IoT challenges

State of the art

Aghiles DJOUDI

LIGM/ESIEE Paris

April 25, 2019

4					- 1					
٦	١. ا	ın	tr	\sim	М	11	С.	п	\cap	r

- 2. State of the ar
- 3. Conclusion
- 4. State of the art
- 5 First contribution
- Second contribution
- 7. Conclusion

1. *Context

4					- 1					
٦	١. ا	ın	tr	\sim	М	11	С.	п	\cap	r

- 2. State of the ar
- 3. Conclusion
- 4. State of the art
- 5 First contribution
- Second contribution
- 7. Conclusion

1. *Context

Figure 1: The IoT Platform

- [1] Connect sensors to the gateway[1].
- Connect the gateway to the infrastructure.
- Store & Analyze sensors data[2].

[1] Musa Ndiaye, Gerhard Hancke, and Adnan Abu-Mahfouz. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey In: 17.5 (May 4, 2017). 00053, p. 1031.
[2] Pascall Thubert, Maria Riba Palatella, and Thomas Engel. STECH Centralized Scheduling: When SDN Meet lot In: 2016 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and Networking (CSCN).
[2015 IEEE Conference on Standards for Communications and

1. Introduction | 2. Context 1/32

Problematic

Introduction

Figure 2: The IoT problematics

- How to communicate sensors efficiently
 - → IEEE 802.15.4, 6LowPAN
 - Throughput, Delay, Jitter, Loss rate and Availability.
- How to communicate sensors with the infrastructure efficiently
 - → LPWAN, LoraWan
 - Heterogeneity ?
- How to extract knowledge from sensors data.
 - Data mining: Classification, Clustering
 - Deep learning: Machine learning

1. Introduction | 3. Problematic 2/32

Problematic

Introduction

Figure 2: The IoT problematics

- How to communicate sensors efficiently
 - → IEEE 802.15.4, 6LowPAN
 - Throughput, Delay, Jitter, Loss rate and Availability.
- How to communicate sensors with the infrastructure efficiently
 - → LPWAN, LoraWan
 - Heterogeneity ?
- How to extract knowledge from sensors data.
 - Data mining: Classification, Clustering
 - Deep learning: Machine learning

1. Introduction | 3. Problematic 2/32

Motivations

Introduction

- First Motivation
 - First Motivation
 - * First Motivation
 - * Second Motivation
 - Second Motivation
- Second Motivation
- First Motivation
 - Second Motivation
- Third Motivation
 - → First Motivation
 - Second Motivation
- Fourth Motivation
 - First Motivation
 - Second Motivation

Figure 3

Goals

- First goal
 - → First goal
 - First goal
 - * Second goal
 - Second goal
- Second goal
 - First goal
 - Second goal
- Third goal
 - First goal
 - Second goal
- Fourth goal
 - → First goal
 - Second goal

Figure 4

1. Introduction | 5. Goals 4/32

Challenges

Introduction

- First Challenge
 - → L'objectif est de réduire le taux de mortalité
 - → L'objectif est de rendre nos route plus sure
- Second Challenge
 - Connecter les pietons et le vehicule
 - augmenter la présision GPS
 - réduire la latence
- Third Challenge
 - → Connecter les pietons et le vehicule
 - → augmenter la présision GPS
 - → réduire la latence

1. Introduction | 6. Challenges 5/32

Contributions

Introduction

- First contribution
 - Privacy settings
 - → Information propagation

- Second contribution
 - → Privacy settings
 - _
- Third contribution
 - Privacy settings
 - **→** [

- Introduction
- 2. State of the art
- 3. Conclusion
- 4. State of the art

1. *Context

- 5. First contribution
- 6. Second contribution
- 7. Conclusion

- 1. Introduction
- 2. State of the art
- 3. Conclusion
- 4. State of the ar
- 5. First contribution
- 6. Second contribution
- Conclusion

- 2. Application protocols
- 3. Service discovery
- 4. Network layer
- 5. Link & Physical layer

State of the art

Standardization

2. State of the art | 1. Context 7/32

- 1. Introduction
- 2. State of the art
- 3. Conclusion
- 4. State of the ar
- First contribution
- 6. Second contribution
- Conclusion

