Math Pset #2: Inner Product Spaces

Alex Weinberg*
OSM Boot Camp 2018

June 28, 2018

Problem 1.

WTS: $\langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2)$ PF:

$$= \frac{1}{4}(\langle x+y, x+y \rangle - \langle x-y, x-y \rangle)$$

$$= \frac{1}{4}(\langle x, x+y \rangle + \langle y, x+y \rangle - \langle x, x-y \rangle + \langle y, x-y \rangle)$$

$$= \frac{1}{4} (\langle x, x + y + y - x \rangle + \langle y, x + y + x - y \rangle)$$

$$= \frac{1}{4} (\langle x, 2y \rangle + \langle y, 2x \rangle)$$

$$= \frac{1}{4} (2\langle x, y \rangle + 2\langle y, x \rangle)$$

$$= \frac{1}{4} (2\langle x, y \rangle + 2\langle y, x \rangle)$$

 $=\frac{1}{4}(2\langle x,y\rangle+2\overline{\langle x,y\rangle})$

As we are in \mathbb{R} ,

$$=\langle x,y\rangle$$

Problem 2.

$$\begin{aligned} (||x+y||^2 - ||x-y||^2 + i||x-iy||^2 - i||x+iy||^2)/4 &= \\ (&< x+y, x+y > - < x-y, x-y > + i < x-iy, y-iy > - i < x+iy, x+iy >)/4 &= \\ (2 < x, y > + 2 < y, x > - 2 < x, y > + 2 < y, x >)/4 &= \\ &< x, y > . \end{aligned}$$

Problem 3. $\langle x, x^5 \rangle = \int_0^1 x^6 dx = x^7/7|_0^1 = 1/7, \ ||x|| = \int_0^1 x^2 dx = x^3/3|_0^1 = 1/3$ and $||x^5|| = \int_0^1 x^1 0 dx = x^1 1/11|_0^1 = 1/11$. Therefore $\cos \theta = \sqrt{33}/7$ implies $\theta = 34.5$.

^{*}Alberto did most of the Latexing

Problem 4. (i)

$$||\cos(t)|| = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(t) dt = \frac{1}{\pi} \left. \frac{\cos(x)\sin(x) - x}{2} \right|_{-\pi}^{p} i = \frac{\pi}{\pi} = 1,$$

and similarly $||\sin(t)|| = 1$. Also

$$||\cos(2t)|| = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2(2t) dt = \frac{1}{\pi} \left. \frac{\sin(4t) + 4t}{8} \right|^p i = \frac{\pi}{\pi} = 1,$$

and similarly $||\sin(2t)|| = 1$. Therefore the basis is normalized.

The following integrals:

$$<\cos(t),\sin(t)> = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t)\sin(t)dt = \frac{1}{\pi} \left. \frac{\sin^2(x)}{x} \right|_{-\pi}^{p} i = 0,$$

$$<\cos(t),\cos(2t)> = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t)\cos(2t)dt = \frac{1}{\pi} \left[\frac{1}{\pi} \cos(t) - 2\sin^3(t) \right]_{-\pi}^{p} i = 0,$$

$$<\cos(t),\sin(2t)> = \frac{1}{\pi}\int_{-\pi}^{\pi}\cos(t)\sin(2t)dt = \frac{1}{\pi}|frac-2\cos^{3}(t)3|_{-\pi}^{p}i = 0,$$

$$<\cos(2t),\sin(2t)> = \frac{1}{\pi}\int_{-\pi}^{\pi}\cos(2t)\sin(2t)dt = \frac{1}{\pi}|frac-\cos^2(2t)4|_{-\pi}^p|i=0,$$

and so on, shows that S is an orthonormal basis.

(ii)

$$||t|| = \frac{1}{\pi} \int_{-\pi}^{\pi} t dt = \frac{1}{\pi} \left. \frac{t^2}{2} \right|_{-\pi}^{\pi} = 0.$$

(iii) Since
$$\langle x, \cos(3x) \rangle = 0$$
 for any $x \in S$, $\operatorname{proj}_X(\cos(3x)) = 0$.

