

PH502: Scientific Programming Concepts

Irish Centre for High End Computing (ICHEC)

September 23, 2020

Overview

- In this lecture we will continue on from last week discussing floating point and logical arithmetic.
- This week's practical will demonstrate the issue with floating point arithmetic.

Floating Point Arithmetic

- Not only are there errors in representing numbers but additional errors are introduced by arithmetic operations.
- The IEEE standard specifies that these operations must return the correctly rounded result.
- Floating point addition is not associative and multiplication is not associative nor distributive. This is due to rounding. Assume each floating point number has 7 significant figures and let a = 1234.567, b = 45.67834, c = 0.0004.

$$a+b = 1280.245$$

 $(a+b)+c = 1280.245$
 $b+c = 45.67874$
 $a+(b+c) = 1280.246$

■ Even though the above error is small, when performing many operations these small errors can accumulate.

Rounding

- In the course of a calculation if the result is not a number that can be represented, it must be rounded to one that can.
- There are different rounding techniques that can be employed:
 - 1. "Round to nearest", number is rounded to the nearest value, if the number is half-way between then rounded up to an even number and down to an odd one.
 - 2. "Round to plus infinity", number is rounded to the smallest value greater than the original.
 - 3. "Round to minus infinity", number is rounded to the largest value that is smaller than the original.
 - 4. "Round to zero", number is rounded to the closest to zero.

Examples of Rounding

Here the rounding modes are illustrated by rounding floating point numbers to integers.

Mode				
Number	Nearest	$+\infty$	$-\infty$	Zero
1.5	2	2	1	1
-1.5	-2	-1	-2	-1
2.5	2	3	2	2
-2.5	-2	-2	-3	-2

Avoiding Over/Underflows

- An arithmetic operation can overflow (max value exceeded), result $r-value=\pm\infty$. Underflow is when r-value is smaller than minimum, result set to ± 0 .
- If ab and cd underflow because b and d are very small, then

$$\frac{(ab)}{(cd)} = NaN \tag{1}$$

$$\frac{(ab)}{(cd)} = NaN \tag{1}$$

$$\left(\frac{a}{c}\right) \times \left(\frac{b}{d}\right) \neq NaN \tag{2}$$

- If underflowing sets the result to zero then in the top equation there is a division by zero. Dividing by zero may result in a NaN or set to $\pm \infty$.
- It is not always possible to avoid such errors. Restructuring expressions can help as well as using double precision variables.

Logical Arithmetic

- Logical expressions can be implied when the result is either TRUE or FALSE, e.g. a > b, $a \le b$.
- Important generic expressions are: a equals b, a not equal to b.
- Logical variables or expressions can be combined. Below is the truth table for logical operators, *Not*, *And* and *Or*. "T" is true and "F" is false.

Operator	а	Ь	Result	
Not	Т		F	
	F		Т	
And	Т	Т	Т	
	Т	F	F	
	F	F	F	
Or	Т	Т	Т	
	Т	F	Т	
	F	F	F	