AI in Built Environment DCP4300

Lec07-08: Deep Learning

Part B

Dr. Chaofeng Wang
Jianhao Gao (TA)
University of Florida
College of Design Construction and Planning

Outline:

- 0. Recap
- 1. Python
- 2. ML algorithms and demos
- 3. Build a neural network in TensorFlow / PyTorch (Part C)

You can install Python and Jupyter notebook on your computer, or use Google Colab in the browser instead, which needs your Google account.

For deep learning demonstrations, we'll always use Google Colab.

Recap

Artificial Intelligence

Machine Learning

Deep Learning

AI: Techniques that enable machines to mimic human.

ML: Techniques that enable machines to learn from data, without being explicitly programmed.

DL: Techniques that enable machines to learn from data, hierarchically, using neural networks.

Types of Machine Learning:

Supervised Learning: Learn a function from labeled data.

- Classification
- Regression

Semi-supervised Learning

Unsupervised Learning: Learn the pattern from unlabeled data.

- Clustering
- Dimension reduction

Reinforcement Learning: Learn to react to an environment by trial and error.

- Decision making
- Robotics
- •

What does a perceptron do?

Sum and Activate

Neural network (Multilayer perceptron)

Weights

The weight linking the 1st hidden layer and its prior layer W_{31}^{\perp} Neuron 3 from Neuron 1 in the previous layer current layer

Error
-0.3
-0.4
0.2

Forward propagation

Backpropagation

 \mathbf{X}_{n}

Calculate loss

Learning rate

Gradient descent:

1. Compute the slope (gradient) at the current step $\frac{\partial J}{\partial w}$

J(w)

2. Make a move in the direction opposite to the slope

The move =
$$-\eta \frac{\partial J}{\partial w}$$

Learning rate

At the end, what is learned?

The weights: W

Python

Based on https://www.w3schools.com/python/python_getstarted.asp

Run codes on your computer

1.Install Python: https://www.python.org/downloads/

2.Install Jupyter: Run this in the command line

pip3 install --upgrade pip pip3 install jupyter

3. How to use Jupyter: https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

Run codes in the cloud: Google Colab

Google Colab:

- 1. First you need a Google Account
- 2. Go to https://colab.research.google.com
- 3. Create a New notebook

Run codes in the cloud: Google Colab

Now we run the Python tutorial in a Jupyter notebook that is hosted on Google Colab:

https://colab.research.google.com/drive/1FsaIHg4G91zNJWarShbd_HrzBnKYL7c5?usp=sharing

Run codes in the cloud: Google Colab

You can also download the notebook from Colab

Run codes on your computer (more than two ways...)

*.py file:

contains Python code, mainly for the machine to execute

To execute a py file on your computer, go to the command line, and run the command in a folder that contains your file: python filename.py

2.

*.ipynb file:

a notebook, for you to write and run Python code, and visualize results interactively

If you run 'jupyter notebook' in the command line, Jupyter will open in your browser

2. ML algorithms and demos

Common algorithms in Supervised Machine Learning

Regression
Decision tree / Random forest
K-nearest neighbor
Support vector machines
Multilayer perceptron (Neural network)

Keywords:

Data Model Training

Basic frame:

Use data to set the parameters of a model to fit the labels.

Linear Regression

Fit the relation by a **linear function**:

$$y = X\beta + \epsilon$$

Math:

Find coefficient β and error ϵ for

$$y = X\beta + \epsilon$$

that minimize the residual:

$$\mathcal{R} = \sum_{1}^{n} r_i^2$$

Logistic Regression

Fit the relation by a **logistic function**:

$$P(y = 1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

Math:

Find coefficient β for

$$P(y = 1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

that minimize the residual between the prediction and the ground truth

Decision Tree

x and y are called features, each data point can be represented by features:

O (x, y)

<u>(x, y)</u>

Decision Tree

Decision Tree

Random Forest

K-nearest neighbor

Support vector machines: Kernel Trick

Not a good separator

Not a good separator

Not a good separator

Support vector machines: Kernel Trick

Adapted from Satish Rao, CS270

Support vector machines: Kernel Trick

A visualization: https://www.youtube.com/watch?v=3liCbRZPrZA

Adapted from Satish Rao, CS270

A visualization: https://www.youtube.com/watch?v=3liCbRZPrZA

Train:

Search for the optimal parameters of the model.

Infer:

Use the trained model to do the calculation.

How to evaluate the performance of a model?

	Prediction		
Label		1	0
	1	ТР	FN
	0	FP	TN

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

```
Accuracy = (TP+TN)/all
```

Precision = TP/(TP+FP)

Recall = TP/(TP+FN)

F1 Score = 2*(Recall * Precision) / (Recall + Precision)

https://colab.research.google.com/drive/1_979SLMyXRD_zTr9mdy32EBKUDKrn7VF?usp=sharing