Commodity Prices and EM's Political, Country, Sovereign Risk Analysis

This analysis will delve into the impact the risk variables explored in the original analysis regarding EM's Economic Output and focus how a certain EM's Country, Political, and Sovereign risk impact commodity prices.

Data Importing and Visualization and Exploring Key **Variables**

In [164]:

import pandas as pd import numpy as np

year=[1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,19 99,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014, 2015,2016] prices=[96.2167, 96.675, 102.208, 131.117, 132.325, 124.025, 117.042, 113.858 , 108.258, 126.508, 137.575, 134.35, 131.667, 114.4, 98.4833, 99.9917, 96.375, 97.3167, 104.858, 125.783, 140.392, 182.825, 206.525, 256.033, 212.742, 256.04 2, 302.0, 276.783, 258.183, 242.508, 201.575, 200.083] SovereignRisk=[25.0, 23.76, 24.28, 26.08, 27.45, 29.4, 32.38, 36.46, 37.83, 3 8.13, 38.0, 38.71, 37.59, 34.79, 35.45, 35.88, 36.36, 36.55, 37.32, 38.69, 39. 36, 40.31, 40.38, 39.49, 38.74, 40.73, 40.79, 40.56, 40.65, 40.08, 38.79, 39.0 4] PoliticalRisk=[54.61, 53.25, 53.35, 53.61, 54.13, 55.37, 56.62, 60.37, 63.31, 66.68, 67.05, 68.0, 70.12, 68.56, 65.19, 64.43, 66.72, 65.84, 66.74, 67.77, 6 7.67, 67.69, 67.25, 66.6, 66.45, 65.86, 64.73, 63.87, 63.51, 63.17, 63.03, 63. 67] CountryRisk=[41.81, 40.98, 41.29, 41.6, 41.82, 42.73, 43.96, 46.59, 48.84, 5 1.15, 51.37, 52.23, 53.15, 51.06, 48.8, 50.46, 51.62, 50.91, 51.85, 53.08, 53. 08, 53.36, 53.4, 52.61, 50.27, 51.08, 50.96, 50.43, 50.36, 50.04, 49.74, 49.62 ExportsEM=[94.05, 90.76, 91.12, 90.37, 90.79, 91.38, 90.2, 89.55, 89.02, 89.2 , 89.65, 90.02, 89.98, 88.16, 88.97, 91.41, 90.75, 90.91, 92.02, 93.63, 95.73, 97.47, 98.23, 100.32, 96.56, 98.76, 100.78, 100.0, 100.13, 99.54, 95.25, 94.62 ImportsIE=[96.56, 94.15, 94.53, 93.76, 94.16, 94.76, 93.87, 93.43, 93.04, 93. 05, 93.22, 93.61, 93.58, 92.2, 92.7, 94.53, 94.09, 94.24, 94.88, 95.91, 97.3, 98.36, 98.81, 100.08, 97.79, 99.25, 100.51, 100.0, 100.14, 99.78, 96.91, 96.53 ImportsEM=[63.21, 50.17, 51.17, 50.21, 51.4, 52.15, 46.5, 45.04, 42.92, 45.24, 47.52, 47.57, 47.77, 41.05, 41.74, 49.11, 46.65, 47.37, 51.51, 59.23, 68.47, 8 0.36, 85.77, 100.88, 77.56, 94.3, 109.65, 100.0, 101.39, 96.84, 71.62, 70.38]

PriceRiskIMEX=pd.DataFrame({'Commodity Prices':prices,'Sovereign Risk':Soverei gnRisk,'Political Risk':PoliticalRisk,'Country Risk':CountryRisk,'ImportsIE':I mportsIE, 'ExportsEM':ExportsEM, 'ImportsEM':ImportsEM}, index=year) PriceRiskIMEX

Out[164]:

	Commodity Prices	Sovereign Risk	Political Risk	Country Risk	ImportsIE	ExportsEM	ImportsEM
1985	96.2167	25.00	54.61	41.81	96.56	94.05	63.21
1986	96.6750	23.76	53.25	40.98	94.15	90.76	50.17
1987	102.2080	24.28	53.35	41.29	94.53	91.12	51.17
1988	131.1170	26.08	53.61	41.60	93.76	90.37	50.21
1989	132.3250	27.45	54.13	41.82	94.16	90.79	51.40
1990	124.0250	29.40	55.37	42.73	94.76	91.38	52.15
1991	117.0420	32.38	56.62	43.96	93.87	90.20	46.50
1992	113.8580	36.46	60.37	46.59	93.43	89.55	45.04
1993	108.2580	37.83	63.31	48.84	93.04	89.02	42.92
1994	126.5080	38.13	66.68	51.15	93.05	89.20	45.24
1995	137.5750	38.00	67.05	51.37	93.22	89.65	47.52
1996	134.3500	38.71	68.00	52.23	93.61	90.02	47.57
1997	131.6670	37.59	70.12	53.15	93.58	89.98	47.77
1998	114.4000	34.79	68.56	51.06	92.20	88.16	41.05
1999	98.4833	35.45	65.19	48.80	92.70	88.97	41.74
2000	99.9917	35.88	64.43	50.46	94.53	91.41	49.11
2001	96.3750	36.36	66.72	51.62	94.09	90.75	46.65
2002	97.3167	36.55	65.84	50.91	94.24	90.91	47.37
2003	104.8580	37.32	66.74	51.85	94.88	92.02	51.51
2004	125.7830	38.69	67.77	53.08	95.91	93.63	59.23
2005	140.3920	39.36	67.67	53.08	97.30	95.73	68.47
2006	182.8250	40.31	67.69	53.36	98.36	97.47	80.36
2007	206.5250	40.38	67.25	53.40	98.81	98.23	85.77
2008	256.0330	39.49	66.60	52.61	100.08	100.32	100.88
2009	212.7420	38.74	66.45	50.27	97.79	96.56	77.56
2010	256.0420	40.73	65.86	51.08	99.25	98.76	94.30
2011	302.0000	40.79	64.73	50.96	100.51	100.78	109.65
2012	276.7830	40.56	63.87	50.43	100.00	100.00	100.00
2013	258.1830	40.65	63.51	50.36	100.14	100.13	101.39
2014	242.5080	40.08	63.17	50.04	99.78	99.54	96.84
2015	201.5750	38.79	63.03	49.74	96.91	95.25	71.62
2016	200.0830	39.04	63.67	49.62	96.53	94.62	70.38

```
In [165]:
          import numpy as np
          import matplotlib.pyplot as plt
          from pylab import figure
          %matplotlib inline
          fig,axe = plt.subplots()
          PriceRiskIMEX['Sovereign Risk'].plot.bar(figsize =(15,6))
          axe.set_ylabel('Sovereign Risk (ICRG)', fontsize=20)
          axe.set_title(" EM's Sovereign Risk (ICRG)' 1985-2016", loc='center', fontsize
          =18, fontweight = "bold" )
```

