Hidroelektrane Nuklearne elektrane Geotermalna energija Potrošnja električne energije

1. Tlačnim se tunelom, sa zahvatom na koti 100 *m* n.v., iz akumulacijskog jezera dovodi voda do turbine čiji je izlaz na koti 40 *m* n.v. Razina vode je u jezeru na koti 120 *m* n. v., a razina donje vode (odvodni kanal) na koti 32 *m* n. v. Odredite: a) snagu turbine pri protoku od 100 *m*³/s u slučaju kada nema difuzora na izlazu iz turbine (promjer izlaznog otvora turbine iznosi 3 *m*), i b) snagu turbine pri istom protoku, ali kada se postavi difuzor čiji je polumjer izlaznog otvora za 1 *m* veći od polumjera izlaznog otvora turbine.

$$P_a = 69 \text{ MW}, P_b = 85 \text{ MW}$$

2. Vjerojatnosnu krivulju protoka na mjestu gdje je postavljena protočna hidroelektrana, instaliranog protoka od 8 m^3/s , aproksimira izraz Q = 10 - t/2 [m^3/s] (t u mjesecima). Koliko iznosi vjerojatna godišnja proizvodnja električne energije? Koliko iznose najveća i najmanja snaga hidroelektrane? Odrediti faktor opterećenja za hidroelektranu. Pojednostavljeno uzeti da je neto visina 50 m i stupanj djelovanja 0,75 cijelo vrijeme.

$$W = 21.5 \cdot 10^9 \text{ Wh}, P_{max} = 2.94 \text{ MW}, P_{min} = 1.47 \text{ MW}, m_{HE} = 0.83$$

3. Izvor tople vode temperature 90 °C koristi se za proizvodnju mehaničkog rada u otvorenom sustavu. Koju maksimalnu snagu je moguće dobiti ako se koristi protok vode od 0,2 kg/s i uz temperaturu okolice od 20 °C? Specifični toplinski kapacitet vode je 4186 J/kgK.

$$P_{\text{max}} = 6.05kW$$

4. Toplinska pumpa koristi podzemnu vodu na 12 °C kao izvor energije. Izlazna temperatura podzemne vode je 4 °C. Proces je izveden s Freonom 12 između tlakova 0,1 MPa i 1,0 MPa. Koliki minimalni protok podzemne vode je nužan da bi toplinska pumpa dobavljala 60 MJ/h? Koliko iznosi potrebna snaga kompresora? Poznate su još vrijednosti entalpija za freon 12 (prema slici): ulaz u kompresor h_1 = 174,15 kJ/kg, ulaz u evaporator (isparivač) $h_3 = h_4 = 76,26 kJ/kg$, ulaz u kondenzator $h_2 = 215 kJ/kg$. Za specifični toplinski kapacitet vode uzeti $c_p = 4186 J/kg \cdot K$.

$$P_{\text{komp}} = -4.9 \text{ kW}, \text{ m}'_{\text{v}} = 0.35 \text{ kg/s}$$

5. Koliko grama Po-210 je potrebno za proizvodnju 25 W električne energije na kraju jednogodišnje misije svemirske sonde i koja je početna aktivnost radioaktivnog materijala? Električna energija se proizvodi u uređaju efikasnosti 10%. Kao izvor energije koristi se α raspad Po-210. Vrijeme poluraspada Po-210 je 138 dana, a energija po raspadu $Q = 5,4 \, MeV$.

$$m = 10.8 g, A_0 = 1.8 10^{15} Bq$$

6. Jezgra nuklearnog reaktora sastavljena je od 121 gorivnog elementa. Gorivni elementi su tipa 16x16 s 20 mjesta za kontrolne šipke i jednim za instrumentaciju. Aktivna dužina goriva je 3,7 m a nazivna linearna gustoća snage je 19,2 *kW/m* (prosječna snaga proizvedena po metru gorivne šipke u nominalnim uvjetima). Reaktor je radio 7 mjeseci na punoj snazi i onda je zaustavljen. Izračunati koliki je maksimalni porast temperature hladioca u jezgri 12 sati nakon konačne obustave ako pretpostavimo da sustav za odvođenje ostatne topline ima aktivne dvije grane i protok hladioca u svakoj od njih je 96.25 kg/s. Kolika se toplinska energija odvede iz reaktora tijekom četvrtog dana nakon obustave? Specifični toplinski kapacitet hladioca c_p=4.2 kJ/kgK.

