Funciones Normalizado

Camila Silva

2023-04-14

```
library("phyloseq")
library("ggplot2")
library("vegan")

## Loading required package: permute

## Loading required package: lattice

## This is vegan 2.6-4

library("RColorBrewer")
library("stringi")
```

Cargado de datos originales

```
setwd("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/Data1")
outpath = "/home/camila/GIT/Tesis_Maestria/Analisis_Comparativo/Fresa_Solena/Results_img"

fresa_kraken <- import_biom("fresa_kraken.biom")
colnames(fresa_kraken@tax_table@.Data) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "fresa_kraken@tax_table@.Data <- substr(fresa_kraken@tax_table@.Data,4,100)
colnames(fresa_kraken@otu_table@.Data) <- substr(colnames(fresa_kraken@otu_table@.Data),1,6)
metadata_fresa <- read.csv2("/home/camila/GIT/Tesis_Maestria/Data/fresa_solena/Data1/metadata.csv",head
fresa_kraken@sam_data <- sample_data(metadata_fresa)
fresa_kraken@sam_data$Sample<-row.names(fresa_kraken@sam_data)
colnames(fresa_kraken@sam_data)<-c('Treatment','Samples')
samples_to_remove <- c("MP2079","MP2080","MP2088","MP2109","MP2137")
fresa_kraken_fil <- prune_samples(!(sample_names(fresa_kraken) %in% samples_to_remove), fresa_kraken)
percentages_fil <- transform_sample_counts(fresa_kraken_fil, function(x) x*100 / sum(x) )
percentages_df <- psmelt(percentages_fil)</pre>
```

Normalización de los datos

Cada una de las funciones de normalización toma un objeto phloseq y devuelve un objeto physeq cuya tabla otu se transforma.

edgeRnorm

Esta función escala datos NGS normalizados utilizando la función de normalización provista en edgeR.

```
edgeRnorm = function(phy, ...){
  require("edgeR")
  require("phyloseq")
  if (!taxa_are_rows(phy)) {
    phy <- t(phy) #transpone el objeto phyoseq
 x = as(otu_table(phy), "matrix")
  x = x + 1
 y = edgeR::DGEList(counts = x, remove.zeros = TRUE)
  z = edgeR::calcNormFactors(y, ...)
  if (!all(is.finite(z$samples$norm.factors))) {
    stop("Something wrong with edgeR::calcNormFactors on this data, non-finite $norm.factors")
  }
 return(z)
}
z <- edgeRnorm(fresa_kraken_fil, method = "TMM")</pre>
## Loading required package: edgeR
## Loading required package: limma
unimos z con el resto del objeto phyloseq
nor fresa kraken fil <- merge phyloseq(otu table(z@.Data[[1]], taxa are rows = TRUE),
                         tax_table(fresa_kraken_fil@tax_table@.Data),
                         fresa kraken fil@sam data)
```

Subconjunto de "Eukaryota"

```
merge_Eukaryota<-subset_taxa(nor_fresa_kraken_fil,Kingdom=="Eukaryota")</pre>
```

Subconjunto de "Bacteria"

```
merge_Bacteria<-subset_taxa(nor_fresa_kraken_fil,Kingdom=="Bacteria")</pre>
```

Funciones

Crea los subconjuntos de datos input phy phyliseq total tax rango al que queremos recortar output

```
glomToGraph<-function(phy,tax){
    ## creamos el subconjunto dependiendo del linaje taxonomico deseado
    glom <- tax_glom(phy, taxrank = tax)
    ## sacamos los porcentajes
    percentages <- transform_sample_counts(glom, function(x) x*100 / sum(x) )
    percentages_df <- psmelt(percentages)
    return(list(glom,percentages,percentages_df))
}</pre>
```

