

Estatística descritiva usando R bem-vind@ ao tidyverse

Curso livre de R

Profa Carolina e Prof Gilberto Parte 1

sobre o curso

Preparando o ambiente

- · Você precisa de um computador para acompanhar as aulas
- Usaremos nas aulas: colab.research.google.com/#language=r
- · No seu dia-a-dia, recomendo instalar o R com versão pelo 4.1: cran.r-project.org
- · IDE recomendadas: RStudio e VSCode
 - Caso você queira usar o *VSCode*, instale a extensão da linguagem R: ikuyadeu.r
- · Neste curso, usaremos o *framework* tidyverse:
 - Instale o framework a partir do repositório CRAN: install.packages("tidyverse")
- · Outras linguagens interessantes: python e julia
 - <u>python</u>: linguagem interpretada de próposito geral, contemporânea do R, simples e fácil de aprender
 - julia: linguagem interpretada para análise de dados, lançada em 2012, promete simplicidade e velocidade

a linguagem R

uma introdução

O começo de tudo

O precursor do R: S

- · R é uma linguagem derivada do S
- · S foi desenvolvido em fortran por John Chambers em 1976 no Bell Labs
- · S foi desenvolvido para ser um ambiente de análise estatística
- Filosofia do S: permitir que usuários possam analisar dados usando estatística com pouco conhecimento de programação

História do R

- · Em 1991, Ross Ihaka e Robert Gentleman criaram o R na Nova Zelândia
- Em 1995, Ross e Robert liberam o R sob a licença "GNU General License", o que tornou o R um software livre
- · Em 1997, The Core Group é criado para melhorar e controlar o código fonte do R

Porque usar R

- Constante melhoramento e atualização
- Portabilidade (roda em praticamente todos os sistemas operacionais)
- Grande comunidade de desenvolvedores que adicionam novas capacidades ao R através de pacotes
- · Gráficos de maneira relativamente simples
- Interatividade
- Um grande comunidade de usuários (especialmente útil para resolução de problemas)

Onde estudar fora de aula?

Livros

- · Nível cheguei agora aqui: zen do R
- Nível Iniciante: R Tutorial na W3Schools
- Nível Iniciante: Hands-On Programming with R
- Nível Intermediária: R for Data Science
- Nível Avançado: Advanced R

Em pt-br

· Curso-R: material.curso-r.com

O que você fazer quando estiver em apuros?

· check a documentação do R:

help(mean)
?mean

- · Peça ajuda a um programador mais experiente
- · Consulte o pt.stackoverflow.com
- · Use ferramentas de busca como o google e duckduckgo.com

log("G")

 Na ferramenta de busca, pesquise por Error in log("G"): non-numeric argument to mathematical function

Operações básicas

Soma

1 + 1

[1] 2

Substração

2 - 1

[1] 1

Divisão

3 / 2

[1] 1.5

Operações básicas

Potenciação

2^3

[1] 8

Resto da divisão e parte inteira da divisão

5 %% 3

[1] 2

Parte inteira da divisão

5 %/% 3

[1] 1

5 3
$$-3 = 5 \% 3$$

$$2 = 5 \% / \% 3$$

Estrutura de dados no R

- Estrutura de dados: atomic vector (a estrutura de dados mais básico no R),
 matrix, array, list e data.frame (tibble no tidyverse)
- Tipo de dados: caracter (character), número real (double), número inteiro (integer), número complexo (complex) e lógico (logical)
- · Estrutura de dados Homogênea: vector, matrix e array
- Estrutura de dados Heterôgenea: list e data.frame (tibble no tidyverse)

Tipo de dados no R

Número inteiro

```
typeof(1L)
## [1] "integer"
Número real
typeof(1.2)
## [1] "double"
Número complexo
typeof(1 + 1i)
## [1] "complex"
```


Tipo de dados no R

```
Número lógico
```

[1] "character"

```
typeof(TRUE)

## [1] "logical"

Caracter

typeof("Gilberto")
```


