Redução polinomial

Permite comparar

o "grau de complexidade" de problemas diferentes.

Redução polinomial

Permite comparar

o "grau de complexidade" de problemas diferentes.

 Π , Π' : problemas

Uma redução de Π a Π' é um algoritmo ALG que resolve Π usando uma subrotina hipotética ALG' que resolve Π' , de forma que, se ALG' é um algoritmo polinomial, então ALG é um algoritmo polinomial.

Redução polinomial

Permite comparar

o "grau de complexidade" de problemas diferentes.

 Π , Π' : problemas

Uma redução de Π a Π' é um algoritmo ALG que resolve Π usando uma subrotina hipotética ALG' que resolve Π' , de forma que, se ALG' é um algoritmo polinomial, então ALG é um algoritmo polinomial.

 $\prod \leq_P \prod' = \text{ existe uma redução de } \prod \text{ a } \prod'.$

Se $\Pi \leq_P \Pi'$ e Π' está em P, então Π está em P.

 $\Pi = \text{encontrar}$ um ciclo hamiltoniano $\Pi' = \text{existe}$ um ciclo hamiltoniano?


```
\Pi = \text{encontrar um ciclo hamiltoniano}
\Pi' = \text{existe um ciclo hamiltoniano}?
```

Redução de Π a Π' : ALG' é um algoritmo que resolve Π'

```
ALG (G)

1 se ALG'(G) = não

2 então devolva "G não é hamiltoniano"

3 para cada aresta uv de G faça

4 H \leftarrow G - uv

5 se ALG'(H) = sim

6 então G \leftarrow G - uv

7 devolva G
```

 $\Pi = \text{encontrar um ciclo hamiltoniano}$ $\Pi' = \text{existe um ciclo hamiltoniano}$?

Redução de Π a Π' : ALG' é um algoritmo que resolve Π'

```
ALG (G)

1 se ALG'(G) = não

2 então devolva "G não é hamiltoniano"

3 para cada aresta uv de G faça

4 H \leftarrow G - uv

5 se ALG'(H) = sim

6 então G \leftarrow G - uv

7 devolva G
```

Se ALG' consome tempo O(p(n)), então ALG consome tempo $O(q p(\langle G \rangle))$, onde q = número de arestas de G.

Faz apenas uma chamada ao algoritmo ALG' .

Esquema comum de redução

Faz apenas uma chamada ao algoritmo ALG'.

 ${\cal T}$ transforma uma instância / de Π em uma instância / = ${\cal T}(I)$ de Π' tal que

$$\Pi(I) = \text{sim se e somente se } \Pi'(I') = \text{sim}$$

Esquema comum de redução

Faz apenas uma chamada ao algoritmo ALG' .

T transforma uma instância / de Π em uma instância / =T(I) de Π' tal que

$$\Pi(I) = \sin se e somente se \Pi'(I') = \sin se e somente se \Pi'(I') = sim$$

T é uma espécie de "filtro" ou "compilador".

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

Exemplo:

$$\phi = (x_1) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3)$$

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \dots, x_n , existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

Exemplo:

$$\phi = (x_1) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3)$$

Se $t(x_1)$ = verdade, $t(x_2)$ = falso, $t(x_3)$ = falso, então $t(\phi)$ = verdade

Problema: Dada uma fórmula booleana ϕ nas variáveis x_1, \ldots, x_n , existe uma atribuição

$$t: \{x_1, \ldots, x_n\} \rightarrow \{\text{verdade}, \text{falso}\}$$

que torna ϕ verdadeira?

Exemplo:

$$\phi = (x_1) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3)$$

Se
$$t(x_1)$$
 = verdade, $t(x_2)$ = falso, $t(x_3)$ = falso, então $t(\phi)$ = verdade

Se
$$t(x_1)$$
 = verdade, $t(x_2)$ = verdade, $t(x_3)$ = falso, então $t(\phi)$ = falso

Sistemas lineares 0-1

Problema: Dadas uma matriz A e um vetor b,

$$Ax \ge b$$

possui uma solução tal que $x_i = 0$ ou $x_i = 1$ para todo i?

Sistemas lineares 0-1

Problema: Dadas uma matriz A e um vetor b,

$$Ax \ge b$$

possui uma solução tal que $x_i = 0$ ou $x_i = 1$ para todo i?

Exemplo:

tem uma solução 0-1?

Sistemas lineares 0-1

Problema: Dadas uma matriz A e um vetor b,

$$Ax \geq b$$

possui uma solução tal que $x_i = 0$ ou $x_i = 1$ para todo i?

Exemplo:

tem uma solução 0-1?

Sim! $x_1 = 1, x_2 = 0$ e $x_3 = 0$ é solução.

