Množiny 1

Obsah

Obsah

1	Množiny	1
2	Binární relace, základní pojmy	2
3	Ekvivalence na množině	4
4	Uspořádání na množině	6
5	Zobrazení množin	8
Základní množinové pojmy		
Ø	prázdná množina	

 $x \in A \ x$ je prvkem množiny A

 $A\subseteq B\ A$ je podmnožina množiny B

$$(A \subseteq B) \Longleftrightarrow ((x \in A) \Rightarrow (x \in B))$$

 $A=B\,$ množina Aje rovna množině $B\,$

$$(A = B) \iff ((A \subseteq B) \land (B \subseteq A))$$

Potenční množina

Definice

Dána množina $A \neq \emptyset$. Pak množina

$$\P(A) = \{B \; ; \; B \subseteq A\}$$

se nazývá potenční množina množiny A.

- Pokud |A| = n, pak $|\P(A)| = 2^n$.
- P(A) se také někdy značí 2^A .

Základní množinové operace

 $A \cup B \,$ sjednocení množinA a B

$$(x \in A \cup B) \iff ((x \in A) \lor (x \in B))$$

 $A\cap B\,$ průnik množinA a $B\,$

$$(x \in A \cup B) \iff ((x \in A) \land (x \in B))$$

 $A \setminus B \,$ rozdíl množinA a B

$$(x \in A \setminus B) \iff ((x \in A) \land (x \notin B))$$

Základní množinové identity

- $\bullet \ A \cup B = B \cup A$
- $A \cap B = B \cap A$
- $(A \cup B) \cup C = A \cup (B \cup C)$
- $(A \cap B) \cap C = A \cap (B \cap C)$
- $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

2 Binární relace, základní pojmy

Obsah

Obsah

Binární relace

Definice 2.1

 \bullet Kartézským součinem neprázdných množinA,Brozumíme množinu

$$A \times B = \{(x, y) : x \in A, y \in B\}.$$

• Každou podmnožinu R kartézského součinu $A \times B$ nazveme binární relace mezi A a B.

- Pokud A=B, pak $R\subseteq A\times A$ se nazývá binární relace na množině A.
- $\bullet\,$ To, že dva prvky a,bjsou spolu v relaci $R\subseteq A\times B,$ zapisujeme

$$(a,b) \in R$$
 nebo $\langle a,b \rangle \in R$ nebo aRb .

• V matematice běžně pracujeme s některými relačními symboly

$$\perp$$
, \leq , =, |, ...

Binární relace

Příklad 2.1

- $\bullet~M~\dots$ množina všech mužů na Zemi
- \bullet Z ... množina všech žen na Zemi
- R ... množina všech manželských párů na Zemi, tj. $R = \{(x,y) \in M \times Z: \ x,y \ \text{jsou manžel\'e} \ \}$
- \bullet R je binární relace mezi množinami M a Z.

Binární relace

- Mezi množinami A a B, kde |A|=a, |B|=b, existuje právě $2^{a \cdot b}$ binárních relací
- Na A existuje právě 2^{a^2} binárních relací.
- Nejvíce prvků má přitom tzv. plná relace $\omega_{A.B} = A \times B, \text{ resp. } \omega_A = A^2.$
- Nejméně prvků má naopak tzv. prázdná relace Ø.
- Speciální roli mezi relacemi na množině A má tzv. identita $id_A = \{(x,x): \ x \in A\}.$

Vlastnosti binárních relací na množině

Definice 2.2

Relace R na množině A se nazývá:

- reflexivní, jestliže $\forall x \in A$ platí, že $(x, x) \in R$;
- tranzitivní, jestliže z $(x,y) \in R, (y,z) \in R$ plyne, že i $(x,z) \in R$;
- symetrická, jestliže z $(x,y) \in R$ plyne, že i $(y,x) \in R$;
- antisymetrická, jestliže z $(x,y) \in R, (y,x) \in R$ plyne, že x=y.

