第二讲 向量的乘法

- ▶ 内 积
 - 1.内积的概念与性质
 - 2.内积的坐标形式
- ▶ 外 积
 - 1.外积的概念与性质
 - 2.外积的坐标形式
- ▶ 混合积
 - 1.混合积的概念与性质
 - 2.混合积的几何意义
- > 内容小结

第二讲 向量的乘法

▶ 内 积

- 1.内积的概念与性质
- 2.内积的坐标形式
- 外 积
- 1.外积的概念与性质
- 2.外积的坐标形式
- 混合积
- 1.混合积的概念与性质
- 2.混合积的几何意义
- 内容小结

一、内积

1. 内积的概念与性质

引例. 一质点在力 \vec{F} 的作用下从点A移动到B,力所做的功.

$$\vec{s} = \overrightarrow{AB}$$
,则

$$W = \parallel \vec{s} \parallel \cdot \parallel \vec{F} \parallel \cos \theta = \parallel \vec{s} \parallel \cdot \operatorname{Pr} \mathbf{j}_{\vec{S}} \vec{F}$$

定义 设向量 \vec{a} , \vec{b} 的夹角为 θ ,称

$$\|\vec{a}\|\cdot\|\vec{b}\|\cos\theta \stackrel{\text{idft}}{=} \vec{a}\cdot\vec{b}$$

为 \vec{a} 与 \vec{b} 的内积 (数量积、点积).

内积的意义:

$$(1) \vec{a} \cdot \vec{b} = ||\vec{a}|| \cdot ||\vec{b}|| \cdot \cos \theta$$
$$= ||\vec{a}|| \operatorname{Pr} j_{\vec{a}} \vec{b} = ||\vec{b}|| \operatorname{Pr} j_{\vec{b}} \vec{a}.$$

即有
$$\operatorname{Pr} \mathbf{j}_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{\|\vec{a}\|} = \vec{b} \cdot \vec{e}_a$$

(2)
$$\vec{a}^2 = ||\vec{a}||^2$$

(3) 若
$$\vec{a} \neq 0$$
, $\vec{b} \neq 0$, 则 $\cos\langle \vec{a}, \vec{b} \rangle = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot \|\vec{b}\|}$

特别:
$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$$

内积的运算律:

- (1) 交換律 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- (2) 结合律 (λ为实数)

$$(\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b}) = \lambda (\vec{a} \cdot \vec{b})$$

(3) 分配律
$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

$$\overrightarrow{a} \qquad \overrightarrow{b} \\
\overrightarrow{c} \\
\overrightarrow{Prj_{\vec{c}}} \overrightarrow{a} \qquad \overrightarrow{Prj_{\vec{c}}} \overrightarrow{b} \\
\overrightarrow{Prj_{\vec{c}}} (\overrightarrow{a} + \overrightarrow{b})$$

证 当
$$\vec{c} = \vec{0}$$
 时, 显然成立; 当 $\vec{c} \neq \vec{0}$ 时

$$(\vec{a} + \vec{b}) \cdot \vec{c} = ||\vec{c}|| \Pr j_{\vec{c}} (\vec{a} + \vec{b}) = ||\vec{c}|| (\Pr j_{\vec{c}} \vec{a} + \Pr j_{\vec{c}} \vec{b})$$

$$= ||\vec{c}|| \operatorname{Pr} \mathbf{j}_{\vec{c}} \vec{a} + ||\vec{c}|| \operatorname{Pr} \mathbf{j}_{\vec{c}} \vec{b} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

例1 设 $\|\vec{a}\| = 11$, $\|\vec{b}\| = 23$, $\|\vec{a} - \vec{b}\| = 30$, 求 $\|\vec{a} + \vec{b}\|$.

