

PROJECT OVERVIEW

- This project uses tweets about Apple and Google products rated by humans for sentiments to train and evaluate the NLP model.
- The company use Sentiment analysis to analyze customer feedback and make data driven decision.

BUSINESS PROBLEM/DATA UNDERSTANDING

- It is crucial for companies to understand customer sentiments and enhance their satisfaction.
- Apple and Google company is interested in understanding the customer sentiments so as to improve their products and enhance customer satisfaction.
- The dataset was sourced from CrowdFlower via data.world.
- The link for Kaggle is https://www.kaggle.com/datasets/slythe/apple-twitter-sentiment-crowdflower
- There are 3886 Records and 12 Features.

CONT'D

- The key Features are:
- I. sentiment sentiment labels
- 2. sentiment:confidence confidence score for sentiment
- 3. date- when tweet was posted
- 4. query- search query used
- 5. text- actual tweet

EXPLORATORY DATA ANALYSIS

 Neutral(3) had the highest sentiment, followed by Negative sentiment(1), then Positive(5) and the non_relevant which had the smallest.

DATA CLEANING AND TEXT PREPROCESSING

- Dropped 2 columns which had missing values and also irrelevant columns and was left with sentiment and text.
- Text preprocessing to remove URLs, Hashtags, mentions, special characters which helped to reduce noise and focus on the actual content of the tweet.
- Converting text to lowercase to reduce vocabulary size and improve word frequency analysis.
- Stopwords were removed and Lemmatization together with stemming applied to reduce word to their base form.

MODELING

- Performed Binary classification first using Logistic Regression.
- Expanded to multiclass classification
- Binary classification had an accuracy of 80% and precision of 90%.

LOGISTIC REGRESSION WITH GRIDSEARCH

Attained an accuracy of 71% and Precision of 68%.

BAGGING WITH DECISION TREE CLASSIFIER

Had an accuracy of 69% and Precision of 64%.

BAGGING WITH RANDOM FOREST CLASSIFIER

Had an Accuracy of 71% and Precision of 69%.

XGBOOST

Had an Accuracy of 68% and Precision of 63%.

CONCLUSIONS

- Both Logistic Regression with grid search and Bagged Random Forest performed the best with Accuracy of 71%.
- The Logistic Regression with gridsearch achieved an accuracy of 0.713 and precision of 0.677 while Bagged Random Forest with accuracy of 0.708 and precision of 0.685.

ACHIEVEMENT OF OBJECTIVE

 Insights gained can help business better understand customer sentiment and make Data driven decision to enhance products and service.

RECOMMENDATIONS

By doing the following, the model performance will improve:

- > Experimenting with advanced feature engineering,
- Experiment further with different other models
- Implement further ensemble methods
- > Perform extensive Hyper parameter Tuning

NEXT STEPS

Collecting additional data to improve the model.

