

Introduction to Logarithms

In its simplest form, a logarithm answers the question:

How many of one number do we multiply to get another number?

Example: How many 2s do we multiply to get 8?

Answer: $2 \times 2 \times 2 = 8$, so we had to multiply 3 of the 2s to get 8

So the logarithm is 3

How to Write it

We write "the number of 2s we need to multiply to get 8 is 3" as:

$$log_2(8) = 3$$

So these two things are the same:

$$\frac{2 \times 2 \times 2}{3} = 8 \iff \log_2(8) = 3$$
base

The number we multiply is called the "base", so we can say:

- "the logarithm of 8 with base 2 is 3"
- or "log base 2 of 8 is 3"
- or "the base-2 log of 8 is 3"

Notice we are dealing with three numbers:

- the **base**: the number we are multiplying (a "2" in the example above)
- how often to use it in a multiplication (3 times, which is the **logarithm**)
- The number we want to get (an "8")

More Examples

Example: What is $log_5(625)$...?

We are asking "how many 5s need to be multiplied together to get 625?"

 $5 \times 5 \times 5 \times 5 = 625$, so we need 4 of the 5s

Answer: $log_5(625) = 4$

Example: What is $log_2(64)$... ?

We are asking "how many 2s need to be multiplied together to get 64?"

 $2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$, so we need 6 of the 2s

Answer: $log_2(64) = 6$

Exponents

Exponents and Logarithms are related, let's find out how ...

The **exponent** says **how many times** to use the number in a multiplication.

In this example: $2^3 = 2 \times 2 \times 2 = 8$

(2 is used 3 times in a multiplication to get 8)

So a logarithm answers a question like this:

In this way:

The logarithm tells us what the exponent is!

In that example the "base" is 2 and the "exponent" is 3:

So the logarithm answers the question:

What exponent do we need

(for one number to become another number)?

The **general** case is:

$$a^{\times} = y$$

$$|\log_{a}(y) = x$$

Example: What is $log_{10}(100)$...?

$$10^2 = 100$$

So an exponent of ${\color{red} 2}$ is needed to make 10 into 100, and:

$$log_{10}(100) = 2$$

Example: What is $log_3(81)$...?

$$3^4 = 81$$

So an exponent of 4 is needed to make 3 into 81, and:

$$log_3(81) = 4$$

Common Logarithms: Base 10

Sometimes a logarithm is written without a base, like this:

log(100)

This *usually* means that the base is really 10.

It is called a "common logarithm". Engineers love to use it.

On a calculator it is the "log" button.

It is how many times we need to use 10 in a multiplication, to get our desired number.

Example: $log(1000) = log_{10}(1000) = 3$

Natural Logarithms: Base "e"

Another base that is often used is <u>e (Euler's Number)</u> which is about 2.71828.

This is called a "natural logarithm". Mathematicians use this one a lot.

On a calculator it is the "In" button.

It is how many times we need to use "e" in a multiplication, to get our

desired number.

Example: $In(7.389) = log_e(7.389) \approx 2$

Because **2.71828²** ≈ **7.389**

But Sometimes There Is Confusion ...!

Mathematicians use "log" (instead of "ln") to mean the natural logarithm. This can lead to confusion:

Example	Engineer Thinks	Mathematician Thinks	
log(50)	log ₁₀ (50)	log _e (50)	confusion
In(50)	log _e (50)	log _e (50)	no confusion
$log_{10}(50)$	log ₁₀ (50)	log ₁₀ (50)	no confusion

So, be careful when you read "log" that you know what base they mean!

Logarithms Can Have Decimals

All of our examples have used whole number logarithms (like 2 or 3), but logarithms can have decimal values like 2.5, or 6.081, etc.

Read <u>Logarithms Can Have Decimals</u> to find out more.

Negative Logarithms

Negative? But logarithms deal with multiplying. What is the opposite of multiplying? **Dividing!**

A negative logarithm means how many times to divide by the number.

We can have just one divide:

```
Example: What is log_8(0.125) ... ? Well, 1 \div 8 = 0.125, So log_8(0.125) = -1
```

Or many divides:

```
Example: What is log_5(0.008) ... ?  1 \div 5 \div 5 \div 5 = 5^{-3},  So log_5(0.008) = -3
```

It All Makes Sense

Multiplying and Dividing are all part of the same simple pattern.

Let us look at some Base-10 logarithms as an example:

Number How Many 10s Base-10 Logarithm

	10x Larger 10x Smaller	etc			
		1000	1 × 10 × 10 × 10	log ₁₀ (1000)	= 3
<u>=</u>		100	1 × 10 × 10	log ₁₀ (100)	= 2
g		10	1 × 10	log ₁₀ (10)	= 1
X		1	1	$\log_{10}(1)$	= 0
-		0.1	1 ÷ 10	$\log_{10}(0.1)$	= -1
		0.01	1 ÷ 10 ÷ 10	$\log_{10}(0.01)$	= -2
		0.001	1 ÷ 10 ÷ 10 ÷ 10	$\log_{10}(0.001)$	= -3
		etc			

Looking at that table, see how positive, zero or negative logarithms are really part of the same (fairly simple) pattern.

The Word

"Logarithm" is a word made up by Scottish mathematician John Napier (1550-1617), from the Greek word *logos* meaning "proportion, ratio or word" and *arithmos* meaning "number", ... which together makes "rationumber"!

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

Copyright © 2020 MathsIsFun.com