

PROJEK 111

OVERVIEW

LATAR BELAKANG

TUJUAN

PERALATAN STATISTIKA

LANGKAH PEMROGRAMAN

KONTEN LAPORAN

KENDALA

KESIMPULAN DAN SARAN

LATAR BELAKANG

Latar belakang dari permasalahan ini adalah sulitnya penampilan dan penafsiran data data penting yang diperlukan dalam penampilan data views, likes, dan dislikes dalam video-video youtube.

TUJUAN

Tujuan pengerjaan proyek ini adalah penyajian data yang deskriptif melalui diagram/ grafik

PERALATAN STATISTIKA

LIBRARY NUMPY

LIBRARY MATH

LIBRARY PANDAS

LIBRARY SEABORN

LIBRARY MATPLOTLIB

LIBRARY SCIPY

MEAN

```
# Menghitung rata-rata
df_num_parameter = df[["views", "likes", "dislikes"]]
rata_rata = df_num_parameter.mean()
print(f"Rata-rata views = {rata_rata[0]}\nRata-rata likes = {rata_rata[1]}\nRata-rata dislikes = {rata_rata[2]}")
```


MEDIAN

```
# Mencari median
median = df_num_parameter.median()
print(f"Median views = {median[0]}\nMedian likes = {median[1]}\nMedian dislikes = {median[2]}")
```


MODUS

```
# Menghitung modus
modus_views = df_num_parameter["views"].mode()
modus_likes = df_num_parameter["likes"].mode()
modus_dislikes = df_num_parameter["dislikes"].mode()
print(f"Modus views = {modus_views[0]}\nModus likes = {modus_likes[0]}\nModus dislikes = {modus_dislikes[0]}")
```


STANDAR DEVIASI

```
# Menghitung standar deviasi
std_deviasi = df_num_parameter.std()
print(f"Standar deviasi views = {std_deviasi[0]}\nStandar deviasi likes = {std_deviasi[1]}\n
Standar deviasi dislikes = {std_deviasi[2]}")
```


MODUS

```
# Menghitung kuartil ke-1 dari setiap kolom
q1 = df_num_parameter.quantile(q=0.25)|

# Menghitung kuartil ke-2 (median) dari setiap kolom
q2 = df_num_parameter.quantile(q=0.5)

# Menghitung kuartil ke-3 dari setiap kolom
q3 = df_num_parameter.quantile(q=0.75)

print(f"Kuartil ke-1 dari views = {q1[0]}\nKuartil ke-2 dari views = {q2[0]}\nKuartil ke-3 dari views = {q3[0]}\n")
print(f"Kuartil ke-1 dari likes = {q1[1]}\nKuartil ke-2 dari likes = {q2[1]}\nKuartil ke-3 dari dislikes = {q3[1]}\n")
print(f"Kuartil ke-1 dari dislikes = {q1[2]}\nKuartil ke-2 dari dislikes = {q2[2]}\nKuartil ke-3 dari dislikes = {q3[2]}")
```


INTERKUARTIL

```
# Menghitung jangkauan inter kuartil
iqr = q3 - q1
print(f"Jangkauan inter kuartil dari views = {iqr[0]}\nJangkauan inter kuartil dari likes = {iqr[1]}\n
Jangkauan inter kuartil dari dislikes = {iqr[2]}")
```


PELUANG DAN STATISTIKA

LANGKAH PEMROGRAMAN

MODUS

```
1 # Mencari pencilan
2 batas bawah = q1 - 1.5*iqr
   batas atas = q3 + 1.5*iqr
   pencilan bawah = df num parameter[(df num parameter < batas bawah)]</pre>
 6 pencilan atas = df num parameter[(df num parameter > batas atas)]
 8 # List yang berisi data pencilan dari views
   pencilan bawah views = pencilan bawah["views"].dropna().to list()
   pencilan atas views = pencilan atas["views"].dropna().to list()
11
12 # List yang berisi data pencilan dari likes
pencilan_bawah_likes = pencilan_bawah["likes"].dropna().to_list()
pencilan atas likes = pencilan atas["likes"].dropna().to list()
15
16 # List yang berisi data pencilan dari dislikes
pencilan bawah dislikes = pencilan bawah["dislikes"].dropna().to list()
pencilan atas dislikes = pencilan atas["dislikes"].dropna().to list()
19
print(f"Jumlah data pencilan dari views adalah {len(pencilan bawah views)+len(pencilan atas views)} data.")
21 print(f"Jumlah data pencilan dari likes adalah {len(pencilan bawah likes)+len(pencilan atas likes)} data.")
print(f"Jumlah data pencilan dari dislikes adalah {len(pencilan bawah dislikes)+len(pencilan atas dislikes)} data.")
```


