Chapter 14 - Heat

After this you can

- discuss the concept of heat and relate it to energy, work and temperature.
- differentiate the three types of heat flow

Heat - transfer of thermal energy

- always flows from objects of higher temperature to objects of lower temperature

mechanisms of heat flow;

D Conduction

Q = Power [Wates]

Convection heat transfer boy moving material

Radiation ~> energy transfer through electromagnetic warres

After this you can

- discuss the various ways of calculating the heat needed to change the temperature of a substance
- determine the heat capacity of a substance and the various ways that work can be expressed

Mass

Specific heat capacity

little

cee > c =

M

C·M = C

 $C \cdot M = C$ $Q = C \cdot M \cdot \Delta T$

most often word to

solids & liquids

Mumber

Most often

Most for

agassis

Min (molar spicific heat)

Min (mola

Table 14.1 Specific Heats of Common Substances at 1 atm and 20°C

Substance Specific Heat $\left(\frac{kJ}{\log K}\right)$

Substance	Specific Heat	$\frac{kJ}{kg \cdot K}$
Gold	0.128)·
Lead	0.13	[J
Mercury	0.139	aV
Silver	0.235	2,
Brass	0.384	
Copper	0.385	
Iron	0.44	
Steel	0.45	
Flint glass	0.50	
Crown glass	0.67	
Vycor	0.74	
Pyrex glass	0.75	
Granite	0.80	
Marble	0.86	
Aluminum	0.900	
Air (50°C)	1.05	
Wood (average)	1.68	
Steam (110°C)	2.01	
Ice (0°C)	2.1	
Alcohol (ethyl)	2.4	
Human tissue (average)	3.5	
Water (15°C)	4.186	

$$DK_{T} = \frac{32}{2}Nk_{B}ST$$

$$n_{m}R$$

$$OK_{T} = \frac{32}{2}n_{m}RST$$

Table 14.2	Molar Specific Heats at Constant Volume of Gases at 25°C		
	Gas	$C_{\rm V}\left(\frac{{ m J/K}}{{ m mol}}\right)$	
Monatomic	→ He	12.5	
	→ Ne	12.7	
	\rightarrow Ar	12.5	
Diatomic	H_2	20.4	
	N_2	20.8	
	O_2	21.0	
Polyatomic	CO_2	28.2	
	N_2O	28.4	

Cp = C, + R

(ideal gas)

Figure 14.4 Rotation of a model diatomic molecule about three perpendicular axes. The rotational inertia about the x-axis (a) is negligible, so we can ignore rotation about this axis. The rotational inertias about the y- and z-axes (b) and (c) are much larger than for a single atom of the same mass because of the larger distance between the atoms and the axis of rotation.

dictoric ideal agris $C_V = \frac{5}{2}R = \frac{20.8}{V_{msl}}$

After this you can

- discuss the phases of matter
- discuss how much heat it takes to change the phase of matter

Solid -> liquid (melting)

Latant Heat of fusion

Q = m. Lf

liquid -> gas (boiling)

Latent Heat of Vaporization

$$Q = M L$$

ble 14.4 Latent Heats of Some Common Substances					
Substance	Melting Point (°C)	Heat of Fusion (kJ/kg)	Boiling Point (°C)	Heat of Vaporization (kJ/kg)	
Alcohol (ethyl)	-114	104	78	854	
Aluminum	660	397	2450	11400	
Copper	1083	205	2340	5070	
Gold	1063	66.6	2660	1580	
Lead	327	22.9	1620	871	
Silver	960.8	88.3	1950	2340	
Water	0.0	333.7	100	2256	