Out[165]: Text(0.5, 1.0, " EM's Sovereign Risk (ICRG)' 1985-2016")


```
In [166]:
          fig, axe = plt.subplots()
          PriceRiskIMEX[ 'Political Risk'].plot.bar(figsize =(15,6))
          axe.set ylabel('Political Risk (ICRG)', fontsize=20)
          axe.set_title(" EM's Political Risk (ICRG)' 1985-2016", loc='center', fontsize
          =18, fontweight = "bold" )
```

Out[166]: Text(0.5, 1.0, " EM's Political Risk (ICRG)' 1985-2016")


```
In [167]:
          fig, axe = plt.subplots()
          PriceRiskIMEX[ 'Country Risk'].plot.bar(figsize =(15,6))
          axe.set_ylabel('Country Risk (ICRG)', fontsize=20)
          axe.set title("EM's Country Risk (ICRG)' 1985-2016", loc='center', fontsize=18
          , fontweight = "bold" )
```

Out[167]: Text(0.5, 1.0, "EM's Country Risk (ICRG)' 1985-2016")


```
In [168]:
          fig, axe = plt.subplots()
          PriceRiskIMEX[ 'Commodity Prices'].plot.bar(figsize =(15,6))
          axe.set_ylabel('Price', fontsize=20)
          axe.set title("Commodity Prices(Current US Dollar) 1985-2016", loc='center', f
          ontsize=18, fontweight = "bold" )
```

Out[168]: Text(0.5, 1.0, 'Commodity Prices(Current US Dollar) 1985-2016')


```
In [169]:
          fig, axe = plt.subplots()
          PriceRiskIMEX['ExportsEM'].plot.bar(figsize =(15,6))
          axe.set_ylabel('Ratio of Exports to GDP', fontsize=20)
          axe.set title("Exports of Commodities by Emerging Markets 1985-2016", loc='cen
          ter', fontsize=18, fontweight = "bold" )
```

Out[169]: Text(0.5, 1.0, 'Exports of Commodities by Emerging Markets 1985-2016')


```
In [170]:
          fig, axe = plt.subplots()
          PriceRiskIMEX['ImportsEM'].plot.bar(figsize =(15,6))
          axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
          axe.set title("Imports of Commodities by Emerging Markets 1985-2016", loc='cen
          ter', fontsize=18, fontweight = "bold" )
```

Out[170]: Text(0.5, 1.0, 'Imports of Commodities by Emerging Markets 1985-2016')


```
In [171]:
          fig, axe = plt.subplots()
          PriceRiskIMEX['ImportsIE'].plot.bar(figsize =(15,6))
          axe.set_ylabel('Ratio of Imports to GDP', fontsize=20)
          axe.set_title("Imports of Commodities by Industrialized Economies 1985-2016",
          loc='center', fontsize=18, fontweight = "bold" )
```

Out[171]: Text(0.5, 1.0, 'Imports of Commodities by Industrialized Economies 1985-201 6')


```
In [172]:
          import matplotlib.pyplot as plt
          from pylab import figure
          %matplotlib inline
          ax=PriceRiskIMEX['Commodity Prices'].plot(label='Prices',figsize=(15,6))
          ax.set_ylabel('Commodity Prices (Current US Dollar)',fontsize=20)
          ax.set xlabel('Year')
          ax2=PriceRiskIMEX['Sovereign Risk'].plot(secondary_y=True,label='Sovereign Ris
          k')
          ax2.set_ylabel('Sovereign Risk (ICRG)',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Effect of Sovereign Risk on Commodity Prices', fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
ax=PriceRiskIMEX['Commodity Prices'].plot(label='Prices',figsize=(15,6))
In [173]:
          ax.set_ylabel('Commodity Prices (Current US Dollar)',fontsize=20)
          ax.set_xlabel('Year')
          ax2=PriceRiskIMEX['Political Risk'].plot(secondary_y=True,label='Political Ris
          ax2.set_ylabel('Political Risk (ICRG)',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Effect of Political Risk on Commodity Prices', fontsize=20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [174]: ax=PriceRiskIMEX['Commodity Prices'].plot(label='Prices',figsize=(15,6))
    ax.set_ylabel('Commodity Prices (Current US Dollar)',fontsize=20)
    ax.set_xlabel('Year')

ax2=PriceRiskIMEX['Country Risk'].plot(secondary_y=True,label='Country Risk')
    ax2.set_ylabel('Country Risk (ICRG)',fontsize=25)

plt.legend(loc='upper left')

plt.title('Effect of Country Risk on Commodity Prices',fontsize=20)

plt.figure(figsize=(10,10))
plt.show()
```


