CSE8803: Classification Methods

2018.06.08 딥메니아 파트2-1

Introduction

Big data big pictures

- 1. Big data systems
- 2. Scalable mission learning algorithms
- 3. Healthcare applications
 - a. Predictive model: using historical data to view the model for predicting future outcome
 - ex) predict which treatment is likely to work for an epilepsy patient
 - a. Computational phenotyping is about turning messy electronic health records into meaningful clinical concepts.
 - b. Patient similarity: uses health data to identify groups of patients sharing similar characteristics.

1. Predictive Model Review

PREDICTIVE MODELING PIPELINE

PREDICTIVE MODELS

Target

Error

$$y = f(x) + e$$
Features

REGRESSION

- Target y is continuous
- Performance Metrics
 - Mean absolute error
 - · Mean squared error
 - R²

CLASSIFICATION

- Target y is binary
- Performance Metrics
 - True/False positive rate
 - Positive predictive values
 - F1
 - · Area under the ROC curve
 - ...

2. Confusion Matrix

	TOTAL POPULATION	Ground Truth	
		Condition Positive	Condition Negative
Prediction -	Prediction Outcome Positive	True Positive	False Positive (Type I error)
	Prediction Outcome Negative	False Negative (Type II error)	True Negative

= Contingency table

		Ground Truth	
	TOTAL POPULATION	Condition Positive	Condition Negative
Prediction -	Prediction Outcome Positive	True Positive	False Positive (Type I error)
	Prediction Outcome Negative	False Negative (Type II error)	True Negative

		Ground Truth	
	TOTAL POPULATION	Condition Positive	Condition Negative
Prediction -	Prediction Outcome Positive	True Positive	False Positive (Type I error)
	Prediction Outcome Negative	False Negative (Type II error)	True Negative

True Positive

		Ground Truth	
	TOTAL POPULATION	Condition Positive	Condition Negative
Prediction -	Prediction Outcome Positive	True Positive	False Positive (Type I error)
	Prediction Outcome Negative	False Negative (Type II error)	True Negative

False Positive (Type I error)

	TOTAL POPULATION	Ground Truth	
		Condition Positive	Condition Negative
Prediction	Prediction Outcome Positive	True Positive	False Positive (Type I error)
	Prediction Outcome Negative	False Negative (Type II error)	True Negative

False Negative (Type II error)

Type I error (false positive)

Type II error

(false negative)

	TOTAL POPULATION	Ground Truth	
		Condition Positive	Condition Negative
Prediction	Prediction Outcome Positive	True Positive	False Positive (Type I error)
	Prediction Outcome Negative	False Negative (Type II error)	True Negative

True Negative

CONFUSION MATRIX QUIZ

		Ground Truth	
	TOTAL POPULATION	Condition Positive	Condition Negative 935
Prediction -	Prediction Outcome Positive 155	True Positive	False Positive 100
	Prediction Outcome Negative	False Negative	True Negative

Please fill in the missing numbers.

CONFUSION MATRIX QUIZ

	TOTAL POPULATION	Ground Truth	
		Condition Positive 65	Condition Negative 935
Prediction -	Prediction Outcome Positive 155	True Positive 55	False Positive
	Prediction Outcome Negative 845	False Negative	True Negative 835

Please fill in the missing numbers.

3. Accuracy Metrics

PERFORMANCE METRICS: ACCURACY

		Ground Truth	
	TOTAL POPULATION	Condition Positive	Condition Negative
Dradiation	Prediction Outcome Positive	True Positive	False Positive (Type I error)
Prediction	Prediction Outcome Negative	False Negative (Type II error)	True Negative
,	Accuracy =	True Positive Rate = True positive Condition positive	False Positive Rate = False Positive Condition negative
Section 1 to the last of the l	itive +True negative tal population	False Negative Rate = False negative Condition positive	True Negative Rate = True negative Condition negative

True Positive Rate
(Sensitivity, Recall)
=
True positive
Condition positive

Sensitivity (민감도): 실제로 질병이 있는 케이스에서 질병이 있다고 판정하는 분율

PERFORMANCE METRICS: ACCURACY

		Ground Truth	
Ī	TOTAL POPULATION	Condition Positive	Condition Negative
Prediction	Prediction Outcome Positive	True Positive	False Positive (Type I error)
	Prediction Outcome Negative	False Negative (Type II error)	True Negative
,	Accuracy =	True Positive Rate = True positive Condition positive	False Positive Rate = False Positive Condition negative
True positive +True negative Total population		False Negative Rate = False negative Condition positive	True Negative Rate = True negative Condition negative

True Negative Rate
(Specificity)
=
True negative
Condition negative

Specificity (특이도): 실제로 질병이 없는 케이스에서 질병이 없다고 판정하는 분율

ACCURACY METRICS QUIZ

			200 m
		Ground Truth	
	TOTAL POPULATION 1000	Condition Positive 65	Condition Negative 935
Prediction	Prediction Outcome Positive 155	True Positive 55	False Positive
	Prediction Outcome Negative 845	False Negative	True Negative 835
	Accuracy	True Positive Rate	False Positive Rate
	89%	False Negative Rate	True Negative Rate

Please fill in the missing numbers.

ACCURACY METRICS QUIZ

		Ground Truth	
	TOTAL POPULATION 1000	Condition Positive 65	Condition Negative 935
Prediction -	Prediction Outcome Positive 155	True Positive 55	False Positive 100
	Prediction Outcome Negative 845	False Negative	True Negative 835
<u>55+835</u> 1000	Accuracy	True Positive Rate 55 65 85%	False Positive Rate 100 935 11%
	89%	False Negative 10 Rate 65	True Negative 835 Rate 935 89%

Please fill in the missing numbers.

4. Predictive Metrics

PERFORMANCE METRICS: PREDICTIVE

		Groun	d Truth		
	TOTAL POPULATION	Condition Positive	Condition Negative	Prevalence = Condition Positive Total population	
D # #	Prediction Outcome Positive	True Positive	False Positive (Type I error)	Positive Predictive Value = True Positive Prediction outcome positive	False Discovery Rate = False Positive Prediction outcome positive
Prediction	Prediction Outcome Negative	False Negative (Type II error)	True Negative	False Omission Rate = False negative Prediction outcome negative	Negative Predictive Value = True negative Prediction outcome negative
,	Accuracy =	True Positive Rate = True positive Condition positive	False Positive Rate = False Positive Condition negative		
1.0000000000000000000000000000000000000	itive +True negative tal population	False Negative Rate = False negative	True Negative Rate = True negative		ctive Value (양성 ⁰ Լ다고 판정한 케이 - 분율

Condition negative

Condition positive

e (양성예측도): 검사 l한 케이스에서 실제 로 질병이 있는 분율

Negative Predictive Value (음성예측도): 검사 에서 질병이 없다고 판정한 케이스에서 실제

로 질병이 없는 분율

PREDICTIVE METRICS QUIZ

		Groun	d Truth		
	TOTAL POPULATION 1000	Condition Positive 65	Condition Negative 935	Prevalence	
D	Prediction Outcome Positive 155	True Positive 55	False Positive	Positive Predictive Value	False Discovery Rate
Prediction	Prediction Outcome Negative 845	False Negative	True Negative 835	False Omission Rate 1%	Negative Predictive Value 99%
	Accuracy	True Positive Rate 85%	False Positive Rate 11%		fill in the
89%		False Negative Rate	True Negative Rate 89%	missing numbers.	

PREDICTIVE METRICS QUIZ

		Groun	d Truth		
	TOTAL POPULATION 1000	Condition Positive 65	Condition Negative 935	65 1000 Prevalence 7%	
Prediction	Prediction Outcome Positive 155	True Positive 55	False Positive	Positive Predictive Value <u>55</u> 155 35%	False Discovery Rate 100 155 65%
Prediction	Prediction Outcome Negative 845	False Negative	True Negative 835	False Omission Rate 10 845 1%	Negative Predictive Value 835 845 99%
Accuracy 55+835		True Positive Rate 55 65 85%	False Positive Rate 100 935 11%		fill in the
1000	89%	False Negative 10 Rate 65 15%	True Negative 835 Rate 935 89%	missing numbers.	

