## Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:

(11) Internationale Veröffentlichungsnummer: (43) Internationales

WO 94/08969

C07D 231/16, 231/38 A61K 7/13

A1 Veröffentlichungsdatum:

28. April 1994 (28.04.94)

(21) Internationales Aktenzeichen:

PCT/EP93/02644

(22) Internationales Anmeldedatum:

29. September 1993 (29.09.93)

(74) Gemeinsamer Vertreter: WELLA AKTIENGESELL-SCHAFT; Berliner Allee 65, D-64274 Darmstadt (DE).

(30) Prioritätsdaten:

P 42 34 885.4

16. Oktober 1992 (16.10.92)

(81) Bestimmungsstaaten: BR, JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) Anmelder (für alle Bestimmungsstaaten ausser US): WELLA AKTIENGESELLSCHAFT [DE/DE]; Berliner Allee 65, D-64274 Darmstadt (DE).

(72) Erfinder; und (75) Erfinder/Anmelder (nur für US): NEUNHOEFFER, Hans [DE/DE]; Auf dem Sand 1, D-64367 Mühltal (DE). GERSTUNG, Stefan [DE/DE]; Schäferweg 27, D-64354 Reinheim (DE). CLAUSEN, Thomas [DE/DE]; Ernst-Pasqué-Strasse 35 A, D-64665 Alsbach (DE). BALZER, Wolfgang, R. [DE/DE]; Im Kiesling 12, D-64665 Alsbach (DE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: PROCESS FOR PRODUCING 4,5-DIAMINO PYRAZOLE DERIVATIVES, THEIR USE FOR COLOURING HAIR AND NOVEL PYRAZOLE DERIVATIVES

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON 4,5-DIAMINOPYRAZOL-DERIVATEN DEREN VERWEN-DUNG ZUM FÄRBEN VON HAAREN SOWIE NEUE PYRAZOL-DERIVATE

$$N = NH_{2}$$

$$NHR_{2}$$

$$R_{1}$$

$$NHR_{2}$$

#### (57) Abstract

The present invention relates to a process for producing 4,5-diamino pyrazole derivatives of general formula (I) in which R<sub>1</sub> and R<sub>2</sub> are mutually independently hydrogen, a C<sub>1</sub> to C<sub>6</sub> alkyl residue or a C<sub>2</sub> to C<sub>4</sub> hydroxy alkyl residue, which may be used as colorant pre-products, e.g. for hair colorants, and novel pyrzole derivatives. The use of the process of the invention makes it possible to obtain 4,5-diamino pyrazole derivatives of general formula (I) without isomers and with good yields.

### (57) Zusammenfassung

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten der allgemeinen Formel (I) in der R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander Wasserstoff, einen C<sub>1</sub>- bis C<sub>6</sub>-Alkylrest oder einen C<sub>2</sub>- bis C4-Hydroxyalkylrest bedeuten, die als Farbstoffvorstufen, zum Beispiel für Haarfarbstoffe, verwendet werden können sowie neue Pyrazol-Derivate. Durch Anwendung des erfindungsgemäßen Verfahrens können 4,5-Diaminopyrazol-Derivate der allgemeinen Formel (I) isomerenrein und in guten Ausbeuten erhalten werden.

## LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

| AT | Österreich                     | FI  | Finnland                          | MR | Mauritanien                    |
|----|--------------------------------|-----|-----------------------------------|----|--------------------------------|
| AU | Australien                     | FR  | Frankreich                        | MW | Malawi                         |
| 88 | Barbados                       | GA  | Gabon                             | NE | Niger                          |
| BE | Belgien                        | GB  | Vereinigtes Königreich            | NL | Niederlande                    |
| BF | Burkina Faso                   | GN  | Guinea                            | NO | Norwegen                       |
| BG | Bulgarien                      | GR  | Griechenland                      | NZ | Neusceland                     |
| BJ | Benin                          | HU  | Ungarn                            | PL | Polen                          |
| BR | Brasilien                      | JE  | Irland                            | PT | Portugal                       |
| BY | Belarus                        | IT  | Italien .                         | RO | Rumänien                       |
| CA | Kanada                         | JP  | Japan                             | RU | Russische Föderation           |
| CF | Zentrale Afrikanische Republik | KP  | Demokratische Volksrepublik Korea | SD | Sudan                          |
| œ  | Kongo                          | KR  | Republik Korea                    | SE | Schweden                       |
| CH | Schweiz                        | KZ  | Kasachstan                        | SI | Slowenien .                    |
| CI | Côte d'Ivoire                  | u   | Liechtenstein                     | SK | Slowakischen Republik          |
| СМ | Kamerun                        | LK  | Sri Lanka .                       | SN | Senegal                        |
| CN | China                          | w   | Luxemburg                         | TD | Tschad                         |
| cs | Tschechoslowakei               | LV  | Lettland                          | TG | Togo                           |
| CZ | Tschechischen Republik         | MC  | Monaco                            | UA | Ukraine                        |
| DE | Deutschland                    | MG  | Madagaskar                        | us | Vereinigte Staaten von Amerika |
| DK | Dânemark                       | ML. | Mali                              | UZ | Usbekistan                     |
| ES | Spanien                        | MN  | Mongolei                          | VN | Victnam                        |

1

### Beschreibung

Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten, deren Verwendung zum Färben von Haaren sowie neue Pyrazol-Derivate

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten der allgemeinen Formel (I)

$$N = NH_{2}$$

$$NHR_{2}$$

$$NHR_{2}$$

$$R_{1}$$

in der R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander Wasserstoff, einen C<sub>1</sub>- bis C<sub>6</sub>-Alkylrest oder einen C<sub>2</sub>- bis C<sub>4</sub>-Hydroxyalkylrest bedeuten, sowie neue Pyrazol-Derivate, unter anderem 4,5-Diaminopyrazol-Derivate, die als Farbstoffvorstufen, zum Beispiel für Haarfarbstoffe, verwendet werden können.

Es sind in der Literatur bereits mehrere Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten der Formel (I) bekannt. Diese Verfahren sind jedoch in vielerlei Hinsicht unbefriedigend.

So wird beispielsweise nach H. Dorn et al., Chem. Ber. 98, S. 3368 (1965), ausgehend von Ethoxymethylen-cyanessigsäureethylester und Methylhydrazin die 5-Amino-1-methylpyrazol-4-carbonsäure erhalten, aus der durch

Decarboxylierung, in einer Gesamtausbeute von 40 Prozent, das 5-Amino-1-methylpyrazol entsteht.

In der DE-OS 2 141 700 ist ein Einstufenverfahren beschrieben, nach dem aus N,N-Dimethylaminoacrylnitril und Methylhydrazin das 5-Amino-1-methylpyrazol in einer Ausbeute von 71 Prozent erhalten werden kann.

Nach M.A. Khan et al., Can. J. Chem. 49, S. 3566 (1971), läßt sich das nach den beschriebenen Verfahren erhaltene 5-Amino-1-methylpyrazol mit einer Ausbeute von 23 Prozent zum 5-Amino-1-methyl-4-nitropyrazol umsetzen. Katalytische Reduktion dieses Produktes liefert nach V.P. Perevalov et al., Khim. Geterotsicl. Soedin. 8, S. 1090 (1985), 1-Methyl-4,5-diaminopyrazol-dihydrochlorid in einer Ausbeute von ca. 79 Prozent. Die Gesamtausbeute über die genannten Stufen beträgt 7 bis 13 Prozent.

Gesamtausbeuten von bis zu 46 Prozent werden erhalten, wenn man das 5-Amino-1-methylpyrazol nach H. Dorn et al., Liebigs Ann. Chem. 717, S. 118 (1968), mit Isoamylnitrit zum 5-Amino-1-methyl-4-nitropyrazol umsetzt und mit Zinn(II)chlorid zum 4,5-Diamino-1-methylpyrazol reduziert.

ļ.

Aus der DE-OS 38 43 892 ist ein Verfahren zur Herstellung von 4,5-Diamino-1-methylpyrazol bekannt, in dem 2-Chloracrylnitril mit Hydrazin (G. Ege, Angew. Chem, 86, S. 237 (1974)) cyclisiert wird. Nach Acetylierung der Aminogruppe, Nitrierung und Abspaltung der Schutzgruppe erhält man die tautomeren Verbindungen 3-Amino-4-nitropyrazol und 5-Amino-4-nitropyrazol in einer Gesamtausbeute von ca. 41 Prozent. Alkyliert man das Tautomerengemisch mit Dimethylsulfat, so erhält man in 70 prozentiger Ausbeute ein Isomerengemisch, das sich chromatographisch in die isomeren Verbindungen 5-Amino-1-me-

thyl-4-nitropyrazol (25 Prozent) und 3-Amino-1-methyl-4-nitropyrazol (45 Prozent) auftrennen läßt. Durch Reduktion können die entsprechenden Diamino-Verbindungen erhalten werden. Die Gesamtausbeute von 1-Methyl-4,5-diaminopyrazol beträgt weniger als 10 Prozent.

Aus der DE-OS 3 432 983 ist ein Verfahren zur Herstellung von 5-Amino-1-(2'-hydroxyethyl)-4-nitropyrazol bekannt. Ausgehend von 5-Amino-1-(2'-hydroxyethyl)pyrazol-4-carbonsäure wird die Verbindung durch Decarboxylierung, anschließender Nitrosierung und Hydrierung, in einer Ausbeute von 59 Prozent erhalten.

Neben den zum Teil geringen Ausbeuten haben die beschriebenen Verfahren weitere Nachteile. So sind viele Ausgangsverbindungen, wie zum Beispiel Ethoxymethylcyanessigsäureethylester oder N,N-Dimethylaminoacrylnitril, nicht käuflich erhältlich oder nur durch zum Teil aufwendige Synthesen herstellbar. Darüberhinaus werden Hydrazinderivate als giftig und zum Teil krebserregend eingestuft.

