2. <u>Лабораторная работа № 2. Исследование характеристик</u> вычислительных систем

ЦЕЛЬ РАБОТЫ

В результате выполнения настоящей работы студенты должны:

- 1. Знать основные характеристики многопроцессорной вычислительной системы и параметры, их определяющие.
- 2. Уметь определять основные характеристики многопроцессорной вычислительной системы.
- 3. Помнить основные зависимости характеристик многопроцессорной вычислительной системы от ее параметров.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. До начала лабораторного занятия самостоятельно изучить теорию работы по настоящим методическим указаниям.
- 2. Вручную выполнить контрольные расчеты вероятностей пребывания заявок в многопроцессорной вычислительной системе и ее основных характеристик.
- 3. Написать программу расчета вероятностей пребывания заявок в многопроцессорной вычислительной системе с различной загрузкой. Написать программу расчета основных характеристик вычислительной системы по ее параметрам.
- 4. На лабораторном занятии в дисплейном классе осуществить на ЭВМ требуемые расчеты.
 - 5. Выполнить анализ полученных результатов и оформить отчет.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Вычислительная система, содержащая несколько процессоров, связанных между собой и общим для них комплектом запоминающих и внешних устройств и функционирующая под управлением единой операционной системы, называется многопроцессорной вычислительной системой.

Производительность многопроцессорной вычислительной системы увеличивается по сравнению с однопроцессорной вычислительной системой за счет того, что многопроцессорная организация создает возможность одновременной обработки

нескольких задач или параллельной обработки различных частей одной задачи.

Многопроцессорные вычислительные системы подразделяются на системы с общей памятью и системы о индивидуальной памятью. Наибольшее распространение получили первые.

Многопроцессорная вычислительная система с общей памятью:

структура Ha рис. показана многопроцессорной вычислительной системы с общей памятью. Каждый из N процессоров $\Pi P_1 \dots \Pi P_N$ имеет доступ к любому из L блоков памяти $\Pi_1 \dots \Pi_{L}$. Последние могут функционировать независимо друг от друга. В каждый момент времени может выполняться до L обращений к памяти. Конфликтные ситуации (обращение к одному блоку памяти нескольких устройств одновременно) разрешаются коммутатором К, первым обслуживать устройство с наивысшим начинаюшим приоритетом, например, процессор с наименьшим номером. Каждый процессор может инициировать работу любого из Н каналов вводавывода КВВ₁ ... КВВ_н. Каждый канал имеет доступ к любому блоку памяти. К каналу подключено несколько внешних устройств ВУ.

Пусть в вычислительной системе используются одинаковые процессоры. однородной. то есть система является информация, хранимая в оперативной памяти системы, доступна любому процессору и любому каналу ввода-вывода. Режим работы многопроцессорной вычислительной системы, при котором каждый из процессоров может выполнять любую программу, хранимую в оперативной памяти, называется режимом разделения нагрузки. Такая ситуация типична для управляющих систем, жесткие ограничения на реакции которых исключают возможность время хранения информации во внешней памяти. В режиме разделения нагрузки каждый из N процессоров выполняет N-ю часть программ, то есть принимает на себя N-ю часть нагрузки.

Модель многопроцессорной вычислительной системы с общей памятью:

На рис. 2 показана модель многопроцессорной вычислительной системы с общей памятью и размещением информации в оперативной памяти. Процесс одновременного выполнения нескольких программ в режиме разделения нагрузки можно рассматривать как процесс функционирования многоканальной системы массового обслуживания с интенсивностью входного потока λ , общей очередью O, заявки на

которой выбираются на выполнение в порядке их поступления, и средней длительностью обслуживания заявки в каждом из N каналов (обслуживающих приборов), равной V. Система обслуживает до N заявок одновременно. Если все каналы заняты обслуживанием заявок, а остальные ранее поступившие заявки образуют очередь, то вновь поступившая заявка занимает последнее место в очереди.

Характеристики многопроцессорной вычислительной системы с общей памятью:

Характеристики многопроцессорной вычислительной системы определяются на основе модели, приведенной на рис. 2. В систему массового обслуживания поступает поток заявок с интенсивностью $\lambda *c^{-1}$. Обслуживание заявки моделирует выполнение программы со средней трудоемкостью θ процессорных операций. Заявка пребывает в канале до полного завершения обслуживание.