2. Application protocols

- Service discovery
- Network layer
- 5. Link & Physical layer

- 1. Introduction
- 2. State of the art
- 3. Conclusion
- 4. State of the ar
- 5 First contribution
- 6. Second contribution
- Conclusion

- 2. Application protocols
- 3. Service discovery
- Network layer
- Link & Physical layer

- Introduction
- 2. State of the art
- 3. Conclusion
- 4. State of the ar
- 5. First contribution
- 0.0-----
- 7. Conclusio

- 2. Application protocols
- Service discovery
- 4. Network layer
- Link & Physical layer

- 1. Introduction
- 2. State of the art
- 3. Conclusion
- 4. State of the ar
- First contribution
- 6. Second contribution
- Conclusion

- 2. Application protocols
- Service discovery
- Network layer
- 5. Link & Physical layer

- Introduction
- 2. State of the art
- 3. Conclusion
- 4. State of the ar
- 5. First contribution
- 6. Second contribution
- 7 Conclusion

Conclusion

3. Conclusion 8/32

- Introduction
- 2. State of the art
- 3. Conclusion
- 4. State of the art
- 5. First contribution
- 6. Second contribution
- 7 Conclusion

State of the art

Standardization

4. State of the art 9/32

Conclusion

4. State of the art 10/32

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the ar
- 5. First contribution
- 6. Second contribution
- Conclusion

- 1. Related work
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Conclusion

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the art
- 5. First contribution
- 6 Cooped contribution
- Conclusion

1. Related work

- 2. Contagion process
- Experimentation
- 4. Results exploitation
- 5. Conclusion

Related work

Comparison

Paper	A1	A2	A3	A4

Table 1: An example table.

11/32

Related work

Comparison

Paper	A1	A2	A3	A4

Table 2: An example table.

- Introduction
- 2. State of the ar
- Conclusion
- 4. State of the art
- 5. First contribution
- 6 Second contribution
- o. occoria contribution
- Conclusion

- Related work
- 2. Contagion process
- Experimentation
- Results exploitation
- Conclusion

```
... (step 1)
Methods
```

- Privacy threats
 - Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - Privacy settings
 - -

... (step 2) Methods

- Privacy threats
 - Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

```
... (step 3)
Methods
```

- Privacy threats
 - → Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - Privacy settings
 - -

```
... (step 4)
Methods
```

- Privacy threats
 - Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the art
- 5. First contribution
- o. Second Continbution
- Conclusio

- 1. Related work
- Contagion process
- 3. Experimentation
- Results exploitation
- Conclusion

Experimentation

Experimentation

- Privacy threats
 - Privacy settings
 - Information propagation
 - .
- Privacy protection
 - → Privacy settings
 - -

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the art
- 5. First contribution
- 6 Second contribution
- Conclusion

- Related work
- Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5 Conclusion

Results

Comparison

Figure 5

- Introduction
- 2. State of the ar
- Conclusion
- 4. State of the art
- 5. First contribution
- 6 Second contribution

- Related work
- 2. Contagion process
- Experimentation
- 4. Results exploitation
- 5. Conclusion

Figure 6: Cag.

Figure 7: Cag.

Figure 8: Cag.

Figure 9: Cag.

Challenges

- Privacy threats
 - Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - Privacy settings
 - -

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the ar
- 5. First contribution
- 6. Second contribution
- Conclusion

- 1. Related work
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Conclusion

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the ar
- 5. First contribution
- 6. Second contribution
- Conclusion

- 1. Related work
- Contagion process
- Experimentation
- Results exploitation
- 5. Conclusion

Related work

Comparison

A1	A2	A3	A4
	A1	A1 A2	A1 A2 A3

Table 3: An example table.

Related work

Comparison

Paper	A1	A2	A3	A4

Table 4: An example table.

