Universal Language Model Fine-tuning for Text Classification

Jeremy Howard*

fast.ai University of San Francisco j@fast.ai Sebastian Ruder*

Insight Centre, NUI Galway
Aylien Ltd., Dublin
sebastian@ruder.io

2019.02.11

발표자: 김용규

Transfer learning in CV

Transfer learning in NLP

Language Model

"

"The service was poor, but the food was _____

Universal Language Model Fine-tuning for Text Classification

Universal Language Model Fine-tuning for Text Classification

- It works across tasks varying in document size, number, and label type
- It uses a single architecture and training process
- It requires no custom feature engineering or preprocessing
- It does not require additional in-domain documents or labels

Contribution

- transfer learning in NLP
- discriminative fine-tuning, slanted triangular learning rates, gradual unfreezing
- increase of text classification performance

(a) General-domain LM pre-training

Wikipedia article

 AWD-LSTM(Average Stochastic Gradient weight dropped LSTM)

AWD-LSTM (Regularizing and Optimizing LSTM)

	AWD-LSTM	LSTM
Regularizing DropConnect (recurrent connection)		Dropout
Optimizing	LT-ASGD	SGD

(b) Target task LM fine-tuning

- Task-specific data
- Discriminative fine-tuning
- Slanted triangular learning rates

(b) LM fine-tuning

(b)-1 Discriminative fine-tuning

$$\theta_t = \theta_{t-1} - \eta \cdot \nabla_{\theta} J(\theta)$$

$$\theta = \{\theta^1, \dots, \theta^L\}$$

$$\eta = \{\eta^1, \dots, \eta^L\}$$

$$\theta_t^l = \theta_{t-1}^l - \eta^l \cdot \nabla_{\theta^l} J(\theta)$$

$$\eta^{l-1} = \eta^l/2.6$$

Catastrophic forgetting

(b) LM fine-tuning

(b)-2 Slanted triangular learning rates

$$cut = \lfloor T \cdot cut_frac \rfloor$$

$$p = \begin{cases} t/cut, & \text{if } t < cut \\ 1 - \frac{t-cut}{cut \cdot (1/cut_frac-1)}, & \text{otherwise} \end{cases}$$

$$\eta_t = \eta_{max} \cdot \frac{1 + p \cdot (ratio - 1)}{ratio}$$

$$cut_frac = 0.1$$
, $\eta_{max} = 0.01$
 $ratio = 32$

cyclical triangular learning rate

Text Classifier 추가 후 Fine-tuning

(c) Target task classifier fine-tuning

- Concat pooling
- Gradual unfreezing

(c) Classifier fine-tuning

(c)-1 Concat pooling

 $\mathbf{H} = \{\mathbf{h}_1, \dots, \mathbf{h}_T\}$

 $\mathbf{h}_c = [\mathbf{h}_T, \mathtt{maxpool}(\mathbf{H}), \mathtt{meanpool}(\mathbf{H})]$

(c)-1 Concat pooling

- Last layer에 least general knowledge 를 학습시키기 위한 작업이다.
- 각 layer가 수렴할 때까지 진행한다.

catastrophic forgetting

Result

Model	Test	Model			Test
CoVe (McCann et al., 2017)	8.2	CoVe (McC	ann et al.,	2017)	4.2
☆ oh-LSTM (Johnson and Zhang, 2016)	5.9 TBCNN (Mou et al., 2015)				4.0
∀irtual (Miyato et al., 2016)	5.9	LSTM-CNI	V (Zhou et	al., 2016)	3.9
ULMFiT (ours)	4.6	ULMFiT (o	urs)		3.6
	AG	DBpedia	Yelp-bi	Yelp-ful	11
Char-level CNN (Zhang et al., 2015)		DBpedia 1.55	Yelp-bi 4.88	Yelp-ful	11
Char-level CNN (Zhang et al., 2015) CNN (Johnson and Zhang, 2016)					11
	9.51	1.55	4.88	37.95	11

Result

Figure 3: Validation error rates for supervised and semi-supervised ULMFiT vs. training from scratch with different numbers of training examples on IMDb, TREC-6, and AG (from left to right).

ablation

LM	IMDb	TREC-6	AG	Classifier fine-tuning	IMDb	TREC-6	AG
Vanilla LM	5.98	7.41	5.76	From scratch Full	9.93 6.87	13.36 6.86	6.81 5.81
AWD-LSTM LM	5.00	5.69	5.38	Full + discr Last	5.57 6.49	6.21 16.09	5.62 8.38
LM fine-tuning	IMDb	TREC-6	AG	Chain-thaw	5.39	6.71	5.90
No LM fine-tuning	6.99	6.38	6.09	Freez Freez + discr	6.37 5.39	6.86 5.86	5.81 6.04
Full Full + discr	5.86 5.55	6.54 6.36	5.61 5.47	Freez + stlr Freez + cos	5.04 5.70	6.02 6.38	5.35 5.29
Full + discr + stlr	5.00	5.69	5.38	Freez + discr + stlr	5.00	5.69	5.38

Result

