COMPARAISON DE FONCTIONS

Solution 1

1. En 0, on a les équivalents suivants :

$$3 + x \sim 3$$
, $\sqrt{x+3} \sim \sqrt{3}$, $\sin \sqrt{x} \sim \sqrt{x}$

Par produit et quotient d'équivalents, on trouve une limite égale à $3\sqrt{3}$.

2. En 0, on a les équivalents suivants :

$$1 - e^x \sim -x$$
, $1 - \cos x \sim \frac{x^2}{2}$, $3x^3 + 2x^4 \sim 3x^3$

Par produit et quotient d'équivalents, on trouve une limite égale à $-\frac{1}{6}$.

3. On a les équivalents suivants en 0⁺ :

$$1 - \cos x^2 \sim \frac{x^4}{2}, \qquad x^5 + x^3 \sim x^3$$

Par conséquent,

$$\frac{(1-\cos x^2)e^{\frac{1}{x}}}{x^5+x^3} \sim \frac{x}{2}e^{\frac{1}{x}}$$

En posant $u = \frac{1}{x}$, on a $u \xrightarrow[x \to 0^+]{} + \infty$ et

$$\frac{x}{2}e^{\frac{1}{x}} = \frac{e^u}{2u} \xrightarrow[u \to +\infty]{}$$

4. On pose $u = x - \frac{\pi}{4}$ de telle sorte que $u \xrightarrow[x \to \frac{\pi}{4}]{} 0$. On a alors

$$\left(x - \frac{\pi}{4}\right)\tan\left(x + \frac{\pi}{4}\right) = u\tan\left(\frac{\pi}{2} + u\right) = -\frac{u}{\tan u} \sim -1$$

Donc $\left(x - \frac{\pi}{4}\right) \tan\left(x + \frac{\pi}{4}\right) \xrightarrow[x \to \frac{\pi}{4}]{} -1.$

5. Ecrivons tout d'abord :

$$(\tanh x)^{\ln x} = e^{\ln x \ln(\tanh x)}$$

Or on sait que:

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}} \xrightarrow[x \to +\infty]{} 1$$

Par conséquent,

$$\tanh x - 1 = -\frac{2e^{-2x}}{1 + e^{-2x}} \xrightarrow[x \to +\infty]{} 0$$

On connaît un équivalent de ln(1 + u) en 0 :

$$\ln \tanh x = \ln \left(1 - \frac{2e^{-2x}}{1 + e^{-2x}} \right) \sim -\frac{2e^{-2x}}{1 + e^{-2x}} \sim -2e^{-2x}$$

On sait que $\ln(x) = o\left(e^{2x}\right)$ en $+\infty$ donc $\ln x \ln(\tanh x) \xrightarrow[x \to +\infty]{} 0$. Finalement, $(\tanh x)^{\ln x} \xrightarrow[x \to +\infty]{} 1$.

Solution 2

1. On met le terme prépondérant en facteur sous la première racine :

$$\sqrt[3]{x^3 + 1} = \sqrt[3]{x^3 \left(1 + \frac{1}{x^3}\right)} = x \left(1 + \frac{1}{x^3}\right)^{\frac{1}{3}}$$
$$= x \left(1 + \frac{1}{3x^3} + o\left(\frac{1}{x^3}\right)\right)$$

car $u = \frac{1}{x^3} \xrightarrow[x \to +\infty]{} 0$ et $(1+u)^{\frac{1}{3}} = 1 + \frac{u}{3} + o(u)$. On met de même le terme prépondérant en facteur sous la deuxième racine :

$$\sqrt{x^2 + x + 1} = \sqrt{x^2 \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)} = x \left(1 + \frac{1}{x} + \frac{1}{x^2}\right)^{\frac{1}{2}}$$

Posons $u = \frac{1}{x} + \frac{1}{x^2} \underset{x \to +\infty}{\longrightarrow} 0$. Par conséquent, $(1+u)^{\frac{1}{2}} = 1 + \frac{u}{2} + o(u)$. Or $u = \frac{1}{x} + \frac{1}{x^2} \sim \frac{1}{x} \operatorname{car} \frac{1}{x^2} = o\left(\frac{1}{x}\right)$. Donc

$$1 + \frac{u}{2} + o(u) = 1 + \frac{1}{2x} + o\left(\frac{1}{x}\right)$$

(on peut remplacer u par un équivalent). Finalement,

$$\sqrt[3]{x^3 + 1} - \sqrt{x^2 + x + 1}$$

$$= x \left(1 + \frac{1}{3x^3} + o\left(\frac{1}{x^3}\right) \right) - x \left(1 + \frac{1}{2x} + o\left(\frac{1}{x}\right) \right)$$

$$= x + \frac{1}{3x^2} + o\left(\frac{1}{x^2}\right) - x - \frac{1}{2} + o(1) \qquad \text{(on développe)}$$

$$= -\frac{1}{2} + o(1) \qquad \text{car } \frac{1}{x^2} = o(1)$$

La limite recherchée est donc $-\frac{1}{2}$.

Remarque. Dans tous les calculs, $x \to +\infty$ et $u \to 0$.

2. Mettons tout d'abord l'expression sous forme exponentielle

$$\left(1 + \frac{1}{x}\right)^x = e^{x \ln\left(1 + \frac{1}{x}\right)}$$

$$x\ln\left(1+\frac{1}{x}\right) = x\ln\left(\frac{x+1}{x}\right) = x\ln(x+1) - x\ln x$$

Or $x \ln x \xrightarrow[x \to 0]{} 0$ et $\ln(x+1) \xrightarrow[x \to 0]{} \ln 1 = 0$ donc $x \ln(x+1) \xrightarrow[x \to 0]{} 0$. Finalement, $x \ln \left(1 + \frac{1}{x}\right) \xrightarrow[x \to 0]{} 0$. Par conséquent, la limite recherchée est $e^0 = 1$.

Solution 3

1. Par croissances comparées et car cos est bornée, $\ln(\ln x)^2 - \cos^2 x + \ln x \sim \ln x$. Par croissances comparées, $2^x - 50x^6 \sim 2^x$. Donc

$$\frac{(\ln(\ln x))^2 - \cos^2 x + \ln x}{2^x - 50x^6} \sim \frac{\ln x}{x^{2}}$$

Par croissances comparées, la limite recherchée est 0.

2. Attention, « $1^{+\infty}$ » est une forme indéterminée! On ne réfléchit pas, on passe à la forme exponentionnelle.

$$\left(\frac{x^2 + 2x - 3}{x^2 - x - 1}\right)^x = e^{x \ln\left(\frac{x^2 + 2x - 3}{x^2 - x + 1}\right)}$$

Or $\frac{x^2 + 2x - 3}{x^2 - x + 1} \xrightarrow[x \to +\infty]{} 1$. Donc $\frac{x^2 + 2x - 3}{x^2 - x + 1} = 1 + t$ avec $t = \frac{3x - 4}{x^2 - x + 1}$ et $t \xrightarrow[x \to +\infty]{} 0$. Or $\ln(1 + t) \sim t$. Donc

$$\ln\left(\frac{x^2 + 2x - 3}{x^2 - x + 1}\right) \underset{x \to +\infty}{\sim} \frac{3x - 4}{x^2 - x + 1} \underset{x \to +\infty}{\sim} \frac{3}{x}$$

Donc $x \ln \left(\frac{x^2 + 2x - 3}{x^2 - x + 1} \right) \sim 3$. La limite recherchée est donc e^3 .

- 3. On a $\cos 3x = 1 \frac{9x^2}{2} + o(x^2)$ et $\cos x = 1 \frac{x^2}{2} + o(x^2)$. Donc $\cos 3x \cos x = -4x^2 + o(x^2) \sim -4x^2$. Par conséquent, la limite recherchée est -4.
- **4.** On a $a^x = e^{x \ln a} = 1 + x \ln a + o(x)$. De même $b^x = 1 + x \ln b + o(x)$. Donc

$$a^{x} - b^{x} = x(\ln a - \ln b) + o(x) \underset{x \to 0}{\sim} x \ln \frac{a}{b}$$

La limite recherchée est donc $\ln \frac{a}{h}$.

5. On se ramène en 0 en posant x=1+h. Ainsi $\sqrt{2-x^2}=\sqrt{1-2h-h^2}$. Or $-2h-2h^2 \underset{h\to 0}{\longrightarrow} 0$ donc

$$\sqrt{1-2h-h^2}-1 \sim_{h\to 0} -h-h^2 \sim_{h\to 0} -h$$

On a aussi $\ln x = \ln(1+h) \sim h$. La limite recherchée est donc -1.

6. Pas besoin d'équivalent ici. On a pour tout $x \in \mathbb{R}$, $-1 \le \cos x \le 1$. Par croissance de l'exponentielle, on a donc

$$e^{-1} \le e^{\cos x} \le e$$

Ainsi

$$e^{-1}\sin\frac{1}{x} \le \sin\frac{1}{x}e^{\cos x} \le e\sin\frac{1}{x}$$

Comme $\frac{1}{x} \xrightarrow[x \to +\infty]{} 0$ et que sin est continue en 0, on en déduit que sin $\frac{1}{x} \xrightarrow[x \to +\infty]{} 0$ et que la limite recherchée est nulle.

7. On passe à la forme exponentielle :

$$\left(\cos\left(\frac{1}{\ln x}\right)\right)^{x^2} = e^{x^2 \ln\left(\cos\left(\frac{1}{\ln x}\right)\right)}$$

Comme $\cos\left(\frac{1}{\ln x}\right) \xrightarrow[x \to +\infty]{} 1$,

$$\ln\left(\cos\left(\frac{1}{\ln x}\right)\right) \underset{x \to +\infty}{\sim} \cos\left(\frac{1}{\ln x}\right) - 1$$

Comme $\frac{1}{\ln x} \xrightarrow[x \to +\infty]{} 0$,

$$\cos\left(\frac{1}{\ln x}\right) - 1 \underset{x \to +\infty}{\sim} -\frac{1}{2(\ln x)^2}$$

Finalement,

$$x^2 \ln \left(\cos \left(\frac{1}{\ln x}\right)\right) \underset{x \to +\infty}{\sim} -\frac{x^2}{2(\ln x)^2}$$

Par croissances comparées, $-\frac{x^2}{2(\ln x)^2} \xrightarrow[x \to +\infty]{} -\infty$. La limite recherchée est donc 0.

8. On se ramène en 0 en effectuant le changement de variable $x = \frac{\pi}{2} + h$. On a alors

$$(\tan x)(\tan 2x) = \left(\tan\left(\frac{\pi}{2} + h\right)\right)(\tan(\pi + 2h)) = -\frac{\tan 2h}{\tan h} \underset{h \to 0}{\sim} -2$$

La limite recherchée est -2.

