Regression

Machine Learning for Behavioral Data March 7, 2022

Today's Topic

Week	Lecture/Lab
1	Introduction
2	Data Exploration
3	Regression
4	Classification
5	Model Evaluation
6	Time Series Prediction
7	Time Series Prediction
8	Time Series Prediction

Complete pipeline for one use case:

- Data exploration
- Prediction
- Model evaluation

Getting ready for today's lecture...

- If not done yet: clone the repository containing the Jupyter notebook and data for today's lecture into your Noto workspace.
- SpeakUp room for today's lecture:

https://go.epfl.ch/mlbd-lecture

Short quiz about the past...

Which of the four graphs have the following properties:

High Pearson's Correlation, High Mutual Information

Short quiz about the past...

Which of the four graphs have the following properties:

High Pearson's Correlation, Low Mutual Information

Short quiz about the past...

Which of the four graphs have the following properties:

Low Pearson's Correlation, Low Mutual Information

Today's Use Case: Flipped Classroom Course

- Participants: 288 EPFL students of a course taught in *flipped* classroom mode with a duration of 10 weeks
- Structure:
 - Preparation: watch videos (and solve simple quizzes) on new
 content at home as a preparation for the lecture
 - Lecture: discuss open questions and solve more complex tasks
 - Lab session: solve paper-an-pen assignments
- Data: clickstream data (all interactions of the student with the system)

Agenda

- Linear Regresssion
- Generalized Linear Models
- Mixed-Effect Models
- Performance Metrics
- Regression for Time-Series

Idea

 In regression, a single aspect of the data (output variable) is modeled by some combination of other aspects of the data (input variables)

More formal

- In regression, a single aspect of the data (output variable) is modeled by some combination of other aspects of the data (input variables)
- Given: N data points (y_n, x_n) , where y_n is the n'th output variable and x_n is a D-dimensional vector of input variables
- Goal: $y_n \approx f(x_n)$

Usage

- *Prediction*: predict the output for a new (unseen) input vector x
- Interpretation: analyze the relationships between the variables (what effect the input variables have on the output variable)

Example | Mean playback speed

x-axis: Mean playback

speed of videos

y-axis: Course grade

Each point is one student

Students who watch the videos faster tend to have better grades.

Linear Regression

The output variable y_n with n=1,...,N is modeled by a **linear** combination of the input variables $x_{n,d}$ with d=1,...,D.

$$y_n = \beta_0 + \beta_1 x_{n,1} + \dots + \beta_D x_{n,D} + \epsilon_n$$

where ϵ_n are error terms that should be as small as possible and $\epsilon_n \sim N(0, \sigma^2)$.

Goal: find optimal parameters

Find parameters $\hat{\beta}$ that minimize

$$\sum_{n=1}^{N} (y_n - \widetilde{\boldsymbol{x}}_n^T \cdot \widehat{\boldsymbol{\beta}})^2$$

with
$$\widetilde{\boldsymbol{x}}_n = \begin{bmatrix} 1 \\ \boldsymbol{x}_{n,1} \\ \dots \\ \boldsymbol{x}_{n,D} \end{bmatrix}$$
 and $\widehat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \dots \\ \hat{\beta}_D \end{bmatrix}$

Fitting the parameters

 $grade = \beta_0 + \beta_1 \cdot time_in_problem + \beta_2 \cdot percentage_correct$

Formula: grade~time_in_problem+percentage_correct

Family: gaussian Estimator: OLS

Std-errors: non-robust CIs: standard 95% Inference: parametric

Number of observations: 288 R^2: 0.123 R^2_adj: 0.117

Log-likelihood: -447.384 AIC: 900.769 BIC: 911.758

Fixed effects:

