# MAT224 Linear Algebra II Lecture Notes

# Yuchen Wang

# February 25, 2019

# Contents

| 1 | Vec                      | tor Spaces                                                | 2  |
|---|--------------------------|-----------------------------------------------------------|----|
|   | 1.1                      | Vector Spaces                                             | 2  |
|   | 1.2                      | Subspaces                                                 | 2  |
|   | 1.3                      | Linear Combinations                                       | 3  |
|   | 1.4                      | Linear Dependence and Linear Independence                 | 4  |
|   | 1.5                      | Interlude on Solving Systems of Linear Equations (MAT223) | 5  |
|   | 1.6                      | Bases And Dimension (Jan 17)                              | 5  |
| 2 | Linear Transformations   |                                                           | 11 |
|   | 2.1                      | Linear Tranformations                                     | 11 |
|   | 2.2                      | Linear Transformations Between Finite-Dimensional Vector  |    |
|   |                          | Spaces                                                    | 12 |
|   | 2.3                      | Kernel and Image                                          | 14 |
|   | 2.4                      | Applications of the Dimension Theorem                     | 16 |
|   | 2.5                      | Composition of Linear Transformations                     | 18 |
|   | 2.6                      | The Inverse of a Linear Transformation                    | 20 |
|   | 2.7                      | Change of Basis                                           | 21 |
| 3 | The Determinant Function |                                                           | 21 |
|   | 3.1                      | The Determinant as Area                                   | 21 |
|   | 3.2                      | The Determinant of an $n \times n$ Matrix                 | 22 |
|   | 3.3                      | Further Properties of the Determinant                     | 24 |
| 4 | Pro                      | hlem Notes                                                | 25 |

# 1 Vector Spaces

# 1.1 Vector Spaces

**Definition 1.1.1** A (real) vector space is a set V (whose elements are called vectors) together with

- 1. an operation called vector addition, which for each pair of vectors  $\mathbf{x}, \mathbf{y} \in V$  produced another vector in V denoted  $\mathbf{x} + \mathbf{y}$ , and
- 2. an operation called multiplication by a scalar (a real number), which for each vector  $\mathbf{x} \in V$ , and each scalar  $c \in \mathbb{R}$  produced another vector in V denoted  $c\mathbf{x}$

Furthermore, the two operations must satisfy the following axioms:  $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V, \forall c, d \in \mathbb{R}$ ,

- 1.  $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$
- $2. \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
- 3.  $\exists \mathbf{0} \in V \text{ s.t. } \mathbf{x} + \mathbf{0} = \mathbf{x} \text{ (additive identity)}$
- 4.  $\exists -\mathbf{x} \in V \text{ s.t. } \mathbf{x} + -\mathbf{x} = \mathbf{0} \text{ (additive inverse)}$
- 5.  $c(\mathbf{x} + \mathbf{y}) = c\mathbf{x} + c\mathbf{y}$
- 6.  $(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$
- 7.  $(cd)\mathbf{x} = c(d\mathbf{x})$
- 8. 1x = x

#### Smooth functions $C^{\infty}$

Most functions are not smooth.

#### 1.2 Subspaces

**Example**  $C^{\infty}(\mathbb{R}) < C^k(\mathbb{R}) < \text{Differentiable functions} < C(\mathbb{R}) < F(\mathbb{R})$ 

**Definition** Let V be a vector space and Let  $W \subseteq V$  be a subset. Then W is a (vector) subspace of V if W is a vector space itself under the operations of vector sum and scalar multiplication from V.

**Theorem 1.2.8** Let V be a vector space and Let  $W \subseteq V$  be a nonempty subset of V. Then W is a subspace of V iff  $\forall \mathbf{x}, \mathbf{y} \in W$ , and all  $c \in \mathbb{R}$ , we have  $c\mathbf{x} + \mathbf{y} \in W$ .

<u>proof:</u>  $\rightarrow$ : If W is a subspace of V, then  $\forall \mathbf{x}, \mathbf{y} \in W$  and  $c \in \mathbb{R}, c\mathbf{x} + \mathbf{y} \in W$  holds since W itself is a real vector space.

 $\leftarrow$ : If  $\forall \mathbf{x}, \mathbf{y} \in W$ , and all  $c \in \mathbb{R}$ , we have  $c\mathbf{x} + \mathbf{y} \in W$ 

Can have c = 1, so  $\mathbf{x} + \mathbf{y} \in W$  (close under addition)

c = -1 and  $\mathbf{y} = \mathbf{x}$ , so  $-\mathbf{x} + \mathbf{x} = \mathbf{0} \in W$  (additive identity)

y = 0, so  $cx \in W$  (close under scalar multiplication)

These implies all the axioms.

# Examples

- 1.  $W = \{ f \in C(\mathbb{R}) | f(\pi) = 0 \}$ . W subspace of  $C(\mathbb{R})$ ? -Yes
- 2.  $W = \{ f \in C(\mathbb{R}) | f(e) = e \}$ . W subspace of  $C(\mathbb{R})$ ? -No, not close under addition
- 3.  $W = \{(x_1, ..., x_n) | x_i \geq 0 \forall i\}$ . W subspace of  $C(\mathbb{R})$ ? -No, there is no additive inverse for each item in W.

**Theorem 1.2.13** Let V be a vector space. Then the intersection of any collection of subspaces of V is a subspace of V.

<u>proof:</u> Consider any collection of subspace of V. Note that the intersection of the subspaces is not empty since at least the zero vector from V is in it. Now let  $\mathbf{x}, \mathbf{y}$  be any two vectors in the intersection, so they are in every single subspace in the collection. Therefore  $c\mathbf{x} + \mathbf{y}$  is also in every single subspace in the collection, so that it is in the intersection as well. Hence the intersection is a subspace of V.

**Application** The set of all solutions of any simultaneous system of equations is a subspace of  $\mathbb{R}^n$ .

Corollary 1.2.14 Let  $a_{ij}(1 \le i \le m, 1 \le j \le n)$  be any real numbers and let  $W = \{(x_1, ..., x_n) \in \mathbb{R}^n | a_{i1}x_1 + ... + a_{in}x_n = 0 \text{ for all } i, 1 \le i \le m\}$ . Then W is a subspace of  $\mathbb{R}^n$ .

#### 1.3 Linear Combinations

**Definition 1.3.1** Let S be a subset of a vector space V.

- 1. A linear combination of vectors in S is any sum  $a_1\mathbf{x}_1 + \ldots + a_n\mathbf{x}_n$  where the  $a_i \in \mathbb{R}$ , and the  $\mathbf{x}_i \in S$
- 2. If  $S \neq \emptyset$ , the set of all linear combinations of vectors in S is called the span of S, and denoted Span(S). If  $S = \emptyset$ , we define Span(S) =  $\{0\}$ . (Remark: It is a mathematician convention)
- 3. If W = Span(S), we say S spans (or generates) W.

