Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Estatística

Modelos Lineares Generalizados Modelo Gama

Crystiane Fernanda de Souza Douglas de Paula Nestlehner

Sumário

1	Intr	oduçã	o	2
2	Res	ultado	\mathbf{s}	3
	2.1	Anális	e Descritiva	. 3
		2.1.1	Variável Resposta	. 3
		2.1.2	Variáveis Preditoras	. 4
	2.2	Model	o Linear Generalizado	. 7
		2.2.1	Ajuste do Modelo	. 7
		2.2.2	ANODEV	. 10
		2.2.3	Análise de Diagnóstico	. 13
3	Con	ıclusão		18

Capítulo 1

Introdução

Nesse trabalho iremos realizar uma análise completa da base de dados **cyclones** utilizando técnicas de Modelos Linearmente Generalizados (MLG). Essa base está presente no pacote **GLMsData** disponível no software estatístico RStudio.

Os dados fornecem o número de ciclones tropicais severos e não severos de 1970 a 2005 na região australiana. Os ciclones severos são definidos com uma pressão central mínima inferior a 970 hPa.

Ademais, o Índice Oceânico Niño (ONI) é definido pela média móvel trimestral da anomalia de temperatura da superfície do mar para a região do Niño 3.4, por no mínimo, cinco meses consecutivos. Quando a anomalia é maior que 0.5°C, o ONI estará associado a El Niño, que refere-se às situações na qual o Oceano Pacífico Equatorial está mais quente. Quando a anomalia for inferior a -0.5°C, o ONI estará associado a La Niña que refere-se às situações na qual o Oceano Pacífico Equatorial está mais frio.

Nesse contexto, tomamos:

- Y: Número de ciclones graves registrados no ano corrente.
- x_1 : Índice Oceânico Niño, ou ONI, calculado ao longo dos meses de Janeiro à Março.
- x_2 : Índice Oceânico Niño, ou ONI, calculado ao longo dos meses de Abril à Junho.
- x_3 : Índice Oceânico Niño, ou ONI, calculado ao longo dos meses de Julho a Setembro.
- x_4 : Índice Oceânico Niño, ou ONI, calculado ao longo dos meses de Outubro à Dezembro.

Nesse sentido, no Capítulo 2 serão apresentados os resultados, sendo a análise descritiva da base de dados, a estratégia de análise usando as técnicas de MLG, a seleção de variáveis, o ajuste e interpretação do modelo, a análise de diagnóstico, e por fim, o modelo ajustado. No Capítulo 3 estão as conclusões obtidas e no Apêndice A, temos os códigos utilizados para a realização do trabalho através do software estatístico RStudio.

Capítulo 2

Resultados

Neste capítulo, apresentamos os resultados obtidos.

2.1 Análise Descritiva

A base de dados utilizada possui 37 observações e 4 covariáveis. Para a análise descritiva, foi realizada a divisão entre a variável resposta e as variáveis preditoras.

2.1.1 Variável Resposta

Na Tabela 2.1 estão apresentadas algumas observações referentes a variável resposta.

3
3
9
5
5
8

Tabela 2.1: Base de dados da variável resposta.

Para a variável resposta, foi feito de algumas medidas descritivas, apresentadas na Tabela 2.2.

Mínimo	$1^{\underline{0}}$ Quartil	Mediana	Média	$3^{\underline{0}}$ Quartil	Máximo
3.00	4.00	5.00	5.46	7.00	11.00

Tabela 2.2: Medidas descritivas da variável resposta.

Dessa forma, têm-se que entre os anos de 1970 a 2005, em média, ocorreram 5.46 ciclones severos. Ademais, o mínimo de ciclones ocorridos em um ano foi de 3, enquanto o máximo em um ano foi de 11.

Na Figura 2.1, temos a representação do Box-plot e um Gráfico de Barras da variável resposta, para observar seu comportamento.

Figura 2.1: Gráficos da variável resposta Y.