Graficar abundancias stackbar

input entra el percentages df

```
Abundance_barras <- function(phy,tax,attribute,abundance_percentage){
  ##llamar funcion de datos
  Data <- glomToGraph(phy,tax)</pre>
  glom <- Data[[1]] #phyloseq</pre>
  percentages <- Data[[2]] #phyloseq</pre>
  percentages_df <- Data[[3]] # dataframe</pre>
  ## Graficamos para cada subconjunto las barras de abundancia
  plot_barras <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill=tax ,color=attr</pre>
    scale colour manual(values=c('white', 'black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.key.size = unit(0.2, "cm"),
          legend.key.width = unit(0.25, "cm"),
          legend.position = "bottom",
          legend.direction = "horizontal",
          legend.title=element_text(size=8, face = "bold"),
          legend.text=element_text(size=6),
          text = element_text(size=12),
          axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
  percentages_df$tax<-percentages_df[,ncol(percentages_df)]</pre>
  percentages_df$tax[percentages_df$Abundance < abundance_percentage] <- "Others"</pre>
  percentages_df$tax <- as.factor(percentages_df$tax)</pre>
  plot_percentages <- ggplot(data=percentages_df, aes_string(x='Sample', y='Abundance', fill='tax', col
    scale_colour_manual(values=c('white','black')) +
    geom_bar(aes(), stat="identity", position="stack") +
    labs(title = "Abundance", x='Sample', y='Abundance', color = tax) +
    theme(legend.key.size = unit(0.3, "cm"),
          legend.key.width = unit(0.5, "cm"),
          legend.position = "bottom",
          legend.direction = "horizontal",
          legend.title=element_text(size=10, face = "bold"),
          legend.text=element_text(size=8),
          text = element_text(size=12),
          axis.text.x = element_text(angle=90, size=5, hjust=1, vjust=0.5))
  return(list(plot_barras,plot_percentages))
```

Graficar betadiversity

```
Beta_diversity <- function(phy,tax,attribute,distance){
  Data <- glomToGraph(phy,tax)
  glom <- Data[[1]]
#CREAR UN GLOM AL 10%
percentages <- Data[[2]]
percentages_df <- Data[[3]]
## Beta diversidad
meta_ord <- ordinate(physeq = percentages, method = "NMDS", distance = distance)
plot_beta <- plot_ordination(physeq = percentages, ordination = meta_ord, color = attribute) +
  geom_text(mapping = aes(label = colnames(phy@otu_table@.Data)), size = 3, vjust = 1.5)
  return(plot_beta)
}</pre>
```

Graficar alphadiversity

```
Alpha_diversity <- function(phy,tax,attribute){

## llamamos la funcion que crea los dataset

Data <- glomToGraph(phy,tax)
glom <- Data[[1]]

percentages <- Data[[2]]
percentages_df <- Data[[3]]

## Alfa diversidad
plot_alpha <- plot_richness(physeq = glom, measures = c("Observed", "Chao1", "Shannon", "simpson"), x = a return(plot_alpha)
}

## —— Eukarya by Phylum

Barras_Phylum <- Abundance_barras(merge_Eukaryota, 'Phylum' , 'Treatment', 10.0)

## Warning: 'aes_string()' was deprecated in ggplot2 3.0.0.

## i Please use tidy evaluation ideoms with 'aes()'

Barras_Phylum[1] # normal

## [[1]]
```


Barras_Phylum[2]

