SOLUTIONS TO CONCEPTS CHAPTER - 1

1. a) Linear momentum :
$$mv = [MLT^{-1}]$$

b) Frequency :
$$\frac{1}{T} = [M^0 L^0 T^{-1}]$$

c) Pressure :
$$\frac{\text{Force}}{\text{Area}} = \frac{[MLT^{-2}]}{[L^2]} = [ML^{-1}T^{-2}]$$

2. a) Angular speed
$$\omega = \theta/t = [M^0L^0T^{-1}]$$

b) Angular acceleration
$$\alpha = \frac{\omega}{t} = \frac{M^0 L^0 T^{-2}}{T} = [M^0 L^0 T^{-2}]$$

c) Torque
$$\tau = F r = [MLT^{-2}] [L] = [ML^2T^{-2}]$$

c) Torque
$$\tau$$
 = F r = [MLT⁻²] [L] = [ML²T⁻²]
d) Moment of inertia = Mr² = [M] [L²] = [ML²T⁰]

3. a) Electric field E = F/q =
$$\frac{MLT^{-2}}{[IT]}$$
 = $[MLT^{-3}I^{-1}]$

b) Magnetic field B =
$$\frac{F}{qv} = \frac{MLT^{-2}}{[IT][LT^{-1}]} = [MT^{-2}I^{-1}]$$

c) Magnetic permeability
$$\mu_0$$
 = $\frac{B \times 2\pi a}{I} = \frac{MT^{-2}I^{-1}] \times [L]}{[I]} = [MLT^{-2}I^{-2}]$

b) Magnetic dipole moment
$$M = IA = [I] [L^2] [L^2]$$

5.
$$E = hv$$
 where $E = energy$ and $v = frequency$.

$$h = \frac{E}{v} = \frac{[ML^2T^{-2}]}{[T^{-1}]}[ML^2T^{-1}]$$

6. a) Specific heat capacity = C =
$$\frac{Q}{m\Delta T} = \frac{[ML^2T^{-2}]}{[M][K]} = [L^2T^{-2}K^{-1}]$$

b) Coefficient of linear expansion =
$$\alpha = \frac{L_1 - L_2}{L_0 \Delta T} = \frac{[L]}{[L][R]} = [K^{-1}]$$

c) Gas constant = R =
$$\frac{PV}{nT} = \frac{[ML^{-1}T^{-2}][L^3]}{[(mol)][K]} = [ML^2T^{-2}K^{-1}(mol)^{-1}]$$

a) Density =
$$\frac{m}{V} = \frac{\text{(force/acceleration)}}{\text{Volume}} = \frac{[F/LT^{-2}]}{[L^2]} = \frac{F}{L^4T^{-2}} = [FL^{-4}T^2]$$

b) Pressure =
$$F/A = F/L^2 = [FL^{-2}]$$

c) Momentum = mv (Force / acceleration)
$$\times$$
 Velocity = $[F / LT^{-2}] \times [LT^{-1}] = [FT]$

c) Momentum = mv (Force / acceleration) × Velocity =
$$[F / LT^{-2}] \times [LT^{-1}] = [FT]$$

d) Energy = $\frac{1}{2}$ mv² = $\frac{Force}{acceleration} \times (velocity)^2$
= $\left[\frac{F}{LT^{-2}}\right] \times [LT^{-1}]^2 = \left[\frac{F}{LT^{-2}}\right] \times [L^2T^{-2}] = [FL]$

8.
$$g = 10 \frac{\text{metre}}{\text{sec}^2} = 36 \times 10^5 \text{ cm/min}^2$$

Converting to S.I. units,
$$\frac{0.02 \times 1.6 \times 1000}{3600}$$
 m/sec [1 mile = 1.6 km = 1600 m] = 0.0089 ms⁻¹

In SI units = 70 miles/hour =
$$\frac{70 \times 1.6 \times 1000}{3600}$$
 = 31 m/s