Vetor

- · Agrupamento de valores de mesmo tipo em um único objeto
- Criação de vetores: c(...) e vector('<tipo de dados>', <comprimento do vetor>), vector() é bastante usado em laços de repetição, que veremos na semana 4, o operador : e seq(from = a, to = b, by = c)

Vetor de caracteres

```
a <- c("Gilberto", "Sassi")
a

## [1] "Gilberto" "Sassi"

b <- vector("character", 3)
b</pre>
## [1] "" "" ""
```


Vetor de número real

```
a < -c(0.2, 1.35)
a
## [1] 0.20 1.35
b <- vector("double", 3)</pre>
b
## [1] 0 0 0
d < - seq(from = 1, to = 3.5, by = 0.5)
d
## [1] 1.0 1.5 2.0 2.5 3.0 3.5
```


Vetor de número inteiro

```
a <- c(1L, 2L)
a
## [1] 1 2
b <- vector("integer", 3)</pre>
b
## [1] 0 0 0
d <- 1:4
## [1] 1 2 3 4
```


Vetor de número inteiro

```
a <- c(TRUE, FALSE)
a

## [1] TRUE FALSE

b <- vector("logical", 3)
b</pre>
```

[1] FALSE FALSE FALSE

Matriz

- · Agrupamento de valores de mesmo tipo em um único objeto de dimensão 2
- Criação de vetores: matrix(..., nrow = <integer>, ncol = <integer>) ou diag(<vector>)

Matriz de caracteres

```
a <- matrix(c("a", "b", "c", "d"), nrow = 2)
a

## [,1] [,2]
## [1,] "a" "c"
## [2,] "b" "d"</pre>
```

Matriz de números reais

```
a <- matrix(seq(from = 0, to = 1.5, by = 0.5), nrow = 2)
a</pre>
```

```
## [,1] [,2]
## [1,] 0.0 1.0
## [2,] 0.5 1.5
```


Matriz de inteiros

```
a <- matrix(1L:4L, nrow = 2)
a

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
```

Matriz de valores lógicos

```
a <- matrix(c(TRUE, F, F, T), nrow = 2)
a</pre>
```

```
## [,1] [,2]
## [1,] TRUE FALSE
## [2,] FALSE TRUE
```


Array

- · Agrupamento de valores de mesmo tipo em um único objeto em duas ou mais dimensões
- Criação de vetores: array(..., dim = <vector of integers>)

```
dados_matriz_1 <- 10:13
dados_matriz_2 <- 14:17
resultado <- array(c(dados_matriz_1, dados_matriz_2), dim = c(2, 2, 2))
resultado</pre>
```

```
## , , 1
##
##      [,1] [,2]
## [1,]      10      12
## [2,]      11      13
##
## , , 2
##
##      [,1] [,2]
## [1,]      14      16
## [2,]      15      17
```


Operações em Vetores númericos (double, integer e complex)

- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento do vetor
- · Slicing: extrae parte de um vetor (não precisa ser vetor numérico)

Slicing

```
a <- c("a", "b", "c", "d", "e", "f", "g", "h", "i")
a[1:5] # selecionado todos os elementos entre o primeiro e o quinta
```

```
## [1] "a" "b" "c" "d" "e"
```

Adição (vetores númericos)

```
a <- 1:5
b <- 6:10
a + b
```

```
## [1] 7 9 11 13 15
```


Substração (vetores numéricos)

```
a <- 1:5
b <- 6:10
b - a
```

[1] 5 5 5 5 5

Multiplicação (vetores numéricos)

```
a <- 1:5
b <- 6:10
b * a
```

[1] 6 14 24 36 50

Divisão (vetores numéricos)

```
a <- 1:5
b <- 6:10
b / a
```

[1] 6.000000 3.500000 2.666667 2.250000 2.000000

Operações em Matrizes númericas (double, integer e complex)