	Estimate	2.5_ci	97.5_ci	SE	DF	T-stat	P-val	Sig
Intercept	3.205159	2.881827	3.528491	0.164268	285	19.511809	0.000000	***
time_in_problem	0.000015	0.000009	0.000021	0.000003	285	4.681046	0.000004	***
percentage_correct	0.892133	0.293503	1.490764	0.304132	285	2.933372	0.003625	**

Fitting the parameters

 $arade = R_0 + R_1 \cdot time_{in_problem} + \beta_2 \cdot \gamma$ **R-squared** adjusted R-squared: for number of blem+percentage_correct parameters Estimator: OLS CIs: standard 95% Inference: para Std-errors: non-Number of observations: 288 R^2: 0.123 R^2 adj: 0.117 Log-likelihood: -447.384 **p-value**: probability of getting this estimate if true Fixed effects: coefficient value was 0 Estimate Sig Intercept 3.205159 time in problem 0.000015 0.000009 0.000021 0.000003 285 4.681046 0.000004

1,490764

0.304132

285

2.933372

0.003625

percentage correct

0.892133

0.293503

Influence of input variables

 $grade = 3.4 + 0.000016 \cdot time_in_problem + 0.72 \cdot percentage_correct$

Which of the input variables has the largest impact on grade?

- a) time_in_problem
- b) percentage_correct
- c) I don't know

Different units of measurements

 $grade = 3.4 + 0.000016 \cdot time_in_problem + 0.72 \cdot percentage_correct$

increase in time_in_problem by 1s -> increase of grade by 0.000015 increase in

percentage_correct by 1

percentage point -> increase of

grade by 0.89

Transformation: Z-Scores

$$\tilde{x}_{n,d} = \frac{x_{n,d} - \overline{x}_d}{\sigma(x_d)}$$

$$d = 1, ..., D$$

$$n = 1, ..., N$$

Standardization via z-score: $\tilde{x}_{n,d}$ denotes the distance between the raw feature $x_{n,d}$ and the sample mean \overline{x}_d (in units of the standard deviation)

Transformation: Example

 $grade = 4.05 + 0.35 \cdot time_{in_problem} + 0.15 \cdot percentage_correct$

Example in Jupyter Notebook

Transformation: Summary

- Lets us compare the impact of input variables with different scales/units of measurements (e.g., time in problem in seconds and percentage correct)
- Reduces interpretability of individual input variables

 $bodyfat = -45.95 + 0.99 \cdot abdomen - 0.33 \cdot weight$

Can I conclude that heavier people (higher weight) have a lower bodyfat percentage?

 $bodyfat = -45.95 + 0.99 \cdot abdomen - 0.33 \cdot weight$

Can I conclude that heavier people (higher weight) have a lower bodyfat percentage?

- a) Yes
- b) No
- c) I don't know

• There is a positive correlation between weight and bodyfat (r=0.61, p<.001).

- There is a positive correlation between weight and bodyfat (r=0.61, p<.001).
 - \blacktriangleright weight only has a negative coefficient β in the context of abdomen, i.e. for fixed abdomen predictor
 - a predictor can only be interpreted in the context of the other predictors in the model

What means linear?

$$y_n = \beta_0 + \beta_1 x_{n,1} + \dots + \beta_D x_{n,D} + \epsilon_n$$

Linear in the **parameters** -> we can apply arbitrary functions to the raw input variables, e.g.,

- logarithms, exponentials
- polynomials
- inverse

What means linear

Different transformations

Restrictions of linear models

For some cases, linear regression models are not appropriate:

the variance of y depends on the mean

Assumption for statistics (t-test,

Restrictions of linear models

For some cases, linear regression models are not appropriate:

- the variance of y depends on the mean
- the range of y is restricted

 $\#bycicles = -2291 + 83 \cdot maxTemp - 13 \cdot minTemp - 890 \cdot precipitation$

 \rightarrow prediction \hat{y} can be negative...

