Preliminaries

<u>Definition</u> 0.1: Some types of relations

A **relation** R on A can be seen as a subset of $A \times A$

$$xRy \iff (x,y) \in R \subset A \times A$$

R on A is said to be ...

- Symmetric iff $xRy \implies yRx$
- Anti-symmetric iff $xRy \wedge yRx \implies x = y$
- Reflexive iff $\forall x \in A, xRx$
- Transitive iff xRy, $yRz \implies xRz$

A relation R on A is said to be a **partial ordering** of A iff R is ...

- Transitive
- Reflexive
- Anti-symmetric

A relation R on A is said to be an **equivalence relation** on A iff R is ...

- Transitive
- Reflexive
- Symmetric

Equivalence relations are frequently denoted by \sim or = . Given an equivalence relation \sim on A, the equivalence class of $x \in A$ is defined as follows

$$[x] = \{ y \in A \mid x \sim y \}$$

The collection of equivalence classes of \sim on A is denoted as $^{A}/_{\sim}$ and called **quotient set**.

Definition 0.2: Binary operation

A binary operation * on set A is a function

$$f: A \times A \to A$$
$$(a,b) \mapsto a * b$$

A subset $E \subset A$ is said to be closed under * iff $a, b \in E \implies a * b \in E$

- * is said to be ...
 - Associative iff $\forall a, b, c \in A$

$$(a*b)*c = a*(b*c)$$

• Commutative iff $\forall a, b \in A$

$$a * b = b * a$$

Definition 0.3: Groupoids, Semi-groups, monoids & Groups

Let G be a set and * a binary operation on said set. $\{G,*\}$ is said to be ...

- ... a groupoid.
- ... a **semi-group** iff * is associative.
- ... a monoid iff it is a semi-group and * has an identity element :

$$\exists e \in G \mid \forall x \in G, \ x * e = e * x = x$$

• ... a **group** iff it is a monoid and each element admits an inverse element (relative to *):

$$\forall x, \ \exists x^{-1} \in G \mid \ x * x^{-1} = e$$

If, additionally, * is commutative, the group is said to be *Abelian*. Notice that in general you can define a group with only left-identity and left-inverse, and right-identity/inverse will follow. For a monoid, you can not stop at defining left-identity.

Definition 0.4: Ring

A ring is a set R together with two binary operations, $+ \& \cdot$, such that

- (F, +) forms an Abelian group with identity element 0
- (F, \cdot) forms a monoid with identity element 1
- Operation · distributes (left & right) over +

If additionally \cdot is commutative the ring itself is said to be commutative.

Definition 0.5: Field

A field is a set F together with two binary operations, $+ \& \cdot$, such that

- \bullet (F,+) forms an Abelian group with identity element 0
- $(F \setminus \{0\}, \cdot)$ forms an Abelian group with identity element 1
- Operation · distributes (left & right) over +

Proposition 0.1: Algebraic properties of the real numbers

- i. $\{\mathbb{R}, \cdot, +\}$ is a field
- ii. \leq is a total/connex ordering of \mathbb{R}
- iii. \mathbb{R} is order-complete under \leq
- iv. \leq is compatible with the field structure of $\mathbb R$:
 - $x \le y \implies x + z \le y + z$
 - $x \ge 0 \land y \ge 0 \implies x \cdot y \ge 0$

Definition 0.6: Limit of sequence

Let X be a topological space. A sequence $s: \mathbb{N} \to X$ has **limit** l iff

$$\forall M \in \mathcal{F}_l, \exists N \in \mathbb{N} \mid n \geq N \implies x_n \in M$$

Definition 0.7: Limit of a function at a point

Let X, Y be two topological spaces. A function $f: X \to Y$ has **limit** l at the accumulation point x_0 iff for all neighborhoods of l, there exists a neighborhood of x_0 such that the image of the neighborhood of x_0 is contained in the neighborhood of l. Mathematically,

$$\lim_{x \to x_0} f(x) = l \iff \forall N \in \mathcal{F}_l, \ \exists M \in \mathcal{F}_{x_0} \mid f(M) \subset N$$

If x_0 is not an accumulation point, there exists a neighborhood whose image is a singleton or the empty set, which will trivially satisfy the requirement.

REMARK A sequence converging to some limit can be seen as a special case of 0.7 with \mathbb{N} equipped with the *right order topology*.

Definition 0.8: Continuity

Let X, Y be two topological spaces. A function $f: X \to Y$ is **continuous** at the accumulation point $x_0 \in X$ iff the limit of the function at x_0 is equal to the value of the function at said point. Mathematically,

$$f$$
 is continuous at $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$

f is said to be globally continuous iff it is continuous at every point in A

Definition 0.9: Derivative

Let $x_0 \in A \subset \mathbb{R}$ an accumulation point. A real number $f'(x_0)$ is said to be the **derivative** of f at x_0 iff

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

If f'(a) exists, the function is differentiable at a. If it is differentiable at each point of A, the function is differentiable on A

Some reads about the definition at an accumulation point:

- Non-unicity of derivative at accumulation points in higher dimensions
- Linear approximation in some neighborhood