

Lezione 1

Introduzione al corso

Lezione 1

- Programma del corso
 - Problemi e sistemi di controllo [Cap. 1]
 - Richiami di modellistica (Fondamenti di Automatica) [Cap. 2]
 - Sistemi LTI nel dominio del tempo continuo [Cap. 3]
 - Stabilità [Cap. 4]
 - Funzione di trasferimento [Cap. 5]
 - Schemi a blocchi [Cap. 6]
 - Risposta in frequenza [Cap. 7]
 - Sistemi LTI nel dominio del tempo discreto [Cap. 8]
 - Risposta in frequenza [Cap. 9]
 - Sistemi di controllo a tempo continuo: stabilità [Cap. 10]
 - Funzioni di sensitività [Cap. 11]
 - Sintesi nel dominio della frequenza [Cap. 12]
 - Luogo delle radici [Cap. 13]
 - Regolatori standard [Cap. 15]

Lezione 1

Storia dell'Automatica

- Il regolatore centrifugo di Watt (1788)
 - Serviva a tenere costante la velocità di rotazione dell'albero motore nelle macchine a vapore
 - A volte aveva problemi di funzionamento...
 - James C. Maxwell (1868) discusse i motivi del buon funzionamento del regolatore nel lavoro «On governors»
 - «This condition is mathematically equivalent to the condition that all the possible roots, and all the possible parts, of the impossible roots of a certain equation shall be negative»
 - Riuscì a studiare solo il caso di polinomi di terzo grado e si augurò che qualcuno fosse capace di «prevedere» il segno della parte reale delle radici di un polinomio senza doverne calcolare le radici
 - Edward J. Routh (1876)
 - Vinse il premio Adams Prize della Royal Society con il saggio in cui presentò il famoso Criterio di Routh
 - E.J. Routh fu anche il primo classificato nei Mathematical Tripos dell'Università di Cambridge nel 1854, mentre Maxwell arrivò 'solo' secondo (nel 1893 un certo Bertrand Russell fu 7° e nel 1905 Lord Keynes fu 12°)

- Il XX secolo
 - Innovazioni ingegneristiche degli anni 40
 - Elettricità
 - Il volo
 - Un velivolo «instabile» è più manovrabile! Capirlo è semplice se si definisce la «stabilità» come la capacità di un sistema dinamico di riassorbire le perturbazioni
 - Meccanismi asserviti o «servomeccanismi» sono gli avi della moderna meccatronica e robotica
 - Anti-Aircraft servo problem (prevedere la traiettoria di un velivolo)
 - James, Nichols, Phillips, Theory of servomechanisms (1945)
 - Wiener, Cybernetics (1949): controllo e comunicazione nel mondo animale e in quello delle macchine
 - La nascita dell'automatica moderna
 - Il ruolo della modellistica matematica
 - G. Box: «tutti i modelli sono sbagliati, ma qualcuno è utile»
 - I. Calvino: «La seconda rivoluzione industriale non si presenta come la prima con immagini schiaccianti quali presse di laminatoi; o colate d'acciaio, ma come i bits d'un flusso di informazione che corre sui circuiti sotto forma d'impulsi elettrici. Le macchine di ferro ci sono sempre, ma obbediscono ai bit senza peso»

- Il XX secolo
 - Mosca 1957: IFAC World Congress
 - Presenta un lavoro un certo Rudolf Kalman «On the general theory of control systems»
 - Approccio a spazio di stato
 - Ma il suo lavoro più famoso è «A new approach to linear filtering and prediction problems»
 - Nasce il famoso «Filtro di Kalman» di importanza fondamentale in decine di applicazioni
 - È in sostanza un «sensore virtuale», cioè un algoritmo capace di stimare una grandezza misurabile solo in maniera indiretta (es., orientamento di una astronave)
 - sarà uno degli algoritmi principali che porteranno l'uomo sulla luna

