²⁰⁷₈₃ Bi ₁₂₄

1 Decay Scheme

Le bismuth 207 se désintègre par capture électronique vers le plomb 207. Une faible transition par émission bêta plus a été mise en évidence.

Bi-207 disintegrates by electron capture to Pb-207. A weak transition by positron emission has been reported.

2 Nuclear Data

 $\begin{array}{llll} T_{1/2}(^{207}{\rm Bi}~) & : & 32.9 & (14) & {\rm a} \\ Q^+(^{207}{\rm Bi}~) & : & 2397.5 & (21) & {\rm keV} \end{array}$

2.1 Electron Capture Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$	P_K	P_L	P_{M+}
$\begin{array}{c} \epsilon_{0,4} \\ \epsilon_{0,3} \\ \epsilon_{0,1} \end{array}$	57,6 (21) 764,1 (21) 1827,8 (21)	7,03 (23) 84,1 (6) 8,8 (6)	Allowed Unique 1st Forbidden 2nd Forbidden	8,3 10,58 12,1	0,733 (7) 0,797 (8)	0,651 (6) 0,199 (4) 0,150 (3)	0,349 (6) 0,069 (1) 0,049 (1)

2.2 β^+ Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$
$\beta_{0,1}^{+}$	805,8 (21)	0,012 (2)	2nd Forbidden	12,6

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$\begin{array}{c} \alpha_K \\ (10^{-2}) \end{array}$	$\begin{array}{c} \alpha_L \\ (10^{-2}) \end{array}$	$\binom{\alpha_M}{(10^{-2})}$	$\begin{array}{c} \alpha_T \\ (10^{-2}) \end{array}$
$\gamma_{2,1}(\mathrm{Pb})$	328,11 (10)	0,0044 (35)	[M1]				
$\gamma_{1,0}(\mathrm{Pb})$	569,699 (2)	99,87 (4)	E2	1,583 (23)	0,439(7)	0,1081(16)	2,16(3)
$\gamma_{2,0}(Pb)$	897,8 (1)	0,1313(48)	M1+8,3%E2	1,82 (8)	0,304(12)	0,071(3)	2,22 (9)
$\gamma_{3,1}(Pb)$	1063,659 (3)	84,11 (31)	M4+0.01%E5	9,53(23)	2,47(7)	0,591(33)	12,78 (24
$\gamma_{4,2}(Pb)$	1442,2(2)	0,1319(22)	E2	0,271(4)	0,0468(7)	0,01098 (16)	0,337(5)
$\gamma_{4,1}(Pb)$	1770,236 (9)	6,901 (26)	M1+0.0025%E2	0,342(5)	0.0556(8)	0.01292 (19)	0,442 (7)

3 Atomic Data

3.1 Pb

3.1.1 X Radiations

		Energy keV		Relative probability
X_{K}				
11	$K\alpha_2$	72,8049		59,5
	$K\alpha_1$	74,97		100
	$\mathrm{K}eta_3$	84,451	}	
	$\mathrm{K}eta_1$	84,937	} }	
	$\mathrm{K}eta_5''$	85,47	}	34,2
	$\mathrm{K}eta_2$	87,238	}	
	$K\beta_4$	87,58	} } }	10,3
	$KO_{2,3}$	87,911	}	,
X_{L}				
	$\mathrm{L}\ell$	$9{,}18$		
	$L\alpha$	$10,\!4496-10,\!5516$		
	${ m L}\eta$	11,3494		
	$\mathrm{L}eta$	$12{,}143-13{,}015$		
	${ m L}\gamma$	$15,\!101-15,\!84$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	56,028 - 61,669 $68,181 - 74,969$ $80,3 - 88,0$ $5,2 - 15,7$	100 55,8 7,78

