Foundation of Cryptography, Lecture 4 Pseudorandom Functions

Iftach Haitner, Tel Aviv University

Tel Aviv University.

April 23, 2013

Section 1

Function Families

function families

- **1** $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$, where $\mathcal{F}_n = \{f : \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$
- **2** We write $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}\}$
- If $m(n) = \ell(n) = n$, we omit it from the notation
- We identify function with their description
- **1** The rv F_n is uniformly distributed over F_n

Efficient function families

Definition 1 (efficient function family)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if:

Samplable. \mathcal{F} is samplable in polynomial-time: there exists a PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. There exists a polynomial-time algorithm that given $x \in \{0,1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Definition 2 (random functions)

For $m, \ell \in \mathbb{N}$, let $\Pi_{m,\ell}$ be the family of all functions from $\{0,1\}^m$ to $\{0,1\}^\ell$.

Definition 2 (random functions)

For $m, \ell \in \mathbb{N}$, let $\Pi_{m,\ell}$ be the family of all functions from $\{0,1\}^m$ to $\{0,1\}^\ell$.

• It takes $2^m \cdot \ell$ bits to describe an element (i.e., function) of $\Pi_{m,\ell}$.

Definition 2 (random functions)

For $m, \ell \in \mathbb{N}$, let $\Pi_{m,\ell}$ be the family of all functions from $\{0,1\}^m$ to $\{0,1\}^\ell$.

- It takes $2^m \cdot \ell$ bits to describe an element (i.e., function) of $\Pi_{m,\ell}$.
- We sometimes think of $\pi \in \Pi_{m,\ell}$ as a random string of length $2^m \cdot \ell$.

Definition 2 (random functions)

For $m, \ell \in \mathbb{N}$, let $\Pi_{m,\ell}$ be the family of all functions from $\{0,1\}^m$ to $\{0,1\}^\ell$.

- It takes $2^m \cdot \ell$ bits to describe an element (i.e., function) of $\Pi_{m,\ell}$.
- We sometimes think of $\pi \in \Pi_{m,\ell}$ as a random string of length $2^m \cdot \ell$.
- Let $\Pi_n = \Pi_{n,n}$

Definition 3 (pseudorandom functions)

A function family ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^{\textit{m(n)}}\mapsto\{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1 \right| = \mathsf{neg}(n),$$

Definition 3 (pseudorandom functions)

A function family ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^{\textit{m(n)}}\mapsto\{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \Pr[D^{\mathcal{F}_n}(1^n) = 1] - \Pr[D^{\Pi_{m(n),\ell(n)}}(1^n) = 1 \right| = \mathsf{neg}(n),$$

for any oracle-aided PPT D.

1 Suffices to consider $\ell(n) = n$ (why?)

Definition 3 (pseudorandom functions)

A function family ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^{\textit{m(n)}}\mapsto\{0,1\}^{\ell(\textit{n})}\}$ is pseudorandom, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_{m(n),\ell(n)}}(1^n) = 1 \right| = \mathsf{neg}(n),$$

- **1** Suffices to consider $\ell(n) = n$ (why?)
- ② Easy to construct (with no assumption!) for $m(n) = \log n$ and $\ell \in \text{poly}$

Definition 3 (pseudorandom functions)

A function family ensemble $\mathcal{F}=\{\mathcal{F}_n:\{0,1\}^{\textit{m(n)}}\mapsto\{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\Pi_{m(n),\ell(n)}}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n),$$

- ① Suffices to consider $\ell(n) = n$ (why?)
- ② Easy to construct (with no assumption!) for $m(n) = \log n$ and $\ell \in \text{poly}$
- PRF imply a PRG

Definition 3 (pseudorandom functions)

A function family ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^{\textit{m(n)}} \mapsto \{0,1\}^{\ell(n)}\}$ is pseudorandom, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\Pi_{m(n),\ell(n)}}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n),$$

- **1** Suffices to consider $\ell(n) = n$ (why?)
- **②** Easy to construct (with no assumption!) for $m(n) = \log n$ and $\ell \in \text{poly}$
- PRF imply a PRG
- Pseudorandom permutations (PRPs)

Section 2

PRF from OWF

Construction 4

For
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
, let $g_0(s) = g(s)_{1,...,n}$ and $g_1(s) = g(s)_{n+1,...,2n}$. For $s, x \in \{0,1\}^*$ define f_s as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$
Let $\mathcal{F}_n = \{f_s: s \in \{0,1\}^n\}$ and $\mathcal{F} = \{\mathcal{F}_n\}$.

