ANLP

14 - CFGs, CKY (structure, part II)

David Schlangen
University of Potsdam, MSc Cognitive Systems
Winter 2019 / 2020

where are we?

- words, and how to represent them
- sequences of words, modelled with n-gram models (generative model)
- classification of objects, with small label set; weighting of features of object (generative classifier: Naive Bayes; discriminative classifiers: logistic regression, SVMs)
- classification of structured objects, with structured labels (generative: HMMs, discriminative: CRFs)
- yet more methods: NNs, forward and recurrent; pre-training. Gives us continuous representations (= vectors) of words (in context) and sequences.
- today: explicit structural representations of sequences

syntax

- let's assume we want to know who did what to whom
- POS-tags are not enough:
 - ▶ *I ate the spaghetti with chopsticks*
 - ▶ *I ate the spaghetti with meatballs*
 - ▶ PP VBD DT NN IN NNS
- We need more structure that tells us about relations btw parts of sentence.
- first: *all* structures; later: best (= ?) structure

Sentences have structure

grammatical functions

today: constituent structure

- How do we know what the constituents are?
- Constituency tests:
 - Substitution by proform (e.g., pronoun)
 - Clefting (It was with a spoon that...)
 - Answer ellipsis (What did they eat? the cake) (How? with a spoon)
- Sometimes constituency is not clear, e.g., coordination: she went to and bought food at the store

Sentences have structure

Record it conveniently in *phrase structure tree*.

Ambiguity

Special challenge: sentences can have many possible structures.

This sentence is example of attachment ambiguity.

Grammars

- A *grammar* is a finite device for describing large (possibly infinite) set of strings.
 - strings = NL expressions of various types
 - grammar captures linguistic knowledge about syntactic structure
- There are many different grammar formalisms that are being used in NLP.
- In this course we focus on context-free grammars.

Context-free grammars

- Context-free grammar (cfg) G is 4-tuple (N,T,S,P):
 - N and T are disjoint finite sets of symbols:
 T = terminal symbols; N = nonterminal symbols.
 - ▶ $S \in N$ is the *start symbol*.
 - ▶ P is a finite set of *production rules* of the form $A \rightarrow w$, where A is nonterminal and w is a string from $(N \cup T)^*$.
- Why "context-free"?
 - ▶ Left-hand side of production is a single nonterminal A.
 - ▶ Rule can't look at context in which A appears.
 - ▶ *Context-sensitive* grammars can do that.

Example

 $T = \{John, ate, sandwich, a\}$

 $N = \{S, NP, VP, V, N, Det\}; start symbol: S$

Production rules:

 $S \rightarrow NP VP$

 $NP \rightarrow Det N$

 $VP \rightarrow V NP$

 $V \rightarrow ate$

 $NP \rightarrow John$

 $Det \rightarrow a$

 $N \rightarrow sandwich$

perspectives on grammar

- device for characterising set (sentences of language / the language itself)
- "classifier": grammatical yes / no
- "classifier": assigns complex label (tree) to string (or FAIL)
- generative device: generates all sentences of language (eventually)
- today: formal device that can be used in algorithm, to analyse input string

Some important concepts

• *One-step derivation* relation \Rightarrow :

```
w_1 A w_2 \Rightarrow w_1 w w_2 \text{ iff } A \Rightarrow w \text{ is in } P
(w_1, w_2, w \text{ are strings from } (N \cup T)^*)
```

- Derivation relation \Rightarrow^* is reflexive, transitive closure: $w \Rightarrow^* w_n$ if $w \Rightarrow w_1 \Rightarrow ... \Rightarrow w_n$ (for some $n \ge 0$)
- Language $L(G) = \{w \in T^* \mid S \Rightarrow^* w\}$

Derivations and parse trees

Parse tree provides readable, high-level view of derivation.

derivation

- $S \Rightarrow NP VP \Rightarrow John VP$
 - \Rightarrow John V NP \Rightarrow John ate NP
 - \Rightarrow John ate Det N
 - \Rightarrow John ate a N
 - ⇒ John ate a sandwich

parse tree

Big languages

Number of parse trees can grow exponentially in string length.

