DESIGNING A DIGITAL CLOCK

Group Members

1. E/15/211

2. E/15/233

DESIGN OF THE DIGITAL CLOCK

_Here, we make a digital clock to count time using seven segment decoders, T flip flops and some gates. And we use six separate seven segment displays to display seconds, minutes and hours of a day. The design of the circuit is following.

Design the circuit diagram for the clock

This is 12 hours digital clock. Therefore, we have to use two seven segment display for each one part such as for hours count, minutes count and seconds count. An each part time goes from 1 to 12. So in that case 4-bit synchronous counter is used in designing the clock.

- 1. Number of bits-4
- 2. Number of states-16 states (2⁴ states)
- 3. Number of outputs- 4 outputs (Q₁,Q₂,Q₃,Q₄)

State diagram

Characteristic table

	Current State			Next State							
QA	Q _B	Qc	Q_D	Q_A^{\dagger}	Q_B^+	Q_{C}^{+}	Q_{D}^{\dagger}	D _A	D _B	D _C	D_D
Х	Х	Х	Х	0	0	0	0	0	0	0	0
Х	Х	Х	Х	Q _A	Q _B	Qc	Q_D	QA	Q _B	Q_C	Q_D
Х	Х	Х	Х	Q_A	Q_B	Q_{C}	Q_D	Q_A	Q_B	Q_C	Q_D
Х	Х	Х	Х	Q _A	Q _B	Q_C	Q_D	Q_A	Q _B	Q_C	Q_D
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	0
0	0	1	0	0	0	1	1	0	0	1	1
0	0	1	1	0	1	0	0	0	1	0	0
0	1	0	0	0	1	0	1	0	1	0	1
0	1	0	1	0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	1	0	1	1	1
0	1	1	1	1	0	0	0	1	0	0	0
1	0	0	0	1	0	0	1	1	0	0	1
1	0	0	1	1	0	1	0	1	0	1	0
1	0	1	0	1	0	1	1	1	0	1	1
1	0	1	1	1	1	0	0	1	1	0	0
1	1	0	0	1	1	0	1	1	1	0	1
1	1	0	1	1	1	1	0	1	1	1	0
1	1	1	0	1	1	1	1	1	1	1	1
1	1	1	1	0	0	0	0	0	0	0	0

Excitation table for D flip flop

Q	Q+	D
0	0	0
0	1	1
1	0	0
1	1	1

K-Maps

AB

CD 00 01 11 10	CD 00	01	11	10
----------------	-------	----	----	----

\								
	0		0		0		0	
	0		0		1		0	
	1		1			1	1	
	1	-	1			0	1	

$$A(t+1) = BCD + AD^1 + AC^1$$

 $AB \setminus C$

\setminus	CD oo	01	11	10
١.				

\					
	0	0	1	0	
	1	1	0	1	
	1	1	0	1	
	0	0	1	0	

$$B(t+1) = B^{1}CD + BD^{1} + BC^{1}$$

\			
0	1	0	1
0	1	0	1
0	1	0	1
0	1	0	1

$$C(t+1) = CD^1 + C^1 D$$

Shematic capture of the circuit

Seven segment dispalys

How decorders connect with the circuit

PCB design for the design

