

Introduction to Multiple Regression

U. DINESH KUMAR

What is Multiple Linear Regression

- Several independent variables may influence the change in response variable we are trying to study.
- When several independent variables are included in the equation, the regression is called multiple linear regression.

Multiple Regression Modeling Steps

- 1. Start with a hypothesis or belief.
- 2. Estimate unknown model parameters ($\beta_0, \beta_1, \beta_2, ...$)
- 3. Specify probability distribution of random error term
 - Assumed to be a normal distribution
- 4. Check the assumptions of regression (normality, heteroscedasticity and multi-collinearity)
- 5. Evaluate Model
- 6. Use Model for Prediction & Estimation and other purposes.

Multiple Linear Regression Model

• Relationship between 1 dependent & 2 or more independent variables is a linear function.

Prediction Model

The prediction equation obtained from sample data is:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + \dots + \hat{\beta}_k X_{ki}$$

Multiple Regression Model

 Y_i = Treatment Cost

 $X_{1i} = Body Weight$

 $X_{2i} = HR Pulse$

Interpretation
of
Regression Coefficients

U. DINESH KUMAR

Estimating and Interpreting the β -Parameters

Belief

$$Y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$$

• Fitted Model

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + ... + \hat{\beta}_k x_k$$

Using least squares method

Minimize
$$SSE = \sum (y - \hat{y})^2$$

• The least squares function is given by

$$SSE = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{k} \beta_{j} x_{ij} \right)^{2}$$

• The least squares estimates must satisfy

$$\frac{\partial SSE}{\partial \beta_0} = -2\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^k \beta_j x_{ij} \right) = 0$$

and

$$\frac{\partial SSE}{\partial \beta_j} = -2\sum_{i=1}^n \left(y_i - \stackrel{\wedge}{\beta}_0 - \sum_{j=1}^k \stackrel{\wedge}{\beta}_j x_{ij} \right) x_{ij} = 0 \ \forall j$$

Estimation of Parameters in Multiple Regression

The least squares equations are

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{ik} = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1}^{2} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i1} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{i1} x_{ik} = \sum_{i=1}^{n} x_{i1} y_{i}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{ik} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{ik} x_{i1} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{ik} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{ik}^{2} = \sum_{i=1}^{n} x_{ik} y_{i}$$

IIMBX

The solution to the above equations are the **least squares estimators** of the regression coefficients.

DAD Example

Total Hospital Cost = $\beta_0 + \beta_1 \times \text{Body weight} + \beta_2 \times \text{Body height} + \beta_3 \times \text{HR Pulse} + \beta_4 \times \text{RR}$

Model Summary

Mode	R	R	Adjusted R	Std. Error of	Change Statistics				
I		Square	Square	the Estimate	R Square	F	df1	df2	Sig. F
					Change	Change			Change
	.423ª	.179	.166	111968.4772	.179	13.268	4	243	.000
1				4327330000					

a. Predictors: (Constant), RR, BODYHEIGHT, HRPULSE, BODYWEIGHT

b. Dependent Variable: TOTALCOSTTOHOSPITAL

Coefficients^a

Mode	Model Unstandardized Coefficients		Standardized Coefficients	t	Sig.	C	Correlations		Collinearity	Statistics	
		В	Std. Error	Beta			Zero-order	Partial	Part	Tolerance	VIF
	(Constant)	-118569.892	70668.651		-1.678	.095					
	BODYWEIGHT	2512.260	604.558	.474	4.156	.000	.348	.258	.242	.260	3.849
1	BODYHEIGHT	161.083	348.148	.051	.463	.644	.294	.030	.027	.273	3.664
	HRPULSE	1537.105	445.829	.255	3.448	.001	009	.216	.200	.619	1.615
	RR	2560.631	2038.500	.080	1.256	.210	.016	.080	.073	.828	1.208

Dependent Variable: TOTALCOSTTOHOSPITAL

Treatment Cost = $-118569.892 + 2512.260 \times Body$ weight $+161.083 \times Body$ height $+1537.105 \times HR$ Pulse $+2560.631 \times RR$

Interpretation of Coefficients

• (β_1) – Partial regression coefficient

Total cost of treatment increases by 2512.260 INR for every one kg increase in body weight while other parameters like body height, HR pulse and RR are controlled (kept constant).

