Capitolo 11

Considerare lo relazione in figura 11.20 e individuare le proprietà della corrispondente applicazione. Individuare inoltre eventuali ridondanze e anomalie nella relazione.

Docente	Dipartimento	Facoltà	Preside	Corso
Verdi	Matematica	Ingegneria	Neri	Analisi
Verdi	Matematica	Ingegneria	Neri	Geometria
Rossi	Fisica	Ingegneria	Neri	Analisi
Rossi	Fisica	Scienze	Bruni	Analisi
Bruni	Fisica	Scienze	Bruni	Fisica

Figura 11.20 Relazione per l'esercizio 11.1

Soluzione:

Una chiave per questa relazione è **Dipartimento, Facoltà, Corso**; una dipendenza funzionale che non riguarda la chiave **Facoltà → Preside**: questa dipendenza funzionale introduce una ridondanza nella relazione, perché per ogni corso nella stessa Facoltà, il Preside deve essere ripetuto. La relazione ha un'anomalia di aggiornamento, perché se cambiamo il preside di una facoltà dobbiamo aggiornare tutte le tuple che contengono questa informazione, e non solamente una tupla. La relazione contiene anche un'anomalia di cancellazione, perché se cancelliamo il preside di una facoltà, perdiamo anche tutte le informazioni sui docenti di quel dipartimento.

Individuare la chiave e le dipendenze funzionali della relazione considerata nell'Esercizio 11.1 e individuare poi una decomposizione in forma normale di Boyce e Codd.

Soluzione:

Una chiave per questa relazione è Dipartimento, Facoltà, Corso.

Anche gli attributi **Docente, Facoltà, Corso** sembrano formare una chiave in questa relazione, ma generalmente parlando questo non è corretto perché lo stesso docente può insegnare lo stesso corso in differenti dipartimenti di una Facoltà.

Decomposizione:

Docente	Dipartimento	Facoltà	Corso
Verdi	Matematica	Ingegneria	Analisi
Verdi	Matematica	Ingegneria	Geometria
Rossi	Fisica	Ingegneria	Analisi
Rossi	Fisica	Scienze	Analisi
Bruni	Fisica	Scienze	Fisica

Facoltà	Preside
Ingegneria	Neri
Scienze	Bruni

Questa decomposizione è corretta perché, con un join tra le due relazioni, otteniamo tutte le tuple della relazione originaria.

Inoltre, la decomposizione risolve il problema delle anomalie, perché è in forma normale di Boyce-Codd.

Si consideri la relazione riportata in figura 11.21 che rappresenta alcune informazioni sui prodotti di una falegnameria e i relativi componenti. Vengono indicati: il tipo del componente di un prodotto (attributo **Tipo**), la quantità del componente necessaria per un certo prodotto (attributo **Q**), il prezzo unitario del componente di un certo prodotto (attributo **PC**), il fornitore del componente (attributo **Fornitore**) e il prezzo totale del singolo prodotto (attributo **PT**). Individuare le dipendenze funzionali e la chiave di questa relazione.

Prodotto	Componente	Tipo	Q	PC	Fornitore	PT
Libreria	Legno	Noce	50	10.000	Forrest	400.000
Libreria	Bulloni	B212	200	100	Bolt	400.000
Libreria	Vetro	Cristal	3	5.000	Clean	400.000
Scaffale	Legno	Mogano	5	15.000	Forrest	300.000
Scaffale	Bulloni	B212	250	100	Bolt	300.000
Scaffale	Bulloni	B412	150	300	Bolt	300.000
Scrivania	Legno	Noce	10	8.000	Wood	250.000
Scrivania	Maniglie	H621	10	20.000	Bolt	250.000
Tavolo	Legno	Noce	4	10.000	Forrest	200.000

Figura 11.21 Una relazione contenente dati di una falegnameria

Soluzione:

Supponendo che un Tipo si riferisca solamente ad un componente, una chiave per la relazione è **Prodotto, Tipo;** così tutti gli attributi che contengono **Prodotto, Tipo** sono superchiavi per la relazione

Gli attributi **Q** e **PC** sembrano un'altra chiave, ma potrebbe non essere vero in tutte le istanze di questo database.

Un'altra chiave apparente è Tipo, PT

Le dipendenze funzionali sono:

- $Prodotto \rightarrow PT$
- Tipo, Fornitore \rightarrow PC
- Tipo \rightarrow Componente

Basi di dati - Modelli e linguaggi di interrogazione 3/ed Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Riccardo Torlone Copyright © 2009 - The McGraw-Hill Companies srl

Esercizio 11.4

Con riferimento alla relazione in Figura 11.21 si considerino le seguenti operazioni di aggiornamento:

- Inserimento di un nuovo prodotto;
- Cancellazione di un prodotto;
- Aggiunta di una componente a un prodotto;
- Modifica del prezzo di un prodotto.

