FORMULAIRE - RESUME - MATHS en TERMINALE S

COMPLEXES

M(x,y) dans (O; \vec{i} , \vec{j}) a pour affixe z: z = x + iy dans \mathbb{C}

Le conjugué de z est : $\overline{z} = x - iy$

Module de z: $|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}$

Forme trigonométrique : $z = \rho(\cos\theta + i\sin\theta)$ où $\theta = \text{angle } (\vec{i}, \overrightarrow{OM})$ [2 π]

Forme exponentielle : $z = \rho e^{i\theta}$ (avec $|z| = \rho$ et θ = angle $(\vec{i}, \overrightarrow{OM})$ = argument de z)

Conjugué de $z: \bar{z} = \rho e^{-i\theta}$

Soient A et B d'affixes $z_A z_B$ alors \overrightarrow{AB} a pour affixe $z_B - z_A$ et $AB = |z_B - z_A|$

Propriétés des modules

$$|\bar{z}| = |z|$$
 ; $\left|\frac{1}{z}\right| = \frac{1}{|z|}$; $|zz'| = |z||z'|$

Propriétés des arguments

$$\arg z \, z' = \arg z + \arg z' \, [2\pi] \qquad \qquad \arg \left(\frac{z}{z'}\right) = \arg z - \arg z' \, [2\pi] \qquad \qquad \arg \, \bar{z} = -\arg \, z \, \left[2\pi\right]$$

Transformations usuelles

soit une transformation telle que $M(z) \rightarrow M'(z')$

Translation de vecteur \vec{u} d'affixe t: z' = z + t

Homothétie de centre Ω d'affixe ω et de rapport k: z' - $\omega = k(z-\omega)$

Rotation de centre Ω d'affixe ω et d'angle θ : z' - $\omega = e^{i\theta}$ (z- ω)

EQUATIONS DU SECOND DEGRE DANS ©

Soit l'équation $az^2 + bz + c = 0$ et le discriminant $\Delta = b^2 - 4ac$

si
$$\Delta > 0$$
 alors 2 solutions réelles $z_1 = \frac{-b + \sqrt{\Delta}}{2a}$; $z_2 = \frac{-b - \sqrt{\Delta}}{2a}$ et $z_1 z_2 = \frac{c}{a}$; $z_1 + z_2 = \frac{-b}{a}$

si
$$\Delta = \mathbf{0}$$
 alors 1 solution réelle $z_0 = -\frac{b}{2a}$

si
$$\Delta < \mathbf{0}$$
 alors 2 solutions complexes $z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$; $z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}$ et $z_1z_2 = \frac{c}{a}$; $z_1 + z_2 = \frac{-b}{a}$

si
$$\Delta \neq 0$$
 alors $az^2 + bz + c = a(z - z_1)(z - z_2)$ et si $\Delta = 0$ alors $az^2 + bz + c = a(z - z_0)^2$
1/5 www.mathforu.com

IDENTITES REMARQUABLES

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
 $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^{k} + \dots + \binom{n}{n-1}ab^{n-1} + b^{n}$$

SUITES

Suites arithmétiques de raison r et premier terme u_0 alors $u_{n+1} = u_n + r$ ou $u_n = u_0 + nr$

Somme de n termes consécutifs de la suite = "nbre de termes" • $\frac{\text{"1}^\circ \text{terme"} + \text{"dernier"}}{2}$ en particulier $1+2+3+\dots+n=\frac{n(n+1)}{2}$

Suites géométriques de raison q et premier terme u_0 alors $u_{n+1} = q.u_n$ ou $u_n = u_0 q^n$

Somme de n termes consécutifs de la suite = "1° terme" $\bullet \frac{1 - q^{nombre de termes}}{1 - q}$ avec $q \ne 1$ en particulier $1 + x + x^2 + x^3 + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$ $(x \ne 1)$

FONCTIONS LOGARITHME ET EXPONENTIELLE

$$e^{0} = 1$$
; $e^{a+b} = e^{a}e^{b}$; $e^{a-b} = \frac{e^{a}}{e^{b}}$; $(e^{a})^{b} = e^{ab}$; $\ln e = 1$; $\ln 1 = 0$; $\ln ab = \ln a + \ln b$; $\ln \frac{a}{b} = \ln a - \ln b$
 $a^{x} = e^{x \ln a}$; $\ln a^{x} = x \ln a$; $y = e^{x} \Leftrightarrow x = \ln y$

LIMITES USUELLES DE FONCTIONS

$$\lim_{x \to +\infty} \ln x = +\infty \qquad \lim_{x \to +\infty} e^x = +\infty \qquad \lim_{x \to +\infty} e^x = 0 \qquad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty \qquad \lim_{x \to +\infty} x e^x = 0 \qquad \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \quad \lim_{x \to +\infty} \frac{\ln x}{x^n} = 0 \quad \lim_{x \to -\infty} x^n e^x = 0 \quad \lim_{x \to +\infty} x^n e^{-x} = 0$$

$$\lim_{x \to 0} \ln x = -\infty \quad \lim_{x \to 0} x \ln x = 0 \quad \lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \quad \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1 \quad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

DERIVEES PRIMITIVES

f(x)	f '(x)		
k	0		
$\frac{1}{x}$	$\frac{-1}{x^2}$		
$\ln x$	$\frac{1}{x}$		
cos x	$-\sin x$		

f(x)	f '(x)		
x	1		
$\frac{1}{x^n} n \in IN$	$\frac{-n}{x^{n+1}}$		
e^x	e^x		
sin x	cos x		

f(x)	f'(x)		
χ^n	nx^{n-1}		
\sqrt{x}	$\frac{1}{2\sqrt{x}}$		
a^{x}	$a^x \ln a$		
tan x	$\frac{1}{\cos^2 x}$		

