Complejidad Computacional

Santiago Figueira

Departamento de Computación - FCEN - UBA

clase 6

Clase 6

La jerarquía de tiempos determinísticos La jerarquía de tiempos no-determinísticos Teorema de Ladner

La jerarquía de tiempos determinísticos

Clase 6

La jerarquía de tiempos determinísticos

La jerarquía de tiempos no-determinísticos Teorema de Ladner

Notación de 'o chica'

Definición

Sean $f, g : \mathbb{N} \to \mathbb{N}$. Decimos que f = o(g) si para todo $\epsilon > 0$

$$f(n) \le \epsilon \cdot g(n)$$

para todo n suficientemente grande o, equivalentemente, si

$$\lim_{n} f(n)/g(n) = 0.$$

Notar que si f = o(g) entonces f = O(g).

4

Notación de 'o chica'

Definición

Sean $f, g : \mathbb{N} \to \mathbb{N}$. Decimos que f = o(g) si para todo $\epsilon > 0$

$$f(n) \le \epsilon \cdot g(n)$$

para todo n suficientemente grande o, equivalentemente, si

$$\lim_{n} f(n)/g(n) = 0.$$

Notar que si f = o(g) entonces f = O(g).

Ejemplos

- $4(n+2) \neq o(n)$ pero observar que 4(n+2) = O(n)
- $\bullet \ 4(n+2) = o(n^2)$
- $n^c = o(2^n)$ para todo $c \in \mathbb{N}$
- $k^n = o(2^{n^2})$ para todo $k \in \mathbb{N}$

4

Re-codificación de máquinas determinísticas

En clases pasadas

- codificamos cualquier máquina M con $i = \langle M \rangle \in \{0, 1\}^*$.
 - M_i representaba la única máquina M con índice i, es decir $\langle M \rangle = i$.
- definimos la máquina universal U que recibía como parámetros $\langle i, x \rangle$ y simulaba $M_i(x)$.

Re-codificación de máquinas determinísticas

En clases pasadas

- codificamos cualquier máquina M con $i = \langle M \rangle \in \{0, 1\}^*$.
 - M_i representaba la única máquina M con índice i, es decir $\langle M \rangle = i$.
- definimos la máquina universal U que recibía como parámetros $\langle i, x \rangle$ y simulaba $M_i(x)$.

En esta clase vamos a

- codificar cada máquina M con infinitas cadenas $\langle\langle M\rangle,z\rangle$ para cualquier $z\in\{0,1\}^*$
 - Cualquier $\langle \langle M \rangle, z \rangle$ representa M
- usar una máquina universal U que usa la nueva codificación de máquinas:
 - $U(\langle w, x \rangle)$ simula $M_w(x)$ como antes, solo que ahora w es un índice de la nueva codificación.

Re-codificación de máquinas determinísticas

• Lo importante es que para la nueva codificación

$$(M_i)_{i\in\{0,1\}^*}$$

vale que dada una máquina M existen infinitos i tal que $M = M_i$.

• Seguimos teniendo que

Existe una máquina U que computa la función $u(\langle i, x \rangle) = M_i(x)$. Más aún, si M_i con entrada x termina en t pasos, entonces U con entrada $\langle i, x \rangle$ termina en $c \cdot t \cdot \log t$ pasos, donde c depende solo de i.

La jerarquía de tiempos determinísticos

Teorema

Si f,g son construibles en tiempo y cumplen que

$$f(n) \cdot \log f(n) = o(g(n))$$

entonces $\mathbf{DTIME}(f(n)) \subsetneq \mathbf{DTIME}(g(n))$.

Ejemplo

 $\mathbf{DTIME}(n^c) \subsetneq \mathbf{DTIME}(n^d) \text{ si } c < d.$

7

Definimos una máquina determinística D que con entrada x hace esto:

```
calcular n = |x| y t = g(n)
simular U(\langle x, x \rangle) por t pasos
si U(\langle x, x \rangle) no terminó en \leq t pasos, devolver 0
si no, devolver 1 - U(\langle x, x \rangle)
```

Definimos una máquina determinística D que con entrada x hace esto:

```
calcular n=|x| y t=g(n) simular U(\langle x,x\rangle) por t pasos si U(\langle x,x\rangle) no terminó en \leq t pasos, devolver 0 si no, devolver 1-U(\langle x,x\rangle)
```

D corre en tiempo O(g(n)), de modo que $\mathcal{L}(D) \in \mathbf{DTIME}(g(n))$.

Definimos una máquina determinística D que con entrada x hace esto:

```
calcular n=|x| y t=g(n) simular U(\langle x,x\rangle) por t pasos si U(\langle x,x\rangle) no terminó en \leq t pasos, devolver 0 si no, devolver 1-U(\langle x,x\rangle)
```

D corre en tiempo O(g(n)), de modo que $\mathcal{L}(D) \in \mathbf{DTIME}(g(n))$. Supongamos $\mathcal{L}(D) \in \mathbf{DTIME}(f(n))$.

