GROUP PROJECT DESCRIPTION (WIA2005 - Algorithm Analysis and Design)

University/Programme/Course: University of Malaya/Bachelor of Computer Science/Algorithm Analysis

and Design**Year: 2nd** year / 4th semester

Pedagogical Approach: Project-based Learning

Learning Outcome:

Experience analysing and designing algorithms for problem-solving with other teammates.

- a. Utilise all of the chosen tools
- b. Apply algorithms that have been learned in this course to solve the given problems.
- c. Explore at least one new algorithm to solve the given problem.
- d. Integrate all of the algorithms within a computer program.
- e. Execute the computer program while explaining the relation between steps in algorithms with the behaviour/output of the computer program.
- f. Analyse the complexity of the main algorithms that solve the given problem.
- g. Function effectively as a team member.
- h. Communicate effectively through report and presentation.

Objective:

This project requires you and your teammates to analyse, design, and code a computer program using Python and the chosen tools to solve the given problems.

Project Scope:

To meet the project requirements, you will need to:

- ✓ Form a work team of 6 members (must be within the same tutorial session).
- Elect a team leader, write a contract item and sign using the group contract template in Appendix A.
- ✓ Identify clear roles and responsibilities, distributing and coordinating various tasks appropriately, and able to operate as a high performing team. You must clearly communicate how you have worked as a team. Refer to FILA form in Appendix B.
- ✓ Analyse, design, and code a computer program using Python and the chosen tools to solve the given problems as the following:-

One of the essences of computer science and information technology is to solve problems faced by humankind. As the outcome of this project, you are required to develop a computer program that is able to resolve the following problems:-

Problem 1: Customer who needs to make a delivery needs to know which courier company can does it fast (assuming that the shorter the distance, the quicker is the delivery). The application will analyse five (5) local courier companies which have their delivery hubs located in various locations in West Malaysia. The details of the courier companies and their delivery hubs are given in Table 1.

Courier Company	Delivery Hub	Coordinate
City-link Express	Port Klang	3.0319924887507144,
		101.37344116244806
Pos Laju	Petaling Jaya	3.112924170027219,
		101.63982650389863
GDEX	Batu Caves	3.265154613796736,
		101.68024844550233
J&T	Kajang	2.9441205329488325,
		101.7901521759029
DHL	Sungai Buloh	3.2127230893650065,
		101.57467295692778

^{*}Hub locations are fictional – created for the purposes of this project.

Table 1: Details of courier companies and their hub locations.

- 1. Get and mark locations of all hub locations given in Table 1.
 - a. Guide 1: you can use Python Geocoding Toolbox

Lookup: https://pypi.python.org/pypi/geopy#downloads

b. Guide 2: you can use gmplot

Lookup: https://github.com/vgm64/gmplot

2. Let say, three (3) customers would like to make a door-to-door parcel delivery using any one of the courier companies, details as given in Table 2. Get the distances between origin and destination.

Customer	Origin	Destination
Customer 1	Rawang (3.3615395462207878, 101.56318183511695)	Bukit Jelutong (3.1000170516638885, 101.53071480907951)
Customer 2	Subang Jaya (3.049398375759954, 101.58546611160301)	Puncak Alam (3.227994355250716, 101.42730357605375)
Customer 3	Ampang	Cyberjaya

	(3.141855957281073,	(2.9188704151716256,	
	101.76158583424586)	101.65251821655471)	

Table 2: Example customer delivery requests.

- a. Guide 1: you can use Python Geocoding Toolbox
- b. Guide 2: you should use Google Distance Matrix API
 - i. Login to the google developer's website and follow through the examples. It is important that you know how to use the API key given to you within the code that you are going to use. Refer to this link: https://developers.google.com/maps/documentation/distance-matrix/start
- 3. Assuming that all deliveries must go through their delivery hub. For example, a delivery from Kuala Lumpur (origin) will go through Pos Laju Hub in Petaling Jaya to Putrajaya (destination). Suggest the least distance that the parcel has to travel for each customer using every courier company.
- 4. Plot line between the destinations before and after the algorithm (defined in 4) is chosen.
 - a. Guide1: you can use **google.maps.Polyline**. You can refer to this link:

https://www.sitepoint.com/create-a-polyline-using-the-geolocation-and-the-google-maps-api/

Problem 2: Shortest distance travelled does not mean that the courier company is the most recommended option for customer to use. A sentiment analysis of the related news articles about the courier company must be conducted.

