Computational topology: Image classification using Vietoris-Rips complex

Due on Friday, May 13, 2016

Neža Mramor Kosta, Gregor Jerše

Andrej Dolenc, Peter Us, Rok Ivanšek

Contents

Project description	9
Obtaining and preprocessing data	3
The classification model Relation to single linkage clustering algorithm	3
Γ esting	Ę

Project description

As the title implies, the idea behind the project is to use the Vietoris-Rips complex for image classification.

Obtaining and preprocessing data

```
class Scaler(BaseEstimator, TransformerMixin):
       """ Class used for scaling the dataset x.
           Removes the mean and than scales to values from [-1, 1].
           Implements inverse_transform method.
           Args:
           axis: if 1, standardize samples (rows)
                 if 0, standardize features (columns)
10
       def __init__(self, axis=1):
           assert axis in [0,1]
           self.axis = axis
       def fit(self, x):
           shape = (len(x), 1) if self.axis == 1 else (1, len(x[0]))
           self.means = np.mean(x, self.axis).reshape(shape)
           self.maxs = np.max(np.abs(x - self.means), self.axis).reshape(shape)
       def transform(self, x):
           return np.nan_to_num((x - self.means)/self.maxs)
       def fit_transform(self, x):
           self.fit(x)
           return self.transform(x)
       def inverse_transform(self, x):
           return (x*self.maxs) + self.means
```

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

The classification model

Definition 1 (Vietoris-Rips complex). Let X be a set of m-dimensional points $X \in \mathbb{R}^m$ and let d be a metric. Pick a parameter r > 0. Construct a simplicial complex as follows:

- Add a 0-simplex for each point in X.
- For $x_1, x_2 \in X$ add a 1-simplex between x_1, x_2 if $d(x_1, x_2) \leq r$.
- For $x_1, x_2, x_3 \in X$ add a 2-simplex with vertices x_1, x_2, x_3 if $d(x_1, x_2), d(x_1, x_3), d(x_2, x_3) \leq r$.
- ...
- For $x_1, x_2, ..., x_m \in X$, add a (m-1)-simplex with vertices $x_1, x_2, ..., x_m$ if $d(x_i, x_j) \le r$ for $0 \le i, j \le m$; that is, if all the points are within a distance of r from each other.

The simplicial complex is called the Vietoris-Rips complex and is denoted $VR_r(X)$.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Relation to single linkage clustering algorithm

Our intuition tells us, that the model we build using the Vietoris-Rips complex to classify the images, produces the same results as the well known single linkage clustering algorithm. In this section we aim to prove or at least give a strong intuition that this is indeed the case.

Definition 2. We say that disjoint subsets $A_1...A_k$ of vertices V in graph G(V, E) are k connected components of the graph G if the following is true:

- 1. The vertices inside A_i are connected i.e. there exists a path between arbitrary two vertices $a, b \in A_i$, for every $i \in 1...k$.
- 2. The sets of vertices $A_1, ..., A_k$ are disconnected i.e. there isn't an edges e(a, b) between a pair of two points (a, b) such that $a \in A_i, b \in A_j, i \neq j$.

Both algorithms take a set X of n samples with m features as input. We can think of a sample x in the set X as a point in the m-dimensional space $x \in \mathbb{R}^m$. The algorithms then constructs a graph with points X as the vertices (V) and edges E. The k connected components in the constructed graph corespond to the classes of samples.

Single linkage algorithm. The algorithm starts with n connected components (no edges in the graph). n each step the algorithm chooses the two connected components that are closest to each according to some distance metric d (in our case the euclidean distance) and joins them into one by adding an edge between their closest two vertices.

Definition 3. The distance D between two connected components A and B is defined as the distance of the pair of vertices (one from A and one from B) that are closest to each other. More formally

$$D(A,B) = \min_{a \in A, b \in B} d(a,b).$$

The algorithm stops when there are only k connected components left.

Vietoris-Rips classification algorithm. The algorithm builds a (1-dimensional) Vietoris-Rips complex $V_r(X)$ with parameter r. We choose the biggest r such that the Vietoris-Rips complex $V_r(X)$ has k connected components.

To prove that the two algorithms indeed produce the same connected components we will first prove the next claim.

Claim 1. Let $G_{sl}(V, E_{sl})$ be a graph produced by the single linkage algorithm for finding k clusters and let d_{max} denote the distance between vertices in graph G_{sl} that were connected in the last iteration of the algorithm. Graph G_{sl} has connected components $A_1...A_k$. The graph $G_{vr}(V, E_{vr})$ induced by the Vietoris-Rips complex $VR_{d_{max}}(V)$ has the same connected components $A_1...A_k$.

Proof. We prove the Claim 1 by induction on the steps in the single linkage algorithm. We start with a set of vertices V. Let j denote the step (iteration) of the algorithm, e_j the edge added in j-th step and d_j its length. We claim that at each j the graph G^j_{sl} constructed by the algorithm up to that point, has the exact same conected components as G^j_{vr} , that is the graph induced by the Vietoris-Rips complex $VR_{d_j}(V)$.

Base case. For j=0 this is obvious, since this is the initial state of the algorithm. Both graphs G_{sl}^0 and G_{vr}^0 consist only of vertices V. For j=1 the algorithm adds the smallest edge e_1 out of all possible candidates and builds a graph G_{sl}^1 . Edge e_1 has length d_1 . It is obvious that $VR_{d_1}(V)$ will induce a graph G_{vr}^1 that will also only contain edge e_1 , since no other pairwise distance between vertices V is smaller.

Induction step. Here we show that if for some j our claim holds, it will also hold after another iteration of the algorithm i.e. for j+1. In (j+1)-th iteration, the algorithm finds the edge e_{j+1} with length d_{j+1} and adds it to the graph. By the definition of the algorithm e_{j+1} is the smallest such edge that connects (joins) two seperate connected components. This means that every other edge e' with length $d' < d_{j+1}$ would not join connected components, but would instead just connect two vertices, that are both allready in the same connected component. From the definition of the Vietoris-Rips complex we can see that in the graph G_{vr}^{j+1} there will only be one new edge that will join two seperate connected components, and that will be exactly edge e_{j+1} . All the other extra edges that will be added in G_{vr}^{j+1} , but do not appear in G_{sl}^{j+1} have length less than d_{j+1} and will therefore only connect vertices inside of allready existing connected components of the graph G_{vr}^{j} . Since by our induction hypothesis graphs G_{sl}^{j} and G_{vr}^{j} had the same connected components and we joined two of the same connected components in both graphs, this means that the graphs G_{sl}^{j+1} and G_{vr}^{j+1} also have the same connected components.

We have proven that the graph G_{sl}^j constructed in j-th iteration of the single linkage algorithm indeed contains the same connected commponents as the graph G_{vr}^j induced by $VR_{d_j}(V)$ for an arbitrary j. This also prooves Claim 1.

Using Claim 1 we see that the connected components in G_{vr} and G_{sl} are indeed the same. We need to take into account that the Vietrois-Rips algorithm takes the biggest such r, so that the graph has k connected components, so $r > d_{max}$. But we can quickly see that the extra edges in the graph induced by $V_r(V_{sl})$ will not change the connected components. After all we allready have k connected components in G_{vr} . To join any two together would mean a violation of a fundemental rule of the algorithm.

Testing

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas

lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

References

[1] Leslie Lamport, LaTeX: a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.