$$\Delta T = 12,3 \text{ K}, Q_{4,dan} = 5,4 \text{ MWd}$$

Teme: ET05b-ET08b Stranica 1 od 12

7. Nuklearna elektrana PWR tipa s 4 rashladne petlje ima ukupan maseni protok primarnog hladioca 75•10⁶ kg/h, a entalpije primarne vode na ulazu i izlazu iz generatora pare su 1518,1 kJ/kg i 1337,3 kJ/kg. U kondenzatoru se predaje toplina riječnoj vodi u iznosu od 2542 MW_t a ukupni stupanj djelovanja generatora je 0,95. Entalpija pojne vode generatora pare je 382,3 kJ/kg a entalpija zasićene pare na izlazu je 2772,1 kJ/kg. Svaka od 4 primarne pumpe unese u krug toplinsku snagu od 3 MW. Odrediti električnu snagu na stezaljkama generatora, stupanj djelovanja elektrane, maseni protok pare po generatoru pare, i srednji neutronski tok u jezgri koja sadrži 101 t 3% obogaćenog UO₂, efektivnog udarnog presjeka za fisiju 580 barn (1 barn = 10⁻²⁸ m²).

$$P_e = 1163 \text{ MW}, \eta_T = 0.31, \ \dot{m}_{sek} = 394 \text{ kg/s}, \ \Phi = 2.96 \cdot 10^{17} \text{ n/m}^2 \text{s}$$

8. Za neki elektroenergetski sustav poznato je dnevno opterećenje prema podacima u tablici. Potrebno je nacrtati dnevnu krivulju trajanja opterećenja, odrediti iznos varijabilne energije, konstantne energije, dnevno utrošene energije, faktora opterećenja, te vrijeme korištenja maksimalne snage.

t [h]	0-4	4-6	6-9	9 – 12	12 - 14	14 – 18	18 - 22	22 - 23	23 - 24
P[MW]	600	700	900	1500	1300	1200	1300	900	600

$$W_V = 10700 \text{ MWh}, W_K = 14400 \text{ MWh}, W = 25100 \text{ MWh}, m = 0,697, T_{Pmax} = 16,7 \text{ h}$$

9. Dnevna krivulja trajanja opterećenja nekog EES-a aproksimirana s tri pravca definirana je slijedećim izrazima:

Vrijeme [h]	0 - 12	12 – 18	18 – 24
Snaga [MW]	$-\frac{250}{12}t+1000$	$-\frac{500}{6}t+1750$	250

Odredite iznos dnevno potrošene energije, faktora opterećenja, te vrijeme korištenja maksimalne snage.

$$W = 15000 \text{ MWh}, m = 0.625, T_{Pmax} = 15 \text{ h}$$

10. Dnevna krivulja trajanja opterećenja nekog EES-a aproksimirana je s tri pravca. Poznati su sljedeći podaci o krivulji: $P_{max} = 1000$ MW, $P_{min} = 550$ MW, $T_v = 18$ h, W = 18000 MWh, $\beta = 0,6$. Potrebno je izračunati koeficijent α , nacrtati krivulju trajanja opterećenja i napraviti u njoj razmještaj elektrana za slučaj kada je nuklearna elektrana u remontu. Poznato je :

HE₁: $P_{HE1n} = 200 \text{ MW}$; protočna HE₂: $P_{HE2n} = 300 \text{ MW}$; protočna

NE: $P_{NEn} = 300 \text{ MW}$; $c_{NE} = 15 \text{ lp/kWh}$ TE₁: $P_{TE1n} = 250 \text{ MW}$; $P_{TE1min} = 50 \text{ MW}$; $c_{TE1} = 35 \text{ lp/kWh}$ TE₂: $P_{TE2n} = 350 \text{ MW}$; $P_{TE2min} = 50 \text{ MW}$; $c_{TE2} = 30 \text{ lp/kWh}$

 $\alpha = 0,5852$

1. Tlačnim se tunelom, sa zahvatom na koti 100 *m* n.v., iz akumulacijskog jezera dovodi voda do turbine čiji je izlaz na koti 40 *m* n.v. Razina vode je u jezeru na koti 120 *m* n. v., a razina donje vode (odvodni kanal) na koti 32 *m* n. v. Odredite: a) snagu turbine pri protoku od 100 *m³/s* u slučaju kada nema difuzora na izlazu iz turbine (promjer izlaznog otvora turbine iznosi 3 *m*), i b) snagu turbine pri istom protoku, ali kada se postavi difuzor čiji je polumjer izlaznog otvora za 1 *m* veći od polumjera izlaznog otvora turbine.

