Data Quality Cinzia Cappiello cinzia.cappiello@polimi.it	
1	
The importance of Data	Quality

Data Driven Management

Data-driven Management is characterized by the practice of collecting data, analyzing it, and **basing decisions on** insights derived from the **information**.

https://www.smartsheet.com/data-driven-decision-making-management

3

The Problem: GIGO (Garbage In – Garbage Out) Phenomenon

The success of data-driven decision making depends on

- the **quality of data** collected
- the $\boldsymbol{methods}$ used to $\boldsymbol{analyze}$ \boldsymbol{data}

^

even if it is a small error...you can have the snowball effect

5

Data Quality Horror stories

The Mars Climate Orbiter, a key part of NASA's program to explore the planet Mars, vanished in September 1999 after rockets were fired to bring it into orbit of the planet. It was later discovered by an investigative board that NASA engineers failed to convert English measures of rocket thrusts to newtons, a metric system measuring rocket force, and that was the root cause of the loss of the spacecraft. The orbiter smashed into the planet instead of reaching a safe orbit.

This discrepancy between the two measures, which was relatively

This discrepancy between the two measures, which was relatively small, caused the orbiter to approach Mars at too low an altitude. The result was the loss of a \$125 million spacecraft and a significant setback in NASA's ability to explore Mars.

Lost in Translation

peared -month o orbit Ground iectory. re, the dow its resum-

he first Global global

Data Quality Horror stories

Back in 1870," Arbesman explained, "Erich von Wolf, a German chemist, examined the amount of iron within spinach, among many other green vegetables. In recording his findings, von Wolf accidentally misplaced a decimal point when transcribing data from his notebook, changing the iron content in spinach by an order of magnitude. While there are actually only 3.5 milligrams of iron in a 100-gram serving of spinach, the accepted fact became 35 milligrams. Once this incorrect number was printed, spinach's nutritional value became legendary. So when Popeye was created, studio executives recommended he eat spinach for his strength, due to its vaunted health properties, and apparently Popeye helped increase American consumption of spinach by a third!"

 $\label{lem:http://www.ocdqblog.com/home/popeye-spinach-and-data-quality.html} \label{lem:http://www.ocdqblog.com/home/popeye-spinach-and-data-quality.html}$

We need an adequate architecture for analyze data

9

Why is data preparation important?

- Real-word data is often incomplete, inconsistent, and contain many errors...
- Data preparation, cleaning, and transformation comprises the majority of the work in a data mining application (90%).

Data Quality definition

11

Data Quality definition

• Traditional definition

"Fitness for use ... the ability of a data collection to meet user requirements"

• From an Information System perspective

Data Quality Management ✓ Quality dimensions definition Quality dimensions assessment Quality issues analysis ✓ Quality improvement

13

Data Quality dimensions

15

Data Quality issues to consider in data preparation activities are mainly related to...

- Missing values
- Duplicate data
- Inconsistent data
- Outliers
- Noise

Data Quality Problems (single source) - example

ID	Name	Street and house number	Postcode	Town	Date of birth	Phone	e-mail
1	Janet Gordon	30 Fruit Street	75201	Dallas			
2	Kathy Robert	436 Devon Park Drive	94105	San Francisco	08.08.1969	215-367- 2355	krob@robert.co m
3	Sandra Powels	3349 North Ridge Avenue	33706	St. Pete Beach			
4	Johnstone, Jeffrey	3300 Sylvester Rd	92020	El Cajon			
5	Lowe Ruth-Hanna	25 Peachtree Lane	02112	Boston	10.10.50	(0617)- 8845123	
6	Gordon Janet	30 Fruit Street	75201	Dallas			
7	Nick Goodman	Regional Campuses, 711	10020	New York	08/07/1975		n.good@goodma n.com
8	Poweles Donna S.	3347 North Ridge	33706	Saint Pete Beach			
9	Cathy Robbert	436 Devon Park Drive	94105	San Francisco	08.03.1969		
10	Ruthanna Lowe	25 Peachtree Lane	02112	Boston		0617- 8845123	
11	John Smith	10 Main Street	02112	New York			
12	Robert Katrin	434 Devon Park	94105	San Francisco			
13	Nick Goodman	56 Grafton Street	94105	San Francisco	08/07/1975		n.good@goodma n.com
14	Sandro Powels	3349 North Ridge Av.	33706	Pete Beach			

