# MetFlow tutorial

# Xiaotao Shen $^{*1}$ and Dr. Zheng-Jiang Zhu $^{\dagger 1}$

 $^{\rm 1}$ Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

## 22 October 2018

## Contents

| 1 | Data   | Preparation                          |
|---|--------|--------------------------------------|
|   | 1.1    | Prepare MS1 peak tables              |
|   | 1.2    | Prepare a sample information file    |
|   | 1.3    | Important notes for data preparation |
| 2 | Log I  | n or Sign Up                         |
|   | 2.1    | Sign up                              |
|   | 2.2    | Log in                               |
| 3 | Data   | Cleaning                             |
|   | 3.1    | Upload Data Files                    |
|   | 3.2    | Check Data Files                     |
|   | 3.3    | Batch Alignment                      |
|   | 3.4    | Data Quality Check                   |
|   | 3.5    | Missing Value Processing             |
|   | 3.6    | Zero Value Processing                |
|   | 3.7    | Data Normalization                   |
|   | 3.8    | Data Integration                     |
|   | 3.9    | Outlier Removal                      |
|   | 3.10   | Data Quality Visualization           |
|   | 3.11   | Result Download                      |
| 4 | Differ | rential Metabolite Discovery         |
|   | 4.1    | Upload Data Files                    |
|   | 4.2    | Check Data Files                     |
|   | 4.3    | Univariate Analysis                  |
|   | 4.4    | Multivariate Analysis                |

<sup>\*</sup>shenxt@sioc.ac.cn <sup>†</sup>jiangzhu@sioc.ac.cn

### MetFlow tutorial

| 4.5 | Differential Metabolite Selection. |  | ٠ |  |  |  |  |   | ٠ |  | 20 |
|-----|------------------------------------|--|---|--|--|--|--|---|---|--|----|
| 4.6 | Performance Validation             |  |   |  |  |  |  | ٠ |   |  | 20 |
| 4.7 | Result Download                    |  |   |  |  |  |  |   |   |  | 22 |



## 1 Data Preparation

MetFlow requires the import of the following files, including:

- One or multiple MS1 peak tables (.csv format),
- A table for sample information (.csv format).

## 1.1 Prepare MS1 peak tables

The MS1 peak table is a list of metabolic peaks with annotated m/z, retention times (RTs) and peak abundances.

#### 1.1.1 Untargeted metabolomics data

LC-MS or GC-MS untargeted metabolomics data can be generated using processing sortware, such as XCMS or MS-DIAL. The peak table from software must be modified for MetFlow.

- The format of MS1 peak table must be csv;
- The first column is the peak name ("name");
- The second column is the mass-to-charge ratio ("mz");
- The third column is the retention time ("rt");
- The unit of retention time must be second (not minute);
- Other columns are peak abundances of MS1 peaks in each sample.

**IMPORTANT:** the order and names of the first three columns must be "name", "mz", and "rt".

**Note:** If you use fillPeaks function in XCMS to process data, there will be no missing values (MV) in the MS1 peak table.

The final generated MS1 peak table should look like:

### 1.1.2 Targeted metabolomics data

For targeted metabolomics data, such as MRM, because there is no accurate m/z, so users must assign pseudo m/z values for each peak.

## 1.2 Prepare a sample information file

The sample information file (.csv format) is designed to describe the sample injection order, class, batch and group information. The first column is named as "sample.name", while the second column is named as "injection.order", the third column is "class", the fouth column

