Sist uke

- Script
- Mysql
- Hva er en primærnøkkel?
- Hva er en fremmednøkkel?
- Hva betyr det at to tabeller er unionskompatible?
- ☐ Når benyttes GROUP BY gi et eksempel
- Når benyttes WHERE gi et eksempel
- ☐ Last ned Hobbyhuset.txt fra Fronter og kjør scriptet fra hjemmekatalogen deres på studssh
- ☐ Gå inn i mysql og sjekk at tabellene er opprettet. (show tables;)

Insert, update og delete

- insert into <tabellnavn> (felt1,felt2,felt3) values (v1,v2,v3);
- NB: Legger ikke inn verdi i auto_increment felt.
- insert into <tabellnavn> values (v1,v2,v3);
- □ update <tabellnavn> set fornavn='Ole' where etternavn ='Hansen';
- delete from <tabellnavn> where fornavn='Ole';
- ☐ Farlig: delete from <tabellnavn>;
- Oppgave: Finn ut hvilke kolonner som er i Vare tabellen.
- ☐ (desc Vare;)
- Legg inn en post i Vare, sjekk at den er blitt lagt til.
- ☐ Endr Varebetegnelse på varen du la inn og sjekk at det blir endret.
- ☐ Slett varen du la inn og sjekk at den er blitt fjernet.

Lag 5 SQL spørringer til hverandre gitt denne tabellen og utfør oppgavene i mysql.

EMPNO	ENAME	JOB	MGR	HIREDATE	SAL	COMM	DEPTNO
7369	SMITH	CLERK	7902	17-Dec-80	£800.00		20
7499	ALLEN	SALESMAN	7698	20-Feb-81	£1,600.00	£300.00	30
7521	WARD	SALESMAN	7698	22-Feb-81	£1,250.00	£500.00	30
7566	JONES	MANAGER	7839	02-Apr-81	£2,975.00		20
7654	MARTIN	SALESMAN	7698	28-Sep-81	£1,250.00	£1,400.00	30
7698	BLAKE	MANAGER	7893	01-May-81	£2,850.00		30
7782	CLA RK	MANAGER	7839	09-Jun-81	£2,450.00		10
7788	SCOTT	ANALYST	7566	09-Nov-81	£3,000.00		20
7839	KING	PRESIDENT		17-Nov-81	£5,000.00		10
7844	TURNER	SALESMAN	7698	08-Sep-81	£1,500.00	£0.00	30
7876	ADAMS	CLERK	7788	23-Sep-81	£1,100.00		20
7900	JAMES	CLERK	7698	03-Dec-81	£950.00		30
7902	FORD	ANALYST	7566	03-Dec-81	£3,000.00		20
7934	MILLER	CLERK	7782	23-Jan-82	£1,300.00		10

Spørringer mot flere tabeller

- ☐ Kartesisk produkt / krysskobling
- ☐ Likekoblinger
- ☐ INNER JOIN syntaks
- ☐ Generelle koblinger
- Egenkoblinger
- ☐ Ytre koblinger
- ☐ Union, snitt og differanse
- ☐ Mer om gruppering og mengdefunksjoner

Pensum: Kapittel 4

Motivasjon

- ☐ For å unngå redundans ("dobbeltlagring") lagrer vi data i flere tabeller. (Mer om dette i kapittel 8!)
- ☐ Så relasjonsdatabaser består av mange tabeller.
- ☐ Det er logiske sammenhenger mellom data i ulike tabeller.
 - ➤ Vi får behov for å skrive spørringer som "kobler" data fra flere tabeller.
 - ➤ Koblinger bygger på at samme type verdier finnes i flere tabeller.
 - ➤ Koblinger er ofte basert på fremmednøkler (men ikke alltid).

Eksempel: Hobbyhuset

☐ Lag en kundeliste sortert på poststed. Hvilke tabeller må brukes?

☐ Foreslå flere interessante spørringer/rapporter! Hvilke tabeller må brukes i hvert tilfelle?

Flere tabeller i FROM-delen

☐ Hva blir resultatet?

