RISC x CISC

Basicamente, uma arquitetura de processador busca executar os programas da maneira mais rápida possível.

Cálculo do tempo de execução do programa

$$T_p = N_i * T_c * N_c$$

 T_p = tempo de execução do programa

 N_i = número de instruções

 T_c = tempo de cada ciclo de relógio

 N_c = Número de ciclos

Assim, temos duas opções que minimizam o tempo nessa equação:

- Diminuindo o número de instruções, mas aumentando o número de ciclos e tempo de cada ciclo de relógio (CISC).
- Aumentando o número de instruções, mas diminuindo o número de ciclos e tempo de cada ciclo de relógio (RISC).

CISC	RISC
Arquitetura Memória-Memória	Arquitetura Registrador
Instruções complexas que demandam um número grande de ciclos de máquina para execução. E esses ciclos de máquina possuem tempo aumentado também por conta da complexidade do hardware necessário.	Instruções mais simples que demandam um número fixo de ciclos de máquina para sua execução. São poucos formatos diferentes de instruções e apenas as de "load" e "store" acessam a memória.
Uso de diversos modos de endereçamento de operandos.	Uso de poucos modos simples de endereçamento de operandos.
Enfraquecimento do pipeline.	Implementadas com o uso do pipeline.
Unidade de controle microprogramada.	Unidade de controle "hardwired".
Programas menores.	Programas maiores.