ИЗУЧЕНИЕ ДЕЙСТВИЯ ЛИЗОЦИМА КЛЕЩЕЙ ORNITHODOROS MOUBATA (ARGASIDAE) НА ГАЛЬПРОВИИ (ХЛАМИДИИ)

С. Р. Бескина, В. М. Подборонов, Е. А. Житова, И. М. Гроховская

Институт эпидемиологии и микробиологии им. Н. Ф. Гамалеи АМН СССР, Москва

Лизоцим, выделенный из клещей *O. moubata* оказывает трансформирующее действие на возбудителя паратрахомы (штамм LB-1) в опытах in vitro. Изменения морфологических структур возбудителя, образующиеся в цитоплазматических включениях клеток L под действием лизоцима, протекают по типу изменений, возникающих у гальпровий под влиянием пенициллина.

На значительном фактическом материале рядом авторов (Подборонов и др., 1975, 1978; Anigstein e. a., 1950, Duncan, 1926) было показано, что органы и ткани клещей обладают бактерицидным действием для многих грам-положительных и грам-отрицательных бактерий. Позже было установлено, что вещество, находящееся в организме клещей и оказывающее бактерицидный эффект, является лизоцимом (Подборонов и др., 1975; Ревина и др., 1977). Было также показано, что лизоцим, выделенный из клещей О. moubata, уменьшал жизнеспособность R. prowazekii и R. canada (Подборонов и др., 1978). Эти данные указывают на достаточно широкий спектр лизоцима на различные представители микроорганизмов. В этой связи представляло интерес изучить его действие и на гальпровии, облигатные внутриклеточные паразиты прокариотной природы. В известной нам литературе подобные сведения отсутствуют.

Материалы и методы. В качестве модельного штамма гальпровий был использован возбудитель паратрахомы (штамм LB-1), полученный от доктора Ю. Шахтера (США, Сан-Франциско). Этот штамм поддерживался в нашей лаборатории в серийных пассажах. Титр возбудителя колебался в пределах $10^5-10^{6.3}$ ELD 50/0.5. Материалом для заражения клеток служила 5%-ная взвесь инфицированных LB-1 оболочек желточных мешков развивающихся куриных эмбрионов, приготовленная на 199-й среде без антибиотиков. Взвесь центрифугировали в течение 10 мин при 2000 об./мин для удаления клеточного детрита и нерастворимых липидов. В качестве инокулята служила надосадочная жидкость.

В качестве модели была использована перевиваемая линия клеток L (мышиные фибробласты). Клетки выращивали в плоскодонных центрифужных пробирках с покровными стеклами диаметром 11 мм на 199-й среде с 10%-ной прогретой сывороткой крупного рогатого скота без антибиотиков. В каждый культуральный сосуд заливали суспензию клеток по 1 мм из расчета 1.5—104/мл и выращивали в течение трех суток при 36° С.

Перед заражением среду сливали, клетки один раз отмывали раствором Хенкса, а затем вносили инокулят по 0.3 мл в каждую культуральную пробирку и подвергали центрифугированию при 2.400 g в течение 1 ч при 33°. Неадсорбированный материал сливали, монослой клеток дважды отмывали раствором Хенкса и заливали средой роста, содержащей 199-ю среду и 5% сыворотки крупного рогатого скота. Лизоцим получали из гомогената клещей О. moubata методом специфической сорбции последнего на хитине (поли-В-1-4-N-ацетилглюкозамин), обессоливали гель-фильтрацией на сефадексе G-25 (тонкий) и лиофилизировали. Гомогенат лизоцима проверяли на амберлите СС-50. Результаты хроматографирования пока-

зывали его высокую чистоту (Ревина и др., 1977). Лизоцим добавляли в концентрациях 5 мг/мл сразу же после адсорбции (0 ч) возбудителя и не удаляли в течение всего опыта. Разведение лизоцима готовили на 199-й среде. Контрольные инфицированные культуры без лизоцима и опытные с лизоцимом исследовали через 48 ч.

Рис. 1-2.

I— морфологические структуры гальпровий в цитоплазматических включениях клеток L, не обработанных лизоцимом клещей $O.\ moubata$ — 48 ч. Окраска по Май—Грюнвальду— Гимза, $\times 1400$.

