

FCC TEST REPORT

FCC ID: XVB-HY1001

On Behalf of

Standard Motor Products, Inc.

Key Fob 315 MHz

Model No.: HY1-001

Prepared for : Standard Motor Products, Inc.

37-18 Northern Boulevard, Long Island City, New York 11101, United

Address : States

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103,

. Shenzhen, Guangdong, China

Report Number : T1881567 01

Date of Receipt : October 10, 2018

Date of Test : December 25-29, 2018

Date of Report : January 3, 2019

Version Number : REV0

Contents

1.	Ge	neral Information	5
	1.1.	Description of Device (EUT)	5
	1.2.	Accessories of Device (EUT)	6
	1.3.	Tested Supporting System Details	6
	1.4.	Test Facility	6
2.	Su	mmary of test	7
	2.1.	Summary of test result	7
	2.2.	Block Diagram	8
		Test mode	
		Test Conditions.	
	2.5.	Measurement Uncertainty (95% confidence levels, k=2)	8
	2.6.	Test Equipment	9
3.		diation Emission	
	3.1.	Radiation Emission Limits(15.209&231)	10
		Test Setup	
		Test Procedure	
		Test Equipment Setting For emission test.	
	3.5.	Test Condition	12
		Test Result	
4.		WER LINE CONDUCTED EMISSION	
		Conducted Emission Limits (15.209)	
		Test Setup	
		Test Procedure	
	4.4.	Test Results	18
5.		cupied bandwidth	
		Test limit	
		Method of measurement	
		Test Setup	
		Test Results	
6.		ansmission time	
		Test limit	
		Method of measurement	
		Test Setup	
		Test Results	
7.		tenna Requirement	
		Standard Requirement	
		Antenna Connected Construction	
		Result	
8.		st setup photo	
9.	Ph	otos of EUT	25

Page 3 of 30 Report No.: T1881567 01

TEST REPORT DECLARATION

Standard Motor Products, Inc. **Applicant**

37-18 Northern Boulevard, Long Island City, New York 11101, United States Address

Qinuo Electronics Co., Ltd Manufacturer

3/F, Bldg.A, Yucheng Base, Keji Rd., High-tech Industrial Park, Fengze, Quanzhou, Address

Fujian 362000, P.R. China

EUT Description Key Fob 315 MHz

> (A) Model No. : HY1-001

(B) Trademark : N/A

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.231: 2017

ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Reak Yang Reak Yang Tested by (name + signature)....: Project Engineer

Simple Guan Approved by (name + signature).....: Project Manager

Date of issue....: January 3, 2019

Revision History

Revision	Issue Date	Revisions	Revised By
00	January 3, 2019	Initial released Issue	Simple Guan

1. General Information

1.1. Description of Device (EUT)

EUT : Key Fob 315 MHz

Model No. : HY1-001 DIFF. : N/A

Trade mark : N/A

Power supply : DC 3V by button cell

Operation frequency : 315MHz Modulation : FSK

Antenna Type : Internal Antenna, Maximum Gain is 0dBi

Software version : V1.0 Hardware version : V1.0 Page 6 of 30 Report No.: T1881567 01

1.2. Accessories of Device (EUT)

Accessories 1 : /
Manufacturer : /
Model : /
Power supply : /

1.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or DOC
/	/	/	/	/	/

1.4. Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961 July 25, 2017 Certificated by IC Registration Number: 12135A

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results
Spurious Emission	Section 15.231&15.209 &15.205	PASS
Conduction Emission	Section 15.207	N/A
Occupied bandwidth	Section 15.231	PASS
Transmission time	Section 15.231	PASS
Band Edge	Section 15.231	N/A
Antenna Requirement	Section 15.203	PASS
Note: Test according to ANSI C63	.10-2013	

Page 8 of 30 Report No.: T1881567 01

2.2. Block Diagram

1. For radiated emissions test: EUT was placed on a turn table, which is 0.8 meters high above ground for below 1 GHz test and 1.5 meters high above ground for below 1 GHz test . EUT was set into test mode before test. New battery is used during all test

EUT

2.3. Test mode

EUT work in Continuous TX mode, and select test channel, wireless mode

Tested mode, channe	el, and data rate information					
Mode Channel Frequency						
		(MHz)				
FSK	CH1	CH1 315				

