FUNDAMENTALS OF VLSI DESIGN

(19EC6DCFOV)

Module-4

Advanced CMOS Logic Structures: Mirror circuits, PseudonMOS Logic, Tristate circuits, Clocked CMOS Logic, Dynamic CMOS Logic circuits (Text book-2)

Array Subsystems: Introduction, Static Random-Access Memory (SRAM), Dynamic Random-Access Memory (DRAM), Read only Memory, Serial Access Memories, Content addressable memory. (Text 3)

Text books:

- 2. John P.Uyemura, "Introduction to VLSI Circuits and Systems", Wiley India Edition, 3rd print, 2007.
- 3. Neil H.E. Weste, Harris, Banerjee, "CMOS VLSI design", Pearson, Third Edition, 2007.

Advanced CMOS Logic Structures

Variety of CMOS circuit design styles

- useful in the design of high-speed VLSI networks.
- operate in distinct ways.
- To overcome one or more problems that have arisen as VLSI applications
- Some are very general, while others are used only for special cases.
 - 1. Mirror circuits
 - 2. Pseudo-nMOS Logic
 - 3. Tristate circuits
 - 4. Clocked CMOS Logic
 - 5. Dynamic CMOS Logic circuits

Mirror Circuits

- Mirror circuits are based on series-parallel logic gates, but are usually faster and have more uniform layout.
- The basic idea of a mirror is seen from XOR truth table.

Important aspect:

There are equal numbers of input combinations that produce 0's and 1's.

- Output 0's imply that an nFET chain is conducting to ground.
- Output 1's means that a pFET group provides support from the power supply.

- Mirror effect can be understood by placing a mirror along the output line, facing either up or down.
- The mirror image seen in the mirror will be the other side of the circuit.

Advantages:

- 1. circuit are more symmetric layout
- 2. shorter rise and fall times.

XOR mirror circuit

XNOR Mirror circuit

Pseudo-nMOS Logic

- Adding a single pFET to nFET arrays called pseudo-nMOS.
- For N inputs, a pseudo-nMOS logic gate requires (N + 1) FETs.

• To illustrate the sizing problem,

$$I_{DN} = I_{DP}$$

$$B[V_{3} - V_{4}] V_{ds} - V_{2}] = \frac{\beta}{2} (V_{3} - V_{4})^{2}$$

$$\frac{\beta_{n}}{2} [2(V_{DD} - V_{Tn})V_{OL} - V_{OL}^{2}] = \frac{\beta_{p}}{2} (V_{DD} - |V_{Tp}|)^{2}$$

$$V_{OL} = (V_{DD} - V_{Tn}) - \sqrt{(V_{DD} - V_{Tn})^{2} - \frac{\beta_{p}}{\beta_{n}} (V_{DD} - |V_{Tp}|)^{2}}$$

 V_{OL} thus depends on the ratio $(\beta_n/\beta_p) > 1$.

- Increasing the device ratio decreases the output low voltage.
- pseudo-nMOS is a type of ratioed logic

NOR and NAND

Tristate circuits

- A tri-state circuit produces the usual 0 and 1 voltages, but also gives third high-impedance Z (or Hi-Z) state
- Tri-state circuits are useful for isolating circuits from common bus lines.

- Enable signal En controls the operation.
- With En = 0, the output is "tri-stated" which means that f = Z.
- Normal operation occurs with En = 1.
- A non-inverting circuit (a buffer) can be obtained by neg static inverter to the input.

Clocked CMOS

- The real power of digital logic is realized only when we progress to the concept of clock control and sequential circuits.
- Clocked CMOS (C²MOS)
- The clock signal φ (or Clk), period T, Frequency f

$$f = \frac{1}{T}$$

 $\phi(t) = V_{DD} - \phi(t)$

General structure of C²MOS

$$\emptyset = 1$$
,

- M1 and M2 \rightarrow Active
- Standard output

$$\emptyset = 0$$
,

- M1 and M2 \rightarrow Cut-off
- High impedance state

NAND and NOR

Draw backs:

- 1. Charge leakage
- 2. Subthreshold leakage
- output node cannot hold the charge on Vout very long due to a phenomenon called **charge leakage**.
- If a voltage is applied to the drain or source, a small leakage current flows into, or out of, the device.

$$i_{out} = i_n - i_p$$
$$= -C_{out} \frac{dV}{dt}$$

To see the effect of leakage currents,

- Initial voltage $V(t = 0) = V_1$ stored on the capacitor.
- If $i_n > i_p$, then $i_{out} = I_L$, is a Positive number, indicating current flow off of the capacitor.

