Векторные представления объектов

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- 1 Векторное представление слов
- Word2vec
- ③ Регулярности в пространстве представлений
- Представления параграфов
- 6 Сиамская сеть

Стандартное представление слов

- ullet Обозначим V=размер словаря.
- ullet Стандартные представления слов $x \in \mathbb{R}^V$:
 - $x_w = \mathbb{I}[w]$ встретился в документе]
 - $x_w = TF_w = \#[w]$ встретился в документе]
 - $x_w = TF_w IDF_w$, $IDF_w = \frac{N}{N_w}$
 - N # документов
 - N_w # документов, содержащих w хотя бы раз.
- ullet V велико, поэтому нужно компактное представление (word embedding) $x \in \mathbb{R}^K$, K << V:
 - меньше входов=>меньше параметров=>ниже переобучение
 - возможность учитывать семантическое сходство/различие
 - например, синонимы "автомобиль" и "машина"

Интерпретируемые векторные представления слов

- Можно из слов извлекать интерпретируемые признаки:
 - х¹: часть речи
 - x^2 : род (м/ж/ср для существительных)
 - x^3 : время (пр/наст/буд для глаголов)
 - x^4 : \mathbb{I} [начинается с заглавной буквы]
 - *x*⁵: # букв
 - x^6 : категория: машинное обучение, физика, биология, ...
 - x^7 : подкатегория: обучение с учителем, без учителя, частичное обучение, ...
 - ...
- Необходимо придумывать признаки под задачу, производить разметку.
- Легче работать с неинтерпретируемыми признаками, но которые извлекаются автоматически.

Неинтерпретируемые представления слов

- Хотим, чтобы семантически близким словам соответствовали близкие представления.
- Дистрибутивная гипотеза (distributional hypothesis):
 слова близки по смыслу <=> они часто встречаются совместно
- "точность бустинга", "бустинг дал точность", "ниже точность, по сравнению с бустингом"
 - "точность" и "бустинг" связаны!
- Типичная размерность векторного представления $\in [300, 500].$

Представления фраз

Можно обрабатывать фразы как отдельные "слова".

• Коллокации (неслучайно часто встречающиеся слова):

$$(w_i,w_j)$$
-коллокация $\Longleftrightarrow rac{p(w_iw_j)-\delta}{p(w_i)p(w_j)} > threshold$

 δ - параметр, снижающий значимость редко совстречающихся слов.

Содержание

- Векторное представление слов
- Word2vec
- ③ Регулярности в пространстве представлений
- Представления параграфов
- 5 Сиамская сеть

Word2vec

- Для каждого w оценим:
 - ullet целевое представление слова v_w
 - ullet контекстное представление слова $ilde{v}_w$
 - впоследствии можно не использовать, усреднить или конкатенировать с целевым представлением

CBOW: идея

Continuous bag of words (CBOW): предсказываем центральное слово по контексту.

CBOW: модель

$$rac{1}{T}\sum_{t=1}^{r}\ln p(w_t|w_{t-c},..w_{t-1},w_{t+1},...w_{t+c})
ightarrow \max_{ heta}$$
 где $ilde{v}_{context}=\sum_{-c\leq i\leq c,\,i
eq 0} ilde{v}_{w_{t+i}}$ и $p(w_t|w_{t-c},..w_{t-1},w_{t+1},...w_{t+c})=rac{\exp\left(ilde{v}_{context}^Tv_{w_t}
ight)}{\sum_{w=1}^{V}\exp\left(ilde{v}_{context}^Tv_w
ight)}$

Skip-gram: идея

Skip-gram: предсказываем контекст по центральному слову:

Skip-gram: модель

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq i \leq c, i \neq 0} \ln p(w_{t+i}|w_t) \rightarrow \max_{\theta}$$

$$p(w_{t+i}|w_t) = \frac{\exp \left(\tilde{v}_{w_t}^T v_{w_{t+i}}\right)}{\sum_{w=1}^{V} \exp \left(\tilde{v}_{w_t}^T v_{w}\right)}$$

Комментарии

- Можем извлекать представления для др. объектов из последовательностей.
 - символы, биграммы, триграммы символов (см. *FastText*), предложения
 - нуклеотиды в ДНК последовательности
 - сервисы, заказанные клиентом компании
- Можем использовать ансамбли представлений
 - сумма, среднее, конкатенация

Содержание

- Векторное представление слов
- 2 Word2vec
- 3 Регулярности в пространстве представлений
- Представления параграфов
- 6 Сиамская сеть

Формы слов

Одинаковые слова в разных формах образуют похожие структуры:

Представления могут помочь строить др. формы новых и редких слов.

Слова на разных языках

Слова на разных языках группируются похожим образом:

Представления слов могут помочь в переводе на др. язык.

Семантическая регулярность

Слова, связанные семантически определенным образом группируются единообразно:

(prince-princess)+queen≈king. Может помочь в системе автоматических ответов на вопросы.

