

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

BUREAU FOR RESEARCH IN MUNICIPAL GOVERNMENT

HARVARD COLLEGE LIBRARY

TRANSFERRED FROM THE

BUREAU FOR RESEARCH IN

MUNICIPAL GOVERNMENT

wck

Compliments of the

Illinois State Board of Health.

James A. Egan, M. D.,

Secretary and Executive Officer.

. . • . • • • .

THE ILLINOIS STATE BOARD OF HEALTH

REPORT

OF THE

SANITARY INVESTIGATIONS

OF THE

Illinois River and its Tributaries

With special reference to the effect of the sewage of Chicago on the

Des Plaines and Illinois Rivers prior to and after

the opening of the

CHICAGO DRAINAGE CANAL.

SPRINGFIELD, ILL:
PHILLIPS BROS., STATE PRINTERS.
1901.

[ng. 1109.01.2]

HARVARD COLLEGE LIBRARY RECEIVED THROUGH THE BUREAU FOR RESEARCH IN MUNICIPAL GOVERNMENT 1931

THE ILLINOIS STATE BOARD OF HEALTH, 1901.

James A. Egan, M. D., Springfield.
Geo. W. Webster, M. D., Chicago.
J. C. Sullivan, M. D., Cairo.
C. B. Johnson, M. D., Champaign.
W. Harrison Hipp, M. D., Chicago.
Wm. O. Forbes, M. D., Chicago.
Florence W. Hunt, M. D., Chicago.

C. B. Johnson, M. D., President.

James A. Egan, M. D., Secretary.

CONTENTS.

POLLUTION OF THE ILLINOIS RIVER AS AFFECTED BY THE DRAINAGE OF CHICAGO AND OTHER CITIES.

> By James A. Egan, M. D., Secretary, Illinois State Board of Health.

CHEMICAL AND BACTERIAL EXAMINATIONS OF THE WATERS OF THE ILLINOIS
RIVER AND ITS PRINCIPAL TRIBUTARIES,

By John H. Long, Sc. D.,
Professor of Chemistry, Northwestern University Medical School, Chicago.

IDENTIFICATION OF BACTERIA FOUND IN THE WATERS OF THE ILLINOIS RIVER AND ITS PRINCIPAL TRIBUTARIES.

By F. Robert Zeit, M. D., Professor of Bacteriology and Clinical Pathology,

and Gustav Füterrer, M. D.,

Professor of Pathology, Northwestern University Medical School, Chicago.

PRELIMINARY SANITARY SURVEY OF THE ILLINOIS RIVER DRAINAGE BASIN.

By Jacob A. Harman, C. E.,

Peoria.

POLLUTION

OF THE

ILLINOIS RIVER

As Affected by the Drainage of Chicago and Other Cities.

Β¥

JAMES A. EGAN, M. D.

POLLUTION

OF THE

ILLINOIS RIVER

As Affected by the Drainage of Chicago and Other Cities.

BY

JAMES A. EGAN, M. D.

At a meeting of the State Board of Health, held in Chicago on the 20th day of June, 1899, a resolution was adopted directing the secretary to take immediate steps to cause an investigation to be made of the waters of the Illinois river, with a view of determining its condition under the circumstances then prevailing, and which would obtain, subject to the changes incidental to the different seasons, until the quantity of water was increased by the opening of the canal under construction. The resolution also directed that the investigations be continued after the opening of the canal, until sufficient information was available to enable the board to judge whether the condition of the water was improved by the augmented flow.

To properly conduct these investigations the secretary secured the services of Professor John H. Long, of the Northwestern University, whose analyses of the waters of the Illinois and Michigan canal and of the different rivers of the State have received favorable notice in the majority of publications on the purification of water supplies and sewage disposal at home and abroad, and of Mr. Jacob A. Harman, civil engineer of Peoria. To these gentlemen was intrusted the duties in the lines of their respective professions, and their reports are herewith submitted.

A preliminary report containing the results of investigations made in 1899 prior to the opening of the canal was published early in 1900. The following reports embrace the essential facts found in the preliminary report and also the results of investigations conducted during the year 1900, since the 17th of January of which year the greater part of the sewage of Chicago has flowed through the Chicago drainage and ship canal.

Professor Long has been assisted in the identification of the species of bacteria found in the Illinois river and its tributaries, by Professors F. Robert Zeit and Gustav Fütterer, both of the Northwestern University Medical School, who have submitted a separate report in detail.

The State Board of Health, while entrusted with "the general supervision of the interests of the health and lives of the citizens of the State" and empowered to make such rules and regulations and such sanitary investigations as may from time to time be deemed necessary for the preservation and improvement of the public health, lacks the necessary authority to absolutely protect the purity of the water supplies of the State and enforce suitable disposal of sewage and other waste. Efforts have been made from time to time to secure the enactment of legislation conferring upon the board sanitary supervision and control of all sources of water supply within the State, and of the methods and means of collection and disposal of sewage, but bills embodying the further authority sought have rarely got beyond the room of the committee to which they were referred.

Notwithstanding the absence of specific powers and the lack of an adequate financial appropriation, the board, acting in an advisory capacity, has contributed much to the material progress of better sanitary methods, and especially to securing a pure water supply for many cities in the State, particularly Chicago, which, being the most populous and rapidly growing city in the west, has justly demanded and received more attention from the board than any other.

An investigation and study of the best means attainable of improving the water supply of this city were among the earliest efforts of the board, and it may be interesting to give here a resume of the report on the subject by the secretary, the veteran sanitarian, the late Dr. John H. Rauch, whose achievements in the cause of sanitary science and in the advancement of medical education are too well known to need direct reference in these remarks. This report. which was made to the board shortly after its organization, was prefaced by the following extract from Dr. Rauch's report upon Drainage, rendered while sanitary superintendent of the city of Chicago in 1869, which is taken from the preliminary report to the Illinois State Board of Health on the Water Supplies of Illinois and the Pollution of its Streams, prepared by Dr. Rauch and his distinguished collaborator, Dr. Frank W. Reilly, now assistant commissioner of health of Chicago, who was connected with the board from the time of its organization until 1893:

From the results of drainage and other sanitary measures carried on in this city, it may be inferred that the judicious expenditure of money for sanitary purposes is a sound maxim of municipal economy, and from past experience I am satisfied that the mean annual death rate can be reduced to 17 per 1,000 by continuing in force the present sanitary and drainage regulations, thereby making Chicago one of the nealthiest cities in the world.

This was written at a time when the average annual death-rate of Chicago was over 24 per thousand. Within the subsequent decade the average annual death-rate had been reduced to 18.48 per thousand, and in 1878 it had fallen to 16.5, or less than the predicted 17 per thousand.

The first report of the secretary embraced the general results of over twelve years of previous study, and specifically of investigations begun under the auspices of the board in October 1877, covering the amount and sources of the Chicago sewage, its flow through the canal and extent of dilution, effects of varying lake levels, force and direction of wind movement, temperature, precipitation and other meteorological factors, and chemical investigations of waters collected at various points between Lake Michigan and Peoria. The following

prefatory paragraphs are given in full as showing the comprehension of the importance and magnitude of the undertaking at that time. The report was addressed to the Illinois State Board of Health:

GENTLEMEN—In pursuance of your instructions, and in the sanitary interests of the State, I have devoted all the spare time that I could to the consideration of the pollution of streams, and especially to the effect of the Chicago sewage on the Illinois river.

The following report, which is submitted at this time because immediate action is necessary, contains the substance of my investigations and the conclusions arrived at thus far; but it is only preliminary to a more comprehensive one which I design to submit to you at a future time.

The factors connected with the drainage of Chicago, through the Illinois and Michigan canal, are many and of a diversified character. To accurately determine the relative effect of each, as meteorological changes occur during the year, requires the closest study and involves much labor. The importance of the subject can not be overestimated, for it involves the sanitary welf being and comfort of at least one-third of the population of the State. I have also conducted similar investigations with regard to the pollution of the Sangamon river, from which the water supply of the city of Springfield is obtained, and of Cahokia creek, at East St. Louis.

A SKETCH OF EFFORTS MADE TO CLEANSE THE CHICAGO RIVER.

From the earliest days in the history of Chicago, the Chicago river has attracted anxious observation from a sanitary standpoint, and the anxiety has increased with the increased population of the city and the suburbs, especially since the river has been the receptacle of a large part of the sewage. When a more perfect system of sewerage became imperatively necessary for the health of the city, the widening and deepening of the Illinois and Michigan canal to the capacity of a ship canal was suggested as a means of at once facilitating the commerce of the city and lakes and purifying the river. The one was urged as a proper national enterprise, and the other as a vital necessity for the increasing population of the locality. In July, 1860, the Sewerage Commissioners of Chicago recommended that the canal be enlarged and deepened so as to create a constant current from Lake Michigan into the Illinois river, but action upon their suggestion was not deemed necessary at that time. The pollution of the river increased, however, beyond all expectations, not only by reason of the increase of population, but from other causes. Among the latter was the increase in the slaughtering of hogs and cattle and the packing of meats. In the year 1860, 306,428 head of cattle and hogs were killed and packed, and all of the offal was passed into the sluggish river. In 1863 this business had increased enormously. In that year the number of cattle and hogs slaughtered increased to 1,029,948, and the offal was still swept into the river. There has been a vast increase, year by year, in this business ever since, keeping pace with, or even exceeding, the increasing volume of sewage produced by the rapidly growing population. This accumulation of sewage was partially relieved by pumping-works at the head of the canal; but the relief so afforded could not keep pace with the increase of sewage and offal, and in 1863 a remarkable epidemic of crysipelas occurred, which prevailed exclusively in close proximity to the south branch and to the main river. The great amount of animal refuse thrown into the south branch was supposed to have been the cause of this epidemic. The pollution of the river from these causes increased daily, in 1863 and 1864, and on Jaunary 9, 1865, a commission of engineers was appointed 'to devise the best plan to cleanse the Chicago river.

This commission presented their report on March 6 of that year, and, after discussing several projects, recommended that, 'in view of the facts in the case, the best plan to cleanse Chicago river that we can devise is to cut down the summit of the canal, so as to draw a sufficient quantity of water through it from the lake to create the necessary current in said river.' It was urged, as an argument in favor of the proposition, 'that the money expended in cutting down the summit of the canal will constitute a part of the expense of enlarging the present canal so as to admit the passage of steamboats of the

largest class, an improvement that must soon be made.' This plan was adopted, and, in the fall of 1865, the work of deepening the canal was commenced. It was completed in 1871, and, in July of that year, water was admitted at the deep cut from the river. The cut so made at the head of the canal was six feet, and it was computed that at an ordinary stage of water twenty-four thousand cubic feet per minute would flow from the river into the canal.

EFFECTS OF PUMPING THE RIVER INTO THE CANAL.

From the year 1860 to 1865 the pumps at Bridgeport were only used to supply to the canal such water as was needed for navigation, and their action in purifying the river, though marked and valuable, was only incidental. But in the latter year the Board of Public Works made an arrangement with the Canal Commissioners to utilize the pumping works as much as possible for the cleansing of the river. It happened, however, in that year, that unusual rains kept the river in fairly good condition without this extra use of the pumps. But the arrangement was maintained, and in 1866 the pumping works were in operation for sixty-two days; in 1867 they operated one hundred and fifty days; in 1868, seventy-three days; and in 1869, one hundred days. The amount of water raised eight feet by them in 1869 is estimated at ten thousand cubic feet per minute. The effect of their operation was marked and favorable, but the result was affected by the operation of other causes, which at times aided and at others hindered the purification of the river. These causes were the variation in the lake level, the local rains, and especially the constant increase of sewage and offal, resulting from the increasing population, and the slaughtering, and other business interests.* These influences were constantly operating, and it was found necessary to increase the use of the pumps each year, as is shown in the figures stated above, whenever possible, owing to the limited capacity of the canal, which also depended upon the rainfall. As the population increased, and, necessarily, the amount of sewage also, the effect of the pumps in cleaning the river was less marked.

After the water was let into the 'deep cut,' in 1871, it purified the south branch and the main river, but it was soon discovered that it effected no marked change in the water of the north branch. The latter continued to be so foul that in 1873 the Fullerton avenue conduit was begun, with a view to its purification. About the time the deepening of the canal was completed, the slaughtering business was transferred to the stock yards, whence the drainage is into the south fork of the south branch, and it was soon apparent that the drainage afforded by the 'deep cut' and the canal had but little in fluence in carrying off the drainage of these establishments, though, owing to local and transitory causes, the water in the south fork was occasionally cleansed.

The discussion, which follows in the printed report,† of the causes which affect the flow of water from the lake into the canal, the varying lake level, rain-fall, barometrical pressure and consequent wind movement, the flow through the canal, the analyses of the water and general observations, can not be given here owing to the lack of space. But the concluding passages of the report, having reference to a recommendation to the city of Chicago urging the establishment of the pumping works at Bridgeport may properly be cited at this point. The report concludes as follows:

This will be the first time that the Board has made a recommendation to the city of Chicago in relation to its sanitary affairs. There is another view of the case to which the attention of the municipal authorities of Chicago should be called, which is, that that city has no right to unnecessarily injure

^{*}It is gratifying to be able to here note, that, notwithstanding the enormous increase of the slaughtering business in Chicago within the past few years, the nuisances incident to rendering and utilization of offal have been diminished.

[†]Second Annual Report Illinois State Board of Health, 1879, pages 110-18.

the material and sanitary interests of any other part of the State. The community of interests which exists between the citzens of Chicago and the inhabitants of the country lying along the canal and river, forbids the injury of either by the other.

It is but just to state that the plans heretofore adopted for the sewage and drainage of the city of Chicago have been made with a view to such change as the future might require. The deepening of the canal, which was begun in 1865, was not completed until 1871, so that the relief afforded by that measure was delayed six years from the time when its necessity was recognized. The pumping works can be rebuilt in ninety days. My reasons for recommending this course are that the works will furnish almost immediate relief without great expense, and without interfering with the project of a ship canal, or with any more permanent plan which may become necessary for the disposition of the Chicago sewage.

That the oxidation of organic matter is promoted by the process of pumping will be seen by comparing the analyses of specimens Nos. 16 and 17. No. 16 was taken from the mouth of the inlet pipe at the Peoria water works, and contained 83 parts of organic matter in a million parts of water, while No. 17, which was taken on the same day, several hours later, after the water had passed through the works, contained only 54 parts. Specimen No. 19, taken from the Sangamon river, below the paper mill and distillery, and several miles above the Springfield water works, contained 126 parts; while specimen No. 20, taken from the office of the Board at the State House, contained but 73 parts. Specimen No. 28, taken from the inlet pipe of the Springfield water works, on December 1, (1878), contained 86 parts, while No. 29, taken from the office of the Board, contained but 54 parts.

The agency of the pumps in promoting oxidation will be more needed in winter than in summer, because, among other things, in summer the stirring of the water in the canal by the passage of boats promotes oxidation, in some degree at least, but, more importantly, because low temperature retards oxidation. I remark that any other plan that will afford relief will involve a much larger expense than this will, and much longer time to effect the result. The cost of the pumping works, which were erected by the State in 1859 and 1860, to supply the canal with water for the purposes of navigation, was \$42,158.24. From the statement of their operation, contained in the reports of the Canal Commissioners, I have computed that they raised about ten thousand cubic feet of water per minute eight feet high. The building yet remains, though it is leased to private parties for a short time. I have no doubt that an arrangement could be made with the Canal Commissioners for its use without any expense to the city of Chicago. I am informed that the old look can be restored at a cost of not more than \$10,000. If the whole exold lock can be restored at a cost of not more than \$10,000. If the whole expense of re-erecting the works should be \$60,000 or \$70,000, and the expense of operating them should amount to \$100 per day, it would be trifling compared to the benefits which would result. I am satisfied that an equitable arrangement can be made with the Canal Commissioners for maintaining the works. The fall from the head of the canal to Lockport, a distance of twenty-nine miles, is three feet, and the current between those points has a velocity of half a mile per hour at this time. The velocity will increase in proportion as the water at the head of the canal is raised, and the increase will promote the oxidation of sewage. After a careful investigation, I am satisfied that, with fifty thousand cubic feet of water passing into the head of the canal per minute, the main river and the south branch will be purified; that no nuisance will result from sewage at Joliet and below, and that the potability of the water in the Illinois river at Peoria will not be in the least affected from that source. An increase of water to sixty thousand cubic feet per minute would, in my opinion, take in addition the sewage of the north branch after it has once been cleaned out, and would diminish the nuisance in the south fork of the south branch at least three fourths.

I am informed by practical men that the increase of current in the canal, which would result from this increase of water, would not materially interfere with navigation, because of its increased depth. The lake level is lower now than it has been for a number of years; but, judging by the experience of the past, it will begin to rise within a year, and will continue to rise

during a number of years. But no improvement in the condition of the water in the canal and river can be expected from this cause, for the increased flow into the canal which the higher lake level will produce, will not keep pace with the increased sewage.

The Fullerton avenue conduit is now completed, and an experimental test will soon be made. I do not share in the great apprehension that exists in the minds of many with regard to the effect upon the pollution of the water supply of the city of Chicago, if the water is pumped from the north branch into the lake, at present; but I think it probable that, under certain conditions, it may pollute it.* Pumping water from the north branch into this conduit will necessarily cause a flow of water from the main river into the north branch. How far this will affect the flow of water into the south branch from the main river under existing circumstances, I am not prepared to say; but I do not hesitate to say that when the current is toward the lake, it will be almost impossible to purify the north branch in this way, for the sewage of both the main river and the south branch will then flow into it. The water in the north branch, north of the conduit, is much less foul than that further south, and it is with special reference to the purification of the latter that the conduit was constructed. But under certain conditions it will happen that the effect of pumping will be to draw off the comparatively clean water at the north end of the branch without materially affecting the fouler water below, as when there is a considerable supply of water by rainfall draining into the branch, which does not amount to a freshet, and changes in the lake level from any cause may also. produce this effect. Of course when there is a freshet out of the north branch the operation of the pumps is not needed for its purification. At times when the water is pumped from the lake into the north branch its effect will be to create a current into the main river and thence through the south branch into the canal, diminishing or at times cutting off the supply of water which otherwise flows from the lake into these channels. This will add the sewage of the north branch to that of the south branch.

I have already shown that the current into the head of the canal, under the most favorable circumstances, barely keeps the main river and the south branch in a tolerable condition. The addition of the sewage of the north branch to the south branch would render the lower portions of the latter nearly as foul as the north branch now is. In other words, it would only amount to a transfer of the nuisance and an increase of the nuisance at Joliet and the pollution of the Illinois river. At other times, the effect of pumping water from the lake into the north branch, will be to carry the sewage from the latter into the lake through the main river, and when the current is sluggish to cause the latter and, to some extent the south branch, to become foul and offensive. Either way, the sewage will at times find its way to the lake. If it is desirable or necessary to prevent this, it can be done by increasing the flow of water from the lake into the canal, and it can be done in no other way.

It is better for the city of Chicago that all the sewage should pass into the canal, but it should be so diluted as to prevent injury to the sanitary condition of the country below. If 60,000 cubic feet of water per minute at the head of the canal will not create the necessary current to effect this purpose, I have only to remark that the amount may be increased up to 100,000 cubic feet, which, according to Mr. Thomas, is the present capacity of the canal. Ever since 1872 the south fork of the south branch has been a standing menace to the health of the city of Chicago. Frequently, when foul odors are blown across the city, characterized by a peculiarly sickening, deadening stench, and attributed to the slaughtering, rendering, and fertilizing establishments, it really comes from this source. For the purification of this, which is one of the foulest bodies of water within my knowledge, various plans have been proposed; among others, the construction of a large sewer and pumping works, for conveying the water either into the lake or the canal. The condi-

^{*}While the Fullerton avenue conduit pumped from the north branch into Lake Michigan, complaint was several times made that the water supply of Lake View was polluted by it.

tion of this water will be appreciated better than any words can possibly describe it by reference to the analyses of specimen No. 1, from the head of the south fork, which contained 539 parts of organic matter in a million, and specimen No. 2, from near the mouths of two sewers, which contained 1,233 parts, while specimen No. 4, from the south branch before its junction with the west branch and south fork, contained only 74 parts per million. From the location of the old pumping works, on the same side and near the mouth of the south fork, I am satisfied that the pumping works will, to a great degree, purify this water. Specimen No. 3 was taken from this fork at the Archer avenue bridge, some distance from its mouth, and contained only 125 parts, showing the purifying effect of the lake water passing through the south branch to the canal.

All of which is respectfully submitted,

JOHN H. RAUCH, M. D.

To the copy of this communication, as printed in the Second Annual Report of the State Board of Health, is appended the following note by the Secretary:

Note.—By direction of the Board a copy of the above report was submitted to the Mayor and Common Council of the city of Chicago, on January 12, 1880, and in order to carry out the recommendations therein contained, an appropriation of \$100,000 was made by the Common Council for the purpose of constructing pumping works at the head of the canal. While the matter was pending before the Council, the subject was widely discussed by the press, the Chicago Citizens' Association and the Engineers' Club; conferences were held between the State and city authorities, and an important convention was held at Ottawa looking to pushing the construction of the ship canal from Lake Michigan to the Illinois river. While this last would undoubtedly afford an adequate and permanent method of disposing of the sewage of Chicago, (provided, that such canal be made wide and deep enough to properly dilute the sewage,) and while possibly some of the numerous other plans which have been since suggested would achieve the result sought for, I see no reason for modifying my conclusion above given, namely, 'that this resort to pumping is the only plan which can be adopted with sufficient promptitude to accomplish the desired end at an early day.' It is immaterial whether this pumping be done from the south fork through a canal connection via the stock yards, or by works located at the Ogden ditch and emptying into the Des Plaines river; or, as is specifically suggested, by re-establishing the pumps at Bridgeport. If this last be done so as to secure a capacity of 60,000 cubic feet per minute when desired, the facts and figures cited in the report demonstrate that substantial relief will be secured for some time to come. With the growth of the city and consequent increased production of domestic and manufacturing wastes and refuse, the time will arrive when 60,000 cubic feet per minute will not dilute the sewage to the point of inoffensiveness, but when that time arrives additional works may be constructed at Ogden ditch with a capacity of say 150,000 cubic feet, and with these two systems the sewage of a population of a million and a half may be satisfactorily disposed of. The vital point now is speedy relief from a grave sanitary danger; one which not only effects Chicago, but which either threatens to, or actually does, pollute the water supply of neighboring communities; which seriously menaces the health of the river towns, and poisons the atmosphere many miles south of the source of the evil. Does not Chicago owe it to herself and to her neighbors to act promptly and efficiently in the matter? Can she afford to invite not only epidemic diseases but an increased death rate? Can she afford to still further incur the risk of pollution of her own water supply, and that of her neighbors on the lake? From the data presented in the foregoing pages it seems obvious that only one available remedy exists for these imminent evils, namely, the removal of her sewage, properly diluted, by the water courses flowing toward the Mississippi river.

At a meeting of the Board on June 24, 1880, the Secretary resumed the subject* and again urged the speedy construction of the pumping works as a sanitary necessity. The following extract from the report of Dr. Rauch will be found interesting:

Within the last week I have made a careful inspection of the Chicago river and found it fouler and more offensive than it has been at any time since the deep cut was con.pleted in 1871, and I only recollect of one other time (1869) when it was worse, and then only for a short time, as the pumping works were set in motion and soon improved its condition. In the main river the current was toward the lake, showing that but little change had taken place in the lake level. At Van Buren street the water was practically stagnant; at Eighteenth street there was no current, and at Halsted street, for the first time within my knowledge, I observed no current toward the canal. (This is unusual except when a freshet occurs.) The south fork of the south branch was, comparatively speaking, in good condition, owing, no doubt, to the late rains. There was a decided current at the mouth of the canal, and upon further examination I found that the canal was taxed to its capacity by the water of the west branch and the south fork, thus causing the condition at Halsted street, and as far south as Van Buren street. The north branch at Kinzie street was also very foul, with a slight current toward the lake. In fact, at no time since the deep cut was completed was the water of the entire river so sluggish. About two months ago I called upon the mayor of Chicago and had an interview with reference to the construction of pumping works. The effect of the Fullerton avenue pump has been just as predicted in my repert written before the pumping commenced, and without the construction of the pumping works at Bridgeport it will only partially remedy the trouble.

It might well be stated here that owing to the persistent recommendations of Dr. Rauch, fortified by the opinions of competent observers, that the only remedy for the conditions existing lay in an increased flow of water into the canal—and strengthened also by the protests of cities receiving the drainage of Chicago, and a tentative proposition to compel the city to dispose of its sewage in another manner than by discharging it into the canal-steps were taken in 1881 to cause an increased flow from the Chicago river into the This was accomplished by a joint resolution of the Senate and House of Representatives in May, 1881, which provided for a flow of not less than 60,000 cubic feet per minute, the city of Chicago being required to maintain and manage adequate pumping works. For two years after the construction of the pumping works in 1884, the river and canal seemingly were kept in an unoffensive condition, but later, owing to the continual lowering of the lake level the force of the pumps soon became inadequate, and the water in the canal resumed the state existing prior to the construction of the works.

The work begun in 1877 was continued by the board for some time, but in a desultory manner, occasioned by the lack of means, and it was not until 1885 that the Legislature appropriated a contingent fund sufficient in amount to justify the board in securing the services of professional analysts, observers and other indispensable assistants.

The results of the work accomplished with the means at hand have been published in the annual reports of the board. The most im-

^{*}Third Annual Report Illinois State Board of Health, 1880, page 15.

portant of these results are to be found in the eighth annual report, 1885, pages CXVI-CXXVIII, the ninth annual report, 1886, pages XIII-XIV, XXIX-XXX, XXXIX-LIX, LXIV-LXVI, tenth annual report, page X, and in the Preliminary Report to the State Board of Health on the Water Supplies of Illinois and the Pollution of its Streams, published in 1888.*

While the subject now is of but little concern to the people of Chicago, and a recital of the facts can awaken but a faint interest elsewhere in the State even among the inhabitants of the lower valley, it may not be out of place to state that methods "to dispose of its sewage in another manner than discharging it into the canal" were considered at length by the city of Chicago. In January, 1886, the city council passed a resolution authorizing the creation of a drainage and water supply commission which was empowered to consider the entire subject of the future water supply and drainage of Chicago, and if possible, to devise means to remedy the existing inadequate methods of drainage and sewage disposal. inary report made by the Commission in January, 1887, after a year's investigation, it was stated that among the possible methods of getting rid of the Chicago sewage, there were but three that had been deemed worthy of an extended consideration, namely, a discharge into Lake Michigan, a disposal upon land by filtration and irrigation and a discharge into the DesPlaines river. A copy of this report embodying a full consideration of the different methods proposed may be found, with other valuable information concerning the subject at issue, in the work entitled "Drainage Canal and Waterway." by G. P. Brown, published in 1894.

The work of the Commission, while not carried to a conclusion owing to the refusal of the city council to appropriate the necessary funds, can, nevertheless, be considered final so far as a consideration of the most feasible means of the disposal of sewage is concerned. The conclusion arrived at is substantially the same as that set forth in the first report of Dr. Rauch to the State Board of Health on the subject, viz.: "the removal of her (Chicago's) sewage, properly diluted, by the water courses flowing toward the Mississippi river."

As stated by Dr. Rauch in the preface to his report in 1889, it is apparent that the Commission was strongly in favor of the method of disposal by land, and only abandoned it when it became obvious that suitable land in sufficient quantity was not available within the borders of the State at any practicable distance, and even though available territory were obtained in Indiana the enormous costincident to the construction of the necessary intercepting sewers and the lifting and transporting of the sewage for several miles, would render the project impracticable. Given a suitable body of land, the plans of the Commission for the disposal of the metropolitan sewage alone, by intermittent filtration and sewage farming, would require an investment of about \$58,000,000, with an annual expense of over \$3,000,000 for interest, pumping and maintenance after deducting

^{*} Also Advance Notes of the Sanitary Investigations of the Illinois River and its Tributaries, Illinois State Board of Health, 1900.

the profit from sale of crops. The disposal of the sewage of the Calumet region would add about \$4,000,000 to the cost of this plan, or a total of \$62,000,000, and would increase the annual expense about \$250,000.

The Commission finally approved of the project for the construction of an artificial waterway capable of carrying 600,000 cubic feet per minute, from the south fork of the Chicago river to Joliet. This quantity of water per minute represents 6,480,000,000 gallons per day. Concerning this Dr. Rauch thus wrote in 1888: "If we admit that the ultimate population in the area to be drained will reach 2,500,000, and that its average sewage product (150 gallons per head) will amount to 375,000,000 gallons per day, this quantity—6,480,000-000 gallons—would give a fraction over 17 dilutions, or more than sixteen parts of lake water to one of sewage, instead of two parts of lake water to one of sewage as now. It is to be noted that this would be the minimum dilution, and not likely to be reached until some time between 1910 and 1915."

Notwithstanding the conclusion of the Commission that the adoption of a system whereby the sewage of Chicago might be disposed of by land irrigation and filtration was impracticable, it should not be determined that the system, per se, is at fault. Means to this end have been in vogue in several European cities for a number of years, and are reported to have resulted very satisfactorily. Many municipalities in the United States also have adopted this method of disposing of their sewage by establishing proper plants.

Among these, however, which were recently reported as working satisfactorily, is mentioned the sewage farm at Pullman (Chicago) Ill., discontinued years ago, and which, during its existence, could not be referred to as a particularly successful example of sewage purification. It is to be hoped that the reports of other "sewage farms" are more trustworthy than that of the model village of Pullman, established nearly twenty years ago.

The methods in operation in both Berlin and Paris have been and still are cited as examples of perfect disposal of sewage, yet as in years past, there are still grave doubts as to the reliability of this plan for the disposal of metropolitan sewage. In this connection reference can aptly be made to the report of the Royal Commission on Metropolitan Sewage, which will be found on page XXIV of the Preliminary Report to this Board in 1888, and the following conclusions of the writers of the latter:

"For small towns, where suitable land is available in sufficient quantity within a reasonable distance; where the storm water is excluded from the sewage; where the effluent may be properly disposed of; where there is no danger of contaminating the subsoil waters by percolation nor other water supplies by surface drainage; where scrupulous care may be continuously exercised and an adequate plant is provided—under such circumstances this system should give fairly satisfactory results. But even at Pullman, where the most favorable conditions obtain, the permanent and unqualified success of the experiment is open to question."

The early reports regarding the Pullman sewage disposal plant were very encouraging, but it was soon discovered that the soil was not suitable for continuous use and that especially during the winter the ground clogged and the sewage flowed direct to the lake. The conditions, therefore, which were regarded as so favorable to success were favorable only in so far as the mechanical arrangements for handling the sewage was concerned, but the disposal beds were wholly unsuited to the service.

It is possible, and in the opinion of many competent observers probable, that at some future period, perchance within the ken of the present generation, the city of Chicago, taking advantage of the improved methods for the disposal of sewage which have been brought to the knowledge of sanitarians since the inception of the great project, the possible realization of the dream of Joliet, will divert its noxious wastes from the waters of the canal and dispose of them, to a financial advantage, in a manner not tending to create a nuisance, pollute the soil, nor prove detrimental in any manner to the public health. Be this as it may, there can be no question as to the wisdom of the conclusions arrived at in 1887 by the Drainage and Water Supply Commission of Chicago.

The opening of the canal and the contemplated turning of the entire sewage of the city of Chicago into the Des Plaines and Illinois rivers, has naturally caused much apprehension in the minds of the people of the Illinois valley who have been informed that this "dumping of sewage" will be a constant menace to the lives and health of the inhabitants of the borders of the rivers in question. Those who have imparted this information ignore the palpable fact that for a considerable period over three-fourths of the sewage of Chicago has been carried by the river with but small dilution of water. Obviously, therefore, the danger, if existing, could not but be diminished when the entire sewage of the city diluted by a flow of from 300,000 to 600,000 cubic feet of water per minute, passes by.

On the topic of self-purification of water much has been said and much written, and while there is still great diversity of opinion on the subject, it is not a fact as stated recently by a noted sanitarian before the American Medical Association, that "biologists have about come to the conclusion that no river is long enough to purify itself."

As remarked by Thresh in the latest revision of his work on Water and Water Supplies, "the balance of evidence is decidedly on the side of those who uphold the theory of self-purification, and the diverse conclusions arrived at by different observers, can be accounted for by the varied and often imperfect character of the experiments and by the diverse conditions which obtain in the different streams."

Again quoting from Thresh: "That river water grossly befouled by sewage in its higher reaches, becomes a few miles lower down so pure, from a chemical point of view, as to be certified by the most eminent analysts to be fitted for all domestic purposes, and is actually so used by millions of our population, is a fact which can not be gainsaid. Whether this process of purification be due merely to sedimentation and dilution, or to these factors, assisted by oxidation, is, however, a matter of trifling importance, since it is now fully recognized that the disease-producing material is not the dead organic matter in solution, but the living organisms in suspension. The problem is not a chemical one but a biological one. If the specific disease-producing bacteria can be carried long distances by streams, it matters very little whether they are accompanied by an increased or decreased amount of the soluble impurities which were introduced therewith."

Those who oppose the idea of the self-purification of any stream, quote at length, in defense of their position, from the published results of experiments conducted in years past by noted observers, and dwell particularly upon the Sixth Report of the Rivers Pollution Commission of Great Britain, in which the Commissioners, as a result of their experiments, came to the conclusion that there was "no river in the United Kingdom long enough to effect destruction of sewage by oxidation." These views, however, are not in accord with modern experience. At the time the experiments were conducted, the part played by the minute forms of vegetable and animal life in the process of purification was unknown. Many of the experiments recorded have therefore but little interest at the present time.

On this point a quotation from a recent, authoritative, work on the subject, "The Purification of Sewage and Water," by W. J. Dibdin, F I. C., F. C. S., may be apropos.

"A few years ago it was stoutly denied that rivers had the power of purifying themselves. Then we knew practically nothing of nature's method. Now, that this has been so far revealed to us, it is declared with equal force that not only are effete matters rendered innocuous, but even disease-producing microbes are themselves voraciously devoured by others of like kind, and the formerly muchdreaded bacteria are—and properly so—considered amongst the best friends of man."

That the water which forms the principal subject matter of these remarks, viz: that flowing between the south branch of the Chicago river and Grafton, is subject to self-purification, is a proven fact. The experiments of Professor Long in this connection conducted in 1885, are well known to all sanitarians, but a brief resumé of the facts will be of interest here.

During the remarkably dry season of 1886 advantage was taken of the conditions prevailing, to determine the rate of purification of the water of the Illinois and Michigan canal to the Illinois river, in the months of June, July and August. The rainfall was so light during the months named that the contents of the canal were practically unaffected by dilution. Analyses were made of the sewage contents of the Illinois and Michigan canal and of the water of the Illinois river as far south as Peoria.

The following table gives the averages of	the different analyses of
samples collected at each place on the same	day:

•	In 1,000,000 Parts.			
Places.	Free	Alb'm'd	Oxygen	
	Ammonia.	Ammonia.	used.	
Bridgeport	26.563	1,683	26.20	
Lockport, 29 miles below	12.783	.753	11.01	
Joliet, 33 miles below	9.426	.432	9.34	
Ottawa, 91 miles below	.418	.243	5.30	
Peoria, 159 miles below	.027	.194	4.81	

The respective percentages of loss shown in the following may be taken as the measure of the rate of oxidation in the canal during the summer months, unaided by dilution:

Places.	In 1,000,000 Parts.						
	Free Ammonia.	Per cent of loss.	Alb'm'oid Ammonia.	Per cent of loss.	Oxygen used.	Per cent of loss.	
BridgeportLockportJoliet	26.563 12.773 9.416	52. 1 26. 1	1.633 .753 .432	53.9 42.7	26.20 11.01 7.34	58.0 33.4	
Total per cent of loss be- tween Bridgeport and Joliet	64.6		70.36		72.0		

In reference to these figures, Dr. F. W. Reilly, under whose direct supervision the analyses were carried on, speaks as follows:*

"The collation of Prof. Long's analyses between Bridgeport and Peoria enabled me to show that more than one half the sewage pollution of the canal disappeared before reaching Lockport; nearly onethird of the remainder was lost in the next four miles, or 33 miles from Bridgeport; while at Channahon, 48 miles from the city, no trace of sewage was detected. These results were so unlooked for that Dr. Rauch hesitated to accept them. Water analysts had asserted that the self-purification of a polluted stream was impossible -as one phrased it, 'no river in the world is long enough to purify itself after it has been contaminated with organic matter.' In his article on 'Water,' in the Reference Hand Book of the Medical Science (Vol. VII, page 714), that distinguished authority, Surgeon Charles Smart, U.S. A., with whom the writer was associated, together with Deputy Surgeon-General John S. Billings, U.S. A., and Col. George E. Waring, Jr., in the sanitary regeneration of the city of Memphis after the terrible yellow fever summer of 1878—Dr. Smart makes the following comment touching this matter:

'These statements would be of immense importance, were they sustained by collateral evidence; but, unfortunately those analysts who

^{*&}quot;Relation of the Medical Profession to the Water Supply of Chicago," a paper read before the Physicians' Club of Chicago, November, 1896.

have had much practical experience in following the track of sewage in its passage down stream, will recognize in these results: 1. The analysis of a fresh and turbid sewage at the starting point, the solid particles of organic matter giving a high rate of impurity. 2. The analysis of a partly sedimented sewage as those particles disappear from the water. And 3, the dilution effected by the DesPlaines river.'

"To this I felt constrained to make the following reply in the Preliminary Report to the Illinois State Board of Health on the Water Supplies of Illinois and the Pollution of its Streams, April, 1889:

'For the benefit of 'those analysts who have had much practical experience in following the track of sewage in its passage down stream' it should be stated that: 1. The analysis itself, showing 12.6 parts of free ammonia per million, is that of anything but 'a fresh and turbid sewage at the starting point'; on the contrary it is a sewage in an advanced stage of decomposition. 2. Sedimentation in a current with the velocity of that in the Illinois and Michigan Canal is a physical impossibility, and this entirely apart from the influence of the passage of boats. 3. It is expressly stated in the text quoted by Dr. Smart that there was 'no dilution of the contents of the canal.' which contents were the sole subject of the various analyses at Bridgeport. Lockport and Joliet; as a matter of fact the DesPlaines river above the point of junction with the canal had ceased to exist as a watercourse during the period under observation—which was one of unprecedented drought—and the contents of the canal were undiluted from any source after leaving Bridgeport.'

"The demonstration and its deductions were of such obvious—such 'immense importance,' to borrow Dr. Smart's phrase, that the analyses were repeated in the winter of 1886-7, again in the summer of 1888 and still again in the spring of 1889, with substantially similar results in every case."

The results referred to suggest conclusions directly in line with those of other investigators, and are in harmony with the opinion of Pettenkoffer, to the effect that ordinary sewage may be, without hesitation, turned into any river or brook whose volume is fifteen times the volume of the sewage, and whose velocity is not less than that of the stream of sewage. Under these circumstances the necessary dilution and self-purification take place after a short flow.

Mason* while declaring the theory of Pettenkoffer to be far from safe in practice, and expressing the belief that self-purification of streams is a process not to be implicitly relied upon, nevertheless takes occasion to state that judging from the mean results in the experiments conducted, "there is good ground for the statement that very considerable purification takes place during the flow of thirty-three miles."

Commenting upon these experiments, Mr. George W. Rafter in his report on Sewage Irrigation to the United States Geological Survey, in 1897, while admitting that "the investigation indicated a very

^{*&}quot;Water Supply." William P. Mason, New York, 1896.

rapid purification of the sewage-contaminated waters of the present Illinois and Michigan Canal as they flow to the south" states that the "investigations have not been carried far enough to indicate what the results will be upon the Illinois river and the Mississippi when the project (i. e. the canal) shall have been completed and the sewage of Chicago largely turned south."

It is difficult to conjecture just to what extent investigations could have been carried prior to the opening of the canal in order to definitely determine what the results would be thereafter, but it is believed that the investigations of Professor Long* made in 1899 will furnish all possible data on the subject.

The results obtained in this series of chemical and bacterial investigations were published in 1900 in the "Advance Notes" referred to in the foot note. Most of the data in connection therewith and the conclusions arrived at are set forth in this report.†

As bearing on the purification of the waters between Bridgeport and Lockport during the period of these investigations attention was called by Professor Long to the remarkable condition existing in the canal between Bridgeport and Lockport during the summer. Ordinarily in the warm weather there is a marked oxidation here with evident destruction of organic matter. This was shown in the investigations of 1888 and in striking degree in those of the summer of 1886. In the cold winter and spring months of 1889, on the contrary, the oxidation was slight between Bridgeport and Joliet, and this is probably the normal low temperature condition. figures given it is plain that the oxidation changes were very slow in the beginning during the summer. In fact, as measured by free and albuminoid ammonia and oxygen consumption, the Lockport water appeared even slightly more contaminated than that from Bridgeport. The amounts of chlorine given by the averages suggested a slight degree of concentration by evaporation between the two places. For the low rate of oxidation, Professor Long was unable to account.

On the question of the purification of the lower river, there was no uncertainty. To quote from Professor Long's remarks.

The amount of albuminoid ammonia in the Illinois at Grafton is less than in the Mississippi at the same place, and the oxygen consumption is markedly less. The Illinois, at its mouth, is in better organic condition than are most of its tributaries. A larger flow would doubtless produce no very great change except in the oxidation of the free ammonia. The organic matter left here is probably mainly that derived from the soil, and much of this is of such a character as to undergo change but slowly. At Grafton little beyond the harmless salt remains to tell of the enormous pollution 320 miles above.

These remarks, it will be borne in mind, are based upon the investigations made during the time when the water of the Chicago river, contaminated with a great portion of the sewage of Chicago, was pumped into the sluggish Illinois and Michigan canal at Bridgeport, and flowed along the level to Lockport, receiving no dilution on the way.

^{*}Advance Notes of the Sanitary Investigations of the Illinois River and its Tributaries, Illinois State Board of Health. 1900,

[†]Chemical and Bacteriological Examinations of the Waters of the Illinois River and its Principal Tributaries by John H. Long, Sc. D., infra.

It has been stated that a great portion of the sewage of Chicago was carried into the Illinois river through the sluggish current of the Illinois and Michigan canal with but a small dilution of water, during the period covered by these preliminary investigations. More properly, however, should it have been stated that the greater portion of the sewage was thus conveyed. Professor Long estimated that from a population a little short of 2,000,000 the waste of 1,600,000 drained into the river. Professor Jordan* during the course of investigations made by him upon the Illinois river in 1899, at the request of the Director of Streams Examination for the Sanitary District of Chicago, observed that "the amount of sewage passing through the Illinois river by way of the Illinois and Michigan canal throughout this period (from May 1, 1899, to January 1, 1900,) is estimated to be as high as 85-90 per cent of the total sewage of Chicago."

As has been truly said, the acceptance, as a general proposition, of a view which is applicable to a particular case only, is illogical and may bring about disastrous results, hence it would hardly be proper to maintain that the results of the analyses made by the Illinois State Board of Health during 1886-89 and 1899, on the water courses leading from Lake Michigan to the Mississippi, unquestionably sustain the theory of self-purification of running streams. The diverse conditions obtaining in different waters, noted by Thresh, undoubtedly act as a controlling factor in some instances. There can be no doubt, however, that the results prove the fallacy of the saying that "no river is long enough to purify itself."

On the 17th day of January, 1900, nearly eleven years after the enactment of the "Sanitary District Act" and over seven subsequent to the inauguration of work on the channel, on the historic occasion known as "shovel day," the Chicago drainage and ship canal was formally opened and the course of the waters of the Chicago river and of those flowing from Lake Michigan became materially changed.

The work in connection with this channel, which has been termed the greatest feat of sanitary engineering in the world, is outlined in the following extracts from the act aforesaid:

An Act to Create Sanitary Districts and to Remove Obstructions in the DesPlaines and Illinois Rivers, and the Dams of Henry and Copperas Creeks, Approved May 29, 1889, in Force July 1, 1889.

Channel—How to be Constructed. 23. If any channel is constructed under the provisions hereof by means of which any of the waters of Lake Michigan shall be caused to pass into the DesPlaines or Illinois rivers, such channel shall be constructed of a sufficient size and capacity to produce and maintain at all times a continuous flow of not less than 300.000 cubic feet of water per minute, and to be of a depth of not less than fourteen feet, and a current not exceeding three miles per hour, and if any portion of any such channel shall be cut through a territory with a rocky stratum where such rocky stratum is above grade sufficient to produce a depth of water from Lake Michigan of not less than eighteen feet, such portion of said channel shall have double the flowing capacity above provided for, and a width of not less than one hundred and sixty feet at the botttom, capable of producing a depth of not less than eighteen feet of water. If the population of the district draining into such channel shall at any time exceed 1,500.000, such channel shall be made and kept of such size and in such condition that it will produce and maintain at all times a continuous flow of not less than 20,000 cubic feet of water per minute for each 100,000 of population of such district, at a current of not more than three miles per hour, and if at any time the general government shall improve the DesPlaines or Illinois rivers, so that the same shall be capable of receiving a flow of 600,000 cubic feet of water per minute, or more, from said

^{*} Some Observations on the Bacterial Self-purification of Streams, by Edward Oakes Jordan, Ph. D. (From the Bacteriological Laboratory of the University of Chicago.)

channel, and shall provide for the payment of all damages which any extra flow above 300,000 dubic feet of water per minute from such channel may cause to private property, so as to save harmless the said district from all liability therefrom, then such sanitary district shall, within one year thereafter, enlarge the entire channel leading into said DesPlaines or Illinois rivers from said district to a sufficient size and capacity to produce and maintain a continuous flow throughout the same of not less than 600,000 cubic feet of water per minute, with a current of not more than three miles per hour, and such channel shall be constructed upon such grade as to be capable of producing a depth of water not less than eighteen feet throughout said channel, and shall have a width of not less than one hundred and sixty feet at the bottom; in case a channel is constructed in the DesPlaines river, as contemplated in this section, it shall be carried down the slope between Lockport and Joliet to the pool, commonly known as the upper basin, of sufficient width and depth to carry off the water the channel shall bring down from above. The district constructing a channel to carry water from Lake Michigan of any amount authorised by this act, may correct, modify and remove obstructions in the DesPlaines and Illinois rivers wherever it shall be necessary so to do to prevent overflow or damage along said river, and shall remove the dams at Henry and Copperas Creek, in the Illinois river, before any water shall be turned into the said channel. And the canal commissioners, if they shall find at any time that an additional supply of water has been added to either of said rivers, by any drainage district or districts, to maintain a depth of not less than six feet from any dam owned by the State, to and into the first lock of the Illinois and Michigan canal at LaSalle, without the aid of any such dam, at low water, then it shall be the duty of said canal commissioners to cause such dam or dams to be removed. This act shall not be co

Capacity of Channel or Outlet. § 20. Any channel or outlet constructed under the provisions of this act, which shall cause the discharge of sewage into or through any river or stream of water beyond or without the limits of the district constructing the same, shall be of sufficient size and capacity to produce a continuous flow of water of at least two hundred feet per minute for each one thousand of the population of the district drained thereby, and the same shall be kept and maintained of such size and in such condition that the water thereof shall be neither offensive or injurious to the health of any of the people of this State, and before any sewage shall be discharged into such channel or ontlet all garbage, dead animals, and parts thereof, and other solids, shall be taken therefrom, *and said district shall at the time any sewage turned into or through any such channel or channels, turn into such channel or channels not less than 20,000 cubic feet of water per minute for every 100,000 inhabitants of said district, and shall thereafter maintain the flow of such quantity of water.

The investigations of the State Board of Health made since the opening of the main channel cover the time between the spring and end of the year 1900. The canal during this period did not carry continuously the full flow required by law, but the results obtained would not have been materially altered except possibly for the better, had a continuous flow of 300,000 cubic feet per minute been maintained during the time of the investigations. As noted by Prof. Long in reference to the experiments of 1899, conducted prior to the opening of the canal, "a larger flow would doubtless produce no great change except in the oxidation of the free ammonia."

So far as the connection between the sewage of Chicago and the flow of water in the canal is concerned, there can be but little appreciable difference between the effect of a flow, of 200,000 cubic feet per minute on the sewage of an estimated population of 1,600,000 and the effect of a flow of 300,000 cubic feet on the sewage of an estimated population of 2,000,000.

As has been demonstrated, however, not only in 1900, but also in 1899 the sewage of Chicago is by no means the most important factor in the pollution of the Illinois river.

In the investigations of 1900 the main results stated in the report of the investigations conducted in 1899 have been strengthened and confirmed.

Of the possible effect of the sewage of Chicago on the water of the Illinois river at its entrance into the Mississippi, the following remarks by Prof. Long will be found of remarkable interest: "I believe it may be safely said that if the whole of the sewage of Chicago were to be excluded from the Illinois river, the condition at Grafton

7

^{*} As amended by Act of 1895.

would remain unchanged as far as organic contents and bacterial organisms are concerned. With the flow from Chicago excluded there would be a diminution in the harmless nitrates and chlorides only."

The recent analyses made by Dr. Long show that little purification takes place in the course of the Illinois and Michigan canal from Bridgeport to Joliet, but from that point the purification becomes very rapid. This was true not only during the summer of 1899, but also in 1900. Owing to the variation from day to day in the amount of sewage pumped at Bridgeport and also from time to time in the flow of the drainage canal during the year 1900, no comparison can be made from the analyses of sewage above Joliet for that period, but from Joliet to the Mississippi the conditions are unchanged except as to the volume of flow.

Comparison of Analyses of Illinois River Water in 1899 and 1900 Prior to and After the Opening of the Chicago Drainage Canal.

Oxygen absorbed.		Chlorine.		Free. Ammonia.		Albuminoid Ammonia.	
1899.	1900.	1899.	1900.	1899.	1900.	1899.	1900:
25.69	6.97		31.40	16.05	4.66	2.88	0.8
	6.40				2.84		0.6 0.8
6.99	5.60					0.58	ŏ.
7.00	5.86	43.20	16.90	3.28	0.41	0.55	0.
6.86	5.05	33.04	15.50	0.89		0.57	0.
	9.91						1.
	6.46						0.
5.51				0.31	0.12		Õ
5.61							0. 0.
	1899. 25.69 9.16 7.13 6.99	absorbed. 1899. 1900. 25.69 6.97 9.16 6.40 7.13 5.94 6.99 5.60 6.86 5.05 17.44 9.91 7.18 6.46 5.51 6.87 5.61 5.85	absorbed. Children 1899. 1900. 1899. 25.69 6.97 85.49 9.16 6.40 61.80 7.13 5.94 57.40 6.99 5.60 41.30 7.00 5.86 43.20 6.86 5.06 33.04 17.44 9.91 34.97 7.18 6.46 29.17 5.51 6.87 18.73 5.61 5.85 17.50	25.69 6.97 85.49 31.40 9.16 6.40 61.80 17.80 7.13 5.94 57.40 17.20 6.99 5.60 41.30 15.80 7.00 6.86 43.20 16.90 6.86 5.05 33.04 15.50 17.44 9.91 34.97 16.60 7.18 6.46 29.17 15.00 5.51 6.87 18.73 11.60 5.61 5.85 17.50 10.60	1899. 1900. 1899. 1900. 1899.	Ammonia. Ammonia. Ammonia.	Ammonia.

The foregoing tabular statement has been prepared to show in parallel columns the results of the annalyses of the DesPlaines and Illinois river waters from Joliet to Grafton. As an indication of the organic matter, the oxygen absorbed shows a very great improvement The chlorine contents of the water shows directly the effect of dilution, and the ammonias the effect not only of dillution; but of self-purification. Referring to this table in detail it will be noted that the amount of oxygen absorbed at Joliet in 1899 was 25.69 parts per million and in 1900, 6.97 parts per million. At Morris the oxygen absorbed in 1899 was 9.16 parts per million and in 1900, 6.40 parts Between Joliet and Morris the DuPage and Kankakee rivers add their waters to that flowing past Joliet, and the dilution is represented by the chlorine constituents as shown in the table. In 1899 this dilution amounted to about 28 per cent and in 1900 about 45 per cent, thus showing that the large reduction of organic matter between Joliet and Morris in 1899 was due to purification and not Following down the river it will be observed that the condition of the water as shown by oxygen absorbed, chlorine, free ammonia and albuminoid ammonia continues to improve until LaSalle is reached. At LaSalle the Illinois and Michigan Canal enters the

Illinois river, and whatever sewage it contains at this point is discharged into the river. In addition to this the sewage of LaSalle and Peru, two cities having an aggregate population of 17,309 inhabitants, is added, and the oxygen absorbed and chlorine show slight increase at Henry, the first station below LaSalle. At the station below Peoria, called Wesley, the organic matter and chlorine are all increased, owing to the sewage received at Peoria. From this point the purification continues throughout the extent of the river.

There are some variations shown between the results of 1899 and 1900. The results of 1899 show a continual decrease of organic matter from Joliet to Peoria narrows and again from Wesley, just below Peoria, to the mouth of the river at Grafton, and the condition at Pearl and Grafton is better than above Peoria. On the other hand, in 1900 the condition of the river above Peoria is as good from the chemical and bacterial standpoint, if not better, than at Grafton. This is evidently due to the greater dilution of the Chicago sewage and may also be accounted for by a larger amount of sewage from Peoria and Pekin, as well as from the Sangamon river.

The report* of the bacteriologists which follows shows the same general conclusions as to purity of the water of the Illinois river as those drawn from the chemical analyses which have been referred to. Referring to the test of the water taken from the station just above Peoria, called The Narrows or Upper Peoria, the bacteriologists make this statement:

Direct intraperitoneal injection of water as well as a mixed 24 hour bouillon culture proved entirely non-virulent. Even large doses of a 24 hour culture at 37 degrees of one part of water and five parts bouillon could be given to Guinea pigs by intraperitoneal injection without causing death.

Bacterial self-purification is practically complete here and the Illinois river at this location contains less evidence of sewage pollution from the standpoint of qualitative bacteriological examination, that is, less pathogenic and sewage pollution, than at any other point between Lake Michigan and Grafton.

Referring again to the report of the bacteriologists regarding the pathogenic effect of samples of water and bouillon cultures made therefrom, we find the following statement:

Intraperitoneal injection of 4 c.c. of the different water samples proved non-pathogenic in all cases except Morris, LaSalle, Lower Peoria and Havana.

Bouillon cultures, 1.5, as per No. 8 above, caused death promptly in water samples from Western avenue, Bridgeport, LaSalle. Henry, Lower Peoria, Havana—Illinois river.

Uncertain Effect-Lake Michigan, Lockport, Joliet, Morris.

No Effect—Wilmington, Ottawa, Illinois and Fox rivers, Havana, Spoon river, Pearl, Grafton.

Bacterial purification begins at Joliet. Sewage bacteria decrease markedly at Morris and still more at Ottawa, where the bacteriological flora of the Illinois river and Fox river do not reveal great differences.

Pathogenic and sewage bacteria increase again at LaSalle and Henry.

^{*}Identification of Bacteria Found in Waters of the Illinois River and Its Principal Tributaries.—Infra.

The most marked bacterial purification occurs between Henry and Upper Peoria, where pathogenic and sewage bacteria are almost absent. Upper Peoria probably shows the least sewage pollution of any point between Chicago and Grafton.

At Lower Peoria we found a marked increase of pathorenic and sewage bacteria, similar to that of Joliet.

At Havana the conditions are worse and even anthrax, probably spores, were found here on two occasions.

At Pearl and Grafton much purification has again taken place, but some pathogenic and sewage bacteria are still present.

As a result of these studies, both chemical and bacterial, it is evident that the Illinois river is capable of purifying itself to a very marked degree. The organic evidences of the Chicago sewage as well as that introduced between Chicago and Peoria, have disappeared at Peoria, and we find the Illinois river at this point in as good a condition as the tributary streams. In our conclusions, however, we must not neglect to recognize the fact that the tributary streams are likewise more or less polluted with sewage, but none to the same extent as the Des Plaines and Illinois rivers. At Peoria and Pekin the introduction of organic matter is so great that even during the summer of 1900, when the low water flow was about 60 per cent more than that of former years, purification from this point to the mouth was no more complete than from Joliet to Peoria. Below Peoria dilution has very little effect on the purification of the waters of the Illinois, as the tributaries, except the Sangamon, furnish a comparatively small flow: and the Sangamon does not supply a pure water, but is not so much polluted as the Illinois.

The purity of the Illinois river at any point in its course will depend upon (1) the volume of water flowing, (2) the amount of sewage or organic matter introduced, and (3) the length of time which will elapse before such sewage shall reach the point in question, or, in other words, the distance above the point under consideration. It is not only possible, but more than likely that the waters of the Illinois above Peoria, although chemically and bacteriologically unobjectionable, have not as large a capacity, as it were, for purifying sewage as waters from Lake Michigan or other sources carying a larger amount of dissolved oxygen. If this condition be true at Peoria, it will also be true throughout the entire course of any stream which has once been excessively polluted. Hence, while any stream will, if given time enough, that is to say, length enough, practically purify itself after receiving a given amount of sewage, the fact still remains that the extent to which any stream may be expected to assimulate sewage and render it unobjectionable has difinite and fixed limits, which, if exceeded, will result in bringing about the nuisances and dangers which result from sewage. Just what amount of crude sewage any stream can receive without injury to its waters for domestic and manufacturing purposes depends upon the volume of stream flow, the distance to the point of use, and the rate of flow. A number of eminent sanitarians have undertaken to lay down rules to govern the practice of admitting sewage into streams based upon observation and experience, coupled with sanitary chemical and bacterial analyses.

This board determined from the analyses made by Professor Long in 1886-7-8 that about 17 volumes of Lake Michigan water to one volume of Chicago crude sewage would form a mixture which under the conditions of flow and distance would not become a nuisance or menace to the inhabitants of the Illinois river valley and the act creating the Sanitary District provides for 20 volumes of lake water to one volume of Chicago sewage or "20,000 cubic feet per second for each 100,000 inhabitants" of the Sanitary District.

It may be interesting to note the views of sanitarians on the effect of dilution of sewage, and as this subject has been considered at length by Rideal, the following statement in his recent treatise on Sewage* is given:

With conditions that are favorable, the purifying action of rivers is known to be very great. Towns on the banks of rivers of considerable width, and having a fairly constant volume and velocity during all seasons have discharged their raw sewage into the stream for many years, and investigation has proved that a few miles below the outlet of the sewers there is little or no trace of pollution.

Many chemists believed that sedimentation was the main cause of any self-purification in river water. But any extensive improvement by mere sedimentation would be on the wrong lines, and should not be permitted, as it would result in a filling up of the river bed and formation of dirt banks which become foul. If, on the other hand, suspended organic matter is slowly removed to the river bed and there is attacked, in the absence of air and light, by the organisms naturally fitted to the purpose, their products will dissolve and become available for the water bacteria in the river.

Pettenkofer, * * * from investigations on the river Isar, at Munich, has concluded that if the sewage never amounts to more than 1-15th, or 6.7 per cent of the river water, and the velocity of the latter is at least equal to that of the former, the raw sewage may be poured into the river without causing pollution.

In America, from the results of actual observations on rivers, under the direction of the Massachusetts Board of Health, Rudolph Hering fixes a limit to the amount of free ammonia permissible in a stream, and finds that if the flow of a stream is less than 2^{1} 2 cubic feet per second per 1,000 persons, or one gallon per minute per person, 'an offence is almost sure to arise' but when the flow is greater than 7 cubic feet per second per 1,000 persons then safety is assured. In other words, when the free ammonia is greater than 0.12 parts per 100,000, the conditions are probably objectionable. These limits correspond to about 50 volumes of river water to average sewage in this country. Mr. Stearns, the engineer to the Massachusetts board, coucluded that if the average amounts to more than 1-40th, or 2.5 per cent of the river water, it can not be discharged into the river in its raw state; if it amounts to less than 1-40, and more than 1-130 it is doubtful; if less than 1-130 it may be admitted without any doubt in its raw state into the river. These conclusions are, of course, empirical, and have not been generally accepted; they would be greatly affected by the amount of solid matter present in the discharge. It must be remembered that the sewage in America is much more dilute than in this country, that the rivers have greater volume, and that the limit is much higher than we have found necessary in England.

In addition to the chemical analyses and bacteriological examinations above referred to the engineer of the board has made an extensive report upon the numbers and distribution of the inhabitants of the entire Illinois river drainage basin, monthly and annual rainfall

×

^{*}Sewerage and the Bacterical Purification of Sewage, by Samuel Rideal, D. S., London, England, 1900.

[†] Vide page xxii ante.

upon each tributary basin of the Illinois for 11 years—1890 to 1900—as well as a table of annual rainfalls at all stations in Illinois from the earliest records to date; original gaugings of the streams tributary to the Illinois and a series of gaugings to determine the flow of the Illinois river at all stages, at Peoria; also discharge tables and discussion of rainfall and run off for ten years—1890 to 1899. In addition to the foregoing data will be found statistics regarding the water supplies and sewerage of cities in the Illinois basin. These data lay the ground work for a thorough sanitary survey and oversight of the sanitary conditions existing throughout the State which will be followed up as thoroughly as funds available will permit.

These data regarding stream flow and rainfall are useful in considering the ultimate effect of the sewage from Chicago and other cities upon the Illinois river and its tributaries and for the first time make known the flow of the Illinois river at all stages.

It will be of interest to note that the entire population residing outside Chicago upon the Illinois river basin is about one and onehalf millions, of which over six hunded thousand, forty per cent is classed as urban (living in cities and villages of 1,000 inhabitants or more) and the remainder rural. Of the urban population over three hundred and thirty thousand, or 55 per cent, live in cities of five thousand or more inhabitants. The population of the entire State according to the last U.S. census (1900) is 4,821,550, and the population of Chicago by the last census, 1,698,575. The increase in population of the State during the last decade was 26 per cent and of The increase in population on the Il-Chicago 54.4 per cent. linois river basin was 10.3 per cent; the urban population increased 28.2 per cent and the rural population less than one per cent, or we may say, is substantially at a stand-still. This shows by actual count the generally recognized fact that the increase in population is in the cities and not in the country. With this increase of population centered in the cities, and especially in the great cities, the demands for improved sanitation increase in greater ratio than the increase in population.

The total population on the drainage area of the Illinois river, including Chicago, is about 3,200,000, or 67 per cent of the total population of the State of Illinois. Of this entire population about 600,000, or less than 20 per cent, is classed as rural. Taking this as a basis of comparison it will be seen that the Illinois river valley interests, as measured by the number of inhabitants, are primarily and largely with the cities.

The data on water supply and sewerage seem especially timely as pointing out the fact that a now large and ever increasing urban population is dependent upon surface waters for general and manufacturing uses. Mr. Harman's report brings out the fact that about half of the urban population not considering Chicago draws its water supply from streams and surface reservoirs which are now more or less subject to sewage contamination.

The streams of the State are the natural and necessary arteries of drainage, and while they must always receive the waste waters and

sewage, those wastes must be so prepared as to cause no damage, or if any, the least possible damage, to both public and private interests. One of the oldest established legal precedents is the right of the riparian owner to the enjoyment of the full flow of the stream in its natural condition, and to the end that such rights may be beneficial and useful he is entitled to the full use of the water of such stream subject to the condition that the water be returned at such riparian owners.

As bearing on the subject of stream pollution the recent decision* of the Supreme Court of Wisconsin in the case of Mrs. Martha Winchell vs. the City of Waukesha, Wisconsin, (85 N. W. R. 668) is of vital interest, and because of the reasonable and comprehensive view which the court took in this matter such portion of the decision as. explains that view will bear quoting here. The suit was brought against the city of Waukesha, by Mrs. Martha Winchell, who owns a farm on the Fox river, asking for an injunction against the further discharge of sewage into the river and for damages, on account of pollution, already suffered. The county court ordered the city to stop discharging its sewage into the stream and granted a jury trial to assess damages to the plaintiff. On April 9, 1901, the Supreme Court affirmed the decision with the modification that it might continue to discharge sewage into the river if the sewage "shall have first been so deodorized and purified as not to contain foul, offensive or noxious matter capable of injuring the plaintiff or her property or causing a nuisance thereto."

The following is a most important extract from the opinion of the court:

We can not but recognize that as the density of our population increases, as our citizens engage in new and greater industries, and as the municipal aggregations of population multiply and expand, the original purity of streams and water basins can not be wholly preserved. They are the natural and unavoidable courses and receptacles of drainage, through and into which must flow the refuse of human habitation and industry. How far these must flow the refuse of human habitation and industry. How far these changing conditions must bring about a yielding of the private rights of continued purity of those lakes and streams to the necessity of use thereof for the public and general health and convenience, and upon what terms such yielding shall come, are primarily questions of policy for the Legislature, within the limits of its power over private rights defined by the constitution. When, if ever, the Legislature shall enact that streams generally or any streams shall be used as sewers without liability to the owners of the soil through which they run, the question of constitutional protection to private rights may be forced upon the courts for decision. Until such enactment is made, however, in clear and unambiguous terms, we shall be slow to hold by inference or implication that it has been made at all. The right of the riparian owner to the natural flow of water substantially unimpaired in volume and purity is one of great value of water substantially unimpaired in volume and purity is one of great value and which the law nowhere has more persistently recognized and jealously

^{*}Vide also Morgan vs. City of Danbury (Conn.) 35 A. R. 500. Owens vs. City of Lancaster, (Pa.) 37 A. R. 858. Owens vs. City of Lancaster, (Pa.) 37 A. R. 858. Owens vs. City of Lancaster, (Pa.) 44 A. R. 559. Fisk vs. City of Hartford, (Conn.) 37 A. R. 983. Nolan vs. City of New Britain, (Conn.) 38 A. R. 703. Grey ex rel Simmons vs. Mayor, etc., City of Patterson, (N. J.) 42 A. R. 749. City of Valpariso vs. Hagen, (Ind.) 54 N. E. R. 1062. Platt vs. City of Waterbury, (Conn.) 46 A. R. 154. Mann vs. Wiley, (N. Y.) 64 N. Y. S. (S. C.) 589. City of San Antonio vs. Rivas, (Tex.) 57 S. W. R. 855. Com. vs. Yost, (Pa.) 46 A. R. 845. Weston Paper Co. vs. Pope, (Ind.) 57 N. E. R. 719.

protected than in Wisconsin. Not alone the strictly private right, but important public interests would be seriously jeopardized by promiscuous pollution of our streams and lakes.

Amid this conflict of important rights, we can not believe that the legislature concealed in words merely authorizing municipalities to raise and expend money for the construction of sewers a declaration of policy that each municipality might in its discretion, without liability to individuals, take practical possession of the nearest stream as a vehicle for the transportation of its sewage in crude and deleterious condition. The authority granted to municipalities is to construct sewers, but subject to the general legal restrictions resting upon such corporations forbidding invasion of private rights by creation of nuisance or otherwise. This view of the legislative purpose is enforced by the consideration that although liquid sewage must flow off along the general drainage courses of the vicinity, it is by no means physically necessary that it should carry with it the solids in an offensive or unhygienic condition. It is matter of common knowledge, and of proof in this case, that there are practicable methods for the decomposition and practical destruction of such solids before delivering them into open water courses; the most modern method, as explained in the evidence here, being treatment in septic bacteria tanks, whereby the decomposition and resolution into inoffensive and innocuous fluids, gases, and mineral solids is greatly expedited.

Now that the measures adopted by the city of Chicago to prevent its sewage from polluting the water supply of the city, by disposing of it in a manner apparently not prejudicial to the interests of the lives and health of the people of the Illinois valley, are essentially in operation, it is a serious question whether Chicago now has, or will have in the immediate future, access to a supply of water free from organic pollution. In the study of this problem there must be considered not only the deposit of tons of filth on the bottom of the lake for several miles distance from the city, the inevitable result of the emptying of sewage and dumping of dredgings and garbage into the lake during years past, but the contamination of the lake by municipalities on the immediate north and south.

The menace to the purity of the water supply occasioned by the former condition will lessen as time rolls by and ultimately disappear, but that arising from the existence of the latter must necessarily grow greater from year to year, unless wise counsel prevails and all interests both public and private, either jointly or severally, as may prove most expedient and economical, co-operate for the purpose of protecting the purity of the lake waters.

There is now under consideration a scheme of co-operation looking to the annexation of all the nearer suburbs of Chicago for the purpose of diverting the sewage to the main Drainage Canal and thus remove the immediate cause of further local pollution of Lake Michigan water in the vicinity of the Chicago water works intakes. The engineering and financial problems involved in these schemes are momentous and due consideration must be given to the main Drainage Canal, so that its capacity may not be exceeded even by the time the works for these new accessions shall be completed. The effect which the diversion of the great volume of diluting water may have on the level of the great lakes is being watched with jealous eyes by two governments, the United States and the Dominion of Canada, and from our neighbor state on the southwest, the city of St. Louis is protesting, even now, in the Supreme Court of the

Nation, against what she presumes to be a menace to the health of her people and a damage to her financial interests. The interests involved are so great and the problem so complex that every means which may be a substantial help to the solution of the problem of the preservation of the purity of the water supply and disposal of the sewage of Chicago must be given full weight and recognition.

The suggestions of Professor Long in his accompanying report regarding the possibility and practicability of removing largely the objectionable organic matter from sewage by bacterial treatment at the proper time and place is worthy of the most careful consideration. Much information upon the subject of bacterial purification of sewage is available from European as well as American experiments and experience, but the subject is so new that the possibilities are only beginning to be recognized.

Another condition said to constitute a possible danger, is shown by the experiments conducted by the United States Navigation Bureau in 1893-4, in order to determine the actual trend of the current of the great lakes. As regards Lake Michigan, the experiments clearly show that there is a rapid whirl at the south end with a strong current passing north along the east shore, while along the west shore the current flows south. The disposition of the currents, while favoring the water supply of Milwaukee, has a tendency, it is believed, to cause Chicago to receive in its water supply the contaminated water of Milwaukee. Whether this reported menace is fancied or real can not positively be asserted, but the importance which attaches to the effect of sewage on the great lakes will be appreciated from the fact that the United States Geological Survey has taken special pains to collect data upon this matter which has been published in "Water Supply and Irrigation Papers No. 22," in 1899. This report was prepared by Mr. George W. Rafter, C. E., who has had large experience in sanitary engineering matters. The following statement from this report sets out the situation very clearly:

According to statistics of the eleventh census, the basin of the Great Lakes, especially the area contiguous to Lakes Ontario, Erie, and Michigan, is, next to the Atlantic Seaboard, the most densely populated area of the United States. Bordering on Lakes Ontario, Erie, and Michigan are great and rapidly growing cities from which all of the sewage now passes into these lakes. The surrounding regions are usually not greatly elevated above the lakes, and hence do not afford any opportunity for obtaining upland waters for municipal supplies. The water supplies of towns on the Great Lakes are not only now almost universally taken from these bodies of water, but must necessarily continue to be so taken in the future. At present the sewage of the Great Lake cities is discharged without treatment into the same bodies of water from which the public water supplies are taken. An exception is the city of Rochester, which wisely brings its water supply by gravity from Hemlock, an inland lake about thirty miles distant; but Buffalo, Erie, Cleveland, Detroit, Chicago, Milwaukee, and many other towns take their water supplies in the manner stated. Without going into details for all the Great Lakes, we will state that Lake Michigan alone receives at the present time the sewage of municipalities and small towns aggregating over 2,000,000 people, and this population is rapidly increasing, having about doubled in ten years. A similar increase in population has taken place in the cities and towns tribu-

tary to the lower Great Lakes. Thus, Detroit had a population in 1880 of 116,340, and in 1890, 205,876. Cleveland showed a population in 1880 of 160,-146, and in 1890, 261,353. In 1880 Buffalo had 155,134; in 1890, 255,664.

On the same subject the following statement is also found in this report:

The modern studies all indicate that when organic matter in increasing quantities is continually poured into a body of fresh water, a point is quickly reached beyond which the body of fresh water, whether it be lake, pond, or running stream, has not power of further assimilation. Chemical analyses of the waters of the Great Lakes show a gradually increasing contamination during the last fifteen or twenty years. The evidence is multiplying that, with the present increase in population, the Great Lakes, if they continue to be used as common sewers, will soon become totally unfit for use as drinking water. When this time arrives, one of two alternatives must be followed—either every source of water supply must be filtered or the sewage of the towns must be efficiently purified before it is allowed to flow into the lakes. In some cases the conditions are such that both remedies must be applied.

Taking into consideration the many diverse and often conflicting interests and necessities of the rapidly increasing centers of urban population, which are involved in the procurement of abundant and wholesome water supplies for each, and the disposal of their sewage and garbage in a manner which will render them harmless and unobjectionable without becoming a financial burden beyond the reasonable ability of each city to bear, there is no possibility of avoiding the conclusion that the State of Illinois, and especially the upper Illinois river valley, has reached a stage of development in population, manufacture, and commerce which calls for comprehensive study and State supervision of the sanitary conditions of public water supplies, and drainage and sewerage systems. Chicago and its nearby neighbors take their water supply from Lake Michigan, and many of the rapidly growing cities located on the Illinois river and its tributaries are dependent on these rivers for their water supplies. With increase of population more cities will be compelled to seek their water supplies from the streams because of limited ground water supplies, and the importance, even necessity, of maintaining the purity of those streams will be felt more and more from year to year.

The State of Massachusetts has taken a complete sanitary supervision of all public water supplies and sewerage systems, and New York and Ohio have followed her example. New Jersey has special laws against the pollution of its principal river, the Passaic, and Indiana has recently added new legislation against pollution of its streams.

The demand for State control of that portion of the public service which so vitally affects the health and lives of the people has been felt and recognized in those states by fitting legislation. It is the purpose of this Board to pursue its sanitary investigations and render such aid and advice to the municipalities of the State regarding water supply and sewerage as its means and opportunities will permit.

Springfield, May, 1901.

CHEMICAL AND BACTERIOLOGICAL EXAMINATION

OF THE

WATERS OF THE ILLINOIS RIVER

AND ITS

PRINCIPAL TRIBUTARIES

BY

JOHN H. LONG, Sc. D.

•

CHEMICAL AND BACTERIOLOGICAL EXAMINATION

OF THE

Waters of the Illinois River

AND ITS PRINCIPAL TRIBUTARIES

By John H. Long, Sc. D.

Dr. James A. Egan, Secretary of the Illinois State Board of Health:

DEAR SIE:—In handing you the results obtained by the sanitary examinations of the waters of the Illinois river and its tributaries, authorized by your Board in June, 1899, I think it in place to make certain statements, by way of explanation and comparison, which follow in the pages below.

Since the earliest days of discussion on the question of an enlarged canal or waterway connecting Chicago with the Illinois river, much has been said and written about the probable effect of the sewage of the city of Chicago, if discharged by this canal, on the waters of the Illinois and Mississippi. The importance of such information as could be furnished by a study of the old Illinois and Michigan canal and the river into which it discharged, was recognized by former members of the Board, as it was constituted in 1880 to 1890, and by the authority of the Board I undertook an extended investigation of the problem in 1886, 1887, 1888 and 1889, most of the work being done between May, 1888 and March, 1889. In all, about 700 samples of water were taken from points along the canal, the Illinois river and the Mississippi river. The results of the analyses of these waters were embraced in a preliminary report made to the Board in March, 1889. This report was printed in pamphlet form, and very hurriedly, to meet an emergency. The full report which I submitted some months later contained much matter not in the hastily written preliminary notes, but it was never published. Through changes in the Board it appears that it was misplaced and finally lost.

In these investigations two facts were brought out prominently: First, that there is a marked improvement in the water of the Illinois as it flows toward the Mississippi, and this quite independent of changes by sedimentation or dilution; and second, that the rate of change is largely dependent on temperature, the winter rate being much slower than the summer rate.

Since then the great Drainage Canal was begun and has been completed, and we are again confronted with the question, what will be its effect on the water of the lower river? To answer this question in a satisfactory manner it was considered desirable to make two new

series of investigations, bacterial as well as chemical, and the main results of these will be given in the following pages. Before beginning the actual examinations a trip of inspection was undertaken by the engineer of the Board, Mr. Jacob A. Harman, and myself. In this we followed the length of the river and capal from Bridgeport to Grafton, in a small boat, which made it possible to observe the whole course thoroughly and note all points of interest. The practical information obtained from fishermen and others constantly employed on the river must be given due weight in any final conclusion reached regarding the character of the water in the lower river.

It is a fact not generally known that there is an important fishing industry at many points on the river, beginning with Peoria and ending with Grafton. Fine fish are caught in the river in quantity, just above Peoria, and these find a ready sale, not only in the local market but in other cities. The river is temporarily fouled by the ordinary sewage and cattle shed waste of Peoria and Pekin, but above Havana the stream again becomes the home of clean fish. From this point down the fishing industry assumes greater importance, and in the early season a large part of the catch finds sale in the eastern markets. It is well known that such fish can not live in filthy water; they are not found in the upper river and their appearance below is evidence of the gradual changes wrought by dilution and oxidation. It is also worthy of note that this industry has increased rather than declined in the last ten years.

The first series of investigations were made in the river before the opening of the drainage canal and the second series at about the same season of the year, after the increased flow of water was turned on from Lake Michigan. Both series were sufficiently extended to cover the effects due to variations in temperature, as will be seen from the dates in the tables below.

POINTS OF COLLECTION.

The preliminary survey led to the selection of the following places as points of collection for the examinations made before the opening of the large canal:

- 1. Bridgeport (Chicago)—Illinois and Michigan canal. Samples were taken from under the bridge, at the beginning of the canal, just west of the pumping station, by some one sent from my laboratory.
- 2. Lockport—Illinois and Michigan canal. Samples were taken from a point 200 feet east of the main bridge and above the entrance of a small stream.
- 3. Lockport—Des Plaines river. The water for examination was taken above the stone bridge, north of town. Mr. P. O'Brien made both collections.
- 4. Joliet—Mixed canal and Des Plaines water. Collections were made by Mr. B. F. Long at a point in the upper basin, away from construction work.
- 5. Wilmington—Kankakee river water. Samples were taken by Mr. C. D. Cassingham from near the middle of the river, just below the town.
- 6. Morris—Illinois river. Collections were made by Dr. H. M. Ferguson from the middle of the stream, just above the wagon bridge.

