7. Quantum entanglement

Vaughan Sohn

December 9, 2024

Contents

Entanglement in pure state

Entanglement in mixed state

Quantity of the entanglement

Entanglement witness

General theory of Entanglement witness

Product state

Pure state에서 entanglement를 판단하는 대표적인 기준은 composite system의 state를 product state의 형태로 표현이 가능한지 확인하는 것이다.

- product state: $|\psi\rangle_{AB} = |\psi\rangle_{A} \otimes |\psi\rangle_{B}$
- entangled state: $|\psi\rangle_{AB} \neq |\psi\rangle_{A} \otimes |\psi\rangle_{B}$

Example:

• 다음 state는 entangled state인가?

$$\frac{1}{\sqrt{2}}\left(|00\rangle + |01\rangle + |10\rangle + |11\rangle\right)$$

다음 state는 entangled state인가?

$$\frac{1}{\sqrt{2}}\left(|00\rangle + |01\rangle + |10\rangle - |11\rangle\right)$$

Question

이 방법보다 더 간단한 방법은 없을까?

⇒ Schmidt decomposition!

Schmidt decomposition

Theorem 1 (Schmidt decomposition)

Schmidt decomposition은 다음과 같이 정의된다.

$$|\psi\rangle = \sum_{ij} c_{ij} |i\rangle |j\rangle = \sum_{k=1}^{d} D_k |u_k\rangle |v_k\rangle$$

where $|\psi\rangle_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_d$, $dim(H_A \otimes H_b) = d^2$.

Schmidt coefficient의 rank를 확인하여 entangled인지 구분할 수 있다.

- product state: d=1
- entangled state: d > 1

Schmidt decomposition

* Proof:

Schmidt decomposition은 다음과 같이 quantum state의 coefficient를 대각화가 가능한 $d \times d$ matrix의 원소로 생각하는 것에서부터 출발한다.

$$c_{ij} = [C]_{ij} = [UDV]_{ij}$$

따라서 이 표현을 대신 대입하게되면, 대각행렬 D의 원소들만을 사용하여 quantum state를 새로운 basis에 대해 표현할 수 있다.

$$\begin{split} |\psi\rangle &= \sum_{ij} [UDV]_{ij} \, |i\rangle \, |j\rangle \\ &= \sum_{ijk} u_{ik} D_{kk} v_{kj} |i\rangle |j\rangle \\ &= \sum_{k} D_k \underbrace{\sum_{i} u_{ik} |i\rangle}_{|u_k\rangle} \underbrace{\sum_{j} v_{kj} |j\rangle}_{|v_k\rangle} \\ &= \sum_{k=1}^{d} D_k \, |u_k\rangle \, |v_k\rangle \, . \end{split}$$

LU equivalent

Definition 2 (LU equivalent)

두 n-qubit state $|\psi\rangle$ 와 $|\phi\rangle$ 가 **LU equivalent**라면 다음을 만족하는 어떤 local unitary U_1,U_2,\cdots,U_n 가 존재한다.

$$|\phi\rangle = (U_1 \otimes U_2 \otimes \cdots \otimes U_n) |\psi\rangle$$

 \Rightarrow 만약 어떤 임의의 state $|\psi\rangle$ 가 product state와 LU equivalent라면 $|\psi\rangle$ **역시** product state이며, entangled state와 LU equivalent라면 $|\psi\rangle$ **역시** entangled state이다.

Example:

• LU equivalent인지 확인하고 이로부터 entangled state인지 판단하라.

$$\frac{1}{\sqrt{2}} \left(|00\rangle + |01\rangle + |10\rangle - |11\rangle \right), \qquad \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

• LU equivalent인지 확인하고 이로부터 product state인지 판단하라.

$$\frac{1}{\sqrt{2}}\left(|00\rangle + |01\rangle + |10\rangle + |11\rangle\right), \qquad |00\rangle$$

LU equivalent and Schmidt coefficient¹

Note

만약 두 상태가 **동일한 Schmidt coefficient**를 가진다면, LU equivalent이다.

다음과 같이 Schmidt decomposition으로 표현된 두 상태를 가정하자.

- $|\psi\rangle = D_1 |00\rangle + D_2 |11\rangle$
- $|\phi\rangle = D_1 |uv\rangle + D_2 |u^{\perp}v^{\perp}\rangle$

그렇다면, 다음의 unitary가 존재함을 쉽게 추측할 수 있다.

