Approval Talk [HIG-23-005]

"Search for rare decays of the Higgs boson into a photon and a ρ^0 , ϕ or K^{*0} meson"

¹Politecnico di Torino, Turin, Italy

 $^2\mbox{Massachusetts}$ Institute of Technology, Cambridge, U.S.

March 19, 2024

Documentation

- Collaboration of MIT and Torino groups, targeting different categories.
- CADI HIG-23-005
- ARC: Anadi Canepa (chair), Stefan Spanier, Jian Wang, Angelo Giacomo Zecchinelli
- CCLE: Christoph Maria Ernst Paus
- Three analysis notes (two separate + one combined):
 AN-22-004 (MIT, v9), AN-22-067 (Torino, v10), and AN-23-004 (combined, v7)
- Q&A with ARC, L3, and L2 conveners: Twiki Q&A

Motivations

- SM prediction of branching ratios of $H \to \phi \gamma$ or $\rho \gamma$ within reasonable reach (??)
- ATLAS upper limit at 95% CL is $\mathcal{O}(10^{-4})$ to $\mathcal{O}(10^{-3})$.
- ullet K_0^* channel added as an extension of ditrack + gamma final state analyses.

Channel	Coupling	$SM\ \mathcal{BR}(H\to M\gamma)$	Limits on \mathcal{BR}	Notes	
$H o \phi \gamma$	s	$(1.68 \pm 0.8) \times 10^{-5}$ [1]	Exp. $4.2^{+1.8}_{-1.2} \times 10^{-4}$	ATLAS Run 2, $35.6~\mathrm{fb}^{-1}$	
			Obs. 5.0×10^{-4} [2]	$\phi \gamma \to K^+ K^- \gamma$	
$H o ho \gamma$	u,d	$(2.31 \pm 0.11) \times 10^{-6}$ [1]	Exp. $10.0^{+4.9}_{-2.8} \times 10^{-4}$	ATLAS Run 2, $35.6~{\rm fb}^{-1}$	
			Obs. 10.4×10^{-4} [2]	$\rho\gamma \to \pi^+\pi^-\gamma$	
$H \to K_0^* \gamma$	d&s (flavor-changing)	(Only available for $H o dar s + ar ds$)	Exp. $3.7^{+1.5}_{-1.0} \times 10^{-4}$	ATLAS Run 2, $134~{\rm fb}^{-1}$	
	aces (navor-changing)	1.19×10^{-11} [3]	Obs. 2.2×10^{-4} [4]	$K_0^* \gamma \to K^{\pm} \pi^{\mp} \gamma$	

3/30

Motivations

$H \to M\gamma$ [1]

- Direct contribution. The Higgs couples via Yukawa coupling to the quarks, one of which radiates a photon.
- Indirect contribution. The off-shell γ^* or Z^* produced in $H \to \gamma \gamma^*, \gamma Z^*$ fragments into a meson.

Direct and indirect contributions interfere destructively. Due to light quark masses, direct contribution is smaller than indirect. Direct contribution is sensitive to deviation from SM Higgs couplings. Branching ratios are $\mathcal{O}(10^{-5}-10^{-6})$.

(a) Direct contributions via Yukawa coupling to the light quarks.

(b) Indirect contribution via a virtual photon or Z boson.

Figure 1: Leading order Feynman diagrams to the $H o M \gamma$ processes. Image taken from Fig. 2 of [1].

Strategy

Final states

- 1. High energy photon
- 2. High energy ditrack from meson
- 3. FIX! Look for photon-meson inv. mass

Strategy

Higgs Production Categories

- No e/μ
- Veto events with $|\Delta \eta_{JJ}| > 3$

- \bullet Barrel photon $p_{\scriptscriptstyle T}^{\gamma} > 75~{\rm GeV}$
- No e/μ
- $|\Delta \eta_{JJ}| > 3$, $M_{JJ} > 400 \text{ GeV}$

$\mathbf{VBF}\ \mathbf{low}\ p_T^{\gamma}$

- $\bullet \ 40 < p_T^{\gamma} < 75 \ \mathrm{GeV}$
- No e/μ
- $|\Delta \eta_{JJ}| > 3$, $M_{JJ} > 300$ GeV

 $\mathsf{VH}\; (\mathbf{Z}_{\mathbf{l}\mathbf{l}}\mathbf{H}, \mathbf{W}_{\mathbf{l}\nu}\mathbf{H})$

- At least one l, ν
- Also included is $t\overline{t}H\text{, accounting}$ for $\sim30\%.$

