# The Polymorphic Blame Calculus and Parametricity

Jeremy G. Siek Indiana University, Bloomington



University of Strathclyde August 2015



# Integrating static and dynamic typing



### Outline

- Quick review of gradual typing
- ► New: a polymorphic gradually typed lambda calculus
- ▶ Review: Poly. Blame Calculus and Parametricity

# Gradual typing includes dynamic typing

An untyped program:

```
let
f = \lambda y. 1 + y
h = \lambda g. g 3
in
h f
\rightarrow
4
```

# Gradual typing includes dynamic typing

A buggy untyped program:

```
1 let
2 f = \lambda y. 1 + y
3 h = \lambda g. g \text{ true}
4 in
5 hf

blame \ell_2
```

Just like dynamic typing, the error is caught at run time.

# Gradual typing includes static typing

A typed program:

```
let
f = \lambda y : \text{int. } 1 + y
h = \lambda g : \text{int} \rightarrow \text{int. } g \text{ 3}
in
hf
\rightarrow
4
```

# Gradual typing includes static typing

An ill-typed program:

```
1 let

2 f = \lambda y:int. 1 + y

3 h = \lambda g:int\rightarrowint. g true

4 in

5 hf
```

Just like static typing, the error is caught at compile time.

Error on line 3, the argument true is a Boolean, but function g expects an int.

# Gradual typing provides fine-grained mixing

A partially typed program:

```
let
f = \lambda y : \text{int. } 1 + y
h = \lambda g . g  3
in
h f
\longrightarrow
4
```

### Gradual typing protects type invariants

A buggy, partially typed program:

```
1 let
2 f = \lambda y:int.1+y
3 h = \lambda g.g true
4 in
5 hf

\longrightarrow
blame \ell_3
```

### Gradually Typed Lambda Calculus

Extends the STLC with a dynamic type, written \*.

Types 
$$A, B, C$$
 ::=  $\iota \mid A \rightarrow B \mid \star$   
Terms  $L, M, N$  ::=  $c \mid x \mid \lambda x : A . N \mid L M$ 

Consistency

$$A \sim B$$

$$rac{A_{ imes} \sim B_{ imes}}{A \sim \star} \quad rac{A_{ imes} \sim B_{ imes}}{A_{ imes} \rightarrow A_{ imes} \sim B_{ imes}} \quad ext{int} \quad rac{A_{ imes} \sim B_{ imes}}{A_{ imes} \rightarrow A_{ imes} \sim B_{ imes} \rightarrow B_{ imes}}$$

Term Typing

$$\Gamma \vdash M : A$$

$$\cdots \frac{ \Gamma \vdash L : A \rightarrow B \quad C \sim A }{ \Gamma \vdash M : C } \qquad \frac{ \Gamma \vdash L : \star }{ \Gamma \vdash M : C }$$

$$\frac{ \Gamma \vdash L : \star }{ \Gamma \vdash L : \star : \star }$$

$$\frac{ \Gamma \vdash L : \star }{ \Gamma \vdash L : \star : \star : \star }$$

### Outline

- Quick review of gradual typing
- ► New: a polymorphic gradually typed lambda calculus
- ▶ Review: Poly. Blame Calculus and Parametricity

### Gradual typing and polymorphism

Use polymorphic code in an untyped context:

```
let pos = \lambda x. \, x > o app = \Lambda X. \, \Lambda Y. \, \lambda f. X {\to} Y. \, \lambda x. X. f \, x in app \; pos \; \mathbf{I}
```

Use untyped code in a polymorphic context:

```
let pos: int \rightarrow bool = \lambda x: int. x > o app = \lambda f. \lambda x. f. x in app int bool pos I
```

# Gradually Typed Polymorphic Lambda Calculus

Types 
$$A, B, C$$
 ::=  $\iota \mid A \rightarrow B \mid \star \mid X \mid \forall X.A$   
Terms  $L, M, N$  ::=  $c \mid x \mid \lambda x : A.N \mid LM \mid \Lambda X.N \mid LA$ 

