Fusing EMG and Inertial Data for Cyclist Gesture Recognition

Poster No.

The proposed system is designed to recognize certain movements of a person's right arm. The **movements** analyzed are those commonly **performed by cyclists** to signal a change in speed, in direction or a stop.

To recognize the arm movement, electrodes were placed on the arm muscles.

Experimental Setup

The system is composed of three main parts. An Arduino Nano RP2040 Connect is placed on the wrist to acquire motion data through an accelerometer and gyroscope. A custom PCB on the forearm collects sEMG signals. The third board is a Raspberry Pi Model 3B+, positioned on the bike, which receives the data in real time and executes a neural network to classify the movement.

EMGesture Prototype

The Arduino Nano RP2040 Connect is powered by a rechargeable battery, allowing fully wearable and wireless operation. Gesture acquisition can be performed continuously or can be manually controlled by the user via a button press, as implemented in the experimental setup.

To meet the specific requirements of our acquisition system (a single reference electrode and the integration of multiple EMG channels) an **analog front-end**, implemented on a custom PCB, is responsible for **signal amplification and filtering**, was inspired by the architecture of the Olimex EKG-EMG Arduino shield but adapted and extended to suit our specific needs.

Raspberry Pi RP2040 - ADC

- 4 channel
- 12 bit @ 1kSa/s

ST Microelectronics LSM6DSOXTR

- 3-axis accelerometer
 - ± 4 g
 - 16 bit @ 208 Sa/s
- 3-axis gyroscope
 - ± 2000 dps
 - 16 bit@ 208 Sa/s

Testing & Data Collection

Results

The developed system successfully classifies arm cyclist gestures using data from EMG and IMU sensors, reaching an accuracy of 96%. Accurate classification is achieved using only EMG signals from only the biceps and triceps muscles.

The **EMG** data can be used to monitor the physiological **state of the muscle**, allowing a more complete analysis of the **user's** activity.

Future developments will focus on automating gesture detection, identifying the start and end of movements using accelerometer data, eliminating the need for a manual trigger.

The dataset collected during this project will be released as open source to facilitate reproducibility and further research.