Discutere i tipi di anomalia che possono essere causati da tali operazioni.

Soluzione:

- 1) L'inserimento di un nuovo prodotto richiede l'aggiunta di una tupla per ogni tipo di componente. Il prezzo del componente, che è in funzione del prodotto, deve essere ripetuto in ogni tupla. Anche il prezzo di un componente può essere ridondante perché lo stesso tipo di componente, con lo stesso fornitore è usato per altri prodotti, il prezzo del componente è già presente nella relazione. Questa è un'anomalia di inserimento.
- 2) La cancellazione di un prodotto implica che tutte le tuple che si riferiscono al prodotto devono essere cancellate; così se un prodotto ha più di un componente, la cancellazione di un prodotto implica la cancellazione di molte tuple; inoltre questa operazione cancella informazioni sui fornitori di componenti: se non ci sono altre tuple che si riferiscono a quei fornitori, le informazioni su di loro andranno perse. Questa è un'anomalia di cancellazione.
- 3) L'aggiunta di un nuovo componente implica l'aggiunta di una nuova tupla nella relazione. Questa è un'altra anomalia di aggiornamento perché, come per il punto 1, il prezzo totale e (eventualmente) il prezzo del componente devono essere ripetuti.
- 4) La modifica del prezzo di un prodotto produce un'anomalia di aggiornamento, perché l'aggiornamento di un attributo implica l'aggiornamento di più tuple nella relazione (una tupla per ogni tipo di componente dello stesso prodotto).

Si consideri sempre la relazione in figura 11.21. Descrivere le ridondanze presenti e individuare una decomposizione della relazione che non presenti tali ridondanze. Fornire infine l'istanza dello schema così ottenuto, corrispondente all'istanza originale. Verificare poi che sia possibile ricostruire l'istanza originale a partire da tale istanza.

Soluzione:

Le ridondanze presenti nella relazione sono riferite alle dipendenze funzionali. Gli attributi ridondanti sono:

- **PT**: che è ripetuto in ogni tupla che si riferisce allo stesso prodotto.
- PC: che è ripetuto in ogni tupla che ha lo stesso valore in **Tipo** e **Fornitore**.
- Componente: che è ripetuto in ogni tupla che ha lo stesso Tipo.

Una possibile decomposizione è:

<u>R1</u>

Prodotto	Tipo	Q	Fornitore
Libreria	Noce	50	Forrest
Libreria	B212	200	Bolt
Libreria	Cristal	3	Clean
Scaffale	Mogano	5	Forrest
Scaffale	B212	250	Bolt
Scaffale	B412	150	Bolt
Scrivania	Noce	10	Wood
Scrivania	H621	10	Bolt
Tavolo	Noce	4	Forrest

<u>R2</u>

Prodotto	PT
Libreria	400.000
Scaffale	300.000
Scrivania	250.000
Tavolo	200.000

<u>R3</u>

113	
Tipo	Componente
Noce	Legno
B212	Bulloni
B412	Bulloni
Cristal	Vetro
Mogano	Legno
H621	Maniglie

<u>R4</u>

Fornitore	Tipo	PC
Forrest	Noce	10.000
Bolt	B212	100
Clean	Cristal	5.000
Forrest	Mogano	15.000
Bolt	B412	300
Wood	Noce	8.000
Bolt	H621	20.000

Esercizio 11.7 Considerare uno schema di relazione R (E, N, L, C, S, D, M, P, A, con le dipendenze $E \to NS$, $NL \to EMD$, $EN \to LCD$, $C \to S$, $D \to M$, $M \to D$ $EPD \to AE$ ed infine $NLCP \to A$. Calcolare una copertura ridotta per tale insieme e decomporre la relazione in terza forma normale.

