Mean, Variance, Covariance and Correlation

From Walpole book

Definition 4.1:

Let X be a random variable with probability distribution f(x). The **mean**, or **expected value**, of X is

$$\mu = E(X) = \sum_{x} x f(x)$$

if X is discrete, and

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) \ dx$$

if X is continuous.

Example 4.1: A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Solution: Let X represent the number of good components in the sample. The probability distribution of X is

$$f(x) = \frac{\binom{4}{x}\binom{3}{3-x}}{\binom{7}{3}}, \qquad x = 0, 1, 2, 3.$$

Simple calculations yield f(0) = 1/35, f(1) = 12/35, f(2) = 18/35, and f(3) = 4/35. Therefore,

$$\mu = E(X) = (0)\left(\frac{1}{35}\right) + (1)\left(\frac{12}{35}\right) + (2)\left(\frac{18}{35}\right) + (3)\left(\frac{4}{35}\right) = \frac{12}{7} = 1.7.$$

Thus, if a sample of size 3 is selected at random over and over again from a lot of 4 good components and 3 defective components, it will contain, on average, 1.7 good components.

Example 4.2: A salesperson for a medical device company has two appointments on a given day. At the first appointment, he believes that he has a 70% chance to make the deal, from which he can earn \$1000 commission if successful. On the other hand, he thinks he only has a 40% chance to make the deal at the second appointment, from which, if successful, he can make \$1500. What is his expected commission based on his own probability belief? Assume that the appointment results are independent of each other.

Solution: First, we know that the salesperson, for the two appointments, can have 4 possible commission totals: \$0, \$1000, \$1500, and \$2500. We then need to calculate their associated probabilities. By independence, we obtain

$$f(\$0) = (1 - 0.7)(1 - 0.4) = 0.18, \quad f(\$2500) = (0.7)(0.4) = 0.28,$$

 $f(\$1000) = (0.7)(1 - 0.4) = 0.42, \text{ and } f(\$1500) = (1 - 0.7)(0.4) = 0.12.$

Therefore, the expected commission for the salesperson is

$$E(X) = (\$0)(0.18) + (\$1000)(0.42) + (\$1500)(0.12) + (\$2500)(0.28)$$

= \\$1300.

Example 4.3: Let X be the random variable that denotes the life in hours of a certain electronic device. The probability density function is

$$f(x) = \begin{cases} \frac{20,000}{x^3}, & x > 100, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected life of this type of device.

Solution: Using Definition 4.1, we have

$$\mu = E(X) = \int_{100}^{\infty} x \frac{20,000}{x^3} dx = \int_{100}^{\infty} \frac{20,000}{x^2} dx = 200.$$

Therefore, we can expect this type of device to last, on average, 200 hours.

Theorem 4.1: Let X be a random variable with probability distribution f(x). The expected value of the random variable g(X) is

$$\mu_{g(X)} = E[g(X)] = \sum_{x} g(x)f(x)$$

if X is discrete, and

$$\mu_{g(X)} = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \ dx$$

if X is continuous.

Example 4.4: Suppose that the number of cars X that pass through a car wash between 4:00 P.M. and 5:00 P.M. on any sunny Friday has the following probability distribution:

Let g(X) = 2X - 1 represent the amount of money, in dollars, paid to the attendant by the manager. Find the attendant's expected earnings for this particular time period.

Solution: By Theorem 4.1, the attendant can expect to receive

$$\begin{split} E[g(X)] &= E(2X - 1) = \sum_{x=4}^{9} (2x - 1)f(x) \\ &= (7)\left(\frac{1}{12}\right) + (9)\left(\frac{1}{12}\right) + (11)\left(\frac{1}{4}\right) + (13)\left(\frac{1}{4}\right) \\ &+ (15)\left(\frac{1}{6}\right) + (17)\left(\frac{1}{6}\right) = \$12.67. \end{split}$$

Example 4.5: Let X be a random variable with density function

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected value of g(X) = 4X + 3.

