

Análisis Avanzado - Funciones Continuas 1

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA

Funciones continuas

Definición $(E_i A)_i (E_i A)$

Una función $f: E \to E'$ es continua en el punto $x \in E$ si para cada $\varepsilon > 0$ existe $\delta > 0$, tal que si $y \in E$, $d(x,y) < \delta$, entonces $d'(f(x),f(y)) < \varepsilon$.

Funciones continuas

Definición

Una función $f: E \to E'$ es continua en el punto $x \in E$ si para cada $\varepsilon > 0$ existe $\delta > 0$ tal que si $y \in E$, $d(x,y) < \delta$, entonces $d'(f(x),f(y)) < \varepsilon$.

Equivalentemente: para cada $\varepsilon > 0$ existe $\delta > 0$ tal que

 $f(y) \in B(f(x), \varepsilon)$ para todo $y \in B(x, \delta)$.

Funciones continuas

Definición

Análisis Avanzado

Una función $f: E \to E'$ es continua en el punto $x \in E$ si para cada $\varepsilon >$ 0 existe $\delta >$ 0 tal que si $y \in E$, $d(x,y) < \delta$, entonces $d'(f(x),f(y)) < \varepsilon$.

DM-FCFN-UBA

Daniel Carando - Victoria Paternostro

Observación

Una función $f: E \to E'$ es continua en el punto $x \in E$ si y sólo si para cada entorno V de f(x) en E', existe un entorno U de X en E tal que $f(U) \subset V$.

Dem: =D) Vent. de f(x). Qrg 3 U ent. de x / f(U) EV. STEV, JETO/BITCHEV, EVEV. Como f cont en x, 300/ f(B(x, N) \subseteq B(\xi)(\xi) f(B(x,ot) C B(f(x), E) C V town U=B(x,ot) € Evo gug 7 (B(X,o)) € B(f(X,E). Town V = B(f(x), E) gi es ent de f(x). Se gi $\exists U$ ent de f(x) $f(x) \subseteq B(f(x), E)$, Alora, $f(x) \subseteq B(f(x), E)$ $f(x) \subseteq B(f(x), E)$ $f(x) \subseteq f(x) \subseteq B(f(x), E)$

Observación

Una función $f: E \to E'$ es continua en el punto $x \in E$ si y sólo si para cada entorno V de f(x) en E', existe un entorno U de X en E tal que $f(U) \subset V$.

Decir que $f(U) \subset V$ es equivalente a decir que $U \subset f^{-1}(V)$ con lo cual podemos afirmar que para cada entorno V de f(x), la imagen inversa $f^{-1}(V)$ es un entorno de x.

Observación

Una función $f: E \to E'$ es continua en el punto $x \in E$ si y sólo si para cada entorno V de f(x) en E', existe un entorno U de X en E tal que $f(U) \subset V$.

Decir que $f(U) \subset V$ es equivalente a decir que $U \subset f^{-1}(V)$, con lo cual podemos afirmar que para cada entorno V de f(x), la imagen inversa $f^{-1}(V)$ es un entorno de x.

Ejemplo 1) f: R -D R los de aux wsrs I. Ld(x,y)=1/x-y-1/

2) E espació métros n xocE astalo. (ie: 300/B(xo,1)=(xof.) stato función def. en E es cont. en 20.

Análisis Avanzado

Daniel Carando - Victoria Paternostro

DM-FCEN-UB

Ejemplo

Si
$$\varepsilon$$
ro, true of Γ = $f(B(x_i \Gamma)) = f(3x_i \Gamma)$
= $f(x_i \Gamma) = f(3x_i \Gamma)$

3) E es discreto = s todo función def en E os continuo en todo pumb de E.

Teorema

Una función $f: E \to E'$ es continua en \underline{x} si y sólo si transforma cualquier sucesión convergente a \underline{x} en una sucesión convergente a $\underline{f}(x)$.

Teorema

Una función $f: E \to E'$ es continua en x si y sólo si transforma cualquier sucesión convergente a x en una sucesión convergente a f(x).

En otras palabras, f es continua en x si y sólo si cumple:

• para toda sucesión $(x_n)_n \subset E$ convergente a x, se tiene que la sucesión $(f(x_n))_n \subset E'$ converge a f(x).

Deu:
$$\Rightarrow$$
) f cont. eu \times . y \Rightarrow ω $(xu)u \subseteq E/xu - Dx$
Org $f(xu) \rightarrow f(x) = f(xu) \in B(f(x), E)$.
Exo $\varphi rq \exists u \in M / d(f(xu), f(x) \times E \forall u \ge u o$.
 $\exists f \infty / f(B(x, f)) \subseteq B(f(x), E)$ (cont.)

Como seu - Dx, ImoGN/ xu (B(x,o) +m>mo. = (faxu) e f (B(x,or) = B(f(x), E), +m,m Zu DZ Lo continuidad. 4) Sup. que fino es cont. eu 2. => JE>O/ mo hoy or one aught of $B(x, \sigma) \subseteq B(f(x), \varepsilon)$ √00 ∃ y∈ B(x,0)/ f(y) € B(f(x),ε) √=1/m → ∃ yueB(x,1/u) / f(y) € B(¢(x),ε) d(x,yw)</n -> yu-ox. d(f(x),f(yu)) > E => f(yw) fof(x) \ ABS!

Ejemplo

Definición

Una función $f: E \to E'$ es continua en E si es continua en todo punto $x \in E$.

Definición

Una función $f: E \to E'$ es continua en E si es continua en todo punto $x \in E$.

Teorema

Una función $f: E \to E'$ es <u>continua</u> si y sólo si la preimagen de *todo* abierto de E' es abierto en E.

€) Sado XEE y Exo, grg Foxo/f(B(X,o)) CB(XX,E) U= B(f(x),E) es aloro => f-1(v) también y xef-'(U) = > 3 0,0/ B(x,0) ef-'(U) = $f(B(x,\delta)) \subseteq U = B(f(x),\epsilon)$. Prop: f cont. en E and f-'(F) es cemado ELE TRCE curodo,

Ejercicio

Ver que lo mismo vale cambiando abiertos por cerrados.

Ejemplo

· A={ (x,y, z) ∈ 123 : | Seu(xyz) | <1/24

afirmo que A es abierto.

f: 123 - OR f(x,y,z) = (Seulxyz))

q'es cont.

(XYZ) - XYZ es cont.

y sules y !! son cont a V. J

 $A = f^{-1}((-\infty, 1/2))$ es obb.

. } xele([to,1]): x(1/2) >0} es obb

(da) = E/2 ((0,+0))

Teorema

Una función $f: E \to E'$ es continua si y sólo si para todo $A \subset E$,

$$f(\bar{A})\subset \overline{f(A)}.$$

Dem: =D)
$$y \in f(\overline{A}) = 0$$
 $y = f(x)$ para algor $x \in \overline{A}$.
Corus $x \in \overline{A} = D \ni (xu)u \subseteq A / xu \to x$.
 $f(xu) = D f(x)$, $(f(xu))u \subseteq f(A) / (xu) = f(A) / (xu) = D f(x)$.

€) Seo FCE' auado gra f-1(F)CE es cenodo.

$$A = f^{-1}(F)$$
 = $f(A) \subseteq f(A) \subseteq F = F$.
Hip, $f(A) = f(f^{-1}(F)) \subseteq F$

en resumen,

$$f(A) \subseteq F = 0$$
 $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(F) = A$

Análisis Avanzado