Recursive Function*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

CS363-Computability Theory

^{*} Special thanks is given to Prof. Yuxi Fu for sharing his teaching materials.

Outline

- Basic Functions
 - Three Basic Functions
- Substitution
 - Definition
 - Variable Sequences
- Recursion
 - Definition
 - Examples
 - Corollary
- Minimalisation
 - Bounded Minimalisation
 - Unbounded Minimalisation
 - A Famous Example

Outline

- Basic Functions
 - Three Basic Functions
- Substitution
 - Definition
 - Variable Sequences
- Recursion
 - Definition
 - Examples
 - Corollary
- Minimalisation
 - Bounded Minimalisation
 - Unbounded Minimalisation
 - A Famous Example

The Basic Functions

Lemma. The following basic functions are computable.

- **1** The *zero* function $\mathbf{0}$.
- 2 The *successor* function x + 1.
- § For each $n \ge 1$ and $1 \le i \le n$, the *projection function* U_i^n given by $U_i^n(x_1, \ldots, x_n) = x_i$.

Proof

These functions correspond to the arithmetic instructions for URM.

- **0 0**: program Z(1);
- U_i^n : program T(i, 1).

Outline

- Basic Functions
 - Three Basic Functions
- Substitution
 - Definition
 - Variable Sequences
- Recursion
 - Definition
 - Examples
 - Corollary
- Minimalisation
 - Bounded Minimalisation
 - Unbounded Minimalisation
 - A Famous Example

Substitution Theorem

Suppose that $f(y_1, ..., y_k)$ and $g_1(\mathbf{x}), ..., g_k(\mathbf{x})$ are computable functions, where $\mathbf{x} = x_1, ..., x_n$. Then the function $h(\mathbf{x})$ given by

$$h(\mathbf{x}) \simeq f(g_1(\mathbf{x}), \dots, g_k(\mathbf{x}))$$

is a computable function.

Substitution Theorem

Suppose that $f(y_1, ..., y_k)$ and $g_1(\mathbf{x}), ..., g_k(\mathbf{x})$ are computable functions, where $\mathbf{x} = x_1, ..., x_n$. Then the function $h(\mathbf{x})$ given by

$$h(\mathbf{x}) \simeq f(g_1(\mathbf{x}), \dots, g_k(\mathbf{x}))$$

is a computable function.

Question: what is the domain of definition of $h(\mathbf{x})$?

Substitution Theorem

Suppose that $f(y_1, ..., y_k)$ and $g_1(\mathbf{x}), ..., g_k(\mathbf{x})$ are computable functions, where $\mathbf{x} = x_1, ..., x_n$. Then the function $h(\mathbf{x})$ given by

$$h(\mathbf{x}) \simeq f(g_1(\mathbf{x}), \dots, g_k(\mathbf{x}))$$

is a computable function.

Question: what is the domain of definition of $h(\mathbf{x})$?

Note: h(x) is defined iff $g_1(\mathbf{x}), \dots, g_k(\mathbf{x})$ are all defined and $(g_1(\mathbf{x}), \dots, g_k(\mathbf{x})) \in Dom(f)$. Thus, if f and g_1, \dots, g_k are all total functions, then h is total.

Proof (Construction)

Let F, G_1, \ldots, G_k be programs in standard form that compute f, g_1, \ldots, g_k .

Proof (Construction)

Let F, G_1, \ldots, G_k be programs in standard form that compute f, g_1, \ldots, g_k .

Let m be $\max\{n, k, \rho(F), \rho(G_1), \dots, \rho(G_k)\}.$

Registers:

$$[\ldots]_1^m[\mathbf{x}]_{m+1}^{m+n}[g_1(\mathbf{x})]_{m+n+1}^{m+n+1}\ldots[g_k(\mathbf{x})]_{m+n+k}^{m+n+k}$$

URM Program for Substitution

$$I_1$$
: $T(1, m+1)$
 \vdots
 I_n : $T(n, m+n)$
 I_{n+1} : $G_1[m+1, \dots, m+n \to m+n+1]$
 \vdots
 I_{n+k} : $G_k[m+1, \dots, m+n \to m+n+k]$
 I_{n+k+1} : $F[m+n+1 \dots, m+n+k \to 1]$

Computable Function with Variable Sequences

Theorem. Suppose that $f(y_1, \ldots, y_k)$ is a computable function and that x_{i_1}, \ldots, x_{i_k} is a sequence of k of the variables x_1, \ldots, x_n (possibly with repetitions). Then the function h given by

$$h(x_1,\ldots,x_n) \simeq f(x_{i_1},\ldots,x_{i_k})$$

is computable.

