CONSAD RESEARCH CORP PITTSBURGH PA F/6 5/3 PROJECTING THE DEMAND FOR OHIO RIVER BASIN WATERWAY TRAFFIC USI--ETC(U) JAN 79 DACW69-78-C-0018 AD-A087 194 UNCLASSIFIED 1 OF 4 AD A 0-7-94 4

Technical Report

4 Projecting 9 The Demand
For
Phio River Basin Waterway Traffic Using **Correlation** And Regression

JAN. 1979

Chia River Livisiar Circirrati, Chia U.S. Arra Carps of Ergiraars

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

an 7 of 17()

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	. 3. RECIPIENT'S CATALOG NUMBER
H D-A 087	<u> 17</u>
4. TiTLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Projecting the demand for Ohio River Basin Waterway Traffic Using Correlation and	
Regression	Final report 6. PERFORMING ORG. REPORT NUMBER
109100101	o. PERFORMING ONG. REPORT NUMBER
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(a)
	DACW69-78-C-0018
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
CONSAD Research Corporation	· ·
121 North Highland Avenue	Ohio River Basin
Pittsburgh, PA 15206	Navigation Studies
U.S. Army Corps of Engineers, Ohio River Div.,	
ATTN: Navigation Studies Branch, Planning Div.,	January 1979
P.O. Box 1159, Cincinnati, OH 45201	319
P.O. Box 1159, Cincinnati, OH 45201 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
U.S. Army Corps of Engineers, Huntington Distr.,	
P.O. Box 2127	UNCLASSIFIED
Huntington, WV 25721	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimi	ted.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the state of	on Report)
19. KE) WORDS (Continue on reverse side it necessary and identify by block number. Bulk cargo Ohio River basin	'
Correlation River basin developmen Economic development Statistical analysis Economic forecasting Inland waterways	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
This Corps of Engineers report describes one of plementary studies of future freight traffic on gation System. Each of the studies considers ex and develops a consistent set of projections of the navigable waterways of the basin. Each r on past and present waterborne commerce in the b commodity group and origin-destination areas fro	the Ohio River Basin Navi- isting waterborne commerce future traffic demands of all eport contains information asin and projections by

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

(Continued from #20)

The three study projections, in conjunction with other analytical tools and system information, will be used to evaluate specific waterway improvements to meet short and long-term navigation needs. The output from these studies will serve as input to Corps' Inland Navigation Simulation Models to help analyze the performance and opportunities for improvement of the Ohio River Basin Navigation System. These data will be used in current studies relating to improvement of Gallipolis Locks, the Monongahela River, the Upper Ohio River, the Kanawha River, the Lower Ohio River, the Cumberland River and the Tennessee River, as well as other improvements.

This report and the 1975-1990 projected traffic demands discussed in it were developed by correlating the historic waterborne commodity flows on the Ohio River Navigation System with various indicators of regional and national demands for the commodities. The demand variable(s) which appeared to best describe the historic traffic pattern for each of the commodity groups was selected for projection purposes. The historic and projected values for the demand variables are based upon the 1972 OBERS Series E Projections of National and Regional Economic Activity. The OBERS projections were developed by the Bureau of Economic Analysis of the U.S. Department of Commerce in conjunction with the Economic Research Service of the Department of Agriculture.

-	Accessi	on For		
!- !	NTIS G DDC TAB Unamnou	,		
-	Justif	cation		١
1	Ву			1
1		bution/ ability		
	Dist	Availa speci	$_{ m nd/or}$	

Final Repart.

PROJECTING THE DEMAND FOR OHIO RIVER BASIN WATERWAY TRAFFIC USING CORRELATION AND REGRESSION.

Contract DACW69-78-C-0018

(11) Jan 77 /

12, 338/

Prepared for:

U.S. Army Corps of Engineers Huntington District P.O. Box 2127 Huntington, West Virginia 25721

Prepared by:

CONSAD Research Corporation 121 North Highland Avenue Pittsburgh, Pennsylvania 15206

January 1979

APPLIED FOR THE ...

387157 xlt

COPIES OF THIS REPORT MAY BE PURCHASED FROM:

DIVISION ENGINEER
U. S. ARMY ENGINEER DIVISION, OHIO RIVER
CINCINNATI, OHIO 45201

PREFACE

This Corps of Engineers report describes one of three independent but complementary studies of future freight traffic on the Ohio River Basin Navigation System. Each of the studies considers existing waterborne commerce and develops a consistent set of projections of future traffic demands for all of the navigable waterways of the basin. Each report contains information on past and present waterborne commerce in the basin and projections by commodity group and origin-destination areas from 1975 to at least 1990.

The three projections, in conjunction with other analytical tools and system information, will be used to evaluate specific waterway improvements to meet short—and long-term navigation needs. The output from these studies will serve as input to Corps' Inland Navigation Simulation Models to help analyze the performance and opportunities for improvement of the Ohio River Basin Navigation System. These data will be used in current studies relating to improvement of Gallipolis Locks, the Monongahela River, the upper Ohio River, the Kanawha River, the lower Ohio River, the Cumberland River, and the Tennessee River, as well as other improvements.

This report, completed in January 1979, was prepared for the Corps by CONSAD Research Corporation of Pittsburgh, Penn-The study and the 1975-1990 projected traffic sylvania. demands discussed in this report were developed correlating the historic waterborne commodity flows on the Ohio River Navigation System with various indicators of regional and national demands for the commodities. demand variable(s) which appeared to best describe the historic traffic pattern for each of the commodity groups was selected for projection purposes. The historic projected values for the demand variables are based upon the 1972 OBERS Series E Projections of National and Regional Economic Activity. The OBERS projections were developed by the Bureau of Economic Analysis of the U. S. Department of Commerce in conjunction with the Economic Research Service of the Department of Agriculture.

A second report, completed in February 1979, was prepared for the Corps by Battelle Memorial Institute, Columbus, Ohio. The study and the 1975-1990 projections discussed in that report were developed by surveying all waterway users in the Ohio River Basin through a combined mail survey and

personal interview approach. Personal interviews were held with the major existing waterway shippers. The purpose of the shipper survey was to obtain an estimate from each individual shipper of his future commodity movements by specified origins and destinations, as well as other associated traffic information. The responses were then aggregated to yield projected traffic demands for the Ohio River Navigation System.

A third report, to be completed in September 1979 is being prepared for the Corps by Robert R. Nathan Associates, Inc. of Washington, D. C. The study and the 1975-2040 projections to be discussed in that report are much more comprehensive in scope, and focus on a much longer time The basic study approach involves placing the historic production, consumption, and net shipments (by transportation mode) of commodities which move by water in the Ohio River basin into perspective with total national output. The production, consumption, and shipment estimates are being prepared for all geographic areas within the basin which are either directly or indirectly (through modal transfers) served by the Ohio River Navigation System. Economic, environmental and institutional factors which have historically affected output, consumption and modal shipments are being identified and analyzed. variables will then be projected through the year 2040 under alternative scenarios. Detailed waterway flow projections by commodity group and origin-destination areas will then be presented for the most probable future condition.

TAB	LE OF	CO	NTENTS	Page
1.0	INTR	ODU	CTION AND PURPOSE	1
2.0	ANA	LYSI	3	4
	2. 1	Data	a: Collection, Coding and Manipulation Procedures	4
	2.2	Sele	ection of Independent Variables	6
	2.3		ression Procedures	8
			. 1 System	8
			2 Individual Rivers	18
		2.3	3 Key Lock and Dam Projects	23
	2.4	Ori	gin - Destination Movements	24
			1 Preliminary Examination of O-D Movements	24
		2.4	.2 Obtaining Future O-D Movements: Shift-Share Analysis and the Fratar Method	29
		2.4	Assignments of Future O-D Movements to Lock and Dam Projects	36
3.0	RESU	LTS		38
	3.1	Reg	ression Relationships Obtained	38
		3.1.	l System Level	38
		3.1.	2 Individual River Level	48
		3.1.	3 Key Lock and Dam Project Level	71
			4 Comparison: System vs. Components	86
	3.2	Syst	em Level Demand Projections	99
	3. 3	Ass	ignments of O-D Flows to Rivers and L&D Projects	112
4.0	CON	CLUS	SIONS	231
APF	ENDD	(A:	Commodity Code Conversions	A. 1
APF	ENDL	В:	Individual River Data Set	B. 1
APF	ENDL	C:	Key Lock and Dam Data Set	C. 1
APF	ENDD	(D:	Initial Inspection of O-D Movements, 1969-1976, By Commodity Group	D. 1
ΔPE	FNDIS	्याः	Commodity Group Definitions	E. 1

LIST OF	TABLES	Page
1	Commodity Groupings to be Utilized for projecting Ohio River Basin Waterway Traffic	2
2	The Three Sets of Waterway Traffic Data	7
3	Historic ORB Waterborne Commerce Traffic by Commodity Group	9
4	Definition of Independent Variables Considered in the Analysis	14
5	National and Basin Level Independent Variables Tested by Commodity Group	16
6	Rationale for Pairing of Independent Variables with Commodity Groups	20
7-14	Regression Results: System Level	40-47
15	Commodity Groups Analyzed by River and Direction	49
16-30	Regression Results: Individual Rivers	50-64
31-36	Regression Results: Individual Rivers vs. Local Variables	65-70
37	Commodity Groups Analyzed for Key Lock and Dams	72
38-47	Regression Results: Lock and Dam Projects	73-82
48-50	Key Lock and Dams	83-85
51-58	Comparison of Regression Results - System vs. Components	90-98
59	System Level Projections Chosen for Use in	100

LIST OF	TABLES	Page
60-67	Demand Projections: System Level	101-108
68	Projections of Basinwide Total Tonnage (Demand)	109
-	Section 3.3 contains all tables presenting projected lock and dam traffic by commodity group and direction	113-230
69	Ohio River Basin Total Tonnage	232

LIST OF	FIGURES	Page
1-3	Historic ORB Traffic by Commodity Grouping	10-12
4	ORB Showing Rivers and BEA Regions	19
5	Schematic of Relationships in an Origin- Destination Matrix	25
6	Imports of Steel Mill Products and Commodity Group 8 (Iron Ore and Iron and Steel) Tonnage vs. Time	111
-	Section 3.3 contains all graphs presenting	113-230

1.0 INTRODUCTION AND PURPOSE

In 1976 nearly 180 million tons of commerce was carried on the waters of the Ohio River navigation system. Most of this consisted of bulk-type commodities such as coal, sand, gravel, crushed rock, and petroleum fuels. These materials constitute major inputs to the basic industrial and energy production processes of the United States.

In order to insure the continued smooth flow of the above commodities, the U.S. Army Corps of Engineers must continue to maintain and improve the conditions of the rivers and navigation projects in the Ohio River Basin (ORB). Since funds for this purpose are limited, the Corps must develop a strategy for application of their financial resources so as to best achieve this goal.

As part of a systemwide study of commercial navigation in the ORB, the Huntington District of the U.S. Army Corps of Engineers has retained the services of CONSAD Research Corporation to project the demand for future ORB waterway traffic for the period 1975-1990.* The primary study area is defined to be the main stem Ohio River and all of its commercially navigable tributaries, including the Monongahela, Allegheny, Kanawha, Kentucky, Green, Cumberland and Tennessee Rivers. The elements of this analysis have consisted of the following:

TASK 1: Estimate future waterway traffic by commodity group (see Table 1 and Appendix E) for the Ohio River Navigation System for the period 1975-1990 using correlation and regression techniques. The historic waterway traffic data to be used for this task shall be collected from Waterborne Commerce of the United States, Part 2.

^{*}This is only one of three ORB projection studies being undertaken by the Corps. The second study is based upon surveys of shippers and receivers while the third study is examining a number of basic market conditions and trends.

Table 1: COMMODITY GROUPINGS TO BE UTILIZED FOR PROJECTING OHIO RIVER BASIN WATERWAY TRAFFIC

COMMODITY GROUP

- 1. Coal and Coke
- 2. Petroleum Fuels
- 3. Crude Petroleum
- 4. Aggregates
- 5. Grains
- 6. Chemical and Chemical Fertilizers
- 7. Ores and Minerals
- 8. Iron Ore and Iron and Steel
- 9. All Other

- TASK 2: Using 1969-1975 PE-PE* and BEA-BEA** flow data to be provided by the Corps of Engineers, the forecasts from Task 1 shall be allocated to the BEA economic areas and river reaches within and outside of the Ohio River Basin, by commodity group. These future movements will then be aggregated by direction to the main stem Ohio River, each navigable tributary, and through each of the seventy-one navigation projects in the Ohio River navigation system.
- TASK 3: Separate, independent projections of waterway traffic by commodity group and direction of movement (upbound-downbound) will be generated for the main stem Ohio and each navigable tributary in an attempt to identify the degree of association between the behavior of the total Ohio River navigation system and its components. A similar analysis is also to be performed for traffic passing key navigation projects in the Ohio River System (see Section 2.3.3 for details). These subsystem studies are intended to test the reliability of basinwide projections throughout the system.

^{*}PE stands for "port equivalent" and refers to a stretch of river possessing a composite of port characteristics. The term was defined as part of the Inland Navigation Systems Analysis program of the Corps of Engineers as an aid in water simulation projects.

^{**}The term BEA as used in this report will refer to any of the 173 economic areas into which the Bureau of Economic Analysis has divided the United States.

2.0 ANALYSIS

This section describes the data, its inspection and coding, and the analytic techniques employed in projecting the demand for future ORB traffic.

2.1 Data: Collection, Coding and Manipulation Procedures

The data on the movements of commodities on the rivers under investigation were collected from Waterborne Commerce of the United States, Part 2, for the years 1953-1975. Prior to 1953, (back through 1940) this same information appeared in the Annual Report of the Chief of Engineers, Part 2, "Commercial Statistics". The former data was provided by the project sponsor, while the latter set was procured from the University of Pittsburgh library, and the libraries of the Pittsburgh and Washington, D. C., offices of the Corps of Engineers.

The data was coded much in the same way as it appeared in the later volumes of <u>Waterborne Commerce</u>. That is, for each commodity, the directional distinctions of up river, down river, in river, out river, and through river (up and down) were retained to provide the maximum amount of flexibility in the data file. In addition, river and year codes were also included.

Numerous inconsistencies were found in this 36-year data set. The most glaring were the many changes encountered in the commodity code classifications. Prior to 1965, when a standard 4-digit commodity classification code for shipping statistics was adopted, three different 3-digit coding schemes were encountered; one version for the years 1949-1964, another for 1948, and a third for the years 1943-1947. In addition, the data for years 1940-1942 had no codes associated with the commodity listings.

This problem was remedied by entering the 3-digit codes as they appeared into the computerized data file, and then for each 3-digit coding scheme, a computer program was written and applied to convert these codes into the standard 4-digit scheme, (see Appendix A). In the case

of the data for years 1940-1942, where no codes were utilized, the most appropriate standard 4-digit code was applied and entered into the data file.

Another inconsistency encountered was the extremely detailed breakdown of commodity tonnages in the older data compared to what was adopted in the standard 4-digit scheme. As an example, in 1940 on the Ohio River, in the "Outbound Ores, Metals, and Manufactures of" category, such commodities as grave vaults, range boilers, and signs were listed. However, in consulting the standard 4-digit code, these commodities and several others listed in that same category were all subsumed in the "Fabricated Metal Products Except Ordinance, Machinery, and Transportation Equipment" category. In general, every effort was made to locate the most appropriate standard 4-digit classification.

The Cumberland River presented a unique problem. Several years of commodity tonnage data was organized only by "Below and Including Nashville" and "Above and Excluding Nashville" categories. No separate "whole river by direction" chart existed. Special care had to be taken in converting this data breakdown to the one we were employing for all the rivers. The "net total" listing (directionless) was used as a guide in this conversion task.

The Ohio River also presented a unique situation. A separate "oceangoing" chart was often presented in addition to the domestic data. This chart included imports and exports as well as the "domestic coastwise" category which refers to domestic traffic receiving a carriage over the ocean and/or Gulf of Mexico. Whenever this chart appeared, the tons listed for a particular commodity were added to the tons for that commodity listed in the domestic chart, in the appropriate direction (e.g., imports were added to the "in" tonnages in the domestic chart).

In addition to the above data, CONSAD was provided with BEA-BEA and PE-PE movement data on all commodities for the years 1969-1976, and data on the 71 lock and dam projects by commodity group and direction as far back historically as existed. The former data set was provided on tape and the analysis of this information will be discussed in Section 2.4.1, below. The latter data set included data for the key navigation projects for which separate independent projections of future commodity group flows were to be made. In order to make these projections this data has to be coded, and in doing so, a major problem was encountered.

Although the analysis was supposed to be performed by direction (upbound-downbound), much of the annual traffic data was available only in aggregate (combined upbound-downbound). Faced with this situation, CONSAD, after consultation with the project monitor, decided to perform the projections of traffic passing key lock and dam projects in aggregate.

The three data sets discussed above along with their uses are summarized in Table 2.

2.2 Selection of Independent Variables

Assuming that the patterns of past commodity flows bear some relationship to their future flows, and also assuming that these commodities are moving in response to the economic demands of the Nation, it is believed that quantitative relationships exist between economic indicators and waterway traffic levels. It is expected that these relationships could be determined from historical data using correlation and regression techniques and that these relationships could then appropriately be applied to future economic projections to obtain projections of future demand for waterway traffic.

Ideally, any economic or other demand indicator should provide annual data for the years 1940-1975 and should also be projected for the years 1980, 1985, and 1990. However, in searching for economic indicators that could logically be considered as a driving force behind the movements of a particular commodity or commodity group on the waterways of the Ohio River Basin, it was found that except for GNP and national population, compatability between annual historical data and the projected data was extremely rare. More specifically, we were able to locate numerous annual data series for all types of economic variables, but usually there were no projections in existence based upon the annual series. The projections that we were able to locate were not based upon historical data going as far back as 1940.

After much searching and several conversations with faculty members at Memphis State University who had been involved in a similar task for the Louisville District of the Corps of Engineers, * it was decided

^{*}Existing and Expected Commodity Flow, Port of Louisville, Kentucky, Allen & Hoshall, Inc., Memphis, Tennessee, December 1977.

Table 2: The Three Sets of Waterway Traffic Data

Data Set	Source	Description	Use
-	Waterborne Commerce of the United States, Part 2 1953 - 1975 Annual Report of the Chief of Engineers, Part 2, "Commercial Statistics" 1940 - 1952	Annual tonnages for each river arranged by commodity and direction	Projection of 1980, 1985 and 1990 system level and individual river level commodity group tonnages.
2	U.S. Army Corps of Engineers, Huntington District	1969 - 1976 BEA-BEA and PE-PE O-D flows for each commodity	Test reliability of using basinwide projections as a means of determining future localized traffic flows.
м	U.S. Army Corps of Engineers, Huntington District	Historical lock and dam data arranged by direction and commodity group.	Test reliability of using basinwide projections as a means of determining future localized traffic flows.

that our best source would be the Bureau of Economic Analysis in the U.S. Department of Commerce. The data tapes purchased from BEA included a 37-industry breakdown of earnings, total personal income, per capita income, and population. These categories were provided on an annual basis for the years 1965-1975 and included both national and BEA level data. In addition, a somewhat less detailed data set for thirteen SMSA's on or near the rivers in the study area was also obtained.

All of the above data sources are compatible with the OBERS Projection Series* prepared by the Bureau of Economic Analysis in conjunction with the Economic Research Service in the Department of Agriculture for the U.S. Water Resources Council. In addition to the projected earnings, income, etc., for the years 1980, 1985, and 1990, this series also provides observed historical data for the years 1950, 1959, and 1962. This brings the number of available historical observations up to fourteen.

2.3 Regression Procedures

2.3.1 System

It was necessary initially to aggregate the Waterborne Commerce data set from an individual river format to a "total system" format for each of the nine commodity group categories specified by the Corps. This was accomplished by summing the tonnages for all six directions on the Ohio River together with the tonnages for the two intra-river directions (up and down) for each of the seven tributaries. In this manner all ORB traffic was aggregated without any double counting (see Table 3 and Figures 1, 2 and 3).

After aggregation, a severe drop in crude petroleum shipments for the system as a whole was discovered. This decrease was found to correspond with the opening of a pipeline used for the transport of crude

^{*1972} Series E OBERS Projections Series, Bureau of Economic Analysis, Department of Commerce.

Table 3: Historic ORB Waterborne Commerce Traffic by Commodity Group

All Other	1146015.	1911753.	493	19157	M	941983.	911639.	S	S	792427.	1098418.	1059585.	1368605.	1583057.	1514265.	17.45	2805912.	3360996.	3650048.	4279373.	4479092.	3727667.	4399973.	4671010.	5040404.	7296716.	\sim	123	900	1790	n	C.	57130	0734	10779656.	10315964
Iron Ore and Iron	2480518.	2531329.	2012994.	2261	06034	1507529.	1411354.	1825012.	1915360.	2008142.	2741195.	2465951.	2738547.	3761432.	5025302.	5279895.	5535860.	5497392.	3965551.	4541085.	4523763.	3921582.	3627595.	3761465.	4015085.	4367361.	4112903.	4001858.	4161646.	4157866.	5193803.	75	3385		5124604.	4161532.
Ores and Minerals	180750.	230682.	7773	304189.	433242.	416924.	203283.	336674.	316782.	647093.	591011.	708241.	1122253.	1566589.	1213475.	1796097.	1913626.	1816644.	1501511.	1353398.	1294445.	1475642.	1798154.	2273793.	2684361.	2823672.	3426253.	3614260.	3747981.	3472931.	3915652.	4437398.	77	5	3753813.	3445572.
Chemical and Chemical Fertilizers	376281.	441495.	437322.	590862.	934068.	657683.	422250.		781490.	946895.	1230080.	1806340.	1563897.	1843011.	1572451.	1955170.	2166045.	2429386.	2394699.	3109624.	3653030.	4027879.	4317302.	4848217.	5538629.	6265385.	6893625.	7636535.	8579408.	9890301.	8	140	1337	10591076.	*~i	9354147.
ar Gra ins	106721.	157342.	139057.	178550.	204841.	153930.	83158.	58458.	62026	112871.	171372.	203697.	236218.	385991.	421133.	657225.	619092.	973907.	1443593.	1767185.	2016061.				2081235.		2950777.	3181953.	2010568.	3257257.	3372872.		_	3348.	5555047.	4097296.
Aggregates	9164953.	11365822.	10474360.	696864	74116	6216879.	9224714.	10464259.	11025784.	10240300.	11251025.	14342769.	14728096.	13495115.	12507562.	13475658.	13945536.	13969891.	13394035.			:	•	•	9422407.	•	÷		•		•			c_i	C	19666204.
Crude Petroleum	1157586.				3882885.	3745904.	3582520.	•					3170963.	Ċ	_								4078023.	_		_	_	5106372.	783264.	593121.	٠	56525.	000	٠	902.	867053.
Petroleum Fuels	2909150.	983	3867209.	40236	3610	~	4535111.		\sim	7215616.		9537477.	10044502.	^	\sim	10777586.	123355	-	094557	200193	11594523.	207021	225394	275383	31891	^	298650	342581	440952	47069	554405	635725	600	•	^	84599
Coal and Coke	33653221.	556431	00122	661321	730179	292891	30937197.	38880696.	742221	31556233.	725403	240801	39409386.	970439	46724519.	324162	639473	926656	7290147.	8324054.	9723500.	9548266.	1720057.	6377742.	٠	5362	806248	82621251.	200212	557136	824607	83102598.	261320	50208446.	289630	98235949.
Year	19 40		(1		4	į		į			,			į			Sió			,			;	63	64	1						:			,	

petroleum. Regression procedures were abandoned for this commodity group in favor of other means of determining future shipments (see Section 3.1.1 for details).

The first step in the regression procedure for the other eight commodity groups was to develop a series of regression equations based on the complete set of 36 years of historical data for each of the nine commodity groups. The functional forms utilized were:

- 1. Straight line: Y = a + bX
- 2. Second degree curve: $Y = a + bX + cX^2$
- 3. Geometric curve: $Y = a \cdot X^b$
- 4. Exponential curve: $Y = a \cdot b^X$

In addition to a time series, regression runs were made using Gross National Product and national population as independent variables (36-year series). At this stage severe problems of multicollinearity arose. The correlations between time and GNP and time and national population were .99062 and .99772, respectively. The correlation between GNP and population was .98400. This degree of correlation eliminated the idea of using any multivariate regression equations at this level of analysis. It was decided that a simple regression using GNP as the independent variable would be the best procedure under these circumstances. The equations retained for analysis and the projected commodity group tonnages they yield appear in Section 3.1.1, Tables 7-14.

The criteria employed for retention of a regression equation were goodness of fit (R²) and "appropriateness" of the projected tonnage. By "appropriateness" we mean whether or not the projected value seemed reasonable in light of the historic tonnage values. As an example, an equation predicting a ten-fold increase in the tonnage of grains moving on the Basin's waterways, where traffic data and transport developments would not indicate such growth, would be rejected, despite a high R² value.

The next group of independent variables tested were national level income and earnings figures. These variables are listed in Table 4.

Table 4: Definition of Independent Variables
Considered in the Analysis

	National Level	Basin Level
Gross National Product	XN01	
Population	XN02	XB02
Total Personal Income	XN03	XB03
Per Capita Income	XN04	XB04
Total Earnings	XN05	XB05
Earnings in Agriculture	XN06	XB06
Earnings in Mining	XN07	XB07
Earnings in Coal Mining	XN08	XB08
Earnings in Manufacturing	XN09	XB09
Earnings in Manufacture of Food and Kindred Products	XN10	XB10
Earnings in Manufacture of Chemicals and Allied Products	XN11	XB11
Earnings in Petroleum Refining	XN12	XB12
Earnings in Manufacture of Primary Metals	XN13	XB13
Earnings in Manufacture of Fabricated Metals	XN14	XB14
Earnings in Transportation, Communication & Utilities	ca- XN15	XB15
Earnings in Wholesale & Retail Trade	XN16	XB16
Earnings in Contract Construction	XN17	XB17

As was noted above, this data included annual values for 1965 through 1975 plus a few prior selected years; the number of observations (data points) thus dropped to fourteen at this stage of the analysis.

Rather than allow the computer to choose among this rather long list of variables, an initial screening was undertaken. For each commodity group, in addition to the more general variables (Total Personal Income, Per Capita Income, Total Earnings) which were tested for all commodity groups, several "specifically targeted" variables were also chosen. More precisely, only those variables which possessed some identifiable economic relationship to the commodities in a particular commodity group were included in the analysis. Table 5 lists the choices of independent variables tested by commodity group.

Multicollinearity again presented a problem. Except for XN06, XN07 and XN08 only two correlation values of less than .9 were found between pairs of variables. To deal with this situation the SPSS* stepwise regression package was utilized. This package allows the user to specify a set of three statistical criteria to be used in screening variables for inclusion in the equation. These parameters are the number of variables, the minimum acceptable F-test value, and the minimum acceptable tolerance level which refers to the proportion of the variance of a variable being considered for inclusion not explained by the variables already in the regression equation.

The maximum number of variables to be allowed was chosen at three. The minimum F-test value was set high enough so that given the number of observations and variables in the equation, there was a 95 percent probability that the coefficient associated with a particular variable was significant. Finally the tolerance level was set at .01, meaning that a variable would be entered only if the proportion of its variance not explained by the other variables exceeded one percent. Results from this computer run also appear in Section 3.1.1, Tables 7-14.

A third series of independent variables tested consisted of basin level income and earnings figures. To construct these variables, data

^{*&}quot;Statistical Package for the Social Sciences", Norman H. Nie, C. Hadlai Hull, Jean G. Jenkins, Karin Steinbrenner, Dale H. Bent, McGraw-Hill Book Company, Second Edition, 1975.

Earnings in Contract						NB							NB NB		7
Construction		+		-		듸			-		-				-
Earnings in Whole- sale and Retail Trade						-	NB		- }						N N
Earnings in Transportation,	C	<u>.</u>		_		7		\vdash	٦		7	_	┪		7
Communication and Utilities	5	2		NB							ļ				
Earnings in Manufacture	G	۵									П		NB		┪
of Fabricated Metals		2		ı		MB		1			則		z		
Earnings in Manufacture		n				m					~		6		7
of Primary Metals		Ϋ́				EN EN					R		NB		-
Earnings in		Т		8		╗									\neg
Petroleum Refining		١		NB											-
Earnings in Manufacture of	t	2							В						7
Chemicals and Allied Products	7	2				- 1			NB		- [1
Earnings in Manufacture of		T													7
Food and Kindred Products							NB						-		
Earnings in Manufacturing	£	2							NB		NB NB				NB
		4		_	<u> </u>	_		<u> </u>	4						
Earnings in Coal Mining		Ω Z							ı				E		
Earnings in Mining	;	z									NB		NB		
Earnings in Agriculture							NB		NB						
Total Earnings	;	z		z		z	z		z		z		z		高口
Per Capita Income	;	z		z		z	z		z		z		z		z
Total Personal Income	;	z		Z		z	Z		z		z		z		× N N
Population	5	2		NB		z	z		z		z		z		z
Gross National Product	;	z		z		z	z		Z		z		z		z
	Commodity Group 1 -	Coal and Coke	Commodity Group 2 -	Petroleum Fuels	Commodity Group 4 -	Aggregates	Commodity Group 5 - Grains	Ι.	and Chemical Fertilizers	Commodity Group 7 -	Ores and Minerals	Commodity Group 8 - Iron Ore	and Iron and Steel	Commodity Group 9 -	All Other

*At the basin level, two separate runs were made in an attempt to include only one of the "general" variables, XB03 and XB06. The equation yielding the better fit was chosen.

N - National Level B - Basin Level

16

from the thirteen BEA areas which cover the study area (see Figure 4) were aggregated. These variables are also listed in Table 4.

Initial inspection of these variables indicated that the multicollinearity situation was much less severe, with many of the correlations between pairs of independent variables lying in the .6 to .9 range.

At this level of analysis it was decided that the independent variables entered into the stepwise regression program would be restricted to the commodity specific variety except where the more general variables seemed particularly appropriate (e.g., basin population as a demand indicator for petroleum fuels). This decision was made in an attempt to provide the best possible direct relationship between the commodity group and the explanatory variable(s). For a complete list of the basin level varibles tested, by commodity group, see Table 5. The rationales for the pairing of specific independent variables with each commodity group are provided in Table 6.

It was also decided that the restrictive minimum F-test level for variable inclusion would be somewhat eased so as to allow variables that had rather direct relationships to the commodity groups into the regression equation even if their coefficients did not quite reach the 95 percent significance level. Results from this basin level analysis are given in Section 3.1.1, Tables 7-14.

Of the nine commodity groups analyzed in this study, Commodity Group 1, Coal and Coke, has historically accounted for the most significant portion of total traffic (see Table 3). Within this group, steam coal, used to generate electricity, is by far the most important commodity (by tonnage). A "good" single indication of steam coal demands was not identified within the OBERS framework, and the industry specific variables included in the regression procedures represent secondary demand variables since these industries tend to be major enery users.

Because of the significance of steam coal to this projection study, it was felt that some additional "sensitivity" testing was called for. Under the assumption that Earnings in Transportation, Communication, and Utilities provides the best single indication of direct demand for steam coal, and also assuming that Population and Earnings in Manufacturing provide the best secondary demand indicators for non-commercial and commercial use of electricity, respectively, regression procedures were undertaken in which Earnings in Transportation,

Communication and Utilities was forced into the equation, followed by either or both of the other two variables. The projections which resulted from the equations developed in this manner were remarkably close to the projections obtained as a result of the regression procedures described earlier in this section. At both the national and basin levels, Population and Earnings in Manufacturing yielded insignificant F-test values when entered into the equation after Earnings in Transportation, Communication and Utilities. Utilizing the single independent variable equations, coal and coke tonnage was projected at $174\frac{1}{2}$ million tons (national level data) and 181 million tons (basin level data) in 1990. Comparison with the projections in Table 60 shows a 3 million ton difference at the national level and slightly over a million tons at the basin level.

These results suggest that coal and coke projections are rather insensitive to the choice of OBERS variables utilized in the regression equation. They also add a degree of confidence to the reliability of the projections.

2.3.2 Individual Rivers

The subsystem regression procedures described in this section and in the following section (2.3.3 Key Lock and Dam Projects) were undertaken primarily as a means of determining whether traffic on the system components are moving in response to the same demand variables and with similar correlations as is occurring at the system level. Since the ultimate goal of this study is to arrive at projections of demand for future lock and dam traffic, and because these projections will be determined as a result of system level analysis modified by recent subareal O-D trends, it was felt that a subsystem analysis would be of value in determining the reliability of allocating systemwide projections to the subsystems (individual rivers and lock and dam projects).

Table 6: Rationale for Pairing of Independent Variables with Commodity Groups

Dependent Variable:	· · · · · · · · · · · · · · · · · · ·	
Traffic by Commodity Group	Independent Variable: Economic Factor Tested	Relationship Between Commodity Group and Independent Variable
1. Coal and Coke	Earnings in Coal Mining	Increase or decrease in coal mining carnings may correspond to an increase or decrease in the toniage of coal on the waterways of the ORB
	Earnings in Transporta- tion, Communication, and Utilities	Steam coal for generation of electricity is the primary use of the coal shipped on ORB waterways
	Earnings in the Manufac- ture of Chemicals and Allied Products	In addition to the electricity consumed in the manufacturing process, some of the chemicals and associated by-products have a coal base
	Earnings in the Manufac- ture of Primary Metals	Coal and coke are essential ingredients in the production of iron and steel
	Earnings in the Manufac- ture of Fabricated Metals	This represents a secondary demand variable since fabricated metals are fashioned from primary metals
	Population	Intended to provide the best general demand indicator for non-commercial use of electricity
	Earnings in Manufacturing	Intended to provide the best general demand indicator for commercial use of electricity
2. Petroleum Fuels	Population	The population of an area determines the demand for home heating fuel and gaso- line for automobiles
	Earnings in Petroleum Refining	Reflects levels of activity at petroleum refineries which would relate to volume transported
	Earnings in Transporta- tion, Communication, and Utilities	Petroleum fuels power transport vehi- cles and are used to generate electricity
4. Aggregates	Earnings in the Manufac- ture of Primary Metals	This commodity group includes lime- stone flux, an important ingredient in iron and steel production
	Earnings in the Manufac- ure of Fabricated Metals	This is a secondary demand variable since fabricated metals are fashioned from primary n etals
	Earnings in Contract Construction	Building stone, sand, grave!, and crushed rock are used in construction work
5. Grains	Earnings in Agriculture	Tonnage of grains moving on ORB waterways may correspond to agricultural carnings
	Earnings in the Manufac- ture of Food and Kindred Products	Grains are milled and used in many types of foods
	Earnings in Wholesale and Retail Trade	Sales of grains, meat (grain-fed ani- mals), and numerous soybean products relate to the demand for grains
6. Chemicals and Chemical Fertilizers	Earnings in Agriculture	Agriculture industry consumes a great deal of chemical fertilizers and pesti- cides
	Earnings in Manufacturing	Dyes, plastics, synthetic rubber and fiber paints, and other chemicals are consumed in various manufacturing
	Exemings in the Manufacture of Chemicals and Allied Products	processes Larrongs by these industries should relate to the tonnage of chemicals and fertilizers on ORB waterways

Table 6 (continued)

Dependent Variables	T	
Traffic by	Independent Variable:	Relationship Between Commodity
Commodity Group	Economic Factor Tested	Group and Independent Variable
7. Ores and Minerals	Earnings in Mining	Levels of earnings of the mining of various ores and minerals should cor- respond to levels in the tonnage of ores
	l	and minerals on ORB waterways
	Earnings in Manufacturing	Nonferrous metal ores, salt, sulfur, and gypsum are used in the manufacture of a variety of goods
	Earnings in the Manufac-	
·	ture of Primary Metals	Copper, bauxite, manganese, and other nonferrous metal ores are used in the
	Earnings in the Manufac- ture of Fabricated Metals	manufacture of various primary and fabricated metals
8. Iron Ore and Iron and Steel	Earnings in Mining	Earnings in the mining of coal, iron ore, and limestone may relate to the
	Earnings in Coal Mining	tonnage of iron ore and iron and steel on ORB waterways
	Earnings in the Manufac-	Earnings in iron and steel industries
	ture of Primary Metals	may relate to the tonnage of this com-
		modity group on ORB waterways
	Earnings in the Manufac-	A secondary demand variable since iron
•	ture of Fabricated Metals	and steel are fashioned into numerous
	<u> </u>	fabricated metal products
	Earnings in Contract	Many steel products (girders, concrete
	Construction	reinforcing rods, pipes, etc.) are used by the construction industry
9. All Other	Total Personal Income	This commodity group is made up of all commodities that were not listed in the
	Total Earnings	other groups, and therefore covers a wide variety of goods. Total personal
	Earnings in Manufacturing	income is intended to provide a demand index to the amount of money people
	Earnings in Wholesale	have available for consumption of essen-
	and Retail Trade	tial and non-essential goods. Total
		earnings should relate to the overall
		demand for raw materials and semi-
	1	finished goods by the industrial sector.
	1	Earnings in manufacturing and wholesale
		and retail trade are somewhat more spe-
		cific in that they relate to the demand for
		the inputs to the many manufacturing
		processes and goods for sale, respec-
<u> </u>	_ _	tively.

^{*} A small portion of the ORB petroleum fuels are used in both manufacturing and energy production processes. However, this was judged not to be a significant demand indicator.

At the individual river level, the analysis was to be per'ormed by direction (upstream-downstream) and commodity group. Given the format used in coding the data, it was quite simple to aggregate the data into upstream and downstream categories for the seven tributaries under study. For the Monongahela, Allegheny, Kanawha, Kentucky, and Green Rivers, the upstream category was created by summing the "up" and "in" river categories, while the downstream category consisted of the sum of the "down" and "out" categories. For the Cumberland and Tennessee Rivers, the upstream category consisted of the sum of "up, in" and "up-through" categories, and the downstream category consisted of the sum of "down, out" and "down-through" categories.

Matters were not quite as simple in the case of the mainstream Ohio River. "In-river" and "out-river" do not specify a direction on the Ohio since commodities can enter or leave the Ohio either at the mouth (Mississippi River) or at any one of the tributaries. Therefore, it was decided that a third directionless category (titled "other") would be created consisting of the sum of "in-river" and "out-river" traffic. The "upstream-downstream" categories were also retained, but in this case consisted of "up" plus "up-through" and "down" plus "down-through" categories, respectively.

The data aggregations described above appear in Appendix B.

In an attempt to identify the degree of association between the behavior of the total Ohio River navigation system and its components, the same independent-dependent variable relationships tested at the system level* were also tested at the individual river level for each commodity group and river, by direction (see Table 5).

At this level of analysis only linear regression procedures were undertaken using the SPSS stepwise regression package described in the previous section of this report. The decision to eliminate the other functional forms was based on the fact that CONSAD had already decided to use

^{*}No analysis utilizing the national level income and earnings data (fourteen years) was undertaken.

the linear regression equations to project future commodity group tonnages at the system level. Since this subsystem component analysis was intended primarily as a check of the relationship of the system as a whole to the system components, we saw no reason to continue with the nonlinear forms of analysis.

In an attempt to determine whether traffic on the individual rivers was moving in response to more localized variables, additional regression procedures were undertaken. For the Allegheny and Monongahela Rivers, independent variables based solely on BEA 66 were used. For the Kanawha River, BEA 52 variables were tested. These river-BEA relationships are geographical in nature, i.e., the Allegheny and Monongahela Rivers are located mostly within BEA 66 and the Kanawha River is located in BEA 52 (see Figure 4). The same commodity group - industry earnings relationships utilized at the basin level were retained at the BEA level. Both the basin level and BEA level independent variable regression results appear in Section 3.1.2.

2.3.3 Key Lock and Dam Projects

Of the 71 navigation projects in the ORB there were ten projects (three on the Ohio River, one each on the seven tributaries) that were chosen by the Corps of Engineers for analysis in this study (see Table 37 for listing). For these ten projects, separate, independent projections of future traffic were to be made for the three major commodity groups transiting each project. Examination of the historic data provided by the Corps showed the two of the projects only handled a single commodity group, and in several cases it was difficult to distinguish the "top three", based on the historic tonnages. The final commodity groups chosen for analysis for each project also appear in Table 37.

The data was provided by commodity group and direction, but, as was mentioned earlier, the directional distinction was not always preserved and the projections had to be done in aggregate, rather than by direction. The projection procedures employed for these lock and dam projects were similar to those utilized for the individual river projections.

Again, equations obtained using basin level independent variables were tested first. The same commodity group specific independent-dependent variable relationships tested at the system and individual river level were also used for the key lock and dam project demand regressions.

In an attempt to determine whether traffic passing through the key lock and dam projects was moving in response to more localized variables, additional regression procedures were undertaken. Specifically L&D #2 on the Allegheny River and L&D #7 on the Monongahela River were tested against BEA 66 variables, and the Winfield L&D on the Kanawha River was tested against BEA 52 variables. Both the basin level and BEA level independent variable regression results appear in Section 3.1.3.

2.4 Origin-Destination Movements

2.4.1 Preliminary Examination of O-D Movements

Given eight years of O-D movement data by commodity, both at the BEA and PE level, it was decided that a preliminary data inspection was called for prior to undertaking any analysis. Therefore, a computer printout was obtained such that for each commodity group and year, two matrices were constructed. The first was arranged so that for each origin BEA a complete list of destinations was printed along with the associated tonnages and the percent of the total shipped from that BEA represented by that tonnage. In addition, the total tonnage shipped from each BEA and the percent of total commodity group tons for the basin represented by that tonnage also appeared. The second matrix was arranged similarly, but for destination BEA's. In all cases eight years worth of data were examined so as to observe trends.

From the above printout two types of tables were assembled, representing two levels of analysis. For clarification on these two types of tables the reader is referred to Figure 5, which shows the components of an origin-destination matrix and several related vectors. The first type of table essentially displays the P and A (Production and Attraction) Matrices, over time, for each commodity group. This shows the relative importance of each zone (BEA Region) within the Basin and how this has varied with time.

The second type of table, displays the distribution of the individual cell values for each element of the P and A matrix, and how that has varied in time. This table shows shifts in movements beyond those which occur due to differences in production and attraction rates over time.

Figure 5: Schematic of Relationships in an Origin - Destination Matrix

At the more aggregated level, (the P and A Matrices) for each commodity group, a list of origin BEA's, the tonnages shipped from each, and the percent of total commodity group tons represented by that tonnage for each of the eight years between 1969 and 1976 (inclusive) is displayed. At the top of the table, for each year, a percent, representing what part of the total tons of a particular commodity group originated in the ORB also appeared. Similar tables were constructed for destination BEA's.

Next, for commodity groups 1, 2 and 4, historically representing between 75 and 80 percent of all Basin traffic, an analysis of the destinations of major shipping BEA's and the originations of receiving BEA's was undertaken, and the second type of table was also constructed. More specifically, for each origin BEA shipping a substantial tonnage of a commodity group, the top five destinations, tonnage destined for each, and percent of total orginating tonnage represented by that destined tonnage over the eight year period were listed. A similar representation is provided for destination BEA's.

All tables described above appear in Appendix D; the first type of table carries the designation "P/A", while the second type is designated by "O/D". It is important to note the connection between each series of tables. The total tonnage figure appearing in the bottom row of the latter series of tables described above is equal to the tonnage figure appearing in the former series of tables in the corresponding year and BEA position.

In order to further clarify the preceding discussion, two tables (one of each type) from Appendix D appear on the following pages. The first table displays the annual tonnage of Commodity Group 1 shipped from each BEA between 1969 and 1976. Immediately below each tonnage a number appears which represents the percent of all Commodity Group 1 shipments involving the ORB that were shipped from that particular BEA.

The second table provides a breakdown of the BEA 66 shipments (first row of first table), answering the question "What were the destinations of the BEA 66 coal and coke over time?" The destination BEA as well as the number of tons and the percent that the tonnage represents compared to the total shipped from that BEA are included.

