Moon Formation

Group 4

Aramis Marden, Benjamin Stahl, Cesar Gonzalez Renteria Jarred Gillette, Luc D'Hauthuille, Monique Windju

Outline

- Background
- Simulation
- Results
- Future Work

Background

Giant Impact Hypothesis

- 4.5 Billion years ago
- Theia (proto-planet) collides with Earth, ejecting debris
- Ejected debris collects under gravity to form Moon

Program Flow

Initial Conditions

Remove Overlaps with Earth Check and Handle Collisions Show System State

Advance Orbit

When Simulation Complete

Save Simulation Information

Initial Conditions

Assumed Parameters

- Global Parameters:
 - Number of Rocks
 - Density
 - Planet Mass
- Gaussian Random Parameters:
 - Mass
 - Semi-Major Axes
- Uniform Random Parameters:
 - Eccentricities
 - Ejection Angle

Initial Conditions

Derived Parameters

- Earth:
 - Position Fixed at Origin
 - Velocity Fixed to Zero
- Rocks:
 - 80% w/ bulk velocity (-x,+y)
 - 10% w/ bulk velocity (+x,+y)
 - 10% w/ bulk velocity (+x,-y)

$$r_0 = \frac{1-e}{1+q}a$$

$$v_0 = \frac{1}{1+q}\sqrt{\frac{1+e}{1-e}}\sqrt{\frac{Gm_{total}}{a}}$$

$$x = r_0 \cos(\theta)$$
 $y = r_0 \sin(\theta)$
 $v_x = \pm v_0 \sin(\theta)$ $v_y = \pm v_0 \cos(\theta)$

Collision Detection & Handling

- Take in rock_list
- Using KDTree, search for nearest pairs
- Determine which of the nearest pairs collide
- Check for multi-body collisions
- Calculate post-collision position/velocity using momentum

conservation

- Remove old rocks
- Return new rock_list

```
near pairs: [(0, 153), (44, 90), (74, 159)]
We got a collision!
masses of 5.87671999994e+20 and 3.52603199998e+21
positions of ( -13751686.31 357945556.794 ) ( -14326904.9401 357072885.72 )
We had collisions:
[[0, 153]]

Diplomasafetyf
```

Collision Detection & Handling

Inelastic Collision Momentum Conservation

$$\vec{p_i} = m_1 \vec{v_1} + m_2 \vec{v_2}$$

$$\vec{p}_f = (m_1 + m_2)\vec{v}_f$$

Advance Orbit

 'Soften' Gravity Around Earth Surface

$$\frac{d\vec{v}}{dt} = -\frac{GM_{planet}}{r_{rock}^2 + r_{soft}^2} \hat{r}_{rock}$$

 Change ODEint tolerances to speed up integration

Simulation

Results

Initial number of rocks: 750

Initial mean distance: 1.932e+8 m

Initial total mass: 2.20e+23 kg

Simulation time step: 56.31 s

Plotting interval: 100.0

Simulation run time: 4.0e+7 s

Moon mass: 7.28e+22 kg

Remaining mass in rocks: 1.81e+23 kg

Remaining number of rocks: 15

Earth-Moon Distance: 6.0e+7 m

Future Work

- Include Self-Gravity
- Upgrade to 3 Dimensions
- Earth Orbiting Center of Mass