Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Daniel Malinowski

Nr albumu: 292680

Metody dowodzenia prostoty grup

Praca licencjacka na kierunku MATEMATYKA

> Praca wykonana pod kierunkiem dra hab. Zbigniewa Marciniaka Instytut Matematyki

Czerwiec 2013

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora (autorów) pracy

Streszczenie

Słowa kluczowe

grupa prosta, grupa alternująca, grupa specjalna rzutowa liniowa, lemat Iwasawy

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.1 Matematyka

Klasyfikacja tematyczna

20. Group theory and generalizations

Tytuł pracy w języku angielskim

Methods of proving the simplicity of groups

Spis treści

W	prowadzenie	Ę
1.	Wiadomości wstępne	7
	1.1. Oznaczenia	7
	1.2. Grupy proste	7
	1.3. Twierdzenia o izomorfizmie	
	1.4. Komutant i abelianizacja	8
	1.5. Działanie grupy na zbiorze	
2.	Prostota grupy alternującej $A_n \ldots \ldots \ldots \ldots \ldots$	11
	2.1. Przypomnienie wiadomości o S_n oraz A_n	11
	2.2. Klasy sprzężoności S_n i A_n	12
	2.3. Prostota A_n	12
3.	Lemat Iwasawy	13
	3.1. Prymitywne działanie grupy	13
	3.2. Lemat Iwasawy	16
4.	Prostota specjalnej rzutowej grupy liniowej $PSL_n(k)$	17
Bi	bliografia	19

Wprowadzenie

Wiadomości wstępne

Rozdział ten zawiera przypomnienie pewnych definicji, własności i twierdzeń omawianych na podstawowym kursie algebry I oraz ustalenie oznaczeń.

1.1. Oznaczenia

W niniejszej pracy dużymi literami alfabetu (np. G, H, K) będą oznaczane grupy. Ich elementy będą oznaczanie małymi literami alfabetu (np. g, h, k), przy czym przez e będzie zawsze oznaczany element neutralny. Rozważane grupy będą (w większości) nieprzemienne, w związku z tym będzie stosowany zapis multiplikatywny.

Jeżeli H oraz K są podgrupami grupy G, to przez $HK = H \cdot K$ będzie oznaczana podgrupa G generowana przez wszystkie elementy postaci $h \cdot k$, gdzie $h \in H$ oraz $k \in K$.

W związku z tym oznaczeniem warto przytoczyć twierdzenie:

Twierdzenie 1.1.1.

Jeżeli H oraz K są podgrupami grupy G, przy czym K jest podgrupą normalną, to $HK = \{hk: h \in H, k \in K\}$.

1.2. Grupy proste

Przypomnijmy teraz podstawową definicji w tej pracy.

Definicja 1.2.1. Nietrywialną grupę G nazwiemy grupą prostą, jeżeli nie ma ona podgrup normalnych różnych od $\{e\}$ oraz samej siebie.

Fakt 1.2.1. Jedynymi (z dokładnością do izomorfizmu) przemiennymi grupami prostymi są skończone grupy cykliczne o liczbie elementów będącą liczbą pierwszą.

Jest to prosta konsekwencja tego, że w grupach przemiennych wszystkie podgrupy są podgrupami normalnymi.

1.3. Twierdzenia o izomorfizmie

Przejdźmy teraz do podstawowych twierdzeń o izomorfizmie.

Twierdzenie 1.3.1 (Pierwsze twierdzenie o izomorfizmie).

Niech G, H – grupy, $\varphi: G \to H$ homomorfizm, $K = \ker \varphi$ oraz $H' = \operatorname{im} \varphi$.

Wówczas zachodzi izomorfizm

$$G/K \simeq H'$$

Twierdzenie 1.3.2 (Drugie twierdzenie o izomorfizmie). Niech G – grupa, H_1, H_2 podgrupy normalne G, przy czym $H_2 \leq H_1$. Wówczas $H_2 \leq H_2$, $H_1/H_2 \leq G/H_2$ i zachodzi izomorfizm

$$(G/H_2)/(H_1/H_2) \simeq G/H_1$$

Twierdzenie 1.3.3 (Trzecie twierdzenie o izomorfizmie). Niech G – grupa, H_1 podgrupa normalna G, H podgrupa G. Wówczas $H \cap H_1 \subseteq H$ oraz zachodzi izomorfizm

$$H/(H \cap H_1) \simeq H \cdot H_1/H_1$$

1.4. Komutant i abelianizacja

Poniżej przedstawionych jest kilka użytecznych wiadomości o komutancie.

