Classification Problems

Here the response variable Y is qualitative — e.g. email is one of $\mathcal{C} = (\mathtt{spam}, \mathtt{ham})$ ($\mathtt{ham} = \mathtt{good}$ email), digit class is one of $\mathcal{C} = \{0, 1, \ldots, 9\}$. Our goals are to:

- Build a classifier C(X) that assigns a class label from C to a future unlabeled observation X.
- Assess the uncertainty in each classification
- Understand the roles of the different predictors among $X = (X_1, X_2, \dots, X_p)$.

Is there an ideal C(X)? Suppose the K elements in \mathcal{C} are numbered $1, 2, \ldots, K$. Let

$$p_k(x) = \Pr(Y = k | X = x), \ k = 1, 2, \dots, K.$$

These are the *conditional class probabilities* at x; e.g. see little barplot at x = 5. Then the *Bayes optimal* classifier at x is

$$C(x) = j \text{ if } p_j(x) = \max\{p_1(x), p_2(x), \dots, p_K(x)\}\$$

Classification: some details

• Typically we measure the performance of $\hat{C}(x)$ using the misclassification error rate:

$$\operatorname{Err}_{\mathsf{Te}} = \operatorname{Ave}_{i \in \mathsf{Te}} I[y_i \neq \hat{C}(x_i)]$$

• The Bayes classifier (using the true $p_k(x)$) has smallest error (in the population).

Classification: some details

• Typically we measure the performance of $\hat{C}(x)$ using the misclassification error rate:

$$\operatorname{Err}_{\mathsf{Te}} = \operatorname{Ave}_{i \in \mathsf{Te}} I[y_i \neq \hat{C}(x_i)]$$

- The Bayes classifier (using the true $p_k(x)$) has smallest error (in the population).
- Support-vector machines build structured models for C(x).
- We will also build structured models for representing the $p_k(x)$. e.g. Logistic regression, generalized additive models.

Example: K-nearest neighbors in two dimensions

KNN: K=1

KNN: K=100

