Homework 3

21-236 Mathematical Studies Analysis II

Name: Shashank Singh Email: sss1@andrew.cmu.edu Due: Monday, February 13, 2012

Problem 1

(a) Let $I = (a, b) \subseteq \mathbb{R}$ be an open interval, and let $f : I \to \mathbb{R}$ be convex. Let $x \in I$, and let $y, z \in I$ with z < x < y. Then z < x < y, $\exists \theta \in (0, 1)$ such that $x = z + \theta(y - z)$. Thus, since f is convex,

$$\frac{f(x) - f(z)}{x - z} = \frac{f(z + \theta(y - z)) - f(z)}{z + \theta(y - z) - z}$$

$$\leq \frac{f(z) + \theta(f(y) - f(z)) - f(z)}{\theta(y - z)}$$

$$= \frac{\theta(f(y) - f(z))}{\theta(y - z)}$$

$$= \frac{f(y) - f(z)}{y - z}$$

$$= \frac{(1 + \theta)(f(y) - f(z)))}{(1 + \theta)(y - z)}$$

$$= \frac{f(y) - (f(z) + \theta(f(y) - f(z)))}{y - (z + \theta(y - z))}$$

$$\leq \frac{f(y) - f(z + \theta(y - z))}{y - (z + \theta(y - z))}$$

$$= \frac{f(y) - f(x)}{y - x}.$$

Thus, $z \mapsto \frac{f(x) - f(z)}{x - z}$ is increasing on I, so that, since x is an accumulation point of I, by Theorem 204 (as per the notes for Real Analysis I), $f'_{-}(x) := \lim_{z \to x -} \left(\frac{f(x) - f(z)}{x - z}\right)$ and $f'_{+}(x) := \lim_{z \to x +} \left(\frac{f(z) - f(x)}{z - x}\right)$ exist.

(b) $\forall x, y \in I$ with x < y, also by Theorem 204, since $x \mapsto \frac{f(y) - f(x)}{y - x}$ is also increasing on I,

$$f'_{-}(x) \le \frac{f(y) - f(x)}{y - x} \le f'_{-}(y) \le f'_{+}(y).$$

(c) Let $x, y \in I$. If x < y, then, by the result of part (b),

$$f'_{-}(x) \le \frac{f(y) - f(x)}{y - x} = \frac{f(x) - f(y)}{x - y}.$$

Thus, since (x-y) > 0, multiplying by (x-y) and adding f(y) gives $f(x) \ge f(y) + f'_{-}(x)(x-y)$. If y < x, then, by the result of part(b),

$$\frac{f(x) - f(y)}{x - y} \le f'_{-}(x).$$

Thus, since x-y < 0, multiplying by (x-y) and adding f(y) gives $f(x) \ge f(y) + f'_-(x)(x-y)$. If x = y, then x - y = 0, so, trivially, $f(x) \ge f(y) + f'_-(x)(x-y)$. Thus, $\forall x, y \in I$, $f(x) \ge f(y) + f'_-(x)(x-y)$.

(d) Let $U \subseteq \mathbb{R}$ be convex, and let $g: U \to \mathbb{R}$ be differentiable and convex. Let $\mathbf{v} = \mathbf{y} - \mathbf{x}$. Since U is convex, if S is the line segment between \mathbf{x} and \mathbf{y} , then $S \subseteq U$. Since U is open, $\exists \delta_1, \delta_2$ such that $B(\mathbf{x}, \delta_1), B(\mathbf{y}, \delta_2) \subseteq U$. Thus, for $I = (-\delta_1, \|\mathbf{v}\| + \delta_2) \subseteq \mathbb{R}$ we can define $h: I \to \mathbb{R}$, such that, $\forall t \in (-\delta_1, \|\mathbf{v}\| + \delta_2), h(t) = g(\mathbf{x} + t \frac{\mathbf{v}}{\|\mathbf{v}\|})$. Since g is convex, h is also convex. Furthermore, I is open, so that, by the result of part (c),

