信号与系统的数学基础

Math behind Siganal and Sysdem

2025年10月29日

信号与系统是电子信息等相关专业本科生的重要基础课,是后续课程"数字信号处理""通信原理""自动控制""随机信号处理""数字图像处理""现代信号处理"等课程的基础,以确定信号通过线性时不变系统的过程为核心,综合运用多门数学课程的知识,尤其是傅里叶分析。

然而,国内外的信号与系统课程对于傅里叶级数、傅里叶变换和拉普拉斯变换的定义有所不同,国内的课程中所谓"频域分析"实际上指的是角频率域,而这种定义上的不同会导致诸多公式的内核相同但形式不同,使学习者感到困惑。我自学过斯坦福大学公开课 EE261,同样面临着这个问题,所以希望尝试这种新的笔记形式,梳理信号与系统课程的理论部分,同时也使本书能够作为同学们学习信号与系统时的参考书。同时,我注意到现在的信号与系统教材中对很多数学上的内容的处理过于简单化,以至于同学们对一些公式感到不解,我希望结合《信号与系统》教材和一些数学专业的实变函数、傅里叶分析教材,对这样的内容做一些简单的补充和深化。

本书将不会涉及信号与系统实践部分,对一些语文性质的概念从简处理,希望了解这些内容的读者可以自行查看信号与系统教材;对于两种不同的傅里叶变换,将并排给出两种公式,左侧为频率版本,右侧为角频率版本;此外,为了逻辑的完整性和内容的精确性,本书会引入一些对工科生较难理解的内容,对于勒贝格积分,读者应当明白其大体思想,技术细节则不在我们关注的范围,对于另外一些内容,将用"*"标注或直接用语言声明,读者可以自行选择是否阅读这些内容。

限于作者水平,书中难免存在不足之处,希望读者可以提出宝贵的意见或建议,可以反馈至我的电子邮箱: 2024212622@bupt.cn。

北京市十一学校 2024 届毕业生 严子竣 2025 年秋

目录

第一章	信号与系统概述	1
1.1	信号与系统的基本概念	1
1.2	连续信号与离散信号	1
1.3	典型的连续与离散信号	2
第二章	连续信号的频域分析	5
2.1	线性空间,正交基	5
2.2	傅里叶级数	8
2.3	傅里叶变换初步	13
2.4	卷积	20
2.5	分布及其傅里叶变换	26
第三章	关于傅里叶变换的进一步讨论	37
3.1	取样和插值	37
3.2	离散傅里叶变换初步	37
3.3	多维傅里叶变换	37
3.4	希尔伯特变换,汉克尔变换	37
3.5	回到有限区间	37
第四章	连续系统的时频分析	39
4.1	系统概述	39
4.2	系统的表示和微分方程	40
4.3	系统的频率响应特性	40
第五章	拉普拉斯变换与系统的复频域分析	41
5.1	拉普拉斯变换	41
5.2	拉普拉斯逆变换	41
5.3	系统的复频域分析	41
第六章	z 变换与离散系统分析	43
6.1	z 变换	43
6.2	离散系统的 z 域分析	43
6.3	离散傅里叶变换	43

٠			
1	٦	Τ	

第七章	附录:一些补充内容	45
7.1	傅里叶级数的渐进特性, 吉布斯现象	45
7.2	分布的逼近,傅里叶反演公式	50
7.3	施瓦兹函数类及其好处	50
7.4	与傅里叶变换有关的其他变换	50

目录

第一章 信号与系统概述

1.1 信号与系统的基本概念

信号 (signal) 是信息 (information) 的表现形式与传送载体,信息是蕴含在信号中的具体内容。

在电学领域中,通过电压或电流对真是信号进行连续的记录,模拟其变化过程得到的信号称为模拟信号 (analog signal) 或连续信号 (continuous signal),但由于计算机中信号只能以有限位数的形式储存,往往需要将模拟信号转化为数字信号 (digital signal)。这个过程往往需要利用模数转换器 (analog-to-digital converter,ADC),使用时再利用数模转换器 (digital-to-analog converter,DAC) 将数字信号转化为模拟信号。

在信息科学与技术领域,系统指对信号产生影响的装置或算法,例如滤波系统、调制系统、发射系统,将这些系统组合起来就组成了无线电广播系统;例如通信系统由信源、发射机、信道、接收机和信宿五个部分组成。

1.2 连续信号与离散信号

信号的本质是函数,**连续信号**就是定义域"连续"的函数,例如一个时间的函数 f(t),一般要求定义域具有连续统的势。相应的,**离散信号**的定义域往往是至多可数集,于是我们常认为其定义域是整数集,并记离散信号为 x[n],用研究数列的方法研究离散信号。

从电学的经验来看,电压、电流信号的功率总为其幅值的平方乘以某个常数,于是对于一般的信号我们也采取此定义。真实的物理世界中的信号的能量总是有限的,但是,为了更好地研究它们,很多时候使用真实信号的一部分做适当延拓作为研究对象,因此课程中将遇到一些不满足"方均可积"性质 $\int_{-\infty}^{\infty} |f(x)|^2 dx < \infty$ 的信号,我们将这种信号称为**功率信号**,因其能量无限而功率有限,而能量有限的信号就称为**能量信号**。为了区分某段时间内和全时域上的能量和功率,又将 (-T/2, T/2) 内的能量

$$E_T = \int_{-T/2}^{T/2} |f(x)|^2 dx$$

称为归一化能量,功率

$$P_T = \frac{1}{T} \int_{-T/2}^{T/2} |f(x)|^2 dx$$

称为归一化功率:

$$E = \int_{-\infty}^{\infty} |f(x)|^2 dx$$

称为全时域能量,

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |f(x)|^2 dx$$

称为全时域功率。

类似地,对于离散信号,定义归一化能量为

$$E_k = \sum_{n=-k}^k |x[n]|^2$$

归一化功率为

$$P_k = \frac{1}{2k+1} \sum_{n=-k}^{k} |x[n]|^2$$

全时域能量为

$$\sum_{n=-\infty}^{\infty}|x[n]|^2$$

全时域功率为

$$\lim_{k \to \infty} \frac{1}{2k+1} \sum_{n=-k}^{k} |x[n]|^2$$

读者可能已经注意到,并不是所有的函数都是可积的,例如 e^x 即使视为功率信号,其能量和功率也不具有意义,因此它既不属于能量信号,也不属于功率信号;哪怕这个积分不是反常积分,如狄利克雷函数

$$D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}^C \end{cases}$$

(其中 ② 表示有理数集,上标 C 在不引起歧义的前提下用来表示取补集)在黎曼积分(也就是数学分析或高等数学课程,以及多数工科课程中用的积分)的意义下是不可积的,因为它在所有点不连续,但是这样的函数在**勒贝格积分**的意义下可积,读者可以这样理解:勒贝格积分考察函数在某个值处的"区间长度"(严格来讲应为测度),狄利克雷函数在一个有限区间上取值 1 的长度为 0,因为有理数是可数集,取值 0 的长度就是区间长度,所以其积分值为 0。勒贝格积分是黎曼积分的推广,对于非反常积分,黎曼可积的函数一定是勒贝格可积的,并且在同样的区间上积分值相等。对于勒贝格不可积的函数,一般不在本课程的讨论范围。尽管我们很少接触只在勒贝格意义下才可积的函数,但后面我们将逐步认识到勒贝格积分在傅里叶分析中的重要地位,读者应当对其有一个初步的认识。

1.3 典型的连续与离散信号

1. 取样信号

$$Sa(t) = \frac{\sin(t)}{t}$$

它在 0 处连续延拓为 1,在 π 的整数倍处为 0,是偶函数,在正半轴上的积分值为 $\pi/2$ (这个结果称为 狄利克雷积分)。国外教材中取样信号一般为一个类似的信号

$$sinc(t) = \frac{\sin(\pi t)}{\pi t} = Sa(\pi t)$$

它们的参数不同但性质类似、本质相同,其作用在后续学习采样和插值时将体现出来。需要注意的是,在绘图时 python 和 MATLAB 中只有 sinc 信号,而且实际上指的是 Sa 信号。

2. 钟形信号(高斯函数)

$$f(t) = Ee^{-\left(\frac{t}{\tau}\right)^2}$$

 τ 为衰减速率或时间常数, τ 越大,函数值衰减越慢。

3. 单位脉冲函数/狄拉克函数 (dirac function) $\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \end{cases}$ 可视为一些性质较好的函数如高斯

函数、取样函数集中到 x=0 附近时的极限情况,从而具备很多优美的性质,见2.4。实际上,它还是无 限阶可导的,我们将在2.5 中详细讨论这一点。一些简单的性质列举如下。

- ① 取样性质: $f(x)\delta(x) = f(0)\delta(x)$
- ② 积分性质: $\int_{-\infty}^{\infty} \delta(x) dx = 1$ (由此我们说这个函数的强度为 1),从而 $\int_{-\infty}^{\infty} f(x) \delta(x) dx = f(0)$ 。③ δ 函数是偶函数: $\delta(-x) = \delta(x)$ ④ 尺度变换性质: 用函数逼近的观点来理解 δ 函数, 为保证强度为 1, 自 然应当要求 $\delta(ax) = \frac{1}{|a|}\delta(x)$

这个函数在做卷积运算时有很好的性质,见2.4卷积;关于它的逼近方式,见 附录7.2。我们规定, $\delta_a(x) = \delta(x-a)$,即在 x=a 处取样的狄拉克函数。

4. 单位阶跃函数 (the unit step/Heaviside function) $u(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$

在 0 处的值可以任意定义,一般取 0、1 或 1/2,不会有影响,所以一般也不会讨论。由单位阶跃函数 衍生出许多其他函数:

符号函数

$$sgn(x) = \begin{cases} -1 & x < 0 \\ 1 & x > 0 \end{cases} = u(t) - u(-t)$$

矩形脉冲

$$R_T(t) = u(t) - u(t - T)$$

门函数(矩形函数、Ⅱ 函数)

$$G_T(t) = \Pi_T(t) = u(t + T/2) - u(t - T/2)$$

这里 T 为脉冲宽度,不加角标时,默认为 1。

单位阶跃函数的积分为单位斜变信号 (the unit ramp),导数为狄拉克函数,从直观上这不难理解, 将在2.5中讨论。

下面介绍离散信号。

1. 单位脉冲序列/克罗内克 (Kroneker) δ 函数

$$\delta[n] = \begin{cases} 1, & \text{if } n = 0\\ 0, & \text{if } n \neq 0 \end{cases}$$

将它进行时移, 可得

$$\delta_k[n] = \delta[n-k] = \begin{cases} 1, & \text{if } n = 0\\ 0, & \text{if } n \neq 0 \end{cases}$$

它与狄拉克 δ 函数一样,都具有取样性质: $x[n]\delta_k[n] = x[k]\delta_k[n], \forall n$.

2. 单位阶跃序列

$$u[n] = \begin{cases} 1, & \text{if } n \ge 0\\ 0, & \text{if } n < 0 \end{cases}$$

图 1.1: 取样函数、高斯函数、狄拉克函数、单位阶跃函数

类似连续信号,由它可以衍生出矩形窗序列:

$$R_N[n] = n[n] - u[n - N] = \begin{cases} 1, & \text{if } 0 \le n \le N - 1\\ 0, & \text{otherwise} \end{cases}$$

3. 正弦序列 $x[n] = \sin(\Omega_0 n)$, 其中 Ω_0 称为数字角频率。其特点放在以后介绍。

图 1.2: 正弦序列

第二章 连续信号的频域分析

在数学分析课程中,我们都学习过傅里叶级数的计算,所以本书将直接回顾几种情况下的傅里叶级数展开公式,然后从正交函数系的观点出发构建傅里叶级数的理论,再从傅里叶级数过渡到傅里叶变换,从对周期现象的研究转向对非周期现象的研究,介绍其运算性质、卷积性质,最后介绍分布(也即广义函数)理论,从而研究常函数、狄拉克函数、正余弦函数等在常规意义下无法进行傅里叶变换,却又十分重要的函数。

2.1 线性空间,正交基

首先介绍一些本章需可能用到的概念: 度量公理、范数公理、内积公理、正交基、无穷维线性空间和 L^p 空间,对其不感兴趣的读者,可以等需要时再阅读此小节的内容,只要知道函数空间上的正交基是怎么回事即可。

在 \mathbb{C} -线性空间 V 中,如果定义了运算 $d(\cdot,\cdot):V\times V\to\mathbb{C}$,满足**度量公理:**

- 1. 非负性: $d(x,y) \ge 0$
- 2. 同一性: d(x,y) = 0 当且仅当 x = y
- 3. 对称性: d(x,y) = d(y,x)
- 4. 三角不等式: $d(x,z) \le d(x,y) + d(y,z)$

则称在 V 上定义了一种度量(事实上度量空间不仅能够在线性空间中定义,在一般的拓扑空间中都能够定义)。

如果定义了运算 $\|\cdot\|: V \to \mathbb{C}$,满足**范数公理**

- 1. 非负性: $\|\mathbf{x}\| \ge 0$
- 2. 同一性: $\|\mathbf{x}\| = 0$ 当且仅当 $\mathbf{x} = \mathbf{0}$
- 3. 齐次性: $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$
- 4. 三角不等式/次可加性: $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||$

则称在 V 上定义了一种范数, 称 V 为线性赋范空间, 又称巴拿赫空间在线性赋范空间上可以定义极限:

$$\lim_{x \to x_0} f(x) = A := \forall \epsilon > 0 \exists \delta > 0 (|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon)$$

这就是数学分析中的极限定义,只是将绝对值改成了范数,其余类似的极限定义不再赘述。

如果定义了运算 $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$,满足内积公理

- 1. 正定性: $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$ 且 $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ 当且仅当 $\mathbf{v} = \mathbf{0}$
- 2. 共轭对称性: $\langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$
- 3. 第一变元的线性性:
 - 齐性: $\langle \alpha \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{v}, \mathbf{w} \rangle$
 - 可加性: $\langle \mathbf{v} + \mathbf{w}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{w}, \mathbf{u} \rangle$

则称在 V 上定义了一种内积 (inner product),称 V 为内积空间。在内积空间上有著名的柯西-施瓦兹不等式 (Cauchy-Shwartz inequality):

$$|\langle \mathbf{a}, \mathbf{b} \rangle| \le \|\mathbf{a}\| \|\mathbf{b}\|$$

它有一个经典的证明方法:不妨设 b 不是零向量,任取 $t \in \mathbb{R}$,有

$$0 \le \|\mathbf{a} + t\mathbf{b}\|^2 = \|\mathbf{a}\|^2 + 2t\langle \mathbf{a}, \mathbf{b}\rangle + t^2 \|\mathbf{b}\|^2$$

令 $t = -\frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{b}\|^2}$,即得

$$0 \le \|\mathbf{a}\|^2 - 2\frac{\langle \mathbf{a}, \mathbf{b} \rangle^2}{\|\mathbf{b}\|^2} + \frac{\langle \mathbf{a}, \mathbf{b} \rangle^2}{\|\mathbf{b}\|^4} \|\mathbf{b}\|^2 = \|\mathbf{a}\|^2 - \frac{\langle \mathbf{a}, \mathbf{b} \rangle^2}{\|\mathbf{b}\|^2}$$

这与要证明的不等式是等价的。有了柯西-施瓦兹不等式,三角不等式就是显然的了,这里仅给出其表述,读者可以自行证明:

$$\forall \mathbf{a}, \mathbf{b} \in V, \|\mathbf{a} + \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\|$$

不难发现,只要取 $\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle$,就由内积导出了一种范数,并且这种范数具有比一般的范数更强的性质,只要取 $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$,就由范数导出了一种度量,并且这种度量具有比一般的度量更强的性质。

正交基 (othorgnal bases) 指的是内积空间 V 的一组基 $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$, 满足 $\langle \mathbf{v_i}, \mathbf{v_j} \rangle = 0, i \neq j$, 对 V 中任一向量 w,

$$\mathbf{w} = \sum_{i=1}^{n} c_i \mathbf{v_i}$$

等式两边同时对 v_j 做内积,得到

$$\langle \mathbf{w}, \mathbf{v_j} \rangle = \langle \mathbf{v_j}, \sum_{i=1}^n c_i \mathbf{v_i} \rangle = c_j \langle \mathbf{v_j}, \mathbf{v_j} \rangle$$
 (2.1)

$$c_{j} = \frac{\langle \mathbf{w}, \mathbf{v}_{j} \rangle}{\langle \mathbf{v}_{j}, \mathbf{v}_{j} \rangle}, \mathbf{w} = \sum_{j=1}^{n} \frac{\langle \mathbf{w}, \mathbf{v}_{j} \rangle}{\langle \mathbf{v}_{j}, \mathbf{v}_{j} \rangle} \mathbf{v}_{j}$$
(2.2)

如果 $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ 还满足 $\langle \mathbf{v_i}, \mathbf{v_i} \rangle = 1, i \in \{1, 2, \dots, n\}$,称这组基是 标准正交基 (othornormal bases),此时空间中任意向量均有分解式

$$\mathbf{w} = \sum_{i=1}^{n} \langle \mathbf{w}, \mathbf{v_i} \rangle \mathbf{v_i} \tag{2.3}$$

并目.

$$|\mathbf{w}|^2 = \langle \sum_{i=1}^n \langle \mathbf{w}, \mathbf{v}_i \rangle \mathbf{v}_i, \sum_{i=1}^n \langle \mathbf{w}, \mathbf{v}_i \rangle \mathbf{v}_i \rangle$$
(2.4)

$$= \sum_{i=1}^{n} |\langle \mathbf{w}, \mathbf{v_i} \rangle|^2 \langle \mathbf{v_i}, \mathbf{v_i} \rangle + \sum_{1 \le i \le j \le n} \langle \mathbf{w}, \mathbf{v_i} \rangle \langle \mathbf{w}, \mathbf{v_j} \rangle \langle \mathbf{v_i}, \mathbf{v_j} \rangle$$
(2.5)

$$= \sum_{i=1}^{n} |\langle \mathbf{w}, \mathbf{v}_{i} \rangle|^{2} |\mathbf{v}_{i}|^{2} = \sum_{i=1}^{n} |\langle \mathbf{w}, \mathbf{v}_{i} \rangle|^{2}$$
(2.6)

这正是高维情况下的勾股定理(毕达哥拉斯恒等式)。可见做正交基分解能够极大地简化对线性赋范空间的研究。

对于**无限维线性空间** V,我们称向量列 $\{\mathbf{v_i}\}_{i=1}^{\infty}$ 是 V 的一组基,如果

- 线性无关性: 任取基中的有限个向量, 它们是线性无关的
- 有限生成性: 任取向量 $\mathbf{w} \in V$,存在有限个向量 $V' = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_r}\} \subset V$, \mathbf{w} 可以用 V' 线性表出

