

SSAST: Self-Supervised Audio Spectrogram Transformer

Yuan Gong, Cheng-I Jeff Lai, Yu-An Chung, James Glass (MIT CSAIL)

Code and Pretrained Models at: github.com/yuangongnd/ssast

Contact: yuangong@mit.edu

Introduction

Audio Spectrogram Transformer (AST) is the first convolution-Free, purely attention-based model for audio classification and achieves SOTA performance.

Problem: Original AST needs more labeled data to train, previous ImageNet supervised pretraining constrains AST to use 16*16 square patch.

Proposed: A self-supervised pretraining framework that matches or outperforms previous supervised pretraining methods and supports arbitrary patch size and shape.

Key Novelty and Contribution

- ☐ First self-supervised pretraining framework for purely attention-based audio classification models.
- ☐ First patch masking based self-supervised pretraining framework in the audio & speech field.

Conventional frame-masking based SSL that only learns temporal spectrogram structure

Proposed patch-masking based SSL that learns both temporal and frequency structure

The model is forced to learn more *local* spectrogram structure with *smaller* masked patch size and more *global* spectrogram structure with *larger* masked patch size

Both

☐ Unlike ImageNet pretraining, SSAST supports arbitrary patch size and shape.

Square Patch Based AST Cannot be used for frame-level feature extraction. Only designed

Frame Based AST

Ideal for both classification and frame-level audio representation extraction

☐ Works for both audio and speech Tasks.

The spectrogram patch can be an arbitrary shape and size (e.g, a square patch or a conventional time frame).

Task

Main Results

All models are pretrained and end-to-end fine-tuned (i.e., without layer freezing) on downstream datasets AS=AudioSet-20K; ESC=ESC-50; KS=SpeechCommands; SID=VoxCeleb1; ER=IEMOCAP

	V						100
		AS	ESC	KS2	KS1	SID	ER
No Pretraining	AST-Scratch	14.8	41.9	92.6	87.2	30.1	51.9
	Supervised Pr	retraini	ing Base	elines			
ImageNet Pretrain	AST-IM + KD	34.7	88.7	98.1	95.5	41.1	56.0
AudioSet Pretrain	AST-AudioSet	28.6	86.8	96.2	91.6	35.2	51.9
	Proposed Self	-Super	vised A	ST		41.1 35.2 66.6	
SSL Pretrain with	SSAST 250	30.4	86.7	98.1	96.2	66.6	57.1
0/400 Masked Patches	SSAST 400	31.0	88.8	98.0	96.0	64.2	59.6

Model

- ☐ The proposed *self-supervised* pretrained models significantly outperforms from-scratch models with an average improvement of 60.9%, and can match or even outperform previous supervised pretrained models.
- ☐ During fine-tuning, SSAST model learns much faster and better. Using a different learning rate or increasing training epochs cannot improve the from-scratch model performance.

Ablation Study

Setting			Tas	sk			
	AS	ESC	KS2	KS1	SID	ER	
From Scratch	14.8	41.9	92.6	87.2	30.1	51.9	
# Masked Pat	ches						
100	28.7	85.3	98.0	94.9	62.1	57.3	٦ _
250	30.4	86.7	98.1	96.2	66.6	57.1	
400 (Default)	31.0	88.8	98.0	96.0	64.3	59.6	
Pretext Task							
Discriminative	30.6	85.6	98.0	94.2	61.4	57.5	7
Generative	16.1	74.2	96.6	93.3	40.1	54.3	(2)
Joint (Default)	31.0	88.8	98.0	96.0	64.3	59.6	
Pretraining D	ata						
AudioSet-20K	25.7	82.2	97.6	93.8	43.8	55.4	$\neg(3)$
AudioSet 2M	29.0	84.7	97.8	94.8	57.1	56.8	
AudioSet 2M	206	060	06.2	01.6	25.2	51.0	
Supervised	28.6	86.8	96.2	91.6	35.2	51.9	
Librispeech	22.9	80.0	97.8	95.6	60.8	58.3	
Joint (Default)	31.0	88.8	98.0	96.0	64.3	59.6	(5)

- 1. More masked patches leads to better performance.
- 2. Joint pretraining objective helps.
- 3. The proposed SSL works with small data.
- 4. With same AudioSet 2M data, SSL pretraining generalizes better than supervised pretraining.
- 5. Joint AudioSet and Librispeech pretraining leads to best performance for all tasks.

Patch Based- vs Frame Based- AST

Compare models pretrained and fine-tuned with 16*16 square patches and 128 *2 time frames

Model	Au	dio	<u>Ta</u>	_		
	AS	ESC	KS2	KS1	SID	ER
Frame-Scratch Patch-Scratch	16.6 14.8	53.7 41.9		91.7 87.2		51.2 51.9
SSAST-Frame-250 SSAST-Patch-250	27.1 30.4	197100000000000000000000000000000000000	98.0 98.1			
SSAST-Frame-400 SSAST-Patch-400	29.2 31.0		98.1 98.0			60.5 59.6
Frame-Improvement Patch-Improvement		32.2 46.9	2.1 5.4	5.0 8.8	25.9 34.1	9.3 7.7

- ☐ Frame-based AST is better for *speech* tasks while patch-based AST is better for audio Tasks.
- ☐ SSL pretraining helps more for patch-based AST.

Acknowledgement

This work is partly supported by Signify.