Data Frames 1

June 28, 2022

Question

- How is data read into a dataframe?
- What are different ways to manipulate data in dataframes?
- What makes data visualisation simple in Python?

Objectives

- Import data set as Pandas dataframe
- Inspect data frame and access data
- Produce an overview of data features
- Create data plots using Matplotlib

1 Prerequisites

- Indexing of Arrays
- For Loop through Array
- Basic Statistics (distributions, mean, median, standard deviation)

The diabetes data set is the challenging task.

2 Challenge: The diabetes data set

Here is a screenshot of the so-called diabetes data set. It is taken from this webpage and it is one of the example data sets used to illustrate machine learning functionality in scikit-learn (Part III and Part IV of the course).

< >	C 8		www4.sta	t.ncsu.e	edu/~boos/\	/ar.seled	ct/diabetes.	.tab.txt		
AGE	SEX	BMI	BP	S1	S2	S3	S4	S 5	S6	Y
59	2	32.1	101	157	93.2	38	4	4.8598	87	151
48	1	21.6	87	183	103.2	70	3	3.8918	69	75
72	2	30.5	93	156	93.6	41	4	4.6728	85	141
24	1	25.3	84	198	131.4	40	5	4.8903	89	206
50	1	23	101	192	125.4	52	4	4.2905	80	135
23	1	22.6	89	139	64.8	61	2	4.1897	68	97
36	2	22	90	160	99.6	50	3	3.9512	82	138
66	2	26.2	114	255	185	56	4.55	4.2485	92	63
60	2	32.1	83	179	119.4	42	4	4.4773	94	110
29	1	30	85	180	93.4	43	4	5.3845	88	310
22	1	18.6	97	114	57.6	46	2	3.9512	83	101
56	2	28	85	184	144.8	32	6	3.5835	77	69
53	1	23.7	92	186	109.2	62	3	4.3041	81	179
50	2	26.2	97	186	105.4	49	4	5.0626	88	185
61	1	24	91	202	115.4	72	3	4.2905	73	118
34	2	24.7	118	254	184.2	39	7	5.037	81	171
47	1	30.3	109	207	100.2	70	3	5.2149	98	166
68	2	27.5	111	214	147	39	5	4.9416	91	144
38	1	25.4	84	162	103	42	4	4.4427	87	97
41	1	24.7	83	187	108.2	60	3	4.5433	78	168
35	1	21.1	82	156	87.8	50	3	4.5109	95	68
25	2	24.3	95	162	98.6	54	3	3.8501	87	49
25	1	26	92	187	120.4	56	3	3.9703	88	68
61	2	32	103.67	210	85.2	35	6	6.107	124	245
31	1	29.7	88	167	103.4	48	4	4.3567	78	184
30	2	25.2	83	178	118.4	34	5	4.852	83	202
19	1	19.2	87	124	54	57	2	4.1744	90	137

This figure captures only the top part of the data. On the webpage you need to scroll down considerably to view the whole content. Thus, to get an **overview** of the dataset is the first main task in Data Science.

3 The lesson

- introduces code to read and inspect the data
- works with a specific data frame and extracts some techniques to get an overview
- discusses the concept 'distribution' as a way of summarising data in a single figure

3.1 To get to know a dataset you need to

- access the data
- check the content
- produce a summary of basic properties

In this lesson we will only look at univariate features where each data column is studied independently of the others. Further properties and bivariate features will be the topic of the next lesson.

4 Work Through Example

4.1 Reading data into a Pandas DataFrame

The small practice data file for this section is called 'everleys_data.csv' and can be downloaded using the link given above in "Materials for this Lesson". To start, please create a subfolder called 'data' in the current directory and put the data file in it. It can now be accessed using the relative path data/everleys_data.csv or data\everleys_data.csv, respectively.

The file everleys_data.csv contains blood concentrations of calcium and sodium ions from 17 patients with Everley's syndrome. The data are taken from a BMJ statistics tutorial. The data are stored as comma-separated values (csv), two values for each patient.

To get to know a dataset, we will use the Pandas package and the Matplotlib plotting library. The Pandas package for data science is included in the Anaconda distribution of Python. Check this link for installation instructions to get started.

If you are not using the Anaconda distribution, please refer to these guidelines.

To use the functions contained in Pandas they need to be imported. Our dataset is in '.csv' format, and we therefore need to read it from a csv file. For this, we import the function read_csv. This function will create a *Pandas dataframe*.

```
[1]: from pandas import read_csv
```

Executing this code does not lead to any output on the screen. However, the function is now ready to be used. To use it, we type its name and provide the required arguments. The following code should import the Everley's data into your JupyterLab notebook (or other Python environment):

```
[2]: # for Mac OSX and Linux
# (please go to the next cell if using Windows)

df = read_csv("data/everleys_data.csv")
```

```
[3]: # Please uncomment for Windows
# (please go to previous cell if using Mac OSX or Linux)

# df = read_csv("data\everleys_data.csv")
```

This code uses the read_csv function from Pandas to read data from a data file, in this case a file with extension '.csv'. Note that the location of the data file is specified within quotes by the

relative path to the subfolder 'data' followed by the file name. Use the JupyterLab file browser to check that subfolder exists and has the file in it.

After execution of the code, the data are contained in a variable called df. This is a structure referred to as a Pandas *DataFrame*.

A **Pandas dataframe** is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it as a spreadsheet.

