DataSci 420 lesson 5: decision trees Seth Mottaghinejad

today's agenda

- decision trees
 - how decision trees work
 - tennis example
- pros and cons of decision trees
- two examples where decisions trees are not ideal
 - most features are continuous
 - target is continuous

lab time

- suppose you don't know ML
- you have this data set
- you want we use outlook, temperature, humidity, and windiness to predict if a game will be canceled or not in the future?
- how would you do it?

	outlook	temp	humidity	windy	play
0	windy	hot	high	strong	no
1	sunny	hot	high	weak	no
2	overcast	hot	high	weak	yes
3	rain	mild	high	weak	yes
4	rain	cool	normal	weak	yes

decision tree

- start at the top: the root
- finish at bottom: the leaves
- each level is a depth
 - root has depth = 0
 - leaves have depth = 4
- we keep splitting until splitting doesn't make sense any more

recursive algorithm

- starting at the root
 - if you can't split, stop, otherwise find the best feature to split by (and the best way to split) and split the data
 - go to each leaf and repeat
- how do you find the best feature to split by? some statistical splitting criteria: **information gain** or **gini coefficient**, etc.
- how do you know if not to split? define a criterion such as minimum leaf size or maximum depth

break time

pros

- (+) one of the "white-box" algorithms: self-explanatory
- (+) classification and regression (but mostly classification)
- (+) you can do **post-pruning** based on what makes business sense, or to avoid overfitting
- (+) lend themselves well to ensemble modeling
- (+) they can be used to gauge **feature importance** (features split higer in the tree are more important)
- (+) no one-hot encoding needed for categorical features, no normalization needed for numeric features

cons

- (-) can be **unstable** (small changes in the data can change results)
- (-) lots of **hyper-parameters** to tune (max depth, splitting criteria)
- (-) not the best option when we have continuous target
- (-) not the best option when we have mostly continuous features
- (-) slow if we have high-cardinality categorical features

lab time

- return to the tennis data from the previous lab
- let's replace the four categorical features with two numeric (and continuous) features:
 - temperature in degrees
 - humidity as a percentage
- your target is the same binary target as before
- what would your decision tree look like? provide a short example
- what would decision boundary look like?

classification example

- 3-class target
- 4 continuous features
- decision boundary seems
 "choppy" and "un-befitting"
- there are better options!

image: https://scikit-learn.org

regression example

- numeric target
- one numeric feature
- feature is reused
 (otherwise there is only a single split and we're done)
- prediction is like a step function
- there are better options!

image: https://scikit-learn.org

the end