

Б. А. Дворкин (компания «Совзонд»)

В 1974 г. окончил Московский государственный университет им. М. В. Ломоносова по специальности «картография». Работал в ПКО «Картография», ООО «Картография Хубер», ГИС-Ассоциации, Научном геоинформационном центре РАН. В настоящее время — главный аналитик компании «Совзонд». Кандидат географических наук.

Импортозамещение в сфере геоинформационных технологий и Д33

Разработка отечественных технических и программных средств в условиях продолжающихся санкций и неблагоприятной для нас конъюнктуры мировых рынков становится все более актуальной. О фактическом курсе на импортозамещение Президент РФ В. В. Путин в мае 2014 г. на Санкт-Петербургском международном экономическом форуме: «Импортозамещение за счет модернизации промышленности и роста конкуренции поможет вернуть собственный рынок отечественным производителям». В предлагаемом обзоре мы рассмотрим некоторые проблемы и успехи российских организаций И компаний в отрасли геоинформационных технологий и дистанционного зондирования Земли (Д33).

РОССИЙСКАЯ ГРУППИРОВКА СПУТНИКОВ ДЗЗ

Формирование современной российской орбитальной группировки ДЗЗ началось первого 2006 запуском июне ۲. космического аппарата гражданского (КА) высокого разрешения «Ресурс-ДК1» (разработчик — AO «РКЦ «Прогресс»). особенностью были повышенные оперативные и точностные характеристики

получаемых изображений. Расчетный срок существования космического аппарата истек в 2009 г., но он продолжает работу и передает на Землю данные, которые используются для создания и обновления топографических и специальных карт, информационного обеспечения рационального природопользования и хозяйственной деятельности, инвентаризации лесов и сельскохозяйственных земель, решения других задач [1].

В настоящее время российская группировка состоит из шести функционирующих космических аппаратов:

- «Ресурс-ДК1»;
- «Pecvpc-Π» №1;
- «Pecvpc-Π» №2;
- «Канопус-В» №1;
- «Метеор-М» №2;
- «Электро-Л» №1.

Сравнительные технические характеристики спутников представлены в таблице 1. (Подробные технические характеристики спутников и съемочной аппаратуры можно посмотреть в Справочном разделе настоящего выпуска журнала (с. 106)

Продолжением миссии отечественных спутников природно-ресурсного назначения высокого разрешения является серия опти-ко-электронных КА «Ресурс-П» (разработчик — АО «РКЦ «Прогресс»). При их

Спутник	Аппаратура	Пространственное разрешение, м		Количество спектральных	Ширина полосы	Периодичность съемки, сут.
		панхрома- тическое режим	мультиспект- ральное режим	каналов	съемки, км	
«Ресурс-ДК1»	ОЭА	1/2,8	2-3/3-5	4	28,3	6
«Pecypc-Π» №1, №2	ОЭА	1	3-4	7	38	3
	ГСА	_	30	Не менее 96	25	
	ШМСА-ВР	12	24	6	96	
	ШМСА-СР	60	120	6	480	
«Канопус-В» №1	ПСС	2,1	_	1	23	4-16
	MCC	_	10,5	4	20	
«Meтeop-M» №2	КМСС/ МСУ-100	_	54	3	946	2
	КМСС/ МСУ-50	_	116	3	943	
	МСУ-МР	_	1000	6	2900	
«Электро-Л» №1	ОЭА	В видимом диапазоне — 1000 в ИК — 4000		10	Вся видимая часть земного шара	15-30 мин

Табл. 1. Технические характеристики российских спутников ДЗЗ (для спутника «Ресурс-ДК1» разрешение указано до и после 2011 г., когда спутник был переведен на более высокую орбиту)

