ガンマ分布の中心極限定理とStirlingの公式

黒木玄

2016年5月1日作成*

http://www.math.tohoku.ac.jp/~kuroki/LaTeX/20160501StirlingFormula.pdf

目次

0	はじめに	2
1	ガンマ分布に関する中心極限定理からの"導出"	2
2	ガンマ分布の特性函数を用いた表示からの導出2.1 Stirling の公式の証明	5
3	ガンマ函数の Gauss 積分による近似を使った導出	7
4	対数版の易しい Stirling の公式4.1 対数版の易しい Stirling の公式の易しい証明	8
	付録: Fourier の反転公式 5.1 Gauss 分布の場合	11 11

^{*2016} 年 5 月 1 日 Ver.0.1. 2016 年 5 月 2 日 Ver.0.2: 対数版の易しい Stirling の公式の節を追加した. 2016 年 5 月 3 日 Ver.0.3: 色々追加. 特に Fourier の反転公式に関する付録を追加した. 2016 年 5 月 4 日 Ver.0.4: ガウス分布の Fourier 変換の付録と Gauss 積分の計算の付録を追加した. 2016 年 5 月 5 日 Ver.0.5: 誤りの訂正と様々な追加 (全 17 頁). 2016 年 5 月 5 日 Ver.0.6: ファイル名を変更し, 対数版の易しい Stirling の公式の微小な改良の節を追加した (全 18 頁). 2016 年 5 月 6 日 Ver.0.7: ガンマ函数の正値性と対数凸性と函数等式による特徴付けと無限乗積展開の証明の節や対数版の易しい Stirling の公式を改良して通常の Stirling の公式を導くことなどを色々追加した (全 24 頁). 2016 年 5 月 7 日 Ver.0.8: 正弦函数の無限乗積展開を $\cos(tx)$ の Fourier 級数展開を使って導く方法の解説を追加した (全 25 頁).

6	付錡	k: ガウス分布の Fourier 変換	13
	6.1	熱方程式を使う方法	13
	6.2	両辺が同一の常微分方程式を満たしていることを使う方法	14
	6.3	項別積分で計算する方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
	6.4	Cauchy の積分定理を使う方法	15
7	付錡	z: Gauss 積分の計算	15
	7.1	極座標変換による計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
	7.2	Jacobian を使わずにすむ座標変換による計算	16
	7.3	同一の体積の2通りの積分表示を用いた計算	16
	7.4	ガンマ函数とベータ函数の関係を用いた計算	17
	7.5	他の方法	18
8	付錡	! : ガンマ函数	18
	8.1	ガンマ函数と正弦函数の関係式	18
	8.2	ガンマ函数の無限乗積展開	20
	8.3	正弦函数の無限乗積展開・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
	8.4	Wallis の公式	24

0 はじめに

Stirling の公式とは

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
 $(n \to \infty)$

という階乗の近似公式のことである. ここで $a_n \sim b_n \ (n \to \infty)$ は $\lim_{n \to \infty} (a_n/b_n) = 1$ を意味する. このノートではまず最初にガンマ分布に関する中心極限定理から Stirling の公式が "導出" されることを説明する. 精密かつ厳密な議論はしない.

このノートの後半の付録群では関連の基礎知識の解説を行なう. このノートの全体は学生向けの Gauss 積分入門, ガンマ函数入門, ベータ函数入門になることを意図して書かれた雑多な解説の寄せ集めである. 基本的な方針として易しい話しか扱わないことにする.

1 ガンマ分布に関する中心極限定理からの"導出"

ガンマ分布とは次の確率密度函数で定義される確率分布のことである1:

$$f_{\alpha,\tau}(x) = \begin{cases} \frac{e^{-x/\tau} x^{\alpha-1}}{\Gamma(\alpha)\tau^{\alpha}} & (x > 0), \\ 0 & (x \le 0). \end{cases}$$

ここで $\alpha, \tau > 0$ はガンマ分布を決めるパラメーターである². 以下簡単のため $\alpha = n > 0$, $\tau = 1$ の場合のガンマ分布のみを扱うために $f_n(x) = f_{n,1}(x)$ とおく:

$$f_n(x) = \frac{e^{-x}x^{n-1}}{\Gamma(n)}$$
 $(x > 0).$

 $^{^{-1}}$ ガンマ函数は s>0 に対して $\Gamma(s)=\int_0^\infty e^{-x}x^{s-1}\,dx$ と定義される. 直接の計算によって $\Gamma(1)=1$ を、部分積分によって $\Gamma(s+1)=s\Gamma(s)$ を示せるので、0 以上の整数 n について $\Gamma(n+1)=n!$ となる.

 $^{^{2}\}alpha$ は shape parameter と, τ は scale parameter と呼ばれているらしい.

確率密度函数 $f_n(x)$ で定義される確率変数を X_n と書くことにする. 確率変数 X_n の平均 μ_n と分散 σ_n^2 は両方 n になる³:

$$\mu_n = E[X_n] = \int_0^\infty x f_n(x) \, dx = \frac{\Gamma(n+1)}{\Gamma(n)} = n,$$

$$E[X_n^2] = \int_0^\infty x^2 f_n(x) \, dx = \frac{\Gamma(n+2)}{\Gamma(n)} = (n+1)n,$$

$$\sigma_n^2 = E[X_n^2] - \mu_n^2 = n.$$

ゆえに確率変数 $Y_n = (X_n - \mu_n)/\sigma_n = (X_n - n)/\sqrt{n}$ の平均と分散はそれぞれ 0 と 1 になり、その確率密度函数は

$$\sqrt{n}f_n(\sqrt{n}y+n) = \sqrt{n}\frac{e^{-(\sqrt{n}y+n)}(\sqrt{n}y+n)^{n-1}}{\Gamma n}$$

になる⁴. この確率密度函数で y=0 とおくと

$$\sqrt{n}f_n(n) = \sqrt{n}\frac{e^{-n}n^{n-1}}{\Gamma(n)} = \frac{n^n e^{-n}\sqrt{n}}{\Gamma(n+1)}$$

となる. n>0 が整数のとき $\Gamma(n+1)=n!$ なので、これが $n\to\infty$ で $1/\sqrt{2\pi}$ に収束することと Stirling の公式の成立は同値になる.

ガンマ分布が再生性を満たしていることより、中心極限定理を適用できるので、 $\mathbb R$ 上の有界連続函数 $\varphi(x)$ に対して、 $n\to\infty$ のとき

$$\int_0^\infty \varphi\left(\frac{x-n}{\sqrt{n}}\right) f_n(x) \, dx = \int_0^\infty \varphi(y) \sqrt{n} f_n(\sqrt{n}y+n) \, dy \longrightarrow \int_{-\infty}^\infty \varphi(y) \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, dy.$$

 $\varphi(y)$ をデルタ函数 $\delta(y)$ に近付けることによって (すなわち確率密度函数の y に 0 を代入 することによって),

$$\sqrt{n}f_n(n) = \sqrt{n}\frac{e^{-n}n^{n-1}}{\Gamma(n)} = \frac{n^n e^{-n}\sqrt{n}}{\Gamma(n+1)} \longrightarrow \frac{1}{\sqrt{2\pi}} \qquad (n \to \infty)$$

を得る. この結果はStirlingの公式の成立を意味する.

以上の "導出" の最後で確率密度函数の y に 0 を代入するステップには論理的にギャップがある. このギャップを埋めるためには中心極限定理をブラックボックスとして利用するのではなく、中心極限定理の特性函数を用いた証明に戻る必要がある. そのような証明の方針については次の節を見て欲しい.

2 ガンマ分布の特性函数を用いた表示からの導出

前節では中心極限定理を便利なブラックボックスとして用いて Stirling の公式を "導出" した. しかし, その "導出" には論理的なギャップがあった. そのギャップを埋めるために

一 3確率密度函数 f(x) を持つ確率変数 X に対して、期待値汎函数が $E[g(X)] = \int_{\mathbb{R}} g(x)f(x)\,dx$ と定義され、平均が $\mu = E[X]$ と定義され、分散が $\sigma^2 = E[(X-\mu)^2] = E[X^2] - \mu^2$ と定義される.

 $^{^4}$ 確率変数 X の確率分布函数が f(x) のとき、確率変数 Y を Y=(X-a)/b と定めると、 $E[g(Y)]=\int_{\mathbb{R}}g((x-a)/b)f(x)\,dx=\int_{\mathbb{R}}g(y)bf(by+a)\,dy$ なので、Y の確率分布函数は bf(by+a) になる.

は、中心極限定理が確率密度函数を特性函数 (確率密度函数の逆 Fourier 変換)の Fourier 変換で表示することによって証明されることを思い出す必要がある.

この節ではガンマ分布の確率密度函数を特性函数の Fourier 変換で表わす公式を用いて, 直接的に Stirling の公式を証明する 5 .

2.1 Stirling の公式の証明

ガンマ分布の確率密度函数 $f_n(x) = e^{-x}x^{n-1}/\Gamma(n)$ (x > 0) の特性函数 (逆 Fourier 変換) $F_n(t)$ は次のように計算される⁶:

$$F_n(t) = \int_0^\infty e^{itx} f_n(x) \, dx = \frac{1}{\Gamma(n)} \int_0^\infty e^{-(1-it)x} x^{n-1} \, dx = \frac{1}{(1-it)^n}.$$

ここで、実部が正の複素数 α に対して

$$\frac{1}{\Gamma(n)} \int_0^\infty e^{-\alpha t} t^{n-1} dt = \frac{1}{\alpha^n}$$

となること使った. この公式は Cauchy の積分定理を使って示せる7.