- 10. Height h = 75 cm, Density of mercury = 13600 kg/m^3 , g = 9.8 ms^{-2} then
 - Pressure = hfg = 10×10^4 N/m² (approximately)
 - In C.G.S. Units, $P = 10 \times 10^5$ dyne/cm²
- 11. In S.I. unit 100 watt = 100 Joule/sec
 - In C.G.S. Unit = 10⁹ erg/sec
- 12. 1 micro century = $10^4 \times 100$ years = $10^{-4} \times 365 \times 24 \times 60$ min
 - So, $100 \text{ min} = 10^5 / 52560 = 1.9 \text{ microcentury}$
- 13. Surface tension of water = 72 dyne/cm
 - In S.I. Unit, 72 dyne/cm = 0.072 N/m
- 14. $K = kl^a \omega^b$ where k = Kinetic energy of rotating body and <math>k = dimensionless constant
 - Dimensions of left side are,
 - $K = [ML^2T^{-2}]$
 - Dimensions of right side are,
 - $I^a = [ML^2]^a$, $\omega^b = [T^{-1}]^b$
 - According to principle of homogeneity of dimension,
 - $[ML^2T^{-2}] = [ML^2T^{-2}][T^{-1}]^b$
 - Equating the dimension of both sides,
 - 2 = 2a and $-2 = -b \Rightarrow a = 1$ and b = 2
- 15. Let energy $E \propto M^a C^b$ where M = Mass, C = speed of light
 - \Rightarrow E = KM^aC^b (K = proportionality constant)
 - Dimension of left side
 - $E = [ML^2T^{-2}]$
 - Dimension of right side
 - $M^a = [M]^a, [C]^b = [LT^{-1}]^b$
 - $|| (ML^2T^{-2})| = [M]^a[LT^{-1}]^b$
 - \Rightarrow a = 1; b = 2
 - So, the relation is $E = KMC^2$
- 16. Dimensional formulae of R = $[ML^2T^{-3}I^{-2}]$
 - Dimensional formulae of $V = [ML^2T^3I^{-1}]$
 - Dimensional formulae of I = [I]
 - $\therefore [ML^2T^3I^{-1}] = [ML^2T^{-3}I^{-2}][I]$
 - \Rightarrow V = IR
- 17. Frequency $f = KL^aF^bM^cM = Mass/unit length, L = length, F = tension (force)$
 - Dimension of $f = [T^{-1}]$
 - Dimension of right side,
 - $L^{a} = [L^{a}], F^{b} = [MLT^{-2}]^{b}, M^{c} = [ML^{-1}]^{c}$
 - $||\cdot||^{-1}| = K[L]^a [MLT^{-2}]^b [ML^{-1}]^c$
 - $M^{0}L^{0}T^{-1} = KM^{b+c}L^{a+b-c}T^{-2b}$
 - Equating the dimensions of both sides,
 - ∴ b + c = 0 ...(1)
 - -c + a + b = 0 ...(2)
 - -2b = -1 ...(3)
 - Solving the equations we get,
 - a = -1, b = 1/2 and c = -1/2
 - :. So, frequency f = $KL^{-1}F^{1/2}M^{-1/2} = \frac{K}{L}F^{1/2}M^{-1/2} = \frac{K}{L} = \sqrt{\frac{F}{M}}$

18. a)
$$h = \frac{2SCos\theta}{\rho rg}$$

Surface tension = S = F/I =
$$\frac{MLT^{-2}}{L}$$
 = [MT⁻²]

Density =
$$\rho$$
 = M/V = [ML⁻³T⁰]

Radius =
$$r = [L], g = [LT^{-2}]$$

$$RHS = \frac{2S\cos\theta}{\rho rg} = \frac{[MT^{-2}]}{[ML^{-3}T^0][L][LT^{-2}]} = [M^0L^1T^0] = [L]$$

So, the relation is correct

b)
$$v = \sqrt{\frac{p}{\rho}}$$
 where $v = velocity$

LHS = Dimension of
$$v = [LT^{-1}]$$

Dimension of p =
$$F/A = [ML^{-1}T^{-2}]$$

Dimension of
$$\rho = m/V = [ML^{-3}]$$

RHS =
$$\sqrt{\frac{p}{\rho}} = \sqrt{\frac{[ML^{-1}T^{-2}]}{[ML^{-3}]}} = [L^2T^{-2}]^{1/2} = [LT^{-1}]$$

So, the relation is correct.

