

## Introduction au Deep Learning

Présentation partagée sous la licence Apache 2.0

# Le Deep Learning



#### Un neurone



- f est la fonction d'activation
- Question : quelle fonction f choisir pour retrouver le modèle linéaire ?

#### Fonctions d'activation couramment utilisées





Utilisation : à mettre en fin de réseau pour prédire une probabilité (entre 0 et 1)

Utilisation : entre chaque couche pour dé-linéariser (à coût de calcul faible)

#### D'autres fonctions d'activation

#### **Sigmoid**

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



#### tanh

tanh(x)



#### ReLU

 $\max(0, x)$ 



#### Leaky ReLU

 $\max(0.1x, x)$ 



#### Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$ 

#### ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$



## Les couches / layers



profondeur = 1



profondeur = 2

#### Intuition

Un réseau de neurones peut approcher n'importe quelle fonction continue.



Couche cachée à 2 neurones Couche cachée à 4 neurones

# Classifier une image avec un réseau de neurones sans couche cachée

• Objectif : classifier une image 32x32 en 10 classes



- Plus de 30 000 paramètres pour un petit réseau et une petite image
- Explose avec la résolution de l'image et la complexité du réseau

## Réseaux de neurones convolutionnels

## Convolution sur une image



• Multiplication pixel par pixel (produit scalaire)

## Convolution sur une image



- 1 filtre 5x5
- Exemple en images : http://setosa.io/ev/image-kernels/

## Autres types de couches

- MaxPooling
- DropOut

## Max Pooling : Réduire la dimension



• Max pooling : filtre 2x2 et stride 2

## Dropout : supprimer aléatoirement des neurones

Méthode de régularisation



## Exemple de réseau convolutionnel complet

