

Scribe: Vishal Raman

Contents

1	January 20th, 2021
	1.1 Intro to Riemann Mapping Theorem
	1.2 Cauchy's Integral Formula
	1.3 Schwarz Lemma
	1.4 Maximum Principles
	1.5 Homework I
2	January 25th, 2021
	2.1 Uniform Convergence

§1 January 20th, 2021

§1.1 Intro to Riemann Mapping Theorem

Our first goal is to proof a fundamental theorem of Riemann on conformal mappings. We start with several preparations, including some detours. The theorem essentially says that lots of open sets in \mathbb{C} are holomorphically isomorphic, given that they satisfy some simple topological conditions.

§1.2 Cauchy's Integral Formula

Recall Cauchy's formula:

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - z_0} dz$$

where Γ is a simple closed curve, piecewise differentiable, $z_0 \in \operatorname{Int}(\Gamma)$, and $f : \Omega \to \mathbb{C}$ is a holomorphic function, with Ω is open, $\Omega \supset \Gamma \cup \operatorname{Int}(\Gamma)$.

If Γ is the circle $|z - z_0| = R$, we parameterize with $z = Re^{i\theta} + z_0$ with $\theta \in [0, 2\pi)$. This gives

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta,$$

which represents the average of f on the circle.

It follows that

$$|f(z_0)| \le \max_{\partial B_R(z_0)} |f(z)|,$$

with equality if and only if f is constant.

If $f: \Omega \to \mathbb{C}$ is holomorphic for Ω connected, open and $z_0 \in \Omega$, then

$$|f(z_0)| \le \sup_{z \in \Omega} |f(z)|$$

with equality if and only if f is constant.

§1.3 Schwarz Lemma

Theorem 1 (Schwarz Lemma)

For $f: B_1(0) \to \mathbb{C}$ holomorphic with $|f(z)| \leq 1$ for all z and f(0) = 0. Then

$$|f(z)| \le |z|, |f'(0)| \le 1.$$

If for some $z_0 \neq 0$, $|f(z_0)| = |z_0|$ or if |f'(0)| = 1 then f(z) = cz for some |c| = 1.

Proof. Define a function

$$g(z) = \begin{cases} f(z)/z, & \text{if } 0 \le |z| \le 1\\ f'(0), & \text{if } z = 0 \end{cases}.$$

Note that g(z) is continuous since at zero,

$$\lim_{z \to 0} \frac{f(z)}{z} = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = f'(0).$$

Hence, $|g(z)| \le C < \infty$ using the Weierstrass Extreme Value theorem. If $0 < \epsilon < |w| < r < 1$, note that taking a Keyhole Contour, we have

$$g(w) = \frac{1}{2\pi i} \left(\int_{|z|=r} - \int_{|z|=\epsilon} \right) \frac{g(z)}{z - w} dz.$$

Note that

$$\left| \int_{|z|=\epsilon} \frac{g(z)}{z-w} \, dz \right| \le (2\pi\epsilon) \cdot C \frac{1}{|w|-\epsilon} \xrightarrow{\epsilon \to 0} 0.$$

It follows that

$$g(w) = \frac{1}{2\pi i} \int_{|z|=r} \frac{g(z)}{z - w} dz$$

for 0 < |w| < r. The right side is holomorphic in w if |w| < r, so it follows that

$$g(w) = \frac{1}{2\pi i} \int_{|z|=r} \frac{g(z)}{z - w} dz$$

is holomorphic in |z| < 1.

This can also be proved by taking a Taylor series about the origin. Since there is no constant term, we can divide by z to still have a convergent Taylor series.

If r < 1,

$$\sup_{|z| \le r} |g(z)| = \sup_{|z| = r} |g(z)| \le \sup_{|z| = r} \frac{|f(z)|}{|z|} \le \frac{1}{r}.$$

If we let $r \uparrow 1$, then we get $\sup_{|z| < 1} |g(z)| \le 1$. It follows that $|f(z)| \le |z|$, $|f'(0)| \le 1$. If $|f(z_0)| = z_0$ for some $0 < |z_0| < 1$ then $|g(z_0)| = 1$ and g is constant by the maximum principle so g(z) = c, f(z) = cz. If |f'(0)| = 1, then |g(0)| = 1 so g is constant and f = cz.