$$H_{zah} = 100 m \text{ n. v.}$$

 $H_t = 40 m \text{ n. v.}$
 $H_{gv} = 120 m \text{ n. v.}$
 $H_{dv} = 32 m \text{ n. v.}$
 $Q_a = Q_b = 100 m^3/\text{s}$
 $D_t = 3 m$
 $D_d = 5 m$
 $P_a, P_b = ?$

<u>Napomena:</u> zbog kavitacije dužina difuzora mora biti ograničena na **8 m**.

a) bez difuzora

Površina izlaznog otvora turbine je:
$$A_t = \frac{D_t^2 \cdot \pi}{4} = \frac{3^2 \cdot \pi}{4} = 7,07 \, m^2$$

Iz jednadžbe kontinuiteta $Q_t = A_t \cdot c_t$ slijedi izraz za brzinu vode na izlazu iz turbine:

$$c_t = \frac{Q}{A} = \frac{100}{7.07} = 14,15 \, m/s$$

Neto visina je:
$$H_n = H_{gv} - H_t - \frac{c_t^2}{2 \cdot g} = 120 - 40 - \frac{14,15^2}{2 \cdot 9,81} = 120 - 40 - 10,2 = 69,8 m$$

Snaga turbine je: $P_a = 9.81 \cdot Q_a \cdot H_{n,a} = 9.81 \cdot 100 \cdot 69.8 = 68474 \, kW = 69 \, MW$

b) <u>s difuzorom</u> Difuzor je uređaj na izlazu iz turbine koji omogućava potpuno iskorištenje potencijalne energije te smanjenje gubitaka kinetičke energije vode između izlaza iz turbine i razine donje vode.

Površina izlaznog otvora difuzora je:
$$A_d = \frac{D_d^2 \cdot \pi}{4} = \frac{5^2 \cdot \pi}{4} = 19,63 \, m^2$$

Iz jednadžbe kontinuiteta $Q_d = A_d \cdot c_d$ slijedi izraz za brzinu vode na izlazu iz difuzora:

$$c_d = \frac{Q_d}{A_t} = \frac{100}{19,63} = 5.1 \, m/s$$

Neto visina je:
$$H_n = H_{gv} - H_{dv} - \frac{c_d^2}{2 \cdot g} = 120 - 32 - \frac{5.1^2}{2 \cdot 9.81} = 120 - 32 - 1.3 = 86.7 m$$

Snaga turbine je: $P_b = 9.81 \cdot Q_b \cdot H_{n,b} = 9.81 \cdot 100 \cdot 86.7 = 85052 \, kW = 85 \, MW$

$$P_a = 69 MW, P_b = 85 MW$$

2. Vjerojatnosnu krivulju protoka na mjestu gdje je postavljena protočna hidroelektrana, instaliranog protoka od 8 m^3/s , aproksimira izraz Q = 10 - t/2 [m^3/s] (t u mjesecima). Koliko iznosi vjerojatna godišnja proizvodnja električne energije? Koliko iznose najveća i najmanja snaga hidroelektrane? Odrediti faktor opterećenja za hidroelektranu. Pojednostavljeno uzeti da je neto visina 50 m i stupanj djelovanja 0,75 cijelo vrijeme.

Vjerojatnosna krivulja protoka je: $Q = 10 - t/2 [m^3/s] (t \text{ u mjesecima})$

Uvrštavanjem za $Q = Q_i$ dobiva se $t_i = 4$ *mjeseca*.

Vjerojatna godišnja proizvodnja električne energije određuje se prema izrazu:

$$W = 9.81 \rho \cdot \left\{ Q_i \cdot \eta_i \cdot \int_0^{t_i} H_n(t) \cdot dt + \int_{t_i}^{12} Q(t) \cdot H_n(t) \cdot \eta(t) \cdot dt \right\} = 9.81 \cdot \rho \cdot \left(Q_i \cdot \eta \cdot H_n \cdot t_i + H_n \cdot \eta \cdot \int_{t_i}^{12} Q(t) \cdot dt \right)$$

$$= 367875 \cdot \left(32 + \left(10 \cdot t - \frac{t^2}{2 \cdot 2} \right) \Big|_4^{12} \right) = 9.81 \cdot 10^3 \cdot 0.75 \cdot 50 \cdot \left(8 \cdot 4 + \int_4^{12} \left(10 - \frac{t}{2} \right) \cdot dt \right) = 29.4 \cdot 10^6 Wmj =$$

$$= 29.4 \cdot 10^6 \cdot 8760/12 = 21.5 \cdot 10^9 Wh$$

Najveća snaga hidroelektrane:

$$P_{max} = P_i = 9.81 \cdot Q_i \cdot H_n \cdot \eta = 9.81 \cdot 8 \cdot 50 \cdot 0.75 = 2943 \ kW = 2.94 \ MW$$