**Theorem 1.3.4** Let V be a vector space and let S be any subset of V. Then Span(S) is a subspace of V.

<u>proof:</u> Span(S) is non-empty by definition. Let  $\mathbf{x}, \mathbf{y} \in Span(S)$ , then they are linear combinations of vectors in S. Check that  $c\mathbf{x} + \mathbf{y}$  is also a linear combination of vectors in S, so  $c\mathbf{x} + \mathbf{y} \in Span(S)$ . Hence Span(S) is a subspace of V.

**Definition** Let  $W_1$  and  $W_2$  be subspaces of a vector space V. The *sum* of  $W_1$  and  $W_2$  is the set

$$W_1 + W_2 = \{ \mathbf{x} \in V | \mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2, \text{ for some } \mathbf{x}_1 \in W_1 \text{ and } \mathbf{x}_2 \in W_2 \}$$

Proposition 1.3.8 The basis of sum is the union of two bases Let  $W_1 = Span(S_1)$  and  $W_2 = Span(S_2)$  be subspaces of a vector space V. Then  $W_1 + W_2 = Span(S_1 \cup S_2)$ 

**Theorem 1.3.9** Let  $W_1$  and  $W_2$  be subspaces of a vector space V. Then  $W_1 + W_2$  is also a subspace of V.

**Proposition 1.3.11**  $W_1+W_2$  is the smallest subspace containing  $W_1\cup W_2$ : Let  $W_1$  and  $W_2$  be subspaces of a vector space V and let W be a subspace of V such that  $W_1\cup W_2\subseteq W$ . Then  $W_1+W_2\subseteq W$ 

**Remark**  $W_1 \cup W_2$  is a subspace of V iff one is contained in another.

#### 1.4 Linear Dependence and Linear Independence

**Definitions 1.4.2** Let V be a vector space, and let S be a subset of V.

1. A linear dependence among the vectors of S is an equation

$$a_1\mathbf{x}_1 + \ldots + a_n\mathbf{x}_n = \mathbf{0}$$

where the  $x_i \in S$ , and the  $a_i \in \mathbb{R}$  are not all zero (i.e., at least one of the  $a_i \neq \mathbf{0}$ 

2. the set S is said to be *linearly dependent* if there exists a linear dependence among the vectors in S.

**Fact** Let S be a set. If  $0 \in S$ , then S is dependent.

**Definition 1.4.4** A subset S of a vector space V is *linearly independent* if whenever we have  $a_i \in \mathbb{R}$  and  $\mathbf{x}_i \in S$  such that  $a_1\mathbf{x}_1 + \ldots + a_n\mathbf{x}_n = \mathbf{0}$ , then  $a_i = 0$  for all i.

**Example** In any vector space the empty subset  $\emptyset$  is linearly independent.

# Proposition 1.4.7

- 1. Let S be a linearly independent subset of a vector space V, and let S' be another subset of V that contains S. Then S' is also linearly dependent.
- 2. Let S be linearly independent subset of a vector space V and let S' be another subset of V that is contained in S. Then S' is also linearly independent.
- 1.5 Interlude on Solving Systems of Linear Equations (MAT223)
- 1.6 Bases And Dimension (Jan 17)

**Definition** A subset S of vector space V is called a *basis* of V if V = Span(S) and S is linearly independent.

**Remark** A basis is the maximal set of linearly independent vectors / minimal set of spanning vectors.

## Examples

- 1. the standard basis  $S = \{e_1,...,e_n\}$  in  $\mathbb{R}^n$ , since every vector  $(a_1,...,a_n) \in \mathbb{R}^n$  may be written as the linear combination  $(a_1,...,a_n) = a_1e_1 + ... + a_ne_n$
- 2. The vector space  $\mathbb{R}^n$  has many other bases as well. e.g., in  $\mathbb{R}^2$ , consider the set  $S = \{(1,2),(1,-1)\}$ , which is l.i.
- 3. Let  $V = P_n(\mathbb{R})$  and consider  $S = \{1, x, x^2, ..., x^n\}$ , which is a basis of V.

proof: It is clear that S spans V. For independence, consider

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n = \mathbf{0}$$

Take the derivative of both sides,

$$\frac{d^n}{dx^n}(a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + a_nx^n) = \frac{d^n}{dx^n}(0)$$
$$n!a_n = 0 \implies a_n = 0$$

Similarly, we have  $a_i = 0$  for all i, as wanted.

4. The empty subset,  $\emptyset$ , is a basis of the vector space consisting only of a zero vector,  $\{0\}$ .

**Theorem 1.6.3** Let V be a vector space, and let S be a nonempty subset of V. Then S is a basis of V iff every vector  $\mathbf{x} \in V$  may be written uniquely as a linear combination of the vectors in S.

<u>Proof:</u>  $\rightarrow$ : Assume S is a basis of V, then given  $\mathbf{x} \in V$ , there are scalars  $a_i \in \mathbb{R}$  and vectors  $x_i \in S$  s.t.  $\mathbf{x} = a_1x_1 + ... + a_nx_n$ . To show this linear combination is unique, consider a possible second linear combination of vectors in S which also adds up to  $\mathbf{x}$ :  $x = b_1x_1 + ... + b_nx_n$ . Subtracting these two expressions for  $\mathbf{x}$ , we find that

$$\mathbf{0} = a_1 x_1 + \dots + a_n x_n - (b_1 x_1 + \dots + b_n x_n)$$
$$= (a_1 - b_1) x_1 + \dots + (a_n - b_n) x_n$$

Since S is linearly independent, the equation implies that  $a_i = b_i$  for all i.

 $\leftarrow$ : Assume every vector  $\mathbf{x} \in V$  may be written uniquely as a linear combination of the vectors in S. This implies Span(S) = V. We must show that S is l.i. Consider an equation

$$a_1x_1 + ... + a_nx_n = \mathbf{0}$$

Note that it is also the case that

$$0\mathbf{x} = 0(x_1 + \dots + x_n) = \mathbf{0}$$

Since we assumed that every  $\mathbf{x}$  has a unique representation in S, then it must be true that  $a_i = 0$  for all i. Hence S is l.i.

**Theorem 1.6.6** Let V be a vector space that has a finite spanning set, and let S be a linearly independent subset of V. Then there exists a basis S' of V, with  $S \subset S'$ 

**Lemma 1.6.8** Let S be a linearly independent subset of V and let  $x \in V$ , but  $x \notin S$ . Then  $S \cup \{\mathbf{x}\}$  is l.i. iff  $\mathbf{x} \notin Span(S)$ .

**Insight** the number of vectors in a basis is, in a rough sense, a measure of "how big" the space is.

**Theorem 1.6.10 (Basis Theorem)** Let V be a vector space and let S be a spanning set for V, which has m elements. Then no linearly independent set in V can have more than m elements.