создании использовались технические решения, наработанные при создании КА «Ресурс-ДК1». «Ресурс-П» №1 запущен в 2013 г., а «Ресурс-П» №2 — в 2014 г. Нахождение аппаратов на круговой солнечно-синхронной орбите позволяет существенно улучшить условия наблюдения. С шести до трех суток улучшилась периодичность наблюдения каждого спутника. Съемка ведется панхроматическом 5-канальном И мультиспектральном режимах. В состав целевой аппаратуры KΑ «Pecypc-Π», в дополнение к оптико-электронной аппаратуре высокого разрешения («Геотон-Л1»; разработчик — ОАО «Красногорский завод им. С. А. Зверева» (ОАО КМЗ), введены еще два типа съемочной аппаратуры: гиперспектральная съемочная аппаратура — ГСА (разработка ОАО КМЗ) и широкозахватный мультиспектральный съемочный комплекс высокого (ШМСА-ВР) и среднего (ШМСА-СР) разрешения (ШМСА-СР) (разработка филиала AO «РКЦ «Прогресс» — НПП «ОПТЭКС»).

Основными принципами формирования облика КА «Ресурс-П» являются [2]:

- использование технических решений, наработанных при создании «Ресурс-ДК1», эффективность которых подтверждена успешной работой этого КА на орбите в течение 4 лет;
- наращивание тактико-технических характеристик за счет применения нескольких типов съемочной аппаратуры;
- установка на космическом аппарате оптико-электронной аппаратуры и системы приема и преобразования информации с повышенной разрешающей способностью;
- установка на КА гиперспектральной аппаратуры высокого разрешения для получения гиперспектральной информации;
- установка на КА широкозахватной мультиспектральной аппаратуры высокого и среднего разрешения;
- обеспечение функционирования КА на круговой солнечно-синхронной орбите;
- улучшение потребительских свойств и точностей координатной привязки изображений, передаваемых на Землю;
- улучшение динамических характеристик космического аппарата;

• обеспечение срока активного существования КА 5 лет.

Из существующих на сегодня зарубежных коммерческих систем сверхвысокого разрешения по количеству мультиспектральных каналов оптико-электронная аппаратура КА «Ресурс-П» уступает только американским спутникам ДЗЗ WorldView-2 и WorldView-3. Третий аппарат этой серии планируется к запуску в 2015 г., а в 2018 г. появится модернизированный космический аппарат «Ресурс-ПМ». Образец снимка с КА представлен на рис. 1.

- В 2012 г. был осуществлен запуск КА «Канопус-В» №1 (разработчик ОАО «Корпорация ВНИИЭМ») Он предназначен для обеспечения всех заинтересованных организаций в оперативной информации для решения следующих основных задач:
- обнаружение очагов лесных пожаров, крупных выбросов загрязняющих веществ в природную среду;

- мониторинг техногенных и природных чрезвычайных ситуаций, в том числе стихийных гидрометеорологических явлений:
- мониторинг сельскохозяйственной деятельности, природных (в том числе водных и прибрежных) ресурсов:
 - землепользование;
- оперативное наблюдение заданных районов земной поверхности.

2015 ۲. запланирован запуск КА «Канопус-В-ИК» с инфракрасной аппаратурой наблюдения, а в 2016-2017 гг. еще двух спутников серии «Канопус-В». «Канопус-В» KΑ относятся к малым космическим аппаратам с распределенной полезной нагрузкой. Масса платформы составляет 260 кг (общая масса с полезной 465 кr). Малые нагрузкой с распределенной полезной нагрузкой не во всех случаях являются альтернативой сложным КА, но могут работать с ними в комплексе, решая свои задачи. Как

Рис. 1. Порт-Элизабет, ЮАР. Космический снимок со спутника «Ресурс-П» №2 (аппаратура «Геотон», комплексированное изображение) 03.03.2015 г. (Информация получена и обработана НЦ ОМЗ ОАО «Российские космические системы»)

