Программирование на языке FBD в среде ТІА PORTAL

01 TIA Portal

В папке PLC tags создаются таблицы тегов, то есть таблицы содержащие адреса, типы, названия переменных

Блоки программы

Организационные блоки (OBs) определяют структуру программы. Некоторые ОВ имеют заранее определенное поведение и стартовые события (например, по умолчанию, ОВ100 выполняется при включении контроллера)

Функции (FC) и функциональные блоки (FB) содержат программный код. В отличие от FC, FB имеет связанный блок данных, которые используются в этой программе. FC не связаны ни с каким особым блоком данных (DB). FB связаны непосредственно с DB и используют DB для передачи параметров и хранения промежуточных значений и результатов

Блоки данных (DB) хранят данные, которые могут использоваться программными блоками

Симулятор PLCSIM

Программа выполняется поциклово или в повторном режиме

План создания проекта в TIA Portal

- 1. Создать новый проект
- 2. Добавить в проект контроллер и все необходимые модули
- 3. Настроить параметры выбранного контроллера Clock memory при необходимости, и адреса входов-выходов
- 4. Заполнить таблицу входов-выходов в PLC Tags
- 5. Написать программу

02

Пишем простые программы

Работа с программными блоками

Обычно иерархия (простого учебного) проекта такова:

На этой практике нам не понадобятся FB и DB блоки

Работа с программными блоками

Язык программирования блока можно сменить в настройках блока (нажать правой кнопкой мыши -> Properties):

Работа с программными блоками

Создадим новый блок FB1 и сразу добавим его вызов в OB1:

Пример простой программы

Логическое уравнение:

$$Q1.1 = I0.0 \& I0.1 \& (I0.2 OR I0.3)$$

Пример простой программы

Логическое уравнение:

$$Q1.1 = I0.0 \& I0.1 \& (I0.2 OR I0.3)$$

Код на языке FBD:

Задача 1

```
Реализовать логические функции в TIA Portal:
  Q1.1 = I0.0 \& I0.1 \& (I0.2 OR (I0.4 \& (I0.3 OR I0.5)))
 Q5.0 = (I0.1 OR (I0.0 & I0.2 & I0.5) OR (I0.3 & I0.4 \stackrel{\wedge}{\leftarrow}
→& I0.6)) & I0.7
  Q0.6 = (I0.1 OR I0.5 OR I0.7) & ((i0.2 & i0.0) OR \rightarrow
→OR (I0.3 & i0.4 & (I1.1 OR I1.2)))
```

Задача 2

Написать программу для кодирования выходных сигналов в зависимости от комбинации входных (по вариантам)

Таймеры

Таймеры в TIA Portal

Импульс

Импульс с памятью

Задержка включения

Задержка выключения

Таймер: PULSE

Пока на вход приходит 1, на выход передается 1 в течение времени работы таймера. Если на вход приходит 0, отсчет времени заканчивается и таймер передает на выход 0. При подаче на вход R сигнала 1, таймер немедленно сбрасывается и выдает 0

Таймер: РЕХТ

Когда на вход приходит 1, на выход передается 1 в течение времени работы таймера. Таймер передает 0 на выход только по завершении отсчета, независимо от сигнала на входе. При сбросе 1 на входе и повторном включении до истечения первого отсчета, таймер начинает отсчет с начала. Таймер сбрасывается при подаче сигнала 1 на вход R. Требует принудительного сброса!

Таймер: ON DELAY

При подаче на вход сигнала 1 таймер начинает отсчет времени и передает на выход 1 по завершении отсчета. Если сигнал на входе прерывается (приходит 0), таймер прекращает отсчет и выдает 0 на выходе. Таймер сбрасывается в любой момент при подаче сигнала 1 на R

Таймер: ODTS

При подаче на вход сигнала 1 таймер начинает отсчет времени и передает на выход 1 по завершении отсчета. Таймер продолжает отсчет времени независимо от сигнала на входе. При сбросе 1 на входе и повторном включении до истечения первого отсчета, таймер начинает отсчет с начала. Таймер сбрасывается при подаче сигнала 1 на вход R. Требует принудительного сброса!

Таймер: OFF DELAY

При подаче на вход сигнала 1 таймер передает на выход сигнал 1. При подаче на вход сигнала 0 (негативный фронт), таймер начинает отсчет времени и передает 0 на выход по завершении. Если сигнал 0 на входе прерывается (приходит 1), таймер прекращает отсчет и выдает 1 на выходе. Таймер сбрасывается в любой момент при подаче сигнала 1 на R

Задача 3

Реализовать «бегущий огонь» – программа запускается по нажатию кнопки M2.0. Далее по очереди с интервалом 1 секунда начинают «зажигаться» биты от M1.0 до M1.7, цикл повторяется