Abundance

Beta_diversity(merge_Eukaryota , 'Phylum' , 'Treatment', 'bray')

```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.01197068
## Run 1 stress 0.0001004821
## ... New best solution
## ... Procrustes: rmse 0.03520944 max resid 0.09412419
## Run 2 stress 9.820099e-05
## ... New best solution
## ... Procrustes: rmse 0.0002390628 max resid 0.0005672624
## ... Similar to previous best
## Run 3 stress 9.453209e-05
## ... New best solution
## ... Procrustes: rmse 0.0001722163 max resid 0.0003906395
## ... Similar to previous best
## Run 4 stress 9.93216e-05
## ... Procrustes: rmse 3.47028e-05 max resid 0.0001782403
## ... Similar to previous best
## Run 5 stress 9.149589e-05
## ... New best solution
## ... Procrustes: rmse 0.0001072471 max resid 0.0003010075
## ... Similar to previous best
## Run 6 stress 9.384861e-05
## ... Procrustes: rmse 0.0001226776 max resid 0.000347392
```

```
## ... Similar to previous best
## Run 7 stress 9.985626e-05
## ... Procrustes: rmse 9.297206e-05 max resid 0.0003299359
## ... Similar to previous best
## Run 8 stress 0.0006522342
## Run 9 stress 9.985536e-05
## ... Procrustes: rmse 0.0001710838 max resid 0.0004062972
## ... Similar to previous best
## Run 10 stress 9.196438e-05
## ... Procrustes: rmse 0.0001009413 max resid 0.0002533249
## ... Similar to previous best
## Run 11 stress 9.574355e-05
## ... Procrustes: rmse 0.0001449805 max resid 0.0004382373
## ... Similar to previous best
## Run 12 stress 9.996973e-05
## ... Procrustes: rmse 0.0001166248 max resid 0.0002784036
## ... Similar to previous best
## Run 13 stress 9.40336e-05
## ... Procrustes: rmse 0.0001231315 max resid 0.0003346891
## ... Similar to previous best
## Run 14 stress 9.805572e-05
## ... Procrustes: rmse 0.0001365674 max resid 0.0004091787
## ... Similar to previous best
## Run 15 stress 9.926294e-05
## ... Procrustes: rmse 0.0001938839 max resid 0.0004565536
## ... Similar to previous best
## Run 16 stress 9.638448e-05
## ... Procrustes: rmse 6.160214e-05 max resid 0.0002680359
## ... Similar to previous best
## Run 17 stress 9.526674e-05
## ... Procrustes: rmse 6.685518e-05 max resid 0.0003079584
## ... Similar to previous best
## Run 18 stress 0.0002867444
## ... Procrustes: rmse 0.000726448 max resid 0.001882133
## ... Similar to previous best
## Run 19 stress 9.40921e-05
## ... Procrustes: rmse 0.0001404129 max resid 0.000460821
## ... Similar to previous best
## Run 20 stress 0.0002706644
## ... Procrustes: rmse 0.000677052 max resid 0.001751565
## ... Similar to previous best
## *** Best solution repeated 15 times
## Warning in metaMDS(veganifyOTU(physeq), distance, ...): stress is (nearly) zero:
## you may have insufficient data
```



```
Alpha_diversity(merge_Eukaryota , 'Phylum' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Family

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1060678
## Run 1 stress 0.1061084
## ... Procrustes: rmse 0.008635432 max resid 0.04964329
## Run 2 stress 0.1254714
## Run 3 stress 0.1061184
## ... Procrustes: rmse 0.008964249 max resid 0.04938607
## Run 4 stress 0.106098
## ... Procrustes: rmse 0.002871765 max resid 0.01667967
## Run 5 stress 0.1060652
## ... New best solution
## ... Procrustes: rmse 0.007432752 max resid 0.04979235
## Run 6 stress 0.1060676
## ... Procrustes: rmse 0.007453764 max resid 0.04976001
## Run 7 stress 0.1061121
## ... Procrustes: rmse 0.004311605 max resid 0.02302031
## Run 8 stress 0.1060649
## ... New best solution
## ... Procrustes: rmse 0.0001066042 max resid 0.0006098323
## ... Similar to previous best
## Run 9 stress 0.1254597
## Run 10 stress 0.1060662
## ... Procrustes: rmse 0.001292552 max resid 0.006677735
```

```
## ... Similar to previous best
## Run 11 stress 0.1060648
## ... New best solution
## ... Procrustes: rmse 0.0007977151 max resid 0.004088471
## ... Similar to previous best
## Run 12 stress 0.1060638
## ... New best solution
## ... Procrustes: rmse 0.002062903 max resid 0.01003506
## Run 13 stress 0.1060834
## ... Procrustes: rmse 0.008604535 max resid 0.04975318
## Run 14 stress 0.1060746
## ... Procrustes: rmse 0.008273184 max resid 0.04969505
## Run 15 stress 0.1060755
## ... Procrustes: rmse 0.008216248 max resid 0.04965764
## Run 16 stress 0.1061146
## ... Procrustes: rmse 0.004308367 max resid 0.02319213
## Run 17 stress 0.1061215
## ... Procrustes: rmse 0.009031352 max resid 0.05008506
## Run 18 stress 0.1107719
## Run 19 stress 0.1060712
## ... Procrustes: rmse 0.008121355 max resid 0.04966343
## Run 20 stress 0.1228161
## *** Best solution was not repeated -- monoMDS stopping criteria:
       9: no. of iterations >= maxit
##
      11: stress ratio > sratmax
```



```
Alpha_diversity(merge_Eukaryota , 'Family' , 'Treatment')
```

