Sistemas Electrónicos 2017-18

Lógica CMOS

CIRCUITOS LÓGICOS CMOS:

- MosFet revisitado.
- Inversor NMOS.
- Inversor CMOS:
- VTC (característica de transferência de tensão)
- Fanout
- Capacidades e tempos
- Potência dissipada
- Portas CMOS estáticas. Portas CMOS dinâmicas.
- Portas de Transmissão CMOS.
- · Latch.
- Memória SRAM e DRAM:
- organização e características
- implementação
- circuitos de leitura e escrita

Bibliografia: Neamen, Donald A. - Microelectronics: Circuit Analysis and Design.

DETI-UA (JEO) SE 2017-18

CLcmos - 1

MOSFET revisitado

MOSFET de enriquecimento canal N (NMOS)

MOSFET = Metal Oxide Semiconductor Field Effect Transistor

Gate - porta Source - fonte Drain - dreno Substrato / Body (em geral ligado à Source) Canal

MOSFET de enriquecimento canal P (PMOS)

DETI-UA (JEO) SE 2017-18

CLcmos -

MOSFET revisitado (2)

Parâmetro de condução (A/V2)

$$K = \left(\frac{W}{L}\right) \frac{KL}{2}$$

 $KP = \mu_n C_{ox}$

Região de corte - cut-off

$$v_{GS} < v_{TN} \rightarrow i_D = 0$$

Região triodo (linear/ohmica)

$$v_{GS} > v_{TN}$$
 e $v_{DS} < v_{GS} - v_{TN}$ $i_D = K_n [2(v_{GS} - V_{TN})v_{DS} - v_{DS}^2]$

$$I_D = K_n [2(v_{GS} - V_{TN})v_{DS} - v_{DS}^2]$$

NMOS ideal

PMOS ideal

DETI-UA (JEO) SE 2017-18

CLcmos -

Inversor NMOS

Região de corte - cut-off

$$v_{GS} < v_{TN} \rightarrow i_D = 0$$

Região triodo (linear/ohmica)

$$v_{GS} > V_{TN}$$
 e $v_{DS} < v_{GS} - V_{TN}$

OFF

ON

 $v_O = \sim v_I$

VTC - voltage transfer characteristic ---->

DETI-UA (JEO) SE 2017-18

Inversor CMOS (3)

<u>FanOut</u>: nº de portas do mesmo tipo que uma dada porta pode alimentar. Estaticamente, em CMOS (Zi muito elevada), o *Fanout* é virtualmente infinito. Na comutação de estados, as capacidades de entrada e as capacidades distribuídas (parasitas) são um problema grave que limita o *Fanout*.

DETI-UA (JEO) SE 2017-18

CLcmos - 7

Inversor CMOS (4)

Capacidades num MOSFET

Em geral, S e B estão ligados, pelo que:

$$C_g \approx C_{gs} + C_{gb}$$

 C_L representa a capacidade total vista pelos drenos, que inclui a capacidade C_g da(s) porta(s) seguinte(s), bem como a capacidade distribuída na ligação entre portas. Em comutação é necessário carregar/descarregar C_L .

1---1

DETI-UA (JEO) SE 2017-18

Inversor CMOS (5)

Em comutação é necessário carregar/descarregar C_L :

- isto implica tempos de subida e de descida não nulos (t_r e t_f);
- com vários circuitos em cascata vai originar atrasos na resposta (existência de tempos de propagação t_{PLH} e t_{PHL}).

DETI-UA (JEO) SE 2017-18

CLcmos - 9

Inversor CMOS (6)

Potência dissipada

Em regime estático a potência dissipada é praticamente zero, assumindo que o inversor apenas alimenta outras portas CMOS.

Notar que quando o PMOS conduz, o NMOS corta e vice-versa, ou seja a corrente é nula.

- No fim da transição 0-->1, C_L armazenou energia que "passou" pelo PMOS:
- $E_P = \frac{1}{2} C_L V_{DD}^2$
- Durante a transição 1 --> 0 essa energia tem de "passar" pelo NMOS:
- $E_N = \frac{1}{2}C_L V_{DD}^2$
- · Durante um ciclo completo de comutação os 2 transistores dissipam:

$$E_T = E_P + E_N = \frac{1}{2}C_L V_{DD}^2 + \frac{1}{2}C_L V_{DD}^2 = C_L V_{DD}^2$$

DETI-UA (JEO) SE 2017-18

CLcmos - 10

Inversor CMOS (7)

Potência dissipada (2)

Durante um ciclo completo de comutação os 2 transistores dissipam:

$$E_T = E_P + E_N = \frac{1}{2}C_L V_{DD}^2 + \frac{1}{2}C_L V_{DD}^2 = C_L V_{DD}^2$$

Operando o inversor a uma frequência f, a potência dissipada será:

$$P = f E_T = f C_L V_{DD}^2$$

Veja-se a importância de V_{DD} e de f

Exemplo, com $V_{DD} = 5V$ f = 2.5 GHz $C_L = 10$ fF = 10^{-14} F:

 $P = 2.5 \times 10^9 \times 10^{-14} \times 25 = 62.5 \times 10^{-5} \text{ W/porta}$

CPU com 1 milhão de portas:

$$P_{CPU} = 10^6 \text{ x } 62.5 \text{ x} 10^{-5} = 625 \text{ W}$$
 !!!

