

Final Project Presentation

Nomor Kelompok: 3 Nama Mentor: Aditya Bariq Nama:

- Muhammad Rizgiansyah
- Nadia Rizky Hairunnisa

Machine Learning Class

Program Studi Independen Bersertifikat Zenius Bersama Kampus Merdeka

- 1. Latar Belakang
- 2. Eksplorasi Data dan Visualisasi
- 3. Modelling
- 4. Kesimpulan

Latar Belakang

Latar Belakang Project

Sumber Data: Walmart Dataset

https://www.kaggle.com/datasets/yasserh/walmart-dataset

Problem: **Regression**

Tujuan:

- Memprediksi penjualan mingguan di Walmart

Eksplorasi Data dan Visualisasi

Business Understanding

Walmart merupakan salah satu perusahaan *retail* multinasional terbesar di dunia. Walmart memiliki banyak pesaing yang bergerak di bidang *retail* sehingga diperlukan keputusan yang strategis agar bisa mempertahankan posisinya.

Business Understanding

Resource/Dataset:

- Gabungan data dari 45 toko termasuk informasi toko dan penjualan mingguan.
- Data disediakan setiap minggu
- Terdapat 4 minggu liburan (Natal, Thanksgiving, Super bowl, Hari Buruh)

Business Understanding

Business Objectives:

- Apakah terdapat insights pada data? Sehingga kita bisa...

Side Questions: Bagaimana faktor waktu dan perekonomian negara bisa mempengaruhi penjualan mingguan?

Dimensi data: 6435 baris dan 8 kolom

Kolom target: Weekly_Sales

Missing values: 0

Duplicated values: 0

Jumlah toko: 45

Hari unik: Jum'at*

^{*}Pencatatan data dilakukan setiap hari Jum'at

Info Hari Libur Besar dari tahun 2010-2012:

- Super Bowl: Seluruhnya terdapat dalam dataset
- Labor Day: Seluruhnya terdapat dalam dataset
- Thanksgiving: Tidak ada data tahun 2012* –
- Christmas: Tidak ada data tahun 2012*

Range data: 5 Februari 2010 - 6 Oktober 2012

Harusnya ada di bulan Desember 2012

Harusnya ada di bulan November 2012

*akibat dari range data yang kurang lengkap. Data yang tidak ada berada di luar range data

Outliers: Kolom Temperature = 3 data

Wajar. Pencilan ada di suhu terendah dan berada di Bulan Januari dan Februari.

Asumsi: Data temperatur pada hari itu diambil ketika musim dingin

Data Pendukung: Pada tahun 2011, musim dingin dimulai dari awal Desember 2010 dan berakhir di akhir Februari 2011

Outliers: Kolom Unemployment = 481 data

Unemployment rendah terdapat pada tahun 2012. Sementara itu, Unemployment tinggi terdapat pada semua tahun. **Perlu dilakukan handling outlier lebih jauh**

Handling Outliers

3 Skenario handling outliers

Outlier dibiarkan

Outlier dihapus

Transformasi outlier

Annual Sales during 2010-2012

Karena range data setiap tahun tidak seimbang, Total Weekly Sales dihitung dari bulan Februari hingga Juli saja untuk melihat perbandingannya.

Weekly Sales Everyday

Average Weekly Sales on Big Holiday Week

Average Weekly Sales A Week Before Big Holiday Week

Kategori Unemployment Rate:

8.0 - 9.9 : 1 (Very Low)

10.0 - 10.9 : 2 (Low)

11.0 - 11.9 : 3 (Slightly Low) 12.0 - 12.9 : 4 (Slightly High)

13.0 - 13.9 : 5 (High)

14.0 - 14.9 : 6 (Very High)

Modelling

Final Dataset

- Recursive Feature Elimination (RFE)

 menyeleksi fitur berdasarkan estimator secara rekursif
- Principal Component Analysis (PCA)
 mereduksi fitur dengan melakukan kombinasi berdasarkan nilai varians

Model Selection

Dataset Splitting = Train (60%), Test (40%)

Model:

- Linear Regression
- Ridge Regression
- Lasso Regression

Evaluation Metric

- MAE (Mean Absolute Error)
- MSE (Mean Squared Error)
- RMSE (Root Mean Squared Error)
- MAPE (Mean Absolute Percentage Error)
- NRMSE (Normalized Root Mean Squared Error)
- R2-Score

Model: Linear Regression

Garis dan ukuran lingkaran yang tebal merepresentasikan 3 data dengan R2 Score terbesar, yang mana hampir dimiliki seluruh dataset kedua

Model: Linear Regression

Garis dan ukuran dot yang tebal merepresentasikan **3 data dengan NMRSE terendah**, yang mana hampir dimiliki seluruh **dataset kedua**

Dataset

0.8

Test Data

Training Data

1.0

Model: Ridge Regression

Model: Lasso Regression

Model: Lasso Regression

4713697309056279552%

2349629902499330560%

289751527351716672%

288864052281180352%

4068944622649454850910322478284800%

2028240960365167042394725128601600%

Hyperparameter Tuning: Lasso Regression

Hyperparameter Tuning: Lasso Regression

Model: Random Forest Regressor

Model: Random Forest Regressor

Conclusion

Conclusion

Model terbaik untuk memprediksi penjualan mingguan adalah Ridge Regression.
 Model ini dapat memberikan informasi yang membantu manajer bisnis mengidentifikasi dan memahami kelemahan dalam perencanaan bisnis.

Rekomendasi:

- Divisi Marketing sebaiknya meningkatkan advertising ketika Minggu-minggu sebelum Christmas dan saat Thanksgiving.
- Perlu penambahan orang dari divisi Logistik di bulan November-Desember karena penjualannya meningkat signifikan dibandingkan bulan-bulan lainnya.
- Melakukan re-stock barang secukupnya di hari biasa untuk meminimalkan production cost.

Terima kasih!

Ada pertanyaan?

LAMPIRAN

CRISP-DM Methodology

Recursive Feature Elimination (RFE)
 menyeleksi fitur berdasarkan
 estimator secara rekursif

Principal Component Analysis (PCA)
 mereduksi fitur dengan
 melakukan kombinasi
 berdasarkan nilai yarians

- (+) Implementasinya mudah
- (+) Mudah diinterpretasikan'
- (-) Sangat bergantung pada estimator
- (-) Fitur yang berpotensi bisa saja tidak lolos seleksi
- (+) Implementasinya mudah
- (+) Fitur akan dikombinasikan, bukan dieliminasi
- (-) Hasil sulit diinterpretasikan