

https://goo.gl/Wh2Sxh

Implementing a Reverse Dictionary, based on word definitions, using a Node-Graph Architecture

The Problem: Computing words that semantically represent a phrase

A reverse dictionary maps all phrases to semantically similar words (not just definitions)

Examples:

- 1. Son of my parents Brother
- 2. A hard outer covering Shell

Previous Work: (Systematic vs Jugaad)

- 1. Onelook Reverse Dictionary
- Proprietary algorithm
- 2. Shaw, R., et.al., 2013
 - · Shallow reverse search using lexical relations
- 3. Hill, F., et.al., 2015
- · RNN trained on definitions-word sets

The **Similarity Measure** between a Phrase and a Word:

$$E_{W,P} = \frac{\sum_{i} (\nu_{P_i} \times d_{W,P_i})^{-1}}{\sum_{i} \nu_{P_i}^{-1}}$$

where, Pis are the lemmatised content words of P , v_w is the frequency of w in definitions , d is the distance on the reverse map

Performance Testing

Test Set Generation:

- 179 user generated phrases given target words
 - The phrases are all different from dictionary definitions
- 179 definitions from Macmillian word dictionary
- These definitions were not used in generating the reverse map

Measure of performance:

Rank of target word in the RD output

Concluding Remarks

- Shallow semantic extraction rivals the performance of sophisticated ML systems such as Onelook Reverse Dictionary and those using RNNs (Hill, F.,
- Setting a new baseline to test any new RD systems against (as a sanity check for extracting deep, useful semantic features)
- Simple compositionally (Additive W2V) cannot explain phrasal semantics
- We need automatic extraction of features RNNs, etc. are the way forward towards automating phrasal semantic analysis.

Performance Results

$\boxed{\text{Test Type} \rightarrow}$	Macmillian Word Definitions (179)			User Concept Descriptions (179)		
Evaluation \rightarrow	Accuracy	Rank	Rank	Accuracy	Rank	Rank
Models ↓	@1/10/100	Median	σ	@1/10/100	Median	σ
Onelook	.19/.41/.65	5	24	.04/.21/.40	10	26
Onelook, corr*	.20/.46/.68	3	20	.07/. 26 /.52	13	30
W2V	.01/.06/.20	23	30	.01/.05/.18	34	28
W2V, corr*	.02/.11/.29	21	26	.01/.08/.26	21	29
Chance, 3k	$10^{-4}/10^{-3}/.03$	50	29	$10^{-4}/10^{-3}/.03$	50	29
Fusion, FLM	.02/.10/.21	12	28	.01/.07/.22	16	21
Fusion, mBLM	.25/.55/.84	4	22	.10/.23/.53	14	26
OLD, mBLM	. 26 /.52/.78	4	23	.04/.17/.43	14	25
WN, BLM	.08/.27/.54	11	26	.06/.18/.41	14	26
MW, mBLM	.17/.39/.63	5	20	.05/.20/.43	15	25
WL, 80k	.03/.15/.36	18	26	.05/.11/.24	14	25
WL, corr*	.07/.26/.52	10	25	.07/.18/.35	10	23

- · Accuracy: Fraction of target words under the specified rank
- Performance: Fusion mBLM ~ Onelook (corrected for 3k lexicon)
- W2V, denoting naive additive composition, performs poorly
- All performances significantly above chance
- Our approach doesn't scale well (as seen through the use of 80k lexicon)

Comments/Questions?

Contact us:

Sushrut Thorat - sushrut.thorat94@gmail.com Varad Choudhari - varad.choudhari@gmail.com