This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Fig. 1 (prior art)

F19.3

406 Oxide layer

404 Siliconlayer

402 substrate

Fig. 4

Tpen (°C)	(°C) d (A) Plasma		V _{FB} (V) N _f (cm ⁻²)		cm ⁻²)	Dit (cm-2 eV-1)	J (A/cm2)	E (MV/cm)		EBD (MV/cm)		
	· ,	Oxidation			(x10	cm-2)	(x10 ¹⁰ cm-2 eV-1)	(at 2 MV/cm)	(at J=10	* A/cm*)	(Physici	ai)
150	500	As-Dep	ŀ	-7.5		26.0	3.5	1.80E-07		4.3		6.8
150	500	He/O2		-0.8	1.11	1.8	1.2	2.60E-08		6.4		7.2

TABLE 1

TABLE 2

Fig.5

Fig. 7

Fig. 8

In a film processing chamber, depositing an M oxide layer where M is an element selected from a group including elements chemically defined as a solid and having an oxidation state in a range of +2 to +5

Leaving the M oxide layer in the film processing chamber, plasma oxidizing the M oxide layer at a temperature of less than 400° C using a high density (HD) plasma source

In response to plasma oxidizing the M oxide layer, improving M-O bonding in the M oxide layer

Fig. 9