1.3775	-32.13 542.4 53.545 1.3893	-22.13 547.3 54.818 1.4008	-12.13 552.3 56.090 1.4121		+ 7.87 562.4 58.627 1.4339	+17.87 567.4 59.729 1.4443	+27.87 572.5 61.169 1.4551	+37.87 577.5 62.436 1.4653
9	Temp. Q Vol.	-100.4 -0.02273 -2261	529.0 41.79 1.3400	-46.84 534.0 42.783 1.3525	-36.84 539.0 43.772 1.3643	-26.84 543.9 44.758 1.3760	-16.84 548.9 45.740 1.3874	- 6.84 553.9 46.859 1.3985	+ 3.16 558.9 47.696 1.4096	+13.16 563.9 48.670 1.4204	+26.16 569.0 49.642 1.4309	+36.16 574.0 50.522 1.4415	+46.16 579.0 51.580 1.4518
~	Temp. Q Vol.	- 95.3 - 95.3 - 0.02286 2135	530.3 36.23 1.3270	-42.23 535.3 37.148 1.3395	-32.23 540.3 38.002 1.3512	-22.23 545.3 38.931 1.3629	-12.23 550.3 39.847 1.3742	- 2.23 555.3 40.780 1.3854	+ 7.77 560.3 41.700 1.3965	+17.77 565.3 42.618 1.4072	+27.77 570.4 43.533 1.4178	+37.77 575.4 44.447 1.4283	+47.77 580.4 45.359 1.4387
00	Temp. Q Vol.	- 90.8 0.02298 2022	531.4 32.05 1.3143	-38.13 536.4 32.590 1.3267	-28.13 541.4 33.432 1.3384	-18.13 546.4 34.273 1.350m	- 8.13 551.4 35.112 1.3614	+ 1.87 556.4 35.950 1.3726	+11.87 561.4 36.787 1.3837	+21.87 566.4 37.623 1.3943	+31.87 571.5 38.455 1.4050	+41.87 576.5 39.251 1.4155	+51.87 581.5 40.046 1.4258
6	Temp. Q Vol.	- 86.5 0.02308 - 1919	532.6 28.75 1.3026		-24.40 542.6 29.872 1.3266	-14.40 547.7 30.610 1.3385	- 4.40 552.7 31.349 1.3497	+ 5.60 557.7 32.081 1.3608	+15.60 562.7 32.814 1.3718	+25.60 567.7 33.545 1.3826	+35.60 572.7 34.276 1.3931	+45.60 577.8 35.005 1.4036	+55.60 582.8 35.733 1.4139
01	Temp. Q Vol.	- 82.9 0.02318 - 1826	533.8 26.05 1.2919	-30.91 538.8 26.647 1.3042	-20.91 543.8 27.293 1.3159	-10.91 548.9 27.950 1.3277	- 0.91 553.9 28.581 1.3389	+ 9.19 558.9 29.210 1.3500	+19.19 563.9 29.199 1.3610	+29.19 569.0 30.467 1.3719	+39.19 574.0 31.094 1.3822	+49.19 579.1 31.719 1.3928	+59.19 584.1 32.345 1.4030
II	Temp. Q Vol.	- 79.3 - 79.3 - 0.02326 1743	534.8 23.84 1.2827	-27.76 539.8 24.416 1.2949	-17.76 544.8 25.012 1.3067	- 7.76 549.9 25.597 1.3184	+ 2.24 554.9 26.181 1.3297	+12.24 559.9 26.764 1.3407	+22.24 564.9 27.307 1.3517	+32.24 570.0 27.927 1.3626	+42.24 575.0 28.507 1.3729	+52.24 580.1 29.086 1.3835	+62.24 585.1 29.664 1.3937
22	Temp. Q Vol.	- 76.0 0.02333 1665	535.8 21.99 , 1.2742	- 24.83 538.8 22.53 1.2865	-14.83 545.8 23.06 1.2982	- 4.83 550.9 23.60 1.3097	+ 5.17 555.9 24.13 1.3212	+15.17 560.9 24.67 1.3322	+25.17 566.0 25.30 1.3431	+35.17 571.0 25.73 1.3540	+45.17 576.1 26.27 1.3643	+55.17 581.1 26.80 1.3747	+65.17 586.2 27.33 1.385

SUPERHEATED AMMONIA (Nos. 5 to 12). - Continued

1 1		Liquid	Vapor	LIO°	120°	130°	140°	150°	160°	180°	200°	250°	300°
	Temp. Q Vol. \$\phi\$	-106.2 0.02260 2407	\$ 527.5 49.72 1.3533	+47.87 582.6 63.703 1.4753	+57.87 587.6 64.969 1.4863	+67.87 592.7 66.235 1.4951	+ 77.87 597.7 67.499 1.5045	+ 87.87 602.8 68.764 1.5138	+ 97.87 607.9 69.987 1.5233	+117.87 618.04 72.526 1.5410	+137.87 628.2 75.064 1.5585	+187.87 653.8 81.402 1.5996	+237.87 679.6 87.730 1.6379
	Temp. Q Vol. φ	-100.4 0.02273 -2261	529.0 41.79 1.3400	+56.16 584.1 52.547 1.4618	+66.16 589.1 53.512 1.4718	+76.16 594.2 54.476 1.4815	+ 86.16 599.2 55.438 1.4910	+ 96.16 604.8 56.400 1.5002	+106.16 609.4 57.549 1.5098	+126.16 619.6 59.844 1.5274	+146.16 629.8 62.138 1.5450	+196.16 655.4 67.866 1.5860	+246.16 681.2 73.59 1.6241
	Temp. Q Vol. φ	- 95.3 - 95.3 0.02286 2135	530.3 36.23 1.3270	+57.77 585.5 46.270 1.4486	+67.77 590.5 47.179 1.4585	+77.77 595.6 48.087 1.4683	+ 87.77 600.6 48.994 1.4779	+ 97.77 605.7 49.900 1.4870	+107.77 610.8 50.811 1.4963	+127.77 621.0 52.642 1.5141	+147.77 631.2 54.449 1.5318	+197.77 656.8 58.993 1.5728	+247.77 682.7 63.53 1.6108
	Temp. Q Vol. ϕ	- 90.8 0.02298 2022	531.4 32.05 1.3143	+61.87 586.6 40.839 1.4357	+71.87 591.7 41.634 1.4456	+81.87 596.7 42.426 1.4553	+ 91.87 601.8 43.218 1.4650	+101.87 606.9 44.01 1.4741	+111.87 612.0 44.812 1.4833	+131.87 622.2 46.413 1.5011	+151.87 632.4 48.012 1.5187	+201.87 658.0 51.908 1.5596	+251.87 683.9 55.90 1.5977
	Temp. Q V ϕ	- 86.5 0.02308 - 1919	532.6 28.75 1.3026	+65.60 587.9 36.460 1.4238	+75.60 592.9 37.186 1.4337	+85.60 598.0 37.890 1.4435	+ 95.60 603.0 38.585 1.4531	+105.60 608.1 39.281 1.4622	+115.60 613.2 40.055 1.4714	+i35.60 623.5 41.449 1.4891	+155.60 633.7 42.893 1.5066	+205.60 659.4 46.398 1.5476	+255.60 685.3 50.0 1.5856
	Temp. Q Vol. ϕ	- 82.9 0.02318 - 1826	533.8 26.05 1.2919	+69.19 589.2 33.069 1.4129	+79.19 594.2 33.693 1.4229	+89.19 598.9 34.286 1.4326	+ 99.19 603.9 34.938 1.4422	+109.19 609.4 35.560 1.4513	+119.19 614.5 36.455 1.4604	+139.19 624.8 37.693 1.4782	+159.19 635.0 38.929 1.4958	+209.19 660.7 42.015 1.5367	+259.19 686.7 45.231 1.5747
	Temp. Q Vol. \$\phi\$	- 79.3 - 79.3 - 0.02326 1743	534.8 23.84 1.2827	+72.24 590.2 30.239 1.4036	+82.24 .595.3 .30.817 1.4135	+92.24 600.2 31.390 1.4232	+102.24 605.4 31.969 1.4327	+112.24 610.5 32.541 1.4417	+122.24 015.6 33.233 1.4509	+142.24 625.9 34.376 1.4687	+162.24 636.1 35.524 1.4862	+212.24 661.8 38.388 1.5271	+262.24 687.8 41.220 1.5651
	Temp. Q Vol.	- 76.0 0.02333 - 1665	535.8 21.99 1.2742	+75.17 591.3 27.86 1.3949	+85.17 596.4 28.39 1.4047	+95.17 601.4 28.93 1.4144	+105.17 606.5 29.46 1.4241	+115.17 611.6 29.99 1.4324	+125.17 616.7 30.53 1.4422	+145.17 627.0 31.60 1.4600	+165.17 637.2 32.67 1.4774	+215.17 662.9 35.35 1.5182	+265.17 688.9 38.02 1.5562

