Package 'scCustomize'

December 18, 2024

```
Single Cell Sequencing
Description Collection of functions created and/or curated to aid in the visualization and analy-
     sis of single-cell data using 'R'. 'scCustomize' aims to provide 1) Customized visualiza-
     tions for aid in ease of use and to create more aesthetic and functional visuals. 2) Im-
     prove speed/reproducibility of common tasks/pieces of code in scRNA-seq analysis with a sin-
     gle or group of functions. For citation please use: Marsh SE (2021) ``Custom Visualiza-
     tions & Functions for Streamlined Analyses of Single Cell Sequenc-
     ing" <doi:10.5281/zenodo.5706430> RRID:SCR_024675.
Version 3.0.1
Date 2024-12-18
URL https://github.com/samuel-marsh/scCustomize,
     https://samuel-marsh.github.io/scCustomize/,
     https://doi.org/10.5281/zenodo.5706431
BugReports https://github.com/samuel-marsh/scCustomize/issues
Depends R (>= 4.0.0), Seurat (>= 4.3.0.1)
Imports circlize, cli (>= 3.2.0), cowplot, data.table, dplyr, forcats,
     ggbeeswarm, ggplot2, ggprism, ggrastr, ggrepel, glue,
     grDevices, grid, janitor, lifecycle, magrittr, Matrix (>=
     1.5.0), methods, paletteer, patchwork, pbapply, purrr, rlang
     (>= 1.1.3), scales, scattermore (>= 1.2), SeuratObject (>=
     5.0.0), stats, stringi, stringr, tibble, tidyr
Suggests BiocFileCache, ComplexHeatmap, dittoSeq, DropletUtils,
     ggpubr, hdf5r, knitr, Nebulosa, remotes, reticulate, rliger,
     rmarkdown, scuttle, tidyselect, qs, viridis
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
```

Title Custom Visualizations & Functions for Streamlined Analyses of

Type Package

2 Contents

NeedsCompilation no			
Author Samuel Marsh [aut, cre] (https://orcid.org/0000-0002-3012-6945), Ming Tang [ctb], Velina Kozareva [ctb],			
Lucas Graybuck [ctb] Maintainer Samuel Marsh <samuel.marsh@childrens.harvard.edu></samuel.marsh@childrens.harvard.edu>			
Repository CRAN			
Date/Publication 2024-12-18 18:40:02 UTC			

Contents

Add_Alt_Feature_ID
Add_CellBender_Diff
Add_Cell_Complexity
Add_Cell_QC_Metrics
Add_Hemo
Add_Mito_Ribo
Add_Pct_Diff
Add_Sample_Meta
Add_Top_Gene_Pct
as.anndata
as.LIGER
as.Seurat.liger
Barcode_Plot
Blank_Theme
Case_Check
CellBender_Diff_Plot 28
CellBender_Feature_Diff
Cells.liger
Cells_by_Identities_LIGER
Cells_per_Sample
Cell_Highlight_Plot
Change_Delim_All
Change_Delim_Prefix
Change_Delim_Suffix
CheckMatrix_scCustom
Clustered_DotPlot
Cluster_Highlight_Plot
Cluster_Stats_All_Samples
ColorBlind_Pal
Convert_Assay
Copy_From_GCP
Copy_To_GCP
Create_10X_H5
Create_CellBender_Merged_Seurat
Create Cluster Annotation File

Contents 3

Dark2_Pal	
DimPlot_All_Samples	49
DimPlot_LIGER	50
DimPlot_scCustom	52
DiscretePalette_scCustomize	55
DotPlot_scCustom	56
Embeddings.liger	57
$ensembl_hemo_id \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
ensembl_ieg_list	58
ensembl_mito_id	59
$ensembl_ribo_id \dots $	59
Extract_Modality	60
Extract_Sample_Meta	
Extract_Top_Markers	
Factor_Cor_Plot	63
FeaturePlot_DualAssay	
FeaturePlot_scCustom	
Features.liger	
FeatureScatter_scCustom	
Feature_Present	
Fetch_Meta	
Find_Factor_Cor	
Hue_Pal	
Idents.liger	
ieg_gene_list	
Iterate_Barcode_Rank_Plot	
Iterate_Cluster_Highlight_Plot	
Iterate_DimPlot_bySample	
Iterate_FeaturePlot_scCustom	80
Iterate_Meta_Highlight_Plot	
Iterate_PC_Loading_Plots	
Iterate_Plot_Density_Custom	
Iterate_Plot_Density_Joint	
Iterate_VInPlot_scCustom	
JCO_Four	
Liger_to_Seurat	
MAD_Stats	
Median_Stats	
Merge_Seurat_List	
Merge_Sparse_Data_All	
Merge_Sparse_Multimodal_All	
Meta_Highlight_Plot	
Meta_Numeric	
Meta Present	
Meta Remove Seurat	
Move_Legend	
msigdb_qc_ensembl_list	
msigdb qc gene list	

4 Contents

NavyAndOrange	
PalettePlot	104
PC_Plotting	104
Percent_Expressing	105
plotFactors_scCustom	106
Plot_Cells_per_Sample	108
Plot_Density_Custom	
Plot_Density_Joint_Only	
Plot_Median_Genes	
Plot_Median_Mito	113
Plot_Median_Other	
Plot_Median_UMIs	
Proportion_Plot	
Pull_Cluster_Annotation	
Pull_Directory_List	
QC_Histogram	
QC_Plots_Combined_Vln	
QC_Plots_Complexity	
QC_Plots_Feature	
QC_Plots_Genes	
QC_Plots_Mito	
QC_Plots_UMIs	
QC_Plot_GenevsFeature	
QC_Plot_UMIvsFeature	
QC_Plot_UMIvsGene	
Random_Cells_Downsample	
Read10X_GEO	
Read10X_h5_GEO	
Read10X_h5_Multi_Directory	
Read10X_Multi_Directory	
Read_CellBender_h5_Mat	
Read_CellBender_h5_Multi_Directory	
Read_CellBender_h5_Multi_File	
Read_GEO_Delim	
Read_Metrics_CellBender	
Reduction_Loading_Present	
Rename_Clusters	
Replace_Suffix	
scCustomize_Palette	
Seq_QC_Plot_Alignment_Combined	
Seq_QC_Plot_Antisense	
Seq_QC_Plot_Basic_Combined	
Seq_QC_Plot_Exonic	
Seq_QC_Plot_Genes	
Seq_QC_Plot_Genome	
Seq_QC_Plot_Intergenic	
Seq_QC_Plot_Intronic	161

Add_Alt_Feature_ID 5

	Seq_QC_Plot_Number_Cells	2
	Seq_QC_Plot_Reads_in_Cells	3
	Seq_QC_Plot_Reads_per_Cell	4
	Seq_QC_Plot_Saturation	5
	Seq_QC_Plot_Total_Genes	6
	Seq_QC_Plot_Transcriptome	7
	Seq_QC_Plot_UMIs	8
	seq_zeros	9
	Setup_scRNAseq_Project	0
	Single_Color_Palette	1
	SpatialDimPlot_scCustom	1
	Split_Layers	3
	Split_Vector	4
	Stacked_VlnPlot	5
	Store_Misc_Info_Seurat	7
	Store_Palette_Seurat	8
	Subset_LIGER	9
	theme_ggprism_mod	0
	Top_Genes_Factor	1
	UnRotate_X	2
	Updated_HGNC_Symbols	2
	Updated_MGI_Symbols	3
	VariableFeaturePlot_scCustom	4
	Variable_Features_ALL_LIGER	5
	viridis_plasma_dark_high	7
	VlnPlot_scCustom	8
	WhichCells.liger	9
Index	19	1

Add_Alt_Feature_ID Add Alternative Feature IDs

Description

Add alternative feature ids data.frame to the misc slot of Seurat object.

```
Add_Alt_Feature_ID(
    seurat_object,
    features_tsv_file = NULL,
    hdf5_file = NULL,
    assay = NULL,
    data_name = "feature_id_mapping_table",
    overwrite = FALSE
)
```

Arguments

Value

Seurat Object with new entries in the obj@misc slot.

Examples

```
## Not run:
# Using features.tsv.gz file
    # Either file from filtered or raw outputs can be used as they are identical.
obj <- Add_Alt_Feature_ID(seurat_object = obj,
features_tsv = "sample01/outs/filtered_feature_bc_matrix/features.tsv.gz", assay = "RNA")

#' # Using hdf5 file
    # Either filtered_feature_bc or raw_feature_bc can be used as the features slot is identical
    # Though it is faster to load filtered_feature_bc file due to droplet filtering
obj <- Add_Alt_Feature_ID(seurat_object = obj,
hdf5_file = "sample01/outs/outs/filtered_feature_bc_matrix.h5", assay = "RNA")

## End(Not run)</pre>
```

Add_CellBender_Diff Calculate and add differences post-cell bender analysis

Description

Calculate the difference in features and UMIs per cell when both cell bender and raw assays are present.

```
Add_CellBender_Diff(seurat_object, raw_assay_name, cell_bender_assay_name)
```

Add_Cell_Complexity

Arguments

```
seurat_object object name.

raw_assay_name name of the assay containing the raw data.

cell_bender_assay_name

name of the assay containing the Cell Bender'ed data.
```

7

Value

Seurat object with 2 new columns in the meta.data slot.

Examples

```
## Not run:
object <- Add_CellBender_Diff(seurat_object = obj, raw_assay_name = "RAW",
cell_bender_assay_name = "RNA")
## End(Not run)</pre>
```

Add_Cell_Complexity Add Cell Complexity

Description

Add measure of cell complexity/novelty (log10GenesPerUMI) for data QC.

```
Add_Cell_Complexity(object, ...)
## S3 method for class 'liger'
Add_Cell_Complexity(
  object,
  meta_col_name = "log10GenesPerUMI",
  overwrite = FALSE,
  ...
)

## S3 method for class 'Seurat'
Add_Cell_Complexity(
  object,
  meta_col_name = "log10GenesPerUMI",
  assay = "RNA",
  overwrite = FALSE,
  ...
)
```

Arguments

object Seurat or LIGER object

... Arguments passed to other methods

meta_col_name name to use for new meta data column. Default is "log10GenesPerUMI".

overwrite Logical. Whether to overwrite existing an meta.data column. Default is FALSE

meaning that function will abort if column with name provided to meta_col_name

is present in meta.data slot.

assay assay to use in calculation. Default is "RNA". Note This should only be changed

if storing corrected and uncorrected assays in same object (e.g. outputs of both

Cell Ranger and Cell Bender).

Value

An object of the same class as object with columns added to object meta data.

Examples

```
## Not run:
# Liger
liger_object <- Add_Cell_Complexity(object = liger_object)
## End(Not run)

# Seurat
library(Seurat)
pbmc_small <- Add_Cell_Complexity(object = pbmc_small)</pre>
```

Add_Cell_QC_Metrics Add

Add Multiple Cell Quality Control Values with Single Function

Description

Add Mito/Ribo %, Cell Complexity (log10GenesPerUMI), Top Gene Percent with single function call to Seurat or liger objects.

```
Add_Cell_QC_Metrics(object, ...)
## S3 method for class 'liger'
Add_Cell_QC_Metrics(
  object,
  add_mito_ribo = TRUE,
  add_complexity = TRUE,
  add_top_pct = TRUE,
```

Add_Cell_QC_Metrics

9

```
add_MSigDB = TRUE,
  add_IEG = TRUE,
  add_hemo = TRUE,
  add_cell_cycle = TRUE,
  species,
 mito_name = "percent_mito",
  ribo_name = "percent_ribo",
 mito_ribo_name = "percent_mito_ribo",
  complexity_name = "log10GenesPerUMI",
  top_pct_name = NULL,
  oxphos_name = "percent_oxphos",
  apop_name = "percent_apop",
  dna_repair_name = "percent_dna_repair",
  ieg_name = "percent_ieg",
  hemo_name = "percent_hemo",
 mito_pattern = NULL,
  ribo_pattern = NULL,
  hemo_pattern = NULL,
 mito_features = NULL,
  ribo_features = NULL,
 hemo_features = NULL,
  ensembl_ids = FALSE,
  num\_top\_genes = 50,
  assay = NULL,
 list_species_names = FALSE,
 overwrite = FALSE,
)
## S3 method for class 'Seurat'
Add_Cell_QC_Metrics(
 object,
  species,
  add_mito_ribo = TRUE,
  add_complexity = TRUE,
  add_top_pct = TRUE,
  add_MSigDB = TRUE,
  add_IEG = TRUE,
  add_hemo = TRUE,
  add_cell_cycle = TRUE,
 mito_name = "percent_mito",
  ribo_name = "percent_ribo",
 mito_ribo_name = "percent_mito_ribo",
  complexity_name = "log10GenesPerUMI",
  top_pct_name = NULL,
  oxphos_name = "percent_oxphos",
  apop_name = "percent_apop",
  dna_repair_name = "percent_dna_repair",
```

```
ieg_name = "percent_ieg",
hemo_name = "percent_hemo",
mito_pattern = NULL,
ribo_pattern = NULL,
hemo_pattern = NULL,
mito_features = NULL,
ribo_features = NULL,
hemo_features = NULL,
ensembl_ids = FALSE,
num_top_genes = 50,
assay = NULL,
list_species_names = FALSE,
overwrite = FALSE,
...
)
```

Arguments

object	Seurat or LIGER object
• • •	Arguments passed to other methods
add_mito_ribo	logical, whether to add percentage of counts belonging to mitochondrial/ribosomal genes to object (Default is TRUE).
add_complexity	logical, whether to add Cell Complexity to object (Default is TRUE).
add_top_pct	logical, whether to add Top Gene Percentages to object (Default is TRUE).
add_MSigDB	logical, whether to add percentages of counts belonging to genes from of mSigDB hallmark gene lists: "HALLMARK_OXIDATIVE_PHOSPHORYLATION", "HALLMARK_APOPTOSIS", and "HALLMARK_DNA_REPAIR" to object (Default is TRUE).
add_IEG	logical, whether to add percentage of counts belonging to IEG genes to object (Default is TRUE).
add_hemo	logical, whether to add percentage of counts belonging to homoglobin genes to object (Default is TRUE).
add_cell_cycle	logical, whether to addcell cycle scores and phase based on CellCycleScoring. Only applicable if species = "human". (Default is TRUE).
species	Species of origin for given Seurat Object. If mouse, human, marmoset, zebrafish, rat, drosophila, rhesus macaque, or chicken (name or abbreviation) are provided the function will automatically generate patterns and features.
mito_name	name to use for the new meta.data column containing percent mitochondrial counts. Default is "percent_mito".
ribo_name	name to use for the new meta.data column containing percent ribosomal counts. Default is "percent_ribo".
mito_ribo_name	name to use for the new meta.data column containing percent mitochondrial+ribosomal counts. Default is "percent_mito_ribo".
complexity_name	
	name to use for new meta data column for Add_Cell_Complexity. Default is

"log10GenesPerUMI".

Add_Cell_QC_Metrics 11

name to use for new meta data column for Add_Top_Gene_Pct. Default is "pertop_pct_name cent_topXX", where XX is equal to the value provided to num_top_genes. oxphos_name name to use for new meta data column for percentage of MSigDB oxidative phosphorylation counts. Default is "percent_oxphos". name to use for new meta data column for percentage of MSigDB apoptosis apop_name counts. Default is "percent apop". dna_repair_name name to use for new meta data column for percentage of MSigDB DNA repair counts. Default is "percent_dna_repair"... name to use for new meta data column for percentage of IEG counts. Default is ieg_name "percent_ieg". hemo_name name to use for the new meta.data column containing percent hemoglobin counts. Default is "percent_mito". A regex pattern to match features against for mitochondrial genes (will set automito_pattern matically if species is mouse or human; marmoset features list saved separately). A regex pattern to match features against for ribosomal genes (will set automatribo_pattern ically if species is in default list). A regex pattern to match features against for hemoglobin genes (will set autohemo_pattern matically if species is in default list). mito_features A list of mitochondrial gene names to be used instead of using regex pattern. Will override regex pattern if both are present (including default saved regex patterns). ribo_features A list of ribosomal gene names to be used instead of using regex pattern. Will override regex pattern if both are present (including default saved regex patterns). hemo_features A list of hemoglobin gene names to be used instead of using regex pattern. Will override regex pattern if both are present (including default saved regex patterns). ensembl_ids logical, whether feature names in the object are gene names or ensembl IDs (default is FALSE; set TRUE if feature names are ensembl IDs). An integer vector specifying the size(s) of the top set of high-abundance genes. num_top_genes Used to compute the percentage of library size occupied by the most highly expressed genes in each cell. assay assay to use in calculation. Default is "RNA". Note This should only be changed if storing corrected and uncorrected assays in same object (e.g. outputs of both Cell Ranger and Cell Bender). list_species_names returns list of all accepted values to use for default species names which contain internal regex/feature lists (human, mouse, marmoset, zebrafish, rat, drosophila, rhesus macaque, and chicken). Default is FALSE. overwrite Logical. Whether to overwrite existing an meta.data column. Default is FALSE meaning that function will abort if column with name provided to meta_col_name

is present in meta.data slot.

12 Add_Hemo

Value

```
A liger Object
A Seurat Object
```

Examples

```
## Not run:
obj <- Add_Cell_QC_Metrics(object = obj, species = "Human")
## End(Not run)
## Not run:
obj <- Add_Cell_QC_Metrics(object = obj, species = "Human")
## End(Not run)</pre>
```

Add_Hemo

Add Hemoglobin percentages

Description

Add hemoglobin percentages to meta.data slot of Seurat Object or cell.data/cellMeta slot of Liger object

```
Add_Hemo(object, ...)
## S3 method for class 'liger'
Add_Hemo(
  object,
  species,
  hemo_name = "percent_hemo",
  hemo_pattern = NULL,
 hemo_features = NULL,
  ensembl_ids = FALSE,
  overwrite = FALSE,
  list_species_names = FALSE,
)
## S3 method for class 'Seurat'
Add_Hemo(
  object,
  species,
  hemo_name = "percent_hemo",
```

Add_Hemo 13

```
hemo_pattern = NULL,
hemo_features = NULL,
ensembl_ids = FALSE,
assay = NULL,
overwrite = FALSE,
list_species_names = FALSE,
...
)
```

Arguments

object Seurat or LIGER object

... Arguments passed to other methods

species Species of origin for given Seurat Object. If mouse, human, marmoset, ze-

brafish, rat, drosophila, rhesus macaque, or chicken (name or abbreviation) are

provided the function will automatically generate hemo_pattern values.

hemo_name name to use for the new meta.data column containing percent hemoglobin counts.

Default is "percent_hemo".

hemo_pattern A regex pattern to match features against for hemoglobin genes (will set auto-

matically if species is mouse or human; marmoset features list saved separately).

hemo_features A list of hemoglobin gene names to be used instead of using regex pattern.

ensembl_ids logical, whether feature names in the object are gene names or ensembl IDs

(default is FALSE; set TRUE if feature names are ensembl IDs).

overwrite Logical. Whether to overwrite existing meta.data columns. Default is FALSE

meaning that function will abort if columns with any one of the names provided

to hemo_name is present in meta.data slot.

list_species_names

returns list of all accepted values to use for default species names which contain internal regex/feature lists (human, mouse, marmoset, zebrafish, rat, drosophila,

and rhesus macaque). Default is FALSE.

Assay to use (default is the current object default assay).

Value

An object of the same class as object with columns added to object meta data.

```
## Not run:
# Liger
liger_object <- Add_Hemo(object = liger_object, species = "human")
## End(Not run)
## Not run:
# Seurat
seurat_object <- Add_Hemo(object = seurat_object, species = "human")</pre>
```

14 Add_Mito_Ribo

```
## End(Not run)
```

Add_Mito_Ribo

Add Mito and Ribo percentages

Description

Add Mito, Ribo, & Mito+Ribo percentages to meta.data slot of Seurat Object or cell.data slot of Liger object

```
Add_Mito_Ribo(object, ...)
## S3 method for class 'liger'
Add_Mito_Ribo(
  object,
  species,
 mito_name = "percent_mito",
  ribo_name = "percent_ribo",
 mito_ribo_name = "percent_mito_ribo",
 mito_pattern = NULL,
  ribo_pattern = NULL,
 mito_features = NULL,
  ribo_features = NULL,
  ensembl_ids = FALSE,
  overwrite = FALSE,
  list_species_names = FALSE,
)
## S3 method for class 'Seurat'
Add_Mito_Ribo(
 object,
  species,
 mito_name = "percent_mito",
  ribo_name = "percent_ribo",
 mito_ribo_name = "percent_mito_ribo",
 mito_pattern = NULL,
  ribo_pattern = NULL,
 mito_features = NULL,
  ribo_features = NULL,
  ensembl_ids = FALSE,
  assay = NULL,
  overwrite = FALSE,
```

Add_Mito_Ribo

```
list_species_names = FALSE,
species_prefix = NULL,
...
)
```

Arguments

object Seurat or LIGER object

... Arguments passed to other methods

species Species of origin for given Seurat Object. If mouse, human, marmoset, ze-

brafish, rat, drosophila, rhesus macaque, or chicken (name or abbreviation) are provided the function will automatically generate mito_pattern and ribo_pattern

values.

mito_name name to use for the new meta.data column containing percent mitochondrial

counts. Default is "percent_mito".

ribo_name name to use for the new meta.data column containing percent ribosomal counts.

Default is "percent_ribo".

mito_ribo_name name to use for the new meta.data column containing percent mitochondrial+ribosomal

counts. Default is "percent_mito_ribo".

mito_pattern A regex pattern to match features against for mitochondrial genes (will set auto-

matically if species is mouse, human, zebrafish, rat, drosophila, rhesus macaque,

or chicken; marmoset features list saved separately).

ribo_pattern A regex pattern to match features against for ribosomal genes (will set automat-

ically if species is mouse, human, marmoset, zebrafish, rat, drosophila, rhesus

macaque, or chicken).

mito_features A list of mitochondrial gene names to be used instead of using regex pattern.

Will override regex pattern if both are present (including default saved regex

patterns).

ribo_features A list of ribosomal gene names to be used instead of using regex pattern. Will

override regex pattern if both are present (including default saved regex pat-

terns).

ensembl_ids logical, whether feature names in the object are gene names or ensembl IDs

(default is FALSE; set TRUE if feature names are ensembl IDs).

overwrite Logical. Whether to overwrite existing meta.data columns. Default is FALSE

meaning that function will abort if columns with any one of the names provided

to mito_name ribo_name or mito_ribo_name is present in meta.data slot.

list_species_names

returns list of all accepted values to use for default species names which contain internal regex/feature lists (human, mouse, marmoset, zebrafish, rat, drosophila,

rhesus macaque, and chicken). Default is FALSE.

assay Assay to use (default is the current object default assay).

species_prefix the species prefix in front of gene symbols in object if providing two species for

multi-species aligned dataset.

16 Add_Pct_Diff

Value

An object of the same class as object with columns added to object meta data.

Examples

```
## Not run:
# Liger
liger_object <- Add_Mito_Ribo(object = liger_object, species = "human")
## End(Not run)
## Not run:
# Seurat
seurat_object <- Add_Mito_Ribo(object = seurat_object, species = "human")
## End(Not run)</pre>
```

Add_Pct_Diff

Add percentage difference to DE results

Description

Adds new column labeled "pct_diff" to the data.frame output of FindMarkers, FindAllMarkers, or other DE test data.frames.

Usage

```
Add_Pct_Diff(
  marker_dataframe,
  pct.1_name = "pct.1",
  pct.2_name = "pct.2",
  overwrite = FALSE
)
```

Arguments

marker_dataframe

data.frame containing the results of FindMarkers, FindAllMarkers, or other DE test data.frame.

pct.1_name the name of data.frame column corresponding to percent expressed in group 1. Default is Seurat default "pct.1".

pct.2_name the name of data.frame column corresponding to percent expressed in group 2. Default is Seurat default "pct.2".

overwrite logical. If the marker_dataframe already contains column named "pct_diff" whether to overwrite or return error message. Default is FALSE.

Add_Sample_Meta 17

Value

Returns input marker_dataframe with additional "pct_diff" column.

Examples

```
## Not run:
marker_df <- FindAllMarkers(object = obj_name)
marker_df <- Add_Pct_Diff(marker_dataframe = marker_df)
# or piped with function
marker_df <- FindAllMarkers(object = obj_name) %>%
    Add_Pct_Diff()
## End(Not run)
```

Add_Sample_Meta

Add Sample Level Meta Data

Description

Add meta data from ample level data.frame/tibble to cell level seurat @meta.data slot

Usage

```
Add_Sample_Meta(
    seurat_object,
    meta_data,
    join_by_seurat,
    join_by_meta,
    na_ok = FALSE,
    overwrite = FALSE
)
```

Arguments

seurat_object object name.

meta_data data.frame/tibble containing meta data or path to file to read. Must be formatted as either data.frame or tibble.

join_by_seurat name of the column in seurat_object@meta.data that contains matching variables to join_by_meta in meta_data.

join_by_meta name of the column in meta_data that contains matching variables to join_by_seurat in seurat_object@meta.data.

na_ok logical, is it ok to add NA values to seurat_object@meta.data. Default is FALSE. Be very careful if setting TRUE because if there is error in join operation it may result in all @meta.data values being replaced with NA.

18 Add_Top_Gene_Pct

overwrite

logical, if there are shared columns between seurat_object@meta.data and meta_data should the current seurat_object@meta.data columns be overwritten. Default is FALSE. This parameter excludes values provided to join_by_seurat and join_by_meta.

Value

Seurat object with new @meta.data columns

Examples

```
## Not run:
# meta_data present in environment
sample_level_meta <- data.frame(...)
obj <- Add_Sample_Meta(seurat_object = obj, meta_data = sample_level_meta,
join_by_seurat = "orig.ident", join_by_meta = "sample_ID")

# from meta data file
obj <- Add_Sample_Meta(seurat_object = obj, meta_data = "meta_data/sample_level_meta.csv",
join_by_seurat = "orig.ident", join_by_meta = "sample_ID")

## End(Not run)</pre>
```

Add_Top_Gene_Pct

Add Percent of High Abundance Genes

Description

Add the percentage of counts occupied by the top XX most highly expressed genes in each cell.

```
Add_Top_Gene_Pct(object, ...)
## S3 method for class 'liger'
Add_Top_Gene_Pct(
   object,
   num_top_genes = 50,
   meta_col_name = NULL,
   overwrite = FALSE,
   verbose = TRUE,
   ...
)

## S3 method for class 'Seurat'
Add_Top_Gene_Pct(
   object,
```

Add_Top_Gene_Pct 19

```
num_top_genes = 50,
meta_col_name = NULL,
assay = "RNA",
overwrite = FALSE,
verbose = TRUE,
...
)
```

Arguments

object Seurat or LIGER object.

... Arguments passed to other methods

num_top_genes An integer vector specifying the size(s) of the top set of high-abundance genes.

Used to compute the percentage of library size occupied by the most highly

expressed genes in each cell.

meta_col_name name to use for new meta data column. Default is "percent_topXX", where XX

is equal to the value provided to num_top_genes.

overwrite Logical. Whether to overwrite existing an meta.data column. Default is FALSE

meaning that function will abort if column with name provided to meta_col_name

is present in meta.data slot.

verbose logical, whether to print messages with status updates, default is TRUE.

assay assay to use in calculation. Default is "RNA". Note This should only be changed

if storing corrected and uncorrected assays in same object (e.g. outputs of both

Cell Ranger and Cell Bender).

Value

A liger Object

A Seurat Object

References

This function uses scuttle package (license: GPL-3) to calculate the percent of expression coming from top XX genes in each cell. Parameter description for num_top_genes also from scuttle. If using this function in analysis, in addition to citing scCustomize, please cite scuttle: McCarthy DJ, Campbell KR, Lun ATL, Willis QF (2017). "Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R." Bioinformatics, 33, 1179-1186. doi:10.1093/bioinformatics/btw777.

See Also

https://bioconductor.org/packages/release/bioc/html/scuttle.html

```
## Not run:
liger_object <- Add_Top_Gene_Pct(object = liger_object, num_top_genes = 50)</pre>
```

20 as.anndata

```
## End(Not run)

## Not run:
library(Seurat)
pbmc_small <- Add_Top_Gene_Pct(seurat_object = pbmc_small, num_top_genes = 50)

## End(Not run)</pre>
```

as.anndata

Convert objects to anndata objects

Description

Convert objects (Seurat & LIGER) to anndata objects

```
as.anndata(x, ...)
## S3 method for class 'Seurat'
as.anndata(
  Х,
  file_path,
  file_name,
  assay = NULL,
 main_layer = "data",
 other_layers = "counts",
  transer_dimreduc = TRUE,
  verbose = TRUE,
)
## S3 method for class 'liger'
as.anndata(
 х,
  file_path,
  file_name,
  transfer_norm.data = FALSE,
  reduction_label = NULL,
  add_barcode_names = FALSE,
  barcode_prefix = TRUE,
  barcode_cell_id_delimiter = "_",
  verbose = TRUE,
)
```

as.anndata 21

Arguments

x Seurat or LIGER object

... Arguments passed to other methods

file_path directory file path and/or file name prefix. Defaults to current wd.

file_name file name.

assay Assay containing data to use, (default is object default assay).

main_layer the layer of data to become default layer in anndata object (default is "data").

other_layers other data layers to transfer to annuata object (default is "counts").

transer_dimreduc

logical, whether to transfer dimensionality reduction coordinates from Seurat to

anndata object (default is TRUE).

verbose logical, whether to print status messages during object conversion (default is

TRUE).

transfer_norm.data

logical, whether to transfer the norm.data in addition to raw.data, default is

FALSE.

reduction_label

What to label the visualization dimensionality reduction. LIGER does not store

name of technique and therefore needs to be set manually.

add_barcode_names

logical, whether to add dataset names to the cell barcodes when merging object

data, default is FALSE.

barcode_prefix logical, if add_barcode_names = TRUE should the names be added as prefix to

current cell barcodes/names or a suffix (default is TRUE; prefix).

barcode_cell_id_delimiter

The delimiter to use when adding dataset id to barcode prefix/suffix. Default is

"_"

Value

an anndata object generated from x, saved at path provided.

References

Seurat version modified and enhanced version of sceasy::seurat2anndata(sceasy package: https://github.com/cellgeni/sceasy; License: GPL-3. Function has additional checks and supports Seurat V3 and V5 object structure.

