Chapter 6 Configuring EIGRP

Objectives

Upon completion of this chapter, you will be able to perform the following tasks:

- Describe EIGRP features and operation
- Explain how EIGRP discovers, chooses, and maintains routes
- Explain how EIGRP supports the use of VLSM
- Explain how EIGRP operates in an NBMA environment
- Explain how EIGRP supports the use of route summarization

Objectives (cont.)

- Describe how EIGRP supports large networks
- Configure EIGRP
- Verify EIGRP operation
- Given a set of network requirements, configure an EIGRP environment and verify proper operation (within described guidelines) of your routers
- Given a set of network requirements, configure EIGRP in an NBMA environment and verify proper operation (within described guidelines) of your routers

EIGRP Overview

What Is Enhanced IGRP (EIGRP)?

- EIGRP supports:
 - Rapid convergence
 - Reduced bandwidth usage
 - Multiple network-layer protocols

EIGRP Features

- Advanced distance vector
- 100% loop free
- Fast convergence
- Easy configuration
- Less network design constraints than OSPF

EIGRP Features (cont.)

- Incremental updates
- Supports VLSM and discontiguous networks
- Classless routing
- Compatible with existing IGRP networks
- Protocol independent (supports IPX and AppleTalk)

Advantages of EIGRP

- Uses multicast instead of broadcast
- Utilizes link bandwidth and delay
 - EIGRP metric = IGRP metric x 256
 (32 bit vs. 24 bit)
- Unequal cost path load balancing
- More flexible than OSPF
 - Manual summarization can be done in any interface at any router within the network

EIGRP—In IP Packets

- EIGRP is an advanced distance vector routing protocol
 - Automatically establishes neighbor relationships with peer devices
 - Relies on IP packets for delivery of routing information

EIGRP Support for Different Topologies

- Multiaccess (LANs)
- Point-to-point (HDLC)
- NBMA (Frame Relay)

EIGRP Support for IP Addresses

- EIGRP supports
 - Variable-length subnet masks (VLSMs)
 - Hierarchical designs

EIGRP Support for Route Summarization

- EIGRP performs route summarization
 - Classful network boundaries (default)
 - Arbitrary network boundaries (manual)

Neighbor Table—AppleTalk
Neighbor Table—IPX
Neighbor Table—IP
Next-Hop Interface
Router

Topology Table—AppleTalk

Topology Table—IPX

Topology Table—IP

Destination 1

Neighbor Table—AppleTalk
Neighbor Table—IPX
Neighbor Table—IP

Next-Hop Router **Interface**

Topology Table—AppleTalk

Topology Table—IPX

Topology Table—IP

Destination 1

Routing Table—AppleTalk

Routing Table—IPX

Routing Table—IP

Destination 1

Neighbor Table—AppleTalk

Neighbor Table—IPX

Neighbor Table—IP

Next-Hop Router

Interface

T<u>opology Table—AppleTalk</u>

Topology Table—IPX

Topology Table—IP

Destination 1 | Successor

Routing Table—AppleTalk

Routing Table—IPX

Routing Table—IP

Destination 1 Successor

Neighbor Table—AppleTalk

Neighbor Table—IPX

Neighbor Table—IP

Next-Hop

Router

Interface

T<u>opology Table—AppleTalk</u>

Topology Table—IPX

Topology Table—IP

Destination 1 | Successor

Destination 1 | Feasible Successor

Routing Table—AppleTalk

Routing Table—IPX

Routing Table—IP

Destination 1 Successor

EIGRP Operation

EIGRP Packets

- Hello: Establish neighbor relationships
- Update: Send routing updates
- Query: Ask neighbors about routing information
- Reply: Response to query about routing information
- ACK: Acknowledgement of a reliable packet

EIGRP Neighbor Relationship

- Two routers become neighbors when they see each other's hello packet
 - Hello address = 224.0.0.10
- Hellos sent once every 5 seconds on the following links:
 - Broadcast media: Ethernet, Token Ring, FDDI
 - Point-to-point serial links: PPP, HDLC, point-to-point Frame Relay/ATM subinterfaces
 - Multipoint circuits with bandwidth greater than T1: ISDN PRI, SMDS, Frame Relay

EIGRP Neighbor Relationship (cont.)

- Hellos sent once every 60 seconds on the following links:
 - Multipoint circuits with bandwidth less than
 T1: ISDN BRI, Frame Relay, SMDS, and so on
- Neighbor declared dead when no EIGRP packets are received within hold interval
 - Not only hello can reset the hold timer
- Hold time by default is three times the hello time

EIGRP Neighbor Relationship (cont.)