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Genero

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

Beta_diversity(merge_Eukaryota , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1074764
## Run 1 stress 0.1196324
## Run 2 stress 0.1074756
## ... New best solution
## ... Procrustes: rmse 0.0002909911 max resid 0.001596314
## ... Similar to previous best
## Run 3 stress 0.1074759
## ... Procrustes: rmse 0.0001390156 max resid 0.0007188292
## ... Similar to previous best
## Run 4 stress 0.1558809
## Run 5 stress 0.1198394
## Run 6 stress 0.1074765
## ... Procrustes: rmse 0.001143739 max resid 0.006109848
## ... Similar to previous best
## Run 7 stress 0.107476
## ... Procrustes: rmse 0.001004827 max resid 0.005355567
## ... Similar to previous best
## Run 8 stress 0.108695
## Run 9 stress 0.1074761
## ... Procrustes: rmse 0.001028037 max resid 0.005489472
## ... Similar to previous best
## Run 10 stress 0.1196315
```

```
## Run 11 stress 0.1074769
## ... Procrustes: rmse 0.001230951 max resid 0.006571815
## ... Similar to previous best
## Run 12 stress 0.1218237
## Run 13 stress 0.1074757
## ... Procrustes: rmse 4.839244e-05 max resid 0.0002571386
## ... Similar to previous best
## Run 14 stress 0.1215604
## Run 15 stress 0.1086937
## Run 16 stress 0.1165622
## Run 17 stress 0.107483
## ... Procrustes: rmse 0.001349481 max resid 0.006991788
## ... Similar to previous best
## Run 18 stress 0.108831
## Run 19 stress 0.1074766
## ... Procrustes: rmse 0.0002990836 max resid 0.001556706
## ... Similar to previous best
## Run 20 stress 0.1074767
## ... Procrustes: rmse 0.0003706979 max resid 0.002170874
## ... Similar to previous best
## *** Best solution repeated 10 times
```


Alpha_diversity(merge_Eukaryota , 'Genus' , 'Treatment')

Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided

```
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Eukarya by Species

Barras_Species <- Abundance_barras(merge_Eukaryota, 'Species', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Eukaryota , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1207974
## Run 1 stress 0.1248608
## Run 2 stress 0.1200528
## ... New best solution
## ... Procrustes: rmse 0.02422446 max resid 0.1311347
## Run 3 stress 0.1200533
## ... Procrustes: rmse 0.0001736559 max resid 0.000816172
## ... Similar to previous best
## Run 4 stress 0.1200159
## ... New best solution
## ... Procrustes: rmse 0.003386851 max resid 0.0173403
## Run 5 stress 0.120014
## ... New best solution
## ... Procrustes: rmse 0.001187857 max resid 0.006252773
## ... Similar to previous best
## Run 6 stress 0.1485627
## Run 7 stress 0.1200142
## ... Procrustes: rmse 7.579589e-05 max resid 0.00041313
## ... Similar to previous best
## Run 8 stress 0.1249142
## Run 9 stress 0.1206969
## Run 10 stress 0.1249155
```

```
## Run 11 stress 0.1200526
## ... Procrustes: rmse 0.003417562 max resid 0.01757972
## Run 12 stress 0.1207972
## Run 13 stress 0.124862
## Run 14 stress 0.1248483
## Run 15 stress 0.1200146
## ... Procrustes: rmse 0.001271214 max resid 0.006227727
## ... Similar to previous best
## Run 16 stress 0.1248546
## Run 17 stress 0.1202944
## ... Procrustes: rmse 0.01110346 max resid 0.07714005
## Run 18 stress 0.1207359
## Run 19 stress 0.1356645
## Run 20 stress 0.1356645
## *** Best solution repeated 3 times
```


Alpha_diversity(merge_Eukaryota , 'Species' , 'Treatment')

#——Bacteria by Phylum

Barras_Species <- Abundance_barras(merge_Bacteria, 'Phylum', 'Treatment', 10.0)
Barras_Species[1]</pre>