Nesse sentido, ao analisarmos a Figura 2.1, podemos concluir algumas observações feitas através das medidas descritivas. Ademais, no gráfico de barras, pode-se observar que a maior frequência de ciclones tropicais severos ocorridos, foi de 4 ciclones/ano, enquanto a menor frequência foi de 11 ciclones/ano.

2.1.2 Variáveis Preditoras

Na Tabela 2.3 estão apresentadas algumas observações referentes as covariáveis.

	x_1	x_2	x_3	x_4
1	1.0	0.6	0.4	0.8
2	0.3	0.0	-0.8	-0.9
3	-1.3	-0.8	-0.8	-1.0
35	0.9	-0.1	0.5	0.6
36	0.3	0.3	0.8	0.8
37	0.5	0.4	0.3	-0.4

Tabela 2.3: Base de dados das covariáveis.

Inicialmente, foi realizado o cálculo de algumas medidas descritivas para as covariáveis, sendo essas: mínimo, 1^{0} quartil, mediana, média, 3^{0} quartil e máximo. Na Tabela 2.4 têm-se os resultados de cada medida.

Covariável	Mínimo	1º Quartil	Mediana	Média	3º Quartil	Máximo
$\overline{x_1}$	-1.70	-0.50	0.20	0.05946	0.50	2.00
x_2	-0.90	-0.50	0.10	0.05135	0.50	1.20
x_3	-1.30	-0.40	0.10	0.06757	0.50	2.00
x_4	-2.00	-0.90	-0.10	0.06216	0.80	2.50

Tabela 2.4: Medidas descritivas das covariáveis.

Dessa forma, é possível notar que o menor e maior Índice Oceânico Niño (ONI), foi calculado nos meses de Outubro à Dezembro (x_4) . Um outro ponto, é que os valores mínimos do Índice em todas 0as covariáveis estão associados a La Niña, enquanto os valores máximos estão todos associados ao El Niña. Ademais, a mediana dos Índices são iguais calculados nos meses de Abril à Junho (x_2) e nos meses de Julho à Setembro (x_3) .

Na Figura 2.2 estão representados o Box-plot e o Histograma para cada covariável que representam o Índice Oceânico Ninõ (ONI) de trimestres, com o intuito de conhecer o comportamento das observações de cada covariável.

Figura 2.2: Box-plot e Histograma da covariáveis.

Ao analisar a Figura 2.2, é possível notar que a variabilidade entre as covariáveis x_1 e x_3 são semelhantes, enquanto a variabilidade da covariável x_2 é superior a ambas. Além

disso, para a covariável x_4 , pode-se considerar que a média do ONI calculado ao longo dos meses de Outubro a Dezembro, está próximo de 0.

Ademais, calculamos e plotamos a matriz de correlação entre as covariáveis, representados pela Tabela 2.5 e Figura 2.3.

	x_1	x_2	x_3	x_4
$\overline{x_1}$	1.00	0.68	0.13	0.01
x_2	0.68	1.00	0.70	0.60
x_3	0.13	0.70	1.00	0.94
x_4	0.01	0.60	0.94	1.00

Tabela 2.5: Matriz de correlação das covariáveis.

Figura 2.3: Matriz de correlação das covariáveis.

Analisando a Tabela 2.5 e a Figura 2.3, nota-se que as covariáveis x_3 e x_4 estão fortemente correlacionadas, podendo ocasionar problemas de multicolinearidade.

Porém como o número de covariáveis presente na nossa base de dados é baixo (apenas quatro) e também como cada covariável é sobre a média trimestral do ano, não é necessário e nem recomendável a exclusão de covariáveis altamente correlacionadas, uma vez que serão fundamentais para o ajuste do modelo.

2.2 Modelo Linear Generalizado

Nesta seção, será realizado a análise completa dos dados utilizando as técnicas de Modelos Linearmente Generalizados, em que será definido o componente aleatório, o componente sistemático e a função de ligação.