Computable Function with Variable Sequences

Theorem. Suppose that $f(y_1, \ldots, y_k)$ is a computable function and that x_{i_1}, \ldots, x_{i_k} is a sequence of k of the variables x_1, \ldots, x_n (possibly with repetitions). Then the function h given by

$$h(x_1,\ldots,x_n) \simeq f(x_{i_1},\ldots,x_{i_k})$$

is computable.

Proof.
$$h(\mathbf{x}) \simeq f(U_{i_1}^n(\mathbf{x}), \ldots, U_{i_k}^n(\mathbf{x})).$$

Form New Functions

- Rearrangement: $h_1(x_1, x_2) \simeq f(x_2, x_1)$;
- Identification: $h_2(x) \simeq f(x,x)$;
- Adding Dummy Variables: $h_3(x_1, x_2, x_3) \simeq f(x_2, x_3)$.

An Example

The function $f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$ is computable.

An Example

The function $f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$ is computable.

Proof. Since x + y is computable, by substituting $x_1 + x_2$ for x, and x_3 for y in x + y we can claim that f is computable.

An Example

The function $f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$ is computable.

Proof. Since x + y is computable, by substituting $x_1 + x_2$ for x, and x_3 for y in x + y we can claim that f is computable.

Note: When the functions g_1, \dots, g_k substituted into f, it is not necessarily involving all of the variables x_1, \dots, x_n to guarantee the computability of the new function.

Outline

- Basic Functions
 - Three Basic Functions
- Substitution
 - Definition
 - Variable Sequences
- Recursion
 - Definition
 - Examples
 - Corollary
- 4 Minimalisation
 - Bounded Minimalisation
 - Unbounded Minimalisation
 - A Famous Example

Recursion Equations

Suppose that $f(\mathbf{x})$ and $g(\mathbf{x}, y, z)$ are functions. The function obtained from $f(\mathbf{x})$ and $g(\mathbf{x}, y, z)$ by recursion is defined as follows:

$$\begin{cases} h(\mathbf{x},0) \simeq f(\mathbf{x}), \\ h(\mathbf{x},y+1) \simeq g(\mathbf{x},y,h(\mathbf{x},y)). \end{cases}$$

Domain of *h*

h may not be total unless both f and g are total.

```
The domain of h satisfies:

(\mathbf{x},0) \in Dom(h) iff \mathbf{x} \in Dom(f);

(\mathbf{x},y+1) \in Dom(h) iff (\mathbf{x},y) \in Dom(h)

and (\mathbf{x},y,h(\mathbf{x},y)) \in Dom(g).
```

Uniqueness

Theorem. Let $\mathbf{x} = \{x_1, \dots, x_n\}$, and suppose that $f(\mathbf{x})$ and $g(\mathbf{x}, y, z)$ are functions; then there is a unique function $h(\mathbf{x}, y)$ satisfying the recursion equations

$$\begin{cases} h(\mathbf{x},0) \simeq f(\mathbf{x}), \\ h(\mathbf{x},y+1) \simeq g(\mathbf{x},y,h(\mathbf{x},y)). \end{cases}$$

Note: When n = 0 (**x** do not appear), the recursion equations take the form

$$\begin{cases} h(0) = a, \\ h(y+1) \simeq g(y, h(y)). \end{cases}$$

Computability Theorem

Theorem. $h(\mathbf{x}, y)$ is computable if $f(\mathbf{x})$ and $g(\mathbf{x}, y, z)$ are computable.

