# Paper Review

Smart reply: automated response suggestion for email





Google research program ... for faculty and others

## Smart Reply: automated response suggestion for email 2016. 06. 15

2015년 하반기에 추가된 메일에 '짧은' 답장 추천 Inbox, Gmai 의 기능

모바일 환경에서 10% 비율의 답장을 도와줌



Keyword: LSTM; Deep Learning; Clustering; Semantics;

#### Motivation

**Email**은 웹에서 가장 널리 사용되는 커뮤니케이션 도구!

Social Network 사용자가 늘어나고 있으나, **수십억의 인구**가 지속적인 사용 중

사용자가 메시지에 답장을 하는 것이 'challenging'하다. 모바일에서 입력하는 것은 시간 낭비가 될 수도 있고, **25%의 답장이 20개 이하 단어**로 이루어져 있음

Goal...

Response Quality 항상 높은 품질의 개인화된 답장

**Utility** 여러 답장 중 하나라도 사용자가 선택할 수 있게

Scalability 수 많은 메시지를 지연 없이 효과적으로 처리

Privacy 요약 통계를 제외한 데이터 검사 없는 시스템

#### **Process**

Input: incoming message

Output : possible replies



Figure 2: Life of a message. The figure presents the overview of inference.

# Selecting Responses

R: all possible response

o: given original message



LSTM Model: sequence to sequence learning [http://arxiv.org/abs/1409.3215]

r : sequence of tokens (conditional probability of response tokens)

o: sequence of tokens(original message)

$$P(r_1, ..., r_m | o_1, ..., o_n) = \prod_{i=1}^m P(r_i | o_1, ..., o_n, r_1, ..., r_{i-1})$$

is interpreted as  $P(r_t|o_1,...,o_n,r_1,...,r_{t-1})$ . Given the factorization above, these softmaxes can be used to compute  $P(r_1,...,r_m|o_1,...,o_n)$ .

- Training: AdaGrad [stochastic gradient descent]

$$G = \sum_{ au=1}^t g_ au g_ au^\mathsf{T}$$

where  $g_{ au} = 
abla Q_i(w)$ , the gradient, at iteration au. The diagonal is given by

$$G_{j,j} = \sum_{ au=1}^t g_{ au,j}^2$$
 .

This vector is updated after every iteration. The formula for an update is now

$$w := w - \eta \operatorname{diag}(G)^{-rac{1}{2}} \circ g^{[\mathtt{a}]}$$

or, written as per-parameter updates,

$$w_j := w_j - rac{\eta}{\sqrt{G_{j,j}}} g_j.$$

# Selecting Responses '

R : all possible response

o: given original message



| Query                     | Top generated responses  |  |  |
|---------------------------|--------------------------|--|--|
| Hi, I thought it would be | I can do Tuesday.        |  |  |
| great for us to sit down  | I can do Wednesday.      |  |  |
| and chat. I am free       | How about Tuesday?       |  |  |
| Tuesday and Wenesday.     | I can do Tuesday!        |  |  |
| Can you do either of      | I can do Tuesday. What   |  |  |
| those days?               | time works for you?      |  |  |
|                           | I can do Wednesday!      |  |  |
| Thanks!                   | I can do Tuesday or      |  |  |
|                           | Wednesday.               |  |  |
| -Alice                    | How about Wednesday?     |  |  |
|                           | I can do Wednesday. What |  |  |
|                           | time works for you?      |  |  |
|                           | I can do either.         |  |  |

# Challenges

#### Response Quality Problem

- Poor grammar, spelling.... (your the best!)
- Too informal (yup, got it thx)
- Offensive (Leave me alone)

#### => Construct response space **R**

#### **Utility Problem**

Little diversity

| Unnormalized Responses        | Normalized Responses  |  |  |
|-------------------------------|-----------------------|--|--|
| Yes, I'll be there.           | Sure, I'll be there.  |  |  |
| Yes, I will be there.         | Yes, I can.           |  |  |
| I'll be there.                | Yes, I can be there.  |  |  |
| Yes, I can.                   | Yes, I'll be there.   |  |  |
| What time?                    | Sure, I can be there. |  |  |
| I'll be there!                | Yeah, I can.          |  |  |
| I will be there.              | Yeah, I'll be there.  |  |  |
| Sure, I'll be there.          | Sure, I can.          |  |  |
| Yes, I can be there.          | Yes. I can.           |  |  |
| Yes!                          | Yes, I will be there. |  |  |
| Normalized Negative Responses |                       |  |  |

# Normalized Negative Responses Sorry, I won't be able to make it tomorrow. Unfortunately I can't. Sorry, I won't be able to join you. Sorry, I can't make it tomorrow. No, I can't. Sorry, I won't be able to make it today. Sorry, I can't. I will not be available tomorrow. I won't be available tomorrow.