(i)

$$<\sin(t), t> = \sin(t) - t\cos(t)|_{-\pi}^{\pi} = 2\pi,$$

 $<\cos(t), t> = t\sin(t) - \cos(t)|_{-\pi}^{\pi} = 0,$
 $<\cos(2t), t> = (2t\sin(2t) + \cos(2t))/4|_{-\pi}^{\pi} = 0,$ and finally
 $<\sin(2t), t>\sin(2x) - 2x\cos(2x)/4|_{-\pi}^{\pi} = -\pi.$

Therefore, $\operatorname{proj}_X(t) = 2\pi \sin(t) - \pi \sin(2t)$

Problem 9. A rotation of angle θ in \mathbb{R}^2 represented as a matrix R in the standard basis is an orthonormal transformation since

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}^T \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} =$$

$$\begin{bmatrix} \cos^2(\theta) + \sin^2(\theta) & 0 \\ 0 & \cos^2(\theta) + \sin^2(\theta) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Similarly, one shows that $RR^T = I$. Therefore, a rotation in \mathbb{R}^2 is an orthonormal transformation.

Problem 1. 0 (i) Suppose Q represents an orthonormal operator on \mathbb{F}^n . Then $\langle x,y \rangle = \langle Q(x),Q(y) \rangle$ for each $x,y \in \mathbb{F}^n$. Since $\langle Q(x),Q(y) \rangle = (Qx)^H(Qy) = x^HQ^HQy$, it equals x^Hy for all $x,y \in \mathbb{F}^n$ only if $Q^HQ = I$. On the other hand if $Q^HQ = QQ^H = I$, then $\langle Q(x),Q(y) \rangle = (Qx)^H(Qy) = x^HQ^HQy = x^Hy = \langle x,y \rangle$. (ii)

$$||Qx|| = \sqrt{\langle Qx, Qx \rangle} = \sqrt{x^H Q^H Qx} = \sqrt{\langle x, x \rangle} = ||x||.$$

(iii) If $Q^HQ=QQ^H=I$, then $Q^{-1}=Q^H$. Since $(Q^H)^H=Q,\ Q^H$ is also orthonormal:

$$(Q^H)^H Q^H = QQ^H = I = Q^H Q = Q^H (Q^H)^H.$$

(iv) Let q_i denote the i^th column of Q. Since Q is orthonormal, $(Q^HQ)_{ij} = q_i^H q_j = \langle q_i, q_j \rangle$ is 1 if i = j and 0 if $i \neq j$. Thus, the columns of Q are orthonormal. (v) The matrix

$$\begin{bmatrix} 2 & 0 \\ 0 & 1/2 \end{bmatrix}$$

shows that the converse is not true.

(vi)

$$(Q_1Q_2)^H Q_1Q_2 = Q_2^H Q_1^H Q_1 Q_2 = Q_2^H Q_2 = I$$

and

$$Q_1Q_2(Q_1Q_2)^H = Q_1Q_2Q_2^HQ_1^H = Q_1Q_1^H = I.$$

Therefore, Q_1Q_2 is orthonormal.

Problem 1. 1 Fix $N \in \mathbb{N}$, N > 0, and suppose $\{x_i\}_{i=1}^N$ is a set of linearly dependent vectors in V. Also, suppose, without loss of generality, that for 2 < k < N, $\{x_i\}_{i=1}^{k-1}$ is a linearly independent set and $\{x_i\}_{i=1}^k$ is a linearly dependent set. Then $\{q_i\}_{i=1}^{k-1}$ (as they are defined in the book) is also a linearly independent set. However, since $x_k \in \text{span}(\{x_i\}_{i=1}^{k-1})$, we have that $q_k = 0$. Therefore the Gram-Schmidt orthonormalization process brakes down.

Problem 1. 6 (i) Let $A \in \mathbb{M}_{mxn}$ where $\operatorname{rank}(A) = n \leq m$. Then there exist orthonormal $Q \in \mathbb{M}_{mxm}$ and upper triangular $R \in \mathbb{M}_{mxn}$ such that A = QR. Since $\tilde{Q} = -Q$ is still orthonormal $(-Q(-Q)^H = -Q(-Q^H) = QQ^H = I$ and similarly one shows $(-Q)^H(-Q) = I$) and $\tilde{R} = -R$ is still upper triangular, $A = QR = \tilde{Q}\tilde{R}$. Therefore QR-decomposition is not unique.

(ii) Now take a reduced QR-decomposition $A = \hat{Q}\hat{R}$, where $\hat{Q} \in \mathbb{M}_{mxn}$ is orthonormal and $\hat{R} \in \mathbb{M}_{nxn}$ is upper triangular. Since A has full column rank, \hat{R} has full rank and is therefore nonsingular. Then,

$$\begin{array}{ll} A^H A x = A^H b & \Longrightarrow \\ (\hat{Q} \hat{R})^H \hat{Q} \hat{R} x = (\hat{Q} \hat{R})^H b & \Longrightarrow \\ \hat{R}^H \hat{Q}^H \hat{Q} \hat{R} x = \hat{R}^H \hat{Q}^H b, \end{array}$$

and premultiplying both LHS and RHS of the last equation by \hat{R}^{-1} gives $\hat{R}x = \hat{Q}^Hb$.