Proof

Registers:

$$[\ldots]_1^m[\mathbf{x}]_{m+1}^{m+n}[y]_{m+n+1}^{m+n+1}[k]_{m+n+2}^{m+n+2}[h(\mathbf{x},k)]_{m+n+3}^{m+n+3}.$$

Proof

Registers:

$$[\ldots]_1^m[\mathbf{x}]_{m+1}^{m+n}[y]_{m+n+1}^{m+n+1}[k]_{m+n+2}^{m+n+2}[h(\mathbf{x},k)]_{m+n+3}^{m+n+3}.$$

Program:

$$T(1, m + 1)$$
:
 $T(n + 1, m + n + 1)$
 $F[1, 2, ..., n \rightarrow m + n + 3]$
 I_q : $J(n + m + 2, n + m + 1, p)$
 $G[m + 1, ..., m + n, m + n + 2, m + n + 3 \rightarrow m + n + 3]$
 $S(n + m + 2)$
 $J(1, 1, q)$
 I_p : $T(n + m + 3, 1)$

Flow Diagram

Addition

Let add: $\mathbb{N}^2 \to \mathbb{N}$, add(x, y) := x + y.

Addition

Let
$$add: \mathbb{N}^2 \to \mathbb{N}$$
, $add(x, y) := x + y$.

$$add(x,0) = x + 0 = x$$

 $add(x,y+1) = x + (y+1) = (x+y) + 1$
 $= add(x,y) + 1$

Therefore,

$$add(x,0) = f(x)$$

$$add(x,y+1) = g(x,y,add(x,y))$$

where

$$f: \mathbb{N} \to \mathbb{N}, \quad f(x) := x,$$

 $g: \mathbb{N}^3 \to \mathbb{N}, \quad g(x, y, z) := z + 1.$

Multiplication

Let *mult*: $\mathbb{N}^2 \to \mathbb{N}$, *mult*(x, y) := $x \cdot y$.

Multiplication

Let *mult*: $\mathbb{N}^2 \to \mathbb{N}$, *mult*(x, y) := $x \cdot y$.

$$mult(x,0) = x \cdot 0 = 0$$

$$mult(x,y+1) = x \cdot (y+1) = x \cdot y + x$$

$$= mult(x,y) + x$$

Therefore,

$$mult(x,0) = f(x)$$

 $mult(x,y+1) = g(x,y,mult(x,y))$

where

$$f: \mathbb{N} \to \mathbb{N}, \quad f(x) := 0,$$

 $g: \mathbb{N}^3 \to \mathbb{N}, \quad g(x, y, z) := z + x.$

Power Function

Let *power*: $\mathbb{N}^2 \to \mathbb{N}$, *power*(x, y) := x^y

Power Function

Let *power*:
$$\mathbb{N}^2 \to \mathbb{N}$$
, *power* $(x, y) := x^y$

$$power(x, 0) = x^0 \simeq 1$$

$$power(x, y + 1) = x^{(y+1)} \simeq x^y \cdot x$$

Therefore,

$$power(x, 0) = f(x)$$

 $power(x, y + 1) = g(x, y, power(x))$

where

$$f: \mathbb{N} \to \mathbb{N}, \quad f(x) := 1,$$

 $g: \mathbb{N}^2 \to \mathbb{N}, \quad g(x, y, z) := z \cdot x.$

Predecessor

Let *pred*:
$$\mathbb{N} \to \mathbb{N}$$
, $pred(x) := x - 1 = \begin{cases} x - 1 & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$

Predecessor

Let
$$pred: \mathbb{N} \to \mathbb{N}, pred(x) := \dot{x-1} = \begin{cases} x-1 & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

$$pred(0) = 0$$

$$pred(x+1) = x$$

Therefore,

$$pred(0) = f(x) = 0$$

 $pred(x+1) = g(x, pred(x))$

where

$$f: \mathbb{N} \to \mathbb{N}, \quad f(x) := 0,$$

 $g: \mathbb{N}^2 \to \mathbb{N}, \quad g(x, y) := x.$

Conditional Subtraction

Let
$$sub$$
: $\mathbb{N}^2 \to \mathbb{N}$, $sub(x,y) := x - y \stackrel{\text{def}}{=} \left\{ \begin{array}{l} x - y, & \text{if } x \ge y, \\ 0, & \text{otherwise.} \end{array} \right.$

