Tumour Presence Prediction using Machine Learning and Data Science

June 2018

Project by: Vanshika Somnath

Table of Contents

Introduction	1
Elements of Code	2
Process/Steps	3
Kinds of ML Models Used	4
Results of model	5
Scope and Research	· 7
Appendix	8
Sources/Tools used	13

Introduction

Tumour:

- Also called malignancy, cancer, sarcoma
- Swelling of a part of body caused by abnormal growth of tissue.
- Human body contains trillions of cells, it can occur anywhere.

Machine Learning and Data Science for Tumours

- Also called malignancy, cancer, sarcoma
- Swelling of a part of body caused by abnormal growth of tissue.
- Human body contains trillions of cells, it can occur anywhere.

Elements of the Code

Libraries Used:

- numpy Numerical Python
- pandas Panel Datasets
- matplotlib
- sklearn.preprocessing
- seaborn
- sklearn.cross_validation
- sklearn.linear_model
- sklearn.neighbors
- sklearn.tree
- sklearn.svm
- sklearn.ensemble

Major Functions Used:

- dataset.head()
- dataset.info()
- dataset.keys()
- dataset.describe()
- dataset.corr()
- dataset.drop()
- plt.figure(figsize(x,y))
- plt.boxplot()
- plt.title()
- plt.show()
- x train.shape, y train.shape, x test.shape, y test.shape
- x.shape, y.shape
- sns.heatmap()
- dataset.dropna()

Process/Steps

Kinds of ML Models Used:

K Nearest Neighbours

Support Vector Machine

Decision Tree

Random Forest

In the built ML model, the accuracy of the above mentioned models are as follows:

- Logistic Regression: 46%
- K Nearest Neighbours: 65%
- Support Vector Machines: 72%
- Decision Tree: 72%
- Random Forest: 73%

Hence, the highest accuracy is for Random Forest (from the classification report)

4

Results of the model

********	******Class	ificatio	n Report***	******	****
	=====Logis	tic Regr	ession=====		
рі	recision	recall	f1-score	support	
1	0.00	0.00	0.00	55	
2	0.68	1.00	0.81	115	
avg / total	0.46	0.68	0.55	170	
	=====K Near	rest Nei	ghbor=====		==
рі	recision	recall	f1-score	support	
1	0.49	0.33	0.39	55	
2	0.72	0.83	0.77	115	
avg / total	0.65	0.67	0.65	170	
	======Su	ipport Ve	ctor Machin	0e======	
	precision	reca	ll f1-scor	re support	
	0.54	0.	62 0.5	8 55	
	0.80	0.	75 0.7	77 115	
avg / tota	0.72	0.	71 0.7	170	
========	=====De	sicion T	ree======		
	precision	reca	ll f1-scor	re support	
1	0.54	0.	62 0.5	58 55	
-	0.80	0.	75 0.7	77 115	
avg / tota	0.72	0.	71 0.7	170	
	======Ra	ndom For	est=====		
	precision	reca	ll f1-scor	re support	
	0.56	0.	62 0.5	59 55	
;	0.81	0.	77 0.7	9 115	
avg / total	0.73	0.	72 0.7	72 170	

Results of the model

Correlation Heatmap

Scope and Research

- ❖ Deep Learning plays a vital role in the early detection of cancer. A study published by NVIDIA showed that deep learning drops error rate for breast cancer diagnoses by 85%.
- ❖ Deep learning has shown capabilities in achieving higher diagnostic accuracy results in comparison to many domain experts.
- Machine Learning alone cannot detect cancerous tumours at an early stage. Deep learning needs to be applied.
- ❖ Given dataset has been analysed and predictive machine learning model has been developed for the most likely part of body to be affected by the tumour cells.

