Иванов Артем Евгеньевич, Низовцев Дмитрий Валерьевич

«Прогнозирование сердечно-сосудистых заболеваний»

1. Постановка задачи

Цель данного кейса - разработать модель, способную предсказывать наличие сердечно-сосудистых заболеваний у пациентов на основе различных медицинских показателей. Сердечно-сосудистые заболевания являются одной из ведущих причин смертности в мире, и их своевременное обнаружение может значительно повысить эффективность лечения и профилактики.

2. Описание датасета

Используемый датасет представляет собой набор данных о пациентах с различными медицинскими показателями. Датасет включает следующие поля:

- Общее здоровье
- Мед осмотр
- Рак кожи
- Другие виды рака
- Диабет
- Депрессия
- Возраст
- Пол
- ИМТ
- Упражнения
- Poct
- Bec
- Курение
- Алкоголь
- Употребление фруктов
- Наличие сердечно-сосудистых заболеваний (целевая переменная)

3. Ход работы

3.1. Гипотеза

Предполагается, что наибольшее влияние на наличие сердечно-сосудистых заболеваний оказывают возраст, сахарный диабет, а также образ жизни (курение, употребление алкоголя, физическая активность). Основная задача — выделить эти ключевые признаки и построить модель, способную предсказывать наличие заболевания с высокой точностью.

3.2. Визуализация медицинских показателей

Провели общую оценку здоровья

Также анализируем наличие проблем с сердцем в этих группах.

Провели демографический анализ

Далее узнаем наличие сердечных заболеваний у каждого пола

Провели анализ по возрастным данным

Далее узнаем, какая из возрастных категорий наиболее подвержена сердечным заболеваниям

Проверка возрастных групп и их среднего ИМТ в зависимости от сердечно-сосудистых заболеваний

Провели анализ влияния образа жизни

Влияния физических упражнений

Влияние курения

Влияние алкоголя

Употребление фруктов

Употребление овощей

Употребление картофеля

Выводы:

Анализ факторов риска показал, что люди со слабым здоровьем имеют больше шансов заболеть сердечно-сосудистыми заболеваниями.

Что касается пола, то данные показывают высокую долю мужчин с диагнозом сердечно-сосудистые заболевания, и у них немного более высокий имт по сравнению с женщинами

В зависимости от возрастных групп, у пожилых людей больше всего сердечно-сосудистых заболеваний. Однако у людей среднего возраста, страдающих сердечно-сосудистыми заболеваниями, как правило, ИМТ выше

Что касается физических нагрузок, то это не играет существенной роли. Однако курение является важным фактором развития сердечно-сосудистых заболеваний.

Употребление алкоголя оказывает значительное влияние на сердечно-сосудистые заболевания, однако в молодом возрасте это не оказывает существенного влияния. Кроме того, анализ показал, что потребление фруктов не оказывает существенного влияния на людей с сердечными заболеваниями.

Аналогичным образом, потребление зеленых овощей оказывает значительное влияние на сердечно-сосудистые заболевания, особенно в зрелом возрасте. Кроме того, анализ показал, что употребление жареного картофеля никак не влияет на людей с сердечными заболеваниями.

3.3. Корреляционный анализ

Корреляция между депрессией и сердечными заболеваниями

Корреляция между диабетом и сердечными заболеваниями

Выводы:

Корреляционный анализ показал, что люди, страдающие депрессией, имеют больше шансов заболеть сердечно-сосудистыми заболеваниями.

Аналогичным образом, диабет оказывает значительное влияние на сердечно-сосудистые заболевания.

3.4. Модель прогнозирования

Для прогнозирования наличия сердечно-сосудистых заболеваний была использована логистическая регрессия, а также модель машинного обучения Random Forest.

Основные шаги включали:

- 1. Предобработку данных: удаление пропусков, нормализация признаков.
- 2. Разделение данных на обучающую и тестовую выборки.
- 3. Обучение моделей на обучающей выборке.
- 4. Оценка точности моделей на тестовой выборке.

Для оценки качества работы алгоритма введем метрики precision (точность) и recall (полнота).

<u>Precision</u> можно интерпретировать как долю объектов, названных классификатором положительными и при этом действительно являющимися положительными, а <u>recall</u> показывает, какую долю объектов положительного класса из всех объектов положительного класса нашел алгоритм.

Так как метрики друг от друга не зависят, вводим F-меру, которая поможет найти оптимальный баланс между метриками.

F-мера – среднее гармоническое precision и recall.

Результаты моделей:

• Логистическая регрессия: AUC = 0.72

Отчет о работе модели:

			===== Logi	istic regre	ession rep	ort:	
	precision	recall	f1-score	support			
0 1	0.72 0.72	0.72 0.72	0.72 0.72	85071 85259			
accuracy macro avg weighted avg	0.72 0.72	0.72 0.72	0.72 0.72 0.72	170330 170330 170330			

Logistic Regression Classification Report Visualization

• Random Forest: AUC = 0.83

Отчет о работе модели:

Random forest report:										
	precision	recall	f1-score	support						
0 1	0.81 0.84	0.85 0.80	0.83 0.82	85071 85259						
accuracy macro avg weighted avg	0.82 0.82	0.82 0.82	0.82 0.82 0.82	170330 170330 170330						

Random Forest Classification Report

Сравнение результатов с помощью ROC кривых:

ROC Curve

Чем больше площадь под кривой, тем лучше работает модель. Легко заметить, какая из моделей оказалась лучше.

4. Выводы

В ходе работы были выполнены следующие шаги:

- Проведен анализ и предобработка данных.
- Построены визуализации распределения медицинских показателей.
- Обучены модели для прогнозирования сердечно-сосудистых заболеваний.
- Модель RandomForest показала наилучший результат с AUC = 0.83.

Данные результаты могут быть использованы для раннего выявления сердечно-сосудистых заболеваний и проведения профилактических мероприятий.