

1节电池用电池保护IC

S-8261系列

S-8261系列是内置高精度电压检测电路和延迟电路的锂离子/锂 聚合物可充电池的保护IC。

本IC最适合于1节锂离子/锂聚合物可充电池组的过充电、过放 电和过电流的保护。

■ 特点

(1) 内置高精度电压检测电路

• 过充电检测电压 3.9 V~4.4 V(对应5 mV级进)

精度? 5 mV(25癈)、? 0 mV(−5癈 ~+55癈)

• 过充电滞后电压 0.0 V ~ 0.4 V*1~

精度? 5 mV

过充电滞后电压可以在0.0 V~0.4 V的范围内选择,并以50 mV为单位级进 • 过放电检测电压 2.0 V~3.0 V(对应10 mV级进)

精度? 0 mV

• 过放电滞后电压 0.0 V ~ 0.7 V *2

精度? 0 mV

过放电滞后电压可以在0.0~0.7 V的范围内选择,并以100 mV为单位级进

• 过电流1检测电压 0.05 V ~ 0.3 V(对应10 mV级进)

精度? 5 mV

• 过电流2检测电压 0.5 V(固定)

精度? 00 mV

- (2) 连接充电器的端子采用高耐压器件 (VM 端子、CO 端子: 绝对最大额定值=28 V)
- (3) 各种延迟时间只需由内置电路来实现(过充电: t_{CU} 、过放电: t_{DL} 、过电流 1: t_{IOV1} 、过电流 2: t_{IOV2}) (不需外接电容) 精度? 0%
- (4) 内置三段过电流检测电路(过电流 1、过电流 2、负载短路)
- (5) 可以选择向 0 V 电池充电功能的<可能> / <禁止>
- (6) 充电器检测功能、异常充电电流检测功能
 - 根据检测VM端子的负电压(典型值-0.7 V) 而解除过放电滞后。(充电器检测功能)
 - 当DO端子电压处于高电平(High), VM端子电压低于充电器检测电压(典型值-0.7 V) 时, CO端子的输 出将被设置于低电平(Low)。(异常充电电流检测功能)
- (7) 低消耗电流
 - 工作状态时

典型值3.5 礎 最大值7.0 礎

• 休眠状态时

最大值0.1 礎

(8) 宽工作温度范围 -40癈~+85癈

(9) 小型封装

SOT-23-6、6-Pin SNB(B)

(10) 无铅产品

- *1. 过充电解除电压=过充电检测电压-过充电滞后电压(但是,当过充电解除电压<3.8 V时不能选择)
- *2. 过放电解除电压=过放电检测电压+过放电滞后电压(但是,过放电解除电压>3.4 V时不能选择)

■用途

- 锂离子可充电池电池组
- 锂聚合物可充电池电池组

■ 封 装

封装名		图面号码	
	封装图面	卷带图面	带卷图面
SOT-23-6	MP006-A	MP006-A	MP006-A
6-Pin SNB (B)	BD006-A	BD006-A	BD006-A

■ 框图

1. 向0 V充电功能可能产品

备注 图中的二极管全部为寄生二极管。

图1

2. 向0 V充电功能禁止产品

备注 图中的二极管全部为寄生二极管。

图2

■ 产品型号的构成

- 1. 产品名
- 1.1 SOT-23-6封装时

- *1. 请参阅带卷图。
- *2. 请参阅产品名目录。

1.2 6-Pin SNB(B)封装时

- *1. 请参阅带卷图。
- *2. 请参阅产品名目录。

表1(1/2)

	过充电	过充电	过放电	过放电	过电流1	向0 V电池的
型号名称/项目	检测电压	滞后电压	检测电压	滞后电压	检测电压	充电功能
	[V _{CU}]	[V _{HC}]	[V _{DL}]	[V _{HD}]	[V _{IOV1}]	
S-8261AAGMD-G2GT2G	4.28 V	0.2 V	2.3 V	0 V	0.16 V	可能
S-8261AAHMD-G2HT2G	4.28 V	0.2 V	2.3 V	0 V	0.08 V	可能
S-8261AAJBD-G2J-TF	4.325 V	0.25 V	2.5 V	0.4 V	0.15 V	禁止
S-8261AAJMD-G2JT2G	4.325 V	0.25 V	2.5 V	0.4 V	0.15 V	禁止
S-8261AALMD-G2LT2G	4.30 V	0.1 V	2.3 V	0 V	0.08 V	禁止
S-8261AAMMD-G2MT2G	4.30 V	0.1 V	2.3 V	0 V	0.2 V	禁止
S-8261AANMD-G2NT2G	4.275 V	0.1 V	2.3 V	0.1 V	0.1 V	可能
S-8261AAOMD-G2OT2G	4.28 V	- 0.2 V	2.3 V	0 V	0.13 V	禁止
S-8261AAPMD-G2PT2G	4.325 V	0.25 V	2.5 V	0.4 V	0.1 V	禁止
S-8261AARBD-G2R-TF	4.28 V	0.2 V	2.3 V	0 V	0.1 V	可能
S-8261AARMD-G2RT2G	4.28 V	0.2 V	2.3 V	0 V	0.1 V	可能
S-8261AASMD-G2ST2G	4.28 V	0.2 V	2.3 V	0 V	0.15 V	禁止
S-8261AAUMD-G2UT2G	4.275 V	0.1 V	2.3 V	0.1 V	0.1 V	可能
S-8261AAVBD-G2V-TF	4.3 V	0.2 V	2.3 V	0 V	0.13 V	可能
S-8261AAXMD-G2XT2G	4.35 V	0.1 V	2.3 V	0.1 V	0.1 V	可能
S-8261AAZMD-G2ZT2G	4.28 V	0.25 V	2.5 V	0.4 V	0.1 V	禁止
S-8261ABAMD-G3AT2G	4.35 V	0.2 V	2.5 V	0 V	0.2 V	可能
S-8261ABBMD-G3BT2G	4.275 V	0.2 V	2.3 V	0 V	0.13 V	可能
S-8261ABCMD-G3CT2G	4.30 V	0.2 V	2.3 V	0 V	0.13 V	可能
S-8261ABDBD-G3D-TF	4.28 V	0.2 V	2.3 V	0 V	0.13 V	可能
S-8261ABEBD-G3E-TF	4.275 V	0.2 V	2.3 V	0 V	0.1 V	可能
S-8261ABGBD-G3G-TF	4.275 V	0.2 V	2.3 V	0 V	0.1 V	禁止
S-8261ABHBD-G3H-TF	4.20 V	0 V	2.3 V	0 V	0.1 V	可能
S-8261ABIBD-G3I-TF	4.275 V	0.2 V	2.3 V	0 V	0.2 V	禁止
S-8261ABJMD-G3JT2G	4.28 V	0.2 V	3.0 V	0 V	0.08 V	可能
S-8261ABKMD-G3KT2G	4.10 V	0.25 V	2.5 V	0.4 V	0.15 V	禁止
S-8261ABLBD-G3L-TF	4.275 V	0.2 V	2.3 V	0 V	0.05 V	禁止
S-8261ABMMD-G3MT2G	4.28 V	0.2 V	2.8 V	0 V	0.1 V	可能
S-8261ABNMD-G3NT2G	4.30 V	0.2 V	2.3 V	0 V	0.06 V	可能
S-8261ABOBD-G3O-TF	4.28 V	0.2 V	2.3 V	0 V	0.04 V	可能
S-8261ABPMD-G3PT2G	4.20 V	0.1 V	2.8 V	0.1 V	0.15 V	禁止
S-8261ABRMD-G3RT2G	4.275 V	0.2 V	2.5 V	0.4 V	0.15 V	禁止
S-8261ABSMD-G3ST2G	4.28 V	0.1 V	2.5 V	0.5 V	0.18 V	禁止

