Scilab Textbook Companion for Electronics Devices and Circuits by D. A. Bell¹

Created by
Poonam Pandurang Pingale
B.Tech
Electronics Engineering
Vishwakarma Institute of Technology,Pune
College Teacher
Prof. D. G. Kanade
Cross-Checked by
K. V. P. Pradeep

July 14, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronics Devices and Circuits

Author: D. A. Bell

Publisher: Prentice Hall, India

Edition: 3

Year: 2000

ISBN: 81-203-1278-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	et of Scilab Codes	4
2	Semiconductor diodes	5
3	Bipolar Junction Transistors	12
4	Transistor Biasing	21
5	Basic Transistor circuits	34
7	Transistor Specification and performance	41
8	Field Effect Transistors	48
9	FET Biasing	51
10	Basic FET Circuits	58
11	Small Signal Amplifiers	64
12	Amplifiers with negative feedback	78
13	IC operational amplifiers and Opamp applications	83
14	Operational amplifier frequency response and compensation	88
15	sinusoidal Oscillators	92
16	Power supplies Breakdown diodes and Voltage regulators	96

17 Large signal amplifiers	106
18 Thyristors and unijunction transistors	114
19 Optoelectronic devices	121
20 Miscellaneous devices	127
21 Electron tubes	132

List of Scilab Codes

Exa 2.1	dc load line characteristics	5
Exa 2.2	Finding Load resistance	6
Exa 2.3	Finding new source value	6
Exa 2.4	diode Forward Current	7
Exa 2.5	forward voltage drop	7
Exa 2.6	Half wave rectification	8
Exa 2.7	Maximum operating frequency	9
Exa 2.8	Maximum forward current	10
Exa 2.9	Diode forward current and reverse voltage	10
Exa 3.1	Finding collector and emitter current of transistor	12
Exa 3.2	Finding Emitter and base current	13
Exa 3.3	Current Gain Characteristics	14
Exa 3.4	Finding Emitter and collector current	14
Exa 3.5	Finding Beta of Transistor	15
Exa 3.6	Finding h-parameters for CE configuration	17
Exa 3.7	Finding h-parameters	18
Exa 3.8	Finding h-parameters and Common base gain	19
Exa 4.1	Dc load line	21
Exa 4.2	Maximum undistorted output	22
Exa 4.3	Designing fixed bias circuit	23
Exa 4.4	Analyzing fixed bias circuit	23
Exa 4.5	Design collector to base Bias circuit	24
Exa 4.6	Analyzing collector to base Bias circuit	24
Exa 4.7	Analysing common-emitter current Bias circuit	25
Exa 4.8	Analyse emitter current Bias circuit	26
Exa 4.9	Design emitter current Bias circuit using 2N3904	27
Exa 4.10	Design Common emitter current bias circuit	28
Eva 4 11	Finding Stability factor	29

Exa 4.12	Dc and ac load line	30
Exa 4.13	Finding Vce in cutoff and saturation	31
Exa 4.14	Finding Base resistor	31
Exa 4.15	Finding Base and collector resistor	32
Exa 5.1	Impedances and Gain for common emitter circuit	34
Exa 5.2	Effect on performance of common emitter circuit	35
Exa 5.3	AC analysis of common-emitter circuit	36
Exa 5.4	Circuit Impedances and Gain for common emitter circuit	37
Exa 5.5	Effect on input impedance	38
Exa 5.6	Circuit Impedances and Gain for common base circuit	38
Exa 5.7	Input impedance, output impedance and voltage gain of	
	CE amplifier	39
Exa 7.1	Finding collector current	41
Exa 7.2	Maximum power Dissipation	42
Exa 7.3	Selecting heat sink	42
Exa 7.4	Change in Output power with variation in signal fre-	
	quencies	43
Exa 7.5	Output power variation	44
Exa 7.6	Upper 3dB point	44
Exa 7.7	Input capacitor	45
Exa 7.8	Output noise	46
Exa 8.1	FET Transfer characteristics	48
Exa 8.2	Min and max Transfer characteristics for FET	48
Exa 8.3	Find Transconductance(gm)	49
Exa 8.4	Finding gm	50
Exa 9.1	Dc load line for FET	51
Exa 9.2	Finding levels of Id and Vds	51
Exa 9.3	Design fixed bias circuit FET	52
Exa 9.4	Analyze fixed bias circuit FET	53
Exa 9.5	Design self bias circuit FET	53
Exa 9.6	Analyze self bias circuit FET	54
Exa 9.7	Design potential divider circuit FET	55
Exa 9.8	Analyze potential divider circuit FET	56
Exa 9.9	Finding Rd input voltage Rg	57
Exa 10.1	Input and output Impedances and voltage gain for Com-	
	mon source JFET	58
Exa 10.2	Voltage gain for Common source JFET	59
Exa 10.3	Impedance and gain for Common source JFET	59

Exa 10.4	Input and output Impedances and gain for Common drain JFET
Exa 10.5	Impedance and gain for Common drain JFET
Exa 10.6	Impedances, vo and gain for Common gate JFET
Exa 10.7	Impedance, Output voltage(vo) and gain for Common
	gate JFET
Exa 11.1	Resistors for CE amplifier
Exa 11.2	Capacitors for CE amplifier
Exa 11.3	Resistors for CS amplifier
Exa 11.4	Capacitors for CS amplifier
Exa 11.5	Design 2 stage amplifier
Exa 11.6	Analyze 2 stage amplifier
Exa 11.7	Suitable Resistors for 2 stage amplifier
Exa 11.8	Capacitors for 2 stage amplifier
Exa 11.9	Resistance values for 2 stage amplifier
Exa 11.10	Capacitor values for 2 stage amplifier
Exa 11.11	AC analysis of 2 stage amplifier
Exa 11.12	Design DC feedback amplifier
Exa 11.13	Resistors for BIFET amplifier
Exa 11.14	Capacitors for BIFET amplifier
Exa 12.1	Modification of 2 stage amplifier to voltage series feed-
	back
Exa 12.2	Analyze negative feedback amplifier
Exa 12.3	Single stage CE amplifier using current feedback
Exa 13.1	Output voltage of differential amplifier
Exa 13.2	Impedance and gain for differential amplifier circuit.
Exa 13.3	Design voltage follower
Exa 13.4	Design non inverting amplifier
Exa 13.5	Design inverting amplifier
Exa 13.6	Design Schmitt trigger
Exa 14.1	Design inverting amplifier
Exa 14.2	Design non inverting amplifier
Exa 14.3	Design inverting amplifier with a gain of 50
Exa 14.4	Design voltage follower
Exa 14.5	Upper cutoff frequency of inverting amplifier
Exa 15.1	Resistor and capacitor values for phase shift oscillator
Exa 15.2	Design colpitts oscillator
Exa 15.3	Design Wein Bridge oscillator

Exa 15.4	Design phase shift oscillator
Exa 16.1	Reservoir Capacitor for half wave rectifier 96
Exa 16.2	Diode specification for half wave rectifier
Exa 16.3	Resevoir Capacitor for bridge rectifier
Exa 16.4	Diode specification and Capacitor for Zener circuit 99
Exa 16.5	Design Zener diode voltage reference
Exa 16.6	LR and RR for regulator circuit 100
Exa 16.7	LR and RR for rectifier and filter circuit 101
Exa 16.8	Design voltage regulator
Exa 16.9	Design opamp voltage regulator
Exa 16.10	Design voltage regulator circuit
Exa 16.11	Design voltage regulator using LM217 IC 105
Exa 17.1	Dc ac load line for CE circuit
Exa 17.2	Maximum Efficieny of Transformer
Exa 17.3	Transformer output for class B
Exa 17.4	Design capacitor coupled amplifier 109
Exa 17.5	Design capacitors of amplifier circuit
Exa 17.6	Supply and output voltages for amplifier circuit 111
Exa 17.7	Analyze MOSFET power amplifier circuit 112
Exa 18.1	Analyze SCR circuit
Exa 18.2	Design SCR circuit
Exa 18.3	Design resistor for 4 layer diode circuit
Exa 18.4	Analyze UJT circuit
Exa 18.5	Emitter voltages for UJT circuit
Exa 18.6	Frequency of oscillation for UJT circuit
Exa 18.7	Emitter resistance for UJT circuit
Exa 18.8	DC Analysis UJT circuit
Exa 19.1	Light intensity
Exa 19.2	Series resistance and dark current
Exa 19.3	Design photoconductive cell circuit
Exa 19.4	Dc load line for photodiode
Exa 19.5	Total cells for satellite
Exa 19.6	Output voltage of phototransistor circuit
Exa 19.7	Design LED and transistor circuit
Exa 20.1	Capacitance tuning ratio
Exa 20.2	Resonance frequency
Exa 20.3	Value of resistor in thermistor circuit
Exa. 20.4	Piecewise linear characteristics 120

Exa~20.5	Gain for tunnel diode circuit	130
Exa 21.1	Transconductance and constant current characteristics	132
Exa 21.2	Impedance and gain for vaccum triode circuit	133
Exa 21.3	DC load line for CC amplifier	134

Chapter 2

Semiconductor diodes

Scilab code Exa 2.1 dc load line characteristics

```
1 / chapter 2
2 //example 2.1
3 //page 33
4 clear all;
5 clc;
6 //given
7 Rl=100; //load resistor in ohm
8 Es=5;//supply voltage in volts
9 //for point A
10 If1=0; //forward current through diode , thus drop
      across resistor is 0 v
11 Ef1=5; //Ef=voltage drop across diode in volts
12
13 //for point B
14 Ef2=0;
15 If2=Es/R1; //in Ampere
16 If2=If2*10^3; //in mA
17
18 plot([Ef1 Ef2],[If1 If2],'-.*')
19 xtitle('dc load line', 'voltage drop across diode(V)'
      , 'current through diode (mA) ')
```

```
20 a=gca();
21 a.data_bounds=[-0.5 -0.5;5.1 52]
22 printf('dc load line passes through points A(5,0),B
(0,50)')
```

Scilab code Exa 2.2 Finding Load resistance

```
//chapter 2
//example 2.2
//page 34
clear;
clc;
//given
If=30;//forward current through diode in mA
Es=5;//supply voltage in volts
Ef=5;//when If=0 from equation Ef=Es-If*Rl
deltaEf=2;// from load line
deltaIf=0.015;//in ampere
Rl=deltaEf/deltaIf;//load resistance in ohm
printf('load resistance is %d ohm',Rl)
```

Scilab code Exa 2.3 Finding new source value

```
1 //chapter 2
2 //example 2.3
3 //page 34
4 clear;
5 clc;
6 //given
7 If=50;//in mA
8 R1=100;//in ohm
9 Ef=1.1;//in volts at point Q plotted at If=50mA
10 //finding voltage across R1(Ef)
```

Scilab code Exa 2.4 diode Forward Current

```
//chapter 2
//example 2.4
//page 40
clear;
clc;
//given
Vf=1.1;//forward drop across diode in volts
Es=60;//supply voltage in volts
Rl=100;//load resistor in ohm
If= ((Es-Vf)/Rl)*10^3;//forward current through diode in mA
printf('The diode forward current is %d mA',If)
```

Scilab code Exa 2.5 forward voltage drop

```
1 //chapter 2
2 //example 2.5
3 //page 40
4 clear;
5 clc;
6 //given
```

```
7 VF=0.7; //forward voltage drop across diode for
     temparature range 0-65 degree celcius
8 deltaT1=40; // change in temperature for T=65 in
     degree celcius
9 deltaVF=-1.8/10^3; //change in forward voltage drop
     per degree celcius
10 //finding required VF
11 VFmin=VF+deltaVF*deltaT1; //minimum forward voltage
     drop in volts
12
13 deltaT2=-25; //change in temperature for T=0 in
     degree celcius
14 VFmax=VF+deltaVF*deltaT2; //maximum forward voltage
     drop in volts
15
16 printf ('Minimum and maximum values of forward
      voltage drop are %.3 f V & %.3 f V.', VFmin, VFmax)
```

Scilab code Exa 2.6 Half wave rectification

```
//chapter 2
//example 2.6
//page 42
clear;
clc;
//given
VF=0.7;//forward voltage drop across diode
R1=500;//load resistor in ohm
Vp=30;//input voltage in volts
//peak o/p voltage
Ep=Vp-VF;
//peak o/p current
Ip=((Vp-VF)/R1)*10^3;
```

```
16
17 //for half wave rectifier
18 Iave= (0.637 * Ip)/2; //average current through
      diode
19 //power dissipation
20 PD= lave * VF;
21
22 //Peak Reverse Voltage (PRV)
23 PRV = 2 * Vp;
24
25
    printf('\npeak o/p voltage=\%.1 f V\n', Ep);
26
    printf('peak o/p current=%.1f mA\n', Ip);
27
    printf('power dissipation=%d mW\n',PD);
    printf('Peak Reverse Voltage(PRV)=%d V',PRV);
28
```

Scilab code Exa 2.7 Maximum operating frequency

```
1 //chapter 2
2 //example 2.7
3 //page 49
4 clear;
5 clc;
6 //given
7 trr1=10; //in ns for 1N915
8 \text{ trr2=3;} //\text{in ns for } 1\text{N}917
9 //finding maximum operating frequency for 1N915
10 fmax1=1/(10*trr1)*10^3; //in MHz
11
12 //finding maximum operating frequency for 1N917
13 fmax2=1/(10*trr2)*10^3; //in MHz
14
15 printf ('maximum operating frequency for 1N915=%d MHz
      n', fmax1);
16 printf ('maximum operating frequency for 1N917=%d
     MHz', fmax2);
```

Scilab code Exa 2.8 Maximum forward current

```
1 / chapter 2
2 // example 2.8
3 //page 52
4 clear;
5 clc;
6 //given
7 T1=25; // degree C
8 T2=65; //degreeC
9 \text{ deltaT=T2-T1};
10 P1=700; //max power dissipationin mw
11 DF=5; // derating factor in mW/degree celcius
12 VF=0.7; //forward voltage drop across diode
13
14 //maximum forward current at 25 degreeC
15 If1=P1/VF*10^-3;
16
17 //maximum forward current at 65 degreeC
18 P2=P1-(deltaT*DF); //mW
19 If2=P2/VF;
20
21 printf ('maximum forward current at 25 degree C=%d A\n
      ', If1);
22 printf(' maximum forward current at 65 degreeC=%d mA
      ', If2);
```

Scilab code Exa 2.9 Diode forward current and reverse voltage

```
1 //chapter 2
2 //example 2.9
```

```
3 //page 54
4 clear all;
5 clc;
6 //given
7 E=5; //i/p voltage in volts
8 Io=2;//o/p current in mA
9 Eo=4.5; //o/p voltage in volts
10 VF=0.7; //forward voltage drop across diode
11
12 //finding value of R1
13 R1=(E-Eo)/Io*10^3;
15 Er=E;//diode reverse voltage
16
17 // forward current
18 If = (E-VF)/R1*10^3;
19
20 printf('\nR1=%dohm\ndiode reverse voltage=%dv\n
     nforward current=\%.1 fmA',R1,Er,If)
```

Chapter 3

Bipolar Junction Transistors

Scilab code Exa 3.1 Finding collector and emitter current of transistor

```
1 / chapter 3
2 //example 3.1
3 / page 70
5 clear;
6 clc;
7 //given
8 alphadc=0.98;
      //common base current gain factor
9 \text{ Icbo=5};
     //collector to base leakage current
10 Ib=100;
     //base current
11 //calculating collector current
12 Ic=((alphadc * Ib)+ Icbo)/(1-alphadc);
13 Ic=Ic/1000;
14 printf('\ncollector current is %.2 f mA', Ic);
15
```

```
//relation between Ie and Ic
Ib=Ib/1000;
Ie=Ic+Ib;
printf('\nemitter current is %.2 f mA', Ie);

//taking ratio of Ic and Ie which is alphadc
    a = Ic/Ie
printf('\nIc/Ie=%.2 f', a)
printf('\nthus Ic/Ie is approximately equal to alphadc');
```

Scilab code Exa 3.2 Finding Emitter and base current

```
1 //chapter 3
2 //example 3.2
3 / page 71
5 //alphadc is common base gain factor
6 //betadc is dc common emitter gain factor
7 //Ib=base current
8 //Ic = collector
9 clear all;
10 clc;
11 //given currents in mA
12 Ic=5202;
13 Ic1=10*10^3;
14 \text{ Icbo=2};
     //collector to bae leakage current
15 Ib=50;
16 //finding betade
17 betadc=(Ic-Icbo)/(Ib+Icbo)
18 printf('\nbetadc=%d', betadc)
19 //finding emitter current
```

Scilab code Exa 3.3 Current Gain Characteristics

```
//chapter 3
//example 3.3
//page 77
//to plot current gain characteristics from common base output characteristics of a transistor
//from output characteristics, for Vcb=2 V,6 V
Ie=[1 2 3 4]; //emitter current in mA
Ic=[1 1.9 2.9 3.9]; //emitter current in mA
mtlb_axis([-4 0 0 4])
plot(-Ie,Ic);
title('current gain characteristics', 'emitter current', 'collector current');
```

