5. 묶인 데이터 타입 (Collection Types)

```
1. 리스트 (List): korea = ["Korea", 'KOR', 5, 8, 4] #Olympic medals from the 2018 Pyeongchang Winter Games
    • 언제든지 데이터를 추가, 삽입, 삭제하는 것이 가능(mutable)
                                                                  for key in majors:

    요소가 순서가 있음(sequence type) → index를 이용하여 접근 가능(indexing)

                                                                      print(key)

    데이터를 연속적인 메모리 공간에 저장하고, 각 요소(element)는 인덱스를 이용하여

                                                                  CS
      임의 접근(random access)할 수 있는 가장 많이 쓰이는 기본적인 자료구조 (배열)
                                                                  EE
                                                                  MAS
2. <del>튜</del>萱 (Tuple): position = (3.14, -5, 7.5)
                                                                  ME
    • 생성된 데이터는 추가, 삽입, 삭제하는 것이 불가능(immutable)
                                                                  for ele in odds:
                                                                      print(ele)

    요소가 순서가 있음(sequence type) → index를 이용하여 접근 가능(indexing)

3. 문자열 (String): Course = "Python"

    생성된 데이터는 추가, 삽입, 삭제하는 것이 불가능(immutable)

    요소가 순서가 있음(sequence type) → index를 이용하여 접근 가능(indexing)

4. 사전 (Dictionary):
                                                  majors = {"CS": "Computer Science",
                                                            "EE": "Electrical Engineering",
    • 언제든지 데이터를 추가, 삽입, 삭제하는 것이 가능(mutable)
                                                            "MAS": "Mathematical Sciences",
    • 요소가 순서가 없음
                                                            "ME": "Mechanical Engineering"}
    • (1) 쌍으로 이루어진 데이터, (2) 다양한 속성을 가지는 하나의 객체를 관리할 때 유용
    • 데이터가 key와 value로 구성 – 따라서 key로 value의 삽입, 삭제, 탐색이 매우 빠른 자료구조 (해시테이블)
                                                    >>>  odds = {1, 3, 3, 5, 7, 7, 9}
5. 집합 (Set): odds = {1, 3, 5, 7, 9}
                                                    >>> odds
    • 언제든지 데이터를 추가, 삽입, 삭제하는 것이 가능(mutable)
                                                    {1, 3, 5, 7, 9}
                                                    >>>  odds = { 3, 7, 1, 9}
    • 요소가 순서가 없음
                                                    >>> odds
```

{1, 3, 9, 7}

묶인 데이터 타입의 메소드

	리스트	튜플	문자열	사전	집합
만들기 (빈 객체)	l=[] 또는 l=list()	t=() 또는 t=tuple()	s="" 또는 s=str()	d={} 또는 d=dict()	s={}는 사용 못함 s=set()
만들기	I1=list((1,2,3)) I2=list(range(1,4)) I3=list('ABCD') I4=[[1,2],[3,4]] I5=[[[1,2],[3,4]],[[5,6],[7,8]]]	t1=(1,2,3,4) t2=5,6,7,8 t3=tuple(l2)	s='Hello world!'	d1={'one':1, 'two':2, 'three':3} d2={'four':4, 'five':5}	s1={1,2,3,4} s2={3,4,5} s3={5,6,7}
접근하기	indexing 1[0] 4[0][1] 5[1][1][1]	indexing t[-1]	indexing s[2]	key를 사용 d1['one'] d1.get('one') d1.keys() d1.values() d1.items()	-
추가하기	13.append('E') 12.insert(1,4) 11.extend([4,5])	-	-	d1.update(d2)	s1.add(5)
삭제하기	del l1[3] 또는 del(l1[3]) l3.remove('B') l3.pop(1) l3.clear()	-	-	del d1['one'] 또는 del(d1['one']) d1.pop('two') d1.clear()	s1.discard(4) s1.remove(1) s1.pop(2) s1.clear()
추출하기	slicing 리스트명[(시작값):(끝값 +1)(:증가값)] l1[1:]	slicing 튜플명[(시작값):(끝 값+1)(:증가값)] t1[1:]	slicing 문자열명[(시작 값):(끝값+1)(:증가값)] s[1:-1:2]	-	-
기타	I2.sort() 오름차순 I2.sort(reverse=True) 내림 차순 Ien(I1), min(I1), sum(I1)	len(t1)	len(s) s.split() 문자열→리스트 ''.join(l2) 리스트→문자열	len(d1)	s2.union(s3) s2.difference(s3) s2.intersection(s3) len(s2)