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
${ m e_{AL}}$	(Pb)	5,2 - 15,7	54,8 (7)
e_{AK}	(Pb) KLL KLX KXY	56,028 - 61,669 68,181 - 74,969 80,3 - 88,0	2,9 (4) } }
$\begin{array}{c} ec_{1,0} \ T \\ ec_{1,0} \ K \\ ec_{1,0} \ L \\ ec_{1,0} \ M \\ ec_{3,1} \ T \\ ec_{3,1} \ K \\ ec_{3,1} \ L \\ ec_{3,1} \ M \\ ec_{3,1} \ N \\ \end{array}$	(Pb) (Pb) (Pb) (Pb) (Pb) (Pb) (Pb) (Pb)		2,112 (29) 1,548 (22) 0,429 (7) 0,1057 (16) 9,53 (18) 7,11 (17) 1,84 (5) 0,441 (25) 0,1193 (30)
$\beta_{0,1}^+$ $\beta_{0,1}^+$	max: avg:	805,8 (21) 383,4 (9)	0,012 (2)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL $XK\alpha_2$ $XK\alpha_1$	(Pb) (Pb) (Pb)	9,18 - 15,84 $72,8049$ $74,97$		32,9 (6) 21,75 (30) 36,6 (5)	} Κα }
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{"} \\ XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Pb) (Pb) (Pb) (Pb) (Pb) (Pb)	84,451 84,937 85,47 87,238 87,58 87,911	<pre>} } } } }</pre>	12,49 (25) 3,77 (10)	$K'\beta_1$ $K'\beta_2$

5.2 Gamma Emissions

	Energy keV	Photons per 100 disint.
$ \gamma_{2,1}(Pb) \\ \gamma^{\pm} \\ \gamma_{1,0}(Pb) \\ \gamma_{2,0}(Pb) \\ \gamma_{3,1}(Pb) \\ \gamma_{4,2}(Pb) \\ \gamma_{4,1}(Pb) $	328,11 (10) 511 569,698 (2) 897,8 (1) 1063,656 (3) 1442,2 (2) 1770,228 (9)	0,0044 (35) 0,024 (4) 97,76 (3) 0,1284 (47) 74,58 (22) 0,1315 (22) 6,871 (26)

6 Main Production Modes

Pb - 206(d,n)Bi - 207

Pb - 207(d,2n)Bi - 207

Pb - 208(d,3n)Bi - 207

7 References

- R.A.RICCI. Physica 23 (1957) 693 (ICC, not used)
- G.Harbottle. J. Inorg. Nucl. Chem. 12 (1959) 6 (Half-life)
- J.Sosniak, R.E.Bell. Can. J. Phys. 37,1 (1959) 1 (Half-life)
- E.H.Appelman. Phys. Rev. 121,1 (1961) (Half-life)

- A DE BEER, H.P.BLOK, J.BLOK. Physica 30 (1964) 1938 (Electron Capture Coefficients)
- P.Kleinheinz, R.Vukanovic, L.Samuelsson, D.Krmpotic, H.Lindström, K.Siegbahn. Nucl. Phys. A93 (1967)
 63 (ICC)
- D.P.Donnelly, H.W.Baer, J.J.Reidy, M.L.Wiedenbeck. Nucl. Instrum. Methods 57 (1967) 219 (Gamma emission probabilities)
- S.K.Sen, S.I.H.Rizvi. Nucl. Instrum. Methods 57 (1967) 227 (ICC)
- B.Van Nooijen, H.Van Krugten. Phys. Lett. 25 B,8 (1967) 510 (ICC)
- E.Baldinger, E.Haller. Helv. Phys. Acta 40 (1967) 800 (ICC)
- J.A.Bearden. Rev. Mod. Phys. 39,1 (1967) 78 (X-Rays energies)
- S.I.H.RIZVI, S.K.SEN. B.A.P.S. 12 (1967) 715 (ICC, not used)
- V.Andersen, C.J.Christensen. Nucl. Phys. A113 (1968) 81 (ICC)
- V.Andersen. Riso Report 195 (1969) (ICC)
- G.Hedin, A.Bäcklin. Ark. Fysik 38 (1969) 593 (ICC, Gamma emission probabilities)
- E.Baldinger, E.Haller. Helv. Phys. Acta 42 (1969) 949 (ICC)
- P.Venugopala Rao, R.E.Wood, J.M.Palms, R.W.Fink. Phys. Rev 178,4 (1969) 1997 (Gamma emission probabilities)
- G.Aubin, J.Barrette, M.Barrette, S.Monaro. Nucl. Instrum. Methods 76 (1969) 93 (Gamma emission probabilities, not used)
- B.Ahlesten, A.Backlin. Report NP-18288(LF-26) (1970) (K ICC (897 keV))
- C.J.Allan. Can. J. Phys. 49,2 (1971) 157 (ICC)
- J.S.Hansen, J.C.McGeorge, R.W.Fink, R.E.Wood, P.Venugopala Rao, J.M.Palms. Z. Phys. 249 (1972) 373

