A more general setting

Example	$ \begin{array}{c} \mathbf{Prediction} \\ \mathbf{of} \ \mathbf{alg} \ A \end{array} $	Label	$\begin{array}{c} \mathbf{Loss} \\ \mathbf{of} \ \mathbf{alg} \ A \end{array}$
$oldsymbol{x}_1$	\hat{y}_1	y_1	$L(y_1,\hat{y}_1)$
: :	•	•	•
$oldsymbol{x}_t$	\hat{y}_t	y_t	$L(y_t, \hat{y}_t)$
•	•	•	•
$oldsymbol{x}_T$	\hat{y}_T	y_T	$L(y_T,\hat{y}_T)$
	T^{ϵ}	otal Loss	$L_A(S)$

Sequence of examples $S = (\boldsymbol{x}_1, y_1), ..., (\boldsymbol{x}_T, y_T)$

Comparison class $\{u\}$

Relative loss $L_A(S) - \inf_{\{\boldsymbol{u}\}} L_{\boldsymbol{u}}(S)$

Goal: Bound relative loss for arbitrary sequence of examples

Example: Learning Disjunctions of Experts

variables/experts

E_1	E_2	E_3	E_4	$egin{array}{c} true \ label \end{array}$	$E_1 \vee E_3$	$E_3 \vee E_4$
1	1	0	0	0	1	0
1	0	1	0	1	1	1
0	1	1	1	0	1	1
0	1	0	0	1	0	0
$x_{t,1}$	$x_{t,2}$	$x_{t,3}$	$x_{t,4}$		\uparrow	\uparrow
					3	2
				mistakes		

$$E_1 \vee E_3$$
 becomes $u = (1, 0, 1, 0)$

$$E_1 \vee E_3$$
 is one on $\boldsymbol{x}_t \in \{0,1\}^n$ iff $\boldsymbol{u} \cdot \boldsymbol{x}_t \geq 1$

Weighted Majority on k-literal Disjunctions

Do as well as best k out of n literal (monotone) disjunction

Each disjunction is an expert

Keep one weight per disjunction: $\binom{n}{k}$ weights

of mistakes of WM
$$\leq 2.63 \frac{M}{k} + 2.63 \frac{k \ln \frac{n}{k}}{k}$$

M is # of mistakes of best

Time (and space) **exponential** in k

Efficient algorithm have only one weight per literal

The Perceptron Algorithm

In trial t: Get instance $\boldsymbol{x}_t \in \{0,1\}^n$ If $\boldsymbol{w}_t \cdot \boldsymbol{x}_t \geq 1/2$ then $\hat{y}_t = 1$ else $\hat{y}_t = 0$ Get label $y_t \in \{0,1\}$ If mistake then $\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \eta \left(\hat{y}_t - y_t\right) \boldsymbol{x}_t$

k-literal Disjunctions with Perceptron

Perceptron Convergence Theorem $(\eta = \frac{1}{2n})$

of mistakes
$$\leq 4 A + 4 k n$$

where A is # of attribute errors of best disjunction of size k, i.e., the minimum # of attributes that need to be flipped to make the disjunction consistent

$$A \leq kM$$

Lower bound for rotation invariant algorithms:

[KWA]

$$\#\text{mistakes} = \Omega(n)$$

The Winnow Algorithm [L]

In trial
$$t$$
: Get instance $\boldsymbol{x}_t \in \{0,1\}^n$

If
$$\boldsymbol{w}_t \cdot \boldsymbol{x}_t \geq \theta$$
 then $\hat{y}_t = 1$

else
$$\hat{y}_t = 0$$

Get label $y_t \in \{0, 1\}$

If mistake then

$$w_{t+1,i} = w_{t,i} e^{-\eta (\hat{y}_t - y_t) x_{t,i}}$$

Mistake bound
$$(e^{-\eta} = 1/3, \theta = \frac{3 \ln 3}{8})$$

[AW]

of mistakes
$$\leq 4 A + 3.6 k \ln \frac{n}{k}$$

Not rotation invariant!

On-line Linear Regression

For $t = 1, \ldots, T$ do

Get instance $x_t \in \mathbf{R}^n$

Predict $\hat{y}_t = \boldsymbol{w}_t \cdot \boldsymbol{x}_t$

Get label $y_t \in \mathbf{R}$

Incur loss $L_t(\boldsymbol{w}_t) = (y_t - \hat{y}_t)^2$

Update \boldsymbol{w}_t to \boldsymbol{w}_{t+1}

Assume comparison class $\{u\}$ is a set of linear predictors

 $oldsymbol{u} \;:\; oldsymbol{x} o oldsymbol{u} \cdot oldsymbol{x}$

Examples of Updates

Gradient descent

$$(\boldsymbol{w} \in \mathbf{R}^n)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mathbf{\eta} \nabla L_t(\mathbf{w}_t)$$

$$= \mathbf{w}_t - \mathbf{\eta} (\mathbf{w}_t \cdot \mathbf{x}_t - y_t) \mathbf{x}_t$$
[WH]