Najmanja snaga hidroelektrane:

 $P_{min} = 9.81 \cdot Q_{min} \cdot H_{min} \cdot \eta = 9.81 \cdot Q(12 \ mj) \cdot 50 \cdot 0.75 = 9.81 \cdot 4 \cdot 50 \cdot 0.75 = 1472 \ kW = 1.47 \ MW$ Faktor opterećenja za hidroelektranu:

$$m_{HE} = W/W_i = W/(P_i \cdot T) = 21,5 \cdot 10^9/(2,94 \cdot 10^6 \cdot 8760) = 21,5 \cdot 10^9/25,4 \cdot 10^9 = 0,83$$

$$W = 21.5 \ 10^9 \ Wh, P_{max} = 2.94 \ MW, P_{min} = 1.47 \ MW, m_{HE} = 0.83$$

3. Izvor tople vode temperature 90 °C koristi se za proizvodnju mehaničkog rada u otvorenom sustavu. Koju maksimalnu snagu je moguće dobiti ako se koristi protok vode od 0,2 kg/s i uz temperaturu okolice od 20 °C? Specifični toplinski kapacitet vode je 4186 J/kgK.

Maksimalno iskoristivi jedinični rad odnosno eksergija jednaka je:

$$w_{max} = h_1 - h_{ok} - T_{ok} \cdot (s_1 - s_{ok})$$

Množenjem s masenim protokom tople vode dobiva se toplinska snaga:

$$\dot{Q} = \dot{m} \cdot (h_1 - h_{ok}) = \dot{m} \cdot c_p \cdot (T_1 - T_{ok}) = 0.2 \cdot 4186 \cdot 70 = 58,60 kW$$

Promjena entropije s_1 - s_{ok} iznosi:

$$s_1 - s_{ok} = s_1 - s_2 = -(s_2 - s_1) = -c_p \cdot \ln \frac{T_2}{T_1} = 896,36J/kgK$$

Gubici eksergije u jedinici vremena iznose:

$$\dot{A} = \dot{m} \cdot T_{ok} \cdot (s_1 - s_{ok}) = 0.2 \cdot 293.15 \cdot 896.36 = 52.55kW$$

Maksimalna mehanička snaga koji je moguće dobiti iznosi:

$$P_{\text{max}} = \dot{Q} - \dot{A} = 58,60 - 52,55 = 6,05kW$$

 $P_{\text{max}} = 6.05 kW$

Teme: ET05b-ET08b Stranica 5 od 12 4. Toplinska pumpa koristi podzemnu vodu na 12 °C kao izvor energije. Izlazna temperatura podzemne vode je 4 °C. Proces je izveden s Freonom 12 između tlakova 0,1 MPa i 1,0 MPa. Koliki minimalni protok podzemne vode je nužan da bi toplinska pumpa dobavljala 60 MJ/h? Koliko iznosi potrebna snaga kompresora? Poznate su još vrijednosti entalpija za freon 12 (prema slici): ulaz u kompresor $h_1 = 174,15 \ kJ/kg$, ulaz u evaporator (isparivač) $h_3 = h_4 = 76,26 \ kJ/kg$, ulaz u kondenzator $h_2 = 215 \ kJ/kg$. Za specifični toplinski kapacitet vode uzeti $c_p = 4186 \ J/kg \cdot K$.

$$g_{ul} = 12 \, ^{\circ}C$$

 $g_{iz} = 4 \, ^{\circ}C$
 $p_1 = 0,1 \, MPa$
 $p_2 = 1 \, MPa$
 $\dot{Q}_{dov} = -60 \, \text{MJ/h} = -1,67 \cdot 10^4 \, W$
 $h_1 = 174,15 \, kJ/kg$
 $h_3 = h_4 = 76,26 \, kJ/kg$
 $h_2 = 215 \, kJ/kg$
 $c_p = 4186 \, J/kgK$

 P_{komp} , $\dot{m}_{v} = ?$

Oznake procesa:

- 1-2 kompresor
- 2-3 kondenzator
- 3-4 ekspanzijski ventil
- 4-1 isparivač

Primjenom 1. GST za otvoreni sustav na kondenzator (proces 2-3):

$$q_{23} + h_2 = w_{23} + h_3$$
 $(w_{23} = 0)$

Množenjem izraza s masenim protokom freona dobiva se:

$$\dot{Q}_{23} = \dot{m}_F \cdot (h_3 - h_2) \equiv \dot{Q}_{dov}$$

Iz gornjeg izraza onda slijedi za maseni protok freona:

$$\dot{m}_F = \frac{\dot{Q}_{dov}}{h_3 - h_2} = \frac{-1,67 \cdot 10^4}{(76,26 - 215) \cdot 10^3} = 0,12 \, kg \, / \, s$$