Satisfatibilidade \leq_P Sistemas lineares 0-1

Satisfatibilidade \leq_P Sistemas lineares 0-1

A transformação T recebe uma fórmula booleana ϕ e devolve um sistema linear $Ax \geq b$ tal que ϕ é satisfatível se e somente se o sistema $Ax \geq b$ admite uma solução 0-1.

Satisfatibilidade \leq_P Sistemas lineares 0-1

A transformação T recebe uma fórmula booleana ϕ e devolve um sistema linear $Ax \geq b$ tal que ϕ é satisfatível se e somente se o sistema $Ax \geq b$ admite uma solução 0-1.

Exemplo:

$$\phi = (x_1) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3)$$

$$x_1 \ge 1$$

$$1 - x_1 + 1 - x_2 + x_3 \ge 1$$

$$1 - x_3 \ge 1$$

Satisfatibilidade \leq_P Sistemas lineares 0-1

A transformação T recebe uma fórmula booleana ϕ e devolve um sistema linear $Ax \geq b$ tal que ϕ é satisfatível se e somente se o sistema $Ax \geq b$ admite uma solução 0-1.

Exemplo:

$$\phi = (x_1) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3)$$

Verifique que

Ciclo hamiltoniano \leq_P Caminho hamiltoniano entre u e v

Verifique que

Ciclo hamiltoniano \leq_P Caminho hamiltoniano entre u e v

Verifique que

Caminho hamiltoniano entre u e $v \leq_P$ Caminho hamiltoniano

Caminho hamiltoniano \leq_P Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe um grafo G e devolve uma fórmula booleana $\phi(G)$ tal que

G tem caminho hamiltoniano $\Leftrightarrow \phi(G)$ é satisfatível.

Caminho hamiltoniano \leq_P Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe um grafo G e devolve uma fórmula booleana $\phi(G)$ tal que

G tem caminho hamiltoniano $\Leftrightarrow \phi(G)$ é satisfatível.

Suponha que G tem vértices $1, \ldots, n$.

 $\phi(G)$ tem n^2 variáveis $x_{i,j}$, $1 \le i, j \le n$.

Caminho hamiltoniano \leq_P Satisfatibilidade

Descreveremos um algoritmo polinomial T que recebe um grafo G e devolve uma fórmula booleana $\phi(G)$ tal que

G tem caminho hamiltoniano $\Leftrightarrow \phi(G)$ é satisfatível.

Suponha que G tem vértices $1, \ldots, n$.

 $\phi(G)$ tem n^2 variáveis $x_{i,j}$, $1 \le i, j \le n$.

Interpretação: $x_{i,j} = \text{verdade} \Leftrightarrow \text{vértice } j \in \text{o } i\text{-ésimo}$ vértice do caminho.

Claúsulas de $\phi(G)$:

"vértice j faz parte do caminho:

$$(x_{1,j} \vee x_{2,j} \vee \cdots \vee x_{n,j})$$

para cada j (n claúsulas).

Claúsulas de $\phi(G)$:

"vértice j faz parte do caminho:

$$(x_{1,j} \lor x_{2,j} \lor \cdots \lor x_{n,j})$$

para cada j (n claúsulas).

"vértice j não está em duas posições do caminho:

$$(\neg x_{i,j} \lor \neg x_{k,j})$$

para cada $j \in i \neq k$ ($O(n^3)$ claúsulas).

Claúsulas de $\phi(G)$:

"vértice j faz parte do caminho:

$$(x_{1,j} \lor x_{2,j} \lor \cdots \lor x_{n,j})$$

para cada j (n claúsulas).

"vértice j não está em duas posições do caminho:

$$(\neg x_{i,j} \lor \neg x_{k,j})$$

para cada j e $i \neq k$ (O(n^3) claúsulas).

"algum vértice é o i-ésimo do caminho":

$$(x_{i,1} \lor x_{i,2} \lor \cdots \lor x_{i,n})$$

para cada i (n claúsulas).

Mais claúsulas de $\phi(G)$:

"dois vértices não podem ser o i-ésimo":

$$(\neg x_{i,j} \lor \neg x_{i,k})$$

para cada $i \in j \neq k (O(n^3) \text{ claúsulas}).$

Mais claúsulas de $\phi(G)$:

"dois vértices não podem ser o i-ésimo":

$$(\neg x_{i,j} \lor \neg x_{i,k})$$

para cada i e $j \neq k$ (O(n^3) claúsulas).

▶ "se ij não é aresta, j não pode seguir i no caminho":

$$(\neg x_{k,i} \lor \neg x_{k+1,j})$$

para cada ij que não é aresta $(O(n^3)$ claúsulas).

Mais claúsulas de $\phi(G)$:

"dois vértices não podem ser o i-ésimo":

$$(\neg x_{i,j} \lor \neg x_{i,k})$$

para cada $i \in j \neq k (O(n^3) \text{ claúsulas}).$

"se ij não é aresta, j não pode seguir i no caminho":

$$(\neg x_{k,i} \lor \neg x_{k+1,j})$$

para cada ij que não é aresta $(O(n^3)$ claúsulas).

