

Dual mode MIPI CSI-2 / SMIA CCP2 de-serializer

Features

- Dual mode camera de-serializer
- MIPI CSI-2 receivers
 - Two-camera interface support
 - One 1.6 Gbps dual data lane receiver for main camera with selectable 1/2 lane operation
 - One 800 Mbps single data lane receiver for second camera
 - Each MIPI D-PHY interface has a 400 MHz DDR clock lane
 - MIPI D-PHY Pass through mode
 - Selectable 0.81 or 0.9 D-PHY revision specification
- SMIA CCP2 receivers
 - Two-camera interface support
 - 650 Mbps class 2 receivers with selectable data/clock and data/strobe operation
- Support for MIPI CSI-2 and SMIA CCP2 RAW6, RAW7, RAW8 (generic), RAW10 and RAW12 Raw Bayer format data unpacking
- · Support for YUV, RGB and JPEG formats
- Support for SMIA 8-10, 7-10, 6-10, 10-12,8-12, 7-12, and 6-12 DPCM/PCM decompression options
- 1V8, 200 MHz,12-bit parallel output interface
- HSYNC, VSYNC, and continuous PCLK output data qualification signal
- Tristate-able output for dual camera systems
- Error interrupt output (D-PHY and protocol)
- MIPI CSI-2 short packet interrupt output
- 2-wire 100/400 kHz control interface (I2C compatible slave) to configure D-PHY timeouts and pixel data unpacking/decompression options
- · Integrated power on reset cell
- Digital power supply: 1.7 V to 1.9 V
- Integrated 1.2 V regulator for D-PHY and core logic
- VFBGA 49 ball, 3 mm x 3 mm x 1 mm, 0.4 mm pitch, 0.25 mm ball package
- · Lead-free RoHS compliant product

Description

The STMIPID02 is a dual mode MIPI CSI-2 / SMIA CCP2 de-serializer targeted at mobile camera phone applications. Manufactured using ST 65 nm process, it integrates two MIPI CSI-2 / SMIA CCP2 receivers. The STMIPID02 can then support the main and the second cameras of a mobile camera phone.

One of the two MIPI CSI-2 receivers is a dual lane receiver allowing connection to high resolution / high frame rate cameras.

The SMIA CCP2 compatible receivers share the same input balls as the MIPI CSI-2 receivers.

STMIPID02's 12-bit parallel output interface is capable of outputting de-serialized pixel data at rates up to 200 MHz.

Pass through mode allows the STMIPID02 to be used as a standalone MIPI D-PHY physical layer device.

With this device a host with a standard 8-bit, 10-bit or 12-bit parallel input interface can be connected to camera modules with either a MIPI CSI-2 or a SMIA CCP2 low-voltage, fully differential bit-serial, low EMI interface.

There is an interrupt output for every MIPI CSI-2 short packet.

Power management is simplified by the presence of an integrated 1.2 V regulator to supply the MIPI D-PHY receiver and core logic.

The STMIPID02 is fully configurable via an I2C compatible slave control I/F.

DS12803 - Rev 1 page 2/50

1 Block diagram

MIPI CSI-2 RX Protocol Data Lane 2 80-800Mbps STMIPID02 Slave data lane module Data lane control interface DATA1P2 -Doubles as CCP2 data & DATA1N2 logic clock/strobe inputs Clock Lane 2 40-400MHz Slave clock lane module Clock lane control interface CLKP2 -CLKN2 -Byte to pixel conversion logic Low level protocol MIPI D-PHY RX Data Lane 1.2 80-800Mbps Slave data lane module Data lane control interface logic DATA2P1 — <u>N</u> **→** ERROR DATA2N1 -**→** INT Data Lane 1.1 80-800Mbps Slave data lane module 1V8 12-bit parallel interface @ 200MHz DATA1P1 control interface logic Doubles as CCP2 data & < clock/strobe DATA1N1 -D[11:0] Clock Lane 1 40-400MHz inputs Slave clock lane module Clock lane control interface logic **SMIA CCP2 RX ►** VSYNC CLKP1 _ HSYNC
PCLK (up to 200MHz) Clock recovery & CLKN1 de-serializer EXTCLK 6.0MHz - 27MHz 400kHz JTAG Clock 1.2V voltage on I2C XSDN controller manager regulator (LDO)

VDDOUT_LDO

‡

1V8

Figure 1. Block diagram

DS12803 - Rev 1 page 3/50

2 Application diagrams

If Parallel Output 2nd camera module with MIPI CSI-2 1 x 800Mbps MIPI CSI-2 STMIPID02 interface Data (80Mbps -> 800Mbps) parallel interface DDR Clock (40MHz -> 400MHz) 6-b, 7-b, 8-b, 10-b or 12-b MIPI CSI-2 2 x 800Mbps Main camera // pixel data Baseband module with MIPI CSI-2 Data2 (80Mbps -> 800Mbps) application processor interface Data1 (80Mbps -> 800Mbps) multi-media DDR Clock (40MHz -> 400MHz) processor or 100/400 kHz I2C 'backend IC'

Figure 2. MIPI CSI-2 application diagram

DS12803 - Rev 1 page 4/50

3 Output interface

The output interface is used to transfer image data from the STMIPID02 to the host.

Features

- CCIR601 compliant
- 12-bit data with pixel clock, HSYNC and VSYNC (external synchronization signals)
- Up to 200 MHz pixel clock, giving a data rate of 1.6 Gbit/s
- Programmable polarity of synchronization signals
- · Tristate output control for multiple camera systems

By default, VSYNC envelopes all lines of valid image data. HSYNC is active on all lines including vertical frame blanking period.

HSYNC and VSYNC output polarities are programmable. The description and the figures below assume the default polarity.

The host uses the rising edge of the PCLK to sample both the data and the synchronization lanes.

Since the output data bus is 12 bits wide, for an output stream of less than 12 bits per pixel, the data can be placed on lower or upper bits of the bus. This is controlled by the Mode_Reg1[7] (address 0x14).

Table 1. Image format vs. number of bits on output interface

Image format received	Data type to be programmed in STMIPID02	Number of bits on parallel output of STMIPID02
RAW6	RAW6	6 bits
RAW7	RAW7	7 bits
RAW8	RAW8	8bits
RAW10	RAW10	10 bits
RAW12	RAW12	12 bits
RAW10 (as 10-6 compressed)	RAW6 (with decompression 6-10 enabled)	10 bits
RAW10 (as 10-7)	RAW7 (with decompression 7-10 enabled)	10 bits
RAW10 (as 10-8)	RAW8 (with decompression 8-10 enabled)	10 bits
RAW12 (as 12-10)	RAW10 (with decompression 10-12 enabled)	12 bits
RAW12 (as 12-8)	RAW8 (with decompression 8-12 enabled)	12 bits
RAW12 (as 12-7)	RAW8 (with decompression 7-12 enabled)	12 bits
RAW12 (as 12-6)	RAW8 (with decompression 6-12 enabled)	12 bits
RGB565	RAW8	8 bits
RGB888	RAW8	8 bits
RGB444	RAW8	8 bits
YUV420 8 bits	RAW8	8 bits
YUV422 8 bits	RAW8	8 bits
YUV420 10 bits	RAW10	10 bits

DS12803 - Rev 1 page 5/50

Figure 4. 12-bit parallel data interface signals - frame level

Figure 5. 12-bit parallel data interface signals - line level

DS12803 - Rev 1 page 6/50

4 Control interface

The STMIPID02 is controlled through the 400 kHz I2C compatible slave command interface. The 8-bit device address is 0x28 for write operations and 0x29 for read operations. The register index is a 16-bit format and the register value is an 8-bit format. The external clock must be active for I2C slave operations.

Example

To write 0x15 in the register 0x02, the following sequence has to be applied:

S 0x28 A 0x00 A 0x02 A 0x15 A

To read the content of register 0x02:

S 0x28 **A** 0x00 **A** 0x02 **A P S** 0x29 **A** xx **N P**

Where **S** = START; **P** = STOP; **A** = ACK; **N** = NACK

Detailed control inteface timings are described in Section 11.5.2 I2C slave timing (SCL, SDA).

