

DSA5104 Principles of Data Management and Retrieval

Lecture 0: Overview

Data Is Ubiquitous

E-Commerce

Internet of Things (IoT)

Big Data - Data Flooding in Smart Cities

Teleco + Metro Data → Crowd Forcasting

User ID	Time	Longitude	Latitude	Action
1001	8:00:00am	103.737459	1.326909	SMS
1002	8:00:01am	103.737512	1.327108	CAL
1003	8:00:03am	103.741002	1.339921	SMS
1004	8:00:03am	103.738199	1.331231	INT

Caller Detail Records (CDR) [1]

[1] Liang, Victor C., et al. "Mercury: Metro density prediction with recurrent neural network on streaming CDR data." ICDE 2016.

Keppel Bay Tower - Singapore's first Green Mark Platinum (Zero Energy) commercial building

Cooling Tower Water Savings
7,000m³ per year
which is equivalent to the
amount of water needed to
fill 3 Olympic-size swimming

pools every year

Overall Energy Savings 20% (from best in class standard) or

1.5mil kWh/year which is equivalent to the amount of energy required to power more than 250 5-room HDB flats for a year

Energy Efficiency Index (EEI)
115 kWh/m² per year
An average Green Mark
Platinum building has an EEI
of 145 kWh/m² per year

Keppel Bay Tower - Singapore's first Green Mark Platinum (Zero Energy) commercial building

Cooling Tower Water Savings
7,000m³ per year
which is equivalent to the
amount of water needed to
fill 3 Olympic-size swimming
pools every year

Overall Energy Savings 20% (from best in class standard) or

1.5mil kWh/year which is equivalent to the amount of energy required to power more than 250 5-room HDB flats for a year

Energy Efficiency Index (EEI)
115 kWh/m² per year
An average Green Mark
Platinum building has an EEI
of 145 kWh/m² per year

Data Categorized by Data Types

2021 in pictures | Galle...

Pictures of the month: April | Reuter...

350+ Free Pictures [HD] | Download Free... unsplash.com

Photographs vs pictures: Whatever you ...

Download · Pexels Stock Photos pexels.com

How to Take Good Pictures (10... expertphotography.com

Pictures - Home | Facebook

Pictures of the month: January ...

2021: The year in pictures | The .. straitstimes.com

How to Take Sharp Photos photographylife.com

Data Categorized by Data Types

Structured Data

- Data conforms to a set schema
 - Numerical, categorical and text data with well-defined schema

Table name: instructor

Column	Data Type
ID	varchar(5)
name	varchar(20) not null
dept_name	varchar(20)
salary	numberic(8, 2)

instructor

ID	пате	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

- Data with labels but no fixed schema
 - JSON, XML
 - CSV files with headers

- Usage:
 - For data exchange

https://e.nodegoat.net/CMS/upload/guide-import_person_csv_notepad.png

```
Tag
        <note>
          <to>Daddy</to>
          <from>Jimmy</from>
          <body>Don't forget to play with me this weekend!</pody>
     5
        </note>
Closing tag
                                   note
                                   from
                                               body
                        to
```


XML

```
<?xml version="1.0" encoding="ISO-8859-15"?>
<package destination="SU" origin="ASR" version="1.0">
  <recognized_sentence>
    <information>
      I would like the train fares from Valencia to Madrid
    </information>
    <confidences>
        <word confidence="0.47" value="I" />
        <word confidence="0.68" value="would" />
        <word confidence="0.53" value="like" />
        <word confidence="0.75" value="the" />
        <word confidence="0.64" value="train" />
        <word confidence="0.56" value="fares" />
        <word confidence="0.84" value="from" />
        <word confidence="0.93" value="Valencia"/>
        <word confidence="0.78" value="to"/>
        <word confidence="0.93" value="Madrid" />
    </confidences>
  </recognized_sentence>
  <grammar name="dihana.jsgf">
</package>
```

XML

A prolog defines the XML version and the character encoding

```
<?xml version="1.0" encoding="ISO-8859-15"?>
<package destination="SU" origin="ASR" version="1.0">
  <recognized_sentence>
    <information>
      I would like the train fares from Valencia to Madrid
    </information>
    <confidences>
        <word confidence="0.47" value="I" />
        <word confidence="0.68" value="would" />
        <word confidence="0.53" value="like" />
        <word confidence="0.75" value="the" />
        <word confidence="0.64" value="train" />
        <word confidence="0.56" value="fares" />
        <word confidence="0.84" value="from" />
        <word confidence="0.93" value="Valencia"/>
        <word confidence="0.78" value="to"/>
        <word confidence="0.93" value="Madrid" />
    </confidences>
  </recognized_sentence>
  <grammar name="dihana.jsgf">
</package>
```

