Algebraické manipulace pro pokročilé

Úloha 1. Nalezněte všechna řešení soustav a dokažte, že žádná další neexistují.

1.
$$\begin{cases} x^2 + 1 = 2y \\ y^2 + 1 = 2x \end{cases}$$
2.
$$\begin{cases} x^2 - 3y + 4 = z \\ y^2 - 3z + 4 = x \\ z^2 - 3x + 4 = y \end{cases}$$
3.
$$\begin{cases} x^2 - 3y + 3 = z \\ y^2 - 3z + 4 = x \\ z^2 - 3x + 5 = y \end{cases}$$
4.
$$\begin{cases} 2x^2 + y + z = 2 \\ y^2 + z + x = 2 \\ z^2 + x + y = 2 \end{cases}$$
4.
$$\begin{cases} 2x^2 + 2xy + 1 = 4z \\ 2y^2 + 2yz + 1 = 4x \end{cases}$$
6.
$$\begin{cases} x^2 + y^2 + z = 2 \\ y^2 + z^2 + x = 2 \end{cases}$$

$$\begin{cases} x^2 + y^2 + z = 2 \\ y^2 + z^2 + x = 2 \end{cases}$$

Úloha 2. Dokažte, že pro všechna reálná čísla x, y platí $x^2 + y^2 \ge 2xy$ a rozhodněte, ve kterých případech nastane rovnost.

Úloha 3. Dokažte, že pro všechna $kladn\acute{a}$ reálná čísla x,y platí $\frac{x}{y}+\frac{y}{x}\geq 2$ a rozhodněte, ve kterých případech nastane rovnost.

Úloha 4. Dokažte, že pro všechna reálná čísla x, y, z platí $x^2 + y^2 + z^2 \ge xy + yz + zx$ a rozhodněte, ve kterých případech nastane rovnost.

Úloha 5 (66–C–III–4). Dokažte, že pro všechna kladná reálná čísla $a \le b \le c$ platí

$$(-a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \ge 3$$

Úloha 6 (61–C–III–1). Pro libovolná reálná čísla $x,\,y,\,z$ splňující x < y < z dokažte nerovnost

$$x^{2} - y^{2} + z^{2} > (x - y + z)^{2}$$

Úloha 7 (63–C–III–3). Pro kladná reálná čísla $a,\,b,\,c$ platí $c^2+ab=a^2+b^2.$ Ukažte, že pak také platí $c^2+ab\leq ac+bc.$

Úloha 8 (63–C–II–1). Určete, jakých hodnot může nabývat výraz V = ab+bc+cd+da, splňují-li reálná čísla a, b, c, d dvojici podmínek

$$2a - 5b + 2c - 5d = 4,$$

$$3a + 4b + 3c + 4d = 6.$$

Úloha 9 (60–C–III–4). Nechť x, y, z jsou kladná reálná čísla. Dokažte, že čísla

$$x + y + z - xyz$$
 a $xy + yz + zx - 3$

nemohou být současně záporná.

Úloha 10 (65–C–III–1). Najděte nejmenší možnou hodnotu výrazu $3x^2 - 12xy + y^4$, ve kterém x a y jsou libovolná nezáporná celá čísla.

Výsledky soustav rovnic

1. $\{[1;1]\}$ 2. $\{[2;2;2]\}$ 3. \emptyset 4. $\{\left[\frac{1}{2};\frac{1}{2};\frac{1}{2}\right]\}$ 5. $\{[-1-\sqrt{3};-1-\sqrt{3};-1-\sqrt{3}];$ $[-1+\sqrt{3};-1+\sqrt{3};-1+\sqrt{3}];[1;1;0];[1;0;1];[0;1;1]\}$ 6. $\{\left[\frac{1}{4}(-1-\sqrt{17});\frac{1}{4}(-1-\sqrt{17});\frac{1}{4}(-1-\sqrt{17});\frac{1}{4}(-1-\sqrt{17});\frac{1}{4}(-1+\sqrt{17});\frac{1}{4}(-1$