Problem 4.5

How much heat is required when 10,000 kg of CaCO₃ is heated at atmospheric pressure from 50 deg C to 880 deg C? Use (a) direct integration of the Cp polynomial, (b) ICPH, and (c) MCPH.

Problem 4.9

A process stream is heated as a gas from 25 to 250 deg C at constant P. A quick estimate of the energy requirement is obtained from Eq. 4.3, with Cp taken as constant and equal to its value at 25 deg C. Is the estimate of Q likely to be low or high? Why?

Problem 4.10

- (a) For one of the compounds listed in Table B.2 of App. B, evaluate the latent heat of vaporization ΔH_n by Eq. 4.13. How does this result compare with the value listed in Table B.2?
- (b) Handbook values for latent heats of vaporization at 25 deg C of four compounds are given in the table below. Calculate ΔH_n by Eq. 4.14, and compare the result with the value given in Table B.2.

Latent heats of vaporization at 25 deg C in J/g n-Pentane 366.3 Benzene 433.3 n-Hexane 366.1 Cyclohexane 392.5

Problem 4.12

Handbook values for the latent heat of vaporization in J/g are given in the table for several pure liquids at 0 deg C.

 $\begin{array}{c} \mbox{ } \Delta \mbox{H at 0 deg C} \\ \mbox{Chloroform} & 270.9 \\ \mbox{Methanol} & 1,189.5 \\ \mbox{Tetrachloromethane} & 217.8 \\ \end{array}$

Calculate:

- (a) The value of the latent heat at T_n by Eq. 4.14, given the value at 0 deg C.
- (b) The value of the latent heat at T_n by Eq. 4.13.

By what percentage do these results differ from the value listed in Table B.2 of App. B?

Problem 4.20

Hydrocarbon fuels can be produced from methanol by reactions such as the following, which yields 1-hexene:

$$6 CH_3OH (g) \rightarrow C_6H_{12} (g) + 6 H_2O (g)$$

Compare the standard heat of combustion at 25 deg C of 6 CH_3OH (g) with the standard heat of combustion at 25 deg C of C_6H_{12} (g) for reaction products CO_2 (g) and H_2O (g).