Treatment Cost = $-118569.892 + 2512.260 \times Body$ weight $+161.083 \times Body$ height $+1537.105 \times HR$ Pulse $+2560.631 \times RR$

Interpretation of Coefficients

• (β_3) – Partial regression coefficient

Total cost of treatment increases by 1537.105 INR for every one unit increase in HR pulse while other parameters like body weight, Body height and RR are controlled.

Treatment Cost = $-118569.892 + 2512.260 \times Body$ weight $+161.083 \times Body$ height $+1537.105 \times HR$ Pulse $+2560.631 \times RR$

Standardized Beta (Beta Weights)

- The beta weights are the regression coefficients for standardized data.
- Standardized Beta is the average increase in the dependent variable when the independent variable is increased by one standard deviation and other independent variables are held constant.

Beta Weights

Standardized Beta =
$$\beta_i \times \frac{S_x}{S_y}$$

 $S_x = Standard deviation of X$

 $S_v = Standard deviation of Y$

Coefficients^a

Мо	Model Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Correlations		Collinearity Statistics			
		В	Std. Error	Beta			Zero-order	Partial	Part	Tolerance	VIF
	(Constant)	-118569.892	70668.651		-1.678	.095					
	BODYWEIGHT	2512.260	604.558	.474	4.156	.000	.348	.258	.242	.260	3.849
1	BODYHEIGHT	161.083	348.148	.051	.463	.644	.294	.030	.027	.273	3.664
	HRPULSE	1537.105	445.829	.255	3.448	.001	009	.216	.200	.619	1.615
	RR	2560.631	2038.500	.080	1.256	.210	.016	.080	.073	.828	1.208

a. Dependent Variable: TOTALCOSTTOHOSPITAL

तेजस्वि नावधीतमस्त्

Partial and Part correlation

U. DINESH KUMAR

Partial Correlation

• Partial correlation coefficient measures the relationship between two variables (say Y and X_1) when the influence of all other variables (say X_2 , X_3 ,..., X_k) connected with these two variables (Y and X_1) are removed.

• Partial correlation is the correlation between residualized response and residualized predictor.

Semi-Partial (Part) Correlation

- Semi-partial (or part correlation) coefficient measures the relationship between two variables (say Y and X_1) when the influence of all other variables (say X_2 , X_3 , ..., X_k) connected with these two variables (Y and X_1) are removed from one of the variables (X_1).
- Only the predictor is residualized. The denominator of the coefficient (the total variance of the response variable, Y) remains the same no matter which predictor is being examined.

Variance in
$$Y = A + B + C + D$$

Variance in Y explained by the model = A + B + C

Variance in Y not explained by the model = E

Semi partial (part) correlation for $X_1 = A / (A+B+C+D)$

Semi partial (part) correlation for $X_2 = B / (A+B+C+D)$

Partial correlation for $X_1 = A / (A+D)$

Partial correlation for $X_2 = B / (B + D)$

FIMPORTANT

In part correlation we do not residualize the response variable

Partial Correlation

$$r_{12,3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{(1 - r_{13}^2)(1 - r_{23}^2)}}$$
 Correlation between yl and x2, when the influence of x3 is removed from both yl and x2.

$$r_{13,2} = \frac{r_{13} - r_{12}r_{23}}{\sqrt{(1 - r_{12}^2)(1 - r_{23}^2)}}$$

Correlation between yl and x3, when the influence of x2 is removed from both y1 and x3.

$$r_{23,1} = \frac{r_{23} - r_{12}r_{13}}{\sqrt{(1 - r_{12}^2)(1 - r_{13}^2)}}$$

Correlation between x2 and x3, when the influence of yl is removed from both x2 and x3.

