Fibonacci Numbers with Negative Indices

The Fibonacci numbers can be extended to zero and negative indices using the relation $F_n = F_{n+2} - F_{n+1}$. Determine F_0 and find a general formula for F_{-n} in terms of F_n . Prove your result using mathematical induction.

Solution

Formula

Let F_n be the n^{th} Fibonacci number where $F_0 = 0$, $F_1 = 1$, $F_2 = 1$.

From the relation

$$F_n = F_{n+2} - F_{n+1}$$

we have:

$$\begin{split} F_0 &= F_2 - F_1 \\ F_0 &= 1 - 1 = 0 \\ F_{-1} &= 1 - 0 = 1 \\ F_{-2} &= 0 - 1 = -1 \\ F_{-3} &= 1 - (-1) = 2 \\ F_{-4} &= -1 - 2 = -3 \end{split}$$

The formula is:

$$F_{-n} = (-1)^{n+1} F_n$$

Proof

For all $n \in \mathbb{N}_{>0}$, let P(n) be the proposition:

$$F_{-n} = (-1)^{n+1} F_n$$

$$P(1)$$
 holds since $F_{-1} = 1 - 0 = 1 = (-1)^{1+1}F_1$
 $P(2)$ holds since $F_{-2} = 0 - 1 = -1 = (-1)^{2+1}F_2$

Induction Hypoethesis

If P(k) and P(k-1) are true, where k > 1, then P(k+1) is true.

$$F_{-(k+1)} = (-1)^k F_{k-1} - (-1)^{k+1} F_k$$

$$= (-1)^{k} F_{k-1} + (-1)^{k} F_{k}$$

$$= (-1)^{k} (F_{k-1} + F_{k})$$

$$= (-1)^{k} (F_{k+1})$$

$$= (-1)^{k+2} (F_{k+1})$$

So $P(k) \wedge P(k-1) \Rightarrow P(k+1)$ and the result follows by induction.