- Operações básicas (operação, substração, multiplicação e divisão) realizada em cada elemento das matrizes
- Multiplicação de matrizes (vide multiplicação de matrizes), inversão de matrizes (vide inversão de matrizes), matriz transposta (vide matriz transposta), determinante (vide determinante de uma matriz) e solução de sistema de equações lineares (vide sistema de equações lineares)

Soma de matrizes

```
A <- matrix(c(1, 2, 3, 4), nrow = 2)
B <- matrix(5:8, ncol = 2)
C <- A + B
C</pre>
## [,1] [,2]
## [1,] 6 10
## [2,] 8 12
```

Soma de substração

```
A <- matrix(c(1, 2, 3, 4), nrow = 2)

B <- matrix(5:8, ncol = 2)

C <- B - A

C
```

```
## [,1] [,2]
## [1,] 4 4
## [2,] 4 4
```


Multiplicação ponto-a-ponto ou produto de Hadamard

· Para detalhes vide produto de Hadamard

```
A <- matrix(c(1, 2, 3, 4), nrow = 2); B <- matrix(5:8, ncol = 2)

C <- A * B

C

## [,1] [,2]

## [1,] 5 21

## [2,] 12 32
```

Multiplicação de matrizes

· Para detalhes vide multiplicação de matrizes

```
C <- A %*% B
C
```

```
## [,1] [,2]
## [1,] 23 31
## [2,] 34 46
```


Matriz inversa

· Para detalhes vide matriz inversa

```
A <- matrix(1:4, ncol = 2)
B <- solve(A)
B

## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5
```

A %*% B

```
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
```


Matriz transposta

· Para detalhes vide matriz transposta

```
A <- matrix(1:4, ncol = 2)
B <- t(A)
B

## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
```

Determinante de uma matriz

· Para detalhes vide determinante

```
A <- matrix(1:4, ncol = 2)
det(A)
```

```
## [1] -2
```


Solução de sistema de equações lineares

· Para detalhes vide sistema de equações lineares

```
b <- c(1, 2); A <- matrix(1:4, nrow = 2)
x <- solve(A, b)
x</pre>
```

```
## [1] 1 0
```

Matriz inversa generalizada

· G é a matriz inversa generalizada de A se $A \cdot G \cdot A = A$. Para detalhes vide <u>matriz inversa generalizada</u>

```
library(MASS) # ginv é uma função do pacote MASS
A <- matrix(c(1, 1, 2, 3), nrow = 2)
ginv(A)</pre>
```

```
## [,1] [,2]
## [1,] 3 -2
## [2,] -1 1
```


Outras operações com matrizes

Operador ou função	Descrição
A %o% B	produto diádico $A \cdot B^T$
crossprod(A, B)	$\underline{A\cdot B^T}$
crossprod(A)	$\underline{A\cdot A^T}$
diag(x)	retorna uma matrix diagonal com diagonal igual a x (class(x) == 'numeric')
diag(A)	retorna um vetor com a diagona de A (class(A) == 'matrix')
diag(k)	retorna uma matriz diagona de ordem k (class(k) == 'numeric')
rowMeans(A)	retorna um vetor com as médias das linhas
colMeans(A)	retorna um vetor com as médias das colunas

Lista

- · Agrupamento de valores de tipos diversos e estrutura de dados
- Criação de listas: list(...) e vector("list", <comprimento da lista>)

- · Agrupamento de dados em tabela em que: cada coluna é uma variável; cada linha é uma observação
- · Criação de tibble: tibble(...) e tribble(...)

tibble (data frame)

```
library(tidyverse) # carregando o framework tidyverse
a <- tibble(variavel_1 = c(1, 2), variavel_2 = c("a", "b"))
glimpse(a)

## Rows: 2
## Columns: 2
## $ variavel_1 [3m [38;5;246m<dbl> [39m [23m 1, 2
## $ variavel_2 [3m [38;5;246m<chr> [39m [23m "a", "b"]
```

а

Operações em um tibble

Vamos ver o uso dessas funções depois de aprender a carregar os dados no R.

