Analysis of Complex Disease Association Studies

Juan R González

juanr.gonzalez@isglobal.org http://brge.isglobal.org

BRGE – Bioinformatic Research Group in Epidemiology Center for Research in Environmental Epidemiology (CREAL) Department of Mathematics, Universidad Autònoma de Barcelona (UAB)

General issues

Three lectures

- Single SNP association analysis
- Haplotype and GWAS
 - population stratification and multiple comparisons
- CNV association analysis

Each lecture

- ~1h describing the main statistical approaches
- ~30'illustrating how to use R to analyze real data
- ~1h practical exercises

Material

- R package including required libraries
- Slides
- Selected papers
- R code (illustrating how to analyze real data)
- Real data

Material

- Slides
- R code
- Selected papers
 - Chapter book: Sole X, Gonzalez JR, Moreno V. Analysis of population–based genetic association studies applied to cancer susceptibility and prognosis. In Computational Biology: Issues and Applications in Oncology, 2009
 - GWAS data analysis of common diseases: The
 Wellcome Trust Case Control Consortium. Genome-wide association study of
 14,000 cases of seven common diseases and 3,000 shared controls. Nat
 Genet, 2007
 - General test to asses association: Gonzalez JR, et al.
 Maximizing association statistics over genetic models. Genet Epidemiol, 2008
 - Software: Gonzalez et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics, 2007

Outline

- Introduction
- Statistical Methods
 - Association analysis: models of inheritance
 - GWAS
 - Stratification
 - Multiple comparisons
 - Haplotype analysis
 - GxG and GxE interaction
- Software: SNPassoc & snpStats (formerly snpMatrix)
- LocusZoom Plots for genomic data

Vol 447 7 June 2007 doi:10.1038/nature05911

nature

ARTICLES

Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls

The Wellcome Trust Case Control Consortium*

Table 2 | Evidence for signal of association at previously robustly replicated loci

Collection	Gene	Chromosome	Reported SNP	WTCCC SNP	HapMap r^2	Trend P value	Genotypic P value
CAD	APOE	19q13	*	rs4420638	-	1.7×10^{-01}	1.7×10^{-01}
CD	NOD2	16q12	rs2066844	rs17221417	0.23	9.4×10^{-12}	4.0×10^{-11}
CD	IL23R	1p31	rs11209026	rs11805303	0.01	6.5×10^{-13}	5.9×10^{-12}
RA	HLA-DRB1	6p21	*	rs615672	-	2.6×10^{-27}	7.5×10^{-27}
RA	PTPN22	1p13	rs2476601	rs6679677	0.75	4.9×10^{-26}	5.6×10^{-25}
T1D	HLA-DRB1	6p21	*	rs9270986	-	4.0×10^{-116}	2.3×10^{-122}
T1D	INS	11p15	rs689	†	-	-	-
T1D	CTLA4	2q33	rs3087243	rs3087243	1	2.5×10^{-05}	1.8×10^{-05}
T1D	PTPN22	1p13	rs2476601	rs6679677	0.75	1.2×10^{-26}	5.4×10^{-26}
T1D	IL2RA	10p15	rs706778	rs2104286	0.25	8.0×10^{-06}	4.3×10^{-05}
T1D	IFIH1	2q24	rs1990760	rs3788964	0.26	1.9×10^{-03}	7.6×10^{-03}
T2D	PPARG	3p25	rs1801282	rs1801282	1	1.3×10^{-03}	5.4×10^{-03}
T2D	KCNJ11	11p15	rs5219	rs5215	0.9	1.3×10^{-03}	5.6×10^{-03}
T2D	TCF7L2	10q25	rs7903146	rs4506565	0.92	5.7×10^{-13}	5.1×10^{-12}

Where information on the strength of association at a particular SNP had been previously published and replicated we tabulated the P value of both the trend and genotype test at the same SNP (if in our study), or the best tag SNP (defined to be the SNP with highest r^2 with the reported SNP, calculated in the CEU sample of the HapMap project). Positions are in NCBI build-35 coordinates. *Previous reports relate to haplotypes rather than single SNPs. *Not well tagged by SNPs that pass the quality control, see main text.

