অনুশীলনী ৮.১

- ১। সামান্তরিকের জন্য নিচের কোনটি সঠিক?
 - (ক) বিপরীত বাহুগুলো অসমান্তরাল
- (খ) একটি কোণ সমকোণ হলে, তা আয়ত
- (গ) বিপরীত বাহুদ্বয় অসমান
- (ঘ) কর্ণদ্বয় পরস্পর সমান
- ২। নিচের কোনটি রম্বসের বৈশিষ্ট্য?
 - (ক) কর্ণদ্বয় পরস্পর সমান

- (খ) প্রত্যেক কোণই সমকোণ
- (গ) বিপরীত কোণদ্বয় অসমান
- (ঘ) প্রত্যেকটি বাহুই সমান
- ৩। i. চতুর্ভুজের চার কোণের সমষ্টি চার সমকোণ।
 - ii. আয়তের দুইটি সন্নিহিত বাহু সমান হলে তা একটি বর্গ।
 - iii. প্রত্যেকটি রম্বস একটি সামান্তরিক।

উপরের তথ্য অনুসারে নিচের কোনটি সঠিক?

- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i, ii ও iii

8 । PAQC চতুর্জের PA = CQ এবং PA । I CQ.

∠A ও∠C সমদ্বিখণ্ডক যথাক্রমে AB ও CD হলে

ABCD ক্ষেত্রটির নাম কী?

- (ক) সামান্তরিক
- (খ) রম্বস
- (গ) আয়ত
- (ঘ) বর্গ

 ৫। দেওয়া আছে △ABC এর মধ্যমা BO কে D পর্যন্ত এমনভাবে বর্ধিত করি যেন BO = OD হয়।
 প্রমাণ করতে হবে যে, ABCD একটি সামান্তরিক।

সমাধান:

বিশেষ নির্বচন :

দেওয়া আছে, $\triangle ABC$ এর মধ্যমা BO কে D পর্যন্ত এমনভাবে বর্ধিত করি যেন BO = OD হয়। প্রমাণ করতে হবে যে,

ABCD একটি সামান্তরিক।

www.facebook.com/tanbir.cox

ধাপ	যথাৰ্থতা
(১) $\triangle AOB$ ও $\triangle COD$ এর মধ্যে	
BO = OD	[কল্পনা]
OA = OC	[O, AC এর মধ্যবিন্দু]
∠AOB = বিপরীত∠COD	-,
$\therefore \Delta AOB \cong \Delta COD$	 [ত্রিভুজের বাহু - কোণ - বাহু উপপাদ্য]
সুতারাং, AB = CD	
(২) অনুরূপভাবে প্রমাণ করা যায়	
AD = BC	
: ABCD একটি সামান্তরিক	
(প্রমাণিত)	

৬। প্রমাণ কর যে, সামান্তরিকের একটি কর্ণ একে দুইটি সর্বসম ত্রিভুজে বিভক্ত করে।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD একটি সামান্তরিক। এর একটি কর্ণ AC। প্রমাণ করতে হবে যে, AC কর্ণটি ABCD সামান্তরিকটিকে সমান দুই ভাগে ভাগ করে। অর্থাৎ $\Delta ABC \cong \Delta ADC$ ।

ধাপ	যথাৰ্থতা
(১) যেহেতু AB।। CD এবং AC তাদের ছেদক ∴ ∠ BAC =∠ACD	[একান্তর কোণ সমান]
(২) আবার, BC।। AD এবং AC তাদের ছেদক ∴ ∠ACB =∠DAC	[একান্তর কোণ সমান]
(৩) এখন, ΔABC ও ΔADC এ	
\angle BAC = \angle ACD	
\angle ACB = \angle DAC	
AC = AC	[সাধারণ বাহু]

∴ $\Delta ABC \cong \Delta ADC$ অর্থাৎ সামান্তরিকের কর্ণ সামান্তরিকটিকে সমান দুই
ভাগে ভাগ করে। (প্রমাণিত)

৭। প্রমাণ কর যে, চতুর্ভুজের বিপরীত বাহুগুলো পরস্পর সমান ও সমান্তরাল হলে তা একটি সামান্তরিক।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD একটি চতুর্ভুজ। এর AD = BC, AB = CD এবং AD II BC, AB II CD হলে

