

Integration Service

Esercitazione SSIS

ALESSANDRA LUMINI

Alessandra.lumini@unibo.it

http://tinyurl.com/EsBI2019

SQL Server Business Intelligence

Microsoft **SQL Server**Integration Services

Microsoft **SQL Server**Analysis Services

Microsoft **SQL Server**Reporting Services

Integrate

Analyze

Report

- Acquisizione dati da sorgenti e integrazione
- Trasformazione e sintesi dei dati

- Modellazione dai dati con viste gerarchiche e regole di businnes
- Data mining

- Presentazione e distribuzione dei dati
- Accesso ai dati per le masse

Cos'è SSIS?

SQL Server Integration Service è piattaforma per la creazione di soluzioni di **integrazione** di dati ad alte prestazioni che consente **l'estrazione**, la **trasformazione** e il **caricamento** di pacchetti (ETL) per il data warehousing

 Offre funzionalità per la gestione di progetti di Master Data Management.

Come funziona SSIS

- Le sorgenti possono essere eterogenee
- Le componenti di trasformazione modificano ed elaborano i dati in molti modi
- La pulizia dei dati si base su regole e condizioni di errore.
- I flussi sono complessi, ma altamente concorrenti
- I dati possono essere caricati in parallelo su diverse destinazioni.

Architettura SSIS

- SSIS è composto da 2 motori:
 - Workflow engine
 - Data Flow engine

Componenti di un pacchetto SSIS

- Flusso di controllo: insieme di componenti per il controllo del flusso dati all'interno di un pacchetto.
 - Inserimento di un controllo "Ciclo" che consenta di ripetere l'operazione di estrazione dati da molteplici sorgenti, evitando la definizione della procedura di esportazione per ogni singola sorgente.
 - > Specifica di condizioni per l'esecuzione di particolari attività all'interno del pacchetto.
 - Definizione dell'ordine di esecuzione delle diverse attività che caratterizzano il pacchetto.
- □ Flusso dati: insieme delle origini, delle trasformazioni e delle destinazioni dati.
 - Esempi di controlli per la trasformazione dati: unione dati, raggruppamento fuzzy, suddivisione condizionale.

Componenti di un pacchetto SSIS

- Gestione connessioni: componente per la definizione della connessione alle sorgenti e destinazioni dati (es. Flat file, origine OLE DB).
- <u>Variabili</u>: utilizzate per aggiornare dinamicamente i valori di proprietà all'interno di un pacchetto o per gestire funzioni di controllo (es. variabile di ciclo).
- ☐ Gestore eventi: componente per la gestione degli eventi generati durante l'esecuzione di pacchetti SSIS.
- Provider log: gestisce informazioni di supporto (log) relative all'esecuzione di pacchetti SSIS (es. data/ora di esecuzione, elenco attività).

Flusso di controllo

Flusso di controllo

- Contenitori: definiscono la struttura del flusso di controllo, raggruppando attività e definendo operazioni cicliche:
 - Ciclo For: ripete il flusso di controllo finché un'espressione specificata non risulta falsa.
 - Ciclo Foreach: enumera un insieme di entità e ripete il flusso di controllo per ogni elemento dell'insieme.
 - Sequenza: consente di definire dei sottoinsiemi di attività e contenitori e considerarli come unità atomiche.

Flusso di controllo

- <u>Attività</u>: elementi che eseguono i controlli definiti nel flusso dati; di seguito alcune possibili attività:
 - Attività Flusso Dati: specifica di origini, trasformazioni e destinazioni dati.
 - Attività di Preparazione Dati: copia di file, esecuzione di operazioni su file XML.
 - Attività di Scripting: definizione di procedure personalizzate per estendere le funzionalità dei pacchetti SSIS.
 - Attività di manutenzione: esecuzione di funzioni di amministrazione (es. procedure di backup su database SQL).
- <u>Vincoli di precedenza</u>: rappresentano dei connettori fra le attività e i contenitori di un pacchetto (flusso di controllo ordinato).

