

<u>Course</u> > <u>Unit 7:</u> ... > <u>Lec. 15:</u>... > 5. Exer...

5. Exercise: Normal unknown and additive noise

Exercises due Apr 8, 2020 05:29 IST Completed

Exercise: Normal unknown and additive noise

4/4 points (graded)

As in the last video, let $X=\Theta+W$, where Θ and W are independent normal random variables and W has mean zero.

a) Assume that W has positive variance. Are X and W independent?

No

✓ Answer: No

b) Find the MAP estimator of Θ based on X if $\Theta \sim N\left(1,1\right)$ and $W \sim N\left(0,1\right)$, and evaluate the corresponding estimate if X=2.

c) Find the MAP estimator of Θ based on X if $\Theta \sim N\left(0,1\right)$ and $W \sim N\left(0,4\right)$, and evaluate the corresponding estimate if X=2.

d) For this part of the problem, suppose instead that $X=2\Theta+3W$, where Θ and W are standard normal random variables. Find the MAP estimator of Θ based on X under this model and evaluate the corresponding estimate if X=2.

 $\hat{\theta} = \boxed{$ 4/13 $\qquad \qquad \checkmark$ Answer: 0.30769

Solution:

a) They are not independent. This is intuitively clear because W has an effect on X. Another way to see it is that we have (by independence of Θ and W) that $\mathbf{E}\left[\Theta W\right]=\mathbf{E}\left[\Theta\right]\,\mathbf{E}\left[W\right]=0$, which leads to

$$\mathbf{E}\left[XW
ight] = \mathbf{E}\left[\left(\Theta + W\right)W
ight] = \mathbf{E}\left[W^2
ight]
eq 0 = \mathbf{E}\left[X
ight]\mathbf{E}\left[W
ight],$$

which in turn implies that X and W are not independent.

b) If we focus on the terms that involve θ , the posterior is of the form

$$c\left(x
ight) e^{-\left(heta-1
ight) ^{2}/2}e^{-\left(x- heta
ight) ^{2}/2}.$$

To find the MAP estimate, we set the derivative with respect to θ of the exponent to zero, so that $(\hat{\theta}-1)+(\hat{\theta}-x)=0$, or $\hat{\theta}=(1+x)/2$, which, when x=2, evaluates to 3/2.

c) If we focus on the terms that involve θ , the posterior is of the form

$$c(x) e^{-\theta^2/2} e^{-(x-\theta)^2/(2\cdot 4)}$$
.

To find the MAP estimate, we set the derivative with respect to θ of the exponent to zero, so that $\hat{\theta} + (\hat{\theta} - x)/4 = 0$, or $\hat{\theta} = x/5$, which, when x = 2, evaluates to 2/5.

d) Note that conditional on $\Theta=\theta$, the random variable X is normal with mean 2θ and variance 9. If we focus on the terms that involve θ , the posterior is of the form

$$c(x) e^{- heta^2/2} e^{-(x-2 heta)^2/(2\cdot 9)}$$
 .

To find the MAP estimate, we set the derivative with respect to θ of the exponent to zero, so that $\hat{\theta} + 2(2\hat{\theta} - x)/9 = 0$, or $\hat{\theta} = 2x/13$, which, when x = 2, evaluates to 4/13.

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

Discussion Hide Discussion

Topic: Unit 7: Bayesian inference:Lec. 15: Linear models with normal noise / 5. Exercise: Normal unknown and additive noise

Sho	ow all posts 💙	by recent a	ctivity 🗸
?	Having trouble understanding distribution of X in part D So from the lectures and the answers it seems that x takes 2*theta as a mean and var(3W) as	<u>varianc</u>	3
?	Ex: Normal unknown & additive noise Hi, The assumption in (a) that W has a positive variance - is it actually required, since it is already	ady give	1
Ą	separating the linear effects on μ and var Light want to confirm the separate effects. If $X = 2\Theta$, then μ x would be 2Θ , right, and var(X) we	ould be	2
2	[STAFF] independence question (a) reasoning For question a is it correct to notice that $Var(f(X w)) = Var(\theta)$ while $Var(X) = Var(\theta) + Var(W)$	<u>) Var(W)</u>	5
?	hint on question a I don't really get the point of question a)? What are they trying to tell us here? at a first glance	<u>, a varia</u>	2
?	Are we finding the estimate or the estimator? I thought, being that x is taking on a particular value, that we are finding a "number" for theta	<u>(and so</u>	1
?	part d, need help with understanding the prior	2 new_	8
?	Help, please. I must not understand at all. Hi. I got all wrong except the yes/no. I really think I am on the right track, but I can't be positive	<u>e, I gues</u>	5
?	having difficulty calculating the posterior Im not able to calculate the posterior of (b) please help		2
?	How the variance of Θ is plugged in? I suppose that after taking a derivative in a case, when **X = Θ + W** and the mean of Θ equals	2 <u>ıls to ze</u>	new_
∀	W / noise Hi, Forgive me if I missed this somewhere. W~N(mu,sigma^2). However, when we calculate f >	<u>(Theta,</u>	2
2	Hint for b Hello I need a hint for b. I thought that with $\Theta \sim N(1,1)$, the θ ^hat would be one higher than in	the exa	2

