AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection

Yangting Shi, Renjie He, Le Hui, Xiang Li, Jian Yang, Ming-Ming Cheng, Yimian Dai

arXiv: https://arxiv.org/abs/2505.15184

code: https://github.com/GrokCV/AuxDet

Background

Remote Target Detection

₩hy Infrared Target Detection?

Background

Remote Target Detection

Short-wave infrared defogging effect. Image source: https://zhuanlan.zhihu.com/p/680624604

₩ Why Infrared Target Detection?

♦See through darkness and fog

♦Spot small targets with thermal contrast

☆Typical Applications:

Night surveillance, Search and rescue, Maritime target detection, and more

Background

Infrared Small Target Detection (IRSTD)

Challenges of IRSTD:

- ◆Target Smallness & Lack of Texture
 - → Lacking size and features for reliable detection
- *♦*Complex & Dynamic Background
 - → High false alarm rate due to structured noise

Current Solutions:

- ♦ Robust Feature Extraction
 - → Multi-scale fusion, local enhancement
- ♦ Refined Attention Mechanisms
 - → Context modeling, background suppression

What's missed?

- ◇Wide-area sensing demand
- ◇Imaging condition diversity

Is feature-engineering-only detection still enough?

Motivation

Omni-Domain IRSTD

- multi-platform observations
- e.g., land-based, aerial-based, and space-based
- multi-spectral bands

e.g., LWIR, NIR, SWIR

- multi-target types
- point-like, spot-like, and extended targets
- multi-resolution imaging

from 256×256 to 6000×6000

Motivation

Omni-Domain IRSTD

- Challenge: Existing models struggle to generalize across platforms, sensors, and resolutions
 - (air-based, land-based, space-based); (LWIR, SWIR, NIR); $(256 \times 256 6000 \times 6000 +)$
- Observation: Metadata is readily available but underused
- ♦ Insight: Metadata encodes global context that complements visual features
- ◆ Motivation: Leverage **metadata** for efficient, adaptive detection across omni-domain scenarios

Conventional visual-only paradigm

Leveraging auxiliary metadata for multi-modal scene-aware optimization

Imaging Conditions + Global Semantics

AuxDet (Visual-Metadata Dual-Pathway)

Metadata Encoding and Alignment

© Dynamic Feature Modulation Based on Auxiliary Cues

Sample-wise Channel and Spatial Modulation

Dynamic MLP-based¹ Multimodal Feature Fusion

1. Yang L, Li X, Song R, et al. Dynamic MLP for fine-grained image classification by leveraging geographical and temporal information[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022: 10945-10954.

AuxDet (Visual-Metadata Dual-Pathway)

Metadata Encoding and Alignment

Detail Feature Completion

Gaussian-Laplacian-inspired 2D initialization scheme

Lightweight Head Edge Enhancement Module Head **FPN** LEEM 1D CNN MLP

 $\overline{\mathbf{x}} = \mathbf{x} + \gamma \odot \left(\frac{\mathbf{x}_{\text{hori}} - \mu_{\text{space}}}{\sqrt{\sigma_{\text{space}}^2 + \grave{o}}} \right).$

Experiments

Dataset: WideIRSTD-Full Dataset²

This dataset integrates seven prominent public datasets, namely SIRST-V2, IRSTD-1K, IRDST, NUDT-SIRST, NUDT-SIRST-Sea, NUDT-MIRSDT, and Anti-UAV, augmented by an additional dataset from the National University of Defense Technology.

2. https://github.com/XinyiYing/WideIRSTD-Dataset

Table 1: Comparison with Other State-of-the-Art Methods on WideIRSTD-Full Dataset

