题目 1. $x(t), y(t) \in \mathcal{C}[a, b], 1 \leq p < +\infty, d_p(x, y) = \left(\int_a^b |x(t) - y(t)|^p dt\right)^{\frac{1}{p}}, d_\infty(x, y) = \max_{a \leq t \leq b} |x(t) - y(t)|.$

求证: $\lim_{p\to+\infty} d_p(x,y) = d_{\infty}(x,y)$.

证明. 若 $d_{\infty}(x,y)=0$,则 $\forall t\in [a,b],\ x(t)\equiv y(t)$,有 $\forall p\geq 1,\ d_{p}(x,y)=0$, $\lim_{p\to +\infty}d_{p}(x,y)=d_{\infty}(x,y)=0$.

否则, $d_{\infty}(x,y) > 0$. 记 $\overline{d}_p(x,y) = \frac{d_p(x,y)}{d_{\infty}(x,y)}$. 欲证 $\lim_{p \to +\infty} d_p(x,y) = d_{\infty}(x,y)$,即需证

$$\lim_{p \to +\infty} \overline{d}_p(x, y) = \lim_{p \to +\infty} \left(\int_a^b \left(\frac{|x(t) - y(t)|}{\max_{a \le t \le b} |x(t) - y(t)|} \right)^p dt \right)^{\frac{1}{p}} = 1$$

记 $t_0 \in [a,b]$ 为 |x(t)-y(t)| 的一个最大值点. 由 $\frac{|x(t_0)-y(t_0)|}{\displaystyle\max_{a\leq t\leq b}|x(t)-y(t)|}=1$ 且 $\frac{|x(t)-y(t)|}{\displaystyle\max_{a\leq t\leq b}|x(t)-y(t)|}\in \mathcal{C}[a,b]$,知 $\forall \varepsilon \in (0,1), \ \exists \delta(\varepsilon)>0$ s.t. $\forall t\in (t_0-\delta,t_0+\delta)\cap [a,b], \ 1-\varepsilon\leq \frac{|x(t)-y(t)|}{\displaystyle\max_{a\leq t\leq b}|x(t)-y(t)|}\leq 1$. 所以 $\forall \varepsilon \in (0,1), \ \forall p\geq 1$,有

$$\delta(\varepsilon)(1-\varepsilon)^p \leq \int\limits_{[t_0-\delta,t_0+\delta]\bigcap[a,b]} \left(\frac{|x(t)-y(t)|}{\displaystyle\max_{a\leq t\leq b}|x(t)-y(t)|}\right)^p \mathrm{d}t \leq \int_a^b \left(\frac{|x(t)-y(t)|}{\displaystyle\max_{a\leq t\leq b}|x(t)-y(t)|}\right)^p \mathrm{d}t \leq b-a$$

$$\delta(\varepsilon)^{\frac{1}{p}}(1-\varepsilon) \le \overline{d}_p(x,y) \le (b-a)^{\frac{1}{p}}$$

两边对 $p \to +\infty$ 分别取上、下极限,得

$$\forall \varepsilon \in (0,1), \ 1-\varepsilon \le \underline{\lim}_{p \to +\infty} \overline{d}_p(x,y) \le \overline{\lim}_{p \to +\infty} \overline{d}_p(x,y) \le 1$$

再令 $\varepsilon \to 0^+$ 夹逼得 $\lim_{p \to +\infty} \overline{d}_p(x,y) = \lim_{p \to +\infty} \overline{d}_p(x,y) = 1$,知 $\lim_{p \to +\infty} \overline{d}_p(x,y) = 1$,从而 $\lim_{p \to +\infty} d_p(x,y) = d_\infty(x,y)$.

题目 2. 求证: $d_1(x,y) = \sqrt{|x-y|}$ 定义了 \mathbb{R} 上的度量. $d_2(x,y) = (x-y)^2$ 能定义 \mathbb{R} 上的度量吗? 证明你的结论.

证明. 先证明: $d_1(x,y) = \sqrt{|x-y|}$ 定义了 \mathbb{R} 上的度量. 非负性、非退化性、对称性显然,只

需证三角不等式:

$$\sqrt{|x-y|} \le \sqrt{|x-z|} + \sqrt{|z-y|}$$

只需证 $|x-y| \le (\sqrt{|x-z|} + \sqrt{|z-y|})^2 = |x-z| + |z-y| + 2\sqrt{|x-z||z-y|}$,由绝对值不等式 $|x-y| \le |x-z| + |z-y|$,知其显然成立.

再证明: $d_2(x,y)=(x-y)^2$ 不能定义 \mathbb{R} 上的度量. 令 $x=0,\ y=2,\ z=1$,有 $(x-y)^2=4,\ (x-z)^2+(z-y)^2=2$,三角不等式不成立.

题目 3. 度量空间 (X,d), $M \subseteq X$, $M \neq \emptyset$. $\forall x \in X$, $f(x) = \inf_{y \in M} d(x,y)$. 求证: $\forall r > 0$, $\{x \in X \mid f(x) \leq r\}$ 为闭集.

证明. 记 d_0 是通常度量, $d_0(x,y) = |x-y|$. 因为 $\forall x, x_1 \in X, \forall y \in M$,

$$d(x,y) - d(x_1,x) \le d(x_1,y) \le d(x,y) + d(x_1,x)$$

两边取 $\inf_{y \in M}$,得 $f(x) - d(x_1, x) \le f(x_1) \le f(x) + d(x_1, x)$,即 $d_0(f(x_1), f(x)) \le d(x_1, x)$. 所以 f(x) 是 $(X, d) \to (\mathbb{R}, d_0)$ 的 Lipschitz 映射,自然连续. $\forall r > 0$,因为 $(-\infty, r]$ 为 \mathbb{R} 的闭集,知 $f^{-1}((-\infty, r]) = \{x \in X \mid f(x) \le r\}$ 是 X 的闭集.

题目 1. 习题 1.9. 设 (X,d) 为度量空间, A,B 为 X 的子集. 求证:

- (1) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (2) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.
- $(3) (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}.$
- $(4) A^{\circ} \bigcup B^{\circ} \subseteq (A \bigcup B)^{\circ}.$

举例说明(2)(4)包含关系严格.

证明. 引理:

• $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$.

证明: 如果 $\overline{A} = \emptyset$ 则显然, 否则 $\forall x \in \overline{A}$, 满足 $\forall r > 0$, $A \cap B(x,r) \neq \emptyset$. 由 $A \cap B(x,r) \subseteq B \cap B(x,r)$ 知 $B \cap B(x,r) \neq \emptyset$, 从而 $x \in \overline{B}$, 所以 $\overline{A} \subseteq \overline{B}$.

• $(A^{\circ})^C = \overline{A^C}$.

证明:由德·摩根律, $(A^{\circ})^{C} = (A \cap (\partial A)^{C})^{C} = A^{C} \cup \partial A = A^{C} \cup \partial (A^{C}) = \overline{A^{C}}.$

• $A \subseteq B \Rightarrow B^C \subseteq A^C$.

证明: $\forall x \in B^C$, $x \notin B$, 由 $A \subseteq B$ 知 $x \notin A$, 即 $x \in A^C$, 所以 $B^C \subseteq A^C$.

(1) 先证明 $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$. 由 $A \subseteq \overline{A}$, $B \subseteq \overline{B}$, 得 $A \cup B \subseteq \overline{A} \cup \overline{B}$. 两边取闭包,由于 $\overline{A} \cup \overline{B}$ 是闭集,得 $\overline{A \cup B} \subseteq \overline{\overline{A} \cup \overline{B}} = \overline{A} \cup \overline{B}$.

再证明 $\overline{A \cup B} \supseteq \overline{A} \cup \overline{B}$. 由 $A \subseteq A \cup B$, $B \subseteq A \cup B$, 两边取闭包,得 $\overline{A} \subseteq \overline{A \cup B}$, $\overline{B} \subseteq \overline{A \cup B}$, 从而 $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$.

(2) 由 $A \subseteq \overline{A}$, $B \subseteq \overline{B}$, 得 $A \cap B \subseteq \overline{A} \cap \overline{B}$. 两边取闭包,由于 $\overline{A} \cap \overline{B}$ 是闭集,得 $\overline{A \cap B} \subseteq \overline{\overline{A} \cap \overline{B}} = \overline{A} \cap \overline{B}$.

考虑 \mathbb{R} ,取 $A=(-1,0),\ B=(0,1)$,则 $\overline{A\cap B}=\overline{\varnothing}=\varnothing,\ \overline{A}\cap \overline{B}=[-1,0]\cap [0,1]=\{0\}.$

 $(3) \ ((A \cap B)^{\circ})^{C} = \overline{(A \cap B)^{C}} = \overline{A^{C} \bigcup B^{C}}.$

由 $A^{\circ} \cap B^{\circ}$ 是开集, $\overline{A^{C}} \cup \overline{B^{C}}$ 是闭集,得 $(A^{\circ} \cap B^{\circ})^{C} = ((A^{\circ} \cap B^{\circ})^{\circ})^{C} = \overline{(A^{\circ} \cap B^{\circ})^{C}} = \overline{(A^{\circ} \cap B^{\circ})^{C}} = \overline{A^{C}} \cup \overline{B^{C}} = \overline{A^{C}} \cup \overline{B^{C}}.$

由 (1) 结论, $\overline{A^C \cup B^C} = \overline{A^C} \cup \overline{B^C}$,所以 $((A \cap B)^\circ)^C = (A^\circ \cap B^\circ)^C$,两边取补集,证毕.

