Noncommutative Algebraic Geometry

Ikhan Choi Lectured by Izuru Mori University of Tokyo, Autumn 2023

November 27, 2023

1 Algebras

- 1987: Artin-Schelter, regular algebra.
- 1990: Artin-Tate-Bergh, three dimensional, geometrically classified.
- 1994: Artin-Zhang, noncommutative scheme, categorical perspective.

1.1

Let k be an algebraically closed field of characteristic zero. Examples of k-algebras include the free algebra $T:=k\langle x_1,\cdots,x_n\rangle$, which is noncommutative for $n\geq 2$. It consists of linear combinations of monomials, and there are 2^n monomials of degree n in T, and T is k-isomorphic to the tensor algebra constructed from n-dimensional vector space k^n . Note that $(x+y)^2=x^2+xy+yx+y^2$ in T. An algebra R is finitely generated if and only if $R\cong T/I$ for some n and some ideal I of R. If $n\geq 2$, then T is not right noetherian, $I=\sum_{i=0}^\infty x^iyR$ is a right ideal which is not finitely generated for exmaple(not easy to show finitely generatedness). Is $k\langle x,y\rangle/(yx,y^2)$ noetherian? It is known that it is left notherian, but not right noetherian.

1.2

Let R be a ring and let $\sigma \in \operatorname{Aut}(R)$. An additive map $\delta : R \to R$ is called a σ -derivation if $\delta(ab) = \sigma(a)\delta(b) + \delta(a)b$ for $a,b \in R$. We define a ring $R[x;\sigma,\delta]$, called the *Ore extension*, as an additive group R[x] together with multiplication defined by

$$xa := \sigma(a)x + \delta(a), \quad a \in R.$$

Example 1.1.

(a) We can compute

$$(ax + b)(cx + d) = axcx + axd + bcx + bd$$

$$= a(\sigma(c)x + \delta(c))x + a(\sigma(d)x + \delta(d)) + bcx + bd$$

$$= a\sigma(c)x^{2} + (a\delta(c) + a\sigma(d) + bc)x + a\delta(d) + bd.$$

- (b) We have $R[x; id_R, 0] \cong R[x]$ as rings.
- (c) If $\sigma(f(x)) := f(\alpha x)$ for some non-zero $\alpha \in k$, then $k[x][y; \sigma, 0] \cong k\langle x, y \rangle / (\alpha xy yx)$ since $yx = \sigma(x)y \delta(x) = \alpha xy$.

- (d) If $\delta(f(x)) := f'(x)$, then $k[x][y; \mathrm{id}_{k[x]}, \delta] \cong k\langle x, y \rangle / (xy yx + 1)$, called the *Weyl algebra*, since $yx = \sigma(x)y + \delta(x) = xy + 1$.
- (e) How can we find a k-automorphism σ of k[x] and a σ -derivation δ such that $k\langle x,y\rangle/(xy-yx+x^2)\cong k[x][y;\sigma,\delta]$? What should $\delta(x^i)$ be? One answer is $\sigma=\mathrm{id}_{k[x]}$ and $\delta(f(x))=x^2f'(x)$.

Theorem 1.2. Let R be a ring and $S := R[x; \sigma, \delta]$ be an Ore extension.

- (a) If R is right noetherian, then so is S.
- (b) If R is a domain, then so is S.
- (c) If R is of finite global dimension, then so is S.

As examples, we have $k\langle x,y\rangle/(\alpha xy-yx)$ and $\dim k\langle x,y\rangle/(xy-yx+1)$ are noetherian domains of global dimensions 2 and 1, respectively. There is a result that left and right global dimensions coincide when R is two-sided noetherian.

1.3

Theorem 1.3. If R is a k-algebra and $a_1, \dots, a_n \in R$, then there is a unique k-algebra homomorphism $\varphi : k\langle x_1, \dots, x_n \rangle \to R$ such that $\varphi(x_i) = a_i$. If a k-algebra homomorphism $\varphi : S \to R$ satisfies $\varphi(I) = 0$ for an ideal I of S, then it factors through S/I.

