Systemy Wbudowane

Zadanie 2

Wprowadzenie

Zadanie 2 ma na celu utrwalenie informacji związanych obsługą portów wejścia/wejścia w mikrokontrolerach ARM oraz implementacji prostych algorytmów sterowania wejściami i wyjściami w systemach wbudowanych.

W ramach niniejszego zadania należy rozbudować program opracowany w zadaniu 1 tak, aby realizował algorytm "płynącej diody" z wykorzystaniem diod D1-D8 zamontowanych na płycie ewaluacyjnej w formie linijki diodowej. Szczegółowa specyfikacja wymagań dla programu została podana w dalszej części instrukcji.

Lista zadań

- Analiza schematów elektrycznych płyty ewaluacyjnej KAmeleon-STM32L4
- Zidentyfikowanie połączeń pomiędzy mikrokontrolerem i diodami LED D1-D8
- Konfiguracja wszystkich pinów wejścia/wyjścia wymaganych do zaimplementowania logiki programu zgodnie z ich funkcjonalnością
- Opracowanie aplikacji implementującej zadany algorytm zgodnie z wymaganiami przedstawionymi w instrukcji
- Kompilacja, uruchomienie i debugowanie programu

Pytania wprowadzające

Na płycie ewaluacyjnej znajduje się osiem jednokolorowych diod LED (D1-D8) oraz dioda RGB LED (D9). Ponadto płyta zawiera pięć przycisków w formie joysticka. Schematy elektryczne przedstawiające połączenia poszczególnych komponentów płyty są dostępne na stronie przedmiotu pod adresem: https://fiona.dmcs.pl/sw/doc_stm/Kameleon_STM32L4-v1-0 Schematics.pdf

W ramach przygotowań do pisania programu, proszę odpowiedzieć na poniższe pytania:

Dioda D1 jest podłączona do pinu mikrokontrolera	
Dioda D2 jest podłączona do pinu mikrokontrolera	
Dioda D3 jest podłączona do pinu mikrokontrolera	
Dioda D4 jest podłączona do pinu mikrokontrolera	
Dioda D5 jest podłączona do pinu mikrokontrolera	
Dioda D6 jest podłączona do pinu mikrokontrolera	
Dioda D7 jest podłączona do pinu mikrokontrolera	
Dioda D8 jest podłączona do pinu mikrokontrolera	

Wymagania dla programu

- Podobnie jak w zadaniu 1 program powinien na bieżąco odczytywać stan przycisków joysticka i odpowiednio sterować diodą RGB
- Program powinien implementować algorytm "płynącej diody" z wykorzystaniem diod D1-D8, tj.:
 - O Dana dioda zapala się na określony okres czasu (domyślnie 1 s), a następnie gaśnie i jest zapalana kolejna (D1 -> D2 -> D3 -> D4 -> ...)
 - Po dojściu do końca dioda może się "odbijać" (D8 -> D7 -> D6 -> ...) lub wracać na początek
 (D8 -> D1 -> D2 -> ...)
- Program powinien być napisany w taki sposób, aby szybkość przełączania (czas świecenia pojedynczej diody) była łatwo modyfikowalna (np. za pomocą dyrektywy #define)
- Obie funkcjonalności ("płynąca dioda" oraz sterowanie diodą RGB) powinny działać jednocześnie, bez widocznych opóźnień w reakcji na wciśnięcie przycisku
- Do konfiguracji i sterowania portów wejścia/wyjścia można skorzystać z biblioteki HAL dostarczanej przez producenta mikrokontrolera STM i dostępnej w środowisku STM32CubeIDE