Discontinuous Galerkin method for direct numerical simulation of the Navier Stokes equation

Nirav Vasant Shah

Universität Stuttgart niravshah.svnit@gmail.com

March 21, 2018

Overview

- Introduction
- 2 Engineering perspectives and mathematical formulation
- 3 Discretisation and function spaces
- 4 Implementation aspects
- Numerical experiments
- 6 Conclusions and outlook

Objective

- Understanding the Stokes and the Navier-Stokes formulation and perspectives
- Derivation from conservation equation
- Discretisation and function spaces for unknowns
- Discontinuous-Galerkin formulation for the Stokes and the Navier-Stokes equation
- Implementation and matrix assembly
- Sparsity pattern and solver selection
- Numerical experiment for the Stokes equation and the Navier-Stokes equation
- Future perspectives

Importance of the Navier Stokes equation

- ullet Computational fluid dynamics \Longrightarrow One of the variants of the Navier Stokes equation
- Navier Stokes equation involves state variables
- ullet Incompressible condition \Longrightarrow state variables constant \Longrightarrow Equation of state not required
- Solved along with continuity equation
- Depends on time (Unsteady fluid flow) or independent of time (Steady fluid flow)
- Non linear coupled system of equations
- Stokes equation is linearized form of the Navier Stokes equation

Notations

```
\Omega = Continuous domain.
\Gamma_D = Dirichlet boundary.
\Gamma_N = \text{Neumann boundary}
cv = Control volume.
cs = Control surface.
B' = Extensive quantity under consideration,
b' = Intensive quantity corresponding to B',
u = \text{flow velocity and } u : \Omega \to \mathbb{R}^d.
p = \text{pressure and } p : \Omega \to \mathbb{R},
\nu = \text{kinematic viscocity (fluid property) and } \nu : \Omega \to \mathbb{R},
f = \text{external force and } f : \Omega \to \mathbb{R}^d.
u_D = specified flow velocity at Dirichlet boundary and u_D : \Gamma_D \to \mathbb{R}^d,
n = \text{normal unit vector and } n : \partial\Omega \to \mathbb{R}^d.
\rho = \text{density (fluid property) and } \rho : \Omega \to \mathbb{R},
t = \text{specified Neumann flux and } t : \Gamma_N \to \mathbb{R}^d.
```

Governing equations

Reynolds transport theoreom

$$\frac{dB'}{dt'}|_{cs} = \frac{d}{dt'} \int_{cv} b' \rho dV + \int_{cs} (b' \rho) u \cdot dA \tag{1}$$

Momentum conservation equation

$$F = \frac{dM}{dt'} = \frac{d}{dt'} \int_{cv} u\rho dV + \int_{cs} (u\rho)u \cdot dA.$$
 (2)

$$F = \int_{cs} \sigma \cdot dA + \int_{cv} \rho f dV, \tag{3}$$

Governing equations

Momentum conservation equation

$$F = \frac{dM}{dt'} = \frac{d}{dt'} \int_{cv} u\rho dV + \int_{cs} (u\rho)u \cdot dA. \tag{4}$$

$$F = \int_{CS} \sigma \cdot dA + \int_{CV} \rho f dV, \tag{5}$$

Governing equations

Navier Stokes equation

$$-2\nabla \cdot (\nu \nabla^s u) + (1/\rho)\nabla p + (u \cdot \nabla)u = f \quad \text{in} \quad \Omega.$$
 (6)

Dirichlet boundary:

$$u = u_D$$
 on Γ_D .

Neumann boundary:

$$-pn + 2\nu(n \cdot \nabla^s)u = t \quad \text{on} \quad \Gamma_N.$$
 (8)

Continuity equation

$$\nabla \cdot u = 0$$
 in Ω .

(7)

Stokes equation

$$-2\nabla \cdot (\nu \nabla^s u) + (1/\rho)\nabla p = f$$
 in Ω .

