MIF15 – Calculabilité & complexité

Sylvain Brandel

2014-2015

sylvain.brandel@univ-lyon1.fr

Fonctionnement

- Nouveauté 2014!
- (tentative de) « classe inversée »
- Supports fournis en avance
 - Supports de cours
 - Ce qui est projeté en CM (dans la mesure du possible)
 - Sujets de TD
- CM
 - Compléments du support fourni
- TD
 - Plus une discussion autour des solutions que vous aurez cherchées avant de venir
- Bref, travail de votre part AVANT

Fonctionnement

- Cours condensés sur un demi semestre
 - 1ère moitié : MIF15, de maintenant au 24 octobre
 - 2ème moitié : MIF19, du 27 octobre à la fin du semestre
- Du coup double dose
 - Chaque semaine deux CM et deux TD
- Emploi du temps
 - CM
 - Jeudi 14H 15H30
 - Vendredi **8H** 9H30
 - TD
 - Jeudi 16H 17H30
 - Vendredi 10H 11H30

Evaluation

- http://liris.cnrs.fr/sylvain.brandel/teaching/MIF15
- Pas CCI (contrôle continu intégral)
 - → donc CC puis examen (2 sessions)
- Contrôle continu
 - 2 ou 3 contrôles
 - Surprise ou pas
 - Dates précisées au moins une semaine avant
 - Un contrôle tous ensembles qui sera planifié
 - Un contrôle de 15 minutes pèsera 4x moins qu'un contrôle d'une heure
- Examen
 - Session 1 : vendredi 24 octobre 8H
 - Session 2 : en mars, avec tous les autres examens

Projet

- Pas de TP, pas de projet
- Mais ...
- Jetez un coup d'œil sur JFLAP (cf. Google)
 - Plateforme de test d'un cours
 - Duke University, Trinity, Caroline du Nord, Etats-Unis
 - Pas tout récent
 - Pour tester des machines de Turing, regarder comment elles s'exécutent ...
 - Je vous montrerai

De votre côté

- Travail personnel conséquent
- Se préparer à l'avance
- Ne pas attendre que les réponses viennent toutes seules
- Lisez vos mails ...

MIF15 – Calculabilité & complexité

Sylvain Brandel

2014 – 2015

sylvain.brandel@univ-lyon1.fr

INTRODUCTION

Motivations

- Informatique fondamentale
- Historiquement
 - Théorie de l'incomplétude
 - Que peut-on calculer avec un algorithme ?
- Lien avec les langages de programmation
 - Ce cours prépare à deux cours de master
 - Calculabilité et complexité
 - Compilation
- Vous intéresser ...
 - Si on sait qu'un problème est indécidable, inutile de chercher un algorithme pour le résoudre

Programme

Classifier des langages

Exemple d'école	Classe de langage	Reconnu par	Engendré par
a [*] b [*]	langages rationnels	automates à états finis	grammaire régulière
$\{a^nb^n\mid n\geq 0\}$	langages algébriques	automates à pile	grammaire algébrique
$\{a^n b^n c^n \mid n \ge 0\}$	langages récursifs	machine de Turing	grammaire (générale)

(les deux premières classes ont été vues en LIF15 – L3)

• La décidabilité et la complexité en découlent

Programme

- Notions mathématiques de base
 - Ensembles
 - Alphabets, langages, expressions régulières
- Automates à états finis
 - Déterministes ou non
 - Liens avec les expressions rationnelles
 - Rationalité
 - Minimisation
- Langages algébriques
 - Grammaires algébriques
 - Automates à pile
 - Algébricité

LIF15 (L3)

Programme (suite)

- Machines de Turing
 - Formalisme de base
 - Langages récursifs
 - Extensions
 - Machine de Turing Universelle
 - Grammaires
- Indécidabilité
 - Thèse de Church Turing
 - Problèmes indécidables
- Complexité
 - Classes P, NP ...
 - NP-complétude
 - Théorème de Cook

Littérature

Elements of the Theory of Computation

Harry R. Lewis, Christos H. Papadimitriou éd. Prentice-Hall

Introduction à la calculabilité

Pierre Wolper éd. Dunod

Introduction to the Theory of Computation

Michael Sipser, MIT éd. Thomson Course Technology

Introduction to Theory of Computation

Anil Maheshwari, Michiel Smid, School of Computer Science, Carleton University free textbook

Gödel Escher Bach, les Brins d'une Guirlande Eternelle

Douglas Hofstadter éd. Dunod

Logicomix

Apóstolos K. Doxiàdis, Christos Papadimitriou, Alecos Papadatos, Annie Di Donna éd. Vuibert

LIF15 – Théorie des langages formels Sylvain Brandel 2014 – 2015 sylvain.brandel@univ-lyon1.fr

Chapitre précédent le chapitre 4

RAPPELS (RAPPELS?)

- Simulation d'une machine très simple :
 - mémorisation d'un état
 - <u>programme</u> sous forme de graphe étiqueté indiquant les <u>transitions</u> possibles
- Cette machine lit un mot en entrée.
- Ce mot décrit une suite d'<u>actions</u> et progresse d'état en état
 - → jusqu'à la lecture complète du mot.
- Lorsque le dernier état est distingué (état final)
 - → on dit que le mot est <u>accepté</u>.
 - ⇒ Un automate permet de <u>reconnaître</u> un langage.

- Un état dépend uniquement
 - De l'état précédent
 - Du symbole lu

Un automate déterministe fini est le quintuplet

$$M = (K, \Sigma, \delta, s, F) où$$
:

- K : ensemble fini (non vide) d'états
- $-\Sigma$: alphabet (ensemble non vide de <u>lettres</u>)
- δ : fonction de transition : K × Σ → K $\delta(q, \sigma) = q' \quad (q' : \text{état de l'automate après avoir lu la lettre } \sigma$ dans l'état q)
- s : état initial : s ∈ K
- F : ensemble <u>des</u> états finaux : F ⊂ K

Exécution

La machine

- lit a (qui est ensuite oublié),
- passe dans l'état $\delta(s, a)$ et avance la tête de lecture,
- répète cette étape jusqu'à ce que tout le mot soit lu.
- La partie déjà lue du mot ne peut pas influencer le comportement à venir de l'automate.
 - → d'où la notion de configuration

Configuration

- état dans lequel est l'automate
- mot qui lui reste à lire (partie droite du mot initial)
- Formellement : une configuration est un élément quelconque de $K \times \Sigma^*$.

Exemple

sur l'exemple précédent, la configuration est (q2, cabaa).

- Le fonctionnement d'un automate est décrit par le passage d'une configuration à une autre, cette dernière obtenue
 - en lisant un caractère,
 - et en appliquant la fonction de transition.

Exemple

 $- (q_2, cabaa) \rightarrow (q_3, abaa)$ si $\delta(q_2, c) = q_3$

- Un automate M détermine une relation <u>binaire</u> entre configurations qu'on note ├_M définie par :
 - $\mid_{\mathsf{M}} \subset (\mathsf{K} \times \Sigma^*)^2$
 - $-(q, w) \vdash_{M} (q', w')$ ssi $\exists a \in \Sigma$ tel que w = aw' et $\delta(q, a) = q'$
- On dit alors que <u>on passe de</u> (q, w) <u>à</u> (q', w') <u>en une</u> <u>étape</u>.

- Un mot w est <u>accepté</u> par M
 ssi (s, w) ├_M* (q, e), avec q ∈ F.
- Le <u>langage accepté</u> par M est l'ensemble de tous les mots acceptés par M.

Ce langage est noté L(M).

• Exemple $M = (K, \Sigma, \delta, s, F)$

- Idée : remplacer la fonction \vdash_{M} (ou δ) par une <u>relation</u>.
- Une relation, c'est beaucoup plus général qu'une fonction.
 - → on a ainsi une <u>classe plus large</u> d'automates.
 - ⇒ Dans un état donné, on pourra avoir :

• $L = (ab \cup aba)^*$

Automate <u>déterministe</u>:

- Dans le cas de l'automate non déterministe, un mot est <u>accepté</u> s'il existe <u>un ou plusieurs chemins</u> (au moins un) pour aller de l'état initial (ici q₀) à l'état final (ici q₀).
- <u>Autre différence</u> par rapport aux automates déterministes :
 - Il est possible d'étiqueter une flèche par le symbole e.

 Autre formulation (encore plus intuitive) de l'automate précédent :

Un automate <u>non</u> déterministe fini est le quintuplet

$$M = (K, \Sigma, \Delta, s, F) où :$$

- K : ensemble fini (non vide) d'états
- $-\Sigma$: alphabet (ensemble non vide de <u>lettres</u>)
- Δ : <u>relation</u> de transition : K × (Σ ∪ {e}) × K (q, σ, p) ∈ Δ : σ-transition (σ ∈ Σ)
- s : état initial : s \in K
- F : ensemble <u>des</u> états finaux : F ⊂ K

(hormis la relation, le reste est identique à la formulation déterministe)

- Si (q, e, p) ∈ Δ : on a une ε-transition (transition spontanée)
 - → On passe de q à p sans lire de symbole dans le mot courant.
- | est une <u>relation</u> et non plus une fonction (automates déterministes) :
 - (q, e) peut être en relation avec une autre configuration (après une ε-transition)
 - pour une configuration (q, w), il peut y avoir plusieurs configurations (q', w') (ou aucune) tq (q, w)
 -M (q', w')

Un <u>automate à pile</u> est un sextuplet

$$M = (K, \Sigma, \Gamma, \Delta, s, F) où$$
:

- K est un ensemble fini d'états,
- $-\Sigma$ est un ensemble fini de symboles d'entrée appelé alphabet,
- $-\Gamma$ est un ensemble fini de symboles de la pile,
- s ∈ K est l'état initial,
- F ⊆ K est l'ensemble des états finaux,
- $-\Delta$ est un sous-ensemble fini de

(K × (
$$\Sigma \cup \{e\}$$
) × ($\Gamma \cup \{e\}$)) × (K × ($\Gamma \cup \{e\}$))

appelé fonction de transition.

- Une transition ((p, a, A), (q, B)) $\in \Delta$ où :
 - p est l'état courant,
 - a est le symbole d'entrée courant,
 - A est le symbole sommet de la pile,
 - q est le nouvel état,
 - B est le nouveau symbole en sommet de pile,

a pour effet:

- (1) de passer de l'état p à l'état q,
- (2) d'avancer la tête de lecture après a,
- (3) de dépiler A du sommet de la pile,
- (4) d'empiler B sur la pile.