With the above theorem we can construct an k-algebra isomorphism $k[x] \cong k\langle x, y \rangle / (x^2 - y)$. As an another example, for char $k \neq 2$, then

$$k\langle x, y \rangle / (x^2 + y^2, xy + yx) = k\langle x + y, x - y \rangle / ((x + y)^2, (x - y)^2) \cong k\langle x, y \rangle / (x^2 + y^2).$$

1.4

We now consider grading, a direct sum decomposition over a monoid. The free k-algebra $T=k\langle x_1,\cdots,x_n\rangle$ is $\mathbb N$ -graded by degree. Let $A=\bigoplus A_i$ be a graded ring. We can define homogeneous ideals of A, and the quotient can be written as $A/I\cong\bigoplus A_i/I_i$, where $I_i:=I\cap A_i$. Also, graded homomorphisms between graded rings or graded modules are able to be introduced. Let I and J be homogeneous ideal of $T_n:=k\langle x_1,\cdots,x_n\rangle$ and $T_m:=k\langle y_1,\cdots,y_m\rangle$ such that $J_0=J_1=0$. Then, a graded algebra homomorphism $\varphi:T_n\to T_m$ is uniquely determined by $\varphi(x_i)=a_{ij}y_j$ for $(a_{ij})\in M_{nm}(k)$. Let GrAut(A) be the group of graded algebra automorphisms of A. Then,

$$GrAut(T_n) \cong GrAut(k[x_1, \dots, x_n]) \cong GL(n, k),$$

and if I is a homogeneous ideal of T_n such that $I_0 = I_1 = 0$, then $GrAut(T_n/I)$ is a subgroup of GL(n,k). For example, we have

$$\operatorname{GrAut}(k\langle x, y \rangle / (x^2)) \cong \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} : a, d \in k^{\times} \right\}$$

and for $\alpha \neq \pm 1$ we have

$$\operatorname{GrAut}(k\langle x,y\rangle/(\alpha xy-yx))\cong\left\{\begin{pmatrix} a & 0\\ 0 & d\end{pmatrix}:a,d\in k^{\times}\right\}$$

since $\alpha \varphi(x)\varphi(y) - \varphi(y)\varphi(x) = (\alpha - 1)(acx^2 + bdy^2) + (\alpha^2 - 1)bcxy$.

Fix $\theta \in \text{GrAut}(A)$. Define an algebra $A^{\theta} := A$ as sets and multiplication $a * b := a \theta^{i}(b)$ on A^{θ} for $a \in A_{i}$ and $b \in A$. It is called the *twist* of A by θ , and it is also graded. For example, if we let A = k[x, y], then

If
$$\theta = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$$
, then $A^{\theta} \cong k\langle x, y \rangle / (\alpha x y - y x)$

and

If
$$\theta = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$
, then $A^{\theta} \cong k\langle x, y \rangle / (xy - yx + x^2)$.

Note that
$$\varphi(xy - yx) = (ad - bc)(xy - yx)$$
 if $\theta = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Theorem 1.4. Let A be a graded ring and $\theta \in GrAut(A)$.

- (a) If A is right noetherian, then so is A^{θ} .
- (b) If A is a domain, then so is A^{θ} .
- (c) If A is of finite global dimension, then so is A^{θ} .

2 Quantum polynomial algebras

2.1

Today, let $A:=k\langle x_1,\cdots,x_n\rangle/I$ be a finitely generated graded algebra such that I is a homogeneous ideal satisfying $I_0=I_1=0$, i.e. I is an admissible ideal. Let M be a graded right A-module, $M_{\geq n}:=\bigoplus_{i\geq n}M_i$ be a graded submodule of M, and M(n) be a graded module such that M(n):=M as a set but $M(n)_i:=M_{n+i}$. With this notation, $m:=A_{\geq 1}$ is the unique maximal homogeneous ideal of A. A free graded right A-module is a graded right A-module of the form $\bigoplus_s A(n_s)$. A finitely generated graded right A-module is free if and only if projective. A function $\varphi:A(l)\to A(m)$ is a graded right A-module homomorphism if and only if $\varphi=a$ for some $a\in A_{m-l}$. Therefore, between free right A-modules, $\varphi: \bigoplus A(l_s) \to \bigoplus A(m_t)$ is a graded right A-module homomorphism if and only if $\varphi=(a_{st})$, for some $a_{st}\in A_{m_t-l_s}$. A free resolution