LIGER version inspired by sceasy::seurat2anndata modified and updated to apply to LIGER objects (sceasy package: https://github.com/cellgeni/sceasy; License: GPL-3.

```
## Not run:
as.anndata(x = seurat_object, file_path = "/folder_name", file_name = "anndata_converted.h5ad")
```

22 as.LIGER

```
## End(Not run)
## Not run:
as.anndata(x = liger_object, file_path = "/folder_name", file_name = "anndata_converted.h5ad")
## End(Not run)
```

as.LIGER

Convert objects to LIGER objects

Description

Convert objects (Seurat & lists of Seurat Objects) to anndata objects

```
as.LIGER(x, ...)
## S3 method for class 'Seurat'
as.LIGER(
  х,
  group.by = "orig.ident",
  layers_name = NULL,
  assay = "RNA",
  remove_missing = FALSE,
  renormalize = TRUE,
  use_seurat_var_genes = FALSE,
  use_seurat_dimreduc = FALSE,
  reduction = NULL,
  keep_meta = TRUE,
  verbose = TRUE,
)
## S3 method for class 'list'
as.LIGER(
  group.by = "orig.ident",
  dataset_names = NULL,
  assay = "RNA",
  remove_missing = FALSE,
  renormalize = TRUE,
  use_seurat_var_genes = FALSE,
  var_genes_method = "intersect",
  keep_meta = TRUE,
  verbose = TRUE,
)
```

as.LIGER 23

An object to convert to class liger

Arguments Х

Arguments passed to other methods . . . Variable in meta data which contains variable to split data by, (default is "orig.ident"). group.by name of meta.data column used to split layers if setting group.by = "layers". layers_name Assay containing raw data to use, (default is "RNA"). assay remove_missing logical, whether to remove missing genes with no counts when converting to LIGER object (default is FALSE). renormalize logical, whether to perform normalization after LIGER object creation (default is TRUE). use_seurat_var_genes logical, whether to transfer variable features from Seurat object to new LIGER object (default is FALSE). use_seurat_dimreduc logical, whether to transfer dimensionality reduction coordinates from Seurat to new LIGER object (default is FALSE). Name of Seurat reduction to transfer if use_seurat_dimreduc = TRUE. reduction keep_meta logical, whether to transfer columns in Seurat meta.data slot to LIGER cell.data slot (default is TRUE). verbose

logical, whether to print status messages during object conversion (default is

TRUE).

optional, vector of names to use for naming datasets. dataset_names

var_genes_method

how variable genes should be selected from Seurat objects if use_seurat_var_genes = TRUE. Can be either "intersect" or "union", (default is "intersect").

Value

a liger object generated from x

References

modified and enhanced version of rliger::seuratToLiger.

```
## Not run:
liger_object <- as.LIGER(x = seurat_object)</pre>
## End(Not run)
## Not run:
liger_object <- as.LIGER(x = seurat_object_list)</pre>
## End(Not run)
```

24 as.Seurat.liger

as.Seurat.liger

Convert objects to Seurat objects

Description

Merges raw.data and scale.data of object, and creates Seurat object with these values along with slots containing dimensionality reduction coordinates, iNMF factorization, and cluster assignments. Supports Seurat V3/4 and V4.

Usage

```
## S3 method for class 'liger'
as.Seurat(
    X,
    nms = names(x@H),
    renormalize = TRUE,
    use.liger.genes = TRUE,
    by.dataset = FALSE,
    keep_meta = TRUE,
    reduction_label = "UMAP",
    seurat_assay = "RNA",
    assay_type = NULL,
    add_barcode_names = FALSE,
    barcode_prefix = TRUE,
    barcode_cell_id_delimiter = "_",
    ...
)
```

Arguments

x liger object.

nms By default, labels cell names with dataset of origin (this is to account for cells in

different datasets which may have same name). Other names can be passed here as vector, must have same length as the number of datasets. (default names(H)).

renormalize Whether to log-normalize raw data using Seurat defaults (default TRUE).

use.liger.genes

Whether to carry over variable genes (default TRUE).

by dataset Include dataset of origin in cluster identity in Seurat object (default FALSE).

keep_meta logical. Whether to transfer additional metadata (nGene/nUMI/dataset already

transferred) to new Seurat Object. Default is TRUE.

reduction_label

Name of dimensionality reduction technique used. Enables accurate transfer or

name to Seurat object instead of defaulting to "tSNE".

seurat_assay Name to set for assay in Seurat Object. Default is "RNA".

Barcode_Plot 25

assay_type

what type of Seurat assay to create in new object (Assay vs Assay5). Default is NULL which will default to the current user settings. See Convert_Assay parameter convert_to for acceptable values.

add_barcode_names

logical, whether to add dataset names to the cell barcodes when creating Seurat object, default is FALSE.

barcode_prefix logical, if add_barcode_names = TRUE should the names be added as prefix to current cell barcodes/names or a suffix (default is TRUE; prefix).

barcode_cell_id_delimiter

The delimiter to use when adding dataset id to barcode prefix/suffix. Default is " " $\!\!\!\!$ "

... unused.

Details

Stores original dataset identity by default in new object metadata if dataset names are passed in nms. iNMF factorization is stored in dim.reduction object with key "iNMF".

Value

Seurat object with raw.data, scale.data, reduction_label, iNMF, and ident slots set. Seurat object.

References

Original function is part of LIGER package https://github.com/welch-lab/liger (Licence: GPL-3). Function was modified for use in scCustomize with additional parameters/functionality.

Examples

```
## Not run:
seurat_object <- as.Seurat(x = liger_object)
## End(Not run)</pre>
```

Barcode_Plot

Create Barcode Rank Plot

Description

Plot UMI vs. Barcode Rank with inflection and knee. Requires input from DropletUtils package.

26 Blank_Theme

Usage

```
Barcode_Plot(
  br_out,
  pt.size = 6,
  plot_title = "Barcode Ranks",
  raster_dpi = c(1024, 1024),
  plateau = NULL
)
```

Arguments

br_out DFrame output from barcodeRanks.

pt.size point size for plotting, default is 6.

plot_title Title for plot, default is "Barcode Ranks".

raster_dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(1024, 1024).

plateau numerical value at which to add vertical line designating estimated empty droplet plateau (default is NULL).

Value

A ggplot object

Examples

```
## Not run:
mat <- Read10X_h5(filename = "raw_feature_bc_matrix.h5")
br_results <- DropletUtils::barcodeRanks(mat)

Barcode_Plot(br_out = br_results)
## End(Not run)</pre>
```

Blank_Theme

Blank Theme

Description

Shortcut for thematic modification to remove all axis labels and grid lines

```
Blank_Theme(...)
```

Case_Check 27

Arguments

```
... extra arguments passed to ggplot2::theme().
```

Value

Returns a list-like object of class theme.

Examples

```
# Generate a plot and customize theme
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + Blank_Theme()</pre>
```

Case_Check

Check for alternate case features

Description

Checks Seurat object for the presence of features with the same spelling but alternate case.

Usage

```
Case_Check(
   seurat_object,
   gene_list,
   case_check_msg = TRUE,
   return_features = TRUE,
   assay = NULL
)
```

Arguments

seurat_object Seurat object name.

gene_list vector of genes to check.

case_check_msg logical. Whether to print message to console if alternate case features are found in addition to inclusion in returned list. Default is TRUE.

return_features

logical. Whether to return vector of alternate case features. Default is TRUE.

assay Name of assay to pull feature names from. If NULL will use the result of

DefaultAssay(seurat_object).

Value

If features found returns vector of found alternate case features and prints message depending on parameters specified.

CellBender_Diff_Plot

Examples

```
## Not run:
alt_features <- Case_Check(seurat_object = obj_name, gene_list = DEG_list)
## End(Not run)</pre>
```

CellBender_Diff_Plot Plot Number of Cells/Nuclei per Sample

Description

Plot of total cell or nuclei number per sample grouped by another meta data variable.

Usage

```
CellBender_Diff_Plot(
  feature_diff_df,
  pct_diff_threshold = 25,
  num_features = NULL,
  label = TRUE,
  num_labels = 20,
  min_count_label = 1,
  repel = TRUE,
  custom_labels = NULL,
  plot_line = TRUE,
  plot_title = "Raw Counts vs. Cell Bender Counts",
  x_axis_label = "Raw Data Counts",
  y_axis_label = "Cell Bender Counts",
  xnudge = 0,
  ynudge = 0,
  max.overlaps = 100,
  label_color = "dodgerblue",
  fontface = "bold",
  label_size = 3.88,
  bg.color = "white",
  bg.r = 0.15,
)
```

Arguments

threshold to use for feature plotting. Resulting plot will only contain features which exhibit percent change >= value. Default is 25.

CellBender_Diff_Plot 29

Number of features to plot. Will ignore pct_diff_threshold and return plot

with specified number of features. Default is NULL. label logical, whether or not to label the features that have largest percent difference between raw and CellBender counts (Default is TRUE). num_labels Number of features to label if label = TRUE, (default is 20). min_count_label Minimum number of raw counts per feature necessary to be included in plot labels (default is 1) repel logical, whether to use geom_text_repel to create a nicely-repelled labels; this is slow when a lot of points are being plotted. If using repel, set xnudge and ynudge to 0, (Default is TRUE). custom labels A custom set of features to label instead of the features most different between raw and CellBender counts. logical, whether to plot diagonal line with slope = 1 (Default is TRUE). plot_line plot_title Plot title. x_axis_label Label for x axis. y_axis_label Label for y axis. Amount to nudge X and Y coordinates of labels by. xnudge

ynudge Amount to nudge X and Y coordinates of labels by.

max.overlaps passed to geom_text_repel, exclude text labels that overlap too many things.

Defaults to 100.

label_color Color to use for text labels.

font face to use for text labels ("plain", "bold", "italic", "bold.italic") (Default

is "bold").

label_size text size for feature labels (passed to geom_text_repel).

bg.color color to use for shadow/outline of text labels (passed to geom_text_repel) (De-

fault is white).

bg.r radius to use for shadow/outline of text labels (passed to geom_text_repel)

(Default is 0.15).

... Extra parameters passed to geom_text_repel through LabelPoints.

Value

A ggplot object

num_features

```
## Not run:
# get cell bender differences data.frame
cb_stats <- CellBender_Feature_Diff(seurat_object - obj, raw_assay = "RAW",
cell_bender_assay = "RNA")
# plot
CellBender_Diff_Plot(feature_diff_df = cb_stats, pct_diff_threshold = 25)</pre>
```

```
## End(Not run)
```

```
CellBender_Feature_Diff
```

CellBender Feature Differences

Description

Get quick values for raw counts, CellBender counts, count differences, and percent count differences per feature.

Usage

```
CellBender_Feature_Diff(
  seurat_object = NULL,
  raw_assay = NULL,
  cell_bender_assay = NULL,
  raw_mat = NULL,
  cell_bender_mat = NULL
)
```

Arguments

```
seurat_object Seurat object name.

raw_assay Name of the assay containing the raw count data.

cell_bender_assay

Name of the assay containing the CellBender count data.

raw_mat Name of raw count matrix in environment if not using Seurat object.

cell_bender_mat
```

Value

A data frame containing summed raw counts, CellBender counts, count difference, and percent difference in counts.

Name of CellBender count matrix in environment if not using Seurat object.

```
## Not run:
cb_stats <- CellBender_Feature_Diff(seurat_object - obj, raw_assay = "RAW",
cell_bender_assay = "RNA")
## End(Not run)</pre>
```

Cells.liger 31

Cells.liger

Extract Cells from LIGER Object

Description

Extract all cell barcodes from LIGER object

Usage

```
## S3 method for class 'liger'
Cells(x, by_dataset = FALSE, ...)
```

Arguments

LIGER object name.

by_dataset logical, whether to return list with vector of cell barcodes for each dataset in

LIGER object or to return single vector of cell barcodes across all datasets in

object (default is FALSE; return vector of cells).

... Arguments passed to other methods

Value

vector or list depending on by_dataset parameter

Examples

```
## Not run:
# return single vector of all cells
all_features <- Cells(x = object, by_dataset = FALSE)
# return list of vectors containing cells from each individual dataset in object
dataset_features <- Cells(x = object, by_dataset = TRUE)
## End(Not run)</pre>
```

```
{\tt Cells\_by\_Identities\_LIGER}
```

Extract Cells by identity

Description

Extract all cell barcodes by identity from LIGER object

```
Cells_by_Identities_LIGER(liger_object, group.by = NULL, by_dataset = FALSE)
```

32 Cells_per_Sample

Arguments

liger_object LIGER object name.

group.by name of meta data column to use, default is current default clustering.

by_dataset logical, whether to return list with entries for cell barcodes for each identity in

group. by or to return list of lists (1 entry per dataset and each ident within the

dataset) (default is FALSE; return list)

Value

list or list of lists depending on by_dataset parameter

Examples

```
## Not run:
# return single vector of all cells
cells_by_idents <- Cells_by_Identities_LIGER(liger_object = object, by_dataset = FALSE)
# return list of vectors containing cells from each individual dataset in object
cells_by_idents_by_dataset <- Cells_by_Identities_LIGER(liger_object = object, by_dataset = TRUE)
## End(Not run)</pre>
```

Cells_per_Sample

Cells per Sample

Description

Get data.frame containing the number of cells per sample.

Usage

```
Cells_per_Sample(seurat_object, sample_col = NULL)
```

Arguments

seurat_object Seurat object

sample_col column name in meta.data that contains sample ID information. Default is

NULL and will use "orig.ident column

Value

A data.frame

```
library(Seurat)
num_cells <- Cells_per_Sample(seurat_object = pbmc_small, sample_col = "orig.ident")</pre>
```

Cell_Highlight_Plot 33

Description

Create Plot with meta data variable of interest highlighted

Usage

```
Cell_Highlight_Plot(
  seurat_object,
  cells_highlight,
 highlight_color = NULL,
  background_color = "lightgray",
  pt.size = NULL,
  aspect_ratio = NULL,
  figure_plot = FALSE,
  raster = NULL,
  raster.dpi = c(512, 512),
  label = FALSE,
  split.by = NULL,
  split_seurat = FALSE,
  reduction = NULL,
  ggplot_default_colors = FALSE,
)
```

Arguments

```
seurat_object
                  Seurat object name.
cells_highlight
                  Cell names to highlight in named list.
highlight_color
                  Color to highlight cells.
background_color
                  non-highlighted cell colors (default is "lightgray")..
                  point size for both highlighted cluster and background.
pt.size
                  Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default
aspect_ratio
                  is NULL.
figure_plot
                  logical. Whether to remove the axes and plot with legend on left of plot denoting
                  axes labels. (Default is FALSE). Requires split_seurat = TRUE.
raster
                  Convert points to raster format. Default is NULL which will rasterize by default
                  if greater than 200,000 cells.
raster.dpi
                  Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is
                  c(512, 512).
```

34 Change_Delim_All

label Whether to label the highlighted meta data variable(s). Default is FALSE. split.by Variable in @meta.data to split the plot by.

split_seurat logical. Whether or not to display split plots like Seurat (shared y axis) or as

individual plots in layout. Default is FALSE.

reduction Dimensionality Reduction to use (if NULL then defaults to Object default).

ggplot_default_colors

logical. If highlight_color = NULL, Whether or not to return plot using default ggplot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

... Extra parameters passed toDimPlot.

Value

A ggplot object

Examples

Change_Delim_All

Change all delimiters in cell name

Description

Change all instances of delimiter in cell names from list of data.frames/matrices or single data.frame/matrix

Usage

```
Change_Delim_All(data, current_delim, new_delim)
```

Arguments

data Either matrix/data.frame or list of matrices/data.frames with the cell barcodes in

the column names.

current_delim a single value of current delimiter.

new_delim a single value of new delimiter desired.

Change_Delim_Prefix 35

Value

matrix or data.frame with new column names.

Examples

```
## Not run:
dge_matrix <- Change_Delim_All(data = dge_matrix, current_delim = ".", new_delim = "-")
## End(Not run)</pre>
```

Change_Delim_Prefix

Change barcode prefix delimiter

Description

Change barcode prefix delimiter from list of data.frames/matrices or single data.frame/matrix

Usage

```
Change_Delim_Prefix(data, current_delim, new_delim)
```

Arguments

data Either m

Either matrix/data.frame or list of matrices/data.frames with the cell barcodes in

the column names.

current_delim

a single value of current delimiter.

new_delim

a single value of new delimiter desired.

Value

matrix or data.frame with new column names.

```
## Not run:
dge_matrix <- Change_Delim_Prefix(data = dge_matrix, current_delim = ".", new_delim = "-")
## End(Not run)</pre>
```

```
Change_Delim_Suffix Change barcode suffix delimiter
```

Description

Change barcode suffix delimiter from list of data.frames/matrices or single data.frame/matrix

Usage

```
Change_Delim_Suffix(data, current_delim, new_delim)
```

Arguments

data Either matrix/data.frame or list of matrices/data.frames with the cell barcodes in

the column names.

current_delim a single value of current delimiter.
new_delim a single value of new delimiter desired.

Value

matrix or data.frame with new column names.

Examples

```
## Not run:
dge_matrix <- Change_Delim_Suffix(data = dge_matrix, current_delim = ".", new_delim = "-")
## End(Not run)</pre>
```

Description

Native implementation of SeuratObjects CheckMatrix but with modified warning messages.

```
CheckMatrix_scCustom(
  object,
  checks = c("infinite", "logical", "integer", "na")
)
```

Arguments

object A matrix

checks Type of checks to perform, choose one or more from:

"infinite": Emit a warning if any value is infinite
"logical": Emit a warning if any value is a logical
"integer": Emit a warning if any value is *not* an integer

• "na": Emit a warning if any value is an NA or NaN

Value

Emits warnings for each test and invisibly returns NULL

References

Re-implementing CheckMatrix only for sparse matrices with modified warning messages. Original function from SeuratObject https://github.com/satijalab/seurat-object/blob/9c0eda946e162d8595696e5280a6eR/utils.R#L625-L650 (License: MIT).

Examples

```
## Not run:
mat <- Read10X(...)
CheckMatrix_scCustom(object = mat)
## End(Not run)</pre>
```

Clustered_DotPlot

Clustered DotPlot

Description

Clustered DotPlots using ComplexHeatmap

```
Clustered_DotPlot(
    seurat_object,
    features,
    split.by = NULL,
    colors_use_exp = viridis_plasma_dark_high,
    exp_color_min = -2,
    exp_color_middle = NULL,
    exp_color_max = 2,
    exp_value_type = "scaled",
    print_exp_quantiles = FALSE,
    colors_use_idents = NULL,
```

```
show_ident_colors = TRUE,
  x_{lab_rotate} = TRUE,
  plot_padding = NULL,
  flip = FALSE,
  k = 1,
  feature_km_repeats = 1000,
  ident_km_repeats = 1000,
  row_label_size = 8,
  row_label_fontface = "plain",
  grid_color = NULL,
  cluster_feature = TRUE,
  cluster_ident = TRUE,
  column_label_size = 8,
  legend_label_size = 10,
  legend_title_size = 10,
  legend_position = "right",
  legend_orientation = NULL,
  show_ident_legend = TRUE,
  show_row_names = TRUE,
  show_column_names = TRUE,
  column_names_side = "bottom",
  row_names_side = "right",
  raster = FALSE,
  plot_km_elbow = TRUE,
  elbow_kmax = NULL,
  assay = NULL,
  group.by = NULL,
  idents = NULL,
  show_parent_dend_line = TRUE,
  ggplot_default_colors = FALSE,
  color\_seed = 123,
  seed = 123
)
```

Arguments

```
seurat_object
                  Seurat object name.
features
                  Features to plot.
split.by
                  Variable in @meta.data to split the identities plotted by.
colors_use_exp Color palette to use for plotting expression scale. Default is viridis::plasma(n
                  = 20, direction = -1).
                  Minimum scaled average expression threshold (everything smaller will be set to
exp_color_min
                  this). Default is -2.
exp_color_middle
                  What scaled expression value to use for the middle of the provided colors_use_exp.
                  By default will be set to value in middle of exp_color_min and exp_color_max.
                  Minimum scaled average expression threshold (everything smaller will be set to
exp_color_max
                  this). Default is 2.
```

exp_value_type Whether to plot average normalized expression or scaled average normalized expression. Only valid when split.by is provided.

print_exp_quantiles

Whether to print the quantiles of expression data in addition to plots. Default is FALSE. NOTE: These values will be altered by choices of exp_color_min and exp_color_min if there are values below or above those cutoffs, respectively.

colors_use_idents

specify color palette to used for identity labels. By default if number of levels plotted is less than or equal to 36 it will use "polychrome" and if greater than 36 will use "varibow" with shuffle = TRUE both from DiscretePalette_scCustomize.

show_ident_colors

logical, whether to show colors for idents on the column/rows of the plot (default is TRUE).

x_lab_rotate How to rotate column labels. By default set to TRUE which rotates labels 45 degrees. If set FALSE rotation is set to 0 degrees. Users can also supply custom angle for text rotation.

plot_padding if plot needs extra white space padding so no plot or labels are cutoff. The parameter accepts TRUE or numeric vector of length 4. If TRUE padding will be set to c(2, 10, 0 0) (bottom, left, top, right). Can also be customized further with numeric vector of length 4 specifying the amount of padding in millimeters. Default is NULL, no padding.

logical, whether to flip the axes of final plot. Default is FALSE; rows = features and columns = idents.

> Value to use for k-means clustering on features Sets (km) parameter in ComplexHeatmap::Heatmap(). From ComplexHeatmap::Heatmap(): Apply k-means clustering on rows. If the value is larger than 1, the heatmap will be split by rows according to the kmeans clustering. For each row slice, hierarchical clustering is still applied with parameters above.

feature_km_repeats

Number of k-means runs to get a consensus k-means clustering for features. Note if feature_km_repeats is set to value greater than one, the final number of groups might be smaller than row_km, but this might mean the original row_km is not a good choice. Default is 1000.

ident_km_repeats

Number of k-means runs to get a consensus k-means clustering. Similar to feature_km_repeats. Default is 1000.

row_label_size Size of the feature labels. Provided to row_names_gp in Heatmap call. row_label_fontface

Fontface to use for row labels. Provided to row_names_gp in Heatmap call.

color to use for heatmap grid. Default is NULL which "removes" grid by using grid_color NA color.

logical, whether to cluster and reorder feature axis. Default is TRUE.

cluster_ident logical, whether to cluster and reorder identity axis. Default is TRUE. column_label_size

Size of the feature labels. Provided to column_names_gp in Heatmap call.

flip

k

cluster_feature

legend_label_size

Size of the legend text labels. Provided to labels_gp in Heatmap legend call.

legend_title_size

Size of the legend title text labels. Provided to title_gp in Heatmap legend call.

legend_position

Location of the plot legend (default is "right").

legend_orientation

Orientation of the legend (default is NULL).

show_ident_legend

logical, whether to show the color legend for idents in plot (default is TRUE).

show_row_names logical, whether to show row names on plot (default is TRUE).

show_column_names

logical, whether to show column names on plot (default is TRUE).

column_names_side

elbow_kmax

Should the row names be on the "bottom" or "top" of plot. Default is "bottom".

row_names_side Should the row names be on the "left" or "right" of plot. Default is "right".

raster Logical, whether to render in raster format (faster plotting, smaller files). De-

fault is FALSE.

plot_km_elbow Logical, whether or not to return the Sum Squared Error Elbow Plot for k-means

clustering. Estimating elbow of this plot is one way to determine "optimal" value

for k. Based on: https://stackoverflow.com/a/15376462/15568251.

The maximum value of k to use for plot_km_elbow. Suggest setting larger value so the true shape of plot can be observed. Value must be 1 less than number of

features provided. If NULL parameter will be set dependent on length of feature

list up to elbow $_k$ max = 20.

assay Name of assay to use, defaults to the active assay.

group.by Group (color) cells in different ways (for example, orig.ident).

idents Which classes to include in the plot (default is all).

show_parent_dend_line

Logical, Sets parameter of same name in ComplexHeatmap::Heatmap(). From ComplexHeatmap::Heatmap(): When heatmap is split, whether to add a dashed line to mark parent dendrogram and children dendrograms. Default is TRUE.

ggplot_default_colors

logical. If colors_use = NULL, Whether or not to return plot using default gg-plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

color_seed random seed for the "varibow" palette shuffle if colors_use = NULL and number

of groups plotted is greater than 36. Default = 123.

seed Sets seed for reproducible plotting (ComplexHeatmap plot).

Value

A ComplexHeatmap or if plot_km_elbow = TRUE a list containing ggplot2 object and Complex-Heatmap.

Author(s)

Ming Tang (Original Code), Sam Marsh (Wrap single function, added/modified functionality)

References

```
https://divingintogeneticsandgenomics.rbind.io/post/clustered-dotplot-for-single-cell-rnaseq/
```

See Also

```
https://twitter.com/tangming2005
```

Examples

```
library(Seurat)
Clustered_DotPlot(seurat_object = pbmc_small, features = c("CD3E", "CD8", "GZMB", "MS4A1"))
```

Cluster_Highlight_Plot

Cluster Highlight Plot

Description

Create Plot with cluster of interest highlighted

```
Cluster_Highlight_Plot(
  seurat_object,
  cluster_name,
  highlight_color = NULL,
  background_color = "lightgray",
  pt.size = NULL,
  aspect_ratio = NULL,
  figure_plot = FALSE,
  raster = NULL,
  raster.dpi = c(512, 512),
  label = FALSE,
  split.by = NULL,
  split_seurat = FALSE,
  split_title_size = 15,
  num_columns = NULL,
  reduction = NULL,
  ggplot_default_colors = FALSE,
)
```

Arguments

seurat_object Seurat object name.

cluster_name Name(s) (or number(s)) identity of cluster to be highlighted.

highlight_color

Color(s) to highlight cells. The default is NULL and plot will use scCustomize_Palette().

background_color

non-highlighted cell colors.

pt.size point size for both highlighted cluster and background.

aspect_ratio Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default

is NULL.

figure_plot logical. Whether to remove the axes and plot with legend on left of plot denoting

axes labels. (Default is FALSE). Requires split_seurat = TRUE.

raster Convert points to raster format. Default is NULL which will rasterize by default

if greater than 200,000 cells.

raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is

c(512, 512).

label Whether to label the highlighted cluster(s). Default is FALSE.

split.by Feature to split plots by (i.e. "orig.ident").

split_seurat logical. Whether or not to display split plots like Seurat (shared y axis) or as

individual plots in layout. Default is FALSE.

split_title_size

size for plot title labels when using split.by.

num_columns Number of columns in plot layout. Only valid if split.by != NULL.

reduction Dimensionality Reduction to use (if NULL then defaults to Object default).

ggplot_default_colors

logical. If colors_use = NULL, Whether or not to return plot using default gg-plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

... Extra parameters passed to DimPlot.

Value

A ggplot object

```
Cluster_Highlight_Plot(seurat_object = pbmc_small, cluster_name = "1", highlight_color = "gold",
background_color = "lightgray", pt.size = 2)
```

```
Cluster_Stats_All_Samples
```

Calculate Cluster Stats

Description

Calculates both overall and per sample cell number and percentages per cluster based on orig.ident.

Usage

```
Cluster_Stats_All_Samples(seurat_object, group_by_var = "orig.ident")
```

Arguments

```
seurat_object Seurat object name.
group_by_var meta data column to classify samples (default = "orig.ident").
```

Value

A data.frame with rows in order of frequency

Examples

```
## Not run:
stats <- Cluster_Stats_All_Samples(seurat_object = object, group_by_var = "orig.ident")
## End(Not run)</pre>
```

ColorBlind_Pal

Color Universal Design Short Palette

Description

Shortcut ta a modified 8 color palette based on Color Universal Design (CUD) colorblindness friendly palette.

Usage

```
ColorBlind_Pal()
```

Value

modified/reordered color palette (8 colors) based on ditto-seq

Convert_Assay

References

palette is slightly modified version of the Color Universal Design (CUD) colorblindness friendly palette https://jfly.uni-koeln.de/color/.

Examples

```
cols <- ColorBlind_Pal()
PalettePlot(pal = cols)</pre>
```

Convert_Assay

Convert between Seurat Assay types

Description

Will convert assays within a Seurat object between "Assay" and "Assay5" types.

Usage

```
Convert_Assay(seurat_object, assay = NULL, convert_to)
```

Arguments

seurat_object Seurat object name.

assay name(s) of assays to convert. Default is NULL and will check with users which

assays they want to convert.

convert_to value of what assay type to convert current assays to. #'

- Accepted values for V3/4 are: "Assay", "assay", "V3", or "v3".
- Accepted values for V5 are: "Assay5", "assay5", "V5", or "v5".

```
## Not run:
# Convert to V3/4 assay
obj <- Convert_Assay(seurat_object = obj, convert_to = "V3")
# Convert to 5 assay
obj <- Convert_Assay(seurat_object = obj, convert_to = "V5")
## End(Not run)</pre>
```

Copy_From_GCP 45

Copy_From_GCP

Copy folder from GCP bucket from R Console

Description

Run command from R console without moving to terminal to copy folder from GCP bucket to local storage

Usage

```
Copy_From_GCP(folder_file_path, gcp_bucket_path)
```

Arguments

Value

No return value. Performs system copy from GCP bucket.

Examples

```
## Not run:
Copy_From_GCP(folder_file_path = "plots/", gcp_bucket_path = "gs://bucket_name_and_folder_path")
## End(Not run)
```

Copy_To_GCP

Copy folder to GCP bucket from R Console

Description

Run command from R console without moving to terminal to copy folder to GCP bucket

Usage

```
Copy_To_GCP(folder_file_path, gcp_bucket_path)
```

Arguments

46 Create_10X_H5

Value

No return value. Performs system copy to GCP bucket.

Examples

```
## Not run:
Copy_To_GCP(folder_file_path = "plots/", gcp_bucket_path = "gs://bucket_name_and_folder_path")
## End(Not run)
```

Create_10X_H5

Create H5 from 10X Outputs

Description

Creates HDF5 formatted output analogous to the outputs created by Cell Ranger and can be read into Seurat, LIGER, or SCE class object. Requires DropletUtils package from Bioconductor.

Usage

```
Create_10X_H5(
  raw_data_file_path,
  source_type = "10X",
  save_file_path,
  save_name
)
```

Arguments

```
raw_data_file_path
file path to raw data file(s).

source_type type of source data (Default is "10X"). Alternatively can provide "Matrix" or "data.frame".

save_file_path file path to directory to save file.

save_name name prefix for output H5 file.
```

Value

A HDF5 format file that will be recognized as 10X Cell Ranger formatted file by Seurat or LIGER.

```
## Not run:
Create_10X_H5(raw_data_file_path = "file_path", save_file_path = "file_path2", save_name = "NAME")
## End(Not run)
```

```
Create_CellBender_Merged_Seurat
```

Create Seurat Object with Cell Bender and Raw data

Description

Enables easy creation of Seurat object which contains both cell bender data and raw count data as separate assays within the object.