SELECT *
FROM Ordre, Kunde

- ☐ Antall rader og kolonner i resultatet ?
 - Får samtlige kolonner fra begge tabeller (*).
 - Enhver rad i Ordre blir koblet med enhver rad i Kunde.
- ☐ Vi kan hente data fra mange tabeller (flere enn 2).
- ☐ Vi må spesifisere hvilke rader som skal kobles.
 - Ordre inneholder KNr ...

Kartesisk produkt (kryssprodukt)

KNr	Navn
1	Per
2	Ola

OrdreNr	KNr	AnsNr	
1	1	21	
2	2	21	
3	2	28	

$$2 \times 3 = 6!$$

KNr	Navn	OrdreNr	KNr	AnsNr
1	Per	1	1	21
1	Per	2	2	21
1	Per	3	2	28
2	Ola	1	1	21
2	Ola	2	2	21
2	Ola	3	2	28

Likekobling

KNr	Navn	
1	Per	
2	Ola	

OrdreNr	KNr	AnsNr
1	1	21
2	2	21
3	2	28

KNr	Navn	OrdreNr	KNr	AnsNr
1	Per	1	1	21
2	Ola	2	2	21
2	Ola	3	2	28

- ☐ Som regel vil vi kun ta med koblingskolonne(r) fra én av tabellene.
 - > De inneholder jo de samme verdiene.

Eksempel på likekobling

☐ Vis alle ordrer behandlet av hver ansatt. Sorter utskriften på etternavn og ordredato.

```
SELECT Etternavn, OrdreNr, Ordredato
FROM Ansatt, Ordre
WHERE Ansatt.AnsNr = Ordre.AnsNr
ORDER BY Etternavn, Ordredato
```

- Likheten i **WHERE** er en <u>koblingsbetingelse</u>.
- ☐ Spørringen kalles en (indre) <u>likekobling</u> (join).
- AnsNr <u>må</u> prefikses med tabellnavn fordi kolonnenavnet forekommer i begge tabeller.
- ☐ Etternavn, OrdreNr og Ordredato <u>kan</u> prefikses.

Implementasjon av likekobling

- ☐ Hvordan utfører DBHS en likekobling?
 - Eksempel: Ordre og Kunde koblet på KNr
- Strategi 1: Lag krysskobling og slett ulike (ineffektivt!)
 - Dann alle rad-kombinasjoner (kryssproduktet) og lagre resultatet i en hjelpetabell.
 - Løp gjennom hjelpetabellen og slett kombinasjoner med forskjellige KNr.
- ☐ Med 5 000 ordre og 2 000 kunder vil hjelpetabellen inneholde 10 000 000 (10 millioner) rad-kombinasjoner.
 - Strategi 1 er svært ineffektiv, men er nyttig for å forstå hva resultatet av en likekobling blir.

Mer realistiske implementasjoner

- ☐ Strategi 2: Sortér og "flett"
 - Sortér hver tabell med hensyn på KNr.
 - Løp gjennom begge tabeller parallellt ("synkronisert") og skriv ut rad-kombinasjoner som matcher.
- ☐ Strategi 3: Nøstet løkke
 - Løp gjennom Ordre rad for rad.
 - For hver ordre, løp gjennom Kunde og finn "match".
 - Hvis Kunde er sortert kan vi bruke binærsøk.
 - Hvis vi har en såkalt <u>indeks</u> på Kunde.KNr kan den indre løkka erstattes av et oppslag via indeksen (mer om dette i kap. 9).

Fremmednøkler og koblinger

☐ Vi kobler ofte to tabeller med hensyn på fremmednøkler.

```
SELECT *
FROM Ordre, Kunde
WHERE Orde.KNr = Kunde.KNr
```

- Det er mulig å koble på kolonner som <u>ikke</u> er fremmednøkler eller primærnøkler.
 - Finn kombinasjoner av ansatte og kunder bosatt på samme sted (GIS utfører koblinger basert på geografi ...).
- Av og til blir det feil å koble med hensyn på samtlige fremmednøkler.
 - Eksempel: Prosjektdeltakelse og prosjektledelse fra leksjon 1.

