由于三台摄像机被等距地放置在直径为 1m 的圆周上,故而确定一台摄像机在圆周上的位置,即可确 定剩余两台摄像机的位置。假设摄像机 m_1 与圆心的连线 l_1 与 x 轴正半轴的夹角分别为 $\theta(0 \le \theta \le \frac{2\pi}{3})$, 则另外两台摄像机与 x 轴正半轴的夹角为 $\theta + \frac{\pi}{3}$ 与 $\theta + \frac{2\pi}{3}$.

首先考虑 $\theta \neq \frac{\pi}{2}$ 且 $\theta + \frac{\pi}{3} \neq \frac{\pi}{2}$ 且 $\theta + \frac{2\pi}{3} \neq \frac{3\pi}{2}$ 则

$$l_1: y = tan\theta \cdot x$$

假设所求椭圆长半轴与短半轴长分别为 l、k,则对于椭圆上任意一点 $(x_0,y_0)(y_0\neq 0)$,过 (x_0,y_0) 且 与椭圆相切的直线 10 的方程为

$$l_0: \frac{x_0x}{l^2} + \frac{y_0y}{k^2} = 1$$

则 l_0 的斜率为 $-\frac{x_0k^2}{y_0l^2}$. 设与 l_1 平行且与椭圆相交的直线分别为 l_2 、 l_3 ,它们与椭圆的切点分别为 (x_2,y_2) 、 (x_3,y_3) ,则由 l_1 与 l2、l3 的斜率相等可得:

$$tan\theta = -\frac{x_2k^2}{y_2l^2} = -\frac{x_3k^2}{y_3l^2} \tag{1}$$

由于 (x_2,y_2) 、 (x_3,y_3) 为椭圆上两点,满足方程

$$\frac{x_2^2}{l^2} + \frac{y_2^2}{k^2} = 1$$

$$\frac{x_3^2}{l^2} + \frac{y_3^2}{k^2} = 1$$
(2)

由 (1)(2) 两式可得:

$$\begin{cases} x_2^2 = x_3^2 = \frac{l^4 tan^2 \theta}{l^2 tan^2 \theta + k^2} \\ y_2^2 = y_3^2 = \frac{k^4}{l^2 tan^2 \theta + k^2} \end{cases}$$
(3)

由 12 的直线方程为

$$l_2: \frac{x_2x}{l^2} + \frac{y_2y}{k^2} = 1$$

得 l_2 与 l_3 直线之间的距离 (即为 (x_3, y_3) 到 l_2 的距离) d_1 满足:

$$\begin{split} d_1^2 &= \frac{|\frac{x_2 x_3}{l^2} + \frac{y_2 y_3}{k^2} - 1|^2}{\frac{x_2^2}{l^4} + \frac{y_2^2}{k^4}} \\ &= \frac{|-\frac{x_2^2}{l^2} - \frac{y_2^2}{k^2} - 1|^2}{\frac{x_2^2}{l^4} + \frac{y_2^2}{k^4}} \\ &= \frac{4}{\frac{x_2^2}{l^4} + \frac{y_2^2}{l^4}} \end{split}$$

将 (3) 代入可得:

$$d_1^2 = \frac{4(l^2tan^2\theta + k^2)}{1 + tan^2\theta}$$

由于 d 即为摄像机所得的线段长度,故而得到三个方程:

$$\begin{cases} a = 2\sqrt{\frac{l^2tan^2\theta + k^2}{1 + tan^2\theta}} \\ b = 2\sqrt{\frac{l^2tan^2(\theta + \frac{\pi}{3}) + k^2}{1 + tan^2(\theta + \frac{\pi}{3})}} \\ c = 2\sqrt{\frac{l^2tan^2(\theta + \frac{2\pi}{3}) + k^2}{1 + tan^2(\theta + \frac{2\pi}{3})}} \end{cases}$$

$$(4)$$

再考虑 $\theta = \frac{\pi}{2}$, 显然有:

$$\begin{cases} a = 2l \\ b = \sqrt{l^2 + 3k^2} \\ c = \sqrt{l^2 + 3k^2} \end{cases}$$

$$(5)$$

再考虑 $\theta = \frac{\pi}{6}$, 显然有:

$$\begin{cases}
a = \sqrt{l^2 + 3k^2} \\
b = 2l \\
c = \sqrt{l^2 + 3k^2}
\end{cases}$$
(6)

最后考虑 $\theta = \frac{5\pi}{6}$, 显然有:

$$\begin{cases} a = \sqrt{l^2 + 3k^2} \\ b = \sqrt{l^2 + 3k^2} \\ c = 2l \end{cases}$$
 (7)

