PROBLEMA DOLLA SOLEZIONE DOLLO ATTIVITA' CON POSI

SISTEMA DI ATTIVITA' CON PESO (S, s, f, ~r)

- · S = {1, ..., n}
- · s: 5 RT
- · f: 5 12+

TALI CHE Si < fi PER RES

· W: S - IR (FUNZIONE PESO O VALORE)

IL PROBLEMA DOLLA SOLEZIONE DELLE ATTIVITÀ CON PESI

CONSISTE NEL DETERMINARE UN SOTTOINSIEME ASS

DI ATTIVITÀ NUTUAMENTE COMPATIBILI TALL CHE

IL PESO DI A DEPINITO DA W(A):= Z W(i)

IGA MASSIMO

- · SE W(i)=1, PER OGNI ieS, SI OTTIENE IL CLASSICO PROBLEMA DECLA SELEZIONE DELLE ATTIVITÀ (SENZA RESI)
- SE $w(i) = f_i s_i$, PGR OGNI i.e. S, s_i otthere

 LA VARIANTE DEL PROBLEMA DECLA SELEZIONE DELLE

 ATTIVITÀ IN CUI SI INTENDE MASSIMIZZARE IL TEMPO

 COMPLESSIVO DELL'IMPIEGO DELLA RISORSA.
- SUPPORREMO CHE VALGA
 ∫, ≤ f₂ ≤ ... ≤ fm

PGR IL PROBLEMA DOUG SOLEZIONE DOUG ATTIVITA' CON POSI L'APPROCCIO GREEDY IN GENERALE NON VALE

ES.

Scelta greedy: attività che termina per prima ... FAIL!

Scelta greedy: attività di peso massimo ... FAIL!

DATO UN SISTEMA DI ATTIVITA' (S, s, f),

OVE $S = \{1, ..., n\}$ E $f_1 \le f_2 \le ... \le f_m$, E'

UTILE CALCOLARE LA FUNZIONE

p: $S \longrightarrow S \cup \{0\}$

DEFINITA DA

$$p(j) := \begin{cases} 0 & \text{SE NON C'E' ALCUNA ATTIVITA' a} \\ & \text{COMPATIBILE CON a}; E & \text{TALE CHE } f_i \leq S_j \\ \\ & \text{Max } \{i \mid i < j & a_i E a_j & \text{SONO COMPATIBILI} \} \\ & \text{ALTRIMENTION } \end{cases}$$

$$PER OGNI \quad j \in S .$$

• LA FUNZIONE P PUÒ ESSERE CALCOLATA IN
TEMPO (M gm)

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

j	p(j)	
0	-	
_	0	
2	0	
3	0	
4	1	
5	0	
6	2	
7	3	
8	5	

SOLUZIONE MEDIANTE PROGRAMMAZIONE DINAMICA

OPT(j):= VALORE DI UNA SOLUZIONE OPTIMA AL SOTTOPROBLEMA $\{1,2,...,j\}$

SOTTO STRUTTURA OTTIMA

SIA A UNA SOLUZIONE OPTIMA AL SOTTOPROBLEMA { 1,..., j }

CASO j & A:

A E' UNA SOLUZIONE OTTIMA

AL SOTTOPROBLEMA { 1,..., j-1}

PERTANTO OPT (j) PUD ESSEDE DEFINITO RICORSIVAMENTE COME SEGUE:

$$OPT(j) = \begin{cases} O \\ m_{per} \left(w(j) + OPT(p(j)) \right), OPT(j-1) \right) \quad ALTRIMENTI$$

SOLUZIONE RICORSIVA

COMPUTE-Opt(j)

parametri n, p, w

else

SOLUZIONE BOTTOM-UP (PROGRAMMARIONE DINAMICA)

parametri m, p, v

OPT[0]:=0

for
$$j:=1$$
 to m do

OPT[j]:= $mex(w(j)+OPT[p(j)]$, $OPT[j-i]$)

return OPT[m]

COMPLESSITÀ: $\mathcal{O}(n)$

PREPROCESSING: $\mathcal{O}(n \log n)$ ordinamento delle attività + calcolo della funzione p

j	w(j)	p(j)	opt[j]
0	1	1	0
1	3	0	3
2	2	0	3
3	6	0	6
4	3	J	6
5	5	0	6
6	4	2	7
7	4	3	lo
7	3	5	10

COSTRUZIONE DI UNA SOLUZIONE OTTIMA

COMPLESSITA': O(m)

w(j)	p(j)	opt[j]
1	1	0
3	0	3
2	0	3
6	0	6
3		6
5	0	6
4	2	7
4	3	lo
3	5	10
	- 3 2 6 3 5 4	2 0 6 0 3 1 5 0 4 2 4 3

$$w(j) + OPT[P(j)] > OPT[j-1]$$
 $w(8) + OPT[P(8)] > OPT[7]$
 $w(7) + OPT[P(7)] > OPT[6] \longrightarrow PRINT 7$

G + 0 w(3) + OPT[P(3)] > OPT[2] — PRINT 3 j=0 $A = \{3,7\}$ E' UNA SOLUZIONE OTTIMA

$$W(II) + OPT(p(II)) > OPT(IO) \longrightarrow PRINT II$$

$$W(9) + OPT(p(9)) \neq OPT(8)$$

$$W(8) + OPT(p(8)) \neq OPT(7)$$

$$W(7) + OPT(p(7)) > OPT(6) \longrightarrow PRINT 7$$

j	w(j)	P(j)	OPT(j)	
0	0	0	0	
1	3	0	3	
2	2	0	3	
3	6	0	6	←
4	2	2	6	
5	5	0	6	
6	4	2	7	
7	4	3	10	
8	3	5	10	
9	4	5	10	—
10	n	0	ΙI	
П	2	9	12	—

$$W(3) + OPT(p(3)) > OPT(2) \longrightarrow PRINT 3$$

$$P(3) = P = STOP$$

$$A = \{3, 7, 11\} \quad E' \text{ UNA SOLUZIONE OTHERAL PER IL SISTEMA (S, s, f, w)}$$