解
$$\|\vec{a} + \vec{b}\|^2 = (\vec{a} + \vec{b})^2 = \vec{a}^2 + 2\vec{a} \cdot \vec{b} + \vec{b}^2$$

= $\|\vec{a}\|^2 + \|\vec{b}\|^2 + 2\vec{a} \cdot \vec{b} = 650 + 2\vec{a} \cdot \vec{b}$

$$\|\vec{a} - \vec{b}\|^2 = (\vec{a} - \vec{b})^2 = \vec{a}^2 - 2\vec{a} \cdot \vec{b} + \vec{b}^2$$

$$= \|\vec{a}\|^2 + \|\vec{b}\|^2 - 2\vec{a} \cdot \vec{b} = 650 - 2\vec{a} \cdot \vec{b}$$

$$2\vec{a}\cdot\vec{b}=-250,$$

$$||\vec{a} + \vec{b}||^2 = 650 - 250 = 400$$

$$\Rightarrow ||\vec{a} + \vec{b}|| = 20.$$

主要内容

内积的概念与性质

1. 内积的意义; 2. 内积的运算律.

练习 已知 \vec{a} , \vec{b} , \vec{c} 两两垂直,且 $\|\vec{a}\|=1$, $\|\vec{b}\|=2$, $\|\vec{c}\|=3$, 求 $\vec{s} = \vec{a} + \vec{b} + \vec{c}$ 的长度与它和 \vec{a} , \vec{b} , \vec{c} 的夹角.

答案:
$$\|\vec{s}\| = \sqrt{14}, \langle \vec{s}, \vec{a} \rangle = \arccos \frac{1}{\sqrt{14}}$$

第二讲 向量的乘法

内积

- 1.内积的概念与性质
- ► 2.内积的坐标形式 外 积
 - 1.外积的概念与性质
 - 2.外积的坐标形式

混合积

- 1.混合积的概念与性质
- 2.混合积的几何意义

内容小结

复习:

(1)内积的概念

$$\vec{a} \cdot \vec{b} = ||\vec{a}|| \cdot ||\vec{b}|| \cdot \cos \theta$$

$$\Rightarrow \cos\langle \vec{a}, \vec{b} \rangle = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot \|\vec{b}\|}, \quad \text{Pr j}_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{\|\vec{a}\|} = \vec{b} \cdot \vec{e}_{\vec{a}}$$

(2)运算律

交換律 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

结合律
$$(\lambda \vec{a}) \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b}) = \lambda (\vec{a} \cdot \vec{b})$$

分配律
$$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$$

2.内积的坐标形式

设
$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
 , $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, 则

$$\vec{a} \cdot \vec{b} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k})(b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k})$$

$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1, \quad \vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$$

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

两向量的夹角公式

$$\cos\langle\vec{a},\vec{b}\rangle = \frac{\vec{a}\cdot\vec{b}}{\|\vec{a}\|\cdot\|\vec{b}\|} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}$$

特别: $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = 0$.

例 1. 已知 $\vec{a} = (1,1,-4)$, $\vec{b} = (1,-2,2)$, 求(1) $\vec{a} \cdot \vec{b}$; (2) $\vec{a} = \vec{b}$ 的夹角; (3) $\vec{a} \in \vec{b}$ 上的投影.

解 (1)
$$\vec{a} \cdot \vec{b} = 1 \cdot 1 + 1 \cdot (-2) + (-4) \cdot 2 = -9$$
.

(2)
$$\cos\theta = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}$$

$$=-\frac{1}{\sqrt{2}}, \qquad \therefore \theta = \frac{3\pi}{4}.$$

(3)
$$\Pr_{\vec{b}} \vec{a} = \vec{a} \cdot \vec{e}_b = -3.$$

两个重要不等式

(1) 柯西—许瓦兹不等式(Cauchy-Schwarz inequality)

$$|\vec{a} \cdot \vec{b}| \leq ||\vec{a}|| \cdot ||\vec{b}|| \quad \overrightarrow{\mathfrak{M}} \quad (\vec{a} \cdot \vec{b})^2 \leq ||\vec{a}||^2 \cdot ||\vec{b}||^2.$$

$$(::\vec{a}\cdot\vec{b} = \|\vec{a}\|\cdot\|\vec{b}\|\cos\theta)$$

(2) 三角不等式

$$\left\| \vec{a} \pm \vec{b} \right\| \leq \left\| \vec{a} \right\| + \left\| \vec{b} \right\|$$

