Biçimsel Diller ve Otomata Teorisi

Sunu VII Kleene Kuramı II

İZZET FATİH ŞENTÜRK

Kleene's Theorem

- Any language that can be defined by <u>regular</u> <u>expression</u>, or <u>finite automaton</u>, or <u>transition</u> <u>graph</u> can be defined by all three methods
- Proof
 - ✓ Part 1: Every language that can be defined by a FA can also be defined by a TG
 - ✓ Part 2: Every language that can be defined by a TG can also be defined by a RE
 - Part 3: Every language that can be defined by a RE can also be defined by a FA

Proof, Part 3: Converting REs into FAs

- This is the hardest part of the whole theorem
- Every RE can be built up from the letters of the alphabet Σ and Λ by repeated application of certain rules:
 - Addition, concatenation, and closure
- When we build up a RE, we could <u>at the same time</u> be building up an FA that accepts the same language

- **Rule 1**: There is an FA that accepts any particular letter of the alphabet. There is an FA that accepts only the word Λ
- **Proof of Rule 1:** If x is in Σ, then the FA accepts only the word x

• **Proof of Rule 1:** One FA that accepts only Λ

- If there is an FA called FA_1 that accepts the language defined by the RE ${\bf r_1}$ and there is an FA called FA_2 that accepts the language defined by the RE ${\bf r_2}$, then there is an FA that we shall call FA_3 , that accepts the language defined by the RE $({\bf r_1} + {\bf r_2})$. Union!
- We will prove Rule 2 by showing how to construct the new machine from the two old machines
- Before stating the general principals, we will demonstrate them in a specific example first

• FA₁: The language of all words over Σ ={a b} that have a double a somewhere in them

• FA2: EVEN-EVEN (even number of a's and an even number

of b's)

_	b	_
$\pm y_1$	b	y ₂
		$\binom{a}{}$
y_3	b	y_4
	b	

	a	b
$\pm y_1$	y_3	y_2
y_2	y_4	\boldsymbol{y}_1
y_3	y_1	y_4
y_4	y_2	y_3

- FA₃: The language of all words that either have an aa or are in EVEN-EVEN and rejects all other strings with neither characteristics
 - The language of the new machine is the union of these two languages
 - We shall call the states in this new machine $z_1, z_2, z_3 \dots$ for as many as needed
 - We shall define this machine by its transition table
 - We will keep track of where the input would be if it were running on FA₁ alone and where the input would be if it were running on FA₂ alone

- First, we need a start state z_1
 - z₁ combines x₁ (if running on FA₁) and y₁ (if running on FA₂)
- All z-states in FA₃ machine carry with them a double meaning
 - It is running on both FA_1 and FA_2 and we keep track of both games simultaneously
- What new states can occur if the input letter a is read?

- What new states can occur if the input letter a is read?
 - For FA_1 , it would put the machine into state x_2
 - For FA_2 , it would put the machine into state y_3
- On FA3, letter a puts the machine into state z_2 which means either x_2 or y_3

CONTRACTOR OF THE PARTY OF THE	а	b
$-x_1$	x_2	x_1
x_2	x_3	x_1
$+x_3$	x_3	x_3

	а	b
$\pm y_1$	y_3	y ₂
y_2	y_4	\boldsymbol{y}_1
y_3	y_1	y_4
y_4	y_2	y_3

$$\pm z_1 = x_1 \quad \text{or} \quad y$$

$$z_2 = x_2 \quad \text{or} \quad y$$

- If we are in z_1 and read the letter b
 - For FA_1 , it would put the machine into state x_1 (from state x_1)
 - For FA_2 , it would put the machine into state y_2 (from state y_1)

Em Noment V. Land Andrews	a	b
$-x_1$	x_2	x_1
x_2	x_3	x_1
$+x_3$	x_3	x_3

	а	b
$\pm y_1$	y_3	<i>y</i> ₂
y_2	y_4	\boldsymbol{y}_1
y_3	y_1	y_4
y_4	y_2	y_3

$$\pm z_1 = x_1 \quad \text{or} \quad y_1$$

$$z_2 = x_2 \quad \text{or} \quad y_3$$

$$z_3 = x_1 \quad \text{or} \quad y_2$$

The beginning of the transition table for FA₃

- If we are in z_2 and read the letter a
 - For FA_1 , it would put the machine into state x_3 (final state)
 - For FA_2 , it would put the machine into state y_1
- If we are in z_2 and read the letter b
 - For FA_1 , it would put the machine into state x_1
 - For FA2, it would put the machine into state y4

	l a	b		a	b			,	1	a	b
$-x_1$ x_2	x_2 x_3	x_1 x_1	$ \begin{array}{c} \pm y_1 \\ y_2 \\ y_3 \\ y_4 \end{array} $	y ₃ y ₄ y ₁	y ₂ y ₁ y ₄	$\begin{aligned} +z_4 &= x_3 \\ z_5 &= x_1 \end{aligned}$		$\frac{\pm z_1}{z_2}$		z ₂ z ₄	z ₃ z ₅