Consistency

$$A \sim B$$

Term typing

$$\cdots \qquad \frac{\Gamma \vdash L : \forall X . B}{\Gamma \vdash L A : B[X \mapsto A]} \qquad \frac{\Gamma \vdash L : \star}{\Gamma \vdash L A : \star}$$

### Consistency examples

$$\forall X. X {\rightarrow} X \sim \forall Y. Y {\rightarrow} Y$$
 
$$\forall X. X {\rightarrow} X \sim \star \qquad \star \sim \forall X. X {\rightarrow} X$$
 
$$\forall X. X {\rightarrow} X \sim \star {\rightarrow} \star \qquad \star {\rightarrow} \star \sim \forall X. X {\rightarrow} X$$
 
$$\forall X. X {\rightarrow} X \not\sim \text{int} {\rightarrow} \text{int} \qquad \text{int} {\rightarrow} \text{int} \not\sim \forall X. X {\rightarrow} X$$
 
$$\forall X. X {\rightarrow} X \not\sim \text{int} {\rightarrow} \text{bool} \qquad \text{int} {\rightarrow} \text{bool} \not\sim \forall X. X {\rightarrow} X$$

### What about converting poly. to simple?

One might also want implicit conversion from polymorphic types to simple types, such as

$$\forall X. X \rightarrow X \Rightarrow \mathtt{int} \rightarrow \mathtt{int}$$

That is a separate concern from gradual typing. We could handle it with a subtyping rule

$$\frac{A[X \mapsto C] <: B}{\forall X. A <: B}$$

Then, for the type checking algorithm, combine subtyping and consistency as in Siek and Taha [2007].

Polymorphic type inference and containment, John C. Mitchell, Information and Computation 1988. Gradual Type for Objects, Siek and Taha, ECOOP 2007.

### Translation semantics (cast insertion)

The semantics is defined by translation to the Polymorphic Blame Calculus.

Cast Insertion

$$\Gamma \vdash M \leadsto M' : A$$

$$\cdots \qquad \frac{\Gamma \vdash L \leadsto L' : \star}{\Gamma \vdash L A \leadsto (L' : \star \xrightarrow{p} \forall X. \star) A : \star}$$

### Outline

- Quick review of gradual typing
- ► New: a polymorphic gradually typed lambda calculus
- ► Review: Poly. Blame Calculus and Parametricity

### Semantics of casting from poly. to untyped

Recall the example:

```
let pos = \lambda x. \, x > o app = \Lambda X. \, \Lambda Y. \, \lambda f. X \rightarrow Y. \, \lambda x. X. f \, x in app \; pos \; \mathbf{I}
```

So we have the cast:

$$app: \forall X. \forall Y. (X \rightarrow Y) \rightarrow X \rightarrow Y \stackrel{p}{\Rightarrow} \star$$

The Polymorphic Blame Calculus handles such casts by instantiating with  $\star$ .

$$V: (\forall X.A) \stackrel{p}{\Rightarrow} B \longrightarrow (V \star) : A[X \mapsto \star] \stackrel{p}{\Rightarrow} B$$

### Semantics of casting from untyped to poly.

#### Recall the example:

```
let pos: int \rightarrow bool = \lambda x: int. x > o app = \lambda f. \lambda x. f. x in app int bool pos 1
```

So we have the cast:

$$app: \star \stackrel{p}{\Rightarrow} \forall X. \forall Y. (X \rightarrow Y) \rightarrow X \rightarrow Y$$

The Polymorphic Blame Calculus handles such casts by generalizing.

$$V: A \stackrel{p}{\Rightarrow} (\forall X. B) \longrightarrow \Lambda X. (V: A \stackrel{p}{\Rightarrow} B)$$
 if  $X \notin \operatorname{ftv}(A)$ 

