#### **Lecture 2: Introduction to Linear Regression**

Ailin Zhang

2023-05-10

# Can you estimate the temperature by listening to cricket's chirp?





#### **Regression Line**

Goal: Find a straight line that best fits the data in the scatterplot



Data: values  $(x_1, y_1), \ldots, (x_n, y_n)$  of (X, Y) observed on each of n units or cases. The estimated regression line is:

$$\hat{y} = \underbrace{b_1}_{\text{slope}} x + \underbrace{b_0}_{\text{intercep}}$$

where x is the explanatory variable, and  $\hat{y}$  is the predicted response variable.

#### Interpretation of slope and intercept

- Slope: increase in predicted y for every unit increase in x
- Intercept: predicted y value when x = 0

$$\hat{Temp} = 37.68 + 0.23 Chirps$$

Which is a correct interpretation?

- **1** The average temperature is  $37.68^{\circ}F$
- ② For every extra 0.23 chirps per minute, the predicted temperate increases by  $1^{\circ}F$
- Predicted temperature increases by 0.23 degrees for each extra chirp per minute
- $\bullet$  For every extra 0.23 chirps per minute, the predicted temperature increases by 37.68° F

#### **Simple Linar Regression**

When there is only one predictor X. The model is called simple linear regression model.

$$y = \beta_0 + \beta_1 x + \epsilon$$

- $\beta_0$  and  $\beta_1$  are unknown population parameters, therefore are estimated from the data.
- ullet is a random variable to represent noise/ uncertainty.

We can also write the simple linear regression equation as:

$$E(Y|X=x) = \beta_0 + \beta_1 x$$

• E(Y|X=x) is the expected value of Y for a given x value.

#### **Assumptions about** $\epsilon$

$$\epsilon_i \sim N(0, \sigma^2)$$

- **1** The error  $\epsilon$  is a random variable with mean of zero.
- ② The variance of  $\epsilon$ , denoted by  $\sigma^2$ , is the same for all values of the independent variable. (Homoscedasticity)
- $\bullet$  is independent.
- **1** The error  $\epsilon$  is a normally distributed random variable.

## **Estimated Simple Linear Regression Equation**

The estimated simple linear regression equation:  $\hat{y} = b_0 + b_1 x$ 

Compare with regression equation:  $E(Y|X=x) = \beta_0 + \beta_1 x$ 

 $b_0$  and  $b_1$  provide estimates of  $\beta_0$  and  $\beta_1$ 

|           | Population parameter             | Sample statistic        |  |  |
|-----------|----------------------------------|-------------------------|--|--|
| Intercept | $eta_{f 0}$                      | <i>b</i> <sub>0</sub>   |  |  |
| Slope     | $eta_1$                          | $b_1$                   |  |  |
| Equation  | $E(Y X=x) = \beta_0 + \beta_1 x$ | $\hat{y} = b_0 + b_1 x$ |  |  |

#### **Linear Regression Models**

$$Y = \beta_0 + \beta_1 X 1 + \beta_2 X 2 + \dots + \beta_p X_p + \epsilon$$

More generally, linear regression can be categorized as a model is linear in its parameters  $\beta_0, \beta_1, \dots, \beta_p$ . For example, the following are linear regression models:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$$
$$Y = \beta_0 + \beta_1 \log(X) + \epsilon$$

even though the relationship between Y and X is not linear.

- Linear in parameters, not linear in predictors
- less restrictive than you might think

#### Some Non-linear Models Can Be Turned Linear

EX 1:

$$Y = \frac{X}{\alpha X + \beta}$$

Take the reciprocal:

$$1/Y = \alpha + \beta(1/X)$$

Linear model:

$$Y' = \alpha + \beta X'$$

EX 2: Can the following model be turned into a linear model?

$$V = \alpha \times r_1^{\beta} \times h^{\beta_2}$$

## Which of the Following Models are Linear?

- (a)  $Y = \beta_0 + \beta_1 X + \epsilon$
- **(b)**  $Y = \beta_0 \beta_1^X \epsilon$
- (c)  $Y = \beta_0 + \beta_1 e^X + \epsilon$
- (d)  $Y = \beta_0 + \beta_1 X^2 + \beta_2 \log(X) + \epsilon$

Answer: (c) and (d)

Which of the following models can be turned linear after transformation?