DS12803 - Rev 1 page 7/50

5 Application examples

SMIA CCP2 STMIPID02 3MP @ 15fps @ 10-b 10-b @ 65MHz 650Mbps, RAW10 PCLK = 65MHz SMIA CCP2 TX SMIA CCP2 RX Host Data (650Mbps) system Strobe MIPI CSI-2 800Mbps, RAW10 3MP @ 20fps @ 10-b STMIPID02 10-b @ 80MHz PCLK = 80MHz MIPI CSI-2 TX MIPI CSI-2 RX Host Data1 (800Mbps) system DDR Clock (400MHz) SMIA CCP2 STMIPID02 5MP @ 15fps @ 10-b 10-b @ 92.8MHz 650Mbps, 10b-7b Compressed PCLK = 92.8MHz SMIA CCP2 TX SMIA CCP2 RX 7 - 10 Decomp Host 10 - 7 Comp Data1 (650Mbps) system Strobe MIPI CSI-2 STMIPID02 5MP @ 15fps @ 10-b 10-b @ 96MHz 768Mbps, 10b-8b Compressed PCLK = 96MHz MIPI CSI-2 TX 8 - 10 Decomp Host MIPI CSI-2 RX 10 - 8 Comp Data1 (768Mbps) system DDR Clock (384MHz) MIPI CSI-2 1.44Gbps, RAW12 STMIPID02 8MP @ 12fps @ 12-b 12-b @ 120MHz PCLK = 120MHz MIPI CSI-2 TX Host CSI-2 RX Data2 (720Mbps) system Data1 (720Mbps) M DDR Clock (360MHz)

Figure 6. Application examples

DS12803 - Rev 1 page 8/50

6 Key technical specifications

Table 2. Technical specifications

Technology	ST 65 nm CMOS
	SMIA: RAW6, RAW7, RAW8, RAW10, and RAW12
Pixel format(s)	SMIA: 8-10, 7-10, 6-10, 8-12, 7-12, 6-12 DPCM/PCM decompression
	MIPI CSI-2: RAW6, RAW7, RAW8, RAW10, and RAW12 YUV, RGB, JPEG
	MIPI CSI-2 interface (2x800 Mbps + 1x800 Mbps)
Input video interface(s)	SMIA CCP2 Interface (1x208 Mbps Class 0 + 1x650 Mbps - Class 2)
Output video interface(s)	1V8, 200 MHz, 12-bit parallel interface + VSYNC, HSYNC, and PCLK
Control interface	100/400 kHz I2C
Clock input	6.0 MHz to 27 MHz
Supply voltage	Digital IO: 1.7 V - 1.9 V
Power consumption	TBC
Package type	VFBGA 3x 3x1 mm, 49 ball, F7x7 pitch, 0.4 mm ball 0.25 mm
Package size	3.0 mm x 3.0 mm x 1.0 mm (wlh)
Device address	0x28

DS12803 - Rev 1 page 9/50

7 Ball assignment and description

Figure 7. Ball assignment: bottom view (49 balls)

Note: The CSI-2 clock lanes must be in the middle of the two data lanes.

Note: The PCLK, HSYNC, VSYNC must be routed in the middle of the output data bus for skew management reasons.

Table 3. Ball description

Ball name	Туре	Description
	Power supplies	
VDDE_1V8	Power	1V8 digital IO supply
VDDIN_LDO	Power	1V8 voltage regulator supply
VDD_1V2	Power	1V2 MIPI D-PHY and digital core supply
GNDE	Ground	Digital IO ground
GNDE_LDO	Ground	Voltage regulator ground
GND_PHY	Ground	D-PHY ground
GND_1V2	Ground	Digital core ground
	System interface	
EXTCLK	Input	System clock input (for I2C slave), 6.0 MHz - 27.0 MHz
ERROR	Output	Error interrupt, indicates that an error (either D-PHY or protocol) has occurred
INT	Output	MIPI CSI-2 short packet received interrupt, indicates that a short packet has been received

DS12803 - Rev 1 page 10/50

Ball name	Туре	Description
XSDN	Input	Chip shutdown
	Control interface	
SCL	Input	Host I2C clock
SDA	BiDir	Host I2C data
	Dual lane input data interface	
CLKP1, CLKN1	Input	MIPI CSI-2 receiver 1 DDR clock input, MIPI D-PHY physical layer, doubles as CCP2 strobe/clock input in SMIA CCP2 Class 2 mode
DATA1P1, DATA1N1	Input	MIPI CSI-2 receiver 1 data lane 1, MIPI D-PHY physical layer, doubles as CCP2 data input in SMIA CCP2 Class 2 mode
DATA2P1, DATA2N1	Input	MIPI CSI-2 receiver 1 data lane 2, MIPI D-PHY physical layer
	Single lane input data interface	
CLKP2, CLKN2	Input	MIPI CSI-2 receiver 2 DDR clock input, MIPI D-PHY physical layer, doubles as CCP2 strobe/clock input in SMIA CCP2 Class 2 mode
DATA1P2, DATA1N2	Input	MIPI CSI-2 receiver 2 data lane, MIPI D- PHY physical layer, doubles as CCP2 data input in SMIA CCP2 Class 2 mode
	Output data interface	
D[11:0]	Output	Parallel video 12-bit data output
PCLK	Output	Pixel clock: PCLK rising edge is used to sample D[11:0], HSYNC and VSYNC. PCLK polarity is programmable
HSYNC	Output	Horizontal synchronization: HSYNC is high during active video and low during the horizontal blanking periods. HSYNC polarity is programmable
VSYNC	Output	Vertical synchronization: VSYNC is high during active video and low during the vertical blanking periods. VSYNC polarity is programmable
	Power on reset (POR)	
POR_SGN	BiDir	Power on reset signal
POR_TST	Input	Power on reset test signal, should be set to ground for internal POR
	Voltage regulator	
VDDOUT_LDO	Power	LDO 1.2 V output
	Test interface (ST internal use)	
LDO_TST	Input	LDO regulator test mode
TDI	Input	Test data input
TMS	Input	Test mode
TCK	Input	Test clock
TDO	Output	Test data out

DS12803 - Rev 1 page 11/50

8 Functional description

8.1 Power up sequence

Please find below the timing of the power up sequence.

Figure 8. Power up sequence

Table 4. Power up sequence timing

Symbol	Parameter	Min.	Тур.	Max.	Unit
T1	Time between power up and LDO enable	VDDIN_LDO stable		+inf	s
T2	Time between XSDN and CORE power up (LDO out rise to 1.2 V)			5	ms
Т3	Time between CORE power up to 1.2 V and reset generation		20		μѕ

DS12803 - Rev 1 page 12/50

8.2 User modes

8.2.1 Standard modes

The output parallel interface outputs12 bits of data, HSYNC, VSYNC, and PCLK. It is recommended to enable the compensation macro (controlled by Mode_Reg3[5], at address 0x36) for both Standard and Bypass modes.

CSI2/CSI2

- Main camera: CSI2 up to 1.6 Gbps (with limitation detailed in Section 8.3 CSI2 limitations)
- Second camera: CSI2 up to 800 Mbps

CSI2/CCP2

- Main camera: CSI2 up to 1.6 Gbps (with limitation detailed in Section 8.3 CSI2 limitations)
- Second camera: CCP2 up to 650 Mbps

CSI2/ITU-R601

- Main camera: CSI2 up to 1.6 Gbps (with limitation detailed in Section 8.3 CSI2 limitations)
- · Second camera: YUV directly connected to baseband parallel interface

8.2.2 Bypass modes

Bypass mode is used for any activities or applications where only PHY is needed, example, 8-bit data.

CSI2/CSI2

- Main camera: CSI2 up to 1.6 Gbps (with limitation detailed in Section 8.3 CSI2 limitations)
- Second camera: CSI2 up to 800 Mbps

CSI2/ ITU-R601

- Main camera: CSI2 up to 1.6 Gbps (with limitation detailed in Section 8.3 CSI2 limitations)
- Second camera: YUV directly connected to baseband parallel interface

8.3 CSI2 limitations

The bandwidth is limited to 800 Mbps in RAW6/RAW7 dual lane inputs. This is irrespective of the compression used or not

DS12803 - Rev 1 page 13/50

8.4 Sensor switching mechanism

The flow chart below explains the sensor switching mechanism. If one sensor is streaming and the other is not we are in **state1**. If both sensors are not streaming, we are in **state2**.

It is forbidden that both sensors stream simultaneously while switching. To switch sensors, it is obligatory to be in **state1** or **state2**.

