Facultad de Ciencias Exactas y Naturales Universidad Naciona de La Pampa

2022

Definición

Sea P un conjunto ordenado y sea $A \subseteq P$.

▶ Un elemento $x \in P$ es una cota superior de A si $a \leq x$ para todo $a \in A$.

Definición

Sea P un conjunto ordenado y sea $A \subseteq P$.

▶ Un elemento $x \in P$ es una cota superior de A si $a \leq x$ para todo $a \in A$.

Definición

Sea P un conjunto ordenado y sea $A \subseteq P$.

▶ Un elemento $x \in P$ es una cota superior de A si $a \leq x$ para todo $a \in A$.

$$A^u = \{ x \in P : (\forall a \in A), \ a \le x \}$$

Definición

Sea P un conjunto ordenado y sea $A \subseteq P$.

▶ Un elemento $x \in P$ es una cota superior de A si $a \leq x$ para todo $a \in A$.

$$A^u = \{ x \in P : (\forall a \in A), \ a \le x \}$$

Definición

Sea P un conjunto ordenado y sea $A \subseteq P$.

▶ Un elemento $x \in P$ es una cota superior de A si $a \leq x$ para todo $a \in A$.

$$A^u = \{ x \in P : (\forall a \in A), \ a \le x \}$$

$$A^{\ell} = \{ x \in P : (\forall a \in A), \ x \le a \}.$$

Sea P un conjunto ordenado y sea $A \subseteq P$. Diremos que un elemento $x \in P$ es el:

- ightharpoonup supremo de A si
 - 1. $x \in A^u$
 - $2. \ x \le y, \, \forall y \in A^u.$

$$x = \sup A$$

- ightharpoonup ínfimo de A si
 - 1. $x \in A^{\ell}$
 - $2. \ y \le x, \, \forall y \in A^{\ell}.$

$$x = \inf A$$

Sea P un conjunto ordenado y sea $A \subseteq P$. Diremos que un elemento $x \in P$ es el:

- ightharpoonup supremo de A si
 - 1. $x \in A^u$
 - $2. \ x \le y, \, \forall y \in A^u.$

$$x = \sup A$$

- ightharpoonup ínfimo de A si
 - 1. $x \in A^{\ell}$
 - $2. \ y \le x, \, \forall y \in A^{\ell}.$

$$x = \inf A$$

Sea P un conjunto ordenado y sea $A \subseteq P$. Diremos que un elemento $x \in P$ es el:

- ightharpoonup supremo de A si
 - 1. $x \in A^u$
 - $2. \ x \le y, \, \forall y \in A^u.$

$$x = \sup A$$

- ightharpoonup ínfimo de A si
 - 1. $x \in A^{\ell}$
 - $2. \ y \le x, \, \forall y \in A^{\ell}.$

$$x = \inf A$$

Sea P un conjunto ordenado y sea $A \subseteq P$. Diremos que un elemento $x \in P$ es el:

- ightharpoonup supremo de A si
 - 1. $x \in A^u$
 - 2. $x \leq y, \forall y \in A^u$.

$$x = \sup A$$

- ▶ ínfimo de A si
 - 1. $x \in A^{\ell}$
 - $2. \ y \le x, \, \forall y \in A^{\ell}.$

$$x = \inf A$$

Dados $x, y \in P$, denotamos, si existen, por

$$x \lor y = \sup\{x, y\}$$
 $y \quad x \land y = \inf\{x, y\}$

Sea P un conjunto ordenado y sea $A \subseteq P$. Diremos que un elemento $x \in P$ es el:

- ightharpoonup supremo de A si
 - 1. $x \in A^u$
 - 2. $x \le y, \forall y \in A^u$.

$$x = \sup A$$

- ightharpoonup ínfimo de A si
 - 1. $x \in A^{\ell}$
 - $2. \ y \le x, \, \forall y \in A^{\ell}.$

$$x = \inf A$$

Dados $x, y \in P$, denotamos, si existen, por

$$x \lor y = \sup\{x, y\}$$
 $y \quad x \land y = \inf\{x, y\}$

y para $A \subseteq P$,

$$\bigvee A = \sup A$$
 y $\bigwedge A = \inf A$.

Diremos que un conjunto ordenado P es un retículo si para todos $x,y\in P$

Diremos que un conjunto ordenado P es un retículo si para todos $x,y\in P$

$$x \lor y$$
 y $x \land y$

existen en P.

Diremos que un conjunto ordenado P es un retículo si para todos $x,y\in P$

$$x \lor y$$
 y $x \land y$

existen en P.

Definición

Diremos que un conjunto ordenado Pes un retículo completo si para todo $A\subseteq P$

$$\bigvee A$$
 y $\bigwedge A$

existen en P.

Diremos que un conjunto ordenado P es un retículo si para todos $x,y\in P$

$$x \lor y$$
 y $x \land y$

existen en P.

Definición

Diremos que un conjunto ordenado P es un retículo completo si para todo $A\subseteq P$

$$\bigvee A$$
 y $\bigwedge A$

existen en P.

- 1. Sea $P = \{1, 2, 3, 4, 6, 12\}$ y el orden \leq_d . Entonces $\langle P, \leq_d \rangle$ es un retículo.
- 2. Sea N con el orden usual. N es un retículo, pero no un retículo completo.
- 3. Sea X un conjunto. Entonces $\langle \mathcal{P}(X), \subseteq \rangle$ es un retículo completo

Diremos que un conjunto ordenado P es un retículo si para todos $x,y\in P$

$$x \lor y$$
 y $x \land y$

existen en P.

Definición

Diremos que un conjunto ordenado P es un retículo completo si para todo $A\subseteq P$

$$\bigvee A$$
 y $\bigwedge A$

existen en P.

