Prof. Dr. Andreas Maletti, Dr. habil. Karin Quaas, Fabian Sauer

Aufgaben zur Lehrveranstaltung

Berechenbarkeit

Lösungen zu Serie 2

Übungsaufgabe 2.1 (Turingmaschinen: Satzform und Ableitungsrelation)

Für alle $i \in \{1,2,3,4\}$, prüfen Sie, ob es möglich ist, die jeweils fehlende Komponente so zu vervollständigen, dass $u_i \vdash v_i$ durch Ausführen der Transition δ_i . Begründen Sie jeweils Ihre Antwort.

- (a) $\delta_1 = (q, a) \rightarrow (q', b, \triangleright)$, $u_1 = baqab$, $v_1 = ?$ Ja, mit $v_1 = babq'b$
- (b) $\delta_2 = (q, a) \rightarrow (q', b, \triangleleft), u_2 = \varepsilon q a, v_2 = ?$ Ja, mit $v_2 = \varepsilon q' \square b$
- (c) $\delta_3 = ?$, $u_1 = \varepsilon qa$, $v_1 = \varepsilon q'b$ Ja, mit $\delta_3 = (q, a) \rightarrow (q', b, \diamond)$
- (d) $\delta_4 = (q, a) \rightarrow (q', b, \triangleleft)$, $u_4 = ?$, $v_4 = \varepsilon q'baa$ Nein, denn nach Ausführen von δ_4 müsste der 2. Buchstabe nach dem q' ein b sein.

Übungsaufgabe 2.2 (Turingmaschinen: Akzeptierte Sprache)

Sei $\Sigma = \{0,1\}$ und $L \subseteq \Sigma^*$ definiert durch

$$L = \{0^m 1^n \mid n \text{ ist ein Vielfaches von } m\}.$$

Geben Sie eine Turingmaschine M an, welche L akzeptiert, d.h. L(M) = L.

LÖSUNG: Idee: Kopiere alle 0 von Band 1 auf Band 2, dann laufe jeweils auf Band 2 die 0 hin und her, synchron laufe auf Band 1 die 1 entlang, bis sich beide treffen (Band 1 rechts am Ende der 1en, Band 2 links oder rechts am Anfang oder am Ende der 0en).

Definiere die 2-Band-Turingmaschine $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ mit

- $Q = \{q_0, q_+, q_-, q_1, q_2, q_3\}$
- $\Gamma = \{0, 1, \square\}$
- Δ enthält genau die folgenden Transitionen:
 - $(q_0, \langle 1, \square \rangle)$ → $(q_-, \langle (1, \diamond), (\square, \diamond) \rangle)$ Falls die Eingabe die Form $0^m 1^n$ mit m = 0 und $n \ge 1$ hat, wird abgelehnt, denn $n \ge 1$ kein Vielfaches von 0
 - $(q_0, \langle \Box, \Box \rangle)$ → $(q_+, \langle (\Box, \diamond), (\Box, \diamond) \rangle)$ Falls die Eingabe die Form $0^m 1^n$ mit m = n = 0 hat, wird akzeptiert, denn 0 ist Vielfaches von 0