Definicja 1.4.1. Niech G będzie dowolną grupą. Wówczas komutantem grupy G nazywamy podgrupę G generowaną przez wszystkie elementy postacji $aba^{-1}b^{-1}$, $gdzie\ a,b\in G$. Komutant grupy G oznaczamy przez [G,G].

Twierdzenie 1.4.1 (O komutancie).

Komutant [G,G] jest podgrupą normalną G, przy czym grupa ilorazowa G/[G,G] jest grupą abelową. Ponadto dla dowolnej podgrupy normalnej $H \subseteq G$ takiej, że G/H jest abelowa, zachodzi $[G,G] \subseteq H$.

Definicja 1.4.2. Przekształcenie kanoniczne $G \to G/[G,G]$ (rzutowanie na grupę ilorazową) nazywamy abelianizacją.

O abelianizacji (w przeciwieństwie do twierdzenia o komutancie) nie będzie więcej wspominane w tej pracy, ale ta definicja została przytoczona w celu domknięcia podstawowych faktów o komutancie. Ważniejszym dla nas pojęciem jest pojęcie grupy doskonałej:

Definicja 1.4.3. Grupą doskonałą nazwiemy dowolną grupę, która jest równa swojemu komutantowi.

Grupami doskonałymi zajmiemy się w dalszej części pracy – przy lemacie Iwasawy. Na razie zauważmy prosty fakt:

Fakt 1.4.1. Nieprzemienne grupy proste są grupami doskonałymi.

1.5. Działanie grupy na zbiorze

Na koniec tego rozdziału przyjrzyjmy się jednej z ważniejszej własności grup – ich możliwości działania na zbiorach.

Definicja 1.5.1. Niech G będzie grupą, a X – zbiorem. Mówimy, że ρ jest działaniem grupy G na zbiorze X, jeżeli dla każdego $g \in G$ przyporządkowane jest przekształcenie $\rho_g: X \to X$, takie, że:

- $\rho_e = \mathrm{id}_X$,
- $\rho_g \circ \rho_h = \rho(gh)$, dla dowolnych $g, h \in G$.

Jeżeli sposób działania (ρ) wynika z kontekstu, to zamiast $\rho_a(x)$ będziemy pisać x^g .

Zgrabniejszy opis działania grupy na zbiorze daje poniższe twierdzenie. Zanim jednak do niego przejdziemy, przypomnijmy sobie jeszcze jedną definicję.

Definicja 1.5.2. Niech X będzie dowolnym zbiorem. Wówczas grupą symetrii zbioru X nazywamy zbiór bijekcji $X \to X$, wraz z operacją składania. Grupę tę oznaczamy S_X .

Twierdzenie 1.5.1 (O działaniu grupy na zbiorze).

Niech G będzie grupą, a X – zbiorem. Wówczas ρ jest działaniem G na X wtedy i tylko wtedy, gdy ρ jest homomorfizmem z G w grupę symetrii zbioru X.

Z działaniem grupy na zbiorze związane jest dużo ważnych definicji i twierdzeń. Poniżej przytoczone są te najistotniejsze z punktu widzenia tej pracy.

Definicja 1.5.3. Załóżmy, że ρ jest działaniem grupy G na zbiorze X oraz $x \in X$. Wówczas:

- a) Stabilizatorem punktu x (grupą izotropii x) nazwiemy zbiór elementów $\{g \in G: x^g = x\}$. Stabilizator punktu x oznaczamy G_x .
- b) Orbitą punktu x nazwiemy podzbiór X równy $\{y \in X: \exists_{g \in G} x^g = y\}$. Orbitę punktu x oznaczamy G(x).

Podstawowe własności tych obiektów przedstawia następujący fakt:

Fakt 1.5.1. Załóżmy, że ρ jest działaniem grupy G na zbiorze X oraz $x, y \in X$. Wówczas:

- a) G_x jest podgrupą G.
- b) G(x) i G(y) są równe lub rozłączne (orbity tworzą rozbicie zbioru X).

