Таблица производных

Правила дифференцирования (правила расчета производной):

- 1. $(u \pm v)' = u' \pm v';$
- 2. $(u \cdot v)' = u' \cdot v + u \cdot v'$, в частности, $(c \cdot u)' = c \cdot u'$;
- 3. $\left(\frac{u}{v}\right)' = \frac{u' \cdot v u \cdot v'}{v^2}$, в частности, $\left(\frac{c}{v}\right)' = -\frac{c \cdot v'}{v^2}$;
- 4. $y'_x = y'_u \cdot u'_x$, если: y = f(u), $u = \varphi(x)$;
- 5. $y_x' = \frac{1}{x_y'}$, если: y = f(x), $x = \varphi(y)$;
- 6. $\left(u^{v}\right)' = u^{v} \cdot \left(v' \cdot \ln u + \frac{v \cdot u'}{u}\right)$ (производная показательно-степенной функции);
- 7. $\left(\log_{v} u\right)' = \left(\frac{\ln u}{\ln v}\right)'$.

Формулы дифференцирования (производные различных функций):

- 1. $(c)' = 0; (c \cdot x)' = c; (x)' = 1;$
- 2. $(u^a)' = a \cdot u^{a-1} \cdot u'$, в частности, $(\sqrt{u})' = \frac{1}{2\sqrt{u}} \cdot u'$;
- 3. $(a^u)' = a^u \cdot \ln a \cdot u'$, в частности, $(e^u)' = e^u \cdot u'$;
- 4. $\left(\log_a u\right)' = \frac{1}{u \cdot \ln a} \cdot u'$, в частности, $\left(\ln u\right)' = \frac{1}{u} \cdot u'$;
- 5. $(\sin u)' = \cos u \cdot u';$
- 6. $(\cos u)' = -\sin u \cdot u';$
- 7. $\left(\operatorname{tg} u\right)' = \frac{1}{\cos^2 u} \cdot u';$
- 8. $\left(\operatorname{ctg} u\right)' = -\frac{1}{\sin^2 u} \cdot u';$
- 9. $(\arcsin u)' = \frac{1}{\sqrt{1-u^2}} \cdot u';$ 11. $(\arctan u)' = \frac{1}{1+u^2} \cdot u';$
- 10. $(\operatorname{arccos} u)' = -\frac{1}{\sqrt{1-u^2}} \cdot u';$ 12. $(\operatorname{arcctg} u)' = -\frac{1}{1+u^2} \cdot u'.$

Производные гиперболических функций:

- 13. $(\operatorname{sh} u)' = \operatorname{ch} u \cdot u'$, где: $\operatorname{sh} u = \frac{e^u e^{-u}}{2}$; $\operatorname{ch} u = \frac{e^u + e^{-u}}{2}$;
- 14. $(\operatorname{ch} u)' = \operatorname{sh} u \cdot u'$;
- 15. $(\operatorname{th} u)' = \frac{1}{\operatorname{ch}^2 u} \cdot u'$, где: $\operatorname{th} u = \frac{\operatorname{sh} u}{\operatorname{ch} u}$;
- 16. $\left(\coth u\right)' = -\frac{1}{\sinh^2 u} \cdot u'$, где: $\coth u = \frac{\cosh u}{\sinh u}$

Таблица интегралов

Формулы интегрирования (интегралы различных функций):

1.
$$\int u^a du = \frac{u^{a+1}}{a+1} + C$$
, при: $a \neq -1$, в частности, $\int du = u + C$;

$$2. \qquad \int \frac{du}{u} = \ln |u| + C;$$

3.
$$\int a^u du = \frac{a^u}{\ln a} + C$$
, при: $a > 0$;

$$4. \qquad \int e^u du = e^u + C \; ;$$

$$5. \qquad \int \sin u \cdot du = -\cos u + C \,;$$

6.
$$\int \cos u \cdot du = \sin u + C ;$$

7.
$$\int \operatorname{tg} u \cdot du = -\ln|\cos u| + C;$$

8.
$$\int \operatorname{ctg} u \cdot du = \ln |\sin u| + C;$$

9.
$$\int \frac{du}{\cos^2 u} = \operatorname{tg} u + C ;$$

10.
$$\int \frac{du}{\sin^2 u} = -\operatorname{ctg} u + C ;$$

11.
$$\int \frac{du}{\sin u} = \ln \left| \operatorname{tg} \frac{u}{2} \right| + C;$$

12.
$$\int \frac{du}{\cos u} = \ln \left| \operatorname{tg} \left(\frac{u}{2} + \frac{\pi}{4} \right) \right| + C;$$

13.
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$
, при: $a > 0$;

14.
$$\int \frac{du}{\sqrt{u^2 \pm a^2}} = \ln \left| u + \sqrt{u^2 \pm a^2} \right| + C;$$

15.
$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \cdot \operatorname{arctg} \frac{u}{a} + C , \text{ при: } a > 0;$$

16.
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \cdot \ln \left| \frac{a + u}{a - u} \right| + C, \text{ при: } a > 0;$$

17.
$$\int \sqrt{a^2 - u^2} \, du = \frac{u}{2} \cdot \sqrt{a^2 - u^2} + \frac{a^2}{2} \cdot \arcsin \frac{u}{a} + C, \text{ при: } a > 0;$$

18.
$$\int \sqrt{u^2 \pm a^2} \, du = \frac{u}{2} \cdot \sqrt{u^2 \pm a^2} \pm \frac{a^2}{2} \cdot \ln \left| u + \sqrt{u^2 \pm a^2} \right| + C.$$

Интегралы простейших правильных рациональных дробей:

I.
$$\int \frac{A}{x-a} dx = A \cdot \ln|x-a| + C;$$

II.
$$\int \frac{A}{(x-a)^n} dx = \frac{A}{(1-n)(x-a)^{n-1}} + C;$$

III.
$$\int \frac{Ax+B}{x^2+px+q} dx = \frac{A}{2} \cdot \ln \left| x^2+px+q \right| + \frac{\left(B-\frac{Ap}{2}\right)}{\sqrt{q-\frac{p^2}{4}}} \cdot \arctan \frac{x+\frac{p}{2}}{\sqrt{q-\frac{p^2}{4}}} + C \text{, при: } p^2-4q < 0.$$

Интегралы гиперболических функций:

1.
$$\int \operatorname{sh} u \cdot du = \operatorname{ch} u + C;$$

$$2. \qquad \int \operatorname{ch} u \cdot du = \operatorname{sh} u + C \; ;$$

$$3. \qquad \int \frac{du}{\cosh^2 u} = \tanh u + C \; ;$$

4.
$$\int \frac{du}{\sinh^2 u} = -\coth u + C.$$

Правило интегрирования по частям:

$$\int u \cdot dv = u \cdot v - \int v \cdot du$$

Основные свойства интеграла:

1.
$$\int F'(x)dx = F(x) + C;$$

2.
$$\left(\int f(x)dx\right)' = f(x);$$

3.
$$\int a \cdot f(x) dx = a \cdot \int f(x) dx;$$

4.
$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx.$$