- 7. Ottawa—Illinois river. Collections were made by Dr. W. A. Pike, from a point in the river about 600 feet above the mouth of the Fox river.
- 8. Ottawa—Fox river. The samples were taken by Dr. Pike, at first from a point about 300 feet above the Rock Island bridge, but later, on account of low water, from the canal feeder, as this carries most of the Fox water in dry weather.
- 9. LaSalle—Illinois river. The samples were taken from the center of the stream, by Mr. C. H. Nicolet, at a point 600 feet above the mouth of the Big Vermilion.
- 10. LaSalle—Big Vermilion river. Collections were made by Mr. Nicolet, and from a point in the stream about 600 feet above its junction with the Illinois.
- 11. Henry—Illinois river. Collections were made by Mr. H. J. Gregory from the middle of the river, 600 feet above the dam.
- 12. Peoria—Illinois river. Two sets of samples were taken here—the first at the "Narrows," near the Peoria water works, and about 100 yards above the wagon bridge, by Mr. C. F. Hixson.
- 13. Peoria—Illinois river. The second set of samples were taken by Mr. Henry Ocker, about two miles below the city and one-half mile below Wesley.
- 14. Pekin—Illinois river. The station chosen was about two miles below the Pekin bridge and 600 feet below the last manure trough from distillery barn. Samples were taken by Mr. D. H. Jansen.
- 15. Havana—Illinois river. The first two samples were taken 200 yards above the wagon bridge and near the center of the stream. After that they were taken above the mouth of the Spoon river. Mr. S. F. Kyle made the collections.
- 16. Havana—Spoon river. Samples were collected from this stream by Mr. Kyle, and at a point several hundred feet above its mouth.
- 17. Browning—Sangamon river. This stream enters the Illinois opposite the town of Browning. Samples were taken by Mr. G. P. Hollingsworth, 600 feet above the mouth of the river.
- 18. Pearl—Illinois river. The collections were made about 200 feet below the Alton bridge, from the middle of the river, by Mr. E. H. Chandler.
- 19. Grafton—Illinois river. The point of collection chosen was about a mile and a half above the town and beyond the influence of the Mississippi. Mr. F. M. Calhoun was the collector.
- 20. Grafton—Mississippi river. A number of samples were taken from the center of the main channel, opposite the government light on the point of the island north of Grafton. These also were taken by Mr. Calhoun.

After the drainage canal was opened, samples were taken for the second series of tests at the same points in the main, but water was taken also from the new canal at Western Avenue bridge and from the basin of the controlling works at Lockport. The Joliet station was changed to a point below the lower bridge but above the sewer outfalls.

HEAD WATER SAMPLES.

As having a bearing on the question of the nature of the diluting waters entering the Illinois a number of samples were taken from points as near as possible to the head waters of the most important of the tributaries. In this connection several analyses of Lake Michigan water were made, the samples being taken from a faucet in

the basement of the Northwestern University laboratory building, 2421 Dearborn street, Chicago. This water comes mainly from the four-mile tunnel through the Fourteenth street pumping station; during the recent investigations frequent tests were made of this lake water.

Samples of Upper Kankakee water were taken by Dr. George W. Van Benschoten from a place in the river near South Bend, Indiana.

Upper DesPlaines water was taken near Libertyville, by Mr. Clare Sherman.

Upper DuPage samples were taken near Wheaton, by Dr. C. F. Blanchard.

Upper Fox river samples were taken by Dr. Charles H. Fegers, at McHenry.

Upper Big Vermilion water was collected by Dr. J. J. Stites, at Pontiac.

Mackinaw river water was taken by Dr. R. E. McKenzie, at Kappa. Upper Sangamon water was collected by Dr. John H. Gardiner, at Mahomet.

Upper Spoon river water was collected at Dahinda, by Dr. J. B. Bedford.

In all cases explicit directions were given to the gentlemen who made the collections as to the proper manner of taking and forwarding the samples. Boxes containing two bottles were sent by express to each collector in time to make the weekly collections. A large glass-stoppered bottle holding one gallon was used for the water intended for the chemical analysis, and a six ounce bottle, with glass stopper, was used for the water employed in the bacterial tests. Both bottles were thoroughly cleaned before being sent from the laboratory, and the small one, in addition, was sterilized by steam. So far as possible the method of collecting the samples was explained to each collector through a practical illustration, the first collections being in most cases made by myself, in the presence of the collector. When it was not possible to give this kind of an illustration, very lengthy directions were sent by mail. In addition to this each collector was furnished with a card for each collection, bearing on one side the following directions:

DIRECTIONS FOR COLLECTING AND SHIPPING WATER.

Samples are to be collected at times given on accompanying card until further notice. Remove stopper from large bottle and fill it by holding the neek about one foot below the surface of the stream. When the stopper is inserted the bottle should not be absolutely full, but an air space of about one inch left for expansion. Tie the stopper down securely and place the bottle in the proper compartment of the shipping box. The bottles are clean when sent from the laboratory to the collector. The small bottle is for the water for bacterial examination and must be carefully handled. It is sterilized before being sent from the laboratory. Before collecting sample, which must be done at the same time and place as the gallon sample, have ready several pounds of broken ice to pack around bottle, as to be explained. When ready to make the collection, not before, take the small bottle from the can, loosen the rubber band around the neck of the bottle and, without

removing the rubber cloth, partly withdraw the stopper from the neck. Now, using both hands, plunge the bottle below the surface of the water and allow it to nearly fill. Then insert the stopper, twist it well in and fasten it down by rubber band. Put the bottle in the small can and pack around with cotton. Then put the small can in the large one and pack the space with broken ice and excelsior. The large can in turn is put in its compartment in the box and packed with excelsior. Ship without delay to

J. H. Long, 2421 Dearborn street, Chicago.

Fill out the blank on the other side. Enclose in shipping envelope.)

On the other side these directions were printed:

ILLINOIS STATE BOARD OF HEALTH.

EXAMINATIONS OF WATER.

Place of collection	Date of collection
	• • • • • • • • • • • • • • • • • • • •
	Temperature of air
Remarks:	
(IIndon nomenba useemd emethi	na unusual in annocuence of water exempthing

(Under remarks record anything unusual in appearance of water, or anything regarding rainfall or storms.

As a rule the directions were carefully followed, and most of the samples came to the laboratory in good condition. Much here depended on the directness of the railroad and express connections. It was interesting to note that from the station the most remote from Chicago, and in many respects the most important, Grafton, the water for the bacterial tests was always cold, except once, much ice still remaining around the can containing the small bottle.

The number of samples sent from each place, between July and December, 1899, is given in the following table:

Ottawa, Illinois. Ottawa, Fox. LaSalle, Illinois. LaSalle, Big Vermillon. Henry, Illinois. Peoria, Narrows, Illinois. Peoria, Wesley, Illinois.		Havana, Illinois. Havana, Spoon. Browning, Sangamon. Pearl, Illinois. Grafton, Illinois. Grafton, Mississippi. South Bend, Kankakee. Libertyville, Des Plaines. Wheaton, DuPage. McHenry, Fox. Pontiac, Big Vermilion. Dabinda, Spoon. Kappa, Mackinaw. Mahomet, Sangamon.	18 7 18 21 13 3 4 3 3 3 3 3
---	--	--	--

During the spring of 1900, February, March and April, collections were made as follows:

Chicago, Lake Michigan Bridgeport, I & M. Canal Western avenue, Drainage Canal Morris, Illinois Peoria, Wesley.	1 7 8	Havana, Illinois	7 8
---	-------------	------------------	--------

In the summer and autumn of 1900 these collections were made:

Chicage, Lake Michigan 14 Bridgeport, I. & M. Canal 15 Western avenue, Drainage Canal 14 Lockport, basin 11 Joliet, mixed water 15 Morris, Illinois 15 Ottawa, Illinois 15 Ottawa, Fox 3 LaSalle, Illinois 15 LaSalle, Big Vermilion 3 Henry, Illinois 15	Peoria, Narrows, Illinois 13 Peoria, Wesley, Illinois 16 Pekin, Illinois 15 Havana, Illinois 15 Havana, Spoon 4 Pearl, Illinois 17 Grafton, Illinois 17 Grafton, Mississippi 6 Browning, Sangamoa 3 Wilmington, Kankakee 3
---	--

METHODS OF ANALYSIS.

On reaching the laboratory the waters were submitted to analysis without delay, as this is a matter of prime importance as far as some of the chemical tests are concerned, and a practical necessity in the case of the bacterial examinations. The following data were determined:

Solids in solution,
Total solids,
Chlorine,
Oxygen consumption in original water,
Oxygen consumption in filtered water,
Free ammonia,
Albuminoid ammonia,
Nitrogen in nitrites,
Nitrogen in nitrates,
Total organic nitrogen in some cases,
Loss on ignition in some cases.

In the bacterial examination a count of the number of colonies grown on slightly alkaline gelatin was made in the usual manner. A fermentation test with sugar bouillon, using two or three dilutions, the reaction for indol, and the coagulating action on milk were also tried. In addition to these routine tests a large number of pure cultures were made on gelatin or agar for identification and comparison of species, and the pathogenic or non-pathogenic character of many of these were found by experiments on animals. The latter work has all been carried out by or under the direction of Professor Gustav Fütterer, of the Northwestern University, who will make his determinations the subject of a special report.

A brief discussion of the methods followed in the chemical examinations will not be out of place:

- 1. The solids in solution were found always by evaporating 250 or 500 cc of carefully filtered water to dryness in platinum on a large water bath. The residue was heated to 110 deg. C, for half an hour, before weighing. In the filtration, a fine, thoroughly washed Swedish filter paper was used. Before evaporation 5 milligrams of pure sodium carbonate was always added and the final result diminished by this amount.
- 2. The total solids were found in the same manner by evaporation of unfiltered water. The difference gives the weight of solids in suspension.
- 3. In a few cases the chlorine was found by direct titration of the water by the Volhard process. But generally it was found preferable to concen-

trate a half liter or more, after addition of a little pure sodium carbonate, to a very small volume, and use the residue for the Volhard titration. This is much better than the usual method of direct titration of 100 cc or less, with use of chromate as indicator. The results by this latter common process are almost invariably too high, as shown by data published concerning the amount of chlorine in Lake Michigan, and in some of our pure river waters. The results of the Volhard process are much nearer the truth.

- 4. In determining the oxygen consumption I employ the acid Kubel process. This consists in adding to 100 ce of the water 5 cc of dilute sulphuric acid, 1 volume to 4, then a measured excess of one-hundredth normal permanganate solution, usually 10 cc. The mixture is boiled five minutes and decolorized by addition of one-hundredth normal oxalic acid. Finally, more permanganate is added to distinct coloration and the excess of this required beyond that used by the oxalic acid is considered as consumed by the organic or other reducing matters in the water. The amount of permanganate required by waters holding much organic matter in suspension is often greatly in excess of that required by the filtered water, which is a measure of the organic matter in actual solution. Two tests were therefore made, one on the water as received, and the other after filtration. For the filtration a well washed Swedish paper must be used. Some of the ordinary papers give up enough reducing matter to materially influence the results.
- 5. Free ammonia was found by the usual process of distillation after the addition of a little pure sodium carbonate. In most cases 500 cc was the volume taken for distillation, but in the highly contaminated waters 25 to 250 cc was taken and diluted with ammonia-free water before distillation. Five portions of 50 cc each were distilled and Nesslerized separately.
- 6. The 250 cc left in the retort after the distillation of free ammonia is used for albuminoid ammonia. It is treated with 50 cc of a strong alkaline permanganate solution and distilled again, four portions of 50 cc each being saved. These are Nesslerized as before. The permanganate solution used was made by dissolving 20 grams of good potassium permanganate in one liter of water by aid of heat. The solution was mixed with one made by dissolving 450 grams of potassium hydroxide in about a liter of water. The mixture was diluted to about 2,500 cc with pure water, and then boiled down to 2,000 cc, cooled and bottled. This procedure furnishes an active permanganate of high oxidizing power.
- 7. The nitrite test is made on the water as soon as received by the well-known method with sulphanilic acid and napthylamin hydrochlorate. The reagents are made by dissolving a gram of each substance in 200 cc of 25 per cent acetic acid. 100 cc of the water under examination is mixed with 2 cc of each reagent and the color developed (if any) is compared with that from a standard solution of sodium nitrite, similarly treated. The sodium nitrite solution is best made from the pure commercial salt, instead of from silver nitrite by double decomposition. Nitrite can be bought which shows by analysis 95 to 98 per cent. A good dry preparation may be analyzed once for all and kept in a well stoppered bottle as a standard.
- 8. In the nitrate test we have the choice of several methods, but in the present work I have employed the phenol-sulphonic acid process. The reagent is made by heating 30 grams of pure phenol with 200 cc of the purest obtainable strong sulphuric acid in a flask immersed in boiling water for six hours. This is to insure the production of the disulphonic acid, instead of the mono product, formed at a lower temperature, the former acting readily on the nitrate to yield picric acid. In most of the waters 10 to 25 cc was usually evaporated in porcelain on the water bath, just to dryness. 1 cc of the reagent is added and mixed well with the residue, then some water, and finally an excess of ammonia to make 50 cc in all. The color developed (if any) is compared with that of a standard picric acid solution made from a known amount of potassium nitrate under similar conditions.
- 9. The total organic nitrogen was found in a few samples by evaporation of the water to expel free ammonia and treatment by the Kjeldahl process. 250 or 500 cc was boiled down in a flask to drive off free ammonia. Strong sulphuric acid was then added and the mixture concentrated and heated to

complete destruction of the organic matter. The residue was diluted, made alkaline with an excess of pure sodium hydroxide and distilled. 250 cc of distillate was collected and Nesslerized in the usual manner. The nitrogen is calculated from the ammonia found. The Kjeldahl ammonia is usually between three and four times the albuminoid ammonia.

10. In all of the investigations of the second series the loss on ignition was found. This was done by igniting the evaporation residues, dried at 110 degrees C, to destroy organic matter and leave a white ash. The residue was moistened with ammonium carbonate solution, dried again, gently heated, cooled and weighed. The difference between this weight and the first is the loss on ignition.

The methods of analysis outlined are all standard methods, and they have been slightly modified only when experience suggested the possibility of securing greater accuracy. I have been very ably assisted in the work by Mr. Frank Wright and Mr. William Johnson, and in some of the bacterial manipulations by Mr. Charles Erickson, also. I give in tabular form below the numerical results obtained by the various tests. The individual results are very irregular, but the averages as given show the general condition of the river throughout the period under consideration. The causes of some of the apparent irregularities and discrepancies will be pointed out in the discussion below. The first set of tables show the results obtained before the opening of the main drainage canal, and following there will be given the data for the later work carried out in 1900.

. · ·

... .

 ${\bf TABLE} \ {\bf I.--Chicago-Lake} \ {\bf Michigan---}$

				TH PERA	M- TURE.	Solids.			Oxygen Absorp- Tion.	
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered
Aug. 14 Nov. 4	None nearly clear nearly clear Averages	Good	None			160 132 184 140	8	144 160 182 142 140	0.96	1. 12 1. 12 1. 20 0.88 0.96

TABLE II.—Bridgeport—

Sept. 2 Sept. 1 2 2 Nov. 1	1 7 Dark, milky 4 Very turbid		Dark. Black Little Black Dark None Little Black Dark		596 476 476 404 504 500 484 480 558 472 404 488 508 424 416 470 446	92 72 64 56 64 56 48 104 44 36 20 20 42 56 56 56 56 56	578 688 548 548 568 558 558 528 662 514 440 508 528 466 472 526 500 500 472 500 472 500 472 500 472 500 472 500 400 400 500 400 500 400 500 400 500 5	39.2 31.6 31.2 25.2 22.7 25.6 19.2 29.1 34.2 29.4 29.4 29.5 20.7 21.1 28.5 20.7 21.1 28.5 20.7 28.5 20.7	20.8 20.8 10.4 16.3 13.2 10.7 20.2 21.6 20.2 22.4 21.4 15.0 16.7 14.4 16.3 17.0 10.2
	Averages	l	<i>.</i>	1	. 473	63.5	536.5	26.65	15.9

City Water from Tap.

Chlorine	Аммс	NIA	Nite	OGEN.	Colonies	Fer	MENTAT	ion.		Indol p
10	Free	Albuminoid	In nitrates.	In nitrites	98—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	1 oc. (Per cent)	Coagulation of Milk.	produced!
2.13 2.13 1.42 1.42 1.77	0.026 0.036 0.032 0.026	0.094 0.098 0.10 0.12	••	None Trace None	240 2, 112 37 58		None	None	Very slow	No.

Pumping Station.

05.3	18.0	3.4	None	None	*75,600		60	60	Rapid	Yes
81 7	11.5	4		9.64	*126, 720		5	60	Very rapid	-11
8.01	15.0	3.5	**	None	1,015,000		10	10		No.
5.2	13.7	4.8	**	Trace	840,000		40		Rapid	****
8.1	13.2	8.7		A Lacous			55	55	6 hours	
7.î	29.0	2.1	**	None	594,000		60	50		
0.7 l	20.5	1.6	**	годо	1, 360, 000		40	10	Rapid	
3.6	21.0	2.1	**	5.8	2, 125, 000		70	10	Very rapid	
4.3	22 5	2.9		Manage.	2, 110, 000		50	40	6 hours	Yes.
2.0	27.1	2.2		Trace			30		12 hours	1 08.
3.0	21 5	2.5		D 04	63,000		40	*******	Panid	
				0.01	517,000				Rapid	100
0.4	17.5	1.4		None	244,800		50		***********	
6.0	27.7	5.9			795,600		50		Very rapid	
5.2	19.5	2.7		3.7	1,468,800	30	20		Very rapid	
5.0	26.2	4.0			503, 200		25		Rapid	1
1.7	19.7	2.2		100	161, 200		50		Very rapid	
1.7	18.3	2.6		Trace.	887,000	60	45			1
9.0	17.3	2.9	100	0.01	1,330,000		40			1
13.6	21 2	4.1	**	None	2,982,000	20	30		Rapid	1 7 7 1
35.2	20.0	4.7	**	**	931,500	10	50		Very rapid	
8.1	16.3	4.4	**	11	594,000	25	50			
95.47	19.94	3.22		0.03				1		1

^{*}Acid medium.

TABLE III.—Lockport—

				TEM- PERATURE.		. 8	Bolida	Oxygen Absorp- TION.		
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	in suspen-	Total	Not filtered	Filtered
1899. July 3 17 24 34 4Aug. 7 121 *Aug. 124 5 Sept. 4 18 + 0ct. 25 0ct. 20 18 18 18 18 18 18 18 18 18 18 18 18 18	Dark Very dark Dark Very dark Dark		HeavyBlack	71.6° 69.8 68.0 72.5 75.2 64.0 68.0 68.0 68.0 66.0 52.0 68.0 66.0 55.0 66.0 66.0	80° 78 84 85 78 70 68 74 64 65 60 65	560 528 476 512 544 472 512 424 498 448 480 428 480 458 458 458 458 458 458 458 458 458 458	522 1288 90 560 562 566 788 566 604 644 644 644 644 644	584 572 612 656 556 564 524 580 576 500 522 572 572 582 540 624 584	81.20 31.60 15.29 25.27.52 29.12 29.44 26.56 30.06 24.96 32.00 29.44 32.64 22.48 24.48 24.48 24.48 24.48 24.48 24.48 24.56 20.48 24.7.52 25.50 37.76 31.36	14.56 14.24 22.40 16.48 17.60 21.76 15.36 22.72 19.20 22.08 12.16 15.68 14.40

^{*} Bacterial sample warm.

TABLE IV.—Lockport—

Averages	*Aug. 12 Nov. (20	· · · · · · · · · · · · · · · · · · ·	Earthy Little, Good	None Sandy None	77 48 52	85 65 65	376 324 360 452 480	8 12 12 40 4	268 384 336 372 492 484	11.20 8.00 7.36 7.92 6.48 5.36	9.76 7.12 6.80 7.28 5.54 5.36
----------	----------------------	---------------------------------------	---------------------------	-----------------------	----------------	----------------	---------------------------------	--------------------------	--	---	--

^{*} Bacterial sample warm.

[†] Bacterial sample taken from large bottle. Other broken.

Canal.

Chlorine	AMMO	Albuminoid	N In nitrates	in nitrites.	Colonies—per cc	F 1-10 cc. (Per cent	MENTAT 1 cc. (Per cent	no 1 cc. (Per	Coagulation of Milk.	Indol produced?
76.3 95.85 74.5 92.3 92.3 113.6 110.0 92.3 113.6 110.0 71.0 88.8 110.0 71.0 88.6 96.0 103.0 103.0 96.97	20.6 21.0 8.5 19.2 14.5 21.0 10.10 16.8 19.7 26.8 18.5 20.3 23.5 16.5 223.0 25.0 25.0 25.0 25.0 25.0		None	None 0.64 None 0.02 Trace. 0.02 None	330,000 334,800	10 5 30 20 40 425 20 35 20 40 50 50	65 10 50 None 50 60 60 40 50 25 20 60 40 40 50 50 20 20 20 20 20 20 20 20 20 20 20 20 20	None None 15 90 60	Rapid	Yes Yes Yes

The DesPlaines River.

TABLE V.—Joliet—

					M- TURE.	s	olid8		Oxy Abs	ORP-
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered
Sept. 4 * ' 18 † ' 27 Oct. 2 † ' 16	Very dark Dark Dark, turbid Very dark		YellowBlackSomeHeavy blackHeavy black	76° 78 74 72 70 82 78 80 60 62 61 60 64 52	90° 85 76 84 80 88 86 86 70 54 58 68 68 68	384 496 500 536 496 476 528 448 508 508 496 520 474 440 468 512	140 48 124 16 82 40 882 56 148 160 144 136 64 100 74	580 524 544 624 552 516 860 504 656 664 610 508 568 568	20.00 20.32 17.76 23.04 27.52 17.76 16.00 40.32 21.76 32.96 27.85 21.76 28.48 25.92 25.69	11.52 18.24 15.04 19.84 19.52 19.20 15.36 15.68 13.12 18.56 18.24

^{*} Collected 12 hours after a rain.

TABLE VI.—Wilmington—

Sept. 13	Light Dark Light, turbid Light yellow	None	Little	82° 80 78 82 68 58 60 62 52	86° 86 84 90 70 68 67 76 47	288 280 276 260 248 258 260 250 248 285	20 52 52 76 40 22 30 38 3	406 332 326 336 288 290 290 296 246 322	4.64 7 36 7.04 5.92 6.88 5.28 4.24 4.72 5.36 -	5.52 5.84 6.56 4.96 3.52 3.68 5.12
----------	--	------	--------	---	---	--	---	--	---	--

[†] Collected 24 hours after a rain.

¹ Rain at time of collection.

Canal.

Chlorine.	Аммо	NIA.	NITE	OGEN.	Colonies-	Fer	MENTAT	10 N.		Indol p
θ.	Free	Albuminoid	In nitrates.	In nitrites	s-per cc	1-10 cc. (Per cent.)	1 cc. (Per cent.)	1 cc. (Per cent.)	Coagulation of milk.	Indol produced?
74.6 54.00 78.10 78.10 103.00 81.70 99.40 193.00 103.00 99.40 95.85 67.50 68.20 96.00 89.00	10.30 4.15 13.60 10.45 14.90 15.36 14.40 15.00 13.60 19.40 17.80 25.80 20.60 23.20 16.70 16.05	2.30 1.01 1.70 2.34 2.48 2.56 3.16 1.36 2.04 3.32 1.10 6.20 4.10 3.40 4.80		None 0.20 None Trace None 0.025 0.025 0.027 Trace 0.02	many millions 315,000 29,000 26,000 96,600 220,100 1,638,000 1,060,800 35,260 1,688,400	10 10 None 10 40 40 20 40 60	50 60 70	None 10 40 40 85		No Yes Yes No Yes

The Kankakee River.

4.26 2.84 2.84 2.48	0.13 0. 0.114 0. 0.07 0. 0.064 0. 0.07 0. 0.084 0. 0.048 0.	458 None 368 328 298 362 0.20 348 None	Trace 0.01 0.04 None 0.01 None	5, 300 3, 850		5 30 40 10 None	10 5 40	Very slow	Yes
------------------------------	---	---	---	------------------	--	-----------------------------	---------------	-----------	-----

TABLE VII.-Morris

						M· TURE.	8	Solids	.	Oxy ABS	
Date.	•	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen- sion	Total	Not filtered	Filtered
†Aug. tAug. Sept. Oct. Nov.	11 18 25 18 15 22 29 5 12 19 26 3 10 17 24 31	Dark	Bad Faintly disagreeably. Faintly disagreeable. Bad Geod Faintly disagreeable. Bad	Lumpy Little Flocculent. Little Black Little None. Little None. Little Black, flocculent Flocculent Lumpy bl'k.	74° 79 79 79 74 73 72 78 77 69 65 65 58 58 58 50 444 46 52	74° 883 74 72 73 744 76 68 682 51 68 55	420 440 436 468 412 396 428 370 448 424 476 480 368 316 414 422 426 404	24 20 20 20 20 20 20 20 20 20 20 20 20 20	390 482 476 452 452 480 436 418 412 464 448 476 512 384 404 434 440 440 440 440 440 440 440	8.32 11.84 10.24 9.12 9.44 9.20 9.92 7.84 8.08 8.64 14.56 8.72 12.32 28.80 9.92 7.28 7.28 11.36 11.20 6.56	8.80 6.88 6.96 7.84 6.64 6.80 6.56 10.88 7.76 9.28 20.16 7.92 5.92 7.52
	28 28	Light, turbid	**	Little	42 	42	402 420	12 12 25	414	9.16	7.92

^{*} Heavy rain for 4 days.

TABLE VIII.—Ottawa —

1899					•						
July	5	Dark yellow	Fair						396	10.40	
	11				80.0°				466	9.44	9.44
* ''	18	Yellow	Earthy		81.5	83°	344	28	372	8.48	7.04
• •	25	Yellow Dark	**	Little	84.0	90	416	20	436	7.84	6.72
Aug.	1	**				i					
			agreeable.	::	83.0	90	432	12	444	7.52	6.64
• •	8	Light, clear	Earthy		80.0	81	452	16	468	6 80	6.64
• •	10		None Little		76.0	78	384	12	396	6.08	5 68
• •	22	**	Little	••	84.0	92	468	16	484	7.68	
• •	29	Fairly light	Not pleas'nt	••	85.0	90	444	4	448	7.28	
Sept.	5	Dark yellow Light, clear	Earthy	Dark	86.0	96	456	16	472	7.52	
	12	Light, clear	None	None	73.0	72	504	12	516	6.80	6.16
• •	19				75.0	78	464		464	7.04	6.80
• •	26			• •	64.0	65	440	4	444	7. 12	
Oct.		Clear, yellow	Bad		60.0	73	496		502	7.92	7.12
O 44.	10		Faint	• •	64.0	70	476		484	7.60	
• •	19						414	Š	422	6.24	
	24	• •	I	••	68.0	80	440	2	442	5.68	
• •	31	••			50.0	48	400	- Ā	404	4.88	4.52
Nov.	7	••	None	•• •••••	46.0	59	400	20	420	4.56	
1141.	15		Good		48.0	58	404	28	432	6.00	
6.6	21		Little		52.0	60	432	8	440	7.76	
	27	•	None		42.0	50	420		424	6.40	1.10
		••••	Моно		46.0	30	420		424	0.40	
		Averages	1	l			434	11	445	7.13	6.52

^{*} Heavy rain; river high.

[†] Collected during a rain.

The Illinois River.

Chlorine	Амм	ONIA.	Nitro	GEN.	Colonie	FER	MENTA	non.		Indol p
•	Free	Albuminoid	In nitrates.	In nitrites	Colonies—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	Indol produced !
58.5 56.8 53.3 49.7 71.0 63.9 63.9 63.9 63.9 63.9 74.6 71.0 81.7 74.6 75.3 35.3 57.5 78.0 63.9 76.0 76.0 76.0 76.0 76.0 76.0 76.0 76.0	6.20 10.50 10.56 10.50 6.00 9.50 12.00 11.00 15.40 8.60 15.60 9.10 9.76 9.80 12.50	1.00 1.36 0.88 1.16 1.24 1.160 0.88 1.24 1.28 0.76 1.72 1.28 1.36 1.36 1.36 1.36 1.26		0.28 Trace	12, 000 35, 750 115, 000 501, 000 320, 000 188, 000 52, 800 61, 500 3, 514, 500 43, 200 489, 800 37, 730 56, 700 594, 000	30 50 10 10 30 5 10 5 70 5 50 50	60 20 80 10 5 30 20	90 90 30 30 45	Slow	No Yes

The Illinois River.

9.7	8.10		None	0.005	1.740	<u></u>	25			No
9.7	3.90	0.90	1	0.005	3,710	None	None	None		l II
8.4	2.60	0.75	0.64	1.60	990			::		::
5.5	4.80	0.78	Trace	0.86	15, 200		••	•••		''
1.8	5.28	0.56	1.25	6.40	5, 400		30	90	Rapid	••
2.6	4.35		0.60	0.05				10	24 hours	••
0.4	3.93	0.46		0.50	7,600	i		90	19 hours	l ••
6.8	4.85	0.49		0.40	33,000		25	20	24 hours	
8.1	3,75	0.52	1.60	0.20	270,000		5	10	Slow	. .
5.2	5.55	0.69	0.40	0.05	371,000		40	30	Rapid	Yes.
3.3	5.50	0.44		0.40	33,300		40			· · ·
1.0	8.80			0.20	2,050		20		**	· · · .
7.5	7.15			0.30	7,500	20	20		24 hours	· · · .
6.7	10 63			0.20	28,000		5		· · · · · · · · · · · · · · · · · · ·	No
9.3	10.60			0.10	260,700	5	10		Rapid	L
0.3	11.50			0.80	11,500		20	l 		Yes.
1.0	5.20			0.28	35, 260		15		24 hours	
4.0	9 42			0 15	15,600		20		Rapid	No.
6.8	7.60			0.25	26, 200		10			l :: .
3.3	2.50			0.50	21,400		10	: . .	24 hours	l :: ·
2.6	4.16			0.70	6,600		10		48 hours	
9.7	7.00	0.84	0.60	0.12	1,400	15	25		24 hours	l ·
7.4	6.23	0.62	0.74	0.61		1				

TABLE IX.-Ottawa-

				Ti PERA	EM- FURE .		Solide	3.	ABS	GEN ORP- ON.
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered
15 29	Turbid Turbid Light, turbid Light Light, clear Averages		Light Little None	78° 81 89 75 84 42	78° 88 90 78 90 50	304 320 296 324 324 314		306 396 344 352 348 324 349	8.48 12.64 6.48 5.84 6.56 3.84	8.32 5.04 5.60 5.12 3.84

^{*} Heavy rains; high water

TABLE X.-LaSalle-

13 20 27	Straw	Earthy		87°	85°	484	128	612	10 56	9.92
20 27	Mumbled							012		
27	Thumbid			84	82	444	44	488	8 48	6.88
9	Lurvia	Good	Some	90	84	424	8	432	7.52	6.32
	Light	**	Granular	86	80	430	26	456	7.84	6.96
9		Earthy	Little	78	84	400	20	420	6.96	6.00
16	Greenish, clear	Slightly un-								
	G1002102, 01021	nlessant	1 44	82	76	404	8	412	6 88	6.08
28	Vallow	Faint	••					500		6.24
-201	Light valles	Good	• • • • • • • • • • • • • • • • • • • •							6.32
껳	Vollow	αφοα	T ittle	82						7.36
19	I tabt		Vollow	70			99	476		6.08
19	right		None	10				490		5.44
20	D	T 2447	Моне	00				400		
20	Dark	Fittie	r	02			10			6.56
4	Light	Bag	Little	62			4	440		7.44
u		G00d		64	68			466		7.20
18		Faint	None					384		5.64
25										5.76
1		Little		53	45	354	10	364	5.04	4.96
8	••	Faintly dis-					i i		- 1	
- 1		agreeable.	• • • • • • • • • • • • • • • • • • • •	47	68	364	2	366	4.96	4.96
22	••	Bad	**	52	56	376		376	6.16	6.08
29	Light vellow	244	••							6.88
-6	Vallow	Good	Fine				12			6.32
٧	1 0110 W	aoou	rine	02					0.10	
- 1	AWATAGA					415	91	436	R OG	6.44
	16 23 30 6 13 20 26 4 11 18 25 1 8	Treenish, clear 23 Yellow 25 Yellow 6 Yellow 6 Yellow 26 Dark 11 Light 11 Light 12 Light 12 Light 26 Light 27 Light 28 Light 29 Light yellow 6 Yellow	16 Greenish, clear Slightly unpleasant pleasant pleasant	16 Greenish, clear Slightly unpleasant Paint Slight Paint Paint	Streenish clear Slightly unpleasant S2	16 Greenish, clear Slightly unpleasant	16 Greenish, clear Slightly un pleasant	16 Greenish, clear Slightly un pleasant	16 Greenish, clear Slightly un-pleasant	16 Greenish, clear Slightly un-pleasant

^{*} Heavy rain; river 2 feet above normal.

[†] Ice upon river.

The Fox River.

Chlorine.	Амм	ONIA.	NITE	ogen.	Colonies	Fer	MENTAT	cion.		Indol p
16	Free	Albuminoid	In nitrates.	In nitrites.	s—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	produced!
3.55 2.84 4.26 3.55 3.55 4.97	0.072 0.06 0.12 0.13 0.29	0.50 0.72 0.338 0.398 0.428 0.31	0.20	0.02 0.003 0.01 0.01 Trace.	3, 200 3, 280 42, 000 8, 800 17, 200 1, 400		None 10 20	 5 5	Slow	No

The Illinois River.

9.0 0.5	1.28 1.75	0, 68 0, 71	0.60 2.00	0.64 0.32			None	None	24 hours	. No
2.7	0.65	0.75	1.00	0.005	136,500		•• ··	•• ··	14 hours	1
2.0	1.50	0.61	1.00	1.00			40	i ii	24 hours	
2.6	1.60	0.47	1.40	0.01	26, 200		90	50	Rapid	: •• ::
2.0	1.00	0.31	1.10	0.02	20,200		•		-	1
6.2	0.95	0.62	1.92	0.20	12,800		30	5	**	. '
3.3	2.40	0.74	1.60	0:20			30 50	100	24 hours	
6.8	1.95	0.55	1.60	0.40			35	20	Slow	
6.2	4.05	0.56	4.00	Trace .	39,000	90				
0.4	4.35	0.42	0.60	0.32	1,525		5		Rapid	. <u>N</u> o
9.7	7.95	0.60	3.28	0.14	5,500	60	60			., -, -,
2.6	9.50	0.28	1.00	0.15	6,400	80	80			• • • • • •
2.6	5.00	0.38	1.00	0.02	14, 220	10	50			. No
9.8	9.80	0.66	1.60	1.60	6,400	None	90			
7.0	10.10	0.58	0.68	1.50	16, 250		40			
6.1	4.80	0.88	2.40	0.20	5,700		20		24 hours	
5.5	6.70	0.32	1.60	0.03	47.600	40	10		''	. No
امم		0.82	0.40	0.40	19 100	Mana	10		••	
9.0	6.40	0.82	0.40 1.40	0.12 0.16	1,800	None 10	40		44	''oav'
5.0 5.4	4.60 6.32	0.60	0.80	0.10	147,000	50	30		**	
5.0	6.30	0.68	0.60	0.60	1,200	50	40		Rapid	
5.0	0.30	U.00	0.00		1,200	90	10	•••••	Leapiu	' ''
1.3	4.66	0.58	1.45	0.35	1			1		

TABLE XI-LaSalle-

	`•			Te PERA	M- TURE.	8	Solida	J	Oxy Abso	ORP-
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	in suspen-	Total	Not filtered	Filtered
† 20 27 Aug. 2 16 23 !Nov. 16	Light Light, turbid Dark	Earthy Good None Good	Some	85° 86 90 86 80 82 50 33	85° 82 84 80 76 92 62 40	496 476 552 752 652 616 1.776 1.672	24 44 64 82 44 40 54 20	520 520 616 784 696 356 1.830 1.692	3.68 3.28 2.72 3.28 4.08 3.76 6.16 1.84	3.36 3.04 2.24 2.80 2.48 2.96 4.88 1.84

^{*} Bacterial sample warm.

TABLE XII-Henry-

1899.	.				ł		l	1	- 1		
July	10	Turbid		Brown					426	9.60	
	17	Turbid	None	Some	78°	72°	388	12	400	9.60	8.16
••	31	Very turbid	Good	Little			448	32	480	6.40	6,16
*Aug.	- 71	IMPRE		Granular	74	66	476	52	528	7.44	ძ.80
• • •				Dark	70	68	432	44	476	6.24	5.36
••	21	Light, clear	Earthy	Little			440	24	464	6.64	
• •	28	Light, clear	Bad	Brown	82	78	520	20	540	6.96	6.64
Sept.	41	Dark	Faint	Dark	74	68	404	24	428	8.16	7.76
	11	Light	Good	Sandy	74	68	406	501	456	6.80	5.92
• •	18	Turbid	Earthy	None	70	66	416	32	448	8 16	7.36
• •	25	Turbid Light, turbid		Little	66	60	404	36	440	8.64	8.08
Oct.	2		••	Scanty.				1			
-	_			vellow	56	52	420	20	440	6.80	6.08
• •	9	** ,	None	Little	58	50	556	6	562	6.56	6.00
• •	16				66	70	436		460	6.72	5.68
• •	23	Light	Good	**	60	66	420	18	438	5.68	5.44
• •	30	Light, turbid	Little	Grav	56	40	376	22	398	5.52	4.64
			Faintly dis-		"		"		,,,,	- 100	
Nov.	13	Light, clear	agreeable.	None	48	40	. 380	28	408	5.04	5.04
	27	Light, clear	Good		46	32	380		380	6.16	
Dec.	4	Light	None	Little	36	32	374	10	384	5.92	5.68
	_				1	1					
		Averages,	\ 				426	25	451	7.00	6.28

^{*} Sample warm.

[†] Heavy rains; river two feet above normal.

 $[\]ddagger$ Calcium, magnesium and SO_4 present in large amounts; CO_3 absent.

As above. About one inch of ice.

The Vermilion River.

Chlorine	Амм	ONIA.	Nite	GEN.	Colonies	FERMENTATION.			Indol p	
Ю	Free	Albuminoid	In nitrates.	In nitrites	я—рег сс	1·10 cc. (Per cent)	1 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	produced?
7.81 7.80 20,60 34.08 28.40 34.10 95.90 78.10		0.208 0.214 0.318 0.106 0.126	1.40 2.00 0.53 None 0.48 None. 0.24 0.24	0.03 0.04 0.045 0.01 0.06 0.01 0.02 0.60	2,700 77,000 72,600 700 600 1,200 18,400	5	None 50 70 80 None	35 None 100	24 hours	No

The Illinois River.

42.6	1.61	0.68	0.50	0.0025	2, 120	· · · · · · · · ·	None	None	24 hours	No
37.6 31.2	2.60 0.12	0.600 0.478	0.75	0.24 0.12				1	Rapid	
7.0	1.10	0.438		0.12	1 750		None		16 hours	
2.0	1.54	0.59	0.25	0.24	19 900		10	1 10	Slow	• ••
2.5	1.09	0.538	0.96	0.24	792,000			40	Very rapid	
9.7	1.32	0.495	1.20	0.16	3, 591, 000			%	Rapid	••
1.5	1.45	0.445		0.32					reapid	
12.0 i	1.16	0.37	1.00	0.06	650		20	"	12 hours	No
0.4	2.04	0.535	3.00	0.32	19, 250	50	60		Very rapid	Ves
6.8	1.08	0.61	2.00	2.00	750		30		Rapid	
							1			
19.7	5.05	0.85	1.60	3.00	1,450		50	1. <i>.</i>	24 hours	''
2.6	8.74	0.55	3.60	0.20	1,700		50	l	Rapid	·- :: ·-
640	7.93	0.74	2.80	0.10		None	50	l 	••	
16.2	6.50	0.50	2.00	2.00	12,600		80		24 hours	
12.6	4.31	0 49	1.60	0.20	1,200	None.	45		Rapid	No
9.0	6.48	0.48	None	0.06	48,000		l en		24 hours	••
5.4	3.98	0.47	0.60	0.06	4,500		None		Very slow	·· ;; ··
8.4	4.08	0.65	1.20	0.36	13, 200	••	55		24 hours	Yes.
3.2	3.28	0.553	1.39	0.517			1			

TABEL XIII-Peoria Narrows-

					IM- TURE.	8	oLids			GEN ORP- ON.
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered
Aug. 29 16 23 30 Sept. 6 Oct. 4 Nov. 8	Light, turbid Light Clear, yellow Light, turbid Yellow	Earthy	Yellow Little Fine Clay Some Little Brown Little Sandy Little			432 464 336 404 432 420 372 408 420 412 372 360 398	52 8 46 8 24 36 20 16 32 32 8 20 14 24	428 484 472 382 412 456 392 390 404 426 438 386 384	8.64 10.56 5.76 6.56 6.32 6.32 7.52 6.80 6.88 5.36 7.44 4.72 7.20	10.24 4.64 5.44 5.68 6.08 5.56 5.52 5.52 6.08 4.24 5.68

^{*}Rain, with river rising.

TABLE XIV-Lower Peoria-Wesley-

July Aug. Sept.	19 26 2 9 16 23 30 6 13 20 27 4 11	Turbid Dark Dark, turbid Light, clear Dark Light, turbid Dark Yellow Dark, turbid Dark, yellow	Sour Bad sour	Yellow	84°84 84 82 74 74 80 83 82 70 68 62 60 64	92° 98 92 84 84 84 82 96 70 72 70 70	416 380 380 388 452 428 460 400 408 404 522	24 140 82 32 44 36 20 20 36 76 28 56	428 504 556 392 412 432 488 456 416 436 432 578	10.40 16.64 14.40 8.80 13.04 9.28 20.48 10.88 11.52 7.12 18.56 17.12 10.40 27.84	12.80 9.28 8.00 10.64 7.28 .11.92 8.00 10.88 6.00 13.12 7.20 18.24
Nov.	18 1 8 15	Dark Yellow Light, turbid Yellow	:: :::::::	brown	64 70 50 48 52 54 44	64 80 48 66 58 58 58	420 492 540 452 478 462 432	. 122 88 132 42 14 70 52	542 580 672 494 492 532 484	5.60 28.00 41.12 19.84 24.48 29 12 21.76	
		Averages					438	55	493	17.44	

^{*}Rains and river rising.

[†]Heavy rain day before collection.

¹Steamboat passing.

River rising.

The Illinois River.

Chlorine.	Амм	ONIA.	Nitre	OGEN.	Colonie	FER	MENTAT	ion.		Indol p
Δe	Free	Albuminoid	in nitrates.	ln nitrites	Colonies-per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	1 cc. (Per cent)	Coagulation of milk.	Indol produced
23.4 32.0 39.0 26.3 30.5 24.9 28.4 28.4 35.5 24.6 31.2 39.8 46.2 42.6 33.04	0.40 0.50 0.50 0.40 0.35 0.36 0.35 0.365 0.725 0.15 0.365 0.39 3.815 4.55	0.50 1.20 0.43 0.525 0.32 0.37 0.545 0.46 0.67 0.735 0.705 0.57 0.425 0.49	0.80 None 2.00 0.70 1.25 1.00 1.12 0.80 0.44 0.40 1.20 1.60 3.20 1.20 0.80	0.0025 None 0.04 0.44 0.06 0.01 0.30 0.12 0.02 0.11 0.70 0.07 0.03 0.03 0.03	864.359	None 20	20 None 10 100 5 70 20 60 80 80	5 90 15 100 30		No Yes

The Illinois River.

4.97	4.36	3.20	0.106	0.026						
32.0	10.20	4.20	**		1, 173, 000	20	20		·'	٠
9.7	13.60	7.00	••	0.00	576,000	10			(7,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	7
9.0	7.58	4.20		22	923,000		5			
6.2	7.60	4.88		**		None	10			
2.6	13.92	7.04	•••	**	1, 138, 500		10			000
9.0	10.20	7,76			347,000		20			es.
8.3	3.90	7.08	**	**	23, 688, 000		10		24 hours	
9.0	6.86	4.28	Noue	None	1,108,000	None	None		N	ο.
7.1	1.00	1.60	0.80	0.10	903,000		. 5			es
1.3	2.80		Trace						Rapid N	0 .
5:5	0.62	2.19		None			5		Very rapid	5.
2.6	0.87	0.56	0.28		280,000	5	50	*******	Y	es.
5.5	0.64	1,32			1, 200, 000		20			
2.0	1.25	1.04		None	3, 528, 000		20	25 50		76
2.0	3.45	2.74	None	0.004	3,780,000		10	10		3
5.6	0.32	1.04	0.45	0.06			20 10	25	Rapid	
3.4	2.15	1,24		None	3, 255, 000		40	75	12	
1.9	1.00	1.00	0.70	0.20	1,023,000		30	25	14	
5.5	2.00	1.38	**	0.08			50	50	***********	: .
7.8	0.75	2.80	100	None	691, 200		10	40	12 hours	
7.8	0.60	0.85	None	0.003	43,200		None	None	Rapid N	0 .

TABLE XV-Pekin-

				TE PERAT		S	orida		Oxy Abso	ORP- N.
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered
8 15 22 30 Sept. 5 19 26 Oct. 3 10 18 25 31 Nov. 7 1 22	Light, clear Dark Green Light Light yellow. Dark Clear, yellow Light Light, turbid Yellow, turbid Yellow, clear Yellow Light	Slight. Good. None. Bad. None. Bad. Earthy. Good. Faintly disagreable. Disagr'able. Peculiar Bad. Good.	Brown Green. Sandy Fine Clay Brown Yellow Little Sandy Little Sandy Brown Flocculent	79° 82 70 77 79 86 82 68 68 59 61 54 50	90° 94 74 92 91 100 100 70 65 75 71 70 588 59 682 48	440 396 424 396 396 380 384 394 414 416 394 414 380 380 352	200 122 200 288 8 566 400 322 328 328 328 34 44 46 46 46 46 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48	460 408 444 424 496 392 424 396 416 414 384 416 452 440 422 420 384 368 419		7.68 6.88 6.48 6.08 10.72 6.72 5.84 6.5.88 6.16 6.96 5.740 5.84 4.89 5.84 4.89 6.40

TABLE XVI-Havana-

1899.	80° 86 80 85 85 89 84 84 76 78 84 76 78 74 76 78 50 50 50 50 49 52 58 64 44 34 50 56 46 36 44	448 308 348 416 392 388 388 398 340 400 4 402 376 4 398	36 44 60 24 76 72 52 20 68 56 68 90 22 28	734 512 484 352 408 440 468 469 476 432 463 492 372 376 376	9.44 9.60 7.52 6.56 6.72 6.64 6.96 6.96 6.40 5.44 6.98 6.48 7.12 7.52 5.84 5.92 6.64	9.28 8.96 7.04 5.28 6.08 6.24 5.76 6.132 6.40 6.96 5.52 5.76 6.64 5.12 5.60 6.24
-------	--	---	--	---	--	---

^{*} Collected during a shower.
† Bottle containing bacterial samples broken.
‡ Light showers.

^{*} Bacterial sample warm.
† Storms.
‡ Rain at time of collection.
§ Snow.

The Illinois River.

Chlorine.	Амм	ONIA.	NITE	OGEN.	Colonie	FER	MENTAI	TION.		Indol pr
	Free	Albuminoid	In zitrates.	In nitrites.	Colonies—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	Indol produced?
28.4 24.9 24.9 17.8 35.5 39.0 42.6 24.9 37.0 37.0 31.2 50.0 46.0 49.7 42.6 39.0 49.7 42.6 39.0 49.7 42.6	0.85 0.87 0.82 0.85 0.70 0.83 1.32 0.75 0.63 1.05 1.33 1.80 0.73 2.50 3.31 4.50 2.75	0.59 0.49 0.97 2.74 0.64 0.62 0.54 0.54 0.92 0.92 0.96 0.96 0.56	0.48 0.48 1.00 1.00 1.40 2.50 0.80 1.00 0,60	0.080 0.160 None 0.080 None 0.100 0.120 0.300 0.400 0.400 1.200 1.200 0.200	291, 000 36, 000 326, 000 224, 000 148, 000 260, 700	200 255 15 40 50 None	10 10 20 20 10 20 20 15 50 50 50 35 10	20 40 15	Rapid	No Yes No Yes No No Yes No

The Illinois River.

			l '	_					
15.6	1.76			Trace.				None	24 hours No .
2.7	1.50		1.20	0.06					16
2.7	1.15	0.35	1.20	0.28	39,600		** ::		112
3.4	0.82	0.57	0.67	0.24	79, 200	l . 	**	•• ::	24
1.3	1.05	0.44	1.00	0.12	56,000		50	50	Rapid
1.3	1.00	0.46	0.80	0.02	81,600		50	60	24 hours
4.9	1.30	0.41	0.40		26, 400		50 60 90	50	114
1.9	0.90		0.28		59, 400		90	90	Rapid
8.4	0.70			Trace.		l	40	20	Yes
5.0	0.45		0.52				50		
3.3	0.47		1.60	0.60		25	R ∩		24 hours
9.0	1.08		2.00		9,750		60		Danid 100
6.2	1.72		1.60			90	90		Kapia
4.4	2.18	0.83	1.60			5	10		· · · ::::::::::::::::::::::::::::::::
5.4	4.08		2.00		42, 200	20	30		24 hours No .
, . .	1.00	0.00	2.00	1.00	32,200	_ ~	50		DE HOUIS
5.4	3.75	0.95	0.48	0.20	363,000	20	29		,
ί.3	2.65		1.00						
1.9	3.95		1.60			10	.10		
1.0	J. 90	0.60	1.00	0.12					
9.17	1.69	0.695	1.02	0.21		1		l	

TABLE XVII.-Havana-

				TEM-		Solids.			Oxygen Absorp- tion.	
Date.	_ Color.	Odor.	Sediment.	Water	Air	In solution	In suspen-	Total	Not filtered	Filtered
:: 14 :: 21	Light	Earthy	Dark Sandy Clay Yellow	84° 52 58 54	88° 68 52 52	280 260 164 228 	76 122 564 66 207	356 382 728 294 440	5.44 6.48 12.96 6.48 7.84	4.48 4.72 6. 4.56

TABLE XVIII.—Browning—

^{*} River had risen some. † Rain; river high.

TABLE XIX.—Pearl—

1899.							
July 7	d Fair			86° 312	64 3	32 6.40 76 6.40	5.76
† 28 Light	ery turbid w Eart	Clay Little	84 87 v 88	90 340 91 428 98 284	16 4	28 6.00 44 5.76 56 5.12	4.64
** 19/1.1ah	tushid Rad	Q ama	1 96	82 196 92 324	396 5 48 3	92 8.48 72 4.64	5.92 4.00
	turbid Good			90 324 284 100 312	32 3	96 5.28 16 4.48 52 5:12	4.24
· 21	' intoia Adoc	Yello	w 70	74 340 74 292	40 3 76 3	80 5.76 68 4.88	5.28 4.56
†† 12 Light	, not clear Good	hy Yes I Sandy Light	7 67 67	74 310 80 326 77 272	28 3 16 2	42 4.32 54 5.68 88 4.32	4.96 4.00
	w None Good , turbid	Sandy Yello	y 67 w 52 54	68 324 32 356 72 368	48 4	90 5.20 04 4.88 32 6.56	4.32
ŀ	verages	Į.				88 5.51	

^{*}Sample warm, light rain.
†Shower night before.
I.Violent storms, floods.
¿River low.
**sample arrived two days late and warm.
††Bacillus coli communis separated and identified.
I] Water collected during a rain.

¿¿Blizzard and snow storm.

The Spoon River.

Chlorine	Амм	ONIA.	NITE	OGEN.	Colonies	FER	MENTAT	ion.		Indol p
16	Free	Albuminoid	In nitrates.	In nitrites	98—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	produced¶
1.06 5.68 7.8 2.13	0.43 0.392 0.078	0.944 0.548	None	0.02		50 60 None	100 60 5 None		Rapid24 hours	No

The Sangamon River.

4.97 4.26	0.10 0.12	0.50 0,192	None 0.50	None 0.01	1, 040 1, 640		20 None	10 None	Slow24 hours	No
27.00 4.25 5.68	0.08 0.35	0.264 0.388 0.314 0.324	0.48 0.28 0.32	Trace None	6,600 2,200 800	None 80	10 50 5 10 10	25 70 10	Slow	

^{* 4.49} average—exclusive of Sept. 1.

The Illinois River.

				1			}		1
0.11	0.46	0.77	None	294,400		10	5	Rapid	. No
0.12	0.52	0.80	1			5	None	24 hours	
				31,500		None	• • •	**	· ::
				15,700		1	•••	Rapid	. 1 **
			0.14	2,700			25	Slow	
				140,000	· • • • • • • • • • • • • • • • • • •	30	40	24 hours	
				55,600	- 	None	_5	Slow	
							70	Rapid	
						5	40		Yes
				080,000	Non-DU	50		••	· NT - · · · ·
								94 hamma	. No
					••	Mono		24 Hours	
						HODE		210.M	Voc
					95	30		••	No.
				11 200	None	15	· • • • · · · · ·	Very slow	
					MOHO	None		v 01 3 ,310 W	
	3.95	1.40	0.01		50	90		48 hours	
0.315	0.672	0.79	0.06						
	0.12 0.062 0.014 0.11 0.64 0.28 0.076 0.19 0.076 0.55 0.13 0.43 0.154 0.70	0.12 0.52 0.062 0.39 0.014 0.126 0.11 0.318 0.64 1.02 0.28 1.09 0.076 0.348 0.13 0.308 0.19 0.254 0.55 0.398 0.136 0.578 0.55 0.398 0.136 0.578 0.55 0.398 0.136 0.584 0.154 0.458 0.70 0.404 0.65 0.53 1.25 3.95	0.12 0.52 0.80 0.90 0.062 0.39 1.20 0.14 0.126 1.00 0.11 0.318 0.75 0.64 1.02 0.50 0.88 1.09 0.80 0.76 0.348 0.48 0.13 0.308 0.52 0.19 0.254 0.32 0.76 0.578 0.44 0.55 0.398 0.52 0.136 0.374 0.60 0.43 0.584 0.28 0.154 0.458 0.90 0.45 0.55 0.398 0.52 0.136 0.374 0.60 0.43 0.584 0.28 0.154 0.458 0.90 0.45 0.55 0.398 0.52 0.136 0.374 0.60 0.43 0.584 0.28 0.154 0.458 0.90 0.45 0.55 0.53 1.80 1.25 3.95 1.40	0.12 0.52 0.80 0.00 0.04 0.052 0.39 1.20 0.04 0.06 0.014 0.126 1.00 Trace. 0.11 0.318 0.75 0.14 0.00 0.076 0.348 0.48 0.08 0.10 0.38 0.52 Trace. 0.18 0.308 0.52 Trace. 0.19 0.254 0.32 None. 0.076 0.578 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.12	0.12	0.12	0.12	0.12

TABLE XX.—Grafton

	•			TEM- PERATURE.		8	Solida		OXYGEN ABSORP- TION.	
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered
*	Light turbid Light turbid Light turbid Light yellow Light yellow	None	Yellow Little Yellow Little Yellow Little Yellow Light. Brown Little Heavy Light. Yellow	80° 87 86 84 83 79 87 87 87 87 87 66 60 72 48 50 54 48	84° 92 87 77 80 87 92 92 92 92 66 62 74 60 56 54	288 296 400 320 140 304 348 348 272 272 272 272 272 272 272 272 272 384 324 320 332 332 332 332 336 336 336 336 336 336	36 24 28 40 236 36 28 52 20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	296 324 320 428 360 376 356 330 356 340 356 342 360 355 350 355 362 362	5.92 5.76 4.64 7.20 5.44 7.20 6.32 5.63 5.60 4.16 6.88 5.04 6.88 5.04 6.98 5.04 6.98 5.04 6.98	5.12 4.16 4.82 4.80 5.52 3.76 4.96 4.72 4.56 4.64 4.72 3.91 5.28 4.40 4.32 5.32 4.40 4.32 5.32

TABLE XXI.—Grafton

1899. July 10 17 189. 17 189. 189. 19 189. 19 189. 17 189. 189. 189. 189. 189. 189. 189. 189.	None Good	Clay	78° 84° 80 92 85 82 80 71 81 77 78 80 83 87 83 92 75 82 65 62 65 62 58 86 75 8	164 180 176 200 148 176 164 168 172 164 144	154 164 172 68 232 76 64 104 84 64 76 52	328 320 344 348 268 369 252 228 272 252 240 196	6.88 6. 7.04 6. 7.20 6. 7.60 6. 6.64 5. 6.32 5. 7.12 5. 8 16 7. 7.80 7. 7.66 6, 11.68 10.	
---	--------------	------	---	---	---	--	---	--

^{*} Rain.

^{*} Rain.
† Rain during 38 hours before collection.
† River rising.
† Rain.
¶ No ice used in packing.

The Illinois River.

Chlorine.	MONIA.	Nitro	OGEN.	Colonies—per	Feb	MENTAI	ion.		Indol p
0 7	Albuminoid	In nitrates.	In nitrites	98—per cc	1-10 cc (Per cent)	1 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	Indol produced
14.9 0. 30.5 0. 16.3 0. 4.3 0. 12.8 0. 14.9 0. 12.4 0. 17.0 0. 17.0 0. 17.0 0. 17.0 0. 12.5 0. 25.0 0. 32.0 0. 21.3 1	142 0.35 196 7.56 11 0.355 108 0.338 154 0.514 154 0.514 154 0.328 154 0.328 154 0.328 154 0.328 154 0.328 154 0.328 154 0.328 154 0.328 155 0.388 155 0.388 155 0.388 155 0.388 155 0.388 155 0.388 155 0.388 155 0.388 155 0.388 155 0.388 155 0.388 155 0.388	None 0.58 1.20 0.75 0.40 0.40 0.40 0.24 0.60 0.60 0.60 0.60 0.48 0.60 0.52 1.20 0.80 0.48	0.07 0.04 0.05 0.04 0.10 0.05 0.03 0.15 0.03 0.015 0.01 0.01 0.02 0.02 0.03 Trace.	3, 250 16, 500 2, 709, 000 211, 400 925 3, 400 3, 200 3, 200 3, 100 18, 300 4, 200	70 10 None 100 100 5 50	10 20 20 5 None 90 15 None 90	20 10 10 10 None	Very slow Slow 16 hours Very slow 12 hours Rapid Slow 24 hours Slow 25 hours 26 hours Slow	No Yes Yes No

The Mississippi River.

			None	None	10, 450		None	None	24 hours	No
	0.068	0.43 0.56	::	••	13,600	. 			SlowVery slow	
1.42	0.07	0.388		::	550	· • • • • • • •	**	::	Very slow	:: :
	0.076 0.13	0.418 0.558		Trace .	17,500		25	30	Slow	ļ :
2.13	0.10	0.356	None		1,700		10			
1.42	0.08 0.082	0.348 0.328	•••	••	5,859,600 1,050	90	90	l . . .	Rapid24 hours	iNo
1.42 2.13		0.512		0.003 None		None	5		Very slow	:: -
1.06	0.09	0.476	None	0.01	6,600	•••	- 50		64 HOUIS	
2.15	9.076	0.466		Trace.	1,200	••	90		Very slow	٠. ١
1.77	0.08	0.443	0.03	0.001						l

STREAMS

TABLE XXII.—South Bend, Indiana—

				Ti PERA	M- FURE.	S	Solids	3.	Oxy ABS	ORP-
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered
19	Light, clear Yellow	NoneGood	None Flocculent Lumpy			472 398 400 423	14 6 8 9	486 404 408 	5.44 4.64 6.88 5.65	5.44 3.84 6.88 5.38

^{*} Bacterial sample warm.

TABLE XXIII.—McHenry—

24	Light Light yellow crystal clear. Light, clear	 None	50° 40 42	280			4.48	4.48
	Averages	 	 	303	17	320	5.06	4.93

TABLE XXIV.—Libertyville—

1899. Nov. 24 Dec. 19 28	Light Light, clear	Good	None	 	368 448 564	8 8 26	376 456 590	6.56 4.96 5.84	6.48 4.80 5.44
1900. Jan. 4	Light	ĺ	Little					3.36	

TABLE XXV.—Mahomet—

† ** 15	LightLight and slightly turbid	Good	**	68° 50 62	40° 56 58	372 313 308	36 32 64	308 350 372	6.56 2.96 5.12	2.48
	Averages					299	44	343	4.88	3.62

^{*} Bacterial sample warm.

^{· †} Much snow and rain.

^{† 12} inch rain fall day before collection.

SOURCES.

The Kankakee River.

Chlorine	Аммо	ONIA.	NITE	OGEN.	Colonies	FER	MENTAT	TION.		Indol p
16	Free	Albuminoid	In nitrates.	In nitrites.	s—per cc	1-10 cc. (Per cent)	1 oc. (Per cent)	1 cc. (Per	Coagulation of Milk.	produced
1.40 1.07 1.06		0.25 0.22 0.82	None 7.2	Trace	46, 200 1, 600 30, 400	40 40 40	50 40 50		24 hours	Yes No Yes

The Fox River.

4.25	0.096	0.51	None	None	20, 100	60	40		20 hours	No'
3.54 2.80	0.094 0.25	0.37 0.384	:: ::	: ::::	2, 600 82, 000	None Little	None	,	Slow	:: ::::
3.53	0.147	0.421								

The DesPlaines River.

1.10	0.096	0.34		None 0.02 0.08	9,000	15	10 10 5		Rapid	No
	i		None Trace,.			None	10	•••••	24 hours	••

The Sangamon River.

0.90 2.50	0.22 0.05	0.47 0.28	None	0.005 None	27, 700 14, 300	80 20	50 10	 Slow24 hours	Yes
2.15	0.13	0.34	Trace	٠٠	4,500	None	None	 Slow	٠٠
1.85	0.13	0.36		0.002					

TABLE XXVI.—Kappa—

				TI PERA	M- TURE	8	Solida	•	Oxy ABSO TIO	RP.
Date.	Color,	Odor.	Sediment.	Water	Air	In solution,	In suspen-	Total	Not filtered	Filtered
1899 *Nov. 2 Dec. 14	Light, unclear. Dark	Good	Sandy Brown	40° 34	44° 45	290 332 311	42 48 45	332 380 356	5.52 6.56 6.04	4.48 5.44 4.96

^{*} Sample warm.

TABLE XXVII—Dahinda—

* 2	9 Light	Good	Sandy Light	•••••	53°	352 372 336	44 32 18		4.24	
	Averages					353	31	384	4.24	3.76

^{*} Bacterial sample warm. Not iced.

TABLE XXVIII—Pontiac—

† '' 24	Light Dark Light	** <i>.</i>	None Sandy Little	48	72° 46 59	318 328 388	6 24 10	324 352 398	4.40	2.96
	Averages					345	13	358	3.86	2.98

^{*} From river above dam and above where sewage enters stream at Pontiac.

TABLE XXIX-Winfield-

** 23	Light. Light, turbid Light	**	Little	52° 46 40	50° 40 34	444 458 550	64 20 10	508 478 560	3.04	2.56
	Averages					484	31	515	3.70	2.42

[†] Bacterial sample warm. Not iced. Rain beginning to fall

[†] From intake in river for pumping station of city water works. Bacterial sample warm Hard rain one week before collection.

[‡]Thin ice upon river.

The Mackinaw River.

Chlorine	Амм	ONIA.	Nitro	OGEN.	Colonies	FER	MENTAT	ion.		Indol 1
16	Free	Albumenoid	In nitrates.	In nitrites	98—per cc	1-10 cc. (Per cent.)	1 cc. (Per cent.)	1 cc. (Per cent.)	Coagulation of Milk.	produced!
1.42 4.24 2.83	0.176	0.540	1.40	Trace 0.03 0.015	14, 000 30, 300	60 5			24 hoursSlow	Yes

The Spoon River.

9.58 12.80	0.130 0.090	0.29 0 .35	0.56 None	None	40, 100 69, 000		30 50	 24 hours	Yes
7.10	0.076	0.206	0.48		208, 400	40	30	 **	Yes
9.82	0.098	0.282	0.52						

The Big Vermilion River.

3.54	0.160 0.102 0.090	0.22	٠٠	Trace None	None 50 10	10	 SlowRapid	Yes,
3.06	0.117	0.24	0.9	Trace				

West DuPage River.*

1.42	0.14 0.024 0.246	0.24	None	None 0.03	9 900	None iš	10	 SlowRapidSlow.	l **
3.77	0.136	0.23		0.01					

^{*} Stream twenty (20) feet wide; ten inches of water.

36 ·

TABLE XXX—AVERAGES, 1899.

	Tota	Oxy Absor	GEN PTION.	СРГ	Free	Alb.	Nitr	Nit
	Total solids.	Not fil- tered	Filtered	Chlorine	Free am- monia	Alb.ammonis	Nitrogen i	Nitrogen i
				:		<u>.</u>	: E	: =
Bridgeport, canal	536.5	26.65	15.95	95.47	19.84	3.22		0.08
Lockport, canal	538.0	27.90	17.81	96.97	19.85	8.37	0.03	0.03
Lockport, DesPlaines	389.0	8.05	6.96	5.98	0.229	0.559	0.045	0.009
Joliet	591.0	25.09	15.10	85.49	16.05	2.88	0.014	0.015
Wilmington	822.0	5.71	5.09	2.79	0.082	0.337	6.98	0.014
Morris	445.0	9.16	8.07	61.80	10.09	1.20	0.07	0.18
Ottawa, Illinois	445.0	7.13	6.52	57.4	6.23	9.62	0.74	0.61
Ottawa, Fox	349.0	7.30	5.58	3.78	0.145	0.454	0.11	0.007
LaSalle, Illinois	436.0	6.99	6.44	41.30	4.66	0.58	1.45	0.85
LaSalle, Big Vermilion	914.0	3.60	2.95	38.35	0.296	0.199	0.61	0.102
Henry	451.0	7.00	6.28	43.20	3.28	0.553	1.39	0 517
Peoria, Narrows	422.0	6.86	5.46	33.04	0.895	0.572	1.10	0.141
Peoria, Wesley	493.0	17.44	12.84	34.97	4.36	8.20	0.106	0.026
Pekin	419.0	7.81	6.41	34.76	1.39	0.828	0.71	0.273
Havana, Illinois	432.0	7.18	5.96	29.17	1.69	0.695	1.02	0.21
Havana, Spoon	440.0	7.84	4.94	4.17	0.302	0.496	0.27	0.04
Browning	346.0	4.09	8.42	4.49	0.146	0.320	0.22	0,03
Pearl	388.0	5.51	4.73	18.73	0.315	0.672	0.79	0,06
Grafton, Illinois	362.0	5.61	4.65	17.50	0.247	0.455	0.59	0.044
Grafton, Mississippi	278.0	8.52	6.82	1.77	0.090	0.443	0.03	0.001

GRAPHIC CHART DRAWN FROM THE ABOVE TABLE OF AVERAGES.

EXPLANATION.

The letters on the abscissa line refer to the stations where collections were made. B=Bridgeport; L=Lockport; J=Joliet; M=Morris; O=Ottawa; LJ=LaSalle; H=Henry; PI=Peoria (station above city); PII=Peoria (station below city); PK=Pekin; HI=Havana; PIII=Pearl; G=Grafton. Each space on the abscissa line represents a distance of 15 miles, starting from Bridgeport. On the ordinate or vertical line the spaces have the following values: For chlorine (Cl) one space represents 10 parts per million, but the abscissa or base line is taken at 35. For oxygen consumption (Ox. Con.) one space represents $2\frac{1}{2}$ parts per million, with the base line at 0. For free ammonia (Fr. Am.) one space represents $2\frac{1}{2}$ parts per million, with the base line at 0. one space represents $\frac{1}{4}$ part per million, with the base line at 0.

Soon after the opening of the drainage canal, water was collected at a number of points and submitted to examination. The results of the tests appear in the following tables:

TABLE XXXI.—Chicago—

		,		TEM- PERA- TURE.	Solids.	Loss on ig- nition.	OXYGEN ABSORP- TION.
Date.	Color.	Odor.	Sediment.	Air Water	In suspension In solution.	Filtered Not filtered	Filtered Not filtered
1960. Feb. 6 13 Mar. 6 20 27 April 3 10 17	None	None	None		148 148 140 146 162 162 152 152 144 144 142 142 134 134 142 144 144 144	2 22 16 2 14 2 22 2 28 16	1.86

TABLE XXXII-

Mar.	6 Dark	Bad	Dark			440	224	694	140	72	24.96	11.68	
------	--------	-----	------	--	--	-----	-----	-----	-----	----	-------	-------	--

${\bf TABLE~XXXIII.-} The~Drainage~Canal-$

April	Light Light, nearly clear	Not good Bad	None Little None Little		194 204 200 182 194 176	20 28	212 224 214 204	40 52 28	50 30 66 52 34 46 28	9.92 9.44 8.96 7.36 6.88 5.92 6.24	4.64 6.72 3.44 4.32 4.64 3.36
	Averages				198	23	221	47	43	7.82	4.77

City Water from Tap at 2421 Dearborn St.

Chlorine Amme	AINC	Nitro	OGEN.	Nitroge dahi l	Colonies		ENTA- ON.		Indol p
Free	Albuminoid	In nitrates.	In nitrites	en by Kjel- Process	98—per cc	1-10 cc	1 cc	Congulation of Milk.	producedf
1.07 0.030 1 77 0.020 1.80 0.008 2.10 0.020 2.00 0.040 2.00 0.014 2.10 0.040 2.00 0.014 1.80 0.016 1.80 0.016	0.070 0.066 0.056 0.128		None		1, 420 724 1, 925 66 570 115 55 320	None	None 40 None	None Very slow 24 hours Slow Very slow None Very slow	No

Bridgeport Pumping Station.

95.9 6.00 2.50 None.	0.03 9.10	540,000 20	30 Rapid	Yes
	1 1		, .	

Western Avenue Bridge.

17.8 10.7 14.2 14.2 7.1 8.5	3.46 3.00 1.60 1.74 0.96 0.79	1.46 0.64 1.70 0.92 1.10 0.69	None. 0.16 None 0.20 0.20 0.24	None 0.04 0.03 0.05 0.16 0.07	5.18 3.53 3.62 2.39 2.07 1.31	490, 000 483, 000 26, 500 340, 000 810, 000 609, 000	15 10 10 15	20 . 10 10 80	Very rapid		:: :::
9.2	0.88	0.80	None	0.02	1.33	203,000	40	10	••		٠٠
11.7	1.78	1.04	0.11	0.05	2.78					•••••	

TABLE XXXIV-Morris-

				PE	RA- RE.	s	oLID	s.		1G- 1ON.	Oxy Abs	ORP-
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered	Not filtered	Filtered
† : 21 † : 28 Apr. 4	Light, turbid Clay Light Dark Light Dark Light Light Averages	Little Badi Little	Little	32° 34 32 32 42 40 51 52	37° 36 36 34 58 55 64	302 128 208 194 220 242 304 252	8 354 64 36 48 22 36 24 74	310 482 272 230 268 264 340 276	48 58 54 82 36		5.76 14.40 9.60 9.76 9.44 9.28 9.44 6.40	6.40 6.16 7.76

^{*}Snow melting and river very high.

TABLE XXXV.—Peoria—

Mar.	7 Light	Little Very bad	Heavy clay Flocculent Sandy Flocculent	34 33 36 38 44	42° 39 44 35 60 36 64 64	252 190 152 230 240 218 282 392	28 304 144 98 78 54 26 50	280 494 296 328 318 272 308 442	60 70 62 62 79 52 86 162		12.80 9.92	6.40
	Averages					244	98	342	82	61	16.93	11.48

[?]River very high.

TABLE XXXVI.-Havana-

12 19 19 26 April 2 16	Light	Little Good Little	Sandy	34° 34 36 40 42 46 56 60	26° 38 48 38 46 45 60 65 70	242 222 244 164 182 206 214 238 248	42 138 90 68 14 26 26 26 24	284 360 334 232 196 232 240 264 272	64 54 38 46 30 44 52 32 64	64 50 28 28 28 36 36 30 60	9.44 8.96 10.88 8.00 7.68 7.68 7.84 6.24	7.68 5.20 5.92 6.24
---------------------------------------	-------	--------------------------	-------	--------------------------	-----------------------------	---	---	---	--	--	---	------------------------------

^{*} Heavy snow melting; river high.

[†]River high.

River high.

Water muddy from creek emptying above.

[¶]Kjeldahl determination gave 18.1 Mgm. of organic nitrogen per liter.

[†] River very high.

The Illinois River.

Chlorine.	Амм	ONIA.	NITE	ogen.	Colonies-	FERM	ENTA-)N.		Indol pı
•	Free	Albuminoid	In nitrates.	In nitrites	s—per oc	1-10 cc. (Per cent	1 cc. (Per cent	Coagulation of Milk.	produced!
21 3 3.6 9.2 6.4 9.2 10.0 23.4 15.6	3.50 1.54 1.44 1.35 2.85 1.85	0.70 0.96 6.80 0.70 0.65 0.55 0.65	0.16 0.44 1.09 0.72 0.16 1.00 0.72 0.40		244, 900 3, 820, 000 147, 000 204, 000 124, 000 54, 000	10 15 30 45 15	100 85 50 100	Very rapid	Yes

The Illinois River. (below Wesley.)

12.1	1.80	1.20	0.40	0.02	360,000	25	20	Very	rapid	 		No
6.4	1.20	0.80	0.56	Trace.	162,000	15	25		• • -			
5.7	4.24	1.86		0.40			15		••	 		
9.2	2.06	5.40		0.02	42,000	10	25 15 25		••			
8.5	3.54	1.66			2, 752, 000	10 4 0	45		• •			**
5.7	0.50	0.60	2.00			35	60		• •			**
11.4	3.82	3.00		None.		10	20	i			• • • • • •	**
14.2	7.30	4.10		None.	589,000	20	50		• •		• • • • •	
		2.04						-				1
9.1	3.06	2.21	0.37	0.06				1				- 1

The Illinois River.

7.8 1.1 4.3 1.0 3.2 1.7 2.8 0.7 4.3 0.8 5.0 0.7 5.0 0.6 7.8 0.4 7.1 0.2	0 0.43 0 0.53 5 0.48 8 0.41 4 0.43 6 0.43 6 0.49 8 0.63	0.88 Non 1.00 0.72 Tra 0.08 1.20 2.24 1.60 1.68	0.02 321,600 ce. 147,600 0.25 16,200 0.02 44,400	None None None None None	20 5 10 None	Very rap 24 hours 18 Rapid		Yes.
---	--	--	---	--------------------------------------	-----------------------	-------------------------------------	--	------

TABLE XXXVII-Havana-

				TI PE		s	OLID		Lon ON NITI		Oxy Abso	ORP-
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen- sion	Total	Not filtered	Filtered	Not filtered	filtered
* 12 19 26 April 2	Dark	Peculiar Earthy Good Little Earthy Little	Sandy Very heavy clay Sandy Dark Very heavy Sandy Little	34° 34° 34° 36° 40° 42° 56°	26° 38 48 38 46 45 65	248 102 214 208 176 222 296	1338 54 30 1898 40 30	1440 268 238 2074 262	112 40 46 178 48 26	46 20 30 32 28 38 26	30.08 7.36 9.12 50.88 7.04 4.80	6.96 4.80 4.56 5.52 5.28 4.48 4.32

^{*} Heavy snow melting; river high.

TABLE XXXVIII.—Pearl—

				TE PE: TU:	RA-	Se	oLID	s.	Lo on niti	Ig-	Oxyo ABSO TIO	RP-
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered	Not filtered	Filtered
† :: 18 20 27	Light Yellow Light		Clay. Very heavy. Sandy. Little Sandy.	58° 44 36 46 45 32 53 60	34° 54 32 56 65 44 62 72	200 176 194 190 184 190 212 224	60 74	768 1052 448 276 250 300 272 298	58 52 44 48	44 40 36 44 32 30 39 44	8.80 7.84 6.08 7.84 5.12	5.12 4.56 5.12 4.32 4.96 5.60 5.76
	Averages					196	26 2	458	53	39	9.28	5.0

^{*} River high; heavy snow melting.

TABLE XXXIX.—Grafton—

*Mar. 7 *Mar. 7 14 121 128 Apr. 4	Light Clay. Dark. Light	LittleGood	Heavy Clay. Heavy, clay. Very heavy. Clay. Sandy	32° 34 30 32 39 35 42 45 50 54	36° 40 20 38 42 40 56 56 56 76	204 268 220 200 178 140 140 150 192 204 228	824 236 410 842 436 704 338 202 276 142 66	1028 504 630 1042 614 844 478 352 468 346	92 82 74 68 76 46 34 56 38	92 64 28 36 36 30 28 40 30	10, 24 11, 84 16, 00 13, 12 11, 36 13, 44 9, 92 8, 80 6, 88 7, 20 6, 40	4.88 5.44 8.32 5.04 5.36 4.56 5.76 5.28 4.48 4.96 5.36
21		None				193	407	600	61	42	10.47	5.40

^{*} River high.

[†] River very high.

The Spoon River.

Chlorine.	Амм	ONIA.	NITE	OGEN.	Colonies	FERM TIC	ENTA-)N.		Indol p
16	Free	Albuminoid	In nitrates.	In nitrites.	,s-per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	produced?
4.3 2.1 2.8 2.8 6.4 8.5 4.3	0.60 2.23 0.60 0.78 0.25 0.14	1.60 0.48 0.45 2.45 0.39 0,26	None 0.80 0.80 0.16 1.52 1.76	0. 0 5 0.02 0.05 0.30 0.04 0.03	386, 400 264, 000 198, 000 118, 800 31, 000 6, 200	10 10 10 None 10 None	10 65 None 10 30	Very rapid	No Yes No

The Illinois River.

Chlorine.	Амм	ONIA.	Nitre	OGEN.	Nitroge dahi pi	Colonies	FERM TIC	ENTA- ON.		Indol pi
Θ.	Free	Albuminoid	in nitrates.	ln nitrites	gen by Kjel- process	s—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	Coagulation of milk.	produced
4.6 3.6 2.8 3.6 3.5 6.4 5.0	0.40 0.23 0.21	0.51 0.72 0.52 0.40 0.32 9.35 0.28 0.48	1.20 0.92 1.00 1.36 0.08 1.36 1.76	0.32 0.02 0.03 0.05		8, 200		40 5	24 hours	Yes Yes
4.3	0.46	0.45	1.18	0.07						

The Illinois River.

