Package 'scMitoTracing'

January 15, 2022

Title What the Package Does (One Line, Title Case)

Version 0.0.0.9000

Description What the package does (one paragraph).
License `use_mit_license()`, `use_gpl3_license()` or friends to pick a license
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
Suggests knitr, rmarkdown
VignetteBuilder knitr
Depends R (>= 2.10)
LazyData true
R topics documented:
AddDatatoplot_clustering
AddDist
AddTree,mitoTracing-method
CountVperCell
CW_mgatk.read
DepthSummary
GTSummary

 Make_matrix
 9

 Make_matrix,mitoTracing-method
 9

 Make_tree
 10

 Make_tree,mitoTracing-method
 10

 mitoTracing-class
 11

 MutationProfile.bulk
 11

 plot_depth
 12

Index			16	6
	Vfilter_v3	 	15	5
	TREE-class	 	14	4
	show,mitoTracing-method	 	14	4
	SeuratLSIClustering,mitoTracing-method	 	13	3
	SeuratLSIClustering	 	13	3
	plot_variant	 	12	2

AddDatatoplot_clustering

AddDatatoplot_clustering This prepare the clonal clustering data to plot

Description

AddDatatoplot_clustering This prepare the clonal clustering data to plot

Usage

```
AddDatatoplot_clustering(object, ...)
```

Arguments

object mitoTracin class

 $\verb|AddDatatoplot_clustering,mitoTracing-method|\\$

AddDatatoplot_clustering This prepare the clonal clustering data to plot

Description

AddDatatoplot_clustering This prepare the clonal clustering data to plot

Usage

```
## S4 method for signature 'mitoTracing'
AddDatatoplot_clustering(object)
```

Arguments

object mitoTracin class

Value

mitoTracing class

AddDist 3

AddDist

AddDist This add Jaccard, Dice, Jaccard3W distance and stored in DistObjects

Description

AddDist This add Jaccard, Dice, Jaccard3W distance and stored in DistObjects

Usage

```
AddDist(object, ...)
```

Arguments

object

mitoTracin class

AddDist, mitoTracing-method

AddDist This add Jaccard, Dice, Jaccard3W distance and stored in DistObjects

Description

AddDist This add Jaccard, Dice, Jaccard3W distance and stored in DistObjects

Usage

```
## S4 method for signature 'mitoTracing'
AddDist(object)
```

Arguments

object

mitoTracin class

Value

mitoTracing class

AddTree

Add_Tree Optional, if a phylogentic tree object phylo is already available, can be directly added to the mitoTracing

Description

Add_Tree Optional, if a phylogentic tree object phylo is already available, can be directly added to the mitoTracing

Usage

```
AddTree(object, phylo, ...)
```

Arguments

object mitoTracin class

phylo phyogenetic tree object

AddTree, mitoTracing-method

Add_Tree Optional, if a phylogentic tree object phylo is already available, can be directly added to the mitoTracing class in slot TREE

Description

Add_Tree Optional, if a phylogentic tree object phylo is already available, can be directly added to the mitoTracing class in slot TREE

Usage

```
## S4 method for signature 'mitoTracing'
AddTree(object, phylo, record = "")
```

Arguments

object mitoTracin class

phylo phyogenetic tree object

Value

mitoTracing class

CountVperCell 5

CountVperCell

Internal function in plot_variant

Description

Internal function in plot_variant

Usage

```
CountVperCell(x, name, CellN)
```

Arguments

Examples

```
CountVperCell(CellVar.Sum$VN,c,CellN=nrow(CellVar.Sum)))
```

```
Create_mitoTracing Create_mitoTracing
```

Description

This function is to create mitoTracing with basic information

Usage

```
Create_mitoTracing(
  GTsummary_list,
  depth_list,
  feature.list_list,
  meta_list,
  labels,
  thr = "VerySensitive",
  qualifiedCellCut = 10,
  OnlyHetero = T,
  VAFcut = 1,
  Cellcut = 2,
  maxctscut = 2
)
```

