Sistemas de Ec. Lineales

-Métodos Iterativos-

Eje. Resolver el siguiente sistema utilizando el método de **Jacobi**, **Gauss Seidel** y **SOR** (w=1,1), hasta obtener una tolerancia<0,1%. Trabajar con 5 dígitos de precisión.

$$4x + 3y = 24$$

 $3x + 4y - z = 30$
 $-y + 4z = -24$

JACOBI

$$x^{(k+1)} = \frac{24 - 3y^{(k)}}{4}$$

$$y^{(k+1)} = \frac{30 - 3x^{(k)} + z^{(k)}}{4}$$

$$z^{(k+1)} = \frac{-24 + y^{(k)}}{4}$$

GAUSS SEIDEL

$$x^{(k+1)} = \frac{24 - 3y^{(k)}}{4}$$

$$y^{(k+1)} = \frac{30 - 3x^{(k+1)} + z^{(k)}}{4}$$

$$z^{(k+1)} = \frac{-24 + y^{(k+1)}}{4}$$

SOR

$$x^{(k+1)} = \left(\frac{24 - 3y^{(k)}}{4} - x^{(k)}\right) * w + x^{(k)}$$

$$y^{(k+1)} = \left(\frac{30 - 3x^{(k+1)} + z^{(k)}}{4} - y^{(k)}\right) * w + y^{(k)}$$

$$z^{(k+1)} = \left(\frac{-24 + y^{(k+1)}}{4} - z^{(k)}\right) * w + z^{(k)}$$

$$\bar{R}_{GS} = \bar{X}^{(k+1)} - \bar{X}^{(k)}$$

JACOBI

$$x^{(k+1)} = \frac{24 - 3y^{(k)}}{4}$$
$$y^{(k+1)} = \frac{30 - 3x^{(k)} + z^{(k)}}{4}$$
$$z^{(k+1)} = \frac{-24 + y^{(k)}}{4}$$

Para un semilla arbitraria $(x^0, y^0, z^0) = (0,0,0)$

\rightarrow Primera iteración k = 0

$$x^{(1)} = \frac{24 - 3y^{(0)}}{4}$$

$$x^{(1)} = \frac{24 - 3 \cdot 0}{4} = 6,0000$$

$$y^{(1)} = \frac{30 - 3x^{(0)} + z^{(0)}}{4}$$

$$z^{(1)} = \frac{-24 + y^{(0)}}{4}$$

$$z^{(1)} = \frac{-24 + 0}{4} = -6,0000$$

TABLA DE ITERACIÓN

TABLA DE IT	TABLA DE ITERACION							
k	x	У	Z	TOL(<0,1%)				
0	0,0000	0,0000	0,0000					
1	6,0000	7,5000	-6,0000	100,00%				
2	0,37500	1,5000	-4,1250	400,00%				
3	4,8750	6,1875	-5,6250	75,76%				
4	1,3594	2,4375	-4,4531	153,85%				
5	4,1719	5,3672	-5,3906	54,59%				
6	1,9746	3,0234	-4,6582	77,52%				
7	3,7324	4,8545	-5,2441	37,72%				
8	2,3591	3,3896	-4,7864	43,22%				
9	3,4578	4,5341	-5,1526	25,24%				
10	2,5995	3,6185	-4,8665	25,30%				
11	3,2861	4,3338	-5,0954	16,50%				
12	2,7497	3,7616	-4,9166	15,21%				
13	3,1788	4,2086	-5,0596	10,62%				
14	2,8435	3,8510	-4,9478	9,29%				
15	3,1118	4,1304	-5,0373	6,76%				
16	2,9022	3,9069	-4,9674	5,72%				
17	3,0698	4,0815	-5,0233	4,28%				
18	2,9389	3,9418	-4,9796	3,54%				
19	3,0437	4,0509	-5,0146	2,69%				
20	2,9618	3,9636	-4,9873	2,20%				
21	3,0273	4,0318	-5,0091	1,69%				
22	2,9761	3,9773	-4,9920	1,37%				
23	3,0171	4,0199	-5,0057	1,06%				
24	2,9851	3,9858	-4,9950	0,86%				
25	3,0107	4,0124	-5,0036	0,66%				
26	2,9907	3,9911	-4,9969	0,53%				
27	3,0067	4,0078	-5,0022	0,42%				
28	2,9942	3,9944	-4,9981	0,33%				
29	3,0042	4,0049	-5,0014	0,26%				
30	2,9964	3,9965	-4,9988	0,21%				
31	3,0026	4,0030	-5,0009	0,16%				
32	2,9977	3,9978	-4,9992	0,13%				
33	3,0016	4,0019	-5,0005	0,10%				
34	2,9986	3,9986	-4,9995	0,08%				

$$TOL = \frac{\left|\left|\bar{x}^{k+1} - \bar{x}^{k}\right|\right|_{\infty}}{\left|\left|\bar{x}^{k+1}\right|\right|_{\infty}}$$

