Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N2

«Численное решение третьей краевой задачи для стационарного уравнения теплопроводности с непрерывными коэффицентами. Метод прогонки.»

Выполнил: студент 305 группы Татосьян В. Г.

Преподаватель: Есикова Н. Б.

Содержание

Постановка задачи	2
Аналитическое решение задачи	3
Численное решение задачи	3
Пример работы программы	4
Исходный код	8

Постановка задачи

• Найти решение обыкновенного дифференциального уравнения второго порядка с непрерывными коэффицентами, с двумя краевыми условиями третьего рода с точностью $\varepsilon=0.01$:

жего рожи в то посты о обот
$$\frac{d}{dx}[k(x)\frac{du}{dx}]-q(x)u=-f(x); 0< x<1; k(x)\geq c_1>0; q(x)\geq 0$$
 Краевые условия: $k(0)u'(0)=\beta_1u(0)+\mu_1$ $-k(1)u'(1)=\beta_2u(1)+\mu_2$ где $\beta_1,\beta_2\geq 0; \beta_1+\beta_2>0; q(x),k(x),f(x)$ —непрерывные функции

• Для моего варианта:

$$k(x) = x^2 + 1; q(x) = x; f(x) = e^{-x};$$

 $\beta_1 = 0; \beta_2 = 1; \mu_1 = 0; \mu_2 = 0; \varepsilon = 0.01$

- Реализация конечно-разностной схемы второго порядка апроксимации для решения данной задачи.
- \bullet Значение шага h для разностной схемы выбрать изходя из требований к точности решения. Решение разностной задачи искать методом прогонки.
- Для оценки погрешности решения краевой задачи воспользоваться правилом Рунге.

Аналитическое решение задачи

Решаем модельную задачу: $\bar{k} = k(0.5); \bar{q} = q(0.5); \bar{f} = f(0.5)$

Решение u(x) обыкновенного диффернциального уравнения второго порядка выглядит следующим образом:

$$u(x) = C_1 e^{\sqrt{\frac{q}{k}}x} + C_2 e^{-\sqrt{\frac{q}{k}}x} + \frac{f}{g}$$

Вычисляя производную:

$$u(x) = C_{1} \frac{q}{k} e^{\sqrt{\frac{q}{k}}x} - C_{2} \frac{q}{k} e^{-\sqrt{\frac{q}{k}}x}$$

И подставляя краевые условия:

$$ku'(0) = 0$$

$$-ku'(1) = u(1)$$

Получим:

$$C_1 = C_2 = C = \frac{f}{q((\sqrt{kq} - 1)e^{-\sqrt{\frac{q}{k}}} - (\sqrt{kq} + 1)e^{\sqrt{\frac{q}{k}}})}$$

Численное решение задачи

Для численного решения задачи введем равномерную сетку ω .

$$\omega = \{x_i = ih | i = [0, N], h = \frac{1}{N}\}$$

Заменим производную второго порядка конечно-разностным отношением вида: $\frac{d}{dx}(k(x)\frac{du}{dx}) = \frac{k(\frac{x_{i+1}-x_i}{h})-k(\frac{x_{i}-x_{i-1}}{h})}{h}$ Получим уравнение приближающее дифференциальное уравнение в узле: $k(x)\frac{y(x_{i+1})-2y(x_{i})+y(x_{i-1})}{h^2}-q(x)y(x_{i})=-f(x)$ при $x\in(0,1)$

$$\frac{d}{dx}(k(x)\frac{du}{dx}) = \frac{k(\frac{x_{i+1}-x_i}{h})-k(\frac{x_i-x_{i-1}}{h})}{h}$$

$$k(x) \frac{y(x_{i+1}) - 2y(x_i) + y(x_{i-1})}{h^2} - q(x)y(x_i) = -f(x)$$
 при $x \in (0,1)$

Далее решаем систему линейных уравнений методом прогонки.