Fourier の反転公式より8,

$$f_n(x) = \frac{e^{-x}x^{n-1}}{\Gamma(n)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} F_n(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itx}}{(1-it)^n} dt \qquad (x > 0).$$

この公式さえ認めてしまえば Stirling の公式の証明は易しい.

この公式より, $t = \sqrt{nu}$ と置換することによって,

$$\sqrt{n} f_n(n) = \frac{n^n e^{-n} \sqrt{n}}{\Gamma(n+1)} = \frac{\sqrt{n}}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itn}}{(1-it)^n} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-iu\sqrt{n}}}{(1-iu/\sqrt{n})^n} du.$$

Stirling の公式を証明するためには、これが $n\to\infty$ で $1/\sqrt{2\pi}$ に収束することを示せばよい. そのために被積分函数の対数の様子を調べよう:

$$\log \frac{e^{-iu\sqrt{n}}}{(1-iu/\sqrt{n})^n} = -n\log\left(1-\frac{iu}{\sqrt{n}}\right) - iu\sqrt{n}$$
$$= n\left(\frac{iu}{\sqrt{n}} - \frac{u^2}{2n} + o\left(\frac{1}{n}\right)\right) - iu\sqrt{n} = -\frac{u^2}{2} + o(1).$$

したがって, $n \to \infty$ のとき

$$\frac{e^{-iu\sqrt{n}}}{(1-iu/\sqrt{n})^n} \longrightarrow e^{-u^2/2}.$$

⁵筆者はこの証明法を https://www.math.kyoto-u.ac.jp/~nobuo/pdf/prob/stir.pdf を見て知った.

 $^{^6}$ 確率分布がパラメーター n について再生性を持つことと特性函数がある函数の n 乗の形になることは 同値である

 $^{^7}$ Cauchy の積分定理を使わなくても示せる. 左辺を $f(\alpha)$ と書くと, f(1)=1 でかつ部分積分によって $f'(\alpha)=-(n/\alpha)f(\alpha)$ となることがわかるので, その公式が得られる. 正の実数 α に対するこの公式は $t=x/\alpha$ という置換積分によって容易に証明される.

⁸Fourier の反転公式の証明の概略については第5節を参照せよ.

$$\sqrt{n} f_n(n) = \frac{n^n e^{-n} \sqrt{n}}{\Gamma(n+1)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-iu\sqrt{n}}}{(1 - iu/\sqrt{n})^n} du \longrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-u^2/2} du = \frac{1}{\sqrt{2\pi}}$$

となることがわかる 9 . 最後の等号で一般に正の実数 α に対して

$$\int_{-\infty}^{\infty} e^{-u^2/\alpha} \, du = \sqrt{\alpha \pi}$$

となることを用いた¹⁰. これで Stirling の公式が証明された.

2.2 正規化されたガンマ分布の確率密度函数の各点収束

確率密度函数 $f_n(x)=e^{-x}x^{n-1}$ を持つ確率変数を X_n と書くとき, $Y_n=(X_n-n)/\sqrt{n}$ の平均と分散はそれぞれ 0 と 1 になるのであった (前節を見よ). Y_n の確率密度函数は

$$\sqrt{n} f_n(\sqrt{n}y + n) = \sqrt{n} \frac{e^{-\sqrt{n}y - n}(\sqrt{n}y + n)^{n-1}}{\Gamma(n)} = \frac{e^{-n}n^{n-1/2}}{\Gamma(n)} \frac{e^{-\sqrt{n}y}(1 + y/\sqrt{n})^n}{1 + y/\sqrt{n}}$$

になる. そして, $n \to \infty$ のとき

$$\begin{split} \log\left(e^{-\sqrt{n}y}\left(1+\frac{y}{\sqrt{n}}\right)^n\right) &= n\log\left(1+\frac{y}{\sqrt{n}}\right) - \sqrt{n}y \\ &= n\left(\frac{y}{\sqrt{n}} - \frac{y^2}{2n} + o\left(\frac{1}{n}\right)\right) - \sqrt{n}y = -\frac{y^2}{2} + o(1) \end{split}$$

なので, $n\to\infty$ で $e^{\sqrt{n}y}(1+y/\sqrt{n})^n\to e^{-y^2/2}$ となり, さらに $1+y/\sqrt{n}\to 1$ となる. ゆえに, 次が成立することと Stirling の公式は同値になる:

$$\sqrt{n}f_n(\sqrt{n}y+n) = \sqrt{n}\frac{e^{-\sqrt{n}y-n}(\sqrt{n}y+n)^{n-1}}{\Gamma(n)} \longrightarrow \frac{e^{-y^2/2}}{\sqrt{2\pi}} \qquad (n \to \infty).$$

すなわち Y_n の確率密度函数が標準正規分布の確率密度函数に各点収束することと Stirling の公式は同値である.

ガンマ分布について確率密度函数の各点収束のレベルで中心極限定理が成立していることと Stirling の公式は同じ深さにある.

 Y_n の確率分布函数が標準正規分布の確率密度函数に各点収束することの直接的証明は $\sqrt{n}f(n)$ の収束の証明と同様に以下のようにして得られる:

$$\sqrt{n} f_n(\sqrt{n}y + n) = \frac{\sqrt{n}}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-it(\sqrt{n}y + n)}}{(1 - it)^n} dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iuy} \frac{e^{-it\sqrt{n}}}{(1 - iu/\sqrt{n})^n} dt$$

 10 この公式は Gauss 積分の公式 $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$ で $x = u/\sqrt{\alpha}$ と積分変数を変換すれば得られる. Gauss 積分の公式は以下のようにして証明される. 左辺を I とおくと $I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx \, dy$ であり, I^2 は $z = e^{-(x^2+y^2)}$ のグラフと平面 z = 0 で挟まれた「小山状の領域」の体積だと解釈される. その小山の高さ $0 < z \le 1$ における断面積は $-\pi \log z$ になるので,その体積は $\int_0^1 (-\pi \log z) \, dz = -\pi [z \log z - z]_0^1 = \pi$ になる. ゆえに $I = \sqrt{\pi}$. Gauss 積分の公式の不思議なところは円周率が出て来るところであり,しかもその平方根が出て来るところである. しかしその二乗が小山の体積であることがわかれば,その高さ z での断面が円盤の形になることから円周率 π が出て来る理由がわかる.平方根になるのは I そのものを直接計算したのではなく, I^2 の方を計算したからである.

⁹厳密に証明したければ、たとえば Lebesgue の収束定理を使えばよい.

$$\longrightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-iuy} e^{-u^2/2} du = \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \qquad (n \to \infty).$$

最後の等号で、Cauchy の積分定理より11

味で) 収束するというのが中心極限定理である.

$$\int_{-\infty}^{\infty} e^{-iuy} e^{-u^2/2} \, du = \int_{-\infty}^{\infty} e^{-(u+iy)^2/2 - y^2/2} \, du = e^{-y^2/2} \int_{-\infty}^{\infty} e^{-v^2/2} \, dv = e^{-y^2/2} \sqrt{2\pi}$$

となることを用いた.

このように、ガンマ分布の確率密度函数の特性函数の Fourier 変換による表示を使えば確率密度函数の各点収束のレベルでの中心極限定理を容易に示すことができ、その結果は Stirling の公式と同値になっている.

2.3 一般の場合の中心極限定理に関する大雑把な解説

一般の場合の中心極限定理について大雑把にかつ簡単に解説する.

 X_1, X_2, X_3, \dots は互いに独立で等しい確率分布を持つ確率変数の列であるとする. さらにそれらは平均 $\mu = E[X_k]$ と分散 $\sigma^2 = E[(X_k - \mu)^2] = E[X_k]^2 - \mu^2$ を持つと仮定する. $Y_n = (X_1 + \dots + X_n - n\mu)/\sqrt{n\sigma^2}$ とおくと Y_n の平均と分散はそれぞれ 0 と 1 になる. このとき $n \to \infty$ の極限で Y_n の確率分布が平均 0, 分散 1 の標準正規分布に (適切な意

記述の簡単のため X_k を $(X_k - \mu)/\sigma$ で置き換えることにする. このように置き換えても Y_n は変わらない. このとき X_k の平均と分散はそれぞれ 0 と 1 になるので, X_k の特性函数を $\varphi(t) = E[e^{itX_k}]$ と書くと,

$$\varphi(t) = 1 - \frac{t^2}{2} + o(t^2).$$

 $Y_n = (X_1 + \cdots + X_n)/\sqrt{n}$ とおくと Y_n の平均と分散もそれぞれ 0 と 1 になり, Y_n の特性函数の極限は次のように計算される:

$$E[e^{itY_n}] = \prod_{k=1}^n E[e^{itX_k/\sqrt{n}}] = \varphi\left(\frac{t}{\sqrt{n}}\right)^n$$
$$= \left(1 - \frac{t^2}{2n} + o\left(\frac{1}{n}\right)\right)^n \longrightarrow e^{-t^2/2} \qquad (n \to \infty).$$

ゆえに、Fourierの反転公式より¹²、 Y_n の確率密度函数¹³ $f_n(y)$ は

$$f_n(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \varphi\left(\frac{t}{\sqrt{n}}\right)^n dt$$

 $^{^{11}}$ 複素解析を使わなくても容易に証明される. たとえば, e^{-ity} の Taylor 展開を代入して項別積分を実行しても証明できる. もしくは, 両辺が f'(y)=-yf(y), $f(0)=\sqrt{2\pi}$ を満たしていることからも導かれる (左辺が満たしていることは部分積分すればわかる). Cauchy の積分定理を使えば形式的に u+iy (u>0) を v>0 で置き換える置換積分を実行したのと同じように見える証明が得られる.