Figure 9. Sensor switching mechanism

8.5 Error signal

Below is an accumulated status of all errors found in the chip.

- Status of all errors from all D-PHY's
- 2. Checksum and ECC failures of CSI reception
- 3. ccp_shift_sync, ccp_false_sync and ccp_crc_error of CCP reception

The individual status of an error can be checked on the respective I2C register bit. The status can be cleared by programming Mode_reg2[6] register.

8.6 INT signal

This is a status showing reception of a short packet in the CSI stream. The user needs to clear the status by programming Clock_control_reg1[5] to observe the next short packet. If the user does not clear this bit then he may miss the transition on the INT ball when the next short packet is observed. The application of short packet interrupts is not envisioned yet.

DS12803 - Rev 1 page 14/50

9 Register description

9.1 Clock lane 1 registers

Re	gister Name	Acce	ess	Local Address		Description		
clk_lane	_reg1	R/W		0x02		General and CSI controls of clock lane1 (CLKP1,CLKN1)		
Bit No	Bit Name		Default Value		Desc	cription		
7	ui_x4_clk_lane[5]]	0			control (unused in CCP mode): Unit interval		
6	ui_x4_clk_lane[4]]			time multiplied by four This signal indicates the bit period in units			
5	ui_x4_clk_lane[3]]		0.25 ns. If the unit interval is 3 ns, twel-				
4	ui_x4_clk_lane[2]			should be programmed. This value is us				
3	ui_x4_clk_lane[1]]			generate delays. Therefore, if the period i multiple of 0.25 ns, the value should be re			
2	ui_x4_clk_lane[0]]				down. For example, a 600 Mbps single lane linkuses a unit interval of 1.667 ns. Multiplying by four results in 6.667. In this case, a value of 6 (not 7) should be programmed.		
1	swap_pins_clk_lane		0		0			p P and N pins 0= Swap disabled 1= Swap enabled (CLKP1 and CLKN1 are swapped)
0	Enable		0		Enal	ble clock lane module (CLKP1 and CLKN1) 0= Disable clock lane 1 1= Enable clock lane 1		

DS12803 - Rev 1 page 15/50

Register Name		Access		Loc Addi		Description
	clk_lane_reg3	R/W		0x04		CCP/CSI controls of the clock lane 1
Bit No	Bit Name		Defa Valu		Desc	cription
[7:5]	Reserved		000		Rese	erved
4	hs_rx_term_e_subLVDS_clk_lane				_	n Speed termination enable for CCP mode used in CSI mode) 0= Disable HS termination 1= Enable HS termination, mandatory for CCP mode
3	hs_rx_e_subLVDS_clk_lane				_	n Speed Receiver enable for CCP mode used in CSI mode) 0= Disable HS receiver 1= Enable HS receiver, mandatory for CCP mode
2	hs_rx_wakeup_subLVDS_clk_lane		0		_	n Speed Receiver wake-up enable for CCP e (unsused in CSI mode) 0= HS-receiver in low power mode 1= Enable HS receiver, mandatory for CCP mode
1	cntrl_mipi_subLVDS_clk	_lane	0		Sele	ct CSI or CCP mode 0= SMIA CCP 1= MIPI CSI
0	Reserved		0		Rese	erved

R	egister Name	Acc	cess	Local Address		Description	
clk_la	ne_wr_reg1	RO		0x01		Clock lane 1 status in CSI mode	
Bit No	Bit Name		Default I Value		Desc	Description	
[7:2]	Reserved		000000		Rese	erved	
1	ulp_active_not_cl	lk_lane	0			Ultra low-power state active 0= The clock lane is not in ULP state or prepare to leave ULP state 1= The clock lane has reached the ULP state.	
0	stop_state_clk_la	ne	0	0		Lane in stop state signal indicates that the lane module is in STOP state.	

DS12803 - Rev 1 page 16/50

9.2 Data lane 1.1 controls

Register Name		Access		Local Address		Description	
data_la	nne0_reg1	R/W		0x05		General controls of data lane1.1 (DATA1P1 and DATA1N1)	
Bit No	Bit Name		Default Value		Description		
[7:2]	Reserved	/ed		000000		Reserved	
1	Swap_pins_data_lane	_pins_data_lane				Swap P and N pins 0= Swap enabled (DATA1P1 and DATA1N1 are swapped) 1= Swap disabled	
0	Enable_data_lane		0	0 E		Enable data lane 1.1 (DATA1P1 and DATA1N1) 0= Disable data lane 1.1 1= Enable data lane 1.1	

Re	egister Name	Access	Lo	ocal Address	Description
data_lan	e0_reg2	R/W	0x0)6	CCP/CSI controls of the data lane 1.1
Bit No	Bit Name			Default Value	Description
[7:4]	Reserved			0000	Reserved
3	hs_rx_term_e_	subLVDS		0	High Speed termination enable for CCP mode (unsused in CSI mode) 0= Disable HS termination 1= Enable HS termination, mandatory for CCP mode
2	hs_rx_e_subL	VDS		0	High Speed Receiver enable for CCP mode (unsused in CSI mode) 0= Disable HS receiver 1= Enable HS receiver, mandatory for CCP mode
1	hs_rx_wakeup_subLVDS_data_la ne			0	High Speed Receiver wake-up enable for CCP mode (unsused in CSI mode) 0= HS-receiver in low power mode 1= Enable HS receiver, mandatory for CCP mode
0	cntrl_mipi_sub	bLVDS_data_lan	ie	0	Select CSI or CCP mode 0= SMIA CCP 1= MIPI CSI

DS12803 - Rev 1 page 17/50

	Register Name Access		S	Local Address		Description	
data_lan	e0_reg3	RO		0x07		CSI controls of data lane 1.1	
Bit No	Bit Name	me		Default Desc Value		cription	
[7:2]	Reserved			000000		Reserved	
1	ulp_active_not_data	_lane	0			Ultra low-power state active 0= The clock lane is not in ULP state or prepare to leave ULP state 1= The clock lane has reached the ULP state.	
0	stop_state_data_lane	e 0			This	Lane in stop state signal indicates that the lane module is in P state.	

Regi	ster Name	A	ccess	Loc Add		Description			
data_lan	e0_reg4	RO		0x0C		CSI protocol Error status registers			
Bit No	Bit Name			Default Value		cription			
[7:6]	Reserved		0		Rese	Reserved.			
5	err_control		0	1		Unexpected control sequence error This signal is asserted when an incorrect line state sequence is detected.			
4	err_sync_esc		0		If the miss this	Escape synchronization error If the number of bits received during a low-power data transmission is not a multiple of eight when the transmission ends, this signal is asserted and remains high until the next change in line state.			
3	err_esc		0		Error during escape command If an unrecognized escape entry command is received, this signal is asserted and remains high until the next change in line state.				
2	err_eot_sync	hs	0	0		r during high-speed end of transmission (EoT)			
1	err_sot_sync	hs	0		Sync (Sol	chronization error during high-speed start of transmission			
0	err_sot_hs		0		Erro	r during high-speed start of transmission (SoT)			

DS12803 - Rev 1 page 18/50

9.3 Data lane 1.2 controls

Re	egister Name	Access		Local Address		Description		
data_la	ane1_reg1	R/W	0x09			General controls of data lane1.2		
Bit No	Bit Name		Default Value		Description			
[7:2]	Reserved		000000		Reserved			
1	Swap_pins_data	lane	0		0= Sw	P and N pins rap disabled rap enabled (DATA2P1, DATA2N1 are swapped)		
0	Enable_data_lan	е	0		Enable data lane 1.2 (DATA1P1 and DATA1N1 0= Disable data lane 1.2 1= Enable data lane 1.2			

Reg Nar	ister ne	Access		ocal ddress	Description	
data_lan	e1_reg2	R/W	0x	:0A	CCP/CSI controls of data lane 1.2	
Bit No	Bit Nam	e	Defa ultVa lue		Description	
[7:4]	Reserved 0000		0000	Reserved		
3	hs_rx_term_e_subL 0 VDS		0	High Speed termination enable for CCP mode (unsused in CSI mode) 0= Disable HS termination 1= Enable HS termination, mandatory for CCP mode		
2	hs_rx_e_subLVDS 0		0	High Speed Receiver enable for CCP mode (unsused in CSI mode) 0= Disable HS receiver 1= Enable HS receiver, mandatory for CCP mode		
1	hs_rx_wakeup_subL 0 VDS_data_lane		0	High Speed Receiver wake-up enable for CCP mode (unsused in CSI mode) 0= HS-receiver in low power mode 1= Enable HS receiver, mandatory for CCP mode		
0	cntrl_mi S_data_l	pi_subLVI ane)	0	Select CSI or CCP mode 0= SMIA CCP 1= MIPI CSI	

DS12803 - Rev 1 page 19/50

	Register Name Access			Loc: Addr		Description	
data_lan	e1_reg3	RO		0x0B		CSI status of the data lane 1.2	
Bit No	Bit Name		Default Value		Desc	cription	
[7:2]	Reserved		000000		Reserved		
1	ulp_active_not_data	_data_lane		0		a low-power state active 0= The clock lane is not in ULP state or prepare to leave ULP state 1= The clock lane has reached the ULP state.	
0	stop_state_data_lane	lata_lane (0		e in stop state signal indicates that the lane module is in P state.	

