Završni ispit iz Linearne algebre

11. lipnja 2012.

1. [2 boda] Zadana je matrica

$$\mathbf{A} = \left[\begin{array}{cc} 3 & 5 \\ 6 & 2 \end{array} \right].$$

i vektor $\mathbf{b} = (3,3)^{\mathsf{T}}$, s elementima iz polja \mathbb{Z}_7 . Izračunajte \mathbf{A}^{-1} i riješite jednadžbu $\mathbf{A}\mathbf{x} = \mathbf{b}$.

2. [3 bodova] Zadan je skup X svih matrica oblika

$$\mathbf{A} = \left[\begin{array}{cc} a - c & a + 2b \\ 3a - b & b + c \end{array} \right]$$

gdje su $a, b, c \in \mathbb{R}$.

- (a) (1 bod) Pokažite da je X vektorski podprostor prostora $M_{2,2}$ svih matrica s realnim koeficijentima.
- (b) (2 boda) Za vektorski prostor X odredite neku bazu i izračunajte njegovu dimenziju.
- 3. [4 boda] Zadan je linearni operator $F \colon M_{2,2} \to M_{2,2}$ sa

$$F\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=\left[\begin{array}{cc}a+b&2b+d\\a-b-d&a+b+c\end{array}\right].$$

- (a) (2 boda) Odredite matricu tog linearnog operatora u kanonskoj bazi prostora $M_{2,2}$.
- (b) (2 boda) Ispitajte postoji li inverzni operator F^{-1} .
- 4. [2 boda] Zadan je linearni operator $A: \mathbb{R}^2 \to \mathbb{R}^2$ matricom

$$\mathbf{A} = \left[\begin{array}{cc} -1 & 0 \\ 0 & 3 \end{array} \right]$$

u bazi koju čine vektori $\mathbf{e}_1 = (1, -1)^{\top}$ i $\mathbf{e}_2 = (2, 1)^{\top}$. Odredite matricu \mathbf{A}' tog istog operatora u bazi koju čine vektori $\mathbf{f}_1 = (1, 2)^{\top}$ i $\mathbf{f}_2 = (4, -1)^{\top}$.

- 5. [2 boda] Zadani su linearni operatori $A, B : \mathbb{R}^2 \to \mathbb{R}^3$, sa A(a, b) = (a + b, a 2b, a + 2b) i B(a, b) = A(b, 2a). Nađite udaljenost operatora A i B s obzirom na operatorsku 1-normu.
- 6. [3 boda] Pretpostavimo da je A kvadratna matrica čije su sve vlastite vrijednosti strogo lijevo od imaginarne osi u Gaussovoj ravnini. Dokažite da onda vrijedi

$$\lim_{t \to +\infty} e^{\mathbf{A}t} = 0.$$

Okrenite!

- 7. [2 boda] (a) (1 bod) Formulirajte teorem o konvergenciji Neumannovog reda $\sum_{k=0}^{\infty} \mathbf{A}^k$, gdje je **A** zadana kvadratna matrica. (Teorem ne treba dokazivati)
 - (b) (1 bod) Neka je $\mathbf{A}=\begin{bmatrix}\lambda-2&1\\0&3-\lambda\end{bmatrix}$. Rabeći (a) odredite sve realne brojeve λ za koje Neumannov red $\sum_{k=0}^\infty A^k$ konvergira.
- 8. [5 bodova] Spektralna norma $\|\mathbf{A}\|_2$ bilo koje realne kvadratne matrice \mathbf{A} reda n definira se kao $\|\mathbf{A}\|_2 = \sup_{\|x\|_2 = 1} \frac{\|Ax\|_2}{\|x\|_2}$, gdje su vektori x iz \mathbb{R}^n , a $\|x\|_2$ je Euklidska norma.
 - (a) (1 bod) Dokažite da za za svaki $x,y \in \mathbb{R}^n$ vrijedi $(\mathbf{A}x \mid y) = (x \mid \mathbf{A}^\top y)$, gdje su lijevo i desno od znaka jednakosti uobičajeni skalarni produkti u \mathbb{R}^n . Naputak: za sve $x,y \in \mathbb{R}^n$ vrijedi $(x|y) = x^\top \cdot y$, gdje x i y interpretiramo kao vektore stupce, a \cdot znači matrično množenje.
 - (b) (3 boda) Rabeći (a) dokažite da za bilo koju realnu matricu **A** vrijedi $\|\mathbf{A}\|_2 = \sqrt{r(\mathbf{A}^{\top}\mathbf{A})}$, gdje je $r(\cdot)$ spektralni radius matrice.
 - (c) (1 bod) Rabeći (b) izračunajte spektralnu normu matrice $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- 9. **[6 bodova]** Zadana je matrica $\mathbf{A} = \begin{bmatrix} 4 & 1 & -1 \\ 0 & 2 & 1 \\ 1 & 1 & -3 \end{bmatrix}$.
 - (a) (2 boda) Crtanjem Geršgorinovih krugova pokažite da je matrica regularna.
 - (b) (2 boda) Opišite Jacobijevu metodu za rješavanje općenitog sustava $\mathbf{A}\mathbf{x} = \mathbf{b}$. Formulirajte teorem o nužnim i dovoljnim uvjetima za konvergenciju te metode (ne treba dokazivati).
 - (c) (2 boda) Pokažite da za navedenu matricu Jacobijeva metoda za rješavanje jednadžbe $\mathbf{A}\mathbf{x} = \mathbf{b}$ konvergira za bilo koji $\mathbf{b} \in \mathbb{R}^3$. Ako je početna iteracija jednaka nul-vektoru, za $\mathbf{b} = (1,1,1)^{\top}$ izračunajte sljedeće dvije iteracije Jacobijeve metode.
- 10. [6 bodova] Zadana je matrica $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.
 - (a) (3 boda) Odredite skraćenu singularnu dekompoziciju te matrice.
 - (b) (2 boda) Izračunajte pseudoinverz matrice A.
 - (c) (1 bod) Odredite Frobeniusovu normu matrice ${\bf A}.$
- 11. [5 boda] Neka je **A** realna kvadratna matrica reda n.
 - (a) (2 boda) Definirajte matricu $e^{\mathbf{A}}$ pomoću beskonačnog reda i iskažite teorem o konvergenciji tog reda.
 - (b) (1 bod) Neka je $A = (a_{ij})$ matrica reda 3 takva da je $a_{i,1+i} = 1$ za i = 1, 2, a inače nula. Rabeći definiciju u (a) izračunajte matricu $e^{\mathbf{A}t}$, gdje je t bilo koji realan broj.
 - (c) (2 boda) Za matricu pod (b) riješite diferencijalnu jednadžbu $\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t)$ uz početni uvjet $\mathbf{x}(0) = (1, 2, -3)^{\top}$.