One- and Two-Dimensional Poisson's Equation

Pierce Hunter, Nick Kuckuck, Haoran Wang

CIS 410/510 Final Presentation 8th June 2020

Outline

1. Theory

- Poisson in 1D
- Poisson in 2D
- Equations
- Discretizations
- Matrix formulations

2. Code samples

- A matrices and array set-up
- The four tests we run
- How we check for convergence

3. Results

- One dimensional with convergence test
- ► Two dimensional with error analysis

One-dimensional model

We first solved Poisson's equation in 1D

$$\frac{\partial^2 u}{\partial z^2} = -1; \quad 0 \le z \le 1$$

with boundary conditions

$$\frac{\partial u}{\partial z}(1)=0; \quad u(0)=0$$

in the four following ways (all using built-in functions):

- Direct solve on the CPU
- CG on the CPU
- Direct solve on the GPU
- CG on the GPU

1D Discretization

Use centered difference for z

$$\frac{u_{j-1} - 2u_j + u_{j+1}}{\Delta z^2} = -1$$
 for $1 \le j \le N$

Apply boundary conditions giving the system of equations

$$\begin{cases} \frac{-2u_2 + u_3}{\Delta z^2} = -1\\ \frac{u_{j-1} - 2u_j + u_{j+1}}{\Delta z^2} = -1; \quad 3 \le j \le N - 1\\ \frac{u_{N-1} - u_N}{\Delta z^2} = -1 \end{cases}$$

Matrix formulation

We can represent this system of equations as a matrix (A) of the form

$$A = \frac{1}{\Delta z^2} \begin{bmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & -2 & 1 \\ 0 & \cdots & 0 & 1 & -1 \end{bmatrix}$$

with the *u*-column vector and *b*-solution vector as

$$u = \begin{bmatrix} u_2 \\ \vdots \\ u_N \end{bmatrix} \qquad b = \begin{bmatrix} -1 \\ \vdots \\ -1 \end{bmatrix}$$

such that Au = b

Two-dimensional approach

In 2D Poisson's equation is

$$\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = -1; \quad \begin{cases} 0 \le y \le 1\\ 0 \le z \le 1 \end{cases}$$

and we now apply boundary conditions on edges as

$$\frac{\partial u}{\partial y} = 0 \text{ at } y = 1$$

$$\frac{\partial u}{\partial z} = 0 \text{ at } z = 1$$

$$u = 0 \text{ at } y = 0$$

$$u = 0 \text{ at } z = 0$$

2D Discretization

Using centered-difference for y and z

$$\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{\Delta y^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{\Delta z^2} = -1$$

which simplifies when $\Delta y = \Delta z$ to

$$u_{i-1,j} + u_{i,j-1} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1} = -\Delta y^2$$

 $2 \le i \le N; \qquad 2 \le j \le N$

2D Matrix formulation

Define a global index k as

$$k = (i-2)(N-1) + (j-1)$$

Then create

- $ightharpoonup (N-1)^2 imes (N-1)^2$ matrix A
- $ightharpoonup (N-1)^2 imes 1$ array b

Solve for

 $ightharpoonup (N-1)^2 \times 1$ solution vector u

2D Matrix A

The matrix A contains

- ▶ -4 along the main diagonal, except
 - ▶ -3 for row $\alpha(N-1)$, $1 \le \alpha \le N-2$
 - ► -3 for row $(N-2)(N-1) + \beta$, $1 \le \beta \le N-2$
 - ▶ -2 for row $(N-1)^2$
- 1 along four subdiagonals
 - ▶ j-1 except $(\alpha(N-1)+1, \alpha(N-1)), 1 \le \alpha \le N-2$
 - ▶ j + 1 except $(\alpha(N-1), \alpha(N-1) + 1)$, $1 \le \alpha \le N 2$
 - ightharpoonup i-1 (i.e. starting at (N,1))
 - ightharpoonup i+1 (i.e. starting at (1,N))

Code Samples

1D Solution Vector

Our model solves for velocity u(z)

- Velocity decreases with depth
- The boundary conditions are satisfied
 - u(0) = 0
 - u'(1) = 0

1D Convergence Test

Δz	$\varepsilon_{\Delta z} = \sqrt{z} \ u - e\ $	$\Delta \varepsilon = \frac{\varepsilon_{2\Delta z}}{\varepsilon_{\Delta z}}$	$r = \log_2{(\Delta \varepsilon)}$
0.1	3.102×10^{-2}	N/A	N/A
0.05	$1.497 imes 10^{-2}$	2.072	1.051
0.025	7.352×10^{-3}	2.036	1.026
0.0125	3.642×10^{-3}	2.019	1.014

1D Time Analysis

Using
$$\Delta z = 5 \times 10^{-5}$$

Device	Method	Time [s]	Error $\sqrt{z} u-e $
CPU	Direct	0.0426	1.44×10^{-5}
	CG	15.1	$1.44 imes10^{-5}$
GPU	Direct	1.13	1.44×10^{-5}
	CG	3.19	$1.44 imes 10^{-5}$

Direct CPU solve is by far the fastest method at this problem size

2D Results

No analytical solution, so we test for convergence

- 1. Visually
- 2. Via $Au b \approx 0$

2D Visual Comparison

Low resolution ($\Delta z = 0.1$)

2D Visual Comparison

Mid resolution ($\Delta z = 0.025$)

2D Visual Comparison

High resolution ($\Delta z = 0.01$)

2D Error Analysis

Solve for u, and check $Au - b \approx 0$

Δz	Au – b		
0.1	8.02×10^{-16}		
0.05	1.8×10^{-15}		
0.025	4.6×10^{-15}		
0.0125	1.02×10^{-14}		

The error seems to be something on the order of $(N-1)^2\varepsilon$ with N as $1/\Delta z$ and ε machine precision.

2D Time Analysis

Device	Method	Time [s]	Error $Au - b$
CPU	Direct	0.027	1.31×10^{-14}
	CG	0.025	1.49×10^{-10}
GPU	CG	0.2	1.49×10^{-10}

- ► CG is less precise
- ► The CPU methods are faster
- ► Likely due to problem size limitations
- ▶ GPU should surpass CPU eventually, but limited by GPU memory on Talapas