Here are short, structured descriptions for each of the 12 experiments, including what they are, how they work, and their use cases: ### 1. **Noise Removal Using Mean and Gaussian Filters** * **Definition**: Techniques to smooth images by reducing noise. * **How it Works**: Mean filter replaces each pixel with the average of neighboring pixels; Gaussian filter does similar but gives higher weight to central pixels using a Gaussian kernel. * **Use Case**: Denoising images in photography, medical imaging, and preprocessing before edge detection. ### 2. **Histogram Equalization for Contrast Enhancement** * **Definition**: A method to enhance the global contrast of images. * **How it Works**: Redistributes image intensity values to span the full intensity range, making dark areas darker and bright areas brighter. * **Use Case**: Enhancing images in poor lighting, improving visibility in satellite and medical images. ### 3. **Image Segmentation Using Thresholding Techniques** * **Definition**: Dividing an image into regions based on intensity levels. * **How it Works**: Pixels are grouped into classes based on a threshold value; methods include global, adaptive, and Otsu thresholding. * **Use Case**: Object detection, medical image analysis, and machine vision. ### 4. **Edge Detection Using Sobel, Prewitt, and Canny Operators** * **Definition**: Identifying boundaries within images. * **How it Works**: Sobel and Prewitt use gradient masks to detect edges; Canny adds noise filtering, gradient calculation, and edge tracking by hysteresis. * **Use Case**: Feature extraction, object recognition, and computer vision. ### 5. **Character Segmentation from an Image** * **Definition**: Separating individual characters in a text-containing image. * **How it Works**: Involves binarization, noise removal, and connected component analysis to isolate characters. * **Use Case**: Optical character recognition (OCR), license plate recognition, document digitization. ### 6. **Object Counting and Measurement in 'rice.tif' Image** * **Definition**: Identifying and counting objects in an image. * **How it Works**: Binarization followed by morphological operations and labeling algorithms to detect individual grains. * **Use Case**: Quality control in agriculture, industrial inspection.

7. **Image Convolution Using a 3x3 Mask**

```
* **Definition**: A filtering operation for feature extraction or enhancement.
* **How it Works**: A 3×3 kernel (mask) is slid over the image to apply
transformations such as sharpening or blurring.
* **Use Case**: Edge detection, noise reduction, texture analysis.
### 8. **Speech-to-Text Conversion Using Google Speech Recognition API**
* **Definition**: Converting spoken words into written text.
* **How it Works**: Audio input is processed via Google's cloud service which
uses neural network-based acoustic and language models.
* **Use Case**: Voice assistants, automated transcription, accessibility tools.
- - -
### 9. **Comparative Analysis of Speech Feature Extraction Techniques (MFCC,
PLP, LPC)**
* **Definition**: Methods to extract distinguishing features from speech
signals.
* **How it Works**:
  * **MFCC**: Captures human hearing characteristics using Mel scale and DCT.
  * **PLP**: Enhances MFCC using psychoacoustic models.
  * **LPC**: Models vocal tract using linear predictive coding.
* **Use Case**: Speech recognition, speaker identification, audio
classification.
### 10. **Implementation of Real-Time Continuous Speech Recognition System Using
VAD and Google API**
* **Definition**: Live transcription of speech using voice activity detection
(VAD).
 **How it Works**: VAD detects speech segments, which are sent to Google API
for transcription.
* **Use Case**: Real-time voice control, live captioning, AI assistants.
### 11. **Evaluation and Comparison of Pitch Estimation Algorithms (YIN, PYIN,
CREPE, SWIPE) **
* **Definition**: Techniques for estimating the pitch of a speech or musical
signal.
* **How it Works**:
  * **YIN/PYIN**: Autocorrelation-based; PYIN uses probabilistic models.
  * **CREPE**: Deep learning-based.
  * **SWIPE**: Frequency domain harmonic matching.
* **Use Case**: Music analysis, voice tone analysis, speech synthesis.
### 12. **Text-Dependent Speaker Identification Using MFCC and Cosine Similarity
with GMM**
* **Definition**: Identifying a speaker from a specific phrase.
* **How it Works**: Extract MFCC features and compare them using cosine
similarity and Gaussian Mixture Models.
```

* **Use Case**: Voice biometrics, access control, personalized AI responses.