Morning.

Enumerating Binary Strings

If w is a binary string, treat 1w as a binary integer i.

```
ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...
```

1, 10,11,100,101,110,111,1000,1001,1010,1011, ...

Coding for Turing machine

Let TM
$$P = (Q, \{0,1\}, \Gamma, \delta, q_1, B, \{q_2\})$$

Where
$$Q = \{q_1, q_2, ..., q_r\}, \Gamma = \{X_1, X_2, X_3, ..., X_s\}$$

$$X_1: 0, X_2: 1, X_3: B, D_1: \leftarrow, D_2: \rightarrow$$

Coding:

$$\delta(q_i, X_j) = (q_k, X_m, D_n)$$

$$\Rightarrow$$
 0ⁱ10^j10^k10^m10ⁿ

$$P \Rightarrow C_1 11 C_2 11 C_3 11 \dots C_{n-1} 11 C_n$$

Example TM for $L=\{0\}\{1\}^*$

$$\delta(q_1,0) = (q_3,0,\rightarrow) \Rightarrow 010100010100$$

$$\delta(q_3,1) = (q_3,1,\rightarrow) \Rightarrow 0001001000100100$$

$$\delta(q_3,B) = (q_2,B,\to) \Rightarrow 00010001001000100$$

 $TM \Rightarrow 010100010100 11 0001001000100100 11$ 00010001001000100

Non-recursively enumerable language

$$L_d = \{ w_i \mid w_i \notin L(M_i) \}$$

L_d is not Recursively Enumerable

Theorem L_d is not a recursively enumerable language. That is there is no TM that accept L_d .

Proof: Suppose L_d were L(M) for some TM M.

- \Rightarrow There is at least one code for M, say i, that M=M_i
- Now, ask if w_i is in L_d .
 - w_i is in $L_d \Rightarrow M_i$ accepts $w_i \Rightarrow w_i$ is not in L_d
 - w_i is not in $L_d \Rightarrow M_i$ does not accept $w_i \Rightarrow w_i$ is in L_d

Recursive languages

Definition

L is recursive if L=L(M) for some TM M such that

- 1. $w \in L \Rightarrow M$ accepts w and halts
- 2. $w \notin L \Rightarrow M$ eventually halts

Recursive languages

Theorem If L is recursive language, so is \overline{L} .

Suppose
$$L=L(M)$$
, $M=(Q, \Sigma, \Gamma, \delta, q_0, B, F)$

Let
$$\overline{M}=(Q\cup\{r\}, \Sigma, \Gamma, \delta, q_0, B, \{r\})$$
 such that

- 1. r is a new state which is not in Q
- 2. if $\delta(q,a) = \phi$ for any $q \in \mathbb{Q}$ -F and $a \in \Sigma$ then $\delta(q,a) = (r, a, \rightarrow)$

Recursive languages

Theorem If both L and its complement \overline{L} are RE, then L is recursive.

Suppose
$$M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_1, B, F_1)$$

 $M_2 = (Q_2, \Sigma, \Gamma, \delta_2, q_2, B, F_2)$
 $M = (Q_1 \times Q_2, \Sigma, \Gamma, \delta, (q_1, q_2), B, F_1 \times (Q_2 - F_2))$
 $\delta((p,q),(a,b)) = (\delta_1(p,a), \delta_2(q,b))$

Chomsky Grammar

- Noam Chomsky (1928-)
- Chomsky Grammar (1956)
- Syntactic Structures

Chomsky Grammar

Type 0: phrase structure grammar(PSG)

$$\alpha \rightarrow \beta$$
; $\alpha \in (V \cup T)^* \lor (V \cup T)^*$, $\beta \in (V \cup T)^*$

Type 1: context sensitive grammar(CSG)

$$\alpha A\beta \rightarrow \alpha \omega \beta$$
; $A \in V$, $\alpha, \omega, \beta \in (V \cup T)^*$

Type 2: context free grammar(CFG)

$$A \rightarrow \omega$$
; $A \in V$, $\omega \in (V \cup T)^*$

Type 3: regular grammar(RG)

$$A \rightarrow \alpha \mid \alpha B$$
; $A, B \in V, \alpha \in T^*$

Linear Bounded Automata

A linear bounded automata is a nondeterministic Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

that Σ must contain two special symbols [and], such that $\delta(q_i,[)$ can contain only elements of the $(q_j,[,\to)$, and $\delta(q_i,])$ can contain only elements of the $(q_i,],\leftarrow)$

Linear Bounded Automata

Example Consider the language

$$L=\{ a^nb^nc^n \mid n \geq 1 \}$$

- 1. Design a LBA to accept L
- 2. Give a CSG for L

CSG

W=aaabbbccc

 $S \rightarrow aDc$

 $D \to aDE / b$ $a\underline{D}c$

 $bEc \rightarrow bbcc$ aaDEc

 $bEE \rightarrow bbFE$ aaaDEEc

 $FE \rightarrow FF$

 $FFc \rightarrow GFc \rightarrow Gcc$ aaa $\underline{bEE}c$

 $FG \rightarrow GG$ aaa $bb\underline{FE}c$

 $bGc \rightarrow bbcc$ $aaabb\underline{FFc}$

 $bGG \rightarrow bbHG$ aaabb<u>GFc</u>

 $HG \rightarrow HH$ aaab<u>bGc</u>c

 $HHc \rightarrow EHc \rightarrow Ecc$ aaabbbccc

 $HE \rightarrow EE$

PSG

W=aaabbbccc

 $S \rightarrow abc / aAbc$

 $Ab \rightarrow bA$

 $Ac \rightarrow Bbcc$

 $bB \rightarrow Bb$

 $aB \rightarrow aa / aaA$

aAbc

 $a\overline{bA}c$

abBbcc

aBbbcc

aaAbbcc

aabAbcc

aab<mark>bAc</mark>c

aab<u>bB</u>bccc

aabBbbccc

a<u>aB</u>bbbccc

aaabbbccc

Right Linear Grammars

A grammar G = (V, T, S, P) is said to be right linear if all productions are of the form

$$A \rightarrow X$$

where $A,B \in V$, and $x \in T^*$

Example
$$G=(\{S\}, \{a, b\}, S, P)$$

 $S \to abS \mid a$

Left Linear Grammars

A grammar G = (V, T, S, P) is said to be left linear if all productions are of the form

$$A \rightarrow Bx$$

$$A \rightarrow X$$

where $A,B \in V$, and $x \in T^*$

Example
$$G=(\{S\}, \{a, b\}, S, P)$$

 $S \rightarrow Sba \mid a$

Example Design regular grammars for

(1)
$$L=\{w \mid w \in \{0,1\}^* \text{ and ending with } 01\}$$

$$L = \{0, 1\}^* \setminus \{01\}$$
 ie, $S \Rightarrow A01$
$$\Rightarrow A001$$

$$\Rightarrow A0001$$

$$\Rightarrow A0001$$

$$\Rightarrow A10001$$

$$\Rightarrow A001$$

$$G=(\{S,A\},\{0,1\},S,P)$$

What is the right linear grammar for L?

Example Design regular grammars for

(2) $L=\{w \mid w \in \{0,1\}^* \text{ and } w \text{ contains } 01\}$

L=
$$\{0,1\}^*$$
 $\{01\}$ $\{0,1\}^*$ $S \rightarrow 0S|1S$, $S \rightarrow 01A$, $A \rightarrow 0A|1A|$ ε

$$G=(\{S,A\},\{0,1\},S,P)$$

P:
$$S \rightarrow 05|15|01A$$
, $A \rightarrow 0A|1A|\epsilon$

Good good Study day Up