<u>proof:</u> It suffices to show that every set in V with more than m elements is linearly dependent. Write  $S = y_1, ..., y_m$  and suppose  $S' = x_1, ..., x_n$  is a subset of V with n > m vectors. Consider an equation

$$(1)a_1x_1 + ... + a_nx_n = \mathbf{0}$$

Our goal is to show that  $a_i$  not all 0. Since S spans V, there are scalars  $b_{ij}$  s.t. for each i,

$$x_i = b_{i1}y_1 + \dots + b_{im}y_m$$

Substituting these equations into (1), we get

$$a_1(b_{11}y_1 + ... + b_{1m}y_m) + ... + a_n(b_{n1}y_1 + ... + b_{nm}y_m) = \mathbf{0}$$

Collecting terms and rearranging,

$$(a_1b_{11} + \dots + a_nb_{n1})y_1 + \dots + (a_1b_{1m} + \dots + a_nb_{nm})y_m = \mathbf{0}$$

Since S is l.i., this is equivalent to solving the system

$$b_{11}a_1 + \dots + b_{n1}a_n = 0$$

.

 $b_{1m}a_1 + \dots + b_{nm}a_n = 0$ 

But this is a system with n unknowns and m equations and n > m, so there must exist a non-trivial solution  $\{a_1, ..., a_n\}$ , which is what we wanted to show.

**Corollary 1.6.11** Let V be a vector space and let S and S' be two bases of V, with m and m' elements, respectively. Then m = m'.

# proof:

Since S is a spanning set of V and S' is l.i., we have  $m' \leq m$ . Since S' is a spanning set of V and S is l.i.m we have  $m \leq m'$ . Hence m = m'.

# Definitions 1.6.12

- 1. If V is a vector space with some finite basis(possibly empty), we say V is finite-dimentional.
- 2. Let V be a finite-dimensional vector space. The dimension of V, denoted  $\dim(V)$ , is the number of vectors in a (hence any) basis of V.
- 3. If  $V = \{0\}$ , we define  $\dim(V) = 0$ .

#### Examples

- 1. For each n,  $\dim(\mathbb{R}^n) = n$ , since the standard basis contains n vectors.
- 2.  $\dim(P_n(\mathbb{R})) = n+1$ , since a basis for  $P_n(\mathbb{R})$  contains n+1 functions.
- 3. The vector spaces  $P(\mathbb{R})$ ,  $C^1(\mathbb{R})$  and  $C(\mathbb{R})$  are not finite-dimensional. We say that such spaces are *infinite-dimensional*.
- 4.  $\dim(Span\{(1,2,3),(4,5,6),(7,8,9)\}) = 2$

Corollary 1.6.14 Let W be a subspace of a finite-dimensional vector space V. Then  $\dim(W) \leq \dim(V)$ . Furthermore,  $\dim(W) = \dim(V)$  iff W = V.

Corollary 1.6.15 Let W be a subspace of  $\mathbb{R}^n$  defined by a system of homogeneous linear equations. Then  $\dim(\mathbb{W})$  is equal to the number of free variables in the corresponding echelon form system.

**Theorem 1.6.18** Let  $W_1$  and  $W_2$  be finite-dimensional subspaces of a vector space V. Then

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

Remark Analogous to the Principle of Inclusion-Exclusion

*proof:* Result obvious if either  $W_1$  or  $W_2$  is  $\{0\}$ .

Therefore, we assume that neither  $W_1$  nor  $W_2$  is  $\{0\}$ . Starting from a basis S of  $W_1 \cap W_2$ . We can always find sets  $T_1$  and  $T_2$  (disjoint from S) such that  $S \cup T_1$  is a basis for  $W_1$  and  $S \cup T_2$  is a basis for  $W_2$ . We claim that  $U = S \cup T_1 \cup T_2$  is a basis for  $W_1 + W_2$ , since

$$U = S \cup T_1 \cup T_2 = (S \cup T_1) \cup (S \cup T_2)$$

$$Span(U) = Span((S \cup T_1) \cup (S \cup T_2)) = W_1 + W_2$$

Next, prove that U is linearly independent. Any potential linear dependence among the vectors in U must have the form

$$\mathbf{v} + \mathbf{w}_1 + \mathbf{w}_2 = \mathbf{0}$$

where  $\mathbf{v} \in Span(S) = W_1 \cap W_2, \mathbf{w}_1 \in Span(T_1) \subset W_1, \mathbf{w}_2 \in Span(T_2) \subset W_2$ . (slice the linear combination into the sum of the vectors from 3 vector spaces). It suffices to prove that in any such potential linear dependence, we must have  $\mathbf{v} = \mathbf{w}_1 = \mathbf{w}_2 = \mathbf{0}$  (each vector is a lin comb, and equals  $\mathbf{0}$ ). Consider  $\mathbf{w}_2 = -\mathbf{v} - \mathbf{w}_1$ . Since  $-\mathbf{v} - \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2$ , we must have  $\mathbf{w}_2 \in W_1 \cap W_2$ . By definition,  $\mathbf{w}_2 \in Span(T_2)$  But  $S \cap T_2 = \emptyset$ , hence  $Span(S) \cap Span(T_2) = \{\mathbf{0}\}$ . Therefore we must have  $\mathbf{w}_2 = \mathbf{0}$ . So then  $-\mathbf{v} = \mathbf{w}_1 \in W_1 \cap W_2$ . Since  $S \cap T_1 = \emptyset$ ,  $Span(S) \cap Span(T_1) = \{\mathbf{0}\}$  and we have  $\mathbf{w}_1 = \mathbf{0}$ , so  $\mathbf{v} = \mathbf{0}$  as well. So U is independent.

$$|U| = |S| + |T_1| + |T_2|$$

$$= \dim W_1 \cap W_2 + (\dim W_1 - \dim W_1 \cap W_2) + (\dim W_2 - \dim W_1 \cap W_2)$$

$$= \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

**Exercises for 1.4** 1.(k), 7

**Exercises for 1.6** 1.(d)(e)(f), 3, 4, 16

# 2 Linear Transformations

# 2.1 Linear Tranformations

A function T from V to W is denoted by  $T: V \to W$ . The vector  $\mathbf{w} = T(\mathbf{v})$  in W is called the *image* of  $\mathbf{v}$  under the function T. Loosely speaking, we want our functions to turn the algebraic operations of addition and scalar multiplication in V into addition and scalar multiplication in W.

**Definition 2.1.1** A function  $T: V \to W$  is called a *linear mapping* or a *linear transformation* if it satisfies

- 1.  $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$  for all  $\mathbf{u}$  and  $\mathbf{v} \in V$
- 2.  $T(a\mathbf{v}) = aT(\mathbf{v})$  for all  $a \in \mathbb{R}$  and  $\mathbf{v} \in V$

V is called the *domain* of T and W is called the *target* of T.

