

Overview of Model-Building

Data collection and processing Exploratory data analysis Preliminary model investigation Model selection Model diagnostic and validation

Exploratory Data Analysis

- Type of each variable: quantitative or qualitative?
- Distribution of each variable: symmetric or skewed? outliers?
 - Quantitative: histogram, boxplot, summary statistics, etc.
 - Qualitative: pie chart, frequency table, etc.
- Relationships among variables.
 - scatter plot matrix, correlation matrix,
 - nonlinear pattern? clusters? outliers?

Preliminary Model Fitting

- Residual plots based on initial fits:
 - nonlinearity? departure from Normality? nonconstant error variance?
 - transformations needed?
 - omission of important predictors/interaction terms/high-order power terms?
- The goal is to decide on:
 - Functional forms in which variables should enter the regression model.
 - Potential pool of predictors, interactions and higher-order powers to be considered in subsequent analysis.
- This process should be aided by prior knowledge and domain expertise if possible.

Surgical Unit

A hospital surgical unit was interested in predicting survival times of patients (Y, in days, ascertained in a follow-up study) undergoing a particular type of liver operation. 108 such patients were randomly selected for this study. The following variables were measured for each patient: blooding clotting score (X_1), prognostic index (X_2), enzyme function test score (X_3), liver function test score (X_4), age (X_5 , in years), gender (male or female) and history of alcohol use (none, moderate or severe). The two qualitative variables are quantified by the following indicator variables:

$$X_6 = \begin{cases} 1 & if \text{ female} \\ 0 & if \text{ male} \end{cases}$$

$$X_7 = \left\{ egin{array}{lll} 1 & \emph{if} & \emph{moderate use} \\ 0 & \emph{if} & \emph{otherwise} \end{array} \right. X_8 = \left\{ egin{array}{lll} 1 & \emph{if} & \emph{severe use} \\ 0 & \emph{if} & \emph{otherwise} \end{array} \right.$$

These constitute the pool of potential X variables.

	We the	US	e h	alf hal	of t	he	dat	a to	o bi	uild del	th	e m	ode	el (1	trai vali	nin dat	ig (data	a) a	ınd lat	US or	е		
	case		ttino			-	enzyn		liver			ende		-					-			1		
	X1 1	6.	X2	l br	X3 62	LIC	X4 81		X5 2.59	Х6	ge (50	X7 0		1		8	arco		Y	e s	69			
	2 3	5. 7.			59 57		66 83		1.70 2.16		39 55	0		0 0			0				46 71			
	53 54	6. 8.	4		59 78		85 72		2.33 3.26		 63 56	0		 1 0			0				55 65	0		
	J-1	0.			70		,,,		3.20		50	ŭ		•							0.5	-		
															4	□ ▶	4 ₽	▶ ∢	≣ ⊦	∢ ≣	Þ	1	りの	(~

Explore the response variable:

Distribution of survival time is , so we may want to consider a transformation to make it more normal like. The transformation seems to work the best in this case.

Preliminary investigation: fit a first-order model with all variables to explore whether transformations, etc., are needed.

```
fit1=lm(Y ... data=data o) ##fit a first-order model with all X variables
plot(fit1, which=1) ## residuals vs. fitted shows nonlinearity and nonconstant variance
plot(fit1, which=2) ##residuals 0-0 shows heavy right tail
library(MASS)
boxcox(fit1) ### boxcox procedure suggests logarithm transformation of the response variable.
fit2=lm(log(Y)... data=data,o) ##fit a first-order model with all X variables and log Y as response
plot(fit2, which=1) ## no obvious nonlinearity and nonconstant variance
plot(fit2, which=2) ## no obvious departure from normality
> summary(fit2)
Call:
lm(formula = log(Y) ~ .. data = data.o)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.050949 0.251741 16.092 < 2e-16 ***
            0.068551 0.025420 2.697 0.00982 **
X 1
X2
            0.013459 0.001947 6.913 1.37e-08 ***
            0.014948 0.001809 8.261 1.44e-10 ***
XЗ
Х4
            0.007931 0.046706 0.170 0.86592
X5
           -0.003567 0.002751 -1.296 0.20145
            0.084151 0.060746 1.385 0.17279
X6
            0.057313 0.067480 0.849 0.40019
X7
Х8
            0.388190 0.088374 4.393 6.73e-05 ***
```

