2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

What is claimed and desired to be secured by United States Letters Patent is:

1. A magnetic pigment flake, comprising:

a central magnetic layer having a first major surface, an opposing second major surface, and at least one side surface;

a first reflector layer on the first major surface of the magnetic layer; and a second reflector layer on the second major surface of the magnetic layer; wherein the pigment flake exhibits a reflectivity corresponding to the reflectivity of the reflector layers and exhibits magnetic characteristics based on the relative magnetism of the magnetic layer.

2. The pigment flake of claim 1, wherein the first and second reflector layers are on each of the first and second major surfaces but not on the at least one side surface of the magnetic layer.

- 3. The pigment flake of claim 2, further comprising a first dielectric layer on the first reflector layer and a second dielectric layer on the second reflector layer.
- 4. The pigment flake of claim 3, wherein the first and second dielectric layers are selectively absorbing and provide additional color effects to the pigment flake.
- 5. The pigment flake of claim 2, further comprising a dielectric layer substantially surrounding the first and second reflector layers and the magnetic layer.
 - The pigment flake of claim 5, wherein the dielectric layer is selectively 6.

1	13. The pigment flake of claim 1, wherein the magnetic layer comprises a
2	material selected from the group consisting of iron, nickel, cobalt, iron, gadolinium,
3	terbium, dysprosium, erbium, and alloys or oxides thereof.
4	
5	14. The pigment flake of claim 1, wherein the magnetic layer comprises a
6	material selected from the group consisting of Fe/Si, Fe/Ni, FeCo, Fe/Ni/Mo, and
7	combinations thereof.
8	
9	15. The pigment flake of claim 1, wherein the magnetic layer comprises a
10	hard magnetic material.
11	
12	16. The pigment flake of claim 1, wherein the magnetic layer comprises a
13	material selected from the group consisting of SmCo ₅ , NdCo ₅ , Sm ₂ Co ₁₇ , Nd ₂ Fe ₁₄ B,
14	TbFe ₂ , and combinations thereof.
15	
16	17. The pigment flake of claim 1, wherein the magnetic layer comprises a
17	material selected from the group consisting of Fe ₃ O ₄ , NiFe ₂ O ₄ , MnFe ₂ O ₄ , CoFe ₂ O ₄ , YIG,
18	GdIG, and combinations thereof.
19	
20	18. The pigment flake of claim 1, wherein the magnetic layer has a physical
21	thickness of about 200Å to about 10,000 Å.
22	
23	

	15
	16
ΕΥ	17
ORKMAN, NYDEGGER & SEELEY A PROFESSIONAL CORPORATION ATTORNEYS AT LAW 1000 EAGLE GATE TOWER 60 EAST SOUTH TEMPLE SALT LAKE CITY, UTAH 84111	18
LN, NYDEGGER & SE A PROFESSIONAL CORPORATION ATTORNEYS AT LAW 1000 EAGLE GATE TOWER 60 EAST SOUTH TEMPLE SALT LAKE CITY, UTAH 84111	19
NYDEGGER & OPESSIONAL CORPORAT ATTORNEYS AT LAW OPESGE GATE TOWE EAST SOUTH TEMPLIAKE CITY, UTAH 8	20
N, NYI PROFESS ATTO 1000 EA 60 EAS	21
KMAN ,	22
WOR S	23
	24

2

3

4

5

6

7

8

9

10

11

12

13

14

The pigment flake of claim 1, wherein the reflector layers comprise a 19. reflective material selected from the group consisting of aluminum, silver, copper, gold, platinum, tin, titanium, palladium, nickel, cobalt, rhodium, niobium, chromium, and combinations or alloys thereof.

20. The pigment flake of claim 1, wherein the reflector layers each have a physical thickness of about 400 Å to about 2,000 Å.

21.	A magnetic	colorant	composition	comprising
<u>د</u> .	A magnetic	COLOLAIL	Composition	COMPRISING

a pigment medium; and

a plurality of pigment flakes dispersed in the pigment medium, the pigment flakes having a multilayer structure substantially the same as the pigment flake defined in claim 1.