Scilab code Exa 3.4 Finding Emitter and collector current

```
1 //chapter 3
2 //example 3.4
3 //page 78
4 //to find Ie and Ic for a transistor connected in common base configuration
5 clear;
```

```
6 clc;
7 //given
8 \text{ Veb=0.7};
      //emitter to base voltage in volts
9 Vcb=6;
      //collector to base voltage in volts
10 //finding Ie from input characteristics of common
      base configuration
11 if Vcb==6 & Veb==0.7 then
12
       Ie=2;
          //emitter current
13 end
14 printf('\n Ie = \%d mA', Ie);
15
16 //finding Ic from output characteristics of common
      base configuration
17 if Vcb==6 & Ie==2 then
18
       Ic=2;
          //collector current
19 end
20 printf('\n Ic1 = \%d mA', Ic);
21
22
23 //finding Ic from current gain characteristics of
      common base configuration
24 if Vcb==6 & Ie==2 then
25
       Ic=2;
26 \text{ end}
27 printf('\n Ic 2 = \%d mA', Ic);
```

Scilab code Exa 3.5 Finding Beta of Transistor

```
1 //chapter 3
2 //example 3.5
3 //page 82
5 //find Ib(base current) Ic(collector current) for
     common emitter configuration from i/p,o/p,
     current gain characteristics
6 clear;
7 clc;
8 //given
9 Vbe=0.7;
     //base emitter voltage in volts
10 Vce=6;
     //collctor mitter voltage in volts
11
12 //finding Ie from input characteristics of common
     emitter configuration
13 if Vce==6 & Vbe==0.7 then
14
       Ib=60;
          //in microA
15 end
16 printf('\nIb=%d microA', Ib);
17
18 //finding Ic from output characteristics of common
     emitter configuration
19 if Vce==6 & Ib==60 then
20
       Ic = 3.3;
          //in mA
21 end
22 printf('\nIc1=\%.1 f mA', Ic);
23
24 //finding Ic from current gain characteristics of
     common emitter configuration
25 if Vce==6 & Ib==60 then
```

Scilab code Exa 3.6 Finding h-parameters for CE configuration

```
1 //chapter 3
2 //example 3.4
3 //page 78
5 //to find values of h parameters (hoe, hfe) for
     common emitter configuration
6 clear;
7 clc;
8
9 //given
10 Ib=60;
     //base current in microA
11 Vce=4.5;
     //collctor to emitter voltage in volts
12
13 //from output characteristics from point A
14 deltaIc=0.35/1000;
     //change in collector current
```

```
15 deltaVce=3.5;
      //change in collctor to emitter voltage
16 hoe=(deltaIc/deltaVce)*10^6
      //output conductance
17
18 //from current gain characteristics from point B
19 deltaIc=2100;
     //change in collector current
20 deltaIb=35;
      //change in base current
21 hfe=deltaIc/deltaIb
      //forward current transfer ratio
22 printf('\nhfe=\%d\nhoe=\%d\ microS', hfe, hoe);
   Scilab code Exa 3.7 Finding h-parameters
1 //chapter 3
2 //example 3.7
3 //page 92
```

```
1 //chapter 3
2 //example 3.7
3 //page 92
4 //to find values of h parameters (hie, hre) for common emitter configuration
5 clear all;
6 clc;
7 //given
8 Ib=60;
    //base current in microA
9 Vce=4.5;
    //collctor to emitter voltage in volts
```

```
10
11 //from input characteristics from point C
12 deltaVbe=0.15;
     //change in base to emitter voltage
13 deltaIb=120/10<sup>6</sup>;
     //change in base current
14 hie=(deltaVbe/deltaIb)/1000;
     //input resistance
15
16 //from input characteristics from point D
17 deltaVbe=0.01;
18 deltaVce=5;
     //change in collctor to emitter voltage
19 hre=1000*deltaVbe/deltaVce;
     //reverse voltage transfe ratio
20
21
22 printf('\ninput resistance:\nhie=\%.2f Kohm\nreverse
      voltage transfer ratio: \nhre=\%dx(10^-3), hie, hre)
```

Scilab code Exa 3.8 Finding h-parameters and Common base gain

```
1 // chapter 3
2 // example 3.4
3 // page 78
4 // find hfc, hib, alpha for common emitter configuration
5 clear;
6 clc;
```

```
7
8 //given
9 \text{ hfe=60};
      //forward current transfer ratio for common
      emitter configuration
10
11 hie=1250;
      //input resistance for common emitter
      configuration
12
13 hfc = -(1+hfe);
      //forward current transfer ratio for common
      collector configuration
14
15 \text{ hib = hie/(1+hfe)};
      //input resistance for common base configuration
16
17 alpha=hfe/(1+hfe);
      // current gain factor
18
19 printf('\nalpha=\%.3 f\nhib=\%.1 f ohm\nhfc=\%d',alpha,
      hib, hfc);
```

Chapter 4

Transistor Biasing

Scilab code Exa 4.1 Dc load line

```
1 //chapter 4
2 //example 4.1
3 / page 102
4 clear all;
5 clc;
6 //given
7 Rc=9; // collector resistance in kohm
8 Ic1=0; //collector current
9 Vcc=20;//supply voltage
10 Vce1=Vcc; // point A(Vce, Ic) = (20,0)
11 Vce2=0; // collector to emitter voltage V
12 Ic2=Vcc/Rc;/mA
13 / \text{point } F(\text{Vce}2, \text{Ic}2)
14 plot([Vce1 Vce2],[Ic1 Ic2],'-.*');
15 xtitle('dc load line', 'Vce in V', 'Ic in mA');
16 a=gca();
17 a.data_bounds=[-1 -0.5;21 3]
18 printf ('dc load line passes through points A(20,0), F
      (0,2.2)
```

Scilab code Exa 4.2 Maximum undistorted output

```
1 / chapter 4
2 // \text{example } 4.2
3 / page 104
4 clear all;
5 clc;
6 //given
7 Rc=2.2; //collector resistance in kohm
8 Vcc=18;//supply voltage
9 Ib=40; //base current in microA
10 Ic1=0; // collector current
11 Vce1=Vcc; //point A(Vce, Ic) = (18,0)
12 Vce2=0; // collector to emitter voltage V
13 Ic2=Vcc/Rc;/mA
14 printf ('dc load line passes through points A(18,0), B
      (0, 8.2)')
15 / \text{point B}(\text{Vce}2, \text{Ic}2)
16 plot([Vce1 Vce2],[Ic1 Ic2], '-.*');
17 xtitle('dc load line', 'Vce in V', 'Ic in mA');
18 a=gca();
19 a.data_bounds=[-0.5 -0.5;19 8.5]
20
21 //from intersection of dc load line and Ib=40microA,
      pointQ
22 Ic=4.25; //mA
23 Vce=8.7; //V
24 //for point Q1
25 \ \text{Vce1=1.2};
26 deltaVce1=Vce1-Vce;
27 //for point Q2
28 \ Vce1=16.7;
29 deltaVce2=Vce1-Vce;
30 printf ("\n maximum undistorted output is +-7.5 \text{ V}")
```

Scilab code Exa 4.3 Designing fixed bias circuit

```
1 / chapter 4
\frac{2}{\sqrt{\text{example }4.3}}
3 / page 106
4 clear all;
5 clc;
6 //given
7 \text{ hfe} = 100;
8 Vcc=15;//supply voltage
9 //dc bias conditions
10 Vce=5; //V
11 Ic=5; //mA
12 Vbe=0.7;
13 Rc=(Vcc-Vce)/Ic;
14 Ib=1000*Ic/hfe;
15 Rb = 1000 * (Vcc - Vbe) / Ib;
16 printf("\nValue of Rc=%d kohm, Rb=%d kohm", Rc, Rb);
```

Scilab code Exa 4.4 Analyzing fixed bias circuit

```
1 //chapter 4
2 //example 4.4
3 //page 107
4 clear;
5 clc;
6 //given
7 hfe1=50;
8 Vcc=15;//supply voltage
9 Vbe=0.7;
10 Rb=286;
11 Ib=1000*(Vcc-Vbe)/Rb;
```

```
12 Rc=2; // collector resistance in kohm
13 Ic=hfe1*Ib/1000;
14 Vce=Vcc-(Ic*Rc);
15 printf("\nFor hfe=50,Vce=%d V,Ic=%.1 f mA,Ib=%d microA",Vce,Ic,Ib);
16
17 hfe2=150;
18 Ic=hfe2*Ib/1000;
19 Vce=Vcc-(Ic*Rc);
20 printf("\nFor hfe=150,Vce=%d V,Ic=%.1 f mA,Ib=%d microA",Vce,Ic,Ib);
```

Scilab code Exa 4.5 Design collector to base Bias circuit

```
1 // chapter 4
2 // example 4.5
3 // page 102
4 clear all;
5 clc;
6 // given
7 Vcc=15; // supply voltage
8 Vce=5; // collector to emitter voltage
9 Ic=5; //mA
10 hfe=100; Vbe=0.7;
11 Ib=1000*Ic/hfe; // microA
12 Rb=1000*(Vce-Vbe)/Ib;
13 Rc=(Vcc-Vce)/(Ib*10^-3+Ic);
14 printf("\nValue of Rc=%.2 f kohm\nstandard value 1.8 kohm\nRb=%d kohm\nstandard value 82 kohm",Rc,Rb);
```

Scilab code Exa 4.6 Analyzing collector to base Bias circuit

```
1 / chapter 4
```

```
2 //example 4.6
3 / page 109
4 clear;
5 clc;
6 //given
7 hfe1=50;//minimum value
8 hfe2=150;//maximum value
9 Vcc=15; //supply voltage
10 Rc=1.98; //collector resistance in kohm
11 Rb=86; //base resistance in kohm
12 \, \text{Vbe=0.7};
13 Ic1=(Vcc-Vbe)/(Rc*(1+1/hfe1)+Rb/hfe1);
14 Vce1=(Ic1/hfe1)*Rb+Vbe;
15
16 Ic2=(Vcc-Vbe)/(Rc*(1+1/hfe2)+Rb/hfe2);
17 Vce2 = ((Ic2/hfe2)*Rb) + Vbe;
18
19 printf ("\nfor hfe=50, Vce=\%. 1 f V, Ic=\%. 2 f mA", Vce1, Ic1
20 printf("\nfor hfe=150, Vce=\%.1 f V, Ic=\%.2 f mA", Vce2,
      Ic2);
```

Scilab code Exa 4.7 Analysing common-emitter current Bias circuit

```
1 //chapter 4
2 //example 4.7
3 //page 112
4 clear all;
5 clc;
6 //given
7 Vcc=15; //supply voltage
8 Vce=5; //collector to emitter voltage
9 Ic=5; //mA
10 hfe=100; Vbe=0.7;
11 //drop across RE & RC
```

```
12  Vrc=Vcc-Vce;
13  VRC=Vrc/2;
14  Ve=VRC;
15  Rc=VRC/Ic;
16  printf("\nRc=%d kohm, standard value 1 kohm", Rc);
17  Ie=Ic;
18  Re=Ve/Ic;
19  printf("\nRe=%d kohm, standard value 1 kohm", Re);
20  Vb=Ve+Vbe;
21  I2=Ic/10;
22  R2=Vb/I2;
23  printf("\nR2=%.1f kohm, standard value 12 kohm", R2);
24  R1=(Vcc-Vb)/I2;
25  printf("\nR1=%.1f kohm, standard value 18 kohm", R1);
```

Scilab code Exa 4.8 Analyse emitter current Bias circuit

```
1 //chapter 4
\frac{2}{\text{example }} 4.8
\frac{3}{\sqrt{\text{page } 113}}
4 clear all;
5 clc;
6
7 //given
8 hfe1=50;//minimum value
9 hfe2=150;//maximum value
10 Vbe=0.7;
11 Vcc=15; //supply voltage V
12 R1=18.6; R2=11.4; //kohm
13 VT = (Vcc*R2)/(R1+R2);
14 RT=(R1*R2)/(R1+R2);
15 Rc=1; //kohm
16 Re=1.0;
17
18 // for hfe = 50
```

```
19 Ic1=(VT-Vbe)/(RT/hfe1+Re*(1/hfe1+1)); Ic1=4.31;
20 Vce1=Vcc-(Ic1*Rc)-Re*(Ic1/hfe1+Ic1);
21 printf ("\nfor hfe=50, Vce=\%.2 f V, Ic=\%.2 f mA", Vce1, Ic1
      );
22
23 / for hfe = 150
24 \text{ Ic2}=(VT-Vbe)/(RT/hfe2+Re*(1/hfe2+1)); Ic2=4.74;
25 \text{ Vce2=Vcc-(Ic2*Rc)-Re*(Ic2/hfe2+Ic2)};
26 printf("\nfor hfe=150, Vce=\%.2 f V, Ic=\%.2 f mA", (Vce2),
      Ic2);
27
28 Vb= Vcc*(R2/(R1+R2));
29 \text{ Ve=Vb-Vbe};
30 \text{ Ie=Vb/Re};
31 Vc=ceil(Vcc-(Ie*Rc));
32 printf('\nCollector voltage is approximately %d V',
      Vc)
```

Scilab code Exa 4.9 Design emitter current Bias circuit using 2N3904

```
15  Ve=Ie*R4;
16  Vc=Ve+Vce;
17  VR3=Vcc-Vc;
18  R3=VR3/Ic;
19  printf("\nR3=%.1 f kohm, standard value 3.9 kohm\nThis will reduce VR3 and increase Vce slightly.",R3);
    R3=3.9;
20  Vb=Ve+Vbe;
21  I2=1000*Ic/10;
22  R2=1000*Vb/I2;
23  printf("\nR2=%d kohm, standard value 56 kohm",R2);R2 = 56;
24  I2=1000*Vb/R2;I2=96.4;
25  R1=1000*(Vcc-Vb)/I2;
26  printf("\nR1=%.1 f kohm, standard value 68 kohm",R1);
```

Scilab code Exa 4.10 Design Common emitter current bias circuit

```
1 // chapter 4
2 //example 4.10
3 / page 118
4 clear all;
5 clc;
6 //given
7 Ic=2; //collector current mA
8 Vce=5; //collector to emitter voltage V
9 Vcc=9; //supply voltage +-V
10 hfe=70;
11 Vbe=0.7;
12 Ie=Ic;
13 VR3 = Vcc - Vbe;
14 R3=VR3/Ic;
15 printf("\nR3=\%.2 f kohm, standard value 3.9 kohm", R3);
      R3 = 3.9;
16 \text{ Ic=VR3/R3};
```

Scilab code Exa 4.11 Finding Stability factor

```
1 / chapter 4
2 //example 4.11
3 / page 125
4 clear all;
5 clc;
6 //given
7 R4 = 4.7; //kohm
8 \text{ hfe} = 70;
9 deltaT=100-25;//change in temperature
10 / deltaVbe/deltaT = -1.8mV/degreeC
11 deltaVbe=-1.8*deltaT;
12 deltaIc=-deltaVbe/R4;//microA
13 printf("\nchange in Ic =\%.1f microA", deltaIc);
14
15 Re=R4;
16 Rt = (56*68/(56+68));
17 //stability factor
18 S=(1+hfe)/(1+hfe*(Re/(Re+Rt)));
19 printf("\nstability factor=\%.1 \, \text{f}",S);
```

Scilab code Exa 4.12 Dc and ac load line

```
1 // chapter 4
2 //example 4.12
3 / page 128
4 clear all;
5 clc;
6 //given
7 Rc=2.2; Re=2.7;
8 Vcc=20; //supply voltage V
9 R1=18; R2=8.2;
10 Vbe=0.7;
11 //total dc load
12 R = Rc + Re;
13 //dc load line
14 \text{ Ic1=0};
15 Vce1=Vcc; //point A
16 \ Vce2=0;
17 Ic2=Vcc/(R);
18 plot([Vce1 Vce2],[Ic1 Ic2],'-.*');
19 xtitle('dc load line', 'Vce in V', 'Ic in mA');
20 \ a = gca();
21 a.data_bounds=[-0.5 -0.5;21 5]
22
23 Vb = (Vcc*R2)/(R1+R2);
24 \text{ Vb=6.3};
25 Ie=(Vb-Vbe)/Re;
26 Ic=Ie; //Q point Ic=2.07
27 printf("\nQ point is at Ic=\%.2 \, f \, mA", Ic);
28
29 //ac load line
30 //total ac load=Rc
31 deltaIc=1; //mA
32 deltaVce=-(deltaIc*Rc);
33 printf("\ndeltaVce=\%.1f\ V\ for\ deltaIc=1\ mA",
      deltaVce);
34 printf("\npoints Q and (deltaVce, deltaIc)
      constitute ac load line");
```

Scilab code Exa 4.13 Finding Vce in cutoff and saturation

```
1 / chapter 4
2 //example 4.13
3 //page 132
4 clear all;
5 clc;
6 //given
7 Vcc=10; //supply voltage V
8 Rc=1;//collector resistance kohm
9 Ico=50; // collector cutoff current nA
10 // at cutoff
11 Ic=Ico;//collector current at cutoff
12 Vce=Vcc-(Ico*10^-6);
13 printf("\nFor Transistor in cutoff, Vce=\%.5 f V", Vce);
14
15 //at saturation
16 \ \text{Vce=0};
17 Ic=Vcc/Rc;
18 Vce=0.2; //from datasheet of 2N3904
19 printf("\nFor Transistor in saturation, Vce \ll 1.1 \, f \, V",
      Vce);
```