4□ > 4同 > 4 □ > 4 □ > □

	Pai	rwi	se (cor	rela	atio	n n	natr	ix.															
				nd(1	og(da	ita.o	\$Y),	data.	o\$X1,	dat	a.o\$2	(2, d	ata.d	\$X3,	data	.o\$X	4, da	ta.o	\$X5))				
		ınd(t		2) ottin	a nro	anos	tic	en z vm	e liv	er	age													
		ırvia			.00		.25	-11271	0.47			0.65	-0.1	15										
	clott				. 25		.00					0.50												
	prognostic			. 47		.09					0.37													
	enzyn				. 65		. 15					0.42												
	liver	7			.65 .15		. 50		0.37			1.00												
	age			-0	. 15	-0	.02		-0.05	-0	.01 -	0.21	1.0	שע										
																				+-			0.0	
															4		√ □	• •	= ▶	4 ≡	•	1	200	C*

Based on these preliminary investigations, we decide to: use log-survival as the response variable not include any interaction terms: this can be further examined by plotting residuals against various interaction terms. Next, we should examine whether all predictors are needed or a subset of them is adequate in explaining log-survival \Longrightarrow model selection. 4 D > 4 B > 4 B > 4 B > B

Model Selection

- Why is there a need for model selection?
 - Models with many X variables tend to have sampling variability. They are also hard to maintain and interpret.
 - On the other hand, omission of key X variables leads to fitted regression functions and predictions.
- The goal of model selection is to choose a subset of X variables which balances between . i.e., achieves

Correct Models vs. Good Models

- Correct models are those that contain all important X variables.
- Consequently, correct models have model bias.
 - However, a correct model is model because it may include which lead to
 - A good model should contain), and at the same time it should
- In summary, a good model achieves bias-variance trade-off.

a good

Example. The response variable Y is generated by:

$$Y_i = 1 + 2X_1 + 3X_2 + \epsilon_i, \quad \epsilon_i \sim_{i.i.d.} (0, \sigma^2).$$

- Any model contains (X_1, X_2) is a correct model, e.g., $\{X_1, X_2\}, \{X_1, X_2, X_1X_2\}, \forall \{X_1, X_2, X_1^2, X_2^2\}, \{X_1, X_2, X_3, X_4, X_5\}.$
 - These models lead to of the mean response
 - and error variance. However, some of them may have model variance such that the estimates behave erratically with even very small perturbation of the data. Such models, although correct, are
- On the other hand, the models $\{X_1\}$ or $\{X_2\}$ both have an important X variable being omitted and thus they lead to

Model Variance

Assume the response vector Y has $Var(Y) = \sigma^2 I_0$. Let $\mathbb{M} = \mathbb{M}(X_1, \cdots, X_{p-1})$ be an arbitrary model (not necessarily a correct model) with design matrix **X** on these n cases.

 The (in-sample) variances of M are the variances of its fitted values **Ŷ**, where

$$\hat{\mathbf{Y}} = H(\mathbf{X})\mathbf{Y}, \quad Var(\hat{\mathbf{Y}}) = \sigma^2 H(\mathbf{X}), \quad H(\mathbf{X}) = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$

The overall model variance:

 Therefore, larger models always have overall (in-sample) variance, whether they are correct or not.

Model Bias

• The (in-sample) biases of a model $\mathbb{M} = \mathbb{M}(X_1, \dots, X_{p-1})$ are the biases of the fitted values:

$$bias_{in}(\mathbb{M}) = E(\hat{\mathbf{Y}}) - E(\mathbf{Y}) = (H(\mathbf{X}) - \mathbf{I})\mu, \ \hat{\mathbf{Y}} = H(\mathbf{X})\mathbf{Y}, \ \mu = E(\mathbf{Y}).$$

- The biases depend on

If M is a correct model, then $bias_{in}(M) =$

Mean-Squared-Estiamtion-Errors of a Model

The msee equals to variance plus squared bias, i.e., $msee_{h}(\mathbb{M}) = Var_{h}(\mathbb{M}) + bias_{h}^{2}(\mathbb{M}).$ $msee_h(\mathbb{M}) =$ 4 D > 4 B > 4 E > 4 E > E 9 Q P

E(SSE) of a Model

E(SSE) =

- $SSE = \mathbf{e}^T \mathbf{e} = \mathbf{Y}^T (\mathbf{I} H(\mathbf{X})) \mathbf{Y}$, is a measure of of the model to the **observed data Y**.
 - E(SSE) is affected by three factors:

• If
$$\mathbb M$$
 is a correct model, then $bias_{in}(\mathbb M)=$ and thus $E(SSE)=$ and $E(MSE)=$.

