Linear Algebra and Graphs Applications

Ulises Tirado Zatarain ¹ (ulises.tirado@cimat.mx)

¹ Algorists Group

October, 2015

Outline

- Introduction
 - Basic concepts
 - Adjacency relations
- Shapes, structures and spectrum
 - Shapes
 - Spectrum
 - Structures
- Other advanced matrices
 - Discrete laplacian operator
 - Exponential and sociability matrices
- Applications
 - Spectral Clustering
 - Image segmentation
 - More applications

Basics

Simple graph

Is a pair G=(V,E), where V is a finite set of vertices and $E\subseteq V\times V$ is a symetric and antireflexive relation. In a directed graph E isn't necessarily symetric.

Basics

• The adjacency matrix $\mathbf{A} = \left[a_{ij}\right] \in \{0,1\}^{|V| \times |V|}$ is defined as:

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

 \bullet The incidence matrix $B = \left[b_{ij}\right] \in \{0,1\}^{|V| \times |E|}$ is defined as:

$$b_{ij} = \begin{cases} 1 & \text{if } i \in V \text{ is incident on } j \in E \\ 0 & \text{otherwise} \end{cases}$$

 We can denote with 1 a vector/matrix with all-ones entries such that the operations are defined.

Basics

Degree of a vertex

Let $v \in V$, its degree is the number of edges incident from/to the vertex and is denoted as deg(v).

ullet The degree of vertex k is the k-th entry of vector $\mathbf{d} \in \mathbb{R}^{|V|}$:

$$d = A1$$

• In a directed graph, we have two kinds of vertex degrees:

$$d_{in}^\top = \mathbf{1}^\top A$$

$$d_{out} = A1$$

We can write the average degree as:

$$\bar{\mathbf{d}} = \frac{1}{|V|} \mathbf{1}^{\top} \mathbf{d} = \frac{1}{|V|} \sum_{v \in V} \mathsf{deg}(v) = 2 \frac{|E|}{|V|}$$

Relations

• There is one relation between A, B and D = diag(d):

$$\mathbf{A} = \mathbf{B}\mathbf{B}^{\top} - \mathbf{D}$$

• The link matrix $\mathbf{E} = [e_{ij}] \in \{0,1\}^{|\mathbf{E}| \times |\mathbf{E}|}$ is defined as:

$$e_{ij} = \begin{cases} 1 & \text{if } i,j \in E \text{ have a common vertex} \\ 0 & \text{otherwise} \end{cases}$$

• The relation between E and B is:

$$\mathbf{E} = \mathbf{B}^{\top} \mathbf{B} - \mathbf{I}$$

Relations

• Edges have degree too as vertex:

$$\delta = E1$$

• It's easy verify that if edge k = (i, j) then:

$$\delta_k = d_i + d_j - 2$$

 \bullet Also, if p_2 is the number of 2-paths, then:

$$\mathbf{1}^{\top} \mathbf{E} \mathbf{1} = \mathbf{1}^{\top} \boldsymbol{\delta} = 2 \mathbf{p}_2$$

Shapes and structures

- Let G = (V, E) with adjacency matrix A, then entry i, j of A^n is the number of n-walks from i to j.
- Let G = (V, E) a bipartite simple graph, such that $V = S \cup T$ and $S \cap T = \emptyset$, we can write adjacency matrix of G as:

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{0} & \tilde{\mathbf{A}}^{\top} \\ \tilde{\mathbf{A}} & \mathbf{0} \end{array} \right]$$

where $\tilde{A} \in \{0,1\}^{|S| \times |T|}$ contains adjacency relations betwee vertex in S and T.

• If $K_{|V|}$ is a complete graph of orden |V|, then its adjacency matrix is A = 1 - I.