Die Herstellung von 4,5-Diaminopyrazol-Derivaten, die am Stickstoffatom der Aminogruppe in 5-Position substituiert sind, ist nicht beschrieben.

Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur isomerenreinen Herstellung von unterschiedlich substituierten 4,5-Diaminopyrazol-Derivaten zur Verfügung zu stellen.

Es wurde nunmehr gefunden, daß sich die gestellte Aufgabe durch ein Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten der allgemeinen Formel (I)

4

$$N = NH_{2}$$

$$NHR_{2}$$

$$NHR_{2}$$

$$R_{1}$$

in der  $R_1$  und  $R_2$  unabhängig voneinander Wasserstoff, einen  $C_1$ - bis  $C_6$ -Alkylrest oder einen  $C_2$ - bis  $C_4$ -Hydro-xyalkylrest bedeuten, dadurch gekennzeichnet, daß man

(A) 3,5-Dibrom-4-nitropyrazol mit einem C<sub>1</sub>- bis C<sub>6</sub>-Al-kyl-, C<sub>2</sub>- bis C<sub>4</sub>-Hydroxyalkyl- oder Benzylhalogenid oder einem C<sub>1</sub>- bis C<sub>6</sub>-Alkyl, C<sub>2</sub>- bis C<sub>4</sub>-Hydroxy-alkyl-oder Benzylsulfat zu Verbindungen der allgemeinen Formel (II)

in der R3 einen  $C_1$ - bis  $C_6$ -Alkylrest, einen  $C_2$ - bis  $C_4$ -Hydroxyalkylrest oder einen Benzylrest bedeutet, umsetzt,

(B) die Verbindungen der allgemeinen Formel (II) mit C<sub>1</sub>-bis C<sub>6</sub>-Alkyl-, C<sub>2</sub>- bis C<sub>4</sub>-Hydroxyalkyl- oder Benzyl-amin zu Verbindungen der allgemeinen Formel (III)

in der  $R_3$  und  $R_4$  unabhängig voneinander einen  $C_1$ -bis  $C_6$ -Alkylrest, einen  $C_2$ - bis  $C_4$ -Hydroxyalkylrest oder einen Benzylrest bedeuten, in 5-Position substituiert und sodann

(C) die Verbindungen der allgemeinen Formel (III) durch katalytische Hydrierung zu den Verbindungen der allgemeinen Formel (I) reduziert,

hervorragend lösen läßt. Das vorstehend aufgeführte Verfahren ist daher ein Gegenstand der Erfindung.

Das allgemeine Reaktionsschema ist nachstehend angegeben.

Br 
$$NO_2$$
 Br  $NO_2$  Br  $NO_2$  Br  $NO_2$   $NO$ 

Als Ausgangsverbindung für die Synthese von 4,5-Diaminopyrazol-Derivaten (I) dient das bekannte 3,5-Dibrom-4nitropyrazol (IV), welches auf folgende Weise dargestellt werden kann:

Nach R. Hüttel et al., Chem. Ber. 88, S. 1577 (1955), erhält man durch Nitrierung von Pyrazol mit einem Schwefelsäure-Salpetersäure-Gemisch das 4-Nitropyrazol, das nach H.J. Klebe et al., Synthesis 1973, S. 294 unter milderen Bedingungen durch Nitrierung von Pyrazol zum N-Nitropyrazol und anschließender Umlagerung, mit Hilfe von Schwefelsäure (R. Hüttel et al., Chem. Ber. 88, S. 1586 (1955)), erhalten werden kann. Anschließende Bromierung nach J.P.H. Juffermanns et al., J. Org. Chem. 51, S. 4656 (1986), liefert das 3,5-Dibrom-4-nitropyrazol (IV).

```
Nach dem erfindungsgenäßen verfahren wird zunächst das unächst das
                                                                                                                                                                                                 Nach dem erfindungsgemäßen verfahren wird zunächst das verfahren wird zunächst cl-
(IV) durch umsetzung mit cl-
(IV) durch umsetzung mit cl-
Renzvihale
                                                                                                                                                                                                              3.5-Dibrom-4-nitropyrazol (IV) durch Umsetzung mit Cl-
(IV) durch Umsetzun
                                                                                                                                                                                                                                bis C6-Alkyl-, C2- bis C4-Hydroxyalkyl- oder Benzylhal

bis C6-Alkyl-, C2- bis C4-Hydroxyalkyl- oder C3- his C4-Hydroxyalkyl- oder Benzylhal

disch in Dimethylformamid (DME) (Verfahren I) oder

geniden in Dimethylformamid (C2-Alkyl- C3- his C4-Hydroxyalkyl- oder Benzylhal

disch in Dimethylformamid (DME) (Verfahren I) oder

disch in Dimethylformamid (C2-Alkyl- C3- his C4-Hydroxyalkyl- oder Benzylhal
                                                                                                                                                                                                                                             geniden in Dimethylformamid (DMF) (Verfahren II) oder (Verfahren II) in der Umsetzung mit CI- bis C6-Alkyl- (Verfahren III) in durch Umsetzung Renzylsulfat und Lauge (Verfahren III) in durch Umsetzung Renzylsulfat und Lauge (Verfahren III) in der Renzylsulfat und Lauge (Verfahren IIII) in der 
MO 94108969
                                                                                                                                                                                                                                                            durch umsetzung mit C1- bis C6-Alkyl- (Verfahren II) in xyalkyl- oder Benzylsulfat und Lauge (Verfahren II) and xyalkyl- oder alkyliert.
                                                                                                                                                                                                                                                                                                     Nach verfahren DMF. unter Rühren bei Raumtemperatur eine
                                                                                                                                                                                                                                                                                                                    Nach verfahren I wird zu einer vorlage von Natriumhydrid aelöst Raumtemperatur, aelöst nach verfahren DMF, unter Rühren bei Raumtemperatur, aelöst in absolutem DMF, von 3.5-Dibrom-4-nitropyrazol. aelöst in absolutem Menae
                                                                                                                                                                                                                                                                                                                                 in absolutem DMF, unter Ribrem bei Raumtemperatur, eine Ribrem bei Raumtemperatur, gelöst et unter Ribrem bei Raumtemperatur, gelöst ainem DMF, unter Ribrem 4-nitropyrazol, gelöst et unter Ribrem Jaitraum von ainer et unde sinem Zaitraum von ainer et unde sinem za
                                                                                                                                                                                                                                                                                                                                                äquimolare Nenge von 3,5-Dibrom-4-nitropyrazol, Stunde

über einem Zeitraum von einer iber resentisiering ber nach Reendimma der resentisiering ber nach Reendimma der resentisiering ber in absolutem DNF, Reendimma der resentisiering ber nach Reendimma der resentische Reendimma der resent
                                                                                                                                                                                                                                                                                 1-Position alkyliert.
                                                                                                                                                                                                                                                                                                                                                                in absolutem DNE, über einem Zeitraum von einer tropft

in absolutem DNE, über einem Zeitraum von einer tropft

Zugetropft. Nach Beendigung der Gasentwicklung

Zugetropft. Der Gasentwicklung der Gasentwicklung

Zugetropft. Der Gasentwicklung der G
                                                                                                                                                                                                                                                                                                                                                                            Zugetropft. Nach Beendigung der Gasentwicklung tropfi

Zugetropft. Nach Beendigung der Gasentwicklung tropfi

Nach Beendigung der Gasentwicklung tropfi

Dis G6-Alkyl-

New Menge C1-

Dis C6-Alkyl-

New Menge C1-

New
                                                                                                                                                                                                                                                                                                                                                                                                              C4-HYDIOXYALKYl- oder Benzylhalogenid, zu und erhitzt das c.chlorid oder bromid, stunden land auf 80 °C.
                                                                                                                                                                                                                                                                                                                                                                                            man eine äquimolare Menge C1- bis C6-Aikyl- C2-bis C6-Aik
                                                                                                                                                                                                                                                                                                                                                                                                                                  Reaktionsgemisch drei Stunden lang auf 80 °C. abdestil-

Reaktionsgemisch das Lösungmittel im Vakuum umbrietal-

Reaktionsgemisch das Lösungmittel im Vakuum umbrietal-

Reaktionsgemisch das Dicketand aus Morhvilenchiorid umbrietal-

Reaktionsgemisch der Dicketand aus Morhvilenchiorid umbrietal-
                                                                                                                                                                                                                                                                                                                                                                                                              Nach verfahren II wird das 3,5-Dibrom-4-nitropyrazol in vorzugeweise 2N Natron- oder kalilaune.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Nach verfahren II wird das 3,5-Dibrom-4-nitropyrazol in wird das 3,5-Dibrom-4-nitropyrazol in wanne wanne worzugsweise 2N Natron- oder Kalilauge, wanne want vorzugsweise bis finffarhen molaren wanne währiger Lauge, einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finffarhen molaren wanne oelbst und mit einer zweis bis finfarhen molaren wanne oelbst und mit einer zweis bis finfarhen molaren wanne oelbst und mit einer zweis bis finfarhen molaren wanne oelbst und mit einer zweis bis finfarhen molaren wanne oelbst und mit einer zweis bis finfarhen molaren wanne oelbst und mit einer zweis bis finfarhen molaren wanne oelbst und mit einer zweis bis finfarhen wanne oelbst und mit einer zweis bis einer zw
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              wäßriger Lauge, vorzugeweise 2N Natron- oder Kalilauge, nen-
wäßriger Lauge, vorzugeweise 2N Natron- oder molaren Menge
zwei- bis tintfachen molaren nen-
zwei- bis CA-Hvdroxvalkvi- oder Ren-
gelöst und mit einer zwei-
gelöst und mit cc-Alkvi- Co- bis CA-Hvdroxvalkvi
an CI-bis CC-Alkvi-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             gelöst und mit einer zwei- bis C4-Hydroxyalkyl- oder man 15

gelöst und mit einer C2- bis C4-Hydroxyalkyl- läht man 15
an C1-bis C6-Alkyl-, Unter kräftigem Rühren läht man 25
an C1-bis versetzt.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          an Cl-bis C6-Alkyl- Unter Kräftigem Rühren läht man 15

Zylsufat versetzt.

Raumtemneratur reanieren

Zylsufat lann hei Raumtemneratur
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       zylsulfat versetzt. Unter kräftigem Rühren läßt man 15
zylsulfat versetzt. Unter kräftigem Rühren filtriert an-
stunden lang bei Raumtemperatur reagieren, wäscht mit
stunden lang bei Raumtemperatur produkt ab. wäscht mit
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             lisiert.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Stunden lang bei Raumtemperatur reagleren, filtrierr mit ab, wäscht mit ausgefallene produkt ab, wäscht und schließend das ausgefallene nu noutral roagiert und schließend das ausgefallene nu noutral roagiert und
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     schließend das ausgetallene produkt ab, wascht mit und schließend das ausgetallene ph-neutral reagiert und wasser bis die Waschlösung ph-neutral reagiert und wasser bis die Waschlösung ph-neutral reagiert und hasser bis die Waschlösung ph-neutral reagiert und waschlösung ph-neutral reagiert und hasser bis die Waschlösung ph-neutral reagiert und waschlösung ph-neutral reagiert und has ausgetallene produkt ab, waschlösung ph-neutral reagiert und has ausgetallene produkt ab, waschlösung ph-neutral reagiert und waschlösung ph-neutra
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Nach beiden verfahren erhält man isomerenreine N-substi-,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Nach beiden verfahren erhält man isomerenreine N-sut
tuierte 315-Dibrom-4-nitropyrazole der allgemeinen
tuierte 315-Dibrom-4-nitropyrazole der allgemeinen
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            trocknet im vakuum.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Formel (II) in guten Ausbeuten.
```