Recognition and parsing

- Let G be a cfg and w be a string.
- *Word problem*: is $w \in L(G)$?
 - ▶ Algorithms that solve it are called *recognizers*.
- *Parsing problem:* enumerate all parse trees of w.
 - ▶ Algorithms that solve it are called *parsers*.
- Every parser also solves the word problem.

Parsing algorithms

- How can we solve the word and parsing problem so systematically that we can implement it?
- One simple approach: shift-reduce algorithm (here: only for the word problem).
- Then: Analyze efficiency of SR and replace it with faster algorithm: CKY.

demo

```
In [1]: import nltk
```

In [2]: nltk.app.srparser()

Try to get to a complete parse (a tree spanning the whole input) by repeated applications of the "shift" and the "reduce" operation.

Shift-Reduce Parsing

```
T = \{John, ate, sandwich, a\}
N = \{S, NP, VP, V, N, Det\}; start symbol: S
Production rules:
S \rightarrow NP \ VP \qquad VP \rightarrow V \ NP \qquad V \rightarrow ate \qquad Det \rightarrow a
NP \rightarrow Det \ N
NP \rightarrow John \qquad N \rightarrow sandwich
```


Shift-Reduce Parsing

- Read input string step by step. In each step, we have
 - the remaining input words we have not shifted yet
 - a *stack* of terminal and nonterminal symbols
- In each step, apply a rule:
 - ▶ Shift: moves the next input word to the top of the stack
 - Reduce: applies a production rule to replace top of stack with the nonterminal on the left-hand side
- Sentence is in language of cfg iff we can read the whole string and stack contains only start symbol.

Shift-Reduce Parsing

• Shift rule:

$$(s, a \cdot w) \rightarrow (s \cdot a, w)$$

• Reduce rule:

$$(s \cdot w', w) \rightarrow (s \cdot A, w)$$
 if $A \rightarrow w'$ in P

- Start: (ε, w)
- Apply rules nondeterministically:
 Claim w ∈ L(G) if there exists some sequence of steps that derive (S, ε) from (ε, w).

Nondeterminism

- Claim that string is in language of cfg iff (S, ε) can be derived by *any one* sequence of shift and reduce steps.
- This is very important because there are many stack-string pairs where multiple rules can be applied:
 - shift-reduce conflict
 - reduce-reduce conflict
- In practice, we need to try all sequences out.
 - Compilers for programming languages avoid this by careful language design: no ambiguity in grammar.

Analyzing Shift-Reduce

- If string has length n and grammar has k nonterminals, then there are $O(k^n)$ ways of assigning strings of nonterminals to words.
- These can all be explored, especially when the string is *not* in the language.

- Big O Notation
- Complexity of algorithm
- Behaviour as function of input size can be described as this function (here: exponential)
- Bad news!

Polynomial vs. exponential

- We often distinguish between *polynomial* and *exponential* runtime. Rule of thumb: exponential = too slow for practical use.
- Is there a polynomial algorithm for the word problem?

Chomsky Normal Form

- A cfg is *in Chomsky normal form (CNF)* if each of its production rules has one of these two forms:
 - \rightarrow A \rightarrow B C: right-hand side is exactly two nonterminals
 - \rightarrow A \rightarrow c: right-hand side is exactly one terminal
- For every cfg G, there is a weakly equivalent cfg G' which is in CNF.
 - that is, L(G) = L(G')

The CKY Algorithm

 Simplest and most-used chart parser for cfgs in CNF.

- Developed independently in the 1960s by John Cocke, Daniel Younger, and Tadao Kasami.
 - sometimes also called CYK algorithm
- Bottom-up algorithm for discovering statements of the form " $A \Rightarrow^* w_i \dots w_{k-1}$?"

