Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Programmable devices have existed for centuries. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. There exist a lot of different approaches for each of those tasks. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Many applications use a mix of several languages in their construction and use. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. It is very difficult to determine what are the most popular modern programming languages. Following a consistent programming style often helps readability.