AULA 6: MODELOS LINEARES GERAIS III

Análise Estatística e Modelagem de Dados Ecológicos

Thiago S. F. Silva - tsfsilva@rc.unesp.br

30 de Março de 2015

Programa de Pós Graduação em Ecologia e Biodiversidade - UNESP

OUTLINE

Diagnóstico, Remediação e Validação

Análise de resíduos

Remediação

Validação

Nossos modelos lineares são baseados em uma série de pressuposições, a lembrar:

1. Os valores/níveis de X são medidos sem erro

- 1. Os valores/níveis de X são medidos sem erro
- 2. Existe uma relação linear entre X e Y (só para regressão)

- 1. Os valores/níveis de X são medidos sem erro
- 2. Existe uma relação linear entre X e Y (só para regressão)
- 3. Os erros ε (e por consequência, Y) tem variância constante (σ^2)

- 1. Os valores/níveis de X são medidos sem erro
- 2. Existe uma relação linear entre X e Y (só para regressão)
- 3. Os erros ε (e por consequência, Y) tem variância constante (σ^2)
- 4. Os erros ε (e por consequência, Y) são independentes

- 1. Os valores/níveis de X são medidos sem erro
- 2. Existe uma relação linear entre X e Y (só para regressão)
- 3. Os erros ε (e por consequência, Y) tem variância constante (σ^2)
- 4. Os erros ε (e por consequência, Y) são independentes
- 5. Os erros ε (e por consequência, Y) são normalmente distribuídos:
 - $\cdot \ \varepsilon \sim N(0, \sigma^2)$
 - $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$

Muitas vezes, estas pressuposições não correspondem à realidade. Por esta razão, todo processo de modelagem inclui etapas de diagnóstico, remediação, e validação:

Muitas vezes, estas pressuposições não correspondem à realidade. Por esta razão, todo processo de modelagem inclui etapas de diagnóstico, remediação, e validação:

Diagnóstico: processo de avaliação da adequação dos dados e resultados às pressuposições do modelo.

Muitas vezes, estas pressuposições não correspondem à realidade. Por esta razão, todo processo de modelagem inclui etapas de diagnóstico, remediação, e validação:

Diagnóstico: processo de avaliação da adequação dos dados e resultados às pressuposições do modelo.

Remediação: processo de melhoria da adequação dos dados e resultados às pressuposições do modelo.

Muitas vezes, estas pressuposições não correspondem à realidade. Por esta razão, todo processo de modelagem inclui etapas de diagnóstico, remediação, e validação:

Diagnóstico: processo de avaliação da adequação dos dados e resultados às pressuposições do modelo.

Remediação: processo de melhoria da adequação dos dados e resultados às pressuposições do modelo.

Validação: processo de verificação da performance do modelo na explicação/previsão do fenômeno de interesse

Uma das princpais análises diagnósticas é um scatterplot dos resíduos vs. valores estimados (\hat{Y})

Uma das princpais análises diagnósticas é um scatterplot dos resíduos vs. valores estimados (\hat{Y})

Vejamos um exemplo de um modelo de regressão apropriado:

- · Resíduos aletoriamente distribuidos ao redor de zero
- · Variação constante ao longo de $\,Y_i\,$

Uma das princpais análises diagnósticas é um scatterplot dos resíduos vs. valores estimados (\hat{Y})

Vejamos um exemplo de um modelo de regressão apropriado:

- Resíduos aletoriamente distribuidos ao redor de zero
- · Variação constante ao longo de \hat{Y}_i

Dados com resíduos não-normais:

- · Resíduos positivos maiores do que resíduos negativos
- · Distribuição Assimétrica

Dados com resíduos não-normais:

- · Resíduos positivos maiores do que resíduos negativos
- · Distribuição Assimétrica

Resíduos não-normais: Q-Q plot

 Ferramenta gráfica bastante utilizada para avaliação de aderência à normalidade

Resíduos não-normais: Q-Q plot

- Ferramenta gráfica bastante utilizada para avaliação de aderência à normalidade
- · Plota os quantis dos dados contra os quantis correspondentes de uma distribuição normal com os mesmos parâmetros: $N(0,s^2)$