_
20)
to
13
(Nos.
NIA
101
AMMONI
A
ED
AT
HE
PER
50

IOO ,	+67.90	+70.45	+72.84	+75.13	+77.31	+79.39	+81.37	+83.30
	587.1	588.0	589.1	589.3	590.2	590.7	591.3	591.9
	25.35	23.63	22.15	20.85	19.71	18.65	17.72	16.888
	1.3773	1.3703	1.3639	1.3573	1.3515	1.3459	1.3408	1.3357
့၀6	+57.90	+60.45	+62.84	+65.13	+67.31	+69.39	+71.37	+73.30
	582.0	582.9	584.0	584.2	585.1	585.6	586.2	586.8
	24.85	23.17	21.72	20.45	19.32	18.28	17.38	16.566
	1.3670	1.3601	1.3538	1.3473	1.3415	1.3359	1.3307	1.3256
80°	+47.90	+50.45	+52.84	+55.13	+57.31	+59.39	+61.37	+63.30
	576.9	577.9	578.9	579.1	580.0	580.5	581.1	581.7
	24.36	22.71	21.28	20.04	18.94	17.92	17.05	16.245
	1.3567	1.3499	1.3436	1.3371	1.3311	1.3256	1.3204	1.3152
70°	+37.90	+40.45	+42.84	+45.13	+47.31	+49.39.	+51.37	+53.30
	571.9	572.8	573.9	574.1	575.0	575.5	576.0	576.60
	23.87	22.25	20.85	19.63	18.56	17.56	16.70	15.923
	1.3462	1.3392	1.3329	1.3264	1.3206	1.3150	1.3099	1.3049
000	+27.90	+30.45	+32.84	+35.13	+37.31	+39.39	+41.37	+43.30
	566.8	567.8	568.8	569.0	569.9	570.4	570.9	571.5
	23.37	21.78	20.41	19.23	18.17	17.20	16.36	15.601
	1.3355	1.3286	1.3222	1.3157	1.3099	1.3043	1.2992	1.2942
50°	+17.90	+20.45	+22.84	+25.13	+27.31	+29.39	+31.37	+33.30
	561.7	562.7	563.7	563.9	564.8	565.3	565.8	566.4
	22.88	21.33	19.98	18.82	17.79	16.83	16.01	15.277
	1.3246	1.3177	1.3114	1.3049	1.2991	1.2935	1.2884	1.2834
30° 40° 50°	+ 7.90	+10.45	+12.84	+15.13	+17.31	+19.39	+21.37	+23.30
	556.7	557.7	558.7	558.9	559.7	560.2	560.7	561.2
	22.38	20.87	19.55	18.41	17.41	16.41	15.67	14.955
	1.3137	1.3068	1.3005	1.2940	1.2882	1.2826	1.2775	1.2725
30°	- 2.10	+ 0.45	+ 2.84	+ 5.13	+ 7.31	+ 9.39	+11.37	+13.30
	551.7	552.6	553.6	553.8	554.7	555.2	555.7	556.2
	21.88	20.41	19.13	18.01	17.02	16.11	15.34	14.632
	1.3021	1.2952	1.2889	1.2825	1.2767	1.2712	1.2661	1.2612
20°	-12.10 546.6 21.39 1.2907	- 9.55 547.6 19.94 1.2839	- 7.16 548.6 18.70 1.2777	- 4.87 548.8 17.60 1.2713	- 2.69 549.6 16.64 1.2656	- 0.61 550.1 15.74 1.2600		+ 3.30 551.1 14.309 1.2501
001	-22.10 541.6 20.90 1.2790	-10.55 542.5 19.48 1.2721	-17.16 543.5 18.28 1.2659	-14.87 543.7 17.19 1.2594	-12.69 544.6 16.25 1.2536	-10.61 545.1 15.38 1.2481		- 6.70 546.r 13.985 1.2382
Liquid Vapor	-73.1 536.6 -73.1 536.6 0.02340 20.40 1592 1.2667	-70.2 -29.55 -70.2 537.5 0.02345 19.02 1523 1.2599	-67.5 -27.16 -67.5 538.5 0.02351 17.83 1458 1.2537					-55.7 -16.70 -0.02376 13.66 -1188 1.2262
	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol. \$\phi\$	Temp. Q Vol. \$\phi\$	Temp. Q Vol.
	13	14	12	16	17	10	19	90

B
6
23
. 22
-
2
0
0
- 1
20)
O.
64
5
4
13
os.
2
4
-
K
(month)
Z
4
0
V
4
M
-
V
0
-
2
V
(T)
H
W.
1
H
0
-
SU
50

Temp. Q Vol.	Liquid -73.1 0.02340	Vapor	+77.90 592.2 5.884		+ 97.90 602.3 26.83	+107.90 607.4 27.35.	+117.90 612.5 27.80	+127.90 617.6 528.30	180° +147.90 627.9	+167.90 638.1 30.27	+217.90 663.8 32.74	+267.90 689.8 35.21
Temp. O Vol.	- 70.2 - 29.55 - 70.2 - 0.02345 1523	າດ	+80.45 593.1 24.09 1.3802	+ 90.45 598.2 24.55 1.3900	+100.45 603.3 25.01 1.3998	+	+120.45 613.5 25.93 1.4182	+130.45 618.6 26.39 1.4274	+ 150.45 628.7 27.31 1.4451	+170.45 639.1 28.22 1.4627	+220.45 664.8 30.51 1.5033	+270.45 690.9 32.80 1.5411
Temp. Q Vol.	-67.5 -67.5 0.62351 -1458	538.5 17.83 1.2537	+82.84 594.2 22.58 1.3737	+ 92.84 599.3 23.01 1.3837	+102.84 604.3 23.45 1.3934	+112.84 609.4 23.88 1.4029	+122.84 614.5 24.31 1.4118	+132.84 619.6 24.74 1.4209	+152.84 629.9 25.59 1.4387	+172.84 640.2 26.44 1.4562	+222.84 665.9 28.57 1.4967	+272.84 692.0 30.69 1.5347
Temp. Q Vol.	. — 65.0 — 24.87 0.02356 — .1399	538.7 16.78 1.2473	+85.13 594.4 21.26 1.3672	+ 95.13 599.5 21.67 1.3772	+105.13 604.6 22.07 1.3868	+115.13 609.7 22.47 1.3963	+125.13 614.8 22.88 1.4052	+135.13 619.9 23.28 1.4143	+155.13 630.2 24.07 1.4321	+175.13 640.4 24.87 1.4495	+225.13 666.2 26.86 1.4901	+275.13 692.3 28.86 1.5278
Temp. Q Vol. \$\phi\$	-62.4 0.02361 1343	539.5 15.85 1.2416	+87.31 595.3 20.08 1.3614	+ 97.31 600.4 20.46 1.3714	+107.31 605.5 20.84 1.3809	+117.31 610.6 21.22 1.3904	+127.31 61.57 21.60 1.3993	+137.31 620.8 21.96 1.4084	+157.31 631.1 22.73 1.4261	+177.31 641.3 23.49 1.4435	+227.31 662.1 25.36 1.4841	+277.31 693.3 27.24 1.5216
Temp. Q Vol.	-60.1 0.02366 -1289	540.0 15.015 1.2361	+89.39 595.8 19.01	+ 99.39 600.9 19.37 1.3657	+109.39 606.1 19.73 1.3751	+119.39 611.3 20.09 1.3846	+129.39 616.3 20.46 1.3936	+139.39 621.4 20.81 1.4026	+159.39 631.7 21.52 1.4203	+179.39 641.9 22.23 1.4378	+229.39 667.7 24.00 1.4784	+279.39 693.9 25.77 1.5159
Temp. Q Vol.	57.9 -18.63 0.02371 1238	540.5 14.30 1.2311	+91.37 596.4 18.07 1.3506	+101.37 601.5 18.41 1.3605	+111.37 606.6 18.74 1.3699	+121.37 611.7 19.08 1.3794	+131.37 616.8 19.43 1.3883	+141.37 621.9 19.76 1.3974	+161.37 632.2 20.44 1.4150	+181.37 642.5 21.12 1.4326	+231.37 668.4 22.80 1.4731	+281.39 694.5 24.48 1.5105
Temp. Q Vol.	-55.7 -0.02376 1188	541.0 13.66 1.2262	+93.30 597.0 17.209 1.3454	+103.30 602.1 17.529 1.3552	+113.30 607.2 17.850 1.3647	+123.30 612.3 18.170 1.3743	+133.30 617.4 18.49 1.3832	+143.30 622.5 18.829 1.3922	+163.30 632.8 19.506 1.4099	+183.30 643.1 20.183 1.4274	+233.30 669.0 21.75 1.4677	-1-283.30 696.1 23.29 1.5052

SUPERHEATED AMMONIA (Nos. 21 to 28)