<Figure size 720x720 with 0 Axes>

```
ax=PriceRiskIMEX['ExportsEM'].plot(label='ExportsEM',figsize=(15,6))
In [175]:
          ax.set_ylabel('Ratio of Exports to GDP ',fontsize=20)
          ax.set_xlabel('Year',fontsize=25)
          ax2=PriceRiskIMEX['Commodity Prices'].plot(secondary y=True,label='Commodity P
          rices')
          ax2.set_ylabel('Prices',fontsize=25)
          plt.legend(loc='upper left')
          plt.title('Exports of Commodities by EM vs Commodity Prices 1985-2016',fontsiz
          e = 20)
          plt.figure(figsize=(10,10))
          plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [176]: ax=PriceRiskIMEX['ImportsEM'].plot(label='ExportsEM',figsize=(15,6))
    ax.set_ylabel('Ratio of Imports to GDP ',fontsize=20)
    ax.set_xlabel('Year',fontsize=25)
    ax2=PriceRiskIMEX['Commodity Prices'].plot(secondary_y=True,label='Commodity Prices')
    ax2.set_ylabel('Prices',fontsize=25)

plt.legend(loc='upper left')
    plt.title('Imports of Commodities by EM vs Commodity Prices 1985-2016',fontsize=20)
    plt.figure(figsize=(10,10))
plt.show()
```


<Figure size 720x720 with 0 Axes>

```
In [177]: ax=PriceRiskIMEX['ImportsIE'].plot(label='ExportsEM',figsize=(15,6))
    ax.set_ylabel('Ratio of Imports to GDP ',fontsize=20)
    ax.set_xlabel('Year',fontsize=25)
    ax2=PriceRiskIMEX['Commodity Prices'].plot(secondary_y=True,label='Commodity Prices')
    ax2.set_ylabel('Prices',fontsize=25)

plt.legend(loc='upper left')
    plt.title('Imports of Commodities by Industrialized Economies vs Commodity Prices 1985-2016',fontsize=20)
    plt.figure(figsize=(10,10))

plt.show()
```


<Figure size 720x720 with 0 Axes>

Out[178]: 0.5831224067321231


```
In [179]:
          import statsmodels.formula.api as smf
          import statsmodels.api as sm
          x=PriceRiskIMEX['Sovereign Risk']
          y=PriceRiskIMEX['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

==========		========		=======	=======	=====	
= Dep. Variable: 0	Commod	ity Prices	R-squared:			0.34	
Model:		OLS	Adj. R-squ	uared:	0.31		
8 Method:	Lea	st Squares	F-statisti	.c:		15.4	
6 Date:	Wed. 0	6 Nov 2019	Prob (F-st	atistic):	0	.00046	
1	nea, o		·	·			
Time:		01:52:17	Log-Likeli	.hood:		-170.8	
No. Observations:	:	32	AIC:			345.	
7 Df Residuals: 7		30	BIC:			348.	
Df Model:		1					
Covariance Type:		nonrobust	:=======	:=======	========	=====	
0.975]	coef	std err	t	P> t	[0.025		
const 7.852	-93.7816	64.454	-1.455	0.156	-225.415	3	
Sovereign Risk 0.613	6.9848	1.777	3.932	0.000	3.356	1	
=======================================	=======	========	========	=======	=======	=====	
Omnibus:		4.028	Durbin-Wat	son:		0.19	
Prob(Omnibus):		0.133	Jarque-Ber	a (JB):		2.11	
Skew:		0.358	Prob(JB):			0.34	
8 Kurtosis: 4.		1.965	Cond. No.			25	
=======================================	=======	========	========	=======	=======	=====	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

C:\Users\ishaa\Anaconda3NEW1\lib\site-packages\numpy\core\fromnumeric.py:238 9: FutureWarning: Method .ptp is deprecated and will be removed in a future v ersion. Use numpy.ptp instead.

return ptp(axis=axis, out=out, **kwargs)

```
In [180]: PriceRiskIMEX.plot.scatter(x='Political Risk',y='Commodity Prices',figsize=(15
,6))
    PriceRiskIMEX['Political Risk'].corr(PriceRiskIMEX['Commodity Prices'])
```

Out[180]: 0.25313536002492953


```
In [181]: x=PriceRiskIMEX['Political Risk']
          y=PriceRiskIMEX['Commodity Prices']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
               Commodity Prices
                             R-squared:
                                                       0.06
Model:
                         OLS
                             Adj. R-squared:
                                                      0.03
                                                      2.05
Method:
                 Least Squares
                             F-statistic:
Date:
              Wed, 06 Nov 2019
                             Prob (F-statistic):
                                                      0.16
Time:
                     01:52:17
                              Log-Likelihood:
                                                     -176.4
No. Observations:
                              AIC:
                                                       356.
                          32
Df Residuals:
                          30
                              BIC:
                                                      359.
Df Model:
                           1
Covariance Type:
                     nonrobust
______
                     std err
                               t P>|t|
                                               [0.025
               coef
0.9751
            -38.2247
                     136.676 -0.280
                                       0.782 -317.355
                                                        24
const
0.906
Political Risk
            3.0851
                       2.153 1.433
                                       0.162
                                                -1.311
Omnibus:
                        4.280
                             Durbin-Watson:
                                                       0.14
Prob(Omnibus):
                        0.118
                             Jarque-Bera (JB):
                                                       3.92
Skew:
                        0.810
                              Prob(JB):
                                                       0.14
Kurtosis:
                        2.437
                              Cond. No.
                                                       79
Warnings:
```

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
In [182]: PriceRiskIMEX.plot.scatter(x='Country Risk',y='Commodity Prices',figsize=(15,6
))
    PriceRiskIMEX['Country Risk'].corr(PriceRiskIMEX['Commodity Prices'])
```

