Parte II: Computación científica

Clase 12: Usando tipos de datos 3

Diego Caro dcaro@udd.cl

Basada en presentaciones oficiales de libro Introduction to Programming in Python (Sedgewick, Wayne, Dondero).

Disponible en https://introcs.cs.princeton.edu/python

Animación

- Movimiento puede simularse intercalando imágenes.
- Ejemplo: programar pelota que rebota en los bordes de la ventana.
- Estrategia: programar un ciclo infinito con
 - Cálculo de posición de pelota
 - Dibujar el fondo
 - Dibujar pelota (con la nueva posición)

Ejemplo: Pelota simple

```
1 import stddraw
 3 stddraw.setCanvasSize(500, 500)
 4 stddraw.setXscale(-1.0, 1.0)
 5 stddraw.setYscale(-1.0, 1.0)
 7 \text{ radius} = .05
 8 rx = .080
 9 \text{ ry} = .060
                         Radio, posición y velocidad
10 \text{ vx} = .015
11 \text{ vy} = .013
13 while True:
       # update position
                              Actualización posición asumiendo
       rx = rx + vx
                              velocidad constante (aceleración=0)
16
       ry = ry + vy
17
       # clear the background
18
                                              Redibuja el fondo
19
       stddraw.clear(stddraw.LIGHT_GRAY)
20
       # draw the ball on the screen
22
       stddraw.setPenColor(stddraw.BLACK)
                                                Dibuja pelota en nueva posición
       stddraw.filledCircle(rx, ry, radius)
24
25
       # copy buffer to screen
                                    Espera 20 milisegundos para
       stddraw.show(∅)
26
                                    dibujar siguiente frame
27
       stddraw.pause(20)
```


$$x_1 = x_0 + v_0 + \frac{1}{2}a_0t^2$$

Preguntas

- ¿Qué sucede si no limpiamos el fondo?
 - No se borra lo que dibujamos en el ciclo anterior.

Preguntas

• ¿Cómo podemos detectar que la pelota sale de la ventana?


```
if abs(rx + vx) + radius > 1.0:
    print('choque con borde!')
if abs(ry + vy) + radius > 1.0:
    print('choque con borde!')
```


Preguntas

- ¿Cómo podemos hacer que la pelota rebote siguiendo las leyes de colisión elástica?
 - Asume que el borde de la ventana es de masa infinita y no se mueve.

Conservación del momento lineal:

$$m_1v_1+m_2v_2=m_1u_1+m_2u_2$$

Conservación de la Energía (cinética):

$$rac{1}{2}m_1v_1^2+rac{1}{2}m_2v_2^2=rac{1}{2}m_1u_1^2+rac{1}{2}m_2u_2^2$$


```
radius = .05
rx = .480
ry = .860
vx = .015
vy = .023
while True:
    if abs(rx + vx) + radius > 1.0:
        VX = -VX
                                       Colisión elástica con la pared
    if abs(ry + vy) + radius > 1.0:
        vy = -vy
                      Actualización posición asumiendo
    rx = rx + vx
                      velocidad constante (aceleración=0)
    ry = ry + vy
    stddraw.clear(stddraw.LIGHT_GRAY)
    stddraw.setPenColor(stddraw.BLACK)
    stddraw.filledCircle(rx, ry, radius)
    stddraw.show(∅)
    stddraw.pause(20)
```


DEMO TIME

\$ python3 bouncingball.py

¿Cómo hacer una pelota multicolor?

```
while True:
    if abs(rx + vx) + radius > 1.0:
        vx = -vx
    if abs(ry + vy) + radius > 1.0:
        vy = -vy

    rx = rx + vx
    ry = ry + vy

    stddraw.clear(stddraw.LIGHT_GRAY)

    stddraw.setPenColor(stddraw.BLACK)
    stddraw.filledCircle(rx, ry, radius)

    stddraw.show(0)
    stddraw.pause(20)
```

```
while True:
   if abs(rx + vx) + radius > 1.0:
        VX = -VX
    if abs(ry + vy) + radius > 1.0:
        vy = -vy
   rx = rx + vx
    ry = ry + vy
    stddraw.clear(stddraw.LIGHT_GRAY)
    r = randrange(256)
    g = randrange(256)
    b = randrange(256)
    c = Color(r, g, b)
    stddraw.setPenColor(c)
    stddraw.filledCircle(rx, ry, radius)
    stddraw.show(∅)
    stddraw.pause(20)
```


ilotx. stddrain.set stddram.sextsco skidram. sexyscale ¿Cómo mostrar 3 pelotas? radius" 72 × radius J. while true. 305 ct 38507 × radius 305 (3) The state of the s ,43 30° Ct3 Stadram. Clear Stadram. Likit GRAM. The set on the state of the sta radiusz radius radiuss the backedround the ball on the ctin "