WO 94108969

In einem anschließenden Schritt erhitzt man die Nesub-In einem anschließenden schritt erhitzt man die N-substituierten 3.5-Dibtom-4-nitropyrazole
stituierten 3.5-Dibtom-4-nitropyrazole stituierten 3,5-Dibrom-4-nitropyrazole der allgemeinen co-hie stituierten in einer währigen chie ce-hier co-hie rormel (II) in einer roen co-hie ce-hen roenne roenne roenne co-hier c Formel (II) in einer währigen, alkoholischen oder währigen, alkoholischen oder ontrig-alkoholischen oder nonzulamin oder in dem ent-C4-Hydroxyalkyl- oder Benzylamin oder in dem enter auf eine ca-Hydroxyalkyl- selbst, als Lösungsmittel, werden sprechenden Anin en his an °C. Als Alkohole werden Temperatur von 60 bis 80 °C. Als Alkohole werden nach von 60 bis 80 °C. Ethanol verwaden riegr man bevorzugt Methanol und/oder and a chundan riegr man bevorzugt Methanol von 1 hie 20 chundan einer paskrionesseit von 1 bevorzugt Methanol und/oder Ethanol verwendet. Nach das land oder Ethanol verwendet man das land oder Ethanol verwendet man das land oder Ethanol verwendet. Nach das de verwendet man das land oder Ethanol verwendet. Nach das land oder man de verwendet man das land oder ethanol und/oder Ethanol verwendet. Nach das land oder man de verwendet man das land oder ethanol und/oder Ethanol verwendet. Nach das land oder ethanol verwenden. Nach das land oder ethanol verwendet. Nach das land od einer Reaktionszeit von 1 bis 20 stunden, gießt man das und 20 bis 150 ml Wasser und auf 20 bis 150 ml wasser und auf 20 bis Anschließenend auf 20 bis Anschließenen auf 20 bis Anschließenend auf 20 bis Anschließenend auf 20 bis Anschließenend auf 20 bis Anschließenend auf 20 bis Anschließenen auf 20 bis Anschließen auf filtriert das abgeschiedene Produkt ab. Anschließend im trocknet im und trocknet im wäscht man mit Wasser (10 bis 5-Amino-3-brom-4-nit wäscht man erhält isomerenreine 5-Amino-3-brom-4-nit wäscht man erhält isomerenreine wäscht man mit Wasser (10 bis 20 ml) und trocknet im

wäscht man mit Wasser (10 bis 20 ml) und trocknet im

vakuum. Man erhält isomerenreinen Formal (1777) in miten

vakuum. Man erhält der allnemeinen Formal Vakuum. Man erhält isomerenreine 5-Amino-3-brom-4-nitro.

Vakuum. Man erhält isomerenreinen formel (III) in guten

Pyrazol-perivate der allgemeinen formel Die Verbindungen der allgemeinen formel (III) werden anverwandung eines palladium-Aktivkohle-Die Verbindungen der allgemeinen Formel (III) werden anDie Verbindungen der allgemeinen Palladium-Aktivkohleschließend!
schließend!
katalveators mit einem palladiumanteil von 10 ceuichte. schließend, unter verwendung eines palladium-Aktivkohleschließend, unter einem palladiumanteil von 10 Gewichtskatalyeators mit waesereroff hudriert
katalyeators waesereroff hudriert Xatalyeators mit einem Palladiumanteil von 10 Gewichtsprozent, mit Wasserstoff hydriert. Erfindungsgemäß stenach Wasserstoff hydriert.
Prozent, was Warfahren zur Warfinnen Prozent, mit Wasserstoff hydriert. Erfindungsgemäß ste.

Prozent, mit Wasserstoff hydriert. Perfigung. Nach Verfahren

hevorgung. Athanolischen

hevorgung. Athanolischen

hevorgung. Athanolischen

hevorgung. hen dazu zwei verfahren zur verfigung. Nach verfahren Lö
(1) wird der alkoholischen, allgemeinen Formel (III) zwei

(1) einer verbindung der allgemeinen sur bevorzugt. (1) Wird der alkoholischen, bevorzugt ethanolischen, zwei und der allgemeinen formel zugefügt und sung einer verbindung der Actalysators zugefügt und sung einer ca. 100 mg. des Katalysators zugefügt und sung einer ca. 100 mg. Ausbeuten. sung einer verbindung der allgemeinen Formel (III) zwei und einer verbindung der allgemeinen Formel zugefügt und des Katalysators Bei 50 bar iberführt. Bei 50 bar sung einer ca. 100 mg, des Katalysators Bei 50 bar sung einer Autoklaven überführt. Bei 50 bar sung einer Autoklaven überführt. Bei 50 bar der Ansatz in einen Autoklaven überführt. Spatelspitzen, ca. 100 mg, des Katalysators zugefügt in einen Autoklaven Raumtemneratur in einen wird hei Raumtemneratur der Ansatz in einen wird hei Raumtemneratur der Ansatz in einen Autoklaven überführt. Bei 50 bar 6

Wasserstoffatmosphäre wird bei Raumtemperatur nerührt

Wasserstoffatmosphäre hevorgunt 7 hie 4 crunden nerührt Wasserstoffetmosphäre wird bei Raumtemperatur 1 bis
Wasserstoffetmosphäre wird bis 4 Stunden, einen class
Stunden lang bevorzugt 2 bis 4 iher einen class
Stunden lang bevorzugt katalvsator iher einen class
Stunden lang wird der katalvsator iher anschließend Stunden lang bevorzugt 2 bis 4 Stunden gerührt.

Stunden lang bevorzugt Xatalysator über einer zur einne einer zur einne Anschließend wird des produkt. mit einer zur Anschließend anfiltriert und das produkt. Anschließend wird der Katalysator über einen Glasfiltermit einer zur eingemit einer zur eingemit einer zur eingemit einer zur eingemit einer schwefelabfiltriert und das produkt, Mende Schwefeltiegel abfiltriert indung äguimolaren Mende schwefeltiegel abfiltriert indung äguimolaren Mende schwefeltiegel abtiltriert und das produkt, mit einer zur einge das produkt, mit einer zur einge schwefeltiegel abtiltriert und das produkt, mit einer zur einge zur einge zur einge zur einge zur das produkt, mit einer zur einge zur eine zur setzten Pyrazolverbindung äquimolaren Menge als Salz aussetzten Pyrazolverbindung menge Salzsäure als Salz aussäure oder zweifachmolaren (2) worden der vährinen (2) worden der vährinen (2) worden der vährinen (3) worden (3) word säure oder zweifachmolaren Menge Salzsäure als Salz aus.

Säure oder zweifahren (2) werden der käßrigen (TTT) 2 snare.

gefällt. Nach Verfahren der allnemeinen Formel gefällt. Nach verfahren (2) werden der wäßrigen Lösung

(III) 2 Spatel(III) einer verbindung der allgemeinen formel (III) 2 Spatel
einer verbindung der allgemeinen katalysators und

spitzen des vorstehend beschriebenen katalysators

spitzen des vorstehend hanna kanimalara Manna cannafal spitzen des vorstenend beschriebenen Katalysators und spitzen des vorstenend beschriebenen aguimolare Menge Schwefeleine <sub>zur Ausgangsverbindung</sub> äguimolare Menge Schwefel-säure zugegeben und der Ansatz in einem Hydrierkolben bei Raumtemperatur unter Wasserstoffatomospäre (Normaldruck geschüttelt. Sobald die dünnschichtchromatographische Untersuchung der Reaktionsmischung keinen Hinweis mehr auf noch vorliegendes Edukt gibt, wird über das Reaktionsgemisch einen Glasfiltertiegel abfiltriert, das Filtrat eingeengt und das Produkt durch Zugabe von Ethanol auskristallisiert.

Man erhält nach beiden Verfahren isomerenreine 4,5-Diaminopyrazol-Derivate der allgemeinen Formel (I) in guten Ausbeuten.

Die Verbindungen der allgemeinen Formel (I), in denen R<sub>1</sub> Wasserstoff bedeutet, liegen als Tautomere vor. Die Positionen 3 und 5 im Pyrazolring sind nicht unterscheidbar.