 $^{^{12}\}varphi(t/\sqrt{n})^n$ が可積分ならば Y_n に関する Fourier 反転公式の結果は函数になるが、可積分でない場合には測度になり、測度の収束を考えることになる.

¹³一般には ℝ 上の確率測度になる.

になり、これは $n \to \infty$ で標準正規分布の確率密度函数

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} e^{-t^2/2} dt = \frac{e^{-y^2/2}}{\sqrt{2\pi}}$$

に収束する¹⁴.

3 ガンマ函数の Gauss 積分による近似を使った導出

前節までに説明した Stirling の公式の証明は本質的にガンマ函数 (ガンマ分布) が Gauss 積分 (正規分布) で近似されることを用いた証明だと考えられる.

この節ではガンマ函数の値を Gauss 積分で直接近似することによって Stirling の公式を示そう 15 .

 $q_n(x) = \log(e^{-x}x^n) = n\log x - x$ を x = n で Taylor 展開すると

$$g_n(x) = n \log n - n - \frac{(x-n)^2}{2n} + \frac{(x-n)^3}{3n^2} - \frac{(x-n)^4}{4n^3} + \cdots$$

これより, n が大きなとき $n! = \Gamma(n+1) = \int_0^\infty e^{-x} x^n dx$ が

$$\int_{-\infty}^{\infty} \exp\left(n\log n - n - \frac{(x-n)^2}{2n}\right) dx = n^n e^{-n} \int_{-\infty}^{\infty} e^{-(x-n)^2/(2n)} dx = n^n e^{-n} \sqrt{2\pi n}$$

で近似されることがわかる. ゆえに

$$n! \sim n^n e^{-n} \sqrt{2\pi n} \qquad (n \to \infty).$$

この近似の様子を scilab で描くことによって作った画像をツイッターの過去口グで見ることができる. 無料の数値計算ソフト scilab については<mark>関連のツイート</mark>を参照して欲しい. 以上の証明法ではStirling の公式中の因子 $n^n e^{-n}$, $\sqrt{2\pi n}$ のそれぞれが $g_n(x) = \log(e^{-x}x^n) = n\log x - x$ の x = n における Taylor 展開の定数項と 2 次の項に由来していることがわかる. 3 次の項は $\int_{-\infty}^{\infty} y^3 e^{-y^2/\alpha} \, dy = 0$ なので寄与しない.

4 対数版の易しい Stirling の公式

Stirling の公式は次と同値である:

$$\log n! - (n+1/2)\log n + n \longrightarrow \log \sqrt{2\pi} \qquad (n \to \infty).$$

これより、次の弱い結果が導かれる:

$$\log n! = n \log n - n + o(n) \qquad (n \to \infty).$$

ここで o(n) は n で割った後に $n \to \infty$ とすると 0 に収束する量を意味する. これをこの節では対数版の易しい Stirling の公式と呼ぶことにする. この公式であれば以下で説明するように初等的に証明することができる 16 .

¹⁴厳密には適切な意味での収束を考える必要がある.

¹⁵この方法は Laplace の方法と呼ばれることがある. Laplace の方法による Stirling の公式の証明とその一般化に関しては Gergö Nemes, Asymptotic expansions for integrals, 2012, M. Sc. Thesis, 40 pages が詳しい.

 $^{^{16}}$ 以下の証明を見ればわかるように o(n) の部分は $O(\log n)$ であることも証明できる. ここで $O(\log n)$ は $\log n$ で割った後に有界になる量を意味している.

4.1 対数版の易しい Stirling の公式の易しい証明

単調増加函数 f(x) について $f(k) \leq \int_k^{k+1} f(x) \, dx \leq f(k+1)$ が成立しているので, $f(1) \geq 0$ を満たす単調増加函数 f(x) について,

$$f(1) + f(2) + \dots + f(n-1) \le \int_1^n f(x) dx \le f(1) + f(2) + \dots + f(n).$$

ゆえに

$$\int_{1}^{n} f(x) dx \le f(1) + f(2) + \dots + f(n) \le \int_{1}^{n} f(x) dx + f(n).$$

これを $f(x) = \log x$ に適用すると

$$\int_{1}^{n} \log x \, dx = [x \log x - x]_{1}^{n} = n \log n - n + 1, \qquad \log 1 + \log 2 + \dots + \log n = \log n!$$

なので

$$n\log n - n + 1 \le \log n! \le n\log x - n + 1 + \log n.$$

すなわち

$$1 \le \log n! - n \log n + n \le 1 + \log n.$$

したがって

$$\log n! = n \log n - n + O(\log n) = n \log n - n + o(n) \qquad (n \to \infty).$$

ここで $O(\log n)$ は $\log n$ で割ると有界になるような量を意味している.

4.2 大学入試問題への応用例

対数版の易しい Stirling の公式を使うと, an 個から bn 個取る組み合わせの数 (二項係数) の対数は

$$\log \binom{an}{bn} = \log(an)! - \log(bn)! - \log((a-b)n)!$$

$$= an \log a + an \log n - an + o(n)$$

$$- bn \log b - bn \log n + bn + o(n)$$

$$- (a-b)n \log(a-b) - (a-b)n \log n + (a-b)n + o(n)$$

$$= n \log \frac{a^a}{b^b(a-b)^{a-b}} + o(n).$$

となる. ゆえに

$$\log \binom{an}{bn}^{1/n} \longrightarrow \log \frac{a^b}{b^b(a-b)^{a-b}} \qquad (n \to \infty).$$

すなわち

$$\lim_{n \to \infty} {an \choose bn}^{1/n} = \lim_{n \to \infty} \left(\frac{(an)!}{(bn)!((a-b)n)!} \right)^{1/n} = \frac{a^a}{b^b(a-b)^{a-b}}.$$

要するに an 個から bn 個取る組み合わせの数の n 乗根の $n \to \infty$ での極限は二項係数部分の式の分子分母の (kn)! を k^k で置き換えれば得られる.

この結果を使えば次の東工大の1988年の数学の入試問題を暗算で解くことができる:

$$\lim_{n \to \infty} \left(\frac{_{3n}C_n}{_{2n}C_n} \right)^{1/n}$$
 を求めよ.

この極限の値は

$$\frac{3^3/(1^12^2)}{2^2/(1^11^1)} = \frac{3^3}{2^4} = \frac{27}{16}.$$

入試問題を作った人は、まずStirlingの公式を使うと容易に解ける問題を考え、その後に高校数学の範囲内でも解けることを確認したのだと思われる.

注意. 上で示したことより.

$$\lim_{n \to \infty} \binom{2n}{n}^{1/n} = \frac{2^2}{1^1 1^1} = 2^2.$$

これは次を意味している (o(n) は n で割っても 0 に収束する量):

$$\binom{2n}{n} = 2^{2n}e^{o(n)} \qquad (n \to \infty).$$

Wallis の公式 (第8.4節)

$$\binom{2n}{n} \sim \frac{2^{2n}}{\sqrt{\pi n}} \qquad (n \to \infty)$$

はその精密化になっている.

注意. 東工大では1968年にも次の問題を出しているようだ:

$$\lim_{n\to\infty} \frac{1}{n} \sqrt[n]{2nP_n} を求めよ. (答えは 2^2e^{-1} .)$$

この問題も明らかに元ネタは Stirling の公式である. より一般に次を示せる:

$$\lim_{n \to \infty} \frac{((an)!)^{1/n}}{n^a} = a^a e^{-a}.$$

なぜならば

$$\log \frac{((an)!)^{1/n}}{n^a} = \frac{1}{n} \log(an)! - a \log n$$

$$= \frac{1}{n} (an \log a + an \log n - an + o(n)) - a \log n$$

$$= a \log a - a + o(1)$$

$$= \log(a^a e^{-a}) + o(1).$$

やはり Stirling の公式を使えば容易に示せる結果を高校数学の範囲内で解けるように調節して入試問題にしているのだと思われる. □

4.3 対数版の易しい Stirling の公式の改良

少し工夫すると次を示せる. ある定数 c が存在して,

$$\log n! = n \log n + \frac{1}{2} \log n - n + c + o(1) \qquad (n \to \infty).$$

以下ではこの公式を証明しよう17.

第 4.1 節で証明した対数版の易しい Stirling の公式と上の公式の違いは $(1/2)\log n$ の項と定数項 c を付け加えて改良しているところである。それらの項を出すアイデアは次の通り、 $\int_1^n\log x\,dx=[x\log x-x]_1^n=n\log n-n+1$ を $k=1,2,3,\ldots,n-1$ に対する長方形 $[k-1/2,k+1/2]\times[0,\log k]$ の面積の総和と長方形 $[n-1/2,n]\times[0,\log n]$ の面積の和 $\log(n-1)!+(1/2)\log n=\log n!-(1/2)\log n$ で近似すれば、自然に $(1/2)\log n$ の項が得られる。さらに、それらの長方形の和集合と領域 $\{(x,y)\mid 1\le x\le n,\ 0\le y\le \log x\}$ の違いを注意深く分析すれば、 $\int_1^n\log x\,dx$ と長方形の面積の総和の差が $n\to\infty$ である定数に収束することがわかり、定数項も得られる。

 $\log x$ は単調増加函数なので正の実数 α_k, β_k を

$$\alpha_k = \int_k^{k+1/2} \log x \, dx - \frac{1}{2} \log k, \qquad \beta_k = \frac{1}{2} \log k - \int_{k-1/2}^k \log x \, dx$$

と定めることができる. このとき,

$$\log n! - \frac{1}{2}\log n - \int_{1}^{n}\log x \, dx = \sum_{k=1}^{n-1}\log k + \frac{1}{2}\log n - \int_{1}^{n}\log x \, dx$$
$$= -\alpha_{1} + \beta_{2} - \alpha_{2} + \beta_{3} - \dots + \beta_{n-1} - \alpha_{n-1} + \beta_{n}.$$

この交代和が $n \to \infty$ で収束することを示したい.