The colorant composition of claim 21, wherein the pigment medium 22. comprises a material selected from the group consisting of acrylic melamine, urethanes, polyesters, vinyl resins, acrylates, methyl methacrylate, ABS resins, epoxies, styrenes, ink and paint formulations based on alkyd resins, and mixtures thereof.

1	23. A magnetic color shifting pigment flake, comprising:
2	a magnetic core section including:
3	a central magnetic layer having a first major surface, an opposing
4	second major surface, and at least one side surface; and
5	a first reflector layer on the first major surface of the magnetic
6	layer, and an opposing second reflector layer on the second major surface
7	of the magnetic layer;
8	a first dielectric layer overlying the first reflector layer, and a second
9	dielectric layer overlying the second reflector layer; and
10	a first absorber layer overlying the first dielectric layer, and a second
11	absorber layer overlying the second dielectric layer;
12	wherein the pigment flake exhibits a discrete color shift such that the pigment
13	flake has a first color at a first angle of incident light or viewing and a second color
14	different from the first color at a second angle of incident light or viewing.
15	
16	24. The pigment flake of claim 23, wherein the magnetic layer comprises a
17	soft magnetic material.
18	
19	25. The pigment flake of claim 23, wherein the magnetic layer comprises a
20	material selected from the group comprising iron, nickel, cobalt, iron, gadolinium,
21	terbium, dysprosium, erbium, and alloys or oxides thereof.
22	
23	

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

	26.	The	pigm	ent	flake o	f claim 23,	wh	erein t	he mag	netic la	yer compris	es a
materia	al selec	ted	from	the	group	consisting	of	Fe/Si,	Fe/Ni,	FeCo,	Fe/Ni/Mo,	and
combii	nations	there	eof.									

27. The pigment flake of claim 23, wherein the magnetic layer comprises a hard magnetic material.

28. The pigment flake of claim 23, wherein the magnetic layer comprises a material selected from the group consisting of SmCo₅, NdCo₅, Sm₂Co₁₇, Nd₂Fe₁₄B, TbFe2, and combinations thereof.

29. The pigment flake of claim 23, wherein the magnetic layer comprises a material selected from the group consisting of Fe₃O₄, NiFe₂O₄, MnFe₂O₄, CoFe₂O₄, YIG, GdIG, and combinations thereof.

30. The pigment flake of claim 23, wherein the reflector layers comprise a reflective material selected from the group consisting of aluminum, silver, copper, gold, platinum, tin, titanium, palladium, nickel, cobalt, rhodium, niobium, chromium, and combinations or alloys thereof.

31. The pigment flake of claim 23, wherein the first and second dielectric layers comprise a dielectric material having an index of refraction of about 1.65 or less.

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

- 32. The pigment flake of claim 23, wherein the dielectric material is selected from the group consisting of silicon dioxide, aluminum oxide, magnesium fluoride, aluminum fluoride, cerium fluoride, lanthanum fluoride, neodymium fluoride, samarium fluoride, barium fluoride, calcium fluoride, lithium fluoride, and combinations thereof.
- 33. The pigment flake of claim 23, wherein the first and second dielectric layers comprise a dielectric material having an index of refraction of greater than about 1.65.
- The pigment flake of claim 23, wherein the dielectric material is selected 34. from the group consisting of zinc sulfide, zinc oxide, zirconium oxide, titanium dioxide, diamond-like carbon, indium oxide, indium-tin-oxide, tantalum pentoxide, cerium oxide, yttrium oxide, europium oxide, iron oxides, hafnium nitride, hafnium carbide, hafnium oxide, lanthanum oxide, magnesium oxide, neodymium oxide, praseodymium oxide, samarium oxide, antimony trioxide, silicon monoxide, selenium trioxide, tin oxide, tungsten trioxide, and combinations thereof.
- 35. The pigment flake of claim 23, wherein the first and second dielectric layers have an optical thickness in a range from about 2 QWOT at a design wavelength of about 400 nm to about 9 QWOT at a design wavelength of about 700 nm.
- 36. The pigment flake of claim 23, wherein the first and second dielectric layers have substantially the same optical thickness.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1	
2	37. The pigment flake of claim 23, wherein the first and second dielectric
3	layers are composed of the same material.
4	
5	38. The pigment flake of claim 23, wherein the first and second dielectric
6	layers are each composed of a dielectric optical stack having a plurality of alternating
7	layers of a high index material and a low index material.