KΑ Д33 существует известно, для определенное противоречие между полосой обзора наблюдательных приборов и их разрешающей способностью. Это противоречие определяется возможностями реально существующих и перспективных ближайшее будущее оптических и электрических составляющих наблюдательных приборов, а также ограничениями радиолиний стороны передачи информации. на Землю получаемой Как преодоление этого противоречия возможно сочетание. ПДИ котором сложные КА могут использоваться для решения задач мониторинга земной поверхности и окружающей среды, а малые КА — для детального наблюдения отдельных объектов И явлений. обнаруженных при мониторинге. В качестве такого сочетания могут рассматриваться КА типа «Метеор-М» и КА типа «Канопус-В». Сочетание КА типа «Метеор-М» и КА типа «Канопус-В» является первым в нашей

стране опытом создания космических комплексов ДЗЗ на основе сложных и малых КА. Очевидно, что этот опыт получит дальнейшее развитие, что обеспечит получение информации с широким спектром частотных каналов, полос обзора и разрешающей способности по пространству, а также радиометрии [3].

Образец снимка с КА «Канопус-В» представлен на рис. 2.

С 2009 г. в России начала развертываться космическая система гидрометеорологического назначения «Метеор-ЗМ» (разработчик — ОАО «Корпорация ВНИИЭМ»), когда был запущен спутник «Метеор-М» №1, предназначенный для получения космической информации ДЗЗ в интересах оперативной метеорологии, гидрологии, агрометеорологии, мониторинга климата и окружающей среды. 25 ноября 2014 г. спутник «Метеор-М» №1 был выведен из эксплуатации, однако незадолго до этого, 8 июля 2014 г., на орбиту

Рис. 2. Ньюкасл, штат Делавэр, США. Космический снимок со спутника «Канопус-В» (аппаратура МСС, цветосинтезированное изображение) 02.03.2015 г. (Информация получена и обработана НЦ ОМЗ ОАО «Российские космические системы»)

был выведен спутник «Метеор-М» №2, оснащенный гидрометеорологической аппаратурой и аппаратурой оперативного мониторинга, в числе которой Комплекс многоканальной спутниковой съемки (КМСС), состоящий из 2 камер и многоканального сканирующего устройства малого разрешения (МСУ-МР). Образец снимка с КА «Метеор-М» №2 представлен на рис. 3.

Заложенные в проект «Метеор-3М» современные конкурентоспособные характеристики позволят обеспечивать решение не только метеорологических и океанографических задач, но и задач других заказчиков и потребителей. В частности, на основании информации, получаемой с помощью КА «Метеор-М», плани-

руется решение следующих основных проблем [4]:

- обеспечение безопасности мореплавания, проведение фундаментальных и прикладных исследований ледяного покрова в приполярных акваториях Мирового океана и замерзающих морях, а также крупных озерах умеренных широт;
- прогноз, мониторинг и информационное обеспечение мероприятий по ликвидации последствий наводнений;
- оперативный контроль за состоянием водной среды и соблюдением правил использования континентального шельфа в исключительной экономической зоне РФ;
- своевременное обнаружение, определение площади и конфигурации разливов

Рис. З. Маракайбо, Венесуэла. Космический снимок со спутника «Метеор-М» №2 (аппаратура КМСС) 28.02.2015 г. (Информация получена и обработана НЦ ОМЗ ОАО «Российские космические системы»)

нефтепродуктов на водной поверхности, а также мониторинг динамики развития загрязнений акватории Мирового океана;

- мониторинг промысловых районов Мирового океана в целях информационного обеспечения производственной деятельности рыболовного флота;
- исследование принципов тепло-, массопереноса на границе раздела океан-атмосфера в интересах решения прикладных и фундаментальных проблем гидрометеорологии и океанографии;
- агрометеорологическое обеспечение сельскохозяйственного производства.

В 2015 г. будет запущен КА «Метеор-М» №2-1, а в 2016 г. — еще один спутник серии «Метеор-М».