#### Multiple Linear Regression Model

|         | SLR   |                       | MLR                    |                        |    |          |                       |
|---------|-------|-----------------------|------------------------|------------------------|----|----------|-----------------------|
|         | X     | Y                     | $X_1$                  | $X_2$                  |    | $X_p$    | Y                     |
| case 1: | $x_1$ | <i>y</i> <sub>1</sub> | <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> |    | $x_{1p}$ | <i>y</i> <sub>1</sub> |
| case 2: | $x_2$ | $y_2$                 | $x_{21}$               | $x_{22}$               |    | $x_{2p}$ | <i>y</i> <sub>2</sub> |
|         | ÷     | ÷                     | ÷                      | ÷                      | ٠. | :        | ÷                     |
| case n: | $x_n$ | $y_n$                 | $x_{n1}$               | $x_{n2}$               |    | $x_{np}$ | $y_n$                 |

- In simple linear regression (SLR), we observe one predictor X.
- In multiple linear regression (MLR), we observe p predictors (explanatory variables, covariates)
- Each row is called a case, a record, or a data point
- $y_i$  is the response (or dependent variable) of the *i*th case
- $x_{ik}$  is the value of the explanatory variable  $X_k$  of the ith case

## **Multiple Linear Regression Models**

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i$$

- $\epsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$
- Parameters included
  - $\beta_0$ : intercept
  - $\beta_k$ : regression coefficient (slope) for the kth explanatory variable
  - $\sigma^2$ : variance of errors
- Observed (known):  $y_i, x_{i1}, \ldots, x_{ip}$ 
  - Unknown:  $\beta_0, \beta_1, \dots, \beta_p, \sigma^2, \epsilon_i$
- Random:  $\epsilon_i, y_i$ 
  - Constants (not random):  $\beta_k, \sigma^2, x_{ik}$

# Multiple Linear Regression Models in Matrix Notation

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n1} & \dots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

Or

$$Y = X\beta + \epsilon$$

## **Estimated Multiple Linear Regression Equation**

Hat notation is used:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip}$$

- $\hat{y}_i$  is the fitted value
- $\bullet$   $y_i$  is the actual observed value

#### Parameters v.s. Estimates



| $y = \beta_0 + \beta_1 x$         | $y = \hat{\beta_0} + \hat{\beta_1} x$ |
|-----------------------------------|---------------------------------------|
| Regression line of the population | Regression line of the sample         |
| fixed                             | random, changes from sample to sample |
| unknown                           | can be calculated from sample         |
| of interest                       | not of interest                       |

#### **Errors and Residuals**

- Error  $(\epsilon_i)$  can not be directly computed,  $\epsilon_i = y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip}$
- The errors  $\epsilon_i$  can be estimated by residuals  $e_i$  residual  $e_i$  = observed  $y_i$  predicted  $y_i$

$$e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip})$$

- Question: is  $e_i = \epsilon_i$ ?

In general  $e_i \neq \epsilon_i$  since  $\beta_j \neq \hat{\beta}_j$ 

#### **RStudio Interface**



- Type R codes in the [Source Editor], and hit [Ctrl+Enter] (Windows) or [Cmd+Enter] (Mac) to execute. Output in the [Console].
- Select several lines of R codes and hit [Ctrl+Enter] (or [Cmd+Enter] on Mac) to execute the selected lines.
- You can save your R codes in a .R file (R script) for reuse.

#### R as a calculator

```
3+2
## [1] 5
3*2
## [1] 6
3^2 # power
## [1] 9
log(100) # natural log
## [1] 4.60517
log10(100) # base 10 log
## [1] 2
```

## R value assignment

```
We use assignment operator: <-
x <- 3+2 #Input
x

## [1] 5

x = log(100)
x
## [1] 4.60517</pre>
```

#### **Vectors**

The c() function can be used to create vectors of objects by concatenating things together.

c() stands for "combine" or "concatenate."

```
x <- c(0.5, 0.6)  ## numeric
x <- c(TRUE, FALSE)  ## logical
x <- c(T, F)  ## logical
x <- c("a", "b", "c")  ## character
x <- 9:29  ## integer
x <- c(1+0i, 2+4i)  ## complex</pre>
```

#### Other commonly used vectors

```
1:8
## [1] 1 2 3 4 5 6 7 8
seq(from = 3, to = 21, by = 2)
##
   [1] 3 5 7 9 11 13 15 17 19 21
rep(5,4)
## [1] 5 5 5 5
rep(c(1,2),4)
## [1] 1 2 1 2 1 2 1 2
```

#### **Indexes of Vectors**

```
z \leftarrow c(5,3,1,6,4,2)
z[3] # the 3rd element
## [1] 1
z[c(1,4)] # the 1st and 4th elements [1] 5 6
## [1] 5 6
z[1:4] # the first 4 elements
## [1] 5 3 1 6
Negative indexes means excluding those elements
```

z[-1]

## [1] 3 1 6 4 2

#### **Reading Data**

There are a few principal functions reading data into R.

- read.table, read.csv, for reading tabular data
- readLines , for reading lines of a text file source, for reading in R code files
- dget , for reading in R code files
- load, for reading in saved workspaces.
- unserialize , for reading single R objects in binary form

For small to moderately sized datasets, you can usually call read.table without specifying any other arguments.

```
data <- read.table("foo.txt")</pre>
```

- R automatically figures out how many rows there are (and how much memory needs to be allocated)
- figure what type of variable is in each column of the table.

#### **Working Directory**

If we get an error message during reading that says "No such file or directory".

This is because we haven't told R where the file is located, which can be done by providing the complete path to the file or by setting the working directory to the folder the data file is located.

