Appendix B: Notation and Taylor Series

The following is a generic review of Taylor series and the type of notation we use in certain parts of the course.

REAL-VALUED FUNCTIONS: Let $h(\mathbf{x}, \alpha)$ be a real-valued function of a vector \mathbf{x} (which is irrelevant to the developments here) and a $(r \times 1)$ vector $\alpha = (\alpha_1, ..., \alpha_r)^T$. We write

$$h_{\alpha}(\mathbf{x}, \alpha) = \partial/\partial \alpha \ h(\mathbf{x}, \alpha) = \begin{pmatrix} \partial/\partial \alpha_{1} h(\mathbf{x}, \alpha) \\ \vdots \\ \partial/\partial \alpha_{r} h(\mathbf{x}, \alpha) \end{pmatrix} \quad (r \times 1). \tag{B.1}$$

The vector $h_{\alpha}(\mathbf{x}, \alpha)$ of partial derivatives of $h(\mathbf{x}, \alpha)$ with respect to the elements of α is referred to as the *gradient* (vector). Of course, $h_{\alpha}^{T}(\mathbf{x}, \alpha)$ denotes its transpose, a $(1 \times r)$ vector.

We can extend this notation to second partial derivatives with respect to the elements of α . This is done by writing the $(r \times r)$ symmetric matrix of second partial derivatives of $h(\mathbf{x}, \alpha)$ as follows.

$$h_{\alpha\alpha}(\mathbf{x},\alpha) = \partial/\partial\alpha\partial\alpha^{T}h(\mathbf{x},\alpha) = \begin{pmatrix} \partial^{2}/\partial\alpha_{1}^{2}h(\mathbf{x},\alpha) & \partial^{2}/\partial\alpha_{1}\partial\alpha_{2}h(\mathbf{x},\alpha) & \cdots & \partial^{2}/\partial\alpha_{1}\partial\alpha_{r}h(\mathbf{x},\alpha) \\ & \partial^{2}/\partial\alpha_{2}^{2}h(\mathbf{x},\alpha) & \cdots & \partial^{2}/\partial\alpha_{2}\partial\alpha_{r}h(\mathbf{x},\alpha) \\ & & \ddots & \vdots \\ & & \partial^{2}/\partial\alpha_{r}^{2}h(\mathbf{x},\alpha) \end{pmatrix}$$
(B.2)

This is often called the *Hessian*.

More generally, suppose that $h(\mathbf{x}, \alpha, \delta)$ is a real-valued function of two vectors α ($r \times 1$) and δ ($s \times 1$). Then define

$$h_{\alpha\delta}(\mathbf{x}, \alpha, \delta) = \partial/\partial\alpha\partial\delta^{\mathsf{T}} h(\mathbf{x}, \alpha, \delta) = \begin{pmatrix} \partial^{2}/\partial\alpha_{1}\partial\delta_{1}h & \partial^{2}/\partial\alpha_{1}\partial\delta_{2}h & \cdots & \partial^{2}/\partial\alpha_{1}\partial\delta_{s}h \\ \partial^{2}/\partial\alpha_{2}\partial\delta_{1}h & \partial^{2}/\partial\alpha_{2}\partial\delta_{2}h & \cdots & \partial^{2}/\partial\alpha_{2}\partial\delta_{s}h \\ \vdots & \vdots & \ddots & \vdots \\ \partial^{2}/\partial\alpha_{r}\partial\delta_{1}h & \cdots & \cdots & \partial^{2}/\partial\alpha_{r}\partial\delta_{s}h \end{pmatrix}, \quad (B.3)$$

where we have written $h = h(\mathbf{x}, \alpha, \delta)$ for brevity. This is a $(r \times s)$ matrix; it follows that, by reducing the roles of α and δ , $h_{\delta\alpha}$ is a $(s \times r)$ matrix, and is the transpose of $h_{\alpha\delta}$ in (B.3).

VECTOR-VALUED FUNCTIONS: Now suppose that $h(x, \delta)$ is a vector-valued function of dimension n of a vector x and parameter δ ($s \times 1$); i.e.

$$h(\mathbf{x}, \delta) = \begin{pmatrix} h_1(\mathbf{x}, \delta) \\ \vdots \\ h_n(\mathbf{x}, \delta) \end{pmatrix}.$$

Thus, the vector-valued function \boldsymbol{h} has real-valued component functions h_1, \dots, h_n .