Resíduos não-normais: Q-Q plot

- Ferramenta gráfica bastante utilizada para avaliação de aderência à normalidade
- · Plota os quantis dos dados contra os quantis correspondentes de uma distribuição normal com os mesmos parâmetros: $N(0,s^2)$
- · Quanto mais normal a distribuição, mais "iguais" serão os quantis

Resíduos não-normais: Q-Q plot

- Ferramenta gráfica bastante utilizada para avaliação de aderência à normalidade
- \cdot Plota os quantis dos dados contra os quantis correspondentes de uma distribuição normal com os mesmos parâmetros: $N(0,s^2)$
- · Quanto mais normal a distribuição, mais "iguais" serão os quantis

- · homoscedástico = variância constante
- · heteroscedástico = variância inconstante

- · homoscedástico = variância constante
- heteroscedástico = variância inconstante
- Resíduos aleatoriamente distribuídos ao redor de zero
- · Variância dos resíduos aumenta (ou diminui) ao longo de \hat{Y}

- · homoscedástico = variância constante
- · heteroscedástico = variância inconstante
- Resíduos aleatoriamente distribuídos ao redor de zero
- · Variância dos resíduos aumenta (ou diminui) ao longo de \hat{Y}

Dados com resíduos não-independentes:

Curva de Keeling

Dados com resíduos não-independentes:

Curva de Keeling

Concentração de CO2 atmosférico medido em Mauna Loa, Hawaii

 Resíduos distribuidos sistematicamente ao redor de zero

Dados com resíduos não-independentes:

Curva de Keeling

Concentração de CO2 atmosférico medido em Mauna Loa, Hawaii

 Resíduos distribuídos sistematicamente ao redor de zero

Dados com resíduos não-independentes:

Curva de Keeling

Concetração de CO2 atmosférico medido em Mauna Loa, Hawaii

 Resíduos distribuidos sistematicamente ao redor de zero

Função de Autocorrelação

Plota a correlação entre X e seus próprios valores, com diferentes lags.

Relação entre X e Y não é linear

Relação entre X e Y não é linear

- Resíduos distribuidos segundo um padrão
- · O padrão sugere o tipo de relação

Relação entre X e Y não é linear

- Resíduos distribuidos segundo um padrão
- · O padrão sugere o tipo de relação

Ausência de uma variável explicativa

- · Grande parte da variância não explicada por X_1
- Resíduos nem sempre revelam um padrão
- Mas pode ocorrer forte relação entre os resíduos e a varável omitida

Ausência de uma variável explicativa

- · Grande parte da variância não explicada por X_1
- Resíduos nem sempre revelam um padrão
- Mas pode ocorrer forte relação entre os resíduos e a varável omitida

TIPOS DE RESÍDUOS

Resíduos Brutos (*Raw***)**: Os resíduos originais do modelo, na escala de valores original de *Y*. Se oriundos de um modelo múltiplo, podem assumir valores "estranhos".

Resíduos Normalizados (Standardized): Resíduos originais, divididos pelo erro padrão dos resíduos: $e_i/\sqrt{MQ_{Res}}$. Contudo, apesar da pressuposição de variância constante dos **erros** (ε), os resíduos tendem a ser menos confiáveis quanto mais distante de (\bar{X} , \bar{Y}).

TIPOS DE RESÍDUOS

Resíduos Brutos (*Raw***)**: Os resíduos originais do modelo, na escala de valores original de *Y*. Se oriundos de um modelo múltiplo, podem assumir valores "estranhos".

Resíduos Normalizados (Standardized): Resíduos originais, divididos pelo erro padrão dos resíduos: $e_i/\sqrt{MQ_{Res}}$. Contudo, apesar da pressuposição de variância constante dos **erros** (ε), os resíduos tendem a ser menos confiáveis quanto mais distante de (\bar{X} , \bar{Y}).