Scilab code Exa 4.14 Finding Base resistor

```
1 //chapter 4
2 //example 4.14
3 //page 134
4 clear all;
5 clc;
6 //given
```

```
7 Vcc=10; //supply voltage V
8 Rc=1; //collector resistance kohm
9 Vb=5; //Base voltage V
10 Vcesat=0.2;
11 hfemin=100;
12 Vbe=0.7;
13 Ic=(Vcc-Vcesat)/Rc;
14 Ibmin=Ic/hfemin;
15 Rb=(Vb-Vbe)/Ibmin;
16 printf("\nValue of Rb=%.1f kohm",Rb);
17 printf('\nRb is a maximum Value.\nThe next lower standard resistance (39 kohm) should be selected to ensure that \nIb is large enough to drive the transistor into saturation.')
```

Scilab code Exa 4.15 Finding Base and collector resistor

```
1 //chapter 4
2 //example 4.15
3 //page 135
4 clear all;
5 clc;
6 //given
7 Vbe=0.7;
8 Vcc=15; //supply voltage V
9 Ic=1; //collector current mA
10 Vcesat=0.2; //saturation voltage
11 Rc=(Vcc-Vcesat)/Ic;
12 printf("\nRc=\%.1 fkohm, standard value 15kohm", Rc);
13 hfemin=35; //from datasheet of 2N3903
14 Ibmin=1000*Ic/hfemin;
15 Rb=1000*(Vcc-Vbe)/Ibmin
16 printf("\nValue of Rb= %d kohm", Rb);
17 printf('\nUse the next lower standard resistance
     (470 kohm) to ensure that Ib is little\nlarger
```

than the minimum level required for transistor saturation. $\dot{}$

Chapter 5

Basic Transistor circuits

Scilab code Exa 5.1 Impedances and Gain for common emitter circuit

```
1 / chapter 5
2 //example 5.1
3 / page 149
4 clear all;
5 clc;
6 //given
7 hie=2.1;//input resistance in kohm
8 hfe=75; //forward voltage gain
9 hoe=1;//output conductance in microS
10 R1=68; R2=56; //kohm
11 Rl=82; //load resistor kohm
12 Zb=hie; //input impedance
13 Rc=3.9;//collector resistor kohm
14 //circuit input impedance
15 Zi=1/((1/Zb)+(1/R1)+(1/R2));
16 printf("\nCircuit input impedance(Zi)=\%.2 f kohm", Zi)
17
18 \text{ Zc=1/hoe};
19 //circuit output impedance
20 Zo = (Zc*Rc)/(Zc+Rc); Zo = 3.9;
```

```
21  printf("\nCircuit output impedance(Zo)=%.1 f kohm", Zo
    );
22
23  Av=round((-hfe*((Rc*R1)/(Rc+R1)))/hie);
24  printf("\nCircuit Voltage gain(Av)=%d", Av);
25
26  Rb=(R1*R2)/(R1+R2);
27
28  Ai=(hfe*Zo*Rb)/((R1+Rc)*(Rb+hie)); Ai=3.2;
29  printf("\nCircuit Current gain(Ai)=%.1 f", Ai);
30  Ap=Av*Ai;
31  printf("\nCircuit Power gain(Ap) =%d", round(-Ap));
```

Scilab code Exa 5.2 Effect on performance of common emitter circuit

```
1 / chapter 5
2 //example 5.2
3 / page 150
4 clear all;
5 clc;
6 //given
7 R1=68; R2=56; //kohm
8 Rc=3.9; // collector resistor kohm
9 Zb=2.1+(76*4.7);//input impedance
10 printf("\nInput Impedance(Zb)=\%.1 f kohm", Zb);
11
12 //circuit input impedance
13 Zi=1/((1/Zb)+(1/R1)+(1/R2));
14 printf("\nCircuit input impedance(Zi)=\%.1 f kohm", Zi)
15 hfe=75; R1=82;
16
17 //circuit output impedance
19 printf("\nCircuit output impedance(Zo)=\%.1 f kohm", Zo
```

```
);
20
21 Av=((-hfe*(Rc*R1)/(Rc+R1))/Zb);
22 Av=-0.78;
23 printf("\nCircuit voltage gain(Av)=%.2f",Av);
24
25 Ai=(75*3.9*30.07)/((82+3.9)*(30.7+359.3));
26 Ai=0.27;
27 printf("\nCircuit current gain(Ai)=%.2f",Ai);
28 Ap=Av*Ai;
29 printf("\nCircuit Power gain(Ap) =%.2f",(-Ap));
```

Scilab code Exa 5.3 AC analysis of common-emitter circuit

```
1 / chapter 5
2 //example 5.3
3 //page 151
4 clear all;
5 clc;
6 //given
7 R1=39; //kohm
8 hie=1.2;//input resistance in kohm
9 Rc=1.8;//collector resistor kohm
10 R2=47; //kohm
11 hoe=1.5; // microS
12 Rl=68; //load resistor kohm
13 hfe=80;
14 // Circuit input impedance
15 Zi=(R1*hie)/(R1+hie);
16 printf("\nCircuit input impedance=\%.2 f kohm", Zi);
17
18 // Circuit output impedance
19 Zo=1/((hoe/1000)+(1/Rc)+(1/R2));
20 printf("\nCircuit output impedance=\%.2 f kohm", Zo);
21
```

```
22  // voltage gain
23  Av=round((hfe*(1/(1/R2+1/Rc+1/Rl)))/hie);
24  printf("\nvoltage gain=%d", Av);
```

Scilab code Exa 5.4 Circuit Impedances and Gain for common emitter circuit

```
1 / chapter 5
\frac{2}{\text{example }} 5.4
3 / page 158
4 clear;
5 clc;
6 //given
7 hie=2.1;//input resistance in kohm
8 hfe=75; //forward voltage gain
9 hic=hie;
10 hib=1+hfe;
11
12 Zb=2.1+(76*5); //input impedance
13 printf("\nInput Impedance (Zb)=\%.1 f kohm", Zb);
14
15 // Circuit input impedance
16 Zi=1/((1/Zb)+(1/10)+(1/10));
17 printf("\nCircuit input impedance(Zi)=\%.2 f kohm", Zi)
18
19 //output impedance
20 \text{ Ze} = 1000*((2.1+(1/(1.2)))/76);
21 printf("\nOutput impedance(Ze)=\%.1 f ohm", Ze);
22
23 // Circuit output impedance
24 Zo = (Ze * 5 * 1000) / (Ze + 5 * 1000);
25 printf("\nCircuit output impedance(Zo)=\%.1 f ohm", Zo)
26
27 \text{ Av} = 1;
```

Scilab code Exa 5.5 Effect on input impedance

```
1 //chapter 5
2 //example 5.5
3 / page 159
4 clear all;
5 clc;
6 //given
7 Rl=12; //load resistor kohm
8 hic=2.1;//input resistance in kohm
9 hfc=76; //forward voltage gain
10 Re=5; //kohm
11 R1=10; R2=10; //kohm
12
13 Zb=hic+hfc*((Re*R1)/(Re+R1));
14 printf("\ninput impedance(Zb) = %d kohm", Zb);
15
16 //ckt ip impedance
17 Zi=1/((1/Zb)+(1/R1)+(1/R2));
18 printf("\ncircuit input impedance(Zi)=\%.1 f kohm", Zi)
```

Scilab code Exa 5.6 Circuit Impedances and Gain for common base circuit

```
1 //chapter 5
2 //example 5.6
3 //page 167
4 clear all;
5 clc;
6 //given
7 hoe=1;
```

```
8 hie=2.1;//input resistance in kohm
9 hfe=75;//forward voltage gain
10 hib=(1000*hie)/(1+hfe);
11 hib=27.6;
12 hfb=hfe/(1+hfe);
13 Rc=1.8; // collector resistor kohm
14 \text{ Zc=1/hoe};
15 hoe=1;//output conductance in microS
16
17 Ze=hib;
18 printf("\nInput Impedance(Ze)=\%.1 f ohm", Ze);
19
20 //circuit input impedance
21 \text{ Zi} = (\text{Ze} * 5 * 1000) / (\text{Ze} + 5 * 1000);
22 printf("\nCircuit Input Impedance(Zi)=\%.1 f ohm", Zi);
23
24 //circuit output impedance
25 Zo=(Zc*Rc)/(Zc+Rc); Zo=10;
26 printf("\nCircuit Output Impedance(Zo)=%d kohm",Zo);
27
28 // Voltage gain
29 \text{ Av} = 1000*(hfb*Zo)/Ze;
30 printf("\nCircuit Voltage Gain=%d",ceil(Av));
```

 ${f Scilab\ code\ Exa\ 5.7}$ Input impedance,output impedance and voltage gain of CE amplif

```
1 //chapter 5
2 //example 5.7
3 //page 168
4 clear all;
5 clc;
6 //given
7 Rb=(18*6)/(18+6);
8 Ze=(27.6+4.5*1000*(1-0.987));
9 Zi=(86.1*5000)/(86.1+5000);
```

```
10
11  printf("\nInput Impedance(Ze)=%.1 f ohm",Zi);
12
13  Av=(0.987*10000)/(Ze);
14  printf("\nvoltage gain=%d",ceil(Av));
```

Chapter 7

Transistor Specification and performance

Scilab code Exa 7.1 Finding collector current

```
1 // chapter 7
2 //example 7.1
3 //page 196
4 clear;
5 clc;
6 //given
7 Vce=20; //collector to emitter voltage in volts
8 T=125; //temperature in degreeC
9 excessT=T-25;
10 D=2.81*excessT; //derating in power of device in mW
11
12 //maximum power dissipation in mW
13 PD=310-D; //from datasheet of 2N3904
14
15 //max collector current in mA
16 Ic=PD/Vce;
17
18 printf('maximum Ic that can be used is %.2f mA', Ic);
```

Scilab code Exa 7.2 Maximum power Dissipation

```
1 / chapter 7
\frac{2}{2} //example 7.2
3 / page 198
4 clear;
5 clc;
6 //given
7 T=78; //temperature in degreeC
8 PD1=115; //maximum power dissipation in W at 25
      degreeC
9 excessT=T-25;
10 D=0.66*excessT; //derating in power of device in W
11 PD=round(PD1-D); //maximum power dissipation in W at
       78 degreeC
12
13 Vce=[60 \ 40 \ 20 \ 10]; //collector to emitter voltage in
       volts
14 Ic=(PD./Vce);
15 plot (Vce, Ic)
16 xtitle ('maximum PD curve', 'collector to emitter
      voltage in volts (Vce)', 'collector current (Ic)')
```

Scilab code Exa 7.3 Selecting heat sink

```
1 //chapter 7
2 //example 7.3
3 //page 201
4 clear;
5 clc;
6 //given
```

Scilab code Exa 7.4 Change in Output power with variation in signal frequencies

```
1 //chapter 7
2 //example 7.4
3 //page 203
4 clear all;
5 clc;
6 //given
7 P1=50; //output power when signal frequency is 5khz in mW
8 P2=25; //output power when signal frequency is 25khz in mW
9
10 //change in output power in decibel
11 P=10* log10(P2/P1)
12 printf('change in output power in decibel=%d dB',P);
```

Scilab code Exa 7.5 Output power variation

```
//chapter 7
//example 7.5
//page 203
clear all;
clc;
//given
V1=1; //output voltage when signal frequency is 5khz in V
V2=0.707; //output voltage when signal frequency is 20khz in V
//change in output voltage in decibel
P=20* log10(V2/V1)
printf('change in output power in decibel=%d dB',P);
```

Scilab code Exa 7.6 Upper 3dB point

```
1 // chapter 7
2 //example 7.6
3 //page 206
4 clear;
5 clc;
6 //given
7 fab=5; //common base cutoff frequency in MHz
8 hfe=50; //common emitter current gain
9 Cs=100; //load capacitor in pF
10 Rc1=10;
11 Rc2=100; //collector capacitor in Kohm
12
13 // case 1
14 fae=fab/hfe*10^3; //common emitter cutoff frequency
     in KHz
15 //signal frequency
```

```
16 fs1=(1/(2*\%pi*Cs*Rc1)*10^6);
17 if fae<fs1 then
18 f2=fae;
19 else
20
       f2=fs1;
21 end
22 printf('\nupper 3dB point for Rc1 is %d kHz',f2);
23
24 // case 2
25 fs2=(1/(2*\%pi*Cs*Rc2)*10^6);
26 if fae<fs2 then
27
       f2=fae;
28 else
29
       f2=fs2;
30 \, \text{end}
31 printf('\nupper 3dB point for Rc2 is %.1f kHz',f2);
```

Scilab code Exa 7.7 Input capacitor

```
1 // chapter 7
2 //example 7.7
3 / page 208
4 clear;
5 clc;
6 //given
7 hfe=75; //forward current gain
8 hie=2;// input resistance in kohm
9 Rc=5;//collector resistance in kohm
10 Ccb=4; //capacitance between collector and base
11 Cbe=10; //capacitance between base and emitter
12
13 / gain
14 Av=ceil(hfe*Rc/hie);
15
16 //input capacitance
```

```
17 Cin=Cbe+(1+Av)*Ccb; //in pF
18
19 printf('input capacitance is %d pF',Cin);
```

Scilab code Exa 7.8 Output noise

```
1 //chapter 7
2 //example 7.1
3 //page 196
4 clear;
5 clc;
6 //given
7 Vce=5;//collector to emitter voltage in volts
8 Ic=5;//collector current in microA
9 Rg=50; //total noise generating resistance in ohm
10 Ri=25; //i/p resistance in kohm
11 NF=1; //noise figure in dB
12 //noise factor
13 F=10^{(NF/10)};
14 Av=30; //gain
15 //rms noise voltage
16 K=1.37*10^-23; //boltzman's constant J/K
17 T=298; //absolute temperature in kelvin
18 B=9; // circuit bandwidth in Hz
19
20 en=sqrt(4*K*T*B*Rg*10^6)*10^6//in microV
21
22 //i/p noise
23 eni=en*Ri/(Ri+Rg)
24
25 //output noise
26 eno=round(Av*eni);
27
28 //total rms noise output voltage
29 Vn=sqrt(F*eno^2);
```

```
30
31 printf('total rms noise output voltage is %.1f microV', Vn);
```

Chapter 8

Field Effect Transistors

Scilab code Exa 8.1 FET Transfer characteristics

```
// chapter 8
// example 8.1
// page 229
clear all;
clc;
// from drain characteristics of FET
Vgs=[0 -1 -2 -3 -4.5];// gate to source voltage in volts
Id=[9 5.4 2.8 0.9 0];// drain current in mA
plot(Vgs,Id,'colo','red','marker','*','markeredg',' blue','markersize',10)

xtitle('FET transfer characteristics','gate to source voltage in volts','drain current in mA')
replot([-5 ,0,1,10])
```

Scilab code Exa 8.2 Min and max Transfer characteristics for FET

```
1 //chapter 8
```

```
2 //example 8.2
3 //page 231
4 clear;
5 clc;
6 //given
7 Vpmin=2;//minimum pinch off voltage in volts
9 Vpmax=8; //maximum pinch off voltage in volts
10
11 IDssmin=4; //minimum saturation current in mA
12
13 IDssmax=16; //maximum saturation current in mA
14
15 //minimum transfer characteristics
16 Vgs=[0 0.5 1 1.5 2]; // gate to source voltage in
     volts
17 Id=IDssmin.*(1-Vgs/2)^2;//drain current in mA
18 plot(-Vgs,Id, 'colo', 'red', 'marker', '*', 'markeredg', '
     blue', 'markersize', 10)
19 xtitle('minimum transfer characteristics', 'Vgs', 'Id'
     )
20
21 //maximum transfer characteristics
22 Vgs=[0 2 4 6 8];//gate to source voltage in volts
23 Id=IDssmax.*(1-Vgs/8)^2;//drain current in mA
24 plot(-Vgs,Id,'colo','cyan','marker','*','markeredg',
      'magenta', 'markersize', 10)
```

Scilab code Exa 8.3 Find Transconductance(gm)

```
1 //chapter 8
2 //example 8.3
3 //page 234
4 clear all;
5 clc;
```

```
6 //given
7 //for Vgs=[-1 -4]
8 deltaVgs=[1.25 2];
9 deltaID=[4.3 3.8];//from transfer characteristics
10 gm= round((deltaID ./ deltaVgs)*10)*100
11
12
13 printf('\nTransconductance(gm) for Vgs=-1 V is %d microS.',gm(1))
14 printf('\nTransconductance(gm) for Vgs=-4 V is %d microS.',gm(2))
```

Scilab code Exa 8.4 Finding gm

```
1 //chapter 8
2 //example 8.4
3 //page 235
4 clear;
5 clc;
6 //given
7 Vgs1=1;//gate to source voltage in volts
8 \ Vgs2=4;
9 Idss=16*10^(-3); //saturation current in mA
10 Vp=8; //pinch off voltage in volts
11
12 //transconductance
13 gm1=2*Idss*(1-Vgs1/Vp)/Vp*10^6;
14 printf('\ntransconductance at Vgs=-1V is %d microS',
     gm1)
15
16 gm2=2*Idss*(1-Vgs2/Vp)/Vp*10^6;
17 printf('\ntransconductance at Vgs=-4V is %d microS',
     gm2)
```

