# Inhaltsverzeichnis

| 1 | Einführung                           |                                        |                                               | 2 |
|---|--------------------------------------|----------------------------------------|-----------------------------------------------|---|
|   | 1.1                                  | Inhalt                                 |                                               | 2 |
| 2 | Kryptologie                          |                                        |                                               | 3 |
|   | 2.1                                  | 1 Grundbegriffe und einfache Verfahren |                                               |   |
|   |                                      | 2.1.1                                  | Verschlüsselung erfordert                     | 3 |
|   |                                      | 2.1.2                                  | Beispiel für (nicht sicheres) symm. Verfahren | 4 |
|   |                                      | 2.1.3                                  | Prinzip von Kerkhoffs (1835-1903)             | 4 |
| 3 | One-Time-Pad und perfekte Sicherheit |                                        |                                               | 6 |
|   | 3.1                                  | One-Time-Pad                           |                                               | 6 |
|   | 3.2                                  | Perfek                                 | Sekte Sicherheit                              |   |
| 4 | Symmetrische Blockchiffre            |                                        |                                               | 8 |
|   | 4.1                                  | 4.1 Blockchiffre                       |                                               |   |
| 5 | Affin-lineare Chiffre                |                                        |                                               | 9 |
|   | 5.1 Vorhemerkung                     |                                        |                                               | 9 |

# Einführung

#### 1.1 Inhalt

Übertragung (Speicherung) von Daten: Schutz vor:

- zufälligen oder systematischen (physikalischen bedingten) Störungen
- Abhören, absichtliche Veränderung von Dritten (Kryptologie / Verschlüsselung)

### Kryptologie:

- symmetrische Verfahren
- asymmetrische Verfahren (Public-Key Verfahren)
- Authentifizierung
- Signaturen

#### Codierungstheorie

- Fehlererkennung und Fehlerkorrektur
- lineare Blockcodes
- Decodierverfahren

## Kryptologie

### 2.1 Grundbegriffe und einfache Verfahren



Abbildung 2.1: Schaubild der Kryptologie

#### 2.1.1 Verschlüsselung erfordert

- Verschlüsselungsverfahren, Algorithmus (Funktion)
- Schlüssel  $k_e$  (encryption key)

 $E(m, k_e) = c$  E=Verschl.Fkt., m=Klartext, c=Chiffretext  $E(m_1, k_e) \neq E(m, k_e)$  für  $m_1 \neq m_2$   $D(c, k_d) = m$  $(k_d \text{ zu } k_e \text{ gehöriger Dechiffrierschlüssel!})$ 

 $k_d = k_e$  (oder  $k_d$  leicht aus  $k_e$  zu berechnen): <u>symmetrisches Verschl.verf.</u>, ansonsten <u>asymm. Verschl.verf.</u>. Ist  $k_d$  nur sehr schwer (oder garnicht) zu  $k_e$  berechenbar, so kann  $k_e$  veröffentl. werden: Public-Key-Verfahren.

#### 2.1.2 Beispiel für (nicht sicheres) symm. Verfahren

a)  $R = S = \{0, 1, \dots, 25\}$ 

Verfahren: Verschiebechiffre

Schlüssel:  $i \in \{0, 1, ..., 25\}$ 

Verfahren  $x \in \mathbb{R} \longrightarrow x + i \mod 26 = y$ 

 $y \longmapsto y - i \mod 26 = y$ 

 $m = x_1...x_2 \longrightarrow c = (x_1 + i \mod 26)...(x_n + i \mod 26), E(m, i)$ 

Unsicher, weil Schlüsselmenge klein ist (Brute Force Angriff).

b) R,S, Schlüsselmenge=Menge aller Permutationen von  $\{1, \dots, 25\} = S_{26}$ 

Verschl.: Wähle Permuation  $\pi$ 

 $x \in \mathbb{R} \longrightarrow \pi(x) = y$ 

Entschl.:  $y \longrightarrow \pi^{-1}(y) = x$ 

 $m = x_1 \dots x_r \rightarrow c = \pi(x_1) \dots \pi(x_r)$ 

$$\begin{pmatrix} 0 & 1 & 2 & \dots & 25 \\ 3 & 17 & 4 & \dots & 13 \end{pmatrix} \longrightarrow \pi(0) = 3, \text{ u.s.w.}$$

Anzahl der Permutationen:  $|S_{26}| = 26! \approx 4 \cdot 10^{26} \longrightarrow \text{Brute-Force Angriff}$  nicht mehr möglich!

Warum? Man muss im Schnitt 50% der Permutationen testen. Angenommen man könnte 10<sup>1</sup>2 Perm. pro Sekunde testen.

Aufwand:  $2 \cdot 10^{14}$  Sekunden  $\approx 6.000.000$  Jahre

Trotzdem unsicher!

Grund: Charakteristiches Häufigkeitsverteilung von Buchstaben in natürlichspr. Texten.

Verfahren beinhalten viele Verschlüsselungsmöglichkeiten, abhängig von der Auswahl des Schlüssels.

Verfahren bekannt, aber Schlüssel  $k_d$  geheim!

#### **2.1.3** Prinzip von Kerkhoffs (1835-1903)

Sicherheit eines Verschlüsselungsverfahren darf nicht von der Geheimhaltung des Verfahrens, sondern nur von der Geheimhaltung des verwendeten Schlüssels abhängen!

