GSE 760–S01

Advanced Methods in Geospatial Modeling:

Computation for Remote Sensing Analysis and Product Generation

Class Schedule

Date	Lecture (Friday)	Date	Exercises (Friday)	
Jan 15	Lecture 1: Course overview	Jan 15	Lab assignment 1- Linux	
	and introduction to remote		system setup	
	sensing processing on Linux			
	system			
Jan 22	Lecture 2: Getting start with	Jan 25	Lab assignment 2 - Command	
	Linux system		line syntax	
Jan 29	Lecture 3: Linux files and file	Jan 29	Lab assignment 3 – File	
	utilities		utilities	
Feb 5	Lecture 4: File system and	Feb 5	Lab assignment 4 – File system	
	processes		and processes	
Feb 12	Lecture 5: Shell scripting	Feb 12	Lab assignment 5- Shell	
			scripting	
Feb 19	Lecture 6: Perl scripting (1)	Feb 19	Lab assignment 6- Perl	
			scripting	
Feb 26	Lecture 7: Perl scripting (2)	Feb 26	Lab assignment 7- Perl	
			scripting	
March 5	Lecture 8: Python scripting	March 5	Midterm Exam	
March 12	Spring Break		Spring Break	
March 19	Lecture 9: Satellite data and	March 19	Lab assignment 8- Python	
	file format		scripting	
March 26	Lecture 10: Satellite data	March 26	Lab assignment 9- Satellite	
	processing		data processing	
April 2	No class/Easter Recess	April 2	No class/Easter Recess	
April 9	Lecture 11: Operational	April 9	Lab assignment 10-	
	product generation		Programing for product	
			generation	
April 16	Lecture 12: Software and	April 16	Project work overview	
	product documentation			
April 23	Work on projects	April 23	Work on projects	
April 30	Work on projects	April 30	Work on projects	
May 7	Lecture 13: Final presentation			

Final Exam: We will schedule final presentations during the final exam period.

Note: Recommended to readings to accompany each chapter will be assigned on the class D2L site.

Earth Observation Satellite Data and Format

Earth Observation Satellites

Earth observation satellites are satellites specifically designed for Earth observation from orbit, such as environmental monitoring, meteorology, map making etc.

Geostationary & Polar Orbiting satellites

Observations from Leo and Geo Satellites

GEO (geostationary) satellites rotate with the Earth directly above the equator, continuously staying above the same spot.

LEO satellites, a Sun-synchronous orbit crosses over the equator at approximately the same local time each day (and night). This orbit allows consistent scientific observations with the angle between the Sun and the Earth's surface remaining relatively constant.

Harmonized Landsat Sentinel-2

Home Algorithms Products Description Test Sites Data QA Documents

Test Sites » Map

Table

Map

Data

The locations of all tiles can be viewed in this

Global Observations from Polar Orbiting Satellites

Moderate resolution (250-1000m)

High Resolution Commercial Satellites

Disaster Monitoring Constellation

(9 different satellites as of 2013, 5 operating)

Pleiades(2 operating satellites)

EROS A & B

FORMOSAT-2

IKONOS

QuickBird

Rapideye

(5 identical satellites as of 2012)

SPOT (6 satellites, 2 operating)

COSMO-SkyMed

(4 identical satellites as of 2012)

WorldView-1

WorldView-2

GeoEye-1

http://en.wikipedia.org/wiki/

Planet Monitoring

With 130+ satellites in orbit, Planet is able image anywhere on Earth daily at 3 meter and 72 centimeter resolution. Monitor your areas of interest, discover patterns, and deliver timely insights.

VENµS (Vegetation and Environment monitoring on a New MicroSatellite)

Orbit type

Altitude

Revisit time

Swath width

NASA Earth Observing System

Satellite	Launch Date	Launch Site	Agency
SeaWiFS	1 August 1997		
TRMM	27 November 1997	Tanegashima	NASA / JAXA
Landsat 7	15 April 1999	Vandenberg	NASA
QuikSCAT	19 June 1999	Vandenberg	NASA / JPL
Тегга	18 December 1999	Vandenberg	multiple
ACRIMSAT	20 December 1999	Vandenberg	NASA / JPL
NMP/EO-1	21 November 2000		NASA / GSFC
Jason 1	7 December 2001		NASA / CNES
Meteor 3M-1/Sage III	10 December 2001	Baikonur	
GRACE	17 March 2002	Plesetsk Cosmodrome	NASA / DLR
Aqua	4 May 2002	Vandenberg	multiple
ADEOS II (Midori II)	12 December 2002	Tanegashima	
ICESat	12 January 2003	Vandenberg	NASA
SORCE	25 January 2003	Cape Canaveral	NASA
Aura	16 July 2004	Vandenberg	multiple
CloudSat	20 41 2000	Mandanhaan	NASA
CALIPSO	28 April 2006	Vandenberg	
Hydros	June 2006		
NPOESS	TBD		NASA / NOAA
осо	23 February 2009	Failed to reach orbit	NASA / NOAA
Aquarius	10 June 2011	Vandenberg	NASA / CONAE
NMP/EO-3			
Landsat 8	11 February 2013	Vandenberg	NASA / USGS

Global Ecosystem Dynamics Investigation (GEDI)

- GEDI is a full-waveform lidar instrument that makes detailed measurements of the 3D structure of the Earth's surface.
- Lidar is an active remote sensing technology (the laser version of radar) which uses pulses of laser light to measure 3D structure.

The light is reflected by the ground, vegetation and any clouds and is

then collected by GEDI's telescope.

- The photons are then directed towards detectors, converting the brightness of the light to an electronic voltage which is then recorded as a function of time in 1 ns (15 cm) intervals.
- Time is converted to range (a distance) by multiplying by the speed of light. The recorded voltage as a function of range is the fullwaveform.

GEDI was deployed on the International Space Station (ISS) in December 2018 for a two-year mission

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)

 Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR) on the International Space Station (ISS) and using it to gather the measurements needed to address the science goals and objectives.

 From the ISS, PHyTIR provides data with 38-m in-track by 69-m cross-track spatial resolution (science requirement is 100 m) and predicted temperature sensitivity of ≤0.1 K (science requirement is

0.3 K).

 The ISS orbit allows excellent coverage of the selected targets including diurnal coverage.

- Launched on June 29, 2018
- CONUS, twelve 1,000 x 1,000 km key climate zones and twentyfive Fluxnet sites for all opportunities.
- On average 1 hour of science data per day

Pacific Ocean

Orbit: 03485
Scene: 014
Date: February 15, 2019

Cloud Low Evaporative High
Stress 10 to ke

Satellite dataset Metadata

Grid information:

Position of origin

Grid reference (origin corner, origin coordinate)

Grid framework (grid dimensions, grid spacing, units, offset structure)

Data Structure:

Content values

Content structure

General location:

Bounding Box (min point and max point)

Projection

Central meridian

False easting and false northing

Time Object Duration:

Start time and length of time)

Satellite Data file = metadata+ digital satellite

images

Table 1: AVHRR Metadata		
Grid		
No. lines	2889	
No. samples	4587	
No. bands	10	
bands	AVHRR channels 1-5,	
	NDVI,	
	satellite zenith,	
	solar zenith,	
	relative azimuth,	
	pixel source date	
units of measure	meters	
pixel size	1000 (meters)	

Spatial Registration			
map projection Lambert Azimuthal		uthal	
lat/lon of center	100 West	45 North	
false easting/northing	0	0	
nw corner	-2050000	752000	
Bounding box:			
lower left lat/lon	-119.9722899	23.5837576	
upper left lat/lon	-128.5300591	48.4030555	
upper right lat/lon	-65.3946489	46.7048989	
lower right lat/lon	-75.4163527	22.4793919	

