Eyes are smarter than scientists believed

Ulisse Ferrari

ulisse.ferrari@gmail.com

Find the TD material at http://oliviermarre.free.fr/

Eyes are smarter than scientists believed

1) The structure of the retina

2) Stimulus processing in the retina

3) Predicting retinal light-response

Goal: predict spiking times

Response is reliable but noisy!

Response is reliable but noisy!

Peri-Stimulus Time Histogram (PSTH)

- 1) repeat video (trials)
- 2) align responses in time

Peri-Stimulus Time Histogram (PSTH)

- 1) repeat video (trials)
- 2) align responses in time
- 3) bin responses at dt=25ms
- 4) spike counts n_t in each dt

Repetitions

Peri-Stimulus Time Histogram (PSTH)

- 1) repeat video (trials)
- 2) align responses in time
- 3) bin responses at dt=25ms
- 4) spike counts n_t in each dt
- 5) average over trials
- 6) estimate spike rate

Can we predict $\langle n_t \rangle$?

$$\tilde{S}_{xyt} = \left(S_{xyt} - \langle S \rangle\right) / \text{std}(S)$$

$$f(t) = w * \tilde{S}(t) + b = \sum_{x,y,\tau} w_{x,y}(\tau) \; \tilde{S}_{x,y}(t-\tau) + b$$

$$\tilde{S}_{xyt} = \left(S_{xyt} - \langle S \rangle\right) / \text{std}(S)$$

$$f(t) = w * \tilde{S}(t) + b = \sum_{x,y,\tau} w_{x,y}(\tau) \; \tilde{S}_{x,y}(t-\tau) + b$$

Optimise w by minimising:
$$MSE = \frac{1}{2} \sum_{t} (f(t) - n(t))^2$$

$$\tilde{S}_{xyt} = \left(S_{xyt} - \langle S \rangle\right) / \text{std}(S)$$

$$f(t) = w * \tilde{S}(t) + b = \sum_{x,y} w_{x,y}(\tau) \tilde{S}_{x,y}(t - \tau) + b$$

Optimise w by minimising: $MSE = \frac{1}{2} \sum_{t} (f(t) - n(t))^2$

After some algebra: $W_{x,y}(\tau) = \sum_{\tau'} STA_{x,y}(\tau') C_{x,y}^{-1}(\tau',\tau)$

Spike-Triggered Average

Stimulus autocorrelation

$$STA_{x,y}(\tau) \equiv \frac{1}{T} \sum_{t}^{T} n(t) \ \tilde{S}_{x,y}(t-\tau) \qquad C_{x,y}(\tau',\tau) \equiv \frac{1}{T} \sum_{t}^{T} \tilde{S}_{x,y}(t-\tau') \ \tilde{S}_{x,y}(t-\tau')$$

$$C_{x,y}(\tau',\tau) = \delta(\tau - \tau')$$

After some algebra:
$$W_{x,y}(\tau) = \sum_{\tau'} STA_{x,y}(\tau') C_{x,y}^{-1}(\tau',\tau)$$

Spike-Triggered Average

Stimulus autocorrelation

$$STA_{x,y}(\tau) \equiv \frac{1}{T} \sum_{t}^{T} n(t) \ \tilde{S}_{x,y}(t-\tau) \qquad C_{x,y}(\tau',\tau) \equiv \frac{1}{T} \sum_{t}^{T} \tilde{S}_{x,y}(t-\tau') \ \tilde{S}_{x,y}(t-\tau)$$

$$C_{x,y}(\tau',\tau) = \delta(\tau - \tau') \qquad \qquad \qquad W_{x,y}(\tau) = \text{STA}_{x,y}(\tau) = \frac{1}{T} \sum_{t}^{T} n(t) \ \tilde{S}_{x,y}(t - \tau)$$
Time

After some algebra:
$$W_{x,y}(\tau) = \sum_{\tau'} STA_{x,y}(\tau') C_{x,y}^{-1}(\tau',\tau)$$