2.4. Test Conditions

Temperature range	21-25°C
Humidity range	40-75%
Pressure range	86-106kPa

2.5. Measurement Uncertainty (95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)
(below 30MHz)	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(30MHz to 1GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.16dB(Polarize: H)
(1GHz to 25GHz)	4.13dB(Polarize: V)
Uncertainty for radio frequency	5.4×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2°C
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.6. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGRE N	N/A	SEL0017	2018.09.21	1 Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2018.09.21	1 Year
Receiver	R&S	ESCI	1166.5950K03-1011	2018.09.21	1 Year
Receiver	R&S	ESCI	101202	2018.09.21	1 Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2018.04.13	2Year
Horn Antenna	EMCO	3115	640201028-06	2018.04.13	2Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2018.04.13	2Year
Cable	Resenberger	N/A	No.1	2018.09.21	1 Year
Cable	SCHWARZBEC K	N/A	No.2	2018.09.21	1 Year
Cable	SCHWARZBEC K	N/A	No.3	2018.09.21	1 Year
Pre-amplifier	Schwarzbeck	BBV9743	9743-019	2018.09.21	1Year
Pre-amplifier	R&S	AFS33-18002650- 30-8P-44	SEL0080	2018.09.21	1 Year
Temperature controller	Terchy	MHQ	120	2018.09.21	1 Year
20db Attenuator	ICPROBING	IATS1	82347	2018.09.21	1 Year
Horn Antenna	SCHWARZBEC K	ВВНА 9170	ВВНА 9170294	2018.04.13	2 Year
Power Meter	Anritsu	ML2487A	6K00001491	2018.09.21	1 Year

3. Radiation Emission

3.1. Radiation Emission Limits(15.209&231)

Frequency	Field Strength						
(MHz)	Limits at 3 metres (watts, e.i.r.p.)						
	uV/m	dB uV/m	Measurement				
			distance(m)				
0.009-0.490	2400/F(kHz)	XX	300				
0.490-1.705	24000/F(kHz)	XX	30				
1.705-30	30	29.5	30				
30~88	100(3nW)	40	3				
88~216	150(6.8nW)	43.5	3				
216~960	200(12nW)	46	3				
Above960	500(75nW)	54	3				
Carrier		75.6(AV)	3				
frequency							
Carrier		95.6(PK)	3				
frequency							

NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(Uv/m)

3.2. Test Setup

See the next page.

Below 30MHz Test Setup

Above 30MHz Test Setup

Report No.: T1881567 01

Above 1GHz Test Setup

3.3. Test Procedure

- a) The measureing distance of 3m shall be used for measurements at frequency up to 1GHz and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground, The table was rotated 360 degrees to determine the position of the highest radiation
- b) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.
- c) The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significent Peaks are then marked, and then Qusia Peak Detector mode remeasured
- d) If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.
- e) For the actual test configuration, please see the test setup photo.
- 3.4. Test Equipment Setting For emission test.

9KHz~150KHz	RBW 200Hz	VBW1KHz
150KHz~30MHz	RBW 9KHz	VBW 30KHz
30MHz~1GHz	RBW 120KHz	VBW 300KHz
Above 1GHz	RBW 1MHz	VBW 3MHz

3.5. Test Condition

Continual Transmitting in maximum power(The new battery be used during Test)

3.6. Test Result

We have scanned the 10th harmonic from 9KHz to the EUT. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Notes: 1 --Means other frequency and mode comply with standard requirements and at least have 20dB margin.

Correct Factor=Cable Loss+Antenna Factor-Amplifier Gain

Measurement Result=Reading + Correct Factor

Margin=Measurement Result-Limit

- 2 –Spectrum setting:
 - a. Peak setting 30MHz-1GHz, RBW=100KHz, VBW=300KHz.
- 3- PK measure result values is less than the AVG limit values, so AV measure result values test not applicable.

Radiated Emissions Result of Inside band

EUT	Key Fob 315 MHz	Model Name	HY1-001
Temperature	25°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 3V by button cell
Test Mode	TX 315MHz	Test by	Reak

