Н3	A/D nřovodník	3D2
19. 3. 2018	A/D převodník	Meinlschmidt

ZADÁNÍ:

- 1. Převodník A/D:
 - a) Popište princip
 - b) Jaké znáte druhy?
 - c) Vyberte si jeden typ a podrobněji popište jeho konstrukci a princip činnosti
 - d) Vysvětlete pojmy LSB a MSB
 - e) Uveďte praktické příklady použití A/D převodníků
- 2. Určete velikost napětí U_{LSB} změřením napětí U_{00} a U_{FF}
- 3. Změřte hodnotu napětí jednotlivých bitů 8 bitového převodníku
- 4. Změřte závislost výstupního analogového napětí U_D na vstupním digitálním napětí U_A . Napětí U_A nastavujte v rozmezí $0 \dots + 5 V$ s krokem 0,2 V.
- 5. Vypočtěte chyby, sestrojte grafy závislosti $U_D = f(U_A)$ a korekční křivku $K = f(U_D)$

ODPOVĚDI NA OTÁZKY:

Popište princip A/D převodníků:

Fungování A/D převodníku spočívá v převádění analogového signálu na signál digitální. Hlavními parametry pro fungování převodníku jsou – vzorkování a kvantování. Vzorkování udává, kolik vzorku za jednotku času je převodník schopný přečíst, resp. udává frekvenci. Čím vyšší, tím přesnější převod.

Druhým důležitým parametrem je kvantování, resp. počet úrovní, který převodník zvládá. Zpravidla nabývá hodnot $2^N - tj$. 8 bitů (256 hodnot – úrovní), 10 bitů (1024 hodnot) atd. Více jak 12 bitů již ztrácí smysl z důvodu nepřesnosti analogových součástek.

Chyba převodníku je zpravidla do $\frac{1}{2}U_{LSB}$ (tj. do poloviny kvantizační úrovně). Frekvence dat převodníku se zpravidla volí dvojnásobná oproti maximální možné, kterou převodník dokáže. Při použití nižších frekvencí může dojít k výraznému zkreslení.

Druhy A/D převodníků:

A/D převodníků je několik druhů. V zásadě se rozlišují podle vnitřní stavby a to na – komparační nebo kompenzační. Dále také existují převodníky integrační nebo převádějící na frekvenci.

- Komparační paralelní
- Komparační s postupnou komparací
- Kompenzační čítací
- Kompenzační sledovací
- Kompenzační s postupnou aproximací
- Převodník s dvojí integrací
- Převodník s převodem na frekvenci

Velmi významnou součástkou A/D převodníků je operační zesilovač.

Kompenzační čítací A/D převodník:

Konstrukce čítacího převodníku je velmi jednoduchá, a i přesto je převodník značně rychlý. Na kladnou svorku operačního zesilovače je přivedeno měřené (vstupní) napětí. Jelikož se na druhé svorce nachází napětí nižší, operační zesilovač začne vstupní napětí zesilovat. To je přivedeno na AND hradlo, které sepne na výstupu 1 pokud má na druhý vstup přiveden kladný signál z hodin.

Následně dojde k vynulování čítače, který začne čítat a jeho digitální výstup je převáděn D/A převodník zpět na napětí, které je zpětnou vazbou přivedeno na zápornou svorku operačního zesilovače. S rostoucí hodnotou čítače roste analogový výstup D/A převodníku, roste velikost napětí na zpětné vazbě a rozdíl mezi vstupními svorkami na operačním zesilovači klesá.

V momentě, velikost napětí na zpětné vazbě budě vyšší než hodnota na kladné svorce, operační zesilovač začne zesilovat do záporných hodnot, výstup hradla AND se stane 0, čítač přestává čítat a hodnota se zapíše do paměti.

Vysvětlete pojmy LSB a MSB

LSB – Least Significant Bit je hodnota nejméně významného bitu. Jako ten se zpravidla označuje bit nejvíce vpravo.

MSB – Most Significant Bit je hodnota nejvíce významného bitu. Jako ten se zpravidla označuje bit nejvíce vlevo.

Uveďte praktické příklady použití A/D převodníků

A/D převodníky mají v dnešní době velký význam. Častou jsou integrovány do mikročipů a slouží k měření vstupního napětí, čehož můžou využívat měřící přístroje v laboratoři, různé senzory, veškeré analogové audio, které je potřeba převést na digitální výstup (mikrofon připojený k počítači) atd.

