MANDY RAFFERTY

MECHANICAL ENGINEERING AT CARNEGIE MELLON UNIVERSITY

(412) 342-8962

mraffert@andrew.cmu.edu

in linkedin.com/in/mandyrafferty

Granular Jamming Wrist Brace

What?

- Design and fabricate a wrist brace that uses granular jamming to improve traditional casts
- Perform initial research to analyze customer needs

How?

- Prototyped a four-layer cast to maximize user comfort
- Conducted three-point bend tests on jamming layer to evaluate cast properties

Results

- The **Young's modulus** of the design increased by approximately 47 times when in the rigid state compared to the soft state
- Rigid state demonstrated improved impact resistance

Semi-Autonomous Salt Spraying Robot

What?

 Develop a mechatronic system that addresses labor-intensive application of de-icing materials in harsh winter weather

How?

- Translated customer needs into product specifications to ensure final product meets expectations
- Created a decision matrix to finalize the most optimal design concepts to implement

Results

- Developed a semi-autonomous de-icing robot with remotecontrolled operation through a Bluetooth-connected interface
- Final product featured: obstacle detection, stair coverage, ground coverage, ability to traverse slopes, and emergency stop

MANDY RAFFERTY

MECHANICAL ENGINEERING AT CARNEGIE MELLON UNIVERSITY

(412) 342-8962

mraffert@andrew.cmu.edu

in linkedin.com/in/mandyrafferty

mandyrafferty.github.io

2D Robot Trajectory Visualizer

What?

 Work collaboratively in a team with four other people to create individual C++ source files to generate a graphic user interface that could plot the movements of a single point robot

How?

- I created the Map Visualizer, which inputs the 2D map data vector and dynamically sizes the grid that the map needs to be visualized on
- Team members integrated their components together

Results

 Created a program that reads a simple point robot trajectory and visualizes a cost map

Optimal Design of a Bike Wrench

What?

 Optimize the design of a bike wrench to minimize mass while ensuring that maximum stress remains below 160 MPa and total deformation is under 1 mm

How?

- Using Ansys, parameterized the fillet radius and thickness, then analyzed their effects on stress, deformation, and mass
- Performed response surface optimization and design of experiments to determine the optimal parameters

Results

 Successfully minimized weight and met design objectives

MANDY RAFFERTY

MECHANICAL ENGINEERING AT CARNEGIE MELLON UNIVERSITY

(412) 342-8962

mraffert@andrew.cmu.edu

in linkedin.com/in/mandyrafferty

mandyrafferty.github.io

Jewelry Box

What?

 To fabricate a product of your choice that makes you or someone else happy

How?

- Created a cardboard prototype to test design concepts
- Developed a CAD assembly in SolidWorks to ensure pieces fit together and to create files for laser cutting

Results

 Designed a jewelry box with a multiple compartments for organization with dimensions small enough to be portable

Multi-Purpose Packaging

What?

 To design and fabricate a dualpurpose container that can transform from a takeout box (or similar container) into a secondary useful object without requiring additional tools or adhesives

How?

- Conceptualized multiple design ideas through sketching and prototyping
- Created rough prototypes from paper and cardboard

Results

- Designed a gift box than transformed into a picture frame
- Tool-free assembly utilizing a tab and slot mechanism
- Eco-friendly construction using only paper materials without adhesives