

VS78D09 Three-terminal positive voltage regulator

FEATURES

 Maximum output current I_{OM}:1.0 A

Output voltage V_O: 9 V

Continuous total dissipation
P_D: 1.25 W (T_a= 25 ^oC)

ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)

Parameter	Symbol	Value	Unit
Input Voltage	Vi	35	V
Thermal Resistance from Junction to Ambient	R _{θJA}	80	°C/W
Operating Junction Temperature Range	T _{OPR}	-40~+125	°C
Storage Temperature Range	T _{STG}	-65~+150	℃

 $\textbf{ELECTRICAL CHARACTERISTICSAT SPECIFIED VIRTUAL JINCTION TEMPERATURE} \ (Vi=16V, lo=500 mA, Ci=0.33 \mu F, Co=0.1 \mu F, unless otherwise specified)$

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Output Voltage	Vo	T _J =25°C	8.73	9.0	9.27	V
		Io= 5mA-1A,	8.64	9.0	9.36	V
		12.5V≤ V _i ≤24V				
Load Regulation	ΔVο	I_O =5mA -1.0A, T_J =25°C			180	mV
		I _O =250mA - 750mA,T _J =25°C			90	mV
Line Regulation	ΔVο	11.5V≤ Vi ≤26V,T _J =25°C			180	mV
		12V≤V _i ≤18V,T _J =25°C			90	mV
Quiescent Current	Iq	T _J =25°C		4.3	8.0	mA
Quiescent Current Change	Δlq	5.0mA≤ I _O ≤1.0A			0.5	mA
		12.5V ≤V _i ≤ 25V			0.8	mA
Output Voltage Drift	△Vo/△T	I _O =5mA		1.2		mV/℃
Output Noise Voltage	V _N	f=10Hz to 100KHz,T _J =25°C		42		μV/Vo
Ripple Rejection	RR	f =120Hz, 12.5V≤ V _i ≤22.5V		61		dB
Dropout Voltage	V _d	I _O =1.0A,T _J =25°C		2.0		V
Output Resistance	Ro	f = 1KHz		18		mΩ
Short Circuit Current	Isc	T _J =25°C		200		mA

^{*} Pulse test.

TYPICAL APPLICATION

Note: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.