XML

A prolog defines the XML version and the character encoding

```
<?xml version="1.0" encoding="ISO-8859-15"?>
<package destination="SU" origin="ASR" version="1.0">
  <recognized_sentence>
    <information>
      I would like the train fares from Valencia to Madrid
    </information>
    <confidences>
        <word confidence="0.47" value="I" />
        <word confidence="0.68" value="would" />
        <word confidence="0.53" value="like" />
        <word confidence="0.75" value="the" />
        <word confidence="0.64" value="train" />
        <word confidence="0.56" value="fares" />
        <word confidence="0.84" value="from" />
        <word confidence="0.93" value="Valencia"/>
        <word confidence="0.78" value="to"/>
        <word confidence="0.93" value="Madrid" />
    </confidences>
  </recognized_sentence>
  <grammar name="dihana.jsgf">
</package>
```

Element *package* has three attributes: destination, origin and version.

XMI

A prolog defines the XML version and the character encoding

```
<?xml version="1.0" encoding="ISO-8859-15"?>
<package destination="SU" origin="ASR" version="1.0">
  <recognized_sentence>
    <information>
      I would like the train fares from Valencia to Madrid
    </information>
    <confidences>
        <word confidence="0.47" value="I" />
        <word confidence="0.68" value="would" />
        <word confidence="0.53" value="like" />
        <word confidence="0.75" value="the" />
        <word confidence="0.64" value="train" />
        <word confidence="0.56" value="fares" />
        <word confidence="0.84" value="from" />
        <word confidence="0.93" value="Valencia"/>
        <word confidence="0.78" value="to"/>
        <word confidence="0.93" value="Madrid" />
    </confidences>
  </recognized_sentence>
  <grammar name="dihana.jsgf">
</package>
```

Element *package* has three attributes: destination, origin and version.

JSON

key/value pair

Curly brackets hold objects

```
key/value pair
"menu":
                                                         seprated by commas
 'id": "file",
 "value": "File",
 "popup": {
   "menuitem": [
     {"value": "New", "onclick": "CreateNewDoc()"},
     {"value": "Open", "onclick": "OpenDoc()"},
     {"value": "Close", "onclick": "CloseDoc()"}
```

```
key/value pair
"menu":∠
                                                            seprated by commas
 "value": "File<mark>"</mark>,
 "popup": {
   "menuitem": [
     {"value": "New", "onclick": "CreateNewDoc()"},
     {"value": "Open", "onclick": "OpenDoc()"},
     {"value": "Close", "onclick": "CloseDoc()"}
                                           Square brackets hold arrays
        Curly brackets hold objects
```

```
XML
```

```
<menu id="file" value="File">
    <popup>
        <menuitem value="New" onclick="CreateNewDoc()" />
        <menuitem value="Open" onclick="OpenDoc()" />
        <menuitem value="Close" onclick="CloseDoc()" />
        </popup>
</menu>
```

Load JSON File Using Pandas

data.json

```
"Duration":{
         "0":60,
         "1":60,
         "2":60,
         "3":45,
         "4":45,
         "5":60
 8
 9
       "Pulse":{
10 ▼
         "0":110,
11
         "1":117,
12
         "2":103,
13
14
         "3":109,
         "4":117,
15
         "5":102
16
17
       "Maxpulse":{
18 ₩
19
         "0":130,
20
         "1":145,
         "2":135,
21
22
         "3":175,
         "4":148,
23
         "5":127
24
25
26 ₩
       "Calories":{
27
         "0":409,
28
         "1":479,
29
         "2":340,
         "3":282,
30
         "4":406,
31
32
         "5":300
33
34
```

Load JSON File Using Pandas

Load JSON File Using Pandas

data.json

```
"Duration":{
         "0":60,
         "1":60,
         "2":60,
         "3":45,
         "4":45,
 8
         "5":60
 9
10 ▼
       "Pulse":{
         "0":110,
11
         "1":117,
12
         "2":103,
13
14
         "3":109,
         "4":117,
15
16
         "5":102
17
       "Maxpulse":{
18 ₩
19
         "0":130,
20
         "1":145,
         "2":135,
21
22
         "3":175,
         "4":148,
23
24
         "5":127
25
26 ₩
       "Calories":{
27
         "0":409,
28
         "1":479,
         "2":340,
29
         "3":282,
30
         "4":406,
31
32
         "5":300
33
34
```

Jupyter Notebook

	Duration	Pulse	Maxpulse	Calories
0	60	110	130	409
1	60	117	145	479
2	60	103	135	340
3	45	109	175	282
4	45	117	148	406
5	60	102	127	300

Unstructured Data

"I'm Hilda. I was born in 1990."

"My name is Max. I'm turning 20 this year."