Table 3	Regions of the	genome	showing the	strongest	association signals	
i abie 3	Regions of the	genome s	snowing the	strongest	association signals	

Table 3	Region	s of the genome	silowing the	strongest assoc	acion signais								
Collection	Chromosome	Region (Mb)	SNP	Trend P value	Genotypic P value	logao(BF), additive	$\log_{10}(BF)$, general	Risk allele	Minor allele	Heterozygote odds ratio	Homozygote odds ratio	Control MAF	Case MAF
					Standard	analysis							
BD	16p12	23.3-23.62	rs420259	2.19×10^{-04}	6.29×10^{-08}	1.96	4.79	Α	G	2.08 (1.60-2.71)	2.07 (1.6-2.69)	0.282	0.248
CAD	9p21	21.93-22.12	rs1333049	1.79×10^{-14}	1.16×10^{-13}	11.66	11.19	C	C	1.47 (1.27-1.70)	1.9 (1.61-2.24)	0.474	0.554
CD	1p31	67.3-67.48	rs11805303	6.45×10^{-13}	5.85×10^{-12}	10.07	9.41	Т	Т	1.39 (1.22-1.58)	1.86 (1.54-2.24)	0.317	0.391
CD	2q37	233.92-234	rs10210302	7.10×10^{-14}	5.26×10^{-14}	11.11	11.28	Т	С	1.19 (1.01-1.41)	1.85 (1.56-2.21)	0.481	0.402
CD	3p21	49.3-49.87	rs9858542	7.71×10^{-07}	3.58×10^{-08}	4.24	5.22	Α	Α	1.09 (0.96-1.24)	1.84 (1.49-2.26)	0.282	0.331
CD	5p13	40.32-40.66	rs17234657	2.13×10^{-13}	1.99×10^{-12}	10.41	9.89	G	G	1.54 (1.34-1.76)	2.32 (1.59-3.39)	0.125	0.181
CD	5q33	150.15-150.31	rs1000113	5.10×10^{-08}	3.15×10^{-07}	5.36	5.01	Т	Т	1.54 (1.31-1.82)	1.92 (0.92-4.00)	0.067	0.098
CD	10q21	64.06-64.31	rs10761659	2.68×10^{-07}	1.75×10^{-06}	4.69	4.13	G	Α	1.23 (1.05-1.45)	1.55 (1.3-1.84)	0.461	0.406
CD	10q24	101.26-101.32	rs10883365	1.41×10^{-08}	5.82×10^{-08}	5.91	5.48	G	G	1.2 (1.03-1.39)	1.62 (1.37-1.92)	0.477	0.537
CD	16q12	49.02-49.4	rs17221417	9.36×10^{-12}	3.98×10^{-11}	8.93	8.47	G	G	1.29 (1.13-1.46)	1.92 (1.58-2.34)	0.287	0.356
CD	18p11	12.76-12.91	rs2542151	4.56×10^{-08}	2.03×10^{-07}	5.42	5.00	G	G	1.3 (1.14-1.48)	2.01 (1.46-2.76)	0.163	0.208
RA	1p13	113.54-114.16	rs6679677	4.90×10^{-26}	5.55×10^{-25}	22.36	21.99	Α	Α	1.98 (1.72-2.27)	3.32 (1.93-5.69)	0.096	0.168
RA	6	MHC	rs6457617*	3.44×10^{-76}	5.18×10^{-75}	74.84	73.18	Т	Т	2.36 (1.97-2.84)	5.21 (4.31-6.30)	0.489	0.685
T1D	1p13	113.54-114.16	rs6679677	1.17×10^{-26}	5.43×10^{-26}	23.07	22.83	Α	Α	1.82 (1.59-2.09)	5.19 (3.15-8.55)	0.096	0.169
T1D	6	MHC	rs9272346*	2.42×10^{-134}		141.9	142.2	Α	G		18.52 (27.03-12.69)		0.150
T1D	12q13	54.64-55.09	rs11171739	1.14×10^{-11}	9.71×10^{-11}	8.89	8.24	C		1.34 (1.17-1.54)	1.75 (1.48-2.06)	0.423	0.493
T1D		109.82-111.49	rs17696736	2.17×10^{-15}	1.51×10^{-14}	12.53	11.88	G		1.34 (1.16-1.53)	1.94 (1.65-2.29)	0.424	0.506
T1D	16p13	10.93-11.37	rs12708716	9.24×10^{-08}	4.92×10^{-07}	5.15	4.70	Α		1.19 (0.97-1.45)	1.55 (1.27-1.89)	0.350	0.297
T2D	6p22	20.63-20.84	rs9465871	1.02×10^{-06}	3.34×10^{-07}	4.15	3.98	C	C	,	2.17 (1.6-2.95)	0.178	0.218
T2D		114.71-114.81	rs4506565	5.68×10^{-13}	5.05×10^{-12}	10.14	9.43	Т	Т	1.36 (1.2-1.54)	1.88 (1.56-2.27)	0.324	0.395
T2D	16q12	52.36-52.41	rs9939609	5.24×10^{-08}	1.91×10^{-07}	5.35	5.05	Α	Α	1.34 (1.17-1.52)	1.55 (1.3-1.84)	0.398	0.453
					Multi-locus						1 10 (1 0= 1 =0)		
T1D	4q27	123.26-123.92	rs6534347	4.48×10^{-07}	1.83×10^{-06}	5.15	4.69	Α	Α	,	1.49 (1.25-1.78)	0.351	0.402
T1D	12p13	9.71-9.86	rs3764021	7.19×10^{-05}	5.08×10^{-08}	2.12	4.55	C	Т	1.57 (1.38-1.79)	1.48 (1.25-1.75)	0.467	0.426
D.4	7 00	100.00 100.04	117/1001	2.04	Sex differentia	ated ana	lysis	_		1 11 (1 10 1 75)	1 (4 (4 05 100)	0.075	0.007
RA	/q32	130.80-130.84	rs11761231	3.91×10^{-07}	1.37×10^{-06}		-	G	А	1.44 (1.19-1.75)	1.64 (1.35-1.99)	0.375	0.327
DA : T1D	10-15	607 617	2104204	F 02 × 10=08	Combine		4.45	_	_	1 25 /1 11 1 /5	1 (2 (1 24 1 67)	0.207	0.245
RA+T1D	10p15	6.07-6.17	rs2104286	5.92 × 10 ⁻⁰⁸	2.52×10^{-07}	5.26	4.45	Т	C	1.35 (1.11-1.65)	1.62 (1.34–1.97)	0.286	0.245

