

Changes in the Building Landscape of Central Christchurch

GeoNet Spider

University of Canterbury

TEAM MEMBERS

Ding Ning

Ph.D. student

Mathematics and Statistics

Lewis White

Master's student
Computer Science

Susie Deng

Ph.D. student

Health Sciences and Geography

Takashi Murachi

Master's student

Geospatial Science

OBJECTIVES

Explore the feasibility of detecting changes in buildings in Central Christchurch over time from high-resolution satellite images using a deep learning approach.

Display the changes detected by a convolutional neural network on a user-friendly website

WORK FLOW

TOPIC AND DATA CHOICE

Area of Interest: Christchurch urban city

band

(1 band)

Water, shadow

car park, Road

(same class)

modify, but

limitation

Focus on

Building

(grey scale)

using blue

band

Initial class: Green space, residential area, car parks, roads, industrial area, under developing area and water

4 bands

(R,G,B, NIR)

What is Image classification or object detection or sematic segmentation

Figure: True colour(RGB) and label

Figure: Object detection

Captured on 28th of September 2014

Figure: Sematic segmentation

Figure: False colour (Healthy Vegetation) and label

Figure: Image classification (supervised learning)

OBJECT DETECTION by Remote sensing

specification Sensor type GeoEye-1 (Feb 2011, Jun 2012, Oct 2012, May 2013) 0.5m x 0.5m resolution 4 bands (Red, Spectral resolution Green, Blue and Near Infra-Red) 16bit Radiometric

→ 1. select band#1(blue)

2. check lowest pixels values on the building objects

3. choose threshold parameters between 0 to 255

4. manual check to investigate over the building objects that

have been covered correctly or not.

Lower pixel values detect higher object

Sensitive to Higher resolution/Higher radiometric resolution

Clean the attribute table by ArcGIS pro

Computing Environment

Platform and language: + colab

- GPU: Tesla P100-PCIE 16GB
- RAM: 25 GB
- Storage: 70 GB approx.
- Framework:

Model Architecture: U-Net

PRE - PROCESSING

- Cut the big image into piles and get 99 piles.
- Drop the edge piles and keep 80 813 x 802 complete piles.
- Resize the piles to 512 x 512.
- Split them into 70% for training and 30% for test.

Figure: Image and label

MODEL ARCHITECTURE

Figure: U-Net 2D, a convolutional autoencoder (CNN-AE)

RESULTS: SEMATIC SEGMENTATION (2012 - 2013)

PNG File with tiff file for georeferencing, using ArcGIS Pro

Buildings in 2012

2012 – 2013 changes

WEB DEVELOPMENT

Angular JS Framework

ESRI – ArcGIS API for Javascript with Angular CLI

HIGHLIGHTS

Modular and Quick implementation

Adaptable to changes in project scope

Detection of infrastructure using deep learning, Christchurch City (2011-2013)

Produced by GeoNet Spider Team Takiwaehere Hackathon, 17-18 April 2021

ewis White, Takashi Murachi, Bingyu Deng and Ding Ning of the University of Canterbury.