Zanim przejdziemy do ważniejszych twierdzeń opisujących orbity i stabilizatory, przypomnijmy wcześniej, jakie własności może mieć działanie grupy na zbiorze.

Definicja 1.5.4. Załóżmy, że ρ jest działaniem grupy G na zbiorze X.

- a) ρ jest działaniem tranzytywnym (przechodnim), jeżeli wszystkie elementy X tworzą jedną orbitę.
- b) ρ jest działaniem wiernym, jeżeli ρ jest iniekcją jako homomorfizm $G \to S_X$.
- c) ρ jest działaniem nietrywialnym, jeżeli ρ nie jest zerowe jako homomorfizm $G \to S_X$.

Jak to zostało wcześniej zapowiedziane, na koniec przytoczmy kilka ważnych twierdzeń pokazujących zależność między orbitami a stabilizatorami.

Twierdzenie 1.5.2.

Zalóżmy, że ρ jest działaniem grupy G na zbiorze X oraz $x,y \in X$ należą do jednej orbity. Wówczas grupy G_x oraz G_y są wzajemnie sprzężone.

Twierdzenie 1.5.3 (O orbitach i stabilizatorach).

Załóżmy, że ρ jest działaniem grupy G na zbiorze X, przy czym X jest zbiorem skończonym. Ponadto $x \in X$. Wówczas $|G(x)| = [G:G_x]$.

Twierdzenie 1.5.4 (Równanie klas).

Przy założeniach z poprzedniego twierdzenia zachodzi

$$|X| = \sum_{i=1}^{k} [G:G_{x_i}],$$

gdzie x_1, x_2, \dots, x_k to reprezentanci wszystkich orbit działania ρ .

Prostota grupy alternującej A_n

Zanim udowodnimy główną tezę tego rozdziału, czyli fakt, że A_n jest grupą prostą dla $n \neq 4$, przypomnimy znane własności o tej grupie oraz udowodnimy kilka mniej znanych.

2.1. Przypomnienie wiadomości o S_n oraz A_n

W poprzednim rozdziale wprowadziliśmy definicję grupy S_X symetrii zbioru X. Ważnym przypadkiem szczególnym jest sytuacja, gdy X jest zbiorem skończonym o n elementach. Wówczas, jako że grupy symetrii zbiorów równolicznych są izomorficzne, grupę S_X będziemy oznaczać S_n i bez straty ogólności przyjmiemy, że jej elementami są permutacje zbioru $\{1, 2, \dots, n\}$.

Fakt 2.1.1. Rozmiar grupy S_n wynosi n!.

Ważnym sposobem przedstawienia elementów grupy S_n jest rozkład na cykle.

Definicja 2.1.1. Permutację $\sigma \in S_n$ nazwiemy cyklem długości $k \geqslant 2$, jeżeli istnieją różne elementy $c_1, c_2, \dots, c_k \in \{1, 2, \dots, n\}$ takie, że

$$\sigma(x) = \begin{cases} c_{i+1}, & \text{je}\dot{z}eli \ x = c_i \\ c_1, & \text{je}\dot{z}eli \ x = c_k \\ x, & \text{w przeciwnym przypadku} \end{cases}$$

Wówczas permutację σ zapisujemy jako (c_1, c_2, \dots, c_k) .

Oczywiście zapis cyklu nie jest jednoznaczny – $(c_1, c_2, \dots, c_k) = (c_k, c_1, c_2, \dots, c_{k-1}) = (c_2, c_3, \dots, c_k, c_1)$. Ponadto ten zapis ma tylko sens, gdy wiemy, w jakiej grupie symetrii ten cykl się znajduje.

Dla $\sigma \in S_n$, jeżeli weźmiemy element zbioru $\{1, 2, \dots, n\}$, będziemy na niego działać permutacją σ tak długo, aż dojdziemy do niego samego, to z otrzymanych elementów możemy stworzyć cykl. Powtarzając tę procedurę z niewybranymi jeszcze elementy dostaniemy rozkład na cykle:

Twierdzenie 2.1.1.

Każdą permutację $\sigma \in S_n$ można przedstawić jako iloczyn rozłącznych cykli, czyli takich (c_1, c_2, \dots, c_k) , (d_1, d_2, \dots, d_l) , że $\{c_1, c_2, \dots, c_k\} \cap \{d_1, d_2, \dots, d_l\} = \emptyset$. Przedstawienie jest jednoznaczne z dokładnością do kolejności cykli.