Conditional Subtraction

Let
$$sub$$
: $\mathbb{N}^2 \to \mathbb{N}$, $sub(x,y) := \dot{x-y} \stackrel{\text{def}}{=} \left\{ \begin{array}{l} x-y, & \text{if } x \geq y, \\ 0, & \text{otherwise.} \end{array} \right.$

$$sub(x,0) = x - 0 \simeq x$$

$$sub(x,y+1) = x - (y+1) \simeq (x - y) - 1.$$

Therefore,

$$sub(x,0) = f(x)$$

$$sub(x,y+1) = g(x,y,sub(x))$$

where

$$f: \mathbb{N} \to \mathbb{N}, \quad f(x) := x,$$

 $g: \mathbb{N}^2 \to \mathbb{N}, \quad g(x, y, z) := z \dot{-} 1.$

Sign

Let sg: $\mathbb{N} \to \mathbb{N}$,

$$\operatorname{sg}(x) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{ll} 0, & \mathrm{if} \ x = 0, \\ 1, & \mathrm{if} \ x \neq 0. \end{array} \right. :$$

Sign

Let sq: $\mathbb{N} \to \mathbb{N}$,

$$sg(x) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} 0, & \text{if } x = 0, \\ 1, & \text{if } x \neq 0. \end{array} \right. :$$

$$\begin{array}{ccc} \operatorname{sg}(0) & \simeq & 0, \\ \operatorname{sg}(x+1) & \simeq & 1. \end{array}$$

$$sg(x+1) \simeq 1.$$

$$\overline{\operatorname{sg}}(x) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} 1, & \text{if } x = 0, \\ 0, & \text{if } x \neq 0. \end{array} \right. :$$

$$\overline{\operatorname{sg}}(x) \simeq 1 \dot{-} \operatorname{sg}(x).$$

Other Examples

Absolute Function (ABS): $|x - y| \simeq (x - y) + (y - x)$.

Factorial: x!

$$0! \simeq 1,$$

(x+1)! \sim x!(x+1).

Minimum: $\min(x, y) \simeq x \dot{-} (x \dot{-} y)$.

Maximum: $\max(x, y) \simeq x + (y \dot{-} x)$.

Remainder

 $rm(x, y) \stackrel{\text{def}}{=}$ the remainder when y is devided by x:

$$\operatorname{rm}(x, y + 1) \stackrel{\text{def}}{=} \begin{cases} \operatorname{rm}(x, y) + 1, & \text{if } \operatorname{rm}(x, y) + 1 \neq x, \\ 0, & \text{if } \operatorname{rm}(x, y) + 1 = x. \end{cases}$$

Remainder

 $rm(x, y) \stackrel{\text{def}}{=}$ the remainder when y is devided by x:

$$\operatorname{rm}(x, y + 1) \stackrel{\text{def}}{=} \begin{cases} \operatorname{rm}(x, y) + 1, & \text{if } \operatorname{rm}(x, y) + 1 \neq x, \\ 0, & \text{if } \operatorname{rm}(x, y) + 1 = x. \end{cases}$$

The recursive definition is given by

$$rm(x,0) = 0,$$

 $rm(x,y+1) = (rm(x,y)+1)sg(|x-(rm(x,y)+1)|).$

Quotient

 $qt(x, y) \stackrel{\text{def}}{=}$ the quotient when *y* is devided by *x*:

$$\mathsf{qt}(x,y+1) \ \stackrel{\mathrm{def}}{=} \ \left\{ \begin{array}{l} \mathsf{qt}(x,y)+1, & \mathrm{if} \ \mathsf{rm}(x,y)+1=x, \\ \mathsf{qt}(x,y), & \mathrm{if} \ \mathsf{rm}(x,y)+1 \neq x. \end{array} \right.$$

Quotient

 $qt(x, y) \stackrel{\text{def}}{=}$ the quotient when *y* is devided by *x*:

$$\mathsf{qt}(x,y+1) \ \stackrel{\mathrm{def}}{=} \ \left\{ \begin{array}{l} \mathsf{qt}(x,y)+1, & \mathrm{if} \ \mathsf{rm}(x,y)+1=x, \\ \mathsf{qt}(x,y), & \mathrm{if} \ \mathsf{rm}(x,y)+1 \neq x. \end{array} \right.$$

