

Transitation RL $N = V_R(G) + V_L(G) = 0$ $\Rightarrow N = ICf)R + L \frac{dIGf}{dG}$ $\Rightarrow N = ICf)R + L \frac{dIGf}{dG}$ $f \Rightarrow I_f = \frac{V}{R} \left(I - e^{-Rf/L} \right)$ $ICf) = \frac{V}{R} \left(I - e^{-Rf/L} \right)$ $ICf) = \frac{V}{R} \left(I - e^{-Rf/L} \right)$ $ICf) = I_C e^{-Rf/L}$ $ICf) = \frac{V}{R} \left(I - e^{-Rf/L} \right)$ $ICf) = I_C e^{-Rf/L}$ $ICf) = \frac{V}{R} \left(I - e^{-Rf/L} \right)$ $ICf) = I_C e^{-Rf/L}$ $ICf) = I_C e^{-Rf$
Vector polarización Integrales: Canga de CCC des inagneticación de = Edg va ICLIBR + QCLIBR +
Esperas: 'Canductoral metalica. 'Earl = 0. R. Vird = $\frac{1}{1600}$ ($\Gamma \le R$) R. Vird = $\frac{1}{1600}$ ($\Gamma \le R$) R. Vird = $\frac{1}{1600}$ ($\Gamma \ge R$) R. Vird = $\frac{1}{1600}$ ($\Gamma \ge R$) R. Vird = $\frac{1}{1600}$ ($\Gamma \ge R$) R. Vird = $\frac{1}{1600}$ ($\Gamma \ge R$) R. Vird = $\frac{1}{1600}$ ($\Gamma \ge R$) R. Vird = $\frac{1}{1600}$ ($\Gamma \ge R$) R. Vird = $\frac{1}{1600}$ ($\Gamma \ge R$) R. Vird = $\frac{1}{1600}$ ($\Gamma \ge R$) R. $\Gamma \ge R$