Apéndice 1

TABLAS DE PROPIEDADES, FIGURAS Y DIAGRAMAS (UNIDADES SI)

Tabla A-1	Masa molar, constante de gas y propiedades del punto crítico	Tabla A-21	Propiedades de gas ideal del monóxido de carbono, CO
Tabla A-2	Calores específicos de gas ideal	Tabla A-22	Propiedades de gas ideal del hidrógeno, H ₂
	de varios gases comunes	Tabla A-23	Propiedades de gas ideal del vapor de
Tabla A-3	Propiedades de líquidos, sólidos		agua, H ₂ O
	y alimentos comunes	Tabla A-24	Propiedades de gas ideal del oxígeno
Tabla A-4	Agua saturada. Tabla de temperaturas		monoatómico, O
Tabla A-5	Agua saturada. Tabla de presiones	Tabla A-25	Propiedades de gas ideal del hidroxilo,
Tabla A-6	Vapor de agua sobrecalentado	7	OH
Tabla A-7	Agua líquida comprimida	Tabla A-26	Entalpía de formación, función de Gibbs
Tabla A-8	Hielo saturado. Vapor de agua		de formación y entropía absoluta a 25°C, 1 atm
Figura A-9	Diagrama T-s para el agua	Tabla A-27	Propiedades de algunos combustibles
Figura A-10	Diagrama de Mollier para el agua	Tabla A-27	e hidrocarburos comunes
Tabla A-11	Refrigerante 134a saturado. Tabla de temperatura	Tabla A-28	Logaritmos naturales de la constante de equilibrio K_n
Tabla A-12	Refrigerante 134a saturado. Tabla de presión	Figura A-29	Carta generalizada de desviación de entalpía
Tabla A-13	Refrigerante 134a sobrecalentado	Figura A-30	Carta generalizada de desviación
Figura A-14	Diagrama P-h para refrigerante 134a	J	de entropía
Figura A-15	Carta generalizada de compresibilidad de Nelson-Obert	Figura A-31	Carta psicrométrica a 1 atm de presión total
Tabla A-16	Propiedades de la atmósfera a gran altitud	Tabla A-32	Funciones de flujo compresible unidi- mensional e isentrópico de un gas
Tabla A-17	Propiedades de gas ideal del aire		ideal con $k = 1.4$
Tabla A-18	Propiedades de gas ideal del nitrógeno, N_2	Tabla A-33	Funciones de choque normal unidimensional de un gas ideal
Tabla A-19	Propiedades de gas del oxígeno, O ₂	Table A C4	con k = 1.4
Tabla A-20	Propiedades de gas ideal del dióxido de carbono, CO ₂	Tabla A-34	Funciones del flujo de Rayleigh para un gas ideal con $k = 1.4$

TABLA A-1

Masa molar, constante de gas y propiedades del punto crítico

masa morar, constante de gas y	· ·	•	Constante	Propieda	ades del punt	o crítico
Sustancia	Fórmula	Masa molar, <i>M</i> kg/kmol	de gas, R kJ/kg · K*	Temperatura, K	Presión, MPa	Volumen, m³/kmol
Agua	H ₂ 0	18.015	0.4615	647.1	22.06	0.0560
Aire	_	28.97	0.2870	132.5	3.77	0.0883
Alcohol etílico	C_2H_5OH	46.07	0.1805	516	6.38	0.1673
Alcohol metílico	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180
Amoniaco	NH_3	17.03	0.4882	405.5	11.28	0.0724
Argón	Ar	39.948	0.2081	151	4.86	0.0749
Benceno	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromo	Br ₂	159.808	0.0520	584	10.34	0.1355
<i>n</i> -Butano	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547
Cloro	Cl ₂	70.906	0.1173	417	7.71	0.1242
Cloroformo	CHCI ₃	119.38	0.06964	536.6	5.47	0.2403
Cloruro metílico	CH ₃ Cl	50.488	0.1647	416.3	6.68	0.1430
Criptón	Kr	83.80	0.09921	209.4	5.50	0.0924
Diclorodifluorometano (R-12)	CCI ₂ F ₂	120.91	0.06876	384.7	4.01	0.2179
Diclorofluorometano (R-21)	CHCl ₂ F	102.92	0.08078	451.7	5.17	0.1973
Dióxido de carbono	CO_2	44.01	0.1889	304.2	7.39	0.0943
Dióxido de sulfuro	SO_2	64.063	0.1298	430.7	7.88	0.1217
Etano	$C_2 \overline{H}_6$	30.070	0.2765	305.5	4.48	0.1480
Etileno	C_2H_4	28.054	0.2964	282.4	5.12	0.1242
Helio	He	4.003	2.0769	5.3	0.23	0.0578
<i>n</i> -Hexano	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677
Hidrógeno (normal)	H_2	2.016	4.1240	33.3	1.30	0.0649
Metano	CH_4	16.043	0.5182	191.1	4.64	0.0993
Monóxido de carbono	CO	28.011	0.2968	133	3.50	0.0930
Neón	Ne	20.183	0.4119	44.5	2.73	0.0417
Nitrógeno	N_2	28.013	0.2968	126.2	3.39	0.0899
Óxido nitroso	N_2O	44.013	0.1889	309.7	7.27	0.0961
Oxígeno	02	31.999	0.2598	154.8	5.08	0.0780
Propano	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propileno	C_3H_6	42.081	0.1976	365	4.62	0.1810
Tetracloruro de carbono	CCI ₄	153.82	0.05405	556.4	4.56	0.2759
Tetrafluoroetano (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993
Triclorofluorometano (R-11)	CCI ₃ F	137.37	0.06052	471.2	4.38	0.2478
Xenón	Xe	131.30	0.06332	289.8	5.88	0.1186

^{*}La unidad en kJ/kg · K es equivalente a kPa · m³/kg · K. La constante de gas se calcula de $R = R_u/M$, donde $R_u = 8.31447$ kJ/kmol · K y M es la masa molar

Fuente: K. A. Kobe y R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; y ASHRAE, Handbook of Fundamentals (Atlanta, GA: Sociedad Americana de Ingenieros de Calefacción, Refrigeración y Acondicionamiento de Aire, Inc., 1993), pp. 16.4 y 36.1.

TABLA A-2

Calores específicos de gas ideal de varios gases comunes

a) A 300 K

		Constante de gas, R	c_p	$c_{_{V}}$	
Gas	Fórmula	kJ/kg · K	kJ/kg · K	kJ/kg · K	k
Aire	_	0.2870	1.005	0.718	1.400
Argón	Ar	0.2081	0.5203	0.3122	1.667
Butano	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Dióxido de carbono	CO_2	0.1889	0.846	0.657	1.289
Etano	$C_2\bar{H}_6$	0.2765	1.7662	1.4897	1.186
Etileno	C_2H_4	0.2964	1.5482	1.2518	1.237
Helio	He	2.0769	5.1926	3.1156	1.667
Hidrógeno	H_2	4.1240	14.307	10.183	1.405
Metano	CH₄	0.5182	2.2537	1.7354	1.299
Monóxido de carbono	CO	0.2968	1.040	0.744	1.400
Neón	Ne	0.4119	1.0299	0.6179	1.667
Nitrógeno	N_2	0.2968	1.039	0.743	1.400
Octano	C_8H_{18}	0.0729	1.7113	1.6385	1.044
Oxígeno	02	0.2598	0.918	0.658	1.395
Propano	$C_3^{-}H_8$	0.1885	1.6794	1.4909	1.126
Vapor	H_2° 0	0.4615	1.8723	1.4108	1.327

Nota: La unidad kJ/kg \cdot K es equivalente a kJ/kg \cdot °C.

Fuente: Chemical and Process Thermodynamics 3a. ed., por Kyle, B.G., © 2000. Adaptado con permiso de Pearson Education, Inc., Upper Saddle River, Nueva Jersey.

TABLA A-2

Calores específicos de gas ideal de varios gases comunes (continuación)

b) A diversas temperaturas

Temperatura,	$c_p \over ext{kJ/kg} \cdot ext{K}$	<i>c</i> √ kJ/kg · K	k	c_p kJ/kg · K	$c_{_{\scriptscriptstyle V}}$ kJ/kg \cdot K	k	<i>c_p</i> kJ/kg ⋅ K	$c_{_{ec{V}}}$ kJ/kg \cdot K	k	
K K		Aire		Dióx	ido de carbo	no, CO ₂	Monóxido de carbono, CO			
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400	
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399	
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398	
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395	
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392	
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387	
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382	
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376	
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370	
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364	
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358	
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353	
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343	
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335	
		Hidrógeno,	H_2		Nitrógeno,	N_2	O)	kígeno, O_2		
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398	
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395	
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389	
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382	
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373	
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365	
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358	
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350	
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343	
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337	
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332	
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327	
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319	
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313	

Fuente: Kenneth Wark, Thermodynamics, 4a. ed., Nueva York, McGraw-Hill, 1983, p. 783, Tabla A-4M. Publicada originalmente en Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLA A-2

Calores específicos de gas ideal de varios gases comunes (conclusión)

c) Como una función de la temperatura

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(*T* en K, c_p en kJ/kmol · K)

						Rango de	% de	error
Sustancia	Fórmula	а	b	С	d	temp., K	Máx.	Prom.
Acetileno	C_2H_2	21.8	9.2143×10^{-2}	-6.527×10^{-5}	18.21×10^{-9}	273-1500	1.46	0.59
Aire		28.11	0.1967×10^{-2}	0.4802×10^{-5}	-1.966×10^{-9}	273-1800	0.72	0.33
Amoniaco	NH_3	27.568	2.5630×10^{-2}	0.99072×10^{-5}	-6.6909×10^{-9}	273-1500	0.91	0.36
Azufre	S_2	27.21	2.218×10^{-2}	-1.628×10^{-5}	3.986×10^{-9}	273-1800	0.99	0.38
Benceno		-36.22	48.475×10^{-2}	-31.57×10^{-5}	77.62×10^{-9}	273-1500	0.34	0.20
<i>i</i> -Butano	C_4H_{10}	-7.913	41.60×10^{-2}	-23.01×10^{-5}	49.91×10^{-9}	273-1500	0.25	0.13
<i>n</i> -Butano	C ₄ H ₁₀	3.96	37.15×10^{-2}	-18.34×10^{-5}	35.00×10^{-9}	273-1500	0.54	0.24
Cloruro de								
hidrógeno	HCI	30.33	-0.7620×10^{-2}	1.327×10^{-5}	-4.338×10^{-9}	273-1500	0.22	0.08
Dióxido de								
azufre	SO_2	25.78	5.795×10^{-2}	-3.812×10^{-5}	8.612×10^{-9}	273-1800	0.45	0.24
Dióxido de								
carbono	CO_2	22.26	5.981×10^{-2}	-3.501×10^{-5}	7.469×10^{-9}	273-1800	0.67	0.22
Dióxido de								
nitrógeno	NO_2	22.9	5.715×10^{-2}	-3.52×10^{-5}	7.87×10^{-9}	273–1500	0.46	0.18
Etano	C_2H_6	6.900	17.27×10^{-2}	-6.406×10^{-5}	7.285×10^{-9}	273-1500	0.83	0.28
Etanol	C_2H_6O	19.9	20.96×10^{-2}	-10.38×10^{-5}	20.05×10^{-9}	273-1500	0.40	0.22
Etileno	C_2H_4	3.95	15.64×10^{-2}	-8.344×10^{-5}	17.67×10^{-9}	273–1500	0.54	0.13
<i>n</i> -Hexano	C_6H_{14}	6.938	55.22×10^{-2}	-28.65×10^{-5}	57.69×10^{-9}	273-1500	0.72	0.20
Hidrógeno	H_2	29.11	-0.1916×10^{-2}	0.4003×10^{-5}	-0.8704×10^{-9}	273-1800	1.01	0.26
Metano	CH_4	19.89	5.024×10^{-2}	1.269×10^{-5}	-11.01×10^{-9}	273–1500	1.33	0.57
Metanol	CH_4O	19.0	9.152×10^{-2}	-1.22×10^{-5}	-8.039×10^{-9}	273-1000	0.18	0.08
Monóxido de								
carbono	CO	28.16	0.1675×10^{-2}	0.5372×10^{-5}	-2.222×10^{-9}	273–1800	0.89	0.37
Nitrógeno	N_2	28.90	-0.1571×10^{-2}	0.8081×10^{-5}	-2.873×10^{-9}	273–1800	0.59	0.34
Óxido nítrico	NO		-0.09395×10^{-2}	0.9747×10^{-5}	-4.187×10^{-9}	273–1500	0.97	0.36
Óxido nitroso	N_2O	24.11	5.8632×10^{-2}	-3.562×10^{-5}	10.58×10^{-9}	273–1500	0.59	0.26
Oxígeno	O_2	25.48	1.520×10^{-2}	-0.7155×10^{-5}	1.312×10^{-9}	273–1800	1.19	0.28
<i>n</i> -Pentano	C_5H_{12}	6.774	45.43×10^{-2}	-22.46×10^{-5}	42.29×10^{-9}	273–1500	0.56	0.21
Propano	C_3H_8	-4.04	30.48×10^{-2}	-15.72×10^{-5}	31.74×10^{-9}	273–1500	0.40	0.12
Propileno	C_3H_6	3.15	23.83×10^{-2}	-12.18×10^{-5}	24.62×10^{-9}	273–1500	0.73	0.17
Trióxido de								
azufre	SO ₃	16.40	14.58×10^{-2}	-11.20×10^{-5}	32.42×10^{-9}	273–1300	0.29	0.13
Agua (vapor)	H ₂ O	32.24	0.1923×10^{-2}	1.055×10^{-5}	-3.595×10^{-9}	273–1800	0.53	0.24

Fuente: B. G. Kyle, Chemical and Process Thermodynamics, Englewood Cliffs, Nueva Jersey, Prentice Hall, 1984. Usada con permiso.

TABLA A-3

Propiedades de líquidos, sólidos y alimentos comunes

a) Líquidos

	Datos de el	bullición a 1 atm	Datos de	congelación	Propi	iedades de líd	quidos
Sustancia	Punto de ebulli- ción normal, °	Calor latente de vaporización C h_{fg} , kJ/kg	Punto de conge- lación, °C	Calor latente de fusión h _{if} , kJ/kg	Temperatura, °C	Densidad ρ , kg/m ³	Calor específico c_p , kJ/kg \cdot K
Aceite comestible							
(ligero)	100	0057			25	910	1.80
Agua	100	2257	0.0	333.7	0	1000	4.22
					25	997	4.18
					50	988	4.18
					75	975	4.19
					100	958	4.22
Alcohol etílico	78.6	855	-156	108	20	789	2.84
Amoniaco	-33.3	1357	-77.7	322.4	-33.3	682	4.43
					-20	665	4.52
					0	639	4.60
					25	602	4.80
Argón	-185.9	161.6	-189.3	28	-185.6	1394	1.14
Benceno	80.2	394	5.5	126	20	879	1.72
<i>n</i> -Butano	-0.5	385.2	-138.5	80.3	-0.5	601	2.31
Dióxido de carbono	-78.4*	230.5 (a 0°C)	-56.6		0	298	0.59
Etanol	78.2	838.3	-114.2	109	25	783	2.46
Etilén glicol	198.1	800.1	-10.8	181.1	20	1109	2.84
Glicerina	179.9	974	18.9	200.6	20	1261	2.32
Helio	-268.9	22.8	_	_	-268.9	146.2	22.8
Hidrógeno	-252.8	445.7	-259.2	59.5	-252.8	70.7	10.0
Isobutano	-11.7	367.1	-160	105.7	-11.7	593.8	2.28
Mercurio	356.7	294.7	-38.9	11.4	25	13,560	0.139
Metano	-161.5	510.4	-182.2	58.4	-161.5	423	3.49
					-100	301	5.79
Metanol	64.5	1100	-97.7	99.2	25	787	2.55
Nitrógeno	-195.8	198.6	-210	25.3	-195.8	809	2.06
J					-160	596	2.97
Octano	124.8	306.3	-57.5	180.7	20	703	2.10
Oxígeno	-183	212.7	-218.8	13.7	-183	1141	1.71
Petróleo	_	230–384			20	640	2.0
Propano	-42.1	427.8	-187.7	80.0	-42.1	581	2.25
			207	33.3	0	529	2.53
					50	449	3.13
Queroseno	204-293	251	-24.9	_	20	820	2.00
Refrigerante 134a	-26.1	217.0	-96.6	_	-50	1443	1.23
Salmuera (20% de cloruro de sodio		217.0	50.0		30	1443	1.25
a base másica)	103.9		-17.4		20	1150	3.11
a base masica)	100.9		17.4	_ _	-26.1	1374	1.27
					-20.1 0	1295	1.34
					25		
					23	1207	1.43

^{*} Temperatura de sublimación. (A presiones por debajo de la presión de punto triple de 518 kPa, el dióxido de carbono existe como un sólido o un gas. También, la temperatura de punto de congelamiento del dióxido de carbono es la temperatura de punto triple de –56.5°C.)

TABLA A-3

Propiedades de líquidos, sólidos y alimentos comunes (conclusión)

b) Sólidos (los valores son para temperatura ambiente, excepto que se indique otra cosa)

Sustancia	Densidad, $ ho$ kg/m 3	Calor específico, c_p kJ/kg \cdot K	Sustancia	Densidad, $ ho$ kg/m ³	Calor específico, c_p kJ/kg · K
Metales			No metales		
Acero dulce	7,830	0.500	Arena	1520	0.800
Aluminio			Arcilla	1000	0.920
200 K		0.797	Asfalto	2110	0.920
250 K		0.859	Caucho (blando)	1100	1.840
300 K	2,700	0.902	Caucho (duro)	1150	2.009
350 K		0.929	Concreto	2300	0.653
400 K		0.949	Diamante	2420	0.616
450 K		0.973	Grafito	2500	0.711
500 K		0.997	Granito	2700	1.017
Bronce (76% Cu, 2% Zn,	8,280	0.400	Hielo		
2% AI)			200 K		1.56
Cobre			220 K		1.71
−173°C		0.254	240 K		1.86
-100°C		0.342	260 K		2.01
-50°C		0.367	273 K	921	2.11
0°C		0.381	Ladrillo común	1922	0.79
27°C	8,900	0.386	Ladrillo refractario (500°C)	2300	0.960
100°C		0.393	Madera contrachapada		
200°C		0.403	(abeto Douglas)	545	1.21
Hierro	7,840	0.45	Maderas duras (maple, encino, etc.)	721	1.26
Latón amarillo (65% Cu,	8,310	0.400	Maderas suaves (abeto, pino, etc.)	513	1.38
35% Zn)			Mármol	2600	0.880
Magnesio	1,730	1.000	Piedra	1500	0.800
Níquel	8,890	0.440	Piedra caliza	1650	0.909
Plata	10,470	0.235	Vidrio para ventanas	2700	0.800
Plomo	11,310	0.128	Vidrio pirex	2230	0.840
Tungsteno	19,400	0.130	Yeso o tabla de yeso	800	1.0

c) Alimentos

			Calor esp kJ/kg						Calor espe kJ/kg ·		
Alimentos	Contenido de agua, % (masa)	Punto de conge- lación, °C	Por encima del punto de conge- lación	Por debajo del punto de conge- lación	Calor latente de fusión, kJ/kg	Alimentos	Contenido de agua, % (masa)	Punto de conge- lación, °C	Por encima del punto de conge- lación	Por debajo del punto de conge- lación	Calor latente de fusión, kJ/kg
Brócoli	90	-0.6	3.86	1.97	301	Helado	63	-5.6	2.95	1.63	210
Camarón	83	-2.2	3.62	1.89	277	Mantequilla	16		_	1.04	53
Carne de pollo	74	-2.8	3.32	1.77	247	Manzanas	84	-1.1	3.65	1.90	281
Carne de res	67	_	3.08	1.68	224	Naranjas	87	-0.8	3.75	1.94	291
Cerezas	80	-1.8	3.52	1.85	267	Papas	78	-0.6	3.45	1.82	261
Espinaca	93	-0.3	3.96	2.01	311	Pavo	64		2.98	1.65	214
Fresas	90	-0.8	3.86	1.97	301	Plátanos	75	-0.8	3.35	1.78	251
Huevo entero	74	-0.6	3.32	1.77	247	Queso suizo	39	-10.0	2.15	1.33	130
Leche entera	88	-0.6	3.79	1.95	294	Salmón	64	-2.2	2.98	1.65	214
Lechuga	95	-0.2	4.02	2.04	317	Sandía	93	-0.4	3.96	2.01	311
Maíz dulce	74	-0.6	3.32	1.77	247	Tomates (mad	uros) 94	-0.5	3.99	2.02	314

Fuente: Los valores han sido obtenidos de varios manuales y otras fuentes, o se han calculado. El contenido de agua y los datos de punto de congelación para alimentos provienen del ASHRAE, Handbook of Fundamentals, versión SI, Atlanta, Georgia, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993, Capítulo 30, Tabla 1. El punto de congelación es la temperatura a la que comienza la congelación para frutas y verduras, así como la temperatura promedio de congelación para otros alimentos.

TABLA A-4

Agua	saturada.	Tabla	de	temperaturas

			<i>n específico,</i> m³/kg	E	nergía ir kJ/kg			<i>Entalpí</i> kJ/kg	а,		Entropía kJ/kg · k	
Temp.,	Pres. , sat., P _{sat} kPa	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u_{fg}	Vapor sat., u_g	Líq. sat., <i>h_f</i>	Evap., h _{fg}	Vapor sat., h_g	Líq. sat., s _f	Evap., s_{fg}	Vapor sat., s _g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.9487 8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

TABLA A-4
Agua saturada. Tabla de temperaturas (*conclusión*)

			n <i>específico,</i> m³/kg	E	nergía in kJ/kg	,		<i>Entalpi</i> kJ/kg	a,		<i>Entropía</i> kJ/kg · ŀ	
Temp., T°C	Pres. sat., P _{sat} kPa	Líq. sat, v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u_g	Líq. sat., <i>h_f</i>	Evap., <i>h_{fg}</i>	Vapor sat., <i>h_g</i>	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., s _g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.6225 2.5374	5.8210
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.7857 1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.1373 0.9489	

Fuente: Las tablas A-4 a A-8 fueron generadas utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado. La rutina utilizada en los cálculos es la altamente precisa Steam_IAPWS, que incorpora la Formulación 1995 para las Propiedades Termodinámicas de la Sustancia Agua Ordinaria para Uso Científico y General, editada por The International Association for the Properties of Water and Steam (IAPWS). Esta formulación reemplaza a la formulación de 1984 de Haar, Gallagher y Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), la cual está también disponible en EES como la rutina STEAM. La nueva formulación se basa en las correlaciones de Saul y Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) con modificaciones para ajustarla a la Escala Internacional de Temperaturas de 1990. Las modificaciones están descritas por Wagner y Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). Las propiedades del hielo están basadas en Hyland y Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K a 473.15 K", ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLA A-5

Λ	a a koosa aha	T-1-1-	-I -	
Agua	saturada.	Tabla	ae	presiones

			<i>n específico,</i> m³/kg		Energía in kJ/kg			<i>Entalpía</i> kJ/kg	,		<i>Entropía,</i> kJ/kg · K	
Pres., P kPa	Temp. sat., $T_{\rm sat}$ °C	Líq. sat., v _f	Vapor sat.,	Líq. sat., u _f	Evap., u_{fg}	Vapor sat., u _g	Líq. sat, h _f	Evap., h_{fg}	Vapor sat., h_g	Líq. sat., s _f	Evap., s_{fg}	Vapor sat., s_g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003		29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9		0.1956 0.2606 0.3118	8.8690 8.6314 8.4621	8.9749 8.8270 8.7227 8.6421
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3		8.0510 7.9176 7.6738 7.4996 7.2522	8.3938 8.2501 8.1488
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2636.1	0.8320 0.8932 0.9441 1.0261 1.0912	7.0752 6.9370 6.8234 6.6430 6.5019	7.8302 7.7675 7.6691
75 100 101.325 125 150	91.76 99.61 5 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0		1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.3545 7.2841
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	535.08	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0		1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.1716 7.1270 7.0877 7.0525 7.0207
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	572.84 583.89 594.32	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.9650 6.9402
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	639.54	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2743.4 2748.1 2752.4 2756.2 2759.6	1.8205 1.8604 1.8970 1.9308 1.9623	5.0356 4.9603 4.8916 4.8285 4.7699	6.8207 6.7886 6.7593
700 750	164.95 167.75	0.001108 0.001111	0.27278 0.25552	696.23 708.40	1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065.8 2056.4	2762.8 2765.7	1.9918 2.0195	4.7153 4.6642	

TABLA A-5

Agua saturada. Tabla de presiones (conclusión)

			<i>específico,</i> 1 ³ /kg	Ε	<i>nergía in</i> kJ/kg			<i>Entalpía</i> kJ/kg	,		<i>Entropía,</i> kJ/kg · K	
Pres., P kPa	Temp. sat., $T_{\rm sat}$ °C	Líq. sat., v _f	Vapor sat.,	Líq. sat., u _f	Evap., u_{fg}	Vapor sat., u_g	Líq. sat, h _f	Evap., h _{fg}	Vapor sat., h_g	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., s_g
800 850 900 950 1000 1100 1200 1300	170.41 172.94 175.35 177.66 179.88 184.06 187.96 191.60	0.001115 0.001118 0.001121 0.001124 0.001127 0.001133 0.001138 0.001144	0.24035 0.22690 0.21489 0.20411 0.19436 0.17745 0.16326 0.15119	731.00 741.55 751.67 761.39 779.78 796.96	1856.1 1846.9 1838.1 1829.6 1821.4 1805.7 1790.9 1776.8	2576.0 2577.9 2579.6 2581.3 2582.8 2585.5 2587.8 2589.9	720.87 731.95 742.56 752.74 762.51 781.03 798.33 814.59	2047.5 2038.8 2030.5 2022.4 2014.6 1999.6 1985.4 1971.9	2768.3 2770.8 2773.0 2775.2 2777.1 2780.7 2783.8	2.0457 2.0705 2.0941 2.1166 2.1381 2.1785 2.2159 2.2508	4.6160 4.5705 4.5273	6.6616 6.6409 6.6213 6.6027 6.5850 6.5520 6.5217
1400 1500 1750 2000 2250	195.04 198.29 205.72 212.38 218.41	0.001149 0.001154 0.001166 0.001177 0.001187	0.14078 0.13171 0.11344 0.099587 0.088717	828.35 842.82 876.12 906.12 933.54	1763.4 1750.6 1720.6 1693.0 1667.3	2591.8 2593.4 2596.7 2599.1 2600.9	829.96 844.55 878.16 908.47 936.21	1958.9 1946.4 1917.1 1889.8 1864.3	2788.9 2791.0 2795.2 2798.3 2800.5	2.2835 2.3143 2.3844 2.4467 2.5029	4.1840 4.1287 4.0033 3.8923 3.7926	6.4675 6.4430 6.3877 6.3390 6.2954
2500 3000 3500 4000 5000 6000 7000	223.95 233.85 242.56 250.35 263.94 275.59 285.83	0.001197 0.001217 0.001235 0.001252 0.001286 0.001319 0.001352	0.079952 0.066667 0.057061 0.049779 0.039448 0.032449 0.027378	1004.6 1045.4 1082.4 1148.1 1205.8	1643.2 1598.5 1557.6 1519.3 1448.9 1384.1 1323.0	2602.1 2603.2 2603.0 2601.7 2597.0 2589.9 2581.0	1049.7 1087.4 1154.5 1213.8	1840.1 1794.9 1753.0 1713.5 1639.7 1570.9 1505.2	2803.2 2802.7 2800.8 2794.2 2784.6	2.5542 2.6454 2.7253 2.7966 2.9207 3.0275 3.1220		6.1856 6.1244 6.0696 5.9737
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1306.0 1350.9 1393.3 1433.9	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1317.1 1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556	5.7450 5.6791 5.6159 5.5544
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1571.0 1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4	2610.8 2581.0	3.5606 3.6232 3.6848 3.7461 3.8082	1.8730 1.7497 1.6261 1.5005 1.3709	5.3108 5.2466 5.1791
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1740.3 1785.8 1841.6 1951.7	675.9 598.9 509.0 391.9 140.8	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1776.8 1826.6 1888.0 2011.1	777.8 689.2 585.5 450.4 161.5	2466.0 2412.1 2338.4 2172.6		1.2343 1.0860 0.9164 0.7005 0.2496	5.0256 4.9310 4.8076

TABLA	A-6											
Vapor o	de agua sob	orecalent	ado									
<i>T</i> °C	<i>v</i> m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	s kJ/kg⋅K	v m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	s kJ/kg⋅K	ν m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	s kJ/kg⋅K
	P =		Pa (45.81°			0.05 MP				0.10 MF		
Sat.†	14.670		2583.9	8.1488	3.2403	2483.2	2645.2			2505.6	2675.0	
50	14.867	2443.3	2592.0	8.1741								
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	
150	19.513 21.826	2587.9	2783.0 2879.6	8.6893	3.8897 4.3562	2585.7 2660.0	2780.2 2877.8	7.9413	1.9367 2.1724	2582.9 2658.2	2776.6 2875.5	7.6148 7.8356
200 250	24.136	2736.1	2977.5	8.9049 9.1015	4.8206	2735.1	2976.2	8.1592 8.3568	2.1724	2733.9	2974.5	
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4		4.9519	3665.0	4160.2	
900 1000	54.143 58.758	3856.9 4055.3	4398.3 4642.8	10.8429 11.0429	10.8280 11.7513	3856.8 4055.2		10.1000 10.3000	5.4137 5.8755	3856.7 4055.0	4398.0 4642.6	9.7800 9.9800
1100	63.373	4260.0		11.2326	12.6745	4259.9		10.3000	6.3372	4055.0		10.1698
1200	67.989	4470.9		11.4132	13.5977	4470.8		10.6704	6.7988	4470.7		10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3		10.8429	7.2605	4687.2		10.5229
	P =	0.20 MP	a (120.21		P =	0.30 MPa			P =	0.40 MPa		
Sat.	0.88578	2529 1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402		2761.2	7.0792		3 2564.4	2752.8	
200	1.08049	2654.6	2870.7	7.5081	0.71643	2651.0	2865.9	7.3132	0.53434	2647.2	2860.9	7.1723
250	1.19890	2731.4	2971.2	7.7100	0.79645	2728.9	2967.9	7.5180	0.59520		2964.5	
300	1.31623	2808.8	3072.1	7.8941	0.87535		3069.6	7.7037	0.65489		3067.1	7.5677
400	1.54934			8.2236	1.03155		3275.5	8.0347		2964.9	3273.9	7.9003
500 600	1.78142 2.01302	3131.4	3487.7 3704.8	8.5153 8.7793	1.18672 1.34139	3130.6	3486.6 3704.0	8.3271 8.5915	0.88936	3129.8	3485.5 3703.3	
700	2.24434		3928.8	9.0221	1.49580		3928.2	8.8345		3479.0	3927.6	
800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605		3663.9	4158.9	
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725		3855.7	4396.9	
1000	2.93755	4054.8	4642.3	9.6599	1.95824	4054.5	4642.0	9.4726		4054.3	4641.7	
1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414	4259.2	4892.9	9.5295
1200	3.39938	4470.5	5150.4	10.0304	2.26624		5150.2	9.8431		4470.2	5150.0	9.7102
1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	4686.7	5412.8	9.8828
	P =	0.50 MP	a (151.83	3°C)	<i>P</i> =	0.60 MPa	(158.83)	°C)	P =	0.80 MPa	a (170.41	L°C)
Sat.	0.37483	2560.7	2748.1	6.8207	0.31560	2566.8	2756.2	6.7593	0.24035	2576.0	2768.3	6.6616
200	0.42503			7.0610	0.35212		2850.6			3 2631.1	2839.8	
250	0.47443			7.2725	0.39390		2957.6			2715.9	2950.4	
300	0.52261			7.4614	0.43442		3062.0			2797.5	3056.9	
350	0.57015			7.6346	0.47428		3166.1	7.5481		2878.6	3162.2	
400 500	0.61731 0.71095			7.7956 8.0893	0.51374 0.59200		3270.8 3483.4			2960.2 3126.6	3267.7 3481.3	
600	0.71093			8.3544	0.59200		3701.7			3120.0	3700.1	
700	0.89696			8.5978	0.74725		3926.4			3477.2	3925.3	
800	0.98966			8.8240	0.82457		4157.9			3662.5	4157.0	
900	1.08227			9.0362	0.90179		4396.2			3854.5	4395.5	
1000	1.17480			9.2364	0.97893	4053.8	4641.1	9.1521	0.73411	4053.3	4640.5	9.0189
1100	1.26728			9.4263	1.05603		4892.4			4258.3	4891.9	
1200	1.35972			9.6071	1.13309		5149.6			4469.4	5149.3	
1300	1.45214	4686.6	5412.6	9.7797	1.21012	4686.4	5412.5	9.6955	0.90761	4686.1	5412.2	9.5625

^{*}La temperatura entre paréntesis es la temperatura de saturación a la presión especificada.

 $^{^\}dagger$ Propiedades del vapor saturado a la presión especificada.

