

### Content

Streaming conversation transcription: What and Why?

Modularized solution: Continuous Speech Separation

End to end solution: tokenized Serialize Output Training



# Streaming conversation recognition

- "Who speak what at when", on
  - Unsegmented continuous recordings
  - ▶ Different recording conditions & setup
  - Streaming recognition
- Legacy to borrow from previous speech systems
  - ▶ Long form audio recognition
  - Far-field speech processing
  - Speaker identification
- New challenges
  - Multi-speaker conversation
  - Speech overlap
  - Quick speaker turn



# Multi-speaker processing: why

- Quick math: Word Error Rate(WER) impact of overlapped speech
  - Assuming:
    - ▶ Meeting words: 100
    - ▶ WER on single speaker: 10%
    - ▶ WER on fully overlapped speech: 80%
    - Overlap ratio: 10% (commonly 5%~25%)
  - What is the final WER and WER increase?
    - ► Error count: (100\*0.9)\*0.1 + (100\*0.1) \*0.8 =17
    - ▶ 10%-> 17%, 70% WER increase!
- Obstacle:
  - ► The multi-speaker audio breaks the fundamental assumption of previous speech systems



# Solution for streaming multi-speaker processing

- Modularized solution: Continuous Speech Separation
  - ▶ Additional speech separation module for multi-speaker processing
  - ▶ Other modules remains unchanged

- End to end solution: tokenized Serialize Output Training
  - Modeling the multi-talker speech directly

# Continuous speech separation



- Basic components
  - Segmentor

win

- Separator
- Stitcher
- Properties
  - Processing the input mixture audio continuously
  - ▶ Short window separation ensures the 2 active speaker per window
  - > Separated channels contains sparsely aligned, overlap free utterances for other speech components

### WavLM

- A simple self supervised learning system specifically designed for non-ASR tasks
  - Pseudo labeling through clustering
  - Mask prediction loss
- Utterance mixing training
  - Artificially mixed training sample
  - ► Target at token from unmixed speech
  - ▶ Enforcing the speaker distinction in embedding
- State of the art performance in multiple tasks



#### WavLM

- A simple SSL system specifically designed for non-ASR tasks
  - Pseudo labeling through clustering
  - Mask prediction loss
- Utterance mixing training
  - Artificially mixed training sample
  - ► Target at token from unmixed speech
  - ► Enforcing the speaker distinction in embedding
- State of the art performance in multiple tasks
  - Multi-speaker ASR
  - Speech diarization
  - Speaker verification



#### Speech separation: LibriCSS

| Model                      | spk_2 | spk_3 | spk_4 | spk_5 | spk_6 | spk_all |
|----------------------------|-------|-------|-------|-------|-------|---------|
| EEND-vector clustering     | 7.96  | 11.93 | 16.38 | 21.21 | 23.1  | 12.49   |
| EEND-EDA clustering (SOTA) | 7.11  | 11.88 | 14.37 | 25.95 | 21.95 | 11.84   |
| HuBERT base                | 7.93  | 12.07 | 15.21 | 19.59 | 23.32 | 12.63   |
| HuBERT large               | 7.39  | 11.97 | 15.76 | 19.82 | 22.10 | 12.40   |
| UniSpeech-SAT large        | 5.93  | 10.66 | 12.9  | 16.48 | 23.25 | 10.92   |
| WavLM Base                 | 6.99  | 11.12 | 15.20 | 16.48 | 21.61 | 11.75   |
| WavLm large                | 6.46  | 10.69 | 11.84 | 12.89 | 20.70 | 10.35   |

#### Speaker diarisation: Callhome

|   | Results        |         |                    |           |           |  |  |  |  |  |  |  |
|---|----------------|---------|--------------------|-----------|-----------|--|--|--|--|--|--|--|
| # | User           | Entries | Date of Last Entry | DCF 📥     | EER ▲     |  |  |  |  |  |  |  |
| 1 | Strasbourg-Spk | 15      | 10/25/22           | 0.058 (1) | 1.153 (2) |  |  |  |  |  |  |  |
| 2 | ravana         | 5       | 09/14/22           | 0.062 (2) | 1.212 (3) |  |  |  |  |  |  |  |
| 3 | KristonAl      | 9       | 09/23/22           | 0.071 (3) | 1.120 (1) |  |  |  |  |  |  |  |
| 4 | wigi           | 7       | 09/23/22           | 0.096 (4) | 1.530 (4) |  |  |  |  |  |  |  |