(4) 由 $A^{\circ} \bigcup B^{\circ}$ 是开集, $\overline{A^{C}} \cap \overline{B^{C}}$ 是闭集,得 $(A^{\circ} \bigcup B^{\circ})^{C} = ((A^{\circ} \bigcup B^{\circ})^{\circ})^{C} = \overline{(A^{\circ} \bigcup B^{\circ})^{C}} = \overline{(A^{\circ} \bigcup B^{\circ})^{C}} = \overline{A^{C}} \cap \overline{B^{C}} = \overline{A^{C}} \cap \overline{B^{C}}.$

$$((A \bigcup B)^{\circ})^{C} = \overline{(A \bigcup B)^{C}} = \overline{A^{C} \cap B^{C}}.$$

由 (2) 结论, $\overline{A^C \cap B^C} \subseteq \overline{A^C} \cap \overline{B^C}$,所以 $((A \cup B)^\circ)^C \subseteq (A^\circ \cup B^\circ)^C$,两边取补集,包含关系反向,证毕.

考虑 \mathbb{R} ,取 A = [-1,0],B = [0,1],则 $A^{\circ} \bigcup B^{\circ} = (-1,0) \bigcup (0,1)$, $(A \bigcup B)^{\circ} = [-1,1]^{\circ} = (-1,1)$.

题目 2.
$$S = \{(x_n)_{n\geq 1}: x_n \in \mathbb{R}\}.$$
 $d((x_n)_{n\geq 1}, (y_n)_{n\geq 1}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}.$ 求证: S 可分.

证明. 取 $M = \{(y_n)_{n\geq 1} : y_n \in \mathbb{Q}, \exists N \geq 1, \forall n \geq N+1, y_n = 0\}$,显然 $M \subseteq S$,下证 $\overline{M} = S$,即证 $S \subseteq \overline{M}$.

 $\forall (x_n)_{n\geq 1} \in S, \ \forall r \in (0,2), \ \ \mathbb{R} \ \delta = \frac{r}{2-r} > 0, \ \ \mathbb{R} \ N = [1 - \log_2 r] + 1 \geq \max(1 - \log_2 r, 1).$

取 $(y_n)_{n\geq 1}\in M$ s.t. $\forall n=1,2,\cdots,N,\ |x_n-y_n|<\delta$ 且 $\forall n\geq N+1,\ y_n=0$ (由于 $\mathbb Q$ 在 $\mathbb R$ 中稠密,知可以取出这样的 $(y_n)_{n\geq 1}$).

由于 $f(x) = \frac{x}{1+x}$ 在 $x \in [0, +\infty)$ 严格单调递增,得 $\forall n = 1, 2, \dots, N, \frac{|x_n - y_n|}{1 + |x_n - y_n|} < \frac{\delta}{1 + \delta} = \frac{r}{2}$.

$$d((x_n)_{n\geq 1}, (y_n)_{n\geq 1}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

$$= \sum_{n=1}^{N} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|} + \sum_{n=N+1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

$$< \frac{r}{2} \sum_{n=1}^{N} \frac{1}{2^n} + \sum_{n=N+1}^{\infty} \frac{1}{2^n}$$

$$< \frac{r}{2} + \frac{1}{2^N}$$

$$< \frac{r}{2} + \frac{r}{2}$$

$$= r$$

即 $S \subseteq \overline{M}$. 下证 M 可数. 记 $M_i = \{(y_n)_{n \geq 1}: y_n \in \mathbb{Q}, \ \forall k \geq i+1, \ y_k = 0\}$. 则 M_i 与 \mathbb{Q}^i 等势,从而可数. 所以 $M = \bigcup_{i=1}^{\infty} M_i$ 可数. 综上,S 可分.

题目 1. 习题 1.11. 在 C[0,1] 上赋予度量 d_{∞} ,考虑集合 $M = \{x \in C[0,1] : x(0) = 1\}$. 求证: M 为闭集. 若在 C[0,1] 上赋予度量 d_1 ,M 还是闭集吗?证明你的结论.

证明. $\forall \{x_n\} \subseteq M$,如果 $x_n \to x \in C[0,1]$ $(n \to +\infty)$,下证 $x \in M$,即证 x(0) = 1. 假设 $x(0) \neq 1$,则 $\exists \varepsilon_0 = |x(0) - 1| > 0$, $\forall N \in \mathbb{N}^+$, $\exists n = N + 1 > N$, $d_{\infty}(x_n - x) = \max_{0 \leq t \leq 1} |x_{N+1}(t) - x(t)| \geq |x_{N+1}(0) - x(0)| = |x(0) - 1| \geq \varepsilon$,与 $x_n \to x$ $(n \to +\infty)$ 矛盾. 所以 $x \in M$. 从而 M 是闭集.

若在 C[0,1] 上赋予度量 d_1 ,M 不是闭集. 设 $x_n(t) = \max\{0,1-nt\}$ $(n=1,2,\cdots),\ x(t) = 0$ $(t \in [0,1])$,则 $\{x_n\} \subseteq M$. 由于 $d_1(x_n,x) = \int_0^1 |x_n(t) - x(t)| \, \mathrm{d}t = \int_0^{\frac{1}{n}} (1-nt) \, \mathrm{d}t = \frac{1}{2n} \to 0$ $(n \to +\infty)$,知 $x_n \to x \in C[0,1]$ $(n \to +\infty)$,但 $x \notin M$. 从而 M 不是闭集.

题目 2. $S = \{(x_n)_{n\geq 1}: x_n \in \mathbb{K}\}, \ d((x_n)_{n\geq 1}, (y_n)_{n\geq 1}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$,求证: (S, d) 是完备的.

证明. 设 $x^{(m)} = \left(x_n^{(m)}\right)_{n\geq 1}$ $(m=1,2,\cdots)$ 是柯西列,即 $\forall \varepsilon>0, \exists N\in\mathbb{N}^+$ s.t. $\forall p,q\geq N, d\left(x^{(p)},x^{(q)}\right)<\varepsilon$. 即

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\left| x_n^{(p)} - x_n^{(q)} \right|}{1 + \left| x_n^{(p)} - x_n^{(q)} \right|} < \varepsilon \tag{1}$$

特别地, $\forall n \in \mathbb{N}^+, \ \frac{1}{2^n} \frac{\left|x_n^{(p)} - x_n^{(q)}\right|}{1 + \left|x_n^{(p)} - x_n^{(q)}\right|} < \varepsilon.$ 即 $\forall n \in \mathbb{N}^+, \ \forall \varepsilon \in (0, 2^{-n}), \ \exists N \in \mathbb{N}^+ \text{ s.t. } \forall p, q \geq N, \ \left|x_n^{(p)} - x_n^{(q)}\right| < \frac{2^n \varepsilon}{1 - 2^n \varepsilon}.$ 由于 $\inf_{\varepsilon \in (0, 2^{-n})} \frac{2^n \varepsilon}{1 - 2^n \varepsilon} = 0$,知 $\forall n \in \mathbb{N}^+, \ x_n^{(m)} \ (m = 1, 2, \cdots)$ 是 \mathbb{K} 中的 柯西列. 记 $x_n^{(m)} \to x_n^{(\infty)} \in \mathbb{K} \ (m \to \infty)$,显然 $x^{(\infty)} = \left(x_n^{(\infty)}\right)_{n \geq 1} \in S$.

由式 (1) 得, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^+$ s.t. $\forall p,q \geq N, \ \forall l \geq 1$,

$$\sum_{n=1}^{l} \frac{1}{2^n} \frac{\left| x_n^{(p)} - x_n^{(q)} \right|}{1 + \left| x_n^{(p)} - x_n^{(q)} \right|} < \varepsilon \tag{2}$$

在式 (2) 中 $\forall p \geq N$, 令 $q \to \infty$ 得

$$\sum_{n=1}^{l} \frac{1}{2^n} \frac{\left| x_n^{(p)} - x_n^{(\infty)} \right|}{1 + \left| x_n^{(p)} - x_n^{(\infty)} \right|} \le \varepsilon$$

再令 $l \to \infty$ 得

$$\sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\left| x_n^{(p)} - x_n^{(\infty)} \right|}{1 + \left| x_n^{(p)} - x_n^{(\infty)} \right|} \le \varepsilon$$

即 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^+$ s.t. $\forall p \geq N$, $d(x^{(p)}, x^{(\infty)}) \leq \varepsilon$, 即 $x^{(m)} \to x^{(\infty)} \in S \ (m \to \infty)$. 从而 (S, d) 是完备的.

题目 2 的注记. $\lim_{n\to +\infty} a_n = A$ 的定义: $\forall \varepsilon > 0, \exists N > 0 \text{ s.t. } \forall n > N, |a_n - A| < \varepsilon.$

命题 1: $\forall \varepsilon > 0$, $\exists N > 0$ s.t. $\forall n > N$, $|a_n - A| < f(\varepsilon)$ $(\forall \varepsilon > 0, f(\varepsilon) > 0)$.

定义 \Longrightarrow 命题 1: $\forall \varepsilon > 0$, $\exists \varepsilon_1 > 0$ s.t. $\varepsilon_1 < f(\varepsilon)$, 则定义 \Longrightarrow 命题 1.