- 39. The pigment flake of claim 38, wherein the dielectric optical stack has a gradient index of refraction.
- 40. The pigment flake of claim 23, wherein the first and second dielectric layers are each composed of a mixture or multiple sublayers of dielectric materials selected from the group consisting of low index materials, high index materials, and combinations thereof.
- 41. The pigment flake of claim 23, wherein the first and second absorber layers comprise materials that are uniformly absorbing in the visible part of the electromagnetic spectrum.
- 42. The pigment flake of claim 23, wherein the first and second absorber layers comprise materials that are non-uniformly absorbing in the visible part of the electromagnetic spectrum.

43. The pigment flake of claim 23, wherein the first and second absorber layers comprise an absorbing material selected from the group consisting of chromium, nickel, aluminum, silver, copper, palladium, platinum, titanium, vanadium, cobalt, iron, tin, tungsten, molybdenum, rhodium, niobium, carbon, graphite, silicon, germanium, and compounds, mixtures, or alloys thereof.

44. The pigment flake of claim 23, wherein the first and second absorber layers comprise an absorbing material selected from the group consisting of metal oxides, metal sulfides, metal carbides, and combinations thereof.

45. The pigment flake of claim 23, wherein the first and second absorber layers each have a physical thickness of about 30 Å to about 500 Å.

46. The pigment flake of claim 23, wherein the first and second absorber layers have substantially the same physical thickness.

- 47. The pigment flake of claim 23, wherein the first and second absorber layers are composed of the same material.
- 48. The pigment flake of claim 23, wherein the first and second reflector layers are on each of the first and second major surfaces but not on the at least one side surface of the magnetic layer.

24

1

2

3

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

	49.	The pigment	flake	of clain	ı 23,	wherein	the	first	and	second	reflector
layers	form p	art of a conti	guous r	eflecting	, laye	r substan	tially	y surr	ound	ling the	magnetic
laver.											

The pigment flake of claim 23, wherein the first and second absorber 50. layers form part of a contiguous absorbing layer substantially surrounding the first and second dielectric layers and the magnetic core section.

51. The pigment flake of claim 23, wherein the first and second absorber layers form part of a contiguous absorbing layer substantially surrounding the first and second dielectric layers, and the first and second dielectric layers form a part of a contiguous dielectric layer substantially surrounding the magnetic core section.

A magnetic color shifting pigment composition comprising a plurality of 52. color shifting pigment flakes, each of the pigment flakes having a multilayer structure substantially the same as the pigment flake defined in claim 23.

1	A magnetic color-shifting colorant composition, comprising:
2	a pigment medium; and
3	a plurality of color-shifting pigment flakes dispersed in the pigment
4	medium, the pigment flakes having a multilayer structure substantially the same
5	as the pigment flake defined in claim 23.
6	
7	53. The colorant composition of claim 0, wherein the pigment medium
8	comprises a material selected from the group consisting of acrylic melamine, urethanes,
9	polyesters, vinyl resins, acrylates, methyl methacrylate, ABS resins, epoxies, styrenes,
10	ink and paint formulations based on alkyd resins, and mixtures thereof.
11	
12	54. The colorant composition of claim 0, wherein the pigment medium is a
13	paint or ink vehicle.
14	
15	55. The colorant composition of claim 0, wherein the pigment flakes have a
16	dimension on any surface thereof ranging from about 2 microns to about 200 microns.
17	
18	56. The colorant composition of claim 0, wherein the pigment flakes have an
19	aspect ratio of at least about 2 to1.
20	
21	57. The colorant composition of claim 0, further comprising a plurality of
22	non- color-shifting pigment flakes dispersed in the pigment medium.
23	

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

58.	A magnetic	pigment flake	COMPRISING
JU.	1 t magnotio	piganom make	, comprising

a central support layer having a first major surface, an opposing second major surface, and at least one side surface;

a first magnetic layer on the first major surface of the support layer; and a second magnetic layer on the second major surface of the support layer; wherein the pigment flake exhibits magnetic characteristics based on the relative magnetism of the magnetic layers.

