Number representations

Becker/Molitor, Chapter 3.3

Jan Reineke Universität des Saarlandes

Roadmap: Computer architecture

- 1. Combinatorial circuits: Boolean Algebra/Functions/Expressions/Synthesis
- 2. Number representations
- 3. Arithmetic Circuits:
 Addition, Multiplication, Division, ALU
- 4. Sequential circuits: Flip-Flops, Registers, SRAM, Moore and Mealy automata
- 5. Verilog
- 6. Instruction Set Architecture
- 7. Data path & Control path
- 8. Performance: RISC vs. CISC, Pipelining, Memory Hierarchy

Outlook: Arithmetic circuits

Addierer

Challenge: Number representations

Internally, computers represent numbers by binary strings of some fixed length n bits.

Questions:

- 1. How many different numbers can be represented?
- 2. How to represent natural numbers?
- 3. How to represent *integers*? Challenge: negative numbers

fixed-point numbers

- 4. How to represent rational numbers?
- 5. How to represent very large and very small numbers?

floating-point numbers

Number representations

1. How many different numbers can be represented?

For n bits and b (typically b=2) different numerals in each position,

- there are b^n distinct strings, and so
- at most b^n distinct numbers can be represented, e.g. $0, ..., b^{n-1}$ or $-b^{n-1}, ..., b^{n-1}$ -1

Examples of numeral systems

Examples:

• Binary numeral system

$$b=2$$
, $Z = \{0,1\}$

Decimal numeral system

$$b=10, Z = \{0,1,2,3,4,5,6,7,8,9\}$$

Hexadecimal numeral system:

$$b=16$$
 $Z = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$

Numeral systems formally

Definition (Positional numeral system):

A positional numeral system is a triple $S = (b, Z, \delta)$ with the following properties:

- $b \in \mathbb{N}$ is a natural number, the basis.
- \mathbb{Z} is a set of symbols of size b, the numerals (or digits).
- $\delta: Z \to \{0, 1, ..., b-1\}$ is a bijective mapping that associates each numeral with a natural number between 0 and b-1.

2. Representation of natural numbers

Which natural number $\langle d \rangle$ is represented the sequence $d = d_n d_{n-1} ... d_1 d_0$

of numerals from a positional numeral system (b, Z, δ) ?

Examples:

Let
$$d = 0110$$

•
$$b = 2$$
, $\langle d \rangle =$

•
$$b = 10$$
, $\langle d \rangle =$

•
$$b = 16$$
, $\langle d \rangle =$

In general:
$$\langle d \rangle = \langle d_n d_{n-1} ... d_1 d_0 \rangle = \sum_{i=0}^n b^i \cdot \delta(d_i)$$

Binary numbers

For b = 2 and n = 2 we thus have:

d	000	001	010	011	100	101	110	111
<d>></d>	0	1	2	3	4	5	6	7

Properties:

- Smallest representable number: 0
- Largester representable number: $2^{n+1}-1$
- "Adjacent numbers" are at distance 1.

3. Representing integers, in particular negative numbers

Goals:

- 1. Want to cover large number space:
 - → aim for unique number representation
- 2. Would like to reuse arithmetic circuits for natural numbers

Signed magnitude representation

1. Approach: Signed magnitude representation.

The most significant digit d_n determines the sign of the number:

$$[d_{n}d_{n-1}...d_{0}]_{SM} := (-1)^{d_{n}} \cdot \langle d_{n-1}...d_{0} \rangle$$

$$= (-1)^{d_{n}} \cdot \sum_{i=0,...,n-1} d_{i} \cdot 2^{i}.$$

d	000	001	010	011	100	101	110	111
$[d]_{BV}$	0	1	2	3	0	-1	-2	-3

Signed magnitude representation

Properties:

- The number range is symmetric:
 - Smallest number: -(2ⁿ-1)
 - Largest number: 2ⁿ-1
- To invert a number d, one needs to flip the first bit.
- Two representations of zero (000 and 100 for n=2).
- "Adjacent numbers" are at distance 1 in terms of absolute value.

(2ⁿ-1) complement = One's complement

2. Approach: Representation via (2ⁿ-1) complement.

The most-significant digit d_n again determines whether it is a positive or a negative number.

