Integer Programming ISE 418

Lecture 6

Dr. Ted Ralphs

Reading for This Lecture

- N&W Sections I.4.4 and I.4.6
- Wolsey Section 9.1
- CCZ Chapter 3

Describing Polyhedra

In Lecture 4, we derived the following fundamental results.

Theorem 1.

- 1. Every full-dimensional polyhedron \mathcal{P} has a unique (up to scalar multiplication) representation that consists of one inequality representing each facet of \mathcal{P} .
- 2. If $dim(\mathcal{P}) = n k$ with k > 0, then \mathcal{P} is described by a maximal set of linearly independent rows of $(A^{=}, b^{=})$, as well as one inequality representing each facet of \mathcal{P} .

Theorem 2. If a facet F of P is represented by (π, π_0) , then the set of all representations of F is obtained by taking scalar multiples of (π, π_0) plus linear combinations of the equality set of P.

For the remainder of this lecture, let $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ for $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m$.

Extreme Points

Definition 1. x is an extreme point of \mathcal{P} if there do not exist $x^1, x^2 \in \mathcal{P}$ such that $x = \frac{1}{2}x^1 + \frac{1}{2}x^2$.

Proposition 1. x is an extreme point of \mathcal{P} if and only if x is a zero-dimensional face of \mathcal{P} .

Proposition 2. If $\mathcal{P} \neq \emptyset$ and rank(A) = n - k, then \mathcal{P} has a face of dimension k and no proper face of lower dimension.

- These three results together imply that \mathcal{P} has an extreme point if and only if rank(A) = n.
- This is the case for any polytope or any polyhedron lying in the non-negative orthant.
- Recall that in 406, we showed that a polyhedron has an extreme point if and only if it does not contain a line.
- Don't confuse rank(A) = n with \mathcal{P} being full-dimensional!

Extreme Rays

Definition 2. The recession cone \mathcal{P}^0 associated with \mathcal{P} is $\{r \in \mathbb{R}^n | Ar \ge 0\}$. Members of the recession cone are called rays of \mathcal{P} .

Definition 3. r is an extreme ray of \mathcal{P} if there do not exist rays r^1 and r^2 of \mathcal{P} such that $r = \frac{1}{2}r^1 + \frac{1}{2}r^2$.

Proposition 3. If $\mathcal{P} \neq \emptyset$, then r is an extreme ray of \mathcal{P} if and only if $\{\lambda r \mid \lambda \in \mathbb{R}_+\}$ is a one-dimensional face of the recession cone.

- Note that if r is an extreme ray, then so is λr for $\lambda > 0$.
- We need only consider one "representative" of each one-dimensional face of the recession cone.
- We can do this by choosing extreme rays r with ||r|| = 1.
- The last two results together imply that a polyhedron has a finite number of extreme points and extreme rays.

Some Results from Linear Optimization

Theorem 3. If $\mathcal{P} \neq \emptyset$, rank(A) = n, and $\max\{cx \mid x \in \mathcal{P}\}$ is finite, then there is an optimal solution that is an extreme point.

Theorem 4. For a given extreme point x^* , there exists a $c \in \mathbb{Z}^n$ such that x^* is the optimal solution to $\max\{cx \mid x \in \mathcal{P}\}$

Theorem 5. If $P \neq \emptyset$, rank(A) = n, and $max\{cx \mid x \in P\}$ is unbounded, then there is an extreme ray r^* with $cr^* > 0$.

- Note again that the set of all optimal solutions to a linear optimization problem is a face of the associated polyhedron.
- We call this the *optimal face*.
- Combining these results, we get Minkowski's Theorem.

Minkowski's Theorem

Theorem 6. If $\mathcal{P} \neq \emptyset$ and rank(A) = n, then

$$\mathcal{P} = \left\{ \sum_{k \in K} \lambda_k x^k + \sum_{j \in J} \mu_j r^j \mid \lambda_k \ge 0 \text{ for } k \in K, \mu_j \ge 0 \text{ for } j \in J, \sum_{k \in K} \lambda_i = 1 \right\}.$$

where $\{x^k\}_{k\in K}$ are the extreme points and $\{r^j\}_{j\in J}$ are the (representative) extreme rays.