59. The pigment flake of claim 58, wherein the support layer comprises a dielectric material.

- 60. The pigment flake of claim 59, wherein the dielectric material is selected from the group consisting of mica, coated mica, micaeous iron oxide, glass, talc, silicon dioxide, boron nitride, boron carbide, alumina, carbon, graphite, bismuth oxychloride, and combinations thereof.
- 61. The pigment flake of claim 58, wherein the first and second magnetic layers are on each of the first and second major surfaces but not on the at least one side surface of the support layer.
- The pigment flake of claim 61, further comprising a first dielectric layer 62. on the first magnetic layer and a second dielectric layer on the second magnetic layer.

1	63. The pigment flake of claim 62, wherein the first and second dielectric
2	layers are selectively absorbing and provide additional color effects to the pigment flake.
3	
4	64. The pigment flake of claim 58, wherein the first and second magnetic
5	layers form part of a contiguous magnetic layer substantially surrounding the support
6	layer.
7	
8	65. The pigment flake of claim 64, further comprising a dielectric layer
9	substantially surrounding the contiguous magnetic layer.
10	
11	66. The pigment flake of claim 65, wherein the dielectric layer is selectively
12	absorbing and provides additional color effects to the pigment flake.
13	
14	67. The pigment flake of claim 65, further comprising an absorber layer
15	substantially surrounding the dielectric layer.
16	
17	
18	
19	
20	
21	
22	
23	
24	

1	68. The pigment flake of claim 67, wherein the dielectric layer is selectively
2	absorbing and provides additional color effects to the pigment flake.
3	
4	69. The pigment flake of claim 67, further comprising a reflector laye
5	interposed between the magnetic layer and the dielectric layer.
6	
7	70. The pigment flake of claim 58, wherein the magnetic layers comprise
8	soft magnetic material.
9	
10	71. The pigment flake of claim 58, wherein the magnetic layers are composed
11	of a material with a coercivity of less than about 2000 Oe.
12	
13	72. A magnetic colorant composition, comprising:
14	a pigment medium; and
15	a plurality of pigment flakes dispersed in the pigment medium, the
16	pigment flakes having a multilayer structure substantially the same as the pigmen
17	flake defined in claim 58.
18	
19	73. The colorant composition of claim 72, wherein the pigment medium is
20	paint or ink vehicle.
21	
22	
23	
24	

1	74. A magnetic pigment flake, comprising:
2	a central magnetic layer having a first major surface, an opposing second
3	major surface, and at least one side surface;
4	a first dielectric layer on the first major surface of the magnetic layer; and
5	a second dielectric layer on the second major surface of the magnetic
6	layer;
7	wherein the dielectric layers provide increased rigidity, durability, and corrosion
8	resistance to the pigment flake, with the pigment flake exhibiting magnetic characteristics
9	based on the relative magnetism of the magnetic layer.
10	
11	75. The pigment flake of claim 74, wherein the first and second dielectric
12	layers are selectively absorbing and provide additional color effects to the pigment flake.
13	
14	76. The pigment flake of claim 74, wherein the magnetic layer comprises a
15	soft magnetic material.
16	
17	77. The pigment flake of claim 74, wherein the magnetic layer is composed of
18	a material with a coercivity of less than about 2000 Oe.
19	
20	78. The pigment flake of claim 74, wherein the first and second dielectric
21	layers are on each of the first and second major surfaces but not on the at least one side
22	surface of the magnetic layer.
23	
24	