- E gli italiani?
 - A. Ruberti (Aversa, 1927)
 - Primo ministro dell'Università e della Ricerca Scientifica
 - Primo Commissario Europeo
 - Fondatore di questa Università
 - Ideatore dei Programmi Quadro
 - A. Lepschy (Padova, 1931)
 - Primo libero docente di Controlli Automatici
 - G. Quazza (Vercelli, 1924)
 - Coordinatore dell'Executive Board dell'IFAC
 - Vittima di un incidente in montagna -> Quazza Medal
 - E. Biondi (Catania, 1928)
 - Fondatore del Centro per lo studio della teoria dei sistemi del CNR
 - Fondatore della bioingegneria in Italia

Capitolo 1 – Problemi e sistemi di controllo

problemi di controllo consistono nell'imporre un funzionamento desiderato ad un processo assegnato

- processo: apparecchiatura, macchina o fenomeno fisico
- funzionamento desiderato: andamento nel tempo di alcune variabili del processo o grandezze di interesse (variabile controllata) coincidente con quello di altre variabili preassegnate (segnale di riferimento)
- problema di controllo
- L> Pullo che voglamo noi describo de segnili di riferimento sa esegnale di riferimento savere da quelle confrollate
 - Obiettivo 1: variabile controllata = segnale di riferimento
 - l'obiettivo si raggiunge "manipolando" alcune variabili del processo (variabile di controllo) che determinano cambiamenti della variabile controllata
 - segnale di riferimento costante → regolazione → Aluguimo augustore
 - segnale di riferimento variabile → asservimento
 - Obiettivo 2: reiezione dei disturbi

Concetto di incertezza

- * l'andamento della variabile controllata non è influenzato solo dalla variabile di controllo ma anche da altre variabili non manipolabili (disturbi) -> Se le pressimo confullare sudde vutille di confullo.
- * l'andamento atteso della variabile controllata dipende dal valore di alcuni parametri interni al processo -> Parametri. Se son divesi non funcioni un cuetto.
 - se il valore di tali parametri è incerto, l'andamento della variabile controllata non è prevedibile con esattezza
 - anche i disturbi possono avere un andamento incerto
- condizioni nominali
 - i parametri del processo hanno tutti i loro valori nominali
 - i disturbi hanno tutti il loro andamento nominale
- condizioni perturbate
 - i parametri del processo hanno valori incerti
 - i disturbi hanno andamento incerto

Esempi

- controllo di un veicolo in un tratto di strada pianeggiante
 - variabile controllata: posizione e velocità nel piano (dimensione: 4)
 2 posizione e 2 componenti sul piano
 - segnale di riferimento: posizione e velocità desiderate (dimensione: 4)
 - variabile di controllo: posizione del volante, del freno, dell'acceleratore, del cambio (dimensione: 4)
 - parametri (incerti): massa del veicolo, coefficiente, attrito tra pneumatici e fondo stradale, efficienza del motore, ecc...
 - disturbi (incerti): vento (intensità, direzione e verso della sua velocità), ...
- climatizzazione di un edificio
 - variabile controllata: temperatura nei locali dell'edificio (dim. n)
 - segnale di riferimento: temperatura desiderata nei locali (dim. n)
 - variabile di controllo: portate d'aria inviate nei locali (dim. n)
 - parametri (incerti): coefficienti di scambio termico, efficienza scambiatori di calore
 - disturbi (incerti): insolazione, temperatura esterna, ...

regolatore (o controllore)

- controllore: dispositivo che ha il compito di determinare l'andamento della variabile controllata tale da raggiungere l'obiettivo di controllo
 - sistemi di controllo naturali: controllore e processo sono intimamente connessi (es. sistema di regolazione della pressione arteriosa o della temperatura corporea)
 - sistemi di controllo artificiali: il controllore è un dispositivo esterno al processo
 - manuali: l'azione di controllo è esercitata dall'uomo (es. pilota aereo)
 - automatici: l'azione di controllo è esercitata da un dispositivo appositamente progettato (es. cruise control autoveicolo)

