Algèbre relationnelle

Dr N. BAME

Interrogation d'une BD relationnelle

- Langages algébriques :
 - Une requête est une composition d'opérations : algèbre relationnelle
- Langages logiques :
 - Une requête est exprimée par une formule logique :
 calcul relationnel
- Et SQL?
 - sémantique formelle = calcul relationnel
 - algorithmes d'évaluation sont fondés sur l'algèbre relationnelle

Algèbre relationnelle

 Langage théorique, avec des opérations qui permettent de manipuler des relations (tables)

• Ensemble d'opérations qui s'applique sur des relations pour donner de nouvelles relations

 Ces opérations s'effectuent grâce à un certains nombres d'opérateurs

 On distingue les opérateurs ensemblistes issues de la théorie des ensembles et les opérateurs purement relationnels

Algèbre relationnelle

Opérateurs unaires :

```
<Opérateur><sub><parametres></sub> <Opérande>
→ <Résultat>
```

Opérateurs binaires :

```
<Opérande><Opérande>
→ <Résultat>
```

 Langage fermé : les opérandes et les résultats sont toujours des relations

Les opérateurs de l'AR

- Opérateurs de base :
 - Projection
 - Sélection
 - Produit cartésien
 - opérations ensemblistes: union, différence

- Opérateurs dérivés :
 - Intersection
 - Jointure

Opérateurs de l'AR

 Projection (π): création d'un schéma sousensemble d'un autre schéma. La projection élimine les n-uplets doublons.

$$\Pi_{A_1,...,A_n}(R) = \{t.A_1,...A_n \mid t \in R\}$$

 Sélection ou restriction (σ): Même schéma mais réduction du nombre de tuples grâce à un critères (ou prédicat)

$$\sigma_F(R) = \{t \mid t \in R \text{ et } F(t) \text{ est vrai}\}$$

Opérateurs de l'AR

 Produit de cartésien (x): Création d'un schéma à partir de 2 tables avec concaténation des attributs et combinaison systématique des tuples

$$R \times S = \{t.A_1...A_{k_1} A_{k_1+1}...A_{k_1+k_2} | t.A_1...A_{k_1} \in R \ et$$
$$t.A_{k_1+1}...A_{k_1+k_2} \in S\}$$

 Jointure (⋈): Création d'un table à partir de 2 tables avec union des attributs et concaténation des tuples satisfaisant à la condition de jointure

$$R \bowtie_F S = \{t.A_1...A_nB_1...B_m | t.A_1...A_n \in R \text{ et } t.B_1...B_m \in S \text{ et } F \text{ est vrai}\}$$

Opérateurs de l'AR

 Union (u): création d'une table a partir de 2 tables ayant le même schéma. La table résultant contient l'ensemble des tuples

 $R \cup S = \{t \mid t \in R \text{ ou } t \in S\}$

- Différence (-): création d'une table à partir de 2 tables ayant le même schéma. La table résultante contient les tuples appartenant à une table et pas à l'autre $R S = \{t \mid t \in R \text{ et } t \notin S\}$
- Intersection (∩): création d'une table des tuples communs de 2 tables ayant le même schéma

$$R \cap S = \{t \mid t \in R \text{ et } t \in S\}$$

Restriction

Sélection d'un sous-ensemble de la relation opérande:

$$\sigma_{prédicat}(R) = \{t \mid t \in R \text{ et } prédicat(t) \text{ est } vrai\}$$

Où

- **R** est une relation, *t* est un n-uplet variable
- Prédicat est une formule logique (condition) composée de :
 - opérandes: constantes et attributs
 - opérateurs de comparaison :<, >, =, ≠, ≤, ≥
 - opérateurs logiques : ∧, ∨, ¬

Le **résultat** est **un extrait de la relation** qui correspond aux **tuples qui satisfont le prédicat** de sélection

Exemple de sélection

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng.
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

Les employés de profession 'Elect. Eng'

σ _{TITLE='Elect. Eng.'} (EMP)				
ENO	ENAME	TITLE		
E1 E6	J. Doe L. Chu	Elect. Eng Elect. Eng.		

Projection

Projection sur un ensemble d'attributs d'une relation

$$\Pi_{A1,...,An}$$
 (R)={t.A₁ ... A_n | t ∈ R}

Où

- R est une relation, t est une variable n-uplet
- {A₁,..., A_n} est un sous-ensemble des attributs de R
- Le résultat ne contient que les attributs spécifiés

Note: la projection élimine les n-uplets doublons.

