Devoir à la maison n° 2

À rendre le 16 septembre

Dans cet exercice, on identifie le plan, muni d'un repère orthonormal, à l'ensemble des nombres complexes \mathbb{C} . Ainsi, on confondra tout point M avec son affixe z. On désigne par \mathscr{H} l'ensemble des nombres complexes z=x+iy dont la partie imaginaire est strictement positive (i.e $\mathrm{Im}(z)=y>0$). On dit que \mathscr{H} est le demi-plan de Poincaré.

1) Pour tout réel θ et pour tout complexe z dans \mathscr{H} , justifier l'existence puis l'appartenance à \mathscr{H} du complexe $\frac{z\cos\theta-\sin\theta}{z\sin\theta+\cos\theta}$.

On précisera sa partie imaginaire.

Dans toute la suite de l'exercice, θ étant un réel fixé, on note A_{θ} l'application de $\mathcal H$ vers $\mathcal H$ définie par :

$$\forall z \in \mathcal{H}, \ A_{\theta}(z) = \frac{z \cos \theta - \sin \theta}{z \sin \theta + \cos \theta}.$$

- 2) Rechercher les points fixes de A_{θ} , c'est-à-dire les solutions de $A_{\theta}(z) = z$.
- 3) Soient deux réels θ et θ' . Vérifier que pour tout $z \in \mathcal{H}$ on a

$$A_{\theta'}(A_{\theta}(z)) = A_{\theta'+\theta}(z).$$

De même, calculer $A_{-\theta}(z)$ puis $A_{-\theta}(A_{\theta}(z))$.

- 4) Soit $\theta \in \mathbb{R}$. Montrer que pour tout $a \in \mathcal{H}$ il existe un unique $b \in \mathcal{H}$ tel que $A_{\theta}(b) = a$. On dit que A_{θ} est une bijection de \mathcal{H} dans \mathcal{H} .
- 5) On définit une fonction de \mathscr{H} vers \mathbb{R} en posant

$$\forall z \in \mathscr{H}, \ c(z) = \frac{|z|^2 + 1}{2\operatorname{Im}(z)}.$$

Montrer que pour tout $\theta \in \mathbb{R}$ et tout $z \in \mathcal{H}$, $c(A_{\theta}(z)) = c(z)$.

6) Soient deux réels θ et θ' et $z \in \mathcal{H} \setminus \{i\}$. On note $\pi \mathbb{Z}$ l'ensemble $\{k\pi, k \in \mathbb{Z}\}$. Montrer l'équivalence :

$$(A_{\theta}(z) = A_{\theta'}(z)) \Leftrightarrow ((\theta' - \theta) \in \pi \mathbb{Z}).$$

- 7) Soit $z_0 \in \mathcal{H} \setminus \{i\}$.
 - a) Montrer que $c(z_0) \in \mathbb{R}_+^*$, puis que $c(z_0) > 1$.
 - **b)** On appelle \mathscr{C} le cercle de centre $ic(z_0)$ et de rayon $\sqrt{c(z_0)^2-1}$.
 - i) Vérifier que ce cercle $\mathscr C$ existe et qu'il est inclus dans $\mathscr H$.
 - ii) Vérifier que $z_0 \in \mathscr{C}$ et que $i \notin \mathscr{C}$.
 - iii) Montrer que pour tout $\theta \in \mathbb{R}$, $A_{\theta}(z_0)$ est sur le cercle \mathscr{C} .

— FIN —