Vlastnosti binárních relací na množině

Příklad 2.2 Reflexivní relace nemusí být identitou na A!

- $A = \{1, 2, 3, 4\}$
- $R = \{(1,1), (1,3), (2,2), (3,1), (3,3), (4,1), (4,4)\}$

Příklad 2.3 Nesymetrická relace nemusí být obecně antisymetrická!

- $A = \{1, 2, 3, 4\}$
- $S = \{(1,3), (2,2), (3,1), (4,2)\}$

Operace s relacemi

Definice 2.3

Dány relace R mezi A, B a S mezi B, C.

- Inverzní relací k relaci R rozumíme relaci R^{-1} mezi B,A takovou, že $R^{-1} = \{(x,y) \in B \times A: (y,x) \in R\}.$
- Složením relací R a S nazýváme relaci $R \circ S$ mezi A a C takovou, že $R \circ S = \{(x,z) \in A \times C: \ (x,y) \in R \land (y,z) \in S \text{ pro nějaké } y \in B\}.$

Věta 2.1

Dány relace $R \subseteq A \times B$, $S \subseteq B \times C$ a $T \subseteq C \times D$. Pak platí:

- 1. $(R^{-1})^{-1} = R$;
- 2. $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$;
- 3. $(R \circ S) \circ T = R \circ (S \circ T)$.

Operace s relacemi

Příklad 2.4 Skládání relací není komutativní!

- $A = \{a, b, c, d\}$
- $R = \{(a, c), (b, c), (d, b)\}$
- $S = \{(b, a), (c, d)\}$
- $R \circ S = \{(a,d), (b,d), (d,a)\} \neq \{(b,c), (c,b)\} = S \circ R$

Charakterizace vlastností relací na množině

Věta 2.2

Nechť R je relace na množině A. Pak platí:

- 1. R je reflexivní právě když $id_A \subseteq R$;
- 2. R je symetrická právě když $R = R^{-1}$;
- 3. R je tranzitivní právě když $R \circ R \subseteq R$.

3 Ekvivalence na množině

Obsah

Obsah

Relace ekvivalence na množině

Definice 2.4

Relaci $R\subseteq A^2$ nazýváme ekvivalence na A, pokud R je současně reflexivní, symetrická a tranzitivní.

- Pro danou množinu A jsou např. relace ω_A nebo id_A ekvivalence na A.
- Relace || ("být rovnoběžný") je ekvivalence na množině přímek v rovině.
- Relace = ("být roven") je ekvivalence na množině všech komplexních čísel.

Věta 2.3

Nechť R je ekvivalence na A. Pak R^{-1} je opět ekvivalence na A.

Rozklad množiny

Nechť I je libovolná množina taková, že A_i je množina pro každé $i \in I$. Pak množinu $\{A_i: i \in I\}$ nazveme indexovaný systém množin.

Příklad 2.5

$$I = \{1, 2, \dots, n\} \Rightarrow \{A_i : i \in I\} = \{A_1, A_2, \dots, A_n\}$$

Definice 2.5

Nechť $A \neq \emptyset$. Indexovaný systém neprázdných množin $\pi = \{A_i : i \in I\}$ nazveme rozklad množiny A, jestliže:

1. Množiny z π jsou po dvou disjunktní, tj.

$$A_i \cap A_j = \emptyset \qquad \forall i, j \in I \ (i \neq j);$$

2. Systém π tvoří pokrytí množiny A,tj.

$$A \subseteq \bigcup_{i \in I} A_i$$
.

Rozklad množiny indukovaný ekvivalencí

Definice 2.6

Nechť E je ekvivalence na množině $A \neq \emptyset$. Pak pro každé $a \in A$ nazveme množinu $[a]_E = \{x \in A : (a,x) \in E\}$ třídou ekvivalence E obsahující prvek a.

