CL-2028USPROV.ST25.txt SEQUENCE LISTING

```
E. I. duPont de Nemours and Company, Inc.
<110>
       Cheng, Qiong
       Rouviere, Pierre
       Tao, Luan
<120>
      Mutations Affecting Carotenoid Production
<130>
      CL-2028 US NA
<150>
       us 60/435612
      2002-12-19
<151>
<160>
      43
<170>
       PatentIn version 3.2
<210>
       912
<211>
<212>
      DNA
<213>
      Pantoea stewartii
<220>
       misc_feature
<221>
<222>
       (1)..(3)
      Alternative start code usage of TTG instead of ATG.
<400>
                                                                       60
ttgacggtct gcgcaaaaaa acacgttcac cttactggca tttcggctga gcagttgctg
gctgatatcg atagccgcct tgatcagtta ctgccggttc agggtgagcg ggattgtgtg
                                                                      120
                                                                      180
ggtgccgcga tgcgtgaagg cacgctggca ccgggcaaac gtattcgtcc gatgctgctg
ttattaacag cgcgcgatct tggctgtgcg atcagtcacg ggggattact ggatttagcc
                                                                      240
tgcgcggttg aaatggtgca tgctgcctcg ctgattctgg atgatatgcc ctgcatggac
                                                                      300
gatgcgcaga tgcgtcgggg gcgtcccacc attcacacgc agtacggtga acatgtggcg
                                                                      360
attctggcgg cggtcgcttt actcagcaaa gcgtttgggg tgattgccga ggctgaaggt
                                                                      420
ctgacgccga tagccaaaac tcgcgcggtg tcggagctgt ccactgcgat tggcatgcag
                                                                      480
ggtctggttc agggccagtt taaggacctc tcggaaggcg ataaaccccg cagcgccgat
                                                                      540
gccatactgc taaccaatca gtttaaaacc agcacgctgt tttgcgcgtc aacgcaaatg
                                                                      600
gcgtccattg cggccaacgc gtcctgcgaa gcgcgtgaga acctgcatcg tttctcgctc
                                                                      660
gatctcggcc aggcctttca gttgcttgac gatcttaccg atggcatgac cgataccggc
                                                                      720
aaagacatca atcaggatgc aggtaaatca acgctggtca atttattagg ctcaggcgcg
                                                                      780
gtcgaagaac gcctgcgaca gcatttgcgc ctggccagtg aacacctttc cgcggcatgc
                                                                      840
caaaacggcc attccaccac ccaacttttt attcaggcct ggtttgacaa aaaactcgct
                                                                      900
gccgtcagtt aa
                                                                      912
```

<210> 2 <211> 303 <212> PRT

<213> Pantoea stewartii

Met Thr Val Cys Ala Lys Lys His Val His Leu Thr Gly Ile Ser Ala 1 5 10 15 Glu Gln Leu Leu Ala Asp Ile Asp Ser Arg Leu Asp Gln Leu Leu Pro 20 25 30 Val Gln Gly Glu Arg Asp Cys Val Gly Ala Ala Met Arg Glu Gly Thr 35 40 45 Leu Ala Pro Gly Lys Arg Ile Arg Pro Met Leu Leu Leu Leu Thr Ala 50 55 60 Arg Asp Leu Gly Cys Ala Ile Ser His Gly Gly Leu Leu Asp Leu Ala 65 . 70 75 80 Cys Ala Val Glu Met Val His Ala Ala Ser Leu Ile Leu Asp Asp Met 85 90 95 Pro Cys Met Asp Asp Ala Gln Met Arg Arg Gly Arg Pro Thr Ile His $100 \hspace{1cm} 105 \hspace{1cm} 110$ Thr Gln Tyr Gly Glu His Val Ala Ile Leu Ala Ala Val Ala Leu Leu 115 120 125 Ser Lys Ala Phe Gly Val Ile Ala Glu Ala Glu Gly Leu Thr Pro Ile 130 135 140 Ala Lys Thr Arg Ala Val Ser Glu Leu Ser Thr Ala Ile Gly Met Gln 145 150 155 160 Gly Leu Val Gln Gly Gln Phe Lys Asp Leu Ser Glu Gly Asp Lys Pro 165 170 175 Arg Ser Ala Asp Ala Ile Leu Leu Thr Asn Gln Phe Lys Thr Ser Thr 180 185 190 Leu Phe Cys Ala Ser Thr Gln Met Ala Ser Ile Ala Ala Asn Ala Ser 195 200 205 Cys Glu Ala Arg Glu Asn Leu His Arg Phe Ser Leu Asp Leu Gly Gln 210 220 Ala Phe Gln Leu Leu Asp Asp Leu Thr Asp Gly Met Thr Asp Thr Gly 225 230 235 Lys Asp Ile Asn Gln Asp Ala Gly Lys Ser Thr Leu Val Asn Leu Leu 245 250 255 Gly Ser Gly Ala Val Glu Glu Arg Leu Arg Gln His Leu Arg Leu Ala 260 265 270 Page 2

Ser Glu His 275	Leu Ser Ala	Ala Cys Glr 280	Asn Gly His	Ser Thr 285	Thr Gln	
Leu Phe Ile 290	Gln Ala Trp	Phe Asp Lys 295	Lys Leu Ala 300		Ser	
<210> 3 <211> 1296 <212> DNA <213> Panto	oea stewarti	i				
<220> <221> CDS <222> (1)	. (1296)					
<400> 3 atg agc cat Met Ser His 1	ttt gcg gtg Phe Ala Val 5	atc gca ccg Ile Ala Pro	ccc ttt ttc Pro Phe Phe 10	agc cat Ser His	gtt cgc Val Arg 15	48
gct ctg caa Ala Leu Gln	aac ctt gct Asn Leu Ala 20	cag gaa tta Gln Glu Leu 25	gtg gcc cgc Val Ala Arg	ggt cat Gly His 30	cgt gtt Arg Val	96
acg ttt ttt Thr Phe Phe 35	cag caa cat Gln Gln His	gac tgc aaa Asp Cys Lys 40	gcg ctg gta Ala Leu Val	acg ggc Thr Gly 45	agc gat Ser Asp	144
atc gga ttc Ile Gly Phe 50	cag acc gtc Gln Thr Val	gga ctg caa Gly Leu Glr 55	acg cat cct Thr His Pro 60	ccc ggt Pro Gly	tcc tta Ser Leu	192
tcg cac ctg Ser His Leu 65	ctg cac ctg Leu His Leu 70	gcc gcg cac Ala Ala His	cca ctc gga Pro Leu Gly 75	ccc tcg Pro Ser	atg tta Met Leu 80	240
cga ctg atc Arg Leu Ile	aat gaa atg Asn Glu Met 85	gca cgt acc Ala Arg Thr	agc gat atg Ser Asp Met 90	ctt tgc Leu Cys	cgg gaa Arg Glu 95	288
ctg ccc gcc Leu Pro Ala	gct ttt cat Ala Phe His 100	gcg ttg cag Ala Leu Gln 105	ata gag ggc Ile Glu Gly	gtg atc Val Ile 110	gtt gat Val Asp	336
caa atg gag Gln Met Glu 115	ccg gca ggt Pro Ala Gly	gca gta gto Ala Val Val 120	gca gaa gcg Ala Glu Ala	tca ggt Ser Gly 125	ctg ccg Leu Pro	384
ttt gtt tcg Phe Val Ser 130	gtg gcc tgc Val Ala Cys	gcg ctg ccg Ala Leu Pro 135	ctc aac cgc Leu Asn Arg 140	gaa ccg Glu Pro	ggt ttg Gly Leu	432
cct ctg gcg Pro Leu Ala 145	gtg atg cct Val Met Pro 150	ttc gag tac Phe Glu Tyr	ggc acc agc Gly Thr Ser 155	gat gcg Asp Ala	gct cgg Ala Arg 160	480
			tat gac tgg Tyr Asp Trp 170			528
cac gat cgt His Asp Arg	gtg atc gcg Val Ile Ala 180	cat cat gca His His Ala 185	tgc aga atg Cys Arg Met Page 3	ggt tta Gly Leu 190	gcc ccg Ala Pro	576

					cat His											624
					gat Asp											672
cat His 225	gcg Ala	gtt val	gga Gly	ccg Pro	tta Leu 230	cgg Arg	caa Gln	ccc Pro	cag Gln	ggg Gly 235	acg Thr	ccg Pro	ggg Gly	tca Ser	tca Ser 240	720
					tcc Ser											768
					cat His											816
gcc Ala	tgc Cys	gaa Glu 275	gag Glu	gtg Val	gat Asp	gcg Ala	cag Gln 280	tta Leu	ctg Leu	ttg Leu	gca Ala	cac His 285	tgt Cys	ggc Gly	ggc Gly	864
ctc Leu	tca Ser 290	gcc Ala	acg Thr	cag Gln	gca Ala	ggt Gly 295	gaa Glu	ctg Leu	gcc Ala	cgg Arg	ggc Gly 300	ggg Gly	gac Asp	att Ile	cag Gln	912
gtt Val 305	gtg Val	gat Asp	ttt Phe	gcc Ala	gat Asp 310	caa Gln	tcc Ser	gca Ala	gca Ala	ctt Leu 315	tca Ser	cag Gln	gca Ala	cag Gln	ttg Leu 320	960
aca Thr	atc Ile	aca Thr	cat His	ggt Gly 325	ggg Gly	atg Met	aat Asn	acg Thr	gta Val 330	ctg Leu	gac Asp	gct Ala	att Ile	gct Ala 335	tcc Ser	1008
					gcg Ala											1056
gca Ala	tca Ser	cga Arg 355	att Ile	gtt Val	tat Tyr	cat His	ggc Gly 360	atc Ile	ggc Gly	aag Lys	cgt Arg	gcg Ala 365	tct Ser	cgg Arg	ttt Phe	1104
act Thr	acc Thr 370	agc Ser	cat His	gcg Ala	ctg Leu	gcg Ala 375	cgg Arg	cag Gln	att Ile	cga Arg	tcg Ser 380	ctg Leu	ctg Leu	act Thr	aac Asn	1152
acc Thr 385	gat Asp	tac Tyr	ccg Pro	cag Gln	cgt Arg 390	atg Met	aca Thr	aaa Lys	att Ile	cag Gln 395	gcc Ala	gca Ala	ttg Leu	cgt Arg	ctg Leu 400	1200
gca Ala	ggc Gly	ggc Gly	aca Thr	cca Pro 405	gcc Ala	gcc Ala	gcc Ala	gat Asp	att Ile 410	gtt Val	gaa Glu	cag Gln	gcg Ala	atg Met 415	cgg Arg	1248
acc Thr	tgt Cys	cag Gln	cca Pro 420	gta val	ctc Leu	agt Ser	ggg Gly	cag G1n 425	gat Asp	tat Tyr	gca Ala	acc Thr	gca Ala 430	cta Leu	tga	1296

<210> 4 <211> 431 <212> PRT <213> Pantoea stewartii

<400> 4

Met Ser His Phe Ala Val Ile Ala Pro Pro Phe Phe Ser His Val Arg $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ Ala Leu Gln Asn Leu Ala Gln Glu Leu Val Ala Arg Gly His Arg Val 20 25 30 Thr Phe Phe Gln Gln His Asp Cys Lys Ala Leu Val Thr Gly Ser Asp 35 40 45 Ile Gly Phe Gln Thr Val Gly Leu Gln Thr His Pro Pro Gly Ser Leu 50 60 Ser His Leu Leu His Leu Ala Ala His Pro Leu Gly Pro Ser Met Leu 65 70 75 80 Arg Leu Ile Asn Glu Met Ala Arg Thr Ser Asp Met Leu Cys Arg Glu 85 90 95 Leu Pro Ala Ala Phe His Ala Leu Gln Ile Glu Gly Val Ile Val Asp 100 105 110 Gln Met Glu Pro Ala Gly Ala Val Val Ala Glu Ala Ser Gly Leu Pro 115 120 125 Phe Val Ser Val Ala Cys Ala Leu Pro Leu Asn Arg Glu Pro Gly Leu 130 135 140 Pro Leu Ala Val Met Pro Phe Glu Tyr Gly Thr Ser Asp Ala Ala Arg 145 150 155 160 Glu Arg Tyr Thr Thr Ser Glu Lys Ile Tyr Asp Trp Leu Met Arg Arg 165 170 175 His Asp Arg Val Ile Ala His His Ala Cys Arg Met Gly Leu Ala Pro 180 185 190 Arg Glu Lys Leu His His Cys Phe Ser Pro Leu Ala Gln Ile Ser Gln
195 200 205 Leu Ile Pro Glu Leu Asp Phe Pro Arg Lys Ala Leu Pro Asp Cys Phe 210 220 His Ala Val Gly Pro Leu Arg Gln Pro Gln Gly Thr Pro Gly Ser Ser 225 230 235 240 Thr Ser Tyr Phe Pro Ser Pro Asp Lys Pro Arg Ile Phe Ala Ser Leu 245 250 255 Gly Thr Leu Gln Gly His Arg Tyr Gly Leu Phe Arg Thr Ile Ala Lys 260 265 270