6.4 5.7 3.9 5.0 4.3 3.5 4.3 5.0 6.4	0.48 0.49 0.23 0.18 0.18	1.20 0.82 0.70 0.94 0.67 0.73 0.53 0.40 0.37 0.40 0.50	1.04 1.28 0.80 0.04 1.60 1.36 1.40	0.02 0.03 0.03 Trace 0.02 0.03 0.20 0.03 0.03	2.42 1.71 1.72 1.72 1.35 2.06 1.50 1.06 1.91	21,000 22,200 62,000 106,800 5,400	None 25 15 10 40 None	None 10 25 30 60 None	24 hour Rapid. 24 hour Rapid. 24 hour Very sl	ssssssssssss	No Yes No Yes
4.8	0.50	0.66	1.02	0.04	1.58	•					

Table XL.—Averages for Spring work, 1900.

	Total sc	Los		AB8	GEN ORP- ON.	Chlorine	Free an	Alb. am	Nitrogen	Nitrogen	Organic Kjeldahl
	solids	Not filtered	Filtered	Not filtered	Filtered	8	ammonia	ammonia	n in nitrates	n in nitrites.	nitrogen
Chicago, Lake Bridgeport, I. & M canal Western av. drain. canal Morris, Illinois river Peoria, Wesley, Ill. river Havana, Illinois river Havana, Spoon river Pearl, Illinois river Grafton, Illinois river	145 664 221 305 342 268 699 458 600	17 140 47 54 82 47 71 53 61	17 72 43 45 61 40 31 39 42		6.07 11.48	1.82 95.9 11.7 12.3 9.1 5.2 4.5 4.8	0.020 6.00 1.78 2.13 3.06 0.86 0.76 0.46 0.50	0.081 2.50 1.04 0.69 2.21 0.55 0.87 0.45 0.66	0.037 0.0 0.11 0.57 0.37 1.11 0.83 1.18 1.02	0.0 0.03 0.05 0.06 0.06 0.05 0.07 0.07	2.78

The main work of the summer examinations began early in June, 1900, and was continued untill the end of September. Tabulated statements of the results obtained as follows.

• . .

TABEL XLI-

					RA- RE.	8	SoLID	s.	Los OI IGNIT	N	Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered	•
1900. June 5 12 19 26 July 3 10 17 24 31 Aug. 7 21 29 Sept. 4	None	None	None			150 152 138 134 162 136 140 140 140 144 144 144 148		150 152 138 134 162 136 130 140 140 148 148	24 24 16 14 20 8 8 14 22 22 24 10 16 14	24 24 16 14 20 8 8 14 22 22 24 10 16 14	2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13

TABLE XLII.—Bridgeport—

Aug. 2 Dark 7 Ligh 10 Dark 14	Color.	Odor.	Sediment.			-					
July 29 Ligh 31 Dark Aug. 2 7 Ligh 10 Dark * 14				Water	Air	In solution.	In suspen- sion	Total	Not filtered	Filtered	Chlorine
21 24 29 31	nt		Little			494 440 244 336 290 520 474 276 544 526 164 234	42 24 54 40 22 72 112 42 140 48 38 16 22 150	536 464 298 376 312 592 586 318 684 582 564 180 256 576	72 82 48 72 64 90 92 62 136 86 60 38 56	72 72 40 52 42 46 42 36 74 70 56 36 44 60	127.8 113.6 39.0 78.1 49.7 177.5 127.8 39.0 191.7 14.9 10.7 28.4 166.8

^{*} Aug. 17. Tug passed before collection was made.

Chicago City Water.

Oxyg Absor		Аммо	NIA.	Nitro	GEN.	Colonies	FERM TIC	ENTA- ON.		Indol p
Not filtered	Filtered	Free	Albuminoid	In nitrates.	In nitrites	es—per cc	1-10 сс	1 ec	Coagulation of Milk.	Indol produced
2.00 . 1.44 . 1.60 . 2.64 . 1.720 . 2.00 . 1.52 . 2.72 . 2.00 . 1.68 . 1.60 . 1.68 . 2.24 . 2.93 .		0.014 0.028 0.016 0.028 0.016 0.020 0.010 0.012 0.010 0.010 0.010	0.076 0.112 0.130 0.084 0.106 0.096 0.110 0.074 0.112 0.120	0.10 None Faint tr'ce None 0.03 None	Indication	450 170 100 72 44 190 370 105 175 620 820 95 43		None 20 None 5	48 hours None	No

Illinois and Michigan Canal.

Oxyg Absor		Аммо	ONIA.	Nitro	OGEN.	Nitrogen dahl pro	Colonies-	FERM	MENTA-		Indol p
Not filtered	Filtered	Free	Albuminoid	In nitrates.	In nitrites	gen by Kjel- process	98—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	produced!
15, 36 12, 96 12, 78 15, 36 12, 20, 80 25, 28 15, 68 26, 88 19, 20 15, 04 4, 64 7, 52 17, 60 22, 40	7.54 5.92 9.60 5.76 12.48 8.80 11.20 9.76 21.12 8.96 10.24 4.00 8.00 9.28	13.30 13.00 5.50 10.00 21.00 17.20 7.50 22.80 25.50 5.80 35.50	1.30 2.80 2.20 4.50 2.20 3.50 3.00 2.00 2.50 3.80 1.30 1.60 3.00	0.60 None	0.03 2.00 0.08 0.03 0.10 0.01 None 0.20 None 0.08	6,83 10,90 10,50 19,90 18,76 8,47 23,29 20,80 23,90 3,37	720,000 872,000 438,000 310,000 2,460,000 1,838,000 884,000 1,518,000 632,000 330,000 1,344,000 780,000 Liquiti'd	15 25 15 20 20 20 20 20 15 15 30 20 10	20 15 25 25 10 20 25 25 None	Very rapid 12 hours Very rapid 15 hours Very rapid Rapid	No Yes.
16.31	9.11	15.26	2.55	0.13	_	13.85	ridam, a	15	10	2,	

TABLE XLIII-

				PE TU		8	Solid	8.	Loss		Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered	e
July 3 10 10 10 10 10 17 17 18 18 19 19 19 10 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	Light	Bad	Little None Little Black;			168 194 162 160 212 186 168 200 164 168 186 194 180 150	46 26 18 30 10 28 14 18 28 28 34 22 36 10	214 220 180 190 222 214 182 218 192 216 216 216 216 200 203	30 34 42 48 68 38 36 34 58 52 40 48 52 38	26 26 42 38 68 36 36 32 48 34 40 32 38 34	7.1 16.3 7.1 7.8 13.5 9.2 9.2 9.9 8.5 6.4 11.4 8.5 5.7

^{*} July 24. Rain at time of collection.

TABLE XLIV.—Lockport—

				PE	IM- RA- RE.	5	SoL	DS.		B ON TION.	Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	in suspen-	Total	Not filtered	Filtered	e
July 2 9 23 30 Aug. 6 * 13	Light, slightly turbit, clear Light, clear Light,n'rly clear Light,n'rly clear Light Dark Light Light Light Averages	** ********	None Little None Granular None Very fine None Granular Flocculent None	62° 50 69 72 76 74	78° 71 90 86 84 90 92 90 90	186 212 200 246 164 182 182 166 192 218 170	12 40	198 2240 272 172 198 196 184 250 230 170	· 28 38 64 58 52 38 28 52 38 28 54 46 36	26 36 36 46 22 46 34 22 30 40 36	11.4 13.5 10.6 22.7 8.5 10.6 11.4 16.3 17.0 5.7

^{*} Aug. 13. Arrived late and was not iced.

Western Avenue Bridge—Drainage Canal.

OXYG		Аммо	NIA.	Nitro	GEN.	Nitrogen by dahl process	Colonies		MENTA-		Trong
Not filtered	Filtered	Free	Albuminoid	In nitrates,	In pitrites	en by Kjel-	es—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	muot produced
5.60 9.92 4.96 5.60 6.48 8.00 7.20 5.68 5.76 5.12 6.08 7.52 5.52 4.48	4.88 5.44 4.08 4.72 5.60 4.00 4.32 5.20 3.92 4.32 3.20 4.88 4.16 3.20	1.38 1.50 1.15 0.96 1.00 1.57 1.04 3.10 1.00 1.40 1.82 1.00 0.80	0.68 0.70 0.90 0.69 0.90 1.42 0.82 1.02	None None None None None	0.03 0.01 0.01 0.02 0.20 0.32 0.04 0.02 0.08 0.03 0.04 0.64	2.80 2.61 2.66 4.19	162,000 310,000 1,656,000 Liqu'fled 890,000 326,000 Liqu'fled 960,000 462,000 1,140,000 480,000	20	None 25 15 10 40 10 15 5 20 10 10	Very rapid Rapid 20 hours 12 hours Very rapid	Ye.

Canal.

	GEN RBED.	Амм	ONIA.	Nitr	OGEN.	Colonies-	FERM	ENTA- ON.		Indol p
Not filtered	Filtered	Free	Albuminoid	In zitrates.	In nitrites.	s—per cc	1-10 cc. (Per cent)	1 ac. (Per cent)	Coagulation of Milk.	Indol produced?
4.96 4.88 4.56 7.20 4.80 4.56 4.24 8.00 6.08 4.96	4.08 4.32 4.48 5.04 3.12 3.76 3.92 3.36 5.60 5.44 4.56	1.65 2.40 1.55 2.90 1.50 1.90 2.20 2.24 3.56 1.70	0.74	0.02 None	Trace 0.01 0.02 Trace 0.04 0.20 Trace 0.40 0.20 Trace	165, 000 653, 000 502, 500 104, 000 82, 000 840, 000 1, 860, 000 720, 000 288, 000	None 30 400 555 10 355 35 -20 50	50 40 35 80 40 45		Yes No

TABLE XLV.—

				TE FEI	RA-	 	SoLII)S.	Lo o ignit	N	Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	In solution	In suspen-	Total	Not filtered	Filtered	е.
July 2 9 16 23 30 Aug. 6 13 20 27	Dark yellow	Not good Bad Bad Little Bad	Flocculent	60° 70 72 72 74 76 78 76 78 76 78 76 64	72° 76 80 86 80 84 86 84 90 86 89 80 86 80 86 80 86 86 86 86 86 86 86 86 86 86 86 86 86	224 276 264 268 282 232 262 244 236 258 232 208 245	16 32 40 58 18 38 24 58 30 42 48 34 54 14 20	240 368 304 322 226 320 256 290 292 284 290 312 246 228	58 58 58 52 50	522 566 688 487 522 400 444 388 400 340 400	24.8 32.7 38.3 35.5 17.0 43.3 29.8 31.2 30.5 39.0 27.0 24.1

TABLE XLVI- Morris-

··	ad	Dark, floccu-	60°	70°	220	44	264	40	38	14.9
		Dark, floccu- lent		- 4	73	44	264	40	38	14 (
	::	lent	65	00		100				14.6
ii No			65			0.00			. :1	
No		Wlacemlant i		86	292	10	302	68	64 24 36	24.
·· ········ No			55	70	224	32	256	34	24	17.
''Вя	or Rood	Little	71	80	208	14	222	40	36	16.
	n.d	••	64	84	226	12	238	44	42	22.
	••	Flocculent	65	78	220	24	244	64	60	22
Fa	aintly dis-		1	- 1		100			l l	
Light, turbid	agreeable.	Very little	70	85	210	14	224	48	46	20.
Light Ba	ad	Very fine	72	90	218	18	236	36	36	17.
· · No			70	90	216	42	258	56	40	17.
		Sandy	80 i	92	198	30	228	20	18	15.
		Dark, sandy		75	220	14	224	36	34	21.
Light Es		Fine		85	238	20	258	46	24	10.
Dork Re	o.d	Grav	78	98	242	28	270	54	46	17.
Light	7,	Little	76					40	38	14.
Dork	••	Vellow						24	26	14.
			""	50	100	- 04				
A	i		1		999	90	251	44	30	17.
L	ark	Park	(12111 LILLUIG	ork Little 76 Oark Yellow 60	oark	9ark	9ark Yellow 60 65 192 84	9ark. Yellow 60 65 192 84 276	oark	9ark

^{*} Heavy winds

Joliet.

Оху Ав		Аммо	ONIA.	Nitro	GEN.	Colonies-		ENTA- ON.		Indol p
Not filtered	Filtered	Free	Albuminoid	In nitrates.	In nitrites	s-per cc	1-10 cc	1 %	Coagulation of Milk.	Indol produced!
6.24 6.72	5.20 4.64	4.47 5.46	0.71 0.94	None	0.01 0.03	264, 000 248, 000		50 30		Yes
5.52 5.96 6.64 6.64	3.52 3.36 3.84	6.40 7.10 3.06	0.80 0.92 1.18	0.28	0.03 0.04 0.08	Liquifi'd 650,000	25	None 30	Ranid	No
7.84 8.00	4.88 3.92 4.00 5.92	5 20 3.80 4.20 5 30	0.94 0.56 1.16 0.44	None	0.01 0.04 0.03 0.04	173,000 37,009 4,500 125,000	10 80 15 10	25	Rapid	Yes No
5.84 6.80 6.40 7.36	4.80 4.08 4.80	5.30 4.20 3.98 4.60	1.00 0.90 0.41	:: :::	0.40 0.06 0.32	845,000 616,000 152,000	20 25 60	50 40	12 hours	Yes
7.36 5.92 8.48	5.44 4.96 4.40	4.80 3.40 4.00	1.40 0.70 0.66	None	0.04 0.08 0.08	488,000 896,000 Liquifi'd	10 20 30	10	15 hours	No.
6.97	4.52	4.66	0.85	0.02	0.09					

The Illinois River.

	1								
8.80	5.76	1.70	0.49 0.4	8 0.50	18,000	10	25	24 hours	No
7.36 5.44 5.60	5.12 3.92 3.60	3.25 2.93 4.20	0.65 0.3 0.50 0.1 0.86 None	R 0 16	217,600 45,200 Liquef'd	None	None None	Very rapid24 hours	Ye No
6.72 4.64	4.32 3.60	2.25 3.45	0.45 0.37 None	. 0.32	19,400	50	20 25	Very rapid	Ye
1 80 3.00 3.48	4.48 4.56 4.24	2.76 1.70 3.10	0.70 None 1.10 0.2 0.70 0.2	0.14	2,000	50	35	24 hours	
.48 .76 .64	4.40 4.48 5.52	2.80 2.40 1.50	0.80 0.1 0.46 None 0.60 None	2 0.80 0.32	11 000 27,000	15	25 40	24 hours	·· Υe
.20 .76 80	4.40 5.92 5.60	4.40 2.70 3.40	0.60 Trace 0.70 0.8 0.50 None	0.20 0 0.16	19,500 550,000	60 10	90	Rapid24 hours	*10
3.40	4.66	2.84	0.63 0.1		_	10	None		

TABLE XLVII-Ottawa-

				PE	EM- RA- RE.		Solii	D8 .	Los Ol Ignia	N	Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	in solution.	in suspen-	Total	Not filtered	Filtered	6
July 26 July 29 17 23 Aug. 6	Dark turbid Slightly yellow Light: Yellow Dark	Earthy Good Earthy Good Earthy Little Faintly disagreeable Faintly disagreeable Good Not good Faint Good	Fine	72° 76 72 78 78 75 76 78 76 78 76 62	84° 82 77 90 92 80 75 90 84 80 94 85 85 56	236 322 264 274 236 226 208 218 240 222 246 224 206	86 16 40 42 8 14 6 4 80 10 22 30 42 24 2	322 348 304 316 244 222 320 232 240 252 288 248 208	48 102 42 96 52 54 28 36 54 32 42 40 48 52 28	48 96 32 74 44 50 26 34 52 32 32 48 48 48 26	11.4 17.8 17.8 17.2 16.3 19.2 15.6 17.8 15.6 14.9 18.5 17.6 14.2 16.3

*Aug. 13, heavy rains. †Aug. 27, river high and muddy.

TABLE XLVIII-Ottawa-

Aug. 6	Light' Very light Light yellow	None	Very fine	96	80	288 298 290	12 22 26	300 320 316	78 62 88		6.4 3.5 5.0
	Averages					292	20	312	79	72	4.9

‡Aug. 13, heavy rains.

TABLE XLIX.—La Salle—

1900	٠.		ļ			000	200		050	40	00	40.0
Juņe	.:	Light	Trittle	Sandy	76°	86°	232	54	286		32	10.6
T	11 18			Little	76	86	284	30	314	40	40 68	19.2
	18		raint		75	74	260	24	284	72	68	17.8
	25 2			Fine	78	90	236	16	250		40	18.5
July	z			Little	80	80	244	16	260	36	28	17.0
• •	17			Fine	80	82	232	14 16 22 22 22 22 82 82	254	42	40 28 36 28	19.9
• •	23			Sandy	78	72	228	22	250	32	28	18.5
• •			Little	Little	79	82	218	22	240	34	34 72	18.5
	30			Sandy	80	80	252	92	334		52	14.2
Aug.	10	Light		Granular	84	80	282	20	320	52	52	14.9
	19	Light, turbid	Faintly dis-	Titler	00	00	004	10	040	F.0	50	40.0
• •	20	W-11-		Fine	82	82	224	16 20	240		52	17.7 16.3
• •	20 27	Yellow	Good	Little	82	82	236	16	256		40 32	10.8 12.8
Sont		Finhs		Sandy	80	80 84	246	6	262		74	8.5
Sept. Oct.	3	Light	vi. mirren	Fine	82 70	80	370 230	12	376 242		38	13.5
Oct.	3		*******	Little	10	00	230	14	242	40	30	10.0
		Averages				l	252	26	278	48	44	15.8

^{*}June 11 sample delayed.

The Illinois River.

Indol 1		IENTA-		Colonies-	Nitrog dahl	GEN.	NITRO	NIA.	Аммо		Oxyo ABSOR
produced?	Coagulation of Milk.	1 cc	1-10 cc	es-per cc	en by Kjel- process	In nitrites,.	In nitrates.	Albuminoid	Free	Filtered	Not filtered
No	20 hours	None 40 50 20 10 25	15	28,000		0.25 0.28 0.20 0.44 0.32 0.80 0.32 0.20 0.40	1.60 1.60 0.48 1.20 1.40 0.88 0.40 0.88 1.20	0.65 0.58 0.42 0.41 0.34 0.27 0.28 0.34 0.65	1.03 0.60 1.58 1.30 0.40 1.02 0.30 0.35 0.90	5.36 6.00 4.40 5.44 4.56 4.16 4.56 6.08	11.04 6.64 5.28 5.60 4.88 5.04 5.04 5.36 7.20
	Very rapid	30	15	14,000		0.80	1.20	0.38	0.78	4.88	6.48
No	Rapid 24 hours 24 hours 24 hours	70 30	50 10 35	64,000 19,500 25,500 3,500		0.32 0.64 0.32 0.20 0.12	Trace None 0.80 1.12 1.08	0.33 0.42 0.25 0.30 0.30	1.05 0.85 0.79 0.56 0.72	4.08 4.96 5.36 6.40 5.04	4.88 5.20 5.76 6.64 5.12
						0.37	0.92	0.39	0.81	5.03	5.94

The Fox River.

6.96 6.22 7.04	6.24 5.84 6.88	0.15	0.52	lone	None 0.02 0.04	1.27 1.23	2, 232, 000 36, 000 6, 500	5	60 Slow 10 Very slow 10 24 hours	. **
6.77	6.82	0.11	0.50		0.02	1.25				

The Illinois River.

		- 1		!	- 1	1					
6.32	5.68	0.63	0.33	0.80	0.25		16,000	50	50	20 hours	Yes
6.56 5.28	6.48	0.80	0.50	1.20	0.50		41,600		50	Rapid	•••
5.28	4.08	1.50	0.45		0.20		72,800	60	None	24 hours	No
5.44	4.32	1.06	0.41	0.92	0.12		150,000 105,000	None		••	•••
5.04	4.00	0.60	0.27	1.60			105,000		15	••	٠٠.
5.04	4.16	0.89	0.25		0.40		3,500	30	60	12 hours	
5.44 5.04 5.04 4.72 4.96	4.32	0.25	0.40				4,000	25	1 40	Rapid	•••
4.96	4.08	0.14	0.48		0.20		2,000	70	40	• • • • • • • • • • • • • • • • • • • •	•••
7.44	5.20	0.75	0.45	0.80	0.24		2,000	35	50	••	Ye
5.68	4.80	0.19	0.35		0.28		1,800	40	40 50 40	••	
4.56	4.24	0.18	0.33	Trace.	0.24		8,000	70	50		No
5.60	4.96	0.10	0.35	0.40	0 44		13, 200		30	20 hours	- • •
5.68	5, 52	0.43	0.38		0.32		72,000		35	Rapid	•••
4.96	4.72	0.10	0.20	0.52			5,500	50	40	20 hours	Ye
6.72	5.84	0.64	0.32	0.56	0.12						
5.60	4.83	0.55	0.36	0.77	0.25						

TABLE L.—LaSalle—

				PE	M- RA- RE.	s	oLu	D 8.	Los	s on rion.	Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	In solution	in suspen-	Total	Not filtered	Filtered	16
Aug. 20 27 Sept. 3	Clay Light, turbid Yellow Averages	Earthy Little Good	Clay Sandy Fine	84° 82 84	82° 80 84	270 218 226 238	82 36 18 45	352 254 244 283	76 58 56 63	48 40 56 48	5.0 7.8 15.6 9.5

TABLE LI.—Henry-

				PE	EM- RA- RE.		SoLi	D S.		S ON TION.	Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	In solution	in suspen-	Total	Not filtered	Filtered	ſe
July 3 10 17 18 19 10 17 10 17 11 14 12 14 12 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Yellow Light Dark Light Light Yellow Light, turbid	Little Good Little Fair Good	Little Dark Little Fine Little None Dark Little Sandy	74° 74 73 80 84 80 80 82 86 82 86 82 86	94° 78 70 86 96 74 72 76 86 86 86 84 80	236 286 276 246 236 262 240 220 226 244 234 242 272 226 196	36 48 48 30 50 62 42 26 16 46 34 8 42 42 42	272 334 324 276 286 324 282 246 296 280 280 268 268 268 268	42 78 36 50 58 52	20 38 78 32 40 40 40 40 41 42 42 42 40 40 40 40 40 40 40 40 40 40 40 40 40	12.8 17.0 14.2 16.3 14.9 32.7 19.2 16.3 15.6 14.9 17.0 18.5 16.3 13.5 14.2

^{*} July 24, rain. † August 14, rain. ‡ August 21, rain.

The Vermilion River.

Оху Аваоі		Аммо	ONIA.	Nitro	GEN.	Nitrogen	Colonies		ER- ATION.		Indol p
Not filtered	Filtered	Free	Albuminoid	In nitrates	In nitrites	en by Kjeldahl	38per cc	1-10 ec	1 ec	Coagulation of Milk.	produced!
6.16 5.12 6.40 5.89	4.64 4.64 6.40 5.23	0.06 0.07 0.22 0.12	0.38 0.27 0.31	0.16 0.82 0.80	0.12 0.04 0.16	1.12 1.13 1.66	22,000 25,500 4,500	25 25 20	40	Very slow 20 hours Slow	Yes.

The Illinois River.

Oxyg	GEN BED.	Аммо	NIA.	NITRO	GEN.	Colonies	FERM	ENTA ON.		tndol p
Not filtered	Filtered	Free	Albuminoid	In nitrates	In nitrites	s-per co	1-10 cc	I cc	Coagulation of Milk.	produced!
5.76 6.56 9.28 5.28 5.22 6.00 5.92 4.96 6.56 5.52 5.76 4.56 5.76 4.56	4.72 5.28 5.20 4.72 4.50 4.40 4.80 5.68 5.36 4.08 4.80 5.28 5.12 4.08	0.55 0.23 0.28 0.84 0.20 0.94 0.28 0.35 0.13 0.30 0.71 0.25 0.15 0.56	0,40 0.43 1.05 0.36 0.33 0.48 0.39 0.40 0.38 0.43 0.26 0.30 0.27	1,28 1,60 0,92 1,40 1,44 0,72 0,40 1,00 0,88 0,60 2,00 0,88 1,12 0,80	0.20 0.24 0.14 0.20 0.20 0.23 0.20 0.24 0.28 0.20 0.24 0.04 0.32 0.20	6,000 *72,000 13,200 7,230 202,500 2,000 Liquiff'd 1,000 *22,000 6,500 8,000	50 10 None 70 30 50 25	None 10 40 5 30 10 90 25 50 50 50	Slow Rapid 12 hours Slow 24 hours 15 hours 24 hours Very slow 24 hours	Ves

^{*} No ice used.

TABLE LII.—Peoria, Narrows—

				TEM- PERA- TURE	Solids.	Loss on Ignition.	Chlorine
Date.	Color.	Odor.	Sediment.	Air Water	In suspension In solution	Filtered Not filtered	
July 10 17 24 31 Aug. 7 21 22 28	Light Light, turbid Light	Faint	Flocculent. Fine. Little Fine. None. Very little. None. Fine. Little Sandy.	72° 72° 80 88 78 76 79 78 80 79 78 80 79 88 196 80 78 81 96 84 94 84 84 86 82 86 66 68	238 34 2 306 2 2 256 22 2 232 32 32 2 256 28 2 230 20 2 234 8 2 232 2 238 24 2 216 20 2 232 12 20 2	442 36 34 4772 62 48 68 84 82 778 56 56 56 56	16.3

TABLE LIII.—Peoria, Wesley—

	_											
1900.				•								
May	30	Very dark	Faint	Much	70°	80°	286	490	776	94	60	8.8
June	7	Light, clear Dark	l_	Very little	74	80	266	28	294	60	60	14.9
••	14	Dark Light	Bad	Little	70	84	298	56	354	96	42	17.0
• •	19	Light	Good	Sandy	70	86	316	24	340	92	76	17.0
_ ::	26	DI-	Faint	Little	78	84	254	50	304	68 58	64	14.9
July	3	Dark Light Dark	Little	``	75	89	242	56 24 50 30 52 64	272	58	40	13.6
::	10	Light		Fine	80	80	250	52	302	48	44 84 40 38 48 26	15.6
	17	Dark	∖Řad	Black	77	70	328	64	392	84	84	24.8
	24	Yellow	G00d	Fine		78	244	124	368	46	40	18.
_		Light			80	88	240	18 20 384	258	38	88	15.6
Aug.	.7	Yellow	Not good	Flocculent	82	90	208	20	228	48 48	48	17.8
• •	14 21	Dark	Very bad	Clay	80	76	224	384	608	48 78	26 58	
	ZI		very bad	Fine black	84	90	254	50	304	78	98	9.9
	90	Limbs	Not good	Tino.	81	84	238	32	270	38	36	16.3
Sept.	40	Light Dark Dark and turbid	Mor Rood	Dowle	80	74	252	102	354	74	48	15.6
Oct.	40	Dark and turbid	Dad	Wlocanlent	65	80	318		344	88	74	22.7
OUL.	10	Dark and turbid	Dau	ir ioccuient	00	30	010	-60	944	- 00		20.
		Averages *					262	71	333	65	52	16.6
		ATTERMENT.			••••		202	••	900	00	32	10.0

^{*} Excluding May 30.

The Illinois River.

Oxy Abso		Амм	ONIA.	Nite	GEN.	Colonie		ENTA- ON.		Indol p
Not filtered	Filtered	Free	Albuminoid.	In nitrates	In nitrites	Colonies—per cc	1 oc. (Per cent)	1-10 cc. (Per cent)	Coagulation of Milk.	Indol produced !
5.44 5.52 5.28 5.52 4.80 4.96 4.24 4.88 4.32 4.72 4.64 6.56	5.44 4.64 4.80 4.48 4.56 4.24 4.32 3.92 4.32 4.32 4.32 4.32	0.35 0.22 0.08 0.56 0.15 0.24 0.14 0.20 0.16 0.27 0.12 0.08	0.48 0.28 0.36 0.38 0.31 0.34 0.28 0.28 0.42 0.42 0.30	1.40 1.40 1.80 1.60 0.68 0.80 0.96 0.72 0.40 0.20 0.72 1.08	0.10 0.06 0.10 0.16 0.10 0.24 0.08 0.16 0.20 0.12 0.12	35, 000 2, 000 90, 000 51, 500 180, 000 7, 000 2, 500 7, 500 472, 500	None 35 10 85 20 None	None 50 10 70 10 50	Slow	

The Illinois River.

16.00	6.08	0, 75	0.98				10	10	24 hours	. Yes
7.04	5.12	1.22	0.80	1.00	0.12	28,500	50	40	Rapid	.,
16.64	9.92	3.00	8.00	None	None	3, 180, 000	None	None	RapidVery rapid	No.
6.64	4.89	1.00	0.54	1.08	0.12	3, 190, 000 238, 000	1			
5.36	4.64	1.14	0.80	1.08	0.16	230.000	25	10	**	
5.20	4.56	0.38	0.76	2.00	0.20	215,000	10	10	Rapid	
5.36 5.20 6.08	8.52	0.40	0.76		0.12	126,000	25 10 5 5	40	12 hours	
8.56	6.72	1.88			None	150,000	5	5	Rapid	
6.24	4 48	0.60	0.50	0.80	0.08	32,000	None	None		: :
6.16	4 48 4.48	0.70	0.50		0.12	420,000	20	10	Very rapid	
7.12	6.80	0.86	0.92		0.12 0.20	2, 729, 000	5	20	Rapid	' ••
7.12 0.24	4.16	0.46	0.60		0.12	218,000		10	Very rapid	
5.20	7.36	4.50		None	0.00	About	٦	10	vory rapid	1
	1.00	=.00	2.02	МОДО	0.05	24,000,000	10	15	15 hours	
5.44	5.04	0.56	0.52	1.00			15	10	Very rapid	
0.32	8.16	2.10	1.36	1.36	0.12	8, 352, 000	40	10	very rapid	
2.40	19.04	5.50	4 10	None	None	0, 302, 000	100	1.0	•••••	1
4.20	19.04	0.00	4.10	Моце	None	!				1
9.91	6.59	1.62	1.34	0.72	0.11					1

TABLE LIV.—Pekin—

				TE PE	RA-	\$	SoLir	e.	Loss		Chlorine
Date.	· Color.	Odor.	Sediment.	Water	Air	In solution	In suspen-	Total	Not filtered	Filtered	•
† 18 24 Aug. 17 29 Sept. 5	Dark. Light. turbid. Light. Yellow. Dark, turbid.	Earthy Good Little None Little Good Little	Light col'r'd Sandy. Fine. Sandy Little Fine. Little Granular. Sandy.	70° 76 73 75 76 81 77 76 77 80 82 78 82 78	80° 96 78 72 86 90 88 75 78 95 88 92 88	276 260 260 304 284 252 260 260 244 242 2170 258 224 250	480 80 60 28 52 20 30 40 26 22 4 108 118 26 48	756 340 320 382 336 272 290 300 272 256 248 330 288 284 272	54 38 80 100 50 62 40 222 40 44 42 56	56 38 36 80 88 48 54 40 22 34 38 38 38 38 38 48 48	9.2 14.9 11.4 15.6 16.3 15.6 22.0 15.6 17.8 14.2 15.8 13.5 12.1

^{*} June 13. † July 18. ‡ July 24. ‡ Aug. 17. ¶ Sept. 12.

TABLE LV-Havana-

			1						1		
										i	
						272	106	378		40	12.8
14	Light	Good	Little				96		52	52	12.8
19	**	Little	Sandy	68	65	270	88	358	72	70	11.4
26	**	Earthy		70	88	248	76	324	72	64	12.1
-2	Light, turbid	Buiting		78			42	330		76	11.4
10	Light	Little	Fine, dark				84		64	60	14.2
17	Light turbid	••	Vary fina	76			86		72	56	14.9
24	Light vellow	None	Fine	76			46		54	40	22.7
31	Dark	Little		70	64	248	38	286	42	36	14.2
7	Yellow		Dark	78	80	226	18	244	40	40	18.5
14	Yellow, very tur.	Not good	Clay	76	74	274	134	408	64	48	14.9
21	Light, turbid	Little	Fine	80	84	204	46	250		36	12.1
28	Yellow	Good	Sandy	78	80	228	48	276	48	34	16.3
4	Dark, turbid	Little	Fine	74	76	148	214	362	52	36	16.3
10	Sandy	**	Sandy	60	52	240	20	260	36	32	21.3
	Averages					245	77	322	55	48	15.0
	14 19 26 2 10 17 24 31 7 14 21 28 4	14 Light	14 Light	14 Light Good Little Sandy 26 Earthy 10 Light, turbid Little Fine dark Yellow Olay Little Dark Yellow Olay Clay Light, turbid Little Fine Sandy Dark Little Fine Sandy Dark, turbid Little Fine Sandy Sandy Sandy Sandy Sandy	14 Light	14 Light	14 Light Good Little 68 66 256 19	14 Light Good Little 68 66 26 26 26 Earthy 70 88 248 76 21 Light, turbid 78 90 288 42 10 Light, turbid Very fine 76 78 82 268 94 24 Light yellow None Fine 76 80 226 84 31 Dark Little 70 64 248 38 7 Yellow Dark 78 80 226 18 14 Yellow, very tur. Not good Clay 76 74 274 134 21 Light, turbid Little Fine 80 84 204 46 28 Yellow Good Sandy 78 80 228 48 28 Yellow Little Fine 80 84 204 46 28 Yellow Good Sandy 78 80 228 48 4 Dark, turbid Little Fine 74 76 148 214 10 Sandy Sandy 60 52 240 20	14 Light Good Little 68 66 256 96 352 19	14 Light Good Little 68 66 256 96 352 52 19 Little Sandy 68 65 270 88 358 72 26 To Sandy 70 88 248 76 324 72 26 78 90 288 42 330 78 10 Light Little Fine, dark 78 82 268 84 352 64 11 Light, turbid Very fine 76 80 226 86 388 72 24 Light yellow None Fine 70 64 248 38 286 42 21 Dark 78 80 226 18 244 40 31 Dark 70 64 248 38 286 42 4 Yellow 78 80 226 18 244 4 Yellow, very tur Not good 76 74 274 134 408 64 21 Light, turbid Little Fine 80 84 204 46 <	14 Light Good Little 68 66 256 96 352 52 52 19 Little Sandy 68 65 270 88 358 72 70 26 Earthy 70 88 248 76 324 72 64 10 Light 78 90 288 42 330 78 76 10 Light Little Fine, dark 78 82 268 84 352 64 60 11 Light, turbid Very fine 76 80 226 86 338 72 56 24 Light yellow None Fine 76 80 264 46 310 54 40 31 Dark 70 64 248 38 286 42 36 7 Yellow 78 80 226 18 244 40 40 4 Yellow, very tur Not good Clay 76 74 274 134 408 64 48 22 Yellow 80 228

TABLE LVI-Havana-

1900. July 31 Aug. 7	Yellow Yellow, turbid Yellow	Good None	Sandy Fine Sandy Heavy clay.	70° 78 76	64° 60 74	270 254 240 134	14 6 90 306	284 260 330 440		48 40 46 28	4.3 5.7 4.3 3,5
	Averages					224	104	328	58	40	4.4

Rain night before collection. Sample delayed.
Rain during two days preceding collection.
Heavy rain day previous to collection.
Heavy rains during four days previous to collection.
Delayed.

^{*} July 17, rain at time of collection.
* September 4, heavy rain second day before collection.

The Illinois River.

Oxy Abso		Амм	ONIA.	Nitro	GEN.	Nitrogen process	Colonie		MENTA-		Indol p
Not filtered	Filtered	Free	Albuminoid .	In nitrates	In nitrites	n by Kjeldahl ss	Colonies—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	Indol produced?
17.44 6.72 5.68 6.48 5.60 5.28 6.16 5.60 7.60 8.48 8.00 6.08	6.56 6.32 5.20 5.34 4.72 4.88 4.96 4.96 4.96 6.00 4.56 6.72 5.76	0.50 0.77 0.40 0.45 0.12 0.49 0.50 0.32 0.39 0.18 0.38 0.38	0.98 9.49 0.45 0.54 0.36 0.36 0.36 0.36 0.40 0.40 0.40	0.68 0.56 1.20 0.68 1.00 1.04 0.40 0.60 0.80 0.40 0.80 1.72	0.05 0.12 0.14 0.14 0.44 0.24 0.20 0.08 0.04 0.12 0.12 0.12	1.32 1.56 0.94	43,500 6,500 105,600 88,800 16,000 52,500 12,000 24,000 72,000 72,000 72,000 449,000	10 40 20 20	15 70 None 20 30 20 10 10 30 55 25	20 hours Rapid	Yes No Yes Yes Yes

The Illinois River.

	5.60 5.04	0.38	0.37 0.39		0.10 0.14	 16,600 345,600			15 hours	
8.16 6.96 6.32	5.68							10	24 hours	NT.
0.32	0.00	0.65	0.52	0.92	0.10	 108,000	None	40	••••	No
	- 00	0.50	A 40	امما	0.40	 Plates	امدا			١.
6.72	5.20	0.52	0.48		0.12	 liquified	10	15	l	
5.52	4.56	0.33	0.40		0.24	82,000	20	20	Rapid	:
5.92	4.48	0.12	0.40		0.40	 2,500	59	50	•••	Ι:
6.72	5.04	0.44	0.38			 8,500	5 9 20		24 hours	
6.32	5.20	0.49	0.45		0.12	 25,000	30	80	· · · · · · · · · · · · · · · · · · ·	
5.52 5.92 6.72 6.32 5.76 6.72	4.48 5.04 5.20 4.56 6.24	0.40	0.25	0.72	0.16	 83,500	30 50	50	20 hours	٠.
6.72	6.24	0.23	0.54		0.04	 292,500	25	25	Slow	١.
8.56	5.92 4.88 4.72	0.60		None	0.04	 161,000	15	20	24 hours	
5.84	4.88	0.15	0.26		0.24	 55, 500	40	40		
5 60	4 72	0.13	0.48		0.24	 32,000	50		20 hours	٠ ١
8.56 5.84 5.60 6.80	6.00	0.14	0.33		0.16	 93,000	10		Rapid	
5.04	3.92	1.18	0.31	0.92	0.12	 20,000	1 10	***	Ivapiu	
U. UE	0.52	1.10	0.01	0.92	0.12	 •	-	• • • • • • •		
6.46	5.14	0.41	0.41	0.77	0.18	 •				

The Spoon River.

5.60 6 96 5.68 13.60	6.16 5. 4 4	0.33 0.42	0.41 0.42	None	9.04 0.08 0.12 0.08	1.27 1.66	Liquif.'d 193,000	30 15 50 50	30 Slow 30 24 hours	::
7.96	5.56	0.27	0.47	0,08	0.08	1.41				

TABLE LVII-Pearl-

				PE	RA RE.	٤	Boli	D8.		s on Tion.	Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	In solution	in suspen- sion	Total	Not filtered	Filtered	0
1900 June 7 14 19 July 3 17 24 Aug. 2 † 16 1 23 ¿Oct. 2	Light turbid	Earthy Good Earthy Good None Good Good Earthy Good Earthy Good Earthy Good Earthy Good Earthy Good Earthy Good Good Good Good Good Good Good Goo	"	80° 73 77 79 82 82 80 83 82 88 88 88 90 76	85° 84 84 87 95 75 76 80 98 102 98 96 102 94	288 268 264 306 260 242 236 254 230 240 180 230 246 252	82 52 42 44 1236 280 150 94	482 490 316 444 382 314 318 306 272 304 1476 469 380 360	74 52 90 42 54 38 50 30 48 84 48 48	28 40 30 40 40	8.5 9.2 9.2 12.8 11.4 9.6 16.3 13.5 14.5 13.5 12.8

TABLE LVIII-Grafton-

					EM- RA- RE.		Solii	os.	Oxyo ABSO TIO	RP.	Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	In suspen-	Total	Not filtered	Filtered	ē
July † Aug.	7 Light, turbid 4 Yellow 9 Light, turbid 3 O Yellow 7 Light, turbid 4 Yellow, turbid 1 Very light 11 Yellow 12 Yellow 13 Yellow 14 Yellow 15 Light, turbid 16 Dark, turbid 17 Light, yellow 17 Light, yellow 18 Yellow	Good	Sandy Clay Little Sandy Fine Very fine Fine None Very little Little Sandy	76° 78 77 80 82 87 81 83 88 87 86 84 82 83 73 68	74° 89 86 90 88 78 75 90 96 96 96 98 88 70 82	280 280 260 204 272 222 260 208 244 272 200 206 214 226 234	102 254 92 184 114 72 20 6 36 136 94 70 86	382 534 352 388 386 296 302 280 264 308 336 308 336 308 312 332 276	86 46 74 44 94 52 68 46 40 52 48 64 54 54 54 54	62 44 60 36 76 50 64 44 36 46 42 60 32 42 48 36	7.1 9.2 9.2 9.2 11.4 9.2 11.4 9.2 14.9 12.0 14.9 9.9 11.4 10.6
	Averages					243	88	331	57	47	10.0

^{*} July 17. Rain night before collection † Aug. 16' Heavy rains, river muddy. † Aug. 23. Heavy rains, river muddy, bacterial sample warm. † Oct. 2. River high.

^{*} Sample delayed. † River rising and muddy.

The Illinois River.

Oxyg Absore		Амм	ONIA	Nitr	OGEN.	Colonies		ENTA-		Indoi p
Not filtered	Filtered	Free	Albuminoid.	in nitrates	In nitrites	%—per cc	1 10 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk,	Indoi produced \$
7.20 6.24 7.20 6.16 5.44 7.84 4.64 5.68 13.44 6.16 6.08 6.96	6.24 4.80 4.56 4.96 5.68 4.24 4.32 4.88 4.80 4.56 5.28 5.92	0.17 0·14 0.10 0.08 0.11 0.08 0.07 0.08 0.14 0.30 0.12 0.10	0.45 0.43 0.56 0.31 0.33 0.32 0.41 0.20 0.46 0.48 0.38 0.38	0.80 1.28 1.00 1.40 1.60 0.40 0.60 0.88 None 0.40 0.88 0.88	0.01 0.06 0.08 0.32 0.01 0.16 0.06 0.04 0.01 0.01 Trace 0.12 0.08	1, 100 3, 200 1, 900 5, 500 21, 500 31, 000 142, 000 330, 000 52, 000	80 None 45 None 10 30 90 10 25	10 30 None 10 None 40 15 15	20 "	No

[|] Delayed, bacterial sample warm.

The Illinois River.

Oxygen Absorbed.	Ammonia.	Nitrogen.	Nitrogen dahl pro	Colonie		MENTA- ION.		Indol p
Filtered	Albuminoid Free	In nitrites In nitrates.	ren by Kjel- process	Colonies—per cc	1-10 cc. (Per cent)	1 cc. (Per cent)	Coagulation of Milk.	Indol produced?
8.00 5.55 7.36 5.28 4.16 7.28 5.44 6.6 5.20 4.76 5.36 5.11 4.88 4.06 5.36 5.12 4.88 4.06 5.552 4.96 6.08 5.32 5.36 5.33 6.58 5.33 6.60 4.96 5.552 4.66 5.552 4.66 5.552 4.66	0 0.13 0.45 0 0.10 0.34 1 0.18 0.56 0 0.11 0.31 0 0.07 0.35 0 0.04 0.27 0 0.05 0.36 0 0.02 0.24 0 0.06 0.39 0 0.09 0.44 0 0.00 0.36 0 0.00 0.36 0 0.00 0.36 0 0.00 0.36 0 0.00 0.36 0 0.00 0.38 0 0.00 0.38	1.12 Trace 1.36 None 1.40 0.02 0.10 1.44 0.01 0.66 0.32 1.00 1.02 1.00 0.72 Trace 0.80 0.28 0.02 0.80 0.28 0.02 0.80 0.20 0.80 1.00 0.08 1.04 0.04 1.20 0.02 0.87 0.03	1.30 1.16 0.88 0.94 0.84 1.28 1.14 1.19 1.23 1.17	Pl's liq'd 4,500 13,000 4,500 95,000 161.000 1,400 Liquef'd	50 10 50 None 20 60 None 10 35 15	None 50 10 10 50 10 10 30 10 60 10 35 50 20	30 hours 18 20 Very rapid 24 hours Rapid	No

TABLE LIX-Grafton-

				TEM- PERA- TURE.		Solids.			Loss on Ignition.		Chlorine
Date.	Color.	Odor.	Sediment.	Water	Air	In solution.	in suspen-	Total	Not filtered	Filtered	e
Aug. 7 14 Sept. 10 17	Very dark	Rarthy Good	Yellow	82° 83 84 82 71 70	96° 96 90 88 70 82	144 184 160 150 142 130	474 122 92 109 138 236	618 306 252 258 280 366	66 44 48 50 56 54		2.8 2.5 2.1 1.4 2.1 1.4

TABLE LX-Browning-

30	Light turbid Yellow Yellow turbid	Earthy	•••	82	80° 83 85	424 180 226	42 140 90		44	72 32 44	5.0 2.8 13.5
	Averages					277	90	367	61	49	7.1

^{*}Aug. 27, river very high.

T BLE LXI - Wilmington -

Sept. 5	Dark Yellow turbid Yellow	· · · · · · · · · · · · · · · · · · ·	Sandy	78	82° 88 92	180 250 304	76 58 30	256 308 334	42 56 74	42 46 72	2.1 2.1 1.4
	Averages					244	55	299	57	53	1.8

†Aug. 22, river very muddy.

The Mississippi River.

Oxygen Absurbed.		Ammonia.		NITE GEN.		Nitroge dahl l	Colonies	FERMENTA- TION.			Indol p
Not filtered	Filtered	Free	Albuminoid	In uitrates.	In nitrites.	en by Kjel- process	98—per co	1-10 cc	1 cc	Coagulation of milk.	Indol produceds
16.64 15.84 6 00 11.44 12.00 8.48	6.96 10.08 5,92 8.16 5.44 5.92		0 53 0.39 0.62 0.53	0.20 Trace None	Trace 0.01	1.30	Liquefi'd 2,500 62,000 2,000 Liquefi'd		25 60 10 20	16 hours Very slow 24 hours 20 hours 24 hours	No .

The Sangamon River.

6.16 7.04 5.76	6.40		0.28 0.32 0.44	None	0.08 0.04 0.48	1.28	30 50 50	15	24 hours 24 hours 24 hours	
6.32	5.57	0.06	0.35	0.35	0.20	1.23				

The Kankakee River.

7.44 10.08 10.08	7.65	0.10	0.50	0.80	0.08	1.26 1.40 1.55	45, 500 3, 300 1, 200	20 70 20	40 15 hours No 20 20 hours Yes 40 Slow No
9.20	7.68	0.10	0.46	0.77	0.06	1.40			

Table LXII.—Averages for Summer 1900.

	Total sc	Los		Oxy A sorp	B·	Chlorine	Free A1	Alb. An	Nitrogen	Nitrogen	Organic nitre (Kjeldahl).
	solids	Not filtered	Filtered	Not filtered	Filtered	e	Aumonia	Ammonia	n in nitrates	n in ritrites.	nitrogen.
Chicago, lake Bridgeport, I. & Mcanal Western av. drainage canal Lockport, basin Joliet, Desplaines river and canal Wilmin'ton, Kankakee riv'r Morris, Illinois river Ottawa, Illinois river LaSalle, Vermilion river LaSalle, Vermilion river Henry, Illinois river Peoria, (wesley) Illinois. Pekin, Illinois river Havana, Illinois river	148 447 203 212 280 299 251 266 312 278 283 265 333 326 322	17 76 44 42 54 57 44 50 79 48 63 51 49 65 53	17 54 38 34 44 53 39 44 72 44 48 44 43 52 48	2.93 16.31 6.23 5.29 6.97 9.20 6.40 6.77 5.60 5.89 5.94 6.77 5.60 5.89 7.01	2.98 9.11 4.42 4.34 4.52 7.68 4.66 5.03 6.32 4.88 4.53 4.53 6.59 5.11	2.17 89.7 9.2 12.6 31.4 1.8 17.8 17.2 4.9 15.5 16.9 15.5 16.0 15.0	0.016 15.26 1.34 2.16 4.66 0.10 2.84 0.11 0.55 0.12 0.41 0.21 1.62 0.34	0.094 2.55 0.95 0.76 0.85 0.46 0.63 0.39 0.50 0.36 0.36 0.34 1.34 0.41	Tr 0.13 0.12 .00 0.02 0.77 0.17 0.92 .00 0.77 0.43 0.95 0.72 0.77	0.00 0.17 0.11 0.05 0.09 0.06 0.27 0.02 0.25 0.10 0.22 0.12 0.11 0.11	13.85 2.58 1.40 1.25 1.30
Havana, Spoon river	328 367 450 331 347	53 61 55 57 53	40 49 39 47 40	7.96 6.32 6.87 5.85 11.73	5.56 5.57 5.06 4.82 7.08	4.4 7.1 11.6 10.6 2.0	0.27 0.96 0.12 0.07 0.07	0.47 0.35 0.43 0.36 0.54	0.08 0.35 0.75 0.87 0.03	0.08 0.20 0.07 0.03 0.02	1.41 1.23 1.13 1.49

GRAPHIC CHART DRAWN FROM THE TABLE OF AVERAGES (LXII) FOR THE SUMMER OBSERVATIONS 1900.

The letters on the abscissa line represent the points where water was collected, in the order: Bridgeport, Morris, Ottawa, LaSalle, Henry, Peoria (upper), Peoria (lower), Pekin, Havana, Pearl, Grafton. The values for Bridgeport are reduced from the observations for both canals on the assumption that the water left Chicago in one channel. Along the axis of ordinates the spaces have the following values: For chlorine (Cl) one space represents 2 parts per million, starting from 25 as base line. For free ammonia (Fr. am.) one space represents $\frac{1}{2}$ part per million, starting from zero. For albuminoid ammonia (Alb. am.) one space represents 1-10 part per million with base at zero. For oxygen consumption one space represents $\frac{1}{2}$ part per million with base at — 10.

Inasmuch as the flow in the old canal was irregular and variable throughout the summer of 1900 it was found necessary to make determinations here as well as in the new drainage canal. Through much of the time the larger part of the stock-yards sewage, which finally left the city, seemed to be carried by the way of the Bridgeport pumps; hence calculations based on the discharge become difficult on account of lack of specific information as to the amount of

flow through each channel from day to day. After the middle of July, 1900, when the Bridgeport pumps passed from the city into the control of the sanitary district more careful returns were kept and the figures furnished will be referred to below.

Our main interest in these tables lies in the relation of the quality and quantity of the dissolved and suspended substances at Bridge-port and the entrance of the drainage canal, as compared with the amounts of the same substances at Grafton, at the mouth of the river. A consideration of the nature of the Bridgeport water, as it was before the opening of the large canal, is first in order.

Practically this may be looked upon as made up from three sources:

- 1. House drainage and industrial sewage.
- 2. Diluting lake water.
- 3. Stock-vards sewage.
- 1. At the time this work was begun the Chicago river received the whole of the drainage from the West Side of Chicago, and from the North Side essentially all with the exception of that from the 25th ward. From the South Side most of the sewage of the 3d, 4th, 32d, 33d and 34th wards went then and still goes to the lake; from the other wards the drainage is mainly to the river. From data furnished me by the Chicago city sewer department and from figures of the last school census, I estimate that from a population a little short of 2,000,000, the waste of 1,600,000 went into the river. On its way to the river this waste was carried down and diluted by the water supplied to this same fraction of the population. During 1899 the amount of water pumped was 109,755,909,894 gallons, which amounts to almost exactly 150 gallons per day for each individual of the estimated population of 2,000,000. This is equivalent to nearly 28,000 cubic feet per minute. If four-fifths of the population drain into the river the proportional volume of water discharged here would be 22,400 cubic feet per minute. But it was unquestionably more; because of the greater consumption of water in the industrial operations. It may be safely estimated that 26,000 cubic feet per minute passed through the sewers carrying the house drainage and industrial waste of a population of 1,600,000.

According to the investigations of E. Heiden and others the organic solid waste from the urine and feces of such a population should amount to over 120,000 kilograms daily, about 265,000 pounds, or 132.5 tons. I have no means of estimating the household waste exclusive of excreta, but the part which can be carried down in the sewers is not as large as might be at first thought supposed. The fats and soaps are mostly retained by catch basins, and these are the important items in ordinary sink drainage. I believe nothing has been done toward determining the organic industrial waste entering the Chicago sewers from any district outside the stock-yards, but I am inclined to think that from this source the amount is not sufficient to bring the grand total to over 150 tons for the 24 hours for the city, exclusive of the stock-yards.

From the investigations of Heiden and Weigelt, quoted by Koenig in his well known work on the contaminations of waters, as well as from numerous experiments and calculations which I have made myself, I estimate that the total excreted nitrogen, considered in the form of ammonia, which reaches the sewers, can not be less than 27.400 kilograms, about 60,300 pounds, or a little more than 30 tons daily. The nitrogen from industrial waste, exclusive of the stock-yards, is not large and may be neglected. The greater part of this nitrogen is in very freely soluble condition. If all of it were immediately converted into ammonia we should expect to find the free ammonia content of the Bridgeport water as 19.2 parts per million from this source alone, counting 35,000 cubic feet per minute (1,428,000,000 kilograms per day), as the average discharge. Supposing the Bridgeport pumps to discharge with the 35,000 cubic feet per minute 150 tons of organic matter daily, this would give 95.5 parts per million as the organic content.

- 2. The portion of the Bridgeport water which did not pass through the sewers is not large. This conclusion is reached in two ways. From the practical absence of current in the river it follows that the pumps lifted approximately what the sewers, located at different points, discharged. The same result follows from the figures given above. The volume of water pumped which flowed into the sewers was estimated as 26,000 cubic feet per minute, while the Bridgeport flow was not over 35,000 cubic feet. The amount and character of the dissolved organic matters in this diluting water are not important for the purposes of this investigation.
- 3. An extremely important factor in determining the character of the Bridgeport discharge is the drainage from the stock-yards sewers, and in former years the output of these was much greater in amount of organic matter than at the present time. In 1886 I made some examinations of the flow of the main sewer, and found that the organic matter discharged by it, when calculated to the dry condition amounted to over 112 tons daily, which is about equivalent to the closet sewage of a population of 1,350 000. This large content was exceeded greatly in earlier years when the commercial value of the waste was not appreciated. Several years later, in 1890 and 1891, I had occasion to make extended investigations of the character of the sewage reaching Bridgeport from several quarters. Over twenty complete tests were made on the sewage discharged from the Brennock and Ashland sewers combined, the samples being collected in such a manner as to secure a very accurate and fair average for the flow of the 24 hours. With a mean discharge of 1,336,000 cubic feet per day, the organic matter present was 2,428 parts per million, corresponding to 91,850 kilograms or about 101 tons daily. At the same period the discharge of the Halsted and 39th street sewers was 9.3 tons daily of dry, organic matter. The total nitrogen from the Ashland and Brennock sewers, counted as ammonia, was 418.5 parts per million, amounting to 15,820 kilograms, or 17.4 tons daily. From the Halsted and 39th street sewers the amount was 37.2 parts per million, corresponding to 1,406 kilograms daily, or 1.25 tons. For the two sewer systems the ratio of ammonia to total organic solids is nearly the same, and high enough to indicate the essential proteid character of the waste.

I believe these results may be applied to present conditions with a fair degree of accuracy. While many improvements have been made in processes for utilizing stock-yards waste, the gain is practically compensated for by the increased slaughtering of cattle and hogs. Extensions in the Ashland avenue and Halsted street sewer systems bring also a greatly increased amount of sewage from points south of the stock-yards, so that the final discharge must now be above the figures given. Approximately, then, the flow at Bridgeport can be taken as made up of city sewage containing 150 tons daily of dry organic matter and the combined stock-yards and Ashland and Halsted sewers, containing about 110 tons daily, but from the latter must be deducted the fraction of house sewage it contains, which in dry organic matter must amount to about 20 tons, as the contributing district has a population of about 200,000. Supposing the above assumption as to the constant flow from the stock-yards correct, we must add 90 tons of dry organic matter to that from the city flowing toward the Bridgeport pumps.

What fraction of this 240 tons actually passed the pumps into the old canal? The question is difficult to answer, because of uncertainty as to the volume of the water pumped, but in the investigations referred to, made nine years ago, the ratio of the discharge from the main city and stock-yards sewers to that passing the pumps, in cold weather, was 31 to 24. A part of this loss was due to sedimentation; in the south fork of the south branch this may be considerable in

winter. In hot weather there is an enormous loss in this part of the stream from fermentation or putrefaction changes. It is but necessary to watch the rapid escape of gas bubbles in the southern portions of the river to realize the importance of this. From the examination of 76 samples of water collected mostly in the fall months of 1890, and considering the flow then as now, as approximately 35,000 cubic feet per minute, I found that about 150 tons daily of dry organic matter and ammoniacal salts was actually passing the pumps. For the cold months of 1899 the amount was probably in excess of this, because of increase in population. During the summer it was probably lower, because of rapid destructive changes in the river itself.

We have now some idea of the extent of the pollution of the canal at its source and are ready for the question as to how far it and the river receiving it became purified in their flow to the Mississippi. This is a very complicated problem, and it must be said at the outset that the apparent purification found varies largely with the time of the year at which the examinations are made. The extent of apparent purification depends also on our arbitrarily assumed standards, and must, therefore, present different values to different observers. It is also necessary to separate the effect of dilution from that of apparent purification, for much of what appears to be a diminution in the amount of organic matter is merely a percentage decrease through addition of less contaminated diluting water. What we call purification in a flowing stream is properly an actual destruction of its organic matter, or conversion into organic matter of a harmless type. not in any way offensive to the senses. It also includes, and this is very important for the purpose of this investigation, the destruction in some manner of certain of its living vegetable forms, which at the present time are commonly looked upon as causative of various The destruction or disappearance of these vegetable species or bacteria, is in a large measure dependent on the disappearance of certain kinds of organic matter, and this latter is altered or destroyed mainly through the activity of bacteria themselves, which suffer in the process.

As a measure of the disappearance or alteration of organic matter we can conveniently take the changes in the observed oxygen absorption and albuminoid ammonia content, as defined above, and this will be done in what follows, in which the conditions prior to the opening of the drainage canal will be considered first. But first we must settle the question of average dilution of the canal water on its way to the Mississippi. Between Bridgeport and Grafton numerous streams mingle their waters with the original pump discharge; the effect of these must be considered. It is a matter of common knowledge that the flow of most of these streams is extremely variable, and single measurements of flow as usually made may give very misleading results. A method of somewhat greater accuracy depends on the determination of the chlorine at various points in the main stream and the important tributaries. The decrease in the chlorine found becomes a measure of the amount of diluting water, if the

chlorine content of the latter is known. The table below gives the average amount of chlorine at points along the canal, the Illinois and the larger tributaries, expressed in parts per million:

It will be observed that we have a slightly greater amount of chlorine at Lockport than at Bridgeport, which may be due to a concentration by evaporation on the way. There is again an increase between LaSalle and Henry, which may in part be due to the sewage of LaSalle and Peoria and partly to the fact that the canal is discharged below the point where the LaSalle samples were taken. The Vermilion river enters at LaSalle, but through most of the season it was very low and in chlorine content was but little better than sewage itself. Peoria and Pekin add appreciably to the chlorine, as shown by the figures for the latter place and Wesley, as contrasted with those for Peoria, Narrows.

One hundred volumes of water below the junction of the main stream and a tributary may be looked upon as made up of x parts of main channel water and (100-x) parts of tributary water. If we have—

- a parts of chlorine per unit volume in the main channel,
- b parts of chlorine per unit volume in the tributary,
- c parts of chlorine per unit volume after the union, then,

$$a x+b (100-x)=100 c$$

from which:

$$x=100$$
 $\frac{c-b}{a-b}$

Applying this formula to the water at Joliet we find that it was made up of 87.4 parts of canal flow and 12.6 of DesPlaines river water. Above Morris the Illinois is formed by the union of the canal and DesPlaines water with that from the Kankakee and DuPage, a stream similar to the Kankakee in general character. Assuming that their chlorine content was the same, we obtain as the composition at Morris, for 1899, 62.3 per cent of canal water and 37.7 per cent of diluting water. This leaves out of consideration the effect of the chlorine added by the Joliet sewage. Relatively, however, this effect is small, as was found in the former investigations for the Board. At LaSalle we have 40.4 per cent of canal water and 59.6 per cent of

dilution. At Havana, above the Spoon, there is about 27 per cent of original canal water and 73 per cent of dilution. The flow from the Spoon is variable, and during the latter part of the season was small, but that from the Sangamon and smaller tributaries is considerable. These tributaries make up 42 per cent of the flow at Pearl. The original canal water is now reduced to about 15.6 per cent, while at Grafton it probably goes below 15 per cent.

These data are, of course, only approximations, but in corresponding seasons somewhat similar results have been found by actual sur-The enormous dilution between Havana (above the mouth of the Spoon) and Pearl is remarkable and can not be accounted for by the main tributaries, the Spoon and the Sangamon. Smaller streams, such as Crooked Creek, also enter, but their flow does not appear to The marked decrease in the chlorine indicates dilution. however, beyond question. Practically the same evidence was given by the work of 1888. It must be remembered, however, that this part of central Illinois is a region of springs and a very large amount of water must enter the river from them. The bluffs along the west bank have furnished water to Peoria for years and similar conditions prevail above and below this place. Several of the little lakes near the river are largely fed by springs and in turn drain into the main While it is quite impossible to estimate the flow of these springs, their effect must be borne in mind in considering the great lilution in the lower river. It is likely that the dilution between Henry and Peoria, referred to below, may be explained in this way.

From the data obtained I have calculated the following table, for the 1899 results, which gives the dilutions at different points in the Between LaSalle and Peoria there is a marked decrease in chlorine corresponding to a considerable dilution which can not be accounted for by the size of any of the streams entering. The greater part of this dilution falls below Henry, and I have made an arbitrary assumption of a 5 per cent dilution between LaSalle and Henry. The Peoria dilution is calculated also from LaSalle. The increased chlorine at Henry can not be readily accounted for and complicates the problem. The flow from the Big Vermilion, which is here estimated as falling below LaSalle, is often very high in chlorine, and from the following considerations may account for part of the increase. The Big Vermilion water is collected by a dam above Streator and is pumped from a connected reservoir to supply the The summer flow in the river above this place is very small and much below the sewage flow. The river below Streator is practically sewage in which the chlorine persists, while the organic matters appear to be pretty well oxidized. Some mine drainage also reaches the river. The water is at times very high in sulphates.

	Canal water	Des Plaines.	Kankakee, DuPage, etc.	Small streams	Fox, etc	Big & Little Vermilion	Unknown dilution	Mackinaw.	Spoon, Sang- amon, etc	Small streams
Joliet	87.4 62.3 57.7 40.4 38.4 31.2 26.9 15.6	12.6 9.0 8.3 5.8 5.5 4.5 3.9 2.3	28.7 26.5 18.5 17.6 14.3 12.3 7.1 6.6	5.8 5.0 4.1 3.5 2.0	30.0 28.5 23.2 20.0 11.6	5.0 3.8 3.3 1.9	18.9 16.3 9.5	13.8 8.0	42.0	

For some of the smaller tributaries a chlorine content of 4 parts per million has been assumed in making the calculations. This is near the truth, as shown by the averages of the examinations made on similar waters. It may be very naturally objected that in some of the above tables, based on chlorine diminution, I have neglected to consider the effect of the lower river towns as well as of Joliet. But, as explained for Joliet, the salt in this contamination is small when compared with that already present, and the omission from the calculation can occasion no serious error. On the other hand I have said nothing about the slight but constant loss of chlorine which follows through absorption by certain kinds of plant life in some parts of the river at times. Neither effect is great enough to interfere with the approximate estimations, however.

By the aid of the tables above we can calculate what the organic contamination of the river, as measured by the ammonia and oxygen consumption, should have been through 1899, supposing no purification to have taken place, or no great sewage addition, such as furnished by Peoria, made. This follows by adding together the contaminations due to the fractions of canal and tributary waters which combine to make the flow at any point. In several instances, for the smaller tributaries not analyzed, it is necessary to assume that the diluting water carries about the same kind and amount of organic matter contained in similar streams that have been analyzed. The following table gives the results reached:

	Fв Аммо		ALBUM Amm		Oxygen Consumed.	
	Found.	Calc.	Found.	Calc.	Found.	Calc.
Bridgeport	19.89		3.22		26.65	
Lockport	19.86	19.88	3.33	3.22	27.90	26.6
Joliet	16.05	17.38	2.89	2.97	25.69	25.40
Morris	10.10	12.41	1.20	2.21	9.16	19.7
Ottawa	6.23	10.50	0.62		7.13	18.6
LaSalle	4.67	8.10	0.59	1.58	6.99	15.2
Henry	3.27	7.66	0.55	1.42	7.00	14.10
Peoria (1)	0.90	6.26	0.57	1.31	6.86	12.49
Peoria (2), Wesley	4.36	6.26	3.20	1.31	17.44	12.49
Pekin	1.40	6.26	0.83	1.81	7.81	12.4
Havana	1.70	5.45	0.70		7 18	12.0
Pearl	0.32	3.20	0.67	0.86	5.51	9.70
Grafton	0.25	3 12	0.46		5.61	9.3
Grafton, the Mississippi	0.08		0.47		8.52	

The table shows that the amounts of organic matter actually indicated are much below those calculated on the assumption explained. The rate of oxidation will appear all the more marked if we consider the effect of the contamination added at Peoria and Pekin. At Peoria Narrows a very advanced condition of oxidation is indicated, but below the city the increase in contamination is enormous. course, is not mainly due to the ordinary sewage thrown into the stream, but to the effects of cattle-feeding, and discharged distillery slops. From calculations based on the number of cattle fed and the amount of grain mashed, I am convinced that the waste nitrogen here is practically equal to that discharged at Bridgeport, due allowance being made for the slop now dried and sold. Considering the dilution, the very high ammonias and oxygen consumption at Wesley certainly indicate more than this. The great difference between the Wesley and Pekin results may appear surprising, but this difference can be easily explained. During the summer months the river between the two places may be compared to a large septic tank, such as is now employed in many places for the partial purification of sewage. The rate of decomposition here is very rapid, and in a flow of about ten miles far-reaching changes occur. Much of the filth which runs into the river from the sheds settles, to be decomposed We have a condition here resembling that in the stock-yards branch of the Chicago river. The evolution of the gases of decomposition attests the activity of the bacterial scavengers. If all this material could have floated down the river without oxidation the result would be greatly different from that actually found. As it is, it must still be recognized that the Peoria cattle shed filth, and not the Chicago sewage, is the main factor in the animal pollution of the lower river.

Considering the evidence of the above tables it must be admitted that in this part of the river the organic matter has become largely oxidized and destroyed. The amount of albuminoid ammonia in the Illinois at Grafton was less than in the Mississippi at the same place, and the oxygen consumption was markedly less. The Illinois, at its mouth, was in better organic condition than are most of its tributaries. A larger flow would doubtless have produced no very great change except in the oxidation of the free ammonia. The organic matter left here is probably mainly that derived from the soil, and much of this is of such a character as to undergo change but slowly. At Grafton little beyond the harmless salt remained to tell of the enormous pollution 320 miles above. The physical appearance of the lower river and the extent of the fishing industry, aside from any data of chemistry or bacteriology, point clearly to the changes accomplished, and the clear stream which entered the Mississippi through the season of 1899 was not one which an unbiased observer could call seriously polluted.

With the opening of the large canal in the early spring of 1900 it was feared by many that this favorable condition would be changed, and in many quarters dire consequences were predicted. While it was recognized that a much greater flow of pure water from the lake would be provided for it was also plain that with this more sewage

must be carried. With the completion of the intercepting sewer system of the city, the whole of the city filth, instead of a part, must enter the canal, and the importance of this fact should not be overlooked. I have called attention above to the fact that in the south fork of the river the enormous stock-yards pollution presents a somewhat difficult problem. Not all of this reached the Bridgeport pumps under the old relations, because in the nearly stagnant condition of this part of the stream reactions sometimes took place almost as complete as in the English septic tank system of sewage purification. Much of the organic filth produced in that section of the city in certain seasons never left Chicago, but was destroyed by bacterial fermentation. It is known to all those interested in such matters that the new sewage system of the city provides for the rapid flushing of this south fork by means of a great volume of water drawn from the lake through the 39th street conduit now under construction. conduit or tunnel, with an internal diameter of twenty feet, runs under 39th street from the lake to a point just north of the stockyards, where it joins the extreme south end of the Chicago river, the discharge to be by gravity, as the top of the conduit is at low lake level (city datum), or by the aid of lifting pumps, to secure a still This great conduit will receive the discharge of much of the southern part of the intercepting sewer system; and the addition of the water from it to the south fork will give such a velocity to this sluggish part of the stream that little time will be allowed for the oxidation changes now taking place there. The effect of this will be to materially increase the gross amount of organic matter entering either the new or old canal, but not the percentage amount, as the dilution will be correspondingly great. Certain oxidation changes now well advanced before the canals are reached, will have to be begun in the latter stage of the flow, and a retardation in purification may be noticed in the canal and upper Illinois, but the final result will not be materially changed. It is to be regretted that at the time of writing this report the conduit is still far from completion, as we are now left without certain data desirable in the drawing of final conclusions, and we can only estimate the effect of

In discussing the conditions through 1899 it was comparatively easy to follow the water from the Bridgeport pumps to the Illinois and down, but for the work of 1900 the case is far more complicated. During much of the time water was sent through both canals toward Joliet, but with great irregularity. Sometimes the Bridgeport pumps were not in operation, and for a short time the gates at Lockport, the discharge point of the drainage canal, were closed so that practically no water passed for days through the main channel. This made the collection of fair average samples a matter of great difficulty and uncertainty, and may account for some of the irregularities apparent in the figures given above.

Another point may also be noted. With a high lake level and wind from the east the water of the south fork may be completely banked up south of the Bridgeport pumps, so that comparatively clear water passes here also. There have been times during the season of 1900 when an enormous amount of stagnant filth collected in this way in the south fork, and I have seen it with a thick scum on top of such density that birds could walk on it as on dry land. With falling level in the lake and river, this great mass of sludge is rushed out and down both canals, making a sudden and pronounced change in the character of the flow. A study of the chlorine content shows that as a rule, however, the larger part of the stock-yards sewage passed down the old canal, while the remainder and the city sewage went through the drainage canal. The mixed sewage appears in passing Joliet.

Another important fact may also be noted in this place, and that is that the average volume of water passing through the two canals is much below what the final flow is expected to be. During part of the period covered by these analyses the engineering works at Joliet were not in a condition to permit the passage of a larger volume.

In following the changes in the sewage through the season of 1900 we must begin our comparisons at Joliet, since it is here that the mixed sewage actually first appears. From a study of the chlorine contents for the two seasons it would seem that the dilution in the portion of the second season under consideration is about three times that in the first. Later, with the increased flow permitted, the dilution became actually greater. But the chlorine values for Joliet are not absolutely certain because of the irregularity in the character of the flow from Bridgeport. While the chlorine content of the water coming through the drainage canal is reasonably constant, that from the Bridgeport pumps is extremely variable, as an examination of table XLII will show. The average of 89.7 parts per million is certainly too low in representing the average for the season if we consider the flow as uniform in both canals. On the other hand, the chlorine values at Joliet are probably too high for a fair average. The result here is apparently modified because of high chlorine from Bridgebort at times not shown in the tables.

During the season of 1899 the flow from the Kankakee and Du-Page rivers was quite small, but in 1900 it was often large. The flow from the Kankakee alone was about 85,000 cubic feet per minute through much of the summer, according to data furnished me by Mr. Harman. The effect of this is observed at Morris, where the chlorine content drops to 17.8 parts per million. Below Morris we have a regular and gradual fall in the chlorine, corresponding to the dilution with water from the tributaries until the mouth of the river is reached at Grafton. The fall in chlorine, oxygen consumption, free ammonia and albuminoid ammonia is shown in chart II.

To illustrate the progressive purification, calculations might be made as was done with the results of the work of 1899; but they will not be necessary as the direct figures, in comparison with the earlier ones, are suggestive enough. We have at Grafton in this latter season a result much more satisfactory, even, than was that of 1899. The chlorine content, 10.6 parts per million, taken in connection with the character of the tributary waters, becomes a measure again of the extent of dilution. From data collected by the engineers of the Sanitary District it appears that the mean flow past Joliet during June,

July, August and September, 1900, was about 221,000 cubic feet per minute. For the same period, according to observations made at Peoria and furnished to me by Mr. Harman, the flow at that point was 382,000 cubic feet per minute. Assuming now that the chlorine in the diluting water between Peoria and Grafton is 5 parts per million we find that 58.0 per cent of the water at the upper bridge, Peoria, flowed past Joliet, and that 53.4 per cent of the Grafton flow passed Peoria. It follows, therefore, that about 31 per cent of the Grafton water passed the dam at Joliet. This is about double the proportion calculated from the results of 1899, but notwithstanding this fact, inasmuch as the gross discharge of filth through the Chicago canal was not greater, we find the evidence of organic pollution less marked than in former years.

In view of all the data collected, including the bacterial results, it is evident that the Illinois at its mouth is today purer than are the waters of any of its tributaries. It will be recalled that in the 1899 results are given the analyses of the waters from near the sources of the more important tributaries. These show clearly the character of the natural streams as they flow from the soil all over the State, and it is interesting to note that their proportion of organic matter is above rather than below that in the lower Illinois. The determinations of organic nitrogen by the Kjeldahl process, averaged in Table LXII, show interesting variations in this connection. At the mouth of the Illinois we have 1.13 parts of organic nitrogen per million as against 1.41 parts in the Spoon river, 1.23 in the Sangamon, 1.30 parts in the Big Vermilion, 1.25 parts in the Fox, 1.40 parts in the Kankakee, and 1.49 parts in the Mississippi opposite Grafton. cause of necessary differences in the form of combination, owing to longer contact with the destructive bacterial ferments, this nitrogen at Grafton undoubtedly represents a smaller weight of organic matter than is the case with the nitrogen in the upper tributaries. residual organic nitrogen at Grafton represents probably a combination little prone to oxidation or change of any kind, and therefore of little moment from a danger standpoint.

THE BACTERIAL RESULTS.

As elsewhere explained in this report, the chemical tests were not the only ones carried out in the progress of the investigation. Parallel with these certain experiments were made on samples of water collected in a special manner to determine as well as possible the number and character of the bacterial organisms present. Results obtained in this way are far less certain than those secured by chemical methods, because of the inherent difficulties in collecting average samples and in transporting them from the point of collection to the laboratory for observation. The number, and character also, of the bacteria in a water may undergo a very great change during the time intervening between collection from the river and experimentation in the laboratory. Usually an increase in the number of germs present takes place, but this may sometimes be followed by a marked decrease through diminution in the food supply. Notwithstanding all

precautions taken to keep the temperature of the collected samples low during shipment, failure often follows, and uncertain results are obtained. Sometimes sufficient ice is not used around the bottle with the bacterial sample; sometimes there is a delay in delivery on the part of the express company, or sometimes the package is left in an exposed warm place by the shipper before the arrival of the train, or later at its point of destination it may be similarly exposed before delivery to the chemist. In several ways, then, it is possible to account for alterations in the character of the water, and these changes are further not without effect on some of the chemical results, especially in the amount of nitrogen present in the form of nitrates and nitrites.

But in the study of a series of bacterial examinations we obtain very valuable general information in spite of all these difficulties, and points of general importance may be brought out which can be reached in no other way. Taking the results, pointed out above, as a whole then, we see a gradual decline in the bacterial pollution between Chicago and Peoria, with finally a condition between Henry and Peoria which may be compared with that of the small and unpolluted streams. An enormous increase in bacterial life follows below Peoria and Pekin, with again a decrease toward the mouth of the river. There is in general, also, a change in the character of the bacterial organisms as indicated by the rapidity of fermentation, the production of indol and the coagulation of milk. These results are practically the same whichever series of observation we consider; the increased flow from Chicago has not increased the pollution at Grafton.

As to the specific nature of the bacteria present nothing will be said here, as this part of the subject is covered in the report of Professors Futterer and Zeit, to which attention is called.

GENERAL CONCLUSIONS.

The main results stated in my preliminary report are confirmed and strengthened by the work subsequently done. It has been shown that in the stretch of the canal and river between Chicago and Peoria a remarkable destruction of organic matter is constantly taking place, not by sedimentation, as former critics of the work of the Board were anxious to believe, but by organic oxidation. In recent years such a condition as I reported in 1887 has not been reached in the river at Peoria, when temperature and rainfall seemed properly adjusted to secure the highest degree of purification, but we have now something approaching the situation as then observed. The great mass of organic filth passing Lockport is practically destroyed, or rendered harmless by conversion into stable compounds, while the myriads of bacterial cells depending on it for their existence have likewise disappeared. Save for the presence of inorganic remains, the chlorides and the nitrates of oxidation, there is nothing here to distinguish the Illinois from its unpolluted tributaries, which hold dissolved, mainly, the organic products of decay of vegetable matter. The condition below Peoria is vastly different from what it is above, and largely because of the pollution from the cattle sheds at the distilleries. But this, also, disappears in time, and at Pearl and Grafton the normal river situation is again reached. I believe it may be safely said that if the whole of the sewage of Chicago were to be excluded from the Illinois river the condition at Grafton would remain unchanged as far as organic content and bacterial organisms are concerned. With the flow from Chicago excluded, there would be a diminution in the harmless nitrates and chlorides only.

With the present conditions at Peoria, it would be useless to talk of purifying the Chicago sewage before turning it into the canal; its great dilution renders it there inoffensive to the senses, and bacterial oxidation does the rest before Peoria is reached. If anything more is attempted for the Illinois river it must be done below Peoria. I believe that such an improvement is within the limits of the possible, although with exactly what means I am not prepared to state. Nothing of value can be done with the knowledge now at our command, but with a closer insight into the nature of bacterial oxidation, as it takes place under different conditions of temperature, dilution and pollution, it is not too much to hope that a more rapid destruction of organic matter may be accomplished by artificial means, and broadly speaking, through the proper addition of fresh bacterial cultures at the right time and place. To determine the best conditions for this rational bacterial treatment of rivers is one of the interesting sanitary problems of the future. Meanwhile, much may be accomplished for the Illinois by comparatively simple means. We have seen that the chief source of pollution in the lower river today is the cattle shed and distillery refuse from Peoria and Pekin. It would not be a difficult matter to destroy most of this organic waste by a septic tank process before discharging the water containing it into the river, and for the sake of the rapidly developing fishing industries, if for no other reason, this should be insisted upon. The consideration of this problem I recommend to the careful consideration of the proper authorities.

