Leckék Oracle gyakorlatra ./sql/lecke03_fuggvenyek.pdf

SQL sorfüggvények

Célkitűzés

- Különböző típusú SQL sorfüggvények megismerése
- A karaktertípusú, numerikus, illetve dátumtípusú sorfüggvények használata a SELECT utasításokban
- Típus-átalakító sorfüggvények megismerése

SQL-függvények

A bemutatott függvények többsége Oracle-specifikus.

Az SQL-függvények két típusa

Sorfüggvények

- A sorfüggvények:
 - Az adattételek átalakítására, feldolgozására használhatók.
 - Több argumentumból egy értéket eredményez.
 - Az argumentum lehet felhasználói konstans, változó, oszlopnév, kifejezés.
 - A lekérdezés eredményének minden sorára meghívódik.
 - Minden sorra egy értéket ad vissza.
 - Az eredménye más adattípusú is lehet mint az argumentum.
 - Egymásba lehet ágyazni.
 - Használható a SELECT, WHERE és ORDER BY részekben.

```
function_name [(arg1, arg2,...)]
```

Sorfüggvények

Karakterfüggvények

Kisbetű-nagybetű kezelő függvények

• Például:

Függvény	Eredmény
LOWER('SQL Nyelv')	sql nyelv
UPPER('SQL Nyelv')	SQL NYELV
INITCAP(SQL Nyelv)	Sql Nyelv

```
SELECT 'The job id for'||UPPER(last_name)||' is '
||LOWER(job_id) AS "EMPLOYEE DETAILS"
FROM employees;
EREDMÉNYE:
```

	EMPLOYEE DETAILS
The job id for KING is ad_pres	
The job id for KOCHHAR is ad_vp	
The job id for DE HAAN is ad_vp	

A kisbetű-nagybetű kezelő függvények használata

 Adjuk meg Higgins azonosítóját, nevét és osztályának azonosítóját:

```
SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';
no rows selected
```

```
SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name) = 'higgins';
```


Ugyanezt adná a következő is:

SELECT employee_id, last_name, department_id FROM employees WHERE INITCAP(last_name) = 'Higgins';

Karakterkezelő függvények használata

Function	Result	
CONCAT('Hello', 'World')	HelloWorld	
SUBSTR('HelloWorld',1,5)	Hello	
LENGTH('HelloWorld')	10	
<pre>INSTR('HelloWorld', 'W')</pre>	6	
LPAD(salary,10, * *)	****24000	
RPAD(salary, 10, '*')	24000****	
REPLACE('JACK and JUE','J','BL')	BLACK and BLUE	
TRIM('H' FROM 'HelloWorld')	elloWorld	

A függvényekbe helyettesítő változókat is tehetünk: select upper('&valami') from dual

Karakterkezelő függvények használata

- 1. Vonjuk össze a keresztnevet és vezetéknevet!
- 2. Hány betűs a vezetéknév?
- 3. A vezetéknévben hanyadik betű "a"?
- 4. A beosztáskód a 4. betűtől 'REP'.

SELECT * FROM EMPLOYEES
WHERE SUBSTR(last_name, -1, 1) = 'n'; -- a vezetéknév n-re végződik.

Numerikus függvények

• ROUND: Adott tizedes jegyre kerekít (ha n negatív, akkor a tizedesvesszőtől balra kerekít).

• TRUNC: Adott tizedesjegy utáni részt levágja

• MOD: A maradékos osztást maradékát adja vissza

Függvény	Eredmény
ROUND (45.926, 2)	45.93
TRUNC (45.926, 2)	45.92
MOD(1600, 300)	100

A ROUND függvény használata

- Két tizedesjegyre kerekítünk
- Egészekre kerekítünk
- Tízesekre kerekítünk.

A DUAL tábla a SYS tulajdona, nyilvánossá van téve, így tesztelésre jól használható.

Egy DUMMY nevű oszlopa van, egy sora, amiben X szerepel.

A TRUNC függvény használata

- 1. Két tizedesjegyre csonkolunk
- 2. Egészekre csonkolunk (elhagyjuk a törtrészt).
- Tízesekre csonkolunk.