Flow classification

Reynolds number

$$Re = \frac{uL}{\nu}. (11)$$

Laminar flow

- Well defined velocity and pressure profile.
- Low Reynolds number.

Turbulent flow

- Fluctuations in velocity and pressure.
- Fluctuations are of the order of Kolmogrov scale.
- Low Reynolds number.

Grid

- ullet Continuous domain $(\Omega) \implies \mathsf{Grid}\ (\mathcal{T})$
- Triangular element, τ_k , $\cup_{k=1}^{nel} \tau_k = \mathcal{T}$, nel is total number of elements
- Grid boundary includes interelement boundaries.

$$\partial \mathcal{T} = \Gamma_D \cup \Gamma_N \cup \Gamma \tag{12}$$

- Grid parameters : Parameters for formulation of problem
- Unstructured grid : Connectivity of vertices, Element

R1

Figure: Continuous domain (left) and discretised domain or grid (right)

Figure: Element self (+) and neighbouring element (-)

Grid

Barycentric coordinate

For a triangle with vertices, r_1, r_2, r_3

$$r = \lambda_1 r_1 + \lambda_2 r_2 + \lambda_3 r_3 \quad . \tag{13}$$

Barycentric coordinate

Weights, $\lambda_1, \lambda_2, \lambda_3$ satisfy,

$$\lambda_1 + \lambda_2 + \lambda_3 = 1 \quad . \tag{14}$$

Discontinuous Galerkin method

- Multiply with test function and integrate
- Discontinuous at the interface of elements
- $P^D(\tau_k)$ denotes space of polynomials of degree at most D over τ_k .

Function space for velocity

$$\mathbb{V} = \{ \phi \in (L^2(\mathcal{T}))^{d_u} | \quad \phi \in (P^D(\tau_k))^{d_u} \quad \forall \quad \tau_k \in \mathcal{T} \}$$
 (15)

Function space for pressure

$$\mathbb{Q} = \{ \psi \in (L^2(\mathcal{T}))^{d_p} | \quad \psi \in (P^{D-1}(\tau_k))^{d_p} \quad \forall \quad \tau_k \in \mathcal{T} \}$$
 (16)

Basis function

- 2 Types of basis functions : Nodal basis function and Orthonormal basis function
- The number of degrees of freedom per element npe can be calculated as,

$$u_{npe} = d_u \frac{(D+1)(D+2)}{2} \quad \text{for velocity}$$
 (17)

$$p_{npe} = d_p \frac{(D)(D+1)}{2}$$
 for pressure (18)

Orthonormal basis function

 Basis functions are orthonormal to each other with respect to suitable inner product.

$$(\hat{\phi}_{i}, \hat{\phi}_{j}) = \int_{\hat{T}} \hat{\phi}_{i} \hat{\phi}_{j} = 1 \quad \text{if} \quad i = j$$

$$(\hat{\phi}_{i}, \hat{\phi}_{j}) = \int_{\hat{T}} \hat{\phi}_{i} \hat{\phi}_{j} = 0 \quad \text{if} \quad i \neq j$$
(19)

Global and local coordinate system

- Integral terms are evaluated on a reference triangle instead of the element itself.
- The transformation from local coordinate \hat{X} to global coordinate X is defined by the mapping,

$$F_k: \hat{X} \mapsto X \quad \forall \quad \hat{X} \in \hat{T} \quad \text{and} \quad X \in \mathcal{T}$$
 (20)

Global geometry (left) to Local geometry (right) = > 999

Global and local coordinate system

• The volume integral of a function g(x) in global coordinates is related to volume integral on reference geometry as

$$\int_{\Omega} g(x)dx = \sum_{k=1}^{nel} \int_{\tau_k} g(x)dx = \sum_{k=1}^{nel} \int_{\hat{T}} g(\hat{x})|\det(J_k)|d\hat{x}$$
 (22)

• The linear boundary integral of a function g(x) on global coordinates is related to boundary integral on reference geometry as,

$$\int_{\Gamma} g(x)ds = \int_{\hat{\Gamma}} g(\hat{x})ld\hat{s}$$
 (23)