# Semantics of casts and parametricity

Consider casting the constant function

$$K = \lambda x$$
:  $\star . \lambda y$ :  $\star . x$ 

to the following polymorphic types

$$K_{1} \equiv K : \star \to \star \to \star \stackrel{p}{\Rightarrow} \forall X. \forall Y. X \to Y \to X$$
  

$$K_{2} \equiv K : \star \to \star \to \star \stackrel{q}{\Rightarrow} \forall X. \forall Y. X \to Y \to Y$$

and the following scenarios:

$$(K_{\text{I}} \text{ int bool}) \text{ I false} \longrightarrow^* \text{ I} \quad (K_{\text{2}} \text{ int bool}) \text{ I false} \longrightarrow^* \\ (K_{\text{I}} \text{ int int}) \text{ I } 2 \longrightarrow^* \text{ I} \qquad (K_{\text{2}} \text{ int int}) \text{ I } 2 \longrightarrow^*$$

### Instantiation as type substition

Recall the traditional reduction rule:

$$(\Lambda X. N) A \longrightarrow N[X \mapsto A]$$

$$K_2 \equiv K : \star \to \star \to \star \stackrel{q}{\Rightarrow} \forall X. \forall Y. X \to Y \to Y$$

$$(K_2 \text{ int bool}) \text{ I false} \ \longrightarrow^* (K: \star \to \star \to \star \stackrel{p}{\Rightarrow} \text{ int} \to \text{bool} \to \text{bool}) \text{ I false} \ \longrightarrow^* \text{I} : \text{int} \Rightarrow \star \stackrel{p}{\Rightarrow} \text{bool} \ \longrightarrow \text{blame} \ p$$

so far so good...

### The problem with type substitution

$$K_2 \equiv K : \star \to \star \to \star \stackrel{q}{\Rightarrow} \forall X. \forall Y. X \to Y \to Y$$

The second scenario for  $K_2$ :

$$(K_2 \text{ int int})$$
 I 2

 $\longrightarrow^* (K: \star \to \star \to \star \stackrel{p}{\Rightarrow} \text{int} \to \text{int} \to \text{int})$  I 2

 $\longrightarrow^* I: \text{int} \Rightarrow \star \stackrel{p}{\Rightarrow} \text{int}$ 
 $\longrightarrow I$ 

but a polymorphic function of type  $\forall X. \forall Y. X \rightarrow Y \rightarrow Y$  must return its second argument, not first!

### Solution: don't substitute, seal

$$(\Lambda X.\ V)\ A \longrightarrow \nu X \mapsto A.\ V$$

The example revisited:

$$K_2 \equiv K : \star \to \star \to \star \stackrel{q}{\Rightarrow} \forall X. \forall Y. X \to Y \to Y$$

$$(K_2 \text{ int } \text{int}) \text{ I } 2$$

$$\longrightarrow^* (\nu X \mapsto \text{int. } \nu Y \mapsto \text{int. } K : \star \to \star \to \star \stackrel{p}{\Rightarrow} X \to Y \to Y) \text{ I } 2$$

$$\longrightarrow^* \nu X \mapsto \text{int. } \nu Y \mapsto \text{int. } \text{ I } : X \Rightarrow \star \stackrel{p}{\Rightarrow} Y$$

$$\longrightarrow \text{ blame } p$$

Types are not sets, James H. Morris, Jr., POPL 1973.