• Soit M = (K, Σ , Γ , Δ , s, F) un automate à pile. Une configuration de M est définie par un triplet

$$(q_i, w, \alpha) \in K \times \Sigma^* \times \Gamma^* \text{ où }$$
:

- q_i est l'état courant de M,
- w est la partie de la chaîne restant à analyser,
- $-\alpha$ est le contenu de la pile.
- Soient (q_i, u, α) et (q_j, v, β) deux configurations d'un automate à pile M = (K, Σ, Γ, Δ, s, F). On dit que (q_i, u, α) conduit à (q_i, v, β) en une étape

ssi $\exists \ \sigma \in (\Sigma \cup \{e\}), \ \exists \ A, \ B \in (\Gamma \cup \{e\}) \ tels \ que :$

$$u = \sigma v \text{ et } \alpha = \alpha' A \text{ et } \beta = \beta' B \text{ et } ((q_i, \sigma, A), (q_i, B)) \in \Delta.$$

• On note $(q_i, u, \alpha) \mid_M (q_i, v, \beta)$.

- La relation \vdash_{M} est la fermeture réflexive transitive de \vdash_{M} .
- Soit M = (K, Σ, Γ, Δ, s, F) un automate à pile. Une chaîne w ∈ Σ* est acceptée par M ssi (s, w, e) ⊢_M* (f, e, e) avec f ∈ F.
- Le <u>langage accepté</u> par M, noté L(M), est l'ensemble des chaînes acceptées par M.

Soit l'automate à pile M = (K, Σ, Γ, Δ, s, F) avec :

$$- K = \{s, p, f\} \qquad \Delta = \{((s, a, e), (p, a)), \\ - \Sigma = \{a, b\} \qquad ((p, a, e), (p, a)), \\ - \Gamma = \{a, b\} \qquad ((p, b, a), (f, e)), \\ - F = \{s, f\} \qquad ((f, b, a), (f, e))\}$$

 Un automate à pile est <u>déterministe</u> s'il y a <u>au plus</u> une transition applicable pour tout triplet de la forme (État courant, symbole d'entrée, sommet de pile). MIF15 – Calculabilité & complexité Sylvain Brandel 2014 – 2015 sylvain.brandel@univ-lyon1.fr

Chapitre 4

MACHINES DE TURING

Définitions

- Une machine de Turing est constituée :
 - d'un contrôle (ensemble fini d'états et de transitions),
 - d'un ruban infini à droite,
 - d'une tête sur le ruban qui peut lire et <u>écrire</u>, et qui peut se déplacer dans les <u>deux directions</u> d'un caractère à la fois.
- A chaque étape, en fonction de l'état courant et du symbole courant, la machine :
 - change d'état,
 - écrit un symbole à l'emplacement courant,
 - déplace la tête d'une position, à droite ou à gauche.

Définitions

- Initialement la machine est dans un état initial :
 - le mot w = $\sigma_1 \sigma_2 ... \sigma_n$ est dans le ruban, cadré à gauche, avec un blanc devant et une suite infinie de blancs derrière,
 - la tête de lecture / écriture pointe sur l'extrémité gauche du ruban,
 - le contrôle sur l'état initial.
- L'état initial de la machine peut être représenté par le schéma suivant (le symbole # désigne un blanc) :

- La machine s'arrête quand elle ne peut plus appliquer de nouvelles transitions.
- Si la machine tente de se déplacer trop à gauche (audelà de l'extrémité gauche du ruban)
 - → le traitement se termine anormalement.

Une machine de Turing standard est un quintuplet

$$M = (K, \sum, \Gamma, \delta, q_0)$$
 où :

- K est un ensemble fini d'états,
- ∑ est l'alphabet d'entrée,
- $-\Gamma$ est l'alphabet des symboles du ruban,
- $-\delta$ est la fonction de transition :

fonction partielle de $K \times \Gamma$ dans $K \times \Gamma \times \{G, D\}$, (les symboles G et D désignent un déplacement élémentaire à gauche ou à droite)

 $-q_0 \in K$ est l'état initial.

- Le symbole qui désigne le blanc (#) n'est pas dans ∑, mais appartient à Γ.
- $\sum \subset \Gamma$ et Γ peut contenir des symboles utilisés pour écrire sur le ruban.
- Soit la transition $\delta(q_i, a) = (q_i, b, G)$.
 - Cette transition s'applique lorsque :
 - la machine est dans l'état courant q_i,
 - le symbole courant sur le ruban est a.
 - Après l'application de cette transition :
 - la machine est dans l'état q_i,
 - le symbole b est écrit sur le ruban à la place de a,
 - la tête de lecture est déplacée d'une position vers la gauche.

Une configuration associée à une machine de Turing

M = (K,
$$\sum$$
, Γ , δ , q_0) est un élément de :
K × Γ^* × Γ × (Γ^* (Γ - {#}) \cup e).

- Dans une configuration quelconque (q, w₁, a, u₁):
 - la machine est dans l'état courant q,
 - w₁ est la partie à gauche de la tête,
 - a est le symbole courant,
 - u₁ est la partie à droite de la tête jusqu'au premier # (exclu) de la suite infinie de blancs à droite.

• Pour simplifier l'écriture des configurations, on introduit une notation abréviée sous la forme :

(état courant, contenu du ruban où le symbole courant est souligné).

- Avec cette notation :
 - la configuration (q, e, a, bcdf) s'écrit (q, <u>a</u>bcdf),
 - la configuration (q, ab, #, #f) s'écrit (a, ab##f).