Syntaks for likekobling

☐ Likekoblinger forekommer så hyppig at det er innført en spesiell skrivemåte:

```
SELECT *
FROM Ordre INNER JOIN Kunde
ON Ordre.KNr = Kunde.KNr
```

☐ Generelt:

```
T1 INNER JOIN T2 ON T1.kol1 = T2.kol2
```

☐ Rekkefølgen av tabellene spiller ingen rolle.

•

Synonymer

☐ For å redusere skrivearbeidet kan man innføre <u>synonymer</u> (kortnavn) for tabellene.

```
SELECT O.OrdreNr, K.KNr

FROM Ordre AS O INNER JOIN Kunde AS K

ON O.KNr = K.KNr
```

- ☐ Hvis man innfører synonymer må de brukes!
 - > Synonymene O og K må også brukes i **SELECT**-delen, selv om de først blir "introdusert" i **FROM**-delen.
- Oracle bruker ikke AS.

Likekobling med ekstrabetingelser

☐ Kan ha generelle betingelser i tillegg til koblingsbetingelser.

```
SELECT V.VNr, K.Navn
FROM Vare AS V, Kategori AS K
WHERE V.KatNr = K.KatNr
AND V.Pris > 100
AND K.Navn = 'Keramikk'
```

- ☐ Hvordan bør DBHS utføre slike spørringer?
 - ➤ Koblingsbetingelser først ?
 - > Andre betingelser først?

Datatyper og mening

☐ Dette er meningsløst:

```
SELECT *
FROM Ansatt AS A INNER JOIN Ordre AS O
ON A.AnsNr = O.KNr
```

- ☐ Koblingskolonnene må ha samme datatype, og også samme mening.
- ☐ Koblingskolonner trenger imidlertid <u>ikke</u> ha samme navn.
- ☐ Vil DBHS godta spørringen?

Koble flere tabeller enn 2

Hvilke kunder har kjøpt vare 1014?

```
SELECT K.*
FROM
   Kunde AS K INNER JOIN
   (Ordre AS O INNER JOIN Ordrelinje AS OL
     ON O.OrdreNr = OL.OrdreNr)
   ON K.KNr = O.KNr
WHERE OL.VNr = 1014
```

- ☐ Vi kan tenke oss at selve koblingen blir utført slik:
 - 1. Ordre og Ordrelinje blir koblet.
 - 2. Resultatet blir koblet med Kunde.
- Lettere å skrive/lese med vanlig WHERE-betingelse?
- Skriv setningen med WHERE-betingelser.

Likekobling med gruppering

☐ Finn antall ordrer pr. kunde:

```
SELECT K.KNr, COUNT(*) AS [Antall ordrer]
FROM Kunde AS K, Ordre AS O
WHERE K.KNr = O.KNr
GROUP BY K.KNr
```

- ☐ Hva om vi kun vil vise kunder med flere enn 10 ordrer?
- ☐ Totalt varekjøp pr. kunde:
 - > Hvilke tabeller må kobles?
 - Hva skal vi gruppere på?

Ytre koblinger (høyre og venstre)

- ☐ Indre likekoblinger tar bare med verdier som finnes i begge tabeller. Det er ikke alltid tilstrekkelig.
- ☐ Vis kunder med tilhørende ordrer. <u>Samtlige</u> kunder skal med.

```
SELECT K.KNr, O.OrdreNr

FROM Kunde AS K LEFT OUTER JOIN Ordre AS O

ON K.KNr = O.KNr
```

- ☐ Resultatet består av:
 - Radene i en tilsvarende likekobling, og dessuten
 - én rad for hver kunde uten ordrer. For disse står det et <u>nullmerke</u> i OrdreNr.
- ☐ "Venstre" og "høyre" refererer til rekkefølgen i FROM.

Venstre ytre kobling

KNr	Navn
1	Per
2	Ola
3	Lise

OrdreNr	KNr	AnsNr
1008	1	25
1009	2	25
1010	1	28

KNr	Navn	OrdreNr	KNr	AnsNr
1	Per	1008	1	25
2	Ola	1009	2	25
1	Per	1010	1	28
3	Lise			

 \square Ytre kobling = likekobling + 1 rad for hver uten "match".

