

**BY: CORNELLIUS YUDHA WIJAYA** 

in LinkedIn: Cornellius Yudha Wijaya

Medium: @cornelliusyudhawijaya



# **Learning Agenda**

- What is MLOps
- What are the component of MLOps
- What were MLOps Principles
- MLOps Example in Companies

# What is MLOps?



**MLOps** (machine learning operations) stands for the collection of techniques and tools for the deployment of ML models in production.

It contains the combination of:

- DevOps
- Machine Learning.

In MLOps, we strive to avoid "technical debt" on machine learning applications

# DevOps and Machine Learning



Machine Learning



**DevOps** stands for a set of practices with the main purpose to minimize the needed time for a software release, reducing the gap between software development and operations. Two main principles of DevOps:

- Continuous Integration (CI): Principles to integrate code written by developer teams at frequent intervals
- **Continuous Delivery (CD):** Principles to constantly deliver new version of the software under development to be installed for testing, evaluation and then production

MLOps introduce a new practice, in addition to CI and CD which are:

- **Continuous Training (CT)** that aims to automatically retrain the model where needed.
- **Continuous Monitoring (CM)** concerns with monitoring production data and model performance metrics, which are bound to business metrics.

#### **Machine Learning Operations (MLOps)**

#### **Dedicated**

Data Scientist

#### Common Pool

Data Scientist, ML Engineers, Data Engineers, DevOps, Privacy & Security Experts

#### Resources





























#### Phase



#### Model Development

#### Key

EDA

Activities · Model training

#### Machine Learning Model Lifecycle

| Data                                                                                                            | Model Prep                                                                                                    | M | odel                                                                                                                     | )evOps                                                                                                   | ( | Catalogs                                                                      | G | overnance                                                                               |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------|
| Pipelines                                                                                                       |                                                                                                               | D | eployment                                                                                                                |                                                                                                          |   |                                                                               |   |                                                                                         |
| <br>Data pipelines Data cleanup Data transformations Dataset management Data drift monitoring Automation script | Experimentation<br>Model training<br>Model optimization<br>Model scoring<br>Validations<br>Automation scripts |   | Scaled<br>deployment<br>Deployment<br>monitoring<br>Real-time<br>VS Batch<br>Model drift<br>monitoring<br>Scoring scrips | <br>CI/CD Pipelines Testing/ monitoring Logging/ Notifications Code version Model version Data versionir | - | Model catalogs<br>Dataset catalogs<br>Featureset catalogs<br>Usage governance | : | GDPR/CCPA<br>Security/<br>compliance<br>Access<br>controls<br>Transparency<br>Reporting |
|                                                                                                                 |                                                                                                               |   |                                                                                                                          |                                                                                                          | 9 |                                                                               |   |                                                                                         |

#### **Roles in MLOps Project**



# MLOps Principle: *Iterative-Incremental Development*

The complete MLOps process includes three iterative phases:

- Designing the ML-powered application
- ML Experimentation and Development
- ML Operations

All three phases are interconnected and influence each other. For example, the design decision during the design stage will propagate into the experimentation phase and finally influence the deployment options during the final operations phase.

# Designing the ML-powered application

It is phase for business understanding, data understanding and designing the ML-powered software.

We try to identify:

- Potential user,
- ML solution to solve the problem,
- Assess the further development of the project.

Mostly, we would act within two categories of problems - either increasing the productivity of the user or increasing the interactivity of the application.

### **ML Experimentation and Development**

This is the phase of the *Proof-of-Concept for ML Model*. The primary goal in this phase is to deliver a stable quality ML model to run model in the production.

In this phase, we can experiment to identifying or polishing the suitable ML algorithm for our problem, data engineering, and model engineering.

### **ML Operations**

It is the phase is to deliver the previously developed ML model in production by using established DevOps practices such as testing, versioning, continuous delivery, and monitoring.

### **MLOps Pipeline**



MLOps could be described as a software engineering approach in which an interoperable team produces machine learning applications based on code, data and models in small, secure new versions that can be replicated and delivered reliably at any time, in short custom cycles (Symeonidis et al 2022).

