$10_{126} (K10n_{17})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{10} - u^9 + 5u^8 + 3u^7 - 9u^6 + u^5 + 8u^4 - 6u^3 - 3u^2 + b + u, \\ &u^{10} + u^9 - 4u^8 - 3u^7 + 4u^6 - u^5 - u^4 + 4u^3 + u^2 + a + 3u + 1, \\ &u^{11} + 2u^{10} - 4u^9 - 8u^8 + 6u^7 + 7u^6 - 10u^5 + u^4 + 11u^3 + 1 \rangle \\ I_2^u &= \langle b + 1, \ a, \ u^2 - u - 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 13 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{10} - u^9 + \dots + b + u, \ u^{10} + u^9 + \dots + a + 1, \ u^{11} + 2u^{10} + \dots + 11u^3 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{10} - u^{9} + 4u^{8} + 3u^{7} - 4u^{6} + u^{5} + u^{4} - 4u^{3} - u^{2} - 3u - 1 \\ u^{10} + u^{9} - 5u^{8} - 3u^{7} + 9u^{6} - u^{5} - 8u^{4} + 6u^{3} + 3u^{2} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{10} + u^{9} - 4u^{8} - 3u^{7} + 5u^{6} - u^{5} - 4u^{4} + 5u^{3} + 3u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} - 2u \\ -u^{5} + 3u^{3} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{10} + u^{9} - 4u^{8} - 3u^{7} + 5u^{6} - u^{5} - 4u^{4} + 6u^{3} + 3u^{2} - 2u \\ u^{10} + u^{9} - 4u^{8} - 3u^{7} + 5u^{6} - u^{5} - 4u^{4} + 5u^{3} + 3u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $u^9 u^8 6u^7 + 7u^6 + 11u^5 17u^4 + 2u^3 + 16u^2 15u + 3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{11} - 3u^{10} + \dots - 7u + 1$
c_2, c_8	$u^{11} - u^{10} + \dots - 4u + 4$
c_3	$u^{11} + 15u^{10} + \dots + 51u + 1$
c_5, c_6, c_9 c_{10}	$u^{11} - 2u^{10} - 4u^9 + 8u^8 + 6u^7 - 7u^6 - 10u^5 - u^4 + 11u^3 - 1$
c ₇	$u^{11} + 12u^9 + 2u^8 + 32u^7 + 17u^6 - 28u^5 + 27u^4 - 15u^3 + 2u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{11} - 15y^{10} + \dots + 51y - 1$
c_2, c_8	$y^{11} + 15y^{10} + \dots + 88y - 16$
<i>c</i> ₃	$y^{11} - 35y^{10} + \dots + 1959y - 1$
c_5, c_6, c_9 c_{10}	$y^{11} - 12y^{10} + \dots - 2y^2 - 1$
c ₇	$y^{11} + 24y^{10} + \dots + 2y^2 - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.555784 + 0.826080I		
a = 1.70442 + 0.91227I	-11.41260 + 2.72618I	1.17921 - 2.48457I
b = 1.75765 - 0.08981I		
u = 0.555784 - 0.826080I		
a = 1.70442 - 0.91227I	-11.41260 - 2.72618I	1.17921 + 2.48457I
b = 1.75765 + 0.08981I		
u = 1.30287		
a = -0.964097	1.42853	5.86840
b = -1.44606		
u = -1.395180 + 0.126727I		
a = -0.158907 + 0.922695I	3.45898 - 2.75386I	6.03924 + 3.05522I
b = -0.665578 - 0.815452I		
u = -1.395180 - 0.126727I		
a = -0.158907 - 0.922695I	3.45898 + 2.75386I	6.03924 - 3.05522I
b = -0.665578 + 0.815452I		
u = -0.509387		
a = 0.753099	0.764590	13.1750
b = 0.150577		
u = 0.205266 + 0.391152I		
a = -1.19521 - 1.33382I	-1.67531 + 0.87131I	-1.62556 - 2.85981I
b = -0.887105 + 0.326749I		
u = 0.205266 - 0.391152I		
a = -1.19521 + 1.33382I	-1.67531 - 0.87131I	-1.62556 + 2.85981I
b = -0.887105 - 0.326749I		
u = 1.58287		
a = 0.388562	8.06663	13.5530
b = 0.514377		
u = -1.55405 + 0.30396I		
a = 0.560911 - 1.017150I	-4.54812 - 6.90426I	4.10911 + 3.24808I
b = 1.68559 + 0.26432I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.55405 - 0.30396I		
a = 0.560911 + 1.017150I	-4.54812 + 6.90426I	4.10911 - 3.24808I
b = 1.68559 - 0.26432I		

II.
$$I_2^u = \langle b+1, \ a, \ u^2-u-1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 3

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u-1)^2$
c_{2}, c_{8}	u^2
C ₄	$(u+1)^2$
c_5, c_6	$u^2 - u - 1$
c_7, c_9, c_{10}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4	$(y-1)^2$
c_{2}, c_{8}	y^2
c_5, c_6, c_7 c_9, c_{10}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 0	-0.657974	3.00000
b = -1.00000		
u = 1.61803		
a = 0	7.23771	3.00000
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^2)(u^{11}-3u^{10}+\cdots-7u+1)$
c_2, c_8	$u^2(u^{11} - u^{10} + \dots - 4u + 4)$
c_3	$((u-1)^2)(u^{11}+15u^{10}+\cdots+51u+1)$
c_4	$((u+1)^2)(u^{11} - 3u^{10} + \dots - 7u + 1)$
c_5, c_6	$(u^2 - u - 1)(u^{11} - 2u^{10} + \dots + 11u^3 - 1)$
<i>C</i> ₇	$(u^{2} + u - 1)$ $\cdot (u^{11} + 12u^{9} + 2u^{8} + 32u^{7} + 17u^{6} - 28u^{5} + 27u^{4} - 15u^{3} + 2u^{2} - 2u + 1)$
c_9,c_{10}	$(u^2 + u - 1)(u^{11} - 2u^{10} + \dots + 11u^3 - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^2)(y^{11}-15y^{10}+\cdots+51y-1)$
c_2, c_8	$y^2(y^{11} + 15y^{10} + \dots + 88y - 16)$
<i>c</i> ₃	$((y-1)^2)(y^{11} - 35y^{10} + \dots + 1959y - 1)$
c_5, c_6, c_9 c_{10}	$(y^2 - 3y + 1)(y^{11} - 12y^{10} + \dots - 2y^2 - 1)$
C ₇	$(y^2 - 3y + 1)(y^{11} + 24y^{10} + \dots + 2y^2 - 1)$