-							-	001 DATE TO THE THEORY IN (1902) 21 (1902)					
		Liquid	Vapor	10°	20°	30°	40°	50°	009	,04	80°	°06	IDO
	Temp. Q Vol.	-53.6 0.02381 -1141	541.4 13.025 1.2217	- 4.84 546.5 13.335 1.2337	+ 5.16 551.5 13.644 1.2456	+15.16 556.6 13.955 1.2567	+25.16 561.6 14.275 1.2679	+35.16 566.8 14.573 1.2788	+45.16 571.9 14.882 1.2896	+55.16 577.0 15.191 1.3003	+65.16 582.1 15.499 1.3106	+75.16 587.2 15.807 1.3209	+85.16 591.3 16.114 1.3309
	Temp. Q Vol. \$\phi\$.	-51.6 -52.6 -0.02386 -0.1096	541.7 12.470 1.2173		+ 6.93 551.8 13.063 1.2411	+16.93 556.9 13.359 1.2522	+26.93 561.9 13.655 1.2635	+36.93 567.1 13.950 1.2743	+46.93 572.2 14.246 1.2851	+56.93 577.3 14.541 1.2957	+66.93 .582.4 .14.835 1.306	+76.93 587.5 15.129 1.3163	+86.93 592.6 15.423 1.3263
	Temp. Q Vol. φ	-49.6 -0.02390 -1043	542.2 11.965 1.2139		+ 8.64 552.4 12.536 1.2377	+18.64 557.4 12.820 1.2488	+28.64 562.5 13.105 1.2600	+38.64 567.6 13.389 1.2708	+48.64 572.7 13.672 1.2816	+58.64 577.8 13.955 1.2922	+68.64 583.0 14.238 1.3027	+78.64 588.1 14.521 1.3128	+88.64 593.2 14.803 1.3228
	Temp. Q Vol.	-47.7 -0.02394 -1.1011	542.6 11.490 1.2091	+ 0.31 547.7 11.763	+10.31 552.8 12.035 1.2328	+20.31 557.8 12.307 1.2440	+30.31 562.9 12.579 1.2551	+40.31 568.0 12.850 1.2659	+50.31 573.1 13.121 1.2767	+60.31 578.3 13.392 1.2873	+70.31 583.4 13.663 1.2978	+80.31 588.6 13.933 1.3079	+90.31 593.7 14.203 1.3179
	Temp. Q Vol.	-45.9 -0.02399 -0.0970	543.0 11.065 1.2053	+ 1.92 548.1 11.327 1.2173	+11.92 553.2 11.589 1.2289	+21.92 558.3 11.85 1.2401	+31.92 563.4 12.11 1.2513	+41.92 568.5 12.372 1.2620	+51.92 573.6 12.632 1.2728	+61.92 578.7 12.893 1.2833	+71.92 583.9 13.153 1.2938	+81.92 589.0 13.412 1.3040	+91.92 594.1 13.672 1.3140
	Temp. Q Vol.	-44.2 0.02403 0932	143.3 10.682 1.2018	+ 3.46 548.4 10.933 1.2138	+13.46 553.5 11.184 1.2254	+23.46 558.6 11.434 1.2366	+33.46 563.7 11.685	+43.46 568.8 11.935 1.2584	+53.46 573.9 12.185 1.2691	+63.46 579.0 12.434 1.2798	+73.46 584.2 12.683 1.2901	+83.46 589.3 12.932 1.3003	+93.46 594.4 13.181 1.3103
	Temp. Q Vol.	-42.5 0.02407 -0.0895	543.6 10.308 1.1982	+ 4.94 548.7 10.551 1.2101	+14.94 553.8 10.793	+24.94 559.0 II.035 I.2328	+34.94 564.1 11.277 1.2441	+44.94 569.2 11.519 1.2547	+54.94 574.3 II.760 I.2654	+64.94 579.4 12.001 1.276r	+74.94 584.6 12.242 1.2864	+84.94 589.7 12.482 1.2966	+94.94 594.8 12.723 1.3066
	Temp. Q Vol.	-40.8 0.02410 -0859	543.9 9.969 1.1946	+ 6.41 549.0 10.203 1.2065	+16.41 554.1 10.436 1.2181	+26.41 559.3 10.669 1.2292	+36.41 564.4 10.902 1.2404	+46.41 569.5 11.134 1.2509	+56.41 574.6 11.367 1.2617	+66.41 579.8 11.599 1.2724	+76.41 584.9 11.831 1.2827	+86.41 590.1 12.063 1.2929	+96.41 595.2 12.294 1.3027
	-		7						-				

Continued
1
200
28)
0
0
40
100
CA
08.
0
-
5
~
_
<
1
the same
0
\cup
-
2
1
>
2
1
2
1
1
AN
RHEATED AN
RHEATED AN
AN
RHEATED AN
RHEATED AN
RHEATED AN
RHEATED AN
RHEATED AN
RHEATED AN
RHEATED AN
RHEATED AN

3000	+285.16	+286.93	+288.64	+290.31	+291.92	+293.46	+294.94	+296.41
	695.7	696.1	696.7	697.2	697.7	698.2	698.6	699.1
	22.23	21.26	20.102	19.52	18.81	18.12	17.48	16.89
	1.5004	1.4956	1.4919	1.4867	1.4826	1.4788	1.47.9	1.4700
250°	+235.16	+236.93	+238.64	+240.31	+241.92	+243.46	+244.94	+246.41
	669.5	669.9	670.5	671.0	671.5	671.9	672.3	672.7
	20.707	19.806	18.989	18.20	17.586	16.890	16.296	15.747
	1.4629	1.4583	1.4544	1.4493	1.4453	1.4416	1.4377	1.4338
200°	+185.16	+186.93	+188.64	+190.31	+191.92	+193.46	+194.94	+196.41
	643.6	644.0	644.6	645.1	645.5	645.9	646.3	646.7
	19.180	18.350	17.596	16.877	16.303	15.657	15.110	14.600
	1.4227	1.4181	1.4143	1.4091	1.4052	1.4015	1.3977	1.3038
1 180°	+165.16	+166.93	+168.64	+160.31	+171.92	+173.46	+174.94	+176.41
	633.3	633.7	634.2	634.8	635.2	635.6	636.0	636.3
	18.559	17.766	17.038	16.347	15.791	15.163	14.635	14.141
	1.405a	1.4003	1.3967	1.3917	1.3877	1.3840	1.3801	1.3763
160°	+145.16	+146.93	+148.64	+150.31	+151.92	+153.46	+154.94	+156.41
	623.0	623.4	624.0	624.5	624.9	625.3	625.7	626.0
	17.956	17.192	16.486	15.816	15.278	14.67	14.158	13.680
	1.3875	1.3828	1.3791	1.3741	1.3702	1.3665	1.3627	1.3587
150°	+135.16	+136.93	+138.64	+140.31	+141.92	+143.46	+144.94	+146.41
	617.9	618.2	618.8	619.3	619.7	620.1	620.5	620.8
	17.65	16.890	16.20	15.55	14.965	14.42	13.92	13.45
	1.3785	1.3738	1.3702	1.3652	1.3612	1.3574	1.3535	1.3498
140°	+125.16	+126.93	+128.64	+130.31	+131.92	+133.46	+134.94	+136.41
	612.8	613.1	613.7	614.2	614.6	615.0	614.4	615.7
	17.344	16.597	15.958	15.281	14.707	14.173	13.881	13.219
	1.3695	1.3651	1.3614	1.3564	1.3524	1.3487	1.3450	1.3411
130°	+115.16	+116.93	+118.64	+120.31	+121.92	+123.46	+124.94	+126.41
	607.7	608.0	608.6	609.1	609.5	609.8	610.2	610.6
	17.036	16.304	15.638	15.012	14.448	13.915	13.442	12.988
	1.3601	1.3554	1.3519	1.3469	1.3429	1.3393	1.3355	1.3316
120°	+105.16	+106.93	+108.64	+110.31	+111.92	+113.46	+114.94	+116.41
	602.5	602.8	603.4	603.9	604.3	604.7	605.1	605.4
	16.729	16.011	15.367	14.743	14.190	13.677	13.202	12.757
	1.3506	1.3461	1.3424	1.3374	1.3334	1.3298	1.3261	1.3223
IIO°	+ 95.16	+ 96.93	+ 98.64	+100.31	+101.92	+103.46	+104.94	+106.41
	597.4	597.7	598.3	598.8	599.2	599.5	599.9	600.3
	16.422	15.717	15.085	14.473	13.931	13.429	12.963	12.526
	1.3408	1.3363	1.3328	1.3278	1.3238	1.3200	1.3162	1.3124
Vapor	541.4 13.025 1.2217	541.7 12.470 1.2173	6 542.2 11.965 1.2139	542.6 11.490 1.2091	.8 543.0 11.065 1.2053	543.3 10.682 1.2018	543.6 10.308 1.1982	9 543.9 9.969 1.1946
Liquid	-53.6 0.02381 1141	-51.6 -51.6 0.02386 - 1096	-49.6 0.02390 1043	-47.7 0.02394	-45.9 0.02399 0970	-44.2 0.02403 0932	-42.5 0.02407 0895	-40.8 0.02410 0859
	Temp.	Temp. · Q	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.
	Q	Q	Q	Q	Q	Q	Q	Q
	Vol.	Vol.	Vol.	Vol.	Vol.	Vol.	Vol.	Vol.
	21	2 2	23	24	25	56	27	90