表1(2/2)

型号名称 / 项目	过充电检测延迟时间	过放电检测延迟时间	过电流1检测延迟时间
S-8261AAGMD-G2GT2G	1.2 s	144 ms	9 ms
S-8261AAHMD-G2HT2G	1.2 s	144 ms	9 ms
S-8261AAJBD-G2J-TF	1.2 s	144 ms	9 ms
S-8261AAJMD-G2JT2G	1.2 s	144 ms	9 ms
S-8261AALMD-G2LT2G	1.2 s	144 ms	9 ms
S-8261AAMMD-G2MT2G	1.2 s	144 ms	9 ms
S-8261AANMD-G2NT2G	1.2 s	144 ms	9 ms
S-8261AAOMD-G2OT2G	1.2 s	144 ms	9 ms
S-8261AAPMD-G2PT2G	1.2 s	144 ms	9 ms
S-8261AARBD-G2R-TF	1.2 s	144 ms	9 ms
S-8261AARMD-G2RT2G	1.2 s	144 ms	9 ms
S-8261AASMD-G2ST2G	1.2 s	144 ms	4.5 ms
S-8261AAUMD-G2UT2G	4.6 s	144 ms	9 ms
S-8261AAVBD-G2V-TF	4.6 s	144 ms	9 ms
S-8261AAXMD-G2XT2G	4.6 s	144 ms	9 ms
S-8261AAZMD-G2ZT2G	1.2 s	144 ms	9 ms
S-8261ABAMD-G3AT2G	4.6 s	144 ms	9 ms
S-8261ABBMD-G3BT2G	1.2 s	144 ms	9 ms
S-8261ABCMD-G3CT2G	1.2 s	144 ms	9 ms
S-8261ABDBD-G3D-TF	1.84 s	115 ms	7.2 ms
S-8261ABEBD-G3E-TF	1.2 s	144 ms	9 ms
S-8261ABGBD-G3G-TF	1.2 s	36 ms	9 ms
S-8261ABHBD-G3H-TF	0.3 s	36 ms	18 ms
S-8261ABIBD-G3I-TF	1.2 s	36 ms	9 ms
S-8261ABJMD-G3JT2G	1.2 s	144 ms	9 ms
S-8261ABKMD-G3KT2G	1.2 s	144 ms	9 ms
S-8261ABLBD-G3L-TE	1.2 s	36 ms	9 ms
S-8261ABMMD-G3MT2G	1.2 s	144 ms	9 ms
S-8261ABNMD-G3NT2G	1.2 s	144 ms	9 ms
S-8261ABOBD-G3O-TF	1.2 s	144 ms	9 ms
S-8261ABPMD-G3PT2G	1.2 s	144 ms	9 ms
S-8261ABRMD-G3RT2G	1.2 s	144 ms	9 ms
S-8261ABSMD-G3ST2G	1.2 s	144 ms	9 ms
47 \1 PA \1 \1 \1 \1 \1 \1	1 1 55 11 55 11 11 11		

备注 除上述产品以外,检测电压的更改是可能的。还有,延迟时间亦可在下述范围内变更。请与本公司的营业部门咨询。

延迟时间	记号	选择范围			备注
过充电检测延迟时间	t _{CU}	0.15 s	1.2 s	4.6 s	从左数据中选择
过放电检测延迟时间	t _{DL}	36 ms	144 ms	290 ms	从左数据中选择
过电流1检测延迟时间	t _{iov1}	4.5 ms	9 ms	18 ms	从左数据中选择

备注 标准产品在粗线框内。

Rev.2.0_00

■ 引脚排列图

端子编号	端子记号	端子说明
1	DO	放电控制用FET门极连接端子(CMOS输出)
2	VM	VM~VSS间的电压检测端子(过电流检测端子)
3	CO	充电控制用FET门极连接端子(CMOS输出)
4	DP	延迟时间测定用测试端子
5	VDD	正电源输入端子
6	VSS	负电源输入端子

表2

6-Pin SNB(B)

端子编号	端子记号	端子说明
1	CO	充电控制用FET门极连接端子(CMOS输出)
2	VM	VM~VSS间的电压检测端子(过电流检测端子)
3	DO	放电控制用FET门极连接端子(CMOS输出)
4	VSS	负电源输入端子
5	DP	延迟时间测定用测试端子
6	VDD	正电源输入端子

表3

Bottom view
1 2 3

Y Y Y

*1

*1. 阴影部分的散热板与基板连接,要设定为开路状态或电位为 VDD。但不要作为电极使用。

图4

Rev.2.0_00

■ 绝对最大额定值

表4

(除特殊注明以外:Ta=25癈)