Speaker verification: Vox-celeb

## WavLM based CSS: towards deployment

- WavLM based speech separation
  - Concatenation of acoustic feature and embedding
  - Weighted averaged embeddings from WavLM
  - Allowing separation network to access significantly larger data scale
- Towards real application
  - Performance improvement
    - ► Larger data scale
  - Computation reduction
    - ► Model configuration
    - Partial layer finetuning



## WavLM based CSS: towards real application

- Better performance
  - Consistent performance gain as pretraining data increases
  - ▶ Small WavLM model still outperforms the baselines
- Computation reduction
  - Lower layer finetuning shows comparable performance with full finetuning
- Real meeting evaluating
  - ▶ 7% relative WER improvement
  - ▶ 38% computation reduction

| ID         | SSL          |             | SS    | RTF           | WER (%) |           |  |  |
|------------|--------------|-------------|-------|---------------|---------|-----------|--|--|
|            | Model        | Data        | -     |               | Far-mix | Clean-mix |  |  |
| B1         | :=           | <del></del> | SS-59 | × 0.21        | 22.7    | 22.7      |  |  |
| B2         |              | -           | SS-79 | $\times 0.27$ | 23.2    | 23.8      |  |  |
| <b>B</b> 3 | -            | -           | SS-92 | $\times$ 0.32 | 23.1    | 23.6      |  |  |
| P1         | WavLM Large  | S           | SS-59 | × 0.55        | 21.5    | 22.8      |  |  |
| P2         | WayI M Large | M           | SS-59 | $\times 0.55$ | 20.6    | 18.2      |  |  |
| P3         | WavLM Large  | L           | SS-59 | $\times 0.55$ | 19.1    | 17.5      |  |  |
| P4         | WavLM Large  | L           | SS-26 | × 0.47        | 19.2    | 20.1      |  |  |
| P5         | WayLM Base   | L           | SS-26 | $\times 0.25$ | 20.4    | 19.2      |  |  |
| P6         | WavLM Small  | L           | SS-26 | $\times 0.20$ | 20.2    | 20.2      |  |  |

#### WER for Data scale and model configuration sear

| ID         |             | SSL             |           | SS    | RTF           | WER (%) |           |  |  |
|------------|-------------|-----------------|-----------|-------|---------------|---------|-----------|--|--|
|            | Model       | $f^{ m wl}(ms)$ | FT-layers | -     |               | Far-mix | Clean-mix |  |  |
| P3         |             | 20              |           |       | × 0.55        | 19.1    | 17.5      |  |  |
| L1         | WavLM-Large | 30              | 24        | SS-59 | $\times 0.46$ | 21.9    | 24.8      |  |  |
| L2         | C           | 40              |           |       | $\times$ 0.38 | 22.8    | 25.7      |  |  |
| P4         |             |                 | 24        |       | × 0.47        | 19.2    | 20.0      |  |  |
| S1         |             |                 | 16        |       | $\times 0.38$ | 19.1    | 18.7      |  |  |
| S2         | WavLM-Large | 20              | 12        | SS-26 | $\times 0.35$ | 19.9    | 18.4      |  |  |
| <b>S</b> 3 |             |                 | 8         |       | $\times$ 0.31 | 19.7    | 18.6      |  |  |
| 54         |             |                 | 4         |       | $\times$ 0.27 | 21.0    | 21.3      |  |  |

#### WER for computation reduction

| ID  | SSL         |           | SS     | RTF           | AMI WER (%) |      | ICSI | WER (%) |
|-----|-------------|-----------|--------|---------------|-------------|------|------|---------|
|     | Model       | FT-layers |        |               | dev         | eval | dev  | eval    |
| B1  | (=9         | -         | SS-59  | × 0.21        | 21.6        | 25.0 | 23.2 | 20.7    |
| S3' | WavLM Large | 8         | SS-26  | × 0.31        | 19.1        | 22.6 | 17.8 | 16.5    |
|     | WavLM Base  | 12        | SS-26  | $\times 0.25$ | 19.4        | 22.9 | 18.6 | 17.2    |
| S8' | WayLM Base  | 12        | SS-9.5 | $\times 0.19$ | 19.5        | 22.9 | 18.0 | 17.0    |
| S9' | WavLM Small | 8         | SS-9.5 | $\times$ 0.13 | 19.6        | 23.3 | 18.3 | 18.5    |

WER on real meeting corpus

# Solution for streaming multi-speaker processing

- Modularized solution: Continuous Speech Separation
  - ▶ Additional speech separation module for multi-speaker processing
  - Other modules remains unchanged

