MH1812 Tutorial

Chapter 8: Relations

- Q1: Consider the sets $A = \{1, 2\}$, $B = \{1, 2, 3\}$ and the relation $(x, y) \in R \Leftrightarrow (x y)$ is even. Compute the inverse relation R^{-1} . Compute its matrix representation.
- Q2: Consider the sets $A = \{2,3,4\}$, $B = \{2,6,8\}$ and the relation $(x,y) \in R \Leftrightarrow x|y$. Compute the matrix of the inverse relation R^{-1} .
- Q3: Let R be a relation from \mathbb{Z} to \mathbb{Z} defined by $xRy \leftrightarrow 2|(x-y)$. Show that if n is odd, then n is related to 1.
- Q4: This exercise is about composing relations.
 - 1. Consider the sets $A = \{a_1, a_2\}$, $B = \{b_1, b_2\}$, $C = \{c_1, c_2, c_3\}$ with the following relations R from A to B, and S from B to C:

$$R = \{(a_1, b_1), (a_1, b_2)\},$$
 $S = \{(b_1, c_1), (b_2, c_1), (b_1, c_3), (b_2, c_2)\}.$

What is the matrix of $S \circ R$?

- 2. In general, what is the matrix of $S \circ R$?
- Q5: Consider the relation R on \mathbb{Z} , given by $aRb \Leftrightarrow a-b$ divisible by n. Is it symmetric?
- Q6: Consider a relation R on any set A. Show that R symmetric if and only if $R = R^{-1}$.
- Q7: Consider the set $A = \{a, b, c, d\}$ and the relation

$$R = \{(a,a), (a,b), (a,d), (b,a), (b,b), (c,c), (d,a), (d,d)\}.$$

Is this relation reflexive? symmetric? transitive?

- Q8: Consider the set $A = \{0, 1, 2\}$ and the relation $R = \{(0, 2), (1, 2), (2, 0)\}$. Is R antisymmetric?
- Q9: Are symmetry and antisymmetry mutually exclusive?
- Q10: Consider the relation R given by divisibility on positive integers, that is $xRy \Leftrightarrow x|y$. Is this relation reflexive? symmetric? antisymmetric? transitive? What if the relation R is now defined over non-zero integers instead?

- Q11: Consider the set $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. Show that the relation $xRy \Leftrightarrow 2|(x-y)$ is an equivalence relation.
- Q12: Show that given a set A and an equivalence relation R on A, then the equivalence classes of R partition A.
- Q13: Consider the set $A = \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and the relation $xRy \Leftrightarrow \exists c \in \mathbb{Z}, y = cx$. Is R an equivalence relation? is R a partial order?