TABLA	A-6											
Vapor	de agua so	brecalen	tado (<i>con</i>	tinuación)								
T	V	и	h	S	V	И	h	S	v	И	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P	= 1.00 M	Pa (179.8	8°C)	Р	= 1.20 N	MPa (187	.96°C)	P =	1.40 MP	a (195.04	4°C)
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934				0.14303	2602.7	2803.0	
250	0.23275	2710.4	2943.1	6.9265	0.19241			6.8313	0.16356	2698.9		6.7488
300	0.25799	2793.7	3051.6	7.1246	0.21386			7.0335	0.18233	2785.7	3040.9	
350	0.28250	2875.7	3158.2	7.3029	0.23455				0.20029	2869.7	3150.1	
400	0.30661	2957.9	3264.5	7.4670	0.25482				0.21782	2953.1	3258.1	
500	0.35411	3125.0	3479.1	7.7642	0.29464			7.6779	0.25216	3121.8	3474.8	
600	0.40111	3297.5	3698.6	8.0311	0.33395			7.9456	0.28597	3295.1	3695.5	
700	0.44783	3476.3	3924.1	8.2755	0.37297				0.31951	3474.4	3921.7	
800	0.49438	3661.7	4156.1	8.5024	0.41184				0.35288	3660.3	4154.3	
900	0.54083	3853.9	4394.8	8.7150	0.45059				0.38614	3852.7	4393.3	
1000 1100	0.58721 0.63354	4052.7 4257.9	4640.0 4891.4	8.9155 9.1057	0.48928 0.52792			9.0212	0.41933 0.45247	4051.7 4257.0	4638.8 4890.5	
1200	0.63334	4469.0	5148.9	9.1057	0.52792			9.0212	0.43247	4468.3	5148.1	
1300	0.72610	4685.8	5411.9	9.4593	0.50052				0.46556	4685.1	5411.3	
1500												
			Pa (201.3	· ·			MPa (207			= 2.00 MP		
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3			0.09959	2599.1		6.3390 6.4160
225	0.13293 0.14190	2645.1 2692.9	2857.8 2919.9	6.5537	0.11678 0.12502	2637.0			0.10381	2628.5		6.5475
250 300	0.14190	2692.9	3035.4	6.6753 6.8864	0.12302	2686.7 2777.4			0.11150 0.12551	2680.3 2773.2		6.7684
350	0.13866	2866.6	3146.0	7.0713	0.14023	2863.6			0.12331	2860.5		6.9583
400	0.17433	2950.8	3254.9	7.0713	0.15400	2948.3			0.15122	2945.9		7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5			0.17568	3116.9		7.1232
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7			0.19962	3291.5		7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6			0.22326	3471.7		7.9509
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8			0.24674	3658.0		8.1791
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5			0.27012	3850.9		8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7			0.29342	4050.2		8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2			0.31667	4255.7		8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6	5147.	3 9.0143	0.33989	4467.2	5147.0	8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5	5410.	.6 9.1872	0.36308	4684.2	5410.3	9.1384
	Р	= 2.50 M	Pa (223.9	5°C)	Р	= 3.00 N	MPa (233	.85°C)	P =	3.50 MP	a (242.56	6°C)
Sat.	0.07995	2602.1	2801.9	6.2558	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244
225		2604.8	2805.5	6.2629								
250	0.08705			6.4107	0.07063				0.05876			
300	0.09894		3009.6	6.6459	0.08118	2750.8			0.06845	2738.8		6.4484
350	0.10979	2852.5	3127.0	6.8424	0.09056	2844.4			0.07680	2836.0		6.6601
400	0.12012	2939.8	3240.1	7.0170	0.09938	2933.6			0.08456	2927.2		6.8428
450	0.13015	3026.2	3351.6	7.1768	0.10789	3021.2			0.09198	3016.1		7.0074
500	0.13999	3112.8	3462.8	7.3254	0.11620	3108.6			0.09919	3104.5		7.1593
600	0.15931	3288.5	3686.8	7.5979	0.13245	3285.5			0.11325	3282.5		7.4357
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0			0.12702	3464.7		7.6855
800	0.19722	3656.2	4149.2	8.0744	0.16420	3654.3			0.14061	3652.5		7.9156
900	0.21597	3849.4	4389.3	8.2882	0.17988	3847.9			0.15410	3846.4		8.1304
1000 1100	0.23466 0.25330	4049.0 4254.7	4635.6 4887.9	8.4897 8.6804	0.19549 0.21105	4047.7 4253.6			0.16751 0.18087	4046.4 4252.5		8.3324 8.5236
1200	0.23330	4466.3	5146.0	8.8618	0.21103	4465.3			0.18087	4464.4		8.7053
1300		4683.4	5409.5	9.0349	0.24207	4682.6			0.19420	4681.8		8.8786

TABLA	A-6											
Vapor	de agua so	brecalen	tado (<i>con</i>	tinuación)								
T	V	И	h	S	V	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ⋅ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	Р	= 4.0 MF	Pa (250.35	s°C)	Р	= 4.5 MP	a (257.44°	C)	<i>P</i> =	5.0 MPa	(263.94	°C)
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0		6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5		6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5		6.6483
450	0.08004		3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6		6.8210
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8		6.9781
600		3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3		
700 800	0.11098 0.12292	3462.4 3650.6	3906.3 4142.3	7.6214 7.8523	0.09850 0.10916	3460.0 3648.8	3903.3 4140.0	7.5647 7.7962	0.08852 0.09816	3457.7 3646.9		7.5136 7.7458
900	0.12292	3844.8	4383.9	8.0675	0.10910	3843.3	4382.1	8.0118	0.10769		4380.2	
1000	0.13470	4045.1	4631.2	8.2698	0.11372	4043.9	4629.8	8.2144	0.10703	4042.6		8.1648
1100		4251.4	4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3		8.3566
1200	0.16992		5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592		5141.3	
1300	0.18157		5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3		8.7124
			Pa (275.59				a (285.83°			8.0 MPa		
Sat.		2589.9	2784.6	5.8902	0.027378		2772.6	5.8148	0.023525			
300	0.03243		2885.6	6.0703	0.027378		2839.9	5.9337	0.023323			5.7937
350	0.04225		3043.9	6.3357	0.035262		3016.9	6.2305	0.029975		2988.1	
400	0.04742		3178.3	6.5432	0.039958		3159.2	6.4502	0.034344			
450	0.05217		3302.9	6.7219	0.044187		3288.3	6.6353	0.038194		3273.3	
500	0.05667	3083.1	3423.1	6.8826	0.048157		3411.4	6.8000	0.041767			
550	0.06102	3175.2	3541.3	7.0308	0.051966	3167.9	3531.6	6.9507	0.045172	3160.5	3521.8	6.8800
600	0.06527	3267.2	3658.8	7.1693	0.055665	3261.0	3650.6	7.0910	0.048463	3254.7	3642.4	7.0221
700	0.07355	3453.0	3894.3	7.4247	0.062850		3888.3	7.3487	0.054829			
800		3643.2	4133.1	7.6582	0.069856		4128.5	7.5836	0.061011			7.5185
900	0.08964	3838.8	4376.6	7.8751	0.076750		4373.0	7.8014	0.067082			7.7372
1000	0.09756	4040.1	4625.4	8.0786	0.083571		4622.5	8.0055	0.073079			7.9419
1100	0.10543		4879.7	8.2709	0.090341		4877.4	8.1982	0.079025			
1200 1300	0.11326 0.12107	4459.8 4677.7	5139.4 5404.1	8.4534 8.6273	0.097075 0.103781		5137.4 5402.6	8.3810 8.5551	0.084934 0.090817			8.3181 8.4925
1300												
			Pa (303.35	-			°a (311.00			12.5 MPa		
Sat.	0.020489		2742.9	5.6791	0.018028		2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284		2857.1	5.8738	0.019877		2810.3	5.7596	0.01.61.00	00040		100
350			2957.3		0.022440			5.9460	0.016138			
400	0.029960			6.2876	0.026436		3097.5	6.2141	0.020030			
450 500	0.033524 0.036793			6.4872 6.6603	0.029782 0.032811		3242.4 3375.1	6.4219 6.5995	0.023019 0.025630			
550	0.030793			6.8164	0.032611		3502.0	6.7585	0.023030			
600	0.033863			6.9605	0.033033		3625.8	6.9045	0.020033			
650	0.045755			7.0954	0.041018		3748.1	7.0408	0.032491			
700	0.043733		3876.1	7.2229	0.043597		3870.0	7.1693	0.032431			
800	0.054132			7.4606	0.048629		4114.5	7.4085	0.034724			
900	0.059562			7.6802	0.053547		4362.0	7.6290	0.042720			
1000	0.064919			7.8855	0.058391		4613.8	7.8349	0.046641			
1100	0.070224			8.0791	0.063183		4870.3	8.0289	0.050510			
1200	0.075492			8.2625	0.067938		5131.7	8.2126	0.054342			
1300	0.080733	4672.9	5399.5	8.4371	0.072667	4671.3	5398.0	8.3874	0.058147	4667.3	5394.1	8.2819

TABLA	A-6											
Vapor	de agua sol	orecalent	ado (<i>cond</i>	clusión)								
T	V	и	h	s	V	и	h	S	v	и	h	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg \cdot K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg \cdot K
	P =	: 15.0 MP	a (342.16	i°C)	P = 1	17.5 MPa	(354.67	°C)	P =	20.0 MP	a (365.75	5°C)
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350	0.011481	2520.9	2693.1	5.4438								
400	0.015671	2740.6	2975.7	5.8819	0.012463				0.009950			
450	0.018477		3157.9	6.1434	0.015204				0.012721			
500	0.020828	2998.4	3310.8	6.3480	0.017385				0.014793			
550	0.022945		3450.4	6.5230	0.019305				0.016571			
600	0.024921		3583.1	6.6796	0.021073				0.018185			
650	0.026804	3310.1	3712.1	6.8233	0.022742				0.019695			
700	0.028621	3409.8	3839.1	6.9573	0.024342				0.021134			
800	0.032121 0.035503		4091.1 4343.7	7.2037	0.027405				0.023870			7.0531 7.2829
900 1000	0.033303	3811.2 4017.1	4545.7	7.4288 7.6378	0.030348 0.033215				0.026484			7.2829 7.4950
1100	0.030000		4858.6		0.035213				0.029020			
1200	0.042002	4443.1	5122.3		0.038806				0.031304			
1300	0.043279	4663.3	5390.3	8.1952	0.038800				0.033932			
1300	0.040403			0.1332				0.1213	0.030371			0.0374
		P = 25				P = 30.0				P = 35		
375	0.001978		1849.4		0.001792				0.001701			
400	0.006005	2428.5	2578.7	5.1400	0.002798				0.002105			
425	0.007886	2607.8	2805.0	5.4708	0.005299				0.003434			
450	0.009176		2950.6	5.6759	0.006737				0.004957			
500	0.011143		3165.9		0.008691				0.006933			
550 600	0.012736 0.014140	3020.8 3140.0	3339.2 3493.5	6.1816 6.3637	0.010175 0.011445				0.008348 0.009523			
650	0.014140	3251.9	3637.7	6.5243	0.011443				0.009323			
700	0.015430	3359.9	3776.0	6.6702	0.012330				0.010303			
800	0.018922	3570.7	4043.8		0.015628				0.011323			
900	0.021075		4307.1	7.1668	0.013020				0.013270			
1000	0.023150	3991.5	4570.2	7.3821	0.019240				0.016450			7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954				0.017942			7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630				0.019398			7.6034
1300	0.029115		5375.1	7.9494	0.024279				0.020827			7.7841
		P = 40	.0 MPa			P = 50.0) MPa			P = 60	.0 MPa	
375	0.001641	1677.0	1742.6	3.8290	0.001560	1638.6	1716.6	3.7642	0.001503	1609.7	1699.9	3.7149
400	0.001911		1931.4		0.001731				0.001633			
	0.002538											
450	0.003692		2511.8		0.002487				0.002086			
500	0.005623	2681.6	2906.5	5.4744	0.003890				0.002952	2393.2	2570.3	4.9356
550	0.006985	2875.1	3154.4		0.005118				0.003955			
600	0.008089	3026.8	3350.4	6.0170	0.006108	2947.1	3252.6	5.8245	0.004833	2866.8	3156.8	5.6527
650	0.009053	3159.5	3521.6	6.2078	0.006957	3095.6	3443.5	6.0373	0.005591	3031.3	3366.8	5.8867
700	0.009930	3282.0	3679.2	6.3740	0.007717	3228.7	3614.6	6.2179	0.006265	3175.4	3551.3	6.0814
800	0.011521		3972.6		0.009073				0.007456			
900	0.012980	3733.3	4252.5	6.9107	0.010296				0.008519			
1000	0.014360	3952.9	4527.3	7.1355	0.011441				0.009504			
1100	0.015686	4173.7	4801.1		0.012534				0.010439			
1200	0.016976	4396.9	5075.9		0.013590				0.011339			
1300	0.018239	4623.3	5352.8	/./175	0.014620	4607.5	5338.5	7.6048	0.012213	4591.8	5324.5	/.5111

TABLA	A-7											
Agua I	íquida com	primida										
T	V	и	h	s	V	и	h	s	V	и	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	P =	= 5 MPa ((263.94°C)	P =	= 10 MPa	(311.00°C	2)	P =	15 MPa	(342 16°	°C)
Sat.	0.0012862		1154.5	2.9207	0.0014522		1407.9	3.3603	0.0016572		1610.3	3.6848
0	0.0012802	0.04		0.0001	0.0014322	0.12	10.07	0.0003	0.0010372	0.18	15.07	
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	
40	0.0010057	166.92		0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	
60	0.0010149	250.29		0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	
80	0.0010267	333.82		1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	1.2958
120	0.0010576	501.91	507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	1.5148
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	1.7243
160	0.0010988	672.55	678.04	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	1.9259
180	0.0011240	759.47	765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	2.1206
200	0.0011531	847.92		2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	
220	0.0011868			2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	947.43	
240	0.0012268		1037.7	2.6983	0.0012192		1038.3	2.6876	0.0012121		1039.2	2.6774
260	0.0012755	1128.5	1134.9	2.8841	0.0012653		1134.3	2.8710	0.0012560		1134.0	2.8586
280					0.0013226		1235.0	3.0565	0.0013096		1233.0	3.0410
300					0.0013980	1329.4	1343.3	3.2488	0.0013783		1338.3	3.2279
320									0.0014733		1454.0	3.4263
340									0.0016311	1567.9	1592.4	3.6555
	P =	20 MPa	(365.75°C	C)		P = 30	MPa			P = 50	MPa	
Sat.	0.0020378	1785.8	1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	0.2845
40	0.0009992	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	0.5528
60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	
80	0.0010199		350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	
100	0.0010337	413.50	434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	
120	0.0010496	496.85		1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	
140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	
160	0.0010886	665.28		1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	
180	0.0011122	750.78	773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	
200	0.0011390		860.27	2.3027	0.0011304	831.11	865.02	2.2888	0.0011149	819.45	875.19	
220	0.0011697		949.16	2.4867	0.0011595	918.15	952.93	2.4707	0.0011412	904.39	961.45	
240	0.0012053		1040.2	2.6676	0.0011927		1042.7	2.6491	0.0011708		1049.1	2.6156
260 280	0.0012472 0.0012978		1134.0 1231.5	2.8469 3.0265	0.0012314 0.0012770		1134.7 1229.8	2.8250 3.0001	0.0012044 0.0012430		1138.4 1229.9	2.7864 2.9547
300	0.0012978		1231.5	3.0265	0.0012770		1229.8	3.0001	0.0012430		1324.0	3.1218
300	0.0013611		1334.4	3.2091	0.0013322		1328.9	3.1761	0.0012879		1324.0	3.1218
340	0.0014430		1571.6	3.6086	0.0014014		1547.1	3.5438	0.0013409		1523.1	3.4575
360	0.0013693		1740.1	3.8787	0.0014932		1675.6	3.7499	0.0014049		1630.7	3.6301
380	0.0010240	1700.0	1/40.1	3.0707	0.0010270		1838.2	4.0026	0.0014848		1746.5	3.8102
500					0.0010723	1,02.0	1000.2	1.0020	0.0010004	1007.1	17-0.5	0.0102

TABLA A-8

Hielo saturado. Vapor de agua

	Volumen específic m³/kg Pres. Hielo Vapor), Ei	n <i>ergía int</i> kJ/kg			<i>Entalpía</i> kJ/kg	,		<i>ntropía,</i> J/kg · K	
Temp.,	Pres. sat., P _{sat} kPa	Hielo sat, v _i	Vapor sat., v _g	Hielo sat., u_i	Subl., u _{ig}	Vapor sat., u_g	Hielo sat., <i>h_i</i>	Subl., h _{ig}	Vapor sat., h_g	Hielo sat., s _i	Subl., s _{ig}	Vapor sat., s_g
0.01	0.61169	0.001091	205.99	-333.40	2707.9	2374.5	-333.40	2833.9	2500.5	-1.2202	10.374	9.154
0	0.61115	0.001091	206.17	-333.43	2707.9	2374.5	-333.43	2833.9	2500.5	-1.2204	10.375	9.154
-2	0.51772	0.001091	241.62	-337.63	2709.4	2371.8	-337.63	2834.5	2496.8	-1.2358	10.453	9.218
-4	0.43748	0.001090	283.84	-341.80	2710.8	2369.0	-341.80	2835.0	2493.2	-1.2513	10.533	9.282
-6	0.36873	0.001090	334.27	-345.94	2712.2	2366.2	-345.93	2835.4	2489.5	-1.2667	10.613	9.347
-8	0.30998	0.001090	394.66	-350.04	2713.5	2363.5	-350.04	2835.8	2485.8	-1.2821	10.695	9.413
-10	0.25990	0.001089	467.17	-354.12	2714.8	2360.7	-354.12	2836.2	2482.1	-1.2976	10.778	9.480
-12	0.21732	0.001089	554.47	-358.17	2716.1	2357.9	-358.17	2836.6	2478.4	-1.3130	10.862	9.549
-14	0.18121	0.001088	659.88	-362.18	2717.3	2355.2	-362.18	2836.9	2474.7	-1.3284	10.947	9.618
-16	0.15068	0.001088	787.51	-366.17	2718.6	2352.4	-366.17	2837.2	2471.0	-1.3439	11.033	9.689
-18	0.12492	0.001088	942.51	-370.13	2719.7	2349.6	-370.13	2837.5	2467.3	-1.3593	11.121	9.761
-20	0.10326	0.001087	1131.3	-374.06	2720.9	2346.8	-374.06	2837.7	2463.6	-1.3748	11.209	9.835
-22	0.08510	0.001087	1362.0	-377.95	2722.0	2344.1	-377.95	2837.9	2459.9	-1.3903	11.300	9.909
-24	0.06991	0.001087	1644.7	-381.82	2723.1	2341.3	-381.82	2838.1	2456.2	-1.4057	11.391	9.985
-26	0.05725	0.001087	1992.2	-385.66	2724.2	2338.5	-385.66	2838.2	2452.5	-1.4212	11.484	10.063
-28	0.04673	0.001086	2421.0	-389.47	2725.2	2335.7	-389.47	2838.3	2448.8	-1.4367	11.578	10.141
-30	0.03802	0.001086	2951.7	-393.25	2726.2	2332.9	-393.25	2838.4	2445.1	-1.4521	11.673	10.221
-32	0.03082	0.001086	3610.9	-397.00	2727.2	2330.2	-397.00	2838.4	2441.4	-1.4676	11.770	10.303
-34	0.02490	0.001085	4432.4	-400.72	2728.1	2327.4	-400.72	2838.5	2437.7	-1.4831	11.869	10.386
-36	0.02004	0.001085	5460.1	-404.40	2729.0	2324.6	-404.40	2838.4	2434.0	-1.4986	11.969	10.470
-38	0.01608	0.001085	6750.5	-408.07	2729.9	2321.8	-408.07	2838.4	2430.3	-1.5141	12.071	10.557
-40	0.01285	0.001084	8376.7	-411.70	2730.7	2319.0	-411.70	2838.3	2426.6	-1.5296	12.174	10.644

Copyright 1984. De NBS/NRC Steam Tables/1 por Lester Haar, John S. Gallagher y George S. Kell. Reproducido con permiso de Routledge/Taylor & Francis Books, Inc.

Diagrama T-s para el agua.

FIGURA A-10 Diagrama de Mollier para el agua.

Copyright 1984. De NBS/NRC Steam Tables/1 por Lester Haar, John S. Gallagher y George S. Kell. Reproducido con permiso de Routledge/Taylor & Francis Books, Inc.

TABLA A-11

Refrig	gerante 13	4a saturado.	Tabla de t	temperatu	ıra							
		Volumen es m³/k		Ene	<i>rgía inter</i> kJ/kg	rna,		<i>Entalpía</i> kJ/kg	,		<i>Entropía,</i> kJ/kg · K	
Temp T °C	Pres. ., sat., P _{sat} kPa	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u_g	Líq. sat., <i>h_f</i>	Evap., h_{fg}	Vapor sat., h_g	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., s_g
-40 -38 -36 -34 -32	51.25 56.86 62.95 69.56 76.71	0.0007054 0.0007083 0.0007112 0.0007142 0.0007172	0.36081 0.32732 0.29751 0.27090 0.24711	-0.036 2.475 4.992 7.517 10.05	207.40 206.04 204.67 203.29 201.91	207.37 208.51 209.66 210.81 211.96	0.000 2.515 5.037 7.566 10.10		225.86 227.12 228.39 229.65 230.91	0.00000 0.01072 0.02138 0.03199 0.04253	0.96866 0.95511 0.94176 0.92859 0.91560	0.96866 0.96584 0.96315 0.96058 0.95813
-30 -28 -26 -24 -22	84.43 92.76 101.73 111.37 121.72	0.0007203 0.0007234 0.0007265 0.0007297 0.0007329	0.22580 0.20666 0.18946 0.17395 0.15995	12.59 15.13 17.69 20.25 22.82	200.52 199.12 197.72 196.30 194.88	213.11 214.25 215.40 216.55 217.70	12.65 15.20 17.76 20.33 22.91	219.52 218.22 216.92 215.59 214.26	232.17 233.43 234.68 235.92 s237.17	0.05301 0.06344 0.07382 0.08414 0.09441	0.90278 0.89012 0.87762 0.86527 0.85307	0.95579 0.95356 0.95144 0.94941 0.94748
-20 -18 -16 -14 -12	132.82 144.69 157.38 170.93 185.37	0.0007362 0.0007396 0.0007430 0.0007464 0.0007499	0.14729 0.13583 0.12542 0.11597 0.10736	25.39 27.98 30.57 33.17 35.78	193.45 192.01 190.56 189.09 187.62	218.84 219.98 221.13 222.27 223.40	25.49 28.09 30.69 33.30 35.92	212.91 211.55 210.18 208.79 207.38	238.41 239.64 240.87 242.09 243.30	0.10463 0.11481 0.12493 0.13501 0.14504	0.84101 0.82908 0.81729 0.80561 0.79406	0.94564 0.94389 0.94222 0.94063 0.93911
-10 -8 -6 -4 -2	200.74 217.08 234.44 252.85 272.36	0.0007535 0.0007571 0.0007608 0.0007646 0.0007684	0.099516 0.092352 0.085802 0.079804 0.074304	41.03 43.66 46.31	186.14 184.64 183.13 181.61 180.08	224.54 225.67 226.80 227.92 229.04	38.55 41.19 43.84 46.50 49.17	205.96 204.52 203.07 201.60 200.11	244.51 245.72 246.91 248.10 249.28	0.15504 0.16498 0.17489 0.18476 0.19459	0.78263 0.77130 0.76008 0.74896 0.73794	0.93766 0.93629 0.93497 0.93372 0.93253
0 2 4 6 8	293.01 314.84 337.90 362.23 387.88	0.0007723 0.0007763 0.0007804 0.0007845 0.0007887	0.069255 0.064612 0.060338 0.056398 0.052762	54.30 56.99 59.68	178.53 176.97 175.39 173.80 172.19	230.16 231.27 232.38 233.48 234.58	51.86 54.55 57.25 59.97 62.69	198.60 197.07 195.51 193.94 192.35	250.45 251.61 252.77 253.91 255.04	0.20439 0.21415 0.22387 0.23356 0.24323	0.72701 0.71616 0.70540 0.69471 0.68410	0.93139 0.93031 0.92927 0.92828 0.92733
10 12 14 16 18	414.89 443.31 473.19 504.58 537.52	0.0007930 0.0007975 0.0008020 0.0008066 0.0008113	0.049403 0.046295 0.043417 0.040748 0.038271	67.83 70.57 73.32	170.56 168.92 167.26 165.58 163.88	235.67 236.75 237.83 238.90 239.96	65.43 68.18 70.95 73.73 76.52	190.73 189.09 187.42 185.73 184.01	256.16 257.27 258.37 259.46 260.53	0.25286 0.26246 0.27204 0.28159 0.29112	0.67356 0.66308 0.65266 0.64230 0.63198	0.92641 0.92554 0.92470 0.92389 0.92310

TABLA A-11

Refrigerante 134a saturado. Tabla de temperatura (conclusión)

		Volumen e m³,	,	Ene	e <i>rgía inte</i> kJ/kg	rna,		<i>Entalpía,</i> kJ/kg	,		<i>Entropía,</i> kJ/kg · K	
Temp.	Pres. ., sat., P _{sat} kPa	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u_g	Líq. sat., h _f	Evap., h _{fg}	Vapor sat., h _g	Líq. sat., s _f	Evap., s_{fg}	Vapor sat., s_g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234

Temp T°C	Pres. o., sat., P _{sat} kPa	Líq. sat.,	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u_g	Líq. sat., h _f	Evap., h _{fg}	Vapor sat., h _g	Líq. sat., s _f	Evap., s_{fg}	Vapor sat., s_g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	174.99	265.68	0.33846	0.58102	0.91948
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	169.17	268.57	0.36670	0.55074	0.91743
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606
40	1017.1	0.0008720	0.019952	107.38	143.60	250.97	108.26	163.00	271.27	0.39486	0.52049	0.91536
42	1072.8	0.0008786	0.018855	110.32	141.58	251.89	111.26	160.86	272.12	0.40425	0.51039	0.91464
44	1130.7	0.0008854	0.017824	113.28	139.52	252.80	114.28	158.67	272.95	0.41363	0.50027	0.91391
46	1191.0	0.0008924	0.016853	116.26	137.42	253.68	117.32	156.43	273.75	0.42302	0.49012	0.91315
48	1253.6	0.0008996	0.015939	119.26	135.29	254.55	120.39	154.14	274.53	0.43242	0.47993	0.91236
52	1386.2	0.0009150	0.014265	125.33	130.88	256.21	126.59	149.39	275.98	0.45126	0.45941	0.91067
56	1529.1	0.0009317	0.012771	131.49	126.28	257.77	132.91	144.38	277.30	0.47018	0.43863	0.90880
60	1682.8	0.0009498	0.011434	137.76	121.46	259.22	139.36	139.10	278.46	0.48920	0.41749	0.90669
65	1891.0	0.0009750	0.009950	145.77	115.05	260.82	147.62	132.02	279.64	0.51320	0.39039	0.90359
70	2118.2	0.0010037	0.008642	154.01	108.14	262.15	156.13	124.32	280.46	0.53755	0.36227	0.89982
75	2365.8	0.0010372	0.007480	162.53	100.60	263.13	164.98	115.85	280.82	0.56241	0.33272	0.89512
80	2635.3	0.0010772	0.006436	171.40	92.23	263.63	174.24	106.35	280.59	0.58800	0.30111	0.88912
85	2928.2	0.0011270	0.005486	180.77	82.67	263.44	184.07	95.44	279.51	0.61473	0.26644	0.88117
90	3246.9	0.0011932	0.004599	190.89	71.29	262.18	194.76	82.35	277.11	0.64336	0.22674	0.87010
95	3594.1	0.0012933	0.003726	202.40	56.47	258.87	207.05	65.21	272.26	0.67578	0.17711	0.85289
100	3975.1	0.0015269	0.002630	218.72	29.19	247.91	224.79	33.58	258.37	0.72217	0.08999	0.81215

Fuente: Las tablas A-11 a A-13 se generaron utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado. La rutina utilizada en los cálculos es la R134a, la cual está basada en la ecuación fundamental de estado desarrollada por R. Tillner-Roth y H. D. Baehr, "An Internacional Standard Formulation for the Thermodynamic Properties de 1,1,1,2-Tetrafluoretano (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa", J. *Phys. Chem, Ref. Data*, vol. 23, núm. 5, 1994. Los valores de entalpía y entropía para el líquido saturado son cero a –40°C (y –40°F).

TABLA A-12

Refrigerante 134a saturado. Tabla de presión

		Volumen e	específico,		gía inter	rna,	E	Entalpía,			Entropía,	
Pres.,	Temp. sat.,	Líq.	Vapor sat.,	Líq.	kJ/kg Evap.,	Vapor sat.,	Líq.	kJ/kg Evap.,	Vapor sat.,	Líq. sat.,	kJ/kg · K Evap.,	Vapor sat.,
P kPa	$T_{\rm sat}$ $^{\circ}$ C	V_f	V_g	U_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S _{fg}	S_g
60	-36.95	0.0007098	0.31121	3.798	205.32	209.12	3.841	223.95	227.79	0.01634	0.94807	0.96441
70	-33.87	0.0007144	0.26929	7.680	203.20	210.88	7.730	222.00	229.73	0.03267	0.92775	0.96042
80	-31.13	0.0007185	0.23753	11.15	201.30	212.46	11.21	220.25	231.46	0.04711	0.90999	0.95710
90	-28.65	0.0007223	0.21263	14.31	199.57	213.88	14.37	218.65	233.02	0.06008	0.89419	0.95427
100	-26.37	0.0007259	0.19254	17.21	197.98	215.19	17.28	217.16	234.44	0.07188	0.87995	0.95183
120	-22.32	0.0007324	0.16212	22.40	195.11	217.51	22.49	214.48	236.97	0.09275	0.85503	0.94779
140	-18.77	0.0007383	0.14014	26.98	192.57	219.54	27.08		239.16	0.11087	0.83368	0.94456
160	-15.60	0.0007437	0.12348	31.09	190.27	221.35	31.21	209.90	241.11	0.12693	0.81496	0.94190
180	-12.73	0.0007487	0.11041	34.83	188.16	222.99	34.97		242.86	0.14139	0.79826	0.93965
200	-10.09	0.0007533	0.099867	38.28	186.21	224.48	38.43	206.03	244.46	0.15457	0.78316	0.93773
240	-5.38	0.0007620	0.083897	44.48	182.67	227.14	44.66	202.62	247.28	0.17794	0.75664	0.93458
280	-1.25	0.0007699	0.072352	49.97	179.50	229.46	50.18		249.72	0.19829	0.73381	0.93210
320	2.46	0.0007772	0.063604	54.92	176.61	231.52	55.16		251.88	0.21637	0.71369	0.93006
360	5.82	0.0007841	0.056738	59.44	173.94	233.38	59.72		253.81	0.23270	0.69566	0.92836
400	8.91	0.0007907	0.051201	63.62	171.45	235.07	63.94	191.62	255.55	0.24761	0.67929	0.92691
450	12.46	0.0007985	0.045619	68.45	168.54	237.00	68.81		257.53	0.26465	0.66069	0.92535
500	15.71	0.0008059	0.041118	72.93	165.82	238.75	73.33		259.30	0.28023	0.64377	0.92400
550	18.73	0.0008130	0.037408	77.10	163.25	240.35	77.54		260.92	0.29461	0.62821	0.92282
600	21.55	0.0008199	0.034295	81.02	160.81	241.83	81.51		262.40	0.30799	0.61378	0.92177
650	24.20	0.0008266	0.031646	84.72	158.48	243.20	85.26	178.51	263.77	0.32051	0.60030	0.92081
700	26.69	0.0008331	0.029361	88.24	156.24	244.48	88.82		265.03	0.33230	0.58763	0.91994
750	29.06	0.0008395	0.027371	91.59	154.08	245.67	92.22		266.20	0.34345	0.57567	0.91912
800	31.31	0.0008458	0.025621	94.79	152.00	246.79	95.47		267.29	0.35404	0.56431	0.91835
850	33.45	0.0008520	0.024069	97.87	149.98	247.85	98.60	169.71	268.31	0.36413	0.55349	0.91762
900	35.51	0.0008580	0.022683	100.83	148.01	248.85	101.61	167.66	269.26	0.37377	0.54315	0.91692
950	37.48	0.0008641	0.021438	103.69	146.10		104.51		270.15	0.38301	0.53323	0.91624
1000	39.37	0.0008700	0.020313	106.45	144.23	250.68	107.32	163.67	270.99	0.39189	0.52368	0.91558
1200	46.29	0.0008934	0.016715	116.70	137.11	253.81		156.10		0.42441	0.48863	0.91303
1400	52.40	0.0009166	0.014107	125.94	130.43	256.37	127.22	148.90	276.12	0.45315	0.45734	0.91050
1600	57.88	0.0009400	0.012123	134.43	124.04		135.93		277.86	0.47911	0.42873	0.90784
1800	62.87	0.0009639	0.010559	142.33	117.83	260.17	144.07	135.11	279.17	0.50294	0.40204	0.90498
2000	67.45	0.0009886	0.009288	149.78	111.73	261.51	151.76		280.09	0.52509	0.37675	0.90184
2500	77.54	0.0010566	0.006936	166.99	96.47	263.45	169.63		280.79	0.57531	0.31695	0.89226
3000	86.16	0.0011406	0.005275	183.04	80.22	263.26	186.46	92.63	279.09	0.62118	0.25776	0.87894

TABL	TABLA A-13											
Refri	gerante 13	4a sobre	calentad	0								
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg \cdot K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	P = 0.0	06 MPa (7	$r_{\rm sat} = -36$.95°C)	P = 0	.10 MPa ($T_{\rm sat} = -26$.37°C)	P = 0.	14 MPa ($T_{\rm sat} = -18$.77°C)
Sat.	0.31121				0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446
-20	0.33608				0.19841		239.50	0.9721				
-10	0.35048				0.20743		247.49		0.14605	225.91	246.36	0.9724
0	0.36476	234.66	256.54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	1.0031
10	0.37893	241.92	264.66	1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	1.0331
20	0.39302	249.35	272.94	1.1353	0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	1.0624
30	0.40705			1.1636	0.24233	256.44	280.68	1.1203	0.17172	255.93	279.97	1.0912
40	0.42102	264.71	289.97	1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	1.1195
50	0.43495				0.25937	272.22	298.16	1.1762	0.18412	271.79		1.1474
60	0.44883				0.26783		307.13	1.2035	0.19025	279.96		1.1749
70	0.46269				0.27626		316.26	1.2305	0.19635	288.28		1.2020
80	0.47651				0.28465		325.55	1.2572	0.20242	296.75		1.2288
90	0.49032				0.29303		334.99		0.20847	305.38		1.2553
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	$P = 0.18 \text{ MPa} (T_{\text{sat}} = -12.73^{\circ}\text{C})$				P = 0	.20 MPa ($T_{\rm sat} = -10$.09°C)	P = 0	$P = 0.24 \text{ MPa } (T_{\text{sat}} = -5.38^{\circ}\text{C})$		
Sat.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346
-10	0.11189	225.02	245.16	0.9484	0.09991	224.55	244.54	0.9380				
0	0.11722	232.48	253.58	0.9798	0.10481	232.09	253.05	0.9698	0.08617	231.29	251.97	0.9519
10	0.12240	240.00	262.04	1.0102	0.10955	239.67	261.58	1.0004	0.09026	238.98	260.65	0.9831
20	0.12748				0.11418	247.35	270.18	1.0303	0.09423	246.74	269.36	1.0134
30	0.13248	255.41	279.25	1.0690	0.11874	255.14	278.89	1.0595	0.09812	254.61	278.16	1.0429
40	0.13741			1.0975	0.12322		287.72	1.0882	0.10193	262.59		1.0718
50	0.14230				0.12766		296.68	1.1163	0.10570	270.71		1.1001
60	0.14715				0.13206		305.78	1.1441	0.10942	278.97		1.1280
70	0.15196			1.1805	0.13641		315.01	1.1714	0.11310	287.36		1.1554
80	0.15673				0.14074		324.40		0.11675	295.91		1.1825
90	0.16149			1.2339	0.14504		333.93	1.2249	0.12038	304.60		1.2092
100	0.16622	313.88	343.80	1.2602	0.14933	313.74	343.60	1.2512	0.12398	313.44	343.20	1.2356
	P = 0.	.28 MPa ($T_{\rm sat} = -1.5$	25°C)	P =	0.32 MPa	$(T_{\rm sat} = 2.4)$	l6°C)	P = ($P = 0.40 \text{ MPa } (T_{\text{sat}} = 8.91^{\circ}\text{C})$		
Sat.	0.07235				0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
0	0.07282											
10	0.07646				0.06609			0.9544	0.051506		256.58	
20	0.07997	246.13	268.52	0.9987	0.06925		267.66		0.054213		265.86	
30	0.08338				0.07231		276.65		0.056796			
40	0.08672	262.10		1.0576				1.0451	0.059292	260.58	284.30	1.0236
50	0.09000			1.0862	0.07823		294.85	1.0739	0.061724		293.59	
60	0.09324			1.1142	0.08111	278.15	304.11	1.1021	0.064104			1.0814
70	0.09644	286.99	314.00		0.08395	286.62	313.48	1.1298	0.066443	285.86		1.1094
80	0.09961			1.1690	0.08675	295.22	322.98	1.1571	0.068747			1.1369
90	0.10275	304.29		1.1958	0.08953	303.97	332.62	1.1840	0.071023			1.1640
100	0.10587			1.2222	0.09229	312.86	342.39	1.2105	0.073274			1.1907
110	0.10897			1.2483	0.09503	321.89	352.30	1.2367	0.075504			1.2171
120	0.11205	331.32		1.2742	0.09775	331.07	362.35	1.2626	0.077717	330.55		1.2431
130	0.11512			1.2997	0.10045	340.39	372.54	1.2882	0.079913	339.90		1.2688
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942

$T\Lambda$	D	Α	A -1	19
I # ∆1	ы	W A V		la l

IADLA	IABLA A-13											
Refrige	erante 134	a sobred	calentad	o (conclus	ión)							
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m ³ /kg			kJ/kg · K	m ³ /kg				m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
				71°C)	P = 0				P = 0.			
Sat.	0.041118				0.034295		262.40	0.9218	0.029361	244.48		0.9199
20	0.041115				0.054235	241.03	202.40	0.3210	0.023301	244.40	200.00	0.5155
30	0.044338				0.035984	249.22	270.81	0.9499	0.029966	247.48	268.45	0.9313
40	0.046456				0.037865	257.86	280.58	0.9816	0.031696	256.39		0.9641
50	0.048499				0.039659	266.48	290.28	1.0121	0.033322	265.20	288.53	
60	0.050485	276.25	301.50	1.0599	0.041389	275.15	299.98	1.0417	0.034875	274.01	298.42	1.0256
70	0.052427	284.89	311.10	1.0883	0.043069	283.89	309.73	1.0705	0.036373	282.87	308.33	1.0549
80	0.054331	293.64	320.80	1.1162	0.044710	292.73	319.55	1.0987	0.037829	291.80	318.28	1.0835
90	0.056205	302.51	330.61	1.1436	0.046318	301.67	329.46	1.1264	0.039250	300.82	328.29	1.1114
100	0.058053	311.50	340.53	1.1705	0.047900	310.73	339.47	1.1536	0.040642	309.95	338.40	1.1389
110	0.059880	320.63	350.57	1.1971	0.049458	319.91	349.59	1.1803	0.042010	319.19	348.60	1.1658
120	0.061687	329.89	360.73	1.2233	0.050997	329.23	359.82	1.2067	0.043358	328.55	358.90	1.1924
130	0.063479	339.29	371.03	1.2491	0.052519	338.67	370.18	1.2327	0.044688	338.04		1.2186
140	0.065256				0.054027	348.25	380.66	1.2584	0.046004	347.66	379.86	1.2444
150	0.067021	358.51	392.02	1.2999	0.055522	357.96	391.27	1.2838	0.047306	357.41	390.52	1.2699
160	0.068775	368.33	402.72	1.3249	0.057006	367.81	402.01	1.3088	0.048597	367.29	401.31	1.2951
	P = 0.8	80 MPa ($T_{\rm sat} = 31.$	31°C)	P = 0	.90 MPa ($T_{\rm sat} = 35.5$	51°C)	P = 1.	00 MPa (7	s _{sat} = 39.3	37°C)
Sat.	0.025621				0.022683	248.85	269.26	0.9169	0.020313	250.68	270 99	0.9156
40	0.027035				0.023375	253.13		0.9327	0.020406	251.30		0.9179
50	0.028547				0.024809	262.44		0.9660	0.021796	260.94		0.9525
60	0.029973				0.024005	271.60		0.9976	0.021750	270.32		0.9850
70	0.031340				0.027413	280.72		1.0280	0.024261	279.59		1.0160
80	0.032659				0.028630	289.86	315.63	1.0574	0.025398	288.86	314.25	
90	0.033941				0.029806	299.06	325.89	1.0860	0.026492	298.15	324.64	
100	0.035193				0.030951	308.34	336.19	1.1140	0.027552	307.51		1.1031
110	0.036420				0.032068	317.70	346.56	1.1414	0.028584	316.94		1.1308
120	0.037625				0.033164	327.18	357.02	1.1684	0.029592	326.47		1.1580
130	0.038813				0.034241	336.76	367.58	1.1949	0.030581	336.11	366.69	
140	0.039985				0.035302	346.46	378.23	1.2210	0.031554	345.85		1.2109
150	0.041143				0.036349	356.28	389.00	1.2467	0.032512	355.71		1.2368
160	0.042290				0.037384	366.23	399.88	1.2721	0.033457	365.70	399.15	
170	0.043427	376.81	411.55	1.3080	0.038408	376.31	410.88	1.2972	0.034392	375.81	410.20	
180	0.044554	386.99	422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124
	P = 1.2	20 MPa ($T_{\rm out} = 46.$	29°C)	P = 1	.40 MPa ($T_{\rm cot} = 52.4$	10°C)	P = 1.	.60 MPa (<i>T</i>	= 57.8	38°C)
Sat.	0.016715				0.014107			0.9105	0.012123			0.9078
50	0.017201						- -				, ,	
60	0.018404				0.015005	264.46	285.47	0.9389	0.012372	260.89	280.69	0.9163
70	0.019502				0.016060	274.62	297.10	0.9733	0.013430	271.76	293.25	
80	0.020529				0.017023	284.51	308.34	1.0056	0.014362	282.09	305.07	
90	0.021506				0.017923	294.28	319.37	1.0364	0.015215	292.17	316.52	
100	0.022442				0.018778	304.01	330.30	1.0661	0.016014	302.14	327.76	
110	0.023348				0.019597	313.76	341.19	1.0949	0.016773	312.07	338.91	
120	0.024228	325.03	354.11	1.1394	0.020388	323.55	352.09	1.1230	0.017500	322.02	350.02	
130	0.025086				0.021155	333.41	363.02	1.1504	0.018201	332.00	361.12	
140	0.025927				0.021904	343.34	374.01	1.1773	0.018882	342.05	372.26	
150	0.026753				0.022636	353.37	385.07	1.2038	0.019545	352.17	383.44	
160	0.027566				0.023355	363.51	396.20	1.2298	0.020194	362.38	394.69	
170	0.028367				0.024061	373.75	407.43	1.2554	0.020830	372.69	406.02	
180	0.029158				0.024757	384.10	418.76	1.2807	0.021456	383.11	417.44	

FIGURA A-14 Diagrama *P-h* para el refrigerante 134a.