	Method			WideIRSTD-Full Dataset		t
Category	Venue	Backbone	FLOPs ↓	Params. ↓	AP ₅₀ (%) ↑	Recall (%)
General Object Detection	⊳ One-stage	> Two-stage → End-to-End	·l			ш,
RetinaNet [22]	ICCV ¹⁷	ResNet50	0.197T	36.330M	60.7	74.8
TOOD [10]	ICCV ¹⁹	ResNet50	0.191T	32.018M	53.2	61.9
FCOS [36]	ICCV ¹⁹	ResNet50	0.194T	32.113M	49.2	58.3
GFL [21]	NeurIPS ²⁰	ResNet50	0.197T	32.258M	48.5	60.2
ATSS [54]	CVPR ²⁰	ResNet50	0.194T	32.113M	50.1	60.6
AutoAssign [57]	arXiv ²⁰	ResNet50	0.195T	36.244M	51.2	62.1
Faster R-CNN [29]	NeurIPS ¹⁵	ResNet50	0.200T	41.348M	31.2	33.5
Cascade R-CNN [1]	TPAMI ¹⁹	ResNet50	0.228T	69.152M	35.8	37.5
Grid R-CNN [25]	CVPR ¹⁹	ResNet50	0.313T	64.467M	32.2	34.8
Cascade RPN [37]	NeurIPS ¹⁹	ResNet50	0.190T	42.527M	74.4	84.6
Libra R-CNN [28]	CVPR ¹⁹	ResNet50	0.209T	41.611M	30.7	33.8
Dynamic R-CNN [50]	ECCV ²⁰	ResNet50	0.200T	41.348M	35.0	37.2
SABL [38]	ECCV ²⁰	ResNet50	0.198T	36.357M	64.1	77.8
Deformable DETR [59]	ICLR ²¹	ResNet50	0.189T	40.099M	33.1	49.8
Sparse R-CNN [32]	CVPR ²¹	ResNet50	0.146T	0.106G	40.4	62.1
DINO [51]	arXiv ²²	ResNet50	0.268T	47.540M	67.1	82.8
DAB-DETR [23]	ICLR ²²	ResNet50	99.511G	43.702M	17.6	31.9
Small Target Specialized	7					102
ALCNet [8]	TGRS ²¹	ResNet20	6.047G	42.700M	36.3	69.7
NWD [42]	ISPRS ²²	DetectoRS (ResNet50)	0.235T	0.123G	48.5	53.6
RFLA [43]	ECCV ²²	DetectoRS (ResNet50)	0.235T	0.123G	71.8	80.6
OSCAR [5]	TGRS ²³	ResNet50	0.327T	30.730M	40.2	65.4
DNANet [18]	TIP ²³	(<u>~</u>	0.228T	4.697M	73.9	46.9
RDIAN [30]	TGRS ²³	-	0.059T	0.217M	62.5	51.8
DQ-DETR [16]	ECCV ²⁴	ResNet50	1.476T	58.680M	70.1	81.3
EFLNet [45]	TGRS ²⁴	i -	0.102T	38.336M	73.7	68.1
PConv [47]	AAAI ²⁵	((E	0.012T	2.922M	71.7	64.5
AuxDet (Ours)	2	ResNet50	0.215T	45.279M	77.9	87.2

The guiding role of metadata

Table 3: Ablation Study on Module Combinations and Parameter Analysis

Strategy	Module Config.	Perfor	Params. (M)	
	Architecture	AP ₅₀ (%) ↑	Recall (%)↑	
(a)	Baseline	74.7	84.5	42.527
(b)	PSSM Only	75.8	85.7	44.234
(c)	PSCM Only	75.7	85.3	44.230
(d)	$PSSM \rightarrow PSCM$	76.3	86.1	44.367
(e)	$PSCM \rightarrow PSSM$	76.8	86.3	44.367
(f)	PSSM + PSCM	77.2	86.7	44.367

LEEM is lightweight and enhances small-target details

Table 4: Ablation study on Lightweight Edge Module vs 3×3 Standard Convolution

Module Structure	Perfo	Params. (M)	
Kernel Decomposition	AP ₅₀ (%) ↑	Recall (%) ↑	
Baseline	74.7	84.5	42.527
$W_{3\times3}$ (Standard)	77.3	86.7	43.116
$W_{1\times3} \rightarrow W_{3\times1}$	77.2	86.8	42.723

Figure 3: Visualization of detection results. Green circles indicate false alarms, while green rectangles mark missed detections. Compared to other methods, AuxDet has fewer missed detections and false alarms.

Figure 2: Feature visualization comparison. White masks annotate small targets, where comparative analysis demonstrates our method's enhanced small-target focusing capability over the baseline. In ground truth annotations, we use red to mark distinct contiguous maritime regions and blue to denote barely discernible maritime areas under heavy cloud interference.

Summary

Core Problem: The visual-only paradigm struggles to generalize in Omni-Domain IRSTD.

Motivation: Metadata is naturally available, low-cost, semantically rich, and encodes imaging domain characteristics.

Our Method: AuxDet, a metadata-driven IRSTD paradigm, <u>deeply leverages auxiliary cues to</u> <u>facilitate the dynamic injection of imaging condition priors and adaptive perceptual tuning for cross-domain images</u>.

Key Findings: Auxiliary metadata proves essential for enhancing robustness and accuracy, showing broad adaptability in Omni-IRSTD scenarios.

Future Work: Exploring richer metadata sources.

Leveraging vision-language models for metadata understanding and extension.

THANK YOU!

arXiv: https://arxiv.org/abs/2505.15184

code: https://github.com/GrokCV/AuxDet