The Hong Kong University of Science and Technology Department of Computer Science and Engineering MSBD 5010 (Fall 2024)

Assignment 1

Total = 100 marks

Due: 11:55 pm, October 16, 2024

Assignments must be submitted via CANVAS

Late Policy: Late assignments will incur a 10 scores penalty; only one day late is allowed, i.e.,

11:55 pm, October 17

Programming Assignments

In this assignment, you will use Python to complete four functions. They are *gamma_correlation* for grey level power-law (gamma) transformation, *sobeledge* for edge detection, *highboost* for unsharp masking and highboost filtering, and *gaussian_lowpass_filtering* for Gaussian lowpass filtering (GLPF) in the frequency domain.

You need to complete the missing implementations in the corresponding Jupyter Notebook (ipynb) file. You can download the ipynb file (*MSBD5010-24f-lab1.ipynb*) and related files from the course CANVAS website.

Assignment Submission and Marking

- 1. Your submitted Jupyter Notebook file must be MSBD5010-24f-lab1.ipynb.
- 2. **Runtime requirement**: your program must be able to finish all the above tasks within 5 minutes.
- 3. You must compress all your files into one file with the following filename format: [your 8-digit student ID]_assign1.rar (or zip), e.g., 09654321_assign1.rar.
- 4. If your assignment compressed file has been submitted multiple times before the due date (including late submission date), the new version will replace the old version in marking.
- 5. Note that we take plagiarism seriously. You are allowed to discuss or share your ideas with your classmates, but you are not allowed to share your assignment's code/pseudocode. Please also follow the referencing skills at https://libguides.ust.hk/referencing/plagiarism to avoid plagiarism.
- 6. Marks will be deducted if any violations of the above requirements exist.
- 7. Grading criteria:
 - a. The correctness and efficiency of the implemented algorithm.
 - b. The clarity and quality of the results.
 - c. The program's organization and documentation.
 - d. Adherence to the assignment requirements and submission guidelines.

Written assignments

Assignment Submission:

- 1. You must submit your written assignment in PDF format with the following filename: [your 8-digit student ID]_w-assign1.pdf, e.g., 09654321_w-assign1.pdf.
- 2. You must include your pdf file in the rar/zip file mentioned above.

Question W1: Histogram Equalization

Given an image *I* (see below) of size 5-by-5 pixels, with its intensity level ranging from 0 to 7.

Input image								
5	6 7 5 6							
7	1	5	6	5				
6	0	1	6	5				
7	7	5	3	7				
3	3 6 4 3 5							

(a) Sketch the histogram of the above image *I*.

(b) Perform histogram equalization, based on the procedure described in the lecture notes, on image *I* and fill in the output image below. Show all steps and round your final answer to the nearest integer. **Remarks**: The intensity range is from 0 to 7.

Histogram Equalized image							

(c) Histogram specification is an automatic equalization technique that adjusts the histogram to match a specified probability distribution. Given the following specified distribution, perform histogram specification on image I of (a) and fill in the output image below. Show all steps and round your final answer to the nearest integer.

j	0	1	2	3	4	5	6	7
$P_z(z_j)$	0.05	0.2	0.05	0.15	0.15	0.15	0.15	0.1

Output image						

Question W2: Bilateral Filtering

Consider performing bilateral filtering on the input image. The spatial sigma is 1 and the range sigma is 5, the kernel size is 3. Please show steps and fill in the output image. **Remarks**: Round values to two decimal places.

Input image							
0	0	0	0	0	0		
0	1	1	1	1	0		
0	1	1	1	1	0		
0	1	0	0	1	0		
0	0	0	0	0	0		

	Output image							
*	*	*	*	*	*			
*					*			
*					*			
*					*			
*	*	*	*	*	*			

Question W3: Image Restoration

Given the following 7x7 grayscale image I.

	Image I								
34	255	60	80	200	255	150			
255	120	90	100	75	0	160			
45	80	0	130	0	100	255			
90	100	110	<u>0</u>	0	180	255			
0	75	0	90	110	120	170			
255	95	90	110	100	0	60			
40	80	200	255	120	85	255			

- (a) Perform median filter of size 3x3 to the center pixel $\underline{\mathbf{0}}$ of image *I*.
- (b) Perform alpha-trimmed mean filter of size 3x3 with d = 4 to the center pixel $\underline{\mathbf{0}}$ of image I.
- (c) Perform adaptive median filter of initial size 3x3 to the center pixel $\underline{\mathbf{0}}$ of Image I.