

Dekonstrukcja AutoML, czyli co, jak i dlaczego?

Anna Kozak, Katarzyna Woźnica

Katarzyna Woźnica

PhD Candidate | AutoML | Meta-learning

7+ years of experience in data science4+ years of experience in mentoring students

Skills: AutoML, meta-learning, R, Python, data visualization

Anna Kozak

Data Scientist | Data Visualisation | Responsible Machine Learning

8+ years of experience in data science 4+ years of experience teaching

Skills: data visualization, data analysis, R, Python, machine learning, AutoML, AutoEDA

anna.kozak@pw.edu.pl

Czym jest AutoML?

n = 1,966

We asked our respondents how much time they spend on the above tasks, and for each item they entered a number reflecting the percentage of time spent relative to the other options. This is the average of the reported percentages.

- Enable non-experts to train machine learning models (2.57)
- Quickly and efficiently tune very many hyperparameters (2.75)
- Help choose the best model types to solve specific problems (2.78)
- Speed up the ML pipeline by automating certain workflows (data cleaning, etc.) (3.06)
- Tune the model once performance (such as accuracy, etc.) starts to degrade (3.99)
- Other (5.85)

We asked respondents to drag and rank the options from most to least important, with the first being most important.

Who is AutoML end user?

Who is AutoML end user?

Traditionally, application's developers using statistical and learning methods choose algorithms and tune their parameters empirically, commonly by trial and error; or in the best case, by using prior knowledge of experts on the domain.

[PSMS for Neural Networks, 2007]

It can be challenging to make the right choice when faced with these degrees of freedom, leaving many users to select algorithms based on reputation or intuitive appeal, and/or to leave hyperparameters set to default values.

[AutoWEKA, 2013]

Automated Machine Learning (AutoML) supports practitioners and researchers with the tedious task of designing machine learning pipelines and has recently achieved substantial success.

[Auto-sklearn 2.0, 2022]

Nie ma najlepszego frameworku AutoML.

Zoptymalizowane Random Forest są zaskakująco skuteczne.

Podejścia do danych tabelarycznych są najbardziej rozwinięte i na nich się skupimy.

Są też podejścia do automatyzacji modelowania tekstu, szeregów czasowych.

Optymalizacja hiperparametrów

Auto-sklearn

Grid/Random Search - task-agnostic

Bayesian Optimization - task-specific

Bayesian Optimization - task-specific

Jak dodać informację o wcześniejszych eksperymentach?

Meta-learning

Meta-learning

Learning from Task Properties

Meta-learning in auto-sklearn 1.0

Given a new dataset, we compute its meta-features, rank all datasets by their L1 distance to new dataset in meta-feature space and select the stored ML framework instantiations for the k = 25 nearest datasets for evaluation before starting Bayesian optimization with their results.

Meta-features

- hand-crafted, a priori defined statistical measures
- landmarkers
- model-based meta-features
- active testing model performance correlation

Name	Formula	Rationale	Variants
Nr instances	n	Speed, Scalability [99]	p'n, log(n), log(n'p)
Nr features	ρ	Curse of dimensionality [99]	log(p), % categorical
Nr classes	С	Complexity, imbalance [99]	ratio min/maj class
Nr missing values	m	Imputation effects [70]	% missing
Nr outliers	0	Data noisiness [141]	o'n
Skewness	$\frac{E(X-\mu_X)^{\delta}}{\sigma_X^{3}}$	Feature normality [99]	min,max, μ , σ , q ₁ , q ₃
Kurtosis	$\frac{E(X-\mu_X)^4}{\sigma_X^4}$	Feature normality [99]	min,max, μ , σ , q ₁ , q ₃
Correlation	$\rho_{X_1X_2}$	Feature interdependence [99]	min,max,μ,σ,ρ _{χγ} [158]
Covariance	$cov_{X_1X_2}$	Feature interdependence [99]	min,max,μ,σ,cov χΥ
Concentration	$ au_{X_1X_2}$	Feature interdependence [72]	min,max, μ , σ , τ _{XY}
Sparsity	sparsity(X)	Degree of discreteness [143]	min,max,μ,σ
Gravity	gravity(X)	Inter-class dispersion [5]	
ANOVA p-value	$p_{val_{x_1x_2}}$	Feature redundancy [70]	p _{valXY} [158]
Coeff. of variation	$\frac{\sigma_Y}{\mu_Y}$	Variation in target [158]	
$PCA \rho_{\lambda_1}$	$\sqrt{\frac{\lambda_1}{1+\lambda_1}}$	Variance in first PC [99]	$\frac{\lambda_1}{\sum_i \lambda_i}$ [99]
PCA skewness		Skewness of first PC [48]	PCA kurtosis [48]
PCA 95%	$\frac{dim_{QS_{low}}}{p}$	Intrinsic dimensionality [9]	
Class probability	<i>P</i> (C)	Class distribution [99]	min,max, μ , σ
Class entropy	H(C)	Class imbalance [99]	
Norm. entropy	$\frac{H(X)}{\log_2 n}$	Feature informativeness [26]	min,max,μ,σ
Mutual inform.	MI(C, X)	Feature importance [99]	min,max, μ , σ
Uncertainty coeff.	$\frac{MI(C,X)}{H(C)}$	Feature importance [3]	min,max, μ , σ
Equiv. nr. feats	$\frac{H(C)}{\overline{MI(C,X)}}$	Intrinsic dimensionality [99]	
Noise-signal ratio	$\frac{\overline{H(X)} - \overline{MI(C,X)}}{\overline{MI(C,X)}}$	Noisiness of data [99]	
Fisher's discrimin.	$\frac{(\mu_{c1} - \mu_{c2})^2}{\sigma_{c1}^2 - \sigma_{c2}^2}$	Separability classes c ₁ , c ₂ [64]	See [64]
Volume of overlap		Class distribution overlap [64]	See [64]
Concept variation		Task complexity [180]	See [179, 180]
Data consistency		Data quality [76]	See [76]
Nr nodes, leaves	<u> </u> η , ψ	Concept complexity [113]	Tree depth
Branch length		Concept complexity [113]	min,max,μ,σ
Nodes per feature	lη x	Feature importance [113]	min,max,μ,σ
Leaves per class	\psi_c	Class complexity [49]	min,max,μ,σ
	и.	cl 135 54 cl	,