We will write

$$\boldsymbol{h}_{\delta}(\boldsymbol{x}, \boldsymbol{\delta}) = \partial/\partial \boldsymbol{\delta}^{T} \boldsymbol{h}(\boldsymbol{x}, \boldsymbol{\delta}) = \begin{pmatrix} \partial/\partial \delta_{1} h_{1}(\boldsymbol{x}, \boldsymbol{\delta}) & \cdots & \partial/\partial \delta_{s} h_{1}(\boldsymbol{x}, \boldsymbol{\delta}) \\ \vdots & \vdots & \vdots \\ \partial/\partial \delta_{1} h_{n}(\boldsymbol{x}, \boldsymbol{\delta}) & \cdots & \partial/\partial \delta_{s} h_{n}(\boldsymbol{x}, \boldsymbol{\delta}) \end{pmatrix},$$

a $(n \times s)$ matrix. In particular, note that if we have a real-valued function $h(\mathbf{x}, \alpha, \delta)$ for α $(r \times 1)$ and δ $(s \times 1)$, then

$$h_{\alpha}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\delta}) = \begin{pmatrix} \partial/\partial \alpha_{1} h(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\delta}) \\ \vdots \\ \partial/\partial \alpha_{r} h(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\delta}) \end{pmatrix} = \begin{pmatrix} h_{\alpha_{1}}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\delta}) \\ \vdots \\ h_{\alpha_{r}}(\mathbf{x}, \boldsymbol{\alpha}, \boldsymbol{\delta}) \end{pmatrix} \quad (r \times 1).$$

Thus, $h_{\alpha}(\mathbf{x}, \alpha, \delta)$ is a vector-valued function. Applying the above definition of the partial derivative of a vector-valued function with respect to a vector parameter to $h_{\alpha}(\mathbf{x}, \alpha, \delta)$, we may conclude that the result of differentiating $h_{\alpha}(\mathbf{x}, \alpha, \delta)$ with respect to δ is the $(r \times s)$ matrix $h_{\alpha\delta}(\mathbf{x}, \alpha, \delta)$ defined in (B.3); that is,

$$\partial/\partial \delta^T h_{\alpha}(\mathbf{x}, \alpha, \delta) = \partial/\partial \alpha \partial \delta^T h(\mathbf{x}, \alpha, \delta).$$

We now consider various forms of Taylor's theorem.

UNIVARIATE TAYLOR'S THEOREM: Assume $h(\alpha)$ has (k-1) continuous derivatives in [a,b] and finite kth derivative in (a,b), where α is univariate and h is a real-valued function. Let $\alpha_0 \in [a,b]$. For each $\alpha \in [a,b]$, $\alpha \neq \alpha_0$, there exists α_* interior to the interval joining α_0 and α such that

$$h(\alpha) = h(\alpha_0) + \sum_{\ell=1}^{k-1} \frac{1}{\ell!} \{ \partial^\ell / \partial \alpha^\ell h(\alpha) \}_{\alpha = \alpha_0} (\alpha - \alpha_0)^\ell + \frac{1}{k!} \{ \partial^k / \partial \alpha^k h(\alpha) \}_{\alpha = \alpha_*} (\alpha - \alpha_0)^k.$$

Taylor's theorem is used heavily in making large sample arguments in statistics. In such arguments, we usually deal with vector-valued functions of vector-values parameters, for which a multivariate version of Taylor's theorem is required.

MULTIVARIATE TAYLOR'S THEOREM: First consider a real-valued function $h(\alpha)$, where α is $(r \times 1)$. We I state the theorem for general k, but write the form of the representation of $h(\alpha)$ for k = 2 only, as things get messy pretty quickly. One should be able to deduce the form for larger k by analogy to the univariate version.

Assume that $h(\alpha)$ on \mathcal{R}^r has continuous partial derivatives of order k at each point in an open set $S \subset \mathcal{R}^r$. Let $\alpha_0 \in S$. For each $\alpha = \alpha_0$ such that the line segment joining α and α_0 lies in S, there exists α_* in the interior of this line segment such that, in the case k = 2,

$$h(\alpha) = h(\alpha_0) + \sum_{\ell=1}^r \{\partial/\partial\alpha_\ell h(\alpha)\}_{\alpha=\alpha_0}(\alpha_\ell - \alpha_{0,\ell}) + (1/2) \sum_{\ell=1}^r \sum_{t=1}^r \{\partial^2/\partial\alpha_\ell \partial\alpha_t h(\alpha)\}_{\alpha=\alpha_*}(\alpha_\ell - \alpha_{0,\ell})(\alpha_t - \alpha_{0,t}).$$

Using the shorthand notation above, we can write this more succinctly as

$$h(\alpha) = h(\alpha_0) + h_{\alpha}^T(\alpha_0)(\alpha - \alpha_0) + (1/2)(\alpha - \alpha_0)^T h_{\alpha\alpha}(\alpha_*)(\alpha - \alpha_0).$$

Here, we have used a further shorthand

$$h_{\alpha}(\alpha_0) = \{\partial/\partial \alpha h(\alpha)\}_{\alpha=\alpha_0}.$$

We use similar notation for $h_{\alpha\alpha}(\alpha)$ and other expressions.