Bei der Reduktion von Verbindungen der allgemeinen Formel (III), in-der R3 einen Benzylrest oder R4 einen Benzyl- oder tert-Butylrest bedeuten, werden die N-Benzyl- und N-tert-Butylreste reduktiv abgespalten, so daß man Verbindungen der allgemeinen Formel (I) erhält, in der R1 bzw. R2 Wasserstoff statt Benzyl oder tert-Butyl bedeutet.

Gegenstand der vorliegenden Patentanmeldung sind ferner neue 3,5-Dibrom-4-nitropyrazol-Derivate der allgemeinen Formel (II)

in der R3 einen C1- bis C6-Alkylrest, einen C2- bis C4-Hydroxyalkylrest oder einen Benzylrest bedeutet. Beispiele für Verbindungen der Formel (II) sind 3,5-Dibrom-1-methyl-4-nitropyrazol, 3,5-Dibrom-1-ethyl-4-nitropyrazol, 3,5-Dibrom-1-isopropyl-4-nitropyrazol, 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitropyrazol und 1-Benzyl-3,5-dibrom-4-nitropyrazol.

Ein weiterer Erfindungsgegenstand sind 3-Brom-5-amino-4-nitropyrazol-Derivate der allgemeinen Formel (III)

in der R3 und R4 unabhängig voneinander einen  $C_1$ - bis  $C_6$ -Alkylrest,  $C_2$ - bis  $C_4$ -Hydroxyalkylrest oder einen Benzylrest bedeuten.

Beispiele für Verbindungen der Formel (III) sind

nitropyrazol,

3-Brom-1-methyl-5-methylamino-4-nitropyrazol,
3-Brom-5-(2'-hydroxyethyl)amino-1-methyl-4-nitropyrazol,
3-Brom-5-tertiärbutylamino-1-methyl-4-nitropyrazol,
5-Benzylamino-3-brom-1-methyl-4-nitropyrazol,
5-Benzylamino-3-brom-1-ethyl-4-nitropyrazol,
5-Benzylamino-3-brom-1-isopropyl-4-nitropyrazol,
3-Brom-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)amino-4-

3-Brom-1-(2'-hydroxyethyl)-5-methylamino-4-nitropyrazol,
5-Benzylamino-3-brom-1-(2'-hydroxyethyl)-4-nitropyrazol
1-Benzyl-3-brom-5-methylamino-4-nitropyrazol,
1-Benzyl-3-brom-5-ethylamino-4-nitropyrazol,
1-Benzyl-3-brom-5-(2'-hydroxyethyl)amino-4-nitropyrazol
und 1-Benzyl-5-benzylamino-3-brom-4-nitropyrazol zu nennen sind.

Gegenstand der vorliegenden Erfindung sind ferner neue 4,5-Diaminopyrazol-Derivate der allgemeinen Formel (V)

in der  $R_a$  und  $R_b$  Wasserstoff, einen  $C_1$ - bis  $C_6$ -Alkylrest oder einen  $C_2$ - bis  $C_4$ -Hydroxyalkylrest bedeuten, mit der Maßgabe, daß, wenn  $R_b$  Wasserstoff ist,  $R_a$  nicht Wasserstoff, Methyl oder 2-Hydroxyethyl ist.

Als Beispiele für Verbindungen der Formel (I) werden

- 4-Amino-1-methyl-5-methylaminopyrazol,
- 4-Amino-5-(2'-hydroxyethyl)amino-1-methylpyrazol,
- 4,5-Diamino-1-ethylpyrazol,
- 4,5-Diamino-1-isopropylpyrazol,
- 4-Amino-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)amino-pyrazol,

- 4-Amino-1-(2'-hydroxyethyl)-5-methylaminopyrazol,
- 4-Amino-(3)5-methylaminopyrazol,
- 4-Amino-(3)5-ethylaminopyrazol und
- 4-Amino-(3)5-(2'-hydroxyethyl)aminopyrazol,

## genannt.

Die Verbindungen der Formel (V) können als Farbstoffvorstufen in Oxidationshaarfärbemitteln zur Färbung von Haaren verwendet werden (siehe Verwendungsbeispiel).

#### Beispiele

- A) Herstellung von N-substituierten 3,5-Dibrom-4-nitropyrazolen der allgemeinen Formel (II)
  - a) Allgemeine Vorschrift, Verfahren I:

Zu 1,75 g (70 mmol) Natriumhydrid in 150 ml absolutem DMF (Dimethylformamid) tropft man über einen Zeitraum von 1 Stunde 19,0 g (70 mmol) 3,5-Dibrom-4-nitropyrazol, gelöst in 90 ml absolutem DMF, zu. Nach Beendigung der Gasentwicklung werden 70 mmol C<sub>1</sub> bis C<sub>6</sub>-Alkyl-, C<sub>2</sub> bis C<sub>4</sub>-Hydroxyalkyl- oder Benzylhalogenid in 30 ml DMF zugetropft und 3 Stunden lang auf 80 °C erhitzt. Anschließend destilliert man das Lösungsmittel im Vakuum ab und kristallisiert den Rückstand aus Methylenchlorid um.

b) Allgemeine Vorschrift, Verfahren II:

Zu einer Lösung von 5 g (18,5 mmol) 3,5-Dibrom-4-nitropyrazol in 50 ml 2N Natronlauge gibt man 92,5 mmol C1 bis C6-Alkyl-, C2 bis C4-Hydroxy-alkyl- oder Benzylsulfat, läßt 15 Stunden lang bei Raumtemperatur kräftig rühren und filtriert schließlich das ausgefallene Produkt ab, wäscht mit Wasser bis die Waschlösung pH-neutral reagiert und trocknet im Vakuum.

Herstellungsbeispiel 1: 3,5-Dibrom-1-methyl-4-nitropyrazol

Nach Verfahren II erhält man, unter Verwendung von Methylsulfat, 5,06 g (96 Prozent der Theorie) 3,5-Di-

brom-1-methyl-4-nitropyrazol in Form weißer Kristalle mit einem Schmelzpunkt von 154 °C.

1H-NMR (60 MHz, DMSO-d6): = 3,90 ppm (s;  $3H;-CH_3$ ).

Für diese und alle folgenden <sup>1</sup>H-NMR-Spektren gilt: Die Angaben der chemischen Verschiebung erfolgt in delta (ppm), die der Kopplungskonstanten (J) erfolgt in Hertz. Standard: Tetramethylsilan

s = Singulett, d = Dublett, t = Triplett, q = Quartett,
m = Multiplett, Ph = Phenyl, Ring-H = Proton am Pyrazolring

 $MS (70eV):m/e=287 (M^+).$ 

## Herstellungsbeispiel 2: 3,5-Dibrom-1-ethyl-4-nitropyrazol

Nach Verfahren II erhält man, unter Verwendung von Ethylsulfat, 3,59 g (65 Prozent der Theorie) 3,5-Dibrom-1-ethyl-4-nitropyrazol in Form weißer Kristalle mit einem Schmelzpunkt von 119 bis 121 °C.

1H-NMR (60 MHz, DMSO-d6): = 4,26 (q; J=7,0 Hz; 2H;  $-CH_2-CH_3$ ) und 1,36 ppm (t; J=7,0 Hz; 3H;-CH<sub>2</sub>- $-CH_3$ ).

 $MS (70eV):m/e=297 (M^+).$ 

Herstellungsbeispiel 3: 3,5-Dibrom-1-isopropyl-4-nitro-pyrazol

Nach Verfahren I erhält man, unter Verwendung von 2-Brompropan, 13,14 g (60 Prozent der Theorie) 3,5-Dibrom-1-isopropyl-4-nitropyrazol in Form braungelber Kristalle mit einem Schmelzpunkt von 72 bis 73 °C. WO 94/08969

15

1H-NMR (60 MHz, DMSO-d6): = 4,84 (dq; J=6,5 Hz; 1H; CH) und 1,42 ppm (d; J=6 Hz; 6H;-CH( $\underline{\text{CH3}}$ )2). MS (70eV):m/e=311 (M<sup>+</sup>).

Herstellungsbeispiel 4: 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitropyrazol

Nach Verfahren I erhält man, unter Verwendung von 1-Brom-2-hydroxyethan, 14,77 g (67 Prozent der Theorie) 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitropyrazol in Form blaßgelber Kristalle mit einem Schmelzpunkt von 103 bis 105 °C.

 $MS (70eV):m/e=317 (M^+).$ 

Herstellungsbeispiel 5: 1-Benzyl-3,5-dibrom-4-nitropyrazol

Nach Verfahren I erhält man, unter Verwendung von Benzylchlorid, 17,94 g (71 Prozent der Theorie) 1-Benzyl-3,5-dibrom-4-nitrobenzol in Form blaßgelber Kristalle mit einem Schmelzpunkt von 128 °C.

 $^{1}\text{H-NMR}$  (60 MHz, DMSO-d6): = 7,26-7,41 (m; 5H; Ph-H) und 5,51 ppm (s; 2H; -CH<sub>2</sub>-). MS (70eV):m/e=363 (M<sup>+</sup>).

B) Herstellung von 5-Amino-3-brom-4-nitropyrazol-Derivaten der allgemeinen Formel (III)

Herstellungsbeispiel 6: 3-Brom-1-methyl-5-methylamino-4-nitropyrazol

2 g (7,02 mmol) 3,5-Dibrom-1-methyl-4-nitropyrazol werden in 50 ml einer 40 prozentigen Lösung von Methylamin in Ethanol 4 Stunden lang auf Siedetemperatur erhitzt. Nach dem Abkühlen fügt man dem Reaktionsgemisch 100 ml Wasser zu, filtriert das abgeschiedene Produkt ab und wäscht mit wenig Wasser (20 ml). Nach dem Trocknen im Vakuum erhält man 1,45 g (88 Prozent der Theorie) 3-Brom-1-methyl-5-methylamino-4-nitropyrazol in Form gelber Kristalle mit einem Schmelzpunkt von 185 °C.