- 1. Sea $P = \{1, 2, 3, 4, 6, 12\}$ y el orden \leq_d . Entonces $\langle P, \leq_d \rangle$ es un retículo.
- 2. Sea $\mathbb N$ con el orden usual. $\mathbb N$ es un retículo, pero no un retículo completo.
- 3. Sea X un conjunto. Entonces $\langle \mathcal{P}(X), \subseteq \rangle$ es un retículo completo.

Diremos que un conjunto ordenado P es un retículo si para todos $x,y\in P$

$$x \lor y$$
 y $x \land y$

existen en P.

Definición

Diremos que un conjunto ordenado P es un retículo completo si para todo $A\subseteq P$

$$\bigvee A$$
 y $\bigwedge A$

existen en P.

- 1. Sea $P = \{1, 2, 3, 4, 6, 12\}$ y el orden \leq_d . Entonces $\langle P, \leq_d \rangle$ es un retículo.
- 2. Sea $\mathbb N$ con el orden usual. $\mathbb N$ es un retículo, pero no un retículo completo.
- 3. Sea X un conjunto. Entonces $\langle \mathcal{P}(X), \subseteq \rangle$ es un retículo completo

Diremos que un conjunto ordenado P es un retículo si para todos $x,y\in P$

$$x \vee y$$
 y $x \wedge y$

existen en P.

Definición

Diremos que un conjunto ordenado Pes un retículo completo si para todo $A \subseteq P$

$$\bigvee A$$
 y $\bigwedge A$

existen en P.

- 1. Se
a $P=\{1,2,3,4,6,12\}$ y el orden \leq_d . Entonces
 $\langle P,\leq_d\rangle$ es un retículo.
- 2. Sea $\mathbb N$ con el orden usual. $\mathbb N$ es un retículo, pero no un retículo completo.
- 3. Sea X un conjunto. Entonces $\langle \mathcal{P}(X), \subseteq \rangle$ es un retículo completo.

Proposición

- $ightharpoonup x \le y \iff x \lor y = y.$
- $x \le y \iff x \land y = x.$
- $\triangleright x \lor x = x y x \land x = x.$
- ▶ Si $a \le b$ y $c \le d$, entonces $a \lor c \le b \lor d$ y $a \land c \le b \land d$.
- ightharpoonup Si $b \le a \le b \lor c$, entonces $a \lor c = b \lor c$.

Proposición

- $\triangleright x \le y \iff x \lor y = y.$
- $x \le y \iff x \land y = x.$
- $\triangleright x \lor x = x y x \land x = x.$
- ▶ Si $a \le b$ y $c \le d$, entonces $a \lor c \le b \lor d$ y $a \land c \le b \land d$.
- ightharpoonup Si $b \le a \le b \lor c$, entonces $a \lor c = b \lor c$.

Proposición

- $\blacktriangleright x \le y \iff x \lor y = y.$
- $\triangleright x < y \iff x \land y = x.$
- $\triangleright x \lor x = x y x \land x = x.$
- ▶ Si $a \le b$ y $c \le d$, entonces $a \lor c \le b \lor d$ y $a \land c \le b \land d$.
- ightharpoonup Si $b \le a \le b \lor c$, entonces $a \lor c = b \lor c$.

Proposición

- $\blacktriangleright x \le y \iff x \lor y = y.$
- $\triangleright x \le y \iff x \land y = x.$
- $ightharpoonup x \lor x = x \ y \ x \land x = x.$
- ▶ Si $a \le b$ y $c \le d$, entonces $a \lor c \le b \lor d$ y $a \land c \le b \land d$.
- ightharpoonup Si $b \le a \le b \lor c$, entonces $a \lor c = b \lor c$.

Proposición

- $ightharpoonup x \le y \iff x \lor y = y.$
- $x \le y \iff x \land y = x.$
- $ightharpoonup x \lor x = x \ y \ x \land x = x.$
- ▶ Si $a \le b$ y $c \le d$, entonces $a \lor c \le b \lor d$ y $a \land c \le b \land d$.
- ightharpoonup Si $b \le a \le b \lor c$, entonces $a \lor c = b \lor c$.

Proposición

- $ightharpoonup x \le y \iff x \lor y = y.$
- $x \le y \iff x \land y = x.$
- $ightharpoonup x \lor x = x \ y \ x \land x = x.$
- ▶ Si $a \le b$ y $c \le d$, entonces $a \lor c \le b \lor d$ y $a \land c \le b \land d$.
- $a \le b \implies a \lor c \le b \lor v \lor a \land c \le b \land c.$
- ightharpoonup Si $b \le a \le b \lor c$, entonces $a \lor c = b \lor c$.

Proposición

- $\triangleright x \le y \iff x \lor y = y.$
- $\triangleright x \le y \iff x \land y = x.$
- $ightharpoonup x \lor x = x \ y \ x \land x = x.$
- ▶ Si $a \le b$ y $c \le d$, entonces $a \lor c \le b \lor d$ y $a \land c \le b \land d$.
- $a \le b \implies a \lor c \le b \lor v \lor a \land c \le b \land c.$
- ▶ Si $b \le a \le b \lor c$, entonces $a \lor c = b \lor c$.

Sea $\langle L, \leq \rangle$ un retículo.

Sea $\langle L, \leq \rangle$ un retículo. Definimos dos operaciones binarias sobre L

$$\forall \colon L \times L \to L \qquad \text{ y} \qquad \wedge \colon L \times L \to L$$

por:

Sea $\langle L, \leq \rangle$ un retículo. Definimos dos operaciones binarias sobre L

$$\forall : L \times L \to L$$
 y $\land : L \times L \to L$

por:

$$a \lor b = \sup\{a, b\}$$
 $y \quad a \land b = \inf\{a, b\}.$

Teorema

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (Asociativa).

(L2)
$$a \lor b = b \lor a$$
 (Conmutativa).

