Estructura de las prácticas

- Carácter obligatorio
- Semanas impares

 1 sesión T^a de errores
 6 prácticas (1 práctica/sesión)
- En grupos de 3 alumnos
- Se entrega una memoria por práctica (por grupo) al final de cada sesión

TEORÍA DE ERRORES

- Medidas experimentales
- Tipos de errores
- Expresión de resultados y errores
- Presentación de resultados
 - (Tablas Gráficas)
- Interpolación
- Método de mínimos cuadrados

Medidas experimentales

Objetivo de la Física:

Hallar relaciones entre magnitudes físicas

¿ Qué tipos de errores hay?

¿ Cómo afectan al resultado?

¿ Cómo se expresa el resultado?

Ejemplo:

¿cómo interpretar los datos?

TABLA 1		TABLA 2	
T (°C)	d (g/cm ³)	T (°C)	d (g/cm ³)
40	0,8015	40	0,80
30	0,8017	30	0,80
20	0,8019	20	0,80
10	0,8021	10	0,80

Tipos de errores

Errores sistemáticos

Aparato de medida / Observador

SE PUEDEN ELIMINAR

(aunque son difíciles de detectar)

Errores accidentales

Condiciones experimentales / Objeto medido

SE PUEDEN REDUCIR PERO <u>NUNCA ELIMINAR</u>

(se pueden estimar con métodos estadísticos)

Error absoluto (Ea):

estimación del error de la medida "V"

(V: valor "verdadero" de la magnitud física)

$$V \pm Ea$$

Error relativo (Er):

$$E_r = \frac{E_a}{V}$$

$$E_{r}(\%) = 100 \frac{E_{a}}{V}$$

Características de las medidas

Exactitud

Cercanía al valor "exacto"

Error sistemático

Error absoluto

Precisión

Depende del

método experimental

Depende del dispositivo de medida

Error relativo

¿ Cómo reducir los errores? ¿ Cuántas medidas?

- 1. Tomar 3 medidas: M₁, M₂, M₃
- 2. Calcular dispersión absoluta: D = Mmax Mmin
- 3. Calcular valor medio: $\overline{V} = \frac{M_1 + M_2 + M_3}{3}$
- 4. Calcular desviación relativa: $\Delta V = \frac{D}{V} x 100$

5. Si
$$\Delta V \begin{cases} <2\% \Rightarrow 3\\ 2\% < \Delta V < 8\% \Rightarrow 6\\ 8\% < \Delta V < 15\% \Rightarrow 15\\ \Delta V > 15\% \Rightarrow 50 \end{cases}$$

MEDIA ARITMÉTICA

$$\overline{V} = \sum_{i=1}^{n} \frac{V_i}{n}$$

DESVIACIÓN MEDIA

$$\delta = \sum_{i=1}^{n} \frac{\left| V_{i} - \overline{V} \right|}{n}$$

ERROR ABSOLUTO

$$E_a = máx[S, \delta]$$

Resultado final = magnitud ± error unidades

$$V = \overline{V} \pm E_a$$
 unidades

Entre 2.5 y 2.6: $L = 2.5 \pm 0.1$ cm

UNIDADES DEL SISTEMA INTERNACIONAL

Longitud	El metro (m) es la distancia recorrida por la luz en el vacío en 1/299 792 458 s
Tiempo	El segundo (s) es la duración 9 192 631 770 períodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo 133Cs
Masa	El kilogramo (kg) es la masa del cuerpo considerado como patrón internacional que se conserva en Sèvres, Francia
Corriente eléctrica	El amperio (A) es la corriente que al circular por dos conductores rec tilíneos muy largos y paralelos separados 1 m entre sí da origen a una fuerza magnética por unidad de longitud de 2 × 10 ⁻⁷ N/m
Temperatura	El kelvin (K) es 1/273,16 de la temperatura termodinámica del punto triple del agua
Intensidad luminosa	La candela (cd) es la intensidad luminosa, en la dirección perpendi- cular, de una superficie de 1/600 000 m ² de un cuerpo negro a la temperatura de congelación del platino a la presión de 1 atm

Tabla A.2 Unidades derivadas.