Triggers

- What to discuss?
- Trigger efficiency how to measure (slide with plots)
 - $Z \to \mu^+ \mu^-$ events data/MC
 - Measure photon leg & tau leg
 - Figs. 30 & 38

	ggH	$High-\mathbf{p}_{\mathbf{T}}^{\gamma}\;VBF$	$Low\text{-}\mathbf{p}^{\gamma}_{\mathbf{T}} \; VBF$	VH
				single/di-muon
Triggers	tau-like	VBF-like	tau-like	single/di-electron
				muon+gamma
		28.2 (2016)		
Luminosity (${ m fb}^{-1}$)	39.50 (2018)	7.7 (2017)	39.50 (2018)	138 (2016–2018)
		60 (2018)		

Simulated Samples

$$\begin{split} \phi(1020) &\to K^+ K^- \ (\text{BR} \sim 49\%) \\ \rho(770) &\to \pi^+ \pi^- \ (\text{BR} \sim 100\%) \\ K_0^*(892) &\to K^\pm \pi^\mp \ (\text{BR} \sim 100\%) \end{split}$$

FIX! Polarization reweighting (new slide if plot)

Photon selection

	ggH	$High\text{-}\mathbf{p}^{\gamma}_{\mathbf{T}}VBF$	$Low\text{-}\mathbf{p}_{\mathbf{T}}^{\gamma}\;VBF$	VH
p_T^γ [GeV]	> 38	> 75	$38 < p_T^{\gamma} < 75$	> 40
$ \eta^{\gamma} $	< 2.1	< 1.4	< 2.1	< 2.5
γ -ID signal eff.	80%	90%	80%	90%

Table 1: Photon selection criteria across different production categories.

- γ -ID signal eff. = MVA-based selection ID [5]
- ullet p_T^{γ} cut based on trigger
- Where is the information about di-photon veto for ggH? FIX! ggH & VH .
- $\bullet~ggH/VBF:$ conversion veto, VH: pixel veto.
- Highest- p_T^{γ} photon chosen as candidate.

Ditrack reconstruction

- Track selection
 - 1. Originate from PV
 - 2. Pass "high purity" criteria
- Meson definition $(M = \phi, \rho^0, K_0^*)$
 - 1. Pair of oppositely charged tracks
 - 2. $p_T > 5$ GeV, $|\eta| < 2.5$
 - 3. At least one track $p_T > 20 \text{ GeV}$
- Invariant mass
 - $\begin{array}{l} 1. \;\; \rho^0: 0.62 < m_{\pi\pi} < 0.92 \; {\rm GeV} \\ \;\; \phi: 1.008 < m_{KK} < 1.032 \; {\rm GeV} \\ \;\; K_0^*: 0.84 < m_{K\pi} < 0.94 \; {\rm GeV} \end{array}$
 - 2. $m_{K\pi}^*$ closest to $m_{K_0^*}$ selected
 - 3. Reject events where \tilde{n}_{KK} consistent with m_ϕ and have higher p_T , vice versa.

Applies to all production categories.

FIX! mass sidebands

Di-track system

Define the relative charged isolation of the leading meson candidate,

$$I^{\text{trk}}(M) = \frac{p_T^M}{p_T^M + \sum_{trk} |p_T^{trk}|},$$

and the neutral isolation as

$$I^{\mathrm{neu}}(M) = rac{p_T^M}{p_T^M + \sum_{neu} |p_T^{neu}|}$$
 .

 $\sum_{trk/neu}|p_T^{trk/neu}|$: sum of charged/neutral track p_T within $\Delta R=0.3$ of meson candidate.

	ggH	$High\text{-}\mathbf{p}_{\mathbf{T}}^{\gamma}\;VBF$	$Low\text{-}\mathbf{p}^{\gamma}_{\mathbf{T}}VBF$	VH
$p_T^M \ [{\sf GeV}]$	> 38	> 40	> 40	> 40
I_M^{trk}	> 0.9	> 0.9	> 0.9	> 0.8
I_M^{neu}	> 0.8	-	-	-

Table 2: Di-track system criteria across different production categories.

ullet Highest- p_T meson chosen as candidate.

Event tagging

	ggH	$High\text{-}\mathbf{p}_{\mathbf{T}}^{\gamma}\;VBF$	$Low\text{-}\mathbf{p}_{\mathbf{T}}^{\gamma}\;VBF$	VH
Event tagging	Meson candidate within a jet with $p_T^{\rm j} > 40~{\rm GeV},$ tracks with $\Delta R < 0.07$	2 jets with $p_T^j > 40 \; {\rm GeV}, \\ m_{jj} > 400 \; {\rm GeV}, \\ \eta_{jj} > 3$	2 jets with $p_T^j > 30, 20 \; \mathrm{GeV}, \\ m_{jj} > 300 \; \mathrm{GeV}, \\ \eta_{jj} > 3$	1 selected and isolated e/μ or 2 selected e/μ compatible with m_Z

Table 3: Event tagging selection criteria across different production categories.