Пример работы программы

i	x_i	$u(x_i)$	$y(x_i)$	delta
0	0	0.516205	0.516205	9.53146e-08
10	0.05	0.515857	0.515857	9.56527e-08
20	0.1	0.514811	0.514811	9.66675e-08
30	0.15	0.513067	0.513067	9.8361e-08
40	0.2	0.510623	0.510623	1.00736e-07
50	0.25	0.507476	0.507476	1.03798e-07
60	0.3	0.503624	0.503624	1.07551e-07
70	0.35	0.499062	0.499062	1.12003e-07
80	0.4	0.493786	0.493787	1.17163e-07
90	0.45	0.487791	0.487791	1.23039e-07
100	0.5	0.481071	0.481071	1.29642e-07
110	0.55	0.473618	0.473619	1.36986e-07
120	0.6	0.465426	0.465427	1.45082e-07
130	0.65	0.456487	0.456487	1.53947e-07
140	0.7	0.44679	0.446791	1.63596e-07
150	0.75	0.436328	0.436328	1.74048e-07
160	0.8	0.425088	0.425088	1.85321e-07
170	0.85	0.413061	0.413061	1.97436e-07
180	0.9	0.400233	0.400233	2.10416e-07
190	0.95	0.386593	0.386593	2.24283e-07
200	1	0.372126	0.372126	2.39063e-07

Таблица 1: Значения аналитического решения u(x) и численного y(x) для модельной задачи при N=100

i	x_i	$u(x_i)$	$y(x_i)$	delta
0	0	0.516205	0.516205	9.56265e-10
100	0.05	0.515857	0.515857	9.59655e-10
200	0.1	0.514811	0.514811	9.69796e-10
300	0.15	0.513067	0.513067	9.86705e-10
400	0.2	0.510623	0.510623	1.0104e-09
500	0.25	0.507476	0.507476	1.04094e-09
600	0.3	0.503624	0.503624	1.07836e-09
700	0.35	0.499062	0.499062	1.12278e-09
800	0.4	0.493786	0.493786	1.17425e-09
900	0.45	0.487791	0.487791	1.23292e-09
1000	0.5	0.481071	0.481071	1.29889e-09
1100	0.55	0.473618	0.473618	1.37222e-09
1200	0.6	0.465426	0.465426	1.45305e-09
1300	0.65	0.456487	0.456487	1.54154e-09
1400	0.7	0.44679	0.44679	1.63783e-09
1500	0.75	0.436328	0.436328	1.74214e-09
1600	0.8	0.425088	0.425088	1.8547e-09
1700	0.85	0.413061	0.413061	1.97572e-09
1800	0.9	0.400233	0.400233	2.1054e-09
1900	0.95	0.386593	0.386593	2.244e-09
2000	1	0.372126	0.372126	2.39174e-09
1	1	1	0	

Таблица 2: Значения аналитического решения u(x) и численного y(x) для модельной задачи при N=1000

i	x_i	$y(x_i)$
0	0	0.600579
10	0.05	0.599363
20	0.1	0.595864
30	0.15	0.590319
40	0.2	0.582982
50	0.25	0.574114
60	0.3	0.563975
70	0.35	0.552818
80	0.4	0.540882
90	0.45	0.528388
100	0.5	0.515537
110	0.55	0.502505
120	0.6	0.489446
130	0.65	0.476491
140	0.7	0.463748
150	0.75	0.451308
160	0.8	0.439242
170	0.85	0.427603
180	0.9	0.416433
190	0.95	0.405762
200	1	0.395609

Таблица 3: Значения численного y(x) для общей задачипри N=100

i	x_i	$y(x_i)$
0	0	0.600574
100	0.05	0.599359
200	0.1	0.59586
300	0.15	0.590316
400	0.2	0.582979
500	0.25	0.574111
600	0.3	0.563972
700	0.35	0.552815
800	0.4	0.540879
900	0.45	0.528386
1000	0.5	0.515535
1100	0.55	0.502503
1200	0.6	0.489444
1300	0.65	0.476489
1400	0.7	0.463747
1500	0.75	0.451307
1600	0.8	0.43924
1700	0.85	0.427601
1800	0.9	0.416432
1900	0.95	0.405761
2000	1	0.395608

