Trabalho de aprofundamento AP2

André Patacas, Gil Teixeira

Aplicação para o cálculo de Largura de Banda e de latência

DETI

André Patacas, Gil Teixeira (93357) andrepatacas@ua.pt, (88194) gilteixeira@ua.pt

9 de Abril de 2019

Resumo

Este relatório serve para descrever uma ferramenta desenvolvida para calcular a largura de banda e a latência da máquina, onde a aplicação se encontra a correr, a um determinado servidor ou a um conjunto, de cardinalidade especificável, de servidores de um país, sendo este também especificável.

Agradecimentos Eventuais agradecimentos. Comentar bloco caso não existam agradecimentos a fazer.

Conteúdo

1	Introdução	1
2	Metodologia 2.1 Exemplos	2
	2.1.1 Utilização de acrónimos	2
	2.1.2 Referências bibliográficas	2
3	Resultados	3
4	Análise	4
5	Conclusões	5

Introdução

A aplicação foi desenvolvida em python3 no âmbito da disciplina de Laboratórios de Informática, no ano letivo 2018/2019. A adicionar às especificações básicas pedidas, segundo o guião sobre regras do segundo trabalho de aprofundamento, construi-se ainda suporte para pydocs para haver uma explicação mais detalhada sobre cada método e classe no nosso projeto. O programa foi escrito com base em test driven development (Capítulo 2) e como tal os testes unitários e funcionais foram criados primeiro, seguidos por um esqueleto do programa e finalmente por vários updates a ambos (chap.resultados) para chegar ao estado em que a aplicação se encontra de momento (Capítulo 4). Finalmente são tiradas as conclusões sobre os aspetos positivos e, potencialmente, negativos desta solução em concreto (Capítulo 5)

Metodologia

- 1. Criar o esqueleto do programa que é agora o inicializador da classe se esta for chamada como main. (if __name__ == '__main__':);
- 2. Criar o ficheiro test_labi_02 como um teste que, apenas se a construção da aplicação for robusta e exatamente como especificada, passa.
- 3. Criar o programa labi_02 e definir as funções com os argumentos de entrada e cada uma com uma descrição detalhada, disponivel nos pydocs, dos aspetos funcionais de cada função.
- Ajustar os métodos de forma a que a aplicação passa todos os testes impostos no teste criado.
- 5. Testar o programa manualmente e/ou com testes funcionais.
- 6. Corrigir eventuais erros.
- 7. Iterar o processo de debugging e correção de erros.

2.1 Exemplos

2.1.1 Utilização de acrónimos

Esta é a primeira invocação do acrónimo Universidade de Aveiro (UA). E esta é a segunda: UA.

Outras duas referências a Mestrado Integrado em Engenharia de Computadores e Telemática (MIECT) e MIECT.

2.1.2 Referências bibliográficas

Informação relativa à estrutura formal de um relatório pode ser obtida na página do Grey Literature International Steering Committee (GLISC)glisc.

Resultados

Descreve os resultados obtidos.

Análise

Analisa os resultados.

Conclusões

Apresenta conclusões.

Contribuições dos autores

Resumir aqui o que cada autor fez no trabalho. Usar abreviaturas para identificar os autores, por exemplo AS para António Silva. No fim indicar a percentagem de contribuição de cada autor.

Acrónimos

UA Universidade de Aveiro

MIECT Mestrado Integrado em Engenharia de Computadores e Telemática

GLISC Grey Literature International Steering Committee