Usage

```
Create_CellBender_Merged_Seurat(
  raw_cell_bender_matrix = NULL,
  raw_counts_matrix = NULL,
  raw_assay_name = "RAW",
  min_cells = 5,
  min_features = 200,
  ...
)
```

Arguments

Value

A Seurat Object contain both the Cell Bender corrected counts ("RNA" assay) and uncorrected counts ("RAW" assay; or other name specified to raw_assay_name).

```
## Not run:
seurat_obj <- Create_CellBender_Merged_Seurat(raw_cell_bender_matrix = cb_matrix,
raw_counts_matrix = cr_matrix)
## End(Not run)</pre>
```

Dark2_Pal

```
Create_Cluster_Annotation_File
```

Create cluster annotation csv file

Description

create annotation file

Usage

```
Create_Cluster_Annotation_File(
  file_path = NULL,
  file_name = "cluster_annotation"
)
```

Arguments

file_path path to directory to save file. Default is current working directory.

file_name name to use for annotation file. Function automatically adds file type ".csv"

suffix. Default is "cluster_annotation".

Value

No value returned. Creates .csv file.

Examples

```
## Not run:
Create_Cluster_Annotation_File(file_path = "cluster_annotation_folder_name")
## End(Not run)
```

Dark2_Pal

Dark2 Palette

Description

Shortcut to Dark2 color palette from RColorBrewer (8 Colors)

Usage

```
Dark2_Pal()
```

Value

"Dark2" color palette (8 colors)

References

Dark2 palette from RColorBrewer being called through paletteer. See RColorBrewer for more info on palettes https://CRAN.R-project.org/package=RColorBrewer

Examples

```
cols <- Dark2_Pal()
PalettePlot(pal= cols)</pre>
```

DimPlot_All_Samples

DimPlot by Meta Data Column

Description

Creates DimPlot layout containing all samples within Seurat Object from orig.ident column

Usage

```
DimPlot_All_Samples(
    seurat_object,
    meta_data_column = "orig.ident",
    colors_use = "black",
    pt.size = NULL,
    aspect_ratio = NULL,
    title_size = 15,
    num_columns = NULL,
    reduction = NULL,
    dims = c(1, 2),
    raster = NULL,
    raster.dpi = c(512, 512),
    ...
)
```

Arguments

```
seurat_object Seurat object name.
meta_data_column
```

Meta data column to split plots by.

colors_use single color to use for all plots or a vector of colors equal to the number of plots.

pt.size Adjust point size for plotting.

aspect_ratio Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default

is NULL.

title_size size for plot title labels.

num_columns number of columns in final layout plot.

50 DimPlot_LIGER

reduction	Dimensionality Reduction to use (if NULL then defaults to Object default).	
dims	Which dimensions to plot. Defaults to $c(1,2)$ if not specified.	
raster	Convert points to raster format. Default is NULL which will rasterize by default if greater than 200,000 cells.	
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is $c(512,512)$.	
	Extra parameters passed to DimPlot.	

Value

A ggplot object

Examples

```
library(Seurat)
pbmc_small$sample_id <- sample(c("sample1", "sample2"), size = ncol(pbmc_small), replace = TRUE)
DimPlot_All_Samples(seurat_object = pbmc_small, meta_data_column = "sample_id", color = "black", num_columns = 2)</pre>
```

DimPlot_LIGER

DimPlot LIGER Version

Description

Standard and modified version of LIGER's plotByDatasetAndCluster

```
DimPlot_LIGER(
  liger_object,
  group_by = NULL,
  split_by = NULL,
  colors_use_cluster = NULL,
  colors_use_meta = NULL,
  pt_size = NULL,
  shuffle = TRUE,
  shuffle_seed = 1,
  reduction_label = "UMAP",
  reduction = NULL,
  aspect_ratio = NULL,
  label = TRUE,
  label_size = NA,
  label_repel = FALSE,
  label_box = FALSE,
```

DimPlot_LIGER 51

```
label_color = "black",
combination = FALSE,
raster = NULL,
raster.dpi = c(512, 512),
num_columns = NULL,
ggplot_default_colors = FALSE,
color_seed = 123
)
```

Arguments

liger_object liger_object. Need to perform clustering before calling this function

group_by Variable to be plotted. If NULL will plot clusters from liger@clusters slot. If

combination = TRUE will plot both clusters and meta data variable.

split_by Variable to split plots by.

colors_use_cluster

colors to use for plotting by clusters. By default if number of levels plotted is less than or equal to 36 will use "polychrome" and if greater than 36 will use "varibow" with shuffle = TRUE both from DiscretePalette_scCustomize.

colors_use_meta

colors to use for plotting by meta data (cell.data) variable. By default if number of levels plotted is less than or equal to 36 it will use "polychrome" and if greater than 36 will use "varibow" with shuffle = TRUE both from DiscretePalette scCustomize.

pt_size Adjust point size for plotting.

shuffle logical. Whether to randomly shuffle the order of points. This can be useful for

crowded plots if points of interest are being buried. (Default is TRUE).

shuffle_seed Sets the seed if randomly shuffling the order of points.

reduction_label

What to label the x and y axes of resulting plots. LIGER does not store name of technique and therefore needs to be set manually. Default is "UMAP". (only

valid for rliger < 2.0.0).

reduction specify reduction to use when plotting. Default is current object default reduc-

tion (only valid for rliger v2.0.0 or greater).

aspect_ratio Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default

is NULL.

label logical. Whether or not to label the clusters. ONLY applies to plotting by cluster.

Default is TRUE.

label_size size of cluster labels.

label_repel logical. Whether to repel cluster labels from each other if plotting by cluster (if

group_by = NULL or group_by = "cluster). Default is FALSE.

label_box logical. Whether to put a box around the label text (uses geom_text vs geom_label).

Default is FALSE.

label_color Color to use for cluster labels. Default is "black".

52 DimPlot_scCustom

color_seed random seed for the "varibow" palette shuffle if colors_use = NULL and number

of groups plotted is greater than 36. Default = 123.

Value

A ggplot/patchwork object

Examples

```
## Not run:
DimPlot_LIGER(liger_object = obj_name, reduction_label = "UMAP")
## End(Not run)
```

DimPlot_scCustom

DimPlot with modified default settings

Description

Creates DimPlot with some of the settings modified from their Seurat defaults (colors_use, shuffle, label).

```
DimPlot_scCustom(
    seurat_object,
    colors_use = NULL,
    pt.size = NULL,
    reduction = NULL,
    group.by = NULL,
    split.by = NULL,
    split_seurat = FALSE,
    figure_plot = FALSE,
    aspect_ratio = NULL,
    add_prop_plot = FALSE,
```

DimPlot_scCustom 53

```
prop_plot_percent = FALSE,
 prop_plot_x_log = FALSE,
 prop_plot_label = FALSE,
  shuffle = TRUE,
  seed = 1,
  label = NULL,
  label.size = 4,
 label.color = "black",
 label.box = FALSE,
 dims = c(1, 2),
  repel = FALSE,
  raster = NULL,
  raster.dpi = c(512, 512),
  num_columns = NULL,
  ggplot_default_colors = FALSE,
  color_seed = 123,
)
```

Arguments

prop_plot_x_log

seurat_object	Seurat object name.	
colors_use	color palette to use for plotting. By default if number of levels plotted is less than or equal to 36 it will use "polychrome" and if greater than 36 will use "varibow" with shuffle = TRUE both from $DiscretePalette_scCustomize$.	
pt.size	Adjust point size for plotting.	
reduction	Dimensionality Reduction to use (if NULL then defaults to Object default).	
group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); default is the current active.ident of the object.	
split.by	Feature to split plots by (i.e. "orig.ident").	
split_seurat	logical. Whether or not to display split plots like Seurat (shared y axis) or as individual plots in layout. Default is FALSE.	
figure_plot	logical. Whether to remove the axes and plot with legend on left of plot denoting axes labels. (Default is FALSE). Requires split_seurat = TRUE.	
aspect_ratio	Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default is NULL.	
add_prop_plot	logical, whether to add plot to returned layout with the number of cells per identity (or percent of cells per identity). Default is FALSE.	
prop_plot_percent		
	logical, if add_prop_plot = TRUE this parameter controls whether proportion plot shows raw cell number or percent of cells per identity. Default is FALSE; plots raw cell number.	

axis to log10 scale (Default is FALSE).

logical, if add_prop_plot = TRUE this parameter controls whether to change x

54 DimPlot_scCustom

prop_plot_label

logical, if add_prop_plot = TRUE this parameter controls whether to label the

bars with total number of cells or percentages; Default is FALSE.

shuffle logical. Whether to randomly shuffle the order of points. This can be useful for

crowded plots if points of interest are being buried. (Default is TRUE).

seed Sets the seed if randomly shuffling the order of points.

label Whether to label the clusters. By default if group. by = NULL label = TRUE, and

otherwise it is FALSE.

label.size Sets size of labels.

label.color Sets the color of the label text.

label.box Whether to put a box around the label text (geom_text vs geom_label).

dims Which dimensions to plot. Defaults to c(1,2) if not specified.

repel Repel labels.

raster Convert points to raster format. Default is NULL which will rasterize by default

if greater than 200,000 cells.

raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is

c(512, 512).

num_columns Number of columns in plot layout. Only valid if split.by != NULL.

ggplot_default_colors

logical. If colors_use = NULL, Whether or not to return plot using default gg-

plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

color_seed random seed for the "varibow" palette shuffle if colors_use = NULL and number

of groups plotted is greater than 36. Default = 123.

... Extra parameters passed to DimPlot.

Value

A ggplot object

References

Many of the param names and descriptions are from Seurat to facilitate ease of use as this is simply a wrapper to alter some of the default parameters https://github.com/satijalab/seurat/blob/master/R/visualization.R (License: GPL-3). figure_plot parameter/code modified from code by Tim Stuart via twitter: https://twitter.com/timoast/status/1526237116035891200? s=20&t=foJOF81aPSjr1t7pk1cUPg.

```
library(Seurat)
DimPlot_scCustom(seurat_object = pbmc_small)
```

DiscretePalette_scCustomize

Discrete color palettes

Description

Helper function to return a number of discrete color palettes.

Usage

```
DiscretePalette_scCustomize(
  num_colors,
  palette = NULL,
  shuffle_pal = FALSE,
  seed = 123
)
```

Arguments

num_colors Number of colors to be generated.

palette Options are "alphabet", "alphabet2", "glasbey", "polychrome", "stepped", "ditto_seq", "varibow".

shuffle_pal randomly shuffle the outputted palette. Most useful for varibow palette as that

is normally an ordered palette.

seed random seed for the palette shuffle. Default = 123.

Value

A vector of colors

References

This function uses the paletteer package https://github.com/EmilHvitfeldt/paletteer to provide simplified access to color palettes from many different R package sources while minimizing scCustomize current and future dependencies.

The following packages & palettes are called by this function (see individual packages for palette references/citations):

- 1. pals (via paletteer) https://CRAN.R-project.org/package=pals
 - alphabet, alphabet2, glasbey, polychrome, and stepped.
- 2. dittoSeq https://bioconductor.org/packages/release/bioc/html/dittoSeq.html
 - dittoColors.
- 3. colorway https://github.com/hypercompetent/colorway
 - varibow

Function name and implementation modified from Seurat (License: GPL-3). https://github.com/satijalab/seurat

56 DotPlot_scCustom

Examples

```
pal <- DiscretePalette_scCustomize(num_colors = 36, palette = "varibow")
PalettePlot(pal= pal)</pre>
```

DotPlot_scCustom

Customized DotPlot

Description

Code for creating customized DotPlot

Usage

```
DotPlot_scCustom(
    seurat_object,
    features,
    group.by = NULL,
    colors_use = viridis_plasma_dark_high,
    remove_axis_titles = TRUE,
    x_lab_rotate = FALSE,
    y_lab_rotate = FALSE,
    facet_label_rotate = FALSE,
    flip_axes = FALSE,
    ...
)
```

Arguments

```
Seurat object name.
seurat_object
features
                  Features to plot.
                  Name of metadata variable (column) to group cells by (for example, orig.ident);
group.by
                  default is the current active.ident of the object.
colors_use
                  specify color palette to used. Default is viridis_plasma_dark_high.
remove_axis_titles
                  logical. Whether to remove the x and y axis titles. Default = TRUE.
                  Rotate x-axis labels 45 degrees (Default is FALSE).
x_lab_rotate
y_lab_rotate
                  Rotate x-axis labels 45 degrees (Default is FALSE).
facet_label_rotate
                  Rotate facet labels on grouped DotPlots by 45 degrees (Default is FALSE).
flip_axes
                  whether or not to flip and X and Y axes (Default is FALSE).
                  Extra parameters passed to DotPlot.
```

Embeddings.liger 57

Value

A ggplot object

Examples

```
library(Seurat)
DotPlot_scCustom(seurat_object = pbmc_small, features = c("CD3E", "CD8", "GZMB", "MS4A1"))
```

Embeddings.liger

Extract matrix of embeddings

Description

Extract matrix containing iNMF or dimensionality reduction embeddings.

Usage

```
## S3 method for class 'liger'
Embeddings(object, reduction = NULL, iNMF = FALSE, check_only = FALSE, ...)
```

Arguments

object LIGER object name.

reduction name of dimensionality reduction to pull

iNMF logical, whether to extract iNMF h.norm matrix instead of dimensionality re-

duction embeddings.

check_only logical, return TRUE if valid reduction is present.

... Arguments passed to other methods

Value

matrix

```
## Not run:
# Extract embedding matrix for current dimensionality reduction
UMAP_coord <- Embeddings(object = liger_object)

# Extract iNMF h.norm matrix
iNMF_mat <- Embeddings(object = liger_object, reduction = "iNMF")
## End(Not run)</pre>
```

58 ensembl_ieg_list

ensembl_hemo_id

Ensembl Hemo IDs

Description

A list of ensembl ids for hemoglobin genes (Ensembl version 112; 4/29/2024)

Usage

```
ensembl_hemo_id
```

Format

A list of six vectors

Mus_musculus_hemo_ensembl Ensembl IDs for mouse hemoglobin genes
Homo_sapiens_hemo_ensembl Ensembl IDs for human hemoglobin genes
Danio_rerio_hemo_ensembl Ensembl IDs for zebrafish hemoglobin genes
Rattus_norvegicus_hemo_ensembl Ensembl IDs for rat hemoglobin genes
Drosophila_melanogaster_hemo_ensembl Ensembl IDs for fly hemoglobin genes
Macaca_mulatta_hemo_ensembl Ensembl IDs for macaque hemoglobin genes
Gallus_gallus_ribo_ensembl Ensembl IDs for chicken hemoglobin genes

Source

See data-raw directory for scripts used to create gene list.

ensembl_ieg_list

Immediate Early Gene (IEG) gene lists

Description

Ensembl IDs for immediate early genes (Ensembl version 112; 4/29/2024)

Usage

```
ensembl_ieg_list
```

Format

A list of seven vectors

Mus_musculus_IEGs Ensembl IDs for IEGs from source publication (see below)
Homo_sapiens_IEGs Ensembl IDs for homologous genes from mouse gene list

ensembl_mito_id 59

Source

Mouse gene list is from: SI Table 4 from doi:10.1016/j.neuron.2017.09.026. Human gene list was compiled by first creating homologous gene list using biomaRt and then adding some manually curated homologs according to HGNC. See data-raw directory for scripts used to create gene list.

ensembl_mito_id

Ensembl Mito IDs

Description

A list of ensembl ids for mitochondrial genes (Ensembl version 112; 4/29/2024)

Usage

ensembl_mito_id

Format

A list of six vectors

Mus_musculus_mito_ensembl Ensembl IDs for mouse mitochondrial genes

Homo_sapiens_mito_ensembl Ensembl IDs for human mitochondrial genes

Danio_rerio_mito_ensembl Ensembl IDs for zebrafish mitochondrial genes

Rattus_norvegicus_mito_ensembl Ensembl IDs for rat mitochondrial genes

Drosophila_melanogaster_mito_ensembl Ensembl IDs for fly mitochondrial genes

Macaca_mulatta_mito_ensembl Ensembl IDs for macaque mitochondrial genes

Gallus_gallus_ribo_ensembl Ensembl IDs for chicken mitochondrial genes

Source

See data-raw directory for scripts used to create gene list.

ensembl_ribo_id

Ensembl Ribo IDs

Description

A list of ensembl ids for ribosomal genes (Ensembl version 112; 4/29/2024)

```
ensembl_ribo_id
```

Extract_Modality

Format

A list of eight vectors

Mus_musculus_ribo_ensembl Ensembl IDs for mouse ribosomal genes

Homo_sapiens_ribo_ensembl Ensembl IDs for human ribosomal genes

Callithrix_jacchus_ribo_ensembl Ensembl IDs for marmoset ribosomal genes

Danio_rerio_ribo_ensembl Ensembl IDs for zebrafish ribosomal genes

Rattus_norvegicus_ribo_ensembl Ensembl IDs for rat ribosomal genes

Drosophila_melanogaster_ribo_ensembl Ensembl IDs for fly ribosomal genes

Macaca_mulatta_ribo_ensembl Ensembl IDs for macaque ribosomal genes

Gallus_gallus_ribo_ensembl Ensembl IDs for chicken ribosomal genes

Source

See data-raw directory for scripts used to create gene list.

Extract_Modality

Extract multi-modal data into list by modality

Description

Reorganize multi-modal data after import with Read10X() or scCustomize read functions. Organizes sub-lists by data modality instead of by sample.

Usage

```
Extract_Modality(matrix_list)
```

Arguments

```
matrix_list list of matrices to split by modality
```

Value

list of lists, with one sublist per data modality. Sub-list contain 1 matrix entry per sample

```
## Not run:
multi_mat <- Read10X(...)
new_multi_mat <- Extract_Modality(matrix_list = multi_mat)
## End(Not run)</pre>
```

Description

Returns a by identity meta.data data.frame with one row per sample. Useful for downstream quick view of sample breakdown, meta data table creation, and/or use in pseudobulk analysis

Usage

```
Extract_Sample_Meta(
  object,
  sample_name = "orig.ident",
  variables_include = NULL,
  variables_exclude = NULL,
  include_all = FALSE
)
```

Arguments

object

Seurat object

sample_name

meta.data column to use as sample. Output data.frame will contain one row per level or unique value in this variable.

variables_include

@meta.data columns to keep in final data.frame. All other columns will be discarded. Default is NULL.

variables_exclude

columns to discard in final data.frame. Many cell level columns are irrelevant at the sample level (e.g., nFeature_RNA, percent_mito).

- Default parameter value is NULL but internally will set to discard nFeature_ASSAY(s), nCount_ASSAY(s), percent_mito, percent_ribo, percent_mito_ribo, and log10GenesPerUMI.
- If sample level median values are desired for these type of variables the output of this function can be joined with output of Median_Stats.
- Set parameter to include_all = TRUE to prevent any columns from being excluded.

include_all

logical, whether or not to include all object meta data columns in output data.frame. Default is FALSE.

Value

Returns a data.frame with one row per sample_name.

Examples

```
library(Seurat)
pbmc_small[["batch"]] <- sample(c("batch1", "batch2"), size = ncol(pbmc_small), replace = TRUE)

sample_meta <- Extract_Sample_Meta(object = pbmc_small, sample_name = "orig.ident")

# Only return specific columns from meta data (orig.ident and batch)
sample_meta2 <- Extract_Sample_Meta(object = pbmc_small, sample_name = "orig.ident",
variables_include = "batch")

# Return all columns from meta data
sample_meta3 <- Extract_Sample_Meta(object = pbmc_small, sample_name = "orig.ident",
include_all = TRUE)</pre>
```

Extract_Top_Markers

Extract Top N Marker Genes

Description

Extract vector gene list (or named gene vector) from data.frame results of FindAllMarkers or similar analysis.

Usage

```
Extract_Top_Markers(
   marker_dataframe,
   num_genes = 10,
   group_by = "cluster",
   rank_by = "avg_log2FC",
   gene_column = "gene",
   gene_rownames_to_column = FALSE,
   data_frame = FALSE,
   named_vector = TRUE,
   make_unique = FALSE
)
```

Arguments

marker_dataframe

data.frame output from FindAllMarkers or similar analysis.

num_genes number of genes per group (e.g., cluster) to include in output list.

group_by column name of marker_dataframe to group data by. Default is "cluster" based

on FindAllMarkers.

rank_by column name of marker_dataframe to rank data by when selecting num_genes

per group_by. Default is "avg_log2FC" based on FindAllMarkers.

Factor_Cor_Plot 63

gene_column column name of marker_dataframe that contains the gene IDs. Default is "gene" based on FindAllMarkers. gene_rownames_to_column logical. Whether gene IDs are stored in rownames and should be moved to column. Default is FALSE. data_frame Logical, whether or not to return filtered data.frame of the original markers_dataframe or to return a vector of gene IDs. Default is FALSE. Logical, whether or not to name the vector of gene names that is returned by the named_vector function. If TRUE will name the vector using the column provided to group_by. Default is TRUE. make_unique Logical, whether an unnamed vector should return only unique values. Default is FALSE. Not applicable when data_frame = TRUE or named_vector = TRUE.

Value

filtered data.frame, vector, or named vector containing gene IDs.

Examples

```
## Not run:
top10_genes <- Extract_Top_Markers(marker_dataframe = markers_results, num_genes = 10,
group_by = "cluster", rank_by = "avg_log2FC")
## End(Not run)</pre>
```

Factor_Cor_Plot

Factor Correlation Plot

Description

Plot positive correlations between gene loadings across W factor matrix in liger or feature loadings in reduction slot of Seurat object. Any negative correlations are set to NA and NA values set to bottom color of color gradient.

```
Factor_Cor_Plot(
  object,
  colors_use = NULL,
  label = FALSE,
  label_threshold = 0.5,
  label_size = 5,
  plot_title = NULL,
  plot_type = "full",
  positive_only = FALSE,
  x_lab_rotate = TRUE,
```

64 Factor_Cor_Plot

```
cluster = TRUE,
  cluster_rect = FALSE,
  cluster_rect_num = NULL,
  cluster_rect_col = NULL)
```

Arguments

object liger or Seurat object.

colors_use Color palette to use for correlation values. Default is RColorBrewer::RdBu

if positive_only = FALSE. If positive_only = TRUE the default is viridis.

Users can also supply vector of 3 colors (low, mid, high).

label logical, whether to add correlation values to plot result.

label_threshold

threshold for adding correlation values if label = TRUE. Default is 0.5.

label_size size of correlation labels

plot_title Plot title.

plot_type Controls plotting full matrix, or just the upper or lower triangles. Accepted

values are: "full" (default), "upper", or "lower".

positive_only logical, whether to limit the plotted values to only positive correlations (negative

values set to 0); default is FALSE.

x_lab_rotate logical, whether to rotate the axes labels on the x-axis. Default is TRUE.

cluster logical, whether to cluster the plot using hclust (default TRUE). If FALSE

factors are listed in numerical order.

cluster_rect logical, whether to add rectangles around the clustered areas on plot, default is

FALSE.

cluster_rect_num

number of rectangles to add to the plot, default NULL.

cluster_rect_col

color to use for rectangles, default MULL (will set color automatically).

Value

A ggplot object

```
## Not run:
Factor_Cor_Plot(object = obj)
## End(Not run)
```

FeaturePlot_DualAssay Customize FeaturePlot of two assays

Description

Create Custom FeaturePlots and preserve scale (no binning) from same features in two assays simultaneously. Intended for plotting same modality present in two assays.

Usage

```
FeaturePlot_DualAssay(
  seurat_object,
  features,
  assay1 = "RAW"
  assay2 = "RNA",
  colors_use = viridis_plasma_dark_high,
  colors_use_assay2 = NULL,
  na_color = "lightgray",
  order = TRUE,
  pt.size = NULL,
  aspect_ratio = NULL,
  reduction = NULL,
  na\_cutoff = 1e-09,
  raster = NULL,
  raster.dpi = c(512, 512),
  layer = "data",
  num_columns = NULL,
  alpha_exp = NULL,
  alpha_na_exp = NULL,
)
```

Arguments

```
Seurat object name.
seurat_object
features
                  Feature(s) to plot.
                  name of assay one. Default is "RAW" as featured in Create_CellBender_Merged_Seurat
assay1
                  name of assay two Default is "RNA" as featured in Create_CellBender_Merged_Seurat
assay2
                  list of colors or color palette to use.
colors_use
colors_use_assay2
                  optional, a second color palette to use for the second assay.
na_color
                  color to use for points below lower limit.
order
                  whether to move positive cells to the top (default = TRUE).
                  Adjust point size for plotting.
pt.size
```

FeaturePlot_scCustom

aspect_ratio	Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default is NULL.
reduction	Dimensionality Reduction to use (if NULL then defaults to Object default).
na_cutoff	Value to use as minimum expression cutoff. To set no cutoff set to NA.
raster	Convert points to raster format. Default is NULL which will rasterize by default if greater than 200,000 cells.
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is $c(512, 512)$.
layer	Which layer to pull expression data from? Default is "data".
num_columns	Number of columns in plot layout. If number of features > 1 then num_columns dictates the number of columns in overall layout (num_columns = 1 means stacked layout & num_columns = 2 means adjacent layout).
alpha_exp	new alpha level to apply to expressing cell color palette (colors_use). Must be value between 0-1.
alpha_na_exp	new alpha level to apply to non-expressing cell color palette (na_color). Must be value between 0-1.
	Extra parameters passed to FeaturePlot.

Value

A ggplot object

Examples

```
## Not run:
FeaturePlot_DualAssay(seurat_object = object, features = "Cx3cr1", assay1 = "RAW", assay2 = "RNA",
colors_use = viridis_plasma_dark_high, na_color = "lightgray")
## End(Not run)
```

 $Feature Plot_scCustom \quad \textit{Customize Feature Plot}$

Description

Create Custom FeaturePlots and preserve scale (no binning)

```
FeaturePlot_scCustom(
  seurat_object,
  features,
  colors_use = viridis_plasma_dark_high,
  na_color = "lightgray",
```

FeaturePlot_scCustom 67

```
order = TRUE,
 pt.size = NULL,
  reduction = NULL,
 na_cutoff = 1e-09,
  raster = NULL,
  raster.dpi = c(512, 512),
  split.by = NULL,
  split_collect = NULL,
  aspect_ratio = NULL,
  figure_plot = FALSE,
  num_columns = NULL,
  layer = "data",
  alpha_exp = NULL,
  alpha_na_exp = NULL,
  label = FALSE,
  label_feature_yaxis = FALSE,
  combine = TRUE,
)
```

seurat_object Seurat object name.

Arguments

features	Feature(s) to plot.
colors_use	list of colors or color palette to use.
na_color	color to use for points below lower limit.
order	whether to move positive cells to the top (default = TRUE).
pt.size	Adjust point size for plotting.
reduction	Dimensionality Reduction to use (if NULL then defaults to Object default).
na_cutoff	Value to use as minimum expression cutoff. This will be lowest value plotted use palette provided to colors_use. Leave as default value to plot only positive non-zero values using color scale and zero/negative values as NA. To plot all values using color palette set to NA.
raster	Convert points to raster format. Default is NULL which will rasterize by default if greater than 200,000 cells.
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is $c(512,512)$.
split.by	Variable in @meta.data to split the plot by.
split_collect	logical, whether to collect the legends/guides when plotting with split.by. Default is TRUE if one value is provided to features otherwise is set to FALSE.
aspect_ratio	Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default is NULL.
figure_plot	logical. Whether to remove the axes and plot with legend on left of plot denoting axes labels. (Default is FALSE). Requires split_seurat = TRUE.
num_columns	Number of columns in plot layout.

68 Features.liger

layer Which layer to pull expression data from? Default is "data".

alpha_exp new alpha level to apply to expressing cell color palette (colors_use). Must be

value between 0-1.

alpha_na_exp new alpha level to apply to non-expressing cell color palette (na_color). Must

be value between 0-1.

label logical, whether to label the clusters. Default is FALSE.

label_feature_yaxis

logical, whether to place feature labels on secondary y-axis as opposed to above legend key. Default is FALSE. When setting label_feature_yaxis = TRUE the number of columns in plot output will automatically be set to the number of

levels in split.by'

combine Combine plots into a single patchworked ggplot object. If FALSE, return a list

of ggplot objects.

... Extra parameters passed to FeaturePlot.

Value

A ggplot object

Examples

```
library(Seurat)
FeaturePlot_scCustom(seurat_object = pbmc_small, features = "CD3E",
colors_use = viridis_plasma_dark_high, na_color = "lightgray")
```

Features.liger

Extract Features from LIGER Object

Description

Extract all unique features from LIGER object

Usage

```
## S3 method for class 'liger'
Features(x, by_dataset = FALSE, ...)
```

Arguments

LIGER object name.

by_dataset logical, whether to return list with vector of features for each dataset in LIGER

object or to return single vector of unique features across all datasets in object

(default is FALSE; return vector of unique features)

... Arguments passed to other methods

Value

vector or list depending on by_dataset parameter

Examples

```
## Not run:
# return single vector of all unique features
all_features <- Features(x = object, by_dataset = FALSE)
# return list of vectors containing features from each individual dataset in object
dataset_features <- Features(x = object, by_dataset = TRUE)
## End(Not run)</pre>
```

FeatureScatter_scCustom

Modified version of FeatureScatter

Description

Create customized FeatureScatter plots with scCustomize defaults.

```
FeatureScatter_scCustom(
  seurat_object,
  feature1 = NULL,
  feature2 = NULL,
  cells = NULL,
  colors_use = NULL,
  pt.size = NULL,
  group.by = NULL,
  split.by = NULL,
  split_seurat = FALSE,
  shuffle = TRUE,
  aspect_ratio = NULL,
  title_size = 15,
  plot.cor = TRUE,
  num_columns = NULL,
  raster = NULL,
  raster.dpi = c(512, 512),
  ggplot_default_colors = FALSE,
  color_seed = 123,
)
```

Arguments

seurat_object Seurat object name. feature1 First feature to plot. feature2 Second feature to plot. cells Cells to include on the scatter plot. colors_use color for the points on plot. pt.size Adjust point size for plotting. Name of one or more metadata columns to group (color) cells by (for example, group.by orig.ident). Default is active ident. Feature to split plots by (i.e. "orig.ident"). split.by logical. Whether or not to display split plots like Seurat (shared y axis) or as split_seurat individual plots in layout. Default is FALSE. shuffle logical, whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. Default is TRUE. aspect_ratio Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default is NULL. size for plot title labels. Does NOT apply if split_seurat = TRUE. title_size plot.cor Display correlation in plot subtitle (or title if split_seurat = TRUE). num_columns number of columns in final layout plot. Convert points to raster format. Default is NULL which will rasterize by default raster if greater than 200,000 cells. raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).ggplot_default_colors logical. If colors_use = NULL, Whether or not to return plot using default ggplot2 "hue" palette instead of default "polychrome" or "varibow" palettes. random seed for the "varibow" palette shuffle if colors_use = NULL and number color_seed of groups plotted is greater than 36. Default = 123. Extra parameters passed to FeatureScatter.