• Soit une machine de Turing M = $(K, \sum, \Gamma, \delta, q_0)$ et deux configurations (q_1, w_1, a_1, u_1) et (q_2, w_2, a_2, u_2) . On dit que (q_1, w_1, a_1, u_1) conduit à (q_2, w_2, a_2, u_2) en une étape ssi :

$$- \ \text{soit} \ \delta(q_1, \, a_1) = (q_2, \, b, \, D) \ \text{et} \ w_2 = w_1 b \ \text{et} \ \begin{cases} a_2 = \# \ \text{et} \ u_2 = e \ \text{si} \ u_1 = e \\ \text{ou} \\ a_2 u_2 = u_1 \qquad \text{si} \ u_1 \neq e \end{cases}$$

- soit
$$\delta(q_1, a_1) = (q_2, b, G)$$
 et $w_2 a_2 = w_1$ et
$$\begin{cases} u_2 = bu_1 & \text{si } b \neq \text{# ou } u_1 \neq e \\ \text{ou} \\ u_2 = e & \text{si } b = \text{# et } u_1 = e \end{cases}$$

- On note cette relation $(q_1, w_1, a_1, u_1) \mid_M (q_2, w_2, a_2, u_2)$.
- La relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture réflexive transitive de la relation | est la fermeture re

Exemple

• Soit la machine de Turing M = (K, \sum , Γ , δ , q_0) où :

$- K = \{q_0, q_1, q_2\},$	δ	#	а	b
$-\sum = \{a, b\},$	q_0	(q ₁ , #, D)		
$-\Gamma = \{a, b, \#\}$	q_1	(q ₂ , #, G)	(q ₁ , b, D)	(q ₁ , a, D)
	q_2		(q ₂ , a, G)	(q ₂ , b, G)

 $(\delta : fonction partielle)$

Représentation graphique de M :

Démo

Et maintenant?

- Les machines de Turing peuvent être utilisées :
 - soit pour reconnaître (ou accepter) un langage,
 - soit pour calculer une fonction.
- Et si ça devient trop compliqué ?
 - On fait des combinaisons de machines plus simples
- Ce formalisme peut-il être étendu pour construire des machines plus puissantes ? Pour reconnaître une classe de langages plus grande ? Ou calculer plus de fonctions ?
 - On imagine des extensions et on regarde ...

- Dans ce contexte, il faut modifier le concept de machine de Turing standard introduit au paragraphe précédent :
 - → ajouter la notion d'état final.
- Une machine de Turing augmentée avec des états finaux est le sextuplet M = (K, ∑, Γ, δ, q₀, F) où : F ⊆ K est l'ensemble des états finaux.

(le reste ne change pas)

• Soit M = (K, \sum , Γ , δ , q_0 , F) une machine de Turing. Une chaîne w $\in \sum^*$ est <u>acceptée</u> par M ssi :

```
(q_0, \#w) \models_M^* (q_f, w'\underline{a}w'') où:

-q_f \in F,

-a \in \Gamma,

-w', w'' \in \Gamma^*,

-\delta(q_f, a) n'est pas défini.
```

 Le <u>langage accepté</u> par M, noté L(M), est l'ensemble de toutes les chaînes acceptées par M.

Exemple

- La suite de configurations associée au mot aabb est :
 (q₀, #aabb) |_M (q₁, #aabb) |_M (q₂, #aabb) |_M (q₃, #aabb)
 Comme l'état q₃ est final, et qu'il n'y a pas de transition depuis q₃, le mot w = aabb est accepté.
- Pour tout mot w ne contenant par aa, le calcul s'arrête sur le premier # à droite de w sur le ruban dans un état non final.

- Le langage accepté par une machine de Turing est dit <u>Turing-acceptable</u> ou <u>récursivement énumérable</u>.
- Si la machine de Turing s'arrête sur toutes les entrées possibles (c-à-d pour tous les mots w, w ∈ L ou w ∉ L), alors le langage est dit <u>Turing-décidable</u> ou <u>récursif</u>.

On dit que M semi-décide L, ou encore M accepte L.

On a alors :

```
- \forall w ∈ L, (q_0, \#w) \vdash_M^* (q_f, \#Y) (q_f ∈ F) \rightarrow YES (accepté)
```

 $- \forall w \notin L, (q_0, \underline{\#}w) \vdash_M^* (q_f, \underline{\#}N) (q_f \in F) \rightarrow NO \text{ (rejeté)}$

 L'idée est d'utiliser les machines de Turing pour calculer des fonctions de chaînes vers chaînes.