5. F1 score

Condition Positive

True Positive

Ground Truth

Condition Negative

False Positive

(Type I error)

TOTAL POPULATION

Prediction Outcome

Positive

Prediction

: harmonic mean of those two measures, positive predictive value(precision) and the true positive rate(recall)

Prevalence

= Condition Positive

Total population

Positive Predictive Value

False Omission Rate

False negative

Positive Predictive Value = = = True Positive Prediction outcome positive Prediction outcome positive Prediction outcome positive

Prediction outcome negative Prediction outcome negative

PPV×TPR

Negative Predictive Value

True negative

https://en.wikipedia.org/wiki/F1_score

F, QUIZ

		Groun	d Truth		
	TOTAL POPULATION 1000	Condition Positive 65	Condition Negative 935	Prevalence 7%	
	Prediction Outcome Positive 155	True Positive 55	False Positive	Positive Predictive Value 35%	False Discovery Rate 65%
Prediction	Prediction Outcome Negative 845	False Negative	True Negative 835	False Omission Rate 1%	Negative Predictive Value 99%
	Accuracy	True Positive Rate 85%	False Positive Rate 11%	Please cal	
	89%	False Negative Rate	True Negative Rate 89%	F ₁ so	core.

F, QUIZ

		Groun	d Truth			
	TOTAL POPULATION 1000	Condition Positive 65	Condition Negative 935	Prevalence 7%		
	Prediction Outcome Positive 155	True Positive 55	False Positive 100	Positive Predictive Value 35%	False Discovery Rate 65%	
Prediction	Prediction Outcome Negative 845	False Negative	True Negative 835	False Omission Rate 1%	Negative Predictive Value 99%	
	Accuracy	True Positive Rate 85%	False Positive Rate 11%	Please cal	culate the	
89%		False Negative Rate	True Negative Rate 89%	F ₁ score. 0.5 2 x (0.35x0. (0.35+0		

= 0.495833333

CLASSIFIER QUIZ

Which of these is the best classifier?

0	A		0	B		0	C	
TP=63	FP=28	91	TP=77	FP=77	154	TP=76	FP=12	88
FN=37	TN=72	109	FN=23	TN=23	46	FN=24	TN=88	112
100	100	200	100	100	200	100	100	200
PPV =	0.69		PPV =	0.50		PPV =	$0.86 = \frac{76}{88}$	TPR = $0.76 = \frac{76}{100}$
$F_1 = Accurac$		8	$F_1 = Accurac$	0.61 cy= 0.50)			$32 = \frac{(0.86 \times 0.76)}{(0.86 + 0.76)}$ $32 = \frac{76 + 88}{200}$

CLASSIFIER QUIZ

Which of these is the best classifier?

0	Α		0	В		higher pe	erformand	e matri
TP=63	FP=28	91	TP=77	FP=77	154	TP=76	FP=12	88
FN=37	TN=72	109	FN=23	TN=23	46	FN=24	TN=88	112
100	100	200	100	100	200	100	100	200
PPV =	0.69		PPV =	0.50		PPV =	0.86	
$F_1 = 0$	0.66		$F_1 =$	0.61		$F_1 =$	0.81	
Accurac	y = 0.68	3	Accura	cy= 0.50)	Accurac	cy = 0.8	32

CLASSIFIER QUIZ 2

Which of these is the best classifier?