Primjenom 1. GST za otvoreni sustav na kompresor (proces 1-2):

$$q_{12} + h_1 = w_{12} + h_2$$
 $(q_{12} = 0)$

Množenjem gornjeg izraza s masenim protokom freona dobiva se snaga kompresora kako slijedi:

$$P = \dot{m}_F \cdot w_{12} = \dot{m}_F \cdot (h_1 - h_2) = 0.12 \cdot (174.15 - 215) \cdot 10^3 = -4.90 \, kW$$

1.GST za kontrolni volumen KV (isparivač je otvoreni sustav; proces 4-1): $\mathbf{Q}_{KV} + \mathbf{\Sigma} m_u h_u = \mathbf{\Sigma} m_i h_i + W_{KV}$ gdje su **sa** u označene ulazne veličine, a sa i izlazne veličine. Promatrano u jedinici vremena jednadžba prelazi u oblik:

$$\dot{m}_F \cdot h_4 + \dot{m}_V \cdot h_{ul} = \dot{m}_F \cdot h_1 + \dot{m}_V \cdot h_{iz}$$

Sređivanjem dobiva se za maseni protok tople vode:

$$\dot{m}_{V} = \dot{m}_{F} \cdot \frac{h_{1} - h_{4}}{h_{ul} - h_{iz}} = \dot{m}_{F} \cdot \frac{h_{1} - h_{4}}{c_{p} \cdot (T_{ul} - T_{iz})} = 0.12 \cdot \frac{(174.15 - 76.26) \cdot 10^{3}}{4186 \cdot 8} = 0.35 \, kg/s$$

$$P_{komp} = -4.9 \, kW, \, m_{v}^{*} = 0.35 \, kg/s$$

5. Koliko grama Po-210 je potrebno za proizvodnju 25 *W* električne energije na kraju jednogodišnje misije svemirske sonde i koja je početna aktivnost radioaktivnog materijala? Električna energija se proizvodi u uređaju efikasnosti 10%. Kao izvor energije koristi se α raspad Po-210. Vrijeme poluraspada Po-210 je 138 *dana*, a energija po raspadu *Q* = 5,4 *MeV*.

Toplinska snaga izvora nakon godinu dana misije sonde:

$$P = N \cdot \lambda \cdot Q = P_e / \eta = 25 / 0.1 = 250 W$$

Konstanta radioaktivnog raspada

$$\lambda = ln2 / T_{1/2} = 0,693 / (138 \cdot 86400) = 5,81 \cdot 10^{-8} s^{-1}$$

Broj jezgara Po-210 nakon godinu dana

$$N = P/(\lambda \cdot Q) = 250/(5.81 \cdot 10^{-8} \cdot 5.4 \cdot 1.6 \cdot 10^{-13}) = 4.98 \cdot 10^{21}$$
 atom Po-210

Zakon radioaktivnog raspada

$$N(t) = N_0 \cdot e^{-\lambda t}$$

Broj jezgara u trenutku stavljanja izvora

$$N_0 = N(t) \cdot e^{\lambda t} = 4,98 \cdot 10^{21} e^{(5,81e-8 \cdot 1 \cdot 365 \cdot 86400)} = 3,1 \cdot 10^{22}$$
 atom Po-210

$$N = m \cdot N_A / A_{Po-210}$$

Masa Po-210 u trenutku stavljanja izvora

$$m = N_0 \cdot A_{Po-210} / N_A = 3.1 \cdot 10^{22} \cdot 210 / 6.022 \cdot 10^{23} = 10.81 g$$

Početna aktivnost radioaktivnog izvora

$$A_0 = N_0 \bullet \lambda = 1.8 \ 10^{15} \ Bq$$

 $m = 10.8 g, A_{\theta} = 1.8 10^{15} Bq$

Teme: ET05b-ET08b Stranica 7 od 12

6. Jezgra nuklearnog reaktora sastavljena je od 121 gorivnog elementa. Gorivni elementi su tipa 16x16 s 20 mjesta za kontrolne šipke i jednim za instrumentaciju. Aktivna dužina goriva je 3,7 m a nazivna linearna gustoća snage je 19,2 *kW/m* (prosječna snaga proizvedena po metru gorivne šipke u nominalnim uvjetima). Reaktor je radio 7 mjeseci na punoj snazi i onda je zaustavljen. Izračunati koliki je maksimalni porast temperature hladioca u jezgri 12 sati nakon konačne obustave ako pretpostavimo da sustav za odvođenje ostatne topline ima aktivne dvije grane i protok hladioca u svakoj od njih je 96.25 kg/s. Kolika se toplinska energija odvede iz reaktora tijekom četvrtog dana nakon obustave? Specifični toplinski kapacitet hladioca c_p=4.2 kJ/kgK.

