	Teste de Matemática A
	2021 / 2022
Teste N.º 3	
Matemática A	
Duração do Teste: 90 minutos	
11.º Ano de Escolaridade	
Nome do aluno:	N.º: Turma:
Utilize apenas caneta ou esferográfica de tinta a	azul ou prota
Não é permitido o uso de corretor. Risque aquil	·
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cada iten	n.
As cotações dos itens encontram-se no final do	enunciado.

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

1. Considere a expressão $A(\beta) = \frac{\cos^2 \beta}{1-\sin \beta}$.

Para todo o β onde a igualdade tem significado, podemos concluir que $A(\beta)$ é igual a:

- **(A)** sen β
- **(B)** $1 + \text{sen } \beta$
- **(C)** cos β
 - **(D)** $1 + \cos \beta$

2. Seja f a função, de domínio $\left]-\frac{\pi}{2},+\infty\right[$, definida por:

$$f(x) = \begin{cases} \operatorname{tg} x \operatorname{sen} x & \operatorname{se} -\frac{\pi}{2} < x \le 0 \\ 2 \operatorname{sen} x + 1 & \operatorname{se} x > 0 \end{cases}$$

O argumento da função está expresso em radianos.

- **2.1.** Em qual das opções se encontra o conjunto dos zeros da função f no intervalo $\left]-\frac{\pi}{2}$, $2\pi\right]$?
 - **(A)** $\left\{-\frac{5\pi}{6}, -\frac{\pi}{6}, 0\right\}$
 - **(B)** $\left\{0, \frac{7\pi}{6}, \frac{11\pi}{6}\right\}$
 - (C) $\left\{-\frac{5\pi}{6}, -\frac{\pi}{6}, 0, \pi\right\}$
 - **(D)** $\left\{0, \ \pi, \ \frac{7\pi}{6}, \ \frac{11\pi}{6}\right\}$
- **2.2.** Considere a representação gráfica da função f no intervalo $\left]-\frac{\pi}{2}$, $2\pi\right]$.

Sabe-se que:

- no primeiro quadrante o gráfico da função f interseta a bissetriz dos quadrantes ímpares num único ponto – seja A esse ponto;
- no segundo quadrante o gráfico da função f interseta a bissetriz dos quadrantes pares num único ponto – seja B esse ponto;

Qual é a distância entre os pontos A e B?

Resolva esta questão recorrendo às capacidades gráficas da sua calculadora.

Na sua resposta, deve:

- reproduzir, num referencial, o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificado(s);
- indicar as coordenadas dos pontos A e B, com aproximação às centésimas;
- apresentar o valor pedido, com aproximação às décimas.

3. Na figura estão representados, num referencial ortonormado Oxy, uma circunferência, a reta t tangente à circunferência e o triângulo [ABC].

Sabe-se que:

• a circunferência tem centro \mathcal{C} e pode ser definida pela condição $x^2 + y^2 - 6y = 0$;

- o ponto A pertence à circunferência, encontra-se no 1.º
 quadrante e tem ordenada 4;
- a reta t é tangente à circunferência no ponto A;
- o ponto B é o ponto de interseção da reta t com o eixo das abcissas.
- **3.1.** Determine a inclinação da reta t. Apresente o resultado em graus, com aproximação às décimas.
- **3.2.** Determine o valor exato da área do triângulo [ABC]. Apresente o resultado na forma $\frac{a\sqrt{b}}{c}$, $a,b,c \in \mathbb{N}$.
- 4. Na figura está representado, num referencial o.n. Oxyz, o cubo [ABCDEFGH] (o ponto C não está representado na figura).
 Sabe-se que:

- o ponto *B* tem coordenadas (8, 5, 0);
- o ponto D tem coordenadas (5, -3, 5);
- o ponto *E* tem coordenadas (13, 2, 8).
- **4.1.** Defina o plano ABE por uma equação cartesiana.
- **4.2.** Defina a reta AC por uma equação vetorial.
- **4.3.** Qual das condições seguintes define a superfície esférica que passa nos oito vértices do cubo?

(A)
$$\left(x + \frac{15}{2}\right)^2 + \left(y + \frac{5}{2}\right)^2 + \left(z + \frac{11}{2}\right)^2 = \frac{147}{4}$$

(B)
$$\left(x + \frac{15}{2}\right)^2 + \left(y + \frac{5}{2}\right)^2 + \left(z + \frac{11}{2}\right)^2 = \frac{\sqrt{147}}{2}$$

(C)
$$\left(x - \frac{15}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 + \left(z - \frac{11}{2}\right)^2 = \frac{147}{4}$$

(D)
$$\left(x - \frac{15}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 + \left(z - \frac{11}{2}\right)^2 = \frac{\sqrt{147}}{2}$$

4.4. Seja α o plano que contém a origem do referencial e é perpendicular à reta OE e seja P o ponto de interseção do plano α com a reta BF. Determine a distância do ponto P ao plano xOy. Apresente o resultado na forma de dízima.

5. Considere, num referencial o.n. 0xy, a reta r de equação $y = \frac{1}{3}x + 1$.

Seja α a inclinação da reta r, em radianos.

Qual é o valor de $tg(2022\pi + \alpha) + cos^2(2021\pi + \alpha)$?

(A) $\frac{37}{30}$

- (B) $\frac{13}{9}$ (C) $-\frac{17}{30}$ (D) $-\frac{7}{9}$

6. Considere as sucessões (u_n) e (v_n) definidas por:

$$u_n = \begin{cases} n & \text{se } n \le 2022 \\ -1 & \text{se } n > 2022 \end{cases}$$

$$e \quad v_n = \frac{(-1)^n}{n}$$

e
$$v_n = \frac{(-1)^n}{n}$$

Qual das afirmações seguintes é verdadeira?

- (A) Ambas as sucessões são limitadas.
- (B) Ambas as sucessões são não limitadas.
- (C) Apenas a sucessão (u_n) é limitada.
- **(D)** Apenas a sucessão (v_n) é limitada.
- 7. Considere duas progressões, uma aritmética e uma geométrica, das quais se sabe que:
 - o primeiro termo da progressão aritmética é igual ao primeiro termo da progressão geométrica;
 - a razão da progressão geométrica é 2;
 - a soma dos quatro primeiros termos da progressão aritmética é igual a 75;
 - a soma dos quatro primeiros termos da progressão geométrica é também igual a 75. Determine a razão da progressão aritmética.

- FIM -

COTAÇÕES

Item												
Cotação (em pontos)												
1.	2.1.	2.2.	3.1.	3.2.	4.1.	4.2.	4.3.	4.4.	5.	6.	7.	
10	10	25	20	20	20	20	10	25	10	10	20	200