CSEN 1003: Compilers

Tutorial 7 - Simple LR Parsing

Today's Plan

- 1 LR Parsing
- 2 SLR Parsing
- 3 Recap

LR Parsing

• LR(k) Parsers are deterministic shift-reduce bottom up parsers.

LR Parsing

- LR(k) Parsers are deterministic shift-reduce bottom up parsers.
 - Left to right input scanning.
 - Reverse of a Right-most derivation.
 - k symbols of lookahed.

LR Parsing

- LR(k) Parsers are deterministic shift-reduce bottom up parsers.
 - Left to right input scanning.
 - Reverse of a Right-most derivation.
 - k symbols of lookahed.
- LR grammars are grammars for which deterministic LR parsers can be constructed.

Conflicts in Shift-Reduce Parsers

Example

Consider the following grammar:

and the string: id + num * id.

	Stack	Input	Action
1	\$	id - num * id \$	Shift
2	\$id	- num * id \$	Reduce $F \rightarrow id$
13	\$ <i>E-T</i>	\$	Reduce $E \rightarrow E - T$

LR(0) Items and LR(0) DFA

- An LR(0) item is a production rule with a dot somewhere on the RHS.
 - $A \rightarrow \alpha.\beta$ indicates the state of the parser attempting to parse the input using the rule $A \rightarrow \alpha\beta$ where α is already parsed, and the parser is expecting to parse β next (example: $E \rightarrow E.+T$).
 - Whenever, $A \to \alpha \beta$., it might be suitable to reduce $\alpha \beta$ to A (example: $E \to E + T$.).

LR(0) Items and LR(0) DFA

- An LR(0) item is a production rule with a dot somewhere on the RHS.
 - $A \to \alpha.\beta$ indicates the state of the parser attempting to parse the input using the rule $A \to \alpha\beta$ where α is already parsed, and the parser is expecting to parse β next (example: $E \to E.+T$).
 - Whenever, $A \to \alpha \beta$., it might be suitable to reduce $\alpha \beta$ to A (example: $E \to E + T$.).
- The LR(0) DFA keeps track of the state of the parser regarding what we saw so far and what we need to do next.

Today's Plan

- 1 LR Parsing
- 2 SLR Parsing
- 3 Recap

Step 1: LR(0) DFA Construction

$$E \rightarrow (a) E + T \mid (b)T$$

$$T \rightarrow (c) \text{ num } \mid (d) \text{ id}$$

• To build a deterministic table, we construct a parsing table.

- To build a deterministic table, we construct a parsing table.
- The rows are the LR(0) DFA states, the columns are all the terminals and \$ and the variables.

- To build a deterministic table, we construct a parsing table.
- The rows are the LR(0) DFA states, the columns are all the terminals and \$ and the variables.
- The terminals and \$ are called the ACTION table.
- The variables are called the GOTO table.

- To build a deterministic table, we construct a parsing table.
- The rows are the LR(0) DFA states, the columns are all the terminals and \$ and the variables.
- The terminals and \$ are called the ACTION table.
- The variables are called the GOTO table.
- To fill the table:

- To build a deterministic table, we construct a parsing table.
- The rows are the LR(0) DFA states, the columns are all the terminals and \$ and the variables.
- The terminals and \$ are called the ACTION table.
- The variables are called the GOTO table.
- To fill the table:

 - **2** If $A \to \alpha . a\beta \in q$, $ACTION(q, a) = shift \delta(q, a)$.

- To build a deterministic table, we construct a parsing table.
- The rows are the LR(0) DFA states, the columns are all the terminals and \$ and the variables.
- The terminals and \$ are called the ACTION table.
- The variables are called the GOTO table.
- To fill the table:

 - **2** If $A \to \alpha . a\beta \in q$, $ACTION(q, a) = shift \delta(q, a)$.
 - 3 If $A \neq S'$ and $A \rightarrow \alpha \in q$, $ACTION(q, a) = reduce <math>A \rightarrow \alpha$ where $a \in Follow(A)$.

