作业 #3

(提交日期: 2023/11/7)

- 1. 公司决定使用 1000 万元新产品开发基金开发 A, B, C 三种新产品。经预测估计,开发 A, B, C 三种新产品的投资利润率分别为 5%, 7%, 10%。由于新产品开发有一定风险,公司研究后确定了下列优先顺序目标:
 - (1) A产品至少投资 300 万元;
 - (2)为分散投资风险,任何一种新产品的开发投资不超过开发基金总额的 35%;
 - (3) 应至少留有 10%的开发基金, 以备急用;
 - (4) 使总的投资利润最大。

试建立投资分配方案的目标规划模型。

- 2. 己知单位牛奶、牛肉、鸡蛋中的维生素及胆固醇含量等有关数据见下表。 如果只考虑这三种食物,并且设立了下列三个目标:
 - 第一,尽量满足三种维生素的每日最小需求量;
 - 第二,使每日摄入的胆固醇尽可能少;
 - 第三, 使每日购买食品的费用尽可能少。

请建立问题的目标规划模型。

	牛奶	牛肉	鸡蛋	每日最小需求量	
火口	(500g)	(500g)	(500g)	/mg	
维生素 A/mg	1	1	10	1	
维生素 C/mg	100	10	10	30	
维生素 D/mg	10	100	10	10	
胆固醇/单位	70	50	120		
费用/元	1.5	8	4		

- 3. 下表中给出了一个运输问题及它的一个解,试问:
 - (1) 表中给出的解是否为最优解?请用位势法进行检验。
 - (2) 若价值系数 c_{24} 由 1 变为 3, 所给的解是否仍为最优解?若不是,请求出最优解。
 - (3) 若所有价值系数均增加1,最优解是否改变?为什么?
 - (4) 若所有价值系数均乘以 2, 最优解是否改变? 为什么?
 - (5) 写出该运输问题的对偶问题,并给出其对偶问题的最优解。

销地 产地	B_1	B_2	B_3	B_4	产量
A_{l}	4	5 1	3 4	6	8
A_2	8 1	2	6	2 1	10
A_3	3	7	3 5	1 1	4
销量	8	5	6	3	22

4. 某市有三个面粉厂,它们供应三个面食加工厂所需的面粉。各面粉厂的产量、各面食加工厂加工面粉的能力、各面食加工厂和各面粉厂之间的单位运价,均示于下表中。假定在第 1,2 和 3 面食加工厂制作单位面粉食品的利润分别为 12、16 和 11,试确定使总效益最大的面粉分配计划(假定面粉厂和面食厂都属于同一个主管单位)。

食品厂面粉厂	1	2	3	面粉厂产量
I	3	10	2	20
II	4	11	8	30
III	8	11	4	20
食品厂需量	15	25	20	

5. **[3.10]** 甲、乙、丙三个城市每年需要的煤炭由鸡西、鹤岗两处煤矿负责供应。这两处煤矿的价格和质量都基本相同。鸡西、鹤岗两处煤矿的供应能力分别为 400 万 t, 450 万 t, 由煤矿至各城市的单位运价(万元 / 万 t)如表所示。

表 煤矿运价与供需表

销地产地	甲城市	乙城市	丙城市	产量(万t)
鸡西煤矿	15	18	22	400
鹤岗煤矿	21	25	16	450
需求量 (万 t)	320	250	无上限	

由于供不应求,三个城市申报需求分别为 320 万 t, 250 万 t 和无上限。经协商决定甲城市供应量可减少 30 万 t; 乙城市应全部满足,丙城市不少于 270 万 t。试求总运费为最低的调运方案。

6. **[3.12]** 某农业贸易公司从事谷物买卖,现在农产品生产基地 A_1 、 A_2 、 A_3 分别购买了谷物 3 车皮、6 车皮、5 车皮。拟在 B_1 、 B_2 、 B_3 、 B_4 这 4 城市销售,各地的需求分别为 2 车皮、4 车皮、3 车皮、3 车皮。所有货物都要经过中转地 T_1 或 T_2 运往目的地。相关线路的运输价格如下表(单位:千元/车皮)。

表(1)						
中转地 T1	中转地 T2					
8	6					
3	8					
9	3					

		表(2)		
	城市 B1	城市 B_2	城市 B ₃	城市 B4
 中转地 T1	44	34	34	32
 中转地 T2	57	35	28	24

试利用计算机求出最优的运输方案。

7. 【选做题】请尝试用列生成算法求解课件 PPT 中的下料问题的**松弛问题** (其中的整数规划子问题可借助计算机求解,比如 Excel)。

7.5 下料问题

◎ 有京大学 工程管理学院

某工厂生产一型号的机床,每台机床上分别需用 2.9、2.1、1.5米长的轴1根、2根和1根,这些轴需用同一种圆钢制作,圆钢的长度为7.4米。如需要生产100台机床,问应如何安排下料,才能使用料最省?试建立其线性规划模型。

	B1	B2	В3	B4	B5	B6	В7	B8	需要量
2.9m	1	2	0	1	0	1	0	0	100
2.1m	0	0	2	2	1	1	3	0	200
1.5m	3	1	2	0	3	1	0	4	100
余料	0	0.1	0.2	0.3	0.8	0.9	1.1	1.4	

 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

7.5 下料问题

◎ 有京大學 工程管理学院

解:设 x_i 为按第i种方案切割的原材料根数

$$\min \sum_{i=1}^{8} x_i$$

$$s.t. \begin{cases} x_1 + 2x_2 + x_4 + x_6 \ge 100 \\ 2x_3 + 2x_4 + x_5 + x_6 + 3x_7 \ge 200 \\ 3x_1 + x_2 + 2x_3 + 3x_5 + x_6 + 4x_8 \ge 100 \\ x_i \ge 0, x_i \not = 20 \end{cases}$$

Cutting Stock Problem