EI PH2

2011-12

PHYSIK

2. Probeklausur

1. Aufgabe

Wenn du einen Plattenkondensator aufgeladen hast und von der Spannungsquelle trennst, dann existiert zwischen den Platten ein elektrisches Feld.

- a) Skizziere dieses Feld.
- b) Vergrößert sich die elektrische Feldstärke, wenn du einen nicht-leitenden Stoff wie bspw. eine Keramikplatte zwischen die Platten bringst? Begründe deine Antwort ausführlich und verwende dabei die Begriffe "Influenz" und "Polarisation".

2. Aufgabe

Konzipiere einen Plattenkondensator, in dessen Inneren eine elektrische Feldstärke von etwa 2000 V/m herrscht.

3. Aufgabe

Es stehen drei Kondensatoren der Kapazitäten C_1 =0,8 μ F, C_2 =1,2 μ F und C_3 =2,1 μ F zur Verfügung.

a) C₁ und C₂ werden parallel geschaltet, dahinter wird C₃ geschaltet. Berechne die Gesamtkapazität dieser Schaltung.

4. Aufgabe

Die vier Widerstände der abgebildeten Schaltung haben die Werte R_1 =24 Ω , R_2 =160 Ω , R_3 =40 Ω und R_4 =200 Ω . Es liegt eine Spannung von 12V an (Autobatterie).

- a) Ermittele den Ersatzwiderstand der vier Widerstände.
- b) Wieviel Spannung liegt an Widerstand R₃ an und welche Stromstärke herrscht hier?

5. Aufgabe

Clara Fall meint, das man ein elektrisches Feld mittels Grieskörnern sichtbar machen kann. Erläutere, was sie damit meint.

6. Aufgabe

Ein Plattenkondensator ist an eine Spannungsquelle mit 200V angeschlossen. Die je 1m² großen Platten stehen 10cm auseinander.

- a) Wie groß ist die elektrische Feldstärke?
- b) Die Stärke des elektrischen Feldes soll verdoppelt werden OHNE dass man an der Ausgangsspannung etwas ändert. Mach einen entsprechenden Vorschlag für den Aufbau!

7. Aufgabe

In den folgenden experimentellen Anordnungen wird ein elektrisches Feld erzeugt.

- a) Die Anordnung besteht zunächst aus zwei Kondensatorplatten, an die eine Spannung von 200V angelegt wird. Zeichne das elektrische Feld.
- b) Wie groß muss man den Plattenabstand d wählen, damit eine Feldstärke von 2000 V/m vorliegt?

Zwischen die Kondensatorplatten wird ein Metallrähmchen eingebracht. Mit Grieskörnern kann man nachweisen, dass das Innere des Rähmchens feldfrei ist. Dazu findet sich in einem Physikbuch diese Zeichnung:

c) Erläutere anhand der Zeichnung, wieso kein Feld im Inneren messbar ist. Was ist anders, wenn man als Material kein Metall verwendet?

8. Aufgabe

Bei Batterien wird oft die sogenannte "Kapazität" angegeben. Erläutere diesen Begriff anhand der physikalischen Größen "Ladung" und "Spannung". Was bedeutet eine "hohe Kapazität"?

9. Aufgabe

Erläutere anhand des Elementarmagnete-Modells, wieso Permanentmagnete ihre magnetischen Eigenschaften einbüßen können, wenn

- a) die Umgebungstemperatur zu hoch wird.
- b) der Magnet stark erschüttert wird.

10. Aufgabe

Es gibt einen berühmten Versuch, der den Zusammenhang von elektrischen Strömen und Magnetfeldern zeigt. Beschreibe diesen und erläutere daran, was die "linke Faustregel" besagt!