В ближайшем будущем планируется создать систему гидрометеорологического назначения в составе трех КА «Электро-Л» (разработчик — ФГУП «НПО им. С. А. Лавочкина») на геостационарной орбите. Первый спутник серии «Электро-Л» был запущен в 2011 г. 31 марта 2014 г. у спутника «Электро-Л» возникли проблемы с системой ориентации стабилизации, вследствие ухудшилась точность стабилизации космического аппарата относительно заданной ориентации. С конца октября 2014 г. разработчикам удалось стабилизировать аппарат для работы в сокращенном режиме. В дневное время основной прибор «Электро-Л» МСУ-ГС осуществляет до 11 включений с интервалом в 30 минут. В 2015 г. планируется запуск спутника «Электро-Л» №2, а в 2016 г. — «Электро-Л» №23.

Космический комплекс «Электро-Л» предназначен для обеспечения Росгидромета оперативной информацией для анализа и прогноза погоды, изучения состояния акваторий морей и океанов, мониторинга условий для полётов авиации, а также изучения состояния ионосферы и магнитного поля Земли. Кроме того, комплекс способен вести мониторинг климата и глобальных изменений, контроль за чрезвычайными ситуациями и экологический контроль окружающей среды.

Для достижения этих целей аппараты «Электро-Л» снабжены оборудованием для проведения многоспектральной съемки Земли в видимом и инфракрасном диапазонах с разрешением 1 км и 4 км соответственно с периодичностью 30 мин. (рис. 4). При необходимости периодичность съемки может быть уменьшена до 10–15 мин.

Наращивание российской орбитальной группировки ведется в соответствии

Показатели качества	Россия	Зарубежные страны	Требуемые показатели для России	
Линейное разрешение данных ДЗЗ (наименьший размер различимого объекта на Земле)	1,0 м	0,31 м	0,15 м	
Точность геопривязки данных ДЗЗ (без опорных точек)	10 м	3,5 м	2 м	
Точность создания цифровой модели местности (в плане и по высоте)	90 м (импортная СТРМ)	3-5 м	3-5 м	
Динамика перенацеливания аппаратуры при съемке из космоса (трехосный режим)	1 град./с	3 град./с	4 град./с	
Производительность (суммарная площадь отснятой территории в сутки)	0,16 млн кв. км	0,7 млн кв. км	1,0 млн кв. км	

Табл. 2. Требуемые показатели для России

Рис. 4. Снимок видимой части Земли со спутника «Электро-Л» 22.09.2013 г. (Информация получена и обработана НЦ ОМЗ ОАО «Российские космические системы»)

с концепцией развития российской космической системы Д33 на период до 2025 г. и программными мероприятиями, заложенными в Федеральной космической программе России на 2006–2015 гг. и проекте Федеральной космической программы России на 2011–2020 гг.

Согласно федеральным программам ключевыми проблемами достижения современного уровня космических систем Д33 являются следующие показатели качества (табл. 2; [5]).

В ближайших планах наращивания российской орбитальной группировки ДЗЗ запуск спутников серии «Обзор».

Группировка из четырех оптико-электронных КА «Обзор-О» (разработчик — ФГУП «ГКНПЦ им. М. В. Хруничева») предназначена для оперативной мультиспектральной съемки России, прилегающих территорий

Режим съемки	Мультиспектральный			
гежим Свемки	1-й этап	2-й этап		
Спектральный диапазон, мкм	7 одновременно работающих спектральных каналов: 0,50-0,85 0,44-0,51 0,52-0,59 0,63-0,68 0,69-0,73 0,76-0,85 0,85-1,00	8 одновременно работающих спектральных каналов: 0,50-0,85 0,44-0,51 0,52-0,59 0,63-0,68 0,69-0,73 0,76-0,85 0,85-1,00 1,55-1,70		
Пространственное разрешение (в надире), м	Не более 7 (для канала 0,50-0,85); не более 14 (для остальных каналов)	Не более 5 (для канала 0,50-0,85); не более 20 (для канала 0,55-1,70); не более 14 (для остальных каналов)		
Радиометрическое разрешение, бит/пиксель	12			
Точность геопозиционирования, м	30-45	20-40		
Ширина полосы съемки, км	Не менее 85	Не менее 120		
Производительность съемки каждого КА, млн кв. км/cym.	6	8		
Периодичность съемки, cym.	30	7		
Скорость передачи данных на наземный сегмент, M6um/c	600			

