Informe previo Práctica-3

Apellidos y nombre:	Marti Llull Xavier	Grupo: 33.
Apellidos y nombre:		Grupo:

(por orden alfabético)

<u>Pregunta 1</u>

c) No existe acarreo en el algoritmo de multiplicación de un número por un digito en el caso binario ya que los cinicos casos que se deu son el de sumar el 1 una vez-1, el de sumar el 0 o el 1 cero veces=0, o el de sumar el 0 una vez-0. Por eo tanto la multiplicación binaria hunca de mayor que 1.

o) Son recesarios 16 bits. Multiplicandolo por un solo bit solo puede quedan el mismo humero o todo 6.

1) Tanto la pareja de entrada y salida X- W como la y- w tienen el mismo tiempo de propagación, pues todos los bits de x e y person por una puerta And-2. TP (B;+B;+)=TP And-2

Pregunta 2

a)
$$X = 1101$$
; $Y = 1011$; $W = 10001111$
 $Xu = 13$; $Yu = 11$; $W = 143$
 $11 \times 13 = 143$ El resultado de la multiplicación
en binario del partato anteriales
conecto.

 $X_{u}=23$ X = 10111

 $\frac{10111}{(1100001111)} = (391)10$

<u>Pregunta 3</u>

		(7) 1000	0 1 1 1 1 /2	
Estado inicial		W(0) =	D(0) =	B(0) =
Iteración / ciclo j	M = MULBit (D(j), B(j)<0>)	W(j+1) = ADD(W(j), M)	D(j+1) = SL-1(D(j))	B(j+1) = SRL-1(B(j))
0	000 10 110	000 10110	00101100	00160110
1	000000	00 0 10110	01911000	00010011
2	01011000	01101110	1 B119 DD0	00001501
3	10 110000	00011110	() 1/199DQ9	00000000
4	\$\$\$\$\$\$\$\$	000011110	V V 0000000	(a 0000 a 0
5	0000000	0 00 11/10	10000000	0990990A
6		10011110	0000000	0000000
7	0000000	100 11/10	0000000	0000000
Resul. Final W		10 P 11/110		

¿Cuál es el resultado correcto de la multiplicación, $W_u = X_u \times Y_u$? $\wedge 694$ $\times u = 22 = (10110)_2$ $\times \times = 77 = (10010)_2$

¿Los 8 bits que se obtienen como resultado del algoritmo anterior, representan el resultado correcto de la multiplicación? $N_{\rm G}$

¿Porqué? Los 8 bits que se obtienen como resultado del algoritmo anterios no representan el regultado correcto de la multiplicación paque recesitariames M bits para representanto y solo usamos 8.

Pregunta 5

ROM_Q+MUL								
0×-0	0×01	0×02	٥×٥٤	2×03	5 0×0	0×04	0×04	0×05
0×05	0 x0 C	0×06	0×0-7	4×04	80×0	DXOZ	0×07	Po×0
oxo A	ADXO	ET 0×0	0×0B	OXOC	ه ۲۰۰۲	_ C⊃×□	0×0D	ÛXŒ
DXOE	OXOF	OXOF	OVVD	, a×10	0717	0×11	, 0×00	0×01

ROM_OutMUL									
ρ×ζ	0 XO	ОХО	OXO	b×0	Oxo	D×0	OXO	OX0	
OXO	OXO	0×0	0×0	OXO	0×0	OXD	(QXD	o×3	

Pregunta 6

a) El camino critico del multiplicador pasa a traves de: REGX -> X·Y-> ADD -> MUXADD -> REGW

b)
$$T_{p}REGx = 100u.t.$$
 $T_{p}MUx_{ADD} = 50u.t.$
 $T_{p}x.y = 20u.t.$
 $T_{p}ADD = 610u.t.$
 $T_{p}ADD = 610u.t.$