Таблица 4: Значения численного y(x) для общей задачипри N=1000

Исходный код

```
1 #include <iostream>
2 #include <cmath>
5 double estimationError (double * u, double * y, int N);
6 void realSolv(double * u, int N, double x0);
  void sweepMethod(double * y, int N, double x0);
8 void generalProblem(int N);
  void modelProblem(int N);
10
11
  int main() {
12
      int N, model;
13
      std::cout << "Hello!" << std::endl;
15
      std::cout << "Please, choose which problem we will solve: model - 0, general - 1."
      std::cin >> model;
17
      std::cout << "Please, enter N: ";
18
      std :: cin >> N;
19
20
      if (model = 0) {
21
           modelProblem(N);
      } else if (model == 1) {
23
           generalProblem(N);
24
      } else {
25
           std::cout << "When entering the first digit, choose between 0 and 1!\n
               Please, restart program!" << std::endl;
27
28
29
      return 0;
30
31
32
33
  double estimationError(double * y2, double * y, int N) {
34
      double res;
35
36
      N = N / 2;
37
      for (int i = 0; i < N + 1; i++) {
39
           if (res < abs(y[2 * i] - y2[i]) / 3) {
40
               res = abs(y[2 * i] - y2[i]) / 3;
41
           }
42
      }
43
44
      return res;
45
46
47
48
  void realSolv(double * u, int N, double x0) {
      double * x;
50
      double h = 1.0 / N;
52
```

```
double k = x0 * x0 + 1;
54
       double q = x0;
55
       double f = \exp(-x0);
56
57
       double C = f / (q * ((sqrt(k * q) - 1) * exp(-sqrt(q / k)))
58
           - (sqrt(k * q) + 1) * exp(sqrt(q / k)));
59
       x = new double [N + 1];
60
61
       for (int i = 0; i < N + 1; i++) {
63
            x[i] = i * h;
64
65
       for (int i = 0; i < N + 1; i++) {
66
            u[i] = C * (exp(sqrt(q / k) * x[i]) + exp(-sqrt(q / k) * x[i])) + f / q;
67
68
69
       delete [] x;
70
71
72
73
   void sweepMethod(double * y, int N, double x0) {
74
       double * k;
75
       double * q;
76
       double * fi;
78
       double * x;
79
       double * alf;
80
       double * bet;
81
       double * a;
82
       double * b;
83
       double * c;
84
       double h = 1.0 / N;
86
87
       k = new double [N + 1];
88
       q = new double [N + 1];
89
       fi = new double [N + 1];
90
       x = new double [N + 1];
91
92
       alf = new double [N + 2];
93
       bet = new double [N + 2];
94
       a = new double [N + 2];
95
       b = new double [N + 2];
96
       c = new double [N + 2];
97
98
       for (int i = 0; i < N + 1; i++) {
99
            x[i] = i * h;
100
101
            if (x0 = 0.0) {
                k\,[\,i\,] \;=\; x\,[\,i\,] \;\;*\;\; x\,[\,i\,] \;+\; 1\,;
104
                q[i] = x[i];
105
                 fi[i] = \exp(-x[i]);
            } else {
106
                k[i] = x0 * x0 + 1;
107
                q[i] = x0;
                 fi[i] = \exp(-x0);
109
```

```
}
110
111
       for (int i = 1; i < N; i++) {
113
           a[i] = 1 / (2 * h * h) * (k[i - 1] + k[i]);
114
           b[i] = 1 / (2 * h * h) * (k[i] + k[i + 1]);
115
            c[i] = q[i] + 1 / (2 * h * h) * (k[i-1] + 2 * k[i] + k[i+1]);
       }
117
118
       alf[1] = (k[0] + k[1]) / (k[0] + k[1] + h * h * q[0]);
119
       bet[1] = h * h * fi[0] / (k[0] + k[1] + h * h * q[0]);
120
121
       for (int i = 1; i < N; i++) {
122
            alf[i + 1] = b[i] / (c[i] - a[i] * alf[i]);
123
            bet[i + 1] = (fi[i] + a[i] * bet[i]) / (c[i] - a[i] * alf[i]);
124
125
126
       double mu2 = 1 + 0.5 * h * q[N] + (k[N] + k[N-1]) / (2 * h);
127
       double bet2 = (k[N] + k[N - 1]) / (2 * h * mu2);
128
129
       y[N] = (0.5 * h * fi[N] / mu2 + bet2 * bet[N]) / (1 - alf[N] * bet2);
130
       for (int i = N - 1; i >= 0; i ---) {
           y[i] = alf[i + 1] * y[i + 1] + bet[i + 1];
133
134
135
       delete [] k;
136
       delete []
137
                  q;
       delete []
                  fi;
138
       delete [] x;
139
140
       delete [] alf;
141
               delete
                  bet;
142
       delete
                  a;
143
       delete
               [] b;
144
       delete [] c;
   }
146
147
148
