CURABLE COMPOSITION A

CURED MATERIAL OF GEL

Patent number:

JP11181288

Publication date:

1999-07-06

Inventor:

FUKUDA KENICHI; TARUMI YASURO

Applicant:

SHINETSU CHEMICAL CO

Classification:

- international:

C08L83/05; C08K5/02

- european:

Application number:

JP19970366499 19971224

Priority number(s):

JP19970366499 19971224

Also published as:

🗓 EP0926182 (A2)

DUS6127504 (A1) DEP0926182 (A3)

EP0926182 (B1)

DE69813488T (T2)

more >>

Report a data error here

Abstract of **JP11181288**

PROBLEM TO BE SOLVED: To obtain the subject composition having high storage stability and excellent curability, useful as a potting and a sealing material, etc., for electric/ electronic parts. by including specific plural kinds of straight-chain polyfluoro compounds, a prescribed hydrosilyl group-containing organosilicon compound and a platinum-group catalyst. SOLUTION: This composition comprises (A) a straight-chain polyfluoro compound of the formula CH2 = CH-(X) a Rf<1> -(X)a -CH=CH2 (X is CH2 or the like: Rf<1> is a bifunctional perfluoroalkylene or the like; (a) is 0 or 1) (e.g. a compound of formula I or the like), (B) a straight chain polyfluoro compound of the formula Rf<2> -(X)a -CH=CH2 (Rf<2> is a monofunctional perfluoroalkyl or the like) (e.g. a compound of formula II or the like), (C) a hydrosilyl group- containing organosilicon compound of formula III (Rf<3> and Rf<4> are each as shown for Rf<2>; (k) is >=2; (m) and (n) are each >=1) and (D) a catalytic amount of a platinum group catalyst (e.g. chloroplatinic acidvinylsiloxane complex or the like) as main components.

Data supplied from the esp@cenet database - Worldwide

Curable comp	posi s and cured gel parts thereof			
Patent Number:	☐ <u>EP0926182, A3, B1</u>			
Publication date:	1999-06-30			
Inventor(s):	FUKUDA KENICHI (JP); TARUMI YASUO (JP)			
Applicant(s):	SHINETSU CHEMICAL CO (JP)			
Requested Patent:	☐ <u>JP11181288</u>			
Application Number:	EP19980310718 19981224			
Priority Number(s):	JP19970366499 19971224			
IPC Classification:	C08G65/00			
EC Classification:	C08G65/00B2F			
Equivalents:	☐ <u>DE69813488D</u> , ☐ <u>DE69813488T</u> , JP3475760B2, ☐ <u>US6127504</u>			
Cited Documents:	EP0811651; EP0765916; EP0488709			
Abstract				
linear polyfluoro com fluoroalkyl substituer	linear polyfluoro compound having at least two alkenyl groups as a base component is blended with a near polyfluoro compound having one alkenyl group and a hydrosilyl-bearing linear polysiloxane having properties to some state of the second state			
Data supplied from the esp@cenet database - I2				

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-181288

(43)公開日 平成11年(1999)7月6日

(51) Int.Cl.⁸

識別記号

FΙ

C08L 83/05 C08K 5/02

C08L 83/05 C08K 5/02

審査請求 未請求 請求項の数2 FD (全 9 頁)

(21)出顯番号

特願平9-366499

(71)出願人 000002060

(22)出顧日

平成9年(1997)12月24日

信越化学工業株式会社

東京都千代田区大手町二丁目6番1号

(72)発明者 福田 健一

群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料

技術研究所内

(72)発明者 樽見 康郎

群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料

技術研究所内

(74)代理人 弁理士 小島 隆司 (外1名)

(54) 【発明の名称】 硬化性組成物及びゲル硬化物

(57)【要約】

【解決手段】 (A)下記一般式(1)で表される直鎖 状ポリフルオロ化合物、(B)下記一般式(2)で表される直鎖状ポリフルオロ化合物、(C)下記一般式

(3)で表されるヒドロシリル基含有有機けい素化合物、(D)触媒量の白金族触媒を主成分として含有する ととを特徴とする含フッ素硬化性組成物。

【化1】

CH₂=CH-(X)₁-Rf²-(X)₁-CH=CH₂

... (1)

RP-00- CH=CH.