$$\cdots \to F^2 \to F^1 \to F^0 \to M \to 0$$

is called *minimal* if the map $\varphi_i: F^i \to F^{i-1}$ is given by the left multiplication of a matrix whose entries are in A_1 . We can define the projective dimension of a module as the minimal length of free resolution, and the global dimension of A as the supremum of the projective dimension of graded right A-modules.

Lemma 2.1. gldim A = pd(k).

For example, $A = k\langle x, y \rangle$, then k = A/(xA + yA), so pd(k) = 1, hence gldim A = 1, and in generally gldim A = 1 for I = 0.

2.2

Let M be a finitely generated graded right A-module. Suppose further M is locally finite, i.e. $\dim_k M_i < \infty$ for each i. Then,

$$H_M(t) := \sum_{i \in \mathbb{Z}} (\dim_k M_i) t^i \in \mathbb{Z}[[t, t^{-1}]]$$

is called the *Hilbert series* of M. For example, letting M = A,

$$H_{k[x_1,\dots,x_n]}(t) = \sum_{i=0}^{\infty} {n+i-1 \choose n-1} t^i = (1-t)^{-n},$$

and

$$H_{k(x_1,\dots,x_n)}(t) = \sum_{i=0}^{\infty} n^i t^i = (1-nt)^{-1}.$$

Lemma 2.2. Let M be a finitely generated graded right A-module.

- (a) $H_{M^{\oplus r}}(t) = rH_{M}(t)$.
- (b) $H_{M(n)}(t) = t^{-n}H_M(t)$.
- (c) If $0 \to M^r \to \cdots \to M^1 \to M^0 \to 0$ is exact, then $\sum_{i=0}^r (-1)^i H_{M_i}(t) = 0$.

For example for (c), consider

$$0 \rightarrow A(-1)^{\oplus 2} \rightarrow A \rightarrow k \rightarrow 0.$$

Then, we can check $H_A(t) = (1-2t)^{-1}$ from

$$0 = H_k(t) - H_A(t) + H_{A(-1)^{\oplus 2}}(t) = 1 - H_A(t) + 2tH_A(t).$$

Definition 2.3 (Artin-Schelter). We say A is a d-dimensional quantum polynomial algebra (QPA) if $gldim A = d < \infty$, $H_A(t) = (1-t)^{-d}$, and $Ext_A^i(k,A) = \delta_{di} \cdot k(d)$. The last condition is called the Gorenstein condition.

If a QPA is commutative, then it is isomorphic to the polynomial algebra. The above two conditions are equivalent to have the minimal free resolution of the graded right A-module k

$$0 \to A(-d) \to \oplus A(-d+1) \to \cdots \to \oplus A(-1) \to A \to k \to 0,$$

where $\phi^i: \oplus A(-i) \to \oplus A(-i+1)$ is the left multiplication of a matrix whose components are in A_1 . The Gorenstein condition is equivalent to the transpose

$$0 \leftarrow k(d) \leftarrow \oplus A(d) \leftarrow \cdots \leftarrow \oplus A(1) \leftarrow A \leftarrow 0$$

is a minimal free resolution of left A-module k(d), where the arrows are right multiplications of matrices whose components are in A_1 . Ranks of each free modules must be determined by the Hilbert series.

For example, $A = k\langle x, y \rangle / (\alpha xy - yx)$ is a 2-dimensional QPA for all non-zero $\alpha \in k$. The classification up to dimension two is easy:

Lemma 2.4. Let A be a QPA over an algebraically closed field k.

- (a) gldim A = 0 iff $A \cong k$,
- (b) $gldim A = 1 iff A \cong k[x]$,
- (c) $\operatorname{gldim} A = 2 \operatorname{iff} A \cong k[x, y]^{\theta}$ for some $\theta \in \operatorname{GL}(2, k)$.