Resíduos Estudantizados (Studentized): Normalização dos resíduos que leva em conta esse efeito de distância de \bar{X} , através da fórmula $e_i/MQ_{Res} \times \sqrt{(1-h_{ii})}$. h_{ii} é um elemento da matriz desenho do modelo, que captura esse efeito.

· Resíduos Brutos

- · Resíduos Brutos
- · Resíduos Normalizados

- · Resíduos Brutos
- · Resíduos Normalizados
- · Resíduos Estudantizados

Outro diagnóstico importante é a avaliação do efeito de observações isoladas sobre o ajuste final do modelo linear:

Outro diagnóstico importante é a avaliação do efeito de observações isoladas sobre o ajuste final do modelo linear:

Leverage: Mede o efeito de valores extremos de X. Leverage vem de lever (alavanca). Valores extremos de X podem alavancar a reta de regressão, que se "equilibra" em (\bar{X}, \bar{Y})

Outro diagnóstico importante é a avaliação do efeito de observações isoladas sobre o ajuste final do modelo linear:

Leverage: Mede o efeito de valores extremos de X. Leverage vem de lever (alavanca). Valores extremos de X podem alavancar a reta de regressão, que se "equilibra" em (\bar{X}, \bar{Y})

Distância: Mede o efeito de valores extremos de Y (resíduos extremos).

Outro diagnóstico importante é a avaliação do efeito de observações isoladas sobre o ajuste final do modelo linear:

Leverage: Mede o efeito de valores extremos de X. Leverage vem de lever (alavanca). Valores extremos de X podem alavancar a reta de regressão, que se "equilibra" em (\bar{X}, \bar{Y})

Distância: Mede o efeito de valores extremos de Y (resíduos extremos).

Influência: Combinação de distância e *leverage*, captura efeito total de um *outlier* sobre a reta de regressão

Sim, se a distância for baixa.

Sim, se o leverage for baixo.

Como identificar pontos influentes?

Como identificar pontos influentes?

DFFITS: Diferença normalizada entre o valor de \hat{Y}_i no modelo completo, e o valor da mesma estimativa no modelo onde o ponto X_i, Y_i é removido, $\hat{Y}_{i(-i)}$. Identifica pontos com influência sobre estimativas de Y isoladas.

Como identificar pontos influentes?

DFFITS: Diferença normalizada entre o valor de \hat{Y}_i no modelo completo, e o valor da mesma estimativa no modelo onde o ponto X_i , Y_i é removido, $\hat{Y}_{i(-i)}$. Identifica pontos com influência sobre estimativas de Y isoladas.

Distância de Cook: Similar a DFFITS, mas ao invés de avaliar a diferença em um único ponto, avalia a soma dos quadrados das diferenças de todos os \hat{Y} . Identifica pontos com influência sobre todas as estimativas de Y.

Como identificar pontos influentes?

DFFITS: Diferença normalizada entre o valor de \hat{Y}_i no modelo completo, e o valor da mesma estimativa no modelo onde o ponto X_i , Y_i é removido, $\hat{Y}_{i(-i)}$. Identifica pontos com influência sobre estimativas de Y isoladas.

Distância de Cook: Similar a DFFITS, mas ao invés de avaliar a diferença em um único ponto, avalia a soma dos quadrados das diferenças de todos os \hat{Y} . Identifica pontos com influência sobre todas as estimativas de Y.

DFBETAS: Diferença normalizada entre os valores dos b no modelo completo, e o valor da mesma estimativa no modelo onde o ponto X_i, Y_i é removido, $b_{i(-i)}$. Identifica pontos com influência sobre a inclinação da reta.

\uparrow LEVERAGE E \downarrow DISTANCE

\downarrow LEVERAGE E \uparrow DISTANCE

Visualização + diagnóstico!

TESTES ESTATÍSTICOS PARA PRESSUPOSIÇÕES

Os modelos lineares gerais são robustos, e podem tolerar pequenos desvios. Mas se voce realmente quer testar...