Register Name		Access		Local Address		Description	
data_lane1_reg4		RO		0x08		CSI proocol error status registers of the data lane 1.2	
Bit No	Bit Name	Defaul Va		lt ılue	Desc	ription	
[7:6]	Reserved		00		Reserved		
5	err_control		0		Unexpected control sequence error		
4	err_sync_esc		0		Escape synchronization error		
3	err_esc		0		Error during escape command		
2	err_eot_sync_hs		0		Error during high-speed end of transmission (EoT)		
1	err_sot_sync_	hs 0		Sy		hronization error during high-speed SoT	
0	err_sot_hs	0			Erro	r during high-speed start of transmission (SoT)	

DS12803 - Rev 1 page 20/50

9.4 Clock lane 2 registers

Re	egister Name	Access		Local Address		Description				
clk_la	ne_reg1_c2	R/W	0x31			General and CSI controls of clock lane2				
Bit No	Bit Name		Default Value		Desc	Description				
7	ui_x4_clk_lane[5	k_lane[5] 0				CSI control (unused in CCP mode) :Unit interval time multi-				
6	ui_x4_clk_lane[4] ui_x4_clk_lane[3] ui_x4_clk_lane[2]				١.	plied by four This signal indicates the bit period in units of 0.25 ns. If				
5						the unit interval is 3 ns, twelve (0x0C) should be pro-				
4						grammed. This value is used to generate delays. There- fore, if the period is not a multiple of 0.25 ns, the value				
3	ui_x4_clk_lane[1	1]				should be rounded down. For example, a 600 Mbit/s sin-				
2	ui_x4_clk_lane[(0]			gle lane linkuses a unit interval of 1.667 ns. Multipl by four results in 6.667. In this case, a value of 6 (no should be programmed.					
1	swap_pins_clk_l	ane	0			Swap P and N pins 0 = Swap enabled (CLKP2 and CLKN2 are swapped) 1= Swap disabled				
0	Enable		0		Enal	ble clock lane module (CLKP1 and CLKN1) 0= Disable clock lane 1 1= Enable clock lane 1				

DS12803 - Rev 1 page 21/50

Re	gister Name	Access		Local ddress		Description		
clk_lan	e_reg3_c2	R/W	0x.	33	C	CP/CSI controls of the clock lane 2		
Bit No	Bit Name			Default Value		Description		
[7:5]	Reserved		000		Reserved			
4	hs_rx_term_e_subLVDS_clk_la ne					High Speed termination enable for CCP mode (unsused in CSI mode) 0= Disable HS termination 1= Enable HS termination, mandatory for CCP mode		
3	hs_rx_e_subLVDS_clk_lane			0		High Speed Receiver enable for CCP mode (unsused in CSI mode) 0= Disable HS receiver 1= Enable HS receiver, mandatory for CCP mode		
2	hs_rx_wakeup_subLVDS_clk_l ane			0		High Speed Receiver wake-up enable for CCP mode (unsused in CSI mode) 0= HS-receiver in low power mode 1= Enable HS receiver, mandatory for CCP mode		
1	cntrl_mipi_subL	VDS_clk_lar	ne	0		Select CSI or CCP mode 0= SMIA CCP 1= MIPI CSI		
0	Reserved			0		Reserved		

	Register Name	Acce	SS	A	Local Address	Description		
clk_la	lk_lane_wr_reg1_c2 RO			0x39		CSI clock lane 2 status		
Bit No	Bit Name		Default Value		Descrip	tion		
[7:2]	Reserved	000000		000000		Reserved		
1	ulp_active_not_clk_lar	ne	0			CSI Ultra low-power state active 0= The clock lane is not in ULP state or prepare to leave ULP state 1= The clock lane has reached the ULP state.		
0	stop_state_clk_lane		0			CSI Lane in stop state This signal indicates that the lane module is in STOP state.		

DS12803 - Rev 1 page 22/50

9.5 Data lane 2 controls

	Register Name Access		Loca Addre			Description	
data_la	nne3_reg1	R/W		0x34		General controls of data lane 2 (DATA1P2 and DATA1N2)	
Bit No	Bit Name		Default Value		Description		
[7:2]	Reserved		0000	000	Rese	Reserved	
1	Swap_pins_data_lane		0	0		p P and N pins 0= Swap disabled 1= Swap enabled (DATA1P2 and DATA1N2 are swapped)	
0	Enable_data_lane	0		0		Enable data lane 1.1 (DATA1P2 and DATA1N2) 0= Disable data lane 2 1= Enable data lane 2	

Re	gister Name	Access		Local Address		Description	
data_la	ine3_reg2	R/W	0x35		CC	CP/CSI controls of data lane 2	
Bit No				Default Value		Description	
[7:4]	Reserved		00	000		Reserved	
3	hs_rx_term_e_subLVDS			0		High Speed termination enable for CCP mode (unsused in CSI mode) 0= Disable HS termination 1= Enable HS termination, mandatory for CCP mode	
2	hs_rx_e_subLVDS			0		High Speed Receiver enable for CCP mode (unsused in CSI mode) 0= Disable HS receiver 1= Enable HS receiver, mandatory for CCP mode	
1	hs_rx_wakeup_subLVDS_data_ lane			0		High Speed Receiver wake-up enable for CCP mode (unsused in CSI mode) 0= HS-receiver in low power mode 1= Enable HS receiver, mandatory for CCP mode	
0	cntrl_mipi_subI	subLVDS_data_lane 0				Select CSI or CCP mode 0= SMIA CCP 1= MIPI CSI	

DS12803 - Rev 1 page 23/50

	Register Name Access				Local Address	Description	
data_la	nne3_reg3	RO	0		x3A	CSI status of data lane 2	
Bit No	Bit Name	D V:			Descript	tion	
[7:2]	Reserved		000000		Reserved		
1	ulp_active_not_data_la	ctive_not_data_lane		d		CSI Ultra low-power state active 0 = The clock lane is not in ULP state or prepare to leave ULP state 1 = The clock lane has reached the ULP state.	
0	stop_state_data_lane	0				CSI Lane in stop state This signal indicates that the lane module is in STOP state.	

