

Forschungspraktikum I und II Dr. Christian Czymara Cross-level interactions

AGENDA

- Same level and cross-level interactions
- Grand-mean and group-mean centering
- Tutorial: Influence of political elites on attitudes toward Muslim immigrants

MODELLING INTERACTION EFFECTS

MARGINAL EFFECTS

- We are always interested in the association between a change in x and an associated change in y
- In econometrics, this is called a marginal effect
- Technically, the marginal effect is the slope, so the first derivate of regression equation w. r. t. x_1
- For linear effects: $y = \beta_0 + \beta_1 x_1$
- this is simply the corresponding coefficient: $\frac{\partial y}{\partial x} = \beta_1$
- But for some other effects, it is not (e.g., quadratic, logarithmic, or interaction terms)

INTERACTIONS

Interactions are multiplicative terms:

•
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

• First derivate with respect to x_1 :

$$\cdot \frac{\partial y}{\partial x_1} = \beta_1 + \beta_3 x_2$$

INTERPRETING INTERACTION EFFECTS

$$\cdot \frac{\partial y}{\partial x_1} = \beta_1 + \beta_3 x_2$$

- Effect of x_1 on y depends on level of x_2 and vice versa (again: conditional marginal effect)
- β_1 thus has to be the effect of x_1 on y when x_2 is 0 (and vice versa)
- This is why it often makes sense to mean-center variables

- Research question: Do origin effects on trust in the police among immigrants depend on length of stay?
- Data: Pooled version of ESS 3-9
- Variables:
 - Institutional improvement (difference between rule of law in origin and destination country, ruleoflaw diff)
 - Time since migration (five categories, livecnty_comb)
 - Both assumed continuous for simplicity
- Several controls
- Simplified version of <u>Czymara & Mitchell (2021)</u>

- $trstplc = \beta_0 + \beta_1 rule of law_diff + \beta_2 live cnty_comb + \beta_3 rule of law_diff * live cnty_comb$
- In this model, the effect of migrating into contexts with better working institutions (β_1) can vary by time since migration:
 - Main effect of institutional improvement (β_1)
 - Interaction effect of institutional improvement and time since migration (β_3)
- The effect of institutional improvement is, thus, the combination of β_1 and β_3

Variables	Coefficient
Institutional improvement	0.05 ***
	(0.01)
Time since migration	-0.11 ***
	(0.01)
Institutional improvement X	-0.02 ***
Time since migration	(0.01)

INTERPRETATION

- The relationship between institutional improvement and trust in the police depends on time since migration
- It is about 0.05 for those who migrated recently (livecnty_comb=0),
 slope of red line
- But the association between institutional improvement and trust decreases by -0.02 with each time since migration category
- For those in category 4 ("more than 20 years ago"), this association even becomes negative: 0.05-0.02*4=-0.03 (but not statistically significant)
- In other words: Immigration experiences matter mainly for those who migrated recently

INTERACTIONS WITH MULTI-NATIONAL DATA

INTERACTIONS FOR MULTI-NATIONAL RESEARCH

- In comparative research, the variables of an interaction can be on the same or different levels
- Example: y = income
 - Do the returns to education (x_1) differ for men and women (x_2) ? \rightarrow pure individual-level interaction
 - Does the welfare state type (z_1) have a stronger effect in richer countries (z_2) ? \rightarrow pure country-level interaction
 - Do the returns to education (x) depend on a country's economic wealth (z)? → Cross-level interactions

CROSS-LEVEL INTERACTIONS FOR RANDOM SLOPE MODELS

- What might explain why effects of individual-level variables differ across countries?
- Are there country-level characteristics that can explain this varying effect?
- Can be tested by adding an interaction between variable with random slope (the individual-level effect varying over countries) and a country-level variable
- In other words, which country characteristic accounts for the cross-country variation in the individual-level effect?

