MNUM-PROJEKT, zadanie 2.8

Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	2,0081
-4	-3,6689
-3	-4,9164
-2	-1,8700
-1	-0,0454
0	0,5504
1	-0,8392
2	-1,0113
3	2,6133
4	14,6156
5	39,6554

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych stopni).

W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Proszę obliczyć błąd aproksymacji w dwóch normach: euklidesowej oraz Czebyszewa (maksimum).

Uwagi:

- rysowana funkcję proszę próbkować 10 razy częściej niż dane.
- dane są obarczone pewnym błędem (szumem pomiarowym).

Programy musza być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów (w tym najważniejsze wzory),
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Pisać solwery, oprócz sprawozdania (w formacie PDF) przekazać kody źródłowe.