Field name	Value	Signals active	Comment
ALU control	Add	ALUOp = 00	Cause the ALU to add.
	Subt	ALUOp = 01	Cause the ALU to subtract; this implements the compare for branches.
	Func code	ALUOp = 10	Use the instruction's function code to determine ALU control.
SRC1	PC	ALUSrcA = 0	Use the PC as the first ALU input.
	Α	ALUSrcA = 1	Register A is the first ALU input.
SRC2	В	ALUSrcB = 00	Register B is the second ALU input.
	4	ALUSrcB = 01	Use 4 as the second ALU input.
	Extend	ALUSrcB = 10	Use output of the sign extension unit as the second ALU input.
	Extshft	ALUSrcB = 11	Use the output of the shift-by-two unit as the second ALU input.
Register control	Read		Read two registers using the rs and rt fields of the IR as the register numbers and putting the data into registers A and B.
	Write ALU	RegWrite, RegDst = 1, MemtoReg = 0	Write a register using the rd field of the IR as the register number and the contents of ALUOut as the data.
	Write MDR	RegWrite, RegDst = 0, MemtoReg = 1	Write a register using the rt field of the IR as the register number and the contents of the MDR as the data.
Memory	Read PC	MemRead, IorD = 0, IRWrite	Read memory using the PC as address; write result into IR (and the MDR).
	Read ALU	MemRead, IorD = 1	Read memory using ALUOut as address; write result into MDR.
	Write ALU	MemWrite, IorD = 1	Write memory using the ALUOut as address, contents of B as the data.
PC write control	ALU	PCSource = 00, PCWrite	Write the output of the ALU into the PC.
	ALUOut-cond	PCSource = 01, PCWriteCond	If the Zero output of the ALU is active, write the PC with the contents of the register ALUOut.
	Jump address	PCSource = 10, PCWrite	Write the PC with the jump address from the instruction.
Sequencing	Seq	AddrCtl = 11	Choose the next microinstruction sequentially.
	Fetch	AddrCtl = 00	Go to the first microinstruction to begin a new instruction.
	Dispatch 1	AddrCtl = 01	Dispatch using the ROM 1.
	Dispatch 2	AddrCtl = 10	Dispatch using the ROM 2.

FIGURE D.5.1 Each microcode fi eld translates to a set of control signals to be set. These 22 diff erent values of the fi elds specify all the required combinations of the 18 control lines. Control lines that are not set, which correspond to actions, are 0 by default. Multiplexor control lines are set to 0 if the output matters. If a multiplexor control line is not explicitly set, its output is a don't care and is not used.

Copyright © 2021 Elsevier Inc. All rights reserved