Problem 2. 3 Let $x, y \in V$ and define v := -y. Since a norm is nonnegative and satisfies the triangular property, $||x|| - ||v|| \le ||x|| + ||v|| \le ||x + v||$. Then our definition of v implies $||x|| - ||y|| = ||x|| - ||-y|| \le ||x - y||$. Interchanging the role of x and y and using the homogeneity property of norms we have $||y|| - ||x|| \le ||y - x|| = ||-(y - x)|| = ||x - y||$, and the result follows.

Problem 2. 4 (i) Since $|f(t)| \ge 0$ for every t, so is $\int_a^b |f(t)| dt$. In addition, if f = 0, then $\int_a^b |f(t)| dt = 0$. On the other hand, if $\int_a^b |f(t)| dt = 0$ and $|f(t)| \ge 0$, it must be that |f(t)| = 0 for all t, implying that f = 0. Now take a constant $c \in \mathbb{F}$, then $\int_a^b |cf(t)| dt = \int_a^b |c| |f(t)| dt = |c| \int_a^b |f(t)| dt$, since c does not depend on t. Finally, take $g \in C([a,b];\mathbb{F})$. Since $|f(t)+g(t)| \le |f(t)|+|g(t)|$ for all t and the integral is a linear operator, we have that $\int_a^b |f(t)+g(t)| dt \le \int_a^b |f(t)| dt + \int_a^b |g(t)| dt$.

(ii) Since $|f(t)|^2 \geq 0$ for every t, so is $\int_a^b |f(t)|^2 dt$ and its square root. In addition, if f=0, then $|f(t)|^2=0$ for all t and $\sqrt{\int_a^b |f(t)|^2 dt}=0$. On the other hand, if $\sqrt{\int_a^b |f(t)|^2 dt}=0$, then $\int_a^b |f(t)|^2 dt=0$ and since $|f(t)|^2 \geq 0$ for all t, it must be that $|f(t)|^2=0$ for all t, implying that f=0. Now take a constant $c\in\mathbb{F}$, then $\sqrt{\int_a^b |cf(t)|^2 dt}=\sqrt{\int_a^b |c|^2 |f(t)|^2 dt}=|c|\sqrt{\int_a^b |f(t)|^2 dt}$, since c does not depend on t. Finally, take $g\in C([a,b];\mathbb{F})$. Since $|f(t)+g(t)|\leq |f(t)|+|g(t)|$ for all $t,x\mapsto x^2$ and $x\mapsto \sqrt{x}$ are monotonically increasing for nonnegative x and the integral is a linear operator, we have that $\sqrt{\int_a^b |f(t)+g(t)|^2 dt}\leq \sqrt{\int_a^b |f(t)|^2 dt+\int_a^b |g(t)|^2 dt}\leq ||f||_{L^2}+||g||_{L^2}.$

(iii) Since $|f(x)| \geq 0$ for all x, so is the $\sup_{x \in [a,b]} |f(x)|$. In addition, if f = 0, then $\sup_{x \in [a,b]} |f(x)|$ is also zero. On the other hand, since $|f(x)| \geq 0$ for all x, $0 \leq \sup_{x \in [a,b]} |f(x)| = 0$ implies that we must have f = 0. Now take a constant $c \in \mathbb{F}$, then $\sup_{x \in [a,b]} |cf(x)| = \sup_{x \in [a,b]} |c||f(x)| = |c| \sup_{x \in [a,b]} |f(x)|$. Finally, take $g \in C([a,b];\mathbb{F})$. Since $|f(x)+g(x)| \leq |f(x)|+|g(x)|$ for all x, we have that $\sup_{x \in [a,b]} |f(x)+g(x)| \leq \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |g(x)|$.