Flusso dei Dati

Flusso dati

- Origine dati: controlli che permettono l'estrazione dei dati dalle sorgenti (es. Flat file, OLE DB, SQL server database).
- Trasformazioni: controlli per la definizione di trasformazioni sui dati.
- Destinazione dati: controlli per la memorizzazione dei dati trasformati sulle opportune destinazioni.

Trasformazioni

- ☐ Ricerca (Lookup)
- □ Ricerca Fuzzy (Fuzzy Lookup)
- Raggruppamento Fuzzy (Fuzzy Grouping)
- Unione input multipli
- Suddivisione condizionale
- Merge join
- Colonna derivata
- ☐ Ordinamento: dei record di input
- ☐ Aggregazione: aggregazione dei dati di input
- ☐ Estrazione termini: estrazione di termini da campi testuali
- ☐ Conversione dati: trasformazione di tipo dei dati in input

Ricerca (Lookup)

- Esegue ricerche unendo in join (equi-join) i dati contenuti nelle colonne di input e le colonne in un set di dati di riferimento.
- Individua corrispondenze esatte.
- □ I record di input per cui non viene trovata alcuna corrispondenza, vengono gestiti come errori.
- □ In caso di corrispondenze multiple, viene mantenuta la prima corrispondenza individuata.
- □ I dati di riferimento devono essere memorizzati all'interno di un'origine dati OLE DB.

	Dati di input			Dati di riferimento		
	ID	Nominativo		ID	Nominativo	
	01 —	Rossi Mario		> 01	Rossi Mario	
	02	Neri Carlo		05	Rossi Anna	
	03 —	Neri Rosa		03	Neri Rosa	
	> Errore			04	Bianchi Ivo	

La Ricerca Fuzzy esegue attività di pulitura dei dati (es. standardizzazione, correzione e inserimento di valori mancanti)

□ Reference table:

- Deve essere una tabella memorizzata all'interno di un database di SQL Server (versione 2000 o successive).
- ➤ I campi su cui viene applicata una corrispondenza fuzzy devono essere di tipo DT_WSTR o DT_STR.

☐ Parametri di input:

- Numero massimo di corrispondenze: numero massimo di record simili da restituire per ciascun record di input.
- Soglia: valore minimo di similarità affinché il record di input sia valutato come simile ad un record della reference table.
- Delimitatori: delimitatori utilizzati per la suddivisione dei record in token (es. , ; .)

Algoritmo di confronto

Error-Tolerant Index (ETI): suddivide ciascun record in token o parole (la suddivisione avviene in base alla scelta di opportuni delimitatori).

Stringa Tokens

13831 N.E. 8th St

13831, N, E, 8th, and St

(delimitatori: spazio, punto)

- L'algoritmo confronta i token del record di input con i token presenti nella reference table.
- La similarità fra token viene calcolata tenendo conto di:
 - Edit Distance a livello di token
 - Ordinamento dei token
 - Numero token simili
- ➤ La similarità è calcolata nell'intervallo [0,1].
- È possibile specificare un insieme limitato di campi del record su cui eseguire il confronto.

- Output: è costituito da un insieme di campi che comprendono:
 - > Il sottoinsieme di campi del record di input, i campi della reference table, valori di similarità e confidenza.
 - Similarità: grado di somiglianza tra i valori dei campi di input (record di input) e di riferimento (record reference table).
 - Confidenza: probabilità con cui un valore specifico risulta essere la corrispondenza migliore tra le corrispondenze individuate nella tabella di riferimento.

Raggruppamento Fuzzy (Fuzzy grouping)

- Consente di eseguire operazioni di pulizia sui dati.
- Permette l'individuazione di eventuali duplicati e la creazione di un insieme di record standardizzati e ripuliti.
- □ Per la ricerca dei duplicati e dei record "rappresentanti" si basa sull'algoritmo Fuzzy Lookup.
- Non viene utilizzata una ReferenceTable, ma i record "rappresentanti" vengono scelti fra le righe dell'input.

Fuzzy grouping

Parametri di input:

- Soglia: valore minimo di similarità affinché il record di input sia valutato come simile ad un record riferimento.
- > Delimitatori: utilizzati per la suddivisione dei record in token (es. , ; .).

