}]

N85-32405 MICROMOLECULAR MODELING

UNIVERSITY OF TORONTO

and the state of t

James Guillet

- · DEVELOP A REACTION KINETICS

 BASED MODEL OF THE

 PHOTODEGRADATION PROCESS

 EX PERIENCED BY ENCAPSULANTS
- DENELUP A COMPUTER CAPABILITY TO UTILIZE THE REACTION KINETICS MODEL FOR PRESICTIVE PURPOSES

RELIABILITY PHYSICS

was & cather to the

Goal

DEVILUP A REACTION KINETICS BASED MODEL OF
THE PHOTODEGRADATION PROCESS FXPERIENCED

BY ENCAPSULANTS, MEASURE ALL IMPORTANT
RATE CONSTANTS, DEVELOP A COMPUTERIZED PREDICTION
MODEL CAPABLE OF PREDICTION OF PHOTODEGRADATION
RATE AND FAILURE MODES ASSICIATED WITH IT
OVER A THIRTY YEAR PERMO, AND VALIDATE THE
MODEL

FY84-85 Objectives

- · EXTEND THE COMPUTERIZED DEGRADATION MODEL DEVELOPED FOR POLYETHYLENE TO EVA AND EVA (A 9918)
- * EVALUATE THE EFFECT OF STABILIZERS ON PHOTODEGRADATION RATE
- PROVIDE GUIDELINES FOR SELECTION OF MOST

 EFFECTIVE CLASSES OF UV ASSESS STABILIZED
- · INITIATE THE STUDY OF THE EFFECT OF TEMPERATURE VARIATION ON THE MODEL

ORIGINAL PAGE IS

Accomplishments

- THE COMPUTERIZED PHOTODEGRADATION MODEL

 FOR POLYETHYLENE IS SHOWN TO CORRECTLY

 PREDICT FAILURE (EMBRITTLEMENT) OF

 ELVAX ISO ON OUTDOOR EXPOSURE, AND CROSS LINESS

 ELVAX ISO ON OUTDOOR EXPOSURE
- OUTDOOR EXPOSURE AND ACCELEROMETER TESTS

 INDICATE THAT CROSS-LINKING EVA DOES NOT

 SIGNIFICENTLY CHANGE ITS DEGRADATION RATE
- AN: EVA (A 9918) SHOW THAT THE EFFECT CE
 THE STABILIZER PACKAGE IS APPROXIMATELY
 EQUIVALENT ON BOTH POLYMERS IC THE PE
 MODEL CAN DE USED FOR A-9918 WITH MINER
 CHANGES, AND STABILIZER CONSUMPTION RATE IS A WEEFUL
 DIAGNOSTIC MEASURE FOR EARLY PHOTODECRADATION
- * COMPUTERIZED MODEL INDICATES THAT PEROXIDE (HYDROPEROXIDE) DECOMPOSERS AND UU ADSORBERS ARE MOST EFFECTIVE STABILIZERS BETTER TOWN ANTIOXIDANTS
- · EFFECT OF TEMPERATURE CYCLING IS BEING AVESTICATION

and the last of the said the ha

*

Elementary Reactions in Polymer Photooxidation and Corresponding Rates

Reaction ·	Rate constant
RO ₂ + RH> ROOH + RO ₂	0.1 x 10 ⁻²
$RO_2 + RO_3 \longrightarrow ROH + Ketome + SO_2$	0.1 x 10 ²
RO2 + ROH> ROOH + 1.4 toss + HOO	0.5 x 1c ⁻¹
ноо + RH> чоок + во ₂	0.5 x 10 ⁻²
HOO + RO ROOH + SO 2	0.1 x 10 ⁸
RO ₂ • Ketcos —> ROOM • PeroxyCO	0.5 x 10 ⁻²
RO ₂ + ROOH> ROOH + Ketone + OH	0.5 x 10 ⁻¹
RO + SMROH - ROOH + Aldehyde + HOO	0.5 x 10 ⁻²
RO ₂ + Aldebyde> ROOH + SMRCO	0.1 x 10 ³
OH + RH> RO ₂ + Water	0.3 x 10 ⁹
Ketone> KET*	0.3 x 10 ⁻⁵
SMKetoge> KET*	0.2 x 10 ⁻⁵
KET*> SMRO ₂ + SMRCO	0.5 x 10 ⁷
SMORCO → SMORO ₂ + CO	0.5 x 10 ⁶
KET'> Alkene + SMKetorse	0.5 x 10 ⁸
KET* + 0 ~~ Ketone + 80g	0.1 x 10 ⁶
KET* + ROOH> Ketone + RO + OH	0.1 x 10 ²
KET*> Ketone	0.1 x 10 ¹⁰
so ₂ > o ₂	0.6 x 10
80 ₂ + Allorae> ROOH	0.1 7 104
SMORO ₂ + RH> SMOROOH + RO ₂	0.1 x 10 ⁻²
BACR-308> BACR-0 + 0%	0.3 x 10 ⁻⁴
SIGNO + RH> SIGNON	9.1 x 13 ⁶
macco + o ₂ > maccooc	0.1 x to ²
100 coos + nn> s/20000 + no	0.1 x 10 ⁻¹
SARCOCCE> SARCO + OE	0.1 = 10 ⁻⁸
BO + CE ← BOOR	0.3 x 16 ⁻⁴
NO> Shono ₂ + Aldehyde	0.1 x 10 ⁶
RO + RE ROS + ROE	0.1 x 10 ⁶
SMRCO _S + RH> Aold + RO _S	0.1 x 10 ⁶
BO ₃ + BO ₃ > BOOR	0.1 x 10 ⁻⁸

Effect of Termination Rate on Product Formation During Photooxidation

Stabilization of PE

ROOH + QD
$$\frac{10^6}{}$$
 > Products

KET* + Q1 $\frac{10^6}{}$ > Ketons + Heat

RELIABILITY PHYSICS

Effect of Intensity on Product Formation During Photooxidation

Photooxidation as a Function of Intensity of Light

Equivalent Solar Exposure (Summer Days) vs Actual Accelerated Ager Exposure Time

Key Finding

THE COMPUTERIZED MODEL INDICATES

THAT A COMBINATION OF A UV

ABSORBER AND A HINDERED AMINE

LIGHT STABILIZER (HALS) IS THE

MOST EFFECTIVE STABILIZER SYSTEM