c)
$$V = (\pi pr^4 t) / (8\eta I)$$

LHS = Dimension of
$$V = [L^3]$$

Dimension of p =
$$[ML^{-1}T^{-2}]$$
, $r^4 = [L^4]$, t = $[T]$

Coefficient of viscosity =
$$[ML^{-1}T^{-1}]$$

RHS =
$$\frac{\pi p r^4 t}{8 \eta I} = \frac{[ML^{-1}T^{-2}][L^4][T]}{[ML^{-1}T^{-1}][L]}$$

So, the relation is correct.

d)
$$v = \frac{1}{2\pi} \sqrt{(mgl/l)}$$

LHS = dimension of
$$v = [T^{-1}]$$

RHS =
$$\sqrt{(\text{mgI/I})} = \sqrt{\frac{[M][LT^{-2}][L]}{[ML^2]}} = [T^{-1}]$$

So, the relation is correct.

19. Dimension of the left side =
$$\int \frac{dx}{\sqrt{(a^2 - x^2)}} = \int \frac{L}{\sqrt{(L^2 - L^2)}} = [L^0]$$

Dimension of the right side =
$$\frac{1}{a} \sin^{-1} \left(\frac{a}{x} \right) = [L^{-1}]$$

So, the dimension of
$$\int \frac{dx}{\sqrt{(a^2-x^2)}} \neq \frac{1}{a} \sin^{-1} \left(\frac{a}{x}\right)$$

So, the equation is dimensionally incorrect.

20. I	mportant	Dimensions	and	Units	:
-------	----------	------------	-----	-------	---

Important Dimensions and Units : Physical quantity	Dimension	SI unit
Force (F)	[M¹L¹T ⁻²]	newton
Work (W)	$[M^1L^2T^{-2}]$	joule
Power (P)	$[M^1L^2T^{-3}]$	watt
Gravitational constant (G)	$[M^{-1}L^3T^{-2}]$	N-m ² /kg ²
Angular velocity (ω)	[T ⁻¹]	radian/s
Angular momentum (L)	$[M^1L^2T^{-1}]$	kg-m ² /s
Moment of inertia (I)	$[M^1L^2]$	kg-m ²
Torque (τ)	$[M^1L^2T^{-2}]$	N-m
Young's modulus (Y)	$[M^1L^{-1}T^{-2}]$	N/m ²
Surface Tension (S)	$[M^1T^{-2}]$	N/m
Coefficient of viscosity (η)	$[M^1L^{-1}T^{-1}]$	N-s/m ²
Pressure (p)	$[M^1L^{-1}T^{-2}]$	N/m² (Pascal)
Intensity of wave (I)	$[M^1T^{-3}]$	watt/m ²
Specific heat capacity (c)	$[L^2T^{-2}K^{-1}]$	J/kg-K
Stefan's constant (σ)	$[M^1T^{-3}K^{-4}]$	watt/m ² -k ⁴
Thermal conductivity (k)	$[M^{1}L^{1}T^{-3}K^{-1}]$	watt/m-K
Current density (j)	[l ¹ L ⁻²]	ampere/m ²
Electrical conductivity (σ)	$[I^2T^3M^{-1}L^{-3}]$	$\Omega^{-1} \text{ m}^{-1}$
Electric dipole moment (p)	[L ¹ l ¹ T ¹]	C-m
Electric field (E)	$[M^1L^1I^{-1}T^{-3}]$	V/m
Electrical potential (V)	$[M^{1}L^{2}I^{-1}T^{-3}]$	volt
Electric flux (Ψ)	$[M^1T^3I^{-1}L^{-3}]$	volt/m
Capacitance (C)	$[I^2T^4M^{-1}L^{-2}]$	farad (F)
Permittivity (ε)	$[l^2T^4M^{-1}L^{-3}]$	C ² /N-m ²
Permeability (μ)	$[M^1L^1I^{-2}T^{-3}]$	Newton/A ²
Magnetic dipole moment (M)	[l ¹ L ²]	N-m/T
Magnetic flux (φ)	$[M^{1}L^{2}I^{-1}T^{-2}]$	Weber (Wb)
Magnetic field (B)	$[M^1I^{-1}T^{-2}]$	tesla
Inductance (L)	$[M^1L^2I^{-2}T^{-2}]$	henry
Resistance (R)	$[M^1L^2I^{-2}T^{-3}]$	ohm (Ω)

* * *