由于 $\forall \varepsilon > 0$, $f(\varepsilon) > 0$, 知这样的 ε_1 一定存在(如 $\varepsilon_1 = f(\varepsilon)/2$),故定义 \Longrightarrow 命题 1 恒成立.

命题 1 \Longrightarrow **定义**: 若 0 是 $f(\varepsilon)$ ($\varepsilon > 0$) 值域的聚点/下确界,则命题 1 \Longrightarrow 定义,否则有反例.

即 $\forall \varepsilon > 0$, $\exists \varepsilon_1 > 0$ s.t. $f(\varepsilon_1) < \varepsilon$. 以下给出证明:由于命题 1 成立, $\forall \varepsilon > 0$, $\exists \varepsilon_1 > 0$ s.t. $f(\varepsilon_1) < \varepsilon$. 对 $\varepsilon_1 > 0$, $\exists N > 0$ s.t. $\forall N > N$, $|a_n - A| < f(\varepsilon_1) < \varepsilon$. 即定义成立.

题目 1. 习题 1.36. 设 $v \in C[0,1]$ 固定,求证: $\exists ! x \in C[0,1]$ s.t. $x(t) = \frac{1}{3}\cos(x(t)) + v(t), \ 0 \le t \le 1.$

证明. 设 $v \in C[0,1]$ 固定,定义映射 $T:C[0,1] \to C[0,1]$ 为 $Tx = \frac{1}{3}\cos x + v$. 对于非空完备度量空间 $(C[0,1],d_{\infty})$, $\forall x,y \in C[0,1]$, $d_{\infty}(Tx,Ty) = \frac{1}{3}\max_{0 \le t \le 1}|\cos(x(t)) - \cos(y(t))| \le \frac{1}{3}\max_{0 \le t \le 1}|x(t) - y(t)| = \frac{1}{3}d_{\infty}(x,y)$,即 T 是压缩映射,根据 Banach 不动点定理, $\exists !x \in C[0,1]$ s.t. Tx = x,即 $x(t) = \frac{1}{3}\cos(x(t)) + v(t)$, $0 \le t \le 1$.

题目 2. 习题 1.37. 举例说明 Banach 不动点定理中度量空间 X 的完备性假设是必要条件.

解. 假设 Banach 不动点定理中度量空间的完备性假设不满足. 举例: 讨论 (\mathbb{R}^+,d) ,其中 $d(x,y)=|x-y|, \ \forall x,y\in\mathbb{R}^+$ 是通常度量. (\mathbb{R}^+,d) 不是完备度量空间(因为 \mathbb{R}^+ 不是闭集). 定义映射 $T:\mathbb{R}^+\to\mathbb{R}^+$ 为 $Tx=\frac{1}{2}x$. 由于 $d(Tx,Ty)=\frac{1}{2}|x-y|=\frac{1}{2}d(x,y)$,知 T 为压缩映射,但是 $\nexists x\in\mathbb{R}^+$ s.t. $Tx=\frac{1}{2}x=x$,Banach 不动点定理不成立.

题目 3. 习题 1.38. 设 c > 0 固定,取定 $x_0 > \sqrt{c}$,对于 $n \ge 0$,令 $x_{n+1} = \frac{1}{2}(x_n + \frac{c}{x_n})$, $n = 0, 1, 2, \cdots$,求证 $x_n \to \sqrt{c}$. 取 c = 2,求 x_1, x_2, x_3, x_4 ,并给出 $|x_n - \sqrt{2}|$ 的一个上界.

证明. 考虑 (A,d),其中 $A = [\sqrt{c}, +\infty)$ 是 \mathbb{R} 的闭子集,d(x,y) = |x-y|, $\forall x,y \in A$ 是 通常度量,则 (A,d) 是非空完备度量空间.定义映射 $T:A \to A$ 为 $Tx = \frac{1}{2}(x+\frac{c}{x})$.由于 $\forall x,y \in A,\ 0 \leq \frac{c}{xy} \leq 1$,知 $d(Tx,Ty) = \frac{1}{2}|x-y+\frac{c}{x}-\frac{c}{y}| = \frac{|x-y|}{2}|1-\frac{c}{xy}| \leq \frac{|x-y|}{2} = \frac{1}{2}d(x,y)$,所 以 T 为压缩映射.根据 Banach 不动点定理, $\exists !x \in A$ s.t. Tx = x,而 $T\sqrt{c} = \sqrt{c}$,知其即为 唯一不动点.

 $\forall n \geq 0$,由于 $x_{n+1} = Tx_n$,知 $d(x_n, \sqrt{c}) = d(Tx_{n-1}, T\sqrt{c}) \leq \frac{1}{2}d(x_{n-1}, \sqrt{c}) \leq \frac{1}{2^2}d(x_{n-2}, \sqrt{c})$ $\leq \cdots \leq \frac{1}{2^n}d(x_0, \sqrt{c}) \to 0 \ (n \to \infty)$,所以 $x_n \to \sqrt{c} \ (n \to \infty)$.

取 c=2, $x_0=2$, 则 $x_1=Tx_0=\frac{3}{2}=1.5$, $x_2=Tx_1=\frac{17}{12}\approx 1.416667$, $x_3=Tx_2=\frac{577}{408}\approx 1.414216$, $x_4=Tx_3=\frac{665857}{470832}\approx 1.414213562$. (注意: $\sqrt{2}\approx 1.414213562$)

 $\forall n \geq 0, \ |x_n - \sqrt{2}| = d(x_n, \sqrt{2}) \leq \frac{1}{2^n} d(x_0, \sqrt{2}) = \frac{2-\sqrt{2}}{2^n},$ 即 $|x_n - \sqrt{2}|$ 的一个上界为 $\frac{2-\sqrt{2}}{2^n}$.

题目 1. 设 $X = C[0, 2\pi]$, $f_n(t) = \cos(nt)$ $(n \ge 0)$, $g_n(t) = \sin(nt)$ $(n \ge 1)$, 求证: $\{f_n : n \ge 0\} \bigcup \{g_n : n \ge 1\}$ 是线性无关的.

证明. 只需证 $\forall n \in \mathbb{N}^+, f_0, f_1, \dots, f_n, g_1, g_2, \dots, g_n$ 线性无关.

设 $\exists c_0, c_2, \cdots, c_n, d_1, d_2, \cdots, d_n \in \mathbb{K}$ s.t.

$$\forall t \in [0, 2\pi], \ c_0 f_0(t) + c_1 f_1(t) + \dots + c_n f_n(t) + d_1 g_1(t) + d_2 g_2(t) + \dots + d_n g_n(t) = 0$$

则

$$\forall t \in [0, 2\pi], \ c_0 + c_1 \cos(t) + c_2 \cos(2t) + \dots + c_n \cos(nt) + d_1 \sin(t) + d_2 \sin(2t) + \dots + d_n \sin(nt) = 0$$

$$(1)$$

两边同时求二阶导,有

$$\forall t \in [0, 2\pi], -c_1 \cos(t) - 2^2 c_2 \cos(2t) - \dots - n^2 c_n \cos(nt) - d_1 \sin(t) - 2^2 d_2 \sin(2t) - \dots - n^2 d_n \sin(nt) = 0$$
(2)

(1)+(2),消去 $\cos(t)$, $\sin(t)$,有

$$\forall t \in [0, 2\pi], \ c_0 + (1 - 2^2)c_2\cos(2t) + \dots + (1 - n^2)c_n\cos(nt) + (1 - 2^2)d_2\sin(2t) + \dots + (1 - n^2)d_n\sin(nt) = 0$$
(3)

两边同时求二阶导,有

$$\forall t \in [0, 2\pi], -2^{2}(1-2^{2})c_{2}\cos(2t) - \dots - n^{2}(1-n^{2})c_{n}\cos(nt)$$

$$-2^{2}(1-2^{2})d_{2}\sin(2t) - \dots - n^{2}(1-n^{2})d_{n}\sin(nt) = 0$$

$$(4)$$

 $(3)+(4)\times\frac{1}{2^2}$, 消去 $\cos(2t),\sin(2t)$, 有

$$\forall t \in [0, 2\pi], \ c_0 + \left(1 - \frac{3^2}{2^2}\right) (1 - 3^2) c_3 \cos(3t) + \dots + \left(1 - \frac{n^2}{2^2}\right) (1 - n^2) c_n \cos(nt)$$

$$+ \left(1 - \frac{3^2}{2^2}\right) (1 - 3^2) d_3 \sin(3t) + \dots + \left(1 - \frac{n^2}{2^2}\right) (1 - n^2) d_n \sin(nt) = 0$$

$$(5)$$

重复上述过程,消去 $\cos(3t)$, $\sin(3t)$, \cdots , $\cos(nt)$, $\sin(nt)$,有 $c_0 = 0$.