Problems in auto-sklearn 1.0

- It is time-consuming since it requires to compute meta-features describing the characteristics of datasets.
- It adds complexity to the system as the computation of the meta-features must also be done with a time and memory limit.
- Many meta-features are not defined with respect to categorical features and missing values, making them hard to apply for most datasets.
- It is not immediately clear which meta-features work best for which problem.

Forget about meta-features - task independent portfolio

Algorithm 1: Greedy Portfolio Building

- 1: **Input:** Set of candidate ML pipelines C, $\mathbf{D}_{\text{meta}} = \{\mathcal{D}_1, \dots, \mathcal{D}_{|\mathbf{D}_{\text{meta}}|}\}$, maximal portfolio size p, model selection strategy S
- 2: $\mathcal{P} = \emptyset$
- 3: while $|\mathcal{P}| < p$ do
- 4: $\lambda^+ = \operatorname{argmin}_{\lambda \in \mathcal{C}} \widehat{GE}_S(\mathcal{P} \cup \{\lambda\}, \mathbf{D}_{\mathrm{meta}})$ // Ties are broken favoring the model trained first.
- 5: $\mathcal{P} = \mathcal{P} \cup \lambda^+, \ \mathcal{C} = \mathcal{C} \setminus \{\lambda^+\}$
- 6: end while
- 7: **return** Portfolio \mathcal{P}

Meta-learning in auto-sklearn 2.0

"... we propose a meta-feature-free approach that does not warmstart with a set of configurations specific to a new dataset, but which uses a static portfolio – a set of complementary configurations that covers as many diverse datasets as possible and minimizes the risk of failure when facing a new task..."

Successive halving and HyperBand

Idea: szybko eliminujmy konfiguracje, które mają słaby performance, a bardziej eksploatujmy te które dają obiecujące wyniki

Jak wprowadzać różny budżet?

- liczba epok/ iteracji
- rozmiar danych treningowych
- liczba drzew w algortymie RF, XGBoosting
- liczba zmiennych (features)

Successive Halving

The search strategy starts evaluating all the candidates with a small amount of resources and iteratively selects the best candidates, using more and more resources.

Hyperband

Budget allocation strategy in auto-sklearn 2.0

"... we introduce budget allocation strategies as a complementary design choice to model selection strategies (holdout (HO) and cross-validation (CV)) for AutoML systems. We suggest using the budget allocation strategy successive halving (SH) as an alternative to always using the full budget (FB) to evaluate a configuration to allocate more resources to promising ML pipelines..."

Multi-layer stacking

Budowa ensemblingów

Ensembles

"Ensembles that combine predictions from multiple models have long been known to outperform individual models, often drastically reducing the variance of the final predictions".

Stacking

Stacking

Multi-Layer Stacking

Multi-Layer Stack Ensembling

- korzysta z tych samych typów modeli i hiperparametrów we wszystkich warstwach
- w pierwszej warstwie modele są budowane na predykcjach i oryginalnych danych
- ostatnia warstwa agreguje predykcje biorąc pod uwagę wagi
- stosowany jest k-fold bagging

Inne sposoby budowy ensembles auto-sklearn

The basic ensemble selection procedure is very simple:

- Start with the empty ensemble.
- Add to the ensemble the model in the library that maximizes the ensemble's performance to the error metric on a validation set.
- Repeat Step 2 for a fixed number of iterations or until all the models have been used.
- Return the ensemble from the nested set of ensembles that has maximum performance on the validation set.

Improving Ensemble Selection

- 1. Selection with Replacement
- performance drops because the best models in the library have been used and selection must now add models that hurt the ensemble,
- the loss in performance can be significant if the peak is missed.

Improving Ensemble Selection

2. Sorted Ensemble Initialization

- forward selection sometimes overfits early in selection when ensembles are small
- starting with empty ensemble, sort the models in the library by their performance, and put the best N models in the ensemble
- we have 5-25 of the best models in ensemble before greedy stepwise selection begins

Improving Ensemble Selection

3. Bagged Ensemble Selection

- the number of models in a library increases, the chances of finding combinations of models that overif the validation set increases bagging can minimize this problem
- random sample of models from the library, combination of M models overfits, the
 probability of those M models being in a random bag of models in less than (1-p)^M for
 p the fraction of models in the bag

AutoML

AutoDS

Automated Data Science

Automated Data Science

Data Engineering:

data wrangling,
data integration,
data preparation,
data transformation,

• • •

Model Building:

algorithm selection, parameter optimization, performance evaluation, model selection,

••

Less dependent on domain context

More dependent on domain context

Data Exploration:

domain understanding, goal exploration, data aggregation, data visualization,

• • •

Exploitation:

model interpretation and visualization, reporting and narratives, predictions and decisions, monitoring and maintenance,

More open-ended

Less open-ended

Pytania?