Respectfully submitted,

J. H. Long.

Northwestern University, Chicago, April, 1901.

CHEMICAL AND BACTERIAL EXAMINATIONS

OF THE

WATERS OF THE ILLINOIS RIVER

AND ITS

PRINCIPAL TRIBUTARIES

BY

F. ROBERT ZEIT, M. D.
PROFESSOR OF BACTERIOLOGY.

Northwestern University Medical School, Chicago.

AND

GUSTAV FÜTTERER, M. D.

PROFESSOR OF PATHOLOGY.

Northwestern University Medical School, Chicago.

IDENTIFICATION OF BACTERIA

FOUND IN THE WATERS OF

THE ILLINOIS RIVER

AND ITS

PRINCIPAL TRIBUTARIES

Dr. Jas. A. Egan, Secretary of the Illinois State Board of Health.

DEAR SIR:—In submitting this report of the result of our efforts to identify the different bacteria found in the samples of water of the Illinois river and its principal tributaries, which we received from Prof. John H. Long, we want to point out first of all some of the difficulties surrounding such investigations and the numerous factors which should be considered when basing an opinion upon the results obtained. Such investigations must necessarily always be influenced more or less by the following principal factors, mentioned in brief:

The number of bacteria in river waters is greatly increased by high water and decreased by low water.

The changes in rapidity of flow, increase or decrease of organic substances, the effects of sedimentation, dilution, the influence of light and the pollution resulting after heavy rainfalls all contribute to these variations.

It is evident that a bacteriological examination at times of very high or very low water level must give results which differ materially. Almost anything could be proven by examinations during such extremes of the normal water level. The bacteriological flora of a river must be determined under certain conditions which will establish what we might call the normal impurity of a river. There must be no rains to increase the normal pollution of the stream and the water level should be falling when the examination is made. We have, unfortunately, no data with regard to these factors, so that some of our findings may have been influenced at times by abnormal conditions. For this reason we shall give total findings for all examinations from each point rather than the individual results of

each sample of water, which should then give a fair average. Under such conditions the results of chemical and bacteriological examinations are fairly uniform.

A seriously polluted water becomes pure again after flowing a certain distance.

The Seine becomes, 70 kilometers below Paris, of the same purity as before it entered Paris.

The Oder shows the same degree of purity 32 kilometers below Breslau which it had before entering that city.

The Isar shows the same degree of purity 33 kilometers below Munich after receiving the sewage of the city, that it had before entering Munich.

The Limmat receives the sewage of Zurich and purification takes place after flowing 14 kilometers.

Our efforts to determine the area or zone of bacterial self-purification of the Illinois river by studying the bacteriological flora of the waters from the different points of collection established along the river by Prof. Long, must of necessity be subject to the criticism that they were not made in loco, but from 4 oz. samples of water received in ice packing. Prof. Long has already in his report described the different points of collection and the manner in which the specimens were collected and shipped to the laboratory, and the results of quantitative bacteriological examination.

It is a well-known fact that the usual water bacteria may multiply rapidly in such water, whereas most of the pathogenic bacteria die in a few days, in consequence of the increase of water bacteria, or because they find no organic substances necessary for their existence, and on account of the unfavorable temperature.

When pathogenic bacteria and saprophytes are both present in such water, the former die in a few days. If no saprophytes are present, pathogenic bacteria will live for weeks and months in water which does not lack the nutrient substances required for their existence and propagation. In distilled water pathogenic bacteria die rapidly because the nutrient substances are lacking.

It would seem, therefore, that for the purification of a river water from pathogenic bacteria the presence of great numbers of saprophytes is desirable and this may serve as one of the reasons why we do not consider the number of bacteria per c. c. as a fair indication of the purity or pollution of a river. We take, in our foods and beverages, millions of bacteria which are harmless and entirely non-pathogenic, but may become infected when only a few pathogenic bacteria are present in the same. The saprophytes play an important role in the household of nature and a water may be teeming with water bacteria without necessarily being polluted.

The quantitative bacteriological examination must give way to the qualitative one if the bacteriological examination is to have any value. Only a few colonies per c. c. of pathogenic bacteria make a water infectious, whereas several hundred thousand colonies per c. c.

of the usual water bacteria are harmless and do not make a water impure, but rather tend to purify the same from any pathogenic bacteria which may have polluted this water temporarily. It is a significant fact that in spite of a most diligent search for the bacillus typhosus in the highly polluted waters of Bridgeport, Lockport, etc., during the past year, we never have been able to find this microorganism.

A number of experiments with tap water which we inoculated with different quantities of fresh bouillon cultures for bacillus typhosus and vibrio choleræ Asiaticæ in four series—

First series, temperature 20 degrees, C., diffuse daylight; Second series, temperature 37 degrees, C., diffuse daylight; Third series, temperature 20 degrees, C., dark-room; Fourth series, temperature 37 degrees, C., dark-room—

demonstrated that these organisms die in a few days in our lake water. Light, cold, and a decrease of organic matter accelerate their death. The water bacteria increase as the pathogenic bacteria decrease from day to day, most marked at 20 degrees. When organic matter is added to the water in small quantity we obtain colonies of typhoid bacilli up to the tenth day at 20 degrees and the eighteenth day at 37 degrees. Addition of saprophytes destroys the typhoid bacillus much earlier, no doubt from the exhaustion of food supply.

Numerous efforts have been made to establish the bacteriological flora of sewage and fecal matter and thus gain a qualitative test of drinking waters for sewage pollution by examining the suspected water for those bacteria. Jordan (State Board of Health, Mass., 1890—Purification of Sewage and Water, p. 821), and Mez (Mikrosk. Wasseranalyse, Berlin, Springer. 1898), have studied the bacteriological flora of sewage and thus added materially to our ability in diagnosing sewage pollution of drinking waters. After all, the qualitative bacteriological examination of suspected water must determine the question as to whether a water is polluted or infectious. Counting of colonies alone has only a very limited significance. We should know whether pathogenic micro-organisms are present and those saprophytes which are found in sewage, refuse waters, factory wastes, etc., which may not be directly pathogenic but may, by fermentation and putrefaction of dead organic substances, produce poisonous products.

In our case it would seem that the presence of pathogenic and sewage bacteria, and their gradual disappearance as the sewage-laden river passes on, should decide the question as to whether such purification is possible or not.

One might argue that sewage bacteria may occur generally in nature and if looked for would be found. This is certainly true, for instance, of the bacillus coli communis which can be found in many articles of our foods and probably quite generally in nature everywhere. The same can be said of some saprophytes always found in sewage.

Only recently Weissenfeld (Zeitsch, f. Hyg., Vol. 35, p. 78) studied this question with regard to the bac coli communis and concluded that the so-called colon group of bacilli can be cultivated from all

waters, good and bad, if only sufficiently large quantities of water are used for cultivation, and that also the animal experiment can not decide the question as to whether the colon bacillus was cultivated from good or bad water, because virulent colon bacilli may be found in both. A water with 36,000 colonies to the c.c. did not kill a Guinea pig when 1 c. cm was given by intraperitoneal injection, whereas the same dose of a water containing only 22 colonies to the c.c. killed an animal in 18 hours.

After all, we know that the specific sewage bacteria are absent in non-polluted water and that no pathogenic bacteria should be present in a fairly pure river water, and we believe, therefore, we are able to judge a water by their presence or absence, their increase or decrease.

The specimens of water, as soon as received from Prof. Long, were plated out in two series on gelatin and agar, 3 to 16 dilutions of each, in Petri dishes. One glucose agar plate was always made by Koch-Frankel's mica-plate method for growth of anaerobes.

The gelatin plates were kept at a temperature of 20-22 degrees in the dark, agar plates in the incubator at 37 degrees.

All the plates were examined daily and pure cultures obtained on agar from the varying discrete colonies between the second and eleventh day.

The pure cultures were then subjected to such further study as seemed necessary for identification, such as growth on different culture media, fermentation, gas production, temperature optimum, reduction of nitrates, production of indol and coagulation of milk. Some of the cultures were easily identified, others with great difficulty only and some could not be identified at all with any of the bacteria described in the literature.

Our examinations cover a period of about fifteen months. The identification of some of the bacteria with forms described in the literature has not been an easy or a satisfactory task under the conditions. We abstain from naming or describing any new organisms which varied slightly from types described in the literature. Those we identified agreed in all the characteristics given in the literature.

Intra-peritoneal injections of Guinea pigs were made in most cases where a pathogenic organism was diagnosed. Intra peritoneal injection of a series of Guinea pigs was done with 4 c. c. of the water of every station.

Another series of Guinea pigs were inoculated by intra-peritoneal injection with 1 c. c. of a bouillon culture made by taking 1 c. c. of the suspected water and 5 c. c. nutritive bouillon and keeping the mixture in the incubator at 37 degrees for 24 hours.

This enriching method for pathogenic bacteria (Anreicherungs methode) frequently proved virulent when the water itself did not produce death by intra-peritoneal injection and is certainly much preferable to the simple injection of the water itself. The temperature of 37 degrees favors rapid multiplication of pathogenic bacteria and hinders the growth of water bacteria.

IDENTIFICATION OF BACTERIA.

Lake Michigan Tap Water—Seven examinations were made and the following micro-organisms identified:

	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found.
1. 2. 3.	B. coli communisB. lactis aerogenes	8 1 1*	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 12. 13.	Microc. aquatilis Microc. flavus liquefaciens Bac. subtilis Bac. mycoides Bac. mesentericus Bac. reticularis Bac. iquidus Bac. aquatilis Bac. aquatilis Bac. flavescens liquefaciens Bac. flavescens, Pohl Vibrio aquatilis, Gunther Vibrio aureus Sarcina rosea	1 8 1 2 2 2 1 1

^{*}Pathogenic to rabbits.

Guinea pigs infected with 4 c. c. of the different specimens of water, intraperitoneally, all recovered. Three of the specimens containing pathogenic bacteria were placed in the incubator (37 degrees) for 24 hours with nutrient bouillon, one part of the water to five parts of the bouillon. Three guinea pigs received an intraperitoneal injection of 1 c. c. of this 24 hour bouillon culture. Only one died of sepsis. The blood of the animal contained B. coli communis. Subcutaneous injections caused only a local abscess, the animal recovering.

Some of these specimens of water contained a moderate variety of bacteria commonly found in sewage but only one of the samples contained virulent coli bacilli.

Western Avenue—Thirteen specimens were examined and the following bacteria identified:

Pathogenic.	Number of times found.	Non-pathogenic.	Number of times found.
1. Bac. coli communis	9 4 3 6	1. Microc. candicans 2. Microc. agilis 3. Sarcina lutea. 4. Bac. subtilis 5. Bac. mycoides 6. Bac. mesentericus. 7. Bac. aquatilis sulcatus I 8. Bac. aquatilis sulcatus I 9. Bac. acidi lactici. 10. Yellow water bacillus. 11. Bac. cloacae-Jordan 12. Bac. reticularis-Jordan 13. Bac. delicatulus-Jordan 14. Bac. ubiguitus-Jordan 15. Bac. albus putidus 16. Vibrio aquatilis, Gunther	3 2 2 3 3 2 1 3 1 1

Western Avenue—Intraperitoneal injection of guinea pigs with 4 c. c. of the sample of water did not prove fatal.

24 hour mixtures grown at 37 degrees of one part of water and five parts of nutrient bouillon caused a fatal septicemia by intraperitoneal injection of 1 c. c.

Several of the pure cultures of the bac. coli communis obtained from these samples were non-virulent, whereas the above mixture invariably proved fatal.

Bridgeport—Seven samples of water were received. The organisms identified are:

	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found.
1. 2. 3. 4. 5.	Bac. coli communis	2 6	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Bac. mycoides Bac. mesentericus Bac. superficialis Bac. aquatilis sulcatus I Bac. aquatilis Bac. liquidus Bac. fluorescens liquefaciens Bac. acidi lactici Bac. rubidus Bac. rubidus Bac. acrogenes	2 1 1 2 1 1 2 2 1 1 1

Besides the above we found an organism like oospora farcinica and a rather large spindle or club-shaped bacillus with polar granules which we failed to identify with any similar organisms found in the literature.

Intraperitoneal injection of 4 c. c. of several samples of water into a Guinea pig did not produce death.

1 c. c. of a mixture of one part of water to five of bouillon, kept in the incubator over night at 37 degrees proved invariably fatal to Guinea pigs in a short time. Even sub-cutaneous injection of one Guinea pig produced a fatal septicemia.

Lockport—We received seven samples for identification which contained:

	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found.
1. 2. 3. 4. 5.	Bac. coli communis	1 2	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	M. candicans M. flavus liquefaciens. M. luteus. Sarc. lutea. Sarc. aurantiaca Bac. subtilis. Bac. mycoides Bac. aquatilis sulcatus I Bac. aquatilis sulcatus I Bac. acquatilis. Bac. acidi lactici Orange red water bac Bac. cloacae Bac. ubiquitus Bac. rubidus Bac. rubidus Bac. plicatus. Oidium lactis. Mucor mucedo.	211211112111211111

Intraperitoneal injection of 4 c. c. into Guinea pigs produced no effect.

24 hour mixture grown at 37 degrees of one part of water and five parts of bouillon was uncertain in its effects; some animals recovering after 2 c. c. by intraperitoneal injection. One promptly died of sepsis. All those recovering had an elevated temperature and lost rapidly in weight for several days. One died two weeks later after having apparently recovered. No cause for death could be made out post mortem and no bacteria were found in the blood or organs nor in the abdominal cavity.

In the animal which died promptly, the proteus forms were most prominent. Pure cultures of the Proteus mirabilis by subcutaneous injection killed an animal which had apparently recovered from an intraperitoneal inoculation of the 1:5 culture.

Joliet—Six samples of this water were examined and the following germs identified:

	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found.
1. 2. 3.	Bac. coli communis	3 2 3	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	Bac. cloacae. Bac. superficialis Bac. fulvus. Bac. plicatus Bac. rubidus. Bac. rucor mucedo	131311122211211

Intraperitoneal injection of 4 c. c. into Guinea pigs produced no effect. Of four Guinea pigs inoculated with 1 c.c. of a 24-hour culture at 37 degrees of one part of the different waters and five parts of bouillon by intraperitoneal injection, one died of sepsis, the others recovered.

Wilmington—Two specimens of the Kankakee river water received for indentification contained:

Pathogenic.	Number of times found.	Non-pathogenic.	Number of times found.
None found		1. Bac. subtilis	

Intra-peritoneal injection of Guinea pigs with 4 c. c. of the water and a 24-hour bouillon culture (1:5 at 37 degrees) did not cause death of the animals.

Morris—Ten specimens of water from this locality-received for diagnosis, contained:

	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found,
1. 2. 3. 4.	Bac. coli communis	6 4 1 1	1. 2. 3. 4. 5. 6. 7. 8.	Microc. candicans, Sarcina lutea Sarcina rosea Bac. subtilis. Bac. mycoides. Bac. aquatilis. Bac. cloacae. Bac. megaterium. Bac, plicatus.	1 3 4 3 1

Direct intra-peritoneal injection of one specimen of this water caused death of a Guinea pig in 11 days. No post-mortem findings or bacteria in blood or organs. Other samples of water from same place did not cause death by direct injection. Experiments with mixed cultures gave uncertain results.

Ottawa-Illinois river. Five samples of water were examined and contained:

	Pathogenic.	Number of times tound.		Non-pathogenic.	Number of times found.
1. 2.	Bac. coli communis Proteus vulgaris	2 1	8. Piplo 4. Bac. s 5. Bac. 1 6. Bac. c 7. Bac. l 8. Bac. f 9. Vibric	c aerogenes	1 1 1 1 1

Both the water and mixed cultures proved non-virulent after intraperitoneal injection into Guinea pigs in the same manner.

Ottawa—Fox river. Four samples of water were received for identification of bacteria.

	Pathogenic.	Number of times found.	Non-pathogenic.	Number of times found.
1.	Bac. coli communis	1	1. Diploc, citreus	1 1 3 3

Neither water nor mixed cultures proved pathogenic.

LaSalle—Six samples of water were examined.

_	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found.
1. 2. 3.	Bac. coli communis	22 28	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Bac. megaterium Bac. fulvus Bac. corraceus Bac. plicatus Bac. subfiavus Bac. subfiavus Bac. cloacae Bac. oidium lactis Bac. pink yeast	2 2 1 1 1 1 1 1 1 1 1

One Guinea pig which received an intraperitoneal injection of 4 c. c. of the water samples died of sepsis, the others recovered, but the 1:5 bouillon mixture grown in the incubator for 24 hours proved very virulent.

Henry-Five samples of water were examined.

Pathogenic.	Number of times found.	Non-pathogenic.	Number of times found.
Bac. coli communis. Proteus vulgaris Bac. tetani Staphylococcus pyogenes aureus	1 1	1. Sarc. rosea. 2. Bac. subtilis. 3. Bac. mesentericus 4. Bac. cloacae. 5. Bac. megaterium 6. Bac. aquatilis sulcatus I. 7. Bac. aquatilis 8. Bac. subflavus 9. Bac. rubefaciens. 10. Bac. striatus flavus	1 1 4 1 1 2 2 2

Besides the above an organism like oospora farcinica was obtained again, but not positively identified.

Direct injection of the water did not cause death. Mixed bouillon cultures of 24 hours growth at 37 degrees were virulent.

Upper Peoria—Five samples of this water were examined.

Pathogenic.	Number of times found.	Non-pathogenic.	Number of times found.
1. Bac. coli communis		1. Microc. citreus	

Direct intraperitoneal injection of water as well as a mixed 24-hour bouillon culture proved entirely non-virulent. Even large doses of a 24-hour culture at 37 degrees of one part of water and five parts bouillon could be given to Guinea pigs by intraperitoneal injection without causing death.

Bacterial self-purification is practically complete here and the Illinois river at this location contains less evidence of sewage pollution from the standpoint of qualitative bacteriological examination, that is, less pathogenic and sewage pollution, than at any other point between Lake Michigan and Grafton.

Lower Peoria—Eleven samples of water were examined and the following identified:

	Pathogenic.	Number of times found.	Non-pathogenic.	Number of times found.
1. 2. 3.	Bac. coli communis Bac. lactis aerogenes Proteus vulgaris.	8225	Microc. aquatilis. Microc. luteus Bac. subtilis Bac. Mycoides Bac. cloacae Bac. cloacae Bac. reticularis Bac. fircularis Bac. fluorescens liquef Bac. aquatilis Bac. acidi lactici	1 5 2 2 2 2 2 2 1 1 aciens 2 2

Direct intraperitoneal injection of 4 c. c. of one of the water samples (Oct. 11, 1900) caused death of Guinea pig in 11 days. Another animal died of sepsis within 24 hours after inoculation with 1 c. c. of a 24-hour mixture, grown at 37 degrees, of one part water and five parts bouillon.

Here again a perceptible increase of pathogenic and sewage bacteria has taken place. The bacteriological flora here becomes similar to that of Joliet.

Havana, Illinois River—Twelve samples of this water were examined.

-	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found.
1. 2. 3. 4. 5. 6.	Bac. coli communis	1 2	1. 2. 3. 4. 5. 6. 7. 8. 9.	Bac. subtilis Bac. mycoides Bac. mesentericus Bac. megaterium Bac. aquatilis sulcatus I Bac. aquatilis Bac. acidi lactici Bac. acidi lactici Bac. fluorescens liquefaciens Bac. rubefaciens Bac. rubefaciens	2 3 2 1 3

Several of the specimens of this water proved highly pathogenic to Guinea pigs and white mice when intraperitoneal injections were given and numerous animal experiments were necessary to prove beyond any doubt that anthrax spores must have been in two samples of this water. At first considerable confusion arose from the great

number of pathogenic bacteria found and the similarity of bac. subtillis and bac. mycoides found in these waters in great number, with the anthrax bacillus.

The differentiation became simple enough after we injected pure cultures of the anthrax-like micro-organism, the animals inoculated with the anthrax like organisms recovering, whereas the others promptly died in 40-48 hours of anthrax bacteremia, the blood of all organs containing enormous numbers of anthrax bacilli.

The bac coli communis and staphylococcus pyogenes aureus found a few times in these samples proved non-pathogenic when pure cultures were injected, whereas the proteus forms were pathogenic.

Havana, Spoon River—Eight samples of this water were examined.

	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found.
1. 2. 8,	Bac. coli communis	1 2 1	1. 2. 3. 4. 5. 6. 7. 8.	Microc. luteus	1 4 1 8

Intraperitoneal injection of 4 c. c. into Guinea pigs in two cases did not prove fatal. One sample containing the bac, tetani was not injected because the water was not available when the diagnosis was made.

Culture of the water, one part, bouillon, 5 parts, kept at 37 degrees were non-pathogenic in doses of 1 c. c. by intraperitoneal injection.

Pearl—Ten samples were examined.

	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found.
1. 2.	Bac. coli communis	1 1	1. 2, 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Microc. candicans Aquatilis Sarc. rosea Sarc. lutea Bac. subtilis Bac. mycoides Bac. mesentericus Bac. megaterium Bac. aquatilis sulcatus Bac. aquatilis sulcatus Bac. acquatilis Bac. acquatilis Bac. aurantiacus Bac. acquatilis Bac. aurantiacus Bac. acquatilis Bac. aurantiacus Bac. acquatilis	2 4 1 1

Neither water nor 1:5 culture was pathogenic by intraperitoneal injection.

Grafton—Ten specimens of water were examined.

_	Pathogenic.	Number of times found.		Non-pathogenic.	Number of times found.
1. 2. 3.	Bac. coli communis Proteus vulgaris Staphylococcus pyogenes aureus	2 2 1	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Microc. luteus Microc. aquatilis Sarcina lutea Diploc. roseus Bac. subtilis Bac mycoides Bac megaterium Bac. aquatilis Bac. aquatilis Bac. acidi lactici Bac. acidi lactici Bac. acidi lactici Bac. aturatiacus Bac. fluorescens liquefaciens Bac. subflavus	5 2 3

Intraperitoneal injection of 4 c. c. of the water into Guinea pigs did not cause death. Mixed cultures 1:5 also were non-pathogenic.

CONCLUSIONS.

- 1. Number of bacteria increase with high water and decrease with low water. To establish the *normal impurity of a river*, the water level should be falling and no rains to increase the normal pollution. Examinations should be made *in loco*.
- 2. A seriously polluted water becomes pure again after flowing a certain distance. Pathogenic bacteria and sewage bacteria decrease as organic matter decreases. At the same time water bacteria increase. The presence of saprophytes hastens the removal of organic matter and the death of pathogenic bacteria.
- 3. The quantitative bacteriological examination must give way to the qualitative, because a few infectious bacteria per c. c. constitute a more severe water pollution than a very great number of water bacteria.
- 4. No typhoid bacilli have been found in any of the samples. Experiments show that they die in a few days in Lake Michigan tap water. Addition of nutritive bouillon keeps them alive a longer time. If saprophytes are added at the same time, exhaustion of food supply again causes early death.
- 5. The bacteriological examination of a river water should be qualitative for pathogenic and sewage bacteria. The first are infectious, the second may cause poisonous products by fermentation or putrefaction.
- 6. Bacterial purification of a river can be judged by the gradual disappearance of pathogenic and sewage bacteria with falling water level.
- 7. The bac coli communis may be found in water without sew-age pollution, and if found may or may not be virulent.

- 8. A 24-hour culture of one part of the suspected water with five parts of nutritive bouillon, grown at 37 degrees, of which 1 c.c. is to be used for intraperitoneal injection into Guinea pigs, constitutes a better test for pathogenic effects than a similar injection of a larger quantity of the suspected water.
- 9. Intraperitoneal injection of 4 c.c. of the different water samples proved non-pathogenic in all cases except Morris, LaSalle, Lower Peoria and Havana.
- 10. Bouillon cultures, 1:5, as per No, 8 above, caused death promptly in water samples from Western avenue, Bridgeport, La-Salle, Henry, Lower Peoria, Havana—Illinois river.

Uncertain effect—Lake Michigan, Lockport, Joliet, Morris.

No effect—Wilmington, Ottawa, Illinois and Fox rivers, Havana, Spoon river, Pearl, Grafton.

- 11. Bacterial purification begins at Joliet. Sewage bacteria decrease markedly at Morris and still more at Ottawa, where the bacteriological flora of the Illinois river and Fox river do not reveal great differences.
- 12. Pathogenic and sewage bacteria increase again at La Salle and Henry.
- 13. The most marked bacterial purification occurs between Henry and Upper Peoria, where pathogenic and sewage bacteria are almost absent. Upper Peoria probably shows the least sewage pollution of any point between Chicago and Grafton.
- 14. At Lower Peoria we found a marked increase of pathogenic and sewage bacteria, similar to that of Joliet.
- 15. At Havana the conditions are worse and even anthrax, probably spores, were found here on two occasions.
- 16. At Pearl and Grafton much purification has again taken place but some pathogenic and sewage bacteria are still present.
- 17. An organism which resembles somewhat Oöspora farcinica (Noccard) was found and cultivated in pure cultures at Bridgeport, La Salle, Henry, Spoon River at Havana and Grafton.
- 18. Tetanus bacilli were found at Morris, Henry, and Spoon River, Havana. Anthrax bacilli were found twice at Havana, Illinois River. Of the pathogenic bacteria the bac coli communis was found 55 times, bac lactis aerogenes 16 times, bac, enteritidis 10 times proteus vulgaris 40 times, proteus mirabilis 3 times, bac pyocyaneus 2 times, bac tetani 3 times, staphylococcus pyogenes aureus 3 times, bac anthracis 2 times.

Respectfully submitted,

F. Robert Zeit, Gustav Fütterer.

REPORT

OF A

PRELIMINARY SANITARY SURVEY

OF THE

ILLINOIS RIVER DRAINAGE BASIN

Максн, 1901.

BY

JACOB A. HARMAN, C. E.

SUBJECTS

Introductory.

The Illinois River, the ancient outlet of Lake Michigan.

Drainage basins of the Illinois.

Chicago water supply, sewerage and main drainage.

Population,

Stream gaugings and velocity.

Rain-fall tables.

Stages of Illinois River,

Discharge tables and data with discussion of rain-fall and run-off and comparative tables.

Water supply and sewerage.

Closure and and bibliography.

REPORT

OF A

PRELIMINARY SANITARY SURVEY

OF THE

ILLINOIS RIVER DRAINAGE BASIN

BY

JACOB A. HARMAN, C. E.

Dr. James A. Egan, Secretary Illinois State Board of Health.

Sir:—The following report embraces the results of a sanitary survey of the Illinois river and its tributaries, begun in 1899. In June and July of that year Dr. John H. Long, chemist of the Board, and the writer, made an inspection of the Illinois for the purpose of locating stations for the collection of samples of water for analysis. Following is a brief description of the inspection as given in the advance notes of this report published in 1900.

Beginning at the mouth of the Chicago river—Lake Michigan—there was a slight appearance of sewage, which increased rapidly as the river was ascended, until the north branch was reached, from which point up the south branch to the Bridgeport pumping station the river was a seething, festering mass of decomposing sewage from house and factory, giving up great quantities of noisome gases; the surface of the river in many places having the appearance of a boiling caldron. From Bridgeport down the canal to Joliet it was as a stream of ink with a steady current and musty sewage odor. At Joliet the canal water so much exceeded the low water flow of the Des Plaines river that the dilution was inappreciable.

The next point of inspection was Morris, ten miles below the juncture of the Des Plaines and Kankakee rivers. At this point, in consequence of the dilution by the DuPage and Kankakee rivers and smaller streams, the river was much clearer but still showed some of the inky coloring from the canal. Inquiry developed the fact that years ago, prior to turning the Chicago sewage into the Illinois and Michigan canal, the river had teemed with fish, which generally are found in clear streams in this latitude, but of recent years no fish live in the river here,

Proceeding down the Illinois, the next inspection was made at Ottawa, where there was some clearing of the water, but no fishing. At LaSalle, however, the river was much better looking, having a yellow tinge, but only slightly turbid, and fish were occasionally caught.

At Henry is located the first dam on the lower Illinois river. The water was apparently good here, and from this point to Peoria fishing is quite an important industry. Dr. Forest, mayor of Henry, stated that the condition of the river was acceptable in the summer but in the winter the stench at openings in the ice was very suggestive of the Chicago river and that fish taken in the winter were unfit for food on account of the gases of putrefaction in the river water which seemed to permeate the flesh of the fish.

At Peoria a very noticeable change occurred in the river. Above the city the water had a slight yellow tinge and a fishy odor, below the city the stream is dark, almost as the Chicago river, due to the washings of the cattle barns, and the banks were strewn with dead fish. This condition was a little improved at Pekin, where another installment of stable washings was received. However, about ten miles below Pekin the water was very much cleared and fish were apparently abundant. At Copperas creek dam, about twenty miles below Pekin, the river had cleared to about the appearance above Peoria and fish were reported very plentiful.

From this point to the mouth the waters of the Illinois seemed to become clearer, except where affected by tributaries made turbid by recent rains. This inspection was made during the last days of June and first days of July, 1899, and covered the route of the sewage of Chicago from that city to the Mississippi river.

The work so far undertaken and carried out, consists of discharge observations at low water of the various streams tributary to the Illinois river, and a number of discharge observations of the Illinois river at Peoria, so that a curve and table of discharges for all stages of the river at that point is presented herewith.

The rainfall data from stations located on each water shed is tabulated and averaged for 10 years, 1890 to 1899 inclusive, and run-off from the territory above Peoria is shown in other tables, for the same period of time as well as for 1900. The latter year, however, is not included in the averages, as it was not made up until the last pages of the report were being prepared for the press.

Miles in

The table of discharges shows the maximum, minimum and mean discharge in cubic feet per second, also the depth in inches over the entire area and the cubic feet per second flowing from each square mile of territory above Peoria for each month of the 10 years covered by the tables.

By comparing the tables of rainfall and run-off, the amount of water not flowing away in the streams, but evaporated from water and land surfaces and vegetation, in short the amount used in the processes of nature, is clearly set out.

In addition to the tables of rainfall and run-off, special tables of excessive rainfall at St. Louis, Mo., Milwaukee, Wis., Indianapolis, Ind., and rainfall in excess of 4 inches in 24 hours upon territory contiguous to the Illinois river basin; also table of heavy downpours with date, duration and amount of rainfall, if any, on preceding and succeeding days, have been collected and prepared for this report.

Circulars have been sent to mayors of all cities requesting detailed information regarding water supply and sewage systems and the data tabulated as hereinafter appears.

Population tables for 1890 and 1900 have been compiled from the United States Census and reports, and show the urban and rural population on each of the principal river basins tributary to the Illinois, thus showing where the greatest commercial activity and municipal growth have occurred and indicating where improvements in sanitary conditions will soonest demand attention.

All these data are pertinent to a general sanitary survey of the State of Illinois. The territory is so large that it has not been considered practicable with the limited means available to undertake a study of more than the Illinois River Drainage basin, but the other drainage systems of the State are deserving of careful consideration. Especially is this true throughout the southern portion of the State where it is very much more difficult to procure a water supply for municipal purposes, or even private wells for family use, than throughout the central and northern portions where water abounds and can generally be had for digging a few feet into the earth.

In connection with the statistical data given herein I wish to call particular attention to the preliminary report of this Board relating to water supplies of Illinois which was issued in 1889 and contains considerable data which has been made use of in this report and much more which is pertinent to a thorough comprehension of the drainage of the city of Chicago and protection of the Illinois river from sewage pollution.

When there is an abundant supply of rain distributed throughout the seasons, so as to meet the needs of vegetation, it is also generally true that the wastes of animal life and human industry are cleared from the atmosphere and gathered into the earth, streams and seas, there to be seized upon by the ever present and ready agents, which reduce these waste organic substances to harmless inorganic elements, to be again used in the world's economy.

The whole plan of terrestrial life is dependent for its very existence upon never failing recurrence of rain, distributed throughout Fire and water are the great cleansing and purifying agencies, provided to maintain the earth in a healthful condition for man. Of these two agents, we rely more upon water, and any discussion or even conception of sanitary requirements must ultimately inquire minutely into the sources of water supply—primarily rainfall, -and the resources of the region for supplying man with what water he needs from day to day. Further than supplying him with water, there is equal need of means for removing and destroying that which is cast off by him as waste and injurious matter. This leads to a consideration of the drainage, which, together with the storage facilities of any region, is dependent upon its geological formation and The rainfall, geology, topography and drainage of any region, therefore, determine for or against its desirability as a place of habitation for man, in that its capacity for supplying his needs and removing or converting his wastes are dependent upon these conditions.

The rapid development of manufacturing industries throughout the entire upper portion of the Illinois river valley and the resulting increase of urban population there, as well as the wonderful growth of Chicago, leads to the necessity of a very thorough study of the water resources of that entire territory, as well as of the opportunities for and the means to be employed in the disposal of sewage and garbage.

The method now in vogue in nearly all cases where any attempt at sewerage has been made is, in common with Chicago, to discharge the crude sewage into the nearest stream and depend upon dilution and oxidation to render the sewage harmless before it reaches the nearest community having an interest in the purity of the stream.

When the settlements are new and far apart the resources of nature, unaided, are usually equal to the requirement and no injury results, but as population increases and therewith not only an increase of organic wastes but also greater proportionate demand for an abundant supply of pure water for domestic and manufacturing purposes, the problems become of such magnitude and the interests so diverse, that individual cities are unable to cope with them and must look to the state for advice, relief and protection.

The present conditions in the Illinois river valley, with some notable exceptions, can not be regarded as excessively bad, but the rapid growth referred to can lead to but one result unless scientific knowledge and good business methods intervene and direct the disposal of domestic and manufacturing wastes in such a manner that nature's conversion thereof to harmless substances may be prompt and complete without creating objectionable gases or other dangerous substances.

Scientific research has demonstrated the possibility of complete reduction of organic wastes to harmless inorganic forms. Engineering has done much in the way of devising suitable appliances for carrying into effective, economical working form these forces of nature

which science has discovered. Indeed many thoroughly satisfactory works have been put into successful operation, but a process requiring less expense for installation and operation, equal or greater in efficiency, will yet be discovered.

THE ILLINOIS RIVER, THE ANCIENT OUTLET OF LAKE MICHIGAN.

The following terse statement of the conditions showing the Illinois river to be the ancient outlet for the three great lakes, Michigan, Huron and Superior, is given by Leverett,—"Water Resources of Illinois." A study of the formation of the Illinois river valley proves to be one of the most interesting subjects for geological investigation and the advance made during the last ten years has practically settled many of the questions involving the origin and development of this great valley as it now exists.

"The Southwestward or 'Chicago Outlet' of Lake Michigan, as pointed out some years since by Col. James H. Wilson and William Gooding, C. E.,¹ by Dr. H. M. Bannister,² and by Dr. Edmund Andrews,³ entered the present Des Plaines Valley immediately west of Chicago and passed thence down to the Illinois. The effect of this outlet upon the size of both the Des Plaines and the Illinois is very marked. The upper portion of the Des Plaines down to the point where the ancient stream entered the valley is a small channel, 20 to 30 feet in depth and scarcely one-eighth mile in width, cut into the soft deposits of glacial drift. Upon entering the outlet the stream finds a valley more than a mile in average width, and cut to a depth of 50 to 100 feet or more, the depth varying with the altitude of bordering uplands. The excavation is mainly in drift, but for a few miles above Joliet it extends 25 feet or more into the rock.

"The Illinois flows for a few miles in a low drift basin lying west of the Marseilles moraine, in which the ancient stream was expanded into a lake which built beaches instead of eroding a channel, but from the Marseilles moraine onward a large valley is cut, having an average depth of more than 100 feet and a width of about 1½ miles throughout the new course above Hennepin and nearly 3 miles in the old part of the valley below that town.

"To appreciate how small a part of this excavation on the Illinois is due to the present drainage lines, one has only to turn to such tributaries as the Fox and Vermilion rivers and compare the small channels cut by them with the large valley of the upper Illinois, for they are all cut to about equal proportions in the drift and in rock formations of similar kind. Fox river, which includes about one-fourth of the present drainage of the upper Illinois, has in its lower 75 miles a channel with about one-eighth the width and one half the average depth of the upper Illinois, and is even better favored than the Illinois in its rate of descent. Instead of 25 per cent of the amount of excavation displayed by the Illinois, this stream has accomplished scarcely one-fourth that amount. It seems probable that at least three-fourths of the excavation of the upper Illinois, and even more

¹ Report U. S. Army Engineers, 1868, p. 442. 2 Geology of Illinois, vol. 3, 1868, pp. 240-242. 3 Trans. Chicago Acad. Sci., vol. 2, 1870, pp. 1-23.

of the portion of the Des Plaines occupied by the lake outlet, was accomplished by some ancient stream. In the lower Illinois, where the ancient stream worked entirely upon the loose materials of the drift, the excavation was larger in amount, and the valley presents a remarkably low gradient—so low that the present stream is silting up instead of eroding its bed. The fall of the stream in its lower 225 miles is but 30 feet. Whether this very low gradient is entirely due to the lake outlet or has been brought about in part through a warping of the valley has not been determined. It is certain, however, that the valley was opened throughout its entire course to a far greater extent than the present stream could have accomplished."

DRAINAGE BASINS OF ILLINOIS.

"The Mississippi receives probably three-fourths of the drainage of Illinois, mainly through the Rock, Illinois and Kaskaskia rivers. The Wabash and Ohio receive nearly all of the remaining fourth, there being but a very small part of the State tributary to Lake Michigan."

ILLINOIS RIVER DRAINAGE BASIN.

"Of the streams which traverse Illinois, the Illinois is by far the largest, its drainage area being fully half as great as the area of the State and lying mainly within the State's boundaries. The drainage area of the Illinois is estimated by Greenleaf, in his report for the Tenth Census, to be about 29,000 square miles. The estimate made by the Chicago Drainage Commission reduces it to 27,914 square miles. This area is distributed in three states, of which the proportion in each state is estimated by Greenleaf as follows: Illinois, 24,726 square miles; Wisconsin, 1,080 square miles; Indiana, 3,207 square miles. The drainage areas of the chief tributaries, given in order from source to mouth, also estimated by Greenleaf, are as follows:

Drainage areas of the chief tributaries of the Illinois River.

Stream.	Square miles.	Stream.	Square miles.
Des Plaines River	b 5, 302 2, 697	Mackinaw River	1, 182 1, 296 5, 592 1, 000

a The Chicago Drainage Commission estimates this area as 1,392 square miles. b Estimated by the Chicago Drainage Commission as about 5,146 square miles.

"The drainage area or watershed of the Illinois extends in a broad band, averaging 100 miles in width, in a northeast-southwest direction directly across the center of the State. From the northeastern extremity of this band there are two projections—one north into Wisconsin, including the Fox and Des Plaines river basins; the other east into Indiana, including the Kankakee and its main tributary,

the Iroquois. The name Illinois is applied to the river from the junction of the Kankakee and Des Plaines. The western side of the watershed is 20 to 40 miles in width, while the eastern side is 60 to 80 miles.

"The Illinois river is a stream showing marked contrasts in the rate of fall. From the junction of the Des Plaines and Kankakee westward for 50 miles, being in a new course, its bed usually on the rock, it has an average fall of about 1 foot per mile; but in the remainder of its course to the Mississippi, a distance of about 225 miles, it is in a pre-glacial channel and has, as previously stated, a very slight fall.

"Des Plaines River—The Des Plaines is a stream with moderate descent from its source to a point near the line of Cook and Will counties, a few miles southwest of Chicago: where it begins a rapid descent. It makes a fall of about 70 feet in 8 miles, when just below Joliet it reaches a pool known as Joliet Lake, which continues nearly to its mouth."

"Kankakee River—The Kankakee, for about 90 miles from its source, flows through a great marsh and descends scarcely 100 feet; but in the lower 50 miles of its course it descends about 135 feet over a rocky bed. Notwithstanding this rapid descent, the lower course of the river is not subject to disastrous floods, the rise above the ordinary stage being seldom more than five or six feet. The flow is equalized to some extent by the marsh in its upper section and by sand deposits which border the lower course and receive much of the surplus water from the tributaries."

"Fox River—This river has a length of about 130 miles, and drains a tract 15 to 30 miles in width. In the upper half of its course it winds about sluggishly through sloughs, marshes and lakes, in the midst of a great system of moraines; in the lower half of its course it is a rapid stream. From the vicinity of Elgin to its mouth its bed is usually in the rock. The fall in its passage through Kane and Kendall counties is about three feet per mile, but in LaSalle county it increases to about 5 feet per mile, making a descent of nearly 125 feet in the lower 25 miles of its course. In its upper course tributaries are small and the flow is somewhat regular, but in the lower course several tributaries are received from a district in which slope and structure favor rapid run off, and these produce the high stages of the river, sometimes reaching 10 or 15 feet above the normal."

"Illinois-Vermilion River-Vermilion river has a length of about 75 miles and drains a till plain perhaps 20 miles in width. This plain descends with the stream northwestward, so that for 50 miles scarcely any valley is formed, though there is a descent of nearly 100 feet. In the lower 25 miles the stream corrades rapidly, making a descent of about 150 feet and cutting its valley mainly in rock. This stream is subject to great variations in water height. It has not the marshy gathering ground of the tributaries just considered, and the drift formations in its basin are mainly of compact till which yields but little water in seasons of drought."

"Spoon River-Spoon river and Crooked creek; the main tributaries of the Illinois, have valleys cut mainly in drift, but exposing rock at many points along the base of the bluffs. They probably follow approximately lines of pre-glacial drainage throughout much of their courses, but are not strictly coincident with such lines. rate of fall is more regular than in the tributaries just described. Spoon river in the lower 80 miles of its course, south from Stark county, descends from 2 to three feet per mile. Crooked creek is nearly as regular in the lower 50 miles of its course, though more rapid. In the headwater portions of both these streams the descent is more rapid than in the lower courses, thus reversing the habit of the upper tributaries of the Illinois. Both streams are subject to great variations in water stages because of rapid run-off. The rapidity of run-off is due to rapid fall and the generally well drained sur-In seasons of drought springs along the valleys and main tributaries afford a considerable supply of the water."

"Mackinaw River—This river drains a somewhat elevated plain in northern McLean county, standing 300 to 350 feet above the Illinois. In its middle course in Tazewell county it breaks through a moraine, and there only has it excavated a valley of much depth. In the lower 20 miles it winds about the Illinois valley in a shallow channel, making a descent of about 75 feet. This stream is one of the most variable in the State in quantity of water, being subject to great floods in wet seasons and becoming nearly dry in seasons of drought. The variability is due to several causes, rapid fall, compact drift beds, and absence of head water marshes being the principal ones."

"Sangamon River—Extensive plains in central Illinois are somewhat inadequately drained by the Sangamon river, whose tributaries do not ramify as thoroughly as is necessary for good drainage, and the area given as its catchment basin represents not that actually drained, but that which may, by extensive ditching, be drained into it."

The length of the river is about 180 miles. It rises in the morainic ridges of McLean county, at an altitude of about 850 feet above tide, or over 400 feet above its mouth (the mouth being 429 feet). In the first 10 miles it makes a descent of 120 feet, thus leaving 300 feet of fall for the remaining 170 miles of its course. The fall is far from regular, there being sections often several miles in length in which it is slight, between which are sections with more rapid fall. Thus in its course through Sangamon county, a distance of 36 miles, it falls only 38 feet, while in crossing Menard county, immediately below, it falls 67 feet in a distance of 30 miles, and in crossing Macon county, just above Sangamon, it falls 50 feet in about 30 miles. In the lower 23 miles, where it crosses the Illinois bottoms, its fall is only 16 feet.

This river in seasons of drought reaches a very low stage, becoming almost dry. The till plain which it drains yields very little water to the streams except immediately after rains have fallen. Freshets now seldom last more than a few days, and are said to be much briefer than before the district was brought under cultivation.

"Macoupin Creek—Macoupin creek, Apple creek, and other small tributaries of the lower Illinois show a rapid descent, their head waters being nearly 300 feet above the Illinois. They traverse a district in which drainage lines ramify through nearly every section. The drift being largely a compact till, rainfall is absorbed slowly. These streams therefore carry off a large amount of water, but in dry seasons they almost cease flowing."

CHICAGO WATER SUPPLY, SEWERAGE SYSTEM AND MAIN DRAINAGE CHANNEL.

The city of Chicago has been the great center of manufacturing enterprise, commerce and industry, not only of the State of Illinois but for the great central and western portion of our country. natural conditions and surface configuration made it at once one of the most difficult locations on which to provide healthy habitation for man, but ease of access and nearness to the great fertile prairies of the west soon made it the port for that vast region with an ever in-Natural obstacles had to be overcome, for creasing population. there was no other such situation on the continent. The greatest questions of sanitation which have had to be met thus far in this State have grown out of the needs of that city which has received her due share of consideration at the hands of the State authorities. A brief history of the progress and development of the drainage and water supply of Chicago is therefore of much importance to any consideration of the sanitary condition and needs of the Illinois river valley through which its sewage flows and of which Chicago has thus been made a part.

The following brief historical account of the development of the water supply of the city of Chicago, its sewerage system and main drainage channel, which was completed and put into operation in January, 1900, is condensed from "Drainage Channel and Waterway" by G. P. Brown.

Chicago obtained its first water supply from wells dug in the sand which had been heaped up by the winds, or in the silt deposited by the receding waters of the lake. In spite of serious contamination the wells were used for 20 years after Chicago was incorporated as a village, although they were not the only source of water supply. When Chicago was a small village it was the custom, as in small villages every where today, to dig both the well and the vault on the The wells were never more than 12 feet deep, and usually It is easy to understand how a very rapid and serious contamination of the well waters in Chicago was brought about when it is known that the city is built upon a bed of sand and vegetable mold underlaid with blue clay, in many cases the blue clay and the sand being in alternate layers ranging in thickness from a few inches to some feet. The sand veins would thus form natural courses for the drainage of the vaults which would flow by seepage into the wells and thus bring about the contamination referred to. Dr. A. S.

Martin, an early resident of Chicago, wrote to the Sanitary News in 1884: "The water supply was taken from wells sunk on individual premises, or on vacant lots, some times in the streets. Dish water, wash water, and all fluid refuse from the kitchen were generally thrown on the ground in back yards. In time the water drawn from the wells began to taste,—a little brackish at first, then saltish, and finally it had a perceptible odor, which ultimately became offensive. A well, at length, had the odorous characteristics of a privy vault. When it rained the water in well and privy vault rose accordingly; unless the prudent householder 'banked' the latter it often overflowed.

"The disuse of wells brought into existence a new enterprise, that of hauling water from the lake and selling it. A hogshead mounted on an axle between two wheels and drawn by a horse was first used. The only opening was a hole at the top sufficiently large to admit a pail. The vehicle was backed into the lake until the water came conveniently near the top, when the hogshead was filled by the use of pails. The driver then proceeded up the street, mounted on a cross piece in front of the hogshead, and served those who hailed him with water at a shilling per barrel. The use of the pail in emptying was finally superseded by a hose, tacked around a hole about 4 inches in diameter near the bottom. At length contracts were made and many families were supplied on certain days of each week or every other week."

On Nov. 10, 1834, the village council of Chicago appropriated \$95.50 for digging a public well at the corner of Cass and Michigan streets. This was the first official action taken by this municipality for a public water supply. This well supplied only a small colony on the North side; persons living on the South side continued to draw water from their individual wells, or to buy it from the water purveyors. Water was taken from the lake at the foot of Van Buren street, and supplied by carts as late as 1846. The owners of water carts had a lucrative business and organized a company. As the lake was often tempestuous and it was impossible to fill the water carts, dissatisfaction and hardship among the inhabitants prepared the way for a pumping system. The Chicago Hydraulic Company was incorporated by special act of the Legislature in January, 1836, and the works were established in 1840. An inlet pipe was laid on a cribwork foundation and extended out into the lake about 500 feet. The pipe was of cast iron, about 15 inches in diameter. At the shore end was a tank with a capacity of five or six hundred barrels, raised above the ground a few feet by a block foundation. This slight elevation created the only pressure in the distributing system. The works were equipped with a 25-horse power engine and pump to draw the water from the lake to the reservoir; about two miles of rude wooden pipe were laid. The mains were six inches in diameter and were laid in the alleys about three feet below the surface. The sections of the pipe were pine logs, bored out by hand and strapped with hoop iron

This primitive system supplied only a limited portion of the south division with water. Notwithstanding its apparent advantages, it is

lande ande

A Separate

said that at least four-fifths of the people living within the corporate limits obtained their water for domestic use from the river or by water carts from the lake.

The Chicago Hydraulic company does not appear to have made money out of its venture but it maintained an existence until Feb. 15, 1851, when the Legislature, again by special act, incorporated the Chicago City Hydraulic company.

In 1854 the city of Chicago put into operation its own water works system, having purchased the rights of the Hydraulic company. This was the beginning of the present system. Authority over the works was vested in a Board of Water Commissioners. The pumping works were located on the lake shore at the foot of Chicago avenue. Already the discharge of sewage into the lake from the river had caused annoyance and an alternative location for the pumping works at a considerable distance south of the Chicago river was suggested, but it was not considered of sufficient moment to change the location from that given above. The water was taken from an inlet basin on the lake shore, separated from the lake by a semi circular break-water with an opening to the southeast, and distributed through three reservoirs situated, respectively, at LaSalle and Adams streets, Chicago avenue and Sedgwick street, and Morgan and Monroe To keep the three reservoirs filled it was necessary to operate the pumps about 12 hours a day. The use of these reservoirs was discontinued after the completion of the west side tunnel in 1874.

In a sketch of the water supply system, written in 1876, Chief Engineer Chesbrough says that the increased growth of the city after the inauguration of the water works, and the introduction of sewerage, together with the establishment of the packing houses, distilleries, etc., so increased the quantity of filth discharged into the lake that complaints began to be made of impurity and offensiveness in the supply from the pumping works.

The first tunnel for taking water from a crib located at some distance from the lake shore was completed Dec. 6, 1866. This tunnel was 10,567 feet long, 5 feet across, and 5 feet 2 inches high, and cost \$380,784.60. After the completion of this tunnel the water supply was satisfactory for a number of years. In later years additional tunnels extending further into the lake have been constructed but the encroachments of the increased quantity of sewage have been a continued menace to the purity of the water supply.

THE SEWERAGE SYSTEM.

No effort was made to provide Chicago with a system of sewerage until the year 1855. Previous to that time the city was drained by submerged wooden boxes on a few of the principal streets. These were constructed, primarily, to supply water for use in extinguishing fires. They were found to be serviceable in carrying away surplus water from the streets, and were afterwards used to a limited extent for house drainage. As they were laid without system and were limited in capacity they were of little use except for surface drainage. In wet seasons they failed to carry away even the surface water.

As a result the city was scourged by epidemics for six years in succession. The death rate became higher than that of any other v city in the country. In 1854, with cholera raging, nearly 54 per cent of the population died. For the six years beginning with 1849 and ending with 1854, the death rate was 48.92 per thousand. In self defense the city was compelled to consider the construction of an adequate sewerage system. A bill was passed by the Legislature on February 4, 1855, creating a Board of Sewerage Commissioners to be appointed by the City Council. The first Board consisted of William B. Ogden, J. D. Webster and Sylvester Lind, one from each division of the city. E. S. Chesbrough, then of Boston, was appointed chief engineer. The remainder of the first year was spent in making surveys and preparing plans, which were adopted in December. Work was begun on the sewers in the spring of 1856.

Summarized, the Act creating the commission made these provis-(1). It shall be the duty of the commissioners to examine and consider all matters relating to the thorough, systematic and effectual drainage of the city of Chicago, not only of surface water and filth, but also of the soil to a sufficient depth to secure dryness in cellars and an entire freedom from stagnant water, and in such a manner as best to promote the healthfulness of the city. shall be the duty of the commissioners, before entering upon the construction of any sewer, to fix upon a plan or system of sewerage of such a nature that all subsequent sewers may be executed upon that plan. (3). It shall be the duty of the board to prescribe the location, arrangement, form, material and construction of every private drain or sewer emptying into the public drains or sewers, and determine the manner and plan of such connection (4). It shall be the duty of the board to see that the proper drains or sewers are constructed from every lot in the city, which, in their judgment, requires it, and that such private drains or sewers are made to communicate with public drains or sewers in a proper manner and they shall have power to require such number of drains or sewers to be thus constructed as they shall deem expedient.

Systematic sewerage in this country was unknown when Mr. Chesthe experience of other cities, but the local conditions were unfavorable. From a sketch written by Mr. W. H. Clarke principal ant engineer in 1877 :4:21 the sewerage system were made, the surface of the ground in the vicinity of the North and South branches of the Chicago river was only three or four feet above the surface of the lake. It rose irregularly eastward, until at Michigan and Rush streets it was from ten to twelve feet above the same level; to the westward it reached about the same level at Ashland avenue. This configuration made it necessary to raise the grade of the streets to keep the sewers under ground. After considerable discussion it was decided to fill in to a level of ten feet above ordinary water on the streets adjacent to the river, raising them with an inclination sufficient to protect the sewers and to permit the construction of cellars seven to eight feet in height. A higher grade was recommended, but it was argued that there would

be difficulty in securing sufficient earth to raise the streets to the minimum height decided upon. A few years later it was found that the surplus earth of the South division was sufficient not only to raise the grade of the streets but to fill up the entire lake basin between the Illinois Central railroad and Michigan avenue. For a number of years after the construction of the sewers began, some of them were partially above ground, and others entirely so, in what are now business districts of the city. In other localities where the ground was high enough to cover the sewers the grades of the street were fixed by cutting out abrupt irregularities. In places where the ground was too low to permit construction of well drained cellars the grade was established at such a height above the surface of the lake as to give not less than seven feet in height to the cellars if they were entirely below the surface of the ground, and at a greater height if the principal floor was elevated above the level of the street.

Soon after their organization the sewerage commissioners asked the public for plans and suggestions. Thirty nine communications were received. Some of them according to Mr. Chesbrough, were very able and interesting papers. Although none of the plans proposed were adopted, there were many valuable suggestions. Mr. Chesbrough's report to the commissioners was made on December 26, 1855. The plan he proposed was adopted by the board on December 31. It provided for the discharge of the sewage mainly into the river, which, the chief engineer argued, would deliver it well out into the lake. The general arrangement of the sewers placed mains in each of the alternate streets running to the river, or about 800 feet apart, into which two foot brick sub-main sewers in the streets running at right angles were to discharge. The main sewers were from three to six feet in diameter and built of brick, the walls being eight and one-half inches thick.

The minds of the people were still unsettled as to what should be admitted to the sewers. Sewers were originally constructed to carry off surface water only. Bazalgette says of London sewerage: "Up to the year 1815, it was penal to discharge sewage or offensive matter into the sewers. Cesspools were regarded as the proper receptacles for house drainage, and sewers as the legitimate channels for carrying off the surface water only. Afterwards it became permissive, and in the year 1847 the first act was obtained making it compulsory to drain houses into sewers."

As the main object of sewers was to improve and to preserve the health of the city, it was obvious to Mr. Chesbrough that all substances should be received into them which would have a contrary effect if not drained off. Four principal plans had been proposed:

(1.) Into the river and branches directly, and thence into the lake.
(2.) Directly into the lake.
(3.) Into artificial reservoirs, to be thence pumped up and used as a fertilizer.
(4.) Into the river, and thence by a steamboat canal into the Illinois river. The first plan had been adopted. The reasons in its favor were that it would allow the sewers to be constructed in such a manner as to take the utmost advantage of the natural facilities that the site of the city afforded, and, consequently, that the sewerage might be less in extent and cost.

His objections to draining directly into the lake were: (1) The greater length of sewers required, and consequently greater cost; (2) The difficulty in stormy weather of pretecting the outlets from injury, or from being obstructed by sand and ice; (3) The supposed effect on the water with which the citizens were supplied from the lake, if any of the outlets should be near the pumping engine. From this it would appear that Mr. Chesbrough did not anticipate that the sewage discharged into the lake from the river could by any possibility ever reach the inlet of the water supply.

"The objections to draining the sewage into reservoirs and then pumping it up to be used for agricultural purposes, were: (1) The great uncertainty about a demand for the sewage after it was pumped up sufficient to pay for distributing it; (2) The great evil that would necessarily result from a failure of the reservoirs through insufficiency of capacity, especially if the system of sewers leading to them should have their outlets too low to empty into the river or lake. If the reservoirs should be made so large as to place them beyond all doubt of sufficient capacity, they would be very expensive, both on account of labor and materials required in their construction, and the ground they would occupy; (3) There would be danger to the health of the city during the prevalence of winds from the quarter in which the sewage might be distributed, especially if only a few miles distant, and spread over a wide surface.

"With regard to the fourth plan, or draining into the proposed steamboat canal, which would divert a large and constantly flowing stream from Lake Michigan into the Illinois river," said Mr. Chesbrough, "it is too remote a contingency to be relied upon for present purposes; besides, the cost of it, or any other similar channel in that direction, sufficient to drain off the sewage of the city, would be not only far more than the present sewerage law provides for, but more than would be necessary to construct the sewers for five times the Should the proposed steamboat canal ever be present population. made for commercial purposes the plan now recommended would be about as well adapted to such a state of things as it is to the present, making it necessary to abandon only the proposed method of supplying the south branch with fresh water from the lake, and to pump up from the new canal, or draw from the DesPlaines directly flushing water from the west district, instead of obtaining it from the present canal at Bridgeport, as herein recommended."

In order to maintain a constant current and flow of fresh water in the Chicago river, canals from the lake were proposed to supply both the North branch and South branch. These, however, have never been constructed, the Fullerton avenue conduit having been constructed to supply fresh water to the North branch and the drainage of the South branch having been turned westward to the Illinois river.

CHICAGO MAIN DRAINAGE CHANNEL.

The "Drainage Canal," as it is popularly known, was opened January 17, 1900, for use as the main sewer of Chicago, leading from Lake Michigan across the Chicago divide between the present watersheds of the St. Lawrence and the Mississippi rivers and discharging the sewage of Chicago with its dilutent of Lake Michigan water into the DesPlaines, thence to the Illinois river.

This great sewer has been made possible only by its advantages as a commercial waterway, connecting two of the greatest navigable river and lake systems in the world, and every project for drainage of Chicago into the Illinois which has not recognized the waterway features has been predestined to failure.

When the sewerage system of Chicago was first contemplated the design was with reference to the then presumedly remote possibility of a ship canal across the divide which could be used for the outlet of the sewage and thus protect the lake, from which the public water supply was then, as now, taken.

The earliest mention of a ship canal across the Chicago divide bears the distinction of coming from Joliet who first explored the Illinois Valley in 1673. The next explorer of note, LaSalle, did not regard the project as feasible and unto this day there are "Joliets" and "LaSalles," notwithstanding the fact that since 1848, 53 years ago, the Illinois and Michigan canal has been in service and now that approximately one-half of the greater water-way has been completed and the entire cost practically charged to the account of the water supply of the city of Chicago. Were it not for the contamination of her water supply Chicago's sewage would still be flowing lakeward.

The construction of the Illinois and Michigan canal was begun in 1836 and it was completed on the shallow cut plan in 1848. The contract for deepening the canal summit level was let in 1865 but the work was not begun until two years later and completed in 1871. This deepening created a gravity flow from Lake Michigan to the Illinois river estimated at 33,000 cubic feet per minute and renewed the water of the South Branch of the Chicago river so thoroughly that the cleansing of that portion of the river was very satisfactory.

The old pumps which had been used to pump water from the river for the summit level of the canal were operated by arrangement between the canal commissioners and the city to effect a flow in the South Branch, thereby assisting in cleansing it much of the time for the six years from 1866 to 1871. In 1873 these pumps, being regarded as of no more use, were sold. As the city grew the sewage increased and by reason of precipitation of the solids carried in the sewage the capacity of the canal was reduced until in 1879 the flow was estimated at 10,000 to 17,000 cubic feet per minute depending upon the varying height of the lake which is affected greatly by the winds and seasons. In 1884 pumping works were rebuilt by the city at Bridgepoart for the drainage of the Chicago river and operated until the opening of the new drainage canal Jan. 17, 1900.

The amount of sewage pumped over at Bridgeport has been variously estimated at 35,000 to 50,000 cubic feet per minute and it is probable that the lower figure is nearer correct, so that further on in this report 36,000 cubic feet per minute, 600 feet per second, has been taken as the average for the ten years, 1890 to 1899 inclusive. The greatest concern of the residents and officials of the city of Chicago, from about 1860, when the river became an unbearable nuisance, to about 1880, was to improve the condition of the river. True, it was recognized by some that the water supply was at times contaminated with sewage, but the greater stress was laid upon the evil odors and appearance of the river. The slaughtering and packing industries in those days produced, or wasted, much more refuse than at the present time, so that the condition of the south branch in those days had to be seen and smelled to be appreciated.

The tendency of all these years was, therefore, toward a canal which would drain the refuse of Chicago to the Illinois, carrying with it sufficient lake water to so dilute the contents of the Chicago river as to make it unobjectionable. The capacity of the Illinois and Michigan canal having been very soon exceeded, the steps which made the canal of today possible were taken when in May, 1889, the Illinois Legislature enacted the Sanitary District Law. Under this law the Chicago sanitary canal has been constructed from Robey street. Chicago, through Joliet, Illinois, and made a navigable waterway, 22 feet deep and 160 feet wide as far as the controlling works at Lockport, a distance of a little more than thirty miles from Lake Michigan, including six miles of the Chicago river, which is not so deep and wide. The Chicago river has also been widened and deepened, but much work remains to be done there before the interests of navigation and sanitation will be harmonized.

POPULATION OF ILLINOIS AND OF THE ILLINOIS RIVER BASIN.

The population of Illinois at each census from 1810 to 1900, inclusive, together with the increase by number and per cent during each decade is given in the following table:

POPULATION OF ILLINOIS, 1810 TO 1900.

		INCR	EASE.
Census Years.	Population.	Number.	Per cent.
1900	4,821,550	995, 199	26.0
1890	3,826,351	748, 489	24.3
1880	3,077,871	537, 980	21.
1870	2,539,891	827, 940	48.5
1860	1,711,951	860, 481	101.0
1850	851,470	375, 287	78.6
1840	476, 183	318, 738	202.4
1830	157,445	102, 283	185.4
1820	55, 162	42,880	349.1
1810	12, 282		

From this table, which has been prepared by the Census Bureau, it will be observed that the population of the State in 1900 is 4,821,550, as compared with a population in 1890 of 3,826,351, showing an increase during the last ten years of 995,199, or 26 per cent. This is a greater rate of increase than that for any decade since 1870, and a greater numerical increase than that for any decade in the history of the State. Prior to 1870 the growth of the State was very rapid, and the rate of increase was much greater than it has since been.

The present population of the State is more than 392 times as great as the population reported for 1810, the first census taken after its organization as a territory in 1809.

The following table, also from the Census Bulletin of 1900, shows the

INCREASE IN POPULATION OF ILLINOIS BY COUNTIES, 1890 to 1900.

	Incri	SASE.		Incri	EASE.
Counties.	Number.	Per cent.	Counties.	Number.	Per cen
The State	995, 199	26.0	Lawrence	1,830	12
1110 201100	-		Lee	8, 707	14
dams	5,170	8.3	Livingston	8,580	9
lexander	2,821	17.0	Logan	8, 191	12
ond	1,528	10.5	Macon	5,920	15
oone	3,588	29.4	Macoupin	1,876] _4
rown	*394	*3.2	Madison	1 3 , 159	25
ureau	6,098	17.4	Marion	6, 105	25
alhoun	1,265	16.5	Marshall	2,717	19
arroll	643	3.5	Mason	1,424	.5
ass	1,259	7.8	Massac	1,797	15
hampaign	5,463	12.9	McDonough	945	1 .5
hristian	2,259	7.3	McHenry	3,645	13
ark	2, 134	9.7	McLean	4,807	1 3
аў	2,781	16.5	Menard	1,216	
inton	2,413	13.8	Mercer	2,400	15
oles	4,053	13.4	Monroe	899	9
ook	646, 813	54.2	Montgomery	833	
awford	1,957	11.3	Morgan	2,370	1 3
amberland	681	4.4	Moultrie	743	5
eKalb	4,690	17.3	Ogle	419	1
eWitt	1,961	11.5	Peoria	18, 230	22
ouglas	1,428	8.0	Perry	2,801	13
uPage	5,645	25.0	Piatt	644	8
dgar	1,486	5.5	Pike	595	1 .1
dwards	901	9.5	Pope	*481	*5
flingham	1, 107	5.7	Pulaski	8, 199	25
ayette	4, 698 1, 324	20.1	Putnam	16 2,952	.9
ord		7.7	Randolph		11
ranklin	2,537 3,091	14.8	Richland	1,872	5
ılton	901	7.1	Rock Island	13, 332 2, 343	31
reene	*389	*1.6	Saline	10. 898	1 16
rundy	3, 112	14.8	Sangamon, Schuyler	10, 350	1 6
amilton	2, 397	13.4	Schuyler	151	1 3
ancock	308	0.9	ScottShelby	935	
ardin	214	2.9	Stark,	204	30
enderson	960	9.7	St. Clair	20, 114	9
enry	6, 711	20.1	Stephenson	8, 595	1 1
oquois	2,847	8.0	Tazewell	3,665	12
ckson	6, 062	21.7	Union.	1.061	1 4
sper	1.972	10.8	Vermilion	15, 780	8
fferson	5, 543	24.5	Wabash	717	"
rsey	*198	*1.3	Warren	1.882	l è
Daviess	*568	*2.2	Washington	264	ì
hnson	654	4.3	Wayne	3,820	16
ane	13, 731	21.1	White	381	l i
ankakee	8, 422	29.3	Whiteside	8,856	12
endall	*639	*5.2	Will	12,757	20
nox	4.860	12.5	Williamson	5, 570	25
ake	10, 269	42.3	Winnebago	7, 907	19
aSalle	6, 978	8.6	Woodford.	393	li

^{*} Decrease

[&]quot;There have been no territorial changes in the counties of Illinois since 1890.

[&]quot;Of the 102 counties in the State all but 6 have increased in population during the decade, the counties showing the largest percentages of increase being Cook, 54.2 per cent; Lake, 42.3 per cent; Rock Island, 31.8 per cent; Vermilion, 31.5 per cent; St. Clair, 30.2 per cent; Boone, 29.4 per cent; Kankakee, 29.3 per cent, and Pulaski, 28.1 per cent.

"The 6 counties showing a decrease are Brown, Greene, Jersey, Jo Daviess, Kendall, and Pope."

Chicago, the great city of the central west, shows the most wonderful growth of any city in the United States. In 1840 the population of Chicago was 4,470. From that time the increase has been continuous and very rapid. In 1850, 29,963; in 1860, 109,260; in 1870, 298,966; in 1880, 503,185; in 1890, 1,099,850; in 1900, 1,698,575. In the State there are six other cities having a population of more than 25,000: namely, East St. Louis, 29,655, which nearly doubled in population in the last decade; Joliet, 29,353; Peoria, 56,100; Quincy, 36,-252; Rockford, 31,051; Springfield, 34,159. In addition to the 56,100 in Peoria June 1, 1900, the village of North Peoria, with 2,358 inhabitants has been annexed since that time, making a total of 58,458 inhabitants now in the city of Peoria. The total population in the State of Illinois, including Chicago, residing in cities of more than 25.000 inhabitants is 1,915,145, which is 40 per cent of the entire population of the State. The population residing upon the drainage of the Illinois river and the various sub-basins thereof is shown in the following table, which has been compiled from the United States Census reports of 1890 and 1900. This table shows the population divided into two classes called urban and rural. The former class includes all population residing in villages and cities of 1,000 inhabitants and more. The latter includes all others. This distinction has been made in this report because all villages and cities of 1,000 population and more are either now provided with public water supply and sewerage systems or will be in the not very distant future. Villages having a population of less than 1.000 seldom have public water supply or sewerage systems and the compilation of the population statistics is for the purpose of getting a better comprehension of the growing demand for abundant supplies of pure and wholesome water for domestic purposes as well as facilities for the disposal of sewage.

The map of Illinois which accompanies this report has been prepared to show (1) the drainage basin of the Illinois river and dividing lines of the sub-basins; (2) the location of cities and villages of 1,000 or more population, and their growth during the two decades just past—the circles being drawn to scale to represent the population according to the United States Census for the years 1880, 1890 and 1900. The location and density of urban population is thus seen by a glance at the map. The Illinois river basin covers about half of the entire State and includes the major portion of the population outside of Chicago.

Illinois River Drainage Basin Recapitulation Table-Population Various Sub-Basins.

	TOTAL	TOTAL POPULATION	и 1890.	TOTAL	TOTAL POPULATION	и 1900.	NOME	NUMBRICAL INCREASE	LASE.	PER C	PER CENT. INCREASE.	KASE.
DRAINAGE BASIN.	Urban.	Rural.	Total.	Urban.	Rursl.	Total.	Urban.	Rural.	Total.	Urban.	Rural.	Total.
*Des Plaines.							21, 393	2,566	23, 959	3	5.0	83
Du Page* *Kankakee.	o ig						9.5	283.	13,518	8, 83 50 10		12.2 7.6
*FoxVermilion	8 2						12,577 6,546	-1,257	2, 7, 28, 28,	3.5	9.0 13.0	r- œ œ. ≄.
Mackinaw	ထံရွ						6. 1. 6. 1. 6. 1.	38 6	8, 6,	₹ 3 3	2.0	0.49
Sangamon Crooked Creek							22.04		28,406 1,829	21.6	- 12.1	10.3
McKee's Creek Macoupin Creek	5, 238 13, 023	11, 943 32, 535	17, 181	5,624 15,778	10,317 30,584	16,461	2,755	1,361	-720 808	21.2	99	2.80
Pop. Directly Trib. to	139, 134	193,841	352, 975	177,189	201,888	379,077	38,066	8,047	46, 102	27.4	4.1	13.8
Totals	482,070	888, 274	1, 370, 344	617,664	893, 723	1,511,387	136,694	6,449	141,043	28.2	0.61	10.3
			_	_	_	-		-	_	_	_	

—Indicates Decrease. *Census for Indiana and Wisconsin in 1900 not at hand, and that of 1890 used.

The Illinois River Basin Areas—Population for 1890 and 1900, and Per Cent. of Increase.

Твівитаву.	Area,	Total Area.	Distance Miles.	1890.	1900.	Per Cen of Increase
†Des Plaines River	1.392		00.0	120, 218	*146,559	21.
Kankakee River	5,146	6,538	00.0	178, 713	*192, 226	7.
Smaller Tributaries	991	7,529	l	38, 081	42, 943	12.7
Fox River	2,700	10, 229		162, 728	*175, 353	7.7
Fox RiverSmaller Tributaries	136	10.365		41,779	45, 402	8.6
Vermilion River	1,317	11,682	46.2	63, 312	68,601	83
Smaller Tribs—Peoria and above	1.797	13, 479	112.1	99, 410	126, 758	27.5
Smaller Tributaries below Peoria	352	13, 831		24, 138	26, 246	8.0
Mackinaw River	1, 217	15.048		44, 188	47, 296	7.0
Smaller Tributaries	536	15, 584		16.547	17, 457	5.5
Spoon River	1,870	17, 454		75.378	81, 782	8.5
Smaller Tributaries	140			16.340	17, 283	
Sangamon River	5, 670	23, 264		274, 690	303, 096	10.3
Smaller Tributaries	180	23, 444		13,070	14, 194	8.6
Crooked Creek	1,385	24, 529		55, 403	54.574	
Smaller Tributaries	290			9, 620	10, 158	
McKee's Creek	472	25, 591		17, 181	16, 461	
Smaller Tributaries	1, 185	26, 776		67, 296	62, 248	
Macoupin Creek	985	27, 761		45,558	46, 362	
Smaller Tributaries	153	27,914		7, 125	5,867	
Totals	27, 914			1, 370, 344	1,511,387	10.

^{*} Census for Indiana and Wisconsin in 1900 not at hand and that of 1890 used.

Indicates decrease.

The above table not only shows the urban, rural and total population on the various river basins tributary to the Illinois in 1890 and 1900, but also shows the numerical percentage of increase of each as well as of the whole region. It will be noted that the greatest increase of urban population has been upon the Des Plaines Valley, which is adjacent to the city of Chicago. The urban population in this case having increased 43.3 per cent, the rural population 5 per cent, and the total population 23.8 per cent. The increase in the entire Illinois river valley is, urban 28.2 per cent, rural .61 per cent and total 10.3 per cent. The greatest increase in rural population has likewise been upon the Des Plaines basin and the Du Page, which is in fact a part of the Des Plaines, but on account of its covering quite an extensive territory has been listed separately. The Kankakee river basin also shows an increase of rural population of 3 per cent. The Vermilion, the Spoon and the Sangamon rivers, Crooked Creek, McKee's Creek and Macoupin Creek all show a decrease in rural population under the classification which has been adopted.

Referring to the cities located upon the Illinois drainage basin we find three; namely, Peoria, Springfield and Joliet with a population of more than 25,000 and 17 with a population of between 5,000 and 25,000. The total population of these 20 cities is 333,811; the total population upon this drainage basin, 1,511,387. Hence 22 per cent of the total population of the Illinois river valley resides in cities of 5,000 and over. The following table gives the population of all the cities on the Illinois valley of 5,000 and over in 1900, also the population of the same clties in 1890.

[†] Du Page included herein as part of Des Plaines.

Table of Cities Lacated on Illinois Drainage Basin Having Population of 5,000 or more in 1900.

City,	Po	PULATIO	N.	216-	Por	PULATIO	N.
City.	1900.	1890.	Inc.	Citz.	1900.	1890,	Inc.
Peoria. Springfield. Joliet. Aurora. Bloomington Eigin Decatur Jacksonville. Streator Kankakee.	58, 458 34, 159 29, 353 24, 147 23, 286 22, 433 20, 754 15, 078 14, 079 13, 595	41, 024 24, 963 23, 264 19, 688 20, 484 17, 823 16, 841 12, 935 11, 414 9, 025	4,610 3,913 2,143 2,665	Ottawa. LaSalle Lincoln Pekin Peru Canton Spring Valley Pana Macomb * Pt. Galesburg	10,588 10,446 8,962 8,420 6,863 6,564 6,214 5,530 5,375 9,304	9, 985 9, 855 6, 725 6, 347 5, 550 5, 604 3, 837 5, 077 4, 052 7, 632	60 59 2, 23 2, 07 1, 31 96 2, 37 45 1, 32

^{*} The city of Galesburg is upon the divide between the Illinois and Mississipi river drainage basins. The total population of Galesburg in 1900 was 18,607 and in 1890 was 15,264. The number of inhabitants shown in the above table has been estimated as tributary to the Illinois.

Population of the City of Chicago.

Роти	LATION.	Increase pro	ом 1890 то 1901.
1890.	1900.	Number.	Per cent.
1,099,850	1, 698, 575.	598, 752	,54.4

A table showing areas in square miles and population per square mile on the various sub-basins of the Illinois river has been prepared for the purpose of showing the total and rural population per square mile and the increase or decrease, if any.

Illinois River Basin - Areas and Population per Square Mile.

Rivers.	Area	Тот. Ро	P. PER	Sq. M 1.	Rur. P	OP. PER	Sq. M1.
Livers.	Square Miles.	1890.	1900.	Inc.	1890.	1900.	Inc.
Des Plaines Kankakee	1,392 5,146	96 35	105 37	19 2	47 28	49 29	2
FoxVermilion	2,700 1.317	60 48	65 52	. 5	35 32	35 31	-1
Mackinaw'		36	39	8	25	26	î
Spoon		40	44	. 4	29	29	0
Sangamon		49	54	5	31	30	-1
Crooked Creek	1,385	40 36	· 39	- <u>i</u>	31 25	29 23	— <u>2</u>
McKee's Creek		45	46	-1	33	23 31	
† Other territory		58	66	8	34	35	i
Total	27,914	49	54	5	31	31	0
Peoria and above. * Other territory	2, 924	61	- 74	13			
Total	13, 479	52	59	7			
Below Peoria. † Other territory	2,836	58	58	0			
Total	14, 435	46	52	6			

The areas given in the above table are taken from the preliminary. report of the State Board of Health, issued in 1889. From this table it will be observed that the total area of the Illinois river basin is 27,914 square miles, with a population in 1890 and 1900 of 49 and 54 per squre mile respectively; an increase of 5 for the entire area. The rural population of the entire area is 31 per square mile both in 1890 and 1900, showing no increase nor decrease as a whole. The greatest number of inhabitants per square mile is upon the DesPlaines, being 86 in 1890 and 105 in 1900, an increase of 19 per square mile. The Kankakee shows the lowest number of inhabitants per square mile, being 35 in 1890 and 37 in 1900. It will be remembered, however, that about 25 per cent of the Kankakee river drainage basin is marsh and further that the population in 1900 of three-fifths of this basin; namely, that lying in Indiana was not at hand for this tabulation and the population of 1890 is used, so that the entire increase is that of only the Illinois territory.

As has been previously noted the population of the Des Plaines is tributary to the city of Chicago and the greater density of population together with the large increase both in percentage and inhabitants per square mile is due to the fact that this population finds employment in and about the city of Chicago. The Fox river valley shows the next largest population per square mile, being 60 in 1890 and 65 in 1900, with an increase in the decade of 5 per square mile. The territory immediately tributary to the Illinois, which includes a few of the smaller streams and the adjacent valleys, had appopulation of 58 per square mile in 1890 and 66 in 1900, an increase of 8 per square mile. The Vermilion, the Mackinaw, the Spoon and the Sangamon show increases in total population of from 3 to 5 per square mile, with populations ranging from 39 to 54 per square mile in 1900.

The Illinois river valley is divided for purpose of discussion at Peoria into two portions which are designated as the upper and lower valley. The Des Plaines, the Kankakee, the Fox and the Vermilion rivers and other territory directly tributary to the Illinois, amounting to 2,924 square miles, constitute the total area of the upper valley, which is 13,479 square miles. Upon this territory the population in 1890 was 52 per square mile and in 1900, 59, an increase of 7 per square mile. On that portion of the territory above Peoria which is directly tributary to the Illinois, the population in 1890 was 61 and in 1900 was 74, an increase of 13. Comparing this with the lower valley the population on the territory directly tributary to the Illinois in 1890 was 58 per square mile and the same in 1900, no increase. The entire territory of the lower Illinois had a population of 46 in 1890 and 52 in 1900, an increase of 6. This increase of the lower Illinois was upon the Mackinaw, the Spoon and the Sangamon basins.