1	79. The pigment flake of claim 78, further comprising a first absorber layer on
2	the first dielectric layer and a second absorber layer on the second dielectric layer.
3	
4	80. The pigment flake of claim 78, further comprising an absorber layer
5	substantially surrounding the first and second dielectric layers and the magnetic layer.
6	
7	81. The pigment flake of claim 74, wherein the first and second dielectric
8	layers form part of a contiguous dielectric layer substantially surrounding the magnetic
9	layer.
10	
11	82. The pigment flake of claim 81, wherein the contiguous dielectric layer is
12	selectively absorbing and provides additional color effects to the pigment flake.
13	
14	83. The pigment flake of claim 81, further comprising an absorber layer
15	substantially surrounding the flake.
16	
17	
18	
19	
20	
21	
22	
23	
24	

84.	A color shifting pigment flake, comprising:
	a magnetic core section having a top surface, a bottom surface, and at least
one s	side surface;
	a dielectric layer on the top surface and the bottom surface but not on the
at lea	ast one side surface of the magnetic core section; and
	an absorber layer substantially surrounding the dielectric layer and in
conta	act with the at least one side surface of the magnetic core section.
85.	The pigment flake of claim 85, wherein the magnetic core section includes
a magnetic l	ayer.
86.	The pigment flake of claim 85, wherein the magnetic core section
comprises:	
	a central magnetic layer having a first major surface, an opposing second
majo	r surface, and at least one side surface; and
	a first reflector layer on the first major surface of the magnetic layer, and
an oj	oposing second reflector layer on the second major surface of the magnetic
layer	
87.	The pigment flake of claim 86, wherein the first and second reflector
layers are or	n each of the first and second major surfaces but not on the at least one side
surface of th	e magnetic layer.

The pigment flake of claim 86, wherein the first and second reflector 88.

layers form part of a contiguous reflecting layer substantially surrounding the magnetic layer.

WORKMAN, NYDEGGER & SEELEY
A PROFESSIONAL CORPORATION
ATTORNEYS AT LAW
1000 EAGLE GATE TOWER
60 EAST SOUTH TEMPLE
SALT LAKE CITY, UTAH 84111

1	89.	A magnetic pigment flake, comprising:
2		a magnetic core having a first major surface, an opposing second major
3	surfac	e, and at least one side surface;
4		a first colored layer on the first major surface of the magnetic core; and
5		a second colored layer on the second major surface of the magnetic core.
6		
7	90.	The pigment flake of claim 89, wherein the magnetic core comprises a
8	monolithic ma	agnetic layer.
9		
10	91.	The pigment flake of claim 89, wherein the magnetic core comprises a
11	multilayer ma	gnetic structure.
12		
13	92.	The pigment flake of claim 92, wherein the multilayer magnetic structure
14	comprises the	coating structure Al/Fe/Al.
15		
16	93.	The pigment flake of claim 89, wherein the first and second colored layers
17	are on each of	f the first and second major surfaces but not on the at least one side surface
18	of the magnet	ic core.
19		
20	94.	The pigment flake of claim 89, wherein the first and second colored layers
21	form part of a	contiguous colored layer substantially surrounding the magnetic core.
22		
23		
24		

1	95. The pigment flake of claim 89, wherein the first and second colored layer	rs
2	comprise an organic dye.	
3		
4	96. The pigment flake of claim 96, wherein the organic dye is selected fro	m
5	the group consisting of copper phthalocyanine, perylene-based dyes, anthraquinone-based	ed
6	dyes, azo dyes, azo metal dyes, and combinations thereof.	
7		
8	97. The pigment flake of claim 96, wherein the colored layers each have	a
9	physical thickness of about 0.05 μm to about 5 μm .	
10		
11	98. The pigment flake of claim 89, wherein the first and second colored layer	rs
12	comprise an inorganic colorant material.	
13		
14	99. The pigment flake of claim 99, wherein the inorganic colorant material	is
15	selected from the group consisting of titanium nitride, chromium nitride, chromium	m
16	oxide, iron oxide, cobalt-doped alumina, colored metallics, and combinations thereof.	
17		
18	100. The pigment flake of claim 99, wherein the colored layers each have	a
19	physical thickness of about 0.05 μm to about 0.10 μm .	
20		
21	101. The pigment flake of claim 89, wherein the first and second colored layer	rs
22	comprise a sol-gel matrix holding a colored pigment or dye.	
23		
24		

