1

APPENDIX A

'A SUBSET OF A FINITE SET IS FINITE' - PROOF

Let A and B be sets, with $A \subseteq B$ and B finite. Let us define [n] to be the set of all elements of \mathbb{N} less than n, i.e. $[n] = \{0, 1, ..., n-1\}$.

Since B is finite, by the definition of finiteness there is $n \in \mathbb{N}$ such that there exists a bijection between B and [n]. Hence it suffices to prove that any subset of [n] for $n \in \mathbb{N}$ is finite. We proceed by induction.

When n = 0, $[n] = \emptyset$, and trivially all subsets of the empty set are finite.

Let n > 0 and assume that all subsets of [n-1] are finite.

Note that $[n] = \{0, 1, ..., n-1\} = \{0, 1, ..., n-2\} \cup \{n-1\} = [n-1] \cup \{n-1\}$. Let $x \subseteq [n]$. Then either $n-1 \notin x$ or $n-1 \in x$. In the first case, $x \subseteq [n-1]$, and thus it is finite.

Otherwise, $x \setminus \{n-1\} \subseteq [n-1]$ and is finite. Therefore there exists a $k \in \mathbb{N}$ such that there is a bijection $f: x \setminus \{n-1\} \to [k]$. Then $f' = f \cup \{(n-1,k)\}$ is a bijection $f': x \to [k+1]$ and by the inductive property of the natural numbers, $k+1 \in \mathbb{N}$.

Hence, any $x \subseteq n$ is finite.