Corollary 1. A nonempty polyhedron is bounded if and only if it has no extreme rays.

Corollary 2. A polytope is the convex hull of its extreme points.

- ullet A set of the form given above is called *finitely generated* when J and K are finite sets.
- When J or K is not finite, then \mathcal{P} is the feasible region of a *semi-infinite* optimization problem.
- This result is often stated as "every polyhedron is finitely generated."

More Results from Linear Optimization

Define the following:

- $\mathcal{P} = \{x \in \mathbb{R}^n_+ \mid Ax \leq b\}, z = \max\{cx \mid x \in \mathcal{P}\}$
- $\mathcal{Q} = \{u \in \mathbb{R}^m_+ \mid uA \ge c\}, w = \min\{ub \mid u \in \mathcal{Q}\}$
- $\{x^k\}_{k\in K}$, $\{u^i\}_{i\in I}$ are the extreme points of \mathcal{P} and \mathcal{Q} respectively.
- $\{r^j\}_{j\in J}$, $\{v^t\}_{t\in T}$ are the extreme rays of \mathcal{P}^0 and \mathcal{Q}^0 respectively.
- Theorem 7. $\mathcal{P} \neq \emptyset \Leftrightarrow v^t b \geq 0 \ \forall t \in T$
- **Theorem 8.** The following are equivalent when $\mathcal{P} \neq \emptyset$:
- 1. z is unbounded from above;
- 2. there exists an extreme ray r^j of \mathcal{P} with $cr^j > 0$; and
- 3. $Q = \emptyset$.
- **Theorem 9.** If $\mathcal{P} \neq \emptyset$ and z is bounded, then

$$z = \max_{k \in K} cx^k = w = \min_{i \in I} u^i b$$

The Projection of a Polyhedron

- We will often be interested in "projecting out" a set of variables, i.e., projecting \mathcal{P} into a subspace $\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^p \mid y=0\}$.
- The projection of a point (x,y) into this subspace is the point (x,0).
- Let $\mathcal{P} = \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^p \mid Ax + Gy \leq b\}$
- ullet So the projection of ${\mathcal P}$ into the space of just the x variables is

$$\operatorname{proj}_{x}(\mathcal{P}) = \{x \in \mathbb{R}^{n} \mid (x, y) \in \mathcal{P}\}$$
$$= \{x \in \mathbb{R}^{n} \mid v^{t}(b - Ax) \ge 0 \ \forall t \in T\}$$

where $\{v^t\}_{t\in T}$ are the extreme rays of $Q=\{v\in\mathbb{R}^m_+\mid vG=0\}$.

 This immediately implies that the projection of a polyhedron is a polyhedron.

Weyl's Theorem

Theorem 10. If

$$\mathcal{Q} = \left\{ \sum_{k \in K} \lambda_k x^k + \sum_{j \in J} \mu_j r^j \mid \lambda_k \ge 0 \text{ for } k \in K, \mu_j \ge 0 \text{ for } j \in J, \sum_{k \in K} \lambda_i = 1 \right\},$$

where $\{x^k\}_{k\in K}$ and $\{r^j\}_{j\in J}$ are given sets of rational vectors, then Q is a rational polyhedron.

- This is the converse of Minkowski's Theorem.
- This says roughly "every finitely generated set is a polyhedron" (remember the rationality assumption).
- The proof is easy using projection.

The Fundamental Theorem

- We have already discussed informally the fact that an integer optimization problem can, in theory, be reduced to a linear optimization problem.
- We now make these ideas more formal.
- To do so, we would now like to show the following:

Theorem 11. (The Fundamental Theorem of Integer Optimization) If $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax \leq b\}$, where $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, and $\mathcal{S} = \mathcal{P} \cap (\mathbb{Z}^p \times \mathbb{R}^{n-p})$, then $\operatorname{conv}(S)$ is a rational polyhedron with the same recession cone as \mathcal{P} .