 $S \rightarrow NP \ VP \qquad V \rightarrow ate \qquad Det \rightarrow a$ $NP \rightarrow Det \ N \qquad NP \rightarrow John \qquad N \rightarrow sandwich$ $VP \rightarrow V \ NP$

 $S \rightarrow NP VP V \rightarrow ate Det \rightarrow a$

 $NP \rightarrow Det N$ $NP \rightarrow John$ $N \rightarrow sandwich$

 $VP \rightarrow V NP$

 $S \rightarrow S S \qquad S \rightarrow a$

CKY recognizer: pseudocode

```
Data structure: Ch(i,k) eventually contains \{A \mid A \Rightarrow^* w_i \dots w_{k-1}\}
(initially all empty).
for each i from 1 to n:
  for each production rule A \rightarrow w_i:
     add A to Ch(i, i+1)
for each width b from 2 to n:
  for each start position i from 1 to n-b+1:
     for each left width k from 1 to b-1:
        for each B \in Ch(i, i+k) and C \in Ch(i+k,i+b):
          for each production rule A \rightarrow B C:
            add A to Ch(i,i+b)
```

claim that $w \in L(G)$ iff $S \in Ch(1,n+1)$

Complexity

- *Time* complexity of CKY recognizer is O(n³), although number of parse trees grows exponentially.
- *Space* complexity of CKY recognizer is O(n²) (one cell for each substring).
- Efficiency depends crucially on CNF. Naive generalization of CKY to rules $A \rightarrow B_1 \dots B_r$ raises time complexity to $O(n^{r+1})$.

Correctness

- Soundness: CKY *only* derives true statements.
 - ▶ If CKY puts A into Ch(i,k), then there is rule $A \rightarrow BC$ and some j with $B \in Ch(i,j)$ and $C \in Ch(j,k)$.
 - ▶ Induction hypothesis: for shorter spans, have $B \Rightarrow^* w_i \dots w_{j-1}$. Thus $A \Rightarrow B C \Rightarrow^* w_i \dots w_{j-1} C \Rightarrow^* w_i \dots w_{k-1}$
- Completeness: CKY derives *all* true statements.
 - ► Each derivation $A \Rightarrow^* w_i \dots w_{k-1}$ starts with a first step; say $A \Rightarrow B C \Rightarrow^* w_i \dots w_{j-1} C \Rightarrow^* w_i \dots w_{k-1}$
 - Important: ensure that all nonterminals for shorter spans are known before filling Ch(i,k).

Recognizer to Parser

- Parser: need to construct parse trees from chart.
- Do this by memorizing how each $A \in Ch(i,k)$ can be constructed from smaller parts.
 - ▶ built from $B \in Ch(i,j)$ and $C \in Ch(j,k)$ using $A \rightarrow B$ C: store (B,C,j) in *backpointer* for A in Ch(i,k).
 - analogous to backpointers in HMMs
- Once chart has been filled, enumerate trees recursively by following backpointers, starting at $S \in Ch(1,n+1)$.

Conclusion

- Context-free grammars: most popular grammar formalism in NLP.
 - there are also other, more expressive grammar formalisms
- CKY: most popular parser for cfgs.
 - very simple polynomial algorithm, works well in practice
 - there are also other, more complicated algorithms
- Next time: put parsing and statistics together.

slide credits

slides that look like this

Question 2: Tagging

- Given observations $y_1, ..., y_T$, what is the most probable sequence $x_1, ..., x_T$ of hidden states?
- Maximum probability:

$$\max_{x_1,\ldots,x_T} P(x_1,\ldots,x_T \mid y_1,\ldots,y_T)$$

• We are primarily interested in arg max:

$$\arg \max_{x_1,\dots,x_T} P(x_1,\dots,x_T \mid y_1,\dots,y_T)
= \arg \max_{x_1,\dots,x_T} \frac{P(x_1,\dots,x_T,y_1,\dots,y_T)}{P(y_1,\dots,y_T)}
= \arg \max_{x_T} P(x_1,\dots,x_T,y_1,\dots,y_T)$$

come from

earlier editions of this class (ANLP), given by Alexander Koller

CS388 given by Greg Durrett at U Texas, Austin

and their use is gratefully acknowledged. I try to make any modifications obvious, but if there are errors on a slide, assume that I added them.