Regustr du precisione

- Obiettivo ideale
 - variabile controllata = segnale di riferimento
 - è di fatto irraggiungibile
- Obiettivo pratico
 - ♦ variabile controllata ≈ segnale di riferimento
 - l'approssimazione va precisata caso per caso
 - viene tradotto nell'imporre che l'errore
 - errore = segnale di riferimento variabile controllata
 - soddisfi un insieme di **requisiti** (o **specifiche**) che esprimono la necessità che esso risulti "accettabilmente piccolo" in condizioni nominali e perturbate
 - il significato di "accettabilmente piccolo" verrà chiarito in seguito
 - a ciò si aggiunge un requisito che garantisca la moderazione della variabile di controllo
 - i due requisiti di sopra sono parzialmente in contrasto (es. elevata velocità di risposta di processi "naturalmente" lenti)

Es: the a 300 km/h

Sistema di controllo in anello aperto

- il controllore ha informazione solo sul segnale di riferimento ed eventualmente sul disturbo
- si parla anche di schema di controllo ad azione diretta o in feedforward
- vedremo che soffre di scarsa robustezza alle incertezze

Interconnessione in serie - white del conhollore = in-put di processo. Es: V = Ri value conemie, \Rightarrow $S = \frac{V}{R}$. $V = vanishing all controller, es. a 1V per avere <math>\frac{1}{R}A$.

- il controllore ha informazione sia sul segnale di riferimento che sulla variabile controllata → + complesso §
- se eventualmente il disturbo è misurabile ma non manipolabile, la sua compensazione è in ogni caso un'azione in anello aperto in quanto esso non dipende dalla variabile di controllo (da cui dipende invece la variabile controllata) (Joé controllo la variabile controllata)
- si parla anche di schema di controllo in retroazione o in feedback ho un policles.
- vedremo che offre un buon grado di robustezza alle incertezze

Sistema di controllo in anello chiuso (2)

- analogo al precedente, ma le informazioni sulla variabile controllata sono ottenute in maniera indiretta attraverso la misura di una variabile alternativa
- ad es. nei reattori chimici le variabili controllate sono le concentrazioni (difficilmente misurabili) mentre si retroazionano le temperature (facilmente misurabili)
- è chiaro quindi che il controllo in retroazione è generalmente più costoso rispetto a quello in anello aperto
 - occorrono dispositivi in grado di effettuare la misura (trasduttori)

Sistema di controllo in anello chiuso (3)

- il calcolo della variabile di controllo è sempre effettuato sulla base di un confronto tra variabile controllata e segnale di riferimento (errore)
- il controllore è costituito dal complesso di controllore in retroazione e compensatore e dei nodi sommatori
- tale struttura di controllo è certamente molto "potente" ma va progettata con attenzione in quanto può facilmente portare a funzionamenti non "graditi" (instabilità)

Aspetti realizzativi

- i primi controllori sono stati realizzati tramite sistemi meccanici
 - il primo controllore in retroazione della storia è il regolatore di Watt (1788)

- misurando la velocità angolare di un motore attraverso l'albero rotante, un meccanismo manovra opportunamente la valvola a farfalla di un motore per regolarne la velocità ad un valore costante
- fin dagli inizi del XX secolo i dispositivi di regolazione sono stati realizzati tramite sistemi idraulici e pneumatici dotati di maggiore flessibilità rispetto ai meccanismi, ma di notevole peso e ingombro
- la flessibilità è via via aumentata ed il peso e le dimensioni diminuti con l'uso di regolatori realizzati tramite circuiti elettronici analogici
- oggi quasi tutti i controllori non sono altro che algoritmi eseguiti su microprocessori opportunamente programmati

- Controllo di stabilità (ESP)
 - Test dell'alce (moose test)
 - Obiettivo: evitare capottamento del veicolo in caso di sterzata improvvisa
 - Attuatori: coppia motore e coppia frenante alle singole ruote
 - Sensori: accelerometri e sensori di velocità alle singole ruote

- Guida in autostrada
 - Obiettivo: mantenere una data velocità di crociera e la distanza dal veicolo che precede
 - Attuatori: coppia motore e coppia frenante alle singole ruote
 - Sensori: sensori di velocità alle singole ruote, radar (o camera)

