CS2204 Homework: Estimating Euler's number (e)

Background

During the lectures in Week 1 we developed alternative algorithms for approximating the value of π . We briefly used another contant, also, called Euler's number (e), which is the base of the *natural logarithm* and comes up very often in scientific formulas (e.g. *Optimal Stopping*, our classwork example).

Just like π , the constant e is *transcendental*, but its numerical value can be estimated by various methods. In this homework assignment we are going to use two alternative approximations.

Series Approximation

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots$$

As you can see, you need to iteratively calculate a sum up until a given number of steps (n).

Limit (Bernoulli)

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

With this method, you need to evalute a mathematical expression with a given (n) paramter.

Tasks

You are given a skeleton program (euler.py). You need to add the following parts:

- Set the __author__ variable to your VUnetID (as a string)
- 2. Implement the series function, based on the formula above. First, remove the pass statement, and replace it with your algorithm. Do not forget to return the result. (40 pts)
- 3. Implement the limit function, based on the formula above. First, remove the pass statement, and replace it with your algorithm. Do not forget to return the result. (40 pts)
- 4. Add a small test program to the end of the file, but make sure your test code runs only if the script is executed at the top level (hint: __name__ programming idiom, as discussed in the Lecture). Your test code should print out the following output (use your own functions to calculate the results) (20 pts):

Grading

You can use the attached validator.py program to check your work. It will also estimate your final score for the homework.

Penalties

Points will be deducted if you fail to set __author__ variable (-10 pts) and for **each PEP 8 style errors** (-1 pt for each) in your program. Also, we will remove points if your test code is not protected by the __main__ idiom (i.e. it prints the test results when the module is *imported*, not *executed directly*).

Submission

Please, upload the final version of the following file (and only that file) to Brightspace:

• euler.py