- $(q_0, \langle 0, \square \rangle) \rightarrow (q_1, \langle (0, \diamond), (\square, \diamond) \rangle)$ Falls die Eingabe die Form $0^m 1^n$ mit $m \ge 1$ hat, geht M ohne Bewegung zu Zustand q_1 .
- $(q_1, \langle 0, \square \rangle)$ → $(q_1, \langle (\square, \triangleright), (0, \triangleright) \rangle)$ In q_1 kopiert M alle 0 von Band 1 auf Band 2, von links nach rechts. Die 0 auf Band 1 werden mit \square überschrieben.
- (q₁, ⟨□,□⟩) → (q₋, ⟨(□,⋄), (□,⋄)⟩)
 Wird in q₁ nun ein □ auf Band 1 gelesen, wird abgelehnt, denn nach einer 0 muss mindestens eine 1 gelesen werden, damit n ein Vielfaches von m ist.
- (q₁, ⟨1,□⟩) → (q₂, ⟨(1,⋄), (□, □)⟩)
 Auf Band 1 wird eine 1 gelesen: der Kopiervorgang ist nun abgeschlossen und *M* geht zu Zustand q₂, wo nun die eigentliche Eigenschaft geprüft werden wird. Dazu bleibt der Schreiblesekopf von Band 1 auf der ersten 1, und der Schreiblesekopf von Band 2 geht eine Position nach links zur letzten 0.
- für alle $a \in \{0,1,□\}$: $(q_2,\langle 0,a\rangle) \to (q_-,\langle 0,\diamond),(a,\diamond)\rangle)$ Wird in q_2 auf Band 1 eine 0 gelesen, wird abgelehnt, da das Eingabewort nicht die richtige Form 0^m1^n besitzt.
- (q₂, ⟨1,0⟩) → (q₂, ⟨(1,▷), (0,⊲)⟩)
 In q₂ bewegt sich *M* auf Band 1 für jede gelesene 1 nach rechts und synchron auf Band 2 für jede gelesene 0 nach links, solange bis...
- (q₂, ⟨□, 0⟩) → (q₋, ⟨(□, ⋄), (0, ⋄)⟩)
 ...auf Band 1 ein □ gelesen wird, also alle 1 "konsumiert" wurden, obwohl auf Band 2 noch eine 0 gelesen wird. In diesem Fall wird abgelehnt, da n kein Vielfaches von m sein kann; oder...
- $(q_2, \langle \Box, \Box \rangle)$ → $(q_+, \langle (\Box, \diamond), (\Box, \diamond) \rangle)$...sowohl auf Band 1 als auch auf Band 2 ein \Box gelesen wird. In diesem Fall wird akzeptiert, denn n ist Vielfaches von m; oder...
- (q₂, ⟨1,□⟩) → (q₃, ⟨(1,⋄), (□,▷)⟩)
 ...auf Band 1 wird eine 1 gelesen, aber auf Band 2 ein □. In diesem Fall geht *M* in den Zustand q₃ ohne Bewegung auf Band 1, aber eine Position vor zum Anfang von Band 2. Der Zustand q₃ macht im Prinzip dasselbe wie q₂, nur dass die Lesebewegung auf Band 2 auch nach rechts geht (vergleiche die nächsten 5 Transitionen mit den jeweiligen Transitionen in q₂). Die TM wechselt also zwischen den Zuständen q₂ und q₃ hin und her.
- für alle $a \in \{0, 1, \square\}: (q_3, \langle 0, a \rangle) \to (q_-, \langle 0, \diamond), (a, \diamond) \rangle)$
- $(q_3, \langle 1, 0 \rangle) \rightarrow (q_3, \langle (1, \triangleright), (0, \triangleright) \rangle)$
- $(q_3, \langle \square, 0 \rangle) \rightarrow (q_-, \langle (\square, \diamond), (0, \diamond) \rangle)$
- $(q_3, \langle \square, \square \rangle) \rightarrow (q_+, \langle (\square, \diamond), (\square, \diamond) \rangle)$

$$- (q_3, \langle 1, \square \rangle) \rightarrow (q_2, \langle (1, \diamond), (\square, \triangleleft) \rangle)$$

Übungsaufgabe 2.3 (Turingmaschinen: Transformationssemantik)

Sei $\Sigma = \{a,b\}$. Definiere die längenlexikografische Ordnung \square über Σ^* durch $w \square w'$ falls |w| < |w'|, oder |w| = |w'| und es gibt $u,v,v' \in \Sigma^*$ mit $w = u \cdot a \cdot v$ und $w' = u \cdot b \cdot v'$.

Weiterhin sei $g: \Sigma^* \to \Sigma^*$ die Funktion, die jedes Wort $w \in \Sigma^*$ auf seinen eindeutigen längenlexikografischen Nachfolger abbildet. Beispielsweise gilt $g(\varepsilon) = a$, g(aab) = aba und g(bbb) = aaaa.

Geben Sie eine Turingmaschine M an sodass T(M) = g.