Acceptance by either machine FA₁ or FA₂ is enough for acceptance by FA₃

- If we are in z_3 and read the letter a
 - For FA_1 , it would put the machine into state x_2
 - For FA₂, it would put the machine into state y₄
- If we are in z_3 and read the letter b
 - For FA_1 , it would put the machine into state x_1
 - For FA2, it would put the machine into state y1

em von met ver	a	b
$-x_1$	x_2	x_1
x_2	x_3	x_1
$+x_3$	x_3	x_3

	a	b
$\pm y_1$	y_3	y_2
y_2	y_4	\boldsymbol{y}_1
y_3	y_1	y_4
y_4	y_2	y_3

$$z_6 = x_2 \quad \text{or} \quad y_4$$

	а	b
$\pm z_1$	z_2	z_3
z_2	z_4	z_5
z_3	z_6	z_1

- If we are in z₄ and read the letter a
 - For FA_1 , it would put the machine into state x_3 (final state)
 - For FA_2 , it would put the machine into state y_3
- If we are in z_4 and read the letter b
 - For FA_1 , it would put the machine into state x_3 (final state)
 - For FA_2 , it would put the machine into state y_2

	a	<u>b</u>
$-x_1$	x_2	x_1
x_2	x_3	x_1
$+x_3$	x_3	x_3

	a	b
$\pm y_1$	y_3	y_2
y_2	y_4	\boldsymbol{y}_1
y_3	y_1	y_4
y_4	y_2	y_3

$$+z_7 = x_3 \quad \text{or} \quad y_3$$

$$+z_8 = x_3 \quad \text{or} \quad y_2$$

If we are in z_5 and we read an a, we go to x_2 or y_2 , which we shall call z_9 . If we are in z_5 and we read a b, we go to x_1 or y_3 , which we shall call z_{10} .

$$z_9 = x_2 \quad \text{or} \quad y_2$$
$$z_{10} = x_1 \quad \text{or} \quad y_3$$

If we are in z_6 and we read an a, we go to x_3 or y_2 , which is our old z_8 . If we are in z_6 and we read a b, we go to x_1 or y_3 , which is z_{10} again. If we are in z_7 and we read an a, we go to x_3 or y_1 , which is z_4 again. If we are in z_7 and we read a b, we go to x_3 or y_4 , which is a new state, z_{11} .

$$+z_{11} = x_3$$
 or y_4

If we are in z_8 and we read an a, we go to x_3 or $y_4 = z_{11}$. If we are in z_8 and we read a b, we go to x_3 or $y_1 = z_4$. If we are in z_9 and we read an a, we go to x_3 or $y_4 = z_{11}$. If we are in z_9 and we read a b, we go to x_1 or $y_1 = z_1$. If we are in z_{10} and we read an a, we go to x_2 or y_1 , which is our last new state, z_{12} .

$$+z_{12} = x_2$$
 or y_1

If we are in z_{10} and we read a b, we go to x_1 or $y_4 = z_5$.

If we are in z_{11} and we read an a, we go to x_3 or $y_2 = z_8$. If we are in z_{11} and we read a b, we go to x_3 or $y_3 = z_7$. If we are in z_{12} and we read an a, we go to x_3 or $y_3 = z_7$. If we are in z_{12} and we read a b, we go to x_1 or $y_2 = z_3$.

	а	<u>b</u>
$\pm z_1$	z_2	z_3
z_2	z_4	z_5
z_3	z_6	z_1
$+z_4$	z_7	z_8
z_5	z_9	z_{10}
<i>z</i> ₆	z_8	z_{10}
$+z_7$	z_4	z_{11}
$+z_8$	z ₁₁	z_4
z_9	z ₁₁	z_1
z ₁₀	z ₁₂	z_5
$+z_{11}$	z_8	z_7
$+z_{12}$	z_7	z_3

• FA₃

	а	<u>b</u>
$\pm z_1$	z_2	z_3
z_2	z_4	z_5
z_3	z_6	z_1
$+z_4$	z_7	z_8
z_5	z_9	z_{10}
<i>z</i> ₆	z_8	z_{10}
$+z_7$	z_4	z_{11}
$+z_8$	z ₁₁	z_4
z_9	z ₁₁	z_1
z_{10}	z ₁₂	z_5
$+z_{11}$	z_8	z_7
$+z_{12}$	z_7	z_3

- FA₁ accepts all words with a double a in them
- FA₂ accepts all words ending in b

$$-z_1 = x_1$$
 or y_1

In z_1 if we read an a, we go to x_2 or $y_1 = z_2$ In z_1 if we read a b, we go to x_1 or $y_2 = z_3$, which is a final state since y_2 is.

In z_2 if we read an a, we go to x_3 or $y_1 = z_4$, which is a final state because x_3 is. In z_2 if we read a b, we go to x_1 or $y_2 = z_3$.