Soient

- $-\sum_{0}$ et \sum_{1} deux alphabets ne contenant pas le symbole blanc (#),
- f une fonction de \sum_0^* vers \sum_1^* .
- Une machine de Turing M = (K, \sum_0 , Γ , δ , q_0 , F) calcule la fonction f ssi :

```
\forall \ w \in \sum_0^* \ \text{tel que f(w)} = \text{u, on a} (q_0, \underline{\#}w) \ |_{M}^* (q_f, \underline{\#}u) \ \text{où} : q_f \in F, \delta(q_f, \#) \ \text{n'est pas défini.}
```

- Lorsqu'une telle machine de Turing existe, la fonction est dite <u>Turing-calculable</u>.
- La notion de Turing-calculable n'est pas restreinte aux fonctions de chaînes vers chaînes.
 - → elle peut être étendue de plusieurs façons :
 - Nombre quelconque d'arguments
 - Pour des fonctions de N dans N

- Fonctions avec un nombre quelconque d'arguments de la forme $f: (\sum_0^*)^k \to \sum_1^*$:
- Une machine de Turing M = (K, \sum_0 , Γ , δ , q_0 , F) calcule la fonction f ssi :

```
 - \ \forall \ \sigma_1, \ \sigma_2, \ \dots, \ \sigma_k \in \sum_0^* \ \text{tels que } f(\sigma_1, \ \sigma_2, \ \dots, \ \sigma_k) = \text{u, on a} :   (q_0, \ \underline{\#}\sigma_1 \# \sigma_2 \# \dots \# \sigma_k) \ \mid_{M}^* (q_f, \ \underline{\#}u) \ \text{où} :   q_f \in F,   \delta(q_f, \ \#) \ \text{n'est pas défini.}
```

- Fonctions de N dans N :
- Notons I un symbole fixé différent de #.
 - Tout entier naturel n peut être représenté par la chaîne lⁿ en notation unaire
 - (dans ce cas l'entier zéro est représenté par la chaîne vide)
- Une fonction f: N → N est calculée par une machine de Turing M, si M calcule la fonction f': {I}* → {I}* telle que f'(Iⁿ) = I^{f(n)} pour tout n ∈ N.

La fonction successeur définie par succ(n) = n + 1,
 ∀n≥0, est calculée par la machine de Turing

$$\begin{split} M &= (K, \sum, \Gamma, \delta, q_0, F) \text{ où :} \\ &- K = \{q_0, q_1, q_2\}, & \delta & \# & I \\ &- \sum = \{I\}, & q_0 & (q_1, \#, D) \\ &- \Gamma = \{I, \#\}, & q_1 & (q_2, I, G) & (q_1, I, D) \\ &- F = \{q_2\} & q_2 & (q_2, I, G) \end{split}$$

- On présente ici une méthode pour combiner des machines de Turing simples
 - → machines plus complexes
 - ⇒ machine de Turing = module ou sous-routine pour faciliter la conception.
- Deux types de machines de base :
 - Les machines qui écrivent un symbole
 - Les machines qui déplacent la tête d'une position

- 1. Les machines qui écrivent un symbole
- Une machine pour chaque symbole de l'alphabet Γ .
- Une telle machine :
 - écrit le symbole spécifié sur le symbole courant (dont le contenu est ignoré),
 - et s'arrête sans bouger la tête.
- Elle est simplement appelée a si a est le symbole spécifié.

2. Les machines qui déplacent la tête d'une position

• Il existe deux machines de ce type :

$$\begin{split} - \ G = (\, \{q_0, \, q_f\}, \, \textstyle \sum, \, \textstyle \sum \cup \, \{\#\}, \, \delta_G, \, q_0, \, \{q_f\} \,) \\ & \text{avec } \delta_G(q_0, \, \sigma) = (q_f, \, \sigma, \, G), \, \forall \, \sigma \in \Gamma, \\ - \ D = (\, \{q_0, \, q_f\}, \, \textstyle \sum, \, \textstyle \sum \cup \, \{\#\}, \, \delta_D, \, q_0, \, \{q_f\} \,) \\ & \text{avec } \delta_D(q_0, \, \sigma) = (q_f, \, \sigma, \, D), \, \forall \, \sigma \in \Gamma. \end{split}$$

 Ces deux types de machines peuvent être connectées entre elles en utilisant des règles de combinaisons.

Exemple

Soient M₁, M₂, M₃ des machines de Turing quelconques.

D ¬ # noté D_# déplace la tête à droite du symbole courant jusqu'au premier blanc.

G noté G_# déplace la tête à gauche du symbole courant jusqu'au premier blanc.

D # noté D¬# déplace la tête à droite du symbole courant jusqu'au premier non blanc.

noté G₇ déplace la tête à gauche du symbole courant jusqu'au premier non blanc.

Extensions des machines de Turing

- Est-il possible d'accroitre la puissance des machines de Turing ?
- Examinons des extensions :
 - (a) un ruban infini dans les deux directions,
 - (b) plusieurs rubans,
 - (c) plusieurs têtes sur le ruban,
 - (d) un ruban bidimensionnel,
 - (e) le non-déterminisme,
 - (f) l'accès aléatoire.
- Et montrons que ces machines étendues peuvent être simulées par des machines standard

Extensions des machines de Turing

- Pour chaque type d'extension, nous montrons que l'opération de la machine étendue peut être simulée par une machine de Turing normale.
- La démonstration consiste dans chaque cas :
 - (1) à montrer comment construire une machine normale à partir de la machine étendue considérée,
 - (2) à prouver que la machine normale construite simule correctement le comportement de la machine de départ.

Machine de Turing à ruban infini dans les deux sens

- Soit une machine de Turing M = (K, \sum , Γ , δ , q_0 , F) dont le ruban n'a pas de borne à gauche :
 - la chaîne d'entrée peut se trouver n'importe où sur le ruban,
 - la tête pointe sur le premier blanc à gauche de la chaîne.
- Dans cette machine, une configuration est de la forme : (q, wau) avec q ∈ K, w, u ∈ Γ*, a ∈ Γ, où :
 - w ne commence pas par un blanc
 - u ne finit pas par un blanc.
- On étend la relation entre configurations pour prendre en compte les déplacements à gauche :
 - si $\delta(q, a) = (p, b, G)$ alors $(q, \underline{a}u) \mid_M (p, \underline{\#}bu)$.