We say that a linear transformation preserves the operations of addition and scalar multiplication.

**Property** A linear mapping always takes the zero vector in the domain vector space to the zero vector in the target vector space.

**Proposition 2.1.2** A function  $T: V \to W$  is a linear transformation if and only if for all a and  $b \in \mathbb{R}$  and all  $\mathbf{u}$  and  $\mathbf{v} \in V$ 

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$$

**Corollary 2.1.3** A function  $T: V \to W$  is a linear transformation if and only if for all  $a_1, ..., a_k \in \mathbb{R}$  and for all  $\mathbf{v}_1, ..., \mathbf{v}_k \in V$ :

$$T(\sum_{i=1}^{k} a_i \mathbf{v}_i) = \sum_{i=1}^{k} a_i T(\mathbf{v}_i)$$

**Remark** prove this by induction!

#### Examples

1. Let V be any vector space, and let W = V. The *identity transformation*  $I: V \to V$  is defined by  $I(\mathbf{v}) = \mathbf{v}$  for all  $\mathbf{v} \in \overline{V}$ .

2. Let V and W be any vector spaces, and let  $T: V \to W$  be the mapping that takes every vector in V to the zero vector in W:

$$T(\mathbf{v}) = \mathbf{0}_W$$

for all  $\mathbf{v} \in V$ . T is called zero transformation.

- 3.  $T(\mathbf{x}) = a_1 x_1 + ... + a_n x_n$
- 4. Differentiation, definite integration

**Remark** The inner product plays a crucial role in linear algebra in that it provides a bridge between algebra and geometry, which is the heart of the more advanced material that appears later in the text.

**Proposition 2.1.14** If  $T: V \to W$  is a linear transformation and V is finite-dimensional, then T is uniquely determined by its values on the members of a basis of V.

<u>proof:</u> Show that if S and T are linear transformations that take the same values on each member of a basis for V, then in fact S = T.

$$T(v) = T(a_1v_1 + \dots + a_kv_k)$$

$$= a_1T(v_1) + \dots + a_kT(v_k)$$

$$= a_1S(v_1) + \dots + a_kS(v_k)$$

$$= S(a_1v_1 + \dots + a_kv_k)$$

$$= S(v)$$

Therefore, S and T are equal as mappings from V to W.

# 2.2 Linear Transformations Between Finite-Dimensional Vector Spaces

**Proposition 2.2.1** Let  $T: V \to W$  be a linear transformation between the finite-dimensional vector spaces V and W. If  $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$  is a basis for V and  $\{\mathbf{w}_1, ..., \mathbf{w}_l\}$  is a basis for W, then  $T: V \to W$  is uniquely determined by the  $l \cdot k$  scalars used to express  $T(\mathbf{v}_j), j = 1, ..., k$ , in terms of  $\mathbf{w}_1, ..., \mathbf{w}_l$ .

**Definition 2.2.6** Let  $T: V \to W$  be a linear transformation between the finite-dimensional vector spaces V and W, and let  $\alpha = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$  and  $\beta = \{\mathbf{w}_1, ..., \mathbf{w}_l\}$ , respectively, be any bases for V and W. Let  $a_{ij}, 1 \le i \le l$  and  $1 \le j \le k$  be the  $l \cdot k$  scalars that determine T with respect to the bases  $\alpha$  and  $\beta$ . The matrix whose entries are the scalars  $a_{ij}, 1 \le i \le l$  and  $1 \le j \le k$ , is called the *matrix of the linear transformation T with respect to the bases*  $\alpha$  *for* V *and*  $\beta$  *for* W. This matrix is denoted by  $[T]_{\alpha}^{\beta}$ .

**Remark** The basis vectors in the domain and target spaces are written in some particular order.

**Definition of coordinate vectors** If  $\mathbf{v} = a_1\mathbf{v}_1 + ... + a_k\mathbf{v}_k$  and  $\mathbf{w} = b_1\mathbf{w}_1 + ... + b_l\mathbf{w}_l$ , we can express  $\mathbf{v}$  and  $\mathbf{w}$  in coordinates, respectively, as a  $k \times 1$  matrix and as an  $l \times 1$  matrix, with respect to the chosen bases. These coordinate vectors will be denoted by  $[\mathbf{v}]_{\alpha}$  and  $[\mathbf{w}]_{\beta}$ , respectively. Thus

$$[\mathbf{v}]_{\alpha} = \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix}$$
 and  $[\mathbf{w}]_{\beta} = \begin{bmatrix} b_1 \\ \vdots \\ b_l \end{bmatrix}$ 

**Proposition 2.2.15** Let  $T: V \to W$  be a linear transformation between vector spaces V of dimension k and W of dimension l. Let  $\alpha = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$  be a basis for V and  $\beta = \{\mathbf{w}_1, ..., \mathbf{w}_l\}$  be a basis for W. Then for each  $\mathbf{v} \in V$ ,

$$[T(\mathbf{v})]_{\beta} = [T]_{\alpha}^{\beta} [\mathbf{v}]_{\alpha}$$

proof: Let  $\mathbf{v} = x_1 \mathbf{v}_1 + ... + x_k \mathbf{v}_k \in V$ . Then if  $T(\mathbf{v}_j) = a_{1j} \mathbf{w}_1 + ... + a_{lj} \mathbf{w}_l$ 

$$T(\mathbf{v}) = \sum_{j=1}^{k} x_j T(\mathbf{v}_j)$$
$$= \sum_{j=1}^{k} x_j (\sum_{i=1}^{l} a_{ij} \mathbf{w}_i)$$
$$= \sum_{i=1}^{l} (\sum_{j=1}^{k} x_j a_{ij}) \mathbf{w}_i$$

Thus, the *i*th coefficient of  $T(\mathbf{v})$  in terms of  $\beta$  is  $\sum_{j=1}^k x_j a_{ij}$  and  $[T(\mathbf{v})]_{\beta} =$ 

$$\begin{bmatrix} \sum_{j=1}^{k} x_j a_{1j} \\ \vdots \\ \sum_{j=1}^{k} x_j a_{lj} \end{bmatrix} \text{ which is precisely } [T(\mathbf{v})]_{\beta} = [T]_{\alpha}^{\beta} [\mathbf{v}]_{\alpha}.$$

**Proposition 2.2.19** Let  $\alpha = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$  be a basis for V and  $\beta = \{\mathbf{w}_1, ..., \mathbf{w}_l\}$  be a basis for W, and let  $\mathbf{v} = x_1\mathbf{v}_1 + ... + x_k\mathbf{v}_k \in V$ 

1. If A is an  $l \times k$  matrix, then the function

$$T(\mathbf{v}) = \mathbf{w}$$

where  $[\mathbf{w}]_{\beta} = A[\mathbf{v}]_{\alpha}$  is a linear transformation.

