Type 1 and Type 2 Error and Power

TRUTH TABLE Truth

		H_0	H_{A}
Decision	$P \le \alpha$	Type 1 error	Correct decision
	Reject H ₀ and accept H _A .	$\alpha = Type \ 1 \ error \ rate$	$(1-\beta) = power$
	There is statistically significant evidence that $[H_A]$ (P-value).	$= P\{Reject H_0\}$	$= P\{Reject H_0\}$
	o vidence mai [11A] (1 vinde).	given H_0 true.	given H _A true.
	$P > \alpha$	Correct decision	Type 2 error
	Not reject H_0 and Not accept H_A .		$\beta = Type \ 2 \ error \ rate$
	There is not statistically significant		$= P\{Not reject H_0\}$
	evidence that [H _A] (P-value).		given H _A true.

- α = significance level = Type 1 error rate
 - = probability of *rejecting* a *true* null hypothesis.
- β = operating characteristic = Type 2 error rate
 - = probability of *not rejecting* a *false* null hypothesis.
- $(1-\beta) = power = sensitivity = probability of rejecting a false null hypothesis.$
 - $\delta = effect$ = difference between true and hypothetical value of the parameter of interest, e.g., = $(\theta \theta_0)$, for H₀: $\theta = \theta_0$. Note that H₀ can be stated in terms of the effect as H₀: $\delta = 0$. The symbol θ denotes a generic parameter of interest.

We can achieve a

- 1. Small Type 1 error rate, α by choosing a small significance level, α .
- 2. Small Type 2 error rate, β , and large power (1β) by way of a
 - a. large significance level, α
 - b. large sample size, *n*
 - c. small underlying standard deviation, σ
 - d. large effect, δ

Statistical Significance (P-value $< \alpha$) versus Practical Importance (δ large)

- A result can be *statistically significance* (P-value $< \alpha$) but *not of practical importance* (δ small) if the test is extremely powerful and sensitive [(1β) large]. This is neither a Type 1 error nor a Type 2 error.
- A result can be *not statistically significant* (P-value > α) but *of practical importance* (δ large) if the test lacks power and lacks sensitivity [(1β) small]. This is a Type 2 error.

- $a \longrightarrow b$ denotes a *positive relationship*, i.e., if a increases, then b increases, and if a decreases, then b decreases.
- $a \longrightarrow b$ denotes a *negative relationship*, i.e., if a increases, then b decreases, and if a decreases, then b increases.