### What to do with escaping seals?

$$\begin{array}{c} (\Lambda X.\,\lambda x{:}X.\,x:X \stackrel{p}{\Rightarrow} \star) \text{ int 2} \\ \longrightarrow^* \nu X \mapsto \text{int. 2}:X \stackrel{p}{\Rightarrow} \star \\ \longrightarrow \text{ blame } p_{\nu} \end{array}$$

#### Contrast with

$$(\Lambda X. \lambda x: X. \operatorname{inl} x \operatorname{as} (X + \operatorname{bool})) \operatorname{int} 2 \longrightarrow^* \operatorname{inl} 2 \operatorname{as} (\operatorname{int} + \operatorname{bool})$$

Why not?

$$\nu X \mapsto A. \ (V: X \stackrel{p}{\Rightarrow} \star) \longrightarrow (\nu X \mapsto A. \ V): A \stackrel{p}{\Rightarrow} \star$$

### Properties of the Polymorphic Blame Calculus

- ✓ Type Safety
- ✓ Blame Theorem
- ✓ Subtyping Theorem (weak version)
- ☐ Subtyping Theorem (strong version)
- □ Parametricity

### Blame Theorem

### Theorem (Blame Theorem)

Let M be a program with a subterm  $N: A \stackrel{p}{\Rightarrow} B$  where the cast is labelled by the only occurrence of p in M, and  $\overline{p}$  does not appear in M.

- If  $A <:^+ B$ , then  $M \not\longrightarrow^*$  blame p.
- If  $A <:^- B$ , then  $M \not\longrightarrow^*$  blame  $\overline{p}$ .
- ▶ If  $A <:_n B$ , then  $M \not\longrightarrow^*$  blame p.
- ▶ If  $B <:_n A$ , then  $M \not\longrightarrow^*$  blame  $\overline{p}$ .

### Subtyping Theorem

### Theorem (Subtyping Theorem)

Let M be a program with a subterm  $N: A \stackrel{p}{\Rightarrow} B$  where the cast is labelled by the only occurrence of p in M, and  $\overline{p}$  does not appear in M.

▶ If A <: B, then  $M \not\longrightarrow^*$  blame p and  $M \not\longrightarrow^*$  blame  $\bar{p}$ .

Weak version:

$$\frac{A[X \mapsto \star] <: B}{(\forall X. A) <: B}$$

(Proved in STOP 2009.)

Strong version:

$$\frac{A[X \mapsto T] <: B}{(\forall X.A) <: B}$$

(Incorrect proof in POPL 2011.)

### Jack of all trades

### Conjecture (Jack-of-All-Trades)

If  $\Delta \vdash V : \forall X. A \text{ and } A[X \mapsto C] \prec B \text{ (and hence } A[X \mapsto \star] \prec B)$  then

$$(V \ C : A[X \mapsto C] \stackrel{p}{\Rightarrow} B) \subseteq (V \star : A[X \mapsto \star] \stackrel{p}{\Rightarrow} B).$$

### Speculating about parametricity

Logical Relation

Terms

$$E[A]\delta k = \{(M,N) \mid \exists VW. M \Downarrow_j V, N \Downarrow_j W, (V,W) \in V[A]\delta(k-j)\}$$

Values

$$V[ ext{int}]\delta k = \{(n,n) \mid n \in \mathbf{Z}\}$$
 $V[A_1 + A_2]\delta k = \{( ext{inj}_i V, ext{inj}_i W) \mid i \in \text{I...2}, (V, W) \in V[A_i]\delta k\}$ 
 $\cdots$ 
 $V[\forall X.A]\delta k = \{(V_1, V_2) \mid \forall R. (V_1[\cdot], V_2[\cdot]) \in E[A]\delta(X \mapsto R)k\}$ 
 $V[X]\delta k = \delta(X) k$ 
 $V[\star]\delta(1+k) = \{(V:G\Rightarrow\star,W:G\Rightarrow\star) \mid (V,W) \in V[G]\delta k\}$ 

### Parametricity

Conjecture (Soundness of the Logical Relation) *If*  $\Delta$ ;  $\Gamma \vdash M \approx N : A$ , *then*  $\Delta$ ;  $\Gamma \vdash M =_{ctx} N : A$ .

Conjecture (Fund. Theorem of Logical Relations) *If*  $\Delta$ ;  $\Gamma \vdash M : A$ , *then*  $\Delta$ ;  $\Gamma \vdash M \approx M : A$ .