### SYN

# Security Analysis

## of Serendipity

Sahil Chadha Rituraj Satpute Manish Choudhary Girish Dhoble

#### Mobile Adhoc Networks

- Collection of autonomous nodes or terminals
- Communicate with each other by forming a multi-hop radio network
- Maintaining connectivity in a decentralized manner
- **❖** Bandwidth constrained wireless links
- Frequent Host movement
- Frequent Topology change

#### Issues with Ad Hoc

- Lack of a centralized entity
- Routing and Mobility Management
- **❖** Low Channel Bandwidth
- Hidden/Exposed station problem
- Network topology changes frequently and unpredictably

#### Issues with Ad Hoc

- Affected by higher loss rates, and can experience higher delays and jitter than fixed networks due to the wireless transmission
- Energy constrained nodes
- Physical security is limited due to the wireless transmission
- Lack of symmetric links

#### Serendipity

- Serendipity is a system that enables utilization of remote computational resources in a mobile ad hoc network.
- Job initiator divides job into multiple tasks.
- Tasks disseminated through the network using Water Filling algorithm.

#### Serendipity: Job Model (PNP Block)



#### Serendipity: High Level Architecture



#### Serendipity Continued

- \* Tasks can be pieces of code that execute on remote nodes
- Current version of Serendipity employs no task checking mechanism
- This makes nodes in Serendipity susceptible to a range of attacks
- These attacks could be:
  - General attacks on MANETs.
  - Attacks specific to Serendipity (exploiting the specific workings of Serendipity to mount an attack.)

- Attack on Confidentiality
  - > No data encryption used
  - ➤ Any malicious node can intercept the communication between the sender and the receiver
  - ➤ Military scenario: the result would be catastrophic

- Attack on Authenticity and Integrity
  - > No authentication scheme in current system
  - Attacker can impersonate as authentic initiator or add malicious content on the fly

- Attack on Availability
  - Malicious node can launch DoS attack
    - By continuous assignment of tasks to the nodes making them unavailable for other job initiators
    - Introducing malicious nodes in the network to take the jobs and never returning the results

- ❖ Paper suggests the use of Reputation Based Systems
- **❖** But,

Attacks on Reputation based systems

- > Whitewashing attack
- > Sybil attack
- > Impersonation and reputation theft
- > Denial of reputation
- > Attack on underlying network
- > Trust topology threats

- Sybil Attack
  - Counterfeiting multiple identities with malicious intent
  - Results in submission of all the tasks to the attacker
  - This may hamper the computation and can also result in denial of service attack



- **❖** Black Hole Attack
  - Attacker advertises itself as best route to destination

- **♦** May Result in
  - > DOS
  - ➤ Man in the Middle attack



- **♦** Wormhole Attack
  - Attacker forward packets through a high quality out-of-band link and replays those packets at another location in the network
  - > Affects routing and other decisions
  - May lead to packet drop, network disruption and even DoS



- Flooding Attack
  - ➤ Kind of denial-of-service attack
  - Malicious initiator can flood many fake tasks exhausting the computing power and resources of the node

- Grey Hole Attack
  - > Extension of black hole attack but harder to detect
  - > Behaviours and activities of malicious node are unpredictable
  - Attacker node behaves maliciously only for some nodes or for some period of time

- Rushing attack
  - ➤ Initiator node starts a route discovery for target node
  - ➤ If RREQ forwarded by attacker is first to reach neighbour of target then Route Discovery include a hop through attacker
  - ➤ All other RREQ will be discarded



- Ensuring Confidentiality, Authenticity and Integrity
  - ➤ Use standard IND-CCA secure cryptographic schemes like Encryptthen-MAC
    - IND-CPA Secure CBC\$ for ensuring Confidentiality
    - SUF-CMA Secure HMAC for ensuring Authenticity and Integrity
- Ensuring Availability
  - > Adding redundancy
  - Our Proposed solution

- Preventing Sybil Attack
  - Centralized or Semi-Centralized Trusted Identity Management Authorities
  - > Specific System Features Based Techniques, Sybil Guard etc.