	项 目	记号		规 格	单位
VDD-VSS间]输入电压*1	Vos	VDD	Vss-0.3 ~ Vss+12	V
VM输入端子	电压	V _{VM}	VM	Vpp-28 ~ Vpp+0.3	
CO输出端子	- 电压	Vco			V
DO输出端子	电压	Voo	DO	Vss-0.3 ~ Vpb+0.3	V
容许功耗	SOT-23-6	P□	_	250	mW
T 11 21 71	6-Pin SNB(B)	P□		90	mW
工作周围温加	度范围	T _{opr}	****	-40 ~ +85	癈
保存周围温度	度范围	T _{stg}	_	−55 ~ +125	癈

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣 化等物理性损伤。

^{*1.} 若外加超过上述输入电压(V_{SS}+12 V) 的脉冲性(征) 噪声,将会损坏IC,务请留意。

1. 检测延迟时间以外(25 癈)

表5

(除特殊注明以外: Ta=25°C)

(除特殊注明以外:							外: Ta	=25 °C
项目	记号	条件	备注	最小值	典型值	最大值	单位	测定 电路
【检测电压】								
过充电检测电压 V _{CU} =3.9~4.4 V,	V _{CU}	1	_	V _{CU} -0.025	V _{CU}	V _{C∪} +0.025	V	1
5 mV级进			Ta= -5癈 ~ 55癈 ^{*1}	V _{CU} -0.030	V _{Cu}	V _{CU} +0.030		
过充电滞后电压 V _{HC} =0.0~0.4 V, 50 mV级进	V _{HC}	1	_	V _{HC} -0.025	V _{HC}	V _{HC} +0.025	V	1
过放电检测电压 V _{DL} =2.0~3.0 V, 10 mV级进	V _{DL}	2		V _{DL} -0.050	V _{DL}	V _{DL} +0.050	V	2
过放电滞后电压 V _{HD} =0.0~0.7 V, 100 mV级进	V _{HD}	2		V _{HD} -0.050	V_{HD}	V _{HD} +0.050	٧	2
过电流1检测电压 V _{loV1} =0.05~0.3 V, 10 mV级进	V _{IOV1}	3	_	V _{IOV1} -0.015	V _{IOV1}	V _{IOV1} +0.015	٧	2
过电流2检测电压	V _{IOV2}	3	_	0.4	0.5	0.6	V	2
负载短路检测电压	V _{SHORT}	3		0.9	1.2	1.5	٧	2
充电器检测电压	V _{CHA}	4	_	-1.0	-0.7	-0.4	V	2
【输入电压・工作电压】				· • · · · · · · · · · · · · · · · · · ·		.,		
VDD-VSS间工作电压	V _{DSOP1}	_	内部电路工作电压	1.5		8	V	_
VDD-VM间工作电压	V _{DSOP2}	_	内部电路工作电压	1.5	_	28	V	
【消耗电流】				• .				
通常工作时消耗电流	I _{OPE}	5	V _{DD} =3.5 V, V _{VM} =0 V	1.0	3.5	7.0	礎	2
休眠时消耗电流	I _{PDN}	5	$V_{DD} = V_{VM} = 1.5 \text{ V}$	_		0.1	μA	2
【输出电阻】					_	'	'	
CO端子电阻"H"	R _{сон}	7	V _{CO} =3.0 V, V _{DD} =3.5 V, V _{VM} =0 V	2.5	5	10	kΩ	4
CO端子电阻 "L"	R _{COL}	7	V _{CO} =0.5 V, V _{DD} =4.5 V, V _{VM} =0 V	2.5	5	10	kΩ	4
OO端子电阻 "H"	R _{DOH}	8	V _{DO} =3.0 V, V _{DD} =3.5 V, V _{VM} =0 V	2.5	5	10	kΩ	4
OO端子电阻 "L"	R _{DOL}	8	V _{DO} =0.5 V, V _{DD} =V _{VM} =1.8 V	2.5	5	10	kΩ	4
【VM内部电阻】								
/M-VDD间内部电阻	R _{VMD}	6	$V_{DD} = 1.8 \text{ V}, V_{VM} = 0 \text{ V}$	100	300	900	kΩ	3
/M-VSS间内部电阻	R _{VMS}	6	$V_{DD}=3.5 \text{ V}, V_{VM}=1.0 \text{ V}$	10	20	40	kΩ	3
【向0 V电池的充电功能】								
平始向0 V电池充电 充电器电压	V _{OCHA}	11	向0 V电池充电功能‹可能›	1.2			V	2
禁止向0 V电池充电 包池电压	Voinh	12	向0 V电池充电功能‹禁止›		_	0.5	V	2

^{*1.} 以上温度范围系设计保证值,非高低温的实测筛选。

2. 检测延迟时间以外(-40~85癈*1)

表6

(除特殊注明以外: Ta=-40°C~+85°C*1)