Ala	Cys	G1u 275	Glu	val	Asp	Ala	G]n 280	Leu	Leu	Leu	Ala	His 285	Cys	Gly	Gly	
Leu	Ser 290	Ala	Thr	Gln	Ala	G]y 295	Glu	Leu	Ala	Arg	Gly 300	Gly	Asp	Ile	Gln	
va1 305	Val	Asp	Phe	Ala	Asp 310	Gln	Ser	Ala	Ala	Leu 315	Ser	Gln	Ala	Gln	Leu 320	
Thr	Ile	Thr	Нis	Gly 325	Gly	Met	Asn	Thr	va1 330	Leu	Asp	Ala	Ile	Ala 335	Ser	
Arg	Thr	Pro	Leu 340	Leu	Ala	Leu	Pro	Leu 345	Ala	Phe	Asp	Gln	Pro 350	Gly	٧a٦	
Ala	Ser	Arg 355	Ile	Val	Tyr	His	Gly 360	Ile	Gly	Lys	Arg	Ala 365	Ser	Arg	Phe	
Thr	Thr 370	Ser	His	Ala	Leu	Ala 375	Arg	Gln	Ile	Arg	Ser 380	Leu	Leu	Thr	Asn	
Thr 385	Asp	Tyr	Pro	Gln	Arg 390	Met	Thr	Lys	Ile	Gln 395	Ala	Ala	Leu	Arg	Leu 400	
Аlа	Gly	Gly	Thr	Pro 405	Ala	Ala	Ala	Asp	Ile 410	val	Glu	Gln	Ala	Met 415	Arg	
Thr	Cys	Gln	Pro 420	val	Leu	Ser	Gly	G]n 425	Asp	Туг	Аla	Thr	Ala 430	Leu		
<21 <21 <21 <21	1> : 2> :	5 1149 DNA Panto	oea s	stewa	artii	i										
<220 <220 <220	l> (CDS (1).	. (114	49)												
<400 atg Met 1		ccg Pro	cac His	tat Tyr 5	gat Asp	ctc Leu	att Ile	ctg Leu	gtc Val 10	ggt Gly	gcc Ala	ggt Gly	ctg Leu	gct Ala 15	aat Asn	48
ggc Gly	ctt Leu	atc Ile	gcg Ala 20	ctc Leu	cgg Arg	ctt Leu	cag Gln	caa Gln 25	cag Gln	cat His	ccg Pro	gat Asp	atg Met 30	cgg Arg	atc Ile	96
ttg Leu	ctt Leu	att Ile 35	gag Glu	gcg Ala	ggt Gly	cct Pro	gag Glu 40	gcg Ala	gga Gly	ggg Gly	aac Asn	cat His 45	acc Thr	tgg Trp	tcc Ser	144
ttt Phe	cac His	gaa Glu	gag Glu	gat Asp	tta Leu	acg Thr	ctg Leu	aat Asn	cag Gln	cat His	cgc Arg	tgg Trp	ata Ile	gcg Ala	ccg Pro	192

								202	0							
ctt Leu 65	gtg Val	gtc Val	cat His	cac His	tgg Trp 70	ccc Pro	gac	-202 tac Tyr	cag	gtt	cgt	ttc	ccc	caa Gln	cgc Arg 80	240
cgt Arg	cgc Arg	cat His	gtg val	aac Asn 85	agt Ser	ggc Gly	tac Tyr	tac Tyr	tgc Cys 90	gtg Val	acc Thr	tcc Ser	cgg Arg	cat His 95	ttc Phe	288
gcc Ala	ggg Gly	ata Ile	ctc Leu 100	cgg Arg	caa Gln	cag Gln	ttt Phe	gga Gly 105	caa Gln	cat His	tta Leu	tgg Trp	ctg Leu 110	cat His	acc Thr	336
gcg Ala	gtt Val	tca Ser 115	gcc Ala	gtt Val	cat His	gct Ala	gaa Glu 120	tcg Ser	gtc Val	cag Gln	tta Leu	gcg Ala 125	gat Asp	ggc Gly	cgg Arg	384
att Ile	att Ile 130	cat His	gcc Ala	agt Ser	aca Thr	gtg Val 135	atc Ile	gac Asp	gga Gly	cgg Arg	ggt Gly 140	tac Tyr	acg Thr	cct Pro	gat Asp	432
tct Ser 145	gca Ala	cta Leu	cgc Arg	gta Val	gga Gly 150	ttc Phe	cag Gln	gca Ala	ttt Phe	atc Ile 155	ggt Gly	cag Gln	gag Glu	tgg Trp	caa Gln 160	. 480
ctg Leu	agc Ser	gcg Ala	ccg Pro	cat His 165	ggt Gly	tta Leu	tcg Ser	tca Ser	ccg Pro 170	att Ile	atc Ile	atg Met	gat Asp	gcg Ala 175	acg Thr	528
														ctt Leu		576
														gct Ala		624
ctt Leu	cag Gln 210	gcc Ala	gaa Glu	cgg Arg	gcg Ala	cgt Arg 215	cag Gln	aac Asn	att Ile	cgc Arg	gat Asp 220	tat Tyr	gct Ala	gcg Ala	cga Arg	672
cag G1n 225	ggt Gly	tgg Trp	ccg Pro	tta Leu	cag Gln 230	acg Thr	ttg Leu	ctg Leu	cgg Arg	gaa Glu 235	gaa Glu	cag Gln	ggt Gly	gca Ala	ttg Leu 240	720
ccc Pro	att Ile	acg Thr	tta Leu	acg Thr 245	ggc Gly	gat Asp	aat Asn	cgt Arg	cag Gln 250	ttt Phe	tgg Trp	caa Gln	cag Gln	caa Gln 255	ccg Pro	768
caa Gln	gcc Ala	tgt Cys	agc Ser 260	gga Gly	tta Leu	cgc Arg	gcc Ala	ggg Gly 265	ctg Leu	ttt Phe	cat His	ccg Pro	aca Thr 270	acc Thr	ggc Gly	816
tac Tyr	tcc Ser	cta Leu 275	ccg Pro	ctc Leu	gcg Ala	gtg Val	gcg Ala 280	ctg Leu	gcc Ala	gat Asp	cgt Arg	ctc Leu 285	agc Ser	gcg Ala	ctg Leu	864
gat Asp	gtg Val 290	ttt Phe	acc Thr	tct Ser	tcc Ser	tct Ser 295	gtt Val	cac His	cag Gln	acg Thr	att Ile 300	gct Ala	cac His	ttt Phe	gcc Ala	912
cag Gln 305	caa Gln	cgt Arg	tgg Trp	cag Gln	caa Gln 310	cag Gln	ggg Gly	ttt Phe	ttc Phe	cgc Arg 315	atg Met	ctg Leu	aat Asn	cgc Arg	atg Met 320	960
ttg Leu	ttt Phe	tta Leu	gcc Ala	gga Gly 325	ccg Pro	gcc Ala	gag Glu	tca Ser	cgc Arg 330	tgg Trp	cgt Arg	gtg Val	atg Met	cag Gln 335	cgt Arg	1008

```
CL-2028USPROV.ST25.txt
ttc tat ggc tta ccc gag gat ttg att gcc cgc ttt tat gcg gga aaa
Phe Tyr Gly Leu Pro Glu Asp Leu Ile Ala Arg Phe Tyr Ala Gly Lys
340 345 350
                                                                                          1056
ctc acc gtg acc gat cgg cta cgc att ctg agc ggc aag ccg ccc gtt
Leu Thr Val Thr Asp Arg Leu Arg Ile Leu Ser Gly Lys Pro Pro Val
355 360 365
                                                                                          1104
ccc gtt ttc gcg gca ttg cag gca att atg acg act cat cgt tga
Pro Val Phe Ala Ala Leu Gln Ala Ile Met Thr Thr His Arg
                                                                                           1149
<210>
         6
         382
<211>
         PRT
<213>
         Pantoea stewartii
<400>
Met Gln Pro His Tyr Asp Leu Ile Leu Val Gly Ala Gly Leu Ala Asn
5 10 15
Gly Leu Ile Ala Leu Arg Leu Gln Gln Gln His Pro Asp Met Arg Ile
20 25 30
Leu Leu Ile Glu Ala Gly Pro Glu Ala Gly Gly Asn His Thr Trp Ser 40 45
Phe His Glu Glu Asp Leu Thr Leu Asn Gln His Arg Trp Ile Ala Pro 50 55 60
Leu Val Val His His Trp Pro Asp Tyr Gln Val Arg Phe Pro Gln Arg 65 70 75 80
Arg Arg His Val Asn Ser Gly Tyr Tyr Cys Val Thr Ser Arg His Phe
85 90 95
Ala Gly Ile Leu Arg Gln Gln Phe Gly Gln His Leu Trp Leu His Thr
100 105 110
Ala Val Ser Ala Val His Ala Glu Ser Val Gln Leu Ala Asp Gly Arg
115 120 125
Ile Ile His Ala Ser Thr Val Ile Asp Gly Arg Gly Tyr Thr Pro Asp
130 135 140
Ser Ala Leu Arg Val Gly Phe Gln Ala Phe Ile Gly Gln Glu Trp Gln
145 150 155 160
Leu Ser Ala Pro His Gly Leu Ser Ser Pro Ile Ile Met Asp Ala Thr
165 170 175
Val Asp Gln Gln Asn Gly Tyr Arg Phe Val Tyr Thr Leu Pro Leu Ser
```

```
CL-2028USPROV.ST25.txt
Ala Thr Ala Leu Leu Ile Glu Asp Thr His Tyr Ile Asp Lys Ala Asn
195 200 205
Leu Gln Ala Glu Arg Ala Arg Gln Asn Ile Arg Asp Tyr Ala Ala Arg
210 215 220
Gln Gly Trp Pro Leu Gln Thr Leu Leu Arg Glu Glu Gln Gly Ala Leu
225 230 235 240
Pro Ile Thr Leu Thr Gly Asp Asn Arg Gln Phe Trp Gln Gln Gln Pro
245 250 255
Gln Ala Cys Ser Gly Leu Arg Ala Gly Leu Phe His Pro Thr Thr Gly
260 265 270
Tyr Ser Leu Pro Leu Ala Val Ala Leu Ala Asp Arg Leu Ser Ala Leu
275 280 285
Asp Val Phe Thr Ser Ser Ser Val His Gln Thr Ile Ala His Phe Ala
290 295 300
Gln Gln Arg Trp Gln Gln Gln Gly Phe Phe Arg Met Leu Asn Arg Met
Leu Phe Leu Ala Gly Pro Ala Glu Ser Arg Trp Arg Val Met Gln Arg
325 330 335
Phe Tyr Gly Leu Pro Glu Asp Leu Ile Ala Arg Phe Tyr Ala Gly Lys
340 345 350
Leu Thr Val Thr Asp Arg Leu Arg Ile Leu Ser Gly Lys Pro Pro Val
Pro Val Phe Ala Ala Leu Gln Ala Ile Met Thr Thr His Arg
370 375 380
<210>
        1479
<211>
<212>
        DNA
        Pantoea stewartii
<220>
<221>
<222>
         CDS
         (1)..(1479)
<400> 7
atg aaa cca act acg gta att ggt gcg ggc ttt ggt ggc ctg gca ctg
Met Lys Pro Thr Thr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu
1 10 15
                                                                                           48
gca att cgt tta cag gcc gca ggt att cct gtt ttg ctg ctt gag cag Ala Ile Arg Leu Gln Ala Ala Gly Ile Pro Val Leu Leu Glu Gln 20 25 30
                                                                                           96
cgc gac aag ccg ggt ggc cgg gct tat gtt tat cag gag cag ggc ttt
                                                                                          144
                                                 Page 9
```

CL-2028USPROV.ST25.txt

Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Gln Glu Gln Gly Phe
35 40 45 act ttt gat gca ggc cct acc gtt atc acc gat ccc agc gcg att gaa Thr Phe Asp Ala Gly Pro Thr Val Ile Thr Asp Pro Ser Ala Ile Glu 50 55 60 192 gaa ctg ttt gct ctg gcc ggt aaa cag ctt aag gat tac gtc gag ctg Glu Leu Phe Ala Leu Ala Gly Lys Gln Leu Lys Asp Tyr Val Glu Leu 65 70 75 80 240 ttg ccg gtc acg ccg ttt tat cgc ctg tgc tgg gag tcc ggc aag gtc Leu Pro Val Thr Pro Phe Tyr Arg Leu Cys Trp Glu Ser Gly Lys Val 85 90 95 288 ttc aat tac gat aac gac cag gcc cag tta gaa gcg cag ata cag cag Phe Asn Tyr Asp Asn Asp Gln Ala Gln Leu Glu Ala Gln Ile Gln Gln 100 105 110 336 ttt aat ccg cgc gat gtt gcg ggt tat cga gcg ttc ctt gac tat tcg Phe Asn Pro Arg Asp Val Ala Gly Tyr Arg Ala Phe Leu Asp Tyr Ser 115 120 125 384 cgt gcc gta ttc aat gag ggc tat ctg aag ctc ggc act gtg cct ttt Arg Ala Val Phe Asn Glu Gly Tyr Leu Lys Leu Gly Thr Val Pro Phe 130 135 140 432 tta tcg ttc aaa gac atg ctt cgg gcc gcg ccc cag ttg gca aag ctg Leu Ser Phe Lys Asp Met Leu Arg Ala Ala Pro Gln Leu Ala Lys Leu 480 cag gca tgg cgc agc gtt tac agt aaa gtt gcc ggc tac att gag gat Gln Ala Trp Arg Ser Val Tyr Ser Lys Val Ala Gly Tyr Ile Glu Asp 528 gag cat ctt cgg cag gcg ttt tct ttt cac tcg ctc tta gtg ggg ggg Glu His Leu Arg Gln Ala Phe Ser Phe His Ser Leu Leu Val Gly Gly 180 185 190576 aat ccg ttt gca acc tcg tcc att tat acg ctg att cac gcg tta gaa Asn Pro Phe Ala Thr Ser Ser Ile Tyr Thr Leu Ile His Ala Leu Glu 195 200 205 624 cgg gaa tgg ggc gtc tgg ttt cca cgc ggt gga acc ggt gcg ctg gtc Arg Glu Trp Gly Val Trp Phe Pro Arg Gly Gly Thr Gly Ala Leu Val 210 215 220 672 aat ggc atg atc aag ctg ttt cag gat ctg ggc ggc gaa gtc gtg ctt Asn Gly Met Ile Lys Leu Phe Gln Asp Leu Gly Gly Glu Val Val Leu 225 230 235 240 720 aac gcc cgg gtc agt cat atg gaa acc gtt ggg gac aag att cag gcc Asn Ala Arg Val Ser His Met Glu Thr Val Gly Asp Lys Ile Gln Ala 245 250 255 768 gtg cag ttg gaa gac ggc aga cgg ttt gaa acc tgc gcg gtg gcg tcg Val Gln Leu Glu Asp Gly Arg Arg Phe Glu Thr Cys Ala Val Ala ser 260 265 270 816 aac gct gat gtt gta cat acc tat cgc gat ctg ctg tct cag cat ccc Asn Ala Asp Val Val His Thr Tyr Arg Asp Leu Leu Ser Gln His Pro 275 280 285 864

