工学/自然システムの 諸問題に対する 数理工学による解法探求

高度情報化社会とよばれる現代社会においては、 大規模で複雑なシステムをモデル化して解析を行い、制御、設計、 そして運用するという状況がいたるところに現れます。 そこでは、情報、電気、機械、化学など個々の専門知識を 身に付けているだけでなく、一見異なるように見える 様々な問題に共通する数理的な構造を解明し、さらに問題解決の ための数理的な手法を開発することが非常に重要となります。 このような観点に立ち、私たち数理工学コースの7つの研究室では、 数理解析・離散数理・最適化数理・制御システム論・応用数理モデル(連携)・ 物理統計学・力学系数理の最先端の研究を進めています。

べき乗則の普遍性とリスク指標の確立 ―超一般化中心極限定理の発見とそれから―

世界はべき乗側が溢れています。何故でしょうか?そんな数理的疑問から私達の旅は 出発しました。ガウス分布と異なるべき乗則は、非対称性を持つことがあり驚くほど多彩で す。そんなべき乗則の数理的根拠は、ランダムな変数の和がガウス分布に収束するという 中心極限定理の一般化に遡ります。数理的根拠を突き詰めつつ、世界に溢れるデータか らべき乗則を精度よく推定するアルゴリズムを構築し、金融市場のリアルタイムリスク指標 につながるデータ解析手法を新たに開発してきました。べき乗則は金融市場だけでなく、 宇宙の物理現象など様々なところに現れます。べき乗則は、統計物理学、確率論、カオ ス理論、宇宙論、金融市場、脳科学、数論(リーマンゼータ関数)といった様々な分野を 解明する共通の数理的概念です。皆さんも、私達の旅に参加してみませんか?まだ、始まっ たばかりです。

大学院情報学研究科 数理工学コース教授

平成7年3月東京大学大学院理学系研究科博士課程修了(物理学専攻)。博士(理学) 平成7年4月理化学研究所基礎科学特別研究員。平成10年4月郵政省入省。通信総合 研究所(現情報通信研究機構NICT)研究官。平成12年7月郵政省通信総合研究所(CRL) 主任研究官。平成17年11月理化学研究所次世代移動体通信研究チームリーダー 平成24年4月京都大学大学院情報学研究科教授。専門は統計物理学。非線型科学 複雑系。特に、カオス理論を通信、暗号、モンテカルロ法などに適用し、最近では雷離 | 周星常緑出アルゴリズムを構築Ⅰ。大地雲発生前の雷離園異常、宇宙天気異常などを 捉えるなどの防災研究を行い、国連専門機関であるITU(国際電気通信連合)ともその 社会実装に連携を開始している。一方、金融市場の異常を捉える方法もメガバンクの 一角である金融グループと共同研究を行っている。

数学とコンピュータ、最適化で問題解決

「最適化」、「最適解」などという専門用語が今では日常語として出てくるように、「最適 化」が身近になってきました。数理工学における最適化では、「ふんわりとした最適化」を コンピュータもわかる「最適化モデル」として数学的に記述し、さらに現実社会に現れる大 規模かつ複雑な最適化モデルの最適解、つまり問題解決策を与える手法を開発してい ます。

私の研究室では、主に最適解の候補が連続値で表される連続最適化を主に扱ってい ます。連続最適化は、ディープラーニングや金融工学などを支える基盤技術です。みな さんも、数理工学を駆使して、多くの方々に喜ばれる最適な社会を作り上げてみませんか。

大学院情報学研究科 数理工学コース教授

1996年3月奈良先端科学技術大学院大学情報科学研究科博士課程修了。1996年4月日 本学術振興会PD。1997年8月京都大学大学院工学研究科助手。2005年4月京都大学大 学院情報学研究科准教授。2014年7月京都大学情報学研究科教授。専門は連続最適化。 とりわけ、大規模最適化、均衡問題、非線形方程式などに従事。