I	Register Name	Acces	s		cal Iress	Description		
data_la	ne3_reg4	RO		0x3E	3	CSI protocoleError status registers of data lane 2		
Bit No	Bit Name		Default Value		Description			
[7:6]	Reserved		0		Reser	ved		
5	err_control	0			This s sequent request by a st	pected control sequence error ignal is asserted when an incorrect line state nce is detected. For example, if a turn-around at or escape mode request is immediately followed top state instead of the required bridge state, this is asserted and remains high until the next change state.		
4	err_sync_esc		0		If the transn	e synchronization error number of bits received during a low-power data nission is not a multiple of eight when the transmis- nds, this signal is asserted and remains high until xt change in line state.		
3	err_esc		0		Error during escape command If an unrecognized escape entry command is received, this signal is asserted and remains high until the next change in line state.			
2	err_eot_sync_hs		0		Error during high-speed end of transmission (EoT)			
1	err_sot_sync_hs		0		Synch	Synchronization error during high-speed SoT		
0	err_sot_hs		0		Error	during high-speed start of transmission (SoT)		

DS12803 - Rev 1 page 24/50

9.6 CCP RX and error flag registers

Regist	er Name	Access		Local Address	Description		
ccp_rx_i	reg1	R/W		0x0D	CCP Data clock/data strobe mode selection and Error signal control		
Bit No	Bit Name	Defau Value			Description		
7	Delay[4]		0		Error Signals (pulses) generated are valid for short		
6	Delay[3]				duration (4 input DDR clocks). To be able to capture this in I2C registers working on		
5	Delay[2]				host clock, these Error pulses need to stretched (dura-		
4	Delay[1]				tion of pulses need to be increased). This pulse stretch- ing is programmable.		
3	Delay[0]				Delay value is multiplied by 16 for single lane & by 8 for dual lane. For example: If original pulse width is 4 clocks and Register Value is 3 specifies for dual lane system. The resultant Pulse captured will be 4 (original clocks) + 3 (programmed value) * 8 (dual lane) = 28 clocks		
2	Reserved		0		Reserved		
1	Reserved		0		Reserved		
0	DS_MODE	3	0		Selects between CCP Data-Strobe mode and Data-Clock mode for the main camera (unuse in CSI) DC_MODE=0 -> Data clock mode DS_MODE= 1 -> Data strobe mode		

Register Access Name		Access	Local Address			Description		
ccp_rx_i	reg2	R/W		0x0E		CCP controls		
Bit No	o Bit Name		Default Default Value		Desci	Description		
7	Reserved	Reserved 0		0 Res		Reserved		
6	Clr_glue_s	Clr_glue_sync_error 0		0 Clear		Clear sync error in CCP path		
5	pix_width	_ccp_rx[3]	be s			Pixel width input in CCP mode (unused in CSI). It should		
4	pix_width	_ccp_rx[2]			be selected between the allowed pixel widths: 6, 7, 8, 10 or 12-bit.			
3	pix_width	_ccp_rx[1]				Value of this register-slice is binary equivalents of 6, 7,		
2	pix_width_ccp_rx[0]					8, 10 or 12, other values are invalid.		
1	clr_ccp_sh	cp_shift_sync 0			Clear CCP shift sync flag			
0	clr_ccp_crc_error 0		0	Clear		Clear CCP CRC error		

DS12803 - Rev 1 page 25/50

Reg	Register Name Access			Loca Addre		
ccp_rx_r	eg3	RO		0x0F	CCP channel and error flags	
Bit No	o Bit Name Default Value					
7	Glue_logic_sync_error		0 In		Incorrect data length error flag	
[3-6]	ccp_channel	1[0-3]	0000		Channel ID extracted from input CCP stream	
2	ccp_shift_sy	ync	0 (CCP shift sync error flag	
1	ccp_false_sync (0		CCP false sync error flag	
0	ccp_crc_error 0			CCP CRC error flag		

Register Name		Access		Local Address		Description	
ccp_rx_reg1_c2		R/W		0x38		Data clock / data strobe selection for the second camera (CLKP2,CLKN2,DATA1P2,DATA1N2)	
Bit No	Bit Name		Default Value		Desc	cription	
[7:1]	Reserved		0000000		Reserved		
0	DS MODE (0	m D		Selects between CCP Data-Strobe mode and Data-Clock mode for the second camera (unused in CSI). DC MODE=0 -> Data clock mode DS MODE= 1 -> Data strobe mode	

DS12803 - Rev 1 page 26/50

9.7 Mode control registers

Register Name		Access		Local Address	Description		
Mode_re	eg1	R/W	0	0x14	Chip mode controls		
Bit No	Bit Name		Defa Valu		Description		
7	Justification control		0	1	Justification on output Data D= right justified (data on lower bits of bus) I= left justified (Data on upper bits) ypass mode, this control is invalid		
6	Bypass_mode[0] 0		0		No bypass ypass of the pixel generation & the decompression		
5	Decompression[2]		0		000 = decompression disabled		
4	Decompression	n[1]		001	001 = 6-10 010 = 7-10		
3	Decompression[0]			100 = 101= 110 =	011 = 8-10 100 = 8-12 101= 10-12 110 = 6-12 111 = 7-12		
2	Lane_ctrl[1]		0	0= N	Swap data lanes 1.1 and 1.2 0= No swap, lane1 remains lane1 & lane2 remains lane2 1= Lanes swapped, lane1 becomes lane2 & lane2 ->lane1		
1	Lane_ctrl[0]		0		0= 1-lane system 1= 2-lane system		
0	Ccp/csi		0		Input selector control 0= CSI2 input stream 1= CCP input stream		

DS12803 - Rev 1 page 27/50

Register Name Access			Local Address	Description			
Mode_re	eg2	R/W		0x15	Output Interface controls		
Bit No	Bit Name		Default Value	Descripti	ion		
7	Tristate_output	t	0	tristate me	nation of the parallel interface in ouput or ode 'ristated output Normal output		
6	Clear_Error_Signal 0		0	0 = R	reset the error flag output Reset the Error flag Oo not reset keep value as it is		
5	Error_signal_polarity		0	0 = N	Polarity for Error signal 0 = Non Inverted 1 = Inverted		
4	Clock_gating control		0	0 = c	us or gated clock control ontinuous clock lock gated		
3	Output_polarit	y_clk	0	0= N	ontrol of PCLK signal on Inverted overted		
2	Output_polarity_vsync		0	0= N	ontrol of VSYNC signal on Inverted overted		
1	Output_polarit	y_hsync	0	0= N	ontrol of HSYNC signal on Inverted overted		
0	Interrupt_polar	rity	0	0 = N	or Interrupt signal Ion Inverted nverted		

DS12803 - Rev 1 page 28/50

Reg	gister Name	Access		Local Address	Description				
Mode_re	g3	R/W		0x36	Output Interface controls				
Bit No	No Bit Name		Defaul Value	t Description					
[7:6]	Reserved		0	Reserved	Reserved				
5	i2c_comp_leakage 0		0	0 = Di	Enable compensation macro 0 = Disable IO compensation macro 1= Enable IO compensation macro				
4	Reserved		0	Reserved	Reserved				
3	Spec_90_81	_c2	0	0=0.9	(1 lane) camera spec of D-PHY I spec of D-PHY				
2	Spec_90_81_c1		0	0=0.9	anes) camera spec of D-PHY spec of D-PHY				
1	Reserved		0	Reserved					
0	Camera_select 0		0= Main car (CLKP1,CL	Camera selection 0= Main camera (CLKP1,CLKN1,DATA1P1,DATA1N1,DATA2P1,DATA2N1) 1= Second camera (CLKP2,CLKN2,DATA1P2,DATA1N2)					

9.8 Clock control registers

Register Name		Access		Local Address	Description	
Clock_co	Clock_control_reg1 R/W			0x16	Clear for INT & ERR	
Bit No	Bit Name		Default Value	Description		
[7:6]	Reserved		00	Reserved		
5	Clr_csi2_interrup	t	0	I2C control to clear CSI interrupt		
4	Clr_csi2_error		0	I2C control to clear CSI error. It stops streaming data till this bit is reseted.		
[3:0]	Reserved		0	Reserved		

DS12803 - Rev 1 page 29/50

9.9 System error registers

Register Name		Access	Local Address			Description	
Error_re	gs	RO		0x10		Error output registers	
Bit No	Bit Name	Default Value		Desc	Description		
[7:2]	Reserved	ed 0000		000	0 Reserved		
1	Checksum_fa	iled	0		0=0	cksum failure status in Low level protocol OK Failed	
0	ECC_failed 0			ECC in low level protocol status $0 = OK$ $1 = Failed$			

9.10 Data pipe information

Register Name	Access	Local Address	Description
Data_ID_Wreg	RO	0x11	Image Data type register extracted from the CSI data stream. It refers to data type in Low Level Protocol. See CSI2 Specification for detailed explanations. The 2 MSB codes the Virtual Channel number, the remaining 6 bits codes the data type.

Register Name	Access	Local Address	Description
Data_ID_Rreg	R/W	0x17	Image Data type register to be programmed: - mandatory in CCP mode - mandatory in CSI if not extracted from the CSI data stream. In CSI mode, the STMIPID02 can be programmed to use data type from this register or from embedded data type information in data stream. It refers to data type in Low Level Protocol. See CSI2 Specification for detailed explanations. The 2 MSB codes the Virtual Channel number, the remaining 6 bits codes the data type.

