14.7/.4/.4

امتحان پایان ترم درس مبانی بینایی کامپیوتر

زمان: ۱۰۰ دقیقه

شماره دانشجویی:

نام و نام خانوادگی:

۱. الف) شبه کد برنامهای را بنویسید که با استفاده از تطبیق کلیشه شماره یک پلاک مانند تصاویر زیر را با دقت مناسب بخواند (با جزئیات بنویسید و توضیح بدهید).

فرض کنید برای هر کدام از کاراکترهای پلاک، یک تصویر مشابه با شکلهای زیر وجود دارد.

ب) تطبیق کلیشه در شرایط ساده می تواند عملکرد مناسبی داشته باشد اما حساسیت بالایی دارد. به نظر شما چطور می توان از یادگیری عمیق برای بهبود عملکرد تطبیق کلیشه استفاده کرد؟ ایده خود را تشریح کنید.

۲. تصویر زیر را در نظر بگیرید.

برای هر یک از تصاویر زیر نوع عملیات مورفولوژی و همچنین عنصر ساختاری مورد استفاده را (با مشخص نمودن مرکز عنصر) تعیین کنید.

اأف

۳. برای باینری کردن تصویر زیر از روشهای مختلفی استفاده شده است؛ با ذکر دلیل، مشخص کنید خروجیهای نشان داده شده به ازای کدامیک از روشهای بیان شده است.

- a) cv2.threshold(img, ..., cv2.THRESH_OTSU)
- b) cv2.adaptiveThreshold(img, ..., blockSize=51, C=2)
- c) cv2.adaptiveThreshold(img, ..., blockSize=51, C=12)
- d) cv2.adaptiveThreshold(img, ..., blockSize=301, C=2)
- e) cv2.adaptiveThreshold(img, ..., blockSize=301, C=12)

۴. در شکل زیر معماری SiamFC برای ردیابی اشیاء مشاهده می شود.

در جدول زیر هم معماری شبکه کانولوشنی مورد استفاده آورده شده است.

الف) تعداد پارامترهای قابل آموزش در SiamFC را محاسبه کنید.

ب) اگر تصویر search دارای ابعاد 919×855 باشد، خروجی SiamFC چه ابعادی خواهد داشت؟

			Activation size		
Layer	Support	Stride	For exemplar	For search	Chans.
			127×127	255×255	$\times 3$
conv1	11×11	2	59×59	123×123	×96
pool1	3×3	2	29×29	61×61	×96
conv2	5×5	1	25×25	57×57	$\times 256$
pool2	3×3	2	12×12	28×28	$\times 256$
conv3	3×3	1	10×10	26×26	×192
conv4	3×3	1	8 × 8	24×24	×192
conv5	3×3	1	6×6	22×22	×128

۵. الف) دادهافزایی (data augmentation) در مسئله تشخیص اشیاء چه تفاوتی با دادهافزایی در دستهبندی تصویر دارد؟

ب) چرا در آموزش مدلهای تشخیص اشیاء، از برخی از ناحیههای پیشنهادی (proposal) صرف نظر (ignore) می شود؟ ۶. الف) در صورتیکه ورودی شبکه زیر یک تصویر رنگی با ۳۲×۳۲ پیکسل باشد، ابعاد خروجی شبکه را محاسبه کنید. همچنین، تعداد عملیات ضرب مورد نیاز برای محاسبه خروجی را محاسبه کنید (تنها عملیات ضرب را محاسبه کنید و نیازی به محاسبه عملیات دیگر از جمله جمع نیست).

ب) ابعاد خروجی و تعداد ضرب مورد نیاز در صورتیکه تصویر ورودی دارای ۶۴×۶۴ پیکسل باشد را محاسبه کنید. مقادیر را با قسمت الف مقایسه و تحلیل کنید.