□ Algoritmo di confronto:

- > A ciascun record di input viene associato un identificatore key_in.
- ➤ Il sistema deriva (tramite algoritmo interno) un insieme di record "rappresentanti".
- Utilizza l'algoritmo Fuzzy Lookup per l'individuazione dei duplicati.
- ➤ Al termine dell'algoritmo, il sistema ha individuato un insieme di record di riferimento e un insieme di potenziali record duplicati per ciascun record di rappresentante.
- A ciascun record viene aggiunto un campo key_out che identifica il gruppo di appartenenza, ovvero memorizza l'identificatore univoco (key_in) del record rappresentante a cui il record in esame risulta simile.

Fuzzy grouping

Output:

- I campi del record di input.
- Similarità: grado di somiglianza tra i valori dei campi di input (record di input) e i campi del record di riferimento (record reference table).
- Score: grado di somiglianza complessivo fra il record di input e il record di riferimento.
- Valori di key_in e key_out.

Unione input multipli (Union all)

Consente di combinare più input in un unico output (es. è possibile utilizzare gli output di cinque diverse origini dati come input e combinarli in un singolo output).

- Gli input della trasformazione vengono aggiunti all'output della trasformazione uno dopo l'altro, senza riordinare le righe.
- Vengono inseriti valori nulli per i campi mancanti.

Suddivisione condizionale (Conditional split)

- Distribuisce i record di input in diverse destinazioni a seconda dei criteri di suddivisione impostati (analogo ad un'istruzione di programmazione switch), per utilizzarlo è necessario:
 - Specificare uno o più condizioni da verificare durante la trasformazione.
 - Specificare l'ordine di valutazione delle condizioni.
 - Specificare l'output predefinito per i record che non soddisfano alcuna condizione.

Applicazione:

- Suddividere i record risultanti da una trasformazione di raggruppamento fuzzy per categorie di similarità.
- Categorizzare i dati di input (es. classificazione dei clienti in differenti categorie di fedeltà al negozio, basandosi sui dati degli acquisti del cliente, risultanti da una procedura di integrazione).

Merge Join

- Consente di definire il join fra record di due insieme di dati ordinati sulle chiavi di join.
- ☐ Tipi di join supportati:
 - > Full outer join
 - Left outer join
 - Inner join

Colonna derivata (Derived column)

Consente di creare nuovi valori di colonna tramite l'applicazione di espressioni alle colonne di input della trasformazione.

Applicazione:

- In caso di record duplicati, si possono definire delle colonne derivate per stabilire quale valore associare ai campi per cui non esiste un valore univoco.
- Sostituzione di valori mancanti.
- > Definire una priorità fra i valori dei campi di record diversi.

Preparazione alle esercitazioni

- Aprire Visual Studio Creare nuovo Progetto: Integration Services Project
- Per le connessioni di tipo OLE DB utilizzare il seguenti parametri:

Server: ISI-SQLNEW

Database: SISSLab

Esempio 1- Ricerca

Specifiche:

• Estrarre i record da due sorgenti distinte. I dati riguardano le vendite eseguite in stati diversi (USA e Canada). Ciascun record di vendita contiene anche il riferimento al prodotto oggetto della transazione. Il sistema dispone di un'anagrafica centralizzata dei prodotti in vendita. Si vuole verificare che i codici dei prodotti venduti abbiano una corrispondenza in anagrafica e fondere i dati in un'unica tabella.

VENDITE USA

VENDITE CANADA

IDPRODUCT;IDSALES
148;0001
882;0088
891;0150
1302;0001
1428;0043
103 ;0100
503;0101
503;0100
3;0100

ANAGRAFICA PRODOTTI

IDPRODUCI	
1	
2	
148	
891	
1302	
1428	
503	
103	

IDDDODLICT

Esempio 1

Competenze:

- Estrazione dati da più sorgenti.
- Trasformazione Unione Multipla e Ricerca.
- Gestione del flusso di errore.
- Impostazione Sorgenti e Destinazioni.

Traccia di soluzione:

- Trasferire il file dei prodotti su DB
- Unire i dati di input.
- Confrontare i dati di input (vendite) con quelli presenti in una tabella di riferimento (anagrafica prodotti). Si ricercano corrispondenze esatte fra i record basandosi sul codice prodotto.
- Gestire il flusso di errore per i record per cui non è stato trovata alcuna corrispondenza.
- Creare una nuova tabella di database contenente i record per cui è stata individuata una corrispondenza.