Средняя длительность обслуживания заявки каналом (программы - процессором) с быстродействием ${\bf B}$:

$$\mathbf{V} = \mathbf{\theta} / \mathbf{B} . \tag{1}$$

Интенсивность обслуживания заявки каналом:

$$\mu=1/V. \tag{2}$$

Параметры системы массового обслуживания λ , N, V, должны отвечать условию существования стационарного режима, при котором в очереди пребывает конечное число заявок и, следовательно, конечны времена ожидания и пребывания заявок. На каждый канал поступает поток заявок с интенсивностью λ /N. Загрузка канала, то есть отношение времени, в течение которого канал занят обслуживанием заявок, к общему времени его функционирования:

$$\rho = (\lambda / N) *V = \lambda / (N*\mu) = \lambda / \mu_{\Sigma}, \tag{3}$$

где μ_{Σ} = $N^*\mu$ - суммарная интенсивность обслуживания заявок N-канальной системой.

Стационарный режим существует, если $\rho{<}1.$ Следовательно, параметры системы должны отвечать соотношению (λ / N) *V < 1 , то есть λ * θ < N * B .

Характеристики системы можно получить в аналитической форме, если λ - константа, а длительность обслуживания заявок распределена по экспоненциальному закону со средним V. Для этих условий в теории массового обслуживания доказаны следующие формулы:

Вероятность пребывания в системе n=0, 1, 2,... заявок (обслуживаемых каналами и стоящих в очереди):

$$\mathbf{P}_{\mathbf{n}} = \begin{cases} \mathbf{P}_{\mathbf{0}} * (\mathbf{R}^{\mathbf{n}} / \mathbf{n}!) & \text{при } \mathbf{0} \leq \mathbf{n} \leq \mathbf{N}; \\ \mathbf{P}_{\mathbf{0}} * (\mathbf{R}^{\mathbf{n}} / (\mathbf{N}! * \mathbf{N}^{\mathbf{n} \cdot \mathbf{N}})) & \text{при } \mathbf{n} > \mathbf{N}, \end{cases}$$
(4)

где

$$P_0 = [R^N / ((N-1)! * (N-R)) + \sum_{n=0}^{N-1} R^n / n!]^{-1}, -$$
 (5)

вероятность того, что в системе нет ни одной заявки;

R - суммарная загрузка **N** – канальной системы:

$$\mathbf{R} = \lambda / \mu = \mathbf{N} * \lambda / \mathbf{N} * \mu = \mathbf{N} * \rho . \tag{6}$$

Суммарная загрузка \mathbf{R} в отношении \mathbf{N} –канальной системы массового обслуживания определяет среднее число каналов, занятых обслуживанием заявок. Для стационарного режима $\mathbf{R} < \mathbf{N}$.

С учетом (6) выражения (4) и (5) можно представить так:

$$P_{n} = \begin{cases} P_{0}*(N^{n}/n!)*\rho^{n} & \text{при } 0 \leq n \leq N; \\ P_{0}*(N^{N}/N!)*\rho^{n} & \text{при } n > N, \end{cases}$$
 (7)

$$P_0 = [(N^{N-1} * \rho^N) / ((N-1)! * (1-\rho)) + \sum_{n=0}^{N-1} (N^n * \rho^n) / n!]^{-1},$$
 (8)

где $\rho = \lambda / (N^* \mu)$ - загрузка одного канала N – канальной системы.

Распределение (7) вероятности пребывания n=0, 1, 2,... заявок в N - канальной системе содержит всю информацию, необходимую для определения основных характеристик многопроцессорной вычислительной системы.

Средняя длина очереди заявок, ожидающих обслуживания в N - канальной системе, находится на основании выражения (7), как математическое ожидание случайной величины i = n-N > 0, равной числу заявок в очереди:

$$l = \sum_{i=1}^{\infty} i * P_{N+1} = ((N^{N-1} * \rho^{N+1}) / ((N-1)! * (1-\rho)^{2})) * P_{0},$$
(9)

где P_0 определяется выражением (8).

Среднее число заявок пребывающих в системе:

$$\mathbf{m} = \mathbf{l} + \mathbf{R} \,, \tag{10}$$

где 1 - среднее число заявок, находящихся в очереди и определяемое выражением (9);

 ${\bf R}$ – суммарная загрузка ${\bf N}$ - канальной системы, определяемая выражением (6).

Среднее время ожидания заявки в очереди $W = 1 / \lambda$ и среднее

время пребывания заявки в системе $\mathbf{u} = \mathbf{m} / \lambda$. Подставив в эти соотношения выражения (9) и (10), получим:

$$W = ((N^{N-1} * \rho^{N}) / (\mu * N! * (1-\rho)^{2})) * P_{0};$$
(11)

$$U = W + V = W + 1/\mu, \qquad (12)$$

или с учетом выражения (6)

$$\mathbf{W} = (\mathbf{R}^{N} / (\mu * (N-1)! * (N-R)^{2})) * \mathbf{P}_{0}.$$
 (13)

МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Исследование распределения вероятности Pn пребывания n заявок в N канальной системе с различной суммарной загрузкой R.
- 1.1. В соответствии с номером задания выбрать из таблицы число процессоров N в системе и четыре значения суммарной загрузки R.
- 1.2. Используя формулы (4) и (5), выполнить вручную расчет вероятности Рп пребывания в системе п заявок для одного фиксированного значения R и двух значений п, при этом одно значение должно удовлетворять условию n<=N, а другое n>N.
- 1.3. Выполнить расчет вероятности Pn пребывания n=0,1,2,...,12 заявок в N процессорной системе для четырех значений суммарной загрузки R.
- 1.4. Результаты вывести в таблицу и для различных значений R построить графики функций Pn=f(n).
- 1.5. Выполнить анализ полученных зависимостей и сформулировать вывод о том, как изменятся характер распределения вероятности Pn пребывания п заявок в N процессорной системе с увеличением суммарной загрузки системы R.
- 2. Исследование основных характеристик многопроцессорной вычислительной системы.
- 2.1. В соответствии с номером задания выбрать из таблицы значения интенсивности потока заявок λ , средней трудоемкости одной заявки θ и три значения быстродействия процессора B.
- 2.2. Для одного значения быстродействия процессора B и для числа процессоров N=1 вручную проверить условия существования стационарного режима λ <1 и контрольный расчет основных характеристик вычислительной системы: μ , R, l, W, U.
- 2.3. Для трех значений быстродействия B и для числа процессоров N=1, 2, 3 и для девяти BC выполнить расчеты значения загрузки r формулы (1) и (3), а также расчеты основных характеристик BC:

- интенсивности обслуживания заявок процессором μ формулы (1) и (2);
- 2) суммарной загрузки системы R формулы (1), (2) и (6);
- 3) средней длины очереди 1 формулы (1), (3), (8) и (9);
- 4) среднего времени ожидания W формулы (1), (2), (3), (8) и (11);
- 5) среднего времени пребывания U формулы (1), (2), (3),(8), (11) и (12).
- 2.4. Выполнить анализ результатов и сформулировать выводы о существовании стационарного режима в девяти системах, а также вывод о том, как изменяются характеристики ВС: µ, R, l, W, U при наращивании системы за счет подключения дополнительных процессоров при неизменном быстродействии отдельного процессора.
- 2.5. Проанализировать результаты и сформулировать вывод о том, как изменяются характеристики BC W, U при увеличении числа процессоров N, но сохранении постоянным суммарного быстродействия системы, то есть B_z =N*D const.

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Исследование распределения вероятности $\mathbf{P_n}$ пребывания \mathbf{n} заявок в \mathbf{N} процессорной системе с различной суммарной загрузкой \mathbf{R} в соответствии с разделом 1 методики выполнения работы.
- 2. Исследование основных характеристик вычислительных систем в соответствии с разделом 2 методики выполнения работы.

ЛИТЕРАТУРА

Основы теории вычислительных систем. - М.: Высш. шк., 1978.

СТРУКТУРА И МОДЕЛЬ ВЫЧИСЛИТЕЛЬНОЙ СИСТЕМЫ

Рис. 1. Структура многопроцессорной вычислительной системы с общей памятью

Рис. 2. Модель многопроцессорной вычислительной системы с общей памятью и размещением информации в оперативной памяти

ЗАДАНИЯ

№ задания	Число процессоров N	Загрузка системы R				
1	2	0,4	0,8	1,2	1,6	
2	2	0,5	0,9	1,3	1,7	
3	2	0,6	1,0	1,4	1,8	
4	2	0,7	1,1	1,5	1,9	
5	4	0,9	1,7	2,5	2,9	
6	4	1,0	1,8	2,6	3,0	
7	4	1,1	1,9	2,7	3,1	
8	4	1,2	2,0	2,8	3,2	
9	6	1,0	2,0	3,0	4,0	
10	6	1,1	2,1	3,1	4,1	
11	6	1,2	2,2	3,2	4,2	
12	6	1,3	2,3	3,3	4,3	

Таблица 1

№ задания	Быстродействие		Интенсивность	Средняя		
	процесс	оцессора В, тыс. оп./с		потока заявок	трудоемкость	
				λ , c^{-1}	заявки $oldsymbol{ heta}$, оп.	
1	50	100	150	10	4000	
2	60	120	180	10	5000	
3	70	140	210	10	5000	
4	80	160	240	10	5000	
5	50	100	150	8	6000	
6	60	120	180	8	6000	
7	70	140	210	8	6000	
8	80	160	240	8	6000	
9	50	100	150	12	4000	
10	60	120	180	12	4000	
11	70	140	210	12	4000	
12	80	160	240	12	5000	

Таблица 2