$$\mathbf{\vec{u}} \qquad \left\| \vec{a} + \vec{b} \right\|^2 = \left\| \vec{a} \right\|^2 + \left\| \vec{b} \right\|^2 + 2\vec{a} \cdot \vec{b}$$

$$\leq ||\vec{a}||^2 + ||\vec{b}||^2 + 2|\vec{a} \cdot \vec{b}|$$

$$\leq ||\vec{a}||^2 + ||\vec{b}||^2 + 2||\vec{a}|| \cdot ||\vec{b}||$$

$$= (||\vec{a}|| + ||\vec{b}||)^2$$
所以 $||\vec{a} + \vec{b}|| \leq ||\vec{a}|| + ||\vec{b}||$
同理可证: $||\vec{a} - \vec{b}|| \leq ||\vec{a}|| + ||\vec{b}||$

主要内容

内积的坐标形式

1. 运算; 2. 两个不等式.

答案:
$$\Pr j_{\vec{a}} \vec{d} = \vec{d} \cdot \vec{e}_a = -\frac{4}{3}$$
.

2. 设
$$\vec{a} = (3,5,-2), \vec{b} = (2,1,4), 若 (\lambda \vec{a} + \vec{b}) \bot z$$
轴,则 $\lambda =$

答案: 2

第二讲 向量的乘法

内积

- 1.内积的概念与性质
- 2.内积的坐标形式

▶ 外 积

- 1.外积的概念与性质
- 2.外积的坐标形式

混合积

- 1.混合积的概念与性质
- 2.混合积的几何意义

内容小结

二、外积

1. 外积的概念

引例. 设O 为杠杆L 的支点,有一个与杠杆夹角为 θ 的力 \vec{F} 作用在杠杆的 P点上,则力 \vec{F} 作用在杠杆上的力矩是一个向量 \vec{M} :

定义 设 \vec{a} , \vec{b} 的夹角为 θ ,定义

称 \vec{c} 为向量 \vec{a} 与 \vec{b} 的 外积. 记作

$$\vec{c} = \vec{a} \times \vec{b}$$

引例中的力矩 $\vec{M} = \vec{OP} \times \vec{F}$

2. 外积的性质

- (1) $\vec{a} // \vec{b} \Leftrightarrow \vec{a} \times \vec{b} = \vec{0}$;
- (2) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$, 特别 $\vec{a} \times \vec{a} = \vec{0}$, $\vec{0} \times \vec{a} = \vec{0}$;
- (3) $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b});$
- (4) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$.

例1 设 $\|\vec{a}\| = 3$, $\|\vec{b}\| = 4$, 且 $\vec{a} \perp \vec{b}$, 求 $\|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\|$.

解 $(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = (\vec{a} \times \vec{a}) - (\vec{a} \times \vec{b}) + (\vec{b} \times \vec{a}) - (\vec{b} \times \vec{b})$ = $2(\vec{b} \times \vec{a})$

几何意义

$$||\vec{a} \times \vec{b}|| = ||\vec{a}|| \cdot ||\vec{b}|| \sin \langle \vec{a}, \vec{b} \rangle$$

$$= ||\vec{a}|| h$$

$$\vec{a}$$

= 以 \vec{a} , \vec{b} 为邻边的平行四边形面积.

主要内容

外积(向量积)

1. 概念; 2. 性质.

练习 设向量 \vec{m} , \vec{n} , \vec{p} 两两垂直,符合右手规则,且 $||\vec{m}||=4$, $||\vec{n}||=2$, $||\vec{p}||=3$,计算 $(\vec{m}\times\vec{n})\cdot\vec{p}$.

答案: 24.

第二讲向量的乘法

- ▶ 内 积
 - 1.内积的概念与性质
 - 2.内积的坐标形式
- 外 积
 - 1.外积的概念与性质
 - 2.外积的坐标形式
- ▶ 混合积
 - 1.混合积的概念与性质
 - 2.混合积的几何意义
- > 内容小结

复习:

1. 外积的概念 $\vec{c} = \vec{a} \times \vec{b}$

$$\vec{c} = \vec{a} \times \vec{b}$$

$$\|\vec{c}\| = \|\vec{a}\| \cdot \|\vec{b}\| \cdot \sin\theta$$

2. 外积的性质

- (1) $\vec{a} / / \vec{b} \Leftrightarrow \vec{a} \times \vec{b} = \vec{0}$;
- (2) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$, 特别 $\vec{a} \times \vec{a} = \vec{0}$, $\vec{0} \times \vec{a} = \vec{0}$;
- (3) $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b});$
- (4) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$.