Věta 2.4

Nechť E je ekvivalence na A a nechť $a,b\in A$. Pak buď $[a]_E=[b]_E$, nebo $[a]_E\cap [b]_E=\emptyset$.

Věta 2.5

Nechť E je ekvivalence na A. Ze systému $\{[x]_E : x \in A\}$ vybereme systém π_E po dvou různých množin. Pak π_E je rozklad množiny A, který nazýváme rozklad indukovaný ekvivalencí E. Třídy rozkladu π_E jsou přitom třídy ekvivalence E.

Rozklad množiny indukovaný ekvivalencí

Příklad 2.6

Dána množina $A = \{1, 2, 3, 4, 5, 6\}$ a na ní relace E určená kartézským grafem

Obr. 1

Ekvivalence na množině indukovaná jejím rozkladem

Věta 2.6

Nechť $\pi=\{A_i: i\in I\}$ je rozklad množiny $A\neq\emptyset$. Definujme relaci E_π předpisem:

$$(a,b) \in E_{\pi} \iff (\exists i \in I : a,b \in A_i).$$

Pak E_{π} je ekvivalence na A nazvaná indukovaná rozkladem π . Její třídy jsou přitom třídami rozkladu π .

Ekvivalence na množině ⇔ rozklad množiny

Věta 2.7

Dána $A \neq \emptyset$, ekvivalence E na A a rozklad π množiny A.

• Je-li π_E rozklad indukovaný ekvivalencí E a E_{π_E} ekvivalence indukovaná rozkladem π_E , pak

$$E_{\pi_E} = E$$
.

• Je-li E_π ekvivalence indukovaná rozkladem π a π_{E_π} rozklad indukovaný ekvivalencí E_π , pak

$$\pi_{E_{\pi}} = \pi$$
.

4 Uspořádání na množině

Obsah

Obsah

Relace uspořádání

Definice 2.7

Relace $R\subseteq A^2$ se nazývá uspořádání na množině A, jestliže je reflexivní, tranzitivní a antisymetrická.

Příklad 2.7

- Relace " \leq " je uspořádáním na \mathbb{N} .
- Dána $A \neq \emptyset$. Pak " \subseteq " je uspořádáním na 2^A .
- \bullet Relace " | " je uspořádáním na ${\bf N}.$
- Stejná relace není uspořádáním na Z.

Dvojici (A; R), kde $R \subseteq A^2$ je uspořádání na A, nazýváme uspořádaná množina.

Hasseho diagramy

- Pro názornost je používáme k zakreslování uspořádaných množin.
- Dána uspořádaná množina (A; R).
- Každý prvek množiny A zakreslíme např. jako plné kolečko s příslušným označením.
- \bullet Pokud $(a,b) \in R,$ pak prvky a,bspojíme úsečkou, přitom prveka je vertikálně níže než prvek b.

Hasseho diagramy

Příklad 2.8

Uvažujme uspořádanou množinu $(D_{72}; \mid)$, kde D_{72} je množina všech přirozených dělitelů čísla 72. Tedy $D_{72} = \{1,2,3,4,6,8,9,12,18,24,36,72\}$ a Hasseho diagram $(D_{72}; \mid)$ vypadá následovně:

```
2:
         1|2
                            4|12 \wedge 6|12
                    12:
   3:
         1|3
                    18:
                           6|18 \wedge 9|18
        2|4
                    24:
                           8|24 \wedge 12|24
6: 2|6 \wedge 3|6
                   36:
                          12|36 \wedge 18|36
                          24|72 \wedge 36|72
   8: 4|8
                   72:
         3|9
```

Obr. 1

5 Zobrazení množin

Obsah

Obsah

Relace zobrazení

Definice 2.7

Nechť A,B jsou množiny a f je binární relace mezi A,B. Relace f se nazývá $zobrazení A\ do\ B$, jestliže:

- 1. Pro každé $a \in A$ existuje $b \in B$ tak, že $(a, b) \in f$;
- 2. Jestliže $(a, b_1) \in f \land (a, b_2) \in f$, pak $b_1 = b_2$.