Construction 4

For
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
, let $g_0(s) = g(s)_{1,...,n}$ and $g_1(s) = g(s)_{n+1,...,2n}$. For $s, x \in \{0,1\}^*$ define f_s as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$
Let $\mathcal{F}_n = \{f_s: s \in \{0,1\}^n\}$ and $\mathcal{F} = \{\mathcal{F}_n\}$.

If g is an efficient function, then \mathcal{F} is an efficient family.

Construction 4

For
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
, let $g_0(s) = g(s)_{1,\dots,n}$ and $g_1(s) = g(s)_{n+1,\dots,2n}$. For $s,x \in \{0,1\}^*$ define f_s as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$ Let $\mathcal{F}_n = \{f_s : s \in \{0,1\}^n\}$ and $\mathcal{F} = \{\mathcal{F}_n\}$.

If g is an efficient function, then \mathcal{F} is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then \mathcal{F} (defined above) is a PRF.

Construction 4

For
$$g: \{0,1\}^n \mapsto \{0,1\}^{2n}$$
, let $g_0(s) = g(s)_{1,\dots,n}$ and $g_1(s) = g(s)_{n+1,\dots,2n}$. For $s,x \in \{0,1\}^*$ define f_s as $f_s(x) = g_{x_n}(\dots(g_{x_2}(g_{x_1}(s))))$
Let $\mathcal{F}_n = \{f_s: s \in \{0,1\}^n\}$ and $\mathcal{F} = \{\mathcal{F}_n\}$.

If g is an efficient function, then \mathcal{F} is an efficient family.

Theorem 5 (Goldreich-Goldwasser-Micali)

If g is a PRG then \mathcal{F} (defined above) is a PRF.

Corollary 6

OWFs imply PRFs.

Easy to prove for inputs of length 2.

Easy to prove for inputs of length 2.

Observation: $D = (g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom:

Easy to prove for inputs of length 2.

Observation: $D = (g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom:

Proof: $D' = (g(U_n^{(0)}), g(U_n^{(1)})) \approx_c U_{4n}$ and $D \approx_c D'$.

Easy to prove for inputs of length 2.

Observation: $D = (g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom:

Proof: $D' = (g(U_n^{(0)}), g(U_n^{(1)})) \approx_c U_{4n} \text{ and } D \approx_c D'.$

Hence we can handle input of length 2

Easy to prove for inputs of length 2.

Observation: $D = (g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom:

Proof:
$$D' = (g(U_n^{(0)}), g(U_n^{(1)})) \approx_c U_{4n}$$
 and $D \approx_c D'$.

- Hence we can handle input of length 2
- Extend to longer inputs?

Easy to prove for inputs of length 2.

Observation: $D = (g(g_0(U_n)), g(g_1(U_n)))$ is pseudorandom:

Proof:
$$D' = (g(U_n^{(0)}), g(U_n^{(1)})) \approx_c U_{4n}$$
 and $D \approx_c D'$.

- Hence we can handle input of length 2
- Extend to longer inputs?
- We show that an efficient sample from the *truth table* of $f \leftarrow \mathcal{F}_n$, is computationally indistinguishable from that of $\pi \leftarrow \Pi_n$.

