Corrigé - Colle 4 (Sujet 2)

BCPST1B Année 2021-2022

12 octobre 2021

Exercice 1. Écrire sous la forme d'un cosinus

$$A = \sqrt{3}\cos(\theta) + \sin(\theta).$$

Solution de l'exercice 1. On commence par déterminer l'amplitude du signal :

$$r = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2.$$

On note alors,

$$A = 2\left(\frac{\sqrt{3}}{2}\cos(\theta) + \frac{1}{2}\sin(\theta)\right) = 2\left(\cos\left(\frac{\pi}{6}\right)\cos(\theta) + \sin\left(\frac{\pi}{6}\right)\sin(\theta)\right).$$

Finalement,

$$A = 2\cos\left(\theta + \frac{\pi}{6}\right).$$

Exercice 2. Soit (u_n) la suite définie par $u_0 = u_1 = -1$ et $u_{n+2} = (n+1)u_{n+1} - (n+2)u_n$, pour tout $n \ge 0$. Démontrer que, pour tout $n \in \mathbb{N}$, $u_n = -1 + n(n-1)$.

Solution de l'exercice 2. On utilise une récurrence double.

• Annonce : Pour tout entier naturel non nul n, on définit la propriété $\mathcal{P}(n)$ par :

$$u_n = -1 + n(n-1).$$

- Initialisation: Pour n = 0, $u_0 = -1 = -1 + n(n-1)$ et pour n = 1, $u_1 = -1 = -1 + n(n-1)$. Donc $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies.
- **Hérédité**: On suppose que cette propriété est vraie à un rang $n \ge 1$ quelconque et également

au rang n+1. Alors,

$$u_{n+2} = (n+1)u_{n+1} - (n+2)u_n$$

$$= (n+1)(-1+(n+1)n) - (n+2)(-1+n(n-1))$$

$$= -n-1+n(n+1)^2+n+2-n(n-1)(n+2)$$

$$= -n-1+n^3+2n^2+n+n+2-n(n^2-n-2)$$

$$= 1+n^2+3n$$

$$= -1+(n+2)(n+1).$$

• Conclusion : Par le principe de récurrence double, quelque soit $n \in \mathbb{N}$, $u_n = -1 + n(n-1)$.

Exercice 3. Soit (u_n) la suite définie par $u_0 = 1$ et pour tout entier naturel n,

$$u_{n+1} = \frac{u_n}{2u_n + 1}.$$

On admet que pour tout $n \in \mathbb{N}$, $u_n \neq 0$. On définit ainsi la suite (v_n) définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{1}{u_n}$.

- 1. La suite (v_n) est-elle arithmétique, géométrique?
- 2. En déduire une expression de (u_n) en fonction de n.
- 3. Montrer que pour tout entier naturel n non nul : $0 < u_n \leqslant \frac{1}{3}$.
- 4. Montrer que la suite (u_n) est décroissante.

Solution de l'exercice 3. 1. On a

$$v_{n+1} = \frac{1}{u_{n+1}} = \frac{2u_n + 1}{u_n} = 2 + \frac{1}{u_n} = 2 + v_n$$

donc v_n est arithmétique de raison 2 et $v_0 = \frac{1}{u_0} = 1$.

- 2. $v_n = 1 + 2n$ pour tout $n \in \mathbb{N}$ donc $u_n = \frac{1}{v_n} = \frac{1}{1+2n}$.
- 3. On a $n \ge 1$, $1 + 2n \ge 3$ et donc $u_n \le \frac{1}{3}$.
- 4. On a $1+2(n+1)=1+2n+2\geqslant 1+2n$ et donc $u_{n+1}\leqslant u_n$ et la suite (u_n) est donc décroissante.

Exercice 4. Démontrer que la somme des $n \ge 1$ premiers entiers naturels impairs vaut n^2 .

Solution de l'exercice 4. Montrons par récurrence que la propriété (P_n) : "La somme des n premiers entiers naturels impairs vaut n^2 " est vraie pour tout $n \ge 1$.