Esempio 1- Soluzione

Esercizio 2 - Integrazione anagrafiche clienti

Specifiche:

• Integrare le anagrafiche clienti memorizzate da diverse reparti aziendali (vendite, call center, marketing) e individuare possibili record duplicati.

CUSTOMERS CALL CENTER

ID	FirstN	Middlel	LastName
4	Patty	T	Arun
1	Mary	Α	Jane
10	Carl	R	Shor
11	Bridget		Bhat
105	Caleb		Bryan
11	Mitchell	D	Raji
128	Matthew	1	Thompson
1302	Logan		Simmons

CUSTOMERS MKT

CUSTOMERS SALES

Esercizio 2- Integrazione anagrafiche clienti

Competenze:

- Estrazione dati da più sorgenti.
- Trasformazione Unione Multipla, Raggruppamento Fuzzy, Suddivisione Condizionale.
- Impostazione Sorgenti e Destinazioni.

Traccia soluzione:

- Unire i dati di input.
- Applicare un raggruppamento Fuzzy per l'individuazione dei duplicati (soglia 0.8)
- Applicare una suddivisione condizionale per distinguere i dati standardizzati (puliti) dai potenziali duplicati. (_key_in == _key_out → puliti)
- Memorizzare dell'output della suddivisione condizionale in corrispondenti tabelle di database SQL Server (generazione automatica).

Esercizio 2- Soluzione

Esercizio 3- Integrazione dati e aggiornamento campi

- Specifiche
 - Si vogliono integrare le anagrafiche clienti dei reparti vendite e mkt.
 - Le due anagrafiche memorizzano gli stessi clienti (congruenza fra ID), ma con diversi livelli di aggiornamento dai dati contenuti. Si vuole creare un'unica anagrafica contenente tutti i clienti e i dati aggiornati. In particolare:
 - MaritalStatus: è prevista una marca temporale per questo attributo. Si mantiene il valore più recente;
 - Phone: se presente si mantiene il valore specificato nell'anagrafica clienti del reparto MKT, altrimenti quello dell'anagrafica vendite;
 - Per tutti gli altri dati si mantengono i valori delle vendite;

ID	FirstName	MiddleInitial	LastName	ValidityDate	MaritalStatus	EmailAddress	Address	City	State	Phone
1	Abby	С	Malhotra	12/11/2000	M	amalhotra@thepho	1019 Carletto Drive	Sedro Woolley	WA	645-555
2	Abby		Prasad	08/06/1952	S	aprasad@blueyond	3261 Vista Bonita	Concord	CA	
3	Abby		Srini	20/4/1961	M	asrini@adatum.com	9191 Camelback Ct.	Berkeley	CA	827-555
4	Abby	E	Rodriguez	05/05/1951	M	arodriguez@fabrika	6753 Howard Hugh	Las Vegas	NV	1 (11) 50
5	Abigail		Brown	03/05/1946	M	abrown@treyresear	4710 Northridge Drive	Port Orchard	WA	155-555
6	Abigail	Α	Watson	21/7/1972	S	awatson@thephone	8757 Keith Court	Seattle	WA	1 (11) 50
7	Abigail	С	Bryant	06/09/1977	M	abryant@northwind	2639 Anchor Court	Edmonds	WA	
8	Abigail	С	Hall	24/6/1972	S	ahall@northwindtra	8036 Summit View Dr.	Gold Bar	WA	
9	Abigail		Davis	22/12/1955	S	adavis@fabrikam.com	70 N.w. Plaza	Saint Ann	MO	1 (11) 50
10	Abigail	_	Eleree	27/1/1052	M	afforce@baldwipmu	967 Maria Voga Court	Colma	CA	622 555

Esercizio 3- Integrazione dati e aggiornamento campi

Competenze:

- Estrazione dati da due sorgenti.
- Trasformazione Merge Join, Colonna derivata.

