0.1 Introduzione

Si vuole studiare il problema agli autovalori:

$$-\nabla^2 \psi + V(x)\psi = E\psi$$

dove si è posto $\hbar = 1$ e m = 1. Il potenziale è assegnato da:

$$V(x) = \begin{cases} 0 & \text{se } x < -b \\ 4/b^2 & \text{se } -b \le x \le b \\ 0 & \text{se } x > b \end{cases}$$

Siano:

$$\begin{cases}
\operatorname{ZonaI} &= \{x < -b\} \\
\operatorname{ZonaII} &= \{-b \le x \le b\} \\
\operatorname{ZonaIII} &= \{x > b\}
\end{cases}$$

Sia $k^2=2E$ e sia $q^2=2(E-V0)$. La soluzione analitica più generale è data da:

$$\psi_k(x) = \begin{cases} Ae^{ikx} + Be^{-ikx} & \text{in ZonaI} \\ f(x) & \text{in ZonaII} \\ Ce^{ikx} + De^{-ikx} & \text{in ZonaIII} \end{cases}$$

Non siamo per il momento interessati alla ZonaII, quindi indichiamo con f(x) la $\psi_k(x)$ in tale zona, che a rigore sarebbe

$$f(x) = Ee^{iqx} + Fe^{-iqx}$$

Le costanti A, B, C, D sono determinate dalle condizioni di raccordo di continuità della funzione d'onda e della sua derivata nei punti $x = \pm b$.

Per la conservazione del flusso di probabilità, si possono riscrivere nella seguente forma:

$$\begin{pmatrix} C \\ B \end{pmatrix} = \begin{pmatrix} \tau & \rho \\ \rho & \tau \end{pmatrix} \cdot \begin{pmatrix} A \\ D \end{pmatrix} = \quad (S) \cdot \begin{pmatrix} A \\ D \end{pmatrix}$$

Ove la matrice S è una matrice unitaria, ossia che verifica le condizioni:

$$\tau \rho^* + \tau^* \rho = 0$$
 , $|\tau|^2 + |\rho|^2 = 1$

(Si è indicato con z^* il numero complesso coniugato di z). Segue immediatamente che:

$$|\tau \pm \rho|^2 = |\tau|^2 + |\rho|^2 + \tau \rho^* + \tau^* \rho = |\tau|^2 + |\rho|^2 + 0 = 1$$

Cioè $\tau \pm \rho$ differiscono per una fase:

$$|\tau \pm \rho|^2 = 1 \Rightarrow (\tau \pm \rho) = e^{2i\theta \pm 1}$$

Si osservi che poichè A,B,C,D dipendono dagli autostati ψ_k , anche le fasi θ_\pm dipenderanno dall'autovalore k.

Si vuole quindi cercare una stima numerica di $\theta \pm$ per determinare τ da:

$$(\tau \pm \rho) = e^{2i\theta_{\pm}} \Rightarrow \tau = 1/2(e^{2i\theta_{+}} + e^{-2i\theta_{-}})$$
$$\Rightarrow \tau^{2} = \sin^{2}(\theta_{+} - \theta_{-})$$

4 (due conti per dimostrarlo plis)