To see the contents of df, simply use:

```
[4]: df
[4]:
          calcium
                        sodium
     0
         3.455582
                   112.690980
     1
         3.669026
                   125.663330
     2
         2.789910
                   105.821810
     3
         2.939900
                     98.172772
         5.426060
                     97.931489
```

```
5
    0.715811
               120.858330
6
    5.652390
               112.871500
7
    3.571320
               112.647360
8
    4.300067
               132.031720
    1.369419
9
               118.499010
               117.373730
10
    2.550962
11
    2.894129
               134.052390
12
    3.664987
               105.346410
    1.362779
               123.359490
13
14
    3.718798
               125.021060
15
    1.865868
               112.075420
    3.272809
               117.588040
16
17
    3.917591
               101.009870
     calcium
                   sodium
0
    3.455582
              112.690980
    3.669026
              125.663330
1
2
    2.789910
              105.821810
3
    2.939900
               98.172772
4
               97.931489
    5.426060
5
    0.715811
              120.858330
6
    5.652390
              112.871500
7
    3.571320
              112.647360
8
    4.300067
              132.031720
9
    1.369419
              118.499010
10 2.550962
              117.373730
    2.894129
              134.052390
11
12
    3.664987
              105.346410
13
    1.362779
              123.359490
14 3.718798
              125.021060
    1.865868
              112.075420
16
    3.272809
              117.588040
    3.917591
              101.009870
```

(Compare with the result of print(df) which displays the contents in a different format.)

The output shows in the first column an index, integers from 0 to 17; and the calcium and sodium concentrations in columns 2 and 3, respectively. The default indexing starts from zero (Python is a 'zero-based' programming language).

In a dataframe, the first column is referred to as *Indices*, the first row is referred to as *Labels*. Note that the row with the labels is excluded from the row count. Similarly, the row with the indices is excluded from the column count.

For large data sets, the function head is a convenient way to get a feel of the dataset.

```
[5]: df.head()
```

```
[5]:
        calcium
                     sodium
       3.455582 112.690980
     0
     1 3.669026 125.663330
     2 2.789910 105.821810
     3 2.939900
                 98.172772
     4 5.426060
                  97.931489
        calcium
                     sodium
      3.455582 112.690980
    0
    1
      3.669026
                 125.663330
      2.789910 105.821810
    3
      2.939900
                 98.172772
      5.426060
                  97.931489
```

Without any input argument, this displays the first five data lines of the dataframe. You can specify alter the number of rows displayed by including a single integer as argument, e.g. head(10).

If you feel there are too many decimal places in the default view, you can restrict their number by using the round function:

```
[6]: df.head().round(2)
[6]:
        calcium sodium
     0
           3.46 112.69
     1
           3.67 125.66
     2
           2.79 105.82
     3
           2.94
                  98.17
     4
           5.43
                  97.93
       calcium sodium
    0
          3.46 112.69
    1
          3.67 125.66
    2
          2.79 105.82
    3
          2.94
                 98.17
          5.43
                 97.93
```

While we can see how many rows there are in a dataframe when we display the whole data frame and look at the last index, there is a convenient way to obtain the number directly:

```
[7]: no_rows = len(df)
print('Data frame has', no_rows, 'rows')
```

Data frame has 18 rows

Data frame has 18 rows

You could see above, that the columns of the dataframe have labels. To see all labels:

```
[8]: column_labels = df.columns
print(column_labels)
```

```
Index(['calcium', 'sodium'], dtype='object')
Index(['calcium', 'sodium'], dtype='object')
```

Now we can count the labels to obtain the number of columns:

```
[9]: no_columns = len(column_labels)
print('Data frame has', no_columns, 'columns')
```

Data frame has 2 columns
Data frame has 2 columns

And if you want to have both the number of the rows and the columns together, use shape. Shape returns a tuple of two numbers, first the number of rows, then the number of columns.

```
[10]: df_shape = df.shape
print('Data frame has', df_shape[0], 'rows and',df_shape[1], 'columns')
```

Data frame has 18 rows and 2 columns
Data frame has 18 rows and 2 columns

Notice that shape (like columns) is not followed by round parenthesis. It is not a function that can take arguments. Technically, shape is a 'property' of the dataframe.

To find out what data type is contained in each of the columns, us dtypes, another 'property':

```
[11]: df.dtypes
```

```
[11]: calcium float64
sodium float64
dtype: object

calcium float64
sodium float64
dtype: object
```

In this case, both columns contain floating point (decimal) numbers.

DIY1: Read data into a dataframe

Download the data file 'loan_data.csv' using the link given above in "Materials for this Lesson". It contains data that can be used for the assessment of loan applications. Read the data into a DataFrame. It is best to assign it a name other than 'df' (to avoid overwriting the Evereley data set).

Display the first ten rows of the Loan data set to see its contents. It is taken from a tutorial on Data Handling in Python which you might find useful for further practice.