Out[182]: 0.36031849863290183


```
In [183]: x=PriceRiskIMEX['Country Risk']
          y=PriceRiskIMEX['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

		OLS Regres				
=						
Dep. Variable: 0	Comm	odity Prices	R-square	:a:		0.13
Model: 1		OLS	Adj. R-s	quared:		0.10
Method:	L	east Squares	F-statis	tic:		4.47
6 Date:	Wed,	06 Nov 2019	Prob (F-	statistic):		0.042
8 Time: 9		01:52:18	Log-Like	elihood:		-175.2
9 No. Observations 6	:	32	AIC:			354.
O Df Residuals: 5		30	BIC:			357.
Df Model: Covariance Type:		1 nonrobust				
=======================================	======					======
75]	coef	std err	t	P> t	[0.025	0.9
const -1 419	16.4289	129.683	-0.898	0.376	-381.277	148.
Country Risk 952	5.5726	2.634	2.116	0.043	0.193	10.
=======================================	=======	========	=======	:=======	=======	
- Omnibus: 0		3.435	Durbin-W	latson:		0.14
Prob(Omnibus): 3		0.180	Jarque-B	Bera (JB):		3.07
Skew: 5		0.693	Prob(JB)	:		0.21
Kurtosis: 4.		2.381	Cond. No).		60
=======================================	=======	========	=======	:=======	=======	======

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
In [184]: x=PriceRiskIMEX['ExportsEM']
          y=PriceRiskIMEX['Commodity Prices']
          x=sm.add constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results										
= Dep. Variable:	Commodity Prices			R-squared:						
4 Model:		OLS		R-squared:		0.81				
8 Method:	Least Squa	res	_	tistic:		131.				
3 Date:	Wed, 06 Nov 2				c):	1.75e-1				
2 Time:	01:52			ikelihood:	•	-150.6				
0 No. Observations:		32	AIC:			305.				
2 Df Residuals:		30	BIC:			308.				
1 Df Model:		1								
Covariance Type:	nonrob =======		:====:							
= coe	f std err				[0.025	0.97				
				0.000	-1378.567	-913.63				
ExportsEM 13.949	6 1.217	11	. 459	0.000	11.463	16.43				
======================================	2.	===== 504	Durbi	in-Watson:	=======	0.40				
Prob(Omnibus):	0.	286	Jarqı	ue-Bera (JB)	:	2.22				
Skew:	-0.	616	Prob	(JB):		0.32				
Kurtosis:	2.	615	Cond	. No.		2.18e+0				
=	=======	====	:====:		=======	=======				

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 2.18e+03. This might indicate that there a

strong multicollinearity or other numerical problems.

```
PriceRiskIMEX.plot.scatter(x='ExportsEM',y='Commodity Prices',figsize=(15,6))
PriceRiskIMEX['Country Risk'].corr(PriceRiskIMEX['Commodity Prices'])
In [185]:
```

Out[185]: 0.36031849863290183


```
In [186]: | x=PriceRiskIMEX['ImportsEM']
           y=PriceRiskIMEX['Commodity Prices']
           x=sm.add constant(x)
           est= sm.OLS(y,x).fit()
           print(est.summary())
```

```
OLS Regression Results
Dep. Variable:
               Commodity Prices R-squared:
                                                     0.90
Model:
                        OLS
                            Adj. R-squared:
                                                     0.89
Method:
                Least Squares
                                                     269.
                            F-statistic:
2
                            Prob (F-statistic):
Date:
             Wed, 06 Nov 2019
                                                  1.58e-1
Time:
                     01:52:19
                             Log-Likelihood:
                                                   -140.7
No. Observations:
                             AIC:
                                                     285.
                         32
Df Residuals:
                         30
                             BIC:
                                                     288.
                          1
Df Model:
Covariance Type:
                    nonrobust
_______
                  std err
                            t P>|t|
                                           [0.025
                                                    0.97
            coef
const -20.1673 11.381 -1.772 0.087 -43.410
                                                     3.07
ImportsEM
          2.7866
                   0.170
                          16.406
                                   0.000
                                            2.440
                                                     3.13
Omnibus:
                       5.349
                            Durbin-Watson:
                                                     0.45
Prob(Omnibus):
                       0.069
                            Jarque-Bera (JB):
                                                     3.91
Skew:
                      -0.820
                            Prob(JB):
                                                     0.14
Kurtosis:
                       3.493
                             Cond. No.
                                                     21
Warnings:
```

[1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.

```
In [187]: PriceRiskIMEX.plot.scatter(x='ImportsEM',y='Commodity Prices',figsize=(15,6))
    PriceRiskIMEX['Country Risk'].corr(PriceRiskIMEX['Commodity Prices'])
```

Out[187]: 0.36031849863290183

In [188]: PriceRiskIMEX.plot.scatter(x='ImportsIE',y='Commodity Prices',figsize=(15,6))
 PriceRiskIMEX['Country Risk'].corr(PriceRiskIMEX['Commodity Prices'])

Out[188]: 0.36031849863290183