For Proof: Theory of Econometrics by A Koutsoyiannis

Semi-partial correlation (Part Correlation)

• Semi-partial (or part) correlation $sr_{12,3}$ is the correlation between y_1 and x_2 when influence of x_3 is partialled out of x_2 (not on y_1).

$$sr_{12,3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{1 - r_{23}^2}}$$

Part Correlation =
$$\frac{\text{Partial Correlation}}{\sqrt{(1-r_{13}^2)}}$$

Semi-partial (part) correlation

Square of Semi-partial (or part correlation) gives the increase in the R² value (coefficient of multiple determination) when an explanatory variable is added to the model.

$Y = \beta_0 + \beta_1 \times Body weight + \beta_2 \times HR Pulse$

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.416ª	.173	.167	111913.7163

a. Predictors: (Constant), HRPULSE, BODYWEIGHT

 $0.348^2 = 0.121$

Coefficients^a

Unstandardized Coefficients		Standardized Coefficients			/	prrelations			
Model		В	Std. Error	Beta	t	Sig.	Zero-orde	Partial	Part
1	(Constant)	-55512.272	49018.015		-1.132	.259			
	BODYWEIGHT	2674.585	373.273	.504	7.165	.000	.348	.416	.416
	HRPULSE	1668.361	424.922	.276	3.926	.000	009	.243	.228

a. Dependent Variable: TOTALCOSTTOHOSPITAL

 $0.121 + (0.228)^2 = 0.173$

Change in R² when a new variable is added

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

Variance specific to X1 (part A)

Variance common to X1 and X2 (part C)

Variance specific to X2 (part B)

Left over

 $1 - R^2$

Model Diagnostics

U. DINESH KUMAR

Multiple Regression Model Diagnostics

- Test for overall model fitness (R-Square and Adjusted R-Square)
- Test for overall model statistical significance (F test test)
- Test for portions of the model (Partial F-test)
- Test for statistical significance of individual explanatory variables (t test)
- Test for Normality and Homoscedasticity of residuals
 - Test for Multi-collinearity and Auto Correlation

Co-efficient of multiple determination

$$R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} = \frac{\sum_{i}^{n} (y_{i} - y)^{2}}{\sum_{i}^{n} (y_{i} - y)^{2}}$$

 R^2 = Multiple coefficient of multiple determination

R² is the percentage of the variation of y explained by

$$x_1, x_2, ..., x_k$$

$Y = \beta_0 + \beta_1 \times Body Weight + \beta_2 \times HR Pulse$

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.416ª	.173	.167	111913.7163

R² is 0.173
17.3% of variation in Y is explained by Bodyweight and HR Pulse

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-55512.272	49018.015		-1.132	.259
	BODYWEIGHT	2674.585	373.273	.504	7.165	.000
	HRPULSE	1668.361	424.922	.276	3.926	.000

a. Dependent Variable: TOTALCOSTTOHOSPITAL

 $Y = -55512.272 + 2674.585 \times Body Weight + 1668.361 \times HR Pulse$

Co-efficient of determination in Multiple Regression

• Coefficient of determination increases as the number of explanatory variables increases.

• In SSR/SST, the numerator, SSR, increases as the number of explanatory variables increases, whereas the denominator, SST, remains constant.

• Increase in R² can deceptive, since more number of explanatory variables may over-fit the data.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.582ª	.338	.330	100326.5348

a. Predictors: (Constant) (SL, HRPULSE, BODYWEIGHT

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	87329.003	47604.902		1.834	.068
	BODYWEIGHT	1982.956	346.170	.374	5.728	.000
	HRPULSE	1372.122	382.815	.227	3.584	.000
	SL	-719.406	92.216	421	-7.801	.000

a. Dependent Variable: TOTALCOSTTOHOSPITAL

Adjusted R²

• Inclusion of additional explanatory variable will increase the R^2 value.

