ATTACHMENT

** MPE Calculations **

FCC ID: 2AGENWAYH

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = -0.40 dBm + 1.99 dBi	P = Power input to the antenna (mW)
EIRP = 1.59 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
	S = Maximum power density (mW/cm2)
$S = (0.91*1.58) / (4*0.34^2*\pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.46 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(0.5cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density at 0.5cm does not exceed the 1 mW/cm² limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
	P = Power input to the antenna (mW)
$R = \sqrt{(0.91*1.58/4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 0.34 Cm	(0.5cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

 $G = Log^{-1}$ (dB antenna gain / 10)

G = Log-1 (1.99 / 10)

G = 1.58

ATTACHMENT

FCC ID: 2AGENWAYH

- Min. transmitting frequency = 2402 MHz
- Min. test separation distance = 5 mm
- Max. Power with tune-up tolerance = 0 dBm = 1 mW(Measured power $0 \text{ dBm} \pm 0.5 \text{dB}$)

Step 1)

SAR Test exclusion thresholds for 100MHz to 6GHz at test separation distance \leq 50 mm = **Used** [(max.power of channel, including tune-up torelance, mW)/(min. test separation distance, mm)] * [$\sqrt{f(GHz)}$] = [0.91 / 5] * [$\sqrt{2.402}$] = 0.28 \leq 3, for 1g SAR

Thus, SAR for this device is not required.

Step 2)

SAR Test exclusion thresholds for 100MHz to 1500MHz at test separation distance > 50 mm = N/A [Threshold at 50mm in step 1) + (test separation distance - 50 mm) * ($\sqrt{f(MHz)/150}$] mW

Step 3)

SAR Test exclusion thresholds for 1500MHz to 6GHz at test separation distance > 50 mm = N/A[Threshold at 50mm in step 1) + (test separation distance - 50 mm) * 10] mW