```
In [189]: | x=PriceRiskIMEX['ImportsIE']
          y=PriceRiskIMEX['Commodity Prices']
          x=sm.add constant(x)
           est= sm.OLS(y,x).fit()
           print(est.summary())
```

OLS Regression Results												
= Dep. Variable: Commodity Prices					uared:	=======	0.79					
6 Model:			OLS	Adj.	R-squared:		0.78					
9 Method: 9		Least Squa	ares	F-sta	atistic:		116.					
Date:		Wed, 06 Nov 2	2019	Prob	(F-statisti	c):	7.20e-1					
2 Time: 9		01:52	2:20	Log-l	ikelihood:		-152.0					
No. Observa	tions:		32	AIC:			308.					
Df Residual	.s:		30	BIC:			311.					
Df Model: Covariance	Туре:	nonrob	1 oust									
	======	=========		=====	:======		=======					
= 51	coe	f std err		t	P> t	[0.025	0.97					
-												
	-1901.870	5 190.488	-9	.984	0.000	-2290.899	-1512.84					
2 ImportsIE 0	21.490	7 1.988	10	.812	0.000	17.431	25.55					
_			=====	=====			=======					
= Omnibus:		2.	.859	Durbi	n-Watson:		0.45					
5 Prob(Omnibu	ıs):	0.	.239	Jarque-Bera (JB):			2.29					
5 Skew:		-0.	.652	Prob	(JB):		0.31					
7 Kurtosis:		2.	.866	Cond	No.		3.57e+0					
3												
	=======	========	=====	=====	:======:	=======	=======					
=												

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 3.57e+03. This might indicate that there a

strong multicollinearity or other numerical problems.

Multivariate Regression Analysis

```
In [190]: x=PriceRiskIMEX[['Sovereign Risk', 'Political Risk', 'Country Risk', 'ExportsE
          M','ImportsIE','ImportsEM']]
          y=PriceRiskIMEX['Commodity Prices']
          x=sm.add_constant(x)
          est= sm.OLS(y,x).fit()
          print(est.summary())
```

OLS Regression Results

=========	=======		=======		=======		
= Dep. Variable:	Commod	lity Prices	R-squared:	:		0.97	
6 Model:		OLS	Adj. R-squ	uared:	0.97		
1 Method:	Lea	ast Squares	F-statist:	ic:		172.	
2 Date:	Wed, 0	06 Nov 2019	Prob (F-st	tatistic):	4	.35e-1	
9 Time:	-	01:52:20	Log-Likeli	ihood.		-117.5	
8			_	inou.			
No. Observation 2	S:	32	AIC:			249.	
Df Residuals: 4		25	BIC:			259.	
Df Model: Covariance Type		6 nonrobust					
=====						=====	
0.975]	coef	std err			-		
const	3076.5670	749.263	4.106	0.000	1533.430	461	
9.704 Sovereign Risk	4.6799	1.191	3.929	0.001	2.227		
	1.4478	2.860	0.506	0.617	-4.443		
•	-6.4453	4.330	-1.488	0.149	-15.364		
2.473 ExportsEM	17.0502	16.387	1.040	0.308	-16.699	5	
•	-50.0595	22.239	-2.251	0.033	-95.862	-	
4.257 ImportsEM 6.920	5.3500	0.762	7.020	0.000	3.781		
=========	=======		=======		=======	=====	
= Omnibus:		0.181	Durbin-Wat	tson:		1.42	
6 Prob(Omnibus):		0.913	Jarque-Bei	ra (JB):		0.24	
9 Skew:		-0.158	Prob(JB):			0.88	
3 Kurtosis: 4		2.706	Cond. No.		6	.79e+0	
=======================================	=======		=======		=======	=====	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correc tly specified.
- [2] The condition number is large, 6.79e+04. This might indicate that there a

re strong multicollinearity or other numerical problems.

-As seen with the completed correleations and the regression analysis with all of the variables combined, Sovereign Risk is the leading risk factor in this model that has a high enough impact on **Commodity Prices.**

Machine Learning Classification: How Country, Political, and Sovereign Risk will impact Commodity Prices

EMCPRML=pd.read_excel (r"C:\New folder\RiskCPData.xlsx") **EMCPRML**

Out[191]:

	Category			Catagory of		Category of			
	Year	of Political Risk according to ICRG	Political Risk	•		Country Risk according to ICRG	Country Risk	Commodity Prices	
0	1985	Very High Risk	54.311404	Very High Risk	24.956140	Very Low Risk	41.607493	96.2167	
1	1986	Very High Risk	52.978070	Very High Risk	23.640351	Very Low Risk	40.832237	96.6750	
2	1987	High Risk	53.026316	High Risk	24.131579	Very Low Risk	41.107456	102.2080	
3	1988	High Risk	53.065789	High Risk	25.846491	Very Low Risk	41.325658	131.1170	
4	1989	High Risk	53.741228	High Risk	27.311404	Very Low Risk	41.560307	132.3250	
5	1990	High Risk	55.100877	High Risk	29.333333	Very Low Risk	42.598684	124.0250	
6	1991	Moderate Risk	56.228070	Moderate Risk	32.399123	Very Low Risk	43.816886	117.0420	
7	1992	Low Risk	60.134722	Low Risk	36.590278	Very Low Risk	46.523264	113.8580	
8	1993	Low Risk	63.200000	Low Risk	37.912500	Very Low Risk	48.798958	108.2580	
9	1994	Low Risk	66.479167	Low Risk	38.233333	Very Low Risk	51.075000	126.5080	
10	1995	Low Risk	66.683333	Low Risk	38.066667	Very Low Risk	51.177083	137.5750	
11	1996	Low Risk	67.495833	Low Risk	38.729167	Very Low Risk	51.990625	134.3500	
12	1997	Low Risk	69.587500	Low Risk	37.633333	Very Low Risk	52.894792	131.6670	
13	1998	Low Risk	67.825000	Low Risk	34.797917	Very Low Risk	50.618750	114.4000	
14	1999	Low Risk	64.558333	Low Risk	35.470833	Very Low Risk	48.350792	98.4833	
15	2000	Low Risk	63.683333	Low Risk	36.064583	Very Low Risk	50.022917	99.9917	
16	2001	Low Risk	66.133333	Low Risk	36.518750	Very Low Risk	51.238542	96.3750	
17	2002	Low Risk	65.300000	Low Risk	36.704167	Very Low Risk	50.562500	97.3167	
18	2003	Low Risk	66.183333	Low Risk	37.404167	Very Low Risk	51.552083	104.8580	
19	2004	Low Risk	67.306250	Low Risk	38.854167	Very Low Risk	52.873958	125.7830	
20	2005	Low Risk	67.189583	Low Risk	39.608333	Very Low Risk	52.891667	140.3920	

			_	-		-			
ln	Commodity Prices	Country Risk	Category of Country Risk according to ICRG	Sovereign Risk	Category of SovereignRisk according to ICRG	Political Risk	Category of Political Risk according to ICRG	Year	
	182.8250	53.188542	Very Low Risk	40.583333	Very Low Risk	67.225000	Very Low Risk	2006	21
	206.5250	53.243750	Very Low Risk	40.716667	Very Low Risk	66.777083	Very Low Risk	2007	22
	256.0330	52.481042	Very Low Risk	39.827083	Very Low Risk	66.199583	Very Low Risk	2008	23
	212.7420	50.180208	Very Low Risk	39.002083	Low Risk	66.125000	Low Risk	2009	24
	256.0420	51.211458	Very Low Risk	41.262500	Very Low Risk	65.666667	Very Low Risk	2010	25
	302.0000	51.157292	Very Low Risk	41.337500	Very Low Risk	64.593750	Very Low Risk	2011	26
	276.7830	50.612500	Very Low Risk	41.083333	Very Low Risk	63.718750	Very Low Risk	2012	27
	258.1830	50.480208	Very Low Risk	41.072917	Very Low Risk	63.427083	Very Low Risk	2013	28
	242.5080	50.048958	Very Low Risk	40.608333	Very Low Risk	63.027083	Very Low Risk	2014	29
	201.5750	49.544792	Very Low Risk	39.339583	Low Risk	62.668750	Low Risk	2015	30
	200.0830	49.477083	Very Low Risk	39.550000	Low Risk	63.327083	Low Risk	2016	31
•									4

