10.8: Choosing a Convergence Test

Example. Consider the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$. Is this series conditionally convergent, absolutely convergent, or divergent? Which test do you use?

Example. Consider the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2}$. Is this series conditionally convergent, absolutely convergent, or divergent? Which test do you use?

Example. Which of the following series can be rewritten as a *p*-series?

$$\sum_{k=1}^{\infty} \frac{(-1)^{2k}}{k\sqrt{k}}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^5}$$

$$\sum_{k=1}^{\infty} \frac{k^2 + k + 1}{k^4 + 2}$$

$$\sum_{k=1}^{\infty} \frac{3^k}{k^4}$$

$$\sum_{k=1}^{\infty} \frac{\sqrt{k}}{k^2}$$

Example. Which test *cannot* be used to determine the convergence of $\sum_{k=1}^{\infty} \frac{k^2 2^{k-1}}{(-5)^k}$?

Example. For the following series, which test should be used to determine if the series converges or diverges? Use your selected test to show convergence or divergence.

$$\sum_{k=1}^{\infty} (-1)^k \frac{k}{k+2}$$

$$\sum_{k=1}^{\infty} (-1)^k \frac{k}{k+2}$$

$$\sum_{k=1}^{\infty} \frac{k!}{2^k (k+2)!}$$

$$\sum_{k=1}^{\infty} \frac{|\sin(2k)|}{1+2^k}$$

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k} - 1}$$

$$\sum_{k=2}^{\infty} \frac{1}{k\sqrt{\ln(k)}}$$

$$\sum_{k=1}^{\infty} \left(2^{1/k} - 1\right)^k$$

$$\sum_{k=3}^{\infty} \frac{1}{k^{2/5} \ln(k)}$$

$$\sum_{k=1}^{\infty} \frac{8(3k)!}{(k!)^3}$$

$$\sum_{k=1}^{\infty} \sin\left(\frac{9}{k^{12}}\right)$$

a Conv	Series or Test	Form of Series	Condition for Convergence	Condition for Divergence	Comments
osing a Convergence Test	Geometric series	$\sum_{k=0}^{\infty} ar^k, \ a \neq 0$	r < 1	$ r \ge 1$	If $ r < 1$, then $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$.
lest 179 Math 1080 Class notes	Divergence Test	$\sum_{k=1}^{\infty} a_k$	Does not apply	$\lim_{k \to \infty} a_k \neq 0$	Cannot be used to prove convergence
	Integral Test	$\sum_{k=1}^{\infty} a_k$, where $a_k = f(k)$ and f is continuous, positive, and decreasing.	$\int_{1}^{\infty} f(x) dx \text{ converges.}$	$\int_{1}^{\infty} f(x) dx \text{ diverges.}$	The value of the integral is not the val of the series.
	p-series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	p > 1	$p \le 1$	Useful for comparison tests.
	Ratio Test	$\sum_{k=1}^{\infty} a_k$	$\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right < 1$	$\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right > 1$	Inconclusive if $\lim_{k \to \infty} \left \frac{a_{k+1}}{a_k} \right = 1$
	Root Test	$\sum_{k=1}^{\infty} a_k$	$\lim_{k \to \infty} \sqrt[k]{ a_k } < 1$	$\lim_{k \to \infty} \sqrt[k]{ a_k } > 1$	Inconclusive if $\lim_{k\to\infty} \sqrt[k]{ a_k } = 1$
	Comparison Test (DCT)	$\sum_{k=1}^{\infty} a_k, \text{ where } a_k > 0$	$a \le b_k$ and $\sum_{k=1}^{\infty} b_k$ converges.	$b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges.	$\sum_{k=1}^{\infty} a_k \text{ is given; you supply } \sum_{k=1}^{\infty} b_k.$
	Limit Comparison Test (LCT)	$\sum_{k=1}^{\infty} a_k, \text{ where } $ $a_k > 0, b_k > 0$	$0 \le \lim_{k \to \infty} \frac{a_k}{b_k} < \infty$ and $\sum_{k=1}^{\infty} b_k$ converges.	$\lim_{k \to \infty} \frac{a_k}{b_k} > 0 \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ diverges.}$	$\sum_{k=1}^{\infty} a_k \text{ is given; you supply } \sum_{k=1}^{\infty} b_k.$
	Alternating Series Test (AST)	$\sum_{k=1}^{\infty} (-1)^k a_k, \text{ where } a_k > 0$	$\lim_{\substack{k \to \infty \\ 0 < a_{k+1} \le a_k}} a_k \text{ and }$	$\lim_{k \to \infty} a_k \neq 0$	Remainder R_n satisfies $ R_n \le a_{n+1}$
	Absolute Convergence	$\sum_{k=1}^{\infty} a_k, a_k$ arbitrary	$\sum_{k=1}^{\infty} a_k \text{ converges.}$		Applies to arbitrary series