Temporal Information			
Begin date	4-Jan-1991		
End date	17-Jan-1991		

Satellite Data Formats and Standards

HRIT/LRIT HRPT/LRPT For NOAA AVHRR and old geostationary data

Binary data -- without metadata

WMO binary data exchange formats - BUFR, GRIB McIDAS

GeoTIFF NetCDF HDF

http://www.wmo.int/pages/prog/sat/formatsandstandards_en.php

Binary Data with a Header file

ImageryData.hdr

ENVI

```
description = {HDF Imported into ENVI.}
samples = 3660
lines = 3660
bands = 1
header offset = 0
file type = HDF Scientific Data
data type = 2
interleave = bsq
byte order = 0
15, North, WGS-84, units=Meters}
coordinate system string =
{PROJCS["UTM Zone 15N",GEOGCS["GCS WGS 1984",DATUM["D WGS 1984",SPHE
ROID["WGS 1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["De
gree",0.0174532925199433]],PROJECTION["Transverse Mercator"],PARAMETER["Fals
e Easting",500000.0],PARAMETER["False Northing",0.000000],PARAMETER["Central
Meridian",93.000000],PARAMETER["Scale Factor",0.9996],PARAMETER["Latitude Of
Origin",0.0],UNIT["Meter",1.0]]}
```

McIDAS

- The Man computer Interactive Data Access System (McIDAS) is not simply a satellite data format. It is rather a suite of applications for analyzing and displaying meteorological data for research and education.
- McIDAS has been in use and under continual development by the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) since 1972.
- The Unidata McIDAS software (a superset of SSEC McIDAS) has been under development since 1985 and in distribution since 1988. The software can be used with conventional observational, satellite, and grid-point data.
 - Each file consists of three blocks, the Area Block, the Navigation Block, and the Data Block.

McIDAS--Example

Area Block

The Area Block consists of 256 bytes of intermixed 4-byte integers (words) and ASCII characters.

Word	Contents	In the AMSU files, expect this
1	contains zeros if the record is valid	0
2	area format: always 4	4
3	sensor source number	NOAA satellite number + 50 (65 indicates NOAA 15)
4	start date; YYYDDD	Year = 1900 + YYY
5	start time; HHMMSS UTC	
6	starting line number	1
7	starting element number	1
8	not used	0
9	number of lines in the area	
10	number of elements in each line	32 or 92
11	number of bytes per element (1, 2 or 4)	2
12	line resolution; number of image lines between consecutive area lines	1
13	element resolution; number of image elements between consecutive area elements	1
14	maximum number of bands per line of the area	1

McIDAS--Example

Navigation Block

The Navigation Block also consists of 512 bytes of intermixed 4-byte integers (words) and ASCII characters.

Word	Parameter	In the AMSU files
1	navigation type; 4 ASCII characters	TIRO
2	sensor source, year, day of year (SSSYYDDD)	sensor source is given in Area Block Word 3
3	start time; HHMMSS UTC	Should be same as Word 5 in the Area Block, but in the past has been mistakenly set to zero. See Word 48, which is what McIDAS uses.
4	orbit type; always 1	1
5	epoch date; YYMMDD	
6	epoch time; HHMMSS UTC	Note: Word 15 has the fraction of a second in epoch time
7	semimajor axis; km*100	
8	orbital eccentricity; *1000000	
9	orbital inclination; degrees*1000	
10	mean anomaly; degrees*1000	

McIDAS--Example

Data Block

The last thing in the file is the data.

Calibration			
-1	Not observed		
-2	Not retrieved ("flagged")		
	Other problems		

File Extension	Parameter	Unit	Range
C01C20	antenna temps in channels 1-20	К	70 - 325
RR	AMSU-A rain rate	mm/hr	0 - 30
RRB	AMSU-B rain rate	mm/hr	0 - 30
TPW	total precipitable water	mm	0 - 75
CLW	cloud liquid water	mm	0 - 6
ICE	sea ice	Areal coverage in percent	30 - 100
IC2	sea ice (with edges)	Areal coverage in	30 - 100

Geographic Tagged Image File Format (GeoTIFF)

GeoTIFF offers the capability to embed a wide range of **georeferencing information** (e.g. projection, datums and ellipsoids, coordinate values) as compliant descriptive tags (metadata) and structures within the Tagged Image File Format (TIFF) file.

GeoTIFF files can be read directly in ERDAS Imagine, ENVI, and PCI. However, it is important to note that ERDAS Imagine and PCI do not correctly translate the GeoTIFF projection information.

Geographic Tagged Image File Format (GeoTIFF)

GTiff -- GeoTIFF File Format

GeoTIFF is a public domain metadata standard which allows <u>georeferencing</u> information to be embedded within a TIFF file. The potential additional information includes map projection, coordinate systems, ellipsoids, datums, and everything else necessary to establish the exact spatial reference for the file

Internal nodata masks

TIFF files can contain internal transparency masks.

Overviews

The GeoTIFF driver supports reading, creation and update of internal overviews.

Metadata

GDAL can deal with the following baseline TIFF tags as dataset-level metadata:

TIFFTAG DOCUMENTNAME

TIFFTAG_IMAGEDESCRIPTION

TIFFTAG SOFTWARE

TIFFTAG_DATETIME

••••••

TIFFTAG RESOLUTIONUNIT

TIFFTAG_MINSAMPLEVALUE (read only)

TIFFTAG_MAXSAMPLEVALUE (read only)

Color Profile Metadata

Nodata value

Hierarchical Data Format (HDF)

Hierarchical Data Format, commonly abbreviated HDF, HDF4, or HDF5, is a library and multi-object file format for the transfer of graphical and numerical data between computers.

HDF is **self-describing**, allowing an application to interpret the structure and contents of a file without any outside information.

HDF is a container for several different datasets, storing Scientific Datasets (SDS).

SDS is a multidimensional array filled by data. One HDF file may contain several different SDS arrays.

SDS may differ in size, number of dimensions and may represent data for different regions.

HDF-EOS format

NASA's Earth Observing System (EOS) maintains its own HDF modification called HDF-EOS.

EOS use HDF4-EOS for data storing data such as from `Terra' and `Aqua' satellites. HDF4-EOS has been switched to HDF5-EOS format in VIIRS.

HDF-EOS data format is standard HDF by adding conventions, data types, and metadata elements as specified for the Core System of the Earth Observing System Data and Information System (ECS). HDF-EOS adds three geolocation data types (point, grid, and swath) which allow the file contents to be queried by earth coordinates and time.

HDF-EOS

- HDF-EOS is an extension to HDF which standardizes storage and access to common Earth Sciences data structures
- By providing a single interface to data structures, common to earth science
- By providing a container for EOS inventory, archive and product specific metadata
- By establishing a consistent relationship between geolocation and science data.

HDF4 - based, storage format for EOS standard products.
Used operationally by MODIS, MISR, ASTER, Landsat, AIRS and other EOS instruments such as HLS (harmonized Landsat and Sentinel-2) Support for Grid/Point/Swath structures

HFD5

- Based on HDF5, a complete rewrite of HDF-EOS2 with a different user interface.
 - -First released in 2000.
 - -Format used by EOS Aura instruments
 - Format used by VIIRS land product, ECOSTRESS products
- Designed to 'resemble' HDF-EOS 2 to the maximum extent possible.
 - -Supports same data structures
 - —Added prefix 'HE5_' to HDF-EOS 2 functions.