- End to end solution: tokenized Serialize Output Training
  - Modeling the multi-talker speech directly

### SOT and tSOT

- Serialized Output Training
  - Utterance-wise Serialized output
  - Speaker based FIFO training
  - Sequence to sequence ASR backbone
  - Arbitrary number of overlapped speakers
  - Offline model
- tSOT
  - ► Token-wise serialized output
  - Transducer ASR backbone
  - Fixed number of outputting channel
  - Streaming model





## State of the art performance on LibriCSS testset

| System                                            | Algorithmic latency                                        | WER (%) for different overlap ratio |      |      |      |      |      |      |  |
|---------------------------------------------------|------------------------------------------------------------|-------------------------------------|------|------|------|------|------|------|--|
|                                                   |                                                            | 0L                                  | 0S   | 10   | 20   | 30   | 40   | Avg. |  |
| (Non-streaming ASR models with speech separation) |                                                            |                                     |      |      |      |      |      |      |  |
| BLSTM-CSS + Hybrid ASR [6]                        | $1.2 \sec^{\ddagger} + (\text{utterance length})^*$        | 16.3                                | 17.6 | 20.9 | 26.1 | 32.6 | 36.1 | 24.9 |  |
| Conformer-CSS + Transformer-AED-ASR w/ LM [9]     | $1.2 \text{ sec}^{\ddagger} + (\text{utterance length})^*$ | 6.1                                 | 6.9  | 9.1  | 12.5 | 16.7 | 19.3 | 11.8 |  |
| Conformer-CSS + Transformer-AED-ASR w/ LM [43]    | $1.2 \sec^{\ddagger} + (\text{utterance length})^*$        | 6.4                                 | 7.5  | 8.4  | 9.4  | 12.4 | 13.2 | 9.6  |  |
| (Streaming ASR models)                            |                                                            |                                     |      |      |      |      |      | -    |  |
| SURT w/ DP-LSTM [44]                              | 350 msec                                                   | 9.8                                 | 19.1 | 20.6 | 20.4 | 23.9 | 26.8 | 20.1 |  |
| SURT w/ DP-Transformer [44]                       | 350 msec                                                   | 9.3                                 | 21.1 | 21.2 | 25.9 | 28.2 | 31.7 | 22.9 |  |
| Single-talker TT-18                               | 160 msec                                                   | 7.0                                 | 7.3  | 14.0 | 20.9 | 27.9 | 34.3 | 18.6 |  |
| Single-talker TT-36                               | 160 msec                                                   | 6.5                                 | 6.7  | 13.1 | 20.4 | 27.0 | 34.0 | 18.0 |  |
| t-SOT TT-18 (proposed)                            | 160 msec                                                   | 7.5                                 | 7.5  | 8.5  | 10.5 | 12.6 | 14.0 | 10.1 |  |
| t-SOT TT-36 (proposed)                            | 160 msec                                                   | 6.7                                 | 6.1  | 7.5  | 9.3  | 11.6 | 12.9 | 9.0  |  |

- Better performance
- Low processing latency
- Simplistic implementation

## Stronger together: SSL + tSOT

- Leveraging the advantage of the self supervised learning
  - WavLM style SSL for speaker information extraction
  - ► End to end ASR training
- Multi-fold exploration for SSL + tSOT
  - A bi-label WavLM style objective function
  - Tokenizer variation
  - Utterance mixing configuration
- Significant improvement over the pure supervised system



| Pre-train    | ning      | Dev W | 'ER (%) | Test  | WER (%) |
|--------------|-----------|-------|---------|-------|---------|
| Objective    | Quantizer | 1spk  | 2spk    | 1spk  | 2spk    |
| -            | -         | 15.42 | 39.12   | 15.69 | 9 39.52 |
| MSP          | FBANK     | 13.17 | 36.13   | 13.20 |         |
| Bi-label MSP | FBANK     | 13.29 | 25.68   | 13.90 | 25.78   |
| MSP          | HuBERT    | 10.77 | 17.24   | 11.30 | 17.25   |
| Bi-label MSP | HuBERT    | 10.82 | 15.84   | 11.19 | 9 15.30 |
| MSP          | Phoneme   | 9.80  | 15.45   | 9.96  | 15.13   |
| Bi-label MSP | Phoneme   | 9.47  | 13.89   | 9.84  | 13.74   |