Value

A ggplot object

```
library(Seurat)

pbmc_small$sample_id <- sample(c("sample1", "sample2"), size = ncol(pbmc_small), replace = TRUE)

FeatureScatter_scCustom(seurat_object = pbmc_small, feature1 = "nCount_RNA", feature2 = "nFeature_RNA", split.by = "sample_id")</pre>
```

Feature_Present 71

Feature_Present	Check if genes/features are present	

Description

Check if genes are present in object and return vector of found genes. Return warning messages for genes not found.

Usage

```
Feature_Present(
  data,
  features,
  case_check = TRUE,
  case_check_msg = TRUE,
  print_msg = TRUE,
  omit_warn = TRUE,
  return_none = FALSE,
  seurat_assay = NULL
)
```

Arguments

data	Name of input data. Currently only data of classes: Seurat, liger, data.frame, dgCMatrix, dgTMatrix, tibble are accepted. Gene_IDs must be present in rownames of the data.
features	vector of features to check.
case_check	logical. Whether or not to check if features are found if the case is changed from the input list (Sentence case to Upper and vice versa). Default is TRUE.
case_check_msg	logical. Whether to print message to console if alternate case features are found in addition to inclusion in returned list. Default is TRUE.
print_msg	logical. Whether message should be printed if all features are found. Default is TRUE.
omit_warn	logical. Whether to print message about features that are not found in current object. Default is TRUE.
return_none	logical. Whether list of found vs. bad features should still be returned if no features are found. Default is FALSE.
seurat_assay	Name of assay to pull feature names from if data is Seurat Object. Default is NULL which will check against features from all assays present.

Value

A list of length 3 containing 1) found features, 2) not found features, 3) features found if case was modified.

72 Fetch_Meta

Examples

```
## Not run:
features <- Feature_Present(data = obj_name, features = DEG_list, print_msg = TRUE,
case_check = TRUE)
found_features <- features[[1]]
## End(Not run)</pre>
```

Fetch_Meta

Get meta data from object

Description

Quick function to properly pull meta.data from objects.

Usage

```
Fetch_Meta(object, ...)
## S3 method for class 'liger'
Fetch_Meta(object, ...)
## S3 method for class 'Seurat'
Fetch_Meta(object, ...)
```

Arguments

object Object of class Seurat or liger.... Arguments passed to other methods

Value

A data.frame containing cell-level meta data

```
library(Seurat)
meta_data <- Fetch_Meta(object = pbmc_small)
head(meta_data, 5)</pre>
```

Find_Factor_Cor 73

Find_Factor_Cor

Find Factor Correlations

Description

Calculate correlations between gene loadings for all factors in liger or Seurat object.

Usage

```
Find_Factor_Cor(object, reduction = NULL)
```

Arguments

object LIGER/Seurat object name.

reduction reduction name to pull loadings for. Only valid if supplying a Seurat object.

Value

correlation matrix

Examples

```
## Not run:
factor_correlations <- Find_Factor_Cor(object = object)
## End(Not run)</pre>
```

Hue_Pal

Hue Pal

Description

Shortcut to hue_pal to return to ggplot2 defaults if user desires, from scales package.

Usage

```
Hue_Pal(num_colors)
```

Arguments

num_colors

number of colors to return in palette.

Value

hue color palette (as many colors as desired)

74 Idents.liger

Examples

```
cols <- Hue_Pal(num_colors = 8)
PalettePlot(pal= cols)</pre>
```

Idents.liger

Extract or set default identities from object

Description

Extract default identities from object in factor form.

Usage

```
## S3 method for class 'liger'
Idents(object, ...)
## S3 replacement method for class 'liger'
Idents(object, ...) <- value</pre>
```

Arguments

object LIGER object name.

... Arguments passed to other methods

value name of column in cellMeta slot to set as new default cluster/ident

Value

factor

object

Note

Use of Idents<- is only for setting new default ident/cluster from column already present in cellMeta. To add new column with new cluster values to cellMeta and set as default see Rename_Clusters.

```
## Not run:
# Extract idents
object_idents <- Idents(object = liger_object)
## End(Not run)
## Not run:
# Set idents
Idents(object = liger_object) <- "new_annotation"</pre>
```

ieg_gene_list 75

```
## End(Not run)
```

ieg_gene_list

Immediate Early Gene (IEG) gene lists

Description

Gene symbols for immediate early genes

Usage

ieg_gene_list

Format

A list of seven vectors

Mus_musculus_IEGs Gene symbols for IEGs from source publication (see below)

Homo_sapiens_IEGs Human gene symbols for homologous genes from mouse gene list

Source

Mouse gene list is from: SI Table 4 from doi:10.1016/j.neuron.2017.09.026. Human gene list was compiled by first creating homologous gene list using biomaRt and then adding some manually curated homologs according to HGNC. See data-raw directory for scripts used to create gene list.

Iterate_Barcode_Rank_Plot

Iterative Barcode Rank Plots

Description

Read data, calculate DropletUtils::barcodeRanks, create barcode rank plots, and outout single PDF output.

Usage

```
Iterate_Barcode_Rank_Plot(
    dir_path_h5,
    multi_directory = TRUE,
    h5_filename = "raw_feature_bc_matrix.h5",
    cellranger_multi = FALSE,
    parallel = FALSE,
    num_cores = NULL,
    file_path = NULL,
    file_name = NULL,
    pt.size = 6,
    raster_dpi = c(1024, 1024),
    plateau = NULL,
    ...
)
```

Arguments

dir_path_h5 path to parent directory (if multi_directory = TRUE) or directory containing all h5 files (if multi_directory = FALSE).

multi_directory

logical, whether or not all h5 files are in their own subdirectories or in a single directory (default is TRUE; each in own subdirectory (e.g. output from Cell Ranger)).

h5_filename

Either the file name of h5 file (if multi_directory = TRUE) or the shared suffix (if multi_directory = FALSE)

cellranger_multi

logical, whether the outputs to be read are from Cell Ranger multi as opposed to Cell Ranger count (default is FALSE). Only valid if multi_directory =

FALSE.

parallel logical, should files be read in parallel (default is FALSE).

num_cores Number of cores to use in parallel if parallel = TRUE.

file_path file path to use for saving PDF output.

file_name Name of PDF output file.

pt.size point size for plotting, default is 6.

raster_dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is

c(1024, 1024).

plateau numerical values at which to add vertical line designating estimated empty droplet

plateau (default is NULL). Must be vector equal in length to number of samples.

... Additional parameters passed to Read10X_h5_Multi_Directory or Read10X_h5_GEO.

Value

pdf document

Examples

```
## Not run:
Iterate_Barcode_Rank_Plot(dir_path_h5 = "H5_PATH/", multi_directory = TRUE,
h5_filename = "raw_feature_bc_matrix", parallel = TRUE, num_cores = 12, file_path = "OUTPUT_PATH",
file_name = "Barcode_Rank_Plots")
## End(Not run)
```

Iterate_Cluster_Highlight_Plot

Iterate Cluster Highlight Plot

Description

Iterate the create plots with cluster of interest highlighted across all cluster (active.idents) in given Seurat Object

Usage

```
Iterate_Cluster_Highlight_Plot(
    seurat_object,
    highlight_color = "dodgerblue",
    background_color = "lightgray",
    pt.size = NULL,
    reduction = NULL,
    file_path = NULL,
    file_name = NULL,
    file_type = NULL,
    single_pdf = FALSE,
    output_width = NULL,
    output_height = NULL,
    dpi = 600,
    raster = NULL,
    ...
)
```

Arguments

```
seurat_object Seurat object name.
highlight_color
```

Color to highlight cells (default "navy"). Can provide either single color to use for all clusters/plots or a vector of colors equal to the number of clusters to use (in order) for the clusters/plots.

background_color

non-highlighted cell colors.

pt.size	point size for both highlighted cluster and background.
reduction	Dimensionality Reduction to use (if NULL then defaults to Object default).
file_path	directory file path and/or file name prefix. Defaults to current wd.
file_name	name suffix to append after sample name.
file_type	File type to save output as. Must be one of following: ".pdf", ".png", ".tiff", ".jpeg", or ".svg".
single_pdf	saves all plots to single PDF file (default = FALSE). 'file_type" must be .pdf.
output_width	the width (in inches) for output page size. Default is NULL.
output_height	the height (in inches) for output page size. Default is NULL.
dpi	dpi for image saving.
raster	Convert points to raster format. Default is NULL which will rasterize by default if greater than 200,000 cells.
	Extra parameters passed toDimPlot.

Value

Saved plots

Examples

```
## Not run:
Iterate_Cluster_Highlight_Plot(seurat_object = object, highlight_color = "navy",
background_color = "lightgray", file_path = "path/", file_name = "name", file_type = "pdf",
single_pdf = TRUE)
## End(Not run)
```

Iterate_DimPlot_bySample

Iterate DimPlot By Sample

Description

Iterate DimPlot by orig.ident column from Seurat object metadata

```
Iterate_DimPlot_bySample(
   seurat_object,
   sample_column = "orig.ident",
   file_path = NULL,
   file_name = NULL,
   file_type = NULL,
   single_pdf = FALSE,
```

```
output_width = NULL,
output_height = NULL,
dpi = 600,
color = "black",
no_legend = TRUE,
title_prefix = NULL,
reduction = NULL,
dims = c(1, 2),
pt.size = NULL,
raster = NULL,
```

Arguments

seurat_object Seurat object name.

sample_column name of meta.data column containing sample names/ids (default is "orig.ident").

file_path directory file path and/or file name prefix. Defaults to current wd.

file_name name suffix to append after sample name.

file_type File type to save output as. Must be one of following: ".pdf", ".png", ".tiff",

".jpeg", or ".svg".

single_pdf saves all plots to single PDF file (default = FALSE). 'file_type" must be .pdf

output_width the width (in inches) for output page size. Default is NULL.

output_height the height (in inches) for output page size. Default is NULL.

dpi dpi for image saving.

color color scheme to use.

no_legend logical, whether or not to include plot legend, default is TRUE.

title_prefix Value that should be used for plot title prefix if no_legend = TRUE. If NULL the

value of meta_data_column will be used. Default is NULL.

reduction Dimensionality Reduction to use (default is object default).

dims Dimensions to plot.

pt.size Adjust point size for plotting.

raster Convert points to raster format. Default is NULL which will rasterize by default

if greater than 200,000 cells.

... Extra parameters passed to DimPlot.

Value

A ggplot object

Examples

```
## Not run:
Iterate_DimPlot_bySample(seurat_object = object, file_path = "plots/", file_name = "tsne",
file_type = ".jpg", dpi = 600, color = "black")
## End(Not run)
```

Iterate_FeaturePlot_scCustom

Iterative Plotting of Gene Lists using Custom FeaturePlots

Description

Create and Save plots for Gene list with Single Command

```
Iterate_FeaturePlot_scCustom(
  seurat_object,
  features,
  colors_use = viridis_plasma_dark_high,
  na_color = "lightgray",
  na\_cutoff = 1e-09,
  split.by = NULL,
  order = TRUE,
  return_plots = FALSE,
  file_path = NULL,
  file_name = NULL,
  file_type = NULL,
  single_pdf = FALSE,
  output_width = NULL,
  output_height = NULL,
  features_per_page = 1,
  num_columns = NULL,
  landscape = TRUE,
  dpi = 600,
  pt.size = NULL,
  reduction = NULL,
  raster = NULL,
  alpha_exp = NULL,
 alpha_na_exp = NULL,
)
```

Arguments

seurat_object Seurat object name.

features vector of features to plot. If a named vector is provided then the names for each

gene will be incorporated into plot title if single_pdf = TRUE or into file name

if FALSE.

colors_use color scheme to use.

na_color color for non-expressed cells.

na_cutoff Value to use as minimum expression cutoff. To set no cutoff set to NA.

split.by Variable in @meta.data to split the plot by.

order whether to move positive cells to the top (default = TRUE).

return_plots logical. Whether to return plots to list instead of saving them to file(s). Default

is FALSE.

file_path directory file path and/or file name prefix. Defaults to current wd.

file_name name suffix and file extension.

file_type File type to save output as. Must be one of following: ".pdf", ".png", ".tiff",

".jpeg", or ".svg".

single_pdf saves all plots to single PDF file (default = FALSE).

output_width the width (in inches) for output page size. Default is NULL.

output_height the height (in inches) for output page size. Default is NULL.

features_per_page

numeric, number of features to plot on single page if single_pdf = TRUE. De-

fault is 1.

features_per_page > 1).

landscape logical, when plotting multiple features per page in single PDF whether to use

landscape or portrait page dimensions (default is TRUE).

dpi dpi for image saving.

pt.size Adjust point size for plotting.

reduction Dimensionality Reduction to use (if NULL then defaults to Object default).

raster Convert points to raster format. Default is NULL which will rasterize by default

if greater than 200,000 cells.

alpha_exp new alpha level to apply to expressing cell color palette (colors_use). Must be

value between 0-1.

alpha_na_exp new alpha level to apply to non-expressing cell color palette (na_color). Must

be value between 0-1.

... Extra parameters passed to FeaturePlot.

Value

Saved plots

Examples

```
## Not run:
Iterate_FeaturePlot_scCustom(seurat_object = object, features = DEG_list,
colors_use = viridis_plasma_dark_high, na_color = "lightgray", file_path = "plots/",
file_name = "tsne", file_type = ".jpg", dpi = 600)
## End(Not run)
```

Iterate_Meta_Highlight_Plot

Iterate Meta Highlight Plot

Description

Iterate the create plots with meta data variable of interest highlighted.

Usage

```
Iterate_Meta_Highlight_Plot(
  seurat_object,
  meta_data_column,
  new_meta_order = NULL,
  meta_data_sort = TRUE,
  highlight_color = "navy",
  background_color = "lightgray",
  pt.size = NULL,
  no_legend = FALSE,
  title_prefix = NULL,
  reduction = NULL,
  file_path = NULL,
  file_name = NULL,
  file_type = NULL,
  single_pdf = FALSE,
  output_width = NULL,
  output_height = NULL,
  dpi = 600,
  raster = NULL,
)
```

Arguments

```
seurat_object Seurat object name.
meta_data_column
```

Name of the column in seurat_object@meta.data slot to pull value from for highlighting.

new_meta_order The order in which to plot each level within meta_data_column if single_PDF

is TRUE.

meta_data_sort logical. Whether or not to sort and relevel the levels in meta_data_column if

single_PDF is TRUE. Default is TRUE.

highlight_color

Color to highlight cells (default "navy"). Can provide either single color to use for all clusters/plots or a vector of colors equal to the number of clusters to use (in order) for the clusters/plots.

background_color

non-highlighted cell colors.

pt.size point size for both highlighted cluster and background.

no_legend logical, whether or not to remove plot legend and move to plot title. Default is

FALSE.

title_prefix Value that should be used for plot title prefix if no_legend = TRUE. If NULL the

value of meta_data_column will be used. Default is NULL.

reduction Dimensionality Reduction to use (if NULL then defaults to Object default).

file_path directory file path and/or file name prefix. Defaults to current wd.

file_name name suffix to append after sample name.

file_type File type to save output as. Must be one of following: ".pdf", ".png", ".tiff",

".jpeg", or ".svg".

single_pdf saves all plots to single PDF file (default = FALSE). 'file_type" must be .pdf.

output_width the width (in inches) for output page size. Default is NULL.

output_height the height (in inches) for output page size. Default is NULL.

dpi dpi for image saving.

raster Convert points to raster format. Default is NULL which will rasterize by default

if greater than 200,000 cells.

... Extra parameters passed toDimPlot.

Value

Saved plots

```
## Not run:
Iterate_Meta_Highlight_Plot(seurat_object = object, meta_data_column = "sample_id",
highlight_color = "navy", background_color = "lightgray", file_path = "path/",
file_name = "name", file_type = "pdf", single_pdf = TRUE)
## End(Not run)
```

```
Iterate_PC_Loading_Plots
```

Iterate PC Loading Plots

Description

Plot PC Heatmaps and Dim Loadings for exploratory analysis

Usage

```
Iterate_PC_Loading_Plots(
    seurat_object,
    dims_plot = NULL,
    file_path = NULL,
    name_prefix = NULL,
    file_name = "PC_Loading_Plots",
    return_plots = FALSE
)
```

Arguments

seurat_object Seurat object name.

dims_plot number of PCs to plot (integer). Default is all dims present in PCA.

file_path directory file path to save file.
name_prefix prefix for file name (optional).

file_name suffix for file name. Default is "PC_Loading_Plots".

return_plots Whether to return the plot list (Default is FALSE). Must assign to environment

to save plot list.

Value

A list of plots outputted as pdf

See Also

PCHeatmap and VizDimLoadings

```
## Not run:
Iterate_PC_Loading_Plots(seurat_object = seurat, dims_plot = 25, file_path = "plots/")
## End(Not run)
```

```
Iterate_Plot_Density_Custom
```

Iterative Plotting of Gene Lists using Custom Density Plots

Description

Create and save plots for gene list with single command. Requires Nebulosa package from Bioconductor.

Usage

```
Iterate_Plot_Density_Custom(
  seurat_object,
  gene_list,
  viridis_palette = "magma",
  custom_palette = NULL,
  pt.size = 1,
  file_path = NULL,
  file_name = NULL,
  file_type = NULL,
  single_pdf = FALSE,
  output_width = NULL,
  output_height = NULL,
  dpi = 600,
  reduction = NULL,
  combine = TRUE,
  joint = FALSE,
)
```

Arguments

```
seurat_object
                  Seurat object name.
gene_list
                  vector of genes to plot. If a named vector is provided then the names for each
                  gene will be incorporated into plot title if single_pdf = TRUE or into file name
                  if FALSE.
viridis_palette
                  color scheme to use.
custom_palette color for non-expressed cells.
pt.size
                  Adjust point size for plotting.
file_path
                  directory file path and/or file name prefix. Defaults to current wd.
file_name
                  name suffix and file extension.
file_type
                  File type to save output as. Must be one of following: ".pdf", ".png", ".tiff",
                   ".jpeg", or ".svg".
                  saves all plots to single PDF file (default = FALSE). 'file_type" must be .pdf.
single_pdf
```

output_width the width (in inches) for output page size. Default is NULL. output_height the height (in inches) for output page size. Default is NULL.

dpi dpi for image saving.

reduction Dimensionality Reduction to use (if NULL then defaults to Object default)

combine Create a single plot? If FALSE, a list with ggplot objects is returned.

joint NULL. This function only supports joint = FALSE. Leave as NULL to generate

plots. To iterate joint plots see function: Iterate_Plot_Density_Joint.

... Extra parameters passed to plot_density.

Value

Saved plots

Examples

```
## Not run:
Iterate_Plot_Density_Custom(seurat_object = object, gene_list = DEG_list, viridis_palette = "magma",
file_path = "plots/", file_name = "_density_plots", file_type = ".jpg", dpi = 600)
## End(Not run)
```

Iterate_Plot_Density_Joint

Iterative Plotting of Gene Lists using Custom Joint Density Plots

Description

Create and save plots for gene list with single command. Requires Nebulosa package from Bioconductor.

```
Iterate_Plot_Density_Joint(
    seurat_object,
    gene_list,
    viridis_palette = "magma",
    custom_palette = NULL,
    pt.size = 1,
    file_path = NULL,
    file_name = NULL,
    file_type = NULL,
    single_pdf = FALSE,
    output_width = NULL,
    output_height = NULL,
    dpi = 600,
```

```
reduction = NULL,
combine = TRUE,
joint = NULL,
...
)
```

Arguments

seurat_object Seurat object name.

gene_list a list of vectors of genes to plot jointly. Each entry in the list will be plotted for

the joint density. All entries in list must be greater than 2 features. If a named list is provided then the names for each list entry will be incorporated into plot

title if single_pdf = TRUE or into file name if FALSE.

viridis_palette

color scheme to use.

 ${\tt custom_palette} \ \ color \ for \ non-expressed \ cells.$

pt.size Adjust point size for plotting.

file_path directory file path and/or file name prefix. Defaults to current wd.

file_name name suffix and file extension.

file_type File type to save output as. Must be one of following: ".pdf", ".png", ".tiff",

".jpeg", or ".svg".

single_pdf saves all plots to single PDF file (default = FALSE). 'file_type" must be .pdf.

output_width the width (in inches) for output page size. Default is NULL.

output_height the height (in inches) for output page size. Default is NULL.

dpi dpi for image saving.

reduction Dimensionality Reduction to use (if NULL then defaults to Object default)

combine Create a single plot? If FALSE, a list with ggplot objects is returned.

joint NULL. This function only supports joint = FALSE. Leave as NULL to generate

plots. To iterate joint plots see function: Iterate_Plot_Density_Joint.

... Extra parameters passed to plot_density.

Value

Saved plots

```
## Not run:
Iterate_Plot_Density_Joint(seurat_object = object, gene_list = DEG_list, viridis_palette = "magma",
file_path = "plots/", file_name = "joint_plots", file_type = ".jpg", dpi = 600)
## End(Not run)
```

Iterate_VlnPlot_scCustom

Iterative Plotting of Gene Lists using VlnPlot_scCustom

Description

Create and Save plots for Gene list with Single Command

Usage

```
Iterate_VlnPlot_scCustom(
  seurat_object,
  features,
  colors_use = NULL,
 pt.size = NULL,
  group.by = NULL,
  split.by = NULL,
  file_path = NULL,
  file_name = NULL,
  file_type = NULL,
  single_pdf = FALSE,
  output_width = NULL,
  output_height = NULL,
  raster = NULL,
  dpi = 600,
  ggplot_default_colors = FALSE,
  color_seed = 123,
)
```

Arguments

seurat_object	Seurat object name.
features	vector of features to plot.
colors_use	color palette to use for plotting. By default if number of levels plotted is less than or equal to 36 it will use "polychrome" and if greater than 36 will use "varibow" with shuffle = TRUE both from DiscretePalette_scCustomize.
pt.size	point size for plotting.
group.by	Name of one or more metadata columns to group (color) plot by (for example, orig.ident); default is the current active.ident of the object.
split.by	Feature to split plots by (i.e. "orig.ident").
file_path	directory file path and/or file name prefix. Defaults to current wd.
file_name	name suffix and file extension.
file_type	File type to save output as. Must be one of following: ".pdf", ".png", ".tiff", ".jpeg", or ".svg".

JCO_Four 89

single_pdf saves all plots to single PDF file (default = FALSE). 'file_type' must be .pdf.

output_width the width (in inches) for output page size. Default is NULL. output_height the height (in inches) for output page size. Default is NULL.

raster Convert points to raster format. Default is NULL which will rasterize by default

if greater than 100,000 total points plotted (# Cells x # of features).

dpi dpi for image saving.

ggplot_default_colors

logical. If colors_use = NULL, Whether or not to return plot using default gg-plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

color_seed random seed for the "varibow" palette shuffle if colors_use = NULL and number

of groups plotted is greater than 36. Default = 123.

... Extra parameters passed to VlnPlot.

Value

Saved plots

Examples

```
## Not run:
Iterate_VlnPlot_scCustom(seurat_object = object, features = DEG_list, colors = color_list,
file_path = "plots/", file_name = "_vln", file_type = ".jpg", dpi = 600)
## End(Not run)
```

JCO_Four

Four Color Palette (JCO)

Description

Shortcut to a specific JCO 4 color palette from ggsci package.

Usage

JCO_Four()

Value

4 color palette from the JCO ggsci palette

References

Selection of colors from the JCO palette from ggsci being called through paletteer. See ggsci for more info on palettes https://CRAN.R-project.org/package=ggsci

90 Liger_to_Seurat

Examples

```
cols <- JCO_Four()
PalettePlot(pal= cols)</pre>
```

Liger_to_Seurat

Create a Seurat object containing the data from a liger object [Soft-deprecated]

Description

Merges raw.data and scale.data of object, and creates Seurat object with these values along with tsne.coords, iNMF factorization, and cluster assignments. Supports Seurat V2 and V3.

Usage

```
Liger_to_Seurat(
  liger_object,
  nms = names(liger_object@H),
  renormalize = TRUE,
  use.liger.genes = TRUE,
  by.dataset = FALSE,
  keep_meta = TRUE,
  reduction_label = "UMAP",
  seurat_assay = "RNA",
  assay_type = NULL,
  add_barcode_names = FALSE,
  barcode_prefix = TRUE,
  barcode_cell_id_delimiter = "_"
```

Arguments

liger_object liger object.

nms By default, labels cell names with dataset of origin (this is to account for cells in

different datasets which may have same name). Other names can be passed here as vector, must have same length as the number of datasets. (default names(H)).

renormalize Whether to log-normalize raw data using Seurat defaults (default TRUE).

use.liger.genes

Whether to carry over variable genes (default TRUE).

by dataset Include dataset of origin in cluster identity in Seurat object (default FALSE).

keep_meta logical. Whether to transfer additional metadata (nGene/nUMI/dataset already

transferred) to new Seurat Object. Default is TRUE.

reduction_label

Name of dimensionality reduction technique used. Enables accurate transfer or

name to Seurat object instead of defaulting to "tSNE".

MAD_Stats 91

seurat_assay Name to set for assay in Seurat Object. Default is "RNA".

assay_type what type of Seurat assay to create in new object (Assay vs Assay5). Default

is NULL which will default to the current user settings. See Convert_Assay

parameter convert_to for acceptable values.

add_barcode_names

logical, whether to add dataset names to the cell barcodes when creating Seurat

object, default is FALSE.

barcode_prefix logical, if add_barcode_names = TRUE should the names be added as prefix to

current cell barcodes/names or a suffix (default is TRUE; prefix).

barcode_cell_id_delimiter

The delimiter to use when adding dataset id to barcode prefix/suffix. Default is

"_".

Details

Stores original dataset identity by default in new object metadata if dataset names are passed in nms. iNMF factorization is stored in dim.reduction object with key "iNMF".

Value

Seurat object with raw.data, scale.data, reduction_label, iNMF, and ident slots set.

References

Original function is part of LIGER package https://github.com/welch-lab/liger (Licence: GPL-3). Function was slightly modified for use in scCustomize with keep.meta parameter. Also posted as PR to liger GitHub.

Examples

```
## Not run:
seurat_object <- Liger_to_Seurat(liger_object = LIGER_OBJ, reduction_label = "UMAP")
## End(Not run)</pre>
```

MAD_Stats

Median Absolute Deviation Statistics

Description

Get quick values for X x median absolute deviation for Genes, UMIs, %mito per cell grouped by meta.data variable.

92 Median_Stats

Usage

```
MAD_Stats(
   seurat_object,
   group_by_var = "orig.ident",
   default_var = TRUE,
   mad_var = NULL,
   mad_num = 2
)
```

Arguments

seurat_object Seurat object name.

group_by_var Column in meta.data slot to group results by (default = "orig.ident").

default_var logical. Whether to include the default meta.data variables of: "nCount_RNA",

"nFeature_RNA", "percent_mito", "percent_ribo", "percent_mito_ribo", and "log10GenesPerUMI"

in addition to variables supplied to mad_var.

mad_var Column(s) in @meta. data to calculate medians for in addition to defaults. Must

be of class() integer or numeric.

mad_num integer value to multiply the MAD in returned data.frame (default is 2). Often

helpful when calculating a outlier range to base of of median + (X*MAD).

Value

A data.frame.

Examples

```
## Not run:
mad_stats <- MAD_Stats(seurat_object = obj, group_by_var = "orig.ident")
## End(Not run)</pre>
```

Median_Stats

Median Statistics

Description

Get quick values for median Genes, UMIs, %mito per cell grouped by meta.data variable.

```
Median_Stats(
   seurat_object,
   group_by_var = "orig.ident",
   default_var = TRUE,
   median_var = NULL
)
```

Merge_Seurat_List 93

Arguments

seurat_object Seurat object name.

group_by_var Column in meta.data slot to group results by (default = "orig.ident").

default_var logical. Whether to include the default meta.data variables of: "nCount_RNA",

"nFeature_RNA", "percent_mito", "percent_ribo", "percent_mito_ribo", and "log10GenesPerUMI"

in addition to variables supplied to median_var.

median_var Column(s) in @meta. data to calculate medians for in addition to defaults. Must

be of class() integer or numeric.

Value

A data.frame.

Examples

```
## Not run:
med_stats <- Median_Stats(seurat_object - obj, group_by_var = "orig.ident")
## End(Not run)</pre>
```

Merge_Seurat_List

Merge a list of Seurat Objects

Description

Enables easy merge of a list of Seurat Objects. See See merge for more information,

Usage

```
Merge_Seurat_List(
    list_seurat,
    add.cell.ids = NULL,
    merge.data = TRUE,
    project = "SeuratProject"
)
```

Arguments

list_seurat list composed of multiple Seurat Objects.

add.cell.ids A character vector of equal length to the number of objects in list_seurat.

Appends the corresponding values to the start of each objects' cell names. See

merge.

merge.data Merge the data slots instead of just merging the counts (which requires renormal-

ization). This is recommended if the same normalization approach was applied

to all objects. See merge.

project Project name for the Seurat object. See merge.

Value

A Seurat Object

Examples

```
## Not run:
object_list <- list(obj1, obj2, obj3, ...)
merged_object <- Merge_Seurat_List(list_seurat = object_list)
## End(Not run)</pre>
```

Merge_Sparse_Data_All Merge a list of Sparse Matrices

Description

Enables easy merge of a list of sparse matrices

Usage

```
Merge_Sparse_Data_All(
  matrix_list,
  add_cell_ids = NULL,
  prefix = TRUE,
  cell_id_delimiter = "_"
)
```

Arguments

matrix_list list of matrices to merge.

add_cell_ids a vector of sample ids to add as prefix to cell barcode during merge.

prefix logical. Whether add_cell_ids should be added as prefix to current cell barcodes/names or as suffix to current cell barcodes/names. Default is TRUE, add as prefix.

cell_id_delimiter

The delimiter to use when adding cell id prefix/suffix. Default is "_".

Value

A sparse Matrix

References

Original function is part of LIGER package https://github.com/welch-lab/liger/blob/master/R/mergeObject.R (License: GPL-3). Function was modified for use in scCustomize (add progress bar, prefix vs. suffix, and delimiter options).

Examples

```
## Not run:
data_list <- Read10X_GEO(...)
merged <- Merge_Sparse_Data_All(matrix_list = data_list, add_cell_ids = names(data_list),
prefix = TRUE, cell_id_delimiter = "_")
## End(Not run)</pre>
```

Merge_Sparse_Multimodal_All

Merge a list of Sparse Matrices contain multi-modal data.

Description

Enables easy merge of a list of sparse matrices for multi-modal data.