 $MS (70eV):m/e=236 (M^+).$ 

Herstellungsbeispiel 7: 3-Brom-5-(2'-hydroxyethylamino)1-methyl-4-nitropyrazol

3 g (10,5 mmol) 3,5-Dibrom-1-methyl-4-nitropyrazol werden in einer Lösung von 30 ml Ethanolamin in 30 ml Ethanol 15 Stunden lang auf Siedetemperatur erhitzt. Anschließend gießt man das Reaktionsgemisch auf 200 ml Wasser, filtriert das abgeschiedene Produkt ab, wäscht mit Wasser (20 ml) und trocknet im Vakuum. Aus dem Filtrat kristallisiert in der Kälte (5 °C) weiteres Produkt aus.

Man erhält 2,25 g (81 Prozent der Theorie) 3-Brom-5-(2'-hydroxyethyl)amino-1-methyl-4-nitropyrazol in Form gelber Kristalle mit einem Schmelzpunkt von 150 °C.

 $MS (70eV):m/e=266 (M^+).$ 

# Herstellungsbeispiel 8: 3-Brom-5-tert-butylamino-1-methyl-4-nitropyrazol

1,5 g (5,26 mmol) 3,5-Dibrom-1-methyl-4-nitropyrazol werden in einer Lösung von 20 ml tert-Butylamin in 30 ml Ethanol 20 Stunden lang auf Siedetemperatur erhitzt.Nach dem Abkühlen gießt man das Reaktionsgemisch auf 150 ml Wasser, filtriert das abgeschiedene Produkt ab und wäscht mit 100 ml Wasser. Nach dem Trocknen im Vakuum erhält man 1,14 g (78 Prozent der Theorie)
3-Brom-5-tert-butylamino-1-methyl-4-nitropyrazol in Form blaßgelber Blättchen mit einem Schmelzpunkt von 75 bis 77 °C.

MS (70eV):  $m/e = 277 (M^+)$ .

## Herstellungsbeispiel 9: 5-Benzylamino-3-brom-1-methyl-4-nitropyrazol

2 g (7,02 mmol) 3,5-Dibrom-1-methyl-4-nitropyrazol werden in einer Lösung von 11 g (0,1 mol) Benzylamin in 50 ml Ethanol 10 Stunden lang auf Siedetemperatur erhitzt. Nach dem Abkühlen gießt man das Reaktionsgemisch auf 100 ml Wasser, filtriert das abgeschiedene Produkt ab und wäscht mit Wasser (20 ml). Nach dem Trocknen im Vakuum erhält man 1,76 g (81 Prozent der Theorie) 5-Benzylamino-3-brom-1-methyl-4-nitropyrazol in Form gelber Nadeln mit einem Schmelzpunkt von 133 °C.

(19,21)

# Herstellungsbeispiel 10: 5-Benzylamino-3-brom-1-ethyl-4-nitropyrazol

6,3 g (21 mmol) 3,5-Dibrom-1-ethyl-4-nitropyrazol werden in 10 ml Benzylamin 1 Stunde lang auf 80 °C erhitzt. Anschließend gießt man das Reaktionsgemisch auf 50 ml Wasser und trennt das abgeschiedene Öl ab, aus dem, nach Zugabe von 20 bis 30 ml Essigsäureethylester, das Produkt auskristallisiert. Nach einmaligem Umkristallisieren aus Methanol erhält man 5,2 g (76 Prozent der Theorie) 5-Benzylamino-3-brom-1-ethyl-4-nitropyrazol in Form hellgelber Nadeln mit einem Schmelzpunkt von 92 °C.

Herstellungsbeispiel 11: 5-Benzylamino-3-brom-1-isopropyl-4-nitropyrazol

3,13 g (10 mmol) 3,5-Dibrom-1-isopropyl-4-nitropyrazol werden in 10 ml Benzylamin 1 Stunde lang auf 80 °C erhitzt. Anschließend gießt man das Reaktionsgemisch auf 50 ml Wasser und filtriert das abgeschiedene Produkt ab. Nach einmaligem Umkristallisieren aus einem Toluol/Petrolether-Gemisch (1:1) erhält man 2,3 g (68 Prozent der Theorie) 5-Benzylamino-3-brom-1-isopropyl-4-nitropyrazol in Form hellgelber Kristalle mit einem Schmelzpunkt von 120 und 122 °C.

MS (70 eV):  $m/e = 338 (M^+)$ .

Herstellungsbeispiel 12: 3-Brom-1-(2'-hydroxyethyl)-5(2'-hydroxyethyl)amino-4-nitropyrazol

1,5 g (4,8 mmol) 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitropyrazol werden in einer Lösung von 0,58 g (9,6 mmol) Ethanolamin in 30 ml Ethanol 15 Stunden lang auf 80 °C erhitzt. Nach dem Abkühlen fügt man dem Reaktionsgemisch 50 ml Wasser zu und extrahiert drei mal mit je 70 ml Essigsäureethylester. Man gibt zu den vereinigten Extraktionslösungen 200 ml n-Hexan und destilliert das Lösungsmittelgemisch im Vakuum auf ein Drittel der ursprünglichen Menge ab. Danach fügt man erneut n-Hexan bis zur Trübung der Lösung zu. Anschließend filtriert man das auskristallisierte Produkt ab und wäscht mit n-Hexan (10 bis 20 ml). Man erhält 1,04 g (74 Prozent der Theorie) 3-Brom-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)amino-4-nitropyrazol in Form hellgelber Kristalle mit einem Schmelzpunkt von 132 bis 134 °C.

MS (70 eV):  $m/e = 296 (M^+)$ .

Herstellungsbeispiel 13: 3-Brom-1-(2'-hydroxyethyl)-5methylamino-4-nitropyrazol

3,15 g (10 mmol) 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitro-pyrazol werden in 70 ml einer 30prozentigen Lösung von Methylamin in Wasser 1 Stunde lang auf 60 °C erwärmt. Nach dem Abkühlen fällt das Produkt in Form hellgelber Kristalle, mit einem Schmelzpunkt von 158 bis 160 °C, aus. Man erhält 2,4 g (91 Prozent der Theorie) 3-Brom-1-(2'hydroxyethyl)-5-methylamino-4-nitropyrazol.

 $-MS - (70 \text{ eV}) : -m/e = 266 - (M^+)$ .

Herstellungsbeispiel 14: 5-Benzylamino-3-brom-1-(2'-hy-droxyethyl)-4-nitropyrazol

6,3 g (20 mmol) 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitro-pyrazol werden in 20 ml Benzylamin 2 Stunden lang auf 60 °C erhitzt. Nach dem Abkühlen gießt man auf 50 ml Wasser, filtriert das abgeschiedene Produkt ab und kristallisiert einmal aus Toluol/Ligroin (1:1) um. Man erhält 4 g (59 Prozent der Theorie) 5-Benzylamino-3-brom-1-(2'-hydroxyethyl)-4-nitropyrazol in Form gelber Kristalle mit einem Schmelzpunkt von 133 bis 135 °C.

## Herstellungsbeispiel 15: 1-Benzyl-3-brom-5-methylamino-4-nitropyrazol

3,61 g (10 mmol) 1-Benzyl-3,5-dibrom-4-nitropyrazol werden in 100 ml einer 35prozentigen Lösung von Metyl-amin in Wasser 4 Stunden lang auf 60 °C erhitzt. Nach dem Abkühlen filtriert man den abgeschiedenen Niederschlag ab und kristallisiert einmal aus Ethanol um. Man erhält 2,7 g (87 Prozent der Theorie) 1-Benzyl-3-brom-5-methylamino-4-nitropyrazol in Form farbloser Kristalle mit einem Schmelzpunkt von 116 °C.

1H-NMR (300 MHz,DMSO-d6): = 7,71 (s; 1H; -NH; tauscht mit D2O aus), 7,15-7,40 (m; 5H, Ph-H), 5,45 (s; 2H; -CH2-) und 3,02 ppm (s; 3H; -CH3).

MS (70 eV):  $m/e = 312 (M^+)$ .

## Herstellungsbeispiel 16: 1-Benzyl-3-brom-5-ethylamino-4-nitropyrazol

3,61 (10 mmol) 1-Benzyl-3,5-dibrom-4-nitropyrazol werden in 120 ml einer 30prozentigen wäßrigen Ethylaminlösung 1 Stunde lang auf 60 °C erhitzt. Nach dem Abkühlen scheidet sich das Produkt in Form farbloser Kristalle mit einem Schmelzpunkt von 122 °C ab. Man erhält 2,88 g 89 Prozent der Theorie) 1-Benzyl-3-brom-5-ethylamino-4-nitropyrazol.

1H-NMR (300 MHz,DMSO-d6): = 7,15-7,41 (m; 6H; -NH und Ph-H; 1H tauscht mit D<sub>2</sub>O aus), 5,37 (s; 1H; -CH<sub>2</sub>-), 3,32-3,39 (m; 2H; -CH<sub>2</sub>-CH<sub>3</sub>) und 1,07-1,12 ppm (t; 3H; -CH<sub>2</sub>-CH<sub>3</sub>).

MS (70 eV):  $m/e = 326 (M^+)$ .

# Herstellungsbeispiel 17: l-Benzyl-3-brom-5-(2'~hydroxy-ethyl)amino-4-nitropyrazol

3,61 g (10 mmol) 1-Benzyl-3,5-dibrom-4-nitropyrazol werden in 15 ml Ethanolamin 2 Stunden lang auf 80 °C erhitzt. Nach dem Abkühlen gießt man das Reaktionsgemisch auf 30 ml Wasser und filtriert den abgeschiedenen Niederschlag ab. Nach einmaligem Umkristallisieren aus Toluol erhält man 2,5 g (74 Prozent der Theorie) 1-Benzyl-3-brom-5-(2'-hydroxyethyl)amino-4-nitropyrazol in Form blaßgelber Kristalle mit einem Schmelzpunkt von 110 bis 112 °C.

