Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Does span
$$\left\{ \begin{bmatrix} 2\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\12\\-9 \end{bmatrix}, \begin{bmatrix} 1\\4\\-3 \end{bmatrix}, \begin{bmatrix} -4\\2\\-8 \end{bmatrix} \right\} = \mathbb{R}^3$$
?

Solution: Since

RREF
$$\begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 4 & 2 \\ 4 & -9 & -3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 1/3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

has a zero row, the vectors fail to span \mathbb{R}^3 .

Standard V4.

Let W be the set of all polynomials of even degree. Determine if W is a subspace of the vector space of all polynomials.

Solution: W is closed under scalar multiplication, but not under addition. For example, $x - x^2$ and x^2 are both in W, but $(x - x^2) + (x^2) = x \notin W$.

Standard S2.

Determine if the set $\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4

Solution:

$$RREF \left(\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.	Mark:				
Determine if the vectors	$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}$, and	$\begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}$	span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since there are zero rows, they do not span. Alternatively, by inspection $\begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$, so the set is linearly

dependent, so it spans a subspace of dimension at most 3, therefore it does not span \mathbb{R}^4 .

Standard V4.

Mark:

Let W be the set of all polynomials of the form $ax^3 + bx$. Determine if W is a subspace of \mathcal{P}^3 .

Solution: Yes because $s(a_1x^3 + b_1x) + t(a_2x^3 + b_2x) = (sa_1 + ta_2)x^3 + (sb_1 + tb_2)x$ also belongs to W. Alternately, yes because W is isomorphic to \mathbb{R}^2 .

Standard S2.

Mark:

Determine if the set $\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4

Solution:

$$RREF \left(\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra

Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.	Mark:						
Determine if the vectors	$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 1 \\ 0 \\ -3 \end{bmatrix}$,	$\begin{bmatrix} 0 \\ 3 \\ 0 \\ -2 \end{bmatrix}$, and	$\begin{bmatrix} -1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$	span \mathbb{R}^4 .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & 3 & 1 \\ 2 & 0 & 0 & -1 \\ 1 & -3 & -2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since every row contains a pivot, the vectors span \mathbb{R}^4 .

Standard V4.

Mark:

Let W be the set of all complex numbers a + bi satisfying a = 2b. Determine if W is a subspace of \mathbb{C} .

Solution: Yes, because $c(2b_1 + b_1i) + d(2b_2 + b_2i) = 2(cb_1 + db_2) + (cb_1 + db_2)i$ belongs to W. Alternately, yes because W is isomorphic to \mathbb{R} .

Standard S2.

Determine if the set $\{x^2+x-1,3x^2-x+1,2x-2\}$ is a basis of \mathcal{P}_2

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Solution:

Version 4

$$RREF\left(\begin{bmatrix} -3 & 5 & 2 & 0\\ 1 & -1 & 0 & 2\\ 1 & -2 & -1 & -1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 1 & 5\\ 0 & 1 & 1 & 3\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix has only two pivot columns, the vectors do not span \mathbb{R}^3 .

Standard V4.

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=1 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Solution: No, because **0** does not belong to W.

Determine if the set $\left\{ \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^4

Solution:

$$\text{RREF} \left(\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

Name:	
J#:	Dr. Clontz
Date:	

 ${\bf Math~237-Linear~Algebra}$

Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard V3.

Mark:
$$\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ -1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \text{ and } \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} \text{ span } \mathbb{R}^3$$

Solution:

Version 5

$$RREF \left(\begin{bmatrix} -3 & 5 & 2 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & -1 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix has only two pivot columns, the vectors do not span \mathbb{R}^3 .

Standard V4.

Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=1 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

Solution: No, because **0** does not belong to W.

Standard S2.

Mark:

Determine if the set $\{x^3 - x, x^2 + x + 1, x^3 - x^2 + 2, 2x^2 - 1\}$ is a basis of \mathcal{P}_3

Solution:

$$RREF \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since the resulting matrix is not the identity matrix, it is not a basis.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Solution: Since

RREF
$$\begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 4 & 2 \\ 4 & -9 & -3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 1/3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

has a zero row, the vectors fail to span \mathbb{R}^3 .

Standard V4.

Mark:

Let W be the set of all polynomials of the form $ax^3 + bx$. Determine if W is a subspace of \mathcal{P}^3 .

Solution: Yes because $s(a_1x^3 + b_1x) + t(a_2x^3 + b_2x) = (sa_1 + ta_2)x^3 + (sb_1 + tb_2)x$ also belongs to W. Alternately, yes because W is isomorphic to \mathbb{R}^2 .

Standard S2.

Determine if the set $\{x^2 + x - 1, 3x^2 - x + 1, 2x - 2\}$ is a basis of \mathcal{P}_2

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.