Definimos una máquina determinística D que con entrada x hace esto:

```
calcular n=|x| y t=g(n)
simular U(\langle x,x\rangle) por t pasos
si U(\langle x,x\rangle) no terminó en \leq t pasos, devolver 0
si no, devolver 1-U(\langle x,x\rangle)
```

D corre en tiempo O(g(n)), de modo que $\mathcal{L}(D) \in \mathbf{DTIME}(g(n))$. Supongamos $\mathcal{L}(D) \in \mathbf{DTIME}(f(n))$.

Sea M una máquina determinística que decide $\mathcal{L}(D)$ en tiempo $c \cdot f(n)$. Existe n_0 tal que si $|x| \geq n_0$, entonces M con entrada x termina en $\langle c \cdot f(|x|) \rangle$ pasos.

Definimos una máquina determinística D que con entrada x hace esto:

```
calcular n=|x| y t=g(n) simular U(\langle x,x\rangle) por t pasos si U(\langle x,x\rangle) no terminó en \leq t pasos, devolver 0 si no, devolver 1-U(\langle x,x\rangle)
```

D corre en tiempo O(g(n)), de modo que $\mathcal{L}(D) \in \mathbf{DTIME}(g(n))$. Supongamos $\mathcal{L}(D) \in \mathbf{DTIME}(f(n))$.

Sea M una máquina determinística que decide $\mathcal{L}(D)$ en tiempo $c \cdot f(n)$. Existe n_0 tal que si $|x| \geq n_0$, entonces M con entrada x termina en $\leq c \cdot f(|x|)$ pasos.

 $U(\langle x, x \rangle)$ simula $M_x(x)$. Si $M_x(x)$ termina en $\leq c \cdot f(|x|)$ pasos, entonces $U(\langle x, x \rangle)$ necesita $\leq c' \cdot c \cdot f(|x|) \cdot \log(c \cdot f(|x|))$ pasos para terminar.

Definimos una máquina determinística D que con entrada x hace esto:

```
calcular n=|x| y t=g(n) simular U(\langle x,x\rangle) por t pasos si U(\langle x,x\rangle) no terminó en \leq t pasos, devolver 0 si no, devolver 1-U(\langle x,x\rangle)
```

D corre en tiempo O(g(n)), de modo que $\mathcal{L}(D) \in \mathbf{DTIME}(g(n))$. Supongamos $\mathcal{L}(D) \in \mathbf{DTIME}(f(n))$.

Sea M una máquina determinística que decide $\mathcal{L}(D)$ en tiempo $c \cdot f(n)$. Existe n_0 tal que si $|x| \geq n_0$, entonces M con entrada x termina en $\leq c \cdot f(|x|)$ pasos.

 $U(\langle x, x \rangle)$ simula $M_x(x)$. Si $M_x(x)$ termina en $\leq c \cdot f(|x|)$ pasos, entonces $U(\langle x, x \rangle)$ necesita $\leq c' \cdot c \cdot f(|x|) \cdot \log(c \cdot f(|x|))$ pasos para terminar. Existen $d, n_1 \geq n_0$ tal que para todo $n \geq n_1$

$$c' \cdot c \cdot f(n) \cdot \log(c \cdot f(n)) \leq d \cdot f(n) \cdot \log f(n) \leq g(n)$$

Tomemos x tal que $|x| \ge n_1$ y $M = M_x$.

Definimos una máquina determinística D que con entrada x hace esto:

```
calcular n=|x| y t=g(n) simular U(\langle x,x\rangle) por t pasos si U(\langle x,x\rangle) no terminó en \leq t pasos, devolver 0 si no, devolver 1-U(\langle x,x\rangle)
```

D corre en tiempo O(g(n)), de modo que $\mathcal{L}(D) \in \mathbf{DTIME}(g(n))$. Supongamos $\mathcal{L}(D) \in \mathbf{DTIME}(f(n))$.

Sea M una máquina determinística que decide $\mathcal{L}(D)$ en tiempo $c \cdot f(n)$. Existe n_0 tal que si $|x| \geq n_0$, entonces M con entrada x termina en $\leq c \cdot f(|x|)$ pasos.

 $U(\langle x, x \rangle)$ simula $M_x(x)$. Si $M_x(x)$ termina en $\leq c \cdot f(|x|)$ pasos, entonces $U(\langle x, x \rangle)$ necesita $\leq c' \cdot c \cdot f(|x|) \cdot \log(c \cdot f(|x|))$ pasos para terminar. Existen $d, n_1 \geq n_0$ tal que para todo $n \geq n_1$

$$c' \cdot c \cdot f(n) \cdot \log(c \cdot f(n)) \le d \cdot f(n) \cdot \log f(n) \le g(n)$$

Tomemos x tal que $|x| \ge n_1$ y $M = M_x$. $U(\langle x, x \rangle)$ termina en $\le g(|x|)$ pasos y $D(x) = 1 - M_x(x) = 1 - M(x)$. Pero $\mathcal{L}(D) = \mathcal{L}(M)$. Absurdo.