From this exercise we can see that a dataframe can contain different types of data: real numbers (e.g. LoanAmount), integers (ApplicantIncome), categorical data (Gender), and strings (Loan_ID).

```
[25]: from pandas import read_csv
      # dataframe from .csv file
      df_loan = read_csv("data/loan_data.csv")
      # display contents
      df_loan.head(10)
[25]:
          Loan_ID Gender Married Dependents
                                                    Education Self_Employed
      0 LP001015
                      Male
                                Yes
                                              0
                                                     Graduate
                                                                           No
      1 LP001022
                      Male
                                Yes
                                              1
                                                     Graduate
                                                                           No
      2 LP001031
                      Male
                                Yes
                                              2
                                                     Graduate
                                                                           No
      3 LP001035
                      Male
                                Yes
                                              2
                                                     Graduate
                                                                           No
                      Male
      4 LP001051
                                 No
                                                 Not Graduate
                                                                           No
      5 LP001054
                      Male
                                              0
                                                 Not Graduate
                                Yes
                                                                          Yes
        LP001055
                   Female
                                 No
                                                 Not Graduate
                                                                           No
      6
                                              1
      7 LP001056
                      Male
                                Yes
                                              2
                                                 Not Graduate
                                                                           No
                                              2
      8 LP001059
                      Male
                                Yes
                                                     Graduate
                                                                          NaN
      9 LP001067
                      Male
                                                 Not Graduate
                                 No
                                                                           No
         ApplicantIncome
                           CoapplicantIncome
                                                LoanAmount
                                                            Loan_Amount_Term
      0
                     5720
                                             0
                                                     110.0
                                                                         360.0
      1
                     3076
                                         1500
                                                     126.0
                                                                         360.0
      2
                     5000
                                         1800
                                                     208.0
                                                                         360.0
      3
                     2340
                                         2546
                                                     100.0
                                                                         360.0
      4
                     3276
                                             0
                                                                         360.0
                                                      78.0
      5
                                         3422
                     2165
                                                     152.0
                                                                         360.0
      6
                     2226
                                             0
                                                      59.0
                                                                         360.0
      7
                     3881
                                             0
                                                     147.0
                                                                         360.0
      8
                    13633
                                             0
                                                     280.0
                                                                         240.0
      9
                     2400
                                         2400
                                                     123.0
                                                                         360.0
         Credit_History Property_Area
      0
                     1.0
                                  Urban
      1
                     1.0
                                  Urban
      2
                     1.0
                                  Urban
      3
                     NaN
                                  Urban
      4
                     1.0
                                  Urban
      5
                     1.0
                                  Urban
      6
                     1.0
                              Semiurban
      7
                     0.0
                                  Rural
      8
                     1.0
                                  Urban
      9
                     1.0
                              Semiurban
```

```
Gender Married
                                ... Loan_Amount_Term Credit_History Property_Area
    Loan_ID
  LP001015
                Male
                          Yes
                                                360.0
                                                                   1.0
0
                                                                                Urban
   LP001022
                                                                   1.0
                Male
                          Yes
                                                360.0
                                                                                Urban
1
  LP001031
                Male
                                                360.0
                                                                   1.0
                                                                                Urban
                          Yes
3
  LP001035
                Male
                          Yes
                                                360.0
                                                                   NaN
                                                                                Urban
  LP001051
                Male
                                                                   1.0
                                                                                Urban
4
                           No
                                                360.0
  LP001054
                Male
                          Yes
                                                360.0
                                                                   1.0
                                                                                Urban
                                . . .
6
  LP001055
              Female
                           No
                                                360.0
                                                                   1.0
                                                                            Semiurban
                                . . .
  LP001056
                Male
                                                360.0
                                                                   0.0
                                                                                Rural
7
                          Yes
  LP001059
8
                Male
                          Yes
                                                240.0
                                                                   1.0
                                                                                Urban
   LP001067
                Male
                                                360.0
                                                                   1.0
                                                                            Semiurban
                           No
```

[10 rows x 12 columns]

5 Accessing data in a DataFrame

If a datafile is large and you only want to check the format of data in a specific column, you can limit the display to that column. To access data contained in a specific column of a dataframe, we can use a similar convention as in a Python dictionary, treating the column names as 'keys'. E.g. to show all rows in column 'Calcium', use:

```
df['calcium']
[26]:
[26]: 0
             3.455582
      1
             3.669026
      2
             2.789910
      3
             2.939900
      4
             5.426060
      5
             0.715811
      6
             5.652390
      7
             3.571320
      8
             4.300067
      9
             1.369419
      10
             2.550962
      11
             2.894129
      12
             3.664987
      13
             1.362779
      14
             3.718798
      15
             1.865868
      16
             3.272809
      17
             3.917591
      Name: calcium, dtype: float64
     0
            3.455582
     1
            3.669026
     2
            2.789910
     3
            2.939900
```

```
4
      5.426060
5
      0.715811
6
      5.652390
7
      3.571320
8
      4.300067
9
      1.369419
10
      2.550962
11
      2.894129
12
      3.664987
13
      1.362779
14
      3.718798
15
      1.865868
16
      3.272809
17
      3.917591
Name: calcium, dtype: float64
```

To access individual rows of a column we use two pairs of square brackets:

Here all rules for slicing can be applied. As for lists and tuples, the indexing of rows is semi-inclusive, lower boundary included, upper boundary excluded. Note that the first pair of square brackets refers to a column and the second pair refers to the rows. This is different from e.g. accessing items in a nested list.

Accessing items in a Pandas dataframe is analogous to accessing the values in a Python dictionary by referring to its keys.