gca gcc gct aag cag gcg aaa aaa ctg caa tcc aag cgt atg agt aac Ala Ala Ala Lys Gln Ala Lys Lys Leu Gln Ser Lys Arg Met Ser Asn 290 295 300

tca ctg ttt gta ctc tat ttt ggt ctc aac cat cat cac gat caa ctc

Page 10

912

960

CL-2028USPROV.ST25.txt	
Ser Leu Phe Val Leu Tyr Phe Gly Leu Asn His His His Asp Gln Leu 305 310 315	
gcc cat cat acc gtc tgt ttt ggg cca cgc tac cgt gaa ctg att cac Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile His 325 330 335	1008
gaa att ttt aac cat gat ggt ctg gct gag gat ttt tcg ctt tat tta Glu Ile Phe Asn His Asp Gly Leu Ala Glu Asp Phe Ser Leu Tyr Leu 340 345 350	1056
cac gca cct tgt gtc acg gat ccg tca ctg gca ccg gaa ggg tgc ggc His Ala Pro Cys Val Thr Asp Pro Ser Leu Ala Pro Glu Gly Cys Gly 355 360 365	1104
agc tat tat gtg ctg gcg cct gtt cca cac tta ggc acg gcg aac ctc Ser Tyr Tyr Val Leu Ala Pro Val Pro His Leu Gly Thr Ala Asn Leu 370 375 380	1152
gac tgg gcg gta gaa gga ccc cga ctg cgc gat cgt att ttt gac tac Asp Trp Ala Val Glu Gly Pro Arg Leu Arg Asp Arg Ile Phe Asp Tyr 385 390 395 400	1200
ctt gag caa cat tac atg cct ggc ttg cga agc cag ttg gtg acg cac Leu Glu Gln His Tyr Met Pro Gly Leu Arg Ser Gln Leu Val Thr His 405 410 415	1248
cgt atg ttt acg ccg ttc gat ttc cgc gac gag ctc aat gcc tgg caa Arg Met Phe Thr Pro Phe Asp Phe Arg Asp Glu Leu Asn Ala Trp Gln 420 425 430	1296
ggt tcg gcc ttc tcg gtt gaa cct att ctg acc cag agc gcc tgg ttc Gly Ser Ala Phe Ser Val Glu Pro Ile Leu Thr Gln Ser Ala Trp Phe 435 440 445	1344
cga cca cat aac cgc gat aag cac att gat aat ctt tat ctg gtt ggc Arg Pro His Asn Arg Asp Lys His Ile Asp Asn Leu Tyr Leu Val Gly 450 455 460	1392
gca ggc acc cat cct ggc gcg ggc att ccc ggc gta atc ggc tcg gcg Ala Gly Thr His Pro Gly Ala Gly Ile Pro Gly Val Ile Gly Ser Ala 465 470 475 480	1440
aag gcg acg gca ggc tta atg ctg gag gac ctg att tga Lys Ala Thr Ala Gly Leu Met Leu Glu Asp Leu Ile 485 490	1479
<210> 8 <211> 492 <212> PRT <213> Pantoea stewartii	
<400> 8	
Met Lys Pro Thr Thr Val Ile Gly Ala Gly Phe Gly Gly Leu Ala Leu 1 5 10 15	
Ala Ile Arg Leu Gln Ala Ala Gly Ile Pro Val Leu Leu Glu Gln 20 25 30	

Arg Asp Lys Pro Gly Gly Arg Ala Tyr Val Tyr Gln Glu Gln Gly Phe 35 40 45

Thr Phe Asp Ala Gly Pro Thr Val Ile Thr Asp Pro Ser Ala Ile Glu Page 11 $\,$

55

Glu Leu Phe Ala Leu Ala Gly Lys Gln Leu Lys Asp Tyr Val Glu Leu 65 70 75 80 Leu Pro Val Thr Pro Phe Tyr Arg Leu Cys Trp Glu Ser Gly Lys Val Phe Asn Tyr Asp Asn Asp Gln Ala Gln Leu Glu Ala Gln Ile Gln Gln
100 105 Phe Asn Pro Arg Asp Val Ala Gly Tyr Arg Ala Phe Leu Asp Tyr Ser 115 120 125 Arg Ala Val Phe Asn Glu Gly Tyr Leu Lys Leu Gly Thr Val Pro Phe 130 140 Leu Ser Phe Lys Asp Met Leu Arg Ala Ala Pro Gln Leu Ala Lys Leu 145 150 155 160 Gln Ala Trp Arg Ser Val Tyr Ser Lys Val Ala Gly Tyr Ile Glu Asp 165 170 175 Glu His Leu Arg Gln Ala Phe Ser Phe His Ser Leu Leu Val Gly Gly 180 185 Asn Pro Phe Ala Thr Ser Ser Ile Tyr Thr Leu Ile His Ala Leu Glu 195 200 205Glu Trp Gly Val Trp Phe Pro Arg Gly Gly Thr Gly Ala Leu Val 210 215 220 Asn Gly Met Ile Lys Leu Phe Gln Asp Leu Gly Glu Val Val Leu 225 230 235 240 Asn Ala Arg Val Ser His Met Glu Thr Val Gly Asp Lys Ile Gln Ala 245 250 255 Val Gln Leu Glu Asp Gly Arg Arg Phe Glu Thr Cys Ala Val Ala Ser 260 265 270 Asn Ala Asp Val Val His Thr Tyr Arg Asp Leu Leu Ser Gln His Pro 275 280 285 Ala Ala Lys Gln Ala Lys Lys Leu Gln Ser Lys Arg Met Ser Asn 290 295 300 Ser Leu Phe Val Leu Tyr Phe Gly Leu Asn His His His Asp Gln Leu 305 310 315 320 Ala His His Thr Val Cys Phe Gly Pro Arg Tyr Arg Glu Leu Ile His Page 12

Glu Ile Phe Asn His Asp Gly Leu Ala Glu Asp Phe Ser Leu Tyr Leu 340 345 350
His Ala Pro Cys Val Thr Asp Pro Ser Leu Ala Pro Glu Gly Cys Gly 355 360 365
Ser Tyr Tyr Val Leu Ala Pro Val Pro His Leu Gly Thr Ala Asn Leu 370 375 380
Asp Trp Ala Val Glu Gly Pro Arg Leu Arg Asp Arg Ile Phe Asp Tyr 385 390 395 400
Leu Glu Gln His Tyr Met Pro Gly Leu Arg Ser Gln Leu Val Thr His 405 410 415
Arg Met Phe Thr Pro Phe Asp Phe Arg Asp Glu Leu Asn Ala Trp Gln 420 425 430
Gly Ser Ala Phe Ser Val Glu Pro Ile Leu Thr Gln Ser Ala Trp Phe 435 440 445
Arg Pro His Asn Arg Asp Lys His Ile Asp Asn Leu Tyr Leu Val Gly 450 455 460
Ala Gly Thr His Pro Gly Ala Gly Ile Pro Gly Val Ile Gly Ser Ala 465 470 475 480
Lys Ala Thr Ala Gly Leu Met Leu Glu Asp Leu Ile 485 490
<210> 9 <211> 891 <212> DNA <213> Pantoea stewartii
<220> <221> CDS <222> (1)(891)
<pre><400> 9 atg gcg gtt ggc tcg aaa agc ttt gcg act gca tcg acg ctt ttc gac</pre>
gcc aaa acc cgt cgc agc gtg ctg atg ctt tac gca tgg tgc cgc cac 96 Ala Lys Thr Arg Arg Ser Val Leu Met Leu Tyr Ala Trp Cys Arg His 20 25 30
tgc gac gac gtc att gac gat caa aca ctg ggc ttt cat gcc gac cag Cys Asp Asp Val Ile Asp Asp Gln Thr Leu Gly Phe His Ala Asp Gln 35 40 45
ccc tct tcg cag atg cct gag cag cgc ctg cag cag ctt gaa atg aaa 192 Pro Ser Ser Gln Met Pro Glu Gln Arg Leu Gln Gln Leu Glu Met Lys Page 13

55

acg Thr 65	cgt Arg	cag Gln	gcc Ala	tac Tyr	gcc Ala 70	ggt Gly	tcg Ser	caa Gln	atg Met	cac His 75	gag Glu	ccc Pro	gct Ala	ttt Phe	gcc Ala 80	240
gcg Ala	ttt Phe	cag Gln	gag Glu	gtc Val 85	gcg Ala	atg Met	gcg Ala	cat His	gat Asp 90	atc Ile	gct Ala	ccc Pro	gcc Ala	tac Tyr 95	gcg Ala	288
ttc Phe	gac Asp	cat His	ctg Leu 100	gaa Glu	ggt Gly	ttt Phe	gcc Ala	atg Met 105	gat Asp	gtg Val	cgc Arg	gaa Glu	acg Thr 110	cgc Arg	tac Tyr	336
ctg Leu	aca Thr	ctg Leu 115	gac Asp	gat Asp	acg Thr	ctg Leu	cgt Arg 120	tat Tyr	tgc Cys	tat Tyr	cac His	gtc val 125	gcc Ala	ggt Gly	gtt Val	384
gtg Val	ggc Gly 130	ctg Leu	atg Met	atg Met	gcg Ala	caa Gln 135	att Ile	atg Met	ggc Gly	gtt Val	cgc Arg 140	gat Asp	aac Asn	gcc Ala	acg Thr	432
ctc Leu 145	gat Asp	cgc Arg	gcc Ala	tgc Cys	gat Asp 150	ctc Leu	ggg Gly	ctg Leu	gct Ala	ttc Phe 155	cag Gln	ttg Leu	acc Thr	aac Asn	att Ile 160	480
gcg Ala	cgt Arg	gat Asp	att Ile	gtc Val 165	gac Asp	gat Asp	gct Ala	cag Gln	gtg Val 170	ggc Gly	cgc Arg	tgt Cys	tat Tyr	ctg Leu 175	cct Pro	528
gaa Glu	agc Ser	tgg Trp	ctg Leu 180	gaa Glu	gag Glu	gaa Glu	gga Gly	ctg Leu 185	acg Thr	aaa Lys	gcg Ala	aat Asn	tat Tyr 190	gct Ala	gcg Ala	576
cca Pro	gaa Glu	aac Asn 195	cgg Arg	cag Gln	gcc Ala	tta Leu	agc Ser 200	cgt Arg	atc Ile	gcc Ala	ggg Gly	cga Arg 205	ctg Leu	gta Val	cgg Arg	624
gaa Glu	gcg Ala 210	gaa Glu	ccc Pro	tat Tyr	tac Tyr	gta Val 215	tca Ser	tca Ser	atg Met	gcc Ala	ggt Gly 220	ctg Leu	gca Ala	caa Gln	tta Leu	672
ccc Pro 225	tta Leu	cgc Arg	tcg Ser	gcc Ala	tgg Trp 230	gcc Ala	atc Ile	gcg Ala	aca Thr	gcg Ala 235	aag Lys	cag Gln	gtg Val	tac Tyr	cgt Arg 240	720
aaa Lys	att Ile	ggc Gly	gtg val	aaa Lys 245	gtt Val	gaa Glu	cag Gln	gcc Ala	ggt Gly 250	aag Lys	cag Gln	gcc Ala	tgg Trp	gat Asp 255	cat His	768
								aaa Lys 265								816
								atg Met								864
					cgc Arg			tag								891

<210> 10 <211> 296 <212> PRT <213> Pantoea stewartii

Met Ala Val Gly Ser Lys Ser Phe Ala Thr Ala Ser Thr Leu Phe Asp 1 10 15 Ala Lys Thr Arg Arg Ser Val Leu Met Leu Tyr Ala Trp Cys Arg His 20 25 30 Cys Asp Asp Val Ile Asp Asp Gln Thr Leu Gly Phe His Ala Asp Gln 35 40 45 Pro Ser Ser Gln Met Pro Glu Gln Arg Leu Gln Gln Leu Glu Met Lys 50 60 Thr Arg Gln Ala Tyr Ala Gly Ser Gln Met His Glu Pro Ala Phe Ala 65 70 75 80 Ala Phe Gln Glu Val Ala Met Ala His Asp Ile Ala Pro Ala Tyr Ala 85 90 95 Phe Asp His Leu Glu Gly Phe Ala Met Asp Val Arg Glu Thr Arg Tyr 100 105 110 Leu Thr Leu Asp Asp Thr Leu Arg Tyr Cys Tyr His Val Ala Gly Val 115 120 125 Val Gly Leu Met Met Ala Gln Ile Met Gly Val Arg Asp Asn Ala Thr 130 140 Leu Asp Arg Ala Cys Asp Leu Gly Leu Ala Phe Gln Leu Thr Asn Ile 145 150 155 160 Ala Arg Asp Ile Val Asp Asp Ala Gln Val Gly Arg Cys Tyr Leu Pro 165 170 175 Glu Ser Trp Leu Glu Glu Glu Gly Leu Thr Lys Ala Asn Tyr Ala Ala 180 185 190 Pro Glu Asn Arg Gln Ala Leu Ser Arg Ile Ala Gly Arg Leu Val Arg 195 200 205 Glu Ala Glu Pro Tyr Tyr Val Ser Ser Met Ala Gly Leu Ala Gln Leu 210 215 220 Pro Leu Arg Ser Ala Trp Ala Ile Ala Thr Ala Lys Gln Val Tyr Arg 225 230 235 240 Lys Ile Gly Val Lys Val Glu Gln Ala Gly Lys Gln Ala Trp Asp His 245 250 255 Arg Gln Ser Thr Ser Thr Ala Glu Lys Leu Thr Leu Leu Leu Thr Ala 260 265 270 Page 15

