Math 308: Last Homework Assignment – SOLUTIONS

by William Stein

Wednesday, May 31, 2013

True or False:

- 1. **F** A system of linear equations over **R** has either no solutions or infinitely many solutions. [Hint: The possibilities for a system of linear equations with coefficients real numbers are: no solutions, a unique solution, infinitely many solutions.]
- 2. **F** The span of the rows of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ has dimension 3. [Hint: False, because when you put this matrix in echelon form, the last row consists of 0's.]
- 3. **T** There are 4 linearly independent vectors in \mathbb{R}^5 . [Hint: Yes, for example, the first four standard basis vectors e_1, e_2, e_3, e_4 .]
- 4. **F** The upper half plane, i.e., the set of points $(x, y) \in \mathbf{R}^2$ with $y \ge 0$, is a subspace of \mathbf{R}^2 . [Hint: No the upper half plane is not a subspace, because (1,0) is in the upper half plane, but $-1 \cdot (1,0) = (-1,0)$ is not, and subspaces are closed under scalar multiplication.]
- 5. **T** If A and B are any two square matrices (of the same size), then $\det(AB) = \det(BA)$ and $\det(A+B) = \det(B+A)$. [Hint: This is true; the first fact follows from $\det(AB) = \det(A) \det(B)$, which is a somewhat difficult theorem. The second fact just follows from commutativity of matrix addition.]
- 6. **T** Let \mathbf{F}_3 be the finite field with 3 elements and let V be a 2-dimensional vector space over \mathbf{F}_3 . Then there are 81 linear transformations $V \to V$. [Hint: Yes, the linear transformations correspond to 2×2 matrices with entries in $\mathbf{F}_3 = \{0, 1, 2\}$. The number of such matrices is $3 \cdot 3 \cdot 3 \cdot 3 = 81$, since there are three choices for each entry.]
- 7. **F** If A is any $n \times n$ matrix and B is the reduced row echelon form of A, then $\det(A) = \det(B^t)$, where B^t is the transpose of B. [Hint: This is false, with the transpose being a red herring. Replacing a matrix by its reduced row echelon form dramatically changes the determinant; in fact, the determinant of a matrix in reduced row echelon form is either 0 or 1!]
- 8. **T** Suppose A is a 3×3 matrix with eigenvalues 1, 2, 3. Then A must be diagonalizable. [Hint: Yes, because each eigenspace has dimension at least 1, and there are three of them, so their dimensions must add up to 3. That is, there is a basis of eigenvectors.]
- 9. **F** Suppose A is a 3×3 matrix with eigenvalues 1 and -1. Then $A^2 = I_3$. [Hint: This is false. A counterexample is the matrix $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.]
- 10. **T** Let \mathcal{P} be the vector space over **R** of polynomials of degree at most 3 with real coefficients, and let $T: \mathcal{P} \to \mathcal{P}$ be the linear transformation $T(ax^2 + bx + c) = a + b + c$. Then there is a basis

1

 \mathcal{B} for \mathcal{P} such that $[T]_{\mathcal{P},\mathcal{P}}$ is diagonal. [Hint: This is true, as we can see by first writing down the matrix $[T]_{\mathcal{C}}$ for *some* choice of basis, then computing the characteristic polynomial and eigenvectors.

We make the arbitrary choice of basis \mathcal{C} to be $1, x, x^2$, and find that $A = [T]_{\mathcal{C}} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. The

characteristic polynomial is $(x-1)x^2$, the nullspace of A-1 has dimension 1, and the nullspace of A-0 has dimension 2, so A is diagonalizable, hence T is as well.

