Sizing and Synthesis -A step-by-step walk-through

Presented by Prof. Dimitri Mavris

Director
Aerospace Systems Design Laboratory
Georgia Institute of Technology

Purpose of Mission Analysis

- Constraint analysis provides a solution mapped as a point in a thrust loading, $T_{\rm SL}/W_{\rm TO}$ against wing loading, $W_{\rm TO}/S$ diagram. But we need the actual values of these parameters and not just their ratios
- A mission analysis will yield the additional equation needed
- A fuel required vs available iteration is performed to determine the actual size of the aircraft required to fly the mission

Disciplines Involved in Conceptual Design

- Propulsion
- Structures
- Aerodynamics

We need information from each of these disciplines before we proceed!

Discipline: Propulsion

• In constraint analysis, we used lapse rate and TSFC, but going forward, more information would be needed

$$F_N = \dot{m}_a (v_j - v_0)$$
 v_j is a function of **cycle analysis**

- For our purposes, we use an engine that is in the ball park and scale it up and down (<u>rubberized engine</u>) within reason to meet our requirement (<u>fixed cycle analysis</u>)
- How can engine be <u>scaled</u>?

$$F_N \propto \dot{m}_a$$

$$\dot{m}_a = \rho \pi \frac{d_f^2}{4} v_0$$

Bigger fan produces more thrust by increasing \dot{m}_a

Discipline: Propulsion

• The information about the performance of an engine on various conditions are contained in an engine deck. A typical engine deck looks like:

h (altitude) M % Thrust TSFC

• Because we are scaling the engine, instead of %*Thrust*, we use $\frac{\%Thrust}{\dot{m}_a}$, and instead of TSFC, we use \dot{m}_f

h (altitude) M % T/\dot{m}_A \dot{m}_f

Discipline: Propulsion

• Importance of using $\frac{\%Thrust}{\dot{m}_a}$ over %Thrust: scales the engine through \dot{m}_a , which can be used to calculate the diameter of the fan. This is the basis of a "rubberized" engine. Scaled up and down photographically through \dot{m}_a

• Note:

- For cases were an existing engine is not suitable nor can easily be scaled, a new engine will need to be designed. That is accomplished through an engine cycle analysis (variation of FPR, CPR, efficiencies of stages, etc.)
- This approach allows for a better integration of engine and airframe.

Discipline: Structures

• In the conceptual design phase, this discipline is represented by calculating the total weight and weight breakdown of the aircraft

$$W_{TO} = W_E + W_P + W_F$$

$$W_E = W_{wing} + W_{fuselage} + W_{empennage} + W_{prop} + W_{elec} + W_{hydraulic}$$

W_{TO}: Takeoff Weight W_E: Empty Weight W_P: Payload Weight W_E: Fuel Weight

- Intuition tells us that W_E is somehow dependent on W_{TO}
 - A larger aircraft (large W_{TO}) will have a larger empty weight (W_E)
 - This implies W_{wing}, W_{fuselage}, W_{empennage}, etc. also depend on W_{TO}

Discipline: Structures

• For example, consider W_{wing}:

$$W_{wing} = f(span, chord, AR, material, topology)$$

Since this information is not available in conceptual design, let's look at a historical correlation between W_{wing} and W_{TO}

Discipline: Structures

• Relational form for W_{wing}:

$$W_{wing} = \alpha' W_{TO}^{\beta'}$$

• Similar relations apply for the other component weights. The R² for such relation is very low on a component level. However, this is a useful approach when looking from an empty weight perspective. Although high, at component level, the error on the W_E using such form is very low for conceptual design level

$$W_E = W_{wing} + W_{fuselage} + \dots = \alpha W_{TO}^{\beta}$$

- α and β : found for a given aircraft using historical data

Discipline: Aerodynamics

- During analysis of takeoff, landing, cruise, or any other segment, the aerodynamic characteristics of the airframe are needed
 - $-C_{Lmax}$
 - Lift-drag polar
 - $-C_{L\ cruise}$
- Maximum coefficient of lift (C_{Lmax}) is important in analysis during takeoff and landing

Discipline: Aerodynamics

- <u>Lift-drag polar estimation</u>
 - Lift-drag polar can be estimated for the notional design or approximated using experience or historical trends

Discipline: Aerodynamics

- For <u>sizing of horizontal tail</u>:
 - A three Degrees of Freedom of model is needed
 - Lift, drag and pitching moment considered
 - CG calculation required
- To size the vertical tail, rudder: <u>lateral analysis</u> needs to be considered:
 - Need a six Degrees of Freedom depiction
 - In conceptual design, it is common to size the empennage through the use of tail volume coefficients

• A mission profile is needed before we size the aircraft

Example mission profile

• Usually, we want to test our aircraft under critical conditions to ensure that it can withstand stringent conditions like one engine failure, a lifting surface not employed, etc.

