SAMPLING AND ESTIMATION

PART 1: INTRODUCTION TO DESIGN BASED INFERENCE

Stefan Zins¹ and Matthias Sand²

April 24, 2017

¹Stefan.Zins@gesis.org

²Matthias.Sand@gesis.org

WELCOME AND INTRODUCTION

• What do you want to do?

Source: http://xkcd.com/1478/

What do you want to do?

How do you plan on doing it?

What do you want to do?

How do you plan on doing it?

What problems do you foresee?

What is a representative sample?

What is a representative sample? The popular concept of a representative sample is that the sample is a *miniature* of the population.

However, what do we really want?

However, what do we really want? We want to estimate a statistic of interest with a certain level of precision and if the level of precision is high enough, we say our estimation *strategy* is representative.

FRAMEWORK AND NOTATION

FINITE POPULATION, SAMPLE, AND SAMPLING DESIGN

$$\mathcal{Y} = \{y_1, y_2, \dots, y_k, \dots, y_N\}$$

$$\mathcal{U} = \{1, 2, \dots, k, \dots, N\}$$

$$\mathcal{S} \subset \mathcal{U}$$

$$\mathcal{P}(\mathcal{U})$$

finite population of size N sampling frame sample of size n all possible subsets of $\mathcal U$

The discrete probability distribution p(.) over $\mathcal{P}(\mathcal{U})$ is called a *sampling design* and $\mathcal{G} = \{ \underline{b} | \underline{b} \in \mathcal{P}(\mathcal{U}), \ p(\underline{b}) > 0 \}$ is called the support of p(.) with

$$\sum_{\textbf{A} \in \mathcal{G}} p(\textbf{A}) = 1$$

Hence, $p: \mathcal{G} \mapsto (0,1]$.

ESTIMATION

$$\begin{array}{ll} \theta = f(\mathcal{Y}) & \text{statistic of interest} \\ \hat{\theta} = f(\mathcal{Y}, s) & \text{estimator for } \theta \\ \mathsf{E}\left(\hat{\theta}\right) = \sum_{s \in \mathcal{G}} p(s) f(\mathcal{Y}, s) & \text{expected value of } \hat{\theta} \\ \mathsf{V}\left(\hat{\theta}\right) = \mathsf{E}\left(\hat{\theta}^2\right) - \mathsf{E}\left(\hat{\theta}\right)^2 & \text{variance of } \hat{\theta} \\ \mathsf{MSE}\left(\hat{\theta}\right) = \mathsf{E}\left((\hat{\theta} - \theta)^2\right) \\ &= \left(\mathsf{E}\left(\hat{\theta}\right) - \theta\right)^2 + \mathsf{V}\left(\hat{\theta}\right) & \text{mean square error of } \hat{\theta} \end{array}$$

E (.), V (.), and MSE (.) are always with respect to the sampling design p() and an estimator is said to be unbiased if

$$\mathsf{E}\left(\hat{\theta}\right) = \theta$$
.

EXPECTATION AND VARIANCE OF A RANDOM SAMPLE

 $\sum \nu_k = \mathsf{E}(n)$

$$S_k \qquad \qquad \text{number of times element k is selected} \\ I_k = \begin{cases} 1 & \text{if $k \in \mathcal{B}$} \\ 0 & \text{else} \end{cases} \qquad \text{sampling indicator element k} \\ \text{E}\left(S_k\right) = \nu_k \qquad \qquad \text{expected selection frequency of element k} \\ \text{E}\left(S_kS_l\right) = \nu_{kl} \qquad \qquad \text{joint expectation of S_k and S_l} \\ \text{E}\left(I_k\right) = \pi_k \qquad \qquad \text{inclusion probability of element k} \\ \text{E}\left(I_kI_l\right) = \pi_{kl} \qquad \qquad \text{joint expectation of I_k and I_l} \end{cases}$$

expected sample size

SIMPLE RANDOM SAMPLING

SIMPLE RANDOM SAMPLING

WITHOUT REPLACEMENT

Simple random sampling without replacement (SRS): Drawing *n* elements out of a urn without putting them back (i.e. $S_k \ge I_k$) and without remembering the order of the selected element.

$$\mathcal{G} = \binom{N}{n} \tag{1}$$

$$p(s) = {N \choose n}^{-1}$$

$$\pi_k = \nu_k = \frac{n}{N}$$
(2)

$$\pi_k = \nu_k = \frac{n}{N} \tag{3}$$

$$\pi_{kl} = \nu_{kl} = \frac{n(n-1)}{N(N-1)} \text{ for } k \neq l$$
 (4)

SAMPLE MEAN WITH SRS

$$\theta = \mu = \frac{1}{N} \sum_{k \in \mathcal{U}} y_k, \quad \hat{\theta} = \overline{y} = \sum_{k \in \Delta} \frac{y_k}{n}, \quad \sigma^2 = \frac{1}{N} \sum_{k \in \mathcal{U}} (y_k - \mu)^2, \quad V^2 = \sigma^2 \frac{N}{N - 1}$$

SAMPLE MEAN WITH SRS

$$\theta = \mu = \frac{1}{N} \sum_{k \in \mathcal{U}} y_k, \quad \hat{\theta} = \overline{y} = \sum_{k \in \mathcal{L}} \frac{y_k}{n}, \quad \sigma^2 = \frac{1}{N} \sum_{k \in \mathcal{U}} (y_k - \mu)^2, \quad V^2 = \sigma^2 \frac{N}{N - 1}$$

Expected value

$$E(\overline{y}) = E\left(\sum_{k \in \mathcal{U}} S_k \frac{y_k}{n}\right)$$

$$= \frac{1}{n} \sum_{k \in \mathcal{U}} E(S_k) y_k$$

$$= \frac{1}{n} \sum_{k \in \mathcal{U}} \pi_k y_k$$

$$= \frac{1}{N} \sum_{k \in \mathcal{U}} y_k$$

SAMPLE MEAN WITH SRS

$$\theta = \mu = \frac{1}{N} \sum_{k \in \mathcal{U}} y_k, \quad \hat{\theta} = \overline{y} = \sum_{k \in \mathcal{L}} \frac{y_k}{n}, \quad \sigma^2 = \frac{1}{N} \sum_{k \in \mathcal{U}} (y_k - \mu)^2, \quad V^2 = \sigma^2 \frac{N}{N - 1}$$

Expected value

$$E(\overline{y}) = E\left(\sum_{k \in \mathcal{U}} S_k \frac{y_k}{n}\right)$$

$$= \frac{1}{n} \sum_{k \in \mathcal{U}} E(S_k) y_k$$

$$= \frac{1}{n} \sum_{k \in \mathcal{U}} \pi_k y_k$$

$$= \frac{1}{N} \sum_{k \in \mathcal{U}} y_k$$

Variance

$$V(\overline{y}) = V\left(\sum_{k \in \mathcal{U}} S_k \frac{y_k}{n}\right)$$

$$= \frac{1}{n^2} \sum_{k \in \mathcal{U}} \sum_{l \in \mathcal{U}} COV(S_k, S_l) y_k y_l$$

$$= -\frac{1}{2} \frac{1}{n^2} \sum_{k \in \mathcal{U}} \sum_{l \in \mathcal{U}} (\pi_{kl} - \pi_k \pi_l) (y_k - y_l)^2$$

$$= \frac{N - n}{N - 1} \frac{\sigma^2}{n} = \left(1 - \frac{n}{N}\right) \frac{V^2}{n}$$

COMPLEX SAMPLING DESIGNS - STRATIFICATION

FEATURES OF SAMPLING DESIGNS

- Stratification
- Cluster Sampling: Not elementary units are selected but clusters containing multiple elements.
- Multistage Sampling: The population is structured by hierarchically ordered clusters that are nested within each other.
 The sampling procedure has multiple selecting stages.

STRATIFIED RANDOM SAMPLING NOTATION I

The universe \mathcal{U} is decomposed into H non-overlapping groups, $\mathcal{U}_1, \dots, \mathcal{U}_H$,called strata.