9. On se ramène en 0 en effectuant le changement de variable x = 1 + h. Occupons nous du numérateur :

$$e^{x^2+x} - e^2x = e^{2+3h+h^2} - e^{2+2h} = e^{2+2h}(e^{h+h^2} - 1) \underset{h \to 0}{\sim} e^2(h+h^2) \underset{h \to 0}{\sim} e^2h$$

Maintenant le dénominateur :

$$\cos\left(\frac{\pi x}{2}\right) = \cos\left(\frac{\pi}{2} + \frac{\pi h}{2}\right) = -\sin\left(\frac{\pi h}{2}\right) \underset{h \to 0}{\sim} -\frac{\pi h}{2}$$

Par quotient, la limite recherchée est $-\frac{2e^2}{\pi}$.

10. On pourrait s'en sortir avec le changement de variable $x = \frac{\pi}{3} + h$ mais il y a plus astucieux. En effet :

$$\sqrt{3}\cos x - \sin x = 2\left(\sin\frac{\pi}{3}\cos x - \cos\frac{\pi}{3}\sin x\right) = 2\sin\left(x - \frac{\pi}{3}\right)$$

La limite recherchée est donc 2.

11. Pas besoin d'équivalent ici. En effet pour tout $x \neq 0, -1 \leq \sin \frac{1}{x} \leq 1$ donc

$$-x \le x \sin \frac{1}{x} \le x$$

Par le théorème des gendarmes, la limite recherchée est nulle.

Solution 4

- **1.** Tout d'abord, $\ln\left(1+\frac{1}{x}\right) \underset{x\to+\infty}{\sim} \frac{1}{x} \cot\frac{1}{x} \xrightarrow[x\to+\infty]{} 0$. Par conséquent, $u(x) = \frac{\ln\left(1+\frac{1}{x}\right)}{\ln x} \underset{x\to+\infty}{\sim} x \ln x$. Donc $u(x) \xrightarrow[x\to+\infty]{} 0$ et $\ln(1+u(x)) \underset{x\to+\infty}{\sim} u(x) \underset{x\to+\infty}{\sim} \frac{1}{x \ln x}$. Finalement, $f(x) \sim \frac{1}{\ln x}$.
- 2. Comme $f(x) \underset{x \to +\infty}{\sim} \frac{1}{\ln x}$, $f(x) \underset{x \to +\infty}{\longrightarrow} 0$. Par conséquent, $e^{f(x)} 1 \underset{x \to +\infty}{\sim} f(x) \underset{x \to +\infty}{\sim} \frac{1}{\ln x}$. Donc $\left(e^{f(x)} 1\right) \ln x \underset{x \to +\infty}{\sim} 1$ et la limite recherchée est 1.
- 3. Il suffit de remarquer que :

$$\frac{\ln(x+1)}{\ln x} = \frac{\ln\left(x\left(1+\frac{1}{x}\right)\right)}{\ln x} = \frac{\ln x + \ln\left(1+\frac{1}{x}\right)}{\ln x} = 1 + \frac{\ln\left(1+\frac{1}{x}\right)}{\ln x}$$

En mettant sous forme exponentielle:

$$g(x) = \left[e^{x \ln\left(1 + \frac{\ln\left(1 + \frac{1}{x}\right)}{\ln x}\right)} - 1 \right] \ln x = \left(e^{f(x)} - 1\right) \ln x$$

D'après la question précédente, $g(x) \xrightarrow{r_{\text{out}}} 1$.

Solution 5

Posons $P(x) = nx^{n+1} - (n+1)x^n + 1$ et $Q(x) = x^{p+1} - x^p - x + 1$. On a P(1) = Q(1) = 0. Puisque

$$P'(x) = n(n+1)x^n - n(n+1)x^{n-1}$$
 et $Q'(x) = (p+1)x^p - px^{p-1} - 1$

on a également P'(1) = Q'(1) = 0. Enfin,

$$P''(x) = n^{2}(n+1)x^{n-1} - n(n-1)(n+1)x^{n-2} \quad \text{et} \quad Q''(x) = p(p+1)x^{p-1} - p(p-1)x^{p-2}$$

ces expressions étant encore valables lorsque n = 1 ou p = 1 puisqu'alors le coefficient de x^{n-2} ou x^{p-2} est nul. On trouve P''(1) = n(n+1) et Q''(1) = 2p. On a donc

$$P(x) = \frac{n(n+1)}{2}(x-1)^2 + o\left((x-1)^2\right) \quad \text{et} \quad Q(x) = p(x-1)^2 + o\left((x-1)^2\right)$$

D'où
$$\lim_{x\to 1} \frac{P(x)}{Q(x)} = \frac{n(n+1)}{2p}.$$

Solution 6

On a clairement

$$\frac{a^t + b^t + c^t}{3} = 1 + \frac{\ln(abc)}{3}t + o(t)$$

d'où

$$\ln(f(1/t)) = \ln(\sqrt[3]{abc}) + o(1).$$

Donc, par continuité de l'exponentielle en $\ln(\sqrt[3]{abc})$, on a

$$\lim_{x \to +\infty} f(x) = \sqrt[3]{abc}.$$

Solution 7

1. On a, au voisinage de 0,

$$x\cos(x) = x - \frac{1}{2}x^3 + o(x^3)$$

et

$$\tan(x) = x + \frac{x^3}{3} + o(x^3).$$

Ainsi,

$$x\cos(x) - \tan(x) = -\frac{5}{6}x^3 + o(x^3) \sim -\frac{5}{6}x^3.$$

D'où, puisque $\sin^3(x) \sim x^3$,

$$\frac{x\cos(x) - \tan(x)}{\sin^3(x)} \sim -\frac{5}{6}$$

et donc

$$\lim_{x \to 0} \frac{x \cos(x) - \tan(x)}{\sin^3(x)} = -\frac{5}{6}.$$

2. Reprenons les résultats établis au numéro précédent...

$$x - \tan(x) \sim -\frac{1}{3}x^3,$$

d'où

$$\frac{x\cos(x) - \tan(x)}{\sin(x)(x - \tan(x))} \sim -\frac{5/6x^3}{-1/3x^4} = \frac{5}{2x}.$$

Ainsi,

$$\lim_{x \to 0+} \frac{x \cos(x) - \tan(x)}{\sin(x)(x - \tan(x))} = +\infty$$

et

$$\lim_{x\to 0-} \frac{x\cos(x) - \tan(x)}{\sin(x)(x - \tan(x))} = -\infty.$$

3. Posons x = 1 + h et notons g(x) l'expression de l'énoncé. On a

$$g(x) = \frac{1+h}{h} - \frac{1}{\ln(1+h)}.$$

Or,

$$\frac{1}{\ln(1+h)} = \frac{1}{h(1-h/2+o(h))} = \frac{1+h/2+o(h)}{h}$$
$$= \frac{1}{h} + \frac{1}{2} + o(1)$$

et donc

$$\frac{1+h}{h} - \frac{1}{\ln(1+h)} = 1 - \frac{1}{2} + o(1) = \frac{1}{2} + o(1).$$

Ainsi,

$$\lim_{x \to 1} g(x) = \frac{1}{2}.$$

4. Posons x = 1 + h et notons g(x) l'expression de l'énoncé. On a

$$g(x) = \frac{(1+h)^{\frac{1}{2}} - 1}{(1+h)^{\frac{1}{3}} - 1}.$$

Or, pour $\alpha \neq 0$,

$$(1+h)^{\alpha}-1 \sim \alpha h$$

et donc

$$\frac{(1+h)^{\frac{1}{2}}-1}{(1+h)^{\frac{1}{3}}-1} \sim \frac{\frac{1}{2}h}{\frac{1}{3}h} = \frac{3}{2}.$$

Ainsi,

$$\lim_{x \to 1} g(x) = \frac{3}{2}.$$

Solution 8

• Comparons f, g et h au voisinage de $+\infty$. Pour tout $x \in \mathbb{R}_+^*$,

$$\frac{f(x)}{g(x)} = \frac{x^2 \ln x}{e^x} = \frac{x^3}{e^x} \cdot \frac{\ln x}{x}$$

Par croissances comparées, $\lim_{x\to+\infty}\frac{x^3}{e^x}=\lim_{x\to+\infty}\frac{\ln x}{x}=0$. Donc $\lim_{x\to+\infty}\frac{f(x)}{g(x)}=0$ ou encore f=o(g). Pour tout $x\in]1,+\infty[$,

$$\frac{h(x)}{f(x)} = \frac{\ln x}{\sqrt{x}}$$

Par croissances comparées, $\lim_{x\to +\infty} \frac{h(x)}{f(x)} = 0$ ou encore h = o(f).

• Comparons f, g et h au voisinage de 0^+ .

Pour tout $x \in \mathbb{R}_+^*$,

$$\frac{h(x)}{g(x)} = \frac{x^{\frac{3}{2}} (\ln x)^2}{e^x}$$

Par croissances comparées, $\lim_{x\to 0^+} x^{\frac{3}{2}} (\ln x)^2 = 0$ et par continuité de l'exponentielle en 0, $\lim_{x\to 0} e^x = 1$. Donc $\lim_{x\to 0^+} \frac{h(x)}{g(x)} = 0$ ou encore h = o(g).

Pour tout $x \in]0,1[$,

$$\frac{f(x)}{h(x)} = \frac{\sqrt{x}}{\ln x}$$

Puisque $\lim_{x\to 0^+} \sqrt{x} = 0$ et $\lim_{x\to 0^+} \ln x = -\infty$, on obtient $\lim_{x\to 0^+} \frac{f(x)}{h(x)} = 0$ par opérations sur les limites. Ceci signifie que f = o(h).

Solution 9

1. On a d'abord:

$$\ln(1+x) = \ln\left(x(1+\frac{1}{x})\right) = \ln x + \ln\left(1+\frac{1}{x}\right)$$

Comme $\frac{1}{x} \xrightarrow{x \to +\infty} 0$, $\ln(1 + \frac{1}{x}) = \frac{1}{x} + o(\frac{1}{x})$. Par conséquent,

$$x \ln(x+1) = x \ln x + 1 + o(1)$$

Il vient donc:

$$x\ln(1+x) - (x+1)\ln x = -\ln x + 1 + o(1)$$

Comme 1 = $o(\ln x)$, on a $x \ln(1+x) - (x+1) \ln x \sim -\ln x$.