- By introducing an additional explanatory variable, we increase the numerator of the expression for R^2 while the denominator remains the same.
- To correct this defect, we adjust the R² by taking into account the degrees of freedom.

Adjusted R²

$$R_A^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)}$$

 R_A^2 = Adjusted R - Square

n = number of observations

k = number of explanatory variables

$Y = \beta_0 + \beta_1 \times Body Weight + \beta_2 \times HR Pulse$

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.416ª	.173	.167	111913.7163

a. Predictors: (Constant), HRPUL8E, BODYWEIGHT

Adjusted R² is 0.167

Tests for Model Significance

U. DINESH KUMAR

Testing For Overall Significance of Model - F Test

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 H_A : Not all β values are zero

Test for overall significance of multiple regression model.

Checks if there is a statistically significant relationship between Y and any of the explanatory variables $(X_1, X_2, ..., X_k)$.

F Statistic

F = MSR/MSE

Relationship between F and R²

$$F = \frac{R^2 / k}{(1 - R^2) / (n - k - 1)}$$

DAD CASE - ANOVA Table

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6.433E+11	2	3.216E+11	25.681	.000 ^b
	Residual	3.069E+12	245	12524679898		
	Total	3.712E+12	247		1	

a. Dependent Variable: TOTALCOSTTOHOSPITAL

b. Predictors: (Constant), HRPULSE, BODYWEIGHT

F = 3.216 x 10¹¹/12524679898

Test for Individual Variables

Testing for Significance of Individual Parameters

$$H_0: \beta_i = 0$$

$$H_A: \beta_i \neq 0$$

$$t = \frac{\stackrel{\wedge}{\beta_i}}{\stackrel{\wedge}{S_e(\beta_i)}}$$

T- test:

By rejecting the null hypothesis, we can claim that there is a statistically significant relationship between the response variable Y and explanatory variable X_i.

SPSS Output for Coefficients

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	-118569.892	70668.651		-1.678	.095
	BODYWEIGHT	2512.260	604.558	.474	4.156	.000
	HRPULSE	1537.105	445.829	.255	3.448	.001
	BODYHEIGHT	161.083	348.148	.051	.463	.644
	RR	2560.631	2038.500	.080	1.256	.210

a. Dependent Variable: TOTALCOSTTOHOSPITAL

Partial F-test
and
Variable Selection

U. DINESH KUMAR

<u>Testing Model Portions – Partial F Test</u>

Examines the contribution of a set of explanatory variables to the regression model.

■ Used for selecting explanatory variables in regression model building strategies such as stepwise regression.

Testing Model Portions - Partial F Test

Full Model:
$$Y = \beta 0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k + \varepsilon$$

Reduced Model (r < k):
$$Y = \beta 0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_r X_r + \varepsilon$$

Test
$$H_0$$
: $\beta_{r+1} = = \beta_k = 0$

Partial F =
$$\frac{(SSE_{reduced} - SSE_{full})/(k-r)}{MSE_{full}}$$

k = Number of variables in the full model

r = Number of variables in the reduced model

Partial F-test Example (DAD)

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

Full Model:

Treatment $\cos t = \beta_0 + \beta_1 \times Bodyweight + \beta_2 \times Bodyheight + \beta_3 \times HRpulse + \beta_4 \times RR + \varepsilon$

Reduced Model:

Treatment $\cos t = \beta_0 + \beta_1 \times Bodyweight + \beta_2 \times HRpulse + \varepsilon$

$$F = \frac{(SSE_{reduced} - SSE_{full})/(4-2)}{MSE_{full}}$$

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6.654E+11	4	1.663E+11	13.268	.000 ^b
	Residual	3.046E+12	243	12536939896		
	Total	3.712E+12	247			

a. Dependent Variable: TOTALCOSTTOHOSPITAL

b. Predictors: (Constant), RR, BODYHEIGHT, HRPULSE, BODYWEIGHT

ANOVA^a

Mode	ıl	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6.433E+11	2	3.216E+11	25.681	.000 ^b
1	Residual	3.069E+12	245	12524679898		
	Total	3.712E+12	247			

a. Dependent Variable: TOTALCOSTTOHOSPITAL

b. Predictors: (Constant), HRPULSE, BODYWEIGHT

$$F = \frac{(SSE_{reduced} - SSE_{full})/(4-2)}{MSE_{full}} = \frac{(3.069 \times 10^{12} - 3.046 \times 10^{12})/2}{1.253 \times 10^{10}} = 0.9172$$

Predictive Analytics: QM901.1x

Prof U Dinesh Kumar, IIMB

Dummy Variables

U. DINESH KUMAR

Categorical Variables in Regression

• Many regression models are likely to have qualitative (categorical) variables as explanatory variable.

• Qualitative variables (categorical variables) in regression are replaced with dummy variables (or indicator variables) in regression model.

• A categorical variable with n levels are replaced with (n-1) dummy variables. The category for which no dummy variable assigned is known as "Base Category".

Dummy variable

• When there are more than one qualitative variable, it is advisable to use (n-1) dummy variables for both qualitative variables along with the intercept.

• Use of n dummy variables along with intercept will result in multicollinearity, known as dummy variable trap.

Dummy variables in Regression

• The intercept, β_0 , is the mean value of the base category.

• The coefficients attached to dummy variables are called differential intercept coefficients.

Qualitative Variables – DAD Case

- 1. Gender (2 levels)
- 2. Marital Status (2 levels)
- 3. Key Complaints (6 levels)

Model with Dummy Variable

$$Y = \beta_0 + \beta_1 x Female$$

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	211868.724	9421.879		22.487	.000
	FEMALE	-39756.800	16385.377	153	-2.426	(.016)

a. Dependent Variable: TOTALCOSTTOHOSPITAL

Y for Male = 211868.724

$Y = \beta_0 + \beta_1 \times Female + \beta_2 \times Body Weight$

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	140891.968	15719.507		8.963	.000
	FEMALE	-24698.709	15737.920	095	-1.569	.118
	BODYWEIGHT	1758.786	320.899	.332	5.481	.000

a. Dependent Variable: TOTALCOSTTOHOSPITAL

Impact of Dummy Variable

Qualitative Variable with Multiple Levels

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

Key Complaints

1. ACHD

2. CAD

3.NONE

4. OS-ASD

5. OTHER

6.RHD

Coefficientsa

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	144998.351	18119.194		8.002	.000
	ACHD	-16491.016	30827.863	036	535	.593
	OSASD	-3857.177	33410.143	008	115	.908
	CAD	146464.013	23391.779	.494	6.261	.000
	RHD	110412.812	27980.022	.276	3.946	.000
	OTHERS	29746.856	21187.428	.119	1.404	.162

a. Dependent Variable: TOTALCOSTTOHOSPITAL

U. DINESH KUMAR

Regression Model Building

• Derived variables may help to explain the variation in the response variable.

• For example, consider a credit rating problem, which can be used for approving housing loan. A bank may use factors such as loan amount and value of the property etc.

Customer	1	2	3
Loan Amount	250,000	350,000	750,000

Derived Variables

Customer	1	2	3
Loan Amount	250,000	350,000	750,000
Value of Property	300,000	500,000	1,000,000
Loan / Value	0.83	0.70	0.75

Interaction Variables

Consider a regression model of type:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$$

The interaction variable is usually an interaction between a quantitative variable and qualitative variable

One of the popular applications of regression is to predict gender discrimination.