How do we measure genetic susceptibility?

- Variation in one concrete position of the genome is known as polymorfism
- It is normally used as a genetic marker that allow us to identify those allele that are related to disease

Genetic markers

- Microsatellites: VNTR ("Variable Number Tandem Repeat")
 CGTACCTGCACACACACGGAACT
- SNP ("Single Nucleotide Polymorphism")

ATTGATC

ATTCATC G->C

- CNV ("Copy number variant")

Aim

 To establish the role that genes and environment play in the variability (inter-individual differences) with regard to disease and complex traits

To find those susceptibility genes

Designs

Case-control studies – Why?

Case-control Association studies

Association studies

- Candidate Polimorfism
 - Known functional impact
- Candidate Gen
 - A selection of SNPs (5-15) are scanned
 - Maybe none of them is causal (LD existence?)
- Candidate Region
 - Identified using linkage studies
 - 10-100 SNPs are scanned
- Whole genome scan
 - 300.000, 500.000, 1.000.000, ... SNPs are analyzed

Association studies

- There are several reason to find association
 - Causal: genetic diseases due to the marker
 - Linkage disequilibrium. True associated marker is near the studied one
 - Population stratification: confusion due to mixed population with different allele frequencies

Before assessing association: Hardy-Weinberg test

 This hypothesis must be tested only in controls since it may be disequilibrium when allele is related to the disease.

Assume that f denotes the minor allelic frequency (MAF), then

Frequency of genotype AA is $(1-f)^2$ Frequency of genotype Aa is 2f(1-f)Frequency of genotype aa is f^2

HWE is tested using a chi-square test (goodness-of-fit)

Types of association analyses

- Each polymorphism at time
 - Information obtained from genotype platforms (Single association analysis)

- Combination of polymorphisms: Haplotypes
 - This information is not available. It has to be estimated using complex statistical methods.