··· (2)

〔式中、Xは独立に-CH--,-CH-O-,-CH-OCH-- Xは-Y-NR-OO-

の一個炭化水素益)であり、R f 'は二個のパーフルオロアルキレン並又は二個のパーフルオロオキシアルキレン基であり、R f 'は一個のパーフルオロアルキル基又は一個のパーフルオロオキシアルキル基である。R f '及びR f 'はそれぞれR f 'と同様の意味を示す。a は独立に 0 又は 1 、k は 2 以上の整数、m は 1 以上の整数、n は 1 以上の整数である。)

【効果】 本発明の硬化性組成物は、保存安定性が高く、しかも硬化性に優れ、得られるゲル硬化物の特性も良好なものである。

【特許請求の範囲】

*【化1】

【請求項1】 (A) 下記一般式(1)

 $CH_2=CH-(X)_a-Rf^1-(X)_a-CH=CH_2$

... (1)

〔式中、Xは独立に -CH₂-, -CH₂O-, -CH₂OCH₂- 又は -Y-NR¹-CO-

の一価炭化水素基)であり、Rf1は二価のパーフルオロアルキレン基又は二価 のパーフルオロオキシアルキレン基であり、aは独立にO又は1である。]

で表される直鎖状ポリフルオロ化合物、(B)下記一般 式(2)

 $Rf^2-(X)_a-CH=CH_2$

... (2)

〔式中、X及びaは前記と同じであり、R f *は一価のパーフルオロアルキル基 又は一価のパーフルオロオキシアルキル基である。〕

で表される直鎖状ポリフルオロ化合物、(C)下記一般 ★【化3】 式(3)

$$\begin{array}{c} CH_{2}-(X)_{\overline{a}} \operatorname{Rf}^{4} \\ CH_{3} - (X)_{\overline{a}} \operatorname{CH}_{2}CH_{2} \operatorname{SiO} + SiO + SiO + SiO + SiO + CH_{3} - CH_{2}CH_{2} - (X)_{\overline{a}} \operatorname{Rf}^{6} \\ CH_{3} - (X)_{\overline{a}} \operatorname{CH}_{2}CH_{2} - (X)_{\overline{a}} \operatorname{Rf}^{6} \\ CH_{3} - (X)_{\overline{a}} \operatorname{CH}_{3} - (X)_{\overline{a}} \operatorname{Rf}^{6} \\ CH_{3} - (X)_{\overline{a}} \operatorname{CH}_{3} - (X)_{\overline{a}} \operatorname{Rf}^{6} \\ CH_{3} - (X)_{\overline{a}} \operatorname{Rf}^{6} - (X)_{\overline{a}} \operatorname{Rf}^{6} - (X)_{\overline{a}} \operatorname{Rf}^{6} \\ CH_{3} - (X)_{\overline{a}} \operatorname{Rf}^{6} - (X)_{\overline{a}} \operatorname{Rf}^{6} - (X)_{\overline{a}} \operatorname{Rf}^{6} - (X)_{\overline{a}} \operatorname{Rf}^{6} \\ CH_{3} - (X)_{\overline{a}} \operatorname{Rf}^{6} - (X)_{\overline{a}} - (X)_{\overline{a}} \operatorname{Rf}^{6} - (X)_{\overline{a}} - (X)_{\overline{a}} \operatorname{Rf}^{6} -$$

〔式中、X及びaは前記と同じであり、Rf B及びRf はそれぞれRf Bと同様 の意味を示す。kは2以上の整数、mは1以上の整数、nは1以上の整数である 。)

で表されるヒドロシリル基含有有機けい素化合物、

(D) 触媒量の白金族触媒を主成分として含有すること を特徴とする含フッ素硬化性組成物。

【請求項2】 請求項1記載の組成物を硬化して得られ る針入度(ASTMD-1403)1~200のゲル硬 化物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、保存性及び硬化性 に優れる含フッ素硬化性組成物に関し、特にその硬化物 がゲル硬化物となり得る硬化性組成物に関するものであ る。