Табл. 3. Технические характеристики съемочной аппаратуры КА «Обзор-О»

Х-диапазон (3,1 см)			
2 (в полосе широт от 35 до 60° с. ш.)			
Номинальное пространственное разрешение, м	Полоса обзора, км	Ширина полосы съемки, <i>к</i> м	Поляризация
1	2 x 470	10	Одинарная (по выбору — Н/Н, V/V, H/V, V/Н)
3	2 x 600	50	Одинарная (по выбору — Н/Н, V/V, H/V, V/H); двойная (по выбору — V/(V+H) и Н/(V+H))
5	2 x 600	50	
3	2 x 470	30	
20	2 600	130	
40	2 X 600	230	
200	2 v 600	400	
300	2 x 600	600	
500	2 x 750	750	
	2 (в полосе широт от Номинальное пространственное разрешение, м 1 3 5 3 20 40 200 300	2 (в полосе широт от 35 до 60° с. ш Номинальное пространственное разрешение, м 1 2 x 470 3 2 x 600 5 2 x 600 3 2 x 470 20 40 200 200 300 2 x 600	2 (В полосе широт от 35 до 60° с. ш.) Номинальное пространственное разрешение, м 1 2 x 470 10 3 2 x 600 50 5 2 x 600 50 3 2 x 470 30 20 2 x 600 230 200 2 x 600 300 2 x 600 600

Табл. 4. Технические характеристики съемочной аппаратуры КА «Обзор-Р»

соседних государств и отдельных районов Земли. На 1-м этапе (2015-2017) планируется запустить два космических аппарата, на 2-м (2020) — еще два. Система «Обзор-О» будет служить для обеспечения данными космической съемки МЧС России. Минсельхоза России, РАН, Росреестра, других министерств и ведомств, а также регионов России. На КА «Обзор-О» №1 и №2 планируется установить опытные образцы гиперспектральной аппаратуры. Развертывание четырехспутниковой группировки «Обзор-О» позволит в полной мере обеспечить проведение космического топографического мониторинга, предназначенного для перманентного получения материалов космической съемки с целью выявления природных или антропогенных изменений местности путем сравнения результатов полученных данных с архивными материалами и последующей оценки степени выявленных изменений местности с принятием решения о необходимости обновления соответствующих топографических карт. Основные технические характеристики съемочной аппаратуры КА «Обзор-О» представлены в таблице 3.

Два радарных КА «Обзор-Р» (разработчик — ОАО «РКЦ «Прогресс») предназначены для проведения съемки в Х-диапозоне в любое время суток (вне зависимости от погодных условий) в интересах социальноэкономического развития Российской Федерации. Спутники «Обзор-Р» будут служить для обеспечения данными радарной съемки МЧС России, Минсельхоза России, Росреестра, других министерств и ведомств, а также регионов России. Запуск космических аппаратов планируется осуществить в 2018 и 2020 гг. Основные технические характеристики съемочной аппаратуры КА «Обзор-Р» представлены в таблице 4.

Функционирование орбитальной группировки КА ДЗЗ невозможно без создания и развития наземной инфраструктуры приема, обработки, хранения и распространения данных ДЗЗ в интересах обеспечения потребителей космической информацией. Для этого в России ведется разработка (разработчик — ОАО «НИИ ТП») Единой территориально-распределенной информационной системы дистанционного зондирования Земли (ЕТРИС ДЗЗ), которая предназначена для интеграции в единое

геоинформационное пространство информационных ресурсов ДЗЗ, обеспечивающих организацию целевого применения российской орбитальной группировки, координацию функционирования российских пунктов приема и обработки информации с российских и иностранных космических аппаратов ДЗЗ, распространение и предоставление данных ДЗЗ пользователям и потребителям. Главной целью создания ЕТРИС ДЗЗ является полное и своевременное обеспечение потребителей данными ДЗЗ.