Problem 2. 6 We show that topological equivalence is an equivalence relation. Let $||\cdot||_r$ be a norm on X for $r \in \{a, b, c\}$. Clearly $||\cdot||_r$ is in topologically equivalent with itself, just pick any $0 < m \le 1$ and any $M \ge 1$ to show this. Also, suppose that $||\cdot||_a$ is topologically equivalent to $||\cdot||_b$ with constants $0 < m \le M$. Then, $||\cdot||_b$ is

topologically equivalent to $||\cdot||_a$ with constants $0 < 1/M' \le 1/m'$. Finally, if $||\cdot||_a$ is topologically equivalent to $||\cdot||_b$ with constants $0 < m \le M$ and so is $||\cdot||_b$ with $||\cdot||_c$ with constants $0 < m' \le M'$, then $||\cdot||_a$ is topologically equivalent to $||\cdot||_b$ with constants $0 < mm' \le MM'$.

Take $x \in \mathbb{R}^n$ Notice that

$$\sum_{i=1}^{n} |x_i|^2 \le \left(\sum_{i=1}^{n} |x_i|^2 + 2\sum_{i \ne j} |x_i| |x_j|\right) = \left(\sum_{i=1}^{n} |x_i|\right)^2$$

and that

$$\sum_{i=1}^{n} |x_i| \cdot 1 \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2} \left(\sum_{i=1}^{n} 1^2\right)^{1/2} = \sqrt{n} \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2}$$

prove that $||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2$.

Also notice that

$$\max_{i} |x_{i}| = \left(\max_{i} |x_{i}|^{2}\right)^{1/2} \le \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} =$$

and

$$\sum_{i=1}^{n} |x_i|^2 \le n \cdot \max_i |x_i|^2$$

prove that $||x||_{\infty} \le ||x||_2 \le \sqrt{n}||x||_{\infty}$.

Problem 2. 8 (i) Notice that (applying the results of the previous exercise)

$$\sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \le \sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \le \sqrt{n} \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2},$$

and

$$\sup_{x \neq 0} \frac{||Ax||_1}{||x||_1} \ge \sup_{x \neq 0} \frac{||Ax||_2}{||x||_1} \ge \frac{1}{\sqrt{n}} \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2}$$

imply that $\frac{1}{\sqrt{n}}||A||_2 \le ||A||_1 \le ||A||_2$.

(ii) Notice that

$$\sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} \le \sup_{x \neq 0} \frac{\sqrt{n}||Ax||_{\infty}}{||x||_{\infty}},$$

and

$$\sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} \ge \sup_{x \neq 0} \frac{||Ax||_{\infty}}{\sqrt{n}||x||_{\infty}}.$$

Problem 2. 9 Take an arbitrary $x \neq 0$ and suppose $||\cdot||$ is an inner product induced norm. Since

$$||Qx|| = (\langle Qx, Qx \rangle)^{1/2} = (\langle Q^HQx, x \rangle)^{1/2} = (\langle x, x \rangle)^{1/2} = ||x||,$$

then

$$||Q|| = \sup_{x \neq 0} \frac{||Qx||}{||x||} = 1.$$

Now let $R_x: \mathbb{M}_n(\mathbb{F}) \to \mathbb{F}^n, A \mapsto Ax$ for every $x \in \mathbb{F}^n$. Notice that

$$||R_x|| = \sup_{A \neq 0} \frac{||Ax||}{||A||} = \sup_{A \neq 0} \frac{||Ax||||x||}{||A||||x||} \le \sup_{A \neq 0} \left(\frac{||Ax||||x||}{||Ax||}\right) = ||x||.$$

Problem 3. 0 Take an arbitrary $A \in \mathbb{M}_n(\mathbb{F})$. First, $||A||_S = ||SAS^{-1}|| \geq 0$ for any A because $||\cdot||$ is a norm on $\mathbb{M}_n(\mathbb{F})$ and $SAS^{-1} \in \mathbb{M}_n(\mathbb{F})$. In addition, $||0||_S = ||S0S^{-1}|| = ||0|| = 0$ and if $0 = ||A||_S = ||SAS^{-1}||$, then $SAS^{-1} = 0$ which implies A = 0. Second, take $a \in \mathbb{F}$, then

$$||aA||_S = ||SaAS^{-1}|| = ||aSAS^{-1}|| = |a|||SAS^{-1}|| = |a|||A||_S.$$

Finally, let $B \in \mathbb{M}_n(\mathbb{F})$ and notice that

$$||A+B||_S = ||S(A+B)S^{-1}|| = ||SAS^{-1}+SBS^{-1}|| \le ||SAS^{-1}|| + ||SBS^{-1}|| = ||A||_S + ||B||_S.$$

Therefore $||\cdot||_S$ is a norm on $\mathbb{M}_n(\mathbb{F})$.