Mini Hackathon Event

Table of contents

- The Machine Learning Roadmap

- Fake News Detection

Mini Hackathon Presentation: Fake news detection

The Machine Learning Roadmap

Let's talk about Chat-GPT...

Generative AI Can Harm Learning

Hamsa Bastani,^{1*} Osbert Bastani,^{2*} Alp Sungu,^{1*†} Haosen Ge,³ Özge Kabakcı,⁴ Rei Mariman

¹Operations, Information and Decisions, University of Pennsylvania ²Computer and Information Science, University of Pennsylvania ³Wharton AI & Analytics, University of Pennsylvania ⁴Budapest British International School

*These authors (H.B., O.B., A.S.) contributed equally.

†To whom correspondence should be addressed; E-mail: alpsungu@wharton.upenn.edu.

Foundational skills

Start by coding from scratch

High Quality Machine Learning Resources

coursera

DeepLearning.Al

Machine Learning Specialization

#BreakIntoAI with Machine Learning Specialization. Master fundamental AI concepts and develop practical machine learning skills in the beginner-friendly, 3-course program by AI visionary Andrew Ng

Instructors: Andrew Ng +3 more Top Instructor

Enroll for Free Starts Mar 20

CS109: CS109: Probability for Computer Scientists: https://web.stanford.edu/class/archive/cs/cs109/cs109.1232/handouts/syllabus.html

CS229: Machine Learning:

https://cs229.stanford.edu/syllabus-spring2022.html

CS230 Deep Learning:

https://cs230.stanford.edu/ - https://cs230.stanford.edu/files/

CS224N: NLP with Deep Learning:

https://www.youtube.com/playlist?list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4

CS231N: Deep Learning for Computer Vision:

https://www.youtube.com/playlist?list=PL5-TkQAfAZFbzxiBHtzdVCWE0Zbhomq7r

CS224W: Machine Learning with Graphs:

https://www.youtube.com/playlist?list=PLoROMvodv4rPLKxlpqhihPqdQv7imNkDn

CS330: Deep Multi-Task and Meta Learning:

https://www.voutube.com/watch?v=bkVCAk9Nsss&list=PLoROMvodv4rNjRoawgt72BBNwL2V7doGI

CS236: Generative Models:

https://www.youtube.com/watch?v=MJt_ahtO-to&list=PLoROMvodv4rPOWA-omMM6STXaWW4FvJT8 CS149: Parallel Computing:

https://www.youtube.com/playlist?list=PLoROMvodv4rMp7MTFr4hQsDEcX7Bx6Odp

CS231A: Computer Vision:

https://www.youtube.com/watch?v=68wemjquj4o&list=PLoCMsyE1cvdVnCgHk43vRy7PVTVWJ6WVR&in dex=18

Try specializing in some of the following

Keep up to date

Generative Adversarial Nets

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

DeepSeek-AI

research@deepseek.com

Abstract

We introduce our first-generation reasoning models, E DeepSeek-R1-Zero, a model trained via large-scale reinfo vised fine-tuning (SFT) as a preliminary step, demonstra Through RL, DeepSeek-R1-Zero naturally emerges with reasoning behaviors. However, it encounters challenges s Provided proper attribution is provided, Google hereby grants permission to reproduce the tables and figures in this paper solely for use in journalistic or

scholarly works.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Llion Jones* Google Research llion@google.com Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Aidan N. Gomez* † Łukasz Kaiser*
University of Toronto
aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, Yoshua Bengio,
Département d'informatique et de recherche opérationnelle

Département d'informatique et de recherche opérationnel Université de Montréal Montréal, QC H3C 3J7

Abstract

or estimating generative models via an adversarneously train two models: a generative model Gon, and a discriminative model D that estimates lefrom the training data rather than G. The trainize the probability of D making a mistake. This imax two-player game. In the space of arbitrary

Fake News Detection

Fake News Detection - Introduction

- What is fake news?
 - Factually false (GDP)
 - Misleading
- Why is it an important topic?
 - Anyone can publish information
 - Automated publication
- Importance of detection for society
 - Prevent spread of harmful misinformation
 - e.g., false health advice to sell useless drugs
 - Influence politics

Fake News Detection - Detection Techniques

- NLP for text analysis
 - Extract language patterns, sentiment, or other linguistic features
- End-to-end classification models
- More advanced:
 - Network analysis of information dissemination

Fake News Detection - Data Sources & Features

- Text content
 - Examples include
 - Exaggerated language
 - Emotional tone
- What is metadata?
 - Broad data
 - Source credibility
 - Publication timestamps

Fake News Detection - Zero-Shot Learning

- What Is Zero-Shot Learning?
 - Classify or understand new categories that were never seen during training
- How does it work?
 - Leverages generalizable representations
 - e.g., embeddings and language models to make predictions on unseen labels
- How to use it for fake news detection?

```
# Candidate labels to test (e.g., categories relevant to fake news detection)
candidate_labels = ["fake news", "reliable news", "misleading information"]

# Perform zero-shot classification
result = classifier(text, candidate_labels)
```


New Communications Platform

Join our Discord:

Link: https://discord.gg/xcfp4UHGWa

QR-Code:

Mini Hackathon Presentation Fake news detection

Welcome to the Hackathon!

Manu's Machine Learning Lectures x Kaggle Teams

Showcase your skills! Compete in this exciting challenge to classify fake and real news using machine learning.

Your Goal: Build a model that can accurately distinguish between real and fake news articles using the provided dataset.

Prove your expertise and rank at the top!

Let's start by making teams of 2-4 people

Rules & Dataset Overview

P Dataset:

- You will receive a dataset with news articles labeled as Fake (1) or Real (0).
- Columns include Title, Subject, Text, Date, and Target.
- Use only the first 75% of the dataset for training. The final 25% is for testing only.

Rules:

- No external data is allowed.
- 2. You must **only train on the first 75%** of the dataset.
- 3. **Submit predictions** for the test set.
- 4. Feature engineering is allowed.
- 5. Use any machine learning or deep learning approach.

Scoring System 🏅

You can earn up to **3 points** based on your performance:

- 7 1 Point Highest overall accuracy (using any features you want).
- 1 Point Highest accuracy using only the text column.
- 1 Point Highest accuracy using only the title column.
- The leaderboard will be based on accuracy. Aim high!

Best of Luck! 🚀

Thanks for Listening!

