

并行计算 Parallel Computing

主讲人 %广中 Spring, 2016

并行计算——结构·算法·编程

- 第一篇 并行计算的基础
 - 第一章 并行计算与并行计算机结构模型
 - 第二章 并行计算机系统互连与基本通信操作
 - 第三章 典型并行计算机系统介绍
 - 第四章 并行计算性能评测

- 3.1 共享存储多处理机系统
 - 3.1.1 对称多处理机SMP结构特性
- 3.2 分布存储多计算机系统
 - 3.2.1 大规模并行机MPP结构特性
- 3.3 分布共享存储多计算机系统
 - 3.3.1 分布共享存储计算机系统特性
- 3.4 机群系统
 - 3.4.1 大规模并行处理系统MPP机群SP2
 - 3.4.2 工作站机群*COW*

对称多处理机SMP (1)

- SMP: 采用商用微处理器,通常有片上和片外Cache,基于总线连接,集中式共享存储,UMA结构
- 例子: SGI Power Challenge, DEC Alpha Server, Dawning 1

对称多处理机SMP (2)

■ 优点

- 对称性: 任何处理器均可访问任何存储单元和**I/O**设备
- 单地址空间: 易编程性, 动态负载平衡, 无需显示数据分配
- 高速缓存及其一致性: 支持数据的局部性, 数据一致性由硬件维持
- 低通信延迟:可由简单的Load/Store指令完成

■ 问题

- 欠可靠: BUS,OS,SM失效均会造成系统的崩溃
- 可观的通信延迟(相对于CPU): 竞争会加剧延迟
- 慢速增加的带宽: MB double/3 year, IOB更慢
- 不可扩放性(用总线连接)。为此,或改用交叉开关连接,或改用 *CC*-NUMA,或改用*Cluster*

- 3.1 共享存储多处理机系统
 - 3.1.1 对称多处理机SMP结构特性
- 3.2 分布存储多计算机系统
 - 3.2.1 大规模并行机MPP结构特性
- 3.3 分布共享存储多计算机系统
 - 3.3.1 分布共享存储计算机系统特性
- 3.4 机群系统
 - 3.4.1 大规模并行处理系统MPP机群SP2
 - 3.4.2 工作站机群*COW*

大规模并行机MPP

- 成百上千个处理器组成的大规模计算机系统,规模是变化的。
- NORMA结构,高总计带宽,相对低延迟,定制互连。
- 可扩放性: Processors, Memory, Bandwidth, I/O, 平衡设计
- 系统成本: 商用处理器,相对稳定的结构, SMP节点,分布
- 通用性和可用性:不同的应用,PVM, MPI,交互,批处理,互 连对用户透明,单一系统映象
- 通信要求: 高于标准的LAN
- 较大存储器和**I/O**能力
- 现在MPP与Cluster难以区别
- 例子: Intel Option Red IBM SP2, Dawning 1000

典型MPP系统特性比较

MPP模型	Intel/Sandia ASCI Option Red	IBM SP2	SGI/Cray Origin2000	
一个大型样机的配置	9072个处理器, 1.8Tflop/s(NSL)	400个处理器, 100Gflop/s(MHPC C)	128个处理器, 51Gflop/s(NCSA)	
问世日期	1996年12月	1994年9月	1996年10月	
处理器类型	200MHz, 200Mflop/s Pentium Pro	67MHz, 267Mflop/s POWER2	200MHz, 400Mflop/s MIPS R10000	
节点体系结构 和数据存储器	2个处理器,32到 256MB主存,共 享磁盘	1个处理器,64MB 到2GB本地主存, 1GB到14.5GB本地	2个处理器,64MI 到256MB分布共享 主存和共享磁盘	
互连网络和主存模型	分离两维网孔, NORMA	磁盘 多级网络, NORMA	胖超立方体网络, CC-NUMA	
节点操作系统	轻量级内核 (LWK)	完全AIX(IBM UNIX)	微内核Cellular IRIX	
自然编程机制	基于PUMA Portals的MPI	MPI和PVM	Power C, Power Fortran	
其他编程模型	Nx, PVM, HPF	HPF, Linda	MPI, PVM	