TESTES ESTATÍSTICOS PARA PRESSUPOSIÇÕES

Os modelos lineares gerais são robustos, e podem tolerar pequenos desvios. Mas se voce realmente quer testar...

- · Normalidade: Kolmogorov-Smirnov, Shapiro-Wilk, Lilliefors
- · Heteroscedasticidade: Breusch-Pagan, White
- · Independência: Durbin-Watson, Função de Autocorrelação

Após a análise diagnóstica, descobrimos que nosso modelo viola uma ou mais pressuposições. O que fazer?

· Transformação de variáveis

- · Transformação de variáveis
- · Métodos Robustos e/ou Não-Paramétricos (outra aula)

- · Transformação de variáveis
- · Métodos Robustos e/ou Não-Paramétricos (outra aula)
- Outros modelos que n\u00e3o Modelos Lineares Gerais (outra aula)

- · Transformação de variáveis
- · Métodos Robustos e/ou Não-Paramétricos (outra aula)
- · Outros modelos que não Modelos Lineares Gerais (outra aula)
- · Métodos de aleatorização e reamostragem

A alternativa mais simples para violações dos pressupostos é a transformação de variáveis

A alternativa mais simples para violações dos pressupostos é a transformação de variáveis

Mas...se transformarmos as variáveis originais, não vamos alterar a relação entre elas?

A alternativa mais simples para violações dos pressupostos é a transformação de variáveis

Mas...se transformarmos as variáveis originais, não vamos alterar a relação entre elas?

As transformações devem ser **monotônicas** (preservam a ordem relativa dos dados): Se $X_i > X_j$, então $f(X_i) > f(X_j)$, e vice versa.

A alternativa mais simples para violações dos pressupostos é a transformação de variáveis

Mas...se transformarmos as variáveis originais, não vamos alterar a relação entre elas?

As transformações devem ser **monotônicas** (preservam a ordem relativa dos dados): Se $X_i > X_j$, então $f(X_i) > f(X_j)$, e vice versa.

Se usarmos funções monotônicas, podemos alterar a distância relativa entre os pontos, e assim a variância e a forma da distribuição

$$Y'=cY^{\lambda}$$
 inclui:

$$Y' = cY^{\lambda}$$
 inclui:

$$Y^{-\lambda} = \frac{1}{Y^{\lambda}}$$

$$Y' = cY^{\lambda}$$
 inclui:

$$Y^{-\lambda}=rac{1}{Y^{\lambda}}$$
 , se $\lambda=1$, $Y'=Y^{-1}=1/Y$

A família de funções de potência oferece flexibilidade, dentro de uma mesma especificação:

 $Y' = cY^{\lambda}$ inclui:

$$\cdot \ Y^{-\lambda} = \frac{1}{Y^{\lambda}} \text{ , se } \lambda = 1 \text{, } Y' = Y^{-1} = 1/Y$$

$$\cdot \ Y^{\frac{1}{\lambda}} = \sqrt[\lambda]{Y}$$

A família de funções de potência oferece flexibilidade, dentro de uma mesma especificação:

 $Y' = c Y^{\lambda}$ inclui:

$$\cdot \ Y^{-\lambda} = rac{1}{Y^{\lambda}}$$
 , se $\lambda = 1$, $Y' = Y^{-1} = 1/Y$

$$\cdot Y^{\frac{1}{\lambda}} = \sqrt[\lambda]{Y}$$

· Y^{λ}

A família de funções de potência oferece flexibilidade, dentro de uma mesma especificação:

 $Y' = cY^{\lambda}$ inclui:

$$\cdot \ Y^{-\lambda} = rac{1}{Y^{\lambda}}$$
 , se $\lambda = 1$, $Y' = Y^{-1} = 1/Y$

$$\cdot Y^{\frac{1}{\lambda}} = \sqrt[\lambda]{Y}$$

· Y^{λ}

c é apenas uma constante de escala

As relações de potência podem também ser expressas na forma abaixo, conhecida como transformação de Box-Cox