2. Comme $\frac{1}{x^2} \underset{x \to +\infty}{\longrightarrow} 0$, $\ln\left(1 + \frac{1}{x^2}\right) \underset{x \to +\infty}{\sim} \frac{1}{x^2}$. De plus on sait que pour tout $x \in \mathbb{R}$, $x - 1 < \lfloor x \rfloor \le x$. Donc, pour x > 0:

$$1 - \frac{1}{x} < \frac{\lfloor x \rfloor}{x} \le 1$$

Ceci prouve que $\lim_{x \to +\infty} \frac{|x|}{x} = 1$. Par conséquent, $|x| \underset{x \to +\infty}{\sim} x$. Par produit, on obtient :

$$\lfloor x \rfloor \ln \left(1 + \frac{1}{x^2} \right) \underset{x \to +\infty}{\sim} \frac{1}{x}$$

3. On a d'une part

$$\sqrt{1+x} = 1 + \frac{x}{2} + o(x)$$

et d'autre part

$$\sqrt{1+x^2} = 1 + \frac{x^2}{2} + o(x^2) = 1 + o(x)$$

Par conséquent,

$$\sqrt{1+x} - \sqrt{1+x^2} = x + o(x) \sim x$$

4. Cherchons d'abord un équivalent du numérateur. On a $\sin x \sim x$ et $\cos x - 1 \sim -\frac{x^2}{2}$. Or $-\frac{x^2}{2} = o(x)$. Donc $\sin x + \cos x - 1 \sim x$. Cherchons maintenant un équivalent du dénominateur. On remarque que $x - x \cos x = x(1 - \cos x) \longrightarrow 0$. Donc

$$\tan(x - x\cos x) \sim_{x\to 0} x(1 - \cos x) \sim_{x\to 0} \frac{x^3}{2}$$

Par quotient, $\frac{\sin x + \cos x - 1}{\tan(x - x \cos x)} \sim \frac{2}{x^2}$

5. Comme $\tan^2 x \xrightarrow[x\to 0]{} 0$, $\sqrt{1+\tan^2 x}-1 \sim \frac{\tan^2 x}{2}$. Par conséquent,

$$\frac{\sqrt{1+\tan^2 x}-1}{\tan x} \underset{x\to 0}{\sim} \frac{\tan x}{2} \underset{x\to 0}{\sim} \frac{x}{2}$$

6. On a $\ln(\cos x) = \ln(1 + (\cos x - 1))$. Or $\cos x - 1 \xrightarrow[x \to 0]{} 0$. Donc

$$\ln(\cos x) \sim \cos x - 1 \sim -\frac{x^2}{2}$$

7. Comme $\frac{1}{x} \xrightarrow[x \to +\infty]{} 0$, on a $e^{\frac{1}{x}} = 1 + \frac{1}{x}$ et $\cos\left(\frac{1}{x}\right) = 1 - \frac{x^2}{2} + o(x^2) = 1 + o(x)$. Par conséquent,

$$e^{\frac{1}{x}} - \cos\left(\frac{1}{x}\right) \underset{x \to +\infty}{\sim} \frac{1}{x}$$

Et par produit, $x(e^{\frac{1}{x}} - \cos(\frac{1}{x})) \sim 1$.

8. Comme $\left(\frac{1}{2}\right)^x \longrightarrow 0$ et $\ln(\ln x) \longrightarrow +\infty$, on a $\left(\frac{1}{2}\right)^x = \ln(\ln x)$. D'où

$$\ln(\ln x) - \left(\frac{1}{2}\right)^x \underset{x \to +\infty}{\sim} \ln(\ln x)$$

Par croissances comparées, $\left(\frac{1}{3}\right)^x = o\left(\frac{1}{x^3}\right)$. Par conséquent,

$$\left(\frac{1}{r}\right)^3 - \left(\frac{1}{3}\right)^x \sim \frac{1}{r^3}$$

Par quotient, on obtient:

$$\frac{\ln(\ln x) - \left(\frac{1}{2}\right)^x}{\left(\frac{1}{x}\right)^3 - \left(\frac{1}{2}\right)^x} \underset{x \to +\infty}{\sim} x^3 \ln(\ln x)$$

9. Factorisons dans un premier temps :

$$e^{\sin x} - e^{\tan x} = e^{\tan x} (e^{\sin x - \tan x} - 1)$$

Comme $e^{\tan x} \longrightarrow 1$, on a clairement $e^{\tan x} \sim 1$. De plus, $\sin x - \tan x \longrightarrow 0$ donc $e^{\sin x - \tan x} - 1 \sim \sin x - \tan x$. Mais on a :

$$\sin x - \tan x = \tan x (\cos x - 1) \underset{x \to 0}{\sim} -\frac{x^3}{2}$$

Finalement, $e^{\sin x} - e^{\tan x} \sim -\frac{x^3}{2}$.

10. Remarquons que $\frac{\pi x}{2x+3} \xrightarrow[x\to+\infty]{\pi} \frac{\pi}{2}$. On a donc $\frac{\pi x}{2x+3} = \frac{\pi}{2} + t$ avec $t = -\frac{3\pi}{4x+6}$ et $t \xrightarrow[x\to+\infty]{} 0$. Or

$$\tan\left(\frac{\pi x}{2x+3}\right) = \tan\left(\frac{\pi}{2} + t\right) = -\frac{1}{\tan t} \underset{t \to 0}{\sim} -\frac{1}{t}$$

Par conséquent,

$$\tan\left(\frac{\pi x}{2x+3}\right) \underset{x\to+\infty}{\sim} \frac{4x+6}{3\pi} \underset{x\to+\infty}{\sim} \frac{4x}{3\pi}$$

Solution 10

- **1.** En posant $u = x \frac{\pi}{2}$, on a $u \xrightarrow[x \to \frac{\pi}{2}]{0}$ et $\cos x = -\sin u$. Or $\sin u \sim u$ donc $\cos x \sim \frac{\pi}{x \to \frac{\pi}{2}} = -x$.
- **2.** En posant $u = x \frac{\pi}{2}$, on a $u \xrightarrow[x \to \frac{\pi}{2}]{0}$ et $\tan x = -\frac{1}{\tan u}$. Or $\tan u \underset{u \to 0}{\sim} u$ donc $\tan x \underset{x \to \frac{\pi}{2}}{\sim} \frac{1}{\frac{\pi}{2} x}$.
- 3. $\sqrt[3]{1+x^3} x = (x^3+1)^{\frac{1}{3}} x = x\left(\left(1+\frac{1}{x^3}\right)^{\frac{1}{3}} 1\right)$. Or $\frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$ donc $\left(1+\frac{1}{x^3}\right)^{\frac{1}{3}} 1 \underset{x \to +\infty}{\sim} \frac{1}{3x^3}$. Finalement, $\sqrt[3]{1+x^3} x \underset{x \to +\infty}{\sim} \frac{1}{3x^2}$.
- **4.** En posant u = x 1, on a $u \xrightarrow[x \to 1]{} 0$ et $\frac{1}{1+x} \frac{1}{2} = \frac{1}{2+u} \frac{1}{2} = \frac{1}{2} \left(\frac{1}{1+\frac{u}{2}} 1 \right)$. Or $\frac{1}{1+\frac{u}{2}} 1 \equiv u \to 0 \frac{u}{2}$ donc $\frac{1}{1+x} \frac{1}{2} \approx \frac{1-x}{4}$.

Solution 11

1. Puisque $x^2 \xrightarrow[x\to 0]{} 0$, $\sin(x^2) \underset{x\to 0}{\sim} x^2$. De plus, $e^x - 1 \underset{x\to 0}{\sim} x$. Donc

$$\frac{x\sin(x^2)}{e^x - 1} \underset{x \to 0}{\sim} \frac{x \times x^2}{x} = x^2$$

2. $\sqrt{1+x}-1 \sim \frac{x}{2}$ et $1-\cos x \sim \frac{x^2}{2}$ donc

$$\frac{\sqrt{1+x}-1}{1-\cos x} \sim \frac{\frac{x}{2}}{\frac{x^2}{2}} = \frac{1}{x}$$

3. Puisque $\sqrt{x} \xrightarrow[x\to 0]{} 0$, $\ln(1+\sqrt{x}) \underset{x\to 0}{\sim} \sqrt{x}$. De plus, $\tan x \underset{x\to 0}{\sim} x$. Enfin, puisque $x^3 \xrightarrow[x\to 0]{} 0$, $\arctan(x^3) \underset{x\to 0}{\sim} x^3$. Finalement,

$$\frac{\ln(1+\sqrt{x})}{\tan(x)\arctan(x^3)} \underset{x\to 0}{\sim} \frac{\sqrt{x}}{x\times x^3} = \frac{1}{x^{\frac{7}{2}}}$$

4. Puisque $\frac{1}{x^3} \xrightarrow[x \to +\infty]{} 0$, $\sin\left(\frac{1}{x^3}\right) \underset{x \to +\infty}{\sim} \frac{1}{x^3}$. De même, $\frac{1}{x^2} \xrightarrow[x \to +\infty]{} 0$ donc $e^{\frac{1}{x^2}} - 1 \underset{x \to +\infty}{\sim} \frac{1}{x^2}$. Finalement

$$\frac{x^2 \sin\left(\frac{1}{x^3}\right)}{e^{\frac{1}{x^2}} - 1} \sim \frac{x \times \frac{1}{x^3}}{\frac{1}{x^2}} = 1$$

Solution 12

- 1. On sait que $\sin(x) = x + o(x)$ et $\tan(x) = x + o(x)$. Donc $\sin(x) + \tan(x) = 2x + o(x)$. On en déduit que $\sin(x) + \tan(x) \approx 2x$.
- 2. On sait que $e^x 1 = x + o(x)$ et $x^3 = o(x)$ donc $x^3 + e^x 1 = o(x)$. Autrement dit, $x^3 + e^x 1 = x$.
- 3. On sait que $\arcsin(x) = x + o(x)$ et $\cos(x) = 1 \frac{x^2}{2} + o(x^2)$. A fortiori, $\cos(x) = 1 + o(x)$ donc $\arcsin(x) + \cos(x) 1 = x + o(x)$. Autrement dit $\arcsin(x) + \cos(x) 1 = x + o(x)$.
- **4.** Puisque $\frac{1}{x} \xrightarrow[x \to +\infty]{} 0$, $\sqrt{1 + \frac{1}{x}} = 1 + \frac{1}{2x} + o\left(\frac{1}{x}\right)$. De même, $\frac{1}{x^3} \xrightarrow[x \to +\infty]{} 0$ donc $\sqrt[3]{1 + \frac{1}{x^3}} = 1 + \frac{1}{3x^3} + o\left(\frac{1}{x^3}\right)$. A fortiori, $\sqrt[3]{1 + \frac{1}{x^3}} = o\left(\frac{1}{x}\right)$. On en déduit que $\sqrt{1 + \frac{1}{x}} \sqrt[3]{1 + \frac{1}{x^3}} = \frac{1}{2x} + o\left(\frac{1}{x}\right)$. Autrement dit, $\sqrt{1 + \frac{1}{x}} \sqrt[3]{1 + \frac{1}{x^3}} \approx \frac{1}{x \to +\infty} = \frac{1}{2x}$.