-
4
ot c
4
0
30 1
os.
Z
V
-
0
7
MMONI
\geq
AN
4
_
-
1
四
\pm
~
H
II
P
D
SU

Liquid Vapor	-37.6 - 0.78 + 9.344 5 540.5 - 0.789 1.1884	+ 1.88 -34.6 0.02425 -34.6 8.798 0722 1.1827	-31.7 + 4.43 +1.00			-23.7 -23.7 0.02450 7.11.7 0490 1.1629	+13.48 -21.2 0.02457 -0.0438 1.1580 -1.1580	
10° 20°	+ 9.22 +19.22 549.6 554.7 9.563 9.782 1.2002 1.2118	+10	+14.43 550.7 8.497 1.1890 555.9 8.691 1.2005	+16.83 +26.83 551.4 556.4 8.054 8.248 1.1840 1.1954	+19.14 +29.14 551.8 556.8 7.654 7.830 1.1792 1.1906	+21.34 +31.34 552.2 557.4 7.286 7.455 1.1745 1.1860	+23.48 +33.48 552.7 557.9 6.059 7.118 1.1695 1.1810	
30°	2 +29.22 559.9 82 10.00 1.2229	60	+34.43 561.0 901 8.885 1.2113	3 +36.83 561.7 48 8.421 954 1.2062	+ 39.14 562.1 330 8.005 1.2015	44.34 562.4 7.624 1.1968	443.48 562.9 7.280 810 1.1918	
400	+39.22 565.0 10.218	+41.88 565.6 9.618 1.2281	+44.43 566.2 9.078 1.2224	+46.83 566.8 8.604 1.2172	+49.14 567.2 8.180 1.2125	+51.34 567.7 7.797 1.2078	+53.48 568.2 7.440 1.2028	+55.56 568.7 7.121 1.1983
50°	+49.22 570.1 10.436 1.2445	+51.88 570.7 9.822 1.2387	+54.43 571.3 9.271	+56.83 572.0 8.789 1.2281	+59.14 572.4 8.355 1.2232	+61.34 572.9 7.959 1.2184	+63.48 573.4 7.600 1.2132	+65.56 573.9 7.274 1.2086
°09	+59.22 575.3 10.653 1.2553	+61.88 575.9 10.026 1.2495	+64.43 576.5 9.465 1.2437	+66.83 577.2 8.969 1.2385	+69.14 576.6 8.529 1.2335	+71.34 578.1 8.126 1.2288	+73.48 578.6 7.759 1.2237	+75.56 579.1 7.426 1.2190
,04	+69.22 580.4 10.871 1.2659	+71.88 581.1 10.230 1.2500	+74.43 581.6 9.656 1.2543	+76.83 582.4 9.152 1.2491	+79.14 582.8 8.703 1.2442	+81.34 583.3 8.293 1.2394	+83.48 583.8 7.917 1.2343	+85.56 584.3 7.577 1.2295
° 22°	+79.22 585.6 11.088 1.2763	+81.88 . 586.2 IO.433 I.2703	+84.43 586.8 9.850 1.2646	+86.83 587.5 9.333 1.2594	+89.14 587.9 8.876 1.2545	+91.34 588.4 8.458 1.2497	+93.48 589.0 8.076 1.2445	+95.56 589.5 7.728 1.2398
°og	+89.22 590.7 11.304 1.2864	+91.88 591.4 10.636 1.2805	+94.43 591.9 10.042 1.2746	+96.83 592.7 9.515 1.2693	+99.14 593.1 9.049 1.2644	+101.34 593.6 8.623 1.2596	+103.48 594.2 8.234 1.2544	
100°	+ 99.22 595.9 11.521 1.2962	+101.88 596.6 10.839 1.2902	+104.43 597.1 10.234 1.2844	+106.83 597.9 9.697 1.2791		+111.34 598.8 8.788 1.2691	+113.48 599.4 8.391 1.2640	+115.56 599.9 8.028 1.2590

SUPERHEATED AMMONIA (Nos. 30 to 44). — Continued

		Liquid	Vapor	IIO°	120°	130°	140°	150°	160°	180°	200°	250°	300
30	Temp. Q Vol.	-37.6 -37.6 -0.02418 -0.0789	544.5 9.344 1.1884	+109.22 601.0 11.737 1.3059	+119.22 606.1 11.953 1.3157	+129.22 611.3 12.169 1.3250	+139.22 616.4 12.385 1.3346	+149.22 621.5 12.60 1.3433	+159.22 626.7 12.816 1.3521	+179.22 637.1 13.246 1.3696	+199.22 647.5 13.677 1.3872	+249.22 673.5 14.750 1.4270	+299.22 699.8 15.82 1.4641
32	Temp. Q Vol.	-34.6 -0.02425 -0.0722	545.1 8.798 1.1827	+111.88 601.7 11.042 1.2999	+121.88 606.9 11.244 1.3097	+131.88 612.0 11.446 1.3190	+141.88 617.3 11.648 1.3285	+151.88 622.3 11.85 1.3371	+161.88 627.5 12.053 3.3459	+181.88 637.8 12.459 1.3634	+201.88 648.2 12.863 1.3809	+251.88 674.3 13.873 1.4207	+301.88 700.6 14.88 1.4577
34	Temp. Q Vol.	-31.7 -0.02432 -0.059	545.6 8.302 1.1772	+114.43 602.3 10.426 1.2940	+124.43 607.5 10.617 1.3040	+134.43 612.6 10.808 1.3131	+144.43 617.8 10.999 1.3226	+154.43 623.0 11.19 1.3311	+164.43 628.2 11.381 1.3400	+184.43 638.5 11.762 1.3574	+204.43 648.9 12.143 1.3749	+254.43 675.0 13.093 1.4146	+304.43 701.4 14.04 1.4515
36	Temp. Q Vol.	+ 6.83 -28.9 0.02438 0599	83 546.2 7.870 1.1722	+116.83 603.1 9.878 1.2887	+126.83 608.2 10.059 1.2986	+136.83 613.4 10.239 1.3077	+146.83 618.5 10.420 1.3172	+156.83 623.7 10.60 1.3257	+166.83 628.9 10.801 1.3344	+186.83 639.3 11.163 1.3520	+206.83 649.7 11.524 1.3694	+256.83 675.8 12.423 1.4090	+306.83 698.2 13.30 1.4459
38	Temp. Q Vol.	+ 9.14 -26.3 0.02445 0543	546.6 7.478 1.1675	+119.14 603.5 9.395 1.2837	+129.14 608.7 9.566 1.2935	+139.14 613.8 9.737 1.3025	+149.14. 619.0 9.909 1.3122	+159.14 624.2 10.08 1.3205	+169.14 629.4 10.251 1.3293	+189.14 639.8 10.592 1.3468	+209.14 650.2 10.833 1.3643	+259.14 676.4 11.782 1.4039	+309.14 702.8 12.63 1.4405
. 04	Temp. Q Vol.	+11.34 -23.7 0.02450 0490	34 547.0 7.117 1.1629	+121.34 604.0 8.952 1.2788	+131.34 609.2 9.116 1.2884	+141.34 614.3 9.280 1.2975	+151.34 619.5 9.443 1.3072	+161.34 624.7 9.606 1.3156	+171.34 629.9 9.669 1.3242	+ 191.34 640.4 10.094 1.3417	+211.34 650.8 10.418 1.3590	+261.34 677.0 11.227 1.3987	+311.34 703.4 12.033 1.4352
4 2	Temp. Q Vol.	+13.48 -21.2 0.02457 - 0.0438	48 547.5 6.797 1.1580	+123.48 604.6 8.548 1.2736	+133.48 609.8 8.685 1.2832	+143.48 615.0 8.862 1.2923	+153.48 620.2 9.018 1.3019	+163.48 625.4 9.174 1.310a	+173.48 630.6 9.330 1.3189	+193.48 641.0 9.640 1.3363	+213.48 651.4 9.950 1.3536	+263.48 677.7 10.723 1.3930	+313.48 704.1 11.494 1.4298
4	Temp. Q Vol.	+15.56 -18.8 0.02463 - 0.388	56 547.9 6.504 1.1535	+125.56 605.1 8.178 1.2688	+135.56 610.3 8.326 1.2785	+145.56 615.5 8.475 1.2875	F155.56 620.7 8.623 1.2970	+165.56 625.9 8.771 1.3063	+175.56 631.1 8.946 1.3140	+195.56 641.6 9.241 1.3313	+215.56 652.0 9.535 1.3486	+265.56 678.2 10.270 1.3880	+315.56 704.7 11.001 1.4245

73
10
0
20
-
46
4
90
0
7
Z
_
<
<u>-</u>
-
4
ONIA
\simeq
\geq
-
2
A.
4
_
-
<u> </u>
F
`
4
=
Н
O.
23
H
SUP
-
1
02

		F:::0: 1	Vosor	001	000	200	40°	0	009	°04	800	000	001
		radana	vapor	70	2	30	2	5					
Tem Q Vol.	Temp. Q Vol. φ	+17.59 -16.6 0.02468 0341	548.2 6.239 1.1494	+27.59 553.4 6.388 1.1608	+37.59 558.6 6.537 1.1724	+47.59 563.8 6.685 1.1829	+57.59 569.0 6.832 1.1939	+67.59 574.2 6.978 1.2044	+ 77.59 579.4 7.125 1.2147	+ 87.59 584.6 7.270 1.2252	+ 97.59 589.9 7.415 1.2354	+107.59 595.1 7.559 1.2452	+117.59 600.3 7.703 1.2547
Tem O Vol.	Temp. Q Vol.	+19.48 -14.4 0.02474 0295	548.6 5.998 1.1454	+29.48 553.8 6.142 1.1567	+39.48 559.0 6.287 1.1683	+49.48 564.3 6.428 1.1787	+59.48 569.5 6.570 1.1896	+69.48 574.7 6.711 1.2002	+ 79.48 579.9 6.851 1.2106	+ 89.48 585.1 6.990 1.2207	+ 99.48 590.3 7.129 1.2312	+109.48 595.5 7.268 1.2409	+119.48 600.7 7.406 1.2504
5 0	Temp. $\overset{\text{O}}{\text{V}}$ $\overset{\text{O}}{\text{V}}$ ol. ϕ	+21.29 -12.2 0.02479 0252	29 549.0 5.776 1.1416	+31.29 554.2 5.916 1.1528	+41.29 559.5 6.054 1.1645	+51.29 564.7 6.191 1.1748	+61.29 570.0 6.328 1.1857	+71.29 575.2 6.462 1.1963	+ 81.29 580.4 6.597 1.2066	+ 91.29 585.6 6.731 1.2171	+101.29 590.8 6.864 1.2271	+111.29 596.0 6.997 1.2368	+121.29 601.2 7.129 1.2464
E 0	Temp. Q Vol.	+25.70 - 7.2 0.02492 0150	549.7 5.284 1.1326	+35.70 554.9 5.410 1.1437	+45.70 560.2 5.535 1.1554	+55.70 565.4 5.659 1.1656	+65.70 570.7 5.783 1.1765	+75.70 575.9 5.905 1.1868	+ 85.70 581.1 6.028 1.1971	+ 95.70 586.4 6.149 1.2076	+105.70 591.6 6.270 1.2176	+115.70 596.9 6.391 1.2274	+125.70 602.1 6.510 1.2366
0	Temp. Q Vol.	+29.76 - 2.6 0.02504 0053	550.3 4.861 1.1243	+39.76 555.6 4.977 1.1353	+49.76 560.8 5.093 1.1470	+59.76 566.1 5.208 1.1572	+69.76 571.3 6.322 1.1679	+79.76 576.6 5.435 1.1782	+ 89.76 581.9 5.548 1.1883		+109.76 592.4 5.772 1.2088	+119.76 597.6 5.883 1.2185	+129.76 602.9 5.994 1.2276
0 0	Temp. Q Vol.	+33.62 + 1.9 0.02515 + .0038	551.1 4.505 1.1166	+43.62 556.4 4.613 1.1276	+53.62 561.7 4.720 1.1390	+63.62 566.9 4.826 1.1492	+73.62 572.2 4.932 1.1598	+83.62 577.5 5.037 1.1701	+ 93.62 582.8 5.141 1.1803	+103.62 588.0 5.245 1.1906	+113.62 593.3 5.349 1.2005	+123.62 598.6 5.452 1.2102	+133.62 603.8 5.554 1.2194
0 0	Temp. Q Vol.	+ 5.9 + 5.0 0.02526 + .0121	551.6 4.197 1.1096	+47.22 556.9 4.298 1.1205	+57.22 562.2 4.398 1.1318	+67.22 567.4 4.498 1.1420	+77.22 572.7 4.596 1.1526	+87.22 578.0 4.695 1.1628	+ 97.22 583.3 4.792 1.1728	588.6 4.890 1.1831	+117.22 593.8 4.986 1.1930	+127.22 599.1 5.081 1.2026	+137.22 604.4 5.177 1.2116
0 0	Temp. Q Vol.	+ 9.9 + 0.0 + 0.02536 + 0.020536	552.1 3.927 1.1032	+50.66 557.4 4.022 1.1141	+60.66 562.7 4.116 1.1253	+70.66 568.0 4.210 1.1354		+90.66 578.6 4.395 1.156	+100.66 583.9 4.487 1.166	+110.66 589.2 4.579 1.1762	+120.66 594.5 4.669 1.1862	+130.66 599.8 4.760 1.1957	+140.66 605.1 4.850 1.2045