- 5. Extract information from three (3) articles from online news websites that have published stories related to each courier company.
 - a. Sometimes a webpage must be converted to the text version before it can be done.
 - i. Guide 1: You may refer to this website to extract word from a website https://www.textise.net/
 - b. Guide 2: You may refer to this website on how to count word frequency in a website https://programminghistorian.org/lessons/counting-frequencies
 - c. You can also filter stops words from the text you found.
 - i. Guide 3: Stops words such as conjunctions and prepositions. You may refer to this link: https://www.ranks.nl/stopwords
 - ii. Program using a string matching algorithm to find and delete the stop words.
- 6. Plot line/scatter/histogram graphs related to the word count using Plotly (Word count, stop words)
 - d. Guide 3: You may refer to this link on how to install Plotly and how to use the API keys

http://www.instructables.com/id/Plotly-with-Python/

https://plot.ly/python/getting-started/

- 7. Compare words in the web pages with the positive, negative and neutral English words using a String-Matching algorithm
 - e. Guide 4: You may use the following word as positive and negative English words http://positivewordsresearch.com/list-of-positive-words/

- f. Put these words in a text file for you to access them in your algorithm.
- g. Words that are not on the list can be considered as 'neutral'.
- 8. Plot histogram graphs of positive and negative words found in the web pages.
 - h. Guide 5: Use Plotly
- 9. Give an algorithmic conclusion regarding the sentiment of those articles
 - i. Guide 6: If there are more positive words, conclude that the article is giving positive sentiment, if there are more negative words, conclude that the article is giving negative sentiment.
 - j. You may try to conclude in different perspectives such as whether the list of positive and negative words above is accurate to be used in the context of the article you extracted the text
 - k. Based on the conclusion, you may say which courier company have the best sentiment.

Problem 3: Customers need to be able to choose the best courier company based on the distance as well as the result of sentiment analysis of related online articles.

10. Calculate the total probability distribution of possible routes. Then, write the summary of the courier companies, ranking from the most recommended to the least recommended based on distance and sentiment.

Problem 4: Assuming that video or audio from the news or customer feedback will be used to provide sentiment insights in the future, Dynamic Time Warping (DTW) is one of the algorithms that can potentially be used. Explain the concept of DTW and demonstrate the implementation of DTW in analysing video an audio. For example, given the following video or "J&T", (https://www.youtube.com/watch?v=ZwVFj8CfFeE), identify some words, for example "memohon" and "maaf".

- ✓ Week 6: Only the group leader has to submit the following in a .zip file through Spectrum:
 - Group Contract
 - 1st FILA form (compulsory to all members to develop the program)
- ✓ Week 6-12: Analyse, design, and code a computer program using Python and the chosen tools to solve the given problems.
- ✓ Week 12: Each student needs to individually submit the peer evaluation form through Google Form (Link will be provided later). Your peer evaluation is confidential and will not be exposed to other team members.
- ✓ Week 13-14: Each group has to do 30 minutes of system demonstration and presentation using the Powerpoint slides. All group members must present and have the camera switched on.
- ✓ Week 14: One final submission for each group. Only the group leader has to submit the following in a .zip file through Spectrum:
 - Source code: raw python files (All programming codes must use python 2 or 3)
 - 2nd FILA form (compulsory to all members to develop the program)
 - Report Content:
 - 1. Introduction
 - 2. Description
 - Elaborate how tools and algorithms resolve each of the given problems.
 - Highlight at least one new algorithm that has NOT been taught in this course to solve the given problems.