```
In [192]: EMCPRML.dtypes
Out[192]: Year
                                                                      int64
            Category of Political Risk according to ICRG
                                                                     object
            Political Risk
                                                                    float64
            Category of SovereignRisk according to ICRG
                                                                     object
            Sovereign Risk
                                                                    float64
            Category of Country Risk according to ICRG
                                                                     object
                                                                    float64
            Country Risk
            Commodity Prices
                                                                    float64
             Impact
                                                                     object
            dtype: object
In [193]: | EMCPRML.columns
Out[193]: Index(['Year', 'Category of Political Risk according to ICRG',
                    'Political Risk', 'Category of SovereignRisk according to ICRG ', 'Sovereign Risk', 'Category of Country Risk according to ICRG ',
                    'Country Risk', 'Commodity Prices ', ' Impact '],
```

dtype='object')

```
In [194]:
         EMCPRML['Category of Political Risk according to ICRG ']=EMCPRML['Category of
           Political Risk according to ICRG '].astype('category')
          EMCPRML['Category of SovereignRisk according to ICRG ']=EMCPRML['Category of S
          overeignRisk according to ICRG '].astype('category')
          EMCPRML['Category of Country Risk according to ICRG ']=EMCPRML['Category of C
          ountry Risk according to ICRG '].astype('category')
          EMCPRML.dtypes
```

Out[194]: Year int64 Category of Political Risk according to ICRG category Political Risk float64 Category of SovereignRisk according to ICRG category Sovereign Risk float64 Category of Country Risk according to ICRG category Country Risk float64 Commodity Prices float64 Impact object dtype: object

```
In [196]: fig, axe = plt.subplots()
          EMCPRML[' Impact '].value_counts().plot.barh(figsize =(10,6))
          axe.set_ylabel("Impact", fontsize=18)
          axe.set_title("Commodity Prices' Impact", loc='center', fontsize=18, fontweigh
          t = "bold")
```

Out[196]: Text(0.5, 1.0, "Commodity Prices' Impact")


```
In [197]:
          fig, axe = plt.subplots()
          EMCPRML['Category of SovereignRisk according to ICRG '].value_counts().plot.ba
          rh(figsize = (10,6))
          axe.set ylabel("Category of Sovereign Risk according to ICRG", fontsize=18)
          axe.set_title("EM's Sovereign Risk", loc='center', fontsize=18, fontweight =
          "bold" )
```

Out[197]: Text(0.5, 1.0, "EM's Sovereign Risk")


```
In [198]:
          fig, axe = plt.subplots()
          EMCPRML['Category of Country Risk according to ICRG '].value_counts().plot.ba
          rh(figsize = (10,6))
          axe.set_ylabel("Category of Country Risk according to ICRG", fontsize=18)
          axe.set_title("EM's Country Risk", loc='center', fontsize=18, fontweight = "bo
          ld" )
```

Out[198]: Text(0.5, 1.0, "EM's Country Risk")