But now $d_n \cdot (2^{n-1})$ is subtracted:

$$[d_n d_{n-1}...d_0]_1 := \langle d_{n-1}...d_0 \rangle - d_n \cdot (2^n - 1)$$

$$= \sum_{i=0,...,n-1} d_i \cdot 2^i - d_n \cdot (2^n - 1).$$

d	000	001	010	011	100	101	110	111
$[d]_1$	0	1	2	3	-3	-2	-1	0

One's complement

$$\begin{bmatrix} d_n d_{n-1} ... d_0 \end{bmatrix}_1 := \sum_{i=0,...,n-1} d_i \cdot 2^i - d_n \cdot (2^{n-1})$$

$$\begin{vmatrix} d & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\ \hline [d]_1 & 0 & 1 & 2 & 3 & -3 & -2 & -1 & 0 \\ \end{vmatrix}$$

Properties:

- The number range is **symmetric**:
 - Smallest number: -(2ⁿ-1)
 - Largest number: 2ⁿ-1
- To invert a number d, one needs to flip all bits.
- Two representations of zero (000 and 111 for n=2).
- "Adjacent numbers" are at distance 1 in terms of absolute value.

2ⁿ complement = Two's complement

3. Approach: Representation via 2ⁿ complement.

The most-significant digit d_n again determines whether it is a positive or a negative number.

But now $d_n \cdot 2^n$ is subtracted:

$$[d_n d_{n-1}...d_0]_2 := \langle d_{n-1}...d_0 \rangle - d_n \cdot 2^n$$

$$= \sum_{i=0,...,n-1} d_i \cdot 2^i - d_n \cdot 2^n.$$

d	000	001	010	011	100	101	110	111
$[d]_2$	0	1	2	3	-4	-3	-2	-1

Two's complement

Properties:

- The number range is **asymmetric**:
 - Smallest number: -2ⁿ
 - Largest number: 2ⁿ-1
- Let d be arbitrary and d' be obtained by flipping all digits of d. Then we have $[d']_2+1 = -[d]_2$.
- The number representation is unique.
- "Adjacent numbers" are at distance 1 in terms of absolute value.

Two's complement

Main advantage of two's complement:

Can use arithmetic circuits for additions of natural numbers also for integers.

(→ more details later)

4. Representing rational numbers

1. Approach: Fixed-point numbers.

- Interpret first part of the digit sequence as integral part and the rest as decimal places.
- Assume we have n+1 integral and k decimal places.
- Then the value <d> of a non-negative fixed-pointer number

$$d = d_n d_{n-1} ... d_1 d_0$$
, d_{-1} , ..., d_{-k}

is given by

$$< d> = < d_n d_{n-1} ... d_1 d_0, d_{-1}, ..., d_{-k} > = \sum_{i=-k}^{\infty} b^i \cdot \delta(d_i)$$

Negative fixed-point numbers: Two's complement

Extension of two's complement to fixed-point numbers:

$$[d_n d_{n-1}...d_0, d_{-1}...d_k]_2 := \sum_{i=-k,...,n-1} d_i \cdot 2^i - d_n \cdot 2^n$$

Problems with fixed-point numbers

Consider the set of numbers that have a two's complement representation with n integral and k decimal places.

- Cannot represent very large nor very small numbers!
 - Largest numbers in terms of absolute value: -2ⁿ and 2ⁿ-2^{-k}
 - Smallest non-zero numbers in terms of absolute value: -2-k and 2-k
- Representation is not closed under addition/substraction!
 - $-2^{n-1}+2^{n-1}$ is not representable even though the operands are representable \rightarrow Overflow

4. Representing rational numbers

2. Approach: Floating-point numbers.

Position of the decimal point is not fixed, it is "floating".

Covering a larger number range using the same number of digits.

Single precision floating-point numbers: (-1)^S·M·2^E

31	30 29 28 27 26 25 24 23	22 21 20 19	•••	3 2 1 0
S	Exponent E	Mantissa M		

Double precision floating-point numbers: (-1)^S·M·2^E

63	62 61 60 54 53 52	51 50 49	•••	3 2 1 0
S	Exponent E	Mantissa M		

It remains to define how the mantissa and exponent bits are interpreted.

This is e.g. captured by the IEEE 754 standard.

Advantages of floating-point numbers

- In the fixed-point representation the distance between adjacent numbers is the same everywhere.
- In the floating-point representation the relative difference between adjacent numbers is kept small.

Problems with floating-point numbers

• Associativity does not hold:

• Distributivity holds neither