A fórmula $\phi(G)$ tem $O(n^3)$ claúsulas e cada claúsula tem $\leq n$ literais. Logo, $\langle \phi(G) \rangle$ é $O(n^4)$.

Mais claúsulas de $\phi(G)$:

"dois vértices não podem ser o i-ésimo":

$$(\neg x_{i,j} \lor \neg x_{i,k})$$

para cada i e $j \neq k$ (O(n^3) claúsulas).

"se ij não é aresta, j não pode seguir i no caminho":

$$(\neg x_{k,i} \lor \neg x_{k+1,j})$$

para cada ij que não é aresta $(O(n^3)$ claúsulas).

A fórmula $\phi(G)$ tem $O(n^3)$ claúsulas e cada claúsula tem $\leq n$ literais. Logo, $\langle \phi(G) \rangle$ é $O(n^4)$.

Não é difícil projetar o algoritmo polinomial T.

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

```
Prova: Seja t: \{\text{variáveis}\} \rightarrow \{\text{verdade}, \text{falso}\} tal que t(\phi(G)) = \text{verdade}.
```

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

```
Prova: Seja t: \{ \text{variáveis} \} \rightarrow \{ \text{verdade}, \text{falso} \} tal que t(\phi(G)) = \text{verdade}.
```

Para cada i, existe um único j tal que $t(x_{i,j}) = \text{verdade}$.

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

Prova: Seja $t: \{ \text{variáveis} \} \rightarrow \{ \text{verdade}, \text{falso} \}$ tal que $t(\phi(G)) = \text{verdade}.$

Para cada i, existe um único j tal que $t(x_{i,j}) = \text{verdade}$. Logo, t é a codificadação de uma permutação

$$\pi(1), \pi(2), \ldots, \pi(n)$$

dos vértices de G, onde

$$\pi(i) = j \Leftrightarrow t(x_{i,j}) = \text{verdade}.$$

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

Prova: Seja $t: \{ \text{variáveis} \} \rightarrow \{ \text{verdade}, \text{falso} \}$ tal que $t(\phi(G)) = \text{verdade}.$

Para cada i, existe um único j tal que $t(x_{i,j}) = \text{verdade}$. Logo, t é a codificadação de uma permutação

$$\pi(1), \pi(2), \ldots, \pi(n)$$

dos vértices de G, onde

$$\pi(i) = j \Leftrightarrow t(x_{i,j}) = \text{verdade}.$$

Para cada k, $(\pi(k), \pi(k+1))$ é uma aresta de G.

 $\phi(G)$ satisfatível $\Rightarrow G$ tem caminho hamiltoniano.

Prova: Seja $t : \{ \text{variáveis} \} \rightarrow \{ \text{verdade}, \text{falso} \}$ tal que $t(\phi(G)) = \text{verdade}$.

Para cada i, existe um único j tal que $t(x_{i,j}) = \text{verdade}$. Logo, t é a codificadação de uma permutação

$$\pi(1),\pi(2),\ldots,\pi(n)$$

dos vértices de G, onde

$$\pi(i) = j \Leftrightarrow t(x_{i,j}) = \text{verdade}.$$

Para cada k, $(\pi(k), \pi(k+1))$ é uma aresta de G.

Logo, $(\pi(1), \pi(2), \dots, \pi(n))$ é um caminho hamiltoniano.

G tem caminho hamiltoniano $\Rightarrow \phi(G)$ satisfatível.

Suponha que $(\pi(1), \pi(2), \dots, \pi(n))$ é um caminho hamiltoniano, onde π é uma permutação dos vértices de G.

G tem caminho hamiltoniano $\Rightarrow \phi(G)$ satisfatível.

Suponha que $(\pi(1), \pi(2), \dots, \pi(n))$ é um caminho hamiltoniano, onde π é uma permutação dos vértices de G.

Então

$$t(x_{i,j}) = \text{verdade se } \pi(i) = j \text{ e}$$

 $t(x_{i,j}) = \text{falso se } \pi(i) \neq j,$

é uma atribuição de valores que satisfaz todas as claúsulas de $\phi(G)$.

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π .

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

Se $\Pi \leq_P \Pi'$ e Π é NP-completo, então Π' é NP-completo.

Um problema Π em NP é NP-completo se cada problema em NP pode ser reduzido a Π.

Teorema de S. Cook e L.A. Levin: Satisfatibilidade é NP-completo.

Se $\Pi \leq_P \Pi'$ e Π é NP-completo, então Π' é NP-completo.

Existe um algoritmo polinomial para um problema NP-completo se e somente se P = NP.