個案演練分析參考表格 南 區 10 組

重要提醒:本分析表格提供參與演練夥伴使用,係基於提供案例的有限資訊,並結合事故調查的專業方法論進行。一場實際、完整的事故調查,需要 更詳盡的現場勘查、人員訪談與物證檢驗來支持所有結論。

演練案例:

感電案 1: 從事廠房屋頂天井燈更換作業發生感電致死災害

一. 事件成因分析圖 (ECFC)

此圖將事故發生的事件及相關條件按時間順序,由左至右呈現,以視覺化方式釐清因果關係。

二. 時間序列表

以表格形式記錄事故發生的先後順序和相關條件,為後續分析奠定基礎。

日期/時間	事件描述	事實/	主(P)/ 次(S)事	相關條件1 (直接條件)	相關條件 2 (條件 1 的前提)
		推斷	件		
110年8月	罹災者獨自抵達公	事	S		作業程序缺乏雙人
6 日 13:08	司,開始進行天井	實			作業規定
	燈更換工程。				
110年8月	罹災者在未停止送	推	Р		
6 日 13:08	電的情況下,持續	斷			
- 14:30	進行天井燈更換作				
	業。				
110年8月	罹災者在固定式起	事	Р	未使用高空作	高處作業有 SOP 流
6 日 14:30	重機維修走道上,	實		業平台,在起	程
	進行第3盞天井			重機走道上進	
	LED 燈更換作業。		_	行維修作業	
110年8月	罹災者右手虎口不	推	Р		
6 日 14:30	慎碰觸天井 LED 燈	斷			
	帶電螺旋金屬。				
110年8月	罹災者身體心臟通	推	Р	未使用絕緣手	未遵守 SOP
6 日 14:30	過左手與接地燈座	斷		套等個人防護	未執行 LOTO(上鎖
	形成電流迴路,導			具	掛牌)作業程序
	致感電。			燈具未斷電	
110年8月	罹災者突然倒下躺	事	Р	未即時救援	無人陪同作業
6 日 14:30	在維修走道上。	實		不 以 时	
110年8月	經送醫急救後宣告	事	Р		
6 日 16:11	死亡。	實			
		,			

三. 為何樹分析 (Why-Tree)

本分析從最終的傷害事件開始,透過不斷追問「為什麼」來探究事件的根本 原因。

四. 屏障分析 (Barrier Analysis)

本分析旨在識別應有但失效、缺失或不足的屏障,導致危害接觸到目標。

• **危害**: 電氣危害 (帶電燈具) **目標**: 作業人員 (罹災者)

屏障類型	屏障	屏障表現	屏障失效原因	屏障如何影響事故
	, ,	(事故時狀		(失效的後果)
		態)		(, ,
物理性	絕緣手套、	未佩戴	罹災者個人防護意識	罹災者身體直接與帶電
	絕緣鞋		不足;公司未強制要	體接觸,無法阻止電流
(可再討論)			求或監督	通過身體。
作業程序	LOTO (上鎖	未執行	公司未建立或執行完	導致罹災者在帶電狀態
	掛牌)作業		整的 LOTO 程序	下作業,未能將電氣危
	程序			害從源頭消除。
作業程序	雙人作業規	未執行	罹災者獨自進行作	缺乏互相監督與提醒,
	定		業,公司未監督	一旦發生事故無人可立
				即發現或協助。
作業程序	高空作業安	未完全執行	罹災者在起重機維修	增加了作業的不穩定
	全程序		走道上作業,而非使	性,可能影響操作穩定
			用安全的高空作業平	度。
			台	
行政管理	安全教育訓	不足或未落實	罹災者可能缺乏足夠	罹災者未能意識到在未
	練		的電氣安全知識與風	斷電情況下作業的危險
			險認知	性。
1- 1 1/2 -10			ハコト中国まりかた	1 4 7 m 7 m 7 m 7 m
行政管理	現場安全督	缺乏	公司未安排專人進行	未能及時發現並糾正不
	導		現場安全巡查與督導	安全的作業行為。