Chapter 9

FET Biasing

Scilab code Exa 9.1 Dc load line for FET

```
//chapter 9
//example 9.1
//page 252
clear;
clc;
//given
Rd=2;//drain resistance in kohm
Vdd=22; // supply voltage in volts
Id1=0; //drain current in mA
Vds1=Vdd; //drain to source voltage in volts for (point A)
Vds2=0;
Id2=Vdd/Rd;//drain current in mA (point B)
plot([Vds1 Vds2],[Id1 Id2])
xtitle('Dc load line','Vds','Id')
```

Scilab code Exa 9.2 Finding levels of Id and Vds

```
1 / chapter 9
2 // \text{example } 9.2
3 //page 255
4 clear all;
5 clc;
6 //given
7 Vg = -1;
8 Vgs=Vg; // gate to source voltage in volts
9 Idmin=1.75;
10 Idmax=5.5; //drain current in mA from transfer
      chracteristics
11 Rd=2; //drain resistance in kohm
12 Vdd=22; // supply voltage in volts
13
14 //for Idmin
15 Vds1=Vdd-(Idmin*Rd);
16
17 //for Idmax
18 Vds2=Vdd-(Idmax*Rd);//drain to source voltage in
      volts
19
20 printf(' \cap Idmin=\%.2 f mA \cap Idmax=\%.1 f mA \cap For Idmin,
      Vds=\%.1 f V \cap For Idmax, Vds=\%d V', Idmin, Idmax, Vds1,
      Vds2)
```

Scilab code Exa 9.3 Design fixed bias circuit FET

```
1 //chapter 9
2 //example 9.3
3 //page 257
4 clear;
5 clc;
6 //given
7 Idmax=2.5;//maximum drain current in mA
8 Vgs=2.7;//gate to source voltage in volts(from
```

```
transfer characteristics)

9 //for fixed bias

10 Vg=Vgs;

11 Vdd=24; // supply voltage in volts

12 Vds=8;//drain to source voltage in volts

13 Rd=(Vdd-Vds)/Idmax;//drain resistance in kohm

14 Rg=1;//gate resistance in Mohm

15 printf('\nVgs=%.1f V\nVg=%.1f V\nRd=%.1f kohm, use standard value 5.6 kohm\nRg=%d Mohm', Vgs, Vg, Rd, Rg

)
```

Scilab code Exa 9.4 Analyze fixed bias circuit FET

```
1 //chapter 9
2 //example 9.4
3 //page 257
4 clear all;
5 clc;
6 //given
7 Vgs=2.7; //gate to source voltage in volts
8 Vdd=24; // supply voltage in volts
9 Rd=5.6; //drain resistance in kohm
10 Idmin=0.1;
11 Idmax=2.5; //drain current in mA from transfer
      chracteristics
12 Vdsmax=Vdd-Idmin*Rd;
13 Vdsmin=Vdd-Idmax*Rd; //drain to source voltage in
14 printf ('\nId (min)=\%.1 f mA\nId (max)=\%.1 f mA\nVds (max)
      =\%.1 \text{ f } V \setminus nVds \text{ (min)} = \%d V', Idmin, Idmax, Vdsmax, Vdsmin}
      );
```

Scilab code Exa 9.5 Design self bias circuit FET

```
1 //chapter 9
2 //example 9.5
3 / page 259
4 clear all;
5 clc;
6 //given
7 Idmax=2.5; //drain current in mA for point A
8 Vds=8; //drain to source voltage in volts
9 Vdd=24; // supply voltage in volts
10 Vgs1=0; //when Id=0mA (point B)
11 deltaVgs=4.8;
12 deltaId=4.5; //from transfer characteristics
13 Rs1=(deltaVgs/deltaId);//in Kohm
14 Rs=1; //standard value
15 Vgs=Idmax*Rs; //gate to source voltage in volts
16 Rd=(Vdd-Vds-Vgs)/Idmax;//drain resistance in Kohm
17
18 printf('\nRs is \%.2 \text{ f ohm} \setminus \text{nRd is } \%.1 \text{ f kohm'}, \text{Rs1}, \text{Rd})
19 printf('\nThus using standard values :\nRs is %d
      kohm \ nRd \ is \ 4.7 \ kohm', Rs)
```

Scilab code Exa 9.6 Analyze self bias circuit FET

```
1 //chapter 9
2 //example 9.6
3 //page 261
4 clear all;
5 clc;
6 //given
7 Vdd=24; // supply voltage in volts
8 Rs=1; //in Kohm
9 Rd=4.7; //in Kohm
10 Id=[0 5];
11 Vgs=Id*Rs;
12 plot(Vgs,Id,'colo','red','marker','o','markeredg','
```

```
blue', 'markersize',20)

xtitle('bias line','Vgs','Id')

Idmax=2.6;

Idmin=1.3;

Vsmax=Idmax*Rs;

Vsmin=Idmin*Rs;

Vdmax=Vdd-Idmin*Rd;

Vdmin=Vdd-Idmax*Rd;

Vdsmax=Vdd-Idmin*(Rd+Rs);

Vdsmin=Vdd-Idmax*(Rd+Rs);

rintf('\nThe desired values are:\nIdmax=%.1f mA\nIdmin=%.1f mA\nVsmax=%.1f V\nVsmin=%.1f V\nVdmax=%.1f V\nVdmax=%.1f V\nVdmin=%.1f V\nVdmin=%.1f V\nVdsmin=%.1f V\nVdsmin=
```

Scilab code Exa 9.7 Design potential divider circuit FET

```
1 / chapter 9
\frac{2}{\text{example }}9.7
3 //page 264
4 clear all;
5 clc;
6 //given
8 Idmax=2.5; //drain current in mA for point A
9 Vds=8; //drain to source voltage in volts
10 Vdd=25; // supply voltage in volts
11 Rd=(Vds)/(Idmax);
12 Rs=2.7;
13 deltaVgs=Idmax*Rs;
14 VR2=4.1; //in V
15 R2=1; //in Mohm
16 I2=VR2/R2; //in microV
17 VR1 = Vdd - VR2;
```

```
18 R1=VR1/I2; //in Mohm
19 printf('\nRd=%.1f kohm\nR1=%.1f kohm',Rd,R1);
20 printf('\nThus using standard values :\nRd=2.7 kohm and R1=5.6 Mohm')
```

Scilab code Exa 9.8 Analyze potential divider circuit FET

```
1 //chapter 9
\frac{2}{\text{example }} 9.8
3 //page 265
4 clear all;
5 clc;
6 //given
7 Vdd=24; // supply voltage in volts
8 R2=1; //in Mohm
9 R1=5.6; // in Mohm
10 VG=Vdd*R2/(R1+R2); //in volts
11 VG=3.6;
12 printf("\nVG=\%.1 f V", VG);
13 Id=0; //in mA
14 Rs=2.7; // in Kohm
15 Rd=Rs;
16 deltaId=VG/Rs;//mA
17 printf("\n deltaId=\%.2 f mA", deltaId);
18 Vgs = [3.6 \ 3.6];
19 Id=[0 1.33]
20 plot(Vgs,Id)
21 xtitle('bias line with points X and Y')
22 \quad Idmax=2.3;
23 Idmin=1.7;
24 Vsmax=Idmax*Rs;
25 Vsmin=Idmin*Rs;
26 Vdmax=Vdd-Idmin*Rd;
27 Vdmin=Vdd-Idmax*Rd;
28 Vdsmax=Vdd-Idmin*(Rd+Rs);
```

Scilab code Exa 9.9 Finding Rd input voltage Rg

```
1 //chapter 9
2 // \text{example } 9.9
3 / page 273
4 clear all;
5 clc;
6 //given
7 Rdon=25; //ohm
8 Vdson=200; /\text{mV}
9 Id=Vdson/Rdon;//mA
10 Vdd=12; // supply voltage in volts
11 Rd=Vdd/Id;//drain resistance in kohm
12 Vgsoff=10; //volts
13 Vpmax=Vgsoff;
14 Vi = -(Vpmax + 1); // volts
15 Rg=1; //Mohm
16
17 printf('\nRd is approximately %.1f kohm which is
      stamdard value \nInput voltage amplitude is %d V\
      nSuitable value of Rg is %d Mohm', Rd, Vi, Rg)
```

Chapter 10

Basic FET Circuits

Scilab code Exa 10.1 Input and output Impedances and voltage gain for Common source

```
1 // chapter 10
2 //example 10.1
3 / page 289
4 clear all;
5 clc;
6 //given
7 R1=1 ;
8 R2=5.6; //in Mohm
9 Rd=2.7; //in Kohm
10 Yos=10; // output admittance in microS
11 rd=(1/Yos)*10^3;//drain resistance in Kohm
12 gm=3; // in mA/V
13 Rg=R1*R2/(R1+R2);
14 \text{ Zi=Rg*10^3};
15 Zo=Rd*rd/(Rd+rd);
16 Av1=-gm*(Zo);
17 Av2=-gm*Rd;
18 printf(' \setminus nInput Impedance(Zi)=\%d kohm',Zi)
19 printf('\nOutput Impedance(Zo)=\%.2 f kohm',Zo)
20 printf('\nVoltage Gain:\nAv=\%.1 f or Av=\%.1 f', Av1,
      Av2)
```

Scilab code Exa 10.2 Voltage gain for Common source JFET

```
1 / \text{chapter } 10
2 //example 10.2
3 //page 290
4 clear all;
5 clc;
6 //given
7 gm=3; //in mA/V
8 Rd=2.7; //in Kohm
9 \text{ Rs} = 1;
10 R1=10;
11 rd=100; //in Kohm
12 Av = -gm*Rd/(1+gm*Rs);
13 \text{ Rp} = 1/\text{rd} + 1/\text{Rd} + 1/\text{Rl}
14 Av1=-gm*(1/Rp);
15 printf('\nAv=%d for unbypassed series resistor and
       \nAv=\%.1f for bypassed resistor with load
       resistor', Av, Av1)
```

Scilab code Exa 10.3 Impedance and gain for Common source JFET

```
1 //chapter 10
2 //example 10.3
3 //page 292
4 clear all;
5 clc;
6 //given
7 Rg=390;
8 rd=80;
9 Rl=68;
```

Scilab code Exa 10.4 Input and output Impedances and gain for Common drain JFET

```
1 / \text{chapter } 10
2 //example 10.4
3 //page 296
4 clear;
5 clc;
6 //given
7 R1=3.9;
8 R2=2.2; //in Mohm
9 R1 = 27;
10 Rs=1.5; //in kohm
11 gm=4; //mA/V
12 Rg=R1*R2/(R1+R2);
13 Zi=Rg;
14 Rp=1/gm; //in kohm
15 Zo=1000*(Rs*Rp)/(Rs+Rp);
16 Av = (gm*((Rs*R1)/(Rs+R1)))/(1+gm*((Rs*R1)/(Rs+R1)));
17 printf('\nZi=\%.1f Mohm',Zi)
18 printf ('\nZo=\%d ohm', Zo)
19 printf (^{\prime}\nAv=\%.2 f ^{\prime}, Av)
```

Scilab code Exa 10.5 Impedance and gain for Common drain JFET

```
1 / \text{chapter } 10
2 //example 10.5
3 //page 297
4 clear all;
5 clc;
6 //given
7 R1=1.5;
8 R2=1; //in Mohm
9 R1 = 12;
10 Rs=5.6; // in kohm
11 gm=3; //mA/V
12 Zi = 1000 * R1 * R2 / (R1 + R2);
13 Rp=1/gm; //in kohm
14 Zo=1000*(Rs*Rp)/(Rs+Rp);
15 Av = (gm*((Rs*R1)/(Rs+R1)))/(1+gm*((Rs*R1)/(Rs+R1)));
16 printf('\nInput Impedance(Zi)=%d kohm',Zi)
17 printf('\nOutput Impedance(Zo)=\%d ohm', ceil(Zo))
18 printf ('\nVoltage Gain:\nAv=\%.2 f', Av)
```

Scilab code Exa 10.6 Impedances, vo and gain for Common gate JFET

```
1 //chapter 10
2 //example 10.6
3 //page 302
4 clear all;
5 clc;
6 //given
7 R1=3.9;
8 R2=2.2;//in Mohm
9 R1=27;
```

```
10 Rs=1.5;
11 Rd=3.3; //in kohm
12 gm=3.5; //mA/V
13 rd=70; //kohm
14 vs=100; //mV
15 rs=600;//ohm
16 Rp=1/gm; //in kohm
17 Zi=1000*(Rs*Rp)/(Rs+Rp);
18 Zo=Rd*rd/(Rd+rd);
19 Av = gm * (Rd * R1) / (Rd + R1);
20 \text{ vi=vs*Zi/(rs+Zi)};
21 vo = Av * vi;
22 printf(' \setminus nInput Impedance(Zi)=\%d ohm',Zi)
23 printf('\nOutput\ Impedance(Zo)=\%.2f\ kohm',(Zo))
24 printf(' \setminus nVoltage Gain: \setminus nAv=\%.1f', Av)
25 printf('\nOutput Voltage(vo)=\%d mV',ceil(vo))
```

Scilab code Exa 10.7 Impedance, Output voltage(vo) and gain for Common gate JFET

```
1 / chapter 10
2 //example 10.7
3 / page 303
4 clear all;
5 clc;
6 //given
7 R1=1 ;
8 R2=3.9; //in Mohm
9 R1 = 56;
10 Rs=2.2;
11 Rd=6.8; //in kohm
12 gm=4.5; //mA/V
13 rd=100; //kohm
14 vi=50; //mV
15 rs = 200; //ohm
16 Rp=1/gm; //in kohm
```

```
17  Zi=1000*(Rs*Rp)/(Rs+Rp);
18  Zo=Rd*rd/(Rd+rd);
19  Av=gm*(Rd*R1)/(Rd+R1);
20  vo=Av*vi*Zi/(rs+Zi);
21
22  printf('\nInput Impedance(Zi)=%d ohm', ceil(Zi))
23  printf('\nOutput Impedance(Zo)=%.1 f kohm',(Zo))
24  printf('\nVoltage Gain:\nAv=%.1 f ',Av)
25  printf('\nOutput Voltage(vo)=%d mV', ceil(vo))
```

Chapter 11

Small Signal Amplifiers

Scilab code Exa 11.1 Resistors for CE amplifier

```
1 //chapter 11
2 //example 11.1
3 / page 314
4 clear all;
5 clc;
6 //given
7 Rl=120; //load resistance in kohm
8 Vcc=24; //supply voltage V
9 \text{ Ve=5}; \text{Vce=3};
10 Rc = R1/10;
11 printf("\n Rc= %d kohm(standard value resistor)", Rc)
12
13 VRC=Vcc-Ve-Vce;
14 Ic=VRC/Rc;
15 Re=Ve/Ic;
16 printf("\  \    Re= %.2 f kohm, use 3.9 kohm", Re);
17 Vb = (Ve + 0.7)
18 I2=1000*Ic/10;
19 R2=round(1000*(Ve+0.7)/I2);
20 printf("\n R2= %d kohm, use 39 kohm ",R2);R2=39;
```

Scilab code Exa 11.2 Capacitors for CE amplifier

```
1 // chapter 11
2 //example 11.2
3 //page 315
4 clear all;
5 clc;
6 //given
7 f1=100; //lower cutoff frequency Hz
8 f2=50; //upper cutoff frequency kHz
9 \text{ hfe} = 100;
10 hie=1;
11 R1=100; R2=33; Rc=12; R1=120; //kohm
12 XC2=round(1000*hie/(1+hfe));
13 C2=10^6/(2*\%pi*f1*XC2);
14
15 Zi=1/(1/R1+1/R2+1/hie);
16 C1=10^3/(2*\%pi*f1*Zi/10);
17 printf("\nC1=\%.1 f microF, use standard value 18
      microF",C1);
18 printf("\nC2=%d microF, use standard value 180 microF
     ",C2);
19 XC3=R1/10;
20 C3=10^3/(2*\%pi*f1*R1/10);
21 printf("\nC3=\%.2 f microF, use standard value 0.15
      microF", C3);
22 XC4 = (Rc*R1)/(Rc+R1);
23 C4=10^6/(2*\%pi*f2*XC4);
24 printf("\nC4=%d pF, use standard value 300 pF", ceil(
      C4));
```

Scilab code Exa 11.3 Resistors for CS amplifier

```
1 // chapter 11
2 //example 11.3
3 / page 320
4 clear all;
5 clc;
6 //given
7 Rl=120;//load resistance in kohm
8 Vdd=24; //supply voltage V
9 Id=1.5; //min drain current ma
10 Vgs=5.5; //from transfer characteristics (V)
11 Vp=8; //
12 Vdsmin=Vp+1-Vgs;
13 Vrd=(Vdd-Vdsmin)/2;
14 Vs=Vrd;
15 Rd=Vrd/Id;
16 Rs=Rd;
17 printf("\nRd=Rs=\%.2 f kohm, use standard value 6.8
      kohm ", Rd);
18 / Rd << Rl
19 Vg=Vs-Vgs;
20 R2=1; //Mohm(assuming)
21 VR2 = Vg;
22 VR1 = Vdd - Vg;
23 R1 = (VR1 * R2) / VR2;
24 printf ("\nR1=\%.2 f Mohm, use standard value 4.7 Mohm\
      nR2=1 Mohm", R1);
```