- Outcome: life satisfaction (stflife)
- Explanatory variables: income (hinctnt, individual level),
 GDP/c (rgdpc, country level)
- Question: does national wealth explain the variance of the income effect?

```
→In R: lmer(stflife ~ hinctnt + rgdpc + hinctnt*rgdpc
+ (1 + hinctnt | cntry), = ESS02)
```

Life satisfaction	Model 0	Model 1	Model 2	Model 3	Model 4
Income		0.18 ***	0.18 ***	0.19 ***	0.33 ***
GDP/c			0.02 ***	0.02 ***	0.05 **
Income × GDP/c					-0.005 **
Intercept	7.02***	5.99 ***	5.10 ***	5.48 ***	4.42 ***
Random effects					
Intercept	0.617	0.319	0.210	0.771	0.587
Income				0.008	0.005
Covar(Intercept-Income)				-0.07	-0.046
Residual	4.559	4.262	4.262	4.194	4.23

^{*} p<0.05, ** p<0.01, *** p<0.001

Life satisfaction	Model 0	Model 1	Model 2	Model 3	Model 4
				No cross- level interaction	cross-level
Random effect of Intercept				0.008	0.005

- → Reduction of slope variance by adding cross-level interaction: 1 (0.005 / 0.008) = 0.375
- → 37.5 percent of variance of income effect explained by the interaction with GDP/c

CROSS-LEVEL INTERACTIONS AND RANDOM SLOPES

- Strictly speaking, models with cross-level interactions should include a random slope for the individual-level moderator even this random slope is not of theoretical interest
- This is because (potential) correlation of first level errors within countries (e_{ij}) affects standard errors (heteroscedasticity)
- When omitting the random slope (u_{1j}) , individuals from the same country are treated as contributing independent information to the cross-level interaction (see Heisig & Schaeffer 2019: 263)
- This is similar to the violation of the independence assumption for models without random intercept (u_{0j}) (see session on HLMs)
- Typically, standard errors will be anti-conservative and effects will look "too significant"

TRANSFORMING VARIABLES: CENTERING

MEAN CENTERING

- To mean center a variable means to redefine the zero point of a variable
- Useful for continuous x
- Mathematically, it is the difference from a variable's value to its mean (variable – mean(variable))
- Centered variable will have a mean of 0
- Centering is a linear transformation (subtraction) and, thus, does not change substantive results
- ... but potentially the p-values → always plot interactions
- With multi-level data, there are two possibilities: grand mean centering and group mean centering

GRAND MEAN CENTERING

- Centering on the overall mean across all countries and individuals (grand mean)
- Interpretation for cross-level interaction: "Effect of x in a country with average z" or "Effect of z for a person with an average x"
- Model with mean centered variables substantively equivalent to model with original variables

- Why do the effects of ruleoflaw_diff and livecnty_comb1 differ across both models?
- Why is the interaction the same?

		Trust i	n the police		Trust in the police					
Predictors	Estimates s	td. Error	CI	p	Estimates st	d. Error	CI	p		
(Intercept)	6.68	0.18	6.33 - 7.04	<0.001	6.34	0.16	6.03 - 6.66	<0.001		
ruleoflaw diff	0.05	0.01	0.03 - 0.07	<0.001						
livecnty comb 1	-0.11	0.02	-0.16 – -0.07	<0.001						
ruleoflaw_diff:livecnty_comb1	-0.02	0.00	-0.020.01	<0.001	7					
ruleoflaw diff cent					0.00	0.00	-0.00 - 0.01	0.455		
livecnty comb 1 cent					-0.20	0.02	-0.230.16	<0.001		
ruleoflaw_diff_cent:livecnty_comb1_cent	;				-0.02	0.00	-0.020.01	<0.001		
Random Effects										
σ^2	5.57				5.57					
τ_{00}	0.15 essround:entry				0.15 essround:entry					
	0.53 entry				0.53 entry					
ICC	0.11				0.11					
N	7 essround				7 essround					
	22 entry				22 cntry					
Observations	19655				19655					
Marginal R ² / Conditional R ²	0.008 / 0.1	116			0.008 / 0.1	16				

BENEFITS OF GRAND MEAN CENTERING IN HLM

- Better interpretability of intercept's fixed effect (the intercept):
 all x and z at their means (expected value of average subject)
- Better interpretability random effect(s) \rightarrow Expected variances when all all x and z at their means
- Better interpretability of main effects for interactions (effect of x_1 conditional on x_2 being on its mean)
- (Potentially) faster calculations, easier convergence of models

GROUP MEAN CENTERING

- Center at the country mean
- Only possible for individual-level variables (for country variables the country mean is simply its value)
- In R:
 - data %<>%
 group_by(cntry) %>%
 mutate(var g cent = var mean(var))
- Not a simple reparameterization of a model but a completely different model (cf. Hox 2010: 68 f.)