Soluzione

I passi per calcolare la copertura ridotta di una relazione sono i seguenti:

- 1. sostituzione l'insieme di dipendenze funzionali con un insieme equivalente che ha i secondi membri costituiti da un singolo attributo;
- 2. per ogni dipendenza verifica dell'esistenza di attributi eliminabili dal primo membro.
- 3. eliminazione delle dipendenze ridondanti

Per questo esericizio il primo passo porta all'individuazione delle seguenti dipendenze funzionali:

- 1. $E \rightarrow N$
- 2. $E \rightarrow S$
- 3. $NL \rightarrow E$
- 4. $NL \rightarrow M$
- 5. $NL \rightarrow D$
- 6. $EN \rightarrow L$
- 7. $EN \rightarrow C$
- 8. $EN \rightarrow D$
- 9. $C \rightarrow S$
- 10. $D \rightarrow M$
- 11. $M \rightarrow D$
- 12. $EPD \rightarrow A$
- 13. $NLCP \rightarrow A$

Il secondo passo porta alle seguenti dipendenze funzionali:

- 1. $E \rightarrow N$
- 2. $E \rightarrow S$
- 3. $NL \rightarrow E$
- 4. $NL \rightarrow M$
- 5. $NL \rightarrow D$
- 6. $E \rightarrow L$
- 7. $E \rightarrow C$
- 8. $E \rightarrow D$
- 9. $C \rightarrow S$
- 10. $D \rightarrow M$
- 11. $M \rightarrow D$
- 12. $EP \rightarrow A$
- 13. $NLCP \rightarrow A$

Per il terzo passo esaminamo in dettaglio i passaggi con riferimento a due delle dipendenze funzionali.

Vediamo se la dipendenza $E \to N$ implicata dalle altre calcolando la chiusura iniziando dall'attributo E.

$$N \not\in X_F' = \{E, S, L, C, D, M\}$$

quindi la dipendenza non è implicata dalle altre e non può essere eliminata.

Esaminiamo la dipendenza $E \rightarrow S$: $S \in X^+_F = \{E, S, N, L, C, D, M\}$

quindi la dipendenza è implicata dalle altre e può essere eliminata.

Al termine delle iterazioni si ottiene il seguente risultato:

- 1. $E \rightarrow N$
- 2. $NL \rightarrow E$
- 3. $NL \rightarrow D$
- 4. $E \rightarrow L$
- 5. $E \rightarrow C$
- 6. $C \rightarrow S$ 7. $D \rightarrow M$
- 8. $M \rightarrow D$
- 9. $NLCP \rightarrow A$

Si consideri lo schema della relazione in figura 11.22. La chiave di questa relazione è costituita dagli attributi Titolo e Copia, e su di essa è definita la dipendenza **Titolo → Autore Genere**. Verificare se lo schema è o meno in terza forma normale e, in caso negativo, decomporlo opportunamente.

Titolo	Autore	Genere	Copia	Scaffale
Decamerone	Boccaccia	Novelle	1	A75
Divina Commedia	Dante	Poema	1	A90
Divina Commedia	Dante	Poema	2	A90
I Malavoglia	Verga	Romanzo	1	A90
I Malavoglia	Verga	Romanzo	2	A75
I Promessi Sposi	Manzoni	Romanzo	1	B10
Adelchi	Manzoni	Tragedia	1	B20

Figura 11.22 Relazione per l'Esercizio 11.6

Soluzione:

La relazione non è in terza forma normale perché il lato destro della dipendenza funzionale **Titolo → Autore Genere** non è parte della chiave. Una possibile decomposizione è:

R1

Titolo	Copia	Scaffale
Decamerone	1	A75
Divina Commedia	1	A90
Divina Commedia	2	A90
I Malavoglia	1	A90
I Malavoglia	2	A75
I Promessi Sposi	1	B10
Adelchi	1	B20

R2

Titolo	Autore	Genere
Decamerone	Boccaccia	Novelle
Divina Commedia	Dante	Poema
I Malavoglia	Verga	Romanzo
I Promessi Sposi	Manzoni	Romanzo
Adelchi	Manzoni	Tragedia

La relazione è in forma normale di Boyce-Codd, perché la chiave per R2 è **Titolo**, che è anche il lato sinistro della dipendenza funzionale.

Esercizio 11.9 Si consideri la relazione in figura 11.23 in cui CM e CD sono, rispettivamente, abbreviazioni di CodiceMateria e CodiceDocente e l'attributo CS assume valori di tipo stringa che indicano in qualche modo il corso di studio o i corsi di studio cui un corso è destinato. Individuare la chiave (o le chiavi) e

СМ	Materia	CS	Sem.	CD	NomeDoc	Dipartimento
I01	Analisi I	Inf	I	NR1	Neri	Matematica
I01	Analisi I	El	I	NR2	Neri	Matematica
I02	Analisi II	El-Inf	I	NR1	Neri	Matematica
I04	Fisica I	El	II	BN1	Bianchi	Fisica
I04	Fisica I	Mec	I	BR1	Bruni	Meccanica
I04	Fisica I	Inf	I	BR1	Bruni	Meccanica
I05	Fisica II	El	II	BR1	Bruni	Meccanica
I06	Chimica	Tutti	I	RS1	Rossi	Fisica

Figura 11.23 Relazione per l'esercizio 11.9

le dipendenze funzionali definite su di essa (ignorando quelle che si ritiene siano eventualmente "occasionali") e spiegare perché essa non soddisfa la BCNF. Decomporla in BCNF nel modo che si ritiene più opportuno.

