5. Span

All vector spaces (with real scalars) are infinite (with one exception: the trivial vector space $V = \{0\}$ is finite).

Now, we explore a way to describe an infinite vector space using a finite number of vectors, by considering the concept of "span".

DESCRIBING VECTOR SPACES

Example 5.1. Consider the following two subspaces of \mathbb{R}^3 : **EXERCISE!** Verify that X and Y are subspaces of \mathbb{R}^3 .

$$U = \left\{ \begin{bmatrix} t - 3s \\ t \\ s \end{bmatrix} : s, t \in \mathbb{R} \right\}$$

$$U = \left\{ \begin{bmatrix} t - 3s \\ t \\ s \end{bmatrix} : s, t \in \mathbb{R} \right\} \qquad W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x - y + 3z = 0 \right\}$$

U's description is of the form

elements defined porameters can be with parameters any real numbers

this way makes constructing elements of U easy just plug in some parameter Values and output is an element of U

ex set s=1, t=-5
$$\Rightarrow \begin{bmatrix} -5-3(1) \\ -5 \\ 1 \end{bmatrix} \in U$$

W's description is of the form

Selements from required conditions?

This way makes checking whether a given element belongs to W easy just check whether the condition is satisfied

ex Is
$$\begin{bmatrix} -8 \\ -5 \\ 1 \end{bmatrix} \in W$$
? Test condition $(-8) - (-5) + 3(1) = 0$? Yes!

In fact, U = W Let's show they're equal

$$\left\{\begin{bmatrix} t-3s \\ t \\ s \end{bmatrix}: s_1 t \in \mathbb{R} \right\} = \left\{\begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3: x = t - 3s \\ y = t \\ z = s \right\} = \left\{\begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3: x = y - 3z \right\} = \left\{\begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3: x - y + 3z = 0 \right\}$$

$$W$$

We can go further

$$U = \left\{ \begin{bmatrix} t-3s \\ t \\ s \end{bmatrix} : s_i t \in \mathbb{R} \right\} = \left\{ t \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} : s_i t \in \mathbb{R} \right\}$$

this description shows that each vector in U is a linear combination of two vectors

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} and \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

 $^{^\}dagger$ These notes are solely for the personal use of students registered in MAT1341.

SPAN

Definition 5.2. Let V be a vector space and let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be vectors in V.

 \bullet A vector \mathbf{w} is called a Linear Combination of $\mathbf{v}_1, \dots, \mathbf{v}_{\!m}$ if

there exist scalars
$$a_1, a_2, a_m \in \mathbb{R}$$
 such that $\vec{w} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + ... + a_m \vec{v}_m$

ullet The <code>SPAN OF v</code>₁ \ldots , ${f v}_m$, denoted ${
m span}\{{f v}_1,\ldots,{f v}_m\}$, is

That is, span
$$\{\vec{v}_1,...,\vec{v}_m\} = \{a_1\vec{v}_1 + a_2\vec{v}_2 + ... + a_m\vec{v}_m : a_1,...,a_m \in \mathbb{R} \}$$

• Suppose $S = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$.

Then the set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is called a **SPANNING SET** for S.

We also say that "S is **SPANNED BY** the vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ ".

Or we sometimes say "the vectors $\mathbf{v}_1, \dots, \mathbf{v}_m$ **SPAN** S".

Return to the previous example:

$$\mathbf{U} = \left\{ \begin{bmatrix} t^{-3}s \\ t \\ s \end{bmatrix} : s_i t \in \mathbb{R} \right\} = \left\{ t \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} : s_i t \in \mathbb{R} \right\} = span \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \right\}$$

•
$$\left\{\begin{bmatrix} 1\\0\\0\end{bmatrix},\begin{bmatrix} -3\\0\\1\end{bmatrix}\right\}$$
 is a spanning set for U

•
$$U$$
 is spanned by $\left\{\begin{bmatrix} 1\\1\\0\end{bmatrix},\begin{bmatrix} -3\\0\\1\end{bmatrix}\right\}$