LÖSUNG: Idee: eigentlich wie binäre Addition. Sei $M = (Q, \{0\}, \{0, 1, \square\}, \Delta, \square, q_0, q_+, q_-)$, wobei

- $Q = \{q_0, q_+, q_-, q_1, q_2, q_3\}$
- Δ besteht aus genau den folgenden Transitionen:
 - $(q_0, □)$ → $(q_+, a, ⋄)$ Leeres Wort hat a als Nachfolger
 - Für alle $c \in \{a, b\}$: $(q_0, c) \rightarrow (q_1, c, \triangleright)$ Falls Eingabewort nichtleer, bewegt sich M von links nach rechts und zu q_1 .
 - Für alle $c \in \{a,b\}$: $(q_1,c) \to (q_1,c,\triangleright)$ Dort bewegt sich M von links nach rechts weiter bis zum Ende des Wortes
 - (q_1, \square) → $(q_2, \square, \triangleleft)$. Am Ende des Wortes eine Position zurück und in Zustand q_2 .
 - (q_2, b) → (q_2, a, \triangleleft) und (q_2, a) → (q_3, b, \triangleleft) Von rechts nach links: alle b werden durch a ersetzt, bis endlich ein a gesehen wird. Dieses wird durch b ersetzt und M geht zu q_3 .
 - Sollte in q_2 kein a gesehen werden, so wird das erste □ durch ein a ersetzt und akzeptiert: $(q_3, □) \rightarrow (q_+, a, \diamond)$.
 - In q₃ bewegt sich M einfach nur zum Anfang des Wortes, damit der SLK an der richtigen Stelle steht, bevor die M akzeptiert:
 Für alle c ∈ {a,b}: (q₃,c) → (q₃,c, ▷), (q₃,□) → (q₊,□,▷).

Seite 4 von 9

- Hausaufgabe 2.4 (Turingmaschinen: Satzform und Ableitungsrelation) Für alle $i \in \{1, 2, 3, 4\}$, prüfen Sie, ob es möglich ist, die jeweils fehlende Komponente so zu vervollständigen, dass $u_i \vdash v_i$ durch Ausführen der Transition δ_i . Begründen Sie jeweils Ihre Antwort.
 - (a) $\delta_1 = (q, b) \rightarrow (q', a, \diamond), u_1 = bqbb, v_1 = ?$ Ja, mit $v_2 = bq'ab \bullet_1$
 - (b) $\delta_2 = (q, a) \rightarrow (q', a, \triangleright), u_2 = baga, v_2 = ?$ Ja, mit $v_1 = baag' \square \bullet_2$
 - (c) $\delta_3 = ?$, $u_1 = bqbb$, $v_1 = bbq'b$ Ja, mit $\delta_3 = (q, b) \rightarrow (q', b, \triangleright) \bullet_3$
 - (d) $\delta_4 = (q, \square) \rightarrow (q', a, \triangleright), u_4 =?, v_4 = \varepsilon a q' \square Ja, \text{ mit } u_4 = \varepsilon q \square \bullet_4$

Hausaufgabe 2.5 (Turingmaschinen: Akzeptierte Sprache)

(a) Betrachten Sie die folgende Aussage:

Für alle $p \in \mathbb{N}$, sind die beiden folgenden Aussagen äquivalent.

- (i) Eine Zahl p ist keine Primzahl.
- (ii) $p \in \{0,1\}$, oder es existieren $m, n \in \mathbb{N}$ mit $m \ge 2$, $n \ge 1$, n ist Vielfaches von m, und p = m + n.

Beweisen Sie eine der beiden Implikationen, d.h. entweder (i) \Rightarrow (ii), oder (ii) \Rightarrow (i). (4)

(b) Sei $\Sigma = \{0\}$ und $L \subseteq \Sigma^*$ definiert durch

$$L = \{0^p \mid p \text{ ist keine Primzahl}\}.$$

Geben Sie eine Turingmaschine an, welche L akzeptiert, d.h. L(M) = L.

(8)

Hinweis: Ihre Turingmaschine darf selbstverständlich gemäss Vorlesung 3 aus mehreren Turingmaschinen mittels Verkettung, Iteration oder Vereinigung zusammengesetzt werden. Sie dürfen aus Übung oder Vorlesung bekannte Turingmaschinen verwenden.

LÖSUNG: (a) Eine Zahl c ist eine Primzahl gdw. sie genau zwei Teiler besitzt: 1 und c. Eine Zahl c ist keine Primzahl gdw. sie genau einen Teiler besitzt (d.h. c=1) oder mindestens drei verschiedene Teiler besitzt (d.h. es gibt a, b mit $c=a \cdot b$ und $a \notin \{1, c\}$).

