

FIG. 1A

FIG. 1B

FIG. 1C

FIG. 1D

FIG. 1E

FIG. 1F

Lambda CGN1-2
NFC=186 | heat LENGTH = 4325

FIG. 2A

FIG. 2B

HincII HhaI HaeI BdeI BstE I BAl I HaeIII HaeIII AluI
415 CAATGTCGGAGAGACAA3GGCTGMNCATATACAAAAGGGAAATGAAGATGGCCTTTGATTAGCTG 483
439 438 439 439 440 438

AluI HinfI
484 TGTAGCATCAGCAGCTAACTCTGGGCTCTCATGGATGCTGGAAACTGGATTCACTTCAAGTTTA 552
498 535

MspI HpaI I HinfI
553 TGAGTTGTCAACGGGCTCTACACAAGGTAAATAATCAGITGAAGCAATTAAAGAATCAAATTGATTGT 621
564 564
DdeI
622 AGTAAACCAAGAACCTTACCTTATGTTTCCCCCAGGACTGGATTATGGAACAAATGGGAAAGAAC 690
629

AluI AluI SacI
691 TACTATATAAGCTCATAGCTGGTTCAGATAACGGGAGCTTTAGTTGTTATGTCAAAAGGTAGTGT 759
702 710 729 731

FIG 2C

1243 CTCATGTCAGGGTTCTTAAACAGATTGGATCTTTGGTTCCATACT 1311
 AluI Sau3AI PdeI
 1268 1285 1311

1312 TAGGACCTGAGCTTTGGTTGATTTCAGGACAAATGGCGAAGAACATTGCA 1380
 BdeI Avai I AluI HinfI Rsal I
 1315 1325 1319 1363 1370

1381 ATATGCTATGGCAGACGTGTGCTGATACACACTTAAGCATCATGGAAAGCCAAGAACATTGGAG 1449
 HinfI PdeI

1450 CGAGACTCAGGGTCGTATAACCATCAAAGACGTTAAACAGACGCAACCTCTTGGTGAATGTA 1518
 1454 1456

1519 ATGAAAAGGATGGTGCTGGTATGTTACGATAACAAAGAGATGGAAATTAGTAGTAAATA 1587
 Rsal I
 1548

1588 TTTGGGAGCTTTAAAGCCCTCAAGTGTGTTTATCTTATTGATATCATCCATTGGTTAA 1656
 AluI EcoRV

1596 1635

1657 TGGCTCTAGATAATGGTCCTATATCTTCAGTGTCTGATAAGTGAATGTGGGAAACATACCAA 1725
 XbaI PdeI
 1664 1687

FIG. 2D

HinfI
 1726 ACCAAATTCATACTTTAATGTTGAATCACTCGGA/GTGGCACCTCTGTGCCATTG 1794
 1761

HinfI
 1795 TGCTGAATCTACACTAGAAAAACATTCTCAAGGTAATGACTTGTGGACTATGTTCTGAATTG 1863
 1800

EcoRI
 1864 TCATTAAGTTTTATTTCTGAAGTTAACGTTTACCTCTGTGTTTGAAATATATCGTTCAAAAGATG 1932
 1933 TCACGCCAGGACATGAGCTACACATGCACATAGCATGCAGATCAGGACGATTGCACTCACTCAA 2001
 1940 1950 1973
 1971

BstNI
AluI
SphI
Sau3AI

Bpu11I
AluI
MspI
NdeI
NsiI
SphI
Sau3AI

2002 CACCTAAGGCTCTCTCACAGCCACACATATGCATGCCATTACACGTTGATGCCATGCCA 2070
 2006 2012 2028 2036 2042 2058
 2044

AluI
 2071 ATCTCCATTCTACCTATAATTAGAGCTCGGCTCACTCTTACTCAAACCAAACTCATCACTACA 2139
 2140 GAACATACACAAATGGCGAACAAAGCTCTGGCAACTCGGCTTCTGTTCTCTTCACC
 METIaAsnIlysLeuPheLeuValSerAlaThrLeuAlaLeuPheLeuLeuLeuThr
 2164

