Algèbre linéaire et bilinéaire I – TD₈ 8 Novembre 2022

Exercice 1

Montrer que le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure.

Exercice 2 : (Vérification Propriété 2.6 du livre)

Dans \mathbb{R}^2 , $\mathcal{E} = ((1,0),(0,1))$ est une base de \mathbb{R}^2 , et $\mathcal{B} = ((1,2),(3,1))$ est une autre base de \mathbb{R}^2 .

1. Calculer:

$$\operatorname{Mat}_{\mathcal{E}}(\operatorname{Id}_{E}); \operatorname{Mat}_{\mathcal{B}}(\operatorname{Id}_{E}); \mathcal{P}_{\mathcal{E}}^{\mathcal{B}} \text{ et } \mathcal{P}_{\mathcal{B}}^{\mathcal{E}}.$$

2. Montrer que $\mathcal{P}_{\mathcal{E}}^{\mathcal{B}}$ est inversible et que son inverse est $\mathcal{P}_{\mathcal{B}}^{\mathcal{E}}$.

Exercice 3

Soit $(n,p) \in (\mathbb{N}^*)^2$, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et $A = [a_{i,j}]_{(i,j) \in [1,n]^2} \in M_n(\mathbb{K})$. On définit la trace de A par :

$$\operatorname{trace}(A) = \sum_{i=1}^{n} a_{i,i}.$$

- 1. Montrer que pour tout $A \in M_n(\mathbb{K})$, trace $(A) = \operatorname{trace}({}^tA)$.
- 2. Montrer que trace est une forme linéaire sur $M_n(\mathbb{K})$.
- 3. Montrer que pour tout $(B,C) \in \mathrm{M}_{n,p}(\mathbb{K}) \times \mathrm{M}_{p,n}(\mathbb{K}) : \mathrm{trace}(B \cdot C) = \mathrm{trace}(C \cdot B)$.

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

4. Soit \mathscr{B} et \mathscr{B}' deux bases de E. Montrer que

$$\operatorname{trace}\left(\operatorname{Mat}_{\mathscr{B}}(u)\right) = \operatorname{trace}\left(\operatorname{Mat}_{\mathscr{B}'}(u)\right)$$

Pour tout $u \in \mathcal{L}(E)$, on définit :

$$trace(u) = trace(Mat_{\mathscr{B}}(u))$$

où \mathcal{B} est une base quelconque de E.

5. Si u est un projecteur de E, Montrer que trace(u) = rang(u)

Exercice 4

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice nilpotente, c'est-à-dire qu'il existe $p \in \mathbb{N}^*$ tel que $A^p = 0_n$. Montrer que la matrice $I_n - A$ est inversible, et déterminer son inverse.

Exercice 5

Soient E un \mathbb{K} -espace vectoriel de dimension 3 et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. Soit $(f_1, f_2) \in (\mathcal{L}(E))^2$ vérifiant :

$$\operatorname{Mat}_{\mathcal{B}}(f_1) = A_1 = \begin{bmatrix} 6 & -5 & -3 \\ 3 & -2 & -3 \\ 5 & -5 & -2 \end{bmatrix} \quad \text{et} \quad \operatorname{Mat}_{\mathcal{B}}(f_2) = A_2 = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 3 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

On pose $\varepsilon_1 = e_1 + e_3$, $\varepsilon_2 = e_1 + e_2$, $\varepsilon_3 = e_1 + e_2 + e_3$.

- 1. Montrer que la famille $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ forme une base de E.
- 2. Déterminer les matrices de f_1 et f_2 dans la base \mathcal{B}' .
- 3. Calculer $(A_1)^n$ et $(A_2)^n$ pour tout $n \in \mathbb{N}^*$.

Exercice 6

Soit f l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & m \\ m & m & 0 & 0 \end{bmatrix}.$

- 1. Déterminer une base et la dimension du noyau et de l'image de f.
- 2. Donner une condition nécessaire et suffisante pour que le noyau et l'image soient supplémentaires.

Exercice 7

Soit
$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
.

- 1. En utilisant l'algorithme du pivot de Gauss, montrer que A est inversible et calculer A^{-1} .
- 2. Calculer $A^2 3.A + 2.I_3$, en déduire que A est inversible et calculer A^{-1} .

Exercice 8

Calculer le rang des matrices suivantes, déterminer celles qui sont inversibles et calculer leur inverse.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 & 1 & 2 \\ -2 & -3 & 0 & -5 \\ 4 & 9 & 6 & 7 \\ 1 & -1 & -5 & 5 \end{bmatrix}$$