The recursive definition is given by

$$qt(x,0) = 0,$$

 $qt(x,y+1) = qt(x,y) + \overline{sg}(|x - (rm(x,y) + 1)|).$

Conditional Division

$$\operatorname{div}(x,y) \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} 1, & \text{if } x|y, \\ 0, & \text{if } x\not\mid y. \end{array} \right. :$$

Conditional Division

$$\operatorname{div}(x,y) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{ll} 1, & \mathrm{if} \; x|y, \\ 0, & \mathrm{if} \; x\not|y. \end{array} \right. : \quad \operatorname{div}(x,y) = \overline{\mathrm{sg}}(\mathrm{rm}(\mathbf{x},\mathbf{y})).$$

Definition by Cases

Suppose that $f_1(\mathbf{x}), \ldots, f_k(\mathbf{x})$ are computable functions, and $M_1(\mathbf{x}), \ldots, M_k(\mathbf{x})$ are decidable predicates, such that for every \mathbf{x} exactly one of $M_1(\mathbf{x}), \ldots, M_k(\mathbf{x})$ holds. Then the function $g(\mathbf{x})$ given by

$$g(\mathbf{x}) \simeq \begin{cases} f_1(\mathbf{x}), & \text{if } M_1(\mathbf{x}) \text{ holds,} \\ f_2(\mathbf{x}), & \text{if } M_2(\mathbf{x}) \text{ holds,} \\ \vdots & & \\ f_k(\mathbf{x}), & \text{if } M_k(\mathbf{x}) \text{ holds.} \end{cases}$$

is computable.

Proof.
$$g(\mathbf{x}) \simeq c_{M_1}(\mathbf{x})f_1(\mathbf{x}) + \ldots + c_{M_k}(\mathbf{x})f_k(\mathbf{x}).$$

Algebra of decidability

Suppose that $M(\mathbf{x})$ and $Q(\mathbf{x})$ are decidable predicates; then the following are also decidable.

- \bigcirc not $M(\mathbf{x})$
- \bigcirc $M(\mathbf{x})$ and $Q(\mathbf{x})$
- $M(\mathbf{x})$ or $Q(\mathbf{x})$

Algebra of decidability

Suppose that $M(\mathbf{x})$ and $Q(\mathbf{x})$ are decidable predicates; then the following are also decidable.

- \bigcirc not $M(\mathbf{x})$
- \bigcirc $M(\mathbf{x})$ and $Q(\mathbf{x})$
- $M(\mathbf{x}) or Q(\mathbf{x})$

Proof:

- $1 \dot{-} c_M(\mathbf{x})$
- $c_M(\mathbf{x}) \cdot c_Q(\mathbf{x})$
- max $(c_M(\mathbf{x}), c_Q(\mathbf{x}))$

Outline

- Basic Functions
 - Three Basic Functions
- Substitution
 - Definition
 - Variable Sequences
- Recursion
 - Definition
 - Examples
 - Corollary
- 4 Minimalisation
 - Bounded Minimalisation
 - Unbounded Minimalisation
 - A Famous Example

Bounded Sum and Bounded Product

Bounded sum:

$$\sum_{z<0} f(\mathbf{x}, z) \simeq 0,$$

$$\sum_{z< y+1} f(\mathbf{x}, z) \simeq \sum_{z< y} f(\mathbf{x}, z) + f(\mathbf{x}, y)$$

Bounded product:

$$\prod_{z<0} f(\mathbf{x}, z) \simeq 1,$$

$$\prod_{z$$

They are computable if $f(\mathbf{x}, z)$ is total and computable.

Bounded Sum and Bounded Product

By substitution the following functions are also computable

$$\sum_{z < k(\mathbf{x}, \mathbf{w})} f(\mathbf{x}, z)$$

and

$$\prod_{z < k(\mathbf{x}, \mathbf{w})} f(\mathbf{x}, z)$$

if $k(\mathbf{x}, \mathbf{w})$ is total and computable.

