

Parul University

Faculty of Engineering & Technology Department of Applied Sciences and Humanities 1st Year B.Tech Programme (All Branches)

Mathematics – 1 (303191101) **Unit – 6 Multivariable Calculus**

Tutorial-2

Evaluate the following limits, if exists:

a)
$$\lim_{(x,y)\to(-1,2)} \frac{x^3+y^3}{x^2+y^2}$$

a)
$$\lim_{(x,y)\to(-1,2)} \frac{x^3+y^3}{x^2+y^2}$$
 b) $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2+1}{3+x^2+3y^2}$ e) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{y^2+x^4}$ c) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y}$ d) $\lim_{(x,y)\to(0,0)} \frac{2x^2y^2}{x^4+y^2}$

e)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{y^2+x^4}$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y}$$

d)
$$\lim_{(x,y)\to(0,0)} \frac{2x^2y^2}{x^4+y^2}$$

2. Check whether the given function is continuous or not, if yes then find point of continuity.

a)
$$f(x,y) = \begin{cases} \frac{x^2 y^2}{2x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0) \end{cases}$$

a)
$$f(x,y) = \begin{cases} \frac{x^2y^2}{2x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0) \end{cases}$$
 b) $f(x,y) = \begin{cases} \frac{xy}{x^2 + xy + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$

c)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0) \end{cases}$$

c)
$$f(x,y) =\begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0) \end{cases}$$
 d) $f(x,y) =\begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$

3. Find the first order partial derivatives at a given point

a)
$$f(x, y) = y \sin(xy)$$
 at $\left(0, \frac{\pi}{2}\right)$

a)
$$f(x, y) = y \sin(xy)$$
 at $\left(0, \frac{\pi}{2}\right)$ b) $f(x, y) = x^2 + 3xy + y - 1$ at $\left(4, -5\right)$

c)
$$f(x, y, z) = \frac{x}{y+z}$$
 at $(3,2,1)$ d) $f(x, y, z) = e^{(x^2+y^2+1)}$ at $(1,1,1)$

d)
$$f(x,y,z) = e^{(x^2+y^2+1)} at (1,1,1)$$

4 Find all second order partial derivatives of the following functions

a)
$$x^2 y sin x$$

b)
$$x^3ysiny$$
 c) $x^3 + y^3$ d) $sin(xy)$

d)
$$sin(xy)$$

5. Find
$$\frac{\partial^3 u}{\partial x \partial y \partial z}$$
 for $u = e^{5xyz}$

6. If
$$u(x, y) = \log(\sqrt{x^2 + y^2})$$
 then show that: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$

7. a) If
$$u = \frac{e^{(x+y+z)}}{e^x + e^y + e^z}$$
 then show that: $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 2u$.

b) If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, then prove that: $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}$.

8.	If resistors of R_1 , R_2 , R_3 ohms are connected in parallel to make an R-ohm resistor, the value of R
	can be found from the equation $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$. Find the value of $\frac{\partial R}{\partial R_2}$ when $R_1 = 30$, $R_2 = 45$
	and $R_3 = 90$ ohms.
9.	If $u(x,y) = \log\left(\frac{x^2 + y^2}{x + y}\right)$, then prove that: $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$
10.	If $u = x^3 y^2 sin^{-1} \left(\frac{y}{x}\right)$, show that: a. $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 5u$; b. $x^2 \frac{\partial^2 u}{\partial x^2} 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 20u$
11.	For $u = \tan^{-1}\left(\frac{y}{x}\right)$; show that: $a \cdot \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ $b \cdot \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$
12.	If $f(x, y, z) = \log(x^2 + y^2 + z^2)$ then prove that: $xf_{yz} = yf_{zx} = zf_{xy}$