Also, the following holds,

$$\nabla g = JIT_k \quad \hat{\nabla}\hat{g} \tag{24}$$

Jump operator, Average operator and L^2 scalar product

Jump operator

$$[pn] = p^+ n^+ + p^- n^- \text{ on } \Gamma$$

 $[pn] = pn \text{ on } \Gamma_D$
where p is scalar.

$$[n \otimes u] = n^+ \otimes u^+ + n^- \otimes u^- \text{ on } \Gamma$$

$$[n \otimes u] = n \otimes u \text{ on } \Gamma_D$$

$$[n \cdot u] = n^+ \cdot u^+ + n^- \cdot u^- \text{ on } \Gamma$$

$$[n \cdot u] = n \cdot u \text{ on } \Gamma_D$$
where u is vector and $n \otimes u = u_i n_j$, $1 \leq i \leq d_u$, $1 \leq j \leq d_u$

Average operator

The average operator is defined as,

$$\{u\} = \frac{u^+ + u^-}{2} \quad . \tag{25}$$

Jump operator, Average operator and L^2 scalar product

L² scalar product

If p and q are scalars,

$$(p,q) = \int_{\Omega} pq \quad . \tag{26}$$

If p and q are vectors,

$$(p,q) = \int_{\Omega} p \cdot q \quad . \tag{27}$$

If p and q are tensors,

$$(p,q) = \int_{\Omega} p : q \quad \text{where} \quad p : q = Tr(pq^T) \quad .$$
 (28)

Stokes equation

Strong form

$$-\nu\Delta u + \nabla p = f \quad \text{in} \quad \Omega \quad . \tag{29}$$

Weak form

$$a_{IP}(u,\phi) + b(\phi,p) + (\{p\},[n\cdot\phi])_{\Gamma\cup\Gamma_D} = l_{IP}(\phi)$$
 (30)

$$a_{IP}(u,\phi) = (\nabla u, \nabla \phi) + C_{11}([n \otimes u], [n \otimes \phi])_{\Gamma \cup \Gamma_D} -\nu(\{\nabla u\}, [n \otimes \phi])_{\Gamma \cup \Gamma_D} - \nu([n \otimes u], \{\nabla \phi\})_{\Gamma \cup \Gamma_D}.$$
(31)

$$b(\phi, \psi) = -\int_{\mathcal{T}} \psi \nabla \cdot \phi \tag{32}$$

Stokes equation

Weak form

$$I_{IP}(\phi) = (f,\phi) + (t,\phi)_{\Gamma_N} + C_{11}(u_D,\phi)_{\Gamma_D} - (n \otimes u_D, \nu \nabla \phi)_{\Gamma_D}$$
 (34)

Discrete form

$$AU + BP = F_1 \quad . \tag{35}$$

Continuity equation

Strong form

$$\nabla \cdot u = 0 \quad \text{in} \quad \Omega \quad . \tag{36}$$

Weak form

$$b(u,\psi) + (\{\psi\}, [n \cdot u])_{\Gamma \cup \Gamma_D} = (q, n \cdot u_D)_{\Gamma_D} \quad . \tag{37}$$

Discrete form

$$B^T U = F_2 \quad . \tag{38}$$

Saddle point problem

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} U \\ P \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$$
(39)
Stiffness matrix Solution vector Right hand side (Known)

Here, (\cdot,\cdot) is L^2 inner product, $\{\cdot\}$ is average operator, $[\cdot]$ is jump operator.

