```
In [2]: import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [3]: df=pd.read_csv(r"C:\Users\manasa\Downloads\loan1.csv")
df

Out[3]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

```
In [4]: df['Marital Status'].value_counts()
    df['Annual Income'].value_counts()
```

```
Out[4]: Annual Income
```

Name: count, dtype: int64

```
In [5]: convert={"Home Owner":{"Yes":1,"No":0}}
df=df.replace(convert)
df
```

Out[5]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	Single	125	No
1	0	Married	100	No
2	0	Single	70	No
3	1	Married	120	No
4	0	Divorced	95	Yes
5	0	Married	60	No
6	1	Divorced	220	No
7	0	Single	85	Yes
8	0	Married	75	No
9	0	Single	90	Yes

```
In [6]: convert={"Marital Status":{"Single":1,"Married":2,"Divorced":3}}
df=df.replace(convert)
df
```

Out[6]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	No
1	0	2	100	No
2	0	1	70	No
3	1	2	120	No
4	0	3	95	Yes
5	0	2	60	No
6	1	3	220	No
7	0	1	85	Yes
8	0	2	75	No
9	0	1	90	Yes

```
In [7]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):

Column Non-Null Count Dtype 0 Home Owner 10 non-null int64 1 Marital Status 10 non-null int64 2 Annual Income 10 non-null int64 Defaulted Borrower 10 non-null object

dtypes: int64(3), object(1)
memory usage: 452.0+ bytes

In [8]: df.describe()

Out[8]:

	Home Owner	Marital Status	Annual Income
count	10.000000	10.000000	10.000000
mean	0.300000	1.800000	104.000000
std	0.483046	0.788811	45.631373
min	0.000000	1.000000	60.000000
25%	0.000000	1.000000	77.500000
50%	0.000000	2.000000	92.500000
75%	0.750000	2.000000	115.000000
max	1.000000	3.000000	220.000000

In [9]: df.head()

Out[9]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	No
1	0	2	100	No
2	0	1	70	No
3	1	2	120	No
4	0	3	95	Yes

```
In [10]: x=["Home Owner","Marital Status","Annual Income"]
y=["Yes","No"]
all_inputs=df[x]
all_classes=df["Defaulted Borrower"]
```

```
In [11]: (x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.
```

In [12]: clf=DecisionTreeClassifier(random_state=0)