MPP所用的高性能CPU特性比较

		*			
属性	Pentium Pro	PowerPC	Alpha	Ultra SPARC	MIPS
工艺	BiCMOS	602 CMOS	21164A CMOS	II CMOS	R10000 CMOS
晶体管数	5.5M/15.5M	7M	9.6M	5.4M	6.8M
时钟频率	150MHz	133MHz	417MHz	200MHz	200MHz
电压	2.9V	3.3V	2.2V	2.5V	3.3V
功率	20W	30W	20W	28W	30W
字长	32位	64位	64位	64位	64位
I/O	8KB/8KB	32KB/32KB	8KB/8KB	16KB/16KB	32KB/32K
高速缓存 2级	256KB	1~128MB	96KB	16MB	B 16MB
高速缓存 执行单元	(多芯片模块 5个单元	(片外) 6个单元	(片上) 4个单元	(片外) 9个单元	(片外) 5个单元
超标量	3路(Way)	4路	4路	4路	4路
流水线深	14级	4~8级	7~9级	9级	5~7级
SPECint 92	366	225	>500	350	300
SPECfp 92	283	300	>750	550	600
SPECint 95	8.09	225	>11	N/A	7.4
SPECfp 95	6.70	300	>17	N/A	15
其它特性	CISC/RISC 混合	短流水线长 L1高速缓存	最高时钟频 率最大片上	多媒体和图 形指令	MP机群总 线可支持4
			2级高速缓		个CPU

存

- 3.1 共享存储多处理机系统
 - 3.1.1 对称多处理机SMP结构特性
- 3.2 分布存储多计算机系统
 - 3.2.1 大规模并行机MPP结构特性
- 3.3 分布共享存储多计算机系统
 - 3.3.1 分布共享存储计算机系统特性
- 3.4 机群系统
 - 3.4.1 大规模并行处理系统MPP机群SP2
 - 3.4.2 工作站机群*COW*

DSM计算机系统特性

- DSM结构特性
 - 共享存储系统采用分布共享,减少集中共享的冲突
 - 采用高速缓存来缓和由共享引起的冲突和分布存储引起的长延 迟
 - 保持了共享编程的方便性和软件的可移植性
- 存储一致性问题
 - 非均匀存储访问和高速缓存一致性问题
 - 影响了一些技术的应用和系统的可扩放性
- DSM系统分类
 - 硬件实现的共享存储: CC-NUMA、NCC-NUMA、COMA
 - 软件实现的共享存储: 共享虚拟存储(SVM)
- 典型机器: SGI Origin 2000

- 3.1 共享存储多处理机系统
 - 3.1.1 对称多处理机SMP结构特性
- 3.2 分布存储多计算机系统
 - 3.2.1 大规模并行机MPP结构特性
- 3.3 分布共享存储多计算机系统
 - 3.3.1 分布共享存储计算机系统特性
- 3.4 机群系统
 - 3.4.1 大规模并行处理系统MPP机群SP2
 - 3.4.2 工作站机群COW

机群型大规模并行机SP2

- IBM设计策略:
 - 机群体系结构
 - 标准环境
 - 标准编程模型
 - 系统可用性
 - 精选的单一系统映像
- 系统结构:
 - 高性能开关 HPS (多级的Ω网络)
 - 宽节点、窄节点和窄节点1

工作站机群COW

- 分布式存储,MIMD,工作站+商用互连网络,每个节点是一个完整的计算机,有自己的磁盘和操作系统,而MPP中只有微内核
- 优点:
 - 投资风险小
 - 系统结构灵活
 - 性能/价格比高
 - 能充分利用分散的计算资源
 - 可扩放性好
- 问题
 - 通信性能
 - 并行编程环境

■ 例子: Berkeley NOW,Alpha Farm, FXCOW

典型的机群系统

典型的机群系统特点一览表						
名称	系统特点					
Princeton:SHRIMP	PC商用组件,通过专用网络接口达到共享虚拟存储,支持 有效通信					
Karsruhe:Parastation	用于分布并行处理的有效通信网络和软件开发					
Rice:TreadMarks	软件实现分布共享存储的工作站机群					
Wisconsin:Wind Tunnel	在经由商用网络互连的工作站机群上实现分布共享存储					
Chica、Maryl、 Penns:NSCP	国家可扩放机群计划:在通过因特网互连的3个本地机群系统上进行元计算					
Argonne:Globus	在由ATM连接的北美17个站点的WAN上开发元计算平台和 软件					
Syracuse:WWVM	使用因特网和HPCC技术,在世界范围的虚拟机上进行高性 能计算					
HKU:Pearl Cluster	研究机群在分布式多媒体和金融数字库方面的应用					
Virgina:Legion	在国家虚拟计算机设施上开发元计算软件					

SMP\MPP\机群比较

系统特征	SMP	MPP	机群
节点数量(N)	≤O(10)	O(100)-O(1000)	≤O(100)
节点复杂度	中粒度或细粒度	细粒度或中粒度	中粒度或粗粒度
节点间通信	共享存储器	消息传递 或共享变量(有DSM时)	消息传递
节点操作系统	1	N(微内核) 和1个主机OS(单一)	N (希望为同构)
支持单一系统映像	永远	部分	希望
地址空间	单一	多或单一 (有DSM时)	多个
作业调度	单一运行队列	主机上单一运行队列	协作多队列
网络协议	非标准	非标准	标准或非标准
可用性	通常较低	低到中	高可用或容错
性能/价格比	一般	一般	高
互连网络	总线/交叉开关	定制	商用