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the ar
- 5 First contribution
- 6. Second contribution
- 7. Conclusion

- Related work
- 2. Contagion process
- 3. Experimentation
- Results exploitation
- 5. Conclusion

- Privacy threats
 - Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - Privacy settings
 - -

... (step 2) Methods

- Privacy threats
 - Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

- Privacy threats
 - Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

```
... (step 4)
Methods
```

- Privacy threats
 - Privacy settings
 - → Information propagation
- Privacy protection
 - Privacy settings
 - -

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the art
- 5. First contribution
- 6. Second contribution
- 7. Conclusion

- 1. Related work
- Contagion process
- 3. Experimentation
- Results exploitation
- Conclusion

Experimentation

Experimentation

- Privacy threats
 - Privacy settings
 - Information propagation
 - .
- Privacy protection
 - → Privacy settings
 - -

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the ar
- 5. First contribution
- 6. Second contribution
- 7. Conclusion

- 1. Related work
- 2. Contagion process
- 3. Experimentation
- 4. Results exploitation
- 5. Conclusion

Results

Comparison

Figure 10

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the art
- 5 First contribution
- 6. Second contribution
- 7. Conclusion

- 1. Related work
- Contagion process
- Experimentation
- 4. Results exploitation
- 5. Conclusion

Figure 11: Cag.

Figure 12: Cag.

Figure 13: Cag.

Figure 14: Cag.

Challenges

- Privacy threats
 - Privacy settings
 - → Information propagation
 - .
- Privacy protection
 - → Privacy settings
 - -

- Introduction
- 2. State of the ar
- 3. Conclusion
- 4. State of the art
- First contribution
- 6. Second contribution
- 7. Conclusion

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	Х	✓	X
OLSRv2	?	1	1
RIP	✓	?	X
DSR	✓	X	X
RPL	1	1	1

Table 5: Routing protocols comparison [_rpl2_]

Application protocol	Rest- Full	Trans- port	Pub- lish/Sub- scribe	Request/Re- sponse	Secu- rity	QoS	Header size (Byte)
COAP	√	UDP	✓	✓	DTLS	✓	4
MQTT	X	TCP	✓	X	SSL	✓	2
MQTT-SN	X	TCP	✓	X	SSL	✓	2
XMPP	X	TCP	✓	✓	SSL	X	-
AMQP	X	TCP	✓	X	SSL	✓	8
DDS	Х	UDP	✓	X	SSL	1	-
		TCP			DTLS		
HTTP	✓	TCP	X	✓	SSL	Х	-

Table 6: Application protocols comparison

Conclusion

Routing protocol	Control Cost	Link Cost	Node Cost
OSPF/IS-IS	Х	✓	X
OLSRv2	?	✓	✓
RIP	✓	?	X
DSR	✓	X	X
RPL	✓	1	✓

Table 5: Routing protocols comparison [_rpl2_]

Application protocol	Rest- Full	Trans- port	Pub- lish/Sub- scribe	Request/Re- sponse	Secu- rity	QoS	Header size (Byte)
COAP	✓	UDP	✓	✓	DTLS	✓	4
MQTT	Х	TCP	✓	X	SSL	✓	2
MQTT-SN	Х	TCP	✓	X	SSL	✓	2
XMPP	Х	TCP	✓	✓	SSL	X	-
AMQP	Х	TCP	✓	X	SSL	✓	8
DDS	Х	UDP	✓	X	SSL	1	-
		TCP			DTLS		
HTTP	✓	TCP	X	✓	SSL	X	-

Table 6: Application protocols comparison

Thank you!

Challenges

Conclusion

- Privacy threats
 - Privacy settings
 - → Information propagation

- Privacy protection
 - → Privacy settings
 - -

7. Conclusion 32/32

Challenges Conclusion

- Privacy threats
 - Privacy settings
 - → Information propagation

.

- Privacy protection
 - Privacy settings
 - -

Thank you!

7. Conclusion 32 / 32

References

- [1] Musa Ndiaye, Gerhard Hancke, and Adnan Abu-Mahfouz. ** Software Defined Networking for Improved Wireless Sensor Network Management: A Survey **. In: 17.5 (May 4, 2017). 00053, p. 1031 (p. 4).
- [2] Pascal Thubert, Maria Rita Palattella, and Thomas Engel. * 6TISCH Centralized Scheduling: When SDN Meet IoT *. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 2015 IEEE Conference on Standards for Communications and Networking (CSCN). 00033. Tokyo, Japan: IEEE, Oct. 2015, pp. 42–47 (p. 4).