### Unlocking On-Chain Privacy: An Intro to ZKP and ZKML

Dr. Cathie So

Privacy & Scaling Explorations Team, Ethereum Foundation



Twitter: @drCathieSo\_eth

### Quick self intro:

- Background in physics and cognitive science
- Joined blockchain/crypto/web3 in late 2021 (super lateeeeee)
- Self-taught ZKP and founded Zero-Knowledge "University"
- Believe that ZKML is what it takes to bring Web2 devs into Web3

# What is (non-interactive) ZKP?



An interaction between two computer programs (or Turing machines) — respectively called a Prover and a Verifier — where the Prover works to convince the Verifier that some mathematical statement is true

Well, with the following properties...

### 3 (4?) Properties of ZKP

- 1. Completeness
- 2. Soundness
- 3. Zero-knowledge(ness)
- 4. Succinctness

- 1. If prover is honest, then they will eventually convince verifier.
- 2. Only if the statement is true can the prover convince the verifier.
- 3. No information is leaked to the verifier except for the fact that the statement is true.
- 4. The size of the proof is significantly smaller when compared to the underlying computation



A more complicated version

# What does ZKP have to do with Blockchain?

- Blockchain has limited block size
- 2. Blockchain transactions are fully transparent

### What ZKP can offer as solutions:

- Compress complicated computations into a succinct proof so that it can be proved on the blockchain
- Prove ownerships of certain information/data while maintaining privacy

### Two approaches to construct ZKP

### Algebraic circuits

- Analogy: ASIC
- Widely in use
- Disadvantage: you need a custom one for each kind of computation

# Inputs Gate 1 Gate 3 X Gate 12 X (a+b)xbxc

### **ZKVM**

- Analogy: CPU
- Advantage: the computation is an input to the ZKVM, and possibly in a language that you already know



We will focus on circuits in **ZK-SNARKs** for the rest of the talk

Zero-Knowledge Succinct Non-Interactive Argument of Knowledge, as opposed to another proof architecture, ZK-STARKS

### Do you need ZKP for that?

You will be surprised that a lot of ideas might turn out not needing ZKP as a solution

### Learn a new language

Circuits are typically written in specific languages like Circom or LEO, but more recently you can also write them in Rust

### Each circuit needs a setup

A trusted setup ceremony is a procedure that is done once to generate a piece of data that must then be used every time some cryptographic protocol is run.



### Congratulations!

Get your code audited, and deploy onto a blockchain to share with the whole world!

### It's a dApp after all!

Build all the other functionalities that are needed to allow users to use your app!

Lifecycle of launching ZK-SNARKs dApps

### A little note on trusted setups and proving schemes...

New proving systems are developed every once in a while, but here are some common ones you might come across if you are getting started:

### Groth16

- requires a trusted setup for EVERY CIRCUIT
- proof size is very small
- PLONK-ish schemes (PLONK, Turbo-PLONK, Halo2, etc.)
  - use specific style of circuit arithmetization
  - o requires either a universal setup or no setup (for the case of Halo2) at all!

### Major area of application #1

Scaling-related, making use of the succinctness property

- Signature Aggregation
   Enable huge multisigs,
   compressing the on-chain
   computation size
- ZK-Rollups/zkEVMs
   Layer 2 systems (of ETH)
   proving that their block
   generations are valid

### Typical components of a zkEVM



### Major area of application #2

Privacy-related, making use of the zero-knowledge property

- Mixers
   Increase blockchain level of privacy through an anonymity set, where a user hides among a set of k other users.
- DiDs (Decentralized Identifiers)
   Self-sovereign digital identities
   allowing users to prove their
   identity without the need of
   exposing their private
   information

### **Examples of Mixer Applications**

### **Tornado Cash**

'Mixes potentially identifiable or "tainted" cryptocurrency funds with others, so as to obscure the trail back to the fund's original source'

### **Semaphore** (and its derived applications)

'Allows you to cast a signal (for example, a vote or endorsement) as a provable group member without revealing your identity'

- Interep
- Zkitter
- Voting

Note: to make the best use out of these applications, the key is to have a large **anonymity** set

### Polygon's zkID



These privacy-related ZKP apps all use the same (type of) circuit: a Merkle proof!

