아두이노를 이용한 초음파 금고 (ULT_LOCK)

이 프로젝트에서는 아두이노 보드와 초음파 센서를 사용하여 거리 측정에 기반한 초음파 금고를 제작한다. 거리 정보를 바탕으로 값을 저장하고, LED 및 서보 모터를 제어하여 금고의 잠금을 해제하는 시스템을 구현한다.

목차

1 1. 사용 부품 및 센서 아두이노 보드와 초음파 센서, 시리얼 모니터 . 2. 거리 측정 및 실시 간 표시

> 초음파 센서를 이용한 거 리 측정과 시리얼 모니터 를 통한 실시간 거리 표

3. 비밀번호 확인

구간별 거리 값 할당, 특 정 거리 감지 시 배열 저 장, 비밀번호 와 배열을 비교하여 확인.

4. LED 및 서보 모터 제어 비밀번호 일치 여부에 따른 LED 점등과 서 보 모터 작동.

5. 느낀점

프로젝트를 진행하며 느낀 점.

회로도

사용한 아두이노 부품 및 센서

아두이노 보드

아두이노 Uno 보드를 사용하여 프로젝트를 구현하였다..

초음파 센서

초음파 센서를 활용하 여 거리를 측정한다.

LED

비밀번호 확인 여부에 따라 LED를 제어한다.

서보 모터

비밀번호 확인 시 서보 모터를 작동하여 금고 문을 연다.

구간별 거리 값 할당

근거리

0 ~ 10cm: 값 '0'

10 ~ 20cm: 값 '1'

20 ~ 30cm: 값 '2'

중거리

30 ~ 40cm: 값 '3'

40 ~ 50cm: 값 '4'

50 ~ 60cm: 값 '5'

원거리

60 ~ 70cm: 값 '6'

70 ~ 80cm: 값 '7'

80 ~ 90cm: 값 '8'

90 ~ 100cm: 값 '9'

특정 거리 감지 시 배열에 값 저장

비밀번호 배열

사용자가 금고 앞에 서 있는 동안 5초 이상 감지되는 거리 값을 배열의 첫 번째 칸에 저장한다.

비밀번호확인

배열의 값과 미리 설정된 비밀번호가 일치하면 금고가 열린다.

순서 추적

배열의 두 번째, 세 번째, 네 번째 칸에 순서대로 값이 저장된다.

LED제어

비밀번호 일치 여부에 따라 LED가 점등되어 태를 나타낸다.

비밀번호설정 및확인

1. 비밀번호 입력

사용자가 금고 앞에서 4가지 거리 값을 입력한다.(사실 이미 설정 완료)

2. 배열에 저장

입력된 거리 값이 배열에 순서대로 저장된다.

3. 비밀번호 확인

3

배열의 값과 미리 설정된 비밀번호를비교한다.

to use in place of passwords. You'll be asked for this u sign in to Windows, apps, and services.

Next

LED 점등 및 서보모터 작동

LED 점등

비밀번호 일치 시 LED가 차례대로 점등된다.

서보 모터 작동

비밀번호 확인이 완료되면 서보 모터가 90도 회전하여 금고 문을 연다..

느낀점

실용성 향상

초음파 센서와 비밀번호 설정을 통해 보안성을 높이고 편의성을 개선할 수 있었다.

문제 해결 능력

구현 과정에서 발생한 문제를 해결하며 문제 해결 능력이 향상되었다.

기술 습득

아두이노 보드와 센서 활용, 프로그래밍 기술 등을 배울 수 있었다.

성취감

직접 설계하고 구현한 금고 시스템이 작동하는 것을 보며 성취감을 느꼈다.