To access non-contiguous elements, we use an additional pair of square brackets (as if for a list within a list):

7 3.571320

Name: calcium, dtype: float64

Another possibility to index and slice a dataframe is the use of the 'index location' or iloc property. It refers first to rows and then to columns by index, all within a single pair of brackets. For example, to get all rows of the first column (index 0), you use:

```
[29]:
     df.iloc[:, 0]
[29]: 0
             3.455582
             3.669026
      1
      2
             2.789910
      3
             2.939900
      4
             5.426060
      5
             0.715811
      6
             5.652390
      7
             3.571320
      8
             4.300067
      9
             1.369419
      10
             2.550962
      11
             2.894129
      12
             3.664987
      13
             1.362779
      14
             3.718798
      15
             1.865868
      16
             3.272809
      17
             3.917591
      Name: calcium, dtype: float64
     0
            3.455582
            3.669026
     1
     2
            2.789910
     3
            2.939900
     4
            5.426060
     5
            0.715811
     6
            5.652390
     7
            3.571320
     8
            4.300067
     9
            1.369419
     10
            2.550962
            2.894129
     11
     12
            3.664987
     13
            1.362779
     14
            3.718798
     15
            1.865868
     16
            3.272809
            3.917591
     Name: calcium, dtype: float64
```

To display only the first three calcium concentrations, you use slicing, remembering that the upper bound is excluded):

```
[30]: df.iloc[0:3, 0]
[30]: 0
           3.455582
      1
           3.669026
           2.789910
      Name: calcium, dtype: float64
     0
           3.455582
     1
           3.669026
     2
           2.789910
     Name: calcium, dtype: float64
     To access non-consecutive values, we can use a pair of square brackets within the pair of square
     brackets:
[31]: df.iloc[[2, 4, 7], 0]
[31]: 2
           2.78991
      4
           5.42606
      7
           3.57132
      Name: calcium, dtype: float64
     2
           2.78991
     4
           5.42606
     7
           3.57132
     Name: calcium, dtype: float64
     Similarly, we can access the values from multiple columns:
[32]: df.iloc[[2, 4, 7], :]
[32]:
         calcium
                       sodium
      2 2.78991 105.821810
      4 5.42606
                   97.931489
      7 3.57132 112.647360
        calcium
                      sodium
     2 2.78991 105.821810
     4 5.42606
                  97.931489
     7 3.57132 112.647360
     To pick only the even rows from the two columns, check this colon notation:
[33]: df.iloc[:18:2, :]
[33]:
           calcium
                         sodium
      0
          3.455582 112.690980
```

```
2
    2.789910 105.821810
4
    5.426060
               97.931489
6
    5.652390
              112.871500
8
    4.300067
              132.031720
    2.550962
              117.373730
10
12
    3.664987
              105.346410
14
              125.021060
    3.718798
16
   3.272809
              117.588040
     calcium
                  sodium
0
    3.455582 112.690980
2
    2.789910 105.821810
4
   5.426060
               97.931489
6
   5.652390
              112.871500
8
   4.300067
              132.031720
10
   2.550962
              117.373730
12 3.664987
              105.346410
   3.718798
              125.021060
16 3.272809
              117.588040
```

The number after the second colon indicates the stepsize.

DIY2: Select data from dataframe

Display the calcium and sodium concentrations of all patients except the first. Check the model solution at the bottom for options.

```
[34]:
     df[['calcium', 'sodium']][1:]
[34]:
           calcium
                        sodium
      1
          3.669026
                   125.663330
      2
          2.789910
                    105.821810
      3
          2.939900
                     98.172772
      4
          5.426060
                     97.931489
      5
          0.715811
                   120.858330
      6
          5.652390
                    112.871500
      7
          3.571320
                    112.647360
      8
          4.300067
                    132.031720
      9
          1.369419
                    118.499010
          2.550962
      10
                    117.373730
          2.894129
                    134.052390
      11
      12 3.664987
                    105.346410
      13
         1.362779
                    123.359490
      14
          3.718798
                    125.021060
      15
         1.865868
                    112.075420
      16
          3.272809
                    117.588040
      17
         3.917591 101.009870
```

```
sodium
     calcium
   3.669026
             125.663330
1
2
   2.789910
             105.821810
3
   2.939900
              98.172772
4
   5.426060
              97.931489
5
   0.715811
             120.858330
6
   5.652390
             112.871500
7
   3.571320
             112.647360
   4.300067
             132.031720
   1.369419 118.499010
9
10 2.550962 117.373730
11 2.894129
             134.052390
12 3.664987
             105.346410
13 1.362779
             123.359490
14 3.718798
             125.021060
15 1.865868
             112.075420
16 3.272809
             117.588040
17 3.917591
            101.009870
```

Mixing the ways to access specific data in a dataframe can be confusing and needs practice.

5.1 Search for missing values

Some tables contain missing entries. You can check a dataframe for such missing entries. If no missing entry is found, the function isnull will return False.

```
[35]: df.isnull().any()

[35]: calcium False
    sodium False
    dtype: bool

    calcium False
    sodium False
    sodium False
    dtype: bool
```

This shows that there are no missing entries in our dataframe.

DIY3: Find NaN in dataframe

In the Loan data set, check the entry 'Self-employed' for ID LP001059. It shows how a missing value is represented as 'NaN' (not a number).