Função	Descrição
head()	Mostra as primeiras linhas de um tibble
tail()	Mostra as últimas linhas de um tibble
glimpse()	Impressão de informações básicas dos dados
add_case() ou add_row()	Adiciona uma nova observação

Concatenação de listas

```
a <- list("a", "b")
b <- list(1, 2)
d <- c(a, b)
d

## [[1]]
## [1] "a"
##
## [[2]]
## [1] "b"
##
## [[3]]
## [1] 1</pre>
```


##

[[4]] ## [1] 2

Slicing a lista

```
## [[1]]
## [1] "a"
##
## [[2]]
## [1] "b"
```

d[1:2]

Acessando o valor de elmento em uma lista

```
d[[2]] # acessando o segundo elemento da lista d
## [1] "b"
```

Acessando o valor de elmento em uma lista pela chave

```
d <- list(chave_1 = 1, chave_2 = "docente")
d$chave_2 # retorna o valor</pre>
```


[1] "docente"

Slicing uma lista por chaves

```
d <- list(chave_1 = 1, chave_2 = "docente", chave_3 = list("olá"))
d[c("chave_2", "chave_3")] # funciona como slicing

## $chave_2
## [1] "docente"
##
## $chave_3
## $chave_3
## $chave_3[1]]
## [1] "olá"</pre>
```

Enumerando chaves em um lista

Valores especiais em R

Valores especiais	Descrição	Função para identificar	
NA (Not Available)	Valor faltante.	is.na()	
NaN (Not a Number)	Resultado do cálculo indefinido.	is.nan()	
Inf (Infinito)	Valor que excede o valor máximo que sua máquina aguenta.	is.inf()	
NULL (Nulo)	Valor indefinido de expressões e funções (diferente de NaN e NA)	is.null()	

Parênteses 1: guia de estilo no R

- · Nome de um objeto precisa ter um *significado*. Esse significado precisa falar imediatamente o que este objeto é ou faz ~sua bisavó precisa entender o que este objeto é ou faz~
- · Use a convenção do R:
 - Use apenas letras minúsculas, números e *underscore* (comece sempre com letras minúsculas)
 - Nomes de objetos precisam ser substantivos e precisam descrever o que este objeto é ou faz (seja conciso, direto e significativo)
 - Evite ao máximo os nomes que são usados por objetos que são buit-in do R
 - Coloque espaço depois da vírgula
 - Não coloque espaço antes nem depois de parênteses. Exceção: Coloque um espaço () antes e depois de if, for ou while, e coloque um espaço depois de ().
 - Coloque espaço entre operadores básicos: +, -, *, == e outros. Exceção: ^.
- · Para mais detalhes, consulte: guia de estilo do tidyverse

Parênteses 2: estrutura de diretórios

- · Mantenha uma estrutura consistente de diretórios em seus projetos.
- Eu uso a seguinte estrutura:
 - data: diretório para armazenar seus conjuntos de dados
 - raw: dados brutos
 - processed: dados processados
 - scripts: código fonte do seu projeto
 - figures: figuras criadas no seu projeto
 - output: outros arquivos que não são figuras
 - previous: arquivos da versão anterior do projeto
 - notes: notas de reuniões e afins
 - relatorio (ou artigos): documento final de seu projeto
 - documents: livros, artigos e qualquer coisa que são referências em seu projeto
- · Para mais detalhes, consulte esse guia do curso-r: diretórios e . Rproj

Leitura de arquivos no formato xlsx ou xls

- Pacote: readxl do tidyverse (instale com o comando install.packages('readxl'))
- · Parêmetros das funções read_xls (para ler arquivos .xls) e read_xlsx (para ler arquivos .xlsx):
 - path: caminho até o arquivo
 - sheet: especifica a planilha do arquivo que será lida
 - range: especifica uma área de uma planilha para leitura. Por exemplo: B3:E15
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis
- · Para mais detalhes, consulte a documentação oficial do tidyverse: documentação de read_xl