Em relação a base de dados **cyclones**, vimos na analise descritiva que a variável resposta trata-se sobre a contagem de ciclones severos ocorridos ao longo de 1970 à 2005, e ao se tratar de dados de contagem, a distribuição a ser considerada no ajuste do modelo linear generalizado é a distribuição **Poisson**.

Ao se tratar de contagem, não podemos estimar valores negativos, portanto a função de ligação mais indicada para o nosso problema é função de ligação canônica logarítmica.

2.2.1 Ajuste do Modelo

Nesse contexto, por meio das informações ditas anteriormente, pode-se definir:

- Componente Aleatório: $Poisson(\lambda)$.
- Componente Sistemático: Índice Oceânico Niño, ou ONI, calculado ao longo dos meses de Janeiro à Março (X₁), Índice Oceânico Niño, ou ONI, calculado ao longo dos meses de Abril à Junho (X₂), Índice Oceânico Niño, ou ONI, calculado ao longo dos meses de Julho à Setembro (X₃) e Índice Oceânico Niño, ou ONI, calculado ao longo dos meses de Outubro à Dezembro (X₄).
- Função de Ligação: Logarítmica.

Em seguida, iremos considerar três diferentes modelos considerando todas as covariáveis e algumas interações, para que possamos comparar e escolher qual o modelo mais adequado para seguir com a análise.

Modelo 1

Inicialmente, foi ajustado um modelo com todas as covariáveis apresentadas ao longo do trabalho. Nesse sentido, o modelo ficará da seguinte forma:

$$\log(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4$$

Na Tabela 2.6 temos as respectivas estimativas do primeiro modelo ajustado. Em que o valor de AIC é de 167.59 e o Desvio Residual é de 28.43.

Variável	Estimativa
Intercepto	1.684963
X_1	-0.009997
X_2	0.156619
X_3	0.153493
X_4	-0.237094

Tabela 2.6: Estimativas para o Modelo 1.

Modelo 2

Também foi ajustado um modelo em que estavam presentes todas as covariáveis apresentadas e também as interações duas a duas. Logo, o modelo ficará da seguinte forma:

$$log(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_1 X_2 + \beta_6 X_1 X_3 + \beta_7 X_1 X_4 + \beta_8 X_2 X_3 + \beta_9 X_2 X_4 + \beta_{10} X_3 X_4$$

Na Tabela 2.7 temos as respectivas estimativas do segundo modelo ajustado.

Variável	Estimativa
Intercepto	1.761410
X_1	-0.135618
X_2	0.341716
X_3	0.279978
X_4	-0.371231
X_1X_2	-0.175933
X_1X_3	1.097612
X_1X_4	-0.721443
X_2X_3	-1.504682
X_2X_4	0.913256
X_3X_4	0.001543

Tabela 2.7: Estimativas para o Modelo 2.

Com um valor AIC de 175.17 e Desvio Residual de 24.02.

Modelo 3

O terceiro modelo ajustado, além de considerar a interação duas a duas, foi considerado a interação entre as covariáveis X_1 , X_2 e X_3 . Nesse sentido, o modelo será de:

$$log(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_1 X_2 + \beta_6 X_1 X_3 + \beta_7 X_1 X_4 + \beta_8 X_2 X_3 + \beta_9 X_2 X_4 + \beta_{10} X_3 X_4 + \beta_{11} X_1 X_2 X_3$$

As estimativas do terceiro ajuste estão representadas na Tabela 2.8.

Variável	Estimativa	Variável	Estimativa
Intercepto	1.74862	X_1X_3	1.62675
X_1	0.14985	X_1X_4	-1.33470
X_2	0.02669	X_2X_3	-0.76325
X_3	0.48439	X_2X_4	1.42202
X_4	-0.27281	X_3X_4	-0.57581
X_1X_2	-0.38737	$X_1X_2X_3$	-0.83908

Tabela 2.8: Estimativas para o Modelo 3.