这里要求"有限"是为了避免敛散性的问题:例如收敛的级数构成线性空间,如果我们声称取定了一组基(当然是无限的),并考察其中无限个基张成的空间,那么对于构成级数的每一项,均需要考察其敛散性。然而,级数的敛散性自然可以对前有限项不做要求,它们求和很可能不会收敛;从另一个角度来讲,一些更加抽象的线性空间中,也说不清楚基的无限和是否收敛,甚至在没有范数的线性空间中无法定义收敛。

函数空间是一种典型的无限维线性空间(因为多项式空间已经是无限维的),我们希望能找到一组单位正交基,使得函数在这组正交基下的分解能够体现函数的某些性质,然而,若只考虑有限和,这种想法所能研究的函数十分有限,例如我们马上就会见到的三角函数系和指数函数系,它们作为无限阶可微函数,有限和也是无限阶可微的。所以,我们应考虑将函数 f(t) 分解为一组相互正交的函数系 $\{f_i(t)\}_{i=1}^{\infty}$ 组成的函数项级数。

我们面临的另一个问题是如何在函数空间上定义内积,从而定义正交性。一种比较自然的想法是利用(勒贝格)积分,积分区间取一个周期。换言之,我们考虑在空间

$$L^{2}([0,T]) := \{ f : [0,T] \to \mathbb{C} \mid \int_{T} |f(t)|^{2} dt < \infty \}$$

上定义内积(为了区别于分布的符号,这里内积用圆括号表示,*表示取共轭):

$$(f,g) := \int_T f(t)g^*(t) dt$$

我们对这个定义做一些说明, 但不给出证明, 因为证明需要首先建立勒贝格积分的体系, 读者可借助黎 曼积分直观地理解它们:

 $1.L^{p}([0,T])(0 空间表示在区间 <math>[0,T]$ 上 p 次勒贝格可积的函数组成的函数空间,即

$$L^{p}([0,T]) := \{ f : [0,T] \to \mathbb{C} \mid \int_{T} f^{p}(t) \, dt < \infty \}$$

 $L^{p}([0,T])$ 具有性质:

- *L*^p([0,*T*]) 是线性空间
- 当 $1 \le p \le \infty$ 时, $L^p([0,T])$ 是线性赋范空间, $||f||_p := (\int_T |f(t)|^p dt)^{1/p}$,称之为 L^p 范数,次可加性由闵可夫斯基不等式保证

- 2. 要求 f(t) 平方可积是为了保证 $(f,f) = \int_T |f(t)|^2 dt < \infty$, f(t) 平方可积能够推出 f(t) 是绝对可积的,从而是可积的(有限区间 I 上有 $L^p(I) \supset L^q(I), p < q$,无限区间上它们互不包含)
- 3. 尽管对函数空间做了一些限制,我们研究的范围依旧是足够大的,闭区间上的平方可积是一个比较弱的条件
- 4. 柯西-施瓦兹不等式和三角不等式(它是闵可夫斯基不等式的特例)自然成立,它们证明的过程不涉及空间的维数是否有限。

有了内积就可以定义范数,从而可以给出 $L^2([0,T])$ 空间上的函数项级数的(依范数)收敛的定义: 如果

$$\lim_{n \to \infty} ||f(t) - \sum_{i=1}^{n} a_i f_i(t)|| = 0$$

就认为级数 $\sum_{i=1}^{n} a_i f_i(t)$ 是 f(t) 在这个正交函数系下的分解,此时记

$$f \sim \sum_{n=1}^{\infty} a_n f_n$$

它并不意味着等式右侧的函数项级数在某一点收敛于 f. 在 $L^2([0,T])$ 空间中,我们不区分仅在零测集("区间长度"的总和总能取到任意小正数,例如至多可数集)上不相等的函数,换言之, $L^2([0,T])$ 空间不是常规意义下的函数的集合,而是**几乎处处** (almost every,a.e.) 相等的函数构成的等价类,这里的等号表示的是两侧的函数同属一个等价类,至于逐点收敛、一致收敛性,需要另作讨论。

可以想象,依范数收敛要求极限内的函数相当接近于 0,但如果在一个点处产生了误差,不论误差 多大,都不会影响积分的值。事实上,只要存在误差的点构成零测集,就不会影响积分的值,这时我们 称 $\sum_{i=1}^{n} a_i f_i(t)$ 几乎处处收敛于 f(t),只是这样弱的要求有时会导致积分在黎曼积分的意义下不存在,但勒贝格积分可以处理这种情况,读者可以参考1.2连续信号与离散信号中对勒贝格积分的讨论。

如果不存在非零的函数 $g(t) \notin \{f_i(t)\}_{i=1}^{\infty}$ 使得 g(t) 与 $\{f_i(t)\}_{i=1}^{\infty}$ 中的所有函数正交,我们称 $\{f_i(t)\}_{i=1}^{\infty}$ 为**完备正交函数系**,这意味着 $L^2([0,T])$ 空间中的任一函数 f(t) 均可分解为这个函数系的 函数项级数 $\sum_{i=1}^{\infty} a_i f_i(t)$,由公式 (2.2),

$$a_i = \frac{(f, f_i)}{(f_i, f_i)} = \frac{\int_T f(t) f_i^*(t) dt}{\int_T |f_i(t)|^2 dt}$$

细心的读者可能已经发现,这里得到的公式用到了有限维线性空间中的结论,但要推广到无限维线性空间并不是显然的。我们将在下一节给出帕塞瓦尔定理之后一并讨论这个问题。

典型的标准完备正交函数集有贝塞尔 (Bessel) 函数、勒让德 (Legendre) 多项式、小波 (wavelet) 变换基函数等,下面仅讨论三角函数系和指数函数系。

2.2 傅里叶级数

首先回顾数学分析中几个计算傅里叶级数的公式。考虑将周期为 T 的函数 f 展开为

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t)$$
$$= \frac{c_0}{2} + \sum_{k=1}^{\infty} c_k \cos(k\omega t + \varphi_k)$$

 $(其中 \omega = \frac{2\pi}{T}$ 为基波角频率, $k\omega(k>1, k\in\mathbb{Z})$ 为 k 次谐波角频率)则

$$a_k = \frac{2}{T} \int_T f(t) \cos(k\omega t) dt$$

2.2 傅里叶级数 9

$$b_k = \frac{2}{T} \int_T f(t) \sin(k\omega t) dt$$
$$c_k = \sqrt{a_k^2 + b_k^2}$$

当 f(t) 为偶函数,或者由 f(t) 做偶延拓时,展开式为

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t)$$

其中

$$a_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cos(k\omega t) dt$$
$$b_k = 0$$

当 f(t) 为奇函数,或者由 f(t) 做奇延拓时,展开式为

$$a_k = 0$$

$$b_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \sin(k\omega t) dt$$

下面用完备标准正交函数系的观点来得到以上公式。在学习数学分析时,我们已经看到三角函数系 $1,\sin(\omega t),\cos(\omega t),\sin(2\omega t),\cos(2\omega t),\dots(\omega=\frac{2\pi}{T})$ 是正交的(读者可以自行验证),但不是单位正交的,因为

$$(\sin(k\omega t), \sin(k\omega t)) = \int_T \sin^2(k\omega t) dt = \int_T \frac{1 - \cos(2k\omega t)}{2} = \frac{T}{2}$$
$$(\cos(k\omega t), \cos(k\omega t)) = \int_T \cos^2(k\omega t) dt = \int_T \frac{1 + \cos(2k\omega t)}{2} = \frac{T}{2}$$

可以将它们单位化,也可以直接采用公式(2.2),

$$a_k = \frac{(f(t), \cos(k\omega t))}{(\cos(k\omega t), \cos(k\omega t))} = \frac{\int_T f(t) \cos(k\omega t)^*(t) dt}{\int_T |\cos(k\omega t)|^2 dt} = \frac{2}{T} \int_T f(t) \cos(k\omega t)(t) dt$$
$$b_k = \frac{(f(t), \sin(k\omega t))}{(\sin(k\omega t), \sin(k\omega t))} = \frac{\int_T f(t) \sin(k\omega t)^*(t) dt}{\int_T |\sin(k\omega t)|^2 dt} = \frac{2}{T} \int_T f(t) \sin(k\omega t)(t) dt$$

当 f(t) 是奇函数或偶函数时,容易用对称性得到前文中的公式。如果将傅里叶级数展开式 $f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t)$ 写为

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + \sum_{k=1}^{\infty} b_k \sin(k\omega t)$$

则前半部分为偶函数,称之为 f(t) 的**偶分量** $f_e(t)$; 后半部分为奇函数,称之为 f(t) 的**奇分量** $f_o(t)$ 。高中数学中我们知道,函数的偶分量和奇分量都是唯一的,并且

$$f_e(t) = \frac{f(t) + f(-t)}{2}$$

 $f_o(t) = \frac{f(t) - f(-t)}{2}$

由欧拉公式 $e^{ik\omega t} = \cos(k\omega t) + i\sin(k\omega t)$, 得到

$$\cos(k\omega t) = \frac{e^{ik\omega t} + e^{-ik\omega t}}{2}, \sin(k\omega t) = \frac{e^{ik\omega t} - e^{-ik\omega t}}{2i}$$

(特别地, $c_0 = c_0^* \Rightarrow c_0 \in \mathbb{R}$) 故函数 f(t) 也可在指数函数系下展开:

$$f(t) = \sum_{k=0}^{\infty} c_k e^{ik\omega t}, c_k = \frac{a_k - ib_k}{2}, c_{-k} = \frac{a_k + ib_k}{2} = c_k^*, k \in \mathbb{N}$$

 $\{e^{ik\omega t}\}_{k=0}^{\infty}$ 是完备正交函数系,

$$(e^{ik_1\omega t}, e^{ik_2\omega t}) = \int_T e^{ik_1\omega t} (e^{ik_2\omega t})^* dt$$

$$= \int_T e^{i(k_1 - k_2)\omega t}$$

$$= \frac{2}{i\omega(k_1 - k_2)} e^{i(k_1 - k_2)\omega t} \Big|_0^T$$

$$= 0(k_1, k_2 \in \mathbb{Z}, k_1 \neq k_2)$$

$$(e^{ik\omega t}, e^{ik\omega t}) = \int_T e^{ik\omega t} (e^{ik\omega t})^* dt$$

$$= \int_T dt = T(k \in \mathbb{Z})$$

和三角函数系的情况一样,我们得到

$$c_k = \frac{(f(t), e^{ik\omega t})}{(e^{ik\omega t}, e^{ik\omega t})}$$
$$= \frac{1}{T} \int_T f(t) (e^{ik\omega t})^* dt$$
$$= \frac{1}{T} \int_T f(t) e^{-ik\omega t} dt$$

有时也将 c_k 记作 $\hat{f}(k\omega)$ 或 $\hat{F}(k)$,表示 f 在频域中的点 $k\omega$ 处的值。一般而言,我们只将最小正周期称为一个函数的周期,但周期为 T 的函数可以有多个频率 $k\omega(k\in\mathbb{Z})$,绘制频谱时,由于难以画出复数,常用幅度谱 $|\hat{f}(k\omega)| - \omega$ 和相位谱 $\phi_k - \omega$ 来表征函数,其中 $\phi_k = \arg \hat{f}(k\omega)$ 。对于实信号,

$$c_k = (c_{-k})^*, |\hat{f}(k\omega)| = |\hat{f}(-k\omega)|, \phi_{-k} = -\phi_k$$

即幅度谱为偶函数,相位谱为奇函数,所以实信号的频谱中有一半是冗余的,按照展开式

$$\frac{c_0}{2} + \sum_{k=1}^{\infty} c_k \cos(k\omega t + \varphi_k)$$

绘制的频谱 $c_k - \omega$ (注意不是指数函数形式的傅里叶系数)和 $\phi_k - \omega$ 称为**单边频谱**,而完整的频谱称为**双边频谱**,从

$$\cos(k\omega t + \varphi_k) = \frac{e^{i(k\omega t + \varphi_k)} + e^{-i(k\omega t + \varphi_k)}}{2}$$

可知单边频谱相比双边频谱,在给定正频率处的幅值加倍,相位不变。这里的频率实际上是角频率 ω ,用频率 f 画频谱只涉及图像的横向伸缩,此处不再赘述。

需要指出的是,本小节中研究的函数均在 $L^2([0,T])$ 空间中,但这并不能保证傅里叶级数存在且收敛,保证这一点需要额外的条件:

2.2 傅里叶级数 11

- $\int_{T} |f(t)| dt < \infty$
- 在一个周期内 f 连续或有有限个第一类间断点,即分段连续 (piecewise continuous)
- 在一个周期内, f 的极值点个数有限

这个条件称为**狄利克雷条件**,满足此条件时,f 的傅里叶级数展开在在任意点收敛到其左右极限的平均值,这个结果称为**狄利克雷定理**。前两个条件是容易理解的,对于最后一个条件,它实际上相当于要求f 是有界变差函数 (Bounded Variation Function),感兴趣的读者可以在实变函数的教材中了解这种函数。在附录7.1中我们将讨论另外的更易理解的条件。

下面考虑函数空间中的"勾股定理"。由公式 (2.6),

$$|f|^2 = \sum_{k=1}^{\infty} c_k^2 |e^{ik\omega t}|^2 = T \sum_{k=1}^{\infty} c_k^2$$

即

$$P = \frac{1}{T} \int_{T} |f(t)|^{2} dt = \sum_{k=1}^{\infty} c_{k}^{2}$$

这个公式称为帕塞瓦尔定理 (Parseval's Thoerem) 或瑞利恒等式 (Rayleigh's Identity),P 为平均功率。 至此,我们得到了傅里叶系数的公式和帕塞瓦尔定理,但其实证明用到的结论是基于有限维线性 空间的,现在就来填补这个逻辑漏洞,对此不感兴趣的读者可以忽略这部分内容。以下设 $\{\phi_n\}_{n=1}^\infty$ 是 $L^2(a,b)$ 的标准正交基, $f\in L^2(a,b)$ (注意这里已经不局限于讨论傅里叶级数,并且与前文未标准化的 正交基略有形式上的差别)。

引理 2.1: 贝塞尔不等式 (Bessel's Inequality)

$$\sum_{n=1}^{\infty} |(f, \phi_n)|^2 \le ||f||^2$$

Proof:

由勾股定理,
$$\|\sum_{n=1}^{N} (f,\phi_n)\phi_n\|^2 = \sum_{n=1}^{N} (f,(f,\phi_n)\phi_n) = \sum_{n=1}^{N} \overline{(f,\phi_n)}(f,\phi_n) = \sum_{n=1}^{N} |(f,\phi_n)|^2$$
因此,对任意正整数 N,0 $\leq \|f - \sum_{n=1}^{N} (f,\phi_n)\phi_n\|$

$$= \|f\|^2 - 2Re(f,\sum_{n=1}^{N} (f,\phi_n)\phi_n) + \|\sum_{n=1}^{N} (f,\phi_n)\phi_n\|^2$$

$$= \|f\|^2 - 2\sum_{n=1}^{N} |(f,\phi_n)|^2 + \sum_{n=1}^{N} |(f,\phi_n)|^2 = \|f\|^2 - \sum_{n=1}^{N} |(f,\phi_n)|^2$$

<math> <math>

从第二行到第三行用到了恒等式 $\|\mathbf{a}+\mathbf{b}\|^2 = \|\mathbf{a}\|^2 + 2Re\langle\mathbf{a},\mathbf{b}\rangle + \|\mathbf{b}\|^2$, Re 表示取实部,这个结论十分简单,留予读者自证。在最终的结论帕塞瓦尔定理中这个不等号将变成等号,但它是不可或缺的,并且我们还将在附录7.1中见到它。

引理 2.2: 级数 $\sum_{n=1}^{N} (f, \phi_n) \phi_n$ 依范数收敛, 并且 $\|\sum_{n=1}^{\infty} (f, \phi_n) \phi_n\| \leq \|f\|$

Proof:

由贝塞尔不等式,
$$\sum_{n=1}^{\infty} |(f,\phi_n)|^2 \le ||f||^2 < \infty, n \to \infty$$
时 $|(f,\phi_n)| \to 0$
任取 $m_1, m_2 \in \mathbb{N}, m_1 < m_2$,由勾股定理, $||\sum_{n=m_1}^{m_2} (f,\phi_n)\phi_n||^2 = \sum_{n=m_1}^{m_2} |(f,\phi_n)|^2 \to 0$
因此 $\sum_{n=1}^{\infty} (f,\phi_n)\phi_n$ 构成柯西列.
令 $m_1 = 1, m_2 \to \infty, ||\sum_{n=1}^{\infty} (f,\phi_n)\phi_n|| = \sum_{n=1}^{\infty} |(f,\phi_n)\phi_n|^2 \le ||f||$

柯西列能够推出收敛是因为 $L^2(a,b)$ 是无限维的完备度量空间,即**希尔伯特空间** (Hilbert space),我们不详细说明这一点。构建这个引理是为了使用希尔伯特空间中内积的连续性,其表述见下一个命题。

命题 2.3: 希尔伯特空间 H 中的内积具有连续性,即如果级数 $\sum_{n=1}^{\infty} \phi_n$ 的部分和 S_N 依范数收敛 到 S,则任给 $y \in H$,总有

$$\lim_{N \to \infty} \langle S_n, y \rangle = \langle S, y \rangle$$

Proof:

$$\begin{split} \langle S,y \rangle - \lim_{N \to \infty} \langle S_n,y \rangle &= \lim_{N \to \infty} \langle S - S_n,y \rangle \\ \lim_{N \to \infty} \|S - S_N\| &= 0 \Rightarrow \lim_{N \to \infty} |\langle S - S_n,y \rangle| \leq \lim_{N \to \infty} \|S - S_N\| \|y\| = 0 \\ &\Rightarrow \lim_{N \to \infty} \langle S - S_n,y \rangle = 0 \Rightarrow \lim_{N \to \infty} \langle S_n,y \rangle = \langle S,y \rangle \end{split}$$

定理 2.4: 以下三个命题是等价的: (对于符号 ~,参考2.1)

- 1. $\forall n, (f, \phi_n) = 0 \Rightarrow f \sim 0$,即 $\{\phi_n\}_{n=1}^{\infty}$ 是完备的标准正交基
- 2. $\forall f \in L^2(a,b)$,有 $f \sim \sum_{n=1}^{\infty} (f,\phi_n)\phi_n$
- 3. $\forall f \in L^2(a,b)$,有帕塞瓦尔恒等式:

$$||f||^2 = \sum_{n=1}^{\infty} |(f, \phi_n)|^2$$

Proof: 我们将证明 $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.

 $1 \Rightarrow 2$:

根据 1 知 g=0,即 2. 这里内积与求和的换序是由命题 2.3 保证的。 $2 \Rightarrow 3$: 由勾股定理,

$$||f||^2 = \lim_{N \to \infty} ||\sum_{n=1}^{N} (f, \phi_n)\phi_n||^2 = \lim_{N \to \infty} \sum_{n=1}^{N} |(f, \phi_n)|^2 = \sum_{n=1}^{\infty} |(f, \phi_n)|^2$$

2.3 傅里叶变换初步 13

 $3 \Rightarrow 1$: $(f, \phi_n) = 0 \Rightarrow ||f|| = 0 \Rightarrow f \sim 0$.

例 2.1. 周期矩形脉冲信号的傅里叶级数展开和频谱图

脉冲宽度为 τ ,脉冲幅度为 E,周期为 $T(\tau < T)$ 的周期矩形脉冲信号,基波角频率 $\omega = \frac{2\pi}{T}$,傅里叶级数展开为

$$f(t) = \sum_{k=1}^{\infty} \frac{E\tau}{T} Sa(\frac{k\omega\tau}{2}) e^{ik\omega t}$$

图 2.1: 周期矩形脉冲信号及其频谱

如图2.2,可以看到,这个频谱与取样函数 $Sa(\omega)$ 非常相似(为了体现这一点,绘制频谱时将基波角频率大幅减小,并不是第一张图直接做傅里叶级数展开的结果),原因将在2.3 中给出。

带宽 (bandwidth) 指最高频率与最低频率之差,表征信号频率的集中程度。对于实信号,有时仅考虑正频率,带宽减半。周期矩形脉冲信号的频谱是无限的,但能量基本集中在最靠近 y 轴的两个零点之间,此时可以将带宽定义为**第一过零点带宽** $B = \frac{2\pi}{3}$ (仅考虑正频率)。

2.3 傅里叶变换初步

在构建傅里叶级数时,使用频率和角频率只涉及书写问题,因为傅里叶级数不会涉及尺度变换、逆变换和卷积,但在傅里叶变换的理论中,这将导致许多公式在形式上有一些差别。这时,将同时给出两种傅里叶变换的公式,左侧为频率版本,用蓝色标注,右侧为角频率版本,用红色标注。对于频率的符号,物理上一般使用 f 或 ν ,而一些傅里叶分析的书上则使用 s 或 ξ ,但鉴于 f 常常用来表示信号或函数,s 用于表示复频率,我们将使用 ξ 作为频率的符号。

定义傅里叶变换的一种动机是从傅里叶级数出发。要从傅里叶级数研究的周期现象转向傅里叶变换研究的非周期现象,自然能够想到在傅里叶级数相关的理论中,令 T 趋于无穷;另一方面,复指数函数比三角函数更适合作为描述振荡(周期)行为的基本函数,因为在三角函数形式的傅里叶级数中,无法有效地区分正频率、负频率,也难以确定应该用正弦还是余弦。

我们做一个简单的尝试,令 $f \in L^2(\mathbb{R})$ (关于 L^2 空间的讨论,见2.1), $T \to \infty$,则

$$c_n = \frac{1}{T} \int_T f(t)e^{-ik\omega t} dt = \frac{1}{T} \int_T f(t)e^{-2\pi ik\xi t} dt \to 0$$

这样做变换将丢失 f 的所有信息,不是我们希望看到的,但很明显,只要给以上公式乘上 T,并认为 $k\omega$ 或 $k\xi$ 是自变量,问题就迎刃而解,得到一个很有意思的积分变换,它正是**傅里叶变换** (Fourier Tansform,FT):

$$\mathcal{F}f(\xi) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\xi t} dt \quad \bigg| \quad \mathcal{F}f(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

有时也用 \hat{f} 或 F 表示 f 的傅里叶变换,记作

$$f \stackrel{\mathcal{F}}{\longleftrightarrow} F$$

并称之为**傅里叶变换对**。傅里叶变换没有最好的符号,在不引起歧义时采用最简洁和便于理解的即可。 其实,在傅里叶变换的理论中,要求 $f \in L^1(\mathbb{R})$ 而不是 $L^2(\mathbb{R})$, \mathbb{R} 是无穷区间, $L^1(\mathbb{R})$ 与 $L^2(\mathbb{R})$ 之间不存在包含关系。可以验证, $f \in L^1(\mathbb{R})$ 时,它的傅里叶变换存在并且是连续的:

$$|\mathcal{F}f(\xi)| = \left| \int_{-\infty}^{\infty} f(t)e^{-2\pi i\xi t} dt \right|$$

$$\leq \int_{-\infty}^{\infty} |f(t)||e^{-2\pi i\xi t}| dt < \infty$$

$$|\mathcal{F}f(\xi+h) - \mathcal{F}f(\xi)| = \left| \int_{-\infty}^{\infty} f(t)(e^{-2\pi i(\xi+h)t} - e^{-2\pi i\xi t}) dt \right|$$

$$\leq \int_{-\infty}^{\infty} |f(t)||e^{-2\pi iht} - 1| dt \to 0(h \to 0)$$

另外, $\mathcal{F}f(x) \to 0 (x \to \infty)$,这个结果称为**黎曼-勒贝格引理** (Riemann-Lebesgue Lemma)。

下面解释 "乘 T,认为 $k\omega$ 或 $k\xi$ 为自变量"的本质。我们来看上一节2.2 末尾的例子,为了体现双边频谱与取样函数的相似性,我们取了一个较为特殊的周期矩形脉冲信号,它的基波角频率应为图2.2中两相邻竖直线间的间隔,即**谱线间隔**,可见其频率极小、周期极大,与我们研究非周期现象所用到的极限情况 $T \to \infty$ 是一致的,换言之,令 $T \to \infty$ 自动地使"傅里叶系数"在频谱中的间隔变小,周期信号趋向非周期信号的过程自动地使离散频谱趋向连续频谱。这样,乘 T 就不难理解了,它的作用是"除以 $\frac{1}{T}$ ", $\frac{1}{T}$ 是所在频率成分处小矩形的宽(类似于黎曼积分),换言之,以频率 ξ 为横坐标,**谱系数** c_n 是 $\frac{n}{T} = n\xi$ 处的小矩形面积, Tc_n 是 f 中对应频率成分的含量,可以理解为单位频段内的谱系数,即频谱密度;以角频率 ω 为横坐标, c_n 是 $\frac{2\pi n}{T} = n\omega$ 处的小矩形面积, Tc_n 是 f 中对应角频率成分的含量。因此, $F(\xi)$ 或 $F(\omega)$ 也称为频谱密度函数。

实际上,从这个角度出发,可以立即得到**傅里叶逆变换** (Inverse Fourier Tansform,IFT) 的公式,因为我们已经将 f 展开为傅里叶级数,这对应着由 f 的傅里叶变换 $\mathcal{F}f$ 还原出 f。我们知道

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{2\pi i \xi t}$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} (\int_T f(t) e^{-2\pi i \xi t} dt) e^{2\pi i \xi t}$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} (\int_T f(t) e^{-2\pi i \xi t} dt) e^{2\pi i \xi t}$$

$$= \frac{1}{T} \sum_{n=-\infty}^{\infty} (\int_T f(t) e^{-i\omega t} dt) e^{i\omega t}$$
根据前文所述的对应关系,做以下替换(注意 $T \to \infty$):
$$\frac{1}{T} \to d\xi, \int_T f(t) e^{-2\pi i \xi t} dt \to \mathcal{F}f(\xi)$$

$$f(t) = \mathcal{F}^{-1}\mathcal{F}(t) = \int_{-\infty}^{\infty} \mathcal{F}f(\xi) e^{2\pi i \xi t} d\xi$$

$$f(t) = \mathcal{F}^{-1}\mathcal{F}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{F}f(\omega) e^{i\omega t} d\omega$$
这里 \mathcal{F}^{-1} 表示取 IFT,和 \mathcal{F} 一样,是一种从函数空间到函数空间的映射(具体是什么函数空间,

2.3 傅里叶变换初步 15

我们将在2.5中讨论,目前可以理解为 $L^1(\mathbb{R})$), \mathcal{F} 是从时域函数到频域(角频域)函数的映射, \mathcal{F}^{-1} 是从频域(角频域)到时域函数的映射。因此,严格来说我们总应该写上自变量,但在不引起歧义的情况下允许略去,例如我们同时承认 $F(\xi) = \mathcal{F}[f(t)](\xi)$ 和 $F(\xi) = \mathcal{F}[f(t)]$ 的写法。

我们从傅里叶级数类比得到了傅里叶变换及其逆变换的定义,但还没有严格证明逆变换将给出原有的时域函数,即著名的**傅里叶反演公式** (the Fourier Inversion Thoerem),证明将在7.2给出,而不会导致循环论证。现在先介绍一些傅里叶变换的性质,在实际计算傅里叶变换时,常常不会带入定义计算,而是通过这样的运算性质来计算。

• 对偶性: 记反转信号 (the reversed signal) 为 $f^-(t) = f(-t)$, 则

$$(\mathcal{F}f)^- = \mathcal{F}(f^-) = \mathcal{F}^{-1}f \qquad (\mathcal{F}f)^- = \mathcal{F}(f^-) = 2\pi\mathcal{F}^{-1}f$$

$$\mathcal{F}\mathcal{F}f = f^- \qquad \mathcal{F}\mathcal{F}f = 2\pi f^-$$

$$f$$
是实信号 $\Rightarrow \mathcal{F}f^- = \overline{\mathcal{F}f}$
$$f$$
是实信号 $\Rightarrow \mathcal{F}f^- = \overline{\mathcal{F}f}$

时域反转,频域也反转,因此我们可以不区分 $(\mathcal{F}f)^- = \mathcal{F}(f^-)$,将它们全部写作 $\mathcal{F}f^-$. 不涉及收敛性的问题时,的确可以做多次傅里叶变换,只是此时不再具有明显的物理意义,因而也不纠结所选用的符号。

- **对称性**: \mathcal{F}_f 与 f 奇偶性相同; f 是实函数时,如果 f 还是偶函数,则 \mathcal{F}_f 也是实函数,如果 f 还是商函数,则 \mathcal{F} 是纯虚函数
- 线性性: $\forall f, g \in L^1(\mathbb{R}), \mathcal{F}(af + bg) = a\mathcal{F}f + b\mathcal{F}g$, 即 \mathcal{F} 是线性算子
- 平移定理:

$$\mathcal{F}[f(t-b)](\xi) = e^{-2\pi i \xi b} \mathcal{F}f(\xi) \qquad \mathcal{F}[f(t-b)](\omega) = e^{-i\omega t} \mathcal{F}f(\omega)$$

$$\mathcal{F}[f(t)e^{2\pi i \xi t}] = \mathcal{F}f(\xi-b) \qquad \mathcal{F}[f(t)e^{ibt}](\omega) = \mathcal{F}f(\omega-b)$$

可见信号时移 $|\mathcal{F}f|$,而仅改变 $\mathcal{F}f$ 的相位。

• 伸缩定理:

$$\begin{split} \mathcal{F}[f(at)](\xi) &= \frac{1}{|a|} \mathcal{F}f(\frac{\xi}{a}) \\ \mathcal{F}f(a\xi) &= \frac{1}{|a|} \mathcal{F}[f(\frac{t}{a})] \end{split} \qquad \begin{aligned} \mathcal{F}[f(at)](\omega) &= \frac{1}{|a|} \mathcal{F}f(\frac{\omega}{a}) \\ \mathcal{F}f(a\xi) &= \frac{1}{|a|} \mathcal{F}[f(\frac{t}{a})] \end{aligned}$$

信号反转可看作 a=-1 的特例。可以认为两种频率下的傅里叶变换是通过伸缩得到的,即

$$2\pi\xi = \omega, \mathcal{F}(2\pi\xi) = \mathcal{F}(\omega)$$

a>1,时域收缩,频域舒张、变矮; 0<a<1,时域舒张,频域收缩、变高; a<0,时域和频域都额外做一次反转。

• 微分性质:

$$\mathcal{F}(f')(\xi) = 2\pi i \xi \mathcal{F}f(\xi) \qquad \qquad \mathcal{F}(f')(\omega) = i\omega \mathcal{F}f(\omega)$$

$$\mathcal{F}(2\pi i t f)(\xi) = -(\mathcal{F}f)'(\xi) \qquad \qquad \mathcal{F}[i t f(t)](\omega) = -(\mathcal{F}f)'(\omega)$$

$$\mathbb{P}\mathcal{F}(t f)(\xi) = \frac{i}{2\pi} (\mathcal{F}f)'(\xi) \qquad \qquad \mathbb{P}\mathcal{F}(t f)(\omega) = i(\mathcal{F}f)'(\omega)$$

最后一步使用了线性性;容易将此性质推广至任意阶导数。

Proof:

1. 对偶性

$$(\mathcal{F}f)^{-}(\xi) = \int_{-\infty}^{\infty} f(t)e^{2\pi i\xi t} dt \qquad (\mathcal{F}f)^{-}(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t} dt$$

$$\mathcal{F}(f^{-})(\xi) = \int_{-\infty}^{\infty} f(-t)e^{-2\pi i\xi t} dt \qquad \mathcal{F}(f^{-})(\omega) = \int_{-\infty}^{\infty} f(-t)e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} f(t)e^{2\pi i\xi t} dt \qquad = \int_{-\infty}^{\infty} f(t)e^{i\omega t} dt$$

$$\mathcal{F}^{-1}f(x) = \int_{-\infty}^{\infty} f(t)e^{2\pi ixt} dt \qquad \mathcal{F}^{-1}f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{i\omega t} dt$$

因此

$$(\mathcal{F}f)^- = \mathcal{F}(f^-) = \mathcal{F}^{-1}f \quad | \quad (\mathcal{F}f)^- = \mathcal{F}(f^-) = 2\pi\mathcal{F}^{-1}f$$

同时取傅里叶变换, 即得

FFf = f⁻
 FFf = 2πf⁻

 f 是实信号时,
$$f = \overline{f}$$
,
 f 是实信号时, $f = \overline{f}$,

 Ff⁻(ξ) = $\int_{-\infty}^{\infty} f(t)e^{2\pi i\xi t} dt$
 Ff⁻(ω) = $\int_{-\infty}^{\infty} f(t)e^{i\omega t} dt$

 = $\int_{-\infty}^{\infty} f(t)e^{-2\pi i\xi t} dt = \overline{\mathcal{F}f(\xi)}$
 = $\int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = \overline{\mathcal{F}f(\omega)}$

$$\mathcal{F}\mathcal{F}f = 2\pi f^-$$

f 是实信号时, $f = \overline{f}$,
 $\mathcal{F}f^-(\omega) = \int_{-\infty}^{\infty} f(t)e^{i\omega t} dt$
 $= \overline{\int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt} = \overline{\mathcal{F}f(\omega)}$

- 2. 对称性
- 根据对偶性立即得到。
- 3. 线性性

得自积分的线性性。

4. 平移定理

$$\mathcal{F}[f(t-b)](\xi) = \int_{-\infty}^{\infty} f(t-b)e^{-2\pi i\xi t} dt$$

$$= \int_{-\infty}^{\infty} f(t)e^{-2\pi i\xi(t+b)} dt$$

$$= e^{-2\pi i\xi b} \int_{-\infty}^{\infty} f(t)e^{-2\pi i\xi t} dt$$

$$= e^{-2\pi i\xi b} \mathcal{F}f(\xi)$$

$$= e^{-i\omega b} \mathcal{F}f(\omega)$$

$$\mathcal{F}f(\xi-b) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i(\xi-b)t} dt$$

$$= \int_{-\infty}^{\infty} (f(t)e^{2\pi ibt}) e^{-2\pi i\xi t} dt$$

$$= \mathcal{F}[f(t)e^{2\pi ibt}](\xi)$$

$$\mathcal{F}[f(t-b)](\omega) = \int_{-\infty}^{\infty} f(t-b)e^{-i\omega t} dt$$

$$= e^{-i\omega b} \int_{-\infty}^{\infty} f(t)e^{-i\omega(t+b)} dt$$

$$= e^{-i\omega b} \mathcal{F}f(\omega)$$

$$\mathcal{F}f(\omega-b) = \int_{-\infty}^{\infty} f(t)e^{-i(\omega-b)t} dt$$

$$= \int_{-\infty}^{\infty} (f(t)e^{2\pi ibt}) e^{-2\pi i\xi t} dt$$

$$= \mathcal{F}[f(t)e^{2\pi ibt}](\xi)$$

$$\mathcal{F}[f(t-b)](\omega) = \int_{-\infty}^{\infty} f(t-b)e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} f(t)e^{-i\omega(t+b)} dt$$

$$= e^{-i\omega b} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

$$= e^{-i\omega b} \mathcal{F}f(\omega)$$

$$\mathcal{F}f(\omega - b) = \int_{-\infty}^{\infty} f(t)e^{-i(\omega - b)t} dt$$

$$= \int_{-\infty}^{\infty} (f(t)e^{ibt}) e^{-i\omega t} dt$$

$$= \mathcal{F}[f(t)e^{ibt}](\xi)$$

5. 伸缩定理

$$\mathcal{F}[f(at)](\xi) = \int_{-\infty}^{\infty} f(at)e^{2\pi i\xi t} dt$$

$$= \frac{1}{|a|} \int_{-\infty}^{\infty} f(t)e^{\frac{2\pi i\xi t}{a}} dt (变量代換)$$

$$= \frac{1}{|a|} \mathcal{F}f(\frac{\xi}{a})$$

足代換)
$$\mathcal{F}[f(at)](\omega) = \int_{-\infty}^{\infty} f(at)e^{i\omega t} dt$$
$$= \frac{1}{|a|} \int_{-\infty}^{\infty} f(t)e^{\frac{i\omega t}{a}} dt$$
(变量代換)
$$= \frac{1}{|a|} \mathcal{F}f(\frac{\omega}{a})$$