$$N = 121$$
 gorivni element (16x16, 20 + 1)
 $L = 3.7$ m
 $Q' = 19.2$ kW/m
 $t_0 = 7$ mjeseci
 $\tau - t_0 = 12$ sati
 $m^* = 96.25$ kg/s
 $c_p = 4.2$ kJ/kgK

 ΔT , $Q_{4,dan} = ?$

Snaga jezgre u nominalnim uvjetima

$$P_0 = (256 - 21) \cdot 121 \cdot 3.7 \ m \cdot 19.2 \ kW/m = 2020 \ MW$$

Ostatna toplinska snaga u ovisnosti o vremenu τ [dan] nakon t₀ dana pogona na snazi P_{θ}

$$P(\tau) = 6.1 \cdot 10^{-3} \cdot P_0 \cdot [(\tau - t_0)^{-0.2} - \tau^{-0.2}]$$

Vrijeme pogona je 210 dana, vrijeme nakon obustave $\tau - t_0$ je 0,5 dana

$$P = 6.1 \cdot 10^{-3} \cdot P_{\theta} \cdot [(210 + 0.5 - 210)^{-0.2} - (210 + 0.5)^{-0.2}] = 9.93 \text{ MW}$$

Snaga odvedena rashladnim sustavom, pri masenom protoku \dot{m} i porast temperature ΔT

$$P = 2 \dot{m} \cdot c_p \cdot \Delta T$$
 (sustav za odvođenje ostatne topline ima 2 grane)

Porast temperature vode u rashladnom sustavu

$$\Delta T = P / (2 \dot{m} \cdot c_p) = 9.93 \cdot 10^6 / (96.25 \cdot 2 \cdot 4.2 \cdot 10^3) = 12.3 K$$

Integriranjem izraza za snagu od kraja trećeg dana nakon obustave do kraja četvrtog dana (granice integracije od $\tau = 214$ do $\tau = 213$)

$$Q_{4.dan} = 6,1 \cdot 10^{-3} / 0,8 \cdot P_0 \left[(\tau - t_0)^{0.8} \right]_{213}^{214} - \tau^{0.8} \right]_{213}^{214}$$

$$Q_{4.dan} = 6,1 \cdot 10^{-3} / 0,8 \cdot P_0 \cdot \left[(214-210)^{0.8} - (213-210)^{0.8} - (214^{0.8}-213^{0.8}) \right] = 5,38 \ MWd$$

 $\Delta T = 12.3 \text{ K}, Q_{4 dan} = 5.4 \text{ MWd}$

7. Nuklearna elektrana PWR tipa s 4 rashladne petlje ima ukupan maseni protok primarnog hladioca 75•10⁶ kg/h, a entalpije primarne vode na ulazu i izlazu iz generatora pare su 1518,1 kJ/kg i 1337,3 kJ/kg. U kondenzatoru se predaje toplina riječnoj vodi u iznosu od 2542 MW_t a ukupni stupanj djelovanja generatora je 0,95. Entalpija pojne vode generatora pare je 382,3 kJ/kg a entalpija zasićene pare na izlazu je 2772,1 kJ/kg. Svaka od 4 primarne pumpe unese u krug toplinsku snagu od 3 MW. Odrediti električnu snagu na stezaljkama generatora, stupanj djelovanja elektrane, maseni protok pare po generatoru pare, i srednji neutronski tok u jezgri koja sadrži 101 t 3% obogaćenog UO₂, efektivnog udarnog presjeka za fisiju 580 barn (1 barn = 10⁻²⁸ m²).

```
m^{\bullet}_{ukupni} = 75 \bullet 10^6 \ kg/h
h_{prim \, ulaz} = 1518, 1 \ kJ/kg
h_{prim \, izlaz} = 1337, 3 \ kJ/kg
P_{kond} = 2542 \ MW_t
\eta_{TG} = 0.95
h_{FW} = 382, 3 \ kJ/kg
h_{ST} = 2772, 1 \ kJ/kg
P_{pump} = 3 \ MW
m_{UO2} = 101 \ t
e = 0.03
\sigma = 580 \ barn
P_e, \eta_T, m^{\bullet}_{sek}, \Phi = ?
```


