Group Theory

Lecture 2, Sunday October 30, 2022 Ari Feiglin

2.1 \mathbb{Z} and Introductory Number Theory

Proposition 2.1.1:

For $a, b \in \mathbb{Z}$ where $b \neq 0$ there exist unique $r, q \in \mathbb{Z}$ such that $0 \leq r < b$ and:

$$a = q \cdot b + r$$

Proof:

Let $S = \{n \in \mathbb{Z} \mid b \cdot n \le a\}$. Since $S \le |a|$, we can take $q = \max S$. And we define $r = a - q \cdot b$. Then we know by their respective definitions that $a = q \cdot b + r$. we also know that $q \in S$ so $q \cdot b \le a$, so $r \ge 0$. Assume for the sake of a contradiction that $r \ge b$, but then $a - q \cdot b \ge b$ so $b(q + 1) \le a$, so $q + 1 \in S$, which is a contradiction to q's maximumness $\not \le b$.

In order to show uniqueness, suppose a = q'b + r' = qb + r where $r \ge r'$. Then b(q' - q) = r - r', so $b \mid (r - r')$. Since $0 \le r, r' < b$, it must be that $0 \le r - r' < b$, so if they are not equal then since b divides their difference, we must have that $r - r' \ge b$, in contradiction. So r = r' and therefore q = q' since $b \ne 0$.

We will continue by proving the theorem introduced last lecture:

Theorem 2.1.2:

For every $a, b \in \mathbb{Z}$, gcd(a, b) is the minimum positive linear combination of a and b.

Proof:

We define

$$D = \{d \in \mathbb{Z} \mid d \mid a, b\}$$

$$I = \{\alpha a + \beta b \mid \alpha, \beta \in \mathbb{Z}\}$$

$$I^{+} = \{m \in I \mid m > 0\}$$

By definition, we know that $d = \gcd(a, b) = \max D$. Let $m = \min I^+$. We know m exists because $I^+ \subseteq \mathbb{N}$. We will show that $\gcd(a, b) = m$. Since $d \mid a, b$, we know that d divides every linear combination of a and b, so $d \mid m$. We know that there exist $q, r \in \mathbb{Z}$ such that:

$$a = q \cdot m + r$$
 $0 \le r \le m$

Since $m \in I^+$ so $m = \alpha a + \beta b$, and therefore:

$$r = a - q \cdot (\alpha a + \beta b)$$

So r is a linear combination of a and b, so therefore $r \in I$. Suppose $r \neq 0$ then r > 0 so $r \in I^+$ and r < m which is a contradiction since m is the minimum. So r = 0. Therefore $a \mid m$, and similarly $b \mid m$. Therefore $m \in D$, so $m \leq d$. Since m > 0, $d \mid m$ and $m \leq d$, it must be that m = d.

Notice then that $x \mid a, b$ if and only if $x \mid \gcd(a, b)$. This is because if x divides a and b, then x divides every linear combination of a and b including $\gcd(a, b)$. Since $\gcd(a, b) \mid a, b$, if $x \mid \gcd(a, b)$ then x must divide a and b. Also recall that last lecture, assuming the result of the theorem above, we showed that a number is prime if and only if it is non-compound. This is true in \mathbb{Z} but not always.

Theorem 2.1.3 (The Fundamental Theorem of Arithmetic):

Every natural number n can be expressed as a unique product of primes, up to order.

This theorem is also called the "prime factorization theorem."

Proof:

We will prove existence inductively. For n=1 this is trivial as it is equal to the empty product. Inductively, if n is prime then it is non-compound so it can only be written as n (which is a product of primes since it is prime). Otherwise, there are p,q such that $m=p\cdot q$, and since p and q have a prime factorization, so does m.

Now we must prove uniqueness. Suppose that for primes p_i and q_j :

$$p_1 \cdot p_2 \cdots p_t = q_1 \cdot q_2 \cdots q_n$$

Since p_1 divides the left and thus the right side, it must divide some q_j . Since q_j is prime and therefore non-compound, $q_j = \pm p_1$, so $q_j = p_1$. Then we can continue inductively on the length of the product.

As a side note, notice that there must be infinite primes. Suppose there are finite, let $\{p_1, \ldots, p_n\}$ enumerate them. If we take then $k = p_1 \cdots p_n + 1$, for every $i, p_i \nmid k$ since it divides k - 1 but it can't divide 1. So k must be a prime since it can't be factorized by other primes. But then $k = p_i$ for some i, but p_i doesn't divide it, in contradiction, so there must be infinite primes.

2.2 Return to Group Theory

Definition 2.2.1:

Suppose G is a group, then $H \subseteq G$ is a subgroup of G's if it is itself a group under the same operation as G. This is denoted $H \subseteq G$.

Notice then that H is a subgroup of G's if and only if H is non-empty and closed under G's operation (if $a, b \in H$ then $a \circ b \in H$) and under inversion (if $a \in H$, $a^{-1} \in H$). The direction from H being a subgroup to the requirements is trivial. If H satisfies the requirements, then it gets associativity "for free" and $e \in H$ since there is a $a \in H$ and therefore $a^{-1} \in H$ so $a \circ a^{-1} = e \in H$.

Example:

Let $n \in \mathbb{N}_{\geq 1}$, and we define an equivalence relation on \mathbb{Z} as follows:

$$a \equiv b \pmod{n} \iff n \mid (a - b)$$

This is obviously symmetric and reflexive, and it is transitive since if $n \mid (a-b), (b-c)$, then $n \mid (a-b+b-c) = (a-c)$. Notice then that if $x \in \mathbb{Z}$, there is some $k \in \{0, \ldots, n-1\}$ such that $x \equiv k \pmod{n}$ since $x = q \cdot n + k$ for some $0 \le k < n$, so $n \mid (x-k)$, so $x \equiv k \pmod{n}$ as requires. And for k < j for $k, j \in \{0, \ldots, n-1\}$ then $j-k=\{1,\ldots,n-1\}$ so n doesn't divide j-k, so they are not equivalent.

