Tarea 1 Microeconomía I

Profesora: Adriana Piazza Ayudantes: Ignacio Fuentes y Hriday Karnani

Otoño 2024

- 1. Para cada una de las siguientes preferencias en X, determinar si éstas son racionales.
 - a) Sea $X = \{1, 2, 3\}$ y \succsim definida por: $1 \succsim 1$, $1 \succsim 2$, $1 \succsim 3$, $2 \succsim 3$, $3 \succsim 1$.
 - b) Sea $X = \mathbb{R}$, el conjunto de los números reales y \succsim definida por la relación "mayor o igual que", es decir $x \succsim y$ si y solo $x \ge y$.
 - c) Sea $X = \mathbb{R}$, y $x \gtrsim y$ si y solo |x y| > 1.
 - d) Sea $X = \mathbb{R}$, y $x \succeq y$ si y solo x y es múltiplo de 2.
- 2. Sea $X = \mathbb{R}^2_+$ y sean $B_1 = \{(x_1, x_2) : 2x_1 + 2x_2 \le 20\}$ y $B_2 = \{(x_1, x_2) : x_1 + 3x_2 \le 20\}$. Definimos $\mathcal{B} = \{B_1, B_2\}$.
 - a) Si $C(B_1) = \{(8,2)\}$ y $C(B_2) = \{(8,4)\}$ ¿Se cumple el Axioma Débil de la Preferencia Revelada? Ilustre gráficamente las restricciones presupuestarias y las elecciones.
 - b) Si $C(B_1) = \{(8,2)\}$ y $C(B_2) = \{(2,6)\}$ ¿Se cumple el ADPR? Ilustre gráficamente las restricciones presupuestarias y las elecciones.
 - c) Si $C(B_1) = \{(2,8)\}$, ¿hay algún $C(B_2)$ para el cual no se cumpla el ADPR? Demuestre su respuesta.
- 3. Encuentre un ejemplo de una regla de elección (C, \mathcal{B}) definida en X que pueda ser racionalizada por más de una relación de preferencias, y diga cuáles son las preferencias que la racionalizan. NOTA: si \mathcal{B} incluye a todos subconjuntos de 2 elementos de X, entonces existe a lo sumo una relación de preferencias que racionaliza a (C, \mathcal{B}) .
- 4. Sean las preferencias en $X = \mathbb{R}^2_+$ definidas por

$$x \succsim y \Longleftrightarrow \begin{pmatrix} x_1 + x_2 \\ \max\{x_1, x_2\} \end{pmatrix} \ge \begin{pmatrix} y_1 + y_2 \\ \max\{y_1, y_2\} \end{pmatrix}.$$

- a) Dibuje el conjunto de contorno superior del punto (1, 1).
- b) Determine si las preferencias son: convexas, monótonas, estrictamente monótonas, localmente no saciadas, continuas, completas y transitivas. En cada caso justifique mediante demostración o un contraejemplo.
- 5. Si X es finito, entonces cualquier relación de preferencia racional \succeq puede representarse mediante una función de utilidad $u: X \to \mathbb{R}$.

NOTA: Utilice la proposición vista en clases que afirma que $C(B, \succeq) \neq \emptyset$ si B es finito y \succeq es racional.

- 6. Suponga que la relación de preferencia \succsim en $X = \mathbb{R}^+ \times Y$ es completa y transitiva, y que existe $\bar{y} \in Y$ tal que para todo $y \in Y$, $(0, y) \succsim (0, \bar{y})$. Suponga que:
 - a) ("el bien 1 es valioso"): $(a, \bar{y}) \succsim (a', \bar{y})$ si y solo si $a \ge a'$.
 - b) ("hay cantidades del bien 1, que compensan cualquier caída del bien 2"): para cada $y \in Y$, existe $t \ge 0$ tal que $(0,y) \succsim (t,\bar{y})$.
 - c) ("no efectos de riqueza"): si $(a,y) \succsim (a',y')$ entonces para todo $t \in \mathbb{R}$, $(a+t,y) \succsim (a'+t,y')$.

Demuestre que

- (i) Existe $v: Y \to \mathbb{R}$ tal que $(a, y) \succsim (a', y')$ si y solo si $a + v(y) \ge a' + v(y')$.
- (ii) A la inversa, si la relación de preferencia \succeq en $X = \mathbb{R} \times Y$ está representada por u(a, y) = a + v(y), entonces satisface las tres condiciones precedentes.

Sugerencia para la parte (i): Gracias a la condición b) podemos definir una función v(y) tal que para cada $y \in Y$, $(0,y) \sim (v(y),\bar{y})$. Utilice las condiciones a) y c) para demostrar que $(a,y) \succsim (a',y')$ si y solo si $a + v(y) \ge a + v'(y)$.