Stiffness matrix

Matrix A

$$A_{ij} = \sum_{k=1}^{d} \left(\frac{\partial \phi_{i}}{\partial x_{k}}, \frac{\partial \phi_{j}}{\partial x_{k}}\right) + C_{11} \sum_{k=1}^{d} \left(\left[\phi_{i} n_{k}\right], \left[\phi_{j} n_{k}\right]\right)_{\Gamma \cup \Gamma_{D}}$$

$$-\nu \sum_{k=1}^{d} \left(\left[\phi_{i} n_{k}\right], \left\{\frac{\partial \phi_{j}}{\partial x_{k}}\right\}\right)_{\Gamma \cup \Gamma_{D}} - \nu \sum_{k=1}^{d} \left(\left\{\frac{\partial \phi_{i}}{\partial x_{k}}\right\}, \left[\phi_{j} n_{k}\right]\right)_{\Gamma \cup \Gamma_{D}}$$

$$(40)$$

Matrix B

$$B_{ij} = -\int_{\mathcal{T}} \frac{\partial \phi_i}{\partial x_i} \psi_j + (\{\psi_j\}, [\mathbf{n} \cdot \phi_i])_{\Gamma \cup \Gamma_D}$$
 (41)

Navier Stokes equation

Strong form

$$-\nu\Delta u + \nabla p + (u \cdot \nabla)u = f \quad \text{in} \quad \Omega \quad . \tag{42}$$

Weak form

$$a_{IP}(u,\phi) + c(u;u,\phi) + b(\phi,p) + (\{p\},[n\cdot\phi])_{\Gamma\cup\Gamma_D} = l_{IP}(\phi)$$
 (43)

Discrete form

$$AU + C(U)U + BP = F (44)$$

Navier Stokes equation: Upwinding

- Upwinding is the method used to discretise the convective term.
- If n_{τ} is the unit normal from τ_1 to τ_2 and if we denote the upwind value of function g as g^{up} [1],

$$g^{up} = g|_{\tau_1} \quad \text{if} \quad g \cdot n_{\tau} \ge 0$$

$$g^{up} = g|_{\tau_2} \quad \text{if} \quad g \cdot n_{\tau} < 0$$

$$(45)$$

For the weak form of the Navier Stokes equation,

$$c(g; u, \phi) = \sum_{i=1}^{nel} \int_{\partial \Omega_i \setminus \Gamma_N} \frac{1}{2} [[(g \cdot n_i)(u^{\text{ext}} + u) - |g \cdot n_i|(u^{\text{ext}} - u))] \cdot \phi + \int_{\Gamma_N} (g \cdot n) u \cdot \phi - ((g \cdot \nabla)\phi, u)$$

$$(46)$$

$$u^{\text{ext}} = \lim_{\epsilon \to 0} u(x + \epsilon n_i) \quad \text{for} \quad x \in \partial \mathcal{T}_i$$
 (47)

Newton method

$$S(u) = a(u, \phi) + b(\phi, p) + (\{p\}, [n \cdot \phi])_{\Gamma \cup \Gamma_D} - I_{IP}(\phi)$$
 (48)

$$S(u+h) - S(u) = (a(u+\delta h, \phi) + c(u+\delta h; u+\delta h, \phi) + b(\phi, p+\delta h') + (\{p+\delta h'\}, [n\cdot\phi])_{\Gamma\cup\Gamma_D} - l_{IP}(\phi)) - (a(u,\phi) + c(u,u,\phi) + b(\phi,p) + (\{p\}, [n\cdot\phi])_{\Gamma\cup\Gamma_D} - l_{IP}(\phi))$$
(49)

$$S(u+h) - S(u) = 2\delta c(u,h,\cdot) + \delta^2 c(h,h,\cdot) + \delta a(h,\cdot) + \delta b(h',\cdot) + \delta (\{h'\},[n\cdot\phi])_{\Gamma \cup \Gamma_D}$$
(50)

Newton method

$$DS(u) = \lim_{\delta \to 0} \frac{S(u+h) - S(u)}{\delta}$$
 (51)

$$DS(u) = 2c(u, h, \cdot) + a(h, \cdot) + b(h', \cdot) + (\{h'\}, [n \cdot \phi])_{\Gamma \cup \Gamma_D}$$
 (52)

