MATH2033 Mathematical Analysis (2021 Spring) **Suggested Solution of Assignment 3**

Problem 1

Prove the following statement using the definition of limits:

- (a) $\lim_{x \to c} \frac{1}{x} = \frac{1}{c}$ for $c \neq 0$.
- **(b)** We let $f:(c,\infty)\to\mathbb{R}$ be a function with f(x)>0 for all $x\in(c,\infty)$. Show that $\lim_{x\to c} f(x) = \infty \text{ if and only if } \lim_{x\to c} \frac{1}{f(x)} = 0.$ **(c)** We let $f:(0,\infty)\to\mathbb{R}$ be a function. Show that $\lim_{x\to\infty} f(x) = L$ if and only if

(a) For any $\varepsilon > 0$, we take $\delta = \min\left(\frac{|c|}{2}, \frac{|c|^2}{2}\varepsilon\right)$. Then for any x satisfying $0 < \infty$ $|x-c|<\delta$, we have

$$\left|\frac{1}{x} - \frac{1}{c}\right| = \frac{|x - c|}{|c||x|} < \frac{|x - c|}{|c|\left(\frac{|c|}{2}\right)} < \left(\frac{1}{\frac{|c|^2}{2}}\right) \frac{|c|^2}{2} \varepsilon = \varepsilon.$$

So $\lim_{x\to c}\frac{1}{x}=\frac{1}{c}$ by definition of limits. (b) " \Rightarrow " part

For any $\varepsilon>0$, since $\lim_{x\to c}f(x)=\infty$, then there exists $\delta>0$ such that for any x satisfying $0<|x-c|<\delta$,

$$f(x) > M > \frac{1}{\varepsilon}.$$

This implies that for $|x-c| < \delta$

$$\left|\frac{1}{f(x)} - 0\right| \stackrel{f(x)>0}{=} \frac{1}{f(x)} < \varepsilon.$$

So we have $\lim_{x \to c} \frac{1}{f(x)} = 0$.

For any M>0, we note that $\lim_{x\to c}\frac{1}{f(x)}=0$. By picking $\varepsilon=\frac{1}{M}$, there exists $\delta>0$ such that when $0<|x-c|<\delta$, we have

$$\left|\frac{1}{f(x)} - 0\right| < \varepsilon = \frac{1}{M} \Rightarrow |f(x)| > M.$$

This implies that for $|x-c| < \delta$,

$$f(x) = |f(x)| > M.$$

So we have $\lim_{x\to c} f(x) = \infty$

(c) "⇒" part

For any $\varepsilon>0$, since $\lim_{x\to\infty}f(x)=L$, then there exists M>0 such that for any x satisfying x > M,

$$|f(x) - L| < \varepsilon$$
.

By taking $\delta = \frac{1}{M}$, then for any $0 < x < \delta = \frac{1}{M}$, we have $\frac{1}{x} > M$ and

$$\left| f\left(\frac{1}{x}\right) - L \right| < \varepsilon.$$

So we have $\lim_{x\to 0^+} f\left(\frac{1}{x}\right) = L$. " \Leftarrow " part

For any $\varepsilon > 0$, since $\lim_{x \to 0^+} f\left(\frac{1}{x}\right) = L$, there exists $\delta > 0$ such that when $0 < \infty$ $x < \delta$ (or $\frac{1}{x} > \frac{1}{\delta}$), we have

$$\left| f\left(\frac{1}{x}\right) - L \right| < \varepsilon.$$

By taking $M = \frac{1}{\delta}$, then for any $x > M = \frac{1}{\delta}$, we have

$$|f(x) - L| < \varepsilon$$

So we conclude that $\lim f(x) = L$.

Problem 2

We consider a function $f: \mathbb{R} \to \mathbb{R}$ defined as

$$f(x) = \begin{cases} x & if \ x \in \mathbb{Q} \\ 0 & if \ x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$$

- (a) Show that $\lim_{x\to 0} f(x) = 0$. Is f(x) continuous at x=0?
- **(b)** For any $c \neq 0$, show that $\lim_{x \to c} f(x)$ does not exist.