Les SGBD relationnels (et SQL) permettent

- projection (pure)
- projection sans élimination des doublons

Exemple de projection

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000
P5	CAD/CAM	500000

$\Pi_{PNO,BUDGET}(F$	PROJ)
----------------------	-------

PNO	BUDGET
P1	150000
P2	135000
P3	250000
P4	310000
P5	500000

$\Pi_{PNAME}(PROJ)$
PNAME
Instrumentation Database Develop. CAD/CAM Maintenance

Exercices

Soit le schéma relationnel ci-dessous :

```
Emp (Eno, Ename, #Title, City)
Pay(Title, Salary)
Project(Pno, Pname, Budget, City)
Works(#Eno, #Pno, Resp, Dur)
```

- Exprimer les requêtes suivantes en algèbre relationnelle :
 - 1. Villes où sont localisés des projets?
 - Villes où il y a des employés?
 - 3. Projets de budget > 225?
 - 4. Projets de Dakar?
 - 5. Employés informaticiens?
 - 6. Budgets des projets de Thies?
 - 7. Noms et budgets des projets de Thies?
 - 8. Villes où habitent des informaticiens?
 - 9. Noms des professions de salaires supérieurs à 1.000.000?

Produit cartésien

Produit cartésien entre deux tables :

$$R1 \times R2 = \{t.A_1 ...A_{k1} A_{k1+1} ...A_{k1+k2} \mid t.A_1 ...A_{k1} \in R1 \text{ et } t.A_{k1+1} ...A_{k1+k2} \in R2\}$$

Ou

- R1 est une table de **degré** (nombre de colonnes) k_1 , cardinalité (nombres de n-uplets) n_1
- R2 est une table de**degré** (nombre de colonnes) k_2 , cardinalité (nombres de n-uplets) n_2

Le résultat est une relation de degré $(k_1 + k_2)$ et contient $(n_1^* n_2)$ n-uplets, où chaque n-uplet est la concaténation d'un n-uplet de R1 avec un n-uplet de R2.

Exemple de produit cartésien

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

PAY

TITLE	SALARY
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

$\mathsf{EMP} \times \mathsf{PAY}$

ENO	ENAME	EMP.TITLE	PAY.TITLE	SALARY
E1	J. Doe	Elect. Eng.	Elect. Eng.	55000
E1	J. Doe	Elect. Eng.	Syst. Anal.	70000
E1	J. Doe	Elect. Eng.	Mech. Eng.	45000
E1	J. Doe	Elect. Eng.	Programmer	60000
E2	M. Smith	Syst. Anal.	Elect. Eng.	55000
E2	M. Smith	Syst. Anal.	Syst. Anal.	70000
E2	M. Smith	Syst. Anal.	Mech. Eng.	45000
E2	M. Smith	Syst. Anal.	Programmer	60000
E3	A. Lee	Mech. Eng.	Elect. Eng.	55000
E3	A. Lee	Mech. Eng.	Syst. Anal.	70000
E3	A. Lee	Mech. Eng.	Mech. Eng.	45000
E3	A. Lee	Mech. Eng.	Programmer	60000
\perp	L _			L _

E8	J. Jones	Syst. Anal.	Elect. Eng.	55000
E8	J. Jones	Syst. Anal.	Syst. Anal.	70000
E8	J. Jones	Syst. Anal.	Mech. Eng.	45000
E8	J. Jones	Syst. Anal.	Programmer	60000

Jointure

Le **résultat** R contient **les combinaisons** des n-uplets de **R1** avec les n-uplets de **R2** qui vérifient le *prédicat de jointure*.

$$R1 \bigotimes_{\mathbf{F}} R2 = \{t.A_1 ...A_n B_1 ...B_m \mid t.A_1 ...A_n \in R1$$

et $t.B_1 ...B_m \in R2$ et \mathbf{F} est $\mathbf{vrai}\}$

Où

- R1 et R2 sont des relations
- t est une variable n-uplet F est une formule logique composée de condition de la forme A_i θ B_j où θ ∈{<, >, =, ≠, ≤, ≥}.
- La jointure s'exprime aussi par un produit cartésien suivi d'une sélection: $R1 \otimes_F R2 \sigma_F (R1 \times R2)$

Exemple de jointure

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

WORKS				
ENO	PNO	RESP	DUR	
E1 E2 E2 E3 E3 E4 E5 E6	P1 P1 P2 P3 P4 P2 P2 P4	Manager Analyst Analyst Consultant Engineer Programmer Manager Manager	12 24 6 10 48 18 24 48	
E7	P3	Engineer	36	
E7	P5	Engineer	23	
E8	P3	Manager	40	

