Universidad de las Fuerzas Armadas -ESPE

Fundamentos de Circuitos Electrónicos

Laboratorio NRC 8703

TEMA: LEYES DE KIRCHHOFF

INTEGRANTES:

- ❖ Jhennifer Tatiana Guamán Bashui
- Brianda Lisbeth Lema Usiña
- Christopher David Mayorga Ricachi

CARRERA: Mecatrónica

DOCENTE: Ing. Darwin Alulema

FECHA: 03 DE JUNIO DEL 2020

PRÁCTICA No. 1 LEYES DE KIRCHHOFF

1.1. OBJETIVO DE LA PRÁCTICA

Explicar y demostrar experimentalmente la Ley de Kirchhoff de Voltajes y la Ley de Kirchhoff de Corrientes.

1.2. REQUISITOS PREVIOS.

Se requiere el análisis analítico del circuito mostrado en la figura 1.1. Anote los resultados obtenidos en las tablas 1.1, 1.2. y 1.3.

1.3. INFORMACIÓN GENERAL

Uno de los métodos ampliamente utilizados en el análisis de circuitos eléctricos son las Leyes de Kirchhoff de voltaje y corriente, ya que con ellas se puede determinar el valor de voltaje o corriente en cualquier elemento que forme parte del circuito. Las Leyes de Kirchhoff se enuncian a continuación:

- a) Ley de Kirchhoff de Corrientes: La suma de las corrientes que entran a un nodo es igual a la suma de las corrientes que salen del mismo.
- b) Ley de Kirchhoff de Voltajes: La suma de las caídas de voltaje en una trayectoria cerrada es igual a la suma de las elevaciones de voltaje en la misma.

1.4. MATERIAL Y EQUIPO REQUERIDO

- -1 Fuente de Voltaje de C.D.
- 2 Multímetros Digitales
- 1 Resistor de 1 k Ω
- 2 -Resistores de $2.2 \text{ k}\Omega$
- 1 Resistor de 1.8 k Ω -1 Resistor de 3.9 k Ω
- 1 Protoboard

Figura 1.1. Circuito Resistivo Mixto

1.5. PROCEDIMIENTO

- 1.5.1. Arme el circuito que se muestra en la figura 1.1.
- 1.5.2. Mida el voltaje y corriente en cada uno de los elementos del circuito. Anote los resultados de las mediciones en la tabla 1.1.

Tabla 1.1. Resultados obtenidos de voltaje y corriente, en cada elemento del circuito.

VARIABLE	VALOR CALCULADO	VALOR MEDIDO			
VR1 (V)	2.0544 V	2.05 V			
I _{R1} (mA)	2. 0544 mA	2.05 mA			
VR2 (V)	4.2475 V	4.25 V			
IR2 (mA)	1. 089 mA	1.09 mA			
VR3 (V)	2.1235 V	2.12 V			
IR3 (mA)	0. 9653 mA	0.965 mA			
VR4 (V)	2.1235 V	2.12 V			
I _{R4} (mA)	0. 9653 mA	0.965 mA			
VR5 (V)	3. 6979 V	3.70 V			
IR5 (mA)	2.0544 mA	2.05 mA			

1.5.3. Verifique si se cumple la Ley de Kirchhoff de Voltajes en cada trayectoria cerrada,

considerando las elevaciones de voltaje con signo positivo y las caídas de voltaje con signo negativo. Anote los resultados en la tabla 1.2.

Tabla 1.2. Verificación de la LVK.

VOLTAJE	TRAYECTORI A 1		TRAYECTORI A 2		TRAYECTORI A3	
	Calculado	Medido	Calculado	Medido	Calculado	Medido
V _T (V)	10.002	10	8.496	8.49	10.002	9.99
V _{R1} (V)	2.055	2.05	-	-	2.055	2.05
V _{R2} (V)	4.248	4.25	4.248	4.25	-	-
V _{R3} (V)	-	-	2.125	2.12	2.125	2.12
V _{R4} (V)	-	-	2.123	2.12	2.123	2.12
V _{R5} (V)	3.699	3.70	-	-	3.699	3.70
ΣΛ	-10.002	-10	0	0.01	-10.002	-9.99

1.5.4. Verifique si se cumple la Ley de Kirchhoff de Corrientes en cada nodo, tomando con signo positivo las corrientes que entran al nodo y con signo negativo las que salen del nodo.

Anote los resultados en la tabla 1.3.

Tabla 1.3. Verificación de la LCK.

CORRIENTE	NODO 1		NODO 2	
	Calculado	Medido	Calculado	Medido
I _T (mA)	4.11	4.105	4.11	4.105
I _{R1} (mA)	2.055	2.05	-	-
I _{R2} (mA)	1.089	1.09	1.089	1.09
Ir3 (mA)	0.966	0.965	-	-
I _{R4} (mA)	-	-	0.966	0.965
I _{R5} (mA)	-	-	2.055	2.05
ΣΙ	0	-0.005	0	0.005

1.5.5. Compare los resultados medidos con los valores obtenidos al analizar el circuito

1.6. ANEXOS

Circuito Tinkercad: https://www.tinkercad.com/things/kxOtDkJhQC9-terrific-albar/editel?sharecode=MowT4py8IMS84YMppdhfD6xl8rw49IUb7DTvqPhR7FY

Cálculos Intensidad y Voltaje de resistencias:

analíticamente y concluya al respecto.

CÁLCULOS DE VERIFICACIÓN DE LA LCK Y LVK

Tabla	1.2 Veril	cacion	96	la	LV	K				100	OF	HA
VIII	-		1		Tray	ect	nia	2	0		Trave	ctona 3
Voltage	Calculado	Medid	0	_	wlad			did	0			Hedido
V+(v)	10,002	10		8,	496		8	,49	-	10	,002	9,99
VEI (V)	2,055	2,05	14	-					14	2	,055	2,05
VRICV	4,248	4,25	TY	4,	248		4	,25				-
VRs (V)			14/	2	125	1	2	112		2,	125	2,12
VRY (V)				2	,123		2	112		2	,123	2,12
VRS(V)	3,699	3,70			_		A			3,	699	3,70
EV	- 10,002	-10		T	0		0	,01		-10	00 2	1-9,99
LKV)	Rohm YI	+ 150do 1	Pohir				6 0	1				
+ 10V	3,9601-\$ R	1		18	R4 2,2 k	ohr	1	7			2	
	KS N	000 2		11					1			
Tool	cterio 1	000 2										
	Ri			17:	(1)=	0					mprebar	
			14	1	661-		-				5 = Vz - 1	
+ = 10V	I) 1 R		15-	VI.	41,	+1	0-	0	-	- 3/0,	19-9,24	8-2,055 =-10
	4 -1		- 1	V5-	V2-1	V1=	-10		0	V		- 10 = -10
*	Rs											
100	etono 2 Ru			Vu	- \	11	1.	0				11-0
+V	W-			1	1-13		11		0		15-14-	V3=0 3-2/15=0
+ & R2	T	Ry	- 7		12 - 1	4-	V3 =	0	(5)	4,2	48-2,12	3-2/15=0
Tray	colona 3								-			
W.	R3											
KN=+	3 +	Ry	-V	4-1	V3 -	V.	+	10 -	- V:	0 0	- 1	14-43 - V1 - V3 = - 6-2,125 - 2,055-3,6
Mari	-							- 1	1	-		-10