Following similar procedure we write for continuity equation:

$$S'(u) = b(u, \psi) + (\{\psi\}, [n \cdot u])_{\Gamma \cup \Gamma_D} - (\psi, n \cdot u_D)_{\Gamma_D}$$
 (53)

$$S'(u+\delta h) = b(u+\delta h,\psi) + (\{\psi\}, [n\cdot u+\delta h])_{\Gamma\cup\Gamma_D} - (\psi, n\cdot u_D)_{\Gamma_D}$$
 (54)

$$DS'(u) = b(\delta h, \psi) + (\{\psi\}, [n \cdot \delta h])_{\Gamma \cup \Gamma_D}$$
(55)

Newton method

Algotrithm for the Newton method is as follow:

- 1. Select $u^{iter} \in \mathbb{V}$ at iteration iter.
- 2. Verify $DS_{u^{iter}}(h^{iter}) = -S(u^{iter})$,
- 3. Set $u^{iter+1} := u^{iter} + h^{iter}$ till $||u^{iter+1} u^{iter}|| < tol$ where tol is specified tolerance.

We use the solution from the Stokes equation as initial guess. In discrete form the Newton method means, solving the equation (at iteration = iter)

$$\begin{pmatrix} A + C(U^{iter}) & B \\ B^T & 0 \end{pmatrix} \qquad \begin{pmatrix} U^{iter+1} \\ P^{iter+1} \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$$
 Stiffness matrix iter Solution vector iter+1 Right hand side (Known functions)

(56)

Schur complement method

STEP 1:

$$U = A^{-1}(F_1 - BP) (57)$$

STEP 2:

$$-B^{T}A^{-1}BP = F_2 - B^{T}A^{-1}F_1$$
 (58)

STEP 3:

Backsubstituion in equation (57)

Data types

- params : Structure with fields u_{npe} , u_{ndofs} , d_u , D, U.
- paramsP : Structure with fields p_{npe} , p_{ndofs} , d_p , D-1, P.
- grid : Structure containing informations related to grid.

Basis function in RBmatlab

$$\phi \in \mathbb{R}^{u_{npe} \times d_u},\tag{59}$$

$$\psi \in \mathbb{R}^{p_{npe} \times d_p}. \tag{60}$$

• The derivative of basis function $(\phi)_i$, where $1 \leq i \leq u_{npe}$ and $(\psi)_i$, where $1 \leq i \leq p_{npe}$ is cell.

Basis function in RBmatlab

$$\nabla(\phi)_i \in \mathbb{R}^{d_u \times d}. \tag{61}$$

$$\nabla(\psi)_i \in \mathbb{R}^{d_p \times d}. \tag{62}$$

Matrix assemblies: Steps

- Function evaluation
- Integration and transform from local to global geometry
- Allocation in global matrix / vector

Assembly of $(\nabla \phi, \nabla \phi)$

Step 1:

$$res_1[i,j] = \nabla \phi_i \nabla \phi_j^T \quad \text{for} \quad 1 \le i, j \le u_{npe}.$$
 (63)

Step 2:

$$res_2 = \int_{\hat{T}} (res_1)(2Ar(k)). \tag{64}$$

Step 3:

$$res_3[ids_velocity, ids_velocity] = res_2.$$
 (65)

Matrix assemblies: Jump operator and average operator

Jump operator

$$[A_h \cdot n], [B_h \cdot n] = A_h^+ n^+ B_h^+ n^+ + A_h^+ n^+ B_h^- n^- + A_h^- n^- B_h^+ n^+ + A_h^- n^- B_h^- n^-,$$
(66)

Average operator

$$\{A_h\} = \frac{(A_h^+ + A_h^-)}{2}.$$
 (67)