Nota: El punto de referencia utilizado para la gráfica es diferente al empleado en las tablas de R-134a. Por lo tanto, los problemas deberán resolverse utilizando todos los datos de propiedades obtenidos, ya sea de las tablas o de la gráfica, pero no de ambas.

Reimpreso con autorización de la American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, Georgia.

FIGURA A-15Carta generalizada de compresibilidad de Nelson-Obert.

Con autorización del doctor Edward E. Obert, Universidad de Wisconsin.

TABLA A-16

Propiedades de la atmósfera a gran altitud

Altitud, m	Temperatura, °C	Presión, kPa	Gravedad g, m/s ²	Velocidad del sonido, m/s	Densidad, kg/m³	Viscosidad μ , kg/m \cdot s	Conductivi- dad térmica, W/m · K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5} 1.783×10^{-5} 1.777×10^{-5} 1.771×10^{-5} 1.764×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202		0.0252
400	12.40	96.61	9.805	338.8	1.179		0.0252
600	11.10	94.32	9.805	338.0	1.156		0.0251
800	9.80	92.08	9.804	337.2	1.134		0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5} 1.752×10^{-5} 1.745×10^{-5} 1.739×10^{-5} 1.732×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090		0.0248
1400	5.90	85.60	9.802	334.9	1.069		0.0247
1600	4.60	83.53	9.802	334.1	1.048		0.0245
1800	3.30	81.49	9.801	333.3	1.027		0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5} 1.720×10^{-5} 1.713×10^{-5} 1.707×10^{-5} 1.700×10^{-5}	0.0243
2200	0.70	77.55	9.800	331.7	0.987		0.0242
2400	-0.59	75.63	9.799	331.0	0.967		0.0241
2600	-1.89	73.76	9.799	330.2	0.947		0.0240
2800	-3.19	71.92	9.798	329.4	0.928		0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5} 1.687×10^{-5} 1.681×10^{-5} 1.674×10^{-5} 1.668×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891		0.0237
3400	-7.09	66.63	9.796	327.0	0.872		0.0236
3600	-8.39	64.94	9.796	326.2	0.854		0.0235
3800	-9.69	63.28	9.795	325.4	0.837		0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5} 1.655×10^{-5} 1.648×10^{-5} 1.642×10^{-5} 1.635×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802		0.0232
4400	-13.6	58.52	9.793	323.0	0.785		0.0231
4600	-14.9	57.00	9.793	322.2	0.769		0.0230
4800	-16.2	55.51	9.792	321.4	0.752		0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5} 1.622×10^{-5} 1.615×10^{-5} 1.608×10^{-5} 1.602×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721		0.0227
5400	-20.1	51.23	9.790	318.9	0.705		0.0226
5600	-21.4	49.86	9.789	318.1	0.690		0.0224
5800	-22.7	48.52	9.785	317.3	0.675		0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5} 1.588×10^{-5} 1.582×10^{-5} 1.575×10^{-5} 1.568×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646		0.0221
6400	-26.6	44.69	9.787	314.8	0.631		0.0220
6600	-27.9	43.47	9.786	314.0	0.617		0.0219
6800	-29.2	42.27	9.785	313.1	0.604		0.0218
7000	-30.5	41.11	9.785	312.3	0.590	1.561×10^{-5}	0.0217
8000	-36.9	35.65	9.782	308.1	0.526	1.527×10^{-5}	0.0212
9000	-43.4	30.80	9.779	303.8	0.467	1.493×10^{-5}	0.0206
10,000	-49.9	26.50	9.776	299.5	0.414	1.458×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5}	0.0201
12,000	-56.5	19.40	9.770	295.1	0.312		0.0195
14,000	-56.5	14.17	9.764	295.1	0.228		0.0195
16,000	-56.5	10.53	9.758	295.1	0.166		0.0195
18,000	-56.5	7.57	9.751	295.1	0.122		0.0195

Fuente: U.S. Standard Atmosphere Supplements. Oficina de Impresiones del Gobierno de Estados Unidos, 1966. Basadas en las condiciones medias anuales a una latitud de 45° y una variación de acuerdo con la época del año y con los patrones del clima. Las condiciones al nivel del mar (z=0) se consideran como P=101.325 kPa, $T=15^{\circ}$ C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

TABL	TABLA A-17										
Propi	edades de	gas ideal (del aire								
<i>T</i> K	<i>h</i> kJ/kg	P_r	и kJ/kg	V_r	s° kJ/kg ⋅ K	T K	<i>h</i> kJ/kg	P_r	и kJ/kg	V_r	s° kJ/kg ⋅ K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250	250.05	0.7329	178.28	979.0	1.51917	630	638.63	19.84	457.78	92.84	2.46048
260 270 280 285 290	260.09 270.11 280.13 285.14 290.16	0.7529 0.8405 0.9590 1.0889 1.1584 1.2311	185.45 192.60 199.75 203.33 206.91	887.8 808.0 738.0 706.1 676.1	1.55848 1.59634 1.63279 1.65055 1.66802	640 650 660 670 680	649.22 659.84 670.47 681.14 691.82	20.64 21.86 23.13 24.46 25.85	465.50 473.25 481.01 488.81 496.62	88.99 85.34 81.89 78.61 75.50	2.47716 2.49364 2.50985 2.52589 2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315	315.27	1.6442	224.85	549.8	1.75106	740	756.44	35.50	544.02	59.82	2.63280
320	320.29	1.7375	228.42	528.6	1.76690	750	767.29	37.35	551.99	57.63	2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400	400.98	3.806	286.16	301.6	1.99194	920	955.38	82.05	691.28	32.18	2.87324
410	411.12	4.153	293.43	283.3	2.01699	940	977.92	89.28	708.08	30.22	2.89748
420	421.26	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
480	441.61	5.332	315.30	236.8	2.08870	1000	1046.04	114.0	758.94	25.17	2.96770
	451.80	5.775	322.62	223.6	2.11161	1020	1068.89	123.4	776.10	23.72	2.99034
	462.02	6.245	329.97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.01260
	472.24	6.742	337.32	200.1	2.15604	1060	1114.86	143.9	810.62	21.14	3.03449
	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.05608
490	492.74	7.824	352.08	179.7	2.19876	1100	1161.07	167.1	845.33	18.896	3.07732
500	503.02	8.411	359.49	170.6	2.21952	1120	1184.28	179.7	862.79	17.886	3.09825
510	513.32	9.031	366.92	162.1	2.23993	1140	1207.57	193.1	880.35	16.946	3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91	16.064	3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540 550 560 570	544.35 555.74 565.17 575.59	11.10 11.86 12.66 13.50	389.34 396.86 404.42 411.97		2.29906 2.31809 2.33685 2.35531	1200 1220 1240	1277.79 1301.31 1324.93	238.0 254.7 272.3	933.33 951.09 968.95	14.470 13.747 13.069	3.17888 3.19834 3.21751

TABLA A-17

Propiedades de gas ideal del aire (conclusión)

T K	<i>h</i> kJ/kg	P_r	<i>u</i> kJ/kg	V_r	<i>s</i> ° kJ/kg ⋅ K	T K	<i>h</i> kJ/kg	P_r	<i>u</i> kJ/kg	V_r	s° kJ/kg ⋅ K
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850	2065.3	1475	1534.9	3.601	3.7023
1440	1563.51	506.9	1150.13	8.153	3.39586	1900	2127.4	1655	1582.6	3.295	3.7354
1460	1587.63	537.1	1168.49	7.801	3.41247	1950	2189.7	1852	1630.6	3.022	3.7677
1480	1611.79	568.8	1186.95	7.468	3.42892	2000		2068	1678.7	2.776	3.7994
1500	1635.97	601.9	1205.41	7.152	3.44516	2050		2303	1726.8	2.555	3.8303
1520	1660.23	636.5	1223.87	6.854	3.46120	2100		2559	1775.3	2.356	3.8605
1540	1684.51	672.8	1242.43	6.569	3.47712	2150		2837	1823.8	2.175	3.8901
1560	1708.82	710.5	1260.99	6.301	3.49276	2200		3138	1872.4	2.012	3.9191
1580	1733.17	750.0	1279.65	6.046	3.50829	2250	2566.4	3464	1921.3	1.864	3.9474

Nota: Las propiedades P_r (presión relativa) y v_r (volumen específico relativo) son cantidades adimensionales utilizadas en el análisis de procesos isentrópicos y no deben confundirse con las propiedades de presión y volumen específico.

Fuente: Kenneth Wark, Thermodynamics, cuarta edición, Nueva York, McGraw-Hill, 1983, pp. 785-786, Tabla A-5. Publicada originalmente en J. H. Keenan y J. Kaye, Gas Tables, Nueva York, John Wiley & Sons, 1948.

TABLA A-18										
Propieda	des de gas ideal	del nitrógeno, i	N_2							
T	h	\overline{u}	₹°	T	ħ	\overline{u}	¯s°			
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K			
0	0	0	0	600	17,563	12,574	212.066			
220	6,391	4,562	182.639	610	17,864	12,792	212.564			
230	6,683	4,770	183.938	620	18,166	13,011	213.055			
240	6,975	4,979	185.180	630	18,468	13,230	213.541			
250	7,266	5,188	186.370	640	18,772	13,450	214.018			
260	7,558	5,396	187.514	650	19,075	13,671	214.489			
270	7,849	5,604	188.614	660	19,380	13,892	214.954			
280	8,141	5,813	189.673	670	19,685	14,114	215.413			
290	8,432	6,021	190.695	680	19,991	14,337	215.866			
298	8,669	6,190	191.502	690	20,297	14,560	216.314			
300	8,723	6,229	191.682	700	20,604	14,784	216.756			
310	9,014	6,437	192.638	710	20,912	15,008	217.192			
320	9,306	6,645	193.562	720	21,220	15,234	217.624			
330	9,597	6,853	194.459	730	21,529	15,460	218.059			
340	9,888	7,061	195.328	740	21,839	15,686	218.472			
350	10,180	7,270	196.173	750	22,149	15,913	218.889			
360	10,471	7,478	196.995	760	22,460	16,141	219.301			
370	10,763	7,687	197.794	770	22,772	16,370	219.709			
380	11,055	7,895	198.572	780	23,085	16,599	220.113			
390	11,347	8,104	199.331	790	23,398	16,830	220.512			
400	11,640	8,314	200.071	800	23,714	17,061	220.907			
410	11,932	8,523	200.794	810	24,027	17,292	221.298			
420	12,225	8,733	201.499	820	24,342	17,524	221.684			
430	12,518	8,943	202.189	830	24,658	17,757	222.067			
440	12,811	9,153	202.863	840	24,974	17,990	222.447			
450	13,105	9,363	203.523	850	25,292	18,224	222.822			
460	13,399	9,574	204.170	860	25,610	18,459	223.194			
470	13,693	9,786	204.803	870	25,928	18,695	223.562			
480	13,988	9,997	205.424	880	26,248	18,931	223.927			
490	14,285	10,210	206.033	890	26,568	19,168	224.288			
500	14,581	10,423	206.630	900	26,890	19,407	224.647			
510	14,876	10,635	207.216	910	27,210	19,644	225.002			
520	15,172	10,848	207.792	920	27,532	19,883	225.353			
530	15,469	11,062	208.358	930	27,854	20,122	225.701			
540	15,766	11,277	208.914	940	28,178	20,362	226.047			
550	16,064	11,492	209.461	950	28,501	20,603	226.389			
560	16,363	11,707	209.999	960	28,826	20,844	226.728			
570	16,662	11,923	210.528	970	29,151	21,086	227.064			
580	16,962	12,139	211.049	980	29,476	21,328	227.398			
590	17,262	12,356	211.562	990	29,803	21,571	227.728			

	TABLA A-18										
Propieda		l del nitrógeno, l		ı							
Τ	\overline{h}	\overline{u}	₹°	T	\overline{h}	\overline{u}	₹°				
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K				
1000	30,129	21,815	228.057	1760	56,227	41,594	247.396				
1020	30,784	22,304	228.706	1780	56,938	42,139	247.798				
1040	31,442	22,795	229.344	1800	57,651	42,685	248.195				
1060	32,101	23,288	229.973	1820	58,363	43,231	248.589				
1080	32,762	23,782	230.591	1840	59,075	43,777	248.979				
1100	33,426	24,280	231.199	1860	59,790	44,324	249.365				
1120	34,092	24,780	231.799	1880	60,504	44,873	249.748				
1140	34,760	25,282	232.391	1900	61,220	45,423	250.128				
1160 1180	35,430 36,104	25,786 26,291	232.973 233.549	1920 1940	61,936 62,654	45,973 46,524	250.502 250.874				
1200 1220	36,777 37,452	26,799 27,308	234.115 234.673	1960 1980	63,381 64.090	47,075 47,627	251.242 251.607				
1240	38,129	27,308 27,819	234.673	2000	64,810	48,181	251.969				
1240	38,807	28,331	235.766	2050	66,612	49,567	252.858				
1280	39,488	28,845	236.302	2100	68,417	50,957	253.726				
1300	40,170	29,361	236.831	2150	70,226	52,351	254.578				
1320	40,853	29,378	237.353	2200	72,040	53,749	255.412				
1340	41,539	30,398	237.867	2250	73,856	55,149	256.227				
1360	42,227	30,919	238.376	2300	75,676	56,553	257.027				
1380	42,915	31,441	238.878	2350	77,496	57,958	257.810				
1400	43,605	31,964	239.375	2400	79,320	59,366	258.580				
1420	44,295	32,489	239.865	2450	81,149	60,779	259.332				
1440	44,988	33,014	240.350	2500	82,981	62,195	260.073				
1460	45,682	33,543	240.827	2550	84,814	63,613	260.799				
1480	46,377	34,071	241.301	2600	86,650	65,033	261.512				
1500	47,073	34,601	241.768	2650	88,488	66,455	262.213				
1520	47,771	35,133	242.228	2700	90,328	67,880	262.902				
1540	48,470	35,665	242.685	2750	92,171	69,306	263.577				
1560	49,168	36,197	243.137	2800	94,014	70,734	264.241				
1580	49,869	36,732	243.585	2850	95,859	72,163	264.895				
1600	50,571	37,268	244.028	2900	97,705	73,593	265.538				
1620	51,275	37,806	244.464	2950	99,556	75,028	266.170				
1640 1660	51,980 52,686	38,344 38,884	244.896 245.324	3000 3050	101,407 103,260	76,464 77,902	266.793 267.404				
1680	53,393	39,424	245.324 245.747	3100	105,260	77,902 79,341	268.007				
	54,099	39,965			106,972	80,782					
1700 1720	54,099 54,807	40,507	246.166 246.580	3150 3200	108,830	80,782 82,224	268.601 269.186				
1740	55,516	41,049	246.990	3250	110,690	83,668	269.763				
1, 10	55,510	11,043	210.550	0200	110,000	55,555	203.700				

Fuente: Las tablas A-18 a A-25 fueron adaptadas de Kenneth Wark, Thermodynamics, 4a. ed., Nueva York, McGraw-Hill, 1983, pp. 787-798. Publicadas originalmente en JANAF, Thermochemical Tables, NSRDS-NBS-37, 1971.

TABLA A-19									
Propieda	des de gas ideal	del oxígeno, O ₂							
T	ħ	ū	<u></u> \overline{S} °	Т	h	\overline{u}			
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K		
0	0	0	0	600	17,929	12,940	226.346		
220	6,404	4,575	196.171	610	18,250	13,178	226.877		
230	6,694	4,782	197.461	620	18,572	13,417	227.400		
240	6,984	4,989	198.696	630	18,895	13,657	227.918		
250	7,275	5,197	199.885	640	19,219	13,898	228.429		
260	7,566	5,405	201.027	650	19,544	14,140	228.932		
270	7,858	5,613	202.128	660	19,870	14,383	229.430		
280	8,150	5,822	203.191	670	20,197	14,626	229.920		
290	8,443	6,032	204.218	680	20,524	14,871	230.405		
298	8,682	6,203	205.033	690	20,854	15,116	230.885		
300	8,736	6,242	205.213	700	21,184	15,364	231.358		
310	9,030	6,453	206.177	710	21,514	15,611	231.827		
320	9,325	6,664	207.112	720	21,845	15,859	232.291		
330	9,620	6,877	208.020	730	22,177	16,107	232.748		
340	9,916	7,090	208.904	740	22,510	16,357	233.201		
350	10,213	7,303	209.765	750	22,844	16,607	233.649		
360	10,511	7,518	210.604	760	23,178	16,859	234.091		
370	10,809	7,733	211.423	770	23,513	17,111	234.528		
380	11,109	7,949	212.222	780	23,850	17,364	234.960		
390	11,409	8,166	213.002	790	24,186	17,618	235.387		
400	11,711	8,384	213.765	800	24,523	17,872	235.810		
410	12,012	8,603	214.510	810	24,861	18,126	236.230		
420	12,314	8,822	215.241	820	25,199	18,382	236.644		
430	12,618	9,043	215.955	830	25,537	18,637	237.055		
440	12,923	9,264	216.656	840	25,877	18,893	237.462		
450	13,228	9,487	217.342	850	26,218	19,150	237.864		
460	13,525	9,710	218.016	860	26,559	19,408	238.264		
470	13,842	9,935	218.676	870	26,899	19,666	238.660		
480	14,151	10,160	219.326	880	27,242	19,925	239.051		
490	14,460	10,386	219.963	890	27,584	20,185	239.439		
500	14,770	10,614	220.589	900	27,928	20,445	239.823		
510	15,082	10,842	221.206	910	28,272	20,706	240.203		
520	15,395	11,071	221.812	920	28,616	20,967	240.580		
530	15,708	11,301	222.409	930	28,960	21,228	240.953		
540	16,022	11,533	222.997	940	29,306	21,491	241.323		
550	16,338	11,765	223.576	950	29,652	21,754	241.689		
560	16,654	11,998	224.146	960	29,999	22,017	242.052		
570	16,971	12,232	224.708	970	30,345	22,280	242.411		
580	17,290	12,467	225.262	980	30,692	22,544	242.768		
590	17,609	12,703	225.808	990	31,041	22,809	242.120		

TABLA A-	TABLA A-19										
Propieda	des de gas idea	l del oxígeno, O_2	(conclusión)								
T	<i>h</i>	<i>ū</i>	ਤ°	T	<i>h</i>	ū	¯s°				
K	kJ/kmol	kJ/kmol	kJ/kmol⋅K	K	kJ/kmol	kJ/kmol	kJ/kmol · K				
1000	31,389	23,075	243.471	1760	58,880	44,247	263.861				
1020	32,088	23,607	244.164	1780	59,624	44,825	264.283				
1040	32,789	24,142	244.844	1800	60,371	45,405	264.701				
1060	33,490	24,677	245.513	1820	61,118	45,986	265.113				
1080	34,194	25,214	246.171	1840	61,866	46,568	265.521				
1100	34,899	25,753	246.818	1860	62,616	47,151	265.925				
1120	35,606	26,294	247.454	1880	63,365	47,734	266.326				
1140	36,314	26,836	248.081	1900	64,116	48,319	266.722				
1160	37,023	27,379	248.698	1920	64,868	48,904	267.115				
1180	37,734	27,923	249.307	1940	65,620	49,490	267.505				
1200	38,447	28,469	249.906	1960	66,374	50,078	267.891				
1220	39,162	29,018	250.497	1980	67,127	50,665	268.275				
1240	39,877	29,568	251.079	2000	67,881	51,253	268.655				
1260	40,594	30,118	251.653	2050	69,772	52,727	269.588				
1280	41,312	30,670	252.219	2100	71,668	54,208	270.504				
1300 1320 1340 1360 1380	42,033 42,753 43,475 44,198 44,923 45,648	31,224 31,778 32,334 32,891 33,449 34,008	252.776 253.325 253.868 254.404 254.932 255.454	2150 2200 2250 2300 2350 2400	73,573 75,484 77,397 79,316 81,243 83,174	55,697 57,192 58,690 60,193 61,704 63,219	271.399 272.278 273.136 273.891 274.809				
1400 1420 1440 1460 1480	46,374 47,102 47,831 48,561	34,567 35,129 35,692 36,256	255.968 256.475 256.978 257.474	2450 2500 2550 2600	85,112 87,057 89,004 90,956	64,742 66,271 67,802 69,339	275.625 276.424 277.207 277.979 278.738				
1500	49,292	36,821	257.965	2650	92,916	70,883	279.485				
1520	50,024	37,387	258.450	2700	94,881	72,433	280.219				
1540	50,756	37,952	258.928	2750	96,852	73,987	280.942				
1560	51,490	38,520	259.402	2800	98,826	75,546	281.654				
1580	52,224	39,088	259.870	2850	100,808	77,112	282.357				
1600	52,961	39,658	260.333	2900	102,793	78,682	283.048				
1620	53,696	40,227	260.791	2950	104,785	80,258	283.728				
1640	54,434	40,799	261.242	3000	106,780	81,837	284.399				
1660	55,172	41,370	261.690	3050	108,778	83,419	285.060				
1680	55,912	41,944	262.132	3100	110,784	85,009	285.713				
1700	56,652	42,517	262.571	3150	112,795	86,601	286.355				
1700 1720 1740	56,632 57,394 58,136	43,093 43,669	262.571 263.005 263.435	3200 3250	114,809 116,827	88,203 89,804	286.989 287.614				

TABLA A-	TABLA A-20										
Propieda	des de gas ideal	del dióxido de c	arbono, CO ₂								
T	<u></u>	\overline{u}	<u></u> s °	T	<u></u>	\overline{u}	S °				
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K				
0	0	0	0	600	22,280	17,291	243.199				
220	6,601	4,772	202.966	610	22,754	17,683	243.983				
230	6,938	5,026	204.464	620	23,231	18,076	244.758				
240	7,280	5,285	205.920	630	23,709	18,471	245.524				
250	7,627	5,548	207.337	640	24,190	18,869	246.282				
260	7,979	5,817	208.717	650	24,674	19,270	247.032				
270	8,335	6,091	210.062	660	25,160	19,672	247.773				
280	8,697	6,369	211.376	670	25,648	20,078	248.507				
290	9,063	6,651	212.660	680	26,138	20,484	249.233				
298	9,364	6,885	213.685	690	26,631	20,894	249.952				
300	9,431	6,939	213.915	700	27,125	21,305	250.663				
310	9,807	7,230	215.146	710	27,622	21,719	251.368				
320	10,186	7,526	216.351	720	28,121	22,134	252.065				
330	10,570	7,826	217.534	730	28,622	22,522	252.755				
340	10,959	8,131	218.694	740	29,124	22,972	253.439				
350	11,351	8,439	219.831	750	29,629	23,393	254.117				
360	11,748	8,752	220.948	760	20,135	23,817	254.787				
370	12,148	9,068	222.044	770	30,644	24,242	255.452				
380	12,552	9,392	223.122	780	31,154	24,669	256.110				
390	12,960	9,718	224.182	790	31,665	25,097	256.762				
400	13,372	10,046	225.225	800	32,179	25,527	257.408				
410	13,787	10,378	226.250	810	32,694	25,959	258.048				
420	14,206	10,714	227.258	820	33,212	26,394	258.682				
430	14,628	11,053	228.252	830	33,730	26,829	259.311				
440	15,054	11,393	229.230	840	34,251	27,267	259.934				
450	15,483	11,742	230.194	850	34,773	27,706	260.551				
460	15,916	12,091	231.144	860	35,296	28,125	261.164				
470	16,351	12,444	232.080	870	35,821	28,588	261.770				
480	16,791	12,800	233.004	880	36,347	29,031	262.371				
490	17,232	13,158	233.916	890	36,876	29,476	262.968				
500	17,678	13,521	234.814	900	37,405	29,922	263.559				
510	18,126	13,885	235.700	910	37,935	30,369	264.146				
520	18,576	14,253	236.575	920	38,467	30,818	264.728				
530	19,029	14,622	237.439	930	39,000	31,268	265.304				
540	19,485	14,996	238.292	940	39,535	31,719	265.877				
550	19,945	15,372	239.135	950	40,070	32,171	266.444				
560	20,407	15,751	239.962	960	40,607	32,625	267.007				
570	20,870	16,131	240.789	970	41,145	33,081	267.566				
580	21,337	16,515	241.602	980	41,685	33,537	268.119				
590	21,807	16,902	242.405	990	42,226	33,995	268.670				

TABLA A-	TABLA A-20										
Propieda	des de gas idea	l del dióxido de d	carbono, CO ₂ (<i>cond</i>	clusión)							
T	<i>h</i>	<i>ū</i>	ਤ [°]	T	<i>h</i>	<i>ū</i>	ਤ [°]				
K	kJ/kmol	kJ/kmol	kJ/kmol ∙ K	K	kJ/kmol	kJ/kmol	kJ/kmol ∙ K				
1000	42,769	34,455	269.215	1760	86,420	71,787	301.543				
1020	43,859	35,378	270.293	1780	87,612	72,812	302.217				
1040	44,953	36,306	271.354	1800	88,806	73,840	302.884				
1060	46,051	37,238	272.400	1820	90,000	74,868	303.544				
1080	47,153	38,174	273.430	1840	91,196	75,897	304.198				
1100	48,258	39,112	274.445	1860	92,394	76,929	304.845				
1120	49,369	40,057	275.444	1880	93,593	77,962	305.487				
1140	50,484	41,006	276.430	1900	94,793	78,996	306.122				
1160	51,602	41,957	277.403	1920	95,995	80,031	306.751				
1180	52,724	42,913	278.361	1940	97,197	81,067	307.374				
1200	53,848	43,871	297.307	1960	98,401	82,105	307.992				
1220	54,977	44,834	280.238	1980	99,606	83,144	308.604				
1240	56,108	45,799	281.158	2000	100,804	84,185	309.210				
1260	57,244	46,768	282.066	2050	103,835	86,791	310.701				
1280	58,381	47,739	282.962	2100	106,864	89,404	312.160				
1300	59,522	48,713	283.847	2150	109,898	92,023	313.589				
1320	60,666	49,691	284.722	2200	112,939	94,648	314.988				
1340	61,813	50,672	285.586	2250	115,984	97,277	316.356				
1360	62,963	51,656	286.439	2300	119,035	99,912	317.695				
1380	64,116	52,643	287.283	2350	122,091	102,552	319.011				
1400	65,271	53,631	288.106	2400	125,152	105,197	320.302				
1420	66,427	54,621	288.934	2450	128,219	107,849	321.566				
1440	67,586	55,614	289.743	2500	131,290	110,504	322.808				
1460	68,748	56,609	290.542	2550	134,368	113,166	324.026				
1480	66,911	57,606	291.333	2600	137,449	115,832	325.222				
1500	71,078	58,606	292.114	2650	140,533	118,500	326.396				
1520	72,246	59,609	292.888	2700	143,620	121,172	327.549				
1540	73,417	60,613	292.654	2750	146,713	123,849	328.684				
1560	74,590	61,620	294.411	2800	149,808	126,528	329.800				
1580	76,767	62,630	295.161	2850	152,908	129,212	330.896				
1600	76,944	63,741	295.901	2900	156,009	131,898	331.975				
1620	78,123	64,653	296.632	2950	159,117	134,589	333.037				
1640	79,303	65,668	297.356	3000	162,226	137,283	334.084				
1660	80,486	66,592	298.072	3050	165,341	139,982	335.114				
1680	81,670	67,702	298.781	3100	168,456	142,681	336.126				
1700	82,856	68,721	299.482	3150	171,576	145,385	337.124				
1720	84,043	69,742	300.177	3200	174,695	148,089	338.109				
1740	85,231	70,764	300.863	3250	177,822	150,801	339.069				

TABLA A-21 Propiedades de gas ideal del monóxido de carbono, CO							
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K
0	0	0	0	600	17,611	12,622	218.204
220	6,391	4,562	188.683	610	17,915	12,843	218.708
230	6,683	4,771	189.980	620	18,221	13,066	219.205
240	6,975	4,979	191.221	630	18,527	13,289	219.695
250	7,266	5,188	192.411	640	18,833	13,512	220.179
260	7,558	5,396	193.554	650	19,141	13,736	220.656
270	7,849	5,604	194.654	660	19,449	13,962	221.127
280	8,140	5,812	195.713	670	19,758	14,187	221.592
290	8,432	6,020	196.735	680	20,068	14,414	222.052
298	8,669	6,190	197.543	690	20,378	14,641	222.505
300	8,723	6,229	197.723	700	20,690	14,870	222.953
310	9,014	6,437	198.678	710	21,002	15,099	223.396
320	9,306	6,645	199.603	720	21,315	15,328	223.833
330	9,597	6,854	200.500	730	21,628	15,558	224.265
340	9,889	7,062	201.371	740	21,943	15,789	224.692
350	10,181	7,271	202.217	750	22,258	16,022	225.115
360	10,473	7,480	203.040	760	22,573	16,255	225.533
370	10,765	7,689	203.842	770	22,890	16,488	225.947
380	11,058	7,899	204.622	780	23,208	16,723	226.357
390	11,351	8,108	205.383	790	23,526	16,957	226.762
400	11,644	8,319	206.125	800	23,844	17,193	227.162
410	11,938	8,529	206.850	810	24,164	17,429	227.559
420	12,232	8,740	207.549	820	24,483	17,665	227.952
430	12,526	8,951	208.252	830	24,803	17,902	228.339
440	12,821	9,163	208.929	840	25,124	18,140	228.724
450	13,116	9,375	209.593	850	25,446	18,379	229.106
460	13,412	9,587	210.243	860	25,768	18,617	229.482
470	13,708	9,800	210.880	870	26,091	18,858	229.856
480	14,005	10,014	211.504	880	26,415	19,099	230.227
490	14,302	10,228	212.117	890	26,740	19,341	230.593
500	14,600	10,443	212.719	900	27,066	19,583	230.957
510	14,898	10,658	213.310	910	27,392	19,826	231.317
520	15,197	10,874	213.890	920	27,719	20,070	231.674
530	15,497	11,090	214.460	930	28,046	20,314	232.028
540	15,797	11,307	215.020	940	28,375	20,559	232.379
550	16,097	11,524	215.572	950	28,703	20,805	232.727
560	16,399	11,743	216.115	960	29,033	21,051	233.072
570	16,701	11,961	216.649	970	29,362	21,298	233.413
580	17,003	12,181	217.175	980	29,693	21,545	233.752
590	17,307	12,401	217.693	990	30,024	21,793	234.088

TABLA A-	TABLA A-21								
Propieda	des de gas ideal	del monóxido de	e carbono, CO (<i>con</i>	clusión)					
<i>T</i>	<i>h</i>	<i>ū</i>	ड∙	T	<i>h</i>	и	\overline{s}° kJ/kmol⋅K		
K	kJ/kmol	kJ/kmol	kJ/kmol ∙ K	K	kJ/kmol	kJ/kmol			
1000	30,355	22,041	234.421	1760	56,756	42,123	253.991		
1020	31,020	22,540	235.079	1780	57,473	42,673	254.398		
1040	31,688	23,041	235.728	1800	58,191	43,225	254.797		
1060	32,357	23,544	236.364	1820	58,910	43,778	255.194		
1080	33,029	24,049	236.992	1840	59,629	44,331	255.587		
1100	33,702	24,557	237.609	1860	60,351	44,886	255.976		
1120	34,377	25,065	238.217	1880	61,072	45,441	256.361		
1140	35,054	25,575	238.817	1900	61,794	45,997	256.743		
1160	35,733	26,088	239.407	1920	62,516	46,552	257.122		
1180	36,406	26,602	239.989	1940	63,238	47,108	257.497		
1200	37,095	27,118	240.663	1960	63,961	47,665	257.868		
1220	37,780	27,637	241.128	1980	64,684	48,221	258.236		
1240	38,466	28,426	241.686	2000	65,408	48,780	258.600		
1260	39,154	28,678	242.236	2050	67,224	50,179	259.494		
1280	39,844	29,201	242.780	2100	69,044	51,584	260.370		
1300	40,534	29,725	243.316	2150	70,864	52,988	261.226		
1320	41,226	30,251	243.844	2200	72,688	54,396	262.065		
1340	41,919	30,778	244.366	2250	74,516	55,809	262.887		
1360	42,613	31,306	244.880	2300	76,345	57,222	263.692		
1380	43,309	31,836	245.388	2350	78,178	58,640	264.480		
1400	44,007	32,367	245.889	2400	80,015	60,060	265.253		
1420	44,707	32,900	246.385	2450	81,852	61,482	266.012		
1440	45,408	33,434	246.876	2500	83,692	62,906	266.755		
1460	46,110	33,971	247.360	2550	85,537	64,335	267.485		
1480	46,813	34,508	247.839	2600	87,383	65,766	268.202		
1500 1520 1540 1560 1580	47,517 48,222 48,928 49,635 50,344 51,053	35,046 35,584 36,124 36,665 37,207 37,750	247.639 248.312 248.778 249.240 249.695 250.147 250.592	2650 2700 2750 2800 2850 2900	89,230 91,077 92,930 94,784 96,639 98,495	67,197 68,628 70,066 71,504 72,945 74,383	268.202 268.905 269.596 270.285 270.943 271.602 272.249		
1620	51,763	38,293	251.033	2950	100,352	75,825	272.884		
1640	52,472	38,837	251.470	3000	102,210	77,267	273.508		
1660	53,184	39,382	251.901	3050	104,073	78,715	274.123		
1680	53,895	39,927	252.329	3100	105,939	80,164	274.730		
1700	54,609	40,474	252.751	3150	107,802	81,612	275.326		
1720	55,323	41,023	253.169	3200	109,667	83,061	275.914		
1740	56,039	41,572	253.582	3250	111,534	84,513	276.494		

TABLA A-	TABLA A-22								
Propiedad	des de gas idea	l del hidrógeno,	H ₂						
T	ħ	\overline{u}	<u>s</u> °	T	h	\overline{u}	¯s°		
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K		
0 260 270 280 290 298	0 7,370 7,657 7,945 8,233 8,468	0 5,209 5,412 5,617 5,822 5,989	0 126.636 127.719 128.765 129.775 130.574	1440 1480 1520 1560 1600	42,808 44,091 45,384 46,683 47,990 49,303	30,835 31,786 32,746 33,713 34,687 35,668	177.410 178.291 179.153 179.995 180.820 181.632		
300	8,522	6,027	130.754	1680	50,622	36,654	182.428		
320	9,100	6,440	132.621	1720	51,947	37,646	183.208		
340	9,680	6,853	134.378	1760	53,279	38,645	183.973		
360	10,262	7,268	136.039	1800	54,618	39,652	184.724		
380	10,843	7,684	137.612	1840	55,962	40,663	185.463		
400	11,426	8,100	139.106	1880	57,311	41,680	186.190		
420	12,010	8,518	140.529	1920	58,668	42,705	186.904		
440	12,594	8,936	141.888	1960	60,031	43,735	187.607		
460	13,179	9,355	143.187	2000	61,400	44,771	188.297		
480	13,764	9,773	144.432	2050	63,119	46,074	189.148		
500	14,350	10,193	145.628	2100	64,847	47,386	189.979		
520	14,935	10,611	146.775	2150	66,584	48,708	190.796		
560	16,107	11,451	148.945	2200	68,328	50,037	191.598		
600	17,280	12,291	150.968	2250	70,080	51,373	192.385		
640	18,453	13,133	152.863	2300	71,839	52,716	193.159		
680	19,630	13,976	154.645	2350	73,608	54,069	193.921		
720	20,807	14,821	156.328	2400	75,383	55,429	194.669		
760	21,988	15,669	157.923	2450	77,168	56,798	195.403		
800	23,171	16,520	159.440	2500	78,960	58,175	196.125		
840	24,359	17,375	160.891	2550	80,755	59,554	196.837		
880	25,551	18,235	162.277	2600	82,558	60,941	197.539		
920	26,747	19,098	163.607	2650	84,368	62,335	198.229		
960	27,948	19,966	164.884	2700	86,186	63,737	198.907		
1000	29,154	20,839	166.114	2750	88,008	65,144	199.575		
1040	30,364	21,717	167.300	2800	89,838	66,558	200.234		
1080	31,580	22,601	168.449	2850	91,671	67,976	200.885		
1120	32,802	23,490	169.560	2900	93,512	69,401	201.527		
1160	34,028	24,384	170.636	2950	95,358	70,831	202.157		
1200	35,262	25,284	171.682	3000	97,211	72,268	202.778		
1240	36,502	26,192	172.698	3050	99,065	73,707	203.391		
1280	37,749	27,106	173.687	3100	100,926	75,152	203.995		
1320	39,002	28,027	174.652	3150	102,793	76,604	204.592		
1360	40,263	28,955	175.593	3200	104,667	78,061	205.181		
1400	41,530	29,889	176.510	3250	106,545	79,523	205.765		

