Digital Image Processing EE368

Bernd Girod
Information Systems Laboratory
Department of Electrical Engineering
Stanford University

Spring 2009/10

Why do we process images?

- Acquire an image
 - Correct aperture and color balance
 - Reconstruct image from projections
- Prepare for display or printing
 - Adjust image size
 - Halftoning
- Facilitate picture storage and transmission
 - Efficiently store an image in a digital camera
 - Send an image from Mars to Earth
- Enhance and restore images
 - Remove scratches from an old movie
 - Improve visibility of tumor in a radiograph
- Extract information from images
 - Read the ZIP code on a letter
 - Measure water polution from aerial images

Restoration of image from Hubble Space Telescope

Color photo enhancement

Original

Automatic Enhancement

TOND RATE

Software: Picture Project 1.5, 2005, Nikon Corporation

Noise reduction

Degraded image

Noise-reduced image

Source: Jungwon Lee, EE 368 class project, Spring 2000

Special Effects

Photo

Simulated color pencils

Simulated oil painting

Halftoning

Pseudocolor enhancement for security screening

Source: Gonzalez+Woods, Fig. 6.24

Extraction of settlement area from an aerial image

source: INRIA, Sophia-Antipolis, France

Earthquake Analysis from Space

Image shows the ground displacement due to Landers earthquake in CA, 1992

Source: JPL, Pasadena, QUAKEFINDER project

Face Detection

source: Henry Chang, Ulises Robles, EE368 class project, spring 2000

source: Michael Bax, Chunlei Liu, and Ping Li, EE368 class project, spring 2003.

Image Segmentation

source: M. Borgmann, L. Meunier, EE368 class project, spring 2000.

Bernd Girod: EE368 Digital Image Processing

Face morphing

Source: Yi-Wen Liu and Yu-Li Hsueh, EE368 class project, spring 2000.

Handwriting recognition

(d)

Biometrics: Fingerprint recognition

Biometrics: Iris recognition

Source: J. Daugman, U. Cambridge

Mugshot retrieval

Source: MIT Media Lab

Scope of EE368

- Introductory graduate-level digital image processing class
- Prerequisites: EE261, EE278 or equivalent
- Emphasis on general principles, signals & systems angle
- Topics
 - Continuous-tone images, point operations, color
 - Image segmentation
 - Morphological image processing
 - Linear processing, filtering
 - Image transforms, multiresolution image processing
 - Feature detection
 - Image registration
- Image compression: EE398A Winter 2010/11

EE368 Organisation

- Assistants
 - Course assistant: David Chen
 - Administrative assistant: Kelly Yilmaz
- Office hours
 - Bernd Girod: Fr 10:15-11:45, Packard 373
 - David Chen, We 6:15-8:15 p.m., Packard 104
- Class home page:

http://www.stanford.edu/class/ee368

EE368 Organisation (cont.)

- Homeworks
 - Weekly assignments until midterm, require computer + Matlab
 - Handed out Fridays, due one week later, solve individually
 - First handed out on April 2
- Late Midterm
 - 24-hour take-home exam
 - 3 slots, May 19-22
- Final project
 - Individual or group project, plan for about 50-60 hours per person
 - Develop, implement and test/demonstrate an image processing algorithm
 - Project proposal due: April 30
 - Project presentation: Poster session, June 7, 5-7:30 p.m.
 - Submission of written report and source code: June 7
- Grading
 - Homeworks: 20%
 - (Late) mid-term exam: 30%
 - Final project: 50%
 - No final exam.

Spring 2006 Project: Visual Code Marker Recognition

Spring 2007 Project: Painting Recognition

Spring 2007 Project: Painting Recognition

Spring 2008 Project: CD Cover Recognition

CD Cover Recognition on Cameraphone

SCIEN laboratory

- Exclusively a teaching laboratory
- Location: Packard room 021
- 20 Linux PCs, 2 Windows PCs, scanners, printers etc.
- Access:
 - door combination for lab entry will be provided by TA
 - Account on ise machine will be provided to all enrolled in class
- SCIEN = Stanford Center for Image Systems Engineering (http://scien.stanford.edu)
- SCIEN lab equipment grants from Hewlett-Packard, Xerox, and Intel

Mobile Image Processing

- Google gift: 40 Motorola DROID cameraphones
- Available for EE368 projects (must be returned after, sorry)
- Image processing on phones will be reviewed April 20-23
- Android development environment on your own computer or in SCIEN lab
- Programming in Java

Bernd Girod: EE368 Digital Image Processing

Further reading

- Slides available as hand-outs and as pdf files on the web
- Recommended book (but not required):
 - R. C. Gonzalez, R. E. Woods, "Digital Image Processing," 3rd edition, Prentice-Hall, 2008, \$159.00.
- Additional books:
 - R. C. Gonzalez, R. E. Woods, S. L. Eddins, "Digital Image Processing using Matlab," 2nd edition, Pearson-Prentice-Hall, 2009, ca. \$ 140.--.
 - A. K. Jain, "Fundamentals of Digital Image Processing," Prentice-Hall, Addison-Wesley, 1989, \$156.00.
 - Al Bovik (ed.), "The Essential Guide to Image Processing," Academic Press, 2009. \$89.95
 - J. S. Lim, "Two-dimensional Signal and Image Processing," Prentice-Hall, 1990. \$94.-.
 - M. Petrou, P. Bosdogianni, "Image Processing, The Fundamentals," Wiley, 1999, \$73.50.