SIIPERHEATED AMMONIA (Nos. 46 to 75). - Continued

		Liquid	Vapor	IIO°	120°	130°	140°	150°	160°	180°	200°	250°	300°
46	Temp. Q Vol.	+17.59 -16.6 0.02468 0341	548.2 6.239 1.1494	+127.59 605.5 7.846 1.2644	+137.59 610.7 7.989 1.2743	+147.59 615.9 8.132 1.2832	+157.59 621.1 8.275 1.2925	+167.59 626.3 8.417 1.3018	+177.59 631.5 8.559 1.3094	+197.59 642.0 8.843 1.3267	+217.59 652.4 9.117 1.3442	+267.59 678.7 9.833 1.3834	+317.59 705.2 10.537 1.4197
84	Temp. Q Vol.	+19.48 -14.4 0.02474 0295	548.6 5.998 1.1454	+129.48 605.9 7.543 1.2602	+139.48 611.1 7.681 1.2698	1	+159.48 621.6 7.954 1.2882	+169.48 626.8 8.090 1.2974	+179.48 632.0 8.232 1.3052	+199.48 642.5 8.516 1.3223	+219.48 652.9 8.800 1.3396	+269.48 679.3 9.463 1.3792	+319.48 705.7 10.121 1.4152
50	Temp. Q Vol.	+21.29 -12.2 0.02479 0252	549.0 5.776 1.1416	+131.29 606.4 7.260 1.2559	+141.29 611.6 7.391 1.2656	1	+161.29 622.1 7.652 1.2840	+171.29 627.3 7.782 1.2931	+181.29 632.5 7.917 1.3009	+201.29 643.0 8.185 1.3180	+221.29 653.5 8.452 1.3354	+271.29 679.9 9.103 1.3745	+321.29 706.3 9.737 1.4108
55	Temp. Q Vol. \$\phi\$	+25.70 - 7.2 - 0.02492 - 0.150	549.7 5.284 1.1326	+135.70 607.3 6.630 1.2461	+145.70 612.6 6.749 1.2558	+155.70 617.8 6.867 1.2648	+165.70 623.1 6.985 1.2741	+175.70 628.3 7.102 1.2823	+185.70 633.5 7.223 1.2908	1	+225.70 654.5 7.690 1.3251	+275.70 680.9 8.255 1.3641	+325.70 707.5 8.888 1.4001
99	Temp. Q Vol.	+29.76 - 2.6 - 0.02504 - 0.053	550.3 4.861 1.1243	+139.76 608.1 6.104 1.2371	+149.76 613 6.213 1.2468	+159.76 618.6 6.323 1.2556	+169.76 623.9 6.431 1.2648	+179.76 629.1 6.540 1.2731	+189.76 634.4 6.652 1.2815	+209.76 644.9 6.874 1.2985	+229.76 655.4 7.095 1.3158	+279.76 681.9 7.647 1.3546	+329.76 708.5 8.196 1.3904
65	Temp. Q Vol.	+ 1.9 - 0.02515 + .0038	4.505 1.1166	+143.62 609.1 5.656 1.2286	+153.62 614.4 5.758 1.2384	+163.62 619.6 5.859 1.2471	+173.62 624.9 5.960 1.2564	+183.62 630.2 6.060 1.2644	+193.62 635.5 6.151 1.2728	+213.62 646.0 6.340 1.2898	+233.62 656.5 6.552 1.3069	+283.62 683.0 7.079 1.3456	+333.62 709.7 7.604 1.3818
20	Temp. Q Vol.	+ 5.9 + 0.02526 + 0.021	551.6 4.197 1.1096	+147.22 609.7 5.272 1.2209	+157.22 615.0 5.367 1.2306	+167.22 620.3 5.462 1.2395	+177.22 625.6 5.555 1.2486	+187.22 630.9 5.649 1.2566	+197.22 636.2 5.747 1.2648	+217.22 646.7 5.941 1.2818	+237.22 657.3 6.135 1.2989	+287.22 683.9 6.619 1.3372	+337.22 710.5 7.092 1.3731
75	Temp. Q Vol.	+ 9.9 5 0.02536 - 0.2000	3.927 1.1032	+150.66 610.4 4.939 1.2137	+160.66 615.7 5.028 1.2236	+170.66 621.0 5.117 1.2323	+180.66 626.3 5.205 1.2413	+190.66 631.6 5.293 1.2492	+200.66 636.9 5.384 1.2577	+220.66 647.4 5.565 1.2744	+240.66 658.0 5.746 1.2915	+290.66 684.7 6.197 1.3296	+340.66 711.4 6.648 1.3652

1	
- 1	
- 0-	
-	
-	
- (
0	
	,
2	
-	
-2	
(Noe 80 to TIE)	
_	,
	٠
-	
- 7	7
-	
-	
AMMONTA	
-	
1	
-	4
-	
	١
-	
T	
-	
-	
V	
Pr.	١
-	
-51	
-	
SIIPERHEATED	
TT.	
-	
D	
-	
-	d
U.	

30° 40° 50° 60° 70° 80° 90°	+73.88 + 83.88 + 93.88 + 103.88 + 113.88 + 123.88 + 143.88 568.7 574.0 579.3 584.6 589.9 595.2 600.6 605.8 3.963 4.050 4.137 4.223 4.309 4.395 4.480 4.480 1.1294 1.1294 1.1698 1.1698 1.1892 1.198	477.02 + 87.02 + 97.02 + 107.02 569.1 574.4 579.8 3.98 3.740 3.823 3.906 3.988 1.1236 1.1350 1.1440 1.1538	+79.97 +89.97 +99.97 +109.97 +119.97 +129.97 568.6 574.9 580.3 3.85.6 590.9 590.3 3.544 3.622 3.700 3.778 3.855 3.931 1.1181 1.1293 1.1384 1.1482 1.1583 1.1678	+82.83 + 92.83 + 102.83 + 112.83 + 122.83 + 132.83 + 142.83 570.0 575.4 580.8 586.1 591.4 596.8 602.1 3.363 3.438 3.512 3.586 3.660 3.733 3.866 1.1128 1.1230 1.1332 1.1428 1.1528 1.1528 1.1718	+85.58 + 95.58 + 105.58 + 115.58 + 125.58 + 135.58 570.2 573.6 581.0 586.4 591.7 3.197 3.268 3.339 3.409 3.479 3.549 1.1080 1.1194 1.1284 1.1379 1.1478 1.1573	+88.14 +98.14 +108.14 +118.14 +128.14 +138.14 +148.14 570.5 575.9 581.3 586.7 592.1 597.4 602.8 3.051 3.103 3.187 3.254 3.321 3.388 3.454 1.1034 1.1145 1.1236 1.1331 1.1430 1.1524 1.1618	+90.67 +100.67 570.9 570.9 2.980 1.0987	+93.19 +103.19 +113.19 +123.19 +133.19 +143.10 +153.19 571.2 576.6 582.0 2.980 2.080 3.042 3.103 3.164
10° 20°	+53.88 +63.88 558.0 563.3 3.786 3.874 1.1081 1.1190			+62.83 +72.83 559.3 564.7 3.211 3.287 1.0920 1.1028	+65.58 +75.58 559.5 564.9 3.053 3.125 1.0872 1.0980	+68.14 +78.14 559.8 565.2 2.914 2.983 1.0826 1.0934		+73.19 +83.19 560.3 565.7 2.666 2.730
Liquid Vapor	Temp. +13.6 552.7	Temp. +17.2 553.1 Vol. 0.02556 3.485 φ + .0345 1.0917	Temp. +20.7 553.5 Vol. 0.02566 3.3∞ φ + .0411 1.0863	Temp. +23.9 +52.83	Temp. +27.1 555.58 Vol. 0.02584 2.980 v \$\phi\$ + .0537 1.0767	Temp. +30.0 +58.14 + 1.0722 + 1.0722	Temp. +60.67 0 0.02601 2.716 φ + .0651 1.0677	Temp. +63.19 0 +35.8 554.9 Vol. 0.02609 2.602
	8	85 QQ 4	\$ 40 T	95 4 QQ 4	E O O	Tos O A	TIE ON P	T 200