$$h(0) \ge h(\|\mathbf{v}\|) + h'_{-}(0)(\|\mathbf{v}\|).$$

Since g is differentiable, h is differentiable (so that, $\forall t \in I$, $h'(t) = h'_{-}(t)$),

$$g(\mathbf{y}) + \nabla g(\mathbf{x}) \cdot \mathbf{v} = g(\mathbf{y}) + \frac{\partial g}{\partial \mathbf{v}}(\mathbf{x}) = h(\|\mathbf{v}\|) + \frac{dh}{dt}(0)\|\mathbf{v}\| = h(\|\mathbf{v}\|) + h'_{-}(0)\|\mathbf{v}\| \le h(0) = g(\mathbf{x}).$$

Problem 2

(a) Let $h \in C([a,b])$ such that

$$\int_a^b h(x)v'(x) \ dx = 0,$$

 $\forall v \in C^1([a,b])$ such that v(a) = v(b) = 0. Suppose, for sake of contradiction, that h is non-constant, so that there exists some $x_1, x_2 \in [a,b]$ such that $h(x_1) \neq h(x_2)$. Without loss of generality, $h(x_1) < h(x_2)$ (since h is constant if and only if -h is constant), and $0 < h(x_1)$ (since h is constant if and only if $h - h(x_1) + 1$ is constant).

Since h is continuous, $\exists \delta_1, \delta_2 > 0$ such that, $\forall x \in [x_1 - \delta_1, x_1 + \delta_1], h(x) < m$, for some $m \leq \frac{h(x_1) + h(x_2)}{2}$, and $\forall x \in [x_2 - \delta_2, x_2 + \delta_2], h(x) > M$, for some $M \geq \frac{h(x_1) + h(x_2)}{2}$. Let $\delta = \min\{\delta_1, \delta_2\}$, and let $c = \max\{a, x_1 - \delta_1\}, d = x_1 + \delta_1, e = x_2 - \delta_2$, and $f = \min\{b, x_2 + \delta_2\}$.

Define $v:[a,b]\to\mathbb{R}$ piecewise as follows:

$$f(x) = \begin{cases} 0 & : & x \in [a,c] \cup [f,b] \\ 2 & : & x \in [d,e] \\ (\frac{2}{d-c}(x-c))^2 & : & x \in (c,\frac{c+d}{2}] \\ 2 - (\frac{2}{d-c}(x-d))^2 & : & x \in (\frac{c+d}{2},d) \\ 2 - (\frac{2}{f-e}(x-e))^2 & : & x \in (e,\frac{e+f}{2}] \\ (\frac{2}{f-e}(x-f))^2 & : & x \in (\frac{e+f}{2},f) \end{cases}$$

Then, $v \in C^1([a,b])$, $\forall x \in (c,d)$. Since v is constant on [a,c], [d,e] and [f,b], v'=0 on these intervals. Since, $\forall y \in [c,d]$, v(y)=2-v(e+y-c),

$$\int_c^d v' = -\int_e^f v' \neq < 0.$$

Thus, since $h \ge m > 0$ on [c, d] and $m < M \le h$

$$\int_{c}^{d} hv' + \int_{e}^{f} hv' < \int_{c}^{d} mv' + \int_{e}^{f} Mv' < 0.$$

Thus,

$$\int_{a}^{b} hv' = \int_{a}^{c} hv' + \int_{c}^{d} hv' + \int_{d}^{e} hv' + \int_{e}^{f} hv' + \int_{f}^{b} hv'
= \int_{c}^{d} hv' + \int_{e}^{f} hv' < 0,$$

contradicting the given that

$$\int_{a}^{b} hv' = 0. \qquad \blacksquare$$

(b) Since $p \in C([a, b])$, p is integrable on [a, b], so that is has an antiderivative $P \in C^1([a, b])$. Thus, since v(a) = v(b) = 0, integrating by parts gives

$$\int_{a}^{b} [pv + qv'] = P(b)v(b) - P(a)v(a) + \int_{a}^{b} [qv' - Pv']$$
$$= \int_{a}^{b} [qv' - Pv']$$
$$= \int_{a}^{b} [q - P]v'$$

By the result of part (a), h := q - P is a constant function. As the sum of two functions in $C^1([a,b])$, q is differentiable, and, furthermore, q' = P' + h' = p.

