Untersuchungen zur Impedanzreduktion an MA-Kavitäten durch Kurzschließen von Ringkernen

Betreuer: Jens Schweickhardt, M.Sc.

Fachgebietsleiter: Prof. Dr.-Ing. Harald Klingbeil

Inhalt

- Aufgabenstellung
- Der Messaufbau
- Simulation
- Gegenüberstellung der Messung und Simulation
- Auswertung der Kurzschlussanordnungen
- Fazit und Ausblick

Aufgabenstellung

- MA(Magnetic Alloy)-Ringkerne zur Stimmung der Kavität
- Im passiven Betrieb der Kavität möglichst wenig Einfluss auf den Strahl gewünscht (Impendanz)
- ► Theorie: Kurzschlussschaltung um die Ringkerne soll deren Einfluss auf die Impedanz reduzieren

Die Testbox

- Innen mit Kupferblech (Dicke 1 mm ausgekleidet
- Holzkonstruktion als Ringkernhalterung
- Kupferrohr zur Einkopplung
 - Am Rand der Box mit BNC-Steckerausgang

Variationsparameter

MACHT BENJAMIN

Konstruktion der Ringkernhalterung

- Anordnung um gewünschte Messungen durchzuführen
- Ringförmige Halterung, an Innenseite Polygonzug
- Schraubenlöcher mit Gewinde in Polygon zur Fixierung
- Reproduzierbare Positionierung
- Präzise Montage

Entwurf der Kurzschlussschienen

- Lochung im unteren Teil zur Montage
- Lochungen im oberen Teil zur Kontaktherstellung
- Mehrere Variationsparameter der Form gefertigt:
 - Höhe der Kurzschlüsse in z-Richtung
 - Breite der Kurzschlüsse in x-Richtung
 - Blechdicke der Kürzschlüsse

Messaufbau

- ► Montage von 1-8 Kurzschlüssen
- Verschluss der Box (Störeinfflüsse minimeren)
- Messung mittels
 Netzwerk-Analysator: Z_{refl} des S₁₁
 Parameters

Durchgeführte Messungen

Kurzschlussform			Anzahl
Höhe in z	Breite in x	Blechdicke	Kurzschlüsse
160 mm	30 mm	1 mm	1-8
160 mm	20 mm	1 mm	1-2
160 mm	50 mm	1 mm	1-2
200 mm	30 mm	1 mm	1-2
250 mm	30 mm	1 mm	1-2
160 mm	30 mm	2 mm	1-2

Simulation

Realitätsgetreue Anpassungen der Simulation

Ringkernmodellierung

Simulationsdurchführung

Gegenüberstellung der Simulations- und Messergebnisse

Auswertung der Kurzschlussanordnungen

Anzahl der Kurzschlüsse

Breite der Kurzschlüsse

Länge der Kurzschlüsse

Dicke der Kurzschlüsse

Einfluss im Leerlauf befindlicher Schienen auf die Ringkernimpedanz

Fazit und Ausblick

