CPSC-354 Report

Nikolai Semerdjiev Chapman University

September 2, 2025

Abstract

Contents

L	Introduction	1
2	Week by Week 2.1 Week 1	1 1
3	Essay	2
L	Evidence of Participation	2
5	Conclusion	2
L	Introduction	
2	Week by Week	
2.	1 Week 1	
	The MU Puzzle	
₹	ULES:	

R

- 1. (Append-U) If a string ends with I, you may append U: $x \mathbf{I} \to x \mathbf{I} \mathbf{U}.$
- 2. (Double) From Mx you may produce Mxx:
- 3. (III \rightarrow U) Replace any occurrence of III with U: $x, \mathtt{III}, y \to x, \mathtt{U}, y.$
- 4. (Delete UU) Delete any occurrence of UU: $x, \mathtt{UU}, y \to x, y.$

Question: Can you go from $MI \rightarrow MU$?

Solution: No, it is impossible to derive MU from MI. At first, playing around with the rules, I noticed that the goal was to create the correct number of I's where they would be converted to a single U, which means that we needed the rules to create $N_I \mod 3 = 0$ as N_I is I count.

Now, consider how each rule affects N_I :

- (Append-U) This rule appends a U to the end of the string. It does not change the number of I's, so N_I is unchanged.
- (Double) The rule $Mx \to Mxx$ doubles the part after M. If the first string has N_I I's, then the new one has $2N_I$ I's. In modular arithmetic, N_I is multiplied by 2 modulo 3.
- (III \rightarrow U) This rule removes exactly three I's. Therefore $N_I \mapsto N_I 3$, which leaves $N_I \mod 3$ unchanged.
- (Delete UU) This rule affects only U's, not I's, so N_I is unchanged.

Starting from MI, we have $N_I \equiv 1$, so $N_I \equiv 1 \pmod{3}$. The only nontrivial change is doubling, which cycles $1 \mapsto 2 \mapsto 1 \mapsto 2 \dots$ but never produces 0. Thus, it is impossible to reach $N_I \equiv 0 \pmod{3}$.

Since MU has $N_I = 0$, it is not derivable from MI.

- 3 Essay
- 4 Evidence of Participation
- 5 Conclusion

References

[BLA] Author, Title, Publisher, Year.