KNN-based digit recognition

1. HLS C-sim/Synthesis/Cosim (Screenshot + brief intro) (1%)

KNN(K-Nerarest Neighbors)又稱為 K-近鄰演算法,其原理為找到距離最近的 K 個鄰居,進行投票,決定類別。

Step1 計算距離:計算每個鄰居與自己的距離

Step2 進行投票:最接近的 K 個鄰居,分別屬於哪些類別 Step3 決定類別:選擇最多人有的類別,來決定本身的類別

Ex: K 的選擇(最好選擇奇數,以免造成同票的情況)

◎圖 1 K=3 星星會找到最近的三個點,而向上水滴佔多數,因此被歸類為向上水滴 K=5 星星會找到最近的五個點,而向下水滴佔多數,因此被歸類為向下水滴

◎圖 2 K=4 星星會找到最近的四個點,此時發現票數一樣,因此最好不要使用偶數的 K 值。解決方法採用加權投票法,即越靠近本身的鄰居會擁有較高權重,因此被歸類為向上水滴 Reference: https://www.youtube.com/watch?v=RWvM-9V3UzY&ab_channel=PyInvest

```
14 bit4 digitrec( digit input )
       #include "training_data.h"
 17
        // This array stores K minimum distances per training set
18
       bit6 knn_set[10][K_CONST];
        // Initialize the knn set
 21
22 DIGITREC_INIT_LOOP_OUTER:
       for ( int i = 0; i < 10; ++i )
24 DIGITREC_INIT_LOOP_INNER:
          for ( int k = 0; k < K_CONST; ++k )
// Note that the max distance is 49</pre>
25
26
            knn_set[i][k] = DIGIT_SIZE+1;
                                                                      測試每個鄰居
       for ( int i = 0; i < TRAINING_SIZE; ++i ) {</pre>
29
 30 DIGITREC_PROC_LOOP_INNER:
          for ( int j = 0; j < 10; j++ ) {
             // Read a new instance from the training set
 33
            digit training_instance = training_data[j * TRAINING_SIZE + i];
 34
            update_knn( input, training_instance, knn_set[j] );
                                                                                                                              Step1 計算距離
 37
 38
58<sup>©</sup> void update_knn( digit test_inst, digit train_inst, bit6 min_distances[K_CONST] )
    // compute the distance between test_inst and train_inst
// if the distance is smaller than some elements in min_distances[] then
61
      // update the array
bit6 dist = 0;
     digit difference = test_inst ^ train_inst;
         compute the distance
計算距離
        difference = difference >> 1;
         update the min_distances array
      for ( int i = 0; i < K_CONST; i++ )</pre>
       if ( min_distances[i] > dist ) {
  min_distances[i] = dist;
                                                  依照K值選擇最近的K個鄰居
             96@bit4 knn_vote( bit6 knn_set[10][K_CONST] )
                   bit6 cur_dist[K_CONST];
bit4 cur_digit[K_CONST];
             98
                   bit4 vote[10];
            101
                   bit4 max_voted_digit = -1, max_vote = 0;
            104 VOTE_INIT_DIST_LOOP:
                   for ( int i = 0; i < K_CONST; i++ ) {
  cur_dist[i] = DIGIT_SIZE+1;</pre>
            106
                      cur_digit[i] = -1;
            107
            108
            110 VOTE_INIT_VOTE_LOOP:
111 for ( int i = 0; i < 10; i++ )
                      vote[i] = 0;
                                              進行投票並且選擇最高票作為類別
            113
            114 VOTE_MIN_DIST_DIGIT_LOOP:
                    for ( int d = 0; d < 10; d++ )
                  VOTE_MIN_DIST_CONST_LOOP:
            116
                                                                                                                              Step2 進行投票
                      for ( int k = 0; k < K_CONST; k++ ) {</pre>
            118
                            compare knn_set[d][k] with current results
                  VOTE_MIN_DIST_CUR_CONST_LOOP:
            119
                                                                                                                              Step3 決定類別
                        for ( int cur_k = 0; cur_k < K_CONST; cur_k++ )
   if ( cur_dist[cur_k] > knn_set[d][k] ) {
      cur_dist[cur_k] = knn_set[d][k];
      cur_digit[cur_k] = d;
}
            120
            121
            123
            124
                             break;
            125
                          }
            126
                 VOTE_CALC_VOTE_LOOP:
for ( int i = 0; i < K_CONST; i++ )
            128
            129
                      vote[cur_digit[i]]++;
            130
            131
                  VOTE_FIND_MAX_VOTE_LOOP:
                   for ( int i = 0; i < 10; i++ )
   if ( vote[i] > max_vote ) {
      max_vote = vote[i];
      max_voted_digit = i;
}
            133
            134
            135
            136
            137
            138
                   return max_voted_digit;
            140
```

The Screenshot is for the Baseline Code:

Overall Error Rate = 6.11%

INFO: [SIM 211-1] CSim done with 0 errors.

Finished C simulation.