Семантическая регулярность

Слова, связанные семантически определенным образом группируются единообразно:

(Beijing-China)+Russia≈Moscow! Может помочь в системе автоматических ответов на вопросы.

Содержание

- Векторное представление слов
- 2 Word2vec
- 3 Регулярности в пространстве представлений
- Представления параграфов
- 5 Сиамская сеть

Представления параграфов - мотивация

- Необходимо получить векторные представления параграфов (документов, предложений,...).
- Простой подход: усреднить слова, входящие в параграф.
 - или взвешенно усреднить, учитывая частоту встречаемости слов и их тематику.
- Точнее работает непосредственное представление самих параграфов.

Paragraph vector: модель PV-DM

- Во время обучения делим документы на параграфы.
 Каждому параграфу -> векторное представление.
- Оценивается CBOW, где в контекст также добавляется представление параграфа.
- Можно усреднять или конкатенировать контексты слов и параграфа.
- Называется Distributed Memory Model of Paragraph Vectors (PV-DM).

Paragraph vector: модель PV-DBOW

- Во время обучения делим документы на параграфы.
 Каждому параграфу -> векторное представление.
- Оценивается skip-gram: предсказываются случайные слова параграфа по представлению параграфа.
 - проще PV-DM, нужно хранить только представления параграфов
- Называется Distributed Bag of Words version of Paragraph Vector (PV-DBOW)

Содержание

- Векторное представление слов
- 2 Word2vec
- ③ Регулярности в пространстве представлений
- Представления параграфов
- 5 Сиамская сеть

Сиамская сеть

- Сиамская сеть использует 2 представления произвольных объектов.
- Прогноз результат сравнения представлений.

Мотивация: находим связь между сравниваемыми объектами.

Примеры приложений

- Классификация:
 - вход: 2 объекта или тестовый объект и центроид класса
 - выход: похожесть объектов или близость к определенному классу
- Поисковая система
 - вход: документ и поисковый запрос (м. быть поиск по картинке)
 - выход: степень релевантности документа запросу
- Обнаружение перефразирования:
 - вход: 2 предложения
 - выход: насколько они близки по смыслу
- Проверка подписи
 - вход: сканы 2х подписей
 - выход: их степень принадлежности одному человеку

Обучение

- Идея функции потерь:
 - представления похожих объектов д. быть близки
 - представления различных объектов д. быть далеки

Функции потерь

Контрастные потери (contrastive loss):

• обучение на случайных парах объектов x_i, x_j

$$\mathbb{I}[y_i = y_j] \|f_{\theta}(x_i) - f_{\theta}(x_j))\|^2 + \mathbb{I}[y_i \neq y_j] \max \{0, \alpha - \|f_{\theta}(x_i) - f_{\theta}(x_j))\|\}^2$$

Тройные потери (triplet loss):

- обучение на случайных тройках x, x^+, x^- .
- х опорный объект (anchor)
- x^+ похожий на x (например, того же класса)
- \bullet x^- не похожий на x (например, др. класса)
- ullet $\alpha > 0$ гиперпараметр

$$\mathcal{L}(x, x^+, x^-) = \max \left\{ \left\| f_{\theta}(x) - f_{\theta}(x^+) \right) \right\|^2 - \left\| f_{\theta}(x) - f_{\theta}(x^-) \right) \right\|^2 - \alpha; 0 \right\}$$

- Могут использоваться для metric learning $\rho_{\theta}(x,x')$.
- Обзор более продвинутых ф-ций потерь.

Сиамская сеть и классификация

- Классификация
 - выучивает "что представляет каждый класс".
 - выдает степени соответствия х каждому классу.
- Сиамская сеть
 - выучивает "что отличает классы друг от друга".
 - ullet выдает расстояния от x до каждого класса.
 - более устойчива к дисбалансу классов и редким классам (one shot learning)
 - при обучении каждый класс учитывается поровну
 - модель выучивает признаки, по которым можно судить о сходстве классов на частотных классах, потом сразу подхватывает их для редких.
 - хорошо работает в ансамбе с классификатором
 - diversity↑, т.к. совсем др. принцип работы
 - требует больше обучения
 - обучение не на объектах, а на парах (contrastive loss) и тройках (triplet loss).

Представления объектов: классификация и сиамская сеть

Представления объектов: классификация и сиамская сеть для MNIST:

Заключение

- **Представления слов** отображают слова в компактные векторные представления.
 - может применяться
 - к биграммам, триграммам, коллокациям.
 - к символам удобно для новых слов
 - к любым объектам из последовательностей (например, нуклеотиды в ДНК)
- **Представления параграфов** отображают параграфы в векторные представления.
 - работают лучше, чем усреднение слов параграфа
- Представления можно находить для целевой или связанной задачи (language modeling, transfer learning)
- Сиамская сеть оценивает похожесть пар объектов.
 - применения: классификация (особенно one shot learning), детекция перефразирования, нахождение похожих изображений, ...