Matrix assemblies

Assembly of $([n \otimes \phi], [n \otimes \phi])_{\Gamma \cup \Gamma_D}$

Step 1:

$$res_{1}^{++} = (n \otimes \hat{\phi})^{+} (n \otimes \hat{\phi})^{+},$$

$$res_{1}^{+-} = (n \otimes \hat{\phi})^{+} (n \otimes \hat{\phi})^{-},$$

$$res_{1}^{-+} = (n \otimes \hat{\phi})^{-} (n \otimes \hat{\phi})^{+},$$

$$res_{1}^{--} = (n \otimes \hat{\phi})^{-} (n \otimes \hat{\phi})^{-}.$$

$$(68)$$

Step 2:

$$res_{2}^{++} = \int_{\Gamma} res_{1}^{++} EL(i,j),$$

 $res_{2}^{+-} = \int_{\Gamma} res_{1}^{+-} EL(i,j),$ (69)

Matrix assemblies

Assembly of $([n \otimes \phi], [n \otimes \phi])_{\Gamma \cup \Gamma_D}$

$$res_{2}^{-+} = \int_{\Gamma} res_{1}^{-+} EL(i, j),$$

 $res_{2}^{--} = \int_{\Gamma} res_{1}^{--} EL(i, j).$ (70)

Step 3:

$$res_{3}^{++}[ids_velocity_self, ids_velocity_self] = res_{2}^{++},$$

$$res_{3}^{+-}[ids_velocity_self, ids_velocity_neighbour] = res_{2}^{+-},$$

$$res_{3}^{-+}[ids_velocity_neighbour, ids_velocity_self] = res_{2}^{-+},$$

$$res_{3}^{--}[ids_velocity_neighbour, ids_velocity_neighbour] = res_{2}^{--}.$$

$$(71)$$

$$res_3 = res_3^{++} + res_3^{+-} + res_3^{-+} + res_3^{--}.$$
 (72)

Program flow

- Grid preparation
- Fomrulating function space
- Matrix assembly
- Solving assembled form
- Post processing
- Newton method

Table: Size and sparsity pattern of different terms

Matrix term	Size	Sparsity pattern
$(\nabla \phi, \nabla \phi)$	$\mathbb{R}^{u_{ndofs} \times u_{ndofs}}$	Figure 3
$([n \otimes \phi], [n \otimes \phi])_{\Gamma \cup \Gamma_D}$	$\mathbb{R}^{u_{ndofs} \times u_{ndofs}}$	Figure 5
$(\{\nabla\phi\},[\mathbf{n}\otimes\phi])_{\Gamma\cup\Gamma_D}$	$\mathbb{R}^{u_{ndofs} \times u_{ndofs}}$	Figure ??
$(\{\psi\},[\mathbf{n}\cdot\phi])_{\Gamma\cup\Gamma_D}$	$\mathbb{R}^{p_{ndofs} \times u_{ndofs}}$	Figure ??
$(-\int_{\hat{\mathcal{T}}} \psi \nabla \cdot \phi)$	$\mathbb{R}^{p_{ndofs} \times u_{ndofs}}$	Figure ??
$-((u_k\cdot\nabla)\phi,\phi)$	$\mathbb{R}^{u_{ndofs} \times u_{ndofs}}$	Figures ??
$((u_k \cdot n)\phi, \phi)_{\Gamma_N}$	$\mathbb{R}^{u_{ndofs} \times u_{ndofs}}$	Figures ??
$((u_k \cdot n)\phi, \phi^{ext})_{\partial T \setminus \Gamma_N}$	$\mathbb{R}^{u_{ndofs} \times u_{ndofs}}$	Figures ??
$(u_k \cdot n \phi, \phi^{ext})_{\partial T \setminus \Gamma_N}$	$\mathbb{R}^{u_{ndofs} \times u_{ndofs}}$	Figures ??
$((u_k \cdot n)\phi, \phi)_{\partial T \setminus \Gamma_N}$	$\mathbb{R}^{u_{ndofs} \times u_{ndofs}}$	Figures ??
$(u_k \cdot n \phi,\phi)_{\partial T \setminus \Gamma_N}$	$\mathbb{R}^{u_{ndofs} \times u_{ndofs}}$	Figures ??

