# A Study on Robustness to Perturbations for Representations of Environmental Sound

Sangeeta Srivastava, Ho-Hsiang Wu, Joao Rulff, Magdalena Fuentes, Mark Cartwright, Claudio Silva, Anish Arora, Juan Pablo Bello









# Self-supervised Learning





### **Evaluating Generalization**

#### **Generalization Question**

Does the audio embeddings yield a good classifier for all audio related tasks/datasets?

| Evaluation suite                                                    | #audio models | #tasks |
|---------------------------------------------------------------------|---------------|--------|
| HARES <sup>1</sup> (Holistic Audio Representation Evaluation Suite) | 13            | 12     |
| HEAR <sup>2</sup> (Holistic Evaluation of Audio Representations)    | 29            | 19     |

<sup>[1]</sup> Turian, Joseph, et al. "HEAR: Holistic Evaluation of Audio Representations." arXiv preprint arXiv:2203.03022 (2022).

<sup>[2]</sup> Wang, Luyu, et al. "Towards learning universal audio representations." ICASSP 2022.

#### Limitations of the Evaluation Suites

- Lack of variations within the dataset
  - Evaluation dependent on the variability already captured in the datasets
  - Evolving test scenarios in the same data domain
- Need for annotations
  - Dependency on the presence of labels in the downstream tasks

### Case Study: Environmental Sound Detection



**New deployment** 



**New acoustic conditions** 

- Channel effects Variations in:
  - Acoustic conditions
  - Microphone ranges

### **Evaluating Robustness**

#### **Robustness Question**

If there is a change in the input that does not change the semantics of the sound, does the new embedding space also preserve them?

#### Goal

Evaluate the <u>robustness of the audio embeddings</u> against variations caused by myriad microphones' range and acoustic conditions (i.e. <u>channel effects</u>) for environmental sound detection

### **Proposed Solution**

#### **Proposed Solution**

**Variability:** Artificial degradation of signals by applying different mathematical transformations or **perturbations** 

Task-free: Distance metrics to quantify shift in the embedding space directly

# **Experimental Pipeline**



| X            |  |
|--------------|--|
|              |  |
| UrbanSound8K |  |
| SONYC-UST    |  |
|              |  |

| Φ             |                                   |  |
|---------------|-----------------------------------|--|
| Pert. Type    | Pert. Values                      |  |
| High Pass     | {100, 200, 400, 800, 1600, 4k} Hz |  |
| Low Pass      | {8k, 4k, 1600, 800, 400} Hz       |  |
| Reverberation | {25, 50, 75, 100} %               |  |
| Gain          | {3, 6, 10, 20, 30} dB             |  |

OpenL<sup>3</sup>
YAMNet

# Shift in the Embedding Space

Metrics should inform on how the classifications might change







Increase in pairwise distances







### **Metrics**

- Absolute pairwise distances
  - Mean Cosine Distance (CD)
- Relative distances
  - How much the dendrograms of the hierarchical clustering change?
  - Cophenetic Correlation Distance (CPCD)
- Distribution shift
  - Assumption: Distributions are Gaussian
  - Fréchet Audio Distance (FAD³)

### **Evaluation**

- How do the representation types OpenL<sup>3</sup> and YAMNet compare?
- How does the shift compare with the downstream performance?
- What is the effect in each perturbation type?

# Comparison of Representation Types



\* Smaller value is preferred

- YAMNet exhibits higher sensitivity as compared to OpenL<sup>3</sup>
  - Larger slope -> more sensitive to change

### Distance Metrics and Downstream Evaluation



<sup>\*</sup> Smaller value is preferred

FAD inversely correlates with downstream performance as perturbation severity increases

<sup>\*\*</sup> Larger value is preferred

# Comparison of Perturbation Types



- Embeddings more robust to gain and reverb than to high- and low-pass filtering
- OpenL<sup>3</sup> changes significantly with low-pass filtering
  - Codec-related shortcuts<sup>4</sup> in self-supervised learning

#### Conclusion

#### Contributions

- Evaluate robustness of audio embeddings against channel effects in a task-free setting
- OpenL<sup>3</sup> performs better than YAMNet (in line with HEAR results)
- FAD has high inverse correlation with downstream performance
  - May be used for data augmentation
- Embeddings more robust to changes in gain and reverberation than in high/low pass filtering

#### Limitations

- Still preliminary analysis
- Distance show correlation but further work is needed for them to be actual predictors

#### Future Work

- Extending the analysis to more datasets/embeddings
- Formalizing the theory

# Thank You