(K fluorescence yield, not used)

- D.C.Robinson, J.M.Freeman. Nucl. Phys. A181 (1972) 645 (Gamma emission probabilities)
- T.Rupnik. Phys. Rev. C6,4 (1972) 1433 (Half-life, Beta plus emission probability)
- D.W.Nix, J.C.McGeorge, R.W.Fink. Phys. Lett. 46A,3 (1973) 205 (X-Ray emissions, not used)
- J.B.Willett, G.T.Emery. Ann. Phys. 78 (1973) 496 (Gamma emission probabilities)
- F.T.AVIGNONE. Nucl. Instrum. Methods 116 (1974) 521 (ICC)
- Р.Микнегјее, В.К.Dasmahapatra. J. Phys. A7,16 (1974) 2008 (ICC)
- L.J.JARDINE. Phys. Rev. C 11,4 (1975) 1385 (Gamma emission probabilities)
- M.Yanokura, H.Kudo, H.Nakahara, K.Miyano, S.Ohya, O.Nitoh. Nucl. Phys. A299 (1978) 92 (Half-life)
- G.P.Singh, R.K.Mishra, A.K.Singh, A.Kumar. Czech. J. Phys. B29 (1979) 870 (Gamma emission probabilities)
- Y.Yoshikawa, Y.Iwata, Т.Каки, Т.Катон, J.Z.Ruan, Т.Којіма, Y.Kawada. Nucl. Instrum. Methods 174 (1980) 109

(Gamma emission probabilities)

- M.Tan, R.A.Braga, R.W.Fink. Nucl. Phys. A388 (1982) 498 (Electron Capture Coefficients)

- W.BAMBYNEK. X-84 Proc. X-Ray and Inner-Shell Processes in Atoms, Molecules and Solids, A. Meisel Ed., Leipzig Aug. 20-23 (1984)
 - (K fluorescence yield)
- A.M.Mandal, A.P.Patro. J. Phys. G11 (1985) 1025 (Electron Capture Coefficients, not used)
- Y.Fujita, M.Imamura, K.Omata, Y.Isozumi, S.Ohya. Nucl. Phys. A484 (1988) 77 (ICC)
- F.J.SCHIMA. IAEA-CRP GS/59 (1989)
 - (Gamma emission probabilities)
- K.Debertin, U.Schötzig. IAEA-CRP GS/55 (1989) (Gamma emission probabilities)
- D.E.Alburger, G.Harbottle. Phys. Rev. C 41,5 (1990) 2320 (Half-life)
- R.G.Helmer. Int. J. Appl. Radiat. Isotop. 41 (1990) 791 (Gamma emission probabilities)
- TECDOC-619. IAEA. A-1400 Vienna (1991)
 - (X-Ray emission probabilities, not used)
- W.J.Lin, G.Harbottle. J. Radioanal. Nucl. Chem. Letters 153,1 (1991) 51 (Half-life, Gamma emission probabilities)
- M.P.Unterwegger, D.D.Hoppes, F.J.Schima. Nucl. Instrum. Methods Phys. Res. A312 (1992) 349 (Half-life)
- LOGFT PROGRAM, ENSDF. BNL (1993) (lg ft)
- J.H.Hubbell, P.N.Trehan, Nirmal Singh, B.Chand, D. Mehta, M.L. Garg, R.R. Garg, Surinder Singh, S.J. Puri. Phys. Chem. Ref. Data 23-2 (1994) 339 (M fluorescence yield)
- B.Dasmahapatra, A.Mukherjee. Phys. Rev. A51,5 (1995) 3546 (X-Ray emission probabilities, not used)
- E.Schönfeld, H.Janssen. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527
 (L fluorescence yield)
- E.Schönfeld. EMISSION program, PTB (1997) (Auger and X-ray emission probabilities)
- R.G.Helmer, C.Van der Leun. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma energies)
- I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor, P.O. Tikkanen, S. Raman. Atom. Data and Nucl. Data Tables 91 (2002) 1
 - $({\it Theoretical\ internal\ conversion\ coefficients})$
- M. P. Unterweger. Appl. Rad. Isotopes 56 (2002) 125 (Half-life)
- G.Audi, A.H.Wapstra, C.Thibault. Nucl. Phys. A729 (2003) 129 (O)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

Scheme page: 1/1