Math 220A - Fall 2020 - Final

Name:		
Student ID:		

Instructions:

Please print your name and student ID.

You have 180 minutes to complete the test. There is a 15 minute buffer period (6:00-6:15 PST) to upload your answers in Gradescope.

Question	Score	Maximum	
1		10	
2		10	
3		10	
4		10	
5		13	
6		10	
7		12	
Total		75	

Problem 1. [10 points.]

Consider the function $f(z)=z^2e^{-z}-4z+1$. Find the number of zeroes of f inside the disc $\Delta(0,1)$.

Problem 2. [10 points.]

Let $f:\Delta(0,1)\to\mathbb{C}$ be holomorphic and nonconstant, and define $M(r)=\max_{|z|=r}\mathrm{Re}f(z)$ for $0\leq r<1$. Show that $M:[0,1)\to\mathbb{R}$ is strictly increasing.

Problem 3. [10 points.]

Are there any holomorphic functions
$$f:\{z:|z|>4\}\to\mathbb{C}$$
 such that
$$f'(z)=\frac{z^3+2}{z(z-1)(z-3)(2z-7)}?$$

Problem 4. [10 points.]

Assume that f is an entire function such that the sequence of derivatives $f, f', f'', \dots f^{(n)}, \dots$ converges locally uniformly to a function g with g(0) = 1.

Show that there exists N such that the derivatives $f^{(n)}(z) \neq 0$ for all $n \geq N$ and |z| < 1.

Hint: You may wish to determine g explicitly.

Problem 5. [13 points; 5, 3, 5.]

Let $R(z) = \frac{P(z)}{Q(z)}$ be a rational function such that deg $P + 2 \le \deg Q$. Assume that Q has simple zeros at a_1, \ldots, a_q , where $a_j \in \mathbb{C} \setminus \mathbb{Z}$.

Show that

$$\sum_{m=-\infty}^{\infty} R(m) = -\pi \sum_{j=1}^{q} \frac{P(a_j)}{Q'(a_j)} \cdot \cot \pi a_j.$$

(i) Let γ_n be the square with corners

$$\pm \left(n+\frac{1}{2}\right) \pm i \left(n+\frac{1}{2}\right).$$

Show that there exist constants $M_1, M_2 > 0$ such that if n is sufficiently large, and z is on the curve γ_n , we have

$$|\pi \cot \pi z| \le M_1$$

and

$$|R(z)| \le \frac{M_2}{|z|^2}.$$

$$\lim_{n\to\infty} \int_{\gamma_n} R(z)\pi \cot \pi z \, dz = 0.$$

(iii)	Show that $\pi \cot \pi z$ has poles at all	l integers $m \in \mathbb{Z}$ with	residue equal to 1.	Next, find the
	poles and residues of $R(z)\pi \cot \pi z$.			

Problem 6. [10 points.]

Let f be a meromorphic function in \mathbb{C} . Let $U=\{z\in\mathbb{C}:|z|>1 \text{ and }z\text{ is not a pole of }f\}$. Assume that for all $z\in U$, we have

$$|f(z)| \le 1 + |z|.$$

Show that f is a rational function.

Problem 7. [12 points; 4, 4, 4.]

Let $U \subset \mathbb{C}$ be an open set containing 0. Let $f: U \to \mathbb{C}$ be an injective holomorphic function. Show that $f'(0) \neq 0$.

(i) Show that there exists an integer m>0, a disc around the origin $\Delta\subset U$, and a holomorphic function $g:\Delta\to\mathbb{C}$ such that

$$f(z) = f(0) + z^m g(z), \quad g(z) \neq 0 \text{ for all } z \in \Delta.$$

(ii) Show that there exists a holomorphic function $h:\Delta\to\mathbb{C}$ such that $f(z)=f(0)+h(z)^m,\quad h(0)=0,\quad h'(0)\neq 0.$

(iii) Show that if f is injective then m=1. Conclude that $f'(0) \neq 0.$