注意变量代换时,如果 a<0,积分上下限也会改变,这正是绝对值的来源,对此有疑惑的读者可以 自行分情况验算。对于频域的伸缩定理,仅仅是时域伸缩定理的直接推论。

2.3 傅里叶变换初步 17

6. 微分性质

 $e^{-2\pi i \xi t} f(t) \Big|_{-\infty}^{\infty}$, $e^{-i\omega t} f(t) \Big|_{-\infty}^{\infty} = 0$ 是因为 $f \in L^{1}(\mathbb{R})$ 要求反常积分 $\int_{\mathbb{R}} |f(t)| dt < \infty$, 其必要条件为 $f(t) \to 0$, $t \to \infty$, 而复指数函数部分模值恒为 1。对于后一等式中将求导与积分交换的操作,实际上是**莱布尼兹积分法则**,也即含参变量积分的求导,通常需要条件(以角频率形式为例)

① $\int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$ 对每个 ω 可积

②
$$\frac{\partial f(t)e^{-i\omega t}}{\partial \omega} = -itf(t)e^{-i\omega t}$$
 存在

因此

③ 存在可积函数 g(t) 使得 $|-itf(t)e^{-i\omega t}| \leq g(t)$

③成立是因为定理假设 f(t), tf(t) 能够进行傅里叶变换,从而 f(t), $tf(t) \in L^1((R))$, g(t) = tf(t). 工程上一般不涉及这些,仅作形式计算。也可以由第一个微分性质取傅里叶逆变换,再令 $f' = \mathcal{F}g$ 。

下面介绍一些常用信号的傅里叶变换,并使用傅里叶反演公式和对偶性得到一些难以直接计算的常用傅里叶变换。

例 3.1. 在2.2中讨论了矩形函数 $f(t) = E \cdot \Pi_T(t)$ 的傅里叶变换,现在可以验证它的频谱与取样函数相似:

$$\mathcal{F}f(\xi) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\xi t} dt$$

$$= E \int_{-\infty}^{\infty} \Pi_{T}(t)e^{-2\pi i\xi t} dt$$

$$= E \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-2\pi i\xi t} dt$$

$$= E \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-2\pi i\xi t} dt$$

$$= -\frac{E}{2\pi i\xi} e^{-2\pi i\xi t} \Big|_{-\frac{T}{2}}^{\frac{T}{2}}$$

$$= \frac{e^{\pi i\xi T} - e^{-\pi i\xi T}}{2i} \frac{E}{\pi \xi}$$

$$= \frac{E}{\pi \xi} \sin(\pi T \xi) = ET \operatorname{sinc}(T \xi)$$

$$\mathcal{F}\Pi_{T}(\xi) = T \operatorname{sinc}(T \xi)$$

$$\mathcal{F}\Pi_{T}(\omega) = T \operatorname{Sa}(\frac{T\omega}{2})$$

$$\mathcal{F}\Pi_{T}(\omega) = T \operatorname{Sa}(\frac{T\omega}{2})$$

$$\mathcal{F}\Pi_{T}(\omega) = \frac{1}{2}\Pi_{T}(\omega)$$

例 3.2. 在1.2中介绍了狄拉克 δ 函数,实际上它应该作为一个分布来理解,见2.5,不过我们可以从形式

上求出它的傅里叶变换。

$$\mathcal{F}\delta(\xi) = \int_{-\infty}^{\infty} \delta(t)e^{-2\pi i\xi t} dt \qquad \mathcal{F}\delta(\omega) = \int_{-\infty}^{\infty} \delta(t)e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} \delta(t) dt = 1 \qquad = \int_{-\infty}^{\infty} \delta(t) dt = 1$$

根据傅里叶变换的对偶性,我们当然希望恒为 1 的函数的傅里叶变换是 δ 或 $2\pi\delta$ (取决于是用频 率做变换还是用角频率做变换),然而,1在无限区间上必定是不可积的,在常规意义下它不能够做傅 里叶变换。这个问题将在2.5中讨论,那时就可以对相当大范围内的函数做傅里叶变换,还将看到周期函 数的傅里叶变换与傅里叶级数的深刻关系。现在我们暂且承认公式

$$\mathcal{F}\delta(\xi) = 1$$
 $\mathcal{F}\delta(\omega) = 1$ $\mathcal{F}1 = \delta(\xi)$ $\mathcal{F}1 = 2\pi\delta(\omega)$

其中
$$1$$
 表示恒为 1 的函数。根据傅里叶变换的平移定理,立即得到:
$$\mathcal{F}[\delta_a](\xi) = e^{-2\pi i \xi a} \qquad \qquad \mathcal{F}[\delta_a](\omega) = e^{-i\omega a}$$

$$\mathcal{F}[e^{2\pi i a t}] = \delta_a \qquad \qquad \mathcal{F}[e^{iat}] = 2\pi \delta_a$$

根据傅里叶变换的微分性质得到:

$$\mathcal{F}[t^n](\xi) = (\frac{i}{2\pi})^n \delta^{(n)}(\xi) \quad \middle| \quad \mathcal{F}[t^n](\omega) = (i)^n \cdot 2\pi \delta^{(n)}(\omega)$$

我们还希望从 $u'(t) = \delta(t), sgn'(t) = 2\delta(t)$ 得到单位阶跃函数 $\mathbf{u}(t)$ 和符号函数 $\mathrm{sgn}(t)$ 的傅里叶变 换, 但在考虑 δ 的不定积分时, 必须处理 "C", 它将导致频域中出现 $C\delta$ 或 $2\pi C\delta$ 项。注意到 san(t)是奇函数,我们可以由此确定它和单位阶跃函数的傅里叶变换中 C 的值,从而得到正确的结果:

用傅里叶反演公式,

$$\mathcal{F}[\frac{1}{t}](\xi) = -\pi i sgn(\xi) \qquad \qquad \mathcal{F}[\frac{1}{t}](\omega) = -\pi i sgn(\omega)$$
 例 3.3. Λ 函数,它在卷积的章节中是一个很好的例子。

$$\Lambda(t) = \begin{cases} 1 - |t| & \text{if } |t| \le 1\\ 0 & \text{if } |t| > 1 \end{cases}$$

图 2.2: Λ 函数图像

2.3 傅里叶变换初步 19

$$\begin{tabular}{l} \begin{tabular}{l} \begin{ta$$

记
$$e^{i\omega t}$$
 的原函数为 $F(t)=\frac{e^{i\omega t}}{i\omega}$
$$\mathcal{F}\Lambda(\omega)=\int_{-\infty}^{\infty}\Lambda(t)e^{-i\omega t}\,dt$$

$$=\int_{-1}^{0}(1+t)e^{-i\omega t}\,dt+\int_{0}^{1}(1-t)e^{-i\omega t}\,dt$$

$$=F(1)-F(-1)-\frac{1}{i\omega}\left(te^{-i\omega t}\Big|_{-1}^{0}-\int_{-1}^{0}e^{-i\omega t}\,dt-te^{-i\omega t}\Big|_{0}^{1}+\int_{0}^{1}e^{-i\omega t}\,dt\right)$$

$$=\frac{F(1)-2F(0)+F(-1)}{i\omega}$$

$$=\frac{e^{i\omega}+e^{-i\omega}-2}{(i\omega)^{2}}=\frac{4}{(\omega)^{2}}(\frac{e^{\frac{\omega}{2}}-e^{-\frac{\omega}{2}}}{2i})^{2}$$

$$=Sa^{2}(\frac{\omega}{2})$$

$$\mathcal{F}sinc^{2}(\xi) = \Lambda(t) \quad \middle| \quad \mathcal{F}Sa^{2}(\frac{\omega}{2}) = \Lambda(t)$$

例 3.4. 高斯函数 $G(t) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\frac{t^2}{2\sigma^2}}$, 求它的傅里叶变换的方法较为特殊:

$$\mathcal{F}G(\xi) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} e^{-2\pi i \xi t} dt$$

$$\frac{d}{d\xi} \mathcal{F}G(\xi) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} (-2\pi i t) e^{-2\pi i \xi t} dt$$

$$= 2\pi i \sigma^2 \int_{-\infty}^{\infty} e^{-2\pi i \xi t} d\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}}$$

$$= -4\pi^2 \sigma^2 \xi \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} e^{-2\pi i \xi t} dt$$

$$= -4\pi^2 \sigma^2 \xi \mathcal{F}G$$

$$\mathcal{F}G(\omega) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} e^{-i\omega t} dt$$

$$= -\sigma^2 \omega \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} e^{-i\omega t} dt$$

$$= -\sigma^2 \omega \mathcal{F}G$$

这是一个可分离变量的微分方程,

$$\mathcal{F}G(\xi) = \mathcal{F}G(0)e^{-2\pi^2\sigma^2\xi^2}$$

$$\mathcal{F}G(0) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} dt = 1$$

$$\mathcal{F}G(\xi) = e^{-2\pi^2\sigma^2\xi^2}$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} e^{-2\pi i\xi t} dt$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} (-2\pi it) e^{-2\pi i\xi t} dt$$

$$= 2\pi i\sigma^2 \int_{-\infty}^{\infty} e^{-2\pi i\xi t} d\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}}$$

$$= -4\pi^2 \sigma^2 \xi \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} e^{-2\pi i\xi t} dt$$

$$= -4\pi^2 \sigma^2 \xi \mathcal{F} G$$

$$\mathcal{F}G(\omega) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} e^{-i\omega t} dt$$

$$= i\sigma^2 \int_{-\infty}^{\infty} e^{-i\omega t} d\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}}$$

$$= -\sigma^2 \omega \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} e^{-i\omega t} dt$$

$$= -\sigma^2 \omega \mathcal{F} G$$

$$\mathcal{F}G(\xi) = \mathcal{F}G(0)e^{-2\pi^2\sigma^2\xi^2}$$

$$\mathcal{F}G(0) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2\sigma^2}} dt = 1$$

$$\mathcal{F}G(\xi) = e^{-2\pi^2\sigma^2\xi^2}$$

$$\mathcal{F}G(\xi) = e^{-2\pi^2\sigma^2\xi^2}$$

$$\mathcal{F}G(\xi) = e^{-\frac{\sigma^2\omega^2}{2\sigma^2}}$$

图 2.3: 高斯函数图像

例 3.5. 单边指数函数
$$f(t) = \begin{cases} e^{-at}, & \text{if } t \geq 0 \\ 0, & \text{if } t < 0 \end{cases}$$
 和双边指数函数 $g(t) = \begin{cases} e^{-at}, & \text{if } t \geq 0 \\ e^{at}, & \text{if } t < 0 \end{cases}$
$$\mathcal{F}f(\xi) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\xi t} \, dt \\ = \int_{0}^{\infty} e^{-at}e^{-2\pi i\xi t} \, dt \\ = -\frac{1}{a+2\pi i\xi} e^{-(a+2\pi i\xi)t} \Big|_{0}^{\infty} \\ = \frac{1}{a+2\pi i\xi} \end{cases}$$

$$= \frac{1}{a+2\pi i\xi}$$

$$= 2Re\mathcal{F}f(\xi) = \frac{2a}{a^2+4\pi^2\xi^2}$$

$$= 2Re\mathcal{F}f(\omega) = \frac{2a}{a^2+\omega^2}$$

$$\exists f(t)|^2 \, dt = \int_{-\infty}^{\infty} |\mathcal{F}f(\omega)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{F}f(\omega)|^2 \, d\omega$$

$$= \int_{-\infty}^{\infty} f(t)e^{-2\pi i\xi x} \, dx \end{pmatrix} \mathcal{F}^{-1}\overline{g}(\xi) \, d\xi$$

$$= \int_{-\infty}^{\infty} f(x) \, dx \int_{-\infty}^{\infty} \mathcal{F}^{-1}\overline{g}(x) \, dx$$

$$= \int_{-\infty}^{\infty} f(x) \, \mathcal{F}\mathcal{F}^{-1}\overline{g}(x) \, dx$$

$$= \int_{-\infty}^{\infty} f(x) \, \mathcal{F}\mathcal{F}^{-1}\overline{g}(x) \, dx$$

$$= 2\pi \int_{-\infty}^{\infty} f(x) \, \mathcal{F}\mathcal{F}^{-1}\overline{g}(x) \, dx$$

取 g = f 即证。注意我们并不要求 g 是实信号, $\overline{\mathcal{F}g} \neq \mathcal{F}^{-1}g$.

2.4 卷积

信号处理讨论的一个基本问题是**滤波**,即希望把一个信号输入滤波系统后,输出的信号的一些频率成分被剔除或大幅减少,以低通滤波器为例,从数学上讲,就是把信号的频域形式乘以一个矩形函数或一个在给定的频率值之外快速下降到接近于 0 的函数,这就引出了一个问题: 在频域乘一个函数,在时域上的表现是什么?我们知道,一般而言没有 $\mathcal{F}(fg) = \mathcal{F}f\mathcal{F}g$ 。一个自然的想法是,看能否定义一种运算,使得在频域乘一个函数,相当于在时域与这个函数的时域形式做该种运算。实际上,这种运算是存在的,它正是**卷积** (convolution)

21

下面就来找出这个运算。设
$$f \stackrel{\mathcal{F}}{\longleftrightarrow} F, g \stackrel{\mathcal{F}}{\longleftrightarrow} G,$$

$$F(\xi)G(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i\xi x} dx \int_{-\infty}^{\infty} g(y)e^{-2\pi i\xi y} dy$$

$$= \iint_{\mathbb{R}^2} f(x)g(y)e^{-2\pi i\xi(x+y)} dx dy$$

$$\Rightarrow z = x + y, \quad \text{则积分区域仍为 } \mathbb{R}^2,$$

$$F(\omega)G(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx \int_{-\infty}^{\infty} g(y)e^{-i\omega y} dy$$
$$= \iint_{\mathbb{R}^2} f(x)g(y)e^{-i\omega(x+y)} dx dy$$

$$dxdz = \begin{vmatrix} \frac{\partial(x,z)}{\partial(x,y)} \end{vmatrix} dxdy = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} dxdy = dxdy$$

$$F(\xi)G(\xi) = \iint_{\mathbb{R}^2} f(x)g(z-x)e^{-2\pi i\xi z} dx dz$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i\xi z} dz \int_{-\infty}^{\infty} f(x)g(z-x)dx$$

$$= \mathcal{F}[\int_{-\infty}^{\infty} f(x)g(z-x)dx](\xi)$$

$$F(\omega)G(\omega) = \iint_{\mathbb{R}^2} f(x)g(z-x)e^{-i\omega z} dx dz$$

$$= \int_{-\infty}^{\infty} e^{-i\omega z} dz \int_{-\infty}^{\infty} f(x)g(z-x)dx$$

$$= \mathcal{F}[\int_{-\infty}^{\infty} f(x)g(z-x)dx](\omega)$$

因此我们定义函数 f,g 的卷积为

$$\begin{aligned}
& f(x)g(z-x)e^{-2\pi i\xi z} dx dz \\
&= \int_{-\infty}^{\infty} e^{-2\pi i\xi z} dz \int_{-\infty}^{\infty} f(x)g(z-x)dx \\
&= \mathcal{F}[\int_{-\infty}^{\infty} f(x)g(z-x)dx](\xi)
\end{aligned} \qquad F(\omega)G(\omega) = \iint_{\mathbb{R}^2} f(x)g(z-x)e^{-i\omega z} dx dz \\
&= \int_{-\infty}^{\infty} e^{-i\omega z} dz \int_{-\infty}^{\infty} f(x)g(z-x)dx \\
&= \mathcal{F}[\int_{-\infty}^{\infty} f(x)g(z-x)dx](\omega)$$

$$(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y) \, dy$$
 (2.7)

并且有 $\mathcal{F}(f*g) = \mathcal{F}f\mathcal{F}g$. 以上是时域卷积的性质,由傅里叶反演公式,不难想到频域卷积也有类似的 性质。令 $f = \mathcal{F} \mathfrak{f}, g = \mathcal{F} \mathfrak{g}$, 对以上公式两边同时取傅里叶逆变换:

$$f * g = \mathcal{F}^{-1}(\mathcal{F}f\mathcal{F}g)$$

$$\Leftrightarrow \mathcal{F}\mathfrak{f} * \mathcal{F}\mathfrak{g} = \mathcal{F}^{-1}[\mathcal{F}\mathcal{F}\mathfrak{f}\mathcal{F}\mathcal{F}\mathfrak{g}]$$

$$= \mathcal{F}^{-1}(\mathfrak{f}^{-}\mathfrak{g}^{-})$$

$$= \mathcal{F}(\mathfrak{f}\mathfrak{g})$$

$$\Leftrightarrow \mathcal{F}(fg)(\xi) = \mathcal{F}f * \mathcal{F}g(\xi)$$

$$f * g = \mathcal{F}^{-1}(\mathcal{F}f\mathcal{F}g)$$

$$\Leftrightarrow \mathcal{F}\mathfrak{f} * \mathcal{F}\mathfrak{g} = \mathcal{F}^{-1}[\mathcal{F}\mathcal{F}\mathfrak{f}\mathcal{F}\mathcal{F}\mathfrak{g}]$$

$$= \mathcal{F}^{-1}(4\pi^{2}\mathfrak{f}^{-}\mathfrak{g}^{-})$$

$$= 2\pi\mathcal{F}(\mathfrak{f}\mathfrak{g})$$

$$\Leftrightarrow \mathcal{F}(fg)(\xi) = \mathcal{F}f * \mathcal{F}g(\xi)$$

综上得到卷积定理 (the convolution thoerem):

$$\mathcal{F}(f*g)(\xi) = \mathcal{F}f(\xi)\mathcal{F}g(\xi) \qquad \qquad \mathcal{F}(f*g)(\omega) = \mathcal{F}f(\omega)\mathcal{F}g(\omega)$$

$$\mathcal{F}(fg)(\xi) = (\mathcal{F}f*\mathcal{F}g)(\xi) \qquad \qquad \mathcal{F}(fg)(\omega) = \frac{1}{2\pi}(\mathcal{F}f*\mathcal{F}g)(\omega)$$
 上一节中我们曾花费大量的篇幅寻找 Λ 的傅里叶变换,现在可以用卷积定理得到它,因为 Λ =

 $\Pi_{1/2} * \Pi_{1/2}$ (读者可以自行用代数方法验证)。

在不引起歧义时,我们也承认 f(t)*g(t) 和 $f(t)*e^{t+1}$ 这样的写法。需要注意,f(2t)*g(t) 对应着 两种理解: $\int_{-\infty}^{\infty} f(2t-x)g(x) dx$ 和 $\int_{-\infty}^{\infty} f(2(t-x))g(x) dx$,第二种才是对的,因为我们认为 f(2t) 作 为一个新的函数 F(t) = f(2t) 与 g(t) 进行卷积。

