

Summary of Current Global-Distortion Knowledge and Tools for Resolving them in General

Jim Pivarski

Texas A&M University

18 March, 2010

- We have known about this (unexpected and) unexplained feature in high-momentum muon residuals since first plots of CRAFT-08 data
- Evidence has been gradually mounting that it indicates a problem with the tracks from the tracker
- Markus's Millepede-generated weak mode reproduces/cancels some of its features, making the evidence strong enough for me to claim that we're identifying a real weak mode in the tracker
- But it has some unexplained features
 - why is the curvature bias for low- and high-momentum tracks different, and what is special about the 100 GeV scale where it switches? (Millepede-generated mode reproduces this)
 - why do all $sin(N\phi)$ dependencies in raw muon residuals become $sin((N-1)\phi)$ dependencies in curvature bias (when calculated from numerical derivatives)?
- ▶ These muon residuals indicate a problem, but are not an analysis-ready tool yet. With some work, it can become so.

The Δx vs q/p_T plot

Jim Pivarski 3/18

- Originally made to distinguish alignment errors from magnetic field map errors
- ➤ Top: first plot, Dec 2008, rough because all chambers combined (not yet aligned), shows the high-momentum feature
- ▶ Bottom-left: a more focused plot, single sector, $\Delta x_1 \Delta x_2$ for two stations, shows antisymmetric magnetic field effect but no high-momentum feature
- ► Feature only present in residuals on tracks from the tracker, in both CRAFTs

 Both magnetic field and material budget errors lead to antisymmetric effects on Δx

Jim Pivarski

- high-momentum feature effect is therefore neither
- When it is made with a single muon layer, layer misalignment (in $r\phi$) corresponds to vertical translation
 - ignore vertical offsets

▶ Transform
$$\Delta(q/p_T) = \frac{\epsilon}{x(q/p_T) - x(q/p_T + \epsilon)} \Delta x$$
, numerical

derivative calculated by running propagator twice (purely mathematical); $\Delta(q/p_T)$ vs q/p_T quantifies tracker only

What we can constrain

Jim Pivarski 5/18

▶ $\frac{\partial x}{\partial (q/p_T)}$ is nearly constant vs q/p_T (within a ϕ region), so $\Delta(q/p_T)$ has the same behavior as Δx

- ▶ needs to be studied as a function of ϕ !
- ▶ Therefore, vertical offsets in $\Delta(q/p_T)$ vs q/p_T should be ignored, because they are equivalent to muon alignment
- We constrain only curvature bias differences:

$$\Delta \kappa(\kappa, \phi, \theta) - \Delta \kappa(\kappa \to \infty, \phi, \theta)$$

in 12 ϕ bins (sectors) and 5 $\cot\theta$ bins (wheels), $\kappa=q/p_T$

Observed form is

$$\Delta\kappa(\kappa,\phi,\theta) - \Delta\kappa(\infty,\phi,\theta) = (0.0005~\text{GeV}^{-1})\sin(\phi - 0.7)\exp\left(-\frac{(100~\text{GeV})^2}{p_T{}^2}\right)$$

Parameterization and combined fitJim Pivarski

6/18

$$(A)\kappa + \left[(F + F_{\theta} \cot \theta) + (S + S_{\theta} \cot \theta) \sin(\phi) + (C + C_{\theta} \cot \theta) \cos(\phi) \right] \exp(-\kappa^2 W^2/2)$$

$$\chi^2/N_{dof} = 2194/1066 = 2.06$$

- Coherent distortion of tracker with no tracker \(\chi^2\) sensitivity
- We can see its effect with muon residuals

$$(A)\kappa + \left[(F + F_{\theta} \cot \theta) + (S + S_{\theta} \cot \theta) \sin(\phi) + (C + C_{\theta} \cot \theta) \cos(\phi) \right] \exp(-\kappa^2 W^2 / 2)$$

	χ^2/N_{dof}	Α	$F~(GeV^{-1})$	$F_{ heta}$ (GeV $^{-1}$)
$mode{ imes}0$	2194/1066	-0.00070	-0.000082	-0.000039
$mode{ imes}{1}$	2171/1068	-0.00063	0.000098	-0.000063
$mode{ imes}3$	1991/942	-0.00068	0.000 277	-0.000070
uncertainty		0.00009	0.000 005	0.000 009

	S (GeV $^{-1}$)	$S_ heta$ (GeV $^{-1}$)	$C~(GeV^{-1})$	$C_{ heta}$ (GeV $^{-1}$)	W (GeV)
mode×0	0.000 3533	-0.000113	-0.000345	-0.000057	95.0
$mode{ imes}1$	0.0003892	-0.000156	-0.000335	-0.000063	93.1
$mode{ imes}3$	0.000 4310	-0.000170	-0.000386	-0.000096	84.1
uncertainty	0.000 0064	0.000 011	0.000 010	0.000 016	2.1