Bounded Minimization Operator, or μ -Operator

 $\mu z < y(\cdots)$: the least z less than y such that \cdots

$$\mu z < y(f(\mathbf{x}, z) = 0) \stackrel{\text{def}}{=} \begin{cases} \text{the least } z < y, & \text{such that } f(\mathbf{x}, z) = 0; \\ y & \text{if there is no such } z. \end{cases}$$

μ -Operator

Theorem.

If $f(\mathbf{x}, z)$ is total and computable, then so is $\mu z < y$ ($f(\mathbf{x}, z) = 0$).

Proof

Consider
$$h(\mathbf{x}, v) = \prod_{u \le v} \operatorname{sg}(f(\mathbf{x}, u))$$
 (Computable).

Given **x**, y, suppose $z_0 = \mu z < y(f((x), y) = 0)$. Easy to see,

if
$$v < z_0$$
, then $h((x), v) = 1$;

if
$$z_0 \le v < y$$
, then $h((x), v) = 0$;

Thus
$$z_0 = \sum_{v < y} h((x), v)$$
.

So
$$\mu z < y(f(\mathbf{x}, z) = 0) \simeq \sum_{v < y} (\prod_{u < v} sg(f(\mathbf{x}, u)))$$
 is computable.

Bounded Minimization Operator, or μ -Operator

Corollary: If $f(\mathbf{x}, z)$ and $k(\mathbf{x}, \mathbf{w})$ are total and computable functions, then so is the function

$$\mu z < k(\mathbf{x}, \mathbf{w}) \ (f(\mathbf{x}, z) = 0).$$

Bounded Minimization Operator, or μ -Operator

Corollary: If $f(\mathbf{x}, z)$ and $k(\mathbf{x}, \mathbf{w})$ are total and computable functions, then so is the function

$$\mu z < k(\mathbf{x}, \mathbf{w}) \ (f(\mathbf{x}, z) = 0).$$

Proof. By substitution of $k(\mathbf{x}, \mathbf{w})$ for y in the computable function $\mu z < y$ ($f(\mathbf{x}, z) = 0$).

Suppose that $R(\mathbf{x}, y)$ is a decidable predicates. Then the following statements are valid:

- the function $f(\mathbf{x}, y) \simeq \mu z < y \ R(\mathbf{x}, y)$ is computable;
- 2 the following predicates are decidable:
 - a) $M_1(\mathbf{x}, y) \equiv \forall z < yR(\mathbf{x}, z);$
 - b) $M_2(\mathbf{x}, y) \equiv \exists z < yR(\mathbf{x}, z).$

Suppose that $R(\mathbf{x}, y)$ is a decidable predicates. Then the following statements are valid:

- the function $f(\mathbf{x}, y) \simeq \mu z < y \ R(\mathbf{x}, y)$ is computable;
- the following predicates are decidable:
 - a) $M_1(\mathbf{x}, y) \equiv \forall z < yR(\mathbf{x}, z);$
 - b) $M_2(\mathbf{x}, y) \equiv \exists z < y R(\mathbf{x}, z).$

Proof.

2 a)
$$c_{M_1}(\mathbf{x}, y) = \prod_{z < y} c_R(\mathbf{x}, z)$$
.

b)
$$M_2(\mathbf{x}, y) \equiv \text{not} (\forall z < y(\text{not } R(\mathbf{x}, z)))$$

Theorem. The following functions are computable.

- (a) D(x) = the number of divisors of x;
- (b) $Pr(x) = \begin{cases} 1, & \text{if } x \text{ is prime,} \\ 0, & \text{if } x \text{ is not prime.} \end{cases}$;
- (c) p_x = the *x*-th prime number;

(d)
$$(x)_y = \begin{cases} k, & k \text{ is the exponent of } p_y \text{ in the prime} \\ & \text{factorisation of } x, \text{ for } x, y > 0, \\ 0, & \text{if } x = 0 \text{ or } y = 0. \end{cases}$$

Proof.

(a)
$$D(x) \simeq \sum_{y \le x} \operatorname{div}(y, x)$$
.

(b)
$$Pr(x) \simeq \overline{sg}(|D(x) - 2|)$$
.

