CSCE 448/748 – Computational Photography Blending

Nima Kalantari

Goal

Seamless copy of content from one image to another

sources/destinations

Gradient manipulation

- Observation:
 - Human visual system is sensitive to gradient
 - Gradient encodes edges and local contrast
- □ Idea:
 - Do your editing in the gradient domain
 - Reconstruct image from gradient
- Based on Perez et al. "Poisson Image Editing" SIGGRAPH 2003

Goal

sources/destinations

Gradient domain cloning

It is impossible to faithfully preserve the gradients

Membrane interpolation

Laplace equation (a.k.a. membrane equation)

$$\min_{f} \iint_{\Omega} |\nabla f|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

1D example: minimization

Minimize derivatives to interpolate

1D example: minimization

Minimize derivatives to interpolate

1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	-1	2	-1	0	0	0	0
0	0	-1	2	-1	0	0	0
0	0	0	-1	2	-1	0	0
0	0	0	0	-1	2	-1	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1

1D example

- Minimize derivatives to interpolate
- Pretty much says that second derivative should be zero
- ☐ (-1 2 -1) is a second derivative filter

1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	-1	2	-1	0	0	0	0
0	0	-1	2	-1	0	0	0
0	0	0	-1	2	-1	0	0
0	0	0	0	-1	2	-1	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1

Membrane interpolation

Laplace equation (a.k.a. membrane equation)

$$\min_{f} \iint_{\Omega} |\nabla f|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

Seamless Poisson cloning

- Given vector field v (pasted gradient), find the value of f in unknown region that optimize:
- Previously, v was null

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

Pasted gradient

Discrete 1D example: minimization

Discrete 1D example: minimization

1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
0	-1	2	-1	0	0	0	0
0	0	-1	2	-1	0	0	0
0	0	0	-1	2	-1	0	0
0	0	0	0	-1	2	-1	0
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1

Discrete 1D example: minimization

.2	.5	.2	.2
.7	.7	.7	.7
.9	.9	.8	.9
	-		

target, t

.8	.6	.6	.6
.6	.6	.2	.6
.6	.8	.6	.6

source, s

mask

?	?	?	?
?	?	?	?
?	?	?	?

output, x

What properties do we want x to have?

.2	.5	.2	.2
.7	.7	.7	.7
.9	.9	.8	.9

target, t

.8	.6	.6	.6
.6	.6	.2	.6
.6	.8	.6	.6

source, s

mask

?	?	?	?
?	?	?	?
?	?	?	?

output, x

- (1) For unmasked pixels, $x_i = t_i$
- (2) For masked pixels, we want the laplacian at x_i to match the laplacian at s_i

.2	. 5	.2	.2
.7	.7	.7	.7
.9	.9	.8	.9

target, t

.8	.6	.6	.6
.6	.6	.2	.6
.6	.8	.6	.6

source, s

mask

0	-1	0
-1	4	-1
0	-1	0

Laplacian

output, x

1	4	7	10
2	5	8	11
3	6	9	12

Pixel indexing

$$x_1 = t_1$$
 $x_2 = t_2$
 $x_3 = t_3$
 $x_4 = t_4$
 $4x_5 - x_4 - x_2 - x_6 - x_8 = 4s_5 - s_4 - s_2 - s_6 - s_8$
 $x_6 = t_6$
 $x_7 = t_7$
 $4x_8 - x_7 - x_5 - x_9 - x_{11} = 4s_8 - s_7 - s_5 - s_9 - s_{11}$
 $x_9 = t_9$
 $x_{10} = t_{10}$
 $x_{11} = t_{11}$
 $x_{12} = t_{12}$