Ser Gly Gln Ala Val Thr Ser Arg Met Lys Thr Tyr Pro Pro Arg Pro 275 280 285

Ala His Leu Trp Gln Arg Pro Ile 290 295

<210> 11 <211> 528 <212> DNA <213> Pan	toea stew	artii						
<220> <221> CDS <222> (1)	(528)							
<400> 11 atg ttg tg Met Leu Tr 1	g att tgg p Ile Trp 5	aat gcc Asn Ala	ctg atc Leu Ile	gtg tt Val Ph	t gtc acc e Val Thi	' Val'	gtc ggc Val Gly 15	48
atg gaa gt Met Glu Va	g gtt gct l Val Ala 20	gca ctg Ala Leu	gca cat Ala His 25	aaa ta Lys Ty	c atc atc r Ile Med	cac (His (ggc tgg Gly Trp	96
ggt tgg gg Gly Trp Gl 35	c tgg cat y Trp His	ctt tca Leu Ser	cat cat His His 40	gaa cc Glu Pr	g cgt aaa o Arg Lys 45	a ggc (5 Gly /	gca ttt Ala Phe	144
gaa gtt aa Glu Val As 50	c gat ctc n Asp Leu	tat gcc Tyr Ala 55	gtg gta Val Val	ttc gc Phe Al	c att gtg a Ile Va 60	tcg a	att gcc Ile Ala	192
ctg att ta Leu Ile Ty 65	c ttc ggc r Phe Gly	agt aca Ser Thr 70	gga atc Gly Ile	tgg cc Trp Pro 75	g ctc caq o Leu Gli	tgg a	att ggt Ile Gly 80	240
gca ggc at Ala Gly Me						His A		288
ctg gta ca Leu Val Hi								336
ctg aaa cg Leu Lys Ar 11	g Leu Tyr					val /		384
aaa gag gg Lys Glu Gl 130								432
aaa ctt ca Lys Leu Gl 145					a Ala Arg			480
gcc aga ga Ala Arg As	t gag cag p Glu Gln 165		gtg gat Val Asp	acg tc Thr Se 170	t tca tco r Ser Sei	ggg a	aag taa Lys 175	528

<210> 12 <211> 175

```
<212>
       PRT
```

Pantoea stewartii

<400> 12

Met Leu Trp Ile Trp Asn Ala Leu Ile Val Phe Val Thr Val Val Gly
5 10 15

Met Glu Val Val Ala Ala Leu Ala His Lys Tyr Ile Met His Gly Trp
20 25 30

Gly Trp Gly Trp His Leu Ser His His Glu Pro Arg Lys Gly Ala Phe 35 40 45

Glu Val Asn Asp Leu Tyr Ala Val Val Phe Ala Ile Val Ser Ile Ala 50 60

Leu Ile Tyr Phe Gly Ser Thr Gly Ile Trp Pro Leu Gln Trp Ile Gly 65 70 75 80

Ala Gly Met Thr Ala Tyr Gly Leu Leu Tyr Phe Met Val His Asp Gly 85 90 95

Leu Val His Gln Arg Trp Pro Phe Arg Tyr Ile Pro Arg Lys Gly Tyr 100 105 110

Leu Lys Arg Leu Tyr Met Ala His Arg Met His His Ala Val Arg Gly 115 125

Lys Glu Gly Cys Val Ser Phe Gly Phe Leu Tyr Ala Pro Pro Leu Ser 130 140

Lys Leu Gln Ala Thr Leu Arg Glu Arg His Ala Ala Arg Ser Gly Ala 145 150 155 160

Ala Arg Asp Glu Gln Asp Gly Val Asp Thr Ser Ser Gly Lys
165 170 175

<210>

13 25 <211>

DNA

Artificial sequence

<220> <223> First primer used to amplify carotenoid gene cluster.

<400> 13

atgacggtct gcgcaaaaaa acacg

<210> 14 28

<212> DNA

Artificial sequence

<220>

<223> Second primer used to amplify carotenoid gene cluster. Page 17

25

<400> gagaaa	14 ttat gttgtggatt tggaatgc	28
<210> <211> <212> <213>	15 21 DNA Artificial sequence	
<220> <223>	Primer Tn5PCRF.	
<400> gctgag	15 ttga aggatcagat c	21
<210> <211> <212> <213>	16 21 DNA Artificial sequence	
<220> <223>	Primer Tn5PCRR.	
<400> cgagca	16 agac gtttcccgtt g	21
<210> <211> <212> <213>	17 25 DNA Artificial sequence	
<220> <223>	Primer Kan-2 FP-1	
<400> acctac	17 aaca aagctctcat caacc	25
<210> <211> <212> <213>	18 25 DNA Artificial sequence	
<220> <223>	Primer Kan-2 RP-1	
<400> gcaatg	18 taac atcagagatt ttgag	25
<210> <211> <212> <213>	19 20 DNA Artificial sequence	
<220> <223>	Primer Y1_F	
<400> agcacc	19 atga tcatctggcg	20
<210> <211> <212>	20 20 DNA	

CL-2028USPROV.ST25.txt <213> Artificial sequence <220> < <223> Primer Y1_R <400> 20 cggttgcgct ggaagaaaac 20 <210> 21 <211> 20 <212> DNA <213> Artificial sequence <220> <223> Primer Y4_F <400> 21 20 caccctgtgc cattttcagc . . <210> 22 <211> 20 <212> DNA <213> Artificial sequence <220> <223> Primer Y4_R <400> 22 cgttctgggt atggcccaga 20 <210> 23 <211> 20 <212> DNA <213> Artificial sequence <220> <223> Primer Y8_1_F <400> 23 20 aaagctaacc cgtggcagca <210> 24 20 <211> <212> DNA <213> Artificial sequence <220> <223> Primer Y8_1_R <400> 24 tttgcgttcc ccgaggcata 20 25 20 <210> <211> <212> DNA Artificial sequence <213> <220> <223> Primer Y12_F <400> 25 ttccgaaatg gcgtcagctc 20

<210> <211> <212> <213>	26 25 DNA Artificial sequence	
<220> <223>	Primer Y12_R	
<400> atctct	26 acat tgattatgag tattc	25
<210> <211> <212> <213>		
<220> <223>	Primer Y15_F	
<400> ggatcg	27 atct tgagatgacc	20
<210> <211> <212> <213>		
<220> <223>	Primer Y15_R	
<400> gctttc	28 gtaa ttttcgcatt tctg	24
<210> <211> <212> <213>	29 20 DNA Artificial sequence	
<220> <223>	Primer Y16_F	
<400> cacgcc	29 aagt tgcgcaagta	20
<210> <211> <212> <213>	30 20 DNA Artificial sequence	
<220> <223>	Primer Y16_R	
<400> gcagaa	30 aatg gtgactcagg	20
<210> <211> <212> <213>	31 20 DNA Artificial sequence	
<220> <223>	Primer Y17_F	

Page 20

<400> 31 ggcgatcctc gtcgatttct	20
<210> 32 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> Primer Y17_R	
<400> 32 acgcagacga gagtttgcgt	20
<210> 33 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> Primer Y21_F	
<400> 33 accgaatgcc cttgctgttg	20
<210> 34 <211> 20 <212> DNA <213> Artificial sequence	
<220> <223> Primer Y21_R	
<400> 34 gggtgttcag gtatggctta	20
<210> 35 <211> 3159 <212> DNA <213> Escherichia coli	
<400> 35 atgcctgtta taactcttcc tgatggcagc caacgccatt acgatcacgc tgtaagcccc	60
atggatgttg cgctggacat tggtccaggt ctggcgaaag cctgtatcgc agggcgcgtt	120
aatggcgaac tggttgatgc ttgcgatctg attgaaaacg acgcacaact gtcgatcatt	180
accgccaaag acgaagaagg tctggagatc attcgtcact cctgtgcgca cctgttaggg	240
cacgcgatta aacaactttg gccgcatacc aaaatggcaa tcggcccggt tattgacaac	300
ggtttttatt acgacgttga tcttgaccgc acgttaaccc aggaagatgt cgaagcactc	360
gagaagcgga tgcatgagct tgctgagaaa aactacgacg tcattaagaa gaaagtcagc	420
tggcacgaag cgcgtgaaac tttcgccaac cgtggggaga gctacaaagt ctccattctt	480
gacgaaaaca tcgcccatga tgacaagcca ggtctgtact tccatgaaga atatgtcgat	540
atgtgccgcg gtccgcacgt accgaacatg cgtttctgcc atcatttcaa actaatgaaa	600
acggcagggg cttactggcg tggcgacagc aacaacaaaa tgttgcaacg tatttacggt	660

acggcgtggg	cagacaaaaa	agcacttaac	gcttacctgc	agcgcctgga	agaagccgcg	720
aaacgcgacc	accgtaaaat	cggtaaacag	ctcgacctgt	accatatgca	ggaagaagcg	780
ccgggtatgg	tattctggca	caacgacggc	tggaccatct	tccgtgaact	ggaagtgttt	840
gttcgttcta	aactgaaaga	gtaccagtat	caggaagtta	aaggtccgtt	catgatggac	900
cgtgtcctgt	gggaaaaaac	cggtcactgg	gacaactaca	aagatgcaat	gttcaccaca	960
tcttctgaga	accgtgaata	ctgcattaag	ccgatgaact	gcccgggtca	cgtacaaatt	1020
ttcaaccagg	ggctgaagtc	ttatcgcgat	ctgccgctgc	gtatggccga	gtttggtagc	1080
tgccaccgta	acgagccgtc	aggttcgctg	catggcctga	tgcgcgtgcg	tggatttacc	1140
caggatgacg	cgcatatctt	ctgtactgaa	gaacaaattc	gcgatgaagt	taacggatgt	1200
atccgtttag	tctatgatat	gtacagcact	tttggcttcg	agaagatcgt	cgtcaaactc	1260
tccactcgtc	ctgaaaaacg	tattggcagc	gacgaaatgt	gggatcgtgc	tgaggcggac	1320
ctggcggttg	cgctggaaga	aaacaacatc	ccgtttgaat	atcaactggg	tgaaggcgct	1380
ttctacggtc	cgaaaattga	atttaccctg	tatgactgcc	tcgatcgtgc	atggcagtgc	1440
ggtacagtac	agctggactt	ctctttgccg	tctcgtctga	gcgcttctta	tgtaggcgaa	1500
gacaatgaac	gtaaagtacc	ggtaatgatt	caccgcgcaa	ttctggggtc	gatggaacgt	1560
ttcatcggta	tcctgaccga	agagttcgct	ggtttcttcc	cgacctggct	tgcgccggtt	1620
caggttgtta	tcatgaatat	taccgattca	cagtctgaat	acgttaacga	attgacgcaa	1680
aaactatcaa	atgcgggcat	tcgtgttaaa	gcagacttga	gaaatgagaa	gattggcttt	1740
aaaatccgcg	agcacacttt	gcgtcgcgtc	ccatatatgc	tggtctgtgg	tgataaagag	1800
gtggaatcag	gcaaagttgc	cgttcgcacc	cgccgtggta	aagacctggg	aagcatggac	1860
gtaaatgaag	tgatcgagaa	gctgcaacaa	gagattcgca	gccgcagtct	taaacctgtc	1920
tcttatacac	atctcaacca	tcatcgatga	attgtgtctc	aaaatctctg	atgttacatt	1980
gcacaagata	aaaatatatc	atcatgaaca	ataaaactgt	ctgcttacat	aaacagtaat	2040
acaaggggtg	ttatgagcca	tattcaacgg	gaaacgtctt	gctcgaggcc	gcgattaaat	2100
tccaacatgg	atgctgattt	atatgggtat	aaatgggctc	gcgataatgt	cgggcaatca	2160
ggtgcgacaa	tctatcgatt	gtatgggaag	cccgatgcgc	cagagttgtt	tctgaaacat	2220
ggcaaaggta	gcgttgccaa	tgatgttaca	gatgagatgg	tcagactaaa	ctggctgacg	2280
gaatttatgc	ctcttccgac	catcaagcat	tttatccgta	ctcctgatga	tgcatggtta	2340
ctcaccactg	cgatccccgg	aaaaacagca	ttccäggtat	tagaagaata	tcctgattca	2400
ggtgaaaata	ttgttgatgc	gctggcagtg	ttcctgcgcc	ggttgcattc	gattcctgtt	2460
tgtaattgtc	cttttaacag	cgatcgcgta	tttcgtctcg	ctcaggcgca	atcacgaatg	2520
aataacggtt	tggttgatgc	gagtgatttt	gatgacgagc	gtaatggctg	gcctgttgaa	2580
caagtctgga	aagaaatgca	taaacttttg	ccattctcac	cggattcagt	cgtcactcat	2640
ggtgatttct	cacttgataa	ccttatttt	gacgagggga Page 22		ttgtattgat	2700

