

آموزش یادگیری ماشین (Machine Learning) (تئوری – عملی) – بخش دوم

درس چهارم: انتخاب ویژگی

مدرس: فرشید شیرافکن دانشجوی دکترای بیو انفورماتیک دانشگاه تهران

انتخاب ويزكى

انتخاب یک زیرمجموعه از مجموعه ویژگی های داده شده.

$$d = 100$$

$$d' = 20$$

$$\left[\chi_{1}, \chi_{2}, \dots, \chi_{d}\right]$$

$$\left[\chi_{i1}, \chi_{i2}, \dots, \chi_{id}\right]$$

انتخاب ويژگى

- انتخاب زیر مجموعه ای از ویژگیها لازم دارد:
- ۱- یک استراتژی جستجو برای انتخاب زیر مجموعههای کاندید.
- ۲- یک تابع هدف (objective function) برای ارزیابی این کاندیدها.

تک متغیره (Univariate method):

در یک زمان فقط یک ویژگی بررسی می شود. (هر ویژگی را مستقل از سایر ویژگی ها در نظر می گیرد)

چند متغیره (Multivariate method):

زیر مجموعهای از ویژگیها با هم بررسی میشوند.

روشهای انتخاب ویژگی

۱– روش فیلتر (Filter method)

۲– روش بستهبند (Wrapper method)

۳- روش توکار (Embedded method)

روش فیلتر (Filter method)

√ویژگیها مستقل از دستهبند (بهعنوان مرحله پیشپردازش) رتبهبندی میشوند.

√توسط یک اندازه گیری، امتیازی به ترکیبهای مختلف ویژگیها بدون در نظر گرفتن الگوریتم دستهبندی، نسبت داده می شود.

- å اغلب تک متغیره.
 - ✓• ساده و سریع.
- حیتاستهای با ابعاد بالا از روش فیلتر استفاده می کنند.
 - معیارهای اندازه گیری: همبستگی اطلاعات متقابل.

Correlation

$$R(k) = \frac{cov(X_k, Y)}{\sqrt{var(X_k)}\sqrt{var(Y)}}$$

$$\chi = (\chi_1, \chi_2, \chi_3, \chi_4)$$

√ویژگی با correlation بیشتر، مناسبتر است.

م ايراد

• وابستگیهای غیر خطی را نمیتواند تشخیص دهد.

$$3=\chi^2$$

Mutual Information

$$MI(\chi_1, y)$$
 $MI(\chi_2, y)$
 \vdots

$$MI(X,Y) = E_{X,Y} \left[\log \frac{P(X,Y)}{P(X)P(Y)} \right]$$

$$I(k) = MI(X_k, Y)$$

هر اندازه که مستقل نباشند، یعنی x درباره y اطلاع میدهد.

$$P(X,Y) = p(X)P(Y)$$
 $MI = 0$

مثال

معایب تک متغیره

- شاید یک ویژگی به تنهایی مناسب نباشد، ولی ترکیب آن با ویژگی دیگر باعث دستهبندی با رقت خوبی شود.
- در شکل زیر، هر کدام از ویژگیها به تنهایی نمی توانند تفکیک خوبی بین دو دسته ایجاد کنند، اما ترکیب هر دو خوب است و دو دسته با یک خط به خوبی جدا می شود.

روش بستهبند (Wrapper method)

- استفاده از دستهبند برای ارزیابی ویژگیها.
- برای هر زیرمجموعه از ویژگیها، دسته بند بر روی دادههای آموزشی، train شده و کارایی آن با استفاده از تکنیکهای ارزیابی شبیه cross-validation ارزیابی می شود.

•Filter methods use statistical methods for evaluation of a subset of features while wrapper methods use cross validation.

رویه عمومی

تولید زیر مجموعه و ارزیابی آن تا زمانی که شرط توقف رخ دهد.

معیارهای توقف:

- پیش تعریف تعداد ویژگیهای انتخابی یا تعداد تکرارها
- به دست آوردن یک زیر مجموعه بهینه (طبق معیارهای ارزیابی)
 - اضافه کردن یک ویژگی باعث بهبود نشود.