How it can be used

Jim Pivarski 8/18

- ► The observed bias must be corrected in the geometry, *even* if only to verify that the diagnostic is being correctly interpreted
- ► However, *uncertainties* on fitted parameters quantify systematic errors in momentum for physics analyses
- Covariance matrix for fit on previous page:

$$(A)\kappa + \left[(F + F_{\theta} \cot \theta) + (S + S_{\theta} \cot \theta) \sin(\phi) + (C + C_{\theta} \cot \theta) \cos(\phi) \right] \exp(-\kappa^{2}W^{2}/2)$$

$$7.2 \cdot 10^{-9} \quad 1.9 \cdot 10^{-11} \quad 5.1 \cdot 10^{-12} \quad -8.3 \cdot 10^{-12} \quad -1.7 \cdot 10^{-11} \quad -6.4 \cdot 10^{-11} \quad 4.5 \cdot 10^{-11} \quad -1.2 \cdot 10^{-6}$$

$$2.9 \cdot 10^{-11} \quad -1.2 \cdot 10^{-12} \quad 3.2 \cdot 10^{-12} \quad 4 \cdot 10^{-12} \quad 1.4 \cdot 10^{-13} \quad 1.8 \cdot 10^{-12} \quad 1 \cdot 10^{-8}$$

$$8.2 \cdot 10^{-11} \quad 3.8 \cdot 10^{-12} \quad 1 \cdot 10^{-11} \quad 2.2 \cdot 10^{-12} \quad -4.9 \cdot 10^{-12} \quad -2.4 \cdot 10^{-7}$$

$$4.1 \cdot 10^{-11} \quad -2.9 \cdot 10^{-12} \quad 1.9 \cdot 10^{-12} \quad 6.6 \cdot 10^{-12} \quad 1.8 \cdot 10^{-6}$$

$$1.2 \cdot 10^{-10} \quad 6.2 \cdot 10^{-12} \quad -1 \cdot 10^{-11} \quad -1.7 \cdot 10^{-6}$$

$$9.7 \cdot 10^{-11} \quad -4.6 \cdot 10^{-12} \quad 8.2 \cdot 10^{-7}$$

$$2.6 \cdot 10^{-10} \quad 2.5 \cdot 10^{-6}$$

- ► Regardless of any remaining global distortions of the tracker, we would have measured limits on how wrong the momenta might be
- ▶ Precision with CRAFT-09: a few percent momentum uncertainty at 1 TeV (depending on parameterization; 0.5% for simple constant)

What this says about charge ratio Jim Pivarski

➤ Shape of the effect has maximum effect on cosmic rays and resonances at rest

9/18

- ▶ Top and bottom are both affected by 0.0005 GeV^{-1} $\rightarrow 50\%$ at 1 TeV or 0.5% at 10 GeV
- ▶ But there's a fundamental uncertainty here: we measure $\kappa(\text{high}) \kappa(\text{low})$ where "high" momentum tracks have $p_T \gg 100$ GeV, and "low" have $p_T \ll 100$ GeV
- ► From what we know now, either the Z will be unaffected and the Z' completely smeared, or vice-versa, or a little of each
- ▶ If we assume that CRAFT-08, CRAFT-09, and the current alignment have the same weak modes (not guaranteed), then it seems that the Z' will be okay: effect on charge ratio and cosmics endpoint are $\sim 0.000\,05~\text{GeV}^{-1}$ (see Ivan's slides)

Absolute curvature bias

Jim Pivarski 10/18

- ▶ If we could know the absolute curvature bias of either high or low momentum tracks, we could use the muon residuals to predict to the other
- ▶ Cosmics endpoint: assuming \sim flat efficiency for high-momentum muons, cosmic ray spectrum in q/p_T must point at zero (they trail off to infinite momentum)

- identifies high-momentum constant offset in $\Delta(q/p_T)$ vs q/p_T
- Nown resonance masses: identify linear slope in low-momentum $\Delta(q/p_T)$ vs q/p_T
- Curvature of tracks in zero magnetic field: identify constant offset in low-momentum $\Delta(q/p_T)$ vs q/p_T
- ▶ $K_S \to \pi^+\pi^-$ decay direction constraint: identify constant offset in low-momentum $\Delta(q/p_T)$ vs q/p_T (next slides)

$K_S \rightarrow \pi^+\pi^-$ direction constraint Jim Pivarski 11/18

- ▶ Momentum sum of the $\pi^+\pi^-$ system must be collinear with the displacement of the secondary vertex
- As a constraint on momenta, this is orthogonal to resonance mass

▶ These two are the first terms in a general $\Delta\kappa(\kappa,\phi,\theta)$ expansion in κ

Implementing the K_S constraint Jim Pivarski

12/18

to get a sense of how tight it is from Nov-Dec 2009 data

- ► Select events using
 - $\pi^+\pi^-$ mass with sideband subtraction
 - vertex inside the first pixel layer
 - pointing to choose the primary vertex in z projection

▶ Angle between primary-to-secondary displacement vector and $\pi^+\pi^$ momentum sum: $\Delta \phi$

 $-0.0003 \pm 0.0024 \; \text{GeV}^{-1}$

0.24% uncertainty in bias of 1 GeV tracks

uncertainty in bias of 1 TeV tracks $=2.4\% \oplus \text{muon residuals low-to-high matching}$

Jim Pivarski 18/18