- $U|u\rangle = |0\rangle$, $U|u^{\perp}\rangle = 1$
- $V|v\rangle = |0\rangle, V|v^{\perp}\rangle = 1$

따라서 두 상태는 LU equivalent이다.

$$|\psi\rangle = (U \otimes V) |\phi\rangle$$

 $^{^{1}}$ Schmidt rank 또한 entanglement의 양을 분석하기 위해 사용되므로 LU equivalent와 관계가 있다.

Reduced state and LU equivalent

(recap) Composite system은 **partial trace**를 이용하여 각 composed system에 대한 reduced state를 나타낼 수 있다.

•
$$\rho^A = \operatorname{tr}_B[\rho^{AB}] = \sum_i \langle i|_B \, \rho^{AB} \, |i\rangle_B$$

•
$$\rho^B = \operatorname{tr}_A[\rho^{AB}] = \sum_i \langle i|_A \rho^{AB} |i\rangle_A$$

LU equivalent한 다음 두 상태를 가정하자.

•
$$|\psi\rangle = D_1 |00\rangle + D_2 |11\rangle$$

•
$$|\phi\rangle = D_1 |uv\rangle + D_2 |u^{\perp}v^{\perp}\rangle$$

$$|\psi\rangle = (U\otimes V)\,|\phi\rangle$$

각 상태에 대해 reduced state를 구하면, 다음과 같다.

$$\left|\psi\right\rangle = \begin{cases} \rho_{\psi}^{A} = D_{1}^{2}\left|0\right\rangle\left\langle0\right| + D_{2}^{2}\left|1\right\rangle\left\langle1\right| \\ \rho_{\psi}^{B} = D_{1}^{2}\left|0\right\rangle\left\langle0\right| + D_{2}^{2}\left|1\right\rangle\left\langle1\right| \end{cases}, \quad \left|\phi\right\rangle = \begin{cases} \rho_{\phi}^{A} = D_{1}^{2}\left|u\right\rangle\left\langle u\right| + D_{2}^{2}\left|u^{\perp}\right\rangle\left\langle u^{\perp}\right| \\ \rho_{\phi}^{B} = D_{1}^{2}\left|v\right\rangle\left\langle v\right| + D_{2}^{2}\left|v^{\perp}\right\rangle\left\langle v^{\perp}\right| \end{cases}$$

 \Rightarrow Spectral decomposition으로 표현된 ρ^A, ρ^B 가 동일한 eigenvalue $(\lambda_i \triangleq D_i^2)$ 를 가지는 것을 알 수 있다. 2

•

 $^{^2}ho_{\psi}^A,
ho_{\psi}^B$ 는 완전히 equivalent한 state, $ho_{\phi}^A,
ho_{\phi}^B$ 는 Schmidt coefficient가 동일하므로 LU equivalent.

Example

다음 state가 entangled state인지 아닌지 다양한 방법³으로 해결해보자.

• Example 1:

$$\frac{1}{\sqrt{2}}\left(|00\rangle + |01\rangle + |10\rangle + |11\rangle\right)$$

• Example 2:

$$\frac{1}{\sqrt{3}}\left(|00\rangle + |01\rangle + |10\rangle\right)$$

³product, Schmidt decomposition, LU-equivalent

(Example 2) LU equivalent와 reduced matrix를 이용하여 해결하는 solution: 주어진 state가 다음과 같이 Schmidt decomposition으로 표현할 수 있다고 하자.

$$|\psi\rangle = \frac{1}{\sqrt{3}}(|00\rangle + |01\rangle + |10\rangle) = \sum_{k} D_k |u_k\rangle |v_k\rangle$$

그러면 각각의 system A,B에 local operator를 가하여 동일한 basis $\{|k\rangle\}$ 로 나타낼 수 있으며, 이 state와는 LU-equivalent 관계이다.

$$|\psi'\rangle = \sum_{k} D_k |k\rangle |k\rangle = (U \otimes V) |\psi\rangle$$

 $|\psi\rangle$ 에 대한 reduced state는 각각 다음과 같다.

$$\rho^{A} = \sum D_{k}^{2} |u_{k}\rangle \langle u_{k}| = U\left(\sum_{k} D_{k}^{2} |k\rangle \langle k|\right) U^{\dagger}$$

$$\Rightarrow \rho^A = \frac{2}{3} \left| + \right\rangle \left\langle + \right| + \frac{1}{3} \left| 0 \right\rangle \left\langle 0 \right| = U \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} U^{\dagger}$$

이때, $\lambda_1>0$, $\lambda_2>0$ 이므로 $|\psi\rangle$ 는 entangled state이다. \Box

Canonical form of Two-qubit state

Schmidt decomposition을 이용하면 canonical form을 정의할 수 있다.