- Preventing Black Hole Attack
  - ➤ Wait and Check replies from all the neighboring nodes to find a safe route

- Preventing Wormhole Attack
  - > Each node monitor behaviour of neighbouring nodes
  - > Source send RREQ if it does not receive RREP within time add route to wormhole list

- Preventing Flooding Attack
  - ➤ Flooding Attack Prevention (FAP)- Use Trust Function

- Preventing Rushing Attack
  - > Secure neighbour detection (Two nodes detect each other as neighbors)
    - If they can communicate
    - If they are within maximum transmission range
  - Secure Route Delegation
    - Verify secure neighbour detection protocol executed successfully
  - Randomized Message Forwarding
    - Receiving node collects a number of RREQ
    - Forward a random RREQ.

#### Attacks Specific to Serendipity

- \* Attacks involving malicious nodes:
  - Monopolize Serendipity by advertising itself as an all-powerful node.
  - Mount DOS attack on the job initiator (extension of above attack).
  - Mount DOS attack on Serendipity by refusing to return job results.
- \* Attacks involving malicious job initiator:
  - Malicious Code Injection
    - Retrieve Personal Information
    - Bombard with advertisement
    - Installing Backdoor to perform attacker-specific jobs
    - ROP attacks.
  - > DOS attack mounted on the nodes by the job initiator.
- ❖ Man in the middle attacks between job initiator and nodes of the network.

#### Demo of DOS Attack on Serendipity

- Simulated a DOS attack on a job initiator by a malicious node in NS 2.
- Malicious node constantly advertised itself with high availability of resources in the form of battery, CPU & lesser propagation delay.
- ❖ Job initiator ends up forwarding all tasks to the malicious node due to the greedy algorithm.

Initial Status: Job initiator tries to disseminate tasks based on node profiles.



## Intermediate status: malicious node starts monopolizing the network



## Final Status: Malicious node successfully monopolizes the network



#### Secure Serendipity - Building the Trust (Phase I)

- ❖ We present a solution 'Secure Serendipity', which is similar to route reflectors concept, to deal with the problem of malicious nodes by making some modifications to Serendipity:
  - > Run Serendipity for some time t
  - > During t<sub>0</sub>, Job Initiator and participating worker nodes maintain trust matrix for each other
  - > After t<sub>o</sub>, all nodes share their matrix with each other.
  - > m+k nodes with highest trust factor are selected out of which m random nodes are picked as trusted nodes.
  - Trusted nodes are responsible for the security of the network and can get their jobs done in return by passing jobs to other trusted nodes.
- Note that all the communication between the nodes happens in encrypted form.

#### Secure Serendipity - Job Execution (Phase II)

- ❖ Job initiator divides the task based on the predictive contacts of nearest trusted node
- ❖ Job initiator forwards the jobs to be allocated to the nearest trusted node that runs it partially in a sandbox and allocates if not found malicious.
- All worker nodes return results to the trusted nodes which ensure the authenticity and that the results are not malicious.
- Trusted nodes maintain hashes and results of the job verification to improve the efficiency.
- Trusted nodes ensure that jobs are not allocated to same node by maintaining a database and threshold.
- Trusted nodes can share databases and predictive contacts with each other
- Trusted node can forward job allocation task to other trusted nodes which would verify the job for malicious content

#### Secure Serendipity - Rebasing the Trust (Phase III)

- Trusted nodes can blacklist malicious nodes which would not be considered as a part of network in future
- ❖ All trusted and untrusted nodes maintain trust matrix for each other
- After fixed time period, trusted nodes are selected based on the updated trust matrix.
- Nodes can't be selected as trusted thrice consecutively.
- New nodes without trust matrix can not be selected as trusted nodes.

#### Secure Serendipity - Limitations

- Degrades performance of Serendipity
- Lesser number of worker nodes
- Requires encrypted communication channel
- **❖** Tradeoff between security and efficiency
- Predictive contacts assumed

### FIN