作为一种新的函数空间上的运算,我们自然要讨论它是否满足线性性、结合律、交换律。事实上, 它们都是成立的:

$$f * (ag_1 + bg_2) = af * g_1 + bf * g_2$$
(2.8)

$$(f * g) * h = f * (g * h)$$
 (2.9)

$$f * g = g * f \tag{2.10}$$

线性性得自积分的线性性,交换律通过变量替换即可证明,下面仅证明结合律。

Proof:

$$(f * g) * h(x) = \int_{-\infty}^{\infty} (f * g)(x - y)h(y) \, dy = \int_{-\infty}^{\infty} h(y) \, dy \int_{-\infty}^{\infty} f(z)g(x - y - z) \, dz$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(z)g(x - y - z)h(y) \, dy \, dz = \int_{-\infty}^{\infty} f(z)(g * h)(x - z) \, dz$$

也可以通过取傅里叶变换的方式证明它们,但这样会缩减证明有效的范围,因为卷积存在只要求积分 $(f*g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y) dy$ 存在(它有许多种充分条件,不再一一讨论),而取傅里叶变换则要求 f,g,f*g 的傅里叶变换存在。

接着讨论卷积是否具有"幺元",即与任一函数卷积,总得到它本身。

$$\mathcal{F}(f * \delta)(\xi) = \mathcal{F}f(\xi)\mathcal{F}\delta(\xi) = \mathcal{F}f(\xi)$$

$$f(t) = (f * \delta)(t) = \int_{-\infty}^{\infty} f(x)\delta(t - x) dx$$

$$\mathcal{F}(f * \delta)(\omega) = \mathcal{F}f(\omega)\mathcal{F}\delta(\omega) = \mathcal{F}f(\omega)$$

$$f(t) = (f * \delta)(t) = \int_{-\infty}^{\infty} f(x)\delta(t - x) dx$$

因此 δ 是 "卷积幺元", 傅里叶变换构成 $\langle L^1(\mathbb{R}), +, \cdot \rangle$ 与 $\langle \mathcal{F}(L^1(\mathbb{R})), +, * \rangle$ 之间的环同态。

一些简单的卷积可以通过画图法进行计算。将一个函数翻转、平移,再与另一函数相乘、积分,就得到了它们的卷积,下面用 $\Lambda=\Pi_{1/2}*\Pi_{1/2}$ 的例子加以说明。 $\Pi_{1/2}$ 是偶函数, $\Pi_{1/2}(-t)=\Pi_{1/2}(t)$. 计算 $(\Pi_{1/2}*\Pi_{1/2})(x)=\int_{-\infty}^{\infty}\Pi_{1/2}(y)\Pi_{1/2}(x-y)\,dy$ 时,如果 |x|>1,则将 $\Pi_{1/2}(-t)$ 平移的距离过大,乘积为 0;如果 |x|<1,则两矩形开始重合,重合部分函数乘积为 1,其面积即为此时的积分值,也就是 $(\Pi_{1/2}*\Pi_{1/2})(x)$;当 x=0 时,两矩形重合程度达到最大,卷积所得函数也达到最大值。如图2.4所示。

图 2.4: 图解法求券积示例

初次接触卷积时,往往会对它的定义感到疑惑,因为在数学分析的课程中我们很少见到这种"翻转、平移、相乘、积分"的结构。需要指出,卷积并不只有"时域相乘,频域卷积;时域卷积,频域相乘"的物理意义,例如概率论中两连续型随机变量 X,Y 之和作为一种新的随机变量 Z,其概率密度函数 Z

正是两个独立的随机变量的概率密度函数的卷积 $f_X * f_Y(z)$. 类似于用"求曲线下方的面积"或"已知速度求位移"引入积分,尽管我们用一种较为自然的方式引入了卷积,但不应该认为它只有单一的意义。不过,还是可以建立一些卷积的性质来辅助我们理解卷积。

1. 卷积是一种起"平均化"作用的运算

给定区间 [a,b] 和权函数 w(x), f(x) 的加权均值为

$$\frac{\int_a^b f(x)w(x) \, dx}{\int_a^b w(x) \, dx}$$

给定 x 时,w(y) = g(x - y) 就是 f 的加权均值的倍数。进一步,卷积的光滑性高于用来卷积的两个函数,并且在 f 可导时有 (f * g)' = f' * g,因为

$$(f * g)'(x) = \frac{d}{dx} \int_{-\infty}^{\infty} f(x - y)g(y) \, dy = \int_{-\infty}^{\infty} f'(x - y)g(y) \, dy = f' * g$$

2. 卷积函数的支集

我们首先引入支集(support)的概念,读者只需理解其直观,真正理解它需要一些拓扑学的基础。设 $f:\mathbb{R}\to\mathbb{R}^1$,f 的支集 $supp\ f=\overline{\{x\in\mathbb{R}:f(x)\neq 0\}}$,这里上划线不是取共轭,而是对集合取闭包,闭包包括集合本身的和它的极限点, \mathbb{R} 中集合的闭包是闭集,例如,(a,b) 的闭包是 [a,b]. 集合 $\{x\in\mathbb{R}:f(x)\neq 0\}$ 的提出是自然的,取闭包则不那么容易理解。实际上,在度量空间(采用度量导出的拓扑)中,一个集合是紧集(任给一个开区间组成的覆盖,总能从中取出有限覆盖)就等价于它是有界闭集,描述有界区间的一种方式是说它是闭包紧的。因此,我们可以说在无穷远处为 0 的函数有**紧**支集(compact support),对于 p 次连续可导的函数 $f\in C^p(\mathbb{R})$,我们记其中具有紧支集的函数空间为 $C^p_0(\mathbb{R})$ 。至于引入这种术语的好处,则不属于本书的讨论范围。

卷积能够将两个函数的支集"相加"。设 $suppf \in [a,b], suppg \in [c,d]$,则 $supp(f*g) \in [a+c,b+d]$,因为:

$$(f*g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y) \, dy$$
 积分值非 $0 \Rightarrow y \in [a,b], x-y \in [c,d] \Leftrightarrow x \in [a+c,b+d]$

- 3. 函数变换下的卷积
- (1) 信号反转时的卷积:

$$(f^-)*(g^-) = (f*g)^-$$

Proof:

$$(f^{-}) * (g^{-})(x) = \int_{-\infty}^{\infty} f^{-}(y)g^{-}(x-y) \, dy$$

$$= \int_{-\infty}^{\infty} f(-y)g(-(x-y)) \, dy$$

$$= \int_{-\infty}^{\infty} f(z)g(-(x+z))(-dz) \qquad (z = -y)$$

$$= \int_{-\infty}^{\infty} f(z)g(-x-z) \, dz$$

$$= (f * g)^{-}(x)$$

¹这里不对多元函数、复变函数等进行讨论,但读者容易自行推广这个定义。

如果只有一个信号反转,则结果不再是卷积,而是 f 与 g 的互相关(在 f,g 都是实信号时),下面很快将讨论它。

(2) 信号时延、伸缩时的卷积

为了避免符号带来的误解,以后将用 τ 表示时延 $\tau_b f(t) = f(t-b)$,用 σ 表示伸缩 $\sigma_a f(t) = f(at)$,并避免使用 τ , σ 作为变量的符号。这样的做法在研究分布的性质时是必要的,因为严格来讲不能给出分布的"自变量",但例如 δ 函数这样的分布又具有明显的尺度变换的性质,见2.5.

$$(\tau_b f) * g = \tau_b (f * g) = f * (\tau_b g)$$
$$(\sigma_a f) * (\sigma_a g) = \frac{1}{|a|} \sigma_a (f * g)$$

Proof:

$$(\tau_b f) * g(x) = \int_{-\infty}^{\infty} \tau_b f(y) g(x - y) \, dy$$

$$= \int_{-\infty}^{\infty} f(y - b) g(x - y) \, dy$$

$$= \int_{-\infty}^{\infty} f(z) g(x - (z + b)) \, dz \qquad (z = y - b)$$

$$= \int_{-\infty}^{\infty} f(z) g((x - b) - z) \, dz$$

$$= (f * g)(x - b) = \tau_b (f * g)(x)$$

类似地,可以证明 $f * (\tau_b g) = \tau_b (f * g)$.

$$(\sigma_a f) * (\sigma_a g)(x) = \int_{-\infty}^{\infty} \sigma_a f(y) \sigma_a g(x - y) dy$$

$$= \int_{-\infty}^{\infty} f(ay) g(a(x - y)) dy$$

$$= \frac{1}{|a|} \int_{-\infty}^{\infty} f(z) g(ax - z) dz \qquad (z = ay, dy = \frac{dz}{a})$$

$$= \frac{1}{|a|} (f * g)(ax) = \frac{1}{|a|} \sigma_a (f * g)(x)$$

和傅里叶变换的伸缩定理类似,这里也需要讨论 a 的正负,但不再赘述。

4. "面积"关系

我们已经提到,概率论中两个独立随机变量之和的概率密度函数是它们各自概率密度函数的卷积,这当然要求两个概率密度函数在 \mathbb{R} 上的积分值为 1 时,它们的卷积在 \mathbb{R} 上的积分值也为 1。更一般地,如果 $f,g\in L^1(\mathbb{R})$,则

$$\int_{-\infty}^{\infty} (f * g)(x) dx = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} f(y)g(x - y) dy$$

$$= \int_{-\infty}^{\infty} f(y) dy \int_{-\infty}^{\infty} g(x - y) dx$$

$$= \int_{-\infty}^{\infty} f(y) dy \int_{-\infty}^{\infty} g(u) du \qquad (u = x - y)$$

$$= \left(\int_{-\infty}^{\infty} f(x) dx\right) \left(\int_{-\infty}^{\infty} g(x) dx\right)$$

在统计学中,我们引入相关系数来描述两个随机变量之间的相关程度,类似地,在信号处理中,我们引入**相关系数** (correlation coefficient) 来描述两个信号之间的相关程度。设 $f,g\in L^2(\mathbb{R})$,它们的相关系数定义为

$$\rho(f,g) = \frac{\langle f,g \rangle}{\|f\| \cdot \|g\|} \tag{2.11}$$

其中 $\langle f,g \rangle = \int_{-\infty}^{\infty} f(x) \overline{g(x)} dx$ 是 f 和 g 的内积, $\|f\| = \sqrt{\langle f,f \rangle}$ 是 f 的范数。根据柯西-施瓦茨不等式,相关系数的绝对值不超过 1,且当且仅当 f 与 g 几乎处处成比例时取等,因此我们说, $\rho(f,g) = \pm 1$ 时两信号**线性相关**, $\rho(f,g) = 0$ 时两信号**线性无关**,这相当于两函数正交。

有时信号之间存在时延差,这时我们可以定义**互相关** (cross-correlation) 来描述它们之间的相关程度。设 $f,g\in L^2(\mathbb{R})$,它们的互相关定义为

$$(f \star g)(x) = \int_{-\infty}^{\infty} f(y)\overline{g(x+y)} \, dy \tag{2.12}$$

同样可以定义 f 的自相关 $(f \star f)(x)$ 。互相关具有以下性质:

- 1. $(f * g) = f^- * \overline{g} = \overline{(g * f)^-}$, 如果 f, g 都是实信号,则 $f * g = (g * f)^- = f^- * g = (f * g^-)^-$.
- 2. $\mathcal{F}(f\star g)=\mathcal{F}f\overline{\mathcal{F}g}$,特别地, $\mathcal{F}(f\star f)=|\mathcal{F}f|^2$,这个结果称为**维纳-辛钦定理** (Wiener-Khinchin theorem)
- 3. $f \star (\tau_b g) = \tau_b (f \star g) = (\tau_{-b} f) \star g$
- 4. $(f \star g) \leq ||f|||g||$, 特别地, $(f \star f)(x) \leq (f \star f)(0) = ||f||^2$

Proof:

$$\begin{split} 1.(f\star g)(x) &= \int_{-\infty}^{\infty} f(y)\overline{g(x+y)}\,dy \\ &= \int_{-\infty}^{\infty} f^{-}(y)\overline{g(x-y)}\,dy \\ &= \int_{-\infty}^{\infty} f^{-}(y)\overline{g(x-y)}\,dy \\ &= (f^{-}*\overline{g})(x) \\ (f\star g)(x) &= \int_{-\infty}^{\infty} f(y)\overline{g(x+y)}\,dy \\ &= \overline{\int_{-\infty}^{\infty} g(x+y)\overline{f(y)}\,dy} \\ &= \overline{(g\star f)(-x)} = \overline{(g\star f)^{-}(x)} \\ 2.\mathcal{F}(f\star g)(\xi) &= \int_{-\infty}^{\infty} (f\star g)(x)e^{-2\pi i\xi x}\,dx \\ &= \int_{-\infty}^{\infty} e^{-2\pi i\xi x}\,dx \int_{-\infty}^{\infty} f(y)\overline{g(x+y)}\,dy \\ &= \iint_{\mathbb{R}^{2}} f(y)\overline{g(x+y)}e^{-2\pi i\xi x}\,dy\,dx \\ &= \int_{-\infty}^{\infty} f(y)\,dy \int_{-\infty}^{\infty} \overline{g(x+y)}e^{-2\pi i\xi x}\,dx \\ &= \int_{-\infty}^{\infty} f(y)e^{2\pi i\xi y}\,dy \int_{-\infty}^{\infty} \overline{g(u)}e^{-2\pi i\xi u}\,du \qquad (u=x+y) \end{split}$$

$$= \mathcal{F}f(\xi)\overline{\mathcal{F}g(\xi)}$$

这里不涉及频率、角频率的问题, 读者可以自行验证。

$$3.(f \star (\tau_b g))(x) = \int_{-\infty}^{\infty} f(y)\overline{(\tau_b g)(x+y)} \, dy$$

$$= \int_{-\infty}^{\infty} f(y)\overline{g(x+y-b)} \, dy$$

$$= (f \star g)(x-b) = \tau_b(f \star g)(x)$$

$$((\tau_{-b}f) \star g)(x) = \int_{-\infty}^{\infty} (\tau_{-b}f)(y)\overline{g(x+y)} \, dy$$

$$= \int_{-\infty}^{\infty} f(y+b)\overline{g(x+y)} \, dy$$

$$= \int_{-\infty}^{\infty} f(z)\overline{g(x+z-b)} \, dz \qquad (z=y+b)$$

$$= (f \star g)(x-b) = \tau_b(f \star g)(x)$$

$$4.(f \star g)(x) = \int_{-\infty}^{\infty} f(y)\overline{g(x+y)} \, dy$$

$$\leq \sqrt{\int_{-\infty}^{\infty} |f(y)|^2 \, dy} \int_{-\infty}^{\infty} |\overline{g(x+y)}|^2 \, dy$$

$$= \sqrt{\|f\|^2 \|g\|^2} = \|f\| \cdot \|g\|$$

对于功率信号 f,g, 定义互相关函数为

$$(f \star g)(x) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(y) \overline{g(x+y)} \, dy \tag{2.13}$$

其性质不再单独讨论。

一些文献也将互相关函数定义为 $R_{fg}(x) = \int_{-\infty}^{\infty} f(y) \overline{g(x-y)} \, dy = \int_{-\infty}^{\infty} f(x+y) g(y) \, dy$, 功率信号 同理,这与上面讨论的互相关没有本质区别。

2.5 分布及其傅里叶变换

经典的数学分析理论难以处理单位阶跃函数的导数,也无法对一些比较比基本的函数如正弦、余弦函数做傅里叶变换,甚至因此傅里叶反演公式不总是成立(注意我们之前仅在形式上使用傅里叶反演公式),要扩充这个理论,标准的做法是引入广义函数(gerneralized function),又称分布(distribution)²。分布这个名称一开始是由物理学家引入的,例如在描述点电荷的分布时,经典函数是失效的,于是在 20世纪 20 年代末到 30 年代初,狄拉克及一众物理学家开始用分布进行运算,到 30 年代中,索伯列夫首先明确提出了广义函数的思想,后于 40 年代末由施瓦兹发展,他因这一工作获得 1950 年的菲尔兹奖。因此,下面将提到的广义函数空间 \mathcal{D} 也称为 索伯列夫-施瓦兹广义函数空间。

下面首先对一般的分布理论做一些讨论,再转回傅里叶分析中对于分布的应用,这时不对严谨性做过多要求,希望了解它们的读者可以参考泛函分析或傅里叶分析的教材。我们先介绍泛函 (functioinal)和对偶空间 (dual space) 的概念。

²事实上这个名称更泛用一些。

设 X 和 Y 是同一数域上的线性空间 (这里不妨设为 \mathbb{R}) 如果 $\forall x_1, x_2 \in X$, 映射 $A: X \to Y$ 满足

$$A(x_1) + A(x_2) = A(x_1 + x_2)$$
$$A(\lambda x) = \lambda A(x), \lambda \in \mathbb{R}$$

则称 A 是**线性映射**。特别地,如果 Y 是一个数域(例如 \mathbb{R} , \mathbb{C}),则将 A 称为**线性函数**;如果 X 还是某种函数空间,则将 A 称为**线性泛函**。例如, $A:C([a,b],\mathbb{R})\to\mathbb{R}$, $A(f):=f(x_0)$ 和 $A:C([a,b],\mathbb{R})\to\mathbb{R}$, $A(f):=\int_a^b f(x)\,dx$ 都是线性泛函。有时,我们不区分 X 究竟是不是函数空间,而统一地把线性函数称为线性泛函。

给定一个实线性空间 V,它的**对偶空间**是 V 上所有线性函数 $A:V\to\mathbb{R}$ 构成的线性空间(读者可以自行定义线性函数的加法和数乘,并验证它是线性空间),记为 $\mathcal{L}(V;\mathbb{R})$ 或 V^* 。对有限维线性空间,它的对偶空间与它本身的维数相同,因为定义 V 上的线性函数就等价于对 V 的一组基定义线性函数;对于无限维线性空间,它的对偶空间也是无限维的。

我们已经看到,分布(例如狄拉克 δ)难以用经典的"函数"来描述,这时我们可以考察它们与一系列**检验函数** (test function) φ 的作用,具体来说,记 $\mathbb R$ 上的复值光滑紧支函数集为 $\mathcal C$,如果将检验函数集取为 $\mathcal C$,我们将其对偶空间 $\mathcal D$ 中的元素称为分布,并规定函数 $f\in\mathcal C$ ³所产生的分布 T_f 为作用在 $\mathcal C$ 上的以下泛函:

$$\langle T_f, \varphi \rangle := \int_{-\infty}^{\infty} f(x)\varphi(x) \, dx, \varphi \in \mathcal{C}$$
 (2.14)