$$I_L = -C_{out} \frac{dV}{dt}$$

$$\int_{V_1}^{V(t)} dV = -\int_0^t \left(\frac{I_L}{C_{out}}\right) dt$$

$$V(t) = V_1 - \left(\frac{I_L}{C_{out}}\right)t$$

To calculate the hold time,

$$V(t_h) = V_1 - \left(\frac{I_L}{C_{out}}\right) t_h$$

$$t_h = \left(\frac{C_{out}}{I_L}\right) (V_1 - V_x)$$

Draw backs:

- 1. Charge leakage
- 2. Subthreshold leakage, I_{sub}
- Drain-source current that flows even through the gate voltage is less than V_T .

$$I = I_{D0} \left(\frac{W}{L}\right) e^{-(V_{GS} - V_T)/(nV_{th})}$$

 I_{D0} varies with V_{ds} V_{th} , is the thermal voltage $V_{th} = 26 \text{ MV} = 0.026 \text{ V}$ n is a parameter that varies with capacitance.

21-06-2022 FOVLSI- Dr.P.Vimala 16

- Other contributions to create leakage current
 - 1. Originates from the physical structure
 - 2. Materials used to create the silicon circuit

- Motivation for Research:
 - 1. refining the fabrication process using different materials and variations in the FET structures.
 - 2. to develop new types of transistors to replace the standard MOSFET

Dynamic CMOS

• uses clocking and charge storage properties of MOSFETs to implement logic operations.

Basic Dynamic Logic circuit

Ø = 0,
• Mp→ ON (Precharge FET)
• Mn → OFF
• Precharge Mode

 $\emptyset = 1$,

- Mp \rightarrow OFF
- Mn \rightarrow ON (Evaluation FET)
- Evaluation Mode

• NAND3

$$f = \overline{a \cdot b \cdot c}$$

(a) Circuit

Draw back → **Charge sharing**

- Occur when the clock makes the transition to $\emptyset = 1$
- Effect of reducing the output voltage
- origin of the charge sharing problem is the parasitic node capacitance C1 and C2 between FETs.

When $\emptyset = 1$,

- Mp \rightarrow off, isolating the output node from power supply.
- At the start of evaluation Vout = VDD
- Assume, V1 and V2 are 0V
- Total charge in the circuit, $Q = C_{out} V_{DD}$
- Worst case charge sharing condition for this circuit is when (a,b,c) = (1,1,0)
- With, C=0, there is no discharge path to ground.

$$V_{out} = V_{2} = V_{1} = V_{f}$$

$$Q = C_{out}V_{f} + C_{1}V_{f} + C_{2}V_{f}$$

$$= (C_{out} + C_{1} + C_{2})V_{f}$$

$$Q = (C_{out} + C_{1} + C_{2})V_{f} = C_{out}V_{DD}$$

$$V_{f} = \left(\frac{C_{out}}{C_{out} + C_{1} + C_{2}}\right)V_{DD}$$
<1

Charge sharing thus reduces the voltage on the output node.

Domino Logic

• adding static inverter to the output of the basic dynamic gate circuit.

• Domino logic gates are **non-inverting** because of the output inverter.

The precharge and evaluate events still occur, but the capacitor Cx is affected.

$$\emptyset = 0$$
,

- defines the precharge
- Cx is charged to a voltage $Vx = V_{DD}$
- Output voltage, Vout= 0 V

$$\emptyset = 1$$
,

- Inputs are valid during the evaluation interval
- If Cx holds its charge, Vx→high and Vout= 0 V indicates a "logic 0"
- If Cx discharges, then $Vx \rightarrow 0 V$ and Vout= V_{DD} corresponds a "logic 1"

• AND and OR

Domino Effect

• a cumulative effect produced when one event initiates a **succession of similar events**

 everyone will fall over like a row of dominoes

Domino logic derives its name from the manner in which a **cascade operates**.

Domino cascade

$$\emptyset = 0$$
,

- Precharge event
- capacitors C1, C2, and C3 are simultaneously charged to VDD
- outputs f1, f2, and f3 to all be 0.

$$\emptyset = 1$$
,

- Evaluation mode
- "domino chain reaction" that must start at the first stage and then propagate stage by stage to the output.

Visualization of the domino effect

dominos standing on end.

indicated by a falling domino.