Diagonalización

Parecido a lo que hicimos para demostrar que *halt* no es computable.

Definimos una máquina D tal que

- D corre en tiempo O(g(n))
- D se porta distinto a todas las máquinas que corren en tiempo $O(f(n) \cdot \log f(n))$. D(x) 'niega' la salida de $M_x(x)$:
 - cuando $M_x(x) = 1, D(x) = 0$
 - cuando $M_x(x) = 0, D(x) = 1$
- D puede diagonalizar en tiempo $O(n^3)$ y definir una función que no es computable por ninguna máquina en tiempo $O(n^2)$

Diagonalización

 ξ Cómo diagonalizamos una máquina no-determinística N?

- ¿Podemos diagonalizar en tiempo $O(n^3)$ las máquinas no-determinísticas que corren en tiempo $O(n^2)$?
- ¿Cómo 'negamos' la salida de una máquina no-determinística? Se conjetura que $\mathbf{NP} \neq \mathbf{coNP}$.
- Pero sí sabemos que si $\mathcal{L} \in \mathbf{NDTime}(T(n))$, entonces $\overline{\mathcal{L}} \in \mathbf{DTime}(2^{T(n)^c})$ para alguna constante c

La jerarquía de tiempos no-determinísticos

Clase 6

La jerarquía de tiempos determinísticos La jerarquía de tiempos no-determinísticos Teorema de Ladner

Jerga de cómputos en máquinas no-determinísticas

Recordar que un **cómputo** de una máquina no-determinística $N = (\Sigma, Q, \delta)$ a partir de $x \in \{0, 1\}^*$ es una secuencia C_0, \dots, C_ℓ de configuraciones tal que

- 1. C_0 es inicial a partir de x
- 2. C_{i+1} es la evolución de C_i en un paso dado por alguna de las 2 tuplas de δ .
- 3. C_{ℓ} está en estado q_{si} o q_{no}

En particular, si existe tal cómputo, decimos que N con entrada x terminó.

Un **cómputo aceptador** es uno en el que C_{ℓ} está en estado q_{sf} .

Un **cómputo incompleto** es una secuencia $y = C_0, \ldots, C_\ell$ como la anterior donde valen 1 y 2 pero no vale 3. En este caso decimos que N no **terminó** siguiendo dicho cómputo.

Codificación de cómputos en máquinas no-determinísticas

- Codificamos un cómputo de N con una secuencia $y \in \{0,1\}^*$ que representa las alternativas de δ .
- Si N es una máquina no-determinística que corre en tiempo T(n), toda cadena $y_x \in \{0,1\}^{T(|x|)}$ representa un cómputo de N a partir de x
- Observar que secuencias más cortas que T(|x|) son posiblemente cómputos incompletos.
- Por simplicidad suponemos que cualquier extensión de y_x codifica el mismo cómputo que y_x .

- N acepta x a través del cómputo 011 y también a través de los cómputos 0110, 0111, 01100, . . .
- 01 es un cómputo incompleto de N a partir x
- N todavía no terminó siguiendo el cómputo 01

Re-codificación de máquinas no-determinísticas

- Lo mismo que hicimos para las máquinas determinísticas
- Nueva codificación

$$(N_i)_{i\in\{0,1\}^*}$$

tal que para toda máquina no-determinística N existen infinitos i tal que $N=N_i$.

- Seguimos teniendo que
 - Existe una máquina no-determinística NU que tal que NU acepta $(\langle i, x \rangle)$ sii N_i acepta x y si N_i corre en tiempo T(n) entonces $NU(\langle i, x \rangle)$ decide si N_i acepta o rechaza x en $c \cdot T(|x|)$ pasos, donde c depende solo de i.
- A veces vamos a usar una enumeración $(N_i)_{i\in\mathbb{N}}$ de las máquinas no-determinísticas indexadas por números naturales:
 - para $i \in \mathbb{N}$, N_i representa N_z , donde z es la representación de i en binario sin el 1 inicial

La jerarquía de tiempos no-determinísticos

Teorema

Si f,g son construibles en tiempo, no decrecientes y cumplen que

$$f(n+1) = o(g(n)),$$

entonces $NDTime(f(n)) \subseteq NDTime(g(n))$.

Ejemplo

 $NDTIME(n^c) \subseteq NDTIME(n^d)$ si c < d.

