מינימום ומקסימום 4.5.1

5202 בפברואר 82

 $A \subseteq D, f: D \to \mathbb{R}$ יהיו

הגדרות

מינימום ומקסימום גלובלי

A-ב f נקרא הערך המקסימום (מינימום) גלובלי בקבוצה A אם מתקיים ($f(x_0) \leq f(x_0) \leq f(x_0)$ נקרא הערך המקסימלי של ב- $x_0 \leq f(x_0)$

הערה 1

לא בהכרח קיים ערך מקסימלי\מינימלי בקבוצה

2 הערה

 $\exists x_0
eq x_1 \in A \, s.t. \, f \, (x_0) = f \, (x_1) :$ אם קיים ערך מקסימלי ל-A, הוא יחיד מעקרון הסדר ב-

נקודת קיצון מקומי

 $orall x \in U$ $f\left(x
ight) \leq f\left(x_{0}
ight)$ יקרא נקודת **מקסימום\מינימום מקומי** של f אם קיימת U סביבה מלאה של $x_{0} \in D$

משפטים

משפט פרמה

 $.f'\left(x_{0}
ight)=0$, x_{0} ב גזירה בf אם f אם מקודת קיצון מקודת $x_{0}\in D\subseteq\mathbb{R}$, $f:D o\mathbb{R}$ יהיו

תקציר הוכחה f גזירה $f \Leftrightarrow f$ רציפה ביפה $f(x) \approx f(x) \circ \frac{1}{x} \Leftrightarrow f(x) \circ \frac{1}{x}$ רציפה אזירה ביפה $f'(x_0) = 0 \Leftrightarrow 0 \leq f'(x_0) \leq 0$ נראה שהיא מונוטונית חלשה משני צדדיה ולכן מטריכוטומיה מקיימת

:הערות

- $(f(x) = |x|, x_0 = 0$ נק' קיצון של f, לא תמיד f תהיה גזירה בf דוגמה f לא תמיד f.
- $(f(x)=x^3,x_0=0$ אבל x_0 אינה נקודות קיצון (דוגמה $x_0=0$ שעבורו $x_0=0$ שעבורו $x_0\in D$ שעבורו פונקציות בהן קיימים

מסקנה:

 $(f'(x_0) \leq 0) \; f'(x_0) \geq 0$ גזירה ב x_0 . אם קיימת $\delta > 0$ כך שf מונוטונית עולה (יורדת) בסביבת δ חד צדדית מלאה, אזי $\delta > 0$ כך ש