5

WHAT IS CLAIMED IS:

 A method of driving an electronic device, with one frame period comprising n sub-frame periods SF₁, SF₂, ..., SF_n, the n sub-frame periods each comprising address (writing) periods Ta₁, Ta₂, ..., Ta_n and sustain (lights-on) periods Ts₁, Ts₂, ..., Ts_n.

wherein the address (writing) period overlaps with the sustain (lights-on) period in at least one sub-frame period of the n sub-frame periods, and

wherein, in the case where an address (writing) period $Ta_m (1 \le m \le n)$ of a sub-frame period SF_m overlaps with an address (writing) period Ta_{m+1} of a sub-frame period SF_{m+1} , a clear period Tc_m is provided which starts upon completion of a sustain (lights-on) period Ts_m of the sub-frame period SF_m and ends upon start of the address (writing) period Ta_{m+1} .

2. A method of driving an electronic device, with one frame period comprising n sub-frame periods SF₁, SF₂, ..., SF_n, the n sub-frame periods each comprising address (writing) periods Ta₁, Ta₂, ..., Ta_n and sustain (lights-on) periods Ts₁, Ts₂, ..., Ts_n,

wherein the address (writing) period overlaps with the sustain (lights-on) period in at least one sub-frame period of the n sub-frame periods, and

wherein, in the case where an address (writing) period Ta_n of a j-th (0 < j) frame sub-frame period SF_n overlaps with an address (writing) period Ta_1 of a (j + 1)-th frame sub-frame period SF_1 , a clear period Tc_n is provided which starts upon completion of a sustain (lights-on) period Ts_n of the j-th frame sub-frame period SF_n and ends upon start of the address (writing) period Ta_1 of the (i + 1)-th frame sub-frame period SF_n .

5

3. A method of driving an electronic device, with one frame period comprising n sub-frame periods SF₁, SF₂, ..., SF_n, the n sub-frame periods each comprising address (writing) periods Ta₁, Ta₂, ..., Ta_n and sustain (lights-on) periods Ts₁, Ts₂, ..., Ts_n,

wherein, in a certain sub-frame period SF_k ($1 \le k \le n$), when the length of its address (writing) period is given as ta_k , the length of its sustain (lights-up) period as ts_k , and the length of one gate signal line selecting period as t_g (ta_k , $t_g > 0$), and $ta_k > ts_k$ is satisfied, the length of SF_{π} 's clear period given as Tc_k ($Tc_k > 0$) always satisfies the following expression:

$$tc_k \ge ta_k - (ts_k + t_g)$$

- 4. A method of driving an electronic device as claimed in claim 1, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.
- 5. A method of driving an electronic device as claimed in claim 2, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.
- 6. A method of driving an electronic device as claimed in claim 3, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.

- 7. A method of driving an electronic device as claimed in claim 1, wherein an EL element does not emit light during the clear period irrespective of an image signal.
- 8. A method of driving an electronic device as claimed in claim 2, wherein an EL
 element does not emit light during the clear period irrespective of an image signal.
 - A method of driving an electronic device as claimed in claim 3, wherein an EL element does not emit light during the clear period irrespective of an image signal.
 - 10. An electronic device comprising a source signal line side driver circuit, a gate signal line side driver circuit, a capacitor storage line driving circuit, and a pixel portion, wherein: the pixel portion has a plurality of source signal lines, a plurality of gate signal lines, a plurality of current supply lines, a plurality of capacitor storage lines, and a plurality of pixels; each of the plurality of pixels has a switching transistor, an EL driving transistor, a capacitor storage, and an EL element;
 - the switching transistor has a gate electrode electrically connected to the gate signal line:
 - the switching transistor has a source region and a drain region one of which is electrically connected to the source signal line and the other of which is electrically connected to a gate electrode of the EL driving transistor;
 - the capacitor storage has an electrode electrically connected to the capacitor storage line and has another electrode electrically connected to the gate electrode of the EL driving transistor; and

5

the EL driving transistor has a source region and a drain region one of which is electrically connected to the current supply line and the other of which is electrically connected to one electrode of the EL element.