|    |           | -           |          | D           | E           | F           | G           | Н           |
|----|-----------|-------------|----------|-------------|-------------|-------------|-------------|-------------|
| 1  | name      |             | rt       | QC11        | QC12        | QC22        | QC23        | QC24        |
| 2  | M60T193   | 60.08059403 | 193.156  | 140117.3928 | 214952.7827 | 360696.1297 | 456951.3982 | 506672.129  |
| 3  | M72T56    | 72.08065149 | 56.057   | 2845260.41  | 3123306.507 | 3169726.713 | 3537499.771 | 3700333.293 |
| 4  | M72T38    | 72.08070284 | 37.7015  | 2167799.318 | 2311129.231 | 1905713.137 | 2546396.985 | 2720330.345 |
| 5  | M74T24_1  | 73.5318303  | 24.325   | 948425.0635 | 1027722.965 | 346255.6971 | 450092.0294 | 467326.3208 |
| 6  | M76T33    | 76.07565866 | 32.776   | 787182.4456 | 833407.3229 | 420515.7    | 536241.2729 | 587388.0613 |
| 7  | M86T95    | 86.09642343 | 94.991   | 9277887.34  | 10001765.56 | 3872652.54  | 3961370.932 | 3981595.275 |
| 8  | M86T75    | 86.09648768 | 74.523   | 2982269.264 | 3400942.001 | 1945093.656 | 2724034.795 | 2738672.123 |
| 9  | M90T649_1 | 89.50704848 | 648.88   | 1085069.049 | 1464435.059 | 1450772.059 | 1411323.613 | 1397974.785 |
| 10 | M98T650   | 97.96869522 | 650.129  | NA          | NA          | 733377.1723 | 645544.6288 | 690373.4038 |
| 11 | M100T151  | 100.0756941 | 151.018  | 7784650.386 | 8392647.886 | 7282013.171 | 7938188.485 | 8338723.6   |
| 12 | M103T154  | 103.0542829 | 153.988  | 335798.1877 | 401935.7265 | 1077497.468 | 1148227.277 | 1171089.64  |
| 13 | M104T31   | 104.1072344 | 30.809   | 11951314.13 | 13632040.16 | 12883639.4  | 14331865.28 | 13581099.8  |
| 14 | M104T417  | 104.1070692 | 417.4615 | 337885.8049 | 326935.959  | 562012.8757 | 578387.5502 | 564086.3912 |
| 15 | M104T429  | 104.1070304 | 429.309  | 441222.9332 | 418134.3564 | 549935.0072 | 565335.1992 | 556428.2717 |
| 16 | M104T383  | 104.1069874 | 383.363  | 341582.2068 | 340448.0272 | 359925.2215 | 390411.3746 | 381896.9069 |
| 17 | M105T136  | 105.036789  | 135.9455 | 1391581.513 | 1477078.264 | 218599.0161 | 232556.8906 | 245245.7399 |
| 18 | M105T351  | 105.0698895 | 351.215  | 142972.1038 | 131023.24   | 773626.0553 | 778205.3272 | 752541.2198 |
| 19 | M105T31   | 105.1104572 | 30.803   | 617542.711  | 660540.0359 | 691165.9462 | 719178.2663 | 742225.0983 |
| 20 | M109T675  | 109.0757621 | 675.071  | NA          | 630585.7723 | 800896.8757 | 818116.3659 | 791825.5771 |
| 21 | M110T24   | 110.0085607 | 24.082   | 537190.6537 | 693309.0595 | 1410772.956 | 1572308.798 | 1510631.968 |

Figure 1:

is "batch" and the fifth column is "group". "class" is used to descibe the class of samples: subject sample ("Subject") or QC sample ("QC"). The "group" is used to describe the group information of samples, and QC samples should be names as "QC". The sample information file should look like:

**NOTE:** The "sample.name" column in sample information file must be the **EXACTLY** same as the sample names in the MS1 peak table.

## 1.3 Important notes for data preparation

- In the MS1 peak table, make sure that no "-" or blank appears in the peak name or sample name. If there are some symbols that cannot be recognized by our program, the data processing may be failed.
- The "sample.name" column in sample information file must be the **EXACTLY** same as the sample names in the MS1 peak table.
- Please make sure that sample information (.csv format) and MS1 peak table (.csv format) are separated by comma. Because in some countries or regions (European and some French-speaking regions), the default separator is semicolon. You can open the sample information or MS1 peak table with notepad or other text editors to check whether they are separated by comma.