2.4

We can describe three-dimensional QPAs are classified in terms of derivation quotient algebras.

Definition 2.5. Let $V = k^n$ and let

$$\varphi: V^{\otimes m} \to V^{\otimes m}: \nu_1 \otimes \cdots \otimes \nu_m \mapsto \nu_2 \otimes \cdots \otimes \nu_1.$$

We say $w \in V^{\otimes m}$ is called a *superpotential*(SP) if $\varphi(w) = w$, and a *twisted superpotential*(TSP) if $(\sigma \otimes id^{\otimes (m-1)})\varphi(w) = w$ for all $\sigma \in GL(V)$.

Example 2.6. Let V = kx + ky, and $w = \alpha x^2 + \beta xy + \gamma yx + \delta y^2 \in V^{\otimes 2}$. Then, w is SP iff $\beta = \gamma$ and $SP^2(V) = kx^2 + k(xy + yx) + ky^2 \subset V^{\otimes 2}$.

Definition 2.7. For dim_k V = n and $w \in V^{\otimes m}$, we can define $\partial_i w, w \partial_i \in V^{\otimes (m-1)}$ such that $w = \sum x_i \otimes \partial_i w = \sum w \partial_i \otimes x_i$. Derivation quotient algebras are

$$D_l(w) := k\langle x_1, \cdots, x_n \rangle / (\partial_1 w, \cdots, \partial_n w), \qquad D_r(w) := k\langle x_1, \cdots, x_n \rangle / (w\partial_1, \cdots, w\partial_n).$$

Lemma 2.8.

- (a) w is SP iff $\partial_i w = w \partial_i$.
- (b) w is TSP iff $D_l(w) = D_r(w) =: D(w)$ (ideals quotiented are same as sets.)

Example 2.9. If V = kx + ky, and $w = \alpha x^2 + \beta xy + \gamma yx + \delta y^2 \in V^{\otimes 2}$, then

$$\partial_x w = \alpha x + \beta y, \qquad w \partial_x = \alpha x + \gamma y.$$

Theorem 2.10.

- (a) If ω is TSP with m = n = 3, then D(w) is a three-dimensional QPA.
- (b) The converse holds.

Example 2.11 (Sklyanin algebra). For $\alpha, \beta, \gamma \in k$,

$$w = \alpha(xyz + yzx + zxy) + \beta(xzy + yxz + zyx) + \gamma(x^3 + y^3 + z^3)$$

is a superpotential. D(w) is called the Sklyanin algebra. We can construct with $M = \begin{pmatrix} \gamma x & \beta z & \alpha y \\ \alpha z & \gamma y & \beta x \\ \beta y & \alpha x & \gamma z \end{pmatrix}$ the minimal free resolutions of k and k(3).

There is $\theta \in \text{GrAut}(k\langle x, y \rangle / (\alpha xy - yx))$ such that

$$(k\langle x,y\rangle/(\alpha xy-yx))^{\theta} \cong k\langle x,y\rangle/(xy-yx+x^2)$$

if and only if $\alpha = 1$. We can see this for $\alpha = -1$ by computing GrAut. Note that

$$(k\langle x, y \rangle / (\alpha xy - yx))^{\theta} \cong k\langle x, y \rangle / (\alpha \theta(x)y - \theta(y)x)$$

If $\alpha \neq \pm 1....$?

Artin-Tate-van den Bergh classification of 3-dimensional QPA. Point varieties.

4

4.1

Definition 4.1. A noncommutative scheme is a pair $X = (\text{Mod}X, \mathcal{O}_X)$ of an abelian category ModX and an object \mathcal{O}_X in it. A morphism between noncommutative schemes X and Y is an adjoint of pair of functors $f_* : \text{Mod}X \to \text{Mod}Y$ and $f^* : \text{Mod}X \to \text{Mod}X$ such that $f^*\mathcal{O}_Y = \mathcal{O}_X$.

For a scheme *X*, then *X* can be considered as a noncommutative scheme by the pair of the category of quasi-coherent sheaves and the structure sheaf.

