Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Puebla

TC2008B

Modelación de sistemas multiagentes con gráficas computacionales (Gpo 301)

RETO: Arranque del proyecto

Profesores

Luciano García Bañuelos

Daniel Pérez Rojas

Equipo #3

Integrantes

Juan Carlos Llanos Ordóñez A01734916

Jesús Jiménez Aguilar A01735227

Alan Eduardo Dávila Arellano A01731445

11 de noviembre de 2022

Conformación del equipo

***** Integrantes

➤ Alan Eduardo Dávila Arellano

- Fortalezas
 - Responsable
 - Manejo bien mi tiempo
- Áreas de oportunidad
 - Aprender a modelar en 2D y 3D
 - Mejorar mis habilidades en Python
 - Aprender a manejar Java
- Expectativas
 - Aprender a realizar el graficado tanto de situaciones de la vida real como de otros modelos no estrictamente relacionados con agentes (como las actividades de figuras geométricas).

> Jesús Jiménez Aguilar

- Fortalezas
 - Conocimiento de Python
 - Autodidacta
 - Razonamiento lógico para implementar en detalle del reto
- Áreas de oportunidad
 - Organización del tiempo
 - Desarrollo de modelado de objetos en 3D
- Expectativas
 - Establecer el conocimiento gráfico para implementar el desarrollo de gráficas computacionales desde comportamientos físicos ya sea para el uso de industrias de entretenimiento y de investigación.

> Juan Carlos Llanos Ordóñez

- Fortalezas
 - Conocimiento de modelado de objetos 2D y 3D en ambientes simulados
 - Conocimiento de Java
- Áreas de oportunidad
 - Desarrollo gráfico
 - IBM Cloud
- Expectativas
 - Desarrollar un sistema apto para cumplir con las expectativas de simulación dadas para el proyecto, con los requerimientos necesarios para entregar un trabajo de calidad y que esté bien optimizado.

Compromisos como equipo

Como equipo nos comprometemos a desarrollar un proyecto que solucione el problema de tráfico que se presenta en el Tec de Monterrey campus Puebla en las horas pico de la mañana. Esto a través de la implementación de multiagentes que simularán el movimiento de los vehículos que circulan alrededor del campus en ese horario. Adicional a esto se creará un modelo que se asemeje al campus donde se podrá visualizar la simulación.

Creación de herramientas de trabajo colaborativo

* Repositorio de Bitbucket

https://bitbucket.org/juan_carlos_llanos/smultiagentes/src/master/

❖ Grupo de WhatsApp

Propuesta formal del reto

Descripción del reto a desarrollar

Dentro del Tecnológico de Monterrey campus Puebla, se genera mucho tráfico todas las mañanas debido a la gran cantidad de estudiantes de preparatoria y profesional que tienen coincidencias de horarios. Debido a lo anterior, se quiere probar distintos acomodos de la infraestructura vial para de esta manera lograr disminuir el tiempo de espera de los vehículos que intentan entrar, estacionarse y salir del campus.

❖ Objetivo del reto

El principal objetivo de este reto es presentar una simulación con la posible solución a la problemática presentada. Para esto se implementará el comportamiento de los vehículos como agentes independientes que coexisten dentro del espacio que se desarrollará, teniendo en cuenta que cada uno tendrá un comportamiento y lineamientos específicos siendo estos lo más parecidos posibles a una realidad. Entre los agentes que se implementará son:

1. Personas que buscan un lugar en el estacionamiento

- a. Buscan un lugar de estacionamiento cerca del aula donde tomará clase
- b. Evita hacer largas filas

2. Personas que van a dejar a su familiar a preparatoria o profesional

- a. Buscan dejar a su familiar lo más cercano posible a su aula
- b. Evita hacer largas filas

3. ExpresoTec

- a. Llegar a su lugar de estacionamiento predefinido
- b. Llegar a tiempo a campus

Posible solución al reto

Se planea crear un modelo donde el ambiente simulado sea parecido al escenario real e interactúe con los agentes previamente definidos. A causa de lo dificil que es modificar por sí mismas los agentes, para lograr hallar la mejor solución al tema de eficiencia se modificará entonces el ambiente en el que estos interactúan, como las entradas y salidas a la avenida Tec, o incluso el flujo de tráfico en esta.