Traccia di soluzione

- Ordinare i dati di input sul campo ID.
- Applicare un merge Join per fondere i due file (Inner join).
- Utilizzare una colonna derivata per la selezione dei campi MaritalStatus e Phone in base alle specifiche (Usare nvarchar per le nuove colonne per evitare problemi di conversione)
 - ValidityDate > ValidityDate_MKT ? MaritalStatus : MaritalStatus_MKT
 - !ISNULL(Phone_MKT) ? Phone_MKT : Phone
- Memorizzare dell'output in una nuova tabella di database SQL Server.

Esercizio 3- Soluzione

Esercizio 4: MDM coesistenza

- Si vuole progettare una architettura per MDM in cui un hub centrale (CLIENTI_GLOBAL) mantiene una versione aggiornata dei dati caricati dalle sorgenti (CLIENTI SORGENTE 1 e CLIENTI SORGENTE 2).
- Il progetto consiste nella definizione di 2 flussi dati sulla base di criteri dati:
 - Caricamento quotidiano dei clienti modificati nella sorgente 1 sull'hub
 - 2. Aggiornamento asincrono dei dati della sorgente 2 a partire dall'hub
- NOTA: il join tra sorgenti e hub è fatto della base della similarità (σ>0.8) del campo NOMINATIVO. In caso di confidenza minore di 1 l'aggiornamento deve essere manuale
- Gestione degli identificatori univoci (campo ID)
 - Quando viene inserito un nuovo record sull'hub oppure sulle sorgenti è necessario generare un nuovo ID (autoincremento)

Dati di input

CLIENTI_GLOBAL

ID	NOMINATIVO	PROFESSIONE	TELFISSO	DATARECORD
01	Mario Rossi	MANAGER	054214785	2011-11-13
02	Mario Neri	MANAGER	054214785	2011-06-24
03	Mauro Nero	IMPIEGATO	05463256	2011-11-04
04	Anna Verdi	IMPIEGATO	05442356	2011-11-05
05	Anna Verde	SEGRETARIA	054785236	2011-01-17
06	Anna Vardi	MANAGER	05489632	2011-02-07

CLIENTI SORGENTE 1

NOMINATIVO	PROFESSIONE	DATARECORD
Elisa Turricchia	STUDENTE	2011-11-25
Mario Rossi	IMPIEGATO	2011-11-10
Mario Neri	IMPIEGATO	2011-11-25
Anna Verdi	DIRETTORE	2011-11-25
	Elisa Turricchia Mario Rossi Mario Neri	Elisa Turricchia STUDENTE Mario Rossi IMPIEGATO Mario Neri IMPIEGATO

CLIENTI SORGENTE 2

ID	NOMINATIVO	TELFISSO	PROFESSIONE	DATARECORD
04	Mario Rossi	054214785	MANAGER	2011-11-13
01	Anna Verde	054785236	SEGRETARIA	2011-11-01

Criteri di aggiornamento dei dati

SORGENTE 1 → HUB

- Dalla sorgente vengono estratti tutti i record con DATARECORD uguale alla data odierna
- Nuovo cliente → inserimento di un nuovo record nell'hub
- Cliente preesistente → l'aggiornamento avviene se è stata eseguita una modifica sul campo PROFESSIONE

HUB → SORGENTE2

- Vengono estratti tutti i record dell'hub
- Nuovo cliente → inserimento di un nuovo record nella sorgente
- Cliente preesistente → l'aggiornamento avviene se il record dell'hub è più recente di quello della sorgente

Soluzione: flusso di controllo

Creazione tabelle

```
CREATE TABLE [Sorgente1](
       [ID] int IDENTITY(1,1),
       [NOMINATIVO] [varchar](50) NULL,
       [PROFESSIONE] [varchar](50) NULL,
       [DATARECORD] date NULL
CREATE TABLE [Hub](
       [ID] int IDENTITY(1,1),
       [NOMINATIVO] [varchar](50) NULL,
        [PROFESSIONE] [varchar](50) NULL,
       [DATARECORD] date NULL,
       [TELFISSO] [varchar](50) NULL
```

Settare a true il flag KEEP IDENTITY nel mapping

Soluzione: Flusso dati S1 >> Hub

Soluzione: Flusso dati Hub >> S2

