HIP 3

You have a homogeneous sphere of radius R and total charge -Q. You drill a thin hole directly through the diameter of the sphere. When you let go of a positron at one end of a hole, the positron oscillates back and forth through the diameter of the sphere. Find the period of oscillation of the positron.

For this problem we are assuming that the charge of the sphere and the charge of the positron are both symmetric. Also that R>width of the drilled hole and does not impact the symmetry or the charge of the sphere.

We'll begin by finding the electric field of the charged sphere. In order to find the E-field that the charged sphere creates from its surface to its core, we will use Gauss's Law.

This equation seems reasonable because as the distance, r, goes towards 0, the overall charge drops linearly.

As r approaches R, we see the equation turn into \rightarrow E=Q/(4* π * ϵ_0 *R²). This is the equation for the E-field of a point charge, precisely what we would expect.

Now that we have an equation that accurately describes the E-field from the surface of the charge to it's core we can use this to find the F_{electric} that the positron is experiencing at the moment it is placed and released at a distance R along this drilled path through the charge. From this we can deduce the period.

The period of the positron is estimated to be T=(2* π)/((Q*q)/(4* π * ϵ_o *R³*m))^{1/2}

Reasonableness can be checked through a unit check: $1/(C^{2*}kg^*m^3/C^{2*}m^{3*}kg^*s^2)^{1/2} = s$

GORY	PLARY (1.5)	MPLISHED (1)	LOPING (0.5)	GENT (0)
Statement and tion	earning tool for our class is written	plem is clearly presented for reader in n words.	plem is directly copied or is hard	p into some calculation
	etch could be dropped into a novel as it stands.	a clear sketch, larger than a credit the problem set up with important and data noted	some sketch of the problem	etch?
s Tools	iate physics tools are correlated sercise in textbook quality and	ate physics tools are correlated to the . Appropriate tools include: pictures, preservational laws utilized, etc	hysics tools are correlated to the .	re a few equations written.
n Solution tation	is very clearly presented with g asides or annotations	is complete and clearly presented no significant intuitive demands on the	colution I have to read between	es version of solution with only nts present
	ution can serve as solution	is larger than a credit card, tion is fluid, notation used is clear.	gure the path of your solution with	read it.
		correctly given	ions & quantities are presented s	nits at the results
n			close	ot reasonable
ant Figures		Sig Figs	ffort to use correct significant	he number from the calculator
nableness	s more than one type of ableness check.	ne clear rationale for appropriateness of tion in the setting	that the answer is reasonable but sn't given any evidence	ission
Graded			е	ut your self-assessment is from mine by at least two steps.