DETI-UA (JEO) SE 2017-18

CLcmos - 11

Portas básicas CMOS

2-input NOR gate 2-input NAND gate

A	_B_	v_O
0	0	V_{DD}
V_{DD}	0	0
0	V_{DD}	0
V_{DD}	V_{DD}	0

A	В	v _O
0	0	V_{DD}
V_{DD}	0	V_{DD}
0	V_{DD}	V_{DD}
V_{DD}	V_{DD}	0

A reter:

- os PMOS equivalem a resistências *pull-up*
- 2 NMOS em paralelo,
 2 PMOS em série.
- 2 NMOS em série,2 PMOs em paralelo.
- n entradas —>2n transistores

DETI-UA (JEO) SE 2017-18

Exemplo de Porta CMOS Y = AB + C(D + E) A = AB + C(D + E) A

Portas de Transmissão CMOS

Reversibilidade do Dreno e Fonte:

 $v_a > v_b \rightarrow a = dreno$; b = fonte $v_a < v_b \rightarrow a = fonte$; b = dreno $v_d > v_c \rightarrow d = fonte$; c = dreno $v_d < v_c \rightarrow d = dreno$; c = fonte

Notas:

- o substrato do NMOS deve ser ligado à tensão mais negativa (massa, neste caso)
- o substrato do PMOS deve ser ligado à tensão mais positiva (V_{DD} , neste caso)

 $\phi=0$ and $ar{\phi}=V_{DD}$ NMOS e PMOS corta

NMOS e PMOS cortados $\rightarrow v_0$ mantém o seu valor. A porta é um circuito aberto.

DETI-UA (JEO) SE 2017-18

Portas de Transmissão CMOS (2)

$$\phi = V_{DD}, \, \bar{\phi} = 0, \, v_I = V_{DD}$$
 $v_O(0) = 0$ $b = \text{fonte}; \, d = \text{fonte}$

$$v_{GSN} = \phi - v_O = V_{DD} - v_O$$
$$v_{SGP} = v_I - \bar{\phi} = V_{DD} - 0 = V_{DD}$$

 $m{i}_{DN}$ carrega C_L até V_{DD} - V_{TN} $m{i}_{DP}$ carrega C_L até V_{DD} , donde: $m{v}_O = m{v}_I = V_{DD}$

$$v_{O}(0) = 1$$

CL já está carregado e: $v_O = v_I = V_{DD}$

- NMOS está cortado (*VGSN*=0)
- PMOS conduziria (v_{SGP} = V_{DD}), mas v_{SDP} =0 $->i_{DP}$ =0

DETI-UA (JEO) SE 2017-18

CLcmos - 17

Portas de Transmissão CMOS (3)

$$\phi = V_{DD}, \bar{\phi} = 0, v_I = 0$$
 $v_O(0) = 1 = V_{DD}$ $a = \text{fonte}; c = \text{fonte}$

$$v_{GSN} = \phi - v_I = V_{DD} - 0 = V_{DD}$$

 $v_{SGP} = v_O - \bar{\phi} = v_O - 0 = v_O$

 i_{DN} descarrega C_L até ${\bf 0}$ i_{DP} descarrega C_L até até ${\bf 0}$ - V_{TP} , donde: $v_O = v_I = {\bf 0}$

$$v_{O}(0) = 0$$

CL já está descarregado: $v_O = v_I = 0$

- PMOS está cortado (VSGP=0)
- NMOS conduziria ($v_{GSN}=V_{DD}$), mas $v_{DSN}=0$ -> $i_{DN}=0$

DETI-UA (JEO) SE 2017-18

CLcmos - 18

Flip-Flop tipo D em CMOS

Nota 1 - o inversor 2 (MP2+MN2) e o inversor 3 (MP3+MN3) formam um *loop*.