(L3)
$$a \lor a = a$$
 (Idempotencia).

(L4)
$$a \lor (a \land b) = a$$
 (Absorción).

(L5)
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
 (Asociativa).

(L6)
$$a \wedge b = b \wedge a$$
 (Conmutativa).

(L7)
$$a \wedge a = a$$
 (Idempotencia)

(L8)
$$a \wedge (a \vee b) = a$$
 (Absorción)

Teorema

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (Asociativa).

(L2)
$$a \lor b = b \lor a$$
 (Conmutativa).

(L3)
$$a \lor a = a$$
 (Idempotencia).

(L4)
$$a \lor (a \land b) = a$$
 (Absorción).

(L5)
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
 (Asociativa).

(L6)
$$a \wedge b = b \wedge a$$
 (Conmutativa).

(L7)
$$a \wedge a = a$$
 (Idempotencia)

(L8)
$$a \wedge (a \vee b) = a$$
 (Absorción)

Teorema

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (Asociativa).

(L2)
$$a \lor b = b \lor a$$
 (Conmutativa).

(L3)
$$a \lor a = a$$
 (Idempotencia).

(L4)
$$a \lor (a \land b) = a$$
 (Absorción).

(L5)
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
 (Asociativa).

(L6)
$$a \wedge b = b \wedge a$$
 (Conmutativa).

(L7)
$$a \wedge a = a$$
 (Idempotencia)

(L8)
$$a \wedge (a \vee b) = a$$
 (Absorción)

Teorema

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (Asociativa).

(L2)
$$a \lor b = b \lor a$$
 (Conmutativa).

(L3)
$$a \lor a = a$$
 (Idempotencia).

(L4)
$$a \lor (a \land b) = a$$
 (Absorción).

(L5)
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
 (Asociativa).

(L6)
$$a \wedge b = b \wedge a$$
 (Conmutativa).

(L7)
$$a \wedge a = a$$
 (Idempotencia)

(L8)
$$a \wedge (a \vee b) = a$$
 (Absorción)

Teorema

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (Asociativa).

(L2)
$$a \lor b = b \lor a$$
 (Conmutativa).

(L3)
$$a \lor a = a$$
 (Idempotencia).

(L4)
$$a \lor (a \land b) = a$$
 (Absorción).

(L5)
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
 (Asociativa).

(L6)
$$a \wedge b = b \wedge a$$
 (Conmutativa).

(L7)
$$a \wedge a = a$$
 (Idempotencia)

(L8)
$$a \wedge (a \vee b) = a$$
 (Absorción)

Teorema

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (Asociativa).

(L2)
$$a \lor b = b \lor a$$
 (Conmutativa).

(L3)
$$a \lor a = a$$
 (Idempotencia).

(L4)
$$a \lor (a \land b) = a$$
 (Absorción).

(L5)
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
 (Asociativa).

(L6)
$$a \wedge b = b \wedge a$$
 (Conmutativa).

(L7)
$$a \wedge a = a$$
 (Idempotencia)

(L8)
$$a \wedge (a \vee b) = a$$
 (Absorción).

Teorema

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (Asociativa).

(L2)
$$a \lor b = b \lor a$$
 (Conmutativa).

(L3)
$$a \lor a = a$$
 (Idempotencia).

(L4)
$$a \lor (a \land b) = a$$
 (Absorción).

(L5)
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
 (Asociativa).

(L6)
$$a \wedge b = b \wedge a$$
 (Conmutativa).

(L7)
$$a \wedge a = a$$
 (Idempotencia)

(L8)
$$a \wedge (a \vee b) = a$$
 (Absorción).

Teorema

Sea L un retículo. Entonces las operaciones \vee y \wedge satisfacen las siguientes propiedades.

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (Asociativa).

(L2)
$$a \lor b = b \lor a$$
 (Conmutativa).

(L3)
$$a \lor a = a$$
 (Idempotencia).

(L4)
$$a \lor (a \land b) = a$$
 (Absorción).

(L5)
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
 (Asociativa).

(L6)
$$a \wedge b = b \wedge a$$
 (Conmutativa).

(L7)
$$a \wedge a = a$$
 (Idempotencia).

(L8)
$$a \wedge (a \vee b) = a$$
 (Absorción).

Teorema

Sea L un retículo. Entonces las operaciones \vee y \wedge satisfacen las siguientes propiedades.

(L1)
$$(a \lor b) \lor c = a \lor (b \lor c)$$
 (Asociativa).

(L2)
$$a \lor b = b \lor a$$
 (Conmutativa).

(L3)
$$a \lor a = a$$
 (Idempotencia).

(L4)
$$a \lor (a \land b) = a$$
 (Absorción).

(L5)
$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$
 (Asociativa).

(L6)
$$a \wedge b = b \wedge a$$
 (Conmutativa).

(L7)
$$a \wedge a = a$$
 (Idempotencia).

(L8)
$$a \wedge (a \vee b) = a$$
 (Absorción).