				(除特殊注	E明以外:	Ta=-40	°C ~ +8	35 °C ')
项目	记号	条件	备注	最小值	典型值	最大值	单位	测定 电路
【检测电压】			•					
过充电检测电压 V _{CU} =3.9~4.4 V, 5 mV级进	V _{CU}	1	_	V _{CU} -0.055	V _{CU}	V _{CU} +0.040	V	1
过充电滞后电压 V _{HC} =0.0~0.4 V, 50 mV级进	V _{HC}	1		V _{HC} -0.025	V _{HC}	V _{HC} +0.025	V	1
过放电检测电压 V _{DL} =2.0~3.0 V, 10 mV级进	V _{DL}	2	<u> </u>	V _{DL} -0.080	V_{DL}	V _{DL} +0.080	V	2
过放电滞后电压 V _{HD} =0.0~0.7 V, 100 mV级进	V _{HD}	2	_	V _{HD} -0.050	V_{HD}	V _{HD} +0.050	٧	2
过电流1检测电压 V _{IOV1} =0.05~0.3 V, 10 mV级进	V _{IOV1}	3	_	V _{IOV1} -0.021	V _{IOV1}	V _{IOV1} +0.021	٧	2
过电流2检测电压	V _{IOV2}	3	_	0.37	0.5	0.63	٧	2
负载短路检测电压	V _{SHORT}	3		0.7	1.2	1.7	V	2
充电器检测电压	V _{CHA}	4	_	-1.2	0.7	-0.2	٧	2
【輸入电压・工作电压】								
VDD-VSS间工作电压	V _{DSOP1}		内部电路工作电压	1.5	_	8	V	_
VDD-VM间工作电压	V _{DSOP2}	_	内部电路工作电压	1.5		28	٧	_
【消耗电流】								
通常工作时消耗电流	I _{OPE}	5	V _{DD} =3.5 V, V _{VM} =0 V	0.7	3.5	8.0	礎	2
休眠时消耗电流	PDN	5	$V_{DD} = V_{VM} = 1.5 V$		_	0.1	μA	- 2
【输出电阻】	-1			·····				
CO端子电阻"H"	R _{COH}	7	V _{CO} =3.0 V, V _{DD} =3.5 V, V _{VM} =0 V	1.2	5	15	kΩ	4
CO端子电阻 "L"	R _{COL}	7	V _{CO} =0.5 V, V _{DD} =4.5 V, V _{VM} =0 V	1.2	5	15	kΩ	4
DO端子电阻"H"	R _{DOH}	8	V _{DO} =3.0 V, V _{DD} =3.5 V, V _{VM} =0 V	1.2	5	15	kΩ	4
DO端子电阻"L"	R _{DOL}	8	V _{DO} =0.5 V, V _{DD} =V _{VM} =1.8 V	1.2	5	15	kΩ	4
【VM内部电阻】	,	·						
VM-VDD间内部电阻	R _{VMD}	6	$V_{DD}=1.8 \text{ V}, V_{VM}=0 \text{ V}$	78	300	1310	kΩ	3
VMVSS间内部电阻	R _{VMS}	6	V_{DD} =3.5 V, V_{VM} =1.0 V	7.2	20	44	kΩ	3
【向0 V电池的充电功能】				····			— т	
开始向0 V电池充电 充电器电压	V _{OCHA}	11	向0 V电池充电功能‹可能›	1.7		_	٧	2
禁止向0 V电池充电 电池电压	Voinh	12	向0 V电池充电功能(禁止)	_		0.3	V	2

^{*1.} 以上温度范围系设计保证值,非高低温的实测筛选。

3. 检测延迟时间

表7

S-8261AAG, S-8261AAH, S-8261AAJ, S-8261AAL, S-8261AAM, S-8261AAN, S-8261AAO, S-8261AAP, S-8261AAR, S-8261AAZ, S-8261ABB, S-8261ABC, S-8261ABE, S-8261ABJ, S-8261ABK, S-8261ABM, S-8261ABN, S-8261ABD, S-8261ABR, S-8261ABS

	, , , ,	20 17 (DIT, 0 020 17 (DO					
记号	条件	备注	最小值	典型值	最大值	单位	测定 电路
						<u> </u>	
t _{CU}	9		0.96	1.2	1.4	s	5
t _{DL}	9	_	115	144	173	ms	5
t _{IOV1}	10		7.2	9	11	ms	5
t _{IOV2}	10		1.8	2.24	2.7	ms	5
t _{SHORT}	10		220	320	380	μs	5
*1							
t _{CU}	9		0.7	1.2	2.0	S	5
t _{DL}	9		80	144	245	ms	5
t _{IOV1}	10		5	9	15	ms	5
t _{IOV2}	10		1.2	2.24	3.8	ms	5
t _{SHORT}	10		150	320	540	μs	5
	t _{CU} t _{DL} t _{IOV1} t _{IOV2} t _{SHORT} t _U t _{DL} t _{IOV1}	t _{CU} 9 t _{DL} 9 t _{IOV1} 10 t _{IOV2} 10 t _{SHORT} 10 1 t _{CU} 9 t _{DL} 9 t _{IOV1} 10 t _{IOV2} 10	t _{CU} 9 — t _{DL} 9 — t _{IOV1} 10 — t _{IOV2} 10 — t _{SHORT} 10 — t _{DL} 9 — t _{DL} 9 — t _{DL} 9 — t _{IOV1} 10 —	记号 条件 备注 最小值 t _{CU} 9 — 0.96 t _{DL} 9 — 115 t _{IOV1} 10 — 7.2 t _{IOV2} 10 — 1.8 t _{SHORT} 10 — 220 1 t _{CU} 9 — 0.7 t _{DL} 9 — 80 t _{IOV1} 10 — 5 t _{IOV2} 10 — 1.2	记号 条件 备注 最小值 典型值 t _{CU} 9 — 0.96 1.2 t _{DL} 9 — 115 144 t _{IOV1} 10 — 7.2 9 t _{IOV2} 10 — 1.8 2.24 t _{SHORT} 10 — 220 320 t 1 — 80 144 t _{IOV1} 10 — 5 9 t _{IOV2} 10 — 1.2 2.24	记号 条件 备注 最小值 典型值 最大值 t _{CU} 9 — 0.96 1.2 1.4 t _{DL} 9 — 115 144 173 t _{IOV1} 10 — 7.2 9 11 t _{IOV2} 10 — 1.8 2.24 2.7 t _{SHORT} 10 — 220 320 380 1 1 — 80 144 245 t _{IOV1} 10 — 5 9 15 t _{IOV2} 10 — 1.2 2.24 3.8	记号 条件 备注 最小値 典型値 最大値 単位 また値 また値 まため ま

^{*1.} 以上温度范围系设计保证值,非高低温的实测筛选。

表8

S-8261AAS

0 020 17 0 10								
项目	记号	条件	备注	最小值	典型值	最大值	单位	测定 电路
【延迟时间】25 癈	****						<u> </u>	
过充电检测延迟时间	t _{CU}	9		0.96	1.2	1.4	S	5
过放电检测延迟时间	t _{DL}	9		115	144	173	ms	5
过电流1检测延迟时间	t _{IOV1}	10		3.6	4.5	5.4	ms	5
过电流2检测延迟时间	t _{IOV2}	10		1.8	2.24	2.7	ms	5
负载短路检测延迟时间	t _{SHORT}	10		220	320	380	祍	5
【延迟时间】-40~+85 癈	*1			······································				
过充电检测延迟时间	t _{CU}	9		0.7	1.2	2.0	s	5
过放电检测延迟时间	t _{DL}	9		80	144	245	ms	5
过电流1检测延迟时间	t _{IOV1}	10		2.5	4.5	7.7	ms	5
过电流2检测延迟时间	t _{IOV2}	10		1.2	2.24	3.8	ms	5
负载短路检测延迟时间	t _{SHORT}	10		150	320	540	往	5

