Projekt 1

Projekty można realizować w parach lub samodzielnie. Każda para musi mieć unikalny w obrębie roku zestaw (zestaw danych, algorytm, optymalizowany parametr). Proszę o przesłanie list z wybranymi tematami najpóźniej do 14 marca, w przeciwnym razie 15 marca przygotuję losowy przydział tematów.

Projekty należy oddawać na platformie UPEL do 28 marca (w przeciwnym razie z projektu wystawiona będzie ocena 2.0).

- 1. Jeden z zestawów danych:
 - a. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer (klasyfikacja, brakujące dane).
 - b. https://archive.ics.uci.edu/ml/datasets/Car+Evaluation (klasyfikacja).
 - c. https://archive.ics.uci.edu/ml/datasets/Echocardiogram (klasyfikacja, brakujące dane).
 - d. https://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival (klasyfikacja, brakujące dane).
 - e. https://archive.ics.uci.edu/ml/datasets/Census+Income (klasyfikacja, brakujące dane, dość duży zbiór).
 - f. https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations (klasyfikacja)
 - g. https://archive.ics.uci.edu/ml/datasets/Automobile (regresja).
 - h. https://archive.ics.uci.edu/ml/datasets/Bias+correction+of+numerical+prediction+model+temperature+forecast (regresja, brakujace dane)
 Uwaga: zbiór trzeba przerobić. Next_Tmax i Next_Tmin to są błędne przewidywania istniejącego systemu (można je wykorzystać jako cechy), natomiast poprawne wartości należy brać z kolumn Present_Tmax i Present_Tmin dla kolejnego dnia (i tej samej stacji).
 - i. https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset (regresja). Można ograniczyć się do wersji zagregowanej po dniach.
 - j. https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise (regresja).
 - k. https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime (regresja).
 - I. Inne z repozytorium UCI: https://archive.ics.uci.edu/ml/datasets.php (należy unikać zbiorów z cechami typu tekstowego czy szeregów czasowych, zbyt dużych zbiorów (>50 000 próbek), zbyt małych zbiorów (<100 próbek) oraz zbiorów gdzie liczba próbek jest mniejsza niż liczba cech).
- 2. Algorytm uczenia maszynowego:
 - a. Klasyfikacja:
 - i. SVM.
 - ii. Lasy drzew decyzyjnych (RandomForestClassifier).
 - iii. C4.5

- iv. Regresja logistyczna.
- b. Regresja:
 - i. Drzewa regresji (DecisionTreeRegressor).
 - ii. ElasticNet.
 - iii. Regresja wielomianowa
- 3. Sposób walidacji: 10-krotna walidacja krzyżowa
- 4. Optymalizowany parametr:
 - a. klasyfikacja:
 - i. Accuracy (dokładność).
 - ii. Macierz pomyłek (należy różnym błędnym klasyfikacjom przypisać różne wagi).
 - iii. Sensitivity (czułość) -- dla klasyfikacji binarnej.
 - iv. Precision -- dla klasyfikacji binarnej.
 - v. AUC -- dla klasyfikacji binarnej.
 - b. Regresja:
 - i. Błąd średniokwadratowy.
 - ii. Średni błąd bezwzględny.
 - iii. Ułamek wyjaśnianej wariancji (explained_variance_score).

Brakujące dane: wystarczy SimpleImputer

W raporcie należy zamieścić:

- 1. Krótki opis zestawu danych: liczba cech i ich typy, czy występują brakujące dane, rodzaj problemu (klasyfikacja, regresja), liczba instancji (próbek).
- 2. Krótki opis wybranej metody uczenia maszynowego (około 2-3 zdania) + opis parametrów.
- 3. Sposób wyboru zbioru testowego.
- 4. (Na >= 4.0): opis działania metody wyboru hiperparametrów

Szacowana długość raportu: od 1 do 3 stron A4.

Ocena:

- Na 3.0: działający model uczenia maszynowego, przetestowano i porównano kilka hiperparametrów; policzenie wybranego optymalizowanego parametru. Dla klasyfikacji narysowanie macierzy pomyłek a dla regresji krzywej uczenia: https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html#s
 phx-glr-auto-examples-model-selection-plot-learning-curve-py
- Na 4.0: zastosowano prawidłowo walidację krzyżową do znalezienia optymalnych hiperparametrów (wybrać 2) na siatce (grid search). Policzone wybranego optymalizowanego parametru na zbiorze testowym dla optymalnego klasyfikatora i narysowanie dla niego macierzy pomyłek lub krzywej uczenia.
- Na 5.0: Zbadanie wpływu normalizacji, standaryzacji i PCA (na cechach będących liczbami rzeczywistymi) na proces uczenia (dodanie ich jako trzeci optymalizowany

hiperparametr o pięciu wartościach: brak normalizacji czy standaryzacji, normalizacja, standaryzacja, dwa warianty PCA z różnymi wyborami liczby głównych składowych).