A compound data type example

```
types:
 compound wind_vector_t {
  float eastward;
  float northward;
dimensions:
  lat = 18;
  lon = 36;
  pres = 15;
  time = 4;
variables:
    wind_vector_t gwind(time, pres, lat, lon);
    wind:long name = "geostrophic wind vector";
    wind:standard_name = "geostrophic_wind_vector";
data:
  gwind = \{1, -2.5\}, \{-1, 2\}, \{20, 10\}, \{1.5, 1.5\}, ...;
```

HDF4-EOS

dimensions

variables

global attributes

CoreMetadata

SDS data

Read HDF4-EOS Data

- (1)Install HDF4 Tools in Linux
- (2)Check the commands
- (3) Check the variables using

ncdump

(4) Check data using

Hdp

Hdp dumpsds -h

(5) Dump data:

Hdf dumpsds

Ncdump in HDF4 Tools - Check hdf4 files

[zhangx@hunter]\$ /hunter/data/CODE/HDF/hdf-4.2.6-linux-x86_64/bin/ncdump

```
./ncdump [-V|-c|-h|-u] [-v ...] [[-b|-f] [c|f]] [-l len] [-n name] [-d n[,n]]
file
              Display version of the HDF4 library and exit
 [-V]
             Coordinate variable data and header information
 [-c]
 [-h]
             Header information only, no data
             Replace nonalpha-numerics in names with underscores
 [-u]
 [-v var1[,...]] Data for variable(s) <var1>,... only
 [-b [c|f]]
              Brief annotations for C or Fortran indices in data
 [-f[c|f]]
              Full annotations for C or Fortran indices in data
              Line length maximum in data section (default 80)
 [-1 len]
 [-n name]
                Name for netCDF (default derived from file name)
               Approximate floating-point values with less precision
 [-d n[,n]]
            File name of input netCDF file
 file
```

Ncdump -- Example (1)

/hunter/data/CODE/HDF/hdf-4.2.6-linux-x86_64/bin/ncdump -h

MCD12C1.A2007001.005.2009288175546.hdf | more

```
MCD12C1.A2007001.005.2009288175546 {
dimensions:
                                                      Variable name
    YDim_MOD12C1 = 3600;
                                                                    Variable type
    XDim_MOD12C1 = 7200;
    Num_IGBP_Classes_MOD12C1 = 18;
    Num_UMD_Classes_MOD12C1 = 15;
    Num LAI FPAR_Classes_MOD12C1 = 12;
                                                                         Variable
                                                                         content
variables:
    byte Majority_Land_Cover_Type_1 (YPim_IVIOD12C1, XDim_MOD12C1);
       Majority_Land_Cover_Type_1:long_name = "Majority_Land_Cover_Type_1";
       Majority Land Cover Type 1:units = "class number";
       Majority_Land_Cover_Type_1:valid_range = '\0', '\20';
       Majority_Land_Cover_Type_1:_FillValue = '\377';
       Majority_Land_Cover_Type_1:water = '\0';
       Majority_Land_Cover_Type_1:evergreen_needleleaf_forest = '\1';
       Majority_Land_Cover_Type_1:unclassified = '\377';
   byte Majority Land Cover Type 1 Assessment(YDim MOD12C1, XDim MOD12C1);
                                                                  xiaoyang Zhang, 3/19/2021
```

Ncdump -- Example (2)

```
byte Majority Land Cover Type 1 Assessment(YDim MOD12C1, XDim MOD12C1);
      Majority_Land_Cover_Type_1_Assessment:long_name = "Majority_Land_Cover_Type_1_Assessment";
      Majority_Land_Cover_Type_1_Assessment:units = "confidences";
      Majority Land Cover Type 1 Assessment:valid range = '\0', 'd';
      Majority Land Cover Type 1 Assessment: FillValue = '\377';
byte Land Cover Type 1 Percent (YDim MOD12C1, XDim MOD12C1, Num IGBP Classes MOD12C1);
        Land_Cover_Type_1_Percent:long_name = "Land_Cover_Type_1_Percent";
        Land Cover Type 1 Percent:units = "percent in integers";
        Land_Cover_Type_1_Percent:valid_range = '\0', 'd';
        Land Cover Type 1 Percent: FillValue = '\377';
        Land Cover Type 1 Percent:Layer 0 = "water";
        Land Cover Type 1 Percent:Layer 1 = "evergreen needleleaf forest";
        Land_Cover_Type_1_Percent:Layer_15 = "snow and ice";
        Land Cover Type 1 Percent:Layer 16 = "barren or sparsely vegetated";
        Land Cover Type 1 Percent:Layer 17 = "unclassified + fill values";
```

Ncdump -- Example (3)

```
byte Majority Land Cover Type 1 QC(YDim MOD12C1, XDim MOD12C1);
       Majority_Land_Cover_Type_1_QC:long_name =
"Majority_Land_Cover_Type_1_QC";
       Majority_Land_Cover_Type_1_QC:units = "concatenated flags";
       Majority_Land_Cover_Type_1_QC:not_processed_due_to_other_effects = '\3';
    byte Majority_Land_Cover_Type_2(YDim_MOD12C1, XDim_MOD12C1);
       Majority_Land_Cover_Type_2:long_name = "Majority_Land_Cover_Type_2";
       Majority_Land_Cover_Type_2:units = "class number";
       Majority_Land_Cover_Type_2:valid_range = '\0', '\20';
       Majority Land Cover Type 2: FillValue = '\377';
       Majority Land Cover Type 2:water = '\0';
       Majority_Land_Cover_Type_2:evergreen_needleleaf_forest = '\1';
       Majority_Land_Cover_Type_2:barren_or_sparsely_vegetated = '\20';
       Majority Land Cover Type 2:unclassfied = '\377';
```

Ncdump -- Example (4)

```
// global attributes:
        :HDFEOSVersion = "HDFEOS V2.9";
        :StructMetadata 0 = "GROUP=SwathStructure\n",
  "END_GROUP=SwathStructure\n",
  "GROUP=GridStructure\n",
  "\tGROUP=GRID 1\n",
  "\t\tGridName=\"MOD12C1\"\n",
  "\t\tXDim=7200\n".
  "\t\tYDim=3600\n".
  "\t\tUpperLeftPointMtrs=(-180000000.000000,90000000.000000)\n",
  "\t\tLowerRightMtrs=(180000000.000000,-90000000.000000)\n",
  "\t\tProjection=GCTP GEO\n",
  "\t\tGridOrigin=HDFE GD UL\n",
  "\t\tGROUP=Dimension\n",
  "\t\tOBJECT=Dimension 1\n",
  "\t\t\tDimensionName=\"Num IGBP Classes\"\n",
  "\t\t\tSize=18\n",
  "\t\tEND OBJECT=Dimension 1\n",
  "\t\tOBJECT=Dimension 2\n",
"END GROUP=GridStructure\n",
  "GROUP=PointStructure\n",
  "END GROUP=PointStructure\n",
  "END\n".
                                    xiaovang Zhang, 3/19/2021
```

Ncdump -- Example (5)

```
:CoreMetadata 0 = "\n",
 "GROUP
               = INVENTORYMETADATA\n",
 " GROUPTYPE = MASTERGROUP\n",
 " GROUP = ECSDATAGRANULE\n",
    " OBJECT = REPROCESSINGPLANNED\n",
         NUM VAL
                       = 1\n",
     " VALUE = \"further update is anticipated\"\n",
                       = REPROCESSINGPLANNED\n",
     " END OBJECT
   " OBJECT = REPROCESSINGACTUAL\n",
    NUM_VAL = 1\n",
   VALUE = \"reprocessed\"\n",
   END_OBJECT = REPROCESSINGACTUAL\n",
OBJECT = LOCALGRANULEID\n",
NUM_VAL = 1\n",
                = \"MCD12C1.A2007001.005.2009288175546.hdf\"\n",
    VALUE
   END_OBJECT
                   = LOCALGRANULEID\n",
   OBJECT = DAYNIGHTFLAG\n",
    NUM_VAL = 1\n",
   VALUE = \"Day\"\n",
   END_OBJECT
                   = DAYNIGHTFLAG\n",
   OBJECT
                = PRODUCTIONDATETIME\n",
   NUM_VAL = 1\n",
   VALUE
                = \"2009-10-15T17:55:46.000Z\"\n",
   END_OBJECT
                   = PRODUCTIONDATETIME\n",
   OBJECT
                = LOCALVERSIONID\n",
    NUM VAL
               = 1\n",
          = \"3.1.0\"\n",
    VALUE
" END_OBJECT = LOCALVERSIONID\n",
" END_GROUP = ECSDATAGRANULE\n",
                  = ECSDATAGRANULE\n",
```