ctin x

x Kan Killed Circle Ct. ES? B screen to screen

Estrategia: crear una clase

```
class Ball:
    def __init__(self, rx, ry, vx, vy, radius, color):
        self.rx = rx
        self.ry = ry
        self.vx = vx
        self.vy = vy
        self.radius = radius
                                                      Colisión elástica con la pared
        self.color = color
    def update(self):
        if abs(self.rx + self.vx) + self.radius > 1.0:
            self.vx = -self.vx
        if abs(self.ry + self.vy) + self.radius > 1.0:
            self.vy = -self.vy
        self.rx = self.rx + self.vx
                                       Actualización posición
        self.ry = self.ry + self.vy
    def draw(self):
                                                          Dibujar!
        stddraw.setPenColor(self.color)
        stddraw.filledCircle(self.rx, self.ry, self.radius)
```


Código cliente para una pelota

```
ball = Ball(.480, .860, .015, .023, .05, stddraw.BLACK)
while True:
    # update velocity
    ball.update()
    # clear the background
    stddraw.clear(stddraw.LIGHT_GRAY)

# draw the ball on the screen
    ball.draw()

# copy buffer to screen
    stddraw.show(0)
    stddraw.pause(20)
```

Solución: crear una lista de objetos Ball

```
1 import stddraw
 2 from ball import Ball
 4 stddraw.setCanvasSize(500, 500)
 6 stddraw.setXscale(-1.0, 1.0)
 7 stddraw.setYscale(-1.0, 1.0)
 9 balls = \lceil
10
       Ball(.480, .860, .015, .023, .05, stddraw.BLACK),
       Ball(.480, .860, .030, .046, .05, stddraw.BLUE),
       Ball(.180, .260, .040, .026, .05, stddraw.GREEN)
13
14
15 while True:
       # update velocity
16
       for b in balls:
17
18
           b.update()
19
20
       # clear the background
       stddraw.clear(stddraw.LIGHT_GRAY)
22
       # draw the ball on the screen
       for b in balls:
24
25
           b.draw()
26
27
       # copy buffer to screen
28
       stddraw.show(∅)
29
       stddraw.pause(20)
```


Módulo ball.py

```
1 import stddraw
 3 class Ball:
       def __init__(self, rx, ry, vx, vy, radius, color):
           self.rx = rx
           self.ry = ry
           self.vx = vx
           self.vy = vy
           self.radius = radius
           self.color = color
10
11
12
       def update(self):
13
           Bounce of wall according to elastic collition and
14
15
           update velocity.
                                                    Colisión
16
           if abs(self.rx + self.vx) + self.radius > 1.0:
               self.vx = -self.vx
18
           if abs(self.ry + self.vy) + self.radius > 1.0:
19
20
               self.vy = -self.vy
           self.rx = self.rx + self.vx
                                         Actualización posición
           self.ry = self.ry + self.vy
24
25
       def draw(self):
                                                      Dibujar!
           stddraw.setPenColor(self.color)
26
           stddraw.filledCircle(self.rx, self.ry, self.radius)
27
```


Usando el teclado

```
9 balls = [
       Ball(.480, .860, .015, .023, .05, stddraw.BLACK),
       Ball(.480, .860, .030, .046, .05, stddraw.BLUE),
       Ball(.180, .260, .040, .026, .05, stddraw.GREEN)
12
13
14
15 while True:
16
       # get keystrokes
       if stddraw.hasNextKeyTyped():
17
           k = stddraw.nextKeyTyped()
18
           if k == stddraw.K UP:
19
               for b in balls: b.increase_speed(0.1, 0.1)
           elif k == stddraw.K_DOWN:
               for b in balls: b.increase_speed(-0.1, -0.1)
22
23
24
       # update velocity
25
       for b in balls: b.update()
26
27
       # clear the background
28
       stddraw.clear(stddraw.LIGHT_GRAY)
29
30
       # draw the ball on the screen
       for b in balls: b.draw()
31
32
33
       # copy buffer to screen
34
       stddraw.show(∅)
       stddraw.pause(20)
```

Códigos para teclas en https://github.com/josiest/
pygtails/blob/master/docs/pygstants.rst

Keycode Name	Ascii	Description
K_BACKSPACE	\b	backspace
K_TAB	\t	tab
K_CLEAR		clear
K_RETURN	\r	return
K_PAUSE		pause
K_ESCAPE	^[escape
K_SPACE		space
K_UP		up arrow
K_DOWN		down arrow
K_RIGHT		right arrow
K_LEFT		left arrow