For instance, in 1972 BEA 66 shipped 28,579,605 tons of coal and coke (first table, first line). This represents 30.35 percent of all coal

P/A

Sample 1

COMMODITY GROUP 1 27,823,052 26.89 32, 222, 877 1,519,862 22, 930, 023 22. 16 3, 165, 405 1,420,28 592,788 2, 043, 157 1. 97 6, 147, 927 5. 94 2,851,35° 2,76 97.33 126 30, 246, 576 30.35 18, 067, 656 18, 13 848,889 1,572,872 1.58 232,528 1,456,851 1,46 32, 634, 377 32, 75 1, 975, 091 1, 98 1,466,772 1.47 28,847,045 16, 106, 348 17.40 2,620,889 253,250 1,295,654 1.40 191,340 31,863,731 34.42 162,311 97.80 174 27, 845, 409 30. 41 17, 255, 945 18.85 105,573 8,856,340 9.67 1,427,915 1.56 1,326,324 1.45 3,838,217 4.19 98.55 201, 256 62,906 173 26, 376, 685 28. 01 19,335,633 20.53 95,366 28, 579, 605 30, 35 9, 991, 744 10.61 1,877,610 1,332,719 5,311,501 5.64 7,268 433,577 172 21,918,438 21,420,455 25.29 25, 131, 806 29, 67 8,289,818 9.79 4,411,122 1,181,147 1,809,228 2.14 37,824 .04 263,590 5,929 99.72 25, 655, 552 28.60 72,900 33,611 129, 143 . 14 30,854,945 34.40 17, 126, 000 19109 10,204,430 2,684,443 2.99 1,434,523 1.60 170 99.87 1,394,265 1.55 24, 374, 782 28.03 8,458,116 9.73 30, 960, 310 1,329,066 1, 172, 802 190.800 159,600 56,230 .06 7,344,977 19.95 2,883,082 3.32 99.97 69. Origin BEA 115 99 55 25 **6**2 47 48 49 49 54 **6**2

27

Sample 2

,	٥
77	ŏ
•	c
200	į
ρ	Q
1	¢
•	ī
	Ċ
Č	j

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

	1969	1970	1971	1972	1973	1974	1975	19.76
	99	99	99	99	99	99	99	99
-	27508542	27477486	2 159 1733	24368288	25080517	254 13 760	244 15 123	26346785
	88.85	89.05	85.91	85,26	85.57	79.76	74.81	81, 76
	25	25	52	79	79	79	79	29
7	2864903	2447140	2073200	2308212	233 1522	4220743	4366062	3447179
	9.25	7.93	8.25	8.08	7,95	13, 25	13, 38	10, 70
	79	79	79	25	25	25	49	25
т	330344	79 1380	1405498	1845700	1832 11 3	1979903	1933098	1765226
-	1.07	2.56	5.59	6.46	6.25	6.21	5.92	5.48
	64	511	115	89	64	114	25	49
4	125130	58199	23137	15296	37580	108434	1852449	454627
	.40	. 19	60.	• 05	.13	.34	5.68	1. 41
	77	64	64	64	115	13.7	29	65
'n	21894	57799	18429	13316	10895	60418	28820	81936
	.07	. 19	.07	. 05	. 04	. 19	60.	.25
Total Originatin Tohnage	Total 30960310 Originating	30854945	25131806	28579605	29310959	31863731	32634377	32222877

Commodity Group 1

and coke shipments involving the ORB in 1972. Referring to the second table, one can determine that 85.26 percent or 24,368,288 tons remained in BEA 66, 8.08 percent or 2,308,212 tons went to BEA 62, and so on. In this manner one can follow the O-D patterns through time at the BEA level for Commodity Groups 1, 2 and 4.

2.4.2 Obtaining Future O-D Movements: Shift-Share Analysis and the Fratar Method

After examination of the eight years of O-D movement data, it was decided that the most appropriate technique for extrapolating the historic O-D movement trends to 1980, 1985 and 1990 O-D flows was to utilize Shift-Share analysis in conjunction with the Fratar Growth-Factor method. This decision was made in light of the overall stability in the patterns of O-D movements (see Appendix D). Both of these techniques are well suited for extrapolation purposes when no severe changes in historic patterns are anticipated.

Shift-Share analysis, * given historic movement patterns and projections of future commodity group activity (see Section 3.1.1), develops future shipping and receiving (O and D) totals for each commodity group and subarea (BEA or PE). These totals correspond to row and column sums of a commodity-specific O-D matrix. The Fratar technique** will then construct the future matrix cell entries according to a base year pattern adjusted by subareal growth factors.

More specifically, the Shift-Share methodology acts recursively on a series of commodity group specific O-D matrices. Each subarea is examined in light of the total originating shipments (row sum of O-D matrix) and total destinations (column sum). Shift-Share analysis interprets subareal growth as dependent upon two "parent forces": growth in total

^{*}Dunn, E.S., Jr., "A Statistical and Analytical Technique for Regional Analysis", Papers, Regional Science Association, 6(1960), 97-112. **Hutchinson, B.G., Principles of Urban Transport Systems Planning, Washington, D.C.: Scripta Book Company, 1974, pp. 84-85.

shipments and growth in the commodity group shipments between successive time periods. Any growth inconsistent with those parent forces is attributed to unique subareal characteristics.

At this point in the discussion it becomes convenient to introduce mathematical notation to facilitate the description of the Shift-Share methodology. We define the following:

$$O_i^{gt} = \sum_{j=1}^n Q_{ij}^{gt} =$$
 total annual tonnage of commodity group g originating from subarea i in year t (row sum of O-D matrix: the P matrix).

$$D_j^{gt} = \sum_{i=1}^m Q_{ij}^{gt} =$$
 total annual tonnage of commodity group g terminating in subarea j in year t (column sum of O-D matrix: the A matrix).

$$Q^{gt} = \sum_{i=1}^{m} O_{i}^{gt} = \sum_{j=1}^{n} D_{j}^{gt} = \sum_{i=1}^{m} \sum_{j=1}^{n} Q_{ij}^{gt}$$

total annual tonnage for commodity group g.

$$Q^{t} = \sum_{g=1}^{9} Q^{gt} = \text{total annual tonnage in year } t.$$

Then between successive years the incremental growth in shipments* for commodity group g in subarea i (Δ O_i^{gt}) is seen by shift-share as being comprised of the following three components:

^{*}A similar analysis is performed for the $D_i^{gt_i}$ s.

$$\Delta O_{i}^{gt} = R_{i}^{gt} + S_{i}^{gt} + U_{i}^{gt}$$

where Ri = raw increment which would occur if commodity group g in subarea i were to behave as the aggregate regional growth rate for all commodity groups.

Sigt = any growth (or decline) in commodity group g over and above the regionwide aggregate growth.

Ui = the "unique" component: any growth (or decline) in commodity group g within subarea i for which the first two components (Right, Sight) take no account.

These components are calculated in the following manner:

$$R^{gt} = r^t O^{g(t-1)}$$
 where $r^t = \frac{Q^t - Q^{t-1}}{Q^{t-1}}$, the basinwide growth rate for all commodities.

,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间, 1965年,我们是一个一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们就是一个时间,我们

$$S_i^{gt} = (y^{gt} - r^t) O_i^{g(t-1)}$$
 where $y^{gt} = \frac{Q^{gt} - Q^{g(t-1)}}{Q_i^{g(t-1)}}$, the basinwide growth rate for commodity group g.

$$U_{i}^{gt} = (z_{i}^{gt} - y^{gt}) O_{i}^{g(t-1)}$$
where $z_{i}^{gt} = \frac{O_{i}^{gt} - O_{i}^{g(t-1)}}{O_{i}^{g(t-1)}}$, the growth rate for subarea i for commodity g.

It is the unique growth parameter z_i^{gt} - y^{gt} which we define as u_i^{gt} (excess of commodity specific subareal growth rate over the regionwide commodity specific growth factor) that is calculated for each BEA region, (origins and destinations) for each commodity group, and for each of the seven

iterations covering the years 1969-1976. To arrive at the 1980 u_i^{gt} value, a simple time series regression is performed on the seven historical values. The only other inputs required to obtain the 1980 origin and destination totals are a projected total tonnage figure for 1980 (\dot{Q}^{t*}) and projected tonnages for each commodity group (\dot{Q}^{gt}). These projected tonnages are taken from the systemwide projections, the value of which are contained in Section 3 of this report.

Procedures for determining the 1985 u_i^{st} growth factors are analogous except the 1980 values are added to the original seven historical values and year t-1 now refers to the projected 1980 tonnages. Similarly, the 1990 u_i^{gt} values are calculated from nine values (7 observed, 2 projected) and the year t-1 refers to the projected 1985 tonnages.

Once the subareal growth estimates (ΔO_i^{gt}) have been calculated, they are added to the base year's originating total $O_i^{g(t-1)}$) to arrive at a future originating total O_i^{gt}).

$$O_i^{gt} = O_i^{g(t-1)} + \Delta O_i^{gt}$$

This is done for each of the n subareas so that we now have an n x l vector whose entries consist of the raw projected total shipments for each subarea. The sum of these entries should be close to Q^{gt} , the projected commodity group tonnage total. In order to obtain a precise match, we calculate a normalizing factor, K, by comparing the desired value, Q^{gt} , with the calculated total tonnage $\sum_{i=1}^{gt} Q_{i}^{gt}$. This should give us a normalizing

factor close to 1.0 by which we multiply each of the $O_i^{\rm gt}$ values, finally arriving at future origination totals for each subarea, the sum of which will equal the projected tonnage for that particular commodity group. The mathematics of the normalizing step is represented as follows:

$$K = \underbrace{Q^{gt}}_{i=1} O_i^{gt}$$

$$O_i^{gt} = K \cdot O_i^{gt} for all i.$$

^{*&}quot;A" notation refers to projected values.

CONSAD initially planned to perform the shift-share analysis at the BEA level rather than at the PE level. This decision was based upon the assumption that the economic behavior of the BEA region mirrors the economic behavior of the areas within the BEA region. This assumption is consistent with the conceptual basis employed in delineating these BEA areas, which relies on central place theory with its emphasis on cities as the focus around and within which integrated economic activity concentrates. Thus, it would seem reasonable to apply the growth factors calculated for a BEA region to its member PE's.

However, in calculating a growth factor, a necessary input is a future originating tonnage total and terminating total for each PE. If Shift-Share is performed at the BEA level, the future BEA tonnage total will have to be apportioned to the member PE's according to the share of the total BEA traffic which each PE had in the base year. However, this allocation procedure presupposes that each PE in a BEA will continue to ship and receive the same proportion of the traffic allotted for that particular BEA.

Another problem associated with BEA level Shift-Share involves BEA 66 (see Figure 4). This economic region contains 20 of the 71 navigation projects under study and a significant portion of the commodity movements both originate and terminate within this region and are intra-BEA 66 movements. BEA level Shift-Share may not be quite sensitive enough to capture the changes in traffic patterns occurring at the PE level which will have an effect on the projected traffic loads assigned to each navigation project.

CONSAD feels that these weaknesses represent only a small source of error, but after examining the historic O-D movement patterns, it was decided that the utilization of the shift-share methodology at the BEA level for Commodity Groups 1 and 4 would be inappropriate (see Appendix D). This decision was made based on both the amount of intra-BEA 66 movement and the fact that these two commodity groups have historically accounted for approximately two-thirds of the total tonnage moving on the waterways of the ORB. Thus, shift-share was applied at the PE level for these two commodity groups, in an attempt to minimize the error associated with assignments of commodity group tonnages to navigation projects.

In actually applying the Shift-Share methodology to the eight years of O-D flow data it was discovered that extrapolation of the unique growth parameters, u_i^{gt} , by simple time series regression was often inappropriate. Since this growth parameter was defined to be the difference between two other growth factors $(z_i^{gt}-y^{gt})$, it should not be too surprising that the u_i^{gt} values often did not show any particular trend. Consequently, unless the time series regression yielded an R^2 value greater than .5, a simple averaging of the historical u_i^{gt} values was used to obtain the 1980, 1985 and 1990 unique growth parameters.

Furthermore, examination of resulting origin and destination totals for 1990 showed that time series regressions of ugt sometimes yielded negative ugt values, resulting in negative tonnages of shipments. Therefore, the regression procedure was abandoned and the historical ugt values were averaged after the smallest and largest were removed so that inordinately large increases or decreases in shipments did not overly effect future shipments.

Having developed the future origin and destination totals, i.e., row and column sums of the future O-D matrices, the next step was to construct the actual matrix cell values representing commodity flows from a particular origin to a particular destination. The Fratar growth factor method is ideally suited for this task.

The basic premise of the Fratar method is that the distribution of future shipments from a zone is proportional to the base year distribution modified by the growth factors of the zones under consideration. This method, as employed by the "PLANPAC/BACKPAC" Urban Transportation Computer Program Package, * applies the origin and destination growth factor to each cell of the O-D matrix in such a way that the future origin total (row sum) is preserved. Actual destination totals (column sums) may not agree with those desired, but an iterative procedure designed to achieve a specified degree of accuracy in the destination totals is included. The mathematical representation of this technique is as follows:

^{*}Computer Programs for Urban Transportation Planning, PLANPAC/BACKPAC General Information, April, 1977, U.S. Department of Transportation, Federal Highway Administration.

$$\overset{|\Delta gt}{Q_{ij(k+1)}} = Q_{ijk}^{g(t-1)} F_{jk} F_{ik}$$

where

$$\mathbf{F}_{jk} = \underbrace{\frac{\mathbf{D}_{j}^{gt}}{\sum_{i=1}^{n} \mathbf{Q}_{ijk}^{g(t-1)}}}_{\mathbf{i}=1}, \quad \mathbf{F}_{ik} = \underbrace{\frac{\hat{O}_{i}^{gt}}{\sum_{i=1}^{n} \mathbf{Q}_{ijk}^{g(t-1)}}}_{\mathbf{j}=1} \mathbf{F}_{jk}$$

and where

Qg(t-1)
ijk = tons shipped between origin i and destination j
for iteration k (represents base year tonnage
when k = 1).

F_{ik} = destination j (column) growth factor.

F_{ik} = origin i (row) growth factor.

 D_j^{gt} , D_i^{gt} = projected destination (column) and origin (row) totals obtained from the application of shift-share analysis.

In choosing a commodity specific base year O-D matrix upon which to apply the Fratar growth factor method, it was felt that the most recent O-D matrix (1976) would be most appropriate because its entries would best reflect the shifts in O-D patterns that were occurring over time.* However, given that O-D flows for certain years could represent anomalous behavior and not merely the continuation of some trend, it was decided that the 1976 O-D matrices should be inspected before their use as the base year.

This inspection did not show any extreme shifts in the 1976 O-D matrices relative to the previous years except for Commodity Group 6, where BEA 64 showed a sharp drop in shipments from almost 16 percent

^{*}The base year matrix is used only to provide a pattern of shipments.

of all of commodity group 6 in 1975 to less than 3 percent in 1976. BEA 52 showed a fairly sharp drop in receptions from almost 33 percent to less than 24 percent.

Also, the 1976 total tonnage for Commodity Group 5 seemed high relative to the previous years totals, and it was decided that the 1975 O-D matrix was more appropriate, especially in light of the projections for Commodity Group 5 (see Table 63, Section 3.2 for actual tonnages). Therefore, the 1975 O-D matrix was used as the base year for Commodity Groups 5 and 6, and 1976 was used as the base year for all other commodity groups.

2.4.3 Assignments of Future O-D Movements to Lock and Dam Projects

After developing the 1980, 1985 and 1990 O-D matrix for each commodity group, the remaining task involves taking these O-D flows and assigning the corresponding tonnages to the navigation projects along the river routes which would have to be traversed in going from an origination to a destination. This task falls under the general category of traffic assignment which may be broadly defined as the process of allocating a given set of trip interchanges to a specific transportation system.

The traffic assignment program included in the PLANPAC/BACKPAC computer program package previously mentioned, although usually employed in modeling an urban transportation system, was easily adapted to our purposes. The river system under study can be thought of as a very simple road network, where PE's take the place of intersection's ("nodes" in traffic assignment) and the navigation projects take the place of the roads connecting intersections ("links" in traffic assignment). Once the river network has been described to the computer, i.e., the location of all the PE's and navigation projects in relation to each other and the distances involved, the computer constructs a minimum path tree for all O-D pairs. In the case of the Ohio River System all paths involving O-D pairs are unique except for the section where the Barkley Canal provides an alternate path for traffic involved with the Tennessee or Cumberland and the Ohio Rivers. In that case minimum distance was the criterion

used for choosing the route.* Finally, each commodity specific O-D matrix is input, the tonnage involving each O-D pair is assigned to the navigation projects that would have to be traversed, and the assigned tonnage for each project by commodity group and direction is obtained.

The results of the assignment routine along with graphs for each navigation project depicting historical and projected tonnages in aggregate, appear in Section 3.3.

^{*}This criterion may constitute a departure from the realities of the situation in that other parameters may have equal or greater weight in the choice of an optimum route. The effect on traffic assignment may be some inaccuracy in the allocation of the traffic among the navigation projects in the area - Kentucky L&D (Tennessee River), Barkley L&D (Cumberland River), and the Barkley Canal. However, CONSAD feels that the combined projected total tonnage for these three projects is accurate. The reader should be aware of this potential discrepancy when examining the projections for these projects.

3.0 RESULTS

This section of the report presents the results obtained by the implementation of the analytic techniques described in Section 2 (Analysis) of this report.

3.1 Regression Relationships Obtained

3.1.1 System Level

The equations and associated statistics presented in the tables of this section represent the results of the regression procedures described in Section 2.3.1 of this report.

After the data was aggregated to the system level, it was noticed that commodity group three, crude petroleum, experienced a ten-fold decrease in tonnage between 1972 and 1974. This severe decrease corresponded to the opening of a pipeline between Owensboro and Catlettsburg, Kentucky. In order to ascertain the fiture picture of crude petroleum barging, an official of the Pipeline Division of the Ashland Oil Company was contacted and interviewed. The Ashland Oil Company is the major shipper of crude petroleum in the ORB area.

We were informed that within three years, all barging of crude petroleum on the rivers of the ORB would cease.* However, until such a time when a new pipeline could be constructed, or the capacity of an existing one increased, barging of crude petroleum from the Gulf coast up the Mississippi and eventually to Owensboro would continue at the approximate rate of 35,000 barrels/day. Given that a barrel of oil weighs about 300 lbs., the annual tonnage of crude petroleum would equal slightly less than two million tons. Therefore, although no further projections of crude

^{*}The future intentions of other shippers will be ascertained during the other projection studies planned by the Corps for the ORB.

petroleum shipments were undertaken, the 1980 upstream tonnages for all lock and dam projects on the Ohio River between Cairo and Owensboro reflect this estimated crude petroleum tonnage.

: Regression Results: System Level - Commodity Group 1 - Coal and Coke 1975 Tonnage* = 98,236 Table 7

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Linear: Y = 8530712 + 70140 GNP	. 91526	367.24	6, 318	GNP/367,24
Geometric: LnY = 13.01285 + .74225 Ln (GNP)	. 81463	149.42	. 16332	GNP/149.42
Linear: Y = .17820 XN05 - 32,218,016	. 93570	174.623	5,646	XN05/174.623
Geometric: LnY = - 37.80132 + 4.08659 Ln (XN05) - 3.80762 Ln (XN04) + .28984 Ln (XN07)	. 98274	189.764	. 05601	XN05/38.581 XN04/16.647 XN07/4.195
Linear: Y = - 31,672,927 + 102,596 XB11 - 28,783 XB14	26896•	173,749	4,074	XB11/97, 183 XB14/2.498
Geometric: LnY = .0443 + 1.6496 Ln (XB11) - 0.3777 Ln (XB14)	. 98168	294.771	. 05501	XB11/105,002 XB14/2,767

*Thousands of tons

8 : Regression Results: System Level - Commodity Group 2 - Petroleum Fuels 1975 Tonnage* = 18,846 Table

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Linear: Y = - 305, 935 + 15, 204 GNP	. 94726	969*019	1,062	GNP/610.696
Parabolic: Y = - 2,071,004 + 20694 GNP - 3,64321 (GNP) ²	. 95169	325.015	1,032	GNP/41, 443 (GNP) ² /3, 022
Linear: Y = .57211 XN15 - 10,403,156	. 94525	207.167	1,110	XN15/207, 167
Parabolic: LnY = - 21.65735 + 2.16845 Ln (XN15)	. 95369	247.108	.11451	XN15/247.108
Linear: Y = -58,465,846 + 5800 (XB15) + 3440 (XB02)	. 96243	140.904	096	XB15/8, 822 XB02/5, 799
Parabolic: Y = - 33, 054, 134 + 5392 (XB15) + 0,1 (XB02) ²	. 96386	146.692	942	XB15/7.204 XB02/6.463

*Thousands of tons

9 : Regression Results: System Levels - Commodity Group 4 - Aggregates 1974 Tonnage* = 22,098 Table

7	29	Equation F-Test	Standard	Variable/
Equation	4	ATING	101	1621-1
Linear: Y = 3163569 + 16385 GNP	. 87348	234.731	1,846	GNP/234, 731
Exponential: LnY = 15.63877 + .0014 GNP	. 78289	122.605	. 17726	GNP/122,605
Linear: Y = .63418 XN17 - 4,869,195	.84165	63, 779	2,119	XN17/63.779
Exponential: LnY = - 14,39012 - 2,05881 Ln (XN04) + 2,75465 Ln (XN17)	. 93220	75.61834	.10614	XN04/4,878 XN17/17,193
Linear: Y = -4,284,360 + 8750 XB17	. 88658	93.803	1,793	XB17/93.803
Exponential: LnY = 7.16848 + 1.21284 Ln (XB17)	. 92397	145.828	. 10761	XB17/145.828

*Thousands of tons

Table 10: Regression Results: System Level - Commodity Group 5 - Grains 1975 Tonnage* = 4,097

Equation	. R2	Equation F-Test Value	Standard	Variable/ F-Test
Linear: Y = - 1716337 + 4430 GNP	. 88164	253,268	480	GNP/253.268
Geometric: LnY = - 4.35944 + 2.74916 Ln (GNP)	. 79166	129.194	. 65052	GNP/129.194
Linear: Y = - 9098492 + .87200 XN10	. 86470	76° 692	527	XN10/76,692
Geometric: Other curves inappropriate for projection purposes				
Linear: Y = -16,300 +773 (XB16) - 2690 (XB06)	.88187	41.059	514	XB16/19.147 XB06/12.540
Parabolic: Y = - 1, 210, 604 + 735 (XB16) - 1 (XB06) ²	. 89085	44.890	494	XB16/17.839 XB06/14.477

*Thousands of tons

Table 11 : Regression Results: System Level - Commodity Group 6 - Chemicals and Chemical Fertilizers 1973 Tonnage* = 10, 591

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Linear: Y = - 5,034,763 + 12717 GNP	. 91071	346.79	1,179	GNP/346,79
Geometric: LnY =84574 + 2.39558 Ln (GNP)	. 91399	361.298	. 33897	GNP/361, 298
Linear: Y = - 12,427,173 + .03232 XN05	. 93152	163, 232	1,059	XN05/163, 232
Geometric: LnY = - 44.54767 + 3.71028 Ln (XN11)	. 98243	670.962	. 15717	XN11/670,962
Linear: Y = -10,499,211 + 1,460 (XB09) -2087 (XB06)	. 92313	66.046	1, 172	XB09/60.394 XB06/7.307
Geometric: LnY = - 39,3341 + 4,1286 Ln (XB09) - 0,9400 (XB06)	. 98646	400,562	. 14413	XB09/326.648 XB06/14.241

*Thousands of tons

Table 12: Regression Results: System Level - Commodity Group 7 - Ores and Minerals 1975 Tonnage* = 3,446

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Linear: Y = - 1365944 + 4374 GNP	. 90268	315,351	425	GNP/315,351
Geometric: LnY = . 46315 + 2,08659 Ln (GNP)	. 89418	287,307	.33109	GNP/287, 307
Linear: Y = - 3,304,872 + .00995 XN05	. 73924	34.020	714	XN05/34.020
Geometric: LnY = - 49.84333 - 1.29460 Ln (XN07) + 5.16566 Ln (XN13)	. 89489	46.827	.35356	XN07/3.72 XN13/83.282
Linear: Y = - 6, 213, 546 + 5664 (XB14) + 1494 (XB13)	. 83033	26, 915	602	XB14/7.678 XB13/3.410
Geometric: LnY = - 42.9451 + 4.1445 Ln (XB09) - 0.7407 Ln (XB07)	. 92786	70.740	.29291	XB09/141.469 XB07/6.114

*Thousands of tons

The second secon

Table 13: Regression Results: System Level - Commodity Group 8 - Iron Ore and Iron and Steel 1974 Tonnage* = 5,125

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Linear: Y = 1,318,177 + 3212 GNP	.53070	38, 448	894	GNP/38, 448
Exponential: LnY = 14,30158 + .00101 GNP	. 53875	39, 712	. 27785	GNP/39.712
Linear: Y = - 721, 544 + .00850 XN05	. 58820	17.140	859	XN05/17.140
Geometric: LnY = - 9.47670 + 1.22392 Ln (XN05)	. 63467	20.847	.25367	XN05/20.847
Exponential: LnY = 13.23541 + .15341 XN13A**	.61434	19.115	. 26063	XN13A**/19.115
Linear: Y = - 273,520 + 1775 (XB17)	. 57656	16.339	871	XB17/16.339
Geometric: LnY = - 11.80066 + 1.09924 Ln (XB13) + 0.79178 Ln (XB14)	. 66264	10,803	.25461	XB13/1.820 XB14/1.093

*Thousands of tons **Where XN13A = XN13/1,000,000

The second secon

Table 14: Regression Results: System Level - Commodity Group 9 - All Other 1975 Tonnage* = 10,316

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Linear: Y = - 3493245 + 10561 GNP	. 89479	289.176	1,072	GNP/289.176
Geometric: LnY = 4.1317 + 1.65715 Ln (GNP)	. 72216	88.37	. 47412	GNP/88, 37
Linear: Y = - 11,492,375 +.18122 XN16	. 92432	146.561	933	XN16/146, 561
Geometric: LnY = - 55, 30756 + 3, 74169 Ln (XN09)	. 93827	182,407	. 22925	XN09/182.407
Linear: Y = - 11,513,842 + 1361 (XB09)	. 93964	186.807	833	XB09/186.807
Parabolic: Y = -15,716,172 + 2231 (XB09) -0.04 (XB09) ²	. 94535	95.138	828	XB09/7.448 (XB09) ² /1.149
Geometric: LnY = - 38.79900 + 7.37237 Ln (XB09) - 3.80329 Ln (XB05)	. 96179	138, 433	.18840	XB09/26.625 XB05/7.114

*Thousands of tons

3. 1. 2 Individual River Level

The equations presented in the tables of this section represent the results of the procedures described in Section 2.3.2 of this report. Table 15 summarizes the commodity groups studied for each river by direction. Tables 16-36 present the actual equations and associated statistics obtained for each river by direction and commodity group.

Table 15: COMMODITY GROUPS ANALYZED BY RIVER AND DIRECTION

RIVER	DIRECTION	COMMODITY GROUPS ANALYZED
Ohio	Up	1, 2, 4 - 9
Ohio	Down	1, 2, 4 - 9
Ohio	Other	1, 2, 4 - 9
Monongahela	Up	1, 2, 4, 6 - 9
Monongahela	Down	1, 2, 4, 6 - 9
Allegheny	Up	1, 2, 4, 6 - 9
Allegheny	Down	1, 2, 4, 8, 9
Kanawha	Up	1, 2, 4, 6 - 9
Kanawha	Down	1, 2, 6 - 9
Kentucky	Up	4
Green	Down	1, 5
Cumberland	Up	1, 2, 6 - 9
Cumberland	Down	1, 2, 5 - 9
Tennessee	Up	1, 2, 4 - 9
Tennessee	Down	1, 2, 4 - 9

Table 16: Regression Results: Individual Rivers - Ohio River - Upbound

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Coal and Coke: Y = 13, 314, 337 + 17, 521 XB11	. 92121	140.309	1,273	XB11/140,309
Petroleum Fuels: $Y = 39, 112, 293 + 2, 710 XE02$. 93594	175, 336	435	XB02/175, 336
Aggregates: Y = 2,035,814 + 2,269 XB17	.81921	54,377	611	XB17/54, 377
Grains: Y = 3,554556 - 2,606 XB06	.53152	13,615	608	XB06/13,615
Chemicals and Chemical Fertilizers: $Y = 3,987,527 + 439 \times B09$. 91745	133,359	318	XB09/133,359
Ores and Minerals: $Y = 2,915,332 + 4,492 \text{ XB14}$.76747	39, 607	351	XB14/39,607
Iron Ore and Iron and Steel: Y = 455, 624 + 294 XB17 + 287 XB08	.82857	26.583	66	XB17/32,876 XB08/8,904
All Other: Y = 2, 635, 552 + 307 XB09	.77210	40,654	403	XB09/40,654

Table 17: Regression Results: Individual Rivers - Ohio River - Downbound

Equation	R. ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = 16,592,191 + 17,476 XB11 + 6,449 XB08	.90417	51,985	1,748	XB11/70.609 XB08/14.608
Petroleum Fuels: Y = -3,236,420 + 1,901 XB15	89068	97.765	299	XB15/97,765
Aggregates: $Y = -5,075, 5 + 4,476 XB13$. 75069	36, 132	925	XB13/36,132
Grains: Y = =1,025,333 + 200 XB16	.61752	19, 374	168	XB16/19, 374
Chemicals and Chemical Fertilizers: $Y = 1,662,348 - 1,598 \times 1006 + 52 \times 1009$.85344	32,027	212	XB06 /23.421 XB09/2.352
Ores and Minerals: $Y = -169,265 + 217 \times B07$.57108	15.977	71	XB07/15.977
Iron Ore and Iron and Steel: Y = 287, 293 + 265 XB17	.17226	2,497	333	XB17/2.497
ther:	. 75862	37,714	769	XB09/37,714

Table 18: Regression Results: Individual Rivers - Ohio River - Other

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = -24,648,274 + 21,259 XB13	.85886	73,025	3, 090	XB13/73.025
Petroleum Fuels: Y = -6,834,213 + 4,786 XB15	. 94481	205.419	519	XB15/205.419
Aggregates: Y = -2,983,619 + 2,827 XB17	. 93023	159,995	444	XB17/159, 995
	.61140	18,880	397	XB16/18,880
Chemicals and Chemical Fertilizers: $Y = -8,093,072 + 9,228 XB11$. 90530	114,710	741	XB11/114,710
Ores and Minerals: Y = -3,069,470 + 1,725 XB13	.71303	29.817	392	XB13/29.817
Iron Ore and Iron and Steel: Y = -1, 624, 477 + 1, 433 XB13	. 53215	13,649	482	XB13/13.649
All Other: Y = -4, 223, 761 + 1,081 XB16	06068*	94.992	404	XB16/97.992

Table 19: Regression Results: Individual Rivers - Monongahela River - Upbound

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = 5,881,643 + 3,768 XB13	. 59063	17, 313	1,125	XB13/17,313
Petroleum Fuels: Y = 1,149,509 + 8,706 XB12 + 467 XB15	.83817	28.487	526	XB12/6.006 XB15/2.888
Aggregates: Y = 2,515,302 - 370 XB17	.31130	5, 424	316	XB17/5.424
Chemicals and Chemical Fertilizers: Y = 450, 377 - 344 XB06	. 54566	14,412	78	XB06/14,412
Ores and Minerals: $Y = 619,531 + 2,308 \text{ XB} 14 - 420 \text{ XB} 13$. 70111	12, 901	154	XB14/19,405 XB13/4,110
Iron Ore and Iron and Steel: Y = -53,084 - 297 XB07 + 1,508 XB14	.71665	13, 911	160	XB14/21,324 XB07/5,875
All Other: Y = -257, 937 - 40 XB05 + 160 XB09	.40748	3, 782	116	XB09/3.288 XB05/2.150

Table 20: Regression Results: Individual Rivers - Monongahela River - Downbound

		Equation		
Equation	R ²	F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: $Y = 11,303,758 + 5,918 XB13$. 40830	8, 280	2, 555	XB13/8,280
Petroleum Fuels: Y = 3,346,049 + 262 XB15 - 247 XB02	. 65822	10, 592	41	XB02/16.448 XB15/9.980
Aggregates: Y = 374,034 + 283 XB17	.66154	23,454	116	XB17/25,454
Chemicals and Chemical Fertilizers: $Y \approx 231,914 + 121$ XB06	69260.	1, 299	92	XB06/1.299
Ores and Minerals: $Y = 146, 181 + 117 XB07$.62187	18,091	52	XB07/18.091
Iron Ore and Iron and Steel: Y = 485, 226 + 383 XB08	. 09202	1,216	369	XB08/1.216
All Other: Y = -6,680 - 9 XB03 + 45 XB09	.11986	. 749	73	XB09/1.295 XB03/1.016

Table 21: Regression Results: Individual Rivers - Allegheny River - Upbound

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Coal and Coke: Y = 1, 180, 311 + 1, 313 XB15 - 714 XB13	.81255	23,841	197	XB15/28, 169 XB13/5, 309
Petroleum Fuels: Y = -1,076,423 + 79 XB02	.32826	5,864	70	XB02/5,864
Aggregates: Y = 344,233 + 770 XB14 - 333 XB13	. 46294	4, 741	80	XB13/8, 973 XB14/7, 990
Chemicals and Chemical Fertilizers: Y = -45,939 + 84 XB11	. 58952	15, 798	17	XB11/15,798
Ores and Minerals: Y = -179,356 + 22 XB09	. 52091	13, 048	50	XB09/13.048
Iron Ore and Iron and Steel: Y = 271, 305 + 546 XB07 - 785 XB08	. 52986	6* 199	99	XB08/10,366 XB07/7,630
All Other: Y = 495,430 + 60 XB09	. 75263	36,510	82	XB09/36,510

Table 22: Regression Results: Individual Rivers - Allegheny River - Downbound

Equation	R ²	Equation F-Test Value	Standard	Variable/
Coal and Coke: Y = 4, 356, 238 + 975 XB13 - 3, 818 XB14 - 1, 720 XB08	. 70838	8, 097	395	XB08/19.603 XB14/7.567 XB13/3.103
Petroleum Fuels: Y = 622,054 + 458 XB12 - 50 XB02	.44983	4,497	15	XB12/8,966 XB02/5,107
Aggregates: Y = 162,638 + 396 XB17	. 43156	9,111	261	XB17/9,111
Iron Ore and Iron and Steel: $Y = -564 + 21 XB14$.06204	£62°	11	XB14/.794
All Other: Y = -26,794 + 4 XB09	.36021	952*9	13	XB09/6.756

Table 23: Regression Results: Individual Rivers - Kanawha River - Upbound

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = -945, 127 + 713 XB13	.29487	5,018	395	XB13/5,018
Petroleum Fuels: Y = -871,880 + 445 XB15 + 2,036 XB12	. 94193	89.209	89	XB15/28,956 XB12/3,631
Aggregates: Y = -805, 512 + 673 XB17	.70270	28, 363	251	XB17/28, 363
Chemicals and Chemical Fertilizers: $Y = 513,721 + 312 \times 809 - 2,621 \times 806$.87111	37,171	515	XB09/14.280 XB06/10.668
Ores and Minerals: Y = -126,056 + 381 XB14	.17206	2,494	119	XB14/2,494
Iron Ore and Iron and Steel: Y = -6, 159 - 12 XB07 + 14 XB13	.34260	7,866	8	XB13/3, 980 XB07/3, 115
All Other: Y = -298,615 + 232 XB09 - 64 XB05	. 71396	13,728	71	XB09/18,481 XB05/14,252

Table 24: Regression Results: Individual Rivers - Kanawha River - Downbound

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Coal and Coke: Y = 4522088 - 2757 XB08 + 4129 XB14	. 76911	18, 321	009	XB08/23.714 XB14/11.435
Petroleum Fuels: Y = 2498048 + 1701 XB12 - 164 XB02	. 92348	66, 380	20	XB02/119.916 XB12/41.473
Chemicals and Chemical Fertilizers: Y = -56774 + 228 XB09 - 363 XB06 - 1687 XB11	. 82199	15, 392	104	XB09/4.417 XB06/3.815 XB11/2.304
Ores and Minerals: $Y = -42828 + 27 \text{ XB13}$. 42305	8. 799	11	XB13/8. 799
Iron Ore and Iron and Steel: Y = 10402 + 52 XB14 - 25 XB08	. 22417	1.589	2.1	XB08/1.607 XB14/1.434
All Other: ::= 62912 - 4 XB09	. 49032	1, 544	10	XB09/11.544

Table 25: Regression Results: Individual Rivers - Kentucky River - Upbound

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test	
Aggregates: Y = -551947 + 352 XB17	86 195	74,928	81	XB17/74.928	

Table 26: Regression Results: Individual Rivers - Green River - Downbound

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Coal and Coke: Y = -20876415 + 7142 XB08 +20685 XB11	96279	129.374	1,241	XB11/180.967 XB08/32.784

Table 27: Regression Results: Individual Rivers - Cumberland River - Upbound

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke; Y = -5282421 + 6729 XB08	. 86769	45, 905	826	XB08/45.905
Petroleum Fuels: Y = -4991496 + 456 XB02 - 11464 XB12	. 32008	2, 589	376	XB12/5.078 XB02/2.508
Chemicals and Chemical Fertilizers: Y = -378609 + 42 XB09	. 74985	35.971	59	XB09/35.971
Ores and Minerals: Y = 2918795 + 1048 XB07 + 2340 XB14	. 75074	16. 565	307	XB07/19.959 XB14/14.048
Iron Ore and Iron and Steel: Y = -176891 + 87 XB17 + 61 XB08	. 78226	19. 759	32	XB17/28, 271 XB08/3, 873
All Other: Y = -585601 + 66 XB09	. 86672	78.038	63	XB09/78, 038

61

Table 28: Regression Results: Individual Rivers - Cumberland River - Downbound

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = -2297 + 35 XB13	. 01982	. 182	89	XB13/. 182
Petroleum Fuels: Y = -4947 + 119 XB12	. 13193	1.368	11	XB12/1.368
Chemicals and Chemical Fertilizers: $Y = -24821 + 5 \times 809$. 41502	7.095	14	XB09/7.095
Ores and Minerals: Y = -1996034 + 392 XB07 + 765 XB13	. 71695	6.332	244	XB13/7. 686 XB07/2. 247
Iron Ore and Iron and Steel: Y = -21013 - 64 XB14 + 46 XB13	. 39865	3,646	14	XB13/6. 190 XB14/1. 862
All Other: Y = -1312478 + 87 XB03 - 191 XB09	. 83481	27.795	218	XB03/10.449 XB09/2.703

Table 29: Regression Results: Individual Rivers - Tennessee River - Upbound

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = -8639807 + 10827 XB11	. 90114	109, 379	891	XB11/109.379
Petroleum Fuels: Y = -2358444 + 1306 XB15	. 57283	16.092	506	XB15/16.092
Aggregates: Y = -2071375 + 1729 XB17	. 86982	80, 183	383	XB17/80, 183
Grains: Y = 3720634 - 2645 XB06	. 49519	11. 771	663	XB06/11.771
Chemicals and Chemical Fertilizers: $Y = -2398391 + 251 \times 1009$. 74784	35, 590	352	XB09/35.590
Ores and Minerals: Y = -1058469 + 161 XB09 - 291 XB07	.81870	24.836	184	XB09/49.672 XB07/3.956
Iron Ore and Iron and Steel: $Y = -572203 + 243 \times B17 + 221 \times B08$. 80822	23, 178	98	XB17/29.628 XB08/7.033
All Other: Y = -1834289 + 435 XB16	. 79836	47.511	234	XB16/47.511

Table 30: Regression Results: Individual Rivers - Tennessee River - Downbound

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Coal and Coke: Y = -7095846 + 2274 XB15 + 3378 XB14	. 93945	85, 330	383	XB15/26, 264 XB14/5, 794
Petroleum Fuels: Y = -66173 + 823 XB12	. 82671	57. 248	13	XB12/57.248
Aggregates: Y = 489246 + 759 XB14	. 05174	. 655	461	XB14/.655
Grains: Y = -98368 + 14XB16 + 35 XB06	. 81705	24. 564	9	XB16/48.987 XB06/16.214
Chemicals and Chemical Fertilizers: $Y = -738208 + 83 \times 3999$. 89199	99, 101	69	XB09/99. 101
Ores and Minerals: Y = 32401 - 120 XB13 + 23 XB09	. 52798	6. 152	17	XB09/7.654 XB13/4.642
Iron Ore and Iron and Steel: Y = -257925 + 62 XB17 + 95 XB13	. 88223	41.200	56	XB17/3, 220 XB13/2, 995
All Other: Y = -2306428 + 75 XB03	. 45155	9.880	857	XB03/9,880

Regression Results: Individual Rivers vs. Local Variables Monongahela River - Upbound Table 31:

XBEA13/16, 305 XBEA17/14.029 XBEA07/6.509 XBEA09/20.722 XBEA09/55.030 XBEA14/32, 231 XBEA15/44.998 XBEA12/3.274 XBEA02/5.934 XBEA09/3.289 Variable/ XBEA66 Standard 916 248 337 102 178 1, 147 159 Error Equation F-Test Value 32, 2305 22,6277 3.2740 3, 2893 11,6955 10, 2281 55.0295 8 S . 72869 . 80446 21435 21514 .68015 82097 .65031 Iron Ore and Iron and Steel: Y = 344331 Chemicals and Chemical Fertilizers: Y = -324991 + 123 XBEA09 += 1561 XBEA17 - 1096 XBEA07 Y = -8075050 + 37214 XBEA14Y = -12744556 + 5618 XBEA09Y = 13731992 + 4931 XBEA15 -4420 XBEA02 Y = -369322 + 2028 XBEA09 - 4024 XBEA13 Y = 3113463 - 901 XBEA12Equation Ores and Minerals:

All Other:

Aggregates:

Petroleum Fuels:

Coal and Coke:

Table 32: Regression Results: Individual Rivers vs. Local Variables Monongahela River - Downbound

The second secon

XBEA66

XBEA07/17.774 XBEA14/11.725 XBEA17/22, 575 XBEA02/4, 233 XBEA07/1, 197 XBEA13/4.001 XBEA09/2.517 XBEA05/.411 Variable/ F-Test Standard 2,362 57 117 369 Error 51 74 Equation F. Test Value 11. 7250 4.2333 22, 5747 1, 1968 7.0346 .4112 26078 R2 .65293 69060 70104 . 49421 .03313 Chemicals and Chemical Fertilizers: Y = -379609 + 561 XBEAU7 + 691Y = 8019051 + 57891 XBEA14Iron Ore and Iron and Steel: Y = 509865 + 973 XBEA07 Y = -487054 + 1303 XBEA17 XBEA13 - 245 XBEA09 Y = 3135595 - 823 XBEA02 Y = 17846 + 9 XBEA05Equation Ores and Minerals: Petroleum Fuels: Insufficient Data Coal and Coke: Aggregates: All Other:

Table 33: Regression Results: Individual Rivers vs. Local Variables Allegheny River - Upbound

	Equation		
28	F-Test	Standard	Variable/
. 66843	11. 0877	261	XBEA11/15, 812 XBEA07/3, 848
. 16882	2, 4372	77	XBEA15/2, 437
. 35625	3.0437	88	XBEA13/6,004 XBEA17/4,465
. 74298	14, 4536	14	XBEA11/28.375 XBEA06/0423
. 74667	9. 8249	40	XBEA14/5, 011 XBEA12/7, 074 XBEA09/4, 003
. 52079	5. 9772	65	XBEA14/8, 756 XBEA17/2, 506
. 84974	57.8599	64	XBEA09/67.860
. 16882 . 35625 . 74298 . 74667 52079			2. 4372 3. 0437 14. 4536 9. 8249 5. 9772 67. 8599

Table 34: Regression Results: Individual Rivers vs. Local Variables Allegheny River - Downbound

		ļ		XBEA66
Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Coal and Coke: Y = 4168793 - 3585 XBEA08 - 7998 XBEA11	. 53617	6, 358	476	XBEA08/9.022 XBEA11/2.244
Petroleum Fuels: Y = 5156 + 634 XBEA12	. 27854	4,633	16	XBEA12/4.633
Aggregates: Y = 520442 + 3844 XBEA17 - 18138 XBEA14 + 2264 XBEA13	. 68544	7. 263	212	XBEA17/16.244 XBEA14/10.127 XBEA13/5.067
Iron Ore and Iron and Steel: Y = 2399 + 25 XBEA17	. 06699	. 862	11	XBEA17/. 862
All Other: Y = -61071 + 23 XBEA09	. 39918	7.973	12	XBEA09/7.973

68

Table 35: Regression Results: Individual Rivers vs. Local Variables Kanawha River - Upbound

				XBEA52
Equation	R ²	Equation F-Test Value	Standard	Variable/
Coal and Coke: Y = 4876989 - 516838 XBEA14	. 50346	1.014	451	XBEA14/1.014
Petroleum Fuels; Y = -628307 + 3562 XBEA15 + 9641 XBEA12	63626.	85, 549	69	XBEA15/25.215 XBEA12/13.166
Aggregates: Y = -403125 + 6474 XBEA17	¥6894	6,630	226	XBEA17/6.630
Chemicals and Chemical Fertilizers: Y = 3405195 - 65762 XBEA06	. 81352	52, 350	593	XBEA06/52,350
Ores and Minerals: Y = -32071 + 1272 XBEA13	. 15217	. 179	163	XBEA13/.179
Iron Ore and Iron and Steel: Y = 86392 - 9171 XBEA14	. 35048	. 5395	11	XBEA14/.540
All Other: Y = -496347 + 2375 XBEA09 - 2039 XBEA16	. 83812	28.4766	53	XBEA09 /50, 104 XBEA16/20, 211

Table 36: Regression Results: Individual Rivers vs. Local Variables Kanawha River - Downbound

				XBEA 52
Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = 18364599 - 1613236 XBEA 14	. 76059	3, 1769	794	XBEA14/3.177
Petroleum Fuels: Y = -1403813 + 1091 XBEA 02	. 82712	57.4118	28	XBEA02/57.412
Aggregates: Not Enough Cases	1			
Chemicals and Chemical Fertilizers: Y = 1994390 - 14470 XBEA 06 - 7260 XBEA11	. 83673	28, 1856	95	XBEA06/47.374 XBEA11/8.218
Ores and Minerals: Y = 179159 - 19635 XBEA 14	. 70386	2,3767	13	XBEA14/2, 377
Iron Ore and Iron and Steel: Y = 315777 - 35318 XBEA 14	. 97854	45, 5937	4	XBEA14/45.594
All Other: Y = 85361 - 116 XBEA 09	. 52207	13, 1083	6	XBEA09/13.108

3.1.3 Key Lock and Dam Project Level

The equations presented in the tables of this section represent the results of the procedures described in Section 2.3.3 of this report. Table 37 lists the key lock and dam projects chosen for analysis, the river on which each is located, and the commodity groups chosen for study. Tables 38-50 present the actual equations and associated statistics obtained for each lock and dam project.

Table 37: COMMODITY GROUPS ANALYZED FOR KEY LOCK AND DAMS

LOCK AND DAM	RIVER	COMMODITY GROUPS ANALYZED
Montgomery	Ohio	1, 2, 4, 8
Gallipolis	Ohio	1, 2, 6, 8
#52	Ohio	1, 2, 6, 9
#2	Allegheny	1, 4, 8, 9
#7	Monongahela	1, 2, 4
Winfield	Kanawha	1, 4, 6
#1	Kentucky	4
#1	Green	1
Cheatham	Cumberland	2, 4, 9
Kentucky	Tennessee	1, 2, 4, 7

Table 38: Regression Results: Lock and Dam Projects -Kentucky Lock and Dam - Tennessee River

		Equation		
Equation	R ²	F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = -9, 785, 116 + 8263 XB15 - 8507 XB14	. 90507	47.670	950	XB15/52.037 XB14/5.513
Petroleum Fuels: Y = 775,6789 XB02 - 11,006,698	. 40645	7,533	577	XB02/7.533
Aggregates: Y = -2,083,856 + 1391 XB17	. 70386	26.145	519	XB17/26.145
All Other: Y = 4, 981, 450 + 3555 XB16 -1, 088 XB09	.85265	28.933	581	XB16/18.709 XB09/8.965

Table 39: Regression Results: Lock and Dam Projects - Cheatham Lock and Dam - Cumberland River

			-	
	(Equation F-Test	Standard	Standard Variable/
Equation	$^{\mathrm{R}^2}$	Value	Error	F-Test
Petroleum Fuels: v 4711 3451 XB12 + 2. 093. 679	.45090	5, 748	264	XB12/5,748
	. 65480	13,278	163	XB13/13.278
	.83608	15, 302	103	XB16/7.299 XB09/2.847

Table 40: Regression Results: Lock and Dam Projects.

Lock and Dam #1 - Green River

Equation F-Test R ² Value .95282 100.972					
R ² F-Test Nalue .95282 100.972			Equation		
. 95282 100.972		2	F-Test	Standard	Standard Variable/
. 95282		R	Value	Error	F-Test
.95282					
	Coal and Coke:		100,972	1 088	YB11/1141 650
1 000V TOTO \$0000 - \$255 0//2 \$250 - 5	Y = 16045.1996 XB11 + 5500.0131 XB08		1	200	VE06/36 760
- 12, 143, 113	- 12, 143, 113				697°C7/000V

Table 41: Regression Results: Lock and Dam Projects -Lock and Dam #1 - Kentucky River

г			_
	Standard Variable/ Error F-Test	XB17/17, 540	XB14/2 024
	Standard Error	06	
Equation	F-Test Value	24.029	
	R ²	.82776	
	Equation	Aggregates: Y = -142,723 + 464 XB17 - 636 XB14	

Table 42: Regression Results: Lock and Dam Projects. Winfield Lock and Dam - Kanawha River

ţ	2	Equation F-Test	Standard	Variable/
Equation	W.	Value	Error	F-Test
Coal and Coke: $Y = 4,795,754 - 1,134 \times B08 + 1343 \times B14$. 58373	4.207	378	XB08/6.226 XB14/1.876
Aggregates: Y = 174,493 + 503 XB17	18625.	659.6	252	XB17/9,659
Chemicals and Chemical Fertilizers: Y = -2134, 0377 XB06 - 1915, 8979 XB11 + 7,875,020	. 68287	6.460	294	XB06/12.037 XB11/9.701

Table 43: Regression Results: Lock and Dam Projects -Lock and Dam #7 - Monongahela River

		Equation		
Equation	R ²	F-Test Value	Standard	
Coal and Coke: Y = -9, 131, 841 + 6382 XB13	.64917	22,205	1,682	XB13/22,205
Petroleum Fuels: Y = -1, 316, 776 + 97 XB02	. 55714	15.096	53	XB02/15.096
Aggregates: Y = -387, 407 + 286 XB17	. 67381	24, 788	114	XB17/24.788

Table 44: Regression Results: Lock and Dam Projects - Lock and Dam #2 - Allegheny River

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Coal and Coke: Y = 2285, 7656 XB11 - 1025, 79 XB13 + 1,577,637	. 42246	4, 023	298	XB11/3,978 XB13/1,670
Aggregates: Y = 324,7459 XB17 - 791,7013 XB14 + 366950	.41743	3,941	120	XB17/5,282 XB14/1,926
Iron Ore and Iron and Steel: Y = -838,8448 XB08 + 584,7135 XB07 + 303,842	• 55054	6,737	99	XB08/11,348 XB07/8,400
All Other: Y = -651,843 + 150 XB16	. 94449	204, 184	39	XB16/204, 184

Table 45: Regression Results: Lock and Dam Projects - Gallipolis Lock and Dam - Ohio River

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = -8, 732, 706 + 12089 XB11 + 3601 XB08	.82174	25,355	1,660	XB11/37,427 XB08/5,045
Petroleum Fuels: Y = -31,534,430 + 2241 XB02	.80748	50,331	672	XB02/50,331
Chemicals and Chemical Fertilizers: $Y = 547,767 + 275 \text{ XB09} - 1479 \text{ XB06}$. 62851	8.459	767	XB09/4.605 XB06/1.414
Iron Ore and Iron and Steel: Y = 780,6924 XB17 + 895,443	.32217	5, 703	649	XB17/5,703

Table 46: Regression Results: Lock and Dam Projects - Montgomery Lock and Dam - Ohio River

Equation	R ²	Equation F-Test Value	Standard Error	Variable/ F-Test
Coal and Coke: Y = -2664 XB08 + 7419 XB13 - 10563 XB11 + 4, 485, 152	. 63469	5.791	1,013	XB08/6,210 XB13/6,314 XB11/5,960
Petroleum Fuels: Y = 775,3513 XB02 - 9,827,789	.46727	10,526	508	XB02/10.526
Aggregates: Y = 1639,6374 XB14 + 733,481	.27565	4, 186	379	XB14/4,186
Iron Ore and Iron and Steel: Y = 540,4686 XB17 + 776,580	.21030	3, 196	009	XB17/3.196

Table 47: Regression Results: Lock and Dam Projects - Lock and Dam #52 - Ohio River

	·	Equation F-Test	Standard	Variable/
Equation	R ²	Value	Error	F-Test
Coal and Coke: Y = -16, 331, 561 + 20, 397 XB11	.94109	191.695	1,267	XB11/191.695
Petroleum Fuels: Y = -32, 203, 427 + 2517 XB02	. 68505	26, 101	1,047	XB02/26,101
Chemicals and Chemical Fertilizers: $Y = -7,583,750 + 9670 \text{ XB} 11$. 93313	153,497	645	XB11/153.497
All Other: Y = -8,453,115 + 1089 XB09	. 83267	59, 713	1, 178	XB09/59,713

Table 48: Key Lock and Dams Lock and Dam #7 - Monongahela River

	TO ATT THE TIME TO THE			
				XBEA66
		Equation		
		F-Test	Standard	Variable/
Equation	R	Value	Error	F-Test
Coal and Coke;	. 80028	13, 3568	1,390	XBFA13/3 863
Y = -9217672 + 6760 XBEA13				XBFA08/5 490
-8609 XBEA08 + 45282 XBEA11				XBEA11/3, 025
Petroleum Fuels:	. 33851	6, 1408	65	XBFA15/6 141
Y = -110052 + 453 XBEA15)	121 .0 / 61 137 7 17
Aggregates:				
Y = -828156 + 744 XBEA17 + 2268	77893	19.3787	86	YREA17/2 887
XBEA14		•) `	XBEA14/2 963
			į	つつついっていい

Table 49: Key Lock and Dams
Winfield Lock and Dam - Kanawha River

BEA52

	7	Equation F-Test	Standard	Variable/
Equation	R	Value	Error	F-Test
Coal and Coke; Not Enough Cases				
Aggregates: Not Enough Cases				
Chemicals and Chemical Fertilizers:	. 49646	6.9015	343	BEA09/6.902
Y = 5863346 - 3957 BEA09				

Table 50; Key Lock and Dams Lock and Dam #2 - Allegheny River

BEA66

Equation	R ²	Equation F-Test Value	Standard	Variable/ F-Test
Coal and Coke: Y = 397552 + 9445 XBEA11	. 42686	8, 9371	283	XBEA11/8.937
Aggregates: Y = 1368 XBEA17 - 9819 XBEA14 + 1482 XBEA13 + 153339	. 65436	6,3107	96	XBEA17/9, 887 XBEA14/14, 247 XBEA13/10, 434
<pre>Iron Ore and Iron and Steel: Y = 1044 XBEA14 - 288 XBEA08 - 28768</pre>	. 39214	3,5481	92	XBEA14/3.474 XBEA08/2.195
All Other: Y = -999842 + 847 XBEA16	. 93593	175, 293	42	XBEA16/175.293

CONSAD RESEARCH CORP PITTSBURGH PA F/6 5/3 PROJECTING THE DEMAND FOR OHIO RIVER BASIN WATERWAY TRAFFIC USI--ETC(U) JAN 79 DACW69-78-C-0018 AD-A087 194 UNCLASSIFIED

3. 1. 4 Comparison: System vs. Components

In comparing the regression results obtained using basin level population, income, and earnings as independent variables at the system level versus those obtained at the individual river and key lock and dam levels of analysis, there are several things that the reader must keep in mind. First, in aggregating the river data to create the system data, whatever peculiarities may have been present in each of the individual river data sets would tend to be smoothed out as a result of combining the data on the eight rivers in the ORB. Second, each river flows through an area possessing its own unique industrial and demographic characteristics resulting in river specific commodity mixes as well as the likelihood that these commodities are moving in response to these areal characteristics. Thus, in some cases, it should not be surprising to find subsystem commodity movements correlating poorly with the same variables which produced high correlations at the system level.

Tables 51-58 compare the regression results obtained at the system level versus those obtained for the individual rivers and key lock and dam projects for each commodity group. Except for Commodity Group 8 (Down), a very strong association exists between the Ohio River and the system. This is not at all surprising since the Ohio River has historically carried approximately 75 percent of the system's traffic.

Among the tributaries, the degree of association is not quite as strong, but generally is still significant. However, there are certain exceptions, "weak spots" in the analysis, which require discussion.

For Coal and Coke (Group 1), weak spots occur on the Monongahela (both directions), up the Kanawha, and down the Cumberland, although coal and coke traffic down the Cumberland is relatively light (see Appendix B for river traffic volumes by direction). In all of these cases Earnings in the Manufacture of Primary Metals (XB13) entered the river-level regression equations instead of the variables used at the system level, Earnings in the Manufacture of Chemicals and Allied Products (XB11) and Fabricated Metals (XB14).

For Petroleum Fuels (Group 2) the weak spots occur on the Allegheny and Cumberland Rivers, both directions, although petroleum fuel volume down both of these rivers has been very light. Some preference for Earnings in Petroleum Refining (XB12) was shown over Earnings in Transportation, Communication, and Utilities (XB15), chosen at the system level.

The third major commodity group, Aggregates (Group 4) has weak spots occurring on the Allegheny (both directions), up the Monongahela, and down the Tennessee. Aggregates tonnage moving up the Allegheny dropped quite severly in 1974 and remained low in 1975. Whether or not this represents a permanent drop is a question which can best be answered by the other ORB projection studies being undertaken by the Corps. Earnings in Contract Construction (XB17), used as the independent variable at the system level, entered the equations at the individual river level, except for down the Ohio where Earnings in the Manufacture of Primary Metals (XB13) was entered; up the Allegheny where Earnings in the Manufacture of Primary (XB13) and Fabricated Metals (XB14) were entered; and down the Tennessee where XB14 was again entered.

Grains (Group 5) appear in significant quantities only on the Ohio and Tennessee Rivers. Weak spots exist up the Tennessee and Ohio, although the R² and F-test values obtained for these equations were not very different from those obtained for the other grain equations. The variables used at the system level, Earnings in Wholesale and Retail Trade (XB16) and Agriculture (XB06), consistently entered the equations at the individual river level.

For Chemicals and Chemical Fertilizers (Group 6) weak spots occur on the Monongahela and Cumberland Rivers in the downstream direction. However, traffic down the Cumberland for this commodity group has been quite light, reaching a maximum of fifty-three thousand tons in 1973. Except for the Ohio River (other direction) and up the Allegheny, which both correlated best with Earnings in the Manufacture of Chemicals and Allied Products (XB11), the river regression equations utilized the same variables, Earnings in Argiculture (XB06) and Manufacturing (XB09), as the system level equation.

Ores and Minerals (Group 7) has weak spots occurring on the Kanawha (both directions), although traffic volume in the downstream direction is quite light. To a lesser extent, the regression results down the Tennessee, up the Allegheny, and down the Ohio were also weak relative to system level results. Again, however, the traffic volumes are not particularly heavy and variation here is not likely to significantly affect waterway improvement decisions. There was some variation in the variables chosen by the regression package with Earnings in Mining (XB07) and Manufacturing (XB09) carrying about the same load as Earnings in the Manufacture of Primary (XB13) and Fabricated (XB14) Metals, which were utilized at the system level.

The poorest system level regression results were obtained for Iron Ore and Iron and Steel (Group 8) where an R² value of .57656 was achieved

using Earnings in Contract Construction (XB17). Significant weaknesses also exist for the subsystem level analysis on the Ohio, Monongahela, Allegheny, and Cumberland Rivers in the downstream direction and on the Kanawha in both directions for this commodity group. However, only the Ohio and Monongahela Rivers transport significant volumes of these materials. There was quite a bit of variation in the entry of independent variables with Earnings in Mining (XB07), Coal Mining (XB08), and the Manufacture of Primary (XB13) and Fabricated (XB14) Metals playing important roles.

The last commodity group, consisting of those commodities not included in the first eight groups, had weak spots occurring on the Allegheny, Kanawha, and Tennessee Rivers in the downstream direction and on the Monongahela in both directions. Only the Tennessee and Monongahela Rivers carried significant traffic volumes. Earnings in Manufacturing, utilized in the system level regression equation for this commodity group was rather consistently chosen at the river level. Notable exceptions are the Ohio (other direction) and up the Tennessee, where in both cases Earnings in Wholesale and Retail Trade was utilized.

In an attempt to improve upon the weak spots identified above, in particular, those involving significant traffic volumes on the Allegheny, Monongahela, and Kanawha Rivers, we turn to the regression results obtained using local variables (Tables 31-36). In several instances local variables yielded much stronger correlations than those obtained using basin level independent variables. Specifically, for Coal and Coke traffic moving up the Monongahela, an R² value of .72869 was obtained with Earnings in the Manufacture of Fabricated Metals in BEA region 66 serving as the independent variable. For Aggregates moving up the Allegheny, an R² value of .68544 was attained utilizing Earnings in Primary and Fabricated Metals and Contract Construction in BEA region 66. Finally, employing Earnings in Manufacturing in BEA region 66, an R² value of .82097 was achieved for commodity group 9, All Other, moving up the Monongahela.

Further inspection of Tables 51-58 brings two general tendencies to light. First, the upstream traffic tends to follow the system's behavior more closely than the downstream traffic. This is especially true for the Allegheny, Monongahela, and Cumberland Rivers. Second, overall results on the Allegheny, Monongahela, and to a lesser extent, the Kanawha were not quite as good (in the sense of mirroring the system's behavior) as those obtained for the other rivers.

At the Key Lock and Dam Level, tests of the system level indepedentdependent variable relationships yielded a similar degree of association as was obtained at the individual river level. Although it is difficult to compare the lock and dam results with the river results because the river regressions were made by direction while the lock and dam regressions had to be made in aggregate because of the data problem described in Section 2, one can safely assert that the lock and dam results tended to follow the results for the river on which the lock and dam is located. One exception that immediately stands out occurs on the Ohio River in the case of the Montgomery Lock and Dam Project. Regression results for this project were not nearly as good as those obtained for the Ohio River. A possible explanation lies in this project's location on the Ohio River close to Pittsburgh, where the Allegheny and Monongahela Rivers join to form the Ohio. Since the regression results for the downstream direction of both of these rivers did not follow the high level of correlation obtained at the system level of analysis, the lack of consistency for the Montgomery Locks and Dam are understandable.

Judging from the results of this analysis, it seems reasonable to utilize system level analysis, modified by local trends, to assign future traffic demand to the lock and dam projects in the ORB.

Table 51: Comparison of Regression Results - System vs. Components Commodity Group 1 - Coal and Coke

	Variable(s) Chosen and Associated F-Test	sen and	R ²	Equation F-Test	Standard Error As % of 1975 Tonnage
System Analysis	XB11/97. 183	XB14/2,498	. 96392	173,749	4.1
River Analysis:					
Ohio (Down)	XB11/70.609	XB08/14.608	.90417	51,895	8.3
Ohio (Up)	XB11/140, 309		. 92121	140,309	8.9
Ohio (Other)	XB13/73,025		. 85886	73,025	8.2
Monongahela (Down)	XB13/8,280		.40830	8.280	10.4
Monongahela (Up)	XB13/17,313		. 59063	17,313	20,1
Allegheny (Down)	XB08/19.603 XB13/3.103	XB14/7.567	. 70838	8.097	24.5
Allegheny (Up)	XB15/28.169	XB13/5,309	.81255	23.841	19.7
Kanawha (Down)	XB08/23,714	XB14/11,435	11691.	18,321	11.9
Kanawha (Up)	XB13/5,018		.29487	5,018	28,3
Green (Down)	XB11/180.967	XB08/32,784	.96279	129, 374	7.9
Cumberland (Down)	XB13/.182		.01982	. 182	125.4
Cumberland (Up)	XB08/45,905		69298.	45,905	13,5
Tennessee (Down)	XB15/26.264	XB14/5.794	. 93945	85,330	10.1
Tennessee (Up)	XB11/109.379		.90114	109, 379	10.7

Table 51: Comparison of Regression Results - System vs. Components Commodity Group 1 - Coal and Coke (Continued)

	Variable(s) Chosen and Associated F-Test	osen and Fest	R ²	Equation F-Test	Standard Error As % of 1975 Tonnage
Key L&D's Analysis:					
Montgomery (Ohio)	XB08/6.210 XB11/5.960	XB13/6.314	. 63469	5, 791	16.5
L&D #52 (Ohio)	XB11/191.695		. 94109	191.695	۳ 8
Kentucky L&D (Tennessee)	XB15/52.037	XB14/5,513	. 90507	47.670	9.6
L&D #1 (Green)	XB11/141.650	XB08/25.289	. 95282	100.972	7.0
Winfield L&D (Kanawha)	XB08/6.226	XB14/1,876	. 58373	4.207	10.2
L&D #7 (Monongahela)	XB13/22.205		. 64917	22,205	24,4
L&D #2 (Allegheny)	XB11/3.978	XB13/1.670	. 42246	4.023	14.2
Gallipolis (Ohio)	XB11/37, 427	XB08/5.045	.82174	25,355	9.6

Table 52: Comparison of Regression Results - System vs. Components Commodity Group 2 - Petroleum Fuels

	•				
	Variable(s) Chosen and Associated F-Test	osen and Fest	R ²	Equation F-Test	Standard Error As % of 1975 Tonnage
System Analysis:	XB15/8,822	XB02/5,799	. 96243	140.904	5.1
River Analysis:					
Ohio (Down)	XB15/97,765		89068	97.765	8.6
Ohio (Up)	XB02/175,336		.93594	175,336	6.4
Ohio (Other)	XB15/205,419		. 94481	205,419	5,8
Monongahela (Down)	XB02/16,448	XB15/9,980	.65822	10, 592	107.9
Monongahela (Up)	XB12/6,006	XB15/2.888	.83817	28.487	10.4
Allegheny (Down)	XB12/8,966	XB02/5,107	. 44983	4.497	29.4
Allegheny (Up)	XB02/5.864		. 32826	5,864	28.8
Kanawha (Down)	XB02/119.916	XB12/41,473	. 92348	66,380	48.8
Kanawha (Up)	XB15/28.956	XB12/3.631	.94193	89,209	6.5
Cumberland (Down)	XB12/1,368		.13193	1,368	39,3
Cumberland (Up)	XB12/5.078	XB02/2,508	.32008	2,589	36.8
Tennessee (Down)	XB12/57.248		.82671	57,248	10.0
Tennessee (Up)	XB15/16.092		. 57283	16.092	23,5
Key L&D's Analysis:					
Montgomery (Ohio)	XB02/10,526		.46727	10, 526	14.8
L&D #52 (Ohio)	XB02/26, 101		. 68505	26.101	10.6
Kentucky					
(Tennessee)	XB02/7,533		. 40645	7,533	26.4
Cheatham					
(Cumberland)	XB12/5, 748		.45090	5,748	26.3
(Monongahela)	XB02/15,096		. 55714	15,096	16.4
Gallipolis (Ohio)	XB02/50, 331		.80748	50,331	10.7

Table 53: Comparison of Regression Results - System vs. Components Commodity Group 4 - Aggregates

	Variable(s) Chosen and	osen and		Equation	Standard Error As
	Associated F-Test	Test	R ²	F-Test	% of 1975 Tonnage
System Analysis:	XB17/93,803		. 88658	93.803	9,1
River Analysis:					
Ohio (Down)	XB13/36,132		. 75069	36,132	14,5
Ohio (Up)	XB17/54,377		.81921	54,377	14.2
Ohio (Other)	XB17/159,995		. 93023	159,995	9°2
Monongahela (Down)	XB17/25,454		.66154	23,454	19,8
Monongahela (Up)	XB17/5.424		.31130	5,424	23.9
Allegheny (Down)	XB17/9,111		. 43156	9,111	17.5
Allegheny (Up)	XB13/8,973	XB14/7.990	46294	4.741	131, 1
Kanawha (Up)	XB17/28,363		. 70270	28,363	15.2
Kentucky (Up)	XB17/74, 928		. 86195	74,928	14.2
Tennessee (Down)	XB14/.655		.05174	. 655	52.6
Tennessee (Up)	XB17/80, 183		.86982	80, 183	12, 1
Key L&D's Analysis:					
Montgomery (Ohio)	XB14/4,18		.27565	4.186	20,5
Kentucky (Tennessee) Cheatham	XB17/26.145		. 70386	26, 145	35.5
(Cumberland)	XB13/13,278		.65480	13.278	13,3
L&D #1 (Kentucky) Winfield	XB17/17, 540	XB14/2.024	.82776	24.029	15.8
(Kanawha)	XB17/9,659		57981	659*6	15.5
(Monongahela)	XB17/24, 788		67381	24,788	21.8
L&D #2 (Alleghenv)	XB17/5,282	XB14/1,926	. 41743	3,941	19.4

Table 54: Comparison of Regression Results - System vs. Components Commodity Group 5 - Grains

•					
	Variable(s) Chosen and	osen and	,	Equation	Standard Error As
	Associated F-Test	Test	R ²	F-Test	% of 1975 Tonnage
ystem Analysis:	XB16/19,147 XB06/12,540	XB06/12.540	.88187	41.059	12,5
River Analysis:					
Ohio (Down)	XB16/19.374		61752	19,374	98.2
Ohio (Up)	XB06/13,615		.53152	13,615	50,0
Ohio (Other)	XB16/18.880		.61140	18,880	14.8
Tennessee (Down)	XB16/48.987	XB06/16.214	.81705	24,564	13.0
Tennessee (Up)	XB06/11,771		.49519	11.771	51.0
Key L&D's Analysis:					
None					

Table 55: Comparison of Regression Results - System vs. Components Commodity Group 6 - Chemicals and Chemical Fertilizers

	Variable(s) Chosen and Associated F-Test	sen and est	R ²	Equation F-Test	Standard Error As % of 1975 Tonnage
System Analysis:	XB09/60,394	XB06/7,307	. 92313	66.046	12, 5
River Analysis:					
Ohio (Down)	XB06/23,421	XB09/2,352	.85344	32,027	23.0
Ohio (Up)	XB09/133,359		.91745	133,359	12.8
Ohio (Other)	XB11/114,710		.90530	114.710	13,1
Monongahela (Down)	XB06/1,299		69260	1.299	23.0
Monongahela (Up)	XB06/14,412		.54566	14.412	100.0
Allegheny (Up)	XB11/15.798		. 58952	15, 798	17.2
Kanawha (Down)	XB09/4.417	XB06/3,815	.82199	15,392	25.2
Kanawha (IIn)	XB11/2,304 XB09/14,280	XB06/10 668	87111	37, 171	22.0
(do)	2011	200 *0 * / 200 ***	•	•	1
Cumberland (Down)	XB09/7.095		.41502	7.095	6.09
Cumberland (Up)	XB09/35.971		. 74985	35.971	50.9
Tennessee (Down)	XB09/99,101		.89199	99, 101	14.1
Tennessee (Up)	XB09/35,590		.74784	35.590	21,3
Key L&D's Analysis:					
L&D #52 (Ohio)	XB11/153,497		93313	153,497	10.0
Gallipolis (Ohio)	XB09/4.605	XB06/1,414	,62851	8.459	30.0
Winfield (Kanawha)	XB06/12,037	XB11/9.701	. 68287	6.460	11.4
The state of the s	163 -27 /00 / 17	1010//2011		202	

Table 56: Comparison of Regression Results - System vs. Components Commodity Group 7 - Ores and Minerals

,	•				
	Variable(s) Chosen and Associated F-Test	Chosen and F-Test	R ²	Equation F-Test	Standard Error As % of 1975 Tonnage
System Analysis:	XB14/7.678	XB13/3,410	. 83033	26,915	17, 5
River Analysis:					
Ohio (Down)	XB07/15,977		.57108	15,977	48,3
Ohio (Up)	XB14/39,607		.76747	39,607	26.2
Ohio (Other)	XB13/29,817		.71303	29.817	20.2
Mononganela (Down)	XB07/18,091		.62187	18,091	30.4
Monoagahela (Up)	XB14/19,405	XB13/4,110	.70111	12,901	41.8
Allegheny (Up)	XB09/13.048		.52091	13,048	43.5
Kanawha (Down)	XB13/8,799		.42305	8.799	91.7
Kanawha (Up)	XB14/2.494		.17206	2,494	52,7
Cumberland (Down)	XB13/7,686	XB07/2,247	.71695	6,332	26.2
Cumberland (Up)	XB07/19,959	XB14/14.048	.75074	16,565	21.7
Tennessee (Down)	XB09/7,654	XB13/4,642	. 52798	6, 152	35,4
Tennessee (Up)	XB09/49.672	XB07/3,956	.81870	24.836	24.9
Key L&D's Analysis:					
None					
None					

Table 57: Comparison of Regression Results - System vs. Components Commodity Group 8 - Iron Ore and Iron and Steel

	Variable(s) Chosen and Associated F-Test	iosen and Test	R ²	Equation F-Test	Standard Error As % of 1975 Tonnage.
System Analysis:	XB17/16,339		. 57656	16,339	20.9
River Analysis:					
Ohio (Down)	XB17/2,497		.17226	2.497	34.2
Ohio (Up)	XB17/32,876	XB08/8,904	.82857	26,583	12,5
Ohio (Other)	XB13/13.649		.53215	13,649	22,7
Monongahela (Down)	XB08/1,216		.09202	1.216	41.0
Monongahela (Up)	XB14/21,324	XB07/5,875	.71665	13,911	28.7
Allegheny (Down)	XB14/,794		.06204	. 794	110.0
Allegheny (Up)	XB08/10,366	XB07/7.630	. 52986	6.199	31.0
Kanawha (Down)	XB08/1,607	XB14/1,434	.22417	1,589	100.0
Kanawha (Up)	XB13/3,980	XB07/3,115	.34260	2.866	114,3
Cumberland (Down)	XB13/6.190	XB14/1,862	.39865	3.646	45.2
Cumberland (Up)	XB17/28.271	XB08/3,873	. 78226	19,759	19.6
Tennessee (Down)	XB17/3,220	XB13/2,995	. 88223	41.200	14.0
Tennessee (Up)	XB17/29.628	XB08/7,033	.80822	23.178	19.7
Key L&D's Analysis:					
Montgomery (Ohio)	XB17/3,196		.21030	3,196	31,5
Gallipolis (Ohio)	XB17/5,703		.32217	5,703	24.6
L&D #2 (Allegheny)	XB08/11,348	XB07/8,400	.55054	6.737	30.0

Table 58: Comparison of Regression Results - System vs. Components Commodity Group 9 - All Other

	Variable(s) Chosen and Associated F-Test	sen and est	R ²	Equation F-Test	Standard Error As % of 1975 Tonnage
System Analysis:	XB09/186,807		. 93964	186.807	8.1
River Analysis:			_		
Ohio (Down)	XB09/37,714		. 75862	37,714	16.4
Ohio (Up)	XB09/40,654		.77210	40,654	21.8
Ohio (Other)	XB16/97.992		06068.	97.992	6.6
Allegheny (Down)	XB09/6.756		.36021	6.756	43,3
Allegheny (Up)	XB09/36.510		. 75263	36,510	19.0
Kanawha (Down)	XB09/11,544		.49032	11,544	71.4
Kanawha (Up)	XB09/18,481	XB05/14,252	.71396	13,728	31.8
Cumberland (Down)	XB03/10.449	XB09/2,703	.83481	27,795	14.2
Cumberland (Up)	XB09/78,038		.86672	78.038	16.3
Tennessee (Down)	XB03/9,880		.45155	9.880	22.8
Tennessee (Up)	XB16/47,511		. 79836	47,511	19.2
Monongahela (Down)	XB09/1.295	XB03/1,016	11986	. 749	0.68
Monongahela (Up)	XB09/3,288	XB05/2,150	. 40748	3, 782	37.5
F L&D's Analysis:				-	
L&D #52 (Ohio)	XB09/59.713		.83267	59,713	15,5
L&D #2 (Allegheny)	XB16/204, 184		. 94449	204.184	8.9
Kentucky	VB16/18 709	YBOQ/8 965	85265	28, 933	12.0
(Tennessee) Cheatham	401 .01 /01 dA	502 ·8/600		•	
(Cumberland)	XB16/7.299	XB09/2,847	.83608	15, 302	20.6

3.2 System Level Demand Projections

In Section 2.3.1 of this report three separate commodity specific regressions of system traffic were described. The first utilized GNP as the independent variable and used all thirty-six years (1940-1975) of commodity data. The other two used fourteen years of data, weighted toward the more recent years, one relying on national level earnings and income independent variables, the other on the same variables at the basin level The projections obtained as a result of this analysis appear in Tables 60-67.

In applying Shift-Share analysis to arrive at future O-D flows, system-wide total and commodity group tonnage figures for 1980, 1985, and 1990 had to be chosen. Given the above three choices, it was decided that the linear projections based upon fourteen years of data and basin level variables would be most appropriate. Although it could be argued that projections made using thirty-six data points would tend to be more accurate than those based upon fourteen, we felt that since these fourteen points represented the most recent data, they best depicted the current physical characteristics and constraints (lock and dam projects, canals, etc.) of the Ohio River System as well as more recent economic institutional and technological considerations that are inputs to decisions to transport by river barge. The basin level projections were felt to be superior to the national level projections because of the stronger connection present between traffic and the basin's economy. The equations and associated projections selected for use in the Shift-Share procedure appear in Table 59.

It is interesting to note that although the basin level projections differed somewhat from the national level (fourteen points) projections, the total tonnage figures obtained by summing the individual commodity group projections turned out to be remarkably similar. In addition, separate projections of total tonnage with the commodity groups combined were made using national and basin level variables and these values were quite consistent with each other and with the total tonnage projections obtained by summing the individual commodity groups (see Table 68 for details).

Although projections were obtained for Commodity Group 8, the R² value for this group was significantly lower than those obtained for the other commodity groups. One possible explanation for this lies in the effect on domestic steel production (and thus on the raw materials, especially iron ore, that serve as inputs to steel production) that has been

Table 59: System Level Projections Chosen for Use in Shift-Share Analysis*

Commodity Group	Equation	_R ²		Projections	3**
			<u>80</u>	<u>85</u>	90
Coal and Coke	Y=-31,672,927 +102,596XB11- 28,783XB14	.96392	117,031	146,605	<u>182,256</u>
Petroleum Fuels	Y=-58,465,846+ 5800XB15+ 3440XB02	.96243	24,312	30,565	<u>37,663</u>
Aggregates	Y=-4,284,360 + 8750 XB17	. 88658	27, 845	33, 296	39,727
Grains	Y=-16,300 + 773XB16 -2690 XB06	.88187	3, 354	4, 317	<u>5,456</u>
Chemicals and Chemical Ferti- lizers	Y=-10,499,211 + 1460XB09 - 2087 XB06	.92313	13, 333	17,604	22,639
Ores and Minerals	Y=-6,213,546 +5664XB14+1494 XB13	.83033	6,294	7,890	9,739
Iron Ore and Iron and Steel	Y=-273,520 + 1775XB17	.57656	6,244	7, 350	8,655
All Other	Y=-11,513,842 + 1361 XB09	.93964	13,041	<u>17.090</u>	21.854

^{*}All equations chosen were linear with basin level independent variables.

**Thousands of tons.

Table 60: Demand Projections: System Level - Commodity Group 1 - Coal and Coke 1975 Tonnage* = 98, 236

		Projections*	
Equation	1980	1985	1990
Linear: Y = 8530712 + 70140 GNP	GNP = 1,505.6 $114,133$	GNP = 1,795.8 $134,488$	GNP = 2,086 $154,842$
Geometric: LnY = 13.01285 + .74225 Ln (GNP)	102, 344	116,649	130,368
Linear: Y = .17820 XN05 - 32,218,016	XN05 = 837, 490, 000	XN05 = 992, 723, 000 144, 685	XN05 = 1,176,711,000
Geometric: LnY = -37,80132 + 4,08659 Ln (XN05) -3,80762 Ln (XN04) +,28984 Ln (XN07)	XN04 = 4700 XN07 = 6,498,000	XN04 = 5400 XN07 = 6,896,300	XN04 = 6100 $XN07 =$ $7,319,000$ $168,927$
Linear: Y = -31,672,927 + 102,596 XB11 - 28,783 XB14	XB11 = 1,875 XB14 = 1,517 117,031	XB11 = 2, 232 XB14 = 1, 762 146, 605	XB11 = 2, 660 XB14 = 2, 049 182, 256
Geometric: LnY = .0443 + 1.6496 Ln (XB11) - 0.3777 Ln (XB14)	107,773	<u>135, 776</u>	171, 397

*Thousands of tons, projections are underlined.

Table 61: Demand Projections: System Level - Commodity Group 2 - Petroleum Fuels 1975 Tonnage* = 18,846

Parties of the control of the second

		Projections*	
Equation	1980	1985	1990
Linear: Y = -305, 935 + 15, 204 GNP	GNP = 1505, 6 22, 585	GNP = 1795.8 26,997	GNP = 2086 31, 409
Parabolic: Y = -2071004 + 20694 GNP -3.64321 (GNP) ²	20,828	23, 343	25, 244
Linear: Y = .57211 XN15 - 10,403,156	XN15 = 58, 672, 000	XN15 = 69, 036, 800	XN15 = 81,233,000 36,071
Geometric: LnY = -21,65735 + 2,16845 Ln (XN15)	27,017	29, 907	42, 558
Linear: Y = -58,465,846 + 5800 (XB15) + 3440 (XB02)	XB15 = 3,818 XB02 = 17,626 24,312	XB15 = 4,468 XB02 = 18,348 30,565	XB15 = 5,235 XB02 = 19,118 37,663
Parabolic: Y = -33,054,134 + 5392 (XB15) + 0,1 (XB02) ²	18,600	24, 702	31,723

*Thousands of tons, projections are underlined.

Table 62: Demand Projections: System Level - Commodity Group 4 - Aggregates 1974 Tonnage* = 22,098

		Projections*	
Equations	1980	1985	1990
Linear: Y = 3, 163, 569 + 16, 385 GNP	GNP = 1505,6 27,833	GNP = 1795.8 32,588	GNP = 2086 $37,343$
Exponential: LnY = 15,63877 + .0014 GNP	34, 455	47, 965	66, 773
Linear: Y = .63418 XN17 - 4,869,195	XN17 = 51, 910, 000 28, 051	XN17 = 60, 857, 100 33, 725	XN17 = 71,347,000
Geometric: LnY = -14.39012 - 2.05881 Ln (XN04) +2.75465 Ln (XN17)	$XN04 = 4,700 \\ 27,741$	XN04 = 5,400 $32,301$	XN04 = 6, 100 $38, 947$
Linear: Y = -4,284,360 + 8750 XB17	XB17 = 3,672 $27,845$	XB17 = 4, 295 33, 296	XB17 = 5,030 $39,727$
Geometric: LnY = 7,16848 + 1,21284 Ln (XB17)	27,346	33,070	40,054

*Thousands of tons, projections are underlined.

Table 63: Demand Projections: System Level - Commodity Group 5 - Grains 1975 Tonnage* = 4,097

		Projections*	
Equations	1980	1985	1990
Linear: Y = -1,716,337 + 4430 GNP	$GNP = 1505, 6$ $\frac{4}{9}, 953$	GNP = 1795.8 $6,238$	GNP = 2086
Geometric: LnY = -4,35944 + 2,74916 Ln (GNP)	<u>6, 962</u>	11, 303	17, 063
Linear: Y = -9098492 + .87200 XN10	XN10 = 16, 016, 000 4, 867	XNI0 = 17,444,400	XN10 = 19,000,000
Other curves inappropriate for projection purposes.	purposes.		
Linear: Y = -16,300 + 773 (XB16) - 2690 (XB06)	XB16 = 8, 543 XB06 = 1, 202 3, 354	XB16 = 9, 911 XB06 = 1, 237 4, 317	XB16 = 11, 509 XB06 = 1, 273 5, 456
Parabolic: Y = -1,210,604 + 735 (XB16) - 1 (XB06) ²	3,624	4,544	5,628

*Thousands of tons, projections are underlined.

Table 64: Demand Projections: System Level - Commodity Group 6 - Chemicals and Chemical Fertilizers
1973 Tonnage* = 10,591

		Projections*	
Equations	1980	1985	1990
Linsar: Y = -5, 034, 763 + 12, 717 GNP	GNP = 1505,6 14,112	GNP = 1795.8 $17,802$	GNP = 2086 $21,493$
Geometric: LnY = -, 84574 + 2,39558 Ln (GNP)	17, 586	26, 825	38, 405
Linear: Y = -12, 427, 173 + . 03232 XN05	XN05 = 837, 490, 000 14, 641	XN05 = 992, 723, 000 19, 658	XN05 = 1, 176, 711, 000
Geometric: LnY = -44, 54767 + 3, 71028 Ln (XN11)	XN11 = 15,632,000 22,131	XN11 = 18, 774, 600 43, 669	XN11 = 22, 549, 000 86, 170
Linear: Y = -10,499,211 + 1,460 (XB09) - 2087 (XB06)	XB09 = 18, 042 XB06 = 1, 202 13, 333	XB09 = 21,017 $XB06 = 1,237$ $17,604$	XB09 = 24, 517 XB06 = 1, 273 22, 639
Geometric: LnY = -39,3341 + 4,1286 Ln (XB09) -0,9400 Ln (XB06)	14, 472	26,457	48,659

*Thousands of tons, projections are underlined.

Table 65: Demand Projections: System Level - Commodity Group 7 - Ores and Minerals 1975 Tonnage* = 3,446

		Projections*	
Equations	1980	1985	1990
Linear: Y = 1,365,944 + 4374 GNP	GNP = 1505.6 5.220	GNP = 1795.8 6.489	GNP = 2086
Geometric: LnY = .46315 + 2.08659 Ln (GNP)	6, 788	9,805	13, 403
Linear: Y = -3, 304, 872 + .00995 XN05	XN05 = 837, 490, 000	XN05 = 992, 723, 000 6, 573	XN05 = 1, 176, 711, 000 8, 403
Geometric: LnY = -49.84333 - 1.29460 Ln (XN07) +5.16566 Ln (XN13)	XN07 = 6,498,000 XN13 = 14,302,000	XN07 = 6,896,300 XN13 = 15,317,000	XN07 = 7,319,000 XN13 = 16,404,000
Linear: Y = -6,213,546 + 5664 (XB14) + 1494 (XB13)	XB14 = 1, 517 XB13 = 2, 621 $6, 294$	XB14 = 1, 762 XB13 = 2, 760 7, 890	XB14 = 2, 049 XB13 = 2, 910 9, 739
Geometric: LnY = -42,9451 + 4,1445 Ln (XB09) -0,7407 Ln (XB07)	XB09 = 18,042 $XB07 = 1,370$ $7,541$	XB09 = 21,017 XB07 = 1,484 13,377	XB09 = 24, 517 XB07 = 1,609 23,858

*Thousands of tons, projections are underlined.

Table 66: Demand Projections: System Level - Commodity Group 8 - Iron Ore and Iron and Steel
1974 Tonnage* = 5, 125

		Droisotions*	
Equations	1980	1985	1990
Linear:	GNP = 1505,6	GNP = 1795.8	GNP = 2086
Y = 1,318,177 - 3212 GNP	6, 154	7,086	8,018
Exponential: Ln Y = 14, 30158 + , 00101 GNP	7, 439	9, 972	13, 369
Linear: Y = -721, 544 + .00850 XN05	XN05 = 837, 490, 000 5, 397	XN05 = 992, 723, 000	XN05 = 1, 176, 711, 000 9, 281
Geometric: LnY = -9.47670 + 1.22392 Ln (XN05)	6,388	7,865	9,684
Exponential: LnY = 13,23541 + ,15341 XN13A**	$XN13A = 14,302$ $\frac{5,023}{}$	$XN13A = 15,317$ $\frac{5,869}{}$	XN13A = 16.404
Linear: Y = -273, 520 + 1775 (XB17)	XB17 = 3, 672 6, 244	XB17 = 4, 295	XB17 = 5,030 8,655
Geometric: LnY = -11,80066 + 1,09924 Ln (XB13) +0,79178 Ln (XB14)	XB13 = 2,620,600 XB14 =	XB13 = 2, 759, 700 XB14 =	XB13 = 2,910,100 XB14 =
	1, 517, 000 6, 674	1, 762, 100 7, 954	2, 049, 100 9, 501

*Thousands of tons, projections are underlined. **Where XN13A = XN13/1,000,000.

Table 67: Demand Projections: System Level - Commodity Group 9 - All Others 1975 Tonnage* = 10,316

		Projections*	
Equations	1 980	1985	1990
Linear: Y = -3,493,245 + 10.561 GNP	GNP = 1505, 6 $12, 407$	GNP = 1795,8 15,472	GNP = 2086 $18, 537$
Geometric: LnY = 4.1317 + 1.65715 Ln (GNP)	11,490	15, 388	19,723
Linear: Y = -11, 492, 375 + .18122 XN16	XN16 = 133, 912, 000 12, 775	XN16 = 154, 867, 400 16, 573	XN16 = 179, 102, 000 20, 964
Geometric: LnY = -55,30756 + 3,74169 Ln (XN09)	XN09 = 219,486,000	XN09 = 252, 984, 700	XN09 = 291, 595, 000
Linear: Y = -11,513,842 + 1361 (XB09)	XB09 = 18, 042 13, 041	XB09 = 21,017 17,090	XB09 = 24, 517 21, 854
Parabolic: Y = -15,716,172 + 2231 (XB09) -0.04 (XB09) ²	11,515	13, 504	14, 938
Geometric: LnY = -38,79900 + 7,37237 Ln (XB09) -3,80329 Ln (XB05)	XB09 = 18,041,900 XB05 = 57,208,000	XB09 = 21,016,800 XB05 = 67,928,600	XB09 = 24,517,100 XB05 = 80,733,900

*Thousands of tons, projections are underlined.

Table 68: Projections* of Basinwide Total Tonnage (Demand)

Ī	Projection Procedure	1980	1985	1990
1.	Sum of individual commodity group projections, national level independent variables	210,946	264, 137	325,643
2.	Sum of individual commodity group projections, basin level independent variables**	211,454	264,717	327,989
3.	Linear Regression Y=35,138 XN05 - 76,311,965	217,965	272,511	337, 161
4.	Linear Regression Y=69 XB02 - 992,455	223,739	273,557	326,687

^{*}Thousands of Tons

^{**}These values were used as the total tonnage projections in the shift-share procedure.

caused by a rapid increase in the imports of steel mill products. The plot of imports of steel mill products and iron ore and iron and steel tonnage on the rivers of the ORB, both versus time (Figure 6), illuminates some interesting patterns. Between 1947 and 1957 when steel imports were low, the tonnage trend was generally upward. However, the rapid increase in imports which began in 1958 and increased rapidly over the next ten years corresponds with a drop and subsequent leveling off of Commodity Group 8 tonnage. It is also interesting to note that sharp increases in imports often correspond to drops in Commodity Group 8 tonnages (1950-1951, 1961, 1962, 1970-1971, 1973-1974) and vice versa (1951-1952, 1971-1972).

Given these patterns, it seem that a fairly strong inverse relationship exists between the imports of steel mill products and the tonnage of Commodity Group 8 moving on the waterways of the ORB. In fact, summing the tonnages of these two variables for each year from 1947 to 1974 and then running a simple time series regression on the resulting series of tonnages yields an R² value of .89628. Therefore, although Commodity Group 8 tonnage projections have been made (see Table 59) one should be aware of the fact that this commodity group is very sensitive to the amount of steel mill products imported. Since imports are quite dependent on government policy, a shift in policy regarding imports, could result in a change in Commodity Group 8 tonnage, e.g., an increase in tariffs could cause a decrease in steel mill products imports and a resulting increase in Commodity Group 8 tonnage. Thus, the forecasts of Commodity Group 8 tonnage derived in this study, should be reviewed as government policy in this matter evolves.

Figure 6: Imports of Steel Mill Products and Commodity Group 8 (Iron Ore and Iron and Steel) Tonnages vs. Time

*from Business Statistics, 1975 Biennial Edition

3.3 Assignments of O-D Flows to Rivers and L&D Projects

The tonnages appearing in the 1980, 1985, and 1990 columns of the Tables in this section are the result of running the commodity specific future O-D matrices developed by the Shift-Share and Fratar procedures through the traffic assignment program. The tonnages appearing after "Base Year Assignment" at the bottom of each table result from taking the observed base year flows (1975 for commodity groups 5 and 6, 1976 for the other groups) utilized in the Fratar procedure and running them through the traffic assignment program. This base year assignment was performed mainly as a check to help determine the accuracy of the assignment procedure. By comparing the total tons obtained as a result of the assignment with the observed 1976 tonnage* which also appears on each table, one can see that in most cases the assignment procedure yields results quite close to those actually observed.

It should be noted that the actual O-D matrices at the PE and BEA level of analysis are not included in this report due to the voluminous nature of the material. They are, however, available for review in the Huntington District office of the Corps of Engineers.

^{*}The fact that the base year data included 1975 flows for groups 5 and 6 should not effect the comparison to any great degree since those groups comprise a relatively small portion of total traffic.

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Barkley Canal

modity	Jbserve	Com- Observed 1976 Tr	Fraffic		1980		ו	1985			1990	
Group	+ dn			+ dn			+ ďn			+ dn	;	
	down	dn	down	down	dn	down	down	dn	down	down	dn	
	4,569	4,569	0	3,105	17	3,088	3,480	31	3,449	3,913		2
7	163	163	ı	1,906	1,617	589	2,469	2,082	387	3,169		9
4	11	z	0	1,722	1,722	0	1,879	1,879	0	1,970	1,970	0
2	0	•	C	29	0	29	92	0	36	155		0
9	10	07	0	376	892	108	.511	357	154	693		_
7	4	4	0	191	54	137	317	77	240	502	111	
∞	0	0	0	505	345	160	299	454	213	875		
6	∞	∞	0	928	965	760	1,170	797	373	1,555	1,030	_
<u>س</u>	163	163	0	•	0	0	0	0	0	•		_
T. cto 1	4,988	4,988	0	8 720	8 720 4 619	4 101	10 505	667 3	800 1 227 3	12 022	100	ſ

Base Year Assignment** = 7,478

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

Up = Tennessee to Cumberland Down = Cumberland to Tennessee The state of the s

PROJECTED LOCK AND DAM TRAFFIC
OHIO RIVER

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River L&D #52 (mile 938.9)

П		7	 			_		_	-			T	
		down	23,143	2,356	4,189	4,068	2,503	420	2,350	9,527	0		48,556
1990		dn	6,062	17,144	24	1,102	13,324	7,586	4,055	6,865	0	į	56,162
	+ dn	down	29,205	19,500	4,213	5,170	15,827	8,006	6,405	16,392	0		39,638 104,718 56,162
		down	 19,444	1,920	3,407	3,102	1,840	322	2,097	7,506	0	4	39,638
1985		dn	5,160	14,061	21	1,025	10,454	6,554	3,438	5,571	0		46,284
	+ dn	down.	24,604	15,981	3,428	4,127	12,294	6,876	5,535	13,077	0		85,922
		down	16,083	1,541	2,682	2,295	1,349	241	1,859	5,728	0		31,778 85,922
1980		dn	4,294	11,265	19	921	7,932	5,475	2,901	4,382	2,000		39,190
	+ dn	down	20,377	12,806	2,701	3,216	9,281	5,716	4,760	10,111	2,000		20,968
Traffic		down	14,636	1,150	1,901	3,711	8 43	123	1,308	469.4	0		28,466
Observed 1976 Tra		dn	3,922	8,850	72	1,340	6,567	3,008	1,974	3,353	881		29,967
Observe	+ dn	down	18,558	10,000	1,973	5,051	7,510	3,131	3,282	8,047	881		Total 58,433
Com-	modity	Group	-	~	4	'n	9	2	œ	6	m		Total

Base Year Assignment** = 54,953

• -- Observed Tonnage

A -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River L&D #53 (mile 962.6)

Com-	Observed 1976 Tra	d 1976	Fraffic		1980			1985			1990		7
modity	+ dn			+ dn			+ dn			+ dn			
Group	down	dn	down	down	dn	down	down	dn	down	down	dn	down	1
-	15,282	2.669	12,613	16,873	2,924	13,949	20,456		16,944	24,384	4, 125	20,259	
7	666.6	8.849	1,150	12,806	11,265	1,541	15,980	14,061	1,919	19,500	17, 144	2,356	
4	1.272	107	1,165	1,706	19	1,687	2,246		2,225	2,833	24	2,809	
5	5,051	1,340	3.711	3,216	921	2,295	4, 126	1,024	3, 102	5,170	1,102	4,068	
9	7.510	6.567	676	9,281	7,932	1,349	12,293		1,840	15,827	13, 324	2,503	
7	3,131	3,008	123	5,715	5,475	240	928,9		322	8,006	7,586	420	
· ∞	3.280	1,976	306	4,759	2,901	1,858	5, 533		2,095	6, 403,	4,055	2,348	
6	8,227	3,472	4,755	9,955	3,919	6,036	12,901		7,890	15,996	6,000	9,66,6	
m	881	881	0	2,000	2,000 0 0	0	0	0	0	0	0	0	
						}							т
Total	££9°95	28.867	25.766	112 79	37 356	28,955	80 411	44, 074	36,377	37 356 28.955 80 411 44 074 36.377 98 119	53, 360	53, 360 44, 759	
1				***	2000					, , , , ,			1

50,856 Base Year Assignment** =

A -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Smithland L&D (mile 918, 5)

Com-	Observ	Com- Observed 1976 Traffic	Traffic		1980		1	1985			1990	
modit	modity up +			+ ďn			+ dn			+ dn		
Group	down	dn	down	down	dn	down	down,	dn	down	down	dn	down
-	23,400	3,481	19,919	26,083	3,7812	2,302	32,056	4,492	27, 564		5,200	33,620
2	7,821	6,203	1,618	9,892	7,798	2,094		9,812	9,812 2,536		12, 124	2,991
4	793	86	707	1,024	99	896		20	1,168		80	1,381
2	3,842	163	3,679	2,424	107	2,317		124	3, 151		139	4,177
9	5,478	4,806	672	606,9	5,853	1,056		7,548	1,504		9,407	2,175
2	2,392	2,168	224	4,386	3, 923 463	463	5,494	4,813	681	6,702	5, 738	964
∞	2,971	1,620	1,351	4,238	2,329	1,909		2,748	2, 182	5,728	3,247	2,481
6	3,557	2,484	1,073	4,460	000	1,460	5, 785	3,848	1,937	7,366	4,834	2,532
m	883	883	0	2,000	2,000	0	0	0	0	0	0	0
Tota!	51,137	Tota! 51,137 21,894	29.2	61,416	43 61,416 28,847 32,569	2,569	74,178 33,455 40,723	33, 455	40, 723	91,090 40,769 50.321	40,769	50, 321

Base Year Assignment** = 47,985

▲ -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Uniontown L&D (mile 846.0)

Com- Observed 1976 Traffic	modity up +	down up	18,922 3,554		108 86	534 165	5,478 4,806	2,391 2,179	2,971 1,620	3,398 2,334	883 883	45,506 21,830
Traffic		down	15,368	1,618	22	3,369	672	212	1,351	1,064	0	23,676
	+ dn	down.	21,386	9,892	42	2,307	6,907	4,398	4,238	4,293	2,000	55, 500
1980		dn	3,851	7, 798	55	107	5,851	3,955	2,329	2,857	2,000	28,803
		down	17,535	7, 798 2, 094 12, 348	24	2,200	1,056		1,909	1,436	0	26,697
	+ dn	down	26.611	12,348	95	3, 132	6	5		5, 523	0	67, 245
1985		dn	4.560	9,812	89	124	7,545	4,884	2,748	3,620	0	28,803 26,697 67,245 33,361 33,884
		down	22.051	2,523	27	3,008	1,504	673	2,182	1,903	0	33,884
	+ ďn	down		15, 115		4,147	11,597	6,827	5,728	6,966	0	83,118 40,582
0661		dn		12, 124		139	9,404	5,853	3,247	4,478		40,582
		down	27, 371	2,991	30	4,008	2,175	874	2,481	2,488	0	42, 536

42,313 Base Year Assignment** =

-- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Newburgh L&D (mile 776.1)

\sqcap		٦		_	~			<u> </u>		_			
		down		8,927	699	481	2,016	1,305	972	2,530	1,251		
1990		dn		16,031	12,588	92	19	8,677	5,837	3,344	4,896	0	077
	+ dn	down	'	24,958	13,257		2,035	9,982	6,809	5,874	6, 147	0	27 00E 11 EEK EK 704 43 400 14 306 KO KIO FI 460 10 151
		down			574	536	1,413	1,052	672	2,235	1,019	0	200
1985		dn		13,638	10,270	29	16	6,926	4,869	2,813	3,899	0	72 700
	+ dn	down		20,344	480 10,844	603	1,428	7,978	5,541	5,048	4,918	0	702 7
		down		5,000 po,344	480	553	963	828	441	2,222	1,069	0	722 [
1980		dn	l	11,433	8,226	54	14	5,430	3,942	2,797	4,089	2,000	27 005
	+ dn	down		16,433	8,706	209	677	6,258	4,383	5,019	5, 158	2,000	40 641
raffic		down		4,113 (365	478	1,603	643	211	1,388	619	0	
Com- Observed 1976 Traffi		dn		10,599	6,658	8	3	4,544	1,158	1,643	2,468	399	Total and control of
Observe	+ dn	down		14,712	7,023	262	1,633	5,187	2,369	3,031	3,087	399	
Com-	modity up +	Group	,	7	2	4,	ς,	9	 -	∞	6	m	T. 242.1

35,855 Base Year Assignment**

-- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Cannelton L&D (mile 720, 7)

Com-	Com- Observed 1976 Tra	I 9261	raffic		1980		ı	1985			1990	
modit	modity up +			+ đn			+ dn			+ ďn		
Group	down	dn	down	down	dn	down	down ,	dn	down	down	dn	down
-	18,228	14,600		20,530	16,112	4,	25, 573	19,604	5,969		23,463	8,017
7	6,895	6,398		8,553	7,894		10,652	9,854	298	13,	12,087	947
4	589	199		683	285	398	827	483	344		784	284
2	1,503	26	1,477	928	11	917	1,364	12	1,352	1,955	15	1,940
9	4,340	3,699	641	4,950	4,121	829	6,219	5, 168	1,051	7,	6,257	1,301
2	2,289	2,078	211	4,336	3,895	441	5,488	4,816	672	9	5,779	972
∞	3,039	1,642	1,397	4,343	2,371	1,972	5,063	2,815	2,248	5,892	3,347	2,545
6	2,831	2,393	438	3,487	2,927	260	4,376	3, 739	637	5,393	4,680	713
m	193	193	0	0	0	0	0	0	0	0	0	0
Total	Total 39,907	31,228	8,679	47,810	8,679 47,810 37,616 10,194	10, 194	59, 562	1	13,071	46, 491 13, 071 73, 131 56, 412 16, 719	56,412	16,719

Base Year Assignment** = 38,020

*Thousands of tons.

**Commodity groups 5 and.6 use 1975 as base year; others use 1976.

▲ -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River McAlpine L&D (mile 604, 4)

_		_	 									
		down	A.014	3, 203	0	1,940	1,266	972	2,545	505	0	18,445
1990		ďη	22,527	9,650	839	15	5,971	5,779	3,350	4,532	0	52,663
	+ dn	down	30.541	12,853	839	1,955	7,237	6,751	5,895	5,037	0	11,119 57,203 42,820 14,383 71,108 52.663 18,445
		down	5.966	2,608	0	1,352	1,044	672	2,248	493	0	14,383
1985		dn	18,222	7,861	528	12	4,927	4,816	2,817	3,637	٥	42,820
	+ dn	down	24.188	10,469	528	1,364	5,971	5,488	5,065	4,130	0	57,203
		down	4,416	2,079	0	917		441	1,972	463	0	11,119
1980		dn	14,692	6,296	324	11	3,931	3,895	2,373	2,846		34,368
	+ dn	down	19,108	8,375	324	928	4,762	4,336	4,345	3,309	0	348 45,487
raffic		down	3,626	1,596	7	1,477	629	211	1,397	380	0	9,348
d 1976 T		dn	12,953	4,980	227	56	3,491	2,079	1,642	2,269	193	27,860
Com- Observed 1976 Trai	+ dn	down	16,579	6,576	229	1,503	4,150	2,290	3,039	2,649	193	37,208
Com-	modity up +	Group	~	2	4	2	9	7	∞	6	m	Total 37,208

Base Year Assignment** = 37,232

-- Observed Tonnage

▲ -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Markland L&D (mile 531.5)

_		-	-										
		down		3,702	3,682	18	1,891	1,265	972	3,009	464	0	15.003
1990		dn		11,813	8,455	4,105	2	5, 790	5,141	3,313	4,383	0	58,005 43,002 15,003
	+ dn	down		15,515	12,137	4, 123	1,893	7,055	6, 113	6,322	4,847	0	58,005
	_	down		3,130	2,989	14	1,327	1,042	672	2,638	451	0	12.263
1985		dn	,	9,757		2,973	7	4,790	4,279	2,780	3,488	0	34.941 12.263
7	+ dn	down,		12,887	9,861	2,987	1,329	5,832	4,951	5,418	3,939	0	47.204
	_	down		2,557	2,371		904	831	441	2,300	429	0	
1980		dn		8,082	5,490	2, 121	2	3,826	3,457	2,339	2,730	0	28,047 9,845
	+ dn	down		10,639	7,861	2,133	906	4,657	3,898	4,639	3, 159	0	37,892
[raffic		down		2,278	1,778	12	1,371	653	211	1,619	387	0	8, 309
d 1976		dn	!	7,466	4,554	1,398	9	3,426	1,933	1,620	2,200	193	72,796
Com- Observed 1976 Traffic	+ dn	down		9,744	6,332	1,410	1,377	4,079	2,144	3,239	2,587	193	Total 31.105 22.796
Com-	modity	Group		-	7	4	2	9	7	∞	6	m	Total

Base Year Assignment** = 29,379

*Thousands of tons.

▲ -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Meldahl L&D (mile 436.2)

1980	+ dn	do umop			7,771 5,311				2,828 2,387		1,826		21,6
		down		177 0 08:	11 2,460	30 0	1 0		87 441	2,	26 375	0	34,588 21,693 12,895 42,769 26,837 15,932
	+ dn	down	200	12, 50/	2,460 9,848	3,241	7			5,081	2,766	0	42,769
1985		dn	r L	5, 105	6,724	3,241	7	3,709	2,906	2,186	2,367	0	26,837
		down	,	, o04	3, 124	0	0	1,238	672	2,895	399	0	15,932
	+ dn	down		-	12,272	3,590	-	6,898	4,405	5,933	3,454	o	53,156 32,839
1990		dn	2000	7, 358	8,382	3,590	~	4,422	3,433	2,619	3,034	0	32,839
		down	2.0	7,640	3,890	0	0	2,476	972	3,314	450	0	20,317

Base Year Assignment** = 26,663

*Thousands of tons.

• -- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Greenup L&D (mile 341.0)

Ė	odit	Group		~	2	4	2	9	2	œ	6	e	otal
Observ	modity up +	down		13,958	6,135	1,839	9	3,246	1,456	2,970	1,852	193	31.655
Com- Opserved 1976 Trai		dn		3,865	4,303	1,837	~	2,521	1,245	1,193	1,520	193	Total 31.655 16.678 14.
Trattic		down		10.093	1,832	7	40	725	211	1.777	332	0	14.977
_	+ dn	down.		16,228	7,667	2,409	0	3,962	2,637	4,193	2,187	0	39,283 20,509 18,774 50,641 25,548 25,093
1980		dn		4,246	5, 192	2,409	0	2,994	2,196	1,661	1,811	0	20,509
		down		11,982	2,475	2,409 0	0	896	441	2, 532	376	0	18.774
7	+ dn	down				2,784		4,940	3,351	4,829	2,747	0	50,641
1985		dn		5, 345	6,571	2,784	0	3, 702	2,680	1,919	2,347	0	25,548
		down		16,732	3, 142	2,784 0	0			۲,		Ó	25.093
	+ dn	down				3,108			4,150		3,431	Ö	61.289 31.284
1990		dn		7,136	8, 191	3,108	0	4,414	3,178	2,247	3,010	0	31,284
		down		19,826	3,913	0	Q	1,536	972	3,337	421	0	30,005
			vn	v.n	wn 826	жn 826 913	down 19,826 3,913 0	wn 826 913 0	826 913 0 0 0 536	826 913 0 0 0 536 972	Wn 826 913 0 0 0 536 972 337	826 913 0 0 0 536 972 337	826 913 0 0 536 972 337 421

Base Year Assignment** = 30,629

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

-- Projected Tonnage

The second secon

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Gallipolis L&D (mile 279.2)

T								-			
	UM.	10.906	354	1,074	0	1,408	616	3,115	249	0	18,080
1990	dn	26.758	11,016	2,681	0	3,917	3,081	2,296	3,084	0	70,913 52,833 18,080
	down	37.664	11,370	3,755	0	5,320	4,060	5,411	3,333	0	70.913
	down	8.428	286	829	0	1,112	676	2,720	242	0	41.996 14.322
1985	d n	20.518	8,847	2,374	0	3,276	2,591	1,971	2,419	0	41.996
	+ dn	28.946	9,133	3,233	0	4,388	3,266	4,691	2,661	0	86.318
	down		227	684	0	856	443	2,372	231	0	1 361
1980	an	Į.	6,969		0	2,643	2,120			0	33 198 1
	down	22,363	7,196	2,728	0	3,489	2,563	4,083	2,103	0	816 9% 176 11 861 86 665 77 620 6
raffic	down	118		478	m	689	211	1,666	199	0	9.072
1 976 I	q:	8	5,749	1,562	~	2,218	1,204	1,231	1,596	168	27.338
Com- Observed 1976 Tra	dp +	19,227	5,957	2,040	4	2,907	1,415	2,897	1,795	168	36.410 27.338
Com-	modity	1	~	4,	'n	9	~	∞	6	m	Total

Base Year Assignment** = 35,048

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Racine L&D (mile 237, 5)

Com-	Observ	Com- Observed 1976 Tra	Traffic		1980			1985			1990		1
modity	modity up +			+ dn			+ dn			+ dn			
Group	down	dn	down	down	dn	down	down	dn	down	down	dn	down	
_	14.843	8.556	6.287	14,384	8,291	6,093	22,714	11,601 11,113	11,113	7	14,282	15,216	_
7	4.807	079.7	167	5,654	5,484	170	7,177	6,963	214		8,669	261	
4	1 967	350	1 608	2,612	342	2,270	3, 144	311	2,833	3,864	566	3, 598	
. بر	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	900	0	0	0	0	0	0		0	0	
9	2 195	1 356	7 00	4,323	1,612	2,711	5,459	2,018	3,441	6,674	2,442	4,232	
7	1 247	1,000	ה מר ה מר	2,324	1,923	401	3,036	2,384		3,854	2,869	985	
	2.921	1,258	1,663	4,120	1,751	2,369	4,730	2,010	7,	5,463	2,342	3, 121	
6	1,687	1,409	278	1,899	1,593	306	2,388	2,066	322	2,971	2,647	. 324	
e	168	168	0	•	•	0	0	0	0	0	0	0	
Total	29,839	Total 29,839 18,813	11,026		20,996	14,320	35,316 20,996 14,320 48,648 27,353 21,295	27,353	21, 295	61,254 33,517 27,737	33, 517	27,737	T

Base Year Assignment** = 30,147

^{*}Thousands of tons. **Commodity groups 5 and 6 use 1975 as base year; others use 1976.

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Belleville L&D (mile 203.9)

Com- Observed 1976 Traffic 1980		1980				1985			1990	
+ dn	+ dn				+ dn			+ dn		
up down down			dn	down	down	dn	down	down	dn	down
								1		
6,286			9,445	8,002	22, 711	11,601 11,110	1,110	29,495	14,282	15,213
4,640 167 5,654			5,484	170	7,177	6,963	214	8,930	8,669	261
412 172 687			385	305	854	333	521	255	276	626
1 3 0	<u> </u>		0	0	0	0	0	0	0	0
1,356 839 4,323			1,612	2,711	3,459	2,018	3,441	6,674	2,442	4,232
181 2,	-,		1,923	401	3,036	2,384	652	3,854	5,869	985
1,253 1,667 4,118	4		1,742	2,376	4,722		2,730	5,436	2,305	3, 131
1,381 278 1,856			1,550	306	2,310	1,988	322	2,831	2,507	324
168 0 0	0		0	0	0	0	0	0	0	0
Total 28,426 18,833 9,593 36,406	1	1	36,406 22,135 14,271	14, 271		46,269 27,279 18,990	8, 990	58,475	33,350 25,125	25, 125

Base Year Assignment** = 28,735

• -- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Willow Island L&D (mile 161, 7)

Base Year Assignment** = 27,410

^{*}Thousands of tons.

^{**}Commodity groups 5 and 6 use 1975 as base year; others use 1976.

9

MITTIONS OL LONS

80

• -- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Hannibal L&D (mile 126,4)

Com-	modity	Group	-	7	4	ις.	9	7	∞	6	м	Total
Com- Observed 1976 Ir	+ dn	down	14,205	4,213	602	7	1,671	933	2,814	1,686	21	26,147 17,458
ed 1976		dn	8,431	4,061	578	~	1,096	761	1,185		21	17,458
Traffic		down	5.744	152	24	7	575	172	1,629	362	0	8,689
	+ dn	down.	16,596	4,870	824	0	2,042	1,721	3,913	1,856	0	31,822
1980		dn	9,330	4,731	908	0	1,319	1,330	1,609	1,449	0	20,574 11,248
		down	7,266	139	18	0	723	391	2,304	407	0	11,248
	+ dn	down,	21,473	ć, 216	1, 152	0	2,615	2,293	4,378	2,288	0	40,415
1985		dn	11,493	6,047	1,141	0	1,652	1,630	1,756	1,806	0	25, 525 14, 890
		down	9,980	169	11	0	963		2,622	485	0	14,890
	t dn	down		7,774		0	3,250	3,062	4,871	2,744	0	
1990		dn	14, 183	7,579	1,650	0	2,000	1,971	1,897	2,187	0	51,049 31,467 19,582
		down	13,509	195	9	0	1,250	1,091	2,974	257	0	19, 582

Base Year Assignment** = 25,450

• -- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Pike Island L&D (mile 84.2)

Com-	Observe	Com- Observed 1976 Traf	Fraffic		1980		Ā	1985			1990	
modity up +	+ dn			+ dn			+ dn			+ dn		,
Group	down	dn	down	down	dn	down	down	dn	down	down	dn	down
<u>-</u>	11,725	9,704	2,021	12,536	10,256	2,280	14,817	12,010	2,807	17,352	13,983	3,369
7	4.134	3,999	135	4,780	4,657	123	6,104	5,953 151	151	7,634	7,461	173
4	303	66	70,7	797	57	209	229	59	170	184	99	118
2	6	1	7	0	0	0	0	0	0	0	0	Ō
9	1,254	731	523	1,568	895	673	2,030	1,127	903	2,554	1,375	1,179
7	806	736	172	1,653	1,262	391	2,211	1,548	699	2,968	1,877	1,091
∞	2,769	1,179	1,590	3,848	1,600	2,	4,306	1,747	2, 559	4,787	1,886	2,901
6	1,648	1,286	362	1,855	1,449	406	2,287	1,806	481	2,740	2, 184	556
m	21	21	0	0	0	0	0	0	0	0	0	0
Total	22,765	Total 22,765 17,756	5,009	26, 506	20,176	6,330	20,176 6,330 31,984 24,250 7,734	24,250	7,734	38,219 28,832	28,832	9,387

Base Year Assignment** = 22, 164

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River New Cumberland L&D (mile 54,4)

Com-	Observe	Com- Observed 1976 Tra	raffic		1980		1	1985			1990	
modity	modity up +			+ dn			+ dn			+ dn		
Group	down	dn	down	down	dn	down	down	dn	down	down	dn	down
-	10,057	8,253	1,804	10,725	8,905	1,820	12,677	10,619	2,058		12,599	2,298
7	3,832	3,688	144	4,389	4,268	121	5,605	5,456	-	7,014	6,840	174
4	1,648	1,647		1,952	1,951	7	2,078	2,076		2,174	2,172	7
5		, , ,	0	0	0	0	0	0	0	0	0	0
9	1,234	716	518	1,566	884	682	2,026	1,115	911	2,552	1,363	1,189
7	857	685	172	1,559	1,168	391	2,098	1,435	663	2,839	1,748	1,091
∞	2,284	1,126	1,158	3,160	1,526	1,634	3,518	1,661	1,857	3,885	1,783	2, 102
6	1,598	1,272	326	1,768	1,402	366	2, 166	1,738	428	2,583	2,096	487
е —	∞	Φ	0	0	0	0	0	0	0	0	0	0
Total	Total 21,519 17,396	17,396	4,123	,123 25,119 20,104 5,015	20, 104	5,015	1	30,168 24,100 6,068	6,068	35,944	28,601	7,343

Base Year Assignment** = 20,925

-- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River Montgomery L&D (mile 31,7)

П				127	96	7	0	1,166	160	120	451	0		304
	7	900		5,427				1, 1	1,091	2,071	V.			10
1990	1	3		7,526	5,895	2,026	0	1,271	1,492	1,321	1,790	0		1,321
	+ dn	down			5,991	2,028	0	2,437	2,583	3,392	2,241	0		31,625 21,321 10.
	•	down		4,453	83	2	0	894	663	1,830	396	0		
1985		Ch		6,292	4,720	1,949	0	1,040	1,210	1,230	1,481	0		17,922
1	+ dn	down		10,745	4,803	1,951	0	1,934	1,873	3,060	1,877	0		26, 243 17, 922 8, 321
		down ,		3,633	99	-	0	699	391	1,609	339	0		
1980		dn		5,660	3,703	1,843	0	824	980	1,129	1,194	0		15, 333
	+ dn	down		9,293	3,769	1,844	0	1,493	1,371	2, 738	1,533	0		22,041 15,333 6,708
Traffic		down		3,309	62		0	519	173	1,131	300	0		5,505
d 1976 7		αn	1	4.974	3,066	1,512	7	85.9	541	819	970	4		12,545
Com- Observed 1976 Tra	+ dn	down		8,283	3,145	1,513	1	1 179	717	1,950	1,270	4		Total 18.050 12.545
Com-	modity	Group			7	4	5	9	2	80	6	m	1	Total

Base Year Assignment** = 17,929

-- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River-Dashields L&D (mile 13, 3)

Com-	Observ	Com- Observed 1976 Traffic	Traffic		1980		1	1985			1990	
modity	+ dn			+ dn			+ dn			t dn		
Group	down	dn	down	down	dn	down	down	dn	down	down	dn	down
-	12,839	869.4	8,141	13,730	5,002	8, 728	16,290	5,927	10,363	19,229	7,076	12, 153
7	2.865		•	3,424	3,408	16		4,344	23			97
4	1,329		} -	1,610	1,609		1,699	1,697 2	2		1,761	2
رى د			40	0	0	0	0	0	0			0
9	701	405	296	1,000	525	475	1,294	662	632	1,623	908	817
7	686		173	1,321	930	391		1,152	663	2,515	1,424	1,091
<u></u>	1.474	712	762	2,046	975	1,071	(7	1,061	1,218	2,522	1,144	1,378
6	1,105		265	1,319	1,026	293		1,276	342	1,937	1,545	392
m	.	m	0	0	0	0	0	0	0	0	0	0
Total	21,002	Total 21,002 11,329	9,673	24,450 13,475 10,975	13, 475	10,975	29, 362 16, 119 13, 243	16, 119	13, 243	35,038 19,179 15,859	19, 179	15,859

Base Year Assignment** = 20,968

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Ohio River-Emsworth L&D (mile 6.2)

Com-	Com- Observed 1976 Traffic	1976 T	raffic		1980		1	1985			1990	
modity up +	+ dn			+ dn			+ dn			+ dn		
Group	down	dn	down	down	dn	down	down	dn	down	down	dn	down
_	12,833	4,692	8,141	8,141 13,730		8, 728	16,290	5,927	10,363	19,229	7,076	12, 153
7	2.693	2.664	29	3,117		15	3,960	3,939	21	4,926	4,903	23
4	1,130	1,129	` -	1,350	1,349	-	1,396	1,394 2	2	1,418	1,415	3
2	0	0	10	0	0	0	0	0	0	0	0	0
9	699	373	296	866	524	474	1,290	920	630	1,618	804	814
7	989	513	173	1,321	930	391	1,815	1,152	663	2,515	1,424	1,091
∞	1,453	707	146	2,042	826	1,064	2,274	1,064	1,210	2,515	1,147	1,368
6	1,027	802	225	1,218	965	253	1,487	1,195	293	1,780	1,446	334
m	e	m	0	0	0	0	0	0	0	0	0	0
Total	20,494 10,883	10,883	9,611	23, 776	12,850	10,926	9,611 23,776 12,850 10,926 28,513 15,331 13,182	15, 331	13, 182	34,001	34,001 18,215 15,786	15, 786

Base Year Assignment** = 20,450

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

• -- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC MONONGAHELA RIVER

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Monongahela L&D #2 (mile 11.2)

	_												-	
		down	000 31	15,844	12	1,013	0	921	1,049	981	129	0		20,004
1990		dn	6	, 500	2,672	879	0	51	818	282	427	0		12,629
	+ dn	down	22 200	440 600	2,684	1,892	0	972	1,867	1,263	556	0		32,633
		down	13 24	10, (04	12	968	0	711	639	698	111	0		17,002
1985		dn	021 9	2 .	2, 161	462	0	45	613	263	356	0		10,401
	+ dn	down	10 024	17, 734	2, 173	1,692	0	753	1,252	1, 132	467	0		27, 403
		down	11 745	771 177	80	777	0	530	378	292	94	0		22,864 8,565 14,299 27,403 10,401 17,002
1980		dn	5, 107	77 10	1,716	710	0	30	471	243	288	0		8, 565
	+ dn	down	16 852	10001	1,724	1,487	0	260	849	1,010	382	0		22,864
raffic		down		11,084	11	588	0	363	162	541	86	0		12,835
d 1976 T		· dn	007	4,000	1,476	555	0	22	241	50 7	247	0		7,433
Observed 1976 Tra	+ dn	down	15 773	7//5	1,487	1,143	၁	385	403	745	333	0		Total 20,268
Com-	modity	Group		•	7	4	2	9	~	∞	6	m		Total

Base Year Assignment** =

-- Observed Tonnage

A -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Monongahela L&D #3 (mile 23, 8)

		νn		18	52	13		14	899	00	51	•	0
		down		24,418		1,013		2	9	Š			26, 889
1990		dn		2,537	2, 203	576		28	689	157	339	0	6.529
	+ dn	down	1	26,955	2,228	1,589	0	242	1,357	657	390	•	33, 418
1985		down		21, 160	21	968		164	398	443	44	0	23, 126
		an		1,928	1,788	516		22	441	146	281	0	5, 122
	+ dn	down,	0	23, 088	1,809	1,412	0	186	839	589	325	0	28.248 5.122 23.126
		down		17,974	17	777		123	231	391	38	0	3.994 19.551
1980		dn		1,438	1,425	454		17	262	136	227	o ·	3.994
	+ dn	down		<u>,</u>	۲,	1,231	0	140	528	527	592	0	23, 545
raffic		down		16,882	22	288	0	112	162	281	35	0	18.082
1976 Ti		dn		1,160	1,235	347	0	18	198	101	196	0	3.255
Observed 1976 Tra	+ dn	down		18,042	1,257	935	0	130	360	382	231	0	21.337
Com-	modity	Group		~	~	4	ທ	9	~	∞	6	m	Total

Base Year Assignment** = 21,041

-- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Monongahela L&D #4 (mile 41.5)

П												
		down	21, 723	0	1,011		102	7	122	30	0	22, 995
1990		dn	1,874	802			23	404	29	26	0	3,800
	+ dn	down	23, 597	802	1,539	0	125	416	189	127	0	26,795 3,800 22,995
		down	18,953	0	894		- 62	4,	107	92	0	15,961 19,423 2,260 17,163 23,005 2,942 20,063
1985		αn	1,420	299	467		18	528	63	28	0	2,942
	+ dn	down	20,373	299	1,361	0	6	233	170	104	0	23,005
		down	16, 209	0	176		59	2	95	22	0	17, 163
1980	i	dn	1,044	547	406		14	127	29	63	0	2,260
	+ dn	down	17, 253	547	1, 182	0	73	129	154	82	0	19, 423
raffic		down	15.267		586	0	10	` -	67	20	0	15,961
1 1976 T		dn	815	461	306	0	18	20	42	\$	0	1,746
Com- Observed 1976 Tr	+ dn	down	16.082	462	892	0	37	25	109	74	0	702,71
Com-	modity	Group	-	2	4	2	9		∞	6	e	Total

Base Year Assignment** = 17,721

-- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Monongahela Maxwell L&D (mile 61.2)

_												
		down	20,847	0	1,012			0		0	0	21,859
1990		dn	3, 158	240	5			401		99	0	4, 220
	+ dn	down	24,005	290	1,017	0	0	401	0	99	0	26,079
		down	2,340 18,246	0	895			0		0	0	19, 141
1985		dn	2,340	499	3			222		54	0	3, 120
	+ dn	down	20, 586	499	006	0	0	222	0	54	0	22, 261
		down	1,691 15,656	0	777			0		0	0	15,386 18,706 2,273 16,433 22,261 3,120 19,141 26,079 4,220 21,859
1980		dn	1,691	414	ĸ			121		45	o ·	2, 273
	+ dn	down	17,347	414	782	0	0	121	0	45	0	18, 706
[raffic		down	14.799	0	587	0	0	0	0	0	0	15,386
d 1976 ?		dn	1,304	343	4	0	0	47	0	35	0	1,733
Observed 1976 Tr	+ ďn	down	16, 103	343	165	0	0	47	0	35	0	Total 17,119 1,733
Com-	modity	Group	~	2	4	ທ	9	~		6	60	Total

Base Year Assignment** = 17, 121

• -- Observed Tonnage

▲ -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Monongahela L&D #7 (mile 85.0)

		-+										, , ,
		down	8, 894	0	1,013			0		0	0	9,907
1990		d'n	164	290	, R			401		64	0	, 224
	+ dn	down	9,058	590	1,018	0	0	401	0	49	0	11, 131 1, 224
		down	7,535	0	968			0		0	0	939 8,431
1985		dn	160	499	5			222		53	0	939
	+ dn	down,	7.695	499	901	0	0	222	0	53	0	9,370
		down	6.334	C	5 777			0		0	0	727 7,111 9,370
1980		dn	146	414	5			121		41	0	727
	+ dn	down.	6. 480	414	782	0	0	121	0	41	0	7,838
Traffic		down	2.907		587	0	0	0	0	0	0	6,494
1976		dn	142	34.3	4	0	0	47	0	34	0	570
Observed 1976 Traffic	+ dn	down	670.9	£%£	591	0	0	47	0	34	0	7,064
Com-	modity	Group	-	٠,	1 4	2	9	~	∞	6	6)	Total

Base Year Assignment** = 7,065

-- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Monongahela L&D #8 (mile 90.8)

		-										
	•	down	7, 236	0	1,011			0		0	0	8,247
1990		dn	164	290	Ŋ			393		64	0	1, 216
	+ dn	down	7,400	290	1,016	0	0	393	0	64	0	9,463
	•	down		0	894			0		0	0	6,906 9,463 1,216
1985		dì	160	499	'n			216		53	0	933
	+ dn	down	6, 172	499	899	0	0	216	0	53	0	7, 839
		down	4,967	0				0		0	0	5, 743
1980		dn	146	414	Ŋ			115		41	0	721
	+ ďn	down	5, 113	414	781	0	0	115	0	41	Ö	6,464
[raffic		down	4.550	0	586	0	0	0	0	0	0	5,136
1976 7		dn	142	343	4	0	0	77	0	34	0	567
Com- Observed 1976 Traffic		down	4.692	343	290	0	0	44	0	34	0	5,703
Com-	modity	Group	-	2	4	'n	9	~	∞	6	m	Total

Base Year Assignment** = 5,704

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

• -- Observed Tonnage

EL LED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Monongahela Morgantown L&D (mile 102.0)

		down	2,035		1,008			0		0	0	3,043
1990		dn	9		ις			393		64	0	468
	+ ďn	down	2,041	0	1,013	0	0	393	0	64	0	3,511
		down	1, 380		891			0		0	0	281 2,271
1985		d'n	7		Ŋ			216		23	0	281
	+ dn	down	1,387	0	968	0	0	216	0	53	0	2,552
	,	down	948		773			0		0	0	1,721 2,552
1980		dn	9		4			115		41	0	166
	+ dn	down	954	0	777	0	0	115	0	41	٥	1,308 1,887
Traific	•	down	724	9	584	0	0	0	0	0	0	1,308
1976		dn	^		m	0	0	77	0	34	0	88
Com- Observed 1976 Tr		down	731	0	587	0	0	77	0	34	0	1,396
Com-	modity	Group	-	2	4	S	9	2	∞	6	m	Total

1,396 Base Year Assignment**

*Thousands of tons. **Commodity groups 5 and 6 use 1975 as base year; others use 1976.

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Monongahela Hildebrand L&D (mile 108.0)

-		1										
		down	1,357					0		0	0	1,357
1990		dn	9					393		64	0	463
	+ dn	down	1,363	0	0	0	0	393	0	64	0	1,820
		down	1,005					0		0	0	276 1,005
1985		dn	- 2					216	-	53	0	276
1	+ dn	down,	1,012	. 0	0	0	0	216	0	53	0	1, 281
		down	744					0		0	0	744
1980		dn	9					115		41	O .	162
	+ dn	down	750	0	0	0	0	115	0	41	0	906
raffic		down	607	0	0	0	0	0	0	0	0	607
1 1976 I		dn	7	0	0	0	0	77	0	34	0	85
Observed 1976 Traf	+ dn	down	614	•	0	0	0	44	0	34	0	269
Com-	modity	Group	-	2	4	ıs	9	7	∞	6	m	Total

Base Year Assignment** = 692

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

A CONTRACT OF THE SECOND AND ADDRESS OF THE SECOND ASSOCIATION ASSOCIATION AND ADDRESS OF THE SECOND ASSOCIATION ASSOCIATION

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Monongahela Cpekista L&D (mile 115.4)

						_		_			
	down	403					0		0	0	403
1990	ďn	9					393		64	0	463
	t dn	409	0	0	0	0	393	0	64	0	998
	down	236					0		0	0	236
1985	dn	7					216		23	0	276
1	up +	243	0	0	0	o.	216	0	53	0	512
	down	136					0		0	0	136
1980	dn	9					115		41	0	162 136
	umop .	142	0	0	0	0	115	0	41	0	298
raffic	down	83	0	0	0	0	0	0	0	0	83
1976 T	dn	,	0	0	0	0	77	0	34	0	85
Observed 1976 Traf	umop + dn	06	0	0	0	0	44	0	34	0	168
Com-	modity Group	-	7	4	ഹ	9	~	∞	6	М	Total

Base Year Assignment** = 168

*Thousands of tons. **Commodity groups 5 and 6 use 1975 as base year; others use 1976.

• -- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC ALLEGHENY RIVER

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Allegheny L&D #2 (mile 6.7)

	•	down		7 57					5 11		0	4 2.778
1990		dh H			58				275		0	3.274
	+ dn	down	2,767	433	1,045	0	221	362	286	938	0	6 062
		down	1,401	48	190	0	0	4	10	34	0	200 0 010 0 700 1
1985		dn	961	303	64	0	180	311	251	749	0	010
1	+ dn	down	2,362	351	854	0	180	315	261	783	0	701 3
	!	down	1,158	40	617	0	0	2	00	53	0	720 1 720 0 000 1
1980		dn	830	238	72	0	141	262	230	603	0	720 0
	+ dn	down	1,988	278	689	0	141	264	238	632	0	7.000
raffic		down	1 065	000	503		ο α) V	, ~	17	0	
d 1976 7		dn	705	55	41	c	76	164	168	349	m	
Com- Observed 1976 Tra	+ dn	down	1 960	4,000 5,000 5,000	544	•	7	1,0	173	366	e	
Com.	modity	Group	-	. 2	4	70	9		- ∞	6	٣	

Base Year Assignment** = 3,543

^{*}Thousands of tons. **Commodity groups 5 and 6 use 1975 as base year; others use 1976.

-- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Allegheny L&D #3 (mile 14.5)

	,	20 W.D	1,091	57	486	0	0	7	6	39	0	3,270 2,190
1990		dn	1,086	377	58	0	221	355	275	868	O	3,270
	4 dn	down	2,177	433	1,045	0	221	362	284	938	0	5,460
	1	down	880	48	190	0	0	4	∞	34	-0	1,764
1985		dn	926	303	64	0	180	311	251	749	0	4,578 2,814 1,764
19	+ dn	down	1,836	351	854	0	180	315	259	783	0	4,578
		down	902	40	617	0	0	2	7	29	0	1,401
1980	ı	dh	828	238	72	0	141	262	230	603	0	3,775 2,374 1,401
	t dn	down	1,534	278	689	0	141	264	237	632	0	3,775
Fraffic	•	down	535	0	503	G	00	, ,) v	17	0	1,173
1 1976 1		up .	789	55	41	0	76	771	1 6 7	349	8	1,644
Observed 1976 Tr.	+ dn	down	1.424	55	544	0	78	140	173	366	ю	2,817
Com-	modity up +	Group		7	4	S	9	~	∞	6	m	Total

Base Year Assignment** = 3,108

*Thousands of tons. **Commodity groups 5 and 6 use 1975 as base year; others use 1976.

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Allegheny L&D #4 (mile 24.2)

\neg		T	532	0	11	0	0	0	ις.	24	0	72
	1	down	ĸ		2,811					-		408 3 377
1990		dn	0	20	0	0	6	0	173	566	0	408
1	+ dn	down	532	20	2,811	0	6	0	1.78	290	0	3 870
		down	372	0	2,403	0	0	0	2	21	0	426 2 801
35		dn	0	41	0	0	2	0	156	222	0	404
1985	+ dn	down	372	41	2,403	0	7	0	161	243	0	3 227
		down	255	0	2,014	0	0	0	4	18	0	361 2 201
1980		dn	0	32	0	0	9	0	145	178	0	178
1	+ dn	down	255	32	2,014	0	9	0	149	196	0	2 652
raffic	•	down	188	-	• •	1.477	0	4	· m	12	0	, ,
1976		dn	c	27	'n	0	0	0	102	148	0	000
Com- Observed 1976 Traf		down	188	27	'n	1.477	0	•	105	160	0	770 1
Com-		Croup	~	2	4	2	9	^	∞	6	٣	F et et

Base Year Assignment** = 1,968

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

-- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Allegheny L&D #5 (mile 30.4)

		_	_		_	_	_						
		down		4	0	2,811	0	0	0	0	0	0	2,815
1990		dn		0	0	0	0	0	0	0	0	0	0
	+ dn	down		4	0	2,811	0	0	0	Ģ	0	•	2,815
		down		4	0	2,403	0	0	0	0	0	0	0 2,407
1985		dn		0	0	0	0	0	0	0	0	0	0
10	+ dn	down		4	0	2,403	0	0	0	0	0	•	2,407
		down		8	0	2,014	0	0	0	0	0	0	0 2,017 2,407
1980		dn		0	0	0	0	0	0	0	0	0	0
	+ dn	down		æ	0	2,014	0	0	0	0	0	0	2,017
raffic		down		m	0	1,477	0	0	0	0	0	0	1,480
1976 T		dn		0	0	0	0	0	0	0	0	0	0
Com- Observed 1976 Traffic	+ dn	down		e	0	1,477	0	0	0	0	0	0	1,480
Com-	modity up +	Group		-	2	4	'n	9	7	∞	6	e	Total

Base Year Assignment** =

*Thousands of tons. **Commodity groups 5 and 6 use 1975 as base year; others use 1976.

CONSAD RESEARCH CORP PITTSBURGH PA F/6 5/3
PROJECTING THE DEMAND FOR OHIO RIVER BASIN WATERWAY TRAFFIC USIT—ETC(U)
JAN 79 DACW69-78-C-0018 AD-A087 194 UNCLASSIFIED Ġ

• -- Observed Tonnage

والمعارضة والمتعارضة والمتعارضة والمتعارضة والمتعارضة والمتعارض وا

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Allegheny L&D #6 (mile 36.3)

		down	•	4	0	0	0	0	0	0	0	0	4
1990		dn	(0	0	0	0	0	0	0	0	0	0
	+ dn	down	•	4	0	0	0	0	0	0	0	0	4
		down	•	4,	0	0	0	0	0	0	0	0	4
1985		dn	ć	>	0	0	0	0	0	0	0	0	0
1	+ dn	down	•	4	0	0	0	0	0	0	0	0	4
		down	·	າ	0	0	0	0	0	0	0	0	3
1980		dn	•	>	0	0	0	0	0	0	0		0
	+ ďn	down	c	n	0	0	0	0	0	0	0	0	3
affic		down		m	c	0	0	0	0	0	0	0	3
1976 T		dn	•	9	0	0	0	0	0	0	0	0	0
Com- Observed 1976 Traffic	+ dn	down	•	m	•	0	0	0	0	0	0	•	3
Com-	modity up +	Group	_	4	2	4	2	9	^	∞	6	m	Total

Base Year Assignment** = 3

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

184

A -- Projected Tonnage

• -- Observed Tonnage

Allegheny L&D #7 8 9

0 Tons, All Commodities, Both Directions

PROJECTED LOCK AND DAM TRAFFIC KANAWHA RIVER

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Kanawha R. Winfield L&D (mile 31, 1)

	g,	721 88 3 3 12 62 62 36	3.456
	down	5,	
1990	an	2,702 2,257 4,203 4,803 418 22 397	14,802
	down	5,423 2,345 4,206 5,337 430 84 433	18, 258
	down	3,053 70 3 437 437 9 56 56	
1985	dn	1,425 1,813 3,553 3,995 347 16 339	3.660 15.147 11.488 3.659
	up + down	4,478 1,883 3,556 4,432 72 72	15, 147
	down	3, 177 55 2 3, 177 3, 42 8 50 50	3 660
1980	dn	790 1,429 2,950 3,206 284 10 280	9 040
	t dn +	3,967 1,484 2,952 0 3,548 292 60 306	12 609
Fraffic	down	3,478 42 2 2 314 4 4 35 0 0	603
d 1976 7	dn	503 1,066 2,124 0 1,306 151 6 235 0	100
Com- Observed 1976 Tra	+ dn	3,981 1,108 2,126 1,620 1,620 1,55 41 261 0	0 303 E 303
Com-	modity Group	12450186 8	T.0.401

Base Year Assignment** = 10,263

*Thousands of tons. **Commodity groups 5 and 6 use 1975 as base year; others use 1976.

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Kanawha River Marmet L&D (mile 67.8)

Com-	Observ	Com- Observed 1976 Tra	Traffic		1980			1985			1990	
modity	+ dn			+ dn	-		+ dn			+ dn		
Group	down	dn	down	down	dn	down	down	dn	down	down	dn	down
					ļ ,							
-	5,115	228	4.887	5,575	276	5,299	9	374	6,337	7,953	208	7,445
7	200	492	80	299	657	10	846	833	1	1,054	1,037	17
4	120	120	ı	175	175	0	218	218	0	296	296	0
Z,	0	0	0	0			0			0		
9	443	325	118	391	330	61	490	414	92	288	496	36
2	68	8	4	164	156	8	203	194	6	253	241	12
∞	12	*	00	16	ß	11	22	6	13	27.	13	14
6	77	28	19	36	72	20	112	89	23	132	106	97
e	•	0	0	•	0	0	0	0	0	0	0	0
Total	Total 6,356 1,312	1,312	5,044	7,080	1,671	5,409	8,602	2, 131	2, 131 6, 471 10, 303	10, 303	2,697	7,606

Base Year Assignment** = 6,195

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

• -- Observed Tonnage

The second secon

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Kanawha River London L&D (mile 82.8)

			_								_		т—
		down		1,451	0	0			12	14	4	0	652 1,481
1990		dn		14	326	72			143	13	84	0	652
	+ dn	down				72	0	0	155	27	88	•	2, 133
		down		1,338	0	0			6	13	4	0	1, 364 2, 133
1985		dn		13	261	64			107	6	70	0	524
,	+ dn	down		1,351	261	64	0	0	116	22	74	0	1,888
		down ,		1,206	0	0			∞	11	3	0	417 1,228 1,888
1980		dn	-	12	206	99			82	ĸ	26	0	417
	+ dn	down		1,218	206	99	0	0	90	16	29	0	1,645
Traffic		down		1,203	•	• •	0	0	4	60	m	0	1 218
9261 P		dn		#	169	8	0	-	26	4	44	0	786
Com- Observed 1976 Tr		down		1,214	169	6	æ	-	9	12	47	0	1 602
Com-	modity	Group		_	2	4	2	9	7	00	6	m	Total

Base Year Assignment** = 1,516

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

PROJECTED LOCK AND DAM TRAFFIC KENTUCKY RIVER

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Kentucky R. L&D #1 - #4

П			
	down	0	0
1990	dn	734	734
	down	73 4 6 0 0 0 0	734
	down	0	0
1985	dn	732	732
	up +	23	732
	down	0	0
1980	dn	684	684
	t dn	684 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	684
Fraffic	down		0
d 1976 1	dn	539	539
Com- Observed 1976 Tra	umop	0000000	539
Com-	modity up + Group down	1 2450 6 8 8 8	Total

Base Year Assignment** = 539

Kentucky R. L&D's #5-#14; C Tons. All Commodities, Both Directions.

^{*}Thousands of tons.

^{**}Commodity groups 5 and.6 use 1975 as base year; others use 1976.

194

Kentucky L&D's #5-#14

O Tons, All Commodities, Both Directions

PROJECTED LOCK AND DAM TRAFFIC GREEN RIVER

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Green R. L&D #1 (mile 9.1)

Com- Observed 1976 Traffic	1976 7	Traffic		1980		10	1985			1990		
+ dn			+ dn			+ dn			+ dn		•	_
down	dn	down	down	dn	down	down	dn	down	down	d'n	down	_
13,296	-	13,295	13,295 14,011	2	14,009	14,009 16,284	2	16,282	18,515	7	18,513	
•			0			0			0			_
0			0			0			0			_
175	0	175	101	0	101	130	0	130	163	0	163	
m	m	i	0			0		_	0			
-	7	0	7	2	0	2	7	0	m	3	0	
•)		0			0			0			
•			7	2	0	7	7	0	7	7	0	
0			0			c			c			
			•			•			•			
			711 71	7	71 011 71 7	017 71	,	289 81 617 71 7	287 81	7	18 676	
13,4/5	^	13,470	13,470 14,110	0	14,110	10, 410	٥	10, 116	200 601	-	2121	

Base Year Assignment** = 13,391

^{*}Thousands of tons. **Commodity groups 5 and 6 use 1975 as base year; others use 1976.

-- Observed Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Green R. L&D #2 (mile 63.1)

		-			_							
	1211 C	13.00	17,987			163						18, 150
1990	•	3	0			0						
	+ dn	dow.ii	17,987	0	0	163	0	0	0	0	•	15,840 18,150
		COWII	0 15,710 17,987			130						15,840
1985	•	da	0			0						
ř	+ dn	down	15,710	0	0	130	0	0	0	0	0	15,840
	3	HOWIT	13,409 15,710			101						13,510 15,840
1980		a l	0			0						
	4 dn	HOWII	13,409	0	0	101	0	0	0	0	0	13,510
Traffic		HOWII	12,589			174						12,763
1976 1	•	B	0									0
Com- Observed 1976 Traffic	+ dn	_ــــ	12,589	0	0	174	0	0	0	0	0	Total 12,763
Com-	modity	dnois	_	2	4	2	9	7	∞	6	m	Total

Base Year Assignment** = 12,680

*Thousands of tons. **Commodity groups 5 and 6 use 1975 as base year; others use 1976.

Green #2

• -- Observed Tonnage

▲ -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Green R. L&D #3 (mile 108.5)

	down	8	06
1990	dn	0	0
	up + down	0,000000	06
	down	92	76
1985	dn	0	0
1	+ dn	92 0 0 0 0 0	76
	down ,	49	64
1980	dn		0
	+ dn	4,000000 0	64
raffic	down	342	342
1976 T	dn	•	0
Com- Observed 1976 Traffic	+ dn	342	342
Com-	modity up +	-2450CB0W	Total

Base Year Assignment** = 58

*Thousands of tons. **Commodity groups 5 and.6 use 1975 as base year; others use 1976.

PROJECTED LOCK AND DAM TRAFFIC CUMBERLAND RIVER

A STATE OF THE STA

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Cumberland R. Barkley L&D (mile 30.6)

		-		_	_								
	•	down	•	43	962	0	0	217	20	164	45	0	785
1990		dn	•	14,426	661	869	148	212	391	377	268	0	17,481
	+ dn	down		14,469	957	869	148	429	411	541	613	0	18,266 17,481
	,	down	-	92	141	0	0	159	10	107	32	0	475
1985		dn	,	11,366	510	314	87	145	240	281	412	0	13, 355
	+ dn	down		11,392	651	314	87	304	250	388	444	0	13,830 13,355
		down		17	63	0	0	119	9	74	23	0	302
1980		dn		8,873	3 90	136	55	101	137	208	297	Φ,	10, 197
٠	+ dn	down.		8,890	453	136	55	220	143	282	320	0	19,499 10,197
[raffic		down		c	•	> <	> <	> <	>	> c	0	0	6
1 1976 7		dn		4.569	163	71	:	9 5	3 4	* (ാര	0	4 825
Com. Observed 1976 Tra	+ dn	down		9.569	163	7 7	.	5	7	* <	.	•	4 825
Com-	modity	Group		_	2	1 4	ינר	, 4		- 00	0 6	е	Total

Base Year Assignment** = 8,769

▲ -- Projected Tonnage

The region of the second section of

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Cumberland R. Cheatham L&D (mile 148.7)

up dov 1,618 1,563	up + vn , down 0 2,017 0 1,794	o dn				
1,618	2,017 1,794		down	dowp	an	down
1,618	2,017 1,794				1	
1,618 1,563	2,017			0		
1,563	1,794	2,017	0	0 2,448	2,448	0
72	•	1,794	0	2, 137	2, 137	0
175	_			0		
	272	231	41	346	295	51
	99	99	0	91	91	0
380	582	4.98	84	755	643	112
618	821	811	10	1,050	1,037	13
0 0 0	•	0	0	0	•	0
171 4,505 4,402 103	103 5,552	5,417	135	6,827	6,651	176
380 618 0 4,402	5,552	ا م	811		0 1,050 0 0 0 135 6,827	

Base Year Assignment** = 3,505

-- Observed Tonnage

A -- Projected Tonnage

The second secon

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Cumberland R. Old Hickory L&D (mile 216.2)

		_	_				_	_					
		down			0			51			0		51
1990		dn			186			194			17		397
	+ dn	down		0	186	0	0	245	0	0	17	0	448
		down			0			41			0		41
1985		dn			154			150			13		317
	+ dn	down		0	154	0	0	161	0	0	13	0	358
		down			0			32			0	_	32
1980		dn			121			111			11		243
	+ dn	down		0	121	0	0	143	0	0	11	0	275
[raffic		down		0	0	0	c	77	, c		0	0	77
1976 7		dn		0	96	0	•	124	•	0	9	0	224
Com- Observed 1976 Tr	+ dn	down		0	96	0	6	148	0	0	9	0	248
Com-	modity	Group			2	4	2	9	7	∞	6	m	Total

Base Year Assignment** = 199

A -- Projected Tonnage

Cordell Hull L&D

0 Tons, All Commodities, Both Directions

PROJECTED LOCK AND DAM TRAFFIC TENNESSEE RIVER

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Kentucky L&D (Tenn. R.) (mile 22.4)

Т		1					_					
	,	down	3,970	119	184	36	304	372	209	.1,662	0	6,856
1990		dn	904	4,548	2,437	396	3,960	1,012	1,040	2,484	0	,697 15,344 11,054 4,290 19,426 13,992 5,434 24,203 17,347 6.856
	+ dn	down	4,874	4,667	2,621	866	4,264	1,384	1,249	4, 146	•	24,203
		down	3,264	06	188	35	249	195	160	1,253	0	5, 434
1985		dn	693	3,650	2, 138	901	2,894	828	838	2,020	0	13, 992
	t dn	down	3,957	3,740	2,326	936	3, 143	1,053	866	3,273	0	19,426
		down	2,670	63	190	31	194	66	123	920	0	4,290
1980		dn	528	2,862	1,832	814	2,051	720	199	1,580	0	11,054
	+ dn	down	3,198	2, 925	2,022	845	2,245	819	190	2,500	•	15,344
raffic		down	2.460	67	166	77	240	746	121	2,523	e	5,697
d 1976 T		dn	3.597	2,278	1,309	1,277	1,718	744	249	1,429	0	12,604
Com- Observed 1976 Traffic	+ dn	down	6.057	2,345	1.475	1,368	1.958	869	670	3,952	М	Total 18,301
Com-	modity up +	Group	7	2	4	- 20	9	_		6	6	Total

Base Year Assignment** = 13,924

• -- Observed Tonnage

A -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Pickwick L&D (Tenn. R.) (mile 206.7)

Com- Observed modity up +	Com- Observed 1976 Trainedity up +	raffic	+ dn	1980		+ dn	1985		+ dn	1990	
down	dn	down	down.	dn	down	down	dn	down	down	dn	down
140	1,141	666	2,429	1, 123	1,306	3,220	1,381	1,839	4,314	1,789	2,525
000	933	67	1,430	1,304	126	1,963	1,733	230	2,674	2,258	416
78	78	0	87	87	0	89	89	0	89	89	0
,335	1,277	28	8 97	698	28	1,018	886	3.0	1,140	1,111	59
1,501	1,271	230	1,883	1,592	291	2,687	2,299	388	3,708	3,213	4 95
374	335	39	733	630	103	166	788	203	1,369	626	3 90
327	244	83	516	381	135	959	473	183	843	584	259
,338	840	498	1,923	1,133	2 40	2,543	1,453	1,090	3,270	1,802	1,468
m	0	m	0	o ,	0	0	0	0	0	0	0
8,096	6,119	1,977	9,898	7,119	7,119 2,779 13,167 9,204	13, 167	9,204	3,963	17,407 11,825	11,825	5,582

Base Year Assignment** = 7,784

*Thousands of tons.

^{**}Commodity groups 5 and 6 use 1975 as base year; others use 1976.

-- Observed Tonnage

-- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Wilson L&D (Tenn. R.) (mile 259.4)

-			_		_	_			_	_			
		down		2,424	416	21	59	359	583	523	1,462	0	5,229
1990		dn		1,741	1,748	0	1,111	3, 179	467	510	1,664	0	10, 920
	+ ďn	down		4,165	2, 164	21	1,140	3,538	1,256	739	3, 126	0	8,399 3,749 16,149 10,920
		down		1,799	230	17	59	280	151	156	1,087	0	3, 749
1985		dn		1,282	1,322	0	886	2,273	116	411	1,347	•	8,399
1	+ dn	down		3,081	1,552	17	1,017	2,553	426	295	2,434	0	2,640 12,148
		down ,		1,292	125	15	97	208	92	111	787	-0	2,640
1980		dn		938	983	0	698	1,573	619	332	1,055	0	6,369
	+ dn	down		2,230	1,108	15	895	1,781	969	443	1,842	0	600,6
raffic		down		995	63	11	47	150	29	19	497	æ	1,866
d 1976 J		dn		764	169	0	1.280	1,261	329	211	780	0	5,316
Com- Observed 1976 Ir	+ dn	down		1,759	758	11	1,327	1,411	358	278	1,277	6	7,182
Com-	modity up +	Group		,-	7	4	2	9	7	80	6	m	Total

Base Year Assignment** = 6,899

A -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Wheeler L&D (Tenn. R.) (mile 274.9)

Com-	Observe	Com- Observed 1976 Tra	Traffic		1980		1	1985			1990	
modity	+ dn			+ dn			+ ďn			+ dn		
Group	down	nD .	down	down	αn	down	down	dn	down	down	d'n	down
	-											
	1.719	745	7/6	2,190	917	1,273	3,039	1,257	1,782	4,119	1,711	2,408
7	752	685	29	1,099	974	125	1,542	1,312	230	2, 151	1,736	415
4	11	0	: =	15	0	15	17	0	17	21	0	21
2	1.327	1.280	7.9	895	698	97	1,017	886	53	1,140	1, 112	28
9	1,339	1,261	2	1,709	1,573	136	2,455	2,273	182	3,410	3, 169	231
7	215	186	2 8	442	366	92	644	493	151	950	199	289
00	272	508	8 3	434	329	105	557	408	149	727	206	221
6	1,276	780	969	1,841	1,056	785	2,432	1,348	1,084	3,126	1,666	.1,460
m	е	0	m	0	•	0	•	0	0	•	0	0
Total	Total 6,914 5,146	5,146	1,768	8,625	6,084	2,541	6,084 2,541 11,703	8,079	3,624	15,644	8,079 3,624 15,644 10,571	5,073

Base Year Assignment** = 6,655

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

▲ -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Guntersville L&D (Tenn. R.) (mile 349.0)

Com-	Com- Observed 1976 Tra	1976 1	raffic		1980		-	1985			1990	
modity	+ ďn		i	+ dn			+ dn			+ dn		
Group	down	dn	down	down.	dn	down	down,	đ	down	down	dn	down
								. 				
	1.068	252	816	1,476	385	1,091	2, 173	620	1,553	3,091	696	2, 128
7	530	518	12	277	750	22	1,068	1,027	41	1,461	1,387	74
4	20	•	1 5	113	10	103	158	6	149	204	2	197
ιų	1,043	1.020	23	752	740	12	998	853	13	993	646	14
9	335	293	77	466	404	5.2	644	564	80	862	753	109
7	186	185	ļ - -	364	362	2	493	489	4	699	657	9
∞	207	167	07	339	267	72	444	334	110	290	413	177
6	903	663	240	1,188	836	352	1,547	1,068	419	1,959	1,323	989
m	٣	0	m	0	0	0	0	0	0	0	0	0
Total	4,345	3,107 1	1,238	5,470	3,759	3,759 1,711	7,393	4,964 2,429	2,429	9,823	6,482	3,341

Base Year Assignment** = 4,361

▲ -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Nickajack L&D (Tenn. R.) (mile 424.7)

		_	 _	_						 -		
		down	2, 127	0	11	2	84	9	92	340	0	2,646
1990		dn	953	1,236	282	659	122	655	244	1,338	0	5,794
	+ dn	down	3,080		. 865	661	506	661	320	1,678	0	8,440
		down	1,554	0	12	2	09	3	51	268	0	1,950
1985		dn	611	913	536	543	86	488	192	1,062	0	4,443
	+ ďn	down,	2, 165		548	545	158	491	243	1,330	0	6,393
		down	1,091	0	16	2	43	2	37	202	0	1,398
1980		dn	378	693	481	451	22	360	148	822	0	3,380
	+ ďn	down	1,469	693	497	453	120	362	185	1,029	0	4,778
Fraffic		down	816	0	16	•	36	-	21	170	0	1,066
1976	•	dn	246	458	376	665	85	183	93	684	0	2,790
Com- Cbscrved 1976 Tr	+ dn	down	1.062	458	392	671	121	184	114	854	0	3,856
Com-	modity	Group	_	2	4	ις.	9	7	∞	6	m	Total

Base Year Assignment** = 3,757

-- Projected Tonnage

A Commence of the Commence of

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Chickamagua L&D (Tenn.R.) (mile 471.0)

-		-											
	•	down		0	0	0	1	63	9	3.7	43	0	150
1990		dn		1,184	357	5	134	24	655	2	577	0	2,943
	+ dn	down		1, 184	357	2	135	87	661	44	620	0	3,093
		down	··· •	0	0	0	-	45	3	31	67	0	109
1985		dn		705	272	ហ	89	22	488	9	451	0	2,017
	+ dn	down		705	272	5	69	29	491	37	480	0	2, 126
		down		0	0	0	1	32	2	25	22	0	82
1980		dn		416	706	4	35	22	360	IJ	345	0	1,393
-	+ dn	down		416	206	4	36	54	362	30	367	0	1,475
raffic		down		0	0	C	• •	78	-	16	81	0	63
d 1976 I		dn		263	148	•	13	20	183	7	312	0	948
Observed 1976 Tra	+ dn	dcwn		263	148	5	. 51	87	184	70	330	0	1,011
Com-	modity up +	Group			2	4	'n	9	7	∞	6	m	Total

Base Year Assignment** = 1,005

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

-- Observed Tonnage

A -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Watts Bar L&D Tennessee River (mile 529.9)

Com-	Com- Observed 1976 Trai	9261 P	Traffic		1980		-	1985			1990	
modity	+ dn			+ dn			+ dn			+ dn		
Group	down	dn	down	down	dn	down	down	dn	down	down	dn	down
_	263	263	c	0			0			0		
2	3 %	36	0	38	38	0	40	40	0	41	41	0
4	: s	5 5	0 0	11	11	0	80	00	0	∞	80	0
ιΛ	2	3 2	• 0	36	35	7	69	89	-	135	134	~·
9	14	14	0	15	15	0	12	12	0	6	6	0
7	103	102	. 7	211	509	2	308	304	4	449	443	9
00	20	4	16	30	5	25	37	9	31	44	7	37
6	187	111	9/	509	123	98	256	149	107	599	171	128
m	0	0	0	0	0	0	0	0	0	0	0	0
Total	949	551	93	550	436	114	730	587	143	985	813	172

Base Year Assignment** = 385

*Thousands of tons.

**Commodity groups 5 and 6 use 1975 as base year; others use 1976.

A -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION*

Fort London L&D Tennessee River (mile 602. 3)

\top		7		_									
	•	down			0	0	0	0	0	35	78	0	113
1990		a			41	∞	134	6	19	2	171	0	384
	+ dn	down		0	41	∞	134	6	19	37	249	0	497
		down			0	0	0	0	0	59	99	0	20
1985		dh			40	∞	69	12	15	7	149	0	205
	+ dn	down		0	40	œ	69	12	15	31	215	0	300
		down	·	-	0	0	0	0	0	23	52	0	3,6
1980		dn			38	-	35	15	12	. ~	124	0	737
	+ dn	down		o	38	=	3.	22	2	25	921	0	213
raffic		down		•	> c	, (> 6	> 6	> 6	- ·	J w	0	
1976 T		dn		•) }	3 5	3 :	3 2	4	۰ -	109	0	
Com- Observed 1976 Tra	+ dn	down		c	ž	3 5	? :	3 2	•	י פ	211 211	•	
Com-	modity	Group			. ^	٠ 4	٠ ٧	, «	, ,	- α	. 6	m	

Base Year Assignment** = 255

*Thousands of tons.

A -- Projected Tonnage

PROJECTED LOCK AND DAM TRAFFIC CLINCH RIVER

PROJECTED LOCK AND DAM TRAFFIC, BY COMMODITY GROUP AND DIRECTION* Clinch River

Melton Hill L&D (mile 23.4)	
	(mile 23,

+ um	0 0	1985 up down 0 5	1985 up down down 0 0 0 0 0 0 0 0 0 0 0 0 0	1985 up down 0 5
	1985 up + down 0 0 0 0 0 0 0 0 0 0 0 0 0	1985 up + down 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1985 up + down down 0 0 0 0 0 0 0 0 0 0 0 0 0	1985 up + down down 0 0 0 0 0 0 0 0 0 0 0 0 0
		nwob d	up + dn + down down 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	up + dn + down down 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Base Year Assignment** = 3

4.0 CONCLUSIONS

The methodologies employed by CONSAD in projecting future demand for waterway commodity flows have all utilized historic traffic patterns to predict the future trends. One should realize that changes in either the physical characteristics of the system (e.g., new and/or improved navigation projects) or the competitive relationship between water, rail and pipeline shipping rates, could cause significant changes in the tonnages of commodities moving on the waters of the Ohio River Basin.

In addition, the projected totals for each commodity group depended on the OBERS Series E projections for population, personal income, and earnings of certain key industries. If these projections turn out to be overly optimistic then the commodity group demand forecasts derived from them probably will not be reached.

Overall, the CONSAD analysis projects demand for future system traffic at a little over 328 million tons in 1990. This can be compared with just under 170 million tons of traffic moved in 1975. Table 69 presents total tonnage figures for five-year periods between 1945 and 1975, and the projected values for 1980, 1985, and 1990. Note that the average 5 year percent increase between 1945 and 1975 was 23 percent, quite comparable with the predicted 5-year percent increases between 1975 and 1990.

One might argue that the small increase in total tonnage between 1970 and 1975 represents a slowdown in the growth of waterborne commerce. However, the approximate 5 million ton increase between 1970 and 1975 includes a drop of over 6 million tons of crude petroleum shipments due to the opening of new pipelines. Thus, this special crude petroleum situation partially accounts for the small increase in total tons between 1970 and 1975.

It may well be that the recent apparent slowdown in the rate of increase of river traffic is due to the volume of river traffic approaching the capacity of the river system, i.e., the time required to ship by water may have increased due to the waiting times for use of lock facilities to the point where alternate modes of transport have become more competitive and thus more attractive. It should be noted that CONSAD has developed demand projections, and that capacity constraints were not used in any of

Table 69: Ohio River Basin Total Tonnage*

Year	Total Tons	% Increase
1945	51,262	28.9
1950	66,092	5 4.6
1955	102,167	
1960	105, 318	3, 1
1965	136,596	29.7
1970	163,903	20.0
1975	168, 991	3.1
1980	213, 454	26.4
1985	264, 717 **	24.1
1990	327 , 989**	23.9

^{*}thousands of tons

^{**}No crude petroleum

this work except to the extent that historic volumes reflected such constraints. If the capacity of current facilities has been responsible for a slowdown in the rate of increase of waterborne commerce, and continues to be so, one would not expect river traffic to reach the levels estimated in this study without improvement of facilities.

The assignment of commodity group tonnages to individual lock and dam projects was the result of systemwide projected commodity group totals being distributed among the individual originating and receiving ports according to the base year distribution modified by historical trends. This "system to component" approach seems reasonable in light of the analysis in Section 3.1.4 where a fairly strong degree of association was discovered between the system and its components. However, this does not bely the fact that certain commodities are moving in response to very different and/or more localized variables than those that were tested in this study. It is expected that such issues will be addressed in companion ORB traffic projection efforts.

APPENDIX A: Commodity Code Conversions

COMMODITY CODE CONVERSION: 1949-1964 3-digit to Standard 4-digit

552	2951	109 2049	260	0129
411	2431	110 2042	280	0121
725		120 0141	285	2111
840		123 2034	290	2062
525		125 2034	297	0191
507	2911	127 2034	300	0101
521	2911	130 0131	310	2211
645	3411	132 0132	320	2311
415		133 2039	324	2212
	2691	135 2039	326	2212
005	0151	136 2039		2212
090		137 2039		2311
	2011	138 2039	335	2311
	2012	140 0131	340	2015
017	2012	150 2091	350	2211
018		160 0133	381	2823
020	2092	161 0134	390	2311
033	2021	165 2099	400	2411
035	2022	167 2099	401	2412
037	2021	170 2099	405	2414
039	2021	180 2061	408	2413
040	0911	185 2062	413	2421
043	2031	190 2081	416	2431
	2031	195 2099	417	2491
047	2031	199 2094	421	2491
	0912	200 0841	430	2491
	0161	201 2822	440	2415
	0913	203 4029	441	2611
	0161	205 3011	445	4024
	3111	207 3011	450	2621
	0161	210 2861	457	2691
	0931	220 0861	501	1121
	0161	231 2091	502	1121
100	0103	232 0112	503	2991
	0105	233 0119	504	2920
	0102	234 0119	505	2911
	0107	235 0119	506	2911
	0104	236 0119		2914
	2041	240 2091	511	1311
108	0106	250 2812	512	2912

Commodity Code Conversion: 1949-1964 3-digit to Standard 4-digit (continued)

513 2	913	622	3322	826	2813
514 2		624	3322	827	2810
516 2		632	3322	828	2819
517 2	916	640	1091	829	2819
518 2	91.7	642	3323	846	
519 2		652	1091	848	2851
			1091	849	2871
			3321	851	
			3321		1471
526 3		670	1091	853	2873
530 3		672	3323	854	2873
540 1		682	3321	855	2872
543 3		690	1091	859	
		700	3611		2891
	494	701	3611		2891
		710	3511		2841
	.493	722	3511		3911
	411	730	3511	901	3911
	491	231	3511		3911
554 1	442	740	3511		4111
555 1	.499	742	3511	926	
556 3			3511		4029
600 1	011		3511	940	
601 3	3311		3711		4118
602 4	1011		3711		9999
603 3	314		3711		2062
605 3	315		3731	325	2212
606 3	,		3731	410	2414
607 3			3791		2491
608 3	317		3711	515	2916
609 3	316		3721		3319
611 3	5411.	793	3721	680	3321
612 3			3791	720	3511
613 1	.061	801	2811	900	2811
614 3			2817	830	2819
615 3			2819	835	2818
617 1			2819	845	2819
618 3			2831	850	2871
620 1	021	825	2818		

COMMODITY CODE CONVERSION: 1948 3-digit to Standard 4-digit

661			2911	653	2611
323	3251		2915	657	2621
001	0107	505	2916	გ 59	2691
003		507	2991	663	2691
007	0104		0841	665	2691
011	0105		2819	673	
013	0129		2818	685	3611
019	2049	531		687	
023	2042		2810	691	3911
029	0121	535		695	3211
031	2111		2879	697	
035	0101		2918	701	3911
043	0111		2812	703	2491
045	2034		2851	705	3911
075	0133	553	2831	707	3911
089	0129		3323	711	3911
091	2034	573	3311	713	3911
107	0191		3314	715	3911
199	0191		3315	723	2823
299			3314	725	2823
305	1121		3319	727	2211
307	3313		3315	743	3911
309	1011		3319	749	2081
321	1091		3317	751	2094
327	1442		3791	755	2099
329	1442		3511	759	2061
333	1412		3511	763	
337	1311		3511		2841
339	2918	609	3791	771	
341	1491	611	3791	773	2042
343	1471	613	3711	779	3319
345	1492	615	3711	785	
399	1499	617	3511	787	2491
401	2411		3511	789	
407	2491		3711	793	
411	2421	629	1911	797	4029
413	2431		3241		3911
417	0861		3251	798	3731
499	0861	643	3291	693	3211

COMMODITY CODE CONVERSION: 1943-1947 3-digit to Standard 4-digit

700	7775-4-4	A 1000 A11			
	3211		2916	698	2841
	4112	453	2991	700	3211
	3281	460	0119	701	3911
010		470	2061	704	3319
020		471	2099	702	3319
	0104	490	3311		0121
040		491	3314		0101
041	0105		3315	100	0129
060	2049	511		161	
061	2049	512			2211
091	0101		3315	280	
101	0101	522		320	
143	0104	530		401	
150	2034	540		432	
152	2034	560	3271	593	3711
164	0191	580	3511	042	0129
221	2021	590	3711	370	
222	2014	591	3711	390	1471
282	0161	611	2511	440	
300	1121		2081		0841
310	3313		2879	461	
350	1442		2621		2091
351	1442		2491		2062
352	1412		2813		3317
360	1311		2818	521	
380	1491		2211		3324
391	1492		2823	582	
392	1499		2094	592	
	2411		2111		2511
	2491	691	2851		1091
	2421		3312		2691
	2431		4011		2099
	0861		2691		
	2914		2631	551	
451	2915		2691	552	1499
		970	£071	581	3791

APPENDIX B: Individual River Data Set

Table B. 1: Individual River Tonnages by Commodity Group and Direction - Ohio River - Up

	Coai and Coke	Petroleum Fuels	Crude Petroleum	Aggregates	Grains	Chemical and Chemical Fertilizers	Ores and Minerals	Iron Ore and Iron	All Other
0701	27003	2001001	1020701	7.25.751	76160	02111	10200	243647	104095
10/1	000000	1001001	6 2006 21	967677	101260	00711		10000	90000
1575	523866	1609577	122635	1810938.	110427	8845		418635	148510
1943	B05784	1321398	1182823	1507083	139549	7213.	10.6912	421757	114798
1944	669788	1481152	1383559	1111857	192051	62294	204086	36522	94001
575		1489052	1576397	1127675	148972	92826	164589.	337960	166433
1946	564813	1597314.	1435835	1675430.	80851.	47844.	129285.	307520.	157468.
1547	898854.	1741913.	1469381.	2253742.	75327	23139.	175627.	357694.	143999.
1548	1403469	2144472	1619807.	2237819.	61211.	180308,	208870	373558	100001
15.0	2080667.	2584916.	1432704.	1627841.	50795	274281.	337125.	231881.	90184.
1550		3201050.	1593324.	1872853.	123758.	403610.	252128.	257866.	149559.
1551	3727399.	3428531	1979424	2658143	126222.	488388	267883.	217258	127197
1552	4022528·	3838354	1777108.	2678437。	152303.	376962.	264446.	415196.	186312.
1953	4452911.	4114684.	1666704.	2236917.	268489.	371332.	311856.	514327.	290842.
1954	4081177	3716925	2098688	2115101	294149.	331349.	333340	222424	355157
1955	7245210.	3918462.	2134514.	2656016.	417975.	466394	451085.	523550.	535187.
1956	8022800.	3616826.	2426242	2865859.	282621.	556712.	441748.	.096509	543603.
1557	7161196.	4203814	356665	2813633	6534P2.	599233		326154.	700411
1958	6593746.	4168841.	3461959.	2285301. 1	.604622	£68448•	498901.	341735.	993003.
5551		4376732.		2035692. 1		760117.		332224.	985416.
19c0.	7535022	4536486		2181647	454673	990808		582655.	181677
1961		4£6A856.		2190559.	76.4.	916241.		376407.	.065659
1962	_	5000777.		3021002. 2	:084280:	1023447.	564205.	301449.	140906.
19e3	F200844.	5133513	3170539.	3792658	-668655	1221778.	833701	407112.	162924
1964	1924754.	5076034.	3814286.	4130826. 1	.0612451	1368427.	SP5330.	363842.	265951
1565	8526401.	5186936.	3611177.	3392534.	1466162.	1639836.	1263666.	305923	260489
1946			3857703.	5130073	930735	1809486	1431787	396132.	441926.
1507	9411558	524428	3526867.	4304069.]	1847390.	2055564	1707072.	425518.	439844.
1518	16433177.		4543131.	457£683. 1	. 546294.	2377771.	1878768	•	442791.
1969	11536373.	5364504	£504549.	Ì	307500.	2882072.	1996903	-	2415785.
1970	10950064.	5481449.		_	2633272		21P0292.	•	416396.
1971	12185695.	5675453.			5654260.		2380704.	•	2076584.
1972	13190246.	_5802950.		5276499	1721426.	2975639	1812471	074007	P00665.
1973	12854643.	5967219.	4060070.	4648493.	637616.	2357380.	1553791.	954588. 2	732266
1974		6531835.	199774.	4727529.	582939	3122532.	1495092.	025962	P72424.
1975	19277854	6790247	196469	4250744	2157640	2483008	3403044	795058	2675158

West of the second seco

Table B. 2: Individual Eiver Tonnages by Commodity Group and Direction - Ohio River - Down

						Chemical		Iron Ore	
	Coal and Coke	Petroleum Fuels	Crude Petroleum	Aggregates	Grains	and Chemical Fertilizers	Ores and Minerals	nd and Iron als and Steel	All Other
1540	2916936.	450085.	•	2465964.	150.	60854.	2666.	571845.	260840.
1 > 4 1	S.	515063.	•	3164695.	1212.	59507.	3840.	-	315813.
2751	m	183348		3032498	500.	88735	4214.	259353	401415.
1543	4187819.	126882.	109248.	1872573.	•	119452.	1923.	336193.	195817.
1544	~	115467.	1400.	1708301.	•	140881.	3655.	46P501.	237861.
1945	\sim	288267	0	2044638	360	47589	.65	420417	.227947
1546	Ö	422677.		3445728.	•	.02699	30.	342073	301952.
1>47	5027008	659355.	_	3112709.	5994	72817.	750.	377072.	243565
1548	<u>~</u>	811082	- 1	3425363.	0.	11521.	742.	425222	.233439
5751	Ñ.	1085761.		3732688.	7930.	127180.	R7112.	520459.	96250.
55	3	1390779.		3823789.	10805.	192416.	91672.	745580.	195326.
ŗ	ĕ	1501750	2012.	4688793	16261-	250553.	179796.	752539	1206.94
2,5	3	1382694.	11431.	4580563.	•	590906	230980.	71 0003.	274104.
ŝ	T.	1306965.	٠	4273583.	21360.	393335.	155767.	974879.	348854.
'n	3	1223837		434.7077	837.	366046	_148521	1240729	176213
ŝ	an an	1274167.		4638069.	21219.	490341.	320619.	1453366.	325621.
ŝ	2	1411319.		4757849.	32103.	555019.	301354.	1388361.	P64949.
ŝ	7	.1799506.	6213	4762259	9737	727884	297470	1467183	_787074_
3	~	1660559.	•	4424180.	2114.	649826.	284597.	•044656	1074272.
Ų,	Ę.	1931364.	•	5911025.	3184.	640746.	32743.	1252272.	1020100.
ŝ	9122429	. 1651126.	1	5654027	600	.607733.	34203.	1057339.	1298413.
96	4	1561580.	81125.	5855241. 1	457550.	739056.	54295	846496.	1433395.
1562	ö	1478051.	_	5465864.	2709.	732894.	36680.	935565	1284675.
ž	8	1696308		5963453	5713.	679364	14113	975853	1671008
9	Ξ.	1770502.		6615333.	2856.	795312.	30030		1787533.
1,565	7506261	2232532		7302850.	5386.	998778.	57502		3303346.
2	n c	1000000		10000	-0100	111100		- 10201 -	
ξ,	7 ,	2172404		/185433.	11658	1564408	. 2. 2. C		3350804
2	٦,	226117	, v v	111166	10035	017777	40704		6471640
1550	_ ~	73077057 730550	23000	73338430 67.27.163	30450	15555	1970	750155	2174175
0.10		0.00000	• • •	344406	2000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			000000
1761	າ :	2000000	• •	1242101	154646	1691160.	130010	100/317	37.7.7.1.4
716	r) L D L D J	- 500 C C C C C C C C C C C C C C C C C C		25,0,00	10160	1370505	100000	100/77	שלה זכלה
1973	18556/22	3264022	0.0	7518435.	16/5/50	1014110.	108363	1144631.	3684334
*/ F. C .	7.7	3000000	*3000	450504.	1507/00	1101202	1,7795	0267670	4403330
CIAT	-	1042484	16111120	DJG1/NC+	463617	ACCC100	14/1334	A 5 1 1 3 4	#YNDAF7

Table B. 3: Individual River Tonnages by Commodity Group and Direction - Ohio River - Else

940 941	3	Dates	7		•	and Chemical	Ores and	1100 Tes	
940	and Coke	Fuels	Petroleum	Aggregates	Grains	Fertilizers	Minerals		All Other
176	٠٠٠١ ع	1294703.	86779.	1811184.	23445.	112477.	97383.	1137898.	595658.
	•	1851480.	135248.	2423956.	54890.	149769.	96971.	1259589.	1109850.
276	.02	1901832.	1203593	2157298.	28130	149898	92505	858453	722914.
543	202	2854958.	1921180.	1575378.	39001.	294471.	98793.	1037392.	800385.
475	15615735	3149193.	2497926.	1139037.	12790.	560107.	97256.	775634.	912012.
545		27e0093.	2170507	1091265	4558	355259	P1410	336052	449511
946		2450533	2146685.	1846708.	2307.	161731.	63268.	30 P 303.	336868.
247	4	2757650.	2217772.	2116114.	9935	170011.	123237.	51,4218.	359514.
54.R	S.	3243954	2428523	2318293	31128.	221547.	104854.	587504	619523.
676		3631430	2490035	2043248.	.9065	381228.	217223.	751549	539812.
055	15776084.	3797408.	1558781.	2555866.	34372.	410963.	246461.	1053856.	650357.
165	19534606.	4475653	946639	2915076	58442	813920.	2271174	. 990532,	732852
255	m	4641801.	1382424.	2973002.	79387.	700121.	222111.	1264145.	772187.
953	Ψ.	4649055.	1292643.	2947822.	94286.	812159.	542053.	1825718.	877403.
484	4	4763031	917448	2540735	105847.	616282.	305094	1899401.	. 690385.
955	ä	5420957.	723151.	2664145.	204320.	689285.	461512.	23¤5101.	1308800.
955	=	5339541	.274272	2185182.	276212.	758039.	536525.	2694035	1214666.
252	7	5370144.	36343	2061219.	2951R1.	835876.	482210.	2757833.	1808038.
928	٠.	5072357.	152096.	*0150572	198654.	A55053.	464050.	1973288.	1486938.
655	22665040.	5655935	110709.	248E147.	485071.	1480830.	810458.	2281981.	1885367.
940	17)	5365900	1272386	_2304314.	541729.	1746885	773052	2128860.	1412014
9¢ 1	J	5573642.	1671427.	1546075	360255	2027643.	926050.	2011968.	1353927.
2 62	11	5698725.	1620295	3222843.	431834.	2266191.	1154789.	1520754.	1815115.
5t3	•	5281943.	1202498	. 2882624	676252.	2614406	!	1548953	_1705079_
564	C,	6303136.	529336.	3605594.	826022.	3043341.		1731341.	1838498.
545	·V	6174930.	978875.	3833034.	1064364.	3325884.	•	2110481.	2576616.
946	•	. 5866970	1189232	4210189	987427.	3613412	1901061	1955078	_2824744e
9e7	6-1	8888888	1577307.	4445364.	1284635.	3952568	1832851	1808904.	2511284.
5¢8	· V	7039175.	1232874.	5964057.	1228663.	4523544.	1695218.	1843159.	305e134.
696	1.71	. 69e7724	-8506S	-2194676	85826B.	5344334	1415260	1636199.	.3226312.
016	33301199.	7785557.	202339.	5645807.	673821.	6204310.	1686955.	2132140.	3451434.
126	·	8098335.	173168.	5906276.	1190650.	6616680.	1976867.	1860024.	3801677.
972.	(-1	8636058	175008	5931095	1297177	6609639	1698786	2163584.	3321573.
973	J	8572303°	140317.	6310679.	12200025	6333508.	1336373.	2447655.	3210608.
7.5	ų,	9276864.	400460	6265698.	1595402.	6922156.	1938053.	2467732.	4599250
975	37857.756	8517348	549475	5817195	2682183	56645034	1945418	21264514	4093846

Table B. 4: Individual River Tonnages by Commodity Group and Direction - Monongahela River - Up

H			_																																	
All Other	35295	86711.	49526.	43911.	80050	91054.	57108.	23990.	45513.	25392	34542.	27841.	49085.	26472.	45177.	38724.	54845.	64571	77526.	383630.	596562.	280692.	267615.	166160.	192333.	219405.	284982	239407.	311310.	300229.	216728.	281618.	249209.	298860.	328226.	309859.
Iron Ore Ores and and Iron Minerals and Steel	819480.	1059131.	891232.	916264.	728584.	350258.	344180.	475970.	462871.	424171.	541569.	421702.	582164.	678533.	772127.	1018929.	952549.	1108667.	709981.	821173.	853095.	671445.	833062.	859291.	971094.	982980	1092509.	970822.	1128330.	1195697.	1207776.	1141821.	1445557.	1239504.	896625.	558812.
Ores and Minerals	50203.	78153.	129409.	44856.	144080.	118811.	81506.	127428.	129872.	85986.	127770.	162508.	480421.	633759.	502725.	644256.	714380.	692852.	548118.	125125.	120715.	130121.	95105.	144724.	214518.	300134.	301523.	403800.	393514.	428502.	722756.	1077391.	761393.	442666.	322078.	368034.
Chemical and Chemical Fertilizers	10826.	21510.	18551.	60157.	156582.	110106.	12549.	18689.	13223.	9712.	19118.	2205.	11673.	20987.	22481.	22871.	30767.	32559.	21810.	34374.	55131.	97816.	87415.	126912.	93751.	165960.	204137.	256485.	347550.	364074.	382454.	338351.	165118.	103823.	124638.	78863.
Grains	202	ċ	413.	939.	ċ	ċ	ċ	ò	·	•	ò	°	·	ċ	ċ	ò	ò	ċ	ċ	•	°	ò	ċ	ċ	ċ	ċ	ċ	·	ċ	ċ	ċ	ċ	ċ	ċ	·	ċ
Crude Petroleum Aggregates	1217979.	1702910.	1545242.	1366432.	917117.	919077.	1575882.	1754193.	2095484.	1876130.	2190290.	2459721.	2328768.	2169939.	2027656.	2063866.	1904445.	1617359.	1910618.	1752333.	1457557.	969433.	1615551,	1516797.	1842934.	1893557.	1803839.	1541875.	1921048.	1959848.	1563544.	1525299.	1478343.	1599385.	1561381.	1322449.
Crude Petroleum	ò	ò	•	0	ò	ò	•	ò	•	·	•	ò	ò	ċ	•	1258.	°	ċ	4036.	40522.	ċ	ċ	21300.	ċ	4741.	19083.	7060.	ċ	•	22466.	•	ò	•	ò	•	0
Petroleum Fuels	225298.	308939	420742.	353845.	372290.	374351,	475196.	426731.	426359.	527829.	638191.	695504.	1132135.	1138707.	756732.	870187.	1125033.	1107988.	872887.	933745.	1062656.	1053735.	994648.	1177764.	1185011.	1139367.	978515.	1045859.	1114447.	1162021.	1249534.	1328048.	1649422.	77419.	2.35279.	2173557.
Coal and Coke	246439.	447132.	717438.	952995.	1020674.	756002.	727791.	572237.	1184532.	2051444.	1516539.	3237270.	2304424.	1744942.	1118064.	2303006.	2415265.	2501545.	1749588.	1421354.	1654584.	2472595.	2505594.	2822339.	4125615.	4029212.	5869502.	5665119.	5387478.	4711168.	4239673.	4480874.	4158889.	4341187.	4176481.	5598306.
तं	40	41	4	43	4	4 3	46	47	48	49	S S	51	رة ان	53	10 4	ខ្ម	9 9	57	S S	29	9	61	62	63	64	59	99	67	89	69	20	71	72	73	74	75

Table B. 5: Individual River Tonnages by Commodity Group and Direction - Monongahela River - Down

	e r	1.•	•	.•	•	•	·	•	•	•	•	.•							•		٠		.•										•			•	•
	All Other	81365.	153321	170637.	175654	144904	69859	126701	45522	141828	43129	130219	70913	14538	22753.	25049	202 08	24019	11476	33822	65976	86463	56335	56019	64589	74971	224551	144333	51265.	183780.	312421.	192394	249786	116462	96375	112911	82451
Iron Ore	Minerals and Steel	518753.	574566.	374077.	484495.	498027.	376931.	330197.	438850.	515873.	646533.	931243.	766591.	612879.	674882.	2160006.	1426175.	1453958.	1410759.	936036.	1087877.	968857.	877773.	835484.	783923.	789116.	946775.	723823.	796554.	863697.	821453.	1333219.	850944.	991950.	1072608.	1168262.	900527.
· Ores and	Minera	ó	11708.	ò	ò	116.	ò	ċ	ò	ö	45091.	43881.	100890.	66759.	271281.	57139.	194643.	194277.	103039.	74949.	12693.	16655.	20978.	26593.	14537.	7160.	1413.	6394.	4158.	4648.	•	4445.	543.	9088.	28413.	265898.	171005.
Chemical and Chemical	Grains Fertilizers	278675.	309207.	307529.	275700.	430004.	330018.	204436.	282373.	297719.	309976.	357675.	358815.	337888.	453297.	417084.	515227.	487038.	508534.	380144.	327286.	341313.	392821.	367396.	402924.	495019.	381903.	416457.	288285.	331636.	167537.	178461.	195235.	412585.	301011.	523941.	400941.
rd	Grains	i	ċ	ċ	ċ	ċ	ċ	ċ	ं	ċ	ċ	ċ	ò	ċ	ò	•	ò	ċ	•	•	•	•	ò	°	ċ	ċ	ċ	ċ	0	ò	ċ	ò	ċ	ċ	ċ	ċ	ċ
	Petroleum Aggregates	68839.	65276.	234358.	228229.	116943.	189597.	148096.	165920.	132013.	138846.	205495.	210930.	145905.	182732.	104802.	217772.	33653.	9678.	5728.	11516.	4536.	128314.	274800.	244615.	371936.	239179.	534979.	491672.	531135.	433030.	434647.	440187.	619589.	518500.	447100.	585645.
Crude	Petroleum	0	ċ	ö	ċ	ò	ò	ö	0	•	ò	·	ò	1106.	1785.	0	7188.	ò	°	ċ	•	ċ	ò	ò	·	·	•	ં	Ċ	ò	ċ	ò	ċ	ċ	·	2496.	•
Petroleum	Fuelg	100248.	111550.	25815.	54449.	24197.	111478.	55024.	162392.	101809.	152314.	134566.	144373.	115367.	111073.	174495.	243498.	224921.	193124.	137354.	123686.	125720.	65027.	10716.	9627.	14139.	24102.	23264.	14709.	18518.	62212.	77524.	34051,	24409.	37855.	55868.	38950.
Coal	and Coke	25846561.	26314814.	28897769.	25783256.	26094901.	22729844.	21214273.	27137859.	24383988.	18810445.	21437973,	23229845.	19703450.	25010746.	20647683.	27897308.	27227189.	18941066.	21357928.	19919749.	22085360.	19537784.	19755559.	22991346.	27429817.	28219694.	27215509.	28440293.	26455769.			23726251.	26538949.	25474998.	25836715.	24679362.
		40	4	4	43	**	5	46	47	43	49	50	5	S.	5	4	55	5,	53	25 8	50	9	61	62	63	64	65	99	57	89	69	70	71	7,	73	7.4	75

Table B. 6: Individual River Tonnages by Commodity Group and Direction - Allegheny River - Up

	ther			3.		,÷	٠.		.:		<u>:</u>	•				•		•		3.	:	ċ	<u>:</u>		•	<u>.</u>			3.				•	•	:	۶.	
	All Other	16433	16179.	44663.	37146	35245.	39622	45768.	36425	43253	21891	52019	44751.	68928	49124.	52441.	123230.	133539	181987	161143.	240721.	178512.	205551	169429	213478.	284560	453557	411327	390183	391533	349934	328334	377922	351201	464094	484943	43220B
Iron Ore		62384.	84756.	4802.	51132.	57316.	40575.	ċ	1415.	6416.	4250.	59190.	102451.	107873.	195712.	164785.	223931.	242774.	141978.	168028.	210345.	252332.	241167.	143231.	190983.	216061.	213948.	253949.	238392.	292015.	294235.	137424.	107152.	163501.	131577.	165636.	210585.
Ores and		10030.	29624.	10408.	11760.	14465.	8298	5488.	10261.	2173.	19680.	14172.	21824.	42080.	61216.	51246.	127607.	68382	63147.	53332.	14626.	10311.	18477.	10513.	47461.	76850.	105881.	127515.	181908.	161376.	267451.	225447.	118349.	161354.	159552.	118547.	115516.
Chemical and Chemical	Fertilizers	•	•	ċ	ċ	ċ	ċ	ò	ċ	ċ	ò	ċ	ċ	ċ	ċ	ċ	22534.	24234.	32435.	29587.	24587.	30123.	22380.	15457.	39574.	36168.	50332.	56475.	63243.	45071.	34746.	54885.	68135.	110889.	•96669	77366.	99994
•	Grains	ò	ò	ċ	ò	ò	•	ò	205.	•	ċ	ò	ò	ċ	ċ	•	ò	·	ċ	ċ	ċ	•	2527.	ò	ö	ò	2857.	ö	ċ	°	ċ	ċ	•	·	ċ	ċ	Ċ
	Aggregates	355407.	503799.	303943.	241715.	179554.	158527.	220059.	189318.	242824.	196330.	318696.	390190.	235092.	274518.	217318.	400444.	225452.	219019.	263098.	227495.	190103.	105892.	125197.	164019.	226121.	280365.	263965.	243668.	275105.	199260.	316725.	450257.	406582.	154299.	55146.	41304
Crude	Petroleum	ò	ċ	5789.	15835.	•	•	•	ò	ò	ò	ò	1243.	ċ	•	ċ	ċ	ċ	ò	ċ	ċ	ċ	0	ċ	ò	°	ċ	•	ċ	•	ċ	ċ	ò	ċ	ċ	1560.	0
Petroleum	Fuels	114228.	182571.	260490.	195199.	296737.	193705.	120634.	117133.	135906.	119918.	155089.	160694.	151594.	46021.	66360.	127974.	152959.	140713.	87723.	103854.	72206.	101574.	238396.	167836.	195968.	242670.	209760.	326614.	353444.	303512.	309067.	238821.	214/43.	282018.	311470.	243430.
Coal	and Coke	701250.	535516.	487966.	540701.	46.4541.	354983.	422049.	464572.	634876.	505882.	368586.	591249.	362335.	180348.	45058	20383.	73022.	136622.	91813.	95680.	110364.	55766.	160169.	220433.	411354.	337798.	256519.	564172.	297179.	979465.	1414735.	1450538.	1302589.	1136232.	1408654.	1000919.
	~	40	41	4 Ci	433	44	4 ق	4.5	47	(i)	49	00	51	S Ci	ار را	40	n N	56	57	en en	59	90	61	62	63	64	65	66	67	89	69	20	71	72	73	74	75

Table B.7: Individual River Tonnages by Commodity Group and Direction - Allegheny River - Down

All Other	7676.	3910.	4645.	1100.	175.	ċ	2079.	384.	1610.	.863	5867.	1791.	1416.	3858.	29081.	27429.	1111.	21235.	44868.	35906.	50650.	37215.	.026	018.	.4084	20495.	25853.	26040.	44582.	27511.	14922.	28148.	34301.	34760.	34046.	.0000
		נים	•	-			1.4		-	~	ų,	ניז	_	נייו	54	27	M	5	4	36	ရှိ	m	=	10	0	8	C.I	26	4	C)	77	28	Ŋ	34	34	M
Iron Ore and Iron	5815.	3409.	2675.	1091.	398.	1081.	126.	ċ	3802.	16279.	17050.	16299.	15460.	30764.	5718.	18848.	22443.	52318.	16832.	24723.	21849.	16464.	16683.	13601,	15014.	18911.	15865.	17429.	12869.	24933.	33675.	30516.	16410.	17819.	33344.	10254
Ores and Minerals	·	83196.	ċ	ċ	ċ	ċ	ċ	.669	ò	1208.	ċ	ċ	7970.	5173.	728.	1854.	490.	800.	790.	3472.	19861.	2264.	1195.	2944.	2430.	1208.	1208.	ċ	1207.	ò	•	ċ	2476.	270.	ċ	2900.
Chemical and Chemical Fertilizers	•	ċ	ċ	1203.	1365.	757.	767.	ċ	ċ	ċ	1812.	4024.	.0284	6640.	1806.	ċ	1304.	ċ	2250.	772.	1131.	1153;	ċ	ċ	ċ	ċ	ċ	•	ò	°	·	ċ	ċ	ċ	1499.	ć
an Grains	ò	ċ	ċ	ò	ċ	ċ	ċ	ċ	°	°	°	ċ	•	•	ò	ċ	ċ	ċ	·	•	ċ	ò	ò	ċ	•	ċ	·	·	ċ	•	•	•	ċ	ċ	•	<
Grude Petroleum Aggregates	1534590.	666010.	501269.	570705.	262477.	393905.	775576.	823319.	910576.	865744.	1012411.	1279491.	1187552.	1122039.	1075900.	924966.	1232943.	1186824.	1149031.	1109657.	924288.	955079.	880682.	1053746.	984126.	1063759.	952226.	793713.	1029297.	1323130.	1312086.	1714551.	1250443.	1620341.	1576071.	027760
Crude Petroleum	ò	ó	ċ	•	•	ċ	ċ	ċ	ċ	ċ	ċ	•	•	•	ċ	1258.	ò	•	0	•	ċ	•	ċ	•	ċ	•	ċ	•	•	•	•	ò	ò	0	ò	•
Petroleum Fuels	51955.	30231.	10079.	37669.	27072.	73459.	30469.	38514.	30154.	66021.	48226.	31684.	37191.	39129.	96516.	11700.	7997	29840.	45417.	41654.	19754.	26709.	20908.	22085.	24386.	26286.	23244.	16976.	3340.	18596.	37775.	48853.	43046.	31564.	38155.	61013
Coal and Coke	1029594.	1048061.	1084273.	1208909.	1405800.	1091267.	868959	930111.	1164253.	1101863.	1449140.	1512795.	1208234.	1568265.	1965077.	2601011.	2936152.	3034218.	2437379.	1899504.	1951297.	2587348.	2645214.	2600331.	2383791.	2533094.	2594349.	2112274.	1737999.	1823046.	:476072.	1302913.	1367834.	1214818.	1225615.	1400000
	4	41	4 ()	43	4	4 13	45	47	48	49	20	E	23 C1	50	10 4	ניו ניו	53	57	5 8 8	59	9	61	62	63	64	65	99	67	99	69	20	71	72	73	74	76.

Table B. 8: Individual River Tonnages by Commodity Group and Direction -Kanawha River - Up

le																																		
All Other	6658.	113244.	67280.	77721.	65846.	237440.	70399.	41282.	111540.	9630.	11006.	17437	17336.	2153.	29758.	27832.	14049.	7696.	103046.	112747.	134178.	188105.	144899.	65899.	779787	349357	342344.	325556.	277334.	246332.	133866.	293411.	259973.	223449.
Iron Ore Ores and and Iron Minerals and Steel	3232.	_		_	ò	432.			_	2207.	3186.	0807	4824.	7585.	23027.	23191.	22236.				12354.	14241.	34407.	3551.				20357.	15537.	14483.	12454.	20322.	15850.	6835.
Ores and Minerals	14805.	18284,	23714.	25885.	24476.	20128.	22133.	22332.	41766.	173447.	158019.	71174	28744	77864	150177.	181985.	260747.	180347.	147357.	72728.	21922.	374710.	392581.	181854.	207708	304358	315027.	241910.	38025.	340595.	206526.	212248.	800753.	226926.
Chemical and Chemical Fertilizers	38151.	48764.	51604.	76777.	182751.	39869,	129281,	99139,		•		05/6//·	458007		_									2607055. 4	4 1.	,	1.7	3482412.	•	3637737. 3	•	•••	•	2342550.
al Grains	ċ	•	ò	ò	ċ	ò	ò	ċ	ö	ċ	•	•		; ;	•	ò	ċ	ò	0.	••	0.	.0		o c	, ,	.0	о. О	ю 0	o.	о.	ю.	0.3	o.	О
te																	•		.:	3.												•	•	•
Aggrega	338145.	535080.	458016.	329170.	187578.	148913.	313585.	367265.	361134,	341126.	364616.	400230	500140	674520	279123	430588	453015	477207	50505	590143	675838	RE2870	784157	590880	457714	677496.	.083861.	137107.	159642.	.665082.	.615396.	459441	626276	646994
Crude Petroleum Aggregates	86779. 338145.	•	•	ю.	147581. 187578.	•	122280. 313585.	•	•	20555. 341126.	0. 364616.	0. 400230	0. 500149	0. 674520	0. 279123	0. 430588	0. 453015	0. 477207	0. 505063	0. 59014	0. 675838	0. RECAT	0, 784157	0. 590880	0. 457314	0. 677496.	0. 1083861.	0. 1137107.	0. 1159642.	0. 1665082.	0. 1615396.	0. 1459441	1332. 1626276	0. 164699
Petroleum Crude Fuels Petroleum Aggrega	,,	110467.	. 117779.	ю.		. 169204.	122280.	. 69361.	103134.	20555.	o ·	400070 0 400730 A10730	.		•	•	•	•		•	•	ċ	•	6165/1. 0. 590880			0.1		. 0	800735. 0. 1665082.	871065. 0. 1615396.	.0	. 1332. 1	1043581. 0. 164699.
	. 86779.	. 155956. 110467.	. 148939. 117779.	. 107652. 120374. 3	. 147581. 1	. 169204.	. 195307. 122280.	. 205089. 69361.	. 191157. 103134.	. 240371. 20555.	. 306347. 0.	.	4415044.		379850. 0.	396004.	. 382713. 0.	. 460029. 0.	. 508190. 0.	. 443437. 0.	514652. 0.	566790. 0.	•	6165/1.	1044004 ·	602670	. 634758. 0. 1		. 779295. 0. 1	•	. 871065. 0. 1	. 953532. 0. 1	. 937692. 1332. 1	. 0

Table B. 9: Individual River Tonnages by Commodity Group and Direction - Kanawha River - Down

	All Other	895.	1841.	1501.	ċ	ò	ċ	ċ	598.	ċ	17327.	36730.	4949.	14176.	27234.	16721.	22794.	26349.	29621.	24391.	44110.	45056.	36738.	36046.	11252.	1940.	10010.	100001	10519.	10124.	21974.	15455.	18319.	3750.	25091.	8278.	
Iron Ore	Minerals and Steel	ò	544.	•	ò	•	ċ	ċ	130.				3005.	.0906	6534.			_						37149.		21986.	6129.	6844.	27792.	28852.	42568.	34103.	25433.	29346.	15317.	22703.	
Ores and	Mineral	ċ	ċ	ò	ċ	ċ	ċ	ċ	ò	ċ	ċ	281.	ċ	10029.	25271.	5224.	45411.	18538.	14729.	28281.	10349.	11630.	11089.	2665.	5076.	29566.	9991.	35305.	5247.	18717.	16938.	6086	40969.	18360.	43887.	51727.	
Chemical and Chemical	Fertilizers	ò	°	ò	1529.	1215.	ċ	25702.	25715.	97179.	49926.	104937.	151262.	148075.	226445.	156237.	163827.	185257.	252052.	242098.	229223.	287273.	417360.	431015.	401364.	439951.	488578.	487043.	506621.	510655.	610319.	543785,	629992.	755754.	619345.	584233.	
	Grains	ċ	·	•	ċ	•	ċ	ò	ċ	ċ	ċ	ċ	ċ	ò	ċ	ċ	ò	•	ċ	ċ	ċ	ċ	ċ	ċ	·	ċ	ò	ċ	ċ	ċ	ò	ċ	ċ	ċ	ċ	ċċ	•
`																																					
	Aggregates	ò	ċ	•	ċ	•	ċ	ċ	ò	ò	ċ	o.	ċ	ò	•	ċ	ċ	ċ	ċ	ċ	ò	1666.	6287.	ò	·	1390.	8259.	10034.	ċ	21903.	4441.	2790.	ċ	ċ	4159.	8692.	
	Petroleum Aggregates	.0	•	••	••	.0	••	••	••	••	2534. 0.	1119. 0.	••	••	12236. 0.	90468.	42038. 0.	26589. 0.	28908. 0.	20760. 0.	7465. 0.		0. 6287.					2439. 10034.	••	•	•		.0	•	0. 4159.	0. 8692.	
um Grude	Fuels Petroleum Aggregates	133028, 0. 0.	177456. 0. 0.	165857. 0. 0.	137506. 0. 0.	69351. 0. 0.	74148. 0. 0.	155621. 0. 0.	158670. 0. 0.	189713. 0. 0.		1119.	•			•	39548, 42038. 0.	••			7465.		44459. 0. 6287.			7295.	14621.		35060. 0. 0.	•	1231.		21610. 0. 0.	•	16210. 0. 4159.	23571. 0. 8692.	•
Petroleum Crude		3714793. 133028. 0. 0.	4438892. 177456. 0. 0.	_	4025192. 137506. 0. 0.	3871103. 69351. 0. 0.		1	1		165238.	150685. 1119.	190437. 0.		206193.	112276.	•	54212.	49031.	25265.	49170. 7465.	3387.	•	31057. 4706.	35119. 14188.	38555. 7295.	57933. 14621.	29565. 2439.	• 0	•	23558. 1231.	12503. 0.	21610.	10765. 0.	16210. 0.	•	

Table B. 10: Individual River Tonnages by Commodity Group and Direction -Kentucky River - Up

e n bl All Other	•	•	•	ં	်	ò	ċ	•	ò	•	ċ	•	·	750.	ċ	•	129.	·	ċ	500.	ċ	ċ	ċ	2015.	ċ	ċ	ċ	300.	552.	·	ċ	ċ	200.	1818.	.) !
Iron Ore and and Iron rals and Steel	•	•	ċ	ċ	•	200.	•	ò	ċ	ò	·	ċ	ċ	ċ	ċ	ċ	783.	•	ċ	ċ	ċ	.999	ċ	400.	550.	ċ	ċ	ò	915.	ċ	ċ	ò	ċ	.089	
Ores and Minerals	<	• • •	ċ	ċ	ċ	•	ò	ċ	ċ	ċ	ò	ċ	ċ	ô	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	
Chemical and Chemical Grains Fertilizers	•	•	•	ċ	°	•	ò	ò	ċ	°	ò	ċ	ò	ċ	ċ	ò	°	°	ċ	°	ċ	ċ	ċ	ċ	ö	ċ	ċ	ċ	ċ	ċ	ċ	ò	•	•	
Grains	(•	ċ	ċ	ċ	•	ò	ċ	•	ċ	ċ	٥	ċ	ċ	ċ	ċ	ċ	ċ	•	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	
Crude Petroleum Aggregates	,	17010.	205400.	224300.	171995.	109100.	90400.	36275.	6575.	8700.	11200.	9670.	11400.	3200.	2750.	33223.	53030.	66562.	101432.	174267.	210461.	172825.	182108.	231193.	257117.	341283.	251448.	329765.	432457.	385830.	440010.	424469.	525454.	595422.	
Crude Petroleum	•	•		ċ	•	ò	0	ò	•	•	ċ	ċ	•	ċ	ċ	ċ	ò	ċ	ó	ċ	ò	ò	•	•				ċ			ó	ò	ò		
Petroleum Fuels	1,404		42795.	52492.	39617.	47970.	38204.	62850.	56764.	35423.	51867.	44876.	46800.	66456.	65596.	66521.	67124.	62041.	55385.	56662.	57423.	60814.	63699.	67910.	64503.	68104.	67383.	72010.	73936.	71438.	59825.	•	ó	ċ	
Coal and Coke	*000	*****	16002.	16702.	17926.	18546.	18735.	17557.	10294.	12855.	3863.	10390.	2203.	1571.	3796.	ċ	·	2348.	2291.	•	ċ	ċ	•	ò	ċ	ċ	•	ċ	ċ	ċ	ċ	•	ċ	•	
	ç	? :	41	4	43	4	4 13	46	47	48	46	ğ	51	51 51	53	54	55	26	57	28	59	9	61	62	63	64	65	99	42	89	69	20	71	72	

Table B. 11: Individual River Tonnages by Commodity Group and Direction - Kentucky River - Down

r

	7	Detroleum	n Pu		4	Chemical and Chemical	Ores and	lron Ore	
	and Coke	Fuels	Petroleum	Aggregates	Grains	Fertilizers	Minerals	and Steel	Álj Other
ô	ò	•	°	1250.	ċ	ò	•	°	ò
41	•	ò	•	1750.	ċ	ó	ċ	ċ	ċ
Ç	7025.	950.	•	18340.	·	ċ	ċ	ċ	ċ
ŭ	5160.	500.	ò	13295.	ċ	ö	ċ	ċ	0
4	ċ	•	ò	1000.	ċ	ċ	ċ	·	•
4	ċ	20614.	ċ	200.	ċ	ċ	ċ	o ·	•
96	ò	ò	°	4350.	å	ċ	ċ	·	ċ
47	ċ	ċ	ò	8220.	ċ	ö	2175.	ċ	•
48	2450.	ċ	ò	10450.	ċ	ċ	2316.	ċ	420.
49	ċ	ò	ċ	8100.	ċ	ċ	ċ	ċ	ċ
20	•	ċ	ċ	8950.	ċ	o	Ċ	o ·	• •
51	ċ	ò	ò	6045.	ċ	ċ	o ·	•	•
52	5100.	ċ	ċ	9450.	ċ	ċ	ċ	•	•
53	19288.	°	ċ	ċ	ċ	o ·	ċ	ċ	ċ
5.4	32550.	ö	°	ċ	ċ	ċ	ò	•	0 1
55	53583.	ó	ò	ò	ö	ċ	ċ	ċ	23%.
56	79962.	ċ	ċ	ċ	ó	ċ	ė.	ċ	ċ
57	97532.	•	ò	•	ċ	ċ	•	•	•
8	77235.	ò	ò	6761.	ċ	ċ	o ·	1773.	•
59	126707.	ċ	ċ	ò	ċ	ċ	ċ	3586.	•
90	160214.	4314.	ċ	ċ	ċ	ċ	ċ	800.	•
51	181688.	ċ	0	ċ	ċ	ċ	ċ	ċ	• 0
52	130688.	ċ	ċ	ċ	ċ	ċ	ċ	o ·	•
63	95289.	0	ċ	ċ	¢	ċ	ċ	ċ	• 0
64	52455.	ċ	ċ	ċ	ċ	ó	ċ	o ·	ò
55	ċ	ċ	ċ	ċ	ċ	ં	ċ	o ·	•0
99	ċ	ò		•	ċ	ċ	ċ	•	1200.
67	ċ	ò	ċ	408240.	ċ	ó	ċ	2303.	588.
89	•	•		582166.	ċ	ċ	ó	580.	•
69	•	ò	•	•	ċ	ċ	•	ċ	200.
20	·	°	ċ	1480.	ò	ċ	ċ	ċ	•
71	•	ċ	ċ	•	ċ	ċ	•	•	300.
72	ċ	ċ	·	1070.	ċ	ċ	o ·	ċ	0
73	•	°	•	•	ċ	ċ	•	Ö	200.
74	ċ	ó	·	ö	ċ	ċ	•	Ö	o o
75	9641.	0.	·	ċ	•	•	ċ	•	•

Table B. 12: Individual River Tonnages by Commodity Group and Direction - Green River - Up

	un Aggregates 320. 760.	,	Petroleum 0. 0.
• • •		0.	2023. 0.
.00		9600.	0. 9600. 424. 15125.
		1200.	
• • •			
••		ò	
••		o ·	• 0
 		<i>.</i> •	;; ;;
0.0		•	
.0		15150.	٠
0.0		103700.	
•		ċ	•
•			
0.0		2300.	
•		ò	
		2000.	
		1400.	
• • •		o c	
		4348.	0. 4348.
.0		9250.	
•		ċ	
.0		378049.	ניז
.0		25300.	0. 25300.
0.0		235212.	CA
47601. 0.	•	•	1150.
.0		.006	.006
.0		0.	
0. 181440.		•	٥.
.0		°	٥٠

Table B.13: Individual River Tonnages by Commodity Group and Direction - Green River - Down

	Coal	Petroleum	Crude			Chemical and Chemical	Ores and	Iron Ore and Iron	
	and Coke	Fuels	Petroleum	Aggregates	Grains	Fertilizers	Minerals	Minerals and Steel	All Other
04	3200.	4239.	•	•	ò	ò	•	•	120979.
41	ċ	ò	9806.	ċ	ò	ò	ċ	•0	119000.
4	ċ	5462.	ċ	ò	ċ	ċ	ċ	•	78000.
43	ò	2576.	•	1000.	ċ	•	6 7000.	2576.	200.
44	•	3545.	1784.	•	°	ò	100400.	ċ	50 10 10 10 10 10 10 10 10 10 10 10 10 10
45	ò	1476.	·	1600.	ċ	ċ	145000.	•	325.
46	ò	ċ	ċ	ċ	ċ	ċ	10700.	ò	ö
47	•	ò	ċ	ċ	°	ċ	ċ	ò	340.
48	ċ	ò	8534.	ċ	ċ	•	ò	ċ	127.
45	ċ	ċ	1234.	ċ	ċ	ċ	ċ	ċ	ં
20	Ö	ċ	ċ	ċ	ċ	ċ	ċ	ċ	•
51	ö	•	17184.	ċ	ċ	ċ	ċ	ċ	ċ
22	•	33322.	ċ	ċ	ċ	·	•	ö	ċ
53	ò	•	12183.	ċ	ò	ċ	•	ċ	ċ
54	129737.	ċ	9005.	ò	ċ	ċ	•	ċ	ċ
ย	195360.	ò	10942.	26300.	°	ċ	•	•	ċ
28	1194374.	ċ	11662.	ó	•	•	•	651.	ċ
57	2666500.	ċ	4511.	•	•	•	•	•	ċ
8	4772106.	ċ	4513.	•	ò	ċ	ċ	ċ	ċ
29	5141431.	ċ	ċ	ċ	·	•	ċ	ò	5346.
9	5436567.	ċ	•	ċ	ċ	ċ	ċ	ċ	ċ
61	7578829.	ċ	ó	•	ċ	•	ċ	ċ	ċ
62	8482522.	ċ	ċ	ċ	ò	•	ò	o ·	ò
63	7746067.	•	ċ	1400.	ċ	ċ	ċ	ċ	200.
64	10353876.	ċ	ò	ċ	ò	ċ	ċ	•	1800.
59	11294937.	ċ	°	1805.	1400.	ċ	•	ċ	25.48.
99	11655995.	ċ	•	10450.	ċ	ċ	ċ	ċ	850.
67	13503224.	ċ	ċ	ċ	ò	ċ	ċ	793.	4396.
89	15809522.	ò	ċ	ċ	ċ	ċ	ċ	ċ	1975.
69	15324518.	ċ	°	7738.	٥.	ċ	ċ	2695.	545.
20	15135966.	ċ	ó		1320.	ċ	1402.	ċ	ċ
71	14470205.	ò	ċ	4210.	57100.	ċ	ċ	510.	•
72	15616647.	ċ	•		47498.	ċ	ċ	ċ	ċ
7.	15458181.	ò	•		56969.	•	ċ	ċ	ċ
74	15372584.	·	•		77586.	ċ	ċ	100.	•
75	15797944.	ċ	ċ	1171.	91461.	ò	•	•	ċ

Table B. 14: Individual River Tonnages by Commodity Group and Direction -Cumberland River - Up

	Coal	Petroleum	Crude			Chemical and Chemical	1 Ores and	Iron Ore	
	and Coke	Fuels	Petroleum	Aggregates	Grains	Fertilizers	Minerals	ls and Steel	All Other
1940	440	354417.	•	38608.	35881.	•0	£027.	•286€	16356.
1961	335.	437986.	6322.	2200.	17384.	c	6610.	c	22.49.
4	200.	368585	1041	500401	22252	0	13262.	2879.	6965
4	•	284891.	1069.	314651.	18655.	•	34770.	2	12635.
3	•	381202.	•0	102857.	76493.	•	19687.	ئ.	5343
1945	. 0	398840	0	40045	25851	0	10910.	0.	•0
9461	•0	405586.	•0	4987.	1540.	ċ	12544.	1443.	2:53.
1547	•	551979.	•0	225091.	0	•0	12544.	4693.	3274.
1948	0	618276	0	341857	9	0	16594	15186.	.56495°_
1949	•0	727585.	1049.	303062.	0	0	13161.	35757.	22467.
1950	•0	856140.	•	258266.	•0	3754.	15239.	26925.	32562.
1551	0	643806	0	544609	3249	6767	17340.	22543	1 F 299.
1952	•0	1013245.	0	840696.	2456.	11951.	14103.	.4455	16322.
1953	•0	1002478.	0	708605.	0	13394.	17385.	E1984.	30716.
1954	1519.	1059170	0	630702	0	0.	31448.	64574.	47561
1955	0	1107594.	•0	660781.	•	1574.	35501.	52514.	67495.
1956	•0	1163797.	0	805210.	•0	2064.	34927.	71104.	78815.
1957	0	1244047		407698	0.0	6722	31265	7P380.	137258.
1958	•0	1285298.	•	756257.	•0	10077.	31819.	47643.	226182.
1959	•0	1453179.	•	967547.	•	10388.	32928.	FC882.	223765.
1960	0	1439035	0	1017562.	2.	25716.	34294	-60471.	172726-
1961	2416.	1509373.	0	934314.	•	49971.	18595.	64834.	179609.
1962	• 0	1631004.	•	1040662.	•	53734.	12534.	67935.	233729.
1963	- 0	1751154	0.	1166657		65004	15570	7P207	229734
1964	•0	1220422.	0	1228360.	0	80495	15280.	74156.	2112º8.
1965	•0	901007.	•	1358571.	•	105936.	19016.	73525.	257960.
1966	• 0	1176013.	0	1270645.	3283	-137380-	15258	68628	314981
1967	949	1199959.	•0	1334963.	4188.	204745.	22022	114433.	222552
1968	594966.	1294884.	•	1330960.	35372.	250479	27423.	114607.	406126.
1969	22009	1348019.	0.	1267847	- 22678	221462	7396	p3912.	367539
1970	349508.	1440104	•	1146650.	30799.	278296.	23836.	132560.	411445.
1971	133241.	1647686.	•	•0	• 0	277148.	1328706.	174320.	*63,697
1972 _	_ 2293870.	-1279175	0	0	0		1638683.	- 22ª554	446263.
1973	4365887.	813125.	•	•0	8386.	295638.	1908750.	222190.	509365.
1974	4463401.	779359.	•	•	•	271266.	1775001.	150960.	438911.
1975	6122716	1023833	2842	0	1327	116824	1418898	163824	387527

CANADA CONTRACTOR OF THE CONTRACTOR OF T

Table B. 15: Individual River Tonnages by Commodity Group and Direction - Cumberland River - Down

	[Detections	9		•	Chemical	3		
	and Coke	Fuels	Petroleum	Aggregates	Grains	Fertilizers	_	s and Steel	All Other
0761	•	•	•	331581.	0	0	20604.	10132.	31170.
1961	•	•0	•	515330.	•	•	•	10348.	39776.
1942	-0-	0.	.0.	.237687.	0	0	30785	4128.	39338.
E+61	•	•0	•	•	•	c	0	•	442H2.
776	•	•	0	118628.	0	•	28207.	0	47224
1945	0.	0	0	285727	0	0	20636	0	31824
976	•	•0	•0	558295.	ċ	•	•	•	34526.
1947	•0	•0	•	373675.	•	•0	10313.	•	24038.
846	0	209.	0	243395	0	9	17528	0	29309
6761	•	0.	•	341289.	•	•	11674.	4967.	17532.
0551	•	0	•0	406846.	•0	•0	18908.	16077.	17810.
1951	0	3772	0	185386	0	0	12£2₽.	£282	11157.
1952	•	•0	•	16452.	0	•	17092.	2P234.	182738.
1953	*00*	8791.	•	351192.	•	•0	20610.	<7630.	232085.
7561	1000	2950	0	342161.	0	0	9056-	22902	19675
1955	7100.	•	•	546774.	0	•	7260.	F1963.	336033.
956	200.	1676.	•	128905.	•0	•	3389.	51067.	692812.
1957	0	0	0	387463	0	0	. 5479	51904	314955
8561	•0	2297.	•	2150.	•	•	3244.	35380.	392318.
626	•	2712.	•0	17379.	ċ	•	9566.	47645.	77391.
1960	0	4211.	0	12781.	9	9	2049.	30471	14150
1961	.529	ċ	•0	15666.	4203.	3604.	638.	36022.	18158.
296	•	•	•	46882*	•	8290	•	19397.	19155.
1963	.0	2185	0	14899.	0	6182	0	24742	21120.
964	•0	0	•	80474.	•	10262.	•	52994.	24987.
965	37400.	.12470.	•0	124234.	•	23249.	•	35241.	77059.
946	111880.	3075	0	75858	9	23722	0	29195	174105
967	166650.	•	•0	195279.	ô	37108.	•	47735.	172683.
896	131013.	2675.	•	134882.	•	50233	•0	14892.	994041.
949	169476	4079	0.	95296	0	42873	0	-23253-	953649
0161	170702.	18142.	•0	460049	•	44200	1401.	345P7.	971554.
175	4449	43122.	•	•	•	45945	787827.	20008	864408
1972	30828.	2946	0.	0	6057	41163	1012522.	45327	014217
973	281655.	4539.	•	1000.	15535.	53223	737770.	£6759.	1497594.
726	43272.	3487.	ċ	16625.	16888.	28516.	1235657.	F7150.	1704492.
5761	71844.	28005	0	0.	3810.	23095	933210	21673	1530617.

Table B. 16: Individual River Tonnages by Commodity Group and Direction - Tennessee River - Up

								•	
	Coal	Petroleum	Crude		10	Chemical and Chemical	Ores and	Iron Ore	
	and Coke	Fuels	Petroleum	Aggregates	Grains	Fertilizers	Minerals	s and Steel	All Other
1940	9919.	102882.	0	1251479.	43140.	•	0	1403.	7966.
1961	6794.	115353.	0	1600172.	85237.	1120.	•	2114.	11979.
1942		20002	0	1292614.	-91361-	0			- 54874F
1543	138330.	142228.	•	424348.	123365.	•	•	15864.	87799°
1944	100500	121891.	.	300603.	113642.	0	0	2332.	6647.
1945	338724	210151-	0	458452	122861	0	0	7656	_21725
1546	157986.	346010.	0	1014185.	78301.	•	•0	P 92.	79215.
1947	248166.	322069.	0	1230870.	79567	1193.	•0	7863.	47963.
1948	304613.	- 487187	9	-938480	-62054-	0	0	2119.	- 43878±
1949	249061.	601921.	0	821001.	.62625	•	5488.	40424.	46735.
1950	156593.	742586.	0	733536.	148545.	450.	14052.	100364.	64638.
1951	354900	705881	0	1011745	-1387P7	- 509	227075	29794	83434
1952	1875606.	794275.	•	1038231.	201759.	•0	44047.	37739.	F3307.
1953	5244957	127472.	ċ	1397976.	330835.	17997.	89702.	139296.	103595.
1954.	3147338	747793	0	1169324	.383055.	44292	973£7e	183993	103040
1955	4176903.	822076.	•	1011299.	564684.	71989.	122179.	£1506.	340654.
1956	5580954.	687833.	•	1497290.	451694.	44385.	147273.	122999.	757776.
1957	5831497	596515	0		847618	54552	106825.	183679	949474
1958	4270312.	636971.	ċ		1366895.	106198.	105483.	157255.	1185618.
1959	4357865.	595466.	•	•	1502244.	47213.	192429.	201360.	60A012.
1960	4607059-	655754	0	1474044	1715338	77883.	178964	1.58553	825815
1961	4025258	498190.	•		1634948.	88061.	205896.	146193.	688257.
8	3599510.	635514.	•		2323314.	112008.	357912.	155441.	771416.
1963	*245490 ·	677340	0	į	1704577	122575.	438431	212324	E11887.
1964	4472053.	547855.	•0	•	1392332	136674.	511380.	212070.	E02375.
96	4609267.	884626.	•0		1639358	178950.	669487.	1656757	470615
1966	5970888	803626	0	229788.	2107353	- 255647	.756336.	167327	740556
1967	5582576.	1638779.	•	•	1953180.	493774.	862668.	254320.	670528.
	5771276.	2176008.	957 .		1665262.	805718.	1151968.	27=304.	978707.
1969	6730034	_2198730	1400	1	2440623	1159689	1120513	310879	10175212
1970	6606783.	2235794.	0		2744960.	1201685.	1004190.	362728.	1358676.
1971	6748464.	2702902.	•		2710464.	1348558.	54583B.	466646.	1449097.
1972	7140730	2510377.	0.	4086560	1780874.	1675438	790170	. 551466.	1356992
1473	7711550.	1778367.	•	4237880.	1768187.	1832450.	842723.	604330.	1330603.
1974		1504917.	•	3853355.	1660426.	1989110.	998921.	641818.	1251745.
1975	8322397	2157385	833	3164960	1299778	1654073	739894	437764.	1221572.

APPENDIX C: Key Lock and Dam Data Set

Note: A zero entry indicates that data was not available for that year, or the lock had not yet opened. It does not necessarily mean that tonnage of that particular commodity group did not move in the year indicated.

Table C. 1: Historic Key Lock and Dam Traffic by Major Commodity Group

Montgomery Lock and Dam - Ohio River

		Petroleum		Iron Ure and
YEAR	Coal & Coke	Fuels	Aggregates	Iron & Steel
40	0.	0.	0.	0.
41	0.	0 •	0.	0.
46	0.	0.	0.	0.
43	0.	0.	0.	0.
44	0.	0 •	0.	0.
45	3100000.	975000.	U •	450000.
46	4450000.	500000.	750000.	325000.
41	0.	0 •	U •	0.
46	0.	0.	U.	0.
45	5000000.	1200000.	1500000.	975000.
50	6600000.	1725000.	2000000.	1575000.
51	0.	0 •	0.	U.
54	5600000.	2125000.	2500000.	1500000.
53	6700000.	2200000.	2300000.	230000U•
54	4300000.	2100000.	2300000.	2475000.
55	6900000.	2600000.	2550000.	3075000.
5 6	7522765.	2812909.	2390215.	3036608.
5/	7876238.	2955418.	2150902.	3040147.
58	6590598.	2591567.	2215849.	∠038878 •
55	6709503.	2771285.	U •	2376527.
60	6712507.	2641666.	1481156.	2133880.
61	6922937.	2390792.	1436546.	1854814.
6 <i>c</i>	7336369.	2315642.	1786661.	1811033.
63	7645736.	2484467.	1826425.	1832736.
64	8335171.	2885525•	2245551.	1781804.
65	8544529.	2964615.	2142150.	2060901.
6¢	10505592.	2530749.	2108135.	1693363.
67	9386326.	2798839.	2192948.	1725445.
6 と	8961664.	3042287.	2656826.	1977475.
65	7134522.	3034967.	255/181.	1948096.
70	6434406.	2941067.	2341022.	2452312•
71	6644560.	2138678.	2440397.	1939897.
12	6057957.	2591252.	2152417.	2379828.
13	6475052.	3106265.	2126646.	2262354.
74	6256669.	3703801.	2088184.	2403116.
15	6147037.	3428078.	1847149.	1902824.

Table C. 2: Historic Key Lock and Dam Traffic by Major Commodity Group

Lock & Dam #52 - Ohio River

			Chemicals	
		Petroleum	& Chem.	
YEAR	Coal & Coke	Fuels	Fertilizers	All Others
40	0 •	0 •	0.	0.
41	0.	0.	0.	0.
46	0.	0 •	U •	0.
43	0.	0 •	U.	0.
44	0.	0 •	0.	0.
45	25000.	4925000.	U.	0.
46	100000.	4100000.	0.	450000.
47	0.	0 •	Ú.	0.
46	0.	0.	0.	0.
45	125000.	5425000.	Ú.	8350000 .
50	100000.	5725000.	U.	1025000.
51	0.	0 •	Ú •	0.
52	850000.	5850000.	8/5000.	850000.
53	1400000.	5325000.	900000.	1150000.
54	2550000.	6200000.	6/5000.	800000.
55	2850000.	7200000.	950000.	1400000.
56	2919211.	7136295.	1156628.	1421293.
57	4178300.	6506344.	1266423.	1588557.
58	4544556.	6487032.	1285147.	2095928.
55	4525760.	7401673.	1401474.	2159037.
60	4766522.	8008836.	16/5579.	2521116.
61	5422566.	8794236.	1826055.	2248710.
62	6404391.	9032790.	18/1688.	2635777.
63	6541036.	9044634.	20/0315.	3513062.
64	6754159.	8773907.	2401593.	3980193.
65	6630633.	8306214.	2744164.	5636854.
66	7418950.	8359314.	32/3891.	6464363.
67	9250062.	8287784.	3833213.	6067139.
6E	10196036.	9976453.	3999660.	6715929.
69	12094404.	9702261.	5240200.	6144912.
10	13291900.	10510642.	5942115.	7252177.
71	12156369.	8765814.	6596005.	8551671.
72	14208433.	8966357.	7264432.	6395895.
73	13546541.	9611558.	6981517.	6557968.
74	15553733.	10396086.	7742186.	7975263.
15	15199390.	9845990•	6454393.	7605787.

