

Communication Systems Modelling

Introduction and overview Prof Yiannis Andreopoulos

- **■**Signals, Fourier transform and convolution
- ■Sampling theory and the FFT and Z transforms,
- ■Signal design and analysis

Signal Types

- Random Deterministic
- Discrete Time Continuous Time
- Discrete Amplitude Continuous Amplitude
- Lowpass Bandpass
- Periodic or non Periodic

Random

Deterministic

 $v(t) = \cos(2\pi 50t) + 2\cos(2\pi 75t - \frac{\pi}{2})$

LUCL

Discrete - Continuous

Continuous Time and Amplitude

■ Discrete Time, continuous Amplitude – PAM signal

■ Discrete Time, and Amplitude — Multi-level digital

<u> LUCL</u>

Sound

Sound

Signals

in the time and frequency domains

- Sinusoid
- Complex exponential
- 'Negative' frequency
- Rect pulse
- Dirac delta function
- Sinc function
- Raised cosine family
- Gaussian pulse
- Sums of sinusoidal waves

Sinusoidal wave

$$x(t) = A\sin(2\pi Ft + \phi)$$

- Amplitude *A*
- Frequency *F*
- Period *T*
- Phase ϕ

Periodic Signal, if and only if

$$x(t+T) = x(t), -\infty < t < +\infty$$

■ Radian Frequency:

$$\omega = 2\pi F$$

■ Fundamental Period:

$$T = 1/F = 2\pi/\omega$$

Mathematical Baseline

Period
$$T = \frac{1}{F} = \frac{2\pi}{w}$$
 $\Rightarrow w = 2\pi F$
 $\times (t) = A\cos(2\pi F t + \varphi) = A\cos(wt + \varphi) = A\cos(\frac{2\pi}{T} t + \varphi)$

Also, from trigonometry: $\sin(wt) = \cos(wt - \frac{\pi}{2})$

And, Euler's formula: $e^{\pm J\theta} = \cos\theta \pm J\sin\theta$
 $e^{J2\pi F t} + e^{J2\pi F t} = \cos(2\pi F t) + J\sin(2\pi F t) + \cos(2\pi F t) - J\sin(2\pi F t) = \cos(2\pi F t)$
 $e^{J2\pi F t} - e^{-J2\pi F t} = \sin(2\pi F t)$

Please note: when you see handwriting on the slides, it means you should take notes and ensure you understand the concent/math

ensure you understand the concept/math

Phasor Representation

$$e^{\pm j(\omega t + \phi)} = \cos(\omega t + \phi) \pm j\sin(\omega t + \phi)$$

- We use Euler's theorem to give the phasor representation of the sinusoid
- We can write any sinusoid as the real part of a complex exponential:

$$A\cos(\omega t + \phi) = A\operatorname{Re}\left[e^{j(\omega t + \phi)}\right]$$
$$= \operatorname{Re}\left[Ae^{j\phi}e^{j\omega t}\right]_{13}$$

Complex exponential form

$$V_{0}\cos(2\pi Ft) = \frac{V_{0}e^{j2\pi Ft} + V_{0}e^{-j2\pi Ft}}{2}$$

$$V_{0}\sin(2\pi Ft) = \frac{V_{0}e^{j2\pi Ft} - V_{0}e^{-j2\pi Ft}}{2j}$$

A cosine wave (or sine wave) corresponds to two contra-rotating phasors and may be considered as the sum of two complex exponential functions, one represents a *positive* frequency term at +F, and the other a *negative* frequency term at -F

Complex Exponential Form

Complex Exponential Form

Re

 $-\omega_0 t$ - θ_0

NOTE:

Frequency Negative Initial Phase Negative

V₀/2

Complex Exponential Form

Im

Re

NOTE:

Frequency Negative Initial Phase Negative

Spectrum of a cosine wave

- The bilateral frequency domain representation contains positive and negative frequency terms
- In general these are complex, with real and imaginary parts, or equivalently with amplitude and phase components
- For *real* time signals positive and negative frequency components exist in matching, *complex conjugate* pairs of terms

Signals

Steps: 1. turn sine to cosine

2. use Euler's equation3. simplify the equation

 Sketch the double sided spectrum of the following signal:

$$x(t) = 2\sin\left(10\pi t - \frac{1}{6}\pi\right) + \cos(20\pi t)$$

Signals - Answer

$$x(t) = 2\cos(10\pi t - 2\pi/3) + \cos(20\pi t)$$

$$x(t) = \text{Re}\left[2e^{j(10\pi t - 2\pi/3)} + e^{j(20\pi)}\right]$$

$$x(t) = e^{j(10\pi t - 2\pi/3)} + e^{-j(10\pi t - 2\pi/3)} + \frac{1}{2}e^{j(20\pi t)} + \frac{1}{2}e^{-j(20\pi t)}$$

LUCL

Rect function

■ The rect function is an important building block for the analytic description of digital signals in the time domain

Rect function - scaled

$$A.rect\left(\frac{t}{T}\right) = A, \mid t \mid \leq \frac{T}{2}, \quad 0 \quad elsewhere$$

■ The rect function has been scaled in amplitude, to A, and in time duration or width, to T.

