Smart Devices Sensors

Smart Device Sensors

❖ Accelerometer

- Measures acceleration
 - · Rate of change in velocity
- MEMS (Micro Electro Mechanical System) Sensor
- Uses Gyroscope sensor information
- Applications
 - Smartphones & Smart Watches
 - Flight & Driving Stabilization
 - Drones, Airplanes, Missiles, Cars, Buses, Trains, etc.

Smart Device Sensors

Accelerometer

- Sensing Measurements
 - · Acceleration due to Earth's gravity
 - Inertial navigation systems
 - Vibration
 - Machinery Rotation
 - Upright & Tilted Positions
 - · etc.

Smart Device Sensors

Gyro (Gyroscope Sensor)

- Measures changes in Orientation & Angular Velocity
- Gyroscope Sensor Types
 - Microchip packaged MEMS gyroscopes
 - Commonly used in smart devices
 - Solid-state ring lasers gyroscopes
 - Fiber optic gyroscopes
 - Quantum gyroscopes

Smart Device Sensors

❖ Heart Rate Sensor

- Optical Infrared Light Sensor
- Operation Mechanism
 - Infrared light absorbed by the blood is measured
 - 2. Infrared light darkening occurs from an increase in the amount of blood due to a heart pulse
 - 3. Infrared light darkening period is the estimated Heart Rate

Smart Device Sensors

Barometer

- Measures atmospheric pressure
- Used in meteorology & atmosphere sensing
- Atmospheric pressure is used in altitude estimations
- Barometers & Pressure Altimeters

Smart Device Sensors

- ❖ Barometer
 - Barometers & Pressure Altimeters
 - Barometer
 - Stationary sensor used in measuring subtle pressure changes in the weather
 - Altimeter
 - Transportable barometer device used for on-site atmospheric pressure measurements

Smart Devices

GPS

GPS (Global Positioning System)

- Created by the U.S. Army in 1978
- GPS device communicates with 4 or more satellites to determine its exact location
- Location Coordinates
 - Longitude, Latitude

Smart Device GPS

❖ A-GPS (Assisted GPS)

- Uses information from GPS satellites with help from position information from the mobile network assistant servers
- Works the same way as GPS
- Location Coordinates: Longitude, Latitude
- Accurate time information of the mobile network can help to improve accuracy

❖ A-GPS (Assisted GPS) Types

- MSA (Mobile Station Assisted)
 - Position calculation is done by the server using information from a mobile station
 - Mobile station captures a snapshot of the GPS signals and receives help from the A-GPS server to finds its location
 - A-GPS server has good GPS satellite signal reception and plentiful computation power

❖ A-GPS (Assisted GPS) Types

- MSB (Mobile Station Based)
 - Information is used to acquire satellite positioning signals more quickly
 - Supplies orbital data or almanac for the GPS satellites to the mobile stations
 - Enables the mobile station to lock on to the satellites more rapidly (in some cases)
 - · Mobile network can provide precise time

❖ GPS & A-GPS Comparison

	A-GPS	GPS
Reliability	A-GPS could be slightly less accurate than GPS	Can achieve within 1 meter accuracy (with sufficient GPS signals)
Cost	Cost of mobile network usage	No cost
Usage	Mobile phones, smart devices, etc.	Cars, planes, drones, robots, ships, boats, etc.

Smart Device GLONASS & BDS

GLONASS (Global Navigation Satellite System)

 Operated by the Russian Aerospace Defense Force

 Satellite navigation system for vehicle and aviation navigation

BDS (BeiDou Navigation Satellite System)

 China's second generation satellite navigation system

Smart Devices References

References

- P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance. Ganga-Jamuna, 2001.
- Y. Zhao, "Standardization of Mobile Phone Positioning for 3G Systems," *IEEE Communications Magazine*, vol. 40, no. 7, pp. 108-116, Jul. 2002.
- Wikipedia, http://www.wikipedia.org
- Frank van Diggelen, "A-GPS: Assisted GPS, GNSS, and SBAS"

Image sources

• GPS Logo, http://upload.wikimedia.org/wikipedia/commons/2/2f/NAVSTAR_GPS_logo_shield-official.jpg

References

Image sources

- IPS Logo, By julia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
- Glonass Logo, By Huunta at tr.wikipedia [CC BY-SA 2.5 (http://creativecommons.org/licenses/by-sa/2.5)], from Wikimedia Commons
- Beidou Logo, By derivative work by Daveduv [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons