Unification of predicate so that they can be resolved using the resolution principle

- Axiom 1 P(x, f(x))
- Axiom 2 Q(y, g(y))
- Axiom $3 \neg P(A, w) \lor \neg Q(y, z)$

Question

- Could you use resolution principle?
 - Look at 1 and 3 and try to resolve them

- o Do you have equal number of argument?
- Are these argument the same? NO

Note

- *Need to unify these two predicate*
 - 1. First, if the names do not agree then cannot do anything

- 2. Second the number of argument has to agree P(x, f(x))
- 3. Third, it has to be some agreements in term of what these argument are.

Three substitution rule for the unification process

- 1. For a variable, you can substitute an object (constant) $\langle x, A \rangle = x \leftarrow A$
- 2. For a variable, you can substitute another variable $\langle y, z \rangle$
- 3. For a variable, you can substitute a function as long as the function does not use this variable as its argument $\mathbf{w} = \mathbf{f}(\mathbf{x})$

Symbolic processing

How to unify

• An iterative algorithm to unify predicate

Concepts

- 1. Ensure that predate names are the same, so is the number of arguments and the arguments are unified
- 2. Scan P(x, y, f(w)) $\neg P(A, z, f(w))$

Posing question

Is here agreement or disagreement?

• Disagreement set $D=\{x, A\}$

Resolve: substation
$$\alpha$$
 (alpha) = $\langle x, A \rangle = \alpha \cdot A_1$ $\alpha \cdot A_2$ $Update: predicate P(A, y, f(w)) \neg P(A, z, f(w))$

Update process is taking substation and applying to expression

Now looking at the second argument and asking the same question

Is here agreement or disagreement? Yes

- Disagreement set $D=\{y, z\}$
- $\alpha (alpha) = \langle y, z \rangle$
- α (new alpha)= α (old alpha) $\cup \langle y, z \rangle$
- α (new alpha) = $\{ \langle x, A \rangle, \langle y, z \rangle \}$

 $P(A, z, f(w)) \qquad \neg P(A, z, f(w))$

MGU: most general unifier

The unification algorithm

- 2. Step K+1 assume that at step k, αk has been found if αk of A_i for i=1n are the same then αk is MGUelse

 O mean apply

determine D_k disagreement set of α_k o A_i modify α_k to get $\alpha_{k+1} = \alpha_k \cup \{\text{ substitutions }\}$ that resolve the disagreement set D_k .

3. Contain k=k+1

Example

Axioma 1
$$\rightarrow$$
 $P(A, x, f(g(y)))$

Axioma 2
$$\rightarrow$$
 $\neg P(z, h(z, w), f(w))$

$$\triangleright \alpha_0 = \{\}$$

$$\triangleright D_0 = \{A, z\} \quad \mathcal{O} = \langle z, A \rangle$$

$$\triangleright$$
 $\alpha_1 = \alpha_0 \cup \{\langle z, A \rangle\} = \{\langle z, A \rangle\}$

$$\triangleright \quad \alpha_{1} \circ A_{1} \rightarrow \quad P(A, x, f(g(y)))$$

$$\triangleright$$
 $\alpha_{1} \circ A_{2} \rightarrow P(A, h(z, w), f(w))$

Are these predicate the same?

•
$$D_1 = \{x, h(A, w)\}$$
 $\mathcal{C} = \langle x, h(A, w) \rangle$

•
$$\alpha_{2} = \alpha_{1} \cup \{\langle x, h(A,w) \rangle\} = \{\langle z, A \rangle, \langle x, h(A,w) \rangle\}$$

•
$$\alpha_2 \circ A_1 \rightarrow P(A, h(A, w)|f(g(y)))$$

•
$$\alpha_{2o} A_2 \rightarrow P(A, h(A, w), f(w))$$

•
$$D_2 = \{ w, g(y) \}$$
 $\alpha = \langle w, g(y) \rangle$

•
$$\alpha_3 = \alpha_2 \cup \{\langle x, g(y) \rangle\} = \{\langle z, A \rangle, \langle x, h(A, w) \rangle\}$$

•
$$\alpha_3 = \{ \langle z, A \rangle, \langle x, h(A, g(y)) \rangle, \langle w, h(A, g(y)) \rangle \}$$

•
$$\alpha_3 \circ A_1 \rightarrow P(A, h(A, g(y)), f(g(y)))$$

•
$$\alpha_3 \circ A_1 \rightarrow P(A, h(A, g(y)), f(g(y)))$$

Finish logic

→ Unification

1. Do you understand why we do it?

Clause form

- 2. If we have axioms and negated theorem and there are in the clause form, can be unified?
 - Axiom 1 clause
 Axiom n clause
 ¬theorem clause

How does this correspond to AI production system?

- States → database
- initial state \rightarrow axioms and negated theorem
- The final goal state $\rightarrow NIL$
- Resolution \rightarrow operators

What would be the control strategy to resolve?

Example

1. whoever can read is literate

$$\forall x (R(x)=> L(x))$$
 $R \rightarrow Read$
 $L \rightarrow Literate$

2. Dolphins are not literate

$$\forall x (D(x) = \neg L(x))$$

Theorem

Some who intelligent cannot read

$$\exists x (I(x) \land \neg R(x))$$

- \triangleright Convert 1, 2, 3, TH \rightarrow clause form
 - o Drop the quantifier

1.
$$\neg R(x) v L(x)$$

2.
$$\neg D(x) v \neg L(x)$$

3.
$$D(x) \wedge I(x)$$

$$\neg TH: \neg (\exists x (I(x) \land \neg R(x)))$$

$$\forall x \neg (I(x) \land \neg R(x))$$

$$\forall x \ (\neg \ I(x) \ v \ R(x))$$

4.
$$\neg I(x) \lor R(x)$$

Substitute $\langle x, A \rangle$

What are these control strategies?

Control strategy for resolution proof

- 1. Breath first search (BFS)

 All first level resolvents are computed first then the second level resolvents.....etc.
- 2. Set of support

 At least one of each resolvent is selected from the clauses resulting then ¬(negate) of the goal or from their descendants.
- 3. Linear input

 Each resolvent has at least one parents in the base set

 (initial state)

These strategy is complete

These strategy is heuristic

Finding answer to "Questions" using resolution refutation process

Example:

If Fido goes wherever John goes and if John is at school where is Fido?

Axioms

- \circ A₁ $\forall x (AT(John, x) => AT(Fido, x))$
- \circ **A**2 AT(John, school)

Question is

$$\exists x (AT(Fido, x)) \rightarrow x = ?$$

Sol

$$A1 \qquad \neg AT (John, x) \lor AT (Fido, x)$$

$$A2 \qquad AT (John, school)$$

$$\neg \exists x (AT (Fido, x)) \rightarrow x (\neg AT (Fido, x))$$

$$Drop$$

$$\neg \quad \exists \ x \ (AT \ (Fido \ , x)) \ \overrightarrow{\rightarrow} \ \forall \ x \ \ (\neg \ AT \ (Fido \ , x)) \ \mathbf{v} \ AT \ (Fido \ , x)$$

Knowledge Representation Logic → Structured schemes

What is the structured scheme? What is knowledge representation? Why people come it with AI?

What is the semantic net?

Having graph and nodes. The nodes could be object / entities /processes

Edge represents relation /explicit meaning

What is the typical relation?

Typical relation

- a) Decomposition
- b) Taxonomy (away of classifying object, entity that presents in the node)

Example

Mobile phone

Advantages

• Ability to specify a range of variants for system components and their decomposition

• Inheritance reuse take advantage of properties that span a class hierarchy