The rural population upon the entire Illinois valley, except upon the DesPlaines, ranged from 28 on the Kankakee to 35 on the Fox in 1890 and from 29 on the Kankakee to 35 on the Fox and the territory directly tributary to the Illinois in 1900. The Kankakee, the Mackinaw and the territory directly tributary show an increase in rural

population of 1 inhabitant per square mile for the last decade, while the Vermilion and the Sangamon show a decrease of 1 each per square mile. Crooked creek, McKee's creek and Macoupin creek show a decrease of 2 inhabitants each per square mile. The Des Plaines shows an increase of 2 per square mile. The Fox, the Spoon and the entire territory show no change in density of rural population.

A review of the foregoing table of the population per square mile comparing the total with the rural, will show where the manufacturing activity of the State exists; namely, upon the DesPlaines, the Fox, to some extent upon the Sangamon, and directly upon the Illinois river as far down as Peoria, there being no growth in population per square mile below that point.

Later in this report under the discussion of water supply statistics, will be found a table which gives the urban population in 1890 and 1900 and the per cent which the urban population is of the entire population upon the various sub-basins. The average for the entire area was 35 per cent in 1890 and 41 per cent in 1900; the lowest is 23 per cent on the Kankakee and the Mackinaw; the highest is 57 per cent on the DesPlaines. The Fox and the Illinois direct each show 47 per cent and the Sangamon 44 per cent, all being above the average percentage of urban population. This table, in connection with the foregoing table of population per square mile, sets out very clearly the location and the effect of manufacturing interests upon the density of population. The rural population, as seen heretofore, having remained substantially constant during the decade.

The following tables give, in detail, the urban and rural population by counties and by drainage basins.

Population for 1890 and 1900, of Counties on the Illinois River Drainage Basin.

G		1890.			1900.	
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.
AdamsCamp PointClayton	1, 150 1, 033		6, 777	1, 260 1, 000	4,086	6, 346
Benton, Ind		2, 381	2, 381			
Brown	1,655	5, 652	11,951	1,960	5, 256	11,557
BureauLadd		19,661	26,894	1, 324	20, 223	31,784
Princeton Spring Valley	3, 396 3, 837			4, 023 6, 214		· · · · · · · · · · · · · · · · · · ·
Calhoun		3, 369	8, 369		3, 685	3,685
Cass Ashland Beardstown Virginia City	1,045 4,226		15, 958	1, 201 4, 827 1, 600		17, 222
Champaign		7, 222	7, 222		7, 345	7,345

124

Population for 1890 and 1900—Continued.

		1890.			1900.	
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.
Christian		20,743	30, 531		20, 239	32, 79
Christian	1,076			1,702		
Edinburg	<u>.</u>	806		1.071		
Pana Taylorville	5,077 2,829			5,530 4,218		• • • • • • • • • • •
*Cook	20,048	82,737	52, 785	32, 327	34, 136	66, 46
De Kalb		9,716	9, 716		7,875	7,37
De Witt		13,050	17,011		12,856	18, 97
Clinton	2,594	20,000	20,022	4, 452	22,000	20,00
Clinton	1,367			1,664		
Du Page		13,067	22, 551		14,936	28, 19
Downer's Grove				2, 103		
Elmhurst	1,050			1,728	· · · · · · · · · · · · · · · · · · ·	
Hinsdale	1,584			2,578	•••••	
West Chicago	2, 216 1, 506			2, 629 1, 877	•••••	
Hinsdale	1.622			1, 877 2, 345		
	1,000			2,020		
Ford		8,963	10,766		8, 264	10, 31
FordGibson City	1,803			2,054		
Fulton		30, 336	43, 110		31, 327	46, 20
Astoria	1,357			1,684		
Canton	5, 604 1, 114			6,564 1,198	•••••	
Cuba	1,375			1,729	•• •••••	
Lewistown	2, 166			2, 504		
Vermont	2, 166 1, 158			1, 195		
Green		16,081	23, 791		15, 581	23, 40
Carrolton Greenfield	2, 258 1, 131			2.355 1,085	•••••	· · · · · · · · · · · · ·
Roodhouse	2, 360			2, 3 51	• • • • • • • • • • • • • • • • • • • •	
Roodhouse Whitehall	1,961			2,090		
C		10 455	21.024		13, 299	
GrundyBraceville	2, 150	12, 455	21,024	1,669	13, 289	24, 13
Carbon Hill	2,100			1,252		
Coal City	1,672			2,607		
Coal City	1,094			1,036		
Morris	3,653			4, 278	•••••	
Hancock	l	10, 208	14.047	l	9,868	14.71
Augusta	1,077			1, 149 2, 104		
Carthage	1,654			2, 104		
La Harpe	1, 113			1,591		· · · · · · · · · · · · · · · · · · ·
_		29, 128	34, 252		29,810	37.20
Iroquois					,,	,
IroquoisGilman	1.112	23, 120		1.441		 .
GilmanMilford	1, 112 1, 000	23, 120		1, 441 1, 077		
GilmanMilford	1, 112 1, 000 1, 000	23, 120		1,441 1,077 1,270		
Gilman Milford Onarga Sheldon.	1,000 1,000			1,270 1,103		
Iroquois Gilman Milford Onarga Sheldon. Watseka	1.000			1.270		
Gilman	1,000 1,000 2,017			1, 270 1, 103 2, 506		
GilmanMilfordOnargaSheldon.	1,000 1,000			1, 270 1, 103 2, 506		
Gilman	1,000 1,000 2,017	9, 730	11, 185	1, 270 1, 103 2, 506	0.290	12 14
Gilman	1,000 1,000 2,017	9, 730	11, 185	1, 270 1, 103 2, 505	0.290	12, 14
Gilman Milford Onarga Shekion Watseka Jasper, Ind Rensselaer Jersey Jersey	1,000 1,000 2,017 1,455	9, 730 8, 776	11, 185	1, 270 1, 103 2, 505	8, 629	
Gilman Milford Onarga Sheldon Watseka Jasper, Ind Rensselaer Jersey Jerseyville Kane Aurora	1,000 1,000 2,017 1,455	9, 730 8, 776	11, 185	1, 270 1, 103 2, 505	8, 629	
Gilman Milford Onarga Shekdon. Watseka Jasper, Ind. Rensselaer Jersey Jerseyville Kane. Aurora Batavia	1,000 1,000 2,017 1,455 3,207 19,688 3,543	9, 730 8, 776 14, 457	11, 185 11, 983 60, 916	1, 270 1, 103 2, 505	8, 629	
Gilman Milford Onarga Shekdon. Watseka Jasper, Ind Rensselaer Jersey Jerseyville Kane Aurora Batavia Dundee	1,000 1,000 2,017 1,455 3,207 19,688 3,543 2,023	9, 730 8, 776 14, 457	11, 185 11, 983 60, 916	1, 270 1, 103 2, 505	8, 629	74,49
Gilman Milford Onarga Shekdon. Watseka Jasper, Ind. Rensselaer Jersey Jerseyville Kane. Aurora Batavia	1,000 1,000 2,017 1,455 3,207 19,688 3,543	9, 730 8, 776 14, 457	11, 185 11, 983 60, 916	1, 270 1, 103 2, 505	8, 629 16, 341	12, 14 74, 45

^{*} Cook county drainage to Illinois tributaries, but exclusive of Chlcago.

125

Population for 1890 and 1900—Continued.

0		1890.			1900.	
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.
Kankakee		18,072	28, 732		19,015	37, 154
Bradley Kankakee	9, 025		•••••	1,518	•••••	• • • • • • • • • • •
Momence	1,635	· · · · · · · · · · · · · · · · · · ·		13, 595		
St. Anne	1,000			2, 026 1, 000		
		10.901	10 100		0.000	44 400
KendallPlano	1,825	10, 281	12, 106	1,634	9,833	11, 467
Kenosha. Wis		6,050	6,050			
		, , , ,	1		48.004	20.04
Knox		16, 570	27, 251	2,022	17,031	30, 214
Abingdon Knoxville	1,041			1,857		
Pt. Galesburg	1, 321 1, 728 7, 632			9,304		
_	,,,,,,			0,002		
Kosciusko, Ind		4,774	4,774			· · · · · · · · · · · · · · · · · · ·
Lake	- 	11,737	11,737		12,788	12,788
Lake, Ind		7,600	7,600			
La Porte, Ind	. .	11,545	18, 671	l		
La Porte	7, 126					
LaSalle	 	34, 897	80,798	l	85, 193	87.776
Crotty Earlyille	1,190	.		1,036		
Earlville	1,058			1, 122		
Kangley				1, 122 1, 004 10, 446 2, 559 3, 736 10, 589		
LaSalle. Marseilles	9,855 2,210 3,545 9,985			10,446		
Marsellies	2,210			2,008	•••••	
Mendota Ottawa	0,000			10 599		
Peru	5,550	•••••		6,868		
Streator	11,414 1,094			14,079		
Streator Utica.	1,094			1,150		
Lee		3, 961	3, 961		4, 225	4, 225
			38, 455		30,577	42,035
Livingston		30, 972	90, 100	1 038	50,5	22,000
Livingston	1 254	30,972		1,038 2,015		
Chatsworth Dwight	1, 354 2, 324	30, 972	00, 100	1, 038 2, 015 2, 187		
Chatsworth Dwight Fairbury Forrest	1, 354 2, 324 1, 021	30, 972	00, 400	2, 015 2, 187	952	
Chatsworth Dwight Fairbury Forrest Odell	1,021	30, 972	90, 100	2, 015 2, 187		
Chatsworth Dwight	1, 354 2, 324 1, 021 2, 784	30, 972	00, 200	1, 038 2, 015 2, 187 1, 000 4, 266	952	
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan	1,021 2,784	30, 972 	25, 489	2, 015 2, 187 1, 000 4, 266	952	
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan	1,021 2,784			2, 015 2, 187 1, 000 4, 266	952	
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln	1, 021 2, 784 1, 178 6, 725			2, 015 2, 187 1, 000 4, 266 1, 270 8, 962	952	28, 680
Chatsworth Dwight Fairbury Forrest Odell Pontiac	1,021			2, 015 2, 187 1, 000 4, 266	952	
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski	1, 021 2, 784 1, 178 6, 725	16, 229	25, 489	2, 015 2, 187 1, 000 4, 266 1, 270 8, 962 1, 643	952 17,005	28,680
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski	1, 021 2, 784 1, 178 6, 725 1, 357			2, 015 2, 187 1, 000 4, 266 1, 270 8, 962 1, 643	952	28,680
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski	1, 021 2, 784 1, 178 6, 725	16, 229	25, 489	2, 015 2, 187 1, 000 4, 266 1, 270 8, 962	952 17,005	28,680
Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa	1, 021 2, 784 1, 178 6, 725 1, 357	16, 229	25, 489	2, 015 2, 187 1, 000 4, 266 1, 270 8, 962 1, 643 20, 764 1, 213	952 17,005	28, 690 44, 008
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164	16, 229	25, 489 36, 063	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,764 1,213	952 17, 005 22, 006	28, 690 44, 008
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa	1, 021 2, 784 1, 178 6, 725 1, 357	16, 229	25, 489 36, 063	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,784 1,213	952 17, 005 22, 006	28, 690 44, 008
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164 3, 293 1, 524	16, 229	25, 489 36, 063	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,784 1,213	952 17, 005 22, 006	28, 690 44, 008
Chatsworth Dwight Fairbury Forrest Odell Pontiae Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164	16, 229	25, 489 36, 063	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,764 1,213	952 17, 005 22, 006	28, 690 44, 008
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa Macoupin Carlinville Girard Nilwood Virden Marshall III	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164 3, 293 1, 524 1, 610	16, 229	25, 489 36, 063	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,764 1,213 3,502 1,661 1,378 2,280	952 17, 005 22, 006	28, 686 44, 003 27, 583
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa Macoupin Carlinville Girard Nilwood Virden Marshall, Ill Henry	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164 3, 293 1, 524 1, 610	20, 078 21, 176	25, 489 38, 063 27, 603	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,784 1,213 3,502 1,661 1,378 2,280	952 17, 005 22, 006 18, 761	28, 686 44, 003 27, 583
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa Macoupin Carlinville Girard Nilwood Virden Marshall, Ill Henry Lacon	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164 3, 293 1, 524 1, 610	20, 078 21, 176	25, 489 38, 063 27, 603	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,784 1,213 3,502 1,661 1,378 2,280	952 17, 005 22, 006 18, 761	28, 686 44, 003 27, 583
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa Macoupin Carlinville Girard Nilwood Virden Marshall, Ill Henry Lacon Toluca	1,021 2,784 1,178 6,725 1,357 16,841 1,164 3,293 1,524 1,610	20, 078 21, 176	25, 489 38, 063 27, 603	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,784 1,213 3,502 1,661 1,378 2,280 1,637 1,601	952 17, 005 22, 006 18, 761	28, 686 44, 003 27, 583
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa Macoupin Carlinville Girard Nilwood Virden Marshall, Ill Henry Lacon	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164 3, 293 1, 524 1, 610	20, 078 21, 176	25, 489 38, 063 27, 603	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,784 1,213 3,502 1,661 1,378 2,280	952 17, 005 22, 006 18, 761	28, 680 44, 008 27, 582
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa Macoupin Carlinville Girard Nilwood Virden Marshall, Ill Henry Lacon Toluca Wenona	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164 3, 293 1, 524 1, 610 1, 512 1, 649	20, 078 21, 176	25, 489 38, 063 27, 603	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,784 1,213 3,502 1,661 1,378 2,280 1,637 1,601	952 17, 005 22, 006 18, 761	28, 686 44, 003 27, 583
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa Macoupin Carlinville Girard Nilwood Virden Marshall, Ill Henry Lacon Toluca Wenona Marshall, Ind Beurbop	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164 3, 293 1, 524 1, 610 1, 512 1, 649 1, 053	20, 078 21, 176 9, 439	25, 489 36, 063 27, 603	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,784 1,213 3,502 1,661 1,378 2,280 1,637 1,601	952 17, 005 22, 006 18, 761	28, 680 44, 008 27, 582
Chatsworth Dwight Fairbury Forrest Odell Pontiac Logan Atlanta Lincoln Mt, Pulaski Macon Decatur Maroa Macoupin Carlinville Girard Nilwood Virden Marshall, Ill Henry Lacon Toluca Wenona	1, 021 2, 784 1, 178 6, 725 1, 357 16, 841 1, 164 3, 293 1, 524 1, 610 1, 512 1, 649	20, 078 21, 176 9, 439	25, 489 36, 063 27, 603	2,015 2,187 1,000 4,266 1,270 8,962 1,643 20,784 1,213 3,502 1,661 1,378 2,280 1,637 1,601	952 17, 005 22, 006 18, 761	

126

Population for 1890 and 1900—Continued.

		1890.		•	1900.	_
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.
Måson		11,673	16,067		12,383	17,49
Havana	2, 525			3,268		
Mason City	2, 525 1, 869			3,268 1,890		
	1				l	
McDonough,	2,814	19, 458	27, 467		18, 912	28, 41
Bushnell	2,814	••••		2,490		
Colchester	1,643 4,052		•••••	2, 490 1, 635 5, 375		• • • • • • • • • • • •
macomo	1,002		••••	0,310		
McHenry		10,096 979	11,075	1,013	11, 375	12, 38
		05 400	00.000			o= =0
McLean		35, 422	63, 03 6		35, 053	67,790
Bloomington Chenoa	20, 487 1, 226		•••••	23, 200	•••••	• • • • • • • • • • •
Colfax	1,220		•••••	1 159	•••••	•••••
LeRoy	1.258		•••••	1,100	•••••	•••••
Lexington	1,200	••••	•••••	23, 286 1, 512 1, 153 1, 629 1, 415		
Normal	1, 187 3, 459			3, 795		
	0, 100	•••••		0, 100		
Menard		8, 728 944	13, 120		8, 975	14, 336
Athens		944		1,535		
Athens Greenview	1,106			1,019		
Petersburg	2,342			1,535 1,019 2,807		
_	•			·		
Montgomery	••••	••••	2,962	••••	••••	3, 424
Morgan		18,364	32,636		18,355	35,006
Jacksonville	12, 935			15,078		
Waverly	1,337	••••		1,573		
Newton, Ind		8,803	8,803			
Decris		25,078	70, 378		25, 296	88,608
Peoria	•••••	20,010	10, 318	1,578	25,290	00,000
Averyville	1 699		•••••	1,010		· · · · · · · · · · · · · · · · · · ·
Elmwood	1 548	•••••	•••••	1 582		
Peoria	1, 632 1, 548 42, 120	••••	•••••	1, 699 1, 582 58, 45 8		
	,			50, 250		
Piatt		6, 956	10,663		6,600	11,073
Bement	1, 125			1, 484		
Cerro Gordo		939		1,008 1,982		
Monticello	1,643			1,982		
n.,		0.000			0 -40	40 400
Pike		8, 576	9, 976	1.404	8,719	10, 123
Griggsville	1,400	• • • • • • • • • • • • • • • • • • • •	•••••	1,404		• • • • • • • • • • • • • • • • • • • •
Porter, Ind		6, 481	6,481			,
Putnam		4,739	4, 730	,	4,746	4,746
Pasina Wis		5, 595	7,637			
Racine, Wis Burlington	2,042		1,001	•••••		
					33, 473	71, 593
G		90 904				(1,090
Sangamon		32, 224	61, 195	1 901	30, 2.0	
SangamonAuburn	1 007	32, 224 874	61, 195	1,281		
Auburn Ridgely	1,007 1 127		61, 195	1, 281 1, 169		
Auburn Ridgely Riverton	1. 127		61,195	1,511		
Auburn Ridgely	1,007 1,127 24,963		61, 195	1,281 1,169 1,511 34,159		
Auburn Ridgely Riverton Springfield	1, 127 24, 963	874		1,511 34,159		16, 129
Auburn Ridgely Riverton Springfield	1. 127		16, 013	1,511	13, 837	16, 129
Auburn Ridgely Riverton Springfield Schuyler. Rushville	1, 127 24, 963	13, 982	16, 013	1,511 34,159	13, 837	
Auburn Ridgely Riverton Springfield Schuyler Rushville	1, 127 24, 963 2, 031	874		1,511 34,159 2,292		
Auburn Ridgely Riverton Springfield Schuyler Rushville.	1, 127 24, 963	13, 982	16, 013	1,511 34,159	13, 837	
Auburn Ridgely. Riverton Springfield. Schuyler. Rushville. Scott. Winchester	1, 127 24, 963 2, 031	13, 982 8, 762	16, 013	1,511 34,159 2,292	13, 837 8, 744	10, 455
Auburn Ridgely Riverton Springfield Schuyler Rushville Winchester Shelby	1, 127 24, 963 2, 031	13, 982 8, 762 2, 551	16, 013	1,511 34,159 2,292	13, 837	10, 455
Auburn Ridgely. Riverton Springfield. Schuyler. Rushville. Scott. Winchester	1, 127 24, 963 2, 031	13, 982 8, 762	16, 013	1,511 34,159 2,292	13, 837 8, 744	10, 455
Auburn Ridgely Riverton Springfield Schuyler Rushville Winchester Moweaqua	1, 127 24, 963 2, 031	13, 982 8, 762 2, 551 848	16, 013 10, 304 3, 399	1,511 34,159 2,292 1,711	13, 837 8, 744 3, 072	10, 455 4, 550
Auburn Ridgely Riverton Springfield Schuyler Rushville Sectt Winchester Shelby Moweaqua Stark, Ill.	1, 127 24, 963 2, 031	13, 962 8, 762 2, 551 848 7, 921	16, 013	1,511 34,159 2,292 1,711	13, 837 8, 744	16, 129 10, 455 4, 550
Auburn Ridgely Riverton Springfield Schuyler Rushville Winchester Moweaqua Stark Ill	1, 127 24, 968 2, 081	13, 982 8, 762 2, 551 848	16, 013 10, 304 3, 399	1,511 34,159 2,292 1,711 1,478	13, 837 8, 744 3, 072	10, 455 4, 550
Auburn Ridgely Riverton Springfield Schuyler Rushville Sectt Winchester Shelby Moweaqua Stark, Ill.	1, 127 24, 963 2, 031	13, 962 8, 762 2, 551 848 7, 921	16, 013 10, 304 3, 399	1,511 34,159 2,292 1,711	13, 837 8, 744 3, 072	10, 455 4, 550

127

Podutation for 1890 and 1900—Continued.

O =		1890.			1900.	
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.
St. Joseph, Ind		10, 319	10, 319			
Tazewell	6, 437			8, 420	22, 038	
Walworth, Wis	2,038 2,297					
Warren Roseville		5, 27 3 788		1,014	5, 293	6, 30
Waukesha, Wis Waukesha Oconomowoc	6, 359 2, 729	12,097	21, 185			
WillBraidwoodJolietLockportPeotoneWilmington	2,449	26, 363 717		8, 279	33, 596	
WoodfordEl PasoEureka	1.481	16, 279			16, 175	

Population in the Drainage Basins of Streams Tributary to the Illinois River.

Des Plaines River.

		1890.		1900.			
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.	
*Cook	20, 048	28, 757	48, 805	32, 327	29, 803	62, 130	
DuPage Downers Grove Elmhurst Hinsdale		5,837 960		2, 103		12, 692	
Kenosha, Wis		1,800	1,800	· · · · · · · · · · · · · · · · · · ·	1,800	1,800	
Lake		7, 641	7, 641		8, 399	8, 399	
WillJolietLockport	23, 264 2, 449	7,506	33, 219	29, 353 2, 659		39, 834	
Total	49, 355	51,541	100,896	70,748	54, 107	124,858	

^{*} Cook county draining to Illinois tributaries, but exclusive of Chicago.

Population for 1890 and 1900 - Continued.

DuPage River.

COUNTY— CITY.		1890.		1900.			
	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.	
Cook		737	737		862	862	
DuPage Naperville West Chicago	2,216	7,776	13, 120	2, 629	8, 653	15, 504	
West Chicago Wheaton	1,506 1,622			1,877 2,345			
Will		5, 4 65	5, 465		5, 338	5, 338	
Total	5, 344	18, 978	19, 322	6,851	14,853	21, 704	

Kankakee River.

•		1890.		•	1900.	
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.
Benton, Ind		2, 381	2,381		2,381	2,381
Iroquois	1.112	29, 123	34, 252	1,441	29,810	37, 206
Milford	1,000			1.077		
Onarga	1,000			1,270		
Sheldon	2.017			1, 103		
Watseka	2,017			2,505		
Jasper, Ind	1, 455	9, 730	11, 185	1.455	9,730	11, 185
Kankakee		12, 589	23, 967		13, 573	31,712
Bradley Kankakee	9, 025	• • • • • • • • • • • • • • • • • • • •		1,518 13,595		· · · · · · · · · · · · · · · · · · ·
Momence				2,026		
St. Anne		718		1,000		
Kosciusko, Ind		4,774	4,774		4,774	4,774
Lake, Ind		7,600	7,600		7,600	7,600
LaPorte. Ind LaPorte		11,545	18, 671	7, 126	11.545	18,671
Marshall, Ind		14, 755	19, 618		14,755	19,618
Bourbon	1,064					20,020
Bremen	1,076			1,076		
Plymouth	2,723			2,723		
Newton, Ind		8, 803	8,803		8,803	8,805
Porter, Ind		6, 4 81	6, 481		6, 4 81	6, 481
Stark, Ind		7. 339			7, 339	7,339
St. Joseph, Ind		10, 319	10, 319		10,319	10,319
Will		13, 392	20,326		20, 435	26, 137
Braidwood				3, 279		
Peotone		717	• • • • • • • • • • • • • • • • • • • •	1,003		
Wilmington	1,576	••••	• • • • • • • • • • • • • • • • • • • •	1, 420		
- Total	35, 450	143, 263	178, 713	44, 681	147, 545	192, 226

Population for 1890 and 1900.—Continued. Fox River.

		1890.			1900.	
COUNTY. CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.
*Cook		8, 243	8, 243		8, 471	3, 471
DeKalb		9,716	9, 716		7, 875	7,375
Kane	19, 688 3, 543 2, 023 17, 823 1, 692 1, 690	14, 457	60, 916	24, 147 3, 871 2, 765 22, 246 2, 446 2, 675	16, 341	74, 491
KendallPlano	1,825	4,683	6,508	1,634	8, 790	5,424
Kenosha, Wis		6,050	6, 050		6,050	6,050
Lake, Ill		4,096	4,096		4, 389	4, 389
LaSalle Earlville	1,058	9, 310	10, 368	1, 122	9,887	11,009
McHenry		10,096 979	11,075	1,013	11,875	12, 388
Racine, WisBurlington		5, 595	7,637	2,042	5,595	7,637
Walsworth, Wis Delavan Geneva Whitewater	2, 038 2, 297	18,240	21,934	2,038 2,297 4,359		21,954
Waukesha, Wis Oconomowac Waukesha	2, 729 6, 359	12,097	21, 185	2,729 6,359		21, 182
Total	69, 166	93, 562	162, 728	81,743	93,610	175, 35

Vermilion River.

_	·	1890.		1900.			
COUNTY. CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.	
Ford		3, 782	3, 782		3, 778	8, 778	
La Salle	11,414	9,934 934	22, 332	1,004 14,079	9,850	24, 983	
Livingston	2, 324	23, 672 827	81, 428	1.038 2,187	24, 308	83, 751	
Forrest	1,021 2,784	800		1,000 4,266	952		
McLean	1, 226	1,146	2,872	1,512	1,037	2,549	
Woodford	2, 816	1,082	3, 398	2,545	1,050	3, 595	
Total	21,085	42, 227	63, 312	27, 631	40, 970	68, 601	

Population for 1890 and 1900.—Continued.

Mackinaw River.

COUNTY. CITY.	1890.			1900.			
	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.	
McLean Colfax Normal Lexington	3, 459 1, 187	14, 012	18, 658	1, 158 3, 795 1, 415		21,81	
Tazewell	1,301	12, 467	13, 768		12,051	13, 51	
Woodford El Paso Eureka	1,853 1,481	8, 928	11,762	1,441 1,661	8,866	11,96	
Total	8, 781	35, 407	44, 188		86, 372	47, 29	

Spoon River.

		1890.			1900.	
COUNTY. CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.
Bureau		1,814	1,814		1,839	1,839
FultonCanton	5, 604 1, 114		28,358			81,441
Farmington Lewiston	1, 375 2, 166					
Knox	1.321		27, 251	2,022 9,804	17, 031	
Peoria		1,912	1,912		1,795	1,79
Stark		945	9,982	1,050 1,277	7,859	10, 180
Warren		5, 273 788	6, 061	1,014	5, 293	6, 30
Total	22,056	53, 322	75, 378	28, 519	53, 263	81, 78

131

Sangumon River.

		1890.			1900.	
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.
Cass	1,045	4, 350	6, 997	1,201	4, 270	7,071
Ashland Virginia City	1,045 1,602			1,600		•••••
Champaign		7, 222	7, 222		7,845	7, 345
Christian	1,076	20,743	3 0, 531	1,702	20, 239	32, 790
Edinburg		806		1.071		
Pana Taylorville	5, 077 2, 829	 		5,530 4,248		•••••
DeWitt		13,050			12,856	18, 972
Clinton	2,594 1,367			4, 452 1, 664		••••••
Ford	1,803	5, 181	6, 984	2,054	4,491	6, 545
Logan	1,000	16, 229	25,489	, , ,	16, 805	28, 680
Atlanta	1,178	10,220	20, 100	1,270		
Atlanta	6, 725 1, 357			8,962 1,643		
Macon		20,078	38, 083	00.004	22,006	44,008
Decatur Maroa	16,841 1,164			20, 784 1, 213		
Mason	1,869	5, 637	7,506	1,890	6, 209	8,090
McLean		20, 261	42,006		18, 507	43, 422
Bloomington LeRoy	20, 487 1, 258			23,286 1,629		
Menard		8, 728 944	13, 120		8,975	14, 836
Athens Greenview	1,106	944		1,535 1,019		
Petersburg	2,342			2,807		
Montgomery		2,034	2,034		2, 127	2, 127
Piatt Bement	1, 125	6,956	10,663	1, 484	6, 599	11,073
Cerro Gordo	l '.	939		1.008		
Monticello	1,643			1,982		•••••
Sangamon		33. 224 874	61, 195	1,281	33, 473	71,598
Auburn	1,007 1,127			1, 169 1, 511		
Riverton	24, 963			34, 159		••••••
Shelby		2,551 848		1,478	3,072	4,550
Tazewell	ļ .	2,450	2,450		2.499	2, 499
Total	101,585	173, 105	274,690	133,632	169, 464	303,096

Population for 1890 and 1900—Continued. Crooked Creek.

0		1890.		1900.			
County— City.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.	
Adams		1,708	1,708		1,717	1,717	
Brown		3, 201	8, 201		3,026	3,026	
Hancock	1,077 1,654			1, 149 2, 104 1, 591			
McDonoughBushnellColchesterMacomb	2,314		27,025				
Schuyler		9, 422	9, 422		7, 147	7, 147	
Total	11,853	43,550	55, 403	14,344	40, 230	54,574	

Macoupin Creek.

Comymu	1890.			1900.			
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.	
Green	2, 258 1, 131		10,476	2, 355 1, 065	6, 630	10,070	
Jersey	·	4,208		1	4,724	8, 241	
acoupinCarlinvilleGirard	3, 293 1, 524		26, 739	3,502 1,681	17, 933	26, 75	
Nilwood Virden	1,610			1, 378 2, 280			
Montgomery		928	928		1, 297	1, 297	
Total	13, 023	32,535	45,558	15,778	30, 584	46, 362	

McKee's Creek.

0		1890.		1900.			
COUNTY— CITY,	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.	
AdamsCamp PointClayton	1, 150 1, 038	2,886	5, 069	1,260 1,000	2, 369	4, 629	
Brown		5,377	7,032	1,960	5, 047	7,007	
Pike	1,400	ະ, 680	5,080	1,404	3, 4 21	4, 825	
Total	5, 238	11,943	17, 181	5, 624	10,837	16,46	

Population Directly Tributary to the Illinois River, not Included in Statement of Tributary Streams.

_		1890.		1900.					
COUNTY— CITY.	Urban Rural Pop. Pop.		Total Pop.	Urban :Pop.	Bural Pop.	Total Pop.			
Brown		1,718	1,718		1,524	1,524			
Bureau		17,847	25,090		18, 384	29,948			
Ladd Princeton	3, 396		•••••	1,324					
Spring Valley	3,837			4, 023 6, 214					
Calhoun		3, 369	3, 369		3,685	3,68			
CassBeardstown	4, 226	4,780	8, 956	4,827	5, 324	10, 15			
·	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10 096	14 759		11 001	14 76			
Fulton	1, 357	12, 237	14, 752	1,684	11,881	14,76			
Vermont	1,158			1, 195					
Greene		8,994	13, 815		8,951	13, 33			
Roodhouse Whitehall	2,360 1,961			2, 351 2, 030					
		12, 455	21,024		13, 299	24, 13			
Grundy	2, 150	12, 900	21,024	1,669 1,252 2,607 1,036	10,200	24, 10			
Carbon Hill		- 		1,252	ļ	•••••			
Gardner	1,672 1,094 3,653			1,036					
Morris	3,653			4,278					
Jersey		4,568	4, 568		8,905	8,90			
Kankakee		4,765	4,765		5, 442	5,44			
Kendall		5,598	5,598		6,043	6,04			
LaSalle		14,669	48,096		15, 456	51,83			
Crotty LaSalle	1,190	· • • • • • • • • • • • • • • • • • • •	•••••	1,036					
Marseilles	1, 190 9, 855 2, 210			2, 559					
Mendota Ottawa	3,545			10, 446 2, 559 3, 736 10, 588 6, 863 1, 150		· · · · · · · · · · · · · · · · · · ·			
Peru	9, 985 5, 550			6,863					
Utica	1,094		•••••	1, 150					
Lee	[3, 961	3, 961		4, 225	4, 22			
Livingston Dwight	1,354	5, 673	7,027	2,015	6, 269	8.28			
Macoupin		964	864		828	82			
McDonough		442	442		440	44			
Mar <u>s</u> hall		9, 439	13,653		9,017	16, 37			
HenryLacon	1,512 1,649	· · · · · · · · · · · · · · · · · · ·	•••••	1,637 1,601		· · · · · · · · · · · · · · · · · · ·			
Toluca				2,629					
Wenona	1,053			1,486					
Mason	2,525	6,036	8, 561	3, 268	6, 133	9,40			
		18, 364	32, 636		18, 355	35, 00			
Monan		15, 504	32,030	15,078	10, 900	30.00			
Morgan	12, 935								
MorganJacksonville Waverly	12, 935 1, 337			1,578					
Peoria	12, 935 1, 337	23, 176	68, 466	1,578	23, 501	86.81			
Peoria	1, 337		68,466	1,578	23, 501	86,81			
Peoria	1,337		68,466	1,578 1,578 1,699	23, 501	86,81			
Peoria	1, 337		68, 466	1,578	23, 501	86,81			
Peoria	1,337		68,466	1,578 1,578 1,699 1,582 58,458	23, 501 	86, 81 			

Population Directly Tributary to the Illinois River-Concluded.

		1890.		1900,						
COUNTY— CITY.	Urban Pop.	Rural Pop.	Total Pop.	Urban Pop.	Rural Pop.	Total Pop.				
SchuylerRushville	2,031	4, 560	6,591	. 2,292	6,690	8,982				
ScottWinchester	1,542	8, 762	10,304	1,711	8,744	10, 455				
Tazewell	1, 176 6, 4 37	5,719	13, 332	1, 304 8, 42 0	7,488	17,212				
Woodford		6, 269	6, 269		6, 260	6, 260				
Total	139, 134	193,841	332, 975	177, 189	201,888	379,077				

STREAM GAUGINGS.

Gaugings of the principal tributaries and of the Illinois river at Peoria were made during the low water stage in October, 1899, and represent approximately the average conditions of these streams during the late summer and early fall months. These gaugings were taken with a Price's current meter which had been previously rated by the United States Geological Survey. The beds of the streams were accurately cross sectioned and readings taken at the following stations:

Des Plaines River—At wagon bridge about 1 mile below C., B. & Q. R. R. bridge, near Riverside. Cross section was also taken at C., B. & Q. R. R. bridge for gaugings at higher stages of the river.

Flow 13.21 cu. ft. per sec.

Turbidity .04.

DuPage River—At wagon bridge about 5 miles above the Illinois & Michigan crossing, and about one-half mile below the C., B. & Q. R. R. bridge, which point is above the influence of slack water of the canal dam.

Flow 32.77 cu. ft. per sec.

Turbidity-Clear.

Kankakee River—At C. & A. R. R. bridge near Lorenzo, Ill. Rain for three days prior to gaugings and the river 2 or 3 inches higher than previous to rains, but still quite low.

Flow 509.24 cu. ft. per sec.

Turbidity .032.

Fox River—At wagon bridge at Weldon about 8 miles above its mouth.

Flow 321.95 cu. ft. per sec.

Turbidity .019.

Vermilion River—Above Streator water work's dam and impounding reservoir.

Flow 0.9 cu. ft. per sec., which is less than the amount of water pumped daily from the impounding river to supply the city of Streator with water. A cross section of the stream was taken at the C. & A. R. R. bridge at Streator for gauging at higher stage of the river. About 200 ft. above this bridge, above which point the river receives practically all of the sewage of the city, a gauging showed approximately a flow of 4 cu. ft. per sec., which is the better figure to take in computing its contribution to the Illinois river.

Turbidity above the city .18.

Spoon River-At the C., B. & Q. R. R. bridge near Lewiston.

Flow 81.76 cu. ft. per sec.

Turbidity .09.

Sangamon River—At wagon bridge one-half mile below the C., P. & St. L. R. R. bridge near Chandlerville. Cross section taken at openings in railroad for high water gaugings.

Flow, 372.30 cu. ft. per sec.

Turbidity, .08.

Discharge of Illinois River at Peoria, Illinois.

(Computed from Current Meter Observations and Cross Sections.)

	•	STAGE 0	F RIVER.	DISCHARGE.	VELOCITY.		
	DATE.	P. & P. U. Ry. Bridge.	Bridge St. Bridge.	Cu. ft. second.	Ft. per second.		
Oct. Mar.	19, 1899. 13, 1900.	4′ 8″ 15′11″	4.3 15.4	2, 136 33, 797	2.43		
Mar. Mar. May	15, 1900. 29, 1900. 23, 1900.	19' 3'' 15' 8''	19.2 16.0 8.8	51, 086 30, 483 9, 296	3.00		
June Aug.	27, 1900 29, 1900 27, 1900	7' 4''	7.2 7.7 5.8	6,600 6,817 4,558	1.04 1.02 0.89		

Note.—The observation of March 29, 1900, is not accurate on account of drift material and has been disregarded in preparing the curve of discharge.

The turbidity tests were made in accordance with that adopted by the Massachusetts State Board of Health. This is an arbitrary scale of the reciprocal of the depth in inches at which a small platinum wire can be seen when immersed in the water.

VELOCITY OF ILLINOIS RIVER AT PEORIA, ILL.

The total fall in the Illinois river throughout the lower 225 miles of its course is thirty feet, or an average of 0.132 feet per mile. This fall is very small and the current very sluggish. In some of the lakes, or wide reaches as at Peoria, the current is almost imperceptible. There are short reaches of narrow channel, where the fall is considerably more than the average.

The discharge guagings of the Illinois given above, were taken at the P. & P. U. Railroad bridge, 8,504 feet below the mouth of Peoria Lake where the river is crossed by the Bridge street bridge. The U. S. Weather Bureau maintains a guage at the Bridge street bridge,

and an observer reports daily the stage of the river. At the P. & P. U. Railroad bridge a guage board is maintained, but the stage of the river is not taken. These two guages are set with their zeros at low water mark for their respective locations prior to the construction of the Coperas Creek dam, which was constructed to improve navigation, and raised the low water stage of the river at Peoria from three to four feet. The zero of the guage at the P. & P. U. Railroad bridge is 45-hundredths of a foot below the level plane of the guage at the Bridge street bridge. Observations show that the slope of the surface of the water in the Illinois river ranges from .33 feet to one foot below these two points, equal to .204 feet to .62 feet per mile. The average slope for stages ranging from five to eight feet has been taken as .4 feet, equal to .248 feet per mile; hence the sine of the slope is .000047036. For the higher stages no definite conclusion has been reached regarding the slope of the surface, as it is more affected by winds and the stage of the Mississippi river, as well as by the progress of the flood period.

Using the sine of slope given above, the velocity, as determined by the current meter, the cross-section and the wetted perimeter, as determined by surveys in the Ganguillet and Kutter formula for the velocity of flow in streams, and solving for "n," the "co-efficient of roughness," it is found to be .0414. This factor is one which is of much importance in estimating the velocity of streams when the current can not be directly measured. For large streams sufficient data is not at hand for the accurate estimation of the flow; therefore, all such data is of considerable importance to hydraulic works. With a view to extensive distributing of such data, the following table from the recently issued report of the "Special Commission Chicago Drainage Channel" is given, with the deductions for the Illinois river added.

TABLE OF HYDRAULIC ELEMENTS AMD DEDUCTIONS FROM GAUGINGS OF VARIOUS CHANNELS.

(For use in the Ganguillet and Kutter formula.)

$$V = \frac{a + \frac{l}{n} + \frac{m}{S}}{1 + (a + \frac{m}{S}) \frac{n}{\sqrt{R}}} \sqrt{R} S = C \sqrt{R} S$$

V=Mean velocity. R=Mean hydraulic radius. S=Sine of slope. n=Coefficient of roughness.

l=1.811. m=.00281.

Description of Channel, Authority, Etc.	R.	c.	s.	n.	٧.
Artificial channel of the DesPlaines river opposite Gary, Ill. Straight and fairly level across. About 200 feet wide on bottom.—From Jour. West. Soc. C. E., 1896	(700	79.92 72.70	.0000796 .0000707	.029	
Irwadi river at Saiktha, Burmah.—Quoted by Kutter from Gorden, 1873	{ 21.13 22.97	105.90 103.60	.0000 344 .0000 3 87	.029 .029	2.857 3.091
Solani embankment, 15th mile, new site, earth channel side slopes 1¼ to 1.—Quoted by Kutter from Cunning ham, Roorkee, 1880	1 1	92.80	.0002200	.023	3.98
Same, old site, side slopes 212 to 1	8.64	89.10	.0002310	.024	3.98
Linth canal at Grynau. Trapezoidal earth channel.— From Kutter	9.18	94.90	.0003700	.022	5.53
Seine at Poissy.—Quoted by Kutter	17.87	91.10	.0000750	. 029	3.39
Rhine at Germersheim. Gravel and fine detritus.— Quoted by Kutter from Grebnau, 1867		78.70	.0008490	.030	6.10
Rhine at Byland. Reach over 11 miles.—Quoted by Kutter from Krayenhoff, 1812	16.45	89.20	.0000977	.029	3.57
Bayou Plaquemine.—Quoted by Kutter from C. Ellet	18.35	84.50	.0002064	.030	5.19
Same	15.32	84.40	.0001437	. 029	3.95
Sacremento River at Freeport, Cal.—From the report of the commissioner of public works of California for 1894. Measurements made with current meter in 1879	23.99	95.62 95.73 98.90 79.06 84.68	0000744 .0000786 .0000675 .0000778 .0000580	.029	
Northren canal, Lowell, Mass. Dry stone walls Hiram F. Mills, 1899	13.35 13.30		.0000209 .0000417 .0000642	.025	2.02 2.46 2.98
Illinois and Michigan canal. Trapezoidal earth chan nel.—Desmond FitzGerald. 1899	-		.0000249	023	1.20

138

Hydraulic Elements and Deductions.—Concluded.

Descrip	tion of Channel, Authority, Etc.	R.	c.	8.	n.	v.
Mississippi riv	er.—From report of Mississippi River					
Commission.	1982; measurements in 1981:	Ì				
At Clayton.	Ia., August 22	13.74	85 . 79	.0000250	.034	1.59
••	29	14.32	85.55	.0000280	.084	1.71
••	June 14	19.85	82.37	.0000688	. 034	3.04
At Hanniba	, Mo., August 16	16.50	104.12	.0000240	.029	2.07
••	September 9	16.47	111.29	. 0000260	. 026	2.300
••		17.50	77.25	.0000730	.036	2.76
At St. Louis	, Mo., January 12	14.57	55.04	.0001294	.049	2.390
••	14	14.17	53.87	.0001231	.050	2.250
••	25	13.49	64.10	.0000971	.041	2.320
••	31	13.16	70.75	.0000889	.036	2.420
••	February 2	13.21	81.11	.0000702	.031	2.470
••	May 27. slough	8.40	57.21	.0001811	.040	2.230
••	June 6. slough	5.69	57.44	.0000767	.037	1.200
gravely bottom at one side,	Peoria, Ill. Fine detritus banks and n; channel dredged and barges dumped but within the cross-section; stream average width.—Jacob A. Harman, 1900.	8.00	58.50	.0000470		1.136

The velocity given above is for average cross-section for about three-quarters of a mile above the P. & P. U. railroad bridge, where the current readings were taken. In the preceding table of discharges from actual observations, the average velocities at the bridge are given, the range is from .89 feet per second to 3.001 feet per second—or .607 miles to 2.042 miles per hour.

Additional gaugings are necessary to arrive at an absolutely correct rate of discharge for the flood periods, but the data at hand is sufficient to warrant the general deductions and conclusions brought out in this report.

RAINFALL TABLES.

The monthly and annual rain-fall as taken by U. S. Weather Bureau observers has been compiled and averaged for the ten years, 1890 to 1899 inclusive. The stations have been arranged according to the sub-basin on which they are located or were near, so that the average monthly and annual rain-fall for each river basin tributary to the Illinois has been determined. These data show that the annual rainfall for the 10 years was 31.82 inches on the Des Plaines and 37.37 inches on McKee's creek, the most northern and most southern streams respectively, a difference of about five inches or 16 per cent in favor of the southern streams. The average annual rain-fall for the ten years was 34.36 inches, being 3.49 inches below the normal for the State as shown in a late table by Leverett in water rescurces of Illinois:

Monthly Precipitation on Various Drainage Basins of the Illinois River.

DES PLAINES RIVER.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November	December.	Annual
1890. Cook Lake	*Chicago* *Ft. Sheridan* *Lake Forrest Averages	2.98 2.68 2.76 2.83	1.84	2.33 3.29	4 82 4.29	5.25 5.08	7.77 5.29	1.25	2.58 2.47 2.53	1.32	6.02	0.92	2.27	38.9
1891, Lake Cook	*Ft. Sheridan *Chicago	1.99	1.95	2.13	3.14	2.09	2.42	2.47	3.75 4.52 4.14	0.32	0.36	3.83	1.32	26.5
1892. Cook	*Ft. Sheridan	1,23 1,99 0,48 1,23	1.57 1.81	2.21 0.95	2.17 3.57	6.77 6.51	10.58 10.91	2.23 2.54	1.85 0.86	1.34 1.67	1.54 0.00	2 68 1.78	1.63 2.60	

^{*} See end of table-page 159.

140

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November.	December.	Annual
1893. Cook Lake	*La Grange *Chicago *Ft. Sheridan Averages	-	_	_	-	-	5.30 3.59 3.62	2.96 3.98 3.77 3.27	_	-	_	-	-	29.84 27.47 29.79 29.03
1894. Will. Cook. Lake McHenry	Braidwood	1.16 1.64 1.55 2.94 1.82	1.31 1.72 2.13 1.45 1.65	2.87 2.51 2.66 2.01 2.51	2.23 3.23 2.65 4.70 3.34	3.69 3.16 3.35 4.01 3.02	2.84 2.09 1.96 0.51 3.56	0.46 1.45 0.60	0.85 0.75 0.60 0.27 1.28	5.99 8.87 8.28 6.56 8.33	1.18 1.04 0.84 2.49 1.87	1.68 1.45 1.18 1.64 2.27	1.00 0.71 1.66 1.26 0.60	25.26 27.62 27.46 27.84 31.01
Will	Joliet. Braidwood. *La Grange. Chicago. *Ft. Sheridan. *Chemung	1.94 1.82 1.64 2.15 2.61 1.47	0.78 0.67 0.45 1.60 0.32 0.95	1.17 1.04 0.85 1.32 0.45 2.18	1.89 1.92 1.17 0.86 2.50 2.52	1.95 2.24 1.99 3.70 4.96	2.00 1.79 2.60 2.11	4.32 3.24 2.42 3.30 2.91	5.69 6.49 3.81 3.06	1,10 0,89 4,88 4,74	0.77 0.51 0.41 0.66	5.09 5.60 2.14 2.10	6.04 6.76 5.50 2.59	27,29 30,28 32,38 32,22 30,25
Will. Cook Lake. McHenry	Joliet *La Grange Chicago *Ft. Sheridan *Chemung Averages	1.14 1.16 1.12 0.56 0.99	2,07 2,39 3,48 1,06 1,93	1.15 1.04 1.26 2.53 3.48	2.82 4.21 2.79 3.13 6.78	5.28 4.73 4.16 2.35 4.18	3.18	4.97 4.39 3.61 3.86 5.10 4.39	2.27	8.56	1.06	2.58	-	34.94 32.50 33.14 27.25 40.88
Will. Cook Lake McHenry	*Joliet						3.74 3.60 4.41 6.36	2.97	1.57 1.70 1.52 2.00	0.80 0.84 1.10 1.18	0.33 0.18 0.25 0.84	3.82 3.06 3.53 2.37	1.51	30.93 31.86 25.95 26.82 37.29
Will. Cook. Lake. McHenry.	*Joliet *La Grange: Chicago. *Ft. Sheridan. *Chemung.				100		6.92 5.30 2.56 5.97	2 77	4.59 3.03 2.86 5.66	3.97 3.16 2.48 2.72	4.21 3.26 3.10 3.41	2.69 2.25 1.44 2.09	1.56 1.11 0.91 0.89	44.35 44.12 33.77 27.41 39.06
1899. Will. Cook. Lake. McHenry.	*Joliet. *La Grange. Chicago. *Ft. Sheridan. *Chemung.	0.82 0.37 0.58 0.52 0.76	1.68 1.91 1.60 1.27 1.62	2.23 2.06 2.11 2.47 1.94	0.35 0.34 0.14 0.27 1.09	4,69 5,98 4,35 6,04 5,61	2.17 1.86 2.71 2.53 2.27	5.26 8.80 6.66 2.91 4.95	1.74 2.18 0.91 2.05 3.05	2.44 1.73 2.39 2.76 2.29	2.39 2.54 2.09 1.85 1.44	1.15 1.53 1.14 2.40 2.71	1.70 1.63 1.81 1.31	

^{*} See end of table-page 159.

141

DU PAGE RIVER.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November.	December .	Annual
1893. Will Kane	*Braidwood *Aurora	-	-	-	_	_	_	_	_	-	-	2.99	_	31.32
1894. Will Kane	*Braidwood* *Aurora	1,16	1.31	2.87 3.17	2.23 2.49	3.69 2.76	2.84 1.87	0.46 0.62	0.85 1.79	5.99	1.18	1.68	1,00 0.96 0.98	25.26 29.05
Will Will Will, Kane DuPage	*Joliet*Braidwood*Aurora Wheaton	1.82 1.53 1.67	0.67 0.50 0.59	1.04 1.14 1.09	1.92 1.48 1.70	3.34 2.95	1.66 1.39	3.83	4.80	1.17	i.ii 1.16	5.41	6.62 5.89 5.78 6.10	31.86 31.31
1896. Will, Kane DuPage	*Joliet. *Aurora Wheaton Averages	1.06	1.92	1.73 2.11	3.96 4.50	6.55 7.07	2.34	5.60	2.56	9.09	0.29	3.97	0.36 0.24 0.55 0.38	37.46 41.47
1897. Will Kane DuPage	Joliet*Aurora Wheaton Averages	7.03 6.61	2.12	4.85 5.43	2.88	1.27	5.31 4.22	5.01 3.09	2.79	0.89	0.33	4.11 2.97	0.99	38.26
1898. Wili Kane DuPage	Joliet*Aurora Wheaton Averages	5.17 3.67	3.19	5.65 6.04	1.31	4.98	5.86	1.13	4.63 5.69	4.29	5.30	2.92	1,99	44,35 46,60 45.02 45,32
1899. Will Kane DuPage	Joliet*AuroraWheaton	0.72	2.15	3.23	0.35 0.61 0.41	9.48	1.97	5.54	1'52	2.35	2.39	1.12	1.71	26.62 32.79 30.05

^{*} See end of table—page 159.

KANKAKEE RIVER.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November	December.	Annual
1890. Iroquois	Watseka	4.79	1.77	3.28	3.86	5.37	5.78	1.57	2.70	2.08	3.73	1.56	0.25	36.74
1891. ('orter, Ind	Valparaiso	2.09	1.95	1.97	2.78	2.00	2.42	2.47	4.50	0.34	0.39	4.14	2.41	27.46
1892 Kankakee Iroquois Champaign	100		2.41	2.28	_	-	4.38	3.51	1.56	0.93	0.86 0.52 0.62	4.56	1.39	36.61 36.81 36.71
1893. Will Kankakee Iroquois Champaign	Braidwood	1.00 1.85 1.60	0.38 6.70 3.57	1.13 3.15 2.60	5.45 6.95 7.23	4.83 5.42 3.89	1.28 1.35 1.11	Ť. 0.38	0.55	1. 69 4.38	1.70	1.87 2.03 2.19	1.57	21.95 30.16 26.06
1894. Will Kankakee Champaign	Braidwood Kankakee*Rantoul	1.91	1.67	2.75	3.54	3.29 4.39	1.11	0.85	1.30 2.45	8.44 5.21	0.50	2.20 1.58	1,00 0.94 1.16 1.03	28.23
1895. Will Will Kankakee Iroquois Champaign	*Joliet Braidwood Kankakee Gilman *Rantoul Averages	0.87	T. 0.65	0.53	3.03	2,64 1,35 1,41	1.11 1.29 3.40	2.53 5.09 7.47	2.61 1.93 1.39	1.79 3.46 5.42	1.52	3.02 2.80 3.25	7.91 6.82	26.73 26.05 29.43 35.12 29.33
1896. Will Kankakee Iroquois Iroquois Champaign	*Joliet Kankakee Gilman Martinton *Rantoul Averages	1.30	1.38	0.53 0.89 0.87	1.68	4.95	5.64 4.42 4.08	7.31 7.02 6.86	3.62 3.83	5.82 5.50 5.73	0.44	1.95 1.98 2.25	0.13	34.94 37.20 33.01 35.05
1897. Will Kankakee Iroquois Champaign	*Joliet Kankakee Martinton *Rantoul	3,61 3,88	i.37 1.18	3.96 3.41		1.51 1.78 2.23	3.32 4.44 6.73	2.15 1.67 5.39	0.36 1.28 0.58	0.20 0.29 0.68	0.61	3,63 5,71 3,80	2.20	29.18

^{*} See end of table-page 159.

143

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November	December .	Annual
Cook	*Rantoul	3.16 3.53 3.44 3.46	2.11 2.01 1.90 1.76	5.05	1.31 1.98 2.04	3.66 5.66 5.66 5.94	3.89 1.72 2.65 4.99	3.97 1.69 1.11 1.87	4 85 4.20 4.03 3.87	3.43 5.80 5.77 3.86	4.30 4.18 4.36 4.58	2.48 2.33 2.81 3.28	2.15 1.79 1.17 1.80 1.98	44.35 40.20 41.29 39.89 44.83
Iroquois	*Joliet Kankakee Martinton *Rantoul Averages .:	1.20 1.37 2.23	0.89	2.14 3.49	0.88	3.90 4.02 5.81	2.31 2.22 1.81	3.78 2.55 3.10	2.20 2.19 2.61	2.83 2.30 2.59	3.17 4.50	1.84 1.65	1.70 2.15 3.11 1.58 2.13	31.91

FOX RIVER.

County.	City.	January	February	March	April	Мяу	June	July	August	September.	October	November.	December .	Annual
1890 LaSalle Kendall DeKalb DeKalb Kane McHenry	Ottawa Oswego Sandwich *Sycamore Aurora *Riley	2,44 2,60 1.64 3,24	1.30 1.62 1.15 1.43	2.89 2.75 1.57 2.88	2.58 2.40 2.58 2.50	3.99 5.27 5.00 3.87 5.05 4.33	6.98 7.54 7.98 6.81	0.34 1.19 0.61 0.42 0.91 0.53	2.65 3.32 2.07 2.57	2.17 2.15 1.22 2.10	4.60 4.16 3.48 4.83	1.89 1.75 1.87 1.94	0.27 0.75 0.33 1.50 0.89 1.13	31.81 34.71 34.32 29.35 35.15 36.44
	Averages	2.54	1.40	2.59	2.47	4.59	7.64	0.67	2.86	1.80	4.39	1.88	0.81	33.63
1891 LaSaile Kendall DeKalb DeKalb Kane McHenry	Ottawa Oswego Sandwich *Sycamore Aurora *Riley Averages	2.71 2.52 1.91 2.60 2.22	2.32 4.13 1.60 2.55 1.65	2.33 3.80 1.95 3.19 1.64	3.97 4.70 4.50 4.43 4.05	1.84 1.97 1.57 2.79 2.21 4.38	2.93 3.34 3.55 3.70	4.45 3.07 3.18 2.00 2.56 2.40 2.94	4.36 3.87 2.22 5.09 1.95	1.62 0.37 0.71	0.64 0.39 0.89 0.80 1.16	4.42 4.75 4.21 4.68 3.75	2.07 2.16	35.37 31.85 36.18 28.36 34.59 31.29
1892 LaSalle Kendall DeKalb Kane McHenry	Ottawa Oswego *Sycamore Aurora *Riley	1.73 1.92 1.73	1.17 1.21 1.35 1.22	2,32 2,01 2,65 1,49	3.45 4.81 3.80 2.83	13.25 8.05 11.77 8.16 11.05	10.51 11.23 12.96 11.21	2.56 4.69 3.76	1.71 3.56 2.83 4.42	2.32 1.62 2.44 1.43	0.96 0.95 1.26 0.72	2.11 2.13 1.85 1.64	1.84 1.97 2.06 2.40 1.71	45.87 41.02 45.64 46.31 43.21
1893 LaSalle Kendall DeKalb Kane McHenry	Ottawa Oswego *Sycamore Aurora *Riley	1.83	3.16 2.12 2.73	2.68 2.22 3.04	4.80 4.59 5.23	1.95 2.59 3.25 2.11 2.99	3.27 5.04 3.35	1.02 1.99 3.65 1.19 2.32	0.22 0.46 0.32	2.88 3.83 2.70	2.28 1.13 3.20	2.25 2.74 2.99	2,16 1.85 2,19 2,60 1,42	27.72 29.82 33.05 31.32 29.95
	Averages	1.86	2.52	2.61	4.71	2.58	3.86	2.03	0.44	3.18	2.04	2.50	2.04	30.37

^{*} See end of table—page 159.

 ${\it 144}$ Rainfall Tables—Continued.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November.	December.	Annual
1894 LaSalle Kendall DeKalb Kane McHenry McHenry	Ottawa Oswego *Sycamore Aurora *Riley *Chemung	2.38 2.31 2.50 2.76 2.24 2.44	1.58 1.10 1.35 1.95 1.33 1.46	2.57 2.68 3.26 3.17 3.02 2.94	1.51 2.82 2.87 2.49 2.62 3.34	4. 01 2.82 3.90 2.76 3.62 3.02	1.79 1.87 1.22	0.80 0.50 0.78 0.62 0.31 0.76	1.49 0.95 1.79 1.33	7.35 7.88 7.07 15.73	1.34 1.77 1.68 1.57	1.79 1.96 1.93	$0.74 \\ 0.96 \\ 0.44$	27.17 29.75
	Averages	2.44	1.46	2.94	2.61	3.35	2.28	0.63	1.43	8.92	1.64	2.02	0.78	30.51
1895 LaSalle Kendall DeKalb Kane Kane McHenry	Ottawa Oswego *Sycamore Aurora *St. Charles *Riley *Chemung	1.22 1.33 1.35 1.53 2.09 1.47	0.70 0.38 0.30 0.50 0.46 0.95	0.82 1.35 1.03 1.14 1.32 2.18	2.02 1.56 1.24 1.48 1.81 2.52	1.06 3.27 2.52 3.34 2.44 2.91 4.96	1.64 2.20 1.66 1.80 1.68	4.79 3.61 3.10 3.83 2.55 3.43 2.91	5.00 3.06 4.80 4.35 3.94	0.59 0.75 1.17 2.02 2.16	1.05 0.55 1.11	3.71 5.41 2.69	5.77 6.10 3.38 5.89 6.02 3.00 2.59	27.56 30.41 23.19 31.86 25.90 30.25
	Averages		_		-	3.01	1.72	3.61	3.69	1.81	0.82	3.95	4.45	28.19
1896 LaSalle Kendall DeKalb Kane Kane McHenry McHenry		0.99	1.93	3.48	6.78	4,24 7,52 3,80 6,55 5,77 5,04 4,18	1,75 1,59 2,34 2,52 3,02 3,18	8.63 5.32 3.60 5.60 6.07 3.29 5.10	4.03 0.58 2.56 2.61 2.15 2.27	7.24 14.44 9.45 8.56	0.26 0.29 0.40 0.38 1.06	1.88 3.97 3.00 1.77 2.58	0.24 0.61 0.43 0.77	27.36 37.46 45.24 32.52 40.88
	Averages	0.95	1.88	2.00	3.92	5.30	2.37	5,37	2.38	9.28	0,41	2.85	0.43	37.14
1897 LaSalle Kendall DeKalb Kane Kane McHeury McHeury	Ottawa Oswego *Sycamore Aurora *St. Charles *Riley *Chemung	5.98 6.06 4.61 7.03 6.06 4.45 5.06	1.71 1.60 1.31 2.12 1.99 1.49 1.77	4.47 3.56 4.31 4.85 4.37 3.87 5.25	1.88 2.36 3.78 2.88 3.47 2.59 4.66	0.99 1.19 1.10 1.27 1.41 1.08 1.67	5.19 6.04 5.31 2.69 3.23	2,99 3,63 3,03 5,01 3,41 1,57 4,73	1.77 1.06 2.79 1.67 1.24	0.86 0.44 0.89 0.60 1.15	0.15 0.38 0.33 0.28 0.48	3.71 3.38 4.11 3.36 2.52	1.74 1.58 0.81 1.67 1.48 1.50 1.40	30.25 38.26 30.79 25.17 37.29
	Averages	5.61	1.71	4.38	3.09	1.24	5.10	3.48	1.61	1.00	0.42	3.40	1.45	32.50
1898 LaSalle	Ottawa Oswego *Sycamore Aurora *St. Charles *Riley *Chemung	5.24 3.86 3.28 5.17 3.73 3.89 2.89	2.38 2.59 3.57 3.19 2.89 3.03 2.73	5.21 4.11 5.42 5.65 5.29 4.76 4.25	3.12 1.48 1.65 1.49 1.03 1.90 2.20	6.72 5.50 3.20 4.98 4.07 2.74 3.71	5.86 4.55 7.74	1.30 2,23 1,22 1.13 1.74 2.27 2.54	6.47 4.63 5.73 4.35	3.81 3.71 4.29 3.87 2.16	4.32 4.81 5.30 5,74 3.41	2.81 1.76 2.92 1.98 1.64	1.42 1.52 0.80 1.99 1.97 0.76 0.89	39.36
	Averages	4.01	2.91	4,96	1.84	4.42	5.41	1.78	4 97	3.78	4.53	2.30	1.33	42.25
1899 LaSalle	Ottawa Oswego *Sycamore Aurora *St. Charles *Riley *Chemung	0.63 0.37 0.37 0.72 0.85 0.44 0.76	2.10 1.67 1.59 2.15 2.12 1.21 1.62	3.21 2.70 2.14 3.23 2.68 1.65 1.94	1.50 0.46 0.96 0.61 0.58 0.76 1.09	5,08 7,28 3,32 9,48 5,62 4,61 5,61	1.55 1.19 1.97 0.92 2.56	5.70 4.83 4.04 5.54 6.00 4.34 4.95	2.27 1.39 1.52 2.10 2.36	1.73 2.35 3.10 1.59	2.44 2.39 2.20 1.72	1.33 1.12 1.31 1.44		24.24
	Averages	0.63	1.80	2.47	0.92	5.62	1.72	5,10	2.24	2,20	2.12	1.56	1.77	28.14

^{*} See end of table-page 159.

145

VERMILION RIVER.

COUNTY.	Сіту.	January	February	March	April	Мау	June	July	August	September.	October	November	December	Annual
1890. LaSalle Putnam Livingston	*Ottawa* *Hennepin *Dwight Pontiac	2.59 2.05 4.59 4.18	1.40 2.03 1.45 1.20	3.33 2.55 3.37 3.58	1.87 3.39 3.95 4.15	3.99 4.54 5.08 3.65	3.98 7.38	0.66	1.45	3.07	5.57	1.45	0.27 0.20 0.25 0.30	30.94
	Averages	3,35	1.52	3.21	3.34	4.31	5.83	0.66	2.04	1.80	4.02	1.68	0.25	32.02
1891. LaSalle Putnam Livingston	*Ottawa	2.86 2.36 0.95	2.28 1.35 2.45	2.56 3.13 2.88	3.96 3.50 3.45	1.84 2.68 0.47	6.79	1.99	4.45	0.98	1.43	4.66	1.74 2.28 2.40	35.60
	Averages	2.06	2.03	2.86	3.64	1.66	5.62	3.03	4.50	0.82	1.13	4.70	2.14	34.18
1892. LaSalle Putnam Iroquois McLean	*Ottawa* Hennepin *Watseka* Bloomington	1.45 1.20 1.33 1.33	1.52 0.60 1.48 2.31	3.05 2.63 2.27 1.48	3.56 3.33 7.33 6.41	13.25 12.57 9.47 8.27	10.01 3.98	4.22	0.32 2.42	1.25	0.70	2.65	1.44	41.78
	Averages	1.33	1.48	2.36	5,16	10.89	1,66	3,19	1.18	2,25	0.78	2,42	1.70	41.00
1893. LaSalle Putnam Iroquois McLean	*Ottawa Streator *Hennepin *Watseka *Bloomington	1 70	0.90	8 19	6.17	1,95 3,21 1,60 5,42 5,40	0.96 2.95 1.35	1.25	0.38	3.00 1.91	0.95	2.80	2.16 0.97 1.04	27.72 23.27 30.29
	Averages	1.75	2.35	3.20	6.22	2.98	2.08	1.15	0.43	2.30	0.93	2,14	1.56	27.09
1894. LaSalle McLean	*Ottawa Streator *Bloomington	2.38 1.90 2.32	1.58 0.44 1.93	2.57 2.95 3.37	1.51 1.03 2,53	4.01 3.62 3.21	2.53		1000			2.10	1.19 1.86	29.72
	Averages	2.35	1.75	2.97	2.02	3.61	2,46	1.07	1.33	6.39	1.06	2.31	1.53	28.85
1895. LaSalle McLean	*Ottawa Streator *Lexington	1.55	0.70 0.30 0.21	1.40	0.41	1.06 0.80 1.23	1.66		2.60	1.90	1.00	4.03	5.77 5.89 6,83	
	Averages	1.33	0.40	1,10	1.95	1.03	1.66	6.65	2.58	3.08	0.98	4.03	6.16	30.95
Livingston	*Ottawa	1.30	1,15	0.65	2.68	4.24 5.98 6.22 6.79	3.27 3.13 4.58	5 75 4.61 7.18	1.52 2.61 5.47	3.44 5.09 5.88	0.05	2.07 3.54 3.00	0.28 0.10 0.11 0.15 0.53	27.91
	Averages	1.15	1.80	1.15	2.91	5.81	3.49	7.06	3.54	6.01	0.16	2.86	0.27	36 21

^{*} See end of table-page 159.

146

COUNTY.	Сіту.	Јапиагу	February	March	April	Мау	June	July	August	September.	October	November	December	Annual
1897. LaSalle Livingston McLean	*Ottawa	5.34 5.67 5.41	1.55 1.40 2.51 1.77	4.08 3.67 4.01 4.09	1.88 2.74 2.70 3.92	0.99 1.13 1.81 1.68 1.90	6.70 5.25 1.59 3.49	2.71 2.50 6.38 3.91	1.07 1.60 0.50 1.50	1.10 0.81 0.70 2.08	0.23 0.44 0.32 0.48	4.20 4.77 4.19 5.00	1.74 1.32 1.59 1.47 2.00	34.12 31.62 31.82 31.72 35.55
1898. La Salle Livingston McLean	Ottawa Streator Dwight. *Lexington. *Bloomington.	3.43 3.80 4.62 4.00	1.62 2.07 2.11	6.93 6.64 5.17 5.65	3.12 3.00 2.95 2.13 2.66 2.77	6.72 6.00 6.12 6.09 9.42 6.87	3.24 3.79 2.21 4.02	6.62 0.29 1.32 4.40	2.96 3.35 2.44 1.85	4.20 4.86 5.23 6.49	2.99 4.42 4.06 4.31	2.47 2.50 2.09 2.28	1.42 0.77 1.26 1.18 1.92	38.23 42.05 38.65 48.77
1889. LaSalle Livingston McLean	Streator	1.28 0.80 1.52	1.82 2.13 2.20	2.00 1.76 4.72	1,50 0.45 0.70 0.82	5.08 2.50 2.08 4.06	1.82 5.07 4.05	5.22 4.73 1.92	1.69 2.29 2.15	2.57 2.57 1.98	2.47 2.31 2.69	1.23 2.03 1.67	2.03 1 93 2.06 2.15 2.04	25.14 28.53 29.93

MACKINAW RIVER.

County.	iCity.	January	February	March	April	Мау	June	July	August	September.	October	November	December.	Annual
1890 Tazewell	*East Peoria	3.12	1.57	3.13	2.19	2,99	2.45	1.53	2.29	2.03	2.42	2.14	0.47	26.33
1891 Tazewell	*East Peoria ,	2,16	2.25	3.60	3.80	1.93	5.72	4.46	8.47	1.32	0.71	4.32	2.96	41.70
1892 Tazewell McLean McLean	*East Peoria* Bloomington* Ellsworth	0.83	2.31	1.48	6.41	8.27	6.86	4.68	1.16	2.70	1.25	2.62	1.08 1.21 1.30	40.08 39.77 42.68
	Averages	0.83	3,12	1.87	6.91	8-13	6.34	3.75	2.33	2.77	1.09	2.51	1.19	40.84
1893 Tazewell McLean	*East Peoria* *Bloomington												2.32 1.47	36.76 30.29
	Averages	1.42	3.81	3.24	8.43	4.71	2.54	1,36	0.34	3.12	0.50	2.16	1.89	33.52
1894 Tazewell McLean	*East Peoria* Bloomington												2.15	
	Averages	2,38	1.49	3.14	2.29	3.00	2.57	1.93	0.71	5.49	0.40	2.39	2.01	27.80

^{*} See end of table—page 159.

 ${\it 147}$ Rainfall Tables—Continued.

County.	City.	January	February	March	April	Мау	June	July	August	September,	October	November	December.	Annuel
1895 Tazewell Woodford McLean McLean	*East Peoria *Cazenovia* *Bloomington *Lexington	2.32 1.23	1.93 0.21	3.37	2.53 3.42	3.21 1.23	1.89	1.34 9.16	0.91 2.89	5.59 5.87	0.74 0.50 0.76	3.76 2.52 2.50	6.25 1.86 6.83	34.07 27.97 37.75
1896 Tazewell Woodford Woodford McLean McLean	*East Peoria* *Minonk* *Cazenovia* *Bloomington* *Lexington Averages	0.75 1.26 1.55 0.82 1.09	1.80 1.44 1.60 2.55 1.87	1.26 1.08 1.08 2.11 0.53	3.74 3.64 4.18 2.02 3.62	4.77 5.50 5.51 6.79 6.22	3.47 3.87 3.09 3.90 4.58	7.97 5.33 5.60 6.68 7.18	2.84 2.67 5.25 4.75 5.47	4.09 4.53 5.35 5.40	0.34 0.20 0.23 0.16	3.18 2.32 2.82 2.95	0.27 T. 0.24 0.53 0.15	34.48 31.84 36.50 38.66
1897 Tazewell Woodford McLean McLean	*Minonk*Bloomington	5.14 5.41 5.67	1.45 1.77 2.51	3.18 4.09 4.01	2.93 3.92 2.70	1.05 1.90 1.68	2.57 3.49 1.59	2.93 3.91 6.38	0.92 1.50 0.50	1,90 2,08 0,70	0.13 0.48 0.32	3.92 5.00 4.19	1,20 2,00 1,47	27,53 27,32 35,55 31,72
1898 Wookford McLean McLean	*Minonk*Bloomington*Lexington	4.62	2.11	5.65	2.66	9,42	4.02 2.21	1.32	1.85	6.49	4.31	2.28	1.92	48.77 38.65
1899 Woodford McLean	*Minonk *Bloomington Averages	1.52	2.20	4.72	0.82	4.06	4.05	1.92	2.15	1.98	2.69	1.67	2.15	29.31 29.93 29.62

SPOON RIVER.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November.	December	Annual
McDonough	*Havana *Bushnell *Walnut Averages	2.30	1.48	3.00	4.06	8.49	7.84	2.29 5.41 3.85	0.96	3.01 2.11 3.42 8.21	1.19 1.06	2.55 1.78	1.63 1.94	41.69
McDonough Warren	*Havana*Bushnell*Monmouth*Galva	0.68	1.47 2.24 1.65	2.11 3.48 2.88	6.80 5.78	4.36 2.45	2.15 i.37	4.25 2.59 1.08 2.64	0.69	2.34 3.17 3.57 3.03	T. 0.46	1.92 1.57 2.25	1.54	31.48 24.62

^{*} See end of table—page 159.

148

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November.	December	Annual
1894. Mason McDonough Warren Henry	*Bushnell *Monmouth *Galva	1.78	1.35 0.88	2.22 2.53	1.71	2.10 2.18	2.04	0.99	2.00	6 86 5.61	1 37	1.98 2.12 1.52 1.62	1.15	
	Averages	1.64	1 49	2.29	1.99	2.18	3 53	0.93	1.63	5.33	1 20	1 81	1.31	25.32
1895. Mason McDonough Knox Warren Henry Bureau	*Havana* *Bushnell* *Knoxville* *Menmouth* *Galva* *Tiskilwa*	1.62	0 26	0.69	3.54	2.72	1.94	6.28	3,33	6 50	0.71	3.80 3.20 3.51 2.06 2.18 3.31	4.81	35.60
	Averages	1.49	0.27	0.88	2.68	2.48	1.96	6.21	3.24	5.28	0 76	2.95	5.00	33.20
1896. Mason, McDonough Knox., Warren. Henry Bureau	*Bushnell	1.00 1.15 1.10 1.17 1.16	1,40 1,40 1,35 0,80 1,59	0.43 1.57 0.68 0.79 1.01	3.45 3.62 4.50 4.24 4.28	4.44 4.19 4.76 5.25 4.71	2.58 3.65 3.56 3.10 2.81	8.34 7.25 5.79 9.45 5.57	3.34 4.91 6.68 3.69 2.50	6.96 5.28 6.02 6.68 6.70	1.65 2.06 1.76 1.30 0.76	1.84 1.67 2 30 0.81 1.42 1.78	0.22 0.38 0.35 0.30 0.17	37.76 37.36 38.19 33.04
Warren	*Havana	5.20 6 32 5.14 4.91	0.69 0.89 0.52 1.23	4 43 5.67 2.63 4.64	3 90 4.18 3. 5 2 61	1.11 1.20 0.94 1.06	2.82 2.38 2.00 0.92	4.68 4.45 5.26 3.60	0.53	1 16 2.05 2.78 2.46	0.21 0.20 0.13 0.23	2 47 1.87 2.00	1.69 1.47 1.69 1.08	29,19 32,29 27,16
	Averages	5.68	1.05	4 41	3.41	1.13	2.51	4.26	0 98	1 93	0.20	2,65	1.50	29.70
Knox Warren	*Havana *Knoxville *Monouth *Galva *Tiskilwa Averages	5 30 3.20 3.38 3.76	1,38 1,43 1,43 2,43	5 90 3 65 5 43 6 17	3.85 2.73 2.77 3.50	7,98 6.60 8.74 7.30	5 02 4 67 9 86 2 85	0.97 1.50 0.96 1.17	2.78 10.18 9.23 7.13 6.97	5 69 7.15 3.84 4.58	2.48 2.34 2.73 2.63	1.53 2.19 2.93	0.83 0.47 0.61 1.09	45.10 52.73 44.45 49.07 45.38
Fulton Knox Warren Henry	*Havana *Astoria *Knoxville *Monmouth *Galva *Tiskilwa.	0.89 0.42 0.37 0.24	.99 .74 .49	2.75 3.01 3.10 2.70	1.14 1.55 2.84 1.44	8.38 5.87 5.61 5.07	2.585 2.00.: 1.24 2.57:	1.25 2.71 1.49 2.82	3 26 3.00 1.14 3 27 2.40 1.65	4.26 2.95 2.26 2.46	3 43 2 48 2.38 4.34	1.96 1.42 0.65 1 23	2 02 2 64 1.43 1.71	40.21 36.65 28.93 27.13 29.37 29.38
	Averages	0.51 1	.77 2	2.96	. 54 6	3 75 2	2 42	3 65	2.45	3 11	3 29	1 47	2 02	31.94

^{*} See end of table-page 159.

SANGAMON RIVER.

County.	City.	January	February	March	April	Мау	June	July	August	September	October	November.	December .	Annual
Caristian	*Beardstown Springfield Pana Beason	5.72 11.65	0.90 2.01 2.01 1.36	$\frac{2.20}{6.32}$	3.41	5.57	5.25	3.33	3.66	4.66	1.38 1.30 1.16 2.90	3.50	0.00 0.26 1.12 0.20	28.68 51.64
	Averages	6.12	1 57	2.99	2.91	3.82	4.32	2.88	2.40	1.88	1.68	1.88	0.40	32.85
1891 Cass Sangamon Christian Logan	*Beardstown Springfield Pana Beason	0.56 1.69	3.35 2.59 2.64 4.51 3.27	3.21 4.32 3.20	2.81 4.16 3.46	1.96 0.66 1.05	2.35 2.11 6.25 3.36 3.52	4.44 2.10 3.25	4.65 6.50 6.06	1.38 1.00 0.15	1.88 2.26 0.73	4.94 5.49 10.09 4.52	1.59 1.79 1.43	
Cass	*Beardstown *Havana Springfield Beason Decatur Pana Bloomington *Rantoul	1.45 2.11 1.51	1.98 3.41 1.86 5.61	1.54 2.69 1.58 3.32 1.48	4.84	7.69 7.51 5.24 8.57 8.27	6 86	2.29 5.63 3.11 6.49 4.68	2.15 1.89 1.84 6.07 1.16	3.01 3.48 2.95 3.25 2.70	0.98 1.05 T 1.57 1.25	4.95 3 25 4.19 5.46 7.25 2.62 4.56	1.42 1.78 T 4.33 1.21	33.82
	Averages	1.52	3.12	2.35	7.05	7.80	3.47	4.70	2.21	2.64	1.00	4.47	2.04	42.37
Mason	*Beardstown *Havana *Springfield Mt. Pulaski Decatur Bloomington *Rantoul Averages	0.06 0.79 0.65 0.95 1.36 1.60	3.47 3.13 3.57	2.94 4.19 3.82 3.11 2.60	7.95 10.23	5.48 7.41 5.40 3.89	3.41 0.80 1.11	4.25 1.60 2.05 1.16 0 38	0.73 0.28 0.35 0.15 0.20	2.34 2.15 2.25 2.70 4.38	0.22 0.16 1.11 0.74 0.76	1.45 9.76 1.57 1.64 1.41 1.93 2.19	2.06 1.03 1.30 1.47 2.25	31.76 33.01 34.73 30.29 30.16 31.99
1894 Cass Mason Sangamon Logan Macon McLean Champaign	*Beardstown *Havana Springfield Mt. Pulaski Decatur Bloomington *Rantoul Averages	2.08	1.93	2.12 3.09 3.23 2.79 3.37 2.75	2.26 1.68 3.36 2.60 3.06 2.53 3.58	2.80 2.88 1.90 3.21 4.39	1.56 1.91 2.23 1.89 2.37	2.06 3.27 2.33 1.34 0.41	1.86 1.51 1.64 0.91 2.45	2.94 4.06 2.94 5.09 5.21	0.85 0.81 0.42 0.50 0.39	1.52 1.98 1.63 1.50 1.77 2.52 1.58	1.97 3.10 2.43 2.65 1.86 1.16	27.13 25.30 28.34 29.61 25.95 27.97 27.97
Mason Sangamon Morgan Logan Macon Christian	*Beardstown *Havana Spring eld *Alexander Mt. Pulaski Atlanta Decatur Morrisonville Bloomington Averages	1.45 1.36 1.12 1.25 1.27 1.19	0.32 1.03 1.14 0.65 0.94 0.39	1.04 1.61 2.01 1.40 1.18	2.90 2.68 2.49 1.60 1.58 2.75 2.55	1.51 2.55 1.32 1.05 1.07	1.91 3.49 2.43 2.84 4.12 4.40	4 89 5.53 6.55 4.30 6.71 3.42 6.71	4.58 2.76 1.99 1.47 3.39 1.35 1.50 5.12	4.34 2.80 3.82 3.75 6.33 4.47 3.25 4.28	0.41 0.27 0.28 0.31 0.50 0.55 0.25 0.61	3.50 3.80 3.28 2.78 2.67 3.64 3.12 3.28 3.74	6.03 8.08 6.82 7.42 7.77 6.47 4.68 7.62	31.25 32.82 35.01 30.08 38.41 30.91 36.84

^{*} See end of table-page 159.