• The vectors
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ span U

Example 5.3. SYMMETRIC 2×2 **REAL MATRICES** Let $S = \left\{ \begin{bmatrix} a & b \\ b & d \end{bmatrix} : a, b, d \in \mathbb{R} \right\}$. Find a spanning set for S.

$$S = \left\{ a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} : a_1b_1d \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

$$\therefore \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ is a spanning set for } S$$

Example 5.4. Let \mathbb{P}_2 denote the set of **POLYNOMIALS OF DEGREE AT MOST 2**. That is, let

$$\mathbb{P}_2 = \{ ax^2 + bx + c : a, b, c \in \mathbb{R} \}$$

EXERCISE: Show that \mathbb{P}_2 is a vector space (hint: use the Subspace Test!)

Find a spanning set for \mathbb{P}_2 .

$$\mathbb{P}^2 = \{ax^2 + bx + c \ a_1b_1c \in \mathbb{R}\} = \{ax^2 + bx + c1 \ a_1b_1c \in \mathbb{R}\} = \text{Span}\{x^2, x, 1\}$$

$$\{ax^2 + bx + c \ a_1b_1c \in \mathbb{R}\} = \{ax^2 + bx + c1 \ a_1b_1c \in \mathbb{R}\} = \text{Span}\{x^2, x, 1\}$$

$$\{ax^2 + bx + c \ a_1b_1c \in \mathbb{R}\} = \{ax^2 + bx + c1 \ a_1b_1c \in \mathbb{R}\} = \{ax^2 + bx + c1 \ a_1b_1c \in \mathbb{R}\} = \{ax^2 + bx + c1 \ a_1b_1c \in \mathbb{R}\}$$

Example 5.5. Now, let $U = \{p(x) \in \mathbb{P}_2 : p(1) = 0\}$. Find a spanning set for U.

elements from some
$$required$$
 $required$ r

U is spanned by
$$\{x-x^2, 1-x^2\}$$

$$\underline{Ex}$$
 $q(x) = 4(x-x^2) - 5(1-x^2) = x^2 + 4x - 5 \in U$ Check $q(1) = 1^2 + 4(1) - 5 = 0$

$$Ex f(x) = |-x| \in U \text{ since } f(1) = 0$$

$$: l-x \in Span\{x-x^2, l-x^2\}$$

Check find
$$a_1b \in \mathbb{R}$$
 such that $f(x) = a(x-x^2) + b(1-x^2) \iff 1-x = a(x-x^2) + b(1-x^2)$
 $\iff 1-x = (-a-b)x^2 + ax + b$

Compare coefficients LS=
$$0x^2-x+1$$
 RS= $(-a-b)x^2+ax+b$
 $\Leftrightarrow \begin{cases} 0=-a-b \\ -1=a \\ 1=b \end{cases} \Leftrightarrow a=-1 \text{ and } b=1$

Check
$$(-1)(x-x^2) + (1)(1-x^2) = -x+1 = 1-x = f(x)$$

So f is in this span

Example 5.6. Find the "condition" description for span $\left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ -1 \end{bmatrix} \right\}$.

Vectors in
$$\mathbb{R}^4$$
 that are a linear combination of $\begin{bmatrix} -\frac{1}{2} \\ 0 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

$$span \left\{ \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} = \left\{ s \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix} + t \begin{bmatrix} 0 \\ -1 \end{bmatrix} : s_1 t \in \mathbb{R} \right\}$$

$$= \left\{ \begin{bmatrix} s \\ -2s + t \\ t \\ 3s - t \end{bmatrix} : s_1 t \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^4 : \begin{cases} x = s \\ y = -2s + t \\ z = t \\ w = 3s - t \end{cases} \right\}$$

$$= \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^4 : \begin{cases} y = -2x + z \\ w = 3x - z \end{cases} \right\}$$

$$= \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^4 : \frac{-2x - y + z = 0}{3x - z - w = 0} \right\}$$

Vectors in
$$\mathbb{R}^9$$
 that are orthogonal to both $\begin{bmatrix} -2 \\ -1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 0 \\ -1 \\ -1 \end{bmatrix}$

THE SPAN OF A SET OF VECTORS IS ALWAYS A SUBSPACE

Now we get to "the BIG THEOREM" about spans:

Theorem 5.7. (THE BIG THEOREM ABOUT SPANS) Let V be a vector space.