Verify that the output of isnull in this case is True

```
[36]: df_loan['Self_Employed'][8]

[36]: nan
```

```
nan
```

```
[37]: df_loan['Self_Employed'][8:9].isnull()

[37]: 8    True
    Name: Self_Employed, dtype: bool

8    True
    Name: Self_Employed, dtype: bool
```

6 Basic data features: Summary Statistics

To get a summary of basic data features use the function describe:

```
[38]: description = df.describe()
description
```

```
[38]:
               calcium
                            sodium
             18.000000
                         18.000000
      count
     mean
              3.174301 115.167484
      std
              1.306652
                         10.756852
     min
              0.715811
                         97.931489
              2.610699 107.385212
      25%
      50%
              3.364195 115.122615
      75%
              3.706355 122.734200
      max
              5.652390 134.052390
              calcium
                           sodium
            18.000000
                        18.000000
     count
             3.174301
                      115.167484
     mean
                        10.756852
             1.306652
     std
     min
             0.715811
                        97.931489
     25%
             2.610699 107.385212
     50%
             3.364195 115.122615
     75%
             3.706355 122.734200
             5.652390 134.052390
     max
```

The describe function produces a new dataframe (here called 'description') that contains the number of samples, the mean, the standard deviation, minimum, 25th, 50th, 75th percentile, and the maximum value for each column of the data. Note that the indices of the rows have now been replaced by strings. To access rows, it is possible to refer to those names using the loc property. E.g. to access the mean of the calcium concentrations from the description, each of the following is valid:

```
[39]: # Option 1 description.loc['mean']['calcium']
```

```
# Option 2
description.loc['mean'][0]

# Option 3
description['calcium']['mean']

# Option 4
description['calcium'][1]
```

```
[39]: 3.1743005405555547
```

- 3.174300540555555
- 3.174300540555555
- 3.174300540555555
- 3.174300540555555

DIY4: Practice

Use your own .csv data set to practice. (If you don't have a data set at hand, any excel table can be exported as .csv.) Read it into a dataframe, check its header, access individual values or sets of values. Create a statistics using describe and check for missing values using .isnull.

[ad libitum]

Iterating through the columns

Now we know how to access all data in a dataframe and how to get a summary statistics over each column.

Here is code to iterate through the columns and access the first two concentrations:

```
[40]: for col in df:
          print(df[col][0:2])
     0
          3.455582
          3.669026
     Name: calcium, dtype: float64
          112.69098
          125.66333
     1
     Name: sodium, dtype: float64
          3.455582
     1
          3.669026
     Name: calcium, dtype: float64
          112.69098
          125.66333
     Name: sodium, dtype: float64
```

As a slightly more complex example, we access the median ('50%') of each column in the description and add it to a list:

```
[41]: conc_medians = list()

for col in df:
        conc_medians.append(df[col].describe()['50%'])

print('The columns are: ', list(df.columns))
print('The medians are: ', conc_medians)
```

```
The columns are: ['calcium', 'sodium']
The medians are: [3.3641954, 115.122615]
The columns are: ['calcium', 'sodium']
The medians are: [3.3641954, 115.122615]
```

This approach is useful for data frames with a large number of columns. For instance, it is possible to then create a boxplot or histogram for the means, medians etc. of the dataframe and thus to get an overview of all (comparable) columns.

Selecting a subset based on a template

An analysis of a data set may need to be done on part of the data. This can often be formulated by using a logical condition which specifies the required subset.

For this we will assume that some of the data are labelled '0' and some are labelled '1'. Let us therefore see how to add a new column to our Evereleys data frame which contains the (in this case arbitrary) labels.

First we randomly create as many labels as we have rows in the data frame. We can use the randint function which we import from 'numpy.random'. randint in its simple form takes two arguments. First the upper bound of the integer needed, where by default it starts from zero. As Python is exclusive on the upper bound, providing '2' will thus yield either '0' or '1' only.

```
[42]: from numpy.random import randint
  no_rows = len(df)

randomLabel = randint(2, size=no_rows)

print('Number of rows: ', no_rows)
 print('Number of Labels:', len(randomLabel))
 print('Labels: ', randomLabel)
```

```
Number of rows: 18
Number of Labels: 18
Labels: [0 1 1 0 0 1 1 0 0 1 0 1 1 0 1]
Number of rows: 18
```

```
Number of Labels: 18
```

Labels: [1 0 1 1 1 1 1 0 1 1 0 1 1 0 0]

Note how we obtain the number of rows (18) using len and do not put it directly into the code.

Now we create a new data column in our df dataframe which contains the labels. To create a new column, you can simply refer to a column name that does not yet exist and assign values to it. Let us call it 'gender', assuming that '0' represents male and '1' represents female.

As gender specification can include more than two labels, try to create a column with more than two randomly assigned labels e.g. (0, 1, 2).

```
[43]: df['gender'] = randomLabel
      df.head()
[43]:
          calcium
                       sodium gender
         3.455582
                   112.690980
      1 3.669026
                   125.663330
                                    1
      2 2.789910
                  105.821810
                                    1
      3 2.939900
                    98.172772
                                    0
      4 5.426060
                    97.931489
                                    1
         calcium
                      sodium
                              gender
     0 3.455582
                  112.690980
     1 3.669026
                  125.663330
                                    0
                                    1
     2 2.789910
                  105.821810
        2.939900
                   98.172772
                                    1
     3
     4 5.426060
                   97.931489
                                    1
```