- 2. If  $A = [S]^{\beta}_{\alpha}$  is the matrix of a transformation  $S : V \to W$ , then the transformation T constructed from  $[S]^{\beta}_{\alpha}$  is equal to S.
- 3. If T is the transformation of (1) constructed from A, then  $[T]_{\alpha}^{\beta} = A$

**Proposition 2.2.20** Let V and W be finite-dimensional vector spaces. Let  $\alpha$  be a basis for V and  $\beta$  a basis for W. Then the assignment of a matrix to a linear transformation from V to W given by T goes to  $[T]^{\beta}_{\alpha}$  is injective and surjective.

#### Notes

1. When proving a function T is not a linear transformation, can consider  $T(\mathbf{0}) \neq \mathbf{0}$ .

#### 2.3 Kernel and Image

**Definition 2.3.1** The *kernel* of T, denoted Ker(T), is the subset of V consisting of all vectors  $\mathbf{v} \in V$  such that  $T(\mathbf{v}) = 0$ .

**Remark** Kernel is different from null spaces. A null space is about a matrix, and it is something in  $\mathbb{R}^n$ .

**Proposition 2.3.2** Let  $T:V\to W$  be a linear transformation. Ker(T) is a subspace of V.

#### Examples

- 1. Let  $V = P_3(\mathbb{R})$ . Define  $T: V \to V$  by  $T(p(x)) = \frac{d}{dx}p(x)$ . Ker(T) only consists constant polynomials.
- 2. Let  $V = W = \mathbb{R}^2$ . Let T be a rotation  $R_{\theta}$ . Then  $Ker(T) = \{\mathbf{0}\}$ .

**Proposition 2.3.7** Let  $T: V \to W$  be a linear transformation of finite-dimensional vector spaces, and let  $\alpha$  and  $\beta$  be bases for V and W, respectively. Then  $\mathbf{x} \in Ker(T)$  if elf the coordinate vector of  $\mathbf{x}$ ,  $[\mathbf{x}]_{\alpha}$ , satisfies the system of equations

$$a_{11}x_1 + \dots + a_{1k}x_k = 0$$
  
 $\vdots$   
 $a_{l1}x_1 + \dots + a_{lk}x_k = 0$ 

where the coefficients  $a_{ij}$  are the entries of the matrix  $[T]^{\beta}_{\alpha}$ .

Remark This says

$$x \in \ker(T) \iff [x]_{\alpha} \in Nul[T]_{\alpha}^{\beta}$$

**Proposition 2.3.8 Independence is Basis-Independent** Let V be a finite-dimensional vector space, and let  $\alpha = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$  be a basis for V. Then the vectors  $\mathbf{x}_1, ..., \mathbf{x}_m \in V$  are linearly independent iff their corresponding coordinate vectors  $[\mathbf{x}_1]_{\alpha}, ..., [\mathbf{x}_m]_{\alpha}$  are linearly independent.

**Definition 2.3.10** The subset of W consisting of all vectors  $\mathbf{w} \in W$  for which there exists a  $\mathbf{v} \in V$  such that  $T(\mathbf{v}) = \mathbf{w}$  is called the *image* of T and is denoted by Im(T).

**Proposition 2.3.11** Let  $T:V\to W$  be a linear transformation. The image of T is a subspace of W.

**Proposition 2.3.12** If  $\{\mathbf{v}_1, ..., \mathbf{v}_m\}$  is any set that spans V (in particular, it could be a basis of V), then  $\{T(\mathbf{v}_1), ..., T(\mathbf{v}_m)\}$  spans Im(T).

Corollary 2.3.13 If  $\alpha = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$  is a basis for V and  $\beta = \{\mathbf{w}_1, ..., \mathbf{w}_l\}$  is a basis for W, then the vectors in W, whose coordinate vectors (in terms of  $\beta$ ) are the columns of  $[T]_{\alpha}^{\beta}$ , span Im(T).

**Rank-Nullity Theorem 2.3.17** If V is finite-dimensional vector space and  $T: V \to W$  is a linear transformation, then

$$\dim(Ker(T)) + \dim(Im(T)) = \dim(V)$$

Equivalently,

$$Nullity(T) + Rank(T) = \dim(V)$$

# 2.4 Applications of the Dimension Theorem

**Proposition 2.4.2** A linear transformation  $T: V \to W$  is injective iff  $\dim(Ker(T)) = 0$ , or  $\dim(Im(T)) = \dim(V)$ .

**Remark** Analogously, in MAT223 we said that a matrix is one-to-one if all the columns are l.i..

Corollary 2.4.3 A linear mapping  $T: V \to W$  on a finite-dimensional vector space V is injective iff  $\dim(Im(T)) = \dim(V)$ .

**Corollary 2.4.4** If  $\dim(W) < \dim(V)$  and  $T: V \to W$  is a linear mapping, then T is not injective. *proof:* 

$$\dim(Im(T)) \le \dim(W) < \dim(V)$$
  
 $\implies \dim(Ker(T)) > 0$ 

**Proposition 2.4.7** If W is finite-dimensional, then a linear mapping  $T: V \to W$  is surjective iff  $\dim(Im(T)) = \dim(W)$ 

**Remark** Analogously, in MAT223 we said that a matrix  $A \in M_{m \times n}(\mathbb{R})$  is onto if there is a pivot in every row, or the columns of A spans  $\mathbb{R}^m$ .

Corollary 2.4.8 If V and W are finite-dimensional, with  $\dim(V) < \dim(W)$ , then there is no surjective linear mapping  $T: V \to W$  proof:  $\dim(Im(T)) \le \dim(V) < \dim(W) \implies T$  is not surjective

Corollary 2.4.9 A linear mapping  $T: V \to W$  can be surjective iff

$$\dim(V) \ge \dim(W)$$

**Proposition 2.4.10** Let  $\dim(V) = \dim(W)$ . A linear transformation  $T: V \to W$  is injective iff it is surjective.

**Proposition 2.4.11** Let  $T: V \to W$  be a linear transformation, and let  $w \in Im(T)$ . Let  $v_1$  be any fixed vector with  $T(v_1) = w$ . Then every vector  $v_2 \in T^{-1}(\{w\})$  can be written uniquely as  $v_2 = v_1 + u$ , where  $u \in Ker(T)$ 

**Remark** In this situation  $T^{-1}(\{w\})$  is a subspace of V iff w=0.

**Corollary 2.4.15** Let  $T:V\to W$  be a linear transformation of finite-dimensional vector spaces, and let  $w\in W$ . Then there is a unique vector  $v\in V$  such that T(v)=w iff

- 1.  $w \in Im(T)$ , and
- 2.  $\dim(Ker(T)) = 0$

# **Proposition 2.4.16** With notation as before

- 1. The set of solutions of the system of linear equations  $A\mathbf{x} = \mathbf{b}$  is the subset  $T^{-1}(\{\mathbf{b}\})$  of  $V = \mathbb{R}^n$
- 2. The set of solutions of the system of linear equations  $A\mathbf{x} = \mathbf{b}$  is a subspace of V iff the system is homogeneous, in which case the set of solutions is Ker(T).