FIG. 2E

FIG. 2F

FIG. 2G

2968 CAGTCAGATTTCTTAAATGCTTAAGCTTCAGGGCTAGTGATAAAAGATCATCCA 3036
 Sau3AI
 3028

3037 ATGGGATCCAAACAGACTCAAAATCTGGTTGATCAGATACTTCAAAACATTTTGATTCAATTAA 3105
 Sau3AI
 BclI
 3041
 3041

3053 3069
 3041 3069

3066 3116f
 3016 TTAGGCAAGTGTCCTTAAATGGCTAGAACACTTAAAGGCAAGAACGACAGGAGTAAATAAAAAA 3174
 3135

3175 ACAAAAGTTCAGTTAAGATTGTTGACTTATGACTTATGTTGAAAATAGTGTATTTATAA 3243

3244 GTTTTATTTATATAATGCTGCTATTCAGATTGAGAACATTAAATGAACTGTGCCACATAKCCAA 3312
 Kdel

3313 TATATTAAAGTTTCAATTCTGTCAAACAAATGATAAGAATGICCAAATGAACTATGACTTGTGTTTAC 3381
 3341

3402 3405
 3421 3425

3451 ATATGACATCACCTAGAGAAAGCCATATAATGAAAGCTGGTTTAAATCAAMCCGA 3519
 FIG. 2H

FIG. 21

FIG. 2J

Brassica campestris ACP Genomic Sequence

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 3E

FIG. 3F

FIG. 3G

1911 GAGGAAGCTGCTGAACTCATTGAAGAGCTCGTTCAACTTAAGAACTAATTAGTATTAAAGGAGGCCA 2001 Glu Glu Ala Ala Glu Leu Ile Glu Glu Leu Val Gln Leu Lys 1940 1960 1962	2002 AGGCCTTTGGTGCGTTCTTCAATACTTCCATTTCTTCTTCTTAAATGTGTCAAGCGAC 2070 2069	2082 TCTGTCGTTAAAGTAGTATCTGTTGCCATGGATCTCTCTTATTCGACTGAAACCTTTCGTT 2139 2100 2104 2119 2120 2121	2140 TACACATGAAAGCTT 2154 2152 2150
AluI SacI AluI 1911	SacI AluI 1940	HinfI 2002	TaqI Sau3AI NcoI DraI 2082
AluI 1960	AluI 1962	HincII AccI 2069	HincII AluI 2140

Brassica Campestris Seed Specific cDNA-EA9

Complete nucleotide sequence of *B. campestris* cDNA EA9. The longest open reading frame is designated by three letter amino acid code. PolyA tails are evident at the end of the sequence and a potential polyadenylation signal is underlined.

FIG. 4A

FIG. 4B

TaqI
 SalI
 HincII
 AluI AccI
 | |
 553 AGAGCTTGTGACTGGACACAAACGATGGTGGCTGCATGGCGGTTGATGGATAACGGCTTAACTA
 nGluLeuValAspCysAspThrAsnAspGlyGlyCysME"rGlyGlyLeuMetAspThrAlaPheAsnTy
 557 562
 560
 561
 562

622 CACAAACTATTGGGGCTTAACCTCTGAATCAAMATTATCCTTATAAACGACAAACGGCACTTGCAA
 rThrIleThrIleGlyGlyLeuThrSerGluSerAsnTyPrOtyrLysSerThrAsnGlyThrCysAS
 HpaII
 |
 691 CTTCAATAAAACTAACAGATAGCAACTCTATCAAAGGTTTGGGATGTCGGCTAACGATGAGAA
 nPheAsnLysThrLysGlnIleAlaIleAlaIleAlaGlyGlyAspIleAsnAspGluIle
 744

HpaII
 |
 760 AGCCCTAATGAAAGGCACTGGCACACCACCCGGTTAGCATTGGAAATAGCGGGAGGAGATATTGTTCCA
 SALaLeuMETLysAlaValAlaHisProValSerIleGlyIleAlaGlyGlyAspIleGlyPheGly
 789

Sau3AI
 BclI
 |
 829 ATCTATTGGTCCGGTGTTCAGCGGGAGAATGCACAAACTCATCTGATCACGGGGTAAC TGCGGTGG
 nPhetYrSerSerGlyValPheSerGlyGluCysthrThrHisLeuAspHisGlyValThrAlaValG1
 841
 875
 875