gttggacgag tcggaatcgc agaccgatac caggatcttg ccatcctatg gaactgcctc	2760
ggtgagtttt ctccttcatt acagaaacgg ctttttcaaa aatatggtat tgataatcct	2820
gatatgaata aattgcagtt tcatttgatg ctcgatgagt ttttctaatc agaattggtt	2880
aattggttgt aacactggca gagcattacg ctgacttgac gggacggcgg ctttgttgaa	2940
taaatcgaac ttttgctgag ttgaaggatc agatcacgca tcttcccgac aacgcagacc	3000
gttccgtggc aaagcaaaag ttcaaaatca ccaactggtc cacctacaac aaagctctca	3060
tcaaccgtgg cggggatcct ctagagtcga cctgcaggca tgcaagcttc agggttgaga	3120
tgtgtataag agacaggtct taaacaattg gaggaataa	3159
<210> 36 <211> 3171 <212> DNA <213> Escherichia coli	
<400> 36 atgatgagtt atgtagactg gccgccatta attttgaggc acacgtacta catggctgaa	60
ttcgaaacca cttttgcaga tctgggcctg aaggctccta tccttgaagc ccttaacgat	120
ctgggttacg aaaaaccatc tccaattcag gcagagtgta ttccacatct gctgaatggc	180
cgcgacgttc tgggtatggc ccagacgggg agcggaaaaa ctgcagcatt ctctttacct	240
ctgttgcaga atcttgatcc tgagctgaaa gcaccacaga ttctggtgct ggcaccgacc	300
cgcgaactgg cggtacaggt tgctgaagca atgacggatt tctctaaaca catgcgcggc	360
gtaaatgtgg ttgctctgta cggcggccag cgttatgacg tgcaattacg cgccctgcgt	420
caggggccgc agatcgttgt cggtactccg ggccgtctgc tggaccacct gaaacgtggc	480
actctggacc tctctaaact gagcggtctg gttctggatg aagctgacga aatgctgcgc	540
atgggcttca tcgaagacgt tgaaaccatt atggcgcaga tcccggaagg tcatcagacc	600
gctctgttct ctgcaaccat gccggaagcg attcgtcgca ttacccgccg ctttatgaaa	660
gagccgcagg aagtgcgcat tcagtccagc gtgactaccc gtcctgacat cagccagagc	720
tactggactg tctggggtat gcgcaaaaac gaagcactgg tacgctgtct cttatacaca	780
tctcaaccat catcgatgaa ttgtgtctca aaatctctga tgttacattg cacaagataa	840
aaatatatca tcatgaacaa taaaactgtc tgcttacata aacagtaata caaggggtgt	900
tatgagccat attcaacggg aaacgtcttg ctcgaggccg cgattaaatt ccaacatgga	960
tgctgattta tatgggtata aatgggctcg cgataatgtc gggcaatcag gtgcgacaat	1020
ctatcgattg tatgggaagc ccgatgcgcc agagttgttt ctgaaacatg gcaaaggtag	1080
cgttgccaat gatgttacag atgagatggt cagactaaac tggctgacgg aatttatgcc	1140
tcttccgacc atcaagcatt ttatccgtac tcctgatgat gcatggttac tcaccactgc	1200
gatccccgga aaaacagcat tccaggtatt agaagaatat cctgattcag gtgaaaatat	1260
tgttgatgcg ctggcagtgt tcctgcgccg gttgcattcg attcctgttt gtaattgtcc	1320

ttttaacagc	gatcgcgtat		2028USPROV. tcaggcgcaa		ataacggttt	1380
ggttgatgcg	agtgattttg	atgacgagcg	taatggctgg	cctgttgaac	aagtctggaa	1440
agaaatgcat	aaacttttgc	cattctcacc	ggattcagtc	gtcactcatg	gtgatttctc	1500
acttgataac	cttatttttg	acgaggggaa	attaataggt	tgtattgatg	ttggacgagt	1560
cggaatcgca	gaccgatacc	aggatcttgc	catcctatgg	aactgcctcg	gtgagttttc	1620
tccttcatta	cagaaacggc	tttttcaaaa	atatggtatt	gataatcctg	atatgaataa	1680
attgcagttt	catttgatgc	tcgatgagtt	tttctaatca	gaattggtta	attggttgta	1740
acactggcag	agcattacgc	tgacttgacg	ggacggcggc	tttgttgaat	aaatcgaact	1800
tttgctgagt	tgaaggatca	gatcacgcat	cttcccgaca	acgcagaccg	ttccgtggca	1860
aagcaaaagt	tcaaaatcac	caactggtcc	acctacaaca	aagctctcat	caaccgtggc	1920
ggggatcctc	tagagtcgac	ctgcaggcat	gcaagcttca	gggttgagat	gtgtataaga	1980
gacagactgg	tacgtttcct	ggaagcggaa	gattttgatg	cggcgattat	cttcgttcgt	2040
accaaaaacg	cgactctgga	agtggctgaa	gctcttgagc	gtaacggcta	caacagcgcc	2100
gcgctgaacg	gtgacatgaa	ccaggcgctg	cgtgaacaga	cactggaacg	cctgaaagat	2160
ggtcgtctgg	acatcctgat	tgcgaccgac	gttgcagccc	gtggcctgga	cgttgagcgt	2220
atcagcctgg	tagttaacta	cgatatcccg	atggattctg	agtcttacgt	tcaccgtatc	2280
ggtcgtaccg	gtcgtgcggg	tcgtgctggc	cgcgcgctgc	tgttcgttga	gaaccgcgag	2340
cgtcgtctgc	tgcgcaacat	tgaacgtact	atgaagctga	ctattccgga	agtagaactg	2400
ccgaacgcag	aactgctagg	caaacgccgt	ctggaaaaat	tcgccgctaa	agtacagcag	2460
cagctggaaa	gcagcgatct	ggatcaatac	cgcgcactgc	tgagcaaaat	tcagccgact	2520
gctgaaggtg	aagagctgga	tctcgaaact	ctggctgcgg	cactgctgaa	aatggcacag	2580
ggtgaacgta	ctctgatcgt	accgccagat	gcgccgatgc	gtccgaaacg	tgaattccgt	2640
gaccgtgatg	accgtggtcc	gcgcgatcgt	aacgaccgtg	gcccgcgtgg	tgaccgtgaa	2700
gatcgtccgc	gtcgtgaacg	tcgtgatgtt	ggcgatatgc	agctgtaccg	cattgaagtg	2760
ggccgcgatg	atggtgttga	agttcgtcat	atcgttggtg	cgattgctaa	cgaaggcgac	2820
atcagcagcc	gttacattgg	taacatcaag	ctgtttgctt	ctcactccac	catcgaactg	2880
ccgaaaggta	tgccgggtga	agtgctgcaa	cactttacgc	gcactcgcat	tctcaacaag	2940
ccgatgaaca	tgcagttact	gggcgatgca	cagccgcata	ctggcggtga	gcgtcgtggc	3000
ggtggtcgtg	gtttcggtgg	cgaacgtcgt	gaaggcggtc	gtaacttcag	cggtgaacgc	3060
cgtgaaggtg	gccgtggtga	tggtcgtcgt	tttagcggcg	aacgtcgtga	aggccgcgct	3120
ccgcgtcgtg	atgattctac	cggtcgtcgt	cgtttcggtg	gtgatgcgta	a	3171

<210> 37 <211> 2904 <212> DNA <213> Escherichia coli

4400- 27		CL-	2028USPROV.	ST25.txt		
<400> 37 atgactgaat	cttttgctca	actctttgaa	gagtccttaa	aagaaatcga	aacccgcccg	60
ggttctatcg	ttcgtggcgt	tgttgttgct	atcgacaaag	acgtagtact	ggttgacgct	120
ggtctgaaat	ctgagtccgc	catcccggct	gagcagttca	aaaacgccca	gggcgagctg	180
gaaatccagg	taggtgacga	agttgacgtt	gctctggacg	cagtagaaga	cggcttcggt	240
gaaactctgc	tgtcccgtga	gaaagctaaa	cgtcacgaag	cctggatcac	gctggaaaaa	300
gcttacgaag	atgctgaaac	tgttaccggt	gttatcaacg	gcaaagttaa	gggcggcttc	360
actgttgagc	tgaacggtat	tcgtgcgttc	ctgccaggtt	ctctggtaga	cgttcgtccg	420
gtgcgtgaca	ctctgcacct	ggaaggcaaa	gagcttgaat	ttaaagtaat	caagctggat	480
cagaagcgca	acaacgttgt	tgtttctcgt	cgtgccgtta	tcgaatccga	aaacagcgca	540
gagcgcgatc	agctgctgga	aaacctgcag	gaaggcatgg	aagttaaagg	tatcgttaag	600
aacctcactg	actacggtgc	attcgttgat	ctgggcggcg	ttgacggcct	gctgcacatc	660
actgacatgg	cctggaaacg	cgttaagcat	ccgagcgaaa	tcgtcaacgt	gggcgacgaa	720
atcactgtta	aagtgctgaa	gttcgaccgc	gaacgtaccc	gtgtatccct	gggcctgaaa	780
cagctgggcg	aagatccgtg	ggtagctatc	gctaaacgtt	atccggaagg	taccaaactg	840
actggtcgcg	tgaccaacct	gaccgactac	ggctgcttcg	ttgaaatcga	agaaggcgtt	900
gaaggcctgg	tacacgtttc	cgaaatggac	tggaccaaca	aaaacatcca	cccgtccaaa	960
gttgttaacg	ttggcgatgt	agtggaagtt	atggttctgg	atatcgacga	agaacgtcgt	1020
cgtatctccc	tgggtctgaa	acagtgcaaa	gctaacccgt	ggcagcagtt	cgcggaaacc	1080
cacaacaagg	gcgaccgtgt	tgaaggtaaa	atcaagtcta	tcactgactt	cggtatcttc	1140
atcggcttgg	acggcggcat	cgacggcctg	gttcacctgt	ctgacatctc	ctggaacgtt	1200
gcaggcgaag	aagcagttcg	tgaatacaaa	aaaggcgacg	aaatcgctgc	agttgttctg	1260
caggttgacg	cagaacgtga	acgtatctcc	ctgggcgtta	aacagctcgc	agaagatccg	1320
ttcaacaact	gggttgctct	gaacaagaaa	ggcgctatcg	taaccggtaa	agtaactgca	1380
gttgacgcta	aaggcgcaac	cgtagaactg	gctgacggcg	ttgaaggtta	cctgcgtgct	1440
tctgaagcat	cccgtgaccg	cgttgaagac	gctaccctgg	ttctgagcgt	tggcgacgaa	1500
gttgaagcta	aattcaccgg	cgttgatcgt	aaaaaccgcg	caatcagcct	gtctgttcgt	1560
gcgaaagacg	aagctgacga	gaaagatgca	atcgcaactg	tctcttatac	acatctcaac	1620
cctgaagctt	gcatgcctgc	aggtcgactc	tagaggatcc	ccgccacggt	tgatgagagc	1680
tttgttgtag	gtggaccagt	tggtgatttt	gaacttttgc	tttgccacgg	aacggtctgc	1740
gttgtcggga	agatgcgtga	tctgatcctt	caactcagca	aaagttcgat	ttattcaaca	1800
aagccgccgt	cccgtcaagt	cagcgtaatg	ctctgccagt	gttacaacca	attaaccaat	1860
tctgattaga	aaaactcatc	gagcatcaaa	tgaaactgca	atttattcat	atcaggatta	1920
tcaataccat	atttttgaaa	aagccgtttc	tgtaatgaag	gagaaaactc	accgaggcag	1980
ttccatagga	tggcaagatc	ctggtatcgg	tctgcgattc Page 2	cgactcgtcc 5	aacatcaata	2040

caacctatta	atttcccctc	gtcaaaaata	aggttatcaa	gtgagaaatc	accatgagtg	2100
acgactgaat	ccggtgagaa	tggcaaaagt	ttatgcattt	ctttccagac	ttgttcaaca	2160
ggccagccat	tacgctcgtc	atcaaaatca	ctcgcatcaa	ccaaaccgtt	attcattcgt	2220
gattgcgcct	gagcgagacg	aaatacgcga	tcgctgttaa	aaggacaatt	acaaacagga	2280
atcgaatgca	accggcgcag	gaacactgcc	agcgcatcaa	caatattttc	acctgaatca	2340
ggatattctt	ctaatacctg	gaatgctgtt	tttccgggga	tcgcagtggt	gagtaaccat	2400
gcatcatcag	gagtacggat	aaaatgcttg	atggtcggaa	gaggcataaa	ttccgtcagc	2460
cagtttagtc	tgaccatctc	atctgtaaca	tcattggcaa	cgctaccttt	gccatgtttc	2520
agaaacaact	ctggcgcatc	gggcttccca	tacaatcgat	agattgtcgc	acctgattgc	2580
ccgacattat	cgcgagccca	tttataccca	tataaatcag	catccatgtt	ggaatttaat	2640
cgcggcctcg	agcaagacgt	ttcccgttga	atatggctca	taacacccct	tgtattactg	2700
tttatgtaag	cagacagttt	tattgttcat	gatgatatat	ttttatcttg	tgcaatgtaa	2760
catcagagat	tttgagacac	aattcatcga	tgatggttga	gatgtgtata	agagacagca	2820
atcgcaactg	ttaacaaaca	ggaagatgca	aacttctcca	acaacgcaat	ggctgaagct	2880
ttcaaagcag	ctaaaggcga	gtaa				2904

<210> 38 <211> 5454 <212> DNA

<213> Escherichia coli

<400> 38 gtgaaagatt tattaaagtt tctgaaagcg cagactaaaa ccgaagagtt tgatgcgatc 60 aaaattgctc tggcttcgcc agacatgatc cgttcatggt ctttcggtga agttaaaaag 120 ccggaaacca tcaactaccg tacgttcaaa ccagaacgtg acggcctttt ctgcgcccgt 180 atctttgggc cggtaaaaga ttacgagtgc ctgtgcggta agtacaagcg cctgaaacac 240 300 cgtggcgtca tctgtgagaa gtgcggcgtt gaagtgaccc agactaaagt acgccgtgag cgtatgggcc acatcgaact ggcttccccg actgcgcaca tctggttcct gaaatcgctg 360 420 ccgtcccgta tcggtctgct gctcgatatg ccgctgcgcg atatcgaacg cgtactgtac tttgaatcct atgtggttat cgaaggcggt atgaccaacc tggaacgtca gcagatcctg 480 actgaagagc agtatctgga cgcgctggaa gagttcggtg acgaattcga cgcgaagatg 540 ggggcggaag caatccaggc tctgctgaag agcatggatc tggagcaaga gtgcgaacag 600 ctgcgtgaag agctgaacga aaccaactcc gaaaccaagc gtaaaaagct gaccaagcgt 660 720 atcaaactgc tggaagcgtt cgttcagtct ggtaacaaac cagagtggat gatcctgacc gttctgccgg tactgccgcc agatctgcgt ccgctggttc cgctggatgg tggtcgtttc 780 gcgacttctg acctgaacga tctgtatcgt cgcgtcatta accgtaacaa ccgtctgaaa 840 900 cgtctgctgg atctggctgc gccggacatc atcgtacgta acgaaaaacg tatgctgcag