Solution

(a) For any $\varepsilon > 0$, we take $\delta = \varepsilon$. Then for any $0 < |x - 0| < \varepsilon$,

$$|f(x) - 0| = |f(x)| \quad \stackrel{\leq}{\leq} \quad |x| < \varepsilon.$$

 $|f(x)-0|=|f(x)|\stackrel{\cong}{\leq} |x|<\varepsilon.$ Thus $\lim_{x\to 0}f(x)=0$ by definition. Since $\lim_{x\to 0}f(x)=f(0)=0$, so f(x) is continuous at x=0

(b) For any $n \in \mathbb{N}$, we can deduce from density of rational number and density of irrational number that there exists $r_n \in \mathbb{Q}$ and $q_n \in \mathbb{R} \backslash \mathbb{Q}$ such that

$$c - \frac{1}{n} < r_n < c$$
 and $c - \frac{1}{n} < q_n < c$

Since $\lim_{n\to\infty}\left(c-\frac{1}{n}\right)=c$, then we get $\lim_{n\to\infty}r_n=c$ and $\lim_{n\to\infty}q_n=c$ by sandwich theorem.

Note that

$$\lim_{n\to\infty} f(r_n) = \lim_{n\to\infty} r_n = c \quad and \quad \lim_{n\to\infty} f(q_n) = \lim_{n\to\infty} 0 = 0 \neq c$$

 $\lim_{n\to\infty} f(r_n) = \lim_{n\to\infty} r_n = c \quad and \quad \lim_{n\to\infty} f(q_n) = \lim_{n\to\infty} 0 = 0 \neq c$ Since $\lim_{n\to\infty} f(r_n) \neq \lim_{n\to\infty} f(q_n)$, so it follows from sequential limit theorem that $\lim f(x)$ does not exist.

Problem 3

(a) We let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and define a set

$$S = \{x \in \mathbb{R} | f(x^2) \ge f(x)\}.$$

Suppose that there exists a sequence $\{y_n\}$ which $y_n \in S$ for all $n \in \mathbb{N}$ and $\lim_{n\to\infty}y_n=y, \text{ show that }y\in\mathcal{S}.$

(b) We let $f, g: \mathbb{R} \to \mathbb{R}$ be two continuous functions on \mathbb{R} such that f(r) = g(r) for all $r \in \mathbb{Q}$. Is it true that f(x) = g(x) for all $x \in \mathbb{R}$?

Solution

(a) Since x^2 is continuous n \mathbb{R} , it follows from $f(x^2)$ is also continuous. Then $g(x) = f(x^2) - f(x)$ is also continuous on \mathbb{R} .

On the other hand, since $y_n \in S$, we have

$$f(y_n^2) \ge f(y_n) \Leftrightarrow g(y_n) = f(y_n^2) - f(y_n) \ge 0.$$

Since $\lim y_n = y$ and g(x) is continuous at x = y, it follows from sequential limit theorem and limit inequality that

$$g(y_n) = \lim_{n \to \infty} g(y_n) \stackrel{g(y_n) \ge 0}{\ge} 0.$$

 $g(y)=\lim_{n\to\infty}g(y_n)\quad \stackrel{<}{\geq}\quad 0.$ This implies $f(y^2)\geq f(y)$ and $y\in S$.

(b) For any $x \in \mathbb{R}$, it follows from the result in Problem 2 that there exists a sequence of rational number $\{r_n\}$ such that $\lim r_n = x$.

Since f(x), g(x) are continuous at any $x \in \mathbb{R}$, it follows from sequential limit theorem that

$$\lim_{n\to\infty} f(r_n)=f(x)\quad and\quad \lim_{n\to\infty} g(r_n)=g(x)$$
 Since $f(r_n)=g(r_n)$, it follows that

$$f(x) = \lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} g(r_n) = g(x).$$

Problem 4

We let f be a continuous function over [0,2] (i.e. $f \in C([0,2])$) with f(0) = f(2) = 0. Show that there exists $c \in [0,1]$ such that f(c) = f(c+1).

(\odot Hint: Do the analysis by considering the *sign* of f(1)).

○ Solution

We let a function $g: [0,1] \to \mathbb{R}$ be

$$g(x) = f(x) - f(x+1).$$

Since f(x) is continuous on [0,2], then g(x) is also continuous on [0,1].

If f(1) = 0, then one can see that f(0) = f(0+1) and we are done. When $f(1) \neq 0$ 0, we consider the following two cases:

Case 1: f(1) > 0Since $g(0) = \underbrace{f(0)}_{0} - f(1) < 0$ and $g(1) = f(1) - \underbrace{f(2)}_{0} > 0$, then it follows

from intermediate value theorem that there exists $c \in (0,1)$ such that

$$g(c) = 0 \Rightarrow f(c) = f(c+1).$$

Case 2: f(1) < 0Since $g(0) = \underbrace{f(0)}_{=0} - f(1) > 0$ and $g(1) = f(1) - \underbrace{f(2)}_{=0} < 0$, then it follows

from intermediate value theorem that there exists $c \in (0,1)$ such that $a(c) = 0 \Rightarrow f(c) = f(c+1)$.