প্রমাণ করতে হবে যে, চতুর্ভুজটি একটি সামান্তরিক।

অঙ্কন : চতুর্ভুজটির কর্ণ AC অঙ্কন করি।

थमा ।	
ধাপ	যথাৰ্থতা
(১) যেহেতু AD BC এবং AC তাদের ছেদক ∴ ∠ACB =∠CAD (২) অনুরূপভাবে, BC AD এবং AC তাদের ছেদক	[একান্তর কোণ সমান] [একান্তর কোণ সমান]
∴ ∠BAC =∠ACD	
(৩) এখন, △ABC ও △ADC এ ∠ACB = ∠CAD ∠BAC = ∠ACD AC = AC	[সাধারণ বাহু]
	[ত্রিভুজের কোণ - বাহু - কোণ উপপাদ্য]
(৪) অনুরূপভাবে, ∠BAC =∠BCD ∴ ABCD একটি সামান্তরিক (প্রমাণিত)	

৮। প্রমাণ কর যে, সামান্তরিকের কর্ণদ্বয় পরস্পর সমান হলে, তা একটি আয়ত।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD সামান্তরিকের কর্ণ AC = কর্ণ BD প্রমাণ করতে হবে যে, ABCD একটি আয়ত।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) $\triangle ABC$ ও $\triangle ADB$ এর মধ্যে $BC = AD$	[সামান্তরিকের বিপরীত বাহু পরস্পর সমান]
AC = BD AB = AB	[কল্পনা] [সাধারণ বাহু]
∴ ΔABC ≅ ΔADB ∴ ∠ABC = ∠BAD	[কোণ- বাহু- বাহু উপপাদ্য]
(২) আবার, যেহেতু AD II BC এবং AB তাদের ছেদক ∠ ABC +∠BAD = 2 সমকোণ	[ছেদকের একই পাশের অন্তঃস্থ কোণ সমান]
∴ ∠ ABC =∠BAD = 1 সমকোণ ∴ ABCD একটি আয়ত (প্রমাণিত)	

৯। প্রমাণ কর যে, চতুর্ভুজের কর্ণদ্বয় পরস্পর সমান হলে এবং পরস্পরকে সমকোণে সমদ্বিখণ্ডিত করলে, তা একটি বর্গ।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD চতুর্ভুজের AC ও BD কর্ণ পরস্পর সমান এবং পরস্পরকে O বিন্দুতে সমকোণে সমদ্বিখণ্ডিত করেছে।

প্রমাণ করতে হবে যে, ABCD একটি বর্গ।

№ www.facebook.com/tanbir.cox 🖑 **©** www.tanbircox.blogspot.com

ধাপ	যথাৰ্থতা
(১) AAOB ও AAOD এতে	
OB = OD	[কম্পনা]
অন্তর্ভুক্ত ∠AOB = অন্তর্ভুক্ত ∠AOD	[সমকোণ]
AO = AO	[সাধারণ বাহু]
$\therefore \Delta AOB \cong \Delta AOD$	[ত্রিভুজের বাহু- কোণ - বাহু উপপাদ্য]
$\therefore AB = AD$	
(২) অনুরূপভাবে, ΔΑΟΒ ও ΔΒΟC এ	
প্রমাণ করা যায় যে,	
AB = BC	
(৩) এবং ΔBOC ও ΔCOD এ	
প্রমাণ করা যায় যে,	
BC = CD	COLL
∴ ABCD চতুর্ভুজে	
AB = BC = CD = AD	[(১), (২) ও (৩) থেকে]
(৪) আবার, $\triangle AOB$ এ $\angle AOB = 90^{\circ}$	
এবং OA = OB	[কল্পনা]
∴ ∠OAB =∠OBA = 45 ⁰	[সমান সমান বাহুর বিপরীত কোণ সমান]
(৫) অনুরূপভাবে, ΔAOD এ	
$\angle OAD = \angle ODA = 45^{\circ}$	
$\therefore \angle BAD = \angle OAB + \angle OAD$	
$= 45^{0} + 45^{0}$ $= 90^{0}$	
∴ ABCD একটি বর্গ। (প্রমাণিত)	

১০। প্রমাণ কর যে, আয়তের সন্নিহিত বাহুর মধ্যবিন্দুসমূহের যোগে যে চতুর্ভুজ হয়, তা একটি রম্বস। সমাধান :

বিশেষ নির্বচন :

মনেকরি, ABCD আয়ত। P, Q, R ও S যথাক্রমে AB, BC, CD ও AD এর মধ্যবিন্দু। P, Q; Q, R; R, S ও S, P যোগ করি।