Sea $(N_i)_{i\in\mathbb{N}}$ una enumeración de todas las máquinas no-determinísticas. Definimos la máquina no-determinística N con entrada x así:

```
si x no es de la forma 1^{i}0y, rechazar
si no, supongamos x = 1^i 0y
  si |y| < q(i),
    simular no determinísticamente N_i(x0) y
       N_i(x1) por g(|x|) pasos
    si alguna no terminó: rechazar
    si las dos terminaron:
       aceptar sii N_i(x0) acepta y N_i(x1) acepta
  si |y| = g(i),
    simular N_i(1^i0) siguiendo el cómputo
       codificado por y
                                                  (**)
    si no terminó: rechazar
    si terminó: aceptar sii y es no aceptador
  si |y| > q(i), rechazar
```

Sea $(N_i)_{i\in\mathbb{N}}$ una enumeración de todas las máquinas no-determinísticas. Definimos la máquina no-determinística N con entrada x así:

```
si x no es de la forma 1^{i}0y, rechazar
si no, supongamos x = 1^i 0y
  si |y| < q(i),
    simular no determinísticamente N_i(x0) y
       N_i(x1) por g(|x|) pasos
    si alguna no terminó: rechazar
    si las dos terminaron:
       aceptar sii N_i(x0) acepta y N_i(x1) acepta
  si |y| = g(i),
    simular N_i(1^i0) siguiendo el cómputo
       codificado por y
                                                  (**)
    si no terminó: rechazar
    si terminó: aceptar sii y es no aceptador
  si |y| > g(i), rechazar
```

Como es no-determinística, en (*) simulamos en tiempo O(g(|x|)). En (**) simulamos en tiempo O(|y|).

N corre en tiempo O(g(n)), luego $\mathcal{L}(N) \in \mathbf{NDTIME}(g(n))$.

Supongamos que $\mathcal{L}(N) \in \mathbf{NDTime}(f(n))$ Sea N' una máquina no-determinística tal que

- $\mathcal{L}(N') = \mathcal{L}(N)$ y
- con entrada x suficientemente larga termina en $\leq c \cdot f(|x|)$ pasos.

Como f(n+1) = o(g(n)), para todo n suficientemente grande,

$$c \cdot f(n+1) \le g(n).$$

Supongamos que $\mathcal{L}(N) \in \mathbf{NDTime}(f(n))$ Sea N' una máquina no-determinística tal que

- $\mathcal{L}(N') = \mathcal{L}(N)$ y
- con entrada x suficientemente larga termina en $\leq c \cdot f(|x|)$ pasos.

Como f(n+1) = o(g(n)), para todo n suficientemente grande,

$$c \cdot f(n+1) \le g(n).$$

Tomar i suficientemente grande tal que

- $N' = N_i$ y
- para todo $x \in \{0,1\}^*$, si |x| > i entonces $N_i(x0)$ y $N_i(x1)$ terminan en tiempo no-determinístico g(|x|)
 - |x0| = |x1| = |x| + 1 y N_i corre en tiempo $c \cdot f(n)$

```
si x no es de la forma 1^i 0y, rechazar si no, supongamos x=1^i 0y si |y|=g(i), simular N_i(1^i 0) siguiendo el cómputo codificado por y si no terminó: rechazar si las dos terminaron: si |y|=g(i), simular N_i(1^i 0) siguiendo el cómputo codificado por y si no terminó: rechazar si terminó: aceptar sii y es no aceptador si y si
```

