Projekt układu sterowania silnikiem krokowym

POLITECHNIKA WARSZAWSKA

Wydział Elektryczny

$Spis\ tre\'sci$

1		ożenia
	1.1	Wstęp
	1.2	
2	Sch	emat elektryczny
	2.1	Driver
		2.1.1 Piny ISENS12, ISENS34, TRQ
		2.1.2 Pin <i>MODE</i>
		2.1.3 Pin $nFAULT$
	2.2	Zasilanie
	2.3	Wyprowadzenia pinów
	2.4	Przyrosty temperaturowe
		2.4.1 Moc strat DRV8847
		2.4.2 Moc strat regulatora napięcia
		2.4.3 Podsumowanie
3	Pro	ejekt płytki
	3.1	Parametry
		Wygląd
	3.3	

1 Założenia

1.1 Wstęp

Celem projektu było zaprojektowanie oraz realizacja układu elektronicznego spełniającego role sterownika bipolarnego silnika krokowego **JK42HS40-040**. Podstawowymi parametrami stanowiącymi punkt wyjściowy były:

- Znamionowy prąd skuteczny (na cewkę) $I_M = 0.4$ [A]
- Znamionowe napięcie zasilania DC $V_M=12$ [V]

Sam silnik krokowy został dobrany zgodnie z założeniami większego projektu, którego szczegóły nie są częścią tego opracowania.

1.2 Ogólny schemat ideowy

W pierwszym kroku projektowania płytki rozrysowano schemat układu w największym stopniu abstrakcji.

Za sterowanie silnikiem odpowiedzialny będzie przeznaczony do tego układ scalony, który powinien być obsługiwany przez 'zewnętrzny' - niebędący częścią płytki - generyczny mikrokontroler. Dzięki powyższym, można zdefiniować wstępnie jakie warunki powinien spełniać driver:

- $\bullet\,$ Napięcie V_M w zakresie pracy sterownika preferowalnie V_M powinno być w środku 'widełek'
- Realizowanie sterowania dwoma pełnymi mostkami (full-bridge) niezbędne do poprawnej pracy silnika
- \bullet Dopuszczalny prąd wyjściowy z mostków (na cewkę) powyżej 0.8A dla bezpieczeństwa przyjęto dwukrotność I_M
- Sygnały wejściowe (logiczne) na poziomie 5V, by zapewnić współpracę z większością mikrokontrolerów

2 Schemat elektryczny

W tym rozdziale omówiony zostanie proces tworzenia schematu elektrycznego układu wraz z uzasadnieniem wyboru konkretnych elementów.

Rys. 2.1: Całościowy schemat elektryczny

2.1 Driver

Układem spełniającym wcześniej postawione wymagania jest DRV8847. Zestawienie parametrów:

		MIN	NOM MAX	UNIT
V _{VM}	Power supply voltage (VM)	2.7	18	V
V _{IN}	Logic input voltage (IN1, IN2, IN3, IN4, TRQ, nSLEEP, SCL, SDA)	0	5	V
I _{RMS}	Motor RMS current per bridge (OUT1, OUT2, OUT3, OUT4)	0	1 ⁽¹⁾	Α
f _{PWM}	PWM frequency (IN1, IN2, IN3, IN4)	0	250(1)	kHz
V _{OD}	Open drain pullup voltage (nFAULT)	0	5	V
I _{OD}	Open drain output current (nFAULT)	0	5	mA
T _A	Operating Ambient Temperature	-40	85	°C
TJ	Operating Junction Temperature	-40	150	°C

Rys. 2.2: Rekomendowane warunki pracy

Element występuje w 3 obudowach, zdecydowano się na 16 pinowy package typu QFN. Decyzja ta była uwarunkowana małym rozmiarem elementu oraz najlepszą charakterystyką termiczną.

Biblioteka elementu w programie EAGLE

Rys. 2.3: Symbol elementu

Rys. 2.4: Footprint zgodny z dokumentacją

2.1.1 Piny ISENS12, ISENS34, TRQ

Piny ISENS12 oraz ISENS34 odpowiadają za ograniczenie przepływu prądów wyjściowych mostków. Innymi słowy $I_{OUTxx} \leq I_{TRIPxx}$. Z kolei I_{TRIPxx} jest dane wzorem:

$$I_{TRIP} = \frac{Torque \cdot V_{TRIP}}{R_{SENSxx}} \tag{2.1}$$

Przy czym $V_{TRIP} = 150$ mV i jest dane przez dokumentację. Wartość $Torque \in \{0.5, 1\}$ i zależy bezpośrednio od stanu pinu TRQ:

- TRQ = HIGH Torque = 0.5
- TRQ = LOW Torque = 1

W aplikacji przyjęto, że pin TRQ będzie w stanie niskim. Dodatkowo uczyniono następne założenia:

$$I_{TRIP} = I_M = 0.4 A$$
 $R_{SENS12} = R_{SENS34}$ (2.2)

Teraz można wyznaczyć szukaną wartość rezysotrów R_{SENS}

$$R_{SENS} = \frac{V_{TRIP}}{I_M} = 375 \ m\Omega \tag{2.3}$$

Zdecydowano się na rezystor typu **current sense**. Charakteryzują się one niskim współczynnikiem TCR oraz dobrymi tolerancjami, co bezpośrednio wpływa na dokładność wykrywanego przez sterownik prądu I_{TRIP} .