- Stages 1 and 2 have undergone a discharge, but Stage 3 remain high(in its precharge state).
- The domino cascade must have an **evaluation interval** that is long enough to allow every stage time to discharge.
- means that charge sharing and charge leakage processes that reduce the interval voltage Vx may be limiting factors.

Charge Keeper

- **pFET MK** is biased active to **allow** a small current **to** restore charge on Cx.
- The **aspect ratio** of the charge-keeper FET **must be small** so that it does not interfere with a discharge event in any significant manner; this is called a 'weak' device.

(b) Feedback controlled keeper

- An inverter controls the gate of the weak pFET.
- If an internal discharge of Cx does occur, then the output voltage Vout increases.
- Feeding this through the inverter shuts the pFET off and allows the discharge to continue.

Extension of domino circuit: Multiple output Domino Logic (MODL)

• allows two or more outputs from a single logic gate, making it quite unique.

Structure of a 2 output MODL circuit

- The logic array has been **split into two separate blocks** denoted as F and G, which **creates an additional output node**.
- If the **G-logic block** acts like a **closed** switch, then it produces an output $f_1 = G$.
- If this occurs, then it is possible for the second logic block F to induce a discharge by also acting as a closed switch.

Power Dissipation of Dynamic Logic Circuits

- Dynamic logic circuits can be designed to provide very fast switching
- they can be quite power hungry
- charge cannot be held on a **capacitive node**, every precharge cycle will pull current from the voltage source, **adding to the overall power** dissipation of the circuit.
- clock circuits them selves require dynamic power to drive the FETs.
- every stage presents a capacitance of C_L to the clock drivers corresponding to the precharge and evaluate transistors.

$$C_L = C_{Gp} + C_{Gn}$$

Introduction

- Random access memory is accessed with an address and has a latency independent of the address.
- Serial access memories are accessed sequentially so no address is necessary.
- Content addressable memories (CAM) determine which address(es) contain data that matches a specified key.

- Random access memory is commonly classified
 - 1) read-only memory (ROM)
 - 2) read/write memory (confusingly called RAM).
- classification is volatile vs. nonvolatile memory.
 - 1. RAM is synonymous with **volatile memory.**
 - 2. ROM is synonymous with **nonvolatile memory.**

- volatile memories can further be divided
 - 1. static structures

Content Addressable Memory

(CAM)

use some form of feedback to maintain their state

- 2. dynamic structures
 use charge stored on a floating
 capacitor through an access transistor.
- Memory cells can have one or more ports for access.
- On a read/write memory, each port can be read-only, write-only, or capable of both read and write.

Hardwired during fabrication and cannot be changed.

Programmable ROM(PROM) :

Programmed once after fabrication by blowing on-chip fuses with a special high programming voltage. *Erasable programmable* ROM (EPROM):

Programmed by storing charge on a floating gate. It can be erased by exposure to ultraviolet (UV) light for several minutes to knock the charge off the gate. Then the EPROM can be reprogrammed.

Electrically erasable programmable ROMs (EEPROMs):

EEPROMs are similar to EPROM, but can be erased in microseconds with on-chip circuitry.

Flash memories:

Variant of EEPROM that erases entire blocks rather than individual bits.

Bitline Conditioning Bitlines Wordlines Row Memory Decoder Cells 2ⁿ rows × 2^m columns Column Circuitry n Address Data (2^m bits)

Small memory array architecture

- A memory array contains 2^n words of 2^m bits each.
- Each bit is stored in a memory cell.
- The row decoder uses the address to activate one of the rows by asserting the wordline.
- During a read operation, the cells on this wordline drive the *bitlines*, which may have been conditioned to a known value in advance of the memory access.
- The column circuitry may contain amplifiers or buffers to sense the data.
- A typical memory array may have **thousands or millions of words**, which would lead to a tall, skinny layout that **is hard to fit in the chip** floorplan and slow because of the long vertical wires. Therefore, **the array is often folded into fewer rows of more columns.**

21-06-2022

 $16 \rightarrow 4$ bits

Word line: 1100

FOVLSI- Dr.P.Vimala

- each row of the memory contains 2^k words, so the array is physically organized as 2^{n-k} rows of 2^{m+k} columns or bits.
- Figure shows a two-way fold (k = 1) with eight rows and eight columns.
- The column decoder controls a multiplexer in the column circuitry to select 2^m bits from the row as the data to access.
- Larger memories are generally built from multiple smaller subarrays so that the wordlines and bitlines remain reasonably short, fast, and low in power dissipation.