TABLA A	-23						
Propieda	ndes de gas ideal	del vapor de ag	ua, H ₂ O				
<i>T</i>	<i>h</i>	ū	¯s°	T	π̄	<i>ū</i>	\overline{s}° kJ/kmol⋅K
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	
0	0	0	0	600	20,402	15,413	212.920
220	7,295	5,466	178.576	610	20,765	15,693	213.529
230	7,628	5,715	180.054	620	21,130	15,975	214.122
240	7,961	5,965	181.471	630	21,495	16,257	214.707
250	8,294	6,215	182.831	640	21,862	16,541	215.285
260	8,627	6,466	184.139	650	22,230	16,826	215.856
270	8,961	6,716	185.399	660	22,600	17,112	216.419
280	9,296	6,968	186.616	670	22,970	17,399	216.976
290	9,631	7,219	187.791	680	23,342	17,688	217.527
298	9,904	7,425	188.720	690	23,714	17,978	218.071
300	9,966	7,472	188.928	700	24,088	18,268	218.610
310	10,302	7,725	190.030	710	24,464	18,561	219.142
320	10,639	7,978	191.098	720	24,840	18,854	219.668
330	10,976	8,232	192.136	730	25,218	19,148	220.189
340	11,314	8,487	193.144	740	25,597	19,444	220.707
350	11,652	8,742	194.125	750	25,977	19,741	221.215
360	11,992	8,998	195.081	760	26,358	20,039	221.720
370	12,331	9,255	196.012	770	26,741	20,339	222.221
380	12,672	9,513	196.920	780	27,125	20,639	222.717
390	13,014	9,771	197.807	790	27,510	20,941	223.207
400	13,356	10,030	198.673	800	27,896	21,245	223.693
410	13,699	10,290	199.521	810	28,284	21,549	224.174
420	14,043	10,551	200.350	820	28,672	21,855	224.651
430	14,388	10,813	201.160	830	29,062	22,162	225.123
440	14,734	11,075	201.955	840	29,454	22,470	225.592
450	15,080	11,339	202.734	850	29,846	22,779	226.057
460	15,428	11,603	203.497	860	30,240	23,090	226.517
470	15,777	11,869	204.247	870	30,635	23,402	226.973
480	16,126	12,135	204.982	880	31,032	23,715	227.426
490	16,477	12,403	205.705	890	31,429	24,029	227.875
500	16,828	12,671	206.413	900	31,828	24,345	228.321
510	17,181	12,940	207.112	910	32,228	24,662	228.763
520	17,534	13,211	207.799	920	32,629	24,980	229.202
530	17,889	13,482	208.475	930	33,032	25,300	229.637
540	18,245	13,755	209.139	940	33,436	25,621	230.070
550	18,601	14,028	209.795	950	33,841	25,943	230.499
560	18,959	14,303	210.440	960	34,247	26,265	230.924
570	19,318	14,579	211.075	970	34,653	26,588	231.347
580	19,678	14,856	211.702	980	35,061	26,913	231.767
590	20,039	15,134	212.320	990	35,472	27,240	232.184

TABLA A-	TABLA A-23								
Propieda	des de gas idea	l del vapor de ag	ua, H ₂ O (<i>conclusi</i>	ón)					
T	h	\overline{u}	<u>s</u> °	T	h	\overline{u}	¯s°		
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K		
1000	35,882	27,568	232.597	1760	70,535	55,902	258.151		
1020	36,709	28,228	233.415	1780	71,523	56,723	258.708		
1040	37,542	28,895	234.223	1800	72,513	57,547	259.262		
1060	38,380	29,567	235.020	1820	73,507	58,375	259.811		
1080	39,223	30,243	235.806	1840	74,506	59,207	260.357		
1100	40,071	30,925	236.584	1860	75,506	60,042	260.898		
1120	40,923	31,611	237.352	1880	76,511	60,880	261.436		
1140	41,780	32,301	238.110	1900	77,517	61,720	261.969		
1160	42,642	32,997	238.859	1920	78,527	62,564	262.497		
1180	43,509	33,698	239.600	1940	79,540	63,411	263.022		
1200	44,380	34,403	240.333	1960	80,555	64,259	263.542		
1220	45,256	35,112	241.057	1980	81,573	65,111	264.059		
1240	46,137	35,827	241.773	2000	82,593	65,965	264.571		
1260	47,022	36,546	242.482	2050	85,156	68,111	265.838		
1280	47,912	37,270	243.183	2100	87,735	70,275	267.081		
1300	48,807	38,000	243.877	2150	90,330	72,454	268.301		
1320	49,707	38,732	244.564	2200	92,940	74,649	269.500		
1340	50,612	39,470	245.243	2250	95,562	76,855	270.679		
1360	51,521	40,213	245.915	2300	98,199	79,076	271.839		
1380	52,434	40,960	246.582	2350	100,846	81,308	272.978		
1400	53,351	41,711	247.241	2400	103,508	83,553	274.098		
1420	54,273	42,466	247.895	2450	106,183	85,811	275.201		
1440	55,198	43,226	248.543	2500	108,868	88,082	276.286		
1460	56,128	43,989	249.185	2550	111,565	90,364	277.354		
1480	57,062	44,756	249.820	2600	114,273	92,656	278.407		
1500	57,999	45,528	250.450	2650	116,991	94,958	279.441		
1520	58,942	46,304	251.074	2700	119,717	97,269	280.462		
1540	59,888	47,084	251.693	2750	122,453	99,588	281.464		
1560	60,838	47,868	252.305	2800	125,198	101,917	282.453		
1580	61,792	48,655	252.912	2850	127,952	104,256	283.429		
1600	62,748	49,445	253.513	2900	130,717	106,605	284.390		
1620	63,709	50,240	254.111	2950	133,486	108,959	285.338		
1640	64,675	51,039	254.703	3000	136,264	111,321	286.273		
1660	65,643	51,841	255.290	3050	139,051	113,692	287.194		
1680	66,614	52,646	255.873	3100	141,846	116,072	288.102		
1700	67,589	53,455	256.450	3150	144,648	118,458	288.999		
1720	68,567	54,267	257.022	3200	147,457	120,851	289.884		
1740	69,550	55,083	257.589	3250	150,272	123,250	290.756		

TABLA A-	TABLA A-24								
Propiedad	Propiedades de gas ideal del oxígeno monoatómico, O								
T	ħ	\overline{u}	ō°	T	h	\overline{u}	<u>s</u> °		
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K		
0	0	0	0	2400	50,894	30,940	204.932		
298	6,852	4,373	160.944	2450	51,936	31,566	205.362		
300	6,892	4,398	161.079	2500	52,979	32,193	205.783		
500	11,197	7,040	172.088	2550	54,021	32,820	206.196		
1000	21,713	13,398	186.678	2600	55,064	33,447	206.601		
1500	32,150	19,679	195.143	2650	56,108	34,075	206.999		
1600	34,234	20,931	196.488	2700	57,152	34,703	207.389		
1700	36,317	22,183	197.751	2750	58,196	35,332	207.772		
1800	38,400	23,434	198.941	2800	59,241	35,961	208.148		
1900	40,482	24,685	200.067	2850	60,286	36,590	208.518		
2000	42,564	25,935	201.135	2900	61,332	37,220	208.882		
2050	43,605	26,560	201.649	2950	62,378	37,851	209.240		
2100	44,646	27,186	202.151	3000	63,425	38,482	209.592		
2150	45,687	27,811	202.641	3100	65,520	39,746	210.279		
2200	46,728	28,436	203.119	3200	67,619	41,013	210.945		
2250	47,769	29,062	203.588	3300	69,720	42,283	211.592		
2300	48,811	29,688	204.045	3400	71,824	43,556	212.220		
2350	49,852	30,314	204.493	3500	73,932	44,832	212.831		

TABLA A-	TABLA A-25								
Propieda	des de gas ideal	l del hidroxilo, O	Н						
T	h	\overline{u}	<u></u> \overline{S} °	T	\overline{h}	\overline{u}	₹°		
K	kJ/kmol	kJ/kmol	kJ/kmol · K	K	kJ/kmol	kJ/kmol	kJ/kmol · K		
0	0	0	0	2400	77,015	57,061	248.628		
298	9,188	6,709	183.594	2450	78,801	58,431	249.364		
300	9,244	6,749	183.779	2500	80,592	59,806	250.088		
500	15,181	11,024	198.955	2550	82,388	61,186	250.799		
1000	30,123	21,809	219.624	2600	84,189	62,572	251.499		
1500	46,046	33,575	232.506	2650	85,995	63,962	252.187		
1600	49,358	36,055	234.642	2700	87,806	65,358	252.864		
1700	52,706	38,571	236.672	2750	89,622	66,757	253.530		
1800	56,089	41,123	238.606	2800	91,442	68,162	254.186		
1900	59,505	43,708	240.453	2850	93,266	69,570	254.832		
2000	62,952	46,323	242.221	2900	95,095	70,983	255.468		
2050	64,687	47,642	243.077	2950	96,927	72,400	256.094		
2100	66,428	48,968	243.917	3000	98,763	73,820	256.712		
2150	68,177	50,301	244.740	3100	102,447	76,673	257.919		
2200	69,932	51,641	245.547	3200	106,145	79,539	259.093		
2250	71,694	52,987	246.338	3300	109,855	82,418	260.235		
2300	73,462	54,339	247.116	3400	113,578	85,309	261.347		
2350	75,236	55,697	247.879	3500	117,312	88,212	262.429		

TABLA A-26

Entalpía de formación, función de Gibbs de formación y entropía absoluta a 25°C, 1 atm

<u>a 23 0, 1 atm</u>		$\overline{h}_{\!\scriptscriptstyle f}^{\circ}$	g_f°	S °
Sustancia	Fórmula	kJ/kmol	kJ/kmol	kJ/kmol · K
Acetileno	$C_2H_2(g)$	+226,730	+209,170	200.85
Agua	$H_2O(\ell)$	-285,830	-237,180	69.92
Alcohol etílico	C ₂ H ₅ OH(<i>g</i>)	-235,310	-168,570	282.59
Alcohol etílico	$C_2H_5OH(\ell)$	-277,690	-174,890	160.70
Alcohol metílico	$\overline{\mathrm{CH}_{3}\mathrm{OH}(g)}$	-200,670	-162,000	239.70
Alcohol metílico	$CH_3OH(\bar{\ell})$	-238,660	-166,360	126.80
Amoniaco	$NH_3(g)$	-46,190	-16,590	192.33
Benceno	$C_6H_6(g)$	+82,930	+129,660	269.20
<i>n</i> -butano	$C_4H_{10}(g)$	-126,150	-15,710	310.12
Carbón	C(s)	0	0	5.74
Dióxido de carbono	CO ₂ (g)	-393,520	-394,360	213.80
<i>n</i> -dodecano	$C_{12}H_{26}(g)$	-291,010	+50,150	622.83
Etano	$C_2H_6(g)$	-84,680	-32,890	229.49
Etileno	$C_2H_4(g)$	+52,280	+68,120	219.83
Hidrógeno	$H_2(g)$	0	0	130.68
Hidrógeno	H(<i>g</i>)	+218,000	+203,290	114.72
Hidroxilo	OH(<i>g</i>)	+39,460	+34,280	183.70
Metano	$CH_4(g)$	-74,850	-50,790	186.16
Monóxido de carbono	CO(g)	-110,530	-137,150	197.65
Nitrógeno	$N_2(g)$	0	0	191.61
Nitrógeno	N(<i>g</i>)	+472,650	+455,510	153.30
<i>n</i> -octano	$C_8H_{18}(g)$	-208,450	+16,530	466.73
<i>n</i> -octano	$C_8H_{18}(\ell)$	-249,950	+6,610	360.79
Oxígeno	O ₂ (g)	0	0	205.04
Oxígeno	O(<i>g</i>)	+249,190	+231,770	161.06
Peróxido de hidrógeno	$H_2O_2(g)$	-136,310	-105,600	232.63
Propano	$C_3H_8(g)$	-103,850	-23,490	269.91
Propileno	$C_3H_6(g)$	+20,410	+62,720	266.94
Vapor de agua	H ₂ O(<i>g</i>)	-241,820	-228,590	188.83

Fuente: De JANAF, Thermochemical Tables, Midland, MI, Dow Chemical Co., 1971, Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; y API Research Project 44, Carnegie Press, 1953.

TABLA A-27

Propiedades de algunos combustibles e hidrocarburos comunes

Combustible (fase)	Fórmula	Masa molar, kg/kmol	Densidad,¹ kg/L	Entalpía de vaporización, ² kJ/kg	Calor específico, c_p kJ/kg · K	Poder calorífico superior, ³ kJ/kg	Poder calorífico inferior, ³ kJ/kg
Acetileno (g)	C_2H_2	26.038	_	_	1.69	49,970	48,280
Benceno (ℓ)	C_6H_6	78.114	0.877	433	1.72	41,800	40,100
Butano (ℓ)	C_4H_{10}	58.123	0.579	362	2.42	49,150	45,370
Carbono (s)	C 10	12.011	2	_	0.708	32,800	32,800
Decano (ℓ)	$C_{10}H_{22}$	142.285	0.730	361	2.21	47,640	44,240
Diesel ligero (ℓ)	$C_n H_{1.8n}$	170	0.78-0.84	270	2.2	46,100	43,200
Diesel pesado (ℓ)	$C_n''H_{1.7n}^{1.8n}$	200	0.82-0.88	230	1.9	45,500	42,800
Etano (g)	C ₂ H ₆	30.070	_	172	1.75	51,900	47,520
Etanol (ℓ)	C ₂ H ₆ O	46.069	0.790	919	2.44	29,670	26,810
Gas natural (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	2	50,000	45,000
Gasolina (ℓ)	$C_n H_{1.87n}$	100-110	0.72-0.78	350	2.4	47,300	44,000
Heptano (ℓ)	C ₇ H ₁₆	100.204	0.684	365	2.24	48,100	44,600
Hexano (ℓ)	C_6H_{12}	84.161	0.673	392	1.84	47,500	44,400
Hexeno (ℓ)	C_6H_{14}	86.177	0.660	366	2.27	48,310	44,740
Hidrógeno (g)	H_2	2.016	_	_	14.4	141,800	120,000
Isopentano (ℓ)	C_5H_{12}	72.150	0.626	_	2.32	48,570	44,910
Metano (g)	CH ₄	16.043	_	509	2.20	55,530	50,050
Metanol (ℓ)	CH ₄ O	32.042	0.790	1168	2.53	22,660	19,920
Monóx. de carbono (g)	CO	28.013		_	1.05	10,100	10,100
Octano (ℓ)	C_8H_{18}	114.231	0.703	363	2.23	47,890	44,430
1-Penteno (ℓ)	C_5H_{10}	70.134	0.641	363	2.20	47,760	44,630
Propano (ℓ)	C_3H_8	44.097	0.500	335	2.77	50,330	46,340
Tolueno (ℓ)	C ₇ H ₈	92.141	0.867	412	1.71	42,400	40,500

 $^{^{1}\}mbox{A}$ 1 atm y 20°C.

²A 25°C para combustibles líquidos, y 1 atm y temperatura normal de ebullición para combustibles gaseosos.

³A 25°C. Multiplique por la masa molar para obtener los valores caloríficos en kJ/kmol.

TABLA A-28

Logaritmos naturales de la constante de equilibrio K_{p}

La constante de equilibrio K_p para la reacción $\nu_A A + \nu_B B \Longrightarrow \nu_C C + \nu_D D$ se define como $K_p \equiv \frac{\mathbf{P}_C^{\nu_C} \mathbf{P}_D^{\nu_D}}{\mathbf{P}_A^{\nu_A} \mathbf{P}_B^{\nu_B}}$

Temp.	., H ₂ ⇌ 2H	0 ₂ ⇌ 20	$N_2 \rightleftharpoons 2N$	$H_2O \rightleftharpoons H_2 + \frac{1}{2}O_2$	$H_2O \rightleftharpoons {}^1/_2H_2 + OH$	$CO_2 \rightleftharpoons CO + \frac{1}{2}O_2$	$^{1}/_{2}N_{2} + ^{1}/_{2}O_{2} \rightleftharpoons NO$
298	-164.005	-186.975	-367.480	-92.208	-106.208	-103.762	-35.052
500	-104.005 -92.827	-100.975 -105.630	-307.460 -213.372	-92.208 -52.691	-100.208 -60.281	-103.762 -57.616	-35.052 -20.295
1000	-92.827 -39.803	-45.150	-213.372 -99.127	-52.691 -23.163	-60.261 -26.034		
						-23.529	-9.388 7.560
1200	-30.874	-35.005	-80.011	-18.182	-20.283	-17.871	-7.569
1400	-24.463	-27.742	-66.329	-14.609	-16.099	-13.842	-6.270
1600	-19.637	-22.285	-56.055	-11.921	-13.066	-10.830	-5.294
1800	-15.866	-18.030	-48.051	-9.826	-10.657	-8.497	-4.536
2000	-12.840	-14.622	-41.645	-8.145	-8.728	-6.635	-3.931
2200	-10.353	-11.827	-36.391	-6.768	-7.148	-5.120	-3.433
2400	-8.276	-9.497	-32.011	-5.619	-5.832	-3.860	-3.019
2600	-6.517	-7.521	-28.304	-4.648	-4.719	-2.801	-2.671
2800	-5.002	-5.826	-25.117	-3.812	-3.763	-1.894	-2.372
3000	-3.685	-4.357	-22.359	-3.086	-2.937	-1.111	-2.114
3200	-2.534	-3.072	-19.937	-2.451	-2.212	-0.429	-1.888
3400	-1.516	-1.935	-17.800	-1.891	-1.576	0.169	-1.690
3600	-0.609	-0.926	-15.898	-1.392	-1.088	0.701	-1.513
3800	0.202	-0.019	-14.199	-0.945	-0.501	1.176	-1.356
4000	0.934	0.796	-12.660	-0.542	-0.044	1.599	-1.216
4500	2.486	2.513	-9.414	0.312	0.920	2.490	-0.921
5000	3.725	3.895	-6.807	0.996	1.689	3.197	-0.686
5500	4.743	5.023	-4.666	1.560	2.318	3.771	-0.497
6000	5.590	5.963	-2.865	2.032	2.843	4.245	-0.341

Fuente: Gordon J. Van Wylen y Richard E. Sonntag, Fundamentals of Classical Thermodyamics, versión inglés/SI, 3a. ed., Nueva York, John Wiley & Sons, 1986, p. 723, Tabla A-14. Con base en información termodinámica proporcionada en JANAF, Thermochemical Tables, Midland, MI, Termal Research Laboratory, The Dow Chemical Company, 1971.

FIGURA A-29Carta generalizada de desviación de entalpía.

Fuente: John R. Howell y Richard O. Buckius, Fundamentals of Engineering Thermodynamics, versión SI, Nueva York, McGraw-Hill, 1987, p. 558, Fig. C.2 y p. 561, Fig. C.5.

FIGURA A-30Carta generalizada de desviación de entropía.

Fuente: John R. Howell y Richard O. Buckius, Fundamentals of Engineering Thermodynamics, versión SI, Nueva York, McGraw-Hill, 1987, p. 559, Fig. C.3 y p. 561, Fig C.5.

E r fica psicrom trica núm. 1 Temperatura normal Presión barométrica 101.325 kPa

Preparado por el Centro de Estudios Aplicados de Termodinámica, Universidad de Idaho.

Carta psicrométrica a 1 atm de presión total. FIGURA A-31

Reproducida con permiso de la American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, Georgia, usada con permiso.

$$\begin{aligned} &\text{Ma} &= \text{Ma}\sqrt{\frac{k+1}{2+(k-1)\text{Ma}^2}} \\ &\frac{A}{A} = \frac{1}{\text{Ma}} \bigg[\bigg(\frac{2}{k+1} \bigg) \bigg(1 + \frac{k-1}{2} \, \text{Ma}^2 \bigg) \bigg]^{0.5(k+1)/(k-1)} \\ &\frac{P}{P_0} = \bigg(1 + \frac{k-1}{2} \, \text{Ma}^2 \bigg)^{-k/(k-1)} \\ &\frac{\rho}{\rho_0} = \bigg(1 + \frac{k-1}{2} \, \text{Ma}^2 \bigg)^{-1/(k-1)} \\ &\frac{T}{T_0} = \bigg(1 + \frac{k-1}{2} \, \text{Ma}^2 \bigg)^{-1} \end{aligned}$$

TABLA A-32

Funciones de flujo compresible unidimensional e isentrópico de un gas ideal con k=1.4

Ма	Ma*	A/A*	P/P_0	ρ/ρ_0	<i>T/T</i> ₀
0	0	∞	1.0000	1.0000	1.0000
0.1	0.1094	5.8218	0.9930	0.9950	0.9980
0.2	0.2182	2.9635	0.9725	0.9803	0.9921
0.3	0.3257	2.0351	0.9395	0.9564	0.9823
0.4	0.4313	1.5901	0.8956	0.9243	0.9690
0.5	0.5345	1.3398	0.8430	0.8852	0.9524
0.6	0.6348	1.1882	0.7840	0.8405	0.9328
0.7	0.7318	1.0944	0.7209	0.7916	0.9107
8.0	0.8251	1.0382	0.6560	0.7400	0.8865
0.9	0.9146	1.0089	0.5913	0.6870	0.8606
1.0	1.0000	1.0000	0.5283	0.6339	0.8333
1.2	1.1583	1.0304	0.4124	0.5311	0.7764
1.4	1.2999	1.1149	0.3142	0.4374	0.7184
1.6	1.4254	1.2502	0.2353	0.3557	0.6614
1.8	1.5360	1.4390	0.1740	0.2868	0.6068
2.0	1.6330	1.6875	0.1278	0.2300	0.5556
2.2	1.7179	2.0050	0.0935	0.1841	0.5081
2.4	1.7922	2.4031	0.0684	0.1472	0.4647
2.6	1.8571	2.8960	0.0501	0.1179	0.4252
2.8	1.9140	3.5001	0.0368	0.0946	0.3894
3.0	1.9640	4.2346	0.0272	0.0760	0.3571
5.0	2.2361	25.000	0.0019	0.0113	0.1667
œ	2.2495	œ	0	0	0

$$\begin{split} & T_{01} = T_{02} \\ & \text{Ma}_2 = \sqrt{\frac{(k-1)\text{Ma}_1^2 + 2}{2k\text{Ma}_1^2 - k + 1}} \\ & \frac{P_2}{P_1} = \frac{1 + k\text{Ma}_1^2}{1 + k\text{Ma}_2^2} = \frac{2k\text{Ma}_1^2 - k + 1}{k + 1} \\ & \frac{\rho_2}{\rho_1} = \frac{P_2/P_1}{T_2/T_1} = \frac{(k+1)\text{Ma}_1^2}{2 + (k-1)\text{Ma}_1^2} = \frac{V_1}{V_2} \\ & \frac{T_2}{T_1} = \frac{2 + \text{Ma}_1^2(k-1)}{2 + \text{Ma}_2^2(k-1)} \\ & \frac{P_{02}}{P_{01}} = \frac{\text{Ma}_1}{\text{Ma}_2} \left[\frac{1 + \text{Ma}_2^2(k-1)/2}{1 + \text{Ma}_1^2(k-1)/2} \right]^{(k+1)/2(k-1)} \\ & \frac{P_{02}}{P_1} = \frac{(1 + k\text{Ma}_1^2) \ 1 + \text{Ma}_2^2(k-1)/2}{1 + k\text{Ma}_2^2} \end{split}$$

TABLA A-33

Funciones de choque normal unidimensional de un gas ideal con k = 1.4

Ma ₁	Ma ₂	P_2/P_1	ρ_2/ρ_1	T_2/T_1	P_{02}/P_{01}	P_{02}/P_1
1.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.8929
1.1	0.9118	1.2450	1.1691	1.0649	0.9989	2.1328
1.2	0.8422	1.5133	1.3416	1.1280	0.9928	2.4075
1.3	0.7860	1.8050	1.5157	1.1909	0.9794	2.7136
1.4	0.7397	2.1200	1.6897	1.2547	0.9582	3.0492
1.5	0.7011	2.4583	1.8621	1.3202	0.9298	3.4133
1.6	0.6684	2.8200	2.0317	1.3880	0.8952	3.8050
1.7	0.6405	3.2050	2.1977	1.4583	0.8557	4.2238
1.8	0.6165	3.6133	2.3592	1.5316	0.8127	4.6695
1.9	0.5956	4.0450	2.5157	1.6079	0.7674	5.1418
2.0	0.5774	4.5000	2.6667	1.6875	0.7209	5.6404
2.1	0.5613	4.9783	2.8119	1.7705	0.6742	6.1654
2.2	0.5471	5.4800	2.9512	1.8569	0.6281	6.7165
2.3	0.5344	6.0050	3.0845	1.9468	0.5833	7.2937
2.4	0.5231	6.5533	3.2119	2.0403	0.5401	7.8969
2.5	0.5130	7.1250	3.3333	2.1375	0.4990	8.5261
2.6	0.5039	7.7200	3.4490	2.2383	0.4601	9.1813
2.7	0.4956	8.3383	3.5590	2.3429	0.4236	9.8624
2.8	0.4882	8.9800	3.6636	2.4512	0.3895	10.5694
2.9	0.4814	9.6450	3.7629	2.5632	0.3577	11.3022
3.0	0.4752	10.3333	3.8571	2.6790	0.3283	12.0610
4.0	0.4350	18.5000	4.5714	4.0469	0.1388	21.0681
5.0	0.4152	29.000	5.0000	5.8000	0.0617	32.6335
∞	0.3780	∞	6.0000	∞	0	∞

$$\begin{split} \frac{T_0}{T_0} &= \frac{(k+1) \text{Ma}^2 \ 2 + (k-1) \text{Ma}^2}{(1+k \text{Ma}^2)^2} \\ \frac{P_0}{P_0} &= \frac{k+1}{1+k \text{Ma}^2} \left(\frac{2+(k-1) \text{Ma}^2}{k+1} \right)^{k/(k-1)} \\ \frac{T}{T} &= \left(\frac{\text{Ma}(1+k)}{1+k \text{Ma}^2} \right)^2 \\ \frac{P}{P} &= \frac{1+k}{1+k \text{Ma}^2} \\ \frac{V}{V} &= \frac{\rho}{\rho} = \frac{(1+k) \text{Ma}^2}{1+k \text{Ma}^2} \end{split}$$

TABLA /	4-34				
Funcior	nes del flujo de	Rayleigh para	un gas ideal co	n k = 1.4	
Ма	T_0/T_0^*	P_0/P_0^*	T/T*	PIP*	<i>V</i> / <i>V</i> *
0.0	0.0000	1.2679	0.0000	2.4000	0.0000
0.1 0.2	0.0468 0.1736	1.2591 1.2346	0.0560 0.2066	2.3669 2.2727	0.0237 0.0909
0.2	0.1736	1.2346	0.2066	2.2727	0.0909
0.3	0.5290	1.1566	0.4089	1.9608	0.1318
0.5	0.6914	1.1141	0.7901	1.7778	0.4444
0.6	0.8189	1.0753	0.9167	1.5957	0.5745
0.7	0.9085	1.0431	0.9929	1.4235	0.6975
8.0	0.9639	1.0193	1.0255	1.2658	0.8101
0.9	0.9921	1.0049	1.0245	1.1246	0.9110
1.0	1.0000	1.0000	1.0000	1.0000	1.0000
1.2	0.9787	1.0194	0.9118	0.7958	1.1459
1.4	0.9343	1.0777	0.8054	0.6410	1.2564
1.6	0.8842	1.1756	0.7017	0.5236	1.3403
1.8	0.8363	1.3159	0.6089	0.4335	1.4046
2.0	0.7934	1.5031	0.5289	0.3636	1.4545
2.2	0.7561	1.7434	0.4611	0.3086	1.4938
2.4	0.7242	2.0451	0.4038	0.2648	1.5252
2.6	0.6970	2.4177	0.3556	0.2294	1.5505
2.8	0.6738	2.8731	0.3149	0.2004	1.5711
3.0	0.6540	3.4245	0.2803	0.1765	1.5882

Apéndice 2

TABLAS DE PROPIEDADES, FIGURAS Y DIAGRAMAS (UNIDADES INGLESAS)

Iabia A-IE	propiedades del punto crítico	Iabia A-10E	a gran altitud
Tabla A-2E	Calores específicos de gas ideal	Tabla A-17E	Propiedades de gas ideal del aire
	de varios gases comunes	Tabla A-18E	Propiedades de gas ideal
Tabla A-3E	Propiedades de líquidos, sólidos		del nitrógeno, N ₂
	y alimentos comunes	Tabla A-19E	Propiedades de gas ideal del oxígeno, O ₂
Tabla A-4E	Agua saturada. Tabla de temperaturas	Tabla A-20E	Propiedades de gas ideal del dióxido
Tabla A-5E	Agua saturada. Tabla de presiones		de carbono, CO ₂
Tabla A-6E	Vapor de agua sobrecalentado	Tabla A-21E	Propiedades de gas ideal del monóxido
Tabla A-7E	Agua líquida comprimida		de carbono, CO
Tabla A-8E	Hielo saturado. Vapor de agua	Tabla A-22E	Propiedades de gas ideal
Figura A-9E	Diagrama T s para el agua		del hidrógeno, H ₂
Figura A-10E	Diagrama de Mollier para el agua	Tabla A-23E	Propiedades de gas ideal del vapor
Tabla A-11E	Refrigerante 134a saturado. Tabla	T-1-1- A 00F	de agua, H ₂ O
	de temperatura	Tabla A-26E	Entalpía de formación, función de Gibbs de formación y entropía absoluta a
Tabla A-12E	Refrigerante 134a saturado. Tabla		77°C, 1 atm
	de presión	Tabla A-27E	Propiedades de algunos combustibles
Tabla A-13E	Refrigerante 134a sobrecalentado		e hidrocarburos comunes
Figura A-14E	Diagrama P h para refrigerante 134a	Figura A-31E	Gráfica psicrométrica a 1 atm de presión total

TABLA A-1E

Masa molar, constante de gas y propiedades del punto crítico

		Masa	Constant	e de gas, R	Propiedad	des del puni	to crítico
Sustancia	Fórmula	molar, <i>M</i> lbm/lbmol	Btu/ Ibm · R*	psia · ft³/ lbm · R*	Temperatura, R	Presión, psia	Volumen, ft ³ /lbmol
Agua	H ₂ 0	18.015	0.1102	0.5956	1164.8	3200	0.90
Aire	_	28.97	0.06855	0.3704	238.5	547	1.41
Alcohol etílico	C_2H_5OH	46.07	0.04311	0.2329	929.0	926	2.68
Alcohol metílico	CH₃OH	32.042	0.06198	0.3349	923.7	1154	1.89
Amoniaco	NH_3	17.03	0.1166	0.6301	729.8	1636	1.16
Argón	Ar	39.948	0.04971	0.2686	272	705	1.20
Benceno	C_6H_6	78.115	0.02542	0.1374	1012	714	4.17
Bromo	Br ₂	159.808	0.01243	0.06714	1052	1500	2.17
<i>n</i> -Butano	C_4H_{10}	58.124	0.03417	0.1846	765.2	551	4.08
Cloro	Cl ₂	70.906	0.02801	0.1517	751	1120	1.99
Cloroformo	CHCl₃	119.38	0.01664	0.08988	965.8	794	3.85
Cloruro metílico	CH ₃ Cl	50.488	0.03934	0.2125	749.3	968	2.29
Criptón	Kr	83.80	0.02370	0.1280	376.9	798	1.48
Diclorodifluorometano (R-12)	CCI ₂ F ₂	120.91	0.01643	0.08874	692.4	582	3.49
Diclorofluorometano (R-21)	CHCl ₂ F	102.92	0.01930	0.1043	813.0	749	3.16
Dióxido de carbono	CO_2	44.01	0.04513	0.2438	547.5	1071	1.51
Dióxido de sulfuro	SO_2	64.063	0.03100	1.1675	775.2	1143	1.95
Etano	$C_2\bar{H_6}$	30.020	0.06616	0.3574	549.8	708	2.37
Etileno	C_2H_4	28.054	0.07079	0.3825	508.3	742	1.99
Helio	He	4.003	0.4961	2.6809	9.5	33.2	0.926
<i>n</i> -Hexano	C_6H_{14}	86.178	0.02305	0.1245	914.2	439	5.89
Hidrógeno (normal)	H_2	2.016	0.9851	5.3224	59.9	188.1	1.04
Metano	$\bar{CH_4}$	16.043	0.1238	0.6688	343.9	673	1.59
Monóxido de carbono	CO	28.011	0.07090	0.3831	240	507	1.49
Neón	Ne	20.183	0.09840	0.5316	80.1	395	0.668
Nitrógeno	N_2	28.013	0.07090	0.3830	227.1	492	1.44
Óxido nitroso	N_2^- O	44.013	0.04512	0.2438	557.4	1054	1.54
Oxígeno	0_2^-	31.999	0.06206	0.3353	278.6	736	1.25
Propano	C_3H_8	44.097	0.04504	0.2433	665.9	617	3.20
Propileno	C_3H_6	42.081	0.04719	0.2550	656.9	670	2.90
Tetracloruro de carbono	CCI ₄	153.82	0.01291	0.06976	1001.5	661	4.42
Tetrafluoroetano (R-134a)	CF ₃ CH ₂ F	102.03	0.01946	0.1052	673.6	588.7	3.19
Triclorofluorometano (R-11)	CCĬ ₃ F	137.37	0.01446	0.07811	848.1	635	3.97
Xenón	Xe	131.30	0.01513	0.08172	521.55	852	1.90

^{*}Calculada de $R=R_u/M$, donde $R_u=1.98588$ Btu/lbmol \cdot R = 10.7316 psia \cdot pie 3 /lbmol \cdot R y M es la masa molar.

Fuente: K. A. Kobe y R. E. Lynn, Jr., Chemical Review 52, 1953, pp. 117-236; y ASHRAE (Sociedad Americana de Ingenieros de Calefacción, Refrigeración y Acondicionamiento de Aire), Handbook of Fundamentals, Atlanta, Georgia, American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., 1993, pp. 16.4 y 36.1.

TABLA A-2E

Calores específicos de gas ideal de varios gases comunes a) A 80°F

		Constante de gas, R	c_p	c_{v}	
Gas	Fórmula	Btu/Ibm · R	Btu/Ibm ⋅ R	Btu/Ibm · R	k
Aire	_	0.06855	0.240	0.171	1.400
Argón	Ar	0.04971	0.1253	0.0756	1.667
Butano	C_4H_{10}	0.03424	0.415	0.381	1.09
Dióxido de carbono	CO_2	0.04513	0.203	0.158	1.285
Etano	$C_2\bar{H_6}$	0.06616	0.427	0.361	1.183
Etileno	C_2H_4	0.07079	0.411	0.340	1.208
Helio	He	0.4961	1.25	0.753	1.667
Hidrógeno	H_2	0.9851	3.43	2.44	1.404
Metano	CH₄	0.1238	0.532	0.403	1.32
Monóxido de carbono	CO	0.07090	0.249	0.178	1.399
Neón	Ne	0.09840	0.246	0.1477	1.667
Nitrógeno	N_2	0.07090	0.248	0.177	1.400
Octano	$C_8^{-}H_{18}$	0.01742	0.409	0.392	1.044
Oxígeno	02	0.06206	0.219	0.157	1.395
Propano	C ₃ H ₈	0.04504	0.407	0.362	1.124
Vapor	$H_2^{\circ}O^{\circ}$	0.1102	0.445	0.335	1.329

Fuente: Gordon J. Van Wylen y Richard E. Sonntag, Fundamentals of Classical Thermodynamics, versión inglés/SI, 3a. ed., Nueva York, John Wiley & Sons, 1986, p. 687, Tabla A.8E.

TABLA A-2E

Calores específicos de gas ideal de varios gases comunes (*continuación*) b) A diversas temperaturas

Temp., °F	c_p Btu/lbm \cdot R	$c_{\scriptscriptstyle m V}$ Btu/lbm \cdot R	k	c_p Btu/Ibm \cdot R	$c_{\rm v}$ Btu/lbm \cdot R	k	c_p Btu/lbm \cdot R	$c_{\rm v}$ Btu/lbm \cdot R	k		
		Aire		Dióxid	o de carbono,	CO ₂	Monóxido de carbono, CO				
40	0.240	0.171	1.401	0.195	0.150	1.300	0.248	0.177	1.400		
100	0.240	0.172	1.400	0.205	0.160	1.283	0.249	0.178	1.399		
200	0.241	0.173	1.397	0.217	0.172	1.262	0.249	0.179	1.397		
300	0.243	0.174	1.394	0.229	0.184	1.246	0.251	0.180	1.394		
400	0.245	0.176	1.389	0.239	0.193	1.233	0.253	0.182	1.389		
500	0.248	0.179	1.383	0.247	0.202	1.223	0.256	0.185	1.384		
600	0.250	0.182	1.377	0.255	0.210	1.215	0.259	0.188	1.377		
700	0.254	0.185	1.371	0.262	0.217	1.208	0.262	0.191	1.371		
800	0.257	0.188	1.365	0.269	0.224	1.202	0.266	0.195	1.364		
900	0.259	0.191	1.358	0.275	0.230	1.197	0.269	0.198	1.357		
1000	0.263	0.195	1.353	0.280	0.235	1.192	0.273	0.202	1.351		
1500	0.276	0.208	1.330	0.298	0.253	1.178	0.287	0.216	1.328		
2000	0.286	0.217	1.312	0.312	0.267	1.169	0.297	0.226	1.314		
		Hidrógeno, H ₂		/	Nitrógeno, N ₂		C	xígeno, O ₂			
40	3.397	2.412	1.409	0.248	0.177	1.400	0.219	0.156	1.397		
100	3.426	2.441	1.404	0.248	0.178	1.399	0.220	0.158	1.394		
200	3.451	2.466	1.399	0.249	0.178	1.398	0.223	0.161	1.387		
300	3.461	2.476	1.398	0.250	0.179	1.396	0.226	0.164	1.378		
400	3.466	2.480	1.397	0.251	0.180	1.393	0.230	0.168	1.368		
500	3.469	2.484	1.397	0.254	0.183	1.388	0.235	0.173	1.360		
600	3.473	2.488	1.396	0.256	0.185	1.383	0.239	0.177	1.352		
700	3.477	2.492	1.395	0.260	0.189	1.377	0.242	0.181	1.344		
800	3.494	2.509	1.393	0.262	0.191	1.371	0.246	0.184	1.337		
900	3.502	2.519	1.392	0.265	0.194	1.364	0.249	0.187	1.331		
1000	3.513	2.528	1.390	0.269	0.198	1.359	0.252	0.190	1.326		
1500	3.618	2.633	1.374	0.283	0.212	1.334	0.263	0.201	1.309		
2000	3.758	2.773	1.355	0.293	0.222	1.319	0.270	0.208	1.298		

Nota: La unidad Btu/lbm \cdot R es equivalente a Btu/lbm \cdot °F.