Ncdump -- Example (6)

```
" GROUP
              = MEASUREDPARAMETER\n",
 " OBJECT
                = MEASUREDPARAMETERCONTAINER\n",
 END_OBJECT = MEASUREDPARAMETERCONTAINER\n",
" END_GROUP = MEASUREDPARAMETER\n",
" GROUP = COLLECTIONDESCRIPTIONCLASS\n",
 OBJECT = SHORTNAME\n",
" GROUP = INPUTGRANULE\n",
" OBJECT = INPUTPOINTER\n",
 " NUM_VAL = 100\n",
 " VALUE = (\"MLCT_1.A2008001.005.hdf\", \"MLCT_1_A.A2008001.005.hdf\",
\"LCT 1 P.A2008001.005.hdf\", \"MLCT 2.A2008001.005.hdf\", \"MLCT 2 A.A20080
01.005.hdf\", \"LCT 2 P.A2008001.005.hdf\", \"MLCT 3.A2008001.005.hdf\",
\"MLCT_3_A.A2008001.005.hdf\", \"LCT_3_P.A2008001.005.hdf\")\n",
 " END_OBJECT = INPUTPOINTER\n",
" END GROUP = INPUTGRANULE\n",
```

Ncdump -- Example (7)

```
= SPATIALDOMAINCONTAINER\n",
" GROUP
" GROUP
HORIZONTALSPATIALDOMAINCONTAINER\n",
  GROUP
               = BOUNDINGRECTANGLE\n",
   OBJECT = WESTBOUNDINGCOORDINATE\n",
                   = 1\n",
      NUM VAL
     VALUE
                 = -180.0 \n''
                    = WESTBOUNDINGCOORDINATE\n",
     END OBJECT
                = NORTHBOUNDINGCOORDINATE\n",
   OBJECT
                   = 1\n",
      NUM_VAL
     VALUE
                 = 90.0 n''
     END OBJECT
                    = NORTHBOUNDINGCOORDINATE\n",
   OBJECT
                = EASTBOUNDINGCOORDINATE\n",
                   = 1\n",
      NUM_VAL
     VALUE
                 = 180.0 n''
                    = EASTBOUNDINGCOORDINATE\n",
     END OBJECT
                = SOUTHBOUNDINGCOORDINATE\n",
   OBJECT
                   = 1\n",
      NUM VAL
    VALUE
                 = -90.0 \n''
     END_OBJECT = SOUTHBOUNDINGCOORDINATE\n",
             = BOUNDINGRECTANGLE\n",
   END GROUP
  END GROUP
HORIZONTALSPATIALDOMAINCONTAINER\n",
 END GROUP
                = SPATIALDOMAINCONTAINER\n",
" GROUP
              = RANGEDATETIME\n",
  OBJECT
              = RANGEBEGINNINGDATE\n",
                 = 1\n",
    NUM VAL
  VALUE
               = \"2007-01-01\"\n",
                  = RANGEBEGINNINGDATE\n",
   END_OBJECT
              = RANGEBEGINNINGTIME\n",
 OBJECT
    NUM VAL
                 = 1\n",
               = \"00:00:00.000000\"\n",
   VALUE
   END OBJECT
                  = RANGEBEGINNINGTIME\n",
```

```
OBJECT
                = RANGEENDINGDATE\n",
                   = 1\n",
     NUM VAL
                 = \"2007-12-31\"\n",
     VALUE
    END_OBJECT
                    = RANGEENDINGDATE\n",
                = RANGEENDINGTIME\n",
 OBJECT
     NUM VAL
                   = 1 n''
                 = \"23:59:00.000000\"\n",
   VALUE
 " END_OBJECT
                    = RANGEENDINGTIME\n",
 END GROUP
                  = RANGEDATETIME\n",
" GROUP
               = PGEVERSIONCLASS\n",
                = PGEVERSION\n",
  OBJECT
                   = 1 n''
     NUM VAL
   VALUE
                 = \"5.0.0\"\n",
 " END_OBJECT
                    = PGEVERSION\n",
 END GROUP = PGEVERSIONCLASS\n",
" GROUP
ASSOCIATEDPLATFORMINSTRUMENTSENSOR\n",
```

Ncdump -- Example (8)

```
VALUE
                   = \"58\"\n",
                                                                            = INFORMATIONCONTENT\n",
                                                               GROUP
                        = PARAMETERVALUE\n",
      END OBJECT
                                                                 CLASS
                                                                            = \"3\"\n",
   END GROUP
                     = INFORMATIONCONTENT\n",
                                                                OBJECT
                                                                            = PARAMETERVALUE\n",
                                                                  NUM VAL
                                                                                = 1\n",
  END OBJECT
                                                                  CLASS
                                                                             = \"3\"\n",
ADDITIONALATTRIBUTESCONTAINER\n",
                                                                              = \"0\"\n",
                                                                  VALUE
                 = ADDITIONALATTRIBUTESCONTAINER\n",
  OBJECT
                                                                 END OBJECT
                                                                                = PARAMETERVALUE\n",
    CLASS
                  = \"2\"\n",
                                                                          = INFORMATIONCONTENT\n",
                                                               END GROUP
   OBJECT
                  = ADDITIONALATTRIBUTENAME\n",
                                                              END OBJECT
      CLASS
                   = \"2\"\n",
                                                            ADDITIONALATTRIBUTESCONTAINER\n",
                                                              OBJECT
                      = 1\n",
      NUM VAL
                                                            ADDITIONALATTRIBUTESCONTAINER\n",
                    = \"QAPERCENTOTHERQUALITY\"\n",
      VALUE
                                                                CLASS
                                                                            = \"4\"\n",
                       = ADDITIONALATTRIBUTENAME\n",
     END OBJECT
                                                               OBJECT
                                                                           = ADDITIONALATTRIBUTENAME\n",
                  = INFORMATIONCONTENT\n",
   GROUP
                                                                 CLASS
                                                                            = \"4\"\n",
                   = \"2\"\n",
      CLASS
                                                                 NUM VAL
                                                                               = 1\n",
    OBJECT
                   = PARAMETERVALUE\n",
                                                                 VALUE
                                                            \"QAPERCENTNOTPRODUCEDOTHER\"\n",
       NUM_VAL
                       = 1\n",
                                                                 END OBJECT
       CLASS
                    = \"2\"\n",
                                                            ADDITIONALATTRIBUTENAME\n",
                    = \"115\"\n",
       VALUE
                                                               GROUP
                                                                            = INFORMATIONCONTENT\n",
      END OBJECT
                        = PARAMETERVALUE\n",
                                                                            = \"4\"\n",
                                                                 CLASS
                     = INFORMATIONCONTENT\n",
   END GROUP
                                                                OBJECT
                                                                            = PARAMETERVALUE\n",
  END OBJECT
                                                                  NUM VAL
                                                                                = 1\n",
                                                                             = \"4\"\n", "
                                                                  CLASS
                                                                                           VALUE
ADDITIONALATTRIBUTESCONTAINER\n",
                                                            73\"\n",
                 = ADDITIONALATTRIBUTESCONTAINER\n",
  OBJECT
                                                                 END OBJECT
                                                                                = PARAMETERVALUE\n",
                  = \"3\"\n",
     CLASS
                                                               END GROUP
                                                                              = INFORMATIONCONTENT\n",
                  = ADDITIONALATTRIBUTENAME\n",
   OBJECT
                                                              END OBJECT
      CLASS
                   = \"3\"\n",
                                                            ADDITIONALATTRIBUTESCONTAINER\n",
                      = 1\n",
      NUM VAL
                                                            " END GROUP
                                                                             = ADDITIONALATTRIBUTES\n",
                                                            "END GROUP
                                                                            = INVENTORYMETADATA\n",
      VALUE
                                                            "END\n",
\"QAPERCENTNOTPRODUCEDCLOUD\"\n",
                                                                                  xiaoyang Zhang, 3/19/2021
     END OBJECT
                       = ADDITIONALATTRIBUTENAME\n",
```