概要

■分野一覧

_ /3 23 96	
分野名	担当教員
数理解析	辻本 諭 教授
離散数理	原口 和也 准教授
最適化数理	山下 信雄 教授 福田 秀美 准教授 佐藤 寛之 特定准教授 山川 雄也 助教
制御システム論	加嶋 健司 准教授 大木 健太郎 助教
物理統計学	梅野 健 教授 上原 恵理香 講師
力学系数理	矢ヶ崎 一幸 教授 柴山 允瑠 准教授 山口 義幸 助教
	岩崎 淳 助教
応用数理モデル (連携ユニット)	野中 洋一 連携教授 高橋 由泰 連携准教授

■数理工学コースカリキュラム

	博士(情報学)	
	博士論文	
3年	コース開設科目(セミナー 4単位を含む計6単位)	
2年	数理工学特別セミナー A、B E (各2単位)	研究指導
1年	応用数学特別セミナー E システム数理特別セミナー E 数理物理学特別セミナー E (各2単位)	

1年	が用数子特別セミナー E クスプム数壁物がセミナー E 数理物理学特別セミナー E (各2単位)				
修士(情報学)					
	修士論文				
	コース開設科目(他コース開設の推奨科目を含む選択12単位以上、 ただし、コース開設科目・研究科共通科目計算科学入門を計8単位以上を含む)	研究指導科目 (必修10単位)			
2年	コース専門科目 数理解析特論 離散数理特論 制御システム特論 数理解析をます。 離散数理セミナー 最適化数理特論 物理統計学特論 力学系理論特論 数理ファイナンス通論 (以上各2単位) 物理統計学セミナー 力学系数理セミナー	数理工学特別研究2 <i>E</i> (修士2年、5単位)			
1年	金融工学 応用数理工学特論A 応用数理工学特論B (以上各1単位) パターン認識特論 他11科目	数理工学特別研究1 <i>E</i> (修士1年、5単位)			
	コース基礎科目(各2単位) 計画数学通論 数理物理学通論 システム解析通論				
	研究科共通科目 ブラットフォーム学展望(2単位) 計算科学演習A(1単位) 計算科学人門(2単位) 計算科学演習A(1単位) 情報学展望1 情報学展望2 情報学展望4 [情報学展望4 年 (格2単位) 情報分析・管理演習(1単位) 情報分析・管理演習(1単位) 情報学展望5 (各2単位) 情報学成立を社会貢献上(1単位) 情報学展望5 (格2単位) 情報学成立を社会貢献上(1単位) 情報学展望5 (格2単位) 情報学成立を社会貢献上(1単位)	研究科が提供する その他科目			
入学前	基礎数学 機構分学、線形代数学など 修得している 基礎事項を 修得している を開致、フーリエ解析、 数値解析、グラフ理論など 制御理論など	数理物理学 古典力学、微分方程式、 統計力学など			

※Eと記された科目は英語だけでも修得可

数理解析分野

可積分系によるアルゴリズム開発

現代のソリトン研究、可積分系研究では、直交多項式や特 なく、可積分系研究で開発された数理的手法が、アルゴリズ ム開発や数値計算法など、従来可積分系とは無関係とみら

れてきた様々な問題に適用されるようになってきました。本 殊関数などの可積分系に関係の深い応用解析の研究だけで 分野は、この研究領域のパイオニアとして、可積分系による アルゴリズム開発などコンピュータサイエンスを視野にいれ た新しい数学「可積分系の応用解析」を研究しています。

[辻本 諭]

超離散ソリトンの相互作用

連続・離散・オートマトンをつなぐ理論

離散数理分野

離散数学の問題の複雑さの解明とアルゴリズムの開発

システムを表現するグラフ・ネットワーク、生産の効率化 を計るスケジューリング、大量のデータの論理的解析など、 離散数学の話題は応用と密着しています。本分野ではこれら 問題に対する計算の複雑さの解明、厳密アルゴリズム、近似