The Actual Proof

Assume \exists PPT D, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$, and fix $n \in \mathbb{N}$

The Actual Proof

Assume $\exists \ PPT \ D$, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\left| \Pr[\mathsf{D}^{F_n}(1^n) = 1] - \Pr[\mathsf{D}^{\Pi_n}(1^n) = 1] \right| \ge \frac{1}{p(n)},$$
 (1)

for any $n \in \mathcal{I}$, and fix $n \in \mathbb{N}$

Let $t = t(n) \in \text{poly}$ be a bound on the running time of $D(1^n)$. We use D to construct a PPT D' such that

$$\left|\Pr[\mathsf{D}'(U_{2n}^t)=1]-\Pr[\mathsf{D}'(g(U_n)^t)=1\right|>\frac{1}{np(n)},$$

where $U_{2n}^t = U_{2n}^{(1)}, \dots, U_{2n}^{(t(n))}$ and $g(U_n)^t = g(U_n^{(1)}), \dots, g(U_n^{(t(n))})$.

Let g and f be as in the definition of \mathcal{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} \colon \{0, 1\}^n \mapsto \{0, 1\}^n \colon \pi \in \Pi_{k, n}\}$, where

- $h_{\pi}(x) = f_{\pi(x_1,...,k)}(x_{k+1,...,n})$
- $f_y(\lambda) = y$ (Hence, $\mathcal{H}_n = \Pi_n$)
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$ (Hence, $\mathcal{H}_0 = \mathcal{F}_n$)

Let g and f be as in the definition of \mathcal{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} \colon \{0, 1\}^n \mapsto \{0, 1\}^n \colon \pi \in \Pi_{k, n}\}$, where

- $h_{\pi}(x) = f_{\pi(x_1,...,k)}(x_{k+1,...,n})$
- $f_y(\lambda) = y$ (Hence, $\mathcal{H}_n = \Pi_n$)
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$ (Hence, $\mathcal{H}_0 = \mathcal{F}_n$)
- Note that $\mathcal{H}_0 = \mathcal{F}_n$ and $\mathcal{H}_n = \Pi_n$

Let g and f be as in the definition of \mathcal{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$, where

- $h_{\pi}(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$
- $f_y(\lambda) = y$ (Hence, $\mathcal{H}_n = \Pi_n$)
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$ (Hence, $\mathcal{H}_0 = \mathcal{F}_n$)
- Note that $\mathcal{H}_0 = \mathcal{F}_n$ and $\mathcal{H}_n = \Pi_n$
- Can we emulate \(\mathcal{H}_k \)?

Let g and f be as in the definition of \mathcal{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$, where

- $h_{\pi}(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$
- $f_y(\lambda) = y$ (Hence, $\mathcal{H}_n = \Pi_n$)
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$ (Hence, $\mathcal{H}_0 = \mathcal{F}_n$)
- Note that $\mathcal{H}_0 = \mathcal{F}_n$ and $\mathcal{H}_n = \Pi_n$
- Can we emulate \(\mathcal{H}_k \)?

Let g and f be as in the definition of \mathcal{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$, where

- $h_{\pi}(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$
- $f_y(\lambda) = y$ (Hence, $\mathcal{H}_n = \Pi_n$)
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$ (Hence, $\mathcal{H}_0 = \mathcal{F}_n$)
- Note that $\mathcal{H}_0 = \mathcal{F}_n$ and $\mathcal{H}_n = \Pi_n$
- Can we emulate \mathcal{H}_k ? We emulate it from D's point of view.

Let g and f be as in the definition of \mathcal{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$, where

- $h_{\pi}(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$
- $f_y(\lambda) = y$ (Hence, $\mathcal{H}_n = \Pi_n$)
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$ (Hence, $\mathcal{H}_0 = \mathcal{F}_n$)
- Note that $\mathcal{H}_0 = \mathcal{F}_n$ and $\mathcal{H}_n = \Pi_n$
- Can we emulate \mathcal{H}_k ? We emulate it from D's point of view.
- We present efficient "function family" $\mathcal{O}_k = \{O_k^{s^1, \dots, s^t}\}$ s.t.

for any $k \in [n]$, where H_K is uniformly sampled from \mathcal{H}_k .