# **MLOps Pipeline**



- Development and Experimentation
- 2. Pipeline Continuous Integration
- 3. Pipeline Continuous Delivery
- 1. Automated Triggering
- Model Continuous Delivery
- 6. Monitoring

# **MLOps Maturity**

Level 4
Automated Model
Deployment

Level 2
DevOps but no MLOps

Full MLOps Automated
Operations

Level 3
Automated Training

Level 1
No MLOps

Level 5

Source: Microsoft Azure

| Level                                | Technology                                                                                                                                                                                    |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 – No MLOps                         | <ul> <li>Manual builds and deployments</li> <li>Manual testing of model and application</li> <li>No centralized tracking of model performance</li> <li>Training of model is manual</li> </ul> |
| 2 – DevOps but No<br>MLOps           | <ul> <li>Automated builds</li> <li>Automated tests for application code</li> </ul>                                                                                                            |
| 3 – Automated<br>Training            | <ul> <li>Automated model training</li> <li>Centralized tracking of model training performance</li> <li>Model management</li> </ul>                                                            |
| 4 – Automated Mode<br>Deployment     | <ul> <li>Integrated A/B testing of model performance for deployment</li> <li>Automated tests for all code</li> <li>Centralized tracking of model training performance</li> </ul>              |
| 5 – Full MLOps<br>Automated operatio | <ul> <li>Automated model training and testing</li> <li>Verbose, centralized metrics from deployed model</li> </ul>                                                                            |

# **MLOps Stages on the Automation Pipeline**

| MLOps Stage                                                                                           | Output of the Stage Execution                                                                                        |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Development & Experimentation (ML algorithms, new ML models)                                          | Source code for pipelines: Data extraction, validation, preparation, model training, model evaluation, model testing |
| Pipeline Continuous Integration (Build source code and run tests)                                     | Pipeline components to be deployed: packages and executables.                                                        |
| Pipeline Continuous Delivery (Deploy pipelines to the target environment)                             | Deployed pipeline with new implementation of the model.                                                              |
| Automated Triggering (Pipeline is automatically executed in production. Schedule or trigger are used) | Trained model that is stored in the model registry.                                                                  |
| Model Continuous Delivery (Model serving for prediction)                                              | Deployed model prediction service (e.g. model exposed as REST API)                                                   |
| Monitoring (Collecting data about the model performance on live data)                                 | Trigger to execute the pipeline or to start a new experiment cycle.                                                  |

# **MLOps Setup**

| MLOps Setup Components   | Description                                                                                                             | Tools Example            |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Source Control           | Versioning the Code, Data, and ML Model artifacts.                                                                      | Git, Comet               |
| Test & Build Services    | Using CI tools for (1) Quality assurance for all ML artifacts, and (2) Building packages and executables for pipelines. | PyTest, Make             |
| Deployment Services      | Using CD tools for deploying pipelines to the target environment.                                                       | KubeFlow, Sagify         |
| Model Registry           | A registry for storing already trained ML models.                                                                       | DVC, AWS S3              |
| Feature Store            | Preprocessing input data as features to be consumed in the model training pipeline and during the model production.     | AWS Feature Store, Feast |
| ML Metadata Store        | Tracking metadata of model training, for example model name, parameters, training data, test data, and metric results.  | DVC, Neptune             |
| ML Pipeline Orchestrator | Automating the steps of the ML experiments.                                                                             | Kedro, Flyte, DVC        |

### **MLOps Tools**

























Source: **Stellarisvp** 

### ML/AI Tools



### **MLOps Principle: Automation**

The level of automation of the Data, ML Model, and Code pipelines determines the maturity of the ML process.

Automate the complete ML-workflow steps without any manual intervention with certain triggers is the aim.

| Data                    | ML Model                              | Code                   |
|-------------------------|---------------------------------------|------------------------|
| 1) Data transformation  | 1) Data engineering pipeline          | 1) ML model deployment |
| 2) Feature creation and | 2) ML model training pipeline         | with CI/CD             |
| manipulation            | 3) Hyperparameter/Parameter selection | 2) Application build   |

# **MLOps Principle: Versioning**



Explicit versioning allows for repeatability in experiments, enables comparisons, and prevents confusion. That is why it's important to versioning the ML training scrips, ML models and data sets for model.

| Data                          | ML Model                      | Code                |
|-------------------------------|-------------------------------|---------------------|
| 1) Data preparation pipelines | 1) ML model training pipeline | 1) Application code |
| 2) Features store             | 2) ML model (object)          | 2) Configuration    |
| 3) Datasets                   | 3) Hyperparameters            |                     |
| 4) Metadata                   | 4) Experiment tracking        |                     |

### **MLOps Principle: Versioning (Experiment Tracking)**

In ML development, multiple experiments on model training can be executed in parallel before making the decision what model will be promoted to production. That is why it's important to track the experiment we have done.



MLOps Principle: Versioning (Model Management)

Model Management is there to ensure that ML models are consistent and all business requirements.