```
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1513513
## Run 1 stress 0.1719374
## Run 2 stress 0.1588152
## Run 3 stress 0.1504234
## ... New best solution
## ... Procrustes: rmse 0.00934479 max resid 0.04542046
## Run 4 stress 0.1581249
## Run 5 stress 0.1709639
## Run 6 stress 0.1721019
## Run 7 stress 0.1606131
## Run 8 stress 0.1592882
## Run 9 stress 0.1591807
## Run 10 stress 0.1581926
## Run 11 stress 0.1690259
## Run 12 stress 0.1683791
## Run 13 stress 0.169534
## Run 14 stress 0.1695877
## Run 15 stress 0.1574731
## Run 16 stress 0.1506768
## ... Procrustes: rmse 0.04446673 max resid 0.2965404
## Run 17 stress 0.1660446
```

Beta_diversity(merge_Bacteria , 'Phylum' , 'Treatment', 'bray')

```
## Run 18 stress 0.1593645
## Run 19 stress 0.1641685
## Run 20 stress 0.1672763
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 1: no. of iterations >= maxit
## 19: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Phylum' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
## We recommended that you find the un-trimmed data and retry.
```


#——Bacteria by Familia

Barras_Species <- Abundance_barras(merge_Bacteria, 'Family', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Bacteria , 'Family' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1371579
## Run 1 stress 0.1341091
## ... New best solution
## ... Procrustes: rmse 0.04803585 max resid 0.2920653
## Run 2 stress 0.1339662
## ... New best solution
## ... Procrustes: rmse 0.009204567 max resid 0.05534446
## Run 3 stress 0.139773
## Run 4 stress 0.1373333
## Run 5 stress 0.1371518
## Run 6 stress 0.1339661
## ... New best solution
## ... Procrustes: rmse 2.003629e-05 max resid 7.346251e-05
## ... Similar to previous best
## Run 7 stress 0.1373217
## Run 8 stress 0.1373152
## Run 9 stress 0.1397729
## Run 10 stress 0.1342677
## ... Procrustes: rmse 0.01075626 max resid 0.05759144
## Run 11 stress 0.1733268
## Run 12 stress 0.1810067
## Run 13 stress 0.1371796
```

```
## Run 14 stress 0.1339659
## ... New best solution
## ... Procrustes: rmse 0.0002044604 max resid 0.0007869028
## ... Similar to previous best
## Run 15 stress 0.1771062
## Run 16 stress 0.1373154
## Run 17 stress 0.1734309
## Run 18 stress 0.1372212
## Run 19 stress 0.1341087
## ... Procrustes: rmse 0.009067051 max resid 0.05479245
## Run 20 stress 0.1372461
## *** Best solution repeated 1 times
```


Alpha_diversity(merge_Bacteria , 'Family' , 'Treatment')

```
## Warning in estimate_richness(physeq, split = TRUE, measures = measures): The data you have provided
## any singletons. This is highly suspicious. Results of richness
## estimates (for example) are probably unreliable, or wrong, if you have already
## trimmed low-abundance taxa from the data.
##
```

We recommended that you find the un-trimmed data and retry.

#——Bacteria by Genero

Barras_Species <- Abundance_barras(merge_Bacteria, 'Genus', 'Treatment', 10.0)
Barras_Species[1]</pre>