Ukupna toplinska snaga predana parogeneratorima

$$P_T = m_{ukupni} \cdot (h_{ulaz} - h_{izlaz}) = 75 \cdot 10^6 / 3600 \cdot (1518, 1 - 1337, 3) = 3766,67 MW$$

Električna snaga

$$P_e = \eta_{TG} \bullet (P_T - P_{kond}) = 0.95 (3766.67 - 2542) = 1163.44 MW$$

Stupanj djelovanja na stezaljkama generatora

$$\eta_T = P_e/P_T = 1163,44/3766,67 = 0,3089$$

Protok pare po parogeneratoru

$$\dot{m}_{\text{sek}} = P_T / 4 / (h_{\text{sizlaz}} - h_{\text{sulaz}}) = 3766,67 \cdot 10^6 / 4 / (2772,1 \cdot 10^3 - 382,3 \cdot 10^3) = 394,05 \text{ kg/s}$$

 $P_{\text{jezgre}} = P_T - 4 \cdot P_{\text{pumpa}} = 3766,67 \cdot 12 = 3754,67 \text{ MW}$

Toplinska snaga nuklearnog reaktora

N – broj jezgara U-235,

 σ_f – mikroskopski udarni presjek za fisiju

 Φ – neutronski tok

$$P = 200 \cdot 1.6 \cdot 10^{-13} N \cdot \sigma_f \cdot \phi$$

e – obogaćenje goriva (težinski udjel U-235 u ukupnom uranu)

 N_A – Avogadrov broj

Pretpostavljene su aproksimativne vrijednosti za atomske mase urana i kisika:

$$N = em \frac{238}{270} \cdot \frac{N_A}{235} = 0.03 \cdot 101000 \cdot \frac{238}{270} \cdot \frac{6.022 \cdot 10^{26}}{235} = 6.844 \cdot 10^{27}$$

$$\phi = P/(200 \cdot 1.6 \cdot 10^{-13} N \cdot \sigma_f)$$

$$\phi = 3754.67 \cdot 10^{6} / (3.2 \cdot 10^{-11} \cdot 6.844 \cdot 10^{27} \cdot 580 \cdot 10^{-28}) = 2.96 \cdot 10^{17} n / m^{2} s$$

$$P_e = 1163 \text{ MW}, \eta_T = 0.31, \dot{m}_{sek} = 394 \text{ kg/s}, \Phi = 2.96 \cdot 10^{17} \text{ n/m}^2 \text{s}$$

8. Za neki elektroenergetski sustav poznato je dnevno opterećenje prema podacima u tablici. Potrebno je nacrtati dnevnu krivulju trajanja opterećenja, odrediti iznos varijabilne energije, konstantne energije, dnevno utrošene energije, faktora opterećenja, te vrijeme korištenja maksimalne snage.

<i>t</i> [<i>h</i>]	0 - 4	4 – 6	6 – 9	9 – 12	12 - 14	14 - 18	18 - 22	22 - 23	23 - 24
P[MW]	600	700	900	1500	1300	1200	1300	900	600

Prvo nacrtamo dnevnu krivulju (dijagram) opterećenja:

Iz koje napravimo dnevnu krivulju trajanja opterećenja.

Ukupna proizvedena energija jednaka je površini ispod krivulje trajanja opterećenja:

$$W = 1500 \text{ MW} \cdot 3 \text{ h} + 1300 \text{ MW} \cdot 6 \text{ h} + 1200 \text{ MW} \cdot 4 \text{ h} + 900 \text{ MW} \cdot 4 \text{ h} + 700 \text{ MW} \cdot 2 \text{ h} + 600 \text{ MW} \cdot 5 \text{ h}$$

 $W = 25100 \text{ MWh}$

$$W_K = 24 \text{ h} \cdot P_{\min} = 24 \text{ h} \cdot 600 \text{ MW} = 14400 \text{ MWh}$$

$$W_V = W - W_K = 10700 \text{ MWh}$$

Faktor opterećenja
$$m = \frac{W}{24 \text{ h} \cdot P_{\text{max}}} = \frac{25100 \text{ MWh}}{24 \text{ h} \cdot 1500 \text{ MW}} = 0,697$$

Vrijeme korištenja maksimalne snage
$$T_{P_{\text{max}}} = \frac{W}{P_{\text{max}}} = \frac{25100 \text{ MWh}}{1500 \text{ MW}} = 16,7 \text{ h}$$

$$W_V = 10700 \text{ MWh}, W_K = 14400 \text{ MWh}, W = 25100 \text{ MWh}, m = 0.697, T_{Pmax} = 16.7 \text{ h}$$

Teme: ET05b-ET08b Stranica 10 od 12

9. Dnevna krivulja trajanja opterećenja nekog EES-a aproksimirana s tri pravca definirana je slijedećim izrazima:

Vrijeme [h]	0 – 12	12 – 18	18 – 24
Snaga [MW]	$-\frac{250}{12}t+1000$	$-\frac{500}{6}t+1750$	250

Odredite iznos dnevno potrošene energije, faktora opterećenja, te vrijeme korištenja maksimalne snage.