Appendix

Python Code for the machine learning model:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
dataset =
pd.read_csv('C:/Users/Som/Desktop/Project/tumor.data
'<sub>1</sub>header=None)
dataset.head()
dataset.columns = ['Class','Age','Sex','Histological
Type','Degree','Bone','Bone
Marrow', 'Lung', 'Pleura', 'Peritoneum', 'Liver', 'Brain'
'Skin'''Neck'''Supraclavicular'''Axillar'''Mediasti
num' 1'Abdominal']
dataset.head()
dataset.info()
dataset = dataset.dropna(axis=1)
dataset.head()
dataset = dataset.drop('Histological Type',1)
dataset.head()
dataset = dataset.drop('Age',1)
dataset.head()
dataset = dataset.dropna(axis=0)
dataset.head()
```

```
from sklearn preprocessing import
LabelEncoder
le = LabelEncoder()
dataset['Class'] =
le.fit_transform(dataset['Class'])
dataset.head()
dataset.describe()
dataset.corr()
X = dataset.iloc[:\doc[:\doc[].values #
independent
y = dataset.iloc[:,-l].values # dependent
X.shape, y.shape
col = dataset.keys()
col
import seaborn as sns
corr = dataset.corr()
plt.figure(figsize=(10,10))
sns.heatmap(corrannot=Trueacmap='viridis
")
plt.show()
```

```
from sklearn.cross_validation import train_test_split
train_test_split(X<sub>1</sub>y<sub>1</sub>test_size=0.5<sub>1</sub>random_state = 0)
x_train.shape, x_test.shape, y_train.shape,y_test.shape
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
model_log = LogisticRegression (C=10.0)
model_knn = KNeighborsClassifier(n_neighbors = 3)
model_svm = SVC(C=10.0,kernel='rbf')
model dt = DecisionTreeClassifier()
model_rf = RandomForestClassifier()
model_log.fit(x_train_y_train)
model_knn.fit(x_train,y_train)
model_svm.fit(x_train_y_train)
model_dt.fit(x_train_y_train)
model_rf.fit(x_train,y_train)
y_pred_log = model_log.predict(x_test)
y_pred_knn = model_knn.predict(x_test)
y_pred_svm = model_svm.predict(x_test)
y_pred_dt = model_dt.predict(x_test)
y_pred_rf = model_rf.predict(x_test)
from sklearn.metrics import confusion_matrix,
classification_report
cm_log = confusion_matrix(y_test_y_pred_log)
cm_knn = confusion_matrix(y_test<sub>1</sub>y_pred_knn)
cm_svm = confusion_matrix(y_test<sub>1</sub>y_pred_svm)
cm_dt = confusion_matrix(y_test_y_pred_dt)
cm_rf = confusion_matrix(y_test_y_pred_rf)
```

```
import seaborn as sns
plt.figure(figsize=(9,9))
sns heatmap(cm_log annot=True cmap='summer')
plt.title('Logistic Regression')
plt.show()
plt.figure(figsize=(9,9))
sns.heatmap(cm_knn_annot=True_cmap='magma')
plt.title('K Nearest Neighbors')
plt.show()
plt.figure(figsize=(9,9))
sns.heatmap(cm_svm_annot=True_cmap='plasma')
plt.title('SVM')
plt.show()
plt.figure(figsize=(9,9))
sns heatmap(cm_dt annot=True cmap='inferno')
plt.title('Decision Tree')
plt.show()
plt.figure(figsize=(9,9))
sns.heatmap(cm_rf annot=True cmap='PuRd')
plt.title('Random Forest')
plt.show()
```

```
print('\n'+"*"*20+ 'Classification Report'+
"*"*20+'\n')
cr_log =
classification_report(y_test_v_pred_log)
print('\n'+"="*20+ 'Logistic Regression'+
"="*20+'\n')
print(cr log)
cr_knn =
classification_report(y_test;y_pred_knn)
print('\n'+"="*20+ 'K Nearest Neighbor'+
"="*20+'\n')
print(cr knn)
cr_svm =
classification_report(y_test<sub>1</sub>y_pred_svm)
print('\n'+"="*20+ 'Support Vector Machine'+
"="*20+'\n')
print(cr_svm)
cr_dt =
classification_report(y_test<sub>1</sub>y_pred_dt)
print('\n'+"="*20+ 'Desicion Tree'+
"="*20+'\n')
print(cr_dt)
cr rf=
classification_report(y_test<sub>1</sub>y_pred_rf)
print('\n'+"="*20+ 'Random Forest'+
"="*20+'\n')
print(cr_rf)
```

Sources

- ✓ UCI Machine Learning Repository
- ✓ University Medical Centre, Institute of Oncology, Yugoslavia

Tools Used

- ✓ Python
- ✓ Jupyter Notebook

Project by

Vanshika | vanshika.anumula@gmail.com

Somnath | ss.som1997@gmail.com