Machine de Turing à ruban infini dans les deux sens

- Montrons qu'une machine M avec ruban infini dans les deux sens n'est <u>pas plus puissante</u> qu'une machine normale (dans le sens qu'elle ne permet pas de reconnaître plus de langages, ou calculer plus de fonctions).
- Pour cela montrons comment construire une machine M'
 = (K', ∑, Γ', δ', q₀', F'), à partir de M et qui simule M :
 - si M s'arrête sur un mot w, alors M' s'arrête sur ce même mot w,
 - si M ne s'arrête pas sur un mot w, alors M' ne s'arrête pas non plus sur ce même mot w.

Machine de Turing à ruban infini dans les deux sens

- Pour simuler le ruban doublement infini de M dans celui de M', on définit pour M' un ruban à <u>2 pistes</u> :
- Ce ruban est obtenu en coupant en 2 celui de M de façon arbitraire.

Exemple

Principe de la simulation au tableau...

Machine de Turing à plusieurs rubans

- Une machine de Turing étendue peut être caractérisée par k rubans, chaque ruban étant munie d'une tête autonome.
- Une telle machine respecte les conventions :
 - La chaîne d'entrée est initialement placée sur le premier ruban, cadrée à gauche et précédée d'un blanc, avec la tête sur ce blanc.
 - Les autres rubans sont remplis de blancs avec la tête à l'extrême gauche.
 - Lorsque la machine s'arrête, la chaîne de sortie se trouve sur le premier ruban, les autres rubans sont ignorées.

Machine de Turing à plusieurs rubans

• Exemple : machine à copier à deux rubans

 L'exposant (1) ou (2) indique qu'on se trouve sur le premier ou le deuxième ruban.

Machine de Turing à plusieurs têtes

- Machine étendue avec plusieurs têtes sur le même ruban.
 - → Simplifier la construction de certaines machines
 - ⇒ il est possible d'implanter une machine à copier avec 2 têtes.

Machine de Turing multi-dimensionnelles

- Pour une machine bidimensionnelle, par exemple, on n'a pas de ruban, mais un plan (discret).
- Il faut donc tenir compte des mouvements : D, G, H, B mais aussi les déplacements en diagonale.

Machine de Turing à mémoire à accès direct

- Random Access: on peut accéder à chaque case en une étape, contrairement au ruban d'une machine de Turing qui est à accès séquentiel
- Cette machine comporte :
 - T : ruban à accès direct
 - T[0], T[1], T[2], T[3] ... : cases du ruban
 - $-R_0, R_1, R_2, R_3$: registres
 - K : compteur de programme (qui est un registre particulier).

Machine de Turing à mémoire à accès direct

Instructions:

```
- read j R_0 := T[R_i] placer dans le 1<sup>er</sup> registre le contenu de la
                           R<sub>i</sub>ème case, R<sub>i</sub> étant la valeur du jème registre
- write j T[R_i] := R_0
- store j R_i := R_0 placer le contenu du 1<sup>er</sup> registre dans le jème
                           registre
- load j R_0 := R_i
- load = c R_0 := c
- add j R_0 := R_0 + R_i
- add = c R_0 := R_0 + c
                              c : nombre entier
- sub j R_0 := \max\{ R_0 - R_i, 0 \}
- \text{ sub = c } R_0 := \max\{R_0 - c, 0\}
- half R_0 := integer\{ R_0 / 2 \}
```

Machine de Turing à mémoire à accès direct

• <u>Instructions</u> de contrôle :

```
– jump s K := s s : numéro d'instruction
```

- jpos s if $R_0 > 0$ then K := s
- jzero s if $R_0 = 0$ then K := s
- halt k := 0

Remarques

- Chaque instruction incrémente K : K := K + 1
- R₀: rôle particulier (accumulateur)

Machine de Turing à mémoire à accès direct

- Ainsi une machine de Turing à accès direct est un couple M = (k, ∏) où :
 - k > 0 est le nombre de registres,
 - $-\prod$ est une suite finie d'instructions (le <u>programme</u>).
- Une configuration d'une machine M = (k, ∏) est un (k+2)-uplet (m, R₀, ..., R_{k-1}, T) où :
 - m est le compteur de programme,
 - R_j (0 ≤ j < k) est le contenu du j^{ème} registre
 - T est un ensemble de couples d'entiers : (i,j) ∈ T signifie que la ième case du ruban contient la valeur j.

Machine de Turing à mémoire à accès direct

- Une telle machine peut être simulée par une machine de Turing à plusieurs rubans :
 - un ruban pour la mémoire,
 - un ruban pour le programme
 - un ruban pour chaque registre.
 - Le contenu de la mémoire est représenté par des paires de mots (adresse, contenu).
- La simulation pourrait être la répétition du cycle suivant :
 - parcourir le ruban du programme jusqu'à l'instruction correspondant à la valeur trouvée dans le compteur de programme,
 - lire et décoder l'instruction,
 - exécuter l'instruction → modifications éventuelles des rubans correspondant à la mémoire et / ou aux registres,
 - incrémenter le compteur de programme.