Spike-Triggered Average

Stimulus autocorrelation

$$STA_{x,y}(\tau) \equiv \frac{1}{T} \sum_{t}^{T} n(t) \ \tilde{S}_{x,y}(t-\tau) \qquad C_{x,y}(\tau',\tau) \equiv \frac{1}{T} \sum_{t}^{T} \tilde{S}_{x,y}(t-\tau') \ \tilde{S}_{x,y}(t-\tau)$$

time before spike (s)

$$C_{x,y}(\tau',\tau) = \delta(\tau - \tau')$$

$$W_{x,y}(\tau) = \operatorname{STA}_{x,y}(\tau) = \frac{1}{T} \sum_{t}^{T} n(t) \ \tilde{S}_{x,y}(t - \tau)$$

$$ON \ \operatorname{RGC}$$

$$0.10 \quad OFF \ \operatorname{RGC}$$

$$0.40 \quad OFF \ \operatorname{RGC}$$

Linear model: full field case

Response

Linear model: full field case

Response

$$MSE = \frac{1}{2} \sum_{t} \left(f(t) - n(t) \right)^{2}$$

$$w(\tau) = \sum_{\tau'}^{t_{int}} STA(\tau') C^{-1}(\tau', \tau)$$

$$C(\tau', \tau) \equiv \frac{1}{T} \sum_{t} \tilde{S}(t - \tau') \tilde{S}(t - \tau)$$

Linear model: full field case

$$f(t) = NL(w * \tilde{S} + b) \rightarrow \exp(w * \tilde{S} + b)$$
 Where $NL(x)$ can be $\exp(x)$ or another nonlinear function

$$f(t) = NL(w * \tilde{S} + b) \rightarrow \exp(w * \tilde{S} + b)$$
 Where $NL(x)$ can be $\exp(x)$ or another nonlinear function

Can be solved by log-likelihood maximisation: $\mathscr{E}(w,b) = \sum_{t} \left(n(t) \log f(t) - f(t) \right)$

$$f(t) = NL(w * \tilde{S} + b) \rightarrow \exp(w * \tilde{S} + b)$$
 Where $NL(x)$ can be $\exp(x)$ or another nonlinear function

Can be solved by log-likelihood maximisation: $\mathscr{E}(w,b) = \sum_{t} \left(n(t) \log f(t) - f(t) \right)$

$$\frac{\partial \mathcal{E}(w,b)}{\partial w(\tau)} = \sum_{t} \left[\left(\frac{n(t)}{f(t)} - 1 \right) \frac{\partial f(t)}{\partial w(\tau)} \right]$$

$$f(t) = NL(w * \tilde{S} + b) \rightarrow \exp(w * \tilde{S} + b)$$
 Where $NL(x)$ can be $\exp(x)$ or another nonlinear function

Can be solved by log-likelihood maximisation: $\mathscr{E}(w,b) = \sum_{t} \left(n(t) \log f(t) - f(t) \right)$

$$\frac{\partial \mathcal{E}(w,b)}{\partial w(\tau)} = \sum_{t} \left[\left(\frac{n(t)}{f(t)} - 1 \right) \frac{\partial f(t)}{\partial w(\tau)} \right] = \sum_{t} \left[\left(n(t) - f(t) \right) \tilde{S}(t - \tau) \right]$$

$$f(t) = NL(w * \tilde{S} + b) \rightarrow \exp(w * \tilde{S} + b)$$
 Where $NL(x)$ can be $\exp(x)$ or another nonlinear function

Can be solved by log-likelihood maximisation:

$$\mathscr{C}(w,b) = \sum_{t} (n(t)\log f(t) - f(t))$$

$$\frac{\partial \mathcal{E}(w,b)}{\partial w(\tau)} = \sum_{t} \left[\left(\frac{n(t)}{f(t)} - 1 \right) \frac{\partial f(t)}{\partial w(\tau)} \right] = \sum_{t} \left[\left(n(t) - f(t) \right) \tilde{S}(t - \tau) \right]$$

$$\frac{\partial \mathcal{E}(w,b)}{\partial b} = \sum_{t} \left[\left(n(t) - f(t) \right) \right]$$

$$f(t) = NL(w * \tilde{S} + b) \rightarrow \exp(w * \tilde{S} + b)$$
 Where $NL(x)$ can be $\exp(x)$ or another nonlinear function