Teorema

Lea $\langle L, \vee, \wedge \rangle$ un conjunto con dos operaciones binarias sobre L que satisfacen las propiedades (L1)–(L8) del teorema anterior. Entonces:

- 1. $a \lor b = b \iff a \land b = a$.
- 2. Definimos \leq en L por:

$$a \le b \iff a \lor b = b.$$

Entonces \leq es un orden sobre L.

$$a \lor b = \sup\{a, b\}$$
 $y \qquad a \land b = \inf\{a, b\}.$

Teorema

Lea $\langle L, \vee, \wedge \rangle$ un conjunto con dos operaciones binarias sobre L que satisfacen las propiedades (L1)–(L8) del teorema anterior. Entonces:

- 1. $a \lor b = b \iff a \land b = a$.
- 2. Definimos \leq en L por:

$$a \le b \iff a \lor b = b.$$

Entonces \leq es un orden sobre L.

$$a \lor b = \sup\{a, b\}$$
 $y \qquad a \land b = \inf\{a, b\}.$

Teorema

Lea $\langle L, \vee, \wedge \rangle$ un conjunto con dos operaciones binarias sobre L que satisfacen las propiedades (L1)–(L8) del teorema anterior. Entonces:

- 1. $a \lor b = b \iff a \land b = a$.
- 2. Definimos \leq en L por:

$$a \le b \iff a \lor b = b.$$

Entonces \leq es un orden sobre L.

$$a \lor b = \sup\{a, b\}$$
 $y \qquad a \land b = \inf\{a, b\}$

Teorema

Lea $\langle L, \vee, \wedge \rangle$ un conjunto con dos operaciones binarias sobre L que satisfacen las propiedades (L1)–(L8) del teorema anterior. Entonces:

- 1. $a \lor b = b \iff a \land b = a$.
- 2. Definimos \leq en L por:

$$a \le b \iff a \lor b = b.$$

Entonces \leq es un orden sobre L.

$$a \lor b = \sup\{a, b\}$$
 y $a \land b = \inf\{a, b\}.$

Ejemplo 2

Sea $\langle \mathbb{N}, \vee, \wedge \rangle$ definido por: para todos $a,b \in \mathbb{N}$:

Ejemplo 2

Sea $\langle \mathbb{N}, \vee, \wedge \rangle$ definido por: para todos $a,b \in \mathbb{N}$:

$$a \lor b = [a, b]$$
 y $a \land b = (a, b)$.

Ejemplo 2

Sea $\langle \mathbb{N}, \vee, \wedge \rangle$ definido por: para todos $a, b \in \mathbb{N}$:

$$a \lor b = [a, b]$$
 y $a \land b = (a, b)$.

Ejemplo 3

Sea X un conjunto. Entonces $\langle \mathcal{P}(X), \cup, \cap \rangle$ es un retículo.

Definición

Sea $\langle L, \wedge, \vee \rangle$ un retículo y sea $M \subseteq L$ no vacío.

Definición

Sea $\langle L, \wedge, \vee \rangle$ un retículo y sea $M \subseteq L$ no vacío. Entonces M es llamado un subretículo de L si

$$a, b \in M \implies a \lor b \in M \text{ y } a \land b \in M.$$

Definición

Sea $\langle L, \wedge, \vee \rangle$ un retículo y sea $M \subseteq L$ no vacío. Entonces M es llamado un subretículo de L si

$$a, b \in M \implies a \lor b \in M \text{ y } a \land b \in M.$$

Ejemplo 4

Sea $\langle X, \tau \rangle$ un espacio topológico. Entonces $\tau \subseteq \mathcal{P}(X)$ es un subretículo de $\langle \mathcal{P}(X), \cup, \cap \rangle$.

Definición

Sea $\langle L, \wedge, \vee \rangle$ un retículo y sea $M \subseteq L$ no vacío. Entonces M es llamado un subretículo de L si

$$a, b \in M \implies a \lor b \in M \text{ y } a \land b \in M.$$

Ejemplo 4

Sea $\langle X, \tau \rangle$ un espacio topológico. Entonces $\tau \subseteq \mathcal{P}(X)$ es un subretículo de $\langle \mathcal{P}(X), \cup, \cap \rangle$.

Ejemplo 5

 $A = \{1, 2, 3, 4, 6, 12\}$ es un subretículo de $\langle \mathbb{N}, \vee, \wedge \rangle$.

Definición

Sean L y K retículos. Definimos las operaciones \vee y \wedge sobre $L\times K$ como siguen:

11/22

Definición

Sean L y K retículos. Definimos las operaciones \vee y \wedge sobre $L\times K$ como siguen:

$$(a_1, b_1) \lor (a_2, b_2) =$$

Definición

Sean L y K retículos. Definimos las operaciones \vee y \wedge sobre $L\times K$ como siguen:

$$(a_1,b_1)\vee (a_2,b_2)=(a_1\vee a_2,b_1\vee b_2)$$

Definición

Sean L y K retículos. Definimos las operaciones \vee y \wedge sobre $L\times K$ como siguen:

$$(a_1, b_1) \lor (a_2, b_2) = (a_1 \lor a_2, b_1 \lor b_2)$$

 $(a_1, b_1) \land (a_2, b_2) = (a_1 \land a_2, b_1 \land b_2).$

Definición

Sean L y K retículos. Definimos las operaciones \vee y \wedge sobre $L\times K$ como siguen:

$$(a_1, b_1) \lor (a_2, b_2) = (a_1 \lor a_2, b_1 \lor b_2)$$

 $(a_1, b_1) \land (a_2, b_2) = (a_1 \land a_2, b_1 \land b_2).$

Proposición

 $L\times K$ es un retículo con las operaciones antes definidas. Además

$$(a_1, b_1) \lor (a_2, b_2) = (a_2, b_2) \iff (a_1, b_1) \le (a_2, b_2).$$

Definición

Sean L y K retículos. Una función $f\colon L\to K$ es llamada un homomorfismo de retículos si

Definición

Sean L y K retículos. Una función $f\colon L\to K$ es llamada un homomorfismo de retículos si

$$f(a \vee b) = f(a) \vee f(b) \qquad \text{y} \qquad f(a \wedge b) = f(a) \wedge f(b).$$

Definición

Sean L y K retículos. Una función $f:L\to K$ es llamada un homomorfismo de retículos si

$$f(a \lor b) = f(a) \lor f(b)$$
 y $f(a \land b) = f(a) \land f(b)$.

Diremos que f es un embedding de retículos si es además inyectiva. Diremos que f es un isomorfismo de retículos si f es además una función biyectiva.

