

UNIVERSIDADE ESTADUAL DA PARAÍBA – UEPB CENTRO DE CIÊNCIAS EXATAS E SOCIAIS APLICADAS – CCEA

CAMADA DE APLICAÇÃO PROTOCOLOS

Ingrid Morgane Medeiros de Lucena

□ Camada de Aplicação

- ✓ As camadas inferiores tem por função oferecer um serviço de transporte confiável, mas não executam qualquer tarefa para os usuários.
- ✓ A camada de aplicação é onde são encontradas todas as aplicações.

✓ E se faz necessário para seu funcionamento de protocolos de suporte.

✓ Imaginem navegar na internet utilizando endereço IP para endereçar toda página?

✓ E se caso o endereço IP daquela página mudasse? Todos teriam que ser informados!

□ <u>DNS (Domain Name System)</u>

✓ Para resolver isso, foram introduzidos nomes de alto nível, legíveis, a fim de desassociar os nomes das máquinas dos endereços dessas máquinas.

✓ O servidor Web da empresa poderá ser referido por: www.uepb.edu.br

✓ Independente de seu endereço IP.

- ✓ Sistema de Nomes de Domínio.
- ✓ Definido nas RFCs 1034, 1035, 2181 e elaborado com mais detalhes em muitas outras.
- ✓ Funciona em um esquema hierárquico de atribuição de nomes baseado no domínioe de um sistema de banco de dados distribuído.
- ✓ O servidor de DNS mais popular é o BIND

Como funciona o DNS?

- ✓ Para realizar o mapeamento de um nome em um endereço IP, um programa aplicativo chama um procedimento de biblioteca denominado resolvedor.
- ✓ Repassando a ele (o resolvedor) o nome como um parâmetro.

Como funciona o DNS?

✓ O resolvedor envia uma consulta contendo o nome para um servidor DNS local (<u>nameserver</u>), que procura o nome e retorna uma resposta contendo o endereço IP ao resolvedor.

✓ O resolvedor, em seguida, retorna o endereço IP ao programa aplicativo que fez a chamada.

□ <u>DNS (Domain Name System)</u>

✓ Ao procedimento inverso de consulta, ou seja, resolução de um endereço IP para um nome de servidor, chamamos de <u>DNS Reverso</u>.

□ Estrutura do DNS (Domain Name System)

✓ Essa estrutura em árvore invertida é conhecida por <u>Domain Name Space</u>.

- ✓ Cada nó é um domínio DNS e também a raiz de uma subárvore da árvore global.
- ✓ Um nome de domínio é composto a partir do nó mais descentralizado, subindo ao nó raiz.

□ Estrutura do DNS (Domain Name System)

□ Estrutura do DNS (Domain Name System)

✓ Fully Qualified Domain Name (FQDN) ou domínio totalmente qualificado é o nome completo até raiz.

Ex: www.unijui.tche.br

☐ Top Level Domains (TLD)

✓ São os domínios de mais alto nível.

Domínio	Uso intencionado
oom	Comercial
edu	Instituições educacionais
gov	Governo
int	Organizações internacionais
mil	Militares
net	Provedores de rede
org	Organizações não lucrativas

DNS Hierarchy

□ <u>Contry-Code Top Level Domain (TLD de</u> <u>países)</u>

✓ Com a expansão internacional da internet, foi necessário criar identificadores para identificação dos países dos domínios, ccTLDs (country-code Top-Level Domains), ISO 3166.

Country Code TLD	Country
.au	Australia
.br	Brazil
.ca	Canada
.gr	Greece
.in	India
.ru	Russian Federation
.uk	United Kingdom

□ <u>Contry-Code Top Level Domain (TLD de</u> <u>países)</u>

■ Nomes de Domínio

- ✓ Os nomes de domínios não fazem distinção entre letras maiúsculas e minúsculas.
- ✓ Os nomes de componentes podem ter até 63 caracteres.
- ✓ Os nomes de caminhos completos não podem exceder 255 caracteres.

