User Manual of the TASK/FP Code

Contents

1 Structure

1.1 Environment routines

- fpcomm.f90: Definition of variable module, allocation of arrays
 - Module fpcomm_parm: Definition of constants and input parameters including
 - * bpsd_kinds
 - * bpsd_constants
 - * commpi
 - * plcomm
 - * obcomm_parm
 - Module fpcomm: Definition of common variables
 - Subroutine fp_allocate: Allocation of common arrays
 - Subroutine fp_deallocate: Deallocation of common arrays
 - Subroutine fp_allocate_ntg1: Allocation of time history ntg1 array
 - Subroutine fp_deallocate_ntg1: Deallocation of time history ntg1 array
 - Subroutine fp_adjust_ntg1: Adjust (save, deallocate, allocate larger, recover) time history ntg1 array
 - Subroutine fp_allocate_ntg2: Allocation of profile time history ntg2 array
 - Subroutine fp_deallocate_ntg2: Deallocation of profile time history ntg2 array
 - Subroutine fp_adjust_ntg2: Adjust (save, deallocate, allocate larger, recover) profile time history ntg2 array
- fpmain.f90: Main routine
 - Program fp
 - * Initialization of MPI and graphics
 - * Initialization of input parameters of module, pl, eq, and fp
 - * Read input namelist file fpparm
 - * Start menu input loop fpmenu
 - * Termination of graphics and MPI
- fpinit.f90: Module fpinit: Initialization of input parameters
 - Subroutine fp_init: Set default values of input parameters
- fpmenu.f90: Module fpmenu: Process control
 - Subroutine fp_menu: menu command input and execute
 - * P or with =: namelist read of input parameters
 - * V: view all input parameters

- * R: start new calculation (set initial condition and go)
- * C: continue previous calculation (just go)
- * G: graphic output of calculated results
- * F: file output of calculated results
- * S: save present status of calculation into a file
- * L: load a file to continue previous calculation
- * W: print out interesting quantities
- * Y: debug output [temporal]
- * Z: debug output [transport coefficients]
- * Q: quit menu input and stop
- fpparm.f90: Module fpparm: Read and check input parameters
 - Subroutine fp_parm: analyze parameter input
 - * read one line from standard input and analyze command or namelist
 - * read namelist input from a file
 - * read one phrase and analyze as a namelist
 - Subroutine fp_nlin: namelist input slave routine
 - Subroutine fp_plst: input parameter list slave routine
 - Subroutine fp_check: input parameter check
 - Subroutine fp_broadcast: Broadcast input parameters
 - Subroutine fp_view: Show input parameters

1.2 Execution routines

- fpprep.f90: Module fpprep: Preparation of run (mesh, initial profile, initialization)
 - Subroutine fp_mesh: create mesh quantities
 - * set pmax
 - * read EQ data (RKAP=1.0 should be removed)
 - * set radial mesh
 - * read WR data
 - * read WM data
 - * set approximate poloidal magnetci field (exact poloidal magnetic field should be used)
 - * set momentum space mesh
 - * set element volume in real space
 - * set bounce-average parameters
 - Subroutine FPCINI: clear friction and diffusion coefficients
 - Subroutine fp_comm_setup: check partitions and setup shadow and commucicators
 - Subroutine fp_set_nsa_nsb: set table on nsa and nsb
 - Subroutine FNSP_INIT: initialize distribution functions FNSP and delta f
 - Subroutine FNSP_INIT_EDGE: initialize edge distribution functions FS1, FS2
 - Subroutine fp_set_normalize_param: set normalized density, temprature and other quantities

- Subroutine Coulomb_log: calculate Coulomb logarithm
- Subroutine fp_continue: setup for continuation
- Subroutine fp_set_intial_value_from_f: record initial values
- Subroutine fp_prep:
 - * initialize time counter
 - * allocate variables
 - * setup matrix parameters for MPI
 - * setup particle species table (fp_set_nsa_nsa)
 - * create mesh (fp_mesh)
 - * initialize diffusion coefficients (FPCINI)
 - * set parameters (fp_set_normalize_param)
 - * initialize distribution functions (FNSP_INIT, FNSP_INIT_EDGE)
 - * set background distribution functions (update_fnsb)
 - * read FIT3D rsults for NBI (READ_FIT3D, SV_WEIGHT_R)
 - * set parallel electric field
 - * setup for Legendre expansion and fusion reaction rate (NF_*)
 - * record initial values (fp_set_initial_value_from_f)
- fpbounce.f90: Preparation of bounce parameters
- fploop.f90: Time loop for execution
- fpexec.f90: Execution of one time step

1.3 Calculation of coefficients of equations

- fpcoef.f90: Calculation of various coefficients
- fpcalc.f90: Calculation of collisional term (linear operator)
- fpcalcn.f90: Calculation of collisional term (nonlinear operator)
- fpcalcnr.f90: Calculation of collisional term (relativistic nonlinear operator)
- fpcale.f90: Calculation of static electric field term
- fpcalr.f90: Calculation of radial diffusion term
- fpcalw.f90: Calculation of quasi-linear term (given wave field)
- fpcalwm.f90: Calculation of quasi-linear term (using wm results)
- fpcalwr.f90: Calculation of quasi-linear term (using wr results)
- fpcdbm.f90: Calculation of CDBM radial diffusion coefficients
- fpnfrr.f90: Calculation of fusion reaction term (isotropic distribution)
- fpnflg.f90: Calculation of fusion reaction term (anisotropic distribution)
- fpdisrupt.f90: Calculation of disruption-related tems

1.4 Calculation of transport coefficients (by Ota)

- fpcaldeff.f90: Effective particle diffusion coefficients
- fpcalchieff.f90: Effectiv thermal diffusion coefficients
- fpcaltp.f90: Particle confinement time, tauP
- fpcalte.f90: Energy confinement time, tauE
- fpchecknc.f90: Radial diffusion coefficients (neoclassical diffusion)

1.5 File IO routines

- fpfile.f90: Save and load restart data
- fpfout.f90: File output of graphic data
- fpoutdata.f90: File output of intermediate data (by Ota)
- fpread.f90: Read FIT3D data from file
- fpreadeg.f90: Read Experimental data from file (by Nuga)
- fpsave.f90: File output of various data (by Nuga)
- fpwmin.f90: File input of full-wave analysis (wm) results
- fpwrin.f90: File input of ray/beam tracing analysis (wr) results
- fpwrite.f90: File output of treoef data (by Ota)

1.6 Graphic routines

- fpgout.f90: Graphic output for gsaf
- fpcont.f90: Graphic subroutines

1.7 Library routines

- fpmpi.f90: MPI interface for fp
- fpsub.f90: Subroutine library (FPMXWL, FPNEWTON)

1.8 Orbit-averaging routines (by Ota)

- fowcomm.f90: Definition of fow variables and allocation
- fowprep.f90: Preparation of fow, initialization of variables
- foworbit.f90: Interface to ob
- fowclassify.f90: Orbit classification and data output to file
- fowdistribution.f90: Distribution conversion and integrated quantities
- fowloop.f90: Time loop for execution
- fowexec.f90: Execution of one time step

- fowcoef.f90: Calculation of various coefficients
- fowsource.f90: Calculation of source terms
- fowlib.f90: Library for fow