Definition 3 (Canonical form of two-qubit state)

다음과 같이 표현되는 two-qubit state는 어떤 two-qubit state $|arphi\rangle$ 와도 LU-equivalent 하도록 만드는 coefficient lpha,eta를 가진다.

$$\begin{split} |\psi\rangle &= \alpha \, |00\rangle + \beta \, |11\rangle \\ &= \cos\theta \, |00\rangle + \sin\theta \, |11\rangle \,, \qquad (0 \le \theta \le \pi/4) \end{split}$$

* (why?) : $\{|0\rangle,|1\rangle\}$ 은 single qubit state의 대표적인 basis이며, 위의 canonical form은 대표적인 basis를 이용한 Schmidt decomposition의 형태이다.

*Local unitary*를 이용하면 어떤 형태의 Schmidt decomposition이든 위와 같은 형태로 변환시킬 수 있기 때문에, 어떠한 상태와도 LU-equivalent 할 수 있다.

- $|u_1\rangle = U|0\rangle$, $|u_2\rangle = U|1\rangle$
- $|v_1\rangle = V |0\rangle$, $|v_2\rangle = V |1\rangle$

$$|\varphi\rangle = \alpha |u_1 v_1\rangle + \beta |u_2 v_2\rangle = (U \otimes V)(\alpha |00\rangle + \beta |11\rangle) \approx^{LU} |\psi\rangle$$

Separable state

Mixed state에서 entanglement를 판단하는 대표적인 기준은 composite system의 density matrix가 separable state의 형태로 표현이 가능한지 확인하는 것이다.

Definition 4 (Separable state)

A separable state can be prepared by LOCC(Local Operation and Classical Communication)

$$\rho^{AB} = \sum_{i} p(i) \left(\rho_{i}^{A} \otimes \rho_{i}^{B} \right)$$

- LO: 각 system A, B에서 ρ_i 를 준비하기 위해 사용하는 연산
- CC: mixed state의 확률분포 $\sim p$ 를 공유하기 위한 communication 4

 $^{^{4}\}text{TODO} \text{: } A\text{, }B$ 가 각각 p(i)의 확률로 ρ_{i}^{A} 를 준비하는게 맞는지 확인 필요

Non-separable state: entangled state

Definition 5 (Non-separable state)

A separable state cannot be prepared by LOCC

$$\rho^{AB} \neq \sum_{i} p(i) \left(\rho_i^A \otimes \rho_i^B \right)$$

• Example $1:\epsilon$ 이 1에 가까울수록 separable state에 가까워 A.5

$$\rho = (1 - \epsilon) |\psi_{ent}\rangle \langle \psi_{ent}| + \epsilon \frac{I}{4}$$

• Example 2:

$$\rho = \frac{1}{2} |00\rangle \langle 00| + \frac{1}{2} |11\rangle \langle 11|$$
(sol.)
$$\rho = \frac{1}{2} (|0\rangle \langle 0| \otimes |0\rangle \langle 0|) + \frac{1}{2} (|1\rangle \langle 1| \otimes |1\rangle \langle 1|)$$

• Example 3⁶:

$$\begin{split} \rho &= \frac{1}{2} \left| \Phi^+ \right\rangle \left\langle \Phi^+ \right| + \frac{1}{2} \left| \Phi^- \right\rangle \left\langle \Phi^- \right| \\ \text{(sol.)} \quad \rho &= \frac{1}{2} (\left| 0 \right\rangle \left\langle 0 \right| \otimes \left| 0 \right\rangle \left\langle 0 \right| + \left| 1 \right\rangle \left\langle 1 \right| \otimes \left| 1 \right\rangle \left\langle 1 \right|) \end{split}$$

⁵I/4가 separable이므로

⁶부호가 다른 두 entanglement state들의 mixed state라서 product로 표현할 수 없는 state들이 소거된다.