A ROUND és TRUNC dátumokra is használható.

A MOD függvény használata

 Mennyi 5000-rel osztva a fizetések maradéka a kereskedőkre, azaz az 'SA_REP' beosztáskódú dolgozókra?

```
SELECT last_name, salary, MOD(salary, 5000)
FROM employees
WHERE job_id = 'SA_REP';
```

LAST_NAME	SALARY	MOD(SALARY,5000)	
Abel	11000	1000	
Taylor	8600	3600	
Grant	7000	2000	

Gyakran használjuk egy egész szám parításának eldöntésére.

A dátumok használata

- A dátumokat az Oracle numerikusan tárolja. A dátum tartalmazza az évszázadot, évet, hónapot, napot, órát és másodpercet.
- A dátum megjelenítésének alapértelmezése: DD-MON-YY.
 - Ha az aktuális dátum a század második felében van, és a kétjegyű évszám az első felében, akkor a következő századnak tekinti, különben az aktuális századnak.
 - Ha az aktuális dátum a század első felében van, és a kétjegyű évszám a második felében, akkor az előző századnak tekinti, különben az aktuális századnak.

```
SELECT last_name, hire_date
FROM employees
WHERE hire_date < '01-FEB-88';</pre>
```

LAST_NAME	HIRE_DATE
King	17-JUN-87
Whalen	17-SEP-87

A dátumok használata

- A SYSDATE függvény segítségével megkaphatjuk:
 - az adatbázis-kezelő rendszerdátumát és
 - az adatbázis-kezelő rendszeridejét.

Ha a hónapok nevét magyarul akarjuk látni:

ALTER SESSION set NLS_LANGUAGE = "HUNGARIAN"

select to_char(sysdate,'yyyy-Month-dd') from dual

TO_CHAR(SYSDATE,'YYYY-MONTH-DD')

2008-Február -16

Dátumaritmetika

- Egy dátumhoz hozzá lehet adni vagy ki lehet vonni egy számot. A számnak megfelelő nappal növeli vagy csökkenti a dátum értékét.
- Két dátum kivonása a köztük eltelt napok számát adja vissza.
- Mivel egy óra a nap 24-ed része, így órákat is hozzá tudunk adni egy dátumhoz.

Dátumműveletek használata

Adjuk meg a 90-es osztályon, hogy hány hetet dolgoztak a belépés óta a dolgozók!

LAST_NAME	WEEKS
King	744.245395
Kochhar	626.102538
De Haan	453.245395

Dátumfüggvények

Függvény	Eredmény
MONTHS_BETWEEN (date1, date2)	A dátumok közti hónapok száma
ADD_MONTHS (date, n)	n hónappal növeli a dátumot
NEXT_DAY(date, 'char')	A következő adott nevű nap dátuma.
LAST_DAY(date)	A dátum hónapjának utolsó napja.
ROUND (date[,'fmt'])	A dátum kerekítése
TRUNC(date[, 'fmt'])	A dátum levágása

A dátumfüggvények használata

Függvény	Eredmény
MONTHS_BETWEEN ('01-SEP-95','11-JAN-94')	19.6774194
ADD_MONTHS ('11-JAN-94',6)	'11-JUL-94'
NEXT_DAY ('01-SEP-95','FRIDAY')	'08-SEP-95'
LAST_DAY ('01-FEB-95')	'28-FEB-95'

```
SELECT employee_id, hire_date,

MONTHS_BETWEEN (SYSDATE, hire_date) TENURE,

ADD_MONTHS (hire_date, 6) REVIEW,

NEXT_DAY (hire_date, 'FRIDAY'),

LAST_DAY(hire_date)

FROM employees
```

WHERE MONTHS_BETWEEN (SYSDATE, hire_date) < 70;

EMPLOYEE_ID	HIRE_DATE	TENURE	REVIEW	NEXT_DAY(LAST_DAY(
107	07-FEB-99	31.6982407	07-AUG-99	12-FEB-99	28-FEB-99
124	16-NOV-99	22.4079182	16-MAY-00	19-NOV-99	30-NOV-99
149	29-JAN-00	19.9885633	29-JUL-00	04-FEB-00	31-JAN-00
178	24-MAY-99	28.1498536	24-NOV-99	28-MAY-99	31-MAY-99

