Определение 1. Последовательность (x_n) называется *ограниченной сверху*, если найдётся такое число C, что при всех натуральных n будет выполнено неравенство $x_n < C$.

Формально: $\exists C \in \mathbb{R} \ \forall n \in \mathbb{N} \ x_n < C$.

Аналогично определяется последовательность, ограниченная снизу.

Если последовательность ограничена и сверху и снизу, говорят, что она ограничена.

Определение 2. Последовательность (x_n) называется возрастающей, если при всех натуральных n выполнено неравенство $x_n < x_{n+1}$.

Формально: $\forall n \in \mathbb{N} \Rightarrow x_n < x_{n+1}$.

Аналогично определяются убывающая, невозрастающая, неубывающая последовательности.

Определение 3. Последовательность называется *монотонной*, если она является либо возрастающей, либо убывающей, либо невозрастающей, либо неубывающей.

Определение 4. Последовательность (y_k) называется *подпоследовательностью* последовательности (x_n) , если существует возрастающая последовательность натуральных чисел (n_k) такая, что $y_k = x_{n_k}$.

Определение 5. Суммой последовательностей (x_n) и (y_n) называется последовательность (z_n) , задаваемая соотношением $z_n = x_n + y_n$ при каждом натуральном n. Аналогично определяются разность, произведение и отношение двух последовательностей.

Определение 6. Последовательность (x_n) называется *бесконечно малой*, если для любого положительного числа ε при $n \gg 0$ выполняется неравенство $|x_n| < \varepsilon$. Формально: $\forall \varepsilon > 0 \; \exists \, k \in \mathbb{N} \; \forall \, n > k \; |x_n| < \varepsilon$.

Утверждение 1. Бесконечно малая последовательность является ограниченной.

Утверждение 2. Сумма, разность и произведение бесконечно малых последовательностей являются бесконечно малыми последовательностями.

Задача 1. а) Придумайте две различные последовательности, являющиеся подпоследовательностями друг друга. **б)*** Придумайте такую последовательность натуральных чисел, чтобы каждая последовательность натуральных чисел являлась её подпоследовательностью.

Задача 2*. Докажите, что у любой последовательности найдётся монотонная подпоследовательность.

Задача 3. Есть ли последовательность, члены которой найдутся в любом интервале числовой оси?

Задача 4. Докажите, что следующие последовательности являются бесконечно малыми (то есть для каждой последовательности (x_n) по заданному положительному числу ε найдите какой-нибудь номер k, начиная с которого выполнено неравенство $|x_n| < \varepsilon$):

a) $x_n = \frac{1}{n}$; 6) $x_n = \frac{14}{n^3}$; B) $x_n = \frac{1}{2n^2 + 3n - 1}$; r) $x_n = \frac{\sin n^{\circ}}{n^2}$.

Задача 5°. Пусть (x_n) — бесконечно малая, а (y_n) — ограниченная последовательность. Докажите, что $(x_n + y_n)$ — ограниченная, а $(x_n y_n)$ — бесконечно малая последовательность.

Задача 6*. Любую ли последовательность можно представить как отношение

а) двух ограниченных; б) двух бесконечно малых последовательностей?

Задача 7. Дана последовательность (x_n) с положительными членами. Верно ли, что (x_n) бесконечно малая тогда и только тогда, когда последовательность $(\sqrt{x_n})$ бесконечно малая?

Задача 8. В бесконечно малой последовательности (x_n) переставили члены (то есть взяли взаимно однозначное соответствие $f: \mathbb{N} \to \mathbb{N}$ и получили новую последовательность (y_n) , где $y_n = x_{f(n)}$ для всех $n \in \mathbb{N}$). Обязательно ли полученная последовательность будет бесконечно малой?

Задача 9. Последовательность состоит из положительных членов, причём сумма любого количества любых её членов не превосходит 1. Докажите, что эта последовательность бесконечно малая.

1 a	1 6	$\begin{vmatrix} 2 \end{vmatrix}$	3	4 a	4 6	4 B	4 Г	5	6 a	6 6	7	8	9