Séance 4 Cours

(1) Transformée de Fourier

aussiappelée transformée de fourier à temps continu.

$$X(\mathcal{D}) = \begin{cases} \chi(\mathcal{D}) \in \mathcal{D} \\ \chi(\mathcal{D}) = \chi(\mathcal{D}) \end{cases} = \text{TF}[\chi(\mathcal{D})]$$

$$X(\mathcal{D}) = \begin{cases} \chi(\mathcal{D}) \in \mathcal{D} \\ \chi(\mathcal{D}) \in \mathcal{D} \end{cases} = \text{TF}[\chi(\mathcal{D})]$$

$$X(\mathcal{D}) \in \mathcal{D}$$

exemple
$$\chi(H) = \Pi(V) = \Pi_{L-V_2, V_2, 1}(H)$$
 $\chi(V) = \frac{\sin \pi V}{\pi V}$
 $\chi(H) = e^{-\pi I/2}$ $\chi(V) = e^{-\pi I/2}$
 $\chi(H) = S(H)$ $\chi(V) = 1$

2 Lien avec les séries de Fourier

* Etant donné
$$X_{Q}$$
 et $V_{Q} = \frac{1}{T}$

$$X(\mathcal{I}) = \sum_{k=-\infty}^{+\infty} X_{Q} S(\mathcal{I} - \frac{1}{T})$$

$$= \sum_{k=-\infty}^{+\infty} X_{Q} S(\mathcal{I} - \frac{1}{T})$$

$$= \sum_{k=-\infty}^{+\infty} X_{Q} S(\mathcal{I} - \frac{1}{T})$$

TF-1[X(x)] = \(\int X_{\text{R}} \) = \(\int (\text{r}) \).

La transformée inverse coincide cevec la série de Fourier. Des raies donnent lieu à un signal périodique.

54, 62

* Etant donné x(1) périodique de périodo T

$$X(v) = X_{T}(v) \left(\frac{1}{T} \sum_{R=-\infty}^{+\infty} S(v - \frac{R}{T}) \right)$$

trans- appelé peigne formée de Diracs.

Xh=1X-(h)

Les raies du signal périodique coîncident à un coefficient de proportionnalité avec la TF du motif.

peigne de Dirac
$$\coprod_{f}(f) = \sum_{k=-\infty}^{+\infty} S(f-kT)$$

$$= \underbrace{1}_{f} \coprod_{f}(f) = \underbrace{1}_{f} \underbrace{2}_{f} S(f-kT)$$

$$E = \int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |x(t)|^2 dt$$

Justification:

on démontre que

$$\langle TF[xin], Y(v) \rangle = \langle x(H), TF[Y(v)] \rangle$$

$$= \int_{-\infty}^{+\infty} \left(\frac{+\infty}{Y(v)} e^{2i\pi v} + dv \right)^{\infty} dt$$

Et fina lement

$$E = \langle X(v), X(v) \rangle = \langle TF[x(v)], X(v) \rangle$$

$$= \langle x(v), TF^{-1}[x(v)] \rangle$$

$$= \langle z(r), r(r) \rangle = E$$

on applique les transformées de Fourier

à
$$t=0$$
 et $\ell=0$
 $\chi(0)=\int_{-\infty}^{\infty}\chi(\ell)d\ell$
 $\chi(0)=\int_{-\infty}^{\infty}\chi(\ell)d\ell$

Si
$$z(t) = \alpha(t) + y(t)$$

alors $z(t) = \chi(t) + y(t)$
Si $z(t) = \alpha \chi(t)$
alors $z(t) = \alpha \chi(t)$

En effet:

$$TF[x(-t)] = \int_{-\infty}^{+\infty} x(-t)e^{-2i\pi t} dt$$

$$chg de var: t' = -t + \infty$$

$$TF[x(-t)] = \int_{-\infty}^{+\infty} x(t)e^{2i\pi t} dt = (TF[x(t)])^{\infty}$$

* x(t) réel et pair alors $X^*(x) = TF[x(-t)] = TF[x(t)] = X(x)$ donc X(x) réel $(X^*(x) - X(x)) = 0) = Im(X(x))$ * x(t) réel et impair

alors $X^*(\lambda) = TF[x(\lambda)] = TF[x(\lambda) = -X(\lambda)]$ $Re(X(\lambda)) = \frac{1}{2}X(\lambda) + \frac{1}{2}X(\lambda)^* = 0$

alors |X(-1)| = |X(1)| = |X(1)|donc |X(-1)| = |X(1)| = |X(1)| $\neq x(1)| = |X(1)| = |X(1)|$ $\Rightarrow x(1)| = |X(1)| = |X(1)| = |X(1)|$ $\Rightarrow x(1)| = |X(1)| = |X$

* $\chi(H)$ complexe et $\chi(H)$ pair a lors $\chi(H)$ pair $\chi(-H) = \int_{-\infty}^{+\infty} \chi(H) e^{-2i\pi(-H)} H$ $= \int_{-\infty}^{+\infty} \chi(-H) e^{-2i\pi H} H$ $= \chi(H)$

* x (+) complexe et x (v) impair alors X (v) impair.