EGZAMIN WSTĘPNY Z MATEMATYKI

Zestaw składa się z 30 zadań. Zadania 1–10 oceniane będą w skali 0–2 punkty, zadania 11–30 w skali 0–4 punkty. Czas trwania egzaminu — 180 minut.

Powodzenia!

1. Obliczyć
$$\lim_{n \to \infty} \frac{n\sqrt{1+3+5+...+(2n-1)}}{2n^2+n+1}$$
.

- 2. Rozwiązać nierówność $x^2 4x + 9 \leqslant \frac{18}{x+2}$.
- 3. Rozwiązać nierówność $\log_{0.3}(x+1) > -1$.
- 4. Rozwiązać nierówność 2 |1 2x| > 1.
- 5. Dla jakich wartości parametru $\alpha \in (0; 2\pi)$ równanie $\sin 2x = 2\cos \alpha$ posiada rozwiązanie?
- 6. Obliczyć długość wektora \vec{a} , jeżeli $\vec{a} \circ \vec{b} = 7$, $\vec{a} \parallel \vec{b}$ i $\vec{b} = [3, -2, 1]$.
- 7. Rozwiązać nierówność $2^{x^2} < 5^x$.
- 8. Wykazać, że funkcja $f(x) = 3x^3 + 4x + \cos 2x$ jest rosnąca w całej swojej dziedzinie.
- 9. Wyznaczyc te wartości parametru k, dla których prosta y=kx+4 będzie równoległa do prostej $\begin{cases} x=1+3t\\ y=2-t \end{cases}.$
- 10. Dla jakich a i b wielomian $W(x) = 12x^4 17x^2 + ax + b$ dzieli się bez reszty przez $2x^2 + x 1$?
- 11. Dany jest trójkąt o wierzchołkach A(1,1), B(-1,3), C(3,7) i polu S. Przez wierzchołek A poprowadzić jedną z prostych, ktora dzieli dany trójkąt na dwa trójkąty o polach $\frac{1}{4}S$ i $\frac{3}{4}S$. Podać równanie tej prostej.
- 12. Znaleźć ekstrema funkcji $f(x)=(x+3)^2(x+8)^3$. Ile pierwiastków ma równanie f(x)=108?
- 13. Dla jakiej wartości parametru a funkcja

$$f(x) = \begin{cases} \frac{x \sin x}{\sqrt{x^2 + 4} - 2} & \text{dla } x \neq 0\\ a & \text{dla } x = 0 \end{cases}$$

będzie funkcją ciągłą w punkcie x = 0?

14. Który z punktów paraboli $y = x^2$ jest położony najbliżej prostej y = 2x - 2?

- 15. Wykazać, że pole dowolnego wypukłego czworokąta jest równe połowie iloczynu jego przekątnych pomnożonego przez sinus kąta między nimi, $S = \frac{1}{2}d_1d_2\sin\alpha$.
- 16. Dany jest ciąg arytmetyczny (o różnicy różnej od zera), w którym suma n początkowych wyrazów jest równa połowie sumy następnych n wyrazów. Wyznaczyć iloraz $\frac{S_{3n}}{S_n}$, gdzie S_k oznacza sumę k początkowych wyrazów tego ciągu.
- 17. Wykazać, że dwie styczne do paraboli $y=x^2$ poprowadzone z dowolnego punktu prostej $y=-\frac{1}{4}$ są do siebie prostopadłe.
- 18. Dany jest trójkąt równoramienny o ramionach \overline{AC} i \overline{BC} długości 3 cm i podstawie \overline{AB} długości 4 cm. Obliczyć iloczyn skalarny $\overline{AB} \circ \overline{BC}$.
- 19. Miary kątów wewnętrznych trójkąta tworzą ciąg arytmetyczny. Najmniejszy bok jest trzy razy mniejszy od największego boku w tym trójkącie. Obliczyć cosinus najmniejszego kąta.
- 20. Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} losujemy dwukrotnie po jednej liczbie bez zwracania. Obliczyć prawdopodobieństwo tego, że druga z wylosowanych liczb będzie większa od pierwszej.
- 21. Podać definicję asymptoty pionowej i wyznaczyć asymptoty pionowe funkcji $f(x) = \frac{1}{x(2^x-4)}$.
- 22. Wyznaczyć najmniejszą i największą wartość funkcji $f(x) = \cos(\frac{\pi}{2} \cdot x) 3x$ w przedziale $\langle 0; 1 \rangle$.
- 23. Dla jakiej wartości parametru m okrąg $(x-m)^2+(y-1)^2=1$ będzie styczny do prostej 3x+4y+1=0?
- 24. Wykazać, że równanie $x=\frac{1}{2}\sin x+a$, gdzie a>0, ma dokładnie jeden pierwiastek w przedziale $\langle 0; a+1 \rangle$.
- 25. Z definicji pochodnej obliczyć f'(3), gdy $f(x) = \sqrt{2x+3}$.
- 26. Rozwiązać równanie $\binom{x+3}{2} + \binom{x+1}{x-1} = 31.$
- 27. Długość dłuższej podstawy trapezu równoramiennego jest równa 13 cm, a jego obwód jest równy 28 cm. Wyrazić pole trapezu jako funkcję długości ramienia trapezu. Znaleźć dziedzinę i zbiór wartości tej funkcji.
- 28. Dla jakich wartości parametru k ciąg (a_n) , gdzie $a_n = \frac{n^k}{2+4+\ldots+2n}$, będzie rozbieżny do $+\infty$?
- 29. Dana jest funkcja $f(x) = \cos^2 3x + \frac{3}{2}x \log 5$. Rozwiązać równanie $f'(\frac{1}{3}x) = 0$.
- 30. Dane są liczby $A=\frac{5678901234}{6789012345}$ i $B=\frac{5678901235}{6789012346}$. Która z nich jest większa? Swoją odpowiedź uzasadnić.