Scilab code Exa 11.4 Capacitors for CS amplifier

```
1 //chapter 11
2 //example 11.4
3 / page 321
4 clear all;
5 clc;
6 //given
7 f1=100; //lower cutoff frequency Hz
8 gm=6000; //transconductance for 2N5459 (microS)
9 Rl=120; //load resistance in kohm
10 R2=1; //Mohm
11 XC2=10^3/gm;
12 C2=10^3/(2*\%pi*f1*XC2);
13
14 R1 = 4.7;
15 Zi = 1000/(1/R1+1/R2);
16 \text{ XC1} = \text{Zi} / 10;
17 C1=10^3/(2*\%pi*f1*XC1);
18 printf("\nC1=\%.3 f microF, use standard value 0.02
      microF",C1);
19 printf("\nC2=\%.1 f microF, use standard value 10
      microF",C2);
20 \text{ XC3} = \text{R1}/10;
21 C3=10^3/(2*\%pi*f1*R1/10);
22 printf("\nC3=\%.2f microF, use standard value 0.15
      microF", C3);
```

Scilab code Exa 11.5 Design 2 stage amplifier

```
1  // chapter 11
2  // example 11.5
3  // page 323
4  clear all;
5  clc;
6  // given
7  Rl=120; // load resistance in kohm
```

```
8 Vcc=24; //supply voltage V
9 f1=100; //lower cutoff frequency Hz
10 hfe=100;
11 hie=1;
12 printf("\nR1=R5=120 kohm\nR2=R6=39 kohm\nR3=R7=12 kohm\nR4=R8=3.9 kohm\nC1=C3=18 microF");
13 XC4=1000*(0.65*hie)/(1+hfe); XC4=6.4;
14 C4=10^6/(2*%pi*f1*XC4);
15 printf("\nC2=C4=%d microF, use standard value 250 microF", round(C4));
16 printf('\nC5=0.15 microF')
```

Scilab code Exa 11.6 Analyze 2 stage amplifier

```
1 // chapter 11
2 //example 11.6
3 //page 325
4 clear all;
5 clc;
6 //given
7 Rl = 120;
8 \text{ hfe} = 100;
9 \text{ hie=1};
10 R1=120; R5=R1;
11 R2=39; R6=R2;
12 R7 = 12; R3 = 12;
13 Zi1=1000/(1/R1+1/R2+1/hie);
14 Zo = R7:
15 Zi2=1/(1/R5+1/R6+1/hie);
16 printf("\nInput Impedance:\nZi1=Zi2=%d ohm\nOutput
      Impedance: \ nZo=\%d \ kohm", Zi1, Zo);
17 Rp = ((R3*Zi2)/(R3+Zi2))
18 Av1=ceil(-hfe*Rp/hie);
19
20 Av2=ceil(-hfe*(R7*R1/(R7+R1))/hie);
```

```
21

22 Av=(Av1*Av2)-10;

23 printf("\noverall voltage gain(Av)= %d ",Av)
```

Scilab code Exa 11.7 Suitable Resistors for 2 stage amplifier

```
1 // chapter 11
2 //example 11.7
3 //page 328
4 clear all;
5 clc;
6 //given
7 Rl=40; //load resistance in kohm
8 Vcc=14; //supply voltage V
9 Ve1=5; Vce1=3; Vce2=3;
10 Vc1 = Ve1 + Vce1;
11 Vb2=Vc1;
12 \text{ Ve2=Vb2-0.7};
13 VR5 = Vcc - Ve2 - Vce2;
14 R5=R1/10;
15 printf("\nR5=%d kohm, use standard value 3.9 kohm",
      R5); R5=3.9;
16 Ic2=1000*VR5/R5;
17 R6=1000*Ve2/Ic2;
18 printf("\nR6=%.1f kohm, use standard value 8.2 kohm"
      ,R6);R6=8.2;
19 \text{ Ic2=}1000*\text{Ve2/R6};
20 Ic1=1; /mA
21 VR3 = Vcc - Vc1;
22 R3=VR3/Ic1;
23 printf("\nR3=\%d kohm, use standard value 5.6 kohm",
      R3); R3=5.6;
24 \text{ Ic1=VR3/R3};
25 R4=Ve1/Ic1;
26 printf("\nR4 is approximately %.1f kohm which is
```

```
standard value",R4);

27 Vb1=Ve1+0.7;

28 I2=round(1000*Ic1/10);

29 R2=1000*Vb1/I2;

30 printf("\nR2=%.1f kohm, use standard value 47 kohm",

R2);R2=47;

31 I21=1000*Vb1/R2;

32 R1=1000*(Vcc-Vb1)/I21;

33 printf("\nR1=%d kohm which is standard value",R1);
```

Scilab code Exa 11.8 Capacitors for 2 stage amplifier

```
1 //chapter 11
2 //example 11.8
3 / page 329
4 clear all;
5 clc;
6 //given
7 R1 = 40;
8 f1=75; //lower cutoff frequency Hz
9 \text{ hfe} = 50;
10 hie=0.5;
11 R1=68; R2=47; //kohm
12 Zi = round(1000/(1/R1+1/R2+1/hie));
13 XC1 = Zi/10;
14 C1=10^6/(2*\%pi*f1*XC1);
15 printf("\nC1=%.1f microF, use standard value 47
      microF",C1);
16 \text{ XC3}=1000*0.65*hie/(1+hfe);
17 XC2 = XC3; XC2 = 6.4;
18 C2=10^6/(2*\%pi*f1*XC2)-1;
19 C3=C2;
20 printf("\nC2=C3=%d microF, standard value ",floor(C2
      ));
21 \text{ XC4=R1/10};
```

```
22 C4=10^3/(2*%pi*f1*XC4);
23 printf("\nC4=%.2f microF, use standard value 0.56
    microF",(C4));
```

Scilab code Exa 11.9 Resistance values for 2 stage amplifier

```
1 // chapter 11
2 //example 11.9
3 / page 332
4 clear all;
5 clc;
6 //given
7 \text{ Vb2=8};
8 Rl=100; //load resistance in kohm
9 Vcc=20; //supply voltage V
10 vp=100; //op voltage mV
11 ip=vp/R1;
12 Ie2=2; //Ie2>ip
13 Ve1=5; Vce1=3;
14 \text{ Vc1=Ve1+Vce1};
15 Vb1=Vc1;
16 \ Ve2 = Vb2 - 0.7;
17 R5=Ve2/Ie2;
18 printf("\nR5=\%.2f kohm, use 3.3 standard value kohm
      ",R5);R5=3.3;
19 Ic2=2;
20 \text{ Ic1=Ic2};
21 VR3 = Vcc - Vc1;
22 R3=VR3/Ic1;
23 printf("\nR3 = \%d kohm, use standard value 5.6 kohm",
      R3); R3=5.6;
24 R4 = Ve1/Ic1;
25 printf("\nR4= %.1 f kohm , use standard value 2.7 kohm
      ", R4); R4=2.7;
26 \text{ Vb1=Ve1+0.7};
```

Scilab code Exa 11.10 Capacitor values for 2 stage amplifier

```
1 / chapter 11
2 //example 11.10
3 //page 334
4 clear all;
5 clc;
6 //given
7 f1=150; //lower cutoff frequency Hz
8 \text{ hfe} = 50;
9 \text{ hie=0.5};
10 R1=68; R2=27; //kohm
11 Zi = round(1000/(1/R1+1/R2+1/hie));
12 XC1 = Zi/10;
13 C1=10^6/(2*\%pi*f1*XC1);
14 printf("\nC1=\%.1 f microF, use standard value 22
      microF", C1);
15
16 \text{ XC2}=1000*0.65*hie/(1+hfe);
17 \text{ XC2=6.4};
18 C2=10^6/(2*\%pi*f1*XC2);
19 printf("\nC2=%d microF, standard value 180 microF",
      ceil(C2));
20 R1 = 100;
21 \text{ XC3} = 0.65 * \text{R1};
22 C3=10^6/(2*\%pi*f1*XC3);
```

```
23 printf("\nC3=\%.1 f microF, standard value 18 microF", (C3));
```

Scilab code Exa 11.11 AC analysis of 2 stage amplifier

```
1 / chapter 11
2 //example 11.11
3 //page 334
4 clear all;
5 clc;
6 //given
7 Rl=0.100; //load resistance in kohm
8 R1=68; R2=27; R3=5.6; R5=3.3; //kohm
9 hie=0.5; hic=hie;
10 hfe=50;
11 hfe1=50;
12 \text{ hfc=1+hfe};
13 Zi = round(1000/(1/R1+1/R2+1/hie));
14 printf("\ninput impedance(Zi)=%d ohm",Zi)
15
16 Zo1 = ((hic+R3)/hfc);
17 Zo=1000*(Zo1*R5)/(Zo1+R5);
18 printf("\noutput impedance(Zo)=%d ohm",Zo);
19
20 Zi2=((R5*R1)/(R5+R1))*hfc+hic;
21
22 Av1 = -(hfe1 * ((R3 * Zi2) / (R3 + Zi2))) / hie;
23 \text{ Av} 2 = 1:
24 Av = Av 1 * Av 2;
25 printf("\noverall voltage gain(Av)=\%d",Av);
```

Scilab code Exa 11.12 Design DC feedback amplifier

```
1 // chapter 11
2 //example 11.12
\frac{3}{\sqrt{\text{page } 338}}
4 clear all;
5 clc;
6 //given
7 R1=50; //load resistance in kohm
8 Vcc=12; //supply voltage V
9 f1=150; //lower cutoff frequency Hz
10 Vp=50; ///op voltage mV
11 hfe=70;
12 \text{ ip=Vp/Rl};
13 Ie2=2; //Ie2>ip
14 Ve2=5;
15 R4=Ve2/Ie2;
16 printf ("\nR4= %.1 f kohm , use standard value 2.2 kohm
      ", R4); R4=2.2;
17 \text{ Ic2=2};
18 Ic1=Ic2;
19 VR1 = Vcc - (Ve2 + 0.7);
20 R1 = VR1 / Ic1;
21 printf("\nR1 = \%.2 f kohm, use standard value 3.3 kohm
      ",R1);R1=3.3;
22 Ib1=1000*Ic1/hfe;
23 R23=1000*(Ve2-0.7)/Ib1;
24 R2 = 47;
25 R3 = R23 - R2;
26 hfe1=100; hie1=1;
27 Zi=1000*(R2*hie1)/(R2+hie1);
28 \text{ XC1} = \text{Zi} / 10;
29 C1=10^6/(2*\%pi*f1*XC1);
30 printf("\nC1=\%.1 f microF, use standard value 15
      microF", C1);
31 XC2 = floor(R3/100);
32 C2=10^3/(2*\%pi*f1*XC2);
33 printf ("\nC2=\%.2 f microF, use standard value 1.2
      microF",(C2));
34 \text{ XC3=R1};
```

```
35 C3=10^6/(2*%pi*f1*XC3);
36 printf("\nC3=%.1f microF, use standard value 22 microF",(C3));
```

Scilab code Exa 11.13 Resistors for BIFET amplifier

```
1 // chapter 11
2 //example 11.13
3 //page 342
4 clear all;
5 clc;
6 //given
7 Rl=180; //load resistance in kohm
8 Vcc=20; //supply voltage V
9 f1=150; //lower cutoff frequency Hz
10 Zi=500; //ip impedance kohm
11 Idmax=2; //drain current mA
12 Vgs=-4.1; //gate to source voltage
13 Vpmax=6; //maximum peak voltage
14 Vdsmin=Vpmax+1+Vgs;
15 Vr34=Vcc-Vdsmin;
16 VR31=8.5;
17 VR41=VR31; Id=2;
18 R3=VR31/Id;
19 R4 = R3;
20 printf("\nR4=R3=\%.2 f kohm , use standard value 3.9
     kohm", R4); R4=3.9;
21 VR3 = Id * R4;
22 VR4 = VR3;
VR2 = VR4 + Vgs;
VR1 = Vcc - VR2;
25 R2=560; // assuming
26 R1 = 10^{-3} * (VR1 * R2) / VR2;
27 printf("\nR1= %.1 f Mohm, use standard value 2.7 Mohm
      ", R1); R1=2.7;
```

Scilab code Exa 11.14 Capacitors for BIFET amplifier

```
1 // chapter 11
2 //example 11.14
3 / page 344
4 clear all;
5 clc;
6 //given
7 R1 = 2700; R2 = 560;
8 f1=150; //lower cutoff frequency Hz
9 Zi = round(1000*(R1*R2)/(R1+R2));
10 XC1 = Zi/10;
11 C1=10^6/(2*\%pi*f1*XC1);
12 printf("\nC1=\%.2f\ microF\ which\ is\ standard\ value",C1
      );
13
14 \text{ gm} = 6000;
15 XC2=0.65/gm;
16 C2=1/(2*\%pi*f1*XC2);
17 printf("\nC2=\%.1f microF, standard value 10 microF",
      C2));
18
19 hie=1; hfe=100;
20 \text{ XC3}=1000*(0.65*hie)/(1+hfe);
```

Chapter 12

Amplifiers with negative feedback

Scilab code Exa 12.1 Modification of 2 stage amplifier to voltage series feedback

```
1 // chapter 12
2 //example 12.1
3 / page 364
4 clear all;
5 clc;
6 //given
7 Av=75; // voltage gain
8 R10=12; //coupling resistor in kohm
9 R7 = R10;
10 R9=1000*R10/Av;
11 printf("\nFeedback component R9 is %d ohm, select 150
     ohm standard value to make Av \nslightly greater
      than specified.", R9);
12 R9 = 150;
13 f1=100;
14 XC6 = 1000 * R10 / 100;
15 C6=10^6/(2*\%pi *f1*XC6);
16 printf("\ncapacitor C6 is %.1f microF, use 15 microF
      standard value", C6);
```

Scilab code Exa 12.2 Analyze negative feedback amplifier

```
1 / chapter 12
2 //example 12.2
3 / page 364
4 clear all;
5 clc;
6 //given values in ohm
7 \text{ Zi2=967};
8 \text{ hfe1=100};
9 R3=12000;
10 hie1=1000;
11 R9=150;
12 hfe2=100;
13 hie2=1000;
14 R7 = R3;
15 RL=120*10<sup>3</sup>;
16 R10=R7;
17 R1=RL;
18 R2=39*10^3;
19 //voltage gain of stage 1
20 A1=-hfe1*(R3*Zi2/(R3+Zi2))/(hie1+R9*(1+hfe1));
21 printf("\nvoltage gain of stage 1=\%.1 \, \text{f}", A1);
22 //voltage gain of stage 2
23 Rp = (1/R7) + (1/RL) + (1/R10);
24 A2 = -hfe2 * (1/Rp)/hie2;
25 printf("\nvoltage gain of stage 2=\%d", A2);
26 //open loop gain
27 \quad A1 = -5.5; A2 = -571;
28 M = (A1)*(A2) ;
```

```
29 printf("\nopen loop gain =\%d",M);
30 //feedback factor
31 B=R9 /(R9 + R10);
32 b=B^-1;
33 printf("\nfeedback factor(beta)=1/\%d",b)
34 Av1=1/B; // \text{for } M* \text{beta} >> 1
35 Av2=M/(1+M*B); // closed loop gain
36 printf("\nclosed loop gain=%d or %d if M*beta >>1",
      ceil(Av2), Av1);
37 Zb=hie1;
38 \text{ Zin} = (1+M*B)*Zb;
39 //input impedance
40 Zi=1/((1/Zin)+(1/R1)+(1/R2))*10^-3;
41 printf("\ninput impedance=%d kohm",ceil(Zi));
42 //output impedance
43 Zout = (R7*R10/(R7+R10))/(1+M*B);
44 printf("\noutput impedance = %d ohm", ceil(Zout));
45 \text{ XC1} = \text{Zi}/10;
46 	ext{ f1=100; } //Hz
47 C1=10^3/(2*\%pi *f1*XC1);
48 printf("\ncapacitor C1=%.2f microF, use standard
      value 1 microF",C1)
```

Scilab code Exa 12.3 Single stage CE amplifier using current feedback

```
1 //chapter 12
2 //example 12.3
3 //page 371
4 clear all;
5 clc;
6 //given
7 Vcc=20;//supply voltage
8 R1=500;//load resistance
9 Av=75;//closed loop voltage gain
10 f1=30;// i/p signal frquency Hz
```

```
11 hfe=80;
12 hie=1.4;
13 Ve=5; Vce=3;
14 \text{ VR2=5.7};
15 Vbe=5;
16 \quad VR3 = Vcc - Vce - Ve;
17 R3=R1/10;
18 Ic=VR3/R3*10^3;
19 printf("\ncollector current = %d microA,\ntoo small
      for operations of transistor, \nSo Ic=1 mA", Ic)
20 \text{ Ic=1};
21 R3=VR3/Ic;
22 printf('\nR3=%d kohm which is standard value',R3)
23 R45=(Ve/Ic);
24 R4 = 1000*((R3*R1)/(R3+R1))/Av;
25 printf("\nR4=\%d ohm , use standard value 150 ohm", R4)
      ; R4 = 150;
26 R5 = R45 - R4 / 1000;
27 printf("\nR5=%.2f kohm ,use standard value 5.6 kohm"
      ,R5);
28 R5=5.6; //kohm
29 //potential divider current and resistors
30 I2=Ic/10;
31 \text{ Ve=0.7};
32 R2 = (Vbe + Ve) / I2;
33 printf("\nR2=%d kohm, use standard value 56 kohm", R2)
      ; R2 = 56;
34 R1 = (Vcc - VR2) / I2;
35 printf("\nR1=\%d kohm, use standard value 150 kohm", R1
      ); R1 = 150;
36 \text{ Zb=hie+(1+hfe)*R4/1000};
37 //input impedance
38 Zi=1/((1/Zb)+(1/R1)+(1/R2));
39 printf("\ninput impedance=\%.2 f kohm",(Zi));
40 //capacitance
41 XC1 = Zi / 10;
42 \text{ XC1=1};
43 C1=10^3/(2*\%pi *f1*XC1);
```

