

Лабораторно упражнение 4 Динамична Маршрутизация

Обзор

В тази лабораторна работа ще използвате динамично маршрутизиране, за да опростите настройката на мрежата и автоматично да реагира при нередности.

При използването на логически адреси . YY заместваме с последните 2 цифри от факултетния номер.

Създаване на мрежата

В GNS3 създайте мрежова топология, която съответства на тази:

Мрежова диаграма 1 Лабораторно 4 (Забележка: Етикетите на подмрежата и пунктираните граници са само за информация)

Тази мрежа трябва да отговаря на следните спецификации:

Има четири рутера с имена router1, router2, router3 и router4, както се вижда на мрежовата диаграма.

Имайте предвид, че подмрежи 1-4 са /22 подмрежи, а не /24. Това са по-големи подмрежи, които имат 1024 адреса вместо 256.

Подмрежа 1 - 10.20.0.0/22

VPC1 IP: 10.20.0.YY Router1 IP: 10.20.3.254

Подмрежа 2 - 10.30.0.0/22

VPC2 IP: 10.30.0.YY Webterm IP: 10.30.0.2 Router2 IP: 10.30.3.254

Подмрежа 3 - 10.40.0.0/22

VPC3 IP: 10.40.0.YY Router3 IP: 10.40.3.254

Подмрежа 4 - 10.50.0.0/22

VPC4 IP: 10.50.0.YY Router4 IP: 10.50.3.254

Подмрежа А - 192.168.0.0/24

Router1 IP: 192.168.0.1 Roter3 IP: 192.168.0.2

Подмрежа В - 192.168.1.0/24

Router1 IP: 192.168.1.1 Router2 IP: 192.168.1.2

Подмрежа С - 192.168.2.0/24

Router2 IP: 192.168.2.1 Router4 IP: 192.168.2.2

Подмрежа D - 192.168.3.0/24

Router3 IP: 192.168.3.1 Router4 IP: 192.168.3.2

Подмрежа Е - 192.168.4.0/24

Router2 IP: 192.168.4.1 Router3 IP: 192.168.4.2

Подмрежа F - 192.168.5.0/24

Router1 IP: 192.168.5.1 Router4 IP: 192.168.5.2

Съвети:

- Процесът върви по-гладко, ако първо конфигурирате рутерите, а след това и компютрите във всяка подмрежа.
- Конкретният порт на комутатор няма значение
- Конкретният порт на рутера има значение. Конфигурацията на рутера в софтуера трябва да е в съответствие с начина, по който кабелите са свързани в хардуера.

Стъпки за конфигуриране:

- 1. **Конфигурирайте имената на рутерите 1-4 в GNS3**, за да предотвратите объркване. Използвайте GUI в GNS3 (щракнете с десния бутон, изберете " Change Hostname "), за да промените как се изписват на мрежовата диаграма.
- 2. Конфигурирайте имената на рутерите 1-4 в самите рутери, за да предотвратите объркване. Използвайте командата system identity set name=XXX, за да промените името на хоста на самия рутер. Забележете, че командният ред се променя, за да отрази това. Трябва да видите [admin@router1] > вместо [admin@MikroTik] >
- 3. **Конфигурирайте IP адресите на всички интерфейси на рутера**, които са свързани към подмрежи. Използвайте командата ip address add address=a.b.c.d/n interface=XXX.
- 4. Конфигурирайте IP адреса на всеки VPC. Използвайте командата ip a.b.c.d/n w.x.y.z.
- 5. Запазете конфигурацията на VPC чрез командата save и излезте от безопасен режим на рутера.

Когато приключите, левият ви рутер трябва да бъде конфигуриран по следния начин:

Конфигурация на Webterm

Модулът webterm е "малък" компютър с Linux, работещ с базов софтуер на Debian. Като такава, неговата мрежа също ще трябва да бъде конфигурирана.

- 1. Щракнете с десния бутон върху иконата на Firefox в мрежовата карта и изберете " Configure "
- 2. Под "Network Configuration "кликнете върху "Edit "
- 3. Това, което виждате тук, е общ мрежов конфигурационен файл на Debian. Можете да игнорирате съществуващите коментирани редове и да добавите това в дъното.

```
auto eth0
iface eth0 inet static
address 10.30.0.2
netmask 255.255.252.0
gateway 10.30.3.254
```

4. Щракнете върху "Save" и "ОК", за да излезете от конфигурацията.