| 4  | A 🖊         | В               | Ç/      |       |         |
|----|-------------|-----------------|---------|-------|---------|
| 1  | sample.name | injection.order | class   | batch | group   |
| 2  | QC11        | 1               | QC      | 1     | QC      |
| 3  | EC6225      | 2               | Subject | 1     | Case    |
| 4  | EC567       | 3               | Subject | 1     | Control |
| 5  | EC5A1395    | 4               | Subject | 1     | Case    |
| 6  | EC4604      | 5               | Subject | 1     | Case    |
| 7  | EC7542      | 6               | Subject | 1     | Case    |
| 8  | EC7528      | 7               | Subject | 1     | Case    |
| 9  | EC6345      | 8               | Subject | 1     | Case    |
| 10 | EC6108      | 9               | Subject | 1     | Case    |
| 11 | QC12        | 10              | QC      | 1     | QC      |
| 12 | EC34A1771   | 11              | Subject | 1     | Case    |
| 13 | ECA1469     | 12              | Subject | 1     | Case    |
| 14 | EC24A1581   | 13              | Subject | 1     | Case    |
| 15 | ECA558      | 14              | Subject | 1     | Control |
| 16 | EC6513      | 15              | Subject | 1     | Case    |
| 17 | EC4385      | 16              | Subject | 1     | Case    |
| 18 | EC6305      | 17              | Subject | 1     | Case    |
| 19 | EC6893      | 18              | Subject | 1     | Case    |
| 20 | QC13        | 19              | QC      | 1     | QC      |
| 21 | EC8289      | 20              | Subject | 1     | Case    |
| 22 | ECFA123     | 21              | Subject | 1     | Case    |
| 23 | EC6894      | 22              | Subject | 1     | Case    |
| 24 | EC6659      | 23              | Subject | 1     | Case    |
| 25 | EC3768      | 24              | Subject | 1     | Case    |

Figure 2:

# 2 Log In or Sign Up

## 2.1 Sign up

If you are using MetFlow for the first time, please sign up first.

- 1. Click "Sign up" tab;
- 2. Enter your information;
- 3. Click "Sign up" button.



Figure 3:

## 2.2 Log in

- 1. Click "Log in & Account" tab;
- 2. Enter your user name and password;
- 3. Click "Log in" button.



Figure 4:

## 3 Data Cleaning

Data cleaning is implemented as a step-wised and standardized workflow under "Data Cleaning" tab. Users should process data step by step.

## 3.1 Upload Data Files

- 1. Enter the project name;
- 2. Select the MS1 peak tables (.csv format) and Sample information (.csv format);
- 3. Or you can use demo data;
- 4. Click "Submit" button to upload data.

### 3.2 Check Data Files

Then MetFlow check the data format of MS1 peak tables and sample information. If there are error in you data, please click Previous to check your data and upload again. If there is no error, you can click Next for the next step.

## 3.3 Batch Alignment

#### 3.3.1 Parameter setting

- 1. Set parameters for rough alignment;
- 2. Click Submit for batch alignment.



Figure 5:

Table 1: Parameters of batch alignment

| Paramter                          | Meaning                                                        |
|-----------------------------------|----------------------------------------------------------------|
| m/z tolerance (ppm)               | m/z tolerance (ppm) for rough                                  |
| Retention time tolerance (second) | alignment. Retention time tolerance (ppm) for rough alignment. |



Figure 6:

#### 3.3.2 Result

- 1. The "Parameter optimization" tab shows the m/z error, RT error and log10intensity error deviation in rough alignment.
- 2. The "MS1 peak table after batch alignment" tab shows the aligned MS1 peak table, users can click "Download" to download it.
- 3. Then click "Next" for the next step.



Figure 7:

## 3.4 Data Quality Check

Then the data quality is visually checked using 7 different creteria:

- 1. Data profile: m/z vs RT vs log10(intensity);
- 2. Missing value distribution: Missing value ratios in peaks and samples;
- 3. Zero value distribution: Zero value ratios in peaks and samples;
- 4. RSD distribution: RSD distribution in QC samples, you can also use different group to calculate RSD;
- 5. PCA score plot: PCA score plot of different batches;
- 6. QC intensity boxplot: QC auto-scaled intensity boxplot in different batches;
- 7. QC correlation: The correlations of QC samples;
- 8. All the figures can be downloaded. Then click "Next" for the next step.

## 3.5 Missing Value Processing

#### 3.5.1 Parameter setting

- 1. Set parameters for missing value processing;
- 2. Click Submit.



Figure 8:

Table 2: Parameters of missing value processing

| Paramter                                            | Meaning                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remove peaks with MV ratio > (%)  Imputation method | It means that if the MV ratio larger than the threshold you set, the peaks will be removed from the dataset. For example, the default of this parameter is 50, it means that for each peak, if its MV ratio > 50%, this peak will be removed. 'MetFlow' has 9 methods for missing |
|                                                     | value imputation: 1) Zero value, 2) Mean, 3) Median, 4) Minumun, 5) KNN, 6) missForest and 7) BPCA. The default is KNN.                                                                                                                                                           |

### 3.5.2 Results

- 1. Summary: Show the peaks which are removed from the dataset;
- 2. MS1 peak table (after MV processing): You can download the MS1 peak table after MV processing;
- 3. Click Next.