C can be easily improved by reversing the prediction OA OB FP=28 91 112 TP=63 154 FP=77 FP=88 TP=77 TP=24 109 88 FN=37 TN=72 46 FN=76 TN=12 FN=23 TN=23 200 100 100 100 200 100 100 200 100 PPV = 0.69PPV = 0.50PPV = 0.21 $F_1 = 0.61$ = 0.66 $F_{1} = 0.22$

ACC = 0.50

ACC = 0.18

ACC = 0.68

5. ROC

The value closer to 1 means prediction outcome positive, and the value closer to 0 means prediction outcome negative.

The ROC curve illustrates overall performance of a classifier.

Prediction score of binary classification will be between 0 and 1

Since AUC (area under this ROC curve) doesn't depend on the choice of the threshold, it becomes the most popular performance metric for classification problems.

RECEIVER OPERATING CHARACTERISTIC (ROC)

#p =	: 10,	#n=10)
------	-------	-------	---

Inst#	Class p p n p	.9 .8 .7
123456789111234567890	ם מחם מחם מחם מחם מחם מחם	9.8.7.6.554 5.554 5.552 5.554

RECEIVER OPERATING CHARACTERISTIC (ROC) #p = 10. #n=1

#p = Inst#	Class	Score
1	р	.9
2345678911123145678910110112314567891011231456789101123145678910112314567891011000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.8 7.6.554 5.5.51 5.50 5.50

RECEIVER OPERATING CHARACTERISTIC (ROC)

‡p = 10, #n		=10	
net#	Class	Sco	

#p-	10, #11	-10
Inst#	Class	Score
1	р	.9
2	р	.8
2 34 56 7 89 10 11 11 11 11 11 11 11 11 11 11 11 11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.8 .7 .6 .554 .552 .505 .51 .505 .38 .365 .336 .330 .1

RECEIVER OPERATING CHARACTERISTIC

#p = 10, #n=1	(
---------------	---

1 23 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Inst#
ppn ppn n pn pn n pn pn	Class
9 .8 .7 .6 .5 .5 .5 .5 .5 .5 .5 .5 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	Score

CLASSIFICATION METRIC: ROC QUIZ

Which of the following would be a good threshold for this classifier?

Inst#	Class	Score
1 234567891011231451671890	חמים חמים חמים חמים חמים חמים חמים חמים	9.8.7.6.5.5.5.5.5.5.4.9.8.7.6.5.4.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3

CLASSIFICATION METRIC: ROC QUIZ

Which of the following would be a good threshold for this classifier?

Inst#	Class	Score
1	р	.9
2	р	8.
4 5	n p	./ .6 .55
6	p	.54
8 9 10 11 12	n n p n p n	.53 .52 .51 .505 .4 .39
13	р	.38
14 15 16 17 18	pn n pn	.37 .36 .35 .34 .33
19	р	.30
20	n	1.1

Answer: the optimal classification threshold may vary different according to preference

6. Regression Metrics MAE, MSE

REGRESSION METRICS: MAE, MSE

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i} |y_i - \hat{y}_i|$$

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$

Difference between the prediction and the ground truth value

MAE is more robust against the outliers.

It's harder to work with because this absolute value is not differentiable.

The most popular regression metrics

Average of the squared error between the prediction and the ground truth value

MSE is easier to work with because the derivative of the square term is linear.

MSE will greatly affected by outliers because of the square term.

REGRESSION METRICS: MAE, MSE

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i} |y_i - \hat{y}_i|$$

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$

X: ground truth value

REGRESSION METRICS: MAE, MSE

$$MAE = \frac{1}{n} \sum_{i} |y_i - \hat{y}_i|$$

Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i} (y_i - \hat{y}_i)^2$$

MAE = 0.0837MSE = 0.0129

MAE = 0.7804

MSE = 1.1883

MAE = 3.4328

MSE = 18.6435

MSE grows a lot faster!

7. R2

REGRESSION METRICS: R2

REGRESSION METRICS: R2

REGRESSION METRICS: R2

Coefficient of determination
$$R^2$$

$$R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$$

$$=0.82$$

- 1: The regression fits perfectly for the data.
- 0: The line doesn't fit data at all.

REGRESSION METRICS: R2