Usage

```
Merge_Sparse_Multimodal_All(
  matrix_list,
  add_cell_ids = NULL,
  prefix = TRUE,
  cell_id_delimiter = "_"
)
```

Arguments

matrix_list list of matrices to merge.

add_cell_ids a vector of sample ids to add as prefix to cell barcode during merge.

prefix logical. Whether add_cell_ids should be added as prefix to current cell barcodes/names or as suffix to current cell barcodes/names. Default is TRUE, add as prefix.

cell_id_delimiter

The delimiter to use when adding cell id prefix/suffix. Default is "_".

Value

A list containing one sparse matrix for each modality

```
## Not run:
data_list <- Read10X_GEO(...)
merged_list <- Merge_Sparse_Multimodal_All(matrix_list = data_list, add_cell_ids = names(data_list),
prefix = TRUE, cell_id_delimiter = "_")
## End(Not run)</pre>
```

96 Meta_Highlight_Plot

Description

Create Plot with meta data variable of interest highlighted

Usage

```
Meta_Highlight_Plot(
  seurat_object,
 meta_data_column,
 meta_data_highlight,
 highlight_color = NULL,
 background_color = "lightgray",
 pt.size = NULL,
  aspect_ratio = NULL,
  figure_plot = FALSE,
  raster = NULL,
  raster.dpi = c(512, 512),
  label = FALSE,
  split.by = NULL,
  split_seurat = FALSE,
  reduction = NULL,
  ggplot_default_colors = FALSE,
)
```

Arguments

```
seurat_object
                  Seurat object name.
meta_data_column
                  Name of the column in seurat_object@meta.data slot to pull value from for
                  highlighting.
meta_data_highlight
                  Name of variable(s) within meta_data_name to highlight in the plot.
highlight_color
                  Color to highlight cells (default "navy").
background_color
                  non-highlighted cell colors.
pt.size
                  point size for both highlighted cluster and background.
aspect_ratio
                  Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default
                  is NULL.
figure_plot
                  logical. Whether to remove the axes and plot with legend on left of plot denoting
                  axes labels. (Default is FALSE). Requires split_seurat = TRUE.
```

Meta_Numeric 97

raster Convert points to raster format. Default is NULL which will rasterize by default if greater than 200,000 cells.

raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is

c(512, 512).

label Whether to label the highlighted meta data variable(s). Default is FALSE.

split.by Variable in @meta.data to split the plot by.

split_seurat logical. Whether or not to display split plots like Seurat (shared y axis) or as

individual plots in layout. Default is FALSE.

reduction Dimensionality Reduction to use (if NULL then defaults to Object default).

ggplot_default_colors

logical. If colors_use = NULL, Whether or not to return plot using default gg-plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

... Extra parameters passed toDimPlot.

Value

A ggplot object

Examples

```
library(Seurat)
pbmc_small$sample_id <- sample(c("sample1", "sample2"), size = ncol(pbmc_small), replace = TRUE)
Meta_Highlight_Plot(seurat_object = pbmc_small, meta_data_column = "sample_id",
meta_data_highlight = "sample1", highlight_color = "gold", background_color = "lightgray",
pt.size = 2)</pre>
```

Meta_Numeric

Check if meta data columns are numeric

Description

Check if any present meta data columns are numeric and returns vector of valid numeric columns. Issues warning message if any columns not in numeric form.

Usage

```
Meta_Numeric(data)
```

Arguments

data

a data.frame contain meta.data.

Value

vector of meta data columns that are numeric.

98 Meta_Present

Examples

```
## Not run:
numeric_meta_columns <- Meta_Numeric(data = meta_data)
## End(Not run)</pre>
```

Meta_Present

Check if meta data are present

Description

Check if meta data columns are present in object and return vector of found columns Return warning messages for meta data columns not found.

Usage

```
Meta_Present(
  object,
  meta_col_names,
  print_msg = TRUE,
  omit_warn = TRUE,
  return_none = FALSE
)
```

Arguments

object Seurat or Liger object name.
meta_col_names vector of column names to check.

print_msg logical. Whether message should be printed if all features are found. Default is

TRUE.

omit_warn logical. Whether to print message about features that are not found in current

object. Default is TRUE.

return_none logical. Whether list of found vs. bad features should still be returned if no

meta_col_names are found. Default is FALSE.

Value

vector of meta data columns that are present

```
## Not run:
meta_variables <- Meta_Present(object = obj_name, meta_col_names = "percent_mito", print_msg = TRUE)
## End(Not run)</pre>
```

Meta_Remove_Seurat 99

Meta_Remove_Seurat

Remove meta data columns containing Seurat Defaults

Description

Remove any columns from new meta_data data.frame in preparation for adding back to Seurat Object

Usage

```
Meta_Remove_Seurat(
  meta_data,
  seurat_object,
  barcodes_to_rownames = FALSE,
  barcodes_colname = "barcodes"
)
```

Arguments

Value

data.frame with only new columns.

```
## Not run:
new_meta <- Meta_Remove_Seurat(meta_data = meta_data_df, seurat_object = object)
object <- AddMetaData(object = object, metadata = new_meta)
## End(Not run)</pre>
```

Move_Legend

Move Legend Position

Description

Shortcut for thematic modification to move legend position.

Usage

```
Move_Legend(position = "right", ...)
```

Arguments

```
position valid position to move legend. Default is "right".
... extra arguments passed to ggplot2::theme().
```

Value

Returns a list-like object of class theme.

Examples

```
# Generate a plot and customize theme
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + Move_Legend("left")</pre>
```

```
msigdb_qc_ensembl_list
```

QC Gene Lists

Description

Ensembl IDs for qc percentages from MSigDB database. The gene sets are from 3 MSigDB lists: "HALLMARK_OXIDATIVE_PHOSPHORYLATION", "HALLMARK_APOPTOSIS", and "HALLMARK_DNA_REPAIR". (Ensembl version 112; 4/29/2024)

```
msigdb_qc_ensembl_list
```

Format

A list of 21 vectors

Homo_sapiens_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for human

Homo_sapiens_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for human

Homo_sapiens_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for human

Mus_musculus_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for mouse

Mus_musculus_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for mouse

Mus_musculus_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for mouse

Rattus_norvegicus_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for rat

Rattus_norvegicus_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for rat

Rattus_norvegicus_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for rat

Drosophila_melanogaster_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION"
list for fly

Drosophila_melanogaster_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for fly

Drosophila_melanogaster_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for fly

Dario_rerio_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION"
list for zebrafish

Dario_rerio_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for zebrafish

Dario_rerio_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for zebrafish

Macaca_mulatta_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for macaque

Macaca_mulatta_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for macaque

Macaca_mulatta_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for macaque

Gallus_gallus_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for chicken

Gallus_gallus_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for chicken Gallus_gallus_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for chicken

Source

MSigDB gene sets (ensembl IDs) via msigdbr package https://cran.r-project.org/package=msigdbr. See data-raw directory for scripts used to create gene list.

msigdb_qc_gene_list QC Gene Lists

Description

Gene symbols for qc percentages from MSigDB database. The gene sets are from 3 MSigDB lists: "HALLMARK_OXIDATIVE_PHOSPHORYLATION", "HALLMARK_APOPTOSIS", and "HALLMARK_DNA_REPAIR".

Usage

msigdb_qc_gene_list

Format

A list of 21 vectors

Homo_sapiens_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for human

Homo_sapiens_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for human

Homo_sapiens_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for human

Mus_musculus_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for mouse

Mus_musculus_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for mouse

Mus_musculus_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for mouse

Rattus_norvegicus_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for rat

Rattus_norvegicus_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for rat

Rattus_norvegicus_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for rat

Drosophila_melanogaster_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for fly

Drosophila_melanogaster_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for fly

Drosophila_melanogaster_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for fly

Dario_rerio_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for zebrafish

Dario_rerio_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for zebrafish

Dario_rerio_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for zebrafish

NavyAndOrange 103

Macaca_mulatta_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for macaque

Macaca_mulatta_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for macaque

Macaca_mulatta_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for macaque

Gallus_gallus_msigdb_oxphos Genes in msigdb "HALLMARK_OXIDATIVE_PHOSPHORYLATION" list for chicken

Gallus_gallus_msigdb_apop Genes in msigdb "HALLMARK_APOPTOSIS" list for chicken Gallus_gallus_msigdb_dna_repair Genes in msigdb "HALLMARK_DNA_REPAIR" list for chicken

Source

MSigDB gene sets (gene symbols) via msigdbr package https://cran.r-project.org/package=msigdbr. See data-raw directory for scripts used to create gene list.

NavyAndOrange

Navy and Orange Dual Color Palette

Description

Shortcut to navy orange color plot

Usage

```
NavyAndOrange(flip_order = FALSE)
```

Arguments

flip_order

Whether to flip the order of colors.

Value

Navy orange palette

```
cols <- NavyAndOrange()
PalettePlot(pal= cols)</pre>
```

104 PC_Plotting

PalettePlot

Plot color palette in viewer

Description

Plots given color vector/palette in viewer to evaluate palette before plotting on data.

Usage

```
PalettePlot(pal = NULL, label_color_num = NULL)
```

Arguments

```
pal a vector of colors (either named colors of hex codes). label_color_num
```

logical, whether or not to numerically label the colors in output plot. Default is TRUE is number of colors in pal is less than 75 and FALSE is greater than 75.

Value

Plot of all colors in supplied palette/vector

References

Adapted from colorway package build_palette internals (License: GPL-3). https://github.com/hypercompetent/colorway.

Examples

```
pal <- DiscretePalette_scCustomize(num_colors = 36, palette = "varibow")
PalettePlot(pal = pal)</pre>
```

PC_Plotting

PC Plots

Description

Plot PC Heatmaps and Dim Loadings for exploratory analysis. Plots a single Heatmap and Gene Loading Plot. Used for PC_Loading_Plots function.

```
PC_Plotting(seurat_object, dim_number)
```

Percent_Expressing 105

Arguments

```
seurat_object Seurat Object.
dim_number A single dim to plot (integer).
```

Value

A plot of PC heatmap and gene loadings for single

See Also

PCHeatmap and VizDimLoadings

Examples

```
library(Seurat)
PC_Plotting(seurat_object = pbmc_small, dim_number = 1)
```

Percent_Expressing

Calculate percent of expressing cells

Description

Calculates the percent of cells that express a given set of features by various grouping factors

Usage

```
Percent_Expressing(
   seurat_object,
   features,
   threshold = 0,
   group_by = NULL,
   split_by = NULL,
   entire_object = FALSE,
   layer = "data",
   assay = NULL
)
```

Arguments

```
seurat_object Seurat object name.

features Feature(s) to plot.

threshold Expression threshold to use for calculation of percent expressing (default is 0).

group_by Factor to group the cells by.

split_by Factor to split the groups by.
```

plotFactors_scCustom

entire_object logical (default = FALSE). Whether to calculate percent of expressing cells across the entire object as opposed to by cluster or by group_by variable.

layer Which layer to pull expression data from? Default is "data".

assay Assay to pull feature data from. Default is active assay.

Value

A data.frame

References

Part of code is modified from Seurat package as used by DotPlot to generate values to use for plotting. Source code can be found here: https://github.com/satijalab/seurat/blob/4e868fcde49dc0a3df47f94f5fb54R/visualization.R#L3391 (License: GPL-3).

Examples

```
## Not run:
percent_stats <- Percent_Expressing(seurat_object = object, features = "Cx3cr1", threshold = 0)
## End(Not run)</pre>
```

Description

plotFactors_scCustom

Modified and optimized version of plotFactors function from LIGER package.

Customized version of plotFactors

```
plotFactors_scCustom(
  liger_object,
  num_genes = 8,
  colors_use_factors = NULL,
  colors_use_dimreduc = c("lemonchiffon", "red"),
  pt.size_factors = 1,
  pt.size_dimreduc = 1,
  reduction = "UMAP",
  reduction_label = "UMAP",
  plot_legend = TRUE,
  raster = TRUE,
  raster.dpi = c(512, 512),
  order = FALSE,
  plot_dimreduc = TRUE,
  save_plots = TRUE,
```

plotFactors_scCustom 107

```
file_path = NULL,
file_name = NULL,
return_plots = FALSE,
cells.highlight = NULL,
reorder_datasets = NULL,
ggplot_default_colors = FALSE,
color_seed = 123
)
```

Arguments

liger_object liger_object. Need to perform clustering and factorization before calling

this function

num_genes Number of genes to display for each factor (Default 8).

colors_use_factors

colors to use for plotting factor loadings By default datasets will be plotted using

"varibow" with shuffle = TRUE from both from DiscretePalette_scCustomize.

colors_use_dimreduc

colors to use for plotting factor loadings on dimensionality reduction coordinates

(tSNE/UMAP). Default is c('lemonchiffon', 'red'),

pt.size_factors

Adjust point size for plotting in the factor plots.

pt.size_dimreduc

Adjust point size for plotting in dimensionality reduction plots.

reduction Name of dimensionality reduction to use for plotting. Default is "UMAP". Only

for newer style liger objects.

reduction_label

What to label the x and y axes of resulting plots. LIGER does not store name of technique and therefore needs to be set manually. Default is "UMAP". Only for

older style liger objects.

plot_legend logical, whether to plot the legend on factor loading plots, default is TRUE.

Helpful if number of datasets is large to avoid crowding the plot with legend.

raster Convert points to raster format. Default is NULL which will rasterize by default

if greater than 200,000 cells.

raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is

c(512, 512).

order logical. Whether to plot higher loading cells on top of cells with lower loading

values in the dimensionality reduction plots (Default = FALSE).

plot_dimreduc logical. Whether to plot factor loadings on dimensionality reduction coordi-

nates. Default is TRUE.

save_plots logical. Whether to save plots. Default is TRUE

file_path directory file path and/or file name prefix. Defaults to current wd.

file_name name suffix to append after sample name.

return_plots logical. Whether or not to return plots to the environment. (Default is FALSE)

```
Cells.highlight

Names of specific cells to highlight in plot (black) (default NULL).

reorder_datasets

New order to plot datasets in for the factor plots if different from current factor level order in cell.data slot. Only for older style liger objects.

ggplot_default_colors

logical. If colors_use_factors = NULL, Whether or not to return plot using default ggplot2 "hue" palette instead of default "varibow" palette.

color_seed

random seed for the palette shuffle if colors_use_factors = NULL. Default = 123.
```

Value

A list of ggplot/patchwork objects and/or PDF file.

Author(s)

Velina Kozareva (Original code for modified function), Sam Marsh (Added/modified functionality)

References

Based on plotFactors functionality from original LIGER package.

Examples

```
## Not run:
plotFactors_scCustom(liger_object = liger_obj, return_plots = FALSE, plot_dimreduc = TRUE,
raster = FALSE, save_plots = TRUE)
## End(Not run)
```

Description

Plot of total cell or nuclei number per sample grouped by another meta data variable.

```
Plot_Cells_per_Sample(
    seurat_object,
    sample_col = "orig.ident",
    group_by = NULL,
    colors_use = NULL,
    dot_size = 1,
    plot_title = "Cells/Nuclei per Sample",
```

Plot_Density_Custom 109

```
y_axis_label = "Number of Cells",
x_axis_label = NULL,
legend_title = NULL,
x_lab_rotate = TRUE,
color_seed = 123
)
```

Arguments

seurat_object Seurat object name. sample_col Specify which column in meta.data specifies sample ID (i.e. orig.ident). group_by Column in meta.data slot to group results by (i.e. "Treatment"). colors_use List of colors or color palette to use. size of the dots plotted if group_by is not NULL. Default is 1. dot_size plot_title Plot title. Label for y axis. y_axis_label x_axis_label Label for x axis. legend_title Label for plot legend. x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE. color_seed random seed for the "varibow" palette shuffle if colors_use = NULL and number of groups plotted is greater than 36. Default = 123.

Value

A ggplot object

Examples

```
## Not run:
Plot_Cells_per_Sample(seurat_object = obj, sample_col = "orig.ident", group_by = "Treatment")
## End(Not run)
```

Description

Allow for customization of Nebulosa plot_density. Requires Nebulosa package from Bioconductor.

Usage

```
Plot_Density_Custom(
   seurat_object,
   features,
   joint = FALSE,
   viridis_palette = "magma",
   custom_palette = NULL,
   pt.size = 1,
   aspect_ratio = NULL,
   reduction = NULL,
   combine = TRUE,
   ...
)
```

Arguments

seurat_object Seurat object name. features Features to plot. logical. Whether to return joint density plot. Default is FALSE. joint viridis_palette default viridis palette to use (must be one of: "viridis", "magma", "cividis", "inferno", "plasma"). Default is "magma". custom_palette non-default color palette to be used in place of default viridis options. Adjust point size for plotting. pt.size Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default aspect_ratio is NULL. Dimensionality Reduction to use (if NULL then defaults to Object default). reduction combine Create a single plot? If FALSE, a list with ggplot objects is returned.

Value

A ggplot object

Examples

```
## Not run:
library(Seurat)
Plot_Density_Custom(seurat_object = pbmc_small, features = "CD3E")
## End(Not run)
```

Extra parameters passed to plot_density.

```
Plot_Density_Joint_Only

Nebulosa Joint Density Plot
```

Description

Return only the joint density plot from Nebulosa plot_density function. Requires Nebulosa package from Bioconductor.

Usage

```
Plot_Density_Joint_Only(
   seurat_object,
   features,
   viridis_palette = "magma",
   custom_palette = NULL,
   pt.size = 1,
   aspect_ratio = NULL,
   reduction = NULL,
   ...
)
```

Arguments

```
seurat_object
                  Seurat object name.
                  Features to plot.
features
viridis_palette
                  default viridis palette to use (must be one of: "viridis", "magma", "cividis",
                  "inferno", "plasma"). Default is "magma".
custom_palette non-default color palette to be used in place of default viridis options.
                  Adjust point size for plotting.
pt.size
aspect_ratio
                  Control the aspect ratio (y:x axes ratio length). Must be numeric value; Default
                  is NULL.
                  Dimensionality Reduction to use (if NULL then defaults to Object default).
reduction
                  Extra parameters passed to plot_density.
. . .
```

Value

A ggplot object

Examples

```
## Not run:
library(Seurat)
Plot_Density_Joint_Only(seurat_object = pbmc_small, features = c("CD8A", "CD3E"))
```

Plot_Median_Genes

```
## End(Not run)
```

Plot_Median_Genes

Plot Median Genes per Cell per Sample

Description

Plot of median genes per cell per sample grouped by desired meta data variable.

Usage

```
Plot_Median_Genes(
    seurat_object,
    sample_col = "orig.ident",
    group_by = NULL,
    colors_use = NULL,
    dot_size = 1,
    plot_title = "Median Genes/Cell per Sample",
    y_axis_label = "Median Genes",
    x_axis_label = NULL,
    legend_title = NULL,
    x_lab_rotate = TRUE,
    color_seed = 123
)
```

Arguments

seurat_object	Seurat object name.
sample_col	Specify which column in meta.data specifies sample ID (i.e. orig.ident).
group_by	Column in meta.data slot to group results by (i.e. "Treatment").
colors_use	List of colors or color palette to use. Only applicable if group_by is not NULL.
dot_size	size of the dots plotted if group_by is not NULL. Default is 1.
plot_title	Plot title.
y_axis_label	Label for y axis.
x_axis_label	Label for x axis.
legend_title	Label for plot legend.
x_lab_rotate	logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.
color_seed	random seed for the "varibow" palette shuffle if colors_use = NULL and number of groups plotted is greater than 36. Default = 123.

Value

A ggplot object

Plot_Median_Mito 113

Examples

```
library(Seurat)
# Create example groups
pbmc_small$sample_id <- sample(c("sample1", "sample2"), size = ncol(pbmc_small), replace = TRUE)
# Plot
Plot_Median_Genes(seurat_object = pbmc_small, sample_col = "orig.ident", group_by = "sample_id")</pre>
```

Plot_Median_Mito

Plot Median Percent Mito per Cell per Sample

Description

Plot of median percent mito per cell per sample grouped by desired meta data variable.

Usage

```
Plot_Median_Mito(
    seurat_object,
    sample_col = "orig.ident",
    group_by = NULL,
    colors_use = NULL,
    dot_size = 1,
    plot_title = "Median % Mito per Sample",
    y_axis_label = "Percent Mitochondrial Reads",
    x_axis_label = NULL,
    legend_title = NULL,
    x_lab_rotate = TRUE,
    color_seed = 123
)
```

Arguments

```
seurat_object
                  Seurat object name.
sample_col
                  Specify which column in meta.data specifies sample ID (i.e. orig.ident).
group_by
                  Column in meta.data slot to group results by (i.e. "Treatment").
colors_use
                  List of colors or color palette to use. Only applicable if group_by is not NULL.
dot_size
                  size of the dots plotted if group_by is not NULL. Default is 1.
plot_title
                  Plot title.
                  Label for y axis.
y_axis_label
x_axis_label
                  Label for x axis.
legend_title
                  Label for plot legend.
x_lab_rotate
                  logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.
color_seed
                  random seed for the "varibow" palette shuffle if colors_use = NULL and number
                  of groups plotted is greater than 36. Default = 123.
```

114 Plot_Median_Other

Value

A ggplot object

Examples

```
## Not run:
# Add mito
obj <- Add_Mito_Ribo_Seurat(seurat_object = obj, species = "human")
# Plot
Plot_Median_Mito(seurat_object = obj, sample_col = "orig.ident", group_by = "sample_id")
## End(Not run)</pre>
```

Plot_Median_Other

Plot Median other variable per Cell per Sample

Description

Plot of median other variable per cell per sample grouped by desired meta data variable.

Usage

```
Plot_Median_Other(
    seurat_object,
    median_var,
    sample_col = "orig.ident",
    group_by = NULL,
    colors_use = NULL,
    dot_size = 1,
    plot_title = NULL,
    x_axis_label = NULL,
    t_axis_label = NULL,
    legend_title = NULL,
    x_lab_rotate = TRUE,
    color_seed = 123
)
```

Arguments

```
seurat_object Seurat object name.

median_var Variable in meta.data slot to calculate and plot median values for.

sample_col Specify which column in meta.data specifies sample ID (i.e. orig.ident).

group_by Column in meta.data slot to group results by (i.e. "Treatment").

colors_use List of colors or color palette to use. Only applicable if group_by is not NULL.
```

Plot_Median_UMIs 115

```
dot_size size of the dots plotted if group_by is not NULL. Default is 1.

plot_title Plot title.

y_axis_label Label for y axis.

x_axis_label Label for x axis.

legend_title Label for plot legend.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

color_seed random seed for the "varibow" palette shuffle if colors_use = NULL and number of groups plotted is greater than 36. Default = 123.
```

Value

A ggplot object

Examples

```
## Not run:
library(Seurat)
cd_features <- list(c('CD79B', 'CD79A', 'CD19', 'CD180', 'CD200', 'CD3D', 'CD2','CD3E',
'CD7','CD8A', 'CD14', 'CD1C', 'CD68', 'CD9', 'CD247'))

pbmc_small <- AddModuleScore(object = pbmc_small, features = cd_features, ctrl = 5,
name = 'CD_Features')

Plot_Median_Other(seurat_object = pbmc_small, median_var = "CD_Features1",
sample_col = "orig.ident", group_by = "Treatment")

## End(Not run)</pre>
```

Plot_Median_UMIs

Plot Median UMIs per Cell per Sample

Description

Plot of median UMIs per cell per sample grouped by desired meta data variable.

Usage

```
Plot_Median_UMIs(
   seurat_object,
   sample_col = "orig.ident",
   group_by = NULL,
   colors_use = NULL,
   dot_size = 1,
   plot_title = "Median UMIs/Cell per Sample",
   y_axis_label = "Median UMIs",
   x_axis_label = NULL,
```

116 Proportion_Plot

```
legend_title = NULL,
  x_lab_rotate = TRUE,
  color_seed = 123
)
```

Arguments

seurat_object Seurat object name. sample_col Specify which column in meta.data specifies sample ID (i.e. orig.ident). Column in meta.data slot to group results by (i.e. "Treatment"). group_by List of colors or color palette to use. Only applicable if group_by is not NULL. colors_use dot_size size of the dots plotted if group_by is not NULL. Default is 1. plot_title Plot title. y_axis_label Label for y axis. x_axis_label Label for x axis. legend_title Label for plot legend. x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE. random seed for the "varibow" palette shuffle if colors_use = NULL and number color_seed of groups plotted is greater than 36. Default = 123.

Value

A ggplot object

Examples

```
library(Seurat)
# Create example groups
pbmc_small$sample_id <- sample(c("sample1", "sample2"), size = ncol(pbmc_small), replace = TRUE)
# Plot
Plot_Median_UMIs(seurat_object = pbmc_small, sample_col = "orig.ident", group_by = "sample_id")</pre>
```

Proportion_Plot Cell Proportion Plot

Description

Plots the proportion of cells belonging to each identity in active.ident of Seurat object. Can plot either the totals or split by a variable in meta.data.

Proportion_Plot 117

Usage

```
Proportion_Plot(
    seurat_object,
    plot_type = "bar",
    plot_scale = "percent",
    group_by_var = "ident",
    split.by = NULL,
    num_columns = NULL,
    x_lab_rotate = FALSE,
    colors_use = NULL,
    ggplot_default_colors = FALSE,
    color_seed = 123
)
```

Arguments

seurat_object	Seurat object name.	
plot_type	whether to plot a pie chart or bar chart; value must be one of "bar" or "pie". Default is "bar"	
plot_scale	whether to plot bar chart as total cell counts or percents, value must be one of "percent" or "count". Default is "percent".	
group_by_var	$meta\ data\ column\ to\ classify\ samples\ (default="ident"\ and\ will\ use\ active.ident.$	
split.by	meta data variable to use to split plots. Default is NULL which will plot across entire object.	
num_columns	number of columns in plot. Only valid if split.by is not NULL.	
x_lab_rotate	Rotate x-axis labels 45 degrees (Default is FALSE). Only valid if plot_type = "bar".	
colors_use	color palette to use for plotting.	
ggplot_default_colors		
	logical. If colors_use = NULL, Whether or not to return plot using default gg-plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.	
color_seed	random seed for the "varibow" palette shuffle if colors_use = NULL and number of groups plotted is greater than 36. Default = 123.	

Value

ggplot2 or patchwork object

Examples

```
#' library(Seurat)
Proportion_Plot(seurat_object = pbmc_small)
```

```
Pull_Cluster_Annotation
```

Pull cluster information from annotation csv file.

Description

shortcut filter and pull function compatible with annotation files created by Create_Cluster_Annotation_File by default but also any other csv file.

Usage

```
Pull_Cluster_Annotation(
  annotation = NULL,
  cluster_name_col = "cluster",
  cell_type_col = "cell_type"
)
```

Arguments

Value

a list of named vectors for every cell type in the cell_type_col column of the annotation table and vectors new cluster names (for use with Rename_Clusters function or manual identity renaming).

Examples

```
## Not run:
# If pulling from a data.frame/tibble
cluster_annotation <- Pull_Cluster_Annotation(annotation = annotation_df,
cluster_name_col = "cluster", cell_type_col = "cell_type")

# If pulling from csv file
cluster_annotation <- Pull_Cluster_Annotation(annotation = "file_path/file_name.csv",
cluster_name_col = "cluster", cell_type_col = "cell_type")

## End(Not run)</pre>
```

Pull_Directory_List 119

```
Pull_Directory_List Pull Directory List
```

Description

Enables easy listing of all sub-directories for use as input library lists in Read10X multi functions.

Usage

```
Pull_Directory_List(base_path)
```

Arguments

base_path

path to the parent directory which contains all of the subdirectories of interest.

Value

A vector of sub-directories within base_path.

Examples

```
## Not run:
data_dir <- 'path/to/data/directory'
library_list <- Pull_Directory_List(base_path = data_dir)
## End(Not run)</pre>
```

QC_Histogram

QC Histogram Plots

Description

Custom histogram for initial QC checks including lines for thresholding

Usage

```
QC_Histogram(
   seurat_object,
   features,
   low_cutoff = NULL,
   high_cutoff = NULL,
   cutoff_line_width = NULL,
   split.by = NULL,
   bins = 250,
   colors_use = "dodgerblue",
```

```
num_columns = NULL,
plot_title = NULL,
assay = NULL,
print_defaults = FALSE
)
```

Arguments

seurat_object Seurat object name.

features Feature from meta.data, assay features, or feature name shortcut to plot.

low_cutoff Plot line a potential low threshold for filtering.

high_cutoff Plot line a potential high threshold for filtering.

cutoff_line_width

numerical value for thickness of cutoff lines, default is NULL.

split.by Feature to split plots by (i.e. "orig.ident"). bins number of bins to plot default is 250.

colors_use color to fill histogram bars, default is "dodgerblue".

plot_title optional, vector to use for plot title. Default is the name of the variable being

plotted.

assay assay to pull features from, default is active assay.

print_defaults return list of accepted default shortcuts to provide to features instead of full

name.

Value

A patchwork object

Examples

```
## Not run:
QC_Histogram(seurat_object = object, features = "nFeature_RNA")
## End(Not run)
```

QC_Plots_Combined_Vln QC Plots Genes, UMIs, & % Mito

Description

Custom VlnPlot for initial QC checks including lines for thresholding

Usage

```
QC_Plots_Combined_Vln(
  seurat_object,
  group.by = NULL,
  feature_cutoffs = NULL,
 UMI_cutoffs = NULL,
 mito_cutoffs = NULL,
 mito_name = "percent_mito",
  cutoff_line_width = NULL,
  pt.size = NULL,
  plot_median = FALSE,
 median_size = 15,
 plot_boxplot = FALSE,
  colors_use = NULL,
  x_{ab} = TRUE
 y_axis_log = FALSE,
  raster = NULL,
  ggplot_default_colors = FALSE,
  color\_seed = 123,
)
```

Arguments

colors_use

x_lab_rotate

seurat_object Seurat object name. group.by Name of one or more metadata columns to group (color) cells by (for example, orig.ident); default is the current active.ident of the object. feature_cutoffs Numeric vector of length 1 or 2 to plot lines for potential low/high threshold for filtering. UMI_cutoffs Numeric vector of length 1 or 2 to plot lines for potential low/high threshold for filtering. Numeric vector of length 1 or 2 to plot lines for potential low/high threshold for mito_cutoffs filtering. mito_name The column name containing percent mitochondrial counts information. Default value is "percent mito" which is default value created when using Add_Mito_Ribo(). cutoff_line_width numerical value for thickness of cutoff lines, default is NULL. Point size for plotting pt.size logical, whether to plot median for each ident on the plot (Default is FALSE). plot_median median_size Shape size for the median is plotted. plot_boxplot logical, whether to plot boxplot inside of violin (Default is FALSE).

vector of colors to use for plot.

