

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

Динамическое программирование и процессы управления

Студент 415 группы Егоров К. Ю. Руководитель практикума к.ф.-м.н., доцент И.В. Востриков

Содержание

1 Об эллипсоидах

3

1 Об эллипсоидах

Определение 1. Назовём эллипсоидом множество

$$\mathcal{E}(q, Q) = \{x \in \mathbb{R}^n : \langle x - q, Q^{-1}(x - q) \rangle \leq 1\},$$
 где $Q = Q^T > 0.$

Утверждение 1. Опорная функция и опорный вектор эллипсоида имеют вид:

$$\rho(l \mid \mathcal{E}(q, Q)) = \langle l, q \rangle + \langle l, Ql \rangle^{1/2},$$

$$x(l) = q + \frac{Ql}{\langle l, Ql \rangle^{1/2}}.$$

Доказательство.

Будем доказывать для случая q=0. Иначе — аналогично.

Так как по определению $\rho(l \mid A) = \sup_{x \in A} \langle l, \, x \rangle$, то мы должны решать задачу максимизации скалярного произведения $\langle l, \, x \rangle$ при условии, что $\langle x, \, Q^{-1}x \rangle = 1$. Запишем функцию Лагранжа для этой задачи:

$$\mathcal{L}(l, x, \lambda) = \langle l, x \rangle + \lambda(\langle x, Q^{-1}x \rangle - 1).$$

Тогда

$$\frac{\partial \mathcal{L}}{\partial x} = l + 2\lambda Q^{-1}x = 0 \implies x(l) = -\frac{1}{2\lambda}Ql.$$

Подставим получившееся выражение для опорного вектора в условие:

$$\left\langle -\frac{1}{2\lambda}Ql,\, -\frac{1}{2\lambda}Q^{-1}Ql\right\rangle = 1 \implies \lambda = -\frac{1}{2}\langle l,\, Ql\rangle^{^{1/2}} \implies x(l) = \frac{Ql}{\langle l,\, Ql\rangle^{^{1/2}}}.$$

В таком случае опорная функция в направлении $l \neq 0$ равна

$$\rho(l \mid \mathcal{E}(0, Q)) = \left\langle l, \frac{Ql}{\langle l, Ql \rangle^{1/2}} \right\rangle = \langle l, Ql \rangle^{1/2}.$$

Рис. 1: Эллипсоид с центром $q=\begin{bmatrix}1\\2\end{bmatrix}$ и матрицей $Q=\begin{bmatrix}5&3\\3&2\end{bmatrix}$.

Рис. 2: Сумма двух эллипсоидов.

Список литературы

[1] Kurzhanski A. B., Varaiya P. $Dynamics\ and\ Control\ of\ Trajectory\ Tubes.$ Birkhauser, 2014.