Register Name	Access	Local Address	Description
Data_ID_Rreg_emb	R/W	0x18	Non-Image Data type register to be programmed in CCP and CSI modes. It refers to data type in Low Level Protocol. See CSI2 Specification for detailed explanations. The 2 MSB codes the Virtual Channel number, the remaining 6 bits codes the data type of the embedded data.

DS12803 - Rev 1 page 30/50

Register Name		Access		Local Address		Description	
Data_selection_ctrl		R/W		0x19		Virtual channel, Datatype selection and pixel width control register	
Bit No Bit Name		Default Value		Description			
[7:4]	Reserved		0000		Reser	ved	
3	Pixel width selection		0	Select		Selection of pixel width 1 = Pixel width from I2C reg Pix_width_ctrl 0 = Pixel width extracted from data type decided with Data_selection_ctrl[2]	
2	Data type		0		Selection of data type 0 = Data type from data stream (readable in Data_ID_Wreg 0x11) 1 = Data type from I2C programmed register (Data_ID_Rreg)		
1	VC[1] VC[0]		0		Virtual channel, whose data to be retrieved and used in		
0						subsequent steps. Data for other channel is to be dis- carded	

Register Name		Access			cal ress	Description
Frame_no_lsb RO		RO	0x12			Frame numer LSByte from Frame sync short packet for CSI2 mode
Bit No	Bit Name	Defaul Va		lt ılue	Descr	iption
[0,7]	Bit 0 to Bit7	000000		000 Bit 0 t		to Bit 7 of frame number

R	egister Name	Name Access		Local Address		Description	
Frame_no	e_no_msb RO		0x13		Frame number MSByte from Frame sync short packet for CSI2 mode		
Bit No	Bit Name	Default Value			Descrip	tion	
[0,7]	Bit 8 to Bit 15		00000000		Bit 8 to	Bit 15 of frame number	

DS12803 - Rev 1 page 31/50

Ro	Register Name Access		Loc Add		cal lress	Description
Active_lin	Active_line_no_lsb R/W			0x1B		Number of active lines in image used in CCP mode and decompression mode (LSB)
Bit No	No Bit Name Defau Value			Descr	iption	
[0,7]	Bit 0 to Bit 7	to Bit 7		00000000 I		o Bit 7 of active line number

R	Register Name Access			Local Address		Description
Active_line_no _msb		R/W		0x1A	1	Number of active lines in image used in CCP mode and decompression mode (MSB)
Bit No	Bit Name		Default Value		ne Description	
[0,7]	Bit 8 to Bit15		00000000	Bit 8 t		to Bit15 of active line number

Register Name Access		Loca		l Address	Description		
SOF_line_no_lsb R/W		R/W	0x1D			Number of embedded lines (status lines) in image used for CCP mode and decompression mode (LSB)	
Bit No	Bit No Bit Name		Default Value		Description	on	
[0,7]	Bit 0 to Bit7	o Bit7 000		00000000 Bit 0 to		t7of embedded line number	

Register Name Acces		Acces	Access		al Address	Description	
SOF_line_no _msb		R/W		0x1C		Number of embedded lines (status lines) in image used for CCP mode and decom- pression mode (MSB)	
Bit No	Bit No Bit Name De		Default Value		Description	1	
[0,7]	Bit 8 to Bit15		000000		Bit 8 to Bit	15 of embedded line number	

DS12803 - Rev 1 page 32/50

Register Name Acc		Acces	s	Loca	l Address	Description	
Pix_width	Pix_width_ctrl R/W			0x1E		Pixel width and decompression control of active lines	
Bit No	Bit Name		Default Value		Description		
[5-7]	Reserved		000	Reserved		l	
4	Dcpx_en for activ	e	0		Decompression enable for active data 0= Decompression OFF 1= Decompression ON		
[0-3]	Pix_width[0 to 3]				Pixel width control for active data		

Register Name Access		Access	Local Ac		ddress	Description	
Pix_width_ct	Pix_width_ctrl_emb R/W			0x1F		Pixel width and decompression control of embedded lines	
Bit No	Bit Name	Defaul Va		fault Value	Description		
[5-7]	Reserved	000		0			
4	Dcpx_en for e	mb pixel	pixel 0			pression enable for embedded data 0= Decompression OFF 1= Decompression ON	
[0-3]	Pix_width_em	b[0 to 3]			will be	Pixel width control for embedded data. This input will be used by STMIPID02 for recognizing the Pixel width in embedded lines of received stream.	

Reg	Register Name Access			Local Address	Description	
Data_field_LSB RO		0	x21	LSB of ECC corrected data field		
Bit No	Bit Name	me Default Value		Description		
[0-7]	Bit 0 to 7	00000000		LSB of ECC cor	rected data field	

Register Name Access		Local Ac		ocal Address	Description	
Data_Field_	ta_Field_MSB RO		0x20		MSB of ECC corrected data field	
Bit No	Bit Name		Default Value		Description	
[0-7]	Bit 8 to 15		00000000		MSB of ECC corrected data field	

DS12803 - Rev 1 page 33/50

10 Generic script

Below is a generic script which users can start with.

WriteByte(0x0002, 0x15) means that the I2C driver writes 0x15 in register address 0x002.

```
// MAIN CAMERA CLOCK LANE 1 (CLKP1, CLKN1)
WriteByte(0x0002, 0x15);
   // Enable Clock Lane 1 (CLKP1, CLKN1) and UI programmation: 0x15 between 400MHz and 334Mhz, ,
   0x19 between 333 and 286MHz, 0x1D between 285 and 250MHz,0x21 between 249 and 223MHz, 0x25
   between 222 and 200Mhz and so on
           0x1c CCP mode , 0x02 CSI mode on main camera
      MAIN CAMERA DATA LANE 1.1 (DATA1P1, DATA1N1)
WriteByte(0x0005, 0x03);

// 0x03 Enable Data Lane 1.1 (DATA1P1, DATA1N1), 0x00 disable Data lane 1.1
WriteByte(0x0006, 0x01);
// 0x01 for CSI mode set on Data Lane 1.1 (DATA1P1, DATA1N1), 0x0e for CCP mode on Data Lane 1.1
 // MAIN CAMERA DATA LANE 1.2 (DATA2P1, DATA2N1)
WriteByte (0x0009, 0x00);
     // 0x00 disable Data Lane 1.2 (DATA2P1, DATA2N1). CSI dual lane or second lane, Enable Data Lane 1.2: 0x01
WriteByte(0x000a, 0x01);
      // CSI dual lane or second lane, set CSI mode 0x01, CCP second lane, set CCP 0x0e
 // SECOND CAMERA CLOCK LANE 2 (CLKP2, CLKN2)
      // Disable second camera: 0x00. Second camera: Enable Clock Lane 2 (CLKP1, CLKN1) and UI programmation: 0x17 between 400MHz and 334Mhz, , 0x1B between 333 and 286MHz, 0x1F between 285 and 250MHz,0x23 between 249 and 223MHz, 0x27 between 222 and 200Mhz and so on
WriteByte(0x0033, 0x1c);
// Second camera CCP/CSI(CLKP2, CLKN2, DATAP2, DATAN2) : CCP 0x1c or CSI 0x02
 // SECOND CAMERA DATA LANE 2 (DATA1P2, DATA1N2)
WriteByte(0x0034, 0x00);
       // 0x00 Disable Data Lane2 , Enable Data lane 2: 0x01 (for CCP or CSI)
// UXUU DISABLE Data Lane2 , Enable Da
WriteByte(0x0035, 0x0e);
// CCP 0x0e, CSI 0x01 on second camera
// CCP MODE (unused in CSI mode)
WriteByte(0x000d, 0x00); // For CCP main camera, CCP Data clock mode 0x00, CCP data strobe mode 0x01
           For CCP mode, Pixel width: 0x30 for 12bits, 0x28 for 10bits, 0x20 for 8bits, 0x1C for 7bits, 0x18 for 6bits
WriteByte (0x0038, 0x00):
           For CCP 2nd camera, CCP Data clock mode 0x00, CCP data strobe mode 0x01
// MODE CONTROL
WriteByte(0x0014, 0x40);
// No decompression: 0x41 For CCP, 0x40 for CSi single lane, 0x42 for CSi dual lane. Decompression
mode please refer to datasheet/register map.
WriteByte(0x0015, 0x00);
// Normal (non Tristated output), continious clock, clock polarity and synchronization signals not inverted WriteByte(0x0036, 0x20);
       // Enable compensation macro, 0.90Rev of DPHY. 0x20 for main camera, 0x21 for second camera // Enable compensation macro, 0.81Rev of DPHY. 0x24 for main camera, 0x29 for second camera
WriteByte(0x0017, 0x00);
// Data type: 0x1E YUV422 8-bit, 0x1F YUV422 10-bit, 0x22 RGB565, 0x2A RAW8, 0x2B RAW10,
0x2C RAW12, for other mode please refer to CSI specifications
WriteByte(0x0018, 0x00);
   // Data type of embedded data: 0x1E YUV422 8-bit, 0x1F YUV422 10-bit, 0x22 RGB565, 0x2A RAW8,
   0x2B RAW10, 0x2C RAW12, for other mode please refer to CSI specifications
WriteByte(0x0019, 0x00);

// 0x00 Data type and pixel width extracted from data stream, 0x04 Data type programmed, pixel width extracted from data type, 0x0c Data type and pixel width programmed
 // MANDATORY FOR CCP MODE AND DECOMPRESSION MODE (unused for uncompressed image
format in CSI mode) WriteByte(0x001b, 0x00); // LSB of the active lines number
WriteByte(0x001a, 0x00); // MSB of the active lines number
WriteByte(0x001d, 0x00); // MSB of the embedded lines number (aka status lines number)
WriteByte(0x001c, 0x00); // MSB of the embedded lines number (aka status lines number)
 // PIXEL WIDTH and decompression ON/OFF
WriteByte(0x001e, 0x00);

// Image data not compressed: 0x06 for Raw6, 0x07 for Raw7, 0x08 for 8 bits, 0x0A for 10bits, 0x0c for Raw12. Image data compressed:0x1a for 12-10, 0x18 for 12-8 and 10-8, 0x17 for 12-7 and 10-7, 0x16 for
12-6 and 10-6
WriteByte(0x001f, 0x00);
       // Embedded data not compressed: 0x06 for Raw6, 0x07 for Raw7, 0x08 for 8 bits, 0x0A for 10bits, 0x0c for Raw12. Embedded data compressed:0x1a for 12-10, 0x18 for 12-8 and 10-8, 0x17 for 12-7 and 10-7,
      for Raw12. Embedded dat 0x16 for 12-6 and 10-6
```

