

Survival Methods in Electronic Health Records Data in the Presence of System Migration

UCI STOTISTICS

Kyle Conniff¹, Luohua Jiang, PhD², Joan O'Connell, PhD³, Daniel L. Gillen, PhD¹

1 University of California, Irvine Department of Statistics
 2 University of California, Irvine Department of Epidemiology and Biostatistics
 3 Centers for American Indian and Alaska Native Health, University of Colorado Anschutz Medical Campus

Introduction

- Electronic Health Record data are subject to several biases (confounding bias, selection bias, informed-presence bias, and misclassification bias to name a few).
- In time-to-diagnosis studies (e.g. time-to-dementia diagnosis), patients may have multiple insurance and healthcare provider options.
- When patients switch between multiple providers, valuable information may be missing within a single EHR database.
- We define System Migration (SM): patients using multiple healthcare systems.

Motivation

This methodology is motivated by research into Alzheimer's disease and related dementias in Indian Health Services (IHS) data. The IHS is a federally-funded health system for qualifying American Indians and Alaskan Natives. In fiscal year 2010, 93.5% of IHS-enrolled participants aged 65+ also had Medicare coverage¹. This led to concern that patients may be using multiple healthcare systems for treatment. The application of this method to IHS data is undergoing IHS and tribal review as a key component data sovereignty and decolonization of Indigenous health data.

Methodology

To account for SM in EHR data, we propose a two-step solution:

1. Build predictive return-to-system model to identify patients

who are potentially migrating between systems.

2. For the patients identified in (1), use multiple imputation to impute return-to-system times that are more "normal" for the given patient.

References

¹ O'Connell et al. ARRA ACTION: Comparative Effectiveness of Health Care Delivery Systems for American Indians and Alaska Natives Using Enhanced Data Infrastructure. 2014.

² Law and Brookmeyer. Effects of Mid-point Imputation on the Analysis of Doubly Censored Data. 1992.

Acknowledgements

This research was supported by the National institutes of Health's National Institute of Aging Diversity Supplement PA-21-071 under the R01 parent grant (5R01AG061189) awarded to Drs. Joan O'Connell and Luohua Jiang.

Results MAR1 MAR2: SM does not depend on any covariates MAR2: SM depends only on collected covaria

3070 (12.0	70)			· ·			3070 (10.27	·)			\	/	
		Ó	0.2	0.4	0.6			Ó	ı	0.2	0.4	0.6	
	No In	nputation	Midpoint	Imputation	Multiple Imputat	ion		No Imr	outation	Midpoint	Imputation	Multiple Impu	ıtation
Cens SM%		ModEmpCov		ModEmpCov			$\overline{ m Cens}$ $\overline{ m SM\%}$	-	ModEmpCov		ModEmpCov		
Rate (SMD%)	$(\% { m Bias})$	Var Var %	(% Bias)	Var Var %	(% Bias) Var Var	. %	Rate (SMD%)	(% Bias)	Var Var %	(% Bias)	Var Var %	(% Bias) Var	Var %
$0.35 0 \ (\ 0.0)$	0.59 (0.2)	1.8 1.8 96	0.59 (0.5)	1.8 1.9 94	$0.59 \ (\ 0.3) \ 1.8 \ 1.8$	95	$0.35 0 (\ 0.0)$	\ /		,	1.8 2.0 94	0.59 (1.0) 1.8	
\ /	,		\ \ \		$\left[0.58 \; (\text{-}0.8) \;\; 1.8 \;\; 1.8 \right]$,		0.59 (-0.2) 1.8	
					$\begin{bmatrix} 0.56 & (-4.0) & 1.8 & 1.6 \end{bmatrix}$		\ /	,		,		0.54 (-7.3) 2.1	
0.35 90 (27.8)	$0.42 \; (-29.3)$	1.7 2.1 3	$0.53 \ (-10.0)$	1.7 2.0 70	$\left 0.54 \; (-8.9) \;\; 1.9 \;\; 1.5 \right $	80	0.35 90 (31.7)	0.07 (-88.7)	$1.6 \ 1.9 \ 0$	$0.24 \; (-58.5)$	$1.5 \ \ 2.0 \ \ \ 0$	$0.43 \ (-26.8) \ \ 2.2$	1.6 4
$\begin{vmatrix} 0.70 & 0 & (0.0) \end{vmatrix}$	$0.59 \; (\; 0.0)$	3.7 3.7 95	0.59 (0.1)	3.7 3.8 94	$oxed{0.59\ (\ 0.4)\ \ 3.7\ \ \ 3.7}$	96	$0.70 \ 0 \ (0.0)$	0.59 (-0.2)	3.7 3.8 94	0.59 (-0.4)	3.7 3.6 96	$0.59 \; (\; 0.3) \;\;\; 3.7$	3.6 95
0.70 10 (1.4)	$0.56 \; (\; ext{-}4.9)$	3.7 3.9 91	0.57 (-2.9)	3.7 3.7 94	$ig 0.59 \; (\; 0.3) \;\; 3.7 \;\;\; 3.7$	95	0.70 10 (1.9)	$0.50 \ (-15.6)$	3.6 4.7 64	0.51 (-13.3)	3.6 4.2 72	0.59 (-0.4) 3.7	3.5 96
0.70 50 (7.0)	$ig 0.47 (ext{-}20.5)$	3.6 4.5 46	0.52 (-11.7)	3.6 4.2 77	$igg 0.58 \ (\text{-}1.4) \ \ 3.8 \ \ \ 3.5$	95		,		,		$0.55 \ (\ -6.4) \ \ 4.2$	
0.70 90 (12.7)	$[0.39 \; (-34.2)$	3.6 4.5 11	0.47 (-19.3)	3.6 4.8 51	$\left 0.56 \right. \left(\text{-}4.6 \right) \right. \left. 4.0 \right. \left. 3.2 \right. $	95	0.70 90 (15.2)	0.01 (-98.9)	3.7 4.2 0	$0.14 \ (-75.9)$	$3.5 \ \ 4.0 \ \ \ 0$	$0.44 \ (-24.9) \ 4.7$	3.2 40