6 CW_mgatk.read

Arguments

GTsummary_list

simply put GTSummary (Generated by CW_mgatk.read) into list, this allows

mergeing multiple dataset this way.

depth_list simply put depth(Generated by DepthSummary) into list, this allows mergeing

multiple dataset this way.

feature.list_list

simply put feature.list(Generated by Vfilter_v3) into list, this allows mergeing

multiple dataset this way.

labels a vector of labels for the samples.

thr One of the following "Total", "VerySensitive", "Sensitive", "Specific"

qualifiedCellCut

The minimum median mitochondrial coverage for a qualified cell, default is 10

OnlyHetero If only consider the heteroplasmy variants, default is T

VAFcut only use variants with VAF smaller than VAFcut. Default is 1. We can use

smaller value to constrain into only using rare variants

Cellcut only use variants with at least cellcut cells carry

maxctscut only use variants with at least in one cell with at leaset maxctscut variant frag-

ments

Value

mitoTracing class

CW_mgatk.read

Function to read in mitoV outputs

Description

This function allows you to read raw data from XX/final folder, the output from mitoV

Usage

```
CW_mgatk.read(path, Processed = F)
```

Arguments

path The XX/final folder, the output from mitoV

Processed Boolean variable (Default F), if true directly readRDS("VariantsGTSummary.RDS")

or, generate and saveout "VariantsGTSummary.RDS"

Value

this returns depth which is a list of 4 df (Total/VerySensitive/Sensitive/Specific), each is a genotype summary

Examples

```
WD<-"/lab/solexa_weissman/cweng/Projects/MitoTracing_Velocity/SecondaryAnalysis/Donor01_CDN1CD34_1.VariantsGTSummary<-CW_mgatk.read(WD,Processed =T)
```

Datatoplots-class 7

Datatoplots-class An intermediate S4 class Datatoplots

Description

An intermediate S4 class Datatoplots

Slots

clustering dataframe that store the data to plot

DepthSummary

Function to summarize the depth (Total that passed Q30)

Description

This function allows you to summarize the depth

Usage

```
DepthSummary(path, CellSubset = NA, cellSubSetName = NA)
```

Arguments

path The XX/final folder, the output from mitoV

CellSubset A vector of ATAC cell names for subsetting, default is NA

cellSubSetName

a string to name this Subset, should explain with the CellSubset

Processed Boolean variable(Default T), if true directly readRDS("depth.RDS") or, generate

and saveout "depth.RDS"

Value

this returns depth which is a list of 4 list(Total/VerySensitive/Sensitive/Specific), each contains 2 df, summarize mito coverage by Pos/Cell

Examples

WD<-"/lab/solexa_weissman/cweng/Projects/MitoTracing_Velocity/SecondaryAnalysis/Donor01_CDN1CD34_1.depth<-DepthSummary(WD,Processed = T)</pre>

8 GTSummary

```
DistObjects-class An intermediate S4 class Datatoplots
```

Description

An intermediate S4 class Datatoplots

Slots

```
jaccard distance object dist: Jaccard distance
Dice distance object dist: Dice distance
jaccard3W distance object dist: jaccard3W
```

GTSummary

Function to generate GTS summary

Description

This function allows you to summarize the meta data for each genotyped variant

Usage

```
GTSummary(RawGenotypes, filterN = T)
```

Arguments

```
RawGenotypes Well-named "RawGenotypes.Sensitive.StrandBalance" file in function CW_mgatk.read

filterN Boolean variable, if true filter out the variant with "N"
```

Value

Genotypes.summary a dataframe that summarize several metrics for each genotype

Examples

```
Usually used inside of function CW_mgatk.read
```

Make_matrix 9

Make_matrix	Make_matrix This will make the matixies of Cell VS mitochon-
	drial variants and return mitoTracing Results stored in Cts.Mtx and
	Cts.Mtx.bi

Description

Make_matrix This will make the matixies of Cell VS mitochondrial variants and return mitoTracing Results stored in Cts.Mtx and Cts.Mtx.bi