150

County.	City.	January	February	March	April	Мау	June	July	August	September	Octuber	November	December .	Annual
1896 Cass	Mt. Pulaski Atlanta Decatur Morrisonville Bloomington *Rantoul	1.21 1.77 1.32 1.25 0.97 0.43 0.82 0.86	2.13 2.11 2.22 2.09 2.91 1.41 2.55 1.38	0.98 1.25 1.14 0.93 1.44 1.25 2.11 0.87	2.39 1.56 1.98 2.02 1.68	4.31 2.49 2.89 4.60 4.75 5.05 6.79 4.95	3.66 3.25 6.45 4.74 4.22 4.00 3.65 3.90 4.08	8.51 8.14 9.30 7.12 5.98 6.68 6.86	3,36 1,87 1,95 4,45 3,00 3,07 4,75 3,83	5,30 5,42 5,06 4,82 5,80 4,44 5,40 5,73	0.58 1.76 0.43 0.23 0.66 1.19 0.16 0.22	1.84 1.88 1.95 2.32 2.81 2.59 2.95 2.25	0.33 0.31 0.51 0.24 0.32 0.44 0.53 0.30	31.31 35.73 32.66 36.84 35.34 31.48 38.66 33.01
	Averages	1.14	2.08	1.16	2.27	4.39	4.22	7.89	3.08	5.22	0.91	2.21	0.43	35.01
1897 Mason Sangamon Logan Macon Christian McLeau Champaign	*Havana Springfield Mt. Pulaski Decatur Morrisonville Bloomington *Rantoul Averages	5.91 5.19 3.83 3.35	1.20 1.77 1.19	4.47 3.82 5.08 6.02 4.09 3.41	3.85 2.98 3.87 5.27 3.92 3.54	2.19 1.47 3.21	4.17 4.22 4.99 3.49 6.73	4.16 3.10 3.03 3.60 3.91 5.39	2.86 1.42 1.40 1.36 1.50 0.58	0 35 1.21 0.41 0.29 2.08	0.52 0.37 0.28 0.12 0.48 0.58	4.94 3.84 4.57 5.29 5.00 3.80	2.35 2.54 2.78 2.00 2.32	33.17 37.58 31,42 33.67 38.36 35.55 34.32
	Averages	2.00	1.04	4.10	0.01	4.01	*.*	3,00	1,40	0,10	0.00	3.51	0.41	04.00
Logan	*Havana Springfield Mt. Pulaski Decatur Morrisonville Bloomington *Rantoul Averages	5 81 4.78 5.18 5.02	2.70 2.20 2.71 2.74 1.77 1.76	9.65 9.90 9.85 6.72 5.65 7.20	3.36 2.92 2.66 2.04	7.63 5.12 5.04 5.74 9.14 9.42 5.94	3.71 2.39 2.74 4.02 4.99	2,34 0.56 1.07 2.74 4.40 1.87	4.40 2.77 2.16 3.38 1.85 3.87	6.82 5.14 5.47 4.60 6.49 3.86	6.15 4.79 5.34 5.11 4.31 4.58	2,94 2,26 2,96 3,09 2,28 3,28	1.50 1.68 2.02 1.92	45.10 56.28 45.12 47.91 50.22 48.77 44.83
1899														
Mason Sangamon Christian Logan Macon Piatt McLean	Morrisonville	1,51 2,00 1,94 1,21 1,89 3,60 1,52	2.52 1.91 2.42 2.13 2.43 2.18	2.95 3.44 2.96 2.86 2.58 3.30 4.72	0.72 0.59 1.13 0.82	7.31 11.81 6.84 5.66 9.83 7.01 6.02 4.06 5.81	2,45 4,01 1,84 1,49 2,11 1,42 4,05	1.51 2.44 0.72 2.30 1.02 1.25 1.92	3.81 2.43 3.84 3.35 2.56 1.87 2.15	3.33 1.35 0.98 2.11 1.50 1.87	4.08 3.97 3.75 3.04 4.20 4.34 2.69	1.84 1.72 2.11 1.97 2.01 1.41 1.67	3.00 2.23 1.93 2.37 2.37 2.15	40.21 38.80 33.50 30.70 32.94 30.28 30.76 29.93 31.91
	Averages	1.85	2.18	3,30	1.13	7.15	2.38	2.26	2.88	2.21	3.77	1.87	2.25	33.22

CROOKED CREEK.

County.	City.	January	February	March	April	Жау	June	July	August	September.	October	November.	December.	Annual
1890. Schuyler Pike	Rushville *Griggsville Averages	3.31	1.43	2.75	2.33 2.85 2.59	3.31	5.32	4.19 1.47 2.83	1.85		1.48	2.06 1.40 1.73	0.28	30.35 27.92 29.13

^{*} See end of table—page 159.

151

County.	City.	Јапиагу	February	March	April	Мау	June	July	August	September.	October	November	December.	Annual
1891. Schuyler Pike	Rushville *Griggsville	0.87	3.52	2.25	3.61	2.42	1.76	4.78 0.98	7.94 1.75	1.53	2.11	4.15	-	25.82
	Averages	0.96	2.80	2.87	4.05	3.58	2.17	2.88	4.84	1.07	2.23	4.54	1.50	33.49
1892. Schuyler Cass Pike McDonough	Rushville *Beardstown *Griggsville Bushnell	1.75 2,05	$\frac{3.03}{3.73}$	$\frac{2.81}{2.67}$	6.97	6,59	1.29	5.95 5.63 5.94	0.60 0.41 0.85	3.46	0.52	4,95 3,20	2.09 2.68 0.92 1.63	37.37 42.09
	Averages	1,96	3 22	2.66	6.83	7.70	1,91	5.84	0.62	3.04	1.10	3.90	1.70	40.48
1893. Schuyler Cass Pike McDonough Hancock	Rushville *Beardstown *Griggsville Bushnell *Warsaw	1.16 0.06 0.42 0.68 0.40	2.01 2.82 1.47	3,69 6,22 2,11	9.11 7.69 6.80	6.18 5.65 4.36	3.03 3.34 3.80 2.15 1.59	3.00 3.38 2.59	1.91 0.41 0.35 4.89 0.95	1.49	0.40	1.25	0.81 0.62 1.38 1.34 1.08	34.66
	Averages	0.54	2.20	3.61	7.59	5,40	2.78	2.46	1.70	2.15	0.24	1.42	1.05	31.14
1894. Schuyler Cass Pike McDonough Hancock	Rushville *Beardstown . *Griggsville Bushnell *Warsaw Averages	2.70 2.40 2.06 1.05 1.74	1.52 2.30 1.40 1.20	0.85 2.15 2.28	2.26 2.85 2.46 1.03	2.58 2.30 2.23 0.78	4.69	1.77 0.78 0.66 0.38	2.06 1.45 1.19 0.92 0.01	6.08 2.78 6.86 1.60	2.39 0.78 1.37	1.52 1.48 2.12		34.09 27.13 22.96 27.19 27.84
Adams Hancock	Rushville *Griggsville Bushnell *Coatsburg La Harpe *Warsaw Averages	1.36	0.32	3.15 0.69 1.29	2,35 3.54 1.63	2.46 2.72 1.40 2.66	3.94 1.94 3.13 3.08	5.53 6.25 6.28 5.88 4.89 4.20 6.02	4.85 2.63 3.33 4.90 3.24 	3.51 6.50 2.29 3.25	0.35 0.71 0.34 0.34	2.95 3.20 3.36 3.40	6.21 4.86 3.68 3.65	38.17 35.48 35.65 36.43
McDonough	Rushville*Griggsville *Griggsville Bushnell *Coatsburg La Harpe *Warsaw Averages	1.00 1.00 1.26	2.16 1,40 2.14	0.56 0.43 0.94 1.18 1.50	3.05 3.45	8.10 4.44 4.80 3.05	3.29 2.58 5.16 2.39	9.61 8.10 8.34 7.80	1.77 2.72 3.44 7.96	9.32 6.96 12.28	1.60 1.65 1.65 2.00	1.65 1.67 1.82 2.58	0.38 0.22 0.66 0.99	35.48
McDonough	*Griggsville *Coatsburg Bushnell La Harpe	6.74 6.70 5.20 10.38	1,39 0,37 0,69 1 83	4,20 4,86 4,43 6,22	4.25 4.09 3.90 5.85	2.91 1.75 1.11 2.41	4 31	4,50 7 85 4 68 3.87	2.16 1,22 0.53 1,86	0,34	0.53	3.10	2.34 2.26 1.69 2.10	37.88 29.19
	Averages	7.25	1.20	4.93	4.52	2.05	4.59	5.23	1.44	0.84	0.31	2.63	2.09	37.08

^{*} See end of table-page 159.

County.	City.	Јапиагу	February	March	April	Мау	June	July	August	September.	October	November.	December .	Annual
		3.71	2.19 2.26 1.64 1.40	7.09 5.90	4.83	6.63	5.43	3.56 3.09 2.35	2.11	8.89 6.23	2.80	2.37	1.43	53.14 51.16 48.91
	Averages	3.70	1.95	6.00	4.56	7.83	4,32	3.00	5.67	7.38	2.99	2.73	0.94	51.07
1899. Pike Adams McDonough Hancock	*Griggsville *Coatsburg Bushnell La Harpe	0.42 0.46 0.66 0.35	1.80	$\frac{2.50}{2.92}$	$\frac{1.34}{3.69}$	8.19 7.68	2.25 3.94	$\frac{3.31}{2.44}$		2.53 3.83	$\frac{3.13}{2.61}$	1.40	1.27 1.32 1.20 1.17	36.77
	Averages	0.47	1.70	3.09	2.50	110.39	2.69	2.87	4.51	3.24	2.76	1.93	1.24	37.39

MACOUPIN CREEK.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November	December.	Annual
1890. Greene	*White Hall	6.70	2.55	2.12	2.09	3.02	3.81	2.09	1.63	2,04	1.05	0.94	0.43	28.47
1891. Greene Macoupin Madison	*Alton	0.70	1.93	2.39	2.08	2.56 3.78	3.48 4.70	1 27	5.34 4.40	0.62	0.94	5.25 4.99	0.93 1.08 1.44	27.64 29.92
1892. Greene Macoupin Madison	*White Hall	1.75 1.52 2.09	4.09 3.77 4.38	2.30 2.42 2.09	6,29 9,34 6,38	9.20 9.90 7.87	2.59 5 72 3.57	6.16 4.13 5.35	0 87 1.91 1.65	1.99 2.23 2.50	1.44 1.78 1.40	2.79 4.42 3.05	1.94 1.69 2.17 1.93	41.41 48.83 42.50
1893. Greene Macoupin Madison	*White Hall. Carlinville*Alton	0.37	5 72	5.86	9.23	4.59 5.84	4.10 3.27	1.84	1.50	2.57	1.69	1.37		33.75 37.12 35.43
1894. Greene Macoupin	Carrollton	3.09	2.77	3.15	3.12	2.33	1.42	1,77	1.20	5.23	1.07	3.46	3.47 1.90 2.68	26.98 30.51 28.74
1895. Greene Macoupin		1.08	1.12	1.60	2.61 2.08 2.35	1.42	3.16	5.58	2.14	3.43	0.42	2,91	6.75	33.62 31.69 32.65

^{*} See end of table-page 159.

					_				-					
County.	City.		January	February	March	Мау	June	July	August	September.	October	November	December.	Annual
1896. Greene Macoupin	CarrolltonCarlinville	-			-	86 6.94 48 8.11 17 7.53		l—-	·		·I—		I I	32.38 41.56 36.97
1897. Greene Macoupin	Carrollton	-	-			33 2.09 85 2.66 09 2.37	-				l —		<u> </u>	
1898. Greene Macoupin	Carrollton	1-	-!-	1-	_ _	16 7.33 30 7.58 73 7.46	i—	1	I			I	_	47.81 51.11 49.46
1899. Greene Macoupin	Carrollton	11	. 25 2	01 2.	75 1. 24 1.	30 8.01 27 4.99	1.71	2.54	6.48	2.29	3.91	2.30	2.38	37.20
		M	K	Œ's	CR	EĖK.					····-			
County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November.	December.	Annual
1890. Pike Schuyler	*Griggsville *Rushville Averages	2.99	1.43	2.75 2,49 2.62	2.33	-	-	-	-	2.47 3.64 3.05	-	-	-	27.92 30.35 29.13
1891. Pike Schuyler	*Griggsville *Rushville	-	-	2.25 3.49 2.87	3.61 4.49 4.05	-	-	-	-	1.53 0.61 1.07	-	-	-	25.82 41.16 33.49
1892. Pike Schuyler	*Grigg=ville *Rushville	-	-	2.67 2.49 2.58	-	_	-	$\overline{}$	-	3.46 3.18 3.32	-	-	-	42.09 41.97 42.03
1893. Pike Schuyler	*Griggsville *Rushville Averages	-	-	6.22 3.77 4.99	-	_	-	_	-	1.37 2.96 2.16	_	-	-	34.66 37.51 36.08
1894. Pike Schuyler		-	-	2.15 2.41	-	2.30 2.47	2.97 4.21	0.78 0.67	1.19	2.78 8.32	0.78 1.12	1.48	1 32 1.70	22.96 34 09
	Averages	2.38	2,35	2.28	2.98	2.38	3.59	0.73	1.62	5.55	0.95	2.20	1.51	28.52

^{*} See end of table-page 159.

154

County.	City.	January	February	March	Aprll	Мау	June	July	August	September.	October	November	December	Annual
Schuyler	*Griggsville *Rushville *Coatsburg Averages	1,75	0.37	1.03	2.88	3.29	<u></u>	5.53 5.88	4.85 4.90	3.44 2.29	0.53 0.34	4.72 3.36	6.21 5.90 3.68 6.05	
1896. Pike Schuyler Adams	*Griggsville*Rushville*Coatsburg	1.00		0.94	<u> </u>		3.72	9.61	1.77	5.85	1.59 1.65	1.35 1.82	0.38 0.67 0.66 	<u></u>
1897. Pike Adams	*Griggaville *Coatsburg	l	lI		I			7.85	1.22	0.34	0.53	3.10	2.34 2.26 2.30	
1898. Pike Adams	*Griggsville *Coatsburg	3.71	2.26	7.09	4.83	6.63	5.43	3.09	2.11	8.89	2.80	2.89	0.97 1 43 1.20	51.16
1899. Pike Adams	*Griggsville *Coatsburg Averages	0.46	1.80	2.50	1.84	8. 19	2.25	3.31	4.95	2.53	3.18	2.66	1.32	34.44

MONTHLY PRECIPITATION ON ILLINOIS RIVER DIRECT.

COUNTY.	ČITY.	January	February	March	April	Мау	June	July	August	September.	October	November	December.	Annual
1890. Pike Cass Peoria Marshall Putnam LaSaile	Griggsville Beardstown Peoria Lacon Hennepin Ottawa	2.75 2.84 2.77	0.90 1.35 1.86	1.45 2.80 4.18	2.60 1.76 1.69	3.31 2.80 2.63 3.95 4.54 3.99	5.32 3.84 2.49 3.84 3.98 6.87	3.57 1.08 0.55 0.66	2.00 2.35 1.85 1.45	1.10 2.10 1.96 3.07	1.48 1.38 3.31 3.95 5.57 3.89	1.63 1.87 2.17 1.45	0.00 0.25 0.87 0.20	27,92 24,02 24,83 29,64 30,94 31,81
	Averages	2.72	1.49	2.84	2.36	3.54	4.39	1.28	2.04	2.19	3.26	1.77	0.31	28.19
1891. Pike Cass Peoria Marshall Putnam LaSalle	Griggsville Beardstown Peoria Lncon Hennepin Ottawa	0.85 1.77 2.45 2.36	3.35 2.17 2.31 1.35	5.19 2.87 3.34 3.13	3.97	2.42 3.85 2.00 1.55 2.68 1.84	1.76 2.35 3.54 6.83 6.79 3.99	3.11 2.83 1.45 1.99	4 44 5.82 6.09 4.45	1,51 1,96 0.39 0.98	2.11 2.13 0.74 1.40 1.43 0.56	4.94 2.29 4.50 4.66	0.87 2.36 2.00 2.28	25.82 36.56 31.94 36.25 35.60 35.37
	Averages	1.86	2.49	3.23	3.76	2.39	4.21	2.47	4.61	1.27	1,40	4.21	1.69	33.59

^{*} See end of table—page 159.

155

COUNTY.	Сіту.	January	February	March	April	Мау	June	July	August	September.	October	November	December.	Annual
1892. Pike Cass Peoria Putnam LaSalle	Griggsville Beardstown Peoria Hennepin Ottawa	2.05 1.75 1.62 1.20 1.45	3.73 3.03 2.00 0.60 1.52	2.67 2.81 2.69 2.63 3.05	6.97 5.84 4.69 3.33 3.56	8.93 6.59 7.27 12.57 13.25	1.85 1.29 6.92 10.01 9.80	5,63 3.31 4.22	$0.41 \\ 0.72 \\ 0.32$	2.47	0.52 1.03 0.70	4.95 3.09 2.65	0.92 2.08 1.85 2.30 1.84	37.37
	Averages	1.61	2.18	2.77	4.88	9.72	5.97	4.81	0.62	2'42	0.88	3.27	1.80	40.93
Mason Peoria	Griggsville Beardstown Havana Peoria Hennepin Ottawa	0.79 1.31 1.70 2.20	3.49 2.83 0.90 3.03	3.24 3.88 3.30	7 95 7.89 5.10 5.23	5.65 6.18 5.48 4.78 1.60 1.95	3.80 3.34 2.00 2.07 2.95 2.49	3.00 4.25 2.54 1.25 1.02	0.41 0.73 0.45 0.38 0.77	1.49 2.34 2.79 1.91 2.29	0.40 0.22 0.83 0.95 1.10	1.45 0.76 2.31 1.59 2.18	1.38 0.62 2.06 1.67 1.58 2.16	31.76 33.01 32.71 23.79 27.72
	Averages	1.08	2.51	3.88	7.16	4.27	2.78	2,57	0.52	2.03	0.64	1.59	1.58	30.61
1894. Jersey Greene Pike Cass Mason Peoria LaSalle	Grafton Carrollton Griggsville Beardstown Havana Peoria Ottawa Averages	2.06 2.06 2.08 2.08 2.38	1.84 2.50 1.52 2.32 1.49 1.58	2.37 2.15 0.85 2.12 2.73 2.57	2.02 2285 2.26 1.68 1.72 1.51	2.03 2.32 2.30 2.58 2.23 3.96 4.01 2.78	1.94 1.90 2.97 2.88 3.26 3.90 3.03	1.08 0.78 1.77 1.04 0.78 0.80	1.88 1.19 1.45 1.84 2.58 1.75	3.76 2.78 6.08 3.67 4.22 7.18	0.93 0.78 2,39 1.11 1.38 1.63	1.38 1.48 1.52 1.98 2.70 2.09	1.32 1.43 1.97	25.20 22.96 27.13 25.30 29.62 29.72
Greene Pike Cass Schuyler Mason Peoria	Grafton	1.19 1.36 1.45 1.19 1.36 1.39 1.19	0.59 0.32 0.08 0.40 0.32 0.43 0.40 0.70	1.88 3.15 0.90 1.46 1.04 0.85 1.46 0.82	2.61 2.35 2.90 2.65 2.68 2.74 2.41 2.02	2.59 2.01 2.46 2.13 1.65 1.51 1.70 1.06	2.96 2.13 3.94 2.28 2.70 1.91 1.54 0.70 1.02	6.11 6.25 3.89 5.25 4.89 8.43 7.89 4.79	3.25 2.63 4.10 5.35 4.53 2.18 2.38 2.26	3.97 3.51 3.15 2.90 4.34 5.26 4.44 1.47	0.52 0.35 1.15 0.69 0.41 0.64 0.78 1.16	2.27 2.95 3.50 3.82 3.80 4.49 3.31 5.27	7.23 6.70 6.21 5.72 5.95 6.03 5.09 3.89 5.77 5.84	33 23 35 48 31 25 34 01 32 82 34 80 31 55 27 56
Morgan Cass Schuyler Mason Peoria	Grafton	1.19 1.65 1.40 1.21 1.32	1.69 1.90 1.70 2.13 1.96	0.82 0.43 0.95 0.98 1.25	2.49 3.39 3.15 4.17 3.64	6.46 6.94 8.10 4.27 3.68 4.31 5.41 5.50 5.36 4.71 4.24	7.03 2.92 3.29 4.63 3.66 3.25 2.41 3.87 3.13 2.81 2.22	8.10 7.50 13.52 4.87 7.61 5.33 4.61 5.57	2.72 0.89 1.73 3.36 4.83 2.67 2.61 2.50	9.32 5.49 5.02 5.30 4.42 4.53 5.09 6.70	1.60 1.98 2.97 0.58 0.25 0.20 0.64 0.76	1.65 1.09 1.25 1.84 2 27 2.32 3.54 1.78	0.22 0.88 0.33 0.26 T. 0.11	42.43 32.26 40.08
	Averages	-	_	-	-	5.36	3.57	7.02	2.53	5.75	1.06	1.97	0.33	35.05

^{*} See end of table—page 159.

156

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November	December.	Annual
1897 Jersey Greene Pike Morgan Mason Peoria Woodford Livingston Bureau LaSalle	Grafton Carrollton Griggsville Alexander Havana Peoria Minonk Dwight Tiskilwa Ottawa	4.99 6.74 6.05 6.66 5.39 5.14 5.34 5.85	1.21 1.39 0.83 1.32 1.19 1.45 1,40 1.27	4.63 4.20 4.42 4.53 4.70 3.18 3.57 4.55	4.33 4.25 4.35 3.74 2.87 2.93 2.74 2.77	1,17 2,09 2,91 3,39 1,08 1,29 1,05 1,81 1,42 0,99	4.99 4.89 5.45 4.52 3.58 2.11 2.57 5.25 3.34 6.90	6.54 4.50 2.41 5.22 4.65 2.93 2.50 2.38	0.01 2.16 2.20 1.22 1.02 C.92 1.60 1.48	0.11 0.59 0.46 0.24 0.51 0.93 1.90 0.81 2.62 1.89	0 31 0.25 0.33 0.08 0.04 0.13 0.44 0 36	5.00 3.38 3.50 3.41 3.48 3.92 4.77 3.36	1.94 2.34 2.42 1.82 1.16 1.20 1.59 1.24	36,20 36,53 38,03 34,66 33,17 28,83 27,32 31,82 30,60 34,12
	Averages	5.50	1.38	4.52	3.64	1.72	4.36	3.78	1.26	1.01	0.25	3.90	1.81	33.12
Jersey Greene Pike Scott Morgan Mason Peoria Woodford Marshall Livingston Bureau LaSalle	Grafton ('arrollton Griggsville Winchester Alexander Havana Peoria Minonk Henry Dwight Tiskilwa Ottawa Averages	5.10 4.46 5.75 4.21 4.64 4.08 4.21 4.00 3.80 3.76 5.24	2.00 2.19 2.90 2.81 2.08 2.59 1.78 2.10 2.07 2.43 2.38	6.36 5.78 5.55 5.25 4.84 5.74 5.00 6.15 6.64 6.17 5.21	5.16 4.95 3.87 3.15 2.90 3.02 2.87 3.68 2.95 3.50 3.12	9.03 7.33 8.30 8.50 5.83 7.62 5.54 6.84 6.41 6.12 7.30 6.72	3.49 2.94 4.94 5.21 5.14 4.58 3.37 2.92 3.61 3.79 2.85 5.80	3.56 3.30 2.28	3.43 4.49 5 13 3 17 2.78 3.26 4.76 7.10 3.35 6 97 4.31	4.24 6.83 5.62 5.19 6.92 6.05 5.47 6.91 4.86 4.58 5.90	3.57 3.01 3.75 3.80 2.55 3.00 3.86 3.11 4.42 2.63 4.73	1.84 3.66 3.00 2.56 2.24 2.03 2.13 2.46 2.50 2.93 2.88	1.82 0.97 1.79 1.19 1.45 0.93 1.04 1.32 1.26 1.09 1.42	50.35 47.81 53.14 54.37 44.58 45.10 40.08 41.46 47.95 42.05 45.38 49.01
1899 Pike Scott Morgan Mason Fulton Peoria Woodford Marshall Livingston LaSalle LuSalle Bureau	Griggsville	1.41 0.96 0.77 0.89 0.72 0.50 0.33 0.80 0.63	2.34 2.19 2.21 1.99 1.96 1.79 1.94 2.13 2.10	3.47 2.05 3.39 2.75 2.97 2.24 2.26 1.76 3.21	1.71 1.18 1.26 1.14 1.36 1.58 1.06 0.70 1.50	13.10 9.13 9.15 7.31 8.38 6.03 4.59 5.64 2.08 5.08 2.50 5.25	1.97 3.06 1.91 2.24 2.58 2.60 3.75 3.00 5.07 1.42 1.82 3.89	3.04 1.84 7.11 4.25 1.69 2.19	2.95 3.92 3.26 3.00 1.27 1.74 1.63 2.29 3.02 1.69	3.12 2.57 2.15 2.73	3.47 3.07 3.34 3.43 2.78 3.47 3.45 2.31 2.53 2.47	2,28 2,31 2,41 1,96 2,25 0,95 1,97 2,03 1,46 1,23	1.56 1.48 2.73 2.02 2.12 2.31 2.48 2.06 2.03 1.93	40.78 39.09 34.35 40.21 36.65 30.99 29.31 31.45 28.53 30.83 25.14 29.38
	Averages	0.76	1.98	2.73	1.23	6.52	2.78	3.91	2.57	3.65	3.11	1.85	1.97	33.05

Monthly Precipitation on Various Drainage Basins of the Illinois River.

DES PLAINES RIVER.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November.	December .	Annual
	Chicago*Chemung	1.30 1.21 1.49	4.29 3.38 3.52 3.73 	1.84 1.58 1.49	0.95 1.02 1.36	3.78 3.59 1.78	3 40 2.06 2.11	5 64 4.64 4.73	4.24	1.95 1.56 4.67	1.35 2.57	3.32 3.30 2.83	0.32 0.58 0.95	31.81 28.65

^{*} See end of table-page 159.

DU PAGE RIVER.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November.	December.	Annual
	Joliet Aurora Wheaton Averages	1.43	4.15 4.09	2.23 1 66	0.78 0.93	4.17 3.33	2.94 2.84	5.08 3.55 3.97 4.20	3.28 3.53	1.99 2 39	2 83 2.29	3.23 2.77	0.53 0.41 0.60 —— 0.51	33.08- 31.34 29.83- 31.41

KANKAKEE RIVER.

Iroquois	*Joliet Martinton *Rantoul	0.74	4,56 2,48	3.52 2.72	1.31	4.22	2.33 7.31	4.34 5.96	5.10 5.91	2.09 5.53	1.82 2.32	5 78 2.82	0.52	36.33 41.77
	Averages	0.83	3.78	2.83	1.01	4.39	3.81	5.13	5.58	3.22	1.92	3.90	0.66	37.06

FOX RIVER.

DeKalb Kane McHenry	Ottawa*SycamoreAuroraRiley**Chemung	1.63 1.78 1.48	3 00 4 15 3,12	1.96 2.23 1.35	1.15 0.78 1.36	2.83 4.17 3.08	2.22 2.94 2.43	5.60 3.55 6 03	11.17 3.28 7.09	2.79 1.99 2.58	2.27 2.83 2.74	$\frac{2.28}{3.23}$ $\frac{2.00}{2.00}$	$\begin{array}{c} 0.53 \\ 0.41 \\ 0.42 \end{array}$	37.85 37.38 31.34 33.68 34.67
	Averages	1.59	3.51	1.99	1.24	3.49	2.33	4.89	7.15	2.86	2.53	2.69	0.53	34.79

VERMILION RIVER.

4000														
	*Ottawa													37.87
	Streator Dwight													31.10
	*Bloomington													
	Averages	1.52	4.63	2.81	1,43	4,29	2.27	3.88	4.85	2,09	2.18	3.26	0.43	33.63

MACKINAW RIVER.

1900. Woodford	*Minonk	1.30	4.45	3.02	1.16	3.09	1.40	2.21	6.43	2 54	2.24	2 66	0 37	30.87
McLean	*Bloomington	1.23	5.94	2.60	1.85	5 40	2.49	3.38		1.55	2 62	3 96	0.65	31.67
		 		i—			 		i		i		i	
	Averages	1.26	5.19	2.81	1.51	4.25	1.95	2.79	3.21	2.05	2.43	3.31	0 51	31.27
		1					'		_					

^{*} See end of table-page 159.

SPOON RIVER.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November	December.	Annual
Fulton Knox Warren Henry	*Havana Astoria Knoxville *Moumouth *(Galva *Tiskilwa	$\frac{1.67}{1.71}$	6.99 3.66 2.92 2.49	1.17 3.20 2.10 2.95	1.09 1.22 1.01 1.35	2.72 3.97 2.93 4.28	1.30 0.42 0.82 0.51	1.82 3.21 2.65 3.69	3.89 4.23 4.23 8.21	3.53 3.86 5.31 4.65	2.90 2.94 2.86 2.61	1.57 1.16 2.23 2.39 1.63 2.03	0.34 0.45 0.25 0.16	31.34
	Averages	1.85	4.24	2.27	1.23	3.24	1.34	2.98	6.22	4.11	2.70	1.84	0.30	32.3

SANGAMON RIVER.

Christian Logan Macon Piatt McLean	Springfield Papa Mt. Pulaski	0.88 0.51 0.31 0.59 0.40 1.23	4.85 5.31 5.27 5.89 4.88 5.94	1.50 1.66 1.22 1.84 1.58 2.60	1.06 1.32 1.19 1.46 0.38 1.85	2.49 3 20 2.66 4.78 5.11 5.40	1.45 6.17 3.96 4.18 3.82 2.49	5.76 7.80 4.93 3.38	4.44 1.98 6.88 4.71 5.37 0.00	5.15 3.36 4.24 4.34 2.84 1.55	2.63 2.00 2.96 1.33 2.50 2.62	2.61 3.63 4.04 3.48 4.04 3.96	1.21 0.68 0.92 1.01 0.65	33.73 30.36 34.94 39.17 41.32 36.86 31.67 41.77
	Averages,	0.75	5.02	1.85	1.05	3.71	4.11	5.04	4,80	3.71	2.29	3.27	0.67	36.27

CROOKED CREEK.

Adams McDonough	*Griggsville *Coatsburg Bushnell LaHarpe	2.25 2.20	$\frac{5.73}{0.00}$	$0.45 \\ 1.50$	1.26 1.94	4.79	1.45	1.57 2.70	3.29	5.15	4.07 2.90	0.91 1.40	$0.31 \\ 0.02$	33.55 30.12 27.47 28.65
	Averages	2.09	4.00	1.26	1.63	4.15	1.48	2.73	3.00	4.40	3.62	1.34	0.26	29.95

MACOUPIN CREEK.

1900. Macoupin	Carlinville	0.61	4.70	1.72	1.36	4.85	4.88	5.99	1.42	5.03	2.42	2. 4 3	0.95	36.86
-------------------	-------------	------	------	------	------	------	------	------	------	------	------	---------------	------	-------

MC KEE'S CREEK.

1900. Pike Adams	*Griggsville *Coatsburg	1.78 2.25	6.01 5.73	1.54 0.45	1.81 1.26	4 20 4.79	2.40 1.45	3 59 1.57	1.81 3.29	5 50 4.04	2.80 4.07	1. 6 6 0.91	0.45 0.31	33.55 30.12
	Averages	2.02	5.87	0.99	1.54	4.49	1.93	2.58	2.55	4.77	3.44	1.29	0.38	31.84

^{*} See end of table—page 159.

ILLINOIS RIVER DIRECT.

County.	City.	January	February	March	April	Мау	June	July	August	September.	October	November	December	Annual
Mason Fulton Peoria Woodford Marshall	Winchester Alexander Havana Astoria Peoria Minonk Henry Dwight Ottawa Streator	0.94 1.10 1.88 2.00 1.92 1.30 1.82 1.76 1.60 1.49	5.06 3.46 5.54 6.99 5.35 4.45 3.67 4.50 4.53 3.54 3.86	0.13 1.47 0.72 1.17 1.42 3.02 3.15 2.87 2.91 2.86 3.52	1 31 1.13 1.01 1.09 1.09 1.16 1.68 1.09 1.53 1.24	3.96 2,75 1.33 2.72 5.54 3.09 4.76 3.72 5.60 2.44 4.23	4.28 3.09 3.48 1.30 1.44 1.40 2.52 2.99 1.96 1.63 1.52	4.13 1.82 2.45	1.52 3.69 9.02 3.89 5.39 6.43 6.79 5.03 7.24 7.13 7.76	5 56 5 29 2 65 3 53 2 94 2 54 3 64 1 99 2 26 4 67	3.07 2.86 2.00 2.90 2.24 3.94 1.69 2.24 2.18	1.79 3.05 1.57 1.16 1.87 2.66 2.25 3.35 3.16 2.57 2.03	0.45 0.26 0.24 0.40 0.34 0.39 0.37 0.14 0.42 0.31 0.34 0.22 0.32	82.68 80 87 83.78 28.91 32.70 30.87 87.15 33.90 37.87 31.10 36.69

^{*} Cities not directly on drainage basin but on contiguous territory and near enough to be considered representative of drainage basin.

Resumé of Precipitation on Illinois River Basin.

Sub-Basins.	1890.	1891.	1892.	1893.	1894.	1895.	1896.	1897.	1898.	1899.	Total aver- ages.
Des Plaines DuPage Kankakee Fox Vermilion Mackinaw Spoon Sangamon Crooked Creek Macoupin Creek Mickee's Creek Illinois River direct	36.74 33.63 32.02 26.33 32.35 29.13 28.47 29.13	27.46 32.94 34.18 41.70 36.39 33.49 28.69 33.49	36.71 44.41 41.00 40.84 37.16 42.37 40.48 44.24 42.03	31.32 26.06 30.37 27.09 33.52 29.70 31.99 31.14 35.43 36.08	27.15 27.15 30.51 28.85 27.80 25.32 27.46 27.84 28.74 28.52	29.94 29.33 28.19 30.95 33.26 33.61 36.43 32.65 36.82	37.95 35.05 37.14 36.21 35.37 35.52 35.01 41.43 36.97 39.91	34.28 31.48 32.50 32.96 29.43 29.70 34.86 37.08 37.17 37.95	45.82 42.11 42.25 43.34 42.96 47.34 48.31 51.07 49.46 52.15	29.82 28.18 28.14 28.60 29 62 31.94 33.22 37.39 37.20 37.61	33.68 32.03 34.01 33.52 34.08 33.74 35.55 35.55 35.90 37.37
Annual averages	31.18	33.13	40.56	31.03	27 82	32.29	36.61	33.42	45.78	31.90	34.36

Table Showing Yearly Variations in Rainfall of Illinois.

YEAR.	Number	Average.	Range.
,	Stations.	(Inches.)	(Inches.)
851	5	54.1	45.4-74.
852	1 5	47.8	38.4-59.4
853	4	38.9	30.9-45.2
854	6	84.1	23.6-46.
865	6	41.7	29.1-50.
.856	9	32.7	23.3-43.
857	y	34.1	27.5-39.8
858	13	51.1	45.2-68.8
8.9	11	37.3	26.5-61.3
860	8	33.9	25.2-56.2
861	13	39.0	30.0-68.6
862	13	46.7	84.9-70.4
863	11	33.5	25.6-50.4
b64	15	31.4	24.0-38.3
865	16	40.0	24.5-51.8
866	17	36.9	30.2-45.3
867	19	30.2	22.4-40.2
868	19	38.0	25.9-45.6
969	20	41.8	30.4-51.5
870	21	30.0	20.3-41.3
871	18	82.3	22.6-40.8
872	19	31.8	24.8-39.8
873	18	38.8	19.7-54.8
574	20	33.2	23.8-47.5
875	20	40.5	26.9-59.5
876	22 20 20 20 20 24	45.8	84.5-62.6
877	20	41.9	33.3-54.9
878	20	37.9 i	31.2-45.6
879	. 20	32.0	21.5-52.3
880	24	39.5	80.6-53.2
881	22	41.8	32.7-56.4
892	24	43.8	33.0-70.8
009 009	27	44.1	83.7-61.5
884	24 27 25 27	42.1	82.8-66.6
885	27	39.5	82.1-50.1
6666	23	84.0	18.9-50.6
887	33	82.2	16.1-38.3
888	33 33 33	87.3	26.0-62.9
889	84	84.7	24.4-42.8
890.	34	38.3	23.5-49.8
891	32	83.0	25.9-45.1
592	49	41.4	31.1-63.3
893	53	34.1	20.3-48.8
894	75	29.3	18.2-40.4
395	97	31.9	19.7-46.4
∪6€	<i></i> (91.5	17.1-10.4

[&]quot;The average rain-fall shown in the above table is slightly lower than that given by the United States Weather Bureau, being 37.85 inches instead of 38.10. This is due to the exceptionally low rainfall of 1893-1895, which was not included in the estimate by Mr. Harrington. The average of the above table to the close of 1891 is 38.21 inches.

The above table and notes are from Water Resources of Illinois, by Leverett.

[&]quot;Of the forty-five years' record it will be observed that twenty-two years are above and twenty-three below the average (37.85 inches) rainfall. The period of most remarkable precipitation is that of 1875-1885, inclusive. But one year was below the normal, and the average for the period of eleven years is 40.76 inches, or nearly three inches above the normal. The succeeding ten years have been marked by equally great deficiency. Only one year has been much above the normal, while seven have been much below, and the average is but 34.62 inches, or more than three inches below the normal. This period of drought is generally considered the most severe in its effects since the settlement of the State."

While the hydraulics of rivers depend more upon the monthly and annual rain-fall than upon the heavy showers or continued downpours of more or less intensity, the drainage of small areas is depend-The following ent upon adequate provisions for heavy down-pours. tables of heavy down-pours have been brought together as being of interest in the studying of the drainage problems of cities. tables for excessive precipitation at Indianapolis, Ind., St. Louis, Mo., and Milwaukee, Wis., as well as the table of accumulated amounts of excessive precipitation for 5 minute periods from the same cities are from the U.S. Weather Bureau reports. The table of rainfall in excess of 4 inches in 24 hours is from Signal Service War Department reports for 1890. The table of short period downpours has been compiled for this report from U.S. Weather Bureau reports of recent date.

Here follow tables in order above given:

Excessive Precipitation.

INDIANAPOLIS, IND.

		5 min	utes.	10 mi	autes.	1 hour	or less.	24 hours	or more
DATE. 1890, Jan. 1 June 11 Aug. 26 Sept. 10-11.		Rate per hour— Inches Amount—Inches.		Amount-inches.	Rate per hour Inches	Amount-Inches.	Duration-Hours and minutes	Amount-Inches.	Duration—Hours and minutes
891, 892, 893,			5.40 3.24 2.61 6.60 3.24 3.00 2.64 3.60 3.00 2.40 5.40 3.60 2.76 4.68 2.76 4.68 2.76 4.68 2.40 3.00	. 41 . 65 . 48 . 38 . 38 . 39 . 25 . 46 . 46 . 35 . 58 . 32 . 30 . 47 . 47 . 47 . 30	2.46 3.90 2.88 1.38 3.90 2.28 1.92 2.04 2.28 1.80 1.50 3.36 2.76 2.76 2.10 2.28 3.90 2.40 2.28	1.04 1.50 	1.00 1.00 1.00 2.2 2.2 2.2 2.3 38 50 50 1.00 1.00 1.00 1.00 45 1.00 45 1.00 45 1.00	1.49 2.73 	23.1 24.0 24.0 2.1 6.0 7.5 1.0 1.1 1.1 1.1 2.2 2.4 4.5
::	July 20 Aug. 3 Aug. 6 Sept. 3-4 Nov. 25	.49 .20 .22 .24 .07	5.88 2.40 2.64 2.88	.64 .26 .32 .35	3.84 1.56 1.92 2.10 .66	.71 .37 .50 1.25 .38	1.00 1.00 1.00 1.00 1.00	.74 .43 .55 6.80 2.65	2.3 2.0 1.1 8.1 24.0

162

Excessive Precipitation—Continued. St. LOUIS, MO.

		5 min	utes.	10 mi	utes.	1 hour o	r less.	24 hours	or more.
1	DATE.	Amount-Inches.	Rate per hour- Inches	Amount-Inches.	Kate per hour-	Amount-Inches.	Ourstion-Hours and minutes	Amount-Inches.	Duration—Hours and minutes
890, 891, 892,	May 28 July 14 July 14 July 14 July 14 July 14 June 17 June 18 June 18 June 18 July 18 July 18 July 18 Aug. 11 Aug. 18 Aug. 19 July 18 July 28 July 28 July 28 July 28	.25 .25 .21 .23 .23 .35 .25 .20 .35 .40 .17 .28 .21	2.40 2.40 2.76 3.60 3.00 2.52 2.52 3.00 2.76 4.20 4.20 4.20 4.20 4.20 4.20 4.20 4.20	.25 .25 .45 .50 .50 .35 .35 .36 .60 .60 .37 .57 .57 .57 .57	2.22 1.86 3.42 3.06	.27 .30 1.00 	.15 1.00 1.00 .25 1.00 .30 45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	. 45 1.85 3 57 	1.2 9.5 17.5 1.0 1.2 3.2 2.3 1.4 19.2 2.1 1.5 8.0 16.0 2.4
395.	Sept. 4 June 17 July 29	.23 .22 .25	2.64 3.00 4.68	.25 .38 .64	1.50 2.28	.60 .53	1.00 1.00 1.00	.98 .64	5. 4. 7.

MILWAUKEE, WIS.

	5 Min	utes.	10 Mir	utes.	1 Hour	or Less.	24 Hours	or More
DATE.	Amount-Inches.	Rate per hour— Inches	Amount-Inches.	Rate per hour- Inches	Amount-Inches.	Duration-Hours and minutes	Amount-Inches.	Duration—Hours and minutes
889, May 17 Sept 4 891, June 23 892, June 22 893, May 11 June 4 June 20 July 15 Sept 4 Sept 9 894, June 25 July 14 Sept 7 Sept 9 895, June 25 July 18 Aug 23 Aug 27 Sept 17	.20 .12 .20 .25 .35 .25 .25 .25 .30 .65 .25 .25	3.00 3.00 3.60 7.80 3.00 3.00 3.36	25 17 25 25 25 25 40 40 35 35 45 70 32 32 37 36	1.50 1.02 1.50 1.50 2.40 2.10 2.10 2.70 4.20 4.20 2.22 2.22 2.16 3.30	1.16 .70 .30 .50 .35 .25 1.00 .50 1.10 .85 .60 1.00 1.25 .45 .45 .68	.50 .30 .35 .55 .00 .08 .1.00 .33 .1.00 .1.00 .1.00 .55 .1.00 .1.00	2.59 2.53 2.50 .48 1.70 .58 .93 .73 1.41 1.42 .54 .83	10.44 17.11 2.11 1.33 1.57 2.44 2.33 7.10

From United States Weather Bureau Report, 1895. Supplemental table showing accumulated amounts of excessive precipitation for each five minutes during some of the heaviest rainfalls. Stations furnished with self-registering gauge.

	Total D	uration.	Total a		Du	ept ring	h of Per	Pre iods	cipi of	tatio Tim	n (i e as	n ind Indi	hes cate) :d.	
Station and Date.	From—	То—	amount of ipitation	5 minutes	10 minutes.	15 minutes.	20 minutes.	25 minutes.	30 minutes.	35 minutes.	40 minutes.	45 minutes.	50 minutes.	60 minutes.	80 minutes.
Indianapolis, Ind.— Aug. 19, 1891 Aug. 10, 1894 Sept. 4, 1895	7:38 A. M. 1:57 P. M. 2:18 A. M.	8:23 A. M. 2:32 P. M. 8:00 A. M.	1.55 0.87 6.30	.15	.45 .20	.72 .40	.76 .65	.78 .82	.80	1.20 .87	1.47				
St. Louis, Mo.— Sept. 4,1889 June 8,1891	9:53 P. M. 12:03 A. M.	11:13 P. M. 1:25 A. M.	1.17 1.25	.03	.09 .38	. 15 . 45	.25 .53	.45 .62	.65 .73	.78 .80	.88 .85	.94 .89	.98 .93	1.00 1.02	
Milw'kee, Wis.— July 15, 1893 Sept. 9, 1894	1:18 A. M.	1:48 A. M. 7:02 P. M.	1.10 .96	.13 .65	.45 .70	.65 .75	.80 .80	1.00 .88	1.10 .96			· .			

Rainfall in Excess of Four (4) Inches in Twenty-four (24) Hours upon Territory Contiguous to the Illinois River Basin.

	Station.		Date.	Amount
St. Louis, M	issouri	Oct	. 21. 184	7 4.0
		May	7 17, 1848	
• •	**	Jun		
• •	1.1			
• •	**			
• •	•••			
• •	* *			
• •	**	July	7 10.1858	
4.6	44	Dec	4. 1858	
• •	**	Jun	e 22, 185	
••				
• •	44	May		
• •	**	Jun	e 10.187	
• •				
• •	***************************************	Jun		
St. Joseph,	••	Q on		
St. Boscpu,	44			
Chicago Illi	naia		v 27. 1889	
	nois			
Dalait Wisa	onsin	Son	t. 9.187	
Déloir Misé	UHSIH		5. 1876	
		1.1		
Tmhornoo '	Wisconsin			
	ana			
	linois.			
	nois			
maticon, IIII				
57-ma-1:- TII	**	Jun	e 27, 1886	
	inois			
	lllinois			
windsor, III	nois	իլսր	e 27, 1889	
Luino, minuo	8			
	 ;·······	Jun	e 7,1889	4.2
	Wisconsin			
Angola, Indi	ana	July	7 18, 1889	4.8

Rainfall in Excess of Four (4) Inches in Twenty-four (24) Hours upon the Illinois River Basin.

	Station.	Date.	Amount
Peoria, Illinois.		June 6, 18 June 8, 18	72 4. 89 4.
Abingdon, Illin	018		
Sandwich,	***************************************	June 8,18	74 5.
Augusta,	•••••	0 40 40	
4.4.		7 7 40 40	
Elmira,	•••••	Aug. 20, 18	78 4
Mt. Sterling	,		
Pana, "	••••••••••		
•• •		June 27, 18	88 4
Beardstown,	•••••		
Wyanett, '		June 14,18	775 4

House Ex. Doc. 1st session 52d Cong. 1891-92. Vol. 10, p. 189.

The following table of downpours at various stations has been compiled from Weather Bureau reports. The interpretation of the abbreviated form is as follows: For example—

At Aurora on June 18, 1897, 1.97 inches of rain fell in 1 hour and 25 minutes; on the preceding days—.64 inches fell on the 17th and .86 inches on the 16th—while on the following day, the 19th, .39 inches fell.

Short Period Downpours at Various Points in Illinois.

[P=Preceding; F=Following.]

City.	County.	Inches.	Time— hr. min.	I	Date.	Remarks.
Aurora	Kane	1.97	1.25	June	18. 1897	P-day, .64; day, .86; F-day, .83
Ashton	Lee	1.70	1.0	July	3, 1899	F-day, 73
Astoria	Fulton	1.53	1.0	July	11, 1899	
	McLean		1.0	May	20, 1898	P-day, .04; day, .20; day, .09.
		0.62	0.15	May	18, 1898	F-dav. 1.60
Brokaw		5.00	1.15	May	28, 1900	P-day, .64; F-day, 1.78; day, .00
Coatsburg	Adams	1.04	0.30	June	23, 1897	P-day64: F-day. 1.78: day0
Cisne	Wayne	3.95	6.0	July	25, 1897	P-day, .06; F-day, 1.01
Cobden	Union	1.06	0.28	Sept.	5, 1898	P-day, 17; F-day, 30
Dixon	Lee	2.80	7.0	June	23, 1897	l
Dwight	Livingston	1.10	1.0	June	14, 1899	
	Kane	1.40	0.40	June	17, 1897	P-day, .57; F-day, 1.57; day, .4
**		2.26	0.50	June	26, 1899	
Elgin	Kane	5.00	6.0	June	24-5, 1898	P-day, 17
Effingham	Effingham	1.25	1.30	June	8, 1899	P-day, .40; F-day, .15
• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	5.50	1.0	June	Z0. 1030	P-UBV 10
Equality	Effingham	3.33	1.0	July	22, 1899	P-day, .30; F-day, .03; day,
	1		Ì			2.11: day41
Galva	Henry Montgomery	0.66	0.20	Oct,	29, 1896	F-day, .53
**	''	1.40	0.20	May	27, 1898	F-day, .03; day, .84; day, .01.
Hillsboro	Montgomery	1.19	1.13	July	25, 1898	P-day, .19
Havana	Mason	D.10	1.30	July	16, 1899	F-day, 03; day, 84; day, 01. P-day, 19 P-2 days, 5.05
Kishwaukee	Winnebago	2.51	15.0	June	23, 1897	P-day, .25; F-day, .30
LaHarpe	Hancock	1.50	1.0	June	23, 1897	P-day, .25; F-day, .30
** *****	l_ ''	2.25	1.30	June	30, 1897	
Loami	Hancock Sangamon	2.23	13.0	June	23-4, 1897	P-day, .25; F-day, .19
Lanark	Carroll	1.06	0.55	June	27, 1899	F-day, 45 F-day, 15
Mt. Vernon	Jefferson	6.97	24.0		19-20, 1896	F-day, .15
•••		2.48	0.20	July	20, 1896	<u></u>
		3.25	3.0	June	22, 1897	F-day, .76; day, .50; day, .56.
Mt. Pulaski	Logan	1.70	1.0	June	30, 1897	
		4 50		T		

165

Short Period Downpours—Concluded.

City.	City. County.		Time- hr. min.	1	Date.	Remarks.
Morrisonville Martinville Philo	Clark	1.11 1.90 1.85 1.65	1.0 1.10 0.50 1.30	June July June May	27, 1899 23, 1897 28, 1900	F-day, 1.01; day, .10; day, .65
Palestine Rantoul	Champaign	1.50 1.85 3.53		June June June	8, 1899	day, 1, 41 P-day, 02; F-day, 50 F-day, 07; day, 42; day, 14 day, 03
Robinson	Crawford	1.00 1.00	0.40 0.15	July Mar.	17, 1898 21, 1898	P-day, 1 60; day, .72; day, .99; F-day, —
Winchester Wheaton	McHenry DeKalb Scott Du Page Winnebago	1.10 4.49 1.12 2.83 2.62 1.51 4.21 1.32	0.20 6.30 0.15 13.33 5.0 1.0 3.0 2.0	July June July June July June July July	15, 1899 23, 1897 15, 1899 14, 1899 15, 1899	F-day, 05 P-day, 1.71 P-day, 18 P-day, 10; F-day, 25 F-day, 08

STAGE OF THE ILLINOIS RIVER AT PEORIA.

The following tables give the stage of the Illinois river, daily, at the Bridge Street Bridge, Peoria, Ill., for 1890 to 1900, inclusive. Following the tables of daily stages is a resumé of the stages occuring each month during the ten-year period, 1890 to 1899 inclusive, as well as the date and duration of such stage and the mean stage for each month.

The lowest stage reached was 2.6 feet October 7-12, 1890, and 2.7 feet October 16-21, 1891. The ordinary low water stage is about four The highest stage was 21.9 feet May 9, 1892, which was likewise the highest stage which the river has reached for nearly half a The longest continuous period of comparatively low water was beginning with July 1, 1893, at a stage of 7.9 feet and continuing until December 21, 1895, when a stage of 8.9 feet was attained, a stage of 4.6 feet having been recorded three days previous. that period of 29% months a stage of eight feet was reached but twice in 1894 and once in 1895. The highest stage reached was 12.3 feet The March rise of 1894 began March 7th, and on March 14, 1894. April 10th the stage was again down to 8.1 feet; in May the highest stage was 9.2 feet, being above eight feet from the 9th to 24th. From May 26, 1894, to December 21, 1895, 19 months, the river touched eight feet but once, and then only for one day, March 5, 1895. High water prevailed later in 1892 than during any other year of the decade, being continuously above ten feet from April 6th to July 31, nearly four months.

Gauge Readings for Illinois River at Bridge Street Bridge, Peoria, Illinois.

	Jan.	Feb.	Mar.	Apr.	Мау.	June	July.	Aug.	Sept.	Oct.	Nov.	Dec
1890.						1						
	6.2	9.0	Fro	10.8	10.3	11.9	11.6	3.0	3.3	3.6	3.9	4.
	6.2 6.6 6.9 7.8	8.8 8.8	•••	10.6	10.0	11.9	11.3	3.0	3.2 3.2 2.2 2.3 3.8	3.6	3.8 3.8	4.
	6.6	8.8	7.5	10.8	10.0 9.9	11.6	10.9	3.0	3.2	3.6	3.8	4
	6.9	8.6 8.5 8.4	7.3 7.8	10.9	9.9	11.2 10.8 10.5	10.6	8.0	3.2	3.6	3.6 3.6 3.9 4.0	4444
	7.8	8.5	7.8	10.8	9.9	10.8	10.3	3.0	3.2	3.6	3.6	4
• • • • • • • • • • • • • • • • • • • •	7.5	0.4	Fro	11.8	9.9 9.5	10.0	9.9 9.4	8.0 3.0	2.2	3.6 2.6	3.9	
• • • • • • • • • • • • • • • • • • • •	7.9	8.2 8.1	6.9	11.5 11.8	9.5	10.6 10.5	9.0	8.V	3.2	2.0	4.0	•
• • • • • • • • • • • • • • • • • • • •	6.9	7.4	6.5	12.0	9.0	10.5	9.8	3.0 3.0 3.0	3.4	2.6 2.6 2.6 2.6 2.6 8.5	1.0	:
	8.2 8.9	7.9 7.7	6.7 6.7	12.8	8.2	10.4 10.3	9.6	9.0	9.4	2.0	4.0 4.0 4.0 4.0 4.0	
••••••	9.3	7.8		12.3	8.8 8.8 8.8 9.5 9.7 9.8	11.8	8 1	3.0 3.0 3.0	3 4 4 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.6	7.0	1
• • • • • • • • • • • • • • • • • • • •	9.6	7 8	7.0	12.4	8.8	10.0	8.1 7.5	3.0	3.4	2.6	1.0	1
	9.8	7.8 7.9		13.2	8.8	9.2	7 2	8.0	3.4	8.5	1.0	1
• • • • • • • • • • • • • • • • • • • •	9.8 10.0	8.0 8.0	8.4 9.2 10.0	13.0	9.6	8.9	7.2 7.0	8.0	9.4	4 1	7.0	4
	10.4	8.0	9.2	18.0	9.7	9.0	7.0	8.0	3.3	4.1	4.0	Ĩ
	10.9	7.9	10.0	13.0	9.8	9.5	6.5	8.0	3.3	1.4	4.0	ī
	11.3	8.0	9 9	13.0	10.0	10 2	6.3	3.0	3.3	4.6	4.0	1 2
	11.9	8.0	9.8	13.0	10.ŏ	10.2 10.8	6.1	8.0	3.3	4.6	4.1	38
	12.0	8.2	9.8	13.0	10.0	11.2	5.8	3.0	8.6	4.8	1.1	ă
	12.3	8.2 8.2	9.9 9.8 9.5 9.5 9.5	13.0	9.9	11 5	5.6	3.0	3.6	4.9	4.1	ă
	11.8	8.5	9.3	18.8	9.9	11.7	5.5	3.2	3.6	4.4	4.1	ä
	11.4	8.5	9 5	12.7	9.9	12.4	5.3	8.3	36	4.8	4.2	ă
	11.0	8.4	9.4	12.7 12.8	9.9	12.4	5.1	8.3	3.6	4.7	4.2 4.6	ã
	10.8	8.1	9.4 9.3 9.1 9.1	12.0	10.0	12.4 12.5	5.0	***************************************	3.6	4.9	4.4	ã
	10.6	8.0	9.1	11.8	10.0	18.3 13.3	4.5	3.3	3.6 3.6	4.2	4.4	9
	10.6	8.0	9.1	11.8	10.3	13.3	3.9	3.3	3.6	4.2	4.5	3
	10.2	8.0 8.0	9.1	11.0	10.8 11.3	13.2 12.7	3.2 3.0 3.0	3.3	3.6	4.4 4.3 4.2	4.6	3
	10.0	8.0	9.6	11.0	11.3	12.7	3.0	3.3	3.6	4.3	4.6 4.6 4.4	333333333333333333333333333333333333333
	9.6		9,6	10.8	11.5	12.4	3.0	3.3	3.6	4.2	4.6	3
	9.4		9.5	10.6	11.6	12.0	3.0	3.3	3.6	4.1	4.4	3
	9.4 9.2		10.0		11 7		3.0	3.3	 	4.0		
Averages	9.5	8.2	7.6	12.0	10.0	11.2	6.9	3.1	3.4	3.5	4.1	4
!							<u> </u>		<u> </u>	<u> </u>	1	
1891.						١						
	3.8	4.0	8.9	10.3 10.7 10.7	12.8	4,9	7.1	3.2 8.2 3.4 3.3	3.2 3.2 3.1 3.3 3.4	3.0	2.9	4
	3.5	3.9	9.0	10.7	12.5	4.8	6.9	8.2	8,2	3.0	3.0 3.0	4
••••	4.4	3.9	8.5 8.4 8.2 7.0	10.7	12.5 12.0 11.9	4.8 4.7 4.8 4.8	6.5 6.1	3.4	3.2	3.0 3.0	3.0	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
• • • • • • • • • • • • • • • • • • • •	4.6	4.1 4.1 4.0	8.4	11.1	11.9	4.5	g.1	3.8	8.1	3.0	3.2 3.1	
	4,6	4.1	8.2	11.5	11.5 11.6	4.8	5.9	3.2 3.1	3.8	3.0	3.1	9
• • • • • • • • • • • • • • • • • • • •	4.7	4.0	7.0	11.5	11.0	4.8	5.5	3.1	3.4	3.0	8.3	
• • • • • • • • • • • • • • • • • • • •	4.4	4.0	7.9 8.6	11.3	11.0	4.8	5.3	3.1 3.1	3.4 3.3	3.0	3.3	0
• • • • • • • • • • • • • • • • • • • •	4,9	4.0	0.0	11.6	10.2	5.0	5.3	3.1	0.0	2.9 2.9	90	0
• • • • • • • • • • • • • • • • • • • •	4.9 4.9	4.0	8.6 8.0	11.5	10.0 9.9	5.5 5.9	5.3	3.1 3.1	3.3 3.2 3.0	2.9	3.6 3.7	2
• • • • • • • • • • • • • • • • • • • •	4.9	4.1	7.5	11.6 11.6	9.7	0.9	5.2 5.1	9.1	3.6	2.9 2.8 2.8	9.4	2
•••••	4.0	4.1	6.7	11.7	9.5	8.9	4.9	9.0	3.0	9.0	3.8 3.7	1 6
•••••	4.8 4.8 4.8	4.1	7.6	12.2	9.5	6.1 6.2 6.8	4.7	3.3 3.3 8.3	3.0	2.8	3.6	1 6
• • • • • • • • • • • • • • • • • • • •	4.5	4.1	7.0 7.4	14.0	8.8	6.9	1 7	8.5	3.0	2.8	3.8 3.8 3.8 3.8 3.7	6
•••••	4.3	4.3	7.6	14.8	8.8 8.8	6.9	4.7	8.5 3.7	2.0	2.8	3.8	5
	4.3	4.3	7.9	14.9	8.3	6.9	1.9	. જ હ	2.9 2.9 3.0	2.8 2.7 2.7	9.8	1 5
• • • • • • • • • • • • • • • • • • • •	4.3	4.3	7.3	15.0	8.0	6.7	4.2	1 2 S	3.0	2 7	8.7	, š
	4.8	4.3	7.8	15.0	7.8	6.7	1 1	3.9 3.9 3.7 3.5	2.9	2 7	3.7 3.7 3.8 3.8	5
• • • • • • • • • • • • • • • • • • • •	4.3	4.8	8.0	15.0	7.8 7.4	7.0	4.1	3.9	2.9 3.0	2.7 2.7 2.7 2.7	3 7	5
	4.8	7.0	8.2	14.9	7.0		4.1	3.7	3.ŏ	2.7	3 7	5
•••••	4.3	4.0	8.2	14.9	6.8	8.2 8.0	4.1	3.5	3.0	2.7	8.8	ļ š
• • • • • • • • • • • • • • • • • • • •	4.1	Ā. j	8.2	14.9	6.6	8.0	3.9	3.3	3.ŏ	2.8	8.8	
	4.0	4.1	8.2	14.7	6.6	8.6	3.8	3.3	3.0	2.8	3.8	5
	4.0	5.5	7.3 7.8 8.0 8.2 8.2 8.2 8.6	14.6	6.3	8.9	3.7	2 2	3.0	2.8	4.4	5
	4.0	6.4	8.0	14.5	5.9	8.9	3.6	3.2	3.0	2.8	4.4	5
	4.0	7.4	8.9 9.0	14.0	5.9	8.9 8.7	3.6	3.2	3.ŏ	2.8	4.8	5
	4.0	8.4	9.2	13.9	5.8	8.5	3.4	3.2	3.0	2.8	4.6	6
	4 0	8.6	9.2 9.4	18.9	5.6	8.0	3.3	3.2 3.2 3.2 3.3	1 20	2.8	5.0	5
	4.0		9.6	13.5	5.5	7.9	3.3 3.3	3.3	3.0	2.8	5.0	55 55 55 55 55 55 55 55 55 55
	4.0		9.6 9.7	13.0	5.0	8.0 7.9 7.5	3.4	3.3 3.2	3.6	2.8 2.8 2.8 2.8 2.8 2.8	5.0	5
***************************************	4.0		10.0		4.9	ļ	3.3	3.2		2.8		5
			·									-

168
Gauge Readings for Illinois River—Continued.

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec
1892.		100					Table	TKS.		100		
	5.3	*4.7	7.7	8.1	11.1	. 17.0	17.5	9.9	4.4	4.4	4.0	4
	5.3	4.7	7.9	8.2 8.3	10.9	16.8	17.0	9.6	4.4	4.4	4.0	4
	5.7	4.7	7.8	8.3	11.3	16.8	16.8	9.2	4.4	4.4	4.0	4
	5.8	4.8	7.7	8.5	12.0	16.8	16.9	9.0	4.3	4.4	4.1	4
	5.6	5.0	7.7	9.9	14.1	16.7	17.3	8.8	4.3	4.4	4.2	4
***************	5.5	5.0	- 7.9	10.0	18.9	16.2	17.5	8.5	4.3	4.4	4.2	4
	5.5	5.0	8.1	11.0	20.9	16.1	17.3	8.3	4.2	4.4	4.2	4
	5.3	5.0	8.1	11.9	21.5	15.9	17.0	8.0		4.4	4.2	4
**************	5.3	5.6	8.0	13.0	21.9	15.9	16.5	7.8	4.2	4.4	4.2	4
	5.2	5.9	8.0	13.9	21.3	15.7	15.9	7.6	4.2	4.4	4.1	5
	5.2	6.0	8.4	14.3	20.7	15.5	15.5	7.4	4.5	4.4	4.1	5
	5.1	6.1	8.5	14.5	20.0	15.1	15.1	7.2	4.5	4.3	4.1	5
***************	5.2	6.5	8.5	14.4	19.9	14.9	14.8	6.9	4.6	4.2	4.1	5
	5.2	6.5	8.5	14.0	19.4	15.0	14.5	6.7	4.6	4.1	4.1	5
	5.2	6.7	8.4	14.2	18.9	14.9	14.2	6.5	4.7	4.0	4.3	5
	5.1	6.4	8.3	14.0	18.7	14.8	13.8	6.3		4.0	4.3	5
*****************	5.0	6.3	8.3	13.5	18.6	14.4	13.4	6.1	4.7	4.0	4.3	5
	5.0	6.1	8.0	13.6	18.5	14.4	13.0	5.9	4.7	4.0	4.3	5
	*5.0	6.0	7.9	13.4	18.3	14.8	12.8	5.7	4.6	4.0	4.4	5
	*5.0	6.0	7.8	13.1	18.5	15.0	12.5	5.6	4.6	4.0	4.4	5
	*5.0	6.0	7.7	13.0	18.8	15.2	12.2	5.3	4.5	4.0	4.4	5
	*4.9	6.0	7.8 7.7 7.5	12.9	19.0	15.6	12.1	5.1	4.5	4.0	4.4	5
	*4.9	6.0	7.3	12.8	19.0	15.6	11.9	5.0	4.4	4.0	4.8	5
	*4.9	6.0	7.1	12.6	18.7	15.9	11.6	4.8	4.4	4.0	4.8	5
	*4.9	6.3	7.1	12.5	18.4	16.5	11.3	4.8	4.4	4.0	4.8	5
****************	*4.8	6.5	7.0	12.3	18.1	17.5	11.1	4.7	4.4	4.0	4.8	5
	*4.8	6.9	7.1	12.0	17.9	18.4	10.9	4.7	4.4	4.0	4.8	5
Inches contract and a service	*4.8	7.0	7.5	11.9	17.5	18.5	10.6	4.5	4.4	4.0	4.8	4
	*4.8	7.1	7.8	11.8	17.4	18.4	10.3	4.4	4.4	4.0	4.6	4
	*4.7		7.9	11.5	17.3	17.9	10.2	4.4	4.4	4.0	4.6	4
	*4.7		7.9		17.0		10.0	4.4		4.0	ivere.	4
Averages	5.1	5.8	7.8	12.1	17.8	16.0	13.9	6.5	4.4	4.1	4.3	4
20.20.20.00.00	-						2000		111,200		- 20	-
1893.	10		10 0	45.0	45.5	11.0		2.0	2.0	0.5	2.0	
*************	4.6	4.3	13.2	15.2	15.7	11.6	7.9	3.6	3.0	3.5	3.9	4
	4.6	4.3	13.3	14.9	15.7	11.6	7.8	3.6	3.0	3.6		
	4.5	4.6	13.7	14.6	15.7	11.6	7.5	3.6		3.6	3.9	- 1
***********	4.5	4.6	13.9	14.6	15.8	11.4	7.3	3.6	3.0	3.8	3.8	4
	4.5	4.6	15.0	14.0	16.2	11.2	7.0	3.6	3.0	3.9	3.8	4
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.5	4.6	15.4	14.0	16.5	11.2	6.7	3.6	3.0	3.9	3.8	4
	4.5	4.6	15.6	13.7	16.4	11.4	6.3	3.6	3.0	3.9	3.8	4
***********	4.5	5.0	15.8	13.3	16.4	11.7	6.0	3.6	3.0	4.0	3.9	4
**************	4.5	5.0	16.0	12.6	16.0	11.6	5.8	3.6	3.0	4.0	3.9	4
	4.5	5.0	17.5	12.4	15.8	11.6	5.7	3.6	3.0	3.9	3.9	4
	4.5	4.8	18.4	12.0	15.6	11.4	5.7	3.6	3.0	4.0	3.9	4
**************	4.5	5.6	19.6	12.0	15.0	11.2	5.6	3.5	3.0	4.0	3.9	4
***************************************	4.2	6.5	19.6	12.0	14.7	11,2	5.5	3.5	3.2	4.0	3.9	4
	4.2	6.8	19.2	11.9	14.9	11.2	5.3	3.4	3.2	4.0	3.9	4
	4.2	8.0	18.9	11.8	14.7	11.1	5.1	3.3	3.2	4.0	3.9	4
*************	4.2	9.8	18.6	12.0	15.0	11.1	4.9	3.3	3.2	4.0	3.9	4
***************	4.2	10.3	18.2	12.0	15.4	11.1	4.7	3.2	3.2	4.0	3.9	4
	4.2	11.0	17.6	11.6	15.2	10.9	4.5	3.2	3.2	4.0	3.9	4
	4.2	12.4	17.0	11.8	15.1	10.8	4.5	3.2	3.2	4.0	3.9	4
	4.2	12.8	16.5	11.8	14.9	10.6	4.5	3.2	3.2	3.9	3.9	4
**************	4.2	13.1	16.2	11.9	14.3	10.3	4.4	3.2	3.2	3.9	3.9	4
	4.2	13.4	15.8	12.0	14.0	10.0	4.4	3.2	3.2	3.9	3.9	5
20,700,2120,2100,000,000,000	4.2	13.6	15.7	12.5	13.8	9.8	4.2	3.0	3.2	3.9	3.9	5
****************	4.1	13.8	15.5	14.3	13.7	9.0	4.2	3.0	3.5	3.9	3.9	5
	4.1	13 4	15.4	14.8	13.4	9.0	4.0	3.0	3.6	3.9	4.0	5
	4.1	13.3	15.6	15.4	12.9	8.9	3.9	3.0	3.6	3.9	4.0	5
******************	4.1	13.2	15.6	15.4	12.9	8.9	3.8	3.0	3.6	3.9	4.0	4
	4.1	13.1	15.4	15.4	12.3	8.8	3.7	3.0	3.4	3.9	4.1	4
***************	4.7		15.4	15.5	12.3	8.8	3.7	3.0	3.4	3.9	4.1	4
	4.7		15.4	15.5	12.1	8.3	3.6	3.0	3.4	3.9	4.0	4
	4.7		15.3		11.9		3.6	3.0		3.9		4

^{*}Interpolated quantities.

169
Gauge Readings for Illinois River—Continued.

	Jan.	Feb.	Mar,	April	May.	June	July.	Aug.	Sept.	Oct.	Nov.	De
1894.			1			11.8			151			
1	4.9	5.8	6.0	9.0	7.5	7.2	4.3	3.4	3.2	4.9	3.8	4
2	4.9	5.8	6.0	8.9 8.8	7.4	7.0	4.3	3.4	3.2	4.9	3.8	4
3	5.3	5.9	6.0	8.8	7.0	6.8	4.3	3.4	3.2	4.9	3.8	4
	5.4	5.5	6.0	8.5	6.9	6.6	4.3	3.5	3.2	4.7	4.0	4
	5.4	5.5	6.0	8.5	6.8	6.4	4.3	3.5	3.2	4.5	4.0	4
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.4	5.5	6.1	8.4	6.9	6.2	4.3	3,5	3.4	4.5	4.3	4
	5.3	5.4	8.2	8.3	6.9	6.2	4.3	3.5	3.6	4.5	4.3	4
*****************	5.3	5.4	8.8	8.1	7.4	6.3	4.2	3.5	4.0	4.5	4.3	4
***************	5.9	5.5	9.9	8.1	8.3	6.2	4.2	3.3	4.4	4.3	4.3	- 7
*********	5.2 5.2	5.5	10.0		8.6	5.8	4.2	3.3	4.7	4.2	4.3	- 7
	5.0	5.6	11.4	8.1 7.8	9.0	5.6	3.9	3.1	5.2	4.0	4.3	4
	5.2 5.2		11.7	7.5		5.4	3.9	3.1	5.7	4.0	4.3	1
	5.2	5.6	11.7	7.5	9.0	5.2	3.7		6.0	3.9	4.3	
		5.6	11.9		9.1	0.2	0.1	3.1				4
	5.0	5.6	12.3	7.4	9.1	5.2	3.6	3.1	6.2	3.8	4.3	4
	5.0	5.5	12.0	7.4	9.2	5.0	3.6	3.1	6.2	3.8	4.3	4
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.0	5.5	12.0	7.4	9.2	4.8	3.6	3.1	6.4	3.8	4.3	4
********	4.9	5.7	12.0	7.4	9.2	4.6	3.6	3.1	6.4	3.8	4.3	- 4
	4.9	6.0	12.0	7.7	8.8	4.6	3.6	3.1	6.4	3,8	4.3	
**************	4.9	6.2	12.0	7.9	8.7	4.6	3.6	3.1	6.4	3.8	4.3	
**************	4.9	6.3	11.8	7.7	8.7	4.6	3.6	3.4	6.3	3.8	4.3	
	5.4	6.3	11.6	7.7	8.6	4.6	3.5	3.4	6.3	3.8	4.3	5
	5.6	6.1	11.0	7.7	8.2	4.6	3.5	3.4	6.1	3.8	4.3	
	5.5	6.1	10.8	7.7 7.7 7.7 7.7 7.7	8.2	4.6	3.5	3.4	6.1	3.8	4.3	
	5.5	6.1	10.8	7.7	8.1	4.5	3.5	3.4	5.8	3.8	4.3	
	5.7	6.0	10.8	7.7	8.0	4.5	3,4	3.3	5.7	3.8	4.3	
	5.7	6.0	10.8	7.7	8.0 7.8	4.5	3.4	3.3	5.5	3.8	4.3	5
	5.9	6.0	10.4	7.7	7.8	4.5	3.4	3.3	5.3	3.8	4.3	4
*********	5.6	6.0	10.0	7.6	7.8	4.4	3.4	3.3	5.1	3.8	4.3	4
	5.6		9.7	7.6	7.7	4.4	3.4	3.3	5.1	3.8	4.3	4
	5.6		9.6	7.5	7.6	4.4	3.4	3.2	4.9	3.8	4.3	-
	5.6		9.5		7.4		3.4	3.2		3.8		
	-		_				-	_	_	7.7	-	-
Averages	5.2	5.7	9.9	7.8	8.1	5.3	3.7	3.2	5.1	4.0	4.2	4
1895.							70.0					
	4.1	4.9	7.2	5.8	5.0	3.9	3.8	5.3	3.8	4.1	3.7	4
*****************	4.1	4.8	7.5	6.0	4.9	3.9	3.8	5.0	3.7	4.0	3.7	4
***************	4.0	4.6	7.5	6.0	4.8	3.9	3.8	4.7	3.6	3.9	3.7	4
	4.0	4.5	7.7	5.8	4.7	3.9	3.8	4.7	4.4	3.8	3.7	4
	4.0	4.4	8.0	5.7	4.6	3.8	3.7	4.6	5.3	3.8	3.8	
	3,9	4.2	7.9	5.7	4.6	3.8	3.7	4.4	5.5	3.7	3.8	
	3.8	4.1	7.9	5.9	4.6	3.8	3.6	4.3	5.5	3.7	4.0	
	3.6	4.0	7.8	6.1	4.6	3.7	3.9	4.0	4.9	3.7	4.2	1
	3.6	3.9	7.6	6.1	4.6	3.7	4.2	3.9	4.8	3.7	4.4	1
	3.5	3.8	7.6	6.2	4.6	3.6	4.0	3.8	4.7	3.7	4.4	1
				6.5		3.6		3.8	4.6	3.9	4.3	1
****************	3.5	3.8	7.5	6.9	4.6	3.5	3.9	3.7		4.0	4.0	100
comments of the contract of th	3.4		7.4	0.9			0.0	9.4	4.4	3.8	4.1	1
	3.3	3.7	7.3	7.1	4.6	3.5	3.8	3.6	4.2			4
*******	3.3	3.7	7.3	7.3	4.6	3.4	3.7	3.7	4.1	3.7	4.0	4
	3.3	3.6	7.1	7.3	4.5	3.4	3.8	3.7	4.0	3.7	4.1	4
	3.3	3.5	7.0	7.3	4.5	3.4	3.9	3.7	3.9	3.7	4.2	4
*****************	3.3	3.5	6.8	7.3	4.5	3.3	4.3	3.7	4.2	3.7	4.2	4
	3.3	3.5	6.8	7.3	4.5	3.3	4.6	3.7	4.3	3.7	4.4	4
	3.3	3.5	6.7	7.1	4.5	3.2	4.9	3.7	4.3	3.6	4.5	
	3.3	3.5	6.6	6.9	4.5	3.2	5.6	3.6	4.2	3.6	4.6	7
***** ***********	3.3	3.5	6.5	6.8	4.5	3.1	6.0	3.6	4.2	3.6	4.4	8
	3.3	3.5	6.3	6.7	4.5	3.1	6.3	3.5	4.1	3.7	4.5	10
	3.3	3.6	6.1	6.5	4.5	3.1	6.0	3.4	4.1	3.7	4.5	12
	3.3	3.7	6.1	6.2	4.4	3.1	5.7	3.5	4.0	3.7	4.4	13
**********	3.3	5.1	6.1	6.0	4.4	3.1	5.6	3.5	3.9	3.7	4.4	14
	3.3	5.7	6.1	5.9	4.3	3.5	5.2	3.7	4.3	3.7	4.4	14
******************	3.5	6.2	6.1	5.8	4.1	3.7	5.6	3.7	4.7	3.7	4.3	14
	4.0	6.7	6.1	5.6	3.9	3.8	5.7	3.7	4.5	3.7	4.3	14
	4.2	0.4	5.9	5.3	3.9	3.8	5.7	3.7	4.3	3.7	4.4	14
	9.4	*****		5.2	3.9	3.8	5.6	3.8	4.3	3.7	4.4	14
	4 4						0.0	0.0	9.4			3.4
	4.4		5.8	0.2	3.9		5.6	3.9		3.7		14
	4.4 4.7 3.6	4.2		6.3		3.5		3.9				

170

Gauge Readings For Illinois River—Continued.

