	Section 11.4 Comparison tests
Ex.	$\sum_{k=1}^{\infty} \frac{\ln k}{k}$
	For $k \ge 3 > e$: luk > 1, and
	$\frac{\ln k}{k} > \frac{1}{k}$ $k > 3$
	Sum both sides for k=3:
	$\sum_{K=3}^{\infty} \frac{\ln K}{K} \geq \sum_{K=3}^{\infty} \frac{1}{K} = +\infty$
	divergen t
	The discussion tast
	The comparison test: Suppose Iax and Ibx are such that
	$0 \le 0 \le 0 \times$
	Then:
	a). If $\sum_{K=1}^{\infty} b_K$ converges, so does $\sum_{K=1}^{\infty} a_K$.
	b). If $\sum a_{\kappa}$ diverges, so does $\sum b_{\kappa}$.
	K=1
	Comperison can be to the known series:
	K=1 K' ∞
	- geometric series ∑ « v k -1 k=1

Ex. Test for convergence:
$$\sum_{k=1}^{\infty} \frac{1}{2^{k}+1}$$
There holds: $a_{k} = \frac{1}{2^{k}+1} < \frac{1}{2^{k}} = b_{k}$,
and
$$\sum_{k=1}^{\infty} b_{k} = \sum_{k=1}^{\infty} \frac{1}{2^{k}} 3 \text{ convergent.}$$

$$\Rightarrow by \text{ the comparison test, } \sum_{k=1}^{\infty} \frac{1}{2^{k}+1} 3 \text{ convergent.}$$

$$Ex. 2 \text{ Test for convergence: } \sum_{k=1}^{\infty} \frac{5}{2k^{2}+1} k+3$$

$$a_{k} = \frac{5}{2k^{2}+14k+3} < \frac{5}{2k^{2}} = b_{k}$$

$$\sum_{k=1}^{\infty} \frac{5}{2k^{2}} = \frac{5}{2} \sum_{k=1}^{\infty} \frac{1}{k^{2}} 3 \text{ convergent.}$$

$$\Rightarrow \sum_{k=1}^{\infty} a_{k} = \sum_{k=1}^{\infty} \frac{5}{2k^{2}+14k+3} \text{ is convergent.}$$

$$Ex. 3 \text{ Test for convergence:}$$

$$\sum_{k=1}^{\infty} \frac{1}{2k} \sum_{k=1}^{\infty} \frac{1}{2k^{2}+14k+3} \text{ is convergent.}$$

$$Ex. 3 \text{ Test for convergence:}$$

$$\sum_{k=1}^{\infty} \frac{1}{2k} \sum_{k=1}^{\infty} \frac{1}{2k^{2}+14k+3} \text{ is convergent.}$$

$$Ex. 3 \text{ Test for convergence:}$$

$$\sum_{k=1}^{\infty} \frac{1}{2k} \sum_{k=1}^{\infty} \frac{1}{2k^{2}+14k+3} \text{ is convergent.}$$

$$Ex. 3 \text{ Test for convergence:}$$

$$\sum_{k=1}^{\infty} \frac{1}{2k} \sum_{k=1}^{\infty} \frac{1}{2k} \sum_{k$$

For $k \ge 3$, $dk = \frac{\ln k}{(k-1)^{1/2}} \ge \frac{1}{(k-1)^{1/2}} \ge \frac{1}{k^{1/2}} = b_k$

Ž	1	4	divergent, p-series p=112		
K=3	K1/2	J	p-series		
			p = 1/2		