Opérations et application des dérivées

$$(u+v)'=u'+v'$$

$$(k u)' = k u'$$

$$(u+v)' = u'+v'$$
 $(ku)' = ku'$ $(uv)' = u'v+uv'$ $\left(\frac{1}{u}\right)' = \frac{-u'}{u^2}$ $(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$

$$\left(\frac{1}{u}\right)' = \frac{-u'}{u^2}$$

$$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$$

$$(u^n)' = n u'u^{n-1}$$

$$(u^n)' = n u' u^{n-1}$$

$$\left(\frac{u}{v}\right)' = \frac{u' v - u v'}{v^2}$$

$$(v \circ u)' = u' \cdot v' \circ u$$

$$(e^u)' = u' e^u$$

$$(\ln u)' = \frac{u'}{u}$$

$$(v \circ u)' = u' \cdot v' \circ u$$

$$(e^u)' = u'e^u$$

$$(\ln u)' = \frac{u'}{u}$$

Equation de la tangente à la courbe C_f en A(a; f(a)) : y = f'(a)(x - a) + f(a)

CALCUL INTEGRAL - EQUATIONS DIFFERENTIELLES

Si F primitive ce f alors $\int_a^b f(t) dt = F(b) - F(a)$ et si $g(x) = \int_a^x f(t) dt$ alors g'(x) = f(x)

$$\int_{a}^{b} f(t) dt = -\int_{b}^{a} f(t) dt$$

$$\int_{a}^{c} f(t) dt = \int_{a}^{b} f(t) dt + \int_{b}^{c} f(t) dt$$

$$\int_a^b (\alpha f(t) + \beta g(t)) dt = \alpha \int_a^b f(t) dt + \beta \int_a^b g(t) dt$$

si $a \le b$ et $f \ge 0$ alors $\int_a^b f(t) dt \ge 0$; si $a \le b$ et $f \le g$ alors $a \int_a^b f(t) dt \le \int_a^b g(t) dt$

si $a \le b$ et $m \le f \le M$ alors $m(b-a) \le \int_a^b f(t) dt \le M(b-a)$

Intégration par parties $\int_a^b u(t)v'(t) dt = \left[u(t) v(t) \right]_a^b - \int_a^b u'(t)v(t) dt$

Equa diff

Les solutions de y' = ay + b sont des fonctions $f(x) = Ce^{ax} - \frac{b}{a}$ où C est un réel

PROBABILITES

Dénombrements :

$$n! = 1 \times 2 \times 3 \times ... \times n$$

avec
$$0! = 1$$

et
$$(n+1)! = n! \times (n+1)$$

Le nombre de combinaisons de p éléments pris parmi n est noté $\binom{n}{p}$

$$\binom{n}{p} = \frac{n(n-1)....(n-p+1)}{p!} = \frac{n!}{p! (n-p)!} \quad ; \quad \binom{n}{p} = \binom{n}{n-p} \quad ; \quad \binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p} \quad ; \quad \binom{n}{1} = n$$

Développement
$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + ... + \binom{n}{k}a^{n-k}b^k + ... + b^n$$

Généralités:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
; $P(\overline{A}) = 1 - P(A)$; $P(\Omega) = 1$; $P(\emptyset) = 0$

En cas d'équiprobabilité
$$P(A) = \frac{\text{nombre d'éléments de } A}{\text{nombre d'éléments de } \Omega} = \frac{\text{"nombre de cas favorables"}}{\text{"nombre de cas possibles"}}$$

Proba de
$$B$$
 sachant $A: P_A(B) = \frac{P(A \cap B)}{P(A)}$; si A et B sont indépendants $P(A \cap B) = P(A) \times P(B)$

TRIGONOMETRIE - PRODUIT SCALAIRE

Formules d'addition

$$cos(a+b) = cos a cos b - sin a sin b$$

$$cos(a-b) = cos a cos b + sin a sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

Formules de duplication

$$\cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$$

$$\sin(2a) = 2\sin a \cos a$$

Valeurs remarquables

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	n'existe pas	0

Produit scalaire

 \vec{u} et \vec{v} tels que $\vec{u} = \overrightarrow{OA}$; $\vec{v} = \overrightarrow{OB}$; soit $\theta = \text{angle } (\overrightarrow{OA}, \overrightarrow{OB})$ alors $\vec{u} \cdot \vec{v} = \overrightarrow{OA} \cdot \overrightarrow{OB} = OA \times OB \times \cos \theta$

si
$$\vec{u}(x;y)$$
 et $\vec{v}(x';y')$ alors $\vec{u} \cdot \vec{v} = xx' + yy'$

si \overrightarrow{OB} se projette en \overrightarrow{OH} sur \overrightarrow{OA} alors $\overrightarrow{u} \cdot \overrightarrow{v} = OA \times OH$ (si les vecteurs sont de même sens)

$$\vec{u} \cdot \vec{v} = -OA \times OH$$
 (si sens contraires)

 \vec{u} et \vec{v} sont orthogonaux $\Leftrightarrow \vec{u} \cdot \vec{v} = 0$

Al Khashi:
$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$

Théorème de la médiane :
$$c^2 + b^2 = 2AI^2 + \frac{a^2}{2}$$

Formule des sinus :
$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

Equation de droite :

ax + by + c = 0 équation de D qui admet pour vecteur directeur $\overrightarrow{u}(-b;a)$ et normal ("\pm"\pm") $\overrightarrow{v}(a;b)$