Chapter 13

IC operational amplifiers and Opamp applications

Scilab code Exa 13.1 Output voltage of differential amplifier

```
1 // chapter 13
2 //example 13.1
3 //page 396
4 clear all;
5 clc;
6 //given
7 Rc=10; //collector resistors
8 Re=3.9;//emitter resistor
9 Vcc=12; Vee=-12; //dual supply
10 Vbe=0.7;
11 Vb4=-3.5; //Q4 base voltage with respect to ground
12 VB4=Vb4-(Vee);//voltage at base of transistor 4
13 Ie=(VB4-Vbe)/Re;//emitter current
14 printf("\nemitter current through Q4= \%d mA", Ie);
15 Ie2=Ie/2;
16 Ie1=Ie2;
17 Ic1=Ie1;
18 Ic2=Ie2;
19 printf("\nemitter currents through Q1&Q2= %d mA", Ie1
```

Scilab code Exa 13.2 Impedance and gain for differential amplifier circuit

```
1 / \text{chapter } 13
2 / \text{example } 13.2
3 //page 397
4 clear all;
5 clc;
6 //given
7 RC=10; //collector resistance
8 hie=1;//input resistance in kohm
9 hfe=50;//forward current transfer ratio
10 hoe=1;//output conductance in microS
11 Av=(hfe*RC)/(2*hie);//voltage gain
12 Zb=2*hie;
13 Zo=RC;
14 Acm=RC/(2*(1/hoe));
15 printf("\nvoltage gain=%d", Av);
16 printf("\ninput impedance=%d kohm",(Zb));
17 printf("\noutput impedance =%d kohm",(Zo));
18 printf("\ncommon mode gain=\%dx10^-3", Acm);
```

Scilab code Exa 13.3 Design voltage follower

```
1 //chapter 13
2 //example 13.3
```

```
3 / page 408
4 clear all;
5 clc;
6 //given
7 Vbe=0.7;
8 Ibmax=500; //base current nA
9 R1max=10^6 * Vbe/(10 * Ibmax);
10 printf("\nR1max= %d kohm, use standard value 120 kohm
     ", R1max);
11 R1max = 120;
12 Rl=4; //load resistance in kohm
13 Xc2=R1;
14 f1=70; //lower cutt off frequency in Hz
15 c2=floor(100000/(2*%pi*f1*Xc2))/100;
16 printf("\nc2=\%.2f microF, standard value",(c2))
17 Xc2=R1max/10;
18 c1=1000/(2*\%pi*f1*Xc2)
19 printf("\nc1=\%.2f microF, use standard value 0.2
     microF", c1)
```

Scilab code Exa 13.4 Design non inverting amplifier

```
1 //chapter 13
2 //example 13.4
3 //page 410
4 clear all;
5 clc;
6 //given
7 Vi=50; //ip voltage in mV
8 Vo=2; //op voltage volts
9 Ibmax=500; //maximum base current nA
10 I2=(100*Ibmax)/1000;
11 printf("\noutput current(I2)=%d microA",I2);
12 R3=Vi/I2;
13 printf("\nR3=%d kohm, standard value",R3);
```

Scilab code Exa 13.5 Design inverting amplifier

```
1 / \text{chapter } 13
2 //example 13.5
3 / page 414
4 clear all;
5 clc;
6 //given
7 Av=144; // voltage gain
8 Vi=20; //ip voltage in mV
9 Ibmax=500; //maximum base current nA
10 //I1 \gg Ibmax
11 I1=(100*Ibmax)/1000;
12 printf("\ninput current(I2)=%d microA",I1);
13 R1=1000*Vi/I1;
14 printf("\nR1=%d ohm, use standard value 390 ohm", R1);
      R1 = 390;
15 R2=(Av*R1)/1000;
16 printf("\nR2=\%.1f kohm, use standard value 56 kohm",
      R2); R2=56;
17 R3=R1; //R1 | R2
18 printf("\nR3=\%d ohm, standard value",(R3));
```

Scilab code Exa 13.6 Design Schmitt trigger

```
1 //chapter 13
2 //example 13.6
```

Chapter 14

Operational amplifier frequency response and compensation

Scilab code Exa 14.1 Design inverting amplifier

```
1 // chapter 14
2 //example 14.1
3 / page 437
4 clear all;
5 clc;
6 //given
7 Av=10; //voltage gain
8 vs=0.5;//input voltage
9 //datasheet of 741
10 Ibmax=1.5; //base current microA
12 R1=vs/I1*1000;
13 printf("\nR1=\%.1 \text{ f kohm}", R1);
14 R2=Av*R1;
15 R3=R1; //R1 | R2=R1
16 printf("\nR2=\%d kohm", R2);
17 printf("\nR3=\%.1 f kohm",R3);
18 printf ("\nFrom datasheet of 741,\nFor Av=10,\nc1=100
       pF \setminus nc2 = 500 pF \setminus nc3 = 1000 pF")
```

Scilab code Exa 14.2 Design non inverting amplifier

```
1 // chapter 14
2 //example 14.2
3 / page 439
4 clear all;
5 clc;
6 //given
7 Av=100; // voltage gain
8 vs=0.5; //input voltage
9 //datasheet of 709
10 Ibmax=200; //base current nA
11 I1=100*Ibmax; //nA
12 R1=10^5*(vs/I1);
13 printf("\nR1=\%.1 f kohm, use standard value 2.2 kohm",
      R1); R1 = 2.2;
14 R2=Av*R1;
15 R3=R1; //R1 | R2=R1
16 printf("\nR2=\%d kohm", R2);
17 printf("\nR3=\%.1 f kohm",R3);
18 Av=40;
19 printf("\nVoltage gain = \%d db", Av)
20 printf("\nFrom datasheet of 741,\nFor Av=40 db,\nc1
      =100 pF\nc2=3 pF\nR1=1.5 kohm")
```

 $Scilab \ code \ Exa \ 14.3$ Design inverting amplifier with a gain of 50

```
1 //chapter 14
2 //example 14.3
3 //page 440
4 clear all;
```

```
5 clc;
6 //given
7 Av=50;
8 //gain in db
9 Av=20*log10(Av)
10 printf("\nVoltage gain=%d db",ceil(Av));
11 printf("\nThere are no liststed component value for given gain\nUse Av=20 db\nc1=500 pF\nc2=20 pF\nR1 =1.5 kohm");
```

Scilab code Exa 14.4 Design voltage follower

```
1 // chapter 14
2 // example 14.4
3 // page 441
4 clear all;
5 clc;
6 // given
7 Av=1; // voltage follower
8 printf("\nc1=500 pF\nc2=2000 pF\nc3=1000 pF")
```

Scilab code Exa 14.5 Upper cutoff frequency of inverting amplifier

```
1 //chapter 14
2 //example 14.5
3 //page 442
4 clear all;
5 clc;
6 //given
7 Av=100;
8 Av=20*log10(Av);//voltage gain in db
9 printf("\nvoltage gain=%d db",ceil(Av));
10 //f2 occurs at(upper cutoff frequency)
```

Chapter 15

sinusoidal Oscillators

Scilab code Exa 15.1 Resistor and capacitor values for phase shift oscillator

```
1 //chapter 15
2 //example 15.1
3 / page 451
4 clear all;
5 clc;
6 //given
7 vcc=10; //supply voltage (dual supply)
8 fo=1;//op frequency
9 Av=29;//voltage gain
10 Ibmax=500; //base current nA
11 I1=(100*Ibmax)/1000; //nA
12 vo=vcc-1; //op voltage
13 vi=vo/Av;//ip voltage
14 R1 = 1000 * vi/I1;
15 printf("\nR1=%.1 f kohm, use standard value 5.6 kohm",
     R1); R1=5.6;
16 R2=Av*R1;
17 printf("\nR2=%d kohm, use standard value 180 kohm", R2
      ); R2 = 180;
18 R3=R2;
19 printf("\nR3=\%d kohm",R3);
```

```
20 R=R1;
21 printf("\nR=%.1 f kohm",R);
22 c=1/(2*%pi*R*sqrt(6));
23 printf("\nC=%.2 f microF, standard value 0.01 microF",c)
```

Scilab code Exa 15.2 Design colpitts oscillator

```
1 // chapter 15
2 //example 15.2
3 / page 455
4 clear all;
5 clc;
6 //given for colpitts oscillator
7 f=40000; //frequency in kHz
8 vcc=10; //supply voltage (dual supply)
9 L=0.1; // inductor in mH
10 Cr = (1/(4*(\%pi)^2*f^2*L))/10^-12;
12 printf ("\nCr=\%.1 \text{ f pF}", Cr);
13 C1=Cr*10; C1=1500;
14 printf("\nC1=\%d pF",C1);
15 C2=1/(1/Cr-1/C1);
16 printf("\nC2=\%d pF, use standard value 180 pF", ceil(
      C2)); C2=180;
17
18 XC2=10^9/(2*\%pi*f*C2);
19 XC1=10^9/(2*\%pi*f*C1);
20 printf("\nXC1=\%.2 f kohm\nXC2=\%d kohm", XC1, XC2);
21 //R1>>XC1
22 R1 = 10 * XC1;
23 printf("\nR1=\%.1f kohm, use standard value 27 kohm",
      R1); R1 = 27;
24 R2=(C1/C2)*R1; //R2>(C1/C2)*R1
25 printf("\nR2=%d kohm, use standard value 270 kohm", R2
```

```
);R2=270;
26 R3=R1;
27 printf("\nR3=%d kohm, standard value",R3);
```

Scilab code Exa 15.3 Design Wein Bridge oscillator

```
1 // chapter 15
2 //example 15.3
3 //page 462
4 clear all;
5 clc;
6 //given
7 vcc=10; //supply voltage (dual supply)
8 fo=10; //op frequency
9 Ibmax=500; //base current nA
10 I4=500; //current through R4 in microA
11 vo=vcc-1; //op voltage
12 R34=1000*vo/I4; //R3+R4
13 / R3 = 2xR4, R34 = 3*R4 = 18;
14 R4 = R34/3;
15 printf("\nR4=%d kohm, use standard value 5.6 kohm", R4
      ); R4 = 5.6;
16 R3 = 2 * R4;
17 printf("\nR3=\%.1 f kohm, use standard value 12 kohm",
      R3); R3=12;
18 R2=R4; printf("\nR2=\%.1 \text{ f kohm}", R2);
19 R1=R2; printf("\nR1=\%.1 \text{ f kohm}", R1);
20 C=10^6/(2*\%pi*R1*fo);
21 printf("\nC=\%d pF, standard value 2700 pF", C)
```

Scilab code Exa 15.4 Design phase shift oscillator

```
1 // chapter 15
```

```
\frac{2}{\text{example }} 15.4
3 //page 463
4 clear all;
5 clc;
6 //given
7 vomax=5;//op voltage max
8 Vf=0.7; //forward voltage drop across diode
9 f=5; //frequency of oscillation
10 I1=1; //current through inverting terminal mA, diodes
      are forward biased
11 Av=29; // voltage gain
12 R1=100*(vomax/(Av*I1));
13 R1=floor(R1)*10;
14 printf("\nR1=%d kohm, use standard value 150 kohm", R1
      ); R1 = 150;
15 R2=Av*R1/1000;
16 R2 = 4.4;
17 printf("\nR2=\%.1 \text{ f kohm}",(R2));
18 R4 = 2 * Vf / I1;
19 printf("\nR4=%.1f kohm, use standard value 1.5 kohm",
      R4); R4=1.5;
20 R5 = R2 - R4;
21 printf("\nR5=\%.1 \text{ f kohm}", R5);
22 R6 = 0.4 * R5;
23 printf("\nR61=\%.2 f kohm, use standard value 1 kohm",
      R6); R6=1;
24 R7 = 0.8 * R5;
25 printf("\nR71=%.2f kohm, use standard value 2.7 kohm"
      ,R7);R7=2.7;
26 R3 = R2;
27 printf("\nR3=\%.1f kohm, use standard value 4.7 kohm",
28 C=1000/(2*\%pi*R1*f*sqrt(6));
29 printf("\nc=\%.3 f microF, standard value 0.082",C)
```

Chapter 16

Power supplies Breakdown diodes and Voltage regulators

Scilab code Exa 16.1 Reservoir Capacitor for half wave rectifier

```
1 // chapter 16
2 //example 16.1
3 / page 473
4 clear all;
5 clc;
6 //given
7 Eo=20; //supply voltage
8 R1=500;//load resistance in ohm
9 Vr = 10/100 * Eo; // ripple voltage
10 fin=60; //ip frequency Hz
11 Eomin=Eo-1;
12 Eomax = Eo + 1;
13 theta1=asin(Eomin/Eomax);//in radians
14 theta=(theta1*180)/\%pi;//in degrees
15 T=1000/60; //in
16 //for 360 degree,T
17 // \text{for } 180 =>
18 T1=T *180/360;
19 T2=T1/2; //time for 90 degrees
```

Scilab code Exa 16.2 Diode specification for half wave rectifier

```
1 / chapter 16
2 //example 16.2
\frac{3}{\text{page }} 475
4 clear all;
5 clc;
6 //given
7 Eo=20; //supply voltage
8 Eomin=Eo-1;
9 Eomax = Eo + 1;
10 theta1=asin(Eomin/Eomax);//in radians
11 theta=(theta1*180)/%pi;//in degrees
12 T=1000/60; //in
13 T1=T *180/360;
14 T2=T1/2; // time for 90 degrees
15 T3=T*theta/360;//time for theta
16 t1=T1+T2+T3; // total time in ms
17 t2=1.17; //ms
18 I1=40; //mA
19 //diode peak repetitive current
20 Ifm=ceil(I1*(t1+t2)/t2); //mA
21 //diode avg forward current
22 Io=I1;
23 Vp=Eomax+0.7; //Vf=0.7V
24 //diode maximum reverse voltage
25 \text{ Er} = 2 * Vp
26 printf("\nIFM(rep) = \%d mA", Ifm)
```

Scilab code Exa 16.3 Resevoir Capacitor for bridge rectifier

```
1 / chapter 16
2 //example 16.3
3 / page 477
4 clear all;
5 clc;
6 //given
7 Vr=2; // ripple voltage
8 Eo=20; //supply voltage
9 Eomin=Eo-1;
10 Eomax = Eo + 1;
11 theta=65; //in degrees
12 T2=4.17; //time for 90 degrees ms
13 T3=3; //time for theta ms
14 I1=40; / \text{mA}
15 t2=1.17; //ms
16 t1=T2+T3;
17 C=Il*t1/Vr;
18 printf("\nReservoir capacitor is %d microF, use
      standard value 150 microF",(C))
19 //diode peak repetitive current
20 Ifm=(I1*(t1+t2)/t2);/mA
21 printf("\ndiode peak repetitive current IFM(rep)=%d
     mA", Ifm)
22 //diode avg forward current
23 \text{ Io} = I1/2;
24 printf("\ndiode average forward current(Io)=%d mA",
```

```
Io);
25  //diode maximum reverse voltage
26  Vp=Eomax+2*0.7; //Vf=0.7V
27  Er=Vp;
28  printf("\nEr=%.1 f V",Er);
29  printf("\n1N4001 is required")
```

Scilab code Exa 16.4 Diode specification and Capacitor for Zener circuit

```
1 // chapter 16
2 //example 16.4
3 / page 482
4 clear all;
5 clc;
6 //given
7 Vs=24; //dc supply
8 printf("\nSuitable device is 1N757, from datasheet")
9 Vz=9.1;//nominal voltage
10 Iz=20; //nomonal current
11 R1=1000*(Vs-Vz)/Iz;
12 printf("\nseries resistance R1=%d ohm, use standard
      value 820 \text{ ohm}, R1); R1=820;
13 Vs = 20;
14 Iz=1000*(Vs-Vz)/R1;
15 printf("\nWhen Vs=20 V, Iz=\%.1 f mA", Iz);
```

Scilab code Exa 16.5 Design Zener diode voltage reference

```
1 //chapter 16
2 //example 16.5
3 //page 484
4 clear all;
5 clc;
```

```
6 //given
7 Vs=15; //dc supply
8 Vref=6;
9 printf("\nSuitable device is 1N753, from datasheet")
10 Vz=6.2; //nominal voltage
11 P=400; //nominal power in mW
12 Izmin=5;
13 Izm=P/Vz; //Izm=Ilmax+Izmin
14 R1=10^3*(Vs-Vz)/Izm;
15 printf("\nseries resistance R1=%d ohm, use standard value 150 ohm",R1);R1=150;
16 Izm=1000*(Vs-Vz)/R1;
17 Ilmax=Izm-Izmin;
18 printf("\nMax load current =%d mA",ceil(Ilmax))
```