Тестване на мрежата

Преди да добавим динамичния протокол за маршрутизиране, нека първо тестваме дали всеки компютър и свързаният рутер са конфигурирани правилно, като изпълним ping тест между всеки. Всичко това трябва да работи.

- 1. Oτ PC1, ping Router1 (10.20.3.254).
- 2. OT PC2, ping Router2 (10.30.3.254).

ФИИИ Факултет по математика и информатика

GNS3 Лабораторно

```
3. Oτ PC2, ping Webterm (10.30.0.2).
```

- 4. Oτ PC3, ping Router3 (10.40.3.254).
- 5. Oτ PC4, ping Router4 (10.50.3.254).
- 6. Oτ Router1, ping Router2 (192.168.1.2).
- 7. Oτ Router1, ping Router3 (192.168.0.2).
- 8. Oτ Router1, ping Router4 (192.168.5.2).
- 9. Oτ Router4, ping Router2 (192.168.2.1).
- 10. OT Router4, ping Router3 (192.168.3.1).

Само за да потвърдите знанията си за маршрутизиращите таблици, опитайте се от PC1 да осъществите ping до PC4 (10.50.0.YY). Това **не трябва да работи** и всъщност Router1 трябва да върне ICMP съобщение за грешка "Destination network unreachable", което се вижда в изходния ред от ping:

```
PC1> ping 10.50.0.YY
*10.20.3.254 icmp_seq=1 ttl=64 time=0.670 ms (ICMP type:3, code:0, Destination network unreachable)
```

Не забравяйте, че таблиците за маршрутизиране казват на рутерите къде да изпращат пакети, чиято дестинационна мрежа не е директно свързана към рутера. Записите в таблицата за маршрутизиране могат да бъдат статични или динамични. Днес разглеждаме динамични маршрути, които се създават от динамичен протокол за маршрутизиране, който се изпълнява на всички рутери едновременно.

Routing Information Protocol (RIP)

Използваната метрика в този протокол е hop count — разстоянието в брой стъпки до местоназначението на изпращания пакет, максималния брой преходи, които може да бъдат преминати в една мрежа е 15. За обмен на маршрутна информация при този протокол се използва порт 520 с транспортен протокол UDP (port 520/UDP). Този протокол е подходящ за използване при малки мрежи, в които относително рядко се правят промени в топологията. Всеки ред от маршрутната таблица съдържа:

- информация за направлението;
- (адресът на) следващата стъпка към това направление;
- метриката.

RIP timers:

- 1. На всеки 30 sec изпраща копие от маршрутизиращата таблица към съседните маршрутизатори;
- 2. hold down timer 180 sec. Това е таймерът за невалиден маршрут;
- 3. flush timer съобщение за изтриване на маршрут пътя се изтрива окончателно от маршрутната таблица.

Създаване на Динамичен маршрут

RIP трябва да бъде активиран на всички рутери в мрежата. За да активирате RIP на router1, следвайте този процес:

```
# Кажете на RIP да рекламира рутерите към свързани подмрежи (и съседни рутери)
routing rip set redistribute-connected=yes
```



```
# Кажете на RIP да работи по-често
# (Нашата мрежа е малка, така че системната информация за изпращане е минимална)
routing rip set update-timer=15s
routing rip set timeout-timer=30s
routing rip set garbage-timer=30s
# Изпълнете RIP на всички интерфейси
 (Забележка: тук сме мързеливи. Интерфейсите, които отиват към компютрите, НЕ се нуждаят от изпълнение на
RIP. Само рутерите имат нужда от него)
routing rip interface add interface=all send=v2 receive=v2
\# Кажете на RIP за подмрежите, директно свързани към вашия рутер
routing rip network add network=10.20.0.0/22
routing rip network add network=192.168.0.0/24
routing rip network add network=192.168.1.0/24
routing rip network add network=192.168.5.0/24
# Потвърдете, че сте въвели правилните мрежи
routing rip network print
# Вижте маршрутите, които RIP е открил
routing rip route print
```

ПОВТОРЕТЕ ЗА ВСИЧКИ ОСТАНАЛИ РУТЕРИ.

