Correction

Partie I

1.a
$$T_2 = 2X^2 - 1$$
 et $T_3 = 4X^3 - 3X$.

1.b Montrons par récurrence double sur $n \in \mathbb{N}$ que $\deg T_n = n$.

Pour n = 0 et n = 1 : ok

Supposons la propriété établie aux rangs $n \ge 0$ et n+1. Au rang n+2:

On sait $T_{n+2} = 2XT_{n+1} - T_n$.

Par hypothèse de récurrence $\deg T_n = n$ et $\deg T_{n+1} = n+1$ d'où $\deg XT_{n+1} = n+2$.

Par somme de polynômes de degré distincts : $\deg T_{n+2} = n+2$.

Récurrence établie.

Les coefficients dominants de T_0 et T_1 valent 1.

Pour $n \ge 1$, la relation $T_{n+1} = 2XT_n - T_{n-1}$, implique, connaissant le degré de chaque polynôme, que le coefficient dominant de T_{n+1} est le double de celui de T_n .

Par suite, pour $n \ge 1$, le coefficient dominant de T_n est 2^{n-1} .

2.a Par récurrence double sur $n \in \mathbb{N}$:

Pour n = 0 et n = 1: ok

Supposons la propriété établie aux rangs $n \ge 0$ et n+1. Au rang n+2:

$$\