38. Dans \mathbf{R}_{o}^{+} ; la dérivée première de $f(x) = \sin^{2}(\ln 2x)$ est :

38. Dans
$$\mathbf{R}_0^+$$
; la dérivée première de $f(x) = \sin^2(\ln 2x)$ est :

1. $\frac{\sin(\ln 2x)}{3}$ 3. $\frac{\sin(2\ln 2x)}{5}$ 5. $\sin(2\ln 2x)$

5. $\sin(2 \ln 2x)$ (M.90) $4. \frac{\sin(2\ln 2x)}{2\pi}$ $2. \frac{\sin(\ln 2x)}{2x}$

· 39. On note f' la dérivée première de la fonction $f(x) = ln(2 + ln^6 x)$. f'(e) =

1. 3 e 2. e^2 3. e^3 4. 2e 5. $2e^{-1}$ (M, 91)40. Le développement de l'expression $\frac{1}{1-2x}$ par la formule de Mac – Laurin est une suite dont les quatre premiers termes forment le

polynôme $f(x) = a + bx + cx^2 + dx^3$ f(x) = 0 si x =

1. $\frac{2}{3}$ 2. $-\frac{1}{2}$ 3. $\frac{1}{2}$ 4. $-\frac{2}{3}$ 5. -1(M.91)

41. Soit la fonction f(x) = arc tg ln x. La dérivée première est:

1. $\frac{1}{x \left[1 + (\ln x)^2\right]}$ 3. $\frac{3x}{x^2 + (3\ln x)^2}$ 5. $\frac{x}{x^3 + (\ln x)^2}$ 2. $\frac{2x \ln x}{x + (2 \ln x)^2}$ 4. $\frac{1}{x + (3 \ln 2x)^2}$

42. En développant par Mac – Laurin, le 5° terme de la fonction $y = 5^{\circ}$ a pour coefficient:

1. $\frac{\ln^3 .5}{6}$ 2. $\frac{\ln^4 2}{120}$ 3. $\frac{\ln^5 2}{24}$ 4. $\frac{\ln^4 2}{24}$ 5. $\frac{\ln^5 2}{120}$ (M. 97)

43. La dérivée première de la fonction y = arc tg (sin x) vaut :

1.
$$y' = \frac{\cos x}{1 + \sin^2 x}$$
 3. $y' = \frac{1}{2\sqrt{x}(1+x)}$ 5. $y' = \frac{\sin x}{1 + \cos^2 x}$ (M. 97)

2. $y' = \frac{\arcsin 2x}{\sqrt{1-x^2}}$ 4. $y' = \frac{\cos x}{|\cos x|}$ www.ecoles-rdc.net

44. Le développement limité à l'ordre 3 au voisinage de 0 de la fonction $\frac{e^x}{}$ est:

1. $1 + 2x + 5x^{2}/2 + 8x^{3}/3 + 0(x^{3})$ 2. $x + x^{2} + x^{3}/3 + 0(x^{3})$ 3. $4 \cdot 1 + 3x + 7x^{2}/3 + 0(x^{3})$ 5. $1 + x + x^{2} + 2x^{3}/3 + 0(x^{3})$ 2. $x + x^2 + x^3/3 + 0(x^3)$

(M.97)

3. $1 + 3x + 9/2x^2 + 0(x^3)$