Przejdźmy teraz do zdefiniowania podgrupy A_n grupy S_n .

Definicja 2.1.2. Transpozycją nazwiemy dowolny cykl długości 2.

Transpozycję są cegiełkami, z których można budować permutacje, tzn.

Twierdzenie 2.1.2.

Każda permutacja jest iloczynem pewnej liczby transpozycji.

Rozkład permutacji na transpozycje nie musi być jednoznaczny. Na przykład (1,2)(2,4)(4,2) = (1,2) oraz (1,2)(2,3)(3,4)(4,1) = (4,2)(2,3). Jednoznaczna natomiast jest parzystość liczby transpozycji w rozkładzie.

Definicja 2.1.3. Permutację o parzystej liczbie transpozycji w rozkładzie nazwiemy parzystą. Podgrupę wszystkich permutacji parzystych grupy S_n nazywamy grupą alternującą i oznaczamy A_n .

Poprawność definicji wynika z twierdzenia:

Twierdzenie 2.1.3.

Parzystość liczby transpozycji w rozkładzie permutacji na transpozycje nie zależy od rozkładu. Permutacje o parzystej liczbie transpozycji tworzą podgrupę normalną grupy S_n .

2.2. Klasy sprzężoności S_n i A_n

2.3. Prostota A_n

Lemat Iwasawy

W tym rozdziale przedstawione zostanie jedno z ważniejszych narzędzi do dowodzenia prostoty grup – lemat Iwasawy. Lecz najpierw wprowadzimy nowe pojęcie – prymitywność.

3.1. Prymitywne działanie grupy

Jak zostało to już wspomniane w wiadomościach wstępnych, działanie grupy G na zbiorze X jest tranzytywne, jeżeli elementy X tworzą jedną orbitę, czyli dla dowolnych $x, y \in X$ istnieje $g \in G$ takie, że $x^g = y$. Teraz uogólnimy to pojęcie.

Definicja 3.1.1. Zalóżmy, że ρ jest działaniem grupy G na zbiorze X. ρ jest działaniem k-tranzytywnym (k-przechodnim), jeżeli dla dowolnych ciągów k elementowych (a_1, a_2, \dots, a_k) oraz (b_1, b_2, \dots, b_k) , które składają się z różnych elementów z X istnieje taki element g z grupy G, że $a_i^g = b_i^g$ dla każdego $i = 1, 2, \dots, k$.

W szczególności 1-tranzytywność to jest dokładnie to samo, co zwykła tranzytywność. Aby zilustrować to pojęcie, policzmy ilu tranzytywne jest naturalne działanie grupy S_n oraz A_n na zbiorze $X = \{1, 2, \dots, n\}$, tzn. takie, w którym $i^{\sigma} = \sigma(i)$.

Jak łatwo zauważyć, działanie S_n jest n-tranzytywne – skoro S_n składa się ze wszystkich permutacji, to zawsze możemy odwzorować ciąg (a_1, a_2, \dots, a_n) na (b_1, b_2, \dots, b_n) , gdyż jak założyliśmy w definicji, wszystkie a_i jaki i wszystkie b_i są parami różne. Stąd również działanie S_n jest k-tranzytywne dla każdego $k \leq n$.

Natomiast w A_n nie ma wszystkich permutacji, zatem działanie A_n nie może być n-tranzytywne. Nie może być również (n-1)-tranzytywne, gdyż skoro mówimy na co przechodzą n-1 elementy X i ma to być permutacja, to wartość ostatniego elementu też jest ustalona, czyli wybór (n-1) pozycji jest tak na prawdę wyborem wszystkich n pozycji, a na wszystkich elementach nie możemy dowolnie ustalić permutacji. Zauważmy jednak, że działanie A_n jest (n-2)-tranzytywne. Rzeczywiście, chcąc żeby a_i przeszło na b_i dla $i=1,2,\cdots,(n-2)$ mamy do wyboru dwie permutacje. Jedna z nich odwzorowuje $x\mapsto y,x'\mapsto y'$, a druga $x\mapsto y',x'\mapsto y$, gdzie x,x' to elementy nie wybrane na a_i , a y,y' to elementy nie wybrane na b_i . Ale te permutacje różnią się o transpozycję (y,y'), zatem jedna z nich jest parzysta, czyli należy do A_n , więc rzeczywiście możemy odwzorować (a_1,a_2,\cdots,a_{n-2}) na (b_1,b_2,\cdots,b_{n-2}) . Stąd działanie S_n jest k-tranzytywne dla każdego $k\leqslant n-2$.