• If M is an underfitted model, i.e., $\mu = E(Y) \langle X \rangle$, then E(SSE) and E(MSE).

Summary: Model Varinace and Model Bias

- Larger models always have a overall variance.
- The overall bias of a model depends on how well the column space of its design matrix approximates the mean response vector. Correct models are
- For two correct models, the larger model always has a E(SSE), so they tend to the observed data. On the other hand, the larger models have overall variance and thus they have overall mean-squared-estimation-error.
- Under-fit models have models of the same size. So they tend to the observed data. Their MSE

Bias-Variance Trade-off

Key Components for Model Selection

- Criterion to compare models:
 - C_p , AIC_p , BIC_p , $Press_p$, etc.
- Procedure to search for good model(s):
 - Best subset selection: Exhaustive search; When the number of potential X variables is not too big
 - Stepwise regression: Greedy search: The number of potential X variables can be large.

Full Model vs. Candidate Model

- Full model: The model that contains all P potential X variables in the pool.
 - Assume the full model is a correct model.
 - It is often used to provide an unbiased estimate for the error variance.
- Candidate model: A model that contains a subset of p-1 X variables with $1 \le p \le P$.
- The goal is to choose good model(s) (subset(s) of X variables) that balances bias and variance.

Mallows' Cp Criterion

Mallows'
$$C_p$$
 for a model with p regression coefficients:

$$C_p := \frac{SSE_p}{\hat{\sigma}^2} - (n-2p).$$

- n : sample size (constant across models).
- SSE_p: error sum of squares of the candidate model.
- $\hat{\sigma}^2$: an estimator of the error variance σ^2 . E.g.,

$$\hat{\sigma}^2 = MSE_{\text{full model}} = MSE(X_1, \cdots, X_{P-1}).$$

- $\hat{\sigma}^2$ is unbiased due to the assumption that the full model contains X variables so that
- C_ρ of the full model is always

Mallows' C_p as an Estimator of msee

How to Use C_p ?

- If a model has no (in-sample) bias, i.e., $bias_{in}(\mathbb{M}) = \mathbf{0}$, then $E(C_p)$. Otherwise $E(C_p)$ tends to be than p.
- When C_p is plotted against p, then models with will tend to fall near the diagonal line $C_p = p$.
- On the other hand, models with will tend to fall considerably above this line.
- We should look for models with (i) the C_p value not far above p and (ii) small C_p value. Such models have bias and number of X variables (thus model variance).
 - Surgical unit. The model with X_1 , X_2 , X_3 has $C_p=3.38 < p=4$, indicating little or no bias. Its C_p value is also the smallest among all models being considered.

AICp and BICp Criteria

Akaike's information criterion (AIC):

$$AIC_p = n\log \frac{SSE_p}{n} + 2p.$$

Bayesian information criterion (BIC):

$$BIC_p = n\log \frac{SSE_p}{n} + (\log n)p.$$

- We should look for models with small AIC (BIC).
 - Surgical unit. The model with X₁, X₂, X₃ has the smallest AIC and BIC among the models being considered.

- The first term: $n \log \frac{SSE_p}{n}$ reflects the of the model to the observed data.
 - It by adding more X variables into the model.
- The second term, 2p for AIC and (log n)p for BIC, reflects
 - It by adding more X variables into the model.
 - If $n \ge 8$, then $\log n > 2$ and BIC puts penalty on model complexity and tends to choose
 - models than AIC.

Press_p Criterion

Predicted residual sum of squares ($Press_p$):

$$Press_p = \sum_{i=1}^n (Y_i - \widehat{Y}_{i(i)})^2.$$

- Y_i is the observed response of the ith case.
- $\widehat{Y}_{i(i)}$ is the predicted value for the ith case obtained by fitting the model only using n-1 cases excluding case i.
- Press_p is also known as leave-one-out-cross-validation (LOOCV).
- Models with small Pressp are considered good in terms of predictive ability.
 - Surgical unit: the model with X_1, X_2, X_3 has $Press_p = 3.914$ which is the smallest among all models being considered here.