将这样的分布称为**正则分布**,而将无法用紧支函数描述的分布称为**奇异分布**。例如,尽管我们从形式上给出了 δ 函数的定义,但它实际上应该采用定义

$$\langle \delta, \varphi \rangle := \delta(\varphi) := \varphi(0)$$

容易验证这与我们一开始给出的 δ 作为"函数"的性质是相符的:

$$\langle \delta, \varphi \rangle = \int_{-\infty}^{\infty} \delta(x) \varphi(x) \, dx = \int_{-\infty}^{\infty} \delta(x) \varphi(0) \, dx = \varphi(0)$$

下面来定义分布与函数的乘法和分布的导数。这一部分中,我们的原则是: **奇异分布与正则分布具有相同的性质**,换言之,只要能够对正则分布定义的算子,就能够对奇异分布做相同的定义。在讨论分布的傅里叶变换时,还将定义更多的算子,例如分布卷积、尺度变换等。

设 $f, g, \varphi \in \mathcal{C}$, 有

$$\langle (f \cdot g), \varphi \rangle = \int_{-\infty}^{\infty} (f \cdot g)(x) \varphi(x) \, dx = \int_{-\infty}^{\infty} f(x)(g \cdot \varphi)(x) \, dx = \langle f, (g \cdot \varphi) \rangle$$

因此对于任意的分布 $T \in \mathcal{D}$, 定义它与 $g \in \mathcal{C}$ 的乘积 gT 由以下等式给出:

$$\langle gT, \varphi \rangle = \langle T, g\varphi \rangle \tag{2.15}$$

 $g\varphi$ 就是普通的函数乘法。现在就可以说,分布集 $\mathcal D$ 构成函数环 $\mathcal C$ 上的模 (module),并且可以验证 δ 的取样性质:

$$\langle g\delta, \varphi \rangle = \langle \delta, g\varphi \rangle = g(0)\varphi(0) = g(0)\langle \delta, \varphi \rangle \Rightarrow g\delta = g(0)\delta$$

用同样的思路定义分布的微分: 设 $f,g,\varphi \in \mathcal{C}$, 有

$$\langle f', \varphi \rangle = \int_{-\infty}^{\infty} f'(x)\varphi(x) \, dx = -\int_{-\infty}^{\infty} f(x)\varphi'(x) \, dx = \langle f, \varphi' \rangle$$

 $^{^3}$ 实际上这里不需要要求 $f\in\mathcal{C}$,只需要 f 在 \mathbb{R} 上局部可积(在任意闭区间上可积)即可,但为了简化讨论,我们仅考虑光滑紧支函数。

因此

$$\langle T', \varphi \rangle = -\langle T, \varphi' \rangle \tag{2.16}$$

注意 $\varphi \in \mathcal{C}$ 是无限阶可导的,我们可以由此定义分布的任意阶导数,例如1.2中提到的单位阶跃函数 u(t) 和 δ ,现在就可以将它们视为分布并求各阶导数:

$$\begin{split} \langle u, \varphi \rangle &:= \int_0^\infty \varphi(x) \, dx \\ \langle u', \varphi \rangle &= -\langle u, \varphi' \rangle = -\int_0^\infty \varphi'(x) \, dx = \varphi(0) = \langle \delta, \varphi \rangle \\ \langle \delta', \varphi \rangle &= -\langle \delta, \varphi' \rangle = -\varphi'(0) \end{split}$$

 δ 的高阶导数可以依此类推,它们已经难以用类似 $\delta(x)$ 的"函数"描述,但可以看到 $\delta^{(n)}$ 作为一个泛函(分布)作用是取测试函数的 $(-1)^n$ 倍的 n 阶导。现在也就不难理解 $\delta^{(n)}$ 与函数相乘的公式,例如,

$$\langle g\delta', \varphi \rangle = \langle \delta', g\varphi \rangle$$

$$= -\langle \delta, (g\varphi)' \rangle$$

$$= -\langle \delta, g'\varphi + g\varphi' \rangle$$

$$= -(g(0)\varphi'(0) + g'(0)\varphi(0))$$

$$= \langle g(0)\delta' - g'(0)\delta, \varphi \rangle \Rightarrow g\delta' = g(0)\delta' - g'(0)\delta$$

现在指出分布的微分运算的某些性质。

- 1. 任何分布 $T \in \mathcal{D}$ 都是无穷次可微的
- 2. 微分算子 $D: \mathcal{D} \to \mathcal{D}$ 是线性的
- 3. 微分算子 D 满足莱布尼兹法则 (Leibniz rule):

$$(qT)' = q'T + qT'$$

从而数学分析中的莱布尼兹公式在分布理论中仍成立:

$$(gT)^{(m)} = \sum_{k=0}^{m} C_m^k T^{(k)} g^{m-k}$$

4. 微分算子 D 是连续的 (表述见证明)

Proof:

- 1. 得自 \mathcal{C} 中函数的无限可微性: $\langle T^{(m)}, \varphi \rangle = (-1)^m \langle T, \varphi^{(m)} \rangle$.
- 2. 显然。
- 3. 只需验证莱布尼兹法则。

$$\langle (gT)', \varphi \rangle = -\langle gT, \varphi' \rangle = -\langle T, g\varphi' \rangle = -\langle T, (g\varphi)' - g'\varphi \rangle$$
$$= \langle T', g\varphi \rangle + \langle T, g'\varphi \rangle = \langle gT', \varphi \rangle + \langle g'T, \varphi \rangle = \langle gT' + g'T, \varphi \rangle$$

4. 设当 $m \to \infty$ 时, $T_m \to T$,即 $\forall \varphi \in \mathcal{C}, \langle T_m, \varphi \rangle \to \langle T, \varphi \rangle$,则

$$\langle T'_m, \varphi \rangle = -\langle T_m, \varphi' \rangle \to -\langle T, \varphi' \rangle = \langle T', \varphi \rangle$$

可以看到,分布理论中极限的概念是通过测试函数来定义的,如果分布序列 $\{T_m\}_{m=1}^{\infty}$ 作用在任何测试函数上都是趋于某个分布 T 作用于这个测试函数的值,就说序列 $\{T_m\}$ 弱收敛 (converge weakly) 于 T,并记为 $T_m \to T$ 。

接下来讨论分布理论在傅里叶分析中的应用。我们的目标是,在这个新的理论体系下:

- 允许 δ 信号,单位阶跃信号,多项式,正弦、余弦函数等信号(作为分布)做傅里叶变换
- 傅里叶变换和其反变换同时有定义傅里叶反演公式成立
- 帕塞瓦尔恒等式成立

我们将看到,分布T的傅里叶变换FT定义为

$$\langle \mathcal{F}T, \varphi \rangle = \langle T, \mathcal{F}\varphi \rangle \tag{2.17}$$

然而,测试函数 $\varphi \in C$ 的傅里叶变换 $F\varphi$ 并不属于 C (关于这一点的说明,以及施瓦兹函数类的引出,见附录7.3),这说明测试函数集 C 在傅里叶分析中的表现不够好,我们需要引入新的测试函数空间,以保证 $F\varphi$ 仍然是测试函数。这个测试函数空间正是**施瓦兹空间** (Schwartz space)S ,它是 \mathbb{R} 上所有无限可微函数的集合,这些函数及其各阶导数都以比任何负幂更快的速度趋于 0,即

$$\mathcal{S} = \{ \varphi \in C^{\infty}(\mathbb{R}) : \lim_{|x| \to \infty} |x|^{m} \varphi^{(n)}(x) = 0, \forall m, n \in \mathbb{N} \}$$

施瓦兹空间中的函数称为**施瓦兹函数** (Schwartz function),它们是非常光滑且衰减很快的函数,因此又称为**速降函数** (rapidly decreasing function),例如高斯函数 e^{-x^2} 及其各阶导数都属于施瓦兹空间。施瓦兹空间的对偶空间 $\mathcal{T} := \mathcal{S}^*$ 中的元素称为**施瓦兹分布** (Schwartz distribution) 或**缓增分布** (tempered distribution)。我们仍定义

$$T(\varphi) = \langle T, \varphi \rangle \tag{2.18}$$

$$\langle T_f, \varphi \rangle = \int_{-\infty}^{\infty} f(x)\varphi(x) dx, \varphi \in \mathcal{S}$$
 (2.19)

易见 $\mathcal{C} \subset \mathcal{S}, \mathcal{T} \subset \mathcal{D}$.

有了施瓦兹函数类 S 和缓增分布 T,我们就可以定义分布的傅里叶变换,还可以定义有关分布的一系列算子。前文中曾定义分布与函数的乘法和分布的导数,现在认为正则分布是由施瓦兹函数导出的,则显然能够推广到缓增分布,即

$$\langle gT, \varphi \rangle = \langle T, g\varphi \rangle, \langle T', \varphi \rangle = \langle T, \varphi' \rangle, g \in \mathcal{S}, T \in \mathcal{T}$$
 (2.20)

用同样的方式,我们依次讨论作用于缓增分布的各种算子。

1. 傅里叶变换

设 $f, \varphi \in \mathcal{S}, T_f \in \mathcal{T}$,则

$$\langle \mathcal{F}T_f, \varphi \rangle = \int_{-\infty}^{\infty} \mathcal{F}f(x)\varphi(x) \, dx$$

$$= \int_{-\infty}^{\infty} \varphi(x) \, dx \int_{-\infty}^{\infty} f(y)e^{-2\pi ixy} \, dy$$

$$= \int_{-\infty}^{\infty} f(y) \, dy \int_{-\infty}^{\infty} \varphi(x)e^{-2\pi ixy} \, dx$$

$$= \int_{-\infty}^{\infty} f(y)\mathcal{F}\varphi(y) \, dy = \langle T_f, \mathcal{F}\varphi \rangle$$

因此我们定义分布的傅里叶变换为

$$\langle \mathcal{F}T, \varphi \rangle = \langle T, \mathcal{F}\varphi \rangle, T \in \mathcal{T}, \varphi \in \mathcal{S}$$
 (2.21)

傅里叶逆变换同理。只要承认函数的傅里叶反演公式,分布的傅里叶反演公式就自然成立:

$$\langle \mathcal{F}^{-1}\mathcal{F}T, \varphi \rangle = \langle \mathcal{F}T, \mathcal{F}^{-1}\varphi \rangle$$

$$= \langle T, \mathcal{F}\mathcal{F}^{-1}\varphi \rangle$$

$$= \langle T, \varphi \rangle$$

$$\langle \mathcal{F}\mathcal{F}^{-1}T, \varphi \rangle = \langle T, \mathcal{F}^{-1}\mathcal{F}\varphi \rangle$$

$$= \langle T, \varphi \rangle$$

线性性依然成立。尽管没有明确指出,我们也会很自然的想到定义

$$\langle aT + bS, \varphi \rangle = a \langle T, \varphi \rangle + b \langle S, \varphi \rangle \tag{2.22}$$

于是

$$\begin{split} \langle \mathcal{F}(aT+bS), \varphi \rangle &= a \langle T, \mathcal{F}\varphi \rangle + b \langle S, \mathcal{F}\varphi \rangle \\ &= a \langle \mathcal{F}T, \varphi \rangle + b \langle \mathcal{F}S, \varphi \rangle \\ &= \langle a\mathcal{F}T + b\mathcal{F}S, \varphi \rangle \\ &\Rightarrow \mathcal{F}(aT+bS) = a\mathcal{F}T + b\mathcal{F}S, a, b \in \mathbb{C}, S, T \in \mathcal{T} \end{split}$$

例 5.1. 现在可以严谨地求出 δ 的傅里叶变换:

$$\langle \mathcal{F}\delta, \varphi \rangle = \langle \delta, \mathcal{F}\varphi \rangle = \mathcal{F}\varphi(0) = \int_{-\infty}^{\infty} \varphi(x) \, dx = \langle \mathbb{1}, \varphi \rangle$$

$$\Rightarrow \mathcal{F}\delta = \mathbb{1}$$

例 5.2. δ 的平移 δ_a 作为一种分布, 定义为

$$\delta_a(\varphi) = \langle \delta_a, \varphi \rangle = \varphi(a) \tag{2.23}$$

它的傅里叶变换为

$$\langle \mathcal{F}\delta_{a}, \varphi \rangle = \langle \delta_{a}, \mathcal{F}\varphi \rangle$$

$$= \mathcal{F}\varphi(a)$$

$$= \int_{-\infty}^{\infty} \varphi(x)e^{-2\pi i a x} dx$$

$$= \langle e^{-2\pi i a x}, \varphi \rangle$$

$$\Rightarrow \mathcal{F}\delta_{a} = e^{-2\pi i a x}$$

$$\langle \mathcal{F}\delta_{a}, \varphi \rangle = \langle \delta_{a}, \mathcal{F}\varphi \rangle$$

$$= \mathcal{F}\varphi(a)$$

$$= \int_{-\infty}^{\infty} \varphi(x)e^{-iax} dx$$

$$= \langle e^{-iax}, \varphi \rangle$$

$$\Rightarrow \mathcal{F}\delta_{a} = e^{-iax}$$

根据阿贝尔-狄利克雷判别法(A-D 判别法,请自行查看数学分析的教材), $\langle e^{-iax}, \varphi \rangle$ 是有意义的。可以看出这与函数的傅里叶变换的平移定理很相似,我们将在后面给出分布的平移、伸缩,并由此得到一些分布的傅里叶变换的性质。

例 5.3. 分布 1 的傅里叶变换: 尽管 1 \notin $L^1(\mathbb{R})$,但可以认为它是缓增分布,因为对于任意的 $\varphi \in \mathcal{S}$,都有

$$\langle \mathbb{1}, \varphi \rangle = \int_{-\infty}^{\infty} \varphi(x) \, dx < \infty$$

因此可以求它的傅里叶变换:

$$\langle \mathcal{F}1, \varphi = \langle 1, \mathcal{F}\varphi \rangle$$

$$= \int_{-\infty}^{\infty} \mathcal{F}\varphi(\xi) d\xi$$

$$= \mathcal{F}\mathcal{F}\varphi(0)$$

$$= \varphi(0) = \langle \delta, \varphi \rangle$$

$$\Rightarrow \mathcal{F}1 = \delta$$

$$\langle \mathcal{F}1, \varphi \rangle = \langle 1, \mathcal{F}\varphi \rangle$$

$$= \int_{-\infty}^{\infty} \mathcal{F}\varphi(\xi) d\xi$$

$$= \mathcal{F}\varphi(0)$$

$$= 2\pi\varphi(0) = 2\pi\langle \delta, \varphi \rangle$$

$$\Rightarrow \mathcal{F}1 = 2\pi\delta$$

2. 分布的反转

设 $f, \varphi \in \mathcal{S}, T_f \in \mathcal{T}$,自然可以定义 $T_f^- = T_{f^-}$,

$$\langle T_f^-, \varphi \rangle = \int_{-\infty}^{\infty} f(-x)\varphi(x) dx$$
$$= \int_{-\infty}^{\infty} f(y)\varphi(-y) dy$$
$$= \langle T_f, \varphi^- \rangle$$

因此我们定义分布的反转为

$$\langle T^-, \varphi \rangle = \langle T, \varphi^- \rangle, T \in \mathcal{T}, \varphi \in \mathcal{S}$$
 (2.24)

有了反转就可以定义分布的奇偶性:如果 $T^- = T$,则称 T 为**偶分布**;如果 $T^- = -T$,则称 T 为**奇**分布。

从施瓦兹函数的傅里叶变换的对偶性,就能得到缓增分布的傅里叶变换的对偶性:

$$\langle \mathcal{F}(T^{-}), \varphi \rangle = \langle T^{-}, \mathcal{F}\varphi \rangle = \langle T, \mathcal{F}\varphi^{-} \rangle = \langle \mathcal{F}T, \varphi^{-} \rangle = \langle (\mathcal{F}T)^{-}, \varphi \rangle$$
$$\Rightarrow \mathcal{F}(T^{-}) = (\mathcal{F}T)^{-}$$

和常规的函数一样,现在也可以不区分反转与傅里叶变换的先后,而统一地记作 FT^- . 考察反转与傅里叶逆变换的关系:

$$\langle \mathcal{F}T^{-}, \varphi \rangle = \langle T, \mathcal{F}\varphi^{-} \rangle = \langle T, \mathcal{F}^{-1}\varphi \rangle = \langle \mathcal{F}^{-1}T, \varphi \rangle$$

$$\Rightarrow \mathcal{F}T^{-} = \mathcal{F}^{-1}T$$

$$\langle \mathcal{F}T^{-}, \varphi \rangle = \langle T, \mathcal{F}\varphi^{-} \rangle = \langle T, 2\pi \mathcal{F}^{-1}\varphi \rangle = 2\pi \langle \mathcal{F}^{-1}T, \varphi \rangle$$

$$\Rightarrow \mathcal{F}T^{-} = 2\pi \mathcal{F}^{-1}T$$

这与前文中函数的傅里叶变换对偶性完全一样。有了对偶性,就可以得到**帕塞瓦尔恒等式** (Parceval's identity):

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |\mathcal{F}f(\xi)|^2 d\xi \quad \bigg| \quad \int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{F}f(\omega)|^2 d\omega$$

Proof: 设 $f, g \in \mathcal{S}$,

$$\begin{split} \langle \mathcal{F}f, \overline{\mathcal{F}g} \rangle &= \langle \mathcal{F}f, \mathcal{F}^{-1}\overline{g} \rangle \\ &= \langle f, \mathcal{F}\mathcal{F}^{-1}\overline{g} \rangle \\ &= \langle f, \mathcal{F}\mathcal{F}^{-1}\overline{g} \rangle \\ &= \langle f, \overline{g} \rangle \end{split} \qquad \begin{aligned} \langle \mathcal{F}f, \overline{\mathcal{F}g} \rangle &= \langle f, 2\pi \mathcal{F}^{-1}\overline{g} \rangle \\ &= \langle f, 2\pi \mathcal{F}\mathcal{F}^{-1}\overline{g} \rangle \\ &= 2\pi \langle f, \overline{g} \rangle \end{aligned}$$

取 g = f 即证,尽管限制了函数的范围,但这个证明比前文中积分换序的证明简洁得多。例 $5.14.\delta$ 是偶分布:

$$\begin{split} \langle \delta^-, \varphi \rangle &= \langle \delta, \varphi^- \rangle = \varphi^-(0) = \varphi(0) = \langle \delta, \varphi \rangle \\ \Rightarrow \delta^- &= \delta \end{split}$$

例 5.5. 应用对偶性求 1 的傅里叶逆变换:

$$\mathcal{F}1 = \mathcal{F}^{-1}1^{-} = \delta^{-} = \delta$$
 | $\mathcal{F}1 = 2\pi\mathcal{F}^{-1}1^{-} = 2\pi\delta^{-} = 2\pi\delta$

例 5.6. 复指数函数 e^{iat} 的傅里叶变换: 作为函数当然不能求 e^{iat} 的傅里叶变换,我们甚至无法确定它在 0 处的傅里叶变换: $\int_{-\infty}^{\infty} e^{iat} dt$ 不存在。但它可以视为一个缓增分布,前文中已经提到 $\langle e^{iat}, \varphi \rangle$ 是收敛的。下面应用对偶性求它的傅里叶变换:

$$\mathcal{F}[e^{2\pi i a t}] = \mathcal{F}^{-1}[e^{2\pi i a t}]^{-} = \delta_{a}^{-} = \delta_{-a} \quad | \quad \mathcal{F}[e^{i a t}] = 2\pi \mathcal{F}^{-1}[e^{i a t}]^{-} = 2\pi \delta_{a}^{-} = 2\pi \delta_{-a}$$

请读者自行验证 $\delta_a^- = \delta_{-a}$.