Ncdump -- Example (9)

```
:ArchiveMetadata_0 = "\n",
 "GROUP = ARCHIVEDMETADATA\n",
 " GROUPTYPE
                = MASTERGROUP\n",
" OBJECT = DESCRREVISION\n",
 " NUM VAL
                = 1\n",
              = \"5.0\"\n",
 " VALUE
 " END OBJECT
                 = DESCRREVISION\n",
" OBJECT = LONGNAME\n",
 " NUM_VAL
                = 1\n",
              = \"MODIS/Terra+Aqua Land Cover Type
 " VALUE
Yearly L3 Global 0.05Deg CMG\"\n",
 " END OBJECT = LONGNAME\n",
" OBJECT
ALGORITHMPACKAGEACCEPTANCEDATE\n",
               = ALGORITHMPACKAGEVERSION\n",
 END_OBJECT
" OBJECT = GEOANYABNORMAL\n",
  NUM_VAL
                = 1\n",
 " VALUE
              = \"False\"\n",
 " END OBJECT
                 = GEOANYABNORMAL\n",
" OBJECT
       = GEOESTMAXRMSERROR\n",
 " NUM VAL
                = 1\n",
 " VALUE
              = 500.0\n",
 " END_OBJECT
                 = GEOESTMAXRMSERROR\n",
```

```
" OBJECT
             = SPSOPARAMETERS\n",
 " NUM_VAL
                = 1\n",
 " VALUE = \"2669\"\n",
 " END_OBJECT
                = SPSOPARAMETERS\n",
" OBJECT
             = PROCESSINGCENTER\n",
                = 1\n",
 " NUM VAL
 " VALUE = \"MODAPS\"\n",
 " END OBJECT
                = PROCESSINGCENTER\n",
" OBJECT
             = GLOBALGRIDCOLUMNS\n",
 " NUM_VAL
                = 1\n",
 " VALUE = 7200\n".
 " END OBJECT = GLOBALGRIDCOLUMNS\n",
" END_OBJECT = NUMBEROFGRANULES\n",
" OBJECT
             = COVERAGECALCULATIONMETHOD
\n",
 " NUM VAL = 1\n",
 " VALUE
              = \"area\"\n",
 " END OBJECT
COVERAGECALCULATIONMETHOD\n",
" OBJECT
             = NADIRDATARESOLUTION\n",
 " NUM VAL
                = 1\n",
 " VALUE = \"0.25 Degree\"\n",
 " END OBJECT
                = NADIRDATARESOLUTION\n",
 "\n",
 "END GROUP
                = ARCHIVEDMETADATA\n",
 "\n",
 "END\n",
```

Hdfview (1)

[zhangx@hunter ~]\$ hdfview

Hdfview (2)

Latitude (720, 4)
32-bit floating-point, 2030 x 1354
Number of attributes = 3
units = degrees
valid_range = -90.0,90.0
_FillValue = -999.0

xiaoyang Zhang, 3/19/2021

HDP the HDF dumper

SYNOPSIS

hdp [hdp options] hdp command [command options]
<filename list>

HDP COMMANDS

hdp currently has two types of commands: list and dump. Other types of commands such as those for editing may be added in the future.

hdp list: lists contents of files

hdp dumpsds: displays data of NDGs and SDGs in the listed files.

hdp dumpvd: displays data of vdatas in the listed files.

hdp dumpvg: displays data of objects in vgroups in the listed files.

hdp dumprig: displays data of RIGs in the listed files.

hdp dumpgr: displays data of general RIGs in the listed files.

<filelist> list of hdf file names, separated by spaces.

A *vgroup* is a structure designed to associate related data objects

hdp -H list Usage:

```
[zhangx@hunter TEMP]$ hdp -H list Usage:
hdp list [-acensldg] [-o<f|g|t|n>] [-t tag] <filelist>
                 Print annotations of items (sets long output)
        -a
                 Print classes of items (sets long output)
        -C
                 Print names or labels of items (sets long output)
        -n
                 Print special element information of items (sets long output)
        -е
                 Short output (default)
        -S
                 Long output
        -d
                 Debugging output
                 Print groups only
        -g
        -t <number>
                          Print items of with a given tag number
        -t <name>
                          Print items of with a given tag name
        -of
                Print items in the order found in the file
                 Print items in group order
        -og
                 Print items in tag order (default)
        -ot
        <filelist> List of hdf file names, separated by spaces
```

hdp (2)

```
[zhangx@hunter MYD03]$ hdp dumpsds
Usage:
hdp dumpsds [-a|-i <indices>|-r <refs>|-n <names>] [-cdhvs] [-o <filename>] [-
```

```
bx] <filelist>
                 Dump all SDSs in the file (default)
        -a
        -i <indices>
                          Dump the SDSs at positions listed in <indices>
        -r <refs> Dump the SDSs with reference number listed in <refs>
                          Dump the SDSs with name listed in <names>
        -n <names>
                 Dump data only, no tag/ref, formatted to input to hp2hdf
        -d
                 Dump header only, no annotation for elements nor data
        -h
                 Dump everything including all annotations (default)
        -V
                 Print space characters as they are, not \digit
        -C
                 Do not print data of file (global) attributes
        -g
                 Do not print data of local attributes
                 Do not add carriage return to a long line - dump it as a stream
        -S
                          Output to file <filename>
        -o <filename>
                 Binary format of output
        -b
                 Ascii text format of output (default)
        -X
        <filelist>List of hdf file names, separated by spaces
```

xiaoyang Zhang, 3/19/2021

Hdp (3)

```
To obtain variable Name, Index, Reference:
```

```
[zhangx@hunter MYD03]$ hdp dumpsds -h MYD03.A2014174.2245.005.NRT.hdf | more
But there are large File attributes:
File attributes:
          Attr0: Name = HDFEOSVersion
                     Type = 8-bit signed char
                     Count= 12
                     Value = HDFEOS V2.17
          Attr1: Name = StructMetadata.0
                    Type = 8-bit signed char
                    Count = 32000
                     Value = GROUP=SwathStructure\012\011GROUP=SWATH 1
            \000\000\000\000\000\000\000\000\000\000
Variable Name = Latitude
          Index = 0
          Type= 32-bit floating point
          Ref. = 4
          Compression method = DEFLATE
                               Rank = 2
          Number of attributes = 3
          Dim0: Name=nscans*10:MODIS_Swath_Type_GEO
                     Size = 2030
                     Scale Type = number-type not set
                                                            xiaoyang Zhang, 3/19/2021
                     Number of attributes = 0
```

```
hdp dumpsds -n I1_SurfRefl_CMG -c -o tt1 -x NPP_SRFLIP_CMG.A2013359.C1_03110.all.hdf
```

```
zhangx@hunter ]$ hdp dumpsds -n I1_SurfRefl_CMG -c NPP_SRFLIP_CMG.A2013359.C1_03110.all.hdf|more
File name: NPP SRFLIP CMG.A2013359.C1 03110.all.hdf
File attributes:
          Attr0: Name = HDFEOSVersion
                    Type = 8-bit signed char
                    Count= 12
                    Value = HDFEOS V2.17
          Attr1: Name = StructMetadata.0
                    Type = 8-bit signed char
                    Count = 32000
                    Value =
GROUP=SwathStructure
END GROUP=SwathStructure
GROUP=GridStructure
          GROUP=GRID 1
                    GridName="VIIRSCMG"
                    XDim=7200
                    YDim=3600
                    UpperLeftPointMtrs=(-180000000.000000,900000000.000000)
                    LowerRightMtrs=(180000000.000000,-90000000.000000)
                    Projection=GCTP GEO
                    GROUP=Dimension
                    END GROUP=Dimension
                    GROUP=DataField
```