Single association analysis

codominant

SNP

a)		A/A	A/a	a/a	Total
ase	Cases	r_0	r_1	r_2	R
disease	Controls	s_0	s_1	s_2	S
q	Total	n_0	n_1	n_2	N

 χ^2 trend test Cochran-Armitage trend test $OR_{A/A} < OR_{A/a} < OR_{a/a}$ (linear trend)

SNP

$\begin{array}{c|ccccc} A/A & A/a + a/a & Total \\ \hline Cases & r_0 & r_1 + r_2 & R \\ \hline Controls & s_0 & s_1 + s_2 & S \\ \hline Total & n_0 & n_1 + n_2 & N \\ \hline \end{array}$

disease

dominant

 χ^2 test (Fisher test)

recessive

SNP

		A/A + A/a	a/a	Total
se	Cases	$r_0 + r_1$	r_2	R
disea	Controls	$s_0 + s_1$	s_2	S
Ö	Total	$n_0 + n_1$	n_2	N

 χ^2 test (Fisher test)

Association analysis

Regression models

$$-\Pr(\mathsf{D}|\mathsf{G},\mathsf{Z})=\mathsf{f}(\mathsf{G},\mathsf{Z})$$

Logistic regression

$$\log\{p/(1-p)\} = \alpha + \beta G + \gamma Z$$

Association analysis

Lineal regresion:

$$Y = \alpha + \beta G + \gamma Z$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Quantitative trait
$$Genotype \qquad covariates$$

Y must be Gaussian. If not -> transformation (logarithm)

Association analysis

Goodness-of-fit: Likelihood (L)

Mod₀: Basal model (null or adjusted)

Mod₁: Model including SNP

Likelihood ratio test (LRT)

$$\frac{L_{\text{mod}_{1}}}{L_{\text{mod}_{0}}} = \begin{bmatrix} >1 & \text{if mod}_{1} & \text{more 'likely' than mod}_{0} \\ =1 & \text{if both models are equal} \\ <1 & \text{if mod}_{0} & \text{more 'likely' than mod}_{1} \end{bmatrix}$$

$$-2\log\left(\frac{L_{\text{mod}_1}}{L_{\text{mod}_0}}\right) \sim \chi_{g.l.}^2$$

Chi-square with 1 d.f.

$$\chi_{\text{max}}^2 = \max\{\chi_D^2, \chi_R^2, \chi_A^2\}$$

Vol 445 22 February 2007 doi:10.1038/nature05616

nature

ARTICLES

A genome-wide association study identifies novel risk loci for type 2 diabetes

Robert Sladek^{1,2,4}, Ghislain Rocheleau^{1*}, Johan Rung^{4*}, Christian Dina^{5*}, Lishuang Shen¹, David Serre¹, Philippe Boutin⁵, Daniel Vincent⁴, Alexandre Belisle⁴, Samy Hadjadj⁶, Beverley Balkau⁷, Barbara Heude⁷, Guillaume Charpentier⁸, Thomas J. Hudson^{4,9}, Alexandre Montpetit⁴, Alexey V. Pshezhetsky¹⁰, Marc Prentki^{10,11}, Barry I. Posner^{2,12}, David J. Balding¹³, David Meyre⁵, Constantin Polychronakos^{1,3} & Philippe Froguel^{5,14}

A max statistic was formed across these to select the strongest obtainable association for any of the three models.

$$X_{\max,i}^2 = \max \{ X_{A,i}^2, X_{D,i}^2, X_{R,i}^2 \}$$
 E6

P-values were calculated for the observed test statistic against the null distribution for the genetic model giving the strongest association. Also, since the distribution for the max statistic itself under the null hypothesis is not known, we establish such p-values by permutation testing. To obtain these, N_{perm} permutations of the disease state vector were done

Genetic Epidemiology 32: 246-254 (2008)

Maximizing Association Statistics Over Genetic Models

Juan R. González,^{1-3*} Josep L. Carrasco,³ Frank Dudbridge,⁴ Lluís Armengol,^{2,5} Xavier Estivill,^{2,5} and Victor Moreno⁶

Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
 ²CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
 ³Biostatistic Unit, Department of Public Health, University of Barcelona, Spain
 ⁴MRC Biostatistics Unit, Cambridge, United Kingdom
 ⁵Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain
 ⁶IDIBELL, Catalan Institute of Oncology, Barcelona, Spain

Vol 447 7 June 2007 doi:10.1038/nature05911

nature

ARTICLES

Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls

The Wellcome Trust Case Control Consortium*

There is increasing evidence that genome-wide association (GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study (using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined \sim 2,000 individuals for each of 7 major diseases and a shared set of \sim 3,000 controls. Case-control comparisons identified 24 independent association signals at $P < 5 \times 10^{-7}$: 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these

Table 3 | Regions of the genome showing the strongest association signals

		5 of the genome								-			
Collection	Chromosome	Region (Mb)	SNP	Trend P value	Genotypic Pvalue	log ₁₀ (BF), additive	log ₁₀ (BF), general	Risk allele	Minor allele	Heterozygote odds ratio	Homozygote odds ratio	Control MAF	Case MAF
					Standard	analysis	5						
BD	16p12	23.3-23.62	rs420259	2.19×10^{-04}	6.29×10^{-08}	1.96	4.79	Α	G	2.08 (1.60-2.71)	2.07 (1.6-2.69)	0.282	0.248
CAD	9p21	21.93-22.12	rs1333049	1.79×10^{-14}	1.16×10^{-13}	11.66	11.19	C	C	1.47 (1.27-1.70)	1.9 (1.61-2.24)	0.474	0.554
CD	1p31	67.3-67.48	rs11805303	6.45×10^{-13}	5.85×10^{-12}	10.07	9.41	Τ	Т	1.39 (1.22-1.58)	1.86 (1.54-2.24)	0.317	0.391
CD	2q37	233.92-234	rs10210302	7.10×10^{-14}	5.26×10^{-14}	11.11	11.28	Τ	C	1.19 (1.01-1.41)	1.85 (1.56-2.21)	0.481	0.402
CD	3p21	49.3-49.87	rs9858542	7.71×10^{-07}	3.58×10^{-08}	4.24	5.22	Α	Α	1.09 (0.96-1.24)	1.84 (1.49-2.26)	0.282	0.331
CD	5p13	40.32-40.66	rs17234657	2.13×10^{-13}	1.99×10^{-12}	10.41	9.89	G	G	1.54 (1.34-1.76)	2.32 (1.59-3.39)	0.125	0.181
CD	5q33	150.15-150.31	rs1000113	5.10×10^{-08}	3.15×10^{-07}	5.36	5.01	Τ	Т	1.54 (1.31-1.82)	1.92 (0.92-4.00)	0.067	0.098
CD	10q21	64.06-64.31	rs10761659	2.68×10^{-07}	1.75×10^{-06}	4.69	4.13	G	Α	1.23 (1.05-1.45)	1.55 (1.3-1.84)	0.461	0.406
CD		101.26-101.32	rs10883365	1.41×10^{-08}	5.82×10^{-08}	5.91	5.48	G	G	1.2 (1.03-1.39)	1.62 (1.37-1.92)	0.477	0.537
CD	16q12	49.02-49.4	rs17221417	9.36×10^{-12}	3.98×10^{-11}	8.93	8.47	G	G	1.29 (1.13-1.46)		0.287	0.356
CD	18p11	12.76-12.91	rs2542151	4.56×10^{-08}	2.03×10^{-07}	5.42	5.00	G	G	1.3 (1.14-1.48)	2.01 (1.46-2.76)	0.163	0.208
RA	1p13	113.54-114.16	rs6679677	4.90×10^{-26}	5.55×10^{-25}	22.36	21.99	A	A	1.98 (1.72-2.27)	3.32 (1.93-5.69)	0.096	0.168
RA	6	MHC	rs6457617*	3.44×10^{-76}	5.18×10^{-75}		73.18	T		2.36 (1.97-2.84)	5.21 (4.31-6.30)	0.489	0.685
T1D	1p13	113.54-114.16	rs6679677	1.17×10^{-26}	5.43×10^{-26}	23.07	22.83	Α	Α	1.82 (1.59-2.09)	5.19 (3.15-8.55)	0.096	0.169
T1D	6	MHC	rs9272346*	2.42×10^{-134}	5.47×10^{-134}	141.9	142.2	Α	G		18.52 (27.03-12.69)	0.387	0.150
T1D	12q13	54.64-55.09	rs11171739	1.14×10^{-11}	9.71×10^{-11}	8.89	8.24	C	C	1.34 (1.17-1.54)	1.75 (1.48-2.06)	0.423	0.493
T1D		109.82-111.49	rs17696736	2.17×10^{-15}	1.51×10^{-14}	12.53	11.88	G	G	1.34 (1.16-1.53)		0.424	0.506
T1D T2D	16p13	10.93-11.37 20.63-20.84	rs12708716 rs9465871	9.24×10^{-08} 1.02×10^{-06}	4.92×10^{-07} 3.34×10^{-07}	5.15 4.15	4.70 3.98	A	G	1.19 (0.97-1.45)	,	0.350 0.178	0.297 0.218
T2D	6p22	114.71-114.81	rs4506565	5.68×10^{-13}	5.05×10^{-12}	10.14	9.43	C T	C T	1.18 (1.04-1.34) 1.36 (1.2-1.54)	2.17 (1.6-2.95) 1.88 (1.56-2.27)	0.178	0.216
T2D		52.36-52.41	rs9939609	5.24×10^{-08}	1.91×10^{-07}	5.35	5.05	A	A	1.34 (1.17-1.52)	1.55 (1.3-1.84)	0.324	0.595
120	16q12	52.36-52.41	123333603	5.24 × 10	Multi-locu			А	А	1.34 (1.17-1.52)	1.55 (1.5-1.84)	0.398	0.453
T1D	4g27	123.26-123.92	rs6534347	4.48×10^{-07}	1.83 × 10 ⁻⁰⁶	5.15	4.69	Α	Α	1.30 (1.10-1.55)	1.49 (1.25-1.78)	0.351	0.402
T1D	12p13	9.71-9.86	rs3764021	7.19×10^{-05}	5.08×10^{-08}	2.12	4.55	ĉ	T	1.57 (1.38-1.79)	1.48 (1.25-1.75)	0.467	0.426
110	12013	9.71-9.00	153704021	7.19 \ 10	Sex differenti			C	'	1.57 (1.36-1.79)	1.40 (1.25-1.75)	0.407	0.420
RA	7q32	130.80-130.84	rs11761231	3.91×10^{-07}	1.37×10^{-06}	-	-	G	Α	1.44 (1.19-1.75)	1.64 (1.35-1.99)	0.375	0.327
RA+T1D	10p15	6.07-6.17	rs2104286	5.92 × 10 ⁻⁰⁸	Combine 2.52 × 10 ⁻⁰⁷		4.45	Т	С	1.35 (1.11-1.65)	1.62 (1.34-1.97)	0.286	0.245