GAUSS SEIDEL

$$x^{(k+1)} = \frac{24 - 3y^{(k)}}{4}$$

$$y^{(k+1)} = \frac{30 - 3x^{(k+1)} + z^{(k)}}{4}$$

$$z^{(k+1)} = \frac{-24 + y^{(k+1)}}{4}$$

Para un semilla arbitraria $(x^0, y^0, z^0) = (0,0,0)$

 \rightarrow Primera iteración k = 0

$$x^{(1)} = \frac{24 - 3y^{(0)}}{4}$$

$$x^{(1)} = \frac{24 - 3 \cdot 0}{4} = 6,0000$$

$$y^{(1)} = \frac{30 - 3x^{(1)} + z^{(0)}}{4}$$

$$y^{(1)} = \frac{30 - 3 \cdot 6,0000 + 0}{4} = 3,0000$$

$$z^{(1)} = \frac{-24 + y^{(1)}}{4}$$

$$z^{(1)} = \frac{-24 + 3,0000}{4} = -5,2500$$

TABLA DE ITERACIÓN

k	x	У	Z	TOL(<0,1%)
0	0,0000	0,0000	0,0000	
1	6,0000	3,0000	-5,2500	100,00%
2	3,7500	3,3750	-5,1563	60,00%
3	3,4688	3,6094	-5,0977	7,79%
4	3,2930	3,7559	-5,0610	4,68%
5	3,1831	3,8474	-5,0381	2,86%
6	3,1144	3,9046	-5,0238	1,76%
7	3,0715	3,9404	-5,0149	1,09%
8	3,0447	3,9627	-5,0093	0,68%
9	3,0279	3,9767	-5,0058	0,42%
10	3,0175	3,9854	-5,0036	0,26%
11	3,0109	3,9909	-5,0023	0,16%
12	3,0068	3,9943	-5,0014	0,10%
13	3,0043	3,9964	-5,0009	0,06%

$$TOL = \frac{\left|\left|\bar{x}^{k+1} - \bar{x}^k\right|\right|_{\infty}}{\left|\left|\bar{x}^{k+1}\right|\right|_{\infty}}$$

SOR

$$x^{(k+1)} = \left(\frac{24 - 3y^{(k)}}{4} - x^{(k)}\right) * w + x^{(k)}$$

$$y^{(k+1)} = \left(\frac{30 - 3x^{(k+1)} + z^{(k)}}{4} - y^{(k)}\right) * w + y^{(k)}$$

$$z^{(k+1)} = \left(\frac{-24 + y^{(k+1)}}{4} - z^{(k)}\right) * w + z^{(k)}$$

Para un semilla arbitraria $(x^0, y^0, z^0) = (0,0,0)$ y con w=1,1

TABLA	w=	1,1000		
k	x	У	Z	TOL(<0,1%)
0	0,0000	0,0000	0,0000	
1	6,6000	2,8050	-5,8286	100,000%
2	3,6259	3,3753	-5,0889	82,025%
3	3,4528	3,6645	-5,0834	7,891%
4	3,2315	3,8196	-5,0413	5,793%
5	3,1257	3,9030	-5,0225	2,713%
6	3,0675	3,9479	-5,0121	1,475%
7	3,0363	3,9720	-5,0065	0,785%
8	3,0195	3,9849	-5,0035	0,421%
9	3,0105	3,9919	-5,0019	0,226%
10	3,0056	3,9956	-5,0010	0,121%
11	3,0030	3,9977	-5,0005	0,07%

$$TOL = \frac{||\bar{x}^{k+1} - \bar{x}^k||_{\infty}}{||\bar{x}^{k+1}||_{\infty}}$$