- Sistema di difesa missilistico
 - Target tracking
 - Obiettivo: colpire missili balistici
 - Attuatori: sistema di lancio e comando missile
 - Sensori: radar

Robotica

- Braccio manipolatore
 - Obiettivo: compito di pick&place
 - Attuatori: motori ai giunti e nel gripper
 - Sensori: encoder ai giunti, sensori tattili nel gripper

Two-fingered In-hand Object Handling Based on Force/Tactile Feedback

M. Costanzo, G. De Maria and C. Natale

"Additional experiments"

Strumentazione di processo

- la connessione di un processo al controllore può avvenire solo tramite l'uso di appropriati dispositivi
 - trasduttori in grado di fornire al controllore un segnale compatibile con la sua tecnologia realizzativa (di solito elettrico)
 - attuatori in grado di trasferire al processo la variabile manipolabile con un livello di potenza (di tipo compatibile con la natura del processo) sufficiente alla realizzazione dell'obiettivo di controllo
 - ad esempio in un robot la v.m. è una coppia e la v.c. è una tensione

Ruolo della modellistica matematica

- nelle applicazioni i processi da controllare possono essere di natura molto diversa
- la stessa tecnologia realizzativa dei controllori è molto varia
- come è possibile trattare i problemi di controllo nei vari ambiti applicativi e inoltre prescindendo il più possibile dalla tecnologia del sistema di controllo?
- la teoria del controllo è basata sull'uso estensivo dei modelli matematici che avete avuto modo di trattare ampiamente nel corso di modellistica e simulazione
 - riformulazione del problema di controllo in termini puramente matematici
 - descrizione matematica (modelli) degli elementi costitutivi del sistema di controllo

La conoscenza non può derivare dall'esperienza sola, ma occorre il paragone fra ciò che lo spirito umano ha concepito e ciò che ha osservato (A. Einstein)

Problema di sintesi

- la soluzione di un problema di controllo richiede
 - la riformulazione matematica del problema
 - la determinazione del modello matematico del controllore (progetto o sintesi)
 - la realizzazione del controllore
- il progetto è svolto nel "mondo della matematica" per cui può prescindere dalla natura fisica del problema
- le tre fasi non sono puramente sequenziali
 - ad es. in fase di sintesi occorre sempre porsi anche problemi di realizzabilità

Problema di analisi

- ♦ la valutazione delle prestazioni di un sistema di controllo è indispensabile al termine del progetto del regolatore per verificare che tutti i requisiti siano soddisfatti, sia quelli esplicitamente tenuti in conto che quelli trascurati
- metodi di analisi sono particolarmente utili anche in fase di progetto con tecniche di tipo trial and error
- una tecnica di analisi di grande importanza è la simulazione
 - simulazione digitale ed analogica
 - modello di dettaglio e modello per il progetto

- ♦ il supervisore è una sorta di controllore di secondo livello le cui funzioni sono
 - raccolta dati su variabili di controllo e controllata per fini
 - statistici (SCADA)
 - di riprogettazione del controllore (controllo adattativo)
 - diagnostica di guasti a: processo, controllore, strumentazione
 - gestione di situazioni di emergenza
 - alcune di tali funzioni richiedono l'intervento dell'operatore attraverso l'uso di una interfaccia uomo-macchina

Controllo, supervisione e automazione (2)

- in un impianto automatizzato sono presenti diversi sistemi di controllo di solito organizzati in celle
 - il comportamento desiderato della cella è una **sequenza di eventi** (non necessariamente temporizzati)
 - la corretta sequenza di operazioni di ciascuna cella è controllata da un controllore logico programmabile (PLC) -> Su un gia il programma del supervisore
 - il controllore deve anche essere in grado di gestire situazioni di emergenza, guasti e situazioni anomale (condizioni perturbate)
 - la metodologia che consente di trattare tali problemi è la teoria del controllo dei sistemi ad eventi discreti perche alle de problemi è la teoria del controllo dei
 - gli strumenti matematici usati sono automi a stati finiti e reti di Petri