Dátumfüggvények használata

Tegyük fel, hogy SYSDATE = '25-JUL-03':

Függvény	Eredmény
ROUND (SYSDATE, 'MONTH')	01-AUG-03
ROUND (SYSDATE , 'YEAR')	01-JAN-04
TRUNC (SYSDATE , 'MONTH')	01-JUL-03
TRUNC (SYSDATE , 'YEAR')	01-JAN-03

```
SELECT employee_id, hire_date,

ROUND(hire_date, 'MONTH'), TRUNC(hire_date, 'MONTH')

FROM employees

WHERE hire_date LIKE '%97';
```

EMPLOYEE_ID	HIRE_DATE	ROUND(HIR	TRUNC(HIR
142	29-JAN-97	01-FEB-97	01-JAN-97
202	17-AUG-97	01-SEP-97	01-AUG-97

Konvertáló függvények

A hasonló adattípusok konverzióját az Oracle szerverre is bízhatjuk (implicit), de ajánlott inkább konvertáló függvényeket használni (explicit).

Implicit adattípus-konverzió

• A következő típusok konverzióját az Oracle szerver automatikusan elvégzi:

Miről	Mire
VARCHAR2 vagy CHAR	NUMBER
VARCHAR2 vagy CHAR	DATE
NUMBER	VARCHAR2
DATE	VARCHAR2

SELECT hire_date FROM hr.employees WHERE hire_date > '1990-01-01';

A jobb oldal karakteres, a bal oldal dátum, mégis érvényes az összehasonlítás.

Implicit adattípus-konverzió

• A következő típusú kifejezések konverzióját az Oracle szerver automatikusan elvégzi:

Miről	Mire
VARCHAR2 vagy CHAR	NUMBER
VARCHAR2 vagy CHAR	DATE

Explicit adattípus-konverzió

Explicit adattípus-konverzió

Függvény	Leírás
TO_CHAR(number date,[fmt], [nlsparams])	A VARCHAR2 karakter formátumát az <i>fmt</i> modellel lehet megadni.
	Az nlsparams paraméter mondja meg, hogy milyen tízedesvesszőt, ezres csoportosítót, pénznemeket használunk.
TO_CHAR(number date,[fmt], [nlsparams])	Dátumkonverzió esetén az nlsparams paraméter mondja meg, hogy milyen nyelven adtuk meg a napok, hónapok nevét, vagy miként rövidítettük a neveket.
TO_NUMBER(char,[fmt], [nlsparams])	Az fmt és nlsparams opcionális paraméterek értelme a fentiek szerint.
TO_DATE(char,[fmt],[nlsparams])	Az fmt és nlsparams opcionális paraméterek értelme a fentiek szerint.

A TO CHAR függvény használata dátummal

```
TO_CHAR(date, 'format_model')
```

- A formátum megadása:
 - egyszeres idézőjelek között
 - kisbetű érzékeny
 - tetszőleges érvényes dátumformátumot tartalmazhat
 - Az fm elemmel lehet az automatikusan kiegészített szóközöket eltávolítani, illetve a bevezető nullákat elnyomni

```
SELECT employee_id, TO_CHAR(hire_date, 'MM/YY')
Month_Hired
FROM employees
WHERE last_name = 'Higgins';
```

EMPLOYEE_ID	MONTH
205	06/94

A dátumformátum leggyakoribb elemei

Elem	Értelme
YYYY	Évszám (számokkal)
YEAR	Évszám (szövegesen)
ММ	Hónap sorszáma
MONTH	Hónap teljes neve
MON	Hónap 3 betűvel rövidítve
DY	A hét napja 3 betűvel rövidítve
DAY	A hét napjának teljes neve
DD	A nap sorszáma a hónapban

select to_char(sysdate,'Year') from dual

TO_CHAR(SYSDATE,'YEAR')

