Capitolo 1

Risultati

In questo capitolo verranno presentati e discussi i risultati ottenuti nelle diverse configurazioni descritte nei capitoli predenti.

1.1 Performance Evaluation

Per valutare la qualità dei modelli di ML Supervisionati Deep e non Deep, sono stati utilizzati i seguenti metri di performance:

- MSE: Mean Squared Error Mean Squared Error (MSE) è una media delle differenze al quadrato tra i valori predetti e quelli reali.
- RMSE: Root Mean Squared Error Root Mean Squared Error (RMSE) è la radice quadrata della media delle differenze al quadrato tra i valori predetti e quelli reali.
- R2: Coefficient of Determination Coefficient of Determination (R2) è una misura di quanto i valori predetti siano vicini ai valori reali.
- MAE: Mean Absolute Error MAE è una media delle differenze assolute tra i valori predetti e quelli reali.

1.2 Tecniche di ML Supervisionate non Deep

Model	MSE	RMSE	MAE
Linear Regression	0.005277524569837709	0.0726465730082136	0.05598534700766051
Lasso	0.005486814781830245	0.07407303680712872	0.0568421300459931
Ridge	0.005173317239238808	0.0719257759029321	0.05530627637007967
K Neighbors	0.04014675063926314	0.20036654071791313	0.15758359542154865
SVR	0.004249807698698538	0.06519054915168715	0.049401864388909957
Decision Tree R.	0.02518975360339929	0.15871280226685966	0.12227319185366432
Random Forest R.	0.012127163985177493	0.11012340343985694	0.0845742608309641

Model	R2
Linear Regression	0.9779884023114186
Lasso	0.9771154908004298
Ridge	0.9784230321851388
K Neighbors	0.8325551853181739
SVR	0.9822748229629815
Decision Tree R.	0.8949381068993166
Random Forest R.	0.9494197987687645

Di seguito sono riportati i risultati dei modelli precedenti, ma con l'utilizzo della PCA

Model	MSE	RMSE	MAE
Linear Regression	0.006377020549959092	0.07985624928556996	0.06110574164990556
Lasso	0.009433868123483865	0.09712810161577269	0.07491622588172611
Ridge	0.0063303117843782316	0.07956325649681661	0.060759651674386066
K Neighbors	0.03922817004507678	0.1980610260628698	0.15566020188713492
SVR	0.004886523894752017	0.06990367583147554	0.05318109432495814
Decision Tree R.	0.060707019543795586	0.24638794520794963	0.19116443494466778
Random Forest R.	0.012127163985177493	0.11012340343985694	0.0845742608309641

Model	R2
Linear Regression	0.973402604016331
Lasso	0.9606530472699164
Ridge	0.9735974178050478
K Neighbors	0.836386418354838
SVR	0.9796191952034381
Decision Tree R.	0.7468020331524539
Random Forest R.	0.9494197987687645

 ${\bf Miglior~Classic~ML}$

Model	\mathbf{C}	Epsilon	Gamma	Kernel
SVR	1	0.01	0.01	rbf

Miglior Classic ML con PCA

Model	С	Epsilon	Gamma	Kernel
SVR	100	0.01	0.001	rbf

1.3 Neural Network

Neural Network Results

Model	MSE	RMSE	MAE
NN	0.00664011668413877	0.0814869105815887	0.0629449188709259
NN With PCA	0.005938166752457619	0.07705949991941452	0.05929824709892273

Model	R2
NN	0.9796283841133118
NN With PCA	0.9753079414367676

Miglior NN

Batch Size	Input Layer	Output Layer	lr	Epochs
1024	64	256	0.01	400

Miglior NN con PCA

Batch Size	Input Layer	Output Layer	lr	# Epochs
256	128	256	0.001	600

Di seguito è riportato un grafico contenente l'andamento della funzione loss del training e validation del miglior modello di Neural Network

1.4 TabNet

TabNet Results

Model	MSE	RMSE	MAE
TabNet	0.00795749657941388	0.0892048013248944	0.0689039959039718
TabNet With PCA	0.00813222261181444	0.0901788368289059	0.964001783993923

Model	R2
TabNet	0.964775228814175
TabNet With PCA	0.964001783993923

Miglior TabNet

Batch Size	\mathbf{width}	step	lr	Max Epochs
2048	8	5	0.02	210
512 with PCA	32	5	0.02	150

Di seguito è riportato un grafico contenente l'andamento della funzione loss del training e validation del miglior modello di TabNet

1.5 Conclusioni

Nel presente lavoro si è eseguita la pipeline descritta nell'Introduzione, in seguito ad aver acquisito il dataset abbiamo addestrato i modelli sia con dati grezzi sia applicando la PCA confrontando i risultati. Abbiamo notato che in tutti i modelli i risultati con PCA (n_components = 0.95) hanno portato a una perdita di informazioni e non un risparmio in termini di tempo sostanziale. Per tutti i modelli di Machine Learning è stato fissato il Random State per rendere possibile la riproducibilità dei risultati. Il tuning degli iperparametri è stato effettuato con il metodo GridSearchCV con 3-fold cross validation per ottimizzare proprio il tempo ed avere un risultato congruo in termini di Mean Test Score tra tutti i modelli di Machine Learning. Il modello dei Tabular Data è risultato molto più efficiente in termini di tempo rispetto alle Neural Network nonostante teniamo sempre in considerazione che i parametri (e di conseguenza i risultati) sono differenti. Possiamo concludere che tutti i modelli (eccezzione fatta per KNN e DT) riescono a generalizzare bene sui dati in modo da fare previsioni accurate su dati mai visti in precedenza.