2 — изменение морфологических структур гальпровий в цитоплазматических включениях клеток L под действием лизоцима клещей $O.\ moubata-48$ ч. Окраска по Май—Грюнвальду—Гимза, $\times 1400.$

Для выявления морфологических структур покровные стекла вынимали из культуральных пробирок, подсушивали на воздухе, фиксировали в 96-градусном этаноле и окрашивали по Май—Грюнвальду—Гимза (МГГ). Результы и обсуждение. В контрольных культурах, не обработанных лизоцимом, на 48-м ч выявили морфологические структуры, характерные для нормального цикла развития гальпровий (Шаткин и др., 1964) (см. рисунок, I). В культурах, обработанных лизоцимом клещей на тех же сроках, во включениях были обнаружены изменения морфологических структур (см. рисунок, I). Эти структуры были сходны с формами гальпровий, образованными под действием пенициллина (Прозоровский и др., 1979).

Полученные нами данные позволяют предположить, что лизоцим, выделенный из клещей, оказывает трансформирующее действие на возбудитель паратрахомы (штамм LB-1). Однако механизм его действия на гальпровии остается неясным и требует дальнейшего изучения.

Согласно литературным данным, организм клещей является средой обитания для различных возбудителей гальпровий сельскохозяйственных животных (Eddie e. a., 1969). Именно в этой связи возникает практический интерес дальнейшего изучения лизоцима на гальпровии в организме самого клеща.

Литература

- Подборонов В. М., Гроховская И. М. Изучение антибактериального действия органов и тканей клещей Hyalomma dromedarii, H. anatolicum, Ixodes persulcatus. — Мед. паразитол. и паразитарн. болезни, 1975, вып. 5, с. 545—
- Подборонов В. М., Гроховская И. М., Степанченок-Руд-ник Г. И. Получение и свойства бактерицидного вещества, выделенного из

клещей Ornithodoros papillipes. — Мед. паразитол. и паразитарн. болезни, 1975, вып. 6, с. 716—719.
Подборонов В. М., Гроховская И. М., Подборонов А. М. Сравнительное изучение бактерицидного действия организма клещей Ornithodoros popillipes.

doros papillipes. — Паразитология, 1978, т. 12, вып. 5, с. 400—405. Подборонов В. М., Игнатович В. Ф., Гроховская И. М. Действие одного из факторов защиты клещей (лизоцима) на риккетсии. — В кн.: Вопросы риккетсиологии. Сб. науч. тр. М., 1978, с. 22—23. Ревина П. А., Журавлева Т. П., Подборонов В. М., Гроховская И. М. Выделение лизоцима из клещей Alveonasus lahorensis (Argasica и И. М. Выделение лизоцима из клещей Alveonasus lahorensis (Argasica).

с к а я и. м. выделение лизоцима из клещеи Alveonasus lanorensis (Argasidae). — Мед. паразитол. и паразитарн. болезни, 1977, вып. 4, с. 418—420. Прозоровский С. В., Бескина С. Р., Попов В. Л., Бархатова О. И. Морфологические изменения гальпровий (хламидий), протекающие по типу L-трансформации бактерий. — В кн.: Гальпровизы хламидиозы человека и животных. М., 1979, с. 22—26. Шаткин А. А., Бескина С. Р. Культивирование возбудителей трахомы и паратрахомы в развивающихся куриных эмбрионах. П. Изучение некоторых

этапов развития агентов гистохимическими методами. — Вопр. вирусол., 1964,

вып. 6, с. 678—682.
A nigstein Z., Whithey D. M., Micks D. W. Antibacterial activity of a substance present in ticks (Ixodidae) of Texas. — Nature, 1950, N 4212, p. 141—143.

D u n c a k J. F. On a bactericidal principle present in the alimentary canal of insects

and arachnids. — Parasitology, 1926, vol. 18, p. 238—252.

Eddie B. F., Radovsky F. J., Stiller D., Kumada N., Psittacosislymphogranuloma venereum (PL) agents (Bedsonia, Chlamydia) in ticks, fleas, and native mammals in California. — Amer. J. Epidemiol., 1969, vol. 90, N 5, p. 449-460.

THE EFFECT OF LYSOZYME OF THE TICK ORNITHODOROS MOUBATA (ARGASIDAE) ON HALPROWIAE (CHLAMYDIAE) IN VITRO

S. R. Beskina, V. M. Podboronov, E. A. Zhitova, I. M. Grokhovskaya

SUMMARY

Lysozyme excreted from the tick Ornithodoros moubata caused in vitro changes of morphological structures of the paratrachoma agent (strain LB-1).