(c) p_x can be recursively defined as follows:

$$\mathsf{p}_0 \simeq 0,$$

 $\mathsf{p}_{x+1} \simeq \mu z \leq (\mathsf{p}_x! + 1)(z > \mathsf{p}_x \text{ and } z \text{ is prime}).$

(d)
$$(x)_y \simeq \mu z < x(p_y^{z+1}/x)$$
.

Prime Coding

Suppose $s = (a_1, a_2, \dots, a_n)$ is a finite sequence of numbers. It can be coded by the number

$$b = \mathsf{p}_1^{a_1+1} \mathsf{p}_2^{a_2+1} \dots \mathsf{p}_n^{a_n+1}.$$

Then the length of s can be recovered from

$$\mu z < b((b)_{z+1} = 0),$$

and the *i*-th component can be recovered from

$$(b)_i \dot{-} 1.$$

Unbounded Minimization

 μ -function:

$$\mu y(f(\mathbf{x},y)=0) \quad \simeq \quad \left\{ \begin{array}{ll} \text{the least } y \text{ such that} \\ (i) \quad f(\mathbf{x},y) \text{ is defined for all } z \leq y, \text{ and} \\ (ii) \quad f(\mathbf{x},y)=0, \\ \text{undefined if otherwise.} \end{array} \right.$$

Theorem

If
$$f(\mathbf{x}, y)$$
 is computable, so is $\mu y(f(\mathbf{x}, y) = 0)$.

Proof

Let F be a program in standard form that computes $f(\mathbf{x}, y)$. Let m be $\max\{n+1, \rho(F)\}$.

Registers: $[\ldots]_1^m [\mathbf{x}]_{m+1}^{m+n} [k]_{m+n+1}^{m+n+1} [0]_{m+n+2}^{m+n+2}$.

Proof

Let F be a program in standard form that computes $f(\mathbf{x}, y)$. Let m be $\max\{n+1, \rho(F)\}$.

Registers: $[\ldots]_1^m[\mathbf{x}]_{m+1}^{m+n}[k]_{m+n+1}^{m+n+1}[0]_{m+n+2}^{m+n+2}$. Program:

$$T(1, m+1)$$
 \vdots
 $T(n, m+n)$
 $I_p : F[m+1, m+2, \dots, m+n+1 \rightarrow 1]$
 $J(1, m+n+2, q)$
 $S(m+n+1)$
 $J(1, 1, p)$
 $I_q : T(m+n+1, 1)$

Flow Diagram

Corollary

Suppose that R(x, y) is a decidable predicate; then the function

$$g(x) = \mu y R(\mathbf{x}, y)$$

$$= \begin{cases} \text{the least } y \text{ such that } R(\mathbf{x}, y) \text{ holds}, & \text{if there is such a } y, \\ \text{undefined}, & \text{otherwise}. \end{cases}$$

is computable.

Corollary

Suppose that R(x, y) is a decidable predicate; then the function

$$g(x) = \mu y R(\mathbf{x}, y)$$

$$= \begin{cases} \text{the least } y \text{ such that } R(\mathbf{x}, y) \text{ holds}, & \text{if there is such a } y, \\ \text{undefined}, & \text{otherwise}. \end{cases}$$

is computable.

Proof.
$$g(\mathbf{x}) = \mu y(\overline{\mathsf{sg}}(c_R(\mathbf{x}, y)) = 0).$$

Discussion

The μ -operator allows one to define partial functions.

E.g., given
$$f(x, y) = |x - y^2|$$
, $g(x) \simeq \mu y(f(x, y) = 0)$,

we have g is the non-total function

$$g(x) = \begin{cases} \sqrt{x}, & \text{if } x \text{ is a perfect square} \\ \text{undefined}, & \text{otherwise}. \end{cases}$$

Remark

Using the μ -operator, one may define total functions that are not primitive recursive.

Remark: The set of primitive recursive functions are those definable from the basic functions using substitution and recursion.

The Ackermann function is defined as follows:

$$\psi(0,y) \simeq y+1,$$

$$\psi(x+1,0) \simeq \psi(x,1),$$

$$\psi(x+1,y+1) \simeq \psi(x,\psi(x+1,y)).$$

Fact. The Ackermann function is computable.

Fact. The Ackermann function is computable.

