Bisection method for finding roots

- Root of function f: Value x such that f(x)=0.
- Many problems can be expressed as finding roots.
 - e.g. square root of $w = root of f(x) = x^2 w$.
 - If f(x) = 0, then x^2 w = 0, i.e. x = \sqrt{w} .
- Requirement for bisection method:
 - Need to be able to evaluate f.
 - f must be continuous.
 - We must be given points x_L and x_R such that $f(x_L)$ and $f(x_R)$ are not both positive or both negative.

Bisection method: basic iteration

- Basic iteration will bring x_L, x_R closer, while maintaining invariant:
 x_L, x_R have different signs or are
 0.
- Invariant is true initially.
- Invariant + Continuity \Rightarrow root exists between x_1 and x_R (both inclusive).
- We iterate till $x_R x_1 \le \varepsilon$, our desired error bound
- We declare x₁ as the root.
- Error in declared root is at most ε .

Iteration

```
Let x_{M} = (x_{I} + x_{R})/2
   midpoint of interval (x_1, x_p).
If f(x_{M}) has same sign as f(x_{I}),
then set x_1 = x_M
   Sign of x<sub>1</sub> did not change
   Sign of x<sub>1</sub> continues to remain
   different from sign of x<sub>p</sub>
else set x_R = x_M.
   Sign of x_p does not change...
    Invariant holds even here
```

Bisection method for finding square root of 2, i.e. root of $f(x)=x^2-2$.

```
double xL=0, // f(xL) = 0 - 2 is negative
   xR=2, // f(xR) = 4 - 2 is positive
   xM, epsilon = 0.00001;
while(xR - xL > = epsilon){
 xM = (xL+xR)/2:
 if((xL*xL - 2 > 0 \&\& xM*xM - 2 > 0))
  (xL*xL - 2 < 0 \&\& xM*xM - 2 < 0)) xL = xM;
 else xR = xM:
cout << xl << endl:
// How would you choose xL, xR for finding sqrt(3)?
// xL = 0, xR = 3 will work
```

Demo

• bisection.cpp

Remarks

- In each iteration, the interval (x_1, x_R) halves in size.
- The size of the interval gives the error in the root.
- Thus the error in the root halves in each iteration.
- Thus if you want the answer correct to k bits, you should use k iterations.
- The number of calculations in each iteration can be reduced.
 - See the book.

Exercise: Modify the program so that it calculates the cube root of any number w. Make sure you correctly initialize x_1 , x_8 .

What we discussed

- Bisection method is a very simple method for finding the root of a function f.
- Requirements:
 - Should be possible to evaluate f at any x.
 - f should be continuous.
 - Need x_{l} and x_{l} such that $f(x_{l})$ and $f(x_{l})$ dont have the same sign.
 - Method is simple but can be slow.

Next: Newton Raphson method for finding roots