# **MLOps Principle: Testing**

Testing or validation in MLOps refer to the activity to detect unexpected changes in data or infrastructure. There are three scopes withing testing principle:

- Tests for data and features
- Tests for model development
- Tests for ML infrastructure

| Data                                                                                            | ML Model                                                                                                                                                                                                                                                                                                                                                              | Code                                                                                         |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| <ul><li>1) Data Validation (error detection)</li><li>2) Feature creation unit testing</li></ul> | <ol> <li>Model specification is unit tested</li> <li>ML model training pipeline is integration tested</li> <li>ML model is validated before being operationalized</li> <li>ML model staleness test (in production)</li> <li>Testing ML model relevance and correctness</li> <li>Testing non-functional requirements (security, fairness, interpretability)</li> </ol> | <ul><li>1) Unit testing</li><li>2) Integration testing for the end-to-end pipeline</li></ul> |

# **MLOps Principle: Testing (Data and Features)**

Testing for data and features were done to validate the input and output data to comply with our current requirements. The activity including, but not limited to:

- Data validation: Check for data and features schema/domain.
- Features importance test: Check whether new features add a predictive power
- Policy-Compliant Test: Features and data pipelines should be policycompliant
- Feature creation code unit test: Check bug in the code

# **MLOps Principle: Testing (Model Development)**

Testing for data and features were done to detecting ML-specific errors. The activity including, but not limited to:

- ML Routines: What routines should exist in the pipeline (e.g. A/B Testing, accuracy metrics output, etc.)
- Model staleness test: Check how updated is the model
- Model Performance Validation: Check if the model performance still meet the requirements
- Model Fairness testing: Check if the model bias toward certain group or not

# MLOps Principle: Testing (ML infrastructure)

Testing for ML Infrastructure were to ensure the machine learning pipeline more robust and resilient. The activity including, but not limited to:

- Integration testing: Test model pipeline to check ML model performs as expected
- Stress testing: Test if the model having an error during training or prediction

# **MLOps Principle: Monitoring**

Monitoring were important to assure that the ML model performs as expected. For ML systems, it is important to monitor serving systems, training pipelines, and input data. Here are some reference for what to monitor:

- Monitor Dependency Change
- Monitor Data invariants in development and production inputs
- Monitor for Data Development/Production Skew
- Monitor the numerical stability of the ML model
- Monitor computational performance of an ML system
- Monitor how stale the system in production is
- Monitor ML degradation on production data

| Data                                                                                           | ML Model                                                                                                                       | Code                                                        |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1) Data distribution changes (training vs. serving data) 2) Development vs Production features | <ol> <li>ML model decay</li> <li>Numerical<br/>stability</li> <li>Computational<br/>performance of the<br/>ML model</li> </ol> | 1) Predictive quality of the application on Production data |

# **MLOps Principle: Monitoring (Drift)**



# **MLOps Example Pipeline: Uber**



# **MLOps Example Pipeline: DoorDash**



# **MLOps Best Practices**

| MLOps Best Practices | Data                                                                                                                                                         | ML Model                                                                                                                                                                          | Code                                                                                                                                      |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Documentation        | <ul><li>1) Data sources</li><li>2) Decisions, how/where to get data</li><li>3) Labelling methods</li></ul>                                                   | <ol> <li>Model selection criteria</li> <li>Design of experiments</li> <li>Model pseudo-code</li> </ol>                                                                            | 1) Deployment process 2) How to run locally                                                                                               |
| Project Structure    | <ol> <li>Data folder for raw and processed data</li> <li>A folder for data engineering pipeline</li> <li>Test folder for data engineering methods</li> </ol> | <ol> <li>A folder that contains the trained model</li> <li>A folder for notebooks</li> <li>A folder for feature engineering</li> <li>A folder for ML model engineering</li> </ol> | <ol> <li>A folder for bash/shell scripts</li> <li>A folder for tests</li> <li>A folder for deployment files (e.g Docker files)</li> </ol> |

# 10 MLOps Best Practices Tips

- Naming conventions
- Code quality checks
- Experiment and track your experiments!
- Data validation
- Model validation across segments
- Resource utilization: remember that your experiments cost money
- Monitor predictive service performance
- Think carefully about your choice of ML platforms
- Open communication lines are important
- Score your ML system periodically

#### References

- ml-ops.org
- MLOps Definitions, Tools and Challenges
- MLOps Guide
- The ML Test Score: A Rubric for ML Production Readiness and Technical Debt Reduction
- MLOps: Continuous delivery and automation pipelines in machine learning
- MLOps: What It Is, Why It Matters, and How to Implement It





#### Non-Brand Data

Non-Brand Data aims to make forever your data career stand out by providing various tips of Machine Learning, Technology News, and Python Packages.

By Cornellius Yudha Wijaya · Over 2,000 subscribers

cornelliusyudhawijaya@gmail.com

Subscribe

No thanks >