Paxos – Sample Input 2

Suppose we want to simulate a scenario where there are two proposers, one of which fails and later recovers. We define the simulation as follows:

$$(n_P = 2, n_A = 3, t_{\text{max}} = 50, E)$$

Where E contains four events:

- $(t = 0, F = \emptyset, R = \emptyset, \pi_c = p_1, \pi_v = 42)$
- $(t = 8, F = \{p_1\}, R = \emptyset, \pi_c = \varnothing, \pi_v = \varnothing)$
- $(t = 11, F = \emptyset, R = \emptyset, \pi_c = p_2, \pi_v = 37)$
- $(t=26, F=\emptyset, R=\{p_1\}, \pi_c=\varnothing, \pi_v=\varnothing)$

In other words, we have a system with two Proposers and three Acceptors. p_1 proposes value 42 at tick 0, but fails at tick 8. Then, at tick 11, p_2 proposes a different value (37). Finally, p_1 recovers at tick 26.

Ticks 0-7

Same as in Sample Input 1.

Contents of N at the end of tick 7			
m.type	m.src	m.dst	Other attributes
ACCEPT	p_1	a_2	$proposal_id=1, value=42$
ACCEPT	p_1	a_3	$proposal_id=1, value=42$
ACCEPTED	a_1	p_1	proposal_id $=1$, value $=42$

Tick 8

In this tick, there is an event which specifies that p_1 will go into a failed state (remember that this happens before checking the contents of the network). So, since all the messages in N have p_1 as either the source or the destination, they cannot be delivered.

Contents of N at the end of tick 8				
m.type	m.src	m.dst	Other attributes	
ACCEPT	p_1	a_2	$proposal_{id}=1,value=42$	
ACCEPT	p_1	a_3	$proposal_{id}=1,value=42$	
ACCEPTED	a_1	p_1	proposal_id=1, value=42	

Ticks 9 and 10

During these ticks, no messages are delivered. However, the simulation carries on because t_{max} hasn't been reached, and there are still messages pending delivery.

Ticks 11-14

In tick 11, there is an event specifying that p_2 must propose the a new value (37). Ticks 11-14 are similar to ticks 0-3, except p_2 will use a larger proposal number (2). Additionally, a_1 had previously accepted a value (value 42 in proposal 1). So, when sending a PROMISE message to p_2 , it specifies the prior value it accepted (and its proposal number).

Contents of N at the end of tick 14

Contents of 11 at the end of tick 11				
m.type	m.src	m.dst	Other attributes	
ACCEPT	p_1	a_2	$proposal_id{=}1,value{=}42$	
ACCEPT	p_1	a_3	$proposal_id = 1, value = 42$	
ACCEPTED	a_1	p_1	$proposal_id = 1, value = 42$	
PROMISE	a_1	p_2	$\label{eq:proposal} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
PROMISE	a_2	p_2	$proposal_id = 2, prior_proposal = \varnothing$	
PROMISE	a_3	p_2	$proposal_id {=} 2, prior_proposal {=} \varnothing$	

Ticks 15-16

Similar to ticks 4-5, except p_2 cannot use the value specified in the PROPOSE message. Since one of the Acceptors had previously accepted value 42, then p_2 is bound to use that value.

Contents of N at the end of tick 16

m.type	m.src	m.dst	Other attributes
ACCEPT	p_1	a_2	proposal_id $=1$, value $=42$
ACCEPT	p_1	a_3	proposal_id $=1$, value $=42$
ACCEPTED	a_1	p_1	$proposal_id=1, value=42$
ACCEPT	p_2	a_1	$proposal_id=2, value=42$
ACCEPT	p_2	a_2	$proposal_id=2, value=42$
ACCEPT	p_2	a_3	$proposal_id=2, value=42$

Tick 17-23

Similar to ticks 6-12 in Example 1. At the end of these ticks, p_2 has determined there is consensus around value 42.

Contents of N at the end of tick 23

m.type	m.src	m.dst	Other attributes
ACCEPT	p_1	a_2	$proposal_id=1, value=42$
ACCEPT	p_1	a_3	$proposal_{id}=1,value=42$
ACCEPTED	a_1	p_1	$proposal_id=1, value=42$

Ticks 24-25

During these ticks, no messages are delivered. However, the simulation carries on because t_{max} hasn't been reached, and there are still messages pending delivery in N and future events in E.

Tick 26

In this tick, there is an event specifying that p_1 should recover. This means we can deliver the ACCEPT message from p_1 to a_2 . However, at this point, a_2 has already promised to not participate in any proposals with a number less than 2. So, it sends a REJECTED message back to p_1 .

Contents of N at the end of tick 26				
m.type	m.src	m.dst	Other attributes	
ACCEPT	p_1	a_3	proposal_id=1, value=42	
ACCEPTED	a_1	p_1	$proposal_id=1, value=42$	
REJECTED	a_2	p_1	proposal_id=1	

Tick 27 Same as tick 27, but with Acceptor a_3 .

Contents of N at the end of tick 27				
m.type	m.src	m.dst	Other attributes	
ACCEPTE	$D \mid a_1$	p_1	proposal_id=1, value=42	
REJECTE	a_2	p_1	proposal_id=1	
REJECTE	D a_3	p_1	proposal id=1	

Tick 28-30

In these ticks, the ACCEPTED message from a_1 (which had been delayed since tick 7) and the REJECTED messages from a_2 and a_3 are delivered. Confronted with a majority of REJECTED messages from the acceptors, p_1 realizes its proposal has failed, and decides to initiate a new proposal for value 42, but using proposal number 3.

Tick 31-42

Similar to ticks 1-12 in Example 1, except that the PROMISE messages from the Acceptors will all include the previously accepted proposal (2) and value (42). The algorithm still runs through the ACCEPT/ACCEPTED phase, but is guaranteed to produce consensus around the same value that p_2 reached consensus on.