Let g and f be as in the definition of \mathcal{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} : \{0, 1\}^n \mapsto \{0, 1\}^n : \pi \in \Pi_{k, n}\}$, where

- $h_{\pi}(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$
- $f_y(\lambda) = y$ (Hence, $\mathcal{H}_n = \Pi_n$)
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$ (Hence, $\mathcal{H}_0 = \mathcal{F}_n$)
- Note that $\mathcal{H}_0 = \mathcal{F}_n$ and $\mathcal{H}_n = \Pi_n$
- Can we emulate \mathcal{H}_k ? We emulate it from D's point of view.
- We present efficient "function family" $\mathcal{O}_k = \{O_k^{s^1, \dots, s^t}\}$ s.t.

for any $k \in [n]$, where H_K is uniformly sampled from \mathcal{H}_k .

Let g and f be as in the definition of \mathcal{F}_n

Definition 7

For $k \in \{0, ..., n\}$, let $\mathcal{H}_k = \{h_{\pi} \colon \{0, 1\}^n \mapsto \{0, 1\}^n \colon \pi \in \Pi_{k, n}\}$, where

- $h_{\pi}(x) = f_{\pi(x_{1,...,k})}(x_{k+1,...,n})$
- $f_y(\lambda) = y$ (Hence, $\mathcal{H}_n = \Pi_n$)
- $\Pi_{0,n} = \{0,1\}^n$, and for $\pi \in \Pi_{0,n}$ let $\pi(\lambda) = \pi$ (Hence, $\mathcal{H}_0 = \mathcal{F}_n$)
- Note that $\mathcal{H}_0 = \mathcal{F}_n$ and $\mathcal{H}_n = \Pi_n$
- Can we emulate \mathcal{H}_k ? We emulate it from D's point of view.
- We present efficient "function family" $\mathcal{O}_k = \{O_k^{s^1, \dots, s^t}\}$ s.t.

for any $k \in [n]$, where H_K is uniformly sampled from \mathcal{H}_k .

Completing the Proof

Let D'(y) return $D^{O_k^y}(1^n)$ for k uniformly chosen in [n].

Completing the Proof

Let D'(y) return $D^{O_k^y}(1^n)$ for k uniformly chosen in [n]. Hence

$$\begin{aligned} \left| \Pr[\mathsf{D}'(U_{2n}^t) = 1] \right| - \Pr[\mathsf{D}'(g(U_n)^t) = 1] \\ &= \left| \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{\mathsf{O}_k^{U_{2n}^t}}(1^n) = 1] - \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{\mathsf{O}_k^{g(U_n)^t}}(1^n) = 1] \right| \end{aligned}$$

Completing the Proof

Let D'(y) return $D^{O_k^y}(1^n)$ for k uniformly chosen in [n]. Hence

$$\begin{aligned} &|\Pr[\mathsf{D}'(U_{2n}^t) = 1]| - \Pr[\mathsf{D}'(g(U_n)^t) = 1] \\ &= \left| \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{\mathsf{O}_k^{U_{2n}^t}}(1^n) = 1] - \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{\mathsf{O}_k^{g(U_n)^t}}(1^n) = 1] \right| \\ &= \left| \frac{1}{n} \left| \sum_{k=1}^n \Pr[\mathsf{D}^{H_k}(1^n) = 1] - \sum_{k=1}^n \Pr[\mathsf{D}^{H_{k-1}}(1^n) = 1] \right| \end{aligned}$$

Completing the Proof

Let D'(y) return $D^{O_k^y}(1^n)$ for k uniformly chosen in [n]. Hence

$$\begin{aligned} &|\Pr[\mathsf{D}'(U_{2n}^t) = 1]| - \Pr[\mathsf{D}'(g(U_n)^t) = 1] \\ &= \left| \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k^{U_{2n}^t}}(1^n) = 1] - \sum_{k=1}^n \frac{1}{n} \cdot \Pr[\mathsf{D}^{O_k^{g(U_n)^t}}(1^n) = 1] \right| \\ &= \left| \frac{1}{n} \left| \sum_{k=1}^n \Pr[\mathsf{D}^{H_k}(1^n) = 1] - \sum_{k=1}^n \Pr[\mathsf{D}^{H_{k-1}}(1^n) = 1] \right| \\ &= \left| \frac{1}{n} \left| \Pr[\mathsf{D}^{H_n}(1^n) = 1] - \Pr[\mathsf{D}^{H_0}(1^n) = 1] \right| = \frac{1}{np(n)} \Box \end{aligned}$$

$$\mathcal{O}_k := \{ O_k^{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 ($O_k^{s^1,...,s^t}$)

