Project 1

Name: Caleb Thian Jia Le 田家樂

Student ID: NN6114035

Experiment on dataset 2022-DM-release-testdata-2.txt, let

 $low min_sup = 0.1$

 $low min_conf = 0.5$

 $high min_sup = 0.1$

 $high min_conf = 0.5$

Record the time used by apriori and FP-tree under different combination of parameters mentioned, with the number of rules found respectively.

		Time(s)		Number of Rules Found	
min_sup	min_conf	Apriori	FP-tree	Apriori	FP-tree
Low	Low	18.36	59.21	10287	1799
Low	High	18.31	59.35	3295	611
High	Low	0.14	58.90	2	2
High	High	0.14	59.11	2	2

Observation:

- Increasing min_sup reduces the time used of Apriori, because more frequent patterns can be pruned in process, thus increase the speed for pattern generation.
- Time used of FP-tree does not be reduces because min_sup and min_conf does not reduces the candidate patterns generated, unlike Apriori
- But at the same time, number of rules found decreased in both algorithm as the threshold of support for rules is increased.
- Increasing min_conf, with low min_sup, will reduces the number of rules found

Experiment on dataset ibm-2021.txt, let

low min_sup = 0.025

low $min_conf = 0.02$

 $high min_sup = 0.04$

 $high min_conf = 0.5$

Record the time used by apriori and FP-tree under different combination of parameters mentioned, with the number of rules found respectively

		Time(s)		Number of Rules Found	
min_sup	min_conf	Apriori	FP-tree	Apriori	FP-tree
Low	Low	4.47	0.63	2086	1110
Low	High	4.45	0.63	2046	1103
High	Low	0.64	0.59	16	12
High	High	0.58	0.63	15	11

Observation:

- Similar as observations mentioned.
- The only different is the time-used for FP-tree is approximately less or equal to the time-used for Apriori, this should because to the difference of datasets.
- Thus the relative time used depends on dataset but not the parameters. We cannot conclude that Apriori is always slower or faster than FP-tree.

Experiment on Kaggle dataset basket_analysis.txt, let

 $low min_sup = 0.1$

low $min_conf = 0.1$

 $high min_sup = 0.2$

high $min_conf = 0.5$

Record the time used by apriori and FP-tree under different combination of parameters mentioned, with the number of rules found respectively

		Time(s)		Number of Rules Found	
min_sup	min_conf	Apriori	FP-tree	Apriori	FP-tree
Low	Low	0.74	1.79	438	252
Low	High	0.75	1.81	97	68
High	Low	0.13	1.79	12	54
High	High	0.13	1.77	3	47

Observation:

- Similar as above observation
- The only things different from others is that FP-tree found more rules than Apriori when high min_sup. It maybe because of the pruning strategies is different between these two algorithms, making the counting is slightly difference.