3. 外积的坐标形式

由定义易得:基向量的外积

$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}$$

$$\vec{i} \times \vec{j} = \vec{k}, \quad \vec{j} \times \vec{k} = \vec{i}, \quad \vec{k} \times \vec{i} = \vec{j},$$

$$\vec{j} \times \vec{i} = -\vec{k}, \quad \vec{k} \times \vec{j} = -\vec{i}, \quad \vec{i} \times \vec{k} = -\vec{j}.$$

设
$$\vec{a} = (a_1, a_2, a_3), \vec{b} = (b_1, b_2, b_3),$$
则

$$\vec{a} \times \vec{b} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times (b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k})$$

$$= a_1 b_2 \vec{k} - a_1 b_3 \vec{j} - a_2 b_1 \vec{k} + a_2 b_3 \vec{i} + a_3 b_1 \vec{j} - a_3 b_2 \vec{i}$$

$$= (a_2 b_3 - a_3 b_2) \vec{i} + (a_3 b_1 - a_1 b_3) \vec{j} + (a_1 b_2 - a_2 b_1) \vec{k}$$

$$= (a_2b_3 - a_3b_2)\vec{i} + (a_3b_1 - a_1b_3)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

由上式可推出

$$\vec{a} / / \vec{b} \iff \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} \quad (\not \exists b_i = 0 \not \exists t, \ \not \exists a_i = 0)$$

例 1 求与 $\vec{a} = 3\vec{i} - 2\vec{j} + 4\vec{k}$, $\vec{b} = \vec{i} + \vec{j} - 2\vec{k}$ 都垂 直的单位向量.

解

$$\vec{c} = \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & -2 & 4 \\ 1 & 1 & -2 \end{vmatrix} = 10\vec{j} + 5\vec{k},$$

$$||\vec{c}|| = \sqrt{10^2 + 5^2} = 5\sqrt{5},$$

$$\therefore \vec{e}_c = \pm \frac{\vec{c}}{\parallel \vec{c} \parallel} = \pm \left(\frac{2}{\sqrt{5}} \vec{j} + \frac{1}{\sqrt{5}} \vec{k}\right).$$

例 2 在顶点为A(1,-1,2)、B(5,-6,2)和

C(1,3,-1)的三角形中,求AC边上的高BD.

解
$$\overrightarrow{AC} = (0,4,-3),$$
 $\overrightarrow{AB} = (4,-5,0)$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & -5 & 0 \\ 0 & 4 & -3 \end{vmatrix} = (15,12,16)$$

$$S_{\Delta ABC} = \frac{1}{2} \| \overrightarrow{AC} \times \overrightarrow{AB} \| = \frac{1}{2} \sqrt{15^2 + 12^2 + 16^2} = \frac{25}{2},$$

$$\|\overrightarrow{AC}\| = \sqrt{4^2 + (-3)^2} = 5$$
, $S_{\Delta ABC} = \frac{1}{2} \|\overrightarrow{AC}\| \cdot \|\overrightarrow{BD}\|$

$$\Rightarrow \frac{25}{2} = \frac{1}{2} \cdot 5 \cdot ||\overrightarrow{BD}||, \quad \therefore \quad ||\overrightarrow{BD}|| = 5.$$

外积的坐标形式

练习 1.设 $A_i = (x_i, y_i, z_i), (i = 1, 2, 3)$ 为平面上的三个点,用外积表示这三个点共线的充要条件.

答案: $\overrightarrow{A_1A_2} \times \overrightarrow{A_1A_3} = 0$

2. 设单位向量 \overrightarrow{OA} 与三个坐标轴夹角相等,B是点M(1,-3,2)关于N(-1,2,1)的对称点. 求 $\overrightarrow{OA} \times \overrightarrow{OB}$.

