GW-HS

GW – Haydock – Sternheimer

Choose k_0 for $\Sigma(k_0)$

Choose k_0 for $\Sigma(k_0)$

Generate uniform {q} grid for the screened Coulomb interaction W

Choose k_0 for $\Sigma(k_0)$

Generate uniform {q} grid for the screened Coulomb interaction W

Generate uniform $\{k_0-q\}$ grid for the Green's function G

Choose k_0 for $\Sigma(k_0)$

Generate uniform {q} grid for the screened Coulomb interaction W

Generate uniform {k₀-q} grid for the Green's function G

Calculate Green's function for every k₀-q point

This requires also the k+q eigenstates \rightarrow fold k+q into {k} grid using G-vector maps

- The occupied wavefunctions are calculated only once at the beginning on the {q} grid
- If we change k_0 for $\Sigma(k_0)$, we only need to re-compute the Green's function, the screened Coulomb stays unchanged

- The occupied wavefunctions are calculated only once at the beginning on the {q} grid
- If we change k_0 for $\Sigma(k_0)$, we only need to re-compute the Green's function, the screened Coulomb stays unchanged

What about the frequency?

Same idea:

Choose w_0 for $\Sigma(w_0)$

Generate uniform {w} grid for the screened Coulomb interaction W

Generate uniform {w₀-w} grid for the Green's function G

• If we change w₀ there is no extra cost since Haydock is frequency-independent

Direct product in real space: $\Sigma(r,r') = G(r,r') W(r,r')$

Determine Green's function for every (G,G'), small cutoff Determine W(G,G') for every G, small cutoff

FFT of Green's function to coarse real-space grid FFT of W to coarse real-space grid

 Σ = G W product in real space

I-FFT of Σ to G-space (small cutoff)

Direct product in real space: $\Sigma(r,r') = G(r,r') W(r,r')$

Determine Green's function for every (G,G'), small cutoff

Determine W(G,G') for every G, small cutoff

FFT of Green's function to coarse real-space grid FFT of W to coarse real-space grid

 Σ = G W product in real space

I-FFT of Σ to G-space (small cutoff)

Sigma cutoff
wavefunction cutoff

G-spheres

Haydock works fine in G-space

Work in progress

- Frequency integration
 (need to use disk to store W at each frequency)
- Restart of Sternheimer at various q and w with previous guess
 I do not get any improvement in convergence need to understand
- Is G-basis optimal or we can still exploit the periodic sinc functions?

TODO

- Comparison with BerkeleyGW: plasmon-pole?
- scaling test on silicon supercell

scaling

Green's function $N_q \times 4 \times (N_{Gs} \times (N_{Gs} - 1)/2 \text{ Lanczos chains})$

each chain:

 $N_{it\ lanczos}\ x$ (2 scalar products + 1 Hamiltonian application)

Screened Coulomb $N_w \times N_q \times N_{Gs} \times (N_{it_SCF} \times (N_q \times 4 \times CG \text{ sequences}))$

each sequence:

 $N_{it_CG} \times N_{occ} \times (2 \text{ scalar products} + 1 \text{ Hamiltonian application})$

TOTAL $4 \times N_q \times N_{Gs} \times (N_w \times N_{it_SCF} \times N_q \times N_{it_CG} \times N_{occ} + (N_{Gs} - 1)/2 \times N_{it_lanczos})$ $\times (2 \text{ scalar products} + 1 \text{ Hamiltonian application})$

Scaling of Hybertsen/Louie

Calculation of empty states $N_{Gs} \times N_{occ} \times N_{empty} \times N_q \times N_q$ scalar products

Optical matrix elements $N_{empty} \times N_{q}$ (CG sequences)

each sequence:

 N_{it_CG} x (2 scalar products + 1 Hamiltonian application)

Inversion of epsilon $N_w \times N_q \times 4/3 (N_{Gs})^3$

(assuming inversion by LU decomposition)

TOTAL $N_q \times N_{empty} \times (N_{Gs} \times N_{occ} \times N_q + 2 \times N_{it_CG})$ (scalar products) + $N_q \times N_{empty} \times N_{it_CG}$ (Hamiltonian application) + $N_a \times N_w \times (N_{Gs})^3$

Assumption

Large systems, Gamma point sampling

 N_{empty} (scalar product) — This goes as $N_{Gb} \times N_{empty}$

 $4 \times N_{it SCF} \times N_{it CG}$ (Hamiltonian application) — This goes as $N_{Gb} \times \log N_{Gb}$

H = T + V

T is applied in O(N_G) operations

V requires 3 FFTs and 1 O(N_G) operation. FFTs take 3N_GlogN_G operations

Assumption

Large systems, Gamma point sampling

 $\label{eq:haydock/Sternheimer} N_{\text{Gs}} \ x \ N_{\text{occ}} \ x \ N_{\text{Gb}} \ x \ \text{logN}_{\text{Gb}} \ x \ 12 \ x \ N_{\text{it_SCF}} \ x \ N_{\text{it_CG}}$

Hybertsen/Louie N_{at}⁴

Haydock/Sternheimer $N_{at}^3 \log N_{at}$ - PLANEWAVES

Assumption

Large systems, Gamma point sampling

Hybertsen/Louie $N_{Gs} \times N_{occ} \times N_{Gb} \times N_{empty}$

 $\label{eq:haydock/Sternheimer} N_{\text{Gs}} \ x \ N_{\text{occ}} \ x \ N_{\text{Gb}} \ x \ \text{logN}_{\text{Gb}} \ x \ 12 \ x \ N_{\text{it_SCF}} \ x \ N_{\text{it_CG}}$

Hybertsen/Louie N_{at}⁴

Haydock/Sternheimer $N_{at}^3 \log N_{at}$ - PLANEWAVES

N_{at}³ – LOCAL ORBITALS

 $H\psi$ in local orbitals is a O(N) operation

CONCLUSION

- ullet Planewaves: The use of $H\psi$ operations instead of sums over empty states has a better scaling thanks to FFTs O (NlogN)
- ullet Local orbitals: The use of $H\psi$ operations instead of sums over empty states has a better scaling thanks to sparseness O(N)

Hbar