CubeSat Robotic Manipulator

Preliminary Design Proposal

Cole Sterba

William Albertini

Alice Sukhostavskiy

Caleb Arbreton

A.J. Presto

Shealyn Miller

Table of Contents

Mission Overview/Scope

Preliminary Design

Estimated Cost

Leads/Primary Responsibilities

Mission Overview/Scope

Mission Background

- LEO is the most actively used orbit (around 84% of satellites reside in LEO¹)
- Large amounts of debris left in LEO (intentional and unintentional)
- Debris ranges in size from fragments to entire structures (rocket bodies or dead spacecraft)
- Space debris are projectiles moving at large velocities, making space less accessible
- Ever increasing

Popular orbit regimes³

Mission Background Cont...

Mission Background Cont...

Orbital Regime	PL	PF	PD	PM	RB	RF	RD	RM	UI	Total
LEO	9564	5801	102	228	957	3062	40	575	1128	21457
GEO	792	3	3	9	65	0	0	0	42	914
EGO	521	1	1	48	199	87	3	2	1930	2792
GTO	53	28	1	10	233	201	12	52	727	1317
NSO	280	0	0	1	95	0	0	2	35	413
MEO	75	0	4	49	24	54	1	4	426	637
LMO	82	137	5	46	246	587	23	214	1043	2383
MGO	66	65	1	2	176	2152	4	0	1294	3760
HEO	30	13	0	1	55	113	0	0	1139	1351
Other	44	0	0	5	5	0	0	0	90	144
Total	11507	6048	117	399	2055	6256	83	849	7854	35168

Orbital objects by type by regime²

Mission Outline

Vision:

To contribute to the sustainability and shared use of space

Mission:

Creating a cost-effective solution to the ongoing orbital debris issue

Values for the mission:

Cost, usability, low Complexity, ease of deployment and operation

Mission/Project Scope

- Design and manufacture of a self-contained robotic manipulator for debris retrieval
- Remote operation
- Modular system (simple interfaces so it can be deployed on multiple platforms)
- Designing initially for a 3U Cubesat
- Primary considering of LEO operation (accessibility, large amount of debirs, communication access)
- CubeSat will de-orbit after collecting orbital debris

Preliminary Design

Initial Design (subject to future changes)

- 4-5 degrees of freedom
 - Revolute shoulder and elbow joint for in plane translational motion (with possibility of third joint for out of plane motion)
 - Two revolute wrist joints for roll and yaw motion of end effector
- 2-4 prong clamp end effector
 - Each prong features a conformable surface for increased traction
- Lidar and camera aided remote operation
 - Lidar to help with coordinate position of object in workspace
 - Camera to help locate and grab object once close enough.

Similar Designs

Aquatic robotic manipulator with 2-prong clamp⁴

Additional Considerations

 Utilizing an onboard ADCS (ie reaction wheels) for additional positional degrees of freedom

 Latching onto larger debris and using onboard thrusters to accelerate orbital decay

Estimated Cost (Cost Breakdown)

Item Name	Cost (dollars)	Amount
Servos + Angular Encoders	50	6
Material	300	N/A
Lidar Sensor	200	1
Camera	100	2
Power Supply	70	1
Computer and/or shield (ie raspberry pi 5)	200	1
Total	1270	

Leads/Primary Responsibilities

Subsystem Leads

- Coding/controls: Will
- Electrical: Cole
- Manufacturing: Caleb
- Mechanisms/Actuation: AJ
- Structures/CAD: Alice
- Systems: Shealyn

Proposed Platform Name:

B.O.W.S.E.R.

Bad Orbital Waste in Space Elimination Robot

Appendix: Work Cited

[1] Ieva. (2024a, January 3). *How many satellites are in space?*. NanoAvionics. https://nanoavionics.com/blog/how-many-satellites-are-in-space/

[2] ESA. (2023, December 6). *Space environment statistics*. Space Environment Statistics · Space Debris User Portal. https://sdup.esoc.esa.int/discosweb/statistics/

[3] Roberts is an adjunct fellow with the CSIS Aerospace Security Project and a graduate research fellow at the Massachusetts Institute of Technology's (MIT) Astrodynamics, T. G. (2022, June 14). *Popular orbits 101*. Popular Orbits 101. https://aerospace.csis.org/aerospace101/earth-orbit-101/#:~:text=Although%20over%2090%20percent%20of,smaller%20subset%20of%20satellite%20systems.

[4] "Underwater Manipulator Arm." *HDT Global*, 1 Sept. 2020, <u>www.hdtglobal.com/product/adroit-m-undersea-manipulator/</u>.

[5] Nance, Abigail, and Max Thibault. *CubeSat-Scale Robotic Arms in Space*, Naval Academy, mstl.atl.calpoly.edu/~workshop/archive/2023/presentations/2023_Day2_Session6_ThibaultNance.pdf. Accessed 20 Jan. 2024.