MS (70 eV): m/e = 342 (M+).

## Herstellungsbeispiel 18: 1-Benzyl-5-benzylamino-3-brom-4-nitropyrazol

3,61 g (10 mmol) 1-Benzyl-3,5-dibrom-4-nitropyrazol werden in einer Lösung von 3,6 g Benzylamin 2 Stunden lang auf 60 °C erhitzt. Nach dem Abkühlen wird das Reaktionsgemisch auf 20 ml Wasser gegossen und der abgeschiedene Niederschlag abfiltriert. Nach einmaligem Umkristallisieren aus einem Ligroin/Toluol-Gemisch (1:1) erhält man 2,6 g (68 Prozent der Theorie) 1-Benzyl-5-benzyl-amino-3-brom-4-nitropyrazol in Form blaßgelber Kristalle mit einem Schmelzpunkt von 103 °C.

MS (70 eV):  $m/e = 388 (M^+)$ .

-

- C) Herstellung von 4,5-Diaminopyrazol-Derivaten der allgemeinen Formel (I)
- a) Allgemeine Vorschrift, Verfahren (1):

Eine in den folgenden Herstellungsbeispielen angegebene Menge einer Verbindung der allgemeinen Formel (II) wird in 130 ml Ethanol gelöst und in einen Autoklaven (250 ml) überführt. Nach der Zugabe von 2 Spatelspitzen (ca. 100 mg) eines Palladium/Aktivkohle-Katalysators, mit einem Polladiumanteil von 10 Gewichtsprozent, wird über den in den nachfolgenden Herstellungsbeispielen angegebenen Zeitraum, bei 50 bar Wasserstoffatmosphäre, bei Raumtemperatur gerührt. Anschließend wird die Reaktionsmischung mittels einer Wasserstrahlpumpe in einen Glaskolben überführt und der Katalysator sofort über einen Glasfiltertiegel abfiltriert. Danach fügt man dem Filtrat eine zur Ausgangsverbingung äquimolare Menge Schwefelsäure (97prozentig) oder die zweifachmolare Menge Salzsäure (36prozentig) zu.

b) Allgemeine Vorschrift, Verfahren (2):

Eine in den folgenden Herstellungsbeispielen angegebene Menge einer Verbindung der allgemeinen Formel (III) wird in einem Hydrierkolben mit einer äquimolaren Menge 97prozentiger Schwefelsäure, 2 Spatelspitzen Palladium/Aktivkohle-Katalysator (10 Gewichtsprozent Palladium) und der jeweils angegebenen Menge Wasser bei Raumtemperatur unter Wasserstoffatmosphäre (Normaldruck) über den in den nachfolgenden Herstellungsbeispielen angegebenen Zeitraum geschüttelt. Der Reaktionsverlauf wird mittels Dünnschichtchromatographie kontrolliert. Nach vollständiger Umsetzung des Eduktes wird das Reak-

tionsgemisch über einen Glasfiltertiegel abfiltriert. Nach dem Abdestillieren des Lösungsmittels wird das Produkt aus Ethanol kristallisiert.

Herstellungsbeispiel 19: 4-Amino-1-methyl-5-methylaminopyrazol

0,5 g (2,13 mmol) 3-Brom-1-methyl-5-methylamino-4-nitro-pyrazol werden in einer Lösung von 220 mg (2,13 mmol) Schwefelsäure in 20 ml Wasser, nach Zugabe des Katalysators, 14 Stunden lang, wie in Verfahren (2) beschrieben, hydriert. Nach dem Abfiltrieren des Katalysators engt man das Filtrat bis zur Trockene ein und kristallisiert den Rückstand aus Ethanol um. Man erhält 370 mg (78 Prozent der Theorie) 4-Amino-1-methyl-5-methylaminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 185 bis 188 °C.

-1H-NMR (-60 MHz, DMSO-d6): = 8,53 (s; breit; 5H, -NH2; -NH; H2SO4; mit D2O austausch-bar), 7,30 (s; 1H; Ring-H 3,58 (s; 3H; N-CH3) und 2,80 ppm (s; 3H; -NH-CH3).

MS (70 eV):  $m/e = 126 (M^+)$ .

Herstellungsbeispiel 20: 4-Amino-5-(2'-hydroxyethyl)amino-1-methylpyrazol

1 g (3,77 mmol) 3-Brom-5-(2'-hydroxyethyl)amino-1-me-thyl-4-nitropyrazol werden in einer Lösung von 380 mg (3,77 mmol) Schwefelsäure in 50 ml Wasser 2 Stunden lang nach Verfahren (2) hydriert. Man erhält 720 mg (75 Prozent der Theorie) 4-Amino-5-(2'-hydroxyethyl)amino-1-me-

thylpyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 94 bis 97 °C.

## Herstellungsbeispiel 21: 4,5-Diamino-1-methylpyrazol

- a) 0,5 g (1,81 mmol) 3-Brom-5-tert-butylamino-1-methyl-4-nitropyrazol werden in einer Lösung von 1,84
  mg (1,81 mmol) Schwefelsäure in 20 ml Wasser, nach
  Zugabe des Katalysators, 48 Stunden lang nach Verfahren (2)- hydriert. Man erhält, nach Abdestillieren
  des Lösungsmittels auf die Hälfte der ursprünglichen
  Menge und Zugabe einer äquivalenten Menge Ethanol,
  360 mg (87 Prozent der Theorie) 4,5-Diamino-1-methylpyrazol-hydrosulfat-hydrat in Form von weißen
  Kristallen mit einem Schmelzpunkt von 200 bis
  201 °C.
- b) 0,5 g (1,61 mmol) 5-Benzylamino-3-brom-1-methyl4-nitropyrazol werden in einer Lösung von 165 mg (161
  mmol) Schwefelsäure in 20 ml Wasser, nach Zugabe des
  Katalysators, 48 Stunden lang, wie im Verfahren (2)
  beschrieben, hydriert. Anschließend filtriert man
  den Katalysator ab und engt das Filtrat auf ca. 2 ml
  ein. Nach Zugabe von wenig Ethanol (ca. 2 ml) scheidet sich das Produkt in Form weißer Kristalle ab.
  Man erhält 330 mg (90 Prozent der Theorie) 4,5-Dia-

mino-1-methylpyrazol-hydrosulfat-hydrat in Form von weißen Kristallen mit einem Schmelzpunkt von 200 bis 201 °C.

### Herstellungsbeispiel 22: 4,5-Diamino-1-ethylpyrazol

1,62 g (5,6 mmol) 3-Benzylamino-3-brom-1-ethyl-4-nitro-pyrazol werden über einen Zeitraum von 2 Stunden nach Vorschrift (1) hydriert. Nach Abfiltrieren des Katalysators fällt man durch Zugabe von 1 ml (11,6 mmol) konzentrierter Salzsäure (36prozentig) das Produkt als Dihydrochlorid aus. Man erhält 0,8 g (72 Prozent der Theorie) 4,5-Diamino-1-ethylpyrazol-dihydrochlorid in Form farbloser Kristalle mit einem Schmelzpunkt von 184 bis 186 °C.

#### Herstellungsbeispiel 23: 4,5-Diamino-1-isopropylpyrazol

0,5 g (1,6 mmol) 1-Benzylamino-3-brom-1-isopropyl-4-ni-tropyrazol werden 2 Stunden lang nach Vorschrift (1) hydriert. Nach Abfiltrieren des Katalysators wird das Produkt mit 0,3 ml (3,5 mmol) konzentrierter Salzsäure als Dihydrochlorid ausgefällt. Man erhält 0,25 g (73 Prozent der Theorie) 4,5-Diamino-1-isopropylpyrazoldihydrochlorid in Form farbloser Kristalle mit einem Schmelzpunkt von 164 °C.

Herstellungsbeispiel 24: 4-Amino-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)aminopyrazol

0,8 g (2,7 mmol) 3-Brom-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)amino-4-nitropyrazol werden nach Vorschrift (1) 4 Stunden lang hydriert. Nach Abfiltrieren des Katalysators fügt man 0,27 g (2,7 mmol) Schwefelsäure (97prozentig) zu. Nach Abkühlen auf - 30 °C erhält man 630 mg (82 Prozent der Theorie) 4-Amino-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)aminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 140 bis 142 °C.

MS (70 eV):  $m/e = 186 (M^+)$ .

# Herstellungsbeispiel 25: 4-Amino-1-(2'-hydroxyethyl)-5methylaminopyrazol

2,65 g (10 mmol) 3-Brom-1-(2'-hydroxyethyl)-5-methylamino-4-nitropyrazol werden 4 Stunden lang nach Vorschrift
(1) hydriert. Nach Zugabe von 1 g (10 mmol) Schwefelsäure und 10 ml Isopropanol scheidet sich das Produkt
ab. Man erhält 1 g (40 Prozent der Theorie) 4-Amino-1(2'-hydroxyethyl)-5-methylaminopyrazol-hydrosulfat in
Form farbloser Kristalle mit einem Schmelzpunkt von 138
bis 140 °C.

# 

1,7 g (5 mmol) 5-Benzylamino-3-brom-1-(2'-hydroxyethyl)-4-nitropyrazol werden 4 Stunden lang nach Vorschrift (1) hydriert. Nach Zugabe von 0,5 g (5 mmol) Schwefelsäure erhält man 0,8 g (62 Prozent der Theorie) 4,5-Diamino-1-(2'-hydroxyethyl)pyrazol-hydrosulfat-hydrat in Form farbloser Kristalle mit einem Schmelzpunkt von 158 bis 160 °C.