প্রমাণ করতে হবে যে, PQRS একটি রম্বস।

অঙ্কন: A, C; B, D; এবং S, Q; P, R যোগ করি।

2 www.facebook.com/tanbir.cox ७ **७ ७ ७ ७ ७ ७ ७ ७**

ধাপ	যথাৰ্থতা
(১) ΔABD ও ΔBCD এর সন্নিহিত বাহুর	
মধ্যবিন্দুর সংযোগ রেখাংশ যথাক্রমে	
PS ও QR।	
সুতারাং, PS ।। BD এবং QR ।। BD	 [ত্রিভুজের দুই বাহুর মধ্যবিন্দুর সংযোজক
আবার, $PS = \frac{5}{2}BD$	সরল রেখা তৃতীয় বাহুর সমান্তরাল এবং দৈর্ঘ্য
\$ 2	তার অর্ধেক]
ontata OP − > PD	
আবার, $QR = \frac{2}{2} BD$	
∴ PS = QR এবং PS II QR	[সমান্তরাল রেখার সমান্তরাল রেখা পরস্পর
	সমান্তরাল]
(২) অনুরূপভাবে, ΔABC ও ΔADC নিয়ে	
প্রমাণ করা যায় যে, PQ = SR	Teojilli
এবং PQ ॥ SR	
∴ PQRS একটি রম্বস (প্রমাণিত)	

১১। প্রমাণ কর যে, সামান্তরিকের যেকোনো দুইটি বিপরীত কোণের সমদ্বিখণ্ডক পরস্পর সমান্তরাল। সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD একটি সামান্তরিক। ∠A ও ∠C এর সমদ্বিখণ্ডক AE ও CF যথাক্রমে DC ও AB কে E ও F বিন্দুতে ছেদ করে

প্রমাণ করতে হবে যে, AE।। CF।

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) যেহেতু AE, ∠BAD এর সমদ্বিখণ্ডক	[কল্পনা]
$\therefore \angle EAF = \frac{5}{2} \angle BAD$	
(২) অনুরূপভাবে, $\angle ECF = \frac{5}{2} \angle BCD$	[কল্পনা]
∴∠EAF = ∠ECF	
(৩) আবার, AB ।। CD এবং AE এদের ছেদক	[সামান্তরিকের বিপরীত বাহু পরস্পর সমান্তরাল]
∠ AED =∠EAF ∴∠ AED =∠ ECF	[একান্তর কোণ] [(২) থেকে]
Z AED – Z ECF কিন্তু, এরা অনুরূপ কোণ।	
:: AECF একটি সামান্তরিক।	
∴ AE II FC (প্রমাণিত)	

C

১২। প্রমাণ কর যে, সামান্তরিকের যেকোনো দুইটি সন্নিহিত কোণের সমদ্বিখণ্ডক পরস্পর লম্ব।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, ABCD একটি সামান্তরিক। এর ∠BAD ও∠ABC এর সমদ্বিখণ্ডকদ্বয় পরস্পর O বিন্দুতে ছেদ করেছে।

প্রমাণ করতে হবে যে, AO ও BO পরস্পরের উপর লম্ব।

প্রমাণ •

<u>역세기 :</u>	,
ধাপ	যথাৰ্থতা
(১) যেহেতু AO,∠BAD এর সমদ্বিখণ্ডক	
$\angle OAB = \frac{3}{3} \angle BAD$	[কল্পনা]
(২) অনুরূপভাবে, $\angle OBA = \frac{3}{2} \angle ABC$	
(৩) আবার, যেহেতু AD ।। BC এবং AB	
ছেদক।	 ছেদকের একই পাশে অন্তঃস্থ কোণ বলে
∴∠BAD +∠ ABC = দুই সমকোণ	[(১) ও (২) থেকে]
বা $\frac{3}{2}$ $\angle BAD + \frac{3}{2}$ $\angle ABC = $ এক সমকোণ।	
বা, ∠OAB +∠OBA = এক সমকোণ।	
(8) এখন, ΔAOB এ,	
∠OAB + ∠OBA +∠AOB = 2 সমকোণ।	[ত্রিভুজের তিনটি কোণের সমষ্টি দুই সমকোণ]
বা, ∠AOB + 1 সমকোণ = 2 সমকোণ।	
বা,∠AOB = 2 সমকোণ −1 সমকোণ।	
∴ ∠AOB = 1 সমকোণ।	
অর্থাৎ, AO ও BO পরস্পরের উপর লম্ব	
(প্রমাণিত)	

A

১৩। চিত্রে, ABC একটি সমবাহু ত্রিভুজ। D, E ও F যথাক্রমে AB, BC ও AC এর মধ্যবিন্দু।

(ক) প্রমাণ কর যে,

 $\angle BDF + \angle DFE + \angle FEB + \angle EBD =$ চার সমকোণ।

সমাধান:

বিশেষ নির্বচন:

মনেকরি, চিত্রে ABC একটি একটি সমবাহু ত্রিভুজ D, E, F যথাক্রমে AB, BC ও AC এর মধ্যবিন্দু।

<u>4411.</u>	
ধাপ	যথাৰ্থতা
(১) ∆BDE এ, ∠BDE +∠BED +∠EBD = দুই সমকোণ	[ত্রিভুজের তিন কোণের সমষ্টি 2 সমকোণ]
(২) ΔDEF এ, ∠DEF +∠DFE + ∠EDF = দুই সমকোণ	[ত্রিভুজের তিন কোণের সমষ্টি 2
(∠BDE +∠BED +∠EBD + ∠DEF +∠DFE +∠EDF) = চার সমকোণ	সমকোণ] [(১) ও (২) থেকে]
∠BDF +∠DFE +∠FEB +∠EBD = চার সমকোণ। (প্রমাণিত)	

(খ) প্রমাণ কর যে, DF II BC এবং DF = \(\frac{5}{5} \) BC

সমাধান:

বিশেষ নির্বচন :

মনেকরি, ΔABC এর D ও F যথাক্রমে AB ও ACএর মধ্য বিন্দু। D ও F যোগকরে G পর্যন্ত এমনভাবে বর্ধিত করি যেন DF = FG হয়। G, C যোগকরি।

প্রমাণ করতে হবে যে,

DF II BC এবং DF =
$$\frac{5}{2}$$
 BC

ধাপ	যথাৰ্থতা
(১) AADF & ACGF 4,	0.0
DF = FG	[অঙ্কনানুসারে]
AF = CF	[কল্পনা]
এবং অন্তভুক্ত ∠DFA = অন্তভুক্ত ∠CFG	[বিপ্রতীপ কোণ সমান]
$\therefore \Delta DEF \cong \Delta CGF$	[বাহু- কোণ- বাহু উপপাদ্য] [কল্পনা]
(২) AD = CG	
এবং∠DAF =∠FCG	[একান্তর কোণ সমান]
বা, BD = CG	
বা, ∠DAC =∠ACG	
কিন্তু কোণদ্বয় AD ও CG বাহুর AC	
ছেদক দ্বারা উৎপন্ন একান্তর কোণ।	
∴ DA CG	
বা, BA II CG	
(৩) এখন BCGD চতুর্ভুজের BD = CG এবং BD II CG	[সামান্তরিকের বিপরীত বাহুদ্বয় পরস্পর
∴ BCGD একটি সামান্তরিক।	সমান ও সমান্তরাল]
∴ DG BC এবং DG = BC	

(8) $DF + FG = BC$
বা, $DF + DF = BC$
বা, 2DF = BC

$$\therefore DF = \frac{3}{2}BC$$

সুতারাং, DF II BC

এবং DF =
$$\frac{5}{2}$$
 BC

(প্রমাণিত)

[(১) থেকে]

১৪. দেওয়া আছে, ABCD সামান্তরিকের AM ও CN, DB এর উপর লম্ব। প্রমাণ কর যে, ANCM একটি সামান্তরিক।

সমাধান:

বিশেষ নির্বচন:

দেওয়া আছে, ABCD সামান্তরিক AM ও CN, BD উপর লম্ব।

প্রমাণ করতে হবে যে, ANCM একটি সামান্তরিক।

www.facebook.com/tanbir.cox

ধাপ	যথাৰ্থতা
(১) AADM ও ABCN এর,	
$\angle ADM = \angle NBC$	[একান্তর কোণ]
$\angle AMD = \angle BNC$	$[AM \perp BD, CN \perp BD]$
এবং AD = BC	[সামান্তরিকের বিপরীত বাহু পরস্পর
$ \triangle ADM \cong \Delta BCN $ $ \angle MAD = \angle BCN $	সমান] [কোণ - বাহু - কোণ উপপাদ্য]
(২) অনুরূপভাবে, ΔABN ও ΔCDM এর মধ্যে	
\angle BAN = \angle MCD	
$\therefore \angle BAD - (\angle DAM + \angle BAN)$	
$= \angle BCD - (\angle NCB + \angle MCD)$	
$\therefore \angle MAN = \angle MCN$	
$\therefore \angle AMC = \angle ANC$	
(৩) অর্থাৎ ANCM চতুর্ভুজের	CO.
∠MAN =∠MCN	[(১) থেকে]
$\angle AMC = \angle ANC$	
∴ NCMA একটি সামান্তরিক।	
(প্রমাণিত)	
7000	