 $\log x$ が上に凸であることより、数列 $\alpha_1,\beta_2,\alpha_2,\beta_3,\alpha_3,\ldots$ が単調減少することがわかり、 $\log x$ の導函数が $x\to\infty$ で 0 に収束することより、その数列は 0 に収束することもわかる. ゆえに上の交代和は $n\to\infty$ で収束する 18. その収束先を a と書き、c=1+a とおくと、 $n\to\infty$ のとき

$$\log n! = \frac{1}{2}\log n + \int_{1}^{n}\log x \, dx + a + o(1) = n\log n + \frac{1}{2}\log n - n + c + o(1).$$

 $c=\log\sqrt{2\pi}$ であることを Wallis の公式 (第8.4節) を使って証明しよう. $n!=n^{n+1/2}e^{-n}e^ce^{o(1)}$ を Wallis の公式

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{2^{2n} (n!)^2}{(2n)! \sqrt{n}}$$

に代入すると、

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{2^{2n} n^{2n+1} e^{-2n} e^{2c}}{2^{2n+1/2} n^{2n+1} e^{-2n} e^{c}} = \frac{e^c}{\sqrt{2}}.$$

ゆえに $e^c = \sqrt{2\pi}$ である.

これで Wallis の公式を使えば、対数版の易しい Stirling の公式を改良することによって、 通常の Stirling の公式 $n! \sim n^n e^{-n} \sqrt{2\pi n}$ が得られることがわかった.

 $^{^{-17}}$ 定数 c が $\log\sqrt{2\pi}$ であることは既知であるが, Wallis の公式を使えば $e^c=\sqrt{2\pi}$ であることを示せる. 18 0 以上の実数で構成された 0 に収束する単調減少列 a_n が定める交代級数 $\sum_{k=1}^{\infty} (-1)^{k-1} a_k$ は収束する. (絶対収束するとは限らない.)

5 付録: Fourier の反転公式

厳密な証明をするつもりはないが、Fourierの反転公式の証明の概略について説明しよう. 函数 f(x) に対してその逆 Fourier 変換 F(p) を

$$F(p) = \int_{-\infty}^{\infty} e^{ipx} f(x) \, dx$$

と定める. このとき函数 f について適切な条件を仮定しておくと, それに応じた適切な意味で

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F(p) dp$$

が成立する. これを Fourier の反転公式と呼ぶ.

5.1 Gauss 分布の場合

a > 0 であるとし、

$$f(x) = e^{-x^2/(2a)}$$

とおき, F(p) はその逆 Fourier 変換であるとする. このとき

$$F(p) = \int_{-\infty}^{\infty} e^{ipx} e^{-x^2/(2a)} dx = e^{-p^2/(2a^{-1})} \sqrt{2a\pi}$$

が容易に得られる¹⁹. この公式で x, a のそれぞれと p, a^{-1} の立場を交換することによって

$$\int_{-\infty}^{\infty} e^{-ipx} e^{-p^2/(2a^{-1})} dp = e^{-x^2/(2a)} \sqrt{2a^{-1}\pi}$$

が得られる. 以上の2つの結果を合わせると、

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F(p) \, dp$$

が得られる. すなわち $f(x) = e^{-x^2/(2a)}$ については Fourier の反転公式が成立している.

一般に f(x) について Fourier の反転公式が成立していれば f(x) を平行移動して得られる函数 $f(x-\mu)$ についても Fourier の反転公式が成立していることが容易に示される. 実際, F(p) を f(x) の逆 Fourier 変換とすると, $f(x-\mu)$ の逆 Fourier 変換は

$$\int_{-\infty}^{\infty} e^{ipx} f(x-\mu) dx = \int_{-\infty}^{\infty} e^{ip(x'+\mu)} f(x') dx' = e^{ip\mu} F(p)$$

になり.

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{ip\mu} F(p) \, dp = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ip(x-\mu)} F(p) \, dp = f(x-\mu).$$

以上によって, $f(x-\mu)=e^{-(x-\mu)^2/(2a)}$ についても Fourier の反転公式が成立することがわかった.

逆 Fourier 変換および Fourier 変換の線形性より, $f(x-\mu)=e^{-(x-\mu)^2/(2a)}$ の形の函数の線形和についても Fourier の反転公式が成立していることがわかる²⁰.

 $^{^{19}}$ Cauchy の積分定理を使う方法, e^{ipx} の Taylor 展開を代入して項別積分する方法, 左辺と右辺が同じ微分方程式を満たしていることを使う方法など複数の方法で容易に計算可能である.

²⁰ "任意の函数" はそのような線形和の "極限" で表わされる. したがって, Fourier の反転公式の証明の本質的部分はこれで終了しているとみなせる.

5.2 一般の場合

a>0 に対して函数 $\rho_a(x)$ を

$$\rho_a(x) = \frac{1}{\sqrt{2\pi a}} e^{-x^2/(2a)}$$

と定める. これは $\rho_a(x) > 0$ と $\int_{-\infty}^{\infty} \rho_a(x) dx = 1$ を満たしている. そして前節の結果によって, $\rho_a(x-\mu)$ は Fourier の反転公式を満たしている.

函数 f(x) に対して函数 $f_a(x)$ を ρ_a との畳み込み積によって函数 $f_a(x)$ を定める:

$$f_a(x) = \int_{-\infty}^{\infty} \rho_a(x - y) f(y) \, dy.$$

このとき $f_a(x)$ については Fourier の反転公式が成立している²¹. 実際, $f_a(x)$ の逆 Fourier 変換 $F_a(p)$ と書くと,

$$F_a(p) = \int_{-\infty}^{\infty} e^{ipx} f_a(x) dx = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{ipx} \rho_a(x - y) dx \right) f(y) dy$$

なので

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F_a(p) dp = \int_{-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} \left(\int_{-\infty}^{\infty} e^{ipx'} \rho_a(x'-y) dx' \right) dp \right) f(y) dy$$
$$= \int_{-\infty}^{\infty} \rho_a(x-y) f(y) dy = f_a(x).$$

2つ目の等号で $\rho_a(x-\mu)$ について Fourier の反転公式が成立することを使った. さらに

$$\int_{-\infty}^{\infty} e^{ipx} \rho_a(x-y) \, dx = e^{ipy} e^{-ap^2/2}$$

なので

$$F_a(p) = \int_{-\infty}^{\infty} e^{ipy} e^{-ap^2/2} f(y) \, dy = e^{-ap^2/2} F(p)$$

となる²². ゆえに

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F_a(p) \, dp = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{-ap^2/2} F(p) \, dp.$$

したがって

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{-ap^2/2} F(p) \, dp = \int_{-\infty}^{\infty} \rho_a(x-y) f(y) \, dy = f_a(x).$$

もしも F(p) が可積分ならば、Lebesgue の収束定理より、左辺について

$$\lim_{a \to 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} e^{-ap^2/2} F(p) \, dp = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ipx} F(p) \, dp$$

 $^{2^{1}}f_{a}(x)$ は Fourier の反転公式が成立している函数 $\rho_{a}(x-\mu)$ の重み $f(\mu)$ での重ね合わせなので、これはほとんど明らかである.

²²これは畳み込み積の逆 Fourier 変換が逆 Fourier 変換の積に等しいことの特殊な場合にすぎない.

が言える. あとは, 函数 f(x) について適切な条件を仮定したとき, $a\to 0$ のとき函数 $f_a(x)$ が適切な意味で函数 f(x) に収束することを示せれば, f(x) 自身が適切な意味で Fourier の反転公式を満たすことがわかる²³.

たとえば、f は有界かつ点 x で連続だと仮定する。ある M>0 が存在して $|f(y)-f(x)| \le M$ $(y\in\mathbb{R})$ となる。 任意に $\varepsilon>0$ を取る。 ある $\delta>0$ が存在して $|y-x|\le\delta$ ならば $|f(y)-f(x)|\le\varepsilon/2$ となる。 函数 ρ_a の定義より、a>0 を十分小さくすると $\int_{|y-x|>\delta}\rho_a(x-y)\,dy\le\varepsilon/(2M)$ となることもわかる。以上の状況のもとで

$$|f_{a}(x) - f(x)| = \left| \int_{-\infty}^{\infty} \rho_{a}(x - y)(f(y) - f(x)) \, dy \right|$$

$$\leq \int_{-\infty}^{\infty} \rho_{a}(x - y)|f(y) - f(x)| \, dy$$

$$\leq \int_{|y - x| \leq \delta} \rho_{a}(x - y) \frac{\varepsilon}{2} \, dy + \int_{|y - x| > \delta} \rho_{a}(x - y) M \, dy$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2M} M = \varepsilon.$$

これで $\lim_{a\to 0} f_a(x) = f(x)$ が示された.

筆者は実解析一般については次の教科書をおすすめする.

猪狩惺, 実解析入門, 岩波書店 (1996), xii+324頁, 定価 3,800 円.