[z@hunter]\$ hdp dumpsds -n I1_SurfRefl_CMG -g NPP_SRFLIP_CMG.A2013359.C1_03110.all.hdf|more

```
Attr1: Name = FillValue
File name: NPP SRFLIP CMG.A2013359.C1 03110.all.hdf
                                                                                                       Type = 16-bit signed integer
                                                                                                       Count= 1
File attributes:
                                                                                                       Value = -28672
              Attr0: Name = HDFEOSVersion
                                                                                         Attr2: Name = scale factor
                                                                                                       Type = 64-bit floating point
                            Type = 8-bit signed char
                                                                                                       Count= 1
                            Count= 12
                                                                                                       Value = 10000.000000
              Attr1: Name = StructMetadata.0
                                                                                         Attr3: Name = scale_factor_err
                            Type = 8-bit signed char
                                                                                                       Type = 64-bit floating point
                            Count = 32000
                                                                                                       Count= 1
                                                                                                       Value = 0.000000
Variable Name = I1_SurfRefl_CMG
                                                                                         Attr4: Name = add offset
                                                                                                       Type = 64-bit floating point
              Index = 0
              Type= 16-bit signed integer
                                                                                                       Count= 1
              Ref. = 4
                                                                                                       Value = 0.000000
              Compression method = DEFLATE
                                                                                         Attr5: Name = add offset err
                                                                                                       Type = 64-bit floating point
                            Deflate level = 4
              Compression ratio (original:compressed) = 1.38:1
                                                                                                       Count= 1
              Rank = 2
                                                                                                       Value = 0.000000
              Number of attributes = 9
                                                                                         Attr6: Name = calibrated nt
              Dim0: Name=YDim:VIIRSCMG
                                                                                                       Type = 32-bit signed integer
                            Size = 3600
                                                                                                       Count= 1
                            Scale Type = number-type not set
                                                                                                       Value = 5
                            Number of attributes = 0
                                                                                         Attr7: Name = units
              Dim1: Name=XDim:VIIRSCMG
                                                                                                       Type = 8-bit signed char
                            Size = 7200
                                                                                                       Count= 11
                            Scale Type = number-type not set
                                                                                                       Value = reflectance
                            Number of attributes = 0
                                                                                         Attr8: Name = long name
              Attr0: Name = valid range
                                                                                                       Type = 8-bit signed char
                           Type = 16-bit signed integer
                                                                                                       Count= 15
                            Count= 2
                                                                                                       Value = I1 SurfRefl CMG
                            Value = -100 16000
                                                                                          Data:
                                                      xiaoyang Zhang, 3/19/2021
```

```
[zhangx@hunter TEMP]$ hdp dumpvd
Usage:
hdp dumpvd [-a|-i <indices>|-r <refs>|-n <names>|-c <classes>|-f <f1, f2,..>] [-dhv]
[-o <filename>] [-bx] <filelist>
                 Dump all VDs in the file (default)
        -i <indices>
                         Dump the VDs at positions listed in <indices>
        -r <refs> Dump the VDs with reference number listed in <refs>
                         Dump the VDs with name listed in <names>
        -n <names>
        -c <classes>
                         Dump the VDs with class listed in <classes>
        -f <f1, f2,..>
                         Dump based on fields in vdata header
        -d
                 Dump data only, no tag/ref, formatted to input to hp2hdf
                 Dump header only, no annotation for elements nor data
                 Dump everything including all annotations (default)
        -V
        -o <filename>
                         Output to file <filename>
        -b
                 Binary format of output
                 Ascii text format of output (default)
        -X
        <filelist> List of hdf file names, separated by spaces
```

[zhangx@hunter TEMP]\$ hdp dumpvd NPP_SRFLIP_CMG.A2013359.C1_03110.all.hdf|more File name: NPP_SRFLIP_CMG.A2013359.C1_03110.all.hdf

```
Vdata: 0
 tag = 1962; reference = 74;
 number of records = 1; interlace = FULL INTERLACE (0);
 fields = [Values];
 record size (in bytes) = 4;
 name = YDim:VIIRSCMG; class = DimVal0.1;
 number of attributes = 0
- field index 0: [Values], type=24, order=1
 number of attributes = 0
Loc. Data
     3600 ;
0
Vdata: 1
 tag = 1962; reference = 76;
 number of records = 1; interlace = FULL INTERLACE (0);
 fields = [Values];
 record size (in bytes) = 4;
 name = XDim:VIIRSCMG; class = DimVal0.1;
 number of attributes = 0
- field index 0: [Values], type=24, order=1
 number of attributes = 0
Loc. Data
     7200:
0
                                         xiaoyang Zhang, 3/19/2021
```

```
[zhangx@hunter TEMP]$ hdp dumpvg NPP SRFLIP CMG.A2013359.C1 03110.all.hdf|more
File name: NPP SRFLIP CMG.A2013359.C1 03110.all.hdf
Vgroup:0
  tag = 1965; reference = 2;
  name = VIIRSCMG; class = GRID;
  number of entries = 2;
 number of attributes = 0
Entries:-
  #0 (Vgroup)
           tag = 1965;reference = 3;
           number of entries = 34;
           name = Data Fields; class = GRID Vgroup
 number of attributes = 0
Vgroup:6
  tag = 1965; reference = 89;
  name = I1 SurfRefl CMG; class = Var0.0;
  number of entries = 16;
 number of attributes = 0
Entries:-
  #0 (Vgroup)
           tag = 1965;reference = 75;
           number of entries = 1;
           name = YDim:VIIRSCMG; class = Dim0.0
 number of attributes = 0
  #1 (Vgroup)
           tag = 1965;reference = 77;
           number of entries = 1;
           name = XDim:VIIRSCMG; class = Dim0.0
                                           xiaoyang Zhang, 3/19/2021
 number of attributes = 0
```

Hdp dumpsds (4)

[x@hunter]\$ hdp dumpsds -n Latitude -d -o test -b MYD03.A2014174.2245.005.NRT.hdf

[zhangx@hunter]\$ hdp dumpsds -n "EV frames" -d -o test21 -x MYD03.A2014174.2245.005.NRT.hdf

[zhangx@hunter]\$ hdp dumpsds -i 0 -d -o test23 -x MYD03.A2014174.2245.005.NRT.hdf

[zhangx@hunter]\$ hdp dumpsds -r 4 -d -o test24 -b MYD03.A2014174.2245.005.NRT.hdf

Note that there is a space for variable name of EV frames, so that a quote is needed.

xiaoyang Zhang, 3/19/2021

Extract SDS data Using Perl Scripts

Examples to extract SDS (Latitude, and sun zenith angle) from a group of hdf file using a Perl scrip:

MYD03.A2014174.2220.005.NRT.hdf

NAVDO2 A 204 44 74 22 50 4

MYD03.A2014174.2250.005.NRT.hdf

```
#!/usr/bin/perl
@files=("MYD03.A2014174.2220.005.NRT.hdf", "MYD03.A2014174.2235.005.NRT.hdf",
"MYD03.A2014174.2245.005.NRT.hdf", "MYD03.A2014174.2255.005.NRT.hdf",
"MYD03.A2014174.2230.005.NRT.hdf", "MYD03.A2014174.2240.005.NRT.hdf",
"MYD03.A2014174.2250.005.NRT.hdf");
$ENV{HDP}="/user/bin";
Foreach $file(@files){
chomp($file);
$stem=(split('NRT', $file))[0]; ### it removes "NRT.hdf"
$file_lat=join(",$stem, "lat.bin");
$file sun zenith=join(", $stem, "sun zenith.txt");
system("$ENV{HDP}/hdp dumpsds -n Latitude -d -o $file_lat -b $file");
system("$ENV{HDP}/hdp dumpsds -n "SD Sun zenith" -d -o $file sun zenith -x
$file");
                                  xiaoyang Zhang, 3/19/2021
```