§1.4 Maximum Principles

In the above proof, we used the maximum principle. Some other versions we will use are the following:

If $K \subset \mathbb{C}$ compact and $f: K \to \mathbb{C}$ continuous, and the restriction of f to the interior of K is holomorphic, then

$$\sup_{z \in K} |f(z)| = \sup_{z \in \partial K} |f(z)|.$$

If Ω is open and connected, $f:\Omega\to\mathbb{C},\ z_0\in\Omega,\ \text{and}\ |f(z_0)|=\sup_{z\in\Omega}|f(z)|,\ \text{then }f$ is constant. Applying this to e^f and using that $|e^f|=e^{\operatorname{Re} f},\ \text{we find that}$

Re
$$f(z_0) = \sup_{z \in \Omega} \operatorname{Re} f(z),$$

implies that f is constant. We have the same result for Im f by replacing f with -if.

§1.5 Homework I

Show the Automorphisms of the unit disk are fractional linear transformations.

Proof. Following the hint, define $h = g \circ f$. Note that $h : \{|z| < 1\} \to \{|z| < 1\}$ is a holomorphic bijection as a composition of holomorphic bijections. Furthermore, note that

$$h(0) = \frac{f(0) - z_0}{1 - \overline{z_0}f(0)} = \frac{z_0 - z_0}{1 - \overline{z_0}f(0)} = 0.$$

Note that we can apply the Schwarz lemma to h and h^{-1} since the ranges of both functions are $\{|z|<1\}$. It follows that $|h'(0)|\leq 1$ and

$$1 \ge |(h^{-1})'(0)| = \left| \frac{1}{h'(h^{-1}(0))} \right| = \left| \frac{1}{h'(0)} \right|.$$

It follows that |h'(0)| = 1, so by the equality case of the Schwarz lemma, h(z) = cz for some $c \in \mathbb{C}$.

It follows that

$$h(z) = \frac{f(z) - z_0}{1 - \overline{z_0}f(z)} = cz \Rightarrow f(z) = \frac{z_0 + cz}{1 + c\overline{z_0}z} = \frac{a + bz}{c + dz}$$

for $a, b, c, d \in \mathbb{C}$.

§2 January 25th, 2021

§2.1 Uniform Convergence

Remark 2.1. They sometimes call open connected sets "regions".

Definition 2.2 (Uniform Convergence). Let $\Omega \subset \mathbb{C}$ be open. Let $f_n : \Omega \to \mathbb{C}$ be holomorphic and $f : \Omega \to \mathbb{C}$ a function so that $\lim_{n\to\infty} \sup_{z\in K} |f(z) - f_n(z)| = 0$ for all $K \subset \Omega$ compact(also denoted $K \subset \Omega$).

Remark 2.3. Recall from real analysis that f is a continuous function.

Some further remarks:

- It suffices to check the result for a sequence of compact subsets K_m so that $\bigcup_m K_m^{\circ} = \Omega$, the it suffices to check those. If $K \subset\subset \Omega$, then K is compact and covered by the union of the subsets so there exists a finite subcovering, and uniform convergence on the subcovering implies uniform convergence on K.
- It is often convenient to introduce $||g||_K = \sup_{z \in K} |g(z)|$. Uniform convergence can be restated as $||f_n f||_K \to 0$ for all $K \subset\subset \Omega$.
- If $||f_n f||_K \to 0$ for all $K \subset\subset \Omega$, then f is also holomorphic. It follows by passing to the limit in the Cauchy Integral formula. Namely, take $\{z : |z z_0| \leq R\} \subset \Omega$ and consider the points in $|z_0 \zeta| < R$.

$$\left| f_n(\zeta) - \frac{1}{2\pi i} \int_{|z-z_0|=R} \frac{f(z)}{z-\zeta} dz \right| = \left| \frac{1}{2\pi i} \int_{|z-z_0|=R} \frac{f_n(z)}{z-\zeta} dz - \frac{1}{2\pi i} \int_{|z-z_0|=R} \frac{f(z)}{z-\zeta} dz \right|$$

$$\leq \frac{1}{2\pi} \frac{1}{R - |z_0-\zeta|} \cdot (2\pi R) ||f_n - f||_{|z-z_0|=R} \to 0.$$

So it follows that

$$f(\zeta) = \lim_{n \to \infty} f_n(\zeta) = \frac{1}{2\pi i} \int_{|z-z_0|} \frac{f(z)}{z-\zeta} dz.$$

It follows that f continuous on $|z - z_0| = R$ is holomorphic in $\zeta \in \{|z - z_0| < R\}$, so it follows that f is holomorphic.