```
In [199]:
          fig, axe = plt.subplots()
          EMCPRML['Category of Political Risk according to ICRG '].value counts().plot.b
          arh(figsize = (10,6))
          axe.set ylabel("Category of Politicl Risk according to ICRG", fontsize=18)
          axe.set_title("EM's Political Risk", loc='center', fontsize=18, fontweight =
          "bold" )
```

Out[199]: Text(0.5, 1.0, "EM's Political Risk")

In [200]: EMCPRML['Category of Political Risk according to ICRG ']=EMCPRML['Category of Political Risk according to ICRG '].cat.codes EMCPRML['Category of SovereignRisk according to ICRG ']=EMCPRML['Category of S overeignRisk according to ICRG '].cat.codes EMCPRML['Category of Country Risk according to ICRG ']=EMCPRML['Category of C ountry Risk according to ICRG '].cat.codes

In [201]: EMCPRML=pd.get dummies(EMCPRML, columns=[' Impact '])

In [202]: EMCPRML

Out[202]:

	Year	Category of Political Risk according to ICRG	Political Risk	Category of SovereignRisk according to ICRG	Sovereign Risk	Category of Country Risk according to ICRG	Country Risk	Commodity Prices	In
0	1985	4	54.311404	4	24.956140	0	41.607493	96.2167	
1	1986	4	52.978070	4	23.640351	0	40.832237	96.6750	
2	1987	1	53.026316	1	24.131579	0	41.107456	102.2080	
3	1988	1	53.065789	1	25.846491	0	41.325658	131.1170	
4	1989	1	53.741228	1	27.311404	0	41.560307	132.3250	
5	1990	1	55.100877	1	29.333333	0	42.598684	124.0250	
6	1991	3	56.228070	3	32.399123	0	43.816886	117.0420	
7	1992	2	60.134722	2	36.590278	0	46.523264	113.8580	
8	1993	2	63.200000	2	37.912500	0	48.798958	108.2580	
9	1994	2	66.479167	2	38.233333	0	51.075000	126.5080	
10	1995	2	66.683333	2	38.066667	0	51.177083	137.5750	
11	1996	2	67.495833	2	38.729167	0	51.990625	134.3500	
12	1997	2	69.587500	2	37.633333	0	52.894792	131.6670	
13	1998	2	67.825000	2	34.797917	0	50.618750	114.4000	
14	1999	2	64.558333	2	35.470833	0	48.350792	98.4833	
15	2000	2	63.683333	2	36.064583	0	50.022917	99.9917	
16	2001	2	66.133333	2	36.518750	0	51.238542	96.3750	
17	2002	2	65.300000	2	36.704167	0	50.562500	97.3167	
18	2003	2	66.183333	2	37.404167	0	51.552083	104.8580	
19	2004	2	67.306250	2	38.854167	0	52.873958	125.7830	
20	2005	2	67.189583	2	39.608333	0	52.891667	140.3920	
21	2006	5	67.225000	5	40.583333	0	53.188542	182.8250	
22	2007	5	66.777083	5	40.716667	0	53.243750	206.5250	
23	2008	5	66.199583	5	39.827083	0	52.481042	256.0330	
24	2009	0	66.125000	0	39.002083	0	50.180208	212.7420	
25	2010	5	65.666667	5	41.262500	0	51.211458	256.0420	
26	2011	5	64.593750	5	41.337500	0	51.157292	302.0000	
27	2012	5	63.718750	5	41.083333	0	50.612500	276.7830	
28	2013	5	63.427083	5	41.072917	0	50.480208	258.1830	
29	2014	5	63.027083	5	40.608333	0	50.048958	242.5080	
30	2015	0	62.668750	0	39.339583	0	49.544792	201.5750	
31	2016	2	63.327083	2	39.550000	0	49.477083	200.0830	
4									•

```
In [203]: | EMCPRML.columns
Out[203]: Index(['Year', 'Category of Political Risk according to ICRG ',
                   'Political Risk', 'Category of SovereignRisk according to ICRG ', 'Sovereign Risk', 'Category of Country Risk according to ICRG ',
                   'Country Risk', 'Commodity Prices ', ' Impact _High', ' Impact _Low'],
                  dtype='object')
In [212]: EMCPRML=EMCPRML.rename(columns={' Impact High':'Impact High','Category of Pol
           itical Risk according to ICRG ':'PoliticalRisk CategoryICRG','Category of Sove
           reignRisk according to ICRG ':'SovereignRisk_CategoryICRG','Category of Countr
           y Risk according to ICRG ':'CountryRisk CategoryICRG'})
In [211]: EMCPRML.Impact_High.value_counts()
Out[211]: 1
                 24
           Name: Impact_High, dtype: int64
```

Political Risk and Commodity Prices Machine Learning

```
In [213]:
          from patsy import dmatrices
          y,X = dmatrices('Impact_High ~ PoliticalRisk_CategoryICRG',data=EMCPRML)
In [214]:
           y=np.ravel(y)
In [215]: from sklearn.linear model import LogisticRegression as logit
          logit(solver='lbfgs').fit(X,y).score(X,y)
Out[215]: array(0.75)
In [216]:
          from sklearn.model selection import cross val score
          cross_val_score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
Out[216]: 0.7152380952380952
In [217]:
           cross_val_score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc_auc').mean()
Out[217]: 0.6319444444444445
In [218]: | from sklearn.neighbors import KNeighborsClassifier as knn
          cross_val_score(knn(),X,y,cv=3,scoring='accuracy').mean()
Out[218]: 0.6606060606060606
```