Spectrum (Eigenvalues & Eigenvectors)

• Let a simple graph G = (V, E) with adjacency matrix A and let $A = \operatorname{diag} \left(\left[\begin{array}{cc} \lambda_1 & \cdots & \lambda_{|V|} \end{array} \right] \right)$ such that $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_{|V|}$ are the eigenvalues of A, then:

$$\sum_{i=1}^{|V|} \lambda_i = \mathbf{1}^{\top} \Lambda \mathbf{1} = \text{tr}(A) = \sum_{i=1}^{|V|} a_{ii} = 0$$

• Moreover, the dominant eigenvalue λ_1 is bounded as follow:

$$\delta \leqslant \bar{d} \leqslant \lambda_1 \leqslant \Delta$$

where δ and Δ are the minimum and the maximum vertex degree respectively.

Spectrum (Eigenvalues & Eigenvectors)

• Since A is symetric, we can write $A = \Phi \Lambda \Phi^{\top}$ where Φ is an orthonormal matrix its columns are the eigenvectors of A and then $A^n = \Phi \Lambda^n \Phi^{\top}$, we mean:

$$\left[\mathbf{A}^{n}\right]_{ij} = \sum_{k=1}^{|V|} \left[\boldsymbol{\varphi}_{ki} \boldsymbol{\varphi}_{kj} \boldsymbol{\lambda}_{k}^{n} \right]$$

Suppose two graphs G₁ and G₂ with adjacency matrices A₁ and A₂, then there exists a permutation matrix P such that:

$$\mathbf{A}_1 = \mathbf{P}\mathbf{A}_2\mathbf{P}^{-1}$$

if and only if G_1 and G_2 are isomorphic and A_1 and A_2 have the same spectrum.

Spectrum (Eigenvalues & Eigenvectors)

 If G is a bipartite graph, then its spectrum is symetric about 0, we mean:

$$\lambda_k = -\lambda_{|V|-k+1}$$

• If $K_{|V|}$ is a complete graph of orden |V|, then its adjacency matrix $\mathbf{A}=\mathbf{1}-\mathbf{I}$ has the spectrum is:

$$\lambda_1 = |V| - 1, \lambda_2 = \dots = \lambda_{|V|} = -1$$

Also, the eigenvalue λ_1 has 1 as its respective eigenvector.

Structures

 To work with large and sparse graphs we need an structure to represent adjacency matrix:

```
class matrix(int V) begin
    struct matrix::entry *rows[V];
    struct matrix::entry *columns[V];
    int verteces = V;
end
static const struct matrix::entry z;
```

Structures

• And the entries are defined as follow:

```
struct matrix::entry(int i,int j,float info) begin
struct matrix::entry *up = &z;
struct matrix::entry *left = &z;
struct matrix::entry *right = &z;
struct matrix::entry *down = &z;
int row = i, column = j;
float data = info;
```

end

• With these structures when we need to compute the product of two sparce matrices we can get this in $\mathcal{O}(|E|)$.

Laplacian operator

• The laplacian matrix $\nabla = [\nabla_{ij}] \in \mathbb{R}^{|V| \times |V|}$ of a simple graph G = (V, E) is defined as:

$$\nabla_{ij} = \begin{cases} -1 & \text{if } (i,j) \in E \\ d_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

We can write this matrix simply as:

$$\nabla = D - A$$

• This matrix is always semi+def, then $\lambda_{|\mathbf{V}|} = 0$ and its eigenvector is $\boldsymbol{\phi}_{|\mathbf{V}|} = \left[\begin{array}{ccc} 1 & \cdots & 1\end{array}\right]^{\top}$.

Normalized laplacian

• The laplacian matrix $\tilde{\nabla} = [\tilde{\nabla}_{ij}] \in \mathbb{R}^{|V| \times |V|}$ of a simple graph G = (V, E) is defined as:

$$\tilde{\nabla}_{ij} = \begin{cases} 1 & \text{if } i = j \\ -\frac{1}{\sqrt{d_i d_j}} & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

• We can write this matrix simply as:

$$\tilde{\nabla} = \mathbf{D}^{-\frac{1}{2}} \nabla \mathbf{D}^{-\frac{1}{2}}$$

• Multiplicity of eigenvalue $\lambda_{|V|} = 0$ indicates the number of connected components in G.