FIG. 4C

FIG. 4D

3H11 TTTTTTGAGCAAAGGGCAACTCAGATATCCAAAGATGAATCCAACATATA 51

3H11 GCTTACAGCTGGGAGAACATTGTCTAACTCTTCTGAAATTAAATGTTATC 102

3H11 CAGAATCCTTCATCATAAAATAATCAAAATGCAAATCTATTTTCTAC 153

3H11 TCTTGTCTAGCTTCAACTTCTTCTGCTCATCAATTAGCAATTAAATCC 204
TGCTCATCAATTAGCAATTAAATCC

3H11 AAAACCATTATGGCTGCCAAAATTCAAGAGATGAAGTTGCTATCTTCTTC 255

2A11 AAAACCATTATGGCTGCCAAAATTCAAGAGATGAAGTTGCTATCTTCTTC
METAlaAlaLysAsnSerGluMETLysPheAlaIlePhePhe

3H11 GTTGTCTTTGACGACCACTTAGTTGATATGTCTGGAATTTCGAAAATG 306

2A11 GTTGTCTTTGACGACCACTTAGTTGATATGTCTGGAATTTCGAAAATG
ValValLeuLeuThrThrLeuValAspMETSerGlyIleSerLysMET

3H11 CAAGTGATGGCTCTCGAGACATACCCCCACAAGAACATTGCTGAAAATG 357

2A11 CAAGTGATGGCTCTCGAGACATACCCCCACAAGAACATTGCTGAAAATG
GlnValMETAlaLeuArgAspIleProProGlnGluThrLeuLeuLysMET

3H11 AAGCTACTCCCACAAATATTTGGGACTTGTAAACGAACCTGCAGCTCA 408

2A11 AAGCTACTCCCACAAATATTTGGGACTTGTAAACGAACCTGCAGCTCA
LysLeuLeuProThrAsnIleLeuGlyLeuCysAsnGluProCysSerSer

3H11 AACTCTGATTGCATCGGAATTACCCCTTGCCTTTGCAATTGTAAAGGAGAAGACG 459

2A11 AACTCTGATTGCATCGGAATTACCCCTTGCCTTTGCAATTGTAAAGGAGAAGACG
AsnSerAspCysIleGlyIleThrLeuCysGlnPheCysLysGluLysThr

3H11 GACCAAGTATGGTTAACATACCGTACATGCAACCTGTTGCCTTGAACAATA 510

2A11 GACCAAGTATGGTTAACATACCGTACATGCAACCTGTTGCCTTGAACAATA
AspGlnTyrGlyLeuThrTyrArgThrCysAsnLeuLeuPro

FIGURE 5A

3H11 TCAATGATCTATCGATCGATCTATCTATCTATTATCTGTCTGCGCGTA 561
2A11 TCAATGATCTATCGATCGATCTATCTATCTATTATCTGTCTGCGCGTA

3H11 TAGTGTGTCGTACCTTGGTGTGAAGAATATGAATAAAGGGATACATAT 612
2A11 TAGTGTGTCGTACCTTGGTGTGAAGAATATGAATAAAGGGATACATAT

3H11 ATCTAGATATATTCTAGGTAAATGTCCTATTGTATTAAAATTGTAGCAAT 663
2A11 ATCTAGATATATTCTAGGTAAATGTCCTATTGTATTAAAATTGTAGCAAT

3H11 GATTGTTGAATAAAACATACCATGAGTGAAATAATTATTCCACATTAAT 714
2A11 GATTGTTGAATAAAACATACCATGAGTGAAATAATTATTCC

3H11 TCACGTATTTATTCACTTATGATACGTATTTTGTTCCTTCGCGTAAAAA 765

3H11 AAAAAAAA 774

FIGURE 5B

ZAll	(V)MALRDIPPQETLL
PA1b	(V)CSPFDIPP CGSPLRCI
Chick pea inhibitor	(V)CT-KSIPP -----QCRCN
Lima bean inhibitor	LCT-KSIPP -----QCRCCT
α_1 -antitrypsin	LGAIPMSIPPEV

ZAll	TNILGLCNEPCSSNSD CI
PA1b	GSPLCR C I PAGL VIGNCR
Barley chloroform/methanol-soluble protein d	TNLLGNCR - FYLVQQTCA
Wheat α -amylase inhibitor 0.28	V S A L T G C R - A M V K L Q C V
Wheat albumin	V P A L P A C R P L - L R L Q - C N
Millet bi-functional inhibitor	NNPLDSCKRWYVSATKR.TACG
Castor bean 2S small subunit	QQNL RQCQ EYIKQQVSGQ
Napin small subunit	A Q N L R A C Q Q W L N K Q A M Q S