- 11. An electronic device as claimed in claim 10, wherein the capacitor storage line is electrically connected to the capacitor storage line driving circuit so that a signal having amplitude is inputted to the capacitor storage line from the capacitor storage line driving circuit.
 - 12. An electronic device operated by a driving method in which: one frame period comprises n sub-frame periods SF₁, SF₂, ..., SF_n;

the n sub-frame periods each comprises address (writing) periods $Ta_1, Ta_2, ..., Ta_n$ and sustain (lights-on) periods $Ts_1, Ts_2, ..., Ts_n$;

the address (writing) period overlaps with the sustain (lights-on) period in at least one sub-frame period of the n sub-frame periods; and,

in the case where an address (writing) period $Ta_m(1 \le m \le n)$ of a sub-frame period SF_m overlaps with an address (writing) period Ta_{m+1} of a sub-frame period SF_{m+1} , a clear period Tc_m is provided which starts upon completion of a sustain (lights-on) period Ts_m of the sub-frame period SF_m and ends upon start of the address (writing) period Ta_{m+1} .

An electronic device operated by a driving method in which:
 one frame period comprises n sub-frame periods SF₁, SF₂, ..., SF_n;

sustain (lights-on) periods Ts1, Ts2, ..., Tsn;

the n sub-frame periods each comprises address (writing) periods $\mathrm{Ta}_1,\,\mathrm{Ta}_2,\,...,\,\mathrm{Ta}_n$ and

the address (writing) period overlaps with the sustain (lights-on) period in at least one sub-frame period of the n sub-frame periods; and.

in the case where an address (writing) period Ta_n of a j-th (0 < j) frame sub-frame period SF_n overlaps with an address (writing) period Ta_1 of a (j+1)-th frame sub-frame period SF_1 , a clear period Tc_n is provided which starts upon completion of a sustain (lights-on) period Ts_n of the j-th frame sub-frame period SF_n and ends upon start of the address (writing) period Ta_1 of the (j+1)-th frame sub-frame period SF_n .

14. An electronic device wherein:

one frame period comprises n sub-frame periods SF1, SF2, ..., SFn;

the n sub-frame periods each comprises address (writing) periods Ta_1 , Ta_2 , ..., Ta_n and sustain (lights-on) periods Ts_1 , Ts_2 , ..., Ts_n ; and,

in a certain sub-frame period SF_k ($1 \le k \le n$), when the length of its address (writing) period is given as ta_k , the length of its sustain (lights-up) period as ts_k , and the length of one gate signal line selecting period as t_g (ta_k , ts_k , $t_g > 0$), and $ta_k > ts_k$ is satisfied, the length of SF_k 's clear period given as Tc_k ($Tc_k > 0$) always satisfies the following expression:

$$tc_k \ge ta_k - (ts_k + t_g)$$

15. An electronic device as claimed in claim 12, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.

20

5

16. An electronic device as claimed in claim 13, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.

- 17. An electronic device as claimed in claim 14, wherein a clear signal inputted during the clear period is provided by increasing or lowering the electric potential of a capacitor storage line by means of a signal inputted from a capacitor storage line driving circuit.
- 18. An electronic device as claimed in claim 12, wherein an EL element does not emit light during the clear period irrespective of an image signal.
- 19. An electronic device as claimed in claim 13, wherein an EL element does not emit light during the clear period irrespective of an image signal.
- 20. An electronic device as claimed in claim 14, wherein an EL element does not emit light during the clear period irrespective of an image signal.
- 21. A method of driving a electronic device according to claim 1, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.
- 22. A method of driving a electronic device according to claim 2, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera,

5

a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.

- 23. A method of driving a electronic device according to claim 3, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.
- 24. An electronic device according to claim 10, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.
- 25. An electronic device according to claim 12, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.
- 26. An electronic device according to claim 13, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.
- 27. An electronic device according to claim 14, wherein said electronic device is a device selected from the group consisting of: an EL display, a video camera, a head-mount display, a DVD player, a personal computer, a cellular phone and an audio system for automobiles.