### Herstellungsbeispiel 27: 4-Amino-(3)5-methylaminopyrazol

1 g (2,9 mmol) 1-Benzyl-3-brom-5-methylamino-4-nitropyrazol werden in einer Lösung von 0,29 g (2,9 mmol) Schwefelsäure in 50 ml Wasser gemäß Vorschrift (2) über einen Zeitraum von 8 Stunden hydriert. Nach Abfiltrieren des Katalysators und Zugabe von 50 ml Ethanol wird das Filtrat auf 30 ml eingeengt und auf - 30 °C abgekühlt. Man erhält 244 mg (40 % der Theorie) 4-Amino-(3)5-methylaminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 182 °C.

 $^{1}H-NMR$  (60 MHz, DMSO-d6): = 10,10-9,20 (m; 6H; NH;-NH2; H<sub>2</sub>SO<sub>4</sub>; mit D<sub>2</sub>O-austauschbar); 7,95 (s; 1H; Ring-H) und 2,85 ppm (s; 3H; -CH3). MS (70 eV):  $m/e = 112 (M^+)$ .

### Herstellungsbeispiel 28: 4-Amino-(3)5-ethylaminopyrazol

0,5 g (1,31 mmol) 1-Benzyl-3-Brom-5-ethylamino-4-nitropyrazol werden in einer Lösung von 130 mg (1,31 mmol) Schwefelsäure in 50 ml Wasser gemäß Vorschrift (2) über einen Zeitraum von 8 Stunden hydriert. Nach Abfiltrieren WO 94/08969 PCT/EP93/02644

32

des Katalysators wird das Filtrat auf 10 ml eingeengt. Anschließend gibt man 10 ml Ethanol hinzu, woraufhin das Produkt in Form farbloser Kristalle, mit einem Schmelzpunkt von 188 °C, auskristallisiert. Man erhält 0,1 g (34 Prozent der Theorie) 4-Amino-(3)5-ethylaminopyrazol-hydrosulfat.

1H-NMR (300 MHz,DMSO-d6): = 8,53 (s; breit; 6H; -NH;
-NH2; H2SO4; tauscht mit
D2O aus), 7,78 (s; 1H;
Ring-H); 3,21 (q; J = 7,1
Hz; 2H; -CH2-CH3) und 1,18
ppm (t; J = 7,1 Hz; 3H;
-CH2-CH3).

MS (7.0 eV):  $m/e = 126 (M^+)$ .

Herstellungsbeispiel 29: 4-Amino-(3)5-(2'-hydroxyethyl)
aminopyrazol

1 g (2,9 mmol) 1-Benzyl-3-brom-5-(2'-hydroxyethyl)amino-4-nitropyrazol werden in einer Lösung von 0,29 g (2,9 mmol) Schwefelsäure und 50 ml Wasser über einen Zeitraum von 3 Stunden gemäß Vorschrift (2) hydriert. Nach Abfiltrieren des Katalysators wird das Lösungsmittel im Vakuum abdestilliert. Das dabei auskristallisierte Produkt wird mit wenig (20 ml) Ethanol gewaschen und anschließend getrocknet. Man erhält 240 mg (35 Prozent der Theorie) 4-Amino-(3)5-(2'-hydroxyethyl)aminopyrazolhydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 185 °C.

WO 94/08969 PCT/EP93/02644

33

1H-NMR (60 MHz, DMSO-d6): = 8,35 (s; breit; 6H; -NH;
-NH2; -OH; H2SO4, mit D2O
aus tauschbar), 7,58 (s;
1H; Ring-H); 3,55 (m, 2H;
-CH2-OH) und 3,15 ppm (m;
2H; -NH-CH2-).
MS (70 eV): m/e = 142 (M+).

### Herstellungsbeispiel 30: 4,(3)5-Diaminopyrazol

1 g (2,4 mmol) 1-Benzyl-5-benzylamino-3-brom-4-nitro-pyrazol werden in einer Lösung von 0,25 g (2,4 mmol) Schwefelsäure und 50 ml Wasser über einen Zeitraum von 4 Stunden gemäß Vorschrift (2) hydriert. Nach Abfiltrieren des Katalysators fügt man dem Filtrat 50 ml Ethanol zu und kühlt auf - 30 °C ab. Man erhält 184 mg (39 Prozent der Theorie) 4,(3)5-Diaminopyrazol-hydrosulfat in Form farbloser Kristalle mit einem Schmelzpunkt von 240 °C (Zersetzung).

### Verwendungsbeispiel:

50 g des vorstehenden Haarfärbemittels werden unmittelbar vor Gebrauch mit 50 g Wasserstoffperoxidlösung (6prozentig) gemischt. Das Gemisch wird anschließend auf blonde Naturhaare aufgetragen und 30 Minuten lang bei einer Temperatur von 40 °C einwirken gelassen. Das Haar wird anschließend mit Wasser gespült und getrocknet. Das Haar ist in einem modischen Purpurton gefärbt.

#### Patentansprüche

1) Verfahren zur Herstellung von 4,5-Diaminopyrazol-Derivaten den allgemeinen Formel (I)

$$NH_{2}$$

$$NHR_{2}$$

$$NHR_{2}$$

$$R_{1}$$

in der  $R_1$  und  $R_2$  unabhängig voneinander Wasserstoff, einen  $C_1$ - bis  $C_6$ -Alkylrest oder einen  $C_2$ - bis  $C_4$ -Hydroxyalkylrest bedeuten, dadurch gekennzeichnet, daß man

(A) 3,5-Dibrom-4-nitropyrazol mit einem C<sub>1</sub>- bis C<sub>6</sub>-Alkyl-, C<sub>2</sub>- bis C<sub>4</sub>-Hydroxyalkyl- oder Benzylhalogenid oder einem C<sub>1</sub>- bis C<sub>6</sub>-Alkyl-, C<sub>2</sub>- bis C<sub>4</sub>-Hydroxyalkyl- oder Benzylsulfat zu Verbindungen der allgemeinen Formel (II)

in der R3 einen C<sub>1</sub>- bis C<sub>6</sub>-Alkylrest, einen C<sub>2</sub>-bis C<sub>4</sub>-Hydroxyalkylrest oder einen Benzylrest bedeutet, umsetzt,

(B) die Verbindungen der allgemeinen Formel (II) mit C<sub>1</sub>- bis C<sub>6</sub>-Alkyl-, C<sub>2</sub>- bis C<sub>4</sub>-Hydroxyalkyloder Benzylamin zu Verbindungen der allgemeinen Formel (III)

in der R3 und R4 unabhängig voneinander einen C1- bis C6-Alkylrest, einen C2- bis C4-Hydroxy-alkylrest oder einen Benzylrest bedeuten, in 5-Position substituiert und sodann

(C) die Verbindungen der allgemeinen Formel (III) durch katalytische Hydrierung zu den Verbindungen der allgemeinen Formel (I) reduziert. 2) Verbindungen der allgemeinen Formel (II)

in der R3 einen  $C_1$ - bis  $C_6$ -Alkylrest, einen  $C_2$ - bis  $C_4$ -Hydroxyalkylrest oder einen Benzylrest bedeutet.

- 3) 3,5-Dibrom-1-methyl-4-nitropyrazol.
- 4) 3,5-Dibrom-1-ethyl-4-nitropyrazol.
- 5) 3,5-Dibrom-1-isopropyl-4-nitropyrazol.
- 6) 3,5-Dibrom-1-(2'-hydroxyethyl)-4-nitropyrazol.
- 7) 1-Benzyl-3,5-dibrom-4-nitropyrazol.
- 8) Verbindungen der allgemeinen Formel (III)

$$\begin{array}{c|c}
\text{Br} & \text{NO}_2 \\
N & \text{NHR}_4 \\
R_3 & \text{NHR}_4
\end{array}$$

in der R3 und R4 unabhängig voneinander einen C1bis C6-Alkylrest, C2- bis C4-Hydroxyalkylrest oder einen Benzylrest bedeuten.

- 9) 3-Brom-1-methyl-5-methylamino-4-nitropyrazol.
- 10) 3-Brom-5-(2'-hydroxyethyl)amino-1-methyl-4-nitropyrazol.
- 11) 3-Brom-5-tertiärbutylamino-1-methyl-4-nitropyrazol.
- 12) 5-Benzylamino-3-brom-1-methyl-4-nitropyrazol.
- 13) 5-Benzylamino-3-brom-1-ethyl-4-nitropyrazol.
- 14) 5-Benzylamino-3-brom-1-isopropyl-4-nitropyrazol.
- 15) 3-Brom-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)amino-4-nitropyrazol.
- 16) 3-Brom-1-(2'-hydroxyethyl)-5-methylamino-4-nitro-pyrazol.
- 17) 5-Benzylamino-3-brom-1-(2'-hydroxyethyl)-4-nitro-pyrazol
- 18) 1-Benzyl-3-brom-5-methylamino-4-nitropyrazol.
- 19) 1-Benzyl-3-brom-5-ethylamino-4-nitropyrazol.
- 20) 1-Benzyl-3-brom-5-(2'-hydroxyethyl)amino-4-nitro-pyrazol.
- 21) 1-Benzyl-5-benzylamino-3-brom-4-nitropyrazol.

#### 22) Verbindungen der allgemeinen Formel (V)

in der  $R_a$  und  $R_b$  Wasserstoff, einen  $C_1$ - bis  $C_6$ -Al-kylrest oder einen  $C_2$ - bis  $C_4$ -Hydroxyalkylrest bedeuten, mit der Maßgabe, daß, wenn  $R_b$  Wasserstoff ist,  $R_a$  nicht Wasserstoff, Methyl oder 2-Hydroxyethyl ist.

- 23) 4-Amino-1-methyl-5-methylaminopyrazol.
- 24) 4-Amino-5-(2'-hydroxyethyl)amino-1-methylpyrazol.
- 25) 4,5-Diamino-1-ethylpyrazol.
- 26) 4,5-Diamino-1-isopropylpyrazol.
- 27) 4-Amino-1-(2'-hydroxyethyl)-5-(2'-hydroxyethyl)aminopyrazol.
- 28) 4-Amino-1-(2'-hydroxyethyl)-5-methylaminopyrazol.
- 29) 4-Amino-(3)5-methylaminopyrazol.