FIGURE 6

2A11 GENOMIC

	10	20	30	40	50
CTCGAGCCCT	TTAAAAAGTA	TAGTCAATAT	TTACGGTGAC	CGTGAATTTC	
60	70	80	90	100	
TTAATTATGA	TATATAATTT	AAAAGAAATC	ATGATCACAT	TCTACTGATG	
110	120	130	140	150	
AGAACATGTG	CTAATCAAGG	GAAAACATGG	ATGTGAAAAAA	TACTTTTGT	
160	170	180	190	200	
TAAAAGTAAA	AAAAAAATGTG	AAATTTGTT	AGTTATTTAC	TACCTATACA	
210	220	230	240	250	
TTATTTGAGC	ATGTGCAAAC	TTTACAAATA	CCTAATAGAA	GATTTTCACC	
260	270	280	290	300	
TGCCTGTATA	TATGTAAATT	AATTATAATG	AACACTCTCA	CATAAAATAA	
310	320	330	340	350	
TTATCAGTAT	ATACATTAAT	ACTTGCCCTC	CACAATGAAT	TAAATAAAAT	
360	370	380	390	400	
GTAGAACATG	ATCTACACTT	CAATAAAACT	AAGACCATAA	AGAATAATTT	
410	420	430	440	450	
CAAAATATAC	ACATGTCAAC	AATAAATTAT	TTGCATATTA	TATTAACTTA	
460	470	480	490	500	
CTAAACAATC	TTTACTTTG	AAATATAAAA	ATAATCAAGT	TATAAGTCTG	
510	520	530	540	550	
CTCAAAGTAA	AGCACTTGTT	AGACTCATCT	GATTTGAGA	AGGTAAGCAA	
560	570	580	590	600	
ATTGATGGTG	CATAATAGTC	ACAAGTAAAA	TATAAAATAG	ATTCATTAG	
610	620	630	640	650	
TAAAATTGTT	TTTTACTTTC	TTTATATATA	ATTATCAATA	TCCTTCAATG	
660	670	680	690	700	
GTAGGTTAAT	TATATTGTTA	ACTTCTTGT	GAATTAAAGC	AATAAGACAA	
710	720	730	740	750	
GAATATTAAA	GATAAAAGAA	CAATAAAAT	AGAAAGACTA	AGAGATAAGA	
760	770	780	790	800	
GTTTCTTAT	TCTTCTTCA	ATAAGTATCA	TCAAGTGTAT	ACAATATAAA	
810	820	830	840	850	
TTTTGTATT	TTTGATCTAT	CTATTTATAA	TGTTATATAT	AAGCATAACAA	
860	870	880	890	900	
AAGATCAGTC	ATAAATATGA	CTTTAATCAT	GAAAATAATG	AAAGAGATTA	
910	920	930	940	950	
TGAAGGCGTA	AGGTTACTAG	AATAATAGTC	ATTAAAAAAA	GGGGTTATCT	
960	970	980	990	1000	
TTATAATTGA	ATAATTGATG	AAGTAATGGA	GATAATTAGT	GAGCATAAAT	
1010	1020	1030	1040	1050	
TTTTTAAAAA	AAATGGACAT	TTACACTATA	ATATTTATA	ACACTTTCCC	
1060	1070	1080	1090	1100	
TTAAACATCT	AGGTATAAAAT	AATGAGTCTT	GTCAAAATCT	TAGTAGGAAA	

