ECE5014	ASIC DESIGN	L	T	P	J	C
		3	0	2	0	4
Pre-requisite	Nil				v 1	1.1

Course Objective:

The course is aimed to

- 1. explain the types of ASIC and typical ASIC design Flow.
- 2. give the students an understanding of HDL coding guidelines and synthesizable HDL constructs.
- 3. explain the RTL synthesis Flow with respect to different cost function.
- 4. teach the various timing parameter and how to perform Static Timing Analysis for ASIC chips.
- 5. discuss the various abstraction levels in physical design and guidelines at each abstraction level.
- 6. provide detailed insight on importance of physical design verification

Expected Course Outcome:

At the end of the course the student will be able to

- 1. Understand different types of ASICs and design flows.
- 2. Design digital systems by adhering to synthesizable HDL constructs.
- 3. Synthesize the given design by considering various constraints and to optimize the same.
- 4. Understand various timing parameters and compute computation time for a givendesign using static timing analysis.
- 5. Perform physical design by adhering to guidelines.
- 6. Apprehend the importance of physical design verification.
- 7. Design ASIC based systems using industry standard tools.

Student Learning Outcomes (SLO): 1,17,18

Module:1 ASIC Design Methodology & Design Flow

4 hours

Implementation Strategies for Digital ICs: Custom IC Design- Cell-based Design Methodology - Array based implementation approaches - Traditional and Physical Compiler based ASIC Flow.

Module:2 Verilog HDL Coding Style for Synthesis

6 hours

 HDL Coding style – Guidelines and Recommendation - FSM Coding Guideline and Coding Style for Synthesis.

Module:3 RTL Synthesis

8 hours

RTL synthesis Flow – Synthesis Design Environment & Constraints – Architecture of Logic Synthesizer - Technology Library Basics – Components of Technology Library –Synthesis Optimization - Technology independent and Technology dependent synthesis – Data path Synthesis – Low Power Synthesis – Timing driven synthesis - Formal Verification.

Module:4 Timing Parameters

5 hours

Timing Parameter Definition – Setup Timing Check- Hold Timing Check- Multicycle Paths- False Paths - Clocking of Synchronous Circuits.

Module:5 Static Timing Analysis

7 hours

Timing Analysis - Clock skew optimization – Clock Tree Synthesis.

36.1	1 (DI . ID .	1			
Modu		Physical Design	on Floor alon Discoment of	8 hours		
		o in Physical Design Flow- Guidelines f	•	•		
	_	ayers and their characteristics - Cell-based -Preventing electrical overstress.	1 back-end design –ECO –	Packaging-		
Layo	ut issues	-Fleventing electrical oversitiess.				
Modu	le:7	Physical Design Verification		5 hours		
		ion techniques-Post-layout design verificatio	n.			
Module:8		Contemporary issues:	<u> </u>	2 hours		
<u> </u>						
		Total Lecture hours:		45 hours		
	Book(s)		· 171			
1.		ashuBhatnagar, Advanced ASIC Chip Synthen, 2012.	sis, Kluwer Academic Publish	er, Second		
Refere	ence Boo	oks				
1.		runvand, Digital VLSI Chip Design with Ca	dence and Synopsys CAD To	ols, Addison		
<u> </u>		y, First Edition, 2010.		~		
2.		sker and RakeshChadha, Static Timing Anal	ysis for Nanometer Designs,	Springer US,		
Mode	- 1	dition, 2010.	ATI) Continuous Assassm	ont Tost II		
		luation:Continuous Assessment Test –I (Cainar / Challenging Assignments / Completic				
		idustrial problems, Final Assessment Test (F.		as leading to		
		nging Experiments (Indicative)				
1.		- I Design of digital architecture		12 hours		
l		n Specification: Starting with the soda mach	ine dispenser design describe	d		
	in lect	ure, create a block diagram and high-level sta	ate machine for a soda machin	e		
	_	ser that has a choice of two soda types, and t	1			
		mer. A coin detector provides the circuit with	-			
		e clock cycle when a coin is detected, and	<u> </u>			
		value in cents. Two 8-bit input s1 and s2 in s. The user's soda selection is controlled by				
		pushed will output 1 for one clock cycle. I	-			
		e for their selection, the circuit should set eit				
	_	ock cycle, causing the selected soda to be	<u> </u>			
		should also set an output bit cr to 1for	-			
	require	ed, and should output the amount of chan	ge required using on an 8-b	it		
		ca. Use the RTL design method to convert the	•			
		ller and a data path. Design the data path	n to structure, but design th	e		
2		ller to the point of an FSM only.				
2.		-II Logical Synthesis of digital architecture	9	6 hours		
		design and timing constraints:	ty sat alook latanay			
		Timing constraints: set_clock ,set_clock_uncertainty, set_clock_latency, set_clock_transition, set_input_delay, set_output_delay, set_false_path and				
	set_clock_transition, set_input_delay, set_output_delay, set_raise_path and set_multicycle_path.					
		constraints are: set_max_fanout, set_max_tra	nsition and			

	set_max_capacitance.						
	Optimization constraints :set_max_area, set_min_area,						
	set_max_leakegeandset_max_dynamic.						
3.	Phase-III Netlist Optimization and Formal Verification						
	Apply power optimization constraints, Gate Level Simulation and Formal						
	verification of digital architecture.						
4.	Phase-IV Physical Synthesis of digital architecture						
	create_floorplan, set_propgated_clock,preroute_standard_cells, set_route_zrt.						
5.	Phase - VPhysical Verification of digital architecture				4 hours		
	set_fix_multiple_port_nets, write_physical_constraints and write_parasitics						
Total Laboratory hours:					30 hours		
Mode of Evaluation: Continuous assessment of challenging experiments /Final Assessment Tes							
(FAT).							
Recommended by Board of Studies 28/02/2017							
Approved by Academic Council		47 th AC	Date	05/10/2017			