



**Subject: Machine Learning Lab** 

# CREDIT RISK PREDICTION PROJECT REPORT

Student Name: Kritika Sejwal Date of Performance: 03-03-2025

UID: 24MCI10023

Section/Group: 24MAM-4/A Subject Code: 24CAP-672

Branch: UIC Semester: 2<sup>nd</sup>

# O Aim:

To build a machine learning model that predicts the likelihood of a client defaulting on a loan using credit application data.

# O Task to be done:

- 1. Load and inspect the dataset for completeness and structure.
- 2. Clean the data to make it suitable for modeling (e.g., handle missing values, feature engineering).
- 3. Perform Exploratory Data Analysis (EDA) to uncover trends and patterns.
- 4. Build and train a classification model (Random Forest Classifier) to predict loan default.
- 5. Evaluate the model using standard classification metrics.
- 6. Visualize feature importance to understand key predictors.

#### O Algorithm:

## **Random Forest Classifier**

- Ensemble method using multiple decision trees.
- Trains on different random subsets of the data and aggregates results.
- Robust to overfitting and handles both categorical and numerical data.

# **Steps Implemented:**

- 1. Data Preprocessing:
  - o Derived features: AGE, YEARS\_EMPLOYED, DEBT\_TO\_INCOME.





- Encoded categorical variables using one-hot encoding.
- Handled missing values and outliers.

## 2. Exploratory Data Analysis:

- Analyzed default distribution.
- Investigated relationships between loan default and features like age, debt-toincome ratio, and education level.

## 3. Model Training & Evaluation:

- o Data split: 70% training, 30% testing.
- Classifier: RandomForestClassifier(n\_estimators=50, random\_state=42)
- o Evaluation: Precision, Recall, F1-score, Accuracy, Confusion Matrix.

## O Data Set:

**File Name:** application\_data.csv

**Rows:** 307,511

**Key Columns Used:** 

- TARGET: Loan default flag (0 = No Default, 1 = Default)
- AGE, YEARS\_EMPLOYED, DEBT\_TO\_INCOME
- AMT\_INCOME\_TOTAL, AMT\_CREDIT
- CODE\_GENDER, NAME\_EDUCATION\_TYPE
- EXT\_SOURCE\_2 (external risk score)

## • Code for the experiment:

```
# Import essential libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix

# Set visualization style
sns.set(style="whitegrid")
plt.rcParams['figure.figsize'] = (10, 5)

# 1. Data Loading & Initial Inspection
def load_and_inspect():
# Load data (use a smaller sample for demo)
```





```
data = pd.read_csv('application_data.csv')
  # Basic inspection
  print(f"Data shape: {data.shape}")
  print("\nTarget distribution:")
  print(data['TARGET'].value_counts(normalize=True))
  return data
# 2. Data Cleaning
def clean_data(df):
  # Simple cleaning steps
  df_clean = df.copy()
  # Convert days to years
  df_clean['AGE'] = abs(df_clean['DAYS_BIRTH']) / 365
  df clean['YEARS EMPLOYED'] = abs(df clean['DAYS EMPLOYED']) / 365
  # Handle extreme employment years
  df_clean.loc[df_clean['YEARS_EMPLOYED'] > 50, 'YEARS_EMPLOYED'] = np.nan
  df_clean['YEARS_EMPLOYED'].fillna(df_clean['YEARS_EMPLOYED'].median(),
inplace=True)
  # Create simple features
  df_clean['DEBT_TO_INCOME'] = df_clean['AMT_CREDIT'] /
df_clean['AMT_INCOME_TOTAL']
  # Select only key columns for simplicity
  keep_cols = ['TARGET', 'AGE', 'YEARS_EMPLOYED', 'DEBT_TO_INCOME',
         'AMT_INCOME_TOTAL', 'AMT_CREDIT', 'CODE_GENDER',
         'NAME_EDUCATION_TYPE', 'EXT_SOURCE_2']
  return df_clean[keep_cols].dropna()
# 3. Exploratory Data Analysis
def perform_eda(df):
  # Target distribution
  plt.figure()
  sns.countplot(x='TARGET', data=df)
```





```
plt.title('Loan Default Distribution')
  plt.show()
  # Age vs Default
  plt.figure()
  sns.boxplot(x='TARGET', y='AGE', data=df)
  plt.title('Age Distribution by Loan Status')
  plt.show()
  # Debt-to-Income vs Default
  plt.figure()
  sns.boxplot(x='TARGET', y='DEBT_TO_INCOME', data=df)
  plt.title('Debt-to-Income Ratio by Loan Status')
  plt.show()
  # Education vs Default
  if 'NAME_EDUCATION_TYPE' in df.columns:
    plt.figure(figsize=(10, 5))
    edu_rates = df.groupby('NAME_EDUCATION_TYPE')['TARGET'].mean().sort_values()
    sns.barplot(x=edu_rates.values, y=edu_rates.index)
    plt.title('Default Rate by Education Level')
    plt.show()
#4. Modeling
def build_model(df):
  # Encode categorical variables
  df_model = pd.get_dummies(df, drop_first=True)
  # Split data
  X = df_{model.drop}(TARGET', axis=1)
  y = df_model['TARGET']
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
  # Simple model
  model = RandomForestClassifier(n_estimators=50, random_state=42)
  model.fit(X_train, y_train)
  # Evaluate
  y_pred = model.predict(X_test)
```





```
print("\nClassification Report:")
  print(classification_report(y_test, y_pred))
  # Feature importance
  plt.figure()
  feat_importances = pd.Series(model.feature_importances_, index=X.columns)
  feat_importances.nlargest(5).plot(kind='barh')
  plt.title('Top 5 Important Features')
  plt.show()
# Main execution
def main():
  print("=== Simplified Credit Risk Analysis ===")
  #1. Load data
  print("\nLoading data...")
  data = load_and_inspect()
  # 2. Clean data
  print("\nCleaning data...")
  clean_df = clean_data(data)
  # 3. EDA
  print("\nPerforming EDA...")
  perform_eda(clean_df)
  #4. Modeling
  print("\nBuilding model...")
  build_model(clean_df)
  print("\nAnalysis complete!")
if __name__ == "__main__":
  main()
```





