Long Term Analysis and Visualization of Temperature Changes in the USA

DTSC 630 Data Visualization

Arvin Jadonath, Zhishan Liu, Jungmin Sung

O Presentation Overview

- 1. Project Purpose / Objective
- 2. About the Dataset
- 3. Data Cleaning
- 4. Demo Plots / Analysis
- **5.** Conclusion / Possible Future Work References

1 Project Purpose and Objective

• Project Objective:

- Obtain and analyze temperature data over a set period of time in the United States of America.
- Visualize the data using plotly, seaborn, matplotlib to show the levels of temperature in different states.

2 About the Dataset: Original Source

- Kaggle: **Daily Temperature of Major Cities** (1995 Jan ~ 2020 May)
- Original Dataset Source: (1995 Jan ~ Present)
 - O University of Dayton, Ohio Environmental Protection Agency Average Daily Temperature Archive
 - Daily average temperature for 324 international cities.
 - Data collected from Global Summary of the Day (GSOD) database archived by the National Centers for Environmental Information (NCEI)

2 About the Dataset: Kaggle

- Kaggle: Daily Temperature of Major Cities
 - city_temperature.csv (140.6MB) About 3 million rows and 8 columns.
 - o Columns: [Region, Country, State, City, Month, Day, Year, AvgTemperature]
 - AvgTemperature = (Daily Min Temp + Daily Max Temp) / 2
 - Our project is focused on the U.S. data About 1.5 million rows.
 - 50 States + Washington D.C.
 - 153 US Cities.
 - Time Period: About 25.5 years 1/1/1995 ~ 5/13/2020

3 Data Cleaning

- Dataset contains no-data flags for unavailable data:
 - AvgTemperature == -99 (4,083 in US data)

Global Reigion

79,672

- Some invalid values:
 - O Day == 0 (none in the US data) 8
 O Year == 200 or 201 (none in the US data) 440
- Excluding the Year 2020 when calculating Yearly-Average:
 - Year 2020 contains only first 5 months.

4 Plots and Analysis - Demo

- Load & Clean Dataset
- 25-Year-Average Temperature of US & of States
- Yearly-Average Temperature of US & of States
- Decade-Average Temperature of US

Loading the Data into the Data Frame & Exploring The Data

- 1. All of the US time series data from 1995 to 2019.
- 2. The mean of average temperatures (from 1995 to 2019) statewise (this is not a time series data).
- 3. The Maximum average temperatures (from 1995 to 2019) statewise (this is not a time series data).

The North, West and Alaska parts of the US have seen the most temperature increase while the South East parts of the US have experienced a little change.

For this analysis we compared the states from all categories.

Region wise Difference (based on selected states)

- North , West parts of USA:
 Kansas, Illinois, California, Utah, South Dakota
- South, East part of USA:
 Alabama, Florida, New York, Georgia, Maine
- Special Case: Alaska

Visualize the Warmest Decade in the US

Since we have data from 1995 to 2020 we are going to divide it as 3 decades

- 1995–2005
- 2006–2015
- 2016–2019 (Incomplete decade)

5 Conclusion and Possible Future Work

- 25 Years of Data showed that:
 - Yearly-Average Temperatures are not increasing each year.
 - In Decade-Average, Temperatures are increasing.
- For Possible Future Work:
 - Expand the time periods & Use global data.
 - Compare with the environmental variables such as CO2 emission:
 - *CO2 Emissions* _ *1960 2018* available on Kaggle https://www.kaggle.com/datasets/kkhandekar/co2-emissions-1960-2018
 - Implement Dash interface to provide interactive visualization.

Reference: Data Source

• **Kaggle** Dataset:

https://www.kaggle.com/datasets/sudalairajkumar/daily-temperature-of-major-cities

University of Dayton Original Dataset Source:

https://academic.udayton.edu/kissock/http/Weather/default.htm

National Centers for Environmental Information:

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516

Reference: Library Documentation

- Plotly: https://plotly.com/python/
- Pandas: https://pandas.pydata.org/pandas-docs/stable/
- Matplotlib: https://matplotlib.org/stable/index.html
- NumPy: https://numpy.org/devdocs/user/index.html#user
- Seaborn: https://seaborn.pydata.org/