EMP™ _{EMP.ENO>WORKS.ENO} WORKS						
EMP. ENO.		TITLE	WORKS. ENO	PNO	RESP	DUR
E2 E3 E3 E4 E4 E4 E4 E5 E5 E5 E5 E6 E6 E6 E6 E6	M. Smith A. Lee A. Lee A. Lee J. Miller J. Miller J. Miller J. Miller B. Casey B. Casey B. Casey B. Casey B. Casey L. Chu L. Chu L. Chu L. Chu L. Chu L. Chu	Syst. Anal. Mech. Eng. Mech. Eng. Mech. Eng. Programmer Programmer Programmer Programmer Programmer Syst. Anal. Syst. Anal. Syst. Anal. Syst. Anal. Syst. Anal. Syst. Anal. Sight. Elect. Eng.	E2 E3 E3 E1 E2 E3 E3 E4 E1 E2 E2 E3 E3 E3 E4	P1 P1 P2 P1 P2 P3 P4 P1 P2 P3 P4 P2 P1 P2 P3 P4 P2 P3 P4 P2 P3 P4 P2 P3 P4 P2 P3 P4 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5 P5	Manager Manager Analyst Analyst Manager Analyst Consultant Engineer Manager Analyst Consultant Engineer Programmer	12 24 6 10 48 18
E6	L. Chu	Elect. Eng.	E5 	P2 	Manager 	24

Types de jointure

θ-jointure

- la formule F utilise les comparaisons <, >, ≠, ≤, ≥

Equi-jointure

– la formule F n'utilise que **l'égalité** : = $R\bowtie_{RA=SR} S$

Jointure naturelle: R(X, Y1), S(X, Y2)

Equi-jointure où on élimine les attributs en communs

$$R \bowtie S = \prod_{R.X, R.Y, S.Y'} \sigma_F(R \times S) = \prod_{S.X, R.Y, S.Y'} \sigma_F(R \times S)$$

la condition de jointure F est R.X = S.X (X représente tous les attributs en commun entre R et S)

Exemple de jointure naturelle

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

PAY

TITLE	SALARY
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

EMP⋈**PAY**

ENO	ENAME	TITLE	SALARY
E1	J. Doe	Elect. Eng.	55000
E2	M. Smith	Analyst	70000
E3	A. Lee	Mech. Eng.	45000
E4	J. Miller	Programmer	60000
E5	B. Casey	Syst. Anal.	70000
E6	L. Chu	Elect. Eng.	55000
E7	R. Davis	Mech. Eng.	45000
E8	J. Jones	Syst. Anal.	70000

Exercices

Soit le schéma relationnel ci-dessous :

```
Emp (Eno, Ename, #Title, City)
Pay(Title, Salary)
Project(Pno, Pname, Budget, City)
Works(#Eno, #Pno, Resp, Dur)
```

- Exprimer les requêtes suivantes en algèbre relationnelle :
 - 1. Noms et salaires des employés de Dakar ?
 - 2. Noms et villes des employés ayant un salaire supérieur à 700.000?
 - 3. Noms et budgets des projets où a travaillé l'employé de numéro 4?
 - 4. Noms et professions des employés qui ont travaillé dans un projet pendant moins de 6 mois ?
 - 5. Responsabilités occupées par des informaticiens dans des projets?
 - 6. Noms, budgets et ville des projets où a travaillé l'employé Alpha Diallo?
 - 7. Noms, budgets et villes des projets où ont travaillé des employés ayant un salaire supérieurs à 1.200.000 ?

Semi-jointure

R = SEMI JOINTURE (R1, R2, <Prédicat_de_Jointure>)

R a le même schéma que R1
R contient les combinaisons des n-uplets de R1 avec les n-uplets de R2 qui
vérifient le prédicat de jointure.

