

WHAT IS CLAIMED IS:

1 1. A method for moving teeth, said method comprising:
2 determining an occlusion from a computer model of a patient's teeth; and
3 generating a plurality of appliances based on the occlusion, wherein the
4 appliances comprise polymeric shells having cavities and wherein the cavities of successive
5 shells have different geometries shaped to receive and resiliently reposition the teeth from
6 one arrangement to a successive arrangement.

1 2. The method of claim 1, wherein determining an occlusion comprises
2 using one or more keys.

1 3. The method of claim 2, wherein one of the keys is based on a molar
2 relationship.

1 4. The method of claim 3, further comprising occluding a first permanent
2 molar with a second permanent molar.

1 5. The method of claim 4, wherein the first permanent molar has a disto
2 buccal cusp with a distal surface and the second permanent molar has a mesiobuccal cusp
3 with a mesial surface and wherein the distal surface occludes with the mesial surface.

1 6. The method of claim 5, wherein the mesiobuccal cusp occludes in a
2 groove between mesial and middle cusps of the first permanent molar.

1 7. The method of claim 4, wherein the mesial surface closely approaches
2 the distal surface.

1 8. The method of claim 3, wherein the teeth include canines and
2 premolars and wherein the canines and premolars have a cusp-embrasure relationship
3 buccally and a cusp-fossa relationship lingually.

1 9. The method of claim 2, wherein one of the keys is based on an
2 angulation of a crown.

1 10. The method of claim 9, wherein the crown has a distal crown tip,
2 further comprising determining a distal inclination of a gingival portion of the crown.

1 11. The method of claim 10, wherein the distal inclination is constant.

1 12. The method of claim 10, wherein the distal inclination is constant

2 within each tooth type.

1 13. The method of claim 10, wherein the angulation is determined between

2 a facial axis of the clinical crown (FACC) and a line perpendicular to an occlusal plane.

1 14. The method of claim 13, wherein the angulation is minimized.

1 15. The method of claim 9, wherein the angulation is positive.

1 16. The method of claim 9, wherein the angulation is negative.

1 17. The method of claim 2, wherein one of the keys is based on a crown

2 inclination.

1 18. The method of claim 17, wherein the crown inclination represents an
2 angle formed by a line perpendicular to an occlusal plane and the FACC.

1 19. The method of claim 17, wherein the crown inclination is negative

2 when measured from an upper canine through an upper second premolar.

1 20. The method of claim 17, wherein the crown inclination is

2 progressively more negative when measured from a lower canine through a lower second
3 molar.

1 21. The method of claim 17, wherein the crown inclination between a line

2 parallel and tangent to a facial axis of the clinical crown (FACC) at its midpoint and a line
3 perpendicular to an occlusal plane.

1 22. The method of claim 2, wherein one of the keys is based on tooth

2 rotation.

1 23. The method of claim 22, wherein the teeth are free of undesirable

2 rotations.

1 24. The method of claim 2, wherein one of the keys is based on a tooth
2 contact point.

1 25. The method of claim 24, wherein the contact point is tight.C

1 26. The method of claim 24, wherein no spaces exist between contact
2 points.

1 27. The method of claim 2, wherein one of the keys is based on an occlusal
2 plane.

1 28. The method of claim 27, wherein the plane ranges between flat to
2 curves of Spee.

1 29. The method of claim 28, wherein the plane is flat.

1 30. The method of claim 28, wherein the plane follows a curve of Spee.

1 31. The method of claim 30, wherein the curve of Spee is deep.

1 32. The method of claim 30, wherein the curve of Spee is slight.

1 33. The method of claim 30, wherein the curve of Spee is reversed.

1 34. The method of claim 2, wherein one of the keys is selected from a
2 group consisting of a molar relationship, a crown angulation, a crown inclination, teeth
3 rotations, teeth contact points, and an occlusal plane.

1 35. The method of claim 2, further comprising optimizing a final
2 placement of the teeth.

1 36. The method of claim 35, further comprising:
2 identifying one or more features associated with the teeth; and
3 generating a model of the teeth based on the identified features.

1 37. The method of claim 36, wherein at least one of the feature is
2 identified automatically.

1 38. The method of claim 37, wherein at least one of the feature is
2 identified by a user.

1 39. The method of claim 2, wherein the computer representation is an ideal
2 model set of teeth.

1 40. The method of claim 36, wherein the ideal model set of teeth is derived
2 from a cast of the patient's teeth.

1 41. The method of claim 36, wherein the ideal model set of teeth is derived
2 from a patient with a good occlusion.

1 42. The method of claim 2, further comprising generating progress reports
2 associated with the determined occlusion.

1 43. The method of claim 42, further comprising browsing the generated
2 reports over a network.

1 44. The method of claim 43, wherein the network is a wide area network.

1 45. The method of claim 44, wherein the wide area network is the Internet.

1 46. The method of claim 43, wherein the network is a local area network.

1 47. The method of claim 42, wherein the progress report is viewed by a
2 patient.

1 48. The method of claim 42, wherein the progress report is viewed by a
2 clinician.

1 49. The method of claim 2, wherein the user manipulates the computer
2 representation of the masticatory system.

1 50. The method of claim 49, wherein the user is a patient.

1 51. The method of claim 50, wherein the user is a clinician.

1 52. The method of claim 2, further comprising:
2 generating a model the teeth; and

3 adjusting teeth position in the model by following a prescription.

1 53. The method of claim 2, further comprising:
2 generating a model the teeth, the model having a visual appearance; and
3 adjusting teeth position in the model until the visual appearance of the model
4 is satisfactory.

1 54. The method of claims 52, wherein the model is based on an abstract
2 model of idealized teeth placement.

1 55. The method of claim 54, wherein the abstract model is specified by
2 one or more arch forms.

1 56. The method of claim 55, wherein the ideal model may be specified
2 using one or more features associated with the teeth.

1 57. The method of claim 52, wherein the teeth position is customized to
2 the patient's teeth.

1 58. The method of claims 53, wherein the model is based on an abstract
2 model of idealized teeth placement.