Dependencia entre módulos

Nota: módulo pygame se escapa del ámbito de este curso. Usaremos la biblioteca introcs disponible en https://github.com/diegocaro/introcs

Sonido

- El **sonido** es la percepción de la vibración de moléculas.
- Un tono musical es un sonido periódico.
- Un tono puro es una onda sinusoidal.

pitch	i	frequency (440*2 ^{i/12})	sinusodial waveform
Α	0	440	
A# / B♭	1	466.16	
В	2	493.88	
С	3	523.25	
C# / D b	4	554.37	
D	5	587.33	
D# / E b	6	622.25	
E	7	659.26	
F	8	698.46	
F# / G b	9	739.99	
G	10	783.99	
G# / A b	11	830.61	
Α	12	880	

Audio digital

- Para representar una onda en el computador se debe "sample" en intervalos regulares.
- El computador solo puede representar números, "sampling" permite transformar la onda a una serie de números.

	samples/sec	samples	sampled waveform
1/40 second of concert A	5,512	137	
	11,025	275	444
	22,050	551	^/^////////////////////////////////////
CD standard —	→ 44,100	1102	\frac{1}{\sqrt{1}}{\sqrt{1}}\frac{1}{\sqrt{1}}{\sqrt{1}}\frac{1}{\sqrt{1}}{\sqrt{1}}\frac{1}{\sqrt{1}}{\sqrt{1}}\frac{1}{\sqrt{1}}{\sqrt{1}}\frac{1}{\sqrt{1}}\frac{1}{\sqrt{1}}{\sqrt{1}}\frac{1}{\sqrt{1}}

Hola mundo módulo stdaudio

```
1 import math
 2 import stdaudio
 3 import sys
5 def tone(hz, duration):
       n = int(44100 * duration)
      note = [0.0]*(n+1)
     for i in range(n+1):
           note[i] = math.sin(2.0 * math.pi * i * hz / 44100)
       stdaudio.playSamples(note)
10
11
12 hz = float(sys.argv[1])
13 duration = float(sys.argv[2])
14 tone(hz, duration)
```


python3 playthatnote.py 440.0 3.0 python3 playthatnote.py 880.0 3.0 python3 playthatnote.py 220.0 3.0 python3 playthatnote.py 494.0 3.0

Reproducir canción

```
1 import math
 2 import stdio # this is new!
 3 import stdaudio
 5 SPS = 44100
                                       Lee desde teclado y
 6 CONCERT A = 440.0
                                       convierte automáticamente a
 7 NOTES ON_SCALE = 12.0
                                       entero/float.
 8
  while not stdio.isEmpty():
      pitch = stdio.readInt()
10
     duration = stdio.readFloat()
     hz = CONCERT_A * (2.0 ** (pitch / NOTES ON SCALE))
       n = int(SPS * duration)
13
       note = [0.0]*(n+1)
       for i in range(n+1):
16
           note[i] = math.sin(2.0 * math.pi * i * hz / SPS)
       stdaudio.playSamples(note)
17
18
  stdaudio.wait()
```

```
$ head elise.txt
7 .125
6 .125
7 .125
6 .125
7 .125
2 .125
5 .125
3 .125
0 .25
```


Rotaciones

$$x' = x \cos \theta - y \sin \theta$$
 , $y' = x \sin \theta + y \cos \theta$.

Ejemplo: rotando una nave espacial

- La nave espacial es un triángulo.
 - ... pero stddraw no dibuja triángulos! 😡
 - Podemos dibujarla usando tres líneas
- Luego rotamos los 3 puntos del triángulo, y boom!


```
1 import stddraw
 2 from math import cos, sin
 4 stddraw.setCanvasSize(500, 500)
 6 stddraw.setXscale(-1.0, 1.0)
 7 stddraw.setYscale(-1.0, 1.0)
 9 points = [(-0.3, -0.3), (0, 0.4), (0.3, -0.3)]
10 n = len(points)
11 angle = 0.1 # in radians
13 while True:
14
       stddraw.clear(stddraw.BLACK)
15
       stddraw.setPenColor(stddraw.WHITE)
16
       # calculate rotations
17
18
       for i in range(n):
           p = points[i]
19
           newx = p[0]*cos(angle) - p[1]*sin(angle)
20
           newy = p[0]*sin(angle) + p[1]*cos(angle)
           points[i] = (newx, newy)
22
23
       # display triangle
24
       for i in range(n):
25
           stddraw.line(points[i][0],points[i][1], points[(i+1)%n][0], points[(i+1)%n][1])
26
28
       # copy buffer to screen
       stddraw.show(∅)
29
       stddraw.pause(20)
30
```