Now we can use the information contained in 'gender' to filter the data by gender. To achieve this, we use a conditional statement. Let us check which of the rows are labelled as '1':

```
[44]: df['gender'] == 1
[44]: 0
             False
      1
              True
      2
              True
      3
             False
      4
              True
      5
              True
      6
             False
      7
             False
      8
              True
      9
              True
      10
             False
      11
             False
      12
              True
      13
             False
      14
              True
```

```
15
        True
16
       False
17
        True
Name: gender, dtype: bool
0
       True
1
      False
2
       True
3
       True
4
       True
5
       True
6
       True
7
      False
8
       True
9
       True
10
      False
11
       True
12
       True
13
       True
14
      False
15
       True
16
      False
17
      False
Name: gender, dtype: bool
```

If we assign the result of the conditional statement (Boolean True or False) to a variable, then this variable can act as a template to filter the data. If we call the data frame with that variable, we will only get the rows where the condition was found to be True:

```
[45]: df_female = df['gender'] == 1

df[df_female]
```

```
[45]:
            calcium
                         sodium
                                  gender
          3.669026
                     125.663330
      1
      2
          2.789910
                     105.821810
      4
          5.426060
                      97.931489
                                       1
      5
          0.715811
                     120.858330
                                        1
      8
          4.300067
                     132.031720
                                        1
      9
          1.369419
                     118.499010
                                        1
      12
          3.664987
                     105.346410
                                        1
                     125.021060
      14
          3.718798
      15
          1.865868
                     112.075420
                                       1
      17
          3.917591
                     101.009870
                                       1
           calcium
                         sodium
                                 gender
     0
          3.455582
                    112.690980
                                       1
          2.789910
                                       1
                    105.821810
```

```
3
   2.939900
              98.172772
                              1
   5.426060 97.931489
                              1
5
   0.715811 120.858330
                              1
6
   5.652390 112.871500
                              1
   4.300067 132.031720
8
                              1
9
   1.369419 118.499010
11 2.894129 134.052390
                              1
12 3.664987 105.346410
                              1
13 1.362779 123.359490
                              1
15 1.865868 112.075420
                              1
```

Using the Boolean, we only pick the rows that are labelled '1' and thus get a subset of the data according to the label.

DIY5: Using a template

Modify the code to calculate the number of samples labelled 0 and check the number of rows of that subset.

```
[46]: from numpy.random import randint
no_rows = len(df)
randomLabel = randint(2, size=no_rows)
df['gender'] = randomLabel
df_male = df['gender'] == 0
no_males = len(df[df_male])
print(no_males, 'samples are labelled "male".')
```

```
9 samples are labelled "male".
11 samples are labelled "male".
```

7 Visualisation of data

It is easy to see from the numbers that the concentrations of sodium are much higher than that of calcium. However, to also compare the medians, percentiles and the spread of the data it is better to use visualisation.

The simplest way of visualisation is to use Pandas functionality which offers direct ways of plotting. Here is an example where a boxplot is created for each column:

```
[48]: df = read_csv("data/everleys_data.csv")
    df.boxplot();
```


By default, boxplots are shown for all columns if no further argument is given to the function (empty round parenthesis). As the calcium plot is rather squeezed we may wish to see it individually. This can be done by specifying the calcium column as an argument:

```
[50]: # Boxplot of calcium results
df.boxplot(column='calcium');
```


Using Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

The above is an easy way to create boxplots directly on the dataframe. It is based on the library Matplotlib and specifically uses the **pyplot library**. For simplicity, the code is put in a convenient Pandas function.

However, we are going to use **Matplotlib** extensively later on in the course, and we therefore now introduce the direct, generic way of using it.

For this, we import the function subplots from the pyplot library:

```
[51]: from matplotlib.pyplot import subplots, show
```

The way to use subplots is to first set up a figure environment (below it is called 'fig') and an empty coordinate system (below called 'ax'). The plot is then done using one of the many methods available in Matplotlib. We apply it to the coordinate system 'ax'.

As an example, let us create a boxplot of the calcium variable. As an argument of the function we need to specify the data. We can use the values of the 'calcium' concentrations from the column with that name:

```
[52]: fig, ax = subplots()
    ax.boxplot(df['calcium'])
    ax.set_title('Boxplot of Everley Calcium')
    show()
```


Note how following the actual plot we define the title of the plot by referring to the same coordinate system ax.

The value of subplots becomes apparent when we try to create more than one plot in a single figure.

Here is an example to create two boxplots next to each other. The keyword arguments to use is 'ncols' which is the number of figures per row. 'ncols=2' indicates that you want to have two plots next to each other.

```
[53]: fig, ax = subplots(ncols=2)

ax[0].boxplot(df['calcium'])
ax[0].set_title('Calcium')

ax[1].boxplot(df['sodium'])
ax[1].set_title('Sodium');

show()
```


Note that you now have to refer to each of the subplots by indexing the coordinate system 'ax'. This figure gives a good overview of the Everley's data.

If you prefer to have the boxplots of both columns in a single figure, that can also be done:

```
[54]: fig, ax = subplots(ncols=1, nrows=1)

ax.boxplot([df['calcium'], df['sodium']], positions=[1, 2])
ax.set_title('Boxplot of Calcium (left) and Sodium (right)')

show()
```


DIY6: Boxplot from Loan data

Plot the boxplots of the 'ApplicantIncome' and the 'CoapplicantIncome' in the Loan data using the above code.