Fuente: Kenneth Wark, Thermodynamics, 4a. ed., Nueva York, McGraw-Hill, 1983, p. 830, Tabla A.4. Publicada originalmente en Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLA A-2E

Calores específicos de gas ideal de varios gases comunes (conclusi'on)

c) Como una función de la temperatura

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(T en R, c_p en Btu/lbmol · R)

						Rango de	<u></u> % e	error
Sustancia	Fórmula	а	Ь	С	d	temp., R	Máx.	Prom.
Acetileno	C_2H_2	5.21	1.2227×10^{-2}	-0.4812×10^{-5}	0.7457×10^{-9}	491-2700	1.46	0.59
Aire	_	6.713	0.02609×10^{-2}	0.03540×10^{-5}	-0.08052×10^{-9}	491-3240	0.72	0.33
Amoniaco	NH_3	6.5846	0.34028×10^{-2}	0.073034×10^{-5}	-0.27402×10^{-9}	491-2700	0.91	0.36
Azufre	S_2	6.499	0.2943×10^{-2}	-0.1200×10^{-5}	0.1632×10^{-9}	491-3240	0.99	0.38
Benceno	C_6H_6	-8.650	6.4322×10^{-2}	-2.327×10^{-5}	3.179×10^{-9}	491-2700	0.34	0.20
<i>i</i> -Butano	C_4H_{10}	-1.890	5.520×10^{-2}	-1.696×10^{-5}	2.044×10^{-9}	491-2740	0.25	0.13
<i>n</i> -Butano	C_4H_{10}	0.945	4.929×10^{-2}	-1.352×10^{-5}	1.433×10^{-9}	491-2740	0.54	0.24
Cloruro de hidrógen	o HCI	7.244	-0.1011×10^{-2}	0.09783×10^{-5}	-0.1776×10^{-9}	491-2740	0.22	0.08
Dióxido de azufre	SO_2	6.157	0.7689×10^{-2}	-0.2810×10^{-5}	0.3527×10^{-9}	491-3240	0.45	0.24
Dióxido de carbono	CO_2	5.316	0.79361×10^{-2}	-0.2581×10^{-5}	0.3059×10^{-9}	491-3240	0.67	0.22
Dióxido de nitrógeno	NO ₂	5.48	0.7583×10^{-2}	-0.260×10^{-5}	0.322×10^{-9}	491-2700	0.46	0.18
Etano	C_2H_6	1.648	2.291×10^{-2}	-0.4722×10^{-5}	0.2984×10^{-9}	491-2740	0.83	0.28
Etanol	C_2H_6O	4.75	2.781×10^{-2}	-0.7651×10^{-5}	0.821×10^{-9}	491-2700	0.40	0.22
Etileno	C_2H_4	0.944	2.075×10^{-2}	-0.6151×10^{-5}	0.7326×10^{-9}	491-2740	0.54	0.13
<i>n</i> -Hexano	C_6H_{14}	1.657	7.328×10^{-2}	-2.112×10^{-5}	2.363×10^{-9}	491-2740	0.72	0.20
Hidrógeno	H_2	6.952	-0.02542×10^{-2}	0.02952×10^{-5}	-0.03565×10^{-9}	491-3240	1.02	0.26
Metano	CH ₄	4.750	0.6666×10^{-2}	0.09352×10^{-5}	-0.4510×10^{-9}	491-2740	1.33	0.57
Metanol	CH ₄ O	4.55	1.214×10^{-2}	-0.0898×10^{-5}	-0.329×10^{-9}	491-1800	0.18	0.08
Monóxido de carbon	ю СО	6.726	0.02222×10^{-2}	0.03960×10^{-5}	-0.09100×10^{-9}	491-3240	0.89	0.37
Nitrógeno	N_2	6.903	-0.02085×10^{-2}	0.05957×10^{-5}	-0.1176×10^{-9}	491-3240	0.59	0.34
Óxido nítrico	NO	7.008	-0.01247×10^{-2}	0.07185×10^{-5}	-0.1715×10^{-9}	491-2700	0.97	0.36
Óxido nitroso	N_2O	5.758	0.7780×10^{-2}	-0.2596×10^{-5}	0.4331×10^{-9}	491-2700	0.59	0.26
Oxígeno	02	6.085	0.2017×10^{-2}	-0.05275×10^{-5}	0.05372×10^{-9}	491-3240	1.19	0.28
<i>n</i> -Pentano	C_5H_{12}	1.618	6.028×10^{-2}	-1.656×10^{-5}	1.732×10^{-9}	491-2740	0.56	0.21
Propano	C_3H_8	-0.966	4.044×10^{-2}	-1.159×10^{-5}	1.300×10^{-9}	491-2740	0.40	0.12
Propileno	C_3H_6	0.753	3.162×10^{-2}	-0.8981×10^{-5}	1.008×10^{-9}	491-2740	0.73	0.17
Trióxido de azufre	SO ₃	3.918	1.935×10^{-2}	-0.8256×10^{-5}	1.328×10^{-9}	491-2340	0.29	0.13
Vapor de agua	H ₂ O	7.700	0.02552×10^{-2}	0.07781×10^{-5}	-0.1472×10^{-9}	491-3240	0.53	0.24

Fuente: Chemical and Process Thermodynamics, 3/E por Kyle, B. G., © 2000. Adaptada con permiso de Pearson Education, Inc., Upper Saddle River, Nueva Jersey.

a) Líquidos

TABLA A-3E
Propiedades de líquidos, sólidos y alimentos comunes

	Datos de el	bullición a 1 atm	Datos de	congelación	Propie	edades de lí	quido
Sustancia	Punto normal de ebullición, °F	Calor latente de vaporización, h_{fg} Btu/lbm	Punto de conge- lación, °F	Calor latente de fusión, h _{if} Btu/lbm	Temperatura, °F	Densidad, ρ lbm/ft ³	Calor específico, c_p Btu/lbm · R
Aceite (ligero)	_	_			77	56.8	0.430
Agua	212	970.1	32	143.5	32	62.4	1.01
J					90	62.1	1.00
					150	61.2	1.00
					212	59.8	1.01
Alcohol etílico	173.5	368	-248.8	46.4	68	49.3	0.678
Amoniaco	-27.9	24.54	-107.9	138.6	-27.9	42.6	1.06
					0	41.3	1.083
					40	39.5	1.103
					80	37.5	1.135
Argón	-302.6	69.5	-308.7	12.0	-302.6	87.0	0.272
Benceno	176.4	169.4	41.9	54.2	68	54.9	0.411
<i>n</i> -Butano	31.1	165.6	-217.3	34.5	31.1	37.5	0.552
Dióxido de carbono	-109.2*	99.6 (a 32°F)	-69.8	_	32	57.8	0.583
Etanol	172.8	360.5	-173.6	46.9	77	48.9	0.588
Etilén glicol	388.6	344.0	12.6	77.9	68	69.2	0.678
Glicerina	355.8	419	66.0	86.3	68	78.7	0.554
Helio	-452.1	9.80	_	_	-452.1	9.13	5.45
Hidrógeno	-423.0	191.7	-434.5	25.6	-423.0	4.41	2.39
Isobutano	10.9	157.8	-255.5	45.5	10.9	37.1	0.545
Mercurio	674.1	126.7	-38.0	4.90	77	847	0.033
Metano	-258.7	219.6	296.0	25.1	-258.7	26.4	0.834
					-160	20.0	1.074
Metanol	148.1	473	-143.9	42.7	77	49.1	0.609
Nitrógeno	-320.4	85.4	-346.0	10.9	-320.4	50.5	0.492
					-260	38.2	0.643
Octano	256.6	131.7	-71.5	77.9	68	43.9	0.502
Oxígeno	-297.3	91.5	-361.8	5.9	-297.3	71.2	0.408
Petróleo	_	99-165			68	40.0	0.478
Propano	-43.7	184.0	-305.8	34.4	-43.7	36.3	0.538
					32	33.0	0.604
					100	29.4	0.673
Salmuera (20% de cloruro de							
sodio por masa)	219.0	_	0.7	_	68	71.8	0.743
Queroseno	399-559	108	-12.8	_	68	51.2	0.478
Refrigerante 134a	-15.0	93.3	-141.9	_	-40	88.5	0.283
					-15	86.0	0.294
					32	80.9	0.318
					90	73.6	0.348

^{*}Temperatura de sublimación. (A presiones por debajo de la presión de punto triple de 75.1 psia, el dióxido de carbono existe como sólido o como gas. También, la temperatura de punto de congelamiento del dióxido de carbono es la temperatura de punto triple de –69.8°F.)

TABLA A-3E

Propiedades de líquidos, sólidos y alimentos comunes (*continuación*) b) Sólidos (los valores son para temperatura ambiente, excepto que se indique otra cosa)

Sustancia	Densidad, $ ho$ lbm/ft 3	Calor específico, c_p Btu/lbm \cdot R	Sustancia	Densidad, $ ho$ Ibm/ft 3	Calor específico, c_p Btu/lbm · R
Metales			No metales		
Acero dulce	489	0.119	Asfalto	132	0.220
Aluminio			Arcilla	62.4	0.220
-100°F		0.192	Arena	94.9	
32°F		0.212	Caucho (blando)	68.7	
100°F	170	0.218	Caucho (duro)	71.8	
200°F		0.224	Concreto	144	0.156
300°F		0.229	Diamante	151	0.147
400°F		0.235	Grafito	156	0.170
500°F		0.240	Granito	169	0.243
Bronce (76% Cu, 2% Zn,	517	0.0955	Hielo		
2% AI)			−50°F		0.424
Cobre			0°F		0.471
−60°F		0.0862	20°F		0.491
0°F		0.0893	32°F	57.5	0.502
100°F	555	0.0925	Ladrillo común	120	0.189
200°F		0.0938	Ladrillo refractario (500 °C)	144	0.229
390°F		0.0963	Madera contrachapada (abeto Douglas) 34.0	
Hierro	490	0.107	Maderas duras (maple, encino, etc.)	45.0	
Latón amarillo (65% Cu,	519	0.0955	Maderas suaves (abeto, pino, etc.)	32.0	
35% Zn)			Mármol	162	0.210
Magnesio	108	0.239	Piedra	93.6	
Níquel	555	0.105	Piedra caliza	103	0.217
Plata	655	0.056	Vidrio para ventanas	169	0.191
Plomo	705	0.030	Vidrio pirex	139	0.200
Tungsteno	1211	0.031	Yeso o tabla de yeso	50	0.260

c) Alimentos

			Calor espe Btu/lbm		Calor				Calor es _i Btu/lb		Calor
Alimentos	Contenido de agua, % (masa)	Punto de congela- ción, °F	Por encima del punto de congelación	Por debajo del punto de congelación	latente e de fusión	Alimentos	Contenido de agua % (masa)	Punto de congela-, ción °F		Por debajo del punto de congelación	latente
Brócoli	90	31	0.921	0.471	129	Mantequilla	16	_	_	0.249	23
Camarón	83	28	0.865	0.450	119	Manzanas	84	30	0.873	0.453	121
Carne de pollo	74	27	0.793	0.423	106	Maíz dulce	74	31	0.793	0.423	106
Carne de res	67	_	0.737	0.402	96	Naranjas	87	31	0.897	0.462	125
Cerezas	80	29	0.841	0.441	115	Papas	78	31	0.825	0.435	112
Espinaca	93	31	0.945	0.481	134	Pavo	64	_	0.713	0.393	92
Fresas	90	31	0.921	0.471	129	Plátanos	75	31	0.801	0.426	108
Helado	63	22	0.705	0.390	90	Queso suizo	39	14	0.513	0.318	56
Huevo entero	74	31	0.793	0.423	106	Salmón	64	28	0.713	0.393	92
Leche entera	88	31	0.905	0.465	126	Sandía	93	31	0.945	0.481	134
Lechuga	95	32	0.961	0.487	136	Tomates (maduro	s) 94	31	0.953	0.484	135

Fuente: Los valores han sido obtenidos de varios manuales y otras fuentes, o se han calculado. El contenido de agua y los datos de punto de congelación para alimentos provienen del ASHRAE, Handbook of Fundamentals, versión I-P, Atlanta, Georgia, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993, Capítulo 30, Tabla 1. El punto de congelación es la temperatura a la que comienza la congelación para frutas y verduras, así como la temperatura promedio de congelación para otros alimentos.

TABLA A-4E

Agua	saturada.	Tabla	de	temperaturas

			<i>específico,</i> ³ /lbm	En	<i>ergía intern</i> Btu/lbm	а,		<i>Entalpía,</i> Btu/Ibm		E	<i>Entropía,</i> 3tu/lbm · R	
Temp., <i>T</i> °F	Pres. sat., P _{sat} psia	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u_g	Líq. sat., h _f	Evap., h _{fg}	Vapor sat., h_g	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., s_g
32.01 35 40 45 50	0.08871 0.09998 0.12173 0.14756 0.17812	0.01602 0.01602 0.01602 0.01602 0.01602	3299.9 2945.7 2443.6 2035.8 1703.1	0.000 3.004 8.032 13.05 18.07	1021.0 1019.0 1015.6 1012.2 1008.9	1021.0 1022.0 1023.7 1025.3 1026.9	3.004	1075.2 1073.5 1070.7 1067.8 1065.0	1075.2 1076.5 1078.7 1080.9 1083.1	0.00000 0.00609 0.01620 0.02620 0.03609	2.18672 2.17011 2.14271 2.11587 2.08956	2.1762 2.1589
55 60 65 70 75	0.21413 0.25638 0.30578 0.36334 0.43016	0.01603 0.01604 0.01604 0.01605 0.01606	1430.4 1206.1 1020.8 867.18 739.27	23.07 28.08 33.08 38.08 43.07	1005.5 1002.1 998.76 995.39 992.02	1028.6 1030.2 1031.8 1033.5 1035.1	23.07 28.08 33.08 38.08 43.07	1062.2 1059.4 1056.5 1053.7 1050.9	1085.3 1087.4 1089.6 1091.8 1093.9	0.04586 0.05554 0.06511 0.07459 0.08398	2.06377 2.03847 2.01366 1.98931 1.96541	2.1096 2.0940 2.0788 2.0639 2.0494
80 85 90 95 100	0.50745 0.59659 0.69904 0.81643 0.95052	0.01607 0.01609 0.01610 0.01612 0.01613	632.41 542.80 467.40 403.74 349.83	48.06 53.06 58.05 63.04 68.03	988.65 985.28 981.90 978.52 975.14	1036.7 1038.3 1040.0 1041.6 1043.2	48.07 53.06 58.05 63.04 68.03	1048.0 1045.2 1042.4 1039.5 1036.7	1096.1 1098.3 1100.4 1102.6 1104.7	0.09328 0.10248 0.11161 0.12065 0.12961	1.94196 1.91892 1.89630 1.87408 1.85225	
110 120 130 140 150	1.2767 1.6951 2.2260 2.8931 3.7234	0.01617 0.01620 0.01625 0.01629 0.01634	264.96 202.94 157.09 122.81 96.929	78.01 88.00 97.99 107.98 117.98	968.36 961.56 954.73 947.87 940.98	1046.4 1049.6 1052.7 1055.9 1059.0	78.02 88.00 97.99 107.99 117.99	1031.0 1025.2 1019.4 1013.6 1007.8	1109.0 1113.2 1117.4 1121.6 1125.7	0.14728 0.16466 0.18174 0.19855 0.21508	1.80970 1.76856 1.72877 1.69024 1.65291	1.9570 1.9332 1.9105 1.8888 1.8680
160 170 180 190 200	4.7474 5.9999 7.5197 9.3497 11.538	0.01639 0.01645 0.01651 0.01657 0.01663	77.185 61.982 50.172 40.920 33.613	127.98 138.00 148.02 158.05 168.10	934.05 927.08 920.06 912.99 905.87	1062.0 1065.1 1068.1 1071.0 1074.0	128.00 138.02 148.04 158.08 168.13	989.85 983.76	1129.8 1133.9 1137.9 1141.8 1145.7	0.23136 0.24739 0.26318 0.27874 0.29409	1.61670 1.58155 1.54741 1.51421 1.48191	1.8481 1.8289 1.8106 1.7930 1.7760
210 212 220 230 240	14.136 14.709 17.201 20.795 24.985	0.01670 0.01671 0.01677 0.01684 0.01692	27.798 26.782 23.136 19.374 16.316	178.15 180.16 188.22 198.31 208.41	898.68 897.24 891.43 884.10 876.70	1076.8 1077.4 1079.6 1082.4 1085.1	178.20 180.21 188.28 198.37 208.49	970.09 965.02 958.59	1149.5 1150.3 1153.3 1157.0 1160.5	0.30922 0.31222 0.32414 0.33887 0.35342	1.45046 1.44427 1.41980 1.38989 1.36069	1.7597 1.7565 1.7439 1.7288 1.7141
250 260 270 280 290	29.844 35.447 41.877 49.222 57.573	0.01700 0.01708 0.01717 0.01726 0.01735	13.816 11.760 10.059 8.6439 7.4607	218.54 228.68 238.85 249.04 259.26	869.21 861.62 853.94 846.16 838.27	1087.7 1090.3 1092.8 1095.2 1097.5	218.63 228.79 238.98 249.20 259.45	938.65 931.76 924.74	1164.0 1167.4 1170.7 1173.9 1177.0	0.36779 0.38198 0.39601 0.40989 0.42361	1.33216 1.30425 1.27694 1.25018 1.22393	1.6999 1.6862 1.6730 1.6601 1.6475
300 310 320 330 340	67.028 77.691 89.667 103.07 118.02	0.01745 0.01755 0.01765 0.01776 0.01787	6.4663 5.6266 4.9144 4.3076 3.7885	269.51 279.79 290.11 300.46 310.85	830.25 822.11 813.84 805.43 796.87	1099.8 1101.9 1104.0 1105.9 1107.7	269.73 280.05 290.40 300.80 311.24	902.75 895.09 887.25	1180.0 1182.8 1185.5 1188.1 1190.5	0.43720 0.45065 0.46396 0.47716 0.49024	1.19818 1.17289 1.14802 1.12355 1.09945	1.6235 1.6120 1.6007
350 360 370 380 390	134.63 153.03 173.36 195.74 220.33	0.01799 0.01811 0.01823 0.01836 0.01850	3.3425 2.9580 2.6252 2.3361 2.0842	321.29 331.76 342.29 352.87 363.50	788.16 779.28 770.23 761.00 751.58	1109.4 1111.0 1112.5 1113.9 1115.1	321.73 332.28 342.88 353.53 364.25	862.53 853.86 844.96	1192.7 1194.8 1196.7 1198.5 1200.1	0.50321 0.51607 0.52884 0.54152 0.55411	1.07570 1.05227 1.02914 1.00628 0.98366	1.5683 1.5580 1.5478

TABLA A-4E

Agua saturada. Tabla de temperaturas (conclusión)

		Volumen es ft ³ /lb		Er	nergía interr Btu/Ibm	na,		<i>Entalpía,</i> Btu/lbm			<i>Entropía,</i> Btu/Ibm · R	
Temp.,	Pres. sat.,	Líq. sat.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,
<i>T</i> °F	P _{sat} psia	V _f	Vg	Uf	U _{fg}	Ug	h_f	h _{fg}	hg	S _f	S _{fg}	Sg
400	247.26	0.01864	1.8639	374.19	741.97	1116.2	375.04	826.39	1201.4	0.56663	0.96127	1.5279
410	276.69	0.01878	1.6706	384.94	732.14	1117.1	385.90	816.71	1202.6	0.57907	0.93908	1.5182
420	308.76	0.01894	1.5006	395.76	722.08	1117.8	396.84	806.74	1203.6	0.59145	0.91707	1.5085
430	343.64	0.01910	1.3505	406.65	711.80	1118.4	407.86	796.46	1204.3	0.60377	0.89522	1.4990
440	381.49	0.01926	1.2178	417.61	701.26	1118.9	418.97	785.87	1204.8	0.61603	0.87349	1.4895
450	422.47	0.01944	1.0999	428.66	690.47	1119.1	430.18	774.94	1205.1	0.62826	0.85187	1.4801
460	466.75	0.01962	0.99510	439.79	679.39	1119.2	441.48	763.65	1205.1	0.64044	0.83033	1.4708
470	514.52	0.01981	0.90158	451.01	668.02	1119.0	452.90	751.98	1204.9	0.65260	0.80885	1.4615
480	565.96	0.02001	0.81794	462.34	656.34	1118.7	464.43	739.91	1204.3	0.66474	0.78739	1.4521
490	621.24	0.02022	0.74296	473.77	644.32	1118.1	476.09	727.40	1203.5	0.67686	0.76594	1.4428
500	680.56	0.02044	0.67558	485.32	631.94	1117.3	487.89	714.44	1202.3	0.68899	0.74445	1.4334
510	744.11	0.02067	0.61489	496.99	619.17	1116.2	499.84	700.99	1200.8	0.70112	0.72290	1.4240
520	812.11	0.02092	0.56009	508.80	605.99	1114.8	511.94	687.01	1199.0	0.71327	0.70126	1.4145
530	884.74	0.02118	0.51051	520.76	592.35	1113.1	524.23	672.47	1196.7	0.72546	0.67947	1.4049
540	962.24	0.02146	0.46553	532.88	578.23	1111.1	536.70	657.31	1194.0	0.73770	0.65751	1.3952
550	1044.8	0.02176	0.42465	545.18	563.58	1108.8	549.39	641.47	1190.9	0.75000	0.63532	1.3853
560	1132.7	0.02207	0.38740	557.68	548.33	1106.0	562.31	624.91	1187.2	0.76238	0.61284	1.3752
570	1226.2	0.02242	0.35339	570.40	532.45	1102.8	575.49	607.55	1183.0	0.77486	0.59003	1.3649
580	1325.5	0.02279	0.32225	583.37	515.84	1099.2	588.95	589.29	1178.2	0.78748	0.56679	1.3543
590	1430.8	0.02319	0.29367	596.61	498.43	1095.0	602.75	570.04	1172.8	0.80026	0.54306	1.3433
600	1542.5	0.02362	0.26737	610.18	480.10	1090.3	616.92	549.67	1166.6	0.81323	0.51871	1.3319
610	1660.9	0.02411	0.24309	624.11	460.73	1084.8	631.52	528.03	1159.5	0.82645	0.49363	1.3201
620	1786.2	0.02464	0.22061	638.47	440.14	1078.6	646.62	504.92	1151.5	0.83998	0.46765	1.3076
630	1918.9	0.02524	0.19972	653.35	418.12	1071.5	662.32	480.07	1142.4	0.85389	0.44056	1.2944
640	2059.3	0.02593	0.18019	668.86	394.36	1063.2	678.74	453.14	1131.9	0.86828	0.41206	1.2803
650	2207.8	0.02673	0.16184	685.16	368.44	1053.6	696.08	423.65	1119.7	0.88332	0.38177	1.2651
660	2364.9	0.02767	0.14444	702.48	339.74	1042.2	714.59	390.84	1105.4	0.89922	0.34906	1.2483
670	2531.2	0.02884	0.12774	721.23	307.22	1028.5	734.74	353.54	1088.3	0.91636	0.31296	1.2293
680	2707.3	0.03035	0.11134		269.00	1011.1	757.32	309.57	1066.9	0.93541	0.27163	1.2070
690	2894.1	0.03255	0.09451	766.81	220.77	987.6	784.24	253.96	1038.2	0.95797	0.22089	1.1789
700	3093.0	0.03670	0.07482	801.75	146.50	948.3	822.76	168.32	991.1	0.99023	0.14514	1.1354
705.10	3200.1	0.04975	0.04975		0	866.6	896.07	0	896.1	1.05257	0	1.0526

Fuente: Las tablas A-4E a A-8E fueron generadas utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado. La rutina utilizada en los cálculos es la altamente precisa Steam_IAPWS, que incorpora la Formulación 1995 para las Propiedades Termodinámicas de la Sustancia Agua Ordinaria para Uso Científico y General, editada por The International Association for the Properties of Water and Steam (IAPWS). Esta formulación reemplaza a la de 1984 de Haar, Gallagher y Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), la cual está también disponible en EES como la rutina STEAM. La nueva formulación se basa en las correlaciones de Saul y Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) con modificaciones para ajustarla a la Escala Internacional de Temperaturas de 1990. Las modificaciones están descritas por Wagner y Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). Las propiedades del hielo están basadas en Hyland y Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K a 473.15 K", ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLA A-5E

Agua	saturada.	Tabla	de	presiones
1 15 aa	Jului udu.	iubiu	ac	presiones

			<i>específico,</i> /lbm	En	<i>ergía interr</i> Btu/Ibm	na,		<i>Entalpía,</i> Btu/lbm		E	<i>Entropía,</i> 3tu/lbm · R	
Pres., P psia	Temp. sat., T _{sat} °F	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat., u _g	Líq. sat., h _f	Evap., h _{fg}	Vapor sat., h _g	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., s_g
1	101.69	0.01614	333.49	69.72	973.99	1043.7	69.72	1035.7	1105.4	0.13262	1.84495	1.9776
2	126.02	0.01623	173.71	94.02	957.45	1051.5	94.02	1021.7	1115.8	0.17499	1.74444	1.9194
3	141.41	0.01630	118.70	109.39	946.90	1056.3	109.40	1012.8	1122.2	0.20090	1.68489	1.8858
4	152.91	0.01636	90.629	120.89	938.97	1059.9	120.90	1006.0	1126.9	0.21985	1.64225	1.8621
5	162.18	0.01641	73.525	130.17	932.53	1062.7	130.18	1000.5	1130.7	0.23488	1.60894	1.8438
6	170.00	0.01645	61.982	138.00	927.08	1065.1	138.02	995.88	1133.9	0.24739	1.58155	1.8289
8	182.81	0.01652	47.347	150.83	918.08	1068.9	150.86	988.15	1139.0	0.26757	1.53800	1.8056
10	193.16	0.01659	38.425	161.22	910.75	1072.0	161.25	981.82	1143.1	0.28362	1.50391	1.7875
14.696	211.95	0.01671	26.805	180.12	897.27	1077.4	180.16	970.12	1150.3	0.31215	1.44441	1.7566
15	212.99	0.01672	26.297	181.16	896.52	1077.7	181.21	969.47	1150.7	0.31370	1.44441	1.7549
20	227.92	0.01683	20.093	196.21	885.63	1081.8	196.27	959.93	1156.2	0.33582	1.39606	1.7319
25	240.03	0.01692	16.307	208.45	876.67	1085.1	208.52	952.03	1160.6	0.35347	1.36060	1.7141
30	250.30	0.01700	13.749	218.84	868.98	1087.8	218.93	945.21	1164.1	0.36821	1.33132	1.6995
35	259.25	0.01708	11.901	227.92	862.19	1090.1	228.03	939.16	1167.2	0.38093	1.30632	1.6872
40	267.22	0.01715	10.501	236.02	856.09	1092.1	236.14	933.69	1169.8	0.39213	1.28448	1.6766
45	274.41	0.01721	9.4028	243.34	850.52	1093.9	243.49	928.68	1172.2	0.40216	1.26506	1.6672
50	280.99	0.01727	8.5175	250.05	845.39	1095.4	250.21	924.03	1174.2	0.41125	1.24756	1.6588
55	287.05	0.01732	7.7882	256.25	840.61	1096.9	256.42	919.70	1176.1	0.41958	1.23162	1.6512
60	292.69	0.01738	7.1766	262.01	836.13	1098.1	262.20	915.61	1177.8	0.42728	1.21697	1.6442
65	297.95	0.01743	6.6560	267.41	831.90	1099.3	267.62	911.75	1179.4	0.43443	1.20341	1.6378
70	302.91	0.01748	6.2075	272.50	827.90	1100.4	272.72	908.08	1180.8	0.44112	1.19078	1.6319
75	307.59	0.01752	5.8167	277.31	824.09	1101.4	277.55	904.58	1182.1	0.44741	1.17895	1.6264
80	312.02	0.01757	5.4733	281.87	820.45	1102.3	282.13	901.22	1183.4	0.45335	1.16783	1.6212
85	316.24	0.01761	5.1689	286.22	816.97	1103.2	286.50	898.00	1184.5	0.45897	1.15732	1.6163
90	320.26	0.01765	4.8972	290.38	813.62	1104.0	290.67	894.89	1185.6	0.46431	1.14737	1.6117
95	324.11	0.01770	4.6532	294.36	810.40	1104.8	294.67	891.89	1186.6	0.46941	1.13791	1.6073
100	327.81	0.01774	4.4327	298.19	807.29	1105.5	298.51	888.99	1187.5	0.47427	1.12888	1.6032
110	334.77	0.01781	4.0410	305.41	801.37	1106.8	305.78	883.44	1189.2	0.48341	1.11201	1.5954
120	341.25	0.01789	3.7289	312.16	795.79	1107.9	312.55	878.20	1190.8	0.49187	1.09646	1.5883
130	347.32	0.01796	3.4557	318.48	790.51	1109.0	318.92	873.21	1192.1	0.49974	1.08204	1.5818
140	353.03	0.01802	3.2202	324.45	785.49	1109.9	324.92	868.45	1193.4	0.50711	1.06858	1.5757
150	358.42	0.01809	3.0150	330.11	780.69	1110.8	330.61	863.88	1194.5	0.51405	1.05595	1.5700
160	363.54	0.01815	2.8347	335.49	776.10	1111.6	336.02	859.49	1195.5	0.52061	1.04405	1.5647
170	368.41	0.01821	2.6749	340.62	771.68	1112.3	341.19	855.25	1196.4	0.52682	1.03279	1.5596
180	373.07	0.01827	2.5322	345.53	767.42	1113.0	346.14	851.16	1197.3	0.53274	1.02210	1.5548
190 200 250 300 350	377.52 381.80 400.97 417.35 431.74	0.01833 0.01839 0.01865 0.01890 0.01912	2.4040 2.2882 1.8440 1.5435 1.3263	350.24 354.78 375.23 392.89 408.55	763.31 759.32 741.02 724.77 709.98	1113.6 1114.1 1116.3 1117.7 1118.5	350.89 355.46 376.09 393.94 409.79	847.19 843.33 825.47 809.41 794.65	1198.1 1198.8 1201.6 1203.3 1204.4	0.53839 0.54379 0.56784 0.58818 0.60590	1.01191 1.00219 0.95912 0.92289 0.89143	1.5460 1.5270 1.5111
400 450 500 550 600	444.62 456.31 467.04 476.97 486.24	0.01934 0.01955 0.01975 0.01995 0.02014	1.1617 1.0324 0.92819 0.84228 0.77020	458.90	696.31 683.52 671.42 659.91 648.88	1119.0 1119.2 1119.1 1118.8 1118.3	424.13 437.30 449.51 460.93 471.70	780.87 767.86 755.48 743.60 732.15	1205.0 1205.2 1205.0 1204.5 1203.9	0.62168 0.63595 0.64900 0.66107 0.67231	0.86350 0.83828 0.81521 0.79388 0.77400	1.4742 1.4642 1.4550

TABLA A-5E

Agua saturada. Tabla de presiones (conclusión)

			específico, 'Ibm	Energía interna, Btu/lbm			Entalpía, Btu/lbm			Entropía, Btu/lbm · R		
Pres.,	Temp. sat.,	Líq. sat.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,	Líq. sat.,	Evap.,	Vapor sat.,
P psia	T _{sat} °F	V_f	Vg	u_f	U_{fg}	u_g	h_f	h _{fg}	h _g	S_f	S _{fg}	S_g
700	503.13	0.02051	0.65589	488.96	627.98	1116.9	491.62	710.29	1201.9	0.69279	0.73771	1.4305
800	518.27	0.02087	0.56920	506.74	608.30	1115.0	509.83	689.48	1199.3	0.71117	0.70502	1.4162
900	532.02	0.02124	0.50107	523.19	589.54	1112.7	526.73	669.46	1196.2	0.72793	0.67505	1.4030
1000	544.65	0.02159	0.44604	538.58	571.49	1110.1	542.57	650.03	1192.6	0.74341	0.64722	1.3906
1200	567.26	0.02232	0.36241	566.89	536.87	1103.8	571.85	612.39	1184.2	0.77143	0.59632	1.3677
1400	587.14	0.02307	0.30161	592.79	503.50	1096.3	598.76	575.66	1174.4	0.79658	0.54991	1.3465
1600	604.93	0.02386	0.25516	616.99	470.69	1087.7	624.06	539.18	1163.2	0.81972	0.50645	1.3262
1800	621.07	0.02470	0.21831	640.03	437.86	1077.9	648.26	502.35	1150.6	0.84144	0.46482	1.3063
2000	635.85	0.02563	0.18815	662.33	404.46	1066.8	671.82	464.60	1136.4	0.86224	0.42409	1.2863
2500	668.17	0.02860	0.13076	717.67	313.53	1031.2	730.90	360.79	1091.7	0.91311	0.31988	1.2330
3000	695.41	0.03433	0.08460	783.39	186.41	969.8	802.45	214.32	1016.8	0.97321	0.18554	1.1587
3200.1	705.10	0.04975	0.04975	866.61	0	866.6	896.07	0	896.1	1.05257	0	1.0526

TABLA A-6E

V	apor/	de	agua	sobreca	lentado
---	-------	----	------	---------	---------

vapor	de agua so	brecalen	tado									
				S				S				s
Τ	V	И	h	Btu/	V	и	h	Btu/	V	и	h	Btu/
°F	ft ³ /lbm	Btu/Ibm	Btu/Ibm	lbm ⋅ R	ft ³ /lbm	Btu/lbm	Btu/Ibm	lbm ⋅ R	ft ³ /lbm	Btu/lbm	Btu/Ibm	Ibm · R
	P =	= 1.0 psia	(101.69°F	-)*	P =	= 5.0 psia	(162.18°	F)	P =	= 10 psia	(193.16°F	=)
Sat.†	333.49	1043.7	1105.4	1.9776	73.525	1062.7	1130.7	1.8438	38.425	1072.0	1143.1	1.7875
200	392.53	1077.5	1150.1	2.0509	78.153	1076.2	1148.5	1.8716	38.849	1074.5	1146.4	1.7926
240	416.44	1091.2	1168.3	2.0777	83.009	1090.3	1167.1	1.8989	41.326	1089.1	1165.5	1.8207
280	440.33	1105.0	1186.5	2.1030	87.838	1104.3	1185.6	1.9246	43.774	1103.4	1184.4	1.8469
320	464.20	1118.9	1204.8	2.1271	92.650	1118.4	1204.1	1.9490	46.205	1117.6	1203.1	1.8716
360	488.07	1132.9	1223.3	2.1502	97.452	1132.5	1222.6	1.9722	48.624	1131.9	1221.8	1.8950
400	511.92	1147.1	1241.8	2.1722	102.25	1146.7	1241.3	1.9944	51.035	1146.2	1240.6	1.9174
440	535.77	1161.3	1260.4	2.1934	107.03	1160.9	1260.0	2.0156	53.441	1160.5	1259.4	1.9388
500	571.54	1182.8	1288.6	2.2237	114.21	1182.6	1288.2	2.0461	57.041	1182.2	1287.8	1.9693
600	631.14	1219.4	1336.2	2.2709	126.15	1219.2	1335.9	2.0933	63.029	1219.0	1335.6	2.0167
700	690.73	1256.8	1384.6	2.3146	138.09	1256.7	1384.4	2.1371	69.007	1256.5	1384.2	2.0605
800	750.31	1295.1	1433.9	2.3553	150.02	1294.9	1433.7	2.1778	74.980	1294.8	1433.5	2.1013
1000	869.47	1374.2	1535.1	2.4299	173.86	1374.2	1535.0	2.2524	86.913	1374.1	1534.9	2.1760
1200	988.62	1457.1	1640.0	2.4972	197.70	1457.0	1640.0	2.3198	98.840	1457.0	1639.9	2.2433
1400	1107.8	1543.7	1748.7	2.5590	221.54	1543.7	1748.7	2.3816	110.762	1543.6	1748.6	2.3052
	Р	= 15 psia	(212.99°F	-)	P :	= 20 psia	(227.92°	F)	P =	= 40 psia	(267.22°F	=)
Sat.	26.297	1077.7	1150.7	1.7549	20.093	1081.8	1156.2	1.7319	10.501	1092.1	1169.8	1.6766
240	27.429	1087.8	1163.9	1.7742	20.478	1086.5	1162.3	1.7406				
280	29.085	1102.4	1183.2	1.8010	21.739	1101.4		1.7679	10.713	1097.3	1176.6	1.6858
320	30.722	1116.9	1202.2	1.8260	22.980		1201.2	1.7933	11.363	1112.9	1197.1	1.7128
360	32.348	1131.3	1221.1	1.8496	24.209	1130.7		1.8171	11.999	1128.1	1216.9	1.7376
400	33.965	1145.7	1239.9	1.8721		1145.1		1.8398	12.625		1236.5	1.7610
440	35.576	1160.1	1258.8	1.8936	26.644	1159.7	1258.3	1.8614	13.244	1157.9	1256.0	1.7831
500	37.986	1181.9	1287.3	1.9243	28.458	1181.6	1286.9	1.8922	14.165	1180.2	1285.0	1.8143
600	41.988	1218.7	1335.3	1.9718	31.467	1218.5	1334.9	1.9398	15.686	1217.5	1333.6	1.8625
700	45.981	1256.3	1383.9	2.0156	34.467	1256.1	1383.7	1.9837	17.197	1255.3	1382.6	1.9067
800	49.967	1294.6	1433.3	2.0565	37.461	1294.5	1433.1	2.0247	18.702	1293.9	1432.3	1.9478
1000	57.930	1374.0	1534.8	2.1312	43.438	1373.8	1534.6	2.0994	21.700	1373.4	1534.1	2.0227
1200	65.885	1456.9	1639.8	2.1986	49.407	1456.8	1639.7	2.1668	24.691	1456.5	1639.3	2.0902
1400	73.836	1543.6	1748.5	2.2604	55.373	1543.5	1748.4	2.2287	27.678	1543.3	1748.1	2.1522
1600	81.784	1634.0	1861.0	2.3178	61.335	1633.9	1860.9	2.2861	30.662	1633.7	1860.7	2.2096
	<i>P</i>	= 60 psia	(292.69°F	-)	P :	= 80 psia	(312.02°	F)	P =	100 psia	(327.81°	F)
Sat.	7.1766	1098.1	1177.8	1.6442	5.4733	3 1102.3	1183.4	1.6212	4.4327	1105.5	1187.5	1.6032
320	7.4863	1109.6	1192.7	1.6636	5.5440	1105.9	1187.9	1.6271				
360	7.9259	1125.5	1213.5	1.6897	5.8876	5 1122.7	1209.9	1.6545	4.6628	1119.8	1206.1	1.6263
400	8.3548	1140.9	1233.7	1.7138	6.2187	7 1138.7	1230.8	1.6794		1136.4		1.6521
440		1156.1	1253.6	1.7364		1154.3	1251.2	1.7026	5.2006	1152.4	1248.7	1.6759
500		1178.8	1283.1	1.7682		7 1177.3		1.7350		1175.9		1.7088
600		1216.5	1332.2	1.8168	7.7951	1215.4	1330.8	1.7841		1214.4	1329.4	1.7586
700		1254.5	1381.6	1.8613	8.5616	5 1253.8	1380.5	1.8289	1	1253.0	1379.5	1.8037
800		1293.3	1431.5	1.9026		3 1292.6		1.8704		1292.0	1429.8	1.8453
1000		1373.0	1533.5	1.9777		3 1372.6	1532.9	1.9457		1372.2	1532.4	1.9208
1200		1456.2	1638.9	2.0454		1455.9	1638.5	2.0135	1	1455.6	1638.1	1.9887
1400		1543.0	1747.8	2.1073	1	5 1542.8		2.0755		1542.6	1747.2	2.0508
1600	20.438	1633.5	1860.5	2.1648		7 1633.3		2.1330	1		1860.0	2.1083
1800	22.428	1727.6	1976.6	2.2187		2 1727.5		2.1869		1727.3	1976.3	2.1622
2000	24.417	1825.2	2096.3	2.2694	18.3117	1825.0	2096.1	2.2376	14.6487	1824.9	2096.0	2.2130

 $^{^{\}star}$ La temperatura entre paréntesis es la temperatura de saturación a la presión especificada.