ЕТРИС ДЗЗ должна обеспечить решение следующих задач [6]:

- планирование применения орбитальной группировки КА ДЗЗ;
- планирование применения наземной инфраструктуры ЕТРИС ДЗЗ;
- прием и обработка информации с российских и иностранных КА ДЗЗ;
- систематизация и хранение информационных продуктов ДЗЗ;
- формирование и ведение единого каталога информационных продуктов ДЗЗ;
- обеспечение доступа пользователей к информационным ресурсам ЕТРИС ДЗЗ посредством специализированных информационных порталов (геопорталов) и веб-сервисов.

Одной из насущных проблем российской отрасли ДЗЗ является необходимость коммерциализации деятельности в области распространения данных с отечественных космических аппаратов. Для этого, на наш взгляд, необходимо решить ряд задач организационного порядка. Перечислим важнейшие из них:

• Целесообразно на уровне Президента и Правительства принять документ, отражающий политику в области коммерциализации национальных систем ДЗЗ (аналогичный существующей в США уже более 10 лет «Космической политике в области коммерческих систем ДЗЗ»).

- Необходимо подготовить рекламномаркетинговую программу по российским данным ДЗЗ, показать преимущества этих данных, обосновать их конкурентоспособность по сравнению с зарубежными аналогами.
- Оператору отечественных спутниковых систем ДЗЗ НЦ ОМЗ ОАО «Российские космические системы» необходимо заключить дистрибьюторские соглашения с основными коммерческими поставщиками данных, оставляя за собой только функции оператора, без возможности выполнять коммерческие заказы, минуя дистрибьютора.
- Потенциальным дистрибьюторам необходимо представить тестовые снимки с КА «Ресурс-П» для оценки точности геопозиционирования и подтверждения заявленных параметров.
- Дистрибьютор при поставке конечному пользователю может включать добавочную стоимость на производные продукты.
- Необходимо установить единую цену в рублях на снимки для конечного пользователя, включающие дистрибьюторские скидки в размере 30%.
- Необходимо установить сроки поставки заказанных снимков не более, чем это делают зарубежные операторы (2–3 дня на поставку архивных данных и 7–60 дней на выполнение новой съемки). Необходимо убрать все излишние согласования и бюрократические препятствия при заказе данных у оператора.
- Оператор должен обеспечивать гарантированные поставки данных в установленные сроки.
- Оператор должен оперативно публиковать на геопортале метаданные со всех российских космических аппаратов.
- В настоящее время практически полностью отсутствуют продукты и сервисы на основе российских данных ДЗЗ, предоставляемых оператором, что значительно ограничивает спрос. Современный рынок все больше движется

- в сторону того, чтобы предоставлять заказчику готовые продукты, а не просто снимки.
- При проектировании новых спутников ДЗЗ необходимо учитывать, что технические характеристики их съемочной аппаратуры должны соответствовать самым современным мировым образцам, только в этом случае данные будут конкурентноспособны на внутреннем и мировом рынках.

Наряду с федеральной программой развития системы ДЗЗ будет развиваться и корпоративная. Так, свою систему создает ОАО «Газпром». Система аэрокосмического мониторинга «CMOTP» используется для предоставления геоинформационных услуг, включая обследование магистральных газопроводов, картографирование, информационное обеспечение кадастровых работ. В настояшее время система состоит из центра обработки информации приема и беспилотных летательных аппаратов. В ближайших планах ОАО «Газпром космические системы» — создание орбитальной группировки спутников ДЗЗ серии «CMOTP». которые предполагается оснастить аппаратурой C высоким и средним разрешением.

В 2014 г. компания «Совзонд» подписала соглашение с частным космическим холдингом «Даурия Аэроспейс» о партнерстве, который подразумевает создание коммерческого спутника, способного выполнять съемку с разрешением до 0,75 м в панхроматическом диапазоне и до 2 м в мультиспектральном. Это разрешение выше, чем у каких-либо гражданских спутников, созданных в России на данный момент. Стоимость спутника с наземной системой управления, учитывая также расходы на его запуск, — 100 млн долл. Планируется, что спутник будет готов в 2018 г.