```
In [220]:
         from sklearn.ensemble import RandomForestClassifier as rf
          cross val score(rf(n estimators=100, max depth=2,max features=2),X,y,cv=2,scor
          ing='accuracy').mean()
Out[220]: 0.5
In [221]: for i in range(1,10):
                  for j in range(1,3):
                      print(i,j,cross val score(rf(n estimators=100,max depth=i,max feat
          ures =j),X,y,cv=3,scoring='accuracy').mean())
          1 1 0.68484848484849
          1 2 0.75151515151516
          2 1 0.68484848484849
          2 2 0.75151515151516
          3 1 0.7515151515151516
          3 2 0.68484848484849
          4 1 0.68484848484849
          4 2 0.68484848484849
          5 1 0.75151515151516
          5 2 0.75151515151516
          6 1 0.7515151515151516
          6 2 0.7515151515151516
          7 1 0.68484848484849
          7 2 0.68484848484849
          8 1 0.68484848484849
          8 2 0.75151515151516
          9 1 0.75151515151516
          9 2 0.68484848484849
         EMCPRML['high_impact_rf'] = rf(n_estimators=100, max_depth=2,max_features=2).f
In [224]:
          it( X,y).predict(X)
          EMCPRML.high impact rf.value counts()
Out[224]: 1.0
          Name: high_impact_rf, dtype: int64
```

This model shows that from 2017-2023, Country Risk will have a 100% chance of highly impacting commodity prices.

Political Risk and Commodity Prices Machine Learning

```
In [225]: from patsy import dmatrices
          y,X = dmatrices('Impact High ~ CountryRisk CategoryICRG',data=EMCPRML)
In [226]:
           y=np.ravel(y)
```

```
In [227]: from sklearn.linear model import LogisticRegression as logit
          logit(solver='lbfgs').fit(X,y).score(X,y)
Out[227]: array(0.75)
In [228]:
           from sklearn.model selection import cross val score
          cross_val_score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
Out[228]: 0.7552380952380953
In [229]:
           cross_val_score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc_auc').mean()
Out[229]: 0.5
In [230]: | from sklearn.neighbors import KNeighborsClassifier as knn
          cross_val_score(knn(),X,y,cv=3,scoring='accuracy').mean()
Out[230]: 0.6
In [231]: | from sklearn.ensemble import RandomForestClassifier as rf
          cross_val_score(rf(n_estimators=100, max_depth=2,max_features=2),X,y,cv=2,scor
          ing='accuracy').mean()
Out[231]: 0.75
In [232]: | for i in range(1,10):
                  for j in range(1,3):
                      print(i,j,cross_val_score(rf(n_estimators=100,max_depth=i,max_feat
          ures =j),X,y,cv=3,scoring='accuracy').mean())
          1 1 0.75151515151516
          1 2 0.75151515151516
          2 1 0.75151515151516
          2 2 0.7515151515151516
          3 1 0.75151515151516
          3 2 0.75151515151516
          4 1 0.75151515151516
          4 2 0.75151515151516
          5 1 0.75151515151516
          5 2 0.75151515151516
          6 1 0.75151515151516
          6 2 0.75151515151516
          7 1 0.75151515151516
          7 2 0.75151515151516
          8 1 0.75151515151516
          8 2 0.7515151515151516
          9 1 0.75151515151516
          9 2 0.75151515151516
In [234]: | from sklearn.linear_model import LogisticRegression as reg
          from sklearn.model selection import train test split
          x=EMCPRML.drop(['Impact_High'],axis=1)
In [236]:
          y=EMCPRML['Impact_High']
```

```
In [237]:
           x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=.2)
           result = reg(solver='liblinear').fit(x_train,y_train).predict(x_test)
In [239]:
In [240]:
           pd.Series(result).value counts()
Out[240]: 1
          dtype: int64
```

This model shows that political risk will have a 85.7% chance of highly impacting commodity prices.

Sovereign Risk and Commodity Prices Machine Learning

```
In [241]: | from patsy import dmatrices
          y,X = dmatrices('Impact High ~ SovereignRisk CategoryICRG',data=EMCPRML)
In [242]:
           y=np.ravel(y)
In [243]: from sklearn.linear model import LogisticRegression as logit
          logit(solver='lbfgs').fit(X,y).score(X,y)
Out[243]: array(0.75)
In [244]:
           from sklearn.model_selection import cross_val_score
          cross val score(logit(solver='lbfgs'),X,y,cv=5,scoring='accuracy').mean()
Out[244]: 0.7152380952380952
In [245]: cross val score(logit(solver='lbfgs'),X,y,cv=3,scoring='roc auc').mean()
Out[245]: 0.631944444444445
In [246]: from sklearn.neighbors import KNeighborsClassifier as knn
          cross_val_score(knn(),X,y,cv=3,scoring='accuracy').mean()
Out[246]: 0.6606060606060606
In [247]:
          from sklearn.ensemble import RandomForestClassifier as rf
          cross_val_score(rf(n_estimators=100, max_depth=2,max_features=2),X,y,cv=2,scor
          ing='accuracy').mean()
Out[247]: 0.6875
```

```
In [248]: | for i in range(1,10):
                  for j in range(1,3):
                      print(i,j,cross_val_score(rf(n_estimators=100,max_depth=i,max_feat
          ures =j),X,y,cv=3,scoring='accuracy').mean())
          1 1 0.75151515151516
          1 2 0.68484848484849
          2 1 0.68484848484849
          2 2 0.68484848484849
          3 1 0.75151515151516
          3 2 0.68484848484849
          4 1 0.68484848484849
          4 2 0.7515151515151516
           1 0.75151515151516
          5 2 0.68484848484849
          6 1 0.68484848484849
          6 2 0.68484848484849
          7 1 0.75151515151516
          7 2 0.68484848484849
          8 1 0.68484848484849
          8 2 0.75151515151516
          9 1 0.75151515151516
          9 2 0.68484848484849
In [249]: EMCPRML['high_impact_rf'] = rf(n_estimators=100, max_depth=2,max_features=2).f
          it( X,y).predict(X)
          EMCPRML.high_impact_rf.value_counts()
Out[249]: 1.0
          Name: high_impact_rf, dtype: int64
```

This model shows that in the next 32 years, sovereign risk will have a high impact on commodity prices.

```
In [ ]:
```