 N_i es tal que $\mathcal{L}(N_i) = \mathcal{L}(N)$ y corre en tiempo $c \cdot f(n)$ Para $x = 1^i 0 y$, $N_i(x0)$ y $N_i(x0)$ terminan en $c \cdot f(|x|+1) \leq g(|x|)$ pasos. $N_i(1^i 0)$ termina en $c \cdot f(i+1) \leq g(i)$ pasos.

```
si x no es de la forma 1^i 0y, rechazar si no, supongamos x=1^i 0y si |y|=g(i), si |y|=g(i), simular no determinísticamente N_i(x0) y si mular N_i(1^i 0) siguiendo el cómputo codificado por y si no terminó: rechazar si alguna no terminó: rechazar si terminó: aceptar sii y es no aceptador si y si
```

```
N_i es tal que \mathcal{L}(N_i) = \mathcal{L}(N) y corre en tiempo c \cdot f(n)
Para x = 1^i 0 y, N_i(x0) y N_i(x0) terminan en c \cdot f(|x|+1) \leq g(|x|) pasos. N_i(1^i 0) termina en c \cdot f(i+1) \leq g(i) pasos.
```

```
N_i es tal que \mathcal{L}(N_i) = \mathcal{L}(N) y corre en tiempo c \cdot f(n)
Para x = 1^i 0 y, N_i(x0) y N_i(x0) terminan en c \cdot f(|x|+1) \leq g(|x|) pasos. N_i(1^i 0) termina en c \cdot f(i+1) \leq g(i) pasos.
```

```
si x no es de la forma 1<sup>i</sup>0y, rechazar
                                                      si |y| = q(i),
  si no, supongamos x = 1^{i}0u
                                                        simular N_i(1^i0) siguiendo el cómputo
    si |y| < q(i),
                                                           codificado por u
                                                        si no terminó: rechazar
                                                        si terminó: aceptar sii y es no aceptador
      si alguna no terminó: rechazar
                                                      si |y| > g(i), rechazar
      si las dos terminaron:
         aceptar sii N_i(x0) acepta y N_i(x1) acepta
N_i es tal que \mathcal{L}(N_i) = \mathcal{L}(N) y corre en tiempo c \cdot f(n)
Para x = 1^i 0y, N_i(x0) y N_i(x0) terminan en c \cdot f(|x|+1) \leq g(|x|)
pasos. N_i(1^i0) termina en c \cdot f(i+1) \leq q(i) pasos.
   1^{i}0 \in \mathcal{L}(N) sii \forall y \in \{0,1\}^{1} \ 1^{i}0y \in \mathcal{L}(N_{i})
                      sii \forall y \in \{0,1\}^2 \ 1^i 0 y \in \mathcal{L}(N_i)
                       sii \forall y \in \{0,1\}^{g(i)} \ 1^i 0 y \in \mathcal{L}(N_i)
                             N_i(1^i0) rechaza siguiendo todos los cómputos y
                                 tal que |y| = q(i)
                       sii 1^i 0 \notin \mathcal{L}(N_i) = \mathcal{L}(N)
```

Absurdo.

Teorema de Ladner

Clase 6

La jerarquía de tiempos determinísticos La jerarquía de tiempos no-determinísticos

Teorema de Ladner

Problemas NP-intermedios

Muchos problemas \mathbf{NP} terminan siendo \mathbf{P} o $\mathbf{NP\text{-}completos}$. ¿Les pasa esto a todos los problemas \mathbf{NP} ?

Teorema (Ladner)

Si $P \neq NP$ entonces existe \mathcal{L} tal que $\mathcal{L} \in NP$, $\mathcal{L} \notin P$, y $\mathcal{L} \notin NP$ -completo.

Demostración. Como siempre, sea M_i la i-ésima máquina determinística. Para simplificar, escribimos ψ en lugar de $\langle \psi \rangle$.

Demostración.

Como siempre, sea M_i la *i*-ésima máquina determinística. Para simplificar, escribimos ψ en lugar de $\langle \psi \rangle$.

Definimos el problema SAT_H relativo a la función $H:\mathbb{N}\to\mathbb{N}$:

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

Demostración.

Como siempre, sea M_i la *i*-ésima máquina determinística. Para simplificar, escribimos ψ en lugar de $\langle \psi \rangle$.

Definimos el problema SAT_H relativo a la función $H:\mathbb{N}\to\mathbb{N}$:

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

• cuando H crece relativamente rápido, por ejemplo H(n)=n, entonces $\mathsf{SAT}_H \in \mathbf{P}$: si $x_\psi = \psi 01^{|\psi|^{|\psi|}}$ entonces $|x_\psi| \geq 2^{|\psi|}$ para toda ψ salvo finitos casos. Dada x_ψ decidimos si ψ es satisfacible en tiempo $O(2^{|\psi|}) = O(|x_\psi|)$, o sea tiempo lineal.

Demostración.

Como siempre, sea M_i la *i*-ésima máquina determinística. Para simplificar, escribimos ψ en lugar de $\langle \psi \rangle$.

Definimos el problema SAT_H relativo a la función $H:\mathbb{N}\to\mathbb{N}$:

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

- cuando H crece relativamente rápido, por ejemplo H(n)=n, entonces $\mathsf{SAT}_H \in \mathbf{P}$: si $x_\psi = \psi 01^{|\psi|^{|\psi|}}$ entonces $|x_\psi| \geq 2^{|\psi|}$ para toda ψ salvo finitos casos. Dada x_ψ decidimos si ψ es satisfacible en tiempo $O(2^{|\psi|}) = O(|x_\psi|)$, o sea tiempo lineal.
- cuando H es constante, $SAT_H \in \mathbf{NP\text{-}completo}$.