### Corollary 2.4.17

- 1. The number of free variables in the homogeneous system  $A\mathbf{x} = \mathbf{0}$  (or its echelon form equivalent) is equal to  $\dim(Ker(T))$
- 2. The number of basic variables of the system is equal to  $\dim(Im(T))$

**Definition 2.4.18** Given an inhomogeneous system of equations,  $A\mathbf{x} = \mathbf{b}$ , any single vector  $\mathbf{x}$  satisfying the system (necessarily  $\mathbf{x} \neq \mathbf{0}$ ) is called a particular solution of the system of equations.

**Proposition 2.4.19** Let  $\mathbf{x}_p$  be a particular solution of the system  $A\mathbf{x} = \mathbf{b}$ . Then every other solution to  $A\mathbf{x} = \mathbf{b}$  is of the form  $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$ , where  $\mathbf{x}_h$  is a solution of the corresponding homogeneous system of equations  $A\mathbf{x} = \mathbf{0}$ . Furthermore, given  $\mathbf{x}$  and  $\mathbf{x}_p$ , there is a unique  $\mathbf{x}_h$  such that  $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$ .

Corollary 2.4.20 The system  $A\mathbf{x} = \mathbf{b}$  has a unique solution iff  $\mathbf{b} \in Im(T)$  and the only solution to  $A\mathbf{x} = \mathbf{0}$  is the zero vector.

# 2.5 Composition of Linear Transformations

**Definition** Let U, V, and W be vector spaces, and let  $S:U\to V$  and  $T:V\to W$  be linear transformations. The *composition* of S and T is denoted  $TS:U\to W$  and is defined by

$$TS(\mathbf{v}) = T(S(\mathbf{v}))$$

Notice that this is well defined since the image of S is contained in V, which is the domain of T.

**Proposition 2.5.1** Let  $S: U \to V$  and  $T: V \to W$  be linear transformations, then TS is a linear transformation.

**Remark** In general, ST is not equal to TS. We emphasize that the composition is well defined only if the image of the first transformation is contained in the domain of the second.

#### Proposition 2.5.4

1. Let  $R:U\to V, S:V\to W$  and  $T:W\to X$  be linear transformations of the vector space U,V,W and X as indicated. Then

$$T(SR) = (TS)R$$
 (associativity)

2. Let  $R:U\to V, S:V\to W$  and  $T:W\to X$  be linear transformations of the vector space U,V,W and X as indicated. Then

$$T(R+S) = TR + TS$$
 (distributivity)

3. Let  $R:U\to V, S:V\to W$  and  $T:W\to X$  be linear transformations of the vector space U,V,W and X as indicated. Then

$$(T+S)R = TR + SR$$
 (distributivity)

**Proposition 2.5.6** Let  $S:U\to V$  and  $T:V\to W$  be linear transformations. Then

- 1.  $Ker(S) \subset Ker(TS)$
- 2.  $Im(TS) \subset Im(T)$

proof:

- 1. If  $\mathbf{u} \in Ker(S), S(\mathbf{u}) = \mathbf{0}$ . Then  $TS(\mathbf{u}) = T(\mathbf{0}) = \mathbf{0}$ . Therefore  $\mathbf{u} \in Ker(TS)$ .
- 2. If  $\mathbf{x} \in Im(TS)$ , then  $\exists \mathbf{u} \in U$  s.t.  $TS(\mathbf{u}) = T(S(\mathbf{u})) = \mathbf{x}$ , then  $\exists \mathbf{v} = S(\mathbf{u}) \in V$  s.t.  $T(\mathbf{v}) = \mathbf{x}$ . Therefore  $\mathbf{x} \in Im(T)$

Corollary 2.5.7 Let  $S:U\to V$  and  $T:V\to W$  be linear transformations of finite-dimensional vector spaces. Then

- 1.  $\dim(Ker(S)) \le \dim(Ker(TS))$
- 2.  $\dim(Im(TS)) \leq \dim(Im(T))$

**Proposition 2.5.9** If  $[S]^{\beta}_{\alpha}$  has entries  $a_{ij}$ , i = 1, ..., n and j = 1, ..., m and  $[T]^{\gamma}_{\beta}$  has entries  $b_{kl}$ , k = 1, ..., p and l = 1, ..., n, then the entries of  $[TS]^{\gamma}_{\alpha}$  are  $\sum_{l=1}^{n} b_{kl} a_{lj}$ 

**Definition 2.5.10** Let A be an  $n \times m$  matrix and B a  $p \times n$  matrix, then the *matrix product* BA is defined to be the  $p \times m$  matrix whose entries are  $\sum_{l=1}^{n} b_{kl} a_{lj}$  for  $k = 1, \ldots, p$  and  $j = 1, \ldots, m$ .

**Proposition 2.5.13** Let  $S: U \to V$  and  $T: V \to W$  be linear transformations between finite-dimensional vector spaces. Let  $\alpha, \beta$  and  $\gamma$  be bases for U,V and W, respectively. Then

$$[TS]^{\gamma}_{\alpha} = [T]^{\gamma}_{\beta}[S]^{\beta}_{\alpha}$$

In words, the matrix of the composition of two linear transformations is the product of the matrices of the transformations

#### Proposition 2.5.14

1. Let A,B and C be  $m \times n$ ,  $n \times p$  and  $p \times r$  matrices, then

$$(AB)C = A(BC)$$
 (associativity)

2. Let A,B and C be  $m \times n$ ,  $n \times p$  and  $p \times r$  matrices, then

$$A(B+C) = AB + AC$$
 (distributivity)

3. Let A,B and C be  $m \times n$ ,  $n \times p$  and  $p \times r$  matrices, then

$$(A+B)C = AC + BC$$
 (distributivity)

# 2.6 The Inverse of a Linear Transformation

**Definition** If  $f: S_1 \to S_2$  is a function from one set to another, we say that g is the *inverse function of* f if for every  $x \in S_1, g(f(x)) = x$  and for every  $y \in S_2, f(g(y)) = y$ . If such a g exists, f must be both injective and surjective(bijective).

To see this, notice that if  $f(x_1) = f(x_2)$ , then

$$x_1 = g(f(x_1)) = g(f(x_2)) = x_2$$

So that f is injective. If  $y \in S_2$ , then for x = g(y), f(x) = f(g(y)) = y so that f is surjective.

