

Auxiliary Sections > Integral Transforms > Tables of Inverse Laplace Transforms > Inverse Laplace Transforms: Expressions with Square Roots

Inverse Laplace Transforms: Expressions with Square Roots

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
1	$\frac{1}{\sqrt{p}}$	$\frac{1}{\sqrt{\pi x}}$
2	$\sqrt{p-a} - \sqrt{p-b}$	$\frac{e^{bx} - e^{ax}}{2\sqrt{\pi x^3}}$
3	$\frac{1}{\sqrt{p+a}}$	$\frac{1}{\sqrt{\pi x}}e^{-ax}$
4	$\sqrt{\frac{p+a}{p}} - 1$	$\frac{1}{2}ae^{-ax/2}\left[I_1\left(\frac{1}{2}ax\right) + I_0\left(\frac{1}{2}ax\right)\right]$
5	$\frac{\sqrt{p+a}}{p+b}$	$\frac{e^{-ax}}{\sqrt{\pi x}} + (a-b)^{1/2}e^{-bx} \operatorname{erf}\left[(a-b)^{1/2}x^{1/2}\right]$
6	$\frac{1}{p\sqrt{p}}$	$2\sqrt{\frac{x}{\pi}}$
7	$\frac{1}{(p+a)\sqrt{p+b}}$	$(b-a)^{-1/2}e^{-ax} \operatorname{erf}[(b-a)^{1/2}x^{1/2}]$
8	$\frac{1}{\sqrt{p}(p-a)}$	$\frac{1}{\sqrt{a}}e^{ax}\operatorname{erf}\left(\sqrt{ax}\right)$
9	$\frac{1}{p^{3/2}(p-a)}$	$a^{-3/2}e^{ax}\operatorname{erf}\left(\sqrt{ax}\right) - 2a^{-1}\pi^{-1/2}x^{1/2}$
10	$\frac{1}{\sqrt{p}+a}$	$\pi^{-1/2}x^{-1/2} - ae^{a^2x}\operatorname{erfc}(a\sqrt{x})$
11	$\frac{a}{p(\sqrt{p}+a)}$	$1 - e^{a^2 x} \operatorname{erfc}(a\sqrt{x})$
12	$\frac{1}{p + a\sqrt{p}}$	$e^{a^2x}\operatorname{erfc}(a\sqrt{x})$
13	$p^{-n-1/2}$, $n=1, 2, \dots$	$\frac{2^n}{1\cdot 3\dots (2n-1)\sqrt{\pi}} x^{n-1/2}$
14	$(p+a)^{-n-1/2}$	$\frac{2^n}{1\cdot 3\dots (2n-1)\sqrt{\pi}} x^{n-1/2} e^{-ax}$
15	$\frac{1}{\sqrt{p^2 + a^2}}$	$J_0(ax)$
16	$\frac{\sqrt{p^2 + a^2}}{\sqrt{p^2 - a^2}}$	$I_0(ax)$

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
17	$\frac{1}{\sqrt{p^2 + ap + b}}$	$\exp(-\frac{1}{2}ax)J_0[(b-\frac{1}{4}a^2)^{1/2}x]$
18	$\left(\sqrt{p^2 + a^2} + p\right)^{-n}$	$na^{-n}x^{-1}J_n(ax)$
19	$\left(\sqrt{p^2 - a^2} + p\right)^{-n}$	$na^{-n}x^{-1}I_n(ax)$
20	$(p^2 + a^2)^{-n-1/2}$	$\frac{(x/a)^n J_n(ax)}{1 \cdot 3 \cdot 5 \dots (2n-1)}$
21	$(p^2 - a^2)^{-n-1/2}$	$\frac{(x/a)^n I_n(ax)}{1 \cdot 3 \cdot 5 \dots (2n-1)}$

Notation: $J_{\nu}(z)$ is the Bessel function of the first kind, $I_{\nu}(z)$ is the modified Bessel function of the first kind, erf z is the error function, erfc z is the complementary error function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954.

Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958.

Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Inverse Laplace Transforms: Expressions with Square Roots

Copyright © 2005 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/auxiliary/inttrans/LapInv3.pdf