Summary of Event Selection FIX! Take the version of the paper

	Common selections							
M selection	"high-purity" tracks, opposite sign $ \eta^{\rm trk} <2.5,p_T^{\rm trk1}>20~{\rm GeV},p_T^{\rm trk1}>5~{\rm GeV}, \eta^M <2.1$							
	$0.62 < m_{\pi\pi} < 0.$	92 GeV, $1.008 < m_K$	$_{K} < 1.032 \text{ GeV}, 0.84$	$< m_{K\pi} < 0.94 \text{ GeV}$				
	ggH	ggH High- $\mathbf{p}_{\mathbf{T}}^{\gamma}$ VBF Low- $\mathbf{p}_{\mathbf{T}}^{\gamma}$ VBF VH						
p_T^{γ} [GeV]	> 38	> 75	$40 < p_T^{\gamma} < 75$	> 40				
$ \eta^{\gamma} $	< 2.1	< 1.4	< 2.1	< 2.5				
γ -ID signal eff.	80%	90%	80% (endcap), $90%$ (barrel)	90%				
$p_T^M \; [GeV]$	> 38	> 40	> 40	> 40				
I_M^{trk}	> 0.9	> 0.9	> 0.9	> 0.8				
I_M^{neu}	> 0.8	> 0.8		-				
Event tagging	Meson candidate within a jet with $p_{T}^{\rm j} > 40~{\rm GeV},$ tracks with $\Delta R < 0.07$	2 jets with $p_T^j>40$ GeV, $m_{jj}>400$ GeV, $\eta_{jj}>3$	2 jets with $p_T^j > 30, 20 \; \mathrm{GeV}, \\ m_{jj} > 300 \; \mathrm{GeV}, \\ \eta_{jj} > 3$	1 selected and isolated e/μ or 2 selected e/μ compatible with m_Z				

Table 4: FIX! Taken from paper Summary of event selection before MVA.

K. Yoon (MIT)

MC/Data Background Comparison

content...

- Multivariate Analysis (MVA)
 - BDT classifiers based on ROOT TMVA [6] for ggH, $low-p_T^{\gamma}$ VBF, and $high-p_T^{\gamma}$ VBF.
 - Training and validation samples defined by meson mass SR & sidebands.
 - Signal & Background events weighted by $1/(\sigma_M/M)$, where

$$\frac{\sigma_M}{M} = \sqrt{\left(\frac{\sigma_m}{m}\right)_{\text{meson}}^2 + \left(\frac{\sigma_E}{E}\right)_{\gamma}^2}$$

Multivariate Analysis (MVA)

• Input variables used for ggH and VBF categories.

	ggH	$High\text{-}\mathbf{p}^{\gamma}_{\mathbf{T}}\;VBF$	$Low\text{-}\mathbf{p}^{\gamma}_{\mathbf{T}}VBF$	
		$p_T^{M\gamma}$	$p_T^{M\gamma}$	
Kinematics	p_T^{γ}	p_T^{γ}	p_T^{γ}	
	p_T^M	$p_T^M/m_{M\gamma}$	$p_T^M/m_{M\gamma}$	
	η_M			
Meson Isolation	$I^{\mathrm{trk}}(M)$	$I^{\mathrm{trk}}(M)$	$I^{\mathrm{trk}}(M)$	
		M_{JJ}	M_{JJ}	
Jet-related		$\Delta \phi_{JJ}$	$\Delta \phi_{JJ}$	
		FIX! zepVar	FIX! zepVar	

- Multivariate Analysis (MVA): ggH category
 - Input variables
 - SR & CR
 - Results.
 - MVAdisc
 - cat0 & cat1

- ullet Multivariate Analysis (MVA): High- p_T^{γ} VBF category
 - Input variables
 - SR & CR
 - Results.
 - MVAdisc

- ullet Multivariate Analysis (MVA): Low- p_T^γ VBF category
 - Input variables
 - SR & CR
 - Results.
 - MVAdisc

content...

content...

Systematic Uncertainties

FIX! Note: only for signal

- 1. Integrated Luminosity
- 2. **Total inelastic cross section** correcting PU profile in simulation to data.
- 3. Trigger efficiencies.
- 4. Photon ID efficiencies. Derived from $Z \to e^+e^-$.
- 5. Tracking efficiency.
- 6. Muon/Electron ID.
- 7. Meson Charged/Neutral Isolation Efficiencies.
- 8. JEC & JES

Theoretical:

- 9. QCD renormalization and factorization.
- 10. PDF & $\alpha_{\mathbf{S}}$.
- 11. Parton shower modeling from renormalization of QCD-induced ISR and FSR in PYTHIA.