Leitura de arquivos no formato xlsx ou xls

4.7 3.2

3.1

4.6

```
library(tidyverse)
library(readxl)
dados_iris <- read_xlsx("../data/raw/iris.xlsx")</pre>
head(dados_iris, n = 4)
## # A tibble: 4 × 5
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
                                      <dbl> <chr>
##
          <dbl>
                     <dbl>
                                 <dbl>
## 1
            5.1
                3.5
                                   1.4
                                             0.2 setosa
                    3
                                  1.4
## 2
           4.9
                                             0.2 setosa
```

1.3

1.5

0.2 setosa

0.2 setosa

3

4

Leitura de arquivos no formato csv

- Pacote: readr do tidyverse (instale com o comando install.packages('readr'))
- · Parêmetros das funções read_csv e read_csv2:
 - path: caminho até o arquivo

Padrão imperial inglês versus o resto do planeta

- · Se você mora ou está em um país que usa padrão imperial inglês:
 - colunas separadas por ,
 - casa decimal indicada por .
- · Se você mora ou está em um país que usa o sistema métrico:
 - colunas separadas por ;
 - casa decimal por,

Preste atenção em como o seus dados estão armazenados!

Para mais detalhes, consulte a documentação oficial do tidyverse: documentação de read_r

Leitura de arquivos no formato csv

```
library(tidyverse)
library(readr)
dados_mtcars <- read_csv2("../data/raw/mtcars.csv")
dados_mtcars

## # A tibble: 32 × 11</pre>
```

```
cyl disp
                                                                                                                               hp drat
                                                                                                                                                                                         wt qsec
##
                                                                                                                                                                                                                                                  ٧S
                                                                                                                                                                                                                                                                                am gear carb
                             <dbl> 
##
                 1 21
                                                                            6
                                                                                          160
                                                                                                                           110
                                                                                                                                                3.9
                                                                                                                                                                                2.62 16.5
                                                                                                                                                                                                                                                                                                                 4
                                                                                                                                                                                                                                                                                                                                             4
                                                                                                                           110 3.9
                                                                                                                                                                                2.88 17.0
                 2
                                 21
                                                                                          160
                                                                                                                                                                                                                                                                                                                                             4
                                                             4 108
                                22.8
                                                                                                                               93 3.85 2.32 18.6
                                                                                                                                                                                                                                                                                                                                             1
##
                                 21.4
                                                                          6 258
                                                                                                                           110 3.08 3.22 19.4
                                                                                                                                                                                                                                                                                                                                             1
##
                                                             8 360
                                18.7
                                                                                                                           175 3.15 3.44 17.0
                                                                                                                                                                                                                                                                                                                3
                                                                                                                                                                                                                                                                                                                                             2
                  5
##
                                 18.1
                                                              6 225
                                                                                                                           105 2.76 3.46
                                                                                                                                                                                                        20.2
                                                                                                                                                                                                                                                                                                                                             1
##
                                                                                                                           245 3.21 3.57 15.8
                                                                                                                                                                                                                                                                                                                                             4
                                 14.3
                                                                                          360
##
                                 24.4
                                                                          4 147.
                                                                                                                              62 3.69 3.19 20
                                 22.8
                                                                          4 141.
                                                                                                                               95 3.92 3.15 22.9
                                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                                                                                                 4
                                                                                                                                                                                                                                                                                                                                             2
##
             9
## 10 19.2
                                                                                                                           123 3.92 3.44 18.3
                                                                            6 168.
                                                                                                                                                                                                                                                        1
## # ... with 22 more rows
```


Leitura de arquivo formato com comprimento fixo (fixed width format: fwf)

- · Pacote: readr do tidyverse (instale com o comando install.packages('readr'))
- · Parêmetros das funções read_fwf:
 - file: caminho até o arquivo
 - col_positions: use a função fwf_widths() fornece as delimitações e os nomes das colunas
 - col_types: texto (string) especificando o tipo de cada coluna: "c" para caracter, "d" para número real.

