Topic: Law of cosines

Question: Solve the triangle that has side lengths a=28 and b=37, with an included angle $C=110^{\circ}$.

Answer choices:

- A $c \approx 12.3$, and the other two angles are 11.9° and 58.1°
- B $c \approx 39.8$ and the other two angles are 23.1° and 46.9°
- C $c \approx 53.5$ and the other two angles are 29.4° and 40.6°
- D $c \approx 66.2$ and the other two angles are 51.3° and 18.7°

Solution: C

Plugging what we know into the law of cosines with $\cos C$ gives

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$c^2 = 28^2 + 37^2 - 2(28)(37)\cos 110^\circ$$

$$c^2 = 784 + 1,369 - 56(37)\cos 110^\circ$$

$$c^2 = 2,153 - 2,072(-0.342)$$

$$c^2 \approx 2,862$$

$$c \approx 53.5$$

Rewrite the law of cosines with $\cos A$ by solving it for $\cos A$. (We could also use the law of sines.)

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{a^2 - (b^2 + c^2)}{-2bc}$$

Plug in what we know to find A.

$$\cos A \approx \frac{28^2 - (37^2 + 53.5^2)}{-2(37)(53.5)}$$

$$\cos A \approx \frac{784 - (1,369 + 2,862)}{-74(53.5)}$$

$$\cos A \approx \frac{784 - 4,231}{-3,959}$$

$\cos A$	\approx	-3,447
		-3.959

$$\cos A \approx 0.871$$

$$A \approx \arccos 0.871$$

$$A \approx 29.4^{\circ}$$

The third angle is therefore

$$B \approx 180^{\circ} - 110^{\circ} - 29.4^{\circ}$$

$$B \approx 40.6^{\circ}$$

Topic: Law of cosines

Question: If the side lengths of a triangle are a=17, b=24, and c=31, what are the measures of its three interior angles?

Answer choices:

- A $A \approx 33.0^{\circ}$, $B \approx 50.3^{\circ}$, and $C \approx 96.7^{\circ}$
- B $A \approx 46.3^{\circ}$, $B \approx 55.6^{\circ}$, and $C \approx 78.1^{\circ}$
- C $A \approx 37.4^{\circ}$, $B \approx 63.5^{\circ}$, and $C \approx 79.1^{\circ}$
- D $A \approx 33.9^{\circ}$, $B \approx 61.9^{\circ}$, and $C \approx 84.2^{\circ}$

Solution: A

Rewrite the law of cosines with $\cos A$ by solving it for $\cos A$.

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\cos A = \frac{a^2 - (b^2 + c^2)}{-2bc}$$

Plugging in all three side lengths gives

$$\cos A \approx \frac{17^2 - (24^2 + 31^2)}{-2(24)(31)}$$

$$\cos A \approx \frac{289 - (576 + 961)}{-48(31)}$$

$$\cos A \approx \frac{289 - 1,537}{-1,488}$$

$$\cos A \approx \frac{-1,248}{-1,488}$$

$$\cos A \approx 0.839$$

$$A \approx \arccos 0.839$$

$$A \approx 33.0^{\circ}$$

Rewrite the law of cosines with $\cos B$ by solving it for $\cos B$. (We could also use the law of sines.)

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$\cos B = \frac{b^2 - (a^2 + c^2)}{-2ac}$$

Plugging in all three side lengths gives

$$\cos B \approx \frac{24^2 - (17^2 + 31^2)}{-2(17)(31)}$$

$$\cos B \approx \frac{576 - (289 + 961)}{-34(31)}$$

$$\cos B \approx \frac{576 - 1,250}{-1.054}$$

$$\cos B \approx \frac{-674}{-1,054}$$

$$\cos B \approx 0.639$$

$$B \approx \arccos 0.639$$

$$B \approx 50.3^{\circ}$$

Then the third angle is

$$C = 180^{\circ} - 33.0^{\circ} - 50.3^{\circ}$$

$$C = 96.7^{\circ}$$

Topic: Law of cosines

Question: Find the length of a in the triangle that has side lengths b=14 and c=31, with an included angle $A=135^{\circ}$.

Answer choices:

A 1,771

B 23.3

C 14.3

D 42.1

Solution: D

Plugging what we know into the law of cosines with $\cos C$ gives

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$a^2 = 14^2 + 31^2 - 2(14)(31)\cos 135^\circ$$

$$a^2 = 196 + 961 - 28(31)\cos 135^\circ$$

$$a^2 = 1{,}157 - 868(-0.707)$$

$$a^2 \approx 1,771$$

$$a \approx 42.1$$