Definición

Sean L y K retículos. Una función $f:L\to K$ es llamada un homomorfismo de retículos si

$$f(a \lor b) = f(a) \lor f(b)$$
 y $f(a \land b) = f(a) \land f(b)$.

Diremos que f es un embedding de retículos si es además inyectiva. Diremos que f es un isomorfismo de retículos si f es además una función biyectiva.

Proposición

Sean L y K retículos y $f: L \to K$ una función.

- (I) Las siguientes son equivalentes:
 - (a) f es monótona.
 - (b) $f(a \lor b) \ge f(a) \lor f(b)$.
 - (c) $f(a \wedge b) \leq f(a) \wedge f(b)$.
- (II) f es un isomorfismo de retículo si y sólo si f es un isomorfismo de orden.

Definición 6

- ightharpoonup Un subconjunto no vacío I de L es llamado ideal si
 - 1. I es decreciente;
 - $2. \ a,b \in I \implies a \lor b \in I.$
- \blacktriangleright Un subconjunto no vacío F de L es llamado filtro si
 - 1. F es creciente;
 - $2. \ a, b \in F \implies a \land b \in F$

Definición 6

- ightharpoonup Un subconjunto no vacío I de L es llamado ideal si
 - 1. I es decreciente;
 - $2. \ a,b \in I \implies a \lor b \in I.$
- \blacktriangleright Un subconjunto no vacío F de L es llamado filtro si
 - $2. \ a,b \in F \implies a \land b \in F$

Definición 6

- ightharpoonup Un subconjunto no vacío I de L es llamado ideal si
 - 1. I es decreciente;
 - $2. \ a,b \in I \implies a \lor b \in I.$
- Un subconjunto no vacío F de L es llamado filtro si 1. F es creciente:
 - $2. \ a,b \in F \implies a \land b \in F$

Definición 6

- ightharpoonup Un subconjunto no vacío I de L es llamado ideal si
 - 1. I es decreciente;
 - $2. \ a,b \in I \implies a \lor b \in I.$
- ightharpoonup Un subconjunto no vacío F de L es llamado filtro si
 - 1. F es creciente;
 - $2. \ a,b \in F \implies a \land b \in F.$

Definición 6

- ightharpoonup Un subconjunto no vacío I de L es llamado ideal si
 - 1. I es decreciente;
 - 2. $a, b \in I \implies a \lor b \in I$.
- ightharpoonup Un subconjunto no vacío F de L es llamado filtro si
 - 1. F es creciente;
 - $a, b \in F \implies a \land b \in F$.

Definición 6

- ightharpoonup Un subconjunto no vacío I de L es llamado ideal si
 - 1. I es decreciente;
 - $2. \ a,b \in I \implies a \lor b \in I.$
- ightharpoonup Un subconjunto no vacío F de L es llamado filtro si
 - 1. F es creciente;
 - $2. \ a,b \in F \implies a \land b \in F.$

Definición 6

Sea L un retículo.

- ightharpoonup Un subconjunto no vacío I de L es llamado ideal si
 - 1. I es decreciente;
 - $2. \ a,b \in I \implies a \lor b \in I.$
- ightharpoonup Un subconjunto no vacío F de L es llamado filtro si
 - 1. F es creciente;
 - $2. \ a,b \in F \implies a \land b \in F.$

Ejemplo 7

- ▶ Si $a \in L$, entonces $\downarrow a$ es un ideal y $\uparrow a$ es un filtro.
- ▶ Si L y K son retículos acotados y $f: L \to K$ es un $\{0,1\}$ -homomorfismo, entonces $f^{-1}(0)$ es un ideal de L y $f^{-1}(1)$ es un filtro de L.

Definición 6

Sea L un retículo.

- ightharpoonup Un subconjunto no vacío I de L es llamado ideal si
 - 1. I es decreciente;
 - $2. \ a,b \in I \implies a \lor b \in I.$
- ightharpoonup Un subconjunto no vacío F de L es llamado filtro si
 - 1. F es creciente;
 - $2. \ a,b \in F \implies a \land b \in F.$

Ejemplo 7

- ▶ Si $a \in L$, entonces $\downarrow a$ es un ideal y $\uparrow a$ es un filtro.
- ▶ Si L y K son retículos acotados y $f: L \to K$ es un $\{0,1\}$ -homomorfismo, entonces $f^{-1}(0)$ es un ideal de L y $f^{-1}(1)$ es un filtro de L.

Definición 6

Sea L un retículo.

- lacktriangle Un subconjunto no vacío I de L es llamado ideal si
 - 1. I es decreciente;
 - $2. \ a,b \in I \implies a \lor b \in I.$
- ightharpoonup Un subconjunto no vacío F de L es llamado filtro si
 - 1. F es creciente;
 - $2. \ a,b \in F \implies a \land b \in F.$

Ejemplo 7

- ▶ Si $a \in L$, entonces $\downarrow a$ es un ideal y $\uparrow a$ es un filtro.
- ▶ Si L y K son retículos acotados y $f: L \to K$ es un $\{0,1\}$ -homomorfismo, entonces $f^{-1}(0)$ es un ideal de L y $f^{-1}(1)$ es un filtro de L.

Ejemplo 8

Los siguientes son ideales en $\mathcal{P}(X)$:

- 1. La colección de todos los subconjuntos que no contienen a un elemento fijo de X.
- 2. La colección de todos los subconjuntos finitos.

Ejemplo 8

Los siguientes son ideales en $\mathcal{P}(X)$:

- 1. La colección de todos los subconjuntos que no contienen a un elemento fijo de X.
- 2. La colección de todos los subconjuntos finitos.

Ejemplo 8

Los siguientes son ideales en $\mathcal{P}(X)$:

- 1. La colección de todos los subconjuntos que no contienen a un elemento fijo de X.
- 2. La colección de todos los subconjuntos finitos.