7.1 Histogram

Another good overview is the histogram: Containers or 'bins' are created over the range of values found within a column and the count of the values for each bin is plotted on the vertical axis.

```
[56]: fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'])
ax[0].set(xlabel='Calcium', ylabel='Count');

ax[1].hist(df['sodium'])
ax[1].set(xlabel='Sodium', ylabel='Count');

fig.suptitle('Histograms of Everley concentrations', fontsize=15);
show()
```

Histograms of Everley concentrations

This also shows how to add labels to the axes and a title to the overall figure.

This uses the default value for the generation of the bins. It is set to 10 bins over the range of which values are found. The number of bins in the histogram can be changed using the keyword argument 'bins':

```
[57]: fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'], bins=5)
ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

ax[1].hist(df['calcium'], bins=15)
ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');
fig.suptitle('Histograms with Different Binnings', fontsize=16);
show()
```

Histograms with Different Binnings

Note how the y-label of the right figure is not placed well. To correct for the placement of the labels and the title, you can use tight_layout on the figure:

```
[58]: fig, ax = subplots(ncols=2, nrows=1)

ax[0].hist(df['calcium'], bins=5)
ax[0].set(xlabel='Calcium, 5 bins', ylabel='Count');

ax[1].hist(df['calcium'], bins=15)
ax[1].set(xlabel='Calcium, 15 bins', ylabel='Count');
fig.suptitle('Histograms with Different Binnings', fontsize=16);
fig.tight_layout()

show()
```

Histograms with Different Binnings

DIY7: Create the histogram of a column

Take the loan data and display the histogram of the loan amount that people asked for. (Loan amounts are divided by 1000, i.e. in k£ on the horizontal axis). Use e.g. 20 bins.

```
[60]: # Histogram of loan amounts in kf
fig, ax = subplots()
ax.hist(df_loan['LoanAmount'], bins=20)
ax.set(xlabel='Loan amount', ylabel='Count');
ax.set_title('Histograms of Loan Amounts', fontsize=16);
show()
```


8 Handling the Diabetes Data Set

We now return to the data set that started our enquiry into the handling of data in a dataframe.

We will now:

- Import the diabetes data from 'sklearn'
- Check the shape of the dataframe and search for NANs
- Get a summary plot of one of its statistical quantities (e.g. mean) for all columns

First we import the data set and check its head. Wait until the numbers show below the code, it might take a while.

```
[61]: from sklearn import datasets
    diabetes = datasets.load_diabetes()

X = diabetes.data
    from pandas import DataFrame

df_diabetes = DataFrame(data=X)

df_diabetes.head()
```

```
[61]:
                                                  3
      0 \quad 0.038076 \quad 0.050680 \quad 0.061696 \quad 0.021872 \quad -0.044223 \quad -0.034821 \quad -0.043401
      1 - 0.001882 - 0.044642 - 0.051474 - 0.026328 - 0.008449 - 0.019163 0.074412
      2 0.085299 0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356
      3 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038
      4 0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142
                 7
      0 -0.002592 0.019908 -0.017646
      1 -0.039493 -0.068330 -0.092204
      2 -0.002592 0.002864 -0.025930
      3 0.034309 0.022692 -0.009362
      4 -0.002592 -0.031991 -0.046641
                                         ... -0.002592 0.019908 -0.017646
      0 0.038076 0.050680 0.061696
      1 \ -0.001882 \ -0.044642 \ -0.051474 \ \dots \ -0.039493 \ -0.068330 \ -0.092204
      2 \quad 0.085299 \quad 0.050680 \quad 0.044451 \quad \dots \quad -0.002592 \quad 0.002864 \quad -0.025930
      3 -0.089063 -0.044642 -0.011595 ... 0.034309 0.022692 -0.009362
      4 0.005383 -0.044642 -0.036385 ... -0.002592 -0.031991 -0.046641
```

[5 rows x 10 columns]

If you don't see all columns, use the cursor to scroll to the right. Now let's check the number of columns and rows.

```
[62]: no_rows = len(df_diabetes)
no_cols = len(df_diabetes.columns)
print('Rows:', no_rows, 'Columns:', no_cols)
```

Rows: 442 Columns: 10
Rows: 442 Columns: 10

There are 442 rows organised in 10 columns.

To get an overview, let us extract the mean of each column using 'describe' and plot all means as a bar chart. The Matplotlib function to plot a bar chart is bar:

```
[63]: conc_means = list()

for col in df_diabetes:
    conc_means.append(df_diabetes[col].describe()['mean'])

print('The columns are: ', list(df_diabetes.columns))
print('The medians are: ', conc_means, 2)
```

The columns are: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The medians are: [-3.6342849293088766e-16, 1.3083425745511955e-16,

```
-8.045349203335693e-16, 1.2816545210746291e-16, -8.835315586242054e-17, 1.327024211984792e-16, -4.574646342983182e-16, 3.777301498233299e-16, -3.8308542173050264e-16, -3.412882015081407e-16] 2
```

The columns are: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The medians are: [-3.6396225400041895e-16, 1.309912460049817e-16, -8.013951493363262e-16, 1.289818e-16]

```
[64]: fig, ax = subplots()
bins = range(10)
ax.bar(bins, conc_means);
show()
```


The bars in this plot go up and down. Note, however, that the vertical axis has values ranging from $-10^{(-16)}$ to $+10^{(-16)}$. This means that for all practical purposes all means are zero. This is not a coincidence. The original values have been normalised to zero mean for the purpose of applying some machine learning algorithm to them.

In this example, we see how important it is to check the data before working with them.