 $^{^\}dagger$ Propiedades del vapor saturado a la presión especificada.

TARIA A-RI	-

Vapor de agua sobrecalentado (continuación) S S Τ Btu/ h Btu/ h Btu/ h 11 11 11 Btu/Ibm °F ft³/lbm Btu/lbm Btu/lbm Ibm · R ft³/lbm Btu/lbm Btu/lbm lbm · R ft³/lbm Btu/lbm lbm · R $P = 120 \text{ psia } (341.25^{\circ}\text{F})$ $P = 140 \text{ psia } (353.03^{\circ}\text{F})$ $P = 160 \text{ psia } (363.54^{\circ}\text{F})$ Sat. 3.7289 1107.9 1190.8 1.5883 3.2202 1109.9 1193.4 1.5757 2.8347 1111.6 1195.5 1.5647 1113.4 1197.8 1202.1 1.5811 360 3.8446 1116.7 1.6023 3.2584 400 4.0799 1134.0 1224.6 1.6292 3.4676 1131.5 1221.4 1.6092 3.0076 1129.0 1218.0 1.5914 450 4.3613 1154.5 1251.4 1.6594 3.7147 1152.6 1248.9 1.6403 3.2293 1150.7 1246.3 1.6234 500 4.6340 1174.4 1277.3 1.6872 3.9525 1172.9 1275.3 1.6686 3.4412 1171.4 1273.2 1.6522 4.9010 1193.9 1302.8 1.6948 3.6469 1191.4 1299.4 1.6788 550 1.7131 4.1845 1192.7 1301.1 600 5.1642 1213.4 1328.0 1.7375 4.4124 1212.3 1326.6 1.7195 3.8484 1211.3 1325.2 1.7037 700 5.6829 1252.2 1378.4 1.7829 4.8604 1251.4 1377.3 1.7652 4.2434 1250.6 1376.3 1.7498 800 6.1950 1291.4 1429.0 1.8247 5.3017 1290.8 1428.1 1.8072 4.6316 1290.2 1427.3 1.7920 7.2083 1371.7 1371.3 1531.3 1370.9 1530.7 1000 1531.8 1.9005 6.1732 1.8832 5.3968 1.8682 1200 8.2137 1455.3 1637.7 1.9684 7.0367 1455.0 1637.3 6.1540 1454.7 1636.9 1.9363 1.9512 1400 9.2149 1542.3 1746.9 2.0305 7.8961 1542.1 1746.6 2.0134 6.9070 1541.8 1746.3 1.9986 1600 10.2135 1633.0 1859.8 2.0881 8.7529 1632.8 1859.5 2.0711 7.6574 1632.6 1859.3 2.0563 1800 11.2106 1727.2 1976.1 2.1420 9.6082 1727.0 1975.9 2.1250 8.4063 1726.9 1975.7 2.1102 2000 12.2067 1824.8 2095.8 2.1928 10.4624 1824.6 2095.7 2.1758 9.1542 1824.5 2095.5 2.1610 $P = 180 \text{ psia } (373.07^{\circ}\text{F})$ $P = 200 \text{ psia } (381.80^{\circ}\text{F})$ $P = 225 \text{ psia } (391.80^{\circ}\text{F})$ 2.5322 1113.0 1197.3 1.5548 1114.1 1198.8 1.5460 1115.3 1200.3 1.5360 Sat. 2.2882 2.0423 1123.5 1210.9 400 2.6490 1126.3 1214.5 1.5752 2.3615 1.5602 2.0728 1119.7 1206.0 1.5427 450 2.8514 1148.7 1243.7 1.6082 2.5488 1146.7 1241.0 1.5943 2.2457 1144.1 1237.6 1.5783 500 3.0433 1169.8 1271.2 1.6376 2.7247 1168.2 1269.0 1.6243 2.4059 1166.2 1266.3 1.6091 1188.9 1296.0 3.2286 1190.2 1297.7 1.6646 2.8939 1.6516 2.5590 1187.2 1293.8 1.6370 550 600 3.4097 1210.2 1323.8 1.6897 3.0586 1209.1 1322.3 1.6771 2.7075 1207.7 1320.5 1.6628 700 3.7635 1249.8 1375.2 1.7361 3.3796 1249.0 1374.1 1.7238 2.9956 1248.0 1372.7 1.7099 1288.1 800 4.1104 1289.5 1426.5 1.7785 3.6934 1288.9 1425.6 1.7664 3.2765 1424.5 1.7528 900 4.4531 1329.7 1478.0 1.8179 4.0031 1329.2 1477.3 1.8059 3.5530 1328.5 1476.5 1.7925 1370.1 1529.6 1000 4.7929 1370.5 1530.1 1.8549 4.3099 1.8430 3.8268 1369.5 1528.9 1.8296 1200 5.4674 1454.3 1636.5 1.9231 4.9182 1454.0 1636.1 1.9113 4.3689 1453.6 1635.6 1.8981 1400 1541.6 1746.0 6.1377 1.9855 5.5222 1541.4 1745.7 1.9737 4.9068 1541.1 1745.4 1.9606 1600 6.8054 1632.4 1859.1 2.0432 6.1238 1632.2 1858.8 2.0315 5.4422 1632.0 1858.6 2.0184 1800 7.4716 1726.7 1975.6 2.0971 6.7238 1726.5 1975.4 2.0855 5.9760 1726.4 1975.2 2.0724 2000 8.1367 1824.4 2095.4 2.1479 7.3227 1824.3 2095.3 2.1363 6.5087 1824.1 2095.1 2.1232 $P = 250 \text{ psia } (400.97^{\circ}\text{F})$ $P = 275 \text{ psia } (409.45^{\circ}\text{F})$ $P = 300 \text{ psia } (417.35^{\circ}\text{F})$ 1116.3 1201.6 1117.0 1202.6 1117.7 Sat. 1.8440 1.5270 1.6806 1.5187 1.5435 1203.3 1.5111 2.0027 1141.3 1234.0 1.5636 1.8034 1138.5 1230.3 1.5499 1.6369 1135.6 1226.4 1.5369 450 500 2.1506 1164.1 1263.6 1.5953 1.9415 1162.0 1260.8 1.5825 1.7670 1159.8 1257.9 1.5706 2.2910 1185.6 1291.5 1.6237 1183.9 1289.3 1182.1 1287.0 1.6001 550 2.0715 1.6115 1.8885 600 2.4264 1206.3 1318.6 1.6499 2.1964 1204.9 1316.7 1.6380 2.0046 1203.5 1314.8 1.6270 1.6520 650 2.5586 1226.8 1345.1 1.6743 2.3179 1225.6 1343.5 1.6627 2.1172 1224.4 1341.9 1246.0 1244.9 1368.6 700 2.6883 1247.0 1371.4 1.6974 2.4369 1370.0 1.6860 2.2273 1.6755 800 1287.3 1423.5 1.7406 1286.5 1422.4 1.7294 2.4424 1285.7 1421.3 2.9429 2.6699 1.7192 900 3.1930 1327.9 1475.6 1.7804 2.8984 1327.3 1474.8 1.7694 2.6529 1326.6 1473.9 1.7593 1000 3.4403 1369.0 1528.2 1.8177 3.1241 1368.5 1527.4 1.8068 2.8605 1367.9 1526.7 1.7968 1200 3.9295 1453.3 1635.0 1.8863 3.5700 1452.9 1634.5 1.8755 3.2704 1452.5 1634.0 1.8657 4.4144 1540.8 1745.0 3.6759 1540.2 1744.2 1.9284 1400 4.0116 1540.5 1744.6 1.9381 1.9488 1600 4.8969 1631.7 1858.3 2.0066 4.4507 1631.5 1858.0 1.9960 4.0789 1631.3 1857.7 1.9863 1800 5.3777 1726.2 1974.9 2.0607 4.8882 1726.0 1974.7 2.0501 4.4803 1725.8 1974.5 2.0404 2000 5.8575 1823.9 2094.9 2.1116 5.3247 1823.8 2094.7 2.1010 4.8807 1823.6 2094.6 2.0913

TABLA A-6E Vapor de agua sobrecalentado (continuación) S S Τ h Btu/ h Btu/ h Btu/ И и и °F ft³/lbm ft³/lbm Btu/lbm Btu/lbm lbm · R ft³/lbm Btu/lbm Btu/lbm lbm \cdot R Btu/lbm Btu/lbm lbm · R $P = 350 \text{ psia } (431.74^{\circ}\text{F})$ $P = 400 \text{ psia } (444.62^{\circ}\text{F})$ $P = 450 \text{ psia } (456.31^{\circ}\text{F})$ Sat. 1.3263 1118.5 1204.4 1.4973 1.1617 1119.0 1205.0 1.4852 1.0324 1119.2 1205.2 1.4742 1129.3 1218.3 1209.4 1.4901 450 1.3739 1.5128 1.1747 1122.5 500 1.4921 1155.2 1251.9 1.5487 1.2851 1150.4 1245.6 1.5288 1.1233 1145.4 1238.9 1.5103 1.6004 1178.6 1282.2 1.5795 1.3840 1174.9 1277.3 1.5610 1.2152 1171.1 1272.3 1.5441 550 600 1.7030 1200.6 1310.9 1.6073 1.4765 1197.6 1306.9 1.5897 1.3001 1194.6 1302.8 1.5737

	1., 500			1.00/0	1.1700	,.0	1000.0	1.0007	1.0001		1002.0	2.0,0,
650	1.8018	1221.9	1338.6	1.6328	1.5650	1219.4	1335.3	1.6158	1.3807	1216.9	1331.9	1.6005
700	1.8979	1242.8	1365.8	1.6567	1.6507	1240.7	1362.9	1.6401	1.4584	1238.5	1360.0	1.6253
800	2.0848	1284.1	1419.1	1.7009	1.8166		1417.0	1.6849	1.6080	1280.8		1.6706
900	2.2671	1325.3	1472.2	1.7414	1.9777	1324.0	1470.4	1.7257	1.7526	1322.7	1468.6	1.7117
1000	2.4464	1366.9	1525.3	1.7791	2.1358	1365.8	1523.9	1.7636	1.8942	1364.7	1522.4	1.7499
1200	2.7996	1451.7	1633.0	1.8483	2.4465	1450.9	1632.0	1.8331	2.1718	1450.1	1631.0	1.8196
1400	3.1484	1539.6	1743.5	1.9111	2.7527	1539.0	1742.7	1.8960	2.4450	1538.4	1742.0	1.8827
1600	3.4947	1630.8	1857.1	1.9691	3.0565	1630.3	1856.5	1.9541	2.7157	1629.8	1856.0	1.9409
1800	3.8394		1974.0	2.0233	3.3586			2.0084	2.9847			1.9952
2000	4.1830	1823.3	2094.2	2.0742	3.6597	1823.0	2093.9	2.0594	3.2527	1822.6	2093.5	2.0462
	P =	= 500 psia	a (467.04	°F)	P =	600 psia	(486.24°F	-)	P =	700 psia	(503.13°F	=)
Sat.	0.92815	1119.1	1205.0	1.4642	0.77020	1118.3	1203.9	1.4463	0.65589	1116.9	1201.9	1.4305
500	0.99304			1.4928	0.79526			1.4596	0.0000	1110.0	1201.0	21.1000
550	1.07974			1.5284	0.87542			1.4996	0.72799	1149.5	1243.8	1.4730
600	1.15876	1191.4	1298.6	1.5590	0.94605	1184.9	1289.9	1.5325	0.79332	1177.9	1280.7	1.5087
650	1.23312		1328.4	1.5865				1.5614	0.85242		1313.8	1.5393
700	1.30440	1236.4	1357.0	1.6117	1.07316	1231.9	1351.0	1.5877	0.90769	1227.2	1344.8	1.5666
800	1.44097	1279.2	1412.5	1.6576	1.19038	1275.8	1408.0	1.6348	1.01125	1272.4	1403.4	1.6150
900	1.57252	1321.4	1466.9	1.6992	1.30230	1318.7	1463.3	1.6771	1.10921	1316.0	1459.7	1.6581
1000	1.70094	1363.6	1521.0	1.7376	1.41097	1361.4	1518.1	1.7160	1.20381	1359.2	1515.2	1.6974
1100	1.82726	1406.2	1575.3	1.7735	1.51749	1404.4	1572.9	1.7522	1.29621	1402.5	1570.4	1.7341
1200	1.95211			1.8075			1627.9		1.38709			1.7685
1400	2.1988			1.8708	1.82957			1.8501	1.56580		1738.2	
1600	2.4430			1.9291	2.0340			1.9085	1.74192		1853.1	1.8911
1800	2.6856	1724.2	1972.7	1.9834	2.2369			1.9630	1.91643		1970.9	1.9457
2000	2.9271	1822.3	2093.1	2.0345	2.4387	1821.7	2092.4	2.0141	2.08987	1821.0	2091.7	1.9969
	P =	= 800 psia	a (518.27	°F)	P = 1	1000 psia	(544.65°	F)	P = 1	1250 psia	(572.45°	F)
Sat.	0.56920	1115.0	1199.3	1.4162	0.44604	1110.1	1192.6	1.3906	0.34549	1102.0	1181.9	1.3623
550	0.61586	1139.4	1230.5	1.4476	0.45375	1115.2	1199.2	1.3972				
600	0.67799	1170.5	1270.9	1.4866	0.51431	1154.1	1249.3	1.4457	0.37894	1129.5	1217.2	1.3961
650	0.73279		1306.0	1.5191	0.56411	1185.1	1289.5	1.4827	0.42703	1167.5	1266.3	1.4414
700	0.78330	1222.4	1338.4	1.5476	0.60844	1212.4	1325.0	1.5140	0.46735	1198.7	1306.8	1.4771
750	0.83102	1246.0	1369.1	1.5735	0.64944	1237.6	1357.8	1.5418	0.50344	1226.4	1342.9	1.5076
800	0.87678	1268.9	1398.7	1.5975	0.68821	1261.7	1389.0	1.5670	0.53687	1252.2	1376.4	1.5347
900	0.96434	1313.3	1456.0	1.6413	0.76136	1307.7	1448.6	1.6126	0.59876	1300.5	1439.0	1.5826
1000	1.04841	1357.0	1512.2	1.6812	0.83078		1506.2	1.6535	0.65656	1346.7	1498.6	1.6249
1100	1.13024		1568.0	1.7181	0.89783	1396.9	1563.1	1.6911	0.71184	1392.2	1556.8	1.6635
1200	1.21051	1444.6	1623.8	1.7528	0.96327	1441.4	1619.7	1.7263	0.76545	1437.4	1614.5	1.6993
1400	1.36797				1.09101				0.86944			
1.000	1 50000	1000 5	10510	1 0750	1 01 01 0	10010	1040 0	1 0504	0.07070	1 (0 0 0	10167	1 0046

1.21610 1624.6 1849.6 1.8504

1968.2

2089.6

1.9053

1.9568

1.07036

1.16892

1720.3

1819.1

1.52283 1626.5 1851.9 1.8759

1721.9 1970.0

1820.4 2091.0 1.9819

1.9306

1.33956

1.46194

1600 1800

2000

1.67606

1.82823

0.97072 1622.2 1846.7 1.8246

1966.0

2087.9 1.9315

1.8799

1718.4

1817.5

ы	-8.1	ы	-		\- 6	
	EF 4.1	134	III /	-		-

Vapor de agua sobrecalentado (conclusión) S s Τ h Btu/ h Btu/ h Btu/ Ш Ш U °F ft³/lbm ft³/lbm ft³/lbm Btu/Ibm Btu/lbm lbm · R Btu/lbm Btu/lbm Ibm · R Btu/lbm Btu/lbm lbm · R $P = 1500 \text{ psia } (596.26^{\circ}\text{F})$ $P = 1750 \text{ psia } (617.17^{\circ}\text{F})$ $P = 2000 \text{ psia } (635.85^{\circ}\text{F})$ 0.27695 1.3112 Sat. 1092.1 1169.0 1.3362 0.22681 1080.5 1153.9 0.18815 1066.8 1136.4 1.2863 0.28189 1097.2 1175.4 1.3423 600 650 0.33310 1147.2 1239.7 1.4016 0.26292 1122.8 1207.9 1.3607 0.20586 1091.4 1167.6 1.3146 700 0.37198 1183.6 1286.9 1.4433 0.30252 1166.8 1264.7 1.4108 0.24894 1147.6 1239.8 1.3783 1214.4 1326.9 1.4771 750 0.40535 0.33455 1201.5 1309.8 1.4489 0.28074 1187.4 1291.3 1.4218 800 0.43550 1242.2 1363.1 1.5064 0.36266 1231.7 1349.1 1.4807 0.30763 1220.5 1334.3 1.4567 1268.2 1396.9 1.5328 0.38835 1385.1 1.5088 0.33169 1372.8 850 0.46356 1259.3 1250.0 1.4867 900 0.49015 1293.1 1429.2 1.5569 0.41238 1285.4 1419.0 1.5341 0.35390 1277.5 1408.5 1.5134 1000 0.54031 1340.9 1490.8 1.6007 0.45719 1334.9 1482.9 1.5796 0.39479 1328.7 1474.9 1.5606 1382.4 1544.1 1.6201 0.58781 1387.3 1550.5 1.6402 0.49917 0.43266 1377.5 1537.6 1100 1.6021 0.63355 1433.3 1609.2 1.6767 0.53932 1429.2 1603.9 1.6572 0.46864 1425.1 1598.5 1.6400 1200 1400 0.72172 1525.7 1726.0 1.7432 0.61621 1522.6 1722.1 1.7245 0.53708 1519.5 1718.3 1.7081 0.69031 1617.4 1840.9 1.7852 0.60269 1615.0 1838.0 1.7693 1600 0.80714 1619.8 1843.8 1.8033 0.89090 1716.4 1963.7 1.8589 1800 0.76273 1714.5 1961.5 1.8410 0.66660 1712.5 1959.2 1.8255 0.97358 1815.9 2086.1 1.9108 1814.2 2084.3 0.72942 2082.6 2000 0.83406 1.8931 1812.6 1.8778 $P = 2500 \text{ psia } (668.17^{\circ}\text{F})$ $P = 3000 \text{ psia } (695.41^{\circ}\text{F})$ P = 3500 psia0.13076 1031.2 1091.7 1.2330 0.08460 969.8 1016.8 1.1587 Sat. 650 0.02492 663.7 679.9 0.8632 700 0.16849 1098.4 1176.3 1.3072 0.09838 1005.3 1059.9 1.1960 0.03065 760.0 779.9 0.9511 0.10460 1057.6 1125.4 1.2434 750 0.20327 1154.9 1249.0 1.3686 0.14840 1114.1 1196.5 1.3118 800 0.22949 1195.9 1302.0 1.4116 0.17601 1167.5 1265.3 1.3676 0.13639 1134.3 1222.6 1.3224 0.25174 1230.1 1346.6 0.19771 1208.2 1317.9 1.4086 0.15847 1183.8 1286.5 850 1.4463 1.3721 900 0.27165 1260.7 1386.4 1.4761 0.21640 1242.8 1362.9 1.4423 0.17659 1223.4 1337.8 1.4106 1289.1 1423.3 1403.3 1.4716 0.19245 950 0.29001 1.5028 0.23321 1273.9 1257.8 1382.4 1.4428 1316.1 1458.2 1.5271 1000 0.30726 0.24876 1302.8 1440.9 1.4978 0.20687 1289.0 1423.0 1.4711 0.33949 1367.3 1524.4 1.5710 0.27732 1356.8 1510.8 1.5441 0.23289 1346.1 1496.9 1.5201 1100 1200 0.36966 1416.6 1587.6 1.6103 0.30367 1408.0 1576.6 1.5850 0.25654 1399.3 1565.4 1.5627 0.29978 1500.7 1694.8 1.6364 1400 0.42631 1513.3 1710.5 1.6802 0.35249 1507.0 1702.7 1.6567 0.48004 1610.1 1832.2 1.7424 0.39830 1605.3 1826.4 1.7199 0.33994 1600.4 1820.5 1.7006 1600 1800 0.53205 1708.6 1954.8 1.7991 0.44237 1704.7 1950.3 1.7773 0.37833 1700.8 1945.8 1.7586 2079.1 2000 0.58295 1809.4 1.8518 0.48532 1806.1 2075.6 1.8304 0.41561 1802.9 2072.1 1.8121 P = 4000 psiaP = 5000 psiaP = 6000 psia0.02448 657.9 676.1 0.8577 648.3 670.3 0.8485 0.02325 640.3 650 0.02379 666.1 0.8408 700 0.02871 742.3 763.6 0.9347 0.02678 721.8 746.6 0.9156 0.02564 708.1 736.5 0.9028 821.8 0.06370 962.1 1009.2 1.1410 853.0 1.0054 0.02981 821.8 0.9747 750 0.03373 788.7 800 0.10520 1094.2 1172.1 1.2734 0.05937 986.9 1041.8 1.1581 0.03949 897.1 941.0 1.0711 850 0.12848 1156.7 1251.8 1.3355 0.08551 1092.4 1171.5 1.2593 0.05815 1018.6 1083.1 1.1819 900 0.14647 1202.5 1310.9 1.3799 0.10390 1155.9 1252.1 1.3198 0.07584 1103.5 1187.7 1.2603 1163.7 1313.6 1.3643 0.09010 1.3153 950 0.16176 1240.7 1360.5 1.4157 0.11863 1203.9 1263.7 1000 0.17538 1274.6 1404.4 1.4463 0.13128 1244.0 1365.5 1.4004 0.10208 1211.4 1324.7 1.3578 1100 0.19957 1335.1 1482.8 1.4983 0.15298 1312.2 1453.8 1.4590 0.12211 1288.4 1424.0 1.4237 1200 0.22121 1390.3 1554.1 1.5426 0.17185 1372.1 1531.1 1.5070 0.13911 1353.4 1507.8 1.4758 1300 0.24128 1443.0 1621.6 1.5821 0.18902 1427.8 1602.7 1.5490 0.15434 1412.5 1583.8 1.5203 1.5598 1400 0.26028 1494.3 1687.0 1.6182 0.20508 1481.4 1671.1 1.5868 0.16841 1468.4 1655.4 1600 0.29620 1595.5 1814.7 1.6835 0.23505 1585.6 1803.1 1.6542 0.19438 1575.7 1791.5 1.6294 1800 0.33033 1696.8 1941.4 1.7422 0.26320 1689.0 1932.5 1.7142 0.21853 1681.1 1923.7 1.6907 0.36335 2068.6 1.7961 2061.7 2000 1799.7 0.29023 1793.2 1.7689 0.24155 1786.7 2054.9 1.7463

	R			

Agua	a líquida c	omprimi	da									
Т	V	и	h	S	v	и	h	S	v	и	h	S
°F	ft ³ /lbm	Btu/lbm	Btu/lbm	Btu/lbm · R	ft ³ /lbm	Btu/lbm	Btu/lbm	Btu/Ibm · R	ft ³ /lbm	Btu/lbm	Btu/lbm	$Btu/Ibm \cdot R$
	P =	= 500 psi	a (467.04	ŀ°F)	P =	1000 psi	a (544.6	5°F)	P =	1500 psi	a (596.26	5°F)
Sat.	0.019750	447.68	449.51	0.64900	0.021595	538.58	542.57	0.74341	0.023456	605.07	611.58	0.80836
32	0.015994	0.01	1.49	0.00001	0.015966	0.03	2.99	0.00005	0.015939	0.05	4.48	0.00008
50	0.015998	18.03	19.51	0.03601	0.015972	17.99	20.95	0.03593	0.015946	17.95	22.38	0.03584
100	0.016107	67.86	69.35	0.12930	0.016083	67.69	70.67	0.12899	0.016059	67.53	71.98	0.12869
150	0.016317		119.21	0.21462	0.016292		120.43	0.21416	0.016267	117.14	121.66	0.21369
200	0.016607		169.24	0.29349	0.016580		170.38	0.29289	0.016553	166.92	171.52	0.29229
250	0.016972		219.61	0.36708	0.016941		220.65	0.36634	0.016911	217.00	221.69	0.36560
300	0.017417		270.53	0.43641	0.017380		271.46	0.43551	0.017345	267.57	272.39	0.43463
350	0.017954		322.30	0.50240	0.017910	319.77		0.50132	0.017866	318.91	323.87	0.50025
400	0.018609		375.33	0.56595	0.018552			0.56463	0.018496	371.37		0.56333
450	0.019425	428.44	430.24	0.62802	0.019347	426.93		0.62635	0.019271	425.47	430.82	0.62472
500					0.020368	484.03	487.80	0.68764	0.020258	482.01	487.63	0.68550
550									0.021595	542.50	548.50	0.74731
	P =	2000 ps	ia (635.8	5°F)	P =	3000 psi	a (695.4	l°F)		P = 500	00 psia	
Sat.	0.025634	662.33	671.82	0.86224	0.034335	783.39	802.45	0.97321				
32	0.015912	0.07	5.96	0.00010	0.015859	0.10	8.90	0.00011	0.015756	0.13	14.71	0.00002
50	0.015921	17.91	23.80	0.03574	0.015870	17.83	26.64	0.03554	0.015773	17.65	32.25	0.03505
100	0.016035	67.36	73.30	0.12838	0.015988	67.04	75.91	0.12776	0.015897	66.41	81.12	0.12652
200	0.016527	166.54	172.66	0.29170	0.016475	165.79	174.94	0.29053	0.016375	164.36	179.51	0.28824
300	0.017310		273.33	0.43376	0.017242		275.22	0.43204	0.017112	263.24	279.07	0.42874
400	0.018442		377.12	0.56205	0.018338	368.22		0.55959	0.018145	364.35	381.14	0.55492
450	0.019199		431.16	0.62314	0.019062		431.94	0.62010	0.018812	416.40	433.80	0.61445
500	0.020154		487.54	0.68346	0.019960		487.53	0.67958	0.019620	469.94	488.10	0.67254
560	0.021739		560.26	0.75692	0.021405	546.59		0.75126	0.020862	537.08	556.38	0.74154
600	0.023317	605.77	614.40	0.80898	0.022759		610.06	0.80086	0.021943	584.42	604.72	0.78803
640					0.024765	654.52		0.85476	0.023358	634.95	656.56	0.83603
680					0.028821	728.63	744.64	0.92288	0.025366		714.14	0.88745
700									0.026777	721.78	746.56	0.91564
					l							

TABLA A-8E

Hielo saturado. Vapor de agua

	Pres.		específico, Ibm	En	<i>ergía interi</i> Btu/lbm	na,		<i>Entalpía,</i> Btu/lbm		Entropía, Btu/Ibm · R		
Temp., <i>T</i> °F	sat., P _{sat} psia	Hielo sat.,	Vapor sat.,	Hielo sat.,	Subl.,	Vapor sat.,	Hielo sat.,	Subl.,	Vapor sat.,	Hielo sat.,	Subl.,	Vapor sat.,
<i>I</i> F	рѕіа	V _i	Vg	u _i	U _{ig}	Ug	h _i	h _{ig}	h _g	Si	Sig	Sg
32.018	0.08871	0.01747	3299.6	-143.34	1164.2	1020.9	-143.34	1218.3	1075.0	-0.29146	2.4779	2.1864
32	0.08864	0.01747	3302.6	-143.35	1164.2	1020.9	-143.35	1218.4	1075.0	-0.29148	2.4779	2.1865
30	0.08086	0.01747	3605.8	-144.35	1164.6	1020.2	-144.35	1218.5	1074.2	-0.29353	2.4883	2.1948
25	0.06405	0.01746	4505.8	-146.85	1165.4	1018.6	-146.85	1218.8	1072.0	-0.29865	2.5146	2.2160
20	0.05049	0.01746	5657.6	-149.32	1166.2	1016.9	-149.32	1219.1	1069.8	-0.30377	2.5414	2.2376
15	0.03960	0.01745	7138.9	-151.76	1167.0	1015.2	-151.76	1219.3	1067.6	-0.30889	2.5687	2.2598
10	0.03089	0.01744	9054.0	-154.18	1167.8	1013.6	-154.18	1219.5	1065.4	-0.31401	2.5965	2.2825
5	0.02397	0.01743	11,543	-156.57	1168.5	1011.9	-156.57	1219.7	1063.1	-0.31913	2.6248	2.3057
0	0.01850	0.01743	14,797	-158.94	1169.2	1010.3	-158.94	1219.9	1060.9	-0.32426	2.6537	2.3295
-5	0.01420	0.01742	19,075	-161.28	1169.9	1008.6	-161.28	1220.0	1058.7	-0.32938	2.6832	2.3538
-10	0.01083	0.01741	24,731	-163.60	1170.6	1007.0	-163.60	1220.1	1056.5	-0.33451	2.7133	2.3788
-15	0.00821	0.01740	32,257	-165.90	1171.2	1005.3	-165.90	1220.2	1054.3	-0.33964	2.7440	2.4044
-20	0.00619	0.01740	42,335	-168.16	1171.8	1003.6	-168.16	1220.3	1052.1	-0.34478	2.7754	2.4306
-25	0.00463	0.01739	55,917	-170.41	1172.4	1002.0	-170.41	1220.3	1049.9	-0.34991	2.8074	2.4575
-30	0.00344	0.01738	74,345	-172.63	1173.0	1000.3	-172.63	1220.3	1047.7	-0.35505	2.8401	2.4850
-35	0.00254	0.01738	99,526	-174.83	1173.5	998.7	-174.83	1220.3	1045.5	-0.36019	2.8735	2.5133
-40	0.00186	0.01737	134,182	-177.00	1174.0	997.0	-177.00	1220.3	1043.3	-0.36534	2.9076	2.5423

FIGURA A-9E

Diagrama T s para el agua.

F s h H a F d s Ph H a Steam Tables a h W

FIGURA A-10E

Diagrama de Mollier para el agua.

TABLA A-11E

Refrigerante 134a saturado. Tabla de temperatura

		Volumen e ft³/l		Energía Btu/			Enta Btu/				<i>Entropía,</i> Btu/lbm · R	
Temp., <i>T</i> °F	Pres. sat., P _{sat} psia	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u_{fg}	Vapor sat., u _g	Líq. sat., <i>h_f</i>	Evap., h _{fg}	Vapor sat., h _g	Líq. sat., s _f	Evap., s _{fg}	Vapor sat., s_g
-40 -35 -30 -25 -20 -15 -10	7.432 8.581 9.869 11.306 12.906 14.680 16.642 18.806 21.185	0.01130 0.01136 0.01143 0.01150 0.01156 0.01163 0.01171 0.01178 0.01185	5.7796 5.0509 4.4300 3.8988 3.4426 3.0494 2.7091 2.4137 2.1564	-0.016 1.484 2.990 4.502 6.019 7.543 9.073 10.609 12.152	89.167 88.352 87.532 86.706 85.874 85.036 84.191 83.339 82.479	89.15 89.84 90.52 91.21 91.89 92.58 93.26 93.95 94.63	0.000 1.502 3.011 4.526 6.047 7.574 9.109 10.650 12.199	97.100 96.354 95.601 94.839 94.068 93.288 92.498 91.698	97.10 97.86 98.61 99.36 100.12 100.86 101.61 102.35 103.08	0.00000 0.00355 0.00708 0.01058 0.01405 0.01749 0.02092 0.02431 0.02769	0.23135 0.22687 0.22248 0.21817 0.21394 0.20978 0.20569 0.20166 0.19770	0.23135 0.23043 0.22956 0.22875 0.22798 0.22727 0.22660 0.22598 0.22539
5 10 15	23.793 26.646 29.759	0.01193 0.01201 0.01209	1.9316 1.7345 1.5612	13.702 15.259 16.823	81.610 80.733 79.846	95.31 95.99 96.67	13.755 15.318 16.889	90.062 89.226	103.82 104.54 105.27	0.03104 0.03438 0.03769	0.19380 0.18996 0.18617	0.22485 0.22434 0.22386
20 25 30 35 40 45 50 55	33.147 36.826 40.813 45.124 49.776 54.787 60.175 65.957	0.01217 0.01225 0.01234 0.01242 0.01251 0.01261 0.01270 0.01280	1.4084 1.2732 1.1534 1.0470 0.95205 0.86727 0.79136 0.72323	18.394 19.973 21.560 23.154 24.757 26.369 27.990 29.619	78.950 78.043 77.124 76.195 75.253 74.298 73.329 72.346	97.34 98.02 98.68 99.35 100.01 100.67 101.32 101.97	18.469 20.056 21.653 23.258 24.873 26.497 28.131 29.775	86.636 85.742 84.833 83.907 82.963 82.000	105.98 106.69 107.40 108.09 108.78 109.46 110.13 110.79	0.04098 0.04426 0.04752 0.05076 0.05398 0.05720 0.06039 0.06358	0.18243 0.17874 0.17509 0.17148 0.16791 0.16437 0.16087 0.15740	0.22341 0.22300 0.22260 0.22224 0.22189 0.22157 0.22127 0.22098
60 65 70 75 80 85 90	72.152 78.780 85.858 93.408 101.45 110.00 119.08	0.01290 0.01301 0.01312 0.01323 0.01334 0.01347 0.01359	0.66195 0.60671 0.55681 0.51165 0.47069 0.43348 0.39959	31.258 32.908 34.567 36.237 37.919 39.612 41.317	71.347 70.333 69.301 68.251 67.181 66.091 64.979	102.61 103.24 103.87 104.49 105.10 105.70 106.30	31.431 33.097 34.776 36.466 38.169 39.886 41.617	78.988 77.939 76.866 75.767 74.641	111.44 112.09 112.71 113.33 113.94 114.53 115.10	0.06675 0.06991 0.07306 0.07620 0.07934 0.08246 0.08559	0.15396 0.15053 0.14713 0.14375 0.14038 0.13703 0.13368	0.22070 0.22044 0.22019 0.21995 0.21972 0.21949 0.21926
95 100 105 110 115	128.72 138.93 149.73 161.16 173.23	0.01372 0.01386 0.01400 0.01415 0.01430	0.36869 0.34045 0.31460 0.29090 0.26913	43.036 44.768 46.514 48.276 50.054	63.844 62.683 61.496 60.279 59.031	106.88 107.45 108.01 108.56 109.08	43.363 45.124 46.902 48.698 50.512	71.080 69.825 68.533	115.66 116.20 116.73 117.23 117.71	0.08870 0.09182 0.09493 0.09804 0.10116	0.13033 0.12699 0.12365 0.12029 0.11693	0.21904 0.21881 0.21858 0.21834 0.21809
120 130 140 150 160 170 180 190 200 210	185.96 213.53 244.06 277.79 314.94 355.80 400.66 449.90 504.00 563.76	0.01446 0.01482 0.01521 0.01567 0.01619 0.01681 0.01759 0.01860 0.02009 0.02309	0.24909 0.21356 0.18315 0.15692 0.13410 0.11405 0.09618 0.07990 0.06441 0.04722	67.014 71.126 75.448 80.082 85.267	57.749 55.071 52.216 49.144 45.799 42.097 37.899 32.950 26.651 16.498	109.60 110.57 111.44 112.20 112.81 113.22 113.35 113.03 111.92 108.48	52.346 56.080 59.913 63.864 67.958 72.233 76.752 81.631 87.140 94.395	62.924 59.801 56.405 52.671 48.499 43.726 38.053 30.785	118.17 119.00 119.71 120.27 120.63 120.73 120.48 119.68 117.93 113.41	0.10428 0.11054 0.11684 0.12321 0.12970 0.13634 0.14323 0.15055 0.15867 0.16922	0.11354 0.10670 0.09971 0.09251 0.08499 0.07701 0.06835 0.05857 0.04666 0.02839	0.21782 0.21724 0.21655 0.21572 0.21469 0.21335 0.21158 0.20911 0.20533 0.19761

Fuente: Las tablas A-11E a A-13E se generaron utilizando el programa para resolver ecuaciones de ingeniería (EES) desarrollado por S. A. Klein y F. L. Alvarado. La rutina utilizada en los cálculos es el R134a, el cual está basado en la ecuación fundamental de estado desarrollada por R. Tillner-Roth y H. D. Baehr, "An International Standard Formulation for the Thermodynamic Properties de 1,1,1,2-Tetrafluoretano (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa", J. Phys. Chem, Ref. Data, vol. 23, núm. 5, 1994. Los valores de entalpía y entropía para el líquido saturado son cero a -40°C (y -40°F).