Extract SDS data Using Perl Scripts

```
#!/usr/bin/perl
$infile="MYD03data.txt";
Open(INPUT, ">$infile")
@file = <INPUT>; # Import all from a file into an array
close(INPUT);
$ENV{HDP}="/user/bin";
Foreach $file(@files){
chomp($file);
$stem=(split('NRT', $file))[0]; ### it removes "NRT.hdf"
$file_lat=join(",$stem, "lat.bin");
$file_sun_zenith=join(", $stem, "sun_zenith.txt");
system("$ENV{HDP}/hdp dumpsds -n Latitude -d -o $file_lat -b $file");
system("$ENV{HDP}/hdp dumpsds -n "SD Sun zenith" -d -o $file_sun_zenith -x
$file");
                                  xiaoyang Zhang, 3/19/2021
```

Quality Controls in Binary Bits and bit Fields

- Interpreting the binary encoded bitmap
- ❖ A single bit represents two values (0, 1)
- Two bits represent four values, and
- Three bits represent eight values

Binary Bits and Bit-Fields

Number of Bits	Number of Values	Formula
1	2	21
2	4	2 ²
3	8	23
4	16	24
5	32	25
6	64	26
7	128	27
8	256	28

7425 decimal value

a binary value of 1110100000001

Example of QC in VIIRS Phenology Products

Table 2. Values of VIIRS GLSP_QC (8-bit)

Bit No.	Parameter Name	Bit Comb	GLSP_QC
0-2	GLSP_QC	000	0=processed, good quality
		001	1= processed, other quality
		010	2=processed, backup algorithm
		011	3= not processed, bad quality
		100	4=not processed, other
3-4	TBD	TBD	TBD
5-7 Land/water mas	Land/water mask	000	0 = Shallow ocean
		001	1 = Land (Nothing else but land)
		010	2 = Ocean coastlines and lake shorelines
		011	3 = Shallow inland water
		100	4 = Ephemeral water
		101	5 = Deep inland water
		110	6 = Moderate or continental ocean
		111	7 = Deep ocean

```
DecBin.pl
#!/usr/bin/perl
my $binum='100101'; ##binary number
my $decimal=unpack("N", pack("B32", substr("0"x32 . $binum, -32)));
print "Binary $binum = Decimal $decimal \n";
my $decimal=38;
my $binum=unpack("B32", pack("N", $decimal));
print "Decimal $decimal = Binary $binum \n";
$bin_num=11000011;
$decimal = oct("0b", $bin_num); ##Octal
                                          [zhangx@hunter TEMP]$./DecBin.pl
print "Decimal= $decimal\n";
                                          Binary 100101 = Decimal 37
                                          Decimal 38 = Binary
my $decimal=100;
                                          0000000000000000000000000110
$bin_num=sprintf("%b",$decimal);
                                          Decimal= 99
print "bin_num = $bin_num \n",
                                          bin num = 1100100
                                          [zhangx@hunter TEMP]$
```

HDF-EOS to GeoTIFF Converter (HEG)

HEG: Utility that converts EOSDIS data from HDF-EOS format to common Geographical Information System (GIS)-compatible formats.

Two versions available:

- A downloadable desktop version
- Access through NASA archive online storage (Data Pools)
- Implemented also in some prototypes:
 - Stand-alone Data Pool
 - OGC (Open Geospatial Consortium) for Web Services Chaining
 - DOWS (Deploy OGC Web Services) on the DAACs

HEG Functionality

Conversion:

- HDF-EOS (Swath or Grid) to a single-band or multi-band GeoTIFF's
- HDF-EOS Swath to HDF-EOS Grid
- HDF-EOS Swath or Grid to generic Binary

- Metadata preservation/creation.
- Allow file selection from users local storage

HEG Functionality

- Subsetting (spatial, field, band)
- Stitching (mosaicing) + subsetting + Reprojecting
- Reprojection (to UTM, PS, TM, STP, LCC, LAMAZ, GEO, SIN, Albers)
- Subsampling (Subsample stacks)

Running from Command Line (batch jobs)
 or with Java-based GUI

HEG Functionality

- Currently supports MODIS, MISR, ASTER, AIRS and AMSR-E products on TERRA and AQUA (>110 products),
- Operable on Sun, SGI, Win, Linux, MAC
- Integrated into ECS Data Pool
 - Reduces the transfer time of HDF-EOS data sets (if subset is requested)
 - Provides the end-user with the exact file required by their application

User Interface

- Portable, written in Java.
- Not dependent on COTS (eg. IDL).

TOOLKIT:

http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html

HDFView:

http://newsroom.gsfc.nasa.gov/sdptoolkit/HDFView/

HDFView_hdfeos_plugin.html

HEG:

http://newsroom.gsfc.nasa.gov/sdptoolkit/HEG/HEGHome.html

NetCDF

NetCDF (Network Common Data Form)

 a machine-independent, self-describing, binary data format standard for exchanging scientific data

The project homepage is hosted by the <u>Unidata program</u> at the University Corporation for Atmospheric Research (UCAR).

The data format is "self-describing": a header describes the layout of the rest of the file, in particular the data arrays, as well as arbitrary file metadata in the form of name/value attributes.

The format is platform independent, with issues such as endianness being addressed in the software libraries. The data arrays are rectangular, not ragged, and stored in a simple and regular fashion that allows efficient subsetting.

endianness refer to the <u>convention</u> used to interpret the bytes making up a data <u>word</u> when those bytes are stored in <u>computer memory</u>.

**Example 1. **Example 2. **Example 2. **Example 3. **Example 2. **Exampl

NetCDF File

Components of a NetCDF file

```
Netcdf name {
Dimension:
Variables:
Attributes:
Data:
}
```

NetCDF Classic Model

A file has named variables, dimensions, and attributes. Variables also have attributes. Variables may share dimensions, indicating a common grid. One dimension may be of unlimited length.

NetCdf--ncdump

```
zhangx@hunter TEMP]$ ncdump -h
ncdump [-c|-h] [-v ...] [[-b|-f] [c|f]] [-l len] [-n name] [-p n[,n]] [-k]
[-x] [-s] [-t] [-w] file
 [-c]
            Coordinate variable data and header information
 [-h]
            Header information only, no data
 [-v var1[,...]] Data for variable(s) <var1>,... only
              Brief annotations for C or Fortran indices in data
 [-b [c|f]]
 [-f [c|f]]
             Full annotations for C or Fortran indices in data
             Line length maximum in data section (default 80)
 [-l len]
 [-n name]
                Name for netCDF (default derived from file name)
              Display floating-point values with less precision
 [-p n[,n]]
 [-k]
            Output kind of netCDF file
            Output XML (NcML) instead of CDL
 [-x]
 [-s]
            Output special (virtual) attributes
            Output time data as date-time strings
 [-t]
            Without client-side caching of variables for DAP URLs
 [-W]
            Name of netCDF file
 file
```

xiaoyang Zhang, 3/19/2021

NetCDF File

To get metadata:

- ncdump
- hdfview

[zhangx@hunter 2013121]\$ ncdump -h VGVI.G500m.C01.npp.P2013121_r02c03.nc | more

```
netcdf VGVI.G500m.C01.npp.P2013121 r02c03 {
dimensions:
             HEIGHT = 3616;
             WIDTH = 10000;
variables:
             short reflectance I1(HEIGHT, WIDTH);
                           reflectance I1:long name = "reflectance I1";
                           reflectance I1:coordsys = "cartesian";
                           reflectance I1:units = "NONE";
                           reflectance_I1:range = 0.f, 3.f;
                           reflectance I1: FillValue = -1s;
                           reflectance I1:scale factor = 0.0001f;
                           reflectance I1:add offset = 0.f;
                           reflectance I1:Remark = "Value= scale factor * (ScaledInteger - add offset)";
             short reflectance_I2(HEIGHT, WIDTH);
                           reflectance I2:long name = "reflectance I2";
                           reflectance I2:coordsys = "cartesian";
                           reflectance I2:units = "NONE";
                           reflectance 12:range = 0.f, 3.f;
                           reflectance_I2:_FillValue = -1s;
                           reflectance I2:scale factor = 0.0001f;
                           reflectance 12:add offset = 0.f;
                           reflectance I2:Remark = "Value= scale factor * (ScaledInteger - add offset)";
             short temperature I5(HEIGHT, WIDTH);
              xiaoyang Zhang, 3/19/2021
```