Collection	Chromosome	Region (Mb)	SNP	Trend P value	Genotypic Pvalue	log ₁₀ (BF), additive	log ₁₀ (BF), general	Risk allele	Minor allele	Heterozygote odds ratio	Homozygote odds ratio	Control MAF	Case MAF	
BD CAD CD CD CD CD CD CD	16p12 9p21 1p31 2q37 3p21 5p13 5q33 10o21	23.3-23.62 21.93-22.12 67.3-67.48 233.92-234 49.3-49.87 40.32-40.66 150.15-150.31 64.06-64.31	rs420259 rs1333049 rs11805303 rs10210302 rs9858542 rs17234657 rs1000113 rs10761659	2.19×10^{-04} 1.79×10^{-14} 6.45×10^{-13} 7.10×10^{-14} 7.71×10^{-07} 2.13×10^{-13} 5.10×10^{-08} 2.68×10^{-07}	$\begin{array}{c} \text{Standard} \\ 6.29 \times 10^{-08} \\ 1.16 \times 10^{-13} \\ 5.85 \times 10^{-12} \\ 5.26 \times 10^{-14} \\ 3.58 \times 10^{-08} \\ 1.99 \times 10^{-12} \\ 3.15 \times 10^{-07} \\ 1.75 \times 10^{-06} \end{array}$	1.96 11.66 10.07	4.79 11.19 9.41 11.28 5.22 9.89 5.01 4.13	A C T T A G T	Α	2.08 (1.60-2.71) 1.47 (1.27-1.70) 1.39 (1.22-1.58) 1.19 (1.01-1.41) 1.09 (0.96-1.24) 1.54 (1.34-1.76) 1.54 (1.31-1.82) 1.23 (1.05-1.45)	2.07 (1.6-2.69 1.9 (1.61-2.24 1.86 (1.54-2.24 1.85 (1.56-2.21 1.84 (1.49-2.26 2.32 (1.59-3.39 1.92 (0.92-4.00 1.55 (1.3-1.84	0 474 4) 0.317 1) 0.481 6) 0.282 9) 0.125 0) 0.067	0.248 0.554 0.391 0.402 9.331 0.181 0.098 0.406	
<i>P</i> value		Genotypic	value	log ₁₀ (BF), additive	log ₁₀ (BF),	gelleral	Risk allele	:	Minor allele		Heterozygote odds ratio			04000 FOR OH
		Ge	Pv	log ad	0	70	8	:	Ē		Heter			=
T2D T2D		114.71-114.81	۵.	5.68 × 10 ⁻¹³	5.05 × 10 ⁻¹²	10.14 5.35	9.43	T	T	1.36 (1.2-1.54) 1.34 (1.17-1.52)	1.88 (1.56-2.2)		0.395 0.453	:
T2D T2D T1D T1D	16q12		rs4506565 rs9939609			10.14 5.35 s analysis 5.15 2.12	9.43 5.05 s 4.69 4.55	T A A C	T A	1.36 (1.2-1.54) 1.34 (1.17-1.52) 1.30 (1.10-1.55) 1.57 (1.38-1.79)		0.398	0.395 0.453 0.402 0.426	