^{*1.} 以上温度范围系设计保证值,非高低温的实测筛选。

表9

S-8261AAU, S-8261AAX, S-8261ABA

项目	记号	条件	备注	最小值	典型值	最大值	单位	测定 电路
【延迟时间】25 癈					•			
过充电检测延迟时间	t _{CU}	9	_	3.7	4.6	5.5	S	5
过放电检测延迟时间	t _{DL}	9		115	144	173	ms	5
过电流1检测延迟时间	t _{IOV1}	10		7.2	9	11	ms	5
过电流2检测延迟时间	t _{IOV2}	10	. —	1.8	2.24	2.7	ms	5
负载短路检测延迟时间	t _{SHORT}	10		220	320	380	江	5
【延迟时间】-40~+85 癈	*1							
过充电检测延迟时间	t _{cu}	9		2.5	4.6	7.8	s	5
过放电检测延迟时间	t _{DL}	9		80	144	245	ms	5
过电流1检测延迟时间	t _{iOV1}	10	_	5	9	15	ms	5
过电流2检测延迟时间	t _{IOV2}	10		1.2	2.24	3.8	ms	5
负载短路检测延迟时间	t _{SHORT}	10		150	320	540	衽:	5

^{*1.} 以上温度范围系设计保证值,非高低温的实测筛选。

表10

S-8261AAV

• • • • • • • • • • • • • • • • • • • 								
项目	记号	条件	备注	最小值	典型值	最大值	单位	测定 电路
【延迟时间】25 癈			*					
过充电检测延迟时间	t _{CU}	9		3.7	4.6	5.5	S	5
过放电检测延迟时间	t _{DL}	9		115	144	173	ms	5
过电流1检测延迟时间	t _{IOV1}	10		7.2	9	11	ms	5
过电流2检测延迟时间	t _{IOV2}	10		3.6	4.5	5.4	ms	5
负载短路检测延迟时间	t _{SHORT}	10		450	600	720	衽	5
【延迟时间】-40~+85 癈	*1							
过充电检测延迟时间	t _{CU}	9		2.5	4.6	7.8	S	5
过放电检测延迟时间	t _{DL}	9		80	144	245	ms	5
过电流1检测延迟时间	t _{IOV1}	10		5	9	15	ms	5
过电流2检测延迟时间	t _{IOV2}	10		2.5	4.5	7.7	ms	5
负载短路检测延迟时间	t _{SHORT}	10	***************************************	310	600	1020	祍	5

^{*1.} 以上温度范围系设计保证值,非高低温的实测筛选。

表11

S-8261ABD

	T	,						
项目	记号	条件	备注	最小值	典型值	最大值	单位	测定 电路
【延迟时间】25 癈				<u></u>		1		
过充电检测延迟时间	t _{CU}	9	_	1.48	1.84	2.2	s	5
过放电检测延迟时间	t _{DL}	9		92	115	138	ms	5
过电流1检测延迟时间	t _{IOV1}	10		5.76	7.2	8.80	ms	5
过电流2检测延迟时间	t _{iOV2}	10		2.88	3.6	4.32	ms	5
负载短路检测延迟时间	t _{SHORT}	10		358	488	586	紅:	5
【延迟时间】-40~+85 癈	*1						1	L.,
过充电检测延迟时间	t _{CU}	9		1.11	1.84	2.89	S	5
过放电检测延迟时间	t _{DL}	9		68.9	115	182.3	ms	5
过电流1检测延迟时间	t _{IOV1}	10		4.31	7.2	11.59	ms	5
过电流2检测延迟时间	t _{IOV2}	10		2.16	3.6	5.68	ms	5
负载短路检测延迟时间	t _{SHORT}	10		268	488	770	衽	5

^{*1.} 以上温度范围系设计保证值,非高低温的实测筛选。

表12

S-8261ABG, S-8261ABI, S-8261ABL

3-020 IADG, 3-020 IABL								
项目	记号	条件	备注	最小值	典型值	最大值	单位	测定 电路
【延迟时间】25 癈					<u> </u>	<u> </u>		L
过充电检测延迟时间	t _{CU}	9		0.96	1.2	1.4	S	5
过放电检测延迟时间	t _{DL}	9		29	36	43	ms	5
过电流1检测延迟时间	t _{IOV1}	10	<u> </u>	7.2	9	11	ms	5
过电流2检测延迟时间	t _{IOV2}	10		1.8	2.24	2.7	ms	5
负载短路检测延迟时间	t _{SHORT}	10		220	320	380	狂	5
【延迟时间】-40~+85 癈	*1						,	
过充电检测延迟时间	t _{CU}	9		0.7	1.2	2.0	s	5
过放电检测延迟时间	toL	9	. Nat	20	36	61	ms	5
过电流1检测延迟时间	t _{IOV1}	10		5	9	15	ms	5
过电流2检测延迟时间	t _{IOV2}	10		1.2	2.24	3.8	ms	5
负载短路检测延迟时间	t _{SHORT}	10		150	320	540	衽	5

^{*1.} 以上温度范围系设计保证值,非高低温的实测筛选。

表13

S-8261ABH

项目	记号	条件	备注	最小值	典型值	最大值	单位	测定 电路
【延迟时间】25癈								
过充电检测延迟时间	tcu	9		0.24	0.3	0.36	S	5
过放电检测延迟时间	t _{DL}	9		29	36	43	ms	5
过电流1检测延迟时间	t _{IOV1}	10	-	14	18	22	ms	5
过电流2检测延迟时间	t _{iOV2}	10		1.8	2.24	2.7	ms	5
负载短路检测延迟时间	t _{SHORT}	10	_	220	320	380	征	5
【延迟时间】-40~+85癈	*1							
过充电检测延迟时间	t _{CU}	9		0.17	0.3	0.51	s	5
过放电检测延迟时间	t _{DL}	9		20	36	61	ms	5
过电流1检测延迟时间	t _{IOV1}	10		10	18	31	ms	5
过电流2检测延迟时间	t _{IOV2}	10		1.2	2.24	3.8	ms	5
负载短路检测延迟时间	t _{SHORT}	10	_	150	320	540	往	5

