Introduction Our Model Implementation Results Summary and Outlook

Evacuation Bottleneck Simulating a Panic on a Cruise Ship

Johannes Weinbuch, Benedek Vartok

December 17, 2012

Outline

Introduction

Our Model

Input

Forces

Filled Exits

Implementation

Results

Passenger Distribution

Panic Level

Outtakes

Summary and Outlook

Our Research Object

- Costa Voyager
- ► Capacity: 836 passengers
- ▶ 8 Rescue Boats
- ▶ In distress at sea in 2005

 $\begin{array}{c} {\sf Source:\ http://www.shipspotting.com,} \\ {\sf\ Picture\ taken\ by\ Roy\ Batty} \end{array}$

The Deck Plan

- Colormap
 - Allows any number of zones
- Scaling
- ► Greatly simplyfied

Source: http://www.kreuzfahrtberater.de

Configuration File

- Simulation parameters intialized from a file:
 - Deck configuration
 - Plotting options
 - Physical and behavioral parameters
- Simple syntax makes automated generation easy

Forces

- ► As described in Helbing's paper "Simulating dynamical features of escape panic"
- ▶ Three main forces act on agents:
 - Desired direction
 - Repulsion & friction between agents
 - Repulsion & friction from walls

Filled Exits

- Rescue boats modeled with limited capacities
- If a boat gets full, agents need to be informed
- ► Two implementation approaches:
 - Instantaneous update
 - Gradual circle-shaped spreading of information

Introduction
Our Model
Implementation
Results
Summary and Outlook

► TODO

Distribution of the Agents to the Exits

- ▶ The distribution depends strongly on the geometry of the ship.
- There was no case where the agents really distributed over the exits
 - Weakness in the model
 - More realistic: go for the shortest individual evacuation time
- realistic update for propagation of information
- Video

Effect of desired speed to the overall evacuation time

- We could reproduce the results from Helbing,
 Farkas and Vicsek for low panic levels
- High panic levels: problem!

All the things you don't want to happen

- Agents were stuck in Walls
 - Even the tiniest timesteps didn't help
- MATLAB does not behave as expected in batch mode
 - Simulation works in foreground, crashes in background
 - ▶ No error message, just silently writing crashdumps to home
- No reproducability even with fixed random seed in our group
 - Different versions of MATLAB

Some points to take away

- The basic results could be reproduced
- The model is not very well suited for multiple exits
 - ▶ There should be a heuristic to decide for a direction
- Use the power of Open Source Software (OSS)!

You ask – We answer

Now it's your turn