Group Assignment 3 (Just Problem 2)

Lucas Bouck

November 3, 2015

Problem:

Prove the rational roots theorem. Let $p(x) = a_0 + a_1x + ... + a_nx^n$ be a polynomial such that each a_j is an integer. If t = r/s (where r and s are integers and t is written in lowest terms, so that gcd(r,s) = 1) satisfies p(t) = 0, then $r|a_0$ and $s|a_n$.

Proof:

Let $p(x) = a_0 + a_1x + ... + a_nx^n$ be a polynomial such that each a_j is an integer. Assume there exists a t = r/s where r and s are integers and t is written in lowest terms, so that gcd(r,s) = 1 such that p(t) = 0. We want to show that $r|a_0$ and $s|a_n$. Since p(t) = 0, we get $a_0 + a_1t + ... + a_nt^n = a_0 + a_1\frac{r}{s} + ... + a_n\frac{r^n}{s^n}$. By subtracting a_0 from both sides, we get:

$$-a_0 = a_1 \frac{r}{s} + \dots + a_n \frac{r^n}{s^n}$$

$$-a_0 s^n = a_1 r s^{n-1} + a_2 r^2 s^{n-2} + \dots + a_n r^n$$

$$-a_0 s^n = r \left(a_1 s^{n-1} + a_2 r s^{n-2} + \dots + a_n r^{n-1} \right)$$

$$\left(-a_0 s^{n-1} \right) s = r \left(a_1 s^{n-1} + a_2 r s^{n-2} + \dots + a_n r^{n-1} \right)$$

Since $a_0, s \in \mathbb{Z}$, $-a_0s^{n-1} \in \mathbb{Z}$. Since $-a_0s^{n-1} \in \mathbb{Z}$, $s|r\left(a_1s^{n-1} + a_2rs^{n-2} + ... + a_nr^{n-1}\right)$. Since gcd(r,s) = 1, $s|\left(a_1s^{n-1} + a_2rs^{n-2} + ... + a_nr^{n-1}\right)$. Therefore, there exists an integer z such that $sz = \left(a_1s^{n-1} + a_2rs^{n-2} + ... + a_nr^{n-1}\right)$. We can then break the left term into $\left(a_1s^{n-1} + a_2rs^{n-2} + ... + a_nr^{n-1}\right) = \left(a_1s^{n-1} + a_2rs^{n-2} + ... + a_{n-1}r^{n-2}s^1\right) + a_nr^{n-1}$. Let $\left(a_1s^{n-1} + a_2rs^{n-2} + ... + a_{n-1}r^{n-2}s^1\right) = d$. Since all of $a_j \in \mathbb{Z}$ and $r, s \in \mathbb{Z}$, then $d \in \mathbb{Z}$. Since s|s and each term of d is some integer multiplied by s, then s divides each term of s. Thus, s|d. Therefore, there exists an integer s such that s is s multiplying s to both sides, we get s is s in s in

We still need to show that $r|a_0$. Using an earlier equation, we know $-a_0 = a_1 \frac{r}{s} + \ldots + a_n \frac{r^n}{s^n}$. By multiplying s^n to both sides, we get $-a_0 s^n = a_1 r s^n + \ldots + a_n r^n$. By factoring out r we get $-a_0 s^n = r(a_1 s^n + \ldots + a_n r^{n-1})$. Then, $a_0 s^n = r(-(a_1 s^n + \ldots + a_n r^{n-1}))$. Let $-(a_1 s^n + \ldots + a_n r^{n-1}) = m$. Since all $a_j \in \mathbb{Z}$ and $r, s \in \mathbb{Z}$, then $m \in \mathbb{Z}$. Thus, there exists an integer m such that $rm = a_0 s^n$. Therefore, $r|a_0 s^n$. Since gcd(r, s) = 1 and n is a natural number, then $gcd(r, s^n) = 1$. Since $gcd(r, s^n) = 1$, then $r|a_0$.

We have now proven $s|a_n$ and $r|a_0$. We are done.