Rotate x-axis labels 45 degrees (Default is TRUE).

y_axis_log logical. Whether to change y axis to log10 scale (Default is FALSE).

raster Convert points to raster format. Default is NULL which will rasterize by default if greater than 100,000 total points plotted (# Cells x # of features).

ggplot_default_colors
logical. If colors_use = NULL, Whether or not to return plot using default ggplot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

color_seed random seed for the "varibow" palette shuffle if colors_use = NULL and number of groups plotted is greater than 36. Default = 123.

Extra parameters passed to VlnPlot.

Value

A ggplot object

Examples

```
## Not run:
QC_Plots_Combined_Vln(seurat_object = object)
## End(Not run)
```

QC_Plots_Complexity

QC Plots Cell "Complexity"

Description

Custom VlnPlot for initial QC checks including lines for thresholding

Usage

```
QC_Plots_Complexity(
  seurat_object,
  feature = "log10GenesPerUMI",
  group.by = NULL,
  x_axis_label = NULL,
 y_axis_label = "log10(Genes) / log10(UMIs)",
  plot_title = "Cell Complexity",
  low_cutoff = NULL,
 high_cutoff = NULL,
  cutoff_line_width = NULL,
  pt.size = NULL,
  plot_median = FALSE,
  plot_boxplot = FALSE,
 median\_size = 15,
  colors_use = NULL,
  x_{lab_rotate} = TRUE,
```

QC_Plots_Complexity 123

```
y_axis_log = FALSE,
raster = NULL,
ggplot_default_colors = FALSE,
color_seed = 123,
...
)
```

Arguments

seurat_object Seurat object name. feature Feature from Meta Data to plot. Name of one or more metadata columns to group (color) cells by (for example, group.by orig.ident); default is the current active.ident of the object. x_axis_label Label for x axis. y_axis_label Label for y axis. plot_title Plot Title. low_cutoff Plot line a potential low threshold for filtering. high_cutoff Plot line a potential high threshold for filtering. cutoff_line_width numerical value for thickness of cutoff lines, default is NULL. pt.size Point size for plotting logical, whether to plot median for each ident on the plot (Default is FALSE). plot_median plot_boxplot logical, whether to plot boxplot inside of violin (Default is FALSE). median_size Shape size for the median is plotted. colors_use vector of colors to use for plot. x_lab_rotate Rotate x-axis labels 45 degrees (Default is TRUE). y_axis_log logical. Whether to change y axis to log10 scale (Default is FALSE). Convert points to raster format. Default is NULL which will rasterize by default raster if greater than 100,000 total points plotted (# Cells x # of features). ggplot_default_colors logical. If colors_use = NULL, Whether or not to return plot using default ggplot2 "hue" palette instead of default "polychrome" or "varibow" palettes. random seed for the "varibow" palette shuffle if colors_use = NULL and number color_seed of groups plotted is greater than 36. Default = 123.

Extra parameters passed to VlnPlot.

Value

A ggplot object

124 QC_Plots_Feature

Examples

```
library(Seurat)
pbmc_small <- Add_Cell_Complexity(pbmc_small)

QC_Plots_Complexity(seurat_object = pbmc_small)</pre>
```

QC_Plots_Feature

QC Plots Feature

Description

Custom VlnPlot for initial QC checks including lines for thresholding

Usage

```
QC_Plots_Feature(
  seurat_object,
  feature,
  group.by = NULL,
  x_axis_label = NULL,
 y_axis_label = NULL,
 plot_title = NULL,
  low_cutoff = NULL,
 high_cutoff = NULL,
  cutoff_line_width = NULL,
 pt.size = NULL,
 plot_median = FALSE,
 median_size = 15,
 plot_boxplot = FALSE,
  colors_use = NULL,
  x_{lab_rotate} = TRUE,
 y_axis_log = FALSE,
  raster = NULL,
  ggplot_default_colors = FALSE,
  color_seed = 123,
)
```

Arguments

seurat_object Seurat object name.

feature Feature from Meta Data to plot.

group.by Name of one or more metadata columns to group (color) cells by (for example,

orig.ident); default is the current active.ident of the object.

x_axis_label Label for x axis.

QC_Plots_Feature 125

Label for y axis. y_axis_label Plot Title. plot_title low_cutoff Plot line a potential low threshold for filtering. high_cutoff Plot line a potential high threshold for filtering. cutoff_line_width numerical value for thickness of cutoff lines, default is NULL. pt.size Point size for plotting. plot_median logical, whether to plot median for each ident on the plot (Default is FALSE). median_size Shape size for the median is plotted. plot_boxplot logical, whether to plot boxplot inside of violin (Default is FALSE). colors_use vector of colors to use for plot. x_lab_rotate Rotate x-axis labels 45 degrees (Default is TRUE). logical. Whether to change y axis to log10 scale (Default is FALSE). y_axis_log raster Convert points to raster format. Default is NULL which will rasterize by default if greater than 100,000 total points plotted (# Cells x # of features). ggplot_default_colors logical. If colors_use = NULL, Whether or not to return plot using default ggplot2 "hue" palette instead of default "polychrome" or "varibow" palettes. random seed for the "varibow" palette shuffle if colors_use = NULL and number color_seed of groups plotted is greater than 36. Default = 123. Extra parameters passed to VlnPlot.

Value

A ggplot object

Examples

```
## Not run:
QC_Plots_Feature(seurat_object = object, feature = "FEATURE_NAME",
y_axis_label = "FEATURE per Cell", plot_title = "FEATURE per Cell", high_cutoff = 10,
low_cutoff = 2)
## End(Not run)
```

126 QC_Plots_Genes

QC_Plots_Genes

QC Plots Genes

Description

Custom VlnPlot for initial QC checks including lines for thresholding

Usage

```
QC_Plots_Genes(
  seurat_object,
  plot_title = "Genes Per Cell/Nucleus",
  group.by = NULL,
  x_axis_label = NULL,
  y_axis_label = "Features",
  low_cutoff = NULL,
  high_cutoff = NULL,
  cutoff_line_width = NULL,
  pt.size = NULL,
  plot_median = FALSE,
  plot_boxplot = FALSE,
  median_size = 15,
  colors_use = NULL,
  x_{ab} = TRUE
  y_axis_log = FALSE,
  raster = NULL,
  ggplot_default_colors = FALSE,
  color\_seed = 123,
)
```

Arguments

```
seurat_object
                  Seurat object name.
plot_title
                  Plot Title.
                  Name of one or more metadata columns to group (color) cells by (for example,
group.by
                  orig.ident); default is the current active.ident of the object.
x_axis_label
                  Label for x axis.
y_axis_label
                  Label for y axis.
low_cutoff
                  Plot line a potential low threshold for filtering.
high_cutoff
                  Plot line a potential high threshold for filtering.
cutoff_line_width
                  numerical value for thickness of cutoff lines, default is NULL.
                  Point size for plotting.
pt.size
```

QC_Plots_Mito

logical, whether to plot median for each ident on the plot (Default is FALSE). plot_median plot_boxplot logical, whether to plot boxplot inside of violin (Default is FALSE). median_size Shape size for the median is plotted. colors_use vector of colors to use for plot. x_lab_rotate Rotate x-axis labels 45 degrees (Default is TRUE). y_axis_log logical. Whether to change y axis to log10 scale (Default is FALSE). Convert points to raster format. Default is NULL which will rasterize by default raster if greater than 100,000 total points plotted (# Cells x # of features). ggplot_default_colors logical. If colors_use = NULL, Whether or not to return plot using default ggplot2 "hue" palette instead of default "polychrome" or "varibow" palettes. random seed for the "varibow" palette shuffle if colors_use = NULL and number color_seed of groups plotted is greater than 36. Default = 123. Extra parameters passed to VlnPlot.

Value

A ggplot object

Examples

```
library(Seurat)
QC_Plots_Genes(seurat_object = pbmc_small, plot_title = "Genes per Cell", low_cutoff = 40,
high_cutoff = 85)
```

QC_Plots_Mito

QC Plots Mito

Description

#' Custom VlnPlot for initial QC checks including lines for thresholding

Usage

```
QC_Plots_Mito(
    seurat_object,
    mito_name = "percent_mito",
    plot_title = "Mito Gene % per Cell/Nucleus",
    group.by = NULL,
    x_axis_label = NULL,
    y_axis_label = "% Mitochondrial Gene Counts",
    low_cutoff = NULL,
    high_cutoff = NULL,
    cutoff_line_width = NULL,
```

128 QC_Plots_Mito

```
pt.size = NULL,
plot_median = FALSE,
median_size = 15,
plot_boxplot = FALSE,
colors_use = NULL,
x_lab_rotate = TRUE,
y_axis_log = FALSE,
raster = NULL,
ggplot_default_colors = FALSE,
color_seed = 123,
...
)
```

Arguments

seurat_object Seurat object name. The column name containing percent mitochondrial counts information. Default mito_name value is "percent_mito" which is default value created when using Add_Mito_Ribo(). plot_title Plot Title. group.by Name of one or more metadata columns to group (color) cells by (for example, orig.ident); default is the current active.ident of the object. x_axis_label Label for x axis. y_axis_label Label for y axis. low_cutoff Plot line a potential low threshold for filtering. high_cutoff Plot line a potential high threshold for filtering. cutoff_line_width numerical value for thickness of cutoff lines, default is NULL. Point size for plotting. pt.size plot_median logical, whether to plot median for each ident on the plot (Default is FALSE). Shape size for the median is plotted. median_size plot_boxplot logical, whether to plot boxplot inside of violin (Default is FALSE). colors_use vector of colors to use for plot. x_lab_rotate Rotate x-axis labels 45 degrees (Default is TRUE). logical. Whether to change y axis to log10 scale (Default is FALSE). y_axis_log Convert points to raster format. Default is NULL which will rasterize by default raster if greater than 100,000 total points plotted (# Cells x # of features). ggplot_default_colors logical. If colors_use = NULL, Whether or not to return plot using default ggplot2 "hue" palette instead of default "polychrome" or "varibow" palettes. random seed for the "varibow" palette shuffle if colors_use = NULL and number color_seed of groups plotted is greater than 36. Default = 123. Extra parameters passed to VlnPlot.

QC_Plots_UMIs 129

Value

A ggplot object

Examples

```
## Not run:
QC_Plots_Mito(seurat_object = object, plot_title = "Percent Mito per Cell", high_cutoff = 10)
## End(Not run)
```

QC_Plots_UMIs

QC Plots UMIs

Description

#' Custom VlnPlot for initial QC checks including lines for thresholding

Usage

```
QC_Plots_UMIs(
  seurat_object,
  plot_title = "UMIs per Cell/Nucleus",
  group.by = NULL,
  x_axis_label = NULL,
  y_axis_label = "UMIs",
  low_cutoff = NULL,
  high_cutoff = NULL,
  cutoff_line_width = NULL,
  pt.size = NULL,
 plot_median = FALSE,
 median\_size = 15,
  plot_boxplot = FALSE,
  colors_use = NULL,
  x_{ab_rotate} = TRUE,
 y_axis_log = FALSE,
  raster = NULL,
  ggplot_default_colors = FALSE,
  color_seed = 123,
)
```

Arguments

```
seurat_object Seurat object name.
plot_title Plot Title.
```

130 QC_Plots_UMIs

group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); default is the current active.ident of the object.
x_axis_label	Label for x axis.
y_axis_label	Label for y axis.
low_cutoff	Plot line a potential low threshold for filtering.
high_cutoff	Plot line a potential high threshold for filtering.
cutoff_line_wid	dth
	numerical value for thickness of cutoff lines, default is NULL.
pt.size	Point size for plotting.
plot_median	logical, whether to plot median for each ident on the plot (Default is FALSE).
median_size	Shape size for the median is plotted.
plot_boxplot	logical, whether to plot boxplot inside of violin (Default is FALSE).
colors_use	vector of colors to use for plot.
x_lab_rotate	Rotate x-axis labels 45 degrees (Default is TRUE).
y_axis_log	logical. Whether to change y axis to log10 scale (Default is FALSE).
raster	Convert points to raster format. Default is NULL which will rasterize by default if greater than $100,000$ total points plotted (# Cells x # of features).
ggplot_default_colors	
	logical. If colors_use = NULL, Whether or not to return plot using default gg-plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.
color_seed	random seed for the "varibow" palette shuffle if colors_use = NULL and number of groups plotted is greater than 36. Default = 123.
	Extra parameters passed to VlnPlot.

Value

A ggplot object

Examples

```
library(Seurat)
QC_Plots_UMIs(seurat_object = pbmc_small, plot_title = "UMIs per Cell", low_cutoff = 75,
high_cutoff = 600)
```

QC_Plot_GenevsFeature QC Plots Genes vs Misc

Description

Custom FeatureScatter for initial QC checks including lines for thresholding

Usage

```
QC_Plot_GenevsFeature(
  seurat_object,
  feature1,
  x_axis_label = NULL,
  y_axis_label = "Genes per Cell/Nucleus",
  low_cutoff_gene = NULL,
  high_cutoff_gene = NULL,
  low_cutoff_feature = NULL,
  high_cutoff_feature = NULL,
  cutoff_line_width = NULL,
  colors_use = NULL,
  pt.size = 1,
  group.by = NULL,
  raster = NULL,
  raster.dpi = c(512, 512),
  ggplot_default_colors = FALSE,
  color_seed = 123,
  shuffle_seed = 1,
)
```

Arguments

```
seurat_object
                  Seurat object name.
feature1
                  First feature to plot.
x_axis_label
                  Label for x axis.
y_axis_label
                  Label for y axis.
low_cutoff_gene
                  Plot line a potential low threshold for filtering genes per cell.
high_cutoff_gene
                   Plot line a potential high threshold for filtering genes per cell.
low_cutoff_feature
                   Plot line a potential low threshold for filtering feature1 per cell.
high_cutoff_feature
                   Plot line a potential high threshold for filtering feature1 per cell.
```

cutoff_line_width

numerical value for thickness of cutoff lines, default is NULL.

colors_use vector of colors to use for plotting by identity.

pt.size Adjust point size for plotting.

group.by Name of one or more metadata columns to group (color) cells by (for example,

orig.ident). Default is @active.ident.

raster Convert points to raster format. Default is NULL which will rasterize by default

if greater than 100,000 cells.

raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is

c(512, 512).

ggplot_default_colors

logical. If $colors_use = NULL$, Whether or not to return plot using default gg-

plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

color_seed random seed for the "varibow" palette shuffle if colors_use = NULL and number

of groups plotted is greater than 36. Default = 123.

shuffle_seed Sets the seed if randomly shuffling the order of points (Default is 1).

.. Extra parameters passed to FeatureScatter.

Value

A ggplot object

Examples

```
## Not run:
QC_Plot_GenevsFeature(seurat_object = obj, y_axis_label = "Feature per Cell")
## End(Not run)
```

QC_Plot_UMIvsFeature QC Plots UMI vs Misc

Description

Custom FeatureScatter for initial QC checks including lines for thresholding

Usage

```
QC_Plot_UMIvsFeature(
   seurat_object,
   feature1,
   x_axis_label = NULL,
   y_axis_label = "UMIs per Cell/Nucleus",
   low_cutoff_UMI = NULL,
```

shuffle_seed

```
high_cutoff_UMI = NULL,
      low_cutoff_feature = NULL,
      high_cutoff_feature = NULL,
      cutoff_line_width = NULL,
      colors_use = NULL,
      pt.size = 1,
      group.by = NULL,
      raster = NULL,
      raster.dpi = c(512, 512),
      ggplot_default_colors = FALSE,
      color_seed = 123,
      shuffle_seed = 1,
    )
Arguments
    seurat_object
                      Seurat object name.
    feature1
                      First feature to plot.
    x_axis_label
                      Label for x axis.
    y_axis_label
                      Label for y axis.
    low_cutoff_UMI Plot line a potential low threshold for filtering UMI per cell.
    high_cutoff_UMI
                      Plot line a potential high threshold for filtering UMI per cell.
    low_cutoff_feature
                      Plot line a potential low threshold for filtering feature1 per cell.
    high_cutoff_feature
                      Plot line a potential high threshold for filtering feature1 per cell.
    cutoff_line_width
                      numerical value for thickness of cutoff lines, default is NULL.
                      vector of colors to use for plotting by identity.
    colors_use
                      Adjust point size for plotting.
    pt.size
    group.by
                      Name of one or more metadata columns to group (color) cells by (for example,
                      orig.ident). Default is @active.ident.
    raster
                      Convert points to raster format. Default is NULL which will rasterize by default
                      if greater than 100,000 cells.
    raster.dpi
                      Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is
                      c(512, 512).
    ggplot_default_colors
                      logical. If colors_use = NULL, Whether or not to return plot using default gg-
                      plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.
                      random seed for the "varibow" palette shuffle if colors_use = NULL and number
    color_seed
                      of groups plotted is greater than 36. Default = 123.
```

Sets the seed if randomly shuffling the order of points (Default is 1).

Extra parameters passed to FeatureScatter.

134 QC_Plot_UMIvsGene

Value

A ggplot object

Examples

```
## Not run:
QC_Plot_UMIvsFeature(seurat_object = obj, y_axis_label = "Feature per Cell")
## End(Not run)
```

QC_Plot_UMIvsGene

QC Plots Genes vs UMIs

Description

Custom FeatureScatter for initial QC checks including lines for thresholding

Usage

```
QC_Plot_UMIvsGene(
  seurat_object,
  x_axis_label = "UMIs per Cell/Nucleus",
 y_axis_label = "Genes per Cell/Nucleus",
  low_cutoff_gene = -Inf,
  high_cutoff_gene = Inf,
  low_cutoff_UMI = -Inf,
  high_cutoff_UMI = Inf,
  cutoff_line_width = NULL,
  colors_use = NULL,
 meta_gradient_name = NULL,
 meta_gradient_color = viridis_plasma_dark_high,
 meta_gradient_na_color = "lightgray",
 meta_gradient_low_cutoff = NULL,
  cells = NULL,
  combination = FALSE,
  ident_legend = TRUE,
  pt.size = 1,
  group.by = NULL,
  raster = NULL,
  raster.dpi = c(512, 512),
  ggplot_default_colors = FALSE,
  color\_seed = 123,
  shuffle_seed = 1,
)
```

QC_Plot_UMIvsGene 135

Arguments

seurat_object Seurat object name.
x_axis_label Label for x axis.
y_axis_label Label for y axis.

low_cutoff_gene

Plot line a potential low threshold for filtering genes per cell.

high_cutoff_gene

Plot line a potential high threshold for filtering genes per cell.

low_cutoff_UMI Plot line a potential low threshold for filtering UMIs per cell.

high_cutoff_UMI

Plot line a potential high threshold for filtering UMIs per cell.

cutoff_line_width

numerical value for thickness of cutoff lines, default is NULL.

colors_use vector of colors to use for plotting by identity.

meta_gradient_name

Name of continuous meta data variable to color points in plot by. (MUST be continuous variable i.e. "percent_mito").

meta_gradient_color

The gradient color palette to use for plotting of meta variable (default is viridis "Plasma" palette with dark colors high).

meta_gradient_na_color

Color to use for plotting values when a meta_gradient_low_cutoff is set (default is "lightgray").

meta_gradient_low_cutoff

Value to use as threshold for plotting. meta_gradient_name values below this value will be plotted using meta_gradient_na_color.

cells Cells to include on the scatter plot (default is all cells).

combination logical (default FALSE). Whether or not to return a plot layout with both the

plot colored by identity and the meta data gradient plot.

ident_legend logical, whether to plot the legend containing identities (left plot) when combination

= TRUE. Default is TRUE.

pt.size Passes size of points to both FeatureScatter and geom_point.

group.by Name of one or more metadata columns to group (color) cells by (for example,

orig.ident). Default is @active.ident.

raster Convert points to raster format. Default is NULL which will rasterize by default

if greater than 100,000 cells.

raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is

c(512, 512).

ggplot_default_colors

logical. If colors_use = NULL, Whether or not to return plot using default ggplot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

color_seed Random seed for the "varibow" palette shuffle if colors_use = NULL and num-

ber of groups plotted is greater than 36. Default = 123.

shuffle_seed Sets the seed if randomly shuffling the order of points (Default is 1).

. . . Extra parameters passed to FeatureScatter.

Value

A ggplot object

Examples

```
library(Seurat)
QC_Plot_UMIvsGene(seurat_object = pbmc_small, x_axis_label = "UMIs per Cell/Nucleus",
y_axis_label = "Genes per Cell/Nucleus")
```

Random_Cells_Downsample

Randomly downsample by identity

Description

Get a randomly downsampled set of cell barcodes with even numbers of cells for each identity class. Can return either as a list (1 entry per identity class) or vector of barcodes.

Usage

```
Random_Cells_Downsample(
   seurat_object,
   num_cells,
   group.by = NULL,
   return_list = FALSE,
   allow_lower = FALSE,
   seed = 123
)
```

Arguments

seurat_object	Seurat object
num_cells	number of cells per ident to use in down-sampling. This value must be less than or equal to the size of ident with fewest cells. Alternatively, can set to "min" which will use the maximum number of barcodes based on size of smallest group.
group.by	The ident to use to group cells. Default is NULL which use current active.ident
return_list	logical, whether or not to return the results as list instead of vector, default is FALSE.
allow_lower	logical, if number of cells in identity is lower than num_cells keep the maximum number of cells, default is FALSE. If FALSE will report error message if num_cells is too high, if TRUE will subset cells with more than num_cells to that value and those with less than num_cells will not be downsampled.
seed	random seed to use for downsampling. Default is 123.

Read10X_GEO

Value

either a vector or list of cell barcodes

Examples

```
library(Seurat)

# return vector of barcodes
random_cells <- Random_Cells_Downsample(seurat_object = pbmc_small, num_cells = 10)
head(random_cells)

# return list
random_cells_list <- Random_Cells_Downsample(seurat_object = pbmc_small, return_list = TRUE,
num_cells = 10)
head(random_cells_list)

# return max total number of cells (setting `num_cells = "min`)
random_cells_max <- Random_Cells_Downsample(seurat_object = pbmc_small, num_cells = "min")</pre>
```

Read10X_GE0

Load in NCBI GEO data from 10X

Description

Enables easy loading of sparse data matrices provided by 10X genomics. That have file prefixes added to them by NCBI GEO or other repos.

Usage

```
Read10X_GEO(
  data_dir = NULL,
  sample_list = NULL,
  sample_names = NULL,
  gene.column = 2,
  cell.column = 1,
  unique.features = TRUE,
  strip.suffix = FALSE,
  parallel = FALSE,
  num_cores = NULL,
  merge = FALSE
)
```

Arguments

data_dir

Directory containing the matrix.mtx, genes.tsv (or features.tsv), and barcodes.tsv files provided by 10X.

138 Read10X_GEO

sample_list	A vector of file prefixes/names if specific samples are desired. Default is NULL and will load all samples in given directory.
sample_names	a set of sample names to use for each sample entry in returned list. If NULL will set names to the file name of each sample.
gene.column	Specify which column of genes.tsv or features.tsv to use for gene names; default is 2.
cell.column	Specify which column of barcodes.tsv to use for cell names; default is 1.
unique.features	
	Make feature names unique (default TRUE).
strip.suffix	Remove trailing "-1" if present in all cell barcodes.
parallel	logical (default FALSE). Whether to use multiple cores when reading in data. Only possible on Linux based systems.
num_cores	if $parallel = TRUE$ indicates the number of cores to use for multicore processing.
merge	logical (default FALSE) whether or not to merge samples into a single matrix or return list of matrices. If TRUE each sample entry in list will have cell barcode prefix added. The prefix will be taken from sample_names.

Value

If features.csv indicates the data has multiple data types, a list containing a sparse matrix of the data from each type will be returned. Otherwise a sparse matrix containing the expression data will be returned.

References

Code used in function has been slightly modified from Seurat::Read10X function of Seurat package https://github.com/satijalab/seurat (License: GPL-3). Function was modified to support file prefixes and altered loop by Samuel Marsh for scCustomize (also previously posted as potential PR to Seurat GitHub).

Examples

```
## Not run:
data_dir <- 'path/to/data/directory'
expression_matrices <- Read10X_GEO(data_dir = data_dir)
# To create object from single file
seurat_object = CreateSeuratObject(counts = expression_matrices[[1]])
## End(Not run)</pre>
```

Read10X_h5_GEO 139

Read10X_h5_GE0 Load in NCBI GEO data from 10X in HDF5 file format

Description

Enables easy loading of HDF5 data matrices provided by 10X genomics. That have file prefixes added to them by NCBI GEO or other repos or programs (i.e. Cell Bender)

Usage

```
Read10X_h5_GEO(
  data_dir = NULL,
  sample_list = NULL,
  sample_names = NULL,
  shared_suffix = NULL,
  parallel = FALSE,
  num_cores = NULL,
  merge = FALSE,
  ...
)
```

Arguments

data_dir	Directory containing the .h5 files provided by 10X.
sample_list	A vector of file prefixes/names if specific samples are desired. Default is NULL and will load all samples in given directory.
sample_names	a set of sample names to use for each sample entry in returned list. If NULL will set names to the file name of each sample.
shared_suffix	a suffix and file extension shared by all samples.
parallel	logical (default FALSE). Whether to use multiple cores when reading in data. Only possible on Linux based systems.
num_cores	if $parallel = TRUE$ indicates the number of cores to use for multicore processing.
merge	logical (default FALSE) whether or not to merge samples into a single matrix or return list of matrices. If TRUE each sample entry in list will have cell barcode prefix added. The prefix will be taken from sample_names.
	Additional arguments passed to Read10X_h5

Value

If the data has multiple data types, a list containing a sparse matrix of the data from each type will be returned. Otherwise a sparse matrix containing the expression data will be returned.

Examples

```
## Not run:
data_dir <- 'path/to/data/directory'
expression_matrices <- Read10X_h5_GEO(data_dir = data_dir)
# To create object from single file
seurat_object = CreateSeuratObject(counts = expression_matrices[[1]])
## End(Not run)</pre>
```

Read10X_h5_Multi_Directory

Load 10X h5 count matrices from multiple directories

Description

Enables easy loading of sparse data matrices provided by 10X genomics that are present in multiple subdirectories. Can function with either default output directory structure of Cell Ranger or custom directory structure.

Usage

```
Read10X_h5_Multi_Directory(
   base_path,
   secondary_path = NULL,
   default_10X_path = TRUE,
   cellranger_multi = FALSE,
   h5_filename = "filtered_feature_bc_matrix.h5",
   sample_list = NULL,
   sample_names = NULL,
   replace_suffix = FALSE,
   new_suffix_list = NULL,
   parallel = FALSE,
   num_cores = NULL,
   merge = FALSE,
   ...
)
```

Arguments

path to the parent directory which contains all of the subdirectories of interest. secondary_path path from the parent directory to count matrix files for each sample. default_10X_path

logical (default TRUE) sets the secondary path variable to the default 10X directory structure.

cellranger_multi logical, whether samples were processed with Cell Ranger multi, default is FALSE. h5_filename name of h5 file (including .h5 suffix). If all h5 files have same name (i.e. Cell Ranger output) then use full file name. By default function uses Cell Ranger name: "filtered_feature_bc_matrix.h5". If h5 files have sample specific prefixes (i.e. from Cell Bender) then use only the shared part of file name (e.g., "_filtered_out.h5"). sample_list a vector of sample directory names if only specific samples are desired. If NULL will read in subdirectories in parent directory. sample_names a set of sample names to use for each sample entry in returned list. If NULL will set names to the subdirectory name of each sample. replace_suffix logical (default FALSE). Whether or not to replace the barcode suffixes of matrices using Replace_Suffix. new_suffix_list a vector of new suffixes to replace existing suffixes if replace_suffix = TRUE. See Replace_Suffix for more information. To remove all suffixes set new_suffix_list parallel logical (default FALSE) whether or not to use multi core processing to read in matrices. how many cores to use for parallel processing. num_cores logical (default FALSE) whether or not to merge samples into a single matrix or merge return list of matrices. If TRUE each sample entry in list will have cell barcode prefix added. The prefix will be taken from sample_names.

Value

a list of sparse matrices (merge = FALSE) or a single sparse matrix (merge = TRUE).

Extra parameters passed to Read10X_h5.

Examples

```
## Not run:
base_path <- 'path/to/data/directory'
expression_matrices <- Read10X_h5_Multi_Directory(base_path = base_path)
## End(Not run)</pre>
```

Read10X_Multi_Directory

Load 10X count matrices from multiple directories

Description

Enables easy loading of sparse data matrices provided by 10X genomics that are present in multiple subdirectories. Can function with either default output directory structure of Cell Ranger or custom directory structure.

Usage

```
Read10X_Multi_Directory(
  base_path,
  secondary_path = NULL,
  default_10X_path = TRUE,
  cellranger_multi = FALSE,
  sample_list = NULL,
  sample_names = NULL,
  parallel = FALSE,
  num_cores = NULL,
  merge = FALSE,
  ...
)
```

Arguments

base_path path to the parent directory which contains all of the subdirectories of interest. secondary_path path from the parent directory to count matrix files for each sample. default_10X_path logical (default TRUE) sets the secondary path variable to the default 10X directory structure. cellranger_multi logical, whether samples were processed with Cell Ranger multi, default is FALSE. sample_list a vector of sample directory names if only specific samples are desired. If NULL will read in subdirectories in parent directory. sample_names a set of sample names to use for each sample entry in returned list. If NULL will set names to the subdirectory name of each sample. parallel logical (default FALSE) whether or not to use multi core processing to read in matrices. num_cores how many cores to use for parallel processing. logical (default FALSE) whether or not to merge samples into a single matrix or merge return list of matrices. If TRUE each sample entry in list will have cell barcode prefix added. The prefix will be taken from sample_names. Extra parameters passed to Read10X.

Value

a list of sparse matrices (merge = FALSE) or a single sparse matrix (merge = TRUE).

Examples

```
## Not run:
base_path <- 'path/to/data/directory'
expression_matrices <- Read10X_Multi_Directory(base_path = base_path)
## End(Not run)</pre>
```

Read_CellBender_h5_Mat

Load CellBender h5 matrices (corrected)

Description

Extract sparse matrix with corrected counts from CellBender h5 output file.

Usage

```
Read_CellBender_h5_Mat(
  file_name,
  use.names = TRUE,
  unique.features = TRUE,
  h5_group_name = NULL,
  feature_slot_name = "features")
```

Arguments

file_name Path to h5 file.

use.names Label row names with feature names rather than ID numbers (default TRUE).

unique.features

Make feature names unique (default TRUE).

h5_group_name Name of the group within H5 file that contains count data. This is only required

if H5 file contains multiple subgroups and non-default names. Default is NULL.

feature_slot_name

Name of the slot contain feature names/ids. Must be one of: "features" (Cell Ranger v3+) or "genes" (Cell Ranger v1/v2 or STARsolo). Default is "features".