Problem 5

We let $f:[a,b]\to\mathbb{R}$ be a continuous function such that for any $x\in[a,b]$, there exists $y\in[a,b]$ such that $|f(y)|\leq\frac{1}{2}|f(x)|$. Show that there exists $c\in[a,b]$ such that f(c)=0.

♥ Solution

Since f(x) and |x| are continuous on [a, b], so |f(x)| is also continuous on [a, b]. By extreme value theorem, there exists $x_L \in [a, b]$ such that

$$|f(x_L)| = \inf\{|f(x)| : x \in [a, b]\}.$$

We shall argue that $|f(x_L)| = 0$. Suppose that $|f(x_L)| > 0$, then there exists $y \in [a, b]$ such that

$$|f(y)| \le \frac{1}{2}|f(x_L)| < |f(x_L)| = \inf\{|f(x)| : x \in [a, b]\}.$$

This leads to contradiction. Thus we must have $|f(x_L)| = 0$ and the proof is completed.

Problem 6 (Harder)

We let $f:[a,b] \to \mathbb{R}$ be a continuous function over [a,b]. We define two functions M(x) and m(x) as

$$M(x) = \sup\{f(t)|t \in [a,x]\}$$

$$m(x) = \inf\{f(t)|t \in [a,x]\}$$

Show that both M(x) and m(x) are continuous at any $x_0 \in [a, b]$.

(\odot Hint: Note that both functions M(x) and m(x) are monotone functions.)

♥Solution

Since f is continuous on [a, x] for any $x \in [a, b]$, it follows from extreme value theorem that f(x) is bounded over [a, x], so M(x) and m(x) exists.

For any $x, y \in [a, b]$ with x < y, we have $[a, x] \subseteq [a, y]$ so that

$$M(x) = \sup\{f(t)|t \in [a,x]\} \le \sup\{f(t)|t \in [a,y]\} = M(y)$$

$$m(x) = \inf\{f(t)|t \in [a,x]\} \ge \inf\{f(t)|t \in [a,y]\} = m(y)$$

So M(x) is increasing and m(x) is decreasing.

Next, we shall prove that M(x) is continuous at $x_0 \in (a,b)$.

• Since M(x) is monotone, it follows from monotone function theorem that the one-sided limit exists and

$$\lim_{x \to x_0^-} M(x) \le M(x_0) \le \lim_{x \to x_0^+} M(x)$$

• Next, we argue that $\lim_{x \to x_0^-} M(x) = M(x_0)$.

By applying extreme value theorem on $[a, x_0]$, there exists $x_U \in [a, x_0]$ such that $f(x_U) = \sup\{f(t) | t \in [a, x_0]\} = M(x_0)$.

- ✓ If $x_U < x_0$, then it follows that $M(x) = f(x_U) = M(x_0)$ for all $x \ge x_U$. So we have $\lim_{x \to x_0^-} M(x) = \lim_{x \to x_0^-} M(x_0) = M(x_0)$.
- ✓ If $x_U = x_0$, since f(x) is continuous at $x = x_0$, then for any $\varepsilon > 0$, there exists $\delta > 0$ such that for $0 < |x x_0| < \delta$, we have $|f(x) f(x_0)| < \varepsilon \Rightarrow f(x) > f(x_0) \varepsilon$.

Then for this
$$\delta$$
, we deduce that for $0 < |x - x_0| < \delta$ and $x < x_0$,
$$|M(x) - M(x_0)| = \underbrace{M(x_0)}_{C} - M(x) < f(x_0) - f(x) < \varepsilon.$$

So we also have $\lim_{x \to x_0^-} M(x) = M(x_0)$ by definition of limits.

• Finally, we argue that $\lim_{x \to x_0^+} M(x) = M(x_0)$.

Since $|f(x) - f(x_0)| < \varepsilon \Rightarrow f(x) < f(x_0) + \varepsilon$ for $0 < |x - x_0| < \delta$. It follows that for $0 < |x - x_0| < \delta$ and $x > x_0$,

$$|M(x) - M(x_0)| = M(x) - M(x_0) < \begin{cases} f(x_0) + \varepsilon - f(x_0) & \text{if } f(x_0) + \varepsilon \ge M(x_0) \\ M(x_0) - M(x_0) & \text{if } f(x_0) + \varepsilon < M(x_0) \end{cases} < \varepsilon.$$

So $\lim_{x \to x^{\pm}} M(x) = M(x_0)$ by definition of limits.

Therefore, we conclude that $\lim_{x\to x_0} M(x) = M(x_0)$. Similarly, one can show that

 $\lim_{x \to x_0} m(x) = m(x_0)$ and we omit the details here.