Wprowadzimy teraz własność prymitywności. Będzie to coś pomiędzy tranzytywnością a 2-tranzytywnością.

Definicja 3.1.2. Załóżmy, że ρ jest działaniem grupy G na zbiorze X. Systemem bloków działania ρ nazywamy podział zbioru X zachowywany przez ρ , tzn. rodzine zbiorów $\mathfrak{A} = \{Y_i : i \in I\}$, które są niepuste, parami rozłączne, sumują się do X oraz dla dowolnych $Y \in \mathfrak{A}, x, x' \in Y$ oraz $g \in G$ oba elementy x^g oraz x'^g znajdują się razem w jednym zbiorze $Y' \in \mathfrak{A}$.

Zauważmy, że zawsze mamy co najmniej dwa systemy bloków – jeden blok z całym zbiorem $\mathfrak{A} = \{X\}$ oraz system z wszystkimi blokami jednoelementowymi $\mathfrak{A} = \{\{x\}: x \in X\}$. W związku z tym naturalna jest definicja:

Definicja 3.1.3. Nietrywialnym systemem bloków nazywamy dowolny system bloków, który jest różny od dwóch wyżej wspomnianych – z jednym blokiem lub z blokami jednoelementowymi.

Teraz jesteśmy już gotowi na wprowadzenie pojęcia prymitywności.

Definicja 3.1.4. Załóżmy, że ρ jest działaniem grupy G na zbiorze X. ρ nazywamy prymitywnym, jeśli nie istnieje nietrywialny system bloków działania ρ .

Aby lepiej zrozumieć tą własność, pokażemy, że rzeczywiście jest to własność pomiędzy tranzytywnością oraz 2-tranzytywnością.

Twierdzenie 3.1.1. Załóżmy, że ρ jest nietrywialnym działaniem grupy G na zbiorze X. Wówczas:

- a) Jeżeli ρ jest prymitywne, to jest tranzytywne.
- b) Jeżeli ρ jest 2-tranzytywne, to jest prymitywne.

Dowód.

- Ad a) Załóżmy nie wprost, że ρ nie jest tranzytywne. Wówczas rozbicie X na orbity daje nietrywialny system bloków. Rzeczywiście, z nieprzechodniości dostajemy, że ilość bloków wynosi co najmniej 2 a z nietrywialności ρ któryś blok ma co najmniej 2 elementy. Ostatecznie ρ permutuje orbity, więc w szczególności je zachowuje. Znaleźliśmy nietrywialny system bloków działania ρ , czyli sprzeczność ρ nie jest prymitywne. Stąd ρ musi być tranzytywne.
- Ad b) Załóżmy nie wprost, że ρ nie jest prymitywne. Wówczas istnieje nietrywialny system bloków $\mathfrak{A} = \{Y_i : i \in I\}$, w którym istnieją $Y_1, Y_2 \in \mathfrak{A}$ takie, że $|Y_1| > 1$. Niech więc $x, y \in Y_1, z \in Y_2$ gdzie $x \neq y$. Z 2-tranzytywności możemy odwzorować parę (x, y) na parę (x, z), co daje sprzeczność z definicją systemu bloków. Stąd ρ musi być prymitywne.

Oczywiście możliwe jest, że grupa działa tranzytywnie a nie prymitywnie, lub prymitywnie, a nie 2-tranzytywnie.

Jako pierwszy przykład możemy rozważyć naturalne działanie czteroelementowej grupy $H = \langle (1,2)(3,4), (1,3)(2,4) \rangle$ będącej podgrupą S_4 na zbiorze 4 elementowym. Jak łatwo widać jest ono przechodnie. Nie jest jednak prymitywne, gdyż zachowuje ono np system bloków $\{\{1,2\},\{3,4\}\}$.

