Time Series Model

 $y_0, y_1, \dots, y_t, \dots$ is a time series, $y_i \in \mathbb{R}$ The model of time series:

$$y_t = l_t + \varepsilon_t$$

where l_t — level of time series (changing slowly), ε_t — (unobserved) error component (noise),

Forecasting model:

$$\hat{y}_{t+d} = \hat{l}_t$$

where \hat{l}_t — an estimation of level,

Time Series Model

Real time series of in Retail Chain:

Time Series Model

Jndex Dow-Jones:

Simple Exponential Smoothing

Weighted average with exponentially diminishing weights forecast:

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots$$

 $\alpha \uparrow 1 \Rightarrow$ greater weight to last points,

 $\alpha \downarrow 0 \Rightarrow$ greater smoothing.

Time point	$\alpha = 0.2$	$\alpha = 0.4$	$\alpha = 0.6$	$\alpha = 0.8$
y_T	0.2	0.4	0.6	0.8
y_{T-1}	0.16	0.24	0.24	0.16
y_{T-2}	0.128	0.144	0.096	0.032
y_{T-3}	0.1024	0.0864	0.0384	0.0064
y_{T-4}	0.08192	0.05184	0.01536	0.00128
y_{T-5}	0.065536	0.031104	0.006144	0.000256

We find the optimal α^* using moving control:

$$Q(\alpha) = \sum_{t=T_0}^{T_1} (\hat{y}_t(\alpha) - y_t)^2 \to \min_{\alpha}$$

Empirical rules:

if $\alpha^* \in (0,0.3)$ the series is stationary, ES works;

if $\alpha^* \in (0.3, 1)$ the series is non-stationary, we need a trend model.

Simple Exponential Smoothing

• The method suits forecasting of time series without trend and seasonality:

$$\hat{y}_{t+1|t} = l_t,$$

$$l_t = \frac{\alpha}{\alpha} y_t + (1 - \alpha) l_{t-1} = \hat{y}_{t|t-1} + \frac{\alpha}{\alpha} \cdot e_t.$$

where $e_t = y_t - \hat{y}_{t|t-1}$ — forecast error at time point t Proof:

$$\hat{y}_{t+1} := \alpha y_t + (1 - \alpha)\hat{y}_t = \hat{y}_t + \alpha \cdot e_t$$

• The forecast depends on l_0 :

$$\hat{y}_{T+1|T} = \sum_{j=0}^{T-1} \alpha (1-\alpha)^j y_{T-j} + (1-\alpha)^T l_0.$$

We can take $l_0 = y_1$ or optimize it.

ullet Forecast turns out flat, i.e. $\hat{y}_{t+d|t} = \hat{y}_{t+1|t}$

Simple Exponential Smoothing

Simple ES applied to data on oil production in Saudi Arabia (1996-2007).

Model of time series:

$$y_t = l_t + b_t t + \varepsilon_t,$$

where l_t , b_t — adaptive coefficients, ε_t — noise

Two successive ES:

$$\begin{split} S_t^{[1]} &:= \alpha y_t + (1-\alpha) S_{t-1}^{[1]}; \\ S_t^{[2]} &:= \alpha S_t^{[1]} + (1-\alpha) S_{t-1}^{[2]}. \end{split}$$

Smoothed formula
$$(l_t = 2 \cdot S_t^{[1]} - S_{t-1}^{[2]}, b_t = \frac{\alpha}{1-\alpha} (S_t^{[1]} - S_{t-1}^{[2]}))$$
:
$$l_t := \alpha y_t + (1-\alpha)(l_{t-1} + b_{t-1});$$

$$b_t := \alpha (l_t - l_{t-1}) + (1-\alpha)b_{t-1}.$$

Forecast:

$$\hat{y}_{t+d} = l_t + (d-1+1/\alpha) b_t,$$

Double (Brown) Exponential Smoothing

Model of time series:

$$y_t = l_t + b_t t + \varepsilon_t,$$

where l_t , b_t — adaptive coefficients, ε_t — noise

Error-correction form:

$$l_t := \alpha y_t + (1 - \alpha)(l_{t-1} + b_{t-1}) = \hat{y}_t + \alpha e_t;$$

$$b_t := \alpha(l_t - l_{t-1}) + (1 - \alpha)b_{t-1} = b_{t-1} + \alpha^2 e_t.$$

Proof of the last equation:

$$\alpha(\hat{y}_t + \alpha e_t - l_{t-1}) - \alpha b_{t-1} + b_{t-1} = b_{t-1} + \alpha(\hat{y}_t + \alpha e_t - l_{t-1} - b_{t-1}) = b_{t-1} + \alpha^2 e_t.$$