## 3.6 Zero Value Processing

- 1. Set parameters for zero value processing;
- 2. Click Submit.
- 3. Summary: Show the peaks which are removed from the dataset;
- 4. MS1 peak table (after zero processing): You can download the MS1 peak table after zero processing;
- 5. Click Next.

NOTE: If there are no missing values in your data, you can select any imputation method.



Figure 9:



Figure 10:

## 3.7 Data Normalization

### 3.7.1 Parameter setting

- 1. Set parameters for data normalization;
- 2. Click Submit.



Figure 11:

Table 3: Parameters of zero value processing

| Remove peaks with zero ratio $>$ (%) It means that if the zero ratio larger than the threshold you set, the peaks                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| will be removed from the dataset. For example, the default of this parameter is 50, it means that for each peak, if its zero ratio > 50%, this peak will be removed. |

Table 4: Parameters of data normalization

| Paramter                | Meaning                             |
|-------------------------|-------------------------------------|
|                         |                                     |
| QC sample-based methods | You can check the methods based QC  |
|                         | sample or not.                      |
| Normalization method    | There are 3 common used non-QC      |
|                         | sample-based methods: 'Mean',       |
|                         | 'Median' and 'Total'. And there are |
|                         | two common used QC sample-based     |
|                         | methods: 'QC SVR (MetNormalizer)'   |
|                         | and 'QC LOESS'.                     |

### 3.7.2 Results

### **3.7.2.1** Summary

- 1. QC intensity box plot before normalization;
- 2. QC intensity box plot after normalization;
- 3. RSD comparison;



Figure 12:





Figure 13:

### 3.7.2.2 MS1 peak table (after data normalization)

- 1. For each peak, you can select it, then click "Before normalization" or "After normalization" to show it's intensity drift.
- 2. Click Next.

## 3.8 Data Integration

## 3.8.1 Parameter setting

- 1. Set parameters for data integration;
- 2. Click Submit.

Like data normalization, you can also see the single peak intensity plot, QC auto-intensity boxplot, RSD comparison plot and RSD of peaks. Then click "next" for next step.

Table 5: Parameters of data integration

| Paramter                | Meaning                                                                                                                                                                                    |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QC sample-based methods | You can check the methods based QC                                                                                                                                                         |
| Integration method      | sample or not. There are 2 common used non-QC sample-based methods: 'Subject mean' and 'Subject median'. And there are two common used QC sample-based methods: 'QC mean' and 'QC median'. |



Figure 14:

# 3.9 Outlier Removal

## 3.9.1 Parameter setting

Table 6: Parameters of outlier removal

| Paramter                               | Meaning                                |
|----------------------------------------|----------------------------------------|
| Logarithm method                       | default is 'Log 10'.                   |
| Scale method                           | default is 'Auto scale'.               |
| Samples will be considered as outliers | It means that if one sample is outside |
| outside % CI                           | % confidence interval, the sample will |
|                                        | be considered as outlier samples. The  |
|                                        | default is 95%.                        |
| Samples will be considered as outliers | It means that it one sample with zero  |
| with zero value ratio $>\%$            | value ratio bigger than %, the sample  |
|                                        | will be considered as outliers. The    |
|                                        | default is 50%.                        |



Figure 15:

### 3.9.2 Delete outlier samples

- 1. The information outlier samples;
- 2. Select outlier samples which you want to remove;
- 3. Click Delete;
- 4. Click Submit again.



Figure 16:

## 3.10 Data Quality Visualization

MetFlow also visually assesses the data quality after data cleaning.

### 3.11 Result Download

- 1. Click "Generate HTML Summary" to generate analysis report (html format);
- 2. Then click "Download HTML Summary" to download the analysis report;
- 3. Click "Generate Analysis Result" to generate analysis result (zip foramt);
- 4. Then click "Download Analysis Result" to download the analysis result.



Figure 17:

## 4 Differential Metabolite Discovery

Differential metabolite discovery analysis is implemented as a step-wised and standardized workflow under "Differential Metabolite Discovery" tab. Users should process data step by step.

## 4.1 Upload Data Files

This step is same as "Data Cleanning".

### 4.2 Check Data Files

This step is same as "Data Cleanning".

## 4.3 Univariate Analysis

### 4.3.1 Parameter setting

- 1. Set parameters for univariate analysis;
- 2. Click Submit.