DS12803 - Rev 1 page 34/50

11 Electrical characteristics

For all CSI2 electrical characteristics, please refer to the MIPI Camera Serial Interface Version 2 (CSI-2).

11.1 Absolute maximum ratings

Table 5. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DDE_1V8}	Digital I/O supply	-0.5 to 2.8	
V _{DDIN_LDO}	Voltage regulator supply	-0.5 to 2.8	V
	Voltage on any signal ball	-0.5 to (V _{DD} + 0.5)	
I _{DD}	Supply current	100	m A
	Current on any signal ball	10	mA
T _{STO}	Storage temperature	-40 to 150	°C
T _{LEAD}	Lead temperature (soldering, 10 s)	260	

Caution:

Stresses above those listed under the "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

11.2 Operating conditions

Table 6. Operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DDE_1V8}	Digital I/O supply	1.7	1.8	1.9	V
V _{DDIN_LDO}	Voltage regulator supply	1.7	1.8	1.9	V
T _A	Ambient temperature	-25		70	°C
C _{REG}	LDO output load capacitor, ESR <1Ω @ 100 kHz		1		μF
C _{EXT}	1.2 V decoupling capacitor		10		nF

11.3 Thermal data

Table 7. Thermal data

Symbol	Parameter	Value	Unit
Rth(j-a)	Max. junction-ambient thermal resistance - VFBGA49 (1)	58.4	°C/W

^{1.} Typical, measured with the component mounted on an evaluation PC board in free air

DS12803 - Rev 1 page 35/50

11.4 DC electrical characteristics

The values below apply over the operating conditions unless otherwise specified.

Table 8. I/O electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V_{IL}	Input low voltage		-0.3		0.3 V _{DD} ⁽¹⁾	V	
V_{IH}	Input high voltage		0.7 V _{DD} ⁽¹⁾		V _{DD} + 0.3 ⁽¹⁾		
V_{OL}	Output low voltage	I _{OL} < 2 mA, I _{OL} < 3 mA on SDA			V _{DD} + 0.2 ⁽¹⁾		
V _{OH}	Output high voltage	-I _{OH} < 2 mA, - I _{OL} < 3 mA on SDA	0.8 V _{DD} ⁽¹⁾				
I _{IL} /I _{IH}	Input leakage current, input balls	V _{SS} < V _{IN} < V _{DD}			20	μA	
	Input leakage current,I/O balls				10		
V _{EXTCLKDC}	Clock input amplitude, DC	DC coupled square wave	1.5	1.8	2.4	V	
V _{EXTCLKAC}	Clock input amplitude, AC	AC coupled sine wave	0.5	1	1.2	Vpp	
C _{IN}	SCL input capacitance	T _A = 25 °C,			10		
C _{I/O}	SDA input / output capacitance	freq. = 1 MHz			10	pF	

^{1.} V_{DD} refers to the supply voltage (VDDE_1V8, VDDIN_LDO) to which the signal is referenced

Table 9. Power supply specifications for VDDIN_LDO

Symbol	Parameter	Test conditions	Тур.	Max.	Unit	
I _{DDPD}	V _{DD} supply current in Power down mode	V _{DD} = max; XSDN < V _{IL}	1	5	μА	
I _{DDBYPASS}	V _{DD} supply current in Bypass mode	V _{DD} = max; image format = RAW8; input/ouput data rate = 1.6 Gbps CSI dual	25	30		
	V _{DD} supply current in Normal mode	V _{DD} = max; CCP RAW10 640 Mbps	18	40	mA	
IDDNORMAL		V _{DD} = max; CSI single RAW10 800 Mbps	20	45		
		V _{DD} = max; CSI dual RAW12 1.6 Gbps	25	50		

DS12803 - Rev 1 page 36/50

Table 10. Power supply specifications for VDDE_1V8

Symbol	Parameter	Test conditions	Тур.	Max.	Unit
I _{DDPD}	V _{DD} supply current in Power down mode	V_{DD} = max; PDN < V_{IL}	1	50	μА
I _{DDBYPASS}	V _{DD} supply current in Bypass mode	V _{DD} = max; image format = RAW8; input/ouput data rate = 1.6 Gbps CSI dual	11	15	
		V _{DD} = max; CCP RAW10 640 Mbps	11	25	mA
IDDNORMAL	V _{DD} supply current in Normal mode	V _{DD} = max; CSI single RAW10 800 Mbps	12	25	
		V _{DD} = max; CSI dual RAW12 1.6 Gbps	18	30	

Table 11. CCP2 class 2 receiver electrical characteristics

For further information on CCP2, please refer to the SMIA 1.0 Part 2: CCP2 Specification Available from http://www.smiaforum.org

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CMI_} SMIA	Input common mode voltage range		0.65	0.95	1.15	V
V _{IDTH} SMIA	Input differential threshold (V _P - V _N)	Embedded R _{TI} = $100 \Omega \pm 10 \%$	±50		±200	mV
t _{PWRUP} /t _{PWRDN}	Power up/-down time				20	μs
R _{TI}	Embedded termination resistance		80	100	125	Ω

11.5 AC electrical characteristics

11.5.1 **EXTCLK**

 $V_{\mbox{\footnotesize{EXTCLKAC}}}$ and $V_{\mbox{\footnotesize{EXTCLKDC}}}$ are defined in Table 8. I/O electrical characteristics

Table 12. EXTCLK electrical characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit
f _{EXTCLK}	Clock frequency input, 50 % duty cycle - VDDE_1V8 referred	6	13	27	MHz

DS12803 - Rev 1 page 37/50

Figure 10. EXTCLK electrical characteristics

11.5.2 I2C slave timing (SCL, SDA)

Table 13. I2C slave timing

Symbol	Parameter	Min.	Тур.	Max.	Unit
f _{SCL}	SCL clock frequency	100		400	kHz
t _{LOW}	Clock pulse width low	1.3			
t _{HIGH}	Clock pulse width high	0.6			
t _{BUF}	Bus free time between transmissions	1.3			
t _{HD.STA}	Start hold time	0.6			μs
t _{SU.STA}	Start setup time	0.6			
t _{HD.DAT}	Data hold time	0		0.9	
t _{SU.DAT}	Data setup time	100			
t _R	SCL / SDA rise time (1)			300	ns
t _F	SCL / SDA fall time (1)	SDA fall time ⁽¹⁾		300	
t _{SU.STO}	Stop setup time	0.6			μs