Solution 13

On a

$$\sqrt{n+1} = \sqrt{n} \left(1 + \frac{1}{n} \right)^{1/2}$$
$$= \sqrt{n} \left(1 + \frac{1}{2n} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right) \right)$$

et

$$\sqrt{n-1} = \sqrt{n} \left(1 - \frac{1}{n} \right)^{1/2}$$

$$= \sqrt{n} \left(1 - \frac{1}{2n} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right) \right)$$

donc

$$u_n = \frac{1}{4n^{3/2}} + o\left(\frac{1}{n^{3/2}}\right).$$

Ainsi

$$u_n \sim \frac{1}{4n^{3/2}}.$$

Solution 14

1. On a au voisinage de 0,

$$\arccos(x) - \frac{\pi}{2} = -\arcsin(x) \sim -x.$$

2. On a au voisinage de 0,

$$x^4 + x + x^2 \sim x$$
.

3. On a au voisinage de 0,

$$\arcsin(x) + x + x^2 = x + x + o(x) \sim 2x.$$

4. On a au voisinage de 0,

$$\arctan(x) + x = x + x + o(x) \sim 2x$$
.

5. On a pour $x \neq 1$,

$$\frac{1}{1-x} - 1 + x = \frac{2x - x^2}{1-x},$$

ainsi au voisinage de 0,

$$\frac{1}{1-x} - 1 + x \sim \frac{2x}{0} = 2x.$$

6. On a

$$\frac{x^2}{1+x} = o(x),$$

ainsi

$$\frac{x^2}{1+x} - x = -x + o(x) \sim_0^{-x} -x.$$

Solution 15

On a au voisinage de 0,

$$\frac{e^x + 1}{2} = 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{12}x^3 + \frac{1}{48}x^4 + o(x^4)$$

de plus,

$$\ln(1+u) = u - \frac{1}{2}u^2 + \frac{1}{3}u^3 - \frac{1}{4}u^4 + o(u^4)$$

Posons

$$u = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{12}x^3 + \frac{1}{48}x^4$$

et appliquons le théorème de composition des DL.

и	$\frac{x}{2}$	$\frac{x^2}{4}$	$\frac{x^3}{12}$	$\frac{x^4}{48}$
$-\frac{u^2}{2}$	0	$-\frac{x^2}{8}$	$-\frac{x^3}{8}$	$-\frac{7x^4}{96}$
$\frac{u^3}{3}$	0	0	$\frac{x^3}{24}$	$\frac{x^4}{16}$
$-\frac{u^4}{4}$	0	0	0	$-\frac{x^4}{64}$
$\ln\left(\frac{e^x+1}{2}\right)$	$\frac{x}{2}$	$\frac{x^2}{8}$	0	$-\frac{x^4}{192}$

D'où

 $f(x) = -\frac{1}{192}x^4 + o(x^4)$

et donc

$$f(x) \sim -\frac{1}{192}x^4.$$

Solution 16

On a au voisinage de 0,

$$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + o(x^7)$$

et

$$sh(x) = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040} + o(x^7)$$

Posons

$$y = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040}$$

et appliquons le théorème de composition des DL.

у	x	$\frac{x^3}{6}$	$\frac{x^5}{120}$	$\frac{x^7}{5040}$
$-\frac{y^3}{6}$	0	$-\frac{x^3}{6}$	$-\frac{x^5}{12}$	$-\frac{13 x^7}{720}$
$\frac{y^5}{120}$	0	0	$\frac{x^5}{120}$	$\frac{x^7}{144}$
$-\frac{y^7}{5040}$	0	0	0	$-\frac{x^7}{5040}$
sin∘sh	x	0	$-\frac{1}{15}x^5$	$-\frac{x^7}{90}$

Posons

$$u = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040}$$

et appliquons le théorème de composition des DL.

и	x	$-\frac{x^3}{6}$	$\frac{x^5}{120}$	$-\frac{x^7}{5040}$
$\frac{u^3}{6}$	0	$\frac{x^3}{6}$	$-\frac{x^5}{12}$	$\frac{13x^7}{720}$
$\frac{u^5}{120}$	0	0	$\frac{x^5}{120}$	$-\frac{x^7}{144}$
$\frac{u^7}{5040}$	0	0	0	$\frac{x^7}{5040}$
$(\operatorname{sh} \circ \sin)(x)$	x	0	$-\frac{1}{15}x^5$	$\frac{x^7}{90}$

ainsi,

$$\sin(\sinh(x)) - \sinh(\sin(x)) = -\frac{1}{90}x^7 + o(x^7),$$

et donc

$$\sin(\operatorname{sh}(x)) - \operatorname{sh}(\sin(x)) \sim -\frac{1}{90}x^7.$$

Solution 17

On a

$$\arcsin(x) = x + \frac{x^3}{6} + \frac{3x^5}{40} + o(x^6)$$

et

$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{3x^4}{8} + o(x^5).$$

D'après le théorème sur les produits de DL, on a donc

$$f(x) = x + \frac{2}{3}x^3 + \frac{8}{15}x^5 + o(x^5).$$

Solution 18

1. Produit de développements limités connus :

$$e^x \sin(x) = x + x^2 + \frac{x^3}{3} + o(x^3).$$

2. Comme la valuation de sin(x) est égale à 1, on trouve le développement limité à l'ordre 6 de $sin^3(x)$ en partant du développement limité à l'ordre 4 de sin(x):

$$\sin(x) = x - \frac{x^3}{6} + o(x^4).$$

Le développement limité de $\cos x$ à l'ordre 3 est

$$\cos(x) = 1 - \frac{x^2}{2} + o(x^3).$$

On trouve finalement

$$\sin^3(x) - x^3 \cos(x) = o(x^6)...$$

3. Le cours dit comment calculer le développement limité à l'ordre 2 de $(1+x)^{1/2}$.

$$x^3\sqrt{1+x} = x^3 + \frac{x^4}{2} - \frac{x^5}{8} + o(x^5).$$

4. On se ramène à un développement limité connu par une transformation simple :

$$\frac{1}{2+x} = \frac{1}{2} \cdot \frac{1}{1+(x/2)}$$
$$= \frac{1}{2} - \frac{x}{4} + \frac{x^2}{8} - \frac{x^3}{16} + o(x^3).$$

5. Même chose.

$$\frac{1}{3-x^2} = \frac{1}{3} \cdot \frac{1}{1-(x^2/3)}$$
$$= \frac{1}{3} + \frac{x^2}{9} + \frac{x^4}{27} + o(x^5).$$

6. C'est immédiat :

$$\sqrt{1+2x} = 1 + x - \frac{x^2}{2} + \frac{x^3}{2} + o(x^3).$$

7. C'est sans soucis :

$$\sqrt{4-x} = 2\sqrt{1-(x/4)}$$
$$= 2 - \frac{x}{4} - \frac{x^2}{64} - \frac{x^3}{512} + o(x^3).$$

8. D'après les formules d'addition,

$$\cos\left(\frac{\pi}{3} + x\right) = \frac{1}{2}\cos(x) - \frac{\sqrt{3}}{2}\sin(x).$$

Il ne reste plus qu'à appliquer les formules connues :

$$\cos\left(\frac{\pi}{3} + x\right) = \frac{1}{2} - \frac{\sqrt{3}x}{2} - \frac{x^2}{4} + \frac{\sqrt{3}x^3}{12} + o(x^3).$$

9. On se ramène à la seule forme connue :

$$ln(2+x) = ln(2) + ln[1 + (x/2)]$$

et on en déduit que

$$\ln(2+x) = \ln(2) + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{24} + o(x^3).$$

10. Même chose.

$$\exp(3-x) = e^3 \exp(-x)$$
$$= e^3 - e^3 x + \frac{e^3 x^2}{2} - \frac{e^3 x^3}{6} + o(x^3).$$

11. On passe par la fonction exponentielle :

$$(1+x)^{1/x} = e^{\ln(1+x)/x} = e^{1-x/2+x^2/3+o(x^2)}$$

$$= e \cdot e^{-x/2+x^2/3+o(x^2)}$$

$$= e \cdot \left(1 - x/2 + x^2/8 + x^2/3 + o(x^2)\right)$$

donc:

$$(1+x)^{1/x} = e - \frac{e}{2}x + \frac{11e}{24}x^2 + o(x^2).$$

Solution 19

1.

$$x + \ln(1+x) = 2x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3).$$

2. La fonction f est continue et strictement croissante sur l'intervalle I (comme somme de fonctions continues et strictement croissantes). D'après le théorème d'inversion, la fonction f réalise une bijection de I sur l'intervalle

$$J = |f(-1^+), f(1^-)| =]-\infty, 1 + \ln 2[.$$

3. Admettons que

$$f^{-1}(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + o(x^3)$$

pour des réels a_k convenables. Comme f(0) = 0, alors $f^{-1}(0) = 0$ et, par continuité de f^{-1} , on sait déjà que $a_0 = 0$. Comme $f^{-1}(x)$ tend vers 0 lorsque x tend vers 0, on peut prendre

$$u = f^{-1}(x) = \mathcal{O}(x)$$

dans le développement limité

$$f(u) = 2u - \frac{u^2}{2} + \frac{u^3}{3} + o(u^3).$$

Or

$$u^{2} = a_{1}^{2}x^{2} + 2a_{1}a_{2}x^{3} + o(x^{3})$$

$$u^{3} = a_{1}^{3}x^{3} + o(x^{3})$$

donc

$$f(f^{-1}(x)) = 2a_1x + \frac{(4a_2 - a_1^2)}{2}x^2 + \frac{(6a_3 - 3a_1a_2 + a_1^3)}{3}x^3 + o(x^3)$$

$$= x \qquad (\forall x \in J)$$

$$= x + o(x^3).$$

Par unicité du développement limité, on en déduit que

$$\begin{cases} 2a_1 & = 1 \\ -a_1^2 + 4a_2 & = 0 \\ a_1^3 - 3a_1a_2 + 6a_3 & = 0 \end{cases}$$

donc

$$a_1 = \frac{1}{2}, \ a_2 = \frac{1}{16}, \ a_3 = \frac{-1}{192}.$$

Remarque. f^{-1} admet un développement limité d'ordre 3 en 0 car elle est de classe \mathcal{C}^3 sur f(I). En effet, c'est la bijection réciproque d'une fonction de classe \mathcal{C}^3 , à savoir f, dont la dérivée ne s'annule pas sur I puisque pour tout $x \in I$,

$$f'(x) = 1 + \frac{1}{1+x} > 0$$

Solution 20

1. a. On pose $u = x - x_0$ et on trouve

$$e^{(1+u)} = e\left(1 + u + \frac{u^2}{2} + \frac{u^3}{6} + \frac{u^4}{24} + o(u^4)\right).$$

b. On applique les formules d'addition en posant $u = x - \pi/4$:

$$\cos(x) = \frac{\sqrt{2}}{2} \left(1 - u - \frac{u^2}{2} + \frac{u^3}{6} + \frac{u^4}{24} + o(u^4) \right).$$

c. Idem avec $u = x - \pi/6$:

$$\sin(x) = \frac{1}{2} \left(1 + \sqrt{3}u - \frac{u^2}{2} - \frac{\sqrt{3}u^3}{6} + \frac{u^4}{24} + o(u^4) \right).$$

d. On pose u = x - e et

$$\ln(x) = 1 + \ln\left(1 + \frac{u}{e}\right)$$
$$= 1 + \frac{u}{e} - \frac{u^2}{2e^2} + \frac{u^3}{3e^3} - \frac{u^4}{4e^4} + o(u^4).$$

e. On se ramène à une forme connue avec u = x - 1:

$$\frac{1}{1+(1+u)^2} = \frac{1}{2} \cdot \frac{1}{1+(u+u^2/2)}$$

et on considère maintenant l'infiniment petit

$$v = u + \frac{u^2}{2} = \mathcal{O}(u).$$

On vérifie que

$$v^{2} = u^{2} + u^{3} + \frac{u^{4}}{4},$$

$$v^{3} = u^{3} + \frac{3u^{4}}{2} + o(u^{4}),$$

$$v^{4} = u^{4} + o(u^{4}).$$

d'où

$$\frac{1}{1+x^2} = \frac{1}{2} - \frac{u}{2} + \frac{u^2}{4} - \frac{u^4}{8} + o(u^4).$$

f. On intègre le résultat précédent, puisque

$$\arctan(1+u) = \arctan(1) + \int_{1}^{1+u} \frac{dt}{1+t^2}.$$

Par conséquent,

$$\arctan(1+u) = \frac{\pi}{4} + \frac{u}{2} - \frac{u^2}{4} + \frac{u^3}{12} + o(u^4).$$

g. Pour tout x > 0, on a :

$$\frac{\sqrt{x^2 - 1}}{x} = \sqrt{1 - \frac{1}{x^2}} = 1 - \frac{1}{2x^2} - \frac{1}{8x^4} + o\left(\frac{1}{x^4}\right).$$

h. Notons f(x) l'expression de l'énoncé. Avec $h = x - \pi/4$, on a :

$$f(x) = e^{\tan(\pi/2 + 2h)\ln(\tan(h + \pi/4))}$$

= $e^{-\ln(\tan(h + \pi/4))/\tan(2h)}$

d'où

$$f(\pi/4 + h) = \exp\left(-\frac{\ln\left(\frac{1 + \tan(h)}{1 - \tan(h)}\right)}{\tan(2h)}\right).$$

Développons à l'ordre $5 \ln(1 + \tan(h))$. On a

$$v = \tan(h) = h + \frac{h^3}{3} + \frac{2h^5}{15} + o(h^5).$$

De plus,

$$\ln(1+v) = v - \frac{v^2}{2} + \frac{v^3}{3} - \frac{v^4}{4} + \frac{v^5}{5} + o(v^5).$$

Comme

$$-\frac{v^2}{2} = -\frac{1}{2} \left(h^2 + \frac{2h^4}{3} + o(h^5) \right),$$
$$\frac{v^3}{3} = \frac{1}{3} (h^3 + h^5 + o(h^5)),$$
$$-\frac{v^4}{4} = -\frac{1}{4} (h^4 + o(h^5)),$$

et

$$\frac{v^5}{5} = \frac{1}{5}(h^5 + o(h^5)),$$

ďoù

$$\ln(1+\tan(h)) = h - \frac{h^2}{2} + \frac{2h^3}{3} - \frac{7h^4}{12} + \frac{2h^5}{15} + o(h^5)$$

donc

$$\ln\left(\frac{1+\tan(h)}{1-\tan(h)}\right) = \ln(1+\tan(h)) - \ln(1+\tan(-h))$$
$$= 2u + \frac{4u^3}{3} + \frac{4u^5}{3} + o(u^5)$$

Ainsi:

$$\ln(f(h+\pi/4)) = \frac{2h + \frac{4h^3}{3} + \frac{4h^5}{3} + o(h^5)}{2h + 8h^3/3 + 64h^5/15 + o(h^5)}$$
$$= \frac{1 + \frac{2h^2}{3} + \frac{2h^4}{3} + o(h^4)}{1 + 4h^2/3 + 32h^4/15 + o(h^4)}$$
$$= -1 + \frac{2h^2}{3} + \frac{26h^4}{45} + o(h^4)$$

En posant

$$u = \frac{2h^2}{3} + \frac{26h^4}{45} + o(h^4)$$

On a

$$f(h + \pi/4) = e^{-1} \left(1 + u + \frac{u^2}{2} + o(u^2) \right)$$

avec

$$u^2 = 4h^4/9 + o(h^4)$$

d'où finalement:

$$f(\pi/4 + h) = \frac{1}{e} + \frac{2}{3e}h^2 + \frac{4}{5e}h^4 + o(h^4).$$

2. a. Tout d'abord, pour tout x > 0,

$$\sqrt[3]{x^3 + x^2} = x\left(1 + \frac{1}{x}\right)^{1/3}$$

et on applique la formule du cours avec l'infiniment petit

$$u = \frac{1}{x}$$

pour trouver

$$\sqrt[3]{x^3 + x^2} = x + \frac{1}{3} - \frac{1}{9x} + \frac{5}{81x^2} - \frac{10}{243x^3} + o\left(\frac{1}{x^3}\right).$$

De même,

$$\sqrt[3]{x^3 - x^2} = x - \frac{1}{3} - \frac{1}{9x} - \frac{5}{81x^2} - \frac{10}{243x^3} + o\left(\frac{1}{x^3}\right).$$

Donc

$$\sqrt[3]{x^3 + x^2} - \sqrt[3]{x^3 - x^2} = \frac{2}{3} + \frac{10}{81x^2} + o\left(\frac{1}{x^3}\right).$$

b. On prend bien entendu

$$u = x - \frac{\pi}{4}$$

pour infiniment petit. D'après les formules d'addition,

$$\cos(x) + \sin(x) = \sqrt{2}\cos(x - \frac{\pi}{4})$$
$$= \sqrt{2}\left(1 - \frac{u^2}{2} + o(u^2)\right).$$

c. On pose $u = x - \pi/4$ et d'après les formules d'addition,

$$\tan(x) = \frac{\cos(u) + \sin(u)}{\cos(u) - \sin(u)}$$
$$= \frac{1 + u - u^2/2 + o(u^2)}{1 - u - u^2/2 + o(u^2)}.$$

En prenant

$$v = u + \frac{u^2}{2} + o(u^2) = \mathcal{O}(u)$$

pour infiniment petit, on retrouve une forme connue:

$$\frac{1}{1-v} = 1 + u + \frac{3u^2}{2} + o(u^2)$$

et on en déduit que

$$\tan(x) = 1 + 2u + 2u^2 + o(u^2).$$

Solution 21

On a au voisinage de 0,

$$ch(x) = 1 + \frac{x^2}{2} + \frac{x^4}{24} + o(x^4).$$

Posons $u = \frac{x^2}{2} + \frac{x^4}{24}$ et appliquons le théorème de composition des DL...

и	0	$\frac{x^2}{2}$	0	$\frac{x^4}{24}$
$-\frac{u^2}{2}$	0	0	0	$-\frac{x^4}{8}$
$\ln(1 + \operatorname{ch}(x))$	0	$\frac{x^2}{2}$	0	$-\frac{x^4}{12}$

Ainsi,

$$\frac{\ln(\operatorname{ch}(x))}{x} = \frac{x}{0} - \frac{x^3}{12} + o(x^3).$$

Posons $v = \frac{x}{2} - \frac{x^3}{12}$ et appliquons à nouveau le théorème de composition des DL.

υ	$\frac{x}{2}$	0	$-\frac{x^3}{12}$
$\frac{v^2}{2}$	0	$\frac{x^2}{8}$	0
$\frac{v^3}{6}$	0	0	$\frac{x^2}{48}$
f(x)-1	$\frac{x}{2}$	$\frac{x^2}{2}$	$-\frac{x^3}{16}$

Ainsi,

$$f(x) = x + \frac{x^2}{2} + \frac{x^3}{8} - \frac{x^4}{16} + o(x^4).$$

Solution 22

On a au voisinage de 0,

$$\arctan(x) = x - \frac{x^3}{3} + o(x^3)$$

et

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} + o(u^3).$$

Posons $u = x - \frac{x^3}{3}$ et appliquons le théorème de composition des DL.

и	x	0	$-\frac{x^3}{3}$
$-\frac{u^2}{2}$	0	$-\frac{x^{2}}{2}$	0
$\frac{u^3}{3}$	0	0	$\frac{x^3}{3}$
ln(1 + arctan(x))	x	$-\frac{x^2}{2}$	0

Ainsi,

$$\ln(1 + \arctan(x)) = x - \frac{x^2}{2} + o(x^3).$$

On a au voisinage de 0,

$$\sin(x) = x - \frac{x^3}{6} + o(x^3),$$

ainsi, après une banale comoposition de DL,

$$\frac{x}{\sin^2(x)} = \frac{1}{x} \left(1 + \frac{x^2}{3} + o(x^2) \right).$$

On a donc après un simple produit de DL,

$$\ln(h(x)) = 1 - \frac{x}{2} + \frac{x^2}{3} + o(x^2).$$

♦ On a au voisinage de 0,

$$e^{u} = 1 + u + \frac{u^{2}}{2} + o(u^{2}).$$

Posons $u = -\frac{x}{2} + \frac{x^2}{3}$ et appliquons à nouveau le théorème de composition des DL.

u	$-\frac{x}{2}$	$\frac{x^2}{3}$
$\frac{u^2}{2}$	0	$\frac{x^2}{8}$
$\frac{h(x)}{e} - 1$	$-\frac{x}{2}$	$\frac{11x^2}{24}$

Ainsi,

$$h(x) = e - \frac{ex}{2} + \frac{11ex^2}{24} + o(x^2).$$

Solution 23

On a au voisinage de 0,

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3),$$

ainsi,

$$3e^{x} + e^{-x} = 4 + 2x + 2x^{2} + \frac{x^{3}}{3} + o(x^{3}),$$

On a donc au voisinage de 0,

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} + o(u^3).$$

Posons $u = \frac{x}{2} + \frac{x^2}{2} + \frac{x^3}{12}$ et appliquons le théorème de composition des DL.