- $\mathcal{U} = \bigcup_{h=1}^{H} \mathcal{U}_h$, where set \mathcal{U}_h is the *h*-th strata.
- A sample Δ_h is selected from U_h according to a design p_h(.), for all h = 1, ..., H.
- The number of elements in \mathcal{U}_h is called stratum size and denote with N_h
- The number of elements in b_h is denoted with n_h .

STRATIFIED RANDOM SAMPLING NOTATION II

In stratified random sampling the sub-populations are called strata. For the h-ht stratum we get:

$$\mu_h = \frac{1}{N_h} \sum_{k=1}^{N_h} y_{kh} \qquad \text{mean of stratum h}$$

$$\sigma_h^2 = \frac{1}{N_h} \sum_{k=1}^{N_h} (y_{kh} - \mu_h)^2 \qquad \text{variance of stratum } h$$

$$V_h^2 = \sigma_h^2 \frac{N_h}{N_h - 1}$$

Where y_{kh} as the k-th element in the h-th stratum. Sampling from stratified populations is called stratified random sampling (StrRS).

STRATIFICATION

A Population of 100 elements is stratified into H=6 strata.

·	• h=2 •		• h=:	3 •			• h=4	
•	•		•	•	•	•	•	•
•			•	•		•	•	•
۱.					.			
		-						
•	• h=1 •		•	•	•	•	•	•
١.		•	•	• h	=5 •	•	• h=6	•
.		•	•		•			
۱.		١.					•	
•			•	•	•	•	•	•
•			•		•		•	

STRATIFICATION

A Population of 100 elements is stratified into H=6 strata. 14 elements are selected from the population and their allocation is given by $n_1=2$ $n_2=3$ $n_3=2$ $n_4=3$ $n_5=3$ $n_6=2$

•	• h=2 •	•	• h=3 •	•	•	h=4 •	٦
		•		•	•		
		•					
.		•					
	• h=1	_					
•	• h=1	_	•	•		•	
١.	•	•	• • h=	=5 •	•	• h=6 •	
•		•		•	•		
		•					
•							
-							
· .	• •	•	•	•	•	• •	

ESTIMATION

Estimator for the mean:

$$\overline{y}_{str} = \sum_{h=1}^{H} \gamma_h \overline{y}_h$$

where $\gamma_h = \frac{N_h}{N}$ and E $(\overline{y}_{\rm str}) = \mu$ for SRS and SRSWR within each stratum.

Variance and variance estimator:

$$V(\overline{y}_{str})_{SRS} = \sum_{h=1}^{H} \frac{N_h - n_h}{N_h} \gamma_h^2 \frac{V_h^2}{n_h}$$

$$\hat{V}(\overline{y}_{str})_{SRS} = \sum_{h=1}^{H} \frac{N_h - n_h}{N_h} \gamma_h^2 \frac{s_h^2}{n_h}$$

$$s_h^2 = \frac{1}{n_h - 1} \sum_{k \in V} (y_k - \overline{y}_h)^2$$

Why should stratification be used?

- Why should stratification be used?
 - To reduce the sampling variance of estimators.
 - Sometimes it is necessary because of organizational reasons (e.g. no joint sampling frame).

- Why should stratification be used?
 - To reduce the sampling variance of estimators.
 - Sometimes it is necessary because of organizational reasons (e.g. no joint sampling frame).
- How should the population be stratified?

- Why should stratification be used?
 - To reduce the sampling variance of estimators.
 - Sometimes it is necessary because of organizational reasons (e.g. no joint sampling frame).
- How should the population be stratified?
 - A good set of variables needs to be found for stratification.
 - The number of strata has to be decided.

- Why should stratification be used?
 - To reduce the sampling variance of estimators.
 - Sometimes it is necessary because of organizational reasons (e.g. no joint sampling frame).
- How should the population be stratified?
 - A good set of variables needs to be found for stratification.
 - The number of strata has to be decided.