Calculate Press_p

Press_p can be calculated without actually performing n regressions.

This is because the deleted residual for the ith case:

$$d_i := Y_i - \widehat{Y}_{i(i)} =$$
, $i = 1, \dots, n$.

where $e_i = Y_i - \widehat{Y}_i$ is the residual of the *ith* case and h_{ii} is the *ith* diagonal element of the hat matrix **H**, both from the regression fit using

• So

Derive the Deleted Residuals

Optional Reading.

Define Y by replacing the ith element of the response vector Y with the leave-i-out predicted value $\hat{Y}_{i(i)}$ of the ith case:

$$\tilde{\mathbf{Y}} = (Y_1, \dots, Y_{i-1}, \hat{Y}_{i(i)}, Y_{i+1}, \dots, Y_n)^T.$$

• Let $\hat{\beta}_{(i)}$ be the leave-i-out LS fitted regression coefficients.

Then $\hat{\beta}_{(i)}$ is also the LS fitted regression coefficients by using $\tilde{\mathbf{Y}}$ as the response vector, i.e. $\hat{\boldsymbol{\beta}}_{(i)} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \tilde{\mathbf{Y}}$. Why?

The leave-i-out fitted values are:

$$\hat{\mathbf{Y}}_{(i)} = \mathbf{X}\hat{\boldsymbol{\beta}}_{(i)} = H\tilde{\mathbf{Y}} = H(\mathbf{d}_{(i)} + \mathbf{Y}), \quad \mathbf{d}_{(i)} = \tilde{\mathbf{Y}} - \mathbf{Y} = (0, \dots, -d_i, \dots, 0)^{\mathsf{T}}$$

 $d_i = h_{ii}d_i + e_i \Longrightarrow d_i = \frac{e_i}{1 - h_{ii}}.$

Subtracting the ith element from Yi on both sides gives:

Surgical Unit: Full Model X_1, X_2, X_3, X_4

```
> fit.f =lm(log(Y)~X1+X2+X3+X4. data=data.o)
> summary(fit.f)
Ca11 ·
lm(formula = log(Y) \sim X1 + X2 + X3 + X4, data = data.o)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.851933  0.266263  14.467  < 2e-16 ***
X 1
           0.083739 0.028834 2.904 0.00551 **
         0.012671 0.002315 5.474 1.50e-06 ***
X2
X3
         0.015627 0.002100 7.440 1.38e-09 ***
X4
         0.032056 0.051466
                                0.623 0.53627
Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1
Residual standard error: 0.2509 on 49 degrees of freedom
Multiple R-squared: 0.7591. Adjusted R-squared: 0.7395
F-statistic: 38.61 on 4 and 49 DF. p-value: 1.398e-14
> anova(fit.f)
Analysis of Variance Table
Response: log(Y)
Df Sum Sq Mean Sq F value Pr(>F)
          1 0.7770 0.7770 12.3443 0.0009618 ***
X 1
        1 2.5904 2.5904 41.1565 5.341e-08 ***
X2
Х3
         1 6.3286 6.3286 100 5490 1.838e-13 ***
        1 0.0244 0.0244 0.3879 0.5362698
Residuals 49 3 0841 0 0629
                                                               4 □ b 4 □ b 4 □ b □ 9 0 0 0
```

Surgical Unit: Full Model

• Full model has P = 5 and

$$SSE = 3.0841$$
, $MSE = 0.0629$, $R^2 = 0.7591$, $R_a^2 = 0.7395$.

- By definition, for the full model, $C_P = P = 5$.
- Sample size n = 54, so for the full model:

$$AIC_P = 54 \log(3.0841/54) + 2 \times 5 = +144.5871$$
 and $BIC_P = 54 \log(3.0841/54) + \log(54) \times 5 = -134.6422$.

- $Press_p = 4.069$.
- > e.f=fit.f\$residuals ## residuals
- > h.f=influence(fit.f)\$hat ## diagonals of hat matrix
- > press f= sum(e.f^2/(1-h.f)^2) ## calculate press