## Stronger together: CSS + tSOT

- Combine the advantage
  - Single or multichannel CSS
  - ▶ End to end ASR optimization
- Significantly advanced the state of the art on AMI dataset
  - From 17.7% to 15.5% (12.4% WERR)
  - Less data: 1M vs. 75K
  - ► Smaller network: 8B vs. 200M
  - Offline vs. Streaming modeling
  - ▶ 1ch vs. 8 ch



| ID        | Front-end configuration |     |        | Back       | c-end              | configura | tion    |        | Back     | end trainin | g       | Test       | WER     | (%)  |      |
|-----------|-------------------------|-----|--------|------------|--------------------|-----------|---------|--------|----------|-------------|---------|------------|---------|------|------|
|           | In                      | Out | Param. | Latency    | Model              | In        | Cross   | Param. | Latency  | 1ch-PT      | 2ch-PT  | FT         | segment | dev  | eval |
| B1        | -                       | -   | -      | -          | Single-talker TT18 | 1         | -       | 82M    | 0.16 sec | 75K         | -       | Ŧ.,,,      | utt     | 38.0 | 40.8 |
| <b>B2</b> | -                       | -   | -      | -          | Single-talker TT18 | 1         | -       | 82M    | 0.16 sec | 75K         | -       | <b>AMI</b> | utt     | 27.3 | 30.3 |
| <b>B3</b> | 8                       | 1   | 2M     | 0.8 sec    | Single-talker TT18 | 1         | -       | 82M    | 0.16 sec | 75K         | -       | AMI        | utt     | 25.8 | 27.9 |
| <b>B4</b> | -                       | _   | -      | <b>=</b> 1 | t-SOT TT18         | 1         | 12      | 82M    | 0.16 sec | 75K-sim     |         | -          | utt-gr  | 35.5 | 40.3 |
| <b>B5</b> | -                       | _   | -      | -          | t-SOT TT18         | 1         | -       | 82M    | 0.16 sec | 75K-sim     | -       | <b>AMI</b> | utt-gr  | 21.6 | 25.3 |
| B6        | 8                       | 1   | 2M     | 0.8 sec    | t-SOT TT18         | 1         | -       | 82M    | 0.16 sec | 75K-sim     | -       | AMI        | utt-gr  | 20.7 | 23.0 |
| P1        | 8                       | 2   | 2M     | 0.8 sec    | t-SOT 2ch-TT18     | 2         | -       | 82M    | 0.16 sec | 75K-sim     | -       | AMI        | utt-gr  | 19.3 | 21.7 |
| P2        | 8                       | 2   | 2M     | 0.8 sec    | t-SOT 2ch-TT18     | 2         | -       | 82M    | 0.16 sec | 75K-sim     | 75K-sim | AMI        | utt-gr  | 18.6 | 21.1 |
| P3        | 8                       | 2   | 2M     | 0.8 sec    | t-SOT 2ch-TT18     | 2         | Eq. (1) | 82M    | 0.16 sec | 75K-sim     | 75K-sim | <b>AMI</b> | utt-gr  | 18.5 | 21.0 |
| P4        | 8                       | 2   | 2M     | 0.8 sec    | t-SOT 2ch-TT18     | 2         | Eq. (2) | 84M    | 0.16 sec | 75K-sim     | 75K-sim | AMI        | utt-gr  | 18.3 | 20.6 |
| P5        | 8                       | 2   | 2M     | 0.8 sec    | t-SOT 2ch-TT36     | 2         | Eq. (2) | 142M   | 0.64 sec | 75K-sim     | 75K-sim | <b>AMI</b> | utt-gr  | 15.3 | 17.4 |
| P6        | 8                       | 2   | 2M     | 0.8 sec    | t-SOT 2ch-TT36     | 2         | Eq. (2) | 142M   | 2.56 sec | 75K-sim     | 75K-sim | AMI        | utt-gr  | 14.4 | 16.5 |
| P7        | 8                       | 2   | 56M    | 0.8 sec    | t-SOT 2ch-TT36     | 2         | Eq. (2) | 142M   | 2.56 sec | 75K-sim     | 75K-sim | AMI        | utt-gr  | 13.7 | 15.5 |

### Conclusion

- Multi-talker problem is important for modern conversation transcription
- CSS provides a simple yet effective way for processing streaming conversation audio stream
- Self supervised learning significantly boost the performance for CSS models on real meeting data
- ▶ tSOT method shows strong performance for low latency multi-speaker ASR task
- Variations of tSOT show improved performance and achieves state of the art performance in AMI dataset

Thanks for attending ~

Questions?