- Why should stratification be used?
 - To reduce the sampling variance of estimators.
 - Sometimes it is necessary because of organizational reasons (e.g. no joint sampling frame).
- How should the population be stratified?
 - A good set of variables needs to be found for stratification.
 - The number of strata has to be decided.
- How should the overall sample size be allocated to the strata?

- Why should stratification be used?
 - To reduce the sampling variance of estimators.
 - Sometimes it is necessary because of organizational reasons (e.g. no joint sampling frame).
- How should the population be stratified?
 - A good set of variables needs to be found for stratification.
 - The number of strata has to be decided.
- How should the overall sample size be allocated to the strata?
 - Achieve proportionality between sample and population (i.e. the frame)
 - Fulfill precision constraints for certain estimation domains

Table: Population ANOVA

Source		Sum of Squares
Between strata	<i>H</i> – 1	$SSB = \sum_{h=1}^{H} N_h (\mu_h - \mu)^2$
Within strata	N – H	$SSW = \sum_{h=1}^{H} (N_h - 1) V_h^2$
Total, about μ_y	N – 1	$SSTO = (N-1)V^2$

The more homogeneous the strata are the higher is the gain in efficiency from using stratified simple random sample sampling (StrSRS) instead of SRS. Because then SSW (variance within) is considerably small in contrast to SSB (variance between). This is called the effect of stratification.

ALLOCATION METHODS

$$n_h = \begin{cases} \frac{n}{H} & \text{equal allocation} \\ \frac{N_h}{N} n & \text{proportional allocation} \\ \frac{N_h V_h}{\sum_{h=1}^H N_h V_h} n & \text{optimal allocation} \\ \frac{c}{\overline{c}_h} \frac{N_h V_h \sqrt{\overline{c}_h}}{\sum_{h=1}^H N_h V_h \sqrt{\overline{c}_h}} & \text{cost-optimal allocation} \end{cases},$$

where \overline{c}_h are average cost of selecting a element from stratum h and $c = \sum_{h=1}^{H} n_h \overline{c}_h$ are the total costs of the survey. For the cost-optimal allocation c is given, not n.

ON PROPORTIONAL ALLOCATION

If
$$n_h = \frac{N_h}{N} n$$

$$\begin{split} \mathsf{V}\left(\overline{y}_{\mathsf{str}}\right)_{\mathsf{StrSRS}} &= \left(\frac{N-n}{N}\right)\frac{1}{n}\sum_{h=1}^{H}N_{h}V_{h}^{2} \quad \text{ and } \\ \mathsf{V}\left(\overline{y}\right)_{\mathsf{SRS}} &= \left(\frac{N-n}{N}\right)\frac{1}{n(N-1)}\left(\mathsf{SSW} + \mathsf{SSB}\right) \\ &= \mathsf{V}\left(\overline{y}_{\mathsf{str}}\right)_{\mathsf{StrSRS}} + \left(\frac{N-n}{N}\right)\frac{1}{n(N-1)}\left[\mathsf{SSB} - \sum_{h=1}^{H}\frac{N-N_{h}}{N}V_{h}^{2}\right] \,. \end{split}$$

Thus, StrSRS with prop. allocation will always result in an equal or smaller variance than SRS if

$$SSB > \sum_{h=1}^{H} \frac{N - N_h}{N} V_h^2.$$

LITERATURE I

L. Cox.

A Constructive Procedure for Unbiased Controlled Rounding. Journal of the American Statistical Association, 1987.

L. Gabler, A. Quatember.

Repräsentativität von Subgruppen bei geschichteten Zufalssstichproben.

Wirtschafts- und Sozialstatistisches Archiv. 2013.

Sampling: Design and Analysis.

Duxbury Press, 1999.

Complex Surveys: A Guide to Analysis Using R. Wiley, 2010.

🕒 C.-E. Särndal, B. Swensson, & J. Wretman. Model Assisted Survey Sampling Springer, 1992.

LITERATURE II

R. Valliant, J.A. Dever, & F. Kreuter. Practical Tools for Designing and Weighting Survey Samples. Statistics for Social and Behavioral Sciences: Springer, 2013.