Ejemplo 8

Los siguientes son ideales en $\mathcal{P}(X)$:

- 1. La colección de todos los subconjuntos que no contienen a un elemento fijo de X.
- 2. La colección de todos los subconjuntos finitos.

Id(L) = la colección de todos los ideales de L.

Ejemplo 8

Los siguientes son ideales en $\mathcal{P}(X)$:

- 1. La colección de todos los subconjuntos que no contienen a un elemento fijo de X.
- 2. La colección de todos los subconjuntos finitos.

Id(L) = la colección de todos los ideales de L.

Proposición

Sea L un retículo. Sea $A \subseteq L$ no vacío. Entonces

 $Idg(A) = \{x \in L : x \le a_1 \lor \dots \lor a_n, \text{ para algunos } a_1, \dots, a_n \in A\}$

es el menor ideal de L que contiene a A.

Proposición

Sea L un retículo con primer elemento \bot . Entonces $\langle \mathrm{Id}(L), \subseteq \rangle$ es un retículo completo, donde

$$\bigwedge_{\alpha \in \Gamma} I_{\alpha} = \bigcap I_{\alpha} \qquad \text{y} \qquad \bigvee_{\alpha \in \Gamma} I_{\alpha} = \operatorname{Idg}\left(\bigcup I_{\alpha}\right).$$

Recordemos que un retículo completo es un conjunto ordenado P para el cual el supremo e ínfimo de cada subconjunto de P existe.

Recordemos que un retículo completo es un conjunto ordenado P para el cual el supremo e ínfimo de cada subconjunto de P existe.

Proposición

- 1. Para todo $a \in A$, $\bigwedge A \leq a \leq \bigvee A$.
- $2. \ x \le \bigwedge A \iff x \le a, \ \forall a \in A.$
- 3. $\bigvee A \le x \iff a \le x, \ \forall a \in A.$
- 4. $\bigvee A \leq \bigwedge B \iff a \leq b, \ \forall a \in A \ y \ b \in B$.
- 5. Si $A \subseteq B \implies \bigvee A \leq \bigvee B \setminus A = \bigwedge A$
- 6. $\bigvee (A \cup B) = (\bigvee A) \vee (\bigvee B) \text{ y } \bigwedge (A \cup B) = (\bigwedge A) \wedge (\bigwedge B).$

Recordemos que un retículo completo es un conjunto ordenado P para el cual el supremo e ínfimo de cada subconjunto de P existe.

Proposición

- 1. Para todo $a \in A$, $\bigwedge A \leq a \leq \bigvee A$.
- 2. $x \le \bigwedge A \iff x \le a, \ \forall a \in A$.
- $3. \ \bigvee A \le x \iff a \le x, \ \forall a \in A.$
- 4. $\bigvee A \leq \bigwedge B \iff a \leq b, \ \forall a \in A \ y \ b \in B$.
- 5. Si $A \subseteq B \implies \bigvee A \leq \bigvee B \setminus A \leq \bigwedge A$.
- 6. $\bigvee (A \cup B) = (\bigvee A) \vee (\bigvee B) \text{ y } \bigwedge (A \cup B) = (\bigwedge A) \wedge (\bigwedge B).$

Recordemos que un retículo completo es un conjunto ordenado P para el cual el supremo e ínfimo de cada subconjunto de P existe.

Proposición

- 1. Para todo $a \in A$, $\bigwedge A \leq a \leq \bigvee A$.
- 2. $x \le \bigwedge A \iff x \le a, \ \forall a \in A$.
- 3. $\bigvee A \le x \iff a \le x, \ \forall a \in A.$
- 4. $\bigvee A \leq \bigwedge B \iff a \leq b, \ \forall a \in A \ y \ b \in B$.
- 5. Si $A \subseteq B \implies \bigvee A \leq \bigvee B \ y \land B \leq \bigwedge A$.
- 6. $\bigvee (A \cup B) = (\bigvee A) \vee (\bigvee B) \text{ y } \bigwedge (A \cup B) = (\bigwedge A) \wedge (\bigwedge B).$

Recordemos que un retículo completo es un conjunto ordenado P para el cual el supremo e ínfimo de cada subconjunto de P existe.

Proposición

- 1. Para todo $a \in A$, $\bigwedge A \leq a \leq \bigvee A$.
- 2. $x \le \bigwedge A \iff x \le a, \ \forall a \in A$.
- 3. $\bigvee A \le x \iff a \le x, \ \forall a \in A$.
- 4. $\bigvee A \leq \bigwedge B \iff a \leq b, \ \forall a \in A \ y \ b \in B$.
- 5. Si $A \subseteq B \implies \bigvee A \leq \bigvee B \setminus A = \bigwedge A$
- 6. $\bigvee (A \cup B) = (\bigvee A) \vee (\bigvee B) \text{ y } \bigwedge (A \cup B) = (\bigwedge A) \wedge (\bigwedge B).$

Recordemos que un retículo completo es un conjunto ordenado P para el cual el supremo e ínfimo de cada subconjunto de P existe.

Proposición

- 1. Para todo $a \in A, \bigwedge A \leq a \leq \bigvee A$.
- 2. $x \le \bigwedge A \iff x \le a, \ \forall a \in A$.
- 3. $\bigvee A \le x \iff a \le x, \ \forall a \in A$.
- 4. $\bigvee A \leq \bigwedge B \iff a \leq b, \ \forall a \in A \ y \ b \in B$.
- 5. Si $A \subseteq B \implies \bigvee A \leq \bigvee B \setminus A \leq \bigwedge A$.
- 6. $\bigvee (A \cup B) = (\bigvee A) \vee (\bigvee B) \text{ y } \bigwedge (A \cup B) = (\bigwedge A) \wedge (\bigwedge B).$

Recordemos que un retículo completo es un conjunto ordenado P para el cual el supremo e ínfimo de cada subconjunto de P existe.