"(i) \Rightarrow (ii)" Angenommen p ist keine Primzahl. Falls p=0 oder p=1, so gilt (ii). Nehmen wir also an, $p\geq 2$. Da p keine Primzahl und $p\neq 1$, gibt es a,b mit $p=a\cdot b$ und $a\not\in\{1,p\}$. Da $a\neq p$, gilt $b\neq 1$. Da $p\neq 0$, gilt auch $a\neq 0$ und $b\neq 0$. Also $a\geq 2$ und $b\geq 2$. Setze m=a, n=p-a. Klar: p=m+n. Wir zeigen, dass p=n ein Vielfaches von p=n ist:

$$p = a \cdot b$$

$$p = a \cdot (b - 1 + 1)$$

$$p = a \cdot (b - 1) + a$$

$$p - a = a \cdot (b - 1)$$

Seite 5 von 9

Also $n = m \cdot (b-1)$, d.h. n ist Vielfaches von m. Da $m \ge 2$ und $b-1 \ge 1$, erhalten wir auch $n \ge 1$.

"(ii) \Rightarrow (i)" Angenommen p=0 oder p=1. Dann ist p keine Primzahl. Sei also $p\geq 2$ und angenommen, es gibt m,n mit $m\geq 2, n\geq 1, p=m+n$ und n ist Vielfaches von m. Also $n=m\cdot k$ für ein $k\geq 0$. Dann aber $p=m+n=m+(m\cdot k)=m\cdot (1+k)$. Da $n\geq 1$ und m+n=p, gilt m< p. Weiterhin gilt $m\geq 2$ und insbesondere $m\neq 1$, also $m\notin \{1,p\}$. p besitzt also mindestens 3 Teiler und ist somit keine Primzahl.

95 **9**6 **9**7 **9**8

(b) Wir definieren M als $M_0 \cup (M_1; M_2)$; hierbei sei M_2 eine (1-Band-)Turingmaschine, welche der in Aufgabe 2.2 entwickelten 2-Band-Turingmaschine entspricht (wie in der Vorlesung gezeigt: Mehrbandturingmaschinen können in (1-Band-)Turingmaschinen umgewandelt werden, welche dieselbe Sprache akzeptieren). Also akzeptiert M_2 alle Wörter der Form 0^m1^n mit n ist Vielfaches von m akzeptiert. Die Turingmaschine M_0 ist eine Turingmaschine über $\{0\}$, welche genau das leere Wort sowie das Wort 0 akzeptiert. Diese beiden Wörter entsprechen den Sonderfällen p=0 und p=1.

 M_1 sei die Turingmaschine $M_1 = (Q, \{0\}, \Gamma, \square, \Delta, q_0, q_+, q_-)$, wobei:

- $Q = \{q_0, q_-, q_+, q_2, q_2, q_3, q_4\}$
- $\Gamma = \{0, 1, \square\}$
- Δ besteht genau aus den folgenden Transitionen:
 - $(q_0, □)$ → $(q_-, □, ⋄)$ Das leere Wort wird abgelehnt (Sonderfall p = 0 wird durch M_0 behandelt).

Seite 6 von 9

- (q₀, 0) → (q₁, 0, ▷)
 Lese eine 0, geh zu q₁, belasse 0 auf dem Band und bewege Schreiblesekopf (SLK) nach rechts.
- $(q_1, \square) \rightarrow (q_-, \square, \diamond)$ Falls in q_1 ein \square gelesen wird, so entspricht die Eingabe 0. In diesem Fall lehnt die Turingmaschine ab (Sonderfall p=1 wird durch M_0 behandelt).
- $(q_1,0)$ → $(q_2,0,\triangleright)$ Anderenfalls geht M_1 zum Zustand q_2 . Hier beginnt nun die Behandlung aller Nicht-Sonderfälle $p \ge 2$.
- $(q_2,0)$ → $(q_2,0,\triangleright)$, $(q_2,0)$ → $(q_3,1,\triangleright)$, $(q_3,0)$ → $(q_3,1,\triangleright)$ In q_2 wird nichtdeterministisch eine Position im Eingabewort geraten, ab der wir alle 0 in 1 verwandeln
- (q_3, \square) → $(q_4, \square, \triangleleft)$, für alle $a \in \{0,1\}$: (q_4, a) → (q_4, a, \triangleleft) , (q_4, \square) → $(q_+, \square, \triangleright)$ Ist M_1 am Ende des Wortes angekommen, bewegt es den SLK zurück zum Anfang des Bandinhaltes (jetzt von der Form 0^m1^n mit $m \ge 2$, $n \ge 1$) und akzeptiert.