- EIGRP will form neighbors even though hello time and hold time don't match
- EIGRP sources hello packets from primary address of the interface
- EIGRP will not form neighbor if K-values are mismatched
- EIGRP will not form neighbor if AS numbers are mismatched

What Is in a Neighbor Table?

p2r2#show ip eigrp neighbors						
IP-EIGRP neighbors for process 400						
H Address	Interface	Hold Uptime	SRTT	RTO	Q	Seq
		(sec)	(ms)		Cnt	Num
1 172.68.2.2	To0	13 02:15:30	8	200	0	9
0 172.68.16.2	Se1	10 02:38:29	29	200	0	6

EIGRP Reliability

- EIGRP reliable packets are packets that require explicit acknowledgement:
 - Update
 - Query
 - Reply
- EIGRP unreliable packets are packets that do not require explicit acknowledgement:
 - Hello
 - ACK

EIGRP Reliability (cont.)

- The router keeps a neighbor list and a retransmission list for every neighbor
- Each reliable packet (update, query, reply) will be retransmitted when packet is not acknowledged
- Neighbor relationship is reset when retry limit (limit = 16) for reliable packets is reached

EIGRP Reliability (cont.)

- EIGRP transport has window size of one (stop and wait mechanism)
 - Every single reliable packet needs to be acknowledged before the next sequenced packet can be sent
 - If one or more peers are slow in acknowledging, all other peers suffer from this
- Solution: The nonacknowledged multicast packet will be retransmitted as a unicast to the slow neighbor

Here is my complete routing information.

© 2000, Cisco Systems, Inc.

WWW.cisco.com

BSCN v1.0—6-32

EIGRP Route Selection

 EIGRP uses a composite metric to pick the best path

EIGRP Metrics Calculation

- Metric = [K1 x BW + (K2 x BW) / (256 load) +
 K3 x delay] x [K5 / (reliability + K4)]
 - By default: K1 = 1, K2 = 0, K3 = 1, K4 = 0, K5 = 0
- Delay is sum of all the delays of the links along the paths
 - Delay = [Delay in 10s of microseconds] x 256
- Bandwidth is the lowest bandwidth of the links along the paths
 - Bandwidth = [10000000 / (bandwidth in Kbps)] x 256
- By default, metric = bandwidth + delay

EIGRP DUAL

- Diffusing Update Algorithm (DUAL)
- Finite-state machine
 - Tracks all routes advertised by neighbors
 - Select loop-free path using a successor and remember any feasible successors
 - If successor lost:
 - Use feasible successor
 - If no feasible successor:
 - Query neighbors and recompute new successor

DUAL Example (Start)

С	EIGRP	FD	AD	Topology
(a)		3		(fd)
	via B	3	1	(Successor)
	via D	4	2	(fs)
	via E	4	3	

D EIGRP (a)	FD 2	AD	Topology (fd)
via B	2	1	(Successor)
via C	5	3	

E EIGRP (a)	FD 3	AD	Topology (fd)
via D	3	2	(Successor)
via C	4	3	

DUAL Example

EIGRP	FD	AD	Topology
	3		(fd)
via B	3	1	(Successor)
via D	4	2	(fs)
via E	4	3	
	via B via D	3 via B 3 via D 4	3 via B 3 1 via D 4 2

D (a)	EIGRP	FD 2	AD	Topology (fd)
	via P	2	4	(Suggessor)
	via C	5	3	(60.00000.)

FD 3	AD	Topology (fd)
3	2	(Successor)
4	3	
	3	3 3 2

EIGRP	FD	AD	Topology
	3		(fd)
via B	3	1	(Successor)
via D			
via E	4	3	
	via B via D	3 via B 3 via D	3 via B 3 1 via D

D EIGRP	FD	AD	Topology
(a) **ACTIVE**	-1		(fd)
via E			(q)
via C	5	3	(q)

E (a)	EIGRP	FD 3	AD	Topology (fd)
	via D			(Successor)
	via C	4	3	(0.000001)

C	EIGRP		AD	Topology
(a)		3		(fd)
	via B	3	1	(Successor)
	via D			
	via E			

D EIGRP (a) **ACTIVE**	FD -1	AD	Topology (fd)
via E			(q)
via C	5	3	

FD -1	AD	Topology (fd)
4	3	(q)
	-1	-1

С	EIGRP	FD	AD	Topology
(a)		3		(fd)
	via B	3	1	(Successor)
	via D			
	via E			

D EIGRP (a) **ACTIVE**	FD -1	AD	Topology (fd)
via E			(q)
via C	5	3	

E (a)	EIGRP	FD 4	AD	Topology (fd)
	via C via D	4	3	(Successor)

C	EIGRP		AD	Topology
(a)		3		(fd)
	via B	3	1	(Successor)
	via D			
	via E			

D (a)	EIGRP	FD 5	AD	Topology (fd)
	via C	5	3	(Successor)
	via E	5	4	(Successor)