En la demostración que sigue, vamos a elegir una ${\cal H}$ adecuada: ${\cal H}$ tiende a infinito pero crece lentamente

$$\begin{array}{l} \text{m\'inimo } i < \log \log n \text{ tq } \forall x \in \{0,1\}^{\leq \log n}, \\ H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x) \text{ en } \leq i \cdot |x|^i \text{ pasos; o} \\ \log \log n \text{ si no existe tal } i \end{array}$$

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

mínimo
$$i < \log \log n$$
 tq $\forall x \in \{0,1\}^{\leq \log n}$, $H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x)$ en $\leq i \cdot |x|^i$ pasos; o $\log \log n$ si no existe tal i

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

 SAT_H y H están definidas por recursión mutua, pero están bien definidas:

- H(n) usa $\mathsf{SAT}_H(x)$ para palabras x de longitud $\leq \log n$
- $x \in \mathsf{SAT}_H$ depende de H(n) para n < |x| (aquí $x = \psi 01^{n^{H(n)}}$, con $n = |\psi|$)

mínimo
$$i < \log \log n$$
 tq $\forall x \in \{0, 1\}^{\leq \log n}$, $H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x)$ en $\leq i \cdot |x|^i$ pasos; o $\log \log n$ si no existe tal i

$$SAT_H = \{ \psi 01^{n^{H(n)}} : \psi \in SAT, n = |\psi| \}$$

 SAT_H y H están definidas por recursión mutua, pero están bien definidas:

- H(n) usa $\mathsf{SAT}_H(x)$ para palabras x de longitud $\leq \log n$
- $x \in \mathsf{SAT}_H$ depende de H(n) para n < |x|(aquí $x = \psi 01^{n^{H(n)}}$, con $n = |\psi|$)

Ejercicio

H es computable en tiempo $O(n^3)$.

mínimo
$$i < \log \log n$$
 tq $\forall x \in \{0,1\}^{\leq \log n}$, $H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x)$ en $\leq i \cdot |x|^i$ pasos; o $\log \log n$ si no existe tal i

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

 SAT_H y H están definidas por recursión mutua, pero están bien definidas:

- H(n) usa $\mathsf{SAT}_H(x)$ para palabras x de longitud $\leq \log n$
- $x \in \mathsf{SAT}_H$ depende de H(n) para n < |x|(aquí $x = \psi 01^{n^{H(n)}}$, con $n = |\psi|$)

Ejercicio

H es computable en tiempo $O(n^3)$.

Entonces $SAT_H \in \mathbf{NP}$.

$$\begin{array}{l} \text{m\'inimo } i < \log\log n \text{ tq } \forall x \in \{0,1\}^{\leq \log n}, \\ H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x) \text{ en } \leq i \cdot |x|^i \text{ pasos; o} \\ \log\log n \text{ si no existe tal } i \end{array}$$

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

$$H(n) = \underset{\text{log} \log n}{\text{m\'inimo}} \ i < \log \log n \ \text{tq} \ \forall x \in \{0,1\}^{\leq \log n}, \\ H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x) \ \text{en} \ \leq \ i \cdot |x|^i \ \text{pasos; o} \\ \log \log n \ \text{si no existe tal} \ i$$

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

$$\mathsf{SAT}_H \in \mathbf{P} \Longrightarrow \exists c \ \forall n \ H(n) \le c$$

$$H(n) = \begin{array}{ll} \text{m\'inimo } i < \log\log n \text{ tq } \forall x \in \{0,1\}^{\leq \log n}, \\ H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x) \text{ en } \leq i \cdot |x|^i \text{ pasos; o} \\ \log\log n \text{ si no existe tal } i \end{array}$$

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

$$\mathsf{SAT}_H \in \mathbf{P} \Longrightarrow \exists c \ \forall n \ H(n) \leq c$$

Demostración.

Supongamos que la máquina determinística M decide SAT_H en tiempo $c \cdot n^c$. Existe i > c tal que $\mathcal{L}(M) = \mathcal{L}(M_i)$. Entonces para todo $n \geq 2^{2^i}$, tenemos que $H(n) \leq i$. Luego

$$H(n) \le \max\left(\left\{H(m) \colon m < 2^{2^i}\right\} \cup \left\{i\right\}\right).$$

$$\begin{array}{l} \text{m\'inimo } i < \log \log n \text{ tq } \forall x \in \{0,1\}^{\leq \log n}, \\ H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x) \text{ en } \leq i \cdot |x|^i \text{ pasos; o} \\ \log \log n \text{ si no existe tal } i \end{array}$$

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

$$H(n) = \begin{array}{ll} \text{m\'inimo } i < \log \log n \text{ tq } \forall x \in \{0,1\}^{\leq \log n}, \\ H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x) \text{ en } \leq i \cdot |x|^i \text{ pasos; o} \\ \log \log n \text{ si no existe tal } i \end{array}$$

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

 $\exists c \ \exists^{\infty} n \ H(n) \leq c \Longrightarrow \mathsf{SAT}_H \in \mathbf{P}.$

$$H(n) = \underset{\text{log} \log n}{\text{mínimo}} i < \log \log n \text{ tq } \forall x \in \{0,1\}^{\leq \log n}, \\ H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x) \text{ en } \leq i \cdot |x|^i \text{ pasos; o} \\ \log \log n \text{ si no existe tal } i$$

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

 $\exists c \; \exists^{\infty} n \; H(n) \leq c \Longrightarrow \mathsf{SAT}_H \in \mathbf{P}.$

Demostración.