答案:
$$\pm \frac{1}{\sqrt{3}}(-7,-3,10)$$
.

第二讲 向量的乘法

内积

- 1.内积的概念与性质
- 2.内积的坐标形式

外 积

- 1.外积的概念与性质
- 2.外积的坐标形式

➤ 混合积

- 1.混合积的概念与性质
- 2.混合积的几何意义 内容小结

三、混合积

1.混合积的概念

定义设已知三个向量 \vec{a} , \vec{b} , \vec{c} , 数量 $(\vec{a} \times \vec{b}) \cdot \vec{c}$ 称为这三个向量的混合积,记为 $[\vec{a}\ \vec{b}\ \vec{c}]$.

坐标形式:

设
$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$, $\vec{l} = c_1 \vec{l} + c_2 \vec{l} + c_3 \vec{l} + c_$

$$= \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$\mathbb{E}[\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

2. 混合积的性质

(1) 轮换对称性:

$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = [\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}] = [\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}]$$

即
$$(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}$$
.

(2) 对任意实数 λ , μ , 有 $[\vec{a}\ \vec{b}\ (\lambda\vec{c} + \mu\vec{d})] = \lambda[\vec{a}\ \vec{b}\ \vec{c}] + \mu[\vec{a}\ \vec{b}\ \vec{d}]$ 即 $(\vec{a} \times \vec{b}) \cdot (\lambda\vec{c}\ + \mu\vec{d}) = \lambda(\vec{a} \times \vec{b}) \cdot \vec{c} + \mu(\vec{a} \times \vec{b}) \cdot \vec{d}$

例 已知[
$$\vec{a} \ \vec{b} \ \vec{c}$$
] = 2,
计算[$(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})$]·($\vec{c} + \vec{a}$).
解1 [$(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})$]·($\vec{c} + \vec{a}$)
= [$\vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c}$)]·($\vec{c} + \vec{a}$)
= 0
= ($\vec{a} \times \vec{b}$)· \vec{c} + ($\vec{a} \times \vec{c}$)· \vec{c} + ($\vec{b} \times \vec{c}$)· \vec{c}
= 0
+ ($\vec{a} \times \vec{b}$)· \vec{a} + ($\vec{a} \times \vec{c}$)· \vec{a} + ($\vec{b} \times \vec{c}$)· \vec{a}
= 0 = ($\vec{a} \times \vec{b}$)· \vec{c}
= 2($\vec{a} \times \vec{b}$)· \vec{c} = 2[$\vec{a} \ \vec{b} \ \vec{c}$] = 4.

解2
$$[(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})] \cdot (\vec{c} + \vec{a})$$

$$= [\vec{a} + \vec{b} \quad \vec{b} + \vec{c} \quad \vec{c} + \vec{a}]$$

$$= [\vec{a} \vec{b} \vec{c}] \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$

$$= 2[\vec{a} \vec{b} \vec{c}] = 4.$$

主要内容

混合积

1. 概念; 2. 性质.

第二讲 向量的乘法

内积

- 1.内积的概念与性质
- 2.内积的坐标形式

外 积

- 1.外积的概念与性质
- 2.外积的坐标形式

➤ 混合积

- 1.混合积的概念与性质
- 2.混合积的几何意义 内容小结

三、混合积

1.混合积的概念

定义设已知三个向量 \vec{a} , \vec{b} , \vec{c} , 数量 $(\vec{a} \times \vec{b}) \cdot \vec{c}$ 称为这三个向量的混合积,记为 $[\vec{a}\ \vec{b}\ \vec{c}]$.

坐标形式:

设
$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$,
$$|\vec{a} \ \vec{b} \ \vec{c}| = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \cdot (c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k})$$

$$= \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$\mathbb{E}[\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

2. 混合积的性质

(1) 轮换对称性:

$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = [\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}] = [\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}]$$

即
$$(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}$$
.