Consider the noncommutative affine schemes. For a ring R, we define its noncommutative spectrum as $\operatorname{Spec}_{nc} R := (\operatorname{Mod} R, R)$. Note that for a ring homomorphism $\varphi : R \to S$, S can be seen as R-S-bimodule. Here the morphism $f : \operatorname{Spec}_{nc} R \to \operatorname{Spec}_{nc} S$ can be given as the pair of

$$f^*: \operatorname{Mod} R \to \operatorname{Mod} S: M \mapsto M \otimes_R S, \qquad f_*: \operatorname{Mod} S \to \operatorname{Mod} R: N \mapsto \operatorname{Hom}_S(S, N),$$

which we can check they are adjoint and $f^*S = R$. In general, an equivalence of the category of modules does not imply the isomorphism between rings. However, if two noncommutative schemes are isomorphic by $f: \operatorname{Spec}_{nc} R \to \operatorname{Spec}_{nc} S$, then

$$R = \operatorname{End}_R(R) \cong \operatorname{End}_S(f^*(R)) = \operatorname{End}_S(S) = S.$$

4.2

For the rest of today, a graded ring is an \mathbb{N} -graded ring. Let A be a graded ring. Let G-module G be the category of graded right G-modules. A graded right G-module G is called a torsion module if G is right bounded for all G is equal to G. We define Tails G:= G

Theorem 4.2 (Serre). Let A be a commutative graded ring finitely generated in degree one. Then, Tails $A \cong \operatorname{Mod}(\operatorname{Proj} A) : \pi(A) \mapsto \mathcal{O}_{\operatorname{Proj} A}$.

Definition 4.3. Let *A* be a graded ring. We define $\operatorname{Proj}_{nc}(A) := (\operatorname{Tails} A, \pi(A))$. For *A* an *n*-dimensional QPA, $\operatorname{Proj}_{nc} A$ is called the quantum \mathbb{P}^{n-1} .

If *A* is right noetherian graded ring, then we define grmod A as teh category of finitely generated modules. It is an abelian category. We may also define $tors(A) := Tors(A) \cap grmod(A)$ and tails := grmod / tors.

Theorem 4.4. Let A be a connected graded right coherent algebra. Then,

$$\operatorname{Hom}_{\operatorname{tails} A}(\mathcal{M}, \mathcal{N}) \cong \lim_{n \to \infty} \operatorname{Hom}_A(M_{\geq n}, N).$$

In particular, for finitely generated M and N, $\pi(M) \cong \pi(N)$ if there is n such that $M_{\geq n} \cong N_{\geq n}$.

4.3

Morita theory asks $\operatorname{Mod} R \cong \operatorname{Mod} R'$, and Artin-Zhang theory asks $\operatorname{Mod} A \cong \operatorname{Mod} A'$.

Theorem 4.5. An abelian category C is equivalent to Mod R if there is $C \in Mod R$ such that

- (i) $\operatorname{Hom}_{\mathcal{C}}(\mathcal{O}, -)$ preserves small coproducts,
- (ii) every $M \in \mathcal{C}$ admits an epi $\oplus \mathcal{O} \to M$,
- (iii) for epi $M \to N$, $\operatorname{Hom}_{\mathcal{C}}(\mathcal{O}, M) \to \operatorname{Hom}_{\mathcal{C}}(\mathcal{O}, N)$ is epi,

and \mathcal{C} has small coproducts. In particular, the equivalence is given as $\operatorname{Hom}_{\mathcal{C}}(\mathcal{O},-):\mathcal{C}\to\operatorname{Mod} R$, where $R:=\operatorname{End}_{\mathcal{C}}(\mathcal{O})$, and in this case, $\operatorname{Spec}_{nc}R\cong(\mathcal{C},\mathcal{O})$. The object \mathcal{O} is called the compact projective generator.

compact? small coproducts?

Corollary 4.6. Mod $R \cong \text{Mod } R'$ iff there is a finitely generated projective generator $P \in \text{Mod } R$ such that $R' = \text{End}_R(P)$.

