

WHAT IS CLAIMED IS:

1. A compound comprising the formula:

(I)

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

E₁ is

E₂₋₄ are independently H, E₁ or

(a) is zero or one;

(m) is zero or a positive integer;

(n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀;

R₂₋₁₀ are independently selected from the group consisting of hydrogen,

C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

D₁ and D₂ are independently OH,

(IV)

(V)

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

(q) is zero or a positive integer;

L_1 and L_2 are independently selected bifunctional linkers;

Y_{4-7} are independently selected from the group consisting of O, S and NR_{14} ;

R_{11-14} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B_1 and B_2 are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties.

2. The compound of claim 1, wherein R_1 further comprises a capping group A, selected from the group consisting of hydrogen, NH_2 , OH, CO_2H , C_{1-6} moieties and

3. A compound of claim 2, comprising the formula:

4. The compound of claim 1, wherein said terminal branching group comprises the formula:

wherein

E_{35} is

E_{36-38} are independently H, E_{35} or

(n) and (p) are independently 0 or a positive integer;

$Y_{2,3}$ are independently O, S or NR_{10} ;

R_{6-10} are independently selected from the group consisting of hydrogen,

C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D'_1 and D'_2 are independently OH,

or

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

(q) is zero or a positive integer;

L₁ and L₂ are independently selected bifunctional linkers;

Y_{4,7} are independently selected from the group consisting of O, S and NR₁₄;

R₁₁₋₁₄ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

E₄₅ is

E₄₆₋₄₈ are independently H, E₄₅ or

wherein

D''₁ and D''₂ are independently OH,

5. The compound of claim 3, Y_1 is O.
6. The compound of claim 1, wherein R_1 comprises a polyalkylene oxide residue.
7. The compound of claim 6, wherein R_1 comprises a polyethylene glycol residue.
8. The compound of claim 3, wherein R_1 comprises a polyethylene glycol residue.
9. The compound of claim 6, wherein R_1 is selected from the group consisting of
 $-C(=Y_8)-(CH_2)_f-O-(CH_2CH_2O)_x-A$, $-C(=Y_8)-Y_9-(CH_2)_f-O-(CH_2CH_2O)_x-A$,
 $-C(=Y_8)-NR_{20}-(CH_2)_f-O-(CH_2CH_2O)_x-A$, $-(CR_{21}R_{22})_e-O-(CH_2)_f-O-(CH_2CH_2O)_x-A$,
 $-NR_{20}-(CH_2)_f-O-(CH_2CH_2O)_x-A$, $-C(=Y_8)-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-C(=Y_8)-$,
 $-C(=Y_8)-Y_9-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-Y_9-C(=Y_8)-$,
 $-C(=Y_8)-NR_{20}-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-NR_{20}-C(=Y_8)-$,
 $-(CR_{21}R_{22})_e-O-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-O-(CR_{21}R_{22})_e$, and
 $-NR_{20}-(CH_2)_f-O-(CH_2CH_2O)_x-(CH_2)_f-NR_{20}$

wherein:

Y_8 and Y_9 are independently O, S or NR_{20} ;

x is the degree of polymerization;

R_{20} , R_{21} and R_{22} are independently selected from among H, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

e and f are independently zero, one or two; and

A is a capping group.

10. The compound of claim 9, wherein R_1 comprises $-O-(CH_2CH_2O)_x$ and x is a positive integer so that the weight average molecular weight is at least about 20,000.

11. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 20,000 to about 100,000.

12. The compound of claim 3, wherein R_1 has a weight average molecular weight of from about 25,000 to about 60,000.

13. A compound of claim 3, comprising the formula

14. The compound of claim 13, wherein D_1 is

15. The compound of claim 13, wherein D_1 is

16. The compound of claim 1, wherein L_1 is $(CH_2CH_2O)_2$.

17. The compound of claim 1, wherein L_2 is selected from the group consisting of $-CH_2-$, $-CH(CH_3)-$, $-CH_2C(O)NHCH(CH_3)-$, $-(CH_2)_2-$, $-CH_2C(O)NHCH_2-$, $-(CH_2)_2-NH-$, $-(CH_2)_2-NH-C(O)(CH_2)_2NH-$ and $-CH_2C(O)NHCH(CH_2CH(CH_3)_2)-$.

18. A compound of claim 1, selected from the group consisting of:

wherein R_1 is a PEG residue and D is selected from the group comprising:

where B is a residue of an amine or a hydroxyl-containing drug.

19. A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; *p*-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine

20. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D₁ is a residue of a biologically active moiety.

21. A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.

22. A method of preparing a polymer conjugate, comprising:
reacting a compound of the formula (VIII):

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

L_1 and L_2 are independently selected bifunctional linkers;

Y_{4-7} are independently selected from the group consisting of O, S and NR_{14} ;

R_{11-14} are independently selected from the group consisting of hydrogen,

C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B'_1 is a residue of a hydroxyl- or an amine-containing moiety;

with a compound of the formula (IX):

wherein

E_{6-8} are independently H, E_5 or

wherein

D₃ and D₄ are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

(n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀; and

R₂₋₁₀ are independently selected from the group consisting of hydrogen,

C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ heteroalkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

under conditions sufficient to cause a polymeric conjugate to be formed.