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ОБРАБОТКИ ДАННЫХ ДЗЗ

К наиболее популярным и востребованным программным продуктам для фотограмметрической и тематической обработки данных ДЗЗ можно отнести программные комплексы INPHO (фотограмметрическая обработка), ENVI и некоторые другие.

INPHO (производитель — компания Trimble, Германия) — полнофункциональная фотограмметрическая система позволяющая проводить ортотрансформирование, создавать цифровые модели рельефа (ЦМР), строить 3D-модели и т. д. Модули ПО Trimble INPHO позволяют выполнять все этапы фотограмметрической обработки, и в то же время каждый модуль является самостоятельным программным решением, которое легко встраивается в существующий рабочий процесс. Фотограмметрическая система Trimble INPHO предназначена для обработки наиболее сложных фотограмметрических проектов с размером блока 20 000 и более изображений.

Из отечественных программных продуктов для фотограмметрической обработки данных ДЗЗ можно выделить РНОТОМОD (производитель — компания «Ракурс») и ЦФС «Талка» (производитель — компания «Талка»). Однако оба они в ряде аспектов уступают зарубежным аналогам.

ENVI (производитель — Exelis VIS, США) один из наиболее удачных и доступных программных продуктов, который включает весь набор инструментов для проведения полного цикла обработки данных, включая модуль SARscape. Программный ENVI соответствует комплекс основным требованиям, необходимым при обработке изображений. Следует отметить, что в последних версиях ПО предусмотрена возможность обработки данных с российских спутников серии «Pecypc-Π».

Отечественных аналогов ПО ENVI (или даже приближающихся по функциональным возможностям), к сожалению нет, однако с учетом большго потенциала российских производителей программного обеспечения появление таких продуктов можно ожидать в ближайшем будущем.

ГИС-ПРИЛОЖЕНИЯ И ГЕОИНФОРМАЦИОННЫЕ ПЛАТФОРМЫ

На сегодняшний день рынок геоинформационного программного обеспечения предоставляет большой выбор как отечественных, так и зарубежных разработок. Все они различаются своими функциональными и ценовыми характеристиками.

Список ведущих зарубежных средств разработок представлен следующими продуктами: ArcGIS, Bentley, MapInfo, AutoCAD Мар и др.

Наиболее востребованной мире и в России является линейка программных продуктов ArcGIS (производитель — компания Esri, США). Платформа ArcGIS является оптимальным решением для построения корпоративных геоинформационных систем. Отличительная особенность ArcGIS в том, что это семейство программных продуктов включает в себя все компоненты, необходимые для построения инфраструктуры пространственных данных. В нем есть средства подготовки и ведения геоданных (ArcGIS for Desktop), средства публикации веб-служб функциональности для удаленного доступа (ArcGIS for Server), средства создания каталогов геоданных и геопорталов (Geoportal Server). Пользователями ArcGIS являются более миллиона специалистов по всему миру. По данным отчета исследовательского центра ARC Advisory Group, компания Esri занимает 43% рынка ГИС.

Из ведущих российских средств разработки можно выделить ГИС «Карта 2011» (производитель — ЗАО КБ «Панорама»), ГИС «ГеоГраф» (производитель — Центр геоинформационных исследований Института географии РАН), ГИС «Ингео» (производитель — ЗАО «Центр системных исследований «Интегро») и некоторые другие.

Наиболее известным ГИС-приложением является ГИС «Карта 2011» — универсальная геоинформационная система, имеющая средства создания и редактирования электронных карт, выполнения различных измерений И расчетов, оверлейных 3D-моделей. операций. построения обработки растровых данных, подготовки графических документов в электронном и печатном виде, а также инструментальные средства для работы с базами данных.