Data Quality problems in BI (multiple sources) - example

ID	Diagnosis	Hospital	Province	Date	Cost
1	Flu	SR	Milan	01/05/2008	200
2	Flu	SR	Milan	24/5/2008	180-220
3	Flu	SR	Milan	04/05/2008	9999
4	Influenza	SC	Trento	03.05.2008	
5	Influenza	SC	Trento	03.04.2008	230
6	Influenza	SC	Trento	10.07.2008	
7	Flu Type A	CG	Milano	04-04-2008	130
8	Flu	OS	Bolzano	2008/04/23	130
9	Flu	OS	Bolzano	2008/05/11	200

19

Poor data quality is due mainly to

Missing values

Duplicates

Inconsistencies

Outliers

Noise

Out-of-date data

Most used objective Dimensions

Accuracy

• the extent to which data are correct, reliable and certified

Completeness

 the degree to which a given data collection includes the data describing the corresponding set of real-world objects

Consistency

• the satisfaction of semantic rules defined over a set of data items

Timeliness

• the extent to which data are sufficiently up-to-date for a task

21

Business impact Accuracy Timeliness Consistency Completeness Assessment complexity

Data Quality Improvement

23

Data Quality improvement strategies

Data-based approaches

Process-based actions

- They focus on data values and aim to identify and correct errors without considering the process and context in which they will be used
- They are activated when an error occurs and aim to discover and eliminate the root cause of the error

Data Based approach: data cleaning

Definition

"Data cleaning is the process of identifying and eliminating inconsistencies, discrepancies and errors in data in order to improve quality"

[Naumann 2000]

25

Steps of Data Cleaning

Data Cleaning

Felix Naumann, Kai-Uwe Sattler 2006

Profiling

- Analysis of content and structure of attributes: Data type, domain, data distribution and variance, occurence of null values, uniqueness, format (e.g., mm/dd/yyyy)
- Analysis of dependencies between attributes of a single relation: E.g., Functional dependencies, primary key candidates
- Analysis of overlapping attributes from different relations: Redundancies, foreign keys
- Number of missing values or wrong values
 - · current vs.expected cardinality
 - frequency of null values, minimum / maximum, variance
- Duplicates
 - Number of tuples vs. Cardinality of attribute domain

Felix Naumann, Kai-Uwe Sattler 2006

27

Data Profiling with Python: Ydata profiling Sample

29

Data Profiling with Python: Ydata profiling Variables Distinct 0.059773424 Mean abv 75 Minimum 0.001 Unique (%) 3.1% Maximum 0.128 Missing (%) 2.6% Zeros (%) Missing (n) 62 Infinite (%) 0.0% Infinite (n) 0 Toggle details Distinct 231.7497925 Mean brewery_id 558 Minimum 23.2% Unique (%) Maximum Missing (%) 0.0% Zeros (%) Missing (n) Infinite (%) 0.0% Infinite (n) Toggle details

Cleaning tasks

Normalization/standardization

- Datatype conversion
- Discretization
- Domain specific

Missing values

- Detection
- Imputing

Outlier detection

- Model
- Distance

Duplicate detection

Data transformation and normalization

Data type conversion: varchar \rightarrow int

Normalization: mapping into a common format

- date: 03/01/15 → 01-MAR-2015
- currency: \$ → €
- tokenizing: "Smith, Paul"→ "Smith", "Paul"

Discretization of numerical values

Domain-specific transformations

- $\bullet \quad \text{Surname, name} {\rightarrow} \, \text{Name surname}$
- St. \rightarrow Street
- Address transformation using address databases
- Domain-specific product names/codes (e.g., in pharmacy)

Felix Naumann, Kai-Uwe Sattler 2006

33

Error Localization and correction

This activity can be seen as composed of:

- Localization and correction of inconsistencies
- Localize and correction of incomplete data
- · Localization of outliers

Localize and correct inconsistencies

Once we have a valid, i.e., at least consistent, set of edits, we can use them to perform the activity of error localization.