Dnevno potrošena energija je površina ispod krivulje trajanja opterećenja, može se izračunati iz površina ispod krivulje (zbrajanjem kvadrata i trokuta) ili integracijom krivulje:

iz površina (grafički):

$$W_K = 24 \text{h} \cdot P_{\text{min}} = 6000 \text{ MWh}$$

$$W_V = \frac{1}{2}(250\text{MW} \cdot 12\text{h}) + (500\text{MW} \cdot 12\text{h}) + \frac{1}{2}(500\text{MW} \cdot 6\text{h}) = 9000 \text{ MWh}$$

$$W = W_K + W_V = 15000 \text{ MWh}$$

Integracijom (analitički):

$$W = \int_{0}^{12} \left(-\frac{250}{12}t + 1000 \right) dt + \int_{12}^{18} \left(-\frac{500}{5}t + 1750 \right) dt + \int_{18}^{24} 250 dt$$

$$W = -\frac{250}{12 \cdot 2} \left(12^2 - 0^2 \right) + 1000 \left(12 - 0 \right) - \frac{500}{6 \cdot 2} \left(18^2 - 12^2 \right) + 1750 \left(18 - 12 \right) + 250 \left(24 - 18 \right)$$

$$W = 15000 \text{ MWh}$$

Faktor opterećenja
$$m = \frac{W}{24 \text{ h} \cdot P_{\text{max}}} = \frac{15000 \text{ MWh}}{24 \text{ h} \cdot 1000 \text{ MW}} = 0,625$$

Vrijeme korištenja maksimalne snage
$$T_{P_{\text{max}}} = \frac{W}{P_{\text{max}}} = \frac{15000 \text{ MWh}}{1000 \text{ MW}} = 15 \text{ h}$$

$$W = 15000 MWh, m = 0.625, T_{Pmax} = 15 h$$

10. Dnevna krivulja trajanja opterećenja nekog EES-a aproksimirana je s tri pravca. Poznati su sljedeći podaci o krivulji: $P_{max} = 1000$ MW, $P_{min} = 550$ MW, $T_v = 18$ h, W = 18000 MWh, $\beta = 0.6$. Potrebno je izračunati koeficijent α , nacrtati krivulju trajanja opterećenja i napraviti u njoj razmještaj elektrana za slučaj kada je nuklearna elektrana u remontu. Poznato je :

 $\begin{array}{llll} HE_{1} \colon & P_{HE1n} = 200 \ MW; & protočna \\ HE_{2} \colon & P_{HE2n} = 300 \ MW; & protočna \\ NE \colon & P_{NEn} = 300 \ MW; & c_{NE} = 15 \ lp/kWh \\ TE_{1} \colon & P_{TE1n} = 250 \ MW; & P_{TE1min} = 50 \ MW; & c_{TE1} = 35 \ lp/kWh \end{array}$

TE₂: $P_{TE2n} = 350 \text{ MW}$; $P_{TE2min} = 50 \text{ MW}$; $c_{TE2} = 30 \text{ lp/kWh}$

Nuklearna elektrana je u remontu, te ju ne uzimamo u obzir u ovom zadatku.

Zbroj snaga preostalih raspoloživih elektrana je 1100 MW > P_{max} .

Sve preostale elektrane potrebne su nam za zadovoljavanje dnevnih potreba za energijom.

$$W_K = 24 \text{h} \cdot P_{\text{min}} = 24 \text{h} \cdot 550 \text{MW} = 13200 \text{ MWh}$$

 $W_V = W - W_K = 4800 \text{ MWh}$

$$P_V = P_{\max} - P_{\min} = 450 \text{MW}$$
, te iz relacije $\alpha + \beta = \frac{2 \cdot W_V}{T_V \cdot P_V}$ dobijemo:

$$\alpha = \frac{2 \cdot W_V}{T_V \cdot P_V} - \beta = \frac{2 \cdot 4800 \text{MWh}}{18 \text{h} \cdot 450 \text{MW}} - 0,6 = 0,5852$$

Raspored elektrana prikazan je na slici:

 $\alpha = 0.585$

Stranica 12 od 12