As relações de potência podem também ser expressas na forma abaixo, conhecida como transformação de Box-Cox

$$Y' = \frac{Y^{\lambda} - 1}{\lambda}$$
, para $\lambda \neq 0$

As relações de potência podem também ser expressas na forma abaixo, conhecida como transformação de Box-Cox

$$Y'=rac{Y^{\lambda}-1}{\lambda}$$
, para $\lambda
eq 0$

$$Y' = log(Y)$$
, para $\lambda = 0$

As relações de potência podem também ser expressas na forma abaixo, conhecida como transformação de Box-Cox

$$Y'=rac{Y^{\lambda}-1}{\lambda}$$
, para $\lambda
eq 0$

$$Y' = log(Y)$$
, para $\lambda = 0$

A expressão acima é válida pois $\lim_{\lambda \to 0} rac{Y^{\lambda}-1}{\lambda} = \log_e(X)$

As relações de potência podem também ser expressas na forma abaixo, conhecida como transformação de Box-Cox

$$Y'=rac{Y^{\lambda}-1}{\lambda}$$
, para $\lambda
eq 0$

$$Y' = log(Y)$$
, para $\lambda = 0$

A expressão acima é válida pois $\lim_{\lambda \to 0} rac{Y^{\lambda}-1}{\lambda} = \log_e(X)$

Normalmente se prefere \log_{10} para facilitar a interpretação, pois um aumento de 1 em $\log_{10}(Y)$ é o mesmo que multiplicar Y por 10

REGRA DA CONVEXIDADE DE TUKEY

OTIMIZAÇÃO DE λ

Podemos utilizar métodos computacionais para encontrar o melhor valor de λ (médodo de máxima verossimilhança, (maximum likelihood)

```
x <- c(1:30)
y <- 2 + x<sup>2</sup>.786
m <-lm(y~x)
plot(x,y)
abline(m)</pre>
```


OTIMIZAÇÃO DE λ

Podemos utilizar métodos computacionais para encontrar o melhor valor de λ (médodo de máxima verossimilhança, ou maximum likelihood)

```
library(MASS)
lambda <- boxcox(m)</pre>
```


OTIMIZAÇÃO DE λ

Podemos utilizar métodos computacionais para encontrar o melhor valor de λ (médodo de máxima verossimilhança, (maximum likelihood)

```
which(lambda$y == max(lambda$y))
## [1] 59
lambda$x[59]
## [1] 0.3434343
newy <- (y^0.3434343 -1)/0.3434343
plot(x,newy)</pre>
```


TRANSFORMAÇÕES: NORMALIDADE E VARIÂNCIA

O uso de transformações não se limita à linearização de variáveis, mas também é de grande ajuda na aproximação dos dados para uma distribuição normal e variância constante

TRANSFORMAÇÕES: NORMALIDADE E VARIÂNCIA

O uso de transformações não se limita à linearização de variáveis, mas também é de grande ajuda na aproximação dos dados para uma distribuição normal e variância constante

Já fizemos a análise exploratória, ajustamos o modelo, analisamos os resíduos, resolvemos problemas de violação das pressuposições. Nosso modelo está pronto.

Já fizemos a análise exploratória, ajustamos o modelo, analisamos os resíduos, resolvemos problemas de violação das pressuposições. Nosso modelo está pronto.

E agora?

Já fizemos a análise exploratória, ajustamos o modelo, analisamos os resíduos, resolvemos problemas de violação das pressuposições. Nosso modelo está pronto.

E agora?

A última etapa do processo de modelagem consiste na validação, isto é, avaliação da "veracidade" do modelo

Já fizemos a análise exploratória, ajustamos o modelo, analisamos os resíduos, resolvemos problemas de violação das pressuposições. Nosso modelo está pronto.

E agora?

A última etapa do processo de modelagem consiste na validação, isto é, avaliação da "veracidade" do modelo

Se o modelo é explicativo, queremos ter certeza sobre nossos coeficientes

Já fizemos a análise exploratória, ajustamos o modelo, analisamos os resíduos, resolvemos problemas de violação das pressuposições. Nosso modelo está pronto.