и	$\frac{x}{2}$	$\frac{x^2}{2}$	$\frac{x^3}{12}$
$-\frac{u^2}{2}$	0	$-\frac{x^2}{8}$	$-\frac{x^3}{4}$
$\frac{u^3}{3}$	0	0	$\frac{x^3}{24}$
$f(x) - \ln(4)$	$\frac{x}{2}$	$\frac{3x^2}{8}$	$-\frac{x^3}{8}$

Ainsi,

$$f(x) = \ln(4) + \frac{x}{2} + \frac{3x^2}{8} - \frac{x^3}{8} + o(x^3).$$

Solution 24

On a au voisinage de 0,

 $\cos(x) = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + o(x^4),$

ainsi

$$f(x) = \frac{1}{2} \times \frac{1}{1 - \frac{1}{4}x^2 + \frac{1}{48}x^4 + o(x^4)}.$$

Or ,au voisinage de 0,

$$\frac{1}{1-u} = 1 + u + u^2 + o(u^2).$$

Posons $u = \frac{1}{4}x^2 - \frac{1}{48}x^4$. Puisque $u = \mathcal{O}(x^2)$, le développement à l'ordre 2 en u indiqué ci-dessus est suffisant pour développer f(x) à l'ordre 4. Appliquons la méthode de calcul du DL d'une composée.

и	$\frac{1}{4}x^2$	$-\frac{1}{48}x^4$
u^2	0	$\frac{1}{16}x^4$
$\frac{1}{1-u}-1$	$\frac{1}{4}x^2$	$\frac{1}{24}x^4$

D'où

$$f(x) = \frac{1}{2} + \frac{1}{8}x^2 + \frac{1}{48}x^4 + o(x^4).$$

Solution 25

Nous allons considérer f(x) comme le produit de $g(x) = x^2 \sin(x)$ et de h(x) = 1/(1+x), et nous allons développer chacun des termes à l'ordre 5.

• Commençons par g. La fonction g est elle-même un produit. Le premier terme x^2 est un polynôme de degré 2, son développement à l'ordre 5 est donc égal à x^2 . Nous connaissons aussi un développement de $\sin x$ à l'ordre 5 : $\sin(x) = x - x^3/6 + x^5/120 + o(x^5)$. Le produit des deux termes conduit donc à

$$x^2 \sin(x) = x^3 - x^5/6 + o(x^5),$$

puisqu'on ne tient compte dans le produit que des termes de degré ≤ 5 . Notons donc qu'il aurait été suffisant de développer $\sin(x)$ seulement à l'ordre 3. Il est souvent possible d'utiliser ce type de raccourci, mais il est plus sûr au début d'appliquer strictement les règles de calcul, au prix de quelques lourdeurs.

• Passons maintenant à 1/(1+x). On sait que

$$\frac{1}{1+x} = 1 - x + x^2 + x^3 - x^4 + x^5 + o(x^5).$$

• En utilisant la règle du produit, il vient donc

$$f(x) = (x^3 - x^5/6 + o(x^5)) \times (1 - x + x^2 + x^3 - x^4 + x^5 + o(x^5)) = x^3 - x^4 + 5x^5/6 + o(x^5)$$

Notons que, là encore, il aurait été possible de ne développer 1/(1+x) qu'à l'ordre 2, puisque x^3 est en facteur dans le premier terme g.

Solution 26

1. On a

$$(1-x)^{-1/2} = 1 + \frac{x}{2} + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \frac{35}{128}x^4 + o(x^4)$$

et

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

d'où, après produit des deux DL:

$$f(x) = 1 + \frac{x}{2} - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \frac{49}{384}x^4 + o(x^4).$$

2. Comme $1 + \cos(x) = 2 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$, on a,

$$g(x) = \sqrt{2} \left[1 - \frac{x^2}{4} + \frac{x^4}{48} + o(x^4) \right].$$

Puisque $\sqrt{1+u} = 1 + \frac{u}{2} - \frac{u^2}{8} + o(u^2)$, on déduit du théorème de composition des DL que,

$$g(x) = \sqrt{2} - \frac{\sqrt{2}x^2}{8} + \frac{\sqrt{2}x^4}{384} + o(x^4).$$

3. Comme $cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$, on a,

$$h(x) = e \times \exp\left(-\frac{x^2}{2} + \frac{x^4}{24} + o(x^4)\right).$$

Puisque $e^u = 1 + u + \frac{u^2}{2} + o(u^2)$, on déduit du théorème de composition des DL que,

$$h(x) = e - \frac{ex^2}{2} + \frac{ex^4}{6} + o(x^4).$$

4. Comme

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

et

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 + o(x^4),$$

on a:

$$\frac{\cos(x)}{1+x^2} = 1 - \frac{3}{2}x^2 + \frac{37}{24}x^4 + o(x^4).$$

Solution 27

1. Pour $x \in \mathbb{R} \setminus \{1\}$,

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

donc pour x au voisinage de 0

$$\ln\left(\sum_{k=0}^{n} x^{k}\right) = \ln\left(1 - x^{n+1}\right) - \ln(1 - x)$$

Or $\ln (1 - x^{n+1}) \sim -x^{n+1}$ donc $\ln (1 - x^{n+1}) = o(x^n)$ et

$$\ln(1-x) = -\sum_{k=0}^{n} \frac{x^k}{k} + o(x^n)$$

donc

$$\ln\left(\sum_{k=0}^{n} x^{k}\right) \underset{x \to 0}{=} \sum_{k=0}^{n} \frac{x^{k}}{k} + o\left(x^{n}\right)$$

2. On sait que

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

donc

$$\sum_{k=0}^{n-1} x^k - e^x \sim_{x \to 0} - \frac{x^n}{n!}$$

Ainsi

$$\ln\left(\sum_{k=0}^{n-1} \frac{x^k}{k!}\right) = \ln\left(e^x + \sum_{k=0}^{n-1} x^k - e^x\right)$$
$$= x + \ln\left(1 + e^{-x}\left(\sum_{k=0}^{n-1} x^k - e^x\right)\right)$$

Or d'après ce qui précède,

$$e^{-x} \left(\sum_{k=0}^{n-1} x^k - e^x \right) \underset{x \to 0}{\sim} -\frac{x^n}{n!}$$

Puisque $n \ge 1$,

$$e^{-x} \left(\sum_{k=0}^{n-1} x^k - e^x \right) \xrightarrow[x \to 0]{} 0$$

et donc

$$\ln\left(1 + e^{-x} \left(\sum_{k=0}^{n-1} x^k - e^x\right)\right) \underset{x \to 0}{\sim} -\frac{x^n}{n!}$$

$$= -\frac{x^n}{n!} + o(x^n)$$

On en déduit que

$$\ln\left(\sum_{k=0}^{n-1} \frac{x^k}{k!}\right) = x - \frac{x^n}{n!} + o(x^n)$$

3. La fonction $t \mapsto e^{-t^2/2}$ est continue sur \mathbb{R} donc $\int_x^{x^2} e^{-t^2} dt$ est bien définie pour tout $x \in \mathbb{R}$.

$$e^{-\frac{t^2}{2}} = 1 - \frac{t^2}{2} + \frac{t^4}{8} + o(t^5)$$

Comme $x\mapsto \int_0^x e^{-\frac{t^2}{2}}\,\mathrm{d}t$ est une primitive de $t\mapsto e^{-\frac{t^2}{2}}$, on obtient en intégrant terme à terme :

$$\int_0^x e^{-\frac{t^2}{2}} dt = x - \frac{x^3}{6} + \frac{x^5}{40} + o(x^6)$$

Par conséquent,

$$\int_0^{x^2} e^{-\frac{t^2}{2}} dt = x^2 - \frac{x^6}{6} + \frac{x^{10}}{40} + o(x^{12})$$

et a fortiori

$$\int_0^{x^2} e^{-\frac{t^2}{2}} dt = x^2 - \frac{x^6}{6} + o(x^6)$$

D'après la relation de Chasles, pour tout $x \in \mathbb{R}$,

$$\int_{x}^{x^{2}} e^{-\frac{t^{2}}{2}} dt = \int_{0}^{x^{2}} e^{-\frac{t^{2}}{2}} dt - \int_{0}^{x} e^{-\frac{t^{2}}{2}} dt$$

On en déduit que

$$\int_{x}^{x^{2}} e^{-\frac{t^{2}}{2}} dt = -x + x^{2} + \frac{x^{3}}{6} - \frac{x^{5}}{40} - \frac{x^{6}}{6} + o(x^{6})$$

Solution 28

Il est possible d'obtenir certains développements asymptotiques au voisinage de $+\infty$ ou de $-\infty$ en posant x = 1/u, ce qui ramène le problème à 0^+ (ou 0^-). Posant x = 1/u, on se ramène à u tendant vers 0^+ . Or,

$$f(1/u) = \sqrt{1/u^2 + 1/u} = \frac{\sqrt{1+u}}{u}$$
$$= \frac{1 + u/2 - u^2/8 + o(u^2)}{u}$$
$$= 1/u + 1/2 - u/8 + o(u)$$

d'où

$$f(x) = x + \frac{1}{2} - \frac{1}{8x} + o(1/x).$$

Bien entendu, on aurait pu aussi mettre directement le terme dominant en facteur en écrivant $f(x) = x\sqrt{1+\frac{1}{x}}$, ce qui ramène au problème de $\sqrt{1+u}$ au voisinage de 0.

Solution 29

1. On pourrait procéder par étude de fonctions mais comme on connaît la formule de Taylor avec reste intégral, autant en profiter. D'abord à l'ordre 1.

$$\sin x = x + \int_0^x (x - t)(-\sin t) dt$$

Pour $x \in [0, 1]$, $\sin t \ge 0$ et l'intégrale est négative. On en déduit que $\sin x \le x$. Puis à l'ordre 3

$$\sin x = x - \frac{x^3}{6} + \int_0^x \frac{(x-t)^3}{6} \sin t \, dt$$

Pour les mêmes raisons que précédemment, l'intégrale est positive. On en déduit que $\sin x \ge x - \frac{x^3}{6}$.

2. Notons $S_n = \sum_{k=1}^n \sin \frac{k}{n^2}$. En utilisant la question précédente :

$$\sum_{k=1}^{n} \frac{k}{n^2} - \frac{1}{6} \sum_{k=1}^{n} \frac{k^3}{n^6} \le S_n \le \sum_{k=1}^{n} \frac{k}{n^2}$$

Or
$$\sum_{k=1}^{n} \frac{k}{n^2} = \frac{n(n+1)}{2n^2} = \frac{1}{2} + \frac{1}{2n}$$
. Ainsi

$$\left| S_n - \left(\frac{1}{2} + \frac{1}{2n} \right) \right| \le \frac{1}{6} \sum_{k=1}^n \frac{k^3}{n^6} \le \frac{1}{6} \sum_{k=1}^n \frac{n^3}{n^6} = \frac{1}{6n^2}$$

Finalement,
$$S_n - \left(\frac{1}{2} + \frac{1}{2n}\right) = \mathcal{O}\left(\frac{1}{n^2}\right) = o\left(\frac{1}{n}\right)$$
.

