Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет Программной инженерии и компьютерной техники

Отчет

По лабораторной работе № 2

По предмету: Системы на кристалле Вариант 1

Студенты:

Андрейченко Леонид Вадимович

Степанов Михаил Алексеевич

Группа Р34301

Преподаватель:

Быковский Сергей Вячеславович

Санкт-Петербург

Цель работы

Получить базовые навыки использования средств высокоуровневого синтеза в процессе проектирования СнК.

Задание

- 1. Спроектировать и описать функциональность аппаратного ускорителя для алгоритма из лабораторной работы №1 на языках С/С++, пригодную для синтеза в аппаратный блок.
- 2. Провести синтез аппаратного ускорителя.
- 3. Разработать тестовое окружение для проверки функциональности синтезированного аппаратного ускорителя.
- 4. Оценить следующие характеристики:

}

- 4.1. Время выполнения алгоритма при частоте тактового сигнала в 100 МГц.
- 4.2. Число занимаемых ресурсов ПЛИС (XC7A100T-1CSG324C).
- 4.3. Время и занимаемые ресурсы ПЛИС с использованием следующих оптимизаций: раскрутка циклов, конвейеризация циклов.

Выполнение

Разработанный алгоритм был перенесен в Vivado HLS, и произведен его синтез. Получившийся код:

```
#include "fir.h"
int permutations[7];
int get_index(int raw, int val) {
      return !raw ? 0 : (raw & 1 ? val : get_index(raw / 2, val + 1));
}
void swap(int i, int j) {
      int temp = permutations[i];
      permutations[i] = permutations[j];
      permutations[j] = temp;
}
int next_set(int n) {
      int j = n - 2;
      while (j != -1 && permutations[j] >= permutations[j + 1]) j--;
      if (j == -1)
            return 0;
      int k = n - 1;
      while (permutations[j] >= permutations[k]) k--;
      swap(j, k);
      int l = j + 1, r = n - 1;
      while (l<r)
            swap(l++, r--);
      return 1;
```

```
int get_element(int i, int j, int exc, int matrix[7][7], int y[7]) {
      return j == exc ? y[i] : matrix[i][j];
}
int count_inversion(int n) {
      int sum = 0;
      for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                  if (permutations[i] > permutations[j]) sum++;
            }
      }
      return sum;
}
void clear_perm(){
      for(int i = 0; i < 7; i++)
            permutations[i] = i;
}
int eval_elem(int param, int n, int matrix[7][7], int y[7]) {
      int res = count_inversion(n) % 2 ? -1 : 1;
      for(int i = 0; i < n; i++) {
            res *= get_element(i, permutations[i], param, matrix, y);
      }
      return res;
}
int calc_det(int param, int n, int matrix[7][7], int y[7]){
      clear_perm();
      int res = eval_elem(param, n, matrix, y);
      while(next_set(n)){
            res += eval_elem(param, n, matrix, y);
      return res;
}
void calc_result(int n, int matrix[7][7], int y[7], int result[7]){
      int main_delta = calc_det(n + 1, n, matrix, y);
      for (int i = 0; i < n; i++) {
            int delta = calc_det(i, n, matrix, y);
            result[i] = delta / main_delta;
      }
}
```

Далее были написаны тесты для проверки корректности работы получившегося аппаратного блока. Результаты тестирования:

```
INIO. [MICC 202 I] MICC ID GOIC.
 Generating csim.exe
---- START ALL TEST -----
----- START TEST 3 -----
STEP 0 CORRECT
STEP 1 CORRECT
STEP 2 CORRECT
----- END TEST 3 -----
----- START TEST 4 -----
STEP 0 CORRECT
STEP 1 CORRECT
STEP 2 CORRECT
STEP 3 CORRECT
---- END TEST 4 -----
----- START TEST 5 -----
STEP 0 CORRECT
STEP 1 CORRECT
STEP 2 CORRECT
STEP 3 CORRECT
STEP 4 CORRECT
----- END TEST 5 -----
----- END ALL TEST -----INFO: [SIM 211-1] CSim done with 0 er
Finished C simulation.
```

Стандартная реализация

,							
Clock	Target	Estimated	Uncertainty				
ap clk	10.00	8.470	1.25				

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	95	-
FIFO	-	-	-	-	-
Instance	2	. 3	1222	1455	0
Memory	-	-	-	-	-
Multiplexer	-	-	-	219	-
Register	-	-	197	-	-
Total	2	. 3	1419	1769	0
Available	270	240	126800	63400	0
Utilization (%)	~0	1	1	2	0

Время выполнения алгоритма 3 = 12.3 us, 4 = 74 us, 5 = 554 us

pipeline

🖃 Summary

Name	BRAM_18	3K DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	173	-
FIFO	-	-	-	-	-
Instance	-	3	2979	2692	-
Memory		1 -	0	0	0
Multiplexer	-	-	-	534	-
Register	-	-	246	-	-
Total		1 3	3225	3399	0
Available	27	70 240	126800	63400	0
Utilization (%)		-0 1	2	5	0

Clock Target Estimated Uncertainty ap_clk 10.00 8.470 1.25

Время выполнения алгоритма 3 = 5.5 us, 4 = 24 us, 5 = 172 us

unroll

Name	BRAM_	18K	DSP48E	FF	LUT	URAN	И
DSP	-		-	-	-	-	
Expression	-		-	0	173	-	
FIFO	-		-	-	-	-	
Instance	-		3	1090	1192	-	
Memory		1	-	0	0		0
Multiplexer	-		-	-	534	-	
Register	-		-	246	-	-	
Total		1	3	1336	1899		0
Available		270	240	126800	63400		0
Utilization (%)		~0	1	1	2		0

Clock Target Estimated Uncertainty ap_clk 10.00 8.470 1.25

Время выполнения алгоритма 3 = 8us, 4 = 24 us, 5 = 163 us Выводы

Самая быстрая реализация - разворачивание цикла.