DSA 8070 R Session 2: Matrix Algebra

Whitney Huang, Clemson University

Contents

Motor Trend Car Road Tests Data
Mean Vector and Covariance Matrix
Inverse Matrix
Orthogonal Matrix Example
Eigenvalues and Eigenvectors
Spectral Decomposition
Determinant and Trace
Square-Root Matrices
Partitioning Random vectors

Motor Trend Car Road Tests Data

```
data(mtcars)
vars <- which(names(mtcars) %in% c("mpg", "disp", "hp", "drat", "wt"))
cars <- mtcars[, vars]</pre>
```

Mean Vector and Covariance Matrix

```
Mean vector: \frac{1}{n}\mathbf{X}^T\mathbf{1}

Covariance Matrix: \frac{1}{n-1}\mathbf{X}^T(\mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}^T)\mathbf{X} = \frac{1}{n-1}\left(\mathbf{X} - \mathbf{1}\,\bar{\mathbf{x}}^T\right)^T\left(\mathbf{X} - \mathbf{1}\,\bar{\mathbf{x}}^T\right)

(mean <- apply(cars, 2, mean))

## mpg disp hp drat wt

## 20.090625 230.721875 146.687500 3.596563 3.217250
```

```
n <- dim(cars)[1]; p <- dim(cars)[2]
X <- as.matrix(cars)
ones <- rep(1, n)
(meanCal <- (1 / n) * t(X) %*% ones)</pre>
```

```
##
              [,1]
## mpg
        20.090625
## disp 230.721875
        146.687500
## hp
## drat
          3.596563
          3.217250
## wt
(S <- cov(cars))
                           disp
##
                                                  drat
                mpg
                                        hp
                                                                wt
          36.324103 -633.09721 -320.73206
## mpg
                                             2.1950635 -5.1166847
## disp -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
                    6721.15867 4700.86694 -16.4511089 44.1926613
        -320.732056
## drat
           2.195064
                      -47.06402 -16.45111
                                             0.2858814 -0.3727207
## wt
          -5.116685
                      107.68420
                                  44.19266 -0.3727207
                                                         0.9573790
(Scal \leftarrow (1 / (n - 1)) * t(X) %*% (diag(n) - (1 / n) * ones %*% t(ones)) %*% X)
##
                mpg
                           disp
                                        hp
          36.324103 -633.09721 -320.73206
## mpg
                                             2.1950635 -5.1166847
## disp -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
## hp
       -320.732056 6721.15867 4700.86694 -16.4511089 44.1926613
## drat
           2.195064
                      -47.06402 -16.45111
                                             0.2858814 -0.3727207
          -5.116685
                      107.68420
                                  44.19266 -0.3727207
## wt
                                                         0.9573790
(Scal \leftarrow (1 / (n - 1)) * t(X - ones %*% t(meanCal)) %*% (X - ones %*% t(meanCal)))
##
                mpg
                           disp
                                        hp
                                                  drat
                                                                wt
          36.324103 -633.09721 -320.73206
                                             2.1950635 -5.1166847
## disp -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
       -320.732056 6721.15867 4700.86694 -16.4511089 44.1926613
## hp
## drat
           2.195064
                     -47.06402 -16.45111
                                             0.2858814 -0.3727207
## wt
          -5.116685
                      107.68420
                                  44.19266 -0.3727207
                                                         0.9573790
```

Inverse Matrix

Orthogonal Matrix Example

Eigenvalues and Eigenvectors

```
\mathbf{A}\mathbf{x} = \lambda\mathbf{x}
```

```
eigen <- eigen(S)
(S ** eigen*vectors[, 1] / eigen*vectors[, 1])
##
            [,1]
## mpg 18636.79
## disp 18636.79
## hp
        18636.79
## drat 18636.79
        18636.79
## wt
eigen$values[1]
## [1] 18636.79
t(eigen$vectors[, 1]) %*% eigen$vectors[, 1]
##
        [,1]
## [1,]
```

Spectral Decomposition

```
\mathbf{A} = \lambda_1 \mathbf{e}_1 \mathbf{e}_1^T + \lambda_2 \mathbf{e}_2 \mathbf{e}_2^T + \dots + \lambda_p \mathbf{e}_p \mathbf{e}_p^T
\mathsf{temp} \leftarrow \mathsf{array}(\mathsf{dim} = \mathsf{c}(5, 5, 5))
\mathsf{for} \ (\mathsf{i} \ \mathsf{in} \ 1:5) \{
\mathsf{temp}[\mathsf{i},\mathsf{j}] \leftarrow \mathsf{eigen} \mathsf{values}[\mathsf{i}] * \mathsf{eigen} \mathsf{vectors}[\mathsf{j}] \; \mathsf{w*} \; \mathsf{t}(\mathsf{eigen} \mathsf{vectors}[\mathsf{j}]) \}
\mathsf{descenter} \; \mathsf{decomposition} \; \mathsf{for} \; \mathsf{decomposition} \; \mathsf{for} \; \mathsf{for
```

```
##
              [,1]
                          [,2]
                                     [,3]
                                                 [,4]
                                                             [,5]
## [1,]
         36.324103 -633.09721 -320.73206
                                            2.1950635 -5.1166847
## [2,] -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
## [3,] -320.732056 6721.15867 4700.86694 -16.4511089 44.1926613
## [4,]
          2.195064
                    -47.06402 -16.45111
                                           0.2858814 -0.3727207
                    107.68420
                               44.19266 -0.3727207 0.9573790
## [5,]
       -5.116685
```

```
S
##
                          disp
                                                 drat
                                       hp
         36.324103 -633.09721 -320.73206
                                            2.1950635 -5.1166847
## mpg
## disp -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
        -320.732056 6721.15867 4700.86694 -16.4511089 44.1926613
## drat
          2.195064
                     -47.06402 -16.45111
                                            0.2858814 -0.3727207
## wt
          -5.116685
                     107.68420
                                 44.19266 -0.3727207
                                                        0.9573790
```