筆者は学生時代に猪狩惺先生の授業で Lebesgue 積分論や Fourier 解析について勉強した. 信じられないほどクリアな講義であり, 数学の分野の中で実解析が最もクリアな分野なのではないかと思えて来るほどだった. 上の教科書が 2016 年 5 月 3 日現在品切れ中であり, プレミア価格のついた中古本しか手に入らないことはとても残念なことである.

6 付録: ガウス分布の Fourier 変換

t>0 に対して次の公式が成立している:

$$\int_{-\infty}^{\infty} e^{-ipx} \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}} dx = e^{-tp^2/2}.$$
 (*)

この公式が成立していることを複数の方法で示そう.

6.1 熱方程式を使う方法

函数 u = u(t,x) を次のように定める:

$$u(t,x) = \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}}.$$

この函数 u = u(t, x) は熱方程式の基本解になっている:

$$u_t = \frac{1}{2}u_{xx}, \qquad \lim_{t \to 0} \int_{-\infty}^{\infty} f(x)u(t,x) dx = f(0).$$

 $^{23\}rho_a(x)$ の $a\to 0$ での様子のグラフを描けば, $\rho_a(x)$ が Dirac のデルタ函数 (超函数) に "収束" しているように見えることから, これもほとんど明らかだと言える.

ここで f(x) は有界な連続函数である. u = u(t,x) が熱方程式を満たすことは偏微分の計算で容易に示される. 後者の極限の証明は実質的に第5.2 節の終わりに書いてある.

ゆえに,
$$U(t,p) = \int_{-\infty}^{\infty} e^{-ipx} u(t,x) dx$$
 とおくと,

$$\frac{\partial}{\partial t}U(t,p) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-ipx} \frac{\partial^2 u(t,x)}{\partial x^2} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\partial^2 e^{-ipx}}{\partial x^2} u(t,x) dx = -\frac{p^2}{2}U(t,p).$$

2つ目の等号で部分積分を2回行なった. さらに

$$\lim_{t \to 0} U(t, p) = \lim_{t \to 0} \int_{-\infty}^{\infty} e^{-ipx} u(t, x) \, dx = e^{-ip0} = 1.$$

したがって

$$U(t,p) = e^{-tp^2/2}$$

となることがわかる. これで公式(*)が示された.

6.2 両辺が同一の常微分方程式を満たしていることを使う方法

前節の記号をそのまま使うと,

$$\begin{split} \frac{\partial}{\partial p} U(t,p) &= \int_{-\infty}^{\infty} (-ix) e^{-ipx} u(t,x) \, dx = it \int_{-\infty}^{\infty} e^{-ipx} \frac{\partial}{\partial x} u(t,x) \, dx \\ &= -it \int_{-\infty}^{\infty} \left(\frac{\partial}{\partial x} e^{-ipx} \right) u(t,x) \, dx = -it \int_{-\infty}^{\infty} (-ip) e^{-ipx} u(t,x) \, dx \\ &= -tp U(t,p). \end{split}$$

2つ目の等号で $u_x = -(x/t)u$ を使い、3つ目の等号で部分積分を使った. さらに

$$U(t,0) = \int_{-\infty}^{\infty} u(t,x) \, dx = 1$$

となる. これらより $U(t,p)=e^{-tp^2/2}$ となることがわかる. この方針であれば u(t,x) が熱方程式の基本解であることを使わずにすむ.

6.3 項別積分で計算する方法

もしも t=1 の場合の公式 (*)

$$\int_{-\infty}^{\infty} e^{-ipx} \frac{e^{-x^2/2}}{\sqrt{2\pi}} \, dx = e^{-p^2/2} \tag{**}$$

が示されたならば, x, p をそれぞれ x/\sqrt{t} , $\sqrt{t}p$ で置換することによって一般の t>0 に関する公式 (*) が得られる. ゆえに公式 (*) を示すためには公式 (**) を証明すれば十分である.

さらに $\sin(px)$ は奇函数なので $\int_{-\infty}^{\infty} e^{-x^2/2} \sin(px) \, dx = 0$ となる. ゆえに

$$\int_{-\infty}^{\infty} e^{-x^2/2} \cos(px) \, dx = e^{-p^2/2} \sqrt{2\pi}$$

を示せば十分である. 左辺の $\cos(px)$ にその Taylor-Maclaulin 展開を代入した後に項別積分することによってこの公式を示そう.

準備. まず $\int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} dx$ を計算しよう. 部分積分によって

$$\int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} dx = \int_{-\infty}^{\infty} \left(-e^{-x^2/2} \right)' x^{2n-1} dx$$
$$= \int_{-\infty}^{\infty} e^{-x^2/2} (x^{2n-1})' dx = (2n-1) \int_{-\infty}^{\infty} e^{-x^2/2} x^{2n-2} dx.$$

ゆえに帰納的に n = 0, 1, 2, ... に対して

$$\int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} \, dx = (2n-1)\cdots 5 \cdot 3 \cdot 1\sqrt{2\pi} = \frac{(2n)!}{2^n n!} \sqrt{2\pi}.$$

2つ目の等号は左辺の分子分母に $2n \cdots 4 \cdot 2 = 2^n n!$ をかけることによって得られる. 上で準備した結果を用いると、

$$\int_{-\infty}^{\infty} e^{-x^2/2} \cos(px) \, dx = \int_{-\infty}^{\infty} e^{-x^2/2} \sum_{n=0}^{\infty} (-1)^n \frac{(px)^{2n}}{(2n)!} \, dx$$
$$= \sum_{n=0}^{\infty} \frac{(-p^2)^n}{(2n)!} \int_{-\infty}^{\infty} e^{-x^2/2} x^{2n} \, dx = \sum_{n=0}^{\infty} \frac{(-p^2/2)^n}{n!} \sqrt{2\pi} = e^{-p^2/2} \sqrt{2\pi}.$$

これで公式 (**) が示された.

6.4 Cauchy の積分定理を使う方法

複素解析を知っている人であれば詳しい説明は必要ないと思うので、以下の説明では大幅に手抜きをする. Cauchy の積分定理を使うと実数 p に対して

$$\int_{-\infty}^{\infty} e^{-(x+ip)^2/2} dx = \int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$$

となることを示せる. ゆえに

$$\int_{-\infty}^{\infty} e^{-ipx} e^{-x^2/2} dx = \int_{-\infty}^{\infty} e^{-(x+ip)^2/2 - p^2/2} dx = e^{-p^2/2} \int_{-\infty}^{\infty} e^{-(x+ip)^2/2} dx = e^{-p^2/2} \sqrt{2\pi}.$$

これで公式(**)が示された.

7 付録: Gauss 積分の計算

次の公式の様々な証明の仕方を解説しよう:

$$I := \int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.$$

この公式の面白いところ (不思議なところ) は円周率の気配が見えない積分の値が円周率 の平方根になっていることである. 実際の証明では

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-(x^{2} + y^{2})} dx dy = \pi$$

を示すことになる.

7.1 極座標変換による計算

 $x = r\cos\theta$, $y = r\sin\theta$ と極座標変換すると,

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-(x^{2} + y^{2})} dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-r^{2}} r dr = 2\pi \left[\frac{e^{-r^{2}}}{-2} \right]_{0}^{\infty} = \pi.$$

2つ目の等号で極座標変換の Jacobian がr になることを使った. もしくは

$$dx \wedge dy = (\cos\theta \, dr - r\sin\theta \, d\theta) \wedge (\sin\theta \, dr + r\cos\theta \, d\theta) = r \, dr \wedge d\theta$$

なので, $K = \{ (r, \theta) \mid r > 0, 0 \le \theta < 2\pi \}$ とおくと,

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-(x^{2}+y^{2})} dx \wedge dy = \iint_{K} e^{-r^{2}} r dr \wedge d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-r^{2}} r dr = \pi.$$

7.2 Jacobian を使わずにすむ座標変換による計算

y から θ に $y = x \tan \theta$ によって積分変数を変換すると,

$$I^{2} = 4 \int_{0}^{\infty} \left(\int_{0}^{\infty} e^{-(x^{2} + y^{2})} dy \right) dx = 4 \int_{0}^{\infty} \left(\int_{0}^{\pi/2} e^{-x^{2} \cos^{2} \theta} x \cos^{2} \theta d\theta \right) dx$$
$$= 4 \int_{0}^{\pi/2} \left(\int_{0}^{\infty} e^{-x^{2} \cos^{2} \theta} x \cos^{2} \theta dx \right) d\theta = 4 \int_{0}^{\pi/2} \left[\frac{e^{-x^{2} \cos^{2} \theta}}{-2} \right]_{x=0}^{x=\infty} d\theta$$
$$= 4 \int_{0}^{\pi/2} \frac{1}{2} d\theta = \pi.$$

3つ目の等号で積分の順序交換を行なった.

7.3 同一の体積の2通りの積分表示を用いた計算

 $I^2 = \iint_{\mathbb{R}^2} e^{-(x^2+y^2)} \, dx \, dy$ は $z = e^{-(x^2+y^2)}$ の小山状のグラフと平面 z=0 に挟まれた部分の体積を表わしている. その体積は高さ z の断面の面積²⁴ $\pi(-\log z)$ を $0 < z \le 1$ で積分することによっても求められる. ゆえに

$$I^{2} = \int_{0}^{1} \pi(-\log z) \, dz = -\pi [z \log z - z]_{0}^{1} = \pi.$$

おそらくこの方法が最も簡明である.

 $[\]overline{z^{24}z} = e^{-(x^2+y^2)}, r^2 = x^2+y^2$ とおくと, $\pi r^2 = \pi(-\log z)$ となる.

