Contents

1	Intr	roduction to Lattice	3
	1.1	Description of lattices	3
	1.2	Determinant of lattice	4
	1.3	Gram-Schmidt	4
	1.4	Successive Minima	6
	1.5	Minkowski's Theorems	7
	1.6	Dual lattice	7
	1.7	Computational problems	7
	1.8	Complexity theory	8
	1.9	Some lattice problems	
	1.10	Hardness of approximation	9
2 Approximation Algorithms			1
	2.1	Solving SVP in dimension 2	11
	2.2	Approximating SVP in dimension $n \dots \dots$	13
	2.3	The LLL basis reduction algorithm	
	2.4		

Chapter 1

Introduction to Lattice

Definition: Let $b_1, \ldots, b_n \in \mathbb{R}^m$ be n linearly independent vectors. The **lattice** generated by these vectors is denoted as $\mathcal{L}(b_1, \ldots, b_n)$ and

$$\mathcal{L}(b_1, \dots, b_n) = \left\{ \sum_{i=1}^n x_i b_i \, \middle| \, x_i \in \mathbb{Z} \right\}$$

If we let $B = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix}$, then

$$\mathcal{L}(B) = \{Bx \mid x \in \mathbb{Z}^n\}$$

If n = m, then the lattice is said to be **full rank**. m is the dimension and n is the rank of the lattice.

- the case where $\mathcal{L}(B)$ is not a lattice.

1.1 Description of lattices

1.1.1 Algebraic description

Definition: A matrix $U \in \mathbb{Z}^{n \times n}$ is **unimodular** if $|\det U| = 1$.

Proposition 1.1. The unimodular matrices form a group under matrix multiplication.

Proof. Clearly, I is a unimodular matrix and is the identity element of the group. By definition, a unimodular matrix U is invertible and $|\det U^{-1}| = 1$. Also, note that

$$U^{-1} = \frac{1}{\det U} \operatorname{adj}(U)$$

where the adjugate matrix $\operatorname{adj}(U)$ is an integer matrix. Thus, $U^{-1} \in \mathbb{Z}^n$. The associativity follows from the associativity of matrix multiplication.

Theorem 1.2. Two full rank matrix $B, B' \in \mathbb{R}^n$ produce the same lattice if and only if there exists a unimodular matrix U such that B' = BU.

1.1.2 Geometric description

Definition: Suppose $b_1, \ldots, b_n \in \mathbb{R}^m$ are linearly independent. The **fundamental parallelopiped** of these vectors is

$$\mathcal{P}(b_1, \dots, b_n) = \left\{ \sum_{i=1}^n x_i b_i \, \middle| \, x_i \in [0, 1[\right\} \right\}$$

Theorem 1.3. Suppose Λ is a full rank n-dimensional lattice and $b_1, \ldots, b_n \in \mathbb{R}^n$ are linearly independent vectors in Λ . Then b_1, \ldots, b_n are a basis for Λ if and only if

$$\Lambda \cap \mathcal{P}(b_1,\ldots,b_n) = \{0\}$$

1.2 Determinant of lattice

Definition: Let Λ be a lattice generated basis B. The **determinant** of Λ is the volume of fundamental parallelopiped of B.

$$\det \Lambda = \operatorname{vol}(\mathcal{P}(B))$$

It can be shown that $\operatorname{vol}(\mathcal{P}(B)) = \sqrt{\det B^T B}$. To show that this definition is well-defined, we must prove that for any basis two B, B', the volumes of fundamental parallelopipeds are equal. Since, B and B' generate the same lattice, by 1.2, there exists a unimodular matrix U such that B' = BU.

$$\operatorname{vol}(\mathcal{P}(B')) = \sqrt{\det B'^T B'}$$

$$= \sqrt{\det (BU)^T BU}$$

$$= \sqrt{\det U^T B^T BU}$$

$$= \sqrt{\det U^T \det B^T B \det U}$$

$$= \sqrt{(\det U)^2 \det B^T B}$$

$$= \sqrt{\det B^T B} = \operatorname{vol}(\mathcal{P}(B))$$

which was what was wanted.

Intuitively, the det Λ is inversely proportional to its density.

Remark 1. In mathematical analysis, the volume – or length or area – of a set is measured with *measures*. The exact definition of a measure is beyond the scope this text, however, we will almost always use the *lebesgue measure*, unless stated otherwise. Measures can be defined on any set, and hence the measure of set may not depend on a particular metric. As a result, we are able to consider the same space with the same measure under different metrics or norms without affecting the measure.

1.3 Gram-Schmidt

In Gram-Schmidt procedure, a set of linearly independent vectors b_1, \ldots, b_n are transformed into a set of orthogonal vectors b_1^*, \ldots, b_n^* .

$$b_i^* = b_i - \sum_{j=1}^{i-1} \frac{\langle b_i, b_j^* \rangle}{\langle b_j^*, b_j^* \rangle} b_j^* = b_i - \sum_{j=1}^{i-1} u_{i,j} b_j^*$$

1.3 Gram-Schmidt 5

with $b_1^* = b_1$.

Proposition 1.4.

- 1. For all $i \neq j$, $\langle b_i^*, b_i^* \rangle = 0$.
- 2. For all i > j, $\langle b_i^*, b_j \rangle = 0$.
- 3. For all i, span $\{b_1, \ldots, b_i\} = \text{span}\{b_1^*, \ldots, b_i^*\}$.
- 4. If $B = \begin{bmatrix} b_1 & \dots & b_n \end{bmatrix}$ and $B^* = \begin{bmatrix} b_1^* & \dots & b_n^* \end{bmatrix}$, then

$$B = B^* \begin{bmatrix} 1 & u_{2,1} & \dots & u_{n,1} \\ 0 & 1 & \dots & u_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Lemma 1.5. If we apply the Gram-Schmidt procedure to $B \in \mathbb{R}^{m \times n}$ and get $B^* \in \mathbb{R}^{m \times n}$, then

$$\det B^T B = \prod_{i=1}^n ||b_i^*||^2$$

Proof. Note that,

$$B^* \begin{bmatrix} 1 & u_{2,1} & \dots & u_{n,1} \\ 0 & 1 & \dots & u_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} = \begin{bmatrix} b_1^* & \dots & b_1^* \\ \|b_1^*\| & \dots & \frac{b_1^*}{\|b_n^*\|} \end{bmatrix} \begin{bmatrix} \|b_1^*\| & u_{2,1}\|b_1^*\| & \dots & u_{n,1}\|b_1^*\| \\ 0 & \|b_2^*\| & \dots & u_{n,2}\|b_2^*\| \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \|b_n^*\| \end{bmatrix}$$

Let $B^{*'}$ be the orthonormal Gram-Schmidt matrix as calculated above and U' its corresponding upper triangular matrix.

$$\det B^{T}B = \det((B^{*}U)^{T}B^{*}U)$$

$$= \det((U')^{T}(B^{*'})^{T}B^{*'}U')$$

$$= \det U' \det(B^{*'})^{T}B^{*'} \det U'$$

$$= \prod_{i=1}^{n} ||b_{i}^{*}||^{2} \det(B^{*'})^{T}B^{*'}$$

Behold, the columns of $B^{*'}$ are orthonormal therefore, $(B^{*'})^T B^{*'} = I_n$ and hence

$$\det B^T B = \prod_{i=1}^n ||b_i^*||^2$$

which was what was wanted.

1.4 Successive Minima

Let $\lambda_i(\Lambda)$ be the minimum norm of the longest vector among any set *i* linearly independent vectors in Λ .

$$\lambda_i(\Lambda) = \min_{\substack{\{y_1, \dots, y_i\}\\ \text{lin indp}}} \max_{1 \le j \le i} ||y_j||$$

or equivalently

$$\lambda_i(\Lambda) = \inf\{r \mid \dim \operatorname{span}(\Lambda \cap B_r(0)) \ge i\}$$

Theorem 1.6. Let Λ be a littice of rank n with successive minima $\lambda_1(\Lambda), \ldots, \lambda_n(\Lambda)$. There exists a set of linearly independent vectors $v_1, \ldots, v_n \in \Lambda$ such that $||v_i|| = \lambda_i(\Lambda)$.

1.4.1 Lower bound on λ_1

Theorem 1.7. Let $\mathcal{L}(B)$ be a lattice, then

$$\lambda_1(\mathcal{L}(B)) \ge \min_{j} \left\| b_j^* \right\|$$

and more generally

$$\lambda_i(\mathcal{L}(B)) \ge \min_j j \ge i \|b_j^*\|$$

Proof. Let $x \in \mathbb{Z}^n$, we will show that $||Bx|| \ge \min_j ||b_j^*||$ for all $x \in \mathbb{Z}^n$. Note that, for any i we have

$$|\langle Bx, b_i^* \rangle| = \left| \sum_{j=1}^n x_j \langle b_j, b_i^* \rangle \right| = \left| \sum_{j=i}^n x_j \langle b_j, b_i^* \rangle \right|$$

Let i be the largest indext that $x_i \neq 0$. That is, for all j > i, $x_j = 0$. Thus

$$|\langle Bx, b_i^* \rangle| = |x_i \langle b_i, b_i^* \rangle| = |x_i| ||b_i^*||^2 \le ||b_i^*||^2$$

Moreover, by Cauchy-Schwarz inequality

$$|\langle Bx, b_i^* \rangle| \le ||Bx|| ||b_i^*||$$

ans hence

$$||Bx|| \ge ||b_i^*|| \ge \min_j ||b_j^*||$$

which was what was wanted.

Corollary 1.8. For all lattices Λ , there exists a constant $\epsilon(\Lambda) > 0$ such that for all $x, y \in \Lambda$ we have

$$||x - y|| \ge \epsilon(\Lambda)$$

Proof. Note that $x - y \in \Lambda$ then, let $\epsilon(\Lambda) = \lambda_1(\Lambda)$.

Theorem 1.9. A set $\Lambda \subset \mathbb{R}^m$ is a lattice if and only if it is a discrete additive subgroup of \mathbb{R}^m .

1.5 Minkowski's Theorems

Theorem 1.10 (Blichfeld theorem). For any Λ and for any measurable set $S \subset \operatorname{span} \Lambda$, if S has a volume $\operatorname{vol}(S) > \det \Lambda$, then there exists two distinct points $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

Theorem 1.11 (Convex body theorem). For any lattice Λ of rank n and any convext set $S \subset \operatorname{span} \Lambda$ symmetric about the origin, if $\operatorname{vol}(S) > 2^n \operatorname{det} \Lambda$, then S contains a non-zero lattice point.

Theorem 1.12 (Minkowski's first theorem). For any lattice Λ ,

$$\lambda_1(\Lambda) \le \sqrt{n} (\det \Lambda)^{\frac{1}{n}}$$

Theorem 1.13 (Minkowski's second theorem). For any lattice Λ of rank n under the l_2 norm

$$\left(\prod_{i=1}^{n} \lambda_i(\Lambda)\right)^{\frac{1}{n}} \leq \sqrt{n} (\det \Lambda)^{\frac{1}{n}}$$

tightness of Minkowski's upper bounds.

1.6 Dual lattice

Definition: The dual lattice or reciprocal lattice of Λ , denoted by Λ^* is defined as

$$\Lambda^* = \{ x \in \operatorname{span} \Lambda \, | \, \forall y \in \Lambda, \langle x, y \rangle \in \mathbb{Z} \}$$

we can find $U = \begin{bmatrix} u_1 & \dots & u_n \end{bmatrix}$ such that $Uv_i = e_i$ by setting $U = V(V^TV)^{-1}$. If $\Lambda^* = \Lambda$, the lattice is called **self-dual**.

Proposition 1.14.

- 1. $(k\mathbb{Z}^n)^* = \frac{1}{k}\mathbb{Z}^n$.
- 2. $(\Lambda^*)^* = \Lambda$.
- 3. Λ^* is a lattice and has rank n.
- 4. If B is a basis for Λ , then there exists a unique D corresponding to B such that D is a basis for Λ^* and
 - (a) span $D = \operatorname{span} B$.
 - (b) $B^TD = I$.
- 5. $\det \Lambda^* = \frac{1}{\det \Lambda}$.

1.7 Computational problems

Definition (Shortest vector problem): Given a basis $B \in \mathbb{Z}^{m \times n}$ find a non-zero lattice vector Bx such that $||Bx|| \le ||By||$ for any other vector $y \in \mathbb{Z}^n \setminus \{0\}$

1.8 Complexity theory

A Turing machine rnus in time t(n) if for all string w of size |w| = n, the turing machine halts in at most t(n) steps. If $t(n) = a + n^b$ for some constants a, b, we say that the turing machine runs in **polynomial time**. The class of decision problems that can be solved by a deterministic turing machine in polynomial time is denoted by \mathbf{P} . The class of decision problems that can be solved by a non-deterministic turing machine in polynomial time is denoted by \mathbf{NP} . The \mathbf{NP} class can also be characterized by the class of languages L such that there exists a relation $R \subset \Sigma^* \times \Sigma^*$ such that $(x,y) \in R$ can be checked in polynomial time in |x| and $x \in L$ if and only if there exists a y that $(x,y) \in R$. Then, y is called the \mathbf{NP} -witness of x.

The language A reduces to B if there exists a polynomial time computable function $f: \Sigma^* \to \Sigma^*$ such that $x \in A$ if and only if $f(x) \in B$, denoted by $A \mapsto B$, and it is called the **Karp reduction**. A is **NP-hard** if for all $B \in \mathbf{NP}$, $B \mapsto A$. A is **NP-complete** if A is **NP-hard** and $A \in \mathbf{NP}$.

Similarly, for **Cook reduction**, the language A reduces to B if there exists a polynomial time turing machine with access to an oracle that solves B that solves A.

1.9 Some lattice problems

Definition (Closest vector problem): Given $B \in \mathbb{Z}^{m \times n}$ and a target vector $t \in \mathbb{Z}^m$ find $Bx \in \mathbb{Z}^m$ such that $||Bx - t|| \le ||By - t||$ for all $y \in \mathbb{Z}^n \setminus \{0\}$. There other variants to this problem.

Search find $Bx \in \mathbb{Z}^m$ such that ||Bx - t|| is minimized.

Optimization Find the minimum of ||Bx - t||.

Decision Given a rational number r > 0, decide if there exists x with ||x - t|| < r.

Note that the decision problem reduces to optimization problem which itself reduces to search problem.

– the reation of λ_i to each other.

Definition (Approximate SVP): Given a constant γ , find a non-zero vector Bx such that $||Bx|| \leq \gamma ||By||$ for all $y \in \mathbb{Z}^n \setminus \{0\}$.

Approximate CVP is defined similarly.

A list of polynomial time lattice problems.

- 1. Membership: Given B and x, decide whether $x \in \mathcal{L}(B)$.
- 2. Kernel: Given $A \in \mathbb{Z}^{m \times n}$ find the a basis for $\Lambda = \{x \in \mathbb{Z}^n \mid Ax = 0\}$.
- 3. Kernel-mod: Given $A \in \mathbb{Z}_M^{m \times n}$ find the a basis for $\Lambda = \{x \in \mathbb{Z}^n \mid Ax = 0 \mod M\}$.
- 4. Basis: Given vectors b_1, \ldots, b_n find a basis for the lattice generated by b_1, \ldots, b_n . It is done by normal Hermitian form, H. H is the worst basis.
- 5. Union: Given bases $B_1, B_2 \in \mathbb{Z}^{m \times n}$, find a basis for $\mathcal{L}(B_1) \cup \mathcal{L}(B_2)$.

- 6. Dual: Find a basis for the dual lattice.
- 7. Intersection: Given bases $B_1, B_2 \in \mathbb{Z}^{m \times n}$, find a basis for $\mathcal{L}(B_1) \cap \mathcal{L}(B_2)$.
- 8. Equivalence: Given bases $B_1, B_2 \in \mathbb{Z}^{m \times n}$, determine whether $\mathcal{L}(B_1) = \mathcal{L}(B_2)$.
- 9. Cyclic: Determine whether the lattice Λ is cyclic. The lattice Λ is cyclic if for all $x \in \Lambda$, all cyclic permutations of coordinates of x are in Λ as well.

1.10 Hardness of approximation

Definition: The promise is a pair (Π_{yes}, Π_{no}) with $\Pi_{yes}, \Pi_{no} \subset \Sigma^*$ and $\Pi_{yes} \cap \Pi_{no} = \emptyset$.

Definition: An algorithm or turing machine solves a promise (Π_{yes}, Π_{no}) if for all $w \in \Pi_{yes} \cup \Pi_{no}$, it can determine whether $w \in \Pi_{yes}$ or $w \in \Pi_{no}$.

Definition: The $GAPSVP_{\gamma}$ is a promise defined as follows:

$$\Pi_{yes} = \{(B,r) \mid B \text{ is a basis}, B \in \mathbb{Z}^{m \times n}, r \in \mathbb{Q}, \text{ and there exists } z \in \mathbb{Z}^n \setminus \{0\} \text{ s.t. } ||Bz|| < r \}$$

$$\Pi_{no} = \{(B,r) \mid B \text{ is a basis}, B \in \mathbb{Z}^{m \times n}, r \in \mathbb{Q}, \text{ and for all } z \in \mathbb{Z}^n \setminus \{0\} \text{ s.t. } ||Bz|| > \gamma r \}$$

The $GAPCVP_{\gamma}$ is a promise defined as follows:

$$\Pi_{yes} = \left\{ (B, t, r) \mid B \text{ is a basis, } B \in \mathbb{Z}^{m \times n}, t \in \mathbb{Z}^m, r \in \mathbb{Q}, \exists z \in \mathbb{Z}^n \setminus \{0\}, \|Bz - t\| < r \right\}
\Pi_{no} = \left\{ (B, t, r) \mid B \text{ is a basis, } B \in \mathbb{Z}^{m \times n}, t \in \mathbb{Z}^m, r \in \mathbb{Q}, \forall z \in \mathbb{Z}^n \setminus \{0\}, \|Bz - t\| > \gamma r \right\}$$

Theorem 1.15. $GAPSVP_{\gamma} \mapsto APPROXSVP_{\gamma}$. $APPROXSVP_{\gamma} \mapsto GAPSVP_{\gamma}$ and

Definition: A promise (Π_{yes}, Π_{no}) is in **NP** when there exists a relation $R \subset \Sigma^* \times \Sigma^*$ such that for all $x \in \Pi_{yes}$ there exists y such that $(x, y) \in R$ and for all $x \in \Pi_{no}$ for all $y, (x, y) \notin R$.

Definition: Suppose $f: \Sigma^* \to \Sigma^*$ is computable in polynomial time. A reduction from (Π_{yes}, Π_{no}) to (Π'_{yes}, Π'_{no}) when

$$f(\Pi_{yes}) \subset \Pi'_{yes}$$
 and $f(\Pi_{no}) \subset \Pi'_{no}$

Definition: NP-hard, NP-complete for promises.

Chapter 2

Approximation Algorithms

2.1 Solving SVP in dimension 2

2.1.1 Reduced basis

Definition: Let $\begin{bmatrix} a & b \end{bmatrix}$ be a lattice basis. The basis is reduced with respect to $\|\cdot\|$ if

$$||a||, ||b|| \le ||a+b||, ||a-b||$$

We claim that this is equivalent to $||a||, ||b|| = \lambda_1, \lambda_2$.

Lemma 2.1. Consider three vector on a line $x, x + y, x + \alpha y$ where $\alpha > 1$. For any norm $\|\cdot\|$

$$||x|| \le ||x + y|| \implies ||x + y|| \le ||x + \alpha y||$$

 $||x|| < ||x + y|| \implies ||x + y|| < ||x + \alpha y||$

Proof. We easily have

$$||x + \alpha y|| = ||\alpha x + \alpha y - (\alpha - 1)x||$$

$$\geq |||\alpha x + \alpha y|| - ||(\alpha - 1)x|||$$

$$= \alpha ||x + y|| - (\alpha - 1)||x||$$

$$= ||x + y|| + (\alpha - 1)(||x + y|| - ||x||)$$

which was what was wanted.

Theorem 2.2. Let $\begin{bmatrix} a & b \end{bmatrix}$ be a lattice basis and let λ_1, λ_2 be the successive minima of the lattice. Then, $\begin{bmatrix} a & b \end{bmatrix}$ is reduced if and only if $\|a\|, \|b\| = \lambda_1, \lambda_2$.

2.1.2 Gauss' Algorithm

The goal is to find a reduced basis for any 2-dimensional lattice.

Definition: A basis $\begin{bmatrix} a & b \end{bmatrix}$ is well-ordered if $||a|| \le ||a - b|| \le ||b||$.

