1. Consider a relation V with attributes LMNOPQRST and functional dependencies W

a. LPR⁺ = LPRQST, not a superkey, violates BCNF

LR+ = LRST, not a superkey, violates BCNF

M⁺ = MLO, not a superkey, violates BCNF

MR+ = MRN, not a superkey, violates BCNF

b. For the sake of conciseness, subsets that produce 'obvious' results that do not contribute to the answer have been omitted (i.e. subsets such as {L} have been omitted since it's closure is itself and does not give any information about the FDs).

LPR $^+$ = LPRQST violates BCNF of V; chosen for decomposition Decomposing with LPR produces relations R₁ = LPRQST, R₂ = LMNOPR

 $R_1 = LPRQST$

L	Р	Q	R	S	Т	Closure	FDs
			./			LPR ⁺ =	Superkey
•	•		*			LPRQST	
./			./			LR ⁺ =	Violates
•			V			LRST	BCNF

 $R_1 = LPRQST$

LR+ = LRST violates BCNF of LPQRST

Produced relations: R_3 = LRST, R_4 = LPRQ

 $R_3 = LRST$

L	R	S	T	Closure	FDs
✓	✓			LR ⁺ =	Superkey
				LRST	$LR^+ = ST$

$R_4 = LPRQ$

L	Р	R	Q	Closure	FDs
✓	✓	✓		LPR ⁺ =	Superkey
				LPRQST	$LPR^+ = Q$

$R_2 = LMNOPR$

L	M	N	0	P	R	Closure	FDs
	✓					M ⁺ =	Violates
						MLO	BCNF

M⁺ = MLO violates BCNF of LMNOPR

Produced relations: $R_5 = MLO$, $R_6 = MNPR$

 $R_5 = MLO$

М	L	0	Closure	FDs
✓			M ⁺ = MLO	Superkey
				$M^+ = LO$

$R_6 = MNPR$

M	N	Р	R	Closure	FDs
✓			✓	MR ⁺ = MRN	Violates
					BCNF

 $R_6 = MNPR$, $MR^+ = MRN$, $R_7 = MRN$, $R_8 = MPR$

 $R_7 = MRN$

M	R	N	Closure	FDs
✓	✓		MR ⁺ = MRN	Superkey
				$MR^+ = N$

$R_8 = MPR$

M	D	D	Closuro	EDs
IVI	P	I.	Closure	LD2

Final decomposition and projection of FDs:

 $R_3 = LRST$,

 $R_4 = LPQR$

 $R_5 = LMO$

 $R_7 = MNR$

 $R_8 = MPR$

Projecting FDs onto relations:

 R_3 : LR \rightarrow ST

 R_4 : LPR $\rightarrow Q$

 $R_5: M \rightarrow LO$

 $R_7: MR \rightarrow N$

R₈: No FDs

2. Consider a relation P with attributes ABCDEFGH and functional dependencies T.

 $T = \{AB \rightarrow CD, ACDE \rightarrow BF, B \rightarrow ACD, CD \rightarrow AF, CDE \rightarrow FG, EB \rightarrow D\}$

- a. S1:
 - $AB \rightarrow C$
 - $AB \rightarrow D$
 - $ACDE \rightarrow B$
 - $ACDE \rightarrow F$
 - $B \rightarrow A$
 - $B \rightarrow C$
 - $B \rightarrow D$
 - $CD \rightarrow A$
 - $CD \rightarrow F$
 - $CDE \rightarrow F$
 - $CDE \rightarrow G$
 - $EB \rightarrow D$
 - $AB \rightarrow C: A^+ = A, B^+ = BACDF$, reduced to $B \rightarrow C$
 - $AB \rightarrow D$: $B^+ = BACDF$, reduced to $B \rightarrow D$
 - ACDE → B: Nothing yields B, no reduction
 - ACDE \rightarrow F: CD⁺ = CDAF, reduced to CD \rightarrow F
 - B → A: singleton no reduction
 - B → C: singleton no reduction
 - B → D: singleton no reduction
 - CD → A: Nothing yields A, no reduction
 - $CD \rightarrow F$: Nothing yields F, no reduction
 - $CDE \rightarrow F: CD^+ = CDAF$, reduced to $CD \rightarrow F$
 - CDE → G: Nothing yields G, no reduction
 - $EB \rightarrow D$: $B^+ = BACDF$, reduced to $B \rightarrow D$

New set S2:

- a. $ACDE \rightarrow B$
- b. $B \rightarrow A$
- c. $B \rightarrow C$
- d. $B \rightarrow D$
- e. $CD \rightarrow F$
- f. $CD \rightarrow A$
- g. $CDE \rightarrow G$

Try to eliminate FDs:

ACDE
$$\rightarrow$$
 B ACDE⁺_{S2-{a}} = ABCDEFG, therefore this FD is needed B \rightarrow A, B⁺_{S2-{(b)}} = BCDAF, removed since B \rightarrow CD, CD \rightarrow A

$$B \rightarrow A, B^{+}_{S2-\{(b)\}} = BCDAF,$$
 removed since B

$$B \to C$$
, $B^+_{S2 - \{(b), (c)\}} = BD$, needed

$$B \to D$$
, $B^+_{S2-\{(b), (d)\}} = BC$, needed

$$CD \rightarrow F$$
, $CD^+_{S2-\{(b), (e)\}} = CDA$, needed

$$CD \rightarrow A$$
, $CD^+_{S2-\{(b), (f)\}} = CDF$, needed

CDE
$$\rightarrow$$
 G, CDE⁺_{S2 - {(b), (g)}} = CDEAFB, needed

Final set:

$$ACDE \rightarrow B$$

$$B \rightarrow C$$

$$B \rightarrow D$$

$$CD \rightarrow A$$

$$CDE \rightarrow G$$

b.

Attribute	LHS	RHS	Conclusion
Α	✓	✓	Check
В	✓	✓	Check
С	✓	✓	Check
D	✓	✓	Check
E	✓	×	In all keys
F	×	✓	Not in any key
G	×	✓	Not in any key
Н	×	×	In all keys

- Any attribute that does not appear in the RHS implies that it cannot be obtained by the FDs and therefore must be in the key
- Any attribute that only appears in the RHS must be inferred from some FD in the set and therefore cannot

CDEH⁺ = ABCDEFGH, a superkey

BEH⁺ = ABCDEFGH, a superkey

AEH⁺ = AEH, not a superkey

CEH⁺ = CEH, not a superkey

DEH⁺ = DEH, not a superkey

ACEH⁺ = ACEH, not a superkey

ADEH⁺ = ADEH, not a superkey

All other possibilities must include CDEH or BEH and therefore are not minimal.

Keys: CDEH, BEH

c. Minimal basis:

$$ACDE \rightarrow B$$

$$B \rightarrow C$$

$$B \rightarrow D$$

$$CD \rightarrow A$$

$$CD \rightarrow F$$

$$CDE \rightarrow G$$

Revised FDs after joining RHSs:

$$ACDE \rightarrow B$$

$$B \rightarrow CD$$

$$CD \rightarrow AF$$

$$CDE \rightarrow G$$

Result set relations:

R₁ {ACDEB}, R₂{BCD}, R₃{CDAF}, R₄{CDEG}, discard R₂ because it is in R₁

Final set relations:

 R_1 {ACDEB}, R_3 {CDAF}, R_4 {CDEG}

d. Relation that violates BCNF: CD projects onto R₁ and produces ACD and it is not a superkey.

Since there exists a relation that violates BCNF, this schema allows redundancy.