CM201 - Cálculo Diferencial e Integral I Lista de Exercícios 8

1. Calcule a derivada f'(x) das funções

(a)
$$f(x) = \frac{1}{x+2}$$
 (b) $f(x) = x^2 - 3x + 4$ (c) $f(x) = 1 + \sqrt{x}$

primeiro pela definição (usando limites) e depois usando as regras de derivação.

2. Usando as regras de derivação, calcule as derivadas das seguintes funções:

(a)
$$f(x) = \frac{x^3}{3} + \frac{x^2}{2} + \frac{x}{4}$$
 (b) $f(x) = \frac{1}{3x^2} - \frac{5}{2x}$ (c) $f(x) = 2\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$

(d)
$$f(x) = \frac{2x+5}{3x-2}$$
 (e) $f(x) = \frac{1+3x}{3x}(3-x)$ (f) $f(x) = \sqrt{x} + \frac{1}{x^2}$

(g)
$$f(x) = \frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3}$$
 (h) $f(x) = \sqrt[3]{x} + 3\sqrt[4]{x} - x^{-4}$ (i) $f(x) = \frac{3}{x^2} + \frac{x^2}{3}$

(j)
$$f(x) = 3x^{-4} - 4x^{-3}$$
 (k) $f(x) = -\sqrt{x} + \sqrt[3]{x^2} + 3x^5$ (l) $f(x) = 8x^{-8} - 7x^{-7} + 6x^{-6}$

3. Calcule a derivada de $y = (2x+3)(5x^2-4x)$ das seguintes maneiras:

- (a) pela regra do produto;
- (b) multiplicando os fatores para produzir uma soma de termos mais simples para derivar.

4. Calcule as derivadas das seguintes funções:

(a)
$$f(x) = \frac{x^2 + 3e^x}{2e^x - x}$$
 (b) $f(x) = -10x + 3\cos(x)$ (c) $f(x) = x^2\cos(x)$

(d)
$$f(x) = x^5 + 5^x$$
 (e) $f(x) = \ln x + e^x + x + 1$ (f) $f(x) = \sin x - 2\cos x$

5. Calcule h'(x) pela regra da cadeia nos casos abaixo:

(a)
$$h(x) = (4-3x)^9$$
 (b) $h(x) = \sqrt{3x^2 - 4x + 6}$ (c) $h(x) = e^{x^2}$

(d)
$$h(x) = \operatorname{sen}(x^2)$$
 (e) $h(x) = 5 \cos^{-4}(x)$ (f) $h(x) = 1 + \operatorname{sen}(x)^2 + \operatorname{sen}(x)^4$

(g)
$$h(x) = \ln(3x)$$
 (h) $h(x) = \ln(x^3)$ (i) $h(x) = (\ln(x))^3$ (j) $h(x) = 4\cos\left(\pi x + \frac{\pi}{3}\right)$

6. Calcule as derivadas das seguintes funções:

(a)
$$f(x) = 3 \sin x + \cos \frac{x}{2}$$
 (b) $h(x) = -2 \sin 2x - 3 \cos 3x + \sin x$

(c)
$$f(x) = 3\operatorname{sen}(2x+5) - 4\cos(-x+2) + 2\cos(-3x)$$
 (d) $f(x) = \cos x + 2\cos 2x + 3\cos 3x$

7. Encontre as retas tangentes à função f(x) no ponto x_0 e represente graficamente no mesmo sistema de coordenadas os gráficos de f(x) e da reta tangente.

(a)
$$f(x) = \sqrt{x}$$
; $x_0 = 4$ (b) $f(x) = \frac{1}{x}$; $x_0 = -1$ (c) $f(x) = \ln(x)$; $x_0 = 1$

8. Abaixo temos esboços do gráfico da função $f(x) = \frac{x^3}{20} - \frac{x^2}{10} - \frac{3x}{4} + 1$. Calcule a reta tangente ao gráfico nos pontos x_0 dados e trace essa reta junto com o gráfico de f.