- 3. Explain the time complexity of each of the algorithm that resolves the given problem.
- 4. The program code: source code and snapshots of input/output.
- 5. Conclusion
- 6. References

Assessment Criteria:

The assessment for this group project is divided into two categories:

- o Assessment criteria for soft skill as described in Table 1
- o Assessment criteria for algorithms in solving the given problems as described in Table 2

Table 1: Assessment criteria for soft skill (Individual Assessment)

		Partially		Exceeds	Exemplary
		meets	Meets		
Skill level	Score Description	1	2	3-4	5
CS1 (KIM) Presentation (2%)	The ability to present ideas clearly, effectively and confidently, in both oral, written forms Oral Parameters: delivery, projection (pace, volume, enunciation) appearance (attire and demeanor)	Either one parameter is acceptabl e.	All parameters are acceptable.	Some parameter s are exception al.	All parameters are exceptional.
TS4 FILA form (3%)	The ability to contribute towards: • planning, • coordination of the team's efforts	The student is able to contribute towards any one task	The student is able to feasibly contribute towards both tasks.	The student is able to contribute towards both tasks well.	The student is consistently able to contribute towards both tasks excellently.

Table 2: Assessment criteria for algorithms in solving the given problems (Group Assessment)

Criteria						
	Scoring					
Accuracy /		4	3	2-1		
Content	5					
Knowledge		Almost all algorithms and	Most algorithms	Some		
	All algorithms and the	the usage of tools are	and the usage	algorithms and		
	usage of tools are	presented, executed without	of tools are	the usage of		
	presented, executed	error and output appears to	presented,	tools are		
	without error and	be accurate.	without error	presented,		
	output appears to be		but output	executed with		
	accurate.		appears to be	minor/major		
			less accurate.	error, resolved		
				with hard-		
				codes, output		
				appears to be		
-Algorithm to				accurate.		
resolve Problem						
1 (5%) -Algorithm to						
resolve Problem						
2 (5%)						
-Algorithm to						
resolve Problem						
3 (5%)						
Integration	5	4	3-2	1-0		
between items		Most system appears to be	Some system	Minor		
(5%)	The entire system	integrated	appears to be	integration		
	appears to be		integrated with	between items		
	integrated		some hard-	1-10 with hard-		
			coding	coding		
Include new			3-1	0		
algorithm that		5-4				
is not taught in			At least one	None		
the course (5%)		t one new algorithm that	new algorithm			
	resolves Problem 1, Pro	blem 2, or Problem 3.	that resolves			
			the sub-			
D - 1-1			problem.			
Problem 4 (5%)		5-4	3-1	O None		
	Ablata imami	unia Tima Mannia ata anal	Able to explain	None		
	•	amic Time Warping to analyse	the concept of			
	video or audio.		Dynamic Time			
			Warping			

Appendix A

Semester 2 2020/2021	WIA2005: ALGORITHMS ANALYSIS AND DESIGN					
	GROUP CONTRACT					
I						
A team of at most 6 students to						
Declare and identify individual	strength					
Identify individual role in the te	eam					
Agreed on meeting time, venue, communication means and approaches to arrives at any decision						
Develop team social contact						
Deliverable / To submit						
Each member role and contract						
Group Leader:						
Contract Item: As a team, we agree t	to					
Participation						
• Communication						
 Meetings 						

• Conduct	-
Conduct	
• Deadlines	
• Conflict	

In a						
		f the above, we				
USIC						
Diago			is affective and fo	anila a		
Pleas	e ensure that	t the items in the claus	e is effective and fe	easible.		
Pleas	e ensure tha	t the items in the claus	e is effective and fe	easible.		
Pleas	e ensure tha	t the items in the claus	e is effective and fe	easible.		
					Signature	
Pleas	e ensure that	t the items in the claus		easible. eam Role	Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	
					Signature	

(Assessor:	Date Received:)

Appendix B

FACTS	IDEA	AS		LEARNING ISSUES		ACTIC	N		DATELINE
What we know about the task		What	t do we need to find o	out?	1	Who	is go	ng to do it?	
			ı					imr	nediately
process to develop or model the system - Integrate theory and practical theory		•		translated the ical or real scenario	- Activitie discussion	•	roup		
			variou solut	knowledge and us of industries and ion and	- Find reso information internet of	on thro	_		