Les interruptions

INTERRUPTION:

C'est un évènement (généralement) asynchrone provoquant la suspension du programme en cours d'exécution, le passage à un autre code appelé routine d'interruption (ou traitant de l'interruption) puis retour au programme suspendu. L'instruction qui permet un tel retour s'appelle IRET.

CLASSES D'INTERRUPTIONS

Il existe deux grandes classes d'interruptions: les interruption matérielles et les interruptions logicielles.

a) Les interruptions matérielles : elles sont provoquées par des évènements externes (des signaux électriques).

NMI: Non Maskable Interrupt Interruption non masquable Ne dépend pas du Flag IF

INTR: (Interrupt Request)

demande d'interruption (ou requête)

Dépend du Flag IF. IF = 0 (CLI) les requêtes sont masquées, IF = 1 (STI) les requêtes sont armées

INTA: Interrupt Acknowledgment

Acquittement de la requête (ou Accusé de réception de la requête)

b) Les interruptions logicielles : elles sont provoquées par des instructions d'interruption ou par des conditions logiques.

Exemple:

Instruction d'interruption: INT 21H

Condition logique : Erreur de division par zéro

NOTE:

Pour les microprocesseurs x86 de INTEL, toutes les interruptions sont vectorisées.

Ceci signifie que l'adresse physique (CS:IP) de chaque traitant de l'interruption est sauvegardée dans une table système appelée:

TABLE DES VECTEURS DES INTERRUPTIONS.

TABLE DES VECTEURS DES INTERRUPTIONS

Cette table système est composée de 256 vecteurs, chacun de taille 32 bits. Dans chaque vecteur est sauvegardée l'adresse physique (CS:IP) de début d'un traitant d'interruption.

ORGANISATION DE LA TABLE DES VECTEURS DES INTERRUPTIONS

☐ Les 5 premiers vecteurs de cette table sont réservés par INTEL à la sortie d'usine du microprocesseur.
 Certains vecteurs des 251 vecteurs restant sont réservés par le système d'exploitation.
☐ Le reste sont vides et peuvent être utilisés par l'utilisateur.

DES INTERRUPTIONS VECTEURS DES TABLE DE STRUCTURE

	B ₁₅	B_0	
0000:0000	IP ₀		Vecteur 0 : IT erreur de division par zéro
	CS ₀		vecteur v. 11 erreur de division par zero
0000 :0004	IP ₁		Vecteur 1: IT exécution pas à pas
	CS ₁		
8000: 0000	IP ₂		Vecteur 2: IT NMI
	CS ₂		
0000 :000C	IP ₃		Vecteur 3: IT insertion point d'arrêt
0000:0010	CS ₃		
0100.0010	IP ₄ CS ₄		Vecteur 4: IT overflow
0000 :0014	IP ₅		
4100.0000	CS ₅		Vecteur 5: IT Print Screen
0000 :0020	IP ₈		
	CS ₈		Vecteur 8: IT timer
0000 :0024	IP ₉		. Venteur O. IT alouier
	CS ₉		Vecteur 9: IT clavier
•			
•	·		
•	•		
0000 :03fc	IP ₂₅₅		Vecteur 255
	CS ₂₅₅		

5 vecteurs réservés à la sortie d'usine du μΡ

Taille de la TVI 256 x 4 Bytes = 1024 Bytes = 1 K Bytes

251 vecteurs, certains sont définis par le système d'exploitation et d'autres sont libres

- Vecteurs réservés par intel
- Vecteurs réservés par le S.E

RECAPITULATIF SUR LES INTERRUPTIONS MATERIELLES

Cas (a): Interruption NMI

Cas (b): Interruption INTR (requête ou demande d'interruption)

STI: positionner IF à 1; CLI: positionner IF à 0 IF: Interrupt Flag

INTERRUPTIONS LOGICIELLES:

RAPPEL:

Les interruptions logicielles sont provoquées par des instructions d'interruption ou suite à la présence d'une condition logique.

INTERRUPTION LOGICIELLE	SYNTAXE	ACT	ION
Appel à l'interruption logicielle n° N	INT N	(SP) ←	
		((SP)+1:((SP)) ←	– (PSW)
		(SP) ←	- (SP) − 2
		((SP)+1:((SP)) ←	- (CS _{retour})
		(SP) ←	_ (SP) – 2
		((SP)+1:((SP)) ←	- (IP _{retour})
		IF = 0	, TF = 0
		(IP _{routine})	(4 x N)
		(CS _{routine}) ←	_ (4 x N +2)
Appel à l'interruption n° 3	INT	Même chose que c	i-dessus avec N = 3
Appel à l'interruption overflow	INTO	Si OF = 1 alors	
		Même chose que c Sinon aucun effet	i-dessus avec N = 4

où N représente le numéro de l'interruption logicielle invoquée , N est sur 8 bits allant entre 00H à FFH (0 à 255)

INSTRUCTION IRET

Cette instruction permet de quitter le traitant de l'interruption et le retour au programme suspendu en allant dépilant IP_{retour}, CS_{retour} et le PSW.

Instruction de retour	SYNTAXE	ACTION	
Retour du traitant de l'interruption	IRET	(IP _{retour}) ← ((SP)+1:((SP)) (SP) ← (SP) + 2	
		(CS _{retour}) ← ((SP)+1:((SP)) (SP) ← (SP) + 2	
		(PSW) ← ((SP)+1:((SP)) (SP) ← (SP) + 2	

APPLICATION

Soit le programme principal suivant :

: INT 21H

0100:0350 INT 21I

Juste avant l'exécution de l'instruction INT 21H, le $\,\mu P$ a la configuration suivante :

PSW = 03D5H

SP = 0450H

SS = 0450H

et une partie de la mémoire centrale a le contenu suivant:

0000:0082 9A 0000:0083 48 0000:0084 72 0000:0085 AC 0000:0086 D2 0000:0087 62

0000:0088 20

Juste à l'entrée du traitant de l'interruption, donner : IP_{routine}, CS _{routine}, PSW, le contenu de la pile, SS, SP.

SOLUTION:

$$IP_{routine} = (4 \times N)$$
 , $N = 21H$
= $(4 \times 21H)$
= $(0000:0084)$
= $AC72H$

$$CS_{routine} = (4 \times N + 2)$$
 , $N = 21H$
= $(4 \times 21H + 2)$
= $(0000:0086)$
= $62D2H$

Rappel de la structure du PSW: 0000 ODIT SZOA 0P0C

INT 21H force IF et TF à Zéro

Ancienne valeur du PSW avant INT 21H PSW = 0000 0011 1101 0101B = 03D5H

PSW juste à l'entrée de la routine d'interruption PSW = 0000 0000 1101 0101B = 00D5H

Contenu de la pile

$$SS = 0450H$$

 $SP = 044AH$

INTERRUPTIONS MATERIELLES:

RAPPEL:

Les interruptions matérielles sont provoquées par des signaux électriques externes.

CHRONOLOGIE DES EVENMENTS LORS D'UNE DEMANDE D'INTERRUPTION (REQUETE)

ARCHI 2 L2 ACAD A 2020/2021 Slide N° 11 Mr M.S AYACHE