□ BOOTP (Bootstrap Protocol)

- ✓ Permite a configuração automática de parâmetros de rede, de forma simples.
- ✓ Utilizado para o boot inicial de dispositivos de rede, como roteadores, switches, hubs gerenciáveis, além de estações diskless.
- ✓ Portas UDP 67 (receber requisições) e UDP 68 (resposta).

□ DHCP (Dynamic Host Configuration Protocol)

- ✓ A evolução do BOOTP.
- ✓ Descrito nas RFCs 2131 e 2132.
- ✓ Arquitetura cliente-servidor.
- ✓ Utilizado para atribuição endereços IPs.
- ✓ E também outros parâmetros:
 - máscara de rede
 - endereço IP do gateway-padrão
 - endereços IP de DNS e
 - servidores de hora

□ DHCP (Dynamic Host Configuration Protocol)

- ✓ São três formas de atribuição de endereços:
- <u>Dinâmica</u>: oferece as configurações de rede, e após certo período, geralmente após a máquina cliente ser desligada ou reiniciada, o endereçamento é atualizado, técnica de <u>leasing</u>.
- <u>Automática</u>: atribui o mesmo endereçamento utilizado na última solicitação de informações.
- Manual: Associação do endereço físico (MAC) do cliente a um endereço IP.

□ Funcionamento do DHCP

- ✓ Principais mensagens:
- DHCP DISCOVER: solicitação em broadcast feita pelo cliente para descobrir o servidor DHCP da rede.

 DHCP OFFER: enviada pelo servidor em resposta ao DHCP DISCOVER com oferta de parâmetros de configuração.

□ Funcionamento do DHCP

✓ Principais mensagens:

 DHCP REQUEST: mensagem <u>enviada pelo cliente em broadcast</u>, solicitando parâmetros de um servidor e recusando ofertas de outros.

DHCPACK: mensagem de confirmação do servidor onde é informada as configurações de endereço IP.

□ Funcionamento do DHCP

- ✓ Outras mensagens:
- **DHCP DECLINE** <u>Cliente ao servidor</u>, informando que o endereço de rede já está em uso.

■ DHCP RELEASE - Cliente ao servidor renunciando ao endereço de rede e cancelando o arrendamento restante.

 DHCP INFORM - <u>Cliente para servidor</u>, pedindo apenas parâmetros de configuração locais. O cliente já possui um endereço de rede configurado externamente.

☐ FTP (File Transfer Protocol)

- ✓ Permite a transferência de arquivos de uma máquina para outra.
- ✓ Utiliza as portas <u>TCP 20 e 21</u>, <u>transferência de dados</u> e <u>controle</u>, respectivamente.
- ✓ Modelo cliente/servidor.

☐ FTP (File Transfer Protocol)

✓ A conexão do cliente ao servidor é estabelecida pela porta 21 (forma persistente) e;

- ✓ A transferência de dados pode ocorrer por várias vezes pela porta 20.
- √ É dito protocolo "fora de banda" pois utiliza porta diferente da usada para estabelecimento de conexão.

□ Comandos FTP

- ✓ OPEN: abre uma sessão com o ftp selecionado, após estabelecida conexão.
- ✓ CLOSE: fecha a conexão.
- ✓ GET: baixa um arquivo do servidor remoto (Download).
- ✓ PUT: transfere um arquivo ao servidor remoto (Upload).
- ✓ CD: Tal como o DOS, é utilizado para se mover através dos diretórios do servidor de FTP.

□ Comandos FTP

✓ DELETE: apaga o arquivo no servidor remoto.

- ✓ APPEND: Permite renovar um download que tenha sido interrompido
- ✓ MPUT: permite transferir vários arquivos de uma vez.
- ✓ MGET: permite baixar vários arquivos do servidor de uma vez.

✓ BYE: fecha a sessão e sai do aplicação de FTP.