[0002]

【従来の技術及び発明が解決しようとする課題】シリコ ーンゴムのゲル硬化物は、その優れた電気、熱絶縁性、 安定した電気特性及び柔軟性を利用して、電気・電子部

トランジスター、IC、コンデンサー等の制御回路素子 を外部からの熱的及び機械的障害から保護するための被 覆材料として使用される。

【0003】とのようなゲル硬化物を形成するシリコー ンゴム組成物の代表例としては、付加硬化型のオルガノ ポリシロキサン組成物がある。例えば、けい素原子に結 40 合したビニル基を有するオルガノポリシロキサンと、け い素原子に結合した水素原子を有するオルガノハイドロ ジェンポリシロキサンとを含有しており、白金系触媒の 存在下で架橋反応を行ってシリコーンゲルを得るものが 公知である(特開昭56-143241号公報、同62 -3959号公報、同63-35655号公報、同63 -33475号公報等参照)。

【0004】しかしながら、これらのオルガノポリシロ キサン組成物により得られるシリコーンゲルは、強塩 基、強酸などの薬品類、トルエン、アルコール、ガソリ 品のポッティングや封止用の材料として、また、パワー 50 ンなどの溶剤類に対しては膨潤や劣化などによりその性

能を維持できない。

【0005】との問題を解決するため、一分子中2個の アルケニル基を有する二価のパーフルオロアルキレン基 又はパーフルオロオキシアルキレン基よりなるポリフル オロ化合物を主剤とし、けい素原子に結合した水素原子 を有するオルガノハイドロジェンポリシロキサン、並び に白金系触媒を含むことを特徴とするフッ素ゲル組成物 並びにそれを硬化させてなるフッ素ゲル硬化物が提案さ れた。このフッ素ゲルは、所期の目的の通り、シリコー ったが、組成物の長期間の保存安定性に欠けるものであ ったり、又は速やかに所期の針入度に到達する硬化安定 性が不足するものであるといった欠点を有するものであ った。

【0006】本発明は上記事情に鑑みなされたもので、 保存安定性に優れ、かつ速やかに硬化して所期の針入度 を有するゲル硬化物を与える硬化性に優れた硬化性組成 物及びこの組成物を硬化して得られるゲル硬化物を提供 することを目的とする。

[0007]

【課題を解決するための手段及び発明の実施の形態】本* $CH_2=CH-(X)_a-Rf^1-(X)_a-CH=CH_2$

 $Rf^2-(X)_a-CH=CH_2$

*発明者は、上記目的を達成するため鋭意検討を行った結 、、スース成分として少なくとも2個のアルケニル基を 含有する直鎖状ポリフルオロ化合物を使用し、これに 1 個のアルケニル基を含有する直鎖状ポリフルオロ化合物 と側鎖及び末端をフルオロアルキル基で置換されたヒド ロシリル基含有直鎖状ポリシロキサンとを組み合わせる ことにより、保存安定性及び硬化性乃至硬化安定性に優 れ、優れたゲル硬化物が得られる硬化性組成物が得られ ることを見出し、本発明を完成させた。

ンゲルに比べ優れた耐薬品性、耐溶剤性を示すものであ 10 【0008】即ち、本発明は、(A)下記一般式(1) で表される直鎖状ポリフルオロ化合物、(B)下記一般 式(2)で表される直鎖状ポリフルオロ化合物、(C) 下記一般式(3)で表されるヒドロシリル基含有有機け い素化合物、(D)触媒量の白金族触媒を主成分として 含有することを特徴とする含フッ素硬化性組成物、及 び、この硬化性組成物を硬化して得られる針入度(AS TM D-1403) 1~200のゲル硬化物を提供す

[0009]

[化4]

 \cdots (1)