(b) $x_0 = 0$

Respostas:

1. (a)
$$\frac{-1}{(x+2)^2}$$
 (b) $2x-3$ (c) $\frac{1}{2\sqrt{x}}$

(b)
$$2x - 3$$

(c)
$$\frac{1}{2\sqrt{x}}$$

2. (a)
$$x^2 + x + \frac{1}{4}$$
 (b) $\frac{-2}{3x^3} + \frac{5}{2x^2}$ (c) $\frac{1}{\sqrt{x}} - \frac{1}{\sqrt[3]{x}}$ (d) $\frac{-19}{(3x-2)^2}$ (e) $\frac{-1-x^2}{x^2}$

(b)
$$\frac{-2}{3x^3} + \frac{5}{2x^2}$$

(c)
$$\frac{1}{\sqrt{x}} - \frac{1}{\sqrt[3]{x}}$$

(d)
$$\frac{-19}{(3x-2)^2}$$

(e)
$$\frac{-1-x^2}{x^2}$$

(f)
$$\frac{x^{-\frac{1}{2}}}{2} - 2x^{-3}$$

(g)
$$-x^{-2} - 4x^{-3} - 9x^{-3}$$

(f)
$$\frac{x^{-\frac{1}{2}}}{2} - 2x^{-3}$$
 (g) $-x^{-2} - 4x^{-3} - 9x^{-4}$ (h) $\frac{x^{-\frac{2}{3}}}{3} + \frac{3x^{-\frac{3}{4}}}{4} + 4x^{-5}$

(i)
$$-6x^{-3} + \frac{2x}{3}$$

(j)
$$-12x^{-5} + 12x^{-4}$$

(i)
$$-6x^{-3} + \frac{2x}{3}$$
 (j) $-12x^{-5} + 12x^{-4}$ (k) $-\frac{x^{-\frac{1}{2}}}{2} + \frac{2x^{-\frac{1}{3}}}{3} + 15x^{4}$

$$(1) -64x^{-9} + 49x^{-8} - 36x^{-7}$$

- 3. $30x^2 + 14x 12$
- 4. (a) $\frac{xe^x x^2 2x^2e^x + 3e^x}{(2e^x x)^2}$ (b) $-10 3\operatorname{sen}(x)$ (c) $2x \cos(x) x^2 \operatorname{sen}(x)$
- (d) $5x^4 + (\ln 5)5^x$ (e) $\frac{1}{x} + e^x + 1$ (f) $\cos x + 2\sin x$

5. (a)
$$-27(4-3x)^8$$

5. (a)
$$-27(4-3x)^8$$
 (b) $\frac{3x-2}{\sqrt{3x^2-4x+6}}$ (c) $2xe^{x^2}$ (d) $2x\cos(x^2)$

(c)
$$2xe^{x^2}$$

(e)
$$20 \text{sen}(x) \cos^{-5}(x)$$

(e) $20 \operatorname{sen}(x) \cos^{-5}(x)$ (f) $2 \operatorname{sen}(x) \cos(x) + 4 \operatorname{sen}^{3}(x) \cos(x)$

(g)
$$\frac{1}{x}$$

(h)
$$\frac{3}{r}$$

(i)
$$\frac{3(\ln(x))}{x}$$

(g)
$$\frac{1}{x}$$
 (h) $\frac{3}{x}$ (i) $\frac{3(\ln(x))^2}{x}$ (j) $-4\pi \text{sen } \left(\pi x + \frac{\pi}{3}\right)$

6. (a)
$$3\cos x - \frac{1}{2}\sin\frac{x}{2}$$
 (b) $-4\cos 2x + 9\sin 3x + \cos x$

(c)
$$6\cos(2x+5) - 4\sin(-x+2) + 6\sin(-3x)$$
 (d) $-\sin x - 4\sin 2x - 9\sin 3x$

7. (a)
$$r(x) = \frac{x}{4} + 1$$
 (b) $r(x) = -x - 2$ (c) $r(x) = x - 1$

(b)
$$r(x) = -x - 2$$

(c)
$$r(x) = x - 1$$

8.

(a)
$$y = \frac{6x}{5} + \frac{23}{5}$$

(b)
$$y = 1 - \frac{3x}{4}$$