Jako drugi przykład rozważmy działanie A_3 na zbiorze $\{1,2,3\}$. Jak pokazaliśmy wcześniej nie jest ono 2-tranzytywne, ale jest tranzytywne. To, że jest to również działanie prymitywne wynika z następującego lematu:

14

Lemat 3.1.1. Załóżmy, że ρ jest tranzytywnym działaniem grupy G na zbiorze X. Wówczas w dowolnym systemie bloków wszystkie bloki są równych rozmiarów.

Dowód. Rzeczywiście, jeżeli Y_1, Y_2 są blokami, to skoro możemy odwzorować $y_1 \in Y_1$ na $y_2 \in Y_2$, To całe Y_1 musi być przekształcone w Y_2 (z własności systemu bloków), stąd $|Y_1| \leq |Y_2|$. Analogicznie $|Y_2| \leq |Y_1|$, zatem $|Y_1| = |Y_2|$.

W tym przypadku bloki w nietrywialnym systemie bloków muszą mieć rozmiary 1 i 2, czyli różne, więc nietrywialny system bloków nie może istnieć.

Udowodnijmy teraz jeszcze jedno stwierdzenie, które jest użyteczne w dowodzie lematu Iwasawy.

Lemat 3.1.2. Zalóżmy, że ρ jest tranzytywnym działaniem grupy G na zbiorze X oraz $x \in X$. Wówczas ρ jest prymitywne wtedy i tylko wtedy, gdy G_x jest maksymalną podgrupą G, tzn. nie istnieje podgrupa H grupy G, że $G_x \subseteq H \subseteq G$.

Dowód. Zauważmy najpierw, że warstwy (lewostronne) G_x odpowiadają jednoznacznie elementom zbioru X – bijekcja zadana jest wzorem $\zeta: gG_x \mapsto x^g$. Funkcja ta jest dobrze określona oraz jest iniekcją, gdyż $g_1G_x = g_2G_x \iff g_1^{-1} \cdot g_2 = h$ dla pewnego $h \in G_x \iff x^{g_1^{-1} \cdot g_2} = x^h = x \iff x^{g_1} = x^{g_2}$. Ponadto ζ jest suriekcją, gdyż działanie jest tranzytywne, stąd rzeczywiście ζ jest bijekcją.

Przejdźmy teraz do dalszej części dowodu ⇒)

Załóżmy nie w prost, że G_x nie jest maksymalna, czyli istnieje H, takie, że $G_x \leq H \leq G$. Skoro H zawiera G_x , to warstwy H są sumami pewnych warstw G_x – jeżeli $g_1G_x = g_2G_x \iff g_1^{-1} \cdot g_2 \in G_x$ to również $g_1^{-1} \cdot g_2 \in H \iff g_1H = g_2H$. Stąd warstwy H odpowiadają rozbiciu zbioru warstw G_x , czyli również rozbiciu zbioru X. Zauważmy jeszcze, że działanie G zachowuje warstwy H. Jest tak dlatego, że dla $g_1H = g_2H$ zachodzi $g_1^{-1} \cdot g_2 \in H$. Punkt $g_iG_x = x^{g_i}$ przy działaniu elementem f grupy G przechodzi na $(x^{g_i})^f = x^{fg_i} = fg_iG_x$. Ale warstwy fg_1G_x oraz fg_2G_x zawierają się w jednej warstwie H, gdyż $(fg_1)^{-1}fg_2 = g_1^{-1}f^{-1}fg_2 = g_1^{-1}g_2 \in H$.

Otrzymaliśmy zatem system bloków, który na dodatek jest nietrywialny, gdyż H zawiera się ściśle pomiędzy G_x a G. Zatem działanie ρ nie jest prymitywne – sprzeczność. Stąd taka grupa H nie istnieje – G_x jest maksymalną podgrupą G.

Tutaj również przeprowadzimy dowód nie w prost. Załóżmy, że ρ nie działa prymitywnie na X, czyli istnieje pewien nietrywialny system bloków \mathfrak{A} . Niech $Y \in \mathfrak{A}$ takie, że $x \in Y$ oraz niech H będzie stabilizatorem całego zbioru Y (czyli zbiorem $\{g \in G: \forall_{y \in Y} y^g \in Y\}$). Skoro \mathfrak{A} jest nietrywialne, to $Y \neq X$ oraz istnieje blok rozmiaru co najmniej 2. Ale z poprzedniego lematu wiemy, że wszystkie bloki mają tą samą wielkość, więc również $|Y| \geqslant 2$.