下证 $c_1 = d_1 = 0$. 将 $c_0 = 0$ 代回(1), $(1)+(2)\times\frac{1}{2^2}$, 消去 $\cos(2t)$, $\sin(2t)$, 有

$$\forall t \in [0, 2\pi], \ \left(1 - \frac{1}{2^2}\right) c_1 \cos(t) + \left(1 - \frac{3^2}{2^2}\right) c_3 \cos(3t) + \dots + \left(1 - \frac{n^2}{2^2}\right) c_n \cos(nt) + \left(1 - \frac{1}{2^2}\right) d_1 \sin(t) + \left(1 - \frac{3^2}{2^2}\right) c_3 \cos(3t) + \dots + \left(1 - \frac{n^2}{2^2}\right) d_n \sin(nt) = 0$$

$$(6)$$

两边同时求二阶导,有

$$\forall t \in [0, 2\pi], -\left(1 - \frac{1}{2^2}\right) c_1 \cos(t) - 3^2 \left(1 - \frac{3^2}{2^2}\right) c_3 \cos(3t) - \dots - n^2 \left(1 - \frac{n^2}{2^2}\right) c_n \cos(nt)$$

$$-\left(1 - \frac{1}{2^2}\right) d_1 \sin(t) - 3^2 \left(1 - \frac{3^2}{2^2}\right) c_3 \cos(3t) - \dots - n^2 \left(1 - \frac{n^2}{2^2}\right) d_n \sin(nt) = 0$$

$$(7)$$

 $(6)+(7)\times\frac{1}{3^2}$, 消去 $\cos(3t),\sin(3t)$, 有

$$\forall t \in [0, 2\pi], \ \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{2^2}\right) c_1 \cos(t) + \left(1 - \frac{4^2}{3^2}\right) \left(1 - \frac{4^2}{2^2}\right) c_4 \cos(4t)$$

$$+ \dots + \left(1 - \frac{n^2}{3^2}\right) \left(1 - \frac{n^2}{2^2}\right) c_n \cos(nt)$$

$$+ \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{2^2}\right) d_1 \sin(t) + \left(1 - \frac{4^2}{3^2}\right) \left(1 - \frac{4^2}{2^2}\right) d_4 \sin(4t)$$

$$+ \dots + \left(1 - \frac{n^2}{3^2}\right) \left(1 - \frac{n^2}{2^2}\right) d_n \sin(nt) = 0$$

$$(8)$$

重复上述过程,消去 $\cos(4t)$, $\sin(4t)$, \cdots , $\cos(nt)$, $\sin(nt)$, 有

$$\forall t \in [0, 2\pi], \ \prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) \left(c_1 \cos(t) + d_1 \sin(t)\right) = 0$$

即 $\forall t \in [0, 2\pi], \ c_1 \cos(t) + d_1 \sin(t) = 0.$ 令 t = 0, 有 $c_1 = 0$. 令 $t = \frac{\pi}{2}$, 有 $d_1 = 0$.

将 $c_0=c_1=d_1=0$ 代回(1)、(2),重复上述过程,有 $c_2=d_2=0,\ c_3=d_3=0,\ \cdots,\ c_n=d_n=0.$ 所以 $\forall n\in\mathbb{N}^+,\ f_0,f_1,\cdots,f_n,g_1,g_2,\cdots,g_n$ 线性无关.

从 $\{f_n:n\geq 0\}$ $\bigcup \{g_n:n\geq 1\}$ 中任取有限个元素,设为 $f_{n_1},f_{n_2},\cdots,f_{n_k},g_{m_1},g_{m_2},\cdots,g_{m_l}$ 记 $N=\max\{n_1,n_2,\cdots,n_k,m_1,m_2,\cdots,m_l\}$. 由于已证明 $f_0,f_1,\cdots,f_N,g_1,g_2,\cdots,g_N$ 线性无关,知其中的部分元素 $f_{n_1},f_{n_2},\cdots,f_{n_k},g_{m_1},g_{m_2},\cdots,g_{m_l}$ 线性无关.

题目 1 的注记. 以上证明思路类似于课本例 2.1.3. 实际上,可以用其它更便捷的方法证明. 如课本例 3.1.5,在 $C[0,2\pi]$ 上定义内积 $\langle x,y\rangle=\int_0^{2\pi}x(t)\overline{y(t)}\,\mathrm{d}t$,易证明 $\forall n\in$

 \mathbb{N}^+ , $f_0, f_1, \dots, f_n, g_1, g_2, \dots, g_n$ 两两正交,从而线性无关.

题目 2.

- 1. (X,d) 为度量空间, $\{x_n\}$ 为 X 中柯西列,有子列收敛到 x,则 $x_n \to x$.
- 2. $(X, \|\cdot\|)$ 为 Banach 空间 $\iff \forall x_n \in X, \|x_n\| < \frac{1}{2^n}$,则 $\sum_{n=1}^{\infty} x_n$ 在 X 中收敛.

证明.

- 1. 若存在子列 $x_{n_k} \to x$,则 $\forall \varepsilon > 0$, $\exists K \in \mathbb{N}^+$ s.t. $\forall k > K$, $d(x_{n_k}, x) < \frac{\varepsilon}{2}$. 由于 $\{x_n\}$ 为柯西列,知 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^+$ s.t. $\forall m, n > N$, $d(x_n, x_m) < \frac{\varepsilon}{2}$. 由于 $\exists k' > K$ s.t. $n_{k'} > N$,知 $\forall n > N$, $d(x_n, x) \le d(x_n, x_{n_{k'}}) + d(x_{n_{k'}}, x) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. 所以 $x_n \to x$ $(n \to \infty)$.
- 2. 设范数诱导出的度量 d(x, y) = ||x y||.

若 $(X, \|\cdot\|)$ 为 Banach 空间: 则 (X, d) 为完备度量空间. 设 $S_k = \sum_{n=1}^k x_n \in X$,由于 $\forall p \in \mathbb{N}^+, \ d(S_k, S_{k+p}) = \|S_k - S_{k+p}\| = \|\sum_{n=k+1}^{k+p} x_n\| \le \sum_{n=k+1}^{k+p} \|x_n\| < \sum_{n=k+1}^{k+p} \frac{1}{2^n} < \sum_{n=k+1}^{\infty} \frac{1}{2^n} = \frac{1}{2^k} \to 0 \ (k \to \infty)$,知 $\{S_k\}$ 为完备度量空间 (X, d) 中的柯西列,从而收敛到 X 中的 $S_\infty = \sum_{n=1}^\infty x_n$.

若 $\forall x_n \in X$, $||x_n|| < \frac{1}{2^n}$, 则 $\sum_{n=1}^{\infty} x_n$ 在 X 中收敛: 下证 (X,d) 为完备度量空间. 设 $\{y_n\}$ 为 X 中的柯西列,则 $\exists N_k \in \mathbb{N}^+$ s.t. $\forall m,n > N_k$, $d(y_n,y_m) < \frac{1}{2^k}$ $(k=1,2,\cdots)$. 取 $n_1 = N_1 + 1$, $n_k = \max\{n_{k-1},N_k\} + 1$ $(k=2,3,\cdots)$,则对于子列 $\{y_{n_k}\}$,有 $d(y_{n_{k+1}},y_{n_k}) = \|y_{n_{k+1}} - y_{n_k}\| < \frac{1}{2^k}$,且 $y_{n_{k+1}} - y_{n_k} \in X$ $(k=1,2,\cdots)$. 从而 $\sum_{k=1}^{\infty} (y_{n_{k+1}} - y_{n_k})$ 在 X 中收敛到 $\lim_{k\to\infty} y_{n_k} - y_{n_1}$. 由于 $y_{n_1} \in X$,知 $\lim_{k\to\infty} y_{n_k} \in X$. 由 1, $\{y_n\}$ 在 X 中收敛,从而 (X,d) 为完备度量空间.

题目 1. 习题 1.31. 设 (X,d) 为度量空间, $M,N \subset X$ 为非空子集. 定义 M 和 N 的距离为

$$\rho(M, N) = \inf_{x \in M, y \in N} d(x, y).$$

求证:

- (1) 若 $\mathcal{P}(X)$ 为 X 的所有非空子集所构成的集合, ρ 一般不是 $\mathcal{P}(X)$ 上的度量;
- (2) 若 M 为紧集,N 为闭集,则 $M \cap N = \emptyset$ 当且仅当 $\rho(M, N) > 0$;
- (3) 举例说明当 M 为有界闭集时 (2) 中的结论不成立;
- (4) 若 M, N 均为紧集,存在 $x_0 \in M, y_0 \in N$,使得 $\rho(M, N) = d(x_0, y_0)$.

证明.

- (1) 举反例如下: 设 $X = \mathbb{R}$, d(x,y) = |x-y|. 设 $M_1 = [0,1]$, $M_2 = [1,2]$, $M_3 = [2,3]$. 则 $M_1, M_2, M_3 \in \mathcal{P}(X)$. $\rho(M_1, M_2) = \rho(M_2, M_3) = 0$,但 $\rho(M_1, M_3) = 1$,三角不等式 $\rho(M_1, M_3) \leq \rho(M_1, M_2) + \rho(M_2, M_3)$ 不成立,故 ρ 不是 $\mathcal{P}(X)$ 上的度量.
- (2) 证明两个逆否命题.

i. 若 $\rho(M, N) = 0$,取 $\varepsilon_n = \frac{1}{2^n} > 0$, $\exists x_n \in M, \ y_n \in N \text{ s.t. } d(x_n, y_n) < \frac{1}{2^n} \ (n = 1, 2, \cdots)$. 由 M 为紧集,知 $\{x_n\}$ 有收敛子列 $\{x_{n_k}\}$,设其极限 $x \in M$.