Fuerza	newton (N)	$1 N = 1 kg \cdot m/s^2$
Trabajo, energía	julio o joule (J)	$1 J = 1 N \cdot m$
Potencia	vatio (W)	1 W = 1 J/s
Frecuencia	hertz (Hz)	$1 \text{ Hz} = s^{-1}$
Carga	culombio (C)	1 C = 1 A · s
Potencial	voltio (V)	1 V = 1 J/C
Resistencia	ohmio (Ω)	$1 \Omega = 1 \text{ V/A}$
Capacidad	faradio (F)	1 F = 1 C/V
Campo magnético	tesla (T)	$1 T = 1 N/A \cdot m$
Flujo magnético	weber (Wb)	$1 \text{ Wb} = \text{T} \cdot \text{m}^2$
Inductancia	henry (H)	$1 H = 1 J/A^2$

Siempre utilizar la notación científica y los prefijos oportunos

Múltiplo	Prefijo	Abreviatura
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
109	giga	G
106	mega	M
10^{3}	kilo	k
10^{2}	hecto*	h
10^{1}	deca*	da
10^{-1}	deci [*]	d
10^{-2}	centi [*]	c
10^{-3}	mili	m
10^{-6}	micro	μ
10-9	nano	n
10^{-12}	pico	Ď
10 ⁻¹⁵	femto	p f
10 ⁻¹⁸	atto	a

Medidas directas y medidas indirectas

· Medida directa:

Directamente del aparato experimental (metro, balanza, cronómetro, osciloscopio, amperímetro, voltímetro, teslámetro, etc.)

$$E_a = máx[S, \delta]$$

Medida indirecta:

Ejemplo: Volumen cilindro

$$v = \pi r^2 h$$
, $E_v = ?$

Regla general:

$$z = f(a, b, c, ...)$$

$$dz = \frac{\partial f}{\partial a} \cdot da + \frac{\partial f}{\partial b} \cdot db + \frac{\partial f}{\partial c} \cdot dc + ...$$

$$E_{z} = \left| \frac{\partial f}{\partial a} \right| \cdot E_{a} + \left| \frac{\partial f}{\partial b} \right| \cdot E_{b} + \left| \frac{\partial f}{\partial c} \right| \cdot E_{c} + ...$$

$$E_{z} = \left| \frac{\partial f}{\partial a} \right| \cdot E_{a} + \left| \frac{\partial f}{\partial b} \right| \cdot E_{b} + \left| \frac{\partial f}{\partial c} \right| \cdot E_{c} + ...$$

$$\left| \frac{E_z}{z} \right| = \left| \frac{\partial f}{\partial a} \right| \cdot \frac{E_a}{z} + \left| \frac{\partial f}{\partial b} \right| \cdot \frac{E_b}{z} + \left| \frac{\partial f}{\partial c} \right| \cdot \frac{E_c}{z} + \dots$$

Ejemplo:
$$V = \pi r^2 h$$
; $E_v = \left| \frac{\partial V}{\partial r} \right| E_r + \left| \frac{\partial V}{\partial h} \right| E_h$

Reglas para las 4 operaciones aritméticas:

$$A \pm E_{A}; B \pm E_{B}$$

$$E_{A\pm B} = E_{A} + E_{B}$$

$$E_{A\cdot B} = B \cdot E_{A} + A \cdot E_{B}$$

$$E_{A/B} = \frac{B \cdot E_{A} + A \cdot E_{B}}{B^{2}}$$

Regla práctica:

$$a \pm E_a$$
; $b \pm E_b$; $c \pm E_c$;

$$G = a^m b^n c^p \cdots$$

Error absoluto:

$$V = \pi r^{2}H$$

$$E_{V} = 2\pi H r E_{r} + \pi r^{2}E_{H}$$

$$\frac{E_{V}}{V} = 2\frac{E_{r}}{r} + \frac{E_{H}}{H}$$

$$E_{G} = \left| ma^{m-1}b^{n} c^{p} \right| E_{a} + \left| na^{m}b^{n-1} c^{p} \right| E_{b} + \left| pa^{m}b^{n} c^{p-1} \right| E_{c} + \cdots$$

Error relativo:

$$\frac{E_G}{G} = \left| m \right| \frac{E_a}{a} + \left| n \right| \frac{E_b}{b} + \left| p \right| \frac{E_c}{c} + \cdots$$

Cómo expresar los resultados: CIFRAS SIGNIFICATIVAS

Cifra MÁS significativa:

la <u>más a la IZQUIERDA</u> que NO SEA "O"

- Cifra MENOS significativa:
 - la <u>más a la DERECHA</u> que NO SEA "0" (si <u>NO HAY</u> COMA decimal)
 - Ia <u>más a la DERECHA</u> (aunque sea "0")
 (si <u>HAY</u> COMA decimal)

Ejemplos:

3215 3215.4 3200 0.032 3200.0 18.00 0.180

¿ Cuántas cifras significativas? <u>En los errores</u>:

Convenio para la expresión de los <u>errores</u>

- General ⇒ <u>una única cifra</u>
- Particular ⇒ <u>dos cifras</u> si:
 - la <u>primera</u> de ellas <u>es un "1"</u>
 - la <u>primera es un "2"</u> y la <u>siguiente es < 5</u>

Redondeos

• Si la fracción truncada es > 0.5 : +1

= : +1

• Si la fracción truncada es < 0.5 : =

¿ Cuántas cifras significativas? En los resultados:

Hasta la 1^a cifra afectada por el error

Valores incorrectos:

$2.18 \times \pm 0.22 \times$

$$1549 \pm 30$$

$$572.35 \pm 0.04$$

Valores correctos:

$$2.18 \pm 0.22$$

$$5.41 \pm 0.08$$

$$46.3 \pm 1.1$$

$$248.2 \pm 0.3$$

$$1540 \pm 30$$

$$572.35 \pm 0.05$$

TEORÍA DE ERRORES

- <u>Medidas experimentales</u>
- Tipos de errores
- Expresión de los errores
- Presentación de resultados (Tablas – Gráficas)
- Interpolación
- Método de mínimos cuadrados

Presentación de los resultados

- Los resultados se agrupan en <u>TABLAS</u>
- Magnitud física <u>+</u> Error absoluto (UNIDADES)

I <u>+</u> 0.2 (<i>mA</i>)	V±0.1 (<i>V</i>)
1.8	7.0
3.4	15.1
5.6	18.7
6.8	27.3

Comentario (si necesario)

Representación GRÁFICA

Resumiendo..., en las gráficas:

- Papel milimetrado (no es necesario hacer las gráficas por ordenador)
- Magnitud física independiente + unidades:

eje abscisas

Magnitud física dependiente + unidades :

eje ordenadas

- Elegir la escala adecuada/valores de referencia
- Datos experimentales + barras/rectángulos de error
- NO valores de datos en los ejes
- · NO se unen puntos en la gráfica

Interpolación lineal

Estimación del valor de un magnitud física "z" dependiente de "x", a partir de datos experimentales

$$z = z_1 + \frac{z_2 - z_1}{x_2 - x_1} (x - x_1)$$
 $E_z = \left(\frac{z_2 - z_1}{x_2 - x_1}\right) E_x$

Método de mínimos cuadrados

¿ Qué relación hay entre las magnitudes físicas "x" e "y" ?

Ajuste de rectas a los datos experimentales

$$y=mx+n$$

Ajuste de rectas por mínimos cuadrados = m x + n y_i m = ?; n = ? $y_i^* = mx_i + n$ $\sum_{i=1}^{N} (y_i - y_i^*)^2$ ha de ser mínima:

$$\frac{d}{dm} \left(\sum_{i=1}^{N} (y_i - mx_i - n)^2 \right) = 0$$

$$\frac{d}{dn} \left(\sum_{i=1}^{N} (y_i - mx_i - n)^2 \right) = 0$$

$$\frac{d}{dm} \left(\sum_{i=1}^{N} (y_i - mx_i - n)^2 \right) = 0$$

$$\frac{d}{dn} \left(\sum_{i=1}^{N} (y_i - mx_i - n)^2 \right) = 0$$

N medidas:

$$\begin{array}{c|ccccc} X & Y & & A = \sum_{i=1}^{N} x_i \\ \hline x_1 \ , E_{x1} & y_1 \ , E_{y1} & & B = \sum_{i=1}^{N} y_i \\ \hline \dots & & \dots & \\ x_i \ , E_{xi} & y_i \ , E_{yi} & & C = \sum_{i=1}^{N} x_i^2 \\ \hline \dots & & \dots & \\ x_N \ , E_{xN} & y_{N_x} \ , E_{yN} & & D = \sum_{i=1}^{N} x_i y_i \end{array}$$

$$m = \frac{ND - AB}{NC - A^2}$$

$$y = mx + n$$

$$n = \frac{CB - AD}{CN - A^2}$$

Cálculo de errores sobre "m" y "n":

$$E_{m} = \sum_{i=1}^{N} \frac{1}{C} |y_{i}|^{2} - 2mx_{i}|E_{x_{i}} + \sum_{i=1}^{N} \frac{|x_{i}|}{C} E_{y_{i}}$$

$$E_{n} = \left| m \right| \frac{\sum_{i=1}^{N} E_{x_{i}}}{N} + \frac{\sum_{i=1}^{N} E_{y_{i}}}{N} + \left| x \right| E_{m}$$

$$\frac{-\sum_{i=1}^{N} x_{i}}{N} = \frac{\sum_{i=1}^{N} y_{i}}{N}$$

$$E_n = |m|\overline{E}_x + \overline{E}_y + |\overline{x}|E_m|$$

$$m = \frac{D}{C}$$

$$\mathbf{m} = \frac{\mathsf{D}}{\mathsf{C}} \left[E_m = \frac{A}{C} \left(m | \overline{E}_x + \overline{E}_y \right) \right]$$