Unfortunately, I can't.

Final Suggestions
Sure, I'll be there.

Yes, I can.

Sorry, I won't be able to make it tomorrow.

Table 2: Different response rankings for the message "Can you join tomorrow's meeting?"

#### => Light normalization, Suggestion Diversity

| Query                     | Top generated responses |  |  |
|---------------------------|-------------------------|--|--|
| Hi, I thought it would be | I can do Tuesday.       |  |  |
| great for us to sit down  | I can do Wednesday.     |  |  |
| and chat. I am free       | How about Tuesday?      |  |  |
| Tuesday and Wenesday.     | I can do Tuesday!       |  |  |
| Can you do either of      | I can do Tuesday. What  |  |  |
| those days?               | time works for you?     |  |  |
|                           | I can do Wednesday!     |  |  |
| Thanks!                   | I can do Tuesday or     |  |  |
|                           | Wednesday.              |  |  |
| -Alice                    | How about Wednesday?    |  |  |

# Challenges

#### Scalability Problem

- R set is very large
- need ASAP!

#### => Left to Right beam search

휴리스틱 탐색 기법의 하나로 탐색 도중에 해가 되는 후보 가지가 여러 개 있을 때 해가 될 가능성이 큰 가지만을 남기고 나머지는 모두 잘라 버리는 방식



Beam 사이즈가 16만 되어도 brutal force와 93% 유사한 정답을 냄

#### Privacy Problem

- Encrypted! -> only frequent words can be accessed && statistics on anonymized sentence

## Response Set Generation

#### Set generation == satisfy(response quality, utility)

(Yes, I'll be there == I will be there).consider as same

- 1. Canonicalizing(normalizing) email response
  - Modifiers | | unattached to head words are ignored from sentence
- 2. Semantic intent clustering
  - 'Thank you' vs 'sorry' vs 'cannot make it'
  - "Ha ha", "lol", "Oh that's funny": funny cluster
- 3. Graph construction
  - Add seed (thanks -> "Thanks!", "Thank you"): test 클러스터 100개에 3-5개의 seed 단어 설정
  - Frequent response message as node (Vr): (Thanks, I love you, sounds good)
  - Lexical(grammatical) features as node (Vf)
  - (Vr, Vf) edge → make manua;ly labeled example (VI)

Observation: (Let us get together soon, When should we met?) && (When should we met?, How about Friday?): response used to question

4. Semi-supervised learning

# Response Set Generation '

#### Set generation == satisfy(response quality, utility)

(Yes, I'll be there == I will be there).consider as same

- 4. Semi-supervised learning
  - semantic labeling for all response=> used EXPANDER

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 807–814, 2010

minimize 
$$s_{i}||\hat{C}_{i} - C_{i}||^{2} + \mu_{pp}||\hat{C}_{i} - U||^{2} + \mu_{np}\left(\sum_{j \in \mathcal{N}_{\mathcal{F}}(i)} w_{ij}||\hat{C}_{i} - \hat{C}_{j}||^{2} + \sum_{j \in \mathcal{N}_{\mathcal{R}}(i)} w_{ik}||\hat{C}_{i} - \hat{C}_{k}||^{2}\right)$$
(1

s == [0,1] // node i가 seed면 1

C // node i □ learned semantic cluster distribution

Nf, Nr // node i의 이웃

뮤np // predefined penalty

뮤pp // penalty for label distribution deviating from the prior

U // uniform distribution

If no seed 
$$\mu_{np} \sum_{i \in \mathcal{N}(j)} w_{ij} ||\hat{C}_j - \hat{C}_i||^2 + \mu_{pp} ||\hat{C}_j - U||^2$$
 (2)

# Response Set Generation "

Set generation == satisfy(response quality, utility)

(Yes, I'll be there == I will be there).consider as same



Figure 4: Semantic clustering of response messages.

Validation: Top response chosen!