• We can similarly show that

$$f_n^(j)(\zeta) = \frac{n!}{2\pi i} \int_{|z-z_0|=R} \frac{f_n(z)}{(z-\zeta)^{n+1}} dz$$

and
$$||f_n^{(j)} - f(j)||_K \to 0$$
.

From the last item, we have the following theorem.

Theorem 2

If $f_n \to f$ on compact subsets of Ω , the if f_n is holomorphic we find that f is holomorphic and $f_n^(j) \to f^{(j)}$ uniformly on compact subsets of Ω .

Theorem 3 (Hurwitz)

Let Ω be a region, $f: \Omega \to \mathbb{C}$ and $f_n: \Omega \to \mathbb{C}$ holomorphic with $f_n(\Omega) \subset \mathbb{C} \setminus \{0\}$, $n \in \mathbb{N}$ and $||f_n - f||_K \to 0$ for all compact subsets. Then either $f \equiv 0$ or $f(\Omega) \subset \mathbb{C} \setminus \{0\}$.

Proof. If f is not identically zero on ω , then since f is holomorphic, its zeros are isolated. If $z_0 \in \Omega$, $f(z_0) = 0$, then there is $\epsilon > 0$ so that when $0 < |z - z_0| < \epsilon$, $f(z) \neq 0$.

Since $f(z) \neq 0$ for $|z - z_0| = \epsilon/2$, by the Weierstrass theorem applied to |f| on $|z - z_0| = \epsilon$, we have $|f(z)| \geq m > 0$ on $\{|z - z_0| = \epsilon/2\} = \Gamma$. If $||f_n - f||_{\Gamma} \leq m/2$ for n > N, then

$$|f_n(z)| \ge |f(z)| - m/2 \ge m - m/2 = m/2$$

for $z \in \Gamma$. Hence, it follows that $||1/f_n - 1/f||_{\Gamma} \to 0$ (we leave this as an exercise). Since $||f'_n - f'||_{\Gamma} \to 0$, we find that $||f'_n/f_n - f'/f|| \to 0$ (another exercise) and hence

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f_n'}{f_n} dz \to \frac{1}{2\pi i} \int_{\Gamma} \frac{f'}{f} dz.$$

The integrand of the left hand side is $(\log f_n)'$, whose integral is 0, and the right side is the order of the zero of f at z_0 by the argument principle. It follows that the order of z_0 as a possible zero is 0, so $f(z_0) \neq 0$.

Theorem 4

For $\Omega \subset \mathbb{C}$ open, \mathcal{F} a set of holomorphic functions, the following are equivalent:

- for every $K \subset\subset \Omega \sup_{f\in\mathcal{F}} \|f\|_K < \infty$
- for every sequence $(f_n)_{n\in\mathbb{N}}\subset\mathcal{F}$, there is a subsequence $(f_{n_j})_{j\in\mathbb{N}}$ with $n_1< n_2<\ldots$ so that $(f_{n_j})_{j\in\mathbb{N}}$ is uniformly convergent on compact subsets of Ω .

Proof. We first show 2 implies 1. If $\sup_{f \in \mathcal{F}} \|f\|_K = \infty$, then we can find for each $n \in \mathbb{N}$ $f_n \in \mathcal{F}$ so that $\|f_n\|_K \geq n$. If we abstract a convergence subsequence, then $\|f_{n_j} - f\|_K \leq C < \infty$ and $\|f_{n_j}\|_K \leq \|f\|_K + C$, while $\|f_{n_j}\|_K \to \infty$, a contradiction. \square