In particular, we can check syntactic accuracy and inconsistencies

After the localization of erroneous records, in order to correct errors, we could perform the activity called *new data* acquisition

35

Missing data

Missing information on different levels

- Instance level: values, tuples, relation fragments, ...
- Schema level: Attributes, ...

Main Problems on instance level:

- Treating null values: missing value or default value?
- Data truncation and data censorization
- Biased data, e.g. caused by null values

Imputing missing value

unbiased estimators"

- Estimating missing values without changing characteristics of existing dataset (mean, variance, ...)
- E.g.: 1, 2, 3, _, 5 → (median: 2.75; variance: 4.659)

Exploiting functional dependencies

• E.g.: #Bedrooms → Income

Techniques from statistics

- Linear regression: income = c • #Bedrooms
- techniques for non-linear dependencies:
 - · Neural networks, ...

37

Outlier detection

Outlier: "suspicious" observation that deviates too much from other observations. An outlier is then a value that is unusually larger or smaller in relation to other values in a set of data

issues:

- detection: distribution, "geometry", time series
- interpretation: data or observation error vs. real event

Duplicate detection Identify a good similarity measure

Duplicate detection (or entity reconciliation) is the discovery of multiple representations of the same real-world object.

- Main issues:
 - Identify a good similarity measure
 - Minimize the number of comparisons

39

The high level process Input file A Preprocessing on A and B Preproces

Data Quality improvement methods are also used in Data Warehouse OLTP Metadati OLAP OLAP OLAP OLAP Motore OLAP Mining Mining Sorgenti Sterne Operazioni ETL Dati Informazionali Strumenti di Analisi

43

Big data and data quality

Big data and data quality

Big Data analysis allows to understand customer needs, improve service quality, and predict and prevent risks.

High quality data are the precondition for guaranteeing the quality of the results of Big Data analysis.

Big Data tried to overcome **Data Quality issues with Data Quantity. But quality is still** an issue.

Cai, Li, and Yangyong Zhu. "The challenges of data quality and data quality assessment in the big data era." *Data Science Journal* 14 (2015).

Big data challenges

(1) Diversity of data sources (Variety)

Abundant data types - internal + external data sources

Complex data structures - structured, semi-structured, IoT

Difficult data integration - ETL and traditional approaches useless due to data volume and velocity

(2) Tremendous data volume (Volume)

Data quality profiling and assessment (collection, cleaning, and integration) is difficult to execute in a reasonable amount of time.

(3) Timeliness of data is very short (Velocity)

Data is updated continuously. If data is not collected and analysed in real time, information becomes outdated and invalid.

(4) Missing standard for Data Quality (Veracity)

Standards have been proposed for DQ of traditional data sources but not for big data.

Cai, Li, and Yangyong Zhu. "The challenges of data quality and data quality assessment in the big data era." *Data Science Journal* 14 (2015).

47

Unstructured Big Data Quality Assessment Model

I. Taleb, M. A. Serhani and R. Dssouli, "Big Data Quality Assessment Model for Unstructured Data," 2018 International Conference on Innovations in Information Technology (IIT), 2018, pp. 69-74, doi: 10.1109/INNOVATIONS.2018.8605945.

To summarize: most common DQ issues in big data

Not integrated data

Incomplete data

Incorrect data

Data cleaning have to be frequently performed

Inconsistent sources and issues in data integration

Source reliability

Data variety

Human resources: find the right competencies

Data provenance and lineage informatio should be available

49