(2) 对任意实数 λ , μ , 有 $[\vec{a}\,\vec{b}\,(\lambda\vec{c} + \mu\vec{d})] = \lambda[\vec{a}\,\vec{b}\,\vec{c}] + \mu[\vec{a}\,\vec{b}\,\vec{d}]$ 即 $(\vec{a}\times\vec{b})\cdot(\lambda\vec{c} + \mu\vec{d}) = \lambda(\vec{a}\times\vec{b})\cdot\vec{c} + \mu(\vec{a}\times\vec{b})\cdot\vec{d}$

例 已知[
$$\vec{a} \ \vec{b} \ \vec{c}$$
] = 2,
计算[$(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})$]·($\vec{c} + \vec{a}$).
解1 [$(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})$]·($\vec{c} + \vec{a}$)
= [$\vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c}$)]·($\vec{c} + \vec{a}$)
= 0
= ($\vec{a} \times \vec{b}$)· \vec{c} + ($\vec{a} \times \vec{c}$)· \vec{c} + ($\vec{b} \times \vec{c}$)· \vec{c}
= 0
+ ($\vec{a} \times \vec{b}$)· \vec{a} + ($\vec{a} \times \vec{c}$)· \vec{a} + ($\vec{b} \times \vec{c}$)· \vec{a}
= 0 = ($\vec{a} \times \vec{b}$)· \vec{c}
= 2($\vec{a} \times \vec{b}$)· \vec{c} = 2[$\vec{a} \ \vec{b} \ \vec{c}$] = 4.

解2
$$[(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})] \cdot (\vec{c} + \vec{a})$$

$$= [\vec{a} + \vec{b} \quad \vec{b} + \vec{c} \quad \vec{c} + \vec{a}]$$

$$= [\vec{a} \vec{b} \vec{c}] \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$

$$= 2[\vec{a} \vec{b} \vec{c}] = 4.$$

主要内容

混合积

1. 概念; 2. 性质.

第二讲 向量的乘法

内积

- 1.内积的概念与性质
- 2.内积的坐标形式

外 积

- 1.外积的概念与性质
- 2.外积的坐标形式

混合积

- 1.混合积的概念与性质
- 2.混合积的几何意义 内容小结

复习:

1.混合积的概念

设
$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$$
, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, $\vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k}$, $|a_1 \quad a_2 \quad a_3|$ $|\vec{a} \vec{b} \vec{c}| = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

2. 混合积的性质

(1) 轮换对称性:

$$[\vec{a} \vec{b} \vec{c}] = [\vec{b} \vec{c} \vec{a}] = [\vec{c} \vec{a} \vec{b}]$$

$$\mathbb{P}(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}.$$

(2) 线性性
$$(\vec{a} \times \vec{b}) \cdot (\lambda \vec{c} + \mu \vec{d}) = \lambda (\vec{a} \times \vec{b}) \cdot \vec{c} + \mu (\vec{a} \times \vec{b}) \cdot \vec{d}$$

3. 混合积的几何意义

$$|[\vec{a}\ \vec{b}\ \vec{c}]| = |(\vec{a} \times \vec{b}) \cdot \vec{c}|$$

$$= ||\vec{a} \times \vec{b}|| \cdot |\Pr_{\vec{a} \times \vec{b}} \vec{c}|$$

$$= Sh = V$$

3. 混合积的几何意义

$$|[\vec{a}\ \vec{b}\ \vec{c}]| = |(\vec{a} \times \vec{b}) \cdot \vec{c}|$$

$$= ||\vec{a} \times \vec{b}|| \cdot |\Pr_{\vec{a} \times \vec{b}} \vec{c}|$$

$$= Sh = V$$

三向量 \vec{a} 、 \vec{b} 、 \vec{c} 共面

$$\Leftrightarrow [\vec{a}\ \vec{b}\ \vec{c}] = 0.$$

例 已知一四面体的顶点 $A_k(x_k, y_k, z_k)$ (k = 1, 2, 3, 4) 求该四面体体积.