Com um valor de AIC de 168.26 e Desvio Residual de 15.103.

Modelo 4

Por fim, para o quarto e último modelo, foi considerado todas as interações possíveis entre as covariáveis.

$$log(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_1 X_2 + \beta_6 X_1 X_3 + \beta_7 X_1 X_4 + \beta_8 X_2 X_3$$

$$+ \beta_9 X_2 X_4 + \beta_{10} X_3 X_4 + \beta_{11} X_1 X_2 X_3 + \beta_{12} X_1 X_2 X_4 + \beta_{13} X_1 X_3 X_4 + \beta_{14} X_2 X_3 X_4$$

$$+ \beta_{15} X_1 X_2 X_3 X_4$$

Na Tabela 2.9 têm-se as estimativas obtidas.

Variável	Estimativa	Variável	Estimativa
Intercepto	1.74707	X_2X_3	-1.72119
X_1	0.25343	X_2X_4	1.88912
X_2	-0.09497	X_3X_4	-0.79386
X_3	0.48473	$X_1X_2X_3$	-1.41487
X_4	-0.37115	$X_1X_2X_4$	0.51873
X_1X_2	-0.34793	$X_2X_3X_4$	0.24125
X_1X_3	1.93546	$X_1X_2X_3X_4$	0.21838
X_1X_4	-0.93485		

Tabela 2.9: Estimativas para o Modelo 4.

Com um valor de AIC de 173.05 e Desvio Residual de 11.893.

Comparação

No intuito de verificar qual é o modelo mais adequado para a base de dados, foi observado o Critério de Akaike (AIC) e o Desvio Residual de cada modelo apresentados na Tabela 2.10.

Modelo	AIC	Desvio Residual
Modelo 1	167.59	28.43
Modelo 2	175.17	24.02
Modelo 3	168.26	15.10
Modelo 4	173.05	11.89

Tabela 2.10: Comparação medidas de qualidade

Nesse sentido, achamos interessante analisar melhor o Modelo 1, uma vez que possui o menor Critério de Akaike (AIC), dando indícios de que o modelo é mais adequado em relação aos outros.

2.2.2 ANODEV

A análise de deviance (ANODEV) é uma generalização para a análise de variância, para os modelos lineares generalizados. O interesse da ANODEV é testar a significância da inclusão de novos termos. Nesse sentido, será feito a ANODEV para o Modelo 1, com intuito de checar a qualidade do modelo ajustado. Na Tabela 2.11 está representada essa análise.

	G.L.	Desvio	G.L. Residuais	Desvio Residual	Valor-p
NULL			36	32.220	
X_1	1	1.09035	35	31.130	0.2964
X_2	1	0.36621	34	30.763	0.5451
X_3	1	1.01636	33	29.747	0.3134
X_4	1	1.31393	32	28.433	0.2517

Tabela 2.11: Tabela ANODEV.

Ao analisar a Tabela 2.11 é possível identificar que ao nível de significância de 5%, nenhuma covariável será significativa para explicar a variável resposta que é a contagem de ciclones tropicais severos.

Dessa forma, foi identificado que a melhor saída era retirar a covariável menos significativa do modelo e ajustá-lo novamente. Logo, ajustando o modelo sem a covariável X_2 temos as novas estimativas representadas na Tabela 2.12.

Variável	Estimativa
Intercepto	1.68497
X_1	0.05199
X_3	0.22486
X_4	-0.23342

Tabela 2.12: Novos coeficientes para o Modelo 1 sem a covariável X_2 .

Além das estimativas, o novo AIC será de 165.88 e o Desvio Residual de 28.72. Sendo assim, será feito novamente a ANODEV que está representada pela Tabela 2.13.