Solution: By Theorem 4.1, we have

$$E(4X+3) = \int_{-1}^{2} \frac{(4x+3)x^2}{3} dx = \frac{1}{3} \int_{-1}^{2} (4x^3 + 3x^2) dx = 8.$$

Definition 4.2:

Let X and Y be random variables with joint probability distribution f(x, y). The mean, or expected value, of the random variable g(X, Y) is

$$\mu_{g(X,Y)} = E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) f(x,y)$$

if X and Y are discrete, and

$$\mu_{g(X,Y)} = E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) dx dy$$

if X and Y are continuous.

Example 4.6: Let X and Y be the random variables with joint probability distribution indicated in Table 3.1 on page 96. Find the expected value of g(X,Y) = XY. The table is reprinted here for convenience.

			x		Row
	f(x,y)	0	1	2	Totals
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$
y	1	$\frac{\frac{3}{28}}{\frac{3}{14}}$	$\frac{\overline{28}}{3}$ $\overline{14}$	0	$\frac{15}{28}$ $\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
Column Totals		$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1

Solution: By Definition 4.2, we write

$$E(XY) = \sum_{x=0}^{2} \sum_{y=0}^{2} xyf(x,y)$$

$$= (0)(0)f(0,0) + (0)(1)f(0,1)$$

$$+ (1)(0)f(1,0) + (1)(1)f(1,1) + (2)(0)f(2,0)$$

$$= f(1,1) = \frac{3}{14}.$$

Example 4.7: Find E(Y/X) for the density function

$$f(x,y) = \begin{cases} \frac{x(1+3y^2)}{4}, & 0 < x < 2, \ 0 < y < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Solution: We have

$$E\left(\frac{Y}{X}\right) = \int_0^1 \int_0^2 \frac{y(1+3y^2)}{4} \ dxdy = \int_0^1 \frac{y+3y^3}{2} \ dy = \frac{5}{8}.$$

Note that if g(X,Y) = X in Definition 4.2, we have

$$E(X) = \begin{cases} \sum_{x} \sum_{y} x f(x, y) = \sum_{x} x g(x) & \text{(discrete case),} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) \ dy \ dx = \int_{-\infty}^{\infty} x g(x) \ dx & \text{(continuous case),} \end{cases}$$

where g(x) is the marginal distribution of X. Therefore, in calculating E(X) over a two-dimensional space, one may use either the joint probability distribution of X and Y or the marginal distribution of X. Similarly, we define

$$E(Y) = \begin{cases} \sum_{y} \sum_{x} y f(x, y) = \sum_{y} y h(y) & \text{(discrete case),} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) \ dx dy = \int_{-\infty}^{\infty} y h(y) \ dy & \text{(continuous case),} \end{cases}$$

where h(y) is the marginal distribution of the random variable Y.

Exercise questions (4.1 to 4.32) Page # 117-119

4.1 The probability distribution of X, the number of imperfections per 10 meters of a synthetic fabric in continuous rolls of uniform width, is given in Exercise 3.13 on page 92 as

Find the average number of imperfections per 10 meters of this fabric.

4.2 The probability distribution of the discrete random variable X is

$$f(x) = {3 \choose x} \left(\frac{1}{4}\right)^x \left(\frac{3}{4}\right)^{3-x}, \quad x = 0, 1, 2, 3.$$

Find the mean of X.

4.7 By investing in a particular stock, a person can make a profit in one year of \$4000 with probability 0.3 or take a loss of \$1000 with probability 0.7. What is this person's expected gain?

4.19 A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous year. Suppose that the number of word processors, X, purchased each year has the following probability distribution:

If the cost of the desired model is \$1200 per unit and at the end of the year a refund of $50X^2$ dollars will be issued, how much can this firm expect to spend on new word processors during this year?

4.11 The density function of coded measurements of the pitch diameter of threads of a fitting is

$$f(x) = \begin{cases} \frac{4}{\pi(1+x^2)}, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected value of X.

