Predicting Residential Real Estate Prices in King County, WA
Using MLR

1

METHODOLOGY

- Prep

 Select
- Model ७

Scrubbing, Exploring, and Modifying Data

Remove duplicates
Categorize data
Clean data

Identify patterns

Develop mental model

Establish system relationships

Transform data Create data

Cast data

King County Housing Data				
id	Price	Bedrooms	Bathrooms	
- 1000102	280000	6	3	
- 1000102	300000	б	3	
7200179	150000	2	1	
7200179	175000	2	1	
109200390	245000	3	1.75	
109200390	250000	3	1.75	
123039336	148000	i		
123039336	244900	i	1	
-251300110	225000	3	2.25	
-251300110	358000	3	2.25	

Scrubbing, Exploring, and Modifying Data

Remove duplicates

Correctly categorize data

Clean nonsense data

Exploring

Identify patterns

Develop mental model

Establish system relationships

Transform data

Create data

Cast data

Exploring for relationships between Price and Floorplan Area

Scrubbing, Exploring, and Modifying Data

Remove duplicates

Correctly categorize data

Clean nonsense data

Identify patterns

Develop mental model

Establish system relationships

Transform data

Create data

Cast data

Prep Data and Select Features

Linearize data

Normalize data

Split data

Computer selection

Statistical elimination

Common sense elimination

Prep Data and Select Features

Linearize data Normalize data Split data

Computer selection
Statistical elimination
Common sense elimination

	coef	std err	t	P> t
Zipcode Average	0.3573	0.002	164.692	0
Floor Plan Area	0.2702	0.006	42.658	0
Grade	0.2082	0.005	41.052	0
Area Compared to				
Neighbors	0.1502	0.005	27.45	0
Basement Area	0.0514	0.006	9.069	0
Bedrooms	0.0132	0.004	3.302	0.001
Bathrooms	-0.0143	0.005	-3.07	0.002
Waterfront (y/n)	0.1076	0.005	22.632	0
View (y/n)	0.0425	0.001	31.11	0
Renovated (y/n)	0.0191	0.002	9.445	0
Basement (y/n)	0.016	0.002	7.18	0
April (y/n)	0.0174	0.001	14.077	0
March (y/n)	0.0099	0.001	7.479	0

Multiple Linear Regression

Calculates the "plane" that is closest to all of the data.

2

FINDINGS

- Results
- Interpretation
- Recommendations

Results

Interpretation

Most impactful predictor Accounts for the majority of the price

Above-ground size is most important

Peers are important

Have a significant effect despite their binary nature

Other conditions modify price

Feature	Coefficient
Zipcode Average	0.3556
Area Above	0.266
Grade	0.1869
Area Compared to	
Neighbors	0.1308
Area Basement	0.0814
Year Built	0.0314
Waterfront (y/n)	0.1191
View (y/n)	0.0428
Renovated (y/n)	0.0205
April (y/n)	0.0155
March (y/n)	0.0086
Basement (y/n)	0.0076

Interpretation

Most impactful predictor Accounts for the majority of the price

Above-ground size is most important

Peers are important

Have a significant effect despite their binary nature

Other conditions modify price

Feature	Coefficient
Zipcode Average	0.3556
Area Above	0.266
Grade	0.1869
Area Compared to Neighbors	0.1308
Area Basement	0.0814
Year Built	0.0314
Waterfront (y/n)	0.1191
View (y/n)	0.0428
Renovated (y/n)	0.0205
April (y/n)	0.0155
March (y/n)	0.0086
Basement (y/n)	0.0076

Interpretation

Most impactful predictor

Accounts for the majority of the price

Above-ground size is most important

Peers are important

Have a significant effect despite their binary nature

Other conditions modify price

Feature	Coefficient
Zipcode Average	0.3556
Area Above	0.266
Grade	0.1869
Area Compared to	
Neighbors	0.1308
Area Basement	0.0814
Year Built	0.0314
Waterfront (y/n)	0.1191
View (y/n)	0.0428
Renovated (y/n)	0.0205
April (y/n)	0.0155
March (y/n)	0.0086
Basement (y/n)	0.0076

Accurate predictions of average price for a particular set of features (±1.4%) with 99% confidence

Use model to understand the market,
 but develop a hierarchical bayesian model to improve predictive ability