partitions-leanblueprint

Carter Hastings

Quinn Oveson

September 12, 2025

0.1 Definitions

Definition 1 (Modular Form). In lean, A modular form of weight $k \in \mathbb{N}$ is a function $f : \mathbb{C} \to \mathbb{C}$ such that :

- (1) f is holomorphic on \mathbb{H}
- (2) For all $z \in \mathbb{H}$, f(z) = f(z+1)
- (3) For all $z \in \mathbb{H}$, $f(z) = z^{-k} f(-1/z)$
- (4) f is bounded as $Re(z) \to \infty$

Definition 2 (Integer Modular Form). An integer modular form of weight $k \in \mathbb{N}$ is a sequence $a : \mathbb{N} \to \mathbb{Z}$ such that $\sum_{n=0}^{\infty} a(n)q^n$ is a modular form of weight k, where $q = e^{2\pi iz}$.

Definition 3 (ModularFormMod ℓ). A modular form mod ℓ of weight $k \in \mathbb{Z}/(\ell-1)\mathbb{Z}$ is a sequence $a : \mathbb{N} \to \mathbb{Z}/\ell\mathbb{Z}$ such that there exists an integer modular form b of weight k' where $b \equiv a \mod \ell$ and $k' \equiv k \mod (\ell-1)$.

Definition 4 (Theta). Θ sends modular forms mod ℓ of weight k to weight k+2 by $(\Theta a)n = na(n)$.

Definition 5 (U Operator). The operator U sends modular forms mod ℓ of weight k to weight k by $(a|U)n = a(\ell n)$.

Definition 6 (has Weight). A modular form mod ℓ called a has weight $j \in \mathbb{N}$ if there exists an integer modular form b of weight j such that $b \equiv a \mod \ell$.

Definition 7 (Filtration). The filtration of a modular form mod ℓ called a is defined as the minimum natural number j such that a has weight j. The filtration of the zero function is 0.

Definition 8 (multiplication and exponentiation). It's worth stated how multiplication and exponentiation are defined here, because they are not defined in the normal way. The multiplication of two modular forms mod ℓ called a and b is defined as

$$(a*b)n = \sum_{x+y=n} a(x)b(y).$$

The exponentiation of a modular form mod ℓ called a to the power of $k \in \mathbb{N}$ is defined as

$$(a^j)n = \sum_{x_1+\ldots+x_j=n} \prod_{i=1}^j a(x_i).$$

0.2 PowPrime

Definition 9 (permutational equivalence). Two functions $a, b : \text{Fin } n \to \mathbb{N}$, which can be thought of as tuples of n natural numbers, are permutationally equivalent if there exists a bijective function $\sigma : \text{Fin } n \to \text{Fin } n$ such that $a = b \circ \sigma$. This is an equivalence relation.

Lemma 10. If $x = (x_1, x_2, ..., x_k)$ is not constant (i.e not all x_i are equal) then for any $n \in \mathbb{N}$,

$$k \mid \#\{y = (y_1, y_2, ..., y_k) : \sum_{i=1}^k y_i = n \text{ and } x \text{ and } y \text{ are permutationally equivalent}\}$$

Lemma 11. If x and y are permutationally equivalent then $\prod_{i=1}^k a(x_i) = \prod_{i=1}^k a(y_i)$.

Lemma 12. Let $x=(x_1,x_2,...,x_k)$ and $n\in\mathbb{N}$. Suppose that $\sum_{i=1}^k x_i=n$. (1) If $k\nmid n$ then x is not constant.

- (2) If $k \mid n$ and $x \neq (n/k, ..., n/k)$ then x is not constant.

Theorem 13. Let ℓ be a prime and a be a modular form mod ℓ of any weight. Then

$$(a^{\ell})n = \begin{cases} a(n/\ell) & \text{if } \ell \mid n \\ 0 & \text{otherwise} \end{cases}$$