4.14 Find the proportion X of individuals who can be expected to respond to a certain mail-order solicitation if X has the density function

$$f(x) = \begin{cases} \frac{2(x+2)}{5}, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

4.10 Two tire-quality experts examine stacks of tires and assign a quality rating to each tire on a 3-point scale. Let X denote the rating given by expert A and Y denote the rating given by B. The following table gives the joint distribution for X and Y.

			\boldsymbol{y}	
f(z)	(x,y)	1	2	3
	1	0.10	0.05	0.02
\boldsymbol{x}	2	0.10	0.35	0.05
	3	0.03	0.10	0.20

Find μ_X and μ_Y .

4.26 Let X and Y be random variables with joint density function

$$f(x,y) = \begin{cases} 4xy, & 0 < x, \ y < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected value of $Z = \sqrt{X^2 + Y^2}$.

Variance and Covariance of Random Variables

Definition 4.3:

Let X be a random variable with probability distribution f(x) and mean μ . The variance of X is

$$\sigma^2 = E[(X - \mu)^2] = \sum_x (x - \mu)^2 f(x), \quad \text{if } X \text{ is discrete, and}$$

$$\sigma^2 = E[(X - \mu)^2] = \sum_x (x - \mu)^2 f(x), \quad \text{if } X \text{ is discrete, and}$$

$$\sigma^2 = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \ dx, \quad \text{if } X \text{ is continuous.}$$

The positive square root of the variance, σ , is called the **standard deviation** of X.

Theorem 4.2:

The variance of a random variable X is

$$\sigma^2 = E(X^2) - \mu^2.$$

Example 4.9: Let the random variable X represent the number of defective parts for a machine when 3 parts are sampled from a production line and tested. The following is the probability distribution of X.

Using Theorem 4.2, calculate σ^2 .

Solution: First, we compute

$$\mu = (0)(0.51) + (1)(0.38) + (2)(0.10) + (3)(0.01) = 0.61.$$

Now,

$$E(X^2) = (0)(0.51) + (1)(0.38) + (4)(0.10) + (9)(0.01) = 0.87.$$

Therefore,

$$\sigma^2 = 0.87 - (0.61)^2 = 0.4979.$$

Example 4.10: The weekly demand for a drinking-water product, in thousands of liters, from a local chain of efficiency stores is a continuous random variable X having the probability density

$$f(x) = \begin{cases} 2(x-1), & 1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the mean and variance of X.

Solution: Calculating E(X) and $E(X^2)$, we have

$$\mu = E(X) = 2\int_{1}^{2} x(x-1) \ dx = \frac{5}{3}$$

and

$$E(X^2) = 2\int_1^2 x^2(x-1) \ dx = \frac{17}{6}.$$

Therefore,

$$\sigma^2 = \frac{17}{6} - \left(\frac{5}{3}\right)^2 = \frac{1}{18}.$$

Theorem 4.3:

Let X be a random variable with probability distribution f(x). The variance of the random variable g(X) is

$$\sigma_{g(X)}^2 = E\{[g(X) - \mu_{g(X)}]^2\} = \sum_x [g(x) - \mu_{g(X)}]^2 f(x)$$

if X is discrete, and

$$\sigma_{g(X)}^2 = E\{[g(X) - \mu_{g(X)}]^2\} = \int_{-\infty}^{\infty} [g(x) - \mu_{g(X)}]^2 f(x) \ dx$$

if X is continuous.

Example 4.11: Calculate the variance of g(X) = 2X + 3, where X is a random variable with probability distribution

Solution: First, we find the mean of the random variable 2X + 3. According to Theorem 4.1,

$$\mu_{2X+3} = E(2X+3) = \sum_{x=0}^{3} (2x+3)f(x) = 6.$$

Now, using Theorem 4.3, we have

$$\sigma_{2X+3}^2 = E\{[(2X+3) - \mu_{2x+3}]^2\} = E[(2X+3-6)^2]$$
$$= E(4X^2 - 12X + 9) = \sum_{x=0}^{3} (4x^2 - 12x + 9)f(x) = 4.$$

Definition 4.4:

Let X and Y be random variables with joint probability distribution f(x, y). The covariance of X and Y is

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_y)f(x, y)$$

if X and Y are discrete, and

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x, y) dx dy$$

if X and Y are continuous.

