10/23

Saturday, October 21, 2023 12:22

Unless specified otherwise, the inner product on \mathbb{R}^n is the default dot product.

1. Let vectors
$$u=egin{pmatrix}1\\1\\1\\1\end{pmatrix},v=egin{pmatrix}1\\0\\0\\1\end{pmatrix}$$
 in \mathbb{R}^4

- a Normalize u to \widehat{u}
- b. Orthogonally decompose v to two parts, one part along the direction of \widehat{u} and the other on \widehat{u}^{\perp} .
- 2. Consider the following set of vectors in \mathbb{R}^4 . Use Gram-Schmidt process to produce an orthonormal set.

$$\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\2\\1\\-1 \end{pmatrix} \right\}$$

- 3. Consider plane spanned by vectors $u=\begin{pmatrix}1\\1\\1\\1\end{pmatrix}, v=\begin{pmatrix}1\\0\\0\\1\end{pmatrix}$ in \mathbb{R}^4 . Let $w=\begin{pmatrix}0\\2\\1\\-1\end{pmatrix}$.
 - a. Determine $Proj_{u}(w)$ and $Proj_{v}(w)$
 - b. Let $U = \text{span}\{u, v\}$. Do you think $Proj_u(w) + Proj_v(w)$ is going to give us the orthogonal projection of w onto space U? How do you verify this?
- 4. Let u be a unit vector in \mathbb{R}^n . Consider $Proj_u\left(\cdot\right)\colon \mathbb{R}^n o \mathbb{R}^n$ where $v\mapsto Proj_u\left(v\right)$.
 - a. Before working out the math, can you guess the rank of this linear map?
 - b. Determine the matrix representation of this map with respect to the standard basis.
 - c. What is rank of the matrix you found?
- 5. In class, we define an orthonormal basis to be an orthonormal set that spans the underlying space.
 - Note that we did not mention independence. The reason is because an orthonormal set is linearly independent. Show this result.
 - b. An **orthogonal set** of vectors consists of vectors that are pairwise orthogonal. With this definition, is an orthogonal set always linearly independent?
- 6. True or False
 - a. If $u \perp v, \ u \perp w$, then u is orthogonal to any linear combination of v and w.
 - b. If $Q \in M_n\left(\mathbb{R}\right)$ and the columns of Q form an orthonormal set then $Q^TQ = I_n$.
 - c. If $Q \in M_n\left(\mathbb{R}\right)$ and the columns of Q form an orthonormal set, then map $T_Q:\mathbb{R}^n \to \mathbb{R}^n$ defined by [Equation] preserves the norm. That is ||x|| = ||Qx||.
 - d. If $v \in Nul(A)$, then v is orthogonal to rows of A.

10/23/23, 11:05 AM OneNote