Proving S Is Finitely Generated

- This result is easily proven if S is bounded (how?).
- If S is not bounded, then it is not so obvious.
- \bullet Our approach will be to show that S itself can be finitely generated.
- It then follows that conv(S) is finitely generated.

Proving S Is Finitely Generated (cont.)

- Consider \mathcal{P} and \mathcal{S} from Theorem 11.
- By Minkowski's Theorem, we can write

$$\mathcal{P} = \left\{ \sum_{k \in K} \lambda_k x^k + \sum_{j \in J} \mu_j r^j \mid \lambda_k \ge 0 \text{ for } k \in K, \mu_j \ge 0 \text{ for } j \in J, \sum_{k \in K} \lambda_i = 1 \right\},$$

with $\{x^k\}_{k\in K}$ the extreme points and $\{r^j\}_{j\in J}$ the extreme rays.

- We can assume wlog that the extreme rays are integral.
- Then S is finitely generated by $Q \cap \mathbb{Z}^n$ and the extreme rays of P, where

$$Q = \left\{ \sum_{k \in K} \lambda_k x^k + \sum_{j \in J} \mu_j r^j \mid \lambda_k \ge 0 \text{ for } k \in K, 0 \le \mu_j < 1 \text{ for } \right\}$$

$$j \in J, \sum_{k \in K} \lambda_i = 1$$
,

Example

• Let's find a finite set of generators for the set $S = P \cap \mathbb{Z}^2$, where

$$\mathcal{P} = \{ x \in \mathbb{R}^2_+ \mid 5x_1 + 3x_2 \ge 10, 5x_1 - 5x_2 \ge -1, -x_1 + 2x_2 \ge -2 \}$$

- The generators for S are the set of integer points inside the set Q defined previously.
- ullet Set ${\mathcal P}$ and its generator are shown in Figure 1 on the next slide.
- The set Q is defined as

$$Q = \{\lambda_1 e_1 + \lambda_2 e_2 + \mu_1 r_1 + \mu_2 r_2 \mid \lambda_1, \lambda_2 \in \mathbb{R}_+, \lambda_1 + \lambda_2 = 1, \mu_1, \mu_2 \in [0, 1)\}$$

ullet The generators for ${\cal S}$ itself are then the points

$$\{(2,0),(2,1),(2,2),(3,1),(3,2), \text{ and } (4,1)\},\$$

along with the extreme rays (1,1) and (2,1) of the recession cone.

• In this case, just the points (2,0),(2,1),(2,2) are a minimal set of generators, since the other points above can be generated by those.

Example

Figure 1: Generators for \mathcal{P} , the convex hull of \mathcal{S} , and \mathcal{Q} .

Consequences

• Once we have that S is finitely generated then we can easily show that conv(S) is a rational polyhedron.

- Note that this result extends easily to the mixed case with rational data.
- Note also that if $\mathcal{P} \cap \mathbb{Z}^n \neq \emptyset$, then the extreme rays of \mathcal{P} and conv(S) coincide.
- This also shows that solving the IP $\max\{cx \mid x \in S\}$ is essentially equivalent to solving the LP $\max\{cx \mid x \in conv(S)\}$.
 - The objective function of the IP is unbounded if and only if the objective function of the LP is unbounded.
 - If the LP has a bounded optimal value, then it has an optimal solution that is an optimal solution to the IP (an extreme point of conv(S)).
 - if \hat{x} is an optimal solution to IP, then it is an optimal solution to the LP.
- We can also show that an IP is either infeasible, unbounded, or has an optimal solution.

Implicitly Described Polyhedra

- \bullet conv(S) is an "implicitly defined" polyhedron in the sense that we do not generally have a description of it in terms of half-spaces or generators.
- Knowing that conv(S) is a polyhedron does not help much in obtaining an explicit description of it.
- It will, however, help in proving convergence of solution methods and in other important ways.
- In some case, we will try to generate parts of the description of this polyhedron.
- Not all the inequalities appearing in the formulation will be facet-defining for it.
- Using the properties of polyhedra that we know, we will try to determine which inequalities from the formulation are the facet-defining ones.
- We will also try to generate new valid inequalities that are facet-defining.
- Adding these to the formulation will necessarily increase its "strength."