## Set the Working Directory (1)



## Set the Working Directory (2)



#### Demo: Childhood respiratory disease data

```
fevdata = read.table("fevdata.txt", header=TRUE)
dim(fevdata)
```

```
## [1] 654 5
```

We can see fevdata has 654 rows (cases) and 5 columns (variables).

#### Data: Smoking and FEV (Lung Capacity)

Sample of 654 youths, aged 3 to 19, in the area of East Boston during middle to late 1970's. The variables are

- age: Subject's age in years
- fev: Lung capacity of subject, measured by forced expiratory volume (abbreviated as FEV), the amount of air an individual can exhale in the first second of forceful breath in liters
- ht: Subject's height in inches
- sex: Gender of the subject coded as: 0 = Female, 1 = Male
- ullet smoke: Smoking status coded as: 0 = Nonsmoker, 1 = Smoker

#### **Summary Statistics**

```
mean(fevdata$fev)
## [1] 2.63678
median(fevdata$fev)
## [1] 2.5475
sd(fevdata$fev)
## [1] 0.8670591
var(fevdata$fev)
## [1] 0.7517915
```

## Data Summaries by Group using aggregate()

```
Mean FEV by Gender: (0 for females, 1 for males)

aggregate(fev ~ sex, data = fevdata, mean)
```

fev

```
## 1 0 2.451170
## 2 1 2.812446
Better give meaningful labels for the categories rather than 0 and 1.
fevdata$sex = factor(fevdata$sex, labels=c("Female","Male"))
fevdata$smoke = factor(fevdata$smoke, labels=c("Nonsmoker", "Smoker"))
aggregate(fev ~ sex, data = fevdata, mean)
       sex fev
## 1 Female 2.451170
## 2 Male 2.812446
aggregate(fev ~ smoke, data = fevdata, mean)
        smoke
                  fev
    Nonsmoker 2,566143
```

Smoker 3.276862

## 2

## sex

## **Summarizing Data By Two Grouping Variables**

```
aggregate(fev ~ smoke + sex, data = fevdata, mean)
```

```
## smoke sex fev
## 1 Nonsmoker Female 2.379211
## 2 Smoker Female 2.965949
## 3 Nonsmoker Male 2.734381
## 4 Smoker Male 3.743231
```

#### aggregate() + summary()

The summary() function can report more summary statistics.

```
aggregate(fev ~ smoke + sex, data=fevdata, summary)
```

## 3 5.793000 ## 4 4.872000

#### **Visualizations - Boxplots**

```
par(mfrow=c(1,3))
boxplot(fevdata$fev)
boxplot(fevdata$fev, horizontal = T)
boxplot(fevdata$fev, horizontal = T,
xlab="Lung Capacity (FEV in liters)")
```







#### **Visualization - Histogram**

#### Histogram of fevdata\$fev





#### Visualization - ggplot2

- "gg" in ggplot means = Grammer of Graphics
- a powerful and versatile toolkit for data visualization

```
library(ggplot2)
#If ggplot2 library is not installed. You can install it using
#install.packages("ggplot2")
```

In ggplot, aes() is the short hand for "aesthetic".

Variables involved in a ggplot must be enclosed within aes().

Introduction to R Graphics with ggplot2 (from Harvard)

https://iqss.github.io/dss-workshops/Rgraphics.html

#### Histogram in ggplot2

ggplot(fevdata, aes(x = fev)) + geom\_histogram(binwidth = 0.1) 30 -



#### Boxplots in ggplot2



## Scatterplot in ggplot2



#### Facet — Inspect Data by Group

ggplot allows you to inspect data by group using facet\_wrap.

```
ggplot(fevdata, aes(x = fev)) +
geom_histogram(binwidth = 0.25) +
facet_wrap(~smoke)
```



#### **Facet Over 2 Grouping Varibles**

```
ggplot(fevdata, aes(x = fev)) +
geom_histogram(binwidth = 0.25) +
facet_grid(smoke ~ sex, scale="free_y")
```



### Boxplots by Group (or Side-by-Side Boxplots)

ggplot(fevdata, aes(x = sex, y = fev)) + geom\_boxplot()



#### **Faceting Boxplots**

```
ggplot(fevdata, aes(x = smoke, y = fev)) +
geom_boxplot() +
facet_wrap(~sex)
```



#### **Color-coded Scatter Plots**

```
ggplot(fevdata, aes(x = age, y = fev, col=smoke)) + geom_point() +
xlab("Age (years)") + ylab("Lung Capacity (FEV in liters)")
```



#### smoke

- Nonsmoker
- Smoker

#### Scatter Plots Faceted by Smoke Status

```
ggplot(fevdata, aes(x = age, y = fev)) +
geom_point() +
facet_wrap(~smoke) +
xlab("Age (years)") +
ylab("Lung Capacity (FEV in liters)")
```



## facet\_grid Over Both sex & smoke

```
ggplot(fevdata, aes(x = age, y = fev)) +
geom_point() +
facet_grid(smoke~sex) +
xlab("Age (years)") +
ylab("Lung Capacity (FEV in liters)")
```