Quality Control

At SNP level:

- -> Missing rate (95%, 99%)
- -> HWE (p < 0.001)
- -> MAF (5%)

At sample level:

- -> Call rate (e.g. missing) (95%, 99%)
- -> Sex discrepancies
- -> Heterozygosity rate
- -> Duplicated or related individuals
- -> Divergent ancestry

- Problem 1: Sample size
 - -> Multi-stage approach
- **Problem 2: Population Stratification**
 - -> Principal Component Analysis
- Problem 2: Multiple comparisons
 - -> Bonferroni Correction
 - -> Permutation test

Sample size (β =80% α =10⁻⁶)

Multi-stage approach

Multi-stage approach

Genetic model: log-additive

والتورين والمأليك ويرتون

Multi-stage approach

Genetic model: log-additive

والتورين والمأليك ويتوري

Association

Multi-stage approach

- To evaluate association using an unique inheritance model (additive or max-statistic)
- Re-genotype using another sample (large) those SNPs that are significant using a non-stringent p-value (p=0.1) and assess association using these SNPs
- To validate association using an independent sample only for those SNPs that are statistically significant using a more stringent p-value (Bonferroni)
- To estimate OR and Cl05% using different inheritance models

Population stratification

Susceptibility allele

Population A

Population B

Cases 11/20 vs Controls: 7/20 -> OR=2.27

Cases 8/11 vs Controls: 3/4 -> OR=0.89

Cases 3/9 vs Controls: 4/16 -> OR=1.08

How to address the problem

- At design
 - Race-matched design
 - Relatives as controls (under-powered)
- Statistical methods
 - Devlin's method (genomic control)
 - Clayton's approach
 - EIGENSTRAT
 - STRUCTURE

- If stratification is presetn, chi-square of association is inflated -> λ
- Algorithm:
 - To estimate λ
 - Re-compute chi-square test statistic
 - To compute corrected p-value
- Two methods
 - Devlin's method (genomic control)
 - Clayton's approach