Exemplo

\$ dist

- velocidade: começa na coluna 1 e termina na coluna 4 com comprimento 4;
- · distancia: começa na coluna 5 e termina na coluna 7 com comprimento 3.

```
dados_carros <- read_fwf(
    "../data/raw/carros.txt",
    col_positions = fwf_widths(c(4, 3), col_names = c("velocidade", "dist")),
    col_types = "dd"
)
glimpse(dados_carros)

## Rows: 50
## Columns: 2
## $ velocidade <dbl> 4, 4, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12...
```

<dbl> 2, 10, 4, 22, 16, 10, 18, 26, 34, 17, 28, 14, 20, 24...

Leitura de arquivos no formato ods

- Pacote: readODS (instale com o comando install.packages('readODS'))
- Parêmetros das funções read_ods:
- path: caminho até o arquivo
 - sheet: especifica a planilha do arquivo que será lida
 - range: especifica uma área de uma planilha para leitura. Por exemplo:
 B3:E15
 - col_names: Argumento lógico com valor padrão igual a TRUE. Indica se a primeira linha tem o nome das variáveis
- Para mais detalhes, consulte a documentação do readODS: documentação de readODS

Leitura de arquivos no formato ods

```
library(tidyverse)
library(readODS)
dados_toothgrowth <- read_ods("../data/raw/ToothGrowth.ods")

glimpse(dados_toothgrowth)

## Rows: 60

## Columns: 3

## $ len <dbl> 4.2, 11.5, 7.3, 5.8, 6.4, 10.0, 11.2, 11.2, 5.2, 7.0, 16.5...
```

\$ supp <chr> "VC", "VC", "VC", "VC", "VC", "VC", "VC", "VC", "VC", "VC"...

Salvando dados no R

Salvar no formato .csv (sistema métrico)

```
library(readr)
write_csv2(dados_toothgrowth, file = "../data/processed/dados_csv2.csv")
```

Salvar no formato .xlsx

```
library(writexl)
write_xlsx(dados_toothgrowth, path = "../data/processed/dados_xlsx.xlsx")
```

Salvar no formato ods

```
library(readODS)
write_ods(dados_toothgrowth, path = "../data/processed/dados_ods.ods")
```


estatística descritiva no R

gráficos e tabelas

Alguns conceitos básicos

Começamos com alguns conceitos básicos, que usaremos durante todo esse curso.

- · População: Todos os elementos ou indivíduos alvo do estudo;
- Amostra: Parte da população;
- · Parâmetro: característica da população (grandeza);
- **Estimativa:** característica da amostra. Usamos a estimativa para aproximar o parâmetro;
- · Variável: característica de um elemento da população (mensurando ou analito). Geralmente usamos uma letra maiúscula do alfabeto latino para representar uma variável (mensurando ou analito), e uma letra minúscula do alfabeto latino para representar o valor de uma variável para um elemento (indicação) da população.Por exemplo, podemos representar a variável "Teor de hidrocloro" por X e um indicação da amostra por x=25,1 mg/comprimido.

Classificação de variáveis

Tabela de distribuição de frequência – Variável qualitativa

A primeira coisa que fazemos é contar!