Lemma 2.3. Let $\|\cdot\|$ be an effeciently computable norm and a,b be two vectors such that $\|b\|>\|b-a\|$. Then, one can effeciently find an integer such that $\|b-\mu a\|$ is minimal. Moreover, μ satisfies $1\leq \mu \leq 2\frac{2\|b\|}{\|a\|}$.

```
Algorithm 1: Gauss' Algorithm
 input : a, b \in \Lambda are linearly independent.
 output: A reduced basis for the lattice \Lambda.
 if ||a|| > ||b|| then
     swap(a, b)
 end
                                                                            /* Here: ||a|| \le ||b|| */
 if ||a - b|| > ||a + b|| then
     b = -b
 end
                                              /* Here: ||a|| \le ||b|| and ||a - b|| \le ||a + b|| */
 if ||b|| \le ||a-b|| then the basis is reduced
     return \begin{bmatrix} a & b \end{bmatrix}
 if ||a|| \le ||a-b|| then the basis is well-ordered
     goto loop
 end
                                                        /* \|a - b\| < \|a\| \implies \|a\| < \|a + b\| */
                                             /* Therefore: ||a-b|| < ||a|| < ||b||, ||a+b|| */
 if ||a|| = ||b|| then
     return \begin{bmatrix} a-b & a \end{bmatrix}
                                              /* Note that ||2a - b|| \ge |2||a|| - ||b||| = ||a|| */
                                                  /* and thus ||a-b||, ||a|| \le ||b||, ||2a-b|| */
 end
                                                    /* Here: ||a-b|| < ||a|| < ||b||, ||a+b|| */
 \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} b - a & b \end{bmatrix}
                                                      /* This is a well ordered basis.
                /* Note that in the loop, the basis is always well-ordered */
 loop: Find \mu \in \mathbb{Z} such that ||b - \mu a|| is minimized.
 b' = b - \mu a
 if ||a - b'|| > ||a + b'|| then
     b' = -b'
 end
 swap(a, b')
 if \begin{bmatrix} a & b' \end{bmatrix} is reduced then
     return \begin{vmatrix} a & b' \end{vmatrix}
 else
     b = b'
     goto loop
 end
```

Proof. Binary search.

Lemma 2.4. In any execution of the Gauss algorithm, at the beginning of each iteration the basis $\begin{bmatrix} a & b \end{bmatrix}$ is well-ordered.

Theorem 2.5. On any input of two linearly independent $\begin{bmatrix} a & b \end{bmatrix}$, the Gauss' algorithm always terminated and correctly computes a reduced basis for the lattice.

2.2 Approximating SVP in dimension n

2.2.1 Reduced basis

Definition: A basis $B = \begin{bmatrix} b_1 & b_2 \end{bmatrix}$ is reduced if and only if

1.
$$\mu_{2,1} = \frac{\langle b_2, b_1^* \rangle}{\langle b_1^*, b_1^* \rangle} = \frac{\langle b_2, b_1 \rangle}{\langle b_1, b_1 \rangle} \le \frac{1}{2}.$$

2. $||b_1|| \le ||b_2||$.

Define $\pi_i : \mathbb{R}^m \to \operatorname{span}(b_i^*, \dots, b_n^*)$ such that

$$\pi_i(x) = \sum_{j=i}^n \frac{\left\langle x, b_j^* \right\rangle}{\left\langle b_j^*, b_j^* \right\rangle} b_j^*$$

Definition: A basis $B = \begin{bmatrix} b_1 & \dots & b_n \end{bmatrix} \in \mathbb{R}^{m \times n}$ is **LLL-reduced** with parameter δ , δ -LLL reduced, if

- 1. $|u_{i,j}| \leq \frac{1}{2} \forall i > j$.
- 2. For any pair of consecutive vectors b_i, b_{i+1}

$$\delta \|\pi_i(b_i)\|^2 \le \|\pi_i(b_{i+1})\|^2$$

When $\delta = 1$, the second condition implies that $\begin{bmatrix} \pi_i(b_i) & \pi_i(b_{i+1}) \end{bmatrix}$ is a reduced basis.