FIGURE 7A

1110	1120	1130	1140	1150
AATTCTGTGA	AATTTTTTA	GTGAAAACAA	ATGATATAAAA	TATCTTGAAT
1160	1170	1180	1190	1200
ACTCATATT	TGTTGCTCA	TTAAAAATCT	TATCTGACCT	ATAAAATAAA
1210	1220	1230	1240	1250
TTATTTGCTC	AACTCAAAAT	AGTTTTCAT	TCTAAAATTA	GTATAATTAT
1260	1270	1280	1290	1300
TAGTGAATAT	TTAATTAACA	TAATTGTATA	CTAAGGGGCC	TATAAATTGG
1310	1320	1330	1340	1350
ATTCTTCTCA	AAGAAAAATA	AAATCACCCAC	ACAACTTTCT	TCTTCTGCTC
1360	1370	1381	1390	
ATCAATTAGC	AATTAATCCA	AAACCATT	ATG GCT GCC AAA AAT	
			MET Ala Ala Lys Asn	
1399	1408	1417	1426	
TCA GAG ATG AAG TTT GCT ATC TTC TTC GTT CTT TTG				
Ser Glu MET Lys Phe Ala Ile Phe Phe Val Val Leu Leu				
1435	1444	1454	1464	1474
ACG ACC ACT TTA GGTCACAAAC	ACTTCTCCCT	TATTTGTTT		
Thr Thr Thr Leu				
1484	1494	1504	1514	1524
TCTTAATTTC	TTGGAAGTCA	TATGCATGTG	TTTGGTATCA	TGGTATATAT
1534	1544	1554	1564	1574
ATAAAGGAAA	ATATTTTCT	TAATTACTGG	TTTTCTAATG	TTTGGTAGGT
1584	1594	1604	1614	1624
AATCGGAAAT	TATTATGAGA	TAATGAACCT	GCAAAGTCAT	TATTATATAA
1634	1644	1654	1664	1674
CTTTTTTTT	ATACTTGAT	TTAAGAACCT	TTTTCTCA	TTTTATATAA
1684	1694	1704	1714	1724
ACTTATTTT	CAACAGAAAA	TATTTTCGA	ACTATTCAAA	CACACCCCTAA
1734	1744	1754	1764	1774
GACATTACAT	ATATATATAT	ATACACCCCTC	CGTTTATAT	TACTTAATGC
1784	1794	1804	1814	1824
CTATTGAGTT	GGCCCACCCCT	TTAAGAATGA	TTCAATTAGA	GATATGTTT
1834	1844	1854	1864	1874
ACTAAATTAA	CCTATGCTTT	AAGACTCTAA	ATTTGGCTAT	TACTATTTA
1884	1894	1904	1914	1924
CGTTGTAATT	TAATGACAAA	CATTTCATAA	TGACTATAGT	CTGAACCTAA
1934	1944	1954	1964	1974
TTAGACAGAC	GTATCTATAG	TTTGCTTACT	AATGATTCTAT	AGCTATATAT
1984	1994	2004	2014	2024
TTGGAGAGGA	GAGAGACAAA	CGATATTAAG	AAAGGGAGGA	GAGAGGCGAG
2034	2044	2054	2064	2074
GTAAATCTGA	AATAGAGAAG	AGAAAGGCAA	CCAATTTGA	TCATCTATCA
2084	2094	2104	2114	2124
TACTTTGAT	TATTATTTT	ATTATATGTA	CGTTTACATT	ACAGTTTCG

FIGURE 7B

2134	2144	2154	2164									
AATTCTTACA TTAATCTTAA TCATAATATA TACA GTT GAT ATG												
			Val Asp MET									
2173	2182	2191	2200									
TCT GGA ATT TCG AAA ATG CAA GTG ATG GCT CTT CGA GAC												
Ser	Gly	Ile	Ser	Lys	MET	Gln	Val	MET	Ala	Leu	Arg	Asp
2209	2218	2227	2236	2245								
ATA CCC CCA CAA GAA ACA TTG CTG AAA ATG AAG CTA CTT												
Ile	Pro	Pro	Gln	Glu	Thr	Leu	Leu	Lys	MET	Lys	Leu	Leu
2254	2263	2272	2281									
CCC ACA AAT ATT TTG GGA CTT TGT AAC GAA CCT TGC AGC												
Pro	Thr	Asn	Ile	Leu	Gly	Leu	Cys	Asn	Glu	Pro	Cys	Ser
2290	2299	2308	2317									
TCA AAC TCT GAT TGC ATC GGA ATT ACC CTT TGC CAA TTT												
Ser	Asn	Ser	Asp	Cys	Ile	Gly	Ile	Thr	Leu	Cys	Gln	Phe
2326	2335	2344	2353	2362								
TGT AAG GAG AAG ACG GAC CAG TAT GGT TTA ACA TAC CGT												
Cys	Lys	Glu	Lys	Thr	Asp	Gln	Tyr	Gly	Leu	Thr	Tyr	Arg
2371	2380	2393	2403									
ACA TGC AAC CTG TTG CCT TGA ACAATATCAA TGATCTATCG												
Thr	Cys	Asn	Leu	Leu	Pro							
2413	2423	2433	2443	2453								
ATCGATCTAT CTATCTATTT ATCTGTCTCT GCGCGTATAG TGGTGTCTGT												
2463	2473	2483	2493	2503								
ACCTTTGGTG TGAAGAACATAT GAATAAAAGGG ATACATATAT CTAGATATAT												
2513	2523	2533	2543	2553								
TCTAGGTAAT GTCCTATTGT ATTTAAAATT TGTAGCAATG ATTGTTGAA												
2563	2573	2583	2593	2603								
TAAAAAACATA CCATGAGTGA AATAATTATT CCACATTAAT TCACGTATTT												
2613	2623	2633	2643	2653								
ATTTCACTTA TGATACGTAT TTTTGTTCCT TTCGCGTAGA TTTTGATCC												
2663	2673	2683	2693	2703								
TTTTCCCTTT TGAATATTAA ACATTAACAA CAAATAATGT TTATTAAATT												
2713	2723	2733	2743	2753								
AAGTTAATAT TTTTATTAG CTATTTATAT TTTTATTGAA AATCAAACCTT												
2763	2773	2783	2793	2803								
GATAAAATATT TATAAAGATA ATTAACAAGT AATGTGACAC TAACACCATG												
2813	2823	2833	2843	2853								
TAATATTATC TTGTCGTTAT TTATGATAAT ATTTAAAAT TATAATTCA												
2863	2873	2883	2893	2903								
GTTAAAAAAAT TATTAACAAA ACATACTTTT AAAAAGTGAG TTAGCCTCCG												
2913	2923	2933	2943	2953								
CTACCCACAT ACTTATGAAT TGGACTAGTT GTTTTTGAC CCACAAAAAG												
2963	2973	2983	2993	3003								
AATGGGCTAA TTAAACCTGA CCTATCAAAT TTCAGAATCT GCATAGATTA												