مقايسه

Filters

Methods:

- · Criterion: Measure feature/feature subset "relevance"
- Search: Usually order features (individual feature ranking or nested subsets of features)
 - · Assessment: Use statistical tests

Results:

- · Are (relatively) robust against overfitting
- · May fail to select the most "useful" features

Generality Suj Smay

Wrappers

Methods:

- · Criterion: Measure feature subset "usefulness"
- Search: Search the space of all feature subsets
- · Assessment: Use cross-validation

Results:

- Can in principle find the most "useful" features, but
- Are prone to overfitting

استراتژیهای جستجو

1- کامل(Exhaustive) (کط) (کا کا کا کا ہے۔ کیار خاصلے

۲- تصادفی(Probabilistic)

consistency < LVF

۳- مکاشفه ای (Heuristic)

ر ف نعالی لفت فی حد SFS کاری فایر الفت فی م

information - DTM

evaluation mesures:

classifier error rate

استراتژیهای جستجو

- Sequential forward selection (SFS)
- Sequential backward selection (SBS)
- Plus-L minus-R selection (LRS)
- Bidirectional search
- floating search
- •

Sequential Forward Selection (SFS)

- Start with the empty set $Y_0 = \{\emptyset\}$
- Select the next best feature $x^+ = \arg \max J(Y_k + x)$ $x \notin Y_k$
- 3. Update $Y_{k+1} = Y_k + x^+$; k = k + 1
- Go to 2

	TK
O	{p}
7	$\{x_3\}$
2	{ x3, x2}
3	{ x3, x2, x4}

Sequential Backward Selection (SBS)

- Start with the full set $Y_0 = X$
- 2. Remove the worst feature $x^- = \underset{x \in Y_k}{\operatorname{arg max}} J(Y_k x)$
- 3. Update $Y_{k+1} = Y_k x^-$; k = k + 1
- Go to 2

Bidirectional Search (BDS)

1. Start SFS with $Y_F = \{\emptyset\}$ 2. Start SBS with $Y_R = X$ 3. Select the best feature $\int x^+ = \underset{x \notin Y_{F_k}}{\operatorname{arg\,max}} J(Y_{F_k} + x)$ $Y_{F_{k+1}} = Y_{F_k} + x^+$ 4. Remove the worst feature $x^{-} = \operatorname*{arg\,max}_{x \in Y_{B_k}} J(Y_{B_k} - x)$ 5. Go to 3

Plus-L Minus-R Selection (LRS)

1. If
$$L > R$$
 then $Y_0 = \{\emptyset\}$ else $Y_0 = X$; go to step 3

2. Repeat L times

$$\begin{cases} x^{+} = \arg \max_{x \notin Y_{k}} J(Y_{k} + x) \\ Y_{k+1} = Y_{k} + x^{+}; \ k = k+1 \end{cases}$$

3. Repeat R times

$$\begin{cases} x^{-} = \arg \max_{x \in Y_k} J(Y_k - x) \\ Y_{k+1} = Y_k - x^{-}; \ k = k+1 \end{cases}$$

4. Go to 2

$$L = 4$$

$$R = 2$$

$$R = 7$$

$$L < R$$

$$Y_0 = \{b\}$$

$$2iol \stackrel{\sim}{P} \stackrel{\sim}{R}$$

$$2iol \stackrel{\sim}{P} \stackrel{\sim}{R}$$

$$2iol \stackrel{\sim}{P} \stackrel{\sim}{R}$$

$$2iol \stackrel{\sim}{P} \stackrel{\sim}{R}$$

Sequential Floating Forward Selection (SFFS)

1.
$$Y = \{\emptyset\}$$

2. Select the best feature $x^+ = \arg\max_{x \notin Y_k} J(Y_k + x)$ $Y_k = Y_k + x^+; k = k + 1$
3. Select the worst feature $x^- = \arg\max_{x \in Y_k} J(Y_k - x)$ $x \in Y_k$
4. If $J(Y_k - x^-) > J(Y_k)$ then $Y_{k+1} = Y_k - x^-; k = k + 1$ Go to step 3
Else Go to step 2

جمع بندی

آموزش یادگیری ماشین (Machine Learning) 0.975 عد التر x1

انتخاب ویژگی با الگوریتم های فرا ابتکاری

این اسلایدها بر مبنای نکات مطرح شده در فرادرس «آموزش یادگیری ماشین (Machine Learning) (تئوری - عملی) – بخش دوم» تهیه شده است.

برای کسب اطلاعات بیشتر در مورد این آموزش به لینک زیر مراجعه نمایید.

faradars.org/fvdm94062