TABLA A-12E

Refrigerante 134a saturado. Tabla de presión

		Volumen e ft³/l	específico, Ibm	Er	nergía inter Btu/Ibm	na,		<i>Entalpía,</i> Btu/lbm		1	<i>Entropía,</i> Btu/lbm · R	
Pres., P psia	Temp. sat., T°F	Líq. sat., v _f	Vapor sat., v _g	Líq. sat., u _f	Evap., u _{fg}	Vapor sat.,	Líq. sat., h _f	Evap., h _{fg}	Vapor sat., h _g	Líq. sat., s _f	Evap., S _{fg}	Vapor sat., s_g
5	-53.09	0.01113	8.3785	-3.918	91.280	87.36	-3.907	99.022	95.11	-0.00945	0.24353	0.23408
10	-29.52	0.01144	4.3753	3.135	87.453	90.59	3.156	95.528	98.68	0.00742	0.22206	0.22948
15	-14.15	0.01165	2.9880	7.803	84.893	92.70	7.835	93.155	100.99	0.01808	0.20908	0.22715
20	-2.43	0.01182	2.2772	11.401	82.898	94.30	11.445	91.282	102.73	0.02605	0.19962	0.22567
25	7.17	0.01196	1.8429	14.377	81.231	95.61	14.432	89.701	104.13	0.03249	0.19213	0.22462
30	15.37	0.01209	1.5492	16.939	79.780	96.72	17.006	88.313	105.32	0.03793	0.18589	0.22383
35	22.57	0.01221	1.3369	19.205	78.485	97.69	19.284	87.064	106.35	0.04267	0.18053	0.22319
40		0.01232	1.1760	21.246	77.307	98.55	21.337	85.920	107.26	0.04688	0.17580	0.22268
45	34.86	0.01242	1.0497	23.110	76.221	99.33	23.214	84.858	108.07	0.05067	0.17158	0.22225
50	40.23	0.01252	0.94791	24.832	75.209	100.04	24.948	83.863	108.81	0.05413	0.16774	0.22188
55	45 20	0.01261	0.86400	26.435	74.258	100.69	26.564	82.924	109.49	0.05733	0.16423	0.22156
60	49.84	0.01201	0.79361	27.939	73.360	101.30	28.080	82.030	110.11	0.06029	0.16098	0.22127
65		0.01279	0.73370	29.357	72.505	101.86	29.510	81.176	110.69	0.06307	0.15796	0.22102
70	58.30	0.01287	0.68205	30.700	71.688	102.39	30.867	80.357	111.22	0.06567	0.15512	0.22080
75	62.19	0.01295	0.63706	31.979	70.905	102.88	32.159	79.567	111.73	0.06813	0.15245	0.22059
80	65.89	0.01303	0.59750	33.201	70.151	103.35	33.394	78.804	112.20	0.07047	0.14993	0.22040
85	69.41	0.01310	0.56244	34.371	69.424	103.79	34.577	78.064	112.64	0.07269	0.14753	0.22022
90		0.01318	0.53113	35.495	68.719	104.21	35.715	77.345	113.06	0.07481	0.14525	0.22006
95		0.01325	0.50301	36.578	68.035	104.61	36.811	76.645	113.46	0.07684	0.14307	0.21991
100	79.12	0.01332	0.47760	37.623	67.371	104.99	37.869	75.962	113.83	0.07879	0.14097	0.21976
110	85.00	0.01347	0.43347	39.612	66.091	105.70	39.886	74.641	114.53	0.08246	0.13703	0.21949
120	90.49	0.01360	0.39644	41.485	64.869	106.35	41.787	73.371	115.16	0.08589	0.13335	0.21924
130	95.64	0.01374	0.36491	43.258	63.696	106.95	43.589	72.144	115.73	0.08911	0.12990	0.21901
140		0.01387	0.33771	44.945	62.564	107.51	45.304	70.954	116.26	0.09214	0.12665	0.21879
150	105.12	0.01400	0.31401	46.556	61.467	108.02	46.945	69.795	116.74	0.09501	0.12357	0.21857
160	109.50	0.01413	0.29316	48.101	60.401	108.50	48.519	68.662	117.18	0.09774	0.12062	0.21836
170	113.69		0.27466	49.586	59.362	108.95	50.035	67.553	117.59	0.10034	0.11781	0.21815
180	117.69	0.01439	0.25813	51.018	58.345	109.36	51.497	66.464	117.96	0.10284	0.11511	0.21795
190		0.01452	0.24327	52.402	57.349	109.75	52.912	65.392	118.30	0.10524	0.11250	0.21774
200	125.22	0.01464	0.22983	53.743	56.371	110.11	54.285	64.335	118.62	0.10754	0.10998	0.21753
220	132.21	0.01490	0.20645	56.310	54.458	110.77	56.917	62.256	119.17	0.11192	0.10517	0.21710
240		0.01516	0.18677	58.746	52.591	111.34	59.419	60.213	119.63	0.11603	0.10061	0.21665
260		0.01543	0.16996	61.071	50.757	111.83	61.813	58.192	120.00	0.11992	0.09625	0.21617
280		0.01570	0.15541	63.301	48.945	112.25	64.115	56.184	120.30	0.12362	0.09205	0.21567
300	156.09	0.01598	0.14266	65.452	47.143	112.60	66.339	54.176	120.52	0.12715	0.08797	0.21512
350	168.64	0.01672	0.11664	70.554	42.627	113.18	71.638	49.099	120.74	0.13542	0.07814	0.21356
400		0.01072	0.09642	75.385	37.963	113.16	76.686	43.798	120.48	0.13342	0.06848	0.21350
450	190.02	0.01860	0.07987	80.092	32.939	113.03	81.641	38.041	119.68	0.15056	0.05854	0.20911
500		0.01995	0.06551	84.871	27.168	112.04	86.718	31.382	118.10	0.15805	0.04762	0.20566

	51			40	7
ши	ы	м	A -	пк	15

Refrig	erante 13	34a sobre	ecalentad	0								
				S				S				s
T	V	и	h	Btu/	V	и	h	Btu/	V	и	h	Btu/
°F	ft ³ /lbm		Btu/lbm		ft ³ /lbm	Btu/Ibm	Btu/Ibm		ft ³ /lbm		Btu/Ibm	
$P = 10 \text{ psia } (T_{\text{sat}} = -29.52^{\circ}\text{F})$					P =	P = 15 psia (T _{sat} = -14.15 °F)			$P = 20 \text{ psia } (T_{\text{sat}} = -2.43^{\circ}\text{F})$			
Sat.	4.3753	90.59		0.22948	2.9880	92.70	100.99	0.22715	2.2772	94.30	102.73	0.22567
-20	4.4856	92.13	100.43	0.23350								
0	4.7135	95.41		0.24174	3.1001	95.08	103.68	0.23310	2.2922	94.72	103.20	0.22671
20	4.9380	98.77	107.91	0.24976	3.2551	98.48	107.52	0.24127	2.4130	98.19	107.12	0.23504
40	5.1600	102.20		0.25761	l			0.24922	2.5306			0.24311
60	5.3802			0.26531	3.5577			0.25700	2.6461			0.25097
80	5.5989			0.27288	3.7064			0.26463	2.7600		119.15	0.25866
100		113.01		0.28033	3.8540			0.27212	2.8726			0.26621
120	6.0331	116.79	127.96	0.28767	4.0006	116.63	127.74	0.27950	2.9842	116.47	127.52	0.27363
140	6.2490	120.66	132.22	0.29490	4.1464	120.51	132.02	0.28677	3.0950	120.37	131.82	0.28093
160	6.4642	124.61	136.57	0.30203	4.2915	124.48	136.39	0.29393	3.2051	124.35	136.21	0.28812
180		128.65	141.01	0.30908		128.53	140.84	0.30100	3.3146	128.41	140.67	0.29521
200	6.8930	132.77	145.53	0.31604	4.5802			0.30798	3.4237	132.55	145.22	0.30221
220	7.1068	136.98	150.13	0.32292	4.7239	136.88	149.99	0.31487	3.5324	136.78	149.85	0.30912
$P = 30 \text{ psia } (T_{\text{sat}} = 15.37^{\circ}\text{F})$				P =	$P = 40 \text{ psia } (T_{\text{sat}} = 29.01^{\circ}\text{F})$				$P = 50 \text{ psia } (T_{sat} = 40.23^{\circ}F)$			
Sat.	1.5492			0.22383	1.1760			0.22268	0.9479			0.22188
20	1.5691	97.56		0.22581	111700	50.00	107120	0.22200	0.5 . 7 5	100.0.	100.01	0.22100
40		101.17	110.35	0.23414	1.2126	100 61	109 58	0.22738				
60	1.7338	104.82		0.24219	1.2768			0.23565	1.0019	103.84	113.11	0.23031
80		108.53		0.25002	1.3389			0.24363	1.0540	107.68		0.23847
100		112.30		0.25767	1.3995			0.25140	1.1043	111.55		0.24637
120				0.26517	1.4588			0.25900	1.1534			0.25406
140	2.0434	120.08		0.27254	1.5173	119.78			1.2015	119.47	130.59	
160		124.08	135.84	0.27234	l	123.81			1.2488	123.53		0.26896
180				0.28693	l			0.28095	1.2955			0.27621
200			144.91	0.29398	1.6887			0.28803	1.3416	131.87		0.28333
220		136.57		0.30092	1.7449			0.29501	1.3873	136.15		0.29036
240			154.29		l			0.30190	1.4326			0.29728
260	2.4871	145.30	159.10	0.31456	1.8562			0.30130	1.4776	144.93	158.60	0.30411
280	2.5598	149.78	163.99	0.31436	1.9114			0.31543	1.5223	149.44		0.31086
200												
$P = 60 \text{ psia } (T_{sat} = 49.84^{\circ}F)$				$P = 70 \text{ psia } (T_{\text{sat}} = 58.30^{\circ}\text{F})$			$P = 80 \text{ psia } (T_{\text{sat}} = 65.89^{\circ}\text{F})$ 0.59750 103.35 112.20 0.22040					
Sat.				0.22127	0.6821			0.22080	0.59750	103.35	112.20	0.22040
60		103.31	112.39	0.22570	0.6857			0.22155				
80		107.23		0.23407	0.7271			0.23016	0.62430			
100		111.16		0.24211	0.7662			0.23836	0.66009		120.11	0.23499
120				0.24991	0.8037			0.24628	0.69415			0.24304
140				0.25751	1			0.25398	0.72698			
160		123.25		0.26496				0.26149	I	122.68		
180		127.41		0.27226	0.9105		138.94		0.79003	126.89	138.58	
200		131.63		0.27943	0.9447			0.27607	0.82059	131.16	143.31	0.27310
220	1.1489	135.93		0.28649	0.9785		148.39			135.49	148.09	
240	1.1872	140.30	153.48	0.29344	1.0118	140.10	153.21	0.29015	0.88030	139.90	152.93	0.28726
260	1.2252	144.75	158.35	0.30030	1.0449	144.56	158.10	0.29704	0.90961	144.37	157.84	0.29418
280	1.2629	149.27	163.29	0.30707	1.0776	149.10	163.06	0.30384	0.93861	148.92	162.82	0.30100
300	1.3004	153.87	168.31	0.31376	1.1101	153.71	168.09	0.31055	0.96737	153.54	167.86	0.30773
320	1.3377	158.54	173.39	0.32037	1.1424	158.39	173.19	0.31718	0.99590	158.24	172.98	0.31438

	Δ-	

200

220

240

260

280

300

320

340

360

0.29704

0.31212

0.32658

0.34054

0.35410

0.36733

0.38029

0.39300

0.40552 166.17

128.00

132.64

137.30

141.99

146.72

151.50

156.33

161.22

138.99

144.19

149.38

154.59

159.82

165.09

170.40

175.77

181.18

0.25035

0.25812

0.26565

0.27298

0.28015

0.28718

0.29408

0.30087

Refrigerante 134a sobrecalentado (conclusión) S Τ Btu/ h Btu/ h Btu/ h 11 11 11 °F ft³/lbm Btu/lbm Btu/lbm $lbm \cdot R$ ft³/lbm Btu/lbm Btu/lbm $\mathsf{Ibm} \cdot \mathsf{R}$ ft³/lbm Btu/lbm Btu/lbm Ibm · R $P = 100 \text{ psia } (T_{sat} = 79.12 ^{\circ}\text{F})$ $P = 90 \text{ psia } (T_{sat} = 72.78^{\circ}\text{F})$ $P = 120 \text{ psia } (T_{sat} = 90.49^{\circ}\text{F})$ Sat. 0.53113 104.21 113.06 0.22006 0.47760 104.99 113.83 0.21976 | 0.39644 | 106.35 | 115.16 | 0.21924 105.74 114.05 114.80 0.22330 0.47906 105.18 80 0.54388 0.22016 119.52 0.23189 0.51076 109.45 118.90 0.22900 0.41013 108.48 117.59 0.22362 100 0.57729 109.91 124.18 0.24008 | 0.54022 | 113.66 123.65 0.23733 | 0.43692 | 112.84 120 0.60874 114.04 122.54 0.23232 140 0.63885 118.19 128.83 0.24797 0.56821 117.86 128.37 0.24534 | 0.46190 | 117.15 127.41 0.24058 0.25309 | 0.48563 | 121.46 160 0.66796 122.38 133.51 0.25563 0.59513 122.08 133.09 132.25 0.24851 180 0.69629 126.62 138.22 0.26311 0.62122 126.35 137.85 0.26063 0.50844 125.79 137.09 0.25619 200 0.72399 130.92 142.97 0.27043 0.64667 130.67 142.64 0.26801 0.53054 130.17 141.95 0.26368 220 0.75119 135.27 147.78 0.27762 0.67158 135.05 147.47 0.27523 | 0.55206 | 134.59 146.85 0.27100 0.77796 0.69605 139.49 240 139.69 152.65 0.28468 152.37 0.28233 | 0.57312 | 139.07 151.80 0.27817 260 0.80437 144.19 157.58 0.29162 0.72016 143.99 157.32 0.28931 0.59379 143.61 156.79 0.28521 280 0.83048 148.75 162.58 0.29847 0.74396 148.57 162.34 0.29618 | 0.61413 | 148.21 161.85 0.29214 0.30522 300 0.85633 153.38 167.64 0.76749 153.21 167.42 0.30296 | 0.63420 | 152.88 166.96 0.29896 0.88195 172.77 0.31189 | 0.79079 | 157.93 | 172.56 0.30964 | 0.65402 | 157.62 172.14 0.30569 320 158.08 $P = 140 \text{ psia } (T_{sat} = 100.50^{\circ}\text{F})$ $P = 160 \text{ psia } (T_{\text{sat}} = 109.50^{\circ}\text{F})$ $P = 180 \text{ psia } (T_{sat} = 117.69^{\circ}\text{F})$ 116.26 0.21879 | 0.29316 | 108.50 | 117.18 0.21836 | 0.25813 | 109.36 Sat. 0.33771 107.51 117.96 0.21795 121.35 120.06 0.22337 | 0.26083 | 109.94 0.36243 0.22773 | 0.30578 | 111.01 120 111.96 118.63 0.21910 140 0.38551 116.41 126.40 0.23628 | 0.32774 | 115.62 125.32 0.23230 0.28231 114.77 124.17 0.22850 160 0.40711 120.81 131.36 0.24443 0.34790 120.13 130.43 0.24069 | 0.30154 | 119.42 129.46 0.23718 180 0.42766 125.22 136.30 0.25227 0.36686 124.62 135.49 0.24871 | 0.31936 | 124.00 134.64 0.24540 141.24 0.38494 129.12 140.52 0.25645 0.33619 128.57 139.77 0.25330 200 0.44743 129.65 0.25988 220 0.46657 134.12 146.21 0.26730 0.40234 133.64 145.55 0.26397 | 0.35228 | 133.15 144.88 0.26094 0.48522 138.64 151.21 0.27455 0.41921 138.20 150.62 0.27131 0.36779 137.76 150.01 0.26837 240 260 0.50345 143.21 156.26 0.28166 0.43564 142.81 155.71 0.27849 | 0.38284 | 142.40 155.16 0.27562 147.85 280 0.52134 161.35 0.28864 0.45171 147.48 160.85 0.28554 | 0.39751 | 147.10 160.34 0.28273 300 0.53895 152.54 166.50 0.29551 0.46748 152.20 166.04 0.29246 | 0.41186 | 151.85 165.57 0.28970 320 157.30 0.30228 0.48299 156.98 171.28 0.29927 0.42594 156.66 0.55630 171.71 170.85 0.29656 340 0.57345 162.13 176.98 0.30896 0.49828 161.83 176.58 0.30598 | 0.43980 | 161.53 176.18 0.30331 0.31555 | 0.51338 181.94 167.02 360 0.59041 182.32 166.74 0.31260 | 0.45347 | 166.46 181.56 0.30996 $P = 200 \text{ psia } (T_{\text{sat}} = 125.22^{\circ}\text{F})$ $P = 300 \text{ psia } (T_{sat} = 156.09^{\circ}\text{F})$ $P = 400 \text{ psia } (T_{sat} = 179.86^{\circ}\text{F})$ 118.62 0.21753 | 0.14266 | 112.60 | 120.52 Sat. 0.22983 110.11 0.21512 | 0.09642 | 113.35 120.48 0.21161 0.22481 140 0.24541 113.85 122.93 0.23384 160 0.26412 118.66 128.44 0.14656 113.82 121.95 0.21745 0.24229 0.16355 119.52 128.60 0.22802 0.09658 113.41 180 0.28115 123.35 133.76 120.56 0.21173

0.17776 124.78 134.65

139.77

144.70

154.63

140.42

146.05

151.59

157.11

162.61

168.12

173.66

0.19044 129.85

0.20211 134.83

0.23346 149.65

0.25246 159.64

0.30756 | 0.26159 | 164.70 | 179.22

0.21306

0.22347

0.24310

0.23733 | 0.11440 | 120.52

0.24594 | 0.12746 | 126.44

0.25410 | 0.13853 | 131.95

0.26192 | 0.14844 | 137.26

0.26947 | 0.15756 | 142.48

0.27681 | 0.16611 | 147.65

0.28398 | 0.17423 | 152.80

0.29098 0.18201 157.97

0.29786 0.18951 163.15

128.99 0.22471

135.88 0.23500

142.20 0.24418

148.25 0.25270

154.14 0.26077

159.94 0.26851

165.70 0.27599

171.44 0.28326

177.18 0.29035

FIGURA A-14E
Diagrama P h para el refrigerante 134a. $^{\rm m}$ s a za d a Am a H a g g a g a d A d g E g s A a a g a

TABLA A-16E

Propiedades de la atmósfera a gran altitud

Altitud, ft	Temperatura, °F	Presión, psia	Gravedad, g, ft/s ²	Velocidad del sonido, ft/s	Densidad, Ibm/ft ³	Viscosidad μ , lbm/ft \cdot s	Conductividad térmica, Btu/h · ft · R
0	59.00	14.7	32.174	1116	0.07647	1.202×10^{-5}	0.0146
500	57.22	14.4	32.173	1115	0.07536	1.199×10^{-5}	0.0146
1000	55.43	14.2	32.171	1113	0.07426	1.196×10^{-5}	0.0146
1500	53.65	13.9	32.169	1111	0.07317	1.193×10^{-5}	0.0145
2000	51.87	13.7	32.168	1109	0.07210	1.190×10^{-5}	0.0145
2500	50.09	13.4	32.166	1107	0.07104	1.186×10^{-5}	0.0144
3000	48.30	13.2	32.165	1105	0.06998	1.183×10^{-5}	0.0144
3500	46.52	12.9	32.163	1103	0.06985	1.180×10^{-5}	0.0143
4000	44.74	12.7	32.162	1101	0.06792	1.177×10^{-5}	0.0143
4500	42.96	12.5	32.160	1099	0.06690	1.173×10^{-5}	0.0142
5000	41.17	12.2	32.159	1097	0.06590	1.170×10^{-5}	0.0142
5500	39.39	12.0	32.157	1095	0.06491	1.167×10^{-5}	0.0141
6000	37.61	11.8	32.156	1093	0.06393	1.164×10^{-5}	0.0141
6500	35.83	11.6	32.154	1091	0.06296	1.160×10^{-5}	0.0141
7000	34.05	11.3	32.152	1089	0.06200	1.157×10^{-5}	0.0140
7500	32.26	11.1	32.151	1087	0.06105	1.154×10^{-5}	0.0140
8000	30.48	10.9	32.149	1085	0.06012	1.150×10^{-5}	0.0139
8500	28.70	10.7	32.148	1083	0.05919	1.147×10^{-5}	0.0139
9000	26.92	10.5	32.146	1081	0.05828	1.144×10^{-5}	0.0138
9500	25.14	10.3	32.145	1079	0.05738	1.140×10^{-5}	0.0138
10,000	23.36	10.1	32.145	1077	0.05648	1.137×10^{-5}	0.0137
11,000	19.79	9.72	32.140	1073	0.05473	1.130×10^{-5}	0.0136
12,000	16.23	9.34	32.137	1069	0.05302	1.124×10^{-5}	0.0136
13,000	12.67	8.99	32.134	1065	0.05135	1.117×10^{-5}	0.0135
14,000	9.12	8.63	32.131	1061	0.04973	1.110×10^{-5}	0.0134
15,000	5.55	8.29	32.128	1057	0.04814	1.104×10^{-5}	0.0133
16,000	+1.99	7.97	32.125	1053	0.04659	1.097×10^{-5}	0.0132
17,000	-1.58	7.65	32.122	1049	0.04508	1.090×10^{-5}	0.0132
18,000	-5.14	7.34	32.119	1045	0.04361	1.083×10^{-5}	0.0130
19,000	-8.70	7.05	32.115	1041	0.04217	1.076×10^{-5}	0.0129
20,000	-12.2	6.76	32.112	1037	0.04077	1.070×10^{-5}	0.0128
22,000	-19.4	6.21	32.106	1029	0.03808	1.056×10^{-5}	0.0126
24,000	-26.5	5.70	32.100	1020	0.03553	1.042×10^{-5}	0.0124
26,000	-33.6	5.22	32.094	1012	0.03311	1.028×10^{-5}	0.0122
28,000	-40.7	4.78	32.088	1003	0.03082	1.014×10^{-5}	0.0121
30,000	-47.8	4.37	32.082	995	0.02866	1.000×10^{-5}	0.0119
32,000	-54.9	3.99	32.08	987	0.02661	0.986×10^{-5}	0.0117
34,000	-62.0	3.63	32.07	978	0.02468	0.971×10^{-5}	0.0115
36,000	-69.2	3.30	32.06	969	0.02285	0.956×10^{-5}	0.0113
38,000	-69.7	3.05	32.06	968	0.02079	0.955×10^{-5}	0.0113
40,000	-69.7	2.73	32.05	968	0.01890	0.955×10^{-5}	0.0113
45,000	-69.7	2.148	32.04	968	0.01487	0.955×10^{-5}	0.0113
50,000	-69.7	1.691	32.02	968	0.01171	0.955×10^{-5}	0.0113
55,000	-69.7	1.332	32.00	968	0.00922	0.955×10^{-5}	0.0113
60,000	-69.7	1.048	31.99	968	0.00726	0.955×10^{-5}	0.0113

Fuente: U.S. Standard Atmosphere Supplements. Oficina de Impresiones del Gobierno de Estados Unidos, 1966. Basadas en las condiciones medias anuales a una latitud de 45° y una variación de acuerdo con la época del año y con los patrones del clima. Las condiciones al nivel del mar (z=0) se consideran como P=14.696 psia, T=59°F, $\rho=0.076474$ lbm/pie³, g=32.1741 pies²/s.

TABLA	A-17E										
Propie	dades de	gas ideal d	el aire								
<i>T</i> R	<i>h</i> Btu/lbm	P_r	<i>u</i> Btu/lbm	V_r	<i>s</i> ° Btu/lbm ⋅ R	<i>T</i> R	<i>h</i> Btu/Ibm	P_r	<i>u</i> Btu/lbm		s° 3tu/lbm · R
360 380 400 420 440	85.97 90.75 95.53 100.32 105.11	0.3363 0.4061 0.4858 0.5760 0.6776	61.29 64.70 68.11 71.52 74.93	396.6 346.6 305.0 270.1 240.6	0.50369 0.51663 0.52890 0.54058 0.55172	1600 1650 1700 1750 1800	395.74 409.13 422.59 436.12 449.71	71.13 80.89 90.95 101.98 114.0	286.06 296.03 306.06 316.16 326.32	8.263 7.556 6.924 6.357 5.847	0.87130 0.87954 0.88758 0.89542 0.90308
460 480 500 520 537 540	109.90 114.69 119.48 124.27 128.10 129.06	0.7913 0.9182 1.0590 1.2147 1.3593 1.3860	78.36 81.77 85.20 88.62 91.53 92.04	215.33 193.65 174.90 158.58 146.34 144.32	0.56235 0.57255 0.58233 0.59173 0.59945 0.60078	1850 1900 1950 2000 2050 2100	463.37 477.09 490.88 504.71 518.71 532.55	127.2 141.5 157.1 174.0 192.3 212.1	336.55 346.85 357.20 367.61 378.08 388.60	5.388 4.974 4.598 4.258 3.949 3.667	0.91056 0.91788 0.92504 0.93205 0.93891 0.94564
560 580 600 620 640	133.86 138.66 143.47 148.28 153.09	1.5742 1.7800 2.005 2.249 2.514	95.47 98.90 102.34 105.78 109.21	131.78 120.70 110.88 102.12 94.30	0.60950 0.61793 0.62607 0.63395 0.64159	2150 2200 2250 2300 2350	546.54 560.59 574.69 588.82 603.00	223.5 256.6 281.4 308.1 336.8	399.17 409.78 420.46 431.16 441.91	3.410 3.176 2.961 2.765 2.585	0.95222 0.95919 0.96501 0.97123 0.97732
660 680 700 720 740	157.92 162.73 167.56 172.39 177.23	2.801 3.111 3.446 3.806 4.193	112.67 116.12 119.58 123.04 126.51	87.27 80.96 75.25 70.07 65.38	0.64902 0.65621 0.66321 0.67002 0.67665	2400 2450 2500 2550 2600	617.22 631.48 645.78 660.12 674.49	367.6 400.5 435.7 473.3 513.5	452.70 463.54 474.40 485.31 496.26	2.419 2.266 2.125 1.996 1.876	0.98331 0.98919 0.99497 1.00064 1.00623
760 780 800 820 840	182.08 186.94 191.81 196.69 201.56	4.607 5.051 5.526 6.033 6.573	129.99 133.47 136.97 140.47 143.98	61.10 57.20 53.63 50.35 47.34	0.68312 0.68942 0.69558 0.70160 0.70747	2650 2700 2750 2800 2850	688.90 703.35 717.83 732.33 746.88	556.3 601.9 650.4 702.0 756.7	507.25 518.26 529.31 540.40 551.52	1.765 1.662 1.566 1.478 1.395	1.01172 1.01712 1.02244 1.02767 1.03282
860 880 900 920 940	206.46 211.35 216.26 221.18 226.11	7.149 7.761 8.411 9.102 9.834	147.50 151.02 154.57 158.12 161.68	44.57 42.01 39.64 37.44 35.41	0.71323 0.71886 0.72438 0.72979 0.73509	2900 2950 3000 3050 3100	761.45 776.05 790.68 805.34 820.03	814.8 876.4 941.4 1011 1083	562.66 573.84 585.04 596.28 607.53	1.318 1.247 1.180 1.118 1.060	1.03788 1.04288 1.04779 1.05264 1.05741
1080	231.06 236.02 240.98 250.95 260.97	10.61 11.43 12.30 14.18 16.28	165.26 168.83 172.43 179.66 186.93	33.52 31.76 30.12 27.17 24.58	0.74030 0.74540 0.75042 0.76019 0.76964	3150 3200 3250 3300 3350	834.75 849.48 864.24 879.02 893.83	1161 1242 1328 1418 1513	618.82 630.12 641.46 652.81 664.20	0.8202	1.06212 1.06676 1.07134 1.07585 1.08031
1160 1200 1240 1280	271.03 281.14 291.30 301.52 311.79	18.60 21.18 24.01 27.13 30.55	194.25 201.63 209.05 216.53 224.05	22.30 20.29 18.51 16.93 15.52	0.77880 0.78767 0.79628 0.80466 0.81280	3400 3450 3500 3550 3600	908.66 923.52 938.40 953.30 968.21	1613 1719 1829 1946 2068	675.60 687.04 698.48 709.95 721.44	0.7436 0.7087 0.6759 0.6449	1.08470 1.08904 1.09332 1.09755 1.10172
1360 1400 1440	322.11 332.48 342.90 353.37 363.89	34.31 38.41 42.88 47.75 53.04	231.63 239.25 246.93 254.66 262.44	14.25 13.12 12.10 11.17 10.34	0.82075 0.82848 0.83604 0.84341 0.85062	3800	983.15 998.11 1013.1 1028.1 1043.1	2196 2330 2471 2618 2773	732.95 744.48 756.04 767.60 779.19	0.5882 0.5621 0.5376	1.10584 1.10991 1.11393 1.11791 1.12183
	374.47 385.08	58.78 65.00	270.26 278.13	9.578 8.890	0.85767 0.86456		1058.1 1073.2	2934 3103	790.80 802.43		1.12571 1.12955

TABLA A-17E

Propiedades de gas ideal del aire (conclusión)

T R	<i>h</i> Btu/Ibm	P_r	<i>u</i> Btu/lbm	V_r	s° Btu/Ibm ⋅ R	<i>T</i> R	<i>h</i> Btu/lbm	P_r	<i>u</i> Btu/lbm	V_r	s° Btu/lbm ⋅ R
4000	1088.3	3280	814.06	0.4518	1.13334	4600	1270.4	6089	955.04	0.2799	1.17575
4100 4150 4200	1118.5 1133.6 1148.7	3656 3858 4067	837.40 849.09 860.81	0.4154 0.3985 0.3826	1.13709 1.14079 1.14446 1.14809 1.15522	4800 4900 5000	1300.9 1331.5 1362.2 1392.9 1423.6	6701 7362 8073 8837 9658	1002.5 1026.3 1050.1	0.2415 0.2248 0.2096	1.18232 1.18876 1.19508 1.20129 1.20738
	1209.4 1239.9	4997 5521	907.81 931.39		1.16221 1.16905			- ,			1.21336 1.21923

Nota: Las propiedades P_r (presión relativa) y v_r (volumen específico relativo) son cantidades adimensionales utilizadas en el análisis de procesos isentrópicos y no debe confundirse con las propiedades de presión y volumen específico.

Fuente: Kenneth Wark, Thermodynamics, 4a. ed., Nueva York, McGraw-Hill, 1983, pp. 832-833, Tabla A-5. Publicada originalmente en J. H. Keenan y J. Kaye, Gas Tables, Nueva York, John Wiley & Sons, 1948.

TABLA A-	-18E						
Propieda	ides de gas idea	al del nitrógeno,	N ₂				
T	h	ū	<u></u> \overline{S} °	Т	\overline{h}	ū	¯ S °
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/lbmol	Btu/Ibmol	Btu/Ibmol · R
300	2,082.0	1,486.2	41.695	1080	7,551.0	5,406.2	50.651
320	2,221.0	1,585.5	42.143	1100	7,695.0	5,510.5	50.783
340	2,360.0	1,684.4	42.564	1120	7,839.3	5,615.2	50.912
360	2,498.9	1,784.0	42.962	1140	7,984.0	5,720.1	51.040
380	2,638.0	1,883.4	43.337	1160	8,129.0	5,825.4	51.167
400	2,777.0	1,982.6	43.694	1180	8,274.4	5,931.0	51.291
420	2,916.1	2,082.0	44.034	1200	8,420.0	6,037.0	51.143
440	3,055.1	2,181.3	44.357	1220	8,566.1	6,143.4	51.534
460	3,194.1	2,280.6	44.665	1240	8,712.6	6,250.1	51.653
480	3,333.1	2,379.9	44.962	1260	8,859.3	6,357.2	51.771
500	3,472.2	2,479.3	45.246	1280	9,006.4	6,464.5	51.887
520	3,611.3	2,578.6	45.519	1300	9,153.9	6,572.3	51.001
537	3,729.5	2,663.1	45.743	1320	9,301.8	6,680.4	52.114
540	3,750.3	2,678.0	45.781	1340	9,450.0	6,788.9	52.225
560	3,889.5	2,777.4	46.034	1360	9,598.6	6,897.8	52.335
580	4,028.7	2,876.9	46.278	1380	9,747.5	7,007.0	52.444
600	4,167.9	2,976.4	46.514	1400	9,896.9	7,116.7	52.551
620	4,307.1	3,075.9	46.742	1420	10,046.6	7,226.7	52.658
640	4,446.4	3,175.5	46.964	1440	10,196.6	7,337.0	52.763
660	4,585.8	3,275.2	47.178	1460	10,347.0	7,447.6	52.867
680	4,725.3	3,374.9	47.386	1480	10,497.8	7,558.7	52.969
700	4,864.9	3,474.8	47.588	1500	10,648.0	7,670.1	53.071
720	5,004.5	3,574.7	47.785	1520	10,800.4	7,781.9	53.171
740	5,144.3	3,674.7	47.977	1540	10,952.2	7,893.9	53.271
760	5,284.1	3,774.9	48.164	1560	11,104.3	8,006.4	53.369
780	5,424.2	3,875.2	48.345	1580	11,256.9	8,119.2	53.465
800	5,564.4	3,975.7	48.522	1600	11,409.7	8,232.3	53.561
820	5,704.7	4,076.3	48.696	1620	11,562.8	8,345.7	53.656
840	5,845.3	4,177.1	48.865	1640	11,716.4	8,459.6	53.751
860	5,985.9	4,278.1	49.031	1660	11,870.2	8,573.6	53.844
880	6,126.9	4,379.4	49.193	1680	12,024.3	8,688.1	53.936
900	6,268.1	4,480.8	49.352	1700	12,178.9	8,802.9	54.028
920	6,409.6	4,582.6	49.507	1720	12,333.7	8,918.0	54.118
940	6,551.2	4,684.5	49.659	1740	12,488.8	9,033.4	54.208
960	6,693.1	4,786.7	49.808	1760	12,644.3	9,149.2	54.297
980	6,835.4	4,889.3	49.955	1780	12,800.2	9,265.3	54.385
1000	6,977.9	4,992.0	50.099	1800	12,956.3	9,381.7	54.472
1020	7,120.7	5,095.1	50.241	1820	13,112.7	9,498.4	54.559
1040	7,263.8	5,198.5	50.380	1840	13,269.5	9,615.5	54.645
1060	7,407.2	5,302.2	50.516	1860	13,426.5	9,732.8	54.729

TABLA A-18E

Propiedad	des de gas idea	al del nitrógeno,	N ₂ (conclusión)				
T	h	ū	<u></u> s°	Т	h	ū	₹°
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R
1900 1940	13,742 14,058	9,968 10,205	54.896 55.061	3500 3540	27,016 27,359	20,065 20,329	59.944 60.041
1980	14,375	10,443	55.223	3580	27,703	20,593	60.138
2020 2060	14,694 15,013	10,682 10,923	55.383 55.540	3620 3660	28,046 28,391	20,858 21,122	60.234 60.328
2100	15,334	11,164	55.694	3700	28,735	21,387	60.422
2140 2180	15,656 15,978	11,406 11,649	55.846 55.995	3740 3780	29,080 29,425	21,653 21,919	60.515 60.607
2220	16,302	11,893	56.141	3820	29,771	22,185	60.698
2260	16,626	12,138	56.286	3860	30,117	22,451	60.788
2300	16,951	12,384	56.429	3900	30,463	22,718	60.877
2340 2380	17,277 17,604	12,630 12,878	56.570 56.708	3940 3980	30,809 31,156	22,985 23,252	60.966 61.053
2420	17,392	13,126	56.845	4020	31,503	23,520	61.139
2460	18,260	13,375	56.980	4060	31,850	23,788	61.225
2500	18,590	13,625	57.112	4100	32,198	24,056	61.310
2540 2580	18,919	13,875	57.243 57.372	4140	32,546	24,324 24,593	61.395
2620	19,250 19,582	14,127 14,379	57.499	4180 4220	32,894 33,242	24,393 24,862	61.479 61.562
2660	19,914	14,631	57.625	4260	33,591	25,131	61.644
2700	20,246	14,885	57.750	4300	33,940	25,401	61.726
2740 2780	20,580 20,914	15,139 15,393	57.872 57.993	4340 4380	34,289 34,638	25,670 25,940	61.806 61.887
2820	21,248	15,648	58.113	4380	34,038	26,210	61.966
2860	21,584	15,905	58.231	4460	35,338	26,481	62.045
2900	21,920	16,161	58.348	4500	35,688	26,751	62.123
2940 2980	22,256 22,593	16,417 16,675	58.463 58.576	4540 4580	36,038 36,389	27,022 27,293	62.201 62.278
3020	22,930	16,933	58.688	4620	36,739	27,293	62.354
3060	23,268	17,192	58.800	4660	37,090	27,836	62.429
3100	23,607	17,451	58.910	4700	37,441	28,108	62.504
3140 3180	23,946 24,285	17,710 17,970	59.019 59.126	4740 4780	37,792 38,144	28,379 28,651	62.578 62.652
3220	24,265	18,231	59.232	4820	38,495	28,924	62.725
3260	24,965	18,491	59.338	4860	38,847	29,196	62.798
3300	25,306	18,753	59.442	4900	39,199	29,468	62.870
3340 3380	25,647 25,989	19,014 19,277	59.544 59.646	5000 5100	40,080 40,962	30,151 30,834	63.049 63.223
3420	26,331	19,539	59.747	5200	41,844	31,518	63.395
3460	26,673	19,802	59.846	5300	42,728	32,203	63.563

Fuente: Las tablas A-18E a A-23E se adaptaron de Kenneth Wark, Thermodynamics, 4a. ed., Nueva York, McGraw-Hill, 1983, pp. 834-844. Originalmente publicadas en J. H. Keenan y J. Kaye, Gas Tables, Nueva York, John Wiley & Sons, 1945.