	Jan.	Feb.	Mar.	April	Мау	June	July	Aug	Sep.	Oct.	Nov.	Dec.
1896												
	14.3	8.8	11.5	8.4 8.3 8.3 8.2 8.1 8.0	7.8	10.0	5.6	9.5			5.9	7.4
		8.9 9.0	11.8 11.9	8.8	7.7 7.6	9.8 9.5	5.5 5.4	9.7 9.5	6.5	6.6 7.6	5.8 5.9	7.
·	18.3	9.1	11.9	8.2	7.4	9.4	5.4	9.3	6.4	7.8	6 1	7.1
	13.1	9.2	11.6	8.1	7.3 7.2	9.4 9.2 8.9	5.4	9.8	6.4	8.3	6.2 6.3	7 1
	12.8	9.5	11.5	8.0	7.2	8.9	5.1 4.7	8.9	5.9	8.7	6.3	6. 7. 7.
	12.6 12.3	9.8 10.0	11.2 11.0	7.9 7.7	7.2 6.8	8.6 8.4	4.5	8.9 8.9	5.8 5.5	8.8 8.9	6.3 6.4	7
)	12.1	10.2	10.9	7.6	6.5	8.4 8.2 7.8	4.5	8.5	5.4	8.9	6.5	7.0
)	11.8	10.1	10.9	7.5	6.3	8.2	4.3	8.5	5.5	8.7	6.6	6. 6.
	11.6 11.4	10.0 9.9	10.8 10.8	7.4 7.3	6.1 5.9	7.8	4.3 4.0	8.4 8.4		8.7 8.6	6.8 7.1	6.
·	11.2	9.9	10.7	7.3	5.8	7.5	3.9	8.0	5.5		7.5	6.
	10.9	9.9	10.5	7.0	5.5	7.8	22	7.8 7.6	5.5	8.1 7.9	7.5 7.7	6. 7.
	10.8	9.5	10.6	6 8	5.5	7.8 7.7 7.7	3.7	7.6 7.7	5.5	7.9 7.8	7.7	6. 6.
	10.7 10.3	9.0 8.8	10.3 10.0	6.7 7.0	5.4 5.3	7.7	3.6 3.6	7.6	5.5 5.8	7.6	7.8 8.0	6.
•••••••••••••	9.9	8.4	9.8	6.8	5.4	7.4	3.6	7.6	5.9	7.5	7.9	6.
	ס.ע ו	8.3	9.7	6.7	6.0	7.4	8.6	7.6	5.9	7.3	8.1	6.
	9.2	8.3	9.6	6.6	6.5	7.3	4.2	7.6	6.0	7.0	8.0	6.
	8.9 8.6	8.1 7.8	9.4 9.3	6.6 6.6	7.0 7.7	7.0 6.7	4.5 4.5	7.7 7.6	6.2 6.3	6.9 6.7	7.8 7.7	6.
· • • • · • • • • • • • • • • • • • • •	8.5	7.7	9.2 9.2	6.6	8.3	6.5	4.6	7.4	6.0	6.7	7.5	6.
. 	8.5 8.3	8.2	9.2	6.6	8.6	6.4	4.8	7.4 7.3 7.2	5.8	6.6	7.5	6.
• • • • • • • • • • • • • • • • • • • •	8.2	8.9	8.8	7.0	8.5 8.7	6.2	5.6	7.2	5.7 5.7	6.4	7.5	5.
	8.2 8.2 8.3	9.5 10.0	8.8 8.7	7.6 7.9	9.2	6.4 6.2 6.2 6.0	5.9	7.2 7.1	5.7	6.4 6.3	7.5 7.5 7.5 7.8	6. 6. 5. 5.
	8.4	10.6	8.6	8.0	9.8	5.9	6.8 7.8	7.0	5.7	6.2	7.6	5.
• • • • • • • • • • • • • • • • • • • •	8.4 8.5 8.5	11.1	8.5	8.0	10.0	5.8	8.6	6.9	5.6	6.1	7.6	5.
• • • • • • • • • • • • • • • • • • • •	8.5		8.4	7.9	10.1	5.8	9.2	6.7		5.9	7.6	5.
	8.7	•••••	8.3	•••••	10.2		9.2	6.7		5.8		5.
Averages	10.5	9.2	10.1	7.4	7.8	7.6	5.1	8.0	5.8	7.3	7.1	6.
1897												
2001	5.4	12.4	13.2	17.3	11.5	6.7	9.1	4.7		3.7	3.8	4.
• • • • • • • • • • • • • • • • • • • •	5.6 6.4	12.1	13.0	17.0 16.8	11.3	6.8	8.9 8.6	4.6	3.9 3.9	3.7	9.8	4. 4. 4. 4.
· · · · · · · · · · · · · · · · · · ·	7.6	12.1 12.1 12.0 11.8	12.8 12.7	16.3	11.2 11.2	6.2 6.0	8.2	4.5 4.4 4.3 4.2 4.1	3.9	3.7 3.7 3.7	3.8 3.8 3.9 3.9	4.
	10 0	11.8	12.6	16.0	11.0	5.9	8.0	4.3	3.9	3.7	3.8	4.
	11.7	11.7	12.6 12.7	15.8	10.9	5.9	7.9	4.3	3.9 3.9	3.7 3.7	8.9	4.
••••••	13.2 14.3	11.5 11.4	12.7	15.5 15.0	10.9 10.8	5.8 5.7	8.0 7.9	4.1	3.9	3.7	4.0	1
	14.8	11.3	13.1	14.9	10.5	5.6	7.6	4.1	3.9	3.7	4.1	4.
	14.9	11.1	13.3	14.5	10.3	5.5	7.2	4.0	3.9	3.7	4.1	4.
•••••	14.9 14.7	11.0	14.0	14.2 13.9	10.0	5.4	7.1	4.0	3.9 3.9	3.7 3.7	4.1	4.
· • • • • • • • • • • • • • • • • • • •	14.5	10.9 10.8	14.4 15.0	13.5	10.0 9.8	5.4 5.3 5.3	6.8 6.4	4.0 3.9	3.9	3.7	4.2	4.
· · · · · · · · · · · · · · · · · · ·	14.4	10.8	15.6	18.5	9.6	5.0	6.1	8.9	3.9	3.7	4.2 4.2	ā.
•••••	14.1	10.7	16 0	13.3	9.5	4.8	5.9	3.8	3.9	3.7	4.2	4.
•••••	13.9	10.7	16.2	13.0	9.4	4.6	5.8	3.8	3.9	3.8 3.8	4.8	4.
••••••	13.7 13.6	10.6 10.8	16.2 16.1 16.2 16.3 16.7	12.9 12.5	9.2 9.3	4.5 4.8	5.8 5.7	3.9	3.9 3.9		4.5	1
· • • • • • • • • • • • • • • • • • • •	13.8	11.0	16.3	12.5	5.0	5.4	5.7	3.8 3.8	3.9	3.7	4.3 5.3	4.
• • • • • • • • • • • • • • • • • • •	14 0 14.2	11.2	16.7	12.3	8.7	5.8	5.8	3.8	3.9	3.7	4.3	4.
• • • • • • • • • • • • • • • • • • • •	14.2	11.5	17.0	12.0	8.4	6.5	5.7	3.8	3.9	3.8	4.3	4.
	14.2 14.1	11.9 12.6	17.8	11.5 11.6	8.1 7.9	6.9 7.4	5.8 5.9	3.8	3.9	3.8	4.3	1 4.
	13.5	13.3	18.3	11.6	7.8	7.9	5.9	3.8 3.7	3.9 3.9	3.8	4.4	Ī.
• • • • • • • • • • • • • • • • • • • •	13.5	13.7	18.3	11.5	7.5	8.8 9.3	5.9 5.7	3.7	3.9	1 22	I AR	4.
	18.4	13.8	18.3	11.3	7.4	9.3	5.7	3.8	3.8	3.8	4.8	4.
	18.2 13.0	13.6 13.4	18.3	11.3 11.2	7.3	9. 5 9.6	5.5	3.8	3.8	3.5	4.8	4. 4. 4. 4. 4. 4. 4. 4. 4.
	12.8	40.9	17.8 18.2 18.3 18.3 18.3 18.3 18.2 18.2	11.4	7.2 7.1	9.5	5.8 5.1	3.8 3.8 3.9	3.8 3.7	3.8 3.8 3.8 3.8	4.7	4.
							4.9	1 5.6	3.7	1 5 6	4.7	4.
. 	12.6		17.7	11.4	7.0	9.4	4.9	9.8	3.7	9.0	6.7	•.
. 	12.6 12.5		17.7 17.5	11.4	6.8		4.9	3.9	3.7	3.8	4.7	4.
Averages	12.5		17.7 17.5 15.5	11.4			4.9	3.9 4.0		3.8	4.2	4.

171

Gauge Readings for Illinois River—Continued.

	Jan.	Feb.	Mar.	April	May.	June	July.	Aug.	Sept.	Oct.	Nov.	Dec
1898.						1.1	10	1		30	100	
1898.	4.1	7.8	12.5	19.2	10.8	13.5	9.1	4.1	4.6	5.3	7.8	8
	4.1	7.9	12.5	19.0	10.6	13.3	8.9	4.1	4.5	5.1	7.8	8
	4.1	7.8	12.5	18.7	10.5	13.1	8.8 8.6	4.1	4.5	5.1	7.7	8
	4.0	7.7	12.3	18.3	10.3	12.8	8.6	4.2	4.4	5.0	7.6	8
	4.0	7.6	12.1	18.0	10.2	12.5	8.4	4.0	4.4	5.0	7.4	8
	4.0	7.4	12.0	17.3	10.0	12.1	7.9	4.2	5.0	5.0	7.3	7
	4.0	7.2	11.8 11.7	16.8	9.8 9.7	11.8	7.5	4.3	5.4	5.0	7.3	7
	4.0	7.0	11.7	16.3	9.7	11.5	7.3	4.4	5.5	4.9	7.2	7
	4.0	6.9	11.6	15.9	9.6	11.2	7.3	4.3	5.6	4.9	7.3 7.2	7
***************************************	4.0	6.9	11.9	15.4	9.5	11.2	6.7	4.3	5.6	4.8	7.2	7
		7.5	12.2	15.1	9.4	11.1	6.3	4.3	5.6	4.9	7.2	7
	4.3	8.4	13.0	14.8	9.3	11.1	5.9	4.3	5.3	4.9	7.3	7
	4.8	9.2	13.7	14.4	9.0	11.0	5 6	4.2	5.3	4.9	7.6	7
	5.0	10.0	14.3	14.3 14.0	8.9	11.1	5.3 5.0	4.1	5.3	4.9	9.0	7
	5.2		14.8 15.2	13.8	8.8	11.2 11.0		4.1				6
***************************************	5.3 5.2	11.4	15.5	13.5	9.0		4.7	4.2 5.3	5.4	4.7	9.4	6
	0.4	11.9 12.3		13.3	9.4	11.0 10.8	4.0			4.7	9.7	6
	5.1	12.6	15.6 15.7	13.1	9.7	10.6	3.9	5.6 5.6	5.3	4.8 5.0	9.9	6
	5.1	12.6	16.0	12.9	10.6	10.6	3.9	5.0	5.3		9.9	6
	5.4	13.0	16.8	12.6	11.8	10.3	3.9	5.6 5.6	5.1	5.1 5.2	9.9	5
	6.3	13.1	17.1	12.3	12.5	9.7	3.9	5.7	5.0	5.3	9.7	6
***************************************	6.8	13.4	17.4	12.3	13.0	9.5	3.8	5.5	5.0	5.4	10.0	6
	7.0	13.4	17.4 17.3	12.1	13.6	9 3	3.5	5.4	5.6	5.4	9.9	6
	7.2	13.1	17.2	11.8	14.0	9.1	3.7	5.4	5.8	5.7	9.7	6
	7.3	13.8	17.0	11.7	14.0	8.8	3.6	5.3	5.8	6.5	9.4	6
	7.4	13.7	17.2	11.5	14.1	8.9	3.6	5.2	5.7	6.8	9.1	6
	7.5	13.2	17.6	11.2	14.0	9.1	3.8	5.0	5.6	7.1	8.8	6
	7.5		18.3	11 1	14.0	9.1	4.1	4.9	5.5	7.6	8.6	6
	7.6	122353	19.0	10.9	14.0	9.1	4.1	4.8	5.4	7.8	8.5	7
	7.7		19.3		13.8		4.1	4.7		8.0		7
Averages	5.4	10.2	14.8	14.4	11.1	10.8	5.5	4.7	5.2	5.5	8.5	7
A voluges	0.4	10.2	14.0	44.4		10.0	0.0	4	0.2	0.0	0.0	
1899.	20	13	3	15.3	1/5/3			13		7.5		Æ
	7.5	8.3	11.4	13.0	8.7	7.5	3.9	4.3	3.7	4.0	4.6	4.
	7.7	8.1 8.0	12.2	13.0	8.5	7.7	3.9	4.4	3.7	4.0	4.6	4
	7.8	8.0	12.9	13.0	8 3	8.1	3.8	4.3	3.7	4.0	4.5	4
	7.8	7.8	13.7	12.8	8.0	8.2	4.0	4.3	3.8	4.0	4.4	4
	7.9	7.6	14.2	12.6	7.9	8.4	4.2	4.3	3.7	4.0	4.5	4
•••••	8.2	7.4 7.2	14.5	12.6	7.7	8.5	4.3	4.3	3.8	4.0	4.5	4
	8.3	7.2	14.5	12.5	7.5	8.5	4.4	4 2	3.8	4.0	4.0	4
	8.5	7.0	14.5	12.5	7.4 7.2	8.5	4.6	4.0	4.0	4.0	4.5	4
	8.7 8.9	6.8 6.8	14.8	12.5 12.4	7.0	8.4	4.5 4.5	3.9	3.9	4.0	4.6	4
• • • • • • • • • • • • • • • • • • • •		0.0	14.2 14.1	12.2		8.2 8.7		3.9		4.0	4.6	ì
	9.0 8.9	6.7 6.7	13.9	12.0	6.8 6.8	7.0	4.5	4.0	3.9	4.0	7.4	1
	8.8	6.6	14 1	12.0	8.0	7.4	4.5	3.9	3.9	4.2	4.7 4.7 4.8 4.8	Ě
•••••	8.8	6.2	14.1 14.2 14.2 14.2 14.2	11.9	6.8 6.7 6.7	7.2	4.5	3.8	3.9	4.2	7.0	5 5
••••••	9.6	5.9	14 9	11.8	6.7	7.2	4.4	3.7	3.8	4.3	7.0	5
•••••	8.5	5.8	14.5	11.8	6.7	7.0	4.9	3.7	3.8	4.2	4.9	5
••••	8.6	5.6	17.2	11.5	7.0	6.7	5.5	3.6	3.9	4.4	4.8	5
••••••	8.7	5.4	14.3	11.8	7.4	6.4	5.8	3.6	4.3	4.3	5.0	5
	9.0	5.3	14.4	11.2	7.7	6.3	6.0	3.5	4.3	4.3	5.1	5
	9.1	5.3	14.8	11.0	7.9	R 1	6.2	3.5	4.2	4.3	5.0	5
	9.2	5.3	15.0	10.9	8.0	6.1 6.0	6.2	3.5	4.2	4.2	5.0	5
	9.3	5.9	15.1	10.8	8.1	5.7	6.1	3.4	4.1	4.2	5.0	5
	9.3	6.0	14.9	10.5	8.0	5.7 5.4	5.9	3.4	4.2	4.3	5.0	6
	9.2	6.3	14.8	10.3	7.8	5.3	5.7	3.4	4.2	4.3	5.0	ĕ
	9.0	6.8	14.5	10.0	7.7	5.1	5.5	3.5	4.2	4.3	4.9	ĕ
	9.0	8.5	14.4	9.9	7.5	5.1 4.9	5.3	3.5	4.1	4.3	5.0	ĕ
	9.0	9.9	14.3	9.6	7.3	4.7	5.1	3.4	4.1	4.5	4.8	ĕ
	8.9	10.6	14.1	9.4	7.3	4.5	4.9	3.4	4.1	4.6	4.7	ĕ
	8.8		13.8	9.3	7.2	4.4	4.7	3.4	3.9	4.5	4.8 4.7 4.7	6
	8.8 8.7		13.8	9.0	7.2 7.2	4.1	4.6	3.5	3.9	4.5	4.8	6.
	8.6		13.7		7.3		1.4	3.6	,	4.5		6.
								_				

172

Gauge Readings for Illinois River—Continued.

	Jan.	Feb.	Mar.	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1900 12	5.6 5.5	7.7 7.8	12.3 12.2	15.8 16.3	11.5 11.3	8.6 8.7	7.8 7.2	7.3 7.3	8.0 8.1	6.4 6.3	6.7 6.8	9.6 9.7
3	5.4 5.4 5.3 5.1 5.0	7.8 7.9 7.7 7.6 7.5	12.0 11.8 11.6 11.5 11.4	16.7 16.9 16.9 16.7 16.4	11.1 10.8 10.5 10.3 10.1	8.7 8.8 8.9 8.8 8.8	7.2 7.2 7.1 7.0 6.9	7.4 7.3 7.3 7.3 7.0	8.2 8.1 8.0 7.9	6.5 6.7 6.8 6.9	6.8 6.7 6.7 6.7	9.7 9.6 9.6 9.5 9.5
7 8 9 1	5.0 4.9 5.0 5.0	8.3 9.3 10.0 10.5	11.3 11.4 11.8 12.5	16.1 15.8 15.6 15.3	10.0 10.1 9.9 9.8	8.8 8.8 8.6 8.6	7.0 6.9 6.9	7.0 6.9 6.8 6.7	7.7 7.4 7.2 6.8	6.9 6.9 6.9 6.7	6.8 6.8 6.7 6.9	9.4 9.3 9.2 9.1
12	5.1 5.2 5.2 5.1	11.0 11.3 11.5 11.5	13.8 15.4 17.4 19.2	14.8 14.5 14.2 14.0	9.7 9.7 9.6 9.6	8.5 8.4 8.3 8.1	6.6 6.5 6.4 6.4	6.7 6.8 7.0	6.8 6.7 6.5 6.8	6.7 7.0 6.6 6.4	6.8 7.0 7.0 7.1	8.9 8.9 8.8 8.7
.6	5.1 5.7 6.1 6.6	11.4 11.5 11.5 11.5	19.9 19.9 19.5 19.0 18.7	13.8 13.6 13.3 13.3 13.3	9.5 9.4 9.3 9.4 9.3	7.8 7.6 7.4 7.3 7.3	6.3 6.4 6.4 6.4	7.9 8.1 8.1 8.0 7.9	6.9 6.2 6.3 6.3	6.5 6.4 6.8 6.4 6.3	6.9 6.9 6.9 7.0 7.2	8.5 8.4 8.4 8.4
1 2 2 3	7.1 7.5 7.7 7.8	11.4 11.5 11.6 11.6	18.3 17.8 17.6 17.4	13.3 13.2 13.1 13.0	9.1 8.9 8.8 8.7	7.2 7.1 7.0 6.8	6.5 6.5 6.5 6.4	7.9 7.9 7.8 7.7	6.0 5.8 5.6 5.4	6.2 6.4 6.4 6.6	7.2 7.6 7.9 8.1	8.4 8.8 8.1
5 6 7	8.1 8.1 8.1 7.9	12.0 12.8 12.3 12.4	17.0 16.7 16.4 16.1	12.8 12.6 12.5 12.3	8.7 8.7 8.6 8.6	6.9 7.1 7.2 7.3	6.6 6.6 6.6	7.7 7.7 7.7 7.7	5.8 5.4 5.8 6.0	6.6 6.6 6.5	8.6 9.0 9.2 9.4	8.4 8.3 8.1 8.1
9 0 1	8.0 7.9 7.7 6.14	10.34	16.0 15.8 15.7 15.40	12.0 11.9 14.33	8.7 8.7 8.7 9.60	7.4	6.7 6.9 7.1 6.72	7.7 7.8 8.0 7.46	6.0	6.6 6.7 6.7 6.58	9.5 9.5 7.20	8.0 8.0 8.0

Resumé of Gauge Readings of Illinois River at Bridge Street Bridge, Peoria, Illinois.

(Average Gauge, Date and Duration of Maximum and Minimum Gauges.)

	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899
January.										
Maximum— Date	20 12.3	8-10 4.9	5.8	29-31 4.7	27 5.9	31 4.7	1 14.8	10-11 14.9	81 7.7	2 9.
DateGauge	1,2 6.2	1, 2 8.8	30, 31 4.7	24-28 4.1	(g) 4.9	18-26 3.3	25 8.2	5.4	4.0	7.
Average gauge	9.5	4.8	5.1	4.8	5.2	3.6	10.5	12.8	5.4	8.
February.										
Maximum— Date	9.0	28 8.6	29 7.1	24 18.8	20, 21 6.3	28 6.7	29 11.1	26 18.8	24 18, 4	10.
DateGauge	10 7.7	2,3 3.9	1-8 4.7	1,2 4.3	7,8 5.4	16-23 3.5	21 8.1	17 10.6	10 6.9	5.
Average gauge	8.2	4.7	5.8	8.9	5.7	4.1	9.2	11.7	10.1	6.
March.										
Maximum— Date Gauge Minimum—	16, 31 10.0	81 10.0	12-14 8.5	12, 18 19.6	15-19 12.0	8.0	8, 4 11.9	24-27 18.8	31 19.3	2 15.
DateGauge	9, 10 6.7	12 6.7	26 7.0	18.2	1-5 6.0	3 0 5.8	81 8.3	5 12.6	9 11.6	11.
Average gauge	7.6	8.3	7.8	16.2	9.9	6.9	10.1	15.5	14.8	14.
April.										
DateGauge	21 13.8	17-19 15.0	12 14.5	29, 30 15.5	9.0	14-18 7.3	8. 4	17.3	19.2	18.
Minimum— Date Gauge	2, 30 10.6	10.8	8.1	18 11.6	13-17 7.4	3 0 5.2	20-24 6.6	28 11.2	80 10.9	9.
Average gauge	12.0	18.1	12.1	18.3	7.8	6.3	7.4	18.5	14.8	11.
May.										
Maximum— DateGauge	81 11.7	1 12.8	21.9	6 16.5	15-17 9.2	5.0	31 10.2	11.5	27 14. l	8.
DateGauge	10-13 8.8	81 4.9	10.9	81 11.9	6.8	28-81 3.9	17 5.3	31 6.8	15 8.8	6.
Average gauge	10.0	8.5	17.8	14.6	8.1	4.4	7.3	9.2	11.0	7.
June.										
Maximum— DateGauge	26 13.3	• 24, 25 8.9	28 18.5	8 11.7	7.2	1-4 8.9	10.0	28 9.6	1 13.5	8.
Minimum— Date Gauge	14 8.9	(b) 4.8	17, 18 14.4	30 8.3	28-30 4.4	21-25 3.1	29 5.8	17 4.5	26 8.8	3
Average gauge	11.2	6.7	16.0	10.5	5.3	8.5	7.6	6.5	10.8	6.

174

Resumé of Gauge Readings of Illinois River-Concluded.

	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899
July.										
Maximum— DateGauge	1 11.6	7.1	1-6 17.5	7.9	1-7 4.8	22 6.3	30, 31 9, 2	9.1	9.1	20 6.3
Minimum— Date	28-31	(c)	31	30, 31	25-31	5	16-19	31	24	
Gauge	8.0	3.3	10.0	3.6	3.4	3.7	3.6	4.9		3.8
Average gauge	6.9	4.6	13.9	5.2	8.7	4.6	5.1	6.5	5.5	4.8
August. Maximum—										
DateGauge	22-31 3.3	18, 19 3.9	9. 9	1-11 3.6	4-8 3.5	5.8	9.7	4.7	22 5.7	4.
DateGauge	1-20 3.0	6-10 3.1	29-31 4.4	23-31 3.0	11-10 3.1	23 3.4	30 6.7	3.8	4.0	3.
Average gauge	3.1	3.4	6.5	3.3	3.2	3.9	8.0	3.9	4.7	3.1
September.										
Maximum— Date Gauge	19-21 3.6	6, 7 3. 4	15-18 4.7	25-27 3.6	16-19 6.4	6, 7 5.5	6.6	3.9	5.8	19 4.3
Minimum— Date Gauge	2-7 3.2	(d) 3.0	7-10 4.2	1-12 3.0	1,5 3.2	3 3.6	9 5.4	3.7	4.4	3.
Average gauge	8.4	3.1	4.4	3.1	5.1	4.3	5.8	3.8	5.2	3.9
October.										
Maximum— Date	20 4.9	1-7 3.0	1-11 4.4	(e) 4.0	1-3 4.9	4.1	9 8.9	3.8	8.0	25 4.0
DateGauge	7-12 2.6	16-21 2.7	15-31 4.0	3.5	14-31 3.8	19 3.6	1-31 5.8	3.7	16 4.7	4.0
Average gauge	8.5	2.8	4.1	3.9	4.0	3.7	7.3	3.7	5.4	4.2
November.										
Maximum— DateGauge	(a) 4.6	28-30 5.0	23-28 4.8	28, 29 4.1	6-30 1.3	20 4.6	19 8.1	4.9	23 10.0	19 5.1
DateGauge	4,5 3.6	2.9	1-3 4.0	4-7 3.8	1-3 3.8	3.7	5.8	3.8	10 7.2	4.4
Average gauge	4.1	3.8	4.3	3.9	4.2	4.1	7.1	4.2	8.5	4.7
December. Maximum—										
Date	1-4 4.4	24-26 5.9	20-21 5, 3	22-26 5.0	19-24 5.1	29 14.9	7.4	4.4	8.4	31 6.8
DateGauge	25-30 3.8	4.7	1-8 4.5	(f) 4.0	1-13 4.3	16 4.3	28 5.4	4.1	5.9	4.6
Average gauge	4.0	5.4	4.9	4.4	4.6	7.7	6.5	4.2	6.7	5.8
Average for year	6.9	5.7	8.5	7.6	5.5	4.7	7.7	7.8	8.5	6.8

⁽a) 23 and 27-29. (b) 2 and 4-7. (c) 28,29 and 31. (d) 11-14, 17 and 19-30. (e) 8,9 and 11-19. (f) 1-9 and 16 (g) 1,2 and 17-20.

ded.

28 4.6 4.0 4.2

5.1

THE DISCHARGE OF THE ILLINOIS RIVER AND ITS PRINCIPAL TRIBUTARIES.

Preparatory to making comparative tables of rainfall upon and run-off from the Illinois basin, the gaugings of the tributaries and the Illinois at Peoria heretofore given in this report were instituted. Sufficient velocity gaugings were made at Peoria to determine the flow at that point with a fair degree of accuracy. Taking as the abscissas, the discharges as computed from the velocity and measured cross-section, and as ordinates, the stages of the river at the Bridge Street Bridge and drawing a curve through the points thus platted, a curve of discharge was constructed from which the discharge data has been taken. The daily stage of the Illinois at the Bridge Street Bridge has been kept by the U.S. Weather Bureau for many years and with these stages the daily discharge in cubit feet per second can be read directly from these curves or the subsequent table of discharge by stages of feet and tenths for any known stage of the river.

In order to get an evenly balanced curve where the points are some distance apart the discharges and stages were platted on logarithmic paper giving a straight line. From this logarithmic diagram or "curve" the discharge for each foot in depth was taken and the natural curve of discharge was platted, which shows the relation of discharge to stage of river on a natural scale. It should be remembered that the gauge from which the stages are read were set at low water before the Copperas creek dam was closed and that about a 3-foot stage since that time (1877) is really equivalent to original low water mark of the Illinois river at Peoria.

Table of Discharges in Cubic Feet Per Second at Peoria, Ill., for Stages of Two to Twenty-two Feet, by Tenths on Gauge at Bridge Street Bridge.

Stage-Feet.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
	65									
**********	399	446	496		604	662	723	786	852	92
	992	1,066	1,142		1,303	1,387	1,474	1,564	1,657	1, 75
	1,850	1,950	2,054	2,160	2,268	2,380	2,494	2,612	2,732	2,85
	2,980	3, 108	3, 239	3,372	3,509	3,648	3,790	3,935	4,082	4, 23
***************************************	4,390	4,546	4,706	4,868	5,034	5, 202	5, 373	5,548	5,725	5,90
	6,089	6,275	6,464	6,656	6,851	7,049	7, 251	7,455	7,663	7,87
	8,087	8,303	8,523	8,745	8,971	9, 201	9,433	9,669	9,907	10, 15
	10, 395	10,643	10,894	11, 149	11, 407	11,668	11,933	12, 201	12,471	12,74
	13,025	13, 307	13,592	13,880	14, 172	14, 467	14, 765	15,066	15, 371	15, 67
	15,989	16,303	16,621	16,941	17, 265	17,592	17,923	18, 256	18,593	18, 93
	19,277	19,625	19,976	20, 329	20,686	21,046	21,408	21, 773	22, 140	22, 51
	22.889	23, 268	23,649	24, 034	24, 421	24, 810	25, 203	25,598	25, 996	26, 39
	26,800	27, 206	27,615	28,027	28, 441	28,858	29,278	29, 701	30, 126	30,554
	30,985	31,417	31,852	32, 290	32, 731	33, 175	33, 623	34,073	34,527	34, 98
	35,444	35,900	36, 360	36, 825	37, 296	37, 771	38, 250	38, 734	39, 222	39, 71
	40,217	40.714	41, 215	41,720	42, 230	42,745	43, 264	43,788	-43,316	44, 848
	45,384	45, 925	46, 470	47,019	47, 572	48, 130	48, 693	49, 259	49,830	50, 400
	50,985	51,576	52, 169	52,766	53, 365	53, 967	54.570	55, 177	55,788	56, 401
	57,020	57, 653	58, 285	58, 918	59,550	60, 182	60, 814	61.445	62,077	62, 708
	63, 339	63, 977	64, 615	65, 250	65, 891	66,523	67.154	67, 775	68, 404	69, 031
	69,655		,0-0	55,200	35,001			211111	901 202	00,001

The foregoing table has been taken from curve platted to average the discharge measurements, which have been taken at Peoria, and the table carefully balanced throughout so as to eliminate irregularities of readings. All of the discharges for the Illinois river are based on this table, and the mean monthly discharges were obtained by taking the average of the daily discharges as determined by the daily gauge readings. The mean monthly discharges do not, therefore, correspond to the discharge for mean gauge reading for such month, but are the actual average discharges therefor.

The following tables show for each month (1) the maximum and minimum stage of the Illinois river at the Bridge Street Bridge, Peoria, Illinois; (2) the discharge in cubic feet per second corresponding to those stages; (3) the mean monthly discharge in cubic feet per second; (4) depth in inches flowing off each month and year, and (5) the average discharge in cubic feet per second per square mile for each month and year.

These tables have been prepared from the preceding table of discharges which was taken from the discharge curve. It will be observed that the highest stages and greatest monthly run off usually occur between February and June, and the latter part of the year the run off is always low. Abundant summer and fall rains tend to maintain a stage of 4 to 5 feet and a discharge of 1,800 to 3,000 cubic feet per second, which is from 3 to 5 times the amount of sewage from the Illinois and Michigan canal, but in periods of little summer rainfall, as in autumn of 1891, the average flow for an entire month has been below 1,000 cubic feet per second.

Illinois River Discharges at Peoria, Illinois.

(Drainage area 13,480 square miles.)

DISCHARGE IN	SECOND	FEET.				Run	OFF.
Manual	Maxi	mum.	Mini	mum.	Wass	Depth	Second
Month.	Gauge.	Disch.	Gauge.	Disch.	Mean.	Inches	Feet Sq. Mi
January. February. March April. May June July August. September October November	12.3 9.0 10.0 13.8 11.7 13.3 11.6 3.3 3.6 4.9	20, 329 10, 395 13, 025 25, 996 18, 256 24, 034 17, 923 1, 221 1, 474 2, 854 2, 494	6.2 7.7 6.7 10.6 8.8 8.9 3.0 3.0 3.2 2.3 6.3 6.3	4,706 7,455 5,548 14,765 9,907 10,150 992 992 1,221 723 1,474	12, 201 8, 523 9, 551 19, 395 13, 025 17, 103 6, 950 1, 066 1, 393 1, 800 1, 950	.712 .802 1.628 1.093 1.436 .583 .089 .109	.633 .700 1.444 .966 1.266 .514 .971 .090
Year	13.8	2, 268	3.8	723	7,893		-
0.100.100.000.000.000.000.000.000.000.0		Central I			0,007		
January. February March April May June June July August September October November December	4,9 8.6 10.0 15.0 12.8 8.9 7.1 3.9 3.4 3.0 5.0	2, 854 9, 433 13, 025 30, 985 22, 140 10, 150 6, 275 1, 752 1, 303 992 2, 980 4, 233	3.9 6.7 10.3 4.9 4.8 3.3 3.1 3.0 2.7 2.9	1, 657 1, 752 5, 548 13, 880 2, 854 2, 732 1, 221 1, 066 992 786 921 2, 612	2, 193 2, 793 8, 808 22, 649 9, 988 5, 906 2, 612 1, 286 1, 055 892 1, 737 3, 549	.235 .739 1,903 .839 .496 .218 .108 .088 .076	.20 .65 1.68 .74 .43 .19 .09 .07
Year	15.0	30, 985	2.7	786	5, 289	5.331	.39
January 1892 February March April May June July August September October November December	5.8 7.1 8.5 14.5 21.9 18.5 17.5 9.9 4.7 4.4 4.8 5.3	4, 080 6, 275 9, 201 28, 858 69, 031 48, 130 42, 745 2, 612 2, 268 2, 732 3, 372	4.7 7.0 8.1 10.9 14.4 10.0 4.4	2, 612 2, 612 6, 089 8, 303 15, 678 28, 441 13, 025 2, 268 2, 054 1, 850 2, 380	3, 108 4, 335 7, 763 20, 517 46, 342 35, 977 27, 615 5, 725 2, 302 1, 980 2, 202 2, 885	364 652 1,722 3,889 3,020 2,318 481 193 165	32 .57/ 1.52/ 3.44/ 2.67/ 2.03/ 42/ .17/ .14
Year	21.9	69,031	4.0	1,850	13, 396	13.490	.99
January. February March April May June July August September October November December	4,7 13,8 19,6 15,5 16,5 11,7 7,9 3,6 4,0 4,1 5,0	2, 612 25, 996 54, 570 33, 175 37, 771 18, 256 7, 874 1, 474 1, 850 1, 950 2, 980	4.1 4.3 13.2 11.6 11.9 8.3 3.0 3.0 3.5 3.8	1, 950 2, 160 23, 649 17, 923 18, 934 8, 745 1, 474 992 992 1, 387 1, 657 1, 850	2, 214 11, 721 37, 296 24, 571 29, 068 14, 914 3, 464 1, 362 1, 752 1, 765 2, 272	2.440 1.254 ,291 ,115	2.76 1.82 2.17 1.10 2.27 1.10 .08
Year	19.6	54,570		992	10,966		

178

Illinois River Discharges at Peoria, Illinois—Continued.

	Dis	CHARG	e in Se	COND-FE	ET.	Run	Opp.
Month.	MAXI	MUM.	MINI	MUM.	W	Depth,	Sec. F
	Gauge.	Disch.	Gauge.	Disch.	Mean.	Inches	Sq. Mi
1894.							
January	5.9	4, 233	4.9	2,854	3, 372	.288	.25
March April May June	6.3	4.868	5.4	8,509	4, 107	.844	.30
March	12.0	19, 277	6.0	4,390	13,592	1.141	1.00
April	12.0 9.0 9.2 7.2 4.3 3.5	10.395	7.4	6,851	7,905	.664	.58
мау	9.2	10,894	6.8	5,725 2,268	8, 413	.706	.62
June	7.2	6, 464 2, 160	4.4	2,268 1,303	3, 481 1, 657	.293	.25
June July August September October November	4.5	2,160	4.4 3.4 3.1	1,066	1,007		.08
August	8.5	1,387 5,034	8.1	1,000	3, 283	.275	.08
September	6.4 4.9	0,034	3.2	1.657	3, 263 1, 825	.153	.13
Marambar	4.3	2,854	3.2 3.8 3.8	1,657	2,059		.15
Docombon	5.1	2, 160 3, 108	4.3	2, 160	2,495	.210	.18
December		9, 100	4.0	2, 100	2,400		
Year	12.0	19, 277	8.1	1.066	4,460	4.487	.83
. 1895.							
January	4.7 6.7	2,612	3.3	1,221	1,502	.126	.11
February March	6.7	5.548	3.5	1.387	2, 160	.182	.160
March	8.0	8,087	5.8	4.082	2, 160 5, 998	.504	.44
		6 656	5.2	3, 239	5,008	.420	.37
May	5.0 3.9 6.3	2,980	5.2 3.9 3.1	1,752	2,437	.205	.18
June	3.9	1,752	3.1	1.066	1,387	.116	.10
April May June July August September October	6.3	4,868	8.7	1,564	2,624	.220	.19
August	5.3	3,372	3.4	1,303	1.834	.153	.13
September	5.5	3,648	3.6	1,474	2,450	.206	.18
Qctober	4.1	1,950	8.6	1,387	1,590	.135	.11
		2,494	3.7	1,564	2,059	.172	.15
December	14.9	30, 554	4.3	2, 160	11,022	.925	.81
Year	14.9	30, 554	3.1	1,066	3, 338	3.364	.24
1896.		1000		1		1	
January February March April May June	14.3	28,027	8.2	8,523	15,555	1.306	1.15
February	11.1	16, 303	8.1	8, 303	11, 257	.945	.83
March	11.9	18, 934	8.3	8, 303 8, 745 5, 373	11, 257 13, 767	1.156	1.02
A pril	8.4	8,971	6.6	5,373	6.999	. 588	.519
May	8.4 10.2	13, 592 13, 025	5.3	3,372	7, 124 7, 585	.598	.520
June	10.0	13,025	5.8	4,082	7,585	.636	.56
July	9.2 9.7	10,894	3.6	1,474	3,524	.296	.26
August	9.7	12, 201	6.7	5.548	8,390	.705	.62
August September October November	6.6 8.9	5,373	5.4	3,509	4, 148	.349	.30
Vorombon	8.1	10, 150 8, 303	5.8 5.8	4,082 4,082	7,029 6,464	.590	.52
December	7.4	6,851	5.4	3,509	5, 350	.449	.48
December	- 2	0,001	0.4	0,000	0,000	.440	.00
Year	14.3	28, 027	3.6	1,474	8,099	8.161	.60
1897.	1						
JanuaryFebruary	14.9	30,554	5.4	3,509	22,786 18,738	1,912	1.68
repruary	13.8	25, 996	10.6	14, 765 21, 408	18,738	1.574	1.390
M & CCI	13.8 18.3 17.3	47,019	12.6	21,408	34,527 25,231	2.900	2.560
March April May June July August September	17.3 11.5	4,720 17,592	11 2 6.8 4.5 4.9	16,621	Z5, Z31	2.119	1.85
шау	11.0	17.592	0.8	5.725 2.320	12,540 5.666	1.053 .475	.930
Inly	9.6 9.1	10,643	4.0	2,390 2,854	5,607	473	.41
Anonat	4.7	2 619	3.8	1,657	1 250	.155	.130
Sentember	4.7 3.9	2,612 1,752	3.7	1,564	1,852 1,734	.146	.12
	3.8	1.657	3.7 3.7	1,564	1,549	.128	.113
November	4.9	2,854	3.8	1,657	2, 115	177	.156
December	4.4	2 268	4.1	1,950	1, 734	.146	122
Year	18.3	47.019	3.7	1,564	11, 173	11.258	.826
		,		-,002	,0	1	

179

Illinois River Discharges at Peoria, Illinois—Continued.

	Drs	CHARGE	in Sec	ond—F	EET.	Run	Off.
Month.	MAXI	MUM.	MINI	MUM.		Denth	Sec, ft.
	Gauge.	Disch.	Gauge.	Disch.	Mean.	Inches	Sq. Mi.
January 1898. Jebruary March	7.7 13.4 19.3	7, 455 24, 421 52, 766	6.9 11.6	1,850 5,906 17,923	3,845 15,180 31,643	1.275 2.658	1.126 2.346
April May June June August September October Plovember December	19.2 14.1 13.5 9.1 5.7 5.8 8.0 10.0 8.4	52, 169 27, 206 24, 810 10, 643 3, 935 4, 082 8, 087 13, 025 8, 971	8.8 8.8	15, 678 9, 907 9, 907 1, 387 1, 850 2, 268 2, 612 6, 464 4, 233	29, 468 17, 275 15, 935 4, 259 2, 678 3, 372 3, 762 9, 559 6, 102	1.451 1.339 .357 .225 .283 .315	1.281 1.182 .315 .198 .249 .278 .707
Year	19.3	52, 766	3.5	1,387	11,923	12.013	.884
January. February March April May May June June July Cottober November December Vear	9.3 10.6 15.1 13.0 8.7 6.2 4.3 4.6 5.1 15.1	11, 149 14, 765 31, 417 22, 889 9, 669 9, 669 9, 662 2, 160 2, 268 2, 160 3, 108 5, 725	7.5 5.3 11.4 9.0 6.7 4.1 3.8 3.4 4.3 4.0 4.4 5	7,049 3,372 17,265 10,395 5,548 1,950 1,657 1,303 1,564 1,864 1,850 2,268 2,380	9, 641 6, 264 27, 308 17, 730 7, 100 5, 954 2, 888 1, 678 1, 813 2, 054 2, 660 3, 448	.809 .526 2.294 1.490 .596 .500 .241 1.41 .153 .172 .224 .290	.464 2.026 1.318 .526 .442 .212 .124 .134 .152 .259
January. February March April May June July August September October November December	8.1 12.4 19.9 16.9 11.5 8.9 7.3 8.1 8.2 7.0 9.5	8, 303 20, 686 56, 401 39, 717 17, 592 10, 150 6, 656 8, 303 8, 523 6, 089 11, 668 12, 201	4.9 7.5 11.3 11.9 8.6 6.8 6.7 5.3 6.7 5.3 6.7	2, 874 7, 049 16, 941 18, 934 9, 433 5, 725 4, 868 5, 548 3, 372 4, 868 5, 548 8, 087	4, 924 14, 500 35, 100 29, 110 12, 036 8, 093 5, 590 7, 149 5, 666 5, 382 7, 071 9, 688	.416 1.218 2.948 2.444 1.011 .677 .470 .601 .476 .452 .594	.365 1.076 2.604 2.160 .893 .597 .416 .530 .420 .399 .525 .718
Year	19.9	56, 401	4.9	2,874	12,026	12.121	.89

The following tables of average monthly rain-fall on the Illinois river basin above Peoria and average monthly run-off at that point and the annual summary showing run-off, rainfall, per cent of rain running off, cubic feet per second and second feet per square mile, show the relations existing between rain and run-off for the upper Illinois for 10 years, 1890 to 1899, inclusive. The run-off as given includes the Chicago sewage which flows through the Illinois and Michigan canal from Bridgeport, where it is pumped in from the south branch of the Chicago river:

Average Monthly Rainfall on Illinois River Basin above Peoria and Average Monthly Run-off at Peoria, Illinois.

		-																		
1	1890	 si	1881		1892		1893.		1894.		1895.	 igi	1896.	æ.	1897.	7.	1898		1899.	oi.
Month.	0∰.	On.	Off.	On.	Off.	On.	Off.	On.	Off.	On.	Off.	On.	Off.	On.	Off.	On.	Off	On.	O∰.	0 n
January	1.025	3.01	.185	2.23	.280	1.40	.186	1.80	88.	2.10	.128	1.43	1.306	1.02	1.912	5.59	.822	88.	808	1.57
February	.712	1.58	.235	2.23	38.	1.53	8 6.	2.28	.34	1.58	182	Ź	38	1.95	1.674	1.75	1.275	3.5	.528	1.30
March	.802	2.78	.739	2.56	.652	2.31	3.132	2.51	1.141	2.71	3	1.13	1.158	33.	2.900	23	2.668	5.48	2.294	2.99
April	1.628	3.09	1.903	8.8	1.722	8.38	2.064	5.41	.68	2.71	620	1 36	889	3.48	2.119	3.14	2.478	1.8	1.490	1.11
Мау	1.093	₹.68	88	2.17	3.889	9.63	2.440	2.78	.708	3.46	.206	2.46	.598	2.38	1.063	1.8	1.451	4.76	989	5.88
June	1.436	6.61	969	4.18	3.020	9.18	1.254	3.12	88	2.28	911.	1.74	889	3.07	.475	4.52	1.839	5.0	98	2.8
July	883.	86.	.218	8.80	2.318	3.6	28	1.78	.139	.61	82	9.	288	5.57	£73	8 18	.367	1.51	.241	4 .
August	88	2.54	108	80.	.481	1.88	.115	8.	101	1.83	.153	3.50	902	60	.155	1.99	223	%	141	2.21
September	.100	1.75	88	86.	.198	1.97	.107	8.3	275	7.61	88	2.28	28	7.42	.146	8	88	4.0	.153	2.8
October	.151	4.41	920.	8.	8	8	.147	1.51	.158	1.35	.135	2 5	280	Z.	128	ä	316	8.3	.172	2.75
November	.159	1.69	.146	23.	.186	2.38	.148	2.41	.173	1.90	.172	3.76	32	86.	.177	86.	8	2.5	ă	1.71
December	.186	7.	.298	2.15	.241	1.8	181	1.96	.210	1.08	.925	5.63	67	હ	.146	1.60	.512	1.48	8	1.70
Annual	7.97	33.79	5.38	32.30	13.56	40.54	11.06	88.88	63.7	28.72	3.38	29.81	8.16	8.8	11.32	88	12.01	41.49	7.4	81.11

Illinois River Basin Above Peoria.

Area, 13, 480 square miles. Rainfall and run-off. Annual summary.

Year.	Run off. Inches.	Rainfall.	Per Cent Running Off.	Cubic Feet per Second.	Second Feet per Square Mile.
1890 1891 1892 1893 1894 1896 1896 1897 Averages.	7.942 5.331 13.555 11.060 4.487 3.364 8.161 11.258 12.013 7.436	33.79 32.30 40.54 28.80 28.72 29.81 36.03 32.63 41.49 31.11	23.6 16.5 33.4 39.4 15.6 11.3 22.6 34.5 29.0 23.9	7, 898 5, 289 13, 396 10, 966 4, 460 8, 338 8, 099 11, 178 11, 923 7, 378	.588 .392 .994 .815 .331 .247 .600 .826 .884 .547
Without flow from I. & M. Canal	7.860	33.52	23.4	7.791	.576

Note.—The flow from Illinois and Michigan Canal to Des Plaines River is estimated at 600 cubic feet per second for ten years prior to 1900, which is equivalent to .6 inches of runoff per year, or .0445 second feet per square mile from entire territory above Peoria.

The period under discussion has been one of low rainfall, the average for the ten years having been 33.52 inches, while the normal rainfall for Illinois as given by Leverett in "Water Resources of Illinois," is 37.85 inches, an average annual shortage of 4.33 inches. During that time the rainfall exceeded the normal only two years, viz: 1892 and 1898, the intervening years being regarded as the greatest period of severe drought that has been experienced in this region since it has been settled.

By referring to the annual summary table which shows the annual rainfall, run-off and percentage of rain running off, the erratic conditions prevailing are very clearly brought out; for example: By comparing the years 1891 and 1893; in the former year the rainfall was 32.3 inches and run-off 5.33 inches, or 16.5 per cent. In the latter year the rainfall was 28.8 inches, being 3.5 inches less, the run-off was 11.06, being 5.73 inches more run-off than in 1891, or 38.4 per cent of the entire rainfall of the year. For an explanation of this condition in run-off for those two years, the greater run-off having occurred with the less rainfall, an examination of the table of monthly run-off and rainfall is necessary.

In 1891 the run-off for January, February, March and April, the months when the ground is usually frozen or saturated with water from the spring rains, was 3.06 inches, for a rainfall during the same months of 10.91 inches, showing a very porous condition of the earth, following a very low rainfall from July, 1900 to the end of that year. In contrast with this, in 1893, during the months of February, March, April and May, the run-off was 8.62 inches with a rainfall of 13.16 inches. During the latter part of 1892 the rainfall was even less than during the latter part of 1890, showing very clearly that the aggregate amount of run-off during any year is dependent very largely upon the condition of the ground during the first four or five months of the year.

In 1892 the rainfall was above the normal, being 40.54 inches; 26.58 inches of this rain fell during the months of April, May, June and July, causing the largest floods in the Illinois river which have occurred for perhaps forty years. The run-off during these months was 10.95 inches while for the entire year the run-off was 13.56 inches. Again comparing the heavy run-off of the early part of 1892 with that of 1893, we find that in 1892 over 26 inches of rain fell in four months ending with July, 42.5 per cent running off, owing largely to the saturated condition of the earth, while in 1893, with a rainfall of 13.16 inches in four months ending with May, the run-off was 8.62 inches or 65.5 per cent, this greater percentage of run-off being due to the greater imperviousness of the earth and further to less evaporation because of lower temperature and lack of vegetation.

A casual inspection of the table of monthly rainfall and run-off indicates very clearly that with rare exceptions the greater part, approximately three-quarters of the run-off, occurs during the first six months in the year, January and February also generally being months of low flow. During the latter part of the year, from July to January, exceptionally heavy rainfalls have occurred without materially affecting the run-off, for example: In October, 1890, 4.41 inches of rain fell with 0.15 inches of run-off, and in November, 1891, 4.22 inches of rain fell with 0.15 inches of run-off. In November, 1892, 2.36 inches of rain fell with 0.18 inches of run-off. In September, 1893, 2.90 inches of rain fell with 0.11 inches of run-off. In September, 1894, 7.61 inches of rain fell with 0.27 inches of run-off. this case a rainfall of practically 5.5 inches above the normal only produced a run-off of about 0.1 inch more than occurred during the years of about normal rainfall for this month. In September, 1896, there was a rainfall of 7.42 inches which had been preceded by a rainfall of 2.87 inches and 5.57 inches in August and July respectively, with a run-off of 0.35 inches. This was the largest run-off for the month of September during the entire period of the ten years, occasioned by the heavy rains which were practically continuous from April to near the end of September.

These instances of heavy rainfall and heavy run-off are sufficient to illustrate the conditions which will produce the greatest run-off.

Again referring to the table of annual rainfall and run-off, it will be seen that the range in percentage of rainfall which has actually run off at Peoria is 11.3 per cent in 1895 with a rainfall of 29.81, and a run-off of 38.4 per cent in 1893 with 28.8 inches of rainfall, the run-off in inches being 3.36 inches in 1895 and 11.06 inches in 1893, the rainfall being nearly equal for these years.

Referring again to the table of monthly rainfall and run-off, it will be seen as before stated, that in 1893 a heavy run-off occurred with a heavy rainfall in the early part of the year when the ground was frozen and later when it was saturated with water from the heavy rains. In 1895 on the contrary, the rains from January to April inclusive, only amounted to 5.06 inches with a correspondingly low run-off, while heavy rains beginning with May and continuing through the remainder of the year, except October, were almost en-

tirely absorbed in consequence of the extreme drought of the latter six months of the three years preceding, the total run-off for the year 1895 being 3.36, the lowest for any year during the period.

The average run-off is 8.46 inches with an average rainfall of 33.52 inches which is 25.2 per cent.

All of this data includes the flow from the Illinois and Michigan canal, which is equivalent to .6 of an inch per annum over the entire basin of the Illinois above Peoria. If this be deducted the run-off would amount to 7.86 inches or 23.4 per cent. It will be seen that while the average run off for the upper Illinois basin does not vary materially from other streams in this latitude, that the variation in run-off from year to year and from month to month is very great. From the lowest to the highest in the table given, the lowest in 1895, 3.36, and the highest in 1892, 13.55, the range in run-off is over 400 The actual low water flow at Peoria during the last ten years has for days and sometimes weeks been as low as 1,000 to 1,200 cubic feet per second, approximately 600 cubic feet of which, has been furnished through the Illinois and Michigan canal by the pumps at Bridgeport; this quantity being sewage from the south branch of the Chicago river, and often being more than half and occasionally as much as three-quarters of the entire flow at Peoria. The effect of a flow through the new drainage channel of 5,000 cubic feet per second or more can very easily be imagined from the foregoing data when we understand that the natural flow of the Illinois river at Peoria has apparently been as low as 200 to 300 cubic feet per second.

The flow of the Illinois river at Peoria is made up of the combined flow of the tributaries above, including the sewage from Chicago which reaches the DesPlaines river at Joliet by way of the Illinois river and Michigan canal. The DesPlaines river at Riverside, a few miles above Joliet, goes entirely dry at that point nearly every fall and for days and weeks at a time there is no appreciable flow. On the Dupage river, which enters the DesPlaines a few miles above the junction of the DesPlaines and the Kankakee, no data as to the low water flow is at hand, except the discharge measurement taken under my direction in October, 1899, which shows 32.77 cubic feet per second. This flow is greater than that found in the DesPlaines on the previous day. The flow in the DesPlaines at Riverside was 13.21 cubic feet per second. The waters of the Dupage are added to the DesPlaines before they reach the Illinois, so that the natural flow in the DesPlaines, where it joins the Kankakee to form the Illinois, at the time of the gaugings referred to were taken would have been approximately 50 cubic feet per second, while the amount of sewage flowing through the Illinois and Michigan canal was 600 cubic feet per second. Practically all of the flow of the DesPlaines river, as it reaches the Illinois, is, therefore, during dry weather, Chicago sewage.

Detail observations of the flow of the DesPlaines river at Riverside have been taken more or less continuously since 1887. The area of the drainage basin above this point is 630 square miles. The

estimated monthly discharge of the river has been published in the 20th annual report of the geological survey for the years 1886 to 1898, inclusive. The data is not complete for several of the intervening years, but for such years as complete data is at hand the runoff, the rainfall, the percentage of rainfall running off and the discharge in second feet per square mile are given in the following table:

Des Plaines River Basin Above Riverside.
Rainfall Running "Off" and actually Falling "On".

Year.	Off, Inches.	On. Inches.	Per Cent of Rain Running Off.	Second Feet Per Square Mile.
1887	13.18	29.13	45.2	1.00
1889	6.13	34.95	17.6	0.45
1893	10.38	29.03	35.8	0.76
1894	7.44	27.80	26.8	0.55
1895	3.08	30.48	10.1	0.23
1896	5.04	33.74	15.0	0.38
1896	14.05	30.55	46.0	1.03
1897	10.92	37.74	29.0	0.81

It will be observed that the range in run-off is from 3.08 inches with a rain-fall of 30.48 inches for the year 1895, to a run-off of 14.05 inches with a rain fall of 30.55 in 1897. From a water shed which is recognized as a comparatively impervous area, this range is accounted for by the fact of very low rain-fall in 1893 and 1894, preceding the small run-off in 1895. The high run-off of 1887, 1893, 1897 and 1898 is due in each case to winter freshets. An examination of the details of the tables of run-off shows 8.12 inches of runoff against an exactly equal amount of rainfall in the first three months, January, February and March, 1887, and 5.47 inches of run-off to 6.21 inches of rainfall in the corresponding months of In 1897 and 1898 the run-off for the same three months was 11.24 inches and 7.88 inches, respectively. In 1895 when the very low run-off of 3.08 inches occurred, the run-off for the first three months of the year was only .92 of an inch, It is also noted that in 1895, with a rainfall of 30.48 inches and a run-off of 3.08 inches, and in 1897 with a rainfall of only .07 of an inch more for the whole year, or 30.55 inches, the run-off was 14.05 inches Again in 1898 with a rainfall of 30.74 inches the run-off was 10.92 inches. During the summer months one of the highest rainfalls recorded was 9.56 inches, in July 1889, and produced a run-off of only 1.09 inches. Another record of excessive summer rainfall (the record for the year not being complete) was in May and June, 1892; the rainfall in May was 6.77 inches and in June 10.58 inches, the run-off being 4.58 inches and 6.06 inches respectively. The winter, spring and early summer storms are therefore capable of producing heavy freshets, and consequently large run-offs from the DesPlaines water shed; but heavy rains do not produce a corresponding run-off if occurring during the summer or fall. From this it is evident that the condition of the surface of the basin, as affected by temperature, being impervious when frozen and covered with snow, is the greatest factor in producing a large run-off. Whenever the rainfall may be slight during the spring and early summer months, there will be a correspondingly small run-off for the year.

The following table shows the run-off from the DesPlaines river at Riverside and the Illinois river at Peoria for the years 1893 to 1898, inclusive.

Comparison of Run Off.

Illinois River Basin Above Peorla. Des Plaines River Basin Above Riverside.

	DE	TH IN INC	HES.	SECOND FE	et per Squ	JARE MILE.
YEAR.	Des Plaines.	Illinois.	Illinois Less Canal	Des Plaines.	Illinois.	Illinois Less Canal
1893 1894 1895 1896 1896 1897	10.38 7.44 3.08 5.04 14.05 10.92	11.06 4.49 3.36 8.16 11.26 12.01	10.46 8.89 2.76 7.56 10.66 11.41	0.76 0.55 0.23 0.38 1.03 0.81	.815 .331 .247 .600 .826 .884	.769 .285 .201 .554 .780 .838
Averages	8.48	8.39	7.79	0.63	.617	.571

The average run-off from the Des Plaines river basin is 8.48 inches and from the Illinois river basin 8.39 inches. There is some variation in the depth of run-off and second feet per square mile, but some general relation exists. In 1897 and 1898 there is, however, quite a divergence which is worthy of note. In 1897 the run-off from the Des Plaines basin was 14.05 inches, and from the Illinois basin 11.26 inches. In 1898 the run-off from the Des Plaines was 10.92 and from the Illinois 12.01. In order to understand why the run off from the Des Plaines should be more in 1897 and less in 1898 than from the Illinois, we are compelled to compare the rainfall with the run-off by months. In January, 1897, with an average rainfall upon the upper Illinois of 5.59 inches, there was a run-off at Peoria of 1.91 inches. On the contrary, an average rainfall of 5.37 inches on the DesPlaines was accompanied by a run-off of 5.26 inches. During the succeeding months of the same year the run-off and rainfall are nearly proportional, so that the excessive run-off for the one month of January places the run-off for the year abnormally high for the Des Plaines. The difference in run-off for the year 1898 is not so easily discovered. There was a large run-off from the Illinois at Peoria for each of the months February, March, April, May and June, the largest being in March 2.66 inches. On the Des Plaines basin over half of the run-off for the entire year was during the same month, being 5.83 inches. These very considerable differences in run off per month do not make so great a difference in the actual run-off per year, but go to show the wonderful equalizing tendency of the larger area of the Illinois together with its great storage capacity in the wide valley from Utica to Peoria.

The drainage area of the Kankakee river is 5,146 square miles 3,640 of which lie in the State of Indiana and the remainder in The general direction of the basin is east and west, with the extreme length 216 miles, and the greatest width from the north to south of about seventy miles. Although the area is not subdivided by well defined ridges, 2,000 square miles is drained by the Iroquois, the main tributary, and some 650 square miles by the Yellow river in Indiana, also a tributary from the south. The northern tributaries are in small water sheds of from 50 to 100 square miles, and are simply drains for the slope of the northern bounding ridge. Iroquois water shed 828 miles are in Indiana. The area at Watseka, including Sugar Creek, is roughly 1,500 square miles or three-fourths of the total water shed. Below Watseka the principal tributaries to the Iroquois are Spring Creek, Beaver Creek and Longham's Creek, all heading in marshy areas which in recent years have been reclaimed and are now agricultural lands. At another place in this report is given the measured discharge of the Kankakee river at Lorenzo, Illinois, in October, 1899. The amount flowing at that time was 509 cubic feet per second. The river was very low, the observation having been taken at the end of a long rainless period, excepting that slight rains had occurred for two or three days just before the gaugings were taken and had raised the stage of the river about two inches.

The area of the water shed above Momence is 2,342 square miles, which is about 45 per cent of the total area of the Kankakee basin. About 650 square miles of this area is marsh which, until recently, was practically a shallow lake throughout the greater portion of the The mean flow of the Kankakee river at Momence was measured in 1871 by Father Stephen, a Catholic priest and civil engineer, who was in the employ of the Kankakee Drainage Co. The flow, as determined by him, was 1,271 cubic feet per second. This measurement was taken at the Indiana state line, and at Momence the same observer gave a flow of 1,457 cubic feet per second. These quantities were used for computing the capacity of ditches for draining the In 1893 Mr, Joseph L. Clark, civil engineer at Momence, made a measurement of the flow of the Kankakee river at Momence at a time when the water was very low and the volume of flow as ascertained by him was 407 cubic feet per second. Mr. Clark, who has been a resident of Momence for a great many years and interested in drainage problems of that vicinity, is of the opinion that the mean summer flow of the Kankakee river at Momence will not exceed 800 cubic feet per second and that it may be less. This estimate is based upon the conditions existing prior to 1899. During 1899 and 1900 very extensive drainage ditches have been constructed in the Kankakee valley above Momence and large areas of land reclaimed. These ditches have been cut about eight feet deep. The natural slope of the swamp is about one foot per mile from east to west, which is greater than is required for good drainage in the light soil of the region. During the summer of 1900 the flow has been greater than in former years, owing to the fact that the drainage has been deepened and the water is drawn from the lower region and by seepage from a very extended territory so that the dredge ditches had given a continuous summer flow, whereas the slight channels existing prior to the construction of the ditches were formerly dry during the summer season.

The substratum of soil throughout this region is sandy and provides an immense reservoir from which the dredge ditches may draw. The marshy lakes have been regarded in the past as being the regulators of the regimen of the Kankakee river, and as such have received due credit for maintaining an equable flow. The first experience with the improved drainage, however, has, so far as low water conditions are affected, been contrary to the generally accepted theory that drainage of this region would increase the floods and decrease the summer or low water flow. Whether the increased flow which is now due to the draining out of the land and lowering of the ground water plain, when the plain shall have been lowered to its new position as affected by the new drainage, will diminish to the former flow or lower; or whether the large area and considerable depth of very porous soil acting as a reservoir, receiving and retaining the rainfall until it can flow by percolation and slower progress to the ditches, thus making a more equable and larger summer flow than has heretofore existed, are matters of some speculation, but in the opinion of the writer the latter condition is most probable. That is, the summer flow from the Kankakee will be permanently greater after complete drainage. Occasional floods, no doubt, will also be higher, but of very much shorter duration and only possible under conditions which would render the surface of the ground practically impervious to rainfall, as when covered with ice and snow or in case of prolonged excessive rains. The average summer flow during 1900 was about 1,400 cubic feet, as determined in a recent court proceeding regarding water rights upon the Kankakee at Wil-This amount is greater than any former estimates for mington. average summer flow.

The DesPlaines and Kankakee which are the principal head water tributaries of the Illinois, constitute about one-half of the drainage area above Peoria, the only other tributaries of considerable importance being the Fox river from the north and the Vermilion river from the south. The total drainage area of the DesPlaines river is 1,322 square miles and the Kankakee 5,146 square miles. The Fox river 2,700 square miles and the Vermilion river 1,317 square miles. The total area of the Illinois drainage basin to Peoria is 13,479 square miles. No detailed information is at hand regarding the flow of the Fox and Vermilion rivers but it is known that in the summer time the Vermilion river goes dry and that the only flow coming from it is the sewage from the cities located upon its banks and the drainage from the mines.

The city of Streator takes its water supply from the Vermilion river, having constructed a dam some distance above the city. For a number of weeks during the summer no water passes this dam and the only flow in the river is the sewage of Streator, as was the case when discharge measurements were taken in October, 1899. At that time

the flow in the river above the impounding reservoir was 9 of a cubic foot per second; below Streator, approximately 4 cubic feet per second. The flow of the Fox river is more regular during the summer months than that of either the DesPlaines or Vermilion. The drainage basin is larger and contains a number of lakes which supply the river throughout the dry period. The flow as measured in October, 1899, above the dam, about eight miles from its mouth, was 321.95 cubic feet per second.

From the foregoing data it is quite evident that the contributions to the flow of the Illinois river during the dry periods come principally from the Kankakee river and the Fox river, the DesPlaines and the Vermilion being practically dry at these periods. The sewage from the city of Chicago, as we have found, being equal to or greater than the flow of all the tributary streams, some allowance, of course, to be made for losses by evaporation between the head waters of the Illinois and Peoria. There is, however, another source of supply for the Illinois river which has never been measured and is not taken into account. It is the numerous springs which abound in the valley throughout the course of the river from LaSalle to Beardstown. During periods of low water these springs have a very marked influence upon the quality and quantity of water flowing in the Illinois river, being the sub-drainage of the extensive valley and to a large extent the adjacent territory lying above the level of the river vallev.

The following diagrams of monthly rainfall and run-off have been prepared to show at a glance the relation of rainfall to run-off and brings out in a very clear manner the monthly and annual variations in the actual as well as the relative amounts. The diagram of discharge in second feet per square mile also shows how the run-off varies from year to year and month to month.

These diagrams serve to accentuate the conclusions drawn from the foregoing table of rain-fall and run-off and show the drouth period of 1893-4.5 in the most unmistakable manner.

Table of Annual Discharge Data of Illinois River at Peoria.

Year.		Minimum cu. ft. per sec.	Mean cu. ft. per sec.	Average for middle half cu. ft. per sec.	Ordinary cu. ft per sec.	Equiva- lent stage at Bridge St. Bridge.	Days below ordinary.
890	25, 996	723	7,893	6,554	4, 438	6.0	16
	30, 985	786	5,289	2,900	2, 175	4.3	16
	69, 031	1,850	13,396	6,784	4, 612	6.1	18
.893	54,570	992	10, 966	5,800	3, 427	5.3	213
	19,277	1,066	4, 460	3,222	2, 599	4.7	154
	30,554	1,066	3, 338	2,134	1, 843	4.0	144
	28,027	1,474	8, 099	7,257	6, 040	7.0	137
	47, 019	1,564	11,178	6, 955	4, 469	6.0	188
	52, 766	1,387	11,923	8, 294	6, 043	7.0	146
	31, 417	1,303	7,378	4, 637	3, 460	5.4	160
Average	38, 964	1, 221	8, 391	5, 454	3,911	5.7	160
	56, 401	2, 874	12, 026	8, 204	6,929	7.5	156

a cubic or secimmer The impply Octo.
I, was tions inciin

sew.
o or
of ters
of
is
nd
to
ry
in
d
e

the flow in the river shove the impounding

the flow in the river above the impounding reservois

The foregoing table shows maximum, minimum, mean and ordinary discharge of the Illinois river at Peoria also the stages equivalent to ordinary flow and the number of days each year that the flow was less than the ordinary flow.

The ordinary flow has been computed with a view to getting an average flow for the year leaving out of that average the flood periods. The rule* applied is that proposed by Mr. Leslie as given in "Minutes of Proceedings of Institution of Civil Engineers," Vol. X, p. 327, and is as follows:

- "Range the discharges as observed daily in their order of magnitude.
- "Divide the list thus arranged into an upper quarter, and middle half, and a lower quarter.
- "The discharges in the upper quarter of the list are to be considered as floods, and in the lower quarter as minimum flows.
- "For each of the gaugings exceeding the average of the middle half, including flood gaugings, substitute the average of the middle half of the list, and take the mean of the whole list, and thus modified, for the ordinary or average discharge, exclusive of flood waters."

The table shows the maximum flood flow as 69,031 cubic feet per second in 1892 and the minimum flow as 723 cubic feet per second in 1890. During 1892 the lowest flow was 1,850 cubic feet per second. The low flows of 1890 and 1892 represent the range for the 10 years. The average minimum flow for 10 years 1,221 cubic feet per second. The ordinary flow ranged from 1,843 cubic feet per second in 1895 to 6,043 cubic feet per second in 1898, the average for the 10 years being 3.911 cubic feet or about three and one-fourth times the average extreme low water flow. The average of the mean annual flows is 8,391 cubic feet per second which is more than double the ordinary flow or nearly seven times the average minimum flow. Speaking generally, therefore, regarding the ordinary flow it may be said to have ranged from 2,500 to 4,000 cubic feet per second with occasional years above or below, prior to the change in the drainage of Chicago which became effective Jan. 17th, 1900. The ordinary flow for 1900 was about double the average for the preceding 10 year and higher than any year during that period. The extreme low water of 1900 was 2.3 times the average for the preceding 10 years, and 50 per cent. more than that of 1892. The average annual flow for 1900 was nearly 50 per cent. greater than the average for the preceding 10 years but not as great as for some of the years of heavy rainfall.

^{*}See Fanning's Treatise on Hydraulic and Water Supply Engineering.

WATER SUPPLY AND SEWERAGE OF CITIES ON THE ILLINOIS RIVER BASIN.

Water Supply.

In order to get some definite information regarding public water supplies and sewerage systems letters were sent to the mayors of cities and presidents of villages of over 1,000 population asking for such information as is generally available and would be of interest in this investigation. One hundred and thirty-seven such were addressed; sixty-five replies were received, giving more or less detailed information. Twelve of those reporting have no water works systems. The following questions regarding water supply were asked:

QUESTIONS REGARDING WATER SUPPLY.

- 1. Water supply—public or private ownership?
- 2. How many miles of water mains?
- 3. What is the source of supply?
- 4. Is the supply subjected to contamination from any source, if so, give detailed description?
 - 5. What method of purification, if any, is in use or contemplated?
 - 6. How many water takers are there?
- 7. What is the daily average water consumption per year, also maximum and minimum daily consumption?
- 8. Is the water generally used for drinking and cooking, and if not, why not, and from what source or sources is the drinking water obtained?

The following statistical data has been compiled from the answers and from the Manual of American Water Works, 1897, where the data has not been supplied as requested. In the "remarks" column "no report" indicates no information at hand from any source and "not reported" indicates that no reply was received to inquiry, but the data given was procured from elsewhere.

Water Supply Statistics of Cities on Drainage Basin of Illinois River.

(P=Private. M=Municipal.)

City.	Miles of mains	Water takers	Per cent of population supplied	Daily consumption 1,000 gallons	Ownership	Source of Supply.	Remarks,
43.1							lara
Assumption		•••••				Private wells	No report No system No report
Athens	* 5	200	79		М,	Drift well	Used for drink. Carries iron and not used for cooking
Auburn		•••••					No report
Aurora	49	3, 320	69	1,502	M.	Artesian well	General use
Averyville Batavia	17	921		133	ж.	8-inch artesian well 1,300 feet deep	
Beardstown Bement *Bloomington	* 5 2 27 ¹ 2	70 1.828		30 1, 200	M. M. M.	"Deep well" Drift wells	Not reported
Braceville							No report
BradleyBraidwood		•••••	•••••		•••••		
Bushnell	5	100	20	10	М.	Artesian well 1,250 ft. deep and drift wells 100 ft	Drinking water from
Camp Point Canton* Carbon Hill	8 ¹ 9	300 7	 23 3	100	М. М.	Two artesian wells. Artesian well 1,900	No report Used for drink
*Carlinville	7	278	40	150	Р.	ft. deep Filtered; Macoupin creek	Not reported
*Carrollton *Carthage	4 ¹ 2 2	182 75	28 18	100	М. М.	"Deep wells" Artesian well 1,800 ft. deep	
Cerro Gordo							No report
Chatsworth	5	41	14	- 25	M.	Wells 135 and 214 ft.	•••••
Chicago *Chillicothe	1,800 41 ₂ 2 ₃	279	82	387	M. P. P.	Lake Michigan Wells	Not reported
*Clayton Clinton *Coal City	* 813	550	62		M. M.	Drift well 75 ft. deep	General use Fire protection only.
Colchester						• • • • • • • · · · · · · · · · · · ·	
Crotty							::
Decatur	* 15	1,800	43	2,200	M.	Sangamon river mech. filters	General use
Delavan	8	₂₂₀	52	100	M. M.	ISDLIDES	Not reported

Water Supply Statistics—Continued.

City.	Miles of mains	Water takers	Per cent of population supplied	Daily consumption 1,000 gallons	Ownership	Source of Supply.	Remarks.
Dundee	5	200	36		M.	Springs	ram, and no record
Dwight* *Earlville Edinburg	1	150 36	37 13	4 5 19	M. M.	Artesian wells 10-in. artesian well.	of amount kept General use Not reported No report
*Elgin *Elmhurst	39 ¹ 4 9	2,408 170	54 49	1,000	M. P.	Fox river; filtered. Spring	Not reported
*Elmwood El Paso	3 ¹ 4 3	65 250	21 87	15 1 ¹ 9	М.	Artesian well Drift wells, 40 to 90	Not reported
Eureka	*,*	30	9	10	M.	feet deep Drift well	General use Not in general use. Drink from wells and cisterns
Fairbury Farmer City	* 1	250 250	57 75	40	M. M.	Well	General use
Farmington	* 2	110	90	50	M.	feet deep	**
Forrest	. 1	30	. 16		M.	Dritt well	Private wells used for drinking water
†Pt. Galesburg		881	47	622	M.	Drift wells and ar- tesian wells	General use
Gardner	5	200 100	. 41 . 75	1 ¹ 9	М. М.	Artesian well Deep well	General use
Girard Greenfield			•••••			Deep wells	No report No system
Girard		450	69	144	м.		No report
Henry *Hinsdale *Jacksonville		300 640	58 21	275	М. М.	Artesian wells Artesian wells .3.627 feet deep and	No system General use No system No treported
*Jerseyville	5	110	16	50	M.	storage	
Joliet	* 25	2,500	43	3,000	M.	Artesian and drift wells	Water supply inade- quate and subject to sewage contam.
Kangley *Kankakee Knoxyille	16 4	1,002 90	37 24	850 2 5	P. M.	Kankakee river Artesian well, 1,360	No report Not reported
*Lacon	51/2	200	62	30	М.	feet deep Open well near Illi- nois river	General use Not reported; gen-
Ladd*LaHarpe LaSalle LeRoy	* 17 ¹ 2 * 2	30 1,175 70	9 56 21	1, 433 38	M. M. M.	Well Springs and wells. 8-inch drift well 90 _feet deep	eral use
*Lewistown Lexington Lincoln	518 4 17	165 75	33 27	80	М. М. Р.	Wells	Not reported General use General use but con- ditions suspicious.
Lockport		* 60	11		*P.M	Artesian well	Not used for drink; shallow wells used.
Macomb	* 419	200	19	100	M.	Artesian well, 1,600 feet deep	High in minerals: not in general use; drink water from private shallow
Maroa	* 4	150	62	1,8	м .	Well	Wells General use

Water Supply Statistics—Continued.

						 	
City.	Miles of mains	Water takers	Per cent of population supplies	Daily consumption 1,000 gallons	Ownership	Source of Supply.	Remarks.
		1		1	1	1	1
Marseilles	•••••					Private artesian	
		1				wells	No system for do- mestic use
Mason City					 		Not reported: for fire
MaHanw		[•	ŀ	Ì		Drotection only
McHenry *Mendota	12 ¹ 9	600	80	36	М.	Artesian well, 400	No report
	ŀ				ł	feet deep	Not reported
*Milford *Minonk	112		••••	60	M. M.	Drift wells	
MIHOUK			•••••		ш.	Deep and drift _wells	1 11
Momence	* 7	125	31	12	М.	Kankakee river	Generally used in winter, but not in summer
*Monticello	549	265 400	67 86	80 360	<u>M</u> .	Wells 212 ft. deep	Not reported
Morgan Park	*10	400		300	М.	3 artesian wells 1315 to 1600 ft. deep	General nee
*Morris	712	305	36		M.	Artesian wells	General use Not reported
Mowequa		200				D-144 11	No report
Mowequa*Mt. Pulaski Mt. Sterling	2	40	61 10		<u>M</u> P.	Drift wells Storage reservoir	Not reported Not used for drink;
	_				- '		water becomes foul
Naperville					l		in summer
Naperville Nilwood							No system No report
Normal Odell		•••••		•••••			
Onarga Ottawa	l 3⊾	50	20		''' P .''	Art'n. well in drift.	General use
Ottawa	*25	650	31 36	335	Р. М.	Artesian wells	
Pana	*10	400	36	120	М.	W 6118"	General use; also
Pekin	*11	1,400	83		P. P.	Drift wells	General use; also private wells
*Peoria	84	5,500	47	4,000	P.	Wells	Not reported, gen
Peotone	112	30	15	22	M.		NT-A
*Peru	12	600	44	228	M.	Artesian wells 1365	Tiou reported
Petersburg	5	150	27	*700	М.	ft. deep Well near bank of	
						Sangamon river	General use
*Plano Pontiac	*5	150 210	46 25		М. Р.	Well Vermilion river	General use Not reported Not used for drink. No purification at-
Princeton	.	500	62	200	M.	Artesian wells	temptedGeneral use
Ridgely						Wells	No system
Ridgely	•••••		•••••	••••			No report
Roseville					М.	Wells	Not reported
					*M.	Wells	
Sheldon Springfield	58	2,500	37	4,000	М.	Artesian well Sangamon river — through filter gal-	•••••••
Opringnoid		2,000	٠.	2,000		through filter gal-	
	İ					iery	Gen. use and quality
Spring Valley	l				M.		reported good Not reported
St Anna					M.		
St. Charles *Streator Taylorville		1,600	57	1,300	 Р.	Vermilion wiver	No report Not reported
Taylorville		700	82	700	M.	Vermilion river Drift wells 100 ft. deep	
	ı					deep	General use
TolucaUtlcaVermont					:	· · · · · · · · · · · · · · · · · · ·	No report
<u>U</u> tlca		80	35		M.	Artesian well	General use
Vermont							No report
Virden						Wells and cisterns	
Virginia City *Washington	214	125	43		M.	Drift wells 82 ft.	
Watseka					M.	Drift wells shows	No system Not reported
** ***********************************	l	1		l	ш.	100 ft. deep	••

Water Supply Statistics—Concluded.

City.	Miles of mains	Water takers	Per cent of popu- lation supplied	Daily consumption 1,000 gallons	Ownership	Source of supply.	Remarks.
Waverly W. Chicago Wenona	5	230 150	61 50	40 78	M	Artesian well	No report
Wheaton		230	49		1	176 ft. deep	General use No report
						Private artesian wells 750 ft. deep.	No system for do mestic use
Winchester Wyoming							No report

^{*}Statistics taken from Engineering News Water Works Manual, 1897, the latest available information.