Let $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be set of vectors in some vector space V. Then

Span
$$\{\vec{v}_1,...,\vec{v}_m\}$$
 is a subspace of V

Proof:

Let $U=\text{span}\{\vec{v}_1,...,\vec{v}_m\}$ where \vec{v}_1 , \vec{v}_m are vectors in a vector space V By def of span, each vector in U is a linear combination $a_i\vec{v}_i+...+a_m\vec{v}_m$ \vdots $U\subseteq V$ Since V is closed under scalar multiplication, $a_i\vec{v}_i\in V$ for all $a_i\in R$, for all 1 Since V is closed under addition, $\underbrace{a_i\vec{v}_i}_{\in V}+...+a_m\vec{v}_m\in V$

Equip U with the operations of V and apply the Subspace Test Let $\vec{u}, \vec{v} \in U$ and $k \in \mathbb{R}$

Then $\vec{u} = a_1 \vec{v}_1 + ... + a_m \vec{v}_m$ and $\vec{v} = b_1 \vec{v}_1 + ... + b_m \vec{v}_m$ for some $a_{i,1} b_i \in \mathbb{R}$, $1 \le i \le m$

$$\begin{array}{lll}
\textcircled{1} & \overrightarrow{U} + \overrightarrow{V} &= (a_{1}\overrightarrow{V}_{1} + + a_{m}\overrightarrow{V}_{m}) + (b_{1}\overrightarrow{V}_{1} + + b_{m}\overrightarrow{V}_{m}) \\
&= (a_{1}+b_{1})\overrightarrow{V}_{1} + + (a_{m}+b_{m})\overrightarrow{V}_{m} \\
&\underbrace{(a_{1}+b_{1})\overrightarrow{V}_{1} + + (a_{m}+b_{m})\overrightarrow{V}_{m}}_{\in \mathbb{R}}
\end{array}$$

. u+v is a linear combination of vi, , vm, hence u+v∈ U=span{vi, ,vm}

(2)
$$\vec{k}\vec{u} = \vec{k}(a_{l}\vec{v}_{l} + + a_{m}\vec{v}_{m}) = (\vec{k}a_{l})\vec{v}_{l} + + (\vec{k}a_{m})\vec{v}_{m}$$

" kū is a linear combination of vi, , vm, hence kū eU=span{vi, , vm}

$$\vec{O} = \vec{O} \vec{V}_1 + ... + \vec{O} \vec{V}_m$$

.. \vec{O} is a linear combination of \vec{v}_i , \vec{v}_m , hence $\vec{O} \in U = \text{span}\{\vec{v}_i, \vec{v}_m\}$ Conclusion $U = \text{span}\{\vec{v}_i, \vec{v}_m\}$ is a subspace of V?

Corollary 5.8. Let W be a subspace of a vector space V. Let $\mathbf{w}_1, \dots, \mathbf{w}_m \in W$.

Then $\operatorname{span}\{\mathbf{w}_1,\ldots,\mathbf{w}_m\}$ is a subspace of W.

- The above result is just repeating what the BIG THEOREM told us but where the vectors all live inside a subspace of *V*.
- Stated this way, however, we notice that it means spans don't cross subspace boundaries.
- In other words, if the vectors $\mathbf{w}_1, \dots, \mathbf{w}_m$ live inside a subspace W of V, then the span of those vectors is also entirely contained in the subspace W.
- Another way to put this is that $\operatorname{span}\{\mathbf{w}_1,\ldots,\mathbf{w}_m\}$ is the SMALLEST subspace of V that contains the vectors $\mathbf{w}_1,\ldots,\mathbf{w}_m$.

Example 5.9. Is
$$D = \left\{ \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$
 a subspace of $M_{3,3}(\mathbb{R})$?