Scilab code Exa 16.6 LR and RR for regulator circuit

```
1 //chapter 16
2 //example 16.6
3 //page 485
4 clear;
5 clc;
6 //given
7 Zzr=7; //dynamic impedance of 1N753
8 Vs=15; //dc supply
9 R1 = 150;
10 Vo = 6.2;
11 Ilmax=55;
12 deltaVs=10/100*Vs;
13 deltaVo=1000*deltaVs*Zzr/(R1+Zzr);
14 //line regulation
15 lineR=(deltaVo*100/Vo)/1000;
16 printf("\nline regulation=%d\%\%",lineR)
17 deltaIl=Ilmax;
18 deltaVo=deltaIl*(Zzr*R1/(Zzr+R1));
```

```
19 //load regulation
20 loadR=(deltaVo*100/Vo)/1000;
21 printf("\nload regulation=%.1f%%",loadR)
22 //ripple rejection
23 RR = 20*log10((R1+Zzr)/Zzr);
24 printf("\nripple rejection= %d db",RR)
```

Scilab code Exa 16.7 LR and RR for rectifier and filter circuit

```
1 / chapter 16
2 //example 16.7
3 / page 489
4 clear;
5 clc;
6 //given
7 Eoavg=20;
8 \text{ Eomax} = 21;
9 \text{ Vo} = 12;
10 Av=100//voltage gain
11 / 10\% change in filter op
12 deltaEo=10/100*20;
13 deltaVs=deltaEo;
14 deltaVo=1000*deltaVs/Av;//mV
15 //line regulation
16 lineR=(deltaVo*100/Vo)/1000;
17 printf("\nline regulation=\%.2f\%\%",lineR);
18 //Eo changes from Eomax to Eoavg
19 deltaEo=Eomax-Eoavg;
20 deltaVs=deltaEo;
21 //Il change from no load to full load
22 deltaVo=1000*deltaVs/Av;
23 //load regulation
24 loadR=(deltaVo*100/Vo)/1000;
25 printf("\nload regulation=\%.2f\%\%",loadR)
```

Scilab code Exa 16.8 Design voltage regulator

```
1 // chapter 16
2 //example 16.8
3 / page 490
4 clear all;
5 clc;
6 //given
7 Vs=20; //supply voltage
8 Vo=12; //op voltage
9 Ilmax=40;//maximum load current mA
10 Vz = Vo/2;
11 printf("\nSuitable device is 1N753, from datasheet")
12 Vz=6.2; //nominal voltage
13 //to keep D1 in breakdown
14 IR2=10; / \text{mA}
15 R2=1000*(Vo-Vz)/IR2;
16 printf("\nR2=\%d ohm, standard value 560 ohm", R2);
17 IE1max=Ilmax+IR2;
18 //power dissipation in Q1
19 P1max = IE1max * (Vs - Vo);
20 \quad VCE1max = Vs;
21 IC1max=IE1max;
22 //choosing suitable transistor and finding it's
      hfemin at IC=50mA
23 \text{ hfemin=50};
24 IB1max=IE1max/hfemin;
25 //IC2 >> IB1 max, let
26 \text{ IC2=5};
27 \text{ VB1 = Vo + 0.7};
28 R1=(Vs-(VB1))/(IC2+IB1max);
29 R1 = R1 - 0.01;
30 printf("\nR1=\%.2 f kohm, standard value 1.2 kohm", R1);
31 IE2=5; IR2=10;
```

Scilab code Exa 16.9 Design opamp voltage regulator

```
1 //chapter 16
2 //example 16.9
3 //page 4
4 clear all;
5 clc;
6 //given
7 Ilmax=100; //maximum op current
8 Vs=20; //supply voltage
9 //maximum op voltage 10-15V
10 Vomin=10; Vomax=15;
11 Vz1 = Vomin/2;
12 Vz2=Vomax/2;
13 printf("\nSuitable device is 1N753, from datasheet")
14 Vz=6.2; //nominal voltage
15 Izr=20;
16 Iz=Izr;
17 Voavg=12.5;
18 R1=1000*(Voavg-Vz)/Iz;
19 printf("\nR1=\%d ohm, standard value 330 kohm", R1); R1
      =330;
20 //I3 > Ibmax for opAmp, let
21 I3min=1;
22 //Vo=min, wiper at top of R4
23 R3R4=Vz/I3min;
```

```
24 \text{ VR3=Vz};
25 R2=(Vomin-VR3)/I3min;
26 printf("\nR2=\%.1 f kohm, standard value 3.3 kohm", R2);
      R2 = 3.3;
27 //Vo=max, wiper at bottom of R4
28 I3max = Vomax/(R2+R3R4);
29 R3=Vz/I3max;
30 R4 = (R3R4) - R3;
31 printf("\nR3=\%.1 \text{ f kohm}", R3);
32 printf("\nR4=\%.1 f kohm, standard value 3 kohm", R4);
33 //Q1 specification
34 P1=(Vs-Vomin)*(Ilmax+Iz+I3min);
35 P1=P1/1000;
36 printf ("\nP1=\%.2 f W", P1)
37 Vcemax=Vs;
38 ICmax=Ilmax+Iz+I3min;
39 printf ("\nVcemax=\%dV, ICmax=\%dmA", Vcemax, ICmax)
```

Scilab code Exa 16.10 Design voltage regulator circuit

```
printf("\nR1=%.1f kohm, standard value 2.7 kohm",R1);
Vs=Vo+5; // for satisfactory opertation of pass Xtor
I=25; // internal ckt current Istandby+Iref
// internal power dissipation
Pi=Vs*I;
printf("\ninternal power dissipation=%d mW",Pi)
// max power dissipation in series pass Xtor
PDmax=1000;
P=PDmax-Pi;
printf("\nmax power dissipation in series pass transistor=%d mW",P)
// maximum load current
Ilmax=P/(Vs-Vo);
printf("\nmaximum load current=%d mA",Ilmax);
```

Scilab code Exa 16.11 Design voltage regulator using LM217 IC

```
1 / \text{chapter } 16
2 //example 16.11
3 //page 507
4 clear all;
5 clc;
6 //given
7 Vo=6; //op voltage
8 Vs=15; //supply voltage
9 Iadj=100; //microA
10 \quad I1=2.5;
11 Vref = 2.5;
12 R1=Vref/I1;
13 printf("\nR1=\%d kohm",R1);
14 R2=(Vo-Vref)/I1;
15 printf("\nR2=\%.1f kohm, use 1.2 kohm + 200 ohm in
      series", R2);
```

Chapter 17

Large signal amplifiers

Scilab code Exa 17.1 Dc ac load line for CE circuit

```
1 //chapter 17
2 //example 17.1
3 / page 518
4 clear;
5 clc;
6 //given
7 //dc load line
8 Vcc=13; //supply voltage
9 R1=4.7; R2=3.7; RE=1;
10 Rpy=40;
11 N1 = 74; N2 = 14;
12 R1=56;
13 // plot point A(Vce, Ic) = (Vcc, 0)
14 VB = Vcc*R2/(R1+R2);
15 \text{ VE=VB};
16 VBE=VB-0.7;
17 IE=VE/RE;
18 IC=IE;
19 VCE=Vcc-IC*(Rpy+RE); // plot point Q(VCE, IC) = (8,5)
20
21 VCE=[13,8];
```

Scilab code Exa 17.2 Maximum Efficieny of Transformer

```
1 //chapter 17
2 //example 17.2
3 / \text{page } 522
4 clear all;
5 clc;
6 //given
7 eta=80; //Xformer efficiency
8 Vcc=13; //supply voltage
9 ICQ=5;
10 Pi=Vcc*ICQ; //ip power dissipation in mW
11 VCEQ=8;
12 Vp = VCEQ;
13 ICEQ=5;
14 Ip=ICEQ;
15 //power delivered to Xformer primary
16 Po1=(Vp*Ip)/2;
17 //Xformer op power
```

```
18 Po = eta * Po1 ; //mW
19 //ckt efficiency
20 efficiency=(Po/Pi);
21 printf("\nMaximum ckt efficiency of class A amplifier =\%.1f\%\%", efficiency);
```

Scilab code Exa 17.3 Transformer output for class B

```
1 // chapter 17
2 //example 17.3
3 / page 528
4 clear all;
5 clc;
6 //given
7 Rl=16; //load resistance
8 Vcc=30; //supply voltage
9 eta=0.8; //Xformer efficiency
10 Po = 4;
11 Po1=Po/eta; //ac power delivered to Xformer primary
12 Vp = Vcc;
13 Rl1=(Vp^2)/(2*Po1);
14 R12 = 4 * R11;
15 printf("\nTransformer specification are:\nPo=%d W\
      nRl=%d ohm\nRl''' =%d ohm center tapped", Po, Rl,
      R12);
16 //max Xtor vol
17 Vcemax=2*Vcc;
18 Ip = (2*Po1)/Vp;
19 //max Xtor current
20 Icmax = 1000 * Ip;
21 //dc ip power
22 Iavg=0.636*Ip*1000;
23 Pi=10^-3*Vcc*Iavg;
24 //power in each op Xtor
25 \text{ Pr} = (Pi - Po1)/2;
```

```
26 printf("\nTransistor specification are:\nPr=\%.2 f W\nVcemax=\%d V\nIcmax=\%d mA", Pr, Vcemax, Icmax);
```

Scilab code Exa 17.4 Design capacitor coupled amplifier

```
1 / \text{chapter } 17
2 //example 17.4
3 / page 523
4 clear all;
5 clc;
6 //given
7 Rl=100; //load resistance
8 Po=0.5; //output power
9 //peak output voltage
10 Vp=sqrt(2*R1*Po);
11 //peak output current
12 Ip=1000*(2*Po)/Vp;
13 Vr6=0.1*Vp;
14 Vr7=Vr6;
15 R6 = 1000 * Vr6/Ip;
16 R7 = R6;
17 //quiscent current
18 Iq2=Ip/10;
19 //dc voltage across R4
20 \text{ Vr4dc} = 0.7 + 10^{-3} \cdot \text{Iq2} \cdot (R6 + R7) + 0.7;
21 //bias components for Q2 &Q3
22 deltaVB=Vp+Vr6;
23 Vce1dc=deltaVB+1;
24 Vr3dc=Vce1dc;
25 Vr5=5; //bias stabiliy
26 Vcc=Vr5+Vce1dc+Vr4dc+Vr3dc;
27 printf("\nVCC=\%.1 f V, use \nVCC=30 V", Vcc); Vcc=30;
28 //Icq1 \gg Ibmax
29 hfe=50; //assuming equal for all 3 Xtors
30 Ibmax=Ip/hfe;
```

Scilab code Exa 17.5 Design capacitors of amplifier circuit

```
1 //chapter 17
2 //example 17.5
3 //page 535
4 clear all;
5 clc;
6 //given
7 f1=20;//lower cutoff frequency Hz
8 R3=1.2; //kohm
9 R1=100; //ohm
10 Vcc = 30;
11 // Xc2 << R3 at f1
12 C2=1000/(2*\%pi*f1*R3/10);
13 printf("\nc2=\%.1f microF, use standard value 75
      microF",C2);
14 XC4=R1;
15 C4=10^6/(2*\%pi*f1*Rl);
16 printf("\nc4=\%.1f microF, use standard value 80
      microF", C4);
17 Ip = 100;
18 Vcemax=Vcc;
19 Icmax=1.1*Ip;
20 //dc ip power
21 Pidc=(Vcc*0.35*Ip)/1000;
22 Poac=0.5;
23 Pr=(Pidc-Poac)*0.5;
```

```
24 printf("\nTransistor specification are:\nPr=\%.2 f W, Vcemax=%d V, Icmax=%d mA", Pr, Vcemax, Icmax);
```

Scilab code Exa 17.6 Supply and output voltages for amplifier circuit

```
1 / \text{chapter } 17
2 //example 17.6
3 //page 543
4 clear all;
5 clc;
6 //given
7 R1=50; //load resistance
8 Po=10; //op power
9 //peak op voltage
10 Vp=round(sqrt(2*R1*Po));
11 Vr14=0.1*Vp; //when Ip flows
12 Vr15=Vr14;;
13 \ Vce4min=1
14 Vce3min=Vce4min;
15 Vr9=3;
16 Vr10=Vr9;
17 Vcc=ceil(Vp+Vr14+Vce3min+0.7+Vr9);
18 printf("\nVCC=\%d\ V", Vcc);
19 Ip=1000*(2*Po)/Vp;
20 //dc ip power
21 Iavg=0.636*Ip*1.1;
22 Pi=10^-3*Vcc*Iavg;Pi=17.5;
23 //power in each op Xtor Q7 & Q8
24 \text{ Pr1} = (\text{Pi-Po})/2;
25 Vcemax = Vcc - (-40);
26 \quad Icmax = ceil(1.1*Ip);
27 printf("\nTransistor specification for Q7,Q8 are:\
      nPr=\%.2 f W, Vcemax=\%d V, Icmax=\%d mA", Pr1, Vcemax,
28 //power in each op Xtor Q5 & Q6
```

Scilab code Exa 17.7 Analyze MOSFET power amplifier circuit

```
1 //chapter 17
2 //example 17.7
3 //page 547
4 clear;
5 clc;
6 //given
7 Rl=10; //load resistance
8 Po=5; //op power
9 Rdsmin=4;
10 gm = 250; / \text{mA/V}
11 //peak op voltage
12 Vp=round(sqrt(2*Rl*Po));
13 R1=20;
14 Ip=Vp/R1;
15 //supply voltage
16 Vcc=[Vp+(Ip*Rdsmin)];
17 printf("\nVCC=+-\%d\ V", Vcc);
18 Vth=1;
19 Vr13=Vth; Vr14=Vth;
20 deltaVr14=10^-3*Ip/gm;
21 deltaVr13=deltaVr14;
22 //to avoid turn off of Q1, let
23 deltaVr3=2;
24 Vr3=deltaVr3+1;
25 Vr7=Vr3; Vr6=Vr3;
```

```
26  //to avoid saturation of Q2
27  Vce2=Vp+Vr7+1;
28  Vr4r5=2*Vcc-Vr6-Vr7-Vce2;
29  printf("\nVoltage drops across R3,R6,R7 is %d V and across R4+R5 is %d V",Vr3,Vr4r5)
```

Chapter 18

Thyristors and unijunction transistors

Scilab code Exa 18.1 Analyze SCR circuit

```
1 // chapter 18
2 //example 18.1
3 //page 559
4 clear all;
5 clc;
6 //given
7 Rl=15; //load resistance
8 ep=30;//peak ip voltage
9 Rg=1;//gate resistance kohm
10 //forward blocking voltage VfXm>30 for SCR to remain
       in off until triggered
11
12 VAK=1;
13 Ip=(ep-VAK)/R1;
14 //rms value of Il
15 Irms = 0.5 * Ip;
16 printf("\nIrms=\%.2 f A and ep=\%d V", Irms, ep);
17 printf("\nC6F is suiatable SCR with VFXM=50 V,
      current range allowable is 1.6 A");
```

Scilab code Exa 18.2 Design SCR circuit

```
1 / \text{chapter } 18
2 //example 18.2
3 //page 559
4 clear;
5 clc;
6 //given
7 Rl=15; //load resistance
8 ep=30;//peak input voltage
9 Vg=0.5; // Trigger voltage
10 Ig=10; // trigger current in microA
11 //at 5 degrees
12 a = (5*\%pi)/180;
13 ei1=ep*sin(a);
14 //at 90 degrees
15 \text{ ei2=ep};
16 //when SCR triggers
17 Vt = Vg + 0.7 + (10^-6*Ig*R1);
18 //to trigger SCR at ei = 2.6V, moving contact of R2
```

```
must be at the top
19 Vr2r3=Vt;
20 \text{ Vr1}=\text{ei1}-\text{Vt};
21 Ilmin=100; //microA
22 R1 = 1000 * Vr1 / I1min;
23 printf("\nR1=\%d kohm, standard value 12 kohm", R1); R1
      =12;
24 I11=floor(10^3*Vr1/R1);
25 R23=10^3*Vt/I11;
26 I1=ei2/(R1+R23); //I1=1.35;
27 //to trigger SCR at ei=30V, moving contact of R2 must
       be at the bottom
28 R3=(10^3*Vt/I1);
29 printf("\nR3=\%d ohm, standard value 820 ohm", R3); R3
      =820; R23=10.3;
30 R2=R23-R3/1000;
31 printf("\nR2=\%.2 f kohm, standard value 10 kohm", R2);
      R2 = 10;
```

Scilab code Exa 18.3 Design resistor for 4 layer diode circuit

```
1 //chapter 18
2 //example 18.3
3 //page 569
4 clear;
5 clc;
6 //given
7 E=30;
8 Vs=10; //supply voltage
9 Is=500; //ip current
10 Ih=1.5; //mA
11 Vf=1; //forward voltage drop
12 R1max=1000*(E-Vs)/Is;
13 R1min=(E-Vf)/Ih;
14 printf("\nmaximum and minimum values of R1 are %d
```

