POWERTRAIN OVERVIEW

Agenda

- 1. Car ECU architecture
- 2. Power Train: What is it and what for?
- 3. Vehicle communication
- 4. ECU SW Architecture (AUTOSAR)

Agenda

1. Car ECU architecture

2. Power Train: What is it and what for?

3. Vehicle communication

4. ECU SW Architecture (AUTOSAR)

1. Car ECU architecture

History

 In 1950 electrical network comprised approx.
 40 lines (battery, starter, ignition and the lighting and signalling systems)

- Today in a premium-class vehicle, there may be up to 80 control units performing their duties.
- A modern car can have over 200 microcontrollers

1. Car ECU architecture

Feature comparison

- · Aprox. 40 wires
- Headlights and backlights
- Horn
- Electric wipers
- Radio
- Seatbelts

Modern

- 800 to 1000 wires.
- Traction control
- Dynamic torque distribution
- Hill decent assist
- Hill start assist
- Launch control
- Regenerative braking
- Start-stop
- Pre-tensioning seatbelts

- ABS
- ESP
- Park pilot
- ACC
- Lane assist
- · Adaptive headlights
- 4 zone AC
- Infotaiment
- Internet connectivity

- · Tire pressure monitoring
- · Heated and cooled seats
- · Heated steering wheel
- Voice commands
- Airbags
- **Emergency braking**
- Soft close doors
- Automatic boot

1. Car ECU architecture

Performance ECUs (e.g. Domain ECU/Central ECU/Vehicle Computer)

ECU Domains

Main properties & characteristics

- mainly encapsulated E/E architecture structure
- each function has his "own" ECU
- partly merge of ECUs
 - examples:
 - Parking-Assist ECU into Body Control Module (BCM)
 - APB into ESP

Nomenclature

- "Function Specific ECUs"e.g. ESP = stability functions, Engine ECU = engine functions
- "Domain Specific Zone ECUs"
 e.g. Body-Domain Door/Roof/Light-ECU

Options / Variants

CGW as stand alone ECU or pot. integrated in e.g. BCM

Sen

Sensors/Actuators

Domain specific Zone ECUs (e.g. todays Door ECU)

Domain independent Zone ECUs

ECU architecture Domains 2

Main properties & characteristics

- Mainly domain centralized E/E architecture
- Domain centralized ECUs as "master" of the domain for intra-domain functions (integration platform for each domain)
- Motivation: Higher performance requirements and standardization of sensor/actuator ECUs

Nomenclature

- "Domain specific Central ECUs" e.g. DASy, VCU, HU
- "Function Specific ECUs" e.g. ESP = stability functions, Engine ECU = engine functions
- "Domain Specific Zone ECUs" e.g. Body-Domain Door/Roof/Light-ECU

Options / Variants

- ► Not every domain will have a domain specific "Central ECUs"
- Not every domain specific "Central ECUs" will have the same performance requirements

typ. state of the art automotive ECUs (function specific)

Performance ECUs (e.g. Domain ECU/Central ECU/Vehicle Computer)

- Optional ECUs (e.g. Central Gateway)
- Sensors/Actuators

Domain independent Zone ECUs

Domain specific Zone ECUs (e.g. todays Door ECU)

ECU architecture

Next steps

Agenda

1. Car ECU architecture

2. Power Train: What is it and what for?

3. Vehicle communication

4. ECU SW Architecture (AUTOSAR)

Overview

- The term power train or power plant describes the main components that generate power and deliver it to the road surface, water, or air.
- This includes the engine, transmission, drive shaft, differentials, and the final drive (dive wheels, continuous track as in caterpillar tractors).
- Types of powertrain available:
 - Internal combustion
 - Hybrid
 - Plug-in hybrids
 - Non Plug-in hybrids
 - Full Electric

Hybrid drive

Plug-in Hybrid Hybrid

Electric drive

- Main components:
 - Electric motor
 - Invertor
 - Battery management
 - Battery (20 100 kWh)
- Functionalities
 - Traction control
 - Torque vectoring
 - Dynamic power distribution
 - Regenerative braking

Regenerative Braking

Agenda

1. Car ECU architecture

2. Power Train: What is it and what for?

3. Vehicle communication

4. ECU SW Architecture (AUTOSAR)

Overview

· Chassis/ Safety domain:

Bus type: Flexray

· Topology: Star topology

Data rates: Max. 20 Mbit/s

· Standard: Flexray consortium

SAR Classification: Drive-by-wire

Powertrain/ Drivetrain domain:

· Bus type: High Speed CAN

· Topology: Linear Bus

Data rates: 10kbit/s – 1Mbit/s

Standard: ISO 1198

· SAR Classification: Class C

Body/ Interior domain:

Bus type: Low Speed CAN

Topology: Linear Bus

Data rates: Max. 125 kbit/s

Standard: ISO 11519-2

· SAR Classification: Class B

Infotainment / Telematics domain:

Bus type: MOST

Topology: Ring topology

Data rates: Max. 22.5 Mbit/s

Standard: MOST cooperation

SAR Classification: Mobile Media

a. Central Gateway topology

b. Distributed Gateway topology

CAN Overview

- Development of the CAN bus started in 1983 at Robert Bosch GmbH.
- · The first CAN controller chips, produced by Intel and Philips, came on the market in 1987
- In 1991 the CAN bus (Controller Area Network) was the first bus system to be introduced to a motor vehicle in mass production

- ISO 11898 specifies
 - 1 MBits/s for 40 m (specified)
 - 500 kBits/s up to 100 m (recommendation)
 - 250 kBits/s up to 250 m
 - 125 kBits/s up to 500 m
 - 40 kBits/s up to 1,000 m

Wired-AND Logic

High speed CAN

Low speed CAN

W220

(1998)

