DAIT Project

Trajectory Prediction for Human-Human Interaction

Rodolphe Farrando, Romain Gratier 23.05.2018

23.03.2010

EPFL

Introduction

• Trajectory prediction is crucial for improving autonomous vehicles behaviour

1

Introduction

- Trajectory prediction is crucial for improving autonomous vehicles behaviour
- Could avoid situations seen in the ethical lectures

1

Previous work Social LSTM : Human Trajectory Prediction in Crowded Spaces

In their project, they used different components to make the structure:

- One LSTM per pedestrian
- Social Pooling
- Prediction per frame

Previous work Social LSTM : Human Trajectory Prediction in Crowded Spaces

In their project, they used different components to make the structure:

- One LSTM per pedestrian
- Social Pooling
- Prediction per frame

In our project we only use:

- One CNN, or one LSTM
- Prediction per pedestrian

Data

The preprocessing is divided in 4 steps:

1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames

- 1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames
- 2. We normalize the trajectories such that the first point is at (0,0) and the second is at $(0, y_1)$

- 1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames
- 2. We normalize the trajectories such that the first point is at (0,0) and the second is at $(0, y_1)$
- 3. We calculate axis velocities V_x and V_y

- 1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames
- 2. We normalize the trajectories such that the first point is at (0,0) and the second is at $(0, y_1)$
- 3. We calculate axis velocities V_x and V_y
- 4. For each frame, if there is a interacting pedestrian we add its coordinates and speed otherwise we add zeros

- 1. We isolate each trajectory along with his interaction, that is the other trajectories that are around within the same frames
- 2. We normalize the trajectories such that the first point is at (0,0) and the second is at $(0, y_1)$
- 3. We calculate axis velocities V_x and V_y
- 4. For each frame, if there is a interacting pedestrian we add its coordinates and speed otherwise we add zeros
- 5. Data augmentation (flip and add noise) cf. last slide

Data

We have a file with:

- Pedestrians ID
- Frame number
- Twenty sets of x and y coordinates per pedestrian

Frame Number	ID	Х	у	V _x	V_y
0	i	0	0	0	0
10	i	0	у	0	V _x
:	:	:	:	:	:

Data

We have a file with:

- Pedestrians ID
- Frame number
- Twenty sets of x and y coordinates per pedestrian

We want:

- Train on the 10 first coordinates
- Predict the next 10

Frame Number	ID	X	у	V _x	V_y
0	i	0	0	0	0
10	i	0	у	0	V _x
:	:	:	:	:	:

Example of trajectory to predict

Outputs structure

Finally our inputs have the following shape: $[10, N, 4 * N_{inter}]$, with

- 10: sequence length
- N: The number of data
- $4 * N_{inter}$: 4 (being the x and y coordinates and V_x and V_y velocities) times the number of pedestrians interacting with the one of interest.

The four different cases are:

- 1. Predict coordinates with loss defines as $L_1 = (X X_{pred})^2$ with X = [x, y]
- 2. Predict speeds with loss defines as $L_2 = (V V_{pred})^2$ with $V = [V_x, V_y]$
- 3. Predict both coordinates and speeds with loss defines as $L=L_1+L_2$
- 4. Predict both coordinates and speeds with loss defines as $L=L_1+L_2+L_3$, with $L_3=(X-X_{t-1}+V_t*0.4)^2$

The fourth case ensure that coordinates and speeds are not predicted independently.

5

Models

CNN

Inputs: sequence of coordinates and velocities of the pedestrians **Outputs:** sequence of predicted coordinates and velocities for a trajectory of interest

Inputs: sequence of coordinates and velocities of the trajectory of interest and of the interacting trajectories

Outputs: sequence of predicted coordinates and velocities for the trajectory of interest

7

Results

Results: Introduction

To calculate the correctness of the prediction two indicators are used:

- 1. The final displacement error: $e_{fin} = \sqrt{(X_n X_{pred,n})^2}$
- 2. The mean displacement error: $e_{\mathit{fin}} = \sqrt{\frac{\sum_{i=0}^{n} (X_{\mathsf{gt},i} X_{\mathit{pred},i})^2}{(n)}}$

Depending on the inputs two ways are possible to find the predicted coordinates:

- 1. If the coordinates are predicted: directly use them
- 2. If the velocities are predicted: $X_t = X_{t-1} + V_t \cdot 0.4$, with 0.4 the time between two frames in seconds

Results for both models:

- 3 Types of trajectory defined: Static, linear and non-linear trajectories
- Mean and Final displacements

Results

Linear prediction results:

• Type 1: *Mean* = 0.141, *Final* = 0.322

• Type 2: Mean = 0.541, Final = 0.93

• Type 3: Mean = 0.651, Final = 1.457

 \bullet Total: Mean = 0.512, Final = 0.982

		CNN				LSTM			
		Type 1	Type 2	Type 3	Total	Type 1	Type 2	Type 3	Total
Coord.	Mean	4.696	5.144	4.674		1.16	0.768	0.817	0.837
	Final	10.246	7.009	10.501		1.269	0.911	1.087	1.011
Speed	Mean	0.567	5.133	1.911		0.742	0.397	0.448	0.461
	Final	0.77	6.971	3.882		1.433	0.716	0.874	0.863
2 Loss	Mean	1.269	5.134	1.762		0.519	0.484	0.568	0.511
	Final	2.727	6.978	3.546		0.979	0.871	1.093	0.946
3 Loss	Mean	0.549	5.135	3.829		0.537	0.473	0.576	0.51
	Final	0.758	6.983	4.962		0.992	0.86	1.125	0.95

Results

Discussion

Representation

Dynamic Representation

Discussion

Annex

Loss Functions

Data Augmentation