Scilab code Exa 18.4 Analyze UJT circuit

```
1 / \text{chapter } 18
2 //example 18.4
3 //page 575
4 clear;
5 clc;
6 //given
7 PD=360; //power dissipation in mW
8 RBBmin=4; //kohm
9 RBBmax=12; //kohm
10 //to get lowest value of VB1B2, use RBBmin
11 VB1B2max=sqrt(RBBmin*PD);
12 printf("\nFor 25 degree, value of VB1B2=%d V", ceil(
      VB1B2max));
13 VB2E=30; //maximum emitter reverse voltage
14 printf("\nAt 25 degree, VB1B2 should not exceed 30 V"
      )
15 //for operation till 100 degrees
16 \text{ deltaT} = 100 - 25;
17 PD1=PD-(2.4*deltaT);
18 //ignore increase in RB
19
20 VB1B2max=sqrt(RBBmin*PD1);
21 printf("\nupto 100 degree, value of VB1B2=%.1 f V",
      VB1B2max);
```

Scilab code Exa 18.5 Emitter voltages for UJT circuit

```
1 //chapter 18
2 //example 18.5
```

```
3 //page 576
4 clear;
5 clc;
6 //given
7 VB1B2=30;
8 etamin=0.55;
9 etamax=0.82; // efficiency
10 Vpmin=0.7+(etamin*30);
11 Vpmax=0.7+(etamax*30);
12 printf("\nDevice will fire at emitter voltage between %.1 f V and %.1 f V", Vpmin, Vpmax);
```

Scilab code Exa 18.6 Frequency of oscillation for UJT circuit

```
1 // chapter 18
2 //example 18.6
3 //page 578
4 clear;
5 clc;
6 //given
7 VB1B2=15;
8 eta=0.7;//intrinsic standoff ratio
9 ec=0.7+(eta*VB1B2);//capacitor voltage
10 VEB1sat=2.5; //saturation voltage when capacitor is
      discharged
11 Eo=2.5; //capacitor voltage at start of each charging
       cvcle
12 t=0.1*10*log((15-2.5)/(15-11.2));
13 f = 1000/t;
14 printf("\nTypical frequency of oscillation is
      approximately %d Hz", ceil(f))
```

Scilab code Exa 18.7 Emitter resistance for UJT circuit

```
1 //chapter 18
2 //example 18.7
3 / page 580
4 clear;
5 clc;
6 //given
7 VB1B2=15;
8 \text{ Vd=0.7};
9 eta=0.82; //intrinsic standoff ratio
10 Ip=2; //maximum current
11 Vp=Vd+(eta*VB1B2);
12 REmax = (VB1B2 - Vp)/Ip;
13 printf("\nREmax=%d Mohm", REmax);
14 VEBsat = 2.5;
15 IV=2; //in mA
16 REmin = (VB1B2 - VEBsat) / IV;
17 printf("\nREmin=\%.2 f kohm", REmin);
```

Scilab code Exa 18.8 DC Analysis UJT circuit

```
1 //chapter 18
2 //example 18.8
3 //page no 581
4 clc;
5 clear;
6 //given
7 eta=0.7;
8 Vbb=20;
9 VR1=eta*Vbb;
10 I1=2;//mA
11 R1=14/I1;
12 printf("\nR1=%d kohm, use standard value 6.8 kohm",R1
        );R1=6.8;
13 R2=(Vbb-14)/I1;
14 printf("\nR2=%d kohm, use standard value 2.7 kohm",R2
```

```
); R2=2.7;
15 Rbb=R1+R2;
16 Vp=0.7+(Vbb*6.8)/Rbb;
17 Vv=1;//anode to cathode voltage drop
18 printf("\nVp=%d V", Vp);
19 printf("\nAnode to cathode voltage drop=%d V", Vv);
```

Chapter 19

Optoelectronic devices

Scilab code Exa 19.1 Light intensity

```
//chapter 19
//example 19.1
//page 590
clear all;
clc;
//given
r=3;//distance from lamp in m
L=25;//luminous flux or light energy in W
E=100*L/(4*%pi*(r^2));//light intensity
A=0.25;//area in cm^2
printf("\nLight intensity =%.1f microW/cm^2",E);
totphi=E*A;
printf("\nTotal Flux =%.1f microW",totphi);
```

Scilab code Exa 19.2 Series resistance and dark current

```
1 //chapter 19
2 //example 19.2
```

Scilab code Exa 19.3 Design photoconductive cell circuit

```
1 / chapter 19
\frac{2}{\text{example }} 19.3
3 //page 597
4 clear all;
5 clc;
6 //given
7 Vcc=6; //supply voltage V
8 Ib=200; //base current when Xtor is ON microA
9 Rdark=100; //cell dark resistance kohm
10 //when Xtor is ON
11 Vcell=Vcc+0.7; // for Si Xtor
12 Icell=1000*Vcell/Rdark; //microA
13 //current through R1
14 IR1 = Icell + Ib;
15 VR1 = Vcc - 0.7;
16 R1=1000*VR1/IR1;
17 //When Xtor is Off, base \leq 0V(Ib=0)
18 VR1=Vcc;
19 IR1=1000*VR1/R1; // \text{micro } A
```

Scilab code Exa 19.4 Dc load line for photodiode

```
1 // chapter 19
2 //example 19.4
3 / page 600
4 clear all;
5 clc;
6 //given
7 Es=0.5; //supply voltage V
8 R1=200; //series resistance ohm
9 VD1=-Es; //\text{when } \text{Id}=0
10 / \text{when VD} = 0
11 VR1=Es;
12 ID1 = 1000 * VR1/R1;
13 VD = [VD1 \ 0];
14 ID=[0 ID1];
15 plot(VD, ID, '-.*');
16 xtitle ('dc load line with points (-0.5,0) and (0,2.5)
      ', 'VD in V', 'ID in mA')
17 a=gca();
18 a.data_bounds=[-1,-0.5;1 3];
19 //from intersection of load line and illumination
      characteristics
20 printf('\nApproximate values:')
21 printf("\nAt 1500 lm/m^2, Id=-0.2 mA, Vd=-0.45 V");
22 printf("\nAt 10000 lm/m^2, Id = -1.9 mA, Vd = -0.12 V");
23 printf("\nAt 20000 lm/m^2, Id = -3.7 mA, Vd = 0.22 V");
```

Scilab code Exa 19.5 Total cells for satellite

```
1 / \text{chapter } 19
2 //example 19.5
3 //page 603
4 clear;
5 clc;
6 //given
7 Vo=13;//op voltage
8 Vcell=0.45; // cell voltage
9 Icel1=57; //cell current in mA
10 //no of series connected cell
11 Cs=ceil(Vo/Vcell);
12 //charge taken from batteries over 24 hrs=charge
      delivered by cell
13 Q = 24 * 0.5; //Ahr
14 //charging /op current
15 Io=Q/12;
16 //total group of cell in parallel
17 Cp=round (1000*Io/Icell);
18 //total no of cells required
19 C=Cs*Cp;
20 printf("\ntotal no of cells required is %d",C)
```

Scilab code Exa 19.6 Output voltage of phototransistor circuit

```
1 //chapter 19
2 //example 19.6
3 //page 606
4 clear all;
5 clc;
```

```
6 //given
7 Vcc=20; //supply voltage V
8 Rl=2; // collector load resistance kohm
9 Vce=[Vcc 0]
10 Ic = [0 \ Vcc/R1]
11 plot(Vce, Ic, '-.*');
12 xtitle ('dc load line with points (20,0) and (0,10)', '
      Vce in V', 'Ic in mA')
13 \quad a = gca();
14 a.data_bounds=[-1,-0.5;21 11];
15 //from intersection of load line and illumination
      characteristics
16 printf("\nAt illumination level =0,output voltage=
      Vce=20V")
17 printf("\nAt illumination level = 20 \text{ mW/cm}^2, output
      voltage = 12.5V")
18 printf("\nAt illumination level =40 mW/cm^2, output
      voltage = 4V")
```

Scilab code Exa 19.7 Design LED and transistor circuit

```
1 //chapter 19
2 //example 19.7
3 //page 611
4 clear all;
5 clc;
6 //given
7 Vcc=9; //supply voltage V
8 Vi=7; //ip voltage
9 VD1=1.2; //V
10 VCEsat=0.2; //V
11 Ic=10; // collector current mA
12 R2=1000*(Vcc-VD1-VCEsat)/Ic;
13 printf("\nR2=%d ohm, use standard 680 ohm", R2); R2 =680;
```

Chapter 20

Miscellaneous devices

Scilab code Exa 20.1 Capacitance tuning ratio

```
1 / chapter 20
2 //example 20.1
3 //page 636
4 clear all;
5 clc;
6 //given
7 C1=150; C2=60//capacitance from abrupt junction
     device characteristics at 1,10V resp in pF
8 //capacitance tunning ratio for abrupt junction
     device
9 TR=C1/C2;
10 printf("\ncapacitance tunning ratio for abrupt
     junction device is %.1f ",TR)
11 C3=220; C4=15//capacitance from hyperabrupt junction
     device characteristics at 1,10V resp in pF
12 //capacitance tunning ratio for hyperabrupt junction
      device
13 TR=C3/C4;
14 printf("\ncapacitance tunning ratio for hyperabrupt
     junction device is %.1f ",TR)
```

Scilab code Exa 20.2 Resonance frequency

```
1 / \text{chapter } 20
2 //example 20.2
3 / page 638
4 clear;
5 clc;
6 //given
7 R1=4.7; R2=10;
8 Vcc=9; //supply voltage
9 L=100;//inductance microH
10 Vdmin = (Vcc*R1)/(R1+R2);
11 Vdmax=Vcc;
12 C1=100; C2=15//capacitance from hyperabrupt junction
      device characteristics at 2.9,9V resp in pF
13 //At resonance, for Vdmin
14 f1=1000/(2*%pi*sqrt(L*C1));//MHz
15 f2=1000/(2*%pi*sqrt(L*C2));//MHz
16 printf("\n The resonance frequency range is %.1f MHz
       to %0.1 f MHz", f1, f2)
```

Scilab code Exa 20.3 Value of resistor in thermistor circuit

```
1 //chapter 20
2 //example 20.3
3 //page 640
4 clear all;
5 clc;
6 //given
7 E=20;//supply voltage
8 I=1;//supply current mA
9 //without thermistor & R2
```

```
10 Rc1=5; Rc2=6.5; // coil resistance
11 / At -15 degree
12 R1 = (E/I) - Rc1;
13 //At 50 degree
14 R11=(E/I)-Rc2;
15 printf('\nwithout thermistor & R2:')
16 printf ("\nR1=\%d kohm, R1=\%.1 f kohm at -15 and 50
      degrees respectively", R1, R11);
17 // with thermistor
18 Rt1=3; Rt2=0.100; //thermistor resistance
19 / At -15 degree
20 R1 = (E/I) - Rt1 - Rc1
21 //At 50 degree
22 R11=(E/I)-Rt2-Rc2;
23 printf('\nwith thermistor:')
24 printf ("\nR1=\%d kohm, R1=\%.1 f kohm at -15 and 50
      degrees respectively ",R1,R11);
25 //with thermistor & R2
26 / At -15 degree
27 R1 = (E/I) - (3/2) - Rc1
28 //At 50 degree
29 R11 = (E/I) - ((3*0.1)/(3+0.1)) - Rc2;
30 printf('\nwith thermistor & R2:')
31 printf ("\nR1=\%.1 f kohm, R1=\%.1 f kohm at -15 and 50
      degrees respectively", R1, R11);
```

Scilab code Exa 20.4 Piecewise linear characteristics

```
1 //chapter 20
2 //example 20.4
3 //page 649
4 clear all;
5 clc;
6 //given
7 Ip=1;//mA
```

```
8  Vp=65; //mV
9  Id=1; //mA
10  Vd=65; //mV
11  Iv=0.12; //mA
12  Vv=350; //mV
13  Vf=500; //mV
14  Id=[0  Id  Iv  Iv  Ip]
15  Ed=[0  Vd  Vv  450  Vf];
16  plot(Ed,Id,'-.*');
17  xtitle('piecewise linear characteristics','Ed in mV', 'Id in mA');
18  Rd=-(350-65)/(1-0.12);
19  printf("\nValue of RD=%d ohm",round(Rd));
```

Scilab code Exa 20.5 Gain for tunnel diode circuit

```
1 / \text{chapter } 20
2 //example 20.5
3 / page 651
4 clear;
5 clc;
6 //given
7 Eb=200; //battery voltage mV
9 es=0; //signal voltage V
10 Rl=80; //load resistance in ohm
11 Ed=Eb+es;
12 Id=2; //diode current mA
13 Er=(Eb+es);
14 Il1=Er/Rl;//load current mA
15 Ib1=Id+Il1; // battery current mA
16
17 es=100; //\text{mV}
18 \quad \text{Ed=Eb+es};
19 Id=1;
```

```
20 \quad I12=Ed/R1;
21 Ib2=Id+I12;
22 deitaIl=Il2-Il1;//change in Il
23 deltaIb=Ib2-Ib1; // change in Ib
24
25 \text{ es} = -100; //\text{mV}
26 \text{ Ed=Eb+es};
27 \text{ Id} = 3;
28 Il3=Ed/R1;
29 Ib3=Id+I13;
30 deltaIl= Il3 - Il1;//change in Il
31 deltaIb=Ib3-Ib1; // change in Ib
32
33 //current gain
34 io=deltaIl;
35 is=deltaIb;
36 Ai=io/is;
37
38 //op voltage
39 deltaEr=es;
40 eo=deltaEr;
41
42 //voltage gain
43 Av=eo/es;
44
45 //power gain
46 Ap=Ai*Av;
47
48 printf("\ncurrent gain=%d\nvoltage gain=%d\npower
      gain=\%d", Ai, Av, Ap)
```

Chapter 21

Electron tubes

Scilab code Exa 21.1 Transconductance and constant current characteristics

```
1 / chapter 21
2 //example 21.1
3 / \text{page } 665
4 clear all;
5 clc;
6 //given
7 Eg=[0 -1 -2 -3 -4]; //V
9 Ep=75; //V
10 //drawing vertical line at Ep=75 V in Vacuum triode
      plate characteristics we get values of Ip for Eg
      values as
11 Ip=[20 10 2 1 0];
12
13 plot(Eg,Ip,'-.*');
14 xtitle ('vacuum triode transconutance characteristics
15 xlabel('Eg in V');
16 ylabel('Ip in mA');
17
18
```

Scilab code Exa 21.2 Impedance and gain for vaccum triode circuit

```
1 / \text{chapter } 21
2 //example 21.2
3 / page 672
4 clear;
5 clc;
6 //given
7 Rg=1; //grid resistor in Mohm;
8 Rp=7; // plate resistor in kohm;
9 R1=30; //load resistance in kohm
10 Vcc=175; // supply voltage in V
11 Vg=-2; // grid bias in V
12 Ep1=Vcc; Ip=0; Epp=Ep1;
13 Ep2=0; Ip2=Epp/Rp;
14 //dc load line with points A(175,0) and B(0,25),
      intersects Eg=-2V which gives
15 Ip=10; //
16 Ep=105;
17 //ip impedance
18 Zi=Rg;
19
20 //op impedance
21 rp=50/10; // deltaEp/ deltaIp
```

```
22 Zo=(rp*Rp)/(rp+Rp);
23
24 //voltage gain
25 mu=50/2;
26 Av=-mu*((Rp*R1)/(Rp+R1))/(rp+((Rp*R1)/(Rp+R1)));
27
28 printf("\nip impedance=%dMohm", Zi);
29 printf("\nop impedance=%.1 f kohm", Zo);
30 printf("\nvoltage gain=%.1 f", Av);
```

Scilab code Exa 21.3 DC load line for CC amplifier

```
1 / chapter 21
2 //example 21.3
3 //page 678
4 clear all;
5 clc;
6 //given
7 Rp=9.7; //kohm
8 \text{ Rk} = 270; //\text{ohm}
9 Eg = [-4 -3 -2 -1];
10 R1=47; //load resistance in kohm
11 Epp=200; //VE
12 //total dc load resistance
13 R=Rp+Rk;
14 Ip = -1000 * Eg/Rk;
15
16 plot(-Eg, Ip, '-.*')
17 xtitle('bias line', 'Eg(V)', 'Ip(mA)')
18
19 //plotting DC load line
20 Ip1= floor(Epp/Rp);
21 //plot dc load line with points A(Ip, Ep)=A(0, 200)
      and B(Ip1,Ep)=B(Ip1,0)
22 figure, plot([200 0], [0 Ip1], '*b--');
```

```
23 xtitle('Dc load line', 'Ep(V)', 'Ip(mA)')
24
25 // after intersection of dc load line and bias line
      at Q
26 \text{ Eg} = -2.4; \text{Ip} = 8.8;
27 Ep=112; // plate to cathode voltage
28 printf("\nFor Q point,\nEg=\%.1f V\nIp=\%.1f mA\nEp=
      %dV", Eg, Ip, Ep);
29 R = (Rp*R1)/(Rp+R1);
30 deltaIp=10;
31 deltaEp=-deltaIp*R;
32 //ac load line with points
33 //point C(deltaEp, deltaIp) = (32,10)
34 / \text{point Q} (112, 8.8);
35 plot([32 112],[10 8.8], '*r--');
36 xtitle ('dc(blue), ac(red) load line intersect at Q
      point', 'Ep(V)', 'Ip(mA)')
```