Proposición

- 1. Para todo $a \in A, \bigwedge A \leq a \leq \bigvee A$.
- 2. $x \le \bigwedge A \iff x \le a, \ \forall a \in A$.
- 3. $\bigvee A \le x \iff a \le x, \ \forall a \in A$.
- 4. $\bigvee A \leq \bigwedge B \iff a \leq b, \ \forall a \in A \ y \ b \in B$.
- 5. Si $A \subseteq B \implies \bigvee A \leq \bigvee B \ y \land B \leq \bigwedge A$.
- 6. $\bigvee (A \cup B) = (\bigvee A) \vee (\bigvee B) \text{ y } \bigwedge (A \cup B) = (\bigwedge A) \wedge (\bigwedge B).$

Recordemos que un retículo completo es un conjunto ordenado P para el cual el supremo e ínfimo de cada subconjunto de P existe.

Proposición

- 1. Para todo $a \in A, \bigwedge A \leq a \leq \bigvee A$.
- 2. $x \le \bigwedge A \iff x \le a, \ \forall a \in A$.
- 3. $\bigvee A \le x \iff a \le x, \ \forall a \in A$.
- 4. $\bigvee A \leq \bigwedge B \iff a \leq b, \ \forall a \in A \ y \ b \in B$.
- 5. Si $A \subseteq B \implies \bigvee A \leq \bigvee B \setminus A \subseteq \bigwedge A$.
- 6. $\bigvee (A \cup B) = (\bigvee A) \vee (\bigvee B) \text{ y } \bigwedge (A \cup B) = (\bigwedge A) \wedge (\bigwedge B).$

Proposición

- 1. P es un retículo completo.
- 2. $\bigwedge A$ existe en P para todo subconjunto A de P.
- 3. P tiene último elemento, \top , y $\bigwedge A$ existe en P para todo subconjunto no vacío A de P.

Proposición

- 1. P es un retículo completo.
- 2. $\bigwedge A$ existe en P para todo subconjunto A de P.
- 3. P tiene último elemento, \top , y $\bigwedge A$ existe en P para todo subconjunto no vacío A de P.

Proposición

- 1. P es un retículo completo.
- 2. $\bigwedge A$ existe en P para todo subconjunto A de P.
- 3. P tiene último elemento, \top , y $\bigwedge A$ existe en P para todo subconjunto no vacío A de P.

Proposición

- 1. P es un retículo completo.
- 2. $\bigwedge A$ existe en P para todo subconjunto A de P.
- 3. P tiene último elemento, \top , y $\bigwedge A$ existe en P para todo subconjunto no vacío A de P.

Proposición

Sea P un conjunto ordenado. Las siguientes son equivalentes:

- 1. P es un retículo completo.
- 2. $\bigwedge A$ existe en P para todo subconjunto A de P.
- 3. P tiene último elemento, \top , y $\bigwedge A$ existe en P para todo subconjunto no vacío A de P.

Teorema punto fijo de Knaster-Tarski

Sea L un retículo completo y $F\colon L\to L$ una función monótona. Entonces

$$\alpha = \bigvee \{x \in L : x \le F(x)\}$$

es un punto fijo de F. Además α es el mayor punto fijo de F. Dualmente, F tiene un menor punto fijo.

Definición 9

Sea L un retículo. Un elemento $x \in L$ es llamado sup-irreducible si

- 1. $x \neq \bot$.
- 2. Si $x = a \lor b \implies x = a \circ x = b$.

Definición 9

Sea L un retículo. Un elemento $x \in L$ es llamado sup-irreducible si

- 1. $x \neq \bot$.
- 2. Si $x = a \lor b \implies x = a \circ x = b$.

Definición 9

Sea L un retículo. Un elemento $x \in L$ es llamado sup-irreducible si

- 1. $x \neq \bot$.
- 2. Si $x = a \lor b \implies x = a \circ x = b$.

Definición 9

Sea L un retículo. Un elemento $x \in L$ es llamado sup-irreducible si

- 1. $x \neq \bot$.
- 2. Si $x = a \lor b \implies x = a \circ x = b$.

 $\mathcal{J}(L)$ = la colección de todos los elementos sup-irredu. de L.

- En una cadena, cada elemento no nulo es sup-irreducible.
- ▶ En un retículo finito L, un elemento x es sup-irreducible si y sólo si existe un único $a \in L$ tal que $a \prec x$.
- ▶ En el retículo $\langle \mathbb{N}_0, mcd, mcm \rangle$ un elemento no nulo x es sup-irreducible si y sólo si $x = p^s$ para algún p primo.
- ▶ En el retículo $\mathcal{P}(X)$ los elementos sup-irreducibles son exactamente los conjuntos unitarios $\{x\}$, para $x \in X$.

Definición 9

Sea L un retículo. Un elemento $x \in L$ es llamado sup-irreducible si

- 1. $x \neq \bot$.
- 2. Si $x = a \lor b \implies x = a \circ x = b$.

 $\mathcal{J}(L)$ = la colección de todos los elementos sup-irredu. de L.

- ► En una cadena, cada elemento no nulo es sup-irreducible.
- ▶ En un retículo finito L, un elemento x es sup-irreducible si y sólo si existe un único $a \in L$ tal que $a \prec x$.
- ▶ En el retículo $\langle \mathbb{N}_0, mcd, mcm \rangle$ un elemento no nulo x es sup-irreducible si y sólo si $x = p^s$ para algún p primo.
- ▶ En el retículo $\mathcal{P}(X)$ los elementos sup-irreducibles son exactamente los conjuntos unitarios $\{x\}$, para $x \in X$.