- To build a deterministic table, we construct a parsing table.
- The rows are the LR(0) DFA states, the columns are all the terminals and \$ and the variables.
- The terminals and \$ are called the ACTION table.
- The variables are called the GOTO table.
- To fill the table:
 - **1** $\forall A \in V$, $GOTO(q, A) = \delta(q, A)$.
 - **2** If $A \to \alpha.a\beta \in q$, $ACTION(q, a) = shift \delta(q, a)$.
 - 3 If $A \neq S'$ and $A \rightarrow \alpha \in q$, $ACTION(q, a) = reduce <math>A \rightarrow \alpha$ where $a \in Follow(A)$.
 - **4** If $S' \to S \in q$, ACTION(q, \$) = accept.
- If conflicts arise while filling the table, then the grammar is not SLR.

LR(0) Automaton

$$E \rightarrow (a) E + T \mid (b) T$$

$$T \rightarrow (c) \text{ num } \mid (d) \text{ id}$$

SLR Parsing Table Example

$$E \rightarrow (a) E + T \mid (b)T$$

$$T \rightarrow (c) \text{ num } \mid (d) \text{ id}$$

$$Follow(E) = \{\$,+\} \qquad Follow(T) = \{\$,+\}$$

	Action				GO	ТО
State	+	id	num	\$	Ε	T
0		s3	s4		1	2
1	s5			acc		
2	rb			rb		
3	rc			rc		
4	rd			rd		
5		s3	s4			6
6	ra			ra		

Step 3: The LR Parsing Algorithm

- 1 Push the start state of the LR(0) automaton to the stack.
- 2 Loop (S is the top the stack, a is the next input symbol):
 - **a** If ACTION[S, a] = shift i, push i to the stack.
 - **(b)** If $ACTION[S, a] = reduce A \rightarrow \alpha$, pop $|\alpha| = r$ states off the stack and push $GOTO(q_{n-r}, A)$.

	Stack	Symbols	Input	Action
1	0		id + num \$	

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$
3	02	Т	+ num \$	

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$
3	02	Т	+ num \$	Reduce $E \rightarrow T$
4	01	E	+ num \$	

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$
3	02	Т	+ num \$	Reduce $E \rightarrow T$
4	01	E	+ num \$	Shift 5

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$
3	02	T	+ num \$	Reduce $E \rightarrow T$
4	01	E	+ num \$	Shift 5
5	015	E+	num\$	

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$
3	02	T	+ num \$	Reduce $E \rightarrow T$
4	01	E	+ num \$	Shift 5
5	015	E+	num\$	Shift 4
6	0154	E+num	\$	

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$
3	02	T	+ num \$	Reduce $E \rightarrow T$
4	01	E	+ num \$	Shift 5
5	015	E+	num\$	Shift 4
6	0154	E+num	\$	Reduce $T \rightarrow num$

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$
3	02	T	+ num \$	Reduce $E \rightarrow T$
4	01	E	+ num \$	Shift 5
5	015	E+	num\$	Shift 4
6	0154	E+num	\$	Reduce $T \rightarrow num$
7	0156	E+T	\$	

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$
3	02	Т	+ num \$	Reduce $E \rightarrow T$
4	01	E	+ num \$	Shift 5
5	015	E+	num\$	Shift 4
6	0154	E+num	\$	Reduce $T \rightarrow num$
7	0156	E+T	\$	Reduce $E \rightarrow E + T$
8	01	Е	\$	

	Stack	Symbols	Input	Action
1	0		id + num \$	Shift 3
2	03	id	+ num \$	Reduce $T \rightarrow id$
3	02	Т	+ num \$	Reduce $E \rightarrow T$
4	01	E	+ num \$	Shift 5
5	015	E+	num\$	Shift 4
6	0154	E+num	\$	Reduce $T \rightarrow num$
7	0156	E+T	\$	Reduce $E \rightarrow E + T$
8	01	E	\$	accept

Conflicts Example - Exercise 7-3

$$egin{array}{lll} \mathcal{S} &
ightarrow & X\mathtt{a} \ X &
ightarrow & \mathtt{a} \mid \mathtt{a} X\mathtt{b} \end{array}$$

Today's Plan

- 1 LR Parsing
- 2 SLR Parsing
- Recap

Covered Topics

- LR Parsing.
- 2 The LR(0) Automaton and SLR Parsing.

Next Session: LR(1) and LALR Parsing!