Zauważmy, że $H = \{g \in G : x^g \in Y\} = K$. Oczywiście $H \subseteq K$, gdyż elementy H zachowują zbiór Y. Z drugiej strony, jeżeli jakiś element z Y trafia z powrotem do Y, to całe Y jest zachowywane, gdyż Y jest elementem systemu bloków. Stąd rzeczywiście H = K.

Na koniec wystarczy zobaczyć, że skoro $\{x\} \subsetneq Y \subsetneq X$, to $G_x \lneq H \lneq G$. Jest tak dlatego, że H, w przeciwieństwie do G_x , zawiera elementy odwzorowujące x na jakiś inny element zbioru Y ale nie zawiera elementów, które odwzorowują x na elementy spoza Y (które istnieją). Stąd G_x nie jest maksymalne – sprzeczność. Stąd to działanie musi być prymitywne.

Teraz jesteśmy już gotowi na sformułowanie i dowód lematy Iwasawy.

3.2. Lemat Iwasawy

Twierdzenie 3.2.1. Załóżmy, że G jest skończoną [dowolną?] grupą doskonałą, ρ – wiernie oraz prymitywnie działanie G na zbiorze X. Załóżmy dodatkowo, że dla pewnego $x \in X$ stabilizator G_x zawiera normalną podgrupę abelową A, której sprzężenia w G generują całe G. Wówczas grupa G jest prosta.

Dowód. Załóżmy przeciwnie, że w G istnieje właściwa, nietrywialna podgrupa normalna K. Skoro G działa wiernie oraz K jest nietrywialna, to $x_0^{k_0} \neq x_0$ dla pewnego $k_0 \in K$. Niech $H = G_{x_0}$. Dostajemy, że $K \nleq H$, gdyż $k_0 \not\in H$, stąd również $H \lneq HK$.

Z lematu 3.1.2 otrzymujemy, że H jest podgrupą maksymalną w G. $H \lneq HK$, więc HK=G. Stąd (i z twierdzenia 1.1.1) każdy element $g \in G$ jest postaci g=hk, gdzie $h \in H$ oraz $k \in K$.

Skoro działanie ρ jest prymitywne, a więc tranzytywne, to z twierdzenia 1.5.2 dostajemy, że G_x jest sprzężone z H. Z założenia dodatkowo wynika, że H zawiera podgrupę B sprzężoną do A, ponadto B jest normalną podgrupą abelową H, której sprzężenia (w G) generują całe G. Sprzężenia B są postaci $g^{-1}Bg = k^{-1}h^{-1}Bhk = k^{-1}Bk \leqslant BK$. Wszystkie sprzężenie B generują G i są zawarte w $BK \leqslant G$, stąd G = BK.

Korzystając z trzeciego twierdzenia o izomorfizmie dostajemy:

$$G/K = BK/K \simeq B/B \cap K$$

Ale grupa ilorazowa grupy abelowej jest abelowa, stąd zarówno $B/B \cap K$ jaki i G/K są abelowe. Z twierdzenia o komutancie wnioskujemy, że $K \ge [G,G] = G$, gdyż G jest grupą doskonałą – dostaliśmy sprzeczność z założeniem, że K jest właściwą podgrupą G, stąd G jest grupą prostą.

Zastosowania lematu Iwasawy znajdują się w dalszej części pracy.

Prostota specjalnej rzutowej grupy liniowej $PSL_n(k)$

Bibliografia

- [Wil09] Robert A. Wilson, The Finite Simple Groups, Springer, 2009.
- [Bia87] Andrzej Białynicki-Birula, Zarys algebry, Państwowe Wydawnictwo Naukowe, 1987.
- [Lan73] Serge Lang, Algebra, Państwowe Wydawnictwo Naukowe, 1973.
- [Kar76] M. I. Kargapołow, J. I. Mierzlakow, *Podstawy teorii grup*, Państwowe Wydawnictwo Naukowe, 1976.
- [Bag02] Czesław Bagiński, Wstęp do teorii grup, Script, 2002.
- [Neu03] Peter M. Neumann, Gabrielle A. Stoy, Edward C. Thompson, *Groups and Geometry*, Oxford Science Publications, 2003.