The LNM Institute of Information Technology Jaipur, Rajasthan MATH-II

Assignment #5

- 1. Let u(x) be any nontrivial solution of u'' + q(x)u = 0 on a closed interval [a, b]. Show that u(x) has at most a finite number of zeros in [a, b].
- 2. Show that any nontrivial solution of u'' + q(x)u = 0, q(x) < 0 has at most one zero.
- 3. Let u(x) be any nontrivial solution of u'' + [1 + q(x)]u = 0, where q(x) > 0. Show that u(x) has infinitely many zeros.
- 4. The equation y'' + y' xy = 0 has a power series solution of the form $\sum a_n x^n$.
 - (i) Find the power series solutions $y_1(x)$ and $y_2(x)$ such that $y_1(0) = 1$, $y'_1(0) = 0$ and $y_2(0) = 0$, $y'_2(0) = 1$.
 - (ii) Find the radius of convergence for $y_1(x)$ and $y_2(x)$.
- 5. Consider the differential equation $(1+x^2)y'' 4xy' + 6y = 0$.
 - (i) Find its general solution in the form $y = a_0y_1(x) + a_1y_2(x)$, where y_1 and y_2 are power series.
 - (ii) Find the radius of convergence for $y_1(x)$ and $y_2(x)$.
- 6. (a) Show that the fundamental system of solutions of Legendre equation

$$(1-x^2)y'' - 2xy' + p(p+1)y = 0$$
 consists of $y_1(x) = \sum_{n=0}^{\infty} a_{2n}x^{2n}$ and $y_2(x) = \sum_{n=0}^{\infty} a_{2n+1}x^{2n+1}$, where $a_0 = a_1 = 1$ and
$$a_{2n+2} = -\frac{(p-2n)(p+2n+1)}{(2n+1)(2n+2)}a_{2n} \quad n = 0, 1, 2 \dots$$

$$a_{2n+1} = -\frac{(p-2n+1)(p+2n)}{2n(2n+1)}a_{2n-1} \quad n = 1, 2, 3, \dots$$

(b) Verify that

$$y_1(x) = P_0(x) = 1$$
, $y_2(x) = \frac{1}{2} \log \left\{ \frac{1+x}{1-x} \right\}$ for $p = 0$
 $y_2(x) = P_1(x) = x$, $y_1(x) = 1 - \frac{x}{2} \log \left\{ \frac{1+x}{1-x} \right\}$ for $p = 1$.

- (c) The expression, $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 1)^n]$, is called the Rodrigues' formula for Legendre polynomial P_n of degree n. Assuming this, find P_1, P_2, P_3, P_4 .
- 7. Using Rodrigues' formula for $P_n(x)$, show that

$$(i) P_n(-x) = (-1)^n P_n(x)$$

$$(ii) P'_n(-x) = (-1)^{n+1} P'_n(x)$$

$$(iii) \int_{-1}^1 P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{mn}$$

$$(iv) \int_{-1}^1 x^m P_n(x) dx = 0$$
 if $m < n$.

8. Suppose m > n. Show that $\int_{-1}^{1} x^m P_n(x) dx = 0$ if m - n is odd. What happens if m - n is even?

9. The function on the left side of $\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n$ is called the generating function of the Legendre polynomial P_n . Using this relation, show that

$$(i) (n+1)P_{n+1}(x) - (2n+1)xP_n(x) + nP_{n-1}(x) = 0 (ii) nP_n(x) = xP'_n(x) - P'_{n-1}(x) (iii) P'_{n+1}(x) - xP'_n(x) = (n+1)P_n(x) (iv) P_n(1) = 1, P_n(-1) = (-1)^n (v) P_{2n+1}(0) = 0, P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{2^n n!}.$$