

Voice Biometrics

Phan Trung Kiên - Phòng XLTN – Khối CNTLA 18/10/2024

I. Introduce

- II. Speaker Recognition
- III. Speaker Classification

Biometrics definition

Unique **physical** or **behavioral** human characteristics that can be used to digitally identify a person to grant access to systems, devices or data.

Face ID

Fingerprint

Voiceprint

Voiceprint

Behavioral and Physical characteristic factors are combined to produce a unique voice pattern for each individual.

Biometric technology captures this pattern as a voiceprint.

- Speed of Speech
- Pronunciation and Emphasis
- Accents

- Unique Physical Traits of Vocal Tract
- Mouth Shape and Size
- Nasal Passages

Voice Biometrics

- I. Introduce
- II. Speaker Recognition
- III. Speaker Classification

Speech preprocessing

Speaker Identification & Verification

Speaker Verification:

- The speaker claims to be of a certain identity and the voice is used to verify this claim.
- A 1:1 match where one speaker's voice is matched to a particular template.

Speaker Identification:

- Determining an unknown speaker's identity.
- A 1:N match where the voice is compared against multiple templates.

TYPES OF SPEAKER RECOGNITION

www.apriorit.com

Applications

Authentication

Voice Assistant

Speaker Embedding

Model backbone:

- ResNet
- TDNN
- CNN-TDNN
- ECAPA-TDNN

Pooling:

- Statistics Pooling
- Attentive Statistics Pooling
- Multi-Head Attention Pooling

Speaker Embedding

Loss Function:

- Metric Loss:
 - Triplet Loss
 - Contrastive Loss
- Classification Loss:
 - Softmax Loss
 - A-Softmax Loss
 - AM-Softmax Loss
 - AAM-Softmax Loss

 θ_1

CosFace

Classz

SphereFace

 θ_1

Softmax

ArcFace

Speaker Embedding

Cosine Distance/Similarity

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Back-end

- Cosine Similarity
- Basic Classifiers: SVM, GMM, Logistic Regression (LR)
- PLDA Classifiers: PLDA, APLDA, CORAL, ...

Speaker Verification

Speaker Identification

Metrics

Equal Error Rate & Minimum Detection Cost Function

EER

FER Sensitivity / level of security FAR FER Sensitivity / level of security

Min DCF

$$C_{\text{det}}(P_{\text{miss}}, P_{\text{FA}}) = C_{\text{miss}}P_{\text{miss}}P_{\text{tar}} + C_{\text{FA}}P_{\text{FA}}(1 - P_{\text{tar}})$$

Cmiss - cost of a miss target (false reject)

 C_{FA} – cost of a false alarm (false accept)

 P_{miss} and P_{FA} are determined by the evaluator by counting errors.

 P_{tar} is the prior probability that a target speaker event occurs in the application.

Challenges

Data

Spoofing

Voice Quality

Cross Device

Voice anti-spoofing

Speaker Diarization

Speaker Diarization is the task of segmenting and co-indexing audio recordings by speaker.

Diarization implies finding speaker boundaries and grouping segments that belong to the same speaker, and, as a by-product, determining the number of distinct speakers.

Applications

Meeting transcription

Call transcription

Speaker Diarization

Clustering

End to end

Metrics

Diarization Error Rate:
$$DER = \frac{T_{FA} + T_{MISS} + T_{SPKR}}{T_{SPEECH}}$$

Hypothesis (model output)

Google

- I. Introduce
- II. Speaker Recognition
- **III. Speaker Classification**

Speaker Classification

Classify a speaker by:

- Language, accent
- Age
- Gender
- Emotions

Customer benefit:

- Easy UI Language switch
- Gender/Age specific UI
- Enables parental control

Age Estimation

Age range

- 0-20 years old
- 20-60 years old
- > 60 years old

Emotions

Emotions describe subjective feelings in short periods of time that are related to events, persons, or objects

Approaches:

- Categorical emotion approach
- Dimensional emotion approach

Our Project

Tầng 9, Century Tower, Times City, 458 Minh Khai, Phường Vĩnh Tuy, Quận Hai Bà Trưng, Hà Nội.

info@vinbigdata.org

product.vinbigdata.org