E (a)	EIGRP	FD 4	AD	Topology (fd)
	via C via D	4	3	(Successor)

С	EIGRP	FD	AD	Topology
(a)		3		(fd)
	via B	3	1	(Successor)
	via D			
	via E			

D (a)	EIGRP	FD 5	AD	Topology (fd)
	via C	5	3	(Successor)
	via E	5	4	(Successor)

E (a)	EIGRP	FD 4	AD	Topology (fd)
	via C via D	4	3	(Successor)

DUAL Example (Start)

С	EIGRP	FD	AD	Topology
(a)		3		(fd)
	via B	3	1	(Successor)
	via D	4	2	(fs)
	via E	4	3	

D (a)	EIGRP	FD 2	AD	Topology (fd)
	via B	2	1	(Successor)
	via C	5	3	

E EIGRP (a)	FD 3	AD	Topology (fd)
via D	3	2	(Successor)
via C	4	3	

DUAL Example (End)

С	EIGRP	FD	AD	Topology
(a)		3		(fd)
	via B	3	1	(Successor)
	via D			
	via E			

D (a)	EIGRP	FD 5	AD	Topology (fd)
	via C	5	3	(Successor)
	via E	5	4	(Successor)

E (a)	EIGRP	FD 4	AD	Topology (fd)
	via C via D	4	3	(Successor)

Configuring EIGRP

Configuring EIGRP for IP

EIGRP Summarization—Automatic

- Purpose: Smaller routing tables, smaller updates, query boundary
- Autosummarization:
 - On major network boundaries, subnetworks are summarized to a single classful (major) network
 - Autosummarization is turned on by default

EIGRP Summarization—Manual

- Manual summarization
 - Configurable on a per-interface basis in any router within network
 - When summarization is configured on an interface, the router immediate creates a route pointing to null zero
 - Loop prevention mechanism
 - When the last specific route of the summary goes away, the summary is deleted
 - The minimum metric of the specific routes is used as the metric of the summary route

Configuring Summarization

```
(config-router)#
```

no auto-summary

 Turns off autosummarization for the EIGRP process

```
(config-if)#
```

ip summary-address eigrp <as-number>
 <address> <mask>

 Creates a summary address to be generated by this interface

Summarizing EIGRP Routes

router eigrp 1 network 10.0.0.0 network no auto-summary

Summarizing EIGRP Routes

EIGRP Load Balancing

- Routes with metric equal to the minimum metric will be installed in the routing table (equal-cost load balancing)
- Up to six entries in the routing table for the same destination
 - Number of entries is configurable
 - Default is four

EIGRP Unequal-Cost Load Balancing

- EIGRP offers unequal-cost load balancing
 - variance command
- Variance allows the router to include routes with a metric smaller than multiplier times the minimum metric route to that destination
 - Multiplier is the number specified by the variance command

Variance Example

- Router E will choose Router C to get to Network Z because FD = 20
- With variance of 2, Router E will also choose Router B to get to Network Z (20 + 10) < (2 x [FD])
- Router D will not be used to get to Network Z (45 > 40)

Configuring WAN Links

- EIGRP supports different WAN links
 - Point-to-point
 - NBMA
 - Multipoint
 - Point-to-point
- EIGRP configurations must address
 - Bandwidth utilization
 - Overhead traffic associated with router operation

EIGRP Bandwidth Utilization

(config-if)#

ip bandwidth-percent eigrp as-number < nnn>

- Specifies what percentage of bandwidth EIGRP packets will be able to utilize on this interface
- Uses up to 50% of the link bandwidth for EIGRP packets, by default
 - Used for greater EIGRP load control

Bandwidth over WAN Interfaces

- Bandwidth utilization over point-to-point subinterfaces using Frame Relay
 - Treats bandwidth as T1, by default
 - Best practice is to manually configure bandwidth as the CIR of the PVC

Bandwidth over WAN Interfaces (cont.)

- Bandwidth over multipoint Frame Relay, ATM, SMDS, and ISDN PRI:
 - EIGRP uses the bandwidth on the main interface divided by the number of neighbors on that interface to get the bandwidth information per neighbor

Bandwidth over WAN Interfaces (cont.)