Nota 2 - quando o *clock* vem a zero, as saídas mantêm o estado anterior: *Latch*

DETI-UA (JEO) SE 2017-18

CLcmos - 19

Memória

DETI-UA (JEO) SE 2017-18

Memória RAM

Apenas vamos tratar de:

- memórias RAM (Random Access Memory)
- voláteis read-write
- Estáticas (SRAM)
- Dinâmicas (DRAM)

RAM: qualquer bit (célula individual) pode ser endereçado individualmente

- read-write: qualquer bit pode ser lido ou escrito
- volátil: a informação desaparece quando se desliga a alimentação
- SRAM: cada bit é guardado num flip-flop com 2 estados estáveis (0 ou 1)
- DRAM: a informação de cada bit é guardada como carga de um condensador

SRAM: - em geral, cada bit "gasta" 6 transistores -> usa muito silício

- pode ser clocked (para redução de consumo), mas é rápida

DRAM: - 1 bit pode obter-se com 1 só transistor e 1 Condensador -> pequena

 exige circuitos de refresh para restaurar a carga de cada condensador pelo que é mais lenta e mais complexa

DETI-UA (JEO) SE 2017-18

CLcmos -21

Organização da Memória

Organização genérica

Arquitectura básica de uma RAM

DETI-UA (JEO) SE 2017-18

CLcmos -22

CMOS SRAM

Célula básica de uma SRAM

 M_{P1} , M_{N2} e M_{P2} , M_{N1} = latch

 M_A e M_B = portas de transmissão

 $D \in \overline{D} = data lines$

 $Q \in \overline{Q} = bit$ memorizado

Célula básica com pré-carga

Na pré-carga (CLK=0) os condensadores são carregados a V_{DD} (ou V_{DD} /2).

DETI-UA (JEO) SE 2017-18

CLcmos -23

CMOS SRAM: read

Antes da operação de leitura: Q = 0 M_{Pl} e M_{N2} cortados

W = 0 $Mp_1 \in M_{N_2}$ Cortagos

 $\cdot M_A$ e M_B cortados

Se, pelo contrário, Q = 1, durante a operação de leitura: ->

Durante a operação de leitura:

- M_{PI} e M_{N2} cortados
- M_{P2} e M_{N1} em condução
- $\cdot M_A$ ON e M_B OFF
- $\cdot D = Q = 0$

• M_{P1} e M_{N2} em condução

 $\cdot M_A$ OFF e M_B ON

• D = Q = 1

DETI-UA (JEO) SE 2017-18

CMOS SRAM: circuito de escrita Selecção da célula: X = 1 Y = 1MA. MB e M3 ON $\overline{W} = 1$ $M_1 \in M_2$ OFF write disabled $\overline{\mathbf{W}} = \mathbf{0}$ Data = 1 $M_1 \ \mathsf{OFF} \ Q = D = 1 \ (\mathsf{pré-carga})$ M_2 ON $\overline{O} = \overline{D} = 0$ $\overline{W} = 0$ Data = 0 M_2 OFF $\overline{Q} = \overline{D} = 1$ (pré-carga) DETI-UA (JEO) SE 2017-18 CLcmos -26

CMOS SRAM: circuito de leitura

Read select = 1M10 e M11 ON X = 1 $M_A \in M_B$ ON CLK = 1M₅ ON read enabled

Sense Amplifier:

Vo = D = O

DETI-UA (JEO) SE 2017-18

CLcmos -27

Memória dinâmica - DRAM

1 MOSFET e 1 condensador Cs Cs descarregado = 0

Cs carregado = 1

A carga de Cs decai com o tempo (fugas) ->

-> refresh periódico para regenerar a carga: leitura linha a linha permite o refresh.

Notas: - pequeno tamanho e/ou elevada densidade

- refresh obrigatório -> DRAM menos rápida que SRAM

DETI-UA (JEO) SE 2017-18

Memória dinâmica - DRAM (2)

Cross-coupled Sense Amplifier

Ms e Cs = célula de memória

 $MR \in CR = célula de referência (dummy)$

 $CD \in CDR =$ condensadores parasita

 $D \in DR = data lines$

WL e D-WL = sinais word line (R/W)

M4 e M5 = pré-carga

 $M_1 \in M_2 = latch$

 $Cs \approx$ 2 $CR \rightarrow CR$ armazena metade da carga

R/W: Ms ON MR ON

 $D = 1 -> V_I > V_2 -> M_2$ ON e M_1 OFF -> $V_1 \approx V_{DD}$ através de M_4 -> através de M_5 , C_5 recarrega até $\approx V_{DD}$ (refresh)

 $D = 0 -> v_1 < v_2 -> M_1$ ON $\in M_2$ OFF $-> v_1 \approx 0$ devido a $M_1 -> ->$ através de M_S , C_S descarrega até ≈ 0 (refresh)

DETI-UA (JEO) SE 2017-18