Determinant and Trace

```
# Trace
(trace <- sum(diag(S)))

## [1] 20099.23

sum(eigen$values)

## [1] 20099.23

# Determinant
det(S)

## [1] 3951786

prod(eigen$values)</pre>

## [1] 3951786
```

Square-Root Matrices

$$\mathbf{A}^{rac{1}{2}} = \mathbf{P} \Lambda^{rac{1}{2}} \mathbf{P}^T = \sum_{j=1}^p \sqrt{\lambda_j} \mathbf{e}_j \mathbf{e}_j^T$$

```
temp1 \leftarrow array(dim = c(5, 5, 5))
for (i in 1:5){
 temp1[i,,] <- (1 / eigen$values[i]) * eigen$vectors[, i] %*% t(eigen$vectors[, i])
# Check the spectral decomposition
(out1 <- apply(temp1, 2:3, sum))
             [,1]
                       [,2]
##
                                  [,3]
                                           [,4]
                                                    [,5]
## [1,] 0.1695494031 -0.0006468718 0.0058975274 -0.29977161 0.58997555
## [3,] 0.0058975274 -0.0003801427 0.0008208474 -0.02678451 0.02595898
## [5,] 0.5899755523 -0.0375108878 0.0259589804 0.40558365 7.37641228
```

```
S_inv
```

```
##
                               disp
                  mpg
                                               hp
                                                          drat
                                                                        wt
         0.1695494031 -0.0006468718 0.0058975274 -0.29977161
## mpg
## disp -0.0006468718 0.0005369064 -0.0003801427 0.02257595 -0.03751089
         0.0058975274 - 0.0003801427 0.0008208474 - 0.02678451 0.02595898
## drat -0.2997716134 0.0225759526 -0.0267845083 8.50376340 0.40558365
         0.5899755523 -0.0375108878 0.0259589804 0.40558365
                                                                7.37641228
temp2 \leftarrow array(dim = c(5, 5, 5))
for (i in 1:5){
  temp2[i,,] <- sqrt(eigen$values[i]) * eigen$vectors[, i] %*% t(eigen$vectors[, i])
out2 <- apply(temp2, 2:3, sum)</pre>
(out2 %*% out2)
##
               [,1]
                           [,2]
                                       [,3]
                                                   [,4]
                                                               [,5]
## [1,]
          36.324103 -633.09721 -320.73206
                                             2.1950635 -5.1166847
## [2,] -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
## [3,] -320.732056 6721.15867 4700.86694 -16.4511089
                                                        44.1926613
## [4,]
           2.195064
                      -47.06402 -16.45111
                                             0.2858814
                                                        -0.3727207
                                            -0.3727207
## [5,]
          -5.116685
                      107.68420
                                  44.19266
                                                          0.9573790
S
##
                mpg
                           disp
                                        hp
                                                   drat
## mpg
          36.324103
                    -633.09721 -320.73206
                                             2.1950635
                                                        -5.1166847
## disp -633.097208 15360.79983 6721.15867 -47.0640192 107.6842040
                     6721.15867 4700.86694 -16.4511089
## hp
        -320.732056
                                                        44.1926613
## drat
           2.195064
                      -47.06402
                                 -16.45111
                                             0.2858814
                                                         -0.3727207
## wt
          -5.116685
                      107.68420
                                  44.19266 -0.3727207
                                                          0.9573790
```

Partitioning Random vectors

Let's partitioning the variables into two groups

```
    disp, hp, wt
    mpq, drat
```

```
vars1 <- which(names(mtcars) %in% c("disp", "hp", "wt"))
vars2 <- which(names(mtcars) %in% c("mpg", "drat"))

carPar <- mtcars[, c(vars1, vars2)]

(Sigma11 <- cov(carPar[1:3, 1:3]))</pre>
```

```
## disp hp wt
## disp 901.3333 294.66667 7.410000
## hp 294.6667 96.33333 2.422500
## wt 7.4100 2.42250 0.077175

(Sigma22 <- cov(carPar[4:5, 4:5]))

## mpg drat
## mpg 3.6450 -0.09450
## drat -0.0945 0.00245

(Sigma12 <- cov(carPar)[1:3, 4:5])

## mpg drat
## disp -633.097208 -47.0640192
## hp -320.732056 -16.4511089
## wt -5.116685 -0.3727207</pre>
```