

Ecole Nationale des Sciences Appliques.

Nom:	 Prenom:	
Discipline:	 Date:	

- Vous avez 120 minutes.
- Vérifier que vous disposez de toutes les pages.
- L'échange d'outils est strictement interdit.

Question:	(**) Question 1	(**) Question 2	(***) Question 3	(***) Question 4	Total
Points:	5	5	5	5	20

Q1.(**) Question 1

On considère une variable aléatoire ${\bf X}$ qui a une loi de probabilité donnée par:

$$\mathbf{P}_X(x) = \begin{cases} kx & x = 2, 4, 6 \\ k(x-2) & x = 8 \\ 0 & \text{sinon} \end{cases}$$

où k est une constante.

- (a) Déterminer la valeur de k.
- (b) Calculer $\mathbf{P}_X(x < 5)$.
- (c) Calculer l'espérance de X.
- (d) Donner la valeur de $E[X^2]$.
- (e) Calculer la valeur de Var(3-4X).

Q2.(**) Question 2

On considère une variables aléatoire X qui peut prendre seulement les trois valeurs 1, 2, et 3. Pour chacune des ces valeurs, on définit la fonction de **répartition**:

- 1 of 2 -

$$F(t) = \mathbf{P}_X(x < t) = \frac{t^3 + k}{40}$$
 $t = 1, 2, 3$

(a) Déterminer la valeur de k.

1

(b) Donner la loi de probabilité de X.

(c) Sachant que $Var(X) = \frac{259}{320}$, calculer la valeur de Var(4X - 5).

Q3.(***) Question 3

Une urne contient 6 boules blanches et n boules rouges (n est un nombre entier tel que $n \geq 0$) toutes indiscernables au toucher. Un joueur tire au hasard, successivement et sans remise, deux boules de l'urne. Pour chaque boule blanche tirée, il gagne 2 et pour chaque boule rouge, il perd 3.

(a) Quelles sont les différentes valeurs que peut prendre X.

(b) Montrer que

$$\mathbf{P}_X(X = -1) = \frac{12n}{(n+6)(n+5)}$$

(c) Déterminer la loi de probabilité de X.

1

(d) Montrer que

$$\mathbf{E}(X) = \frac{-6(n^2 + n - 20)}{(n+6)(n+5)}$$

Q4.(***) Question 4

Un élève se rend a vélo au lycée distant de 3 km de son domicile à une vitesse constante de 15 km/h. Sur le parcours, il rencontre 6 feux tricolores non synchronisés. Pour chaque feu, la probabilité qu'il soit au vert est $\frac{2}{3}$. Un feu orange ou rouge lui fait perdre une minute et demie.

On appelle X la variable aléatoire correspondant au nombre de feux verts rencontrés par l'élève sur son parcours et T la variable aléatoire donnant le temps en minutes mis par l'élève pour se rendre au lycée.

(a) Déterminer la loi de probabilité de X.

(c) En déduire $\mathbf{E}(T)$ et interpréter.

(b) Exprimer T en fonction X.

- (d) L'élève part 17 minutes avant le début des cours. Déterminer la probabilité qu'il arrive en retard.