TABLA A	-19E						
Propieda	ades de gas idea	l del oxígeno, O	2	_			
T	h	ū	<u></u> s°	Т	h	\overline{u}	₹°
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/lbmol · R
300	2,073.5	1,477.8	44.927	1080	7,696.8	5,552.1	54.064
320	2,212.6	1,577.1	45.375	1100	7,850.4	5,665.9	54.204
340	2,351.7	1,676.5	45.797	1120	8,004.5	5,780.3	54.343
360	2,490.8	1,775.9	46.195	1140	8,159.1	5,895.2	54.480
380	2,630.0	1,875.3	46.571	1160	8,314.2	6,010.6	54.614
400	2,769.1	1,974.8	46.927	1180	8,469.8	6,126.5	54.748
420	2,908.3	2,074.3	47.267	1200	8,625.8	6,242.8	54.879
440	3,047.5	2,173.8	47.591	1220	8,782.4	6,359.6	55.008
460	3,186.9	2,273.4	47.900	1240	8,939.4	6,476.9	55.136
480	3,326.5	2,373.3	48.198	1260	9,096.7	6,594.5	55.262
500	3,466.2	2,473.2	48.483	1280	9,254.6	6,712.7	55.386
520	3,606.1	2,573.4	48.757	1300	9,412.9	6,831.3	55.508
537	3,725.1	2,658.7	48.982	1320	9,571.9	6,950.2	55.630
540	3,746.2	2,673.8	49.021	1340	9,730.7	7,069.6	55.750
560	3,886.6	2,774.5	49.276	1360	9,890.2	7,189.4	55.867
580	4,027.3	2,875.5	49.522	1380	10,050.1	7,309.6	55.984
600	4,168.3	2,976.8	49.762	1400	10,210.4	7,430.1	56.099
620	4,309.7	3,078.4	49.993	1420	10,371.0	7,551.1	56.213
640	4,451.4	3,180.4	50.218	1440	10,532.0	7,672.4	56.326
660	4,593.5	3,282.9	50.437	1460	10,693.3	7,793.9	56.437
680	4,736.2	3,385.8	50.650	1480	10,855.1	7,916.0	56.547
700	4,879.3	3,489.2	50.858	1500	11,017.1	8,038.3	56.656
720	5,022.9	3,593.1	51.059	1520	11,179.6	8,161.1	56.763
740	5,167.0	3,697.4	51.257	1540	11,342.4	8,284.2	56.869
760	5,311.4	3,802.4	51.450	1560	11,505.4	8,407.4	56.975
780	5,456.4	3,907.5	51.638	1580	11,668.8	8,531.1	57.079
800	5,602.0	4,013.3	51.821	1600	11,832.5	8,655.1	57.182
820	5,748.1	4,119.7	52.002	1620	11,996.6	8,779.5	57.284
840	5,894.8	4,226.6	52.179	1640	12,160.9	8,904.1	57.385
860	6,041.9	4,334.1	52.352	1660	12,325.5	9,029.0	57.484
880	6,189.6	4,442.0	52.522	1680	12,490.4	9,154.1	57.582
900	6,337.9	4,550.6	52.688	1700	12,655.6	9,279.6	57.680
920	6,486.7	4,659.7	52.852	1720	12,821.1	9,405.4	57.777
940	6,636.1	4,769.4	53.012	1740	12,986.9	9,531.5	57.873
960	6,786.0	4,879.5	53.170	1760	13,153.0	9,657.9	57.968
980	6,936.4	4,990.3	53.326	1780	13,319.2	9,784.4	58.062
1000	7,087.5	5,101.6	53.477	1800	13,485.8	9,911.2	58.155
1020	7,238.9	5,213.3	53.628	1820	13,652.5	10,038.2	58.247
1040	7,391.0	5,325.7	53.775	1840	13,819.6	10,165.6	58.339
1060	7,543.6	5,438.6	53.921	1860	13,986.8	10,293.1	58.428

TABLA A	-19E						
Propieda	ades de gas idea	l del oxígeno, O	₂ (conclusión)				
T	<i>h</i>	ū	ਤ°	<i>T</i>	<i>h</i>	ū	s°
R	Btu∕lbmol	Btu∕lbmol	Btu/Ibmol⋅R	R	Btu∕lbmol	Btu∕lbmol	Btu/Ibmol⋅R
1900	14,322	10,549	58.607	3500	28,273	21,323	63.914
1940	14,658	10,806	58.782	3540	28,633	21,603	64.016
1980	14,995	11,063	58.954	3580	28,994	21,884	64.114
2020	15,333	11,321	59.123	3620	29,354	22,165	64.217
2060	15,672	11,581	59.289	3660	29,716	22,447	64.316
2100	16,011	11,841	59.451	3700	30,078	22,730	64.415
2140	16,351	12,101	59.612	3740	30,440	23,013	64.512
2180	16,692	12,363	59.770	3780	30,803	23,296	64.609
2220	17,036	12,625	59.926	3820	31,166	23,580	64.704
2260	17,376	12,888	60.077	3860	31,529	23,864	64.800
2300	17,719	13,151	60.228	3900	31,894	24,149	64.893
2340	18,062	13,416	60.376	3940	32,258	24,434	64.986
2380	18,407	13,680	60.522	3980	32,623	24,720	65.078
2420	18,572	13,946	60.666	4020	32,989	25,006	65.169
2460	19,097	14,212	60.808	4060	33,355	25,292	65.260
2500	19,443	14,479	60.946	4100	33,722	25,580	65.350
2540	19,790	14,746	61.084	4140	34,089	25,867	64.439
2580	20,138	15,014	61.220	4180	34,456	26,155	65.527
2620	20,485	15,282	61.354	4220	34,824	26,144	65.615
2660	20,834	15,551	61.486	4260	35,192	26,733	65.702
2700	21,183	15,821	61.616	4300	35,561	27,022	65.788
2740	21,533	16,091	61.744	4340	35,930	27,312	65.873
2780	21,883	16,362	61.871	4380	36,300	27,602	65.958
2820	22,232	16,633	61.996	4420	36,670	27,823	66.042
2860	22,584	16,905	62.120	4460	37,041	28,184	66.125
2900	22,936	17,177	62.242	4500	37,412	28,475	66.208
2940	23,288	17,450	62.363	4540	37,783	28,768	66.290
2980	23,641	17,723	62.483	4580	38,155	29,060	66.372
3020	23,994	17,997	62.599	4620	38,528	29,353	66.453
3060	24,348	18,271	62.716	4660	38,900	29,646	66.533
3100	24,703	18,546	62.831	4700	39,274	29,940	66.613
3140	25,057	18,822	62.945	4740	39,647	30,234	66.691
3180	25,413	19,098	63.057	4780	40,021	30,529	66.770
3220	25,769	19,374	63.169	4820	40,396	30,824	66.848
3260	26,175	19,651	63.279	4860	40,771	31,120	66.925
3300	26,412	19,928	63.386	4900	41,146	31,415	67.003
3340	26,839	20,206	63.494	5000	42,086	32,157	67.193
3380	27,197	20,485	63.601	5100	43,021	32,901	67.380
3420	27,555	20,763	63.706	5200	43,974	33,648	67.562
3460	27,914	21,043	63.811	5300	44,922	34,397	67.743

TABLA A							
Propieda T R	ades de gas idea $\overline{\overline{h}}$ Btu/Ibmol	ıl del dióxido de <u>u</u> Btu/Ibmol	\overline{s}° Btu/Ibmol · R	T R	—————————————————————————————————————	<i>ū</i> Btu∕lbmol	ਤ° Btu/lbmol⋅R
300	2,108.2	1,512.4	46.353	1080	9,575.8	7,431.1	58.072
320	2,256.6	1,621.1	46.832	1100	9,802.6	7,618.1	58.281
340	2,407.3	1,732.1	47.289	1120	10,030.6	7,806.4	58.485
360	2,560.5	1,845.6	47.728	1140	10,260.1	7,996.2	58.689
380	2,716.4	1,961.8	48.148	1160	10,490.6	8,187.0	58.889
400	2,874.7	2,080.4	48.555	1180	10,722.3	8,379.0	59.088
420	3,035.7	2,201.7	48.947	1200	10,955.3	8,572.3	59.283
440	3,199.4	2,325.6	49.329	1220	11,189.4	8,766.6	59.477
460	3,365.7	2,452.2	49.698	1240	11,424.6	8,962.1	59.668
480	3,534.7	2,581.5	50.058	1260	11,661.0	9,158.8	59.858
500	3,706.2	2,713.3	50.408	1280	11,898.4	9,356.5	60.044
520	3,880.3	2,847.7	50.750	1300	12,136.9	9,555.3	60.229
537	4,027.5	2,963.8	51.032	1320	12,376.4	9,755.0	60.412
540	4,056.8	2,984.4	51.082	1340	12,617.0	9,955.9	60.593
560	4,235.8	3,123.7	51.408	1360	12,858.5	10,157.7	60.772
580	4,417.2	3,265.4	51.726	1380	13,101.0	10,360.5	60.949
600	4,600.9	3,409.4	52.038	1400	13,344.7	10,564.5	61.124
620	4,786.6	3,555.6	52.343	1420	13,589.1	10,769.2	61.298
640	4,974.9	3,704.0	52.641	1440	13,834.5	10,974.8	61.469
660	5,165.2	3,854.6	52.934	1460	14,080.8	11,181.4	61.639
680	5,357.6	4,007.2	53.225	1480	14,328.0	11,388.9	61.800
700	5,552.0	4,161.9	53.503	1500	14,576.0	11,597.2	61.974
720	5,748.4	4,318.6	53.780	1520	14,824.9	11,806.4	62.138
740	5,946.8	4,477.3	54.051	1540	15,074.7	12,016.5	62.302
760	6,147.0	4,637.9	54.319	1560	15,325.3	12,227.3	62.464
780	6,349.1	4,800.1	54.582	1580	15,576.7	12,439.0	62.624
800	6,552.9	4,964.2	54.839	1600	15,829.0	12,651.6	62.783
820	6,758.3	5,129.9	55.093	1620	16,081.9	12,864.8	62.939
840	6,965.7	5,297.6	55.343	1640	16,335.7	13,078.9	63.095
860	7,174.7	5,466.9	55.589	1660	16,590.2	13,293.7	63.250
880	7,385.3	5,637.7	55.831	1680	16,845.5	13,509.2	63.403
900	7,597.6	5,810.3	56.070	1700	17,101.4	13,725.4	63.555
920	7,811.4	5,984.4	56.305	1720	17,358.1	13,942.4	63.704
940	8,026.8	6,160.1	56.536	1740	17,615.5	14,160.1	63.853
960	8,243.8	6,337.4	56.765	1760	17,873.5	14,378.4	64.001
980	8,462.2	6,516.1	56.990	1780	18,132.2	14,597.4	64.147
1000	8,682.1	6,696.2	57.212	1800	18,391.5	14,816.9	64.292
1020	8,903.4	6,877.8	57.432	1820	18,651.5	15,037.2	64.435

7,060.9

7,245.3

57.647

57.861

9,126.2

9,350.3

1040

1060

18,912.2 19,173.4

15,258.2

15,479.7

64.578

64.719

1840

1860

TABLA A	-20E						
Propieda	ades de gas idea	l del dióxido de	carbono, CO ₂ (conc	lusión)			
<i>T</i> R	<i>h</i> Btu∕lbmol	\overline{u} Btu/Ibmol	ड∙ Btu/Ibmol⋅R	<i>T</i> R	<i>h</i> Btu∕lbmol	\overline{u} Btu/lbmol	ਤ° Btu/Ibmol⋅R
1900	19,698	15,925	64.999	3500	41,965	35,015	73.462
1940	20,224	16,372	65.272	3540	42,543	35,513	73.627
1980	20,753	16,821	65.543	3580	43,121	36,012	73.789
2020	21,284	17,273	65.809	3620	43,701	36,512	73.951
2060	21,818	17,727	66.069	3660	44,280	37,012	74.110
2100	22,353	18,182	66.327	3700	44,861	37,513	74.267
2140	22,890	18,640	66.581	3740	45,442	38,014	74.423
2180	23,429	19,101	66.830	3780	46,023	38,517	74.578
2220	23,970	19,561	67.076	3820	46,605	39,019	74.732
2260	24,512	20,024	67.319	3860	47,188	39,522	74.884
2300	25,056	20,489	67.557	3900	47,771	40,026	75.033
2340	25,602	20,955	67.792	3940	48,355	40,531	75.182
2380	26,150	21,423	68.025	3980	48,939	41,035	75.330
2420	26,699	21,893	68.253	4020	49,524	41,541	75.477
2460	27,249	22,364	68.479	4060	50,109	42,047	75.622
2500	27,801	22,837	68.702	4100	50,695	42,553	75.765
2540	28,355	23,310	68.921	4140	51,282	43,060	75.907
2580	28,910	23,786	69.138	4180	51,868	43,568	76.048
2620	29,465	24,262	69.352	4220	52,456	44,075	76.188
2660	30,023	24,740	69.563	4260	53,044	44,584	76.327
2700	30,581	25,220	69.771	4300	53,632	45,093	76.464
2740	31,141	25,701	69.977	4340	54,221	45,602	76.601
2780	31,702	26,181	70.181	4380	54,810	46,112	76.736
2820	32,264	26,664	70.382	4420	55,400	46,622	76.870
2860	32,827	27,148	70.580	4460	55,990	47,133	77.003
2900	33,392	27,633	70.776	4500	56,581	47,645	77.135
2940	33,957	28,118	70.970	4540	57,172	48,156	77.266
2980	34,523	28,605	71.160	4580	57,764	48,668	77.395
3020	35,090	29,093	71.350	4620	58,356	49,181	77.581
3060	35,659	29,582	71.537	4660	58,948	49,694	77.652
3100	36,228	30,072	71.722	4700	59,541	50,208	77.779
3140	36,798	30,562	71.904	4740	60,134	50,721	77.905
3180	37,369	31,054	72.085	4780	60,728	51,236	78.029
3220	37,941	31,546	72.264	4820	61,322	51,750	78.153
3260	38,513	32,039	72.441	4860	61,916	52,265	78.276
3300	39,087	32,533	72.616	4900	62,511	52,781	78.398
3340	39,661	33,028	72.788	5000	64,000	54,071	78.698
3380	40,236	33,524	72.960	5100	65,491	55,363	78.994
3420	40,812	34,020	73.129	5200	66,984	56,658	79.284
3460	41,388	34,517	73.297	5300	68,471	57,954	79.569

TABLA A	-21E						
Propieda	ades de gas idea	l del monóxido (
<i>T</i>	<i>h</i>	<i>ū</i>	\overline{s}° Btu/Ibmol·R	<i>T</i>	<i>h</i>	<i>ū</i>	<i>s</i> °
R	Btu∕lbmol	Btu∕lbmol		R	Btu∕lbmol	Btu∕lbmol	Btu/Ibmol⋅R
300	2,081.9	1,486.1	43.223	1080	7,571.1	5,426.4	52.203
320	2,220.9	1,585.4	43.672	1100	7,716.8	5,532.3	52.337
340	2,359.9	1,684.7	44.093	1120	7,862.9	5,638.7	52.468
360	2,498.8	1,783.9	44.490	1140	8,009.2	5,745.4	52.598
380	2,637.9	1,883.3	44.866	1160	8,156.1	5,851.5	52.726
400	2,776.9	1,982.6	45.223	1180	8,303.3	5,960.0	52.852
420	2,916.0	2,081.9	45.563	1200	8,450.8	6,067.8	52.976
440	3,055.0	2,181.2	45.886	1220	8,598.8	6,176.0	53.098
460	3,194.0	2,280.5	46.194	1240	8,747.2	6,284.7	53.218
480	3,333.0	2,379.8	46.491	1260	8,896.0	6,393.8	53.337
500	3,472.1	2,479.2	46.775	1280	9,045.0	6,503.1	53.455
520	3,611.2	2,578.6	47.048	1300	9,194.6	6,613.0	53.571
537	3,725.1	2,663.1	47.272	1320	9,344.6	6,723.2	53.685
540	3,750.3	2,677.9	47.310	1340	9,494.8	6,833.7	53.799
560	3,889.5	2,777.4	47.563	1360	9,645.5	6,944.7	53.910
580	4,028.7	2,876.9	47.807	1380	9,796.6	7,056.1	54.021
600	4,168.0	2,976.5	48.044	1400	9,948.1	7,167.9	54.129
620	4,307.4	3,076.2	48.272	1420	10,100.0	7,280.1	54.237
640	4,446.9	3,175.9	48.494	1440	10,252.2	7,392.6	54.344
660	4,586.6	3,275.8	48.709	1460	10,404.8	7,505.4	54.448
680	4,726.2	3,375.8	48.917	1480	10,557.8	7,618.7	54.522
700	4,886.0	3,475.9	49.120	1500	10,711.1	7,732.3	54.665
720	5,006.1	3,576.3	49.317	1520	10,864.9	7,846.4	54.757
740	5,146.4	3,676.9	49.509	1540	11,019.0	7,960.8	54.858
760	5,286.8	3,777.5	49.697	1560	11,173.4	8,075.4	54.958
780	5,427.4	3,878.4	49.880	1580	11,328.2	8,190.5	55.056
800	5,568.2	3,979.5	50.058	1600	11,483.4	8,306.0	55.154
820	5,709.4	4,081.0	50.232	1620	11,638.9	8,421.8	55.251
840	5,850.7	4,182.6	50.402	1640	11,794.7	8,537.9	55.347
860	5,992.3	4,284.5	50.569	1660	11,950.9	8,654.4	55.411
880	6,134.2	4,386.6	50.732	1680	12,107.5	8,771.2	55.535
900	6,276.4	4,489.1	50.892	1700	12,264.3	8,888.3	55.628
920	6,419.0	4,592.0	51.048	1720	12,421.4	9,005.7	55.720
940	6,561.7	4,695.0	51.202	1740	12,579.0	9,123.6	55.811
960	6,704.9	4,798.5	51.353	1760	12,736.7	9,241.6	55.900
980	6,848.4	4,902.3	51.501	1780	12,894.9	9,360.0	55.990
1000	6,992.2	5,006.3	51.646	1800	13,053.2	9,478.6	56.078
1020	7,136.4	5,110.8	51.788	1820	13,212.0	9,597.7	56.166
1040	7,281.0	5,215.7	51.929	1840	13,371.0	9,717.0	56.253
1060	7,425.9	5,320.9	52.067	1860	13,530.2	9,836.5	56.339

TABLA A-	21E						
Propiedad	des de gas idea	al del monóxido	de carbono, CO (co	nclusión)			
T	\overline{h}	\overline{u}	<u>₹</u> °	T	Ī	\overline{u}	<u></u> s°
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R
1900	13,850	10,077	56.509	3500	27,262	20,311	61.612
1940 1980	14,170 14,492	10,318 10,560	56.677 56.841	3540 3580	27,608 27,954	20,576 20,844	61.710 61.807
2020	14,815	10,803	57.007	3620	28,300	21,111	61.903
2060	15,139	11,048	57.161	3660	28,647	21,378	61.998
2100	15,463	11,293	57.317	3700	28,994	21,646	62.093
2140 2180	15,789 16,116	11,539 11,787	57.470 57.621	3740 3780	29,341 29,688	21,914 22,182	62.186 62.279
2220	16,443	12,035	57.770	3820	30,036	22,450	62.370
2260	16,722	12,284	57.917	3860	30,384	22,719	62.461
2300	17,101	12,534	58.062	3900	30,733	22,988	62.511
2340 2380	17,431 17,762	12,784 13,035	58.204 58.344	3940 3980	31,082 31,431	23,257 23,527	62.640 62.728
2420	18,093	13,287	58.482	4020	31,780	23,797	62.816
2460	18,426	13,541	58.619	4060	32,129	24,067	62.902
2500	18,759	13,794	58.754	4100	32,479	24,337	62.988
2540 2580	19,093 19,427	14,048 14,303	58.885 59.016	4140 4180	32,829 33,179	24,608 24,878	63.072 63.156
2620	19,427	14,559	59.145	4220	33,530	25,149	63.240
2660	20,098	14,815	59.272	4260	33,880	25,421	63.323
2700	20,434	15,072	59.398	4300	34,231	25,692	63.405
2740 2780	20,771 21,108	15,330 15,588	59.521 59.644	4340 4380	34,582 34,934	25,934 26,235	63.486 63.567
2820	21,108	15,846	59.765	4420	35,285	26,508	63.647
2860	21,785	16,105	59.884	4460	35,637	26,780	63.726
2900	22,124	16,365	60.002	4500	35,989	27,052	63.805
2940	22,463	16,225	60.118	4540	36,341	27,325	63.883
2980 3020	22,803 23,144	16,885 17,146	60.232 60.346	4580 4620	36,693 37,046	27,598 27,871	63.960 64.036
3060	23,485	17,408	60.458	4660	37,398	28,144	64.113
3100	23,826	17,670	60.569	4700	37,751	28,417	64.188
3140	24,168	17,932	60.679	4740	38,104	28,691	64.263
3180 3220	24,510 24,853	18,195 18,458	60.787 60.894	4780 4820	38,457 38,811	28,965 29,239	64.337 64.411
3260	25,196	18,722	61.000	4860	39,164	29,513	64.484
3300	25,539	18,986	61.105	4900	39,518	29,787	64.556
3340	25,883	19,250	61.209	5000	40,403	30,473	64.735
3380 3420	26,227 26,572	19,515 19,780	61.311 61.412	5100 5200	41,289 42,176	31,161 31,849	64.910 65.082
3460	26,917	20,045	61.513	5300	43,063	32,538	65.252

TABLA A-22E								
Propieda	Propiedades de gas ideal del hidrógeno, H ₂							
T	\overline{h}	\overline{u}	<u></u> s°	T	\overline{h}	\overline{u}	\overline{s}°	
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	
300	2,063.5	1,467.7	27.337	1400	9,673.8	6,893.6	37.883	
320	2,189.4	1,553.9	27.742	1500	10,381.5	7,402.7	38.372	
340	2,317.2	1,642.0	28.130	1600	11,092.5	7,915.1	38.830	
360	2,446.8	1,731.9	28.501	1700	11,807.4	8,431.4	39.264	
380	2,577.8	1,823.2	28.856	1800	12,526.8	8,952.2	39.675	
400	2,710.2	1,915.8	29.195	1900	13,250.9	9,477.8	40.067	
420	2,843.7	2,009.6	29.520	2000	13,980.1	10,008.4	40.441	
440	2,978.1	2,104.3	29.833	2100	14,714.5	10,544.2	40.799	
460	3,113.5	2,200.0	30.133	2200	15,454.4	11,085.5	41.143	
480	3,249.4	2,296.2	20.424	2300	16,199.8	11,632.3	41.475	
500	3,386.1	2,393.2	30.703	2400	16,950.6	12,184.5	41.794	
520	3,523.2	2,490.6	30.972	2500	17,707.3	12,742.6	42.104	
537	3,640.3	2,573.9	31.194	2600	18,469.7	13,306.4	42.403	
540	3,660.9	2,588.5	31.232	2700	19,237.8	13,876.0	42.692	
560	3,798.8	2,686.7	31.482	2800	20,011.8	14,451.4	42.973	
580	3,937.1	2,785.3	31.724	2900	20,791.5	15,032.5	43.247	
600	4,075.6	2,884.1	31.959	3000	21,576.9	15,619.3	43.514	
620	4,214.3	2,983.1	32.187	3100	22,367.7	16,211.5	43.773	
640	4,353.1	3,082.1	32.407	3200	23,164.1	16,809.3	44.026	
660	4,492.1	3,181.4	32.621	3300	23,965.5	17,412.1	44.273	
680	4,631.1	3,280.7	32.829	3400	24,771.9	18,019.9	44.513	
700	4,770.2	3,380.1	33.031	3500	25,582.9	18,632.4	44.748	
720	4,909.5	3,479.6	33.226	3600	26,398.5	19,249.4	44.978	
740	5,048.8	3,579.2	33.417	3700	27,218.5	19,870.8	45.203	
760	5,188.1	3,678.8	33.603	3800	28,042.8	20,496.5	45.423	
780	5,327.6	3,778.6	33.784	3900	28,871.1	21,126.2	45.638	
800	5,467.1	3,878.4	33.961	4000	29,703.5	21,760.0	45.849	
820	5,606.7	3,978.3	34.134	4100	30,539.8	22,397.7	46.056	
840	5,746.3	4,078.2	34.302	4200	31,379.8	23,039.2	46.257	
860	5,885.9	4,178.0	34.466	4300	32,223.5	23,684.3	46.456	
880	6,025.6	4,278.0	34.627	4400	33,070.9	24,333.1	46.651	
900	6,165.3	4,378.0	34.784	4500	33,921.6	24,985.2	46.842	
920	6,305.1	4,478.1	34.938	4600	34,775.7	25,640.7	47.030	
940	6,444.9	4,578.1	35.087	4700	35,633.0	26,299.4	47.215	
960	6,584.7	4,678.3	35.235	4800	36,493.4	26,961.2	47.396	
980	6,724.6	4,778.4	35.379	4900	35,356.9	27,626.1	47.574	
1000	6,864.5	4,878.6	35.520	5000	38,223.3	28,294.0	47.749	
1100	7,564.6	5,380.1	36.188	5100	39,092.8	28,964.9	47.921	
1200	8,265.8	5,882.8	36.798	5200	39,965.1	29,638.6	48.090	
1300	8,968.7	6,387.1	37.360	5300	40,840.2	30,315.1	48.257	

TABLA A-23E	
Propiedades de gas ideal del vapor de agua, H ₂	0

Propiedades de gas ideal del vapor de agua, H ₂ O							
T	<u> </u>	\overline{u}	<u></u> s°	T	\overline{h}	\overline{u}	¯s°
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R
300	2,367.6	1,771.8	40.439	1080	8,768.2	6,623.5	50.854
320	2,526.8	1,891.3	40.952	1100	8,942.0	6,757.5	51.013
340	2,686.0	2,010.8	41.435	1120	9,116.4	6,892.2	51.171
360	2,845.1	2,130.2	41.889	1140	9,291.4	7,027.5	51.325
380	3,004.4	2,249.8	42.320	1160	9,467.1	7,163.5	51.478
400	3,163.8	2,369.4	42.728	1180	9,643.4	7,300.1	51.360
420	3,323.2	2,489.1	43.117	1200	9,820.4	7,437.4	51.777
440	3,482.7	2,608.9	43.487	1220	9,998.0	7,575.2	51.925
460	3,642.3	2,728.8	43.841	1240	10,176.1	7,713.6	52.070
480	3,802.0	2,848.8	44.182	1260	10,354.9	7,852.7	52.212
500	3,962.0	2,969.1	44.508	1280	10,534.4	7,992.5	52.354
520	4,122.0	3,089.4	44.821	1300	10,714.5	8,132.9	52.494
537	4,258.0	3,191.9	45.079	1320	10,895.3	8,274.0	52.631
540	4,282.4	3,210.0	45.124	1340	11,076.6	8,415.5	52.768
560	4,442.8	3,330.7	45.415	1360	11,258.7	8,557.9	52.903
580	4,603.7	3,451.9	45.696	1380	11,441.4	8,700.9	53.037
600	4,764.7	3,573.2	45.970	1400	11,624.8	8,844.6	53.168
620	4,926.1	3,694.9	46.235	1420	11,808.8	8,988.9	53.299
640	5,087.8	3,816.8	46.492	1440	11,993.4	9,133.8	53.428
660	5,250.0	3,939.3	46.741	1460	12,178.8	9,279.4	53.556
680	5,412.5	4,062.1	46.984	1480	12,364.8	9,425.7	53.682
700	5,575.4	4,185.3	47.219	1500	12,551.4	9,572.7	53.808
720	5,738.8	4,309.0	47.450	1520	12,738.8	9,720.3	53.932
740	5,902.6	4,433.1	47.673	1540	12,926.8	9,868.6	54.055
760	6,066.9	4,557.6	47.893	1560	13,115.6	10,017.6	54.117
780	6,231.7	4,682.7	48.106	1580	13,305.0	10,167.3	54.298
800	6,396.9	4,808.2	48.316	1600	13,494.4	10,317.6	54.418
820	6,562.6	4,934.2	48.520	1620	13,685.7	10,468.6	54.535
840	6,728.9	5,060.8	48.721	1640	13,877.0	10,620.2	54.653
860	6,895.6	5,187.8	48.916	1660	14,069.2	10,772.7	54.770
880	7,062.9	5,315.3	49.109	1680	14,261.9	10,925.6	54.886
900	7,230.9	5,443.6	49.298	1700	14,455.4	11,079.4	54.999
920	7,399.4	5,572.4	49.483	1720	14,649.5	11,233.8	55.113
940	7,568.4	5,701.7	49.665	1740	14,844.3	11,388.9	55.226
960	7,738.0	5,831.6	49.843	1760	15,039.8	11,544.7	55.339
980	7,908.2	5,962.0	50.019	1780	15,236.1	11,701.2	55.449
1000	8,078.2	6,093.0	50.191	1800	15,433.0	11,858.4	55.559
1020	8,250.4	6,224.8	50.360	1820	15,630.6	12,016.3	55.668
1040	8,422.4	6,357.1	50.528	1840	15,828.7	12,174.7	55.777
1060	8,595.0	6,490.0	50.693	1860	16,027.6	12,333.9	55.884

TABLA A-23E							
Propiedades de gas ideal del vapor de agua, H ₂ O (conclusión)							
T	ħ	ū	<u></u> \$°	T	ħ	ū	<u></u> \overline{s} °
R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R	R	Btu/Ibmol	Btu/Ibmol	Btu/Ibmol · R
1900	16,428	12,654	56.097	3500	34,324	27,373	62.876
1940	16,830	12,977	56.307	3540	34,809	27,779	63.015
1980	17,235	13,303	56.514	3580	35,296	28,187	63.153
2020	17,643	13,632	56.719	3620	35,785	28,596	63.288
2060	18,054	13,963	56.920	3660	36,274	29,006	63.423
2100	18,467	14,297	57.119	3700	36,765	29,418	63.557
2140	18,883	14,633	57.315	3740	37,258	29,831	63.690
2180	19,301	14,972	57.509	3780	37,752	30,245	63.821
2220	19,722	15,313	57.701	3820	38,247	30,661	63.952
2260	20,145	15,657	57.889	3860	38,743	31,077	64.082
2300	20,571	16,003	58.077	3900	39,240	31,495	64.210
2340	20,999	16,352	58.261	3940	39,739	31,915	64.338
2380	21,429	16,703	58.445	3980	40,239	32,335	64.465
2420	21,862	17,057	58.625	4020	40,740	32,757	64.591
2460	22,298	17,413	58.803	4060	41,242	33,179	64.715
2500	22,735	17,771	58.980	4100	41,745	33,603	64.839
2540	23,175	18,131	59.155	4140	42,250	34,028	64.962
2580	23,618	18,494	59.328	4180	42,755	34,454	65.084
2620	24,062	18,859	59.500	4220	43,267	34,881	65.204
2660	24,508	19,226	59.669	4260	43,769	35,310	65.325
2700	24,957	19,595	59.837	4300	44,278	35,739	65.444
2740	25,408	19,967	60.003	4340	44,788	36,169	65.563
2780	25,861	20,340	60.167	4380	45,298	36,600	65.680
2820	26,316	20,715	60.330	4420	45,810	37,032	65.797
2860	26,773	21,093	60.490	4460	46,322	37,465	65.913
2900	27,231	21,472	60.650	4500	46,836	37,900	66.028
2940	27,692	21,853	60.809	4540	47,350	38,334	66.142
2980	28,154	22,237	60.965	4580	47,866	38,770	66.255
3020	28,619	22,621	61.120	4620	48,382	39,207	66.368
3060	29,085	23,085	61.274	4660	48,899	39,645	66.480
3100	29,553	23,397	61.426	4700	49,417	40,083	66.591
3140	30,023	23,787	61.577	4740	49,936	40,523	66.701
3180	30,494	24,179	61.727	4780	50,455	40,963	66.811
3220	30,967	24,572	61.874	4820	50,976	41,404	66.920
3260	31,442	24,968	62.022	4860	51,497	41,856	67.028
3300	31,918	25,365	62.167	4900	52,019	42,288	67.135
3340	32,396	25,763	62.312	5000	53,327	43,398	67.401
3380	32,876	26,164	62.454	5100	54,640	44,512	67.662
3420	33,357	26,565	62.597	5200	55,957	45,631	67.918
3460	33,839	26,968	62.738	5300	57,279	46,754	68.172

TABLA A-26E

Entalpía de formación, función de Gibbs de formación y entropía absoluta a 77°F, 1 atm

Sustancia	Fórmula	\overline{h}_f^o Btu/Ibmol	g _f Btu/lbmol	
Acetileno	$C_2H_2(g)$	+97,540	+87,990	48.00
Agua	$H_2O(\ell)$	-122,970	-102,040	16.71
Alcohol etílico	$C_2H_5OH(g)$	-101,230	-72,520	67.54
Alcohol etílico	$C_2H_5OH(\ell)$	-119,470	-75,240	38.40
Alcohol metílico	$CH_3OH(g)$	-86,540	-69,700	57.29
Alcohol metílico	$CH_3OH(\ell)$	-102,670	-71,570	30.30
Amoniaco	$NH_3(g)$	-19,750	-7,140	45.97
Benceno	$C_6H_6(g)$	+35,680	+55,780	64.34
<i>n</i> -Butano	$C_4H_{10}(g)$	-54,270	-6,760	74.11
Carbón	C(s)	0	0	1.36
Dióxido de carbono	CO ₂ (g)	-169,300	-169,680	51.07
<i>n</i> -Dodecano	$C_{12}H_{26}(g)$	-125,190	+21,570	148.86
Etano	$C_2H_6(g)$	-36,420	-14,150	54.85
Etileno	$C_2H_4(g)$	+22,490	+29,306	52.54
Hidrógeno	H(<i>g</i>)	+93,780	+87,460	27.39
Hidrógeno	$H_2(g)$	0	0	31.21
Hidroxilo	ΟH(<i>g</i>)	+16,790	+14,750	43.92
Metano	$CH_4(g)$	-32,210	-21,860	44.49
Monóxido de carbono	CO(g)	-47,540	-59,010	47.21
Nitrógeno	$N_2(g)$	0	0	45.77
Nitrógeno	N(g)	+203,340	+195,970	36.61
<i>n</i> -Octano	$C_8H_{18}(g)$	-89,680	+7,110	111.55
<i>n</i> -Octano	$C_8H_{18}(\ell)$	-107,530	+2,840	86.23
Oxígeno	$O_2(g)$	0	0	49.00
Oxígeno	O(g)	+107,210	+99,710	38.47
Peróxido de hidrógeno	$H_2O_2(g)$	-58,640	-45,430	55.60
Propano	$C_3H_8(g)$	-44,680	-10,105	64.51
Propileno	$C_3H_6(g)$	+8,790	+26,980	63.80
Vapor de agua	$H_2O(g)$	-104,040	-98,350	45.11

Fuente: De JANAF, Thermochemical Tables, Midland, MI, Dow Chemical Co., 1971; Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; y API Research Project 44, Carnegie Press, 1953.

TABLA A-27E

Propiedades de algunos combustibles e hidrocarburos comunes

Combustible (fase)	Fórmula	Masa molar, Ibm/Ibmol	Densidad, ¹ lbm/ft ³	Entalpía de vaporización, ² Btu/lbm	Calor espe- cífico, 1 c _p Btu/ Ibm · °F	Poder calorífico superior, ³ Btu/lbm	Poder calorífico inferior, ³ Btu/lbm
			IDIII/IT	Dtu/IDIII			
Acetileno (g)	C_2H_2	26.038		_	0.404	21,490	20,760
Benceno (ℓ)	C_6H_6	78.114	54.7	186	0.411	17,970	17,240
Butano (ℓ)	C_4H_{10}	58.123	36.1	156	0.578	21,130	19,510
Carbono (s)	С	12.011	125	_	0.169	14,100	14,100
Decano (ℓ)	$C_{10}H_{22}$	142.285	45.6	155	0.528	20,490	19,020
Diesel ligero (ℓ)	$C_nH_{1.8n}$	170	49-52	116	0.53	19,800	18,600
Diesel pesado (ℓ)	$C_nH_{1.7n}$	200	51-55	99	0.45	19,600	18,400
Etano (g)	C_2H_6	30.070	_	74	0.418	22,320	20,430
Etanol (\ell)	C_2H_6O	46.069	49.3	395	0.583	12,760	11,530
Gas natural (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	0.48	21,500	19,400
Gasolina (ℓ)	$C_n H_{1.87n}$	100-110	45-49	151	0.57	20,300	18,900
Heptano (ℓ)	C ₇ H ₁₆	100.204	42.7	157	0.535	20,680	19,180
Hexano (ℓ)	$C_{6}H_{12}^{'}$	84.161	42.0	169	0.439	20,430	19,090
Hexeno (ℓ)	$C_{6}H_{14}^{12}$	86.177	41.2	157	0.542	20,770	19,240
Hidrógeno (g)	H_2	2.016	_	_	3.44	60,970	51,600
Isopentano (ℓ)	C_5H_{12}	72.150	39.1	_	0.554	20,890	19,310
Metano (<i>g</i>)	CH₄¹²	16.043	_	219	0.525	23,880	21,520
Metanol (ℓ)	CH ₄ O	32.042	49.3	502	0.604	9,740	8,570
Monóxido de carbono		28.013		_	0.251	4,340	4,340
Octano (ℓ)	C ₈ H ₁₈	114.231	43.9	156	0.533	20,590	19,100
1-Penteno (ℓ)	$C_{5}H_{10}^{10}$	70.134	40.0	156	0.525	20,540	19,190
Propano (ℓ)	C ₃ H ₈	44.097	31.2	144	0.662	21,640	19,930
Tolueno (ℓ)	C ₇ H ₈	92.141	54.1	177	0.408	18,230	17,420

 $^{^1\}mbox{A}$ 1 atm y 68°F.

 $^{^2}$ A 77°F para combustibles líquidos, y 1 atm y temperatura normal de ebullición para combustibles gaseosos.

 $^{^3\}text{A}$ 77°F. Multiplique por la masa molar para obtener los valores caloríficos en Btu/lbmol.

FIGURA A-31E