This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Please replace paragraph [039] with the following amended paragraph:

FIG. 20 shows an expanded annulus stent with barbs on the radial extensions.

Please replace paragraph [043] with the following amended paragraph:

Additionally, to repair a weakened or thinned wall of a disc annulus 42, a surgical incision is made along the weakened or thinned region of the annulus 42 and one or more surgical sutures 40 can be placed at about equal distances laterally from the incision. Reapproximation or closure of the incision is accomplished by tying the sutures 40 so that the sides of the incision are drawn together. The reapproximation or closure of the incision enhances the natural healing and subsequent reconstruction by the natural tissue crossing the now surgically narrowed gap in the annulus 42. Preferably, the surgical sutures 40 are biodegradable, but permanent non-biodegradable materials may be utilized.

Please replace paragraph [045] with the following amended paragraph:

In a further embodiment, as shown in FIGs. 8A-B a biocompatible membrane can be employed as an annulus stent 10, being placed in and across the aperture 44. The annulus stent 10 acts as a bridge in and across the aperture 44, providing a platform for a traverse of fibroblasts or other normal cells of repair existing in and around the various layers of the disc annulus 42, prior to closure of the aperture 44.

- 2 -

135

FLUMEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

1300 I Street NW Washington, DC 20005 202.408.4000 Fax 202.408.4400

www.finnegan.com

Please replace paragraph [050] with the following amended paragraph:

The lower section 16 of the centralized vertical extension 12 can comprise a pair of lateral extensions, a left lateral extension 20 and a right lateral extension 22. The lateral extensions 20 and 22 comprise an inside edge 24, an outside edge 26, an upper surface 28, and a lower surface 30. The lateral extensions 20 and 22 can have an essentially constant thickness throughout. The inside edge 24 is attached to and is about the same length as the lower section 16. The outside edge 26 can be about 8mm-16mm in length. The inside edge 24 and the lower section 16 meet to form a horizontal plane, essentially perpendicular to the centralized vertical extension 12. The upper surface 28 of the lateral extensions 20 and 22 can form an angle from about 0°-60° below the horizontal plane. The width of the annulus stent 10 may be from about 3mm-5mm.

Please replace paragraph [055] with the following amended paragraph:

A porous matrix or mesh of biocompatible and bioresorbable fibers acting as a scaffold to regenerate disc tissue and replace annulus fibrosus as disclosed in, for example, U, S. Patent Nos. 5,108,438 (Stone) and 5,258,043 (Stone), a strong network of Miert fibers intermingled with a bioresorbable (or bioabsorable) material which attracts tissue ingrowth as disclosed in, for example, U.S. Patent No, 4,904,260 (Ray et al.).

FINDEGAN HENDERSON FARABOW CARRETT& DUNNER LLP

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com

Please replace paragraph [060] with the following amended paragraph:

In further embodiments, as shown in FIGs. 5AB-6AB, the left and right lateral extensions 20 and 22 join to form a solid pyramid or cone. Additionally, the left and right lateral extensions 20 and 22 may form a solid trapezoid, wedge, or bullet shape. The solid formation may be a solid biocompatible or bioresorbable flexible material, allowing the lateral extensions 20 and 22 to be compressed for insertion into aperture 44, then to expand conforming to the shape of the annulus' 42 inner wall.

Please replace paragraph [061] with the following amended paragraph:

Alternatively, a compressible core may be attached to the lower surface 30 of the lateral extensions 20 and 22, forming a pyramid, cone, trapezoid, wedge, or bullet shape. The compressible core may be made from one of the biocompatible or bioresorbable resilient foams well known in the art. The core can also comprise a fluid-expandable membrane, e.g., a balloon. The compressible core allows the lateral extensions 20 and 22 to be compressed for insertion into aperture 44, then to expand conforming to the shape of the annulus' 42 inner wall and to the cavity created by pathologic extrusion or surgical removal of the disc fragment.

FINNEGAN HENDERSON FARABOW GARRETT& DUNNER LLP

1300 I Street, NW, Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com

Please replace paragraph [064] with the following amended paragraph:

In an alternative method of securing the annulus stent 10 in the aperture 44, as shown in FIG. 9, a first surgical screw 50 and second surgical screw 52, with eyeholes

53 located at the top of the screws 50 and 52, are opposingly inserted into the adjacent vertebrae 54 and 56 below the annulus stent 10. After insertion of the annulus stent 10 into the aperture 44, a suture 40 is passed down though the disc annulus 42, adjacent to the aperture 44, through the eye hole 53 on the first screw 50 then back up through the disc annulus 42 and through the orifice 18 on the annulus stent 10. This is repeated for the second screw 52, after which the suture 40 is secured. One or more surgical sutures 40 are placed at about equal distances along the sides of the aperture 44 in the disc annulus 42. Reapproximation or closure of the aperture 44 is accomplished by tying the sutures 40 in such a fashion that the sides of the aperture 44 are drawn together. The reapproximation or closure of the aperture 44 enhances the natural healing and subsequent reconstruction by the natural tissue crossing the now surgically narrowed gap in the annulus 42. Preferably, the surgical sutures 40 are biodegradable but permanent non-biodegradable forms may be utilized. This method should decrease the strain on the disc annulus 42 adjacent to the aperture 44, precluding the tearing of the sutures through the disc annulus **42**.