E agora?

A última etapa do processo de modelagem consiste na validação, isto é, avaliação da "veracidade" do modelo

Se o modelo é explicativo, queremos ter certeza sobre nossos coeficientes

Se o modelo é preditivo, queremos ter certeza sobre as novas predições

Os coeficientes do nosso modelo explicam a relação entre X e Y, e através desta relação podemos prever novos valores de Y

Os coeficientes do nosso modelo explicam a relação entre X e Y, e através desta relação podemos prever novos valores de Y

Mas o quanto podemos confiar em b_0 e b_1 como estimativas de β_0 e β_1 , e nos valores de $\hat{Y}_{i(novo)}$?

Os coeficientes do nosso modelo explicam a relação entre X e Y, e através desta relação podemos prever novos valores de Y

Mas o quanto podemos confiar em b_0 e b_1 como estimativas de β_0 e β_1 , e nos valores de $\hat{Y}_{i(novo)}$?

1) Intervalos de confiança paramétricos

Os coeficientes do nosso modelo explicam a relação entre X e Y, e através desta relação podemos prever novos valores de Y

Mas o quanto podemos confiar em b_0 e b_1 como estimativas de β_0 e β_1 , e nos valores de $\hat{Y}_{i(novo)}$?

- 1) Intervalos de confiança paramétricos
- 2) Validação independente

Os coeficientes do nosso modelo explicam a relação entre X e Y, e através desta relação podemos prever novos valores de Y

Mas o quanto podemos confiar em b_0 e b_1 como estimativas de β_0 e β_1 , e nos valores de $\hat{Y}_{i(novo)}$?

- 1) Intervalos de confiança paramétricos
- 2) Validação independente
- 3) Métodos de aleatorização e reamostragem

```
summary(m0)
##
## Call:
  lm(formula = dist ~ speed, data = cars)
##
  Residuals:
       Min
                 10 Median
                                  30
##
                                         Max
  -8.8603 -2.9033 -0.6925 2.8086 13.1678
                                                            Distância(m)
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) -5.3581
                            2.0600 -2.601
                                              0.0123 *
## speed
               0.7448
                          0.0787 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
##
                                                                          Velocidade(km/h)
## Residual standard error: 4.688 on 48 degrees of freedom
## Multiple R-squared: 0.6511, ^^IAdjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
```

VALIDAÇÃO CRUZADA COM DADOS INDEPENDENTES

A melhor medida da capacidade de predição do modelo é a sua performance em estimar valores não usados no ajuste

VALIDAÇÃO CRUZADA COM DADOS INDEPENDENTES

A melhor medida da capacidade de predição do modelo é a sua performance em estimar valores não usados no ajuste

Mas ao mesmo tempo, queremos usar o máximo de observações possíveis, para ter o melhor ajuste

VALIDAÇÃO CRUZADA COM DADOS INDEPENDENTES

A melhor medida da capacidade de predição do modelo é a sua performance em estimar valores não usados no ajuste

Mas ao mesmo tempo, queremos usar o máximo de observações possíveis, para ter o melhor ajuste

Validação cruzada: dividimos a amostra em 2 partes iguais, e usamos cada metade para validar um modelo ajustado à outra metade

```
dim(cars)
## [1] 50 2
set.seed(89)
samp <- sample(1:50,25,rep=F)
cars1 <- cars[samp,]
cars2 <- cars[-samp,]
m1 <- lm(dist ~ speed, cars1)
m2 <- lm(dist ~ speed, cars2)</pre>
```



```
pr1 <- predict(m1,cars2)
pr2 <-predict(m2,cars1)
rmse1 <- sqrt(mean((cars2$dist - pr1)^2))
rmse2 <- sqrt(mean((cars1$dist - pr2)^2))
rmse1
## [1] 5.311186
rmse2
## [1] 4.313988</pre>
```


JACKKNIFE OU LOOCV

Não seria ótimo se pudéssemos usar o máximo possível de observações pra estimar o erro?