Instead of using the Subspace Test, we notice $\mathbb D$ is spanned by three matrices in $M_{3,3}(\mathbb R)$

$$D = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}$$

$$\text{BIG THEOREM applies!}$$

$$\text{Subspace of M}_{3,3}(\mathbb{R})!$$

Example 5.10. Show that $S = \{A \in M_{2,2}(\mathbb{R}) : A^{\top} = -A\}$ is a subspace of $M_{2,2}(\mathbb{R})$.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A^{T} = -A \iff \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} \iff \begin{cases} a = -a \\ b = -c \\ c = -b \\ d = -d \end{cases} \iff \begin{cases} a = 0 \\ b = -c \\ d = 0 \end{cases}$$

$$S = \left\{ \begin{bmatrix} 0 & -c \\ c & 0 \end{bmatrix} : c \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\}$$

.. S is a subspace (by BIG THEOREM!)

Characterizing all Subspaces of \mathbb{R}^n

Let U be an arbitrary subspace of \mathbb{R}^n . What are the possibilities for U?

It might be that $U = \{\vec{0}\}\$ (the trivial subspace)

If $U \neq \{\vec{0}\}\$, then U must contain at least one non-zero vector, say $\vec{x}_1 \in U$, $\vec{x}_1 \neq \vec{0}$

Then span{xi} is a subspace of U (by BIG THEOREM)

Maybe $U = span\{\vec{x}_i\}$ $\leftarrow span\{\vec{x}_i\}$ is vector parametric form for a line passing through the origin

If not, U must contain another vector \$\vec{x}_2\$ that doesn't belong to span\{\vec{x}_i\}

Then span $\{\vec{x}_1,\vec{x}_2\}$ is a subspace of U (by Big THEOREM)

Maybe $U = \text{Span}\{\vec{x}_1, \vec{x}_2\}$ $\leftarrow \text{Span}\{\vec{x}_1, \vec{x}_2\} \text{ st } \vec{x}_2 \notin \text{span}\{\vec{x}_1\} \text{ is vector parametric form for a plane passing through the origin$

If not, U must contain another vector \vec{x}_3 that doesn't belong to span $\{\vec{x}_1,\vec{x}_2\}$

Then $Span\{\vec{x}_1,\vec{x}_2,\vec{x}_3\}$ is a subspace of U (by Big THEOREM)

Maybe $U = \text{span}\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$

If not, ...

•

We run out of names but a subspace of Rh is a point, line, plane, ... always passing through the origin

CHALLENGES WITH SPAN

Example 5.11. Show that span
$$\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \end{bmatrix} \right\}.$$

$$\operatorname{span}\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \left\{ a \begin{bmatrix} 1 \\ 2 \end{bmatrix} + b \begin{bmatrix} 0 \\ 0 \end{bmatrix} : a_1 b \in \mathbb{R} \right\} = \left\{ a \begin{bmatrix} 1 \\ 2 \end{bmatrix} : a \in \mathbb{R} \right\} = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \text{Span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}, \begin{bmatrix} 2 \\ 4 \end{bmatrix} \in \text{Span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} \text{ and } \begin{bmatrix} 3 \\ 6 \end{bmatrix} \in \text{Span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$

By BIG THEOREM, span
$$\left\{\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix}, \begin{bmatrix} 3\\6 \end{bmatrix}\right\}$$
 is a subspace, hence subset, of span $\left\{\begin{bmatrix} 1\\2 \end{bmatrix}\right\}$ => span $\left\{\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix}, \begin{bmatrix} 3\\6 \end{bmatrix}\right\} \subseteq \text{span} \left\{\begin{bmatrix} 1\\2 \end{bmatrix}\right\}$

$$\text{Likewise, } \begin{bmatrix} 1\\2 \end{bmatrix} \in \text{span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix}, \begin{bmatrix} 3\\6 \end{bmatrix} \right\} :: \text{span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\} \subseteq \text{span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix}, \begin{bmatrix} 3\\6 \end{bmatrix} \right\}$$

: Span
$$\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \} = \text{Span} \{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \}$$

EXERCISE: Show that span
$$\left\{ \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}.$$

What do we notice from these examples?

- Having more vectors in a spanning set DOES NOT imply that the subspace they span is bigger.
- It's not easy to tell if two subspaces are equal just based on the spanning sets you're given.
- The same subspace can have many different spanning sets.