Figure: Sparsity pattern of $(\nabla \phi, \nabla \phi)$

Figure: Sparsity pattern of constituents of $([n \otimes \phi], [n \otimes \phi])_{\Gamma \cup \Gamma_D}$

41 / 70

Error definition

 If P_h is the computed solution and P is the true solution, we define following errors:

L^2 error

$$P_{error,L^2} = (\int_{\Omega} |P - P_h|^2)^{\frac{1}{2}}.$$
 (73)

H_0 error

$$P_{error, H_0} = \sum_{k=1}^{nel} \left(\int_{\tau_k} |\nabla P - \nabla P_h|^2 \right)^{\frac{1}{2}}.$$
 (74)

- Domain: unit square $[0,1] \times [0,1]$.
- x = 0 is dirichlet boundary with inflow velocity at point (0, y) as u = (y(1 y), 0).
- The boundaries y=0 and y=1 are Dirichlet boundaries with no slip or zero velocity condition. The boundary x=1 is a Neumann boundary with zero Neumann value i.e. t=(0,0).
- The source term is $f = (2\nu 1, 0)$.

Analytical solution

$$p = (1 - x), \tag{75}$$

$$u = (y(1-y), 0).$$
 (76)

(a) h—convergence test for velocity L^2 error

(b) h—convergence test for pressure in L^2 error

Figure: h—convergence test for pressure in L^2 error

(a) h—convergence test for velocity L^2 error (Logarithmic scale)

(b) h—convergence test for pressure in L^2 error (Logarithmic scale)

Figure: h—convergence in L^2 norm for the Stokes flow (Logarithmic scale)

(a) h—convergence test for velocity H_0 error

(b) h—convergence test for pressure in H_0 error

Figure: h—convergence in H_0 norm for the Stokes flow

(a) h—convergence test for velocity H_0 error (Logarithmic scale)

(b) h—convergence test for pressure in H_0 error (Logarithmic scale)

Figure: h—convergence in H_0 norm for the Stokes flow (Logarithmic scale)

Figure: *p*—convergence for the Stokes flow

- Domain: $[0,1] \times [0,1]$ with a cut out cylinder of diameter 0.2 centered at (0.5,0.5).
- The boundary x = 0 is Dirichlet boundary with inflow velocity at point (0, y) as u = (y(1 y), 0).
- The boundaries y=0 and y=1 are Dirichlet boundaries with no slip or zero velocity condition. The boundary x=1 is a Neumann boundary with zero Neumann value i.e. t=(0,0).
- The source term is f = (0,0).

Figure: Flow over cylinder

- Domain: unit square $[0,1] \times [0,1]$.
- Boundaries x = 0, x = 1 and y = 0, we impose no slip or zero velocity Dirichlet condition.
- On y = 1, we impose Dirichlet condition with Dirichlet velocity,

$$u = (10x, 0)$$
 for $0 \le x \le 0.1$,
 $u = (1, 0)$ for $0.1 \le x \le 0.9$, (77)
 $u = (10 - 10x, 0)$ for $0.9 \le x \le 1$.

Figure: Lid driven cavity problem (Schur complement method)

Figure: Lid driven cavity problem (bicgstab solver)

Figure: Lid driven cavity problem (minres solver)

Penalty parameter

(a) Unit square with 10×10 discretisation

(b) Penalty parameter vs Condition number

Figure: Effect of penalty parameter on condition number of the stiffness matrix

Solver performance

Relative residual is measured as $\frac{||B-AX||_2}{||B||_2}$ for equation AX = B.

Solver/Method		Relative residual	Run time
Schur	complement	2.4436e-08	6.6253 Seconds
method			
minres		2.4618e-05	35.7372 Seconds
bicgstab		9.0071e-05	58.3472 Seconds

- Domain: unit square $[0,1] \times [0,1]$.
- x = 0 is dirichlet boundary with inflow velocity at point (0, y) as u = a * (y(1 y), 0).
- The boundaries y=0 and y=1 are Dirichlet boundaries with no slip or zero velocity condition. The boundary x=1 is a Neumann boundary with zero Neumann value i.e. t=(0,0).