[KW]

Exponentiated Gradient Algorithm

 $(\boldsymbol{w} \text{ is probability vector})$

$$\boldsymbol{w}_{t+1,i} = w_{t,i} \exp \left[-\frac{\eta}{\eta} \frac{\partial L_t(\boldsymbol{w}_t)}{\partial w_{t,i}} \right] / \text{normalization}$$

Motivation of Updates [KW]

Gradient descent

$$\mathbf{w}_{t+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \left(||\mathbf{w} - \mathbf{w}_t||_2^2 / 2 + \frac{\eta}{\eta} (y_t - \mathbf{w} \cdot \mathbf{x}_t)^2 / 2 \right)$$
$$= \mathbf{w}_t - \frac{\eta}{\eta} (\underbrace{\mathbf{w}_{t+1} \cdot \mathbf{x}_t}_{\approx \mathbf{w}_t \cdot \mathbf{x}_t} - y_t) \mathbf{x}_t$$

Exponentiated Gradient Algorithm

$$\boldsymbol{w}_{t+1} = \operatorname{argmin} \left(\sum_{i=1}^{n} w_{i} \ln \frac{w_{i}}{w_{t,i}} + \boldsymbol{\eta} (y_{t} - \boldsymbol{w} \cdot \boldsymbol{x}_{t})^{2} / 2 \right)$$

$$= w_{t,i} \exp \left[-\boldsymbol{\eta} \left(\underbrace{\boldsymbol{w}_{t+1} \cdot \boldsymbol{x}_{t}}_{\approx \boldsymbol{w}_{t} \cdot \boldsymbol{x}_{t}} - y_{t} \right) x_{t,i} \right] / \text{normalization}$$

Families of update algorithms

name of	update
family	algorithms
Gradient	Widrow Hoff (LMS)
Descent	Linear Least Squares.
	Backpropagation
	Perceptron Algorithms
	kernel based algorithms,
	family Gradient

 $\begin{array}{ccc} \sum_{i=1}^n w_i \ln \frac{w_i}{w_{t,i}} & \text{Exponentiated} & \text{expert algs} \\ & \text{Gradient} & \text{Normalized Winnow} \\ & & \text{Algorithm} & \text{"AdaBoost"} \end{array}$

Families of update algorithms (cont)

parameter "divergence"

name of family

update algorithms

$$\sum_{i=1}^{n} w_i \ln \frac{w_i}{w_{t,i}}$$

Unnormalized

Winnow

$$+w_{t,i}-w_i$$

Exp. Grad. Alg.

$$\sum_{i=1}^{n} w_i \ln \frac{w_i}{w_{t,i}} + (1 - w_i) \ln \frac{1 - w_i}{1 - w_{t,i}}$$

Binary

Exp. Grad. Alg.

any

_ _

"Bregman divergence"

Members of different families exhibit different behavior

Loss bounds

Assume Example Sequence is

$$(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_t, y_t), \dots$$
 where $y_t = \mathbf{u} \cdot \boldsymbol{x}_t$

(the zero-error case)

Gradient Descent:

$$L_{GD}(S) \le \left(\|\mathbf{u}\|_2 \max_t \|\boldsymbol{x}_t\|_2 \right)^2$$

Exponentiated Gradients:

$$L_{EG\pm}(S) \le \left(\|\mathbf{u}\|_1 \max_t \|\boldsymbol{x}_t\|_{\infty} \right)^2 \log(2n)$$

Incomparable Loss bounds

$$L_{GD}(S) \leq \left(\|\mathbf{u}\|_{2} \max_{t} \|\boldsymbol{x}_{t}\|_{2} \right)^{2}$$

$$L_{EG\pm}(S) \leq \left(\|\mathbf{u}\|_{1} \max_{t} \|\boldsymbol{x}_{t}\|_{\infty} \right)^{2} \log(2n)$$

Products of two norms:

Summary of Comparison

- EG better when:
- Instances \boldsymbol{x}_t are dense $(\|\boldsymbol{x}_t\|_{\infty} \ll \|\boldsymbol{x}_t\|_2)$
- best weight vector is sparse $(\|\boldsymbol{u}_t\|_1 \approx \|\boldsymbol{u}_t\|_2)$
- GD better when:
- instances are sparse $(\|\boldsymbol{x}_t\|_{\infty} \approx \|\boldsymbol{x}_t\|_2)$
- best weight vector is dense $(\|\boldsymbol{u}_t\|_2 \ll \|\boldsymbol{u}_t\|_2)$

GD can be exponentially worse than EG