Znaleziona wartość rezystora wynosi 390 m Ω , stanowiąc błąd względny rzędu 4%. Dodatkowo wyznaczono moc wydzielaną na rezystorze, by potwierdzić poprawność jego dobrania:

$$P_{SENS} = \frac{V_{TRIP}^2}{R_{SENS}} = 57.7 \ mW$$

Daje to niemal dwukrotny zapas.

2.1.2 Pin *MODE*

Pin MODE jest pinem trójstanowym, jednak w tej aplikacji użyteczny jest w stanie wysokim oraz niskim.

nSLEEP	SLEEP MODE IN3		INTERFACE
0	X	X	Sleep mode
1	0	X	4-pin interface
1	1	0	2-pin interface
1	1	1	Parallel bridge interface
1	Z	X	Independent bridge interface

Rys. 2.5: Tryby pracy sterownika w uzależnieniu od pinów nSLEEP, IN3 oraz MODE

Tryby przydatne do sterowania silnikiem krokowym to 4-pin oraz 2-pin interface (więcej o tym napisane jest bezpośrednio w dokumentacji). Założeniem było, że tryb pracy zostanie wybrany przed 'uruchomieniem' układu, dlatego pin MODE obsługiwany jest za pomocą zworki (rozstaw 2.54mm). Dzięki temu, do obsługi potrzebny jest o 1 pin mikrokontrolera mniej.

2.1.3 Pin nFAULT

Pin nFAULT jest pinem typu open-drain, który sygnalizuje wystąpienie błędu podczas pracy sterownika poprzez przejście w stan niski. Oznacza to, że w stanie 'spoczynku' pin powinien przyjmować stan wysoki, zatem wymagane jest zastosowanie rezystora pull-up. Dodatkowo uznano, że dla wygody użytkowania dołączona zostanie czerwona dioda LED zapalająca się przy przejściu pinu w stan niski.

Rezystor pull-up przyjęto, że powinien mieć klasyczną wartość $10 \mathrm{k}\Omega$. Obliczono płynący przez niego prąd oraz moc strat:

$$I_{PULL_UP} = \frac{5V}{10k\Omega} = 0.5 \ mA$$
 (2.4)

$$P_{PULL_UP} = \frac{(5V)^2}{10k\Omega} = 2.5 \ mW \tag{2.5}$$

Dane te pozwoliły dobrać standardowy rezystor.

Dioda LED została dobrana tak, by mogła znieść napięcie zaporowe większe od 5V oraz działała przy stosunkowo małych prądach. Ograniczenie prądowe stanowi maksymalny dopuszczalny prąd pinu $I_{OD_MAX} = 5$ mA. By nie dopuścić do jego przekroczenia przyjęto, że maksymalny prąd wpływający do pinu to 3mA, zatem:

$$I_D = 3mA - I_{PULL\ UP} = 2.5\ mA$$
 (2.6)

Wybrano diodę firmy OSRAM, która spełnia wcześniej postawione wymagania. Elementem kończącym ten segment układu jest rezystor ograniczający prąd diody:

$$R_{D_MIN} = \frac{V_{IN} - V_F}{I_D} = \frac{5V - 2V}{2.5mA} \tag{2.7}$$

$$=1.2 k\Omega \tag{2.8}$$

$$P_{RD_MAX} = \frac{(5V - 2V)^2}{R_{D\ MIN}} \tag{2.9}$$

$$=7.5 \ mW$$
 (2.10)

Dobrano rezystor zgodnie z tymi parametrami.

2.2 Zasilanie

Elementy na płytce wymagają dwóch poziomów zasilania:

- 5V dla części logicznej
- 12V dla silnika

By nie stosować dwóch linii zasilających zastosowano układ liniowego regulatora napięcia o stałym napięciu wyjściowym 5V oraz maksymalnym prądzie 100mA - jest to wartość znacznie przekraczająca faktyczny pobór prądu,

Rys. 2.6: Schemat elektryczny dla segmentu zasilającego

Dodatkowo Zastosowowano zalecane w dokumentacjach kondensatory:

- C3, C2, C1 kondensatory ceramiczne
- C4 kondensator elektrolityczny o niskim ESR

2.3 Wyprowadzenia pinów

Piny części logicznej zdecydowano się wyprowadzić za pomocą klasycznych goldpinów (2.54mm), natomiast piny wyjściowe mostków (OUT_X) oraz pin zasilający są są wyprowadzone przez listwy zaciskowe.

