1

Утверждение 1.1. В циклической группе конечного порядка всякая подгруппа является циклической.

Доказательство. Рассмотрим группу G: a — порождающий элемент, и подгруппу $H < G: \exists k ($ минимальное $): a^k \in H.$

Предположим, что в H найдется также элемент a^l , где l>k и l не делится нацело на k.

По аксиоме 3 группы $\exists a^{-k}$ и из замкнутости $a^{-k} \cdot a^l \in H$. В таком случае $a^{l(modk)} \in H$, но l(modk) < k, то есть мы пришли к противоречию, откуда следует, что a^l не лежит в H.

Таким образом, a^k – порождающий элемент циклической подгруппы H.

2

Пусть a_0 – порождающий элемент. Тогда $a=a_0^d$.

В таком случае $a^k = (a_0^d)^k = a_0^{d \cdot k}$.

Значит, порядок рассматриваемого нами элемента равен $d \cdot k$.

3

Из теоремы Лагранжа следует, что подгруппами циклической группы G порядка n будут такие группы $H_1, ..., H_i, ...,$ что i|n, т.е. все группы с порождающими элементами, равными целочисленным делителям числа n.

4

4.1

Пусть a – порождающий элемент нашей группы C_m , а a^q – решение уравнения $x^k = e$ в данной группе.

Обозначим d = HOД(m, k).

Тогда $(a^q)^k = e \Rightarrow m|kq \Rightarrow n|qd$.

В итоге мы получаем $q = \frac{m}{d} \cdot l$, где $l \in \{0, 1, ..., d-1\}$.

То есть количество решений равно $|\{0,1,...,d-1\}|=d$.

4.2

Мы имеем $(a^t)^10=e$, где a – порождающий элемент группы C_{100} . $t=\frac{100}{10}\cdot i=10\cdot i$, где $i=\{0,1,...,9\}$.

5

Какое бы число k мы ни взяли, $HOД(12,k) \le 12 < 14$, значит, группа G не является циклической.

6

6.1

Проверим свойства подгруппы для C(G):

- 1) Верно, т.к. из аксиомы группы $\forall g \in Gge = eg$.
- 2) Если $a,b \in C(G)$, то $\forall gg(ab) = gab = agb = (ab)g \Rightarrow ab \in C(G)$.
- 3) $gx = xg \Rightarrow x^{-1}gx = x^{-1}xg = g \Rightarrow x^{-1}gxx^{-1} = gx^{-1} \Rightarrow x^{-1}g = gx^{-1} \Rightarrow x^{-1} \in C(G)$. Все свойства выполнены, значит, C(G) подгруппа G.

6.2

Аналогично проверяем свойства:

- 1) Верно (аналогично док-ву в пред. половине задания)
- 2) Если $g_1, g_2 \in N(S)$, то $S(g_1g_2) = g_1Sg_2 = (g_1g_2)S$.
- 3) $Sg = gS \Rightarrow S = Sgg^{-1} = gSg^{-1} \Rightarrow g^{-1}S = g^{-1}gSg^{-1} = Sg^{-1}$.

Все свойства выполнены, значит, N(S) – подгруппа G.