法一: $\forall \varepsilon > 0$, $\exists K_1 \in \mathbb{N}^+$ s.t. $\forall k > K_1, d(x, x_{n_k}) < \frac{\epsilon}{2}$. 又 $\exists K_2 \in \mathbb{N}^+$ s.t. $\forall k > K_2, n_k > \max\{1, \lfloor \log_2 \frac{2}{\epsilon} \rfloor + 1\}$,从而 $d(x_{n_k}, y_{n_k}) < \frac{1}{2^{n_k}} < \frac{\epsilon}{2}$. 故 $\exists K = \max\{K_1, K_2\}$ s.t. $\forall k > K, d(x, y_{n_k}) \le d(x, x_{n_k}) + d(x_{n_k}, y_{n_k}) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. 故 $y_{n_k} \to x \ (k \to \infty)$. 由 N 为闭集,知 N 中的数列 y_{n_k} 的极限 $x \in N$,故 $x \in M \cap N$, $M \cap N \neq \emptyset$.

法二: 对 $0 \le d(x_{n_k}, y_{n_k}) < \frac{1}{2^{n_k}} \Leftrightarrow k \to \infty$,由课本定理 1.3.4(度量关于两变量连续)与夹逼定理,得 $\lim_{k \to \infty} d(x, y_{n_k}) = \lim_{k \to \infty} d(x_{n_k}, y_{n_k}) = 0$. 以下同法一.

ii. 若 $M \cap N \neq \emptyset$,则 $\exists x_0 \in M \cap N$,故 $\rho(M, N) = 0$.

(3) 举反例如下: 设 $X = \mathbb{Q}$, d(x,y) = |x-y|. 设 $M = [0,\pi] \cap \mathbb{Q}$, $N = [\pi, 2\pi] \cap \mathbb{Q}$. 则 M, N 均为 \mathbb{Q} 的有界闭集, $M \cap N = \emptyset$,但 $\rho(M,N) = 0$.

(4) 取 $\epsilon_n = \frac{1}{2^n} > 0$, $\exists x_n \in M$, $y_n \in N$ s.t. $\rho(M, N) \leq d(x_n, y_n) < \rho(M, N) + \frac{1}{2^n}$ $(n = 1, 2, \cdots)$. 由 M 为紧集,知 $\{x_n\}$ 有收敛子列 $\{x_{n_k}\}$. 由 N 为紧集,知 $\{y_{n_k}\}$ 有收敛子列 $\{y_{n_{k_l}}\}$. $\{x_{n_{k_l}}\}$ 仍是 $\{x_n\}$ 的收敛子列. 设 $\lim_{l \to \infty} x_{n_{k_l}} = x_0 \in M$, $\lim_{l \to \infty} y_{n_{k_l}} = y_0 \in N$. 则对 $\rho(M, N) \leq d(x_{n_{k_l}}, y_{n_{k_l}}) < \rho(M, N) + \frac{1}{2^{n_{k_l}}}$ 令 $l \to \infty$,由课本定理 1.3.4 (度量关于两变量连续)与夹 逼定理,得 $d(x_0, y_0) = \lim_{l \to \infty} d(x_{n_{k_l}}, y_{n_{k_l}}) = \rho(M, N)$.

题目 2. 设 X,Y 为赋范空间, $T: X \to Y$ 为线性算子. 求证: $||T|| = \sup_{x \in X \atop ||x||_Y < 1} ||Tx||_Y$.

证明. 由课本定理 2.4.1,只需证明 $\sup_{x \in X \atop \|x\|_X < 1} \|Tx\|_Y = \sup_{x \in X \atop \|x\|_X = 1} \|Tx\|_Y$. 由于 $\sup_{x \in X \atop \|x\|_X = 1} \|Tx\|_Y$ 与需证明 $\sup_{x \in X \atop \|x\|_X \le 1} \|Tx\|_Y$ 与需证明 $\sup_{x \in X \atop \|x\|_X \le 1} \|Tx\|_Y$ 与 $\sup_{$

题目 1. 设 $X \neq \{0\}$ 为赋范空间, $f \in X'$, $f \neq 0$. $E = \{x \in X : f(x) = ||f||\}$. 求证:

- 1. E 为非空凸闭集.
- 2. $\inf_{x \in E} ||x|| = 1$.

证明. 1. 先证明 $E \neq \emptyset$. 由于 $f \neq 0$,知 $\exists x_0 \text{ s.t. } f(x_0) \neq 0$. 令 $x_1 = \frac{x_0 \|f\|}{f(x_0)} \in X$,则 $f(x_1) = \|f\|$,所以 $x_1 \in E$, $E \neq \emptyset$.

再证明 E 为凸集. $\forall x_1, x_2 \in E$, $\forall \lambda \in [0, 1]$, 有 $f(\lambda x_1 + (1 - \lambda)x_2) = \lambda f(x_1) + (1 - \lambda)f(x_2) = \lambda \|f\| + (1 - \lambda)\|f\| = \|f\|$, 故 $\lambda x_1 + (1 - \lambda)x_2 \in E$, 即 E 为凸集.

再证明 E 为闭集. 由于 f 有界,故连续. 单点集 $\{||f||\}$ 为 \mathbb{K} 的闭集,故 $E = f^{-1}(\{||f||\})$ 为 X 的闭集.

2. $\forall x \in E, \ f(x) = \|f\|.$ 取绝对值(模长),得 $\|f\| = |f(x)| \le \|f\| \cdot \|x\|, \ \|x\| \ge 1$,故 $\inf_{x \in E} \|x\| \ge 1$. 由于 $\|f\| = \sup_{x \in X} \frac{|f(x)|}{\|x\|}$,故 $\forall \varepsilon \in (0, \|f\|), \ \exists x_0 \in X \text{ s.t.} \frac{|f(x_0)|}{\|x_0\|} > \|f\| - \varepsilon$. 显然 $f(x_0) \ne 0$,令 $x_1 = \frac{x_0 \|f\|}{f(x_0)} \in X$,则 $f(x_1) = \|f\|, \ x_1 \in E, \ \|x_1\| = \frac{\|x_0\|\|f\|}{|f(x_0)|} < \frac{\|f\|}{\|f\| - \varepsilon}$. 综上, $\forall \varepsilon \in (0, \|f\|), \ \exists x_1 \in E \text{ s.t.} \ \|x_1\| < \frac{\|f\|}{\|f\| - \varepsilon}$,所以 $\inf_{x \in E} \|x\| \le \|x_1\| < \frac{\|f\|}{\|f\| - \varepsilon}$. 令 $\varepsilon \to 0^+$,则 $\inf_{x \in E} \|x\| \le 1$. 从而 $\inf_{x \in E} \|x\| = 1$.

题目 2. C[a,b] (赋予 $\|\cdot\|_{\infty}$) 上的线性泛函 f 称为正泛函,如果任取 $x \in C[a,b]$ 满足任取 $t \in [a,b]$, $x(t) \geq 0$,都有 $f(x) \geq 0$. 求证: f 为正线性泛函当且仅当 f 为连续线性泛函且 $\|f\| = f(1)$,此处 $1 \in C[a,b]$ 表示 [a,b] 上恒为 1 的连续函数.

证明. 先证明 \Longrightarrow . 假设 f 是正线性泛函,取 $1 \in C[a,b]$,有 $f(1) \ge 0$. 取 $0 \in C[a,b]$,由于 f(0) = f(0+0) = 2f(0),知 f(0) = 0. $\forall x \in C[a,b]$,由于 $\forall t \in [a,b]$, $x(t) \le \|x\|_{\infty}$,知如果 $x \ne 0$ ($\|x\|_{\infty} \ne 0$),则 $1 - \frac{x(t)}{\|x\|_{\infty}} \ge 0$,从而 $f(1 - \frac{x(t)}{\|x\|_{\infty}}) = f(1) - \frac{f(x)}{\|x\|_{\infty}} \ge 0$,即 $f(x) \le \|x\|_{\infty} f(1)$. 此式也对 x = 0 成立,从而对 $\forall x \in C[a,b]$ 成立. 利用 $-x(t) \le \|x\|_{\infty}$ 同理可得 $-\|x\|_{\infty} f(1) \le f(x)$,从而 $|f(x)| \le \|x\|_{\infty} |f(1)| = \|x\|_{\infty} f(1)$. 从而 f 有界 (连续),且 $\|f\| = \sup_{x \in C[a,b]} \frac{|f(x)|}{\|x\|_{\infty}} \le f(1)$. 又由于 $f(1) = |f(1)| \le \|f\| \cdot \|1\|_{\infty} = \|f\|$,故 $\|f\| = f(1)$.

再证明 \longleftarrow . 假设 f 是连续的且 ||f|| = f(1),则 $f(1) = ||f|| \ge 0$. $\forall x \in C[a,b]$ 满足 $\forall t \in [a,b], \ x(t) \ge 0$,若 x = 0,易知 f(x) = f(0) = 0. 以下讨论 $x \ne 0$. 记 $m = \min_{t \in [a,b]} x(t)$, $M = \max_{t \in [a,b]} x(t) = ||x||_{\infty} > m \ge 0$,设 $y(t) = 1 - \frac{x(t) - m}{M - m}$,易知 $\min_{t \in [a,b]} y(t) = 0$, $\max_{t \in [a,b]} y(t) = ||y||_{\infty} = 1$. 由于 $f(y) \le ||f(y)|| \le ||f|| \cdot ||y||_{\infty} = f(1)$,得 $f(1-y) \ge 0$,即 $f(x) = f((M-m)(1-y) + m) = (M-m)f(1-y) + mf(1) \ge 0$. 所以 f 是正泛函.