			_		
lex flavores	Desulfatibasillum	Labrenzia		Parenicipacier	Subtercola
flexum	Desulfatibacillum	Labrys		Paroceanicella	Succinivibrio
habitans	Desulfitobacterium	Laceyella		Parolsenella	Suicoccus
luna	Desulfobacca	Lachnoanaerobaculum		Parvibaculum	Sulfidibacter
marina	Desulfobacter	Lachnoclostridium		Parvimonas	Sulfitobacter
ncola	Desulfobacula	Lachnospira		Parvularcula	Sulfuricaulis
rhabdus	Desulfobulbus	Lacibacter		Pasteurella	Sulfuricella
rufa	Desulfocapsa	Lacimicrobium		Paucibacter	Sulfuricurvum
salimonas	Desulfococcus	Lacinutrix		Paucilactobacillus	Sulfuriferula
salinus	Desulfocurvibacter	Lacipirellula		Pauljensenia	Sulfuriflexus
sediminimonas	Desulfofarcimen	Lacrimispora		Pectinatus	Sulfurifustis
sphaera	Desulfoglaeba	Lacticaseibacillus		Pectobacterium	Sulfurihydrogenibium
talea	Desulfohalobium	Lactiplantibacillus		Pediococcus	Sulfurimicrobium
iibacter	Desulfoluna	Lactobacillus		Pedobacter	Sulfurimonas
hidicoccus	Desulfolutivibrio	Lactococcus		Pedococcus	Sulfuriroseicoccus
hnia	Desulfomarina	Lacunisphaera		Pelagerythrobacter	Sulfuritalea
nobacterium	Desulfomicrobium	Lancefieldella	_	Pelagibacterium	Sulfuritortus
angium	Desulfomonile	Lapidilactobacillus	_	Pelagovum	Sulfurivermis
bacter	Desulfonema	Laribacter		Pelistega	Sulfurospirillum
cibacterium	Desulforamulus	Larkinella		Pelobacter	Sulfurovum
ibacter	Desulforapulum	Latilactobacillus		Pelodictyon	Sutcliffiella
imonas	Desulfosarcina	Lautropia		Pelolinea	Sutterella
natoleum	Desulfoscipio	Lawsonella		Pelosinus	Suttonella
nicicoccus	Desulfosediminicola	Lawsonia		Pengzhenrongella	Swingsia
nophonus	Desulfosporosinus	Leadbetterella		Peptacetobacter	Symbiobacterium
obacter	Desulfosudis	Leclercia		Peptoclostridium	Sýmmachiella
a	Desulfotalea	Lederbergia		Peptoniphilus	Synechococcus
cacaulis	Desulfotomaculum	Leeuwenhoekiella		Peribacillus	Synechocystis
lassotoga	Desulfovibrio	Legionella		Periweissella	Syntrophobacter
ntibacter	Desulfurispirillum	Leifsonia		Permianibacter	Syntrophobotulus
obium	Desulfurivibrio	Leisingera		Persephonella	Syntrophomonas
acter	Desulfurobacterium	Lelliottia		Persicimonas	Syntrophotalea
ntiacibacter	Desulfuromonas	Leminorella		Peteryoungia	Syntrophothermus
	Devosia	Lentibacillus		Petrimonas	
ntimicrobium					Syntrophus
ntimonas	Devriesea	Lentilactobacillus		Petrocella	Tabrizicola
ticoccus	Dialister	Lentilitoribacter		Petrotoga	Tamlana Tamlana
imonas	Diaminobutyricimonas	Lentzea		Phaeobacter	<u>Tannerella</u>
liella	Diaphorobacter	Leptodesmis		Phascolarctobacterium	Tardibacter
idibacter	Dichelobacter	Leptolyngbya		Phenylobacterium	Tardiphaga
wickia	Dickeya	Leptospira		Phnomibacter	Tateyamaria
acterium	Dictyóglomus	Leptospirillum		Phocaeicola	Tatlóckia
ircus	■ Dietzia	 Leptothermofonsia 		Phoenicibacter	Tatumella
hizobium	Dinoroseobacter	Leptothrix		Photobacterium	Tautonia
pira	Dissulfurimicrobium	Leptotrichia		Photorhabdus	Taylorella
pirillum	Dissulfurispira	Leucobacter		Phototrophicus	Teĺmatocola
obacter	■ Dokdonella	Leuconostoc		Phreatobacter	Tenacibaculum
llus	Dokdonia	Levilactobacillus		Phycicoccus	Tenuifilum
erioplanes	Dolichospermum	Liberibacter		Phycisphaera	Tepidanaerobacter
eriovorax	Dolosigranulum	Lichenicola		Phyllobacterium	Tepidibacter
eroides	Dongshaea	Lichenihabitans		Phytobacter	Tepidibacter
duia	Dorea	Ligilactobacillus		Phytohabitans	Tepidimonas
esiella	Draconibacterium	Lignipirellula		Pigmentiphaga	Tepiditoga
onella	Duganella	Limihaloglobus		Pikeienuella	Terasakiella
ia	Duncaniella	Limnobacter		Pimelobacter	Teredinibacter
lea	Dyadobacter	Limnobaculum		Pirellula	Terribacillus
lovibrio	Dyella	Limnochorda		Pirellulimonas	<u>Terricaulis</u>
jiatoa	Dysgonomonas	Limnoglobus		Piscirickettsia	Terriglobus Terribabitans
írinckia	- Divenemohacter	 I imnohahitane 		Dietricoccue	- Iarrihahitane