7.4 ガンマ函数とベータ函数の関係を用いた計算

s, p, q > 0 (もしくは実部が正の複素数 s, p, q) に対して,

$$\Gamma(s) = \int_0^\infty e^{-x} x^{s-1} dx$$
 $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$

によってガンマ函数 $\Gamma(s)$ とベータ函数 B(p,q) が定義される²⁵.

部分積分によって $\Gamma(s+1)=s\Gamma(s)$ であることがわかり, $\Gamma(1)=1$ なので, 0 以上の整数 n に対して $\Gamma(n+1)=n!$ となる.

Gauss 積分 I は $\Gamma(1/2)$ に等しい:

$$I = 2 \int_0^\infty e^{-x^2} dx = 2 \int_0^\infty e^{-t} \frac{t^{-1/2}}{2} dt = \int_0^\infty e^{-t} t^{1/2-1} dt = \Gamma(1/2).$$

2つ目の等号で $x=\sqrt{t}$ とおいた. したがって $\Gamma(1/2)^2=\pi$ を証明できれば Gauss 積分が計算できたことになる.

ベータ函数は以下のような複数の表示を持つ:

$$B(p,q) = 2 \int_0^{\pi/2} \cos^{2p-1}\theta \sin^{2q-1}\theta d\theta = \int_0^\infty \frac{t^{p-1} dt}{(1+t)^{p+q}} = \frac{1}{p} \int_0^\infty \frac{du}{(1+u^{1/p})^{p+q}}.$$

 $x=\cos^2\theta=t/(1+t), t=u^{1/p}$ と変数変換した. 3つ目の (最後の) 表示の p=1/2 の場合の被積分函数が t 分布の確率密度函数の表示で使用され, 2つ目の表示の被積分函数は F 分布の確率密度函数の表示で使用される. $\Gamma(1/2)$ の Gauss 積分による表示の被積分函数は正規分布の確率密度函数の表示で使用され、ガンマ函数の定義式の被積分函数は χ^2 分布の被積分函数の表示で使用される. このようにガンマ函数とベータ函数は実用的によく利用される確率分布を理解するためには必須の教養になっている.

特に最初の表示より $B(1/2,1/2) = \pi$ となることがわかる. ゆえに、もしも

$$\Gamma(p)\Gamma(q) = \Gamma(p+q)B(p,q)$$

が示されたならば, $\Gamma(1/2)^2 = B(1/2,1/2) = \pi$ となることがわかる. したがって Gauss 積分の計算はガンマ函数とベータ函数のあいだの関係式を示すことに帰着される.

ガンマ函数とベータ函数のあいだの関係式は1変数の置換積分と積分順序の交換のみを使って証明可能である. 以下でそのことを簡単に説明しよう. 条件 A に対して, x,y が A をみたすとき値が1 になり, それ以外のときに値が0 になる x,y の函数を $1_A(x,y)$ と書くことにすると.

$$\begin{split} \Gamma(p)\Gamma(q) &= \int_0^\infty \left(\int_0^\infty e^{-(x+y)} x^{p-1} y^{q-1} \, dy \right) \, dx \\ &= \int_0^\infty \left(\int_x^\infty e^{-z} x^{p-1} (z-x)^{q-1} \, dz \right) \, dx \\ &= \int_0^\infty \left(\int_0^\infty 1_{x < z} (x,z) e^{-z} x^{p-1} (z-x)^{q-1} \, dz \right) \, dx \\ &= \int_0^\infty \left(\int_0^\infty 1_{x < z} (x,z) e^{-z} x^{p-1} (z-x)^{q-1} \, dx \right) \, dz \end{split}$$

²⁵他にもたくさんの同値な定義の仕方がある. 以下では解析接続については扱わない.

$$\begin{split} &= \int_0^\infty \left(\int_0^z e^{-z} x^{p-1} (z-x)^{q-1} dx \right) dz \\ &= \int_0^\infty \left(\int_0^1 e^{-z} (zt)^{p-1} (z-zt)^{q-1} z dt \right) dz \\ &= \int_0^\infty e^{-z} z^{p+q-1} dz \int_0^1 t^{p-1} (1-t)^{q-1} dt = \Gamma(p+q) B(p,q). \end{split}$$

2つ目の等号で y=z-x と置換積分し、4つ目の等号で積分の順序を交換し、6つ目の等号で x=zt と置換積分した.

7.5 他の方法

他の方法については Hirokazu Iwasawa, Gaussian Integral Puzzles, The Mathematical Intelligencer, Vol. 31, No. 3, 2009, pp. 38-41 および Steven R. Dunbar, Evaluation of the Gaussian Density Integral, October 22, 2011 を参照して欲しい.

8 付録: ガンマ函数

第7.4節でガンマ函数について簡単に解説した. 以下ではそこでは解説できなかったガンマ函数の性質について説明しよう.

8.1 ガンマ函数と正弦函数の関係式

第7.4 節で示した $\Gamma(1/2)^2 = B(1/2, 1/2) = \pi$ は次の有名な公式の特別な場合である:

$$\Gamma(s)\Gamma(1-s) = B(s, 1-s) = \frac{\pi}{\sin(\pi s)}.$$

この公式にも複数の証明法がある. 1つ目の方法は $\sin z$ と $\Gamma(s)$ の無限乗積展開

$$\sin z = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 n^2} \right), \quad i.e. \quad \frac{\sin(\pi s)}{\pi} = s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right),$$
$$\frac{1}{\Gamma(s)} = \lim_{n \to \infty} \frac{s(s+1)\cdots(s+n)}{n!n^s} = e^{\gamma s} s \prod_{n=1}^{\infty} \left[\left(1 + \frac{s}{n} \right) e^{-s/n} \right]$$

を使う方法である²⁶. ここで γ は Euler 定数

$$\gamma = \lim_{n \to \infty} \left(\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} - \log n \right)$$

である. これらの公式を認めると,

$$\frac{1}{\Gamma(s)\Gamma(1-s)} = \frac{1}{\Gamma(s)(-s)\Gamma(-s)} = \frac{s(-s)}{-s} \prod_{n=1}^{\infty} \left[\left(1 + \frac{s}{n} \right) \left(1 - \frac{s}{n} \right) \right] = \frac{\sin(\pi s)}{\pi}.$$

 $^{^{26}\}Gamma(s)\Gamma(1-s)=\pi/\sin(\pi s)$ を先に証明しておいて (たとえば複素解析を使えば容易に示せる), ガンマ函数の無限乗積展開から $\sin z$ の無限乗積展開を導出することもできる.

2つ目の方法は次の定積分を複素解析を用いて計算することである:

$$\Gamma(s)\Gamma(1-s) = B(s, 1-s) = \int_0^\infty \frac{t^{s-1}}{1+t} dt.$$

0 < s < 1 であると仮定し, $0 < \varepsilon < 1 < R$ に対して定まる次の積分経路を C と書く: まず ε から R までまっすぐに進む. 次に複素平面上の原点を中心とする半径 R の円周上を反時計回りで 1 周する. そして R から ε までまっすぐに進む. 最後に複素平面上の原点を中心とする半径 ε の円周上を時計回りで 1 周する. このとき $\int_C z^{s-1} \, dz/(1+z)$ は $z^{s-1} \, dz/(1+z)$ の z=-1 での留数の $2\pi i$ 倍に等しい:

$$\int_C \frac{z^{s-1} \, dz}{1+z} = -2\pi i e^{\pi i s}.$$

 $\varepsilon \to 0,\,R \to \infty$ の極限を考えることによって $\int_C z^{s-1}\,dz/(1+z)$ は $\int_0^\infty t^{s-1}\,dt/(1+z)$ からそれ自身の $e^{2\pi is}$ 倍27 を引いた結果に等しいこともわかる:

$$\int_C \frac{z^{s-1} dz}{1+z} = (1 - e^{2\pi i s}) \int_0^\infty \frac{t^{s-1} dt}{1+t}.$$

以上の2つの結果を比較することによって

$$B(s, 1 - s) = \int_0^\infty \frac{t^{s-1} dt}{1 + t} = \frac{-2\pi i e^{\pi i s}}{1 - e^{2\pi i s}} = \frac{2\pi i}{e^{\pi i s} - e^{-\pi i s}} = \frac{\pi}{\sin(\pi s)}.$$

この積分は $t=u^{1/s}$ とおくことによって $s^{-1}\int_0^\infty du/(1+u^{1/s})$ に変形できる. ゆえに, 次の公式も得られたことになる:

$$B(1+s,1-s) = sB(s,1-s) = \int_0^\infty \frac{du}{1+u^{1/s}} = \frac{\pi s}{\sin(\pi s)}.$$

この公式を直接示すこともできる. R>1 であるとし、複素平面上を原点から R までまっすぐ進み、次に時計回りに角度 $2\pi s$ だけ回転して $Re^{2\pi is}$ まで進み、そこから原点までまっすぐに戻る経路を C と書くと、 $\int_C dz/(1+z^{1/s})$ は $dz/(1+z^{1/s})$ の $z=e^{\pi is}$ における留数 $-se^{\pi is}$ の $2\pi i$ 倍に等しく、 $R\to\infty$ の極限で $\int_C dz/(1+z^{1/s})$ は $\int_0^\infty du/(1+u^{1/s})$ からそれ自身の $e^{2\pi is}$ 倍を引いたものに等しい²⁸. ゆえに

$$\int_0^\infty \frac{du}{1 + u^{1/s}} = \frac{-2\pi i s e^{\pi i s}}{1 - e^{2\pi i s}} = \frac{2\pi i s}{e^{\pi i s} - e^{-\pi i s}} = \frac{\pi s}{\sin(\pi s)}.$$

定積分を計算した結果に円周率倍がよく現われるのは極の周囲を1周する積分が留数の $2\pi i$ 倍になるからである.