アルゴリズムの理論的設計、タブー探索、遺伝アルゴリズム などのメタヒューリスティクスの開発および現実問題への適 用を目指しています。 [原口 和也]

燃焼熱が、ある目標値を持つと期待される化合物の構造式。 化合物データベースから学習した予測モデルの逆問題を、 混合整数最適化問題として定式化し解くことで構築した。

幅が固定された箱に矩形を重複なく 詰め込み、高さを最小化するパズル。

概要

最適化数理分野

最適化は問題解決のキーワード

現実の様々な問題を解決するための数理的な方法論 として非常に重要な役割を果たしている最適化の理論 と手法について教育・研究します。特に、数理計画の 基礎理論の研究とともに、現実の大規模システム、複雑 な非線形システム、不確実性を含むシステムなどに対 する新しい数理最適化のアプローチの開発を行います。 [山下 信雄・福田 エレン 秀美・佐藤 寛之・山川 雄也]

無制約最適化問題の最大解と最小解

制御システム論分野

制御とモデリングへの数理的アプローチ

発展性と実用性を重視した制御理論の構築を目標と して、制御システムのモデリング、解析、設計における 数理的手法とその応用に関する教育・研究を行います。 主な研究テーマは、確率システムの制御、量子制御理 論です。

[加嶋 健司・大木 健太郎]

制御システム設計の概念図

物理統計学分野

多要素結合ネットワーク系のダイナミクスの数理と複雑工学システム設計理論

多くの要素(ユニット)が相互作用し情報のやりとりを行う 分散通信ネットワークやスマートグリッドの様な複雑工学シ ステムの数理的解析や設計理論の構築を目標とします。ま た、ニューラルネットワークなどの生物系ネットワーク、SNS などのソーシャルメディア、経済現象に生起する複雑多様な 現象の数理的、統一的理解とシステム設計理論の構築をめ ざします。例えば、ニューラルネットワークにおける情報処理、

インターネットや分散ネットワーク、無線ネットワークなどの 情報通信システムのシステム評価、高速モンテカルロ計算ア ルゴリズム、価格・株価変動等の経済現象の動的性質を、 統計物理学、確率過程理論、力学系理論、エルゴード理論、 計算機実験、大規模データ処理技術等を用いて解析します。 「梅野 健・上原 恵理香・岩崎 淳]

信号解析・多重通信システムに 適用可能なカオス符号パターン

ランダムなネットワークの両端に外場を与えて伸長させるときの 頂点の分布をグラフラプラシアンから計算する。

力学系数理分野

力学系理論に基づいたシステムの数理

力学系理論の手法を用いて、自然科学や工学分野等に現れるさまざまなシス テムで起こるカオスや分岐等の複雑現象を解明し、さらに応用して新たな工学技 術を創生することを目標とします。その目標のため、従来の理論に留まらず、力学 系の革新的な理論の構築に挑戦します。また、精度保証計算や大規模数値シミュ レーション等の数値的な手法も用いて、力学系や微分方程式の非可積分性、偏 微分方程式でモデル化される非線形波動、古典力学のn体問題における周期運 動、多体系の運動論の問題、さらにロケットの軌道設計やドローンのような飛翔 体の運動や制御にも取り組みます。

[矢ヶ崎 一幸・柴山 允瑠・山口 義幸]

変分法により存在が示された4体問題の超8の字解

応用数理モデル連携ユニット

情報システムに知を吹きこむ(連携:日立製作所)

情報システムをくらしや産業に役立たせるには、システムが扱う人々の行動 やモノの運動特性を数理的にモデル化することが不可欠です。モデルの形は、 概念的なものから精緻な数値モデルまで多岐にわたりますが、人間の知識の活 用方法(構造化モデリング)や実データの活用方法(多変量解析)など、さまざま なモデル作りの方法論を産業界の実例で研究しています。

[野中 洋一・高橋 由泰]

社会基盤分野のモデリング