X	frequência	frequência relativa	porcentagem
B_1	n_1	f_1	$100 \cdot f_1\%$
B_2	n_2	f_2	$100\cdot f_2\%$
÷	÷	:	÷ ·
B_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Tabela de distribuição de frequência – Variável qualitativa

A primeira coisa que podemos fazer é construir a tabela de distribuição de frequência.

escolaridade	frequencia	frequencia_relativa	porcentagem
ensino fundamental	12	0,33	33,33
ensino médio	18	0,50	50,00
superior	6	0,17	16,67
Total	36	1,00	100,00

Gráficos no R

- Pacote: ggplot2
- Permite gráficos personalizados com uma sintaxe simples e rápida, e iterativa por camadas
- Começamos com um camada com os dados ggplot (dados), e vamos adicionando as camadas de anotações, e sumários estatísticos
- Usa a gramática de gráficos proposta por Leland Wilkinson: Grammar of Graphics
- · Ideia desta gramática: delinear os atributos estéticos das figuras geométricas (incluindo transformações nos dados e mudança no sistema de coordenadas)
- Para mais detalhes, você pode consultar ggplot2: elegant graphics for data analysis e documentação do ggplot2

Gráficos no R

Estrutura básica de ggplot2

```
ggplot(data = <data possible tibble>) +
    <Geom functions>(mapping = aes(<MAPPINGS>)) +
    <outras camadas>
```

Você pode usar diversos temas e extensões que a comunidade cria e criou para melhorar a aparência e facilitar a construção de ggplot2.

Lista com extensões do ggplot: extensões do ggplots

Indicação de extensões:

- Temas adicionais para o pacote ggplot2: ggthemes
- · Gráfico de matriz de correlação: ggcorrplot
- · Gráfico quantil-quantil: qqplotr

Gráficos no R

Gráfico de Barras no ggplot2

- função: geom_bar(). Para porcentagem: geom_bar(x = <variável no eixo x>, y = ..prop.. * 100).
- Argumentos adicionais:
 - **fill**: mudar a cor do preenchimento das figuras geométricas
 - color: mudar a cor da figura geométrica

Rótulos dos eixos

- Mudar os rótulos: labs(x = <rótulo do eixo x>, y = <rótulo do eixo y>)
- Trocar o eixo-x pelo eixo-y: coord_flip()


```
library(ggthemes)
ggplot(df_empresa) +
  geom_bar(mapping = aes(x = escolaridade, y = ..prop.. * 100, group = 1),
  fill = "blue", color = "red") +
  labs(x = "Espécies", y = "Porcentagem") +
  theme_gdocs() +
  coord_flip()
```


Tabela de distribuição de frequência – Variável quantitativa discreta

A primeira coisa que fazemos é contar!

X	frequência	frequência relativa	porcentagem
x_1	n_1	f_1	$100 \cdot f_1\%$
x_2	n_2	f_2	$100\cdot f_2\%$
x_3	n_3	f_3	$100\cdot f_3\%$
÷	:	:	÷ :
x_k	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Tabela de distribuição de frequência – Variável quantitativa discreta

A primeira coisa que podemos fazer é construir a tabela de distribuição de frequência.

n_filhos	frequencia	fr	porcentagem
0	20	0,56	55,56
1	5	0,14	13,89
2	7	0,19	19,44
3	3	0,08	8,33
5	1	0,03	2,78
Total	36	1,00	100,00

Gráfico de barras no R

```
ggplot(df_empresa) +
  geom_bar(aes(x = numero_filhos, y = ..prop.., group = 1)) +
  labs(x = "Número de filhos", y = "Frequência relativa") +
  theme_calc()
```


Tabela de distribuição de frequência – Variável quantitativa contínua

· X: variável quantitativa contínua

Tabela de Distribuição de Frequências para a variável quantitativa contínua.

x	Frequência	Frequência relativa	Porcentagem
$[l_0,l_1)$	n_1	$f_1=rac{n_1}{n_1+\cdots+n_k}$	$p_1 = f_1 \cdot 100$
$[l_1,l_2)$	n_2	$f_2=rac{n_2}{n_1+\cdots+n_k}$	$p_2 = f_2 \cdot 100$
÷	:	÷ :	÷
$[l_{k-1},l_k]$	n_k	$f_k=rac{n_k}{n_1+\cdots+n_k}$	$p_k = f_k \cdot 100$