Lemma 2.6. If $B = \begin{bmatrix} b_1 & \dots & b_n \end{bmatrix} \in \mathbb{R}^{m \times n}$ is a δ -LLL reduced with $\delta \in]1/4, 1[$, then

$$||b_1|| \le \left(\frac{2}{\sqrt{4\delta - 1}}\right)^{n-1} \lambda_1$$

In particular, if $\delta = \frac{1}{4} + \left(\frac{3}{4}\right)^{n/n-1}$, then

$$||b_1|| \le \left(\frac{2}{\sqrt{3}}\right)^n \lambda_1$$

Proof. For all i

$$\delta \|b_{i}^{*}\|^{2} = \delta \|\pi_{i}(b_{i}^{*})\|^{2}$$

$$\leq \|\pi_{i}(b_{i+1}^{*})\|^{2}$$

$$= \|u_{i+1,i}b_{i}^{*} + b_{i+1}^{*}\|^{2}$$

$$= |u_{i+1,i}|^{2} \|b_{i}^{*}\|^{2} + \|b_{i+1}^{*}\|^{2}$$

$$\leq \frac{1}{4} \|b_{i}^{*}\|^{2} + \|b_{i+1}^{*}\|^{2}$$

$$\Longrightarrow \|b_{i}^{*}\|^{2} \leq \frac{4}{4\delta - 1} \|b_{i+1}^{*}\|^{2}$$

$$\Longrightarrow \|b_{i}^{*}\| \leq \frac{2}{\sqrt{4\delta - 1}} \|b_{i+1}^{*}\|$$

Let $||b_i^*||$ be the minimum of $||b_i^*||$, then

$$||b_1^*|| \le \left(\frac{2}{\sqrt{4\delta - 1}}\right)^{i-1}||b_i^*|| \le \left(\frac{2}{\sqrt{4\delta - 1}}\right)^{i-1}\lambda_1 \le \left(\frac{2}{\sqrt{4\delta - 1}}\right)^{n-1}\lambda_1$$

because, $\frac{2}{\sqrt{4\delta - 1}} > 1$. Since $||b_1^*|| = ||b_1||$, then

$$||b_1|| \le \left(\frac{2}{\sqrt{4\delta - 1}}\right)^{n-1} \lambda_1$$

2.3 The LLL basis reduction algorithm

Note that, the Gauss' algorithm is basically

- 1. reduce $b = b \mu a$.
- 2. swap.
- 3. repeat the process if the basis is not reduced.

In the Reduction $B \mapsto B'$ where B' is the result of applying elementary integer column operations on B. Therefore, they are both basis for the same lattice. Moreover, $B^* = (B')^*$ but $|u_{i,j}| \leq \frac{1}{2} \ \forall i > j$. After swapping we might need to reduce again.

2.3.1 Running time analysis

2.4 Approximating CVP in dimension n

Lemma 2.7. When $\delta = \frac{1}{4} + \left(\frac{3}{4}\right)^{n/n-1}$, the nearest plane algorithm solves CVP within an factor $\gamma(n) = 2\left(\frac{2}{\sqrt{3}}\right)^n$.

Algorithm 2: δ -LLL Basis Reduction Algorithm

```
input : B = \begin{bmatrix} b_1 & \dots & b_n \end{bmatrix} is a basis for \Lambda.

output: A reduced basis for the lattice \Lambda.

Reduction:

for i = 1, \dots, n do

for j = i + 1, \dots, n do

b_i = b_i - c_{i,j}b_j \text{ where } c_{i,j} = \left\lfloor \frac{\langle b_i, b_j \rangle}{\langle b_j, b_j \rangle} \right\rfloor
end

end

Swap: if \delta \|\pi_i(b_i)\|^2 > \|\pi_i(b_{i+1})\|^2 swap b_i and b_{i+1}

Repeat: if anything was swapped.
```

Algorithm 3: Nearest plane algorithm Algorithm

```
input : B = \begin{bmatrix} b_1 & \dots & b_n \end{bmatrix} \in \mathbb{Z}^{m \times n} is a basis for \Lambda and t \in \mathbb{Z}^m is the target vector.

output: x \in \Lambda such that ||t - x|| \le 2\left(\frac{2}{\sqrt{3}}\right)^n \min_{y \in \Lambda} ||y - t||

Run LLL-algorithm on B

Let b = t

for j = n, \dots, 1 do

b = b - c_j b_j where c_j = \left\lfloor \frac{\langle b, b_j \rangle}{\langle b_j, b_j \rangle} \right\rfloor

end

return t - b
```