Devlin and Roeder, Biometrics, 1999

• Inflation factor, λ , can be estimated using:

$$\hat{\lambda} = \{ \text{median}(X_1, X_2, \dots, X_n) / 0.675 \}^2$$

Clayton et al, Nature Genetics, 2005

• Inflation factor, λ can be estimated using a q-q plot

Price et al., Nature Genetics, 2006 (EIGENSTRAT)

- Step A: To use principal component analysis (eigen values) using genotypes to infer continuous axes that account for genetic variation
- Step B: To adjust fenotipe and genotypes using attributable fraction of each axis
- Step C: To assess association adjusting for this fraction (i.e., logistic regression adjusting for the 3rd and 4th principal components)

Multiple comparisons

How does it appear?

- When more than 1 phenotype is analyzed
- When more than one technique is used to analyze the same dataset. For instance, association with a SNP and with haplotype
- When using different tests
 - Dominant, recessive and additive
 - Crude and adjusted analysis
- When assessing association with more than 1 SNP -> GWAS

Multiple testing: approaches

- Bonferroni / Sidak's correction
- False Discovery Rate (q-value)
- Permutation Testing

Bonferroni correction

- Testing 500,000 SNPs ...
 - 5,000 are expected to be significant at p<0.01 level
 - 500 are expected to be significant at p<0.001 level
 -
 - 5 are expected to be significant at p<10⁻⁵ level
- Bonferroni correction when testing m markers
 - Consider significant level α = 0.05 / m
- Sidak's correction when testing m markers

$$-\alpha^*=1-(1-\alpha)^m$$

*See Risch and Merikangas 1999

False Discovery rate (q-value)

False Discovery rate (q-value)

Multiple comparisons

	Error control for		Appropriate for	
	Whole study	Single test	Association	Expression
			study	study
Family wise error, strong	Yes (1)	Yes (1)	No	No
Family wise error, weak	Yes (1)	No	Yes	Yes
Minimum P-value	Yes (1)	Yes (1)	Somewhat	No
Truncated P-value product	Yes (1)	No	Yes	Possibly
Random gene effects model	Yes (1)	Yes (2)	Possibly	Yes
False discovery rate	Yes (3)	No	No	Yes
Q-value	Yes (3)	Some (3)	No	Yes
Local FDR	Yes (2)	Yes (2)	Yes	Yes
False positive reporting	Yes (3)	Some (3)	Yes	Yes
probability				

Source: Dudbridge, et al. (2006) Human Genomics

LocusZoom: http://csg.sph.umich.edu/locuszoom/

Login/Logout

Genome Science Training Program Overview Application Information Handbook 2012 Members:

Software		
Authors		
GOLD		
HAPLOTYPER		
LocusZoom		
MERLIN		
CaTS (Power Calculator)		
QTDT		
RELPAIR		
SIBMED		
Other •		

LocusZoom is a tool to plot regional association results from genome-wide association scans or candidate gene studies. This is Version 1.1

Report problems to cristen@umich.edu

We are pleased to announce that our paper on *LocusZoom* has been published. ABSTRACT [PDF]

REFERENCE:

Pruim RJ*, Welch RP*, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ. (2010) LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010 September 15; 26(18): 2336.2337.

Count of Succe

This week

Year 2013

Jan

Year 2012

Year 2011

Year 2010

LocusZoom: http://csg.sph.umich.edu/locuszoom/

LocusZoom - Plot with Your Data

Plot Your Da	ata	Depending on the size of your data, runs can require 30-60 seconds to generate a plot			
	Path to	Your File File will sent to server and used for plotting (Maximum 200MB) [Help]			
Provide Details for Your Data	P-Value Name Marker (Name	Default is P.value Set for PLINK data or WikiGWA data			
	Column Delimiter Tab Default is tab				
Specify Region to Display Required: Fill in Only ONE of These Three	SNP	+/- 400 Kb SNP Reference Name Flanking Size			
	Gene	+/- 200 Kb Gene Reference Name Flanking Size Optional Index SNP Default=lowest p-value			
	Region	Chr: None Mb through Mb Starting Chr Position Ending Chr Position Optional Index SNP Default=lowest p-value			

LocusZoom: http://csg.sph.umich.edu/locuszoom/