Em que $\min = l_0 \le l_1 \le \cdots \le l_{k-1} \le l_k = \max$ (\min é o menor valor do suporte da variável X e \max é o maior valor do suporte da variável X), n_i é número de valores de X entre l_{i-1} e l_i , e l_0, l_1, \ldots, l_k quebram o suporte da variável X (breakpoints).

 l_0, l_1, \cdots, l_k são escolhidos de acordo com a teoria por trás da análise de dados (ou pelo regulador). Se você está em uma nova área, use l_0, l_1, \cdots, l_k igualmente espaçados, e use a <u>regra de Sturges</u> para determinar o valor de k: $k=1+\log 2(n)$ onde n é tamanho da amostra. Se $1+\log 2(n)$ não é um número inteiro, usamos $k=\lceil 1+\log 2(n)\rceil$.

Tabela de distribuição de frequência – Variável quantitativa contínua

sepal_length_intervalo	freq	fr	р
[4.3,4.75)	11	0,07	7,33
[4.75,5.2)	30	0,20	20,00
[5.2,5.65)	24	0,16	16,00
[5.65,6.1)	24	0,16	16,00
[6.1,6.55)	31	0,21	20,67
[6.55,7)	17	0,11	11,33
[7,7.45)	7	0,05	4,67
[7.45,7.9]	6	0,04	4,00
Total	150	1,00	100,00

Histograma

Para variávieis quantitativas contínuas, geralmente não construímos gráficos de barras, e usamos uma figura geométrica chamada de *histograma*.

- O histograma é um gráfico de barras contíguas em que a área de cada barra é igual à frequência relativa.
- · Cada faixa de valor $[l_{i-1},l_i), i=1,\ldots,n,$ será representada por um barra com área $f_i, i=1,\ldots,n$.
- · Como cada barra terá área igual a f_i e base $l_i l_{i-1}$, e a altura de cada barra será $\frac{f_i}{l_i l_{i-1}}$.
- $\frac{f_i}{l_i-l_{i-1}}$ é denominada de densidade de frequência.

Histograma

Medidas de Resumo (variável quantitativa)

A ideia é encontrar um ou alguns valores que sintetizem todos os valores.

Medidas de posição (tendência central)

A ideia é encontrar um valor que representa bem todos os valores.

· Média:
$$\overline{x} = \frac{x_1 + \cdots + x_n}{n}$$

· Mediana: valor que divide a sequência ordenada de valores em duas partes iguais.

Medidas de dispersão

A ideia é medir a homogeneidade dos valores.

Variância:
$$s^2=rac{(x_1-\overline{X})^2+\cdots+(x_n-\overline{X})^2}{n-1}$$
 ;

- · Desvio padrão: $s=\sqrt{s^2}$ (mesma unidade dos dados);
- $coeficiente de variação <math>cv=rac{s}{\overline{x}}\cdot 100\%$ (adimensional, ou seja, "sem unidade")

Medidas de Resumo: exemplo

Podemos usar a função summarise do pacote dplyr (incluso no pacote tidyverse).

Associação entre duas variáveis quantitativas

Para duas variáveis quantitativas, estudamos a associação entre as duas variáveis usando o gráfico de dispersão. Além disso, podemos calcular o coeficiente de correlação linear de Pearson.

Associação entre duas variáveis quantitativas

Também podemos calcular o coeficiente de correlação linear de Pearson. Lembre que se X e Y são duas variáveis quantitativas com valores

Amostra de duas variáveis quantitativas X e Y.

X	x_1	x_2	x_n
Y	y_1	y_1	 y_n

Então, o coeficiente de correlação linear é dado por

$$r = \left(rac{(x_1-\overline{x})}{s_x}\cdotrac{(y_1-\overline{y})}{s_y}
ight) + \cdots + \left(rac{(x_n-\overline{x})}{s_x}\cdotrac{(y_n-\overline{y})}{s_y}
ight).$$

cor(df_iris\$Sepal.Length, df_iris\$Petal.Length)

[1] 0.8717538