Tables 1 & 2: Coefficient estimates of a continuous covariate (n = 1000) from Cox PH model under MAR1 (left) and MAR2 (right) SM (1000 simulations). Variances are all $x10^{-3}$. SMD% represents the percent of patients whose SM resulted in displaced diagnosis time.

System migration multiple imputation method

- Step 0: Given longitudinal survival data, a number of imputations, n.imps, and a cutoff for system migration, p.cut
- Step 1: Estimate $S_i(t)$ with $exp\{\hat{\Lambda}_{0i}e^{x_i\hat{\gamma}}\}$
- Step 2: Predict $p_{m_i} = \hat{S}_i (T_{K_i} T_{(K-1)_i})$
- Step 3: If $(p.cut > p_{m_i})$ then set $p_{m_i} = 0$ While j in n.imps
- Step 4: $MI_i \sim Bern(p_{m_i})$
- Step 5: If($MI_i == 1$), then draw $U_i \sim \text{Unif}(0,1)$
- Step 6: Set $T_{K_i} = \min(T_{(K-1)_i} + \hat{S}_i^{-1}(U_i), T_{K_i})$
- Step 7: set $\beta_j = \text{Estimate } \beta$
- Step 8: set $\beta = \sum_{n.imps} \frac{p_n}{n.imps}$

where $\hat{\Lambda}_{0i} = \sum_{j:t_j \leq t} \frac{d_j}{\sum_{i \in R_j} exp\{x_i \hat{\gamma}\}}$ is the Nelson-Aalen estimator

 $\hat{\gamma}$ are Cox PH coefficients

 p_{m_i} is individual i's probability of system migration, $\hat{S}_i(t)$ is subject i's probability of returning after time t, T_{K_i} is the last observation (time of event) for individual i, MI_i is an indicator of individual i's system migration status.

Results

- SM can induce bias with as little as 4% of patients being diagnosed in another system.
- Knowing who is migrating across systems is not enough for effective imputation.
- The proposed model can reduce bias resulting from SM.
- Variances are not impacted by SM.

Conclusions

- SM can induce a missing at random mechanism even when an individual's SM does not depend directly on covariates.
- Hazard ratio estimates are biased toward the null
- Patients with earlier event times look similar to patients with later event times.
- Midpoint imputation² on SM patients is not enough to completely remove bias.
- It is important to account for the time at which patients are predicted to leave the system.
- The proposed multiple imputation method:
 - removes bias with low-to-moderate amounts of SM.
 - reduces bias in more extreme SM settings.

Next steps

- Extend this methodology for robustness to model misspecification.
- Extend time-varying area under the receiver operating characteristic curve to the recurrent event setting to improve the prediction modeling of this method.