^{*1.} 以上温度范围系设计保证值,非高低温的实测筛选。

■ 测定电路

备注 在未经特别说明的情况下, CO和DO端子的输出电压 V_{co} 、 V_{DO} 的"H"、"L"的判定是以Nch FET的阈值电压(1.0 V)为基准。此时的CO端子请以 V_{cm} 为基准,DO端子请以 V_{ss} 为基准来判定。

(1) 测定条件1 测定电路1

《过充电检测电压、过放电滞后电压》

在V1=3.5 V设定后的状态下,将V1逐渐提升至 V_{co} ="H"→"L"时的VDD-VSS间电压即为过充电检测电压(V_{cu})。然后,将V1逐渐降至 V_{co} ="L"→"H"时的VDD-VSS间电压与过充电检测电压(V_{cu}) 之间的差异即为过充电滞后电压(V_{HC})。

(2) 测定条件2 测定电路2

《过放电检测电压、过放电滞后电压》

在V1=3.5 V、V2=0 V设定后的状态下,将V1逐渐降至 V_{DO} ="H" \rightarrow "L"时的VDD-VSS间电压即为过放电检测电压(V_{DL})。然后,将V1逐渐提升至 V_{DO} ="L" \rightarrow "H"时的VDD-VSS间电压与过放电检测电压(V_{DL})之间的差异即为过放电滞后电压(V_{HD})。

(3) 测定条件3 测定电路2

《过电流1检测电压、过电流2检测电压、负载短路检测电压》

在V1=3.5 V、V2=0 V设定后的状态下,将V2在瞬间(10 社以内)提升至 $V_{DO}="H" \rightarrow "L"$ 之间的延迟时间在过电流1延迟时间的最小值和最大值的之间的范围内时,VM-VSS间电压即为过电流1检测电压 $(V_{IOV1})_\circ$

在V1=3.5 V、V2=0 V设定后的状态下,将V2在瞬间(10 社以内)提升至 $V_{DO}="H" \rightarrow "L"$ 之间的延迟时间在过电流2延迟时间的最小值和最大值之间的范围内时,VM-VSS间电压即为过电流2检测电压 $(V_{DO}/2)_{o}$

在V1=3.5 V、V2=0 V设定后的状态下,将V2在瞬间(10 衽以内)提升至 V_{DO} ="H" \rightarrow "L"之间的延迟时间在负载短路延迟时间的最小值和最大值之间的范围内时,VM-VSS间电压即为负载短路检测电压 (V_{SHORT})。

(4) 测定条件4 测定电路2

《充电器检测电压(=异常充电电流检测电压)》

在V1=1.8 V、V2=0 V设定后的状态下,将V1逐渐提升,设定V1= V_{DL} +(V_{HD} / 2) ,之后将V2从0 V逐渐降至 V_{DO} ="L"→"H"时, VM一VSS间电压即为充电器检测电压(V_{CHA})。

充电器检测电压的测定仅限于过放电滞后V_{HD}≠0的产品。

在V1=3.5 V、V2=0 V设定后的状态下,将V2逐渐降至 V_{CO} ="H" \rightarrow "L"时,VM-VSS间电压即为异常充电电流检测电压。异常充电电流检测电压和充电器检测电压(V_{CHA}) 为相同值。

(5) 测定条件5 测定电路2

《通常工作时消耗电流、休眠时消耗电流》

在V1=3.5 V、V2=0 V设定后的状态(通常状态)下,流经VDD端子的电流 I_{DD} 即为通常工作时消耗电流 (I_{OPE})。

在V1=V2=1.5 V设定后的状态(过放电状态)下,流经VDD端子的电流IDD即为休眠时消耗电流(IPDN)。

(6) 测定条件6 测定电路3

《VM一VDD间内部电阻、VM-VSS间内部电阻》

在V1=1.8 V、V2=0 V设定后的状态下,VM-VDD间电阻即为VM-VDD间内部电阻(R_{VMD})。在V1=3.5 V、V2=1.0 V设定后的状态下,VM-VSS间电阻即为VM-VSS间内部电阻(R_{VMS})。

(7) 测定条件7 测定电路4

《CO端子"H"电阻、CO端子"L"电阻》

在V1=3.5 V、V2=0 V、V3=3.0 V设定后的状态下,CO端子电阻即为CO端子H电阻(R_{COH})。在V1=4.5 V、V2=0 V、V3=0.5 V设定后的状态下,CO端子电阻即为CO端子L电阻(R_{COL})。

(8) 测定条件8 测定电路4

《DO端子电阻"H"、DO端子电阻"L"》

在V1=3.5 V、V2=0 V、V4=3.0 V设定后的状态下,DO端子电阻即为DO端子H电阻(R_{DOH})。 在V1=1.8 V、V2=0 V、V4=0.5 V设定后的状态下,DO端子电阻即为DO端子L电阻(R_{DOI})。

(9) 测定条件9 测定电路5

《过充电检测延迟时间、过放电检测延迟时间》

在V2=0 V设定后的状态下,将V1从过充电检测电压(V_{CU})–0.2 V在瞬间(10 社以内)升至过充电检测电压(V_{CU})+0.2 V, V_{CO} 在"H"→"L"的时间即为过充电检测延迟时间(t_{CU})。

在V2=0 V设定后的状态下,将V1从过放电检测电压(V_{DL})+0.2 V在瞬间(10 社以内)降至过放电检测电压(V_{DL})-0.2 V, V_{DO} 在"H"→"L"的时间即为过放电检测延迟时间(I_{DL})。

(10) 测定条件10 测定电路5

《过电流1检测延迟时间、过电流2检测延迟时间、负载短路检测延迟时间、异常充电电流检测延迟时间》

在V1=3.5 V、V2=0 V设定后的状态下,将V2从0 V瞬间(10 衽以内)升至0.35 V, V_{DO} 成为"L"的时间即为过电流1检测延迟时间(t_{IOV1})。