Generelle koblinger

- ☐ Det er mulig å koble med andre operatorer enn likhet (=).
- ☐ Finn varer som har blitt solgt med rabatt (en eller flere ganger):

```
SELECT DISTINCT VNr

FROM Vare AS V, Ordrelinje AS OL
WHERE OL.PrisPrenhet < V.Pris
```

- ☐ Noen GIS-eksempler med "geografiske operatorer":
 - Finn byer i Telemark (punkt <u>INNENFOR</u> polygon)
 - Finn veier som krysser Mjøsa (linje <u>KRYSSER</u> linje)
 - Finn eiendommer som blir berørt av en veiutbygging (polygon OVERLAPPER polygon)

Egenkoblinger

- ☐ Tabeller kan kobles med "seg selv".
- ☐ Finn alle kombinasjoner av varer med samme pris:

```
SELECT V1.VareID, V2.VareID, V1.Pris
FROM Vare AS V1, Vare AS V2
WHERE V1.Pris = V2.Pris
```

- ☐ Tenk slik: DBHS "lager" 2 kopier av tabellen Vare, og kobler disse på vanlig måte.
- ☐ Tabeller spiller av og til flere "roller", som også kan medføre behov for å bruke flere "kopier" av samme tabell i en spørring. Eksempel: Avgangsflyplass og ankomstflyplass i en flyavgang, se oppg 4 i kap. 4.

Snitt, union og differanse

☐ En tabell består av en <u>mengde</u> rader. Vi har tilgang på standard mengdeoperasjoner:

☐ Anta historiske ordredata er lagret i tabeller Ordre2001 og Ordre2002:

SELECT KNr FROM Ordre2001 UNION SELECT KNr FROM Ordre2002

☐ UNION svarer i en viss forstand til OR, INTERSECT til AND og MINUS/EXCEPT til AND + NOT.

Eksempel på PHP mot database:

Enkel PHP-programmering:

- ☐ Jeg har en database med en tabell som heter person
- Person har to felt: navn og alder
- ☐ Jeg vil lage en meny som gir meg mulighet til å liste alle personer eller å legge en ny person inn i tabellen
- ☐ PHP filene må ligge på www-katalogen på studssh.cs.hioa.no, de kan overføres med Winscp.
- ☐ Editoren pico på studssh kan benyttes for å gjøre endringer i php-filene.

Koden som ligger i meny.php er

```
<html>
<head></head>
<body>
<h1>Meny</h1>

<a href="hent.php">List personer</a>

<a href="innskjema.html">Registrer person </a>
</body>
</html>
```

Kode for å liste personer

```
<html>
<head></head>
<body>
<?php
$con=mysqli_connect("student.cs.hioa.no","torunngj","","torunngj");
```

NB! HUSK AT DERE IKKE HAR PASSORD PÅ MYSQL DB!!

\$sql=("select * from PERSON");

```
if ($result=mysqli query($db,$query)){
 $num results=mysqli num rows($result);
for ($i=0; $i <$num results; $i++){
    $rad=mysqli_fetch_row($result);
    echo $rad[0];
    echo $rad[1];
    mysqli close($db);
?> </body> </html>
```

Hva gjorde vi?

☐ Kjørte php-rutine for å koble til database

- Lagde sql-setning
- ☐ Sendte sql-setningen
- ☐ Mottok en tabell som resultat av spørringen
- Hentet ut verdiene i resulatat-tabellen ved hjelp av ferdige phprutiner

Leksjon 3: Spørringer mot flere tabeller - 32

Hva skjer?

- ☐ Dere kaller på en HTMLside med PHP-kode.
- ☐ Apache serveren kaller på PHP-programmet på serveren som utfører denne koden
- □ Resultatet puttes inn i HTML-siden som sendes i retur til klienten
- □ Prosessering på serveren, presentasjon på klienten → 2-lags arkitektur.
- ☐ Hvis databaseserveren hadde vært en egen server: Presentasjon på klient, Prosessering på web-server, Databasehåndtering på databaseserver → 3-lags arkitektur
- Prøv gjerne å lage noe lignende mot EMP og DEPT tabellene.
- ☐ Husk at copy-paste fra PowerPoint og PDF gir masse feil tegn! Bedre å scrive inn koden selv i f.eks pico på unix-serveren.