Converse is true: bijective  $\implies$  exists an inverse

**Proposition 2.6.1** If  $T:V\to W$  is injective and surjective, then the inverse function  $S:W\to V$  is a linear transformation.

proof: Let  $\mathbf{w}_1$  and  $\mathbf{w}_2 \in W$  and a and  $b \in \mathbb{R}$ . By definition,  $S(\mathbf{w}_1) = \mathbf{v}_1$  and  $S(\mathbf{w}_2) = \mathbf{v}_2$  are the unique vectors  $\mathbf{v}_1$  and  $\mathbf{v}_2$  satisfying  $T(\mathbf{v}_1) = \mathbf{w}_1$  and  $T(\mathbf{v}_2) = \mathbf{w}_2$ . By definition,  $S(a\mathbf{w}_1 + b\mathbf{w}_2)$  is the unique vector  $\mathbf{v}$  with  $T(\mathbf{v}) = a\mathbf{w}_1 + b\mathbf{w}_2$  but  $\mathbf{v} = a\mathbf{v}_1 + b\mathbf{v}_2$  satisfies  $T(a\mathbf{v}_1 + b\mathbf{v}_2) = aT(\mathbf{v}_1) + bT(\mathbf{v}_2) = a\mathbf{w}_1 + b\mathbf{w}_2$ . Thus,  $S(a\mathbf{w}_1 + b\mathbf{w}_2) = a\mathbf{v}_1 + b\mathbf{v}_2 = aS(\mathbf{w}_1) + bS(\mathbf{w}_2)$  as we desired.

**Proposition 2.6.2** A linear transformation  $T: V \to W$  has an inverse linear transformation S if and only if T is injective and surjective.

**Definition 2.6.3** If  $T: V \to W$  is a linear transformation that has an inverse transformation  $S: W \to V$ , we say that T is <u>invertible</u>, and we denote the inverse of T by  $T^{-1}$ .

**Definition 2.6.4** If  $T: V \to W$  is an invertible transformation, T is called an isomorphism, and we say V and W are isomorphic vector spaces.

**Notes**  $T^{-1}T(\mathbf{v})$  is the identity linear transformation of V,  $T^{-1}T = I_V$ , and  $TT^{-1}$  is the identity linear transformation of W,  $TT^{-1} = I_W$ . If S is a linear transformation that is a candidate for the inverse, we need only verify that  $ST = I_V$  and  $TS = I_W$ .

**Proposition 2.6.7** If V and W are finite-dimensional vector spaces, then there is an isomorphism  $T: V \to W$  if and only if  $\dim(V) = \dim(W)$ .

**Definition 2.6.10** An  $n \times n$  matrix A is called *invertible* if there exists an  $n \times n$  matrix B so that AB = BA = I. B is called the *inverse* of A and is denoted by  $A^{-1}$ .

**Proposition 2.6.11** Let  $T:V\to W$  be an isomorphism of finite-dimensional vector spaces. Then for any choice of bases  $\alpha$  for V and  $\beta$  for W

$$[T^{-1}]^{\alpha}_{\beta} = [T]^{\beta-1}_{\alpha}$$

# 2.7 Change of Basis

**Proposition 2.7.3** Let V be a finite-dimensional vector space, and let  $\alpha$  and  $\alpha'$  be bases for V. Let  $\mathbf{v} \in V$ . Then the coordinate vector  $[\mathbf{v}]_{\alpha'}$  of  $\mathbf{v}$  in the basis  $\alpha'$  is related to the coordinate vector  $[\mathbf{v}]_{\alpha}$  of  $\mathbf{v}$  in the basis  $\alpha$  by

$$[I]^{\alpha'}_{\alpha}[\mathbf{v}]_{\alpha} = [\mathbf{v}]_{\alpha'}$$

**Theorem 2.7.5** Let  $T: V \to W$  be a linear transformation between finite-dimensional vector spaces V and W. Let  $I_V: V \to V$  and  $I_W: W \to W$  be the respective identity transformations of V and W. Let  $\alpha$  and  $\alpha'$  be two bases for V, and let  $\beta$  and  $\beta'$  be two bases for W. Then

$$[T]_{\alpha'}^{\beta'} = [I_W]_{\beta}^{\beta'} \cdot [T]_{\alpha}^{\beta} \cdot [I_V]_{\alpha'}^{\alpha}$$

**Definition 2.7.6** Let A,B be  $n \times n$  matrices. A and B are said to be *similar* if there is an invertible  $n \times n$  matrix Q such that

$$B = Q^{-1}AQ$$

# 3 The Determinant Function

#### 3.1 The Determinant as Area

**Corollary 3.1.2** Let  $V = \mathbb{R}^2$ .  $T: V \to V$  is an isomorphism if and only if the area of the parallelogram constructed previously is nonzero.

**Proposition 3.1.3** The function  $Area(\mathbf{a}_1, \mathbf{a}_2)$  has the following properties for  $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_1'$ , and  $\mathbf{a}_2' \in \mathbb{R}^2$ 

1. 
$$Area(b\mathbf{a}_1 + c\mathbf{a}_1', \mathbf{a}_2) = bArea(\mathbf{a}_1, \mathbf{a}_2) + cArea(\mathbf{a}_1', \mathbf{a}_2)$$
 for  $b, c \in \mathbb{R}$ 

- 2.  $Area(\mathbf{a}_1, b\mathbf{a}_2 + c\mathbf{a}_2') = bArea(\mathbf{a}_1, \mathbf{a}_2) + cArea(\mathbf{a}_1, \mathbf{a}_2')$  for  $b, c \in \mathbb{R}$
- 3.  $Area(\mathbf{a}_1, \mathbf{a}_2) = -Area(\mathbf{a}_2, \mathbf{a}_1)$
- 4. Area((1,0),(0,1)) = 1

**Proposition 3.1.4** If  $B(\mathbf{a}_1, \mathbf{a}_2)$  is any real-valued function of  $\mathbf{a}_1$  and  $\mathbf{a}_2 \in \mathbb{R}^2$  that satisfies Properties (i),(ii),(iii) of Proposition (3.1.3), then B is equal to the area function.

**Definition 3.1.5** The determinant of a  $2 \times 2$  matrix A, denoted by det(A) or  $det(\mathbf{a}_1, \mathbf{a}_2)$ , is the unique function of the rows of A satisfying

- 1.  $\det(\mathbf{a}_1, b\mathbf{a}_2 + c\mathbf{a}_2') = b \det(\mathbf{a}_1, \mathbf{a}_2) + c \det(\mathbf{a}_1, \mathbf{a}_2')$  for  $b, c \in \mathbb{R}$
- 2.  $\det(\mathbf{a}_1, \mathbf{a}_2) = -\det(\mathbf{a}_2, \mathbf{a}_1)$
- 3.  $\det(\mathbf{e}_1, \mathbf{e}_2) = 1$

As a consequence of (3.1.4), det(A) is given explicitly by

$$\det(A) = a_{11}a_{22} - a_{12}a_{21}$$

We can rephrase the work of this section as follows

#### Proposition 3.1.6

- 1. A  $2 \times 2$  matrix A is invertible if and only if  $det(A) \neq 0$
- 2. If  $T: V \to V$  is a linear transformation of a two-dimensional vector space V, then T is an isomorphism if and only if  $\det([T]^{\alpha}_{\alpha}) \neq 0$