Source term

$$f = (-4\nu(1+2y)(y^{2}-6xy^{2}+6x^{2}y^{2}-y+6xy) -6x^{2}y+3x^{2}-6x^{3}+3x^{4})+1-2x +4x^{3}y^{2}(2y^{2}-2y+1)(y-1)^{2}(-1+2x)(x-1)^{3}, 4\nu(-1+2x)(x^{2}-6x^{2}y+6x^{2}y^{2}-x+6xy) -6xy^{2}+3y^{2}-6y^{3}+3y^{4})+4x^{2}y^{3}(-1+2y)(y-1)^{3}(2x^{2}-2x+1)(x-1)^{2}).$$

$$(78)$$

Analytical solution

$$p = x(1 - x),$$

$$u = (x^{2}(1 - y)^{2}(2y - 6y^{2} + 4y^{3}),$$

$$(80)$$

(a) h—convergence test for velocity L^2 error

(b) h—convergence test for pressure in L^2 error

Figure: h—convergence for the Navier Stokes flow in L^2 error

(a) h—convergence test for velocity L^2 error (Logarithmic scale)

(b) h—convergence test for pressure in L^2 error (Logarithmic scale)

Figure: h—convergence for the Navier Stokes flow in L^2 error (Logarithmic scale)

(a) h—convergence test for velocity H_0 error

(b) h—convergence test for pressure in H_0 error

Figure: h-convergence for the Navier Stokes flow in H_0 error

(a) h—convergence test for velocity H_0 error (logarithmic scale)

(b) h—convergence test for pressure in H_0 error (Logarithmic scale)

Figure: h—convergence for the Navier Stokes flow in H_0 error (Logarithmic scale)

- Domain: $[0,1] \times [0,1]$ with a cut out cylinder of diameter 0.2 centered at (0.5,0.5).
- The boundary x = 0 is Dirichlet boundary with inflow velocity at point (0, y) as u = a * (y(1 y), 0).
- The boundaries y=0 and y=1 are Dirichlet boundaries with no slip or zero velocity condition. The boundary x=1 is a Neumann boundary with zero Neumann value i.e. t=(0,0).
- The source term is f = (0,0).

Figure: Flow over cylinder (Initial guess by Schur complement method)

Figure: Flow over cylinder (Initial guess by bicgstab solver)

Figure: Flow over cylinder (Initial guess by minres solver)

- Domain: unit square $[0,1] \times [0,1]$.
- Boundaries x = 0, x = 1 and y = 0, we impose no slip or zero velocity Dirichlet condition.
- On y = 1, we impose Dirichlet condition with Dirichlet velocity,

$$u = a * (10x, 0)$$
 for $0 \le x \le 0.1$,
 $u = a * (1, 0)$ for $0.1 \le x \le 0.9$, (81)
 $u = a * (10 - 10x, 0)$ for $0.9 \le x \le 1$.

Figure: Lid driven cavity flow (Initial guess by Schur complement method)

Conclusions

- The Schur complement : Efficient and accurate
- minres slow convergence and bicgstab does not converge
- Penalty parameter
- The solvers/methods which are applicable for the Saddle point problems should be used for solving the weak form of the Stokes equation.
- The initial guess is crucial for success of the Newton method.
- The solution of the Stokes equation and the Navier Stokes equation show close to linear convergence in L^2 norm.
- The higher polynomial degree does not always guarantee better accuracy. However, the convergence rate increases with increase in polynomial degree.

Outlook

- Test for higher Reynold's number
- Further solvers/methods
- Time dependent cases
- Parametrization
- Reduced order modelling

[1] Riviere B. *Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation*. Frontiers in Applied Mathematics. Cambridge University Press, 2008.