Déterminer la forme canonique de $9x^2 + (-8)x + (-13)$

Question 3:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$64 - 48x + 9x^2$$

Question 2:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$9 - 0x^2$$

Réponses:

Déterminer la forme canonique de $9x^2 + (-8)x + (-13)$

Question 2:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$9 - 0x^2$$

Question 3:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$64 - 48x + 9x^2$$

Réponses :

$$9(x-\frac{4}{9})^2 + \frac{133}{9}$$

Déterminer la forme canonique de $9x^2 + (-8)x + (-13)$

Question 2:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$9 - 0x^2$$

Question 3:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$64 - 48x + 9x^2$$

Réponses :

- $9(x-\frac{4}{9})^2 + \frac{133}{9}$
- $2. \quad (3+0x)(3-0x)$

Déterminer la forme canonique de $9x^2 + (-8)x + (-13)$

Question 2:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$9 - 0x^2$$

Question 3:

Factoriser l'expression suivante en utilisant une identité remarquable :

$$64 - 48x + 9x^2$$

Réponses :

$$1. \quad 9\left(x-\frac{4}{9}\right)^2 + \frac{133}{9}$$

$$2. \quad (3+0x)(3-0x)$$

3.
$$(8-3x)^2$$

Solution détaillée de la question 1 :

Déterminer la forme canonique de $9x^2 + (-8)x + (-13)$

•
$$\alpha = -\frac{b}{2a}$$
 Avec $a = 9$,
• $\beta = -\frac{b^2 - 4ac}{4a}$ $b = (-8)$ et $c = (-13)$:

$$\bullet \quad \beta = -\frac{b^2 - 4aa}{4a}$$

$$a = 9$$
,
-8) et $c = (-13)$

Détermination de la forme canonique :
Pour
$$ax^2 + bx + c$$
, la forme canonique est $a(x - \alpha)^2 + \beta$ avec :

$$\alpha = -\frac{b}{2a}$$

$$b = (-8) \text{ et } c = (-13) :$$

$$\alpha = -\frac{(-8)}{2 \times 9} = \frac{8}{18} = \frac{4}{9}$$

$$\beta = -\frac{(-8)^2 - 4 \times 9 \times (-13)}{4 \times 9} = -\frac{64 - (-468)}{36}$$

$$= \frac{532}{-36} = \frac{-133}{9}$$
Donc :

$$9x^{2} + (-8)x + (-13) = 9\left(x - \frac{4}{9}\right)^{2} + \frac{-133}{9}$$

Solution détaillée de la question 2 :

Factoriser l'expression suivante en utilisant une identité remarquable :

$$9 - 0x^2$$

Solution : On reconnaît l'identité remarquable Et
$$v^2 = 0x^2$$
 donc $v = 0x$
 $u^2 - v^2 = (u + v)(u - v)$ Donc : $9 - 0x^2 = (3 + 0x)(3 - 0x)$

$$u^{2} - v^{2} = (u + v)(u - v)$$
Ici $u^{2} - 9$ done $u - 3$

Ici,
$$u^2 = 9$$
 donc $u = 3$

Solution détaillée de la question 3 :

Factoriser l'expression suivante en utilisant une identité remarquable :

$$64 - 48x + 9x^2$$

Solution : On reconnaît l'identité remarquable
$$(u-v)^2 = u^2 - 2uv + v^2$$

rquable Et
$$v^2 = 9x^2$$
 donc $v = 3x$
Vérifions: $2uv = 2 \times 8 \times 4$

$$uv + v^2$$

$$uv + v^2$$

$$(u-v)^2 = u^2 - 2uv + v^2$$

Ici, $u^2 = 64$ donc $u = 8$

Vérifions :
$$2uv = 2 \times 8 \times 3x = 48x$$

$$2 \times 8 \times 3x$$

$$3 \times 3x = 48$$

Verifions:
$$2uv = 2 \times 8 \times 3x = 48x$$

Donc: $64 - 48x + 9x^2 = (8 - 3x)^2$

$$3 \times 3x = 48x$$