SUPERHEATED AMMONIA (Nos. 80 to 115). - Continued

				SUPERH	EATED A	AMMONIA	SUPERHEATED AMMONIA (Nos. 80 to 115). — Continued	0 115) 6	ontinued				
		Liquid	Vapor	IIG.	120°	130°	140°	150°	160°	180°	200	250°	300°
&	Temp. Q Vol. \$\phi\$	+13.6 +0.02547 +0.0275	552.7 3.696 1.0972	+153.88 611.1 4.648 1.2072	+163.88 616.4 4.732 1.2170	+173.88 621.8 4.816 1.2255	+183.88 627.1 4.899 1.2344	+193.88 632.4 4.982 1.2422	+203.88 637.7 5.067 1.2508	+223.88 648.3 5.237 I.2674	+243.88 658.9 5.406 1.2844	+293.88 685.6 5.828 1.3224	+343.88 712.3 6.25 1.3580
. 85	Temp. Q Vol.	+17.2 +17.2 0.02556 + .0345.	553.5 3.485 1.0917	+157.02 611.7 4.389 1.2012	+167.02 617.0 4.467 1.2107	+177.02 622.4 4.545 1.2195	+187.02 627.7 4.623 1.2282	+197.02 633.0 4.701 1.2362	+207.02 638.3 4.781 1.2446	+227.02 648.9 4.942 1.2611	+247.02 659.4 5.103 1.2779	+297.02 686.3 5.501 1.3159	+347.02 713.1 5.900 1.3514
8	Temp. Q Vol.	+49.97 20.7 + 0.02566 -0411	553.5 3.300 1.0863	+159.97 612.2 4.159 1.1051	+169.97 617.5 4.234 1.2048	+179.97 622.9 4.309 1.2133	+189.97 628.2 4.383 1.2222	+199.97 633.5 4.458 1.2299	+209.97 638.8 4.533 1.2383	+229.97 648.5 4.692 I.2548	+249.97 660.2 4.842 1.2715	+299.97 686.9 5.214 1.3095	+349.97 713.8 5.586 1.3447
95	Temp. Q Vol.	+23.9 0.02575 + .0476	553.9 3.134 1.0813	+162.83 612.7 3.950 1.1895	+172.83 618.1 4.022 1.1991	+182.83 623.4 4.094 1.2076	+192.83 628.8 4.166 1.2164	+202.83 634.1. 4.237 1.2243	+212.83 639.4 4.309 1.2328	+232.83 650.1 1.2489	+252.83 666.8 4.594 2.2655	+302.83 687.6 4.950 1.3033	+352.83 714.5 5.305 1.3385
100	Temp. Q Vol.	+27.1 0.02584 + .0537	554.1 2.980 1.0767	+165.58 613.1 3.755 1.1842	+175.58 618.5 3.823 1.1939	+185.58 623.8 3.891 1.2025	+195.58 629.2 3.949 1.2112	+205.58 634.5 4.027 1.2190	+215.58 639.9 4.095 1.2272	+235.58 650.6 4.230 I.2435	+255.58 661.3 4.365 1.2602	+305.58 .688.1 4.701 1.2977	+355.58 715.0 5.037 1.3327
105	Temp. Q Vol.	+30.0 +30.0 0.02592 + .0596	554.4 2.844 1.0722	+168.14 613.5 3.585 1.1792	+178.14 618.9 3.651 1.1888	+188.14 624.2 3.716 1.1972	+198.14 629.6 3.781 1.2060	+208.14 634.9 3.846 1.2137	+218.14 640.3 3.911 1.2222	+238.14 651.0 1.2382	+258.14 661.8 4.169 1.2547	+308.14 688.6 4.490 1.2922	+358.14 715.7 4.810 1.3272
IIO	Temp. Q Vol.	+33.0 + 0.0501 0.02601 + .0651	554.7 2.716 1.0677	+170.67 614.0 3.429 1.1742	+180.67 619.4 3.492 1.1837	+190.67 624.7 3.555 1.1922	+200.67 630.1 3.618 1.2008	+210.67 635.4 3.680 1.2087	+220.67 640.8 3.723 1.2172	+240.67 651.5 3.849 1.2329	+260.67 662.3 3.975 1.2495	+310.67 689.2 4.277 1.2867	+360.67 716.3 4.604 1.3217
115	Temp. Q Vol.	+35.8 0.02509 + .0706	554.9 2.602 1.0632	+173.19 614.4 3.286 1.1692	+183.19 619.7 3.346 1.1787	+193.19 625.1 3.407 1.1872	+203.19 630.4 3.467 1.1957	+213.19 635.8 3.520 1.2034	+223.19 641.2 3.586 1.2117	+243.19 652.0 3.705 1.2277	+263.19 662.8 3.823 1.2442	+313.19 689.7 4.117 1.2812	+363.19 716.8 4.411 1.3161
					-							-	-

SUPERHEATED AMMONIA (Nos. 120 to 150)

SUPERHEATED AMMONIA (Nos. 120 to 150). — Continued

	Temp	Liquid	Vapor	IIO°	120°			1	1	180°	2000	7	250°
120	Vol.	+38.5 0.02618 + .0758	555.1 2.497 1.0592	3.154 1.1647	3.213 1.1747	3.271 1.1826	7.25.49 630.8 3.328 1.1912	7.15.49 636.2 3.385 1.1990	3.434 1.2072	3.549 1.2230	3.663 2.2392	3.946 1.2762	46
125	Temp. Q Vol. \$\phi\$	+41.1 .02626 + .0808	555.2 2.400 1.0555	+177.81 615.0 3.034 1.1605	+187.81 620.4 3.090 1.1700	+197.81 625.7 3.146 1.1784	+207.81 631.1 3.202 1.1868	+217.81 636.5 3.257 1.1945	+227.81 641.9 3.312 1.2030	+247.81 652.8 3.422 1.2185	+267.81 663.6 3.531 1.2347	+317.81 690.6 3.803 1.2717	33
130	Temp. Q Vol. φ	+43.9 0.02634 + .0858	555.3 2.309 1.0517	+180.1 615.3 2.923 1.1563	+190.1 620.7 2.977 1.1657	+200.1 626.0 3.031 1.1739	-210.1 631.4 3.084 1.1825	-220.1 636.8 3.138 1.1902	F230.1 642.2 3.191 1.1985	+250.1 653.1 3.297 1.2142	+270.1 663.9 3.402 1.2302	+320.1 691.0 3.663 1.2669	500
135	Temp. Q Vol. \$\phi\$	+72.2 +46.3 0.02642 + .0905		+182.2 615.6 2.819 1.1522	+192.2 621.0 2.872 1.1615	+202.2 626.4 2.924 I.1699	,	637.2 3.027 1.1860	+232.2 642.6 3.078 1.1942	+252.2 653.5 3.180 1.2100	+272.2 664.4 3.282 I.2260	+322.2 691.5 3.536 1.2625	25
140	Temp. Q Vol.	+74.2 +48.7 0.02649 + .0950	555.6 2.149 1.0444	+184.2 615.9 2.726 1.1483	F194.2 621.3 2.776 1.1575	+204.2 626.7 2.827 1.1658	+214.2 632.1 2.877 1.1743	+224.2 637.5 2.927 1.1819	-234.2 642.9 2.975 1.1902	653.8 3.075 1.2056	+274.2 664.7 3.174 1.2216	+324.2 691.9 3.418 1.2582	00 00
145	Temp. Q Vol. \$\phi\$	+51.1 0.02657 + .0995	555.7 2.076 1.0412	+186.3 616.2 2.636 1.1447	F196.3 621.6 2.685 1.154	+206.3 627.0 2.734 1.1622	-216.3 632.4 2.783 1.1709	-226.3 637.8 2.832 1.178	-236.3 643.3 2.876 1.1864	-256.3 654.2 2.974 1.2020	+276.3 665.1 3.069 1.2177	+326.3 692.4 3.304 1.2542	4 4
150	Temp. Q Vol.	+53.4 0.02664 + .1039	555.9 2.008 1.0381	+188.3 616.5 2.550 1.1414	-198.3 622.0 2.598 1.150	+208.3 627.4 2.646 1.1586	-218.3 632.9 2.693 1.1666	638.3 2.740 1.1740	-238.3 643.8 2.788 1.1820	-258.3 654.7 2.881 1.1984	+278.3 665.6 2.973 1.2141	+328.3 692.9 3.201 1.2504	1 0

JPERHEATED AMMONIA (Nos. 155 to 200)