Agenda

- Linear Regresssion
- Generalized Linear Models
- Mixed-Effect Models
- Performance Metrics
- Regression for Time-Series

Generalized Linear Models

A generalized linear model is composed of a linear predictor

$$\pi_n = \beta_0 + \beta_1 x_{n,1} + \dots + \beta_D x_{n,D}$$

and a link function

$$g(\mu_n) = \pi_n$$

with
$$\mu_n = E[Y|X = x_n]$$

Generalized Linear Models

Conditional expectation: the mean μ_n depends on the values of independent variables \pmb{x}_n

is composed of a linear predictor

 $x_{n,1}$

Each y_n represents the realization of the random variable Y, which is distributed according to a specific probability distribution

and a unction

$$g(\mu_n) = \pi_n$$

with
$$\mu_n = E[Y|X = x_n]$$

Generalized Linear Models

A generalized linear model is composed of a linear predictor

$$\pi_n = \beta_0 + \beta_1 x_{n,1}$$

and a link function

In practice (for parameter fitting): observed values y_n are assumed to represent μ_n

$$g(\mu_n) = \pi$$

with
$$\mu_n = E[Y|X = x_n]$$

Logistic Regression

In logistic regression, the link function is

$$g(\mu_n) = \log(\frac{\mu_n}{1 - \mu_n})$$

and therefore (for fitting)

$$\log(\frac{y_n}{1 - y_n}) = \beta_0 + \beta_1 x_{n,1} + \dots + \beta_D x_{n,D}$$

Poisson Regression

In Poisson regression, the link function is

$$g(\mu_n) = \log(\mu_n)$$

and therefore (for fitting)

$$log(\mu_n) = \beta_0 + \beta_1 x_{n,1} + \dots + \beta_D x_{n,D}$$

Linear Regression as a special case

For the linear regression, the link function is

$$g(\mu_n) = \mu_n$$

and therefore (for fitting)

$$y_n = \beta_0 + \beta_1 x_{n,1} + \dots + \beta_D x_{n,D}$$

Example

What type of model would you use for the following tasks?

1. Predict the **number of awards** earned by students at one high school. Predictors include the type of program in which the student was enrolled (e.g., vocational, general or academic) and the score on their final exam in math.

(a) Lineal Regression

(b) Logistic Regression

(c) Poisson Regression

Example

What type of model would you use for the following tasks?

- 2. Predict whether a student will **solve a task correctly**. Predictors include the difficulty of the task and the number of tasks the student has already solved.
 - (a) Lineal Regression

- (b) Logistic Regression
- (c) Poisson Regression

Example

What type of model would you use for the following tasks?

3. Predict the **sales (in \$)** of a company based on their advertising budget on Youtube.

(a) Linear Regression

(b) Logistic Regression

(c) Poisson Regression

Agenda

- Linear Regresssion
- Generalized Linear Models
- Mixed-Effect Models
- Performance Metrics
- Regression for Time-Series

Why mixed-effect models?

- Useful when we are dealing with correlated samples
 - Grouping of subjects (e.g., students within a classroom)
 - Repeated measurements on each subject over time (e.g., student in flipped classroom course over 10 weeks)

Generalized Linear Models

Example 1: strength gain by weight training

 Example 2: probability of passing exam of a course c depending on the hours studied

$$\log\left(\frac{y_n}{1-y_n}\right) = \beta_0 + \beta_1 x_{n,1}$$

"Fixed" Effects

Generalized Linear Mixed Effects Model

- Example 1: strength gain by weight training
 - Each person has individual starting strength

$$y_n = \frac{\beta_0}{\beta_0} + u_n + \frac{\beta_1}{\beta_1} x_{n,1}$$
 $u_n \sim N(0, \sigma_u^2)$

"Fixed" Effects

"Random" Effect

Generalized Linear Mixed Effects Model

- Example 1: strength gain by weight training
 - Each person has individual starting strength

$$y_n = \frac{\beta_0}{\beta_0} + u_n + \frac{\beta_1}{\beta_1} x_{n,1}$$

$$u_n \sim N(0, \sigma_u^2)$$

Fitting the parameters:

- Fixed effects only: linear least squares
- Mixed effects: maximum likelihood estimation

"Fixed" Effects

"Random" Effect

"Mixed" Effects

Generalized Linear Mixed Effects Model

- In our case, students come from different origins and we assume that students from the same origin are more similar (same education system)
- We therefore use origin (category) as a proxy for prior knowledge and add a random intercept to the model

passed ~ 1|category + percentage_correct

Agenda

- Linear Regresssion
- Generalized Linear Models
- Mixed-Effect Models
- Performance Metrics
- Regression for Time-Series

Usage

- Interpretation: analyze the relationships between the variables (what effect the input variables have on the output variable)
- *Prediction*: predict the output for a new (unseen) input vector x

Regression: R²

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

where
$$SS_{res} = \sum_{i} (y_i - f(x_i))^2$$
 and $SS_{tot} = \sum_{i} (y_i - \bar{y})^2$

- Can be interpreted as the fraction of explained variability of the data
- Often used when the goal is interpretation
- Often used in the fields of Psychometrics, Learning Sciences,
 Psychology, etc.

Regression: MAE and RMSE

• Mean absolute error:

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)|$$

• Root mean squared error:
$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2}$$

- Often used when the goal is prediction
- RMSE is largely preferred to MAE

Hypothetical Example

• Given:

- Student giving correct answers 70% of the time
- Model A: predicts correct 70% of the time
- Model B: predicts 100% correctness

MAE: Model B is better

- 70% of the time the student gives a correct answer (response
 = 1)
 - Model A: absolute error = 0.3
 - Model B: absolute error = 0.0
- 30% of the time the student answers wrong (response = 0)
 - Model A: absolute error = 0.7
 - Model B: absolute error = 1.0
- $MAE_A = 0.42$, $MAE_B = 0.30$

RMSE: Model A is better

- $RMSE_A = 0.21$
- $RMSE_B = 0.30$

• RMSE penalizes large errors heavier

Agenda

- Linear Regresssion
- Generalized Linear Models
- Mixed-Effect Models
- Performance Metrics
- Regression for Time-Series

Time Series – Our flipped classroom case

• Prediction of a target variable after t < T time steps, where T is the total number of time steps

• Prediction of a target variable after t < T time steps, where T is the total number of time steps

Handling Time Series Data

- Flattening
 - The number of parameters of the model depends on the number of time steps of the model
- Aggregation
 - > Averaging across weeks
 - > Accumulating across weeks

Example – Prediction of Pass/Fail

- Prediction of grade after t < T weeks
- We will try to predict after 5 weeks and after 10 weeks

passed ~ (1|category) + average_percentage_correct [week n]

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps 0, ..., t.

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps 0, ..., t.

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps 0, ..., t.

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps 0, ..., t.

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps 0, ..., t.

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps 0, ..., t.

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps 0, ..., t.

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps 0, ..., t.

- Prediction of a target variable after t < T time steps, where T is the total number of time steps
- Prediction of a variable in time step t+1, based on time steps 0, ..., t.

Your turn: prediction of quiz performance

- Prediction of quiz performance in week t+1, based on features calculated for weeks 0, ..., t
- We provide an example equation with one random and one fixed effect already in the model
- We provide a train/test split

Your Turn – Feedback

Do you want feedback or have questions? Upload your Jupyter Notebook here:

https://go.epfl.ch/mlbd-activities

Summary

- Linear regression is a useful framework for interpreting data and making predictions
- Caveat: be careful when interpreting the models
- Linear regression is flexible, i.e. arbitrary functions can be applied to the raw input data
- Generalized linear models are a more general framework appropriate for response variables from exponential family distributions
- Mixed models allow for capturing correlation in the data
- Modeling time series data requires some type of aggregation