

WCP: Worst-Case Perturbations for Semisupervised Deep Learning

Liheng Zhang¹ Guo-Jun Qi^{1, 2}

¹Laboratory of Machine Perception and Learning (MAPLE) ²Futurewei Technologies

Outline

Previous methods: Sample-based robustness

- Worst-Case Perturbations: Model-based robustness
 - ➤ Additive perturbations on model weights
 - ➤ DropConnect Perturbations on model architecture
- Experiments
- Conclusion

Model-based robustness vs. Sample-based robustness

Model robustness

Sample-based robustness (π model, temporal ensembling, mean teacher, VAT, etc.)

Previous methods: Sample-based robustness

- Explore unlabeled data via label invariance against perturbations on data
 - Augmentation

noise

- Random noise (e.g. π model, temporal ensembling, mean teacher, etc.)
- Adversarial noise (e.g. VAT)

Worst-Case Perturbations: Model-based robustness

- Model-based robustness: Invariance against perturbations on model
 - Worst perturbations on model weights (Additive perturbations)
 - Worst perturbations on model architecture (DropConnect perturbations)

 $\Omega_{\theta} = max_{g \sim G} E_{x \sim D} l(f_{\theta}(x), f_{g(\theta)}(x))$

Perturbations on model weights

Additive perturbation

$$g(\theta) = \theta + \delta$$
, with noise $||\delta|| < \epsilon$

$$f_{\theta+\delta^*}$$
 $\Omega_{\theta}^{add} = E_{x\sim D}l(f_{\theta}(x), f_{\theta+\delta^*}(x))$

Derivation of δ^*

We assume:

- l(y,z) = 0 when y = z
- $l(y,z) \ge 0$, i.e., its minimal value is zero
- l(y, z) is at least twice differentiable
- Taking the Taylor expansion

$$\Omega_{\theta}^{add} = \max_{||\delta|| < \epsilon} E_{x \sim D} l(f_{\theta}(x), f_{\theta + \delta}(x))$$

$$\approx \max_{||\delta|| < \epsilon} E_{x \sim D} \frac{1}{2} \delta^{T} S_{\theta} \delta$$

where
$$S_{\theta} = E_{x \sim D} \nabla^2 l(f_{\theta}(x), f_{\theta + \delta}(x))|_{\delta = 0}$$

• Optimal $\delta^* = \epsilon u_{\theta}$, where u_{θ} is the singular vector of the largest singular value of S_{θ} , it can be efficiently computed by power iteration.

A sigmoid example: connection with max margin

Perturbations on model architecture

DropConnect perturbation

$$g(\theta) = (1 - \alpha) \cdot \theta$$
, with $G_{\alpha} = \{\alpha | \alpha \in \{0,1\}^N, ||\alpha||_0 = [\sigma N]\}$

Derivation of α^*

Taking the Taylor expansion

$$\alpha^* = argmax_{\alpha \in G_{\alpha}} E_{x \sim D} l\left(f_{\theta}(x), f_{(1-\alpha) \cdot \theta}(x)\right)$$

$$\approx argmax_{\alpha \in G_{\alpha}} \frac{1}{2} \alpha^T Q_{\theta} \alpha$$

where
$$Q_{\theta} = E_{x \sim D} \nabla^2 l \left(f_{\theta}(x), f_{(1-\alpha) \cdot \theta}(x) \right) |_{\alpha=0}$$

• We can get α^* through solving the constraint Binary Quadratic Programming (BQP) problem by spectral method. (See details in the paper.)

Integrating Additive and DropConnect

Perturbation function

• Semi-supervised objective: $min_{\theta}E_{(x,y)\sim T}\varepsilon_{\theta}(x,y) + \gamma\Omega_{\theta}$

CIFAR-10 Experiments

Error rate over 10 runs with the same 13-layer architecture

Method	1000 labels	2000 labels	4000 labels	
GAN			18.63 ± 2.32	
π model		12.3		
Temporal Ensembling			12.16 ± 0.31	
VAT			11.36	
VAT+EntMin			10.55	
Supervised-only	46.43 ± 1.21	33.96± 0.73	20.66 ± 0.57	
π model	27.26 ± 1.20	18.02 ± 0.60	13.20 ± 0.27	
Mean Teacher	21.55 ± 1.48	15.73 ± 0.31	12.31 ± 0.28	
The proposed WCP	17.62 ± 1.52	11.93 ± 0.39	9.72 ± 0.31	

SVHN Experiments

Error rate over 10 runs with the same 13-layer architecture

Method	250 labels	500 labels	1000 labels	
GAN		18.44 ± 4.8	8.11 ± 11.3	
π model		6.65 ± 0.53	4.82 ± 0.17	
Temporal Ensembling		5.12 ± 0.13	4.42 ± 0.16	
VAT			5.42	
VAT+EntMin			3.86	
Supervised-only	27.77 ± 3.18	16.88± 1.30	12.32 ± 0.95	
π model	9.69 ± 0.92	6.83 ± 0.66	4.95 ± 0.26	
Mean Teacher	4.35 ± 0.50	4.18 ± 0.27	3.95 ± 0.19	
The proposed WCP	4.29 ± 0.10	3.75 ± 0.11	3.58 ± 0.186	

Ablation Study

Impact of different model components (CIFAR-10 with 4000 labels)

Components			
Additive Perturbation	٧	V	V
DropConnect Perturbation		V	V
Entropy Minimization (EntMin)			V
Error rate	10.15	9.85	9.51

DropConnect on different layers

DropConnect	Error rate
1 st layer	9.77
2 nd layer	9.51
3 rd layer	10.08

DropConnect ratio

ratio	0.1	0.2	0.3	0.4	0.5	0.7
Error rate	9.81	9.51	9.66	9.78	9.92	10.26

Conclusion

Model-based robustness vs. sample-based robustness
 WCP previous methods

- We introduce two forms of WCP regularizations:
 - Additive perturbations on model weights
 - DropConnect perturbations on model architecture

• Experiments demonstrate the WCP outperforms many state-of-theart models in literature.

Thanks!

Code is released at:

https://github.com/maple-research-lab/WCP

