學號:r05922145 系級:資工碩二 姓名:郁錦濤

1. (1%)請比較有無normalize(rating)的差別。並說明如何normalize. (collaborator:)

答:

我的normalize的方法是將rating減去它的mean值,再除以它的標準差。所有結果都是在沒有bias的時候獲得的。這種方法在進行predict事需要將model.predict的結果乘以標準差再加上mean值才是最後的結果。通過下表比較,發現在normalize的情況下,performance更好。

有無normalize(rating)	public	private
有	0.87393	0.87127
無	0.88361	0.88465

2. (1%)比較不同的latent dimension的結果。 (collaborator:)

答:

我的結果都是在normalize的情況下獲得的,在latent dimension較小的情況下,model在5個epoch的就能達到最低點,隨着latent dimension的增大,結果會overfitting。按照這種情況,latent dimension取到合適就可以,不用太大。

latent dimension	8	16	32	64	128	256
private set	0.86709	0.87127	0.89036	0.92678	0.96984	0.98765

3. (1%)比較有無bias的結果。

(collaborator:)

答:

有無bias對於結果還是有一定的影響,有bias的model下performance表現更好。 我的結果都是在normalize的情況下獲得的。因爲每個人對於電影rating的評判標準是不 一致的,每個人喜歡的電影風格不一致,對於不同的風格的作品rating的尺度也不一 樣。對於同一movie的不同user,他的rating尺度也會不一樣,這樣就會造成差異。加上 user bias和movie bias確實可以有效消除這個影響。

有無bias	public	private
有	0.86791	0.86882
無	0.87694	0.87489

4. (1%)請試著用DNN來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF和NN的結果,討論結果的差異。

(collaborator:)

答:

Layer (type)	Output	Shape	Param #	Connected to
input_1 (InputLayer)	(None,	1)		
input_2 (InputLayer)	(None,	1)	0	
embedding_1 (Embedding)	(None,	1, 128)	773120	input_1[0][0]
embedding_4 (Embedding)	(None,	1, 128)	505856	input_2[0][0]
flatten_1 (Flatten)	(None,	128)	0	embedding_1[0][0]
flatten_4 (Flatten)	(None,	128)	0	embedding_4[0][0]
embedding_3 (Embedding)	(None,	1, 23)	138920	input_1[0][0]
embedding_6 (Embedding)	(None,	1, 18)	71136	input_2[0][0]
dropout_1 (Dropout)	(None,	128)	0	flatten_1[0][0]
dropout_2 (Dropout)	(None,	128)	0	flatten_4[0][0]
flatten_3 (Flatten)	(None,	23)	0	embedding_3[0][0]
flatten_6 (Flatten)	(None,	18)	0	embedding_6[0][0]
concatenate_1 (Concatenate)	(None,	297)	0	<pre>dropout_1[0][0] dropout_2[0][0] flatten_3[0][0] flatten_6[0][0]</pre>
dense_1 (Dense)	(None,	256)	76288	concatenate_1[0][0]
dropout_3 (Dropout)	(None,	256)	0	dense_1[0][0]
batch_normalization_1 (BatchNorm	(None,	256)	1024	dropout_3[0][0]
dense_2 (Dense)	(None,	256)	65792	batch_normalization_1[0][0]
dropout_4 (Dropout)	(None,	256)	0	dense_2[0][0]
batch_normalization_2 (BatchNorm	(None,	256)	1024	dropout_4[0][0]
dense_3 (Dense)	(None,	256)	65792	batch_normalization_2[0][0]
dropout_5 (Dropout)	(None,	256)	0	dense_3[0][0]
batch_normalization_3 (BatchNorm	(None,	256)	1024	dropout_5[0][0]
dense_4 (Dense)	(None,	1)	257	batch_normalization_3[0][0]

我使用的dnn model是將從training data中獲得的user/movie id通過Embeding變成 128維的vector,再flatten,然後將user和movie的某些feature也通過Embedding變成vector,然後通過concatenate將四個embedding合在一起過含有3個256unit的Dense,激活函數使用relu,dropout=0.5,最後再通過一個dense(1)輸出一個數字,將此數字作爲rating。

通過這個方法做出來的結果比較好,在private set能有0.85242的performance。最後的best結果也是通過dnn求出來的。而通過matrix fatorization的方法最好才有0.86860多,DNN的model確實比MF的好。但是此種方法訓練過程比較慢,收斂的時間比較長

,訓練的modelb不容易overfitting (MF的mdeol如果不控制epoch非常容易overfitting)。

比較兩種方法,MF可以很快的將loss減小,model比較穩定。DNN model比較慢,但是performance比MF好。

5. (1%)請試著將movie的embedding用tsne降維後,將movie category當作label來作圖。

(collaborator:)

答:

我將movie.csv中的genre根據經驗分成5類,分別是

- (1) Animation, Children, Comedy
- (2)Fantasy, Adventure, Action, Sci-Fi
- (3)Drama, Musical, Romance
- (4)Crime, Thriller, Horror, Film-Noir, Mystery
- (5) Western, War, Documentary

每個movie取它的genre中的第一個值爲類別。在將movie embedding用tsne降維後,得到如下圖像。該圖像混亂,無法看出其中的規律。

我認爲因爲movie是multilabel的,所以直接按照我的劃分是不能夠劃分出有規律的圖像。按照我這中劃分的不同類別的電影因爲是multilabel,所以在genre的其他種類中會有相似。

6. (BONUS)(1%)試著使用除了rating以外的feature, 並說明你的作法和結果, 結果 好壞不會影響評分。 (collaborator:)

答:

觀察user.csv和movie.csv,user和movie的很多feature我覺得都會影響最終的結果。user的gender/occupation和movie的genre我覺得是比較重要的feature,所以我在user中抽取了以01表示的gender和以one-hot encoding表示的occupation形成user_info,在movie中的genre提取出來,用one-hot encoding方式表示,形成movie_info。最後將之前的embedding layer的user matrix和movie matrix相互concatente,通過三層dense(256),最後過一層dense(1),輸出結果爲rating。

這種方法對performance確實有很大的提高,最後結果能達到0.85204。