複素解析と初等函数とガンマ函数の解説については, 高木貞治『解析概論』(岩波書店)の第5章(201-267頁)をおすすめする. 複素函数論の一般論だけではなく, 具体的な函数の性質の詳しい解説も含めて67頁におさまっているのは驚異的だと思う.

 $²⁷z^s$ の値は原点の周囲を反時計回りに 1 周すると $e^{2\pi is}$ 倍になる.

 $^{^{28}}z^{1/s}$ は z を $e^{2\pi is}$ 倍しても不変だが, dz は $e^{2\pi is}$ 倍になる.

8.2 ガンマ函数の無限乗積展開

函数 f(s) (s>0) は以下の3つの条件を満たしていると仮定する:

- 正値性: $f(s) > 0 \ (s > 0)$,
- 函数等式: f(s+1) = sf(s) (s>0),
- 対数凸性: $\log f(s)$ は s > 0 の下に凸な函数である.

この3つの条件を満たす函数は次の表示を持つ:

$$f(s) = f(1) \lim_{n \to \infty} \frac{n! n^s}{s(s+1)\cdots(s+n)} \qquad (s > 0).$$
 (*)

特に $\Gamma(s)$ が上の 3 つの条件と $\Gamma(1) = 1$ を満たしていることから, Gauss の公式

$$\Gamma(s) = \lim_{n \to \infty} \frac{n! n^s}{s(s+1)\cdots(s+n)}$$

が成立しており、上の3つの条件を満たしている函数は $\Gamma(s)$ の定数倍になることもわかる. 以上で述べたことを証明しよう.

まず、(*)の極限の分子分母をひっくり返して得られる極限

$$\lim_{n \to \infty} \frac{s(s+1)\cdots(s+n)}{n!n^s}$$

が常に収束することを示そう.

$$\frac{s(s+1)\cdots(s+n)}{n!n^s}$$

$$= s\left(1+\frac{s}{1}\right)\left(1+\frac{s}{2}\right)\cdots\left(1+\frac{s}{n}\right)e^{-s\log n}$$

$$= s\left(1+\frac{s}{1}\right)e^{-s}\left(1+\frac{s}{2}\right)e^{-\frac{s}{2}}\cdots\left(1+\frac{s}{n}\right)e^{-\frac{s}{n}}e^{s\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right)}$$

 $1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n$ は $n\to\infty$ で Euler 定数 γ に収束する $\frac{29}{2}$. ゆえに $\prod_{k=1}^n(1+s/k)e^{-s/k}$ が $n\to\infty$ で収束することを示せばよい. z の複素正則函数 $(1+z)e^{-z}-1$ は原点 z=0 で 2位の零点を持つので, $(1+z)e^{-z}=1+O(z^2)$ $(z\to0)$ となる. ゆえに $(1+s/k)e^{-s/k}=1+O(s^2/k^2)$ $(k\to\infty)$. これより無限積 $\prod_{k=1}^\infty(1+s/k)e^{-s/k}$ が収束することがわかる. まとめ:

$$\lim_{n \to \infty} \frac{s(s+1)\cdots(s+n)}{n!n^s} = e^{\gamma s} s \prod_{n=1}^{\infty} \left[\left(1 + \frac{s}{n} \right) e^{-s/n} \right]$$

は常に収束する 30 . 右辺の無限積が $1/\Gamma(s)$ に等しいという公式を Weierstrass の公式と呼ぶことがある.

^{291/}x は単調減少函数なので、 $1+1/2+\cdots+1/n-\log n \geq \int_1^{n+1} dx/x-\log n = \log(n+1)-\log n \geq 0$ でかつ $1/(n+1) \leq \int_n^{n+1} dx/x = \log(n+1)-\log n$ なので、 $1+1/2+\cdots+1/n-\log n$ は有界かつ単調減 かする ゆきに収束する

 $^{^{30}}$ この極限を $1/\Gamma(s)$ の定義とすることもできる. この方法であれば最初から $1/\Gamma(s)$ が複素平面全体で定義されており, $\Gamma(s)$ の極が $s=0,-1,-2,\ldots$ のみにあることも自明になる.

この極限の逆数を F(s) と書くと、

$$F(s+1) = \lim_{n \to \infty} \frac{ns}{s+1+n} \frac{n!n^s}{s(s+1)\cdots(s+n)} = sF(s), \quad F(1) = \frac{n!n}{(n+1)!} = 1.$$

ゆえに目標である (*) の公式 f(s) = f(1)F(s) (s > 0) を示すためには, 0 < s < 1 のとき f(s) = f(1)F(s) となることを示せば十分である.

次に, f(s) の正値性と対数凸性を用いて, 2以上の整数 n と 0 < s < 1 について, f(n+s) の大きさを f(n-1), f(n), f(n+1) を用いて上下から評価する不等式

$$\left(\frac{f(n)}{f(n-1)}\right)^s f(n) \le f(n+s) \le \left(\frac{f(n+1)}{f(n)}\right)^s f(n) \qquad (0 < s < 1) \tag{\#}$$

を示そう. 一般に下に凸な函数 g(s) は a < b < c に対して

$$\frac{g(b) - g(a)}{b - a} \le \frac{g(c) - g(a)}{c - a} \le \frac{g(c) - g(b)}{c - b}$$

を満たしている³¹. これの左半分を $g(s) = \log f(s), (a,b,c) = (n,n+s,n+1)$ に適用すると、

$$\frac{\log f(n+s) - \log f(n)}{s} \le \log f(n) - \log f(n+1).$$

右半分を (a,b,c) = (n-1,n,n+s) に適用すると,

$$\log f(n) - \log f(n-1) \le \frac{\log f(n+s) - \log f(n)}{s}.$$

以上の2つの不等式を整理し直すと f(n+s) の評価 (#) が得られる.

f(n+s) の評価 (#) に f の函数等式を適用しよう. f の函数等式より

$$\frac{f(n+1)}{f(n)} = n, \quad f(s+n) = (s+n-1)\cdots(s+1)sf(s), \quad f(n) = (n-1)!f(1)$$

などが成立している. (#) の左半分で n を n+1 に置き換えると,

$$n^s n! f(1) \le (n+s)(n-1+s) \cdots s f(s),$$

$$\therefore \frac{f(0)n! n^s}{s(s+1) \cdots (s+n)} \le f(s).$$

(#)の右半分より,

$$f(s) \le \frac{f(1)(n-1)!n^s}{s(s+1)\cdots(s+n-1)} = \frac{n+s}{n} \frac{f(1)n!n^s}{s(s+1)\cdots(s+n)}.$$

以上をまとめると

$$\frac{f(1)n!n^s}{s(s+1)\cdots(s+n)} \le f(s) \le \frac{n+s}{n} \frac{f(1)n!n^s}{s(s+1)\cdots(s+n)}.$$

これより、示したかった(*)が得られる.

ガンマ函数が 3 つの条件 (正値性, 函数等式, 対数凸性) を満たしていることを証明しよう. 正値性は定義 $\Gamma(s)=\int_0^\infty e^{-x}x^{s-1}\,dx$ より明らかであり, 函数等式は部分積分によって

³¹図を描けば直観的に明らかだろう.

容易に証明される. 対数凸性を示すためには $g(s)=\log\Gamma(s)$ とおくとき, $g''(s)\geq 0$ を示せば十分である. より一般に次のように定義される函数 f(s) に対して $g(s)=\log f(s)$ とおくと $g''(s)\geq 0$ となることを示そう:

$$f(s) = \int_a^b e^{s\phi(x) + \psi(x)} dx.$$

ここで $\phi(x)$, $\psi(x)$ は実数値函数であり, s に関する積分記号化の微分が可能だと仮定しておく. $(a,b)=(0,\infty)$, $\phi(x)=\log x$, $\psi(x)=-x-\log x$ のとき $f(s)=\Gamma(s)$ となる³². このとき, $g(s)=\log f(s)$ とおくと

$$g'' = \frac{d}{ds} \frac{f'}{f} = \frac{ff'' - f'^2}{f^2}.$$

ゆえに $f'^2 - ff'' \le 0$ を示せばよい. f(s) の定義より,

$$f(s)\lambda^{2} + 2f'(s)\lambda + f''(s) = \int_{a}^{b} e^{s\phi(x) + \psi(x)} (\lambda^{2} + 2\phi(x)\lambda + \phi(x)^{2}) dx$$
$$= \int_{a}^{b} e^{s\phi(x) + \psi(x)} (\lambda + \phi(x))^{2} dx \ge 0.$$

ゆえに $f'^2 - ff'' \le 0$ となる. 特に $\Gamma(s)$ も対数凸である.

これでガンマ函数の Gauss の公式と無限乗積展開も証明されたことになる.