- 11. **F** Let \mathcal{P} be the vector space over \mathbf{R} of polynomials of degree at most 3 with real coefficients, and let $T: \mathcal{P} \to \mathbf{R}^1$ be the linear transformation $T(ax^2 + bx + c) = a + b + c$. Then the kernel of T (i.e., the set of v with T(v) = 0) has dimension 1. [Hint: Choose a basis for both vector spaces, then compute the matrix of T with respect to this choice of bases. For \mathcal{P} choose $1, x, x^2$, and for \mathbf{R}^1 choose (1). Then the corresponding matrix is A = [1, 1, 1]. The nullspace of A has dimension 2, since the rank is 1 and rank + nullity = number of columns = 3; or, just compute the nullspace and get dimension 2. Since $2 \neq 1$, this is false.]
- 12. **T** Suppose V and W are vector spaces over \mathbf{R} of dimensions 2 and 3, respectively. Then there is a linear transformation $T:V\to W$ such that $\ker(T)=0$. [Hint: Yes, since $2\leq 3$, you can find such a linear transformation.]
- 13. **F** Suppose V and W are vector spaces over \mathbf{R} of dimensions 3 and 2, respectively. Then there is a linear transformation $T:V\to W$ such that $\ker(T)=0$. [Hint: No, this isn't possible, since any 2×3 matrix will have a nonzero nullspace.]
- 14. **F** Every 2×2 matrix A is diagonalizable (over the complex numbers **C**). [Hint: No, for example $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable.]
- 15. **T** The matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is diagonalizable over **C**. [Hint: Yes, as you can see by computing the characteristic polynomial and verifying that it has two distinct roots. The roots happen to be in **R**, but that's fine, since **R** is a subset of **C**.]
- 16. **T** Let V be the vector space of all differentiable functions $\mathbf{R} \to \mathbf{R}$. The function that send f to its derivative is a linear transformation $V \to V$. [Hint: Yes, this is a basic fact you know from Calculus, namely that (af + bg)' = af' + bg'.]
- 17. The dimension of the kernel of the derivative transformation (defined in the previous problem) is 1. [Hint: True, since f' = 0 if and only if f is a constant, and the constant functions are a space of dimension 1, with basis the function f(x) = 1.]
- 18. **T** Let V be the set of all integrable functions $\mathbf{R} \to \mathbf{R}$, i.e., functions that have some antiderivative. Then V is a vector space. [Hint: Yes, since the sum and scalar multiples of a function with an antiderivative also has an antiderivative.]
- 19. **T** Let V be the set of all integrable functions $\mathbf{R} \to \mathbf{R}$. The function that send f to "the antiderivative of f that sends 0 to 0" is a linear transformation of V. [Hint: Yes, it satisfies the properties. The key is that we make the choice of constant so that 0 goes to 0.]
- 20. **F** Let V be the set of all integrable functions $\mathbf{R} \to \mathbf{R}$. The function that f to "the antiderivative of f that sends 0 to 1" is a linear transformation of V. [Hint: This is definitely not a linear transformation, since it sends the 0 function to the constant function 1, which is not 0, and linear transformations send 0 to 0.]

- 21. **T** The determinant of $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}$ is 0. [Hint: Yes, since the last two rows are linear combinations of the first two.]
- 22. **T** If B and C are basis for a (finite dimensional) vector space V, then there must be some linear transformation $T: V \to V$ such that $[T]_{B,C}$ is the identity matrix. [Hint: Yes, just take T to be the transformation that sends b_i to c_i .]
- 23. **T** Let V be the set of functions $\mathbf{R} \to \mathbf{R}$. Then the function $V \to \mathbf{R}^2$ that sends f to $(f(1), f(\pi))$ is a linear transformation. [Hint: Yes, it is, as you can check from the definitions.]
- 24. **F** Let V be the vector space over \mathbf{R} that is the span of $\sin(x)$, $\cos(x)$, and $\cos(3x)$. Let $T:V\to\mathbf{R}^1$ be the linear transformation that sends $f\in V$ to f(0). Then the kernel of T has dimension 1. [Hint: Simply compute the matrix of T with respect to the basis $\sin(x)$, $\cos(x)$, $\cos(3x)$ for the domain and (1) for the codomain. That matrix is A=[0,1,1], which has nullspace of dimension 2, sincek there are two nonpivot columns, namely the first and third. Thus the kernel has dimension 2.]
- 25. **T** Let V be the vector space over **R** that is the span of $\sin(x)$, $\cos(x)$, and $\cos(3x)$. Let $T: V \to \mathbf{R}^1$ be the linear transformation that sends $f \in V$ to f(0). Then T is surjective, i.e., for every $a \in \mathbf{R}^1$ there is $v \in V$ such that T(v) = a. [Hint: This is true, since $aT(\cos(x)) = (a)$.]
- 26. **T** Suppose A is a matrix with characteristic polynomial x(x-1)(x-2)(x-3). Then there is a basis \mathcal{B} of \mathbf{R}^4 such that $[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. [Hint: Yes, since the roots of the characteristic polynomial all have algebraic multiplicity 1.]
- 27. **T** Suppose A has characteristic polynomial $x^7 + x^3 3$. Then $\det(A) \neq 0$. [Hint: Yes. The idea is to notice that $\det(xI A) = x^7 + x^3 3$, then substitute x = 0 into both sides, so get $\det(-A) = -3$. Since $\det(-A) = \pm \det(A)$, we see that $\det(A) \neq 0$.]