在V1=3.5 V、V2=0 V设定后的状态下,将V2从0 V瞬间(10 社以内)升至0.7 V, V_{DO} 成为"L"的时间即为过电流2检测延迟时间(t_{IOV2})。

在V1=3.5 V、V2=0 V设定后的状态下,将V2从0 V瞬间(10 社以内)升至1.6 V, V_{co} 成为"L"的时间即为负载短路检测延迟时间(t_{SHORT})。

在V1=3.5 V、V2=0 V设定后的状态下,将V2从0 V瞬间(10 社以内)降至-1.1 V,直至Vco由"H"→"L"的时间即为异常充电电流检测延迟时间。异常充电电流检测延迟时间和过充电检测延迟时间的值为相同值。

(11) 测定条件11 测定电路2 (向0 V电池充电功能<可能>的产品)

《开始向0 V电池充电的充电器电压》

在V1=V2=0 V设定后的状态,将V2逐渐降至 V_{CO} ="H"(V_{VM} +0.1 V以上)时的VDD一VM间电压即为开始 向0 V电池充电的充电器电压(V_{OCHA})。

S-8261系列

(12) 测定条件12 测定电路2 (向0 V电池充电功能<禁止>的产品) 《禁止向0 V电池充电的电池电压》

在V1=0 V、V2=4 V设定后的状态下,将V1逐渐升至 V_{CO} ="H"(V_{VM} +0.1 V以上)时的VDD-VSS间电压 即为禁止向0 V电池充电的电池电压(Voinh)。

测定电路 1

测定电路2

测定电路3

测定电路 4

测定电路 5

图5

■ 工作说明

备注 请参阅"电池保护IC的连接例"。

1. 通常状态

本IC的作用是通过监视连接在VDD-VSS间的电池的电压及VM-VSS间的电压差而控制充电和放电。电池电压在过放电检测电压(V_{DL})以上且在过充电检测电压(V_{CU})以下,VM端子的电压在充电器检测电压(V_{CHA})以上且在过电流1检测电压(V_{IOV1})以下的情况下,充电控制用FET和放电控制用FET的两方均打开。这时可以进行自由的充电和放电。这种状态叫做通常状态。

备注 初次连接电池时,会有不能放电的状态。这时,短路VM端子和VSS端子,或连接充电器就能恢复到通常状态。

2. 过电流状态 (过电流1、过电流2、负载短路检测)

在通常状态的电池放电状态下,由于放电电流在额定值以上,VM端子的电压在过电流检测电压以上且这个状态持续在过电流检测延迟时间以上的场合,关闭放电控制用FET停止放电。这个状态叫做过电流状态。

在过电流状态中在IC内根据VM-VSS间内部电阻(R_{VMS})使VM-VSS端子间短路。但是,在接有负载的情况下,VM端子的电压因负载而定,并成为 V_{DD} 电位。切断负载后VM端子复位至 V_{SS} 电位。

本IC在EB+端子和EB-端子间(参阅图11的连接例)的阻抗达到自动恢复可能阻抗以上时,当本IC检测VM端子电位为过电流1检测电压(V_{iov1})以下时即恢复到通常状态。

备注 根据电池电压、过电流1检测电压的设定值的改变,自动恢复可能的阻抗是不同的。

3. 过充电状态

通常状态的电池的电压在充电中超过过充电检测电压(V_{cu}),保持在过充电检测延迟时间(t_{cu})以上时,关闭充电控制用FET,停止充电。这个状态就叫做过充电状态。过充电状态的解除,分为以下2种方法((1)、(2))。

- (1) 电池电压降至过充电检测电压(V_{CU})一过充电滞后电压(V_{HC})以下时,打开充电控制用FET恢复到通常状态。
- (2) 加载负载开始放电时,打开充电控制用FET恢复至通常状态。加载负载放电开始后随即放电电流通过充电用FET的内部寄生二极管流动。此时VM端子从VSS端子开始的只有内部寄生二极管的V_r电压上升。

VM端子的电压在过电流1检测电压以上时,且电池电压低于过充电检测电压(V_{CU}) 以下的情况下,解除过充电状态。

- 备注1. 对于被充得超过过充电检测电压(V_{CU}) 的电池,即使连接过重负载,电池电压也不能降至过充电检测电压(V_{CU})以下时,当电池电压低于过充电检测电压(V_{CU})以下之前,过电流1、过电流2和负载短路的检测是不能发挥作用的。但实际的电池内部阻抗有数十 mΩ,当连接产生类似过电流那样的重负载时,由于电池电压迅速降低所以过电流1、过电流2和负载短路的检测是可能的。
 - 2. 在检测过充电后连接着充电器时,即使电池电压低于过充电解除电压(V_{CL}) 也不解除过充电状态。在断开充电器,VM端子电压高于充电器检测电压(V_{CHA}) 时,才可解除过充电状态。

事体法 正主 在 头 一 5

4. 过放电状态

通常状态的电池电压如果在放电中处于过放电检测电压(V_{DL})之下,并且保持这个状态在过放电检测延迟时间(t_{DL})以上的场合,关闭放电控制用FET,停止放电。这个状态叫作过放电状态。当关闭放电控制用FET后,VM端子由于IC内部的VM—VDD内部电阻(R_{VMD})而被上拉。当VM—VDD间电压差在典型值1.3 V以下时,本IC消耗电流将减少至休眠时的消耗电流(I_{PDN})。这个状态叫作休眠状态。

体眠状态的解除是在连接着充电器,并且VM-VDD间电压差为典型值1.3~V以上时进行的。从这个状态电池电压进一步增大到过放电检测电压(V_{DL})以上时,就打开FET从过放电状态回到通常状态。

5. 关于充电器的检测

在把过放电状态的电池和充电器连接时,如果VM端子电压低于充电器检测电压(V_{CHA}) ,由于充电器检测功能过放电滞后被解除,所以电池电压在过放电检测电压(V_{DL}) 以上时即可解除过放电状态,打开放电控制用FET。这个动作叫作充电器检测。