W221

(2005)

W140

60

50

40

30

20

10

CAN Frame

Standardized in accordance with

ISO 11898

- Prioritized communication
- Data transfer rates: up to 1 MBits/s
- Data capacity: up to 8 bytes per message
- Real-time response
- Very high reliability of data transfer
- · Fault detection and signaling

Short-circuit resistance

Frame types:

Error detection

- Data frame
- · Cyclic redundancy check
- Remote frame
- Frame check
- ACK check
- Error frame
- Monitoring

ISO OSI reference model (Open Systems Interconnection) used to describe the protocol communicate:

- · Application layer
- Communication Layer
- Physical layer

CAN OSI Model

CAN Frame Types

CAN Example

Send standard data frame:

Diagnostics protocols

- Emissions diagnostics functionality is mandatory by legislation CARB (California Ari Resource Board) and EOBD (European On board diagnostics)
- CAN baud rates are 500 kBd or 1 MBd.
- Addressing and message types Tester communication on the CAN bus is defined by ISO 15765.
- The communication services of ISO 15765-3 or 14 229-1 are defined in a similar way to those of ISO 14230-3
- OEM and workshops use the OBD port for troubleshooting, calibration and maintenance

OBD connector

CARB K line CAN ISO 15031-5 ISO 15031-5 ISO 15031-5 ISO 15031-5 ISO 15765-4 ISO 15765-2 ISO 15765-4 ISO 14230-2 ISO 11898 ISO 9141-2 SAE J1850 ISO 14230-4 ISO 15765-4 ISO 11898 ISO 14230-1 ISO 9141-2 SAE J1850 ISO 15765-4 ISO 14230-4

e G	Manufactui	rer-specific
Layer	K line: KWP 2000	CAN / UDS
7	ISO 14230-3	ISO 15765-3 ISO 14229-1
6		
5		ISO 15765-3
4		
3		ISO 15765-2
2	ISO 14230-2	ISO 11898-1 ISO 11898
1	ISO 14230-1	ISO 11898

Diagnostic protocols

- CARR communication
- Customer-specific communication

Layers of the

OSI reference model

- Application
- Presentation
- Session
- Transport
- Network
- Data link
- Physical

UDS Unified Diagnostic Services

UDS (Unified diagnostics services)

A diagnostic communication protocol in the electronic control unit (ECU)
environment within the automotive electronics, which is specified in the ISO 142291.lt is derived from ISO 14230-3 (KWP2000) and ISO 15765-3 (Diagnostic
Communication over Controller area network (DoCAN)

Tx (transit message)

0.	1.	2.	3.	4.	5.	6.	7.
Length	SID	sub-service	Padding	Padding	Padding	Padding	Padding

Rx (received message)

Case 1: Positive response

0.	1.	2.	3.	4.	5.	6.	7.
Length	SID+0x40	sub-service	Padding	Padding	Padding	Padding	Padding

Case 2: Negative response

0.	1.	2.	3.	4.	5.	6.	7.
Length	0x7F	SID	NRC	Padding	Padding	Padding	Padding

Request and responsee frames

CAN UDS request example

- Using service ID 0x10 Diagnostics session control
- Change diagnostics session to Extended Diagnostics Session (Sub service 0x03)

Tx

0.	1.	2.	3.	4.	5.	6.	7.
0x02	0x10	0x03	x	×	×	x	x

Rx Positive response

0.	1.	2.	3.	4.	5.	6.	7.
0x02	0x50	0x03	x	x	x	x	x

Rx Negative response:

0.	1.	2.	3.	4.	5.	6.	7.
0x03	0x7F	0x10	NRC	x	x	x	x

NRC	Description	Mnemonic
0x12	sub Function Not Supported	SFNS
0x13	incorrect Message Length Or Invalid Format	IMLOIF
0x22	conditions Not Correct	CNC
0x24	request Sequence Error	RSE
0x31	request Out Of Range	ROOR
0x33	security Access Denied	SAD
0x35	invalid Key	IK
0x36	exceeded Number Of Attempts	ENOA
0x37	required Time Delay Not Expired	RTDNE
0x38 - 0x4F	reserved By Extended Data Link Security Document	RBEDLSD
0x70	upload Download Not Accepted	UNDNA
0x71	transfer Data Suspended	TDS
0x72	general Programming Failure	GFP
0x73	wrong Block Sequence Counter	WBSC
0x93	voltage Too High	VTH
0x93	voltage Too Low	VTL

Negative response code (NRC) Table

Agenda

1. Car ECU architecture

2. Power Train: What is it and what for?

3. Vehicle communication

4. ECU SW Architecture (AUTOSAR)

Why a standard SW Arch.?

Engine control unit block diagram

AUTOSAR Overview

► <u>AUT</u>omotive Open System Architecture

AUTOSAR – Core Partners and Members

Courtesy of

Up-to-date status see: http://www.autosar.org

Motivation and Goals

- ► Scalability and re-use of Basic SW across OEMs and vehicle platforms
- ► Support integration of 3rd party Basic SW during design time
- ► Support integration of 3rd party Application SW Components during design time
- ► Support relocate ability of Application SW Components during design time
- ► Validation of Application SW Interfaces on vehicle level

AUTOSAR Overview

Bibliography

- Bosch Automotive Electrics and Automotive Electronics. Systems and Components, Networking and Hybrid Drive, 5th Edition, Robert Bosch GmbH Ed.
- Automotive Mechatronics Automotive Networking · Driving Stability Systems · Electronics, Konrad Reif Ed.
- http://www.bosch.co.jp/en/press/group-1306-04.asp
- https://www.autosar.org/standards/classic-platform/
- https://www.researchgate.net/figure/Automotive-wire-harness 235699269

THANK YOU