JACKKNIFE OU LOOCV

Não seria ótimo se pudéssemos usar o máximo possível de observações pra estimar o erro?

E se, ao invés de dividir meio a meio, deixássemos uma observação de fora, e repetíssemos n vezes?

JACKKNIFE OU LOOCV

Não seria ótimo se pudéssemos usar o máximo possível de observações pra estimar o erro?

E se, ao invés de dividir meio a meio, deixássemos uma observação de fora, e repetíssemos n vezes?

Jacknife ou Leave One Out Cross-Validation (LOOCV)

Distância de frenagem pode ser predita pela velocidade do veículo?

```
b0 <- vector()
b1 <- vector()
rq <- vector()
for (i in c(1:50)){
    m <- lm(dist ~ speed, data=cars[-i,])
    b0 <- c(b0,coefficients(m)[1])
    b1 <- c(b1,coefficients(m)[2])
    rq <- c(rq,summary(m)$r.squared)
}</pre>
```


Distância de frenagem pode ser predita pela velocidade do veículo?

```
pred <- b0 * cars$speed * b1
erro <- cars$dist-pred
rmse <- sqrt(mean(erro^2))
rmse
## [1] 4.784539</pre>
```


JACKKNIFE OU LOOCV

Esse método pode também ser usado para criar intervalos de confiança para β_0 , β_1 , etc.

JACKKNIFE OU LOOCV

Esse método pode também ser usado para criar intervalos de confiança para β_0 , β_1 , etc.

Conduza a aleatorização, e reporte os percentis $\alpha/2$ e $1-\alpha/2$

JACKKNIFE OU LOOCV

Esse método pode também ser usado para criar intervalos de confiança para β_0 , β_1 , etc.

Conduza a aleatorização, e reporte os percentis $\alpha/2$ e $1-\alpha/2$

Problema: poucas observações

BOOTSTRAP

Bootstrap

Generalização dos métodos de reamostragem

BOOTSTRAP

Bootstrap

Generalização dos métodos de reamostragem

Selecione n novas amostras, com reposição, e recalcule o modelo. Repita ${\bf muitas}$ vezes.

BOOTSTRAP

Bootstrap

Generalização dos métodos de reamostragem

Selecione n novas amostras, com reposição, e recalcule o modelo. Repita **muitas** vezes.

Observações mais frequentes vão ser reamostradas mais vezes

Bootstrap

Generalização dos métodos de reamostragem

Selecione n novas amostras, com reposição, e recalcule o modelo. Repita **muitas** vezes.

Observações mais frequentes vão ser reamostradas mais vezes

O resultado final aproxima a distribuição original de ε e Y (seja ela qual for)

Distância de frenagem pode ser predita pela velocidade do veículo?

```
b0 <- vector()
b1 <- vector()
rq <- vector()
for (i in c(1:1000)){
    sub <- sample(1:50,50,replace=T)
    m <- lm(dist ~ speed, data=cars[sub,])
    b0 <- c(b0,coefficients(m)[1])
    b1 <- c(b1,coefficients(m)[2])
    rq <- c(rq,summary(m)$r.squared)
}</pre>
```


É importante garantir que os dados satisfaçam às pressuposições dos Modelos Lineares Gerais

É importante garantir que os dados satisfaçam às pressuposições dos Modelos Lineares Gerais

Mas ao mesmo tempo, vale lembrar que estes métodos são bastante robustos, especialmente quando n é grande

É importante garantir que os dados satisfaçam às pressuposições dos Modelos Lineares Gerais

Mas ao mesmo tempo, vale lembrar que estes métodos são bastante robustos, especialmente quando n é grande

Diagnóstico e remediação, mas sem obsessão!

É importante garantir que os dados satisfaçam às pressuposições dos Modelos Lineares Gerais

Mas ao mesmo tempo, vale lembrar que estes métodos são bastante robustos, especialmente quando n é grande

Diagnóstico e remediação, mas sem obsessão!