Machine de Turing à mémoire à accès direct

Exemple

- 1. store 2
- 2. load 1
- 3. jzero 19
- 4. half
- 5. store 3
- 6. load 1
- 7. sub 3
- 8. sub 3
- 9. jzero 13
- 10. load 4

- 11. add 2
- 12. store 4
- 13. load 2
- 14. add 2
- 15. store 2
- 16. load 3
- 17. store 1
- 18. jump 2
- 19. load 4
- 20. halt

```
R_0 := T[R_i]
read j
           T[R_i] := R_0
write j
           R_i := R_0
store i
load j
           R_0 := R_i
           R_0 := R_0 + R_i
add j
           R_0 := \max\{ R_0 - R_i, 0 \}
sub j
half
           R_0 := integer\{ R_0 / 2 \}
jump s
           K := S
           if R_0 > 0 then K := s
jpos s
           if R_0 = 0 then K := s
jzero s
halt
           k := 0
```

Ca fait quoi ?

Si initialement R_0 contient x et R_1 contient y, que contient R_0 à la fin de l'exécution ? (convention : tous les registres contiennent initialement 0)

Machine de Turing non déterministe

- Pour un état et un symbole courant, il peut y avoir plusieurs choix de comportements possibles.
- Une telle machine est décrite par M = (K, ∑, Γ, Δ, q₀, F)
 où :
 - Δ est un <u>sous-ensemble</u> de K × Γ × K × Γ × {G ∪ D}.
 - (Machine de Turing classique : δ est une <u>fonction</u> partielle de K × Γ dans K × Γ × {G \cup D}.)
- Ainsi une machine de Turing non déterministe peut produire deux sorties différentes pour une même entrée.
 - Une machine non déterministe est donc un <u>accepteur</u> dont le seul résultat qui nous intéresse est de savoir si la machine s'arrête ou non, sans considérer le contenu du ruban.

Machine de Turing non déterministe

• Le non déterminisme n'apporte aucune puissance supplémentaire.

En effet, pour toute machine de Turing non déterministe M, on peut construire une machine normale M' telle que pour toute chaîne $w \in \Sigma^*$ on a:

- si M s'arrête avec w en entrée, alors M' s'arrête sur w,
- si M ne s'arrête pas sur l'entrée w, alors M' ne s'arrête pas non plus sur w.
 Principe de la simulation au tableau...

Théorème

Tout langage accepté par une machine de Turing non déterministe est accepté par une machine de Turing déterministe

Machines de Turing universelles

- Existe-t-il une machine de Turing qui peut simuler n'importe quelle machine de Turing?
- Le but est de construire une machine de Turing M à laquelle on fournit :
 - la description d'une machine de Turing quelconque M'
 - un mot w
 - et qui simule l'exécution de M sur w.
- En clair construire une machine de Turing qui serait un interpréteur de machines de Turing...
- Ces machines de Turing existent et sont appelées machines de Turing universelles.

Une grammaire (générale) est un quadruplet

$$G = (V, \Sigma, R, S) où$$
:

- V : symboles non terminaux
- $-\sum$: symboles terminaux (V $\cap \sum = \emptyset$)
- S ∈ V : symbole de départ
- R est l'ensemble de règles :

sous ensemble fini de (V
$$\cup \Sigma$$
)* V (V $\cup \Sigma$)* × (V $\cup \Sigma$)*

Au moins un non-terminal

(Dans une grammaire algébrique, $R \subset V \times (V \cup \Sigma)^*$.)

Un et un seul non-termina

- Soient u et $v \in (V \cup \Sigma)^*$.
 - On dit que v <u>dérive directement de</u> u, et on note $u \Rightarrow_G v$, ssi $\exists x, y, w \in (V \cup \Sigma)^*, \exists A \in V$ tels que u = xAy et v = xwy et $A \rightarrow w \in R$
- La relation ⇒_G* est la fermeture réflexive transitive de la relation ⇒_G.
- Soient u et $v \in (V \cup \Sigma)^*$.

On dit que v dérive de u, et on note
$$u \Rightarrow_G^* v$$
,
ssi $\exists w_0, ..., w_n \in (V \cup \Sigma)^*$ tels que
 $u = w_0$ et $v = w_n$ et $w_i \Rightarrow_G w_{i+1} \forall i < n$.

- La suite $w_0 \Rightarrow_G w_1 \Rightarrow_G ... \Rightarrow_G w_n$ est appelée une dérivation
- La valeur de n (n ≥ 0) est la <u>longueur</u> de la dérivation.
- Soit G = (V, Σ, R, S) une grammaire. Le langage engendré par G, noté L(G), est :

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$$

 Deux grammaires qui engendrent le même langage sont dites équivalentes.

• Exemple: $G = (V, \Sigma, R, S) où$: $- V = \{ S, A, B, C, T_a, T_b, T_c \}$ $-\sum = \{a, b, c\}$ $-R = \{S \rightarrow ABCS,$ $S \rightarrow T_{c}$ $CA \rightarrow AC$ $BA \rightarrow AB$ $CB \rightarrow BC$ $CT_c \rightarrow T_c c$, $CT_c \rightarrow T_b c$, $BT_h \rightarrow T_h b$, $BT_b \rightarrow T_a b$, le langage généré est { $a^nb^nc^n | n \ge 1$ }. $AT_a \rightarrow T_a a$, Preuve: TD $T_a \rightarrow e$

- Théorème
 - Un langage L est engendré par une grammaire générale ssi il est récursivement énumérable.

