

Machine Learning Fundamentals

Practical Machine Learning (with R)

UC Berkeley Fall 2015

SESSION 3 – LOGISTIC REGRESSION

Topics

Administrativa

⇒ Quiz

- Review and Q&A
 - Using git / github
- New Topics

ADMINISTRATA

ASSIGNMENTS

- Google Group:
 - https://groups.google.com/forum/#!forum/csx460
- Github Group:
 - https://github.com/csx460
- Create a Github Account
- Clone assignments from Github
- Commit and Push Answers
- (Send Pull Request)
- → Commit assignments to github now

REVIEW

Expectations

- Understand 3 Things That All ML Algorithms Share
- Understand the difference between the ML algorithm and the function that the ML algorithm produces
- Use git as version control
- Understand how to use `lm` for creating linear regression problems

GIT / GITHUB / SOURCE TREE

Workflow

- clone
- branch
- (work)
- add
- commit (early and often)
 - tag
- push
- Also checkout, status, log

3 REQUIREMENT FOR ALGORITHM

- A method for evaluating how well the algorithm performs (ERRORS)
- → A restricted class of function (MODEL)
- A process for proceeding through the restricted class of functions to identify the functions (SEARCH/OPTIMIZATION)

Review

https://github.com/CSX460

git / github / Rstudio + git

QUIZ

LINEAR REGRESSION (SIGNIFICANCE)

Linear regression t-statistic is the probability that the "true value" of the statistic falls outside the student t-distribution.

- Is expressed as a probability.
- Lower is "better" i.e. more significant

Think of it (loosely) as the probability of the coefficient being off.

LINEAR REGRESSION (INTUITION)

Coefficients ... multiply then sum

- Number Line (in units of the response)
 - Start at intercept
 - Multiple term by value of the variable
 - Move those number of units left or right.

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.3541 0.4593 111.814 < 2e-16 ***

EngDispl -3.7454 0.2507 -14.941 < 2e-16 ***

NumCyl -0.5880 0.1722 -3.414 0.000664 ***
```

LINEAR REGRESSION ERRORS

- Two different types of errors measured
 - For fitting models
 - For comparing models

 Minimize square error loss (SSE) sum of squared errrors

$$argmin_{\beta} \left(\sum (\hat{y} - y)^2 \right)$$

- choose Beta such that the sum of squared errors is minimized.
- Assumes there is a solution

TRANSFORMATIONS

- Centering and Scaling: scale*
- Resolve skewness: log, sqrt, inv
- Resolve outliers: spatial sign, PCA

Some algorithms require scaling Some are insensitive Time consuming Somewhat of an art

Genetic algorithms (GA)

NEW TOPICS

CLASSIFICATION OF MACHINE LEARNING ALGORITHMS

- **Errors**
- Restricted Class of Functions
- Search Methodology

CLASSIFICATION OF MACHINE LEARNING ALGORIHMS

- Data: Output / Response
 - Regression (continuous) vs
 - Classification (categorical)

Presense of Response:

- SUPERVISED LEARNING
 Known previous outcomes: "Labelled"
- UNSUPERVISED LEARNING
- Unknown previous outcome: "Unlabelled"
- Adaptive Learning

Reinforcement

CLASSIFICATION OF MACHINE LEARNING ALGORIHMS

- Data: Inputs
 - Type excepted
 - How handled

EXAMPLE OF ML ALGORITHM(S)

- Spam Filter
- handwriting recognition (svm)
- Traffic engineering (lights)
- Weather prediction
- Sentiment analysis (social media)
- Netflix Recommender
- Fraud detection (Visa)
- Imaging processing
- (network) Intrution detection
- Self-driving cars

LOGISTIC REGRESSION

BACKGROUND

Categorical Modeling:

$$\widehat{y}_{cat} = f(\overrightarrow{x})$$

- •Inputs
 - Categorical
 - Continuous variable can assume any value

Outputs:

How do we handle categories?

same as linear regression?

BACKGROUND

• Errors!

$$\widehat{y}^{cat} \neq y$$

Problem ...

FUNCTION ...

- Do the easiest thing first ...
 Start with 2 categories "binomial dist"
 - A | B
 - TRUE | FALSE
 - **0** 1

"Looks Math-y"

Need a tool ...

(-Inf, Inf)

Outputs

[0,1]

$$f(x) = \frac{1}{1 + e^{-x}}$$

Logistic function

$$P(y) \sim \hat{y} = \frac{1}{1 + e^{-x}}$$

Now What

Proceed as we would with linear regression ... and look for β's

$$\hat{y} \sim \frac{1}{1 + e^{-x}}$$

$$\hat{y} \sim \frac{1}{1 + e^{-\beta_0 + \sum_{i=1}^p \beta_i x_i}}$$

Then solve as linear regression:

$$argmin_{\beta} \left(\sum (\hat{y} - y)^2 \right)$$

NOT DONE

How do you go from [0,1] back to our binomial categories?

- Choice is somewhat arbitrary
 - **P**=0.5
 - Calibrate response
- Often don't care ... you are interested in the probability anyway.

Worked Example

EXERCISE

- Write a the inverse logistic function
 - Not for Credit ... No peeking on the web.

APPENDIX

Comprehensive ML Process