Value

sparse matrix

References

Code used in function has been modified from Seurat::Read10X_h5 function of Seurat package https://github.com/satijalab/seurat (License: GPL-3).

Examples

```
## Not run:
mat <- Read_CellBender_h5_Mat(file_name = "/SampleA_out_filtered.h5")
## End(Not run)</pre>
```

Read_CellBender_h5_Multi_Directory

Load CellBender h5 matrices (corrected) from multiple directories

Description

Extract sparse matrix with corrected counts from CellBender h5 output file across multiple sample subdirectories.

Usage

```
Read_CellBender_h5_Multi_Directory(
  base_path,
  secondary_path = NULL,
  filtered_h5 = TRUE,
  custom_name = NULL,
  sample_list = NULL,
  sample_names = NULL,
  h5_group_name = NULL,
  feature_slot_name = "features",
  replace_suffix = FALSE,
  new_suffix_list = NULL,
  parallel = FALSE,
  num_cores = NULL,
  merge = FALSE,
  ...
)
```

Arguments

base_path	path to the parent directory which contains all of the subdirectories of interest.
secondary_path	path from the parent directory to count matrix files for each sample.
filtered_h5	logical (default TRUE). Will set the shared file name suffix $\operatorname{custom_name}$ is NULL.
custom_name	if file name was customized in CellBender then this parameter should contain the portion of file name that is shared across all samples. Must included the ".h5" extension as well.
sample_list	a vector of sample directory names if only specific samples are desired. If NULL will read in subdirectories in parent directory.

sample_names a set of sample names to use for each sample entry in returned list. If NULL will set names to the subdirectory name of each sample. NOTE: unless sample_list is specified this will rename files in the order they are read which will be alphabetical. h5_group_name Name of the group within H5 file that contains count data. This is only required if H5 file contains multiple subgroups and non-default names. Default is NULL. feature_slot_name Name of the slot contain feature names/ids. Must be one of: "features"(Cell Ranger v3+) or "genes" (Cell Ranger v1/v2 or STARsolo). Default is "features". replace_suffix logical (default FALSE). Whether or not to replace the barcode suffixes of matrices using Replace_Suffix. new_suffix_list a vector of new suffixes to replace existing suffixes if replace_suffix = TRUE. See Replace_Suffix for more information. To remove all suffixes set new_suffix_list logical (default FALSE) whether or not to use multi core processing to read in parallel matrices. how many cores to use for parallel processing. num_cores logical (default FALSE) whether or not to merge samples into a single matrix or merge

return list of matrices. If TRUE each sample entry in list will have cell barcode

prefix added. The prefix will be taken from sample_names. Extra parameters passed to Read_CellBender_h5_Mat.

Value

list of sparse matrices

Examples

```
## Not run:
base_path <- 'path/to/data/directory'
mat_list <- Read_CellBender_h5_Multi_Directory(base_path = base_path)
## End(Not run)</pre>
```

Read_CellBender_h5_Multi_File

Load CellBender h5 matrices (corrected) from multiple files

Description

Extract sparse matrix with corrected counts from CellBender h5 output file across multiple samples within the same directory.

Usage

```
Read_CellBender_h5_Multi_File(
  data_dir = NULL,
  filtered_h5 = TRUE,
  custom_name = NULL,
  sample_list = NULL,
  sample_names = NULL,
  h5_group_name = NULL,
  feature_slot_name = "features",
  parallel = FALSE,
  num_cores = NULL,
  merge = FALSE,
  ...
)
```

Arguments

	data_dir	Directory containing the .h5 files output by CellBender.
	filtered_h5	logical (default TRUE). Will set the shared file name suffix if ${\tt custom_name}$ is NULL.
	custom_name	if file name was customized in CellBender then this parameter should contain the portion of file name that is shared across all samples. Must included the ".h5" extension as well.
	sample_list	a vector of sample names if only specific samples are desired. If NULL will read in all files within ${\tt data_dir}$ directory.
	sample_names	a set of sample names to use for each sample entry in returned list. If NULL will set names to the subdirectory name of each sample.
	h5_group_name	Name of the group within H5 file that contains count data. This is only required if H5 file contains multiple subgroups and non-default names. Default is $NULL$.
feature_slot_name		
		Name of the slot contain feature names/ids. Must be one of: "features" (Cell Ranger v3+) or "genes" (Cell Ranger v1/v2 or STARsolo). Default is "features".
	parallel	logical (default FALSE) whether or not to use multi core processing to read in matrices
	num_cores	how many cores to use for parallel processing.
	merge	logical (default FALSE) whether or not to merge samples into a single matrix or return list of matrices. If TRUE each sample entry in list will have cell barcode prefix added. The prefix will be taken from sample_names.
		Extra parameters passed to Read_CellBender_h5_Mat.

Value

list of sparse matrices

Read_GEO_Delim 147

Examples

```
## Not run:
base_path <- 'path/to/data/directory'
mat_list <- Read_CellBender_h5_Multi_File(data_dir = base_path)
## End(Not run)</pre>
```

Read_GEO_Delim

Load in NCBI GEO data formatted as single file per sample

Description

Can read delimited file types (i.e. csv, tsv, txt)

Usage

```
Read_GEO_Delim(
  data_dir,
  file_suffix,
  move_genes_rownames = TRUE,
  sample_list = NULL,
  full_names = FALSE,
  sample_names = NULL,
  barcode_suffix_period = FALSE,
  parallel = FALSE,
  num_cores = NULL,
  merge = FALSE
)
```

Arguments

data_dir Directory containing the files.

file_suffix
The file suffix of the individual files. Must be the same across all files being

imported. This is used to detect files to import and their GEO IDs.

move_genes_rownames

logical. Whether gene IDs are present in first column or in row names of delimited file. If TRUE will move the first column to row names before creating final

matrix. Default is TRUE.

sample_list a vector of samples within directory to read in (can be either with or without

file_suffix see full_names). If NULL will read in all subdirectories.

full_names logical (default FALSE). Whether or not the sample_list vector includes the

file suffix. If FALSE the function will add suffix based on file_suffix parame-

ter.

sample_names a set of sample names to use for each sample entry in returned list. If NULL will

set names to the directory name of each sample.

148 Read_Metrics_10X

barcode_suffix_period

Is the barcode suffix a period and should it be changed to "-". Default (FALSE; barcodes will be left identical to their format in input files.). If TRUE "." in

barcode suffix will be changed to "-".

parallel logical (default FALSE). Whether to use multiple cores when reading in data.

Only possible on Linux based systems.

num_cores if parallel = TRUE indicates the number of cores to use for multicore process-

ing.

merge logical (default FALSE) whether or not to merge samples into a single matrix or

return list of matrices. If TRUE each sample entry in list will have cell barcode

prefix added. The prefix will be taken from sample_names.

Value

List of gene x cell matrices in list format named by sample name.

Examples

```
## Not run:
data_dir <- 'path/to/data/directory'
expression_matrices <- Read_GEO_Delim(data_dir = data_dir)
## End(Not run)</pre>
```

Read_Metrics_10X

Read Overall Statistics from 10X Cell Ranger Count

Description

Get data.frame with all metrics from the Cell Ranger count analysis (present in web_summary.html)

Usage

```
Read_Metrics_10X(
  base_path,
  secondary_path = NULL,
  default_10X = TRUE,
  cellranger_multi = FALSE,
  lib_list = NULL,
  lib_names = NULL
)
```

Arguments

	base_path	path to the parent directory which contains all of the subdirectories of interest or alternatively can provide single csv file to read and format identically to reading multiple files.
	secondary_path	path from the parent directory to count "outs/" folder which contains the "metrics_summary.csv" file.
	default_10X	logical (default TRUE) sets the secondary path variable to the default 10X directory structure.
cellranger_multi		
		logical, whether or not metrics come from Cell Ranger count or from Cell Ranger multi. Default is FALSE.
	lib_list	a list of sample names (matching directory names) to import. If NULL will read in all samples in parent directory.
	lib_names	a set of sample names to use for each sample. If NULL will set names to the directory name of each sample.

Value

A data frame or list of data.frames with sample metrics from cell ranger.

Examples

```
## Not run:
metrics <- Read_Metrics_10X(base_path = "/path/to/directories", default_10X = TRUE)
## End(Not run)</pre>
```

Read_Metrics_CellBender

Read Overall Statistics from CellBender

Description

Get data.frame with all metrics from the CellBender remove-background analysis.

Usage

```
Read_Metrics_CellBender(base_path, lib_list = NULL, lib_names = NULL)
```

Arguments

base_path	path to the parent directory which contains all of the sub-directories of interest or path to single metrics csv file.
lib_list	a list of sample names (matching directory names) to import. If NULL will read in all samples in parent directory.
lib_names	a set of sample names to use for each sample. If NULL will set names to the directory name of each sample.

A data frame with sample metrics from CellBender.

Examples

```
## Not run:
CB_metrics <- Read_Metrics_CellBender(base_path = "/path/to/directories")
## End(Not run)</pre>
```

Reduction_Loading_Present

Check if reduction loadings are present

Description

Check if reduction loadings are present in object and return vector of found loading names. Return warning messages for genes not found.

Usage

```
Reduction_Loading_Present(
   seurat_object,
   reduction_names,
   print_msg = TRUE,
   omit_warn = TRUE,
   return_none = FALSE
)
```

Arguments

```
seurat_object object name.
reduction_names
```

vector of genes to check.

print_msg logical. Whether message should be printed if all features are found. Default is

TRUE.

omit_warn logical. Whether to print message about features that are not found in current

object. Default is TRUE.

return_none logical. Whether list of found vs. bad features should still be returned if no

features are found. Default is FALSE.

Value

A list of length 3 containing 1) found features, 2) not found features.

Rename_Clusters 151

Examples

```
## Not run:
reductions <- Reduction_Loading_Present(seurat_object = obj_name, reduction_name = "PC_1")
found_reductions <- reductions[[1]]
## End(Not run)</pre>
```

Rename_Clusters

Rename Clusters

Description

Wrapper function to rename active cluster identity in Seurat or Liger Object with new idents.

Usage

```
Rename_Clusters(object, ...)
## S3 method for class 'liger'
Rename_Clusters(
  object,
  new_idents,
  old_ident_name = NULL,
  new_ident_name = NULL,
  overwrite = FALSE,
)
## S3 method for class 'Seurat'
Rename_Clusters(
  object,
  new_idents,
  old_ident_name = NULL,
  new_ident_name = NULL,
 meta_col_name = deprecated(),
 overwrite = FALSE,
)
```

Arguments

new_idents

object Object of class Seurat or liger.

... Arguments passed to other methods

vector of new cluster names. Must be equal to the length of current default identity of Object. Will accept named vector (with old idents as names) or will

name the new_idents vector internally.

152 Replace_Suffix

old_ident_name optional, name to use for storing current object idents in object meta data slot.

new_ident_name optional, name to use for storing new object idents in object meta data slot.

overwrite logical, whether to overwrite columns in object meta data slot. if they have same names as old_ident_name and/or new_ident_name.

meta_col_name [Soft-deprecated]. See old_ident_name.

Value

An object of the same class as object with updated default identities.

Examples

```
## Not run:
# Liger version
obj <- Rename_Clusters(object = obj_name, new_idents = new_idents_vec,
old_ident_name = "LIGER_Idents_Round01", new_ident_name = "LIGER_Idents_Round02")
## End(Not run)
## Not run:
obj <- Rename_Clusters(seurat_object = obj_name, new_idents = new_idents_vec,
old_ident_name = "Seurat_Idents_Round01", new_ident_name = "Round01_Res0.6_Idents")
## End(Not run)</pre>
```

Replace_Suffix

Replace barcode suffixes

Description

Replace barcode suffixes in matrix, data.frame, or list of matrices/data.frames

Usage

```
Replace_Suffix(data, current_suffix, new_suffix)
```

Arguments

data	Either matrix/data.frame or list of matrices/data.frames with the cell barcodes in the column names.
current_suffix	a single value or vector of values representing current barcode suffix. If suffix is the same for all matrices/data.frames in list only single value is required.
new_suffix	a single value or vector of values representing new barcode suffix to be added. If desired suffix is the same for all matrices/data.frames in list only single value is required. If no suffix is desired set new_suffix = "".

scCustomize_Palette 153

Value

matrix or data.frame with new column names.

Examples

```
## Not run:
dge_matrix <- Replace_Suffix(data = dge_matrix, current_suffix = "-1", new_suffix = "-2")
## End(Not run)</pre>
```

scCustomize_Palette

Color Palette Selection for scCustomize

Description

Function to return package default discrete palettes depending on number of groups plotted.

Usage

```
scCustomize_Palette(
  num_groups,
  ggplot_default_colors = FALSE,
  color_seed = 123
)
```

Arguments

num_groups

number of groups to be plotted. If ggplot_default_colors = FALSE then by default:

- If number of levels plotted equal to 2 then colors will be NavyAndOrange().
- If number of levels plotted greater than 2 but less than or equal to 36 it will use "polychrome" from DiscretePalette_scCustomize().
- If greater than 36 will use "varibow" with shuffle = TRUE from DiscretePalette_scCustomize.

ggplot_default_colors

logical. Whether to use default ggplot hue palette or not.

color_seed

random seed to use for shuffling the "varibow" palette.

Value

vector of colors to use for plotting.

```
cols <- scCustomize_Palette(num_groups = 24, ggplot_default_colors = FALSE)
PalettePlot(pal= cols)</pre>
```

```
\beg_{QC\_Plot\_Alignment\_Combined} QC\ Plots\ Sequencing\ metrics\ (Alignment)\ (Layout)
```

Description

Plot a combined plot of the Alignment QC metrics from sequencing output.

Usage

```
Seq_QC_Plot_Alignment_Combined(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  patchwork_title = "Sequencing QC Plots: Read Alignment Metrics",
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X). Grouping factor for the plot. Default is to plot as single group with single point plot_by per sample. colors use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2 palette if less than 8 groups and DiscretePalette_scCustomize(palette = "polychrome") if more than 8. dot_size size of the dots plotted if plot_by is not sample_id Default is 1. x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE. patchwork_title Title to use for the patchworked plot output. significance logical. Whether to calculate and plot p-value comparisons when plotting by grouping factor. Default is FALSE. Other variables to pass to ggpubr::stat_compare_means when doing significance testing.

Value

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Alignment_Combined(metrics_dataframe = metrics)
## End(Not run)
```

Seq_QC_Plot_Antisense QC Plots Sequencing metrics (Alignment)

Description

Plot the fraction of reads mapped Antisense to Gene

Usage

```
Seq_QC_Plot_Antisense(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

metrics_dataframe

Arguments

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

Grouping factor for the plot. Default is to plot as single group with single point per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2 palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

. Other variables to pass to ggpubr::stat_compare_means when doing signifi-

cance testing.

Value

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Antisense(metrics_dataframe = metrics)
## End(Not run)
```

```
Seq_QC_Plot_Basic_Combined
```

QC Plots Sequencing metrics (Layout)

Description

Plot a combined plot of the basic QC metrics from sequencing output.

Usage

```
Seq_QC_Plot_Basic_Combined(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  patchwork_title = "Sequencing QC Plots: Basic Cell Metrics",
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

patchwork_title

Title to use for the patchworked plot output.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

Seq_QC_Plot_Exonic 157

Value

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Basic_Combined(metrics_dataframe = metrics)
## End(Not run)
```

Seq_QC_Plot_Exonic

QC Plots Sequencing metrics (Alignment)

Description

Plot the fraction of reads confidently mapped to Exonic regions

Usage

```
Seq_QC_Plot_Exonic(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Exonic(metrics_dataframe = metrics)
## End(Not run)
```

Seq_QC_Plot_Genes

QC Plots Sequencing metrics

Description

Plot the median genes per cell per sample

Usage

```
Seq_QC_Plot_Genes(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe

 $data.frame\ contain\ Cell\ Ranger\ QC\ Metrics\ (see\ Read_Metrics_10X).$

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Genes(metrics_dataframe = metrics)
## End(Not run)
```

Seq_QC_Plot_Genome

QC Plots Sequencing metrics (Alignment)

Description

Plot the fraction of reads confidently mapped to genome

Usage

```
Seq_QC_Plot_Genome(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Genome(metrics_dataframe = metrics)
## End(Not run)
```

```
Seq_QC_Plot_Intergenic
```

QC Plots Sequencing metrics (Alignment)

Description

Plot the fraction of reads confidently mapped to intergenic regions

Usage

```
Seq_QC_Plot_Intergenic(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

Seq_QC_Plot_Intronic

161

Value

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Intergeneic(metrics_dataframe = metrics)
## End(Not run)
```

Seq_QC_Plot_Intronic QC Plots Sequencing metrics (Alignment)

Description

Plot the fraction of reads confidently mapped to intronic regions

Usage

```
Seq_QC_Plot_Intronic(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X). Grouping factor for the plot. Default is to plot as single group with single point plot_by per sample. colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2 palette if less than 8 groups and DiscretePalette_scCustomize(palette = "polychrome") if more than 8. size of the dots plotted if plot_by is not sample_id Default is 1. dot_size x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE. significance logical. Whether to calculate and plot p-value comparisons when plotting by grouping factor. Default is FALSE. Other variables to pass to ggpubr::stat_compare_means when doing significance testing.

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Intronic(metrics_dataframe = metrics)
## End(Not run)
```

```
Seq_QC_Plot_Number_Cells
```

QC Plots Sequencing metrics

Description

Plot the number of cells per sample

Usage

```
Seq_QC_Plot_Number_Cells(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Number_Cells(metrics_dataframe = metrics)
## End(Not run)
```

```
Seq_QC_Plot_Reads_in_Cells

QC Plots Sequencing metrics
```

Description

Plot the fraction of reads in cells per sample

Usage

```
Seq_QC_Plot_Reads_in_Cells(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X). plot_by Grouping factor for the plot. Default is to plot as single group with single point per sample. colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2 colors_use palette if less than 8 groups and DiscretePalette_scCustomize(palette = "polychrome") if more than 8. dot_size size of the dots plotted if plot_by is not sample_id Default is 1. x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE. significance logical. Whether to calculate and plot p-value comparisons when plotting by grouping factor. Default is FALSE. Other variables to pass to ggpubr::stat_compare_means when doing significance testing.

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Reads_in_Cells(metrics_dataframe = metrics)
## End(Not run)
```

```
Seq_QC_Plot_Reads_per_Cell

QC Plots Sequencing metrics
```

Description

Plot the mean number of reads per cell

Usage

```
Seq_QC_Plot_Reads_per_Cell(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X). plot_by Grouping factor for the plot. Default is to plot as single group with single point per sample. colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2 colors_use palette if less than 8 groups and DiscretePalette_scCustomize(palette = "polychrome") if more than 8. dot_size size of the dots plotted if plot_by is not sample_id Default is 1. x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE. significance logical. Whether to calculate and plot p-value comparisons when plotting by grouping factor. Default is FALSE. Other variables to pass to ggpubr::stat_compare_means when doing significance testing.

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Reads_per_Cell(metrics_dataframe = metrics)
## End(Not run)
```

Seq_QC_Plot_Saturation

QC Plots Sequencing metrics

Description

Plot the sequencing saturation percentage per sample

Usage

```
Seq_QC_Plot_Saturation(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

 $metrics_dataframe$

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Saturation(metrics_dataframe = metrics)
## End(Not run)
```

```
Seq_QC_Plot_Total_Genes
```

QC Plots Sequencing metrics

Description

Plot the total genes detected per sample

Usage

```
Seq_QC_Plot_Total_Genes(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Total_Genes(metrics_dataframe = metrics)
## End(Not run)
```

Seq_QC_Plot_Transcriptome

QC Plots Sequencing metrics (Alignment)

Description

Plot the fraction of reads confidently mapped to transcriptome

Usage

```
Seq_QC_Plot_Transcriptome(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

Seq_QC_Plot_UMIs

Value

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_Transcriptome(metrics_dataframe = metrics)
## End(Not run)
```

Seq_QC_Plot_UMIs

QC Plots Sequencing metrics

Description

Plot the median UMIs per cell per sample

Usage

```
Seq_QC_Plot_UMIs(
  metrics_dataframe,
  plot_by = "sample_id",
  colors_use = NULL,
  dot_size = 1,
  x_lab_rotate = FALSE,
  significance = FALSE,
  ...
)
```

Arguments

metrics_dataframe

data.frame contain Cell Ranger QC Metrics (see Read_Metrics_10X).

plot_by Grouping factor for the plot. Default is to plot as single group with single point

per sample.

colors_use colors to use for plot if plotting by group. Defaults to RColorBrewer Dark2

palette if less than 8 groups and DiscretePalette_scCustomize(palette =

"polychrome") if more than 8.

dot_size size of the dots plotted if plot_by is not sample_id Default is 1.

x_lab_rotate logical. Whether to rotate the axes labels on the x-axis. Default is FALSE.

significance logical. Whether to calculate and plot p-value comparisons when plotting by

grouping factor. Default is FALSE.

... Other variables to pass to ggpubr::stat_compare_means when doing signifi-

seq_zeros 169

Value

A ggplot object

Examples

```
## Not run:
Seq_QC_Plot_UMIs(metrics_dataframe = metrics)
## End(Not run)
```

seq_zeros

Create sequence with zeros

Description

Create sequences of numbers like seq() or seq_len() but with zeros prefixed to keep numerical order

Usage

```
seq_zeros(seq_length, num_zeros = NULL)
```

Arguments

seq_length

a sequence or numbers of numbers to create sequence. Users can provide sequence (1:XX) or number of values to add in sequence (will be used as second

number in seq_len; 1:XX).

num_zeros

number of zeros to prefix sequence, default is (e.g, 01, 02, 03, ...)

Value

vector of numbers in sequence

References

Base code from stackoverflow post: https://stackoverflow.com/a/38825614

```
# Using sequence
new_seq <- seq_zeros(seq_length = 1:15, num_zeros = 1)
new_seq
# Using number
new_seq <- seq_zeros(seq_length = 15, num_zeros = 1)
new_seq</pre>
```

```
# Sequence with 2 zeros
new_seq <- seq_zeros(seq_length = 1:15, num_zeros = 2)
new_seq</pre>
```

Setup_scRNAseq_Project

Setup project directory structure

Description

Create reproducible project directory organization when initiating a new analysis.

Usage

```
Setup_scRNAseq_Project(
  custom_dir_file = NULL,
  cluster_annotation_path = NULL,
  cluster_annotation_file_name = "cluster_annotation.csv"
)
```

Arguments

```
custom_dir_file

file to file containing desired directory structure. Default is NULL and will
provide generic built-in directory structure.

cluster_annotation_path
    path to place cluster annotation file using Create_Cluster_Annotation_File.

cluster_annotation_file_name
    name to use for annotation file if created (optional).
```

Value

no return value. Creates system folders.

```
## Not run:
# If using built-in directory structure.
Setup_scRNAseq_Project()
## End(Not run)
```

Single_Color_Palette 171

```
Single_Color_Palette Single Color Palettes for Plotting
```

Description

Selects colors from modified versions of RColorBrewer single colors palettes

Usage

```
Single_Color_Palette(pal_color, num_colors = NULL, seed_use = 123)
```

Arguments

Value

A vector of colors

References

See RColorBrewer for more info on palettes https://CRAN.R-project.org/package=RColorBrewer

Examples

```
pal <- Single_Color_Palette(pal_color = "reds", num_colors = 7)
PalettePlot(pal= pal)</pre>
```

```
{\tt SpatialDimPlot\_scCustom}
```

SpatialDimPlot with modified default settings

Description

Creates SpatialDimPlot with some of the settings modified from their Seurat defaults (colors_use).

Usage

```
SpatialDimPlot_scCustom(
  seurat_object,
  group.by = NULL,
  images = NULL,
  colors_use = NULL,
  crop = TRUE,
  label = FALSE,
  label.size = 7,
  label.color = "white",
  label.box = TRUE,
  repel = FALSE,
  ncol = NULL,
  pt.size.factor = 1.6,
  alpha = c(1, 1),
  image.alpha = 1,
  stroke = 0.25,
  interactive = FALSE,
  combine = TRUE,
  ggplot_default_colors = FALSE,
  color_seed = 123,
)
```

Arguments

seurat_object Seurat object name.

group.by Name of meta.data column to group the data by
images Name of the images to use in the plot(s)

colors_use color palette to use for plotting. By default if number of levels plotted is less than

or equal to 36 it will use "polychrome" and if greater than 36 will use "varibow"

with shuffle = TRUE both from DiscretePalette_scCustomize.

crop Crop the plot in to focus on points plotted. Set to FALSE to show entire back-

ground image.

label . size Sets the size of the labels
label.color Sets the color of the label text

label.box Whether to put a box around the label text (geom_text vs geom_label)

repel Repels the labels to prevent overlap

ncol Number of columns if plotting multiple plots

pt.size.factor Scale the size of the spots.

alpha Controls opacity of spots. Provide as a vector specifying the min and max for

SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each

plot.

Split_Layers 173

image.alpha Adjust the opacity of the background images. Set to 0 to remove. stroke Control the width of the border around the spots

interactive Launch an interactive SpatialDimPlot or SpatialFeaturePlot session, see ISpatialDimPlot

or ISpatialFeaturePlot for more details

combine Combine plots into a single gg object; note that if TRUE; themeing will not

work when plotting multiple features/groupings

ggplot_default_colors

logical. If colors_use = NULL, Whether or not to return plot using default gg-

plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.

color_seed random seed for the "varibow" palette shuffle if colors_use = NULL and number

of groups plotted is greater than 36. Default = 123.

... Extra parameters passed to DimPlot.

Value

A ggplot object

References

Many of the param names and descriptions are from Seurat to facilitate ease of use as this is simply a wrapper to alter some of the default parameters https://github.com/satijalab/seurat/blob/master/R/visualization.R (License: GPL-3).

Examples

```
## Not run:
SpatialDimPlot_scCustom(seurat_object = seurat_object)
## End(Not run)
```

Split_Layers

Split Seurat object into layers

Description

Split Assay5 of Seurat object into layers by variable in meta.data

Usage

```
Split_Layers(seurat_object, assay = "RNA", split.by)
```

Arguments

seurat_object Seurat object name.

assay name(s) of assays to convert. Defaults to current active assay.

split.by Variable in meta.data to use for splitting layers.

Split_Vector

Examples

```
## Not run:
# Split object by "treatment"
obj <- Split_Layers(object = obj, assay = "RNA", split.by = "treatment")
## End(Not run)</pre>
```

Split_Vector

Split vector into list

Description

Splits vector into chunks of x sizes

Usage

```
Split_Vector(x, chunk_size = NULL, num_chunk = NULL, verbose = FALSE)
```

Arguments

x vector to split

chunk_size size of chunks for vector to be split into, default is NULL. Only valid if num_chunk

is NULL.

num_chunk number of chunks to split the vector into, default is NULL. Only valid if chunk_size

is NULL.

verbose logical, print details of vector and split, default is FALSE.

Value

list with vector of X length

References

Base code from stackoverflow post: https://stackoverflow.com/a/3321659/15568251

```
vector <- c("gene1", "gene2", "gene3", "gene4", "gene5", "gene6")
vector_list <- Split_Vector(x = vector, chunk_size = 3)</pre>
```

Stacked_VlnPlot 175

Stacked_VlnPlot Stacked Violin Plot

Description

Code for creating stacked violin plot gene expression.

Usage

```
Stacked_VlnPlot(
  seurat_object,
  features,
  group.by = NULL,
  split.by = NULL,
  idents = NULL,
 x_lab_rotate = FALSE,
  plot_legend = FALSE,
  colors_use = NULL,
  color_seed = 123,
  ggplot_default_colors = FALSE,
 plot_spacing = 0.15,
  spacing_unit = "cm",
  vln_linewidth = NULL,
  pt.size = NULL,
  raster = NULL,
  add.noise = TRUE,
)
```

Arguments

seurat_object	Seurat object name.
features	Features to plot.
group.by	Group (color) cells in different ways (for example, orig.ident).
split.by	A variable to split the violin plots by,
idents	Which classes to include in the plot (default is all).
x_lab_rotate	logical or numeric. If logical whether to rotate x-axis labels 45 degrees (Default is FALSE). If numeric must be either 45 or 90. Setting 45 is equivalent to setting TRUE.
plot_legend	logical. Adds plot legend containing idents to the returned plot.
colors_use	specify color palette to used in VlnPlot. By default if number of levels plotted is less than or equal to 36 it will use "polychrome" and if greater than 36 will use "varibow" with shuffle = TRUE both from DiscretePalette_scCustomize.
color_seed	random seed for the "varibow" palette shuffle if colors_use = NULL and number of groups plotted is greater than 36. Default = 123.

Stacked_VlnPlot

ggplot_default_	_colors
	logical. If colors_use = NULL, Whether or not to return plot using default gg-plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.
plot_spacing	Numerical value specifying the vertical spacing between each plot in the stack. Default is 0.15 ("cm"). Spacing dependent on unit provided to spacing_unit.
spacing_unit	Unit to use in specifying vertical spacing between plots. Default is "cm".
vln_linewidth	Adjust the linewidth of violin outline. Must be numeric.
pt.size	Adjust point size for plotting. Default for Stacked_VlnPlot is 0 to avoid issues with rendering so many points in vector form. Alternatively, see raster parameter.
raster	Convert points to raster format. Default is NULL which will rasterize by default if greater than 100,000 total points plotted (# Cells x # of features).
add.noise	logical, determine if adding a small noise for plotting (Default is TRUE).
	Extra parameters passed to VlnPlot.

Value

A ggplot object

Author(s)

Ming Tang (Original Code), Sam Marsh (Wrap single function, added/modified functionality)

References

https://divingintogeneticsandgenomics.rbind.io/post/stacked-violin-plot-for-visualizing-single-cell

See Also

```
https://twitter.com/tangming2005
```

```
library(Seurat)
Stacked_VlnPlot(seurat_object = pbmc_small, features = c("CD3E", "CD8", "GZMB", "MS4A1"),
x_lab_rotate = TRUE)
```

```
Store_Misc_Info_Seurat
```

Store misc data in Seurat object

Description

Wrapper function save variety of data types to the object@misc slot of Seurat object.

Usage

```
Store_Misc_Info_Seurat(
    seurat_object,
    data_to_store,
    data_name,
    list_as_list = FALSE,
    overwrite = FALSE,
    verbose = TRUE
)
```

Arguments

seurat_object	object name.
data_to_store	data to be stored in @misc slot. Can be single piece of data or list. If list of data see list_as_list parameter for control over data storage.
data_name	name to give the entry in @misc slot. Must be of equal length of the number of data items being stored.
list_as_list	logical. If data_to_store is a list, this dictates whether to store in @misc slot as list (TRUE) or whether to store each entry in the list separately (FALSE). Default is FALSE.
overwrite	Logical. Whether to overwrite existing items with the same name. Default is FALSE, meaning that function will abort if item with data_name is present in misc slot.
verbose	logical, whether to print messages when running function, default is TRUE.