NetCDF4

```
// global attributes:
                           :Conventions = "CF-1.5";
                           :Metadata Conventions = "CF-1.5, Unidata Dataset Discovery v1.0";
                           :standard name vocabulary = "CF Standard Name Table (version 17, 24 March 2011)";
                           :project = "S-NPP Data Exploitation";
                           :institution = "DOC/NOAA/NESDIS/NDE > S-NPP Data Exploitation, NESDIS, NOAA, U.S. Department of
Commerce";
                           :naming authority = "gov.noaa.nesdis.nde";
                           :satellite name = "NPP";
                           :instrument name = "VIIRS";
                           :title = "VHP";
                           :summary = "Vegetation Health Product";
                           :history = "Version 1";
                           :processing level = "NOAA Level 3";
                           :source = "VIIRS-I1-SDR, VIIRS-I2-SDR, VIIRS-I5-SDR, ICCMO";
                           :references = "TBD";
                           :cdm data type = "grid";
                           :geospatial lat units = "degrees north";
                           :geospatial lon units = "degrees east";
                           :creator name = "DOC/NOAA/NESDIS/STAR > VHP Team, Center for Satellite Applications and Research,
NESDIS, NOAA, Department of Commerce";
                           :creator email = "Felix.kogan@noaa.gov";
                           :creator url = "http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/";
                           :publisher name = "DOC/NOAA/NESDIS/NDE > S-NPP Data Exploitation, NESDIS, NOAA, U.S. Department of
Commerce";
                           :publisher email = "espcoperations@noaa.gov";
                           :publisher url = "http://projects.osd.noaa.gov/NDE";
                           :version = "v1r1";
                           :PRODUCT NAME = "VIIRS Daily Map";
                           :PROJECTION = "Plate Carree";
                           :DATE BEGIN = "121";
                           :DATE END = "121";
                           :TIME BEGIN = "00:00 UTC (use day time data only)";
                           :TIME END = "23:59 UTC (use day time data only)";
                                                                                               xiaoyang Zhang, 3/19/2021
```

NetCDF4

```
// global attributes:
                       :ANCILLARY FILES =
"File Configure:viirsgvi.config.500m_v20130718\nFile_Landseamask11:../ancillary/landseamaskII.bit.hdf\nFile_M
etadata Regions:../ancillary/regi
ons_for_metadata.txt\nFile_Static_Metadata:../ancillary/vgvi_static_metadata.txt\n\n";
                       :CONFIGURE_FILE_CONTENT = "# The parameters for running viirs gvi.exe
\nMachine Type=
                        LINUX\nResolution=
                                                   0.5 KM\nMax Solar Zenith=
BYTE, NONE, -128,127,0,0, 1\n[END]\n";
                       :YEAR = 2013;
                       :PERIOD_OF_YEAR = 121;
                       :DAYS PER PERIOD = 1;
                       :geospatial lat min = 42.48f;
                       :geospatial_lon_min = -90.00001f;
                       :geospatial lat max = 58.752f;
                       :geospatial_lon_max = -45.00002f;
                       :INPUT FILES = 1013;
                       :FILENAME = "VGVI.G500m.C01.npp.P2013121 r02c03.nc";
                       :Max Solar Zenith = 80.f;
                       :Max Sensor Zenith = 70.f;
```

ncdump -v Latitude GBBEPx.emis_pm25.001.20140714.nc4|more

```
netcdf GBBEPx.emis pm25.001.20140714 {
dimensions:
             Time = 1;
             Latitude = 721;
             Longitude = 1152;
variables:
             float Time(Time);
                           Time:units = "days since 2014-07-14 12:00:00";
                           Time:time increment = "240000";
                           Time:begin date = "20140714";
                           Time:begin time = "120000";
             float Latitude(Latitude);
                           Latitude:long name = "Latitude";
                           Latitude:units = "degrees north";
                           Latitude:valid range = -90.f, 90.f;
                           Latitude:scale factor = 1.f;
                           Latitude:add offset = 0.f;
                           Latitude: FillValue = -9.f:
             // global attributes:
                            :PRODUCT ALGORITHM VERSION = 1.f;
                            :TIME RANGE = "day";
                            :RangeBeginningDate\(YYYY-DOY\) = "2014-14";
                            :RangeBeginningTime\(UTC-hour\) = "0";
                            :RangeEndingDate\(YYYY-DOY\) = "2014-14";
                            :RangeEndingTime\(UTC-hour\) = "23";
                            :WestBoundingCoordinate\(degree\) = -180.f;
                            :EastBoundingCoordinate\(degree\) = 180.f;
                            :NorthBoundingCoordinate\(degree\) = 90.f;
                            :SouthBoundingCoordinate\(degree\) = -90.f;
data:
Latitude = -90, -89.8, -89.5, -89.2, -89, -88.8, -88.5, -88.2, -88, -87.8,
  -87.5. -87.2. -87. -86.8. -86.5. -86.2. -86. -85.8. -85.5. -85.2. -85.
```

Read NetCDF4 Files

Display and analysis tools include: FERRET, GrADS, NCL, MATLAB, and IDL.

[zhangx@hunter NETCDF]\$./XYZ NetCDF4 Read 2D.exe

```
USAGE: XYZ NetCDF4 Read.exe NetCdf4(input file name) Variable name Data type
Number Col Number Row Output file name(binary)
Data_type: 1--char (1 byte), 2--short integer (2byte), 4--float (4byte)
[zhangx@hunter NETCDF]$ ..exe VGVI.G500m.C01.npp.P2013121_r02c03.nc
reflectance I1 2 10000 3616 reflectance I1.bin
NetCdf4(input_file_name) -- VGVI.G500m.C01.npp.P2013121_r02c03.nc
Variable name -- reflectance I1
Data_type - 2
Number Col – 10000
Number Row -- 3616
Output file name(binary) -- reflectance I1.bin
```

NCDUMP Read HDF5 Files

```
[zhangx@hunter 20200325]$ ncdump VIIRS phenology 500m 2014 h17v07 20200325 attribute.h5|more
netcdf VIIRS phenology 500m 2014 h17v07 20200325 attribute {
group: HDFEOS {
group: ADDITIONAL {
  group: FILE ATTRIBUTES {
  }// group FILE ATTRIBUTES
 } // group ADDITIONAL
group: GRIDS {
  group: Cycle\ 1 {
  group: Data\ Fields {
   dimensions:
           phony dim 0 = 2400;
   variables:
           ushort Date Mid Greenup Phase 1(phony dim 0, phony dim 0);
                      Date Mid Greenup Phase 1:units = "day of year";
                      Date Mid Greenup Phase 1:scale factor = 1;
                       Date Mid Greenup Phase 1:add offset = "-366(given year -2000)";
                       Date Mid Greenup Phase 1:long name = "Date at a mid-greenup phase";
                       Date Mid Greenup Phase 1: FillValue = 32767;
                      Date Mid Greenup Phase 1:valid range = 1, 32766;
           ushort Date Mid Senescence Phase 1(phony dim 0, phony dim 0);
                       Date Mid Senescence Phase 1:units = "day of year";
                      Date Mid Senescence Phase 1: FillValue = 32767;
                       Date Mid Senescence Phase 1:valid range = 1, 32766;
                       Date Mid Senescence Phase 1:scale factor = 1;
                       Date Mid Senescence Phase 1:add offset = "-366(given year -2000)";
                       Date Mid Senescence Phase 1:long name = "Date at a mid-senescence phase";
```

Hdp dumpsds

[x@hunter]\$ hdp dumpsds -n Latitude -d -o test.txt -x gbbgpeo_qfed2.emis_pm25.001.20150503.nc

[x@hunter]\$ hdp dumpsds -n Latitude -d -o test1.bin -b gbbgpeo qfed2.emis pm25.001.20150503.nc

END