След като RIP е активиран на рутери 2-4, проверете RIP маршрутите на router1. Трябва да има по една за всяка подмрежа в мрежата:

```
[admin@router1] > routing rip route print
Flags: C - connect, S - static, R - rip, O - ospf, B - bgp
 # DST-ADDRESS
                         GATEWAY
                                            FROM
                                                                   METRIC
0 R 10.20.0.0/22
 1 R 10.30.0.0/22
                                          192.168.1.2
2 R 10.40.0.0/22
                                           192.168.0.2
3 R 10.50.0.0/22
                                           192.168.5.2
 4 R 192.168.0.0/24
                                                                       1
5 R 192.168.1.0/24
 6 R 192.168.2.0/24
                                          192.168.1.2
 7 R 192.168.3.0/24
                                          192.168.0.2
 8 R 192.168.4.0/24
                                          192.168.1.2
9 R 192.168.5.0/24
```

Тестване на мрежата (повторно)

Когато RIP е активиран на рутери 2-4, РС1 трябва да може да изпълни ping до РС2, РС3 и РС4. Проверете!

Webterm (Traceroute)

За да разгледаме по-нататък мрежата, нека стартираме програмата traceroute на Webterm.

Първо, свържете се с Webterm. Щракнете с десния бутон върху иконата на Firefox и избора на "Console" ще изскочи VNC връзка с виртуален работен плот към Webterm.

Веднъж в Webterm, щракнете върху бутона "JWM" долу вдясно и стартирайте програмата " Terminal ". Извършете traceroute до PC3, показвайки преходите, направени за достигане до тази дестинация.

```
# traceroute 10.40.0.YY
traceroute to 10.40.0.1 (10.40.0.YY), 30 hops max, 60 byte packets
1 10.30.3.254 (10.30.3.254) 4.242 ms 5.106 ms 5.306 ms
2 192.168.4.2 (192.168.4.2) 12.862 ms 13.863 ms 14.094 ms
3 10.40.0.YY (10.40.0.YY) 19.718 ms 21.102 ms 22.357 ms
```

Провал на връзката

Нека сега симулираме някои неуспехи на връзката и да проследим как реагира нашият протокол за маршрутизиране!

- 1. Запишете резултатите от traceroute, показващо пътя от webterm до РСЗ (Резултат 1 Няма повреда на връзката)
- 2. "Suspend " връзката (Щракнете с десния бутон върху връзката) между Router2 и Router3, което казва на GNS3 да изпусне всички пакети на тази връзка
- 3. Изчакайте, докато ping до PC3 успее отново (~30 секунди)
- 4. Запишете резултатите от traceroute, показващо пътя от webterm до PC3 (Резултат 2 1 неуспешна връзка)
- 5. "Suspend " връзките между Router1 и Router2 и Router3 и Router4.
- 6. Изчакайте, докато ping до РСЗ успеят отново (~30 секунди)
- 7. Запишете резултатите от трасето, показващо пътя от webterm до PC3 (Резултат 3 3 неуспехи на връзката)
- 8. "Resume " на всичките 3 връзки отново
- 9. Запишете резултатите от трасето, показващо пътя от webterm до РСЗ (Резултат 4 Няма повреда на връзката)
- 10. Ако сте БЪРЗИ, може да засечете в процеса на актуализиране на маршрутите и оптимизиране на пътя всеки път, когато стартирате traceroute.

Webterm (RouterOS GUI)

RouterOS също имат уеб интерфейс като алтернатива на командния ред. В Webterm стартирайте Firefox (JWM - > Applications -> Mozilla Firefox) и отидете до $\frac{http://10.30.3.254}{http://10.30.3.254}$ или IP на който и да е рутер. Когато страницата се зареди, превключете към панела "WebFig" отгоре. Въпреки че графичният интерфейс може да не е хубав, той е верен еквивалент на интерфейса на командния ред по всякакъв начин и може да бъде полесен за навигация, ако "просто разглеждате", за да видите какви функции поддържа този способен софтуерен рутер.