题目 1. 习题 3.1. 设 *X* 为实内积空间, $x, y \in X$. 求证: $x \perp y$ 当且仅当勾股定理对 x, y 成立, 即 $||x + y||^2 = ||x||^2 + ||y||^2$. 举例说明若 *X* 为复内积空间, 则上述结论一般不成立.

证明. 若 X 为实内积空间:

1. 先证明 \Longrightarrow . 若 $x \perp y$, 则 $\langle x, y \rangle = 0$, 从而

$$||x+y||^2 = \langle x+y, x+y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = \langle x, x \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2.$$

2. 再证明 \iff . 若 $||x+y||^2 = ||x||^2 + ||y||^2$, 则

$$\begin{split} \langle x,y \rangle &= \langle (x+y) - y, (x+y) - x \rangle \\ &= \langle x+y, x+y \rangle - \langle x+y, x \rangle - \langle y, x+y \rangle + \langle y, x \rangle \\ &= \langle x+y, x+y \rangle - \langle x, x \rangle - \langle y, y \rangle - \langle y, x \rangle \\ &= \|x+y\|^2 - \|x\|^2 - \|y\|^2 - \langle y, x \rangle \\ &= -\langle y, x \rangle \end{split}$$

从而 $\langle x, y \rangle = 0$, 即 $x \perp y$.

若 X 为复内积空间,则 $\langle x,y \rangle = -\langle y,x \rangle = -\overline{\langle x,y \rangle}$ 只能得到 $\Re\langle x,y \rangle = 0$,从而 \iff 证明失效.举例说明:设 $\forall x,y \in \mathbb{C},\ \langle x,y \rangle = x\overline{y}$,易验证其是 X 上的内积.取 $x=1,\ y=\mathrm{i}$,则 $\|x+y\|^2 = \|1+\mathrm{i}\|^2 = 2,\ \|x\|^2 + \|y\|^2 = \|1\|^2 + \|\mathrm{i}\|^2 = 2,\ \mathcal{U}(x,y) = -\mathrm{i} \neq 0$.

题目 2. 习题 3.2. 设 X 为内积空间, $x, y, z \in X$. 证明 Applonius 恒等式:

$$||z - x||^2 + ||z - y||^2 = \frac{1}{2}||x - y||^2 + 2||z - \frac{1}{2}(x + y)||^2$$

证明. 由内积的平行四边形等式, 得

$$2(\|z - x\|^2 + \|z - y\|^2) = \|(z - x) + (z - y)\|^2 + \|(z - x) - (z - y)\|^2$$
$$= \|2z - (x + y)\|^2 + \|x - y\|^2$$
$$= 4\|z - \frac{1}{2}(x + y)\|^2 + \|x - y\|^2$$

从而

$$||z - x||^2 + ||z - y||^2 = \frac{1}{2}||x - y||^2 + 2||z - \frac{1}{2}(x + y)||^2$$

题目 3. 习题 3.6. 设 X 为内积空间, $x \in X$, $M \subset X$ 为非空子集, 且 $x \perp M$. 求证: $x \perp \overline{\operatorname{span}(M)}$.

证明. 先证明 $x \perp \operatorname{span}(M)$. $\forall y \in \operatorname{span}(M)$, $\exists \alpha_i \in M$, $c_i \in \mathbb{K}$ $(i = 1, 2, \dots, n)$ s.t. $y = \sum_{i=1}^n c_i \alpha_i$, 从而 $\langle x, y \rangle = \sum_{i=1}^n \overline{c_i} \langle x, \alpha_i \rangle = 0$, 即 $x \perp \operatorname{span}(M)$.

再证明 $x \perp \overline{\operatorname{span}(M)}$. $\forall y \in \overline{\operatorname{span}(M)}$, $\exists \{y_n\} \subset \operatorname{span}(M)$ s.t. $y_n \to y$. 由 $x \perp \operatorname{span}(M)$ 知 $\forall n \in \mathbb{N}^+$, $\langle x, y_n \rangle = 0$. 由内积的连续性, $\langle x, y_n \rangle \to \langle x, y \rangle$, 从而 $\langle x, y \rangle = 0$, 即 $x \perp \overline{\operatorname{span}(M)}$. \square

题目 4. 习题 3.7. 设 X 为复内积空间, $T: X \to X$ 为线性算子, 且任取 $x \in X$, $\langle Tx, x \rangle = 0$. 求证: T = 0.

证明. $\forall x, y \in X, \forall c \in \mathbb{C}, \diamondsuit z = x + cy, 则$

$$\langle Tz, z \rangle = \langle Tx + T(cy), x + cy \rangle = \langle Tx, x \rangle + \overline{c} \langle Tx, y \rangle + c \langle Ty, x \rangle + \langle T(cy), cy \rangle$$
$$= \overline{c} \langle Tx, y \rangle + c \langle Ty, x \rangle = 0$$

令 c=1 得 $\langle Tx,y\rangle = -\langle Ty,x\rangle$. 令 c=i 得 $\langle Tx,y\rangle = \langle Ty,x\rangle$, 从而 $\langle Tx,y\rangle = 0$. 代入 y=Tx, 得 $\langle Tx,Tx\rangle = 0$, 从而 Tx=0. 由 x 的任意性知 T=0. **题目 1. 习题 3.12.** 设 *X* 为内积空间, $M, N \subset X$ 为非空子集. 求证:

- (1) 若 $M \subset N$, 则 $N^{\perp} \subset M^{\perp}$;
- (2) 若 $M \perp N$, 则 $M \subset N^{\perp}$, $N \subset M^{\perp}$;
- (3) $M^{\perp} \cap N^{\perp} \subset (M \cup N)^{\perp}$;
- $(4) M^{\perp} \cup N^{\perp} \subset (M \cap N)^{\perp}.$

证明. (1) $\forall x \in N^{\perp}$, 有 $x \perp N$, 即 $\forall y \in N$, $\langle x, y \rangle = 0$. 所以 $\forall y \in M \subset N$, $\langle x, y \rangle = 0$, 即 $x \perp M$, 从而 $x \in M^{\perp}$.

- (2) $\forall x \in M$, 由 $M \perp N$ 知 $x \perp N$, 从而 $x \in N^{\perp}$, $M \subset N^{\perp}$. 同理可证 $N \subset M^{\perp}$.
- (3) $\forall x \in M^{\perp} \cap N^{\perp}$, 有 $x \perp M$ 且 $x \perp N$, 即 $\forall y \in M$, $\langle x, y \rangle = 0$ 且 $\forall y \in N$, $\langle x, y \rangle = 0$. 所以 $\forall y \in M \cup N$, $\langle x, y \rangle = 0$, 即 $x \perp (M \cup N)$, $x \in (M \cup N)^{\perp}$.
- $(4) \ \forall x \in M^\perp \cup N^\perp, \ \dot{\mathbf{f}} \ x \perp M \ \mathbf{g} \ x \perp N, \ \mathbb{P} \ \forall y \in M, \ \langle x,y \rangle = 0 \ \mathbf{g} \ \forall y \in N, \ \langle x,y \rangle = 0.$ 所以 $\forall y \in M \cap N, \ \langle x,y \rangle = 0, \ \mathbb{P} \ x \perp (M \cap N), \ x \in (M \cap N)^\perp.$

题目 2. 习题 3.18. 求最小值:
$$\min_{a,b,c\in\mathbb{R}} \int_{-1}^{1} |t^3 - a - bt - ct^2|^2 dt$$
.

解. 在 C[-1,1] 上定义内积 $\langle f,g\rangle = \int_{-1}^{1} f(t)\overline{g(t)} dt$. 则

$$\forall i, j \in \mathbb{N}, \ \langle t^i, t^j \rangle = \int_{-1}^1 t^{i+j} \, \mathrm{d}t = \frac{1}{i+j+1} (1 - (-1)^{i+j+1}) = \begin{cases} 0, & i+j \ \text{为奇数}, \\ \frac{2}{i+j+1}, & i+j \ \text{为偶数}. \end{cases}$$

所以

$$\begin{split} & \int_{-1}^{1} |t^3 - a - bt - ct^2|^2 \, \mathrm{d}t \\ &= \langle t^3 - a - bt - ct^2, t^3 - a - bt - ct^2 \rangle \\ &= \langle t^3, t^3 \rangle - 2c \langle t^3, t^2 \rangle - 2b \langle t^3, t \rangle - 2a \langle t^3, 1 \rangle + c^2 \langle t^2, t^2 \rangle + 2bc \langle t^2, t \rangle + 2ac \langle t^2, 1 \rangle \\ &+ b^2 \langle t, t \rangle + 2ab \langle t, 1 \rangle + a^2 \langle 1, 1 \rangle \\ &= \langle t^3, t^3 \rangle - 2b \langle t^3, t \rangle + c^2 \langle t^2, t^2 \rangle + 2ac \langle t^2, 1 \rangle + b^2 \langle t, t \rangle + a^2 \langle 1, 1 \rangle \\ &= \frac{2}{7} + \frac{2}{5} (c^2 - 2b) + \frac{2}{3} (b^2 + 2ac) + 2a^2 \\ &= 2a^2 + \frac{4}{3}ac + \frac{2}{3}b^2 - \frac{4}{5}b + \frac{2}{5}c^2 + \frac{2}{7} \\ &= 2\left(a + \frac{1}{3}c\right)^2 + \frac{8}{45}c^2 + \frac{2}{3}\left(b - \frac{3}{5}\right)^2 + \frac{8}{175} \\ &\geq \frac{8}{175}. \end{split}$$

当且仅当 $(a,b,c) = (0,\frac{3}{5},0)$ 时取等号. 综上, $\min_{a,b,c\in\mathbb{R}} \int_{-1}^{1} |t^3 - a - bt - ct^2|^2 dt = \frac{8}{175}$.