Consider a regression model with salary as response variable Y:

$$Y = \beta_0 + \beta_1$$
 Gender + β_2 Work Experience + β_3 Gender x Work Experience

Interaction Variable

Let Gender = 1 implies Female:

Then Y for Female is:

$$Y = \beta_0 + \beta_1 + (\beta_2 + \beta_3)$$
 Work Experience

Y for Male is:

$$Y = \beta_0 + \beta_2 x$$
 Work Experience

Conditional relationship in Interaction Variables

DAD Example – Interaction Variable

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	140567.363	17017.617		8.260	.000
	MARRIED	105081.981	63666.723	.426	1.651	.100
	BODYWEIGHT	863.168	678.558	.163	1.272	.205
	MarriedWeight	-773.453	1222.429	191	633	.528

a. Dependent Variable: TOTALCOSTTOHOSPITAL

 $Y = \beta_0 + \beta_1$ Marital Status + β_2 Body Weight + β_3 Marital status x Bodyweight

Multi-collinearity

U. DINESH KUMAR

Multicollinearity

■ High correlation between explanatory variables is called multi-collinearity.

■ Multi-collinearity leads to unstable coefficients.

Always exists; matter of degree.

Multi-collinearity

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Mod	del	В	Std. Error	Beta	t	Sig.
1	(Constant)	140567.363	17017.617		8.260	.000
	MARRIED	105081.981	63666.723	.426	1.651	.100
	BODYWEIGHT	863.168	678.558	.163	1.272	.205
	MarriedWeight	-773.453	1222.429	191	633	.528

a. Dependent Variable: TOTALCOSTTOHOSPITAL

 $Y = \beta_0 + \beta_1$ Marital Status + β_2 Body Weight + β_3 Marital status x Bodyweight

Symptoms of Multi-collinearity

• High R² but few significant t ratios.

• F-test rejects the null hypothesis, but none of the individual t-tests are rejected.

• Correlations between pairs of X variables are more than with Y variables.

Effects of Multi-collinearity

- The variances of regression coefficient estimators are inflated.
- The magnitudes of regression coefficient estimates may be different.

• Adding and removing variables produce large changes in the coefficient estimates.

• Regression coefficient may have opposite sign.

Identifying Multi-collinearity Variance Inflation factor

• The variance inflation factor (VIF) is a relative measure of the increase in the variance in standard error of beta coefficient because of collinearity.

• A VIF greater than 10 indicates that collinearity is very high. A VIF value of more than 4 is not acceptable.

Variance of Beta Estimates

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$Var(\hat{\beta}_1) = \frac{S_e^2}{\sum SS_{X2} \times (1 - r_{12}^2)}$$

$$Var(\hat{\beta}_{2}) = \frac{S_{e}^{2}}{\sum SS_{X1} \times (1 - r_{12}^{2})}$$

Variance inflation factor

• Variance inflation factor associated with introducing a new variable X_i is given by:

$$VIF(X_j) = \frac{1}{1 - R_j^2}$$

 R_j^2 is the coefficient of determination for the regression of X_j as dependent variable

The standard error of the corresponding Beta is inflated by \sqrt{VIF}

$\mathbf{R}_{\mathbf{j}}$	Tolerance (1-R²)	VIF	Impact on Se(β) \sqrt{VIF}
0	1.0	1.0	1.0
0.4	0.84	1.19	1.09
0.6	0.64	1.56	1.25
0.8	0.36	2.78	1.67
0.87	0.25	4.0	2.0
0.9	0.19	5.26	2.29

DAD CASELET

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	140567.363	17017.617		8.260	.000		
	BODYWEIGHT	863.168	678.558	.163	1.272	.205	.214	4.681
	MarriedWeight	-773.453	1222.429	191	633	.528	.038	26.172
	MARRIED	105081.981	63666.723	.426	1.651	.100	.053	19.032

a. Dependent Variable: TOTALCOSTTOHOSPITAL

For Body Weight Actual $t = 1.272 \text{ x } \sqrt{4.681} = 2.752$ Corresponding p - value = 0.006