SRAM

- Static RAMs use a memory cell with internal feedback that retains its value as long as power is applied.
- Attractive properties:
 - 1. Denser than flip-flops
 - 2. Compatible with standard CMOS processes
 - Faster than DRAM
 - 4. Easier to use than DRAM
- SRAM cell needs to be **able to read and write data and to hold the data** as long as the power is applied.
- SRAM cell is **activated** by raising the **wordline** and is **read or written through bitline**.

SRAM memory cell

in — out

12 Transistor SRAM cell

6 Transistor SRAM cell

- SRAM operation is divided into two phases, generated from clk and its complement clkb.
- In phase 2, the SRAM is precharged/hold. (wordline \rightarrow 0)
- In phase 1, the SRAM is read or written. (wordline \rightarrow 1)

 The 6T SRAM cell contains a pair of cross-coupled inverters holding the state and a pair of access transistors to read or write the state.

• Read:

- Bitlines are initially precharged high
- Then one is pulldown by the SRAM cell through access transistors.

Write:

- Bitlines are actively driven low
- This low values over powers the cell to write the new value

37

Memory cell Read/Write Operation

Read Stability:

- The bitlines are both initially floating high. Without loss of generality, assume Q is initially 0 and thus Q_b is initially 1. Q_b and bit_b both should remain 1.
- When the wordline is raised, bit should be pulled down through driver and access transistors D1 and A1.
- At the same time bit is being pulled down, node Q tends to rise. Q is held low by D1, but raised by current flowing in from A1. Hence, the driver D1 must be stronger than the access transistor A1.
- Specifically, the transistors must be ratioed such that node Q remains below the switching threshold of the P2/D2 inverter.
- This constraint is called read stability.
- Waveforms for the read operation are shown in Figure as a 0 is read onto bit.

21-06-2022

- same cell in the context of a full column from the SRAM.
- During phase 2, the bitlines are precharged high.
- The wordline only rises during phase 1; hence, it can be viewed as a _q1 qualified clock.
- Many SRAM cells share the same bitline pair, which acts as a distributed dual-rail footless dynamic multiplexer.
- The capacitance of the entire bitline must be discharged through the access transistor.
- The output can be sensed by a pair of HI-skew inverters.
- By raising the switching threshold of the sense inverters, delay can be reduced at the expense of noise margin.
- The outputs are dual-rail monotonically rising signals, just as in a domino gate.

Write Operation:

- assume Q is initially 0 and that we wish to write a 1 into the cell.
- bit is precharged high and left floating. bit_b is pulled low by a write driver.
- We know on account of the read stability constraint that bit will be unable to force Q high through A1.
- Hence, the cell must be written by forcing Q_b low through A2.
- P2 opposes this operation; thus, P2 must be weaker than A2 so that Q_b can be pulled low enough.
- This constraint is called writability.
- Once Q_b falls low, D1 turns OFF and P1 turns ON, pulling Q high as desired.

- 2) WDYd=
- 3) bit & bit b => i/p lines
- bit-b => gra

 write driver

V < VAN DIDI

Q=0 Q=1

bit_b

Cell Stability:

- To ensure both read stability and writability, the transistors must satisfy ratio constraints.
- The nMOS pulldown transistor in the cross-coupled inverters must be strongest.
- The *access transistors* are of **intermediate strength**
- The *pMOS pullup transistors* must be **weak**.
- To achieve good layout density, all of the transistors must be relatively small.
- For example,
 - pulldowns could be 8/2
 - access transistors 4/2
 - pullups 3/3.

DRAM

- Dynamic RAMs (DRAMs) *store their contents as charge on a capacitor* rather than in a feedback loop.
- Thus, the **basic cell** is substantially **smaller than SRAM**, but the cell must be periodically read and refreshed so that its contents do not leak away.
- **DRAM offer a factor of 10–20 greater density** (bits/cm2) than high-performance SRAM built in a standard logic process, **but they also have much higher latency**.