... (2)

$$\begin{array}{c} CH_{2}-(X)_{\overline{a}} \ Rf^{4} \\ CH_{3} - (X)_{\overline{a}} \ CH_{2}CH_{2}SiO + SiO + SiO + SiO + SiO + CH_{3} - CH_{2}CH_{2}-(X)_{\overline{a}} \ Rf^{3} \\ CH_{3} - (X)_{\overline{a}} \ CH_{2}CH_{2} - (X)_{\overline{a}} \ Rf^{3} \\ CH_{3} - (X)_{\overline{a}} \ CH_{3} - (X)_{\overline{a}} \ CH_{3} - (X)_{\overline{a}} \ Rf^{3} \\ CH_{3} - (X)_{\overline{a}} \ CH_{3} - (X)_{\overline{a}} \ Rf^{3} \\ CH_{3} - (X)_{\overline{a}} \ CH_{3} - (X)_{\overline{a}} \ Rf^{3} \\ CH_{3} - (X)_{\overline{a}} \ CH_{3} - (X)_{\overline{a}} \ Rf^{3} \\ CH_{3} - (X)_{\overline{a}} \ CH_{3} - (X)_{\overline{a}} \ Rf^{3} \\ CH_{3} - (X)_{\overline{a}} \ Rf^{3} - (X)_{\overline{a}} \ Rf^{3} \\ CH_{3} - (X)_{\overline{a}} \ Rf^{3} - (X)_{\overline{a}} \ Rf^{3} - (X)_{\overline{a}} \ Rf^{3} - (X)_{\overline{a}} \ Rf^{3} \\ CH_{3} - (X)_{\overline{a}} \ Rf^{3} - (X)_{\overline{a}}$$

〔式中、Xは独立に -CH₂-, -CH₂O-, -CH₂OCH₂- 又は -Y-NR¹-CO-

の一価炭化水素基)であり、R f ¹は二価のパーフルオロアルキレン基又は二価 のパーフルオロオキシアルキレン基であり、Rf²は一価のパーフルオロアルキ ル基又は一価のパーフルオロオキシアルキル基である。Rf゚及びRf・はそれぞ れRf²と同様の意味を示す。aは独立にO又は1、kは2以上の整数、mは1 以上の整数、nは1以上の整数である。〕

【0010】以下、本発明につき更に詳しく説明する。 本発明の硬化性組成物の(A)成分は、下記一般式

%[0011] 【化5】

(1)で表される直鎖状ポリフルオロ化合物である。

 $CH_2=CH-(X)_a-Rf^1-(X)_a-CH=CH_2$

... (1)

ここで、式(1)において、R f 1は二価のパーフルオ ロアルキレン基又は二価のパーフルオロオキシアルキレ ン基であり、特に二価パーフルオロアルキレン基として

-C.F. -

(mは1~10、好ましくは2~6である。) で示され* $-(CFOCF_2)_{\overline{p}} \cdot (CF_2)_{\overline{r}} \cdot (CF_2OCF)_{\overline{q}}$

* るものが好ましく、二価パーフルオロオキシアルキレン 基(二価パーフルオロボリエーテル基)としては、下記 式で示されるものが好ましい。

[0012] (化6)

200、特に2≦p+q≤110、0≤r≤6の整数)

- CF₂CF₂OCF₂-(CFOCF₂)₅-(CF₂O₇-(CF₂OCF₂CF₂-CF₂OCF₂CF₂-CF₃

特に2≤s+t≤110の整数)

 $(Y \text{ d} F X \text{ d} \text{ CF}_s$ 基、u, $v \text{ d} \text{ d} \text{ e} \text{ d} \text{ f} \text{ f} 1 \leq u \leq 100$ 、 $1 \leq v \leq 50$ の整数)

-CF₂CF₂-(OCF₂CF₂CF₂)_w-OCF₂CF₂-(wは1≤w≤100の整数)

【0013】R f¹として具体的には、下記のものが例 ※【0014】 示される。 ※30 【化7】

 $-C_4F_8-$, $-C_6F_{12}-$,

 $-(CFOCF_2)_n(CF_2OCF)_m-$ ĊFa

 $\overline{n+m} = 2 \sim 200$

 $-CF_2CF_2OCF_2(CF_2)_2CF_2OCF_2CF_2-$,

-CF₂CF₂OCF₂CFOCF₂(CF₂)₂CF₂OCFCF₂OCF₂CF₂-

 $-CF_{2}(OCF_{2}CF_{2})_{n}(OCF_{2})_{m}OCF_{2}-\quad \overline{n}=1\sim 1\ 0\ 0\,,\quad \overline{m}=1\sim 1\ 0\ 0\,,$