Value

Seurat Object with new entries in the @misc slot.

```
library(Seurat)
clu_pal <- c("red", "green", "blue")

pbmc_small <- Store_Misc_Info_Seurat(seurat_object = pbmc_small, data_to_store = clu_pal, data_name = "rd1_colors")</pre>
```

178 Store_Palette_Seurat

```
Store_Palette_Seurat Store color palette in Seurat object
```

Description

Wrapper function around Store_Misc_Info_Seurat to store color palettes.

Usage

```
Store_Palette_Seurat(
    seurat_object,
    palette,
    palette_name,
    list_as_list = FALSE,
    overwrite = FALSE,
    verbose = TRUE
)
```

Arguments

object name. seurat_object palette vector or list of vectors containing color palettes to store. If list of palettes see list_as_list parameter for control over data storage. name to give the palette(s) in @misc slot. Must be of equal length to the number palette_name of data items being stored. list_as_list logical. If data_to_store is a list, this dictates whether to store in @misc slot as list (TRUE) or whether to store each entry in the list separately (FALSE). Default is FALSE. overwrite Logical. Whether to overwrite existing items with the same name. Default is FALSE, meaning that function will abort if item with data_name is present in misc slot.

logical, whether to print messages when running function, default is TRUE.

Value

verbose

Seurat Object with new entries in the @misc slot.

```
library(Seurat)
clu_pal <- c("red", "green", "blue")

pbmc_small <- Store_Misc_Info_Seurat(seurat_object = pbmc_small, data_to_store = clu_pal, data_name = "rd1_colors")</pre>
```

Subset_LIGER 179

Subset_LIGER

Subset LIGER object

Description

Subset LIGER object by cluster or other meta data variable.

Usage

```
Subset_LIGER(
  liger_object,
  cluster = NULL,
  cluster_col = "leiden_cluster",
  ident = NULL,
  ident_col = NULL,
  invert = FALSE
)
```

Arguments

liger_object LIGER object name.

cluster Name(s) of cluster to subset from object.

cluster_col name of @cellMeta column containing cluster names, default is "leiden_cluster".

ident variable within ident_col to use in sub-setting object.

ident_col column in @cellMeta that contains values provided to ident.

invert logical, whether to subset the inverse of the clusters or idents provided, default

is FALSE.

Value

liger object

```
## Not run:
# subset clusters 3 and 5
sub_liger <- subset_liger(liger_object = liger_object, cluster = c(3, 5))
# subset control samples from column "Treatment"
sub_liger <- subset_liger(liger_object = liger_object, ident = "control", ident_col = "Treatment")
# subset control samples from column "Treatment" in clusters 3 and 5
sub_liger <- subset_liger(liger_object = liger_object, ident = "control", ident_col = "Treatment", cluster = c(3, 5))
# Remove cluster 9</pre>
```

180 theme_ggprism_mod

```
sub_liger <- subset_liger(liger_object = liger_object, cluster = 9, invert = TRUE)
## End(Not run)</pre>
```

theme_ggprism_mod

Modified ggprism theme

Description

Modified ggprism theme which restores the legend title.

Usage

```
theme_ggprism_mod(
  palette = "black_and_white",
  base_size = 14,
  base_family = "sans",
  base_fontface = "bold",
  base_line_size = base_size/20,
  base_rect_size = base_size/20,
  axis_text_angle = 0,
  border = FALSE
)
```

Arguments

palette string. Palette name, use names(ggprism_data\$themes) to show all valid palette names. base_size numeric. Base font size, given in "pt". base_family string. Base font family, default is "sans". base_fontface string. Base font face, default is "bold". base_line_size numeric. Base linewidth for line elements base_rect_size numeric. Base linewidth for rect elements axis_text_angle integer. Angle of axis text in degrees. One of: 0, 45, 90, 270. border logical. Should a border be drawn around the plot? Clipping will occur unless e.g. coord_cartesian(clip = "off") is used.

Value

Returns a list-like object of class theme.

Top_Genes_Factor 181

References

theme is a modified version of theme_prism from ggprism package https://github.com/csdaw/ggprism(License: GPL-3). Param text is from ggprism: theme_prism() documentation theme_prism. Theme adaptation based on ggprism vignette https://csdaw.github.io/ggprism/articles/themes.html#make-your-own-ggprism-theme-1.

Examples

```
# Generate a plot and customize theme
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + theme_ggprism_mod()</pre>
```

Top_Genes_Factor

Extract top loading genes for LIGER factor

Description

Extract vector to the top loading genes for specified LIGER iNMF factor

Usage

```
Top_Genes_Factor(liger_object, liger_factor, num_genes = 10)
```

Arguments

liger_object LIGER object name.

liger_factor LIGER factor number to pull genes from.

num_genes number of top loading genes to return as vector.

Value

A LIGER Object

Examples

```
## Not run:
top_genes_factor10 <- Top_Genes_Factor(liger_object = object, num_genes = 10)
## End(Not run)</pre>
```

UnRotate_X

Unrotate x axis on VlnPlot

Description

Shortcut for thematic modification to unrotate the x axis (e.g., for Seurat VlnPlot is rotated by default).

Usage

```
UnRotate_X(...)
```

Arguments

... extra arguments passed to ggplot2::theme().

Value

Returns a list-like object of class theme.

Examples

```
library(Seurat)
p <- VlnPlot(object = pbmc_small, features = "CD3E")
p + UnRotate_X()</pre>
```

Updated_HGNC_Symbols

Update HGNC Gene Symbols

Description

Update human gene symbols using data from HGNC. This function will store cached data in package directory using (BiocFileCache). Use of this function requires internet connection on first use (or if setting update_symbol_data = TRUE). Subsequent use does not require connection and will pull from cached data.

Usage

```
Updated_HGNC_Symbols(
   input_data,
   update_symbol_data = NULL,
   case_check_as_warn = FALSE,
   verbose = TRUE
)
```

Arguments

input_data

Data source containing gene names. Accepted formats are:

- charcter vector
- Seurat Objects
- data.frame: genes as rownames
- dgCMatrix/dgTMatrix: genes as rownames
- tibble: genes in first column

update_symbol_data

logical, whether to update cached HGNC data, default is NULL. If NULL Bioc-FileCache will check and prompt for update if cache is stale. If FALSE the Bioc-FileCache stale check will be skipped and current cache will be used. If TRUE the BiocFileCache stale check will be skipped and HGNC data will be downloaded.

case_check_as_warn

logical, whether case checking of features should cause abort or only warn, default is FALSE (abort). Set to TRUE if atypical names (i.e. old LOC naming) are present in input_data.

verbose

logical, whether to print results detailing numbers of symbols, found, updated, and not found; default is TRUE.

Value

data.frame containing columns: input_features, Approved_Symbol (already approved; output unchanged), Not_Found_Symbol (symbol not in HGNC; output unchanged), Updated_Symbol (new symbol from HGNC; output updated).

Examples

```
## Not run:
new_names <- Updated_HGNC_Symbols(input_data = Seurat_Object)
## End(Not run)</pre>
```

Updated_MGI_Symbols

Update MGI Gene Symbols

Description

Update mouse gene symbols using data from MGI This function will store cached data in package directory using (BiocFileCache). Use of this function requires internet connection on first use (or if setting update_symbol_data = TRUE). Subsequent use does not require connection and will pull from cached data.

Usage

```
Updated_MGI_Symbols(input_data, update_symbol_data = NULL, verbose = TRUE)
```

Arguments

input_data

Data source containing gene names. Accepted formats are:

- charcter vector
- Seurat Objects
- data.frame: genes as rownames
- dgCMatrix/dgTMatrix: genes as rownames
- tibble: genes in first column

update_symbol_data

logical, whether to update cached MGI data, default is NULL. If NULL BiocFile-Cache will check and prompt for update if cache is stale. If FALSE the BiocFile-Cache stale check will be skipped and current cache will be used. If TRUE the BiocFileCache stale check will be skipped and MGI data will be downloaded.

verbose

logical, whether to print results detailing numbers of symbols, found, updated, and not found; default is TRUE.

Value

data.frame containing columns: input_features, Approved_Symbol (already approved; output unchanged), Not_Found_Symbol (symbol not in MGI; output unchanged), Updated_Symbol (new symbol from MGI; output updated).

Examples

```
## Not run:
new_names <- Updated_MGI_Symbols(input_data = Seurat_Object)
## End(Not run)</pre>
```

VariableFeaturePlot_scCustom

Custom Labeled Variable Features Plot

Description

Creates variable features plot with N number of features already labeled by default.

Usage

```
VariableFeaturePlot_scCustom(
   seurat_object,
   num_features = 10,
   custom_features = NULL,
   label = TRUE,
   pt.size = 1,
   colors_use = c("black", "red"),
```

```
repel = TRUE,
  y_axis_log = FALSE,
  assay = NULL,
  selection.method = NULL,
  ...
)
```

Arguments

seurat_object Seurat object name.

custom_features

A vector of custom feature names to label on plot instead of labeling top variable

genes.

label logical. Whether to label the top features. Default is TRUE.

pt.size Adjust point size for plotting.

colors_use colors to use for plotting. Default is "black" and "red".

repel logical (default TRUE). Whether or not to repel the feature labels on plot.

y_axis_log logical. Whether to change y axis to log10 scale (Default is FALSE).

assay Assay to pull variable features from.

selection.method

If more then one method use to calculate variable features specify which method to use for plotting. See selection.method parameter in VariableFeaturePlot

for list of options.

... Extra parameters passed to VariableFeaturePlot.

Value

A ggplot object

Examples

```
library(Seurat)
VariableFeaturePlot_scCustom(seurat_object = pbmc_small, num_features = 10)
```

```
Variable_Features_ALL_LIGER
```

Perform variable gene selection over whole dataset

Description

Performs variable gene selection for LIGER object across the entire object instead of by dataset and then taking union.

Usage

```
Variable_Features_ALL_LIGER(
  liger_object,
  num_genes = NULL,
  var.thresh = 0.3,
  alpha.thresh = 0.99,
  tol = 1e-04,
  do.plot = FALSE,
  pt.size = 1.5,
  chunk = 1000
)
```

Arguments

liger_object	LIGER object name.
num_genes	Number of genes to find. Optimizes the value of var. thresh to get this number of genes, (Default is NULL).
var.thresh	Variance threshold. Main threshold used to identify variable genes. Genes with expression variance greater than threshold (relative to mean) are selected. (higher threshold -> fewer selected genes).
alpha.thresh	Alpha threshold. Controls upper bound for expected mean gene expression (lower threshold -> higher upper bound). (default 0.99)
tol	Tolerance to use for optimization if num.genes values passed in (default 0.0001). Only applicable for rliger $< 2.0.0$.
do.plot	Display log plot of gene variance vs. gene expression. Selected genes are plotted in green. (Default FALSE)
pt.size	Point size for plot.
chunk	size of chunks in hdf5 file. (Default 1000)

Value

A LIGER Object with variable genes in correct slot.

References

Matching function parameter text descriptions are taken from rliger::selectGenes which is called by this function after creating new temporary object/dataset. https://github.com/welch-lab/liger. (License: GPL-3).

Examples

```
## Not run:
liger_obj <- Variable_Features_ALL_LIGER(liger_object = liger_obj, num_genes = 2000)
## End(Not run)</pre>
```

```
viridis_plasma_dark_high 
 Viridis Shortcuts
```

Description

Quick shortcuts to access viridis palettes

Usage

```
viridis_plasma_dark_high
viridis_plasma_light_high
viridis_inferno_dark_high
viridis_inferno_light_high
viridis_magma_dark_high
viridis_magma_light_high
viridis_dark_high
viridis_dark_high
viridis_light_high
```

Format

An object of class character of length 250.

Value

A color palette for plotting

188 VlnPlot_scCustom

Examples

```
## Not run:
FeaturePlot_scCustom(object = seurat_object, features = "Cx3cr1",
colors_use = viridis_plasma_dark_high, na_color = "lightgray")
## End(Not run)
```

VlnPlot_scCustom

VlnPlot with modified default settings

Description

Creates DimPlot with some of the settings modified from their Seurat defaults (colors_use, shuffle, label).

Usage

```
VlnPlot_scCustom(
  seurat_object,
  features,
  colors_use = NULL,
  pt.size = NULL,
  group.by = NULL,
  split.by = NULL,
  plot_median = FALSE,
  plot_boxplot = FALSE,
  median_size = 15,
  idents = NULL,
  num_columns = NULL,
  raster = NULL,
  add.noise = TRUE,
  ggplot_default_colors = FALSE,
  color\_seed = 123,
)
```

Arguments

seurat_object Seurat object name.

features Feature(s) to plot.

colors_use color palette to use for plotting. By default if number of levels plotted is less than or equal to 36 it will use "polychrome" and if greater than 36 will use "varibow" with shuffle = TRUE both from DiscretePalette_scCustomize.

pt.size Adjust point size for plotting.

WhichCells.liger 189

group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); default is the current active.ident of the object.	
split.by	Feature to split plots by (i.e. "orig.ident").	
plot_median	logical, whether to plot median for each ident on the plot (Default is FALSE).	
plot_boxplot	logical, whether to plot boxplot inside of violin (Default is FALSE).	
median_size	Shape size for the median is plotted.	
idents	Which classes to include in the plot (default is all).	
num_columns	Number of columns in plot layout. Only valid if split.by != NULL.	
raster	Convert points to raster format. Default is NULL which will rasterize by default if greater than $100,000$ total points plotted (# Cells x # of features).	
add.noise	logical, determine if adding a small noise for plotting (Default is TRUE).	
ggplot_default_colors		
	logical. If colors_use = NULL, Whether or not to return plot using default gg-plot2 "hue" palette instead of default "polychrome" or "varibow" palettes.	
color_seed	random seed for the "varibow" palette shuffle if colors_use = NULL and number of groups plotted is greater than 36. Default = 123.	
	Extra parameters passed to VlnPlot.	

Value

A ggplot object

References

Many of the param names and descriptions are from Seurat to facilitate ease of use as this is simply a wrapper to alter some of the default parameters https://github.com/satijalab/seurat/blob/master/R/visualization.R (License: GPL-3).

Examples

```
library(Seurat)
VlnPlot_scCustom(seurat_object = pbmc_small, features = "CD3E")
```

WhichCells.liger Extract Cells for particular identity

Description

Extract all cell barcodes for a specific identity

WhichCells.liger

Usage

```
## S3 method for class 'liger'
WhichCells(
  object,
  idents = NULL,
  ident_col = NULL,
  by_dataset = FALSE,
  invert = FALSE,
  ...
)
```

Arguments

object LIGER object name.

idents identities to extract cell barcodes.

ident_col name of meta data column to use when subsetting cells by identity values. De-

fault is NULL, which will use the objects default clustering as the ident_col.

by_dataset logical, whether to return vector with cell barcodes for all idents in or to return

list (1 entry per dataset with vector of cells) (default is FALSE; return vector).

invert logical, invert the selection of cells (default is FALSE).

... Arguments passed to other methods

Value

vector or list depending on by_dataset parameter

Examples

```
## Not run:
# Extract cells from ident =1 in current default clustering
ident1_cells <- WhichCells(object = liger_object, idents = 1)

# Extract all cells from "stim" treatment from object
stim_cells <- WhichCells(object = liger_object, idents = "stim", ident_col = "Treatment")
## End(Not run)</pre>
```

Index

Change_Delim_All, 34 Change_Delim_Prefix, 35 Change_Delim_Suffix, 36 Replace_Suffix, 152 * check_util Case_Check, 27 CheckMatrix_scCustom, 36 Iterate_Cluster_Highlight_Plot, 77 Iterate_DimPlot_bySample, 78 Iterate_FeaturePlot_scCustom, 80 Iterate_Highlight_Plot, 82 Iterate_Meta_Highlight_Plot, 82 Iterate_PC_Loading_Plots, 84 Iterate_Plot_Density_Custom, 85 Iterate_Plot_Density_Joint, 86
Change_Delim_Suffix, 36 Replace_Suffix, 152 Iterate_FeaturePlot_scCustom, 80 Iterate_Meta_Highlight_Plot, 82 * check_util Case_Check, 27 Iterate_PC_Loading_Plots, 84 Iterate_Plot_Density_Custom, 85
Replace_Suffix, 152
* check_util Iterate_PC_Loading_Plots, 84 Case_Check, 27 Iterate_Plot_Density_Custom, 85
Case_Check, 27 Iterate_Plot_Density_Custom, 85
ChackMatrix accustom 36
checkrati ix_sccuston, 50
Feature_Present, 71 Iterate_VlnPlot_scCustom, 88
Meta_Numeric, 97 * liger_object_util
Meta_Present, 98 Add_Cell_Complexity, 7
Reduction_Loading_Present, 150 Add_Mito_Ribo, 14
* datasets Cells.liger, 31
ensembl_hemo_id, 58 Cells_by_Identities_LIGER, 31
ensembl_ieg_list, 58 Embeddings.liger, 57
ensembl_mito_id,59 Features.liger,68
ensembl_ribo_id,59 Fetch_Meta,72
<pre>ieg_gene_list,75</pre> Find_Factor_Cor,73
msigdb_qc_ensembl_list, 100 Idents.liger, 74
msigdb_qc_gene_list, 102 Subset_LIGER, 179
viridis_plasma_dark_high, 187 Top_Genes_Factor, 181
* data Variable_Features_ALL_LIGER, 185
ensembl_hemo_id,58 WhichCells.liger,189
ensembl_ieg_list, 58 * liger_plotting
ensembl_mito_id, 59 DimPlot_LIGER, 50
ensembl_ribo_id, 59 Factor_Cor_Plot, 63
ieg_gene_list, 75 plotFactors_scCustom, 106
$msigdb_qc_ensembl_list, 100$ * $marker_annotation_util$
msigdb_qc_gene_list, 102 Add_Pct_Diff, 16
$*$ get_set_util Create_Cluster_Annotation_File, 48
Add_Alt_Feature_ID, 5 Extract_Top_Markers, 62
Add_Sample_Meta, 17 Pull_Cluster_Annotation, 118
Extract_Sample_Meta, 61 Rename_Clusters, 151
Fetch_Meta, 72 * misc_util
Meta_Remove_Seurat, 99 Merge_Seurat_List, 93
Random_Cells_Downsample, 136 seq_zeros, 169
Rename_Clusters, 151 Split_Vector, 174
Store_Misc_Info_Seurat, 177
Store_Palette_Seurat, 178 Updated_MGI_Symbols, 183

* object_conversion	Read10X_GEO, 137
as.anndata, 20	Read10X_h5_GEO, 139
as.LIGER, 22	Read10X_h5_Multi_Directory, 140
as.Seurat.liger, 24	Read10X_Multi_Directory, 141
Convert_Assay, 44	Read_CellBender_h5_Mat, 143
Liger_to_Seurat, 90	<pre>Read_CellBender_h5_Multi_Directory,</pre>
Split_Layers, 173	144
* object_qc_plotting	Read_CellBender_h5_Multi_File, 145
QC_Histogram, 119	Read_GEO_Delim, 147
QC_Plot_GenevsFeature, 131	Read_Metrics_10X, 148
QC_Plot_UMIvsFeature, 132	Read_Metrics_CellBender, 149
QC_Plot_UMIvsGene, 134	* read_merge_util
QC_Plots_Combined_Vln, 120	Extract_Modality, 60
QC_Plots_Complexity, 122	Merge_Sparse_Data_All,94
QC_Plots_Feature, 124	Merge_Sparse_Multimodal_All,95
QC_Plots_Genes, 126	* seq_qc_plotting_alignment
QC_Plots_Mito, 127	Seq_QC_Plot_Antisense, 155
QC_Plots_UMIs, 129	Seq_QC_Plot_Exonic, 157
* organization_util	Seq_QC_Plot_Genome, 159
Copy_From_GCP, 45	Seq_QC_Plot_Intergenic, 160
Copy_To_GCP, 45	Seq_QC_Plot_Intronic, 161
Setup_scRNAseq_Project, 170	Seq_QC_Plot_Transcriptome, 167
* other_seurat_plotting	* seq_qc_plotting_basic
Plot_Density_Custom, 109	Barcode_Plot, 25
Plot_Density_Joint_Only, 111	Iterate_Barcode_Rank_Plot, 75
* palettes	Seq_QC_Plot_Genes, 158
ColorBlind_Pal, 43	Seq_QC_Plot_Number_Cells, 162
Dark2_Pal, 48	Seq_QC_Plot_Reads_in_Cells, 163
DiscretePalette_scCustomize, 55	Seq_QC_Plot_Reads_per_Cell, 164
Hue_Pal, 73	Seq_QC_Plot_Saturation, 165
JC0_Four, 89	Seq_QC_Plot_Total_Genes, 166
NavyAndOrange, 103	Seq_QC_Plot_UMIs, 168
PalettePlot, 104	* seq_qc_plotting_layout
scCustomize_Palette, 153	Seq_QC_Plot_Alignment_Combined,
Single_Color_Palette, 171	154
viridis_plasma_dark_high, 187	Seq_QC_Plot_Basic_Combined, 156
* qc_util	* seurat_plotting
Add_Cell_Complexity, 7	Cell_Highlight_Plot, 33
Add_Cell_QC_Metrics, 8	Cluster_Highlight_Plot, 41
Add_CellBender_Diff, 6	Clustered_DotPlot, 37
Add_Hemo, 12	DimPlot_All_Samples, 49
Add_Mito_Ribo, 14	DimPlot_scCustom, 52
Add_Top_Gene_Pct, 18	DotPlot_scCustom, 56
* read & write	FeaturePlot_DualAssay, 65
Create_10X_H5, 46	FeaturePlot_scCustom, 66
Create_ToX_H3, 40 Create_CellBender_Merged_Seurat,	FeatureScatter_scCustom, 69
47	Meta_Highlight_Plot, 96
Pull_Directory_List, 119	PC_Plotting, 104
: ====== : 0 0 0 0 : j === 0 0, 11/	

SpatialDimPlot_scCustom, 171	Cells_per_Sample, 32
Stacked_VlnPlot, 175	Change_Delim_All, 34
VariableFeaturePlot_scCustom, 184	Change_Delim_Prefix, 35
VlnPlot_scCustom, 188	Change_Delim_Suffix, 36
* stats_plotting	CheckMatrix_scCustom, 36
CellBender_Diff_Plot, 28	Cluster_Highlight_Plot, 41
Plot_Cells_per_Sample, 108	Cluster_Stats_All_Samples, 43
Plot_Median_Genes, 112	Clustered_DotPlot, 37
Plot_Median_Mito, 113	ColorBlind_Pal, 43
Plot_Median_Other, 114	Convert_Assay, 25, 44, 91
Plot_Median_UMIs, 115	Copy_From_GCP, 45
Proportion_Plot, 116	Copy_To_GCP, 45
* stats	Create_10X_H5, 46
CellBender_Feature_Diff, 30	Create_CellBender_Merged_Seurat, 47, 65
Cells_per_Sample, 32	Create_Cluster_Annotation_File, 48, 170
Cluster_Stats_All_Samples, 43	CreateSeuratObject, 47
MAD_Stats, 91	
Median_Stats, 92	Dark2_Pal, 48
Percent_Expressing, 105	DimPlot, 34, 42, 50, 54, 78, 79, 83, 97, 173
* themes	DimPlot_All_Samples, 49
Blank_Theme, 26	DimPlot_LIGER, 50
Move_Legend, 100	DimPlot_scCustom, 52
theme_ggprism_mod, 180	DiscretePalette_scCustomize, 51, 55, 107
UnRotate_X, 182	DotPlot, 56, 106
, , , , , , , , , , , , , , , , , , ,	DotPlot_scCustom, 56
Add_Alt_Feature_ID, 5	
Add_Cell_Complexity, 7	Embeddings.liger, 57
Add_Cell_QC_Metrics, 8	ensembl_hemo_id,58
Add_CellBender_Diff, 6	ensembl_ieg_list,58
Add_Hemo, 12	<pre>ensembl_mito_id, 59</pre>
Add_Mito_Ribo, 14	ensembl_ribo_id,59
Add_Pct_Diff, 16	Extract_Modality, 60
Add_Sample_Meta, 17	<pre>Extract_Sample_Meta, 61</pre>
Add_Top_Gene_Pct, 18	Extract_Top_Markers, 62
as.anndata, 20	
as.LIGER, 22	Factor_Cor_Plot, 63
as.Seurat.liger, 24	Feature_Present, 71
	FeaturePlot, 66, 68, 81
Barcode_Plot, 25	FeaturePlot_DualAssay, 65
barcodeRanks, 26	FeaturePlot_scCustom, 66
Blank_Theme, 26	Features.liger, 68
	FeatureScatter, 70, 132, 133, 135
Case_Check, 27	FeatureScatter_scCustom, 69
Cell_Highlight_Plot, 33	Fetch_Meta, 72
CellBender_Diff_Plot, 28	Find_Factor_Cor, 73
CellBender_Feature_Diff, 28, 30	FindAllMarkers, <i>16</i> , <i>62</i> , <i>63</i>
CellCycleScoring, 10	FindMarkers, <i>16</i>
Cells.liger, 31	_
Cells_by_Identities_LIGER, 31	<pre>geom_text_repel, 29</pre>

Hue_Pal, 73	Plot_Median_UMIs, 115	
	plotFactors_scCustom, 106	
Idents.liger, 74	Proportion_Plot, 116	
Idents <liger(idents.liger), 74<="" td=""><td>Pull_Cluster_Annotation, 118</td></liger(idents.liger),>	Pull_Cluster_Annotation, 118	
ieg_gene_list,75	Pull_Directory_List, 119	
ISpatialDimPlot, 173		
ISpatialFeaturePlot, 173	QC_Histogram, 119	
<pre>Iterate_Barcode_Rank_Plot, 75</pre>	QC_Plot_GenevsFeature, 131	
<pre>Iterate_Cluster_Highlight_Plot, 77</pre>	QC_Plot_UMIvsFeature, 132	
Iterate_DimPlot_bySample, 78	QC_Plot_UMIvsGene, 134	
<pre>Iterate_FeaturePlot_scCustom, 80</pre>	QC_Plots_Combined_Vln, 120	
<pre>Iterate_Meta_Highlight_Plot, 82</pre>	QC_Plots_Complexity, 122	
<pre>Iterate_PC_Loading_Plots, 84</pre>	QC_Plots_Feature, 124	
<pre>Iterate_Plot_Density_Custom, 85</pre>	QC_Plots_Genes, 126	
<pre>Iterate_Plot_Density_Joint, 86</pre>	QC_Plots_Mito, 127	
Iterate_VlnPlot_scCustom, 88	QC_Plots_UMIs, 129	
JCO_Four, 89	Random_Cells_Downsample, 136	
	Read10X, <i>142</i>	
LabelPoints, 29	Read10X_GEO, 137	
Liger_to_Seurat, 90	Read10X_h5, <i>139</i> , <i>141</i>	
MAD State 01	Read10X_h5_GEO, 139	
MAD_Stats, 91	Read10X_h5_Multi_Directory, 140	
Median_Stats, 61, 92	Read10X_Multi_Directory, 141	
merge, 93	Read_CellBender_h5_Mat, 143, 145, 146	
Merge_Seurat_List, 93	Read_CellBender_h5_Multi_Directory	
Merge_Sparse_Data_All, 94	144	
Merge_Sparse_Multimodal_All, 95	Read_CellBender_h5_Multi_File, 145	
Meta_Highlight_Plot, 96	Read_GEO_Delim, 147	
Meta_Numeric, 97	Read_Metrics_10X, 148, 154-168	
Meta_Present, 98	Read_Metrics_CellBender, 149	
Meta_Remove_Seurat, 99	Reduction_Loading_Present, 150	
Move_Legend, 100	Rename_Clusters, 74, 151	
msigdb_qc_ensembl_list, 100	Replace_Suffix, <i>141</i> , <i>145</i> , 152	
msigdb_qc_gene_list, 102		
NavyAndOrange, 103	scCustomize_Palette, 153	
	Seq_QC_Plot_Alignment_Combined, 154	
PalettePlot, 104	<pre>Seq_QC_Plot_Antisense, 155</pre>	
patchwork, 68	<pre>Seq_QC_Plot_Basic_Combined, 156</pre>	
PC_Plotting, 104	<pre>Seq_QC_Plot_Exonic, 157</pre>	
PCHeatmap, 84, 105	Seq_QC_Plot_Genes, 158	
Percent_Expressing, 105	<pre>Seq_QC_Plot_Genome, 159</pre>	
Plot_Cells_per_Sample, 108	<pre>Seq_QC_Plot_Intergenic, 160</pre>	
plot_density, <i>86</i> , <i>87</i> , <i>110</i> , <i>111</i>	<pre>Seq_QC_Plot_Intronic, 161</pre>	
Plot_Density_Custom, 109	<pre>Seq_QC_Plot_Number_Cells, 162</pre>	
Plot_Density_Joint_Only, 111	<pre>Seq_QC_Plot_Reads_in_Cells, 163</pre>	
Plot_Median_Genes, 112	<pre>Seq_QC_Plot_Reads_per_Cell, 164</pre>	
Plot_Median_Mito, 113	Seq_QC_Plot_Saturation, 165	
Plot Median Other, 114	Seg OC Plot Total Genes, 166	

```
Seq_QC_Plot_Transcriptome, 167
Seq_QC_Plot_UMIs, 168
seq_zeros, 169
Setup_scRNAseq_Project, 170
Single_Color_Palette, 171
SpatialDimPlot_scCustom, 171
Split_Layers, 173
Split_Vector, 174
Stacked_VlnPlot, 175
Store_Misc_Info_Seurat, 177
Store_Palette_Seurat, 178
Subset_LIGER, 179
theme_ggprism_mod, 180
theme_prism, 181
Top_Genes_Factor, 181
UnRotate_X, 182
Updated_HGNC_Symbols, 182
Updated_MGI_Symbols, 183
Variable_Features_ALL_LIGER, 185
VariableFeaturePlot. 185
VariableFeaturePlot_scCustom, 184
viridis_dark_high
        (viridis_plasma_dark_high), 187
viridis_inferno_dark_high
        (viridis_plasma_dark_high), 187
viridis_inferno_light_high
        (viridis_plasma_dark_high), 187
viridis_light_high
        (viridis_plasma_dark_high), 187
viridis_magma_dark_high
        (viridis_plasma_dark_high), 187
viridis_magma_light_high
        (viridis_plasma_dark_high), 187
viridis_plasma_dark_high, 187
viridis_plasma_light_high
        (viridis_plasma_dark_high), 187
VizDimLoadings, 84, 105
VlnPlot, 89, 122, 123, 125, 127, 128, 130,
        175, 176, 189
VlnPlot_scCustom, 188
WhichCells.liger, 189
```