Corso di sistemi multivariabili

Esercizi: serie 2

1) Considera il seguente sistema meccanico, costituito da una massa di peso M=1 kg collegata ad una molla di costante elastica K>0 e ad uno smorzatore con costante D>0. Considera come uscita la posizione della massa rispetto ad un sistema di riferimento orizzontale.

a) Trova le matrici A e C che descrivono il sistema nella forma

$$\dot{x} = Ax$$
 $y = Cx$

dove
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 con $x_1 = w$, $x_2 = \dot{w}$.

- b) Considerando K = 2 e D = 2, calcola la matrice di transizione dello stato e^{At} e determina l'evoluzione del sistema partendo dallo stato $x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
 - 2) Considera il sistema

$$\dot{x}(t) = Ax(t)$$
$$y(t) = Cx(t)$$

dove
$$A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 2 & -3 \\ 0 & 0 & -1 \end{bmatrix}$$
, $C = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$,

determina (se possibile) $x(0) = x_0$ per cui $y(t) = te^{-t}$.

3) Considera il circuito elettrico della figura sottostante,

con $R=1\Omega,$ $C=\frac{1}{2}$ F e $L=\frac{1}{2}$ H, il generatore di tensione u rappresenta l'ingresso, lo stato del sistema è rappresentato dalla corrente i_1 sull'induttanza e dalle tensioni v_1 e v_2 ai capi delle due capacità (prendere le variabili di stato in questo ordine). L'uscita è data dalla tensione V_A .

a) Mostra che il sistema può essere descritto dal modello

$$\dot{x} = Ax + Bu \\ y = Cx,$$

dove
$$A=\begin{bmatrix} -1 & -1 & -1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}, B=\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, C=\begin{bmatrix} 1/2 & 1/2 & 1/2 \end{bmatrix},$$
 con $x=\begin{bmatrix} i_1 \\ v_1 \\ v_2 \end{bmatrix}$.

Nota: per ricavare il modello può essere utile, prima di tutto, esprimere la tendical del control del control

sione V_A in funzione delle variabili di stato i_1 , v_1 e v_2 .

- b) Determina l'evoluzione libera del sistema a partire dallo stato iniziale $x_0 =$
- c) Calcola la funzione di trasferimento del sistema.

4) Considera il circuito raffigurato nella figura sottostante

a) Mostra che può essere descritto dalle equazioni

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du,$$

dove
$$A = \begin{bmatrix} -a & -a \\ -b & -b \end{bmatrix}$$
, $B = \begin{bmatrix} a \\ b \end{bmatrix}$, $C = \begin{bmatrix} -1 & -1 \end{bmatrix}$, $D = 1$, con $a = \frac{1}{RC_1}$, $b = \frac{1}{RC_2}$ e $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ b) Fissati $a = 1$ e $b = 1$, calcola l'uscita y del sistema a partire da $t = 0$ con

b) Fissati a = 1 e b = 1, calcola l'uscita y del sistema a partire da t = 0 con $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ e u(t) = 1.

Risposte

1)

a) Usando le equazioni dinamiche della molla e dello smorzatore si trova $A = \begin{bmatrix} 0 & 1 \\ -K & -D \end{bmatrix}; \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$

b)Con i valori dati
$$A = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix}$$
 e $\chi_a(\lambda) = (\lambda - (-1+j))(\lambda - (-1-j))$.

A ha i due autovettori complessi coniugati $v=[1,-1+j]^T$ e $v^*=[1,-1+j]^T$. Per costruire la matrice fondamentale, prendiamo la parte reale e la parte immaginaria di

$$e^{At}v = e^{(-1+j)t}v = e^{-t} \begin{bmatrix} \cos t + j\sin t \\ -\cos(t) - \sin(t) + j(-\sin(t) + \cos(t)) \end{bmatrix},$$

da cui otteniamo

$$\Psi(t) = e^{-t} \begin{bmatrix} \cos(t) & \sin(t) \\ -\sin(t) - \cos(t) & -\sin(t) + \cos(t) \end{bmatrix},$$

quindi

$$e^{At} = \Psi(t)\Psi(0)^{-1} = e^{-t} \begin{bmatrix} \cos(t) + \sin(t) & \sin(t) \\ -2\sin(t) & -\sin(t) + \cos(t) \end{bmatrix} .$$

Infine

$$e^{At} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(t) + \sin(t) \\ -2\sin(t) \end{bmatrix}$$
.