補足. 以上で説明したガンマ函数に関する Gauss の公式の証明はガンマ函数そのものではなく、正値対数凸でガンマ函数と同じ函数等式を満たす函数に対して証明されたのであった. 積分で定義されたガンマ函数に関する Gauss の公式を以下のようにして直接的に証明することもできる. 函数 $n^sB(s,n+1)$ について、

$$n^{s}B(s, n+1) = \frac{n^{s}\Gamma(s)\Gamma(n+1)}{\Gamma(s+n+1)} = \frac{n^{s}n!}{s(s+1)\cdots(s+n)}$$

でかつ

$$n^{s}B(s, n+1) = n^{s} \int_{0}^{1} x^{s-1} (1-x)^{n} dx = \int_{0}^{n} t^{s-1} \left(1 - \frac{t}{n}\right)^{n} dt$$

2つ目の等号で x = t/n とおいた. ゆえに, $n \to \infty$ のとき,

$$\frac{n^{s} n!}{s(s+1)\cdots(s+n)} = \int_{0}^{n} t^{s-1} \left(1 - \frac{t}{n}\right)^{n} dt \longrightarrow \int_{0}^{\infty} t^{s-1} e^{-t} dt = \Gamma(s).$$

最後のステップを別の方法で証明することもできる. 評価 (#) を $f(s) = \Gamma(s)$ の場合に適用すると, 0 < s < 1 のとき

$$\Gamma(s+n+1) \sim n^s \Gamma(n+1) \qquad (n \to \infty).$$

ガンマ函数の函数等式より、これは任意の s>0 で成立している. ゆえに

$$\frac{n^s n!}{s(s+1)\cdots(s+n)} = \frac{n^s \Gamma(s)\Gamma(n+1)}{\Gamma(s+n+1)} \longrightarrow \Gamma(s) \qquad (n \to \infty).$$

 $^{^{32}(}a,b)=(0,1),\ \psi(x)=\log x\ \phi(x)=t\log(1-x)$ のとき f(s)=B(s,t) となる. B(s,t) も s の函数 として対数凸になる. ゆえに $F(s)=\Gamma(s+t)B(s,t)$ も s の函数として対数凸になる. $F(s+1)=sF(s),\ F(1)=\Gamma(t)$ なので $F(s)=\Gamma(s)\Gamma(t)$ であることがわかる. このようにガンマ函数の特徴付けによってガンマ函数とベータ函数の関係式を証明することもできる.

このように, ガンマ函数の正値性, 対数凸性, 函数等式による特徴付けを経由せずに, 直接的にガンマ函数に関する Gauss の公式を (したがって無限乗積展開も) 得ることは易しい. 以上によって次の公式も証明されたことになる:

$$\lim_{n \to \infty} n^s B(s, n+1) = \Gamma(s).$$

まとめ:

$$\Gamma(s) = \lim_{n \to \infty} n^s B(s, n+1) = \lim_{n \to \infty} \frac{n^s n!}{s(s+1) \cdots (s+n)} = \frac{1}{e^{\gamma s} s} \prod_{n=1}^{\infty} \left[\left(1 + \frac{s}{n} \right) e^{-s/n} \right]^{-1}.$$

ここで γ は Euler 定数である.

8.3 正弦函数の無限乗積展開

ガンマ函数の無限乗積展開の応用として $\sin z$ の無限乗積展開を証明しよう. 積分の順序交換を用いて証明されるガンマ函数とベータ函数の関係と複素解析を用いて証明されるベータ函数と正弦函数の関係より

$$\Gamma(s)\Gamma(1-s) = B(s, 1-s) = \frac{\pi}{\sin(\pi s)}.$$

一方, ガンマ函数の無限乗積展開より,

$$\frac{1}{\Gamma(s)\Gamma(1-s)} = \frac{1}{\Gamma(s)(-s)\Gamma(-s)} = s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right).$$

以上を比較すると.

$$\sin(\pi s) = \pi s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right), \qquad \therefore \quad \sin z = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{\pi^2 n^2} \right).$$

このように, $\sin(\pi s) = \pi/(\Gamma(s)(-s)\Gamma(-s))$ なのでガンマ函数の無限乗積展開³³から正弦函数の無限乗積展開が得られるのである.

正弦函数の無限乗積展開を直接示すためには、sin z の対数微分 cot z の部分分数展開

$$\cot z = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z - n\pi} + \frac{1}{z + n\pi} \right)$$

を複素解析を用いて証明し、項別に積分すればよい. 詳しくは高木貞治『解析概論』の 235 頁を見よ.

以下では、複素解析ではなく、Fourier解析を使って正弦函数の無限乗積展開を得る方法を紹介しておこう³⁴.

まず x の函数 $\cos(tx)$ の $-\pi < x < \pi$ での値の Fourier 級数展開を求め、そこから $\cot(\pi t)$ の部分分数展開が得られることを示そう. e^{itx} の Fourier 係数は

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} e^{itx} dx = \frac{1}{2\pi} \left[\frac{e^{-inx} e^{itx}}{i(t-n)} \right]_{x=-\pi}^{x=\pi}$$

³³直接証明すれば易しい.

³⁴以下では厳密な議論はしない.

$$= \frac{(-1)^n (e^{i\pi t} - e^{-i\pi t})}{2\pi i (t-n)} = (-1)^n \frac{\sin(\pi t)}{\pi} \frac{1}{t-n}$$

なので, e^{itx} の Fourier 級数展開は

$$e^{itx} = \lim_{N \to \infty} \sum_{n=-N}^{N} a_n e^{inx} = \frac{\sin(\pi t)}{\pi} \lim_{N \to \infty} \sum_{n=-N}^{N} \frac{(-1)^n e^{inx}}{t - n}$$

$$= \frac{\sin(\pi t)}{\pi} \left[\frac{1}{t} + \sum_{n=1}^{\infty} (-1)^n \left(\frac{e^{inx}}{t - n} + \frac{e^{-inx}}{t + n} \right) \right]$$

$$= \frac{\sin(\pi t)}{\pi} \left[\frac{1}{t} + \sum_{n=1}^{\infty} (-1)^n \left(\frac{2t \cos(nx)}{t^2 - n^2} + i \frac{2n \sin(nx)}{t^2 - n^2} \right) \right]$$

になる. ゆえに $\cos(tx)$ の Fourier 級数展開は

$$\cos(tx) = \frac{\sin(\pi t)}{\pi} \left[\frac{1}{t} + \sum_{n=1}^{\infty} (-1)^n \frac{2t \cos(nx)}{t^2 - n^2} \right]$$

になる. したがって.

$$\pi \cot(tx) = \frac{\pi \cos(\pi t)}{\sin(\pi t)} = \frac{1}{t} + \sum_{n=1}^{\infty} (-1)^n \frac{2t \cos(nx)}{t^2 - n^2}$$

両辺の $x \to \pi$ での極限を取ることによって,

$$\pi \cot(\pi t) = \frac{1}{t} + \sum_{n=1}^{\infty} \frac{2t}{t^2 - n^2} = \frac{1}{t} + \sum_{n=1}^{\infty} \left(\frac{1}{t - n} + \frac{1}{t + n} \right).$$

 $\sin(\pi t)$ の対数微分は $\pi \cot(\pi t)$ に等しいので,

$$\frac{d}{dt}\log\frac{\sin(\pi t)}{\pi t} = \sum_{n=1}^{\infty} \left(\frac{1}{t-n} + \frac{1}{t+n}\right) = \sum_{n=1}^{\infty} \left(\frac{-1/n}{1-t/n} + \frac{1/n}{1+t/n}\right).$$

両辺を t=0 から t=s まで積分すると,

$$\log \frac{\sin(\pi s)}{\pi s} = \sum_{n=1}^{\infty} \left(\log \left(1 - \frac{s}{n} \right) + \log \left(1 + \frac{s}{n} \right) \right) = \log \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right)$$

したがって

$$\sin(\pi s) = \pi s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right).$$

8.4 Wallis の公式

次の公式は Wallis の公式と呼ばれている:

$$\lim_{n \to \infty} \frac{2^{2n} (n!)^2}{(2n)! \sqrt{n}} = \sqrt{\pi}, \quad i.e. \quad \binom{2n}{n} \sim \frac{2^{2n}}{\sqrt{\pi n}}.$$

8.4. Wallis の公式 25

Wallis の公式の面白いところは円周率の平方根が整数の比の極限で表わされているところである. Wallis の公式はガンマ函数に関する Gauss の公式に s=1/2 を代入すれば得られる:

$$\sqrt{\pi} = \Gamma(1/2) = \lim_{n \to \infty} \frac{n^{1/2} n!}{(1/2)(1/2+1)\cdots(1/2+n)}$$

$$= \lim_{n \to \infty} \frac{2^{n+1} n^{1/2} n!}{1 \cdot 3 \cdots (2n+1)} = \lim_{n \to \infty} \frac{2^{n+1} n^{1/2} n!}{1 \cdot 3 \cdots (2n+1)} \frac{2^n n!}{2 \cdot 4 \cdots (2n)}$$

$$= \lim_{n \to \infty} \frac{2^{2n+1} n^{1/2} (n!)^2}{(2n+1)!} = \lim_{n \to \infty} \frac{2^{2n} (n!)^2}{(2n)!} \frac{2n^{1/2}}{2n+1} = \lim_{n \to \infty} \frac{2^{2n} (n!)^2}{(2n)! \sqrt{n}}.$$

次の公式も Wallis の公式と呼ばれている:

$$\prod_{n=1}^{\infty} \frac{2n \cdot 2n}{(2n-1)(2n+1)} = \frac{\pi}{2}.$$

この公式は次の公式で s=1/2 とおけば得られる:

$$\sin(\pi s) = \frac{\pi}{\Gamma(s)\Gamma(1-s)} = \pi s \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2}\right).$$

実際,

$$1 = \sin(\pi/2) = \frac{\pi}{2} \prod_{n=1}^{\infty} \left(1 - \frac{1}{(2n)^2} \right) = \frac{\pi}{2} \prod_{n=1}^{\infty} \frac{(2n-1)(2n+1)}{2n \cdot 2n}.$$