

MBI5153 Programming Guide

(此文件仅供控制器开发使用,请勿外流)

控制指令

表 1. 控制指令如下:

	讯	号组合	叙述					
指令名称	LE	Number of DCLK LE 包含多少个 DCLK 上升缘	指令动作					
停止错误侦测	High	1	停止 LED 开路强制侦测					
数据栓锁	High	1	将序列数据传入缓冲存储器					
VSYNC	High	2	垂直同步信号。垂直同步则会命令芯片置换 新的帧数据					
写入状态缓存器 1*	High	4	将序列数据传入状态缓存器 1					
读取状态缓存器 1	High	5	将状态缓存器 1 的数据传入位移缓存器					
执行错误侦测	High	7	执行 LED 开路强制侦测					
写入状态缓存器 2*	High	8	将序列数据传入状态缓存器 2					
读取状态缓存器 2	High	9	将状态缓存器 2 的数据传入位移缓存器					
软件重置	High	10	热启动,软复位					
前置设定(Pre-Active)	High	14	前置设定指令必须在"写入状态缓存器"指令 之前传送					
写入状态缓存器 3*	High	16	将序列数据传入状态缓存器 3					
读取状态缓存器3	High	17	将状态缓存器 3 的数据传入位移缓存器					

上述"*"符号表示这些指令必须在前置设定指令之后才会启动,否则皆无效。

©Macroblock, Inc. 2014

状态缓存器 1 及 2

表 2. 状态缓存器 1 功能说明

默认值

高位													,	低位	
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	1	1	0	0	6'b101011					

位	属性	定义	值	功能说明
_	法/ 定	一 白 即 水 叭	0 (默认)	0: 关闭
F	读/写	下鬼影消除	1	1: 开启
E~D	保留	保留	00	保留
C~8	读/写	扫描行数	00000 00001 00010 00011 (默认) ~ 11111	00000: 1 行扫描 00001: 2 行扫描 00010: 3 行扫描 00011: 4 行扫描 11110: 31 行扫描 11111: 32 行扫描
7	读/写	SPWM 灰阶模式	0 (默认)	14 位灰阶模式。16384 GCLKs 的 14 位 PWM 工作周期可被分割为 32 个较小的 PWM 工作周期,每一周期有 512 GCLKs 用户应传递 16 位数据,该数据在最不重要位(LSB)须有 2 位 0, Ex., {14'h1234, 2'h0} 13 位灰阶模式。8192 GCLKs 的 13 位 PWM 工作周期可被分割为 16 个较小的 PWM 工作周期,每一周期有 512 GCLKs 用户应传递 16 位数据,该数据在最不重要位(LSB)须有 3 位 0, Ex., {13'h1234, 3'h0}
6	读/写	GCLK 倍频	0 (默认)	0: 关闭
	-		1	1: 开启
5~0	读/写	电流增益调整	000000~ 111111	6'b101011 (默认) 64阶微调的电流增益功能 (增益范围: 12.5%~200%) ,可适当调整输出电流。

表 3. 状态缓存器 2 功能说明

默认值

高位													,	低位	
F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0

位	属性	定义	值	功能说明
F~B	保留	保留	保留	保留
^	读/写	双倍刷新率	0 (默认)	0: 关闭
Α	以一子	· 从后刷刷 平	1	1: 开启
9~4	保留	保留	保留	保留
3~1	读/写	解决第一行扫偏暗	000(默认) ~111	000: 0 ns, 100: 20ns 001: 5 ns, 101: 25ns 010: 10 ns, 110: 30ns 011: 15 ns, 111: 35ns
0	保留	保留	保留	保留

表 4. 状态缓存器 3 功能说明

默认值

高位	高位							~ / /					低位					
F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

位	属性	定义	值	功能说明
F~0	保留	保留	保留	保留

MBI5153 Programming	Guide V1.01	SC
 MBIO 100 1 Togramming	4 Caiao v 1.0 i	_00

开发控制接口

1. 提供三组状态缓存器的字段,如下图所示,让使用者作填写。

2. 控制状态缓存器 2 位[B]要设成可控,如下图设成可(不)勾选。

去坏点设置—————	
□ 启用去除坏点	去除坏点

MBI5153 Program	nming Guide V1.01	SC	

状态缓存器建议值

状态缓存器建议设定如下:

表 5. 状态缓存器 1 建议值

使用红/绿/蓝 LED 作负载的 IC 建议值 16'hDF2B:

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
1	1	0	1	1	1	1	1	0	0	1	0	1	0	1	1

表 6. 状态缓存器 2 建议值

使用红色 LED 作负载的 IC 建议值 16'h4600:

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
1 m m (# 1 ED 1) # # 10 10 h x 11 401 0000															

使用绿/蓝 LED 作负载的 IC 建议值 16'h6600:

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0

表 7. 状态缓存器 3 建议值

使用红色 LED 作负载的 IC 建议值 16'hC003:

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1

使用绿色 LED 作负载的 IC 建议值 16'h6103:

F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
0	1	1	0	0	0	0	1	0	0	0	0	0	0	1	1

使用蓝色 LED 作负载的 IC 建议值 16'h3303:

	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
	0	0	1	1	0	0	1	1	0	0	0	0	0	0	1	1

初始化顺序

在初始化阶段,倘若缓存器之默认值不是用户所设定,就要执行写入状态缓存器指令,接着用户传送"16 x 扫描行数"数量的"数据拴锁"指令以传送灰阶数据,然后传送"Vsync"指令以启动显示屏。

在用户传送完毕最后一次"数据拴锁"指令之后,必须再等至少50GCLKs,始能再下达"Vsync"指令。然而,GCLK务必在"Vsync"指令设定之前停止,有关时间设定限制的说明将在后续单元中详述。

图 1. "数据拴锁"与"Vsync"指令说明

垂直同步指令操作策略

垂直同步指令作用在于更新帧数据。以下波形图即说明更新帧数据的 "Vsync"指令。

更新帧数据的 Vsync 指令

图 2. 更新帧数据的"Vsync"指令说明

限制条件说明:

- 1. 在最后一笔"数据拴锁"指令之后,灰阶数据需要一段时间以预先读取来自 SRAM 的数据至内建的缓冲器中,因此在 "Vsync"指令之前至少需要等 50 GCLKs。
 - 说明:如欲了解更多 SRAM 内存结构说明,请参考内存结构单元。
- 2. 建议控制器使用时保留一个 GCLK 计数器(1~513),该 GCLK 计数器将在"Vsync"指令的 LE 下降缘时预设为 512,并且在下一笔 GCLK 时重新设定为 0。
- 3. LE 与 GCLK 之间有时间设定限制,也就是 GCLK 应在"Vsync"指令之前停止。另外 GCLK 与 LE 必须符合设定与保留时间,分别如 3.1 与 3.2 所示:
 - 3.1 设定时间指 LE 下降缘与 GCLK 上升缘之间 t_{SU2} 需大于 1200ns。
 - 3.2 保留时间指 GCLK 下降缘与 LE 下降缘之间 tH2 需大于 300ns。

- 4. 消影时间(dead time)亦指扫描行数间的间隔时间,并藉由停止 GCLK 来控制。因为"Vsync"指令设定后, 帧数据会更新,使用者必须将扫描行数由目前的第 K 行扫切换回第 O 行扫,以重新开启新的帧数据显示。
- 5. 当无指令时, DCLK 可以选择是否停止。
- 6. 在消影时间时,可选择停止 DCLK,或不要下达"数据拴锁"指令。
- 7. 在"Vsync"指令时,新数据将会储存于内建的显示缓冲器中,且在消影时间完成后显示该数据。

在帧数据显示期间切换扫描行数

在扫描行数的开关中,使用者应采用 MBI5153 GCLK 之计数模式,且在 MBI5153 GCLK 计数至 512 时切换扫描行数。若要了解更多扫描屏应用方式,可以参考"灰阶模式与扫描式 S-PWM"单元之叙述。消影时间是由控制器以暂停 GCLK 所控制,其间高电位 tdth 需大于 300ns,低电位 tdtl 需大于 1200ns。当 GCLK 计数值为 513 时,MBI5153 在消影时间将会关闭所有输出通道。

图 3. 扫描行数切换,消影时间之控制方式

控制方式如下所述:

- 1. 透过"写入状态缓存器"指令设定状态缓存器。
- 2. 传送"16 x 扫描行数"数量的"数据拴锁" 指令以传送灰阶数据。
- 3. 帧频(frame rate)是指每秒钟放映或显示的帧或图像的数量。在用户传送完毕最后一次"数据拴锁"指令之后,必须再等至少50GCLKs,始能再下达"Vsync"指令。若非第一笔数据,用户应根据帧频传送"Vsync"指令。如果帧频为60,使用者应等待1/60秒的时间。当用户传送"Vsync"指令时,必需遵守相关的时间限制条件。
- 4. 当传送"Vsync"指令时,扫描行数必须从 1 开始计算,GCLK 之计数需要预设为 513 并藉由停止 GCLK 以控制消影时间。
- 5. 在放映或显示的帧或图像时,用户必须维持一个 GCLK 计数(1~513),并且在 GCLK 计数至 512 时,切换扫描行数以及进入消影时间(由停止 GCLK 控制)。
- 6. 在消影时间期间(包括传送"Vsync"指令或当 GCLK 之计数为 513),不可传送"数据拴锁"指令。
- 7. 下一笔帧影像的灰阶数据必须在"Vsync"指令之后传送。
- 8. 强烈建议定期执行"写入控制状态缓存器 1"与"写入控制状态缓存器 2" 指令以避免系统的噪声干扰。

视觉更新率

一般模式

在 14 位 S-PWM 模式下,16384 GCLKs 的工作周期可被分割为 32 个较小的 PWM 工作周期,每一周期有 512 GCLKs;在 13 位 S-PWM 模式下,8192 GCLKs 的工作周期可被分割为 16 个较小的 PWM 工作周期,每一周期有 512 GCLKs。

当使用 MBI5153 做扫描屏时,视觉更新率计算方式如下

$$F_{visual} = \frac{1}{[512 x(T_{GCLK}) + t_{Dead}] \times N}$$

其中

F_{visual}: 视觉更新率

T_{GCLK}: 灰阶时钟周期(即 1/F_{GCLK})

t_{Dead}: 消影时间 N: 扫描行数

双倍刷新率

在 14 位 S-PWM 模式下,16384 GCLKs 的工作周期可被分割为 64 个较小的 PWM 工作周期,每一周期有 256 GCLKs;在 13 位 S-PWM 模式下,8192 GCLKs 的工作周期可被分割为 32 个较小的 PWM 工作周期,每一周期有 256 GCLKs。

当使用 MBI5153 做扫描屏时,视觉更新率计算方式如下

$$F_{visual} = \frac{1}{[256 x(T_{GCLK}) + t_{Dead}] \times N}$$

GCLK 倍频

若开启倍频功能,只需要原先一半的 GCLKs 数即可表现 PWM 工作周期。例如,在 14 位 S-PWM 模式下,完成一个行扫的工作周期仅需 8192 GCLKs,可被分割为 32 个较小的 PWM 工作周期,每一周期是 256 GCLKs;在 13 位 S-PWM 模式下,完成一个行扫的工作周期仅需 4096 GCLKs,可被分割为 16 个较小的 PWM 工作周期,每一周期是 256 GCLKs。视觉更新率计算方式如下

$$F_{visual} = \frac{1}{[256 x(T_{GCLK}) + t_{Dead}] \times N}$$

强制开路错误侦测

MBI5153 之强制开路错误侦测的原理是基于实际输出端的耐受电压(V_{DS})与侦测电压 0.5V 的比较,来判定每个输出端的 LED 负载状态。如图 4 所示,下达"强制开路错误侦测"指令后,错误侦测时间建议大于 100us,侦测期间,GCLK 必需停止,MBI5153 输出端关闭,每个通道流过极小电流,进行侦测。当接收端收到"停止错误侦测"指令后,驱动器将会将错误组态数据搬移到"位移缓存器",透过 SDO 脚位输出每个位。

图 4. 强制开路错误侦测时序图

消除十字架问题的控制时序

消除十字架问题的控制程序如下:

- 1. 写入软件重置指令。
- 2. 写入控制状态缓存器 1 位[12:8]设扫描行数。(若已设定,此步骤可忽略)
- 3. 写入控制状态缓存器 2,将位[F]设为 0,将位[B]设为 1,其他位值维持不变。
- 4. 假设有 N 行扫,首先,开启第 1 行扫,写入错误侦测指令,侦测时间 200us 后停止错误侦测。
- 5. 接着开启第2行扫,重复程序4的步骤,依序逐行换扫,直到完成第N行扫。
- 6. 控制状态缓存器 2 位[B]维持 1, 其他状态缓存器设定值则恢复显示屏设定值,接续作灰阶输入,进入一般显示状态。

時序如圖 5 所示:

图 5. 消除十字架问题之控制时序图