Definition. A finite set **S** of triples is said to be suitable if the followings hold:

- (i) if $(0, y, z) \in S$ then z = y + 1;
- (ii) if $(x + 1, 0, z) \in S$ then $(x, 1, z) \in S$;
- (iii) if $(x + 1, y + 1, z) \in S$ then $\exists u.((x + 1, y, u) \in S) \land ((x, u, z) \in S)$.

Three conditions correspond to the three clauses in the definition of ψ .

Fact. The Ackermann function is computable.

Definition. A finite set **S** of triples is said to be suitable if the followings hold:

- (i) if $(0, y, z) \in S$ then z = y + 1;
- (ii) if $(x + 1, 0, z) \in S$ then $(x, 1, z) \in S$;
- (iii) if $(x + 1, y + 1, z) \in S$ then $\exists u.((x + 1, y, u) \in S) \land ((x, u, z) \in S)$.

Three conditions correspond to the three clauses in the definition of ψ .

The definition of a suitable set S ensures the following property:

- If $(x, y, z) \in \mathbf{S}$, then
- (i) $z = \psi(x, y)$;
- (ii) **S** contains all the earlier triple $(x_1, y_1, \psi(x_1, y_1))$ that are needed to calculate $\psi(x, y)$.

Computability Proof

Moreover, for any particular pair of numbers (m, n) there is a suitable set **S** such that $(m, n, \psi(m, n)) \in \mathbf{S}$. For instance, let **S** be the set of triples $(x, y, \psi(x, y))$ that are used in the calculations of $\psi(m, n)$.

Computability Proof

Moreover, for any particular pair of numbers (m, n) there is a suitable set **S** such that $(m, n, \psi(m, n)) \in \mathbf{S}$. For instance, let **S** be the set of triples $(x, y, \psi(x, y))$ that are used in the calculations of $\psi(m, n)$.

Note a triple (x, y, z) can be coded up by single positive number $2^x 3^y 5^z$. A finite set $\{u_1, \dots, u_k\}$ can be coded up by $p_{u_1} \cdots p_{u_k}$.

Computability Proof

Moreover, for any particular pair of numbers (m, n) there is a suitable set **S** such that $(m, n, \psi(m, n)) \in \mathbf{S}$. For instance, let **S** be the set of triples $(x, y, \psi(x, y))$ that are used in the calculations of $\psi(m, n)$.

Note a triple (x, y, z) can be coded up by single positive number $2^x 3^y 5^z$. A finite set $\{u_1, \ldots, u_k\}$ can be coded up by $p_{u_1} \cdots p_{u_k}$.

Hence a finite set of triples can be coded by a single number v. Let S_v denote the set of triples coded by the number v. then

$$(x, y, z) \in \mathbf{S}_{v} \Leftrightarrow p_{2^{x}3^{y}5^{z}} \text{ divides } v.$$

So ' $(x, y, z) \in \mathbf{S}_{v}$ ' is a decidable predicate of x, y, z, and v; and if it holds, then x, y, z < v.

Let R(x, y, v) be "v is a legal code and $\exists z < v((x, y, z) \in \mathbf{S}_v)$ ".

Let R(x, y, v) be "v is a legal code and $\exists z < v((x, y, z) \in \mathbf{S}_v)$ ".

R(x, y, v) is decidable using the techniques and functions of earlier sections.

Let R(x, y, v) be "v is a legal code and $\exists z < v((x, y, z) \in \mathbf{S}_v)$ ".

R(x, y, v) is decidable using the techniques and functions of earlier sections.

Thus the function $f(x, y) = \mu v R(x, y, v)$ is a computable function that searches for the code of a suitable set containing (x, y, z) for some z.

Let R(x, y, v) be "v is a legal code and $\exists z < v((x, y, z) \in \mathbf{S}_v)$ ".

R(x, y, v) is decidable using the techniques and functions of earlier sections.

Thus the function $f(x, y) = \mu v R(x, y, v)$ is a computable function that searches for the code of a suitable set containing (x, y, z) for some z.

As a result, the Ackermann function $\psi(x,y) = \mu z((x,y,z) \in \mathbf{S}_{f(x,y)})$ is computable.

The Ackermann function is not primitive recursive. It grows faster than all the primitive recursive functions.