五. 變更分析 (Change Analysis)

本分析比較「事故狀況」與一個「理想的無事故狀況」,以識別導致事故的關鍵差異。

因素	事故狀況	先前、理想或未發生	差異(變	效果評估(此差
(Factor)		事故狀況(比較基	更)	異對事故的影
		準)		響)
作業方法	在未停止送電的情況	在進行電氣作業前,先	未執行斷	這是導致感電事
	下進行燈具更換。	進行斷電並上鎖掛牌。	電與 LOTO	故發生的直接原
			程序	因。
人力配置	罹災者獨自進行作	應安排至少兩人進行高	獨自作業	導致罹災者在發
	業。	風險作業,以互相監督		生事故後無法立
		與協助。		即獲得協助。
個人防護	未佩戴絕緣手套。	應佩戴絕緣手套以防止	未佩戴個	失去了最後一層
具		感電。	人防護具	物理性屏障,讓
				身體直接暴露於
				電氣危害。

六. 人為失誤分析 (Human Failure Analysis)

本分析探討影響人員行為的深層次原因,而非僅歸咎於個人。

失誤類型	主要不安全行為/失誤	根本原因(組織與系統層
		面)
技術性失誤	在未斷電情況下,誤觸帶電金	缺乏 LOTO 程序,且未提供電
(失誤或遺忘?)	屬。	壓檢測工具。
規則性錯誤	未遵守雙人作業規定或斷電程	公司未明確建立或強制執行
(不知規則,做錯?)	序。	相關作業規則。
知識性錯誤	罹災者可能對電氣作業的風險認	安全教育訓練不足,未能有
(知識不足,誤判?)	知不足。	效傳達電氣危害。
違規行為	在未停止送電的危險狀況下進行	公司的安全文化薄弱,對違
(經常?情境?例外?)	作業。	規行為缺乏監督與懲處。

七. 根本原因分析與矯正改善措施

本章節匯總前述六項分析的結果,旨在明確事故的直接原因與根本原因,並依據控制階層理論,提出能有效防止災害再次發生的系統性改善建議。

(一) 立即原因

一、 不安全的狀況:

電源未關閉且燈具處於帶電狀態。

二、 不安全的行為:

- 1. 罹災者在未斷電的情況下,獨自進行電氣設備更換作業。
- 2. 罹災者未佩戴絕緣手套。

(二) 根本原因

- 一、 管理層面: 公司缺乏完善的作業安全管理制度,未建立有效的 LOTO 程序、雙人作業規定及現場安全監督機制。
- 二、 組織層面: 公司安全文化薄弱,未提供足夠且有效的安全教育訓練, 導致員工安全意識不足。

(三) 矯正改善措施建議

依據風險控制階層 (消除 > 取代 > 工程控制 > 管理控制 > 個人防護 具),提出以下矯正措施:

- 、 工程控制層面 (最優先):

- 1. 在電氣設備配電盤設置明顯的警示標誌,並加裝鎖具,確保非經授 權無法操作。
- 2. 優先採用無須人工旋轉或接觸帶電體的燈具設計,減少作業時的接 觸風險。

二、 管理控制層面:

- 1. 建立並嚴格執行「LOTO (上鎖掛牌) 作業程序」,確保電氣作業前 必須先斷電並上鎖。
- 2. 制定並落實「電氣設備雙人作業規定」·確保高風險作業有相互監督與協助的人員。
- 3. 強化安全教育訓練,特別是針對電氣危害與 LOTO 程序的訓練,並 定期進行考核。
- 4. 指派專職或兼職的安全督導員,進行現場巡查,及時糾正不安全的 作業行為。

三、 個人防護具:

1. 強制要求所有從事電氣相關作業的人員,必須佩戴絕緣手套及絕緣 鞋等個人防護具,並確保其定期檢查與更換。