

CE263: Database Management System

Introductory concepts of DBMS

Devang Patel Institute of Advance Technology and Research

Outline

- 1.1 Introduction and applications of DBMS
- 1.2 Purpose of database
- 1.3 Data Independence
- 1.4 Database System architecture- levels
- 1.5 Mappings
- 1.6 Database users and DBA

Introduction

- Data: Raw and isolated facts about entity (recorded)
- Ex. Text, audio, video, image, map etc.
- Information: Processed, meaning full, Useable data,
- Data base: Collection of similar/ related data.
- DBMS: Software used to create, manipulate and delete data.

Database Management System (DBMS)

- DBMS contains information about a particular enterprise
 - Collection of interrelated data
 - Set of programs to access the data
 - An environment that is both convenient and efficient to use
- Database Applications:
 - Banking: transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
- Databases can be very large.
- Databases touch all aspects of our lives

University Database Example

- Application program examples
 - Add new students, instructors, and courses
 - Register students for courses, and generate class rosters
 - Assign grades to students, compute grade point averages (GPA) and generate transcripts
- In the early days, database applications were built directly on top of file systems

Drawbacks of using file systems to store data

- Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
- Difficulty in accessing data
 - Need to write a new program to carry out each new task
- Data isolation
 - ensures that several transactions can take place simultaneously and that no data from one database should have an impact on another.
- Integrity problems
 - Integrity constraints (e.g., account balance > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Drawbacks of using file systems to store data (Cont.)

- Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
- Concurrent access by multiple users
 - Concurrent access needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - 4 Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time
- Security problems
 - Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

Levels of Abstraction

- Physical level: describes how a record (e.g., instructor) is stored.
- Logical level: describes data stored in database, and the relationships among the data.

```
type instructor = record
ID : string;
  name : string;
  dept_name : string;
  salary : integer;
  end;
```

 View level: application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.

View of Data

An architecture for a database system

Instances and Schemas

- Instances and Schemas: A collection of information which is stored in the DB.
- DB change over a time as information is inserted and deleted.
- Collection of information store in the database at a particular moment is known as instances of DB.
- Overall design is known as DB Schema.

Instances and Schemas

- Similar to types and variables in programming languages
- Logical Schema the overall logical structure of the database
 - Example: The database consists of information about a set of customers and accounts in a bank and the relationship between them
 - 4 A logical schema is just like the internal workings of the human body.
- Instance the actual content of the database at a particular point in time
- Physical Data Independence the ability to modify the physical schema without changing the logical schema
 - Applications depend on the logical schema
 - In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

Types of Data Base

- 1) Classification Based on the number of user
 - Single user
 - Multiple user DB
- 2) Classification Based on location
- Centralized DB
- Distributed DB
- 3) Degree to which Data are structured
- Unstructured data
- Semi-structure Data
- Structure Data

DB System User

- Naive user: don't have any knowledge of DBMS but still frequently use the database applications to get the desired results.
- Sophisticated User: access the database and retrieve the data from the database using applications and interfaces provided by the Database Management System (DBMS).
- System Analyst: their responsibility to check whether all the requirements of end users are satisfied or not.
- Application Programmer: computer professional users who are responsible for developing the application programs or the user interface so that other users can use these applications to interact with the database.
- DBA: an individual or a team of users who define the <u>database</u> <u>schema</u> and takes charge of controlling various levels of the database within the organization.
- Database Designers: design and create the <u>structure of the database</u>, try to gather information depending upon the requirements related to the database like the layout, looks, database functioning, costing, technologies to be used & implementation techniques, and finally, they design the final layout of the database for programmers to code its logic.

Database Administrator

- A person who has such central control over the system is called a database administrator (DBA).
- The functions of a DBA include:
 - Schema definition: The DBA creates the original database schema
 - Storage structure and access-method definition.
 - Schema and physical-organization modification: The DBA carries out changes to the schema and physical organization to reflect the changing needs of the organization, or to alter the physical organization to improve performance.
 - Granting of authorization for data access.
 - Routine maintenance: Periodically backing up the database, Ensuring that enough free disk space is available, Monitoring jobs running on the database and ensuring that performance is not degraded

- .DDL Data Definition Language
- 2.DQL Data Query Language
- 3.DML Data Manipulation Language
- 4.DCL Data Control Language
- 5.TCL Transaction Control Language

End of Chapter 1