Chatterjee (2018), 'Market Power and Spatial Competition in Rural India'

Nishaad Rao and Anirudh Yadav

December 7, 2018

Outline

- 1. Motivation and overview
- 2. Reduced-form evidence
- 3. Model
- 4. Counterfactuals

▶ Indian farmers are very poor (medium annual income \approx \$365).

- ▶ Indian farmers are very poor (medium annual income \approx \$365).
- ▶ Low farmer revenue partly due to the low prices they receive

- ▶ Indian farmers are very poor (medium annual income \approx \$365).
- ▶ Low farmer revenue partly due to the low prices they receive
- Intermediaries (main buyers of crops) have monopsony power due to government regulations

- ▶ Indian farmers are very poor (medium annual income \approx \$365).
- ▶ Low farmer revenue partly due to the low prices they receive
- Intermediaries (main buyers of crops) have monopsony power due to government regulations
- ► Farmers are mandated to sell crops to licensed intermediaries at government-designated marketplaces *in their own state*.

Questions

- 1. Does more spatial competition between intermediaries raise farmer prices?
- 2. How does removing the interstate trade restriction affect farmer prices/incomes/production?

Questions

- 1. Does more spatial competition between intermediaries raise farmer prices? **Yes.**
- 2. How does removing the interstate trade restriction affect farmer prices/incomes/production?

Questions

- 1. Does more spatial competition between intermediaries raise farmer prices? **Yes.**
- 2. How does removing the interstate trade restriction affect farmer prices/incomes/production? prices \uparrow 11%, output \uparrow 7%

► State-level legislation (APMC Acts) mandate that the first sale of crops after harvest must be at government-designated marketplaces, and buyers must obtain a license.

- State-level legislation (APMC Acts) mandate that the first sale of crops after harvest must be at government-designated marketplaces, and buyers must obtain a license.
- Effectively prohibits farmers from selling crops in neighbouring states.

- State-level legislation (APMC Acts) mandate that the first sale of crops after harvest must be at government-designated marketplaces, and buyers must obtain a license.
- Effectively prohibits farmers from selling crops in neighbouring states.
- Reduces competition between marketplaces across state borders.

- State-level legislation (APMC Acts) mandate that the first sale of crops after harvest must be at government-designated marketplaces, and buyers must obtain a license.
- Effectively prohibits farmers from selling crops in neighbouring states.
- Reduces competition between marketplaces across state borders.
- Treat each physical marketplace as having only one intermediary buyer.

Empirical methodology

▶ Measure of spatial competition faced by a market *m*:

$$comp_m = \sum_{j \in \mathcal{M}/\{m\}} \left\{ \frac{1}{distance_{mj}} \right\} \mathbf{1}[m \text{ and } j \text{ are in the same state}]$$

Empirical methodology

▶ Measure of spatial competition faced by a market *m*:

$$comp_m = \sum_{j \in \mathcal{M}/\{m\}} \left\{ \frac{1}{distance_{mj}} \right\} \mathbf{1}[m \text{ and } j \text{ are in the same state}]$$

Analogous measure of interstate spatial competition:

$$\mathsf{comp}_m' = \sum_{j \in \mathcal{M}/\{m\}} \left\{ \frac{1}{\mathsf{distance}_{mj}} \right\} \mathbf{1}[m \text{ and } j \text{ not in the same state}]$$

Example

Empirical methodology

Main specification:

$$\begin{split} \log p_{cmdst}^f = & \beta_0 + \beta_1 \text{comp}_m + \beta_2 \text{comp}_m' + \mathbf{X}_{cdt}' \beta_3 \\ & + \gamma_t + \gamma_c + \gamma_s + \epsilon_{cmdt} \end{split}$$

where p_{cmdst}^f is the price a farmer receives for crop c, at market m, in district d, state s, and month t.

Empirical methodology

Main specification:

$$\begin{split} \log p_{cmdst}^f = & \beta_0 + \beta_1 \text{comp}_m + \beta_2 \text{comp}_m' + \mathbf{X}_{cdt}' \beta_3 \\ & + \gamma_t + \gamma_c + \gamma_s + \epsilon_{cmdt} \end{split}$$

where p_{cmdst}^f is the price a farmer receives for crop c, at market m, in district d, state s, and month t.

► Sample: 10 years (2005–2014), 2978 markets.

Empirical results

	\hat{eta}_{1}	$\hat{eta}_{ extsf{2}}$
Point estimate	0.0163	-0.0005
Std. err.	0.0043	0.0012

Empirical results

	\widehat{eta}_{1}	$\hat{eta}_{f 2}$
Point estimate	0.0163	-0.0005
Std. err.	0.0043	0.0012

Greater spatial competition increases farmer prices!

Appendix

Causal estimates

- Basic idea: choose market pairs that are close together but separated by a border
- ► Factors that affect price (other than spatial competition) should be similar for the market pairs.
- ▶ For each market pair (m, m') estimate:

$$\Delta \log p_{cmdt}^f = \beta_1(\Delta \mathsf{comp}_m) + \gamma_{ss'} + \tilde{\epsilon}_{cmdt}$$

Causal estimates

Table: Border Discontinuity Regressions

	Distance between market pairs (km)		
	< 25	< 30	< 35
$\hat{\beta}_1$	0.025	0.035	0.036
Robust std. err.	0.011	0.013	0.009