 $-CF(OCFCF_2)_n(OCF_2)_nOCF \overline{n} = 1 \sim 1 \ 0 \ 0, \quad \overline{m} = 1 \sim 1 \ 0 \ 0,$

 $-CF_2CF_2(OCF_2CF_2CF_2)_nOCF_2CF_2 - \overline{n} = 5 \sim 1 \ 0 \ 0$

【0015】また、式(1)において、Xはそれぞれ独 Y-NR¹-CO-である。ここで、Yは-CH;-又は 立に-CH,-,-CH,O-,-CH,OCH,-又は- 50 下記の基である。

[0016] [化8]

【0017】また、R¹は水素原子又は置換もしくは非 置換の一価炭化水素基であり、この一価炭化水素基とし ては、炭素数1~12、特に1~10のものが好まし く、具体的には、メチル基、エチル基、プロピル基、ブ 10 (2)で示される直鎖状ポリフルオロ化合物である。 チル基、ヘキシル基、シクロヘキシル基、オクチル基等 のアルキル基、フェニル基、トリル基等のアリール基、 ベンジル基、フェニルエチル基等のアラルキル基など *

$Rf^2-(X)$ CH=CH₂

ここで、Rf¹は一価パーフルオロアルキル基又は一価 パーフルオロオキシアルキル基(一価パーフルオロボリ エーテル基)であり、特に一価パーフルオロアルキル基 としては、

-C.F. ...-

示される。

F-(CFCF₂O)_TCFCF₂OCF₂CF₂-

CF₃ ĊF_a 【0023】Rf'として具体的には、下記のものが例 **★**[0024]

> $C_4F_9 C_8F_{17}-$.

$$\begin{array}{ccc} F-(CFCF_2O)_{\overline{n}} CF - \\ I & I \\ CF_8 & CF_8 \end{array}$$

 $\overline{n} = 2 \sim 200$

$$F-(CFCF_2O)_{\pi}CFCF_2OCF_2CF_2-$$
, $n=2\sim 2\ 0\ CF_3$

【0025】また、式(2)において、X及びaは式 (1)で示したものと同様である。との場合、式(1) のX, aと式(2)のX, aとは互いに同一であっても 異なっていてもよい。

としては、(A)成分と同様に末端に-CH=CH,構 造を有するビニル基、アリル基等が好ましく、主鎖に直 接結合していてもよいし、上記式中Xである二価の連結 基を介して結合していてもよい。

【0027】本発明において、本組成物を注型、ポッテ ィング、コーティング、含浸、接着又は密着等に使用す るために、本組成物は適当な流動性を備えていることが *や、これらの基の水素原子の一部又は全部をフッ素等の 'ハロゲン原子で置換した基などが挙げられる。

【0018】なお、上記式(1)が有するアルケニル基 としては、例えば末端に-CH=CH,構造を有するビ ニル基、アリル基等が好ましい。このアルケニル基は、 主鎖の両端部に直接結合していてもよいし、上記式Xで ある二価の連結基を介して結合していてもよい。

【0019】式(1)中、aは独立に0又は1である。 【0020】次に、本発明の(B)成分は、下記一般式 [0021] 【化9】

... (2)

※ (ただし、mは1~20、好ましくは2~10であ る。)で示されるものが好ましく、一価パーフルオロオ キシアルキル基としては、下記のものが好ましい。 [0022]

(pはp≥1の整数)

(aはa≥1の整数)

必要であり、かつ硬化においても適当な物理的特性を有 していることが必要である。このような見地から、

(A), (B)成分の粘度(25℃)は5~100,0 00cpの範囲にあることが望ましく、前記粘度範囲に 【0026】なお、上記式(2)が有するアルケニル基 40 おいて用途に応じて最も適切な粘度を有するようにす

> 【0028】次に、本発明の(C)成分は、下記一般式 (3)で表されるヒドロシリル基含有有機けい素化合物 である。

[0029]