On the *i*'th query $x^i \in \{0, 1\}^n$:

- If x^{ℓ} with $x_{1,...,k-1}^{\ell} = x_{1,...,k-1}^{i}$ was previously asked, set $z = s_{x_{k}^{i}}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_{k}^{i}}^{i}$ (for k = 0 set $z = s_{0}^{1}$).
- 2 Return $f_z(x_{k+1,...,n}^i)$

$$\mathcal{O}_k := \{ O_k^{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 ($O_k^{s^1,...,s^t}$)

On the *i*'th query $x^i \in \{0, 1\}^n$:

- If x^{ℓ} with $x_{1,...,k-1}^{\ell} = x_{1,...,k-1}^{i}$ was previously asked, set $z = s_{x_{k}^{i}}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_{k}^{i}}^{i}$ (for k = 0 set $z = s_{0}^{1}$).
- 2 Return $f_z(x_{k+1,...,n}^i)$
 - \mathcal{O}_k is stateful.

$$\mathcal{O}_k := \{ O_k^{s^1, \dots, s^t} \colon s^1, \dots, s^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 ($O_k^{s^1,...,s^t}$)

On the *i*'th query $x^i \in \{0, 1\}^n$:

- If x^{ℓ} with $x_{1,...,k-1}^{\ell} = x_{1,...,k-1}^{i}$ was previously asked, set $z = s_{x_{k}^{i}}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_{k}^{i}}^{i}$ (for k = 0 set $z = s_{0}^{1}$).
- 2 Return $f_z(x_{k+1,...,n}^i)$
 - \mathcal{O}_k is stateful.

$$\mathcal{O}_k := \{ O_k^{\mathbf{s}^1, \dots, \mathbf{s}^t} \colon \mathbf{s}^1, \dots, \mathbf{s}^t \in \{0, 1\}^n \times \{0, 1\}^n \}.$$

Algorithm 8 ($O_k^{s^1,...,s^t}$)

On the *i*'th query $x^i \in \{0, 1\}^n$:

- If x^{ℓ} with $x_{1,\dots,k-1}^{\ell} = x_{1,\dots,k-1}^{i}$ was previously asked, set $z = s_{x_{k}^{i}}^{\ell}$ (where ℓ is the minimal such index). Otherwise, set $z = s_{x_{k}^{i}}^{i}$ (for k = 0 set $z = s_{0}^{1}$).
- 2 Return $f_z(x_{k+1,...,n}^i)$
 - \circ \mathcal{O}_k is stateful.

Claim 9

$$\mathsf{D}^{\mathsf{O}_k^{g(U_n)^t}}(1^n) \equiv \mathsf{D}^{\mathsf{O}_{k-1}^{U_{2n}^t}}(1^n) \text{ for all } k \in \{1, \dots, n\}.$$

$$\mathsf{D}^{\mathsf{O}_k^{U_{2n}^t}}(1^n) \equiv \mathsf{D}^{H_k}(1^n)$$

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

$$\mathsf{D}^{\mathsf{O}_k^{U_{2n}^t}}(\mathsf{1}^n) \equiv \mathsf{D}^{H_k}(\mathsf{1}^n)$$

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

Proof?

$$\mathsf{D}^{\mathsf{O}_k^{U_{2n}^t}}(\mathsf{1}^n) \equiv \mathsf{D}^{H_k}(\mathsf{1}^n)$$

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?

$\mathsf{D}^{\mathsf{O}_k^{U_{2n}^t}}(1^n) \equiv \mathsf{D}^{H_k}(1^n)$

Proposition 10

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?