Read and write Operation

Read

$$\text{bit } \forall t = \frac{1}{2}$$
 $\text{bit } \rightarrow \text{op Bre} | \text{data line}$
 $\text{M} \rightarrow \text{on}$
 $\text{is } \text{Cell} = 0 = \text{discherge} | \text{Cell} = \frac{1}{2} | \text{data line}$
 $\text{bit } \forall t = \frac{1}{2} | \text{data line}$
 $\text{otherwise} | \text{data line} | \text{$

Read and write Operation

write

$$word = | M \rightarrow 0N$$

 $pit = i/p line$
 $bit = 0 \rightarrow Cell = 0 disharping$
 $bit = 1 \rightarrow Cell = Vad charge$

- The DRAM capacitor **Ccell must be as physically small** as possible to achieve good density.
- However, the bitline is contacted to many DRAM cells and has a relatively large capacitance Cbit.
- Therefore, the cell capacitance is typically much smaller than the bitline capacitance.
- According to the charge-sharing equation, the voltage swing on the bitline during readout is

$$\Delta V = \frac{V_{DD}}{2} \frac{C_{\text{cell}}}{C_{\text{cell}} + C_{\text{bit}}}$$

Read-Only Memory

- Read-Only Memory (ROM) cells can be **built with only one transistor per bit of storage.**
- A ROM is a **non-volatile memory structure** in that the state is retained indefinitely—even without power.
- A ROM array is commonly implemented as a single-ended NOR array.
 - Commercial ROMs are normally pseudo-nMOS and dynamic NOR

Advantages:

- DC power dissipation is acceptable
- the speed is sufficient
- easiest to design
- requiring no timing
- The DC power dissipation can be significantly reduced in multiplexed ROMs by placing the pullup transistors after the column multiplexer.

Pseudo-nMOS ROM

Dot diagram representation of ROM

Serial Access Memories

- Using the basic SRAM cell and/or registers, we can construct a variety of serial access memories including shift registers and queues.
- These memories avoid the need for external logic to track addresses for reading or writing.

Shift Registers

Commonly used in signal-processing applications to store and delay data

4-stage 8-bit shift register constructed from 32 f.f's.

no logic between the registers, particular care must be taken that hold times are satisfied

 FF's are so large,big and dense shift registers use dual-port RAMs

The read counter is initialized to the first entry and the write counter to the last entry on reset

- Counters in an N-stage shift register can use two 1-of-N hot registers to track which entries should be read and written.
- Again, one is initialized to point to the first entry and the other to the last entry.
- These registers can drive the wordlines directly without the need for a separate decoder

shift register variants

1) tapped delay line offers a variable number of stages of delay.

2) serial/parallel memory

Queues (FIFO, LIFO)

- Queues allow data to be read and written at different rates.
- The queue **internally maintains read and write pointers** indicating which data should be accessed next.
- As with a shift register, the pointers can be counters or 1-of-N hot registers.

FIFO

- First In First Out (FIFO) queues are commonly used to buffer data between two asynchronous streams.
- Like a shift register, the FIFO is **organized as a circular buffer.**
- **On reset,** the read and write pointers are both initialized to the first element and the FIFO is EMPTY.
- **On a write**, the write pointer advances to the next element. If it is about to catch the read pointer, the FIFO is FULL.
- **On a read,** the read pointer advances to the next element. If it catches the write pointer, the FIFO is EMPTY again.

LIFO

- Last In First Out (LIFO) queues, also known as stacks, are used in applications such as subroutine or interrupt stacks in microcontrollers.
- The LIFO uses a single pointer for both read and write.
- **On reset,** the pointer is initialized to the first element and the LIFO is EMPTY.
- On a write, the pointer is incremented. If it reaches the last element, the LIFO is FULL.
- **On a read,** the pointer is decremented. If it reaches the first element, the LIFO is EMPTY again.

Content-Addressable Memory

- The CAM acts as an ordinary SRAM that can be read or written given adr and data, but also performs *matching operations*.
- Matching asserts a *matchline* output for each word of the CAM that contains a specified *key*.

adr

- Application of CAMs is translation lookaside buffers (TLBs) in microprocessors
- The virtual address is given as the key to the TLB CAM.
- If this address is in the CAM, the corresponding matchline is asserted.
- This matchline can serve as the wordline to access a RAM containing the associated physical address.
- A **NOR gate** processing all of the match lines **generates a miss signal** for the CAM.

- 10T CAM cell consisting of a normal SRAM cell with additional transistors to perform the match.
- Multiple CAM cells in the same word are tied to the same matchline.
- The matchline is either precharged or pulled high as a distributed pseudo-nMOS gate.
- The key is placed on the bitlines. If the key and the value stored in the cell differ, the matchline will be pulled match down.
- Only if all of the key bits match all of the bits stored in the word of memory will the matchline for that word remain high.
- The key can contain a "don't care" by setting both bit and bit_b low.

60

4x4 CAM array

- Refined TLB path with monotonic wordlines
- Strobe can be timed with in inverter chain or replica delay
- Consume relatively large amounts of power because the bitlines and matchlines may all transistors during parallel search.