.2	.5	.2	.2
.7	.7	.7	.7
.9	.9	.8	.9

target, t

.8	.6	.6	.6
.6	.6	.2	.6
.6	.8	.6	.6

source, s

mask

0	-1	0
-1	4	-1
0	-1	0

Laplacian

output, x

1	4	7	10
2	5	8	11
3	6	9	12

Pixel indexing

$$x_{1} = 0.2$$

$$x_{2} = 0.7$$

$$x_{3} = 0.9$$

$$x_{4} = 0.5$$

$$4x_{5} - x_{4} - x_{2} - x_{6} - x_{8} = 0.2$$

$$x_{6} = 0.9$$

$$x_{7} = 0.2$$

$$4x_{8} - x_{7} - x_{5} - x_{9} - x_{11} = -1.6$$

$$x_{9} = 0.8$$

$$x_{10} = 0.2$$

$$x_{11} = 0.7$$

$$x_{12} = 0.9$$

.2	.5	.2	.2
.7	.7	.7	.7
.9	.9	.8	.9

target, t

.8	.6	.6	.6
.6	.6	.2	.6
.6	.8	.6	.6

source, s

mask

0	-1	0
-1	4	-1
0	-1	0

Laplacian

output, x

1	4	7	10
2	5	8	11
3	6	9	12

Pixel indexing

$$x_{1} = 0.2$$

$$x_{2} = 0.7$$

$$x_{3} = 0.9$$

$$x_{4} = 0.5$$

$$4x_{5} - x_{4} - x_{2} - x_{6} - x_{8} = 0.2$$

$$x_{6} = 0.9$$

$$x_{7} = 0.2$$

$$4x_{8} - x_{7} - x_{5} - x_{9} - x_{11} = -1.6$$

$$x_{9} = 0.8$$

$$x_{10} = 0.2$$

$$x_{11} = 0.7$$

$$x_{12} = 0.9$$

In this simple case, we could solve for everything by hand.

$$4x_5 - 0.5 - 0.7 - 0.9 - x_8 = 0.2$$

 $4x_8 - 0.2 - x_5 - 0.8 - 0.7 = -1.6$

$$4x_5 - x_8 = 2.3$$

 $4x_8 - x_5 = 0.1$

$$x_5 = 0.62$$

 $x_8 = 0.18$

.8	.6	.6	.6
.6	.6	.2	.6
.6	.8	.6	.6
6011860			

0	-1	0
-1	4	-1
0	-1	0

target, t

source, s

mask

Laplacian

?	?	?	?
?	?	?	?
?	?	?	?

output, x

1	4	7	10
2	5	8	11
3	6	9	12

Pixel indexing

1											
	1										
		1									
			1								
	-1		-1	4	-1		-1				
					1						
						1					
				-1		-1	4	1		-1	
								1			
									1		
										1	
											1

		h
?		.9
?		.7
?		.2
?		.8
?		-1.6
?	=	.2
?	_	.9
?		.2
?		.5
?		.9
?		.7
?		.2

*

.8	.6	.6	.6	
.6	.6	.2	.6	
.6	.8	.6	.6	
source, s				

0	-1	0
-1	4	-1
0	-1	0

Laplacian

output, x

1	4	7	10
2	5	8	11
3	6	9	12

Pixel indexing

1											
		1					4 *	X	=	b	
						1					
	-1		-1	4	-1	\ -'/	41*	X	= /	Α-'	b
										A -1	
						1		X	= /	Δ -1	D
								1			
										1	

target,	t
---------	---

.8	.6	.6	.6
.6	.6	.2	.6
.6	.8	.6	.6

source, s

mask

0	-1	0
-1	4	-1
0	-1	0

Laplacian

?	?	?	?
?	?	?	?
?	?	?	?

output, x

1	4	7	10
2	5	8	11
3	6	9	12

Pixel indexing

.9
.5
.62
.9
.2
.18
.8
.2
.7
.9

	.2
	.7
	.9
	.5
	.2
_	.9
_	.2
	-1.6
	.8
	.2
	.7
	.9
,	h

A

X

b

target,	t
---------	---

source, s

mask

0	-1	0
-1	4	-1
0	-1	0

Laplacian

.2	.5	.2	.2
.7	.62	.18	.7
.9	.9	.8	.9

output, x

1	4	7	10
2	5	8	11
3	6	9	12

Pixel indexing

.2
.7
.9
.5
.62
.9
.2
.18
.8
.2
.7
.9

Example

target source mask

no blending

gradient domain blending

What's the difference?

gradient domain blending

no blending

source/destination cloning seamless cloning

Perez et al. SIGGRAPH 03

Figure 2: Concealment. By importing seamlessly a piece of the background, complete objects, parts of objects, and undesirable artifacts can easily be hidden. In both examples, multiple strokes (not shown) were used.

Mixing gradients

Average

Mixed