In z_3 if we read an a, we go to x_2 or $y_1 = z_2$. In z_3 if we read a b, we go to x_1 or $y_2 = z_3$. In z_4 if we read an a, we go to x_3 or $y_1 = z_4$. In z_4 if we read a b, we go to x_3 or $y_2 = z_5$, which is a final state. In z_5 if we read an a, we go to x_3 or $y_1 = z_4$. In z_5 if we read a b, we go to x_3 or $y_2 = z_5$.

• $z_6 = x_2$ or y_2 does not arise, why?

- FA₁ accepts all words that end in a
- FA₂ accepts all words with an odd number of letters

- FA₃ accepts all words that either have an odd number of letters or end in a
 - The only state that is not a + state is the state

- FA₁ accepts all words that end in a
- FA₂ accepts all words that end in b

- FA₃ accepts all words that end in a or
 b (all words except Λ)
 - State x₂ or y₂ cannot be reached

An Alternate Procedure for Producing the Union-Machine

- Let FA_1 have states $x_1, x_2, ...$
- Let FA_2 have states $y_1, y_2, ...$
- We can define the union machine (FA₃) initially as having all the possible states x₁ or y₁ for all combinations of i and j
- The number of states in FA₃ would always be the product of the number of states in FA₁ and FA₂
- For each state in FA₃ we could draw it's a-edge and b-edge in any order
- What we have done before is create new z states when needed

An Alternate Procedure for Producing the Union-Machine

 We could start with four possible states for the example before

For each of these four states we would draw two edges

An Alternate Procedure for Producing the Union-Machine

- This is a perfectly possible FA for the union language FA₁ + FA₂
- However, we see that its lower right-hand side state is completely useless
 - It can never be entered by any string starting at –
 - It is not against the definition of an FA to have a useless state

• Rule 3

• If there is an FA_1 that accepts the language defined by the regular expression \mathbf{r}_1 and an FA_2 that accepts the language defined by the regular expression \mathbf{r}_2 , then there is an FA_3 that accepts the language defined by the concatenation $\mathbf{r}_1\mathbf{r}_2$, the product language

• L1: The language of all words with b as the second letter

- L2: The language of all words that have an odd number of a's
- Consider the input string (ab)(abbaa)
 - Begin on FA1 and finish on +
 - Jump to FA with the remaining string and finish on +

- This simple idea does not work
- Consider a different input string for the same product language: ababbab
- (abab) (bab) is accepted
- (ab)(abbab) is rejected
- How do we know when to jump?

- Start with the state z_1 , which is exactly like x_1
 - The input string is being run on FA₁ alone
 - From z_1 , if read a b, we must return to x_1
 - From z_1 , if read an a, we must go to x_2 (z_2 is same c
 - From z_2 , if read an a, we must go to z_3 (z_3 is same as x_3)
- X3 has a dual identity
 - Either it means that we have reached the final state in FA1
 - Or else we pass through

$$z_3 = \begin{cases} x_3, \text{ and we are still running on } FA_1 \\ \text{or} \\ y_1, \text{ and we have begun to run on } FA_2 \end{cases}$$

• We are in z_3 and we read an a, we have three options

We are back in x_3 continuing to run the string on FA_1

or

we have just finished on FA_1 and we are now in y_1 beginning to run on FA_2

or

we have looped from y_1 back to y_1 while already running on FA_2

- = x₃ or y₁
 (because being in y₁ is the same whether we are there for the first time or not)
- = z_3 Reading an a takes us back to z_3 from z_3

• We are in z_3 and we read a b, we go to z_4 which have four meanings

 $+z_4 = \begin{cases} \text{We are still in } x_3 \text{ continuing to run on } FA_1 \\ \text{or} \\ \text{we have just finished running on } FA_1 \text{ and are now in } y_1 \text{ on } FA_2 \\ \text{or} \\ \text{we are now in } y_2 \text{ on } FA_2, \text{ having reached there via } y_1 \end{cases}$ $= x_3 \text{ or } y_1 \text{ or } y_2$

- If a path ends in z_4 , this path can be broken into two parts:
 - The first part: From x_1 to x_3
 - The second part: From y_1 to y_2
 - Therefore, it must be accepted. z₄ is a final state

 We are in z₄ and we read an a, our choices are:

remaining in x_3 and continuing to run on FA_1 or having just finished FA_1 and beginning at y_1 or having moved from y_2 back to y_1 in FA_2 $= x_3 \quad \text{or} \quad y_1$

- This is exactly the definition of z_3
 - If we are in z_4 and read an a, we go back to z_3

 We are in z₄ and we read a b, our choices are:

remaining in x_3 and continuing to run on FA_1 or
having just finished FA_1 and beginning at y_1 or
having looped back from y_2 to y_2 running on FA_2 $= x_3 \quad \text{or} \quad y_1 \quad \text{or} \quad y_2$ $= z_4$

- This is the definition of z₄
 - If we are in z_4 and read a b, we go loop back to z_4

- Rule 4
 - If r is a regular expression and FA₁ is a finite automaton that accepts exactly the language defined by r, then there is an FA called FA₂ that will accept exactly the language defined by r*