当过放电状态的电池和充电器连接时,如果VM端子电压不低于充电器检测电压 (V_{CHA}) ,那么,如通常一样,当电池电压达到过放电解除电压 (V_{DL}) +过放电滞后电压 (V_{HD}) 以上才可解除过放电状态。

6. 关于异常充电电流的检测

通常状态的电池在充电中如果VM端子电压低于充电器检测电压(V_{CHA}) ,并且这个状态持续在过充电检测延迟时间(t_{CU})以上就关闭充电控制用FET停止充电。这个动作叫作异常充电电流检测。

DO端子电压"H",且VM端子电压低于充电器检测电压(V_{CHA}) 时,异常充电电流检测功能开始动作。因此,在过放电状态的电池中有异常的充电电流时,电池电压达到过放电检测电压以上,由于DO端子电压为"H",过充电检测延迟时间(t_{Cu}) 后关闭充电控制用FET停止充电。

异常充电电流的检测状态,当VM-VSS间的电压差小于充电器检测电压(V_{CHA}) 时被解除。

连接内部短路的电池(0 V电池)时,禁止充电的功能。电池电压在禁止向0 V电池充电的电池电压(V_{OINH})以下时,充电控制用FET的门极被固定在EB-端子电压,禁止充电。当电池电压在禁止向0 V电池充电的电池电压(V_{OINH})以上时,可以充电。

注意 有被完全放电后不推荐再度充电的锂离子电池。这是由锂离子电池的特性决定的,所以当决定向**0 V**电池充电功能<可能>、<禁止>时,请向电池厂商确认详细情况。

■ 工作时序图

1. 过充电检测、过放电检测

2. 过电流检测

图9

4. 异常充电电流检测

图10

■ 电池保护IC的连接例

表14 外接元器件参数

スプラグに前げ多奴							
记号	部件	目的	典型值	最小值	最大值	备注	
FET1	Nch MOS FET	放电控制	_	_		阈值电压≤过放电检测电压 ^{*1} 门极和源极间耐压≥充电器电压 ^{*2}	
FET2	Nch MOS FET	充电控制	_			阈值电压≤过放电检测电压 ^{*1} 门极和源极间耐压≥充电器电压 ^{*2}	
R1	电阻	ESD对策 电源变动对策	470 Ω	300 Ω	1 kΩ	为了避免因消耗电流引起的过充电检测精度的降低,请尽可能进取最小的数值。"3	
C1	容量	电源变动对策	0.1 礔	0.022 僻	1.0 確	请务必在VDD-VSS间加载0.022 礔以上 容量的电容。 4	
R2	电阻	充电器逆连接 对策	2 kΩ	300 Ω	4 kΩ	为控制充电器逆连接时的流经电流,请尽可能进取最大的数值。 ^{*5}	

- *1. 使用的FET的阈值电压低的场合,有可能产生充电电流不能切断的情况。 使用的FET的阈值电压在过放电检测电压以上的场合,有可能产生过放电检测前停止放电的情况。
- *2. 门极和源极间耐压在充电器电压以下的场合,FET有被破坏的可能。
- *3. 在R1处加载大的电阻的场合,由于充电器逆连接电流从充电器流向IC, VDD-VSS间电压有超过最大额定值的情况。在R1处为保护ESD请加载300 Q以上的电阻。
- *4. 如在C1处加载少于0.022 qq 的电容,在负载短路检测时DO有可能发生振荡。所以一定要在C1处加载0.022 qq 以上容量的电容。
- *5. 在R2上加载大于4 kΩ的电阻的场合,具有高电压的充电器被连接时有可能导致不能切断充电电流的情况。

注意1. 上述参数有可能不经预告而作更改。

- 2. 请勿在DP端子上连接。
- 3. 对上述连接例以外的电路未作动作确认,且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

■ 注意事项

- 请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- 本IC虽内置防静电保护电路,但请不要对IC印加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC 产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据 (典型数据)

1. 检测 / 解除电压的温度特性

过充电检测电压一温度特性

过放电解除电压一温度特性

过电流 1 检测电压一温度特性

过电流 2 检测电压一温度特性

负载短路检测电压一温度特性

2. 消耗电流的温度特性

通常工作时消耗电流一温度特性

3. 消耗电流的电源电压特性(Ta=25 癈)

消耗电流一电源电压特性

4. 检测 / 解除延迟时间的温度特性

过充电检测延迟时间一温度特性

过放电检测延迟时间一温度特性

过电流 1 检测延迟时间一温度特性

过电流 2 检测延迟时间一温度特性

负载短路检测电压一温度特性

5. 延迟时间的电源电压特性(Ta=25癈)

过电流1检测延迟时间一电源电压特性

过电流2检测延迟时间一电源电压特性

负载短路检测延迟时间一电源电压特性

28

6. CO端子 / DO端子的输出电流特性(Ta=25癈)

No. MP006-A-P-SD-1.1

TITLE	SOT236-A-PKG Dimensions			
No.	MP006-A-P-SD-1.1			
SCALE				
UNIT	mm			
Seiko Instruments Inc.				

No. MP006-A-C-SD-3.1

TITLE	SOT236-A-Carrier Tape			
No.	MP006-A-C-SD-3.1			
SCALE				
UNIT	mm			
Seiko Instruments Inc.				

TITLE	SOT2	SOT236-A-Reel					
No.	MP006	MP006-A-R-SD-2.1					
SCALE		QTY	3,000				
UNIT	mm						
 Seiko Instruments Inc.							

X The heatsink of back side has different electric potential depending on the product. Confirm specifications of each product. Do not use it as the function of electrode.

No. BD006-A-P-SD-3.0

TITLE	SNB6B-A-PKG Dimensions
No.	BD006-A-P-SD-3.0
SCALE	
UNIT	mm
)	
	Seiko Instruments Inc.

No. BD006-A-C-SD-2.1

TITLE	SNB6B-A-Carrier Tape			
No.	BD006-A-C-SD-2.1			
SCALE				
UNIT	mm			
Seiko Instruments Inc.				

No. BD006-A-R-SD-1.1

TITLE	SNB6B-A-Reel						
No.	BD00	6-A-R-SD	-1.1				
SCALE		QTY.	3,000				
UNIT	mm						
Seiko Instruments Inc.							

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。