Прикладная Криптография: Симметричные криптосистемы МАС: схемы

Макаров Артём МИФИ 2020

Целостность сообщений

- Задача обеспечить целостность сообщений m при передаче
- Обеспечиваем только **целостность**, сообщения предполагаются открытыми
- Основная идея создать небольшую по длине величину t (tag, метка) на основе сообщения, и передать данную величину вместе с сообщением: (m,t). На стороне получателя величина t' вычисляется для полученного сообщения m' и производится сравнение t=t'. В случае равенства полагается, что целостность сообщения не нарушена.

Определение МАС

МАС на (K, M, T) называется пара эффективных алгоритмов I = (S, V). S - алгоритм выработки МАС, V - алгоритм проверки МАС. Пусть M - множество сообщений, K - множество ключей, T - множество кодов аутентичности (меток). Тогда для $m \in M, t \in T, k \in K$

- $S: K \times M \to T$ вероятностный алгоритм, вычисляющий $t \leftarrow^R S(k,m)$
- $V: K \times M \times T \to \{0,1\}$ детерминированный алгоритм, вычисляющий результат проверки $r \leftarrow V(k,m,t)$.
- Свойство корректности $\Prig[Vig(k,m,S(k,m)ig)=1ig]=1$

Игра на стойкость МАС (chosen message attack)

- Противник побеждает в игре, если пара (m,t) верная пара сообщение MAC, т.е. V(k,m,t)=1.
- Преимуществом противника A в игре против МАС I=(S,V) называется величина $MAC_{adv}[A,I]=\Pr[V(k,m,t)=1].$
- МАС I = (S, V) называется стойким МАС, если $\forall A \ MAC_{adv}[A, I] \leq \epsilon, \epsilon$ пренебрежимо малая величина.

Беспрификсные PRF

PRF $F_{CBC}(k,m)$ — цепочка CBC с использованием PRF. В качестве значение используется последний элемент цепочки.

Беспрификсные PRF

PRF $F^*(k,m)$ — каскадная конструкция. Выход каждой итерации PRF используется к качестве ключа в следующей итерации PRF.

Figure 6.3: Two prefix-free secure PRFs

Беспрификсные PRF

Теорема 9.3. Пусть F — стойкая PRF на $(K,X,X),X=\{0,1\}^n$. Для полиномиально ограниченной величины l PRF $F_{CBC}:K\times X^{\leq l}\to X$ является стойкой беспрификсной PRF, причём для любого беспрификсного противника A, делающего не более Q запросов существует противник в игре на PRF, причём

$$PRF^{pf}[A, F_{CBC}] \le PRF_{adv}[B, F] + (Ql)^2/2|X|$$

Теорема 9.4. Пусть F — стойкая PRF на (K, X, K). Для полиномиально ограниченной величины l PRF F^* : $K \times X^{\leq l} \to K$ является стойкой беспрификсной PRF, причём для любого беспрификсного противника A, делающего не более Q запросов существует противник в игре на PRF, причём $PRF^{pf}[A, F_{CBC}] \leq Ql * PRF_{adv}[B, F]$

⊳ без доказательства⊲

Построение стойкий PRF на основе беспификсных PRF

Рассмотрим 3 способа построения PRF на основе беспрификсных PRF:

- Зашифрование выхода беспрификсной PRF: зашифрование выхода беспрификсной PRF с использованием другой PRF
- Беспрификсное кодирование: преобразовать входные данные так, чтобы все они были беспрификсными
- Беспрификсное кодирование с рандомизацией: СМАС

Пусть PF — $\mathrm{PRF}:K_1 \times X^{\leq l} \to Y$, F — $\mathrm{PRF}:K_2 \times Y \to T$. Определим $EFig((k_1,k_2),mig) = Fig(k_2,PF(k_1,m)ig)$, $k_1 \in K_1$, $k_2 \in K_2$, $m \in X^{\leq l}$

Пусть PF – PRF на $(K, X^{\leq l}, Y)$. PF является **расширяемой PRF**, если $\forall k \in K, x, y \in X^{\leq l-1}, a \in X$:

$$PF(k, x) = PF(k, y) \Rightarrow PF(k, x||a) = PF(k, y||a).$$

PRF CBC и каскадной конструкции являются расширяемыми.

Если PF функция CBC или каскадная конструкция то PRF EF — стойкая PRF.

Теорема 10.1. Пусть PF — расширяемая беспрификсная PRF на $(K_1, X^{\leq l+1}, Y)$, |Y| — сверх полиномиальная, l — полиномиально ограниченная. Пусть F — стойкая PRF на (K_2, Y, T) . Тогда EF определённая ранее — стойкая PRF на $(K_1, \times K_2, X^{\leq l}, T)$: $PRF_{adv}[A, EF] \leq PRF_{adv}[B_1, F] + PRF_{adv}^{pf}[B_2, PF] + Q^2/2|Y|$

⊳ Рассмотрим идею доказательства. Самая неочевидная часть результирующей формулы $PRF_{adv}[A,EF] \leq PRF_{adv}[B_1,F] + PRF_{adv}^{pf}[B_2,PF] + Q^2/2|Y|$ это слагаемое $Q^2/2|Y|$. Рассмотрим причину его появления.

Пусть противник запрашивает у оракула (претендента) Q кодов аутентичности для Q различных сообщений. Так как размер области значений PF есть |Y|, то используя парадокс дней рождений за $Q \sim \sqrt{|Y|}$ произойдёт коллизия, и итоговое значение МАС тоже даст коллизию. Т.е. мы нашли пару $x_i, x_j \colon PF(k_1, x_i) = PF(k_1, x_j)$. Так как PF расширяемая, то противник имея МАС t для сообщения t0 фактически имеет МАС для сообщения t1 t2 t3.

(a) The ECBC construction ECBC(k, m) (encrypted CBC)

(b) The NMAC construction NMAC(k, m) (encrypted cascade)

ECBC MAC

Теорема 10.2. Зашфированный СВС МАС ECBC, зашифрованный с использованием PRF F на (K,X,X) (|X| - сверх полиномиальная, l – полиномиально ограниченная) – стойкая PRF на $(K^2,X^{\leq l},X)$: $PRF_{adv}[A,ECBC] \leq PRF_{adv}[B_1,F] + PRF_{adv}[B_2,F] + \frac{\left(Q(l+1)\right)^2 + Q^2}{2|X|}$

⊳следствие Теоремы 10.1.⊲

NMAC

- PRF F на $(K, M, K), K = \{0,1\}^k, X = \{0,1\}^n, k \le X$
- $g(t) = t || \text{fpad, fpad} \phi$ иксированное дополнение, длины n-k бит (например все 0).

Теорема 10.3. NMAC, использующая PRF F стойкая PRF на $(K^2, X^{\leq l}, K)$: $PRF_{adv}[A, NMAC] \leq (Q(l+1)) * PRF_{adv}[B_1, F] + PRF_{adv}[B_2, F] + \frac{Q^2}{2|K|}$

⊳следствие **Теоремы 10.1.**⊲

NMAC u ECBC MAC

- Рассмотренные конструкции являются стойкими PRF и следовательно стойкими MAC
- Нет необходимости знать длину сообщения заранее, можно обновлять полученное значение МАС при получении новых блоков сообщения, не дожидаясь получения сообщения целиком
- Можно использовать для сообщений произвольной длинны, **кратной размеру блока** PRF (чаще всего блочного шифра)

Беспрификсное кодирование

Цель — закодировать «префиксные строки» в беспрификсные, для использования в беспрификсных PRF для получения MAC

Пусть $X_{>0}^{\leq l}$ - множество непустых строк, длины не более l элементов в X.

Функция $pf: M \to X_{>0}^{\leq l}$ называется беспрификсным кодированием, если pf — инъективна и множество элементов из образа pf — беспрификсное множество.

Теорема 10.4. Пусть pf — беспрификсное кодирование, PF — беспрификсная PRF на $(K, X^{\leq l}, Y)$. Тогда PRF F(k, m) = PF(k, pf(m)) — стойкая PRF на (K, M, Y)

⊳Очевидно следует из определения беспрификсной PRF<

Беспрификсное кодирование

• Метод 1. Добавление длины

$$X = \{0,1\}^n, M = X^{\leq l-1}, m = (a_1, \dots, a_v) \in M$$

$$pf(m) = (< v >, a_1, \dots, a_v) \in X^{\leq l}_{>0}$$

• Метод 2. «Остановочные биты»

$$X = \{0,1\}^n, \tilde{X} = \{0,1\}^{n-1}, M = \tilde{X}_{>0}^{\leq l}, m = (a_1, ..., a_v) \in M$$

 $pf(m) = ((a_1||0), (a_2, ||0), ..., (a_{v-1}||0), (a_v||1)) \in X_{>0}^{\leq l}$

⊳Очевидна инъективность и беспрификсность образа <

Беспрификсное кодирование

- Позволяет использовать беспрификсные PRF в качестве MAC
- Добавление длины сообщения увеличивает длину сообщений как входа для беспрификсной PRF, так как беспрификсное кодирование избыточно.
- Добавление длины к сообщению не позволяет использовать МАС в поточном режиме (когда сообщение передаётся по частям), так как длина сообщения заранее не известна
- Так как в основном используются блочные шифры добавление данных беспрификсным кодирование означает добавление лишних блоков
- Использование «остановочных битов» также увеличивает длину сообщения

Беспрификсное кодирование с рандомизацией

Пусть $x, y \in X^{\leq l}$. Обозначим $x \sim y$ если x префикс y или y префикс x (т.е. \sim отношение «префиксности» на $X^{\leq l}$).

Пусть ϵ — действительное число, $0 \le \epsilon \le 1$. Вероятностное ϵ -префиксное кодирование это функция $prf: K \times M \to X_{>0}^{\le l}: m_0, m_1 \in M, m_0 \ne m_1$: $\Pr[prf(k, m_0) \sim prf(k, m_1)] \le \epsilon$

Где вероятность рассматривается при случайном равновероятном выборе $k \in K$

Пример -
$$prf(k, (a_1, ..., a_v)) = (a_1, ..., a_v, (a_v \oplus k)) \in X_{>0}^{\leq l}$$

Беспрификсное кодирование с рандомизацией

Пусть PF — беспрификсная PRF на $(K, X^{\leq l}, Y), prf: K_1 \times M \to X_{>0}^{\leq l}$ - вероятностное ϵ -префиксное кодирование.

Определим PRF
$$F$$
 на $(K \times K_1, M, Y)$:
$$F\big((k_1, k_2), m\big) = PF(k, prf(k_1, m))$$

Теорема 10.5. Если PF - беспрификсная PRF, prf - вероятностное ϵ -префиксное кодирование, тогда F , введённая выше — стойкая PRF:

$$PRF_{adv}[A, F] \le PRF_{adv}^{pf}[B_1, PF] + PRF_{adv}^{pf}[B_2, PF] + \frac{Q^2 \epsilon}{2}$$

⊳без доказательства<

Беспрификсное кодирование с рандомизацией

МАС для сообщений, некратных длине блока

Все рассмотренные до этого схемы были применимы только для сообщений длины кратных длине блока PRF (блочного шифра).

Пусть F — PRF на $(K, X^{\leq l+1}, Y)$, inj: $\{0,1\}^{\leq nl} \to X^{\leq nl}$ - инъекция. Определим PRF F_{bit} :

$$F_{bit} = F(k, inj(x))$$

Теорема 10.6. PRF введённая выше — стойкая PRF на $(K, \{0,1\}^{\leq nl}, Y)$ ⊳очевидно \triangleleft

Построение инъективных функций

Пусть
$$X = \{0,1\}^n$$
, $inj: \{0,1\}^{\leq nl} \to X^{\leq l+1}$ $inj:$

- Если входное сообщение имеет длину не кратную n добавить 10...00 до длинны кратной n
- Иначе добавить n-блок $(1||0^{n-1})$
- Инъективна и обратима

CMAC

- Стандарт NIST
- Один из наиболее популярных алгоритмов вычисления МАС (самый популярных после НМАС)
- Использует три различных ключа (могут быть выработаны на основе одного ключа)

CMAC

OMAC

• В текущей вариации (ОМАС) использует единственный ключ для генерации этих трех ключей для некоторой константы R_n :

```
input: key k \in \mathcal{K}
output: keys k_0, k_1, k_2 \in \mathcal{X}
k_0 \leftarrow k
L \leftarrow F(k, 0^n)
(1) if \operatorname{msb}(L) = 0 then k_1 \leftarrow (L \ll 1) else k_1 \leftarrow (L \ll 1) \oplus R_n
(2) if \operatorname{msb}(k_1) = 0 then k_2 \leftarrow (k_1 \ll 1) else k_2 \leftarrow (k_1 \ll 1) \oplus R_n
output k_0, k_1, k_2.
```

OMAC

• Фактически для получения трех ключей реализуется умножение в кольце многочленов на некоторую константу u

Trunkated CBC MAC

Основная идея – не дать противнику возможность воспользоваться МАС для осуществления префиксной атаки.

Использование части кода аутентичности. Используется в ГОСТ 28147-98 Оптимально использовать половину исходного МАС

Основной недостаток – фактически понижаем достижимый параметр стойкости в 2 раза

Fig. 1. Truncated CBC. Representation of $\mathsf{TCBC}_{r,\mathsf{pad}}[\pi]$. Here, $M[1],\ldots,M[\ell]$ are n-bit blocks resulting from applying the padding scheme pad to the input message $M \in \{0,1\}^*$.

PMAC

РМАС – параллельный МАС

Возможность добавлять и удалять блоки из итогового значения МАС

Основная идея – использование «различных» ключей для каждого блока, полученных через умножение в кольце многочленов

Возможность вычислять МАС параллельно для всех блоков

Был патентован (США), разрешено бесплатное использование в образовательных и open-source проектах. В настоящий момент патент истёк

PMAC

Одноразовый МАС

(по аналогии с одноразовым блокнотом)

Введём игру

I = (S, V) стойкий одноразовый МАС, если $Adv_{mac1}[A, I] = \Pr[b = 1] \le \epsilon, \epsilon$ – пренебрежимо малая величина

Одноразовый МАС: пример

Стойкий против любых (не только эффективных) противников

```
Пусть q большое простое число (пример - q=2128+51) key=(a,b)\in\{1,...,q\}^2 msg=(m[1],...,m[L])
```

$$P_{msg}(x) = x^{L+1} + m[L] * x^L + \dots + m[1] * x$$
 – полином степени $L+1$ $S(key, msg) = P_{msg}(a) + b \pmod{q}$

Одноразовый МАС ⇒ Многоразовый МАС

Пусть (H,V) стойкий одноразовый МАС на $(K,M,\{0,1\}^n)$.

Пусть $F \colon KF \times \{0,1\}^n \to \{0,1\}^n$ стойкая PRF.

$$r \leftarrow^R R$$
.

Медленная, Быстрая, Короткий вход Длинный вход

Carter-Wegman MAC:

$$S_{cw}ig((k_1,k_2),mig) = ig(r,F(k_2,r) \oplus H(k_1,m)ig) = (r,v)$$
 $V_{cw}(k,(r,v),m) = egin{cases} 1,v = F(k_2,r) \oplus H(k_1,m) \ 0,$ иначе

Является недетерминированным

Carter-Wegman MAC

Наиболее быстрые современные МАС

- VMAC
- UMAC
- Poly1305-AES

Poly1305

Poly1305:

Пусть
$$m[0], m[1], ..., m[l-1]$$
 – сообщение, $q = \frac{l}{16}$ (округление сверху)

$$c_i = m[16i - 16] + 2^8 m[16i - 15] + + 2^{16} m[16i - 14] + \dots + 2^{120} m[16i - 1] + 2^{128}$$

Если 16 не делит l:

$$c_q = m[16q - 16] + 2^8 m[16q - 15] + ... + 2^{8(l \text{mod} 16) - 8} m[l - 1] + 2^{8(l \text{mod} 16)}$$

Простыми словами — дополнить каждые 16 байт до 17, добавляя 1. Если не хватает до 16 байт — добавить 100...000 чтоб хватало.

Poly1305

```
Poly1305<sub>r</sub>(m, AES_k(n))
= \left[ \left( (c_1 r^q + c_2 r^{q-1} + \dots + c_q r^1) \bmod 2^{130} - 5 \right) \right]
```

```
#include <gmpxx.h>
void poly1305_gmpxx(unsigned char *out,
  const unsigned char *r,
  const unsigned char *s,
  const unsigned char *m,unsigned int 1)
 unsigned int j;
 mpz_class rbar = 0;
 for (j = 0; j < 16; ++j)
    rbar += ((mpz_class) r[j]) << (8 * j);
 mpz_class h = 0;
 mpz_{class} p = (((mpz_{class}) 1) << 130) - 5;
  while (1 > 0) {
    mpz_class c = 0;
    for (j = 0; (j < 16) && (j < 1); ++j)
      c += ((mpz\_class) m[j]) << (8 * j);
    c += ((mpz_class) 1) << (8 * j);
    m += j; 1 -= j;
   h = ((h + c) * rbar) \% p;
 for (j = 0; j < 16; ++j)
    h += ((mpz_class) s[j]) << (8 * j);
 for (j = 0; j < 16; ++j) {
    mpz_class c = h \% 256;
    h >>= 8;
    out[j] = c.get_ui();
                                    37
```

1. First, initialize _r_ then process groups of 16 bytes

2. Finally, add the last 16 bytes of the key and generate the tag

Poly 1305

_ **Ada**Labs

Introduction

- Poly1305 is a Wegman-Carter, one-time authenticator designed by D. J. Bernstein
- It is used to calculate a Message Authentication Code (MAC) for a message
- Poly 1305 uses a 32 Byte key and operates on an N byte message
 Operation
- The first 16 bytes of the one-time key are interpreted as a number _r_ with the following modifications:
 - ► The top 4 bits of bytes 3, 7, 11, 15 are set to 0
 - ► The bottom 2 bits of bytes 4, 8, 12 are set to 0
 - ► The 16 bytes are interpreted as a little endian value
- The accumulator (Acc in the diagram) is set to 0
- For every n bytes read from the N byte message, if n = 16 then just add a 17th byte having a value of 1 and the 17 bytes are treated as a little endian number
- If n < 16 then pad with 0s until there are 16 bytes and add the 17th byte as in the case when n = 16
- The number is then added to the accumulator which is multiplied by
 r and the result is saved back to the accumulator
- Note: These operations are all mod 2^130 5
- Finally, the last 16 bytes of the key are interpreted as a little endian number and this number is added to the accumulator mod 2^128
- The result is then written out as a little endian number and this is taken as the 16 byte tag

NB: картинка слева предполагает, что правая часть ключа Poly1305 уже получена ранее как выход некоторой PRF, вычисленной от некоторого n поэтому явного вычисления PRF нет.

В качестве PRF используется не только AES, но и ChaCha20 (обычно в рамках построения аутентифицированного шифрования ChaCha 20 – Poly 1305)