### What is a Merkle proof?



Creating custom circuits could open up applications in other space, like ZKML!

### Say we have some circuit that performs NN inference...



### Use case #1: Private Data, Public Model



### Use Case #2: Public Data, Private Model



### Why Develop ZKML?

### **On-Chain:**

- On-chain Trading Model
- Biometric Authentication for Smart Wallet
- Verifiable Al Protocol Assistants

### Off-Chain:

- Outsourcing Inference Computation
- Verifiable Model Benchmarking
- Proving Model Training Correctness

### Transpiling NNs into ZKP circuit

### Challenges:

- Fixed-point arithmetic
- Model size

2 years ago

<u>zk-ml/linear-regression-demo</u> by Peiyuan Liao

One year ago

OxZKML/zk-mnist from OxPARC

Final dense layers as a ZKP circuit

10 months ago socathie/zkML by me

Full MNIST model as a ZKP circuit

4 months ago

zk-ml/uchikoma - transpiler for non-fp RT

Al art generation minted as NFTs

!! Two weeks ago !!

zkonduit/ezkl update

100M params!!

!!! Last week !!!

ddkang/zkml by Daniel Kang

GPT2, Bert, and Diffusion models!!!

!!! Last week !!!

zkp-gravity/0g by me and my team

Won ZK HACK Lisbon with weightless NNs

### A ZKML POC

Three major components that form the project:

- circomlib-ml
   A comprehensive Circom library containing circuits that compute common layers in TensorFlow Keras.
- keras2circom
   A user-friendly translator that converts
   ML models in Python into Circom
   circuits.
- ZKaggle
   A decentralized bounty platform for hosting, verifying, and paying out bounties, similar to Kaggle, but with the added benefit of privacy preservation.



### 2. https://hackmd.io/@cathie/zkml-research

https://hackmd.io/@cathie/zkml

More detailed writeups:

### Tech Stack for ZKPs

### Circom

- special-purpose language to write circuits
- options to prove with Groth16 or PLONK and export as a verifier smart contract

### Cairo

 general-purpose Turing-complete language used by StarkNet

Rust (Halo2, Plonky2, etc.)

- latest proving schemes
- need to be familiar with PLONKish arithmetization
- where most exciting things happen!!!

### How to get started?

A lot of free online resources out there, but just to name a few...

**OxPARC** 

https://0xparc.org

Zero-Knowledge "University"

https://course.zku.one

ZK HACK Whiteboard Sessions

https://zkhack.dev/whiteboard/

### Projects mentioned so far:

- zkEVMs:
  - StarkNet and Cairo https://starknet.io/docs
  - zkSync<a href="https://zksync.io">https://zksync.io</a>
  - Polygon's Hermez@0xPolygonHermez
  - Scroll<a href="https://scroll.io">https://scroll.io</a>
- Mixers:
  - Tornado Cash
     <a href="https://github.com/tornadocash">https://github.com/tornadocash</a> (read only)
  - PSE's Semaphore (and its derived applications)
     <a href="https://github.com/privacy-scaling-explorations">https://github.com/privacy-scaling-explorations</a>

- ZKML:
  - WorldCoin
    <a href="https://worldcoin.org">https://worldcoin.org</a>
  - Linear A aka zk-ml aka @zkp\_ml
    - <u>zk-ml/linear-regression-demo</u>
    - <u>zk-ml/uchikoma</u>
  - OxZKML/zk-mnist
  - o socathie/zkML and socathie/circomlib-ml
  - zkonduit/ezkl
  - ddkang/zkml
  - o <u>zkp-gravity/0g</u>
- Others:
  - Polygon's zklD@0xPolygonID