Abundance

Beta_diversity(merge_Bacteria , 'Genus' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1449554
## Run 1 stress 0.1394427
## ... New best solution
## ... Procrustes: rmse 0.08796529 max resid 0.3619209
## Run 2 stress 0.1479265
## Run 3 stress 0.1491912
## Run 4 stress 0.1394925
## ... Procrustes: rmse 0.004473006 max resid 0.02666874
## Run 5 stress 0.1650072
## Run 6 stress 0.1382025
## ... New best solution
## ... Procrustes: rmse 0.06369859 max resid 0.3720801
## Run 7 stress 0.1394869
## Run 8 stress 0.1647696
## Run 9 stress 0.1528891
## Run 10 stress 0.1640323
## Run 11 stress 0.1394429
## Run 12 stress 0.1392722
## Run 13 stress 0.1478283
## Run 14 stress 0.1381219
## ... New best solution
## ... Procrustes: rmse 0.005056097 max resid 0.02717121
```

```
## Run 15 stress 0.1396336
## Run 16 stress 0.1396658
## Run 17 stress 0.138123
## ... Procrustes: rmse 0.0003474481 max resid 0.001143416
## Run 18 stress 0.1381221
## ... Procrustes: rmse 7.638288e-05 max resid 0.0002501497
## ... Similar to previous best
## Run 19 stress 0.1396338
## Run 20 stress 0.1425795
## *** Best solution repeated 2 times
```


Alpha_diversity(merge_Bacteria , 'Genus' , 'Treatment')

#——Bacteria by Species

Barras_Species <- Abundance_barras(merge_Bacteria, 'Species', 'Treatment', 10.0)
Barras_Species[1]</pre>

Abundance

Beta_diversity(merge_Bacteria , 'Species' , 'Treatment', 'bray')

```
## Wisconsin double standardization
## Run 0 stress 0.1576092
## Run 1 stress 0.1866397
## Run 2 stress 0.1692535
## Run 3 stress 0.4024183
## Run 4 stress 0.1519158
## ... New best solution
## ... Procrustes: rmse 0.06346224 max resid 0.3602169
## Run 5 stress 0.1521401
## ... Procrustes: rmse 0.01671034 max resid 0.08898904
## Run 6 stress 0.1521391
## ... Procrustes: rmse 0.01626585 max resid 0.08838474
## Run 7 stress 0.174973
## Run 8 stress 0.1591658
## Run 9 stress 0.1696163
## Run 10 stress 0.1563336
## Run 11 stress 0.1521405
## ... Procrustes: rmse 0.01603465 max resid 0.08803435
## Run 12 stress 0.1515455
## ... New best solution
## ... Procrustes: rmse 0.006646715 max resid 0.03451472
## Run 13 stress 0.1693012
## Run 14 stress 0.1676826
```

```
## Run 15 stress 0.1563338
## Run 16 stress 0.1821167
## Run 17 stress 0.1578266
## Run 18 stress 0.1595337
## Run 19 stress 0.1586321
## Run 20 stress 0.1622876
## *** Best solution was not repeated -- monoMDS stopping criteria:
## 1: no. of iterations >= maxit
## 19: stress ratio > sratmax
```


Alpha_diversity(merge_Bacteria , 'Species' , 'Treatment')

