VE281

Data Structures and Algorithms

Asymptotic Algorithm Analysis

Learning Objective:

- Understand best, worst, and average cases
- Understand Big-Oh, Big-Omega, Big-Theta notations
- Know how to analyze time complexity of a program

Outline

- Asymptotic Analysis: Big-Oh
- Relatives of Big-Oh
- Analyzing Time Complexity of Programs

How to Measure Efficiency?

- Empirical comparison: run programs
 - Use the wall-clock time to measure the runtime
 - Empirical comparison could be tricky. It depends on
 - Compiler
 - Machine (CPU speed, memory, etc.)
 - CPU load
- Asymptotic Algorithm Analysis
 - For most algorithms, running time depends on the "size" of the input.
 - Running time is expressed as T(n) for some function T on input size n.

 Space: S(n)

Input Dependency: Example

• Summing an array of n elements

// REQUIRES: a is an array of size n

// EFFECTS: return the sum

int sum(int a[], unsigned int n) {
 int result = 0;
 for(unsigned int i = 0; i < n; i++)
 result += a[i];
 return result;</pre>

- The runtime is roughly cn, where c is some constant.
- With n fixed, any array has roughly the same runtime.

Best, Worst, Average Cases

- In the example of summing an array, all inputs of a given size take the same time to run.
- However, in some other cases, this is not true, i.e., not all inputs of a given size take the same time to run.
- Example: linear search

```
// REQUIRES: a is an array of size n
// EFFECTS: return the index of the element
// equals key. If no such element, return n.
int search(int a[], unsigned int n, int key) {
  for(unsigned int i = 0; i < n; i++)
    if(a[i] == key) return i;
  return n;
}</pre>
```


Which Statements Are True for Linear Search?

Select all the correct statements:

- **A.** The best case occurs when **key** is the first element in the array.
- **B.** In the worst case, we need to do **n** comparisons with **key**.
- **C.** The worst case in terms of the number of comparisons with **key** only occurs when **key** is not in the array.
- D. Suppose **key** is uniformly located in the array. Then, on average, the number of comparisons with **key** is **n/2**.

```
// REQUIRES: a is an array of size n
// EFFECTS: return the index of the element
// equals key. If no such element, return n.
int search(int a[], unsigned int n, int key) {
  for(unsigned int i = 0; i < n; i++)
    if(a[i] == key) return i;
  return n;
}</pre>
```

Best, Worst, Average Cases

- Best case: least number of steps required, corresponding to the ideal input
- Worst case: most number of steps required, corresponding to the most difficult input.
- Average case: average number of steps required, given any input.

need to consider the distribution

A Common Misunderstanding

"The best case for my algorithm is n = 1 because that is the fastest."

- Wrong!
- Best case is a **special input** case of size *n* that is **cheapest** among all input cases of size *n*.

Which Case to Use?

- Average case or worst case is common.
- While average time appears to be the fairest measure, it may be difficult to determine.
 - Sometime, it requires domain knowledge, e.g., the distribution of inputs.
- Worst case is pessimistic, but it gives an upper bound.
 - Bonus: worst case usually easier to analyze.

How to Analyze Complexity of Algorithm?

- Guiding Principle #1: Ignore constant factors.
 - <u>Iustification</u>:
 - 1. Way easier.
 - 2. Constants depend on architecture, compiler, etc.
 - 3. Lose very little predictive power (as we will see).
- Guiding Principle #2: Focus on running time for large input size n.
 - <u>Justification</u>: only big problem are interesting!
 - Thus, we will compare the runtime of two algorithms when n is very large.
 - E.g., $1000 \log_2 n$ is "better" than 0.001n.

Asymptotic Analysis: Big-Oh

- Definition: A non-negatively valued function, T(n), is in the set O(f(n)) if there exist two positive constants c and n_0 such that $T(n) \le cf(n)$ for all $n > n_0$.
- Usage: The algorithm is in $O(n^2)$ in best/average/worst case.

• Meaning: For all data sets big enough (i.e., $n > n_0$), the algorithm always executes in less than cf(n) steps in best/average/worst case.

Graphic View of Big-Oh

Big-Oh Notation

- Strictly speaking, we say that T(n) is in O(f(n)), i.e., $T(n) \in O(f(n))$
- However, for convenience, people also write T(n) = O(f(n))

Big-Oh Example

• Claim: If $T(n) = a_k n^k + \dots + a_1 n + a_0$, then $T(n) = O(n^k)$

- Proof:
 - Need to pick constants c and n_0 so that for any $n > n_0$, $T(n) \le c \cdot n^k$.
 - Choose $n_0 = 1$ and $c = |a_k| + \cdots + |a_1| + |a_0|$
 - Only need to show that for any $n > n_0$, $T(n) \le cn^k$.

Big-Oh Example

- Claim: $2^{n+10} = O(2^n)$
- Proof:
 - Need to pick constants c and n_0 so that for any $n > n_0$, $2^{n+10} \le c \cdot 2^n \qquad (*)$
 - We note $2^{n+10} = 1024 \cdot 2^n$.
 - So if we choose c = 1024 and $n_0 = 1$, then (*) holds.

Big-Oh Notation

- Big-oh notation indicates an **upper bound**.
- Example: If $T(n) = 3n^2$ then T(n) is in $O(n^2)$.
- Look for the **tightest** upper bound:
 - While $T(n) = 3n^2$ is in $O(n^3)$, we prefer $O(n^2)$.

A Sufficient Condition of Big-Oh

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c < \infty$$
, then $f(n)$ is $O(g(n))$.