 $R = R1 \bowtie R2$

Jointure Externe

la jointure externe de 2 tables R et S est une table T obtenue par jointure de R et S et ajout des tuples de R et de S ne participant pas à la jointure avec des valeurs nulles pour les attributs de l'autre table

On distingue:

- la jointure externe droite
 - elle garde seulement les tuples sans correspondant de la table de droite
- la jointure externe gauche
 - elle garde seulement les tuples sans correspondant de la table de gauche

Exemple de jointure externe

VINS	Cru	Millésime	Qualité
	Volnay	1983	A
	Volnay	1979	В
	Julienas	1986	C

LIEU	Cru	Région	QualMoy
	Volnay	Bourgogne	A
	Chablis	Bourgogne	A
	Chablis	Californie	В

VINS-LIEU = VINS LIEU :

VINS-LIEU	Cru	Millésime	Qualité	Région	QualMoy
	Volnay	1983	A	Bourgogne	A
	Volnay	1979	В	Bourgogne	A
	Chablis	-	-	Bourgogne	A
	Chablis	-	-	Californie	В
	Julienas	1986	С	-	-

Conflit de noms

- Il peut arriver (il arrive de fait très souvent) que les deux relations aient des attributs qui ont le même nom.
- On doit alors se donner les moyens de distinguer l'origine des colonnes dans la table résultat en donnant un nom distinct à chaque attribut.
- Exemple: La table T(<u>A</u>, B) a les mêmes noms d'attributs que R(<u>A</u>, B).
- Le résultat du produit cartésien RXT a pour schéma (A,B,A,B)

Solution

- 1. La première solution pour lever l'ambiguité est de **préfixer** un attribut **par le nom de la table** d'où il provient.
- 2. le renommage. Il s'agit d'un opérateur particulier, **dénoté** ρ qui permet de **renommer** un ou plusieurs attributs d'une relation. $\rho_{A->C,\ B->D}(T)$

Union

- L'union R U S crée une relation comprenant tous les tuples existant dans l'une ou l'autre des relations R et S
- Il existe une condition impérative : les deux relations doivent avoir le même schéma, c'est-à-dire même nombre d'attributs, mêmes noms et mêmes types.

Différence

- la différence s'applique à deux relations qui ont le même schéma.
- L'expression R S a pour résultat tous les tuples de R qui ne sont pas dans S.

Intersection

Intersection de deux tables:

$$R \cap S = \{t \mid t \in R \text{ et } t \in S\}$$

où

 R, S sont deux tables compatibles pour l'intersection (même schéma)

Utilisation des opérateurs

 Dans les requêtes seuls les opérateurs les plus maniables sont utilisés : ce sont *l'union* et la *différence* pour *l'insertion* et la *suppression* de tuples dans la base et la *restriction*, la *projection* et la *jointure* pour la *recherche sélective* de tuples.

 Les opérateurs de l'algèbre relationnelle sont à la base des langages de manipulations de données (SQL)

- Emp (Eno, Ename, Title, City)
- Pay(<u>Title</u>, Salary)
- Project(Pno, Pname, Budget, City)
- Works(Eno, Pno, Resp, Dur)

Villes où il y a des employés ou des projets?

Villes où il y a des projets mais pas d'employés?

```
Emp (Eno, Ename, Title, City)
Pay(<u>Title</u>, Salary)
```

Project(Pno, Pname, Budget, City)

Works(Eno, Pno, Resp, Dur)

- Villes où il y a des employés ou des projets? Π_{City} (Emp) U Π_{City} (Project)
- Villes où il y a des projets mais pas d'employés?
 Π_{City}(Project) Π_{City}(Emp)

Emp (Eno, Ename, Title, City) **Projec**t(Pno, Pname, Budget, City)

Pay(Title, Salary) Works(Eno, Pno, Resp, Dur)

Noms des projets de budget > 225?

Noms et budgets des projets où travaille l'employé E1?

Emp (Eno, Ename, Title, City) Project(Pno, Pname, Budget, City)Pay(Title, Salary) Works(Eno, Pno, Resp, Dur)

Noms des projets de budget > 225?

$$\Pi_{Pnam}e(\sigma_{Budget>225}(Project))$$

Noms et budgets des projets où travaille l'employé E1?

```
\Pi_{\text{Pname, Budget}} (Project \bowtie (\sigma_{\text{Eno='E1'}}(Works)))
\Pi_{\text{Pname, Budget}} (\sigma_{\text{Project.Pno=Works.Pno}} (Project \times_{\sigma \text{Eno='E1'}} (Works)))
```

Arbre algébrique

- Utile pour manipuler les requêtes (optimisation, vues)
- Exemple

$$\Pi_{\text{Pname, Budget}}(\text{Project} \bowtie (\sigma_{\text{Eno=`E1'}}, (\text{Works})))$$

Mise à jour d'une BD relationnelle

- Avec les opérateurs relationnels
 - Insertion de n-uplets = union de la relation contenant les n-uplets à insérer avec la relation déjà existante dans la base
 - Suppression de n-uplets = différence entre la relation existante dans la base et la relation contenant les nuplets à supprimer
 - Modification = suppression suivie d'une insertion