Relationship Between Number of Fast Food Chain and Diseases

COL NYC 2019: ETL Project Due: 10/19/2019

By: Pedro Takenouchi, Jorge Sanchez, Kwang Min Ko

Executive Summary

Our project is inspired by movie, "Super Size Me", we want to find out the relationship between numbers of fast food chain impacting the health and diseases of the population in the chosen area. We have identified the list of dies five most common physical and mental illness that can be caused by consistently consuming the fast foods. This is the document describing the ETL process that we carried out using the two data we found; "Fast Food Restaurants Across America", and "Health search by US Metropolitan Area, 2005-2017".

Data Dictionary

Name	Description	Туре	Value	Unique Yes	
Province	States (ex, NY)	Varchar	Not Null		
City	City (ex, New Jersey)	Varchar	Not Null	Yes	
Name	Name of the Fast Food	Varchar	Not Null	Yes	
	Chain Restaurant				
dma	States, City	Varchar	Not Null	No	
2017+Diarrhea	Diseases Type 1	Integer	Not Null	Yes	
2017+Obesity	Diseases TYPE 2	Integer	Not Null	Yes	
2017+Diabetes	Diseases TYPE 3	Integer	Not Null	Yes	
v2017+Cancer	Diseases TYPE 4	Integer	Not Null	Yes	
2017+Depression	Diseases TYPE 5	Integer	Not Null	Yes	
2016+Diarrhea	Diseases Type 1.2	Integer	Not Null	Yes	
2016+Obesity	Diseases TYPE 2.2	Integer	Not Null	Yes	
2016+Diabetes	Diseases TYPE 3.3	Integer	Not Null	Yes	
2016+Cancer	Diseases TYPE 4.2	Integer	Not Null	Yes	
2016+Depression	Diseases TYPE 5.2	Integer	Not Null	Yes	
2015+Diarrhea	Diseases Type 1.3	Integer	Not Null	Yes	
2015+Obesity	Diseases TYPE 2.3	Integer	Not Null	Yes	
2015+Diabetes	Diseases TYPE 3.3	Integer	Not Null	Yes	
2015+Cancer	Diseases TYPE 4.3	Integer	Not Null	Yes	
2015+Depression	Diseases TYPE 5.3	Integer	Not Null	Yes	

Data Cleaning

Part 1: Fast Food Restaurant Data Cleaning

We cleaned the data by taking out each fast food restaurant, city and state data. We made graph to see which state and city has most fast food restaurant numbers.

Transform FastFood DataFrame In [30]: # Create a filtered dataframe from specific columns fastfood_cols = ["address", "city", "country", "keys", "latitude", "longitude", "name", "postalCode", "province", "websites"] fastfood_transformed= fastfood_df[fastfood_cols].copy() # Rename the column headers fastfood_transformed = fastfood_transformed.rename(columns={"keys": "id", "province": "state"}) # Clean the data by dropping duplicates and setting the index fastfood_transformed.drop_duplicates("id", inplace=True) fastfood_transformed.set_index("id", inplace=True) fastfood_cleaned_cols = ["name", "city", "state"] fastfood_cleaned_fastfood_transformed[fastfood_cleaned_cols].copy() fastfood_cleaned

Out[30]:		name	city	state
	id			
	us/ny/massena/324mainst/-1161002137	McDonald's	Massena	NY
	us/oh/washingtoncourthouse/530clintonave/-791445730	Wendy's	Washington Court House	ОН
	us/ky/maysville/408marketsquaredr/1051460804	Frisch's Big Boy	Maysville	KY
	us/ny/massena/6098statehighway37/-1161002137	McDonald's	Massena	NY
	us/oh/athens/139columbusrd/990890980	OMG! Rotisserie	Athens	ОН
	us/oh/hamilton/4182tonyatrl/-1055723171	Domino's Pizza	Hamilton	ОН
	us/oh/englewood/590smainst/-1055723171	Domino's Pizza	Englewood	ОН
	us/sc/saluda/401njenningsst/-1161002137	McDonald's	Saluda	SC
	us/sc/batesburg/205wchurchst/-791445730	Wendy's	Batesburg	SC

Cincinnati and Las Vegas have most number of Fast Food Restaurants in States.

Out[64]: Text(0.5, 1.0, 'Distribution of fastfood restaurants in cities')

Part 2: Diseases Data Cleaning

We have chosen top five diseases that could be caused consistently consuming fast food. We decided five diseases based on our research and graph we have created.