(c-à-d accepté par une machine de Turing)

Grammaires Calculabilité grammaticale

Soit G = (V, ∑, R, S) une grammaire et f : ∑* → ∑* une fonction. On dit que G calcule f si ∀ w, v ∈ ∑* on a :
 SwS ⇒_G* v ssi v = f(w)

c-à-d toute dérivation par G de SwS donne v

- Une fonction f: ∑* → ∑* est <u>grammaticalement</u>
 <u>calculable</u> ssi il existe une grammaire la calculant.
- Théorème

Une fonction $f: \Sigma^* \to \Sigma^*$ est <u>récursive</u> (Turing-calculable) ssi elle est grammaticalement calculable

Fonctions de base

$$(k \ge 0)$$

$$(a) \ z\acute{e}ro_k : N^k \to N, \ d\acute{e}finie \ par$$

$$\forall \ n_1, \ ..., \ n_k \in N, \ z\acute{e}ro_k(n_1, \ ..., \ n_k) = 0.$$

$$(b) \ j^{\grave{e}me} \ k\text{-projecteur} \ (j^{\grave{e}me} \ k\text{-identit\'e}) : \ id_{k,j} : N^k \to N$$

$$\forall \ n_1, \ ..., \ n_k \in N, \ id_{k,j}(n_1, \ ..., \ n_k) = n_j \ (pour \ 1 \le j \le k)$$

$$(c) \ successeur : \forall \ n \in N, \ succ(n) = n+1$$

Opérations sur les fonctions

```
(1) composition:
            q: N^k \rightarrow N
            h_1, ..., h_k: \mathbb{N}^p \to \mathbb{N}
      Fonction f : composée de g avec h<sub>1</sub>, ..., h<sub>k</sub>
            f \cdot Np \rightarrow N
            f(n_1, ..., n_p) = g(h_1(n_1, ..., n_p), ..., h_k(n_1, ..., n_p))
(2) récursivité :
            g: N^k \rightarrow N
            h \cdot N^{k+2} \rightarrow N
      Fonction f : définie récursivement par g et h :
            f \cdot N^{k+1} \rightarrow N
            f(n_1, ..., n_k, 0) = g(n_1, ..., n_k)
            f(n_1, ..., n_k, m+1) = h(n_1, ..., n_k, m, f(n_1, ..., n_k, m))
```

- Fonctions primitives récursives : ensemble de fonctions de N^k → N (pour tout k ∈ N) pouvant être définies :
 - à partir des fonctions de base,
 - à l'aide des opérateurs composition et récursivité.

•
$$\underline{plus}: \mathbb{N}^2 \to \mathbb{N}$$
 $(n,m) \mid \to n + m$
 $\underline{plus}(n,0) = n$
 $= id_{1,1}(n)$
 $\underline{plus}(n,m+1) = succ(\underline{plus}(n,m))$
 $= succ(id_{3,3}(n,m,plus(n,m)))$

Exemple de prédicat primitif récursif

$$iszéro(0) = 1$$

 $iszéro(n+1) = 0$ (1 signifie vrai, 0 signifie faux)

Définition par cas :

$$f(x_1, ..., x_n) = \begin{cases} g_1(x_1, ..., x_n) & \text{si } p(x_1, ..., x_n) \\ g_2(x_1, ..., x_n) & \text{sinon} \end{cases}$$

Fonctions numériques *Minimisation*

• <u>Définition</u> (minimisation d'une fonction)

Soit g une fonction (k+1)-aire, pour un certain $k \ge 0$.

La <u>minimisation</u> de g est la fonction $f: N^k \to N$ définie par $f(n_1, ..., n_k) = \begin{cases} le \ plus \ petit \ m \ (s'il \ existe) \\ tel \ que \ g(n_1, ..., n_k, m) = 1 \\ 0 \ sinon \end{cases}$

Fonctions numériques *Minimisation*

Cette minimisation n'est pas toujours une fonction calculable :

```
L'algorithme
```

```
m := 0
tant que g(n_1, ..., n_k, m) \neq 1 faire m := m+1 fait
retourner m
```

peut ne pas se terminer.

Fonctions numériques *Minimisation*

 On dit qu'une fonction g est <u>minimisable</u> si sa minimisation est calculable par l'algorithme précédent,

c-à-d ssi:

```
\forall n_1, ..., n_k \in \mathbb{N}, \exists m \in \mathbb{N} \text{ tel que } g(n_1, ..., n_k, m) = 1
```

On note alors
$$\mu$$
 m[g(n₁, ..., n_k, m)] = le plus petit m (s'il existe) tel que g(n₁, ..., n_k, m) = 1 0 sinon

Fonctions numériques Fonctions μ-récursives

- Les fonctions <u>μ-récursives</u> sont les fonctions obtenues à partir :
 - des fonctions de base
 - des opérations de composition et de récursivité
 - de la minimisation pour les fonctions minimisables

Fonctions numériques Fonctions *µ*-récursives

Exemple

Si
$$Log(m, n) = \lceil log_{m+2}(n+1) \rceil$$

Alors on a $Log(m, n) = \mu p[(m+2)\uparrow p \ge n+1]$

• Théorème (équivalence μ -récursive et récursive)

Une fonction $f: N^k \to N$ est μ -récursive ssi elle est récursive

(= Turing-calculable).