(c) Let $\alpha, \beta \in \mathbb{R}$, and let $X = \{ f \in C^1([a,b]) : f(a) = \alpha, f(b) = \beta \}$. Suppose some $f_0 \in X$ minimizes G over X. Recall that, by the result of Problem 3, part (c) of Assignment 2,

$$\int_{\alpha}^{\beta} \left[\frac{\partial g}{\partial y}(x, f_0(x), f'_0(x))v(x) + \frac{\partial g}{\partial z}(x, f_0(x), f'_0(x))v'(x) \right] = 0,$$

 $\forall v \in C^1([a,b])$ with $v(\alpha) = v(\beta) = 0$. Thus, by the result of part (b), for $q(x) := \frac{\partial g}{\partial z}(x, f_0(x), f_0'(x))$, $p(x) := \frac{\partial g}{\partial y}(x, f_0(x), f_0'(x))$, $q \in C^1([a,b])$, and furthermore, q' = p; i.e.

$$\frac{d}{dx}\left(\frac{\partial g}{\partial z}(x, f_0(x), f_0'(x))\right) = \frac{\partial g}{\partial y}(x, f_0(x), f_0'(x)). \quad \blacksquare$$

(d) Suppose that, $\forall x \in [a, b], h := (y, z) \mapsto g(x, y, z)$ is convex, and suppose $f_0 \in X$ satisfies (1). Then, $\forall f \in X$, since h is convex, by the result of Problem 1, part (d),

$$G(f) - G(f_0) = \int_a^b g(x, f(x), f'(x)) - g(x, f_0(x), f'_0(x)) dx$$

$$\geq \int_a^b \nabla g(x, f_0(x), f'_0(x)) \cdot ((x, f(x), f'(x)) - (x, f_0(x), f'_0(x))) dx$$

$$= \int_a^b \frac{\partial g}{\partial y}(x, f_0(x), f'_0(x)) (f(x) - f_0(x))$$

$$+ \frac{\partial g}{\partial z}(x, f_0(x), f'_0(x)) (f'(x) - f'_0(x)) dx$$

Since $f(a) = \alpha = f_0(a)$ and $f(b) = \beta = f_0(b)$, integration by parts gives

$$\int_{a}^{b} \frac{\partial g}{\partial z}(x, f_{0}(x), f'_{0}(x))(f'(x) - f'_{0}(x)) dx = -\int_{a}^{b} \frac{d}{dx} \left(\frac{\partial g}{\partial z}(x, f_{0}(x), f'_{0}(x))\right) (f(x) - f_{0}(x)) dx,$$

so that, by equation (1),

$$\int_a^b \frac{\partial g}{\partial z}(x, f_0(x), f_0'(x))(f'(x) - f_0'(x)) \ dx = -\int_a^b \frac{\partial g}{\partial y}(x, f_0(x), f_0'(x))(f(x) - f_0(x)) \ dx.$$

Therefore,

$$G(f) - G(f_0) \ge \int_a^b 0 \ dx = 0,$$

so that $G(f) \ge G(f_0)$, and f_0 minimizes G over X.

Problem 3

(a) Let $X = \{f \in C^1([0,1]) : f(0) = f(1) = 0\}$, and let $G : X \to \mathbb{R}$ such that, $\forall f \in X$, $G(f) = \int_0^1 e^{-(f'(x))^2} dx$. Note that, since the exponential function is strictly positive, G > 0. Suppose, for sake of contradiction, that some $f_0 \in X$ minimized G over X. Then, for h = 2f, $h \in X$, and, since G(f) > 0,

$$G(h) = \int_0^1 e^{-(h'(x))^2} = \int_0^1 e^{-4} e^{-(f_0'(x))^2} < \int_0^1 e^{-(f_0'(x))^2},$$

contradicting the choice of f_0 as a minimizer of G on X. Thus, G has no minimum on X.

