Name:	

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V2. Determine if $\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ belongs to the span of the set $\left\{ \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ -6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$.

Solution: Since

RREF
$$\left(\begin{bmatrix} 1 & 2 & 0 & 3 \\ 2 & 4 & 0 & -2 \\ -3 & -6 & 0 & 4 \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

contains the contradiction 0 = 1, $\begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ is not a linear combination of the three vectors.

S1. Determine if the set of polynomials $\{x^3 - 8x, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Solution:

$$RREF\left(\begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

This has a non pivot column, therefore the set is linearly dependent.

S3. Let W be the subspace of \mathcal{P}_2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute RREF $(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are

pivot columns, $\{-3x^2 - 8x, x^2 + 2x + 2\}$ is a basis for W.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$. Compute the dimension of W.

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so $\dim(W) = 3$.