We define \mathbb{Z}_n as the partition of \mathbb{Z} under this equivalence relation, $\mathbb{Z}_n = \{[0], \dots, [n-1]\}$, where [x] is the equivalence class of x. We can define an operation on this set by: [a] + [b] = [a+b]. This may seem trivial at first, but this is not necessarily well-defined. Suppose $a' \in [a]$ and $b' \in [b]$ then we must show that [a+b] = [a'+b'], we will do so by showing $a+b \in [a'+b']$. This is true since (a'+b')-(a+b)=(a'-a)+(b'-b) and since both of these are divisible by n, so is (a'+b')-(a+b), so [a+b]=[a'+b'] as required, so the operation is well-defined. \mathbb{Z}_n under this operation actually forms an abelian group:

• The associativity of this operation comes as a direct consequence of the associativity of integer addition:

$$([a] + [b]) + [c] = [a + b] + [c] = [a + b + c] = [a] + ([b] + [c])$$

- [0] is the identity element since [a] + [0] = [a + 0] = [a] and [0] + [a] = [0 + a] = [a].
- The inverse of [a] is [-a] since [a] + [-a] = [a + (-a)] = [0] = [(-a) + a] = [-a] + [a].
- The commutativity of this operation is a direct result of the commutativity of integer addition:

$$[a] + [b] = [a + b] = [b + a] = [b] + [a]$$

Notice then that \mathbb{Z}_n is a group of size n, and therefore for every integer number (larger than 0), there exists a group of that size. This is not the case for other algebraic structures, for example finite fields must have a size of the form p^n for p prime.

Example:

For \mathbb{Z}_4 one subgroup is $\{[0], [2]\}$, since [2] + [2] = [4] = [0]. In fact other than the trivial group and \mathbb{Z}_4 itself, this is the only subgroup.

Definition 2.2.2:

Two groups, (G, \circ) and (H, \cdot) are isomorphic if there exists a function:

$$\varphi \colon G \longrightarrow H$$

Such that for every $g_1, g_2 \in G$:

$$\varphi(g_1 \circ g_2) = \varphi(g_1) \cdot \varphi(g_2)$$

This is denoted $G \cong H$. φ is called a isomorphism.

Example:

Let us again look at the set \mathbb{Z}_n , but this time we will define a new operation:

$$[a] \cdot [b] = [a \cdot b]$$

This is well defined since if $a' \in [a], b' \in [b]$ then notice that:

$$ab - a'b' = b'(a - a') + a(b - b')$$

Since a - a' and b - b' are divisible by n, so is ab - a'b' so [ab] = [a'b'], as required.

This is obviously associative since multiplication is (for the same reason it is commutative). And [1] is the identity element since $[1] \cdot [a] = [a] = [a] \cdot [1]$. Therefore (\mathbb{Z}_n, \cdot) is a monoid, but it is not a group. This is because [0] has no inverse, since $[0] \cdot [a] = [0] \neq [1]$. Even if we ignore [0], in some cases other elements will still not have an inverse, take for instance $[2] \in \mathbb{Z}_6$ since 6 does not divide 2n-1 for any $0 \leq n \leq 5$. The same is true for 3 and 4 in fact.

Proposition 2.2.3:

Suppose M is a monoid. We define:

$$\mathcal{U}(M) = \{ a \in M \mid a \text{ is invertible} \}$$

Then $\mathcal{U}(M)$ is a group.

Proof:

Associativity comes from the associativity of a monoid, since the identity of a monoid is invertible, it is in $\mathcal{U}(M)$. Since the inverse of an inverse is the original element, if $a \in \mathcal{U}(M)$, so is a^{-1} , and therefore $\mathcal{U}(M)$ is closed under inverses. And since $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$, if $a, b \in \mathcal{U}(M)$, so is $a \circ b$, so $\mathcal{U}(M)$ is closed under multiplication.

Notice then that if G is a group, $\mathcal{U}(G) \leq G$.

Example:

 $\mathcal{U}((\mathbb{Z}_6,\cdot)) = \{1,5\}$ and it is congruent to $(\mathbb{Z}_2,+)$.

Definition 2.2.4:

We define the Euler Group of n to be:

Euler
$$(n) = \mathcal{U}((\mathbb{Z}_n, \cdot))$$

Firstly notice that if $a \equiv b \pmod{n}$ then gcd(n, a) = gcd(n, b), since b - a = qn so every linear combination of a and n is a linear combination of b and n and vice versa.

Proposition 2.2.5:

[a] is invertible in (\mathbb{Z}_n, \cdot) if and only if $\gcd(a, n) = 1$.

Proof:

Suppose [b] is the inverse of [a], then [ab] = [1], that is $ab \equiv 1 \pmod{n}$, so ab - 1 = qn, and so 1 = ba - qn, so 1 is a linear combination of a and n, and it must be the minimum positive linear combination, so $\gcd(a,n) = 1$. For the converse, suppose $\gcd(a,n) = 1$, then there exists a b and β such that $ba + \beta n = 1$, so $n \mid (ba - 1)$ and by definition $ba \equiv 1 \pmod{n}$. Therefore [b][a] = [1], and since the monoid is associative, [b] is [a]'s inverse.

Thus $\mathcal{U}((\mathbb{Z},\cdot)) = \{a \in \mathbb{Z}_n \mid \gcd(a,n) = 1\}.$