题目 1. 习题 3.24. 设 H_1, H_2 为 Hilbert 空间, $T \in B(H_1, H_2)$. 若 $M_1 \subseteq H_1, M_2 \subseteq H_2$ s.t. $T(M_1) \subseteq M_2$, 求证: $T^*(M_2^{\perp}) \subseteq M_1^{\perp}$.

证明. $\forall x \in M_2^{\perp}, \ \forall y \in M_1, \ \text{由} \ T(M_1) \subseteq M_2 \ \text{知} \ Ty \in M_2, \ \text{故} \ \langle y, T^*x \rangle = \langle Ty, x \rangle = 0. \ \text{由} \ y \ \text{的}$ 任意性知 $T^*x \in M_1^{\perp}$. 由 x 的任意性知 $T^*(M_2^{\perp}) \subseteq M_1^{\perp}$.

题目 2. 习题 3.25. 在习题 24 中, 设 M_1, M_2 均为闭线性子空间, 求证: $T(M_1) \subseteq M_2 \iff T^*(M_2^{\perp}) \subseteq M_1^{\perp}$.

证明. ⇒: 习题 24 中已证明.

 \iff : 已知 $T^*(M_2^{\perp}) \subseteq M_1^{\perp}$,由于 $T^* \in B(H_2, H_1)$, $M_2^{\perp} \subseteq H_2$, $M_1^{\perp} \subseteq H_1$,由习题 24 结论 得 $T^{**}\left((M_1^{\perp})^{\perp}\right) \subseteq (M_2^{\perp})^{\perp}$. 由于 M_1, M_2 为闭线性子空间,知 $(M_1^{\perp})^{\perp} = M_1$, $(M_2^{\perp})^{\perp} = M_2$,结合 $T^{**} = T$,得 $T(M_1) \subseteq M_2$.

题目 3. 习题 4.1. 设 p 为赋范空间 X 上的次线性泛函, 满足 p(0) = 0, 且在 0 处连续. 求证: p 为连续映射.

证明. 由于 p 在 0 处连续, 故 $\forall \varepsilon > 0$, $\exists \delta_0 > 0$ s.t. $\forall x_0 \in X$ ($||x_0|| < \delta_0$), $|p(x_0) - p(0)| = |p(x_0)| < \varepsilon$.

所以 $\forall x \in X$, $\forall \varepsilon > 0$, $\exists \delta = \delta_0 > 0$ s.t. $\forall x_1 \in X$ ($||x_1 - x|| < \delta$), 有 $p(x_1) - p(x) \le p(x_1 - x) \le |p(x_1 - x)| < \varepsilon$ 且 $p(x) - p(x_1) \le p(x - x_1) \le |p(x - x_1)| < \varepsilon$, 即 $|p(x_1) - p(x)| < \varepsilon$. 从而 $\forall x \in X$, p 在 x 处连续, 即 p 为连续映射.

题目 3 的注记. 或直接夹逼: $\forall x \in X, \ \forall x_n \to x, \ -p(x-x_n) \le p(x) - p(x_n) \le p(x-x_n), \ \text{由}$ $p \in 0$ 处连续知 $p(x-x_n) \to 0$, 故 $p(x_n) \to p(x)$, 即 $p \in x$ 处连续.

题目 4. 习题 4.2. 设 X 为线性空间, $p: X \to \mathbb{R}$ s.t. $\forall x, y \in X, \ \lambda \in \mathbb{K}, \ p(x+y) \le p(x) + p(y), \ p(\lambda x) = |\lambda| p(x)$. 求证: p 为 X 上的半范数.

证明. 只需证明: $\forall x \in X, p(x) \geq 0$.

由于 $p(\lambda x) = |\lambda| p(x)$, 代入 $\lambda = 0, -1$ 得 p(0) = 0, p(-x) = p(x).

由于 p(x+y) < p(x) + p(y), 代入 y = -x 得 p(0) < p(x) + p(-x) = 2p(x), 即 p(x) > 0.

题目 1. 习题 4.6. 设 X 为赋范空间, $f \in X^*$. 求证: $f \in X'$ 当且仅当 N(f) 为 X 的闭线性子空间.

证明. 先证明 \Longrightarrow : **法一.** 若 $f \in X'$, $\forall \{x_n\} \subseteq N(f)$, $x_n \to x \in X$, 则 $f(x_n) = 0$. 由 f 的 连续性有 $f(x) = f\left(\lim_{n \to \infty} x_n\right) = \lim_{n \to \infty} f(x_n) = 0$, 故 $x \in N(f)$, 即 N(f) 为闭集. 由 N(f) 为 X 的线性子空间易知 N(f) 为 X 的闭线性子空间.

法二. 由于 $\{0\}$ 为 X 的闭集, 由 f 的连续性有 $N(f) = f^{-1}(\{0\})$ 为闭集.

再证明 \iff : 已知 N(f) 为 X 的闭线性子空间. 情形 1: N(f) = X, 则 $f = 0 \in X'$. 情形 2: $N(f) \neq X$, 则 $\exists x_0 \in X$ s.t. $x_0 \notin N(f) = \overline{N(f)}$, 所以 $\exists r > 0$ s.t. $B(x_0, r) \cap N(f) = \emptyset$. 以下使用反证法证明 $f \in X'$. 假设 $f \notin X'$, 则 f(B(0, r)) 无界, 所以 $\exists x_1 \in B(0, r)$ s.t. $|f(x_1)| > |f(x_0)| > 0$. 则

$$f\left(x_0 - \frac{f(x_0)}{f(x_1)}x_1\right) = f(x_0) - \frac{f(x_0)}{f(x_1)}f(x_1) = 0, \ \mathbb{H} \ x_0 - \frac{f(x_0)}{f(x_1)}x_1 \in N(f).$$

其中 $\|-\frac{f(x_0)}{f(x_1)}x_1\| = \frac{|f(x_0)|}{|f(x_1)|}\|x_1\| < \frac{|f(x_0)|}{|f(x_1)|}r < r$, 故 $x_0 - \frac{f(x_0)}{f(x_1)}x_1 \in B(x_0, r)$. 这与 $B(x_0, r) \cap N(f) = \emptyset$ 矛盾. 综上, $f \in X'$.

题目 2. 习题 4.7. 设 X 为赋范空间, M 为 X' 的非空子集, 求证: 若 $\overline{\mathrm{span}(M)} = X'$, 则 $\bigcap_{f \in M} N(f) = \{0\}.$

证明. 由 $\overline{\operatorname{span}(M)} = X'$ 知 $\forall g \in X'$, $\exists \{g_n\} \subseteq \operatorname{span}(M)$ s.t. $g_n \to g$. 由 $g_n \in \operatorname{span}(M)$ 知 $\exists f_{n,m} \in M, \lambda_{n,m} \in \mathbb{K} \ (m = 1, 2, \dots, k_n) \text{ s.t. } g_n = \sum_{m=1}^{k_n} \lambda_{n,m} f_{n,m}. \ \forall x_0 \in \bigcap_{f \in M} N(f), \ f$ $f_{n,m}(x_0) = 0$, 故 $g_n(x_0) = 0$, 由 $g_n \to g$ 知 $g(x_0) = 0$ [注 1]. 由 Hahn-Banach 定理推论 [注 2] 知 $x_0 = 0$. 所以 $\bigcap_{f \in M} N(f) = \{0\}$.

题目 2 的注记. 注 1: 已知 $g_n \to g$, $g_n(x_0) = 0$, 则 $|g(x_0) - g_n(x_0)| = |(g - g_n)(x_0)| \le ||g - g_n|| ||x_0|| \to 0$, 故 $g(x_0) = 0$.

注 2: 己知 $x_0 \in X$ 满足 $\forall g \in X', \ g(x_0) = 0$. 若 $x_0 \neq 0$, 由 Hahn-Banach 定理知 $\exists f \in X'$ s.t. $||f|| = 1, \ f(x_0) = ||x_0|| \neq 0$, 矛盾. 故 $x_0 = 0$.

题目 3. 习题 4.5. 设 X 为可分赋范空间, 求证: 存在 X' 单位球面的至多可数子集 N, 使得任取 $x \in X$, 有 $\|x\| = \sup_{f \in N} |f(x)|$.

证明. 由于 X 为可分赋范空间,知存在至多可数集 M s.t. $\overline{M} = X$. $\forall m \in M \ (m \neq 0)$,由 Hahn-Banach 定理知 $\exists f_m \in X'$ s.t. $\|f_m\| = 1$, $f_m(m) = \|m\|$. 令 $N = \{f_m \mid m \in M, m \neq 0\}$,则 N 为 X' 单位球面的至多可数子集.