FIGURE 7C

3013	3023	3033	3043	3053
GTCCGAACGA	AATGAGTCAG	CCCGTATTGA	ACAAAATATC	AACAAGGACG
3063	3073	3083	3093	3103
TTATGTAAAG	ATGTTAAGA	AGGAAAAAAG	ATTTCTAATA	CATATGGACT
3113	3123	3133	3143	3153
TTCAATATCC	CAACTTGTC	TGGCGATCTG	AACCCTGCTT	AGTTTGTGTA
3163	3173	3183	3193	3203
TCATTAACCT	GTCTTGCTAT	GTATTTAAGA	TTTAAACTT	ATATGTTAA
3213	3223	3233	3243	3253
ACTTACAGAA	AATACATATA	AATCTCTCAA	GACTTGGCAA	CATAATTTAC
3263	3273	3283	3293	3303
TTTAGTACTT	AAACTACATG	AAAATTAAA	TATCCTTTA	ACATCTTGAA
3313	3323	3333	3343	3353
AGTGAATTAA	ATTATCACAA	TCCGAGCCTA	CACCTTGGAC	GTGGCCGGCA
3363	3373	3383	3393	3403
CTCAAGAACCC	AGTGCTGGTC	CCCAAGCTAA	CCCTCATCCT	GACTGACTAC
3413	3423	3433	3443	3453
AAGCGGAAGG	CTAACCTAACG	TATACAAAAG	CTTAAAACG	AATAAAATAAA
3463	3473	3483	3493	3503
ACTTTACAAG	GTTTTAACAC	AAATGAACAA	CTTTGAAGAA	AATAATATAT
3513	3523	3533	3543	3553
TCAACTAGCC	ATAAAATAGA	CAACTTTAGT	CTTTAAAACA	TTAATAAAAA
3563	3573	3583	3593	3603
TAAATGCAA	ATATAGACTC	CTTAACTAAA	CTGACTATCT	ATGGAGCCTC
3613	3623	3633	3643	3653
TAATTGATAA	AGATGGAAGT	CGGGACAAGA	CCACGACATC	CTGACTAAC
3663	3673	3683	3693	3703
TGAGAAGTAA	ATAAAATCCC	CCGGAAAAAA	AGGAGCCTCA	CCATGGCTAA
3713	3723	3733	3743	3753
CTCGAACTCG	GGGATATATC	AATGAAGCTC	CTGTTGATGA	TCTTGAAGAC
3763	3773	3783	3793	3803
ATGTCTCTGC	ATCATAAAAA	AGATGCAGGC	CAAATGGCTC	AGTACGTAAA
3813	3823	3833	3843	3853
ATGTACGAGT	ATGTAAGGGA	AATTCTAAAG	TATAACATAA	GCTTGATACT
3863	3873	3883	3893	3903
TGAATAAAAG	GAAACATACT	TACCTCTTT	CAACTCAACT	CAAATTAAGA
3913	3923	3933	3943	3953
ATAAGATACT	CAACTCAAAG	ATTAGGTATT	CAACGCAAAT	ATGGCACTCT
3963	3973	3983	3993	4003
ACTCAATGAA	GTACAAATTA	ACTCAGGATA	CTCGACTTAA	GATACTCAAC
4013	4023	4033	4043	4053
TCCCGACACT	CAACTGAACT	CATTTCAATA	TAAAGCAGCT	AAAACAAGT
4063	4073	4083	4093	4103
TCAGTATAAA	GTAAAGTTGT	TTAAAAACAT	GATGTCAACT	CTGTGTGTAT
4113	4123	4133	4143	4153
AATAAGGGAT	ACAAACATAAC	TTTGAAATGT	ATATAAAAAT	ACAATTAAC