1	102.	A color shifting foil device, comprising:
2		a magnetic layer;
3		a reflector layer overlying the magnetic layer;
4		a dielectric layer overlying the reflector layer; and
5		an absorber layer overlying the dielectric layer;
6	where	in the foil exhibits a discrete color shift such that the foil has a first color at
7	a first angle o	of incident light or viewing and a second color different from the first color
8	at a second ar	ngle of incident light or viewing.
9		
10	103.	The foil of claim 102, wherein the magnetic layer comprises a soft
11	magnetic mat	erial or a hard magnetic material.
12		
13	104.	The foil of claim 102, further comprising a web carrier with either the
14	magnetic laye	er or the absorber layer deposited on the web carrier.
15		
16	105.	The foil of claim 104, wherein the web carrier further comprises a release
17	layer thereon	disposed between the web carrier and the magnetic layer, or the web carrier
18	and the absor	ber layer.
19		
20	106.	The foil of claim 104, further comprising an adhesive layer for laminating
21	the foil to a si	ubstrate.
22		
23		
24		

The foil of claim 106, wherein the adhesive layer is selected from the 107. group consisting of a hot stampable adhesive, a pressure sensitive adhesive, a permanent adhesive, a transparent adhesive, and a UV curable adhesive.

108. The foil of claim 106, wherein the adhesive layer is overlying the magnetic layer or the absorber layer.

4 6 6				• •
1710	Λ	~~+· ~~ I	0 mt 1 0 1 0	AAMMMAINA
109.	AH	mucai	acticie	comprising
102.	4 ***			

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

a substrate having first and second non-overlapping regions on a surface of the substrate;

a magnetic pigment coating structure overlying the first region, the magnetic pigment coating structure including a plurality of multilayer magnetic pigments dispersed in a solidified pigment vehicle, the magnetic properties of the pigment coating structure being provided by a non-optically observable magnetic layer within each of the multilayer magnetic pigments; and

a non-magnetic pigment coating structure overlying the second region, the non-magnetic pigment coating structure including a plurality of multilayer nonmagnetic pigments dispersed in a solidified pigment vehicle.

The article of claim 109, wherein the non-magnetic pigment coating 110. structure has a substantially identical color as the magnetic pigment coating structure.

111. The article of claim 109, wherein one or both of the magnetic pigment and non-magnetic pigment coating structures have discrete color shifting effects.

- The article of claim 109, wherein the magnetic pigment and non-magnetic 112. pigment coating structures have substantially identical color shifting effects.
- The article of claim 109, wherein the magnetic pigment and non-magnetic 113. pigment coating structure have different color shifting effects.

VORKMAN, NYDEGGER & SEELEY	A PROFESSIONAL CORPORATION	ATTORNEYS AT LAW	1000 EAGLE GATE TOWER	60 EAST SOUTH TEMPLE	SALT LAKE CITY, UTAH 84111
Ξ					

114.	An ontical	article	comprising:
117.	All Options	articic	COMPTIBILIE.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

a substrate having an upper surface region;

a magnetic pigment coating structure overlying the upper surface region of the substrate, the magnetic pigment coating structure including a plurality of multilayer magnetic pigments dispersed in a solidified pigment vehicle, the magnetic properties of the pigment coating structure being provided by a nonoptically observable magnetic layer within each of the multilayer magnetic pigments; and

a non-magnetic pigment coating structure overlying at least a portion of the magnetic pigment coating structure, the non-magnetic pigment coating structure including a plurality of non-magnetic pigments dispersed in a solidified pigment vehicle.

The article of claim 114, wherein the non-magnetic pigment coating 115. structure has a substantially identical color as the magnetic pigment coating structure.