WHEN TO USE GROUP MEAN CENTERING

- Usually, individual-level effects include a mixture of effects within and between countries
- Group mean centering removes all between-group variance (highly used with panel data, not so much with cross-national data, for a comparison see Ziller 2018)
- Only variance within countries (between individuals) is analyzed, all differences between countries are automatically controlled for
- This is equivalent to using country fixed effects (adding dummy variables for all countries but one)
- Accordingly, group mean centering can not be used for country level variables
- However, estimation of cross-level interactions possible (see example)

	Trust in the police			Trust in the police				Trust in the police				
Predictors	Estimates s	td. Error	CI	p	Estimates	std. Error	CI	p	Estimates	std. Error	CI	p
(Intercept)	6.68	0.18	6.33 - 7.04	<0.001	6.34	0.16	6.03 – 6.66	<0.001	6.34	0.17	6.00 - 6.67	<0.001
ruleoflaw diff	0.05	0.01	0.03 - 0.07	<0.001								
livecnty comb 1	-0.11	0.02	-0.160.07	<0.001								
ruleoflaw_diff:livecnty_comb1	-0.02	0.00	-0.020.01	<0.001								
ruleoflaw diff cent			=		0.00	0.00	-0.00 - 0.01	0.455				
livecnty comb 1 cent					-0.20	0.02	-0.230.16	<0.001				
ruleoflaw_diff_cent:livecnty_comb1_cent					-0.02	0.00	-0.020.01	<0.001				
ruleoflaw diff g cent							\		0.00	0.00	-0.00 - 0.01	0.331
livecnty comb 1 g cent							/		-0.19	0.02	-0.22 – -0.16	<0.001
ruleoflaw_diff_g_cent:livecnty_comb1_g_cent									-0.01	0.00	-0.020.00	0.006
Random Effects												
σ^2	5.57				5.57				5.57			
τ ₀₀	0.15 _{essrou}	ınd:entry			0.15 _{essrot}	und:entry			0.15 _{essro}	und:entry		
	0.53 _{entry}				0.53 _{cntry}				0.61 _{cntry}			
ICC	0.11				0.11				0.12			
N	7 essround				7 essround				7 essround			
	22 cntry				22 cntry				22 entry			
Observations	19655				19655				19655			
Marginal R ² / Conditional R ²	0.008 / 0.1	116			0.008 / 0.	116			0.006 / 0.	125		

INTERPRETATION

- Focus on ruleoflaw diff (individual level)
 - Uncentered model: Effect of ruleoflaw_diff for those who migrated most recently
 - Grand mean centered model: Effect of ruleoflaw_diff for those whith an average time since migration
 - Group mean centered model: Effect of ruleoflaw_diff net of country-level differences of police trust (purely based on within country variation)
- In this example, estimates of group mean centered model is similar to the others because most variance of trust in police is on the individual-level (between country differences less important)
- Effects of group mean centered variables will differ...
 - The more effects within countries and between countries differ
 - The larger the share of between country variance

LINEAR TRANSFORMATIONS AND RANDOM SLOPES

 Linear models are invariant for linear transformations (substantive results do not change)

 ... but not estimates of random intercept when random slopes are modelled

 This is because the spread of intercepts changes when x is rescaled

 This holds for random slope models independent of any interactions

Figure 4.2 Varying regression lines, with shifts on X.

IN BRIEF

- Grand mean centering changes intercept but not slope
- Group mean centering changes both intercept and slope

WRAPPING IT UP

WHICH HLM IS THE RIGHT ONE?

- This depends solely on the particular research question
- Is it plausible that individual level effects are constant over the whole population? → No random slope needed
- Is it interesting to see whether effects differ between social groups? → Model interaction
- Etc.
- →The use of a certain model should be justified theoretically (and empirically)

LITERATURE

 Heisig & Schaeffer (2019). Why You Should Always Include a Random Slope for the Lower-Level Variable Involved in a Cross-Level Interaction. European Sociological Review, 35 (2): 258-279