The foregoing statistics of water supply shows 137 cities and villages upon the Illinois river drainage basin within the State, each having 1,000 or more inhabitants. Of these, eighty-five are known to have some kind of a system of public water supply, or water works, including water mains supplying more or less of the population with some kind of water—seventy-four of these systems are owned by the municipalities supplied and twelve by private corpora-In many instances good, wholesome water is supplied and in many others it is unfit and unsafe for domestic use, especially for drink. In such cases, wells located on the premises or cisterns for storing rain water are relied upon for drink and culinary purposes. Of the eighty-five cities supplied, forty are known to use the public supply for drink. A considerable number report the water not used for drink on account of excess of minerals in many artesian waters, and organic matter in surface waters stored in open reservoirs and water taken from streams. From this it appears that about half of the public water supplies are, for one reason or another, not acceptable to the inhabitants to whom it is supplied. This apparently large percentage would no doubt be reduced by more complete data. Furthermore, in the larger cities a large part of the people use the public water supplies for drink and domestic purposes, so that the total percentage of population having a public water supply available and not using the same for domestic purposes is considerably less than the figures above would seem to indicate.

In the northern portion of the State the porous sandstone strata which are of great thickness and lie near the surface, cropping out in numerous localities and being exposed over a large area of southern Wisconsin, furnish large quantities of wholesome water, practically free from organic matter and not having an excess of minerals. In the valley of the Illinois river great deposits of washed sand and

[†] Data given for entire city.

gravel have been left by the ancient stream and these deposits which cover miles of territory carry large quantities of water which are available—as at Peoria and Pekin, and for many miles above and below these cities. The artesian waters found at depths of 1,800 to 3,000 feet throughout the central and southern portions of the State are heavily charged with minerals, especially salt and sulphur and are not satisfactory for either domestic or manufacturing purposes. The central portion of the State is overlaid with the more recent glacial In this drift, at variable depths of from 10 to 300 feet, a limited supply of water, sufficient for farm use and for smaller villages, is found quite generally distributed, so that the territory is regarded as well watered. The southern portion of the State is not so fortunate in even a limited supply of water. The drift of that region is a compact clay with few sand strata or pockets, and the drainage lines are well worked out so that the larger rainfall only runs off the more rapidly.

Speaking generally, therefore, for the whole state as well as for the Illinois river basin, the larger cities, excepting such as are in the northern portion where the Potsdam and St. Peter's sandstone formations are comparatively near the surface and in the Illinois river valley are dependent upon surface water for their public supply. Twelve cities having a total of 143,600 inhabitants located on the Illinois basin take water from the streams or storage reservoirs:—Two from the Kankakee; one from the Fox; two from the Vermilion; five from the Sangamon and its tributaries, and two from smaller streams. Of these supplies, two are filtered by mechanical filters, viz., Elgin and Decatur, and two take the water by infiltration—from the river to galleries at Springfield, and to wells at Petersburg. Before the Chicago sewage was turned into the Illinois river the City of Peoria took its water supply from the river.

Eighteen cities, having a total of 165,000 population, are supplied in whole or in part from shallow wells. Of these Peoria, Pekin and Joliet, having a total of 96,000 population, are within the two excepted classes, Joliet having within its reach an artesian supply and Peoria and Pekin being in the valley of the Illinois. Bloomington is the only city of more than 5,000 inhabitants depending upon water from the glacial drift. Galesburg draws from wells in glacial drift and two artesian wells which furnish highly mineral water. The total population on the Illinois river basin having public water supplies from drift wells as appears by reports at hand is about 45,000.

This review brings out the importance of our surface waters as sources of supply for domestic and manufacturing purposes. The data at hand indicates that considerably over half of our urban population, exclusive of Chicago, is dependent upon surface waters, or those very near the surface and subject to the same influences, and the ratio will increase with the increase of population and manufacturing.

The following table gives the urban population on the various subbasins of the Illinois river for 1890 and 1900, also the per cent of urban to the whole population. From the statistics on water supply the number of gallons of water supplied per capita per day to the urban population on each sub-basin has been estimated. By taking the amounts reported and determining the per capita supply, then applying this amount to the total urban population, the total water supplied was determined. The last column shows the cubic feet per second equivalent to the water supplied to the population on each sub-basin and on the entire area.

Illinois River Drainage Basin—Table of Urban Population and Water Supply Statistics.

	18	90.	1900.		Parrone		Equivale't	
Drainage Basin.	Urban Pop.	Perce't Urban Pop.	Urban Pop.	Perce't Urban Pop,	water sup- plied. Per cap per day.		ambia foot	
Des Plaines	49,855	49	70, 748	57	99.3			
Du Page Kankakee	5,344 35,450		6,851 44,681	31 23	23.1 53.2	158 2,377	0.24 3.66	
Fox	69, 166	42	81,743	47	47.3		5.90	
Vermilion	21, 085	33	27, 631		70.1	1.937	2.9	
Mackinaw	8, 781	. 20	10, 924	40 23 35 44 26	87.1	405		
gpoon	22,056	29	28, 519	35	40.0	1, 141		
Sangamon	101,585	88	133, 632	44	91.4	11,215		
Crooked Creek	11,853 5,238	21	14, 344 5, 624	20 94	13.9 32.0	199 180		
Macounin Creek	13,023		15. 778	34 34	32.0	505		
Macoupin Creek Pop. directly trib to Ill	139, 134	42	177.189	47	65.5			
Peoria industries (est'd)						15,000		
Totals	482,070	35	617,664	41	65.7	55, 614	85.7	

^{*}Census for Indiana and Wisconsin in 1900 not at hand, and that of 1890 used.

The DesPlaines, Fox, Sangamon and Illinois direct have the largest per cent of urban population; the Kankakee and Mackinaw the smalest; the DesPlaines with 49 per cent in 1890 and 57 per cent in 1900 being high, and the Mackinaw and Kankakee each having 20 per cent in 1890 and 23 per cent in 1900. The average for the entire Illinois basin was 35 per cent in 1890 and 41 per cent in 1900.

The maximum per capita supply is 99.3 gallons per day on the Des Plaines and 91.4 gallons per day on the Sangamon, while on some of the smaller sub-basins the supply is very small; Crooked creek for example falling as low as 13.9 gallons per capita per day. The average supply per capita per day for the entire basin is 65.7 gallons, and the estimated equivalent flow is 85.72 cubic feet per second which includes 23.11 cubic feet per second estimated for Peoria industries and not included in the water supply of Peoria. Of the total amount the DesPlaines basin contributes 10.85 cubic feet per second; the Fox 5.96 cubic feet per second; the Sangamon 17.28 cubic feet per second, and the Illinois direct 41.0 cubic feet per second. These data will be referred to further on in the discussion on sewage.

Sewerage.

With the questions asking information regarding the water supplies, another list of questions regarding sewers was sent. These questions were as follows, viz:

QUESTIONS REGARDING SEWERAGE AND SEWAGE DISPOSAL.

- 1. Number of miles of sewers?
- 2. Number and size of outlets and into what do sewers discharge?
- 3. What method of sewage disposal or treatment, if any, now in use or heretofore tried?
 - 4. What improvements are considered necessary or in contemplation?
 - 5. How many houses connected with sewers?
- 6. What manufacturing industries, if any, are using sewers or streams for drainage of refuse and what is the character and extent of the refuse or sewage thus discharged?

The following table gives the principal data gathered, in response to the foregoing questions regarding sewerage systems thoughout the Illinois river basin. The tabulated data are: (1) number of miles of sewers; (2) number of house drains; (3) character of construction; (4) method of disposal, and (5) condition of system:

Severage Statistics of Cities on Drainage Basin of Illinois River.

Remarks.	SZ S	No system Open drain through th
Disposal.	Fox River Small branch Creek tributary to Spoon River Creek Sangamon River Creek Cesspools Cedar Fork Creek	Illinois River. Ill. and Mich. C. and Des Plaines R.
Construction.	25 2-10 inch drain tile as sewers 25 2-10 inch drain tile as sewers 26 2-10 inch drain tile as sewers 27 2-10 inch drain tile as sewers 28 2-10 inch drain tile as sewers 29 2-10 inch drain tile outlet to branch 29 2 2-10 inch pipe 20 2 2-10 inch pipe 20 2 2-10 inch pipe 3 2-10 inch pipe 4 3 2-10 inch pipe 5 3 2-10 inch pipe 6 3 2-10 inch pipe 7 3 2-10 inch pipe 8 3 2-10 inch pipe 9 3 2-10 inch pipe 10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	56 Pipe. Illinois River 00 Brick and pipe. Ill. and Mich. C. and Des Plaines E.
Number of House Con- nections	3.006 3.006 3.006	
Miles of Sewer	8 2	-T 8
City.	Assumption. Alianta. Aurora Batavia. Batavia. Bement. Bushnell. Carthage. Clinton. Corthage. Clinton. Delavan. Delavan. Barlylle. Eureka. Frichury. Frammer City. Frammer City. Frammer City. Frantington. Forest. Galesburg.	Griggsville. Havana. Henry Joliet.

Knoxville 5 11-15-16-16-16-16-16-16-16-16-16-16-16-16-16-		6 to 12 inch drain tile Branch	River Blver	Branch III. and Mich. Canal and III. River No system Sait Greek Bait Greek Iiinois and Michigan Canal Plaines River Some system of disposal contemplated No system Sangamon River Sate Reformatory, shoe factory, etc., drain into system Complete system needed System System Branch Branch No severage system System System Branch
Turner Utica Virginia City 1 M Virginia City 1 M West Chicago Wenona Wheaton	, da	(sny. Drain tile		Drain tile Drain tile Drain tile Branches Drain tile No sewerage system No sewerage system No sewerage system No system Private drains

Sixty-two reports were received, twenty-six The data is meager. of which reported 'no system" and eight reported tile drains for subsoil drainage, the remaining twenty-eight reporting more or less complete sewerage systems. Several of the larger cities are not included in the list as there is no data at hand regarding their sewerage sys-There are, no doubt, many villages having land drains which Generalizations are not practicable from the data are not reported. at hand; only these, first, that sewerage facilities are not generally available excepting in the larger cities; and second, that open jointed land drains are frequently used for sewage—a practice which will result in serious contamination of the surrounding earth, near-by cellars and wells, and sooner or later will bring upon those who are compelled to live where sanitary laws are thus violated the unfailing penalty of weakened constitutions, disease and often premature death.

The cities having sewerage systems all dispose of their sewage by There are a few cities in the State which discharging into streams. have made more or less satisfactory arrangements to purify the sewage but no general voluntary movement in this direction is apparent. On the contrary, every community seems to regard itself as having made great progress in sanitation when it has prepared to unload its own refuse, even at the peril of the life and health of its nearest neighbor. This, in fact, is a long and difficult step, but in populous areas proper sanitation is only half accomplished when the sewage and garbage have been brought to a central point or points for final disposal. Such disposal should be made as will not interfere with the health, life and pursuits of others. The streams are the drainage channels of the land and must receive the sewage, but the tendency and growing demand of the hour is to require the producer of sewage, refuse and garbage which may be deleterious to health and comfort, to so treat and dispose of these waste products as to reduce the injury to others to a minimum

Referring again to the statistics on water consumption, or as supplied to the urban population on the various drainage basins of the Illinois, it is noted that the Des Plaines, Fox, Sangamon and Illinois direct contribute 88 per cent of the water consumed. Basing the sewage producing capacity on this data, the localities now subject to the most contamination are readily discernable, and special study of the conditions of each locality is necessary to a correct determination of their several requirements.

Taking the water supplied to all the cities of the Illinois as 85.72 cubic feet per second as compared with the estimated flow of 600 cubic feet per second from the Illinois and Michigan canal as Chicago's contribution of sewage the latter delivers seven times as much sewage to the Illinois river as all other cities combined. Allowing reasonably for manufacturing sewage not accounted for the ratio is more likely as 6 to 1. The population of Chicago is 2.75 times that of the urban population tributary to the Illinois. The daily per capita water consumption in Chicago is more than double that of the State outside Chicago making a close check on the above data. All of the water supplied to users does not, of course, reach the streams, on account of the evaporation and other uses to which it

is put and the lack of sewage facilities in many of the smaller places, but a large percentage of the water does reach the streams as sewage after having passed through natural and manufacturing processes. There is also a large amount of sewage produced which is not from water supplied by public works. Taken then as a measure of relative as well as actual sewage pollution of streams the water supplied is the best data at hand or readily obtainable.

The evidence of the importance of an abundant supply of wholesome water to the city of Chicago can not find much stronger expression than in the statement of cost of construction up to the present year:

Water works system, in round numbers. Sewerage system in round numbers. Main drainage canal, in round numbers.	\$30,000,000 20,000,000 35,000,000
Total	\$85.000,000

That vast sum represents an investment of something over fifty dollars per capita for those two branches of the public service, and plans are now being matured which, when carried out, will cost Chicago \$30,000,000 to \$40,000,000 more before a satisfactory condition as to the shipping interests and compliance with the law in the matter of dilution can be finally accomplished.

In summing up the results of this preliminary survey of the Illinois river basin, it becomes apparent that the first interest centers in the effect of the Chicago sewage upon the waters of the Illinois river. This question is not confined to the effect of such sewage at any particular point, as for example at the mouth of the river, but must be regarded in its influence upon the river throughout its entire course. Furthermore, the effect of the sewage from other cities located on the Illinois and its tributaries can not be neglected. The data brought together in this report is intended to be of such nature as to be useful in the further development of the sanitation of this territory, which is growing more populous from year to year and in which the magnitude of manufacturing interests is rapidly increas-The meaning of this is, that, sooner or later, the entire upper valley of the Illinois river (above the Sangamon), may some day be compelled to expend enormous sums of money, as Chicago is now doing, to get relief from this ever increasing amount of domestic sewage and manufacturing wastes.

Foreseeing, therefore, in some small degree what the promise of the future would be from a sanitary point of view should the present methods of sewage disposal be persisted in, it stands the sanitary authorities of the commonwealth in hand to note well these conditions and find means for safely and economically overcoming and rendering harmless the disease producing and generally obnoxious and profitless wastes of life processes and of human industry.

Respectfully submitted,

JACOB A. HARMAN.

PEORIA, ILL., March, 1901.

BIBLIOGRAPHY.

United States Department of Agriculture:—Monthly report Illinois section of the climate and crop service; daily, monthly and yearly precipitation as observed at regular stations; miscellaneous storm data.

Report of Signal Officers, 1890.—House Exec. Doc., 1st Session, 52d Congress, 1891-92, vol. 10; monthly and yearly precipitation as observed at regular stations; description and illustration of apparatus used in taking meteorological data; tables of excessive rainfalls; method of river flood forecasts; tables of depths of snowfall.

The Weather Bureau Report, 1891-92.—House Miscel. Doc., 2d session, 52d Congress, 1892-93, vol. 17; monthly and yearly precipitation as observed at regular stations; tables of snowfall; description and illustrations of apparatus used; hydrographs for various rivers; tables of mean monthly and highest and lowest stages and discharges of drainages, areas, years of records of elevation of zero of gauge boards, etc., of various rivers. Note gives low water of Illinois at mouth—2,000 feet. See.

Weather Bureau Report, 1893.—House Miscel. Doc., 2d session, 53d Congress, 1893-94, vol. 31; monthly and yearly precipitation as observed at regular stations; tables of snowfall; description and illustration of instruments used; mean monthly stages of various rivers.

Weather Bureau Report, 1894.—House Miscel. Doc., 3d session, 53d Congress, 1894-95, vol. 13; monthly and annual precipitation as observed at regular stations; tables of snowfall; description of instruments used; mean monthly stages of various rivers.

Weather Bureau Report, 1895.—House Doc., vol. 86, No. 428, 54th Congress, 1st session, 1895–96; monthly and annual precipitation as observed at regular stations; tables of snowfall; descriptions of instruments used; tables of excessive precipitations; maximum amounts of excessive precipitation for periods of 5 and 10 minutes, 1 hour and 24 hours and more; supplemental table showing the accumulated amounts of excessive precipitations for each 5 minutes during some of the heaviest rainfalls at each station furnished with self-registering gauges.

Weather Bureau Report 1897; Meteorological Tables 1896—House Doc. Vol. 42, No. 166; 55th Congress, second session, 1897-98; various charts and plates bearing upon the subject of precipitation; hydrographs for 1896; hydrographs for Missississippi river flood of 1893; monthly and annual precipitation as observed at regular stations; excessive rainfall at Washington, Savannah and St. Louis; tables of snow fall; description of instruments used; exhaustive discussion and tabulations upon rainfall in the United States; exhaustive discussion upon floods of the Mississippi river.

United States Geological Survey—Twentieth annual report; part IV. Hydrography—curves comparing depth and capacity of large reservoirs; resumé of discharges of various rivers.

United States Department of Agriculture, Weather Bureau, Daily River Stages, Principal Rivers of the United States—Part V. 1893, 1894 and 1895; records of daily river stages as taken by government observers.

The Manual of American Water Works, 1897—Edited by M.`N. Baker, published by the Engineer News Pub. Co., New York; history and description of the source and mode of supply, reservoirs, distribution systems, consumption, etc., of the water works of the United States and Canada.

Handbook of Water Works Statistics and Fire Department Equipment 1898-99—Published by Fire and Water, New York; estimates of population, water works statistics.

House Exec. Doc. 1st Sess., 51st Cong., 1889-90, Vol. 33—Chief engineer's report on waterway from Lake Michigan to Illinois river.

"Discharge Observations of the Mississippi river and its Principal Tributaries and Outlets, 1838-1894"—By Mississippi River Commission, 1895.

"Drainage Channel and Waterway"—By G. P. Brown, under direction of trustees of Sanitary District of Chicago, 1894. Historical account of water supply and sewerage of the city of Chicago from earliest efforts to date of publication.

"Special Commission Chicago Drainage Channel"—Report to Governor on inspection of completed canal, 1900. Hydraulic formula, data and description of canal.

"Water Resources of Illinois"—By Frank Leverett. Seventeenth annual report of the United States geological survey, 1895-'6, part 2, gives topographical and geological maps of the State and detailed description and discussion of wells and other sources of domestic water supply.

"Illinois Glacial Lobe"—Monograph XXXVIII. United States geological survey, 1899, by Frank Leverett; detailed report on the geological formation and wells of Illinois.

"Data Pertaining to Rainfall and Stream Flow"—T. T. Johnson discharge curve and table for DesPlaines river at Riverside, Journal Western Society of Engineers, vol. 1, p. 297, 1896.

"Water Supplies of Illinois and Pollution of Streams"—Preliminary report of Illinois State Board of Health by John H. Rauch, M. D., secretary, and J. H. Long, Ph. D. and L. E. Cooley, C. E., 1889 gives analyses of Illinois river and well waters, of rainfall, stream flow, and discussion of the effect of Chicago sewage on the Illinois river waters.

"The Lake and Gulf Waterway as related to the Chicago Sanitary Problem"—By Lyman E. Cooley, C. E., 1891.

United States Census for 1890—

United States Census Bulletin for Illinois, 1900-

"A Treatise on Hydraulic and Water Supply Engineering"—By J. T. Fanning.

INDEX.

Ammont	e 1 Medical Association				84 X1X
Free	and albuminoid, table of				71
Anaerobe	th of				84
Analyses	of water—				
Bride	eport—Illinois and Michigan Canal water	12, 13, 3	38, 39,	44, 46,	47,64
Chica	ning—Sangamon river water go sewage go—City water da—Spoon river water age Canal—Western avenue bridge. on—Illinois river water a—Illinois river water na—Illinois river water na—Illinois river water na—Illinois river water na—Spoon river water. y—Illinois river water. y—Clanal water. —Canal water. a—Mackinaw river water.		.28, 29,	36, 62,	63, 64
Chica	go—City water		.38, 39,	44, 46,	47.64
Dahir	ida—Spoon river water			34,	35, 36
Drain	age Canal—Western avenue bridge	T 00 01 0	.38, 39,	44, 48,	49,64
Graft	ON—IIIINOIS FIVEF WATEF	1, 30, 31, 3	30 31	36, 62	63 64
Hava	na—Illinois river waterXXV	1.26, 27, 3	. 40, 41,	44, 58,	59.64
Hava	na—Spoon river water,	28, 29, 3	, 42, 43,	44, 58,	59,64
Henr	y—Illinois river water	XXV	, 22, 23,	36, 54,	55, 64
Kann	a—Mackinaw river water	AAV.	, 10, 11,	34	35, 36
Lake	Michigan			12,	13, 36
Liber	Michigan tyville—Des Plaines river water			32,	33, 36
Lasa	lle—Illinois river waterlle—Vermilion river water	XXV	20, 21,	36, 52,	53, 54
Lock	nort—Canal water		.14.15	36, 48	49, 64
Lock	port—Canal waterport—Des Plaines river water			14,	15,36
Maho	met—Sangamon river water			32,	33, 36
Moth	onry—rox river water			32,	33, 36
Morr	s–Illinois river waterXXV	T. 18, 19, 3	40.41.	44.50.	51.64
Ottav	va-Fox river water		. 20, 21,	36, 52,	53,64
Ottay	met—Sangamon river water mry—Fox river water ds of s—Illinois river water ya—Fox river water ra—Illinois river water —Illinois river water —Illinois river water —Illinois river water —Illinois river water	XXV	18, 19,	36, 52,	53,64
Peki	—Illinois river water	1, 25, 29, 3	26 27	36 58	50 64
Peori	a (above) – Illinois river water. a (below) – Illinois river water. XXV ac—Big Vermilion river water. Liber of the water. bend, Indiana – Kankakee river water.		.24, 25,	36, 56,	57.64
Peori	a (below)—Illinois river waterXXV	1,24,25,3	5, 40, 41,	44, 56,	57,64
Ponti	ac-Big Vermilion river water		******	34,	35, 36
Wilm	ington—Kankakee river water	****	16.17	36.62	63 64
Wint	ington—Kankakee river watereld—Du Page river water			34	35, 36
Ancient	treem-				
Effec	t on topography of Illinois	· · · · · · · · · · · · ·	• • • • • • •	• • • • • •	104 103
Appropr	ations—	• • • • • • • • • •		• • • • •	100
Inade	ations— quate drainage basins				X
Areas of	drainage basinswater supply		:::::::::::::::::::::::::::::::::::::::	104, 10	05, 106
Artesian	water supply	• • • • • • • • • • • • • • • • • • • •	190, 191,	192, 13	33, 194
Sewe	avenue— rage system	<i></i>			67
Atmount	APA				
Purit	cation by rainfall	• • • • • • • • • •	• • • • • • •	• • • • •	101
Num	coli communis— ber of colonies		83	84 85	92 93
Racteria					
Ident	ification of		 .		81
Path	ogenicldentified—	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	• • • • •	8, 82
Des	Plaines river water at Joliet				87.98
Drain	nage canal water at Lockport				86, 93
Draij	age canal water at Western avenue		• • • • • •	• • • • •	85, 93
Eo-	ence of condition of sewage	• • • • • • • • • •	• • • • • •	• • • • • •	85 00
Illing	iver water at Ottawa is and Michigan canal water at Bridgeport.	• • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • •	86, 93
Illino	is river water at Grafton		•••••		92, 93

Bacteria identified—Continued.	P	uge.
Bacteria identified—Continued. Illinois river water at Havana. Illinois river water at Heary Illinois river water at LaSalle. Illinois river water at Morris Illinois river water at Ottawa Illinois river water at Pearl Illinois river water at Peoria (lower) Illinois river water at Peoria (lower) Illinois river water at Peoria (lower) Kankakee river water at Wilmington Lake Michigan water. Spoon river water at Havana. Bacterial results—		90,93
Illinois river water at Heary		90,93
Illinois river water at LaSalle		89,93
Illinois river water at Morris	••••	88, 93
Illinois river water at Ottawa	••••	88,93
Illinois river water at Pearl	••••	91,93
Illinois river water at Peoria (lower)	• • • •	90, 93
Innois river water at Peoria (upper)	••••	59, 98
Rankakee river water at wilmington.	••••	01,30
Eake michigan water.	••••	01 02
Bacterial results—	• • • •	31, 30
Discussion of		75
		•••
Method of packing		76
F. Robt. Zeit		ΙX
Bacteriologists— F. Robt. Zeit Gustav Fütterer		ΙX
Bacteriologists' report—		
Conclusions		92,93
Des Plaines river, condition of, at Joliet	X.	ΧΛΪΪ
Identification of bacteria.	••••	81
House Pool Cuefton Ottown Police, Delow Peorla, at Morris, Lassile, He	шţ.	7 77 1 1
Illinois and Michigan canal condition of at Bridgenort	∵ †	Q VII
Illinois river condition of at Grafton	ŸŸ	VIII
Illinois river condition of at Hayana XXVII	'XX	viii
Illinois river condition of at Henry XXVII	ŻŻ	Viii
Illinois river, condition of, at Joliet XXVII	ŻX	Viii
Illinois and Michigan canal, condition of, at Lockport	X	XVII
Illinois river, condition of, at Pearl	.XX	VIII
Illinois river, condition of, at Peoria (lower)	,xx	MILL
Illinois river, condition of. at Peoria (upper)XXVII	,xx	VIII
Kankakee river, condition of, at Wilmington	X	XVII
Bacteriological flora.	••••	81
Bacteriological Examinations—		~
Qualitative	••••	82
Provided D. U. M.	• • • •	102
Baralisett. Dr. H. M.	• • • •	109
Gustav Fütterer Bacteriologists' report— Conclusions Des Plaines river, condition of, at Joliet Identification of bacteria. Illinois river, condition of, above Peoria, below Peoria, at Morris, LaSalle, He Havana, Pearl, Grafton, Ottawa, Pekin. Illinois and Michigan canal, condition of, at Bridgeport. Illinois river, condition of, at Grafton. XXVII Illinois river, condition of, at Havana. XXVII Illinois river, condition of, at Henry. XXVII Illinois river, condition of, at Joliet. XXVII Illinois river, condition of, at Pearl. Illinois river, condition of, at Pearl. XXVII Illinois river, condition of, at Peoria (lower) Illinois river, condition of, at Peoria (lower) XXVII Kankakee river, condition of, at Peoria (lower) XXVII Kankakee river, condition of, at Wilmington Bacteriological flora. Bacteriological Examinations— Quantitative Bannister, Dr. H. M. Bazelgette— Engineer of London sewerage.		112
Engineer of London sewerage. Beardstown		188
Reguer Creek		
Area of drainage basin		186
Bedford, Dr. J. B.—		_
Water samples, method of collection Bibliography		\n no.
Bioliography	.U2, ZL	13, 204
Big Vermilion river— Organic nitrogen at mouth		75
Rienehard Dr C F	••••	10
Blanchard, Dr. C. F.— Fox river, head water samples		6
		•
Chicago		XII
Board of Sewerage Commissioners	••••	111
Bottles—		
Sterilization of		6
Bridgeport— Analysis of canal water		
Analysis of canal water	4, 46,	47, 64
Bacteriological condition of linnois and michigan canal at	A.	Y A 11
Canal water, chiefine contents	••••	XI
Canal pumps, effect on river Collection of water for analysis.	••••	A 1
Bridgeport pumps—	••••	_
Capacity of		115
Construction of		XVI
Cost to restore	XII.	XIII
Cost of operation		XIII
Historical		114
Lift at		XIil
Operation of	•••	XII
Operation of during 1900	65,	00, 73
Necommended by Secretary State Board of Health	• • • •	A۷L
Ocwage, appearance of	••••	66 an
Bridgeport pumps— Capacity of Construction of Cost to restore Cost of operation Historical Lift at Operation of Operation of during 1900 Recommended by Secretary State Board of Health Sewage, appearance of Volume of water pumped Bridge at treet bridge—	••••	50, 07
Bridge street bridge— Volume of flow at	77.1	78, 179
Brown, G. P.—		
Brown, G. P.— Author "Drainage Channel and Waterway"		108

Browning—	Page:
Collection of water for analysis. Sangamon river water, chlorine contents. Sangamon river water, analysis of	69 69
Sangamon river water, analysis of	, 63, 64
Business district of the city of Chicago)12
Calumet region— Sewage of	
Effect on Illinois river at Peoria and Pekin	100
Cattle feeding industry—	
In Pekin and Peoria.	77
Cess pools— In Chicago	109
Uses of	112
Cellars—	
Heights of Chicago	11, 112
John H. Long	ıx
John H. Long Chemist's report	3
Chashrough K S	
Chief engineer	112
Analysis of city water	47,64
Chicago— Analysis of city water	112
Chicago City Hydraulic Co	110
Drainage canal	ıŸ
Datum piaine. Drainage canal. Drainage Commission report. Drainage system, cost of. Manufacturing interests of. Hydraulic Co., organisation of. Population, increase of. Chicago river.	ΧĪ
Drainage system, cost of	201
Manufacturing interests of	102
Population, increase of	18. 121
Condition of after construction Bridgeport pumping works	ΧÃΪ
Current in	00 100
Current in . Description of appearance Effect of rain fall Flow affected by wind movement.	XII
Flow affected by wind movement	Χij
North branch	ΧÏΪ
Purification of discussed, Engineer's club	ΧV
North branch North branch Purification of discussed, Engineer's club. Purification of discussed, Citizen's association. Sanitation of. Sewage, to receive. South branch, condition of XI	ŢΫ́
Sewage, to receive	110
South branch, condition of	.V, 114
Chicago Sewage—	V V I W
Amount reaching the Illinois river	रेट्रीप
Disposal—Other means considered	XVII
Effect of proposed dilution	XĮX
Chicago sewerage system	사하
Sewerage and urainage	201
Sewerage system, historical account of.	108
Thirty-ninth street conduit	73
Water supply	, <u>X</u>
Disposal—Other means considered Effect of proposed dilution Chicago sewerage system Sewerage and drainage. Sewerage system, cost of Sewerage system, historical account of. Thirty-ninth street conduit Water supply, first public. Water supply, historical account. Water supply, historical account. Water supply, historical account. Water works system, cost of. Wells water	108
Water works system, cost of	201
	. 109
Cholera— Death rate of	. 111
Cholern Asiation—	
Experiments with	. 83
Oniorine— Affected by dilution Contents at various points In Illinois river	. 74,75
In Illinois river XXVI X	ivvii
Study of, in 1900.	. 74
Tributary streams	. 00
Table of quantities	. 69
Cities— Population of Chicago, East St. Louis, Joliet, Peoria, Quincy, Rockford, Springfield.	. 119
Population of Chicago, East St. Louis, Joliet, Peoria, Quincy, Rockford, Springheid. Sewerage systems of. Clark, Mr. Joseph L. Clark, Mr. W. H	. 101
Clark, Mr. Joseph L	. 186
Clark, Mr. W. H	. 111
Clark, Mr. W. H Gassistant engineer Coagniation of milk Collection of samples	. 111
Collection of samples	. 4,5
Instructions as to	. 0.7
Collecting stations Contamination of waters.	. 7,8
Contents	: 87

Copperas creek—	Pa	
Appearane of Illinois river at. Date of construction.	•	100 175
Copperas creek dam—	•	
Copperas creek dam— Effect of, on stage of Illinois river. Crooked creek drainage basin—		175
Crooked creek drainage pasin—	104	104
Population of 119, 120.	121.	132
Area of	158.	159
Culture media	•	84
Analyses of Spoon river water	4.35	96
Analyses of Spoon river water		6
Death rate—		•
Chicago From all causes. From Cholera Des Plaines river Amount of Chicago sewage received by. Area of drainage basin. Bacteria identified at Joliet. Bucteriological condition of, at Joliet	•	177
From Cholera.	: :	111
Des Plaines river	3	ζŸ
Amount of Chicago sewage received by	.X	ΙX
Area or Grainage pasm. Ractaria identified at Joliet	104. 87	. 705 TOD
Bucteriological condition of, at Joliet.	ŻΧΫ	ŻΪ
Dilution by		99
Effects of ancient stream on. Effect of proposed dilution. Volume of discharge, velocity, etc.	٠ ٧	104
Volume of discharge, velocity, etc.	. Д	玆
Population of	121,	127
Rain Iali and run-on	158,	150
Des Plains valley—	100,	100
Outlet of Lake Michigan.	. :	103
Des Plains valley— Outlet of Lake Michigan Des Plaines river water Diagram of average analyses Didbin, W. J.— The state of the state		71
Diagram of average analyses	. 51.	.00
Extract from treatise Furincation of Newsky and Water	. 3	X
Dilution of Chicago sewage—	_	
Amount necessary	. Д	W
Amount required by sanitary district	XX:	ΙX
Below Peoria—By Sangamon	Xν	III
By the Des Plaines river	٠	99
Chicago sewage.	XX	W
Effect on bacteria	. 00,	81
Effect of, on Chicago sewage.	. XI	ΙĬΪ
Formula for	. 69,	70
reoria (below)—by tributaries	V A 1	71
Tributary streams.	:	ŝ
Dilution— Amount required by sanitary district Below Peoria—By Sangamon. By the Des Plaines river Chicago sewage. Chiorine indication of Effect on bacteria Effect of, on Chicago sewage. Formula for. Peoria (below)—By tributaries. Table showing relative. Tributary streams. Views of sanitarians upon amount required Discharge—	$\mathbf{X}\mathbf{X}$	IX
Discharge— Of the Illinois river at Peoria	170 1	170
		110
Refuse of	. 1	110
Dominion of Canada— Interest in the maintenance of lake level	- T- T-	
Drainage basins— Areas of, Crooked creek Areas of, Des Plaines river	104. 1	106
Areas of, Des Plaines river.	104, 1	165
Areas of. Des Plaines river Areas of. Fox river Areas of, Illinois river Areas of, Kankakee river Areas of, Kankakee river Areas of, Mackinaw river Areas of, Sangamon river Areas of, Spon river Areas of, Vermilion river	104, 1	105
Areas of, Illinois Fiver	. 88, 1 IM	105
Areas of, Macoupin creek	104, 1	107
Areas of, Mackinaw river	104, 1	106
Areas of, Sangamon river	104, 1	106
Areas of Vermilion river	104.1	105
Drainage canal water—		
Bacteria identified at Western avenue Bacteria identified at Lockport	. 85,	93
Drainage canal—	. 80,	93
	. 1	X
Cost of	. 2	201
Dimensions of	. 1	115
Flow during 19W	. 79	72
Historical account.		108
Cntago Cost of Dimensions of Flow during 1900 Effect of, upon the river when first opened Historical account Historical account Office of the count	. 1	II X
Investigation	. 1	īŽ
Historical account of Investigation Water samples from, Lockport. Water samples from, Western avenue Opening of. Operation of, during 1900 Operation of, during 1900	90	44
Opening of	, 66. I	ίΧ̈
Operation of, during 1900		73 3
Question as to effect of		3

Drainage—	Page.
Chicago	102
Necessity for Streams of State necessary	xxx
Du Page river basin—	
Population of 119, 120 Rain fall tables 141	, 121, 128
Du Paga rivar	
Volume of discharge, velocity, etc	134
DuPage river water	71
East St. Louis	110
Increase in population of	
Report of Secretary Engineer. Jacob A. Harman Engineer's report.	IX
Engineer	4
Jacob A. Harman	IX
Engineer's report.	99
Epidemics— Extent of	111
Erickson, Mr. Charles.	10
Examinations for hacteria—	
Time covered in Fanning's treatise on hydraulics.	84
Fanning's treatise on hydrautics	189
Farm drains— Used as sewers	199 200
Federal government—	
Interest in the lake levels and navigation:	XXXII
Fegers, Dr. Charles H.—	_
Big Vermilion river, headwater samples	83
In south fork	67
Filter paper	9
Fermentation In south fork Filter paper Filteration of samples	9
ritration of sewage—	
Considered by Commission	XVII
Fish— Effect on by gases of putrefaction	100
Fishing industry—	100
Fishing industry— At Havana	4
At Peoria. In the Illinois river.	4
In the Illinois river	100
Flood flow— Of Illinois river	189
Flore—	
Bacteriological Bacteriological of drinking water Bacteriological of sewage.	81
Bacteriological of drinking water	83
Bacteriological of sewage.	83
Flow of water— Drainage Canal 1900	73
Drainage Canal, 1900. : Illinois and Michigan canal, 1900.	73
Forest, Dr.—	
Mayor of Henry	100
Fox river— Organia nitrogen at mouth	75
Organic nitrogen at mouth. Topography of. Volume of discharge, velocity, etc.	103
Volume of discharge, velocity, etc.	134
Area of	.104, 105
Area of	, 121, 129 157 180
Fox river water	71
Bacteria identified at Ottawa	88, 93
Bacteria identified at Ottawa Fullerton avenue conduit. Effect of on Chicago river Effect of on Chicago water supply. Effect of on Lake Michigan Effect of rainfall on	XII, 113
Effect of on Chicago river	XIV
Effect of on Unicago water supply	₹ ‡∜
Effect of rainfall on	Xiv
Killierton avenue numba-	
Effect of operation on Chicago river	XVI
Fütterer, Gustav— Bacteriologist	170
Galesburg—	IA,5
Water supply of	195
Water supply of	137
Garbage—	
· Disposal of, methods employed	102
Gardiner, Dr. John H.—	6
Spoon river, headwater samples	. 109
Glacial drift	. 103
Geology. Glacial drift. Gooding, William, C. E. Grade of the city of Chicago. Graphic chart of average analyses.	. 103
Grade of the city of Chicago	.111, 112
Graphic chart of average analyses	37,65

Grafton—		Page
Grafton— Analyses of Illinois river water	4 60	R1 R4
Analyses of Mississippi river water 30.31.3	R. 62.	63.64
Bacteriological condition of Illinois river at	X	ŘŸĬĪ
Collection of water for analysis		- ` - 5
Condition of Illinois river water at.		XX
Illinois river water, chlorine contents		69
Organic matter in Illinois river		72
Organic matter in Mississippi river		72
Proportion of canal and diluting waters		71
Gravel—		
Water bearing	19	4, 195
Guinea pigs—Inoculation of		
inoculation of	• • • •	84
Halsted street— Sewerage system		
Sewerage system	• • • •	67
Harman, Jacob A.—		
Appointed engineer	• • • •	IX 99
Neport	• • • •	99
Havana—	1 EQ	EO 84
Analyses of Illinois river water	1, 00,	50 64
Rectariological condition of Illinois river at	Y 7	ŽŸĬĬ
Collection of water for analysis	Д.	~ V 1 k
Fishing industry	• • • •	Ä
Illinois river weter chlorine contents	• • • •	69
Proportion of canal and diluting waters	•••	71
Spoon river water chlorine contents		69
Illinois river water, chlorine contents. Proportion of canal and diluting waters. Spoon river water, chlorine contents. Head water samples.		5
Henry—		_
Analyses of Illinois river water	. 54.	55.64
Appearance of the Illinois river at.		100
Bacteriological condition of Illinois river at	XX	IIV
Collection of water for analysis		5
Illinois river water, chlorine contents		69
Proportion of canal and diluting waters		71
Hering, Rudolph— Dilution of sewage required for self-purification of streams		
Dilution of sewage required for self-purification of streams	X .	XIX
House drainage— Amount of Hydraulic elements—		
Amount of		66
Hydraulic elements—		
Table of	13	7, 138
nydraulic gradient—	40	- 400
Hydraulic elements— Table of. Hydraulic gradient— Of the Illinois river Identification of bacteria.	13	5, L36
		91
Population, increase by counties, 1890 to 1900		117
Population of by docados	• • •	116
Tilinois Control Peliway—	•••	110
Illinois Central Railway— Location of. Illinois and Michigan Canal— Bacteriological condition of at Bridgeport Bacteriological condition of at Lockport. Bridgeport to Lockport, fall Bridgeport to Lockport, velocity. Bridgeport to Lockport, velocity. Bridgeport to Lockport, velocity. Chlorine contents in 1900. Deepening of Effect of current on Navigation Flow of Historical		112
Illinois and Michigan Canal—	••••	112
Rectariological condition of at Bridgenort	XX	TIV
Bacteriological condition of at Locknort	ÏΣ̈́Σ	ίίνα
Bridgeport to Lockport, fall		χiiî
Bridgeport to Lockport, velocity	••••	Χiii
Bridgeport to Lockport, volume of flow	III.	ΧÌΫ
Chlorine contents in 1900		74
Deepening of	XII.	XVI
Effect of current on Navigation		XIII
Flow of		$\mathbf{x}\mathbf{III}$
Historical		114
Increased depth	•••	XIII
Lift at Bridgeport pumps	• • • -	XIII
Self-purification of Chicrgo sewage		XII
Velocity of flow	.::-	137
Figure 01 Historical Increased depth Lift at Bridgeport pumps Self-purification of Chicrgo sewage Velocity of flow Water analyses.	.1X	, AA
Bacteria identified at Bridgeport Illinois and Michigan Canal water	• • • •	00 NO
Illinois and Michigan Canal water	••••	30, 93
Angiont outlot of Lake Mishigan		109
Approximate of Chafton		77
Appearance at Pearl	• • • •	77
Changes in condition of water	• • • •	79
Chicago sewage, effect of excluding	χχ̈́τ	71.77
Chicago sewage received by, amount of		xix
ChlorineXXV	ĹΧŻ	ζVIÌ
Considered as an outlet for Chicago sewage by Chesbrough.		113
Dilution, effect of proposed		XIX
Flood flow		189
Gaugings	Σ	XXX
Hydraulic Gradient of	13	5, 136
Investigation of	• • • •	_IX
Nitrates in	X	XVI
Illinois river— Ancient outlet of Lake Michigan. Appearance at Grafton. Appearance at Pearl. Changes in condition of water. Chicago sewage, effect of excluding Chicago sewage received by, amount of. Chlorine. XXVI Considered as an outlet for Chicago sewage by Chesbrough. Dilution, effect of proposed Flood flow. Gaugings. Hydraulic Gradient of. Investigation of. Nitrates in. Ordinary flow of.	18	8, 189

Illinois river—Concluded Organic nitrogen at mouth	Page
Organic nitrogen at mouth	75
Physical appearance of	72
Pollution ofXX	V. 102
Potability of water at Peoria	IIIX
Purification of lower riverX	XIII
Purification of upper riverX	IIIX
Purity of, conditions governingXX	VIII
Resumé of discharge data	8. 189
Self-purification of XXVI XXV	11.82
Stages at Peoria 1890 to 1900, inclusive	R-174
Velocity of flow	138
Volume of flow	ΧŶŸ
Volume of flow at Peorie	2 170
Volume of discharge volocity etc	195
Wotow englysos	A A
Illinois river basin—	AA
Anihola Fiver Dashi—	404
Area of Areas of chief tributaries	104
Areas of chief tributaries	104
Direct	8, 159
Illinois river—	
Effect of LaSalle sewage	KVII
Illinois river basin—	
Inhabitants of X	XIX
Rain fall	XIX
Sewerage.	XXX
Sewerage of cities	0.201
Water supplies	XXX
Water supply of cities	3, 194
Illinois river water—	-,
Illinois river water— Bacteria identified at Grafton Bacteria identified at Havana Bacteria identified at Havana	92.93
Bacteria identified at Havana	90 93
Roctoria identified at Henry	00,00
Restavia identified at LeSella	eo os
Destrois identified at Danaire	GD, DD
Pacteria identified at Morris	00,30 00 00
Dacteria identified at Ottawa.	00, 33 01, 00
pacteria identified at Pearl	91,93
Bacteria identined at Peoria (lower)	90,98
Bacteria identified at Peoria (upper)	89. 93
Bacteria identified at Havana Bacteria identified at Henry Bacteria identified at LaSalle Bacteria identified at Morris Bacteria identified at Ottawa. Bacteria identified at Pearl. Bacteria identified at Peoria (lower) Bacteria identified at Peoria (upper). Analyses, condensed table of	$\mathbf{X}\mathbf{X}$
New sanitary legislationXX	XIV
Indianapolis, Ind.—	
Excessive rain fall at	1, 163
Indol	8,84
Inhahitanta	
The Illinois river drainage basin	XIX
Intra-peritoneal injection of guinea pigs	84
111/08/11/08/	
Bacteriological	4
Chemical	4
Trrigation	-
Considered as a method of sewage disposal:	113
Isar river—	110
Self-purification of	
CCII'PUIIIIGATIVII UL	99
Johnson Mr. William	82 10
Johnson, Mr. William.	10
Talia	10
Talia	10
Talia	10
Joliet— Analyses of canal water	10 17,36 XXI 51,64
Joliet	10 17, 36 XXI 51, 64 99
Joliet	10 17.36 XXI 51,64 99
Joliet	10 17.36 XXI 51,64 99
Joliet	10 17.36 XXI 51,64 99
Joliet— Analyses of canal water	10 17.36 XXI 51,64 99
Joliet— Analyses of canal water	10 17.36 XXI 51,64 99
Joliet— Analyses of canal water	10 17, 36 XXI 51, 64 99 VVII 69 XIII 114 118 71 5 83 9, 10
Joliet— Analyses of canal water	10 17.36 XXI 51,64 99 VVII 69 74 4 69 XIII 114 118 71 5 83 9,10
Joliet— Analyses of canal water	10 17.36 XXI 51,64 99 VVII 69 74 4 69 XIII 114 118 71 5 83 9,10
Joliet— Analyses of canal water	10 17, 36 XXI 51, 64 69 XIII 114 118 71 5 8 9, 10 186 6 75
Joliet— Analyses of canal water	10 17, 36 XXI 51, 69 VII 69 XIII 114 118 71 5 83 9, 10 186 67 75
Joliet— Analyses of canal water	10 17, 36 XXI 51, 64 69 XIII 114 118 71 5 8 9, 10 186 6 75
Joliet— Analyses of canal water	10 17, 36 XXI 51, 69 VVII 69 XIII 114 118 71 118 71 186 67 75 186 134
Joliet— Analyses of canal water	10 17, 36 XXI 51, 64 99 VII 69 XIII 1148 71 53 9, 10 186 6 75 186 134 1, 128
Joliet— Analyses of canal water	10 17, 36 XXI 51, 64 99 VII 69 XIII 1148 71 53 9, 10 186 6 75 186 134 1, 128

Kankakee river drainage basin—	Page.
Area of. Kankakee river water Bacteria identified at Wilmington	71
_ Drainage of	
Kappa— Analyses of Mackinaw river water. Point of collection. Kaskaskia river Kutter formula	1, 35, 36
Point of collection	. 6
Kutter formula	137
Effect on Chicago river	XII
Effect of Chicago Drainage Canal thereon S Effect on Chicago river. Fffect on flow of south fork. Effect on water at Bridgeport pumping works.	. 73
rake micuigan—	
Ancient outlet of	103
Effect on Chicago water supply	XXIII
Effect on water supply of past sewage contamination	XXÎ
Analysis of water	ַנוֹנוֹצ
Water, how procured for analysis	. 6
Bacteria identified. Quality of water	. 85, 93
Quality of water	Z V 111
LaSalle— Analysis of Illinois river water	2, 53, 64 2 22 26
Appearance of the Illinois river at	100
Bacteriological condition of filinois river at	. 69
Collection of water for analysis	V 171
Explorer	114
Illinois river water, chlorine contents	. 69
Efforts to secure sanitary	. X
Legislature— Enactment of Sanitary District law. Resolution of 1881. Special act regarding Board of Sewerage Commissioners, Chicago. Special act regarding Chicago City Hydraulic Co. Special act regarding Chicago Hydraulic Co. Leverett. Leverett.	. 115 VVI
Special act regarding Board of Sewerage Commissioners, Chicago	. Ayı
Special act regarding Chicago City Hydraulic Co	. 110 . 109
Leverett. Libertyville—	103, 181
Analysis of DesPlaines river water	
Dependent on rain fall	
Light— Effect on bacteria	. 81
Limmat river— Self-purification of	
Lind Sylvester— Sewerage commissioner	
Lockport— Analysis of canal water	3, 49, 64 4 15 36
Bacteriological condition of Illinois and Michigan canal at	ĬŸŸĬ
Collection of water for analysis.	. 69
Des Plaines river water, chlorine contents	. 69
Long, John H8i	. 84, 99
Appointment. Comparative analysis of Illinois river waters.	XXVI
Investigations of oxidation of organic matter, Des Plaines river	XXIII
Bacteriological condition of Illinois and Michigan canal at	XXIII
Investigations of purification of Lower Illinois river	XXIII
Anna ad duaina aa baain	400
Longham's creek— Area of drainage basin	196
Area of	104, 106 121, 130
Rainfall tables	57, 159
Area of drainage basin— Area of	. 71
Area of	104, 107
Rainfall tables	158, 159

Analyses of Sangamon river water	age. 33,36
Point of collection. Manufacturing— In Illinois river valley.	400
In Illinois river valley. Marseilles— Topography of. Martin, Dr. S. A.— Martin, Chicar conitoring	102 103
Martin, Dr. S. A.— Early Chicago sanitarian	
Mason— On self-purification of streams	109
On self-purincation of streams. Massachusetts State Board of Health Dilution of sewage required for self-purification of streams. X	83
Massachusetts—	
The State Board of Health control all water supply and sewage	
Point of collection	33, 30
McKee's creek basin— 119,120,12 Population of. 119,120,12 Rainfall tables 153,154,15	1, 132
McKenzie, Dr. R. E.— Sangamon river headwater samples	109 6
Mica-plate Koch-Fränkel's	84
Milwankee, Wis.— Excessive rainfall at	2, 163
Mississippi river. Opposite Grafton, organic nitrogen at mouth Outlet of Chicago sewage.	114
Outlet of Chicago sewage. Velocity of flow.	ΧΫ́̈́
Wording—	138 186
Marseilles	103
Analyses of Illinois river water 19 10 26 40 41 44 50	51,64
Appearance of the Illinois river at: Illinois river water, chlorine contents Collection of water for analysis. Bacteriological condition of Illinois river at.	69
Bacteriological condition of Illinois river at XX Proportion of canal and diluting waters.	XVIÎ
Municipalities— State Board of Health to aidXX	
Navigation - Effect of current in Illinois and Michigan Canal.	
Nesslerizing	9
Special scientific commission	XIV
The State Board of Health control all water supply and sewage	XIV
In Illinois river	X V I I 92
Normal impurity of the river Northwestern University Medical School Oder river—	ΙX
Self-purification of	82
From slaughtering, rendering and fertilizing establishments	XIV
Ögden, William B.— Sewerage commissioner.	111
Ohio— The State Board of Health control all water supply and sewage	
Ohio river. Oospora farcinica.	
Ordinary flow— Of Illinois river.	
Organic nitrogen— In tributaries of streams	75
Organia mattar—	
Amount of, dry	81 66
Reduction by fermentation	68 101
Destruction of Discussion of Pound and calculated	71,72 71,72
Oxidation ofOttawa—	XIII
Analyses of Illinois river water	53, 64 53, 64
Appearance of the Illinois river at	100 XVII
Collection of water for analysis	5 69
Fox river water, chlorine contents Illinois river water, chlorine contents	69 71

Oxidation— In the south fork	P	age. 78
In the south fork. Oxygen absorbed.		68
Oxygen consumed— Table of		71
Packing houses—	•••••	•
Packing houses— Refuse of Refuse of St. St. Virulence of XX	9 04 05 (110
Virulence of XX	VII.XX	viii
Pearl-		
Peari— Analyses of Illinois river water	3, 44, 60, 6 X X	1,64 VII
Collection of water for analysis		5
Illinois river water, chlorine contents	• • • • • • • •	69 71
Pekin—	, 	• • •
Pekin— Analyses of Illinois river water	27, 36, 58, 5	59, 64
Bacteriological condition of Illinois river at	×x	VIIV
Cattle feeding		72
Collection of water for analysis	• • • • • • •	77
Effect of sewage.	· · · • · · • •	77
Illinois river water, chlorine contents		69
Peoria—	•••••	190
Peoria— Analyses of Illinois river water Analyses of Illinois river water (above)		XXI
Analyses of Illinois river water (above)	25, 36, 56, 5	57, 64
Appearance of Illinois river at	· · · · · · · · · ·	100
Analyses of Illinois river water (below)	11, 44, 56, 5	7,64
Cattle feeding industry		77
Collection of water for analysis		5
Effect of sewage	· ··· · · · · · · · · · · · · ·	77
Illinois river water, chlorine contents (above).		i, 100
Illinois river water, chlorine contents (below)		69
Potehility of Illinois river weter		118 7117
Proportion of canal and diluting waters	2	71
Velocity measurements of the Illinois river		100
Population of. Potability of Illinois river water Proportion of canal and diluting waters. Velocity measurements of the Illinois river Volume of flow of Illinois river at Water bearing gravel at	5, 177, 178	5, 179 195
Comparison with Chleago Effect at Grafton	•••••	72 72
Pettenkoffer—		-
Dilution of sewage required for self-purification of streams	X	ΧÏΧ
On dilution of sewage. Petri dishes.		- 211 84
Produced by bacteria Pollution of Illinois river.		83 102
Pollution of streams—	•••••	100
Poliution of streams— Report of Poliution of tributary streams	·····	X
Donting		
Analyses of Big Vermillion river water. Point of collection.	34, 3	35, 86
Point of collection	• • • • • • •	6
Population— Aggregate of cities using filtered water Aggregate of cities using shallow wells Aggregate of cities using surface water By counties upon the Illinois river drainage basin		195
Aggregate of cities using shallow wells		195
Aggregate of cities using surface water	4 195 196	195 197
Chicago		" <u>121</u>
Cities of 5,000 or more.		121
Chicago Cities of 5,000 or more Counties showing a decrease in the last decade Density of in basin of Great Lakes.	XXX	X 1112
Effect of increase on sewage		Χij
Effect on purity of water of Great Lakes	XX	XIII
Increase of at Chicago	· • • • • • • •	118
Density of in Dasin of Great Lakes. Effect of increase on sewage. Effect on purity of water of Great Lakes. Illinois, increase by counties 1890 to 1900. Increase of, at Chicago Increase of, at East St. Louis. Increase in manufacturing centers. Number per square mile on Illinois river drainage basin. Of Illinois by decades. Percent of increase and decrease. Percent of increase and decrease.		118
Increase in manufacturing centers	· · · · · · · · · · · ·	101
Of Illinois by decades		116
Percent of increase and decrease		120
Rural		120 X X
School census		66
School census Table of, for 1890 and 1900. Crooked creek basin Table of, for 1890 and 1900. Des Plaines river basin Table of, for 1890 and 1900, DuPage river basin		119 119
Table of, for 1890 and 1900, Des Flaines fiver basin		119

Population—Concluded. Table of, for 1890 and 1906, Fox river basin. Table of, for 1890 and 1900, Kankakee river basin. Table of, for 1890 and 1900, Mackinaw river basin. Table of, for 1890 and 1900, Mackinaw river basin. Table of, for 1890 and 1900, MeKee's creek Table of, for 1890 and 1900, Sangamon river basin. Table of, for 1890 and 1900, Spoon river basin. Table of, for 1890 and 1900, Vermillon river basin. Table of, and water statistics. Urban Urban and rural. Preliminary report. Proteus mirabilis.	Page.
Table of, for 1890 and 1900, Kankakee river basin.	119
Table of, for 1890 and 1900, Mackinaw river basin	119
Table of, for 1890 and 1900, Macoupin creek basin	119
Table of for 1990 and 1900, McAce's crees	110
Table of, for 1890 and 1900, Spoon river basin.	119
Table of, for 1890 and 1900, Vermillon river basin	119
Table of, and water statistics	196 V V V
Urban and rurai	118
Preliminary report	IX
Public water supply—	87
Cities on the Illinois basin	2, 193, 194
Pumps— For Chicago city water works	
Duelfaction of comerci	
American experiments. Bacterial methods European practice	XXXIII
Bacterial methods	XXXIII
Purification—	AAAIII
General conclusions	76, 77
Purification of—	118
North branch South branch Purity of Illinois river.	113
Purity of Illinois river	75
Putrefaction— Effect on fish	
Qualitative bacteriological examinations	82
Quincv—	
Population of	118
Rainfall—	160
Effect on Chicago river	XII
Annual for Illinois Effect on Chicago river Effect on operation Fullerton avenue conduit	XI <u>V</u>
Effect on purincation	76 I 161 169
Excessive at Milwaukee, Wis 10	1, 162, 163
Excessive at other places	3, 164, 165
Excessive at St. Louis. Mo	1, 162, 163
Illinois vivos desinago basin YVIV 177 178 17	
Illinois river drainage basin	101
Illinois river drainage basin XXIX,177,178,178 Need of Purifying effect of	101
Illinois river drainage basin XXIX, 177, 178, 179 Need of Purifying effect of Rainfall data Rainfall tables	101 101 100, 101
Effect on operation Fullerton avenue conduit	101 101 100, 101
Illinois river valley	139-159
Illinois river valley Rainfall and run-off— Discussion of.	139-159 181
Illinois river valley Rainfall and run-off— Discussion of.	139-159 181
Illinois river valley Rainfall and run-off— Discussion of.	139-159 181
Illinois river valley Rainfall and run-off— Discussion of Rafter, George W.— On effect of dilution Chicago sewage XXII On lake currents Rauch, Dr. John H.— Percent Bridgeory number recommended	189-159 181 [. X X I I I X X X I I I
Illinois river valley Rainfall and run-off— Discussion of Rafter, George W.— On effect of dilution Chicago sewage XXII On lake currents Rauch, Dr. John H.— Percent Bridgeory number recommended	189-159 181 [. X X I I I X X X I I I
Illinois river valley Rainfall and run-off— Discussion of Rafter, George W.— On effect of dilution Chicago sewage XXII On lake currents Rauch, Dr. John H.— Percent Bridgeory number recommended	189-159 181 [. X X I I I X X X I I I
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended Report condition of Chicago river. Report on Chicago sewage. Report effect of Fullerton avenue pumps Scritterian	189-159 181 [. X X I I I X X X I I I
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended Report condition of Chicago river Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly. Dr. Frank W.—	139-159 181 [. X X I I I X X X I I I X V I X V I X V I
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended Report condition of Chicago river Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly. Dr. Frank W.—	139-159 181 [. X X I I I X X X I I I X V I X V I X V I
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended. Report condition of Chicago river. Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian. Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX	139-159 181 [. X X I I I X X X I I I X V I X V I X V I
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents. Rauch, Dr. John H.— Report Bridgeport pumps recommended Report condition of Chicago river. Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works.	139-159 181 I. X X I I I X X X I I I I X X X I I I I
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended Report condition of Chicago river. Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works	139-153 181 [. X X II] X X X II] X V I X V I X V I X V I X X II
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended. Report condition of Chicago river. Report on Chicago sewage. Report of Chicago sewage. Report of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of.	139-153 181 [. X X II] X X X II] X V I X V I X V I X V I X X II
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended Report condition of Chicago river. Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of. Report— Of early investigations	139-159 181 I. XXIII XXXIII XVI
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended Report condition of Chicago river. Report of Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of. Report— Of early investigations	139-159 181 I. X X III X X X III X X X III X X Y II X X Y II X Y II X X X X X
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended Report condition of Chicago river. Report of Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Report— Of early investigations Riparian rights— Court decisions.	139-155 181 XXIII XXXIII XVI XVI XVI XVI XI XXI XXI 110 82 3
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended Report condition of Chicago river. Report of Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Report— Of early investigations Riparian rights— Court decisions.	139-155 181 XXIII XXXIII XVI XVI XVI XVI XI XXI XXI 110 82 3
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. XXII On lake currents. Rauch, Dr. John H.— Report Bridgeport pumps recommended. Report condition of Chicago river. Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of. Report— Of early investigations Riparian rights— Court decisions. Rivers Pollution Commission of Great Britain— Extract from report of.	
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents. Rauch, Dr. John H.— Report Bridgeport pumps recommended. Report condition of Chicago river. Report of Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of. Report— Of early investigations Riparian rights— Court decisions. Rivers Pollution Commission of Great Britain— Extract from report of. River stages— Illinois river at Peoria, 1890 to 1900 inclusive. 166, 167, 168, 169, 170, 171, 17	139-158 181 I. XXIII XXXIII XVI XVI XVI XVI XVI XVI XVI XXIII 110 82 3 XXXI XXXI XXXI XXXI
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. XXII On lake currents. Rauch, Dr. John H.— Report Bridgeport pumps recommended. Report condition of Chicago river. Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of. Report— Of early investigations Riparian rights— Court decisions. Rivers Pollution Commission of Great Britain— Extract from report of.	139-158 181 I. XXIII XXXIII XVI XVI XVI XVI XVI XVI XVI XXIII 110 82 3 XXXI XXXI XXXI XXXI
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On effect of dilution Chicago sewage. XXII On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended. Report condition of Chicago river. Report of Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of. Report— Of early investigations Riparian rights— Court decisions. Rivers Pollution Commission of Great Britain— Extract from report of. River stages— Illinois river at Peoria, 1890 to 1900 inclusive. 166, 167, 168, 169, 170, 171, 17 Rivers— Water supply from. 190, 191, 19	139-155 181 I. X X III I. X X III I. X X III I. X Y II I. X Y II I. X Y II I. X Y II I. X X X X X X II I. X X X X X X X X X X X X X X X X X X X
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents. Rauch, Dr. John H.— Report Bridgeport pumps recommended. Report condition of Chicago river. Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian. Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of. Report— Of early investigations Riparian rights— Court decisions. Rivers Pollution Commission of Great Britain— Extract from report of. River stages— Illinois river at Peoria, 1890 to 1900 inclusive. Water supply from. 190, 191, 195 Rockford— Population of.	139-158 181 I. X X III X X X III X X X III X X X III X X Y II X X Y II X X II
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On lake currents. Rauch, Dr. John H.— Report Bridgeport pumps recommended. Report condition of Chicago river. Report on Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian. Reilly, Dr. Frank W.— Sanitarian. Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of. Report— Of early investigations Riparian rights— Court decisions. Rivers Pollution Commission of Great Britain— Extract from report of. River stages— Illinois river at Peoria, 1890 to 1900 inclusive. Neckford— Population of. Rock river Population of. Rock river Royal Lymmission on the Metropoliten Sewage—	139-158 181 I. X X III X X X III X X X III X X X III X X Y II X X Y II X X X II X X X X
Illinois river valley Rainfall and run-off— Discussion of. Rafter, George W.— On effect of dilution Chicago sewage. On effect of dilution Chicago sewage. XXII On lake currents Rauch, Dr. John H.— Report Bridgeport pumps recommended. Report condition of Chicago river. Report of Chicago sewage. Report effect of Fullerton avenue pumps Sanitarian Reilly, Dr. Frank W.— Sanitarian Self-purification of Chicago sewage. XX Reservoirs— For Chicago city water works. Results— Accuracy of. Report— Of early investigations Riparian rights— Court decisions. Rivers Pollution Commission of Great Britain— Extract from report of. River stages— Illinois river at Peoria, 1890 to 1900 inclusive. 166, 167, 168, 169, 170, 171, 17 Rivers— Water supply from. 190, 191, 19	139-158 181 I. X X III X X X III X X X III X X X III X X Y II X X Y II X X X II X X X X

	l'age.
Run-off and rainfall— Discussion of	181
Pun off	
For river For river at Peoria Illinois river at Peoria Illinois river drainage basin at Peoria Kankakee river Vermillon river	187
Illinois river drainage basin at Peoria	79, 180
Vermilion river	187
Kiirai Dodiliation—	
Definition of	19, 119
State Board of Health, power to make	IX
Sandstone— Potsdam	195
St. Peters	195
Sangamon river— Condition of water at Springfield Organic nitrogen at mouth Pollution of, at Springfield Sewage in Volume of discharge, velocity, etc.	XIII
Organic nitrogen at mouth	75
Sewage in X	xvîi
Volume of discharge, velocity, etc	135
Sangamon river drainage basin— Area of	04. 106
Population of	21, 131
Kain fall tables	58.159 71
Sanitary canal—(See drainage canal)—	
Sanitary district, dilution required	XXX
5ewers	98, 199
Survey needs of	99 201
Survey of the Illinois river basin	101
Survey of the State of Illinois	101
Bacteria necessary to our food supply	62
Secretary— Report of	ΙX
Sedimentation—	
Amount of, in South Fork	67
Effects on bacteria. Effect on purification Chicago sewage.	iixx
Seine River—	
Self purification of	68
Self purification of streams— Illinois river	62
lear river	82
Limmat river Oder river Seine river Septicemia	82 82 82 82
Seine river	82
Septicemia	86
Septic tanks— Sewage purification by	73
Sewage-	757111
Amount which a stream can purify	IIIV)
Analysis of, Chicago	67
Chicago river to receive.	110
Composition of, at Bridgeport	V V 06
Disposal of, methods employed.	Ŷ.132
Effect on Illinois river	3
Milwaukee XX	iiix
Preliminary report of State Board of Health	101
Velocity of now, enect of	tiivs
Volume of flow on various drainage areas	196
Amount which a stream can purify	92, 93 83
Other means considered	XVII
Methods—Berlin	ŢŢŢV
Sewage disposal, Unicago— Other means considered Methods—Berlin Methods—Berlin Methods—Copean cities Methods—London Methods—Paris Methods—Plaris Methods—Uniden X Methods—Other Methods—V X Methods—Other Method	(VIII
Methods-LondonX	VIII
methods—ParisXVIII Methods—Pullman, IllXVIII	XIX
Need of method	201

Sewerage—		-
Sewerage— Of Chicago suburbs. Illinois river basin. Of cities on the Illinois drainage basin	XX	XII
Illinois river basin	X	$\mathbf{x}\mathbf{x}$
Of cities on the Illinois drainage basin	.98, 199, 200.	201
Questions regarding sewerage systems	•••••	197
Features of		111
Sewerage Commission— Estimates of cost	XVII, XY	ш
Recommendations of	X	VII
Sewerage system—	VI 444	
Chicago Chesbrough, report on Chicago Chicago, cost of Chicago, historical account	XI, 111,	114
Chestrough, report of Chicago		201
Chicago, historical account	108.	110
Sewerage Systems—		
Data pertaining to		101
Sewage and water supply—		
Discussion of, relations of	196,	200
Sewers-		110
Sewers— Description of, early Dimensions of, for first system Practice in London regarding. What should be admitted to. Sherman, Mr. Clare—		112
Practice in London regarding		112
What should be admitted to		112
Sherman, Mr. Clare—		
Dii Paga river—Head water samples		6
Ship canal— Enabling act, extracts from. Ottawa convention. Shipping water—	XXIII X	
Chaoling act, extracts from.	AAIV,A	ŽΫ́
Obtawa Cultychiloh	•••••	Δ. V
		6
		_
Analyses of Kankakee river water	32,33	, 36
Point of collection		6
South Fork—	_	
Analysis of water. Fermentation in		X V 67
rementation in	• • • • • • • •	67
Sedimentation in South branch Chicago river	x	ıŸ
Spoon river—		
Organic nitrogen at mouth		75
Volume of discharge, velocity, etc		1.35
Spoon river drainage basin—		
	404	
Area of		
Area of		
Area of		
Area of	19, 120, 121, 47, 148, 158,	130 159 71
Area of Spoon river basin— Population Rain fall tables Spoon river water Bacteria identified at Havana	19, 120, 121, 47, 148, 158,	
Area of . Spoon river basin— Population	19, 120, 121, 47, 148, 158, 91	130 159 71 , 93
Area of . Spoon river basin— Population	19, 120, 121, 47, 148, 158, 91	130 159 71
Area of	19, 120, 121, 47, 148, 158, 91	130 159 71 , 93 186
Area of . Spoon river basin— Population	19, 120, 121, 47, 148, 158,	130 159 71 , 93
Area of . Spoon river basin— Population	19, 120, 121, 47, 148, 158,	130 159 71 , 93 186
Area of	19, 120, 121, 47, 148, 158, 91	130 159 71 , 93 186 118
Area of	19, 120, 121, 47, 148, 158, 91	130 159 71 , 93 186 118
Area of	19, 120, 121, 47, 148, 158, 91	130 159 71 , 93 186 118
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of . Spoon river basin— Population	19, 120, 12i, 47, 148, 158,	130 159 71 , 93 186 118 188 IV IV
Area of Spoon river basin— Population Rain fall tables Spoon river water Bacteria identified at Havana Spring creek— Area of drainage basin. Springfield— Population of Spring water— Effect of, on Illinois river. State Board of Health— Advises municipalities regarding sewerage. Advises municipalities regarding water supply. Investigations, purification of streams Meeting. Officers, members. Power to make rules and regulations. Preliminary report 1889. Retommendation to Chicago regarding sanitary affairs. X Reference to early investigations. Report, effect Chicago sewage on Illinois river. Report, sewage East St. Louis Report, sewage East St. Louis Report, water supplies, stream pollution Sanitary investigations.	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 12 11 11 11 11 11 11 11 11 11 11 11 11
Area of Spoon river basin— Population Rain fall tables Spoon river water Bacteria identified at Havana Spring creek— Area of drainage basin. Springfield— Population of Spring water— Effect of, on Illinois river. State Board of Health— Advises municipalities regarding sewerage. Advises municipalities regarding water supply. Investigations, purification of streams Meeting. Officers, members. Power to make rules and regulations. Preliminary report 1889. Retommendation to Chicago regarding sanitary affairs. X Reference to early investigations. Report, effect Chicago sewage on Illinois river. Report, sewage East St. Louis Report, sewage East St. Louis Report, water supplies, stream pollution Sanitary investigations.	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 12 11 11 11 11 11 11 11 11 11 11 11 11
Area of Spoon river basin— Population Rain fall tables Spoon river water Bacteria identified at Havana Spring creek— Area of drainage basin. Springfield— Population of Spring water— Effect of, on Illinois river. State Board of Health— Advises municipalities regarding sewerage. Advises municipalities regarding water supply. Investigations, purification of streams Meeting. Officers, members. Power to make rules and regulations. Preliminary report 1889. Retommendation to Chicago regarding sanitary affairs. X Reference to early investigations. Report, effect Chicago sewage on Illinois river. Report, sewage East St. Louis Report, sewage East St. Louis Report, water supplies, stream pollution Sanitary investigations.	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 12 11 11 11 11 11 11 11 11 11 11 11 11
Area of Spoon river basin— Population Rain fall tables Spoon river water Bacteria identified at Havana Spring creek— Area of drainage basin. Springfield— Population of Spring water— Effect of, on Illinois river. State Board of Health— Advises municipalities regarding sewerage. Advises municipalities regarding water supply. Investigations, purification of streams Meeting. Officers, members. Power to make rules and regulations. Preliminary report 1889. Retommendation to Chicago regarding sanitary affairs. X Reference to early investigations. Report, effect Chicago sewage on Illinois river. Report, sewage East St. Louis Report, sewage East St. Louis Report, water supplies, stream pollution Sanitary investigations.	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 12 11 11 11 11 11 11 11 11 11 11 11 11
Area of Spoon river basin— Population Rain fall tables Spoon river water Bacteria identified at Havana Spring creek— Area of drainage basin. Spring field— Population of Spring water— Effect of, on Illinois river. State Board of Health— Advises municipalities regarding sewerage. Advises municipalities regarding water supply. Investigations, purification of streams Meeting Officers, members. Power to make rules and regulations Preliminary report 1889. Retommendation to Chicago regarding sanitary affairs. X Reference to early investigations. Report, effect Chicago sewage on Illinois river Report, sewage East St. Louis Report, Springfield water supply. Report, Springfield water supply. Report, swater supplies, stream pollution Sanitary investigations State control— Indiana, Massachusetts, New York, New Jersey, Ohio Proposed for Illinois. Stearns, F, P.— Dilution of sewage required for self-purification of streams.	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 12 11 11 11 11 11 11 11 11 11 11 11 11
Area of Spoon river basin— Population Rain fall tables Spoon river water Bacteria identified at Havana Spring creek— Area of drainage basin. Springfield— Population of Spring water— Effect of, on Illinois river. State Board of Health— Advises municipalities regarding sewerage. Advises municipalities regarding water supply. Investigations, purification of streams Meeting Officers, members. Power to make rules and regulations Preliminary report 1889. Retommendation to Chicago regarding sanitary affairs. X. Reference to early investigations. Report, effect Chicago sewage on Illinois river. Report, sewage East St. Louis Report, sewage East St. Louis Report, swape East St. Louis Report, water supplies, stream pollution State control— Indiana, Massachusetts, New York, New Jersey, Ohio Proposed for Illinois. Stearns, F. P.— Dilution of sewage required for self-purification of streams. Stites, Dr. J. J.— Mackinaw river—Head water samples.	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 12 11 11 11 11 11 11 11 11 11 11 11 11
Area of Spoon river basin— Population	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 188 1V IV IX IX IX IX IX IX IX IX IX IX IX IX IX I
Area of Spoon river basin— Population	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 188 1V IV IX IX IX IX IX IX IX IX IX IX IX IX IX I
Area of Spoon river basin— Population	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 188 1V IV IX IX IX IX IX IX IX IX IX IX IX IX IX I
Area of Spoon river basin— Population	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 188 1V IV IX IX IX IX IX IX IX IX IX IX IX IX IX I
Area of Spoon river basin— Population Rain fall tables Spoon river water Bacteria identified at Havana Spring creek— Area of drainage basin. Spring field— Population of Spring water— Effect of, on Illinois river. State Board of Health— Advises municipalities regarding sewerage. Advises municipalities regarding water supply. Investigations, purification of streams Meeting Officers, members. Power to make rules and regulations Preliminary report 1889. Retommendation to Chicago regarding sanitary affairs. X. Reference to early investigations. Report, effect Chicago sewage on Illinois river. Report, sewage East St. Louis Report, Springfield water supply. Report, springfield water supply. Report, water supplies, stream pollution Sanitary investigations State control— Indiana, Massachusetts, New York, New Jersey, Ohio Proposed for Illinois Stearns, F. P.— Dilution of sewage required for self-purification of stream.s Stites, Dr. J. J.— Mackinaw river—Head water samples St. Louis, Mo.— Court proceedings against the drainage canal Excessive rain fall at St. Lawrence river Stock Yards—	19, 120, 121, 47, 148, 158, 91	130 159 71 186 188 188 1V IX 1V IX 1V IX 1V IX 1V IX 1V IX 1V IX 1V IX 1C IX 1
Area of Spoon river basin— Population	19, 120, 121, 47, 148, 158,	130 159 71 1,93 186 118 188 1V IV IX IX IX IX IX IX IX IX IX IX IX IX IX I

	age.
Stock yards sewage— Amount of	6,67
Stock yard wastes— Utilization of.	67
Streams- Pollution of	x
Stream Gaugings—	134
Des Plaines river (see volume of discharge)	ХХ
Water supply of	187 87
Sugar creek— Area of drainage basin Summer Flow—(See run-off.) Surface drainage—	186
Surface drainage— Condition of	110
Surveys— _ For Chicago sewerage system	111
'l'amnaratura	76
Effect on purification.	3.
Observation of	
Thresh— Water and water supplies Topography. Des Plaines valley Of the Illinois valley, effect of ancient stream on Illinois valley. Site of Chicago	ΧIX
Topography	102
Of the Illinois valley, effect of ancient stream on	104
Illinois valley	103
Tunnel—	
Cost of Dimensions of First for water supply	110
Dimensions of	110 110
Turbidity	. 135
Typhosus pacilius—	83
Life of. Not found	83
Urban population— Definition of	110
U. S. Geological Survey—	, 119
Report on sewage irrigationXXII, XX	CIII
U. S. Geological Survey— Report on sewage irrigation XXII, XX U. S. Weather Bureau Van Benschoten. Dr. George W.— Dest laines river, headwater samples	139
Des Plaines river, headwater samples	6
Current observations	100
Ot streams, table of	, 138
Area of drainage basin. Topography of Volume of discharge, velocity, etc. Drainage basin, area of	187 103
Volume of discharge, velocity, etc.	134
Drainage basin, area of	, 105
Population of 119, 120, 121	. 129
Population of	159
Vermillon river water	71
Volume of discharge-	-
Des Plaines river. DuPage river Fox river	134
Pox river	134 134
Illinois river Kankakee river Sangamon river	134
Kankakee river	185 185
Spoon river	135
Vermilion river	134
Volume of flow—	74
Illinois and Michigan canal	114
Illinois river	, 189
Illinois river and its tributaries	, 179 74
Volume of flow— Du Page river Illinois and Michigan canal. 74, 100, 188 Illinois river and its tributaries. 175, 177, 178 Kankakee river. Less than required. Of tributaries to the Illinois Wabash river	74
Of tributaries to the Illinois	100
Wadash river Water—	104
Bacteriological flora of drinking	83
Bacteriological flora of drinking Self-purification of	ĂΑ̈́
Supplied to Chicago citizens by carts	110
Water bearing gravel	, 195

	Page.
Water commissioners— For Chicago	-
Water consumed— Gallons per capita	. 196
Water level—	, 100
Lowering of, in Kankakee swamps	186, 187
Water resources of Illinois, by Leverett	103, 181
Water samples—	
Bacteriological examination	
Points of collection	. 7
Chicago	. x
Chicago, historical account.	108
Dilution of, at Chicago. Dilution of, neighboring communities.	. XV
Dilution of, neighboring communities	. <u>XY</u>
Dilution of, at river towns	. <u>X</u> V
First public, for Chicago	A A A A
First public, for Chicago. Illinois river basin Necessity for Chicago and near-by cities to coöperate	XXIV
Of cities on the Illinois river drainage basin	93. 194
Protection	. X
Purity Purity of, in connection with sewage disposal	. <u>X</u>
Purity of, in connection with sewage disposal	. 112
Questions regarding	. 190
Waterway—	100, 200
Lake Michigan to Illinois river	3, 114
Water works system—	
Chicago, cost of	. 201
Watseka, Illinois	. 186
Sewerage commissioner	. 111
Wells	101
Wells Use of water from, in Chicago	109
water supply from	193, 194
Wesley— Condition of river at	. 72
Western avenue bridge-	. 12
Analyses of canal water	3, 49, 64
Western avenue—	
Water samples from drainage canal	. 5-
Wheaton— Point of collection.	
Wilmington—	. 6
Analyses of Kankakee river water	2, 63, 64
Bacteriological condition of Kankakee river at	XVII
Collections of water for analysis	. 4
Kankakee river water, chlorine contents	69
Wilson, Col. James H	. 103
Effect on flow of Chicago river	XII
Winfield	
Analyses of DuPage river water	, 35, 36
Wisconsin-	
Supreme Court decision on riparian rights	X X X I
Wright, Mr. Frank Zeit. F. Robt.—	. 10
Bacteriologist.	ĹIX

. • • . .

• ·

--•