(b) Let $X = \{f \in C^1([0,1]) : f(0) = f(1) = 0\}$, and let $G : X \to \mathbb{R}$ such that, $\forall f \in X$, $G(f) = \int_0^1 \left[(f'(x))^2 - 1 \right]^2$. Suppose, for sake of contradiction, that some $f_0 \in X$ minimized G over X. Let $g : [0,1] \times \mathbb{R} \times \mathbb{R}$ such that, $\forall (x,y,z) \in [0,1] \times \mathbb{R} \times \mathbb{R}$, $g(x,y,z) = (z^2 - 1)^2$, so that,

 $\forall f \in X, G(f) = \int_0^1 g(x, f(x), f'(x)) dx$. Note that $\frac{\partial g}{\partial y} = 0$, so that, by the result of Problem 2, part (c), $\forall x \in [0, 1]$,

$$4(f_0'(x)f_0''(x) - f_0'(x)f_0''(x)) = \frac{d}{dx} \left(\frac{\partial g}{\partial z}(x, f_0(x), f_0'(x)) \right) = 0.$$

Thus, either $f_0' = (f_0')^3$, or $f_0'' = 0$; in the former case, $\forall x \in [0,1]$, $f_0'(x) \in \{-1,0,1\}$. Since f_0' is continuous, this means that f_0' is constant -1, 0, or 1. Thus, in any case, $f_0'' = 0$. By the Fundamental Theorem of Calculus, integration gives, $\forall x \in [0,1]$, $f_0(x) = ax + b$ for some constants a and b. However, the only such f_0 with $f_0(0) = f_0(1) = 0$ is the constant function $f_0 = 0$. Thus, if f_0 minimizes G over X, then $f_0 = 0$. However, it can be seen that, for $h: [0,1] \to \mathbb{R}$ such that, $\forall x \in [0,1]$, $h(x) = x - x^2$, $h \in X$ and G(h) < G(0), which is a contradiction. Thus, G has no minimum on X.

(c) Let $X = \{f \in C^1([a,b]) : f(0) = 0, f(1) = 1\}$, and let $G : X \to \mathbb{R}$ such that, $\forall f \in X$, $G(f) = \int_0^1 \left[x(f'(x))^2\right]$. Suppose, for sake of contradiction, that some $f_0 \in X$ minimized G over X. Let $g : [0,1] \times \mathbb{R} \times \mathbb{R}$ such that, $\forall (x,y,z) \in [0,1] \times \mathbb{R} \times \mathbb{R}$, $g(x,y,z) = xz^2$, so that, $\forall f \in X$, $G(f) = \int_0^1 g(x,f(x),f'(x)) dx$. Note that $\frac{\partial g}{\partial y} = 0$, so that, by the result of Problem 3, part(c) of Assignment 2,

$$\int_0^1 2x f_0'(x) v'(x) \ dx = \int_0^1 \frac{\partial g}{\partial z}(x, f_0(x), f_0'(x)) v'(x) \ dx = 0,$$

 $\forall v \in C^1([0,1])$ with v(0) = v(1) = 0. Thus, by the result of part (a), $2xf_0'(x) = c_1$ for some constant $c_1 \in \mathbb{R}$, so that $f_0' = \frac{c_1}{2x}$. By the Fundamental Theorem of Calculus, integration gives, $\forall x \in [0,1], f_0(x) = \frac{c_1}{2} (\log(x) + c_2)$, for some constant $c_2 \in \mathbb{R}$. However, since $\lim_{x\to 0+} \log(0) = \infty$, either $c_2 \neq 0$ and $\lim_{x\to 0+} f_0(0) = \pm \infty$, contradicting the constraint on f_0 of $f_0(0) = 0$, or $c_2 = 0$, contradicting the constraint on f_0 that f(1) = 1. Thus, G has no minimum on X.