	100°	+180.2 611.4 2.423 1.1291	+182.1 611.7 2.353 1.1259	+184.0 612.0 2.282 1.1228	+185.8 612.3 2.219 1.1198	+189.3 612.7 2.100 1.1141	+192.7 613.1 1.993 1.1084	+195.9 613.5 1.897 1.103#
	°06	+170.2 605.9 2.377 1.1208	+172.1 606.2 2.307 1.1177	+174.0 606.5 2.238 1.1145	+175.8 606.7 2.176 1.1114	+179.3 607.1 2.059 1.1057	+182.7 607.5 1.954 1.0999	+185.9 607.9 1.860 1.0947
	° 000	+160.2 600.4 2.330 1.1119	+162.1 600.6 2.261 1.1088	+164.0 600.9 2.193 1.1056	+165.8 601.2 2.133 1.1025	+169.3 601.5 2.018 1.0968	-172.7 601.9 1.915 1.0910	F175.9 602.2 1.822 1.0858
	°04	+150.2 594.8 2.283 1.1028	+152.1 595.1 2.215 1.0998	+154.0 595.4 2.149 1.0966	+155.8 595.6 2.090 1.0936	+159.3 596.0 1.976 1.0880	+162.7 596.2 1.876 1.0824	F165.9 596.6 1.785
(00)	°°	+140.2 589.3 2.235 1.0933	+142.1 589.5 2.169 1.0901	+144.0 589.8 2.104 1.0870	+145.8 590.1 2.046 1.0840	590.4 1.935 1.0784	+152.7 590.6 1.836 1.0729	+155.9 590.9 1.747 1.0677
SUPERHEATED AMMONIA (Nos. 155 to 200)	50°	+130.2 583.8 2.188 1.0841	+132.1 584.0 2.122 1.0810	+134.0 584.3 2.059 1.0778	+135.8 584.5 2.002 1.0749	+139.3 584.8 1.892 1.0694	585.0 I.795 I.0639	+145.9 585.3 1.708 1.0587
ONIA (No	40°	+120.2 578.2 2.139 1.0748	+122.1 578.4 2.076 1.0717	200	+125.8 578.9 1.957 1.0657	+129.3 579.1 1.850 1.0601	+132.7 579.3 1.755 1.0544	+135.9 579.6 1.666 1.049
ED AMM	30°	+110.2 572.7 2.091 1.0648	+112.1 572.8 2.028 1.0618	+114.0 +124.0 573.1 578.7 1.968 2.01 1.0588 1.06	+115.8 573.3 1.912 1.0559	+119.3 573.5 1.807 1.0504	+122.7 573.6 1.714 1.0449	+125.9 573.8 1.630 1.0397
PEKHEAT	30°	+100.2 567.1 2.043 1.0550	+102.1 567.3 1.981 1.0520	+104.0 567.5 1.921 1.0489	+105.8 567.6 1.867 1.0460	+109.3 567.8 1.764 1.0405	+112.7 567.9 1.673 1.0350	+115.9 568.1 1.590 1.0299
OS.	001	+ 90.2 561.6 1.993 1.0448	+ 92.1 561.7 1.983 1.0418	+ 94.0 561.9 1.875 1.0388	+ 95.8 562.0 1.822 1.0359	+ 99.3 562.2 1.721 1.0304	+102.7 562.2 1.631 1.0249	+105.9 562.3 1.550 1.0197
	Vapor	556.0 1.944 1.0348	556.1 1.885 1.0318	556.3 1.828 1.0288	556.4 1.776 1.0259	556.5 1.677 1.0204	556.5 1.589 1.0149	556.6 1.510 1.0097
	Liquid	+55.7 0.02671 + .1082	+57.8 0.02678 + .1122	+60.1 0.02685 + .1162	+62.2 0.02692 + .1201	+66.3 0.02705 + .1277	+70.3 0.02718 + .1348	+74.1 0.02732 + .1414-
		Temp. Q Vol.	Temp. Q Vol. φ	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol. \$\phi\$	Temp. Q Vol. \$\phi\$
		155	160	165	170	180	190	200

1				DOI LIVIII	a daira	TINIOMINI.	(INOS. 155	SOI ENTIFE TEL AMMINIONIA (NOS. 155 to 200). — Continued	ontinuea				
		Liquid	Vapor	IIO°	120°	130°	140°	150°	.09I	180°	200	250°	300°
Temp. Q Vol. φ		. +80.2 +55.7 0.02671 + .1082	556.0 1.944 1.0348	+190.2 616.8 2.470 1.1378	+200.2 622.3 2.516 1.1468	+210.2 627.7 2.562 1:1548	+220.2 633.2 2.608 1.1632	+230.2 638.6 2.656 1.1711	+240.2 644.1 2.700 1.1792	+260.2 655.0 2.791 1.1946	+280.2 665.9 2.881 1.2103	+330.2 693.3 3.102 1.2466	+380.2 720.7 3.322 1.2805
Temp. Q Vol. \$\phi\$		+57.8 0.02678 + .1122	556.1 1.885 1.0318	+192.1 617.1 2.398 1.1346	+202.1 622.1 2.443 1.1436	-212.1 628.0 2.488 1.1517	+222.1 633.5 2.533 1.1598	+232.1 638.9 2.577 1.1678	+242.1 644.4 2.621 1.1758	+262.1 655.3 2.708 1.1913	+282.1 666.3 2.795 1.2068	+332.1 693.7 3.011 1.2429	+382.1 721.2 3.224 1.2768
Temp. Q Vol. φ		+60.1 0.02685 + .1162	556.3 1.828 1.0288	+194.0 617.5 2.326 1.1313	+204.0 623.0 2.369 1.1401	+214.0 628.4 2.413 1.1485	+224.0 633.9 2.456 1.1566	+234.0 639.4 2.500 1.1645	+244.0 644.9 2.543 1.1725	+264.0 655.8 2.627 1.1878	+284.0 666.8 2.711 1.2033	+334.0 694.2 2.920 I.2393	+384.0 721.7 3.126 1.2733
Temp. Q Vol. \$\phi\$		+62.2 0.02692 + .1201	556.4 I.776 I.0259	+195.8 617.8 2.262 1.1281	+205.8 623.3 2.305 1.1370	+215.8 628.7 2.347 1.1452	+225.8 634.2 2.389 1.1534	-235.8 639.7 2.431 1.1612	+245.8 645.2 2.472 1.1692	+265.8 656.2 2.555 1.1846	+285.8 667.2 2.637 1.1999	+335.8 694.7 2.839 1.2359	+385.8 722.1 3.040 1.2699
Temp. Q Vol. φ		+89.3 +66.3 0.02705 + .1277	556.5 1.677 1.0204	+199.3 618.2 2.141 1.1224	+209.3 623.7 2.181 1.1313	+219.3 629.3 2.221 1.1393	+229.3 634.8 2.261 1.1474	-239.3 640.3 2.301 1.1554	+249.3 645.8 2.341 1.1634	+269.3 656.9 2.419 1.1784	+289.3 667.9 2.497 1.1937	+339.3 695.4 2.690 1.2296	+389.3 723.0 2.881 1.2634
Temp. Q Vol. ϕ		+70.3 0.02718 + .1348		+202.7 618.6 2.032 1.1169	+212.7 624.2 2.071 1.1254	+222.7 629.7 2.109 1.1333	+232.7 635.3 2.147 1.1417	-242.7 640.8 2.185 1.1497	+252.7 646.3 2.223 1.1574	+272.7 657.4 2.298 1.1727	+292.7 668.4 2.372 1.1878	+342.7 696.1 2.556 1.2234	+392.7 723.7 2.738 1.2569
Temp. Q Vol. \$\phi\$		+74.1 0.02732 + .1414	556.6 1.510 1.0097	+205.9 619.1 1.934 1.1117	+215.9 624.7 1.971 1.1202	+225.9 630.3 2.007 1.1282	F235.9 635.9 2.043 I.I363	-245.9 641.5 2.079 1.1442	+255.9 647.0 2.115 1.1522	+275.9 658.1 2.186 1.1672	+295.9 669.1 2.257 I.1823	+345.9 696.9 2.433 I.2177	+395.9 724.6 2.602 1.2512
	1												

270)
2
to
210
(Nos.
_
ONIA
AMMC
ATED
HE.
JPER
SUL

(0	60° 70° 80° 90° 100°	+159.0 +169.0 +179.0 +189.0 +199.0 591.1 596.8 602.4 608.1 613.8 1.665 1.702 1.0810 1.810 1.810 1.0629 1.0723 1.0810 1.0984 1.0984	-162.0 +172.0 591.4 597.1 1.591 1.625 1.0586	164.9 +174.9 +184.9 +194.9 608.7 1.528 1.554 1.0636 1.0724 1.0812	591.6 591.6 597.4 1.462 1.0504 1.0596	170.4 +180.4 +190.4 +200.4 591.5 597.3 603.1 608.9 1.404 1.436 1.468 1.499 1.0466 1.0556 1.0649 1.0736	173.1 +183.1 +193.1 +203.1 501.7 597.5 603.4 609.2 1.298 1.383 1.413 1.444 1.0396 1.0522 1.0614 1.0702	175.6 +185.6 591.7 1.298 1.327 1.0396
s. 210 to 270)	50° 60°	585.4 1.628 1.0538	585.7 1.555 1.0493	585.7 1.490 1.0449	585.8 1.428 1.0408	+160.4 585.7 1.372 1.0369 1.040	585.9 1.321 1.0334	585.9 1.268 1.0296
SUPERHEATED AMMONIA (Nos. 210 to 270)	40°	+139.0 579.6 1.591 1.044;	+142.0 579.9 1.519 1.040x	+144.9 579.8 1.455 1.035	+147.7 579.9 1.395 1.031	F150.4 579.8 1.339 1.027.	-153.1 579.9 1.289 1.023	579.9 579.9 1.238 1.020
	30°	+129.0 573.8 1.553 1.0348	+132.0 574.0 1.483 1.0303	+134.9 574.0 1.420 1.0259	+137.7 574.0 1.361 1.0217	+140.4 572.9 1.306 1.0176	+143.1 573.9 1.257 1.0139	+145.6 573.8 1.207 1.0104
	20°	+119.0 568.1 1.515 1.0252	+122.0 568.2 1.446 1.0208	-124.9 568.1 i.384 1.0165	-127.7 568.1 1.326 1.0123	+130.4 567.9 1.273 1.0084	+133.1 567.9 1.225 1.004	+135.6 567.8 1.176 1.000
	IO°	+109.0 562.3 1.477 1.0148	+112.0 562.3 1.409 1.0103	+114.9 562.3 1.348 1.0061	+117.7 562.2 1.291 1.0019	+120.4 561.9 1.239 0.9978	+123.1 561.9 1.192 0.9939	+125.6 561.7 1.145 0.9901
	Vapor	556.5 1.438 1.0048	556.5 1.371 1.0003	1.312 0.9959	556.3 1.256 0.9916	556.0 1.204 0.9874	555.9 1.158 0.9834	555.7 1.113 0.9795
	Liquid	+77.7 0.02744 + .1479	+102.0 +81.2 0.02757 + .1541	+84.6 +104.9 0.22769 + .1602	+87.9 0.02782 + .1660	+91.1 0.02794 + .1717	+113.1 +94.2 0.02806 + .1771	+1r5.6 +97.2 0.02817 + .1824
		Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol. \$\phi\$	Temp. Q Vol.	Temp. Q Vol.
		210	220	230	240	250	997	270