Example

• Example 4:

$$\rho = \frac{1}{4} \left(\left| \Phi^+ \right\rangle \left\langle \Phi^+ \right| + \left| \Phi^- \right\rangle \left\langle \Phi^- \right| + \left| \Psi^+ \right\rangle \left\langle \Psi^+ \right| + \left| \Psi^- \right\rangle \left\langle \Psi^- \right| \right)$$

• Example 5:

$$\rho = \frac{1}{3} \left(\left| \Phi^+ \right\rangle \left\langle \Phi^+ \right| + \left| \Phi^- \right\rangle \left\langle \Phi^- \right| + \left| \Psi^+ \right\rangle \left\langle \Psi^+ \right| \right)$$

Mixed state의 entanglement를 확인하는 또 하나의 방법을 바로 PPT Criteria라고 한다.

Theorem 6 (Positive Partial Transpose contidion)

만약 ρ 가 separable state라면, ρ 를 이루는 system중에서 일부 system만 transpose를 취하더라도 여전히 quantum state, 즉 positive matrix 여야한다.

$$\rho^{T_B} = \sum_{i} p(i) |e_i\rangle \langle e_i| \otimes (|f_i\rangle \langle f_i|)^T \ge 0,$$

where $\rho = \sum_{i} p(i) |e_i\rangle \langle e_i| \otimes |f_i\rangle \langle f_i|$.

- Partial transpose: 특정 system에 대해서만 transpose를 취하는 연산
- Partial transpose in matrix:
 - \circ T_A : Block 1과 Block 4 내부의 요소가 각각 전치된다.
 - \circ T_B : Block 2와 Block 3 내부의 요소가 각각 전치된다.

$$\rho = \begin{bmatrix} \mathsf{Block} \ 1 \ (00) & \mathsf{Block} \ 2 \ (01) \\ \mathsf{Block} \ 3 \ (10) & \mathsf{Block} \ 4 \ (11) \end{bmatrix}$$

• Positive matrix: non-negative eigenvalue만을 가지는 행렬

Example

Example 1 (Bell state) : $ho=|\Phi^+\rangle\langle\Phi^+|$ 의 matrix representation은 다음과 같다.

$$\rho = |\Phi^{+}\rangle \langle \Phi^{+}| = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}, \qquad \operatorname{eig}(\rho) : 1/2, 0$$

반면, 이 state의 partial transpose는 다음과 같이 **negative eigenvalue**를 가지기 때문에 entangled state이다.

$$\rho^{T_B} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \text{eig}(\rho): -1/2, 1/2$$

Example

Example 2:

다음과같이 Bell state와 pure state의 mixed state로 표현된 ho를 p가 얼마일때를 기준으로 entangled / separable state로 나뉘는가?

$$\rho_p = (1 - p) |\Phi^+\rangle \langle \Phi^+| + p \frac{I}{4}$$

⇒ (hint) 기준이 되는 지점은 partial trace의 minimum eigenvalue가 음수가 되는 지점!

$$\rho^{T_B} = (1 - p) \underbrace{\left(|\Phi^+\rangle \langle \Phi^+| \right)^{T_B}}_{\lambda_{\min} = -1/2} + p \underbrace{\left(\frac{I}{4} \right)^{T_B}}_{\lambda_{\min} = 1/4}$$

따라서 minimum eigenvalue로부터 얻은 기준은 p=2/3 이다.

$$\lambda^* = \min_{i} \langle v_i | \rho^{T_B} | v_i \rangle$$
$$= (1 - p) \left(-\frac{1}{2} \right) + \frac{p}{4} < 0$$

Summary: condition of entanglement

Summary

- pure state
 - o (definition) product state인지 아닌지 확인한다.

$$(\text{sep}) \qquad |\psi\rangle^{AB} = |\psi\rangle^{A} \otimes |\psi\rangle^{B}$$

- o Schmidt decomposition : rank = 1이라면 product, rank > 1이라면 entangled.
- o Product state와 LU-equivalent라면 product, entangled state와 LU-equivalent라면 entangled.
- o Reduced state의 Schmidt rank = 1이라면 product, rank > 1이라면 entangled.⁷
- mixed state
 - o (definition) separable state인지 아닌지 확인한다.

$$(\text{sep}) \qquad \rho^{AB} = \sum_i p(i) \rho_i^A \otimes \rho_i^B$$

o PPT Criteria : partial trace가 positive라면 separable, positive가 아니라면 entangled.

⁷확인 필요

Entanglement measure

Positive trace test

Feasibleness

Example

Summary: entanglement witness of arbitrary quantum state

Quantum channel

Summary

Summary

-

References

 Lecture notes for EE547: Introduction to Quantum Information Processing (Fall 2024)