◎圖 4 C-sim

Performance Est	imates							
■ Timing								
	.		ertainty	1				
Clock Tar	_							
ap_clk 10.00 ns 6.379 ns 1.25 ns								
■ Latency								
Summary ■ Summary								
Latency (cy	cles) Late	ncy (abso	lute)	Interval	(cycles)			
min r	nax mii	n n	nax	min	max	Туре		
993837 110	01897 9.938	ms 11.0	19 ms	993837	1101897	none		
Detail								
⊕ Loop								
Utilization Estim	ates							
Summary ■ Summary								
Name	BRAM_18K	DSP48E	FF	LUT	URAM			
DSP	-	-	-	-	-			
Expression	-	-	(315	-			
FIFO	-	-	-	-	-			
Instance	0	-	109	479	0			
Memory	96	-	12	2 3	0			
Multiplexer	-	-	-	188	-			
Register	-	-	179		-			
Total	96	0	296		_			
Available Utilization (%)	280	220	106400	53200	_			
	34	0	~() 1	0			

◎圖 5 C-Synthesis

Cosimulation Report for 'digitrec'

Result

			Latency		Interval				
RTL	Status	min	avg	max	min	avg	max		
VHDL	NA	NA	NA	NA	NA	NA	NA		
Verilog	Pass	1083029	1083202	1083343	1083030	1083203	1083344		

Export the report(.html) using the Export Wizard

◎圖 6 Cosim

2. Improvement – throughput, area (1%)

測試不同的 K 來觀察對 Error Rate 的影響:

K	Error Rate(%)
2	10.6%
3	6.11%
4	6.11%
5	6.67%
6	5.56%
7	7.22%
8	7.22%

結論: K 值是一個重要的參數,盡量避免使用偶數的 K 值,且 K 值也不能設定太小(noise)或太大 (non-relation),根據經驗法則 K 值低於樣本數的平方根。依照不選偶數的原則下,我們選擇 K=3 進行以下優化。

Solution1:Array Partition

從測試每個鄰居並選擇前三近的這段 Code 中,可以看出我們必須在 update_knn 時,會用到 knn_set 這個 Matrix ,但是因為一個 Matrix 一次只能取一個資料,所以我們可以利用 Array Partition 的方式,以一次取多個資料。

```
149 bit4 digitrec( digit input )
     #include "training_data.h"
16
17
     // This array stores K minimum distances per training set
    bit6 knn_set[10][K_CONST];
20
     // Initialize the knn set
22 DIGITREC_INIT_LOOP_OUTER:
      for ( int i = 0; i < 10; ++i )
24 DIGITREC INIT LOOP INNER:
       for ( int k = 0; k < K_CONST; ++k )
25
          // Note that the max distance is 49
26
         knn_set[i][k] = DIGIT_SIZE+1;
28
     for ( int i = 0; i < TRAINING SIZE; ++i ) {</pre>
29
30 DIGITREC_PROC_LOOP_INNER:
       for ( int j = 0; j < 10; j++ ) {
32
          // Read a new instance from the training set
33
         digit training_instance = training_data[j * TRAINING_SIZE + i];
35
         // Update the KNN set
36
         update_knn( input, training_instance, knn_set[j] );
37
38 }
```

◎圖 7 Bottleneck Of Code

```
bit6 knn_set[10][K_CONST];
#pragma HLS ARRAY_PARTITION variable=knn_set complete dim=0
```

◎圖 8 Array Partition(分割成獨立的 Register)

Solution2:Pipeline

在更新鄰居的過程中,若沒有使用 Pipeline 將會使 Latency 大大增加

```
59© void update_knn( digit test_inst, digit train_inst, bit6 min_distances[K_CONST] )
60 {
61 #pragma HLS PIPELINE
```

Solution3:Solition1+ Solition2

Daufauman		Estimat													
Performance Estimates															
☐ Timing															
Clock		Е		Baseline		solution		า1	1 solutio		12	solution	า3		
ap_clk	Tar	get	10.00		0 ns 10		.00 ns		10.00 ns		3	10.00 n	0.00 ns		
	Est	imated	6.379		ns	6.412 n		s	8.724 ns		5	8.724 ns			
□ Latency															
					Baselii		ne	solution		on1	solution2		so	olution3	7
Latency	Latency (cycles)		m	in	99383		7	99	93837		417837		3	399837	
			m	ıax	11018		97	10	029897		417897		3	99897	
Latency	Latency (absolute)		m	in	9.938		ms	9.9	938 ms		4.178 ms		3	.998 ms	
			m	ıax	11.019		ms	10	0.299 ms		4.179 ms		3	.999 ms	
Interva	Interval (cycles)		m	in	99383		7	99	993837		417837		3	99837	
			m	ıax	110189		97	1029897		397	417897		3	99897	
Utilizatio	n Es	timates													
		Baselin	e	solution		n1	1 solu		n2	solution3		า3			
BRAM_1	8K	96		96			100		10		100				
DSP48E		0	0				0			0					
FF		296	10)39		696			5920					
LUT		985		3394		3242			7247						
URAM		0		0			0			0					

◎圖 10 Compare Report(可以看出 Solution3 相對於 Baseline 在 Latency 有減少,尤其是 Pipeline 的幫助很大)

3. Github submit (1%)

https://github.com/r08943099/MSOCFall2020

4. Complexity (1% - Instructor/ TA decide)