解 已知四面体的体积等于以向量 $\overline{A_1A_2}$, $\overline{A_1A_3}$, $\overline{A_1A_4}$ 为棱的平行六面体体积的 $\frac{1}{6}$, 故

$$V = \frac{1}{6} \left[\overrightarrow{A_1 A_2} \ \overrightarrow{A_1 A_3} \ \overrightarrow{A_1 A_4} \right]$$

$$= \frac{1}{6} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \\ x_4 - x_1 & y_4 - y_1 & z_4 - z_1 \end{vmatrix}$$

主要内容

混合积的几何意义

练习. 证明四点 A(1,1,1), B(4,5,6), C(2,3,3),

D(10,15,17)共面.

解因

$$= \begin{vmatrix} 3 & 4 & 5 \\ 1 & 2 & 2 \\ 9 & 14 & 16 \end{vmatrix} = 0$$

故A,B,C,D 四点共面.

第二讲 向量的乘法

内积

- 1.内积的概念与性质
- 2.内积的坐标形式

外 积

- 1.外积的概念与性质
- 2.外积的坐标形式

混合积

- 1.混合积的概念与性质
- 2.混合积的几何意义

▶ 内容小结

内容小结

1. 向量的数量积(结果是一个数量)

$$\vec{a} = (a_1, a_2, a_3), \ \vec{b} = (b_1, b_2, b_3).$$

$$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$$

$$= ||\vec{a}|| \cdot ||\vec{b}|| \cdot \cos \theta$$

$$= \parallel \vec{a} \parallel \Pr j_{\vec{a}} \vec{b} = \parallel \vec{b} \parallel \Pr j_{\vec{b}} \vec{a}.$$

$$(1)\cos\langle\vec{a},\vec{b}\rangle = \frac{\vec{a}\cdot\vec{b}}{\|\vec{a}\|\cdot\|\vec{b}\|} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}}$$

(2)
$$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = 0.$$

(3)
$$\operatorname{Pr} j_{\vec{a}} \vec{b} = \frac{\vec{b} \cdot \vec{a}}{\|\vec{a}\|} = \vec{b} \cdot \vec{e}_a$$

运算性质:

$$1^0 |\vec{a}|^2 = ||\vec{a}||^2$$
;

$$2^0 \ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a};$$

$$3^{0} (\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}) = \vec{a} \cdot (\lambda \vec{b}), \ \lambda, \in \mathbb{R};$$

$$4^0 \vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}.$$

2. 向量的向量积(结果是一个向量)

$$\vec{c} = \vec{a} \times \vec{b}$$
 { 方向: $\vec{c} \perp \vec{a}$, $\vec{c} \perp \vec{b}$ 且符合右手规则 模: $||\vec{c}|| = ||\vec{a}|| \cdot ||\vec{b}|| \cdot \sin \theta$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

 $\|\vec{a} \times \vec{b}\| = \bigcup \vec{a}, \vec{b}$ 为邻边的平行四边形面积.

性质:

$$1^{0} \vec{a} / / \vec{b} \Leftrightarrow \vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \frac{a_{1}}{b_{1}} = \frac{a_{2}}{b_{2}} = \frac{a_{3}}{b_{3}}$$

$$2^{0}$$
 $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$, 特别 $\vec{a} \times \vec{a} = \vec{0}$, $\vec{0} \times \vec{a} = \vec{0}$;

$$3^{0} (\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b});$$

$$4^{0} (\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}.$$

3. 向量的混合积(结果是一个数量)

$$[\vec{a}\ \vec{b}\ \vec{c}\] = (\vec{a}\times\vec{b})\cdot\vec{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

性质:

(1)
$$[\vec{a}\ \vec{b}\ \vec{c}] = [\vec{b}\ \vec{c}\ \vec{a}] = [\vec{c}\ \vec{a}\ \vec{b}]$$

(2) 对任意实数 λ, μ, 有

$$[\vec{a}\ \vec{b}\ (\lambda \vec{c} + \mu \vec{d})] = \lambda [\vec{a}\ \vec{b}\ \vec{c}] + \mu [\vec{a}\ \vec{b}\ \vec{d}]$$

几何意义: $|[\vec{a}\ \vec{b}\ \vec{c}]| = Sh = V$ (平行六面体体积)

三向量 \vec{a} 、 \vec{b} 、 \vec{c} 共面 $\Leftrightarrow [\vec{a}\ \vec{b}\ \vec{c}] = 0$.