FIGURE 7D

4163	4173	4183	4193	4203
GATGTATATA	AAAATACATT	AATCTATGGG	AGATTCTCTA	ACCGACAAACC
4213	4223	4233	4243	4253
ATCACTTAAG	GGCTAACAGATG	ATGATATAGC	GATCTACCGC	ACGCTGCCAT
4263	4273	4283	4293	4303
CGCATCTTAT	ACCCGGCCAA	AGGTATAAGA	CCTGAACTGC	CTAATGAATC
4313	4323	4333	4343	4353
CACTAATAAA	CTGTTAAAAG	GAATCATCTA	AAAAGTATGA	CCCTTTCTA
4363	4373	4383	4393	4403
CCCATAGTGG	CTAACATGGT	TTATGGGGC	TGTGAGTTAT	CTGAACCTCTC
4413	4423	4433	4443	4453
CCCCATATCG	GTGCTCAATA	CTACTCCAAA	AAATATACTG	CTCTTATGTT
4463	4473	4483	4493	4503
TAAAAACATA	CTGATTCTGT	GGTTTGAAAT	TATTGCTTAA	AGCTTAGATT
4513	4523	4533	4543	4553
TTTGAAAAGC	TCTCTTTGA	AAATCGTAGT	TTCCTTTTC	TTCTATTAAA
4563	4573	4583	4593	4603
GCTAGACATA	GGCTATGTAG	AACTCTAGCT	TACCTTCCTT	CTCAAAAGTT
4613	4623	4633	4643	4653
TGAAAACATT	TGCTTAGATT	CTTAGGGACT	ACTTAGTTCC	CTTGTGGAA
	TTC			