CL-2028USPROV.ST25.txt gaagcggtag acgccctgct ggataacggt cgtcgcggtc gtgcgatcac cggttctaac 960 1020 aagcgtcctc tgaaatcttt ggccgacatg atcaaaggta aacagggtcg tttccgtcag 1080 aacctgctcg gtaagcgtgt tgactactcc ggtcgttctg taatcaccgt aggtccatac 1140 ctgcgtctgc atcagtgcgg tctgccgaag aaaatggcac tggagctgtt caaaccgttc atctacggca agctggaact gcgtggtctt gctaccacca ttaaagctgc gaagaaaatg 1200 gttgagcgcg aagaagctgt cgtttgggat atcctggacg aagttatccg cgaacacccg 1260 gtactgctga accgtgcacc gactctgcac cgtctgggta tccaggcatt tgaaccggta 1320 ctgatcgaag gtaaagctat ccagctgcac ccgctggttt gtgcggcata taacgccgac 1380 ttcgatggtg accagatggc tgttcacgta ccgctgacgc tggaagccca gctggaagcg 1440 1500 cgtgcgctga tgatgtctac caacaacatc ctgtccccgg cgaacggcga accaatcatc gttccgtctc aggacgttgt actgggtctg tactacatga cccgtgactg tgttaacgcc 1560 aaaggcgaag gcatggtgct gactggcccg aaagaagcag aacgtctgta tcgctctggt 1620 ctggcttctc tgcatgcgcg cgttaaagtg cgtatcaccg agtatgaaaa agatgctaac 1680 1740 ggtgaattag tagcgaaaac cagcctgaaa gacacgactg ttggccgtgc cattctgtgg 1800 atgattgtac cgaaaggtct gccttactcc atcgtcaacc aggcgctggg taaaaaagca atctccaaaa tgctgaacac ctgctaccgc attctcggtc tgaaaccgac cgttattttt 1860 1920 gcggaccaga tcatgtacac cggcttcgcc tatgcagcgc gttctggtgc atctgttggt 1980 atcgatgaca tggtcatccc ggagaagaaa cacgaaatca tctccgaggc agaagcagaa 2040 gttgctgaaa ttcaggagca gttccagtct ggtctggtaa ctgcgggcga acgctacaac aaagttatcg atatctgggc tgcggcgaac gatcgtgtat ccaaagcgat gatggataac 2100 2160 ctgcaaactg aaaccgtgat taaccgtgac ggtcaggaag agaagcaggt ttccttcaac 2220 agcatctaca tgatggccga ctccggtgcg cgtggttctg cggcacagat tcgtcagctt gctggtatgc gtggtctgat ggcgaagccg gatggctcca tcatcgaaac gccaatcacc 2280 2340 gcgaacttcc gtgaaggtct gaacgtactc cagtacttca tctccaccca cggtgctcgt 2400 aaaggtctgg cggataccgc actgaaaact gcgaactccg gttacctgac tcgtcgtctg 2460 gttgacgtgg cgcaggacct ggtggttacc gaagacgatt gtggtaccca tgaaggtatc 2520 atgatgactc cggttatcga gggtggtgac gttaaagagc cgctgcgcga tcgcgtactg 2580 ggtcgtgtaa ctgctgaaga cgttctgaag ccgggtactg ctgatatcct cgttccgcgc 2640 aacacgctgc tgcacgaaca gtggtgtgac ctgctggaag agaactctgt cgacgcggtt aaagtacgtt ctgttgtatc ttgtgacacc gactttggtg tatgtgcgca ctgctacggt 2700 cgtgacctgg cgcgtggcca catcatcaac aagggtgaag caatcggtgt tatcgcggca 2760 cagtccatcg gtgaaccggg tacacagctg accatgcgta cgttccacat cggtggtgcg 2820 2880 gcatctcgtg cggctgctga atccagcatc caagtgaaaa acaaaggtag catcaagctc agcaacgtga agtcggttgt gaactccagc ggtaaactgg ttatcacttc ccgtaatact 2940

CL-2028USPROV.ST25.txt 3000 gaactgaaac tgatcgacga attcggtcgt actaaagaaa gctacaaagt accttacggt gcggtactgg cgaaaggcga tggcgaacag gttgctggcg gcgaaaccgt tgcaaactgg 3060 gacccgcaca ccatgccggt tatcaccgaa gtaagcggtt ttgtacgctt tactgacatg 3120 3180 atcgacggcc agaccattac gcgtcagacc gacgaactga ccggtctgtc ttcgctggtg gttctggatt ccgcagaacg taccgcaggt ggtaaagatc tgcgtccggc actgaaaatc 3240 3300 gttgatgctc agggtaacga cgttctgatc ccaggtaccg atatgccagc gcagtacttc 3360 ctgccgggta aagcgattgt tcagctggaa gatggcgtac agatcagctc tggtgacacc 3420 ctggcgcgta ttccgcagga atccggcggt accaaggaca tcaccggtgg tctgccgcgc gttgcggacc tgttcgaagc acgtcgtccg aaagagccgg caatcctggc tgaaatcagc 3480 ggtatcgttt ccttcggtaa agaaaccaaa ggtaaacgtc gtctggttat caccccggta 3540 3600 gacggtagcg atccgtacga agagatgatt ccgaaatggc gtcagctcaa cgtgttcgaa. 3660 ggtgaacgtg tagaacgtgg tgacgtaatt tccgacggtc cggaagcgcc gcacgacatt 3720 ctgcgtctgc gtggtgttca tgctgttact cgttacatcg ttaacgaagt acaggacgta 3780 taccgtctgc agggcgttaa gattaacgat aaacacatcg aagttatcgt tcgtcagatg 3840 ctgcgtaaag ctaccatcgt taacgcgggt agctccgact tcctggaagg cgaacaggtt gaatactctc gcgtcaagat cgcaaaccgc gaactggaag cgaacggcaa agtgggtgca 3900 3960 acttactccc gcgatctgct gggtatcacc aaagcgtctc tggcaaccga gtccttcatc 4020 tccgcggcat cgttccagga gaccactcgc gtgctgaccg aagcagccgt tgcgggcaaa 4080 cgcgacgaac tgcgcggcct gaaagagaac gttatcgtgg gtcgtctgat cccggcaggt accggttacg cgtaccacca ggatcgtatg cgtcgccgtg ctgcgggtga agctctgtct 4140 4200 cttatacaca tctcaaccct gaagcttgca tgcctgcagg tcgactctag aggatccccg 4260 ccacggttga tgagagcttt gttgtaggtg gaccagttgg tgattttgaa cttttgcttt gccacggaac ggtctgcgtt gtcgggaaga tgcgtgatct gatccttcaa ctcagcaaaa 4320 4380 gttcgattta ttcaacaaag ccgccgtccc gtcaagtcag cgtaatgctc tgccagtgtt acaaccaatt aaccaattct gattagaaaa actcatcgag catcaaatga aactgcaatt 4440 4500 tattcatatc aggattatca ataccatatt tttgaaaaag ccgtttctgt aatgaaggag 4560 aaaactcacc gaggcagttc cataggatgg caagatcctg gtatcggtct gcgattccga 4620 ctcgtccaac atcaatacaa cctattaatt tcccctcgtc aaaaataagg ttatcaagtg 4680 agaaatcacc atgagtgacg actgaatccg gtgagaatgg caaaagttta tgcatttctt 4740 tccagacttg ttcaacaggc cagccattac gctcgtcatc aaaatcactc gcatcaacca aaccgttatt cattcgtgat tgcgcctgag cgagacgaaa tacgcgatcg ctgttaaaag 4800 gacaattaca aacaggaatc gaatgcaacc ggcgcaggaa cactgccagc gcatcaacaa 4860 tattttcacc tgaatcagga tattcttcta atacctggaa tgctgttttt ccggggatcg 4920

