Duplicate

Problem Statement

You will be given an array **A** of size **N**. Print "**YES**" if there is any duplicate value in the array, "**NO**" otherwise.

Input Format

- First line will contain **N**.
- Second line will contain the array A.

Constraints

- 1. 1 <= **N** <= 100000
- 2. $0 \le A[i] \le 10^9$; Where $0 \le i \le N$

Output Format

• Output "YES" or "NO" without the quotation marks according to the problem statement.

Sample Input 0

5 12345

Sample Output 0

NO

Sample Input 1

Sample Output 1

YES

Get Prefix Sum

Problem Statement

You will be given an integer array **A** of size **N**. You need to print the prefix sum array of the array **A** in reverse order.

Input Format

- First line will contain N.
- Next line of contain the array A.

Constraints

- 1. 1 <= **N** <= 10^5
- 2. $1 \le A[i] \le 10^9$; Where $0 \le i \le N$

Output Format

• Output the prefix sum array in reverse order.

Sample Input 0

You will given an array **A** of size **N**. You need to tell if the array is already sorted or not. If the array is sorted in **ascending** order print "**YES**", otherwise print "**NO**".

Input Format

- First line will contain **T**, the number of test cases.
- The first line of each test case will contain **N**.
- The second line of each test case will contain the array A.

Constraints

```
1. 1 <= T <= 1000
2. 1 <= N <= 1000
3. 0 <= A[i] <= 1000; Where 0 <= i < N
```

Output Format

• Output "YES" or "NO" without the quotation marks according to the problem statement.

Sample Input 0

```
3
5
2 4 6 7 10
8
1 100 101 120 120 121 1000 1000
4
100 1 102 12
```

Sample Output 0

YES YES

NO

Insert it

Problem Statement

You will given an integer array **A** of size **N** and another array **B** of size **M**. Also you will be given an index **X**. You need to insert the whole array **B** to the index **X** of array **A**.

Input Format

- First line will contain **N**.
- Second line will contain array A.
- Third line will contain **M**.
- Fourth line will contain array **B**.
- The last line will contain X.

Constraints

```
    1 <= N, M <= 10<sup>3</sup>
    1 <= A[i], B[j] <= 10<sup>3</sup>; Where 0 <= i < N and 0 <= j < M</li>
    0 <= X <= N</li>
```

Output Format

• Output the final array A.

Sample Input 0

```
5
2 3 4 5 6
3
10 20 30
3
```

Sample Output 0

Sample Input 1

```
5
2 3 4 5 6
3
10 20 30
```

Sample Output 1

10 20 30 2 3 4 5 6

Sample Input 2

Sample Output 2

3 4 5 6 10 20 30

Printing X

Problem Statement

You will be given an positive **odd** integer **N**, you need to print the pattern for it. See sample input and output for understanding the pattern.

Input Format

•	Input will contain only N .
Constrai	nts

1. 1 <= **N** <= 20 and N is odd.

Output Format

• Output the pattern.

Sample Input 0

5

Sample Output 0

Sample Input 1

7

Sample Output 1

Sample Input 2	
3	
Sample Output 2	
X '\	
Sample Input 3	
1	
Sample Output 3	
X	