Tutorial III

EN1060 - Signals and Systems

August 15, 2017

- 1. Find following convolutions:
 - (a) $x(t) * \delta(t)$
 - (b) $x(t) * \delta(t t_0)$
 - (c) x(t) * u(t)
 - (d) $x(t) * u(t t_0)$
- 2. Let y(t) = x(t) * h(t). Show that $x(t t_1) * h(t t_2) = y(t t_1 t_2)$
- 3. Find y(t) of the following system and signal.

Figure 1:

- 4. Compute and sketch y[n] = x[n] * h[n] for the following:
 - (a) $x[n] = \alpha^n u[n]$

and

 $h[n] = \beta^n u[n], \alpha < \beta$

(b) $x[n] = \alpha^n u[n]$

and

 $h[n] = \alpha^{-n}u[-n]$

5. Consider the continuous time LTI system whose step response is $s(t) = e^{-t}u(t)$. Determine the output of following x(t).

Figure 2:

6. A system is formed by connecting two systems in cascade. The impulse response of those systems are given by $h_1(t)$ and $h_2(t)$ where,

$$h_1(t) = e^{-2t}u(t)$$
 $h_2(t) = 2e^{-t}u(t)$

- (a) Find the impulse response of the overall system.
- (b) Determine whether the overall system is BIBO stable.
- 7. Show that if the input x[n] to a discrete time LTI system is periodic with period N, then the output y[n] is also periodic with period N.
- 8. Consider a discrete time system S_1 with $h[n] = (1/5)^n u[n]$.
 - (a) Find the integer *A* such that $h[n] Ah[n] = \delta[n]$
 - (b) Using the result from part (a) determine the impulse response g[n] of the LTI system S_2 , which is the inverse of system S_1 .
- 9. Let $x(t) = 1 + \sin(\omega_0 t) + 2\cos(\omega_0 t) + \cos(2\omega_0 t) + \pi/4$) which has fundamental frequency ω_0 Give this as a linear combination of complex exponentials and identify Fourier series coefficients.
- 10. Consider the convolution

$$y(t) = \sin(\pi t) \left[u(t+1) - u(t-1) \right] * \left[u(t+1) - u(t-1) \right]$$

- (a) Sketch the two signals.
- (b) Evaluate the convolution.