Однако линейка ГИС-приложений ArcGIS по прежнему имеет ряд преимуществ перед зарубежными и отечественными аналогами. Это:

- наиболее широкий выбор инструментальных средств для работы с векторными и растровыми данными;
- наиболее удобный интерфейс программного доступа к функциям и данным;
 - более широкий набор базовых СУБД;
- наиболее полная поддержка стандартов ISO и OGC:
- поддержка объектно-компонентной модели данных;
- поддержка сервис-ориентированной технологии:
 - поддержка геопортальных технологий;
- использование облачных вычислений и др.

Касаясь вопросов разработки отечественных геоинформационных платформ, необходимо отметить крупномасштабный инвестиционный проект в области геоинформатики, реализуемый компанией «Совзонд» для ОАО «Ростелеком». В ходе реализации

данного проекта разрабатывается российская полнофункциональная геоинформационная платформа «Единое информационное пространство геоданных» (ЕИПГ), сопоставимая с мировыми аналогами, формируется банк геопространственных ханных на аппаратно-программных мощностях ОАО «Ростелеком», создаются отраслевые сервисы. (Подробнее о ЕИПГ см. статью В. Г. Николаева «Возможности геоинформационной платформы «Единое информационное пространство геоданных» для создания комплексных региональных систем принятия управленческих поддержки решений» на с. 80 этого номера журнала.)

БПЛА

Все большую популярность в мире и России в последние годы приобретают беспилотные летательные аппараты (БПЛА), которые используются для решения самых разных задач в интересах военных и гражданских пользователей. Существуют различные конструкции БПЛА. Из них наиболее известны самолеты и вертолеты, которые используются и для оперативного дистанционного зондирования Земли (аэрофотосъемки), в том числе, например, в нефтегазовой отрасли для мониторинга трубопроводов.

Многие российские компании разрабатывают и создают специализированные комплексы БПЛА, которые по большинству показателей сравнимы с зарубежными образцами. Среди отечественных производителей БПЛА, предназначенных для целей аэрофотосъемки, можно выделить группу компаний «Геоскан» (производит также ПО для обработки полученных данных), ижевские компании «ZALA AERO» и ООО «ФИНКО», ЗАО «ЭНИКС» (Казань), корпорацию «Иркут», ООО «АФМ-Серверс» и др. Следует, однако, отметить, что в области создания высотных БПЛА, которые используются в том числе

и для видовой разведки, мы по-прежнему отстаем от мировых производителей — Израиля и США, хотя ведущие российские производители авиационной техники (например, концерн «Сухой») постепенно сокращают это отставание.

В своем обзоре мы затронули только некоторые области геоинформатики и дистанционного зондирования. На пути импортозамещения много сложностей: здесь и известное отставание в развитии компьютерных и информационных технологий в целом, и излишняя бюрократизация, и недостаточное развитие внутреннего рынка, и зависимость от зарубежных комплектующих и т. д. Однако мы видим, что отставание от ведущих стран постепенно уменьшается, и пример наращивания и развития российской системы дистанционного зондирования Земли вселяет определенный оптимизм.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дворкин Б. А., Дудкин С. А. Новейшие и перспективные спутники дистанционного зондирования Земли // Геоматика. 2013. N^2 2. С. 16–39.
- 2. Кирилин А. Н. и др. Космический annapam «Ресурс-П» // Геоматика. 2010. №4. С. 23–26.
- 3. Горбунов А. В., Слободской И. Н. Космический комплекс оперативного мониторинга техногенных и природных чрезвычайных ситуаций «Канопус-В» // Геоматика. 2010. №1. С. 30–33.
- 4. Чуркин А. Л. Космический комплекс гидрометеорологического и океанографического обеспечения «Метеор-3М» со спутником «Метеор-М» // Геоматика. — 2009. — №3. — С. 79–85.
- 5. ftp://ftp.sovzond.ru/forum/2014/reports/ Zaichko.pdf
- 6. Лошкарев П. А. и др. Развитие ЕТРИС ДЗЗ с применением облачных технологий // Геоматика. — 2013. — №4. — С. 22–26.