Supongamos $\exists c \ \exists^{\infty} n \ H(n) \leq c$. Entonces $\exists i \ \exists^{\infty} n \ H(n) = i$. Veamos que M_i acepta SAT_H en tiempo $i \cdot n^i$: Sup. que M_i no acepta SAT_H . Existe x tal que $M_i(x) \neq \chi_{\mathsf{SAT}_H}(x)$. Entonces $\forall n > 2^{|x|} \ H(n) \neq i$. Absurdo. Similar caso en que M_i no corre en tiempo $i \cdot n^i$.

$$H(n) = \begin{array}{ll} \text{m\'inimo } i < \log\log n \text{ tq } \forall x \in \{0,1\}^{\leq \log n}, \\ H(n) = M_i(x) = \chi_{\mathsf{SAT}_H}(x) \text{ en } \leq i \cdot |x|^i \text{ pasos; o} \\ \log\log n \text{ si no existe tal } i \end{array}$$

$$\mathsf{SAT}_H = \{ \psi 01^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \}$$

 $\exists c \ \exists^{\infty} n \ H(n) \leq c \Longrightarrow \mathsf{SAT}_H \in \mathbf{P}.$

Demostración.

Supongamos $\exists c \ \exists^{\infty} n \ H(n) \leq c$. Entonces $\exists i \ \exists^{\infty} n \ H(n) = i$. Veamos que M_i acepta SAT_H en tiempo $i \cdot n^i$: Sup. que M_i no acepta SAT_H . Existe x tal que $M_i(x) \neq \chi_{\mathsf{SAT}_H}(x)$. Entonces $\forall n > 2^{|x|} \ H(n) \neq i$. Absurdo. Similar caso en que M_i no corre en tiempo $i \cdot n^i$.

Contra-recíproco:
$$SAT_H \notin \mathbf{P} \Longrightarrow \lim_{n \to \infty} H(n) = \infty$$

Veamos que $SAT_H \notin \mathbf{P}$:

Supongamos $\mathsf{SAT}_H \in \mathbf{P}$. Por la Proposición 1, $\exists c \ \forall n \ H(n) \leq c$.

$$\begin{aligned} \mathsf{SAT}_H &= \{ \psi 0 1^{n^{H(n)}} \colon \psi \in \mathsf{SAT}, n = |\psi| \} \\ &= \{ \psi 0 \underbrace{1 \dots \dots 1}_{|\psi|^{H(|\psi|)} \le |\psi|^c} \colon \psi \in \mathsf{SAT} \} \end{aligned}$$

Pero entonces un algoritmo de tiempo polinomial para SAT_H se puede usar para SAT , por lo que $\mathsf{SAT} \in \mathbf{P}$. Como SAT es $\mathbf{NP\text{-}completo}$ concluimos que $\mathbf{P} = \mathbf{NP}$. Absurdo.

Veamos que $SAT_H \notin \mathbf{NP\text{-}completo}$:

Supongamos $\mathsf{SAT}_H \in \mathbf{NP\text{-}completo}$. Hay una reducción polinomial f de SAT a SAT_H :

$$\psi\in\mathsf{SAT}$$
sii
$$f(\psi)\in\mathsf{SAT}_H$$
sii
$$f(\psi)\text{ es de la forma }F_{\psi}01^{|F_{\psi}|^{H(|F_{\psi}|)}}\text{ con }F_{\psi}\in\mathsf{SAT}.$$

Supongamos que f es computable en tiempo $c \cdot n^c$ por una cierta máquina determinística. Como esa máquina no puede escribir más que $c \cdot n^c$ símbolos en la salida,

$$|f(x)| \le c \cdot |x|^c$$

Luego

$$|f(\psi)| = |F_{\psi}01^{|F_{\psi}|}|^{H(|F_{\psi}|)}|$$

= $|F_{\psi}| + 1 + |F_{\psi}|^{H(|F_{\psi}|)} \le c \cdot |\psi|^{c}$

- $\psi \in \mathsf{SAT} \ \mathrm{sii} \ f(\psi) = F_{\psi} 01^{|F_{\psi}|^{H(|F_{\psi}|)}} \ \mathrm{con} \ F_{\psi} \in \mathsf{SAT}$
- $|F_{\psi}| + 1 + |F_{\psi}|^{H(|F_{\psi}|)} \le c \cdot |\psi|^c$

- $\psi \in \mathsf{SAT} \ \mathrm{sii} \ f(\psi) = F_{\psi} 01^{|F_{\psi}|^{H(|F_{\psi}|)}} \ \mathrm{con} \ F_{\psi} \in \mathsf{SAT}$
- $|F_{\psi}| + 1 + |F_{\psi}|^{H(|F_{\psi}|)} \le c \cdot |\psi|^{c}$

Proposición 3

Existe k tal que para todo ψ , $|\psi| > k \Longrightarrow |F_{\psi}| < |\psi|$.