- 116. The article of claim 114, wherein one or both of the magnetic pigment and non-magnetic pigment coating structures have discrete color shifting effects.
- The article of claim 114, wherein the magnetic pigment and non-magnetic pigment coating structures have substantially identical color shifting effects.

118. An optical a	article comprising:
-------------------	---------------------

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

a substrate having an upper surface region;

a non-magnetic pigment coating structure overlying the upper surface region of the substrate, the non-magnetic pigment coating structure including a plurality of non-magnetic pigments dispersed in a solidified pigment vehicle; and

a magnetic pigment coating structure overlying the magnetic pigment coating structure including a plurality of multilayer magnetic pigments dispersed in a solidified pigment vehicle, the magnetic properties of the pigment coating structure being provided by a non-optically observable magnetic layer within each of the multilayer magnetic pigments.

119. The article of claim 118, wherein the non-magnetic pigment coating structure has a substantially identical color as the magnetic pigment coating structure.

120. The article of claim 118, wherein one or both of the magnetic pigment and non-magnetic pigment coating structures have discrete color shifting effects.

The article of claim 118, wherein the magnetic pigment and non-magnetic 121. pigment coating structures have substantially identical color shifting effects.

1	122.	An optical article comprising:
2		a substrate having first and second non-overlapping regions on a surface
3	of the	substrate;
4		a multilayer magnetic foil structure overlying the first region, the magnetic
5	proper	ties of the foil structure provided by a magnetic layer which is not optically
6	observ	able; and
7		a non-magnetic foil structure overlying the second region.
8		
9	123.	The article of claim 122, wherein the non-magnetic foil structure has a
10	substantially i	dentical color as the magnetic foil structure.
11		
12	124.	The article of claim 122, wherein one or both of the magnetic foil structure
13	and the non-n	nagnetic foil structure have discrete color shifting effects.
14		
15	125.	The article of claim 122, wherein the magnetic foil structure and the non-
16	magnetic foil	structure have substantially identical color shifting effects.
17		
18	126.	The article of claim 122, wherein the magnetic foil structure and the non-
19	magnetic foil	structure have different color shifting effects.
20		
21		
22		
23		
24		

	127. En option will to tomprising.
2	a substrate having an upper surfac
3	a multilayer magnetic foil structu
4	the substrate, the magnetic properties of
5	magnetic layer which is not optically obs
6	a non-magnetic foil structure over
7	foil structure.
8	
9	128. An optical article comprising:
10	a substrate having an upper surfac
11	a non-magnetic foil structure ov
12	substrate; and
13	a multilayer magnetic foil structu
14	magnetic foil structure, the magnetic p
15	provided by a magnetic layer which is no
16	
17	
18	
19	
20	
21	
22	
23	

127.	An optical	article	comprising:
------	------------	---------	-------------

ce region;

ure overlying the upper surface region of the magnetic foil structure provided by a ervable; and

erlying at least a portion of the magnetic

ce region;

verlying the upper surface region of the

are overlying at least a portion of the nonproperties of the magnetic foil structure ot optically observable.

1	129. A magnetic pigment flake, comprising:
2	a magnetic core section including:
3	a central magnetic layer having a first major surface, an opposing
4	second major surface, and at least one side surface; and
5	a first reflector layer on the first major surface of the magnetic
6	layer, and an opposing second reflector layer on the second major surface
7	of the magnetic layer; and
8	a first dielectric layer overlying the first reflector layer, and a second
9	dielectric layer overlying the second reflector layer, the first and second dielectric
10	layers composed of dielectric optical stacks including alternating high index and
11	low index materials.
12	
13	130. The pigment flake of claim 130, wherein the first and second dielectric
14	layers have coating structures selected from the group consisting of (HL) ⁿ , (LHL) ⁿ ,
15	and $(HLH)^n$, where $n = 1-100$ and the L and H layers are 1 QW at a design wavelength.
16	
17	
18	
19	
20	
21	
22	
23	
24	