Let \tilde{O}_k be the variant of O_k that returns z (and not $f_z(x_{k+1,...,n})$ as in Algorithm 8) and let \tilde{D}_k be the algorithm that implements D using \tilde{O}_k (by computing $f_z(x_{k+1,...,n})$ by itself).

$$\mathsf{D}^{\mathsf{O}_k^{U_{2n}^t}}(1^n) \equiv \mathsf{D}^{H_k}(1^n)$$

For any $\ell, m \in \mathbb{N}$ and any algorithm A, it holds that $A^{\Pi_{\ell,m}} \equiv A^{B_{\ell,m}}$, where the stateful random algorithm $B_{\ell,m}$ answers identical queries with the same answer, and answers new queries with a random string of length m.

Proof? Does the above trivialize the whole issue of PRF?

Let O_k be the variant of O_k that returns z (and not $f_z(x_{k+1,...,n})$ as in Algorithm 8) and let \widetilde{D}_k be the algorithm that implements D using \widetilde{O}_k (by computing $f_z(x_{k+1,...,n})$ by itself).

By Proposition 10

$$\mathsf{D}^{\mathsf{O}_{k}^{U_{2n}^{t}}}(1^{n}) \equiv \widetilde{\mathsf{D}}_{k}^{\widetilde{\mathsf{O}}_{k}^{U_{2n}^{t}}}(1^{n}) \equiv \widetilde{\mathsf{D}}_{k}^{\pi_{k,n}}(1^{n}) \equiv \mathsf{D}^{H_{k}}(1^{n}) \tag{2}$$

 $\mathsf{D}^{\mathsf{O}_k^{g(U_n)^t}}(1^n) \equiv \mathsf{D}^{H_{k-1}}(1^n)$

$$\mathsf{D}^{\mathsf{O}_k^{g(U_n)^t}}(1^n) \equiv \mathsf{D}^{H_{k-1}}(1^n)$$

Immediately follows by Claim 9 and Eq 2.

Section 3

PRP from PRF

Pseudorandom permutations

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 11 (pseudorandom permutations)

A permutation ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\Pi}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{3}$$

for any oracle-aided PPT D

Pseudorandom permutations

Let $\widetilde{\Pi}_n$ be the set of all permutations over $\{0,1\}^n$.

Definition 11 (pseudorandom permutations)

A permutation ensemble $\mathcal{F} = \{\mathcal{F}_n : \{0,1\}^n \mapsto \{0,1\}^n\}$ is a pseudorandom permutation, if

$$\left| \Pr[\mathsf{D}^{\mathcal{F}_n}(\mathsf{1}^n) = \mathsf{1}] - \Pr[\mathsf{D}^{\widetilde{\mathsf{\Pi}}_n}(\mathsf{1}^n) = \mathsf{1} \right| = \mathsf{neg}(n), \tag{3}$$

for any oracle-aided PPT D

Eq 3 holds for any PRF

Definition 12 (LR)

Given $f: \{0,1\}^n \mapsto \{0,1\}^n$, the permutation $LR(f): \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ is defined by

$$LR(f)(\ell,r) = (r,f(r) \oplus \ell).$$

Let $LR^{i}(f): \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be the *i*'th iteration of the above operation.

Definition 12 (LR)

Given $f: \{0,1\}^n \mapsto \{0,1\}^n$, the permutation $LR(f): \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ is defined by

$$LR(f)(\ell, r) = (r, f(r) \oplus \ell).$$

Let $LR^{i}(f): \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be the *i*'th iteration of the above operation.

Construction 13

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $LR^i(\mathcal{F}) = \{LR^i(\mathcal{F}_n) = \{LR^i(f) \colon f \in \mathcal{F}_n\}\}$,

Definition 12 (LR)

Given $f: \{0,1\}^n \mapsto \{0,1\}^n$, the permutation $LR(f): \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ is defined by

$$LR(f)(\ell,r) = (r,f(r) \oplus \ell).$$

Let $LR^{i}(f): \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be the *i*'th iteration of the above operation.

Construction 13

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $LR^i(\mathcal{F}) = \{LR^i(\mathcal{F}_n) = \{LR^i(f) \colon f \in \mathcal{F}_n\}\}$,

 $LR(\mathcal{F})$ is always a permutation family, and is efficient if \mathcal{F} is.