\rightarrow Primera iteración k = 0

$$x^{(1)} = \left(\frac{24 - 3y^{(0)}}{4} - x^{(0)}\right) * 1,1 + x^{(0)}$$

$$y^{(1)} = \left(\frac{30 - 3x^{(1)} + z^{(0)}}{4} - y^{(0)}\right) * 1,1 + y^{(0)}$$

$$z^{(1)} = \left(\frac{-24 + y^{(1)}}{4} - z^{(0)}\right) * 1.1 + z^{(0)}$$

$$x^{(1)} = \left(\frac{24 - 3 * 0}{4} - 0\right) * 1,1 + 0 = 6,6000$$

$$y^{(1)} = \left(\frac{30 - 3 * 6,6000 + 0}{4} - 0\right) * 1,1 + 0 = 2,8050$$

$$z^{(1)} = \left(\frac{-24 + 2,8050}{4} - 0\right) * 1,1 + 0 = -5,8286$$

Forma indicial

JACOBI
$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1 \ i \neq i}}^{n} \left(-a_{ij} x_j^{(k-1)} \right) + b_i \right]$$

GAUSS SEIDEL
$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} \left(a_{ij} x_j^{(k)} \right) - \sum_{j=i+1}^{n} \left(a_{ij} x_j^{(k-1)} \right) + b_i \right]$$

SOR
$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right]$$

Forma matricial

$$\overline{\overline{A}} \cdot \overline{x} = \overline{b}$$

$$\downarrow$$

$$\overline{x}^{(k+1)} = \overline{\overline{T}} \cdot \overline{x}^{(k)} + \overline{c}$$

$$\overline{\overline{A}}.\overline{x} = \overline{b}$$

$$\overline{\overline{A}} \cdot \overline{x} = \overline{\overline{D}} - \overline{\overline{L}} - \overline{\overline{U}}$$

Forma matricial

$$\bar{x}^{(k+1)} = \overline{\bar{T}} \cdot \bar{x}^{(k)} + \bar{c}$$

JACOBI

$$z^{(k+1)} = \frac{24 - 3y^{(k)}}{4}$$

$$y^{(k+1)} = \frac{30 - 3x^{(k)} + z^{(k)}}{4}$$

$$z^{(k+1)} = \frac{-24 + y^{(k)}}{4}$$

$$\bar{T}_{I} = \bar{D}^{-1}(\bar{L} + \bar{U})$$

GAUSS SEIDEL

$$\overline{\overline{T}}_{GS} = (\overline{\overline{D}} - \overline{\overline{L}})^{-1} \overline{\overline{U}}$$

$$\overline{\overline{c}}_{GS} = (\overline{\overline{D}} - \overline{\overline{L}})^{-1} \cdot b$$

SOR

$$\overline{\overline{T}}_{Sor} = (\overline{\overline{D}} - w\overline{\overline{L}})^{-1} \cdot [(1 - w)\overline{\overline{D}} + w\overline{\overline{U}}]$$

$$\overline{c}_{Sor} = w(\overline{\overline{D}} - w\overline{\overline{L}})^{-1} \cdot b$$

$$\overline{\overline{A}}.\overline{x} = \overline{b} \qquad , \qquad \overline{\overline{A}} = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix} \qquad \qquad \overline{x}^{(k+1)} = \overline{\overline{T}}.\overline{x}^{(k)} + \overline{c}$$

Convergencia

Teo 1) Si $\underline{\underline{A}}$ es estrictamente diagonal domin ($|a_{ii}| > \sum_{j=1}^{n} |a_{ij}|$) => Jacobi y Gauss-Seidel convergen

Teo 2) Si además $\underline{\underline{A}}$ es definida positiva (subdet>0) y 0<w<2 => SOR converge

$$\det \begin{vmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{vmatrix} = 20 \; ; \; \det \begin{vmatrix} 4 & 3 \\ 3 & 4 \end{vmatrix} = 7$$

Teo 3) Si $\exists \|\underline{\underline{T}}\| < 1 \Longrightarrow$ el método converge

Teo 4) Si $\rho(\underline{\underline{T}}) = \max |\lambda_i| < 1 \Longleftrightarrow$ el método converge

