

Estudio de caso:

Modelo QSAR utilizando redes profundas para predecir mutagenicidad

Ben el desarrollo de sármacos

Fem plos

QSAR Modeling for Drug Discovery

Exicid ad

Ames predictive model

J. Chem. Inf. Model. 2022, 62, 6342-6351

Test de Am es

Evaluar el potencial mutagénico de compuestos químicos

sample

mutant

Test de Ames

Información de las cepas, cantidad de compuestos y etiquetas de clase

Сера	# Compuestos total	Activos/Inactivos	Variantes que intervienen
97	1255	281/974 22%/78%	TA97 TA97_S9 TA97A TA97A_S9
98	4854	1676 / 3178 35% / 65%	TA98 TA98_S9 TA98(NR) TA98(NR)_S9 TA98(1,8-DNP6) TA98(1,8-DNP6)_S9
100	5366	2096 / 3270 39% / 61%	TA100 TA100_S9 TA100(1,8-DNP6) TA100(1,8-DNP6)_S9 TA100(NR) TA100(NR)_S9
102	975	226/749 23% / 77%	TA102 TA102_S9
1535	2657	436 / 2221 16% / 84%	TA1535 TA1535_S9
1537	2229	365 / 1864 16% / 84%	TA1537 TA1537_S9
1538	1121	294 / 827 26% / 74%	TA1538 TA1538_S9
Extra	759	362/397 48%/52%	38 cepas restantes
Overall	5537	3229 / 2308 58% / 42%	Todas

Est de Ames

The OECD Guidelines for the Testing of Chemicals points out that at least five strains of S.typhimurium bacteria should be used:

TA1535; TA1537 or TA97a or TA97; TA98; TA100 and TA1021

- 1 The TA102 strains can be substituted by E.coli WP2 strains.
- 2 Williams et al [2019]. Are all bacterial strains required by OECD mutagenicity test guideline TG471 needed?, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol. 848, 503081.

Etado del arte

Mutagenico/no mutagenico

Toxicidad

Ames/QSAR International Challenge Project 50% sensitivity and accuracy 80%

Honma Genes and Environment

(2020) 42:23

Sprendizaje multitarea

Multi-Task Learning

Be de datos. Soscriptores

Base de Datos – ISSSTY Único set de datos con todas las Datos Train 70% estructuras moleculares para las que Se utiliza el 80% se tenía un valor definido de Overall. Particiones fijas para el 5 fold CV 7367 (aleatoria) Internal 10% Los targets de cada cepa pueden compuestos tomar valor o (inactivo), 1 (activo) o External 20% Consensos: -1 (indefinido). 2 cepas: 98 & 100 4 cepas: 98, 100, 1535 & 1537 Cepas: 98, 100, 102, 1535 y 1537

5 cepas: 98, 100, 102, 1535 & 1537

Proceso de curado de la base de datos

^{*} Benigni, R., Battistelli, C. L., Bossa, C., Tcheremenskaia, O., & Crettaz, P. (2013). New perspectives in toxicological information management, and the role of ISSTOX databases in assessing chemical mutagenicity and carcinogenicity. *Mutagenesis*, 28(4), 401-409.

Aprendizaje multitarea

validation

validation

grid search

Aprendizaje multitarea

Rsultados

Table 2. Average Results on the External Validation Set for MTL- DNN_{Cons} , STL- DNN_{Cons} , and $RF_{Overall}$, along with Their Corresponding Confidence Intervals at $95\%^a$

	Sp	Sn	Precision	Acc	BAcc	F1 score	H1 score	MCC
MTL-DNN _{Cons}	0.86 + 0.04	0.99 ± 0.00	0.99 + 0.00	0.99 + 0.00	0.93 + 0.02	0.99 + 0.00	0.92 + 0.02	0.89 + 0.03
STL-DNN _{Cons}	0.72 ± 0.04	0.99 ± 0.00	0.98 ± 0.00	0.98 ± 0.00	0.86 ± 0.02	0.99 ± 0.00	0.84 ± 0.02	0.82 ± 0.03
STL - $DNN_{Overall}$	0.43 ± 0.06	0.99 ± 0.00	0.96 ± 0.00	0.95 ± 0.00	0.71 ± 0.03	0.98 ± 0.00	0.60 ± 0.06	0.60 ± 0.04
$RF_{Overall}$	0.60 ± 0.04	0.91 ± 0.01	0.97 ± 0.00	0.90 ± 0.01	0.76 ± 0.02	0.94 ± 0.01	0.73 ± 0.03	0.39 ± 0.02

^aThese results were computed by evaluating the external validation set on the five trained trials resulting from the five-fold cross-validation stage of our experimental workflow. As it can be seen from the best results highlighted in bold, our proposed model significantly surpass single-task learning strategies.

NRb as e d COBR

Capacidad mutagenica de cualquier compuesto químico