Signal modeling

- \bullet $m_{M\gamma}$. Distribution of the reconstructed Higgs boson mass.
- Analytic function: two-tailed Crystal Ball(TTCB).

$$TTCB(t) = \begin{cases} e^{-t^2/2}, & \text{for } -\alpha_L < t < \alpha_R \\ \left(\frac{n_L}{|\alpha_L|}\right)^{n_L} e^{-\alpha_L^2/2} \left(\frac{n_L}{|\alpha_L|} - |\alpha_L| - t\right)^{-n_L}, & \text{for } t \le -\alpha_L \\ \left(\frac{n_R}{|\alpha_R|}\right)^{n_R} e^{-\alpha_R^2/2} \left(\frac{n_R}{|\alpha_R|} - |\alpha_R| + t\right)^{-n_R}, & \text{for } t \ge \alpha_L \end{cases}$$

• Fitted via unbinned likelihood to simulated signal events.

Background modeling

- Analytic functions: Chebychev polynomials (main), Bernstein polynomials and exponential series (determination of shape uncertainties).
- Fitting region defined as $m_{M\gamma}$ sidebands.
 - ggH category: $110 < m_{M\gamma} < 120$ GeV & $130 < m_{M\gamma} < 160$ GeV.
 - VBF categories (high & low p_T^{γ}): $100 < m_{M\gamma} < 120$ GeV & $130 < m_{M\gamma} < 170$ GeV.
 - VH category: $100 < m_{M\gamma} < 120$ GeV & $130 < m_{M\gamma} < 150$ GeV.
- Degree of polynomial determined with **F-test**.
- Bias test.

25 / 30

Signal & Background Post-fit Distributions

content...

Results

- Upper limits on $\mathcal{B}(H \to \rho^0 \gamma)$, $\mathcal{B}(H \to \phi \gamma)$, and $\mathcal{B}(H \to K_0^* \gamma)$ set at 95% CL.
- CLs profile-likelihood ratio used as test-statistics, with the asymptotic approximation.
- Systematic uncertainties treated as nuisance parameters.

Results

Figure 2: Expected and observed upper limits on $\mathcal{B}(H \to \rho^0 \gamma)$ (top left), $\mathcal{B}(H \to \phi \gamma)$ (top right), and $\mathcal{B}(H \to K_0^* \gamma)$ (bottom) split by analysis categories and combined. Green and yellow bands correspond to 1 and 2σ confidence intervals in the expected upper limits.

Results

	U.L. $\mathcal{B}(H o ho^0\gamma)$		U.L. $\mathcal{B}(H o \phi \gamma)$		U.L. $\mathcal{B}(H \to K_0^* \gamma)$	
category	$Exp.(10^{-4})$	$Obs.(10^{-4})$	$Exp.(10^{-4})$	$Obs.(10^{-4})$	$Exp.(10^{-4})$	$Obs.(10^{-4})$
VH	$62.3^{+25.6}_{-17.9}$	73.7	$37.3^{+16.9}_{-11.3}$	45.0	$25.3^{+11.4}_{-7.3}$	48.5
$low\text{-}p_T^\gamma \; VBF$	$49.6_{-15.0}^{+22.5}$	35.6	$33.1^{+18.7}_{-11.5}$	27.9	$18.8^{+8.90}_{-5.7}$	12.3
$high\text{-}p_T^\gamma \; VBF$	$22.9_{-6.9}^{+10.5}$	16.0	$16.0^{+9.0}_{-5.5}$	10.7	$9.13^{+4.25}_{-2.75}$	6.66
ggH	$6.01^{+2.53}_{-1.72}$	4.37	$3.08^{+1.33}_{-0.98}$	3.46	$2.20^{+0.94}_{-0.62}$	1.93
combined	$5.71^{+2.37}_{-1.63}$	3.74	$2.88^{+1.33}_{-0.83}$	2.97	$2.10^{+0.90}_{-0.58}$	1.71

Table 5: Exclusion limits at 95% CL on the branching fractions of the H boson decays. Observed and median expected limits with the upper and lower bounds in the expected 68% CL intervals are reported.

Bibliography

- [1] M. König and M. Neubert, "Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings", Journal of High Energy Physics 2015 (2015).
- [2] ATLAS collaboration, "Erratum to: Search for exclusive Higgs and Z boson decays to φγ and ργ with the ATLAS detector", Journal of High Energy Physics 2023 (2023).
- [3] J.I. Aranda, G. González-Estrada, J. Montaño et al., "Revisiting the rare H → q_iq_j decays in the standard model", Journal of Physics G: Nuclear and Particle Physics 47 (2020) 125001.
- [4] ATLAS collaboration, "Search for exclusive Higgs and Z boson decays to $\omega \gamma$ and Higgs boson decays to $K_0^* \gamma$ with the ATLAS detector", Physics Letters B 847 (2023) 138292.
- [5] CMS collaboration, "Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC", Journal of Instrumentation 16 (2021) P05014.
- [6] A. Hoecker, P. Speckmayer, J. Stelzer et al., "TMVA Toolkit for Multivariate Data Analysis", 2009.