# Suggestion diversity

We need to choose a small number of options to choose!

| Unnormalized Responses                      | Normalized Responses             |  |  |  |  |
|---------------------------------------------|----------------------------------|--|--|--|--|
| Yes, I'll be there.                         | Sure, I'll be there.             |  |  |  |  |
| Yes, I will be there.                       | Yes, I can.                      |  |  |  |  |
| I'll be there.                              | Yes, I can be there.             |  |  |  |  |
| Yes, I can.                                 | Yes, I'll be there.              |  |  |  |  |
| What time?                                  | Sure, I can be there.            |  |  |  |  |
| I'll be there!                              | Yeah, I can.                     |  |  |  |  |
| I will be there.                            | Yeah, I'll be there.             |  |  |  |  |
| Sure, I'll be there.                        | Sure, I can.                     |  |  |  |  |
| Yes, I can be there.                        | Yes. I can.                      |  |  |  |  |
| Yes!                                        | Yes, I will be there.            |  |  |  |  |
| Normalized Negative Responses               |                                  |  |  |  |  |
| Sorry, I won't be able to make it tomorrow. |                                  |  |  |  |  |
| Unfortunately I can't.                      |                                  |  |  |  |  |
| Sorry, I won't be able to join you.         |                                  |  |  |  |  |
| Sorry, I can't make it tom                  | Sorry, I can't make it tomorrow. |  |  |  |  |
| No, I can't.                                |                                  |  |  |  |  |
| Sorry, I won't be able to n                 | nake it today.                   |  |  |  |  |
| Sorry, I can't.                             |                                  |  |  |  |  |
| I will not be available tomorrow.           |                                  |  |  |  |  |
| I won't be available tomorrow.              |                                  |  |  |  |  |
| Unfortunately, I can't.                     |                                  |  |  |  |  |
| Final Suggestions                           |                                  |  |  |  |  |
| Sure, I'll be there.                        |                                  |  |  |  |  |
| Yes, I can.                                 |                                  |  |  |  |  |
| Sorry, I won't be able to make it tomorrow. |                                  |  |  |  |  |

Table 2: Different response rankings for the message "Can you join tomorrow's meeting?"

#### Strategy

- Omitting redundant response
  - -> Make Response set R
- Enforcing negative || positive response
  - -> 점수를 매겨보니 부정적인 답은 전체적으로 적은 점수를 얻음
  - -> 2개는 긍정 하나는 부정으로 하자!

# Triggering

**Entry point of Smart Replay System** 

Currently, system decides to response 11%

- 1. "Where do you want to go today?" -> 추천 필요 없음
  - 필요한 것만 추천하자
- 2. Fast triggering

# Triggering '

#### Entry point of Smart Replay System

#### Training set

(incoming message, [true, false]): true는 모바일에서 답장 된 것
-> true가 된 incoming message를 body, subject, headers로 분리 + address book 존재여부 + 답장한 적이 있는지 여부

#### Architecture

Feedforward multilayer perceptron with embedding layer && three fully connected hidden layers

Activation function: ReLu

Dropout: applied after each hidden layer

Trained with: AdaGrad

#### **Evaluation && Results**

#### **Used Data**

- Language detection
- Tokenization
- Sentence segmentation
- Normalization
- Quotation removal
- Salutation/close removal (like Best regards, Mary)
- => 2.38억 messages ( 1.53억 messages는 no response)

#### **Evaluation && Results**

Triggering: 11%가 답장이 가도록 됨

Message response : 많은 새로운 cluster가 생성되는 중.

하지만 답장 제안이 만들어져도 스크롤을 끝까지 안내리거나, web을 사용하는 것을 알 수 있다.

Smart Reply 사용자 중

45%는 첫번째 답장, 35%는 2번째, 나머지는 3번째의 답장을 선택함

단순히 가장 높은 3개의 답만 보여주니 선택률이 7.5% 줄었다.

|                    | Daily Count | Seen  | Used  |
|--------------------|-------------|-------|-------|
| Unique Clusters    | 376         | 97.1% | 83.2% |
| Unique Suggestions | 12.9k       | 78%   | 31.9% |

Table 4: Unique cluster/suggestions usage per day





#### Reference

https://research.googleblog.com/2015/11/computer-respond-to-this-email.html

Smart Reply: Automated Response Suggestion for Email

Didn't read but important

http://arxiv.org/abs/1409.3215 [ sequence to sequence learning ]



Thought vector: Squeeze to similar for example, the vector for "Are you free tomorrow?" should be similar to the vector for "Does tomorrow work for you?"