4980

cagtggtgag taaccatgca tcatcaggag tacggataaa atgcttgatg gtcggaagag

			•			
		CL-	2028USPROV.	ST25.txt		
gcataaattc	cgtcagccag	tttagtctga	ccatctcatc	tgtaacatca	ttggcaacgc	5040
tacctttgcc	atgtttcaga	aacaactctg	gcgcatcggg	cttcccatac	aatcgataga	5100
ttgtcgcacc	tgattgcccg	acattatcgc	gagcccattt	atacccatat	aaatcagcat	5160
ccatgttgga	atttaatcgc	ggcctcgagc	aagacgtttc	ccgttgaata	tggctcataa	5220
caccccttat	a++ac+a+++	2+4+224624	2020444424	+a++c++a++	*****	E 200
caccccttgt	attactgttt	atglaagcag	acagittiai	tgttcatgat	gatatattt	5280
***			~~~~~	++		F340
tatettgtge	aatgtaacat	Cagagattt	gagacacaat	tcatcgatga	tggttgagat	5340
*******	~~~~~	200100000	~~~~~~	+aac+acaa		E 400
gigiataaga	gacagggtga	agereegger	gcaccgcagg	tyactgcaga	agacycatct	5400
~~~~~		aaacacaaa+	ctaaacaatt	c+==+=====		FAFA
gccagcctgg	cagaactgct	yaacycaggi	cigggeggtt	cigataacga	gtaa	5454

<210> 39 <211> 1845 <212> DNA <213> Escherichia coli

<400>	39

<400> 39						
	catctatgat	acacgcaatt	gtggatcaat	atagtcactg	tgaatgggtg	60
gaaaatagca	tgagtgccaa	tgaaaacaac	ctgatttgga	tcgatcttga	gatgaccggt	120
ctggatcccg	agcgcgatcg	cattattgag	attgccacgc	tggtgaccga	tgccaacctg	180
aatattctgg	cagaagggcc	gaccattgca	gtacaccagt	ctgatgaaca	gctggcgctg	240
atggatgact	ggaacgtgcg	cacccatacc	gccagcgggc	tggtagagcg	cgtgaaagcg	300
agcacgatgg	gcgatcggga	agctgaactg	gcaacgctcg	aatttttaaa	acagtgggtg	360
cctgcgggaa	aatcgccgat	ttgcggtaac	agcatcggtc	aggaccgtcg	tttcctgttt	420
aaatacatgc	cggagctgga	agcctacttc	cactaccgtt	atctcgatgt	cagcaccctg	480
aaagagctgg	cgcgccgctg	gaagccggaa	attctggatg	gttttaccaa	gcaggggacg	540
catcaggcga	tggatgatat	ccgtgaatcg	gtggcggagc	tggcttacta	cctgtctctt	600
atacacatct	caaccctgaa	gcttgcatgc	ctgcaggtcg	actctagagg	atccccgcca	660
cggttgatga	gagctttgtt	gtaggtggac	cagttggtga	ttttgaactt	ttgctttgcc	720
acggaacggt	ctgcgttgtc	gggaagatgc	gtgatctgat	ccttcaactc	agcaaaagtt	780
cgatttattc	aacaaagccg	ccgtcccgtc	aagtcagcgt	aatgctctgc	cagtgttaca	840
accaattaac	caattctgat	tagaaaaact	catcgagcat	caaatgaaac	tgcaatttat	900
tcatatcagg	attatcaata	ccatatttt	gaaaaagccg	tttctgtaat	gaaggagaaa	960
actcaccgag	gcagttccat	aggatggcaa	gatcctggta	tcggtctgcg	attccgactc	1020
gtccaacatc	aatacaacct	attaatttcc	cctcgtcaaa	aataaggtta	tcaagtgaga	1080
aatcaccatg	agtgacgact	gaatccggtg	agaatggcaa	aagtttatgc	atttctttcc	1140
agacttgttc	aacaggccag	ccattacgct	cgtcatcaaa	atcactcgca	tcaaccaaac	1200
cgttattcat	tcgtgattgc	gcctgagcga	gacgaaatac	gcgatcgctg	ttaaaaggac	1260
aattacaaac	aggaatcgaa	tgcaaccggc	gcaggaacac	tgccagcgca	tcaacaatat	1320
tttcacctga	atcaggatat	tcttctaata	cctggaatgc Page 29		gggatcgcag	1380

tggtgagtaa	ccatgcatca	tcaggagtac	ggataaaatg	cttgatggtc	ggaagaggca	1440
taaattccgt	cagccagttt	agtctgacca	tctcatctgt	aacatcattg	gcaacgctac	1500
ctttgccatg	tttcagaaac	aactctggcg	catcgggctt	cccatacaat	cgatagattg	1560
tcgcacctga	ttgcccgaca	ttatcgcgag	cccatttata	cccatataaa	tcagcatcca	1620
tgttggaatt	taatcgcggc	ctcgagcaag	acgtttcccg	ttgaatatgg	ctcataacac	1680
cccttgtatt	actgtttatg	taagcagaca	gttttattgt	tcatgatgat	atattttat	1740
cttgtgcaat	gtaacatcag	agattttgag	acacaattca	tcgatgatgg	ttgagatgtg	1800
tataagagac	aggcttacta	ccgcgagcat	tttatcaagc	tgtaa		1845
<210> 40 <211> 2334 <212> DNA <213> Esch <400> 40	l nerichia col	l <b>i</b> `				
	tttttagccg	tggcccgtcg	ctacagattc	gccttattct	ggcggtgctg	60
gtggcgctcg	gcattattat	tgccgacagc	cgcctgggga	cgttcagtca	aatccgtact	120
tatatggata	ccgccgtcag	tcctttctac	tttgtttcca	atgctcctcg	tgaattgctg	180
gatggcgtat	cgcagacgct	ggcctcgcgt	gaccaattag	aacttgaaaa	ccgggcgtta	240
cgtcaggaac	tgttgctgaa	aaacagtgaa	ctgctgatgc	ttggacaata	caaacaggag	300
aacgcgcgtc	tgcgcgagct	gctgggttcc	ccgctgcgtc	aggatgagca	gaaaatggtg	360
actcaggtta	tctccacggt	taacgatcct	tatagcgatc	aagttgttat	cgataaaggt	420
agcgttaatg	gcgtttatga	aggccagccg	gtcatcagcg	acaaaggtgt	tgttggtcag	480
gtggtggccg	tcgctaaact	gaccagtcgc	gtgctgctga	tttgtgatgc	gacccacgcg	540
ctgccaatcc	aggtgctgcg	caacgatatc	cgcgtaattg	cagccggtaa	cggttgtacg	600
gatgatttgc	agcttgagca	tctgccggcg	aatacggata	ttcgtgttgg	tgatgtgctg	660
gtgacttccg	gtctgggcgg	tcgtttcccg	gaaggctatc	cggtcgcggt	tgtctcttcc	720
gtaaaactcg	atacccagcg	cgcttatact	gtgattcagg	cgcgtccgac	tgcagggctg	780
caacgtttgc	gttatctgct	gctgctgtgg	ggggcagatc	gtaacggcgc	taacccgatg	840
acgccggaag	aggtgcatcg	tgttgctaat	gaacgtctga	tgcagatgat	gccgcaggta	900

ttgccttcgc cagacgcgat ggggccaaag ttacctgaac cggcaacggg gatcgctcag

ccgactccgc agcaaccggc gacaggaaat gcagctactg cgcctgctgc gccgacacag

cctctgtctc ttatacacat ctcaaccatc atcgatgaat tgtgtctcaa aatctctgat

gttacattgc acaagataaa aatatatcat catgaacaat aaaactgtct gcttacataa

acagtaatac aaggggtgtt atgagccata ttcaacggga aacgtcttgc tcgaggccgc

gattaaattc caacatggat gctgatttat atgggtataa atgggctcgc gataatgtcg

ggcaatcagg tgcgacaatc tatcgattgt atgggaagcc cgatgcgcca gagttgtttc

960

1020

1080

1140

1200

1260

1320

tgaaacatgg caaaggtagc gttg	caatg atgttacaga	tgagatggtc	agactaaact	1380
ggctgacgga atttatgcct cttc	gacca tcaagcattt	tatccgtact	cctgatgatg	1440
catggttact caccactgcg atcc	ccggaa aaacagcatt	ccaggtatta	gaagaatatc	1500
ctgattcagg tgaaaatatt gttga	atgcgc tggcagtgtt	cctgcgccgg	ttgcattcga	1560
ttcctgtttg taattgtcct tttaa	acagcg atcgcgtatt	tcgtctcgct	caggcgcaat	1620
cacgaatgaa taacggtttg gttg	atgcga gtgattttga	tgacgagcgt	aatggctggc	1680
ctgttgaaca agtctggaaa gaaa	tgcata aacttttgcc	attctcaccg	gattcagtcg	1740
tcactcatgg tgatttctca cttga	ataacc ttatttttga	cgaggggaaa	ttaataggtt	1800
gtattgatgt tggacgagtc ggaa	tcgcag accgatacca	ggatcttgcc	atcctatgga	1860
actgcctcgg tgagttttct cctt	cattac agaaacggct	ttttcaaaaa	tatggtattg	1920
ataatcctga tatgaataaa ttgca	agtttc atttgatgct	cgatgagttt	ttctaatcag	1980
aattggttaa ttggttgtaa cactg	ggcaga gcattacgct	gacttgacgg	gacggcggct	2040
ttgttgaata aatcgaactt ttgc	tgagtt gaaggatcag	atcacgcatc	ttcccgacaa	2100
cgcagaccgt tccgtggcaa agcaa	aaagtt caaaatcacc	aactggtcca	cctacaacaa	2160
agctctcatc aaccgtggcg ggga	cctct agagtcgacc	tgcaggcatg	caagcttcag	2220
ggttgagatg tgtataagag acaga	acacag cctgctgcta	atcgctctcc	acaaagggct	2280
acgccgccgc aaagtggtgc tcaa	ccgcct gcgcgtgcgc	cgggagggca	atag	2334

<210> 41 <211> 2676

<212> DNA <213> Escherichia coli

### <400> 41

atgcgaagtg aacagatttc tggctcgtca ctcaatccgt cttgtcgttt cagttcctgt 60 ctcttataca catctcaacc atcatcgatg aattgtgtct caaaatctct gatgttacat 120 tgcacaagat aaaaatatat catcatgaac aataaaactg tctgcttaca taaacagtaa 180 tacaaggggt gttatgagcc atattcaacg ggaaacgtct tgctcgaggc cgcgattaaa 240 ttccaacatg gatgctgatt tatatgggta taaatgggct cgcgataatg tcgggcaatc 300 aggtgcgaca atctatcgat tgtatgggaa gcccgatgcg ccagagttgt ttctgaaaca 360 420 ggaatttatg cctcttccga ccatcaagca ttttatccgt actcctgatg atgcatggtt 480 actcaccact gcgatccccg gaaaaacagc attccaggta ttagaagaat atcctgattc 540 aggtgaaaat attgttgatg cgctggcagt gttcctgcgc cggttgcatt cgattcctgt 600 ttgtaattgt ccttttaaca gcgatcgcgt atttcgtctc gctcaggcgc aatcacgaat 660 gaataacggt ttggttgatg cgagtgattt tgatgacgag cgtaatggct ggcctgttga 720 acaagtctgg aaagaaatgc ataaactttt gccattctca ccggattcag tcgtcactca 780 tggtgatttc tcacttgata accttatttt tgacgagggg aaattaatag gttgtattga 840 Page 31

tgttggacga	gtcggaatcg	cagaccgata	ccaggatctt	gccatcctat	ggaactgcct	900
cggtgagttt	tctccttcat	tacagaaacg	gctttttcaa	aaatatggta	ttgataatcc	960
tgatatgaat	aaattgcagt	ttcatttgat	gctcgatgag	tttttctaat	cagaattggt	1020
taattggttg	taacactggc	agagcattac	gctgacttga	cgggacggcg	gctttgttga	1080
ataaatcgaa	cttttgctga	gttgaaggat	cagatcacgc	atcttcccga	caacgcagac	1140
cgttccgtgg	caaagcaaaa	gttcaaaatc	accaactggt	ccacctacaa	caaagctctc	1200
atcaaccgtg	gcggggatcc	tctagagtcg	acctgcaggc	atgcaagctt	cagggttgag	1260
atgtgtataa	gagacagttt	cagttctgcg	tactctcctg	tgaccaggca	gcgaaaagac	1320
atgagtcgat	gaccgtaaac	aggcatggat	gatcctgcca	taccattcac	aacattaagt	1380
tcgagattta	ccccaagttt	aagaactcac	accactatga	atcttaccga	attaaagaat	1440
acgccggttt	ctgagctgat	cactctcggc	gaaaatatgg	ggctggaaaa	cctggctcgt	1500
atgcgtaagc	aggacattat	ttttgccatc	ctgaagcagc	acgcaaagag	tggcgaagat	1560
atctttggtg	atggcgtact	ggagatattg	caggatggat	ttggtttcct	ccgttccgca	1620
gacagctcct	acctcgccgg	tcctgatgac	atctacgttt	cccctagcca	aatccgccgt	1680
ttcaacctcc	gcactggtga	taccatctct	ggtaagattc	gcccgccgaa	agaaggtgaa	1740
cgctattttg	cgctgctgaa	agttaacgaa	gttaacttcg	acaaacctga	aaacgcccgc	1800
aacaaaatcc	tctttgagaa	cttaaccccg	ctgcacgcaa	actctcgtct	gcgtatggaa	1860
cgtggtaacg	gttctactga	agatttaact	gctcgcgtac	tggatctggc	atcacctatc	1920
ggtcgtggtc	agcgtggtct	gattgtggca	ccgccgaaag	ccggtaaaac	catgctgctg	1980
cagaacattg	ctcagagcat	tgcttacaac	cacccggatt	gtgtgctgat	ggttctgctg	2040
atcgacgaac	gtccggaaga	agtaaccgag	atgcagcgtc	tggtaaaagg	tgaagttgtt	2100
gcttctacct	ttgacgaacc	cgcatctcgc	cacgttcagg	ttgcggaaat	ggtgatcgag	2160
aaggccaaac	gcctggttga	gcacaagaaa	gacgttatca	ttctgctcga	ctccatcact	2220
cgtctggcgc	gcgcttacaa	caccgttgtt	ccggcgtcag	gtaaagtgtt	gaccggtggt	2280
gtggatgcca	acgccctgca	tcgtccgaaa	cgcttctttg	gtgcggcgcg	taacgtggaa	2340
gagggcggca	gcctgaccat	tatcgcgacg	gcgcttatcg	ataccggttc	taaaatggac	2400
gaagttatct	acgaagagtt	taaaggtaca	ggcaacatgg	aactgcacct	ctctcgtaag	2460
atcgctgaaa	aacgcgtctt	cccggctatc	gactacaacc	gttctggtac	ccgtaaagaa	2520
gagctgctca	cgactcagga	agaactgcag	aaaatgtgga	tcctgcgcaa	aatcattcac	2580
ccgatgggcg	aaatcgatgc	aatggaattc	ctcattaata	aactggcaat	gaccaagacc	2640
aatgacgatt	tcttcgaaat	gatgaaacgc	tcataa			2676

<210> 42 <211> 1746 <212> DNA <213> Escherichia coli

<400> 42 atggattact	tcaccctctt	tggcttgcct	gcccgctatc	aactcgatac	ccaggcgctg	60
agcctgcgtt	ttcaggatct	acaacgtcag	tatcatcctg	ataaattcgc	cagcggaagc	120
caggcggaac	aactcgccgc	cgtacagcaa	tctgcaacca	ttaaccaggc	ctggcaaacg	180
ctgcgtcatc	cgttaatgcg	cgcggaatat	ttgctttctt	tgcacggctt	tgatctcgcc	240
agcgagcagc	atacctgtct	cttatacaca	tctcaaccat	catcgatgaa	ttgtgtctca	300
aaatctctga	tgttacattg	cacaagataa	aaatatatca	tcatgaacaa	taaaactgtc	360
tgcttacata	aacagtaata	caaggggtgt	tatgagccat	attcaacggg	aaacgtcttg	420
ctcgaggccg	cgattaaatt	ccaacatgga	tgctgattta	tatgggtata	aatgggctcg	480
cgataatgtc	gggcaatcag	gtgcgacaat	ctatcgattg	tatgggaagc	ccgatgcgcc	540
agagttgttt	ctgaaacatg	gcaaaggtag	cgttgccaat	gatgttacag	atgagatggt	600
cagactaaac	tggctgacgg	aatttatgcc	tcttccgacc	atcaagcatt	ttatccgtac	660
tcctgatgat	gcatggttac	tcaccactgc	gatccccgga	aaaacagcat	tccaggtatt	720
agaagaatat	cctgattcag	gtgaaaatat	tgttgatgcg	ctggcagtgt	tcctgcgccg	780
gttgcattcg	attcctgttt	gtaattgtcc	ttttaacagc	gatcgcgtat	ttcgtctcgc	840
tcaggcgcaa	tcacgaatga	ataacggttt	ggttgatgcg	agtgattttg	atgacgagcg	900
taatggctgg	cctgttgaac	aagtctggaa	agaaatgcat	aaacttttgc	cattctcacc	960
ggattcagtc	gtcactcatg	gtgatttctc	acttgataac	cttatttttg	acgaggggaa	1020
attaataggt	tgtattgatg	ttggacgagt	cggaatcgca	gaccgatacc	aggatcttgc	1080
catcctatgg	aactgcctcg	gtgagttttc	tccttcatta	cagaaacggc	tttttcaaaa	1140
atatggtatt	gataatcctg	atatgaataa	attgcagttt	catttgatgc	tcgatgagtt	1200
tttctaatca	gaattggtta	attggttgta	acactggcag	agcattacgc	tgacttgacg	1260
ggacggcggc	tttgttgaat	aaatcgaact	tttgctgagt	tgaaggatca	gatcacgcat	1320
cttcccgaca	acgcagaccg	ttccgtggca	aagcaaaagt	tcaaaatcac	caactggtcc	1380