Componentes:

- 1. Primer prototipo en python. Vemos muy factible el uso de 2 proyectos bases mostrados en la documentación de "agentpy". Estas son las siguientes:
 - a. Flocking behavior (Comportamiento de aves en un espacio predeterminado):
 - i. Declarar los agentes de la problemática y asignarles todas las reglas de movimiento de las aves definidas en este modelo.
 - ii. Los carros pueden tener un comportamiento similar a las aves, pues estos se mueven en grupos, y también tienen un movimiento limitado por las calles. Tal como la simulación hay veces en las que el grupo se separa al momento de estar frente a un semáforo, o al seguir rutas diferentes. Igualmente se pueden comportar de diferente manera pues los carros sí pueden pararse por completo y podrían tener una distribución de densidad diferente a las aves. Podríamos tomar esto como base, y adaptarlo para ajustar el comportamiento a uno real.

b. Segregation:

- i. Combinar el ambiente utilizado en este modelo junto con los agentes declarados con el modelo anterior.
- ii. Para el caso de *segregation*, se busca implementar el uso de grid para la categorización de los tres tipos de agentes y división de su comportamiento con el fin de aumentar la eficiencia. En el ejemplo de la clase, entre más distribuido estén los carros, se tardarán más en juntarse y seguir con el mismo paso/flujo. Con esto podríamos encontrar que entre más juntos estén los agentes del mismo tipo, mejoraría el flujo vehicular.
- 2. Agregar un objetivo a los agentes: definir los lugares a donde tienen que llegar para simular la llegada de la comunidad al campus.
- 3. Asignar reglas de comportamiento adicionales a los agentes para simular la manera en la que actúan los automovilistas reales.
- 4. Crear diferentes configuraciones de un ambiente y evaluar los resultados para definir en qué escenarios se pueden generar espacios óptimos con la mayor eficiencia.

Diagrama UML de los agentes

Diagrama de Clases de los agentes

❖ Plan de trabajo

Rojo: No empezado Amarillo: En proceso Verde: Completo

Entrega	Encargado	Fecha de entrega	Status	Aprendizaje
Prototipado de misión y visión del proyecto	Jesus	11/11/2022		Conoces cuáles serían los principios básicos de agentes que serían utilizados dentro de la idea inicial de nuestro proyecto.
Creación de grafos con coordenadas	Juan Carlos	14/11/2022		Aprender la librería networkx para el desarrollo de grafos
Comportamiento de agentes primer prototipo visual	Alan	16/11/2022		Manejo de las librerías pygame y numpy de Python, con un acercamiento orientado a objetos.

Reporte primer prototipo visual	Jesus	18/11/2022	Aprendizaje sobre el modelo de Brooks y el algoritmo A* y su función en el manejo de agentes.
Grafos direccionados	Juan Carlos	21/11/2022	Aprender un poco más de la librería de networkx para crear grafos direccionales.
Unión de primer prototipo con gráfos no direccionados y direccionados	Juan Carlos	21/11/2022	Entender diferentes acercamientos a la resolución de un problema de agentes y proponer una solución simplificada
Generación de props para el mapa	Alan	23/11/2022	Poner en práctica conceptos de edición y manipulación de objetos
Importar Assets de paquetes externos	Jesus	23/11/2022	Búsqueda de paquetes externos de una manera ética e importar solamente los <i>Prefabs</i> deseados.
Mapeo de ciudad (mostrar gráficamente las calles y la zona Tec)	Juan Carlos	25/11/2022	Experimentar con las herramientas, descargar assets y modificarlos. Lograr hacer un modelo a escala.
Dirección técnica	Alan	25/11/2022	Supervisión de balance y relación de modelados para emulación, todo englobado dentro del mismo concepto artístico, así como segundo apoyo en proceso de graficación
Generar API Flask para python	Jesus	27/11/2022	Generar API usando Flask para publicar las posiciones de los agentes en tiempo real
Modelo de movimiento básico	Juan Carlos	27/11/2022	Programa en c# que recibe coordenadas de la api y despliega el movimiento desde cuestiones simples, una vez con la estructura definida se hará mayores revisiones para que los agentes tengas

			una renderización más precisa.
Optimizar la forma en que se escogen los weights, a través de una función	Jesus	28/11/2022	Entender a profundidad la lógica de los agentes y mejorar la forma en la que toman decisiones
Incorporar Assets externos al mapa	Alan	28/11/2022	Manejo y edición de <i>Assets</i> externos para adecuarlos a las necesidades del proyecto.
Renderización de objetos.	Alan	29/11/2022	Asignación/dirección/ en caso de ser necesario traducción de comportamiento de agentes y sus acciones en la emulación.
Fusión de diferentes componentes	Jesus Juan Carlos Alan	02/12/2022	Terminar de dominar