Errores iguales:
$$\overline{E}_x = E_x$$
; $\overline{E}_y = E_y$

$$C = \sum_{i=1}^{N} x_i^2$$

$$\overline{x} = \frac{\sum_{i=1}^{N} x_i}{N} \qquad \overline{y} = \frac{\sum_{i=1}^{N} y_i}{N}$$

$$\overline{E}_x \ = \frac{\displaystyle\sum_{i=1}^N E_{x_i}}{N} \qquad \overline{E}_y \ = \frac{\displaystyle\sum_{i=1}^N E_{y_i}}{N}$$

$$A = \sum_{i=1}^{N} X_{i}$$

$$D = \sum_{i=1}^{N} x_i y_i$$

¿ Como valorar la bondad de un ajuste lineal?

$$r = |m| \sqrt{\frac{NC - A^2}{NF - B^2}} \qquad 0 \le r \le 1$$
Coefficiente de correlación
$$C = \sum_{i=1}^{N} x_i \qquad C = \sum_{i=1}^{N} x_i^2$$

$$C = \sum_{i=1}^{N} x_i^2$$

$$0 \le r \le 1$$

$$A = \sum_{i=1}^{N} x$$

$$C = \sum_{i=1}^{N} x_i^2$$

$$B = \sum_{i=1}^{N} y_i$$

$$B = \sum_{i=1}^{N} y_i$$
 $F = \sum_{i=1}^{N} y_i^2$

$$R^{2} = \frac{\sum_{i=1}^{N} (y_{i}^{*} - \overline{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i}^{*} - \overline{y}_{i})^{2}} \quad 0 \le R^{2} \le 1$$
Coeficiente de det

$$0 \le R^2 \le 1$$

$$r = \sqrt{R^2}$$

Representación GRÁFICA

V±0,1(V)
5,0
10,0
15,0
20,0
25,0
X_i

N=5
$$x_i=I_i$$
 $y_i=V_i$ $x_i^2=I_i^2$ $y_i^2=V_i^2$ $x_i y_i=I_i V_i$ 1,75,02,89258,53,510,012,25100355,215,027,04225786,920,047,614001388,625,073,96625215A=25,9B=75C=163,8F=1375D=474,5

$$m = \frac{\sum_{i=1}^{N} y_i x_i}{\sum_{i=1}^{N} x_i^2} = \frac{D}{C}$$

$$E_{m} = \frac{A}{C} \left(m | \overline{E}_{x} + \overline{E}_{y} \right)$$

$$r = \left| m \right| \sqrt{\frac{NC - A^2}{NF - B^2}}$$

$$\frac{\sum_{i=1}^{N} x_i}{N} = \frac{\sum_{i=1}^{N} y_i}{N}$$

 $(y=mx; n\sim 0)$

$$m=R=(2.9 \pm 0.2) kΩ$$

$$V = 2.91$$

r=0.99993

 $\sum_{i=1}^{N} x_{i} \qquad B = \sum_{i=1}^{N} y_{i}$

V=RI

Buen ajuste

Memorias de las prácticas

IDEA BÁSICA:

UN EXPERIMENTO DEBE PODERSE REPRODUCIR A PARTIR DE LA DESCRIPCIÓN QUE SE HAGA DEL MISMO

- 1. <u>Encabezamiento</u>: Apellidos y nombre, Nombre de la práctica, Fecha, Grupo (día y hora)
- 2. Objetivo: Qué se desea verificar con la práctica
- 3. <u>Instrumentación</u>: Descripción
- 4. Montaje experimental: Descripción
- **5.** <u>Procedimiento</u>: Comentarios sobre cómo se hizo la práctica, problemas encontrados, etc.
- 6. Datos: En tablas, con las unidades y errores
- 7. Gráficos: Según las instrucciones dadas
- 8. <u>Cálculos</u>: Operaciones realizadas
- 9. Resultados y respuestas: Teóricos experimentales
- 10. Conclusiones (y sugerencias)