<u>Dashboard</u> / My courses / <u>03-ACS-L-A4-S1-IA-C3-C4</u> / <u>26 October - 1 November</u> / <u>Quizz cautari 2</u>

Started on	Wednesday, 27 October 2021, 3:50 PM
State	Finished
Completed on	Wednesday, 27 October 2021, 4:00 PM
Time taken	9 mins 39 secs
Grade	6.00 out of 10.00 (60 %)

Question 1

Correct

Mark 1.00 out of 1.00

În strategia Hill climbing stochastic, care din următoarele afirmații este adevărată

- o a. Se genereaza aleator succesori pana gaseste Eval(Sj) >= Eval(S), apoi continua cautarea cu Sj
- O b. Se repeta algoritmul Hill climbing cu stari initiale generate aleator
- oc. Dintre starile succesoare cu Eval(Sj) >= Eval(S), se alege aleator un Sj, apoi continua cautarea cu Sj

Your answer is correct.

The correct answer is:

Dintre starile succesoare cu Eval(Sj) >= Eval(S), se alege aleator un Sj, apoi continua cautarea cu Sj

Question 2 Incorrect Mark 0.00 out of 1.00
În algoritmul de căutare LRTA*
a. Meritul fiecarui nod g(S) este calculat inițial pentru toate stările cand se ajunge in S
○ b. Meritul fiecarui nod f(S)=g(S)+h(S) este calculat relativ la pozitia curenta a agentului
c. Meritul fiecarui nod f(S)=g(S)+h(S) este calculat relativ la starea inițială a agentului
d. f(S)=h(S) intotdeauna
Your answer is incorrect.
The correct answer is: Meritul fiecarui nod $f(S)=g(S)+h(S)$ este calculat relativ la pozitia curenta a agentului
Question 3
Mark 1.00 out of 1.00
Selectati afirmatia adevarata
a. Daca graful de restrictii este arc-consistent, problema poate fi rezolvata fara backtracking
 b. Un graf de restrictii arc consistent poate reduce numarul de teste in rezolvarea CSP
c. Algoritmul de arc-consistenta are o complexitate exponentiala
Od. In algoritmul de arc-consistenta se verifica simultan compatibilitatea valorilor pentru fiecare pereche (Xi,Xj) si (Xj,

Your answer is correct.

The correct answer is:

Un graf de restrictii arc consistent poate reduce numarul de teste in rezolvarea CSP

Incorrect
Mark 0.00 out of 1.00
În căutarea cu țintă mobilă într-un spatiu de cautare finit cu costuri pozitive Problem Solver-ul (PS) ajunge la Target (T) da
a. PS foloseșete o funcție euristică
○ b. PS nu poate ajunge niciodată la T
c. T sare periodic peste mişcări
od. T sare periodic peste mișcări și PS foloseșete o funcție euristică
Your answer is incorrect.
The correct answer is:
T sare periodic peste mișcări și PS foloseșete o funcție euristică
Question 5
Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
Care dintre urmatoarele afirmatii este adevarata despre algoritmul MTCS?
a. Simularea jocului pana la final pentru evaluarea unei stari se face intotdeauna aleator
Ob. Propagarea-inapoi trece prin toate nodurile arborelui generat pana la momentul backpropagation
c. Selectia unui nod pentru expandare se face intotdeauna aleator
Od. Algoritmul MTCS exploreaza toate starile pentru a genera actiunea urmatoare
e. Rezultatul simulatii este propagat inapoi catre nodurile care au fost parcurse pe calea curenta de cautare

Your answer is correct.

Question **4**

The correct answer is:

Rezultatul simulatii este propagat inapoi catre nodurile care au fost parcurse pe calea curenta de cautare

Mark 1.00 out of 1.00

Intr-un arbore SI-SAU, un nod SAU numit A este părintele unui nod SI numit B. Dacă unul dintre fiii nodului B este o stare ce putem spune despre nodul A?

- a. Sigur are soluție
- o b. Este nod problema elementara
- oc. Devine nod SI
- od. Este posibil să aibă soluție
- e. Sigur nu are soluție

Your answer is correct.

The correct answer is:

Este posibil să aibă soluție

Question **7**

Incorrect

Mark 0.00 out of 1.00

Fie urmatorul arbore de joc pentru un joc cu 3 jucatori. Care este cea mai buna miscare a jucatorului 1?

- o a. (c)
- b. Nu se stie
- oc. (a)
- od. (b)

Your answer is incorrect.

The correct answer is:

(c)

Question 8
Incorrect
Mark 0.00 out of 1.00
Care este caracteristica definitorie a algoritmului Beam search?

a. Dintr-o stare genereaza aleator urmatoarea stare
b. Dintr-o stare genereaza stari pana intalneste o stare mai buna decat cea curenta
c. Dintr-o stare genereaza toate starile succesoare posibile
d. Dintr-o stare selecteaza cele mai bune K stari succesoare

Your answer is incorrect.

The correct answer is:

Dintr-o stare selecteaza cele mai bune K stari succesoare

Question **9**Correct

Mark 1.00 out of 1.00

Indicati ordinea corecta de executie a etapelor in bucla de baza a unui algoritm MCTS

Selectie

Etapa 1

Expandare

Etapa 2

Simulare

Etapa 3

Etapa 4

Eta

Your answer is correct.

The correct answer is:

Selectie → Etapa 1,

Expandare → Etapa 2,

Simulare → Etapa 3,

backpropagation → Etapa 4

Question 10
Correct
Mark 1.00 out of 1.00
Se poate utiliza taierea Alfa Beta in jocurile cu mai multi jucatori care utilizeaza strategia Paranoic
Select one:
True ✓
○ False
The correct answer is 'True'.
Jump to

Lab 4 - So