Ecole Nationale Supérieure en Informatique

Dimanche 09 Novembre 2018

Contrôle Intermédiaire Théorie des langages de programmation 1 C.S.

Durée: 2H.

Tous Documents Interdits

EXERCICE 1: (5 Pts)

On définit l'opération SM(L) comme suit:

- Supprimer chaque mot de longueur pair de L
- 2. Pour chaque mot de longueur impair, supprimer le caractère du milieu

Par exemple si $L = \{001, 1100, 10101\}$, alors $SM(L) = \{01, 1001\}$. Le mot 1100 est supprimé car de longueur pair. On supprime le caractère du milieu pour le mot 001 et 10101 donnant respectivement 01 et 1001.

Soit $L_1 = \{ (01)^k \ 0, k \ge 0 \}.$

- 1. De quel type est ce langage?
- 2. Donner la grammaire du langage L₁
- 3. Donner la grammaire de SM(L₁)
- 4. De quel type est ce langage?

EXERCICE 2: (5 Pts)

Soit E l'expression régulière suivante $E = (0 \cup 10)^*$. Trouver dans les expressions suivantes celle(s) qui dénote(nt) le complément de $L((0 \cup 10)^*)$. Justifier.

- 1. $(0 \cup 1)*11(0 \cup 1)*$
- 2. $(0 \cup 10)*11(0 \cup 1)* \cup (0 \cup 1)*1$
- 3. $(0 \cup 10)*11(0 \cup 10)*$
- 4. $(0 \cup 1)*11(0 \cup 10)* \cup (0 \cup 10)*1$
- 5. Aucune

EXERCICE 3: (4 Pts)

Donner les grammaires engendrant les deux langages suivants (Ne pas justifier):

$$L_1 = \{a^i b^{2n} c^n a^j, i > 3j \}$$

$$L_2 = \{a^n \ b^m \ w \ tq \ m-|w| \equiv 1[3], \ w \in \{d\}^*\}$$

EXERCICE 4: (6 pts)

Soit $A_G < X^*$, S, S₀, F, II>, un automate généralisé où : $X = \{a, b, c\}$, $S = \{S_0, S_1, S_2\}$, $F = \{S_2\}$, et II :

1. Donner l'automate $\overline{A^R}$.