Table C. 3: Historic Key Lock and Dam Traffic by Major Commodity Group

Gallipolis Lock and Dam - Ohio River

			Chemicals	
		Petroleum	& Chem.	Iron Ore and
YEAR	Coal & Coke	Fuels	Fertilizers	Iron & Steel
40	0.	0.	U.	0.
41	0.	0.	0 •	0 •
46	0.	0.	0.	0 •
45	0.	0.	Ü.	0.
44	0.	0.	0.	0.
45	0•	0.	U •	0 •
46	2500000•	1250000.	U.	850000•
47	0.	0.	0.	0 •
46	3400000.	1300000.	U.	1300000.
45	3250000•	1350000.	U •	1400000.
50	5450000.	2100000.	U •	2050000.
51	5000000.	2700000.	U.	1800000.
5 <i>c</i>	4750000.	2850000.	750000.	2050000.
53	4850000.	2900000.	900000.	3050000•
54	3900000.	2550000.	700000.	3100000.
55	5900000.	3300000.	950000.	3900000.
56	6357671.	3545220.	1098445.	4093176.
51	7302095.	3721109.	1281595.	3876189.
58	6768213.	3567657.	1220120.	2708252.
55	8064396.	4100920.	1321534.	3073069.
60	8076283.	4084071.	1456982.	2813568.
61	7811552.	4148646.	1644093.	2391012.
66	7746396.	3999381.	1692636.	2298603.
63	8429179.	4213272.	1782050.	2279592.
64	9291394.	4925763.	2042756.	2258587.
65	9740299.	4940512.	2615195.	2707447.
66	10638845.	4700227.	2137777.	2353788.
67	10759152.	5027060.	2855371.	2380894.
6E	11046050.	5231213.	2960618.	2565438
65	11073583.	5250689.	3858374.	2562809.
70	11800005.	5498857.	4069600.	3364660
71	13783087.	4548801.	4248933.	2595086.
16	12528169.	5025788.	4005967.	3263720.
13	10832310.	5831272.	3187543.	3138042
14	13805551.	7043088.	33/1257.	3351362.
15	17257200.	6265003.	2554111.	2637483.

Table C. 4: Historic Key Lock and Dam Traffic by Major Commodity Group

Lock and Dam #2 - Allegheny River

			Iron Ore and	
YEAR	Coal & Coke	Aggregates	Iron & Steel	All Other
40	0.	0.	0.	0.
41	0.	0.	0.	0.
42	0.	0.	0.	0.
43	0.	0.	U.	0.
44	0.	0.	0.	0.
45	1088000.	211000.	42000.	26000.
46	996000.	384000.	0.	32320.
47	1055000.	356000.	0.	21000.
48	1620000.	610000.	15000.	20000.
45	1850000.	331000.	22000.	21000.
50	1620000.	459000.	58000.	24000.
51	1750000.	556000.	42000.	24000.
52	1420000.	580000.	44000.	48000.
53	1612000.	512000.	188000.	76000.
54	2233000.	727000.	243000.	133000.
55	1785000.	410000.	225000.	145000.
56	2151000.	425000.	236000.	60000.
57	2324040.	321000.	157000.	83000.
58	1898000.	576000.	182000.	68000.
55	1530000.	360000.	218000.	103000.
60	1674000.	316000.	252000.	.0000
61	1952000.	244000.	246000.	56000.
62	1976000.	228000.	146000.	92000.
63	1869000.	420000.	198000.	143000.
64	1894000.	337000.	215000.	156000.
65	1875000.	329000.	246000.	204000.
66	1857000.	320000.	2/3000.	252000.
67	1880000.	256000.	256000.	300000.
68	1425849.	421684.	300999.	281127.
65	2127675.	342868.	317704.	347203.
10	2349300.	419166.	166209.	279376.
/1	2275886.	469832.	136868.	43559/.
12	2178842.	640455.	1/5911.	440524.
73	1853916.	708008.	17819.	513597.
74	2219862.	632210.	196214.	481534.
75	2094074.	620417.	220051.	439635.

Table C.5: Historic Key Lock and Dam Traffic by Major Commodity Group

Lock and Dam #7 - Monongahela River

		Petroleum	
YEAR	Coal & Coke	Fuels	Aggregates
40	0 •	0.	0.
41	0 •	0.	0.
42	0 •	0.	0.
43	0.	0.	0.
44	0.	0.	0.
45	1780000.	60000.	70000•
46	1990000.	90000.	70000.
47	2740000.	110000.	180000.
48	3200000.	120000.	170000.
49	2250000•	190000.	130000.
50	2450000.	200000.	100000.
51	2600000•	200000.	90000.
5è	2440000.	160000.	140000.
53	1979000.	200000.	40000.
54	1555000.	210000.	127000.
55	2515000.	110000.	100000.
56	4770000.	180000.	120000.
57	7379000.	160000.	100000.
58	5949000.	170000.	170000.
59	5870000.	180000.	160000.
60	622000.	210000.	150000.
61	5543000.	230000.	60000.
62	6427000.	245000.	95000.
63	7311000.	260000.	130000.
64	8155000.	275000.	165000.
65	9080000.	290000.	200000.
66	7619000.	290000.	604000.
67	7970000.	280000.	580000.
68	7045561.	307540.	560407.
69	7444207.	325445.	55/241.
70	9281560.	336826.	420586.
71	7352538•	294229.	424980.
72	8700179.	244093.	477561.
73	8012240.	303765.	521965.
74	7891803.	312422.	450610.
75	6891492.	323093.	523875.

Table C.6: Historic Key Lock and Dam Traffic by Major Commodity Group

Winfield Lock and Dam - Kanawha River

			Chemicals
	61.8.6.1		& Chem.
YEAR	Coal & Coke	Aggregates	Fertilizers
40	0.	0 •	0.
41	0.	0.	0.
42	0.	0.	0.
43	0.	0.	0.
44	0.	0.	0.
45	0.	0.	0.
46	0.	0.	U.
47	0 •	0 •	0.
46	0.	0.	0.
45	0 •	0.	U.
50	0.	0.	U •
51	0.	0 •	0.
52	0.	0.	U •
53	0.	0.	0.
54	0.	0.	U.
55	0.	0.	0.
56	0.	0.	0.
57	0.	0.	0 •
58	0.	0.	0.
55	0 •	0.	0.
60	0.	0.	0.
61	0.	0.	0.
62	0.	0.	0.
63	0.	0.	0.
64	0.	0.	U •
65	0.	0.	0.
66	0.	0.	0.
61	4883966.	662889.	3229092.
68	5005262.	848606.	3714043.
67	5052919.	1118841.	3815387.
70	5044695.	1147627.	3841653.
71	4666989.	1637451.	4067659.
16	5109392.	1572196.	3910007.
73	5376597.	1408803.	3490118.
74	4278319.	1595552.	3389352.
75	3720808.	1625490.	2588335.

Table C. 7: Historic Key Lock and Dam Traffic by Major Commodity Group

Lock and Dam #1 - Kentucky River

YEAR	Aggregate
40	0.
41	0.
46	0.
43	0.
44	0.
45	0.
46	0.
41	0.
48	0.
45	0.
50	0.
51	0.
52	0.
53	0.
54	0.
55	53030.
56	66562.
57	0.
58	0.
59	210461.
60	172825.
61	182108.
62	231193.
63	257117.
64	341283.
65	251448.
66	329765.
67	432457.
68	385830.
65	440010.
70	425949.
/1	525454.
12	598990.
73	772362.
14	652607.
75	570840.

Table C.8: Historic Key Lock and Dam Traffic by Major Commodity Group

Lock and Dam #1 - Green River

Coal & Coke
0 •
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1014924.
0.
0.
4964059.
5238071.
7322158.
8220649.
7494652.
10104221.
11091633.
11430184.
13279568.
15561601.
15039759.
16137442.
14001191.
15613571.
15082758.
15157198.
15454541.

Table C.9: Historic Key Lock and Dam Traffic by Major Commodity Group

Cheatham Lock and Dam - Cumberland River

	Petroleum		
YEAR	Fuels	Aggregates	All Other
40	0.	0.	0.
41	0.	0.	Ű.
42	0.	0.	0.
43	0.	0.	0.
44	0.	0.	0.
45	0.	0.	0.
46	0.	0.	0.
47	0.	0.	v.
4 5	0.	0.	0.
45	0.	0.	0.
50	0.	0.	0.
51	0.	0.	0.
5 <i>c</i>	0.	0.	0.
53	0.	0.	0.
54	0.	0.	U.
55	0.	0.	0.
56	0.	0.	U •
57	0.	0.	0.
58	1441890.	760954.	80189.
55	1543038.	834111.	88281.
60	1515549.	818423.	14204.
61	0 •	0 •	0.
62	0•	0 •	0.
63	1872875.	981016.	52238.
64	1357099.	1153638.	28031.
65	0.	0 •	0.
66	0.	0.	0.
67	1341361.	1225920.	69313.
68	0.	0 •	U.
65	1483214.	1194694.	241148.
70	1630946.	1039550.	275664.
71	1690808.	1170902.	517476.
72	1282121.	1472040.	508258.
73	792570.	1636643.	574157.
74	765453.	1379334.	530050.
75	1005483.	1222359.	499993.

Table C. 10: Historic Key Lock and Dam Traffic by Major Commodity Group

Kentucky Lock and Dam - Tennessee River

		Petroleum		
YEAR	Coal & Coke	Fuels	Aggregates	All Other
40	0.	· •	0.	0.
41	0.	0.	0.	0.
42	0.	0.	0.	0.
43	0.	0.	0.	0.
44	0.	0.	Ű.	0.
45	0.	0.	Ű.	0 •
46	0.	0.	0.	0.
47	0.	0.	0.	0.
48	0.	0.	0.	0.
45	0.	0.	Ú •	0 •
50	0.	0.	0.	0.
51	0.	0.	0.	0.
52	0.	0.	0.	U •
53	0.	0.	U •	0.
54	0.	0.	U •	0.
55	0.	0 •	0.	0.
56	0.	0.	0.	0.
57	0 •	0.	V •	0.
56	1386290.	695455.	37350.	927171.
55	1537090.	656807.	517181.	548882•
60	1466469.	714509.	15800.	1383042.
61	996400.	492000.	624169.	181000.
62	455816.	692131.	35185.	1511651.
63	432271.	795204.	6174.	1685662.
64	1907066.	651869.	14991.	2028894.
65	3375126.	671772.	70215.	707753.
6 6	3755101.	722057.	477450.	762118.
67	3886683.	1613031.	1339065.	2803424.
68	4181109.	2158040.	2188186.	1922042.
65	5202346.	2254833.	1832920.	1656181.
70	5271614.	2396470.	1677866.	2153718.
71	6550397.	2246294.	1400514.	3107315.
12	7436084.	2034775.	1508311.	2978484.
73	7768649.	1379491.	2921500.	3212377.
74	6340953.	1481131.	1936058.	5024120.
75	9926105.	2188486.	1462516.	4839570.

APPENDIX D: Initial Inspection of O-D Movements, 1969-1976, By Commodity Group

Table D. 1

								-
Year	1969	1970	1971	1972	1973	1974	1975	9261
Totals								
Comm. Group	160, 625, 000 167, 222, 00d 166, 966,00d 174, 596,000 168, 811, 000 170, 505,000 171, 447, 00d 178, 100, 00d	167, 222, 000	166, 966,000	174, 596,000	68, 811, 000	170, 505,000	171, 447, 000	178, 100, 000
Coal &	54.14%	53,64%	50.66%	53.93%	54.24%	54.46%	58.12%	58.10%
1	86,962,000	89,693,000	84, 711, 000	94,168,000	91, 568,000	92,850,000		99,646,000 103,480,000
leum	9.17	9.31	9, 83	10, 03	10.62	11.14	11.03	10.71
Fueis	14, 722, 000		15, 573, 00d 16, 432, 00d 17, 514, 000	17, 514, 000	17,920,000	18,997,000	18,907,000	19,076,000
Crude	4,10	4,24	4.76	4.47	2.50	. 38	.51	. 50
	6, 593, 000	7, 090, 000	7,957,000	7, 811, 000	4,220,000	644,000	867,000	885, 000
	14.32	12.91	14.40	12.95	14.03	13, 55	11.87	11.91
Aggregates 4	23, 001,000	21, 581,000	24,074,000	22,617,000		23,683,000 23,107,000		20, 358,000 21, 205, 000
4	2.06	2, 02	2.41	1.80	1.78	1.97	2.39	3.02
	3, 304, 000	3, 375, 000	4, 028, 000	3, 148, 000	3, 013, 000	3, 355, 000	4,097,000	5, 380,000
Chemicals &	6.17	7.11	68.9	6,53	6.27	6.81	5.46	5.34
	9, 915, 000	11,885,000	11, 521, 000	11, 406, 000	10, 584, 000	11,610,000	9,362,000	9,507,000
Ores &	2.16	2,35	2.66	2.07	1.80	2.19	2.01	1.88
	3,474,000	3,925,000	4,443,000	3,614,000	3,046,000	3, 728, 000	3,444,000	3,345,000
Iron Ore &	2,59	3, 11	2,68	3, 09	3.20	3, 01	2,43	2,42
	4,167,000	5, 198, 000	4,478,000	5, 397, 000	5,403,000	5, 128, 000	4,164,000	4,303,000
	5, 28	5,32	5.57	5.11	5,55	6.50	6.18	6.13
All Other 9	8, 487, 000	8,902,000	9, 322, 000	8, 921, 000	9,374,000		10,602,000	11, 086, 000 10,602,000 10,919,000

Table D. 2

P/A

			COV	MODI'							
'76 97.33	32, 222, 877 31, 14	27,823,052 26.89	22, 930, 023 22. 16	6, 147, 927 5. 94	3, 165, 405 3. 06	2,851,359 2,76	1,420,28	592,788 . 57	•	2, 043, 157 1. 97	1,519,862
175 97.12	32, 634, 377 32.75	30, 246, 576 30, 35	18, 067, 656 18. 13	8, 295, 370 8, 32	1, 975, 091 1, 98	1,466,772 1.47	1,456,851	848,889	,	1,572,872	232,528
174	31,863,731	28,847,045 31.17	16, 106, 348 17. 40	7,826,971 8.45	2, 620, 889 2. 83	1,295,654	1,346, 902 1,46	253, 250 . 27	-	162,311 . 18	191,340
173	29,310,959 32.01	27,845,409 30,41	17, 255, 945 18, 85	8,856,340 9.67	3,838,217 4.19	1,326,324 1.45	1,427,915 1.56	105,573	•	201, 256	62,906
'72 99. 12	28, 579, 605 30, 35	26,376,685 28.01		9, 991, 744 10.61	5,311,501 5.64	1,332,719 1.42	1,877,610 199	95,366 .10	1	433, 577 . 46	7,268
171	25, 131, 806 29, 67	21, 918, 438 25.87	21,420,455 25.29	8, 289, 818 9, 79	4,411,122 5.21	1, 181, 147	1,809,228 2.14	37,824 .04	•	263,590	5,929
170	30,854,945 34.40	25,655,552 28.60	17, 126, 000 1 9109	10, 204, 430 11.38	2,684,443	1,394,265 1.55	1,434,523 1.60	33,611 . 04	72,900	129, 143	
69,	30, 960, 310 35, 60	24,374,782 28.03	55	116	2, 883, 082 3, 32	1,329,066 1,53	1, 172, 802 1, 35	190,800	159,600 • 18	56,230 .06	
Origin BEA	99	55	52	65	115	47	84	64	49	54	29

Table D. 3

					GROUI	? <u>1</u>					
'76 88.14	39, 292, 82 4 37. 97	14, 270, 263	13,723,555 13.26	7,253,286	3, 556, 146	7,114,68	1,714,892	2,960,006	856,554	ı	450, 982
.75 · 88.14	34, 926, 028 35.05	12, 648, 942 12.69	12, 938, 090 12, 98	7,332,567	3,544,550 3.56	9,634,261	2, 903, 463	2,506,574	1,016,707	1	376,860 .38
174	36,375,661 39.30	10,490,328	11, 914, 429	4,687,653	2,598,594	6,562,840	1,704,670	2,543,994	1, 189, 771	•	1, 924, 666 2. 08
173 87,38	36, 373, 386 40. 12	8,898,615 9.72	10,657,350	4,856,099	3, 945, 137	7;251,566	2,724,489	1,751,243	1,261,620		1, 927, 293
.72 86.38	36. 942, 567 39. 23	9, 270, 882 9.84	11,051,162	8,041,876 8.54	3,698,180 3.93	5, 285, 948 5.61	2, 979, 502 3. 16	1,849,417	1,580,519	655,403	
171.	34,870,279 41.16	10,765,780 12.71	9,081,825 10.72	5,793,376 6.84	3,493,006 4.12	3,025,486	2,358,784	1,602,226	1,310,124		1, 635, 124 1, 73
'70 87.15	41,634,831	8,828,212 9.84	8, 145, 968 9. 08	5,309,667	3,749,067 4.18	3,269,718	2, 904, 466 3. 24	2,030,256 2.26	1, 124, 853		1, 178, 358
n '69 88.30	39, 766, 110 45.73	'9, 408, 472 10. 82	7,079,707 8.14	5, 993, 309 6.89	3,830,401 4,40	3,615,415 4.16	3,097,905 3.56	2,377,875	1,266,260	358,729 .41	
Destination BEA	99	52	62	54	47	49	59	115	48	64	55

Γ	,	3	8	3	3	567	97 4 16	\$0¢	5 4		1		
P/A	'76 52.46	4,336,544	2,668,317 13.98	8.73	673, 049 3. 53	389, 567 2. 04	182, 974 . 96	26, 506 . 14	67,254 .35	•	•	'	•
	175 52.39	4, 281, 406 22. 62	2,573,791 13.62	1,586,910 8.40	859, 703 4.55	404, 112 2, 14	78, 922 . 42	36,838	55, 555 . 29	28,005 .15	•	•	•
	'74 50.50	3, 873, 568 20. 39	2,773,537 14.60	1,779,278 9.37	698, 288 3. 68	326, 289 1. 72	43,253	65, 154 . 34	28, 151 . 15	2, 141 . 01	•	•	10.01
	'73 51.22	4, 057, 279 22. 64	2, 667, 054 14.88	1, 627, 264 9. 08	608,385 3.39	174, 984	20,492	13,381	12,897	•	•	•	-
	'72 54.50	4,400,887 25.13	2, 908, 053 16, 60	1,361,472 7.77	517, 226 2. 95	249, 788 1. 43	63,874 .36	29, 233	11,668	2,946	,	,	•
	171 53.67	3, 635, 155 22. 12	2,974,707 18.10	1,238,203 7.53	559,666 3.41	312, 220 1. 90	31,190	17, 140	7,277	43,122	,	2°53	•
	'70 52.16	3,234,757 20.77	2,730,326 17.53	1,150,408 7.39	641,815 4.12	293,510 1.88	42,501	7,016	3, 223	18, 142	1,750 10	,	•
4.	'69 54. 18	2, 928, 135 19, 89	2,722,781 18.49	1,172,966	4.84	378,086	40,914	7,383	5, 932 . 04	4,679	2,635	,	,
Table D. 4	Origin BEA	52	55	62	99	54	115	64	4.7	49	48		

Table D. 5

ſ			730		,		GROUI	·	980, 108 5. 1 4	5 94, 3 92 3. 12		443, 764 2.33	
	92,	88.40	3,513,730	3, 739, 360	1,869,422 9.80	12.77	1,479,040 7.75	7.09	980, 1	3.12	•	443, 764	
	175	88.56	3, 467, 663 18.36	4,120,090	1,966,285	2,378,181 12.59	1, 157, 757 6. 13	1,276,878 6.76	806,515 4.27	655,678 3.47	•	471, 129 2.49	
	174	87.58	3, 619, 17 19, 05	4, 519, 392 23.79	1, 902, 788 10.02	2,485,959 13.09	763, 312 4. 02	1,201,948 6.33	796,806 4.19	683,370 3.60	311,232 1.64	351, 968 1.85	
	173	90.51	3,650,428 20.37	3,660,070	2, 170, 366 12. 11	2, 207, 485 12.32	792,570 4.42	1,188,860 6.63	1, 188, 781 6, 63	676,541 3.77	303, 765 1. 69	834,527 2.15	
	172	90.78	3, 380, 593 19.30	3,089,102 17.64	2,020,704 11.54	2, 233, 444	1, 279, 175	1,220,189 6.97	1,242,654 7.09	745, 474 4.26	244, 093 1. 39	444,888 2.54	
	171	88.11	3,011,814	2,693,389	1,764,068	1,847,943	1,647,686	1, 102, 163 6.71	1, 171, 407	661,542	294,229	291,855 1.72	
	170	89.22	2, 905, 599 18.66	2,697,854	1,649,153	1,742,223	1,462,392	1,088,996 6.99	1,095,311 7.03	615,508 3.95	335, 983 2. 16	302,859 1.94	
		89, 23	2,713,449	2,455,673 16.68	1,723,567	1,584,741	1,340,658 9.10	1,046,919 7.11	1,112,703	572,448 3.89	326,692	261, 835 1.78	
	stination	٠ د	54	99	62	52	49	55	115	64	64	47	

Origin								P/A
BEA	1969	1970	1971	1972	1973	1974	1975	1976
55	5863767	5929046	6614567	7012112	3522586	10065	72406	
	88.94	83.62	83, 13	89.77	83.47	1.56	8,35	
CY	508999	893321	1094851	556890	311600			
70	7.72	12.60	13.76	7,13	7,38			
***	178079	197100	213925	213128	232302	189130	179738	
t	2.70	2.78	2.69	2.73	5.50	29.37	19.69	
ទ	15029	44991		3067	19301	4189	11027	
3 c	,23	. 63		• 04	. 46	. 65	1.27	
77	4781					45510.	122243	
o ;	20.					7,07	14, 10	
						654		2749
4 (.10		.31
4.2							2591	
ζ.							• 30	
TOTAL.	6592947	7090464	7956895	7811198	4220182	643956	867130	886774
	99,66	99,63	99,58	99.67	96.81	38.75	43,71	.31

Destination BEA	1969	1970	1971	1972	1973	1974	1975	P/A 1976
	5242651	5774924	6512713	6366949	3091797	15783	22800	25023
52	79, 52	81,45	81.85	81.51	73,26	2,45	2.63	2,83
2	1094854	1084840	1207841	1202053	742389			· · · · · · · · · · · · · · · · · · ·
t	16,61	15, 30	15,18	15,39	17.59			
	193004	173102	213925	216195	252633	193547	204532	20749
99	2.93	2.44	5.69	2.77	5.99	30.06	23, 59	2.35
 	17321	2786	22028	16861	116347	352904	417989	690277
55	• 26	• 04	: 28	.22	2,76	54.81	48.21	78.15
ç	1400							
4	• 02	_						•
	1222	44991			8840	59576	127721	147233
64	05	.63			121	9.25	14.73	16.67
							16527	
29							1.91	
							2842	
115							.33	
								<u> </u>
						•		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6592871	7090146	7956888	7811249	4220307	643868	867017	883208
101	99,36	98.86	100,00	99.89	99.81	96.57	91.40	100.00

Table D.8

Origin BEA	'69 96.01	'70 95.22	'71 96.04	'72 88.60	'73 93.55	'74 95.46	175 '	176 96.10
54	5,695,060	4,180,366	4,643,497	4, 247, 540 18.78	4, 911, 925 20.74	4, 396, 922 19. 03	4,816,639	5,429,281
99	4,531,378	4,688,932	5,102,301 21.20	3,018,635 13.35	4,444,996 18.77	4,465,972	3, 780, 998 18.57	4,601,440
115	2,803,794	3,460,758 16.03	3,619,904 15.04	3,666,744	3,871,830	4,633,641	3, 480, 490 17, 09	3,779,448
62	1, 994, 902 8.67	1,770,602	2,423,187	2,411,272	1,680,273	1,724,064	1,267,055	1,353,214
52	1,321,149	1,206,972	1,281,373	1,444,119	1,369,322	1,577,061 6.82	1,585,693	1,766,610
64	699,654 3.04	1,406,549	1, 920, 279	1,680,372	1,663,544	1,447,069	1,770,022 8,69	729, 897 3.44
48	1,254,004	1,186,581	1,406,988 5.84	1,403,160	1,655,437	1,762,626	1, 292, 204 6.35	1, 205, 965 5.69
55	1,11,083	1,171,650 5.43	1,396,560 5.80	1,056,531	1,511,296	1,241,692	555,556 2.73	496, 235
49	843,795 3.67	730,550	783,702 3.26	493,038 2.18	518,500	366,480 1.59	358,235 1.76	430,645
47	831,496 3.61	751,053 3.48	539, 136 2. 24	620,281 2.74	525,832 2.22			
65						447,100 1.93	523,875 2.57	586, 334

D. 9

Destination	e	. 70	.71	172	.73	174	175	92.
BEA	•	94.31	93.62	92.55	94.17	90.76	96.01	91.97
99	6,007,910	5,688,602	6,512,788	5,651,821 24.99	5, 960, 807	5,698,544 24.66	5, 166, 886 25, 38	4,834,056
54	3,698,141 16.08	2, 145, 429	2,579,452	2,072,251 9,16	2,789,384	2,721,237	2,864,474	2,740,157
55	2, 377, 299	2,539,448	2,490,506	1,943,522 8.59	2,311,886 9.76	1,717,725	1, 249, 659 6. 14	1,346,651 6.35
52	2,176,917 9.46	2,323,442	2, 892, 112 12.01	3,343,916 14.78	3, 080, 771 13. 01	3,077,591 13.32	2,657,522 13.05	3,512,882 16.57
59	1,614,892	1,333,721 6.18	1,699,305 7.06	1,774,744 7.85	1, 152, 835	1,283,822 5,56	820, 942 4. 03	1, 131, 084 5, 33
115	1,360,605 5.91	1,671,152	1,432,844 5.95	1,287,858 5.69	1,565,422 6.61	1,437,964 6.22	1,162,395.	1,397,876
49	1, 232, 050 5, 36	7.17	1,745,942 7.25	1,513,668 6,69	2, 315, 000 9, 78	2, 177, 244	1, 783, 399 8, 76	8.57
48	1,354,922 5.89	1, 285, 409 5, 96	1,494,759 6.21	1,467,755 6.49	7.16	1,762,626	1,328,310	5.40
64	1, 163, 416 5. 06	1,032,758 4,79	1, 169, 032 4.86	3.17	822,544	3.72	6.11	5.96
47	1, 144, 369 4. 97	784, 491 3.63	603,676	1, 162, 683 5. 14	2.56	1.03	1.24	1.48

rable D. 10								
Origin								P/A
BEA	1969	1970	1971	1972	1973	1974	1975	1976
ر د د	558633	374222	782344	880904	888546	907077	1560812	2357006
	16.91	11.02	19, 42	27,98	29,49	27.04	38.09	43,80
	109249	86424	98306	91498	93036	139751	208480	313995
	3,31	2.56	2.44	2.91	3,09	4.17	5.09	5.84
67	99495	74810	192954	228026	241814	504382	893172	1179524
1	3.01	2.22	4.79	7.24	8,03	15.03	21.80	21.92
47	35050	44135	38337	36711	43354	41471	55582	64795
•	1,06	1,31	• 95	1,17	1,44	1.24	1.36	1.20
 	3696		:		1300	1421	856	107242
r C	.11				• 04	0.4	.21	1 90
, ,	513	1344				1524	6912	1557
9	.02	• 04				\$0°	.17	• 03
		2520			12167	6126		7278
4.		.07			.40	• 18		. 14
		1348					1512	· ·····
06		0.4					0.4	
S			1234	1200	1543			1461
7 C			.03	• 04	• 05	•		• 03
				2509	11397	16888	3810	13323
49				•19	.38	.50	60.	.25
								1545
49								.03
TOTAL.	3303566	3374409	4028548	3148335	3013041	3354575	4097695	5381292
	24.42	17.33	27,63	39, 53	42.92	48.25	66.85	75.23

₹
A

Table D. 11								7/4
Destination BEA	1969	1970	1971	1972	1973	1974	1975	1976
;	1568264	1682650	1600747	1107425	1029058	957358	861689	625047
ř	47.46	49, 85	39, 74	35, 17	34, 16	28, 53	16.82	11.62
	916721	1028064	1082389	670082	717254	672180	589264	653382
4	27.74	30, 46	26.87	21.28	23,81	20.03	14.38	12,14
i.	148973	153166	275623	179175	127225	164953	171293	156229
c c	4.51	4.54	6.84	5.69	4.22	4.92	4.18	2.90
	38627	30970	41574	43607	13747	20795	9733	21586
¢	1.17	.92	1.03	1, 38	• 46	. 62	.24	.40
	8619	8143	12915	2744		5433.	4550	3003
79	.26	.24	. 32	60•		. 16	Ξ.	98.
	2550	35623	27530	3341	19089	30888	21316	12691
90	80.	1.06	. 68	.11	. 63	- 92	. 52	
	1228	14544	3550	21011	3051	6107	1491	4453
115	*0.	.43	60.	.67	.10	. 18	• 04	80
99					1119			1420
					*04			03
52							1406	1466
					1			• 03
	3304391	3375426	4028050	3148777	3012464	3355619	4097491	5379062
TOTAL	81.26	87,50	75.57	64.39	63.42	55, 36	36, 32	27.50

Origin								P/A
BEA	1969	1970	1261	1972	1973	1974	1975	1976
,	20901 88	2107548	2114217	2067804	5040609	2026953	1471910	281451
94	21.08	19.36	18, 35	18.13	19.56	17.46	15.72	2.96
S	1929394	2186355	2408167	1574806	932041	976821	775123	976517
76	19.46	20.09	20.90	13.81	8.81	8.41	8.28	10.27
	763115	786255	772743	926432	768419	1114739	859078	945768
8	7.70	7.22	6.71	8, 12	7.26	9.60	9.18	9.95
70	264273	264053	103355	63032	7411	12713	12173	20918
24	2,67	2. 13	. 90	, 55	, 07	.11	.13	-22
	253078	172809	222818	233845	242629	218737	188784	218365
4.	2,55	1.59	1.93	2, 05	2.29	1,88	2,02	2.30
	185268	182367	183923	285805	339317	349808	342058	345848
115	1.87	1.68	1.60	2,51	3.21	3.01	3,65	3.64
	41864	42980	45954	39053	3731:1	29512	23095	24378
49	. 42	.39	. 40	.34	. 35	, 25	.25	92.
	26024	29412	33517	41256	32380	14614	27775	35868
	.26	.27	. 29	.36	. 31	. 13	.30	. 38
	25304	44876	22901	23642	30274	21203	15965	28508
29	,26	. 41	0.2.0	.21	.29	. 18	,17	30
	4412	24351	27503	2972	26711	131101	121430	58097
55	.04	.22	.24	.03	. 25	1.13	1.30	.61
	9915503	10886095	11521618	11405427	10585755	11609123	9363295	9508480
TOTAL	56,31	53.66	51,52	46,11	42,40	42.16	41.00	30.89

able D. 13

Destination								P/A
BEA	1969	1970	1971	1972	1973	1974	1975	1976
S	4083042	4028282	4269326	4074851	3923001	3956096	3077244	2251092
3	41.18	37.01	37.06	35, 72	37.07	34,07	32.87	23, 68
	1878946	2049968	1996530	1890889	1552004	1870795	1357139	1490398
00	18,95	18,84	17,33	16,58	14,66	16,11	14.50	15,68
	748751	951638	967616	801186	724911	697467	685321	1006818
70	7.55	8.74	8.40	7.02	6.85	6.01	7, 32	10.59
,	472630	524069	430064	461728	494062	623649	390684	470294
49	4,77	4, 82	3, 73	4,05	4.67	5.37	4.17	4.95
3	415000	474640	373446	355770	234933	218079	245871	305980
54	4.19	4,36	3,24	3, 12	2,22	1.88	2.63	3.22
	271220	841425	1086026	1048397	1077433	1434651	1170354	1137675
55	2.74	7, 73	9.43	9.19	10.18	12, 35	12.50	11.97
	363035	366840	491633	581661	812185	783573	802654	1051231
4	3,66	3,37	4.27	5.10	7.67	6.75	8.57	11.06
	394887	419093	477589	395933	316558	362520	209845	252007
64	3,98	3,85	4, 15	3.47	2.99	3, 12	2,24	2,65
 .	201703	184742	239105	348867	272558	376814	228427	348774
CTT	2.03	1.70	2.08	3.06	2,58	3.24	2.44	3.67
	113032	110240	161714	290838	259719	249637	225740	229602
2	1.14	1.01	1.40	2,55	2.45	2.15	2.41	2.41
1000	9915109	10884306	11520037	11407757	10582684	11611670	9361862	9506301
Tuioi	90.19	91.43	91.09	89.86	91.34	91.05	89.65	89.88

Origin								P/A
BEA	1969	1970	1971	1972	1973	1974	1975	1976
ç	88651	43645	74297	80674	67883	94318	53395	68318
76	2,55	1.11	1,67	2.23	2.23	2,53	1.55	2.04
3.5	11599	35618	41445	57173	43205	69278	73425	56258
· · ·	.33	.91	.93	1.58	1.42	1.86	2, 13	1,68
47	9312	6107	8986	48410	79137	7770	9468	38611
	.27	.16	. 22	1.34	2.60	.21	.27	1,14
	2000	9855	5349	17278	43638	293512	178163	186810
99	. 14	.25	. 12	. 48	1, 43	7.87	5.17	5.59
;	2782	7718	52329	34694	36343	43156.	15597	13023
40	80.	.20	1, 18	96.	1.19	1.16	. 45	. 39
	1896	6336	29646	33748	7365	1209	2416	229
20	• 05	. 16	.67	.93	.24	.03	. 07	. 02
		2802		1272			·	1374
55		.07		. 08				• 04
		1040						
48		.03						
•		1028	6112					1410
•		. 03	90.					40.
			730	926				
4.			.02	.03				
						059	2608	
29						. 02	80.	
TOTAT.	3476510	3931982	4448922	3617668	3044081	3727984	3444839	3348922
	3, 42	2, 92	4.87	7.63	9.11	13.68	9.72	10.94

Destination								P/A
BEA	1969	1970	1971	1972	1973	1974	1975	1976
	964063	1263666	1543952	1270598	818853	730314	787147	689294
99	27,76	32,26	34, 79	35, 18	26.86	19, 58	22, 85	20.62
	675429	576542	192519	557460	537081	717612	458140	592539
115	19,45	14, 72	13,87	15, 43	17,62	19.24	13,30	17,73
	378092	483466	491662	312522	330749	475783	357180	299123
25	10.89	12,34	11.08	8.65	10.85	12.75	10, 37	8,95
	320535	383090	448231	443633	277056	492324	455642	552156
29	9.23	9.78	10,10	12.28	9.09	13,20	13.23	16.52
	302784	365783	. 521980	320350	341852	485409.	616504	308578
*	8.72	9,34	11.76	8, 87	11.21	13.01	17.90	.9.23
	242262	181261	126351	166282	180874	167013	129779	151662
47	6.46	4.63	2.85	4.60	5.93	4.48	3.77	4.54
	180294	227383	256652	239694	172423	215009	246490	232039
54	5, 19	5.80	5, 78	6.64	5.66	5.76	7.16	6.94
	137749	156846	116103	62740	80149	38013	49081	81424
48	3.97	4.00	2.62	1.74	2.63	1,02	1.43	2.44
	48625	78999				58212		
25	1.40	1.70				1.56	-	
	47234	70657	55129	32131	58859	75182	67708	101779
20	1,36	1.80	1.24	68.	1.93	20.2	1.97	3.05
			59786	33232	46585		72543	112042
49			1,35	.92	1.53		2,11	3,35
	3472849	3917130	4437919	3611706	3048596	3729898	3444845	3342842
TOTAL	04.43	96.37	95,44	95.20	93.31	92.62	94.09	93.37
							i	

COMMODITY GROUP 8

BEA	1969	1970	1971	1972	1973	1974	1975	1976
99	2695543	3429478 65.97	2910713 64.99	3305269 61.24	3187103 58.98	2768807 53.99	2080558	1713068 39.81
	362516	252054	221264	235623	257021	317394	293162	198174
52	8.70	4.85	4.94	4.37	4.76	6.19	7.04	4.61
	84975	227333	87950	139453	161353	103044	137301	40426
62	2.04	4.37	1.96	2.58	2.99	2.01	3.30	.94
	29969	71189	40904	56794	53342	63471	59369	57402
54	1.67	1, 37	. 91	1,05	66.	1.24	1.43	1, 33
	54108	92752	94507	103427	114045	116367	102942	84912
115	1.30	1, 78	2.11	1.92	2.11	2.27	2.47	1.97
	52659	44966	48481	52514	96805	31322	44416	51577
47	1.26	. 87	1.08	.97	.93	. 61	1,07	1.20
	21868	38545	20008	45327	53354	58284	29255	38510
49	. 52	. 74	. 45	. 84	.99	1,14	02.	-89
55	14113	19660 .38	19690	27992	31466	59834	34393	56632 1.32
49	11801	25294	25001	11010	23171	62022	28337	37336
	.28	.49	95.	.20	. 43	. 43	89.	.87
							12297	16193
48							.30	.38
50	6466	1395	17808	10277 .19	10387 • 19	9381 .18		
TOTAL	4167506 89.95	5198542 80,85	4478709 77 . 84	5397239 73.88	5403701 72.95	5128370 69.23	4164448 67.78	4303110
	T							

_
_
a`
_
ø
_
ַם
ત
_

Destination BFA	6701	1070	1691	1972	1973	1974	1975	1976
	1832199	1700730	1646867	2065204	1905844	1563678	1243219	1260639
99	43.96	32.72	36.77	38.27	35,27	30.49	29.85	29.29
	357990	333327	393616	320296	364893	431719	410084	519048
79	8, 59	6.41	8.79	5.93	6.75	8.42	9.85	12.06
54	176855	246699	203989	313061	318069	324174	260288	303016
⊸	4.24	4.75	4.55	5.80	5.89	6.32	6.25	7.04
115	117198	54278	70637	101153	66217	82918	70298	57108
	2.81	1.04	1,58	1.87	1,23	1.62	1.69	1, 33
	93300	96575	101462	119763	151419	160453	52095	79415
55	2.24	1.86	2.27	2.22	2.80	3,13	1.25	1.85
	83321	138265	173987	233176	259713	238097	181521	304526
49	2.00	2,66	3,88	4, 32	4.81	4.64	4.36	7.08
47	79553	119252	153652	179388	198050	215210	133519	145124
	1.91	2.29	3,43	3.32	3.67	4.20	3.21	3, 37
52	38232	114377	77803 1.74	73760 1.37	210944	131404 2, 56	145829 3.50	134353 3.12
	38688	59382 1.14	60857 1.36	93428 1.73	91753 1, 70	114955	76266 1.83	96060
64		26727		26027	46434	53674 1.05	22386	78649 1,83
20	11128		71722 . 51					
	4167878	5197830	4478833	5396404	5403584	5128495	4164888	4303991
TOTAL	67.87	55,58	64.88	65, 31	66.88	64.67	62.33	69.20

~
18
_•
Д
a
ble
늄
Ĥ

Origin								P/A
BEA	1969	1970	1971	1972	1973	1974	1975	1976
	1958301	2890863	3051138	3154242	3396605	5294940	4655496	4207252
115	23.07	32,48	32, 73	35.36	36.24	47.77	43.92	38,53
99	1090283	554814	747155	459726	512706	450505	446440	523164
	12.85	6.23	8.01	5.15	5.47	4.06	4.21	4.79
	701836	532379	291486	252396	351615	238583	223384	174065
62	8.27	5.98	3,13	2.83	3.75	2.15	2.11	1.59
	530774	516193	378366	505339	426715	235394	180182	120815
54	6.25	5.80	4.06	5,66	4,55	2.12	1.70	1.11
;	510806	415582	674933	392556	414823	433964	406040	381039
75	6.02	4.67	7.24	4.40	4.43	3.91	3,83	3.49
	231963	255864	288433	355070	426319	447592	550844	881669
47	2.73	2.87	3,09	3.98	4,55	4.04	5.20	6.40
1	214543	310697	278403	248781	263772	199745	356872	934647
55	2,53	3.49	2.99	2.79	2,81	1.80	3,37	8,56.
	176163	220279	260916	126092	149805	182240	265438	200632
84	2.08	2.47	2.80	26.2	1,60	1.64	2.50	1.84
- 49	87880	107398	109465	128907	137271	139515	147608	130911
	1.04	1.21	1.17	1, 44	1.46	1.26	1, 39	1.20
,	65784		81347	88586		59083	83011	73803
0.6	. 78		.87	66.		.53	. 78	89.
- 64		150675 1.69			85464 .91			
TOTAL	8488518 65.62	8900440	9322145	8920368	9372530	11084236	10599945 69.01	10919418

P/A 10919039 1976 1319020 12.08 239095 522479 4.79 684496 742244 504747 569327 866692 153265 200551 53.14 4.62 6.27 6.80 7.94 2.19 5.21 1.40 1.84 10604280 1085431 1975 1186619 544233 391323 3.69 197055 918670 586221 124275 410963 55,55 443961 10.24 3.88 8.67 5,53 11.19 5,13 4.19 1.86 1.17 11087250 57.80 1974 1463517 379320 3.42 344990 968969 937322 1095591 484732 158227 229507 718442 6.48 5,38 4.37 8.46 9.88 2.07 1.43 3.11 9375725 1552620 16.56 1007072 323766 3.45 1973 377090 452429 286813 308130 168536 521988 62.56 416191 10,74 4.02 6.60 3.06 4.83 3.29 5.57 4.44 8921368 66.50 1265050 14.18 360688 326730 3.66 1177260 400758 1972 1119962 253464 667293 362139 13.20 12,55 7.48 2.84 4.06 4.04 4.49 1447533 15.53 9321011 395375 **4.**24 342729 452690 1971 1154571 387389 439324 597371 816284 65,93 112545 12,38 8.76 3.68 4.71 4.86 4.15 6.41 1.21 8903547 1080208 275979 1970 1182391 450645 241765 2.72 385739 669197 63,40 634116 411705 311913 12,14 3,50 4.63 5.06 7,52 4,33 7.12 3,10 8486704 71.61 1954488 23.03 1969 1090374 243022 2.86 535447 367967 321822 194415 644571 143951 581201 12,85 7.59 6,85 4.34 3.79 2.29 6.31 1.70 Destination TOTAL 115 20 BEA 64 99 **62** 25 54 8 49 47 55

The second secon

Table D. 29

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	99	99	99	99	9	99	99	999
1	27508542	27477486	2 159 1733	24368288	25080517	25413760	244 15 123	26346785
	88.85	89.05	85.91	85.26	85.57	79.76	74.81	81. 76
	75	25	25	79	79	79	79	79
7	2864903	2447140	2073200	2308212	233 1522	4220743	4366062	3447179
	9.25	7.93	8.25	8.08	7.95	13, 25	13,38	10.70
	29	759	79	252	25	25	64	25
ю	330344	79 1380	1405498	1845700	1832 11 3	1979903	1933098	1765226
	1.07	2.56	5.59	6.46	6.25	6.21	5.92	5.48
	64	11	511	88	64	114	25	49
4	125130	58199	23137	15296	37580	108434	1852449	454627
	.40	. 19	60.	.05	. 13	.34	5.68	1.41
	17	64	64	64	<u>SIT</u> .	13.7	65	59
5	21894	57799	18429	13316	10895	60418	28820	81936
	.00	. 19	.07	. 05	. 04	. 19	60.	. 25
Total Ogiginatin Tohnage	Total Originating	30854945	25131806	28579605	29310959	31863731	32634377	32222877