Channel (315MHz Below 1GHz) Polarization: Horizontal

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
	41.1319	9.55	14.11	23.66	40.00	-16.34	peak			
	79.2425	12.06	9.50	21.56	40.00	-18.44	peak			
	144.8417	10.31	14.17	24.48	43.50	-19.02	peak			
*	315.0000	60.64	13.79	74.43	75.62		peak			
- S	631.6884	20.62	19.85	40.47	46.00	-5.53	peak			
18	945.4399	17.45	23.31	40.76	46.00	-5.24	peak			
	*	MHz 41.1319 79.2425 144.8417	MHz dBuV 41.1319 9.55 79.2425 12.06 144.8417 10.31 * 315.0000 60.64 631.6884 20.62	MHz Level Factor 41.1319 9.55 14.11 79.2425 12.06 9.50 144.8417 10.31 14.17 * 315.0000 60.64 13.79 631.6884 20.62 19.85	MHz Level Factor ment 41.1319 9.55 14.11 23.66 79.2425 12.06 9.50 21.56 144.8417 10.31 14.17 24.48 * 315.0000 60.64 13.79 74.43 631.6884 20.62 19.85 40.47	MHz dBuV dB dBuV/m dBuV/m 41.1319 9.55 14.11 23.66 40.00 79.2425 12.06 9.50 21.56 40.00 144.8417 10.31 14.17 24.48 43.50 * 315.0000 60.64 13.79 74.43 75.62 631.6884 20.62 19.85 40.47 46.00	MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB dW dB dB dB dW dB dB dW dB dB dW dB dW dB dW dB dW dW dB dW dW dB dW dW	MHz dBuV dB dBuV/m dBuV/m dBuV/m dB Detector 41.1319 9.55 14.11 23.66 40.00 -16.34 peak 79.2425 12.06 9.50 21.56 40.00 -18.44 peak 144.8417 10.31 14.17 24.48 43.50 -19.02 peak * 315.0000 60.64 13.79 74.43 75.62 peak 631.6884 20.62 19.85 40.47 46.00 -5.53 peak	MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m	MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree 41.1319 9.55 14.11 23.66 40.00 -16.34 peak 79.2425 12.06 9.50 21.56 40.00 -18.44 peak 144.8417 10.31 14.17 24.48 43.50 -19.02 peak * 315.0000 60.64 13.79 74.43 75.62 peak 631.6884 20.62 19.85 40.47 46.00 -5.53 peak

Channel (315MHz Below 1GHz)

Polarization: Vertical

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∀/m	dBu∀/m	dB	Detector	cm	degree	Comment
1		42.3021	9.45	14.06	23.51	40.00	-16.49	peak			
2		72.5915	9.02	10.53	19.55	40.00	-20.45	peak			
3		149.4857	9.85	14.52	24.37	43.50	-19.13	peak			
4	*	315.0000	59.94	13.79	73.73	75.62		peak			
5	- E	631.6884	20.22	19.85	40.07	46.00	-5.93	peak			
6	P	945.4399	17.42	23.31	40.73	46.00	-5.27	peak			

4. POWER LINE CONDUCTED EMISSION

4.1. Conducted Emission Limits (15.209)

Frequency	Limits dB(μV)			
MHz	Quasi-peak Level	Average Level		
0.15 -0.50	66 -56*	56 - 46*		
0.50 -5.00	56	46		
5.00 -30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in the rang of 0.15 to 0.50 MHz.

4.2. Test Setup

4.3. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10:2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCI) is set at 9 kHz.

4.4. Test Results

EUT power supply by battery, so the test not applicable.

Report No.: T1881567 01

5. Occupied bandwidth

5.1. Test limit

Please refer section RSS-210 & 15.231

According to §15.231(C), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz.

5.2. Method of measurement

a)The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

b)The test receiver RBW set 30KHz,VBW set 30KHz,Sweep time set auto.

5.3. Test Setup

5.4. Test Results

Mode	Freq (MHz)	20dB Bandwidth (KHz)	99% Bandwidth	Limit (kHz)	Conclusion
FSK	315	188	/	787.5	PASS

Note: Limit = 315MHz *0.25% = 787.5 kHz

315MHz

6. Transmission time

6.1. Test limit

Please refer sectionRSS-210 & 15.231

According to §15.231(a)(1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

6.2. Method of measurement

- 6.2.1. Place the EUT on the table and set it in transmitting mode.
- 6.2.2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3. Set spectrum analyzer Center= 315MHz, Span = 0MHz, Sweep = 5s.
- 6.2.4. Set the spectrum analyzer as RBW, VBW=1MHz,
- 6.2.5. Max hold, view and count how many channel in the band.

6.3. Test Setup

6.4. Test Results

Freq (MHz)	Test Result(s)	Limit (s)	Conclusion
315	0.470	< 5s	PASS

EUT After Release the button, EUT emission Continue 0.470 seconds, Compliance with 15.231 a(1) section.

Report No.: T1881567 01

7. Antenna Requirement

7.1. Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

7.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

7.3. Result

The EUT antenna is Internal antenna. It comply with the standard requirement.

8. Test setup photo

Photos of Radiated emission

9. Photos of EUT

----END OF THE REPORT-----