Phitron_ALGO

Module	Video	Topic	Note	*	Github
Moodle	vioeo	Торіс	page	×	Gittiuo
mod-1	v-1.1	Graph Theory	B-220		<u>Link</u>
	v-1.2	Types of Graph	B-222		
	v-1.4	Real life example of graph			
	v-1.5	Real II/O Example 0/ graph			
	v-1.6 v-1.7	Input Graph	B-224		
		<i>G</i> raph Representation/Input-Types	B-225		
		Adjacency Matrix	B-226		
	1 0	Adjacency Matrix (Undirected)			
(Graph)	v-1.8	Adjacency Matrix (Directed)		**	
	v-1.10	Adjacency List	B-229		
	4.44	Adjacency List (Undirected)			
	v-1.11	Adjacency List (Directed)			
	v-1.13	Edge List	B- 231	**	
	v- 1.15	Comparisn of 3 Graph Representation	B- 233		
	v-2.2	Graph Traversal/Output-Types	B-234	- - - ** *	<u>Link</u>
1 2	v-2.3	BFS Theory	B-235		
mod-2	v-2.4	BFS Implementation			
	v-2.5	BFS Animated			
(BFS)	v-2.7	A_node_can_be_visited_or_not	B-237		
	v-2.8	Shortest_Distance	B-237		
	v-2.9	Path_Printing	B-238		
Practice day		week 1 practice_01			Link
	2.4	DFS Theory	B-241	**	<u>Link</u>
	v-3.1	DFS Implementation	B-243		
	v-3.2	DFS code			
	v-3.4	2D Grid	B-244		
mod-3	v-3.5	DFS on 2D Grid	B-245		
illou 5	v-3.6	DFS on 2D Grid child print	B-247		
(DEC)	v-3.7	DFS on 2D Grid Full code	B-248		
(DFS)	v-3.8	DFS on 2D grid Animated			
	v-3.9	BFS on 2D Grid Full code	B-249		
	v-3.10	Variation of 2D Grid	B-250		
	v-3.11	Number of Components	B-251	**	

Phitron_ALGO					
Module	Video	Торіс	Note page	*	Github
Practice day		week 1 practice_02			<u>Link</u>
Assignment		Assignment_01	100/100		<u>Link</u>
mod-5	v-5.1 v-5.2	Island Perimeter			
	v-5.3	Find if Path Exists in Graph			
	v-5.4	Max Area of Island			<u>Link</u>
(Leetcode	v-5.5	Number of Islands			
DFS & BFS)	v-5.6	Count sub islands			
	v-5.7	Number Of Closed Islands			
mod 6	v-6.0	Cycle Detection	C-1		
mod-6	v-6.1	Cycle Detection Undirected graph	C-2		
(2. 1. 12)	v-6.2	Cycle Detection Undirected graph BFS	- <i>C</i> -5		<u>Link</u>
(Cycle Ditection	v-6.4	Cycle Detection Undirected graph DFS	C-9		
BFS DFS)	v-6.5	Cycle Detection Directed graph DFS	C-6		
Practio	e day	week 2 practice_01			<u>Link</u>
	v-7.1	Dijkstra why?	C-10		
	v-7.2	Path Relaxation	C-11	**	
	v-7.3	Dijkstra Concept	C-12		
1.7	v-7.4	Dijkstra "Naive Approch"	C-13	**	
mod-7	v-7.5	Adjacency list for Weighted graph	C-17		1.5.1.
	v-7.6	Dijkstra Naive Implementaion	C-18	** **	<u>Link</u>
(Dijkstra)	v-7.9	Dijkstra "Optimized Approch"	C-21		
	v-7.10	Dijkstra Optimized Animated			
	v-7.11	Priority queue of pairs	C-22		
	v-7.12	Dijkstra "Optimised Implementaion"		**	
	v-7.13	Complexity of Dijkstra optimized	C-23	**	
WID		MID Exam Algorithm	100/100		<u>Link</u>
	v-9.1	Why need Bellman Ford	C-26		
	v-9.2	Bellman Ford concept	C-28	*	
mod-9	v-9.3	Bellman Ford Implementation Idea	C-30		
(Bellman	v-9.5	Bellman Ford Code	C-32	**	<u>Link</u>

Phitron_ALGO

PHILIPON_ALGO						
Module	Video	Торіс	Note page	*	Github	
Ford)	v-9.7	Complexity				
	v-9.8	Negative weight cycle Detection	C-34	**		
mod-10 (Floyd Warshall)	v-10.1	Why need Floyd Warshall	C-36	**		
	v-10.2 v-10.4	Floyd Washall Concept	C-38		<u>Link</u>	
	v-10.6	Negative weight cycle Detection	C-40		_	
	v-10.7	Bfs vs Dfs vs Dijkstra vs Bellman vs Floyd	C-			
Practice day		week 3 practice_01			<u>Link</u>	
	v-11.1	DSU	C-42			
	v-11.2	Find Operation	C-43			
mod-11	44.2	Find Operation using Loop				
11104 11	v-11.3	Find Operation using Recursion				
	v-11.4	Find Operation using Recursion-Optimised	C-44	**	<u>Link</u>	
(Disjoint Set Union) (DSU)	v-11.9	Cycle Detection in Undirected graph using DSU	C-46	**	<u> </u>	
		DSU doesn't work in Directed Graph	C-47			
	v-11.10	Cycle Detection in Undirected graph using DSU (code)				
Practice day		week 3 practice_02			<u>Link</u>	
Assignment		Assignment_02			<u>Link</u>	
	v-13.1	Roads Construction				
mod-13	v-13.2	Roads not only in berland theory				
(Problem	v-13.3	Roads not only in berland Code			<u>Link</u>	
Solve)	v-13.4	Dijkstra Path Printing				
	v-13.5	Sundorban				
	v-14.1	What is DP	C-49			
mod-14	v-14.2	Recursion Recap				
	v-14.3	Factorial with Recursion				
	v-14.4	Fibonacci with Recursion	C-49		<u>Link</u>	
(Dynamic Programming)	v-14.6	Fibonacci Optimise theory		**		
	v-14.7	Fibonacci with Memoization	C-51			
	v-14.8	Fibonacci with Loop	<i>C</i> -52			
						

Phitron_ALGO					
Module	Video	Τορίς	Note page	*	Github
Practice day		week 4 practice_01			<u>Link</u>
mod-15	v-15.1	What is 0/1 Knapsack	C-54		
	v-15.2	0/1 Knapsack Implementation	C-55	**	<u>Link</u>
(0/1 Knapsack)	v-15.3	0/1 knapsack implementation	C-55	*	LITIK
Кпарзаск)	v-15.6	Apply DP on 0-1 KnapSack	C-57		
Practice day		week 4 practice_02			<u>Link</u>
Final		Fianl Exam Algorithm			<u>Link</u>