TEXT-TO-IMAGE GENERATION

1. PROBLEM STATEMENT

- 2. REVIEW ON MILESTONE 1
- **3.** PROGRESS AND RESULTS
- 4. NEXT STEPS

PROBLEM STATEMENT

Problem

Translate text in the form of human-written description into image that is indistinguishable from realistic one

Examples[1]

a flower with long pink petals and raised orange stamen.

a sheep standing in an open grass field.

2 REVIEW ON MILESTONE 1

Related Work: DC-GAN (Reed et al., 2016)[1]

 Train a DC-GAN conditioned on text features encoded by a hybrid character-level Convolutional RNN

Figure 2. Our text-conditional convolutional GAN architecture. Text encoding $\varphi(t)$ is used by both generator and discriminator. It is projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing.

Time Plan

Deploying original model

- Found 2 implementations of the paper in TensorFlow
 - https://github.com/paarthneekhara/text-to-image
 - https://github.com/zsdonghao/text-to-image
 - Try to deploy them, but found some errors
- Found implementation of the paper (by the author) in PyTorch
 - https://github.com/reedscot/icml2016
 - Deployed successfully, but can't understand the code

JPROGRESS AND RESULTS

Training the model

- Building on text-to-image^[2] repository (TensorFlow)
- Training process take too much time and resources
- Tried 2 different approaches to overcome training time
 - Trained over specific classes of the dataset 102flowers
 - Trained over randomly selected images (2000 images out of 8189)

Understanding what is going under the hood in details

- Training phase
 - Sentence embedding is generated through skip-thoughts^[4] for all the captions
 - Resulting Sentence embedded vector is fed to the CNN as its condition
 - Text-to-image GAN is then trained over the dataset
- Generative phase
 - Sentence embedding the required Input caption
 - Feed the input caption vector to our trained model

Hyper-Parameter tuning

- Tuned different parameters which are
 - Learning rate
 - Batch size
 - Epochs number
 - Generator number of conv in first layer
 - Discriminator number of conv in first layer

Results

- For a model only trained on specific class contains 61 images
- Caption: this flower has petals that are pink and has a yellow center
 - o 200 epochs

o 600 epochs

Results

- For a model only trained on quarter of the dataset we didn't expect much
- Trying different captions
 - This is red flower

This is yellow flower

4 Next Steps

Deploying final model

- On our chosen hyper parameters we will train our model over the full dataset
- Train the model over different dataset

References

- 1. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016b). Generative adversarial text to image synthesis. Proceedings of the International Conference on Machine Learning (ICML). Available: https://arxiv.org/pdf/1605.05396.pdf
- Paarth Neekhara text-to-image implementation in Tensorflow.
 https://github.com/paarthneekhara/text-to-image
- 3. Oxford 102-flowers dataset. https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
- 4. Jamie Kiros skip-thoughts.

 https://github.com/ryankiros/skip-thoughts#getting-started

OUR TEAM

Mohamed Sharaf (54)

Mahmoud Tarek (63)

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

Thanks!