Two Thousand Eight

További formátum modellek

Elem	Leírás
SCC or CC	Century; server prefixes B.C. date with -
Years in dates YYYY or SYYYY	Year; server prefixes B.C. date with -
YYY or YY or Y	Last three, two, or one digits of year
Y,YYY	Year with comma in this position
IYYY, IYY, IY, I	Four-, three-, two-, or one-digit year based on the ISO standard
SYEAR or YEAR	Year spelled out; server prefixes B.C. date with -
BC or AD	Indicates B.C. or A.D. year
B.C. or A.D.	Indicates B.C. or A.D. year using periods
Q	Quarter of year
MM	Month: two-digit value
MONTH	Name of month padded with blanks to length of nine characters
MON	Name of month, three-letter abbreviation
RM	Roman numeral month
WW or W	Week of year or month
DDD or DD or D	Day of year, month, or week
DAY	Name of day padded with blanks to a length of nine characters
DY	Name of day; three-letter abbreviation
J	Julian day; the number of days since December 31, 4713 B.C.

A dátum típusú formátum modell használata

• Időformátum megadása:

HH24:MI:SS AM 15:45:32 PM

Szöveget kettős idézőjelek között lehet a dátumban használni:

DD "of" MONTH 12 of OCTOBER

A számokat szövegesen is kiírathatjuk:

ddspth fourteenth

További formátummodellek

Element	Description
AM or PM	Meridian indicator
A.M. or P.M.	Meridian indicator with periods
HH or HH12 or HH24	Hour of day, or hour $(1-12)$, or hour $(0-23)$
MI	Minute (0–59)
SS	Second (0-59)
SSSSS	Seconds past midnight (0–86399)

Element	Description
/ . ,	Punctuation is reproduced in the result.
"of the"	Quoted string is reproduced in the result.

Element	Description
TH	Ordinal number (for example, DDTH for 4TH)
SP	Spelled-out number (for example, DDSP for FOUR)
SPTH or THSP	Spelled-out ordinal numbers (for example, DDSPTH for FOURTH)

A TO CHAR függvény használata dátumokkal

```
SELECT last name,

TO_CHAR(hire_date, 'fmDD Month YYYY')
AS HIREDATE

FROM employees;
```

LAST_NAME	HIREDATE
King	17 June 1987
Kochhar	21 September 1989
De Haan	13 January 1993
Hunold	3 January 1990
Ernst	21 May 1991
Lorentz	7 February 1999
Mourgos	16 November 1999

SELECT last_name,

TO_CHAR(hire_date, 'fmDdspth "of" Month YYYY fmHH:MI:SS AM')
HIREDATE FROM employees;

LAST_NAME	HIREDATE	
King	Seventeenth of June 1987 12:00:00 AM	
Kochhar	Twenty-First of September 1989 12:00:00 AM	

A TO CHAR függvény használata számokkal

```
TO_CHAR(number, 'format_model')
```

• A legfontosabb formátummodellek:

Elem	Eredménye
9	Szám
0	Nulla
\$	Lebegő dollárjel
L	Lebegő pénznem
•	Tízedespont
,	Ezresek elválasztójele

További formátummodellek

Element	Description	Example	Result
9	Numeric position (number of 9s determine display width)	999999	1234
0	Display leading zeros	099999	001234
\$	Floating dollar sign	\$999999	\$1234
L	Floating local currency symbol	L999999	FF1234
D	Returns in the specified position the decimal character. The default is a period (.).	99D99	99.99
•	Decimal point in position specified	999999.99	1234.00
G	Returns the group separator in the specified position. You can specify multiple group separators in a number format model.	9,999	9G999
,	Comma in position specified	999,999	1,234
MI	Minus signs to right (negative values)	999999MI	1234-
PR	Parenthesize negative numbers	999999PR	<1234>
EEEE	Scientific notation (format must specify four Es)	99.999EEEE	1.234E+03
U	Returns in the specified position the "Euro" (or other) dual currency	U9999	€1234
V	Multiply by $10 n$ times ($n = \text{number of 9s after V}$)	9999V99	123400
S	Returns the negative or positive value	S9999	-1234 or +1234
В	Display zero values as blank, not 0	B9999.99	1234.00

A TO CHAR függvény használata számokkal

```
SELECT TO_CHAR(salary, '$99,999.00') SALARY
FROM employees
WHERE last_name = 'Ernst';
```

```
$6,000.00
```

Az Oracle szerver (#) jeleket tesz, ha több számjegy van mint amennyit megadtunk a formátum modellben.