	G.L.	Desvio	G.L. Residuais	Desvio Residual	Valor-p
NULL			36	32.220	
X_1	1	1.0903	35	31.130	0.2964
X_3	1	1.1186	34	30.011	0.2902
X_4	1	1.2829	33	28.728	0.2574

Tabela 2.13: Tabela ANODEV.

Analisando novamente a Tabela 2.13, nota-se que ao nível de significância de 5% nenhuma das covariáveis é significativa. Dessa forma, nenhuma das covariáveis é significativa para explicar a variável resposta, logo, será retirado outra variável que possui menos significância no modelo, que é o caso da covariável X_1 .

Retirando a variável preditora X_1 , ajustamos um novo modelo com as estimativas na Tabela 2.14.

Variável	Estimativa
Intercepto	1.68695
X_2	0.30124
X_4	-0.28426

Tabela 2.14: Novos coeficientes para o Modelo 1 sem a covariável X_1 .

 ${\bf E}$ o novo AICserá de 164.3 e o Desvio Residual de 29.14. Nesse contexto, será feito a ANODEV mais uma vez representada pela Tabela 2.15

	G.L.	Desvio	G.L. Residuais	Desvio Residual	Valor-p
NULL			36	32.220	
X_2	1	0.86383	35	31.356	0.3527
X_4	1	2.21507	34	29.141	0.1367

Tabela 2.15: Tabela ANODEV.

Através da Tabela 2.15 é possível verificar que em um nível de significância de 5% ainda não há indícios de que as variáveis preditoras são significantes, ou seja, nenhuma das variáveis preditoras está explicando sobre a variável resposta. Logo, vamos retirar novamente a próxima covariável com menor significância que é a X_2 e ajustar o modelo mais uma vez.

Portanto, após ajustar o modelo novamente, temos as novas estimativas na Tabela 2.16.

Variável	Estimativa
Intercepto	1.69808
X_4	-0.08698

Tabela 2.16: Novos coeficientes para o Modelo 1 sem a covariável X_2 .

 ${\rm E}$ oAICpassará a ser 163.5 e o Desvio Residual será de 30.34. Na Tabela 2.17 têm-se a representação da ANODEV.

	G.L.	Desvio	G.L. Residuais	Desvio Residual	Valor-p
NULL			36	32.220	
X_4	1	1.8765	35	30.343	0.1707

Tabela 2.17: Tabela ANODEV.

Analisando a Tabela 2.17 nota-se que ao nível de significância de 5%, têm-se que o modelo composto apenas pela covariável X_4 não é significativo para explicar a contagem de ciclones severos na região australiana.

Nesse sentido, para que o modelo seja significativo, a covariável X_4 também será retirada e será ajustado o modelo nulo. Na Tabela 2.18 temos a nova estimativa.

Variável	Estimativa
Intercepto	1.69735

Tabela 2.18: Modelo nulo ajustado.

Para a base de dados, o ideal seria encontrar um modelo que estivesse entre o modelo nulo e o modelo saturado, e que fosse adequado aos dados. Contudo, como não encontramos o modelo ideal, deveria ser utilizado o Modelo Nulo que é o modelo mais simples, em que a variável resposta vai variar entre si, apenas por causa do componente aleatório que é a distribuição Poisson.

Todavia, consideramos que não é correto que as covariáveis não expliquem nada sobre a variável resposta, uma vez que o Índice Oceânico Ninõ é definido pela média móvel trimestral da anomalia de temperatura da superfície do mar e a partir desse Índice é possível prever o número de ciclones tropicais graves na região australiana. Dessa forma, mesmo que através da análise de deviance (ANODEV) as covariáveis foram retiradas, seguiremos com o Modelo 1 em que estão presentes todas as variáveis preditoras.

2.2.3 Análise de Diagnóstico

Por fim, será realizado a análise de diagnóstico para verificar se há indícios de problemas no ajuste do Modelo 1 que inclui as variáveis preditoras X_1 , X_2 , X_3 e X_4 .

