Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on August 10, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 9. Parity and other option relationships

Chapter 9. Parity and other option relationships

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

§ 9.4 Problems

Chapter 9. Parity and other option relationships

§ 9.1 Put-call parity

§ 9.2 Generalized parity and exchange options

§ 9.3 Comparing options with respect to style, maturity, and strike

§ 9.4 Problems

European versus American options

$$\textit{C}_{\mathrm{Amer}}(\textit{S},\textit{K},\textit{T}) \geq \textit{C}_{\mathrm{Eur}}(\textit{S},\textit{K},\textit{T})$$

$$P_{\mathrm{Amer}}(\mathcal{S},K,T) \geq P_{\mathrm{Eur}}(\mathcal{S},K,T)$$

Maximum and minimum option prices

$$S \geq \textit{C}_{\mathrm{Amer}}(\textit{S},\textit{K},\textit{T}) \geq \textit{C}_{\mathrm{Eur}}(\textit{S},\textit{K},\textit{T}) \geq \max\left(0,\mathrm{PV}_{0,\textit{T}}(\textit{F}_{0,\textit{T}}) - \mathrm{PV}_{0,\textit{T}}(\textit{K})\right)$$

$$K \ge P_{\mathrm{Amer}}(S, K, T) \ge P_{\mathrm{Eur}}(S, K, T) \ge \max(0, \mathrm{PV}(K) - \mathrm{PV}_{0, T}(F_{0, T}))$$

Early exercise for American options

Calls on stocks with no dividend

$$C_{
m Amer} \geq C_{
m Eur} > S_t - K$$

No early exercise!

See p. 277 for the proof of the first set of inequalities.

Calls on stock with dividends

Interest beats dividends?	Early exercise?
$K - PV_{t,T}(K) > PV_{t,T}(Div)$	
✓	Х
×	possibly

When dividends do make early exercise rational, one should exercise at the last moment before the ex-dividend date.

Early exercise for puts (no dividend case)

In order to receive interest, one may exercise early (think about the case when $S_t = 0$)

No-exercise condition:

$$\begin{split} P\left(S_{t}, \mathcal{K}, T-t\right) > \mathcal{K} - S_{t} \\ & \updownarrow \\ C\left(S_{t}, \mathcal{K}, T-t\right) > \mathcal{K} - \mathrm{PV}_{t, T}(\mathcal{K}) \end{split}$$

	calls	puts
Receive	stock	cash
Motivation for early exercise	sufficient dividends	sufficient interest

One can view interest as the dividend on cash.

Dividends are the sole reason to early-exercise an option.

Time to expiration – the *K* fixed

The longer the more expensive

- ► American call/put options
- ► European call option on stock with no dividend

The longer, might be cheaper

- ► European call option on stock with dividend
- ► European put option

Time to expiration
$$-K_t = ke^{rt}$$

Theorem 9.3-1 When $K_t = e^{rt}K$, i.e., the strike grows at the interest rate, the premiums on European calls and puts on a non-dividend-paying stock increases with time to maturity.

Proof. We only prove the case for puts and leave the calls as exercise. Let T > t. In order to show that

$$P_{\text{Euro}}(S_T, K_T, T) > P_{\text{Euro}}(S_t, K_t, t),$$

it suffices to find an arbitrage when

$$P_{\text{Euro}}(S_T, K_T, T) \leq P_{\text{Euro}}(S_t, K_t, t).$$

			Payoff at Time T		
		$S_T <$	$S_T < K_T \qquad S_T > K_T$		K_T
			Payoff at Time t		
Transaction	Time 0	$S_t < K_t$	$S_t > K_t$	$S_t < K_t$	$S_t > K_t$
Sell $P(t)$	P(t)	$S_T - K_T$	0	$S_T - K_T$	0
Buy $P(T)$	-P(T)	$K_T - S_T$	$K_T - S_T$	0	0
Total	$\overline{P(t)-P(T)}$	0	$K_T - S_T$	$S_T - K_T$	0

Different strike prices

$$K_1 \leq K_2 \leq K_3$$

Relation	Ideas in proof, arbitrage in		
$m{\mathcal{C}}(m{\mathcal{K}}_1) \geq m{\mathcal{C}}(m{\mathcal{K}}_2)$	a call bull spread		
$P(\mathcal{K}_1) \leq P(\mathcal{K}_2)$	a put <mark>bear</mark> spread		
$C(\mathcal{K}_1) - C(\mathcal{K}_2) \leq \mathcal{K}_2 - \mathcal{K}_1$	a call bear spread		
$P(K_2) - P(K_1) \leq K_2 - K_1$	a put bull spread		
$\frac{C(K_1) - C(K_2)}{K_2 - K_1} \le \frac{C(K_2) - C(K_3)}{K_3 - K_2}$	an asymmetric butterfly spread		
$\frac{P(K_2) - P(K_1)}{K_2 - K_1} \le \frac{P(K_3) - P(K_2)}{K_3 - K_2}$	an asymmetric butterfly spread		

Convexity revisited

$$\begin{split} \frac{C(\mathcal{K}_1) - C(\mathcal{K}_2)}{\mathcal{K}_2 - \mathcal{K}_1} &\leq \frac{C(\mathcal{K}_2) - C(\mathcal{K}_3)}{\mathcal{K}_3 - \mathcal{K}_2} \\ & \updownarrow \\ C(\mathcal{K}_2) &\leq \lambda C(\mathcal{K}_1) + (1 - \lambda)C(\mathcal{K}_3). \\ & \text{with} \\ \lambda &= \frac{\mathcal{K}_3 - \mathcal{K}_2}{\mathcal{K}_3 - \mathcal{K}_1} \end{split}$$

Example 9.3-1 Suppose that

Strike 50 55 <u>Call Premium</u> 18 12

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Solution. Check ∃. 9.4 on p. 283.

Example 9.3-2 Suppose that

Strike	50	59	65
Call premium	14	8.9	5

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Solution. Check ∃. 9.5 on p. 284.

Example 9.3-3 Suppose that

Strike 50 55 70 Put premium 4 8 16

- 1. What no-arbitrage property is violated?
- 2. What spread position would you use to effect arbitrage?
- 3. Demonstrate that the spread position is an arbitrage.

Solution. Check ∃. 9.6 on p. 284.