Transform Metropolitan DataFrame

```
In [31]: # Create a filtered dataframe from specific columns, only get 2015, 2016, and 2017 data
# There are no nulls or duplicates in this dataset

metro_cols = ["dma", "2015+diarrhea", "2015+obesity", "2015+diabetes", "2015+cancer", "2015+depression", "2016+diarrheametro_transformed metropolitan_df[metro_cols].copy()
metro_transformed
```

Out[31]:		dma	2015+diarrhea	2015+obesity	2015+diabetes	2015+cancer	2015+depression	2016+diarrhea	2016+obesity	2016+diabetes	2
	0	Portland- Auburn ME	68	48	73	67	70	69	49	81	
	1	New York NY	56	46	63	64	55	57	49	77	
	2	Binghamton NY	84	67	75	64	69	79	70	74	
	3	Macon GA	71	60	73	66	68	66	51	78	
	4	Philadelphia PA	67	56	72	71	63	70	52	80	
	5	Detroit MI	69	46	65	67	61	71	43	73	
	6	Boston MA- Manchester NH	62	58	71	69	64	63	53	76	

We created graph which location has highest illness, we found out Las Vegas the second most number of fast food chain restaurant has one of highest rate of illness.

```
In [62]: statesData = pd.DataFrame(metro_transformed.iloc[:,0])
healthSearchData = metro_transformed.drop(['dma'],axis=1)

meanDict = {}
yearList = []
illnessList = []
for col in healthSearchData.columns:
    if '+' in col:
        yearList.append(col.split('+')[0])
        illnessList.append(col.split('+')[-1])

for index, row in healthSearchData.iterrows():
    for illness in illnessList:
        searchCountList = []
    for year in yearList:
        searchCountList.append(row[year+ '+' +illness])
    if not illness in meanDict:
        meanDict[illness] = []
    plateMapData = statesData.join(yearWiseMeanDf)
    heatMapData = statesData.join(yearWiseMeanDf)
    heatMapData.set_index('dma', inplace=True, drop=True)

import seaborn as sns
    plt.figure(figsize=(10, 25))
    plt.title("State wise illness search", fontsize=16)
    ax = plt.subplot(Ill)
    ax.spines["bottom"].set_visible(False)
    ax.spines["bottom"].set_visible(False)
    ax.spines["bottom"].set_visible(False)
    ax.spines["ilft"].set_visible(False)
    ax.spines["ilft"].set_visible(False)
    ax.spines["ilft"].set_visible(False)
    ax.gsines["bottom"].set_visible(False)
    ax.spines["bottom"].set_visible(False)
    ax.spines["state Visible(False)
    ax.spi
```


ERD Diagram

Table Schema

FastFood

_

Province varchar FK >- FastFood.City
City varchar
Name varchar
Distribution int

Diseases

2017+Depression int

_

dma varchar pk FK >- FastFood.Province
2016+Diarrhea int
2016+Obesity int
2016+Diabetes int
2016+Cancer int
2016+Depression int
2017+Diarrhea int
2017+Obesity int
2017+Diabetes int
2017+Cancer int

Queries

```
CREATE TABLE FastFood (
  Keys varchar NOT NULL,
  Province varchar NOT NULL,
  City varchar NOT NULL,
  Brand varchar NOT NULL,
  PRIMARY KEY (
      Keys
   )
);
CREATE TABLE 2017+Diseases (
  dma varchar NOT NULL ,
   2017+Diarrhea int NOT NULL,
  2017+Obesity int NOT NULL ,
  2017+Diabetes int NOT NULL,
  2017+Cancer int NOT NULL,
  2017+Depression int NOT NULL
);
CREATE TABLE 2016+Diseases (
  dma varchar NOT NULL ,
   2016+Diarrhea int NOT NULL,
  2016+Obesity int NOT NULL,
  2016+Diabetes int NOT NULL,
   2016+Cancer int NOT NULL,
  2016+Depression int NOT NULL
);
CREATE TABLE 2015+Diseases (
  dma varchar NOT NULL ,
   2015+Diarrhea int NOT NULL,
   2015+Obesity int NOT NULL,
  2015+Diabetes int NOT NULL,
   2015+Cancer int NOT NULL,
   2015+Depression int NOT NULL
```

TRUNCATE TABLE FastFood