Remedies for Multi-collinearity

- Drop a variable (may result in specification bias).
- Principal component analysis (PCA)

• Partial Least Squares (PLS)

Regression Model Building

U. DINESH KUMAR

Forward Selection Method

- In forward selection procedure in which variables are sequentially entered into the model.
- The first variable considered for entry is the one with smallest p-value based on F-test.

tepping	g Meth	od Criteria	
Use p	r <u>o</u> babilit	y of F	
Entry:	.05	Re <u>m</u> oval:	.10
) Use F	<u>v</u> alue		
Entry:	3.84	Removal:	2.71

Backward elimination method

• A variable selection procedure in which all variables are entered into the equation and then sequentially removed starting with the most non-significant variable.

• At each step, the largest probability of F is removed.

- The first variable considered for entry into the equation is the one with the largest F value or smallest p-value based on F-test.
- At each step, the independent variable not in the equation that has the smallest probability of F is entered. Variables already in the regression equation are removed if their probability of F becomes sufficiently large.

tepping	y Meth	od Criteria	
Use p	r <u>o</u> babilit	y of F	
Entry:	.05	Re <u>m</u> oval:	.10
) Use F	<u>v</u> alue		
Entry:	3.84	Removal:	2.71

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	5.937E+11	1	5.937E+11	46.839	.000 ^b
	Residual	3.118E+12	246	12675357019		
	Total	3.712E+12	247			
2	Regression	7.981E+11	2	3.990E+11	33.552	.000°
	Residual	2.914E+12	245	11892977137		
	Total	3.712E+12	247			
3	Regression	8.782E+11	3	2.927E+11	25.206	.000 ^d
	Residual	2.834E+12	244	11613410239		
	Total	3.712E+12	247			
4	Regression	1.038E+12	4	2.594E+11	23.576	.000°
	Residual	2.674E+12	243	11004485969		
	Total	3.712E+12	247			
5	Regression	1.082E+12	5	2.164E+11	19.914	.000 ^f
	Residual	2.630E+12	242	10866938886		
	Total	3.712E+12	247			

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

a. Dependent Variable: TOTALCOSTTOHOSPITAL

b. Predictors: (Constant), CAD

c. Predictors: (Constant), CAD, RHD

d. Predictors: (Constant), CAD, RHD, HRPULSE

e. Predictors: (Constant), CAD, RHD, HRPULSE, MARRIED

f. Predictors: (Constant), CAD, RHD, HRPULSE, MARRIED, OTHERS

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	172909.372	8083.124		21.391	.000
	CAD	118552.991	17322.405	.400	6.844	.000
2	(Constant)	160141.238	8413.770		19.033	.000
	CAD	131321.126	17059.656	.443	7.698	.000
	RHD	95269.926	22982.901	.239	4.145	.000
3	(Constant)	69764.074	35401.596		1.971	.050
	CAD	145960.413	17755.552	.492	8.221	.000
	RHD	103214.926	22911.748	.258	4.505	.000
	HRPULSE	936.320	356.507	.155	2.626	.009
4	(Constant)	1192.407	38881.960		.031	.976
	CAD	107402.104	20031.295	.362	5.362	.000
	RHD	85665.117	22774.163	.215	3.762	.000
	HRPULSE	1471.703	374.432	.244	3.930	.000
	MARRIED	67577.738	17745.840	.274	3.808	.000
5	(Constant)	-7164.969	38859.328		184	.854
	CAD	122458.276	21256.912	.413	5.761	.000
	RHD	103103.698	24223.806	.258	4.256	.000
	HRPULSE	1342.539	377.545	.222	3.556	.000
	MARRIED	71547.412	17743.873	.290	4.032	.000
	OTHERS	33998.332	16840.465	.136	2.019	.045

Y = -7164.969 + 122458.276 CAD + 103103.698 RHD

+1342.539 HR PULSE + 71547.412 MARRIED

+ 33998.332 OTHERS

