Feuille 7 : Singularités des fonctions holomorphes. Théorème des résidus. Théorème de Rouché

Exercice 1. Trouver les singularités isolées des fonctions suivantes, et déterminer leur nature :

- (i) $\frac{z}{\sin z}$;
- (ii) $\cot z \frac{1}{z}$;
- (iii) $z(e^{1/z} 1)$.

Exercice 2. Soit $f: D(0,R) - \{0\} \to \mathbb{C}$ une fonction holomorphe telle qu'il existe une constante C > 0 avec $|f(z)| \le C|z|^{1/2}$ pour tout $z \in D(0,R) - \{0\}$. Quelle est la nature de la singularité de f en 0?

Exercice 3. 1. Déterminer les développements en série de Laurent de $f(z) = \frac{z}{z-1}e^z$ dans les domaines $C_1 = \{|z| < 1\}$ puis $C_2 = \{|z| > 1\}$.

- 2. Même question avec $f(z) = \frac{1}{z(z-a)}$ dans 0 < |z| < |a| et dans |a| < |z|.
- 3. Même question avec $f(z) = \frac{1}{(z-a)^k}$ $(k \in \mathbb{N}^*)$ dans |z| < |a| et dans |z| > |a| (On commencera par le cas k = 1, et on en déduira le cas $k \ge 2$).

Exercice 4. Soit f(z) la fonction $f(z) = \frac{1}{1-z^2} + \frac{1}{3-z}$.

- 1. Déterminer les pôles de f.
- 2. Développer f en série de Laurent sur $D(0,1) \{0\}$, sur D(0,3) D(0,1) et sur $\mathbb{C} D(0,3)$.

Exercice 5. 1. Soit f une fonction holomorphe sur $\mathbb{C} - \{0\}$ et $\sum_{n \in \mathbb{Z}} c_n z^n$ son développement en série de Laurent. Montrer que $c_n = \frac{1}{2i\pi} \int_C z^{-n-1} f(z) dz$, où C est le cercle unité orienté positivement.

2. Soit $\alpha \in \mathbb{R}$. Montrer que le développement en série de Laurent en 0 de la fonction $f(z) = \exp \frac{\alpha}{2}(z + \frac{1}{z})$ est de la forme $a_0 + \sum_{n>1} a_n(z^n + \frac{1}{z^n})$, où

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp(\alpha \cos t) \ dt, \quad a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp(\alpha \cos t) \cos(nt) \ dt \text{ si } n \ge 1.$$

Exercice 6. Déterminer les points singuliers des fonctions suivantes, puis donner la nature de ces points singuliers (singularité effaçable, pôle d'ordre n, singularité essentielle isolée) accumulation de points

1.

$$z \mapsto \frac{1}{z(z^2+4)^2}$$

2.

$$z \mapsto \frac{1}{\exp(z) - 1} - \frac{1}{z}$$

$$z \mapsto \sin \frac{1}{1-z}$$

$$z\mapsto \frac{1}{\sin z - \sin a}$$

$$z\mapsto \sin\left(\frac{1}{\sin\frac{1}{z}}\right)$$

Exercice 7. 1. (a) Soient P, Q deux fonctions holomorphes au voisinage d'un point z_0 de \mathbb{C} , vérifiant $P(z_0) \neq 0$, $Q(z_0) = 0$, $Q'(z_0) \neq 0$. On pose f(z) = P(z)/Q(z). Montrer que Rés $(f, z_0) = P(z_0)/Q'(z_0)$.

(b) Déterminer les pôles et les résidus en ces pôles des fonctions :

$$\frac{1}{(z-1)(z+2)}$$
, $\frac{e^z}{z-1}$, $\frac{ze^z}{z^2-1}$, $\frac{1}{\sin \pi z}$.

2. Déterminer les pôles et les résidus en ces pôles des fonctions

$$\frac{e^z}{z(z-1)^2}, \quad \frac{\cot g\pi z}{z^2}, \quad \frac{e^z}{(z-1)^k}, \ (k\in\mathbb{N}^*).$$

Exercice 8. Calculer les intégrales suivantes :

- 1. $\int_{\gamma} \frac{dz}{(z-1)(z+2)}$ où γ est le cercle de centre 1 de rayon 1, orienté positivement.
- 2. $\int_{\gamma} \frac{dz}{(z-1)(z+2)}$ où γ est le cercle de centre -2 de rayon 2, orienté positivement.
- 3. $\int_{\gamma} \frac{dz}{(z-1)(z+2)}$ où γ est le cercle de centre 0 de rayon 3/2, orienté positivement.
- 4. $\int_{\gamma} \frac{e^z}{(z-1)^k}$, où γ est le cercle de centre 0 de rayon 5, orienté positivement, et où $k \in \mathbb{N}^*$.

Exercice 9. 1. Déterminer les racines de l'équation $z^2 + 2\sqrt{2}z + 1 = 0$.

- 2. Soit γ le cercle unité orienté positivement. Calculer $\int_{\gamma} \frac{dz}{z^2 + 2\sqrt{2}z + 1}$.
- 3. Calculer l' intégrale $\int_{-\pi}^{\pi} \frac{d\theta}{\sqrt{2} + \cos \theta}$. (On se ramènera à la question précédente en exprimant $\cos \theta$ à partir de $e^{i\theta}$, $e^{-i\theta}$).
- 4. Calculer $\int_{-\pi}^{\pi} \frac{d\theta}{(\sqrt{2} + \cos \theta)^2}.$

Exercice 10. On pose pour $n \in \mathbb{N}$,

$$A = \int_{-\pi}^{\pi} e^{\cos \theta} \cos(n\theta - \sin \theta) d\theta, \quad B = \int_{-\pi}^{\pi} e^{\cos \theta} \sin(n\theta - \sin \theta) d\theta.$$

- 1. Montrer que B=0.
- 2. Calculer A (Indication : On calculera A + iB).

Exercice 11. 1. Soit $g(z) = e^z - 3z^5$. Montrer que l'équation g(z) = 0 a cinq racines (comptées avec multiplicité) dans le disque unité (Indication : on pourra utiliser le théorème de Rouché, en comparant la fonction donnée avec $f(z) = -3z^5$).

2. Ces racines peuvent-elles être multiples ?