综上所述: 当 a,b,c 互不相等时,可利用 (4) 进行求解,而 a,b,c 中存在两个值相等时,可视相等情况分别利用 (5)(6)(7) 求解。

下利用 Matlab 中 vpasolve 函数对方程进行求解:vpasolve 函数可以求得代数方程式的数值解。对于含有 m 个未知数 $[x_1,x_2,...,x_m]$ 与 n 个等式方程组 $[eq_1,eq_2,...,eq_n]$,函数 $vpasolve([eq_1,...,eq_n],[x_1,...,x_m],X_0)$ 可以返回方程的数值解,其中 X_0 为未知数的初值或者数值解所在的区间。

在 Matlab 中执行以下命令:

Algorithm 1 通过 a,b,c 求解椭圆面积 S 的算法

Input: a, b, c

Output: S

- 1: if $(a=b \wedge b < \frac{c}{2}) \vee (a=c \wedge a < \frac{b}{2}) \vee (b=c \wedge b < \frac{a}{2})$ then
- 2: return -1;
- 3: end if
- 4: if $a = b \wedge b = c$ then
- 5: $S = \frac{a^2 \pi}{4}$;
- 6: return S
- 7: end if
- 8: if $a = b \land b \neq c$ then
- 9: $l = \frac{c}{2};$
- 10: $k = \sqrt{\frac{b^2 l^2}{3}};$
- 11: $S = lk\pi;$
- 12: return S;
- 13: **end if**
- 14: if $a = c \wedge b \neq c$ then
- 15: $l = \frac{b}{2}$:
- 16: $k = \sqrt[2]{\frac{a^2 l^2}{3}};$
- 17: $S = lk\pi;$
- 18: return S;
- 19: **end if**
- 20: if $b = c \wedge a \neq c$ then

```
\begin{split} l &= \frac{a}{2}; \\ k &= \sqrt{\frac{b^2 - l^2}{3}}; \end{split}
                S = lk\pi;
               return S;
24:
25: end if
26: if a \neq b \land b \neq c \land c \neq a then
                solve equations
              a = 2\sqrt{\frac{l^2tan^2\theta + k^2}{1 + tan^2\theta}}
b = 2\sqrt{\frac{l^2tan^2(\theta + \frac{\pi}{3}) + k^2}{1 + tan^2(\theta + \frac{\pi}{3})}}
c = 2\sqrt{\frac{l^2tan^2(\theta + \frac{2\pi}{3}) + k^2}{1 + tan^2(\theta + \frac{2\pi}{3})}}
               if l is not a real number or k is not a real number then
31:
                       return -1;
32:
33:
               else
                        S = lk\pi;
34:
                       return S;
               end if
36:
37: end if
```

通过该程序即可由输入 a、b、c 得到面积 S 的数值解, 无解时返回 -1。

下面考虑在 Matlab 中使用 solve 函数求得 l,k,θ 的显式解: solve 函数与 vpasolve 函数的用法与功能类似,solve 函数还能模拟人工运算求得函数的公式解。

在 *Matlab* 中尝试使用 *solve* 函数求解方程 (4),未得到显式解。 再考虑所拍摄的物体为直线或圆的情况:

1) 所拍摄物体为线段

保持上述公式推导不变,取 k=0,则可得到

$$\begin{cases} a = 2l\sin\theta \\ b = 2l|\sin(\theta + \frac{\pi}{3})| \\ c = 2l|\sin(\theta + \frac{2\pi}{3})| \end{cases}$$
(8)

若 $\theta \in [0, \frac{\pi}{3})$, 此时 b、c 满足关系式:

$$\begin{cases} b+c = 2\sqrt{3} \ lcos \ \theta \\ b-c = 2lsin \ \theta = a \end{cases}$$

利用 a、b、c 表示 l、 θ 得:

$$\begin{cases} l^2 = \frac{(b+c)^2 + 3a^2}{12} \\ sin^2 \theta = \frac{3(b-c)^2}{3a^2 + (b+c)^2} \end{cases}$$

回代入 (8) 得

$$a = b - c$$

若 $\theta \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$, 此时 b、c 满足关系式:

$$\begin{cases} b+c=2lsin \ \theta=a \\ b-c=2\sqrt{3} \ lcos \ \theta \end{cases}$$

利用 a、b、c 表示 l、 θ 得:

$$\begin{cases} l^2 = \frac{(b-c)^2 + 3a^2}{12} \\ sin^2 \theta = \frac{3a^2}{3a^2 + (b-c)^2} \end{cases}$$

回代入 (8) 得

$$a = b + c$$

2) 所拍摄物体为圆