- 30) 4-Amino-(3)5-ethylaminopyrazol.
- 31) 4-Amino-(3)5-(2'-hydroxyethyl)aminopyrazol.
- 32) Verwendung einer Verbindung der allgemeinen Formel (V) als Farbstoffvorstufe in Oxidationshaarfärbemitteln.

# INTERNATIONAL SEARCH REPORT

International Application No
PCT, 2 93/02644

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       | 7 93/02644                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A. CLASS<br>IPC 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FIFICATION OF SUBJECT MATTER C07D231/16 C07D231/38 A61K7                                                                                                                                                | 7/13                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| According                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to International Patent Classification (IPC) or to both national                                                                                                                                        | classification and IPC                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| B. FIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S SEARCHED                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Minimum of IPC 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | documentation searched (classification system followed by class CO7D A61K                                                                                                                               | sification symbols)                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Documenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion searched other than minimum documentation to the enten                                                                                                                                             | that such documents are included in the                                                                                                                                                                                                                                                                               | Belds searched                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Electronic o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | data base consulted during the international search (name of da                                                                                                                                         | ta base and, where practical, search term                                                                                                                                                                                                                                                                             | s used)                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| C. DOCUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Category *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Citation of document, with indication, where appropriate, of                                                                                                                                            | the relevant passages                                                                                                                                                                                                                                                                                                 | Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EP,A,O 295 118 (MAY & BAKER Li<br>December 1988<br>see page 15; claim 1                                                                                                                                 | IMITED) 14                                                                                                                                                                                                                                                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JOURNAL OF ORGANIC CHEMISTRY. vol. 51, no. 24, 28 November EASTON US pages 4656 - 4660 J. P. H. JUFFERMANS ET AL 'Se' thermolysis of bromo-1-nitro-1 Formation of 3-nitro-1H- vs. 4-nitro-1H-pyrazoles' | lective                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cited in the application see table I                                                                                                                                                                    | -/                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| X Fur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ther documents are listed in the continuation of box C.                                                                                                                                                 | X Patent family members are                                                                                                                                                                                                                                                                                           | e listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| "Special categories of cited documents:  "A" document defining the general state of the art which is not considered to be of particular relevance  "E" earlier document but published on or after the international filing date  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "P" document published prior to the international filing date but later than the priority date claimed |                                                                                                                                                                                                         | or priority date and not in concited to understand the princip invention.  "X" document of particular relevant cannot be considered novel or involve an inventive step when "y" document of particular relevant cannot be considered to involve document it combined with or ments, such combination bein in the art. | "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alons "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person shilled |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | actual completion of the international search  26 November 1993                                                                                                                                         | Date of mailing of the internat                                                                                                                                                                                                                                                                                       | - 7. 12. 93                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mailing address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2  NL - 2280 HV Rijswijk  Tcl. (+31-70) 340-2040, Tx. 31 651 epo nl,  Fax (+31-70) 340-3016                                    | Authorized officer  Voyiazoglou,                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

# INTERNATIONAL SEARCH REPORT

International Application No
PCT, ... 93/02644

| (Continuation) DOCUMENTS C NSIDERED TO BE RELEVANT  ategory Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. |                                                                                                                                                                                                                                                                                                                                                          |                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| aregory '                                                                                                                                                            | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                       | Relevant to claim No. |  |  |
| •                                                                                                                                                                    | EP,A,O 375 977 (WELLA AKTIENGESELLSCHAFT) 4 July 1990 cited in the application see page 7; claims 1,13                                                                                                                                                                                                                                                   | 1,8,22,<br>32         |  |  |
| <b>A</b>                                                                                                                                                             | CHEMICAL ABSTRACTS, vol. 113, no. 24, 10 December 1990, Columbus, Ohio, US; abstract no. 218276t, S. SUZUKI ET AL 'Anticancer agents containing 1H-pyrazolo(3,4-b)pyrazines' see abstract & JP,A,02 172 988 (LION CORP.)                                                                                                                                 | 22                    |  |  |
| <b>A</b>                                                                                                                                                             | CHEMICAL ABSTRACTS, vol. 104, no. 7, 17 February 1986, Columbus, Ohio, US; abstract no. 50818j, V. P. PEREVALOV ET AL 'Syntheses based on dimethylpyrazoles. 8. Interaction of 3,4-and 4,5-diaminopyrazoles with 4-nitronaphthalic anhydride' page 517; cited in the application see abstract & KHIM. GETEROTSIKL. SOEDIN. no. 8, 1985 pages 1090 - 1094 | 22                    |  |  |

### INTERNATIONAL SEARCH REPORT

mation on patent family members

International Application No
PCT, \_/ 93/02644

| Patent document Publication ited in search report date |          |                                           | family<br>ber(s)                                 | Publication<br>date                                      |  |
|--------------------------------------------------------|----------|-------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--|
| EP-A-0295118                                           | 14-12-88 | AU-B-<br>AU-A-<br>JP-A-<br>OA-A-<br>US-A- | 619469<br>1755388<br>63316770<br>8741<br>5232940 | 30-01-92<br>15-12-88<br>26-12-88<br>31-03-89<br>03-08-93 |  |
| EP-A-0375977                                           | 04-07-90 | DE-A-<br>WO-A-<br>US-A-                   | 3843892<br>9007504<br>5061289                    | 28-06-90<br>12-07-90<br>29-10-91                         |  |
| JP-A-02172988                                          | 04-07-90 | NONE                                      |                                                  |                                                          |  |

#### INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT, 93/02644 KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDE K 5 C07D231/16 C07D231/38 A6 C07D231/38 A61K7/13 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 5 CO7D A61K Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gehiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evti. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. 8 EP, A, O 295 118 (MAY & BAKER LIMITED) 14. ٨ Dezember 1988 siehe Seite 15; Anspruch 1 2 JOURNAL OF ORGANIC CHEMISTRY. Bd. 51, Nr. 24, 28. November 1086, **EASTON US** Seiten 4656 - 4660 J. P. H. JUFFERMANS ET AL 'Selective thermolysis of bromo-1-nitro-1H-pyrazoles. Formation of 3-nitro-1H- vs. 4-nitro-1H-pyrazoles' in der Anmeldung erwähnt siehe Tabelle I Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu X Siche Anhang Patentfamilie "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindt kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenischer Tätigkeit beruhend betrachtet werden "L" Veröffendichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffendichungsdatum einer anderen im Recherchenbericht genamten Veröffendichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung die beanspruchte Erfindum kann nicht als auf erfinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Vertindung für einen Fachmann naheliegend ut ausgeführt) "O" Veröffentlichung, die nich auf eine mindliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedahm, aber nach dem beanspruchten Prioritätsdahm veröffentlicht worden ist '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts *−* 7. 12. 93 November 1993 Name und Postanschrift der Internationale Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tr. 31 651 epo nl, Voyiazoglou, D

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

Fax (+31-70) 340-3016

1

### INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT, \_ 2 93/02644

|             |                                                                                                                                                                                                                                                                                                                                                                     | PCT,_2 93    | /02644             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|
| C.(Fortsetz | mg) ALS WESENTLICH ANGESEHENE UNTERLAGEN                                                                                                                                                                                                                                                                                                                            | <u> </u>     |                    |
| Kategorie'  | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kom                                                                                                                                                                                                                                                                              | menden Teile | Betr. Anspruch Nr. |
| A           | EP,A,O 375 977 (WELLA AKTIENGESELLSCHAFT) 4. Juli 1990 in der Anmeldung erwähnt siehe Seite 7; Ansprüche 1,13                                                                                                                                                                                                                                                       |              | 1,8,22,<br>32      |
| A           | CHEMICAL ABSTRACTS, vol. 113, no. 24, 10. Dezember 1990, Columbus, Ohio, US; abstract no. 218276t, S. SUZUKI ET AL 'Anticancer agents containing 1H-pyrazolo(3,4-b)pyrazines' siehe Zusammenfassung & JP,A,02 172 988 (LION CORP.)                                                                                                                                  |              | 22                 |
| <b>A</b>    | CHEMICAL ABSTRACTS, vol. 104, no. 7, 17. Februar 1986, Columbus, Ohio, US; abstract no. 50818j, V. P. PEREVALOV ET AL 'Syntheses based on dimethylpyrazoles. 8. Interaction of 3,4-and 4,5-diaminopyrazoles with 4-nitronaphthalic anhydride' Seite 517; in der Anmeldung erwähnt siehe Zusammenfassung & KHIM. GETEROTSIKL. SOEDIN. Nr. 8, 1985 Seiten 1090 - 1094 |              |                    |
|             |                                                                                                                                                                                                                                                                                                                                                                     |              |                    |
| -           |                                                                                                                                                                                                                                                                                                                                                                     |              |                    |

## INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichung – lie zur selben Patentfamilie gehören

Internationales Aktenzeichen PCT, \_. 93/02644

| Im Recherchenbericht<br>ingeführtes Patentdokument | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie         |                                                  | Datum der<br>Veröffentlichung                            |  |
|----------------------------------------------------|-------------------------------|-------------------------------------------|--------------------------------------------------|----------------------------------------------------------|--|
| EP-A-0295118                                       | 14-12-88                      | AU-B-<br>AU-A-<br>JP-A-<br>OA-A-<br>US-A- | 619469<br>1755388<br>63316770<br>8741<br>5232940 | 30-01-92<br>15-12-88<br>26-12-88<br>31-03-89<br>03-08-93 |  |
| EP-A-0375977                                       | 04-07-90                      | DE-A-<br>WO-A-<br>US-A-                   | 3843892<br>9007504<br>5061289                    | 28-06-90<br>12-07-90<br>29-10-91                         |  |
| JP-A-02172988                                      | 04-07-90                      | KEINE                                     |                                                  |                                                          |  |