例 5.7. 正弦、余弦函数的傅里叶变换: 根据欧拉公式 $e^{ix} = \cos(x) + i\sin(x)$, 有

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}, \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

因业

$$\mathcal{F}[\cos(2\pi ax)] = \frac{1}{2}(\mathcal{F}[e^{2\pi iax}] + \mathcal{F}[e^{-2\pi iax}]) = \frac{1}{2}(\delta_{-a} + \delta_a) \qquad \mathcal{F}[\cos(ax)] = \frac{1}{2}(\mathcal{F}[e^{iax}] + \mathcal{F}[e^{-iax}]) = \pi(\delta_{-a} + \delta_a)$$

$$\mathcal{F}[\sin(2\pi ax)] = \frac{1}{2i}(\mathcal{F}[e^{2\pi iax}] - \mathcal{F}[e^{-2\pi iax}]) = \frac{1}{2i}(\delta_{-a} - \delta_a) \qquad \mathcal{F}[\sin(ax)] = \frac{1}{2i}(\mathcal{F}[e^{iax}] - \mathcal{F}[e^{-iax}]) = -i\pi(\delta_{-a} - \delta_a)$$

设 $f, \varphi \in \mathcal{S}, T_f \in \mathcal{T}$,则

$$\langle \overline{T_f}, \varphi \rangle = \overline{\langle T_f, \overline{\varphi} \rangle} = \overline{\int_{-\infty}^{\infty} f(x) \overline{\varphi(x)} \, dx} = \overline{\langle T_f, \overline{\varphi} \rangle}$$

因此我们定义分布的共轭为

$$\langle \overline{T}, \varphi \rangle = \overline{\langle T, \overline{\varphi} \rangle}, T \in \mathcal{T}, \varphi \in \mathcal{S}$$
 (2.25)

有了共轭就可以定义实分布和虚分布:如果 $\overline{T} = T$,则称 T 为**实分布**;如果 $\overline{T} = -T$,则称 T 为**纯虚 分布**。现在就来考察最后一条对偶性:

$$\langle \mathcal{F}T^-, \varphi \rangle = \langle T, \mathcal{F}\varphi^- \rangle$$

我们并不能保证 φ 是实值函数 4 ,因此并不能推出实分布的最后一条对偶性。不过,我们还是可以得到分布的傅里叶变换的对称性:

$$T^{-} = T \Rightarrow \mathcal{F}T^{-} = \mathcal{F}T$$
$$T^{-} = -T \Rightarrow \mathcal{F}T^{-} = -\mathcal{F}T$$

因此分布的傅里叶变换的奇偶性与分布本身相同。

4. 分布的平移和伸缩

设 $f, \varphi \in \mathcal{S}, T_f \in \mathcal{T}$,自然可以定义 $\tau_b T_f = T_{\tau_b f}$,

$$\langle \tau_b T_f, \varphi \rangle = \int_{-\infty}^{\infty} f(x - b) \varphi(x) \, dx$$
$$= \int_{-\infty}^{\infty} f(y) \varphi(y + b) \, dy$$
$$= \langle T_f, \tau_{-b} \varphi \rangle$$

⁴尽管在原始定义中没有提到这一点,但和前面引入施瓦兹函数类一样,要保证施瓦兹函数的傅里叶变换仍然是施瓦兹函数,而实值函数的傅里叶变换往往是复值函数。

因此我们定义分布的平移为

$$\langle \tau_b T, \varphi \rangle = \langle T, \tau_{-b} \varphi \rangle, T \in \mathcal{T}, \varphi \in \mathcal{S}$$
 (2.26)

设 $f, \varphi \in \mathcal{S}, T_f \in \mathcal{T}$, 自然可以定义 $\sigma_a T_f = T_{f(ax)}$,

$$\langle \sigma_a T_f, \varphi \rangle = \int_{-\infty}^{\infty} f(ax) \varphi(x) \, dx$$
$$= \frac{1}{|a|} \int_{-\infty}^{\infty} f(y) \varphi\left(\frac{y}{a}\right) \, dy$$
$$= \frac{1}{|a|} \langle T_f, \sigma_{1/a} \varphi \rangle$$

因此我们定义分布的伸缩为

$$\langle \sigma_a T, \varphi \rangle = \langle T, \frac{1}{|a|} \sigma_{1/a} \varphi \rangle, T \in \mathcal{T}, \varphi \in \mathcal{S}$$
 (2.27)

现在就可以建立分布的傅里叶变换的平移和尺度变换定理:

$$\langle \mathcal{F}(\tau_b T), \varphi \rangle = \langle \tau_b T, \mathcal{F} \varphi \rangle = \langle T, \tau_{-b} \mathcal{F} \varphi \rangle = \langle T, e^{2\pi i b x} \mathcal{F} \varphi \rangle = \langle \mathcal{F}(e^{2\pi i b x} T), \varphi \rangle$$
$$\Rightarrow \mathcal{F}(\tau_b T) = \mathcal{F}(e^{2\pi i b x} T)$$

$$\langle \mathcal{F}(\sigma_a T), \varphi \rangle = \langle \sigma_a T, \mathcal{F} \varphi \rangle = \langle T, \frac{1}{|a|} \sigma_{\frac{1}{a}} \mathcal{F} \varphi \rangle = \langle T, \frac{1}{|a|} \mathcal{F} \sigma_a \varphi \rangle = \langle \frac{1}{|a|} \mathcal{F}(\sigma_a T), \varphi \rangle$$
$$\Rightarrow \mathcal{F}(\sigma_a T) = \frac{1}{|a|} \mathcal{F}(\sigma_a T)$$

5. 分布的傅里叶变换的微分性质

我们已经得到 $\langle T', \varphi \rangle = -\langle T, \varphi' \rangle$,现在结合分布与函数的乘法,仿照函数的情形得到分布的傅里叶变换的微分性质:

$$\begin{split} \langle \mathcal{F}(T'), \varphi \rangle &= -\langle T, (\mathcal{F}\varphi)' \rangle \\ &= \langle T, \mathcal{F}(2\pi i t \varphi) \rangle \\ &= \langle 2\pi i \xi \mathcal{F} T, \varphi \rangle \\ &\Rightarrow \mathcal{F}(T') = 2\pi i \xi \mathcal{F} T \end{split} \qquad \begin{aligned} \langle \mathcal{F}(T'), \varphi \rangle &= -\langle T, (\mathcal{F}\varphi)' \rangle \\ &= \langle T, \mathcal{F}(i t \varphi) \rangle \\ &= \langle i \omega \mathcal{F} T, \varphi \rangle \\ &\Rightarrow \mathcal{F}(T') = i \omega \mathcal{F} T \end{aligned}$$

这与函数的傅里叶变换的微分性质一致,注意将 t 换成 ξ 或 ω ,只是符号上的改变,用以区分所讨论的场景。同样地,

$$\langle (\mathcal{F}T)', \varphi \rangle = \langle T, -\mathcal{F}(\varphi') \rangle \qquad \langle (\mathcal{F}T)', \varphi \rangle = \langle T, -\mathcal{F}(\varphi)' \rangle$$

$$= \langle T, -2\pi i \xi \mathcal{F} \varphi \rangle \qquad = \langle T, -i\omega \mathcal{F} \varphi \rangle$$

$$= \langle -\mathcal{F}(2\pi i t T), \varphi \rangle \qquad = \langle -\mathcal{F}(i t T), \varphi \rangle$$

$$\Rightarrow (\mathcal{F}T)' = -\mathcal{F}(2\pi i t T) \qquad \Rightarrow (\mathcal{F}T)' = -\mathcal{F}(i t T)$$

也即

$$\mathcal{F}(tT) = \frac{i}{2\pi} (\mathcal{F}T)' \quad \middle| \quad \mathcal{F}(tT) = i(\mathcal{F}T)'$$

6. 分布的卷积

设 $f, g, \varphi \in \mathcal{S}, T_f \in \mathcal{T}$,自然可以定义 $(T_f) * g = T_{(f*g)}$,

$$\langle T_f * g, \varphi \rangle = \int_{-\infty}^{\infty} (f * g)(x)\varphi(x) dx$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(y)g(x - y) dy \right) \varphi(x) dx$$

$$= \int_{-\infty}^{\infty} f(y) dy \int_{-\infty}^{\infty} g(x - y)\varphi(x) dx$$

$$= \int_{-\infty}^{\infty} f(y) dy \int_{-\infty}^{\infty} g^{-}(y - x)\varphi(x) dx$$

$$= \int_{-\infty}^{\infty} f(y)[(g^{-}) * \varphi](y) dy$$

$$= \langle T_f, (g^{-}) * \varphi \rangle$$

$$\Rightarrow \langle T * g, \varphi \rangle = \langle T, (g^{-}) * \varphi \rangle$$

从定义分布与函数的卷积的过程可以看出,应当要求卷积的交换律仍然成立;"结合律"在目前只限于讨论 (f*g)*T 是否等于 f*(g*T), 我们来验证这一性质:

$$\begin{split} \langle (f*g)*T,\varphi\rangle &= \langle T,(f*g)^-*\varphi\rangle \\ &= \langle T,(f^-)*(g^-)*\varphi\rangle \\ &= \langle g*T,(f^-)*\varphi\rangle \\ &= \langle f*(g*T),\varphi\rangle \\ &\Rightarrow (f*g)*T = f*(g*T),f,g\in\mathcal{S},T\in\mathcal{T} \end{split}$$

而线性性则和前面傅里叶变换的线性性没有多少区别,但此时需要对函数与分布分别验证:

$$\begin{split} \langle (af+bg)*T,\varphi\rangle &= \langle T,[(af+bg)^-]*\varphi\rangle \\ &= a\langle T,(f^-)*\varphi\rangle + b\langle T,(g^-)*\varphi\rangle \\ &= a\langle f*T,\varphi\rangle + b\langle g*T,\varphi\rangle \\ &= \langle af*T+bg*T,\varphi\rangle \\ &\Rightarrow (af+bg)*T = af*T+bg*T,a,b\in\mathbb{C},f,g\in\mathcal{S},T\in\mathcal{T} \end{split}$$

$$\begin{split} \langle f*(aS+bT), \varphi \rangle &= \langle aS+bT, (f^-)*\varphi \rangle \\ &= a \langle S, (f^-)*\varphi \rangle + b \langle T, (f^-)*\varphi \rangle \\ &= a \langle f*S, \varphi \rangle + b \langle f*T, \varphi \rangle \\ &= \langle af*S+bf*T, \varphi \rangle \\ &\Rightarrow f*(aS+bT) = af*S+bf*T, a,b \in \mathbb{C}, f \in \mathcal{S}, S, T \in \mathcal{T} \end{split}$$

下面研究卷积定理是否仍成立:

$$\langle \mathcal{F}(g*T), \varphi \rangle = \langle T, (g^-)*\mathcal{F}\varphi \rangle$$

$$= \langle T, (\mathcal{F}\mathcal{F}g)*\mathcal{F}\varphi \rangle$$

$$= \langle T, \mathcal{F}[(\mathcal{F}g)\varphi] \rangle$$

$$= \langle \mathcal{F}T, (\mathcal{F}g)\varphi \rangle$$

$$= \langle \mathcal{F}g\mathcal{F}T, \varphi \rangle$$

$$\Rightarrow \mathcal{F}(g*T) = \mathcal{F}g\mathcal{F}T$$

$$\langle \mathcal{F}(gT), \varphi \rangle = \langle T, g\mathcal{F}\varphi \rangle$$

$$= \langle T, \mathcal{F}[g^-)\mathcal{F}\varphi \rangle$$

$$= \langle T, \mathcal{F}[\mathcal{F}g^- *\varphi] \rangle$$

$$= \langle \mathcal{F}T * \mathcal{F}g, \varphi \rangle$$

$$\Rightarrow \mathcal{F}(gT) = \mathcal{F}g*\mathcal{F}T$$
可以看到,对于分布与函数的卷积,卷积定理的形式与函数的卷积定理一致。

实际上,我们同样可以定义分布与分布的卷积,只是这时事情会麻烦的多。首先还是研究正则分布 的卷积,如果想将前文中定义分布与函数卷积时的 g 也换成分布,则需要另一种方式来处理这个积分。 设 $f, g, \varphi \in \mathcal{S}, S_f, T_g \in \mathcal{T}$,根据前面已经得到的结果,

$$\langle S_f * T_g, \varphi \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y)g(x - y)\varphi(x) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y)g(u)\varphi(u + y) \, du \, dy \qquad (x - y = u)$$

$$= \int_{-\infty}^{\infty} f(y) \, dy \int_{-\infty}^{\infty} g(u)\varphi(u + y) \, du$$

$$= \langle f(y), \langle g(u), \varphi(u + y) \rangle \rangle$$

如果允许给分布标上自变量(对于能用函数表示的分布,即便不属于S,这样做也的确是有意义的),那 么我们可以定义:

$$\langle S * T, \varphi \rangle = \langle S(y), \langle T(x), \varphi(x+y) \rangle \rangle, S, T \in \mathcal{T}, \varphi \in \mathcal{S}, \langle T(x), \varphi(x+y) \rangle \in \mathcal{S}$$
 (2.28)

注意我们必须要求 $\langle T(x), \varphi(x+y) \rangle \in \mathcal{S}$, 如果不满足这个条件, 我们就只好说 S*T 无定义。对于分布 之间的卷积,交换律和结合律就不总是成立了,交换律在 $\langle S,\varphi\rangle \in \mathcal{S}, \langle T,\varphi\rangle \notin \mathcal{S}$ 时被破坏,对于结合律, 从形式可以两次套用分布与分布卷积的定义,得到

$$\langle R*(S*T), \varphi \rangle = \langle T(x), \langle S(y), \langle R(z), \varphi(x+y+z) \rangle \rangle \rangle = \langle (R*S)*T, \varphi \rangle$$

然而当证明过程中任何一步遇到卷积无定义的情况,这个证明就会失效。 例 5.8. 结合律的失效:

$$\begin{split} \langle \mathbb{1} * \delta', \varphi \rangle &= \langle \mathbb{1}(y), \langle \delta'(x), \varphi(x+y) \rangle \rangle \\ &= \langle \mathbb{1}, -\varphi' \rangle \\ &= \int_{-\infty}^{\infty} \varphi'(y) \, dy \end{split}$$

$$\begin{aligned} &= \left. \varphi(y) \right|_{-\infty}^{\infty} = 0 \\ &\left< \delta' * u, \varphi \right> = \left< \delta'(y), \left< u(x), \varphi(x+y) \right> \right> \\ &= \left< \delta'(y), \int_{y}^{\infty} \varphi(x) \, dx \right> \\ &= \varphi(0) = \left< \delta, \varphi \right> \\ &\Rightarrow \delta' * u = \delta \end{aligned}$$

$$\langle \mathbb{1} * (\delta' * u), \varphi \rangle = \langle \mathbb{1}(y), \left< \delta(x), \varphi(x+y) \right> \rangle$$

$$&= \langle \mathbb{1}, \varphi \rangle$$

$$&= \int_{-\infty}^{\infty} \varphi(y) \, dy$$

$$&= \langle \mathbb{1}, \varphi \rangle \Rightarrow \mathbb{1} * (\delta' * u) = \mathbb{1} * \delta = \mathbb{1}$$

可见

$$(1 * \delta') * u \neq 1 * (\delta' * u)$$
 (2.29)

例 5.9. 分布 $T * \delta$ 必然有定义, 并且 $T * \delta = T$.

$$\langle T * \delta, \varphi \rangle = \langle T(y), \langle \delta(x), \varphi(x+y) \rangle \rangle$$

= $\langle T, \varphi \rangle$

例 $5.10.\delta_a$ 的平移作用:

$$\langle \delta_a * \delta_b, \varphi \rangle = \langle \delta_a(y), \langle \delta_b(x), \varphi(x+y) \rangle$$

$$= \langle \delta_a(y), \varphi(b+y) \rangle$$

$$= \varphi(a+b)$$

$$= \langle \delta_{(a+b)}, \varphi \rangle$$

$$\Rightarrow \delta_a * \delta_b = \delta_{(a+b)}$$

这与函数的情况是一致的:

$$\langle f * \delta_a, \varphi \rangle = \langle \delta_a, (f^-) * \varphi \rangle$$

$$= (f^-) * \varphi(a)$$

$$= \int_{-\infty}^{\infty} f(-x)\varphi(a-x) dx \qquad (a-x=y)$$

$$= \int_{-\infty}^{\infty} f(y-a)\varphi(y) dy$$

$$= \langle \tau_a f, \varphi \rangle$$

$$\Rightarrow f * \delta_a = \tau_a f$$

在2.3中,我们已经从形式上得到了 sgn, u, 1/t,的傅里叶变换,现在有了分布的工具,就可以借助分布的傅里叶变换的对偶性说明之前的结论是严谨的。

第三章 关于傅里叶变换的进一步讨论

- 3.1 取样和插值
- 3.2 离散傅里叶变换初步
 - 3.3 多维傅里叶变换
- 3.4 希尔伯特变换,汉克尔变换
 - 3.5 回到有限区间

第四章 连续系统的时频分析

4.1 系统概述

对于单输入单输出系统,将输入信号称为激励 (excitation),输出信号称为响应 (response),并将时域信号分别用 e(t),r(t) 表示,如果系统用字母 H 表示,可以记 r(t) = H[e(t)],或更简洁地,r(t) = He(t). H 是函数空间上的映射。如果 H 是线性的,即

$$\forall a, b \in \mathbb{C}, \forall e_1(t), e_2(t), H[ae_1(t) + be_2(t)] = aH[e_1(t)] + bH[e_2(t)]$$

就说系统是**线性系统** (linear system),且满足叠加法则 (principle of superposition)。有时将线性系统记为 L.