Envelope

Para iniciar a análise de diagnóstico, será feito o gráfico do Envelope, representado na Figura 2.4 para verificar se o modelo é adequado.

Figura 2.4: Gráfico do envelope.

Através da Figura 2.4 é possível notar que todos os pontos estão dentro do limite, ou seja, todos os pontos estão dentro do envelope. Sendo assim, há indícios de que o modelo foi bem ajustado.

Função de Ligação

Para verificar se a função de ligação é adequada para os dados, foi feito o gráfico dos valores preditos *versus* resíduos de Pearson, representado pela Figura 2.5.

Figura 2.5: Gráfico de valores preditos versus resíduos de Pearson.

Nesse contexto, através da Figura 2.5 nota-se um padrão aleatório em torno do zero, dando indícios de que a função de ligação canônica logarítmica é adequada. Ademais, já indícios que a escala das variáveis preditoras utilizadas no modelo estão corretas.

Componente do Desvio

Um outro modo de verificar se o modelo foi bem ajustado, é através do gráfico de valores preditos *versus* componente de desvio, representado na Figura 2.6.

Figura 2.6: Gráfico de valores preditos versus componente de desvio.

Na Figura 2.6 nota-se também um padrão aleatório em torno do zero, dando indícios novamente de que o modelo foi bem ajustado.

Independência

Um pressuposto que deve ser satisfeito também é o da independência, já que os dados possuem ordem de coleta de 1970 à 2005. Nesse sentido, foi realizado o gráfico da ordem de coleta *versus* resíduos de Pearson, representado na Figura 2.7.

Figura 2.7: Gráfico de ordem de coleta versus resíduos de Pearson.

Dessa forma, através da Figura 2.7, nota-se que há dispersão dos pontos de forma aleatória, indicando que não há violação na suposição de independência por mais que haja ordem de coleta dos dados.

Pontos de Alavanca

Por fim, foi verificado a existência de pontos de alavanca, uma vez que esses pontos podem influenciar nas estimativas dos parâmetros. Nesse sentido, na Figura 2.8 têm-se a representação desses pontos.

Figura 2.8: Gráfico com os pontos de alavanca.

Dessa forma, ao analisar a Figura 2.8 nota-se apenas uma observação superior em relação as outras. Contudo, como os pressupostos para a análise de resíduos foram satisfeitos, a observação não será retirada.

Capítulo 3

Conclusão

Nesse trabalho, o componente aleatório escolhido foi a distribuição Poisson, dado que a variável resposta trata-se da contagem de ciclones tropicais severos na região australiana. Para o componente sistemático, foi utilizado todas as covariáveis, sendo: X_1 , X_2 , X_3 e X_4 . Ademais, a função de ligação utilizada foi a função de ligação canônica logarítmica.

Após a definição do componente aleatório, componente sistemático e função de ligação, foi feito o ajuste de quatro modelos e utilizado o Critério de Akaike (AIC) para escolher o modelo mais adequado. Entretanto, chegamos que o modelo ajustado não era significativo através da Análise de Deviance (ANODEV), o que na prática não faria sentido, uma vez que nenhuma covariável deveria ser removida, dado que são importantes para o ajuste do modelo.

Nesse contexto, resolvemos considerar o Modelo 1 da mesma forma e ao realizar a análise de diagnóstico, sendo visto que a análise foi satisfatória para todos os pressupostos. Portanto, mesmo que através da Análise de Deviance (ANODEV) o modelo ajustado não é significativo, consideramos que o Modelo 1 será um bom modelo para os dados, já que passou pelo crívo de análise de diagnóstico, confirmando que de há indícios de que o modelo foi bem ajustado e a função de ligação utilizada era correta.

Por fim, o Modelo 1 será dado pela seguinte equação:

$$\mu_i = \exp(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4)$$

= \exp(1.684963 - 0.009997X_1 + 0.156619X_2 + 0.153493X_3 - 0.237094X_4),

e que esse modelo é considerado adequado para a base de dados.