Solution 30

- 1. Soit $n \in \mathbb{N}^*$. Posons $f_n : x \mapsto \cos x nx$. f_n est dérivable et $f'_n(x) = -\sin x n < 0$ pour tout $x \in [0, 1]$. f_n est continue et strictement décroissante sur [0, 1]. De plus, $f_n(0) = 1 > 0$ et $f_n(1) = \cos(1) n < 0$. On en déduit que f_n s'annule une unique fois sur [0, 1]. D'où l'existence et l'unicité de x_n .
- **2.** On a $\cos x_n = nx_n$ et donc $x_n = \frac{\cos x_n}{n}$ pour tout $n \in \mathbb{N}^*$. On en déduit que $|x_n| \le \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$ puis que (x_n) converge vers 0.
- 3. Soit $n \in \mathbb{N}^*$. Remarquons que $f_n \ge f_{n+1}$ sur [0,1]. Donc $f_n(x_{n+1}) \ge f_{n+1}(x_{n+1}) = 0 = f_n(x_n)$. La stricte décroissance de f_n implique que $x_{n+1} \le x_n$. Par conséquent la suite (x_n) est décroissante.
- **4.** Comme $x_n \xrightarrow[n \to +\infty]{} 0$ et que cos est continue en 0, $\cos x_n \xrightarrow[n \to +\infty]{} \cos 0 = 1$. Donc $x_n = \frac{\cos x_n}{n} \sim \frac{1}{n}$.
- 5. Comme $x_n \xrightarrow[n \to +\infty]{} 0$, $\cos x_n = 1 \frac{x_n^2}{2} + o(x_n^2)$. Or $x_n \underset{n \to +\infty}{\sim} \frac{1}{n}$ donc $\cos x_n = 1 \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$. Ainsi $x_n = \frac{\cos x_n}{n} = \frac{1}{n} \frac{1}{2n^3} + o\left(\frac{1}{n^3}\right)$. On en déduit que $x_n \frac{1}{n} \underset{n \to +\infty}{\sim} -\frac{1}{2n^3}$.

Solution 31

- 1. Soit $n \ge 2$. On étudie la fonction f_n définie par $f_n(x) = x \ln x n$ pour x > 0. f_n est dérivable sur \mathbb{R}_+^* et pour tout x > 0, $f_n'(x) = 1 \frac{1}{x}$. f_n est donc strictement croissante sur]0,1] et strictement décroissante sur $[1,+\infty[$. De plus, $\lim_{n\to 0^+} f_n(x) = +\infty$, $f_n(1) = 1 n < 0$ car $n \ge 2$ et $\lim_{n\to +\infty} f_n(x) = +\infty$ par croissances comparées. Comme f_n est continue sur \mathbb{R}_+^* , le théorème de la bijection appliqué à f_n sur les intervalles]0,1[et $]1,+\infty[$ assure qu'il existe une unique solution à l'équation $f_n(x) = 0$ sur chacun des intervalles]0,1[et $]1,+\infty[$. Comme 1 n'est évidemment pas solution, l'équation $f_n(x) = 0$ admet exactement deux solutions.
- 2. a. Comme x_n est la plus petite des deux solutions, $x_n \in]0,1[$ pour tout $n \ge 2$. Or $\ln x_n = x_n n$ pour tout $n \ge 2$. Donc $\lim_{n \to +\infty} \ln x_n = -\infty$. Par conséquent, $\lim_{n \to +\infty} x_n = 0$.
 - **b.** Puisque pour $n \ge 2$, $\ln x_n = -n + x_n$, $x_n = e^{-n}e^{x_n}$. Or $x_n \xrightarrow[n \to +\infty]{} 0$ donc $e^{x_n} \xrightarrow[n \to +\infty]{} 1$. Ceci prouve que $x_n \sim e^{-n}$.
 - **c.** Remarquons déjà que $u_n = o(e^{-n})$. On a pour tout $n \ge 2$, $x_n = \ln(e^{-n} + u_n) + n = \ln(1 + e^n u_n)$. Or $e^n u_n = o(1)$ donc $\ln(1 + e^n u_n) \sim e^n u_n$. Ainsi $e^n u_n \sim x_n \sim e^{-n}$. D'où $u_n \sim e^{-2n}$.
 - **d.** Posons $s_n = u_n e^{-2n}$ pour $n \ge 2$ de sorte que $s_n = o(e^{-2n})$. On rappelle que

$$x_n = \ln(1 + e^n u_n) = \ln(1 + e^{-n} + e^n s_n)$$

D'une part,

$$x_n = e^{-n} + e^{-2n} + o(e^{-2n})$$

et d'autre part, en posant $\alpha_n = e^{-n} + e^n s_n$,

$$\ln(1+\alpha_n) = \alpha_n - \frac{\alpha_n^2}{2} + o(\alpha_n^2)$$

Or $\alpha_n \sim e^{-n}$ donc

$$\ln(1+\alpha_n) = e^{-n} + e^n s_n - \frac{e^{-2n}}{2} + o(e^{-2n})$$

On en déduit que $e^n s_n = \frac{3}{n \to +\infty} \frac{3}{2} e^{-2n} + o(e^{-2n})$ ou encore $s_n \sim \frac{3}{n \to +\infty} \frac{3}{2} e^{-3n}$.

- **3.** a. Pour tout $n \ge 2$, $y_n \ge 1$ donc $y_n = \ln y_n + n \ge n$. En particulier, $\lim_{n \to +\infty} y_n = +\infty$.
 - **b.** Comme $y_n \xrightarrow[n \to +\infty]{} +\infty$, $\ln y_n = o(y_n)$. Donc $n = y_n \ln y_n \sim y_n$
 - **c.** Remarquons tout d'abord que $v_n = o(n)$. On a pour tout $n \ge 2$,

$$v_n = y_n - n = \ln y_n = \ln(n + v_n) = \ln n + \ln\left(1 + \frac{v_n}{n}\right)$$

Comme $\frac{v_n}{n} = o(1)$, $\ln\left(1 + \frac{v_n}{n}\right) \sim \frac{v_n}{n}$. A fortiori, $\ln\left(1 + \frac{v_n}{n}\right) = o(v_n)$. Ceci prouve que $v_n \sim \ln n$.

d. Posons $t_n = v_n - \ln n$ pour $n \ge 2$. On rappelle que pour $n \ge 2$, $v_n = \ln n + \ln \left(1 + \frac{v_n}{n}\right)$. Ainsi

$$t_n = \ln\left(1 + \frac{v_n}{n}\right) \underset{n \to +\infty}{\sim} \frac{v_n}{n} \underset{n \to +\infty}{\sim} \frac{\ln n}{n}$$

Solution 32

On a

$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$$

et

$$\frac{1+ax^2}{1+bx^2} = (1+ax^2)(1-bx^2+b^2x^4-b^3x^6+o(x^6))$$
$$= 1+(a-b)x^2+(b^2-ab)x^4+o(x^4)$$

d'où

$$f(x) = (-1/2 + a - b)x^2 + (1/24 + b^2 - ab)x^4 + o(x^4).$$

Comme le système

$$a - b = 1/2$$
, $1/24 = ab - b^2 = b(a - b)$

admet pour unbique solution

$$(a,b) = (7/12, 1/12),$$

L'expression f(x) est un infiniment petit d'ordre le plus grans possible si et seulement si

$$a = \frac{7}{12}$$
 et $b = \frac{1}{12}$.

Solution 33

- 1. $\forall x \in \mathbb{R}_+^*, f(x) = e^{\left(1 + \frac{1}{x}\right)\ln x}$. Or $\lim_{x \to 0^+} \left(1 + \frac{1}{x}\right)\ln x = -\infty$. Donc $\lim_{x \to 0^+} f(x) = 0$. Par consequent f est bien continue en 0.
- 2. Etudions le taux de variation de f en 0: $\frac{f(x)-f(0)}{x-0} = x^{\frac{1}{x}} = e^{\frac{\ln x}{x}}$. Or $\lim_{x\to 0^+} \frac{\ln x}{x} = -\infty$ donc $\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = 0$. Ainsi f est dérivable en 0 et f'(0) = 0.
- 3. Comme $\lim_{x \to +\infty} 1 + \frac{1}{x} = 1$ et $\lim_{x \to +\infty} \ln x = +\infty$, on a $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right) \ln x = +\infty$ puis $\lim_{x \to +\infty} f(x) = +\infty$.
- **4.** f est dérivable sur \mathbb{R} et pour x > 0:

$$f'(x) = \left(-\frac{1}{x^2}\ln x + \left(1 + \frac{1}{x}\right)\frac{1}{x}\right)f(x) = \frac{f(x)}{x^2}(x + 1 - \ln x)$$

Pour x > 0, f'(x) est donc du signe de $g(x) = x + 1 - \ln x$. g est dérivable sur \mathbb{R}_+^* et $g'(x) = 1 - \frac{1}{x}$. g est donc décroissante sur [0, 1] et croissante sur $[1, +\infty[$. Comme g(1) = 2 > 0, on en déduit que g est strictement positive sur \mathbb{R}_+^* . Par conséquent, f est croissante sur \mathbb{R}_+ .

- 5. Comme $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right) \ln x = +\infty$, $\lim_{x \to +\infty} f(x) = +\infty$. De plus, $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} e^{\frac{\ln x}{x}} = 1$. Pour x > 0, $f(x) x = x \left(e^{\frac{\ln x}{x}} 1\right)$. Or $e^{\frac{\ln x}{x}} 1 \sim \lim_{x \to +\infty} \frac{\ln x}{x}$. Donc $f(x) x \sim \lim_{x \to +\infty} \ln x$. Donc $\lim_{x \to +\infty} f(x) x = +\infty$. C admet en $+\infty$ une branche parabolique de direction la droite d'équation y = x.
- **6.** Posons x = 1 + h, de sorte que $f(x) = f(1 + h) = e^{\left(1 + \frac{1}{1 + h}\right)\ln(1 + h)}$. On a d'une part :

$$1 + \frac{1}{1+h} = 2 - h + h^2 + o(h^2)$$

et d'autre part :

$$\ln(1+h) = h - \frac{h^2}{2} + \frac{h^3}{3} + o(h^3) = h\left(1 - \frac{h}{2} + \frac{h^2}{3} + o(h^2)\right)$$

De sorte que,

$$\left(1 + \frac{1}{1+h}\right)\ln(1+h) = h\left(2 - 2h + \frac{13}{6}h^2 + o(h^2)\right)$$
$$= 2h - 2h^2 + \frac{13}{6}h^3 + o(h^3)$$

Posons $u = 2h - 2h^2 + \frac{13}{6}h^3 + o(h^3)$. On a $u \xrightarrow[h \to 0]{} 0$ et $e^u = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + o(u^3)$. On trouve $u^2 = 4h^2 - 8h^3 + o(h^3)$ et $u^3 = 8h^3 + o(h^3)$. Il vient finalement :

$$f(1+h) = 1 + 2h - \frac{1}{2}h^3 + o(h^3)$$

c'est-à-dire :

$$f(x) = 1 + 2(x-1) - \frac{1}{2}(x-1)^3 + o((x-1)^3)$$

7. On déduit de la question précédente que \mathcal{C} admet au point d'abscisse 1 une tangente d'équation y = 1 + 2(x - 1) i.e. y = 2x - 1. On déduit la position relative de \mathcal{C} et T du signe de $-\frac{1}{2}(x - 1)^3$. Au voisinage de 1^- , \mathcal{C} est au-dessus de T et au voisinage de 1^+ , \mathcal{C} est au-dessous de T.