- Each PVC might have a different CIR, this might create an EIGRP packet pacing problem
 - Multipoint interfaces:
 - Convert to point-to-point configuration, or
 - Manually configure bandwidth = (lowest CIR x number of PVCs)

EIGRP WAN Configuration— Pure Multipoint

All VCs share bandwidth evenly: 4 x 56 = 224

EIGRP WAN Configuration— Hybrid Multipoint

Lowest CIR x # of VC: 56 x 4 = 224

EIGRP WAN Configuration— Hybrid Multipoint (Preferred)

- Configure lowest CIR VC as point-to-point, specify BW = CIR
- Configure higher CIR VCs as multipoint, combine CIRs

EIGRP WAN Configuration— Pure Point-to-Point

- Configure each VC as point-to-point, specify BW = 1/10 of link capacity
- Increase EIGRP utilization to 50% of actual VC capacity

Using EIGRP in Scalable Internetworks

Factors that Influence EIGRP Scalability

- EIGRP is not plug-and-play for large networks
- Limit EIGRP query range!
- Quantity of routing information exchanged between peers
 - Advertise major network or default route to regions or remotes

EIGRP Query Process

- Queries are sent out when a route is lost and no feasible successor is available
- The lost route is now in active state
- Queries are sent out to all of its neighbors on all interfaces except the interface to the successor
- If the neighbor does not have the lost route information, queries are sent out to their neighbors

EIGRP Query Process (cont.)

- The router will have to get ALL of the replies from the neighbors before the router calculates the successor information
- If any neighbor fails to reply the query in 3 minutes, this route is stuck in active and the router resets the neighbor that fails to reply
- Solution for stuck in active is to limit the query range, also known as query scoping

EIGRP Query Range

- Autonomous system boundaries
 - Contrary to popular belief, queries are not bounded by AS boundaries. Queries from AS 1 will be propagated to AS 2.

EIGRP Query Range (cont.)

- Summarization point
 - Auto or manual summarization is the best way to bound queries
 - Requires a good address allocation scheme

Limiting Size/Scope of Updates/Queries

- Evaluate routing requirements
 - What routes are needed where?
- Once needs are determined:
 - Use summary address
 - Use filters

Limiting Updates/Queries— Example

Limiting Updates/Queries— Example

LimitingUpdates/Queries—Reality

- Remote routers are fully involved in convergence
 - Most remote routers are never intended to be transit
 - Convergence complicated through lack of information hiding

Limiting Updates/Queries— Better

Limiting Updates/Queries— Better

Limiting Updates/Queries— Summary

- Convergence simplified by adding the summary-address statements
 - Remote routers just reply when queried, do not forward queries

EIGRP Scalability Rules

- EIGRP is a very scalable routing protocol if proper design methods are used:
 - Good allocation of address space
 - Each region should have a contiguous address space so route summarization is possible
 - Have a tiered network design model

Nonscalable Network— Example

- Subnets are everywhere throughout entire network
- Queries not bounded

Scalable Network—Example

- Each region has its own block of addresses
- Queries bounded by using ip summary-address eigrp command

Tiered Network Design

More EIGRP Scalability Rules

- Proper network resources
 - Sufficient memory on the router
 - Sufficient bandwidth on WAN interfaces
- Proper configuration of the bandwidth statement over WAN interfaces, especially over Frame Relay

Verifying EIGRP Operation

Verifying EIGRP Operation

Router#

show ip eigrp neighbors

Router#

show ip eigrp topology

Router#

show ip route eigrp

Router#

show ip protocols

Router#

show ip eigrp traffic

- Displays the neighbors discovered by IP EIGRP
- Displays the IP EIGRP topology table
- Displays current EIGRP entries in the routing table
- Displays the parameters and current state of the active routing protocol process
- Displays the number of IP EIGRP packets sent and received

Verifying EIGRP Operation (cont.)

Router#

debug eigrp packet

Router#

debug eigrp neighbor

Router#

debug ip eigrp route

Router#

debug ip eigrp summary

Router#

show ip eigrp events

- Displays all types of EIGRP packets, both sent and received
- Displays the EIGRP neighbor interaction
- Displays advertisements and changes EIGRP makes to the routing table
- Displays a brief report of the EIGRP routing activity
- Displays the different categories of EIGRP activity, including route calculations

Case Study

Case Study—EIGRP

Lab Exercise

Summary

After completing this chapter, you should be able to perform the following tasks:

- Describe EIGRP features and operation
- Explain how EIGRP discovers, chooses, and maintains routes
- Explain how EIGRP supports the use of VLSM
- Explain how EIGRP operates in an NBMA environment
- Explain how EIGRP supports the use of route summarization

Summary (cont.)

- Describe how EIGRP supports large networks
- Configure EIGRP
- Verify EIGRP operation
- Given a set of network requirements, configure an EIGRP environment and verify proper operation (within described guidelines) of your routers
- Given a set of network requirements, configure EIGRP in an NBMA environment and verify proper operation (within described guidelines) of your routers

2000, Cisco Systems, Inc.

WWW.Cisco.com

BSCN v1.0—6-90

Review Questions

- 1. How are IGRP and EIGRP different in their metric calculation?
- 2. Why are EIGRP routing updates described as "reliable?"
- 3. What does it mean when a route is marked as a feasible successor?
- 4. What is the recommended practice for configuring bandwidth on a Frame Relay point-to-point subinterface?