   void modelProblem(int N) {
149
       double * u;
       double * y;
151
       double * y2;
152
153
       int i = 0;
154
       double eps = 0.01, x0 = 0.5;
156
157
       while (N < 100000) {
           u = new double [N + 1];
159
           y = new double [N + 1];
160
161
            realSolv(u, N, x0);
162
            sweepMethod(y, N, x0);
163
            if (j = 1) {
165
```

```
if (estimationError(y2, y, N) < eps) {
                                                                          for (int i = 0; i < N + 1; i += 50) {    std::cout << "x[" << i << "] = " << i * 1.0 / N << " , u[" << i << i << i << | ] = | | |
167
                                                                                                         i << "] = " << y[i] << " , delta = " << abs(u[i] - y[i]) << start = 
169
                                                                         }
170
171
                                                                          delete [] u;
172
                                                                                                     [] y;
                                                                          delete
                                                                          delete [] y2;
174
175
                                                                         break;
176
                                                          } else {
177
                                                                          delete [] y2;
178
179
                                                                         y2 = new double [N + 1];
180
                                                                          for (int i = 0; i < N + 1; i++) {
182
                                                                                         y2[i] = y[i];
183
184
185
                                                                        N = 2 * N;
186
                                                         }
187
                                          } else {
188
                                                         y2 = new double [N + 1];
190
                                                          for (int i = 0; i < N + 1; i++) {
                                                                         y2[i] = y[i];
193
194
                                                        N = 2 * N;
195
                                          }
196
                                          delete [] u;
198
                                          delete [] y;
199
200
                                          j = 1;
                          }
202
203
204
205
206
           void generalProblem(int N) {
                          double * u;
207
                          double * y;
208
                          double * y2;
209
210
                          \quad \quad \mathbf{int} \quad j \; = \; 0 \, ; \quad
211
212
                          double eps = 0.01, x0 = 0.0;
213
214
                          while (N < 100000) {
215
                                         y = new double [N + 1];
216
217
                                         sweepMethod(y, N, x0);
218
219
                                          if (j = 1) {
                                                          if (estimationError(y2, y, N) < eps) {
221
```

```
222
                    223
224
                 }
225
226
                 delete [] y;
227
                 delete [] y2;
228
229
                 break;
             } else {
231
                 delete [] y2;
232
233
                 y2 = new double [N + 1];
234
235
                 for (int i = 0; i < N + 1; i++) {
236
                     y2[i] = y[i];
237
238
239
                 N = 2 * N;
240
             }
241
          } else {}
242
             y2 = new double [N + 1];
243
244
             for (int i = 0; i < N + 1; i++) {
245
                 y2[i] = y[i];
246
247
248
             N = 2 * N;
249
          }
250
251
          delete [] y;
252
253
          j = 1;
255
256 }
```

Листинг 1: Исходный код программы