Example 4.7. Let R be a ring. R and $M_n(R)$ are Morita equivalent since R^n is a finitely generated projective generator for Mod R, but their schemes are not isomorphic in general.

Definition 4.8 (Twisting systems). Let A be a graded ring. A twisting system is a family $\{\theta_i\}_{i\in\mathbb{Z}}$ such that $\theta_i:A\to A$ is a graded abelian group isomorphisms such that $\theta_i(a\theta_j(b))=\theta_i(a)\theta_{i+j}(b)$. We can define twists $A^{\{\theta_i\}}$ and $M^{\{\theta_i\}}$.

Theorem 4.9 (Zhang).

- (a) $GrMod A \cong GrMod A^{\{\theta_i\}}$. In particular, $Proj_{nc}(A) \cong Proj_{nc}(A^{\{\theta_i\}})$.
- (b) If A, A' are finitely generated in degree one, and if $GrModA \cong GrModA'$, then there is a twisting system $\{\theta_i\}$ such that $A' \cong A^{\{\theta_i\}}$.

Let $A_{\alpha} := k\langle x, y \rangle / (\alpha x y - y x)$ and $A_{J} := k\langle x, y \rangle / (xy - yx + x^{2})$. Although we have seen that there is no twist $\theta \in \text{GrAut}A_{\alpha}$ such that $A_{\alpha}^{\theta} \cong A_{J}$, but there is a twisting system $A_{\alpha}^{\{\theta_{i}\}} \cong A_{J}$. We do not exactly know how to construct $\{\theta_{i}\}$ in general, but we can give the concrete computation in this case:

$$\theta_i := \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}^{-i} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}^i$$

since $A_{\alpha}=k[x,y]^{\left(egin{subarray}{c} lpha & 0 \\ 0 & 1 \end{array}
ight)}$ and $A_{J}=k[x,y]^{\left(egin{subarray}{c} 1 & 0 \\ -1 & 1 \end{array}
ight)}$. Generalizing this, there is a theorem that if $\{\theta_{i}\}$ and $\{\theta_{i}'\}$ are twisting systems of A and $A^{\{\theta_{i}\}}$ then there is a twisting system $\{\theta_{i}''\}$ such that $A^{\{\theta_{i}''\}}\cong (A^{\{\theta_{i}\}})^{\{\theta_{i}'\}}$.

4.4

Consider an abelian category C, an object O in C, and an autoequivalence s of C. We call the triple as an algebraic triple here. Then,

$$B(\mathcal{C},\mathcal{O},s) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{C}}(\mathcal{O},s^{i}\mathcal{O}).$$

For example, if *X* is a projective scheme, and $\mathcal{L} \in \text{Pic}$ is very ample, then we have a graded ring

$$B := B(\operatorname{Mod} X, \mathcal{O}_X, -\otimes_X \mathcal{L}) = \bigoplus \Gamma(X, \mathcal{L}^{\otimes i}),$$

gives X = Proj B. In other words, B is the homogeneous coordinate ring of X.

Definition 4.10. For an algebraic triple (C, \mathcal{O}, s) , we say (\mathcal{O}, s) is ample for C if

- (i) for every $M \in \mathcal{C}$, there is $\{p_i\}_{i=1}^m$ with $\bigoplus_i s^{-p_i} \mathcal{O} \twoheadrightarrow M$.
- (ii) for every epi $\mathcal{M} \to \mathcal{N}$ in \mathcal{C} , there is an integer n_0 such that $\operatorname{Hom}_{\mathcal{C}}(s^{-n}\mathcal{O},\mathcal{M}) \to \operatorname{Hom}_{\mathcal{C}}(s^{-n}\mathcal{O},\mathcal{N})$ is epi for $n \ge n_0$.

Theorem 4.11 (Artin-Zhang). If (\mathcal{O}, s) is ample for \mathcal{C} , then $\mathcal{C} \cong \text{tails } B(\mathcal{C}, \mathcal{O}, s) : \mathcal{O} \mapsto B$, i.e. $(\mathcal{C}, \mathcal{O}) \cong \text{Proj}_{nc} B$.