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	54	54	54	54	45	49	49	54
-	5953096	5291162	5114494	6361522	6520233	6136320	7314220	6422499
	24.42	20.62	23, 33	24, 12	23,42	21, 27	24.18	23.08
	79	79	138	49	29	54	54	49
2	3983268	4115883	3384747	4833455	4514724	4451584	9661259	6285675
	16.34	16.04	15.44	18.32	16.21	15, 43	21. 73	22, 59
	49	138	79	79	54	79	29	79
m	3432652	3485614	3254770	3985659	4343651	4408795	5219969	4944630
	14.08	13.59	14.85	15.11	15.60	15.28	17.26	17.77
	138	49	49	138	138	511	138	138
4	3001697	3159842	2734047	3708479	2888229	2001537	2887286	2868285
	12.31	12, 32	12.47	14.06	10.37	6.94	9.55	10.31
	3115	311	55	137	7.4	137	47	115
v	2318002	1963503	1566731	2185622	1738145	1844477	1816724	1686100
	9.51	7.65	7.15	8.29	6.24	6.39	6.01	90.9
Total Originatin Fonnage	Total 24374782 Originating	2565552	21918438	26376685	27845409	28847045	30246576	27823052

Commodity Group 1

Commodity Group 1

Table D. 22

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage Origin BEA 52

	6961	1970	1971	1972	1973	1974	19.75	19.76
	99	99	25	25	252	25	25	25
-	6880462	9098589	8457430	7337893	6796329	7289184	8991500	8896710
	39.67	40.02	39.48	37.95	39,39	45.26	49, 77	38.80
	75	25	99	99	99	99	99	99
7	6344072	5906450	7321257	5486932	5350984	4601760	4913699	7897538
	36.58	34.49	34.18	28,38	31.01	28.57	27.20	34,44
	79	79	79	79	29	79	79	79
м	2751650	3076695	4330761	4704321	3506242	2830677	2438525	4172726
	15.86	17.97	20.22	24.33	20.32	17.57	13, 50	18.20
	114	141	114	64	64	64	115	114
4	339273	356299	359796	631105	442397	530256	408807	449111
	1.96	2.08	1.68	3,26	2,56	3.29	2,26	1,96
	77	114	64	114	141	114	64	13.7
S	317206	279633	320081	319603	430381	400104	331695	429800
	1.83	1, 63	1. 49	1,65	2,49	2,49	1.84	1.87
Total Originatin	Total Originating 17344977	17126000	21420455	19335633	17255945	16106348	18067656	22930023

Table D. 23

9
naj
ũ
H
g
ati
ä
rig
0
tal
Tota
ų
ķ
, put
q
nage and
na
.6
H
٥
at
Ë
Dest
и.
2
tio
2
St;
å
Top 5 Des
do
H

	6961	1970	1971	1972	1973	1974	1975	1976
	99	99	99	99	99	99	99	99
~	5375617	7299964	5931034	7023286	6140855	6132314	5420727	4575424
	63.56	71, 54	71, 55	70.29	69.34	78.35	65,35	74.42
	59	59	59	65	65	65	65	65
2	3082499	2904466	2358784	2968458	2714605	1667477	2874643	1572503
	36.44	28.46	28.45	29, 71	30,65	21,30	34,65	25, 58
		ļ			79	64		
m					880	26222		
					. 01	. 34		
						25		
4						958		
						.01		
								-
ĸ								
Total Originating 8458116	g 8458116	10204430	8289818	9991744	8856340	7826971	8295370	6147927

0/0

Table D. 24

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	47	47	47	47	47	38	137	252
-	1776890	1527988	1567735	1384995	973409	405095	346265	1565762
	61.63	56.95	35,54	26.08	25.36	15.46	17, 53	49,96
	17	ū	. 721	54	39	49	32	46
2	906526	992802	617593	1172522	503401	371711	336574	679827
	33.85	26.40	14.00	22.08	13. 12	14.18	17.04	21.48
	89	79	54	<u>76</u>	54	137	114	39
m	42592	148979	559046	778192	430724	367897	236510	350225
	1.48	5,55	12.67	14.65	11, 22	14.04	11.97	11.06
	76	76	38	49	48	39	115	115
4	34867	98347	431819	395799	422493	345403	216504	221122
	1.21	3.66	9. 79	7.45	11.01	13, 18	10, 96	6.99
	49	89	49	751	38	48	38	114
\$	22114	85485	291439	329547	379879	281205	157658	149624
	. 77	3.18	6.61	6.20	9.90	10. 73	7.98	4.73
Total Originating 2883082	g 2883082	2684443	4411122	5311501	3838217	2620889	1975091	3165405

D. 25

Table D. 25

Destination BEA 66

Tonnage
Destination
of Total
and %
Tonnage
Originating
p 5 Origins,
Top

	1969	1970	1971	1972	1973	1974	1975	9261
	99	99	99	99	99	99	99	99
-	27508542	27477486	21591733	24368288	25080517	25413760	24415123	26346785
	69.18	66.00	61.92	96.39	68.27	69.86	69.91	67.05
	25	59	25	59	65	59	59	25
~	6880462	7299964	7321257	7023286	6140855	6132314	5420727	7897538
	17.30	17.53	21, 00	19.01	16.72	16.86	15. 52	20.10
	59	52	59	52	52	25	52	65
m	5375617	6853606	5931034	5486932	5350984	4601760	4913699	4575424
	13.52	16.46	17.01	14.85	14.57	12.65	14.07	11.64
					54	64	64	54
4					92412	71100	52905	185264
					. 25	. 20	. 15	. 47
,					114	114	54	29
					51709	67310	50118	135601
					. 14	. 19	. 14	. 35
Total Destination	39766110	41634831	34870279	36942567	36737386	36375661	34926028	39292824
Longage		, , , , , , , , , , , , , , , , , , , ,		Ĭ				1

The state of the s

Commodity Group 1

Control of the late of the second second

Destination BEA 54

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

55 5114494 88.28	55	55	55	55	55
5114494			į	1	:
88.28	6361522	4343651	4451584	9661259	6422499
	79.10	89.45	94.96	89.63	88.55
티	115	115	115	54	54
559046	1172522	430724	160751	402025	827837
9.65	14.58	8.87	3,43	5.48	11.41
114	114	114	49	114	
63989	312778	67980	51275	224495	
1.10	3.89	1.40	1.09	3.06	
25	54	25	114	25	
52111	175068	10080	19755	73005	
.90	2, 18	12,	. 42	1, 00	
	25			115	
	19986			46589	
	. 25			.64	
5793376	8041876	4856099	4687653	7332567	7253286
57933	376		.25	. 25 8041876 4856099	. 25 8041876 4856099 4687653

Destination BEA 52

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	52	52	25	75	75	25	25	75
~	6344072	5906450	8457430	7337893	626959	7289184	8991500	0129688
	67.43	66.90	78.56	79.15	76.38	69.48	71. 08	62,34
	99	99	99	799	99	99	99	99
7	2864903	2447140	2073200	1845700	1832113	1979903	1852449	1765226
	30,45	27.72	19.26	19.91	20, 59	18.87	14.65	12.37
	64	55	55	64	114	114	114	511
m	190800	417617	190198	00999	14410	861766	1348631	1565762
	2.03	4.73	1.77	. 72	1.62	8.21	10.66	10.97
		64	64	76	79	64	64	711
4		32800	29700	17463	00066	157800	380700	1514025
		.37	.28	. 19	1.11	1.50	3.01	10.61
		21			76	55	55	64
'n		13721			12879	154279	45000	313200
		. 16			. 14	1.47	. 36	2, 19
Total Destination Tonnage	n 9408472	8828212	10765680	9270882	8898615	10490328	12648942	14220263

0/0

Destination BEA 62

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

55 52 52 55 55 3983268 4115883 4330761 4704321 4514724 4408795 5219969 56,26 50,53 47.69 42,57 42.36 37.00 40.35 52 52 55 55 55 66		1969	1970	1761	1972	1973	1974	1975	1976
56. 26 50. 53 47.69 42.57 45.14724 4408795 5219969 56. 26 50. 53 47.69 42.57 42.36 37.00 40.35 52 52 55 55 52 66 66 66 2751650 3076695 3254770 3985659 3506242 4220743 4366062 38.87 37.77 35.84 36.07 32.90 35.43 436062 56 66 66 66 66 52 52 52 330344 791380 1405498 2308212 2331522 2830677 2438525 4.67 9.71 15.48 20.89 21.88 23.76 18.85 54 115 115 54 62 114 64 13645 1.83 55 47 58 1.99 3.21 13045 54 55333 189861 226.760 12124 30616 34 52		55	55	75	25	55	55	55	55
56.26 50.53 47.69 42.57 42.36 37.00 40.35 52 52 55 55 52 66 66 66 66 66 66 66 66 66 66 66 52 52 4366062 33.75 33.75 33.75 35.84 36.07 32.90 35.43 436.062 33.75 436.062 33.75 436.062 33.75 33.75 52 62 62 62 62 62 62 62 62 62 62 62	-	3983268	4115883	4330761	4704321	4514724	4408795	5219969	4944630
52 55 55 55 66 66 66 66 66 66 66 66 66 66 66 66 66 66 66 52 52 52 38.87 37.77 35.84 36.07 32.90 35.43 436.062 56 66 66 66 66 52 52 330344 791380 1405498 23.08212 2331522 2830677 2438525 4.67 9.71 15.48 20.89 21.88 23.76 18.85 54 115 115 54 52.80 61354 23.7657 415284 13645 1.83 .55 .47 .58 1.99 3.21 54 54 54 .55 .47 .58 1.99 3.21 13645 30616 55333 189861 226760 6.2 107970 8145968 9081825 11051152 10657350 11914429		56.26	50, 53	47.69	42.57	42,36	37.00	40,35	36,03
2751650 3076695 3254770 3985659 3506242 4220743 4366062 38.87 37.77 35.84 36.07 32.90 35.43 33.75 66 66 66 66 66 52 52 52 330344 791380 1405498 2308212 2331522 2830677 2438525 34.67 9.71 15.48 20.89 21.88 23.76 18.85 54 115 115 54 62 114 64 13645 148979 50223 51569 61354 23.7657 415284 13645 1.83 .55 .47 .58 1.99 3.21 13645 54 54 54 62 62 62 62 13645 30616 54 1.99 3.21 3.21 3.21 23 34 3616 55333 189861 226760 31 345968 9081825 110511		25	25	35	55	25	99	99	25
56 66 66 66 52 53 52 53 52 53 52 54 52 114 54 54 52 114 54 62 114 54 62 114 54 62 114 54 62 <t< th=""><th>N</th><th>2751650</th><th>3076695</th><th>3254770</th><th>3985659</th><th>3506242</th><th>4220743</th><th>4366062</th><th>4172726</th></t<>	N	2751650	3076695	3254770	3985659	3506242	4220743	4366062	4172726
66 66 66 66 66 52 52 330344 791380 1405498 2308212 2331522 2830677 2438525 4,67 9,71 15,48 20,89 21,88 23,76 18,85 54 115 115 54 62 114 64 13645 148979 50223 51569 61354 237657 415284 13645 1,83 .55 .47 .58 1,99 3.21 54 54 54 .56 62 62 62 12124 30616 .55333 189861 226760 1.75 7079707 8145968 9081825 11051162 10657350 11914429 12938090		38.87	37.77	35,84	36.07	32.90	35,43	33, 75	30.41
330344 791380 1405498 2308212 2331522 2830677 2438525 4.67 9.71 15.48 20.89 21.88 23.76 18.85 54 115 115 54 62 114 64 13645 148979 50223 51569 61354 237657 415284 19 1.83 .55 .47 .58 1.99 3.21 54 54 54 54 62 62 62 12124 30616 .55333 189861 226760 1079707 8145968 9081825 11051162 10657350 11914429 12938090		99	99	99	99	99	25	25	99
4.67 9.71 15.48 20.89 21.88 23.76 18.85 54 115 115 54 62 114 64 13645 148979 50223 51569 61354 237657 415284 .19 1.83 .55 .47 .58 1.99 3.21 54 54 54 54 115 62 62 12124 30616 .36 1.59 1.75 7079707 8145968 9081825 11051162 10657350 11914429 12938090	m	330344	791380	1405498	2308212	2331522	2830677	2438525	3447179
54 115 54 62 114 64 13645 148979 50223 51569 61354 237657 415284 .19 1.83 .55 .47 .58 1.99 3.21 54 54 54 62 62 62 12124 30616 55333 189861 226760 7079707 8145968 9081825 11051162 10657350 11914429 12938090		4.67	9.71	15.48	20.89	21.88	23.76	18, 85	25, 12
13645 148979 50223 51569 61354 237657 415284 .19 1.83 .55 .47 .58 1.99 3.21 54 54 54 62 62 62 12124 30616 55333 189861 226760 7079707 8145968 9081825 11051162 10657350 11914429 12938090		22	115	<u>311</u>	54	79	114	64	29
.19 1.83 .55 .47 .58 1.99 3.21 54 54 54 62 62 62 62 12124 30616 55333 189861 226760 .15 .34 .52 1.59 1.75 7079707 8145968 9081825 11051162 10657350 11914429 12938090	4	13645	148979	50223	51569	61354	237657	415284	787922
54 54 54 115 62 62 62 12124 30616 55333 189861 226760 .15 .34 .52 1.59 1.75 7079707 8145968 9081825 11051162 10657350 11914429 12938090		. 19	1.83	. 55	.47	. 58	1.99	3.21	5, 74
12124 30616 55333 189861 226760 .15 .34 .52 1.59 1.75 7079707 8145968 9081825 11051162 10657350 11914429 12938090			54	54		115	79	79	64
7079707 8145968 9081825 11051162 10657350 11914429 12938090	٠,		12124	30616		55333	18881	226760	212425
7079707 8145968 9081825 11051162 10657350 11914429 12938090			. 15	.34		. 52	1. 59	1. 75	1.55
	Total Destination		8145968	9081825	11051162	10657350	11914429	12938090	13723565

Commodity Group 1

Table D. 29

Destination BEA 49

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	55	<u>55</u>	55	55	55	55	52	55
-	3432652	3159842	2734047	4833455	6520233	6136320	7314220	6285675
	94.94	96.64	90.37	91.44	89.91	93.50	75.92	88.35
	49	49	<u>511</u>	511	114	115	99	99
7	159600	72900	291439	395799	441345	371711	1933098	454627
	4.41	2.23	9.63	7.49	6.09	5.66	20.06	6.39
	115	115		114	115	49	54	114
м	22114	36976		46652	232070	43272	297276	283811
	19.	1.13		. 88	3.20	99	3.09	3,99
	138			7.7	49	115	49	49
4	1049			10042	56735	8407	73509	87625
	. 03			. 19	. 78	.13	92.	1.23
					47	140	115	48
S					1183	3130	12 98	1542
					. 02	. 05	. 09	. 02
Total Destination Tonnage	3615415	3269718	3025486	5285948	7251566	6562840	9634261	7114687

0/0

Table D. 30

52
•
<
BEA
-
=======================================
rig
O

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

	1969	1970	1971	1972	1973	1974	1975	19.76
	99	99	99	99	79	99		9]
	796397	911778	882416	1235694	1118264	1054156	1209484	1162518
	27.20	28.19	24.27	28, 08	27.56	27.21	28.25	26.81
	79	79	79	79	99	79	79	79
7	549982	608593	807051	978043	1056929	925998	970703	943238
	18. 78	18.81	22.20	22.22	26.05	23.91	22.67	21. 75
	54	54	54	54	255	25	25	52
м	533321	577928	782358	837764	103960	165689	746000	784477
	18.21	17.87	21. 52	19.04	17.35	17.80	17.42	18.09
	75	75	25	25	25]	54	54	54
*	251203	330114	418216	630023	649198	399873	532846	622818
	8.58	10.21	11. 50	14, 32	16.00	10.32	12.45	14.36
	89	89	89	64	64	89	89	89
٠	242987	286870	992922	274165	285513	306325	269041	313807
	8,30	8.87	6.24	6.23	7.04	7.91	6.28	7.24
Total Originating	2928135	3234757	3635155	4400887	4057279	3873568	4281406	4336544

D. 31

7/0

Table D. 31

Tonnage
riginating 1
of Total O
age and %
ination Tonr
tions, Desi
p 5 Destina
To

	1969	1970	1971	1972	1973	1974	32.61	1976
-	79	79	54	25	42	25	54	54
"	461202	439665	427888	400714	456073	465531	420170	452816
	16.94	16.10	14.38	13. 78	17.10	16.78	16.32	16.97
	54	54	79	79	79	[62	62	79
~	386134	392889	307910	289943	368656	294196	350420	415780
	14.18	14.39	10,35	9.97	13, 82	10.61	13,61	15,58
	77	49	7.7	115	46	46	46	46
м	256624	242685	189982	261721	298710	262132	310547	335363
	9.43	8.89	9.64	9.00	11.20	9.45	12, 07	12.57
	25	25	49	52	25	25	114	115
*	254916	521669	252806	248115	252832	240259	221207	196564
	9.36	8.12	8,50	8, 53	9,48	8,66	8.59	7.37
	49	114	711	77	115	115	25	99
٠,	246713	205245	251905	239015	183875	211279	210581	191585
	9.06	7.52	8.47	8.22	6,89	7.62	8.18	7.18
Total Originating	2722781	2730326	2974757	2908053	2667054	2773537	2573791	2668317

0/0

Table D. 32

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	25	25	25	25	54	54	45	25
e-4	308989	357271	393136	458342	492963	588118	457247	689631
	26.34	31.06	31, 75	33,67	30.29	33, 05	28.81	41.42
	54	54	54	54	25	52	25	25
7	212822	257055	247115	322656	421346	488405	451195	450587
	19.46	22, 34	19.96	23, 70	25.89	27,45	28,43	27.06
	115	99	79	64	99	99	99	99
m	179024	137239	134082	119669	248203	256373	274550	146457
	15.26	11.93	10, 83	8.79	15.25	14.41	17,30	8,80
	99	<u>511</u>	<u>511</u>	115	79	79	64	64
4	123204	120224	131993	198101	160625	143309	124650	123008
	10.50	10,45	10.66	7.48	9.87	8, 05	7,85	7,39
	64	64	75	79	115	64	115	115
'n	87126	97192	90038	18066	100975	140833	108526	105037
	7, 43	8, 45	7.27	7.28	6.21	7.92	6.84	6.31
Total Originating	3 1172966	1150408	1238203	1361472	1627264	1779278	1586910	1665016

0/0

Table D. 33

Destination BEA 54

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	138	25	252	25	138	138	138	138
-4	543038	577928	782358	837764	821132	892840	821534	727732
	20.01	19.89	25.98	24.78	22.49	24.67	23.69	20.71
	25	138	55	138	75	79	114	62
2	533321	548494	427888	802029	649198	588118	657705	689631
	19.65	18.88	14.21	18, 35	17.78	16.25	18.97	19.63
	25	55	138	55	79	114	25	52
m	386134	392889	400088	400714	492963	581172	532846	622818
	14.23	13. 52	13, 28	11, 85	13.50	16.06	15.37	17.73
	137	79	13.7	79	114	55	79	114
4	259422	257055	311938	322656	469219	465531	457247	557716
	9.56	8.85	10, 36	9.54	12.85	12, 86	13, 19	15.87
	29	13.7	79	114	525	25	55	55
vn	228212	249332	247115	316255	456073	399873	420170	452816
	8.41	8.58	8.20	9.36	12.49	11.05	12.12	12.89
Total Destination Tonnage	n 2713449	2905599	3011814	3380593	3650428	3619117	3467663	3513730

0/0

Commodity Group 2

Table D. 34

Ton
Destination
Total
Jo %
and
Tonnage
Originating
5 Origins,
Top 5

	1969	1970	1971	1972	1973	1974	1975	1976
	138	138	138	75	138	138	25	25
-	865271	954024	944188	1235694	1287242	1767970	1209484	1162518
	35,24	35,36	35,06	40.00	35,17	39.12	29, 36	31.09
	25	25	52	138	25	52	138	138
4	196397	911778	882416	783227	1056929	1054156	1000108	1011648
	32,43	33.80	32,76	25,35	28,88	23, 33	24.27	27.05
	141	된	141	141	141	141	141	141
м	231577	243949	452213	551583	521507	507841	343333	342572
	9.43	9.04	16.79	17,86	14,25	11. 24	8,33	9.16
	46	79	55	55	79	79	99	99
4	159665	137239	97754	109999	248203	256373	328920	215338
	6.50	5.09	3,63	3,56	6.78	5.67	7.98	5.76
	29	46	46	79	46	46	29	55
.	123204	133096	90593	68586	186715	194082	274550	191585
	5.02	4.93	3.36	3, 19	5, 10	4.29	99.9	5.12
Total Destination 2455673 Tourge	n 2455673	2697854	2693389	3089102	3660070	4519392	4120090	3739360

Table D. 35

25

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	138	138	881	75	25	25	25	25
-	440293	475088	448274	630023	703960	689591	746000	784477
	27.78	27.27	24.26	28.21	31.89	27.74	-31, 37	32.20
	79	79	75	138	138	138	138	138
2	308989	357271	418216	471279	458954	266609	496855	550284
	19.50	20,51	22.63	21, 10	20, 79	20.51	20.89	22, 59
	55	75	79	79	79	79	79	79
м	254916	330114	393136	458342	421346	488405	451195	450587
	16.09	18.95	21.27	20.52	19.09	19.65	18.97	18.50
	25	55	55	55	55	55	55	54
4	251203	521669	248342	248115	252832	240259	210581	124463
	15,85	12, 72	13.44	11.11	11.45	99.6	8.85	5.11
	99	140	140	140	140	99	99	141
n	88539	101096	108740	123220	128443	128979	156154	123477
	5.59	5.80	5.88	5.52	5,82	5.19	6.57	5.07
Total Destination Tonnage	1584741	1742223	1847943	2233444	2207485	2485959	2378181	2435905

0/0

Table D. 36

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

	6961	1970	1971	1972	1973	1974	1975	9261
	25	25	75	25	252	25	75	52
<i></i>	549982	608593	807051	978043	1118264	925998	970703	943238
	31.91	36.90	45,75	48.40	51, 52	48.67	49.37	50.46
	55	55	<u>55</u>	<u>55</u>	55	55	55	55
~	461202	439665	307910	289943	368656	294196	350420	415780
	26.76	56.66	17.45	14.35	16.99	15.46	17.82	22.24
	138	138	138	138	114	138	138	138
۳	232868	618091	179808	250548	180811	213051	182651	180558
	13.51	9.75	10.19	12.40	8, 33	11. 20	9.29	99.6
	46	46	114	<u>114</u>	138	114	114	114
4	132399	138630	127479	248921	165475	191673	165186	76587
	7.68	8.41	7.23	12, 32	7,62	10.07	8.40	4.10
	137	13.7	46	13.7	79	29	79	139
<u></u>	117186	115210	95453	67179	160625	143309	98212	46758
	6.80	6.99	5.41	3,32	7.40	7, 53	4.99	2.50
Total Destination 1723567 Tornage	1723567	1649153	1764068	2020704	2170366	1902788	1966285	1869422

Table D. 37

4,
BEA
gin
i.

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

	. 6961	1970	1971	1972	1973	1974	1975	1976
	54	54	54	54	54	54	54	54
~	3515673	2142429	2432841	1721786	2779899	2714370	2707263	2659914
	61.73	51.25	52,39	45,24	56, 59	61, 73	56.21	48.99
	55	55	55	55	55	79	55	55
2	1271662	1271241	983750	1015600	854842	641738	809800	971500
	22,33	30,41	21.19	23.91	17.40	14.60	16.81	17.89
	29	79	79	29	29	25	29	79
м	698556	552585	809004	862262	804626	517630	520940	970186
	12.27	13.22	17,42	20,30	16,38	11.77	10.82	17.87
	25	25	25	25	75	55	75	252
4	133561	209686	403942	446610	450329	492050	400640	616216
	2,35	5, 02	8. 70	10.51	9,17	11,19	8, 32	11.35
	64	99	99	99	491	99	49	49
'n	75608	2730	12682	1282	12237	12963	321300	138975
	1, 33	200	.27	03	.25	. 29	6,67	2.56
Total Oxiginating	0905695	4180366	4643497	4247540	4911925	4396922	4816639	5429281

0/0

۵/0

Commodity Group 4

Table D. 38

•
nnag
H
ting
ina
rig
tal C
Tot
õ
P. 6
and a
Tonnage
nation
Desti
ions,
nat
Desti
2
Top

	1969	1970	1971	1972	1973	1974	1975	1976
	99	99	99	99	99	99	99	99
7	4982461	4644807	5082181	2982984	4438380	4429774	3775059	3762953
	90.08	99.06	99.61	98.82	99.85	99.19	99.84	81.78
	79	59	64	79	<u>59</u>	79	64	2 91
~	508940	25925	8900	17764	3465	27038	4377	719286
	9.20	. 55	.17	. 59	. 08	.61	. 12	15.63
	255	64	25	59	64	25	75	75
м	28830	18200	4507	16011	1840	7753	1562	116354
	. 52	. 39	60	.53	04	.17	• 04	2,53
	65		29	25	52	141		59
*	9646		3952	1876	1311	1407		2847
	.17		• 08	90	03	33		90
	139							
'n	1501							
	. 03							
Total Originatin	Total Ogiginating 5531378	4688932	5102301	3018635	4444996	4465972	3780998	4601440

Table D. 39

Originating Tonnage
tal (
Tot
% of
and %
E
Tonnage
Destination
Top 5 Destinations,

	1969	1970	1971	1972	1973	1974	1975	1976
	115	115	115	115	115	3115	311	115
-	1359605	1671152	1431904	1287858	1565422	1437964	1129875	1397876
	48.49	48.29	39.56	35, 12	40.43	31.03	32.46	36.99
	49	49	49	49	49	49	49	449
8	782600	789400	885482	1172750	1396633	1366314	1011284	1128927
	27.91	22,81	24,46	31.98	36.07	29.49	29.06	29.87
	138	46	46	46	46	9	46	46
м	214387	465459	728062	931980	681782	1264398	967152	584456
	7,65	13, 45	20,11	25, 42	17,61	27.29	27, 79	15.46
	46	138	138	138	138	138	138	138
4	183765	281332	274401	113156	92174	158802	133335	419933
	6,55	8, 13	7, 58	3,09	2,38	3.43	3.83	11.11
	47	55	135	141	114	133	114	114
1 0	116352	98557	150971	73774	47850	126591	72020	62866
	4, 15	2,85	4.17	2.01	1.24	2,73	2.07	2.64
Total Originating	3 2803794	3460758	3619904	3666744	3871830	4633641	3480490	3779448

0

Table D. 40

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

62 52 1 982757 828520 49.26 46.79 52 62 52 62 64 66 34.27 44.03 64 66 3 160817 114247 8.06 6.45 66 645 4 159925 47174 8.02 2.66	52 1137317 46.93 62 883152 36.45	52 1245620 51,66 62 901786 37,40 66	52 1093473 65.08 62 346759 20.64	52 879110 50.99 62 633392	52 736257	52 922458
982757 82 49.26 52 683605 77 34.27 54 160817 11 8.06 66 159925 4	46.93 62 883152 36.45	1245620 51.66 62 901786 37.40 66	1093473 65.08 62 346759 20.64	879110 50,99 62 633392	736257	922458
49.26 52 683605 77 34.27 64 160817 11 8.06 66 159925 4	46.93 62 883152 36.45	51.66 62 901786 37.40 66	65.08 62 346759 20.64	50.99 62 633392	9	
52 683605 34.27 64 64 160817 11. 8.06 66 66 159925 4.02	62 883152 36.45	62 901786 37,40 66	62 346759 20.64 66	262EE9	20.11	68.17
34.27 34.27 64 64 160817 110817 110817 110817 8.06 8.06 159925 4.02	36.45	901786 37.40 66	346759 20.64 66	633392	29	99
34.27 64 160817 110 8.06 66 66 159925 4.	36.45	37.40	20.64		298831	219735
64 160817 114 8,06 66 66 159925 47	99	99	99	36.74	23.58	16.24
160817 114 8,06 66 66 67 159925 47		į		999	99	29
	214617	237689	220180	210012	169535	154837
.*	8.86	98.6	13,10	12.18	13, 38	11.44
4	54	54	64	55	64	54
	141042	16525	19861	1552	45889	44812
	5, 82	69.	1, 18	.00	3,62	3,31
54 54	49	89			54	49)
5 6993 1000	45259	9002			14912	9836
35 36	1.87	-29			1, 18	.73
Total Originating 1994902 1770602	2423187	2411272	1680273	1724064	1267055	1353214

Table D. 41

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

	1969	1970	1971	1972	1973	1974	1975	19.76
	25	25	25	52	25	52	25	25
-	1314639	1201947	1270013	1436435	1364213	1549123	1414268	1710686
	99,51	99,58	99,11	99.47	99.63	98.23	89 19	96.83
	79	99	99	79	47	49	54	64
~	5841	2888	8163	4000	4159	19246	94370	45640
	. 44	.24	. 64	.28	.30	1.22	5.95	2.64
	555	49	79	99	79	79	115	99
m	699	2137	3197	3684	056	8692	29533	7652
	• 05	. 18	.25	.26	.07	. 55	1.86	.43
							49	54
4							25653	1632
							1.62	00
							99	
'n							21869	
							1,38	
Total Originatin	Total Originating 1321149	1206972	1281373	1444119	1369322	1577061	1585693	1766610
3								

0/0

2/0

Table D. 42

48
BEA
Origin

Tonnage
Originating
% of Total
onnage and 9
Destination T
5 Destinations,
Top

	6961	1970	1971	1972	1973	1974	1975	19.76
	48	48	48	48	84	48	48	84
~	1254004	1186581	1406988	1403160	1652598	1762626	1288204	1135483
	100.00	100,00	100,00	100.00	99, 83	100.00	99.69	94.08
					50		47	47
N					2839	-	4000	61200
					.17		.31	5.07
								20
m								10282
								. 85
4								
v								
Total	Total Originatine 1254004	1186581	1406988	1403160	1655437	1762626	1292204	1206965
Tohnage								

Table D. 43

Top 5 Destinations, Destination Tonnage and % of Total Originating Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	20	64	64	99	49	49	20	49
-	388837	947215	1087734	775552	779686	790058	1098453	420906
	55,58	67,34	56.64	46.15	46.87	54.60	62.06	57.67
	99	99	99	64	99	99	99	99
7	300895	394050	772346	692760	763291	554722	621202	253182
	43.01	28.02	40.22	41.23	45,88	38,33	35, 10	34.69
	52	52	25	25	75	25	25	25
ю	8665	65284	60109	212060	120567	98779	50367	55809
	1.24	4.64	3, 13	12.62	7.25	6.83	2.85	7,65
	65					65		
4	1257					3510		
	0.18					.24		
٧,								
Total Originating	8 699654	1406549	1920279	1680572	1663544	1447069	1770022	729897

0/0

Table D. 44

9]
BEA
Destination

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	99	99	99	999	99	99	99	99
	4982461	4644807	5082181	2982984	4438380	4429774	3775059	3762953
	82.93	81,65	78.03	52.78	74.46	77.74	73.06	77.84
•	65	64	64	89	64	64	64	65
۷	545023	394050	772346	1189080	763291	554722	621202	586334
	9.07	6.93	11.86	21, 04	12, 81	9.73	12.02	12.13
	64	59	<u>59</u>	79	59	<u>65</u>	<u>59</u>	64
m	300895	384179	421415	775552	518500	447100	523875	253182
	5.01	6.75	6.47	13.72	8.70	7.85	10.14	5.24
	29	62	29	65	79	29	79	79
4	159925	114247	214617	461550	220180	210010	169535	219735
	2.66	2.01	3,30	8.17	3.69	3.69	3,28	4.55
v	115	134	54	2 9	114	115	55	25
	10793	104975	12682	237689	11141	26628	26239	7652
	.18	1.85	.19	4, 21	. 19	.47	. 51	.16
Total Destination 6007910	0162009 u	5688602	6512788	5651821	5960807	5698544	5166886	4834056
Tonnage					10000/2	2000	200000	OCOECOE !

Table D. 45

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage Destination BEA 52

	1969	1970	1971	1972	1973	1974	1975	1976
	25	25	25	25	25	25	25	52
H	1314639	1201947	12 70013	1436435	1364213	1549123	1414268	1710686
	60.39	51, 73	43.91	42.96	44.28	50,34	53,22	48, 70
,	62	62	62	29	79	79	79	79
,	683605	828520	1137317	1245620	1093473	879110	736257	922458
	31, 40	35,66	39, 32	37.25	35.49	28.56	27.70	26.26
	54	45	54	54	54	54	54	54
m	133561	209686	403942	446610	450329	517630	400640	912919
	6.14	9.02	13,97	13,36	14.62	16.82	15.08	17, 54
	64	64	64	64	49	64	55	99
4	8665	65284	66109	212060	120567	62286	51757	116354
	.40	2.81	2.08	6.34	3.91	3.21	1.95	3, 31
	115	115	115	99	55	55	64	55
'n	5377	18005	9166	1876	49493	25196	50367	91359
	.25	.77	.34	• 06	1, 61	. 82	1,90	2,60
Total Destination Tonnage	1 2176917	2323442	2892112	3343916	3080771	3077591	2657522	3512882

σ/ο

0/0

Table D. 46

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

	1969	1970	1971	1972	1973	1974	1975	1976
	*	54	54	54	54	54	54	54
	3515673	2142429	2432841	1921786	2779899	2714370	2707263	2659914
	95.07	99.86	94.32	92, 74	99.66	99,75	94. 51	97.07
,	49	55	79	55	55	115	252	79
	73000	2000	141042	133940	4759	3807	94370	44812
	1.97	60	5.47	6.46	-17	14	3,29	1.64
	55	27	137	79	137	138	55	55
m	22000	1000	2919	16525	2828	1560	42452	32626
	1,41	.05	n.	.80	.10	90.	1, 48	1.19
	115		<u>55</u> .		138	55	29	25
*	34328		2650		1898	1500	14912	1632
	.93		. 10		.07	• 06	. 52	90.
	47			7			115	•
···	16147						3880	
	. 44						.14	
Total Destination 3698141	3698141	2145429	2579452	2072251	2789384	2721237	2864474	2740157
Lonnage								

Table D. 47

Destination BEA

Tonnage
Destination
Total
% of
and
Tonnage and
Originating
Origins,
Top 5 Or
55

	1969	1970	1971	1972	1973	1974	1975	1976
	54	54	55	54	55	55	54	54
-	1271662	1271241	1389700	1015600	1457044	1214996	809800	971500
	53.49	50.06	57.70	52.26	63.02	70.73	64.80	72,14
	55	55	54	55	54	54	55	55
7	1047050	1169650	983750	919650	854842	492050	429350	372250
	44.04	46.06	40.84	47.32	36.98	28.65	34.46	27.64
	us	ns_	<u>511</u>	115		115	115	29
м	57113	98557	34300	8272		912.7	7562	1536
	2.40	3,88	1,42	.43		.53	19	п
	62		77			79	79	m m
4	805		756			1552	1631	1365
	.03		.03			.09	.13	.10
· ·	25						46	
,	699						1316	
	.03						n.	
Total Destination Tonnage	n 2377299	2539448	2408506	1943522	2311886	1717725	1249659	1346651

0/0

Commodity Group 4

0/0

Table D. 48

49	
BEA	
stination	
Å	

Top 5 Origins, Originating Tonnage and % of Total Destination Tonnage

	6961	0261	1261	1972	1973	1974	1975	1976
	115	115	115	115	115	<u>115</u>	115	115
-	782600	789400	885482	u72750	1396633	1366314	1011284	1128927
	63, 52	51,01	50.72	77.48	60, 33	62.75	56.71	62.09
,	49	49	49	64	46	46	49	49
y	435150	730550	706805	297373	537045	409600	358235	421390
	35,32	47.21	40.48	19.65	23,20	18,81	20.02	23,18
	46	46	46	2 4	49	49	54	54
m	14000	27525	153655	43545	381322	366480	321300	138975
	1,14	1, 78	8.80	2,88	16.47	16.83	18.02	7.64
	138					47	46	46
4	300					34850	76280	99850
	.02					1.60	4.28	5.49
							47	47
'n							16300	29100
							16.	1.60
Total Destination Tonnage	n 1232050	1547475	1745942	1513668	2315000	2177244	1783399	1818242

APPENDIX E: Commodity Group Definitions

Table E. 1: COMMODITY GROUPINGS TO BE UTILIZED FOR PROJECTING OHIO RIVER BASIN

WATERWAY TRAFFIC

	COMMODITY GROUP W.	C.S.C.* Commodity Codes
1.	Coal and Coke	1121, 2920, 3313
2.	Petroleum Fuels	2911 thru 2915, 2921
3.	Crude Petroleum	1311
4.	Aggregates	0931, 1411 thru 1442
5.	Grains	0102 thru 0111
6.	Chemical and Chemical Fertilizers	2810 thru 2891
7.	Ores and Minerals	1021 thru 1091, 1451, 1491 thru 1499
8.	Iron Ore and Iron and Steel	1011, 3311, 3314 thru 3319, 4011
9.	All Other	0101, 0112 thru 0913, 1471, 1479 1911 thru 2711, 2916, 2917, 2918, 2951 thru 3291, 3312, 3321 thru 3911, 4012 thru 4113, 4118, 9999

*Waterborne Commerce Statistical Center

Table E. 2: COMMODITY CLASSIFICATION FOR SHIPPING STATISTICS

	tables in this publication are abbreviated forms—to		Group 19-Ordnance and Accessories
	erve printing space—of the following commodities.	1911	Ordnance and accessories
Code			Group 20-Food and Kindred Products
No.	Item Name	. 2011	Mark Cook AMA and Cooks
		2011	Meat, fresh, chilled, or frozen Meat and meat products prepared or preserve
	Group 01-Farm Products	2012	including canned meat products
	•	2014	
101	_ · · · · · · · · ·		Animal by-products, not elsewhere classified Dairy products, except dried milk and cream
2010	Barley and Tye	2022	Dried milk and cream
103	Corn	2031	Fish and fish products, including shellfish, pr
1104	Oats	202.	pared or preserved
	mt	2034	Vegetables and preparations, canned and otherwi prepared and preserved
0105 0106		2039	Fruits and fruit and vegetable juices, canned a
0107			otherwise prepared or preserved
0111		,	See footnote at end of Commodity Classification
2110		•	See losthote at and of Commodity Classification
119	Oilseeds, not elsewhere classified		
1210		200	100 . G . b . c
2210	Hay and fodder	2041	Wheat flour and semolina Prepared animal feeds
		2049	
129	Field crops, not elsewhere classified	2061	
131		2062	
	plantains	2081	Alcoholic beverages
	Bananas and plantains	2091	Vegetable oils, all grades; margarine and shorter
133		2092	Animal oils and fats, not elsewhere classified,
	Cocoa beans	2004	cluding marine Groceries
141	Fresh and frozen vegetables Live animals (livestock), except zoo animals, cats,	2094 2095	
•	dogs, etc.	2099	
16.1	Animals and animal products, not elsewhere		
191	classified Miscellaneous farm products		Group 21-Tobacco Products
	Group 08-Forest Products	2111	Tobacco manufactures
	·		Group 22-Basic Textiles
8-1	Crude rubber and allied gums Forest products, not elsewhere classified	2211	Basic textile products, except textile fibers
	,, p		Textile fibers, not elsewhere classified
Gr	oup 09-Fresh Fish and Other Marine Products		Consum 22 Assessed and Only Produkt Amends
1011	Fresh fish, except shellfish		Group 23—Apparel and Other Finished Textile Products, Including Knit
012			riodatts, merading rant
913		2311	Apparel and other finished textile products, i
931	Marine shells, unmanufactured		cluding knit
	Group 10-Metallic Ores		Group 24-Lumber and Wood Products
011	Iron ore and concentrates		Except Furniture
021	Copper ore and concentrates		Logs
051		2412	
061		2413 2414	
1091	Nonferrous metalores and concentrates, not else- where classified	2414	Timber, posts, poles, piling, and other wood the rough
	where ciaponied	2415	
	Group 11-Coal	2416	
	•	2421	Lumber
121	Coal and lignite	2431	Veneer, plywood, and other worked wood Wood manufactures, not elsewhere classified
	Group 13-Crude Petroleum	2471	
311	Crude petroleum		Group 25-Furniture and Fixtures
	Group 14-Nonmetaliic Minerals, Except Fuels	2511	Furniture and fixtures
	•		Group 26-Pulp, Paper and Allied Products
411		2411	Pulp
1412			Standard newsprint paper
1451		2631	Paper and paperboard
471	Phosphate rock		Pulp, paper and paperboard products, not all
479	Natural fertilizer materials, not elsewhere		where classified
401	classified *Salt		Group 27-Printed Matter
	Sulphur, dry		Grack comertured terretat
492		2711	Printed matter
492	Sulphur, liquid Gypsum, crude and plasters	2711	Printed matter

Table E. 2: Commodity Classification for Shipping Statistics (continued)

Group 28-Chemicals and Allied Products Group 33-Continued Sodium hydroxide (caustic soda) Nonferrous metals primary smelter products, Crude products from coal tar, petroleum, and natural gas, except benzene and toluene Dyes, organic pigment, dyeing and tanning materials 2811 basic shapes, wire, castings and forgings, except copper, lead, zinc and aluminum Copper and copper alloys, whether or not refined, 2812 inworked Alcohols Lead and zinc including alloys, unworked Aluminum and aluminum alloys, unworked Radioactive and associated materials, including Benzene and toluene, crude and commercially pure 2817 Group 34-Fabricated Metal Products, 2818 2819 Sulphuric acid Except Ordnance, Machinery, and Basic chemicals and basic chemical products, not Transportation Equipment elsewhere classified 2821 Plastic materials, regenerated cellulose and syn-3411 Fabricated metal products, except ordnance. resins, including film, sheeting, and machinery, and transportation equipment laminates Synthetic rubber Group 35-Machinery, Except Electrical 3511 Machinery, except electrical Drugs (biological products, medicinal chemicals, botanical products and pharmaceutical Group 36-Electrical Machinery, Equipment and Supplies preparations) Soap, detergents, and cleaning preparations; perfumes, cosmetics and other toilet preparations 3611 Electrical machinery, equipment and supplies Paints, varnishes, lacquers, enamels, and allied Group 37-Transportation Equipment Gum and wood chemicals Nitrogenous chemical fertilizers, except Motor vehicles, parts and equipment mixtures 3721 Aircraft and parts Potassic chemical fertilizers, except mixtures Ships and boats Miscellaneous transportation equipment Phosphatic chemical fertilizers, except mixtures Insecticides, fungicides, pesticides, and disinfectants Group 38-Instruments, Photographic and Optical Goods, Watches and Clocks 2879 Fertilizers and fertilizer materials, not elsewhere Miscellaneous chemical products 3811 Instruments, photographic and optical goods, watches and clocks Group 29-Petroleum and Coal Products Group 39-Miscellaneous Friducts of Manufacturing Gasoline, including natural gasoline Jet fuel 2912 2913 3911 Miscellaneous products of manufacturing Kerosene Distillate fuel oil Group 40-Waste and Scrap Materials Residual fuel oil Lubricating oils and greases Iron and steel scrap Naphtha, mineral spirits, solvents, not elsewhere classified 4012 Nonferrous metal scra-Textile waste, scrap, and sweepings 4022 2918 Asphalt, tar, and pitches Paper waste and scrap Waste and scrap, not elsewhere classified Asphalt, tar, and pitches Coke, including petroleum coke Liquefied petroleum gases, coal gases, natural gas, and natural gas liquids Asphalt building materials Petroleum and coal products, not elsewhere 4029 2921 Group +1-Special Items 4111 Water 4112 Miscellaneous shipments not identifiable by classified LCL freight Group 30-Rubber and Miscellaneous 4118 Materials used in waterway improvement. Government materials 3011 Rubber and miscellaneous plasting products 9999' Department of Defense controlled cargo and special category items Group 31-Leather and Leather Products Statistics on salt in this publication are included with "Nonmetallic minerals, except fuels, not elsewhere classified," commodity code 1499, to avoid disclosure of individual company operations. 3111 Leather and leather products Group 32-Stone, Clay, Glass, and Concrete Products no Cargoes exported on Department of Defense controlled vessels (other than goods for the use of U. S. Armed Forces abroad) and non-Department of Defense shipments of military component items (abbreviated SCI) for which commodity detail is not furnished to the Corps 3211 Glass and glass products 3241 3251 3271 Building cement Structural clay products, including refractories Lime of Engineers. Miscellaneous nonmetalisc mineral products Group 33-Primary Metal Products 3311 Pig iron Fig. 11th Slag Coke (coal and petroleum), petroleum pitches and asphalts, and naphtha and solvents Iron and steel injusts, and other primary forms, including blanks for tube and pipe, and sponge 3313

Iron and steel bars, rods, angles, shapes and sec-

Primary iron and steel products, not elsewhere classified, including castings in the rough

tions, including sheet piling from and steel plates and sheets from and steel pipe and tube

Ferroallovs