

DATA SCIENCE & MACHINE LEARNING COURSE

https://www.facebook.com/diceanalytics/ https://pk.linkedin.com/company/diceanalytics

Modelling

3)

Data Science Deconstructed

Ask a Lot of Questions

- Translate an ambiguous request into a concrete, well-defined problem
- Identify business priorities & strategy decisions that will influence your work

01 Frame the Problem

02 Collect Raw Data

Identify Business Insights

Return back to the business problem

Visualize Your Findings

Keep it simple & priority-driven

Tell a Clear & Actionable Story

 Effectively communicate to non-technical audiences 06 Communicate Results

DATA SCIENCE PROCESS

03 Process the Data

05 Perform In-Depth

Analysis

04 Explore the Data

Identify All Available Datasets

Web, internal/ external databases, etc.

Extract Data Into Usable Format

.csv, .json, .xml, etc.

Examine Data at a High-Level

 Understand every column; identify errors, missing values & corrupt records

Clean the data

 Throw away, replace, and/or filter corrupt /error prone / missing values

Create a Predictive Model

Use feature vectors from step #4

Evaluate & Refine Model

Perhaps return to step #2, 3, or 4

Play Around With the Data

 Split, segment, & plot the data in different ways

Identify Patterns & Extract Features

Use statistics to identify & test significant variables

SKILLS REQUIRED

FRAME THE PROBLEM

- Domain Knowledge (needs)
- Product Intuition (metrics)
- Business Strategy (priorities)
- Teamwork (people & resources)

COLLECT RAW DATA

- Database Management
 - Systems: mySQL, postgreSQL,
 Oracle, MongoDB
- Querying Structured Databases
 SQL
- Retrieving Unstructured Info
 - Informational Retrieval / Text Mining
- Distributed Storage
 - Hadoop HDFS, Spark, Flink

PROCESS THE DATA

- Scripting Language
 - Python or R
- Data Wrangling & Cleaning
 - Python "Pandas" library
- Distributed Processing
 - Hadoop MapReduce / Spark

EXPLORE THE DATA

- Scientific Computing
 - Python: numpy, matplotlib, scipy, pandas
- Inferential Statistics
 - hypothesis testing
 - correlation vs. causation
- Experimental Design
 - A/B tests, controlled trials

PERFORM IN-DEPTH ANALYSIS

- Machine Learning
 - Supervised / Unsupervised algorithms
 - Contextual pros/cons)
- ML Tools Library
 - Python: scikit-learn
- Advanced Math
 - Linear Algebra & Multivariate Calculus

COMMUNICATE RESULTS

- Business Acumen
 - Non-technical terminology
- Data Visualization Tool(s)
 - Tableau, D3.js, Google visualize, matplotlib, ggplot, seaborn
- Data Storytelling
 - presenting & speaking
 - reporting & writing