A TO NUMBER és a TO DATE függvények használata

• Karakterként megadott számokat lehet a TO NUMBER függvénnyel számtípussá alakítani:

```
TO_NUMBER(char[, 'format_model'])
```

• A szövegként megadott dátumot a TO_DATE függvénnyel lehet dátumtípussá konvertálni:

```
TO_DATE(char[, 'format_model'])
```

 Ezekben a függvényekben használhatjuk az fx módosítót. Ennek jelentése, hogy pontosan meg kell egyezni méretre is (szóközöket is figyelembe véve) az argumentumoknak.

RR dátumformátum

Aktuális év	Megadott dátum	RR forma	YY forma
1995	27-OCT-95	1995	1995
1995	27-OCT-17	2017	1917
2001	27-OCT-17	2017	2017
2001	27-OCT-95	1995	2095

		Ha a megadott kétjegyű év:	
		0–49	50–99
Ha az aktuális év két utolsó	0–49	Aktuális évszázad dátuma	Az aktuális előtti évszázad dátuma
jegye	50–99	Az aktuális utáni évszázad dátuma	Az aktuális évszázad dátuma

Az RR dátumformátum használata

• Keressük meg az 1990 előtt belépett dolgozókat! Ha RR datumformátumot használunk, akkor mindegy hogy 1999-ben adjuk ki az utasítást vagy 2008-ban:

```
SELECT last_name, TO_CHAR(hire_date, 'DD-Mon-YYYY')
FROM employees
WHERE hire_date < TO_DATE('01-Jan-90','DD-Mon-RR');</pre>
```

LAST_NAME	TO_CHAR(HIR	
King	17-Jun-1987	
	21-Sep-1989	
Whalen	17-Sep-1987	

Függvények egymásba ágyazása

- A sorfüggvények tetszőleges mélységig egymásba ágyazhatók.
- A kiértékelés belülről kifele történik.

Függvények egymásba ágyazása

```
SELECT last name,
    UPPER(CONCAT(SUBSTR (LAST_NAME, 1, 8), '_US'))
FROM employees
WHERE department_id = 60;
```

LAST_NAME	UPPER(CONCAT(SUBSTR(LAST_NAME,1,8
Hunold	HUNOLD_US
Ernst	ERNST_US
Lorentz	LORENTZ_US

Általános függvények

- Ezek a függvények tetszőleges adattípussal és nullértékek esetén is működnek.
 - NVL (expr1, expr2)
 - NVL2 (expr1, expr2, expr3)
 - NULLIF (expr1, expr2)
 - COALESCE (expr1, expr2, ..., exprn)

Az NVL függvény

- A nullértéket a megadott értékkel helyettesíti:
 - Az adattípus lehet dátum, karakter, szám.
 - Az argumentumok adattípusának egyezőknek kell lenniük:
 - NVL(commission pct,0)
 - NVL(hire date, '01-JAN-97')
 - NVL(job id, 'No Job Yet')

Az NVL függvény használata

LAST_NAME	SALARY	NVL(COMMISSION_PCT,0)	AN_SAL
King	24000	0	288000
Kochhar	17000	0	204000
De Haan	17000	0	204000
Hunold	9000	0	108000
Ernst	6000	0	72000
Lorentz	4200	0	50400
Mourgos	5800	0	69600
Rajs	3500	0	42000
■ ■ 20 rows selected.			
		1	2

Az NVL2 függvény használata

LAST_NAME	SALARY	COMMISSION_PCT	INCOME
Zlotkey	10500	.2	SAL+COMM
Abel	11000	.3	SAL+COMM
Taylor	8600	.2	SAL+COMM
Mourgos	5800		SAL
Rajs	3500		SAL
Davies	3100		SAL
Matos	2600		SAL
Vargas	2500		SAL