- $\psi \in \mathsf{SAT} \ \mathrm{sii} \ f(\psi) = F_{\psi} 0 1^{|F_{\psi}|^{H(|F_{\psi}|)}} \ \mathrm{con} \ F_{\psi} \in \mathsf{SAT}$
- $|F_{\psi}| + 1 + |F_{\psi}|^{H(|F_{\psi}|)} \le c \cdot |\psi|^c$

Proposición 3

Existe k tal que para todo ψ , $|\psi| > k \Longrightarrow |F_{\psi}| < |\psi|$.

Demostración.

Supongamos que no. Para todo k, existe ψ tal que

$$|\psi| > k$$
 y $|F_{\psi}| \ge |\psi| > k$.

- $\psi \in \mathsf{SAT} \ \mathrm{sii} \ f(\psi) = F_{\psi} 0 1^{|F_{\psi}|^{H(|F_{\psi}|)}} \ \mathrm{con} \ F_{\psi} \in \mathsf{SAT}$
- $|F_{\psi}| + 1 + |F_{\psi}|^{H(|F_{\psi}|)} \le c \cdot |\psi|^c$

Proposición 3

Existe k tal que para todo ψ , $|\psi| > k \Longrightarrow |F_{\psi}| < |\psi|$.

Demostración.

Supongamos que no. Para todo k, existe ψ tal que

$$|\psi| > k$$
 y $|F_{\psi}| \ge |\psi| > k$.

Como $\mathsf{SAT}_H \notin \mathbf{P}$, por Prop. 2, $\lim_{n \to \infty} H(n) = \infty$.

- $\psi \in \mathsf{SAT} \ \mathrm{sii} \ f(\psi) = F_{\psi} 01^{|F_{\psi}|^{H(|F_{\psi}|)}} \ \mathrm{con} \ F_{\psi} \in \mathsf{SAT}$
- $|F_{\psi}| + 1 + |F_{\psi}|^{H(|F_{\psi}|)} \le c \cdot |\psi|^c$

Proposición 3

Existe k tal que para todo ψ , $|\psi| > k \Longrightarrow |F_{\psi}| < |\psi|$.

Demostración.

Supongamos que no. Para todo k, existe ψ tal que

$$|\psi| > k$$
 y $|F_{\psi}| \ge |\psi| > k$.

Como SAT_H \notin **P**, por Prop. 2, $\lim_{n\to\infty} H(n) = \infty$. Entonces $\exists k' \ \forall n > k' \ n^{H(n)} > c \cdot n^c$

- $\psi \in \mathsf{SAT} \ \mathrm{sii} \ f(\psi) = F_{\psi} 01^{|F_{\psi}|^{H(|F_{\psi}|)}} \ \mathrm{con} \ F_{\psi} \in \mathsf{SAT}$
- $|F_{\psi}| + 1 + |F_{\psi}|^{H(|F_{\psi}|)} \le c \cdot |\psi|^c$

Proposición 3

Existe k tal que para todo ψ , $|\psi| > k \Longrightarrow |F_{\psi}| < |\psi|$.

Demostración.

Supongamos que no. Para todo k, existe ψ tal que

$$|\psi| > k$$
 y $|F_{\psi}| \ge |\psi| > k$.

Como $\mathsf{SAT}_H \notin \mathbf{P}$, por Prop. 2, $\lim_{n \to \infty} H(n) = \infty$.

Entonces $\exists k' \ \forall n > k' \ n^{H(n)} > c \cdot n^c$

Existe ψ tal que $|F_{\psi}| \ge |\psi| > k'$. Luego

$$c \cdot |\psi|^c \le c \cdot |F_{\psi}|^c < |F_{\psi}|^{H(|F_{\psi}|)} \le c \cdot |\psi|^c$$

Absurdo.

```
Algoritmo recursivo G para decidir \psi \in SAT:
          entrada: \psi
          si |\psi| < k,
             devolver 'sí' si \psi \in SAT y 'no' en caso contrario
                             (finitos casos porque k es constante)
          si no.
             computar f(\psi)
             si f(\psi) no es de la forma F_{\psi}01^{|F_{\psi}|^{H(|F_{\psi}|)}}
                devolver 'no'
             si no, devolver G(F_{\psi}) (por Prop. 3, |F_{\psi}| < |\psi|)
Notar que G corre en tiempo polinomial y
                    \psi \in \mathsf{SAT} sii G(\psi) \in \mathsf{SAT}
Entonces P = NP. Absurdo.
```