SUPERHEATED AMMONIA (Nos. 210 to 270). — Continued

Temp
Napor 110° 120° 130° 140° 150° 160°
Vapor 110° 120° 130° 140° 150° 150° 250° 250° 350° <t< td=""></t<>
130° 130° 140° 150° 160° 160° 150° 200° 250° 350°
130° 130° 140° 150° 160° 180° 200° 250° 3
180° 200° 250° 3 4279.0 439
180° 200° 250° 3 4279.0 439
180° 200° 250° 3 4279.0 439
180° 200° 250° 3 4279.0 439
180° 200° 250° 3 658.5 429.0 +349.0 +36 2.087 1.155 1.2123 +36 1.1623 1.1773 1.2123 +40 1.282.0 430.0 +36 698.0 72 1.997 1.1728 1.2075 +40 1.1579 1.1728 1.2075 +40 1.997 1.178 1.2075 +40 1.915 1.1682 1.2029 +40 1.915 1.1682 1.2029 +40 1.183 1.1641 1.1988 1.1988 1.1406 1.1641 1.1988 1.1988 1.2004 1.1604 1.1988 1.1988 1.2004 1.1604 1.1988 1.1988 1.2004 1.1604 1.1988 1.1988 1.2004 1.1604 1.1969 1.1908 1.1402 1.1604 1.1969 1.1923 1.201 1.1823 1.1923 1.1923
+290.0
+349.0 697.4 2.322 1.2123 +352.0 698.0 2.221 1.2075 +354.0 698.5 2.131 1.2029 +360.4 699.1 1.1988 +360.4 699.1 1.1948 +360.4 +360.4 +41 699.1 1.1948 +360.4 +360.4 +11948 +360.4 +3
+ + + + + + + + + + + + + + + + + + +

SUPERHEATED AMMONIA (Nos. 280 to 400)

100°	+218.1 615.3 1.370 1.0729	+222.9 615.6 1.282 1.0676	+227.4 615.8 1.202 1.0633	+231.8 616.2 1.135 1.0582	+235.9 616.4 1.071 1.0545	+239.8 616.6 1.016 1.0514	+243.7 616.7 0.966 1.0488
000	+208.1 609.4 1.342 1.0637	+212.9 609.7 1.256 1.0581	+217.4 609.8 1.177 1.0527	+221.8 610.1 1.110 1.0483	+225.9 610.3 1.048 1.0445	+229.8 610.4 0.994 1.0414	+233.7 610.4 0.945 1.0386
80°	+198.1 603.5 1.314 1.0550	+202.9 603.7 1.229 1.0495	+207.4 603.8 1.152 1.0439	+211.8 604.1 1.086 1.0394	+215.9 604.1 1.025 1.0354	+219.8 604.2 0.971 1.0318	+223.7 604.1 0.923 1.0284
200	+188.1 597.7 1.285 1.0457	+192.9 597.8 1.201 1.0409	+197.4 597.8 1.126 1.0342	+201.8 598.0 1.062 1.0292	+205.9 598.0 I.001	+209.8 598.0 0.948 1.0212	+213.7 597.9 0.901 1.0189
60°	+178.1 591.8 1.256 1.0363	+182.9 591.8 1.173 1.0306	+187.4 591.8 1.099 1.0247	+191.8 592.0 1.036 1.0198	+195.9 591.8 0.977 1.0151	-199.8 591.8 0.925 1.0110	+203.7 591.6 591.6 1.0071
20° 30° 40° 50°	+168.1 585.9 1.226 1.0262	585.9 1.145 1.0204	585.8 1.072 1.0143	+181.8 585.9 1.0090	585.7 0.953 1.0041	-189.8 585.6 0.901 1.000	585.3 0.856
40°	+ 2	+162.9 579.7 1.1.1 500.1	+167.4 578.5 1.045	+171.8 579.5 0.984 .9989	+175.9 579.2 0.928	579.0 0.877 0.989.	578.4 0.833 .984
30°	+148.r 573.7 1.166	+152.9 573.5 1.088 0.9998	157.4 573.3 1.018 0.993	562.2 0.958 0.987	571.7 0.902 .9827	-169.8 571.5 0.853 .978	571.8 571.8 0.809
20°	+138.1 567.7 1.135 0.9969	+142.9 567.4 1.058 0.9901	+ 147.4 567.0 0.990 0.9834		+155.9 566.3 0.877	+159.8 565.9 0.828 0.9664	+163.7 565.2 0.785 0.9610
100	+128.1 561.6 1.104 0.9866	+132.9 561.2 1.028 0.9796	+137.4 560.8 0.961 .9726	+141.8 560.5 0.904 .9665	+145.9 559.9 0.851	+149.8 559.4 0.803	+153.7 558.6 0.761 .9501
Vapor	7/3	555.0 0.998 .9686	554.5 0.932 .9614	554.1 0.876 .955¤	553.4 0.824 .9489	552.8 0.777 .9432	552.0 0.736 .9376
Liquid	+118.1 +100.2 0.02828 + .1876	+105.9 +105.9 -0.02851 + .1976	+127.4 +111.3 0.02873 + .2069	+116.7 0.02894 + 2160	+121.6 +1245.9 0.02910 + .2245	+126.5 0.02938 + .2326	+131.1 0.02958 + .2404
	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol.	Temp. Q Vol	Temp. Q Vol. Q	Temp. Q Vol. \$\phi\$	Temp. Q Vol.
	880	300	320	340	360	380	400

SUPERHEATED AMMONIA (Nos. 280 to 400). — Continued

1 1 8 6 4 8 6 8 7	SUPERHEATED AMMONIA (Nos. 28º to 40o). — Continued III0° I30° I40° I50° I60° 300°	+228.1 +238.1 +248.1 +258.1 +268.1 +278.1 +298.1 621.1 626.9 632.7 638.5 644.3 650.0 661.3 1.398 1.426 1.453 1.479 1.506 1.532 1.585 1.0819 1.0977 1.1059 1.1140 1.1214 1.136	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+241.8 +251.8 +261.8 +291.8 +291.8 +311.8 +331.8 622.2 628.1 634.1 646.0 646.0 651.8 653.4 675.0 1.168 1.285 1.273 1.273 1.317 1.360 1.068a 1.0764 1.0844 1.0926 1.1008 1.1240 1.138	+245.9 +255.9 +265.9 +275.9 +285.9 +295.9 +315.9 622.4 628.4 634.4 640.4 646.4 652.2 663.9 1.094 1.116 1.189 1.106 1.089 1.0979 1.1057 1.124 1.0642 1.0729 1.0812 1.1057 1.124 1.124	+249.8 +259.8 +269.8 +279.8 +289.8 +299.8 +319.8 +339.8 +389.8 622.6 628.7 634.7 646.4 654.4 676.2 704.5 1.037 1.059 1.080 1.101 1.1122 1.1143 1.122 1.1325 1.0612 1.0702 1.0876 1.0876 1.1037 1.1195 1.1342 1.1676	+253.7 +263.7 +273.7 +283.7 +293.7 +393.7 622.8 628.9 634.9 641.0 647.1 653.0 0.087 1.008 1.020 1.049 1.069 1.102
Vapor 1.072 0.0757 0.0757 0.0757 0.0757 0.0986 0.0986 0.0932	SUPERHEATED A	+238.1 626.9 819 1.426 1.0900	+242.9 627.3 1.335 1.0851	+247.4 627.6 1.252 1.080:	+251.8 628.1 1.181 1.076	+255.9 628.4 1.116 542 1.0726	F259.8 628.7 1.059 1.0702	F263.7 628.9 1.008
	Liquid Vapor	18.1 555.5 8 1.072 0.0757	555.0 0.998 9686	554.5 0.932 9614	554.1 0.876 .9550	.9 553.4 0.824 .9489	552.8 0.777 .9432	552.0

44

143844 Author Keyes, F. G. and Brownlee, R. B.

The dermodynamic properties of ammonia.

UNIVERSITY OF TORONTO LIBRARY

Do no remove the card from this

Pocket.

Acme Library Card Pocket Under Pat. "Ref. Index File."

Made by LIBRARY BUREAU