☐ TFTP (Trivial FTP)

- ✓ Implementação simples
- ✓ Usada para transferência de pequenos arquivos.
- ✓ Não proporciona autenticação de usuário nem criptografia.
- ✓ Utiliza a porta UDP 69.
- ✓ Não é possível listar os arquivos dos diretórios.
- ✓ Transfere blocos fixos de 512 bytes.

☐ TELNET (Protocolo de Terminal Virtual)

- ✓ Utilizada para acesso remoto.
- ✓ Não possui recursos de segurança, como criptografia.
- ✓ Considerado um protocolo não seguro.
- ✓ Funciona com TCP na porta 23.
- ✓ Padrão do comando:# telnet <ip de destino> <porta de destino>

□ SSH (Secure Shell)

- ✓ Substituto ao TELNET e ao FTP.
- ✓ Protocolo de <u>acesso remoto</u> de forma segura.
- ✓ Fornece um canal seguro sobre uma rede insegura.
- ✓ Utilizado também para transferência de arquivos:
- SSH file transfer (SFTP) ou Secure Copy (SCP).

□ SSH (Secure Shell)

- ✓ Arquitetura cliente/servidor.
- ✓ Utiliza <u>TCP porta 22</u>.
- ✓ Autenticação, criptografia e compressão.
- ✓ Nativo em sistemas Linux.

□ SSH (Secure Shell)

✓ O SSH é dividido em dois módulos:

-sshd: é o daemon (script para inicialização ou parada de um serviço) do serviço do protocolo SSH.

-ssh: aplicação que roda no cliente para fornecer uma interface de comunicação com o servidor.

Hacker tentando capturar os dados que trafegam no segmento da rede

□ SSH (Secure Shell) - Segurança

- ✓ Possui duas versões: SSH v1 e SSH v2.
- ✓ O SSH v1: não era muito seguro.

✓ O SSH v2: retirou os algoritmos de criptografia <u>DES e IDEA</u>, ficando com <u>3DES</u>, <u>RC4 e Twofish</u> e adicionou o <u>método de autenticação DSA</u>.

□ NTP (Network Time Protocol)

- ✓ Permite a sincronização dos relógios dos dispositivos de uma rede como servidores, estações de trabalho, roteadores e outros equipamentos.
- ✓ Utiliza <u>UDP na porta 123</u>.

✓ O <u>/etc/ntp.conf</u> é o arquivo principal de configuração do servidor NTP em sistemas Linux.

□ NTP (Network Time Protocol)

✓ O NTP pode fazer uso de pacotes do tipo broadcast ou multicast para enviar ou receber informações de tempo.

✓ Esse tipo de configuração pode ser vantajosa no caso de redes locais com poucos servidores alimentando uma grande quantidade de clientes.

□ SNTP (Simple Network Time Protocol)

✓ O SNTP veio como substituição do NTP por ser uma implementação simplificada e mais eficiente.

□ HTTP (HyperText Transfer Protocol)

- ✓ Protocolo de Transferência de Hipertexto.
- ✓ Definido nas RFC 1945 e 2616.
- ✓ Protocolo utilizado para navegação na Internet, base para a comunicação de dados na WEB.
- ✓ Arquitetura cliente/servidor.
- ✓ "Protocolo sem estado" (Stateless), não mantém informações sobre o cliente.

HTTP (HyperText Transfer Protocol)

Servidor executando o servidor Web Apache

Acquieiga HITP Respuesta Apache

Regulieiga HITP Respuesta Apache

PC executando Internet Explorer Linux executando Firefox

□ HTTP (HyperText Transfer Protocol)

- ✓ Utiliza TCP porta 80.
- ✓ Utiliza <u>cabeçalhos de requisição e resposta</u> no padrão <u>ASCII</u>.

□ HTTPS (HTTP + Secure Socket Layer)

✓ OHTTPS TCP porta 443.

