Invictus Crypto Strategies Data Analysis Course

- Overview: Comprehensive analysis of cryptocurrency trends with a focus on bitcoin
- **Objective:** Utilize machine learning and statistical tools to derive actionable insights.
- Authors:
 - Maxim Savchenko
 - Ben Hababo
 - Lev Kravtsov
 - Shay Tekel

Bitcoin Dataset Overview

- **Data Source:** Bitcoin historical data, detailing price trends, volumes, and other financial indicators.
- Columns: Key columns include: 'Price', 'Vol', 'Low', 'Change%', and adjusted values for indices.
- **Size and Format:** Dataset contains multiple numeric and categorical features spanning several years.

Data	columns (total 18 columns):		
#	Column	Non-Null Count	Dtype
0	Date	2648 non-null	object
1	DATE	2648 non-null	datetime64[ns]
2	Price	2648 non-null	float64
3	0pen	2648 non-null	float64
4	High	2648 non-null	float64
5	Low	2648 non-null	float64
6	Vol.	2648 non-null	object
7	Change %	2648 non-null	float64
8	SN&P Adjusted	2648 non-null	float64
9	DXY Adjusted	2648 non-null	float64
10	GOLD Adjusted	2648 non-null	float64
11	ETH Price	2648 non-null	float64
12	ETH Vol.	2648 non-null	object
13	OIL Price Adjusted	2648 non-null	float64
14	Days from the last halving	2648 non-null	int64
15	BTC_Hashprice	1828 non-null	float64
16	Crypto Volatility Index	1845 non-null	float64
17	Target Value	2648 non-null	int64

Data columns (total 18 columns):

Data Cleaning and Preparation

- **Handling Missing Values:** Identified and filtered columns with missing data using Pandas.
- Conversion: Numeric transformation of columns using custom functions.
- Dataset Refinement: Created an updated DataFrame with structured data ready for analysis.

Correlation Matrix

- Visualization: Heatmap generated to identify relationships among numeric features.
- Key Finding: Strong correlation observed between Bitcoin price and specific indicators like 'ETH Price'.
- Insights: Correlation matrix highlights potential predicators for advanced modeling

Historical Trends in Bitcoin Price

- Bitcoin Price: Historical data shows significant fluctuations over time, reflecting market volatility.
- Comparison: Bitcoin trends juxtaposed against S&P 500, Gold, and other indices.
- Insights: Trends indicate a complex relationship between Bitcoin and traditional financial assets.

Predictive Modeling

- Models Tested: Logistic Regression, Decision Tree, Random Forest, XGBoost, and more.
- Evaluation Metrics: Assessed with accuracy, AUC, and precision-recall curves.
- **Performance Insight:** Random Forest and XGBoost emerged as top-performing models.

Model Performance Comparison

	Accuracy	AUC	FPR	TPR
Logistic Reg	0.815094	0.79084	[0.0, 0.0, 0.0, 0.0023148148148148147, 0.00231	[0.0, 0.01020408163265306, 0.06122448979591836
Decision Tree	1.0	1.0	[0.0, 0.0, 1.0]	[0.0, 1.0, 1.0]
Random Forest	0.869811	0.967545	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.02040816326530612, 0.11224489795918367
XGBoost	1.0	1.0	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	[0.0, 0.01020408163265306, 0.03061224489795918
MLP Net	0.956604	0.998795	[0.0, 0.0, 0.0, 0.00694444444444444444444444444444444444	[0.0, 0.01020408163265306, 0.8877551020408163,
AdaBoost	1.0	1.0	[0.0, 0.0, 0.0, 1.0]	[0.0, 0.41836734693877553, 1.0, 1.0]
SVM (RBF)	0.890566	0.912887	[0.0, 0.0, 0.0, 0.004629629629629629, 0.004629	[0.0, 0.11224489795918367, 0.3469387755102041,
Gradient Boosting	1.0	1.0	[0.0, 0.0, 0.23148148148148148, 1.0]	[0.0, 1.0, 1.0, 1.0]
Naive Bayes	0.90566	0.997874	[0.0, 0.0, 0.0, 0.0023148148148148147, 0.00231	[0.0, 0.01020408163265306, 0.6428571428571429,

Model Evaluation Metrics

- Confusion Matrix: Visualization model predictions to distinguish true positives, false positive, and other outcomes.
- Insights: High AUC and precision-recall balance emphasize reliability of ensemble methods.

	True Negative	False Positive	False Negative	True Positive
Logistic Reg	432	0	98	0
Decision Tree	432	0	0	98
Random Forest	432	0	69	29
XGBoost	432	0	0	98
MLP Net	432	0	23	75
AdaBoost	432	0	0	98
SVM (RBF)	399	33	25	73
Gradient Boosting	432	0	0	98
Naive Bayes	432	0	50	48

Features Importance Analysis

Random Forest Insights

	Feature	Importance
11	Change %	0.611585
10	Vol.	0.063394
0	ETH Vol.	0.037290
2	Crypto Volatility Index	0.031828
13	DXY Adjusted	0.029205
1	Days from the last halving	0.027928
9	Open	0.025334
6	Low	0.024478
12	SN&P Adjusted	0.023893
4	OIL Price Adjusted	0.022440
7	High	0.022112
5	ETH Price	0.021807
8	Price	0.021519
3	GOLD Adjusted	0.018965
14	BTC_Hashprice	0.018223

- **Top Features:** 'Change %' and 'Vol.' ranged highest in influencing predictions.
- **Methodology:** Importance derived using ensemblebased metrics in Random Forest.
- **Insights:** Emphasizes significant predictors for strategic Bitcoin trading.

Random Forest Model Evaluation:

[[454 0] [3 205]]

[5 205]]	precision	n recall	f1-score	support
	0 0.99	1.00	1.00	454
	1 1.00	0.99	0.99	208
accurac	:y		1.00	662
macro av	/g 1.00	0.99	0.99	662
weighted av	/g 1.00	1.00	1.00	662

Accuracy: 0.9954682779456193

AUC: 0.9999152829549305

MCC and Error Metrics

Matthews Correlation Coefficient (MCC): Achieved MCC of 0.989, indicating excellent performance on imbalanced data.

Error Metrics Evaluation:

- Mean Absolute Error (MAE): Evaluates average absolute error, indicating model prediction precision.
- Root Mean Squared Error (RMSE): Captures larger errors more effectively; ideal for financial data.
- R-squared (R2): Explains variance in Bitcoin prices; key metric for reliability.

```
Metric Value
Mean Absolute Error (MAE) 0.004532
Mean Squared Error (MSE) 0.004532
Root Mean Squared Error (RMSE) 0.067318
R-Squared (R2) 0.978969
```

Matthews Correlation Coefficient: 0.9894983843770202

Precision-Recall vs. Threshold

The Precision-Recall vs.
 Threshold chart provides a deeper understanding of how the Random Forest model performs at varying classification thresholds.

Conclusion

Key Insights and Recommendations:

- **Performance Highlights:** XGBoost and Random Forest outperformed with high accuracy and reliability.
- Strategic Insights: Feature analysis identified 'Change %' and 'Vol.' as key predictors.
- Future Scope: Incorporate additional macroeconomic variables for enhanced prediction accuracy.

Thank you!