Il polinomio caratteristico è $\chi_A(\lambda) = -(\lambda+1)^2(\lambda-2)$. Troviamo che $v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \in \ker(A+I), \ v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \in \ker(A+I)^2 \ v_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \in \ker(A-2I)$. I vettori v_1, v_2, v_3 sono una base di \mathbb{R}^3 . Abbiamo che $e^{At}v_2 = e^{-t}(I+(A+I)t)v_2 = e^{-t}\begin{bmatrix} t \\ 1 \\ 1 \end{bmatrix}$, quindi una matrice fondamentale è data da

$$\Psi(t) = [e^{At}v_1, e^{At}v_2, e^{At}v_3] = \begin{bmatrix} e^{-t} & te^{-t} & 0\\ 0 & e^{-t} & e^{2t}\\ 0 & e^{-t} & 0 \end{bmatrix}$$

l'uscita del sistema è data da

$$y(t) = C\Psi(t)\Psi(0)^{-1}x_0 = [e^{-t}, e^{2t}, te^{-t} - e^{2t}]x_0$$

l'uscita è quindi una combinazione lineare delle funzioni $(e^{-t},e^{2t},te^{-t}-e^{2t})$, per avere come uscita te^{-t} dobbiamo prendere la somma della seconda e della

terza, quindi
$$x_0 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
.

3

- a) Applica il principio dell'uguaglianza delle correnti entranti ed uscenti al nodo A per trovare la tensione V_A . Usa quindi le equazioni dinamiche per il condensatore e l'induttanza.
 - b) Il polinomio caratteristico è

$$\chi_A(\lambda) = -(\lambda + 2)(\lambda^2 + \lambda + 2) ,$$

l'autovettore associato all'autovalore -2 è $v_1=\left[\begin{array}{c} 0\\1\\-1\end{array}\right],$ dunque

$$e^{At}v_1 = e^{-2t}v_1 = \begin{bmatrix} 0 \\ e^{-2t} \\ e^{-2t} \end{bmatrix}.$$

c) La funzione di trasferimento è data da

$$H(s) = C(sI - A)^{-1}B = \frac{s+2}{s^2 + s + 2}$$
.

4) b) Risulta $\chi_A(\lambda) = \lambda(\lambda + a + b)$, un autovettore associato all'autovalore $\lambda = 0$ è $v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, per l'autovalore $\lambda = -a - b$ un autovettore è $v_2 = \begin{bmatrix} a \\ b \end{bmatrix}$. La matrice A è diagonalizzabile e

$$e^{At} = [v_1, e^{-(a+b)t}v_2][v_1v_2]^{-1} = \begin{bmatrix} 1 & ae^{-(a+b)t} \\ -1 & be^{-(a+b)t} \end{bmatrix} \frac{1}{a+b} \begin{bmatrix} b & -a \\ 1 & 1 \end{bmatrix}$$
$$= \frac{1}{a+b} \begin{bmatrix} b+ae^{-t(a+b)} & a(e^{-t(a+b)}-1) \\ b(e^{-t(a+b)}-1) & a+be^{-t(a+b)} \end{bmatrix}.$$

Scriviamo $x(t) = x_l(t) + x_f(t)$, con x_l evoluzione libera e x_f evoluzione forzata.

Per l'evoluzione libera $x_l(0) = e^{At} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{a+b} \begin{bmatrix} b+ae^{-t(a+b)} \\ b(e^{-t(a+b)}-1) \end{bmatrix}$. Per l'evoluzione forzata, osserviamo che $B = \begin{bmatrix} a \\ b \end{bmatrix}$ è un autovettore dell'autovalore a+b e $x_f(t) = \int_0^t e^{A(t-\tau)} B \cdot 1 d\tau = B \int_0^t e^{-(a+b)\tau} d\tau = \begin{bmatrix} a \\ b \end{bmatrix} \frac{1-e^{-(a+b)t}}{a+b}$.

Quindi $x(t) = x_l(t) + x_f(t) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Nota che questo si sarebbe potuto

capire anche ragionando sul circuito, infatti per u(t) = 1 e $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ il sistema si trova in una condizione di equilibrio, cioè $\dot{x}(t) = 0$ e lo stato del sistema non varia nel tempo.