【化12】

【化10】

【化11】

Ж

$$Rf^{3}-(X)_{\overline{a}} CH_{2}CH_{2}SiO + SiO + SiO + SiO + SiO + CH_{3} + CH_{3} + CH_{2}CH_{2} + CH_{3} + CH_{3}$$

ととで、X、a はそれぞれ上記と同様の意味を示す。と の場合、式(3)におけるそれぞれのX及びaは互いに 同一であっても異なっていてもよく、また、式(1), また、Rf'及びRf'はそれぞれ先に説明したRf'と 同様であり、この場合、Rf'とRf'とは互いに同一で あっても異なっていてもよい。

【0030】更に、式(3)において、kは2以上の整 数であり、好ましくは2~20の整数、mは1以上の整* *数であり、好ましくは1~40の整数、nは1以上の整 数、好ましくは1~20の整数である。

【0031】このような含フッ素オルガノシロキサンと (2)のX, a と互いに同一でも異なっていてもよい。 10 しては、例えば下記の化合物が挙げられる。なお、Me はメチル基、Phはフェニル基を示す。これらの化合物 は単独で使用しても併用してもよい。

> [0032] [化13]

$$C_{\delta}F_{17}CH_{2}CH_{2}SiO + SiO +$$

$$C_{4}F_{6}CH_{2}$$

【0033】本発明において達成された組成物の長期間 の保存安定性や、速やかに所期の針入度に到達する硬化

アルキル基で置換されたヒドロシリル基含有直鎖状有機 けい素化合物の構造に帰することができる。

安定性は、この(C)成分たる側鎖及び末端をフルオロ 50 【0034】まず第1に、このように側鎖及び末端をフ

ルオロアルキル基で置換することで、有効に分子中のフ ッ素含有量を上げることができ、(A)成分や(B)成 分との相溶性をよくすることができる。相溶性が良いこ との利点は、組成物が分離することなく安定に保存でき ることや、硬化時の反応が均一に進み、質のよいゲル状 組成物が得られることなどである。

【0035】第2に、ヒドロシリル基が分子の側鎖にの み存在する直鎖状ポリシロキサンであるため、硬化のた めの付加反応性が温和であり、(A)~(D)成分を混 合した組成物は安定に保存できる。ととに、後述するヒ 10 ドロシリル化反応触媒の制御剤を組成物に配合するなら ば、長期の保存安定性を得ることができる。これに比 べ、-OSi(CH₃),Hのような分子の末端に位置す るヒドロシリル基を含有するポリシロキサンの場合は、 付加反応性が高すぎ、制御剤を併用しても(A)~

(D) 成分を混合した組成物は早晩ゲル状態に硬化す る。この場合、例えば (A), (B) 及び (D) 成分を 一方の組成物、(A), (B)及び(C)成分を他方の 組成物として分配配合し、使用前に混合する2液タイプ の形態をとることが避けられない。翻って本発明によれ 20 ば、すべての成分を一つの組成物として提供でき、使用 前の混合という煩雑さを避けることができる。

【0036】第3に、分子中のヒドロシリル基含有シロ キサン単位-OSi(CH₁)H-が、ジメチルシロキ サン単位-OSi(CH₁),-や、フルオロアルキル基 で置換されたシロキサン単位などと共にランダムに配列 していることも利点となる。この場合、硬化反応時のヒ ドロシリル基の消費は円滑に進み、速やかに所期の針入 度に到達する硬化安定性が得られるのである。これに比 べ、ヒドロシリル基含有シロキサン単位-OSi (CH 30) ₃)H‐のみが連続して並ぶ構造の直鎖状ポリシロキサ ンを使用した場合は、すべてのヒドロシリル基の反応が 完遂しづらく、硬化安定性が悪い。

【0037】上記(C)成分の配合量は、組成物全系に 含まれるビニル基、アリル基、シクロアルケニル基等の 脂肪族不飽和基1モルに対し(C)成分中のヒドロシリ ル基、即ちSiH基を好ましくは0.2~2.0モル、 より好ましくは0.5~1.3モル供給する量である。 上記範囲よりも少ないと、架橋度合いが不十分になり、 ゲル硬化物にならず、また上記範囲よりも多量に存在す 40 針入度が1~200のものをいう。 ると、硬化時に発泡の危険性がある。