^{1.} Measured from 0.3 to 0.7 or 0.7 to 0.3 V_{DD}

Figure 11. I2C slave timing

DS12803 - Rev 1 page 38/50

11.5.3 CCP2 serial receiver timing (DATA1P1/N1, CLKP1/N1 and DATA1P2/N2, CLKP2/N2)

Table 14. CCP2 serial receiver data/clock (class 0) input timing

Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{DS}	Data setup time	1			
t _{CKP}	Clock period	4.8	_	_	ns

Figure 12. CCP2 data/clock input timing

Table 15. CCP2 serial receiver data/strobe (class 2) input timing

Symbol	Parameter	Min.	Тур.	Max.	Unit
t _{DS}	Data to strobe edge setup time	t _{CKP-780}	t _{CKP}	t _{CKP+780}	ps
t _{CKP}	Transmission clock period	1.56			ns

Figure 13. CCP2 data/strobe input timing

DS12803 - Rev 1 page 39/50

11.5.4 Parallel output interface timing

Figure 14. Parallel output interface timing diagram - inverted clock

Figure 15. Parallel output interface timing diagram - non inverted clock

Note: For Non-inverted clock mode, the valid edge to capture is the negative (falling) edge For RAW6/RAW7 dual lane, the bandwith is limited to 800 Mbps.

Table 16. Parallel output interface timing

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
f _{PCLK}	PCLK frequency				200	MHz
		No bypass, RAW6 dual lane		50		
	PCLK duty cycle	No bypass, RAW7 dual lane		66		
D _{PCLK}		No bypass, RAW7 dual lane, jittered clock		50-60		%
		No bypass, RAW7 single lane		57.14		
		Bypass and all other modes	45	50	55	
t _R	PCLK rise time, 20 % - 80 %	Load capacitance, C _L = 50 pF			2.1	ns
t _{DV}	PCLK to output valid		0		2	

DS12803 - Rev 1 page 40/50

12 Application schematics

The application schematic given below shows an example of the STMIPID02 application with a CSI-2 sensor.

Figure 16. STMIPID02 recommended schematic with camera 1 (CSI-2) and camera 2 (CCP2)

DS12803 - Rev 1 page 41/50

13 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

13.1 VFBGA package information

Figure 17. VFBGA package outline

Note:

The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized marking, or other feature of package body or integral heatslug. A distinguishing feature is allowed on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.

DS12803 - Rev 1 page 42/50

Table 17. VFBGA mechanical data

			Dime	ensions		
Reference		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
A ⁽¹⁾			1.00			0.039
A1	0.125			0.005		
A2		0.615			0.024	
A3		0.18			0.007	
A4			0.45			0.018
b ⁽²⁾	0.22	0.26	0.30	0.009	0.010	0.012
D	2.95	3.00	3.05	0.116	0.118	0.120
D1		2.40			0.094	
E	2.95	3.00	3.05	0.116	0.118	0.120
E1		2.40			0.094	
е		0.40			0.016	
F		0.30			0.012	
ddd			0.08			0.003
eee (3)			0.13			0.005
fff ⁽⁴⁾			0.04			0.002

- VFBGA stands for very thin profile fine pitch ball grid array. Very thin profile: 0.80 mm < A ≤ 1.00 mm / fine pitch: e < 1.00 mm. The maximum total package height is calculated by the following methodology: A2 Typ. + A1 Typ. + square-root(A1 +A3 +A4 tolerance values).
- 2. The typical ball diameter before mounting is 0.25 mm.
- 3. The tolerance of the position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone, eee, perpendicular to datum C and located on the true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
- 4. The tolerance of the position that controls the location of the balls within the matrix with respect to each other. For each ball, there is a cylindrical tolerance zone, fff, perpendicular to datum C and located on the true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones.

DS12803 - Rev 1 page 43/50

14 PCB layout guide

The usual good PCB design rules should be observed for the layout of the STMIPID02.

Power and ground planes should be used to supply power to the STMIPID02.

The high-speed signal pairs (CLKP1, CLKN1), (DATA1P1, DATA1N1), (DATA2P1, DATA2N1), (CLKP2, CLKN2) and (DATA1P2, DATA1N2) should be routed as balanced transmission lines with a characteristic differential impedance (Zo_{diff}) of 100 Ω , and matched in length.

The delay difference between Cclock lane, data lane1 and data lane2 should be less than 5 ps.

The total series resistance of the CSI line should be less than 5 Ω .

For more details, please refer to the MIPI Alliance Specification for D-PHY", version 0.90.00, 8 October 2007, Section 7 "Interconnect and Lane Configuration" and Annex B "Interconnect Design Guidelines".

The output interface clock (PCLK) should be 50 Ω adapted.

The output clock (PCLK) and data line length from the STMIPID02 to the host should be as small as possible to avoid reflection effects.

All passive components for the STMIPID02 should be placed in close proximity to the device, including the decoupling capacitors.

The recommended pull up value of the I2C is in the range 2480 Ω to 2780 Ω for a bus load capacitance below 100 pF.

The recommended capacitor values are:

- 10 nF on VDD1V2
- 100 nF on VDDIN LDO and VDDE 1V8
- 1 μ F (low ESR <1 Ω) on VDDOUT LDO

DS12803 - Rev 1 page 44/50

15 ESD characteristics

The device ESD sensitivity is compliant with the following specifications:

- JESD22 A114D, human body model, ±2 kV, class 2 compliant
- JESD22-C101C, charge device model, ±500 V, class III compliant

DS12803 - Rev 1 page 45/50

16 Ordering information

Table 18. Order code

Sales type	Package
STMIPID02/TR	VFBGA 49 ball, 3 mm x 3 mm x 1 mm, 0.4 mm pitch, 0.25 mm ball package

DS12803 - Rev 1 page 46/50

Revision history

Table 19. Document revision history

Date	Version	Changes
22-Oct-2018	1	Initial public release

DS12803 - Rev 1 page 47/50

Contents

1	Bloc	ck diagram							
2	Appl	oplication diagrams							
3	Outp	Output interface							
4	Control interface								
5	Appl	lication examples	8						
6	Key t	technical specifications	9						
7	Ball a	assignment and description	10						
8	Func	ctional description							
	8.1	Power up sequence	12						
	8.2	User modes	13						
		8.2.1 Standard modes	13						
		8.2.2 Bypass modes	13						
	8.3	CSI2 limitations	13						
	8.4	Sensor switching mechanism	14						
	8.5	Error signal	14						
	8.6	INT signal	14						
9	Regi	ister description	15						
	9.1	Clock lane 1 registers	15						
	9.2	Data lane 1.1 controls	16						
	9.3	Data lane 1.2 controls	18						
	9.4	Clock lane 2 registers	20						
	9.5	Data lane 2 controls	22						
	9.6	CCP RX and error flag registers	24						
	9.7	Mode control registers	26						
	9.8	Clock control registers	29						
	9.9	System error registers	29						
	9.10	Data pipe information	30						
10	Gene	eric script							
11	Elect	Electrical characteristics							

	11.1	Absolu	te maximum ratings	35			
	11.2	Operat	ing conditions	35			
	11.3	Therma	al data	35			
	11.4	DC ele	ctrical characteristics	35			
	11.5	AC elec	ctrical characteristics	37			
		11.5.1	EXTCLK	37			
		11.5.2	I2C slave timing (SCL, SDA)	38			
		11.5.3	CCP2 serial receiver timing (DATA1P1/N1, CLKP1/N1 and DATA1P2/N2, CLKP2/N2).	38			
		11.5.4	Parallel output interface timing	39			
12	Appl	ication	schematics	41			
13	Pack	age info	ormation	42			
	13.1	[Packa	ge name] package information	42			
14	РСВ	layout	guide	44			
15	ESD characteristics45						
16	Ordering information						
Dov	icion I	hictory		47			

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12803 - Rev 1 page 50/50