Solution 34

- 1. f est dérivable sur \mathbb{R}_+ et $f'(x) = (x+1)e^x > 0$ pour tout $x \in \mathbb{R}_+$. f est donc continue et strictement croissante sur \mathbb{R}_+ . Puisque f(0) = 0 et $\lim_{x \to \infty} f = +\infty$, f induit une bijection de \mathbb{R}_+ sur lui-même.
- 2. f est de classe \mathcal{C}^{∞} sur \mathbb{R}_+ et sa dérivée ne s'y annule pas. f^{-1} est donc également \mathcal{C}^{∞} : elle admet notamment un développement limité en 0 à tout ordre. On a f(0)=0 donc $f^{-1}(0)=0$. On a également $f(x)\underset{x\to 0}{\sim} x$ donc $f^{-1}(f(x))\underset{x\to 0}{\sim} f^{-1}(x)$ i.e. $f^{-1}(x)\underset{x\to 0}{\sim} x$. Le développement limité d'ordre 2 de f^{-1} en 0 est donc $f^{-1}(x)\underset{x\to 0}{=} x+ax^2+o(x^2)$. Posons $u=f^{-1}(x)$. On a $u\underset{x\to 0}{\longrightarrow} 0$ donc $e^u\underset{u\to 0}{=} 1+u+o(u)\underset{x\to 0}{=} 1+x+o(x)$.

$$f(u) = ue^{u} = x(1 + ax + o(x))(1 + x + o(x)) = x + (a + 1)x^{2} + o(x^{2})$$

Ainsi

Comme f(u) = x, on a par unicité du développement limité a + 1 = 0 i.e. a = -1.

Remarque. Inutile de pousser le développement limité de e^u à un ordre supérieur à 1.

3. Posons à nouveau $u = f^{-1}(x)$. On a donc f(u) = x i.e. $ue^u = x$. Ainsi $u + \ln u = \ln x$. Or $u \xrightarrow[x \to +\infty]{} + \infty$ et $\ln u = o(u)$ donc $u \underset{x \to +\infty}{\sim} \ln x$ i.e. $f^{-1}(x) \underset{x \to +\infty}{\sim} \ln x$.

Solution 35

Un rapide coup d'oeil à l'ensemble de l'exercice permet de conclure qu'un DL (au moins à l'ordre trois!) sera le bienvenu.

1. L'expression est définie sur $[-1,1] \setminus \{0\}$. Allons-y, allons-o ... Puisqu'au voisinage de 0,

$$\arcsin'(x) = (1 - x^2)^{-\frac{1}{2}} = 1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + o(x^5),$$

on obtient d'après le théorème d'intégration des DL,

$$\arcsin(x) = \arcsin(x) - \arcsin(0) = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + o(x^6).$$

Ainsi, pour x voisin de 0 mais non nul,

$$\frac{1}{\arcsin(x)} = \frac{1}{x} \times \frac{1}{1 + \frac{1}{6}x^2 + \frac{3}{40}x^4 + o(x^5)}$$

Déterminons le $DL_4(0)$ du dernier quotient, noté Q(x), en appliquant le théorème de composition des DL. On a, au voisinage de 0,

$$\frac{1}{1-u} = 1 + u + u^2 + o(u^2).$$

Posons $u = -\frac{1}{6}x^2 - \frac{3}{40}x^4$. Les calculs ne présentent aucune difficulté et sont résumés ci-dessous,

и	0	$-\frac{1}{6}x^2$	0	$-\frac{3}{40}x^4$
u^2	0	0	0	$\frac{x^4}{36}$
Q(x)	0	$-\frac{1}{6}x^2$	0	$-\frac{17}{360}x^4$

On en déduit qu'au voisinage de 0,

$$f(x) = \frac{1}{x} \times \left[-\frac{1}{6}x^2 - \frac{17}{360}x^4 + o(x^5) \right]$$
$$= -\frac{1}{6}x - \frac{17}{360}x^3 + o(x^4)$$

- 2. Comme f(x) = o(1), la fonction tend vers 0 avec x. Elle est donc prolongeable par continuité en 0 par f(0) = 0.
- 3. Comme

$$f(x) = -\frac{1}{6}x + o(x),$$

la prolongée f (prolongée par continuité en 0 par f(0) = 0) est dérivable en 0 avec $f'(0) = -\frac{1}{6}$.

4. Comme

$$f(x) - \left(-\frac{1}{6}x\right) = -\frac{17}{360}x^3,$$

f présente un point d'inflexion en l'origine : la courbe traverse sa tangente.

Solution 36

On a au voisiange de $\pm \infty$,

$$e^{\frac{1}{x}} = 1 + \frac{1}{x} + \frac{1}{2x^2} + o\left(\frac{1}{x^2}\right),$$

ainsi

$$f(x) = x + 2 + \frac{3}{2x} + o\left(\frac{1}{x}\right).$$

La courbe admet donc la droite d'équation y = x + 2 pour asymptote en $\pm \infty$, la courbe étant située au-dessus de l'asymptote au voisinage de $+\infty$, et inversement au voisinage de $-\infty$.

Solution 37

Il s'agit de montrer que $\lim_{x\to\infty}(f(x)-2x)=0$. On pose t=1/x et on se rapelle que le DL d'ordre 1 de $\ln(1+t)$ en 0 est t. Donc

$$\begin{split} \lim_{x \to \infty} (f(x) - 2x) &= \lim_{t \to 0} \left[\frac{1}{t^2} \ln \left(\frac{1+t}{1-t} \right) - \frac{2}{t} \right] \\ &= \lim_{t \to 0} \left[\frac{1}{t^2} (\ln(1+t) - \ln(1-t)) - \frac{2}{t} \right] \\ &= \lim_{t \to 0} \left(\frac{1}{t^2} (t - (-t)) - \frac{2}{t} \right] = 0. \end{split}$$

Solution 38

Les racines de $x^2 + x$ sont 0 et -1. f est donc définie sur $]-\infty, -1] \cup]0; +\infty[$. On a d'abord $\lim_{x\to 0^+} f(x) = +\infty$ par croissance comparée. La courbe admet donc l'axe des ordonnées comme asymptote verticale. De plus, en $\pm\infty$

$$f(x) = |x|\sqrt{1 + \frac{1}{x}}e^{\frac{1}{x}}$$

$$= |x|\left(1 + \frac{1}{2x} + o\left(\frac{1}{x}\right)\right)\left(1 + \frac{1}{x} + o\left(\frac{1}{x}\right)\right)$$

$$= |x|\left(1 + \frac{3}{2x} + o\left(\frac{1}{x}\right)\right)$$

La courbe admet donc la droite d'équation $y = x + \frac{3}{2}$ comme asymptote oblique en $+\infty$ et la droite d'équation $y = -x - \frac{3}{2}$ comme asymptote oblique en $-\infty$.

Solution 39

Comme f est de classe \mathcal{C}^2 sur \mathbb{R} , on peut lui appliquer la formule de Taylor-Young à l'ordre 2 en x_0 :

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + o(h^2)$$

On a donc aussi

$$f(x_0 - h) = \int_{h \to 0} f(x_0) - f'(x_0)h + \frac{f''(x_0)}{2}h^2 + o(h^2)$$

Ainsi

$$f(x_0 + h) + f(x_0 - h) - 2f(x_0) = f''(x_0)h^2 + o(h^2)$$

puis

$$\tau(h) = f''(x_0) + o(1)$$

Ceci signifie que $\lim_0 \tau = f''(x_0)$.

Solution 40

1. Supposons f dérivable en a. On a alors

$$f(a+h) = f(a) + hf'(a) + o(h)$$

et

$$f(a-h) = f(a) - hf'(a) + o(h),$$

ainsi

$$\frac{f(a+h) - f(a-h)}{2h} = \frac{2hf'(a) + o(h)}{2h} = f'(a) + o(1)$$

et donc

$$\lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h} = f'(a).$$

2. La fonction valeur absolue n'est pas dérivable en 0 mais admet une dérivée symétrique en 0 car

$$\lim_{h \to 0} \frac{|h| - |-h|}{2h} = 0.$$

Solution 41

On a $u_n = \arctan n^3 - \arctan n^2$. Or si n > 0, n^2 et n^3 son strictement positifs d'où arctan $n^2 = \frac{\pi}{2} - \arctan \frac{1}{n^2}$ et arctan $n^3 = \frac{\pi}{2} - \arctan \frac{1}{n^3}$. Ainsi $u_n = \arctan \frac{1}{n^2} - \arctan \frac{1}{n^3}$ pour $n \ge 1$. Comme arctan $u \sim u$, arctan $\frac{1}{n^2} \sim \frac{1}{n^2}$ et arctan $\frac{1}{n^3} \sim \frac{1}{n^3}$. De plus, $\frac{1}{n^3} = o(\frac{1}{n^2})$ donc $u_n \sim \frac{1}{n^3+\infty}$.

Solution 42

1. On remarque que l'intégrande tend vers 1 lorsque n tend vers $+\infty$. Nous ne disposons pas en première année de théorème d'interversion limite/intégrale mais il y a cependant des chances que (u_n) converge vers 1. En effet,

$$1 - u_n = \int_0^1 dx - \int_0^1 \frac{dx}{1 + x^n} = \int_0^1 \frac{x^n dx}{1 + x^n} \le \int_0^1 x^n dx = \frac{1}{n+1}$$

On en déduit que (u_n) converge vers 1.

2. On a vu que $1 - u_n = \int_0^1 \frac{x^n dx}{1 + x^n}$. Soit $n \ge 1$: on écrit $\frac{x^n}{1 + x^n}$ sous la forme $\frac{x}{n} \frac{nx^{n-1}}{1 + x^n}$ et on effectue une intégration par parties :

$$1 - u_n = \left[\frac{x}{n}\ln(1+x^n)\right]_0^1 - \frac{1}{n}\int_0^1\ln(1+x^n) \, dx = \frac{\ln 2}{n} - \frac{1}{n}\int_0^1\ln(1+x^n) \, dx$$

En utilisant l'inégalité classique $ln(1 + u) \le u$, on a :

$$0 \le \int_0^1 \ln(1 + x^n) \, dx \le \int_0^1 x^n \, dx = \frac{1}{n+1}$$

Donc $\int_0^1 \ln(1+x^n) dx \xrightarrow[n\to+\infty]{} 0$. Par conséquent,

$$1 - u_n = \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$
 i.e. $u_n = 1 - \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$