Assignment 2

Ritish Bansal 190101076

March 2, 2021

1

Language L consists of strings of length 2n where last n characters are all ones where n>=0.

Let there are 2 strings a,b where |a| = n and |b| = m where $n \neq m$.

We will show that relation R_L has infinite index. Taking n<m and for all pairs of n,m appending 01^{n+1} at end of both strings.

we will show that $a01^{n+1} \in L$ and $b01^{n+1} \notin L$.

 $a01^{n+1}\in \mathcal{L}$ as taking w as a0 and it has length n+1 and string has n+1 1's at end. So it belongs to $\mathcal{L}.$

 $b01^{n+1} \notin L$ as total length is m+n+2. So it must have (m+n+2)/2 1's at end but it have only n+1 1's which are less than required which can be shown as follows:-

n < m and add n+2 both sides gives

2n+2 < m+n+2 and dividing by 2 gives desired result.

So a and b must be in different classes for all n and m.

Hence number of classes of R_L are infinite and by Myhill-Nerode theorem L is non-regular.

2

Language L consists of strings of length 2n where last n characters are compliment of first n characters where $n \ge 0$.

Let there are two strings a and b where $a=0^n$ and $b=0^m$ where $n\neq m$.

We will show that relation R_L has infinite index. Taking n<m and for all pairs of n,m appending 1^n at end of both strings.

we will show that $0^n 1^n \in L$ and $0^m 1^n \notin L$.

As $0^n 1^n \in L$ is trivial as taking w as 0^n gives required string. Hence $0^n 1^n \in L$. Also $0^m 1^n \notin L$ is trivial as $n \neq m$ So, it can never be in L.

So a and b are in different classes for all n and m.

Hence number of classes of R_L are infinite and by Myhill-Nerode theorem L is non-regular.