Kryptologie besteht aus Kryptographie (Entwurf) und der Kryptoanalyse (Angriff). Angriffserfolge:

- Schlüssel  $k_d$  wird gefunden
- Eine zu der Dechiffrierfunktion  $D(\cdot, k_d)$  äquivalente Funktion finden ohne Kenntnis von  $k_d$
- gewisste Chiffretexte werden entschlüsselt

Arten von Angriffen

- Ciphertext-Only Angriff
- Known-Plaintext Angriff
- Chosen-Plaintext Angriff
- Chosen-Ciphertext Angriff

## One-Time-Pad und perfekte Sicherheit

```
Lauftextverschlüsselung Alphabet \mathbb{Z}_k = \{0, 1, \dots, k-1\} In \mathbb{Z}_k kann man addieren und multiplizieren mit mod k. Klartext x_1, x_2, \dots, x_n Schlüsselwort k_1, k_2, \dots, k_n x_1 + k_1 \mod k, x_n + k_n \mod k \leftarrow \text{Chiffretext} Mit natürlichsprachlichen Texten ist das Verfahren unsicher. \mathbb{Z}_2 = \{0, 1\}, 1 \oplus 1 = 0 = 0 \oplus 0, 0 \oplus 1 = 1 = 1 \oplus 0 \Rightarrow XOR Klartext in \mathbb{Z}_2^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{Z}_2\} Schlüssel: Zufallsfolge über \mathbb{Z}_2 der Länge n. m Klartext, k Zufallsfolge (beide Länge n) c = m \oplus k, (x_1, \dots, x_n) \oplus (k_1, \dots, k_n) := (x_1 \oplus k_1, \dots, x_n \oplus k_n)
```

#### 3.1 One-Time-Pad

Schlüssel k darf nur einmal verwendet werden!

 $m_1 \oplus k = c_1, m_2 \oplus k = c_2, c_1 \oplus c_2 = m_1 \oplus k \oplus m_2 \oplus k = m_1 \oplus m_2$ 

Wieder nur Lauftext → unsicher!

 $m_1$  und  $m_2$  lässt sich ermitteln.

Zufallsfolge der Länge n: eigentlich unsinniger Begriff. Da jedes Bit unabhängig von anderen mit Wahrscheinlichkeit  $\frac{1}{2}$  erzeugt wird (Output einer binär symmetrischen Quelle)

Jede Folge der Länge n ist gleich wahrscheinlich (Wahrscheinlichkeit  $\frac{1}{2}n$  One-Time-Pad ist perfekt sicher.

#### 3.2 Perfekte Sicherheit

Ein Verschlüsselungsverfahren ist perfekt sicher, falls gilt: Für jeden Klartext m und jedem Chiffretext c (der festen Länge n)

pr(m|c) = pr(m)

 $pr(m|c) \rightarrow$  A-posteriori-Wahrscheinlichkeit (Wahrscheinlichkeit, dass m Klartext, wenn c empfangen wurde)

 $pr(m) \rightarrow A$ -priori-Wahrscheinlichkeit

Beispiel: Substitutionschiffre aus Kapitel 2.

n = 5, m = HALLO, pr(m) > 0

Ang:c = QITUA wird empfangen,  $LL \neq TU \rightarrow pr(m|c) = 0$ 

nicht perfekt sicher.

One-Time-Pad ist perfekt sicher.

(Bayes'sche Formel)  $m \oplus k$ 

Jede Folge c lässt sich mit geeignetem k in der Form  $c = m \oplus k$  erhalten.

Wähle  $k = m \oplus c$ ,  $m \oplus k = m \oplus m \oplus c = c$ 

Bei gegebenem m und zufällige gewählten Schlüssel k ist jeder Chiffretext gleichwertig.

## Symmetrische Blockchiffre

#### 4.1 Blockchiffre

Zerlege Klartext in Blöcke (Strings) der Länge *n*. Jeder Block wird einzeln verschlüsselt (in der Regel wieder in einem Block der Länge *n*). Gleiche Blöcke werden gleich verschlüsselt.

Wieviele Blockchiffren der Länge n gibt es?

Alphabet 
$$\mathbb{Z}_2 = \{0, 1\}$$

$$|\{(0,\ldots,0),(0,\ldots,1),\ldots,(1,\ldots,1)\}|=2^n$$

Block

Blockchiffre = Permuation der  $2^n$  Blöcke.

 $(2^n)!$  Blockchiffre

Wenn alle verwendet werden:

Schlüssel = Permuation der  $2^n$  Blöcke

$$(x_{1,1},\ldots,x_{1,n},x_{2,1},\ldots,x_{2,n},\ldots)$$
  $n\cdot 2^n$  Bit

Zur Speicherung eines Schlüssels werden  $n \cdot 2^n$  Bit benötigt.

Zum Beispiel:

$$n = 64, 64 \cdot 2^{64} = 2^{70} \approx 1$$
 ZetaByte  $\approx 1$  Milliarde Festplatten à 1 TB

#### Illusional!

Konsequenz: Verwende Verfahren, wo nur ein kleiner Teil der Permutation als Schlüssel verwendet wird und so sich die Schlüssel dann in kürzerer Fom darstellt.