SCHÉMA ZAPOJENÍ:

TEORIE:

Napětí připadající na nejméně významný bit ... $U_{LSB}[V]$ Napětí odpovídající nejvyšší hodnotě A/D převodníku (FF) ... $U_{FF}[V]$ Napětí odpovídající nejnižší hodnotě A/D převodníku (00) ... $U_{00}[V]$

$$U_{LSB} = \frac{U_{FF} - U_{00}}{2^{N}}$$

Decimální hodnota výstupu A/D převodníku ... Y_D Digitální napětí (teoretická hodnota vstupního napětí) ... $U_D[V]; U_D = Y_D \cdot U_{LSB}$ Analogové napětí (skutečná hodnota vstupního napětí) ... $U_A[V]$

Absolutní chyba ... $\Delta m [V]; \Delta m = U_D - U_A$

Korekce ... K [V]; $K = -\Delta m$

Relativní chyba ... $\delta m \ [\%]; \ \delta m = \frac{\Delta m}{U_D} \cdot 100\%$

POUŽITÉ PŘÍSTROJE A POMŮCKY:

Název	Typové označení	Inventární číslo
Napájecí zdroj	UNI-T UTP-3701S	075/15
Panel s A/D převodníkem	P-01	
Voltmetr	UNI-T UT801	947/25
Proměnný rezistor		463/19

POPIS PRÁCE:

Před samotným měřením jsme si připravili potřebné pomůcky a součástky – například napájecí zdroj, panel s A/D převodníkem atd. Jejich typové značky, evidenční čísla a jiné nutné údaje jsme řádně zapsali do záznamu o měření.

Referenční napětí převodníku jsme připojili na stejný zdroj jako analogový vstup. Jeho hodnotu jsme však reguloval reostatem. Měření probíhalo vždy v rozsahu $0\ V\ \dots\ 5\ V$. Při měření jsme se nedostali do záporných hodnot.

V první úloze jsme hodnotu měřeného napětí upravovali tak, abychom na výstupu převodníku získali požadované digitální hodnoty (signalizováno LED). Naměřené U_A jsme zapsali k příslušné binární hodnotě výstupu převodníku.

Jako další jsme změřili napětí U_{FF} a U_{00} , což jsou nejvyšší a nejnižší hodnoty převodníku. Nastavili jsme reostat tak, aby digitální hodnoty byly 0000 0000 a 1111 1111. Jelikož víme počet úrovní převodníku, můžeme výpočtem určit také U_{LSB} . Jelikož se jedná o 8 bitový převodník, počet úrovní bude 2^8 tj. 256 úrovní.

Následně se přesunuli na vyhotovení poslední úlohy. Úkolem je měřit závislost výstupní hodnoty a vstupního napětí U_A převodníku. A to v rozmezí $0\ V$... $5\ V$ při kroku $0,2\ V$ vstupního napětí U_A . Zde jsme udělali první chybu, když jsme jako krok zvolili U_{LSB} , jehož hodnota je velmi podobná kroku v zadání - $0,0195\ V \cong 0,02\ V$.

Při měření poslední úlohy jsme reostatem nastavili požadovanou hodnotu U_A podle voltmetru. Zapsali jsme binární výstup převodníku. Dle zadání jsme jej převedli do hexadecimální soustavy.

Převod mezi těmito dvěma soustavami je velmi jednoduchý (lehčí než převod do desítkové). 8 bitové binární číslo rozdělíme na skupiny po 4 bitech. Tyto 4 bity reprezentují jednu hodnotu v šestnáctkové soustavě (10 ... A, 11 ... B atd.). Pro výpočet U_D, jakožto teoretické hodnoty vstupního napětí při daném výstupu, je potřeba hodnota v decimální soustavě (počet úrovní). Proto jako mezi-výpočet převedeme hexadecimální výstup na

decimální a vynásobíme hodnotou napětí nejméně významného bitu. Nakonec jsme spočítali chyby dle vzorce.

Jelikož průběh závislosti U_A na U_D je u převodníku lineární, tak při jeho vykreslování jsem zvolil pouhé body do grafu a ty jsem následně proložil přímkou. Díky tomu jsou lépe vidět odchylky proti očekávanému průběhu. Při sestavování korekční křivky jsem si všiml, že hodnoty systematicky klesají. V korekční křivce se zpravidla projevují následující chyby:

- Chyba převodníku
- Chyba měřícího přístroje (např. jeho vnitřní odpor)
- Náhodné chyby měření (lidská chyba)

Chyba, která zapříčiňovala neustálé klesání hodnot, se opakovala s každým měřením, čímž lze vyloučit náhodné chyby měření. Tuto chybu nazýváme **systematickou** a po její identifikaci ji lze **kompenzovat** tak, abychom získali výsledky, které jsou bližší těm skutečným.

Pomocí spojnice trendu jsem naměřené hodnoty aproximoval a získal lineární průběh, který lze popsat rovnicí v pravém dolním rohu. Tuto rovnici jsem využil k vytvoření bodů na dané přímce, které mají shodnou pozici X s body naměřenými. Následně jsem na každý z bodů aplikoval rovnici:

$$korekce_Y = aproximace_Y + |mereni_Y|$$

Díky tomu jsem získal body po eliminaci systémové chyby. Do grafu korekční křivky jsem také zakreslil hranice tolerance.