Please replace paragraph [068] with the following amended paragraph:

In an illustrative embodiment, a hydrogel is injected into the internal cavity **62** of the flexible bladder **60**. A hydrogel is a substance formed when an organic polymer (natural or synthetic) is cross-linked via, covalent, ionic, or hydrogen bonds to create a

B9

HENDERSON
A R A B D W
ARR E T &
DUNNER LLP

1300 I Street, NW
Washington, DC 20005
202.408.4000
Fax 202.408.4400
www.finnegan.com

three-dimensional open-lattice structure, which entraps water molecules to form a gel.

The hydrogel may be used in either the hydrated or dehydrated form.

Please replace paragraph [072] with the following amended paragraph:

In an alternative embodiment, as shown in FIG. 13, the annulus stent 10 is substantially umbrella shaped, having a central hub 66 with radially extending struts 67. Each of the struts 67 is joined to the adjacent struts 67 by a webbing material 65, forming a radial extension 76 about the central hub 66. The radial extension 76 has an upper surface 68 and a lower surface 70, where the upper surface 68 contours to the shape of the disc annulus' 42 inner wall. The radial extension 76 may be substantially circular, elliptical, or rectangular in shape. Additionally, as shown in FIG. 20, the upper surface 68 of the radial extension 76 may be barbed 82 for fixation to the disc annulus' 42 inner wall and to resist explusion through the aperture 42.

Please replace paragraph [073] with the following amended paragraph:

As shown in FIGs. 14 and 15, the struts 67 are formed from flexible material, allowing the radial extension 76 to be collapsed for insertion into aperture 44, then the expand conforming to the shape of the inner wall of disc annulus 42. In the collapsed position, the annulus stent 10 is substantially frustoconical or shuttlecock shaped, and having a first end 72, comprising the central hub 66, and a second end 74.

FINNEGAN HENDERSON FARABOW GARRETT& DUNNERLLP

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com

Please replace paragraph [074] with the following amended paragraph:

B13

In an alternative embodiment, the radial extension **76** has a greater thickness at the central hub **66** edge than at the outside edge.

Please replace paragraph [080] with the following amended paragraph:

In a method of use, as shown in FIGs. 16A-16C, the radial extension **76** is collapsed together, for insertion into the aperture **44** of the disc annulus **42**. The radial extension **76** is folded such the upper surface **68** forms the inner surface of the cylinder. The annulus stent **10** is then inserted into the aperture **44**, inserting the leading end **72** though the aperture **44** until the entire annulus stent **10** is within the disc annulus **42**. The radial extension **76** is released, expanding within the disc **44**. The upper surface **68** of the annulus stent **10** contours to the inner wall of disc annulus **42**. The central hub **66** is positioned within the aperture **44** so that the annulus stent **10** may be secured to the disc annulus **42** using means well known in the art.

Please replace paragraph [082] with the following amended paragraph:

FINATEGAN HENDERSON FARABOW GARRETTE

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com In an alternative method of use, as shown in FIGs. 17A-17C, the radial extension 76 is collapsed together for insertion into the aperture 44 of the disc annulus 42. The radial extensions 76 are folded such that the upper surface 68 forms the outer surface of the stent, for example in a frustoconical configuration as illustrated. The annulus stent 10 is then inserted into the aperture 44, inserting the tail end 74 through the

Application No.: 10/075,615 Attorney Docket No. 8442.0002.02

Customer No. 22.852

aperture 44 until the entire annulus stent 10 is in the disc. The radial extensions 76 are released, expanding within the disc. The upper surface 68 of the annulus stent 10 contours to the disc annulus' 42 inner wall. The central hub 66 is positioned within the aperture 44 so that the annulus stent 10 may be secured to the disc annulus 42, using

means well known in the art.

Please replace paragraph [084] with the following amended paragraph:

In a method of use, as shown in FIGs. 12A-12B, where the annulus stent 10 has been inserted into the aperture 44, as has been previously described. Similarly, for the stent shown in FIGs. 18 through 21, an injection instrument, as known in the art, such as a syringe, can be used to inject the biocompatible fluid or expansive foam into the internal cavity 86 of the flexible bladder 80. The biocompatible fluid or expansive foam is injected through the annulus stent 10 into the internal cavity 86 of the flexible bladder 80. Sufficient material is injected into the internal cavity 86 to expand the flexible bladder 80 to fill the void in the intervertebral disc cavity. The use of the flexible bladder 80 is particularly useful when it is required to remove all or part of the intervertebral disc nucleus.

Please replace paragraph [086] with the following amended paragraph:

Various materials know to those skilled in the art can be employed in practicing the present invention. By means of example only, the body portions of the stent could be made of NiTi alloy, plastics including polypropylene, polyethylene, stainless steel

FINNEGAN **HENDERSON** FARABOW **GARRETT&** DUNNER LLP

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com