Usage

```
Make_matrix(object)
```

Arguments

object mitoTracin class

Make_matrix, mitoTracing-method

Make_matrix This will make the matixies of Cell VS mitochondrial variants and return mitoTracing Results stored in Cts.Mtx and Cts.Mtx.bi

Description

Make_matrix This will make the matixies of Cell VS mitochondrial variants and return mitoTracing Results stored in Cts.Mtx and Cts.Mtx.bi

Usage

```
## S4 method for signature 'mitoTracing'
Make_matrix(object)
```

Arguments

object mitoTracin class

Value

mitoTracin class

Make_tree This will generate a basic phylogenetic tree

Description

Make_tree This will generate a basic phylogenetic tree

Usage

```
Make_tree(object, d = "jaccard", algorithm = "upgma", onlyreturntree = F, ...)
```

Arguments

object mitoTracin class

d "jaccard" or "Dice" or "jaccard3W"

algorithm the algorithm used to build the tree, choose from "nj" and "upgma"

Make_tree, mitoTracing-method

Make_tree This will generate a basic phylogenetic tree

Description

Make_tree This will generate a basic phylogenetic tree

Usage

```
## S4 method for signature 'mitoTracing'
Make_tree(object, d, algorithm, onlyreturntree = F)
```

Arguments

object mitoTracin class

d "jaccard" or "Dice" or "jaccard3W"

algorithm the algorithm used to build the tree, choose from "nj" and "upgma"

Value

mitoTracin class

mitoTracing-class 11

mitoTracing-class Major mitoTracing class that store clonal-resolved multi-omics

Description

Major mitoTracing class that store clonal-resolved multi-omics

Slots

GTsummary.filtered The Mitochondrial genotype data frame

CellMeta Store meta data for each cell type

V.fitered.list a list of data frame of variant metrics, VAF, cellN, etc (each for different stringency),

UniqueV A character showing the number of usable variant

Cts.Mtx A sparse matrix cell-mitoVariants, store the variant count

 $\hbox{Cts.Mtx.bi} \ \ A \ sparse \ matrix \ cell-mito \ Variants, \ The \ variant \ count \ has \ been \ binarized \ into \ 0 \ and \ 1$

para A character showing the parameter of this object

Seurat Seurat object storing the clonal clustering results

DataToplotList The customized class of Datatoplots: A list of dataframe for further plotting DistObjects The customized class that stores the cell-cell distances

TREE The customized class that wraps phylogenetic tree

MutationProfile.bulk

Function to plot bulk level mutation signatures

Description

This function allows you to plot the mito mutation signatures

Usage

```
MutationProfile.bulk(cell_variants)
```

Arguments

```
cell_variants
```

a vector of variants formated as c('93_A_G"103_G_A"146_T_C'

Value

p from ggplot2

Examples

```
MutationProfile.bulk(DN1CD34_1.Variants.feature.lst[[name]]$Variants
```

12 plot_variant

plot_depth

Function to plot the mito depth summary

Description

This function allows you to plot both position-wise and cell-wise mito depth summary

Usage

```
plot_depth(depth = DN1CD34_1.depth, name = "", w = 10, h = 3)
```

Arguments

depth The .depth file by function DepthSummary

name The plot name shown on top

w the Width of the plot, default=10

h the height of the plot default=3

Value

directly out put the plot

Examples

```
plot_depth(DN1CD34_1.depth$Total, "Total")
```

plot_variant

Function to plot variant metrics

Description

This function allows you to plot the mito mutation metrics For each category(stringency), p1: Variant allele frequency(VAF); p2: Heteroplasmy histogram p3: CellN(Number of caells that carry the variants) VS maxcts(The number of variant counts in the highest cell) p4: Histogram to show the distribution of the number of variant per cell

Usage

```
plot_variant(
   GTSummary,
   feature.list,
   depth,
   cat = c("Total", "VerySensitive", "Sensitive", "Specific"),
   p4xlim = 50,
   QualifyCellCut = 10
)
```