9 Exercises

End of chapter Exercises Download the cervical cancer data set provided, import it using read_csv.

- 1. How many rows and columns are there?
- 2. How many columns contain floating point numbers (float64)?
- 3. How many of the subjects are smokers?
- 4. Calculate the percentage of smokers
- 5. Plot the age distribution (with e.g. 50 bins)
- 6. Get the mean and standard distribution of age of first sexual intercourse

10 Please check these solutions only after submitting the assignments.

10.1 Q1

```
[66]: df_cervix = read_csv("data/cervical_cancer.csv")

df_cervix.head(10)

cervix_rows, cervix_cols = len(df_cervix), len(df_cervix.columns)

print('Number of rows:', cervix_rows)
print('Number of columns:', cervix_cols)
```

Number of rows: 668 Number of columns: 34

	Age	Number	of	sexual	partners	 Citology	Biopsy
0	18				4.0	 0	0
1	15				1.0	 0	0
2	52				5.0	 0	0
3	46				3.0	 0	0
4	42				3.0	 0	0
5	51				3.0	 0	1
6	26				1.0	 0	0
7	45				1.0	 0	0
8	44				3.0	 0	0
9	27				1.0	 0	0

[10 rows x 34 columns] Number of rows: 668 Number of columns: 34

10.2 Q2

```
[67]: df_types = df_cervix.dtypes == 'float64'
print('There are', df_types.sum(), 'columns with floating point numbers')
```

There are 24 columns with floating point numbers

There are 24 columns with floating point numbers

[68]: df_types

[68]:	Age	False
[00].	Number of sexual partners	True
	First sexual intercourse	True
	Num of pregnancies	True
	Smokes	True
	Smokes (years)	True
	Smokes (packs/year)	True
	Hormonal Contraceptives	True
	Hormonal Contraceptives (years)	True
	IUD	True
	IUD (years)	True
	STDs	True
	STDs (number)	True
	STDs:condylomatosis	True
	STDs:cervical condylomatosis	True
	STDs:vaginal condylomatosis	True
	STDs:vulvo-perineal condylomatosis	True
	STDs:syphilis	True
	STDs:pelvic inflammatory disease	True
	STDs:genital herpes	True
	STDs:molluscum contagiosum	True
	STDs: AIDS	True
	STDs:HIV	True
	STDs:Hepatitis B	True
	STDs: HPV	True
	STDs: Number of diagnosis	False
	Dx:Cancer	False
	Dx:CIN	False
	Dx:HPV	False
	Dx	False
	Hinselmann	False
	Schiller	False
	Citology	False
	Biopsy	False
	dtype: bool	

Age False

```
Number of sexual partners
                                         True
First sexual intercourse
                                        True
Num of pregnancies
                                         True
Smokes
                                        True
Smokes (years)
                                         True
Smokes (packs/year)
                                         True
Hormonal Contraceptives
                                        True
Hormonal Contraceptives (years)
                                         True
IUD
                                         True
IUD (years)
                                         True
STDs
                                         True
STDs (number)
                                         True
STDs:condylomatosis
                                         True
STDs:cervical condylomatosis
                                         True
STDs:vaginal condylomatosis
                                         True
STDs:vulvo-perineal condylomatosis
                                        True
STDs:syphilis
                                         True
STDs:pelvic inflammatory disease
                                        True
STDs:genital herpes
                                        True
STDs:molluscum contagiosum
                                         True
STDs:AIDS
                                        True
STDs:HIV
                                         True
STDs:Hepatitis B
                                        True
STDs: HPV
                                         True
STDs: Number of diagnosis
                                        False
Dx:Cancer
                                        False
Dx:CIN
                                        False
Dx: HPV
                                        False
Dx
                                        False
Hinselmann
                                        False
Schiller
                                        False
                                        False
Citology
                                        False
Biopsy
dtype: bool
```

10.3 Q3

<class 'numpy.float64'>

```
[69]: for col in df_cervix:
    print(type(df_cervix[col][0]))

    cervix_smoker = df_cervix['Smokes'] == 1.0

<class 'numpy.int64'>
    <class 'numpy.float64'>
    <class 'numpy.float64'>
```

```
<class 'numpy.float64'>
<class 'numpy.int64'>
<class 'numpy.float64'>
```

```
<class 'numpy.float64'>
<class 'numpy.int64'>
```

10.4 Q4

```
[70]: print('There are', cervix_smoker.sum(), 'smokers.')
print('This is', round(100*cervix_smoker.sum() / cervix_rows, 1), '% of the

total.')
```

There are 96 smokers. This is 14.4 % of the total.

There are 96 smokers.

This is 14.4 % of the total.

10.5 Q5

```
[71]: fig, ax = subplots()

ax.hist(df_cervix['Age'], bins=50)
ax.set_xlabel('Age', fontsize=20)
ax.set_ylabel('Count', fontsize=20)
ax.set_title('Age distribution of subjects', fontsize=24);
show()
```


10.6 Q6

Mean of age of first sexual intercourse: 17.1
Standard distribution of age of first sexual intercourse: 2.9
Mean of age of first sexual intercourse: 17.1
Standard distribution of age of first sexual intercourse: 2.9

- Pandas package contains useful functions to work with dataframes.
- iloc property is used to index and slice a dataframe.
- describe function is used to get a summary of basic data features.
- The simplest way of visualisation is to use Pandas functionality.
- Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.