Az NULLIF függvény használata

SELECT first_name, LENGTH(first_name) "expr1", last_name, LENGTH(last_name) "expr2", NULLIF(LENGTH(first_name), LENGTH(last_name)) result FROM employees;

FIRST_NAME	ехрг1	LAST_NAME	ехрг2	RESULT
Steven	6	King	4	6
Neena	5	Kochhar	7	5
Lex	3	De Haan	7	3
Alexander	9	Hunold	6	9
Bruce	5	Ernst	5	
Diana	5	Lorentz	7	5
Kevin	5	Mourgos	7	5
Trenna	6	Rajs	4	6
Curtis	6	Davies	6	
20 rows selected.	1		2	3

A COALESCE függvény használata

- A COALESCE függvény esetében az NVL függvénnyel szemben több helyettesítő értéket is megadhatunk.
- Ha az első kifejezés nem nullértéket ad vissza, akkor ez a függvény értéke, különben a COALESCE függvényt alkalmazza a maradék kifejezésekre.

A COALESCE függvény használata

```
SELECT last_name,

COALESCE (manager_id, commission_pct, -1) comm

FROM employees

ORDER BY commission_pct;
```

LAST_NAME	COMM
Grant	149
Zlotkey	100
Taylor	149
Abel	149
King	-1
Kochhar	100
De Haan	100

. . .

Feltételes kifejezések

- Segítségükkel IF-THEN-ELSE típusú logikát lehet használni az SQL utasításban
- Kétféle módszert használhatunk:
 - CASE expression
 - DECODE function

A CASE kifejezés

• Feltételes lekérdezéseket lehet megfogalmazni vele az IF-THEN-ELSE utasításhoz hasonlóan:

```
CASE expr WHEN comparison_expr1 THEN return_expr1
[WHEN comparison_expr2 THEN return_expr2
WHEN comparison_exprn THEN return_exprn
ELSE else_expr]
END
```

A CASE kifejezés használata

```
SELECT last_name, job_id, salary,

CASE job_id WHEN 'IT_PROG' THEN 1.10*salary

WHEN 'ST_CLERK' THEN 1.15*salary

WHEN 'SA_REP' THEN 1.20*salary

ELSE salary END "REVISED_SALARY"

FROM employees;
```

LAST_NAME	JOB_ID	SALARY	REVISED_SALARY
Lorentz	IT_PROG	4200	4620
Mourgos	ST_MAN	5800	5800
Rajs	ST_CLERK	3500	4025
• • •			
Gietz	AC_ACCOUNT	8300	8300

A DECODE függvény

Feltételes lekérdezéseket lehet megfogalmazni vele a CASE vagy az IF-THEN-ELSE utasításhoz hasonlóan:

A DECODE függvény használata

LAST_NAME	JOB_ID	SALARY	REVISED_SALARY
Lorentz	IT_PROG	4200	4620
Mourgos	ST_MAN	5800	5800
Rajs	ST_CLERK	3500	4025
Gietz	AC_ACCOUNT	8300	8300

A DECODE függvény használata

```
SELECT last name, salary,
       DECODE (TRUNC(salary/2000, 0),
                          0, 0.00,
                          1, 0.09,
                         2, 0.20,
                         3, 0.30,
                         4, 0.40,
                          5, 0.42,
                          6, 0.44,
                             0.45) TAX RATE
       employees
FROM
       department id = 80;
WHERE
```

Összefoglalás

- Ebben a részben megtanultuk:
 - hogyan kell a dátumokkal műveleteket végezni, függvényekben dátumokat használni
 - hogyan lehet módosítani az adatokat függvények segítségével
 - hogyan lehet a lekérdezés eredményét adó sorokat formázni
 - hogyan lehet különböző dátumformátumokat használni a megjelenítésben
 - hogyan lehet az adattípusokat konvertálni
 - hogyan kell használni az NVL függvényt
 - hogyan működnek a feltételes IF-THEN-ELSE logikájú kifejezések