

$\begin{array}{c} {\bf Type 977~fitting~for~heat~pump}\\ {\bf HP10L\text{-}WEB} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@spf.ch

2019/02/26 at: 11:03:11 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	1.3928e+01
P_{Q_2}	2^{st} condenser polynomial coefficient	7.0109e+01
P_{Q_3}	3^{st} condenser polynomial coefficient	-2.8286e+01
P_{Q_4}	4^{st} condenser polynomial coefficient	7.9397e + 01
P_{Q_5}	5^{st} condenser polynomial coefficient	1.4315e + 02
P_{Q_6}	6 st condenser polynomial coefficient	7.0718e+00
P_{COP_1}	1 st COP polynomial coefficient	9.5084e+00
P_{COP_2}	2 st COP polynomial coefficient	5.7050e+01
P_{COP_3}	3 st COP polynomial coefficient	-5.0748e + 01
P_{COP_4}	4 st COP polynomial coefficient	-1.9264e+02
P_{COP_5}	5 st COP polynomial coefficient	8.9936e+01
P_{COP_6}	6 st COP polynomial coefficient	7.3762e+01
\dot{m}_{cond}	$2100.00 \ [kg/h]$	
\dot{m}_{evap}	5250.00 [kg/h]	
$\overline{COP_{nom} \text{ (A0W35)}}$	4.21	
$Q_{cond,nom}$ (A0W35)	$9.95 \ [kW]$	
$Q_{evap,nom}$ (A0W35)	7.58 [kW]	
$W_{comp,nom}$ (A0W35)	2.36~[kW]	
RMS_{COP}	9.03e - 02	
$RMS_{Q_{cond}}$	2.68e - 01	
$RMS_{W_{comp}}$	6.26e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	^{o}C	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	20.00	6.95	6.98	0.4	15.91	15.63	1.8	2.29	2.24	2.23
35.00	10.00	5.49	5.53	0.7	12.82	13.15	2.5	2.34	2.38	1.79
35.00	7.00	5.09	5.20	2.0	11.95	12.47	4.1	2.35	2.40	2.14
35.00	2.00	4.41	4.17	5.8	10.52	10.00	5.2	2.39	2.40	0.59
35.00	-7.00	3.43	3.40	1.0	8.19	7.99	2.5	2.38	2.35	1.47
35.00	-15.00	2.72	2.83	3.8	6.33	6.45	1.9	2.33	2.28	2.03
45.00	7.00	3.87	3.89	0.4	11.13	11.43	2.6	2.87	2.94	2.23
45.00	2.00	3.34	3.25	2.6	9.66	9.30	3.8	2.89	2.86	1.17
45.00	-7.00	2.58	2.56	0.5	7.23	7.13	1.3	2.80	2.78	0.84
45.00	-15.00	2.05	2.05	0.3	5.26	5.47	3.8	2.56	2.67	4.04
50.00	20.00	4.75	4.66	2.0	14.91	14.81	0.7	3.14	3.18	1.35
50.00	15.00	4.18	4.30	2.9	13.26	13.60	2.5	3.17	3.16	0.38
50.00	7.00	3.33	3.44	3.0	10.74	10.83	0.9	3.22	3.15	2.25
50.00	2.00	2.87	2.88	0.2	9.24	8.95	3.3	3.22	3.11	3.48
50.00	-7.00	2.22	2.21	0.2	6.75	6.68	1.1	3.05	3.02	0.87
55.00	20.00	4.11	4.03	2.1	14.60	14.46	1.0	3.55	3.59	1.10
55.00	7.00	2.85	2.94	3.1	10.36	10.48	1.1	3.63	3.56	2.07
55.00	-7.00	1.91	1.85	3.3	6.30	6.33	0.6	3.30	3.43	3.69
Sum				34.5			40.5			33.71
RMS_{COP}	9.03e - 02									
RMS_{O}	2.68e - 01									
$RMS_{W_{comp}}$	6.26e - 02									

Figure 1: Q_{cond} differences between experiments and fitted data

Figure 2: W_{comp} differences between experiments and fitted data

Figure 3: COP differences between experiments and fitted data