2.4 Przyrosty temperaturowe

Wybrane elementy, w szczególności driver oraz liniowy regulator napięcia, wytracają dość dużo mocy. Należy zatem zweryfikować czy w trakcie pracy nie przekroczą one dopuszczalnych norm.

2.4.1 Moc strat DRV8847

Moc strat jednego mostka P_H zostaje zdefiniowana przez producenta jako:

$$P_{H} = I_{OUT}^{2} \cdot \left(R_{DS(ON)} L_{S} + R_{DS(ON)} H_{S} \right)$$
(2.11)

Odczytując wartości rezystancji MOSFETów z dokumentacji można wyznaczyć dla aplikacji:

$$P_{TOT} = 2 \cdot P_H = 310 \ mW \tag{2.12}$$

Następnie odczytując rezystancję termniczną (Junction-Ambient) można wyznaczyć przyrost temperatury dla drivera:

$$\Delta T_{DRV} = P_{TOT} \cdot R_{THJA} = 14.4 \,^{\circ}C \tag{2.13}$$

Oczywiście zarówno obliczona moc jak i przyrost temperaturowy są jedynie orientacyjne.

2.4.2 Moc strat regulatora napięcia

Moc wytracana przez regulator napięcia może być szacowana jako:

$$P_{VR} = \left(V_{IN} - V_{OUT}\right) \cdot I_{OUT} \tag{2.14}$$

Prąd I_{OUT} można oszacować jako 3mA - jest to pobór prądu pinu nFAULT.

$$P_{VR} = 7V \cdot 3mA = 21 \ mW \tag{2.15}$$

Ponownie znajdując informację o rezystancji termicznej można wyliczyć przyrost temperaturowy:

$$\Delta T_{VR} = 1.1 \,^{\circ}C \tag{2.16}$$

2.4.3 Podsumowanie

Oszacowane przyrosty są stosunkowo niewielkie oraz nie powodują przekroczenia podawanych przez producenta norm pracy. Prawdopodobnie korzystne byłoby umieszczenie wiatraczka gdzieś w okolicy układu, jednak montaż radiatora wydaje się nieobowiązkowy.

3 Projekt płytki

3.1 Parametry

W pierwszej kolejności ustalono parametry, które powinna spełeniać płytka:

- Ilość warstw 2 jest to wystarczająca ilość warstw by rozłożyć elementy na płytce i je połączyć
- Grubość miedzi przyjęto standardową grubość $35\mu\mathrm{m}$
- Minimalna szerokość ścieżek została obliczona za pomocą kalkulatora online dla przyrostu 20 °C:

$$trace_{min} = 0.08 \; mm$$

Jednak dla dalszych podpunktów przyjęto dla wygody, że $trace_{min}=0.10~\mathrm{mm}$

- \bullet Minimalne wielkości padów oraz przelotek przejęto jako 0.1mm zgodnie z wyznaczonym $trace_{min}$
- Odległość między ścieżkami przyjęto jako dwukrotność $trace_{min}$

3.2 Wygląd

Rys. 3.1: Projekt całościowy płytki

Rys. 3.2: Wizualizacja płytki

3.3 Spis elementów

Part	Value	Device	Package	Description
C1	100n	C-EUC0402	C0402	CAPACITOR, European symbol
C2	330n	C-EUC0402	C0402	CAPACITOR, European symbol
СЗ	100n	C-EUC0402	C0402	CAPACITOR, European symbol
C4	10u	CPOL-EUE2-5	E2-5	POLARIZED CAPACITOR, European symbol
IC1	78L05F	78L05F	SOT89	POSITOIV-VOLTAGE REGULATORS
JP1		PINHD-1X8	1X08	PIN HEADER
JP2		JP2E	JP2	JUMPER
LED1	RED	LEDCHIP-LED0603	CHIP-LED0603	LED
R1	390R	R-EU_R1206	R1206	RESISTOR, European symbol
R2	390R	R-EU_R1206	R1206	RESISTOR, European symbol
R3	10K	R-EU_R0603	R0603	RESISTOR, European symbol
R4	1K2	R-EU_R0603	R0603	RESISTOR, European symbol
R5	10K	R-EU_R0603	R0603	RESISTOR, European symbol
U1		DRV8847RTER	DRV8847RTER	
X1		MSTBV2	MSTBV2	PHOENIX
X2	qs	1727036	1727036	MKDS 1/4-3,81

Cena zakupu detalicznego elementów to $22.5 \mathrm{pln}$