- ☐ HTTP Conexões Cliente/Servidor
- ✓ As conexões podem ser de dois tipos:
- Não-Persistente (HTTP v1.0)
 - Requisições/Respostas enviadas por uma conexão TCP distinta
 - Um objeto é enviado a cada conexão

- ☐ HTTP Conexões Cliente/Servidor
- ✓ As conexões podem ser de dois tipos:
- Persistente (HTTP v1.1)
 - Requisições/Respostas enviadas por uma mesma conexão TCP ("reuso de conexão")
 - Vários objetos são enviado por uma única conexão TCP.

☐ <u>HTTP – Métodos</u>

- ✓ GET: para solicitação de objeto (páginas WEB).
- ✓ HEAD: obtenção de metadados pelo cabeçalho de resposta.
- ✓ POST: envio de um recurso (Ex: arquivos de dados ou formulário).
 - Os dados vão no corpo da requisição.
- ✓ PUT: Edita as informações de um determinado recurso.

☐ HTTP – Métodos

- ✓ DELETE: Exclui o recurso.
- ✓ OPTIONS: Recupera os métodos HTTP que o servidor aceita.
- ✓ CONNECT: Usado com um proxy para que possa se tornar um túnel SSL.
- ✓ PATCH Utilizado para aplicar modificações parciais a um recurso.
- ✓ TRACE Utilizado para teste com mensagens do tipo loopback, ecoando seus pedidos.

☐ HTTP – Códigos dos Estados

- 1xx Informação envia informações para o cliente de que sua requisição foi recebida e está sendo processada;
- 2xx Sucesso indica que a requisição do cliente foi bem sucedida;

 3xx - Redirecionamento – informa a ação adicional que deve ser tomada para completar a requisição;

□ HTTP – Códigos dos Estados

 4xx - Erro no cliente – avisa que o cliente fez uma requisição que não pode ser atendida;

 5xx - Erro no servidor – ocorreu um erro no servidor ao cumprir uma requisição válida.

□ HTTP – Cookies

- ✓ Definidos na RFC 6265.
- ✓ Permitem que sites monitorem seus usuarios.

- ✓ Podendo restringir o acesso, ou apresentar conteúdo em função da identidade do usuário.
- Utilizado pela maioria dos sites comerciais.

□ SMTP (Simples Mail Transfer Protocol)

- ✓ Principal protocolo de envio de correio eletrônico.
- ✓ Utilizado para enviar um e-mail de um cliente de correio eletrônico para um ou mais servidores de correio eletrônico.
- ✓ Pode ser usado para recebimento de e-mails na comunicação entre servidores

Obs.: Se o envio for feito por meio de webmail, o protocolo utilizado será o HTTP

□ POP3 (Post Office Protocol, versão 3)

- ✓ Forma simplificada de receber, baixar e deletar mensagens de um servidor de e-mail.
- ✓ MODO PADRÃO: realiza o download e em seguida apaga as mensagens da caixa postal
- ✓ MODO ALTERNATIVO: mantém uma cópia das mensagens na caixa postal mesmo após realizar o download.

☐ IMAP (Internet Message Access Protocol)

- ✓ Permite que o usuário acesse todos os seus correios eletrônicos por meio de um cliente de e-mail ou de um webmail – a qualquer momento
- ✓ As mensagens ficam armazenadas na nuvem e podem ser acessadas em diferentes dispositivos ou softwares até que sejam deletadas.

BIBLIOGRAFIA

TANENBAUM, A. Redes de Computadores. Terceira Edição. Editora Campus, 2003.

SOARES, L.F.G.; LEMOS, G. e COLCHER, S. Redes de Computadores: das LANs, MANs e WANs às Redes ATM. Segunda Edição. Editora Campus. Rio de Janeiro, 1995.

KUROSE, R.. Redes de Computadores e a Internet. Quinta Edição. Editora Pearson. 2010.

TORRES, G. Redes de Computadores – Versão Revisada e Atualizada. Ed. Nova Terra, 2009.