TABULKY:

	BIN	U _A [<i>V</i>]
D0	0000 0001	0,020
D1	0000 0010	0,030
D2	0000 0100	0,070
D3	0000 1000	0,150
D4	0001 0000	0,310
D5	0010 0000	0,610
D6	0100 0000	1,230
D7	1000 0000	2,450

$\mathbf{U}_{\mathrm{FF}}\left[V\right]$	5,00
$U_{00}[V]$	0,00
$\mathbf{U}_{\mathrm{LSB}}\left[V\right]$	0,0195

$\Delta \mathbf{m} [V]$	K [V]	δm [%]
0,0000	0,0000	0,0000
-0,0047	0,0047	-2,4000
0,0102	-0,0102	2,4762
-0,0922	0,0922	-18,1538
0,0008	-0,0008	0,0976
-0,0039	0,0039	-0,3922
0,0109	-0,0109	0,9032
0,0258	-0,0258	1,8082
-0,0180	0,0180	-1,1358
-0,0422	0,0422	-2,4000
-0,0273	0,0273	-1,3861
0,0070	-0,0070	0,3186
0,0219	-0,0219	0,9032
0,0172	-0,0172	0,6567
0,0125	-0,0125	0,4444
-0,0117	0,0117	-0,3922
-0,0359	0,0359	-1,1358
-0,0211	0,0211	-0,6243
0,0523	-0,0523	1,4332
0,0281	-0,0281	0,7347
0,0234	-0,0234	0,5825
-0,0008	0,0008	-0,0186
0,0141	-0,0141	0,3186
0,0289	-0,0289	0,6245
0,0242	-0,0242	0,5020
-0,0195	0,0195	-0,3922

$\mathbf{U}_{\mathbf{A}}\left[V\right]$	BIN	HEX	$U_{D}[V]$
0,000	0000 0000	0	0,0000
0,200	0000 1010	A	0,1953
0,400	0001 0101	15	0,4102
0,600	0001 1010	1A	0,5078
0,800	0010 1001	29	0,8008
1,000	0011 0011	33	0,9961
1,200	0011 1110	3E	1,2109
1,400	0100 1001	49	1,4258
1,600	0101 0001	51	1,5820
1,800	0101 1010	5A	1,7578
2,000	0110 0101	65	1,9727
2,200	0111 0001	71	2,2070
2,400	0111 1100	7C	2,4219
2,600	1000 0110	86	2,6172
2,800	1001 0000	90	2,8125
3,000	1001 1001	99	2,9883
3,200	1010 0010	A2	3,1641
3,400	1010 1101	AD	3,3789
3,600	1011 1011	BB	3,6523
3,800	1100 0100	C4	3,8281
4,000	1100 1110	CE	4,0234
4,200	1101 0111	D7	4,1992
4,400	1110 0010	E2	4,4141
4,600	1110 1101	ED	4,6289
4,800	1111 0111	F7	4,8242
5,000	1111 1111	FF	4,9805

VÝPOČTY:

Napětí připadající na nejméně významný bit U_{LSB} [V]:

$$U_{LSB} = \frac{U_{FF} - U_{00}}{2^8}$$

$$U_{LSB} = \frac{5,000 - 0,000}{256}$$

$$U_{LSB} = 0,0195 V$$

Převod binární do hexadecimální soustavy:

 $0001~0101~bin\'arn\'e \rightarrow 1~5~hexa$

Převod hexadecimální do decimální soustavy:

15 hexa →
$$1 \cdot 16^{1} + 5 \cdot 16^{0}$$

15 hexa → $1 \cdot 16 + 5 \cdot 1$
15 hexa → $16 + 5$
15 hexa → 21 decimálně

Digitální napětí U_D [V]:

$$U_D = Y_D \cdot U_{LSB}$$

$$U_D = 21 \cdot 0.0195$$

$$U_D = 0.4102 \text{ V}$$

Absolutní chyba $\Delta m [V]$:

$$\Delta m = U_D - U_A$$
 $\Delta m = 0.4102 - 0.400$
 $\Delta m = 0.0102 \text{ V}$

Korekce K [V]

$$K = -\Delta m$$
$$K = -0.0102 \text{ V}$$

Relativní chyba $\delta m [V]$

$$\delta m = \frac{\Delta m}{U_D} \cdot 100\%$$

$$\delta m = \frac{0,0102}{0,4102} \cdot 100\%$$

$$\delta m = 0,024762 \cdot 100\%$$

$$\delta m = 2,4762 \%$$

GRAFY

SPOLUPRACOVALI:

Kropáček Tomáš

ZÁVĚR:

Všechny úkoly se zadání byly splněny. Při tvorbě průběhů jsem si všiml, že korekční křivka má tendenci s každým měřením klesat. Chybu, která tento jev způsobovala, jsem identifikoval jako systematickou (pravděpodobně chyba měřícího přístroje), tu jsem následně kompenzoval, avšak **většina výsledných hodnot není v toleranci**. Neodpovídající korekční křivku pravděpodobně způsobila lidská chyba a nepřesnost měření. Stejné chyby se projevují i v grafu závislosti, kdy naměřené hodnoty nejsou lineární, ale mají výrazné odchylky.

Chyba, která nás při samotném měření zdržela bylo špatné zvolení kroku, kde se lidskou chybou přehlédla desetinná čárka.