Teo 5) Si $\underline{\underline{A}}$ es simétrica, def posit, tridiag en bloques => $w_{\delta ptimo} = \frac{2}{1 + \sqrt{1 - \rho(\overline{T}_{GS})}} = \frac{2}{1 + \sqrt{1 - \rho(\overline{T}_{GS})}} \approx 1,24$

Teo 6) $|\underline{x}^{(k+1)} - \underline{x}| \le factor * |\underline{x}^{(k+1)} - \underline{x}^{(k)}|$ cota del error de truncamiento

Convergencia

$$4x + 3y = 24$$

 $3x + 4y - z = 30$
 $-y + 4z = -24$

$$\bar{\bar{A}} = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$

Normas

$$\bar{\bar{T}}_{J} = \begin{bmatrix} 0 & -3/4 & 0 \\ -3/4 & 0 & 1/4 \\ 0 & 1/4 & 0 \end{bmatrix} \qquad \begin{aligned} \|\bar{\bar{T}}_{J}\|_{1} &= 1 & \|\bar{\bar{T}}_{GS}\|_{1} &= 1,45 \\ \|\bar{\bar{T}}_{J}\|_{\infty} &= 1 & \|\bar{\bar{T}}_{GS}\|_{\infty} &= 0,81 \end{aligned}$$

$$\left\| \bar{\bar{T}}_J \right\|_1 = 1$$

$$\left\|\bar{\bar{T}}_{GS}\right\|_1 = 1.45$$

$$\left\|\bar{\bar{T}}_{SOR}\right\|_1 = 1,24$$

$$\left\|\bar{\bar{T}}_{J}\right\|_{\infty}=1$$

$$\left\|\bar{\bar{T}}_{GS}\right\|_{\infty}=0.8$$

$$\left\| \bar{\bar{T}}_{SOR} \right\|_{\infty} = 0.93$$

Radio espectral (mide la velocidad de convergencia)

$$\rho(\bar{\bar{T}}_J)=0.790$$

$$\rho(\bar{\bar{T}}_{GS}) = 0.625$$

$$\rho(\bar{\bar{T}}_{SOR}) = 0.538$$

Determinación experimental de w óptimo

Opción 1: fijar tolerancia poco restrictiva, graficar N° ite = f(w)

Opción 2: fijar N° ite, graficar cota del error = f(w)

Orden de convergencia

Def) si
$$\lim_{k \to \infty} \frac{\varepsilon^{(k+1)}}{\varepsilon^{(k)}} = \lim_{k \to \infty} \frac{\left|\underline{x}^{(k+1)} - \underline{x}\right|}{\left|\underline{x}^{(k)} - \underline{x}\right|^p} = \lambda$$
, entonces llamamos $\frac{\lambda}{p}$: constante as intótica del error p : orden de convergenc ia

Interpretación: si p = 1 y $\lambda = 0.1$, el error se reduce un 90% entre cada iteración

Cómo calcular p y λ :

Como no conocemos \underline{x} , en lugar del error $\varepsilon^{(k+1)} = |\underline{x}^{(k+1)} - \underline{x}|$ usamos la diferencia entre las dos últimas iteraciones $\Delta x^{(k+1)} = |\underline{x}^{(k+1)} - \underline{x}^{(k)}|$, y decimos lo mismo:

$$\frac{\Delta x^{(k+1)}}{\Delta x^{(k)^p}} = \frac{\left|\underline{x}^{(k+1)} - \underline{x}^{(k)}\right|}{\left|\underline{x}^{(k)} - \underline{x}^{(k-1)}\right|^p} = \lambda \text{ (en escala log es una recta)}$$

Tenemos 1 ec. con 2 inc, pero como p y λ no cambian durante todo el cálculo, planteamos la misma ecuación para 2 iteraciones sucesivas. Así:

$$\frac{\Delta x^{(k+1)}}{\Delta x^{(k)^{p}}} = \lambda \ , \frac{\Delta x^{(k)}}{\Delta x^{(k-1)^{p}}} = \lambda \ , \text{ entonces: } \Delta x^{(k+1)} \Delta x^{(k-1)^{p}} = \Delta x^{(k)} \Delta x^{(k)^{p}}$$

Despejando:
$$p = \frac{\ln(\Delta x^{(k+1)} / \Delta x^{(k)})}{\ln(\Delta x^{(k)} / \Delta x^{(k-1)})}$$
 (el método tiene que estar convirgiendo)

Gráfico 1

<u>Gráfico 2</u>