Definición 9

Sea L un retículo. Un elemento $x \in L$ es llamado sup-irreducible si

- 1. $x \neq \bot$.
- 2. Si $x = a \lor b \implies x = a \circ x = b$.

 $\mathcal{J}(L)$ = la colección de todos los elementos sup-irredu. de L.

- ► En una cadena, cada elemento no nulo es sup-irreducible.
- ▶ En un retículo finito L, un elemento x es sup-irreducible si y sólo si existe un único $a \in L$ tal que $a \prec x$.
- ▶ En el retículo $\langle \mathbb{N}_0, mcd, mcm \rangle$ un elemento no nulo x es sup-irreducible si y sólo si $x = p^s$ para algún p primo.
- ▶ En el retículo $\mathcal{P}(X)$ los elementos sup-irreducibles son exactamente los conjuntos unitarios $\{x\}$, para $x \in X$.

Definición 9

Sea L un retículo. Un elemento $x \in L$ es llamado sup-irreducible si

- 1. $x \neq \bot$.
- 2. Si $x = a \lor b \implies x = a \circ x = b$.

 $\mathcal{J}(L)$ = la colección de todos los elementos sup-irredu. de L.

- ► En una cadena, cada elemento no nulo es sup-irreducible.
- ▶ En un retículo finito L, un elemento x es sup-irreducible si y sólo si existe un único $a \in L$ tal que $a \prec x$.
- ▶ En el retículo $\langle \mathbb{N}_0, mcd, mcm \rangle$ un elemento no nulo x es sup-irreducible si y sólo si $x = p^s$ para algún p primo.
- ▶ En el retículo $\mathcal{P}(X)$ los elementos sup-irreducibles son exactamente los conjuntos unitarios $\{x\}$, para $x \in X$.

Definición 9

Sea L un retículo. Un elemento $x \in L$ es llamado sup-irreducible si

- 1. $x \neq \bot$.
- 2. Si $x = a \lor b \implies x = a \circ x = b$.

 $\mathcal{J}(L)$ = la colección de todos los elementos sup-irredu. de L.

- ► En una cadena, cada elemento no nulo es sup-irreducible.
- ▶ En un retículo finito L, un elemento x es sup-irreducible si y sólo si existe un único $a \in L$ tal que $a \prec x$.
- ▶ En el retículo $\langle \mathbb{N}_0, mcd, mcm \rangle$ un elemento no nulo x es sup-irreducible si y sólo si $x = p^s$ para algún p primo.
- ▶ En el retículo $\mathcal{P}(X)$ los elementos sup-irreducibles son exactamente los conjuntos unitarios $\{x\}$, para $x \in X$.

Proposición

Sea L un retículo finito.

- 1. Para todos $a,b\in L,$ $a\nleq b, \text{ entonces existe } x\in \mathcal{J}(L) \text{ tal que } x\leq a \text{ y } x\nleq b$
- 2. $a = \bigvee \{x \in \mathcal{J}(L) : x \le a\}, \forall a \in L$

Proposición

Sea L un retículo finito.

- 1. Para todos $a,b\in L,$ $a\nleq b, \text{ entonces existe } x\in \mathcal{J}(L) \text{ tal que } x\leq a \text{ y } x\nleq b.$
- 2. $a = \bigvee \{x \in \mathcal{J}(L) : x \le a\}, \forall a \in L$

Proposición

Sea L un retículo finito.

- 1. Para todos $a,b\in L,$ $a\nleq b, \text{ entonces existe } x\in \mathcal{J}(L) \text{ tal que } x\leq a \text{ y } x\nleq b.$
- 2. $a = \bigvee \{x \in \mathcal{J}(L) : x \leq a\}, \forall a \in L.$

Ejercicios propuestos

Ejercicio 1 (Pag. 56)

$$2.1 - 2.2 - 2.4 - 2.5 - 2.10 - 2.13$$
(i)-(ii) $-2.16 - 2.19 - 2.21 - 2.23 - 2.25 - 2.26$

Ejercicio 2

Sea $\langle P, \leq \rangle$ un retículo. Probar que para todo $n \in \mathbb{N}$ y todos $a_1, \ldots, a_{n+1} \in P, \ a_1 \vee \cdots \vee a_{n+1} \ y \ a_1 \wedge \cdots \wedge a_{n+1}$ existen en P.

Ejercicio 3

Sea \leq_d definida en \mathbb{N} por: $n \leq_d m \iff n \mid m$. Probar que $\langle \mathbb{N}, \leq_d \rangle$ es un retículo.

Ejercicio 4

- (a) Sea X un conjunto y sea $\mathcal{L} \subseteq \mathcal{P}(X)$. Probar que si \mathcal{L} es cerrada bajo uniones e intersecciones arbitrarias, entonces $\langle \mathcal{L}, \subseteq \rangle$ es un retículo completo.
- (b) Sea P un conjunto ordenado. Probar que $\langle \mathcal{O}(P), \subseteq \rangle$ es un retículo completo.

Ejercicios propuestos

Ejercicio 5

Sea $\langle X, \tau \rangle$ un espacio topológico y sea $x \in X$. Probar que la colección

$$\mathcal{I} = \{ A \subseteq X : \exists U \in \tau \text{ tal que } x \in U \subseteq A \}$$

es un filtro en $\mathcal{P}(X)$.

Ejercicio 6

Sea L un retículo con primer y último elemento, \bot y \top respectivamente. Probar que la función $f\colon L\to \mathrm{Id}(L)$ definida por

$$f(a) = \downarrow a$$

es un embedding de retículos.

Ejercicios propuestos

Ejercicio 7

Sea L un retículo finito. Sean $a, b \in L$. Probar que

$$a \leq b \iff \forall x \in \mathcal{J}(L), \, \forall y \in \mathcal{M}(L) (x \leq a \ \land \ b \leq y \implies x \leq y)$$