Definition 12 (LR)

Given $f: \{0,1\}^n \mapsto \{0,1\}^n$, the permutation $LR(f): \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ is defined by

$$LR(f)(\ell,r) = (r,f(r) \oplus \ell).$$

Let $LR^{i}(f): \{0,1\}^{2n} \mapsto \{0,1\}^{2n}$ be the *i*'th iteration of the above operation.

Construction 13

Given a function family $\mathcal{F} = \{\mathcal{F}_n \colon \{0,1\}^n \mapsto \{0,1\}^n\}$, let $LR^i(\mathcal{F}) = \{LR^i(\mathcal{F}_n) = \{LR^i(f) \colon f \in \mathcal{F}_n\}\}$,

 $LR(\mathcal{F})$ is always a permutation family, and is efficient if \mathcal{F} is.

Theorem 14 (Luby-Rackoff)

Assuming that \mathcal{F} is a PRF, then $LR^3(\mathcal{F})$ is a PRP

It suffices to prove the following holds for any $n \in \mathbb{N}$ (why?)

Claim 15

$$|\Pr[D^{LR^3(\Pi_n)}(1^n) = 1] - \Pr[D^{\widetilde{\Pi}_{2n}}(1^n)| = 1] \le \frac{4 \cdot q^2}{2^n}$$
, for any *q*-query algorithm D.

It suffices to prove the following holds for any $n \in \mathbb{N}$ (why?)

Claim 15

$$|\Pr[D^{LR^3(\Pi_n)}(1^n) = 1] - \Pr[D^{\widetilde{\Pi}_{2n}}(1^n)| = 1] \le \frac{4 \cdot q^2}{2^n}$$
, for any *q*-query algorithm D.

• How would you prove Claim 15?

It suffices to prove the the following holds for any $n \in \mathbb{N}$ (why?)

Claim 15

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)| = 1] \le \frac{4 \cdot q^2}{2^n},$$
 for any *q*-query algorithm D.

- How would you prove Claim 15?
- Start with non-adaptive D, and show that things only "get wrong" if $LR(\ell, r) = LR(\ell', r')$ for two different queries $(\ell, r) \neq (\ell', r')$

It suffices to prove the following holds for any $n \in \mathbb{N}$ (why?)

Claim 15

$$|\Pr[\mathsf{D}^{\mathsf{LR}^3(\Pi_n)}(1^n) = 1] - \Pr[\mathsf{D}^{\widetilde{\Pi}_{2n}}(1^n)| = 1] \le \frac{4 \cdot q^2}{2^n},$$
 for any *q*-query algorithm D.

- How would you prove Claim 15?
- Start with non-adaptive D, and show that things only "get wrong" if $LR(\ell, r) = LR(\ell', r')$ for two different queries $(\ell, r) \neq (\ell', r')$
- Can you bound the above probability?

Section 4

Applications

General paradigm

Design a scheme assuming that you have random functions, and the realize them using PRFs.

Private-key Encryption

Construction 16 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F} , define the encryption scheme (Gen, E, D)):

Key generation: Gen(1ⁿ) returns $k \leftarrow \mathcal{F}_n$

Encryption: $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption: $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

Private-key Encryption

Construction 16 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F} , define the encryption scheme (Gen, E, D)):

Key generation: Gen(1ⁿ) returns $k \leftarrow \mathcal{F}_n$

Encryption: $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption: $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

Advantages over the PRG based scheme?

Private-key Encryption

Construction 16 (PRF-based encryption)

Given an (efficient) PRF \mathcal{F} , define the encryption scheme (Gen, E, D)):

Key generation: Gen(1ⁿ) returns $k \leftarrow \mathcal{F}_n$

Encryption: $E_k(m)$ returns $U_n, k(U_n) \oplus m$

Decryption: $D_k(c = (c_1, c_n))$ returns $k(c_1) \oplus c_2$

- Advantages over the PRG based scheme?
- Proof of security?