Can be solved by log-likelihood maximisation:

$$\ell(w,b) = \sum_{t} (n(t)\log f(t) - f(t))$$

$$\frac{\partial \mathcal{E}(w,b)}{\partial w(\tau)} = \sum_{t} \left[\left(\frac{n(t)}{f(t)} - 1 \right) \frac{\partial f(t)}{\partial w(\tau)} \right] = \sum_{t} \left[\left(n(t) - f(t) \right) \tilde{S}(t - \tau) \right]$$

$$\frac{\partial \mathcal{E}(w,b)}{\partial b} = \sum_{t} \left[\left(n(t) - f(t) \right) \right]$$

Can be solved by steepest gradient

To have a smooth w, we should minimise $(w(\tau) - w(\tau + 1))^2$

To have a smooth w, we should minimise $(w(\tau) - w(\tau + 1))^2$

$$\mathscr{E}_{\lambda}(w,b) = \sum_{t} \left(n(t) \log f(t) - f(t) \right) - \frac{\lambda}{2} \sum_{\tau,\tau'} w(\tau) L(\tau,\tau') w(\tau')$$

To have a smooth w, we should minimise $(w(\tau) - w(\tau + 1))^2$

$$\mathcal{E}_{\lambda}(w,b) = \sum_{t} \left(n(t) \log f(t) - f(t) \right) - \frac{\lambda}{2} \sum_{\tau,\tau'} w(\tau) L(\tau,\tau') w(\tau')$$

Laplacian:
$$L(\tau, \tau') = \begin{pmatrix} 2 & -1 & & & & \\ & -1 & 4 & -1 & & & & \\ & & -1 & 4 & -1 & & & \\ & & & & -1 & & \\ & & & & & -1 & \\ & & & & & -1 & 4 & -1 \\ & & & & & & -1 & 4 & -1 \\ & & & & & & -1 & 2 \end{pmatrix}$$

To have a smooth w, we should minimise $(w(\tau) - w(\tau + 1))^2$

$$\mathcal{E}_{\lambda}(w,b) = \sum_{t} \left(n(t) \log f(t) - f(t) \right) - \frac{\lambda}{2} \sum_{\tau,\tau'} w(\tau) L(\tau,\tau') w(\tau')$$

Laplacian:
$$L(\tau, \tau') = \begin{pmatrix} 2 & -1 & & & & \\ & -1 & 4 & -1 & & & 0 & \\ & & -1 & 4 & -1 & & & \\ & & & & -1 & & \\ & & & & & -1 & & \\ & & & & & -1 & 4 & -1 & \\ & & & & & & -1 & 4 & -1 & \\ & & & & & & & -1 & 2 & \end{pmatrix}$$

And the strength λ should be optimised over the validation set

What happens if the stimulus is more complex?

Relevant: test the tracking of moving object

Simple: fully described by one dimensional trajectory

What happens if the stimulus is more complex?

Same type of cell, but different computations!

A simple LNP model...

A simple LNP model may not predict the response

A simple LNP model may not predict the response

A LNP model is not enough flexible!

An highly non-linear LN²P model...

An highly non-linear LN²P model predicts the response

An highly non-linear LN²P model predicts the response

How to quantify information carried by the spikes?

Mutual information between **pos** and **spikes**:

$$\mathcal{H}[pos] - p(spike)\mathcal{H}[pos | spike] - p(no-spike)\mathcal{H}[pos | no-spike]$$

Mutual information between **pos** and **spikes**:

$$\mathcal{H}[pos] - p(spike)\mathcal{H}[pos | spike] - p(no-spike)\mathcal{H}[pos | no-spike]$$

Same type of cell, but different computations!

Eyes are smarter than scientists believed

Ulisse Ferrari

ulisse.ferrari@gmail.com