Unstructured Data - Natural Language Text

Discharge Summary

Patient Name: Russell Johnson

Medical Record Number: 123456789

Admission Date: 08/01/14 Discharge Date: 08/05/14

Attending Physician: Dr Gary Marshall

Dictated by: Dr Gary Marhsall

Primary Care Physician: Dr Dianna Miller

Referring Physician:

Consulting Physician(s): Dr Gary Marshall - hospitalist

Condition on Discharge: *stable*

Final Diagnosis: *RLL pneumonia, COPD exacerbation, mild CHF, osteoarthritis*

Procedures: none

History of Present Illness 72 year old thin white male presented to emergency on 8/1/14 with shortness of breath, weakness and dehydration. Chest X-ray showed right lower lobe infiltrate, ABGs unremarkable. Pulse ox on RA was 79%.

- 1) Pneumonia: treated with ceftriaxone and azithromycin iv. Switched to PO after 72 hours.
- 2) Exacerbation of COPD: patient treated with inhaled and oral steroids, O2 at 2l/nc. On RA at time of discharge
- 3) Weakness and dehydration: secondary to pneumonia and COPD. Responded well to strengthening with PT and regular meals.

Discharge Medications *Zithromycin daily until gone, inhalers #of puffs,*

Discharge Instructions: no activity restriction, regular diet, follow up in two to three weeks with regular physician.

Unstructured Data - Natural Language Text

Discharge Summary

Patient Name: Russell Johnson

Medical Record Number: 123456789

Admission Date: 08/01/14 Discharge Date: 08/05/14

Attending Physician: Dr Gary Marshall

Dictated by: Dr Gary Marhsall

Primary Care Physician: Dr Dianna Miller

Referring Physician:

Consulting Physician(s): *Dr Gary Marshall - hospitalist*

Condition on Discharge: *stable*

Final Diagnosis: *RLL pneumonia, COPD exacerbation, mild CHF, osteoarthritis*

Procedures: none

History of Present Illness 72 year old thin white male presented to emergency on 8/1/14 with shortness of breath, weakness and dehydration. Chest X-ray showed right lower lobe infiltrate, ABGs unremarkable.

Pulse ox on RA was 79%.

- 1) Pneumonia: treated with ceftriaxone and azithromycin iv. Switched to PO after 72 hours.
- 2) Exacerbation of COPD: patient treated with inhaled and oral steroids, O2 at 2l/nc. On RA at time of discharge
- 3) Weakness and dehydration: secondary to pneumonia and COPD. Responded well to strengthening with PT and regular meals.

Discharge Medications *Zithromycin daily until gone, inhalers #of puffs,*

Discharge Instructions: no activity restriction, regular diet, follow up in two to three weeks with regular physician.

Unstructured Data - Multimedia Content

Image2Caption

https://image2caption.pascalperle.de/

 Big data sets are too large or complex to be processed by traditional methods.

Consider that in a single minute (2019) there are:

 Big data sets are too large or complex to be processed by traditional methods.

Consider that in a single minute (2019) there are:

 Big data sets are too large or complex to be processed by traditional methods.

Consider that in a single minute (2021) there are:

 Big data sets are too large or complex to be processed by traditional methods.

Consider that in a single minute (2021) there are:

Activity	2019	2021	Increase
Google Search	4.5M	5.7M	26.7%
Instagram Photos	55K	65K	18.2%
Twitter Tweets	511K	575K	12.5%

The 5 Vs of Big Data

https://medium.com/@get_excelsior/big-data-explained-the-5v-s-of-data-ae80cbe8ded1

Data Warehouse & ETL (Extract, Transform, Load)

Data Lakehouse

Summary

Structured

- **Definition**
- Data with predefined schema
- Database Systems
- Relational Database
 - MySQL, PostgreSQL

- Query Languae
- SQL

Semi-Structured

- Data with flexible schema (e.g., XML)
- MongoDB/HBase
- XPath
- XQuery

Unstructured

- Data without predefined schema
- No-SQL Databases
 - Object store (S3)
- ElasticSearch for text

Course Overview

- This course is about managing and retrieving different types of data, i.e., structured, semi-structured and unstructred data using different database sysmtems
- "Data management is the practice of collecting, keeping, and using data securely, efficiently, and cost-effectively." - Oracle

- "Data retrieval means obtaining data from a Database Management System (DBMS)" - Wikipedia
 - Find or extract information

Topics - Relational Database

- Introduction to Database Systems and Relational Model
- Intermediate & Advanced SQL
- Entity-Relationship Model & Relational Database Design
- Complex Data Types
- Big Data & Data Analytics
- Indexing and Hashing
- Query Processing
- Transactions

Topics - Semi-Structured Data Management

- XML
- JSON
- XPath & XQuery

Topics - Modern Data Stack

- ETL / ELT
- ELK Elastic search for text
- No-SQL Database Systems

Late Policy

Each deadline will be extended once with penalty.

You will lose 30% of the points for a project or homework if you submit your assignment by the extended deadline.

No submission is allowed beyond the extended deadline.

Please contact the instructor ASAP if something comes up.