Translation and scaling

the Rect function shifted and time scaled

$$rect\left(\frac{t-\tau}{T}\right) = 1, \quad \tau - \frac{T}{2} \le t \le \tau + \frac{T}{2}$$

The time scaled and shifted rect function has width T and is centred on $t=\tau$.

Frequency domain rect function

- an ideal low-pass spectrum

■ This is an ideal low-pass function of bandwidth W, strictly bandlimited to | f |<W</p>

Unit Step Function

- *U(t)* is the unit step function
- This term denotes a function as follows

$$U(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

Dirac delta function

as limit of a sequence of rect functions

■ With the $1/\tau$ amplitude factor and width τ each rect function τ approaches θ the amplitude increases, with the area remaining constant; the limit function is the Dirac delta function of unit weight

Time-shifted and amplitude scaled delta function

- Note that the $-\tau$ in the function argument induces a shift to the right, in the *positive* direction
- The amplitude factor *A* means that rather than unit area the delta function has area *A*

Frequency domain delta functions

- spectrum of a cosine wave

$$x(t) = \cos(2\pi Ft)$$
$$X(f) = \frac{1}{2}\delta(f - F) + \frac{1}{2}\delta(f + F)$$

■ The spectrum of a cosine wave, seen previously, may be represented analytically as the sum of two frequency domain delta functions

Sinc function

- The sinc function has zeros at non-negative integer values of the argument
- It decays asymptotically at the rate 1/|t|

Scaled sinc function

■ The sinc function scaled on the time axis such that the zeros occur at multiples of |T|

Raised cosine functions

- Introducing a cosinusoidal transition to the 'steps' of a rect function gives a 'raised cosine' function
- The 100% raised cosine function has finite support (i.e. is non-zero over twice the interval of the original rect function) and corresponds to a period of a cosine function 'raised up' so that it is non-negative
- Other members of the raised cosine family are intermediate between the rect function and the 100% raised cosine function

Raised cosine functions: Mathematical definition

$$x(t) = \operatorname{sinc}\left(\frac{t}{T}\right) \frac{\cos\left(\frac{\pi\beta t}{T}\right)}{1 - \frac{4\beta^2 t^2}{T^2}}$$

 β : "roll-off" factor

 $\beta \to 0 \Rightarrow$ approaches a rect() function $\beta \to 1 \Rightarrow 100\%$ raised cosine

x(t) = sinc(t/T) which is rect function in frequency

UCL

Raised cosine lunction:

$$X(l) = rect\left(\frac{l}{2/T}\right) \frac{1}{2}\left[1 + cos\left(\pi l T\right)\right]$$
 in frequency where: $rect\left(\frac{l}{2/T}\right) = 1$ if $|l| \le \frac{2/T}{2} = \frac{1}{T}$, ϕ elsewhere

Gaussian pulse

- The Gaussian function is commonly encountered when dealing with random processes but is used also as a signal model, both in the time domain - for pulses - and in the frequency domain - for spectra
- Here τ corresponds to the rms width of the pulse, which means that much of the pulse area lies in the interval $t=\pm \tau$

The Delta function

limit of a sequence of Gaussian functions

- \blacksquare As τ tends to 0 the amplitude at the origin of the Gaussian function increases, with the area remaining constant at unity
- The limit function is thus the *generalised function* the Dirac delta function

Sums of sinusoidal signals

- A square wave may be synthesised as a sum of sinusoidal components comprising the fundamental component and all odd harmonics, with amplitudes decreasing with harmonic number
- Here we show the sum of just the fundamental and the third harmonic; the emergence of a square wave is clear even from this most limited sum!

Sum of sinusoids

- a frequency domain view

Summary

- Sinewaves
- Complex exponential
- 'Negative' frequency
- Rect pulse
- Dirac delta function
- Sinc function
- Raised cosine family
- Gaussian pulse
- Sums of sinusoidal waves