THEOREM 2 Representation by a Fourier Series

Let f(x) be periodic with period 2π and piecewise continuous in the interval - $\pi \le x \le \pi$. Furthermore, let f(x) have a left- and right-hand derivatives at each point of that interval. Then the Fourier series (5) of f(x) with the coefficients in (6) converges. Its sum is f(x), except at point x_0 where f(x) is discontinuous. There the sum of the series is the average of left- and right-hand limits of f(x) at x_0 .

PROOF Omitted!

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

(0)
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

(6) (a)
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$
 $n = 1, 2, \dots$

(b)
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$
 $n = 1, 2, \dots$

Left- and Right-hand limits

$$f(x) = \begin{cases} x^2 & \text{if } x < 1 \\ x/2 & \text{if } x \ge 1 \end{cases}$$

$$f(1 - 0) = 1,$$

$$f(1 + 0) = \frac{1}{2}$$

EX 2 Convergence at a Jump as Indicated in Theorem 2

Show that values of the Fourier series for the following function agree with Theorem 2.

(7)
$$f(x) = \begin{cases} -k & if -\pi < x < 0 \\ k & if 0 < x < \pi \end{cases} and f(x+2\pi) = f(x)$$

Fig. 260

Sol.

(5)
$$f(x) = \frac{4k}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right)$$

(5)
$$f(x) = \frac{4k}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right)$$

 $f(0) = \frac{4k}{\pi} (0 + 0 + 0 + \dots) = 0$

The average of $f(0^-)$ and $f(0^+) = \frac{k-k}{2} = 0$

Similarly, the relation holds at $\mp n\pi$.

The fundamental period is the smallest positive period. Find it for

1. $\cos x$, $\sin x$,

 $\cos 2x$, $\sin 2x$,

 $\cos \pi x$, $\sin \pi x$,

 $\cos 2\pi x$, $\sin 2\pi x$

2. $\cos nx$, $\sin nx$,

$$\cos\frac{2\pi x}{k}, \qquad \sin\frac{2\pi x}{k}$$

$$\cos\frac{2\pi nx}{k}$$
, $\sin\frac{2\pi nx}{k}$

3. Linear combinations of periodic functions. Vector space. If f(x) and g(x) have period p, show that h(x) = af(x) + bg(x) has the period p(a, b, constant). Thus all functions of period p(a, b, constant) form a **vector space**.

Proof. Assume f(x) and g(x) have period p. Then

Now
$$h(x+p) = f(x), \qquad g(x+p) = g(x).$$

$$h(x+p) = af(x+p) + bg(x+p) \qquad \text{(by definition of } h\text{)}$$

$$= af(x) + bg(x) \qquad \text{[by (A)]}$$

$$= h(x) \qquad \text{(by definition of } h\text{)}.$$
(B)
$$h(x+p) = h(x).$$

Sketch or graph f(x) which for $-\pi < x < \pi$ is given as follows.

6.
$$f(x) = |x|$$

7.
$$f(x) = |\sin x|, \quad f(x) = \sin |x|$$

8.
$$f(x) = e^{-|x|}$$
, $f(x) = |e^{-x}|$

9.
$$f(x) = \begin{cases} x & \text{if } -\pi < x < 0 \\ \pi - x & \text{if } 0 < x < \pi \end{cases}$$

10.
$$f(x) = \begin{cases} -\cos^2 x & \text{if } -\pi < x < 0 \\ \cos^2 x & \text{if } 0 < x < \pi \end{cases}$$

16 Find the Fourier series of the following function, which is assumed to have the period 2π .

Sol.

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

(0)
$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

(6) (a)
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$
 $n = 1, 2, \dots$

(b)
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$
 $n = 1, 2, \dots$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} x dx = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \quad n = 1, 2, \cdots$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos nx dx = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \quad n = 1, 2, \cdots$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin nx dx \quad = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} x \sin nx dx$$

formula for integration by parts

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx$$
$$\int u dv = uv - \int v du$$

formula for integration by parts

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx \qquad \int u dv = uv - \int v du$$

$$\int x \sin nx dx = x \frac{-\cos nx}{n} - \int 1 \cdot \frac{-\cos nx}{n} dx$$

$$= -\frac{1}{n}x \cos nx + \frac{1}{n^2} \sin nx$$

$$b_{n} = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} x \sin nx dx$$

$$= \frac{2}{\pi} \left[-\frac{1}{n} x \cos nx + \frac{1}{n^{2}} \sin nx \right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{2}{\pi} \left[-\frac{1}{n} \frac{\pi}{2} \cos \frac{n\pi}{2} + \frac{1}{n^{2}} \sin \frac{n\pi}{2} \right]_{0}^{\frac{\pi}{2}} = \begin{cases} \frac{2 \sin \frac{n\pi}{2}}{n^{2} \pi} & (n : \text{odd}) \\ \frac{-\cos \frac{n\pi}{2}}{n} & (n : \text{even}) \end{cases}$$

(5)
$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$a_0 = 0 \qquad a_n = 0$$

$$b_n = \begin{cases} \frac{2\sin \frac{n\pi}{2}}{n^2 \pi} & (n : \text{odd }) \\ \frac{-\cos \frac{n\pi}{2}}{n} & (n : \text{even }) \end{cases}$$

$$= \frac{2}{\pi} \left[\sin x - \frac{1}{9} \sin 3x + \frac{1}{25} \sin 5x - \cdots \right]$$

$$+ \frac{1}{2} \sin 2x - \frac{1}{4} \sin 4x + \frac{1}{6} \sin 6x - \cdots$$