Proof of Correctness of BFS

First, two kind of annoying lemmas. These help us formalize what's going on as the algorithm is running.

Lemma 1. At end of BFS, for all $v \in V$, dist(v) is at least the distance from s to v.

Proof. Will show by induction that at each iteration of loop, this holds for all v.

Base Case: 0th iteration.

Inductive Hypothesis: Assume true for the kth iteration.

Inductive Case: Consider the vertex v removed from queue on k+1st iteration.

- Only change dist(u) for a few vertices, and only if u adjacent to v.
- For verts not changed, use IH.
- Otherwise,
 - * distance from s to v
 - * \leq distance from s to u + 1
 - $* \le dist(u) + 1$
 - * = dist(v).

Lemma 2. For any $k(v_1, \ldots, v_r)$ be the elements of the queue at iteration k. At this iteration,

- 1. $dist(v_1) \ge dist(v_r) 1$
- 2. for any i < j, $dist(v_i) < dist(v_i)$

Proof. Induction

Base Case: Initially, queue is empty.

Inductive Hypothesis: Assume true for kth iteration.

Inductive Case: Consider k + 1st iteration.

- Remove v_1 from queue. New front is v_2 .
- Enqueue neighbors of v_1 .
 - * Let u be a neighbor.
 - * dist(u) is set to $dist(v_1) + 1 \ge dist(v_r) 1 + 1 = dist(v_r)$, so 2. still holds.
 - * $dist(v_2) \ge dist(v_1) = dist(u) 1$, so 1. still holds.

Corollary: Let v_k be the kth vertex to have dist(v) set. $dist(v_k)$ is increasing in k.

Finally, the proof of correctness

At the termination of BFS, if BFS explores v, then $\mathrm{dist}(v)$ is the distance from s to v.

Proof by contradiction.

- Assume there's some vertex with dist() not equal to the distance from s.
- \bullet Let v be such a vertex which is the smallest distance from s.
- Let u be its predecessor on shortest path from v to u.
- By lemma 16, dist(v) > distance from s to v

- = (distance from s to u) + 1 = dist(u) + 1
- Consider when u was dequeued. We'll contradict the above chain of inequalities in any of the three cases:
 - if v wasn't explored yet, v would have been enqueued with dist(v)=dist(u)+1. Contradiction to above inequalities
 - if v on the queue, then parent(v) has lower dist than u does, by corollary to lemma 17. Then $dist(v) = dist(parent(v)) + 1 \le dist(u) + 1$, again contradicting the inequalities.
 - if v has already been dequeued, then $dist(v) \leq dist(u)$. Contradiction again.