#### 4.3.2 Results

1. Volcano plot: The volcanplot is utilized to visualized the differential metabolites.;

Table 7: Parameters of univariate Analysis

| Paramter                          | Meaning                                                                          |
|-----------------------------------|----------------------------------------------------------------------------------|
| Control group                     | Select the control group.                                                        |
| Case group                        | Select the case group.                                                           |
| Logarithm method                  | Select logarith method, default is 'No                                           |
| Use what to calculate fold change | log'. Use mean or median value of samples in one group to calcualte fold-change, |
| Hypothesis testing method         | default is 'Mean'.<br>'Student's t test' or 'Wilcoxon test'.                     |
| Alternative                       | 'Two sided', 'Less' or 'Greater'.                                                |
| Paired t-test                     | Paired or not.                                                                   |
| Correction method                 | Select Correction method, default is                                             |
|                                   | 'False discovery ratio (FDR)'.                                                   |
| P-value cutoff                    | Default is 0.05.                                                                 |
| Fold change cutoff                | Default is 2, it means fold change                                               |
|                                   | (case/control) > 2  or  < 0.5.                                                   |



Figure 18:

2. Fold change and P-value: Fold-changes and P-values for all peaks.

## 4.4 Multivariate Analysis

### 4.4.1 Set parameters

- 1. Set parameters for multivaraite analysis;
- 2. Click "Submit".

Table 8: Parameters of multivariate analysis

| Paramter         | Meaning                                      |
|------------------|----------------------------------------------|
| Logarithm method | Select logarith method, default is 'Log 10'. |
| Scale method     | Select scale method, default is 'Auto        |
| Center or not    | scale'.<br>Default is checked.               |



Figure 19:

#### 4.4.2 Results

#### 4.4.2.1 PCA analysis

The PCA score plot.

#### 4.4.2.2 PLS analysis

- 1. Click "Q2cum" and select the ncomp with the biggest Q2cum, and then click "Submit";
- 2. Click "Q2cum&R2cum" to see the final Q2cum and R2 cum of the PLS model.

#### 4.4.2.3 HCA analysis

- 1. Click "Parameter setting" to set parameters for HCA analysis;
- 2. Click "Download" to download heatmap.

#### 4.4.2.4 Fold-change&P-value&VIP

Fold-changes, P-values and VIP values for all peaks.



Figure 20:

Table 9: Parameters of HCA analysis

| Paramter                                                                                                                            | Meaning                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Distance measure used in clustering rows Distance measure used in clustering columns Clustering method Cluster rows Cluster columns | Distance measure used in clustering rows. Default is 'Euclidean'. Distance measure used in clustering columns. Default is 'Euclidean'. Clustering method used. Default is 'Ward.D'. Cluster rows or not. Cluster column or not. |
| Show row names Show column names Control group color Case group color Low color                                                     | Show row names or not. Show column names or not. Color for control group. Color for case group. Color used in heatmap for low intensity.                                                                                        |
| Middle color High color                                                                                                             | Color used in heatmap for middle intensity. Color used in heatmap for high intensity.                                                                                                                                           |



Figure 21:

## 4.5 Differential Metabolite Selection

- 1. Set parameters;
- Click Submit;
- 3. 3D plot for visualization of differential metabolite selection;
- 4. Differential metabolite table.

Table 10: Parameters of differential metabolite delection

| Paramter                                     | Meaning                                                                |
|----------------------------------------------|------------------------------------------------------------------------|
| P-value cutoff Fold-change cutoff VIP cutoff | The cutoff of P-values. The cutoff of fold-changes. The cutoff of VIP. |

## 4.6 Performance Validation

### 4.6.1 Upload validation dataset

- 1. If you have validation dataset, please select them and click "Upload";
- 2. Click "Submit".



Figure 22:



Figure 23:

## 4.6.2 Results

### 4.6.2.1 PCA, PLS and HCA analysis

"PCA analysis", "PLS analysis" and "HCA analysis" are performed using the differential metabolites in your discovery dataset and validation dataset.

### 4.6.2.2 ROC analysis

- 1. Select prediction model you want to use. There are four models, PLS, random forest, support vector machine and logistic regression;
- 2. Click "Submit".



Figure 24:

## 4.7 Result Download

- 1. Click "Generate HTML Summary" to generate analysis report (html format);
- 2. Then click "Download HTML Summary" to download the analysis report;
- 3. Click "Generate Analysis Result" to generate analysis result (zip foramt);
- 4. Then click "Download Analysis Result" to download the analysis result.



Figure 25: