APPENDIX OF

A Gödel modal logic over witnessed crisp models

 $\begin{array}{c} \text{Mauro Ferrari*}^{1[0000-0002-7904-1125]}, \text{ Camillo Fiorentini}^{2[0000-0003-2152-7488]}, \\ \text{and Ricardo Oscar Rodriguez}^{3[0000-0001-7551-2877]} \end{array}$

Dep. of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, Italy mauro.ferrari@uninsubria.it

> ² Dep. of Computer Science, Università degli Studi di Milano, Italy fiorentini@di.unimi.it

This Appendix includes supplementary material for the paper:

M. Ferrari, C. Fiorentini, R.O. Rodriguez. A Gödel modal logic over witnessed crisp models. In Proceedings of *TABLEAUX 2025*, to apper.

Proofs of Section 3

Lemma 1. Let ρ be an instance of a rule of the calculus \mathcal{C}_{GW^c} , let Γ be the conclusion of ρ and let \mathfrak{M} be a GW^c -model. If $\mathfrak{M} \models \Gamma$, then there exists a premise Γ' of ρ such that $\mathfrak{M} \models \Gamma'$.

Proof. Let \mathcal{I} be an \mathfrak{M} -interpretation, let w be a label of \mathcal{L}_c and w^* a world of \mathfrak{M} . By $\mathcal{I}[w \coloneqq w^*]$ we denote the \mathfrak{M} -interpretation \mathcal{I}' such that $\mathcal{I}'(w) = w^*$ and $\mathcal{I}'(x) = \mathcal{I}(x)$ for every $x \neq w$ (where x is either a label or a constant). The definition of $\mathcal{I}[c \coloneqq r]$, where c is a constant of \mathcal{L}_c and $r \in [0,1]_Q$, is similar.

Let Γ be the conclusion of rule ρ of $\mathcal{C}_{\mathrm{GW}^c}$ and let us assume $\mathfrak{M} \models_{\mathcal{I}} \Gamma$, where $\mathfrak{M} = \langle W, R, e \rangle$; we show that there exists a premise Γ' of ρ and an \mathfrak{M} -interpretation \mathcal{I}' such that $\mathfrak{M} \models_{\mathcal{I}'} \Gamma'$.

The case $\rho = Ax$ has already been discussed in the paper. If ρ is one of the rules $\land \lhd$, $\land \rhd$, $\lor \lhd$, $\lor \rhd$, the assertion easily follows.

Let us consider the application

$$\underbrace{\frac{\overbrace{w:\beta \leq b,\, w:\alpha > b,\, b < t,\, \varGamma_0}^{\varGamma_1}}{\underbrace{w:\alpha \rightarrow \beta < t,\, \varGamma_0}}}_{\varGamma} \rightarrow <$$

By the hypothesis, it holds that $\mathfrak{M} \models_{\mathcal{I}} w : \alpha \to \beta < t \text{ and } \mathfrak{M} \models_{\mathcal{I}} \Gamma_0$. This implies that $e(\mathcal{I}(w), \alpha \to \beta) < \mathcal{I}(t) \leq 1$, hence $e(\mathcal{I}(w), \alpha) > e(\mathcal{I}(w), \beta)$ and

³ UBA-FCEyN, Dep. De Computación, Buenos Aires, Argentina ricardo@dc.uba.ar

 $e(\mathcal{I}(w), \alpha \to \beta) = e(\mathcal{I}(w), \beta)$, thus $\mathfrak{M} \models_{\mathcal{I}} w : \beta < t$. If $\beta \in \mathcal{V} \cup \{\bot\}$, then b stands for $w : \beta$, hence $\mathfrak{M} \models_{\mathcal{I}} \Gamma_1$. Let us assume $\beta \notin \mathcal{V} \cup \{\bot\}$; in this case b is a fresh constant. Let $r = e(\mathcal{I}(w), \beta)$ $(r \in [0, 1]_Q)$ and $\mathcal{I}' = \mathcal{I}[b := r]$. We remark that, for every constraint χ not containing b, $\mathfrak{M} \models_{\mathcal{I}} \chi$ iff $\mathfrak{M} \models_{\mathcal{I}'} \chi$. Since $\mathfrak{M} \models_{\mathcal{I}} \Gamma_0$ and b does not occur in Γ_0 , we get $\mathfrak{M} \models_{\mathcal{I}'} \Gamma_0$. It is easy to check that $\mathfrak{M} \models_{\mathcal{I}'} w : \beta \leq b$ and $\mathfrak{M} \models_{\mathcal{I}'} w : \alpha > b$ and $\mathfrak{M} \models_{\mathcal{I}'} b < t$, hence $\mathfrak{M} \models_{\mathcal{I}'} \Gamma_1$.

Let us consider the application

$$\underbrace{\frac{\overbrace{t \geq 1, \, \Gamma_0}}{\underbrace{t \geq 1, \, \Gamma_0}}}_{\Gamma_1} \underbrace{\frac{\Gamma_2}{w : \beta \leq b, \, w : \alpha > b, \, b \leq t, \, \Gamma_0}}_{w : \alpha \rightarrow \beta \leq t, \, \Gamma_0} \rightarrow \leq$$

By the hypothesis, $\mathfrak{M} \models_{\mathcal{I}} w : \alpha \to \beta \leq t$ and $\mathfrak{M} \models_{\mathcal{I}} \Gamma_0$, hence $e(\mathcal{I}(w), \alpha \to \beta) \leq \mathcal{I}(t)$. Let us assume $e(\mathcal{I}(w), \alpha) \leq e(\mathcal{I}(w), \beta)$. Then, $e(\mathcal{I}(w), \alpha \to \beta) = 1$, which implies $1 \leq \mathcal{I}(t)$, namely $\mathcal{I}(t) = 1$. It follows that $\mathfrak{M} \models_{\mathcal{I}} t \geq 1$, hence $\mathfrak{M} \models_{\mathcal{I}} \Gamma_1$. Let us assume $e(\mathcal{I}(w), \alpha) > e(\mathcal{I}(w), \beta)$. We have $e(\mathcal{I}(w), \alpha \to \beta) = e(\mathcal{I}(w), \beta)$, hence $\mathfrak{M} \models_{\mathcal{I}} w : \beta \leq t$. If $\beta \in \mathcal{V} \cup \{\bot\}$, then $b = w : \beta$ and we get $\mathfrak{M} \models_{\mathcal{I}} \Gamma_2$. Assume $\beta \notin \mathcal{V} \cup \{\bot\}$ (thus b is a fresh constant), let $r = e(\mathcal{I}(w), \beta)$ ($r \in [0, 1]_Q$) and $\mathcal{I}' = \mathcal{I}[b \coloneqq r]$. Since $\mathfrak{M} \models_{\mathcal{I}} \Gamma_0$ and b does not occur in Γ_0 , we get $\mathfrak{M} \models_{\mathcal{I}'} \Gamma_0$. Moreover, one can easily check that $\mathfrak{M} \models_{\mathcal{I}'} w : \beta \leq b$ and $\mathfrak{M} \models_{\mathcal{I}'} w : \alpha > b$ and $\mathfrak{M} \models_{\mathcal{I}'} b \leq t$; we conclude $\mathfrak{M} \models_{\mathcal{I}'} \Gamma_2$.

Let us consider the application

$$\underbrace{\frac{\overbrace{w:\alpha\leq a,\,w:\beta\geq a,\,1\rhd t,\,\Gamma_0}^{\Gamma_1}}{\underbrace{w:\alpha\rightarrow\beta\rhd t,\,\Gamma_0}_{\Gamma}}}_{}\underbrace{\frac{\overbrace{w:\beta\rhd t,\,\Gamma_0}^{\Gamma_2}}{w:\beta\rhd t,\,\Gamma_0}}_{}\rightarrow \rhd$$

By the hypothesis, $\mathfrak{M} \models_{\mathcal{I}} w : \alpha \to \beta \rhd t$ and $\mathfrak{M} \models_{\mathcal{I}} \Gamma_0$, hence $e(\mathcal{I}(w), \alpha \to \beta) \rhd \mathcal{I}(t)$. We can reason as in the cases concerning rules $\to <$ and $\to \le$. If $e(\mathcal{I}(w), \alpha) > e(\mathcal{I}(w), \beta)$, then $e(\mathcal{I}(w), \alpha \to \beta) = e(\mathcal{I}(w), \beta)$, hence $\mathfrak{M} \models_{\mathcal{I}} \Gamma_2$. Let us assume $e(\mathcal{I}(w), \alpha) \le e(\mathcal{I}(w), \beta)$. In this case $e(\mathcal{I}(w), \alpha \to \beta) = 1$, which implies $1 \rhd \mathcal{I}(t)$. We can prove that $\mathfrak{M} \models_{\mathcal{I}'} \Gamma_1$, where $\mathcal{I}' = \mathcal{I}$ if $\alpha \in \mathcal{V} \cup \{\bot\}$, $\mathcal{I}' = \mathcal{I}[a := e(\mathcal{I}(w), \alpha)]$ otherwise.

Let us consider the application

$$\underbrace{\frac{\Gamma_1}{1 \lhd t, \Phi^{0,1}(\Gamma_0)}}_{\Gamma_1} \underbrace{\frac{\Gamma_2}{w_1 : \alpha \lhd t, \Phi^{\square, \Diamond}(\Gamma, w, w_1), \Gamma_0}}_{w : \square \alpha \lhd t, \Gamma_0} \square \lhd$$

By the hypothesis, $\mathfrak{M} \models_{\mathcal{I}} w : \Box \alpha \lhd t$ and $\mathfrak{M} \models_{\mathcal{I}} \Gamma_0$, hence $e(\mathcal{I}(w), \Box \alpha) \lhd \mathcal{I}(t)$. Let us assume that the world $\mathcal{I}(w)$ of \mathfrak{M} has no R-successors. For every formula φ , $e(\mathcal{I}(w), \Box \varphi) = 1$ and $e(\mathcal{I}(w), \Diamond \varphi) = 0$, and this implies that $\mathfrak{M} \models_{\mathcal{I}} \Gamma_1$. Let us assume that $\mathcal{I}(w)$ has at least one R-successor. Since \mathfrak{M} is a GW^c-model, there exists a world w^* of \mathfrak{M} such that $\mathcal{I}(w)Rw^*$ and $e(\mathcal{I}(w), \Box \alpha) = e(w^*, \alpha)$. Let $\mathcal{I}' = \mathcal{I}[w_1 := w^*]$. We remark that, for every constraint χ not containing w_1 , $\mathfrak{M} \models_{\mathcal{I}'} \chi$ iff $\mathfrak{M} \models_{\mathcal{I}'} \chi$. Since $\mathfrak{M} \models_{\mathcal{I}} \Gamma_0$ and w_1 does not occur in Γ_0 , we get $\mathfrak{M} \models_{\mathcal{I}'} \Gamma_0$. By the fact that $e(\mathcal{I}(w), \Box \alpha) \lhd \mathcal{I}(t)$ and $e(\mathcal{I}(w), \Box \alpha) = e(w^*, \alpha)$, we have $e(w^*, \alpha) \lhd \mathcal{I}(t)$, and this implies $\mathfrak{M} \models_{\mathcal{I}'} w_1 : \alpha \lhd t$. Let $\chi \in \Phi^{\Box, \Diamond}(\Gamma, w, w_1)$ and assume that $\chi = w_1 : \beta \rhd t'$. We have $w : \Box \beta \rhd t' \in \Gamma_0$, hence $e(\mathcal{I}(w), \Box \beta) \rhd \mathcal{I}(t')$. Since $\mathcal{I}(w)Rw^*$, it follows that $e(w^*, \beta) \rhd \mathcal{I}(t')$, and this implies $\mathfrak{M} \models_{\mathcal{I}'} \chi$. Similarly, if $\chi = w_1 : \beta \lhd t'$, namely $w : \Diamond \beta \lhd t' \in \Gamma_0$, we get $\mathfrak{M} \models_{\mathcal{I}'} \chi$. We conclude $\mathfrak{M} \models_{\mathcal{I}'} \Gamma_2$.

The case where ρ is rule $\Diamond \triangleright$ is similar.

Proofs of Section 4

Lemma 11 Let K be a GW^{c} -bimodel and Rn a ranking over K.

```
(i) \operatorname{Rn}(x, \alpha \star \beta) = \operatorname{Rn}(x, \alpha) \star \operatorname{Rn}(x, \beta), \text{ for } \star \in \{\land, \lor, \to\}.
```

- (ii) $\operatorname{Rn}(x, \Box \alpha) = \min \left(\left\{ \operatorname{Rn}(y, \alpha) \mid xSy \right\} \cup \{1\} \right).$
- (iii) $\operatorname{Rn}(x, \Diamond \alpha) = \max (\{\operatorname{Rn}(y, \alpha) \mid xSy\} \cup \{0\}).$

Proof. Let $K = \langle X, \leq, S, V \rangle$ and let $x \in X$. An element $x_1 \in X$ is the immediate \leq -predecessor of x if $x_1 < x$ and, for every $y \in X$ such that $x_1 \leq y \leq x$, either $y = x_1$ or y = x (x_1 is well-defined since X is finite).

We introduce the following notation:

- x_{\min} is the \leq -minimum element of $[x]_{\sim}$;
- $-x_{\max}$ is the \leq -maximum element of $[x]_{\sim}$.

Note that:

- $-x_{\max} \nvDash \alpha \text{ iff } \operatorname{Rn}(x,\alpha) = 0;$
- $-x_{\min} \Vdash \alpha \text{ iff } \operatorname{Rn}(x,\alpha) = 1.$

By conditions (F4) and (F5), if $x_{\min}Sy$, then y is \leq -minimal in $[y]_{\sim}$; similarly, by (F3) and (F5), if $x_{\max}Sy$, then y is \leq -maximal in $[y]_{\sim}$. If x is not \leq -minimal, x^- denotes the immediate \leq -predecessor of x.

(i) Let $r = \operatorname{Rn}(x, \alpha \wedge \beta)$, $a = \operatorname{Rn}(x, \alpha)$ and $b = \operatorname{Rn}(x, \beta)$; we show that $r = \min(a, b)$. Let us assume that r = 0. We have $x_{\max} \nvDash \alpha \wedge \beta$, hence $x_{\max} \nvDash \alpha$ or $x_{\max} \nvDash \beta$. In the former case we get a = 0, in the latter b = 0; in either case, $r = \min(a, b)$. Assume r = 1. We have $x_{\min} \Vdash \alpha \wedge \beta$, hence $x_{\min} \Vdash \alpha$ and $x_{\min} \Vdash \beta$. This implies a = 1 and b = 1, hence $r = \min(a, b)$. Let us assume 0 < r < 1. Since r > 0, there exists $x_r \in [x] \sim \text{such that } \operatorname{Rn}(x_r) = r$; moreover, since r < 1, the world x_r is not $\leq \text{-minimal}$, hence $(x_r)^- \vDash \alpha$ or $(x_r)^- \nvDash \beta$. Assume $(x_r)^- \nvDash \alpha$. Since $x_r \Vdash \alpha$, we get $a = \operatorname{Rn}(x_r) = r$; moreover, since $x_r \Vdash \beta$, it holds that $b \geq \operatorname{Rn}(x_r) = r$. This proves $r = \min(a, b)$. Similarly, if $(x_r)^- \nvDash \beta$, we get b = r and $a \geq r$, hence $r = \min(a, b)$.

The proof that $\operatorname{Rn}(x, \alpha \vee \beta)$ is the maximum between $\operatorname{Rn}(x, \alpha)$ and $\operatorname{Rn}(x, \beta)$ is similar.

Let $r=\operatorname{Rn}(x,\alpha\to\beta),\ a=\operatorname{Rn}(x,\alpha)$ and $b=\operatorname{Rn}(x,\beta);$ we show that $r=a\to b$ (where \to is the algebraic implication). Assume r=0. We have $x_{\max} \nVdash \alpha \to \beta$, hence $x_{\max} \Vdash \alpha$ and $x_{\max} \nVdash \beta$. This implies a>0 and b=0, hence $a\to b=0=r$. Let us assume r=1. We have $x_{\min} \Vdash \alpha \to \beta$, hence, for every $y\in [x]_\sim$, if $y\Vdash \alpha$ then $y\Vdash \beta$. Accordingly, $b\le a$, and this implies $a\to b=1=r$. Let us assume 0< r<1. Since r>0, there exists $x_r\in [x]_\sim$ such that $\operatorname{Rn}(x_r)=r$; moreover, since r<1, $(x_r)^-$ is defined. By definition $x_r\Vdash \alpha\to\beta$ and $(x_r)^-\nVdash \alpha\to\beta$; it follows that $(x_r)^-\Vdash \alpha$ and $(x_r)^-\nVdash \beta$. Since $(x_r)^-\Vdash \alpha$, we get $a\ge \operatorname{Rn}((x_r)^-)>r$, namely a>r. Note that $(x_r)^-\nVdash \beta$ and $x_r\Vdash \beta$, hence $b=\operatorname{Rn}(x_r)=r$, namely b=r. We have proved a>b, and this implies $a\to b=b=r$.

(ii) Let $r = \operatorname{Rn}(x, \Box \alpha)$, we show that:

(1) $\operatorname{Rn}(x, \Box \alpha) = \min (\mathcal{R} \cup \{1\}), \text{ where } \mathcal{R} = \{ \operatorname{Rn}(y, \alpha) \mid xSy \}.$

Assume r = 0. We have $x_{\text{max}} \nvDash \Box \alpha$, hence there exists $y \in X$ such that $x_{\text{max}} S y$ and $y \nvDash \alpha$. Since y is \leq -maximal in $[y]_{\sim}$, we get $\text{Rn}(y, \alpha) = 0$. This implies $0 \in \mathcal{R}$, and this proves (1)

Assume r = 1, namely $x_{\min} \Vdash \Box \alpha$. To prove (1), we show that, if \mathcal{R} is non-empty, then $\mathcal{R} = \{1\}$. Let us assume $\mathcal{R} \neq \emptyset$ and let $xSy \in \mathcal{R}$. By (F2) there exists y^* such that $x_{\min}Sy^*$ and $y^* \leq y$. Since $x_{\min} \Vdash \Box \alpha$ and $x_{\min}Sy^*$, we get $y^* \Vdash \alpha$. Note that y^* is the \leq -minimum element of $[y]_{\sim}$, hence $\operatorname{Rn}(y, \alpha) = 1$. It follows that $\mathcal{R} = \{1\}$, and this proves (1)

Let us assume 0 < r < 1. Since r > 0, there exists $x_r \in [x]_{\sim}$ such that $\operatorname{Rn}(x_r) = r$; moreover, since r < 1, $(x_r)^-$ is defined. By definition, $x_r \Vdash \Box \alpha$ and $(x_r)^- \nVdash \Box \alpha$. There exists y^* such that $(x_r)^- Sy^*$ and $y^* \nVdash \alpha$. By (F1) there exists y_r such that $y^* \leq y_r$ and $x_r Sy_r$, thus $\operatorname{Rn}(y_r) = r$. One can easily check that y^* is the immediate \leq -predecessor of y_r ; moreover, since $x_r \Vdash \Box \alpha$ and $x_r Sy_r$, it holds that $y_r \Vdash \alpha$. We have $y_r \Vdash \alpha$ and $y^* \nVdash \alpha$; since $y^* = (y_r)^-$, we get $\operatorname{Rn}(y_r, \alpha) = r$. Note that $[x]_{\sim}S[y_r]_{\sim}$, hence, by property (S1), there exists $y \in [y_r]_{\sim}$ such that xSy. Since y and y_r are in the same cluster, we get $\operatorname{Rn}(y, \alpha) = \operatorname{Rn}(y_r, \alpha) = r$; accordingly, $r \in \mathcal{R}$. To complete the proof of (1) we have to show that xSy implies $r \leq \operatorname{Rn}(y, \alpha)$. Let xSy. By properties (F1) and (F2), there exists $y_r \in [y]_{\sim}$ such that x_rSy_r , thus $\operatorname{Rn}(y_r) = \operatorname{Rn}(x_r) = r$. Since $x_r \Vdash \Box \alpha$ and x_rSy_r , we get $y_r \Vdash \alpha$, and this implies $\operatorname{Rn}(y, \alpha) \geq \operatorname{Rn}(y_r) = r$. This concludes the proof of (1)

Proposition 13. Let Φ be a correspondence between \mathfrak{M} and (K, Rn). For every formula φ and every world w of \mathfrak{M} , $e(w, \varphi) = Rn(\Phi(w), \varphi)$.

Proof. By induction on φ . If $\varphi \in \mathcal{V}$, the assertion immediately follows from the definition of Φ . The case $\varphi = \bot$ is trivial, since $e(w, \bot) = 0$ and $\text{Rn}(\Phi(w), \bot) = 0$.

Let $\varphi = \alpha \star \beta$, where $\star \in \{ \land, \lor, \rightarrow \}$. We have:

$$e(w, \alpha \star \beta) = e(w, \alpha) \star (w, \beta) \stackrel{(\dagger)}{=} \operatorname{Rn}(\varPhi(w), \alpha) \star \operatorname{Rn}(\varPhi(w), \beta) \stackrel{(\dagger)}{=} \operatorname{Rn}(\varPhi(w), \alpha \star \beta)$$

where (†) follows from the induction hypothesis and (‡) from Lemma 11(i). Let $\mathfrak{M} = \langle W, R, e \rangle$, let $\mathcal{K} = \langle X, \leq, S, V \rangle$ and $w_r \in \Phi(w)$. Note that:

$$wRw' \iff \Phi(w) S \Phi(w') \iff \exists y \in \Phi(w') \text{ s.t. } w_rSy$$

Accordingly:

$$\{\operatorname{Rn}(\Phi(w'), \alpha) \mid w R w'\} = \{\operatorname{Rn}(y, \alpha) \mid w_r S y\}$$
(1)

We have:

$$\begin{split} e(w, \Box \alpha) &= \min \left(\left\{ \left. e(w', \alpha) \mid w \, R \, w' \right. \right\} \cup \left\{ 1 \right\} \right) \\ &= \min \left(\left\{ \left. \operatorname{Rn}(\varPhi(w'), \alpha) \mid w \, R \, w' \right. \right\} \cup \left\{ 1 \right\} \right. \right) \text{ ind. hyp.} \\ &= \min \left(\left\{ \left. \operatorname{Rn}(y, \alpha) \mid w_r \, S \, y \right. \right\} \cup \left\{ 1 \right\} \right. \right) \\ &= \operatorname{Rn}(w_r, \Box \alpha) & \operatorname{Lemma} \boxed{11 \text{ ii)}} \\ &= \operatorname{Rn}(\varPhi(w), \Box \alpha) & [w_r]_\sim = \varPhi(w) \end{split}$$

The case $\varphi = \Diamond \alpha$ is similar.