Semantic Segmentation with PyTorch

CMPUT 328

Nilanjan Ray

Agenda

- We will look at two notebooks semantic segmentation
- For simplicity, we will do 2-class segmentation: foreground and background segmentation for a "flower.jpg" image
- Our first attempt will be to train a convnet on classification task and then use it for segmentation
 - In this process, we will learn one important feature: using a convolution in place of a fully connected layer
 - The advantage of using a fully convolutional layer is that the network can accept an image of any size as an input
- One limitation of applying a classification convent for segmentation is that the output would be smaller in size than the input
- Our next attempt will overcome this low-resolution issue by introducing an important type of convolution operation called "transposed convolution" (aka "upsampling")
 - We will also learn about an important aspect about *labels* in training a "segmentation net" that is different from training a "classification net"

Semantic segmentation example

For this lab we will do the simplest type of segmentation: foreground and background segmentation

Flower image

Binary foreground-background segmentation

Segmentation as image classification

Training dataset: 32-by-32-by-3 RGB images with positive or negative labels

Segmentation as image classification...

Train a convnet on the training set

This classification net can only take a fixed size input image.

Segmentation as image classification...

Let's convert the dense layer to a convolution layer:

This classification net can take an input of any width and height.

But, output image will have approximately 4x lower resolution.

Let's go through "ImSegFromClassification" notebook.

Segmentation using convolution transpose

- Convolution transpose is a type of convolution
 - See: https://nrupatunga.github.io/2016/05/14/convolution-arithmetic-in-deep-learning-part-1/
 - https://nrupatunga.github.io/convolution-2/
- Convolution transpose is more commonly known as "upsampling" layer
- Let's call this net "Segmentation Net"

Training set for segmentation net

A training image has a corresponding label image of same height and width.

Segmentation net architecture

This network can take input of any height and width.

Output image does not lose resolution!

Convolution transpose layer

Roughly speaking, the size of the output of conv-trans layer would be determined by the following relationship:

output = conv(input, kernel, stride)

input = conv_trans(output, kernel, stride)

Exercise

Design this architecture and train; then segment the flower image with this architecture.