Corollary 4.12 (Veronese algebra). If A is finitely generated in degree one, then $\operatorname{Proj}_{nc} A^{(r)} \cong \operatorname{Proj}_{nc} A$

For examples, A = k[x, y] with $\text{Proj}A = \mathbb{P}^1$ and $A^{(2)} = k[x^2, xy, y^2] \cong k[s, t, u]/(su - t^2)$, we can check manually $\text{Proj}k[s, t, u]/(su - t^2) \cong \mathbb{P}^1$.

For a graded algebra A and B, we can define the Segre product

$$A \circ B := \bigoplus_{i} A_{i} \otimes B_{i}.$$

If A, B are commutative and f.g. in degree one, then $Proj(A \circ B) \cong Proj A \times Proj B$.

Example 4.13. We show that for $A := k\langle x, y \rangle / (x^2y - yx^2, xy^2 - y^2x)$ that $\text{Proj}_{nc}A \cong \mathbb{P}^1 \times \mathbb{P}^1$. Note that the second Veronese algebra is

$$A^{(2)} = k\langle x^2, xy, yx, y^2 \rangle / (x^2y - yx^2, xy^2 - y^2x).$$

By observing eight relations

$$x(x^2y - yx^2) = 0$$
, $(x^2y - yx^2)x = 0$, $y(x^2y - yx^2) = 0$, $(xy^2 - y^2x)y = 0$,

and by letting $s = x^2$, t = xy, u = yx, $v = y^2$, we can conclude the existence of a surjection

$$B := k[s, t, u, v]/(sv - tu) \rightarrow A^{(2)}.$$

The monomaial of $(A^{(2)})_i$ can be reduced to an element of the form $y^a(xy)^bx^c$ up to scalar multiple, where a+2b+c=2i, so $\dim_k(A^{(2)})_i=(i+1)^2$. For B, if we count the dimension of the space spanned by monomials without tu, then we can see $\dim_k B_i=2\cdot\binom{i+1}{2}-\binom{i+1}{1}=(i+1)^2$. Thus $H_{A^{(2)}}(t)=H_B(t)$ implies $A^{(2)}\cong B$

On the other hands, we also have for the Segre product

$$B = k[s, t, u, v]/(sv - tu) \rightarrow k[x_1, y_1] \circ k[x_2, y_2] =: C.$$

We can easily see that $H_C(t) = \sum_i (i+1)^2 t^i$, so $B \cong C$. Consequently,

$$\operatorname{Proj}_{nc} A \cong \operatorname{Proj}_{nc} A^{(2)} \cong \operatorname{Proj} A^{(2)} \cong \operatorname{Proj} C \cong \operatorname{Proj} k[x, y] \times \operatorname{Proj} k[x, y] \cong \mathbb{P}^1 \times \mathbb{P}^1.$$

Noncommutative algebraic geometry

University of Tokyo M1 Ikhan Choi November 28

1. Show that $A = k\langle x, y \rangle / (yx, y^2)$ is left noetherian but not right noetherian.

Solution. Let J be a left ideal of $k\langle x,y\rangle$ containing (yx,y^2) , generated by $\{f_i\}_i\subset k\langle x,y\rangle$ as a left $k\langle x,y\rangle$ -module. Since $k\langle x,y\rangle=k[x]+k[x]y+(yx,y^2)$, there are $g_i,h_i\in k[x]$ such that $f_i(x,y)\equiv g_i(x)+h_i(x)y$ modulo (yx,y^2) for each i. Then, we have

$$J = \sum_{i} k\langle x, y \rangle f_i = \sum_{i} (k\langle x, y \rangle g_i + k\langle x, y \rangle h_i y) = \sum_{i} (k[x]g_i + k[x]g_i(0) + k[x]h_i y) = J_1 + J_2 y,$$

where J_1 and J_2 are ideals of k[x] generated by $\{g_i, g_i(0)\}$ and $\{h_i\}$ respectively. Because k[x] is noetherian, the ideals J_1 and J_2 are finitely generated over k[x], so J is finitely generated over $k\langle x, y \rangle$. Thus, A is left noetherian.