一个系统在 e(t)=0 时,也可能有响应,这样的响应称为**零输入响应** (zero input response, $r_{z,i}(t)$)。相应地,r(t) 在没有激励时为 0,则输入 e(t) 产生的响应称为**零状态响应** (zero state response, $r_{z,s}(t)$),对于线性系统显然零输入响应为 0,此时我们定义零状态响应有线性性的系统为线性系统。**全响应** $r(t)=r_{z,i}(t)+r_{z,s}(t)$.

当 $e(t) = \delta(t)$ 时, $r_{z,s}(t)$ 为单位脉冲响应,在不涉及零输入响应时就说 r(t) 为单位脉冲响应。当 e(t) = u(t) 时,响应 r(t) 称为单位阶跃响应。习惯上,将单位脉冲响应记为 h(t),单位阶跃响应记为 g(t).

系统还有一些其他的特性,下面一一进行说明。

- 1. **时不变性**:表示一个系统的输出不依赖于输入信号施加于系统的时间,输入信号发生时移,输出信号也发生相同的时移,即 $\forall tau \in \mathbb{R}, H[e(t-\tau)] = r(t-\tau)$. **线性时不变系统** (Linear Time-invariant System,LTI) 满足 r(t) = (h*e)(t),h 为单位脉冲响应,将在后文介绍。
- 2. **因果性**:表示一个系统在有激励时,才会出现响应,或者说 $r(t_0)$ 仅依赖于 e(t) 在 $t < t_0$ 时的值(这里不等号不取等是标准的定义方式,我们马上会看到它的作用),即

$$\forall t_0, (e_1(t) = e_2(t) \text{ for } t < t_0) \Rightarrow (r_1(t) = r_2(t) \text{ for } t < t_0)$$
 (4.1)

这个条件称为因果性条件 (casuality condition)。对于线性系统,容易看出其因果性条件等价于

$$\forall t_0, (e(t) = 0 \text{ for } t < t_0) \Rightarrow (r(t) = 0 \text{ for } t < t_0)$$
(4.2)

如果系统还有时不变性,则因果性条件等价于

$$(e(t) = 0 \text{ for } t < 0) \Rightarrow (r(t) = 0 \text{ for } t < 0)$$
 (4.3)

或者更简便的

$$h(t) = 0 \text{ for } t < 0 \tag{4.4}$$

其中 h 为单位脉冲响应。只要取 $t_0 = 0$,就从因果性条件推出条件4.3;用时不变性,条件4.3可以推出条件4.2。对于单位脉冲响应,从 $\delta = 0$ for t < 0 可以推出 h(t) = 0 for t < 0;如果 h(t) = 0,e(t) = 0 for t < 0,则根据2.4中的结果,有 r(t) = (h * e)(t) = 0 for t < 0.

- 3. **稳定性:**表示一个系统在激励信号有界时,响应也是有界的,即 bounded-input bounded-output(BIBO)。 工程上,一个实用系统在所有可能条件下都保持稳定时至关重要的。
- 4. 记忆性:表示一个系统在 t_0 时刻的响应不仅与该时刻的输入有关,还与其他时刻的输入有关,此时称系统是记忆系统/动态系统,与之相对的是即时系统,在 t_0 时刻的响应仅与 t_0 时刻的激励有关。
- 5. **可逆性:** H (作为映射)如果是单射,则也是双射(因为我们不关注其值域),于是 H 是可逆的。换句话说,一种响应尽可能对应唯一的激励。

4.2 系统的表示和微分方程

4.3 系统的频率响应特性

第五章 拉普拉斯变换与系统的复频域分析

- 5.1 拉普拉斯变换
- 5.2 拉普拉斯逆变换
- 5.3 系统的复频域分析

第六章 z 变换与离散系统分析

- 6.1 z 变换
- 6.2 离散系统的 z 域分析
 - 6.3 离散傅里叶变换

第七章 附录:一些补充内容

收录一些脱离信号与系统主线,却又对本书的理论体系的完整性十分重要的内容;收录一些未来可能会用到的数学工具。

7.1 傅里叶级数的渐进特性, 吉布斯现象

在用计算机模拟函数的傅里叶级数展开时,只能取有限项,自然要问计算到多少项时误差足够小, 为此,我们不加证明地给出以下定理:

设
$$f \in C^p(\mathbb{R})$$
 $(p \ge 1)$ 是周期函数,则部分和 $S_N^f(t) = \sum_{-N}^N c_k e^{ik\omega t}$ 在 \mathbb{R} 上逐点收敛、

内闭一致收敛,且
$$\max |f(t) - S_N^f(t)| < \frac{1}{N^{p-\frac{1}{2}}}$$

其中 $C^p(\mathbb{R})$ 表示 p 次连续可导的函数集。

当 f(t) 不连续时,傅里叶级数的会在间断点处产生**吉布斯现象** (Gibbs' Phenomenon): 部分和 $S_N^f(t)$ 在间断点处总会**过冲**(在间断点两侧出现超过原函数的峰值),过冲幅度约为跳变幅度的 9%,并且 $S_N^f(t)$ 会在间断点附近高频振荡,例如对于跳变幅度为 2、周期为 2π 的周期矩形脉冲信号

$$R(x) = \begin{cases} 1 & \text{if } 0 < x < \pi \\ -1 & \text{if } -\pi < x < 0 \end{cases}$$

其傅里叶级数的跳变值为 1, $\overline{\lim}_{N\to\infty}S_N^R(t)=1.089490\dots$ 。这是因为光滑的基函数很难逼近这种剧烈的局部变化,不得不用高频分量来补偿,高频分量带来了剧烈震动。 $\overline{\lim}_{N\to\infty}S_N^R(t)>1$ 并不意味着狄利克雷定理失效,因为定理给出的是逐点收敛而非一致收敛,

$$\overline{\lim}_{N \to \infty} S_N^R(t) = \lim_{N \to \infty} \max_{t \in \mathbb{R}} S_N^R(t) \neq \max_{t \in \mathbb{R}} \lim_{N \to \infty} S_N^R(t)$$

为了直观地理解它,我们来看一个经典的例子:

$$f_n(x) = \begin{cases} nx & \text{if } 0 < x \le \frac{1}{n} \\ 2 - nx & \text{if } \frac{1}{n} < x < \frac{2}{n} \\ 0 & \text{otherwise} \end{cases}$$

随 n 增大,f(x) 逐点趋于 0,因为对每一点 $\frac{2}{n}$ 总能取到更小的值;但 f(x) 的最大值永远是 1。 研究傅里叶级数的渐进特性时,一个非常好用的工具是**狄利克雷核** (Dirichlet kernel):

$$D_N(t) = \sum_{k=-N}^{N} e^{ik\omega t} = 1 + \sum_{k=1}^{N} (e^{ik\omega t} + e^{-ik\omega t}) = 1 + 2\sum_{k=1}^{N} \cos(k\omega t)$$

图 7.1: 吉布斯现象示意图

它是依赖于所研究函数的周期 Γ 的,但简便起见,在符号 $D_N(t)$ 中不体现这一点。我们可以用等比数 列求和或积化和差裂项的方法化简 $D_N(t)$:

$$D_N(t) = \sum_{k=-N}^{N} e^{ik\omega t} = e^{-iN\omega t} \frac{1 - e^{i(2N+1)\omega t}}{1 - e^{i\omega t}}$$
(7.1)

$$=\frac{e^{i(N+1)\omega t}-e^{-iN\omega t}}{e^{i\omega t}-1} \tag{7.2}$$

$$D_N(t) = 1 + \sum_{k=1}^{N} (e^{ik\omega t} + e^{-ik\omega t}) = 1 + 2\sum_{k=1}^{N} \cos(k\omega t)$$
 (7.3)

$$=1+\frac{2}{\sin(\frac{\omega t}{2})}\sum_{k=1}^{N}\cos(k\omega t)\sin(\frac{\omega t}{2})$$
(7.4)

$$= 1 + \frac{1}{\sin(\frac{\omega t}{2})} \sum_{k=1}^{N} (\sin(k + \frac{1}{2})\omega t - \sin(k - \frac{1}{2})\omega t)$$
 (7.5)

$$=1+\frac{\sin(N+\frac{1}{2})\omega t-\sin(\frac{\omega t}{2})}{\sin(\frac{\omega t}{2})}$$
(7.6)

$$=\frac{\sin(N+\frac{1}{2})\omega t}{\sin(\frac{\omega t}{2})}\tag{7.7}$$

这两种结果是相符的,读者可自行验证,并且可以从后一结果想象出狄利克雷核的函数图像,它被 $\pm \frac{1}{\sin(\frac{\omega^t}{2})}$ 包络并高速振荡。根据3.1 中的结果, $D_N(t)$ 是 III 函数的部分和,在 $nT(n \in \mathbb{Z})$ 处,随 $N \to \infty$,D 也趋于无穷,并在其他位置趋于 0。这是又一个最大值不趋于 0,但逐点趋于 0 的例子。函数图像如下。

引入狄利克雷核后,就可以用以下恒等式研究傅里叶级数的部分和:

$$S_N^f(t) = \sum_{-N}^{N} c_k e^{ik\omega t}$$
$$= \sum_{-N}^{N} (\frac{1}{T} \int_T f(\tau) e^{-k\omega \tau} d\tau) e^{ik\omega t}$$

$$\begin{split} &= \frac{1}{T} \int_T f(\tau) \sum_{k=-N}^N e^{ik\omega(t-\tau)} d\tau \\ &= \frac{1}{T} \int_T f(\tau) D_N(t-\tau) d\tau \\ &= \frac{1}{T} \int_T f(t-\tau) D_N(\tau) d\tau ($$
 变量替换 $)$
$$&= \frac{1}{T} \int_T f(t+\tau) D_N(\tau) d\tau ($$
 变量替换 $)$ 带 期性 $)$

先给出两个引理。第一个引理表明狄利克雷核在半周期上积分值为 $\frac{T}{2}$,在证明傅里叶级数的逐点收敛性时将用到它。

$$\int_{-\frac{T}{2}}^{0} D_N(t) dt = \int_{0}^{\frac{T}{2}} D_N(t) dt = \frac{T}{2}$$
 (7.8)

Proof:

由公式 (7.3), $D_N(t) = 1 + 2\sum_{k=1}^{N} \cos(k\omega t)$, 故

$$\int_{0}^{\frac{T}{2}} D_{N}(t) dt = \int_{0}^{\frac{T}{2}} (1 + \sum_{k=1}^{N} \cos(k\omega t)) dt$$
$$= \frac{T}{2} + \sum_{k=1}^{N} \frac{\sin(k\omega t)}{k\omega} \Big|_{0}^{\frac{T}{2}}$$
$$= \frac{T}{2} + \frac{1}{\omega} \sum_{k=1}^{N} \frac{\sin(k\pi)}{k} = \frac{T}{2}$$

 $D_N(t)$ 是偶函数,得证。

第二个引理是**贝塞尔不等式** (Bessel's Inequality): 设 $f \in L^2([0,T]), c_n = \frac{1}{T} \int_T f(t) e^{-ik\omega t} dt$,则

$$\sum_{-\infty}^{\infty} |c_n|^2 \le \frac{1}{T} \int_T |f(t)|^2 dt \tag{7.9}$$

它给出了傅里叶系数平方和的上界的估计。收敛级数的通项必收敛,所以由此可以看出 $c_n \to 0, n \to \infty$.

Proof:

$$|f(t) - \sum_{n=-N}^{N} c_n e^{in\omega t}|^2 = (f(t) - \sum_{n=-N}^{N} c_n e^{in\omega t})(f(t) - \sum_{n=-N}^{N} c_n e^{in\omega t})^*$$

$$= (f(t) - \sum_{n=-N}^{N} c_n e^{in\omega t})(f^*(t) - \sum_{n=-N}^{N} c_n e^{-in\omega t})$$

$$= |f(t)|^2 - \sum_{n=-N}^{N} (c_n^* f(t) e^{in\omega t} + c_n f^*(t) e^{-in\omega t}) + \sum_{m,n=-N}^{N} c_m c_n^* e^{i(m-n)\omega t}$$

将上式在一个周期上积分, 我们知道

$$\int_{T} f(t)e^{in\omega t} dt = Tc_{n}, \int_{T} e^{i(m-n)\omega t} dt = \begin{cases} 0 & \text{if } m \neq n \\ T & \text{if } m = n \end{cases}$$

故

$$\int_{T} |f(t)|^{2} dt - \sum_{n=-N}^{N} (c_{n}^{*} \int_{T} f(t)e^{in\omega t} dt + c_{n} \int_{T} f^{*}(t)e^{-in\omega t} dt) + \sum_{m,n=-N}^{N} c_{m}c_{n}^{*} \int_{T} e^{i(m-n)\omega t} dt$$

$$= \int_{T} |f(t)|^{2} dt - T \sum_{n=-N}^{N} (c_{n}^{*}c_{n} + c_{n}c_{n}^{*}) + T \sum_{n=-N}^{N} c_{n}^{*}c_{n}$$

$$= \int_{T} |f(t)|^{2} dt - T \sum_{n=-N}^{N} |c_{n}|^{2}$$

这是非负函数的积分,积分值非负,即

$$\sum_{-\infty}^{\infty} |c_n|^2 \le \frac{1}{T} \int_T |f(t)|^2 dt < \infty$$

直接由狄利克雷条件证明逐点收敛性需要很专业的分析学工具,但我们可以适当地加强狄利克雷条件,让 f(t) 分段光滑 (piecewise smooth):

$$f \in PS([0,T]) \iff$$
 除有限个点外 f 均可导,并且这些点是 f 的第一类间断点

我们研究的多数函数是满足这样的性质的,并且我们将看到满足此条件会带来一些额外的性质。此时就可以相对简单地证明逐点收敛性:

$$\lim_{N \to \infty} S_N^f(t_0) = \frac{f(t_0+) + f(t_0-)}{2}$$

Proof:

由公式 (7.8),
$$S_N^f(t_0) - \frac{f(t_0^+) + f(t_0^-)}{2} = \frac{1}{T} \left(\int_T f(t_0 - \tau) D_N(\tau) d\tau - \int_0^{\frac{T}{2}} f(t_0^+) D_N(\tau) d\tau - \int_{-\frac{T}{2}}^0 f(t_0^-) D_N(\tau) d\tau \right)$$

$$= \frac{1}{T} \left(\int_0^{\frac{T}{2}} (f(t_0 - \tau) - f(t_0^+)) D_N(\tau) d\tau + \int_{-\frac{T}{2}}^0 (f(t_0 - \tau) - f(t_0^-)) D_N(\tau) d\tau \right)$$
由公式 (7.2), $S_N^f(t_0) - \frac{f(t_0^+) + f(t_0^-)}{2} = \frac{1}{T} \int_T g(t) (e^{i(N+1)\omega t} - e^{iN\omega t}) dt$

$$\sharp \Phi g(t) := \begin{cases} \frac{f(t_0 + t) - f(t_0^-)}{e^{i\omega t} - 1} & \text{if } 0 < t_0 < \frac{T}{2} \\ \frac{f(t_0 + t) - f(t_0^+)}{e^{i\omega t} - 1} & \text{if } 0 < t_0 < \frac{T}{2} \end{cases}$$
由洛必达法则, $t \to 0$ 时, $\lim_{t \to 0^+} g(t) = \lim_{t \to 0^+} \frac{f(t_0 + t) - f(t_0^+)}{e^{i\omega t}} = \lim_{t \to 0^+} \frac{f'(t_0 + t)}{ie^{i\omega t}} = \lim_{t \to 0^+} \frac{f'(t_0^+)}{i}$

 $t\to 0^-$ 时同理。故 g 分段连续,当然是平方可积的,由定理(7.9),g(t) 的傅里叶系数平方和收敛,通项趋于 0, $S_N^f(t_0)-rac{f(t_0^+)+f(t_0^-)}{2}=C_{-(N+1)}-C_N\to 0$,得证。

在分段光滑的条件下,容易得到 f'(t) 的傅里叶系数,注意微积分基本定理可以分区间使用:

$$a'_n = n\omega b_n, b'_n = -n\omega a_n, c'_n = in\omega c_n \tag{7.10}$$

以 c_n 为例:

$$\begin{split} c_n' &= \frac{1}{T} \int_T f'(t) e^{-in\omega t} dt \\ &= \frac{1}{T} \left. f(t) e^{-in\omega t} \right|_0^T + in\omega \int_T f(t) e^{-i\omega t} dt = in\omega c_n \end{split}$$

f 的原函数 F 的傅里叶系数同理,并且只要**分段连续**(见2.2)即可保证 f 可积,但是我们必须保证 F 是周期函数,这要求 f 的直流分量为 0:

$$F(t+T) - F(t) = \int_{T} f(t)dt = Tc_0 = 0, c_0 = 0$$

此时,用刚刚得到的公式(2.16)就可直接得到 F 的傅里叶系数:

$$A_n = \frac{a_n}{n_{(i)}}, B_n = \frac{b_n}{n_{(i)}}, C_n = \frac{c_n}{in_{(i)}}$$
 (7.11)

分段光滑还能够推出 f 的傅里叶级数**一致收敛**于 f,从而可以逐项积分、逐项求导。回顾数学分析中的魏尔斯特拉斯 M 判别法:对于函数项级数 $\sum_{n=1}^{\infty} f_n(x)$,如果存在正项级数 $\sum_{n=1}^{\infty} M_n < \infty$ 使得在区间 E 上 $|f_n(x)| < M_n$,则 $\sum_{n=1}^{\infty} f_n(x)$ 在 E 上绝对收敛且一致收敛。对于上述命题,只需证明 $\sum_{n=1}^{\infty} |c_n| < \infty$. 直接应用贝塞尔不等式是无效的,但可以通过一个小技巧完成证明:

记 c'_n 为 f' 的傅里叶系数, $c'_n = in\omega c_n$,

$$\sum_{n=-\infty}^{\infty} |c_n| = |c_0| + \sum_{n \neq 0} \left| \frac{c'_n}{n} \right| \le |c_0| + \left(\sum_{n \neq 0} \frac{1}{n^2} \right)^{1/2} \left(\sum_{n \neq 0} |c'_n|^2 \right)^{1/2} < \infty$$

最后一步使用了柯西-施瓦兹不等式。

请读者思考:我们探究了指数形式傅里叶级数收敛的条件,对于三角函数形式的傅里叶级数应该怎么办?

- 7.2 分布的逼近, 傅里叶反演公式
 - 7.3 施瓦兹函数类及其好处
- 7.4 与傅里叶变换有关的其他变换