Tracking Signal

Tracking signal [Trigg, 1964]

$$K_t = \frac{\hat{e}_t}{\tilde{e}_t} \qquad \qquad \begin{aligned} \hat{e}_{t+1} &:= \gamma e_t + (1 - \gamma) \hat{e}_t; \\ \tilde{e}_{t+1} &:= \gamma |e_t| + (1 - \gamma) \tilde{e}_t. \end{aligned}$$

Recommendation: $\gamma = 0.05 \dots 0.1$

Statistics adequacy test (at $\gamma \geq 0.1, \ t \rightarrow \infty$):

hypotheses H_0 : $\mathsf{E}\varepsilon_t=0$, $\mathsf{E}\varepsilon_t\varepsilon_{t+d}=0$ is accepted at significance level δ if

$$|K_t| \le 1.2\Phi_{1-\delta/2}\sqrt{1-\gamma/(1+\gamma)},$$

 $\Phi_{1-\delta/2}$ — normal distribution quantile, $\Phi_{1-\delta/2}=\Phi_{0.975}=1.96$ at $\delta=0.05$

Trigg-Leach Model [Trigg, Leach, 1967]

Problem: adaptive models adjust poorly to sharp changes of structure

Solution: $\alpha = |K_t|$

Drawbacks:

- 1) reacts poorly to single outliers; $(\alpha_t = |K_{t-1}|)$
- 2) requires fitting γ given recommended $\gamma = 0.05 \dots 0.1$.

Examples of Trend and Seasonality

Example: Combination of trend and seasonality (model data)

- $Pяд\ 1$ seasonality and no trend
- $\mathsf{P}\mathsf{я}\mathsf{д}\ 2$ linear trend, additive seasonality
- Ряд 3 linear trend, multiplicative seasonality
- Ряд 4 exponential trend, multiplicative seasonality

Holt Model = Linear Trend

Linear trend with no seasonality effect:

$$\hat{y}_{t+d} = l_t + b_t d,$$

where l_t , b_t — adaptive coefficients of linear trend

Recursive formula:

$$l_t := \alpha y_t + (1 - \alpha)(l_{t-1} + b_{t-1}) = \hat{y}_t + \alpha e_t;$$

$$b_t := \beta(l_t - l_{t-1}) + (1 - \beta)b_{t-1} = b_{t-1} + \alpha \beta e_t.$$

Particular case — Brown linear growth model:

$$\alpha = \alpha, \quad \beta = \alpha$$

Other Methods that Account Trend

Multiplicative linear (exponential) trend:

$$\hat{y}_{t+d|t} = l_t b_t^d,$$

$$l_t = \alpha y_t + (1 - \alpha) (l_{t-1} b_{t-1}),$$

$$b_t = \beta \frac{l_t}{l_{t-1}} + (1 - \beta) b_{t-1}.$$

$$\alpha, \beta \in [0, 1]$$
.

Other Methods that Account Trend

Additive damped trend:

$$\hat{y}_{t+d|t} = l_t + \left(\phi + \phi^2 + \dots + \phi^d\right) b_t,$$

$$l_t = \alpha y_t + (1 - \alpha) \left(l_{t-1} + \phi b_{t-1}\right),$$

$$b_t = \beta \left(l_t - l_{t-1}\right) + (1 - \beta) \phi b_{t-1}.$$

Multiplicative damped trend:

$$\hat{y}_{t+d|t} = l_t b_t^{(\phi + \phi^2 + \dots + \phi^d)},$$

$$l_t = \alpha y_t + (1 - \alpha) l_{t-1} b_{t-1}^{\phi},$$

$$b_t = \beta \frac{l_t}{l_{t-1}} + (1 - \beta) b_{t-1}^{\phi}.$$

$$\alpha, \beta \in [0, 1], \ \phi \in (0, 1).$$

Other Methods that Account Trend

Forecast of sheep population in Asia with regard for trend.

	SES	Holt's	Exponential	Additive dam ped	Multiplicative damped
α	1	0.98	0.98	0.99	0.98
β		0	0	0	0.00
ϕ				0.98	0.98

Multiplicative Seasonality of Period p:

$$\hat{y}_{t+d} = l_t \cdot s_{t-p+(d \bmod p)},$$

 s_0, \ldots, s_{p-1} — seasonality profile of period p.