Soluzione

Dipendenze:

- \bullet CM \rightarrow Materia
- Materia \rightarrow CM
- CM CS →Sem. CD
- $\bullet \ CD \to NomeDoc \ Dipartimento$

Chiavi:

- CM, CS
- Materia, CS

Decomposizione:

- MATERIE (CM, Materia)
- CORSI (CM, CS, Sem, Docente)
- DOCENTI (CD, NomeDoc, Dipartimento)

Esercizio 11.10 Considerare la relazione in figura 11.24, che contiene informazioni relative ai ristoranti di una città, da riportare in una guida turistica.

Cod	Nome	Indirizzo	СТ	Tipo	СС	Carta	CZ	Zona
342	Da Piero	V. Larga 32	R	Region.	V	VISA	С	Centro
342	Da Piero	V. Larga 32	R	Region.	Α	AmEx	C	Centro
421	Buono	Vic. Corto 1	R	Region.	Α	AmEx	C	Centro
425	Paris	V. Lunga 4	I	Internaz.	D	Diners	N	Nord
425	Paris	V. Lunga 4	I	Internaz.	Α	AmEx	N	Nord
655	Canton	V. Breve 2	C	Cinese	V	VISA	О	Ovest

Figura 11.24 Relazione per l'esercizio 11.10

Si noti che CT, CC e CZ sono, rispettivamente, abbreviazioni di CodiceTipo, CodiceCarta e CodiceZona.

Individuare la chiave (o le chiavi) della relazione e le dipendenze funzionali definite su di essa (ignorando quelle che si ritiene siano eventualmente "occasionali") e spiegare perché essa non soddisfa la BCNF.

Decomporla in BCNF nel modo che si ritiene più opportuno.

Soluzione

Dipendenze:

- Cod → Nome, Indirizzo, Tipo, Zona
- $\bullet \ Nome \to Cod$
- $CT \rightarrow Tipo$
- Tipo $\rightarrow CT$
- $\overrightarrow{CC} \rightarrow Carta$
- Carta →CC
- $Zona \rightarrow CZ$
- $CZ \rightarrow Zona$

Chiavi:

- Cod, CC
- Cod, Carta
- Nome, CC
- Nome, Carta

Decomposizione:

- RISTORANTI (Cod, Nome, Indirizzo, CT, Zona)
- TIPICUCINA (CT, Tipo)
- CARTEDICREDITO (CC, Carta)
- ZONE (CZ, Zona)
- CONVENZIONE (Cod, CC)

Si consideri lo schema Entità-Relazione in figura 11.25. Sui dati descritti da questo schema valgono le seguenti proprietà:

- Un giocatore può giocare per una sola squadra (o per nessuna);
- Un allenatore può allenare una sola squadra (o nessuna);
- Una squadra ha un solo allenatore, diversi giocatori e appartiene a un'unica città.

Verificare se lo schema soddisfa la forma normale di Boyce-Codd e, in caso negativo, ristrutturarlo in un nuovo schema in maniera che soddisfi tale forma normale.

Figura 11.25 Uno schema da sottoporre alla verifica di normalizzazione

Soluzione:

Le dipendenze funzionali presenti nello schema sono:

- Giocatore \rightarrow Squadra.
- Allenatore \rightarrow Squadra
- Squadra \rightarrow Città

La chiave per la relazione Composizione è Giocatore e così lo schema non è in forma normale di Boyce-Codd.

Una possibile ristrutturazione è:

In questo nuovo schema ci sono solamente relazioni binarie, e quindi rispetta la forma normale di Boyce-Codd.

Consideriamo la relazione in figura 11.26 e le sue seguenti possibile decomposizioni:

- Reparto, Cognome in una relazione e Cognome, Nome, Indirizzo nell'altra;
- Reparto, Cognome, Nome in una relazione e Nome, Indirizzo nell'altra;
- Reparto, Cognome, Nome in una relazione e Cognome, Nome, Indirizzo nell'altra;

Individuare, con riferimento sia all'istanza specifica sia all'insieme delle istanze sullo stesso schema (con le proprietà naturalmente associate), quali di tali decomposizioni sono senza perdita.

