

CpSc 8430: Deep Learning Homework 3

Copy Right Notice

Most slides in this presentation are adopted from slides of text book and various sources. The Copyright belong to the original authors. Thanks!

HW3

Train a discriminator/generator pair on CIFAR10 dataset utilizing techniques from DCGAN, Wasserstein GANs, ACGAN.

DCGAN: https://arxiv.org/abs/1511.06434

WGAN: https://arxiv.org/abs/1701.07875

ACGAN: https://arxiv.org/abs/1610.09585

Baseline Model for DCGAN

Generator

- noise_input = (100,);
- text_input = (119,);
- # num of (hair, eyes) pairs
- text_emb = Dense(256, 'relu')(text_input);
- concatenate([noise_input, text_emb]);
- Dense(4*4*512); Reshape((4, 4, 512));
- Batchnorm(mom=0.9); Relu;
- Conv2DTranspose(256, kernel=5);
- Batchnorm(mom=0.9); Relu;
- Conv2DTranspose(128, kernel=5);
- Batchnorm(mom=0.9); Relu;
- Conv2DTranspose(64, kernel=5);
- Batchnorm(mom=0.9); Relu;
- Conv2DTranspose(3, kernel=5);
- Tanh;

Discriminator

- image_input = (64,64,3);
- text input = (119,);
- text_emb = Dense(256,'relu')(text_input);
- text_emb = Reshape((1,1,256))(text_emb);
- tiled emb = tile(text emb, [1,4,4,1]);
- Conv2D(64 ,kernel=5)(image_input); LeakyRelu;
- Conv2D(128, kernel=5);
- Batchnorm(mom=0.9); LeakyRelu;
- Conv2D(256, kernel=5);
- Batchnorm(mom=0.9); LeakyReLu;
- Conv2D(512, kernel=5);
- Batchnorm(mom=0.9);
- image_feat = LeakyRelu;
- concatenate([image_feat, tiled_emb]);
- Conv2D(512, kernel=1, strides=(1,1));
- Flatten;
- Dense(1, 'sigmoid');

Training

Adam(Ir = 0.0002, beta = 0.5)

Data

- Dataset:
 - CIFAR 10: https://www.cs.toronto.edu/~kriz/cifar.html

Submission & Rules

- Deadline: April. 22nd 23:59
- Allow package:
 - python 3
 - TensorFlow/pytorch ONLY for CS and ECE student
 - For non-CS/ECE students, Keras is allowed.

Submission & Rules

For HW3:

- Submit a report with 1) 10 best generated pictures. 2) performance comparison among DCGAN,
 WGAN and ACGAN
 - Train networks from scratch and compare to existing networks
 - Working on DCGAN and WGAN is the basic and working on ACGAN is a bonus.
- Submit your code to github.