• <u>Step 1</u>:

- It is assumed that W_P is known (from RFP)
- Payload weight may be comprised of passengers, crew, baggage, military loads, etc.

$$\mathbf{W}_{\mathrm{TO}} = \mathbf{W}_{\mathrm{E}} + \mathbf{W}_{\mathbf{P}} + \mathbf{W}_{\mathrm{F}}$$

- <u>Step 2</u>:
 - Guess a value for W_{TO}

$$\mathbf{W_{TO}} = \mathbf{W_E} + \mathbf{W_P} + \mathbf{W_F}$$

- <u>Step 3</u>:
 - Calculate S and T_{SL} using values of W_{TO} (from Step 2), T_{SL}/W_{TO} and W_{TO}/S (from constraint analysis)

• <u>Step 4</u>:

Using empty weight regressions, find W_E/W_{TO} for guessed W_{TO}

$$\frac{W_E}{W_{TO}} = f(W_{TO})$$

$$\boldsymbol{W_{TO}} = \boldsymbol{W_E} + \boldsymbol{W_P} + \boldsymbol{W_F}$$

• <u>Step 5</u>:

- Calculate W_F available to fly the mission

$$\mathbf{W}_{\mathrm{F,avail}} = \mathbf{W}_{\mathbf{TO}}$$
 - $\mathbf{W}_{\mathbf{E}}$ - $\mathbf{W}_{\mathbf{P}}$

– If density of fuel (ρ_F) is known, then volume available (V_F) is also known. For our purpose, V_F is not needed (for military designs, V_F is needed as such designs are limited by volume)

- <u>Step 6</u>: Fuel required calculation
 - Split the mission into smaller segments and march through all segments of the mission
 - For any point in mission, h and M are known
 - Vehicle balance is done to calculate Lift (L) and Drag (D)

Mission split into smaller segments

• <u>Step 6</u>...

- S falls out from above. Now, Drag(D) can be calculated

$$\mathbf{D} = \frac{1}{2}\rho V^2 C_D S$$

– Once drag at a point is known, part thrust can be calculated from engine deck, and if it's linked to \dot{m}_a , required mass flow rate of air can be obtained

• <u>Step 6</u>...

- The required fuel flow rate (ΔW_f) for this segment can also be obtained from the table. Multiply this by the time of segment 'i' to get fuel burn for that segment (ΔW_{Fi})

Total fuel required =
$$W_{F,req} = \sum_{i} \Delta W_{Fi}$$

• <u>Step 7</u>:

– Check difference between fuel available $(W_{F,avail})$ and fuel required $(W_{F,req})$

$$\Delta F = W_{F,avail} - W_{F,req}$$

 If the difference is within tolerance, you have a converged solution (Now you have a <u>sized vehicle!</u>)

- <u>Step 7</u>...
 - If not, update W_{TO} in Step 2 as:

$$W_{TO} = W_{TO} - \Delta F$$

(or the weight difference can be split between $W_{F,avail}$ and W_{TO})

- In the calculations, it might turn out that there was not enough area
 - You might want to update S as the largest area required or change the aerodynamics that can provide enough C_L
- Update on the thrust would be \dot{m}_a multiplier
- Now, you have new values for T_{SL} , S, and W_{TO} .
- Repeat Step 4 Step 7 until $|\Delta F|$ converges to 0 or a specified tolerance

Notes:

- Volume analysis can be done by converting weight of fuel required to volume required
 - The volume available calculation is not straightforward for vehicles that are volume limited
- To include horizontal and vertical tail analysis, CG needs to be determined
 - The knowledge of topology of components is needed
 - For a quick estimation, you can look at other similar aircraft and see how the components can be placed.