Reparto	Cognome	Nome	Indirizzo
Vendite	Rossi	Mario	Via Po 20
Acquisti	Rossi	Mario	Via Po 20
Bilancio	Neri	Luca	Via Taro 12
Personale	Rossi	Luigi	Via Taro 12

Figura 11.26 Relazione per l'Esercizio 11.12

Soluzione:

La chiave di questa relazione è **Reparto**. Assumiamo che le persone siano identificate dal Cognome e dal Nome.

La relazione ha una dipendenza funzionale: **Cognome, Nome** → **Indirizzo**

1) Questa soluzione non è corretta in generale; il join tra le due relazioni produce informazioni spurie. Infatti l'attributo **Cognome** non identifica una persona, e il join associerà a un Reparto tutte le persone con lo stesso cognome. Con questa istanza otterremo:

Reparto	Cognome
Vendite	Rossi
Acquisti	Rossi
Bilancio	Neri
Personale	Rossi

Cognome	Nome	Indirizzo
Rossi	Mario	Via Po 20
Neri	Luca	Via Taro 12
Rossi	Luigi	Via Taro 12

Reparto	Cognome	Nome	Indirizzo
Vendite	Rossi	Mario	Via Po 20
Vendite	Rossi	Luigi	Via Taro 12
Acquisti	Rossi	Mario	Via Po 20
Acquisti	Rossi	Luigi	Via Taro 12
Bilancio	Neri	Luca	Via Taro 12
Personale	Rossi	Luigi	Via Taro 12
Personale	Rossi	Mario	Via Po 20

2) Questa decomposizione è corretta in questa particolare istanza del database, perché non ci sono due persone con lo stesso nome e così il join tra le due relazioni da ancora la relazione originaria, ma generalmente parlando il **Nome** non identifica una persona e il loro join può dare una relazione con delle informazioni spurie.

3) Questa decomposizione è sempre corretta perché entrambi gli attributi **Cognome** e **Nome** sono presenti nelle relazioni, e la seconda relazione ha **Cognome** e **Nome** come chiave. Questa decomposizione produce un database in forma normale di Boyce-Codd.

Reparto	Cognome	Nome
Vendite	Rossi	Mario
Acquisti	Rossi	Mario
Bilancio	Neri	Luca
Personale	Rossi	Luigi

Cognome	Nome	Indirizzo
Rossi	Mario	Via Po 20
Neri	Luca	Via taro 12
Rossi	Luigi	Via taro 12

Reparto	Cognome	Nome	Indirizzo
Vendite	Rossi	Mario	Via Po 20
Acquisti	Rossi	Mario	Via Po 20
Bilancio	Neri	Luca	Via taro 12
Personale	Rossi	Luigi	Via taro 12

Basi di dati - Modelli e linguaggi di interrogazione 3/ed Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Riccardo Torlone Copyright © 2009 - The McGraw-Hill Companies srl

Esercizio 11.23

Consideriamo nuovamente la relazione in figura 11.26. Individuare quali delle seguenti decomposizioni conservano le sue dipendenze:

- Una relazione sugli attributi **Reparto, Cognome** e **Nome** e l'altra sugli attributi **Cognome** e **Indirizzo**.
- Una relazione su Reparto, Cognome e Nome e l'altra su Cognome, Nome e Indirizzo.
- Una relazione su **Reparto** e **Indirizzo** e l'altra su **Reparto**, **Cognome** e **Nome**.

Soluzione:

- 1) Questa decomposizione non conserva la dipendenza **Cognome, Nome** → **Indirizzo,** perché gli attributi coinvolti sono suddivisi tra le due relazioni. Così, se abbiamo bisogno, per esempio, di cambiare l'indirizzo riferito al reparto "Vendite", possiamo fare questa operazione soltanto cambiando tutte le tuple della seconda relazione che hanno come Cognome "Rossi"; ma questo non è corretto perché ci sono due persone con lo stesso cognome e solo una è riferita al reparto "Vendite". Anche questa decomposizione non è corretta.
- 2) Questa decomposizione è corretta, perché la seconda relazione contiene tutti gli attributi della dipendenza funzionale.
- 3) Questa decomposizione è sbagliata, perché come nel punto 1, gli attributi della dipendenza funzionale sono divisi in due relazioni; in questo caso è possibile aggiungere tuple nella prima relazione, associando ai reparti un indirizzo che non si riferisce alla persona corretta (mentre è impossibile nella relazione originaria).