Theorem 4.4:

The covariance of two random variables X and Y with means μ_X and μ_Y , respectively, is given by

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y.$$

Example 4.13: Example 3.14 on page 95 describes a situation involving the number of blue refills X and the number of red refills Y. Two refills for a ballpoint pen are selected at random from a certain box, and the following is the joint probability distribution:

			\overline{x}		
	f(x, y)	0	1	2	h(y)
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$
y	1	$\begin{array}{r} \frac{3}{28} \\ \frac{3}{14} \end{array}$	$\frac{\frac{9}{28}}{\frac{3}{14}}$	0	$\frac{15}{28}$ $\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
	g(x)	$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1

Find the covariance of X and Y.

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y = \frac{3}{14} - \left(\frac{3}{4}\right) \left(\frac{1}{2}\right) = -\frac{9}{56}.$$

Example: (Co-Variance)

A bank operates both a drive-up facility and a walk-up window. On a randomly selected day, let X = the proportion of time that the drive-up facility is in use (at least one customer is being served or waiting to be served) and Y = the proportion of time that the walk-up window is in use. Then the set of possible values for (X, Y) is the rectangle $D = \{(x, y): 0 \le x \le 1, 0 \le y \le 1\}$. Suppose the joint pdf of (X, Y) is given by

$$f(x,y) = \begin{cases} \frac{6}{5}(x+y^2) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find covariance and correlation between variable x and y.

Solved in working sheet (word file)

Definition 4.5: Let X and Y be random variables with covariance σ_{XY} and standard deviations σ_X and σ_Y , respectively. The correlation coefficient of X and Y is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}.$$

Example 4.15: Find the correlation coefficient between X and Y in Example 4.13.

			x		
	f(x,y)	0	1	2	h(y)
	0	$\frac{3}{28}$	$\frac{9}{28}$	$\frac{3}{28}$	$\frac{15}{28}$
y	1	$\begin{array}{r} \frac{3}{28} \\ \frac{3}{14} \end{array}$	$\frac{\frac{9}{28}}{\frac{3}{14}}$	0	$\frac{15}{28}$ $\frac{3}{7}$
	2	$\frac{1}{28}$	0	0	$\frac{1}{28}$
	g(x)	$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$	1

Example 4.15: Find the correlation coefficient between X and Y in Example 4.13.

Solution: Since

$$E(X^2) = (0^2) \left(\frac{5}{14}\right) + (1^2) \left(\frac{15}{28}\right) + (2^2) \left(\frac{3}{28}\right) = \frac{27}{28}$$

and

$$E(Y^2) = (0^2) \left(\frac{15}{28}\right) + (1^2) \left(\frac{3}{7}\right) + (2^2) \left(\frac{1}{28}\right) = \frac{4}{7},$$

we obtain

$$\sigma_X^2 = \frac{27}{28} - \left(\frac{3}{4}\right)^2 = \frac{45}{112} \text{ and } \sigma_Y^2 = \frac{4}{7} - \left(\frac{1}{2}\right)^2 = \frac{9}{28}.$$

Therefore, the correlation coefficient between X and Y is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{-9/56}{\sqrt{(45/112)(9/28)}} = -\frac{1}{\sqrt{5}}.$$

Example: (Correlation)

A bank operates both a drive-up facility and a walk-up window. On a randomly selected day, let X = the proportion of time that the drive-up facility is in use (at least one customer is being served or waiting to be served) and Y = the proportion of time that the walk-up window is in use. Then the set of possible values for (X, Y) is the rectangle $D = \{(x, y): 0 \le x \le 1, 0 \le y \le 1\}$. Suppose the joint pdf of (X, Y) is given by

$$f(x,y) = \begin{cases} \frac{6}{5}(x+y^2) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find covariance and correlation between variable x and y.

Solved in working sheet (word file)

Exercise questions (4.33 to 4.52) Page # 117-119