• With this theorem, we can easily prove that $T(n) = c_1 n^2 + c_2 n$ is $O(n^2)$

actually big \theta of g(n)

Rules of Big-Oh

- Rule 1: If f(n) = O(g(n)), then cf(n) = O(g(n)).
 - Example: $3n^2 = O(n^2)$
- Rule 2: If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) + f_2(n) = O(\max\{g_1(n), g_2(n)\})$
 - Example: $n^3 + 2n^2 = O(\max\{n^3, n^2\}) = O(n^3)$

Rules of Big-Oh

• Rule 3: If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$

• Rule 4: If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

Common Functions and Their Growth Rates

Common Functions and Their Growth Rates

A Few Results about Common Functions

- For a polynomial in n of the form $f(n) = a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0$ where $a_m > 0$, we have $f(n) = O(n^m)$.
- For every integer $k \ge 1$, $\log^k n = O(n)$.

not a tight bound

• For every integer $k \ge 1$, $n^k = O(2^n)$.

How Fast Is Your Code?

• Let f(n) be the complexity of your code, how fast would you advertise it as? Choose one proper answer.

f(n) = O(g(n)); You want to pick a g(n) that is as close to f(n) as possible.

What Is a "Fast" Algorithm?

fast algorithm \approx worst-case/average-case running time grows slowly with input size

• Usually as close to linear (O(n)) as possible.

Outline

- Asymptotic Analysis: Big-Oh
- Relatives of Big-Oh
- Analyzing Time Complexity of Programs

Relative of Big-Oh: Big-Omega

- Definition: For T(n) a non-negatively valued function, T(n) is in the set $\Omega(g(n))$ if there exist two positive constants c and n_0 such that $T(n) \ge cg(n)$ for all $n > n_0$.
- Meaning: For all data sets big enough (i.e., $n > n_0$), the algorithm always requires more than cg(n) steps.
- Big-omega gives a lower bound.
- We usually want the greatest lower bound.

Big-Omega Example

- Consider $T(n) = c_1 n^2 + c_2 n$, where c_1 and c_2 are positive.
- What is the big-omega notation for T(n)?
- Solution:
 - $c_1 n^2 + c_2 n \ge c_1 n^2$ for all n > 1.
 - $T(n) \ge cn^2$ for $c = c_1$ and $n_0 = 1$.
 - Therefore, T(n) is in $\Omega(n^2)$ by the definition.

Theta Notation

- When big-oh and big-omega coincide, we indicate this by using big-theta (Θ) notation.
- Definition: T(n) is said to be in the set $\Theta(g(n))$ if it is in O(g(n)) and it is in $\Omega(g(n))$.
 - In other words, there **exist** three positive constants c_1 , c_2 , and n_0 such that $c_1g(n) \leq T(n) \leq c_2g(n)$ for all $n > n_0$.

Theta Notation

• Question: Does $f(n) = \Theta(g(n))$ indicate $g(n) = \Theta(f(n))$?

Outline

- Asymptotic Analysis: Big-Oh
- Relatives of Big-Oh
- Analyzing Time Complexity of Programs

Analyzing Time Complexity of Programs

- For atomic statement, such as assignment, its complexity is $\Theta(1)$.
- For branch statement, such as if-else statement and switch statement, its complexity is that of the most expensive Boolean expression plus that of the most expensive branch.

```
if(Boolean_Expression_1) {Statement_1}
else if (Boolean_Expression_2) {Statement_2}
...
else if (Boolean_Expression_n) {Statement _n}
else {Statement_For_All_Other_Possibilities}
```

Analyzing Time Complexity of Programs

- For subroutine call, its complexity is that of the subroutine.
- For loops, such as while and for loop, its complexity is related the number of operations required in the loop.

Time Complexity Example One

• What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i++)
sum += i;</pre>
```

• The entire time complexity is $\Theta(n)$.

Time Complexity Example Two

• What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i++)
  for(j = 1; j <= i; j++)
    sum++;</pre>
```

Note that the statements

```
j \leftarrow i;

j++;

sum++;

all occur (roughly) 1+2+\cdots+n=n(n+1)/2 times.
```

• The time complexity is $\Theta(n^2)$.

Time Complexity Example Three

• What is the time complexity of the following code?

```
sum = 0;
for(i = 1; i <= n; i *= 2)
  for(j = 1; j <= n; j++)
    sum++;</pre>
```

- The outer loop occurs $\log n$ times.
- The statements sum++ / j<=n / j++ occur $n \log n$ times.
- The time complexity is $\Theta(n \log n)$.

?

What Is the Time Complexity of the

Following Code?

Choose the correct answer.

```
sum = 0;
for(i = 1; i <= n; i *= 2)
for(j = 1; j <= i; j++)
sum++;</pre>
```

A. $\Theta(\log n)$ C. $\Theta(n)$ B. $\Theta(n \log n)$ D. $\Theta(n^2)$

Multiple Parameters

• Example: Compute the rank ordering for all \mathcal{C} (i.e., 256) pixel values in a picture of P (i.e., 64×64) pixels.

```
for(i=0; i<C; i++) // Initialize count

O(C) count[i] = 0;

for(i=0; i<P; i++) // Look at all pixels
    count[value[i]]++; // Increment count

sort(count); // Sort pixel counts

O(C log C)</pre>
```

- The time complexity is $\Theta(P + C \log C)$.
- One general application is to analyze graph algorithm

Space/Time Trade-off Principle

• One can often reduce time if one is willing to sacrifice space, or vice versa.

- Example: factorial
 - Iterative method: Get "n!" using a for-loop.
 - This requires $\Theta(1)$ memory space and $\Theta(n)$ runtime.
 - Table lookup method: Pre-compute the factorials for $1,2,\cdots,N$ and store all the results in an array.
 - This requires $\Theta(n)$ memory space and $\Theta(1)$ runtime (fetching from an array).