Exponential and sociability matrices

Exponential matrix:

$$e^{\mathbf{A}} = \sum_{k=1}^{\infty} \frac{1}{k!} \mathbf{A}^k$$

Sociability matrix of degree r:

$$S^{r} = \left[\tilde{A}1|\tilde{A}^{2}1|\cdots|\tilde{A}^{r}1\right]$$

where
$$\mathbf{\tilde{A}}^j = \left[\mathsf{diag}\left(\mathbf{1}^{\top}\mathbf{A}^j\right)\right]^{-1}\mathbf{A}^j$$
 with $j \in [r]$.

Spectral Clustering

function spectral-clustering $(A \in \{0,1\}^{n \times n})$ begin | Parameters: $m \in [n], K \in \{2,...,n\}$

- Compute the singular value decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$.
- ② Let $\tilde{\mathbf{U}}$ and $\tilde{\mathbf{V}}$ be the first \mathbf{m} columns of \mathbf{U} and \mathbf{V} respectively and let $\tilde{\Sigma}$ be the submatrix of Σ given by the first \mathbf{m} rows and columns.
- ① Define $\tilde{\mathbf{Z}} = [\tilde{\mathbf{U}}\tilde{\boldsymbol{\Sigma}}^{\frac{1}{2}}|\tilde{\mathbf{V}}\tilde{\boldsymbol{\Sigma}}^{\frac{1}{2}}] \in \mathbb{R}^{n \times 2m}$ to be the concatenation of the coordinate-scaled singular vector matrices.
- $\begin{array}{l} \bullet \quad \text{Let } \left(\hat{\psi},\hat{\tau}\right) = \text{arg}\, \text{min}_{\psi,\tau} \sum_{i=1}^n \|\boldsymbol{\tilde{z}}_i \psi\|_2^2 \text{ give the centroids} \\ \text{and block assignments, where } \boldsymbol{\tilde{z}}_i \text{ is the i-th row of } \boldsymbol{\tilde{Z}}, \\ \hat{\psi} \in \mathbb{R}^{2m} \text{ are the centroids and } \hat{\tau} \colon [n] \mapsto [K]. \end{array}$
- **10 return** $\hat{\tau}$, the block assignment function.

Image segmentation

function image-segmentation($I: \mathbb{Z}^2 \mapsto \mathbb{Z}^3$) begin | Parameters: $w, h \in \mathbb{Z}, \beta \in \mathbb{R}$

Operation Define a simple graph with the pixels of image I, where the adjacency matrix A defines relations between the pixel $(i,j) \in [w] \times [h]$ and the pixel (u,v) = (i,j) + s as follow:

$$A_{(\mathfrak{i},\mathfrak{j}),(\mathfrak{u},\nu)} = \begin{cases} 1 & \|\mathbf{I}(\mathfrak{i},\mathfrak{j}) - \mathbf{I}(\mathfrak{u},\nu)\|_{2} \leqslant \beta \\ 0 & \text{otherwise} \end{cases}$$

where
$$\mathbf{s} \in \{(0,1), (1,0), (-1,0), (0,-1)\}.$$

② spectral-clustering(A; m, K);

end

More applications

- Page rank
- Visualizations
- Random walk modelign
- Biometrics
- Stable matching
- Social networks
- Trading analysis

References 1

- A consistent adjacency spectral embedding for stochastic blockmodel graphs
- Ernesto Estrada The Structure of Complex Networks
- Christopher Bishop Pattern Recognition
- Wikipedia: Adjacency matrix
- More of wikipedia: Spectral graph theory
- More yet on wikipedia: Sigular Value Decomposition
- Berkeley University
- American Mathematical Society
- Ulises Tirado Zatarain Spectral Graph Analysis: Biometrics Applications

