AI Masters Algorithms

Homework 3

3 октября 2022 г.

Task 1

Запишем рекурентную формулу (для $n \leq 2022$ считаем f(n) константой не превышающей 2022)

Name: Денис Грачев

$$f(n) = 3f(n/4) + c$$

$$d = \log_4(3) < \frac{1}{2}$$

Первый случай

$$c=O(n^{d-arepsilon})$$
 где $arepsilon=d-rac{1}{2}$

Тогда из теоремы о рекурсии a=3, b=4, f(n)=c следует что $f(n)=\Theta(n^{\log_4(3)})$

Task 2

a

$$T(n) = 36T\left(\left|\frac{n}{6}\right|\right) + n^2$$

Применим теорему о рекурсии, где $a=36, b=6, f(n)=n^2$,

тогда
$$d = \log_6(36) = 2, \ f(n) = \Theta(n^d).$$

Следовательно $T(n) = \Theta(n^2 \log(n))$

b

$$T(n) = 3T\left(\left\lfloor \frac{n}{3} \right\rfloor\right) + n^2$$

Применим теорему о рекурсии, где $a=3,b=3,f(n)=n^2,$ тогда $d=\log_3(3)=1,\;f(n)=n^2=\Omega(n^{d+0.1=1.1}),\;af\left(\frac{n}{b}\right)=3\frac{n^2}{9}=\frac{n^2}{3}\leq n^2=f(n)$ По третьему случаю $T(n)=\Theta(f(n))=\Theta(n^2)$

 \mathbf{c}

$$T(n) = 4T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \left\lfloor \frac{n}{\log(n)} \right\rfloor$$

Применим теорему о рекурсии, где $a=4,b=2,f(n)=\frac{n}{\log(n)}$, тогда $d=\log_2(4)=2,\ f(n)=\frac{n}{\log(n)}\leq n=O(n^{d-1=1}).$ По 1 случаю $T(n)=\Theta(n^d)=\Theta(n^2).$

Task 3

1

$$T(n) = nT\left(\frac{n}{2}\right) + cn$$

Высота дерева будет $h = \log_2(n)$.

Посчитаем сколько операций на каждом уровне рекурсии.

глубина дерева	аргумент листа	количество листьев	операций в листе	операций всего
1	n	1	cn	cn
2	$\frac{n}{2}$	n	$\frac{cn}{2}$	$\frac{cn^2}{2}$
3	$\frac{n}{4}$	$\frac{n^2}{2}$	$\frac{cn}{4}$	$\frac{cn^3}{8}$
4	$\frac{n}{8}$	$\frac{n^3}{8}$	$\frac{cn}{8}$	$\frac{cn^4}{64}$
5	$\frac{n}{16}$	$rac{n^4}{64}$	$\frac{cn}{16}$	$\frac{cn^5}{1024}$
k + 1	$\frac{n}{2^k} = 2^{h-k}$	$\frac{n^{k+1}}{2^{\frac{k(k-1)}{2}}} = 2^{h(k+1) - \frac{k(k-1)}{2}}$	$\frac{cn}{2^k} = c2^{h-k}$	$\frac{cn^{k+1}}{2^{\frac{k(k+1)}{2}}} = c2^{h(k+1) - \frac{k(k+1)}{2}}$
h	1	$2^{\frac{h^2+3h}{2}}$	c	