A)

B) Avec les labels pour les sommets comme v_i pour les faces comme f_i et les arêtes comme e_i , où $0 \le v_i \le 17$, $1 \le f_i \le 9$, et $1 \le e_i \le 25$, on peut observer la formule d'Euler pour ce graphe planaire G_5

C) (i) G_0 est hamiltonien et pour i > 0 impair G_i et hamiltonien. G_1 est hamiltonien, en effet $\langle v_1, v_2, v_3, v_4, v_5, v_0, v_1 \rangle$. Maintenant, tout cycle hamiltonien doit nécessairement éviter e_3 . Cela signifie qu'ils doivent tous contenir la chaîne $\langle v_5, v_0, v_1, v_2, v_3 \rangle$ ou $\langle v_3, v_2, v_1, v_0, v_5 \rangle$.

Pour n pair, essayons de construire un cycle pour les 3 plus grands sommets par indice. La chaîne $\langle v_{3n-3}, v_{3n-2}, v_{3n-1}, ..., v_3 \rangle$ saute v_{3n+2} tandis que la chaîne $\langle v_{3n-3}, v_{3n+2}, v_{3n-1}, ..., v_3 \rangle$ saute v_{3n-2} . On peut raisonner de manière similaire pour les chaînes $\langle v_{3n+1}, ..., v_5 \rangle$ et ainsi, il n'y a pas de cycle hamiltonien pour n pair. Pour n impair, construisons un cycle de manière récursive. On a la chaîne

$$C = \left\langle v_{3n+1}, v_{3n+2}, v_{3n-3}, v_{3(n-1)+1}, v_{3(n-1)-2}, v_{3(n-1)-1}, v_{3(n-2)+1}, ..., v_4, v_5, v_0 \right\rangle$$

En remarquant que cela est possible car n-1 est pair. Maintenant, on a également la chaîne

$$C' = \langle v_{3n}, v_{3(n-1)+2}, v_{3(n-1)}, v_{3(n-2)+2}, ..., v_8, v_3, v_2, v_1 \rangle$$

Par conséquent, $C \circ (C')^{-1}$ est un cycle hamiltonien.

- (ii) G_0 est eulérien. Cependant, pour i>0 le sommet v_4 aura un nombre impair d'arêtes et ne peut donc pas être eulérien.
- (iii) G_0 est complet mais pour i > 0, G_i sont pas complets car nous pouvons voir que le sommet v_4 n'a aucun arêtes sur aucun des sommets de G_0
- (iv) G_0 est regulier mais pour i > 0, G_i sont pas reguliers car nous pouvons voir v_1 et v_2 n'ont pas le même numéro d'arêtes que v_0
- (v) Aucun des graphes n'est biparti
- (vi) oui
- (vii) oui
- (viii) oui
- (ix) oui pour tout i, car on peut toujours supprimer e_3 et il restera connexe.
- (x) oui pour tout i > 1, car on peut toujours supprimer e_3 et e_5 et il restera connexe.
- (xi) oui
- D)non non oui