If h is a function of two vectors α ($r \times 1$) and δ ($s \times 1$), we can define the single, "stacked" vector $(\alpha^T, \delta^T)^T$ ($r + s \times 1$) and apply the theorem to obtain a representation of $h(\alpha, \delta)$ about some value $(\alpha_0^T, \delta_0^T)^T$. This is handy when we want to maintain the distinction between two arguments of a function and treat them separately. Using the above, it is easy to show that, for k = 2, we can write

$$h(\alpha, \delta) = h(\alpha_0, \delta_0) + \{h_{\alpha}^T(\alpha_0, \delta_0)(\alpha - \alpha_0) + h_{\delta}^T(\alpha_0, \delta_0)(\delta - \delta_0)\}$$
$$+ (1/2)\{(\alpha - \alpha_0)^T h_{\alpha\alpha}(\alpha_*, \delta_*)(\alpha - \alpha_0) + 2(\alpha - \alpha_0)^T h_{\alpha\delta}(\alpha_*, \delta_*)(\delta - \delta_0) + (\delta - \delta_0)^T h_{\delta\delta}(\alpha_*, \delta_*)(\delta - \delta_0)\}.$$

It is often necessary to apply Taylor's theorem to vector-valued functions. This can appear complicated, but it is mainly a matter of notation. Suppose $\mathbf{h}(\alpha) = [h_1(\alpha), \dots, h_{\nu}(\alpha)]^T$ ($\nu \times 1$), where again α is $(r \times 1)$.

If we apply the multivariate Taylor theorem to each component of \boldsymbol{h} (each of which is a real-valued function), it can be shown that the expansion of $\boldsymbol{h}(\alpha)$ about $\alpha = \alpha_0$ for k = 2 can be written compactly as

$$\boldsymbol{h}(\alpha) = \boldsymbol{h}(\alpha_0) + \begin{pmatrix} h_{1\alpha}^T(\alpha_0) \\ \vdots \\ h_{V\alpha}^T(\alpha_0) \end{pmatrix} (\alpha - \alpha_0) + (1/2) \{\boldsymbol{I}_V \otimes (\alpha - \alpha_0)^T\} \boldsymbol{H}_{\alpha\alpha}^*(\alpha - \alpha_0),$$

where $H_{\alpha\alpha}^*$ is the $(rv \times r)$ matrix consisting of the $(r \times r)$ matrices $h_{1\alpha\alpha}(\alpha_*), \dots, h_{v\alpha\alpha}(\alpha_*)$ stacked vertically; I_V is a $(v \times v)$ identity matrix, and \otimes denotes *Kronecker product*.

Finally, if $h(\alpha, \delta)$ ($v \times 1$) is a vector-valued function depending on α ($r \times 1$) and δ ($s \times 1$), and we wish to separate explicitly the terms involving α and δ , the above extends in the obvious way; for k = 1, we have, using obvious notation,

$$\boldsymbol{h}(\alpha,\delta) = \boldsymbol{h}(\alpha_0,\delta_0) + \begin{pmatrix} h_{1\alpha}^T(\alpha_*,\delta_*) \\ \vdots \\ h_{\nu\alpha}^T(\alpha_*,\delta_*) \end{pmatrix} (\alpha - \alpha_0) + \begin{pmatrix} h_{1\delta}^T(\alpha_*,\delta_*) \\ \vdots \\ h_{\nu\delta}^T(\alpha_*,\delta_*) \end{pmatrix} (\delta - \delta_0).$$

This can, of course, be written more compactly as

$$\boldsymbol{h}(\alpha,\delta) = \boldsymbol{h}(\alpha_0,\delta_0) + \left(\begin{array}{cc} h_{1\alpha}^T(\alpha_*,\delta_*) & h_{1\delta}^T(\alpha_*,\delta_*) \\ \vdots & \vdots \\ h_{V\alpha}^T(\alpha_*,\delta_*) & h_{V\delta}^T(\alpha_*,\delta_*) \end{array} \right) \left(\begin{array}{c} \alpha - \alpha_0 \\ \delta - \delta_0 \end{array} \right).$$