- Initialisation. Pour n = 1, on a bien $1 = 1^2$ car le premier nombre impairs est 1.
- Hérédité. Soit $n \ge 1$ un entier fixé. Supposons que la propriété (P_n) est vraie au rang n, i.e. que

$$\sum_{k=0}^{n-1} (2k+1) = n^2.$$

Montrons que la propriété est vraie au rang n+1. La somme des n+1 premiers entiers impairs est donnée par

$$\sum_{k=0}^{n} (2k+1) = \left(\sum_{k=0}^{n-1} (2k+1)\right) + (2n+1)$$

Alors, par hypothèse de récurrence, on obtient

$$\sum_{k=0}^{n} (2k+1) = n^2 + 2n + 1 = (n+1)^2.$$

Ceci achève de démontrer que la propriété est vraie au rang n+1.

• Conclusion. On a donc bien démontré que pour tout $n \ge 1$, la somme des n premiers entiers naturels impairs vaut n^2 .

Exercice 5. Soit $(u_n)_{n\geqslant 1}$ la suite définie par

$$u_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \dots \left(1 + \frac{n-1}{n^2}\right) \left(1 + \frac{n}{n^2}\right).$$

1. Montrer, pour tout $x \ge 0$, l'inégalité

$$x - \frac{x^2}{2} \leqslant \ln(1+x) \leqslant x.$$

2. Montrer que

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

3. On pose $v_n = \ln(u_n)$. Déduire des questions précédentes que

$$\frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \leqslant v_n \leqslant \frac{n+1}{2n}.$$

4. Montrer que (v_n) converge, et préciser sa limite. De même pour (u_n) .

Solution de l'exercice 5. 1. Posons $f(x) = x - \ln(1+x)$. On a $f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} \ge 0$ pour $x \ge 0$. La fonction f est donc croissante sur $[0, +\infty[$. En particulier, on a $f(x) \ge f(0) = 0$, ce qui donne la première inégalité $\ln(1+x) \le x$. De même, on pose $g(x) = x - \frac{x^2}{2} - \ln(1+x)$. g est dérivable sur $[0, +\infty[$ et on a

$$g'(x) = 1 - x - \frac{1}{1+x} = \frac{-x^2}{1+x} \le 0$$

pour $x \ge 0$. La fonction g est donc décroissante sur $[0, +\infty[$ et on a $g(x) \le g(0) = 0$ pour $x \ge 0$, ce qui donne l'autre inégalité.

2. On procède par récurrence sur n.

3. On a, puisque ln(xy) = ln(x) + ln(y),

$$u_n = \ln\left(1 + \frac{1}{n^2}\right) + \ln\left(1 + \frac{2}{n^2}\right) + \dots + \ln\left(1 + \frac{n}{n^2}\right).$$

On utilise ensuite l'inégalité $ln(1+x) \leq x$ pour trouver

$$vn \leqslant \frac{1}{n^2} + \dots + \frac{n}{n^2} \leqslant \frac{1}{n^2} (1 + \dots + n) = \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{n+1}{2n}.$$

Pour l'autre inégalité, on procède de façon identique en utilisant cette fois $\ln(1+x) \geqslant x - \frac{x^2}{2}$. On trouve

$$v_n \geqslant \frac{1}{n^2} + \dots + \frac{n}{n^2} - \left(\frac{1^2}{2n^4} + \dots + \frac{n^2}{2n^4}\right).$$

La première partie a déjà été calculée auparavant. Pour la seconde, on utilise la question précédente. Ainsi,

$$v_n\geqslant \frac{n+1}{2n}-\frac{1}{2n^4}(1^2+\ldots+n^2)=\frac{n+1}{2n}-\frac{1}{2n^4}\frac{n(n+1)(2n+6)}{6}=\frac{n+1}{2n}-\frac{n(n+1)(2n+6)}{12n^3}.$$

- 4. On sait que $\frac{n+1}{2n}$ tend vers $\frac{1}{2}$ tandis que $\frac{(n+1)(2n+1)}{12n^3}$ tend vers 0 (quotient d'un polynôme de degré 2 et d'un polynôme de degré 3). (v_n) est donc encadré par deux suites qui tendent toutes deux vers $\frac{1}{2}$. Par le théorème d'encadrement des limites (ou théorème des gendarmes), (v_n) converge elle-même vers $\frac{1}{2}$.
- 5. On a $u_n = \exp(v_n)$. Par le théorème de composition des limites, (u_n) est convergente, de limite $\exp(1/2)$.