# Output:

```
Loading data...
Data shape: (307511, 9)

Target distribution:
TARGET
0 0.919271
1 0.080729
Name: proportion, dtype: float64

Cleaning data...

Performing EDA...
```

# **Interpretation:**

- The dataset contains **307,511 records** and **9 features** (after feature selection).
- The **TARGET** variable represents whether a client defaulted (1) or not (0) on a loan.
- Only ~8% of the customers defaulted, while ~92% did not.

  This is a classic example of class imbalance, which can affect model performance especially recall on the minority class (defaults).



This bar plot shows the frequency of each class in the target variable.

# **Interpretation:**

• A huge imbalance is visually evident.





- The model might **lean heavily towards predicting '0'** (no default) because it dominates the dataset.
- Special care or techniques (e.g., SMOTE, stratified sampling) might be needed in future iterations to balance this bias.



# **Interpretation:**

- This plot compares the age distribution of clients who did and did not default.
- Boxplots summarize median, quartiles, and potential outliers.

# **Key Insights:**

- Defaulters (TARGET=1) tend to be **younger** on average compared to non-defaulters.
- Older clients are **less likely to default**, which could relate to financial stability or established credit history.







# **Interpretation:**

This shows how debt-to-income ratio (credit/income) varies between defaulters and non-defaulters.

# **Key Insights:**

- Defaulters tend to have a **slightly higher median debt-to-income ratio**, indicating **more financial strain**.
- However, there's **significant overlap**, meaning this feature alone may not separate classes well.



# **Interpretation:**

• Calculates and plots the **mean default rate for each education level**.





# **Key Insights:**

- Lower education levels (e.g., Secondary or Incomplete) generally have higher default rates
- Higher education (like academic degrees) correlates with **lower default probability**, likely due to better income potential and financial literacy.

| Building mode | ·1                      |        |          |         |
|---------------|-------------------------|--------|----------|---------|
| Classificatio | on Report:<br>precision | recall | f1-score | support |
| 0             | 0.92                    | 1.00   | 0.96     | 84528   |
| 1             | 0.34                    | 0.01   | 0.02     | 7528    |
| accuracy      |                         |        | 0.92     | 92056   |
| macro avg     | 0.63                    | 0.50   | 0.49     | 92056   |
| weighted avg  | 0.87                    | 0.92   | 0.88     | 92056   |

# **Metrics Explained:**

| Metric    | Class 0 (No Default) | Class 1 (Default) |
|-----------|----------------------|-------------------|
| Precision | 92%                  | 34%               |
| Recall    | 100%                 | 1% (!)            |
| F1-Score  | 96%                  | 2%                |

# **Key Insights:**

- The model is **very good at identifying non-defaulters** (class 0), achieving **high accuracy** and recall.
- But it **completely fails to detect defaulters** (class 1) recall is **just 1%**.
- This is due to class imbalance; the model sees so few defaulters in training that it essentially **ignores them** to maximize accuracy.
- Accuracy (92%) is misleading here; the model isn't useful if we care about identifying risk!







## **Interpretation:**

• Visualizes the **top 5 most important features** used by the Random Forest model.

## **Key Insights:**

- Features like EXT\_SOURCE\_2, AGE, AMT\_INCOME\_TOTAL, YEARS\_EMPLOYED, and DEBT\_TO\_INCOME likely contribute most to the decision-making.
- EXT\_SOURCE\_2 is a known external risk score and is a **very powerful predictor** in many credit datasets.
- AGE and EMPLOYMENT DURATION support earlier EDA findings about stability and default risk.

## **O** Learning Outcomes:

- Gained hands-on experience with real-world imbalanced datasets.
- Learned effective feature engineering techniques from temporal features.
- Understood how class imbalance affects model performance (e.g., low recall for minority class).
- Improved data visualization and interpretation using Seaborn and Matplotlib.
- Applied a machine learning pipeline from raw data to model evaluation.
- Identified the most important features influencing loan default using model explainability tools.

# o <u>GITHUB LINK:</u> https://github.com/0002sejwal/ML