Nechť A, B jsou množiny a f je zobrazení A do B.

- Zapisujeme $f: A \longrightarrow B$.
- Místo $(a,b) \in f$ běžně píšeme f(a) = b.
- Jestliže f(a) = b, pak prvek $a \in A$ se nazývá vzor prvku $b \in B$ a prvek b naopak obraz prvku a.
- Množinu všech prvků z B, které mají svůj vzor v A, nazýváme *úplný obraz množiny* A a značíme ji f(A).

Relace zobrazení

Příklad 2.9

Dány množiny $A=\{1,2,3\},\ B=\{x,y,z,w\}$ a relace $f=\{(1,w),(2,x)\}\subseteq A\times B.$

Obr. 2

Relace zobrazení

Příklad 2.10

Dány množiny $A = \{1,2,3\}, B = \{x,y,z,w\}$ a relace $g = \{(1,w),(2,x),(2,y),(3,x)\} \subseteq A \times B$.

Obr. 3

Skládání zobrazení

Věta 2.8

Nechť A,B,C jsou množiny a $f:A\to B,\ g:B\to C$ zobrazení. Pak relace $f\circ g$ je opět zobrazení, a sice A do C.

Definice 2.8

Nechť A,B,C jsou množiny a $f:A\to B,\ g:B\to C$ zobrazení.

- \bullet Zobrazení $f\circ g$ se nazývá $složení zobrazení <math display="inline">f\ a\ g.$
- $\forall x \in A$: $(f \circ g)(x) = g(f(x))$

Typy zobrazení

Definice 2.9

Dáno zobrazení $f:A\to B.$ f se nazývá

- 1. surjekce, je-li f(A) = B;
- 2. injekce, pokud pro každé $a_1, a_2 \in A, \ a_1 \neq a_2$ platí, že $f(a_1) \neq f(a_2)$;
- 3. bijekce, je-li současně surjekce a injekce.

Typy zobrazení

Příklad 2.11

- $f: \mathbf{R} \to \mathbf{R}$, kde $x \stackrel{f}{\longmapsto} x^2$ je zobrazení, které není surjektivní, ani injektivní:
- $g: \mathbf{R} \setminus \{0\} \to \mathbf{R}^+$, kde $x \stackrel{g}{\longmapsto} x^2$ je surjekce, ale ne injekce;
- $h: \mathbb{N} \to \mathbb{N}$, kde $x \stackrel{h}{\longmapsto} x + 1$ je injekce, ale ne surjekce;
- $k: \mathbf{R} \to \mathbf{R}^+$, kde $x \stackrel{k}{\longmapsto} e^x$ je bijekce.

Typy zobrazení

Věta 2.9

Uvažujme zobrazení $f:A\to B,\ g:B\to C.$

- 1. Jsou-li f a g surjekce, je surjekcí i zobrazení $f \circ g$.
- 2. Jsou-li f a g injekce, je injekcí i zobrazení $f \circ g$.
- 3. Jsou-li f a g bijekce, je bijekcí i zobrazení $f \circ g$.

Inverzní zobrazení

Příklad 2.12

- $A = \{a, b, c\}$
- $B = \{1, 2\}$
- $f = \{(a, 2), (b, 2), (c, 1)\} \subseteq A \times B$ je zobrazení A do B.
- K ní inverzní relace $f^{-1} = \{(2,a),(2,b),(1,c)\} \subseteq B \times A$ zobrazení B do Anení!

Inverzní zobrazení

 Věta 2.10 Nechť je dáno zobrazení $f:A\to B.$ Pak inverzní relace f^{-1} je zobrazením právě když f je bijekce.

Důsledek 2.11 Nechť $f:A\to B$ je bijekce. Pak f^{-1} je opět bijekce.