acctacaaca	aagctctcat	caaccgtggc	ggggatcctc	tagagtcgac	ctgcaggcat	1440
gcaagcttca	gggttgagat	gtgtataaga	gacaggcagc	atactgtgcg	cgacaccgcg	1500
ttcctgatgg	aacagttgga	gctgcgcgaa	gagctggacg	agatcgaaca	ggcgaaagat	1560
gaagcgcggc	tggaaagctt	tatcaaacgt	gtgaaaaaga	tgtttgatac	ccgccatcag	1620
ttgatggttg	aacagttaga	caacgagacg	tgggacgcgg	cggcggatac	cgtgcgtaag	1680
ctgcgttttc	tcgataaact	gcgaagcagt	gccgaacaac	tcgaagaaaa	actgctcgat	1740
ttttaa						1746

<210> 43 <211> 8609 <212> DNA <213> Artificial sequence

<220> <223> Reporter plasmid pPCB15

<400> 43 cgtatggcaa tgaaagacgg tgagctggtg atatgggata gtgttcaccc ttgttacacc 60 gttttccatg agcaaactga aacgttttca tcgctctgga gtgaatacca cgacgatttc 120 cggcagtttc tacacatata ttcgcaagat gtggcgtgtt acggtgaaaa cctggcctat 180 ttccctaaag ggtttattga gaatatgttt ttcgtctcag ccaatccctq qqtqaqtttc 240 accagttttg atttaaacgt ggccaatatg gacaacttct tcgcccccgt tttcaccatg 300 ggcaaatatt atacgcaagg cgacaaggtg ctgatgccgc tggcgattca ggttcatcat 360 gccgtctgtg atggcttcca tgtcggcaga atgcttaatg aattacaaca gtactgcgat 420 gagtggcagg gcggggcgta atttttttaa ggcagttatt ggtgcctaga aatattttat 480 ctgattaata agatgatctt cttgagatcg ttttggtctg cgcgtaatct cttgctctga 540 aaacgaaaaa accgccttgc agggcggttt ttcgaaggtt ctctgagcta ccaactcttt 600 gaaccgaggt aactggcttg gaggagcgca gtcaccaaaa cttgtccttt cagtttagcc 660 ttaaccggcg catgacttca agactaactc ctctaaatca attaccagtg gctgctgcca 720 gtggtgcttt tgcatgtctt tccgggttgg actcaagacg atagttaccg gataaggcgc 780 agcggtcgga ctgaacgggg ggttcgtgca tacagtccag cttggagcga actgcctacc 840 900 cggaactgag tgtcaggcgt ggaatgagac aaacgcggcc ataacagcgg aatgacaccg gtaaaccgaa aggcaggaac aggagagcgc acgagggagc cgccagggga aacgcctggt 960 atctttatag tcctgtcggg tttcgccacc actgatttga gcgtcagatt tcgtgatgct 1020 tgtcaggggg gcggagccta tggaaaaacg gctttgccgc ggccctctca cttccctgtt 1080 1140 aagtatcttc ctggcatctt ccaggaaatc tccgccccgt tcgtaagcca tttccgctcg ccgcagtcga acgaccgagc gtagcgagtc agtgagcgag gaagcggaat atatcctgta 1200 tcacatattc tgctgacgca ccggtgcagc cttttttctc ctgccacatg aagcacttca 1260 1320 ctgacaccct catcagtgcc aacatagtaa gccagtatat acactccgct agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc acgacaggtt 1380 tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc tcactcatta 1440 ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa ttgtgagcgg 1500 1560 ataacaattt cacacaggaa acagctatga ccatgattac gaattcgagc tcggtaccca aacgaattcg cccttttgac ggtctgcgca aaaaaacacg ttcaccttac tggcatttcg 1620 gctgagcagt tgctggctga tatcgatagc cgccttgatc agttactgcc ggttcagggt 1680 1740 gagcgggatt gtgtgggtgc cgcgatgcgt gaaggcacgc tggcaccggg caaacgtatt cgtccgatgc tgctgttatt aacagcgcgc gatcttggct gtgcgatcag tcacggggga 1800 1860 ttactggatt tagcctgcgc ggttgaaatg gtgcatgctg cctcgctgat tctggatgat 1920 atgccctgca tggacgatgc gcagatgcgt cgggggcgtc ccaccattca cacgcagtac

CL-2028USPROV.ST25.txt ggtgaacatg tggcgattct ggcggcggtc gctttactca gcaaagcgtt tggggtgatt 1980 2040 gccgaggctg aaggtctgac gccgatagcc aaaactcgcg cggtgtcgga gctgtccact 2100 gcgattggca tgcagggtct ggttcagggc cagtttaagg acctctcgga aggcgataaa 2160 ccccgcagcg ccgatgccat actgctaacc aatcagttta aaaccagcac gctgttttgc 2220 gcgtcaacgc aaatggcgtc Cattgcggcc aacgcgtcct gcgaagcgcg tgagaacctg 2280 catcgtttct cgctcgatct cggccaggcc tttcagttgc ttgacgatct taccgatggc 2340 atgaccgata ccggcaaaga catcaatcag gatgcaggta aatcaacgct ggtcaattta ttaggctcag gcgcggtcga agaacgcctg cgacagcatt tgcgcctggc cagtgaacac 2400 2460 ctttccgcgg catgccaaaa cggccattcc accacccaac tttttattca ggcctggttt 2520 gacaaaaaac tcgctgccgt cagttaagga tgctgcatga gccattttgc ggtgatcgca 2580 ccgccctttt tcagccatgt tcgcgctctg caaaaccttg ctcaggaatt agtggcccgc 2640 ggtcatcgtg ttacgttttt tcagcaacat gactgcaaag cgctggtaac gggcagcgat 2700 atcggattcc agaccgtcgg actgcaaacg catcctccg gttccttatc gcacctgctg 2760 cacctggccg cgcacccact cggaccctcg atgttacgac tgatcaatga aatggcacgt 2820 accagcgata tgctttgccg ggaactgccc gccgcttttc atgcgttgca gatagagggc 2880 gtgatcgttg atcaaatgga gccggcaggt gcagtagtcg cagaagcgtc aggtctgccg 2940 tttgtttcgg tggcctgcgc gctgccgctc aaccgcgaac cgggtttgcc tctggcggtg 3000 atgcctttcg agtacggcac cagcgatgcg gctcgggaac gctataccac cagcgaaaaa 3060 atttatgact ggctgatgcg acgtcacgat cgtgtgatcg cgcatcatgc atgcagaatg 3120 ggtttagccc cgcgtgaaaa actgcatcat tgtttttctc cactggcaca aatcagccag 3180 ttgatccccg aactggattt tccccgcaaa gcgctgccag actgctttca tgcggttgga 3240 ccgttacggc aaccccaggg gacgccgggg tcatcaactt cttattttcc gtccccggac aaaccccgta tttttgcctc gctgggcacc ctgcagggac atcgttatgg cctgttcagg 3300 3360 accatcgcca aagcctgcga agaggtggat gcgcagttac tgttggcaca ctgtggcggc 3420 3480 gccgatcaat ccgcagcact ttcacaggca cagttgacaa tcacacatgg tgggatgaat 3540 acggtactgg acgctattgc ttcccgcaca ccgctactgg cgctgccgct ggcatttgat 3600 caacctggcg tggcatcacg aattgtttat catggcatcg gcaagcgtgc gtctcggttt 3660 actaccagcc atgcgctggc gcggcagatt cgatcgctgc tgactaacac cgattacccg 3720 cagcgtatga caaaaattca ggccgcattg cgtctggcag gcggcacacc agccgccgcc 3780 gatattgttg aacaggcgat gcggacctgt cagccagtac tcagtgggca ggattatgca accgcactat gatctcattc tggtcggtgc cggtctggct aatggcctta tcgcgctccg 3840 3900 gcttcagcaa cagcatccgg atatgcggat cttgcttatt gaggcgggtc ctgaggcggg 3960 agggaaccat acctggtcct ttcacgaaga ggatttaacg ctgaatcagc atcgctggat

#### CL-2028USPROV.ST25.txt 4020 agcgccgctt gtggtccatc actggcccga ctaccaggtt cgtttccccc aacgccgtcg 4080 ccatgtgaac agtggctact actgcgtgac ctcccggcat ttcgccggga tactccggca acagtttgga caacatttat ggctgcatac cgcggtttca gccgttcatg ctgaatcggt 4140 ccagttagcg gatggccgga ttattcatgc cagtacagtg atcgacggac ggggttacac 4200 4260 gcctgattct gcactacgcg taggattcca ggcatttatc ggtcaggagt ggcaactgag 4320 cgcgccgcat ggtttatcgt caccgattat catggatgcg acggtcgatc agcaaaatgg 4380 ctaccgcttt gtttataccc tgccgctttc cgcaaccgca ctgctgatcg aagacacaca 4440 ctacattgac aaggctaatc ttcaggccga acgggcgcgt cagaacattc gcgattatgc tgcgcgacag ggttggccgt tacagacgtt gctgcgggaa gaacagggtg cattgcccat 4500 tacgttaacg ggcgataatc gtcagttttg gcaacagcaa ccgcaagcct gtagcggatt 4560 4620 acgcgccggg ctgtttcatc cgacaaccgg ctactcccta ccgctcgcgg tggcgctggc cgatcgtctc agcgcgctgg atgtgtttac ctcttcctct gttcaccaga cgattgctca 4680 4740 ctttgcccag caacgttggc agcaacaggg gtttttccgc atgctgaatc gcatgttgtt 4800 tttagccgga ccggccgagt cacgctggcg tgtgatgcag cgtttctatg gcttacccga 4860 ggatttgatt gcccgctttt atgcgggaaa actcaccgtg accgatcggc tacgcattct gagcggcaag ccgcccgttc ccgttttcgc ggcattgcag gcaattatga cgactcatcg 4920 4980 ttgaagagcg actacatgaa accaactacg gtaattggtg cgggctttgg tggcctggca 5040 ctggcaattc gtttacaggc cgcaggtatt cctgttttgc tgcttgagca gcgcgacaag 5100 ccgggtggcc gggcttatgt ttatcaggag cagggcttta cttttgatgc aggccctacc 5160 gttatcaccg atcccagcgc gattgaagaa ctgtttgctc tggccggtaa acagcttaag 5220 gattacgtcg agctgttgcc ggtcacgccg ttttatcgcc tgtgctggga gtccggcaag 5280 gtcttcaatt acgataacga ccaggcccag ttagaagcgc agatacagca gtttaatccg 5340 cgcgatgttg cgggttatcg agcgttcctt gactattcgc gtgccgtatt caatgagggc tatctgaagc tcggcactgt gcctttttta tcgttcaaag acatgcttcg ggccgcgccc 5400 cagttggcaa agctgcaggc atggcgcagc gtttacagta aagttgccgg ctacattgag 5460 5520 gatgagcatc ttcggcaggc gttttctttt cactcgctct tagtgggggg gaatccgttt 5580 gcaacctcgt ccatttatac gctgattcac gcgttagaac gggaatgggg cgtctggttt 5640

gccgtgcagt tggaagacgg cagacggttt gaaacctgcg cggtggcgtc gaacgctgat 5760 5820 gttgtacata cctatcgcga tctgctgtct cagcatcccg cagccgctaa gcaggcgaaa 5880 aaactgcaat ccaagcgtat gagtaactca ctgtttgtac tctattttgg tctcaaccat 5940 catcacgatc aactcgccca tcataccgtc tgttttgggc cacgctaccg tgaactgatt cacgaaattt ttaaccatga tggtctggct gaggattttt cgctttattt acacgcacct 6000

ccacgcggtg gaaccggtgc gctggtcaat ggcatgatca agctgtttca ggatctgggc

ggcgaagtcg tgcttaacgc ccgggtcagt catatggaaa ccgttgggga caagattcag

5700

#### CL-2028USPROV.ST25.txt 6060 tgtgtcacgg atccgtcact ggcaccggaa gggtgcggca gctattatgt gctggcgcct 6120 gttccacact taggcacggc gaacctcgac tgggcggtag aaggaccccg actgcgcgat cgtatttttg actaccttga gcaacattac atgcctggct tgcgaagcca gttggtgacg 6180 caccgtatgt ttacgccgtt cgatttccgc gacgagctca atgcctggca aggttcggcc 6240 6300 ttctcggttg aacctattct gacccagagc gcctggttcc gaccacataa ccgcgataag 6360 cacattgata atctttatct ggttggcgca ggcacccatc ctggcgcggg cattcccggc 6420 gtaatcggct cggcgaaggc gacggcaggc ttaatgctgg aggacctgat ttgacgaata 6480 cgtcattact gaatcatgcc gtcgaaacca tggcggttgg ctcgaaaagc tttgcgactg 6540 catcgacgct tttcgacgcc aaaacccgtc gcagcgtgct gatgctttac gcatggtgcc gccactgcga cgacgtcatt gacgatcaaa cactgggctt tcatgccgac cagccctctt 6600 cgcagatgcc tgagcagcgc ctgcagcagc ttgaaatgaa aacgcgtcag gcctacgccg 6660 6720 gttcgcaaat gcacgagccc gcttttgccg cgtttcagga ggtcgcgatg gcgcatgata 6780 tcgctcccgc ctacgcgttc gaccatctgg aaggttttgc catggatgtg cgcgaaacgc gctacctgac actggacgat acgctgcgtt attgctatca cgtcgccggt gttgtgggcc 6840 6900 tgatgatggc gcaaattatg ggcgttcgcg ataacgccac gctcgatcgc gcctgcgatc 6960 tcgggctggc tttccagttg accaacattg cgcgtgatat tgtcgacgat gctcaggtgg 7020 gccgctgtta tctgcctgaa agctggctgg aagaggaagg actgacgaaa gcgaattatg 7080 ctgcgccaga aaaccggcag gccttaagcc gtatcgccgg gcgactggta cgggaagcgg 7140 aaccctatta cgtatcatca atggccggtc tggcacaatt acccttacgc tcggcctggg 7200 ccatcgcgac agcgaagcag gtgtaccgta aaattggcgt gaaagttgaa caggccggta 7260 agcaggcctg ggatcatcgc cagtccacgt ccaccgccga aaaattaacg cttttgctga 7320 cggcatccgg tcaggcagtt acttcccgga tgaagacgta tccaccccgt cctgctcatc tctggcagcg cccgatctag ccgcatgcct ttctctcagc gtcgcctgaa gtttagataa 7380 7440 cggtggcgcg tacagaaaac caaaggacac gcagccctct tttcccctta cagcatgatg 7500 catacggtgg gccatgtata accgtttcag gtagcctttg cgcggtatgt agcggaacgg 7560 ccagcgctgg tgtaccagtc cgtcgtggac cataaaatac agtaaaccat aagcggtcat 7620 gcctgcacca atccactgga gcggccagat tcctgtactg ccgaagtaaa tcagggcaat 7680 cgacacaatg gcgaatacca cggcatagag atcgttaact tcaaatgcgc ctttacgcgg 7740 ttcatgatgt gaaagatgcc agccccaacc ccagccgtgc atgatgtatt tatgtgccag 7800 tgcagcaacc acttccatgc cgaccacggt gacaaacacg atcagggcat tccaaatcca 7860 caacataatt tctcaagggc gaattcgcgg ggatcctcta gagtcgacct gcaggcatgc aagcttggca ctggccgtcg ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca 7920

acttaatcgc cttgcagcac atcccccttt cgccagctgg cgtaatagcg aagaggcccg caccgatcgc ccttcccaac agttgcgcag cctgaatggc gaatggcgct gatgtccggc

7980

8040

#### CL-2028USPROV.ST25.txt 8100 ggtgcttttg ccgttacgca ccaccccgtc agtagctgaa caggagggac agctgataga 8160 aacagaagcc actggagcac ctcaaaaaca ccatcataca ctaaatcagt aagttggcag catcacccga cgcactttgc gccgaataaa tacctgtgac ggaagatcac ttcgcagaat 8220 8280 aaataaatcc tggtgtccct gttgataccg ggaagccctg ggccaacttt tggcgaaaat 8340 gagacgttga tcggcacgta agaggttcca actttcacca taatgaaata agatcactac 8400 cgggcgtatt ttttgagtta tcgagatttt caggagctaa ggaagctaaa atggagaaaa 8460 aaatcactgg atataccacc gttgatatat cccaatggca tcgtaaagaa cattttgagg 8520 catttcagtc agttgctcaa tgtacctata accagaccgt tcagctggat attacggcct 8580 ttttaaagac cgtaaagaaa aataagcaca agttttatcc ggcctttatt cacattcttg cccgcctgat gaatgctcat ccggaattt 8609