Die Turingmaschine M_1 akzeptiert also alle Eingaben der Form 0^p mit $p \ge 2$, und wandelt sie nichtdeterministisch in ein Wort der Form 0^m1^n mit m+n=p, $m \ge 2$, $n \ge 1$ um.

Seite 7 von 9

Die finale Turingmaschine definieren wir nun wie folgt. Wir nutzen 1.5(a) um zu zeigen dass L(M) = L:

- Falls M akzeptiert, so ist p=0 oder p=1, oder p=m+n mit $m \ge 2$, $n \ge 1$, und n ist ein Vielfaches von m, also ist p keine Primzahl.
- Falls M nicht akzeptiert, so ist $p \neq 0$, $p \neq 1$, und es gibt kein m, n mit $m \geq 2$, $n \geq 2$ und n ist Vielfaches von m. Also p eine Primzahl.

(8)

● ● 10 ● 11 ● 12 für eine erkennbar richtige Idee ● 13 ● 14 ● 15 ● 16 für formal richtige Umsetzung

Hausaufgabe 2.6 (Turingmaschinen: Transformationssemantik)

Sei $f: \{0\}^* \to \{0\}^*$ definiert durch $f(0^n) = 0^{2n}$, für alle $n \in \mathbb{N}$. Geben Sie eine Turingmaschine M an, sodass T(M) = f.

LÖSUNG: Idee: für jede 0 eine neue 0 ans Ende. Damit keine 0 der Eingabe mehr als einmal behandelt wird, markieren wir sie durch eine 1 (und schreiben auch eine 1). Am Ende alle 1 in 0 und zurück zum Anfang des Bandes.

Definiere $M = (Q, \{0\}, \{0, 1, \square\}, \Delta, \square, q_0, q_+, q_-)$, wobei

- $Q = \{q_0, q_+, q_-, q_1, q_2, q_3\}$
- Δ besteht aus genau den folgenden Transitionen:
 - $(q_0,\Box) \to (q_+,\Box,\diamond)$ Eingabewort $\varepsilon=0^0$, und f(0)=0, sodass die M direkt akzeptieren kann.
 - $(q_0,0)$ → $(q_1,1,\triangleright)$ Die TM markiert eine gelesene 0 durch eine 1, bewegt den SLK nach rechts und geht in den Zustand q_1
 - Für alle $a \in \{0,1\}$: $(q_1,a) \rightarrow (q_1,a,\triangleright)$ In q_1 wandert M bis zum Ende des aktuellen Bandinhaltes, um...
 - (q_1, \square) → $(q_2, 1, \triangleleft)$, für alle $a \in \{0, 1\}$: (q_2, a) → (q_2, a, \triangleleft) ... dort eine neue 1 aufs Band zu schreiben. Dann geht M in q_2 und bewegt den SLK wieder nach links bis zum Anfang des Wortes.

Seite 8 von 9

- (q_2, \square) → $(q_3, \square, \triangleright)$ Dort angekommen, bewegt M sich in Zustand q_3 .
- $(q_3, 1)$ → $(q_3, 1, \triangleright)$, $(q_3, 0)$ → $(q_1, 1, \triangleright)$. In q_3 sucht M die erste 0; wenn gefunden, markiert sie sie durch eine 1 und geht wieder in q_1 .
- Sollte in q₃ keine 0 mehr gefunden werden, die TM also von links nach rechts zum Ende des Wortes wandert ohne eine 0 gesehen zu haben, so ist der Verdopplungsvorgang beendet. Die TM geht nun mit (q₃,□) → (q₄,□, ⊲)

in den Zustand q_4 , wo alle 1 in 0 umgewandelt werden und der SLK zum Anfang des Wortes bewegt wird: $(q_4,1) \rightarrow (q_4,0,\triangleleft), (q_4,\square) \rightarrow (q_+,\square,\triangleright)$

Punktevergabevorschlag: $lacktriangledown_{17} lacktriangledown_{18} lacktriangledown_{19} lacktriangledown_{20}$ für erkennbar richtige Idee $lacktriangledown_{21} lacktriangledown_{22} lacktriangledown_{23} lacktriangledown_{24}$ für formal richtige Umsetzung, d.h. T(M) = f und richtiges Aufschreiben