【0038】更に、本発明の第四必須成分 [(D) 成 分〕である白金族触媒は、(A), (B)成分のアルケ ニル基と(C)成分のヒドロシリル基との間の付加反応 を促進する触媒である。との白金族触媒は、一般に貴金 属の化合物であり、高価格であることから、比較的入手 しやすい白金化合物がよく用いられる。

【0039】白金化合物としては、例えば、塩化白金酸 又は塩化白金酸とエチレン等のオレフィンとの錯体、ア ルコールやビニルシロキサンとの錯体、白金/シリカ又 50 も良好なものである。

はアルミナ又はカーボン等を例示することができるが 'これに限定されるものではない。 白金化合物以外の白金 族化合物として、ロジウム、ルテニウム、イリジウム、 パラジウム系化合物も知られており、例えばRhC1 (PPh₃)₃, PhCl (CO) (PPh₃)₂, Ru₃ (CO),, IrCl (CO) (PPh₁), Pd (P PH,),等を例示することができる。かかる触媒は、通 常(A), (B), (C)成分の合計量に対して0.1 ~100ppmの割合で配合される。

12

【0040】また、本発明の組成物においては、上記の (A)~(D)成分以外にもそれ自体公知の各種配合剤 を添加することもできる。このような成分としては、例 えば、1-エチニル-1-ヒドロキシシクロヘキサン、 3-メチル-1-プチン-3-オール、3,5-ジメチ ルー1-ヘキシン-3-オール、3-メチル-1-ペン テン-3-オール、フェニルプチノールなどのアセチレ ンアルコールや、3-メチル-3-ペンテン-1-イ ン、3,5-ジメチル-3-ヘキセン-1-イン等、あるいはポリメチルビニルシロキサン環式化合物、有機リ ン化合物などのヒドロシリル化反応触媒の制御剤が挙げ られ、これによって硬化反応性と保存安定性を適度に保 つことができる。更に、例えば、ヒュームドシリカ、シ リカエアロジル、沈降性シリカ、粉砕シリカ、珪藻土、 酸化鉄、酸化亜鉛、酸化チタン、炭酸カルシウム、炭酸 マグネシウム、炭酸亜鉛、カーボンブラック等の無機質 充填剤を添加して本発明組成物から得られるゲル硬化物 の硬さ、機械的強度を調整することができる。もちろん 中空無機質充填剤、中空有機質充填剤又はゴム質の球状 充填剤も添加できる。

【0041】とれらの配合剤の使用量は得られるゲル硬 化物の物性を損なわない限りにおいて任意である。

【0042】上述した各成分からなる本発明の組成物 は、これを硬化させることにより耐溶剤性、耐薬品性に 優れたゲル硬化物を形成させることができる。

【0043】なお、本発明において、ゲル硬化物とは、 部分的に3次元構造を有し、応力によって変形及び流動 性を示す状態を意味し、大体の目安としてJISゴム硬 度計において硬さ"0"以下の硬度を有するもの、ある いはASTM D-1403 (1/4コーン) における

【0044】ゲル硬化物の形成は、適当な型内に本発明 の付加硬化型の組成物を注入して該組成物の硬化を行う か、該組成物を適当な基体上にコーティングした後に硬 化を行う等の従来公知の方法により行われる。硬化は、 通常60~150℃の温度で30~180分間程度の加 熱処理によって容易に行うことができる。

[0045]

【発明の効果】本発明の硬化性組成物は、保存安定性が 高く、しかも硬化性に優れ、得られるゲル硬化物の特性

[0046]

【実施例】以下、実施例と比較例を示し、本発明を具体 的に説明するが、本発明は下記の実施例に制限されるも のではない。

【0047】 [実施例] 下記式(4) で示されるポリマ - (粘度3,000cp)50重量部と下記式(5)で 示されるポリマー(粘度1,000cp)50重量部 * *に、下記式(6)で示される化合物13.7重量部、エ チニルシクロヘキサノールの50%トルエン溶液0.1 5 重量部、塩化白金酸のビニルシロキサン錯体のエタノ ール溶液(白金濃度3.0重量%)0.015重量部を 加え、混合し、含フッ素組成物を調製した。