#### 3.2 The Determinant of an $n \times n$ Matrix

**Definition 3.2.1** A function f of the rows of a matrix A is called <u>multilinear</u> if f is a linear function of each of its rows when the remaining rows are held fixed. That is, f is multilinear if for all b and  $b' \in \mathbb{R}$ ,

$$f(\mathbf{a}_1,\ldots,b\mathbf{a}_l+b'\mathbf{a}_l',\ldots,\mathbf{a}_n)=bf(\mathbf{a}_1,\ldots,\mathbf{a}_l,\ldots,\mathbf{a}_n)+b'f(\mathbf{a}_1,\ldots,\mathbf{a}_l',\ldots,\mathbf{a}_n)$$

**Definition 3.2.2** A function f of the rows of a matrix A is said to be alternating if whenever any two rows of A are interchanged f changes sign. That is, for all  $i \neq j, 1 \leq i, j \leq n$ , we have

$$f(\mathbf{a}_1,\ldots,\mathbf{a}_l,\ldots,\mathbf{a}_j,\ldots,\mathbf{a}_n) = -f(\mathbf{a}_1,\ldots,\mathbf{a}_j,\ldots,\mathbf{a}_l,\ldots,\mathbf{a}_n)$$

**Lemma 3.2.3** If f is an alternating real-valued function of the rows of an  $n \times n$  matrix and two rows of the matrix A are identical, then f(A) = 0

**Definition 3.2.4** Let A be an  $n \times n$  matrix with entries  $a_{ij}, i, j = 1, ..., n$ . The ijth minor of A is defined to be the  $(n-1) \times (n-1)$  matrix obtained by deleting the ith row and jth column of A. The ijth minor is denoted by  $A_{ij}$ .

**Proposition 3.2.5** Let A be a  $3 \times 3$  matrix, and let f be an alternating multilinear function. Then

$$f(A) = [a_{11} \det(A_{11}) - a_{12} \det(A_{12}) + a_{13} \det(A_{13})]f(I)$$

**Corollary 3.2.6** There exists exactly one multilinear alternating function f of the rows of a  $3 \times 3$  matrix such that f(I) = 1

**Definition 3.2.7** The determinant function of a  $3 \times 3$  matrix is the unique alternating multilinear function f with f(I) = 1. This function will be denoted by  $\det(A)$ .

**Theorem 3.2.8** There exists exactly one alternating multilinear function  $f: M_{n \times n}(\mathbb{R}) \to \mathbb{R}$  satisfying f(I) = 1, which is called the determinant function  $f(A) = \det(A)$ . Further, any alternating multilinear function f satisfies  $f(A) = \det(A)f(I)$ 

**Proposition 3.2.10** If an  $n \times n$  matrix A is not invertible, then  $\det(A) = 0$ .

Proposition 3.2.11

$$\det(\mathbf{a}_1,\ldots,\mathbf{a}_n) = \det(\mathbf{a}_1,\ldots,\mathbf{a}_i + b\mathbf{a}_i,\ldots,\mathbf{a}_n)$$

**Lemma 3.2.12** If A is an  $n \times n$  diagonal matrix, then  $\det(A) = a_{11}a_{22} \dots a_{nn}$ 

**Proposition 3.2.13** If A is invertible, then  $det(A) \neq 0$ 

**Theorem 3.2.14** Let A be an  $n \times n$  matrix. A is invertible if and only if  $det(A) \neq 0$ 

# 3.3 Further Properties of the Determinant

Let A' be the matrix whose entries  $a'_{ij}$  are the scalars  $(-1)^{i+j} \det(A_{ji})$ . The quantity  $a'_{ij}$  is called the *ji*th <u>cofactor</u> of A.

# Proposition 3.3.1

$$AA' = det(A)I$$

**Corollary 3.3.2** If A is an invertible  $n \times n$  matrix, then  $A^{-1}$  is the matrix whose ijth entry is  $(-1)^{i+j} \det(A_{ii})/\det(A)$ 

**Proposition 3.3.4** For any fixed j,  $1 \le j \le n$ ,

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

**Remark 3.3.5** In general, if **b** is a vector in  $\mathbb{R}^n$ , A'**b** is a vector whose ith entry is  $\sum_{j=1}^n a'_{ij}b_j = \sum_{j=1}^n b_j(-1)^{i+j} \det(A_{ji})$ . This is the determinant of the matrix whose columns are  $\mathbf{a}_1, \ldots, \mathbf{a}_{i-1}, \mathbf{b}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_n$ , where  $\mathbf{a}_j, 1 \leq j \leq n$ , is the jth column of A. The determinant is expanded along the ith column. This fact will be used in the discussion of Cramer's rule, which appears later in this section.

**Proposition 3.3.7** If A and B are  $n \times n$  matrices, then

- 1. det(AB) = det(A) det(B)
- 2. If A is invertible, then  $\det(A^{-1}) = 1/\det(A)$

**Corollary 3.3.8** If  $T: V \to V$  is a linear transformation,  $\dim(V) = n$ , then

$$\det([T]^{\alpha}_{\alpha}) = \det([T]^{\beta}_{\beta})$$

for all choices of bases  $\alpha$  and  $\beta$  for V.

**Definition 3.3.9** The <u>determinant</u> of a linear transformation  $T: V \to V$  of a finite-dimensional vector space is the determinant of  $[T]^{\alpha}_{\alpha}$  for any choice of  $\alpha$ . We denote this by  $\det(T)$ .

**Proposition 3.3.11** A linear transformation  $T:V\to V$  of a finite-dimensional vector space is an isomorphism if and only if  $\det(T)\neq 0$ 

**Proposition 3.3.12** Let  $S: V \to V$  and  $T: V \to V$  be linear transformations of a finite-dimensional vector space, then

- 1. det(ST) = det(S) det(T) and
- 2. if T is an isomorphism,  $det(T^{-1}) = det(T)^{-1}$

**Proposition 3.3.13 (Cramer's rule)** Let A be an invertible  $n \times n$  matrix. The solution  $\mathbf{x}$  to the system of equations  $A\mathbf{x} = \mathbf{b}$  is the vector whose jth entry is the quotient

$$\det(B_j)/\det(A)$$

where  $B_j$  is the matrix obtained from A by replacing the jth column of A by the vector **b**.

# 4 Problem Notes

- 1  $S = {\bf a} \subseteq \mathbb{R}^2$ , then we cannot determine whether S is dependent (when  ${\bf a} = {\bf 0}$ ) or independent (when  ${\bf a} \neq {\bf 0}$ )
- **2** If a set in a vector space contains the zero vector, then it is linearly dependent.
- 3 Multiple Choice questions: check the hypothesis of theorems!