PELUANG DAN STATISTIKA

LANGKAH PENROGRAMAN

HISTOGRAM

BOXPLOT #VIEWS

BOXPLOT#LIKES

BOXPLOT #DISLIKE

MEAN VIEWS PERCATEGORY ID

```
df_category_id = df[['category_id','views']]
category_id = df_category_id.groupby('category_id')
category_id_mean = category_id.mean()
category_id_mean
```


PELUANG DAN STATISTIKA

LANGKAH PEMROGRAMAN

PLOTTING PERSEBARAN DATA

```
1 from matplotlib import pyplot as plt
2 import seaborn as sns
4 | category_id_list = df['category_id'].to_list()
5 id list = list(set(category id list))
7 fig, axs = plt.subplots(len(id_list), 2, figsize=(12, 5*len(id_list)), constrained_layout=True)
8 axs = axs.flatten()
10 for i in range(len(id list)):
       data = category_id.get_group(id_list[i])
11
12
       sns.set theme()
13
       sns.set style("white")
14
15
       sns.histplot(data=data, x=np.log10(data['views']), color='pink', ax=axs[2*i])
16
       axs[2*i].set_title(f"Histogram untuk Category id = {id_list[i]}")
17
18
       sns.boxplot(data=data, x=np.log10(data['views']), color='pink', ax=axs[2*i+1])
19
       axs[2*i+1].set_title(f"Box plot untuk Category id = {id_list[i]}")
20
21
22 plt.show()
23
```


HIGHLIGHT

- Lebih banyak orang yang menonton tanpa berinteraksi dengan videonya
- Orang-orang lebih cenderung berinteraksi saat dia menyukai video tersebut dibanding ketika tidak menyukai
- Data paling tersebar secara berurut adalah: views, likes, dislikes
- Pada kategori 10, 29, 1 terlihat memiliki rata-rata penonton yang lebih banyak sehingga membuat video kategori ini lebih mungkin ditonton

 MATH1042

2A. SEBERAPA TERPENCIL?

sangat terpencil dengan peluang sebesar 0.0009906139329849675

2B. BATAS LIKE

memiliki jumlah like sebesar 781575.5689778763

2C. IDENTIFIKASI VIDEO BAIK

Video yang memiliki like lebih dari 2B, dan memiliki rasio like dislike sebesar 75:1

		views
category_id		
	10	6.210307e+06
	29	3.167400e+06
	1	3.112240e+06
	20	2.647433e+06
	24	2.073128e+06
	17	2.069401e+06
	22	1.529018e+06
	23	1.483936e+06

28	1.382127e+06
2	1.373286e+06
26	9.849565e+05
43	9.035273e+05
19	8.546196e+05
15	8.347004e+05
27	7.187950e+05
25	6.008645e+05

2A. SEBERAPA TERPENCIL

```
from scipy.stats import norm
import math
mu, sigma = -10.06, 4.02

v = (10**8 - rata_rata[0])/std_deviasi[0]
print(rata_rata[0], std_deviasi[0], v)
print((1-norm.cdf(v, 0, 1))*100,)
count = (df['views'] > 10**8).sum()
c2 = ( df['views'] >= 0 ).sum()
# Print the result
print(f'Number of videos with views above 100 million: {count} dan total videos {c2} probability {count/c2}')#0.000006 = 0
```


PELUANG DAN STATISTIKA

KONTEN LAPORAN

2B. BATAS LIKE

```
print(f'Untuk bisa video like top 0.1% dibutuhkan like sebanyak {norm.ppf(0.999,0,1)*std_deviasi[1]+rata_rata[1]}')

'''tes = (781575.5689778763-rata_rata[1])/std_deviasi[1]
print(norm.cdf(tes,0,1))'''
```

MATH1042

2C. IDENTIFIKASI VIDEO BAIK

KENDALA

- Mengatur jadwal untuk memiliki waktu berkumpul dan berdiskusi bersama.
- Data yang terlalu besar, sehingga histogram tidak dapat menampilkan data dengan baik

KESIMPULAN DAN SARAN

• KESIMPULAN

saat kita membuat video berada dalam kategori 10, 29, dan 1 video kita menjadi lebih mungkin ditonton

• SARAN

Buatlah video dengan kategori 10, 29, dan 1

+ % × =

THANK 400

CHRISTOPER JONATHAN, DILIVIO C. L. TILAAR, JUAN C. CHANDRA, PETRA W. LEKA, WESLEY HAKIM