Recursive formula:

$$\begin{split} l_t &:= \alpha(y_t/s_{t-p}) + (1-\alpha)l_{t-1} = l_{t-1} + \alpha e_t/s_{t-p}; \\ s_t &:= \beta(y_t/l_t) + (1-\beta)s_{t-p} = s_{t-p} + \beta(1-\alpha)e_t/l_t. \end{split}$$

Proof of the last equation:

$$s_{t} := s_{t-p} + \beta \left(y_{t} / l_{t} - s_{t-p} \right) = s_{t-p} + \beta \left(y_{t} - s_{t-p} l_{t} \right) / l_{t} = s_{t-p} + \beta \left(y_{t} - s_{t-p} (l_{t-1} + \alpha e_{t} / s_{t-p}) \right) / l_{t} = s_{t-p} + \beta \left(\underbrace{y_{t} - s_{t-p} l_{t-1}}_{e_{t}} - \alpha e_{t} \right) / l_{t}$$

Additive Seasonality ES Model

Additive seasonality with period of length p:

$$\begin{split} \hat{y}_{t+d|t} &= l_t + s_{t-p+(d \mod p)}, \\ l_t &= \alpha \left(y_t - s_{t-p} \right) + \left(1 - \alpha \right) \left(l_{t-1} \right) = \underbrace{l_{t-1} + \alpha e_t}_{t}; \\ s_t &= \gamma \left(y_t - l_{t-1} \right) + \left(1 - \gamma \right) s_{t-p} = \underbrace{s_{t-p} + \gamma (1 - \alpha) e_t}_{t}. \end{split}$$

Theil-Wage Model

Linear trend with additive seasonality of period s:

$$\hat{y}_{t+d} = (l_t + b_t d) + s_{t+(d \bmod s)-p}.$$

 $l_t + b_t d$ — trend cleaned of seasonality, s_0, \dots, s_{p-1} — seasonality profile of period p.

Recursive formula:

$$\begin{split} l_t &:= \alpha(y_t - s_{t-p}) + (1 - \alpha)(l_{t-1} + b_{t-1}) = l_{t-1} + b_{t-1} + \alpha e_t; \\ b_t &:= \beta(l_t - l_{t-1}) + (1 - \beta)b_{t-1} = b_{t-1} + \alpha \beta e_t; \\ s_t &:= \gamma(y_t - l_t) + (1 - \gamma)s_{t-p} = s_{t-p} + \gamma(1 - \alpha)e_t. \end{split}$$

Winters Model with Linear Trend

Multiplicative seasonality of period \boldsymbol{s} with a linear trend:

$$\hat{y}_{t+d} = (l_t + b_t d) \cdot s_{t+(d \bmod p)-p},$$

 $l_t + b_t d$ — trend cleaned of seasonality, s_0, \dots, s_{p-1} — seasonality profile of period s.

Recursive formula:

$$\begin{split} l_t &:= \alpha(y_t/s_{t-p}) + (1-\alpha)(l_{t-1} + b_{t-1}) = l_{t-1} + b_{t-1} + \alpha e_t/s_{t-p}; \\ b_t &:= \beta(l_t - l_{t-1}) + (1-\beta)b_{t-1} = b_{t-1} + \alpha \beta e_t/s_{t-p}; \\ s_t &:= \gamma(y_t/l_t) + (1-\gamma)s_{t-p} = s_{t-p} + \gamma(1-\alpha)e_t/l_t. \end{split}$$

Winters Model with exponential trend

Multiplicative trend model exponential trend:

$$\hat{y}_{t+d} = l_t(r_t)^d \cdot s_{t+(d \bmod p)-p},$$

 $l_t(r_t)^d -$ exponential trend without seasonality, s_0, \dots, s_{p-1} — seasonal trend p.

Recurrent version:

$$\begin{split} l_t &:= \alpha(y_t/s_{t-p}) + (1-\alpha)l_{t-1}r_{t-1} = l_{t-1}r_{t-1} + \alpha e_t/s_{t-1}; \\ r_t &:= \beta(l_t/l_{t-1}) + (1-\beta)r_{t-1} = r_{t-1} + \alpha\beta e_t/s_{t-1}; \\ s_t &:= \gamma(y_t/l_t) + (1-\gamma)s_{t-p} = s_{t-p} + \gamma(1-\alpha)e_t/l_t. \end{split}$$

ES Models

	Seasonality			
Trend	N (None)	A (Additive)	M (Multiplicative)	
N (None)	(N,N)	(N,A)	(N,M)	
A (Additive)	(A,N)	(A,A)	(A,M)	
Ad (Additive damped)	(Ad,N)	(Ad,A)	(Ad, M)	
M (Multiplicative)	(M,N)	(M,A)	(M,M)	
Md (Multiplicative damped)	(Md,N)	(Md,A)	(Md,M)	

We may additionally suggest an additive (A) or a multiplicative (M) error (the type of error does not influence single-value prediction). Multiplicative error is suitable only for strictly positive time series.

The final model may be written as $ESM\left(\cdot,\cdot,\cdot\right)$.

Examples of Forecast

For the data on oil production in Saudi Arabia function ESM selects simple ES.