SeuratLSIClustering 13

Arguments

GTSummary file read in by function CW_mgatk.read

feature.list The variant feature list generated by Vfilter_v3
depth The .depth file by function DepthSummary

The category(or the striengency to be ploted), default is c("Total", "VerySensitive", "Sensitive", "Specification of the striengency to be ploted).

p4xlim the p4 xlim(number of variant per cell), default is 50

QualifyCellCut

median coverage for qualified cells, default is 10

Value

no returns, directly plot

Examples

```
plot_variant(DN1CD34_1.VariantsGTSummary,DN1CD34_1.Variants.feature.lst,depth=DN1CD34_1.c
```

SeuratLSIClustering

SeuratLSIClustering This will use the mito variants for Seurat clustering (LSI based)

Description

SeuratLSIClustering This will use the mito variants for Seurat clustering (LSI based)

Usage

```
SeuratLSIClustering(object, ...)
```

Arguments

object mitoTracin class

SeuratLSIClustering, mitoTracing-method

SeuratLSIClustering This will use the mito variants for Seurat clustering (LSI based)

Description

SeuratLSIClustering This will use the mito variants for Seurat clustering (LSI based)

Usage

```
## S4 method for signature 'mitoTracing'
SeuratLSIClustering(object, binary = T, res = 0.3)
```

14 TREE-class

Arguments

binary Default is tree, to make use of the binary matrix res Default os 0.3, the resolution of the clustering

mitoTracing class

Value

mitoTracing class

```
show, mitoTracing-method
```

show This will show the basics of mitoTracin class

Description

show This will show the basics of mitoTracin class

Usage

```
## S4 method for signature 'mitoTracing'
show(object)
```

Arguments

object

mitoTracin class

Value

print out basics

TREE-class

An intermediate S4 class Tree that store tree info

Description

An intermediate S4 class Tree that store tree info

Slots

```
phylo the phylo tree class from ape package
treedata treedata class from tidytree
records character to store annotations
```

Vfilter_v3

Vfilter_v3

Function to filter variants

Description

This function allows you to filter variants

Usage

```
Vfilter_v3(
   InputSummary,
   depth,
   Rmvhomo = F,
   Min_Cells = 2,
   Max_Count_perCell = 2,
   QualifyCellCut = 10
)
```

Arguments

InputSummary The GTSummary file read in by function CW_mgatk.read

depth The .depth file by function DepthSummary

Rmvhomo Boolean (Default F) If true, remove the homozygous variants

Min_Cells Default 2, A qualified variant needs the minimum number of cells that have this

variant

Max_Count_perCell

Default 2, A qualified variant needs to show at least 2 counts in one cell

QualifyCellCut

Default 10, Minimum depth for a qualified cell

Value

this returns feature.list

Examples

DN1CD34_1.Variants.feature.lst<-Vfilter_v3(InputSummary=DN1CD34_1.VariantsGTSummary,depth

Index

```
AddDatatoplot_clustering, 2
AddDatatoplot_clustering, mitoTracing-method,
AddDist, 3
AddDist, mitoTracing-method, 3
AddTree, 4
AddTree, mitoTracing-method, 4
CountVperCell, 5
Create_mitoTracing, 5
CW_mgatk.read, 6
Datatoplots (Datatoplots-class), 7
Datatoplots-class, 7
DepthSummary, 7
DistObjects (DistObjects-class), 8
DistObjects-class, 8
GTSummary, 8
{\tt Make\_matrix}, 9
Make_matrix, mitoTracing-method,
      9
Make_tree, 10
{\tt Make\_tree}, {\tt mitoTracing-method}, {\tt 10}
mitoTracing(mitoTracing-class),
mitoTracing-class, 11
MutationProfile.bulk, 11
plot_depth, 12
plot_variant, 12
SeuratLSIClustering, 13
SeuratLSIClustering, mitoTracing-method,
show, mitoTracing-method, 14
TREE (TREE-class), 14
TREE-class, 14
Vfilter_v3, 15
```