Complexité du produit de matrice par la méthode de Strassen

20 septembre 2015

1 Rappel sur la complexité du produit matriciel de Strassen

Pour multiplier 2 matrices carrées de taille $n \times n$, la méthode de Strassen calcule le produit de 7 matrices de taille n/2 par n/2, et calcule des sommes de matrices de taille $n \times n$, ce qui coûte $O(n^2)$. Donc le temps T(n) vérifie : T(1) = 1 et pour $n = 2^k \Rightarrow T(n) = 7 \times T(n/2) + n^2$

La suite T(n) est la suite A016150 dans l'encyclopédie de Sloane ¹. L'encyclopédie nous économise quelques calculs fastidieux :

k	0	1	2	3	4	5	6	7	8
$n=2^k$	1	2	4	8	16	32	64	128	256
$\mathbf{T}(\mathbf{n})$	1	11	93	715	5261	37851	269053	1899755	13363821
7^{k+1}	7	49	343	2401	16807	117649	823543	5764801	40353607
4^{k+1}	4	16	64	256	1024	4096	16384	65536	262144
$(7^{k+1} - 4^{k+1})/3$	1	11	93	715	5261	37851	269053	1899755	13363821

On constate que:

$$T(2^k) = (7^{k+1} - 4^{k+1})/3$$

et, une fois la formule connue, on peut la prouver facilement par récurrence. On en déduit :

$$\begin{array}{lll} 3T(n) & = & 7 \times 7^k - 4 \times 4^k \\ & = & 7 \times 2^{k \frac{\log 7}{\log 2}} - 4 \times 4^{k \frac{\log 4}{\log 2}} \\ & = & 7 \times 2^k \times 2^{\frac{\log 7}{\log 2}} - 4 \times 4^k \times 4^{\frac{\log 4}{\log 2}} \\ & = & 7 \times n^{\frac{\log 7}{\log 2}} - 4 \times n^2 \times 4^2 \\ & = & 7 \times n^{\log_2 7} - 64n^2 \\ & = & O(n^{\log_2 7}) = O(n^{2.807}) \end{array}$$

CQFD. En conclusion $T(n) = O(n^{\log_2 7})$.

^{1.} Disponible sur internet : http://oeis.org

2 Calcul de la complexité du produit matriciel de Strassen

Exprimons sous forme matricielle la complexité du produit matriciel de Strassen :

$$T(1) = 1, T(n) = 7 \times T(n/2) + n^2$$

par:

$$\left(\begin{array}{c} T(n) \\ n^2 \end{array}\right) = \left(\begin{array}{cc} 7 & 4 \\ 0 & 4 \end{array}\right) \left(\begin{array}{c} T(n/2) \\ (n/2)^2 \end{array}\right)$$

Si $n=2^k$, alors:

$$\begin{pmatrix} T(2^k) \\ (2^k)^2 \end{pmatrix} = \begin{pmatrix} 7 & 4 \\ 0 & 4 \end{pmatrix}^k \begin{pmatrix} T(1) = 1 \\ 1 \end{pmatrix}$$

Posons:

$$M = \left(\begin{array}{cc} 7 & 4 \\ 0 & 4 \end{array}\right)$$

Il suffit de diagonaliser cette matrice M pour obtenir la formule pour T(n). Les valeurs propres de M, les λ telles que

$$0 = \det(M - \lambda I) = \begin{vmatrix} 7 - \lambda & 4 \\ 0 & 4\lambda \end{vmatrix} = (\lambda - 7) \times (\lambda - 4)$$

sont $\lambda_1 = 7$, $\lambda_2 = 4$.

Le vecteur propre à gauche $v_1^t = (x_1, y_1)$, tel que

$$v_1^t M = \lambda_1 v_1^t = 7(x_1, y_1) = (7x_1, 4x_1 + 4y_1)$$

est, à une constante multiplicative (non nulle) près : $v_1^t = (3, 4)$.

Le vecteur propre à gauche $v_2^t = (x_2, y_2)$, tel que

$$v_2^t M = \lambda_2 v_2^t = 4(x_2, y_2) = (7x_2, 4x_2 + 4y_2)$$

est, à une constante multiplicative (non nulle) près : $v_2 = (0,1)$.

En posant:

$$V = \begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix}, \quad V^{-1} = \begin{pmatrix} 1/3 & -4/3 \\ 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 4 \end{pmatrix}$$

on en déduit que

$$VM = DV \Rightarrow M = V^{-1}DV \Rightarrow M^k = (V^{-1}DV)^k = V^{-1}D^kV$$

D'où la formule pour $T(n=2^k)$, obtenue en développant :

$$\begin{pmatrix} T(2^k) \\ 4^k \end{pmatrix} = M^k \begin{pmatrix} 1 \\ 1 \end{pmatrix} = V^{-1} D^k V \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1/3 & -4/3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 7^k & 0 \\ 0 & 4^K \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (2)

Remarque : on peut faire la même chose pour la suite de Fibonacci, pour l'analyse en complexité de la multiplication de Karatsuba où T(1)=1, T(n)=3T(n/2)+n, et bien d'autres...