Let $J_n := \sum_{i=0}^n x^i yk + (yx, y^2)$. Since $x^i yk\langle x, y\rangle = x^i yk + (yx, y^2)$, we can see that J_n is an increasing sequence of right ideals of $k\langle x, y\rangle$ containing (yx, y^2) for all n. Because the sequence J_n does not terminate, A is not right noetherian.

2. Compute the Hilbert series of $A = k\langle x, y \rangle / (x^2)$.

Solution. Note that $A_{i+2} = A_{i+1}y + A_iyx$ and $A_{i+1}y \cap A_iyx = 0$ imply that the dimensions of the homogeneous modules satisfy the recurrence relation of Fibonacci sequence: $\dim_k A_{i+2} = \dim_k A_{i+1} + \dim_k A_i$ for all $i \geq 0$. Since $\dim_k A_1 = 2$, $\dim_k A_0 = 1$, and $\dim_k A_i = 0$ for i < 0, we have with the generating function that

$$H_A(t) = 1 + 2t + 3t^2 + 5t^3 + 8t^4 + \dots = \boxed{\frac{1+t}{1-t-t^2}}.$$

6. Compute the point variety of $A = k\langle x, y \rangle / (yx)$.

Solution. Note that $\Gamma_1 = \mathbb{P}^1$. Suppose $((a_1, b_1), \dots, (a_n, b_n)) \in \Gamma_n$ for $n \ge 2$. If $a_n = 0$, then since $b_n \ne 0$ we have $((a_1, b_1), \dots, (a_{n-1}, b_{n-1})) \in \Gamma_{n-1}$ because

$$g((a_1, b_1), \dots, (a_{n-1}, b_{n-1}))b_n = f((a_1, b_1), \dots, (a_n, b_n)) = 0$$

implies $g((a_1,b_1),\cdots,(a_{n-1},b_{n-1}))=0$ for all $g\in (yx)_{n-1}$, where f:=gy belongs to $(yx)_n$. If $a_n\neq 0$, then since for each $1\leq i< n$ we have $a_i\neq 0$ or $b_i\neq 0$, so $c_1c_2\cdots c_{n-1}a_n\neq 0$, where $c_i\in \{a_i,b_i\}$. If $c_i=b_i$ for some i, then implies that there is $1\leq i< n$ such that $b_ia_{i+1}\neq 0$, which leads a contradiction to the definition of Γ_n , so $c_i=a_i\neq 0$ and $b_i=0$ for all $1\leq i< n$. Consequently, we have $\Gamma_n\subset (\Gamma_{n-1}\times\{0\})\cup (\{\infty\}^{\times(n-1)}\times\mathbb{P}^1)$.

Conversely, if $((a_1, b_1), \dots, (a_{n-1}, b_{n-1})) \in \Gamma_{n-1}$ and $a_n = 0$, then every monomial $f \in (yx)_n$ satisfies

$$f((a_1, b_1), \dots, (a_n, b_n)) = g((a_1, b_1), \dots, (a_n, b_n))c_n = 0, \quad c_n \in \{a_n, b_n\},$$

so $((a_1,b_1),\cdots,(a_n,b_n))\in \Gamma_n$, and if $b_1=\cdots b_{n-1}=0$, then every monomial $f\in (yx)_n$ satisfies $f((a_1,b_1),\cdots,(a_n,b_n))=0$ clearly. Thus the inverse inclusion holds so that $\Gamma_n=(\Gamma_{n-1}\times\{0\})\cup (\{\infty\}^{\times(n-1)}\times\mathbb{P}^1)$ for all $n\geq 2$.

Therefore, the point variety of A is

$$\Gamma_{A} = \lim_{\longleftarrow N} \Gamma_{N} = \lim_{\longleftarrow N} \bigcup_{n=0}^{N} \{\infty\}^{n} \times \mathbb{P}^{1} \times \{0\}^{N-n-1} = \bigcup_{n=0}^{\infty} \{\infty\}^{n} \times \mathbb{P}^{1} \times \{0\}^{\infty}.$$