FIGURE 7E

PG GENOMIC

10 20 30 40 50
AAGCTTCTTA AAAAGGCAAA TTGATTAATT TGAAGTCAAA ATAATTAATT

60 70 80 90 100
ATAACAGTGG TAAAGCACCT TAAGAAACCA TAGTTGAAA GGTTACCAAT

110 120 130 140 150
GCGCTATATA TTAATCAACT TGATAATATA AAAAAAATTGAA CAATTGAAA

160 170 180 190 200
AGGGCCTAAA ATATTCTCAA AGTATTGAA ATGGTACAAA ACTACCATCC

210 220 230 240 250
GTCCACCTAT TGACTCCAAA ATAAAATTAT TATCCACCTT TGAGTTAAA

260 270 280 290 300
ATTGACTACT TATATAACAA TTCTAAATTGAA AACTATTGAA AATACTTTA

310 320 330 340 350
AAAATACATG GCGTTCAAAT ATTTAATATA ATTTAATTGAA TGAATATCAT

360 370 380 390 400
TTATAAACCA ACCAACTACC AACTCATTAA TCATTAATTC CCACCCAAAT

410 420 430 440 450
TCTACTATCA AAATTGTCCT AAACACTACT AAAACAAGAC GAAATTGTTG

460 470 480 490 500
GAGTCCGAAT CGAACGACCA ATCTAATTGAA GGTTGAGCCG CATATTTAGG

510 520 530 540 550
AGGACACTTT CAATAGTATT TTTTCAAGC ATGAATTGAA AATTAAAGAT

560 570 580 590 600
TAATGGTAAA GAAGTAGTAC ATCCCGAATT AATTCAATGCC TTTTTAAAT

610 620 630 640 650
ATAATTATAT AAATATTGAA GATTGTTTAA AAATATTAAA ACTTGAATAT

660 670 680 690 700
ATTATTTTTT TAAAAATTAT CTATTAAGTA CCATCACATA ATTGAGACGA

710 720 730 740 750
AGGAATAATT AAGATGAACA TAGTGTTTAA TTAGTAATGG ATGGGTAGTA

FIGURE 8A

760 770 780 790 800
AATTTATTAA TAAATTATAT CAATAAGTTA AATTATAACA AATATTTGAG

810 820 830 840 850
CGCCATGTAT TTTAAAAAAAT ATTAAATAGT TTGAATTAA ACCGTTAGA

860 870 880 890 900
TAAATGGTCA ATTTGAACC CAAAAGTGGTA TGAGAAGGGT ATTTAGAGC

910 920 930 940 950
CAATAGGRGG ATGAGAAGGA TATTTGAAG CCAATATGTG ATGGATGAAG

960 970 980 990 1000
GATAATTTG TATCATTCT AATACTTAA AGATATTTA GGTCACTTC

1010 1020 1030 1040 1050
CCTTCCTTAG TTTATAGACT ATAGTGTAG TTCATCGAAT ATCATCTATT

1060 1070 1080 1090 1100
ATTTCCGTCT TAAATTATTT TTTATTTAT AAATTTTTA AAAATAAATT

1110 1120 1130 1140 1150
ATTTTTCCA TTTAACTTTG ATTGTAATTA ATTTTAAAA ATTACCAAACA

1160 1170 1180 1190 1200
TATAAATAAA ATTAATATTT AACAAAGAAT TGTAACATAA TATTTTTTA

1210 1220 1230 1240 1250
ATTATTCAAA ATAAATATTT TTAAACATCA TATAAAAGAA ATACGACAAA

1260 1270 1280 1290 1300
AAAATTGAGA CGGGAGAAGA CAAGCCAGAC AAAAATGTCC AAGAAACTCT

1310 1320 1330 1340 1350
TTCGTCTAAA TATCTCTCAT CCAAACTAAT ATAATACCCA TTATAATTAA

1360 1370 1380 1390 1400
CCATATTGAC CAACTCAAAC CCCTTAAAAT CTATAAATAG ACAAACCTT

1410 1420 1430 1440 1450
CCCATACCTC TTATCATAAA AAAAATAATA ATCTTTTCATAGACAAAGT

1460 1470 1480 1490 1500
TTAAAAACCA TACCATATAA CAATATATCA TGTTATCCA AAGGAATAGT

FIGURE 8B

1510 1520 1530 1540 1550
ATTCTCCTTC TCATTATTAT TTTGCTTCA TCAATTCAA CTTGTAGAAG

1560 1570 1580 1590 1600
CAATGTTATT GATGACAATT TATTCAAACA AGTTTATGAT AATATTCTTG

1610 1620 1630 1640 1650
AACAAAGAATT TGCTCATGAT TTTCAAGCTT ATCTTTCTTA TTTGAGCAAA

1660 1670 1680 1690 1700
AATATTGAAA GCAACAATAA TATTGACAAG GTTGATAAAA ATGGGATTAA

1710 1720 1730 1740 1750
AGTGATTAAT GTACTTAGCT TTGGAGCTAA GGGTGATGGA AAAACATATG

1760 1770 1780 1790 1800
ATAATATTGT AAGTATTAA ATATTGGAAT ATATTTGTGG GGATGAAAAT

1810 1820 1830 1840 1850
GATAGAGAAT ATAAGAATTA TTTGGAAGGA TGAAAAGTTA TATTTTATAA

1860 1870 1880 1890 1900
AGTAGAAAAT TATTTTCTCG TTTTAGTAA TTAAAGGTGA AAAATGAGTT

1910 1920 1930 1940 1950
TTCTCGTAAG CGAGGAAAGT CATTTCAT GGAACGTAT TTTTTTTTA

1960 1970 1980 1990 2000
CTTTAATAA CGTCATAGTA TTTGCTATAC TCAAGAATAA GACACTATTA

2010 2020 2030 2040 2050
TTGATGTTA GTGCTCGAAA AGAAATTGAT AGTAATTTG CTAATATAAC

2060 2070 2080 2090 2100
TATCAATTTC TTATATGTAT ATTTTCAAC CAAAATAACA AAGCGTAATC

2110 2120 2130 2140 2150
CAATAAGTGG GCCTCTAGAA TAAAGAGTAA GTTCTATTAA TTCTTAACCT

2160 2170 2180 2190 2200
TATTTAATT TATGGAAACC TCGACAAAAC GACAATGCTC AACTTATATT

CGAATTC

FIGURE 8C

FIGURE 9

FIGURE 10