[0048]

【化14】

$$\begin{array}{c|c} CH_{8} & CH_{8} & CH_{9} \\ CH_{2}=CHSi & O & CFOCF_{2} \\ CH_{3} & O & CH_{9} \\ CH_{3} & O & CH_{9} \\ CH_{3} & O & CH_{9} \\ CF_{9} & O & CH_{9} \\ CH_{9} & O & CH_{9} \\$$

$$\overline{a+b} = 3.5 \qquad \cdots (4)$$

$$c = 2.4$$

$$\begin{array}{c} CH_2C_8F_{17} \\ CH_2CH_2S_{10} \\ CH_3 \\ CH_4 \\ CH_5 \\ CH_5$$

【0049】との組成物を150℃にて1時間加熱し硬 化させたところ、針入度78 (ASTM D-1403

1/4コーン)の透明なゲル硬化物を得た。

【0050】 [比較例1] 実施例の式(6)の化合物の※30 【化15】

※代わりに、下記式(7)で示される化合物8.7重量部 を使用した以外は、同様な組成物を調製した。

 \cdots (6)

[0051]

$$C_{8}F_{17}CH_{2}CH_{2}SiO + SiO + SiO + CH_{2}CH_{2}C_{8}F_{17}$$

$$CH_{3} + CH_{2}CH_{2}CH_{3} + CH_{3}CH_{3}CH_{3}CH_{3}$$

$$CH_{3} + CH_{3}CH$$

【0052】との組成物を実施例と同様に硬化させたと

ころ、針入度64の透明なゲル硬化物を得た。

【0053】〔比較例2〕実施例の式(6)の化合物の 代わりに、下記式(8)で示される化合物12.1重量★ ★部を使用した以外は、同様な組成物を調製した。

[0054]

【化16】

$$\begin{bmatrix} \text{CH}_{\text{s}} \\ \text{C}_{\text{s}}\text{F}_{\text{1}}\text{,CH}_{\text{s}}\text{CH}_{\text{c}}\text{CH}_{\text{c}}\text{Sio} \end{bmatrix} \begin{bmatrix} \text{CH}_{\text{s}} \\ \text{ISio} \\ \text{CH}_{\text{s}} \end{bmatrix} \text{SiCH}_{\text{s}}\text{CH}_{\text{s}} - \text{C}_{\text{s}}\text{F}_{\text{1}z} - \text{CH}_{\text{s}}\text{CH}_{\text{c}}\text{Si} \begin{bmatrix} \text{CH}_{\text{s}} \\ \text{OSiH} \\ \text{CH}_{\text{s}} \end{bmatrix} \begin{bmatrix} \text{CH}_{\text{s}} \\ \text{OSiCH}_{\text{s}}\text{CH}_{\text{s}}\text{CH}_{\text{c}}\text{CH}_{\text{c}}\text{CH}_{\text{c}}\text{F}_{\text{1}}, \end{bmatrix}$$

... (8)

【0055】この組成物を実施例と同様に硬化させたと とろ、針入度65の透明なゲル硬化物を得た。

【0056】次に、上記組成物の保存性及び硬化性につ いて調べた。

【0057】保存性

実施例、比較例1,2の組成物を密閉容器にて40℃, 30日間保存したときの粘度変化を表1に示す。

[0058]

【表1】

	実施例	,比較例 1	比較例2
初 期 (cp)	1140	1290	1250
保存後(cp)	1140	1290	ゲル化

【0059】硬化性

実施例、比較例 1, 2の組成物の 150 ℃硬化時の弾性 率を測定した。結果を図 1 に示す。

【0060】以上説明したように、比較例1においては、硬化の進行が完遂しづらく、硬化安定性が悪い。ま

た、比較例2においては、長期保存安定性に欠ける。そ*10

*のいずれも本発明の実施例は満足するものであることが わかる。

16

【図面の簡単な説明】

【図1】実施例、比較例の硬化性組成物の150℃硬化特性を示すグラフである。

【図1】