 $\forall x \in X, \ \text{下证} \ \|x\| = \sup_{f \in N} |f(x)|. \ \ \text{若} \ x = 0 \ \text{则结论显然.} \ \text{以下讨论} \ x \neq 0. \ \text{此时易知} \ N \neq \varnothing.$ $\forall f \in N, \ |f(x)| \leq \|f\| \|x\| = \|x\|, \ \text{故} \ \sup_{f \in N} |f(x)| \leq \|x\|.$

由 $x \in X = \overline{M}$, $x \neq 0$ 知 $\forall \varepsilon > 0$, $\exists m \in M \ (m \neq 0)$ s.t. $||x - m|| < \varepsilon$, 则对 $f_m \in N$ 有

$$|f_m(x)| = |f_m(x - m) + f_m(m)| \ge |f_m(m)| - |f_m(x - m)|$$

$$= ||m|| - |f_m(x - m)| \ge ||m|| - ||f_m|| ||x - m||$$

$$= ||m|| - ||x - m|| > ||x|| - \varepsilon - ||x - m|| > ||x|| - 2\varepsilon.$$

所以 $\sup_{f\in N}|f(x)|\geq |f_m(x)|\geq \|x\|-2\varepsilon.$ 由 ε 的任意性知 $\sup_{f\in N}|f(x)|\geq \|x\|.$ 综上, $\|x\|=\sup_{f\in N}|f(x)|.$

题目 1. 习题 4.4. 设 X 为赋范空间, M 为 X 的线性子空间, $x_0 \in X$. 求证 $x_0 \in \overline{M}$ 当且仅 当任取 $f \in X'$, $f|_M = 0$, 都有 $f(x_0) = 0$.

证明. 先证明 \Longrightarrow . 若 $x_0 \in \overline{M}$, 则 $\exists \{x_n\} \subseteq M$ s.t. $x_n \to x_0$. $\forall f \in X'$, $f|_M = 0$, 由 $x_n \in M$ 有 $f(x_n) = 0$, 由 f 的连续性有 $f(x_n) \to f(x_0)$, 故 $f(x_0) = 0$.

再证明 \leftarrow . $\overline{M} = X$ 情形平凡, 只需讨论 $\overline{M} \subsetneq X$ 情形. 假设 $x_0 \notin \overline{M}$, 记 $\delta = \rho(x_0, \overline{M}) = \inf_{y \in \overline{M}} \|x_0 - y\| > 0$. 由 Hahn-Banach 定理, $\exists g \in X'$ s.t. $\|g\| = 1$, $g|_{\overline{M}} = 0$, $g(x_0) = \delta > 0$, 与 $\forall f \in X'$, $f|_{M} = 0$ 都有 $f(x_0) = 0$ 矛盾. 故 $x_0 \in \overline{M}$.

题目 2. 习题 4.13. 设 X,Y 为赋范空间, $T \in B(X,Y)$, $T^* \in B(Y',X')$ 为其共轭算子. 求证: ${}^{\perp}R(T) = N(T^*)$.

注: 设 X 为赋范空间, M 为 X 的线性子空间, $^{\perp}M = \{f \in X' \mid f|_{M} = 0\}.$

证明. 以下证明: $\forall f \in Y', f \in {}^{\perp}R(T) \iff f \in N(T^*).$

$$f \in {}^{\perp}R(T) \iff \forall y \in R(T), \ f(y) = 0$$

$$\iff \forall x \in X, \ f(Tx) = 0$$

$$\iff \forall x \in X, \ T^*(f)(x) = 0$$

$$\iff T^*(f) = 0$$

$$\iff f \in N(T^*)$$

题目 3. 习题 4.14. 设 (X,d) 为度量空间. 求证: $M \subseteq X$ 为无处稠密子集当且仅当 $(\overline{M})^c$ 为 X 的稠密子集.

证明. M 为无处稠密子集 $\iff \overline{M}$ 无内点, 即 $\forall x \in \overline{M}, \forall r > 0, B(x,r) \not\subseteq \overline{M}$

 $\iff \forall x \in \overline{M}, \ \forall r > 0, \ \exists y \in B(x,r) \ \text{ s.t. } y \in (\overline{M})^c, \ \mathbb{P} \ B(x,r) \cap (\overline{M})^c \neq \varnothing$

 $\iff \forall x \in X, \ \forall r > 0, \ \exists y \in B(x,r) \ \text{s.t.} \ B(x,r) \cap (\overline{M})^c \neq \emptyset$ (注: 若 $x \in (\overline{M})^c$, 取 y = x 即可, 这是平凡情形)

 $\iff \overline{(\overline{M})^c} = X$, 即 $(\overline{M})^c$ 为 X 的稠密子集.

题目 3 的注记. 另证: M 为无处稠密子集 $\iff \overline{M}$ 无内点 (X 的点都是其外点或边界点) $\iff (\overline{M})^c$ 无外点 (X 的点都是其内点或边界点) $\iff (\overline{M})^c$ 为 (X 的稠密子集.

题目 4. 习题 4.15. 证明: 非空完备度量空间的第一范畴子集的余集必为第二范畴子集.

证明. 反证法. 设 (X,d) 为非空完备度量空间, $\exists A \subseteq X$ 为第一范畴子集, 使得 A^c 也是第一范畴子集. 则 A,A^c 都可表示成 X 中可数个无处稠密子集的并集, 所以 $X = A \cup A^c$ 也可表示成 X 中可数个无处稠密子集的并集, 从而 X 作为 X 的子集为第一范畴的, 与 Baire 范畴定理矛盾. 所以非空完备度量空间的第一范畴子集的余集必为第二范畴子集.

题目 1. 习题 4.16. 设 x_n 为赋范空间 X 中的一列元, 任给 $f \in X'$, $f(x_n)$ 都为纯量有界列. 求证: $\{x_n\}$ 为有界列.

证明. 考虑典范映射 $J: X \to X''$. 由于 $\forall f \in X', \ J(x_n)(f) = f(x_n)$ 为纯量有界列,得 $\sup_{n \ge 1} \|J(x_n)(f)\| < \infty$. 由于 X' 总为 Banach 空间,利用一致有界性原理可得 $\sup_{n \ge 1} \|J(x_n)\| < \infty$. 由于 J 为保范映射, $\|J(x_n)\| = \|x_n\|$,故 $\sup_{n \ge 1} \|x_n\| < \infty$, $\{x_n\}$ 为有界列.

题目 2. 习题 4.17. 设 X 为 Banach 空间, Y 为赋范空间, $T_n \in B(X,Y)$ 为一列有界线性算子, 设任取 $x \in X$, $\{T_n x\}$ 都是 Y 中的柯西列, 求证: 存在常数 $C \geq 0$, 使得任取 $n \geq 1$, $\|T_n\| \leq C$.

证明. $\forall x \in X$, 由于 $\forall n \geq 1$, $\{T_n x\}$ 是 Y 中的柯西列,故其是有界列,即 $\sup_{n \geq 1} \|T_n x\| < \infty$. 由于 X 为 Banach 空间,由一致有界性原理 $\sup_{n \geq 1} \|T_n\| < \infty$,即 $\exists C \geq 0$ s.t. $\forall n \geq 1$, $\|T_n\| \leq C$.

题目 3. 习题 4.18. 在上题中又设 Y 为 Banach 空间, 求证: 存在 $T \in B(X,Y)$, 使得任取 $x \in X$, $T_n x \to T x$, 且 $||T|| \le \sup_{n \ge 1} ||T_n||$.

证明. 由于 $\forall x \in X$, $\{T_n x\}$ 是 Banach 空间 Y 中的柯西列, 故 $\forall x \in X$, $\exists y_x \in Y$ s.t. $T_n x \to y_x$. 定义 $T: X \to Y$ 为 $Tx = y_x$, 则 $\forall x \in X$, $T_n x \to Tx$. 下证 T 为线性映射:

$$\forall x, y \in X, \ T(ax + by) = \lim_{n \to \infty} T_n(ax + by) = \lim_{n \to \infty} aT_nx + \lim_{n \to \infty} bT_ny = aTx + bTy$$

由于 T_n 强收敛到 T,自然弱收敛到 T,由定理 4.3.6 [注] 知 $||T|| \le \sup_{n \ge 1} ||T_n||$.所以 $T \in B(X,Y)$ 符合题意.

题目 3 的注记. 注: $\forall x \in X$, $\forall f \in Y'$, $\|f(T_n x)\| \le \|f\| \|T_n\| \|x\| \le C\|f\| \|x\|$, 令 $n \to \infty$, 由 f 的连续性、范数连续性知 $\|f(T_n x)\| \to \|f(T x)\|$, 可得 $\|f(T x)\| \le C\|f\| \|x\|$. 由 Hahn-Banach 定理, $\|Tx\| = \sup_{f \in Y', \|f\| = 1} \|f(T x)\| \le C\|x\|$, 即 $\|T\| \le C$.

题目 4. 习题 4.19. 设 X 为 Banach 空间, Y 为赋范空间, $T_n \in B(X,Y)$ 为一列有界线性算子. 证明下述命题相互等价:

- (1) 存在 $C \ge 0$, $||T_n|| \le C$;
- (2) 任取 $x \in X$, $\{T_n x\}$ 为 Y 中的有界列;
- (3) 任取 $x \in X$, $f \in Y'$, $\{f(T_n x)\}$ 为纯量有界列.

证明. (3) ⇒ (2): 习题 4.16 已证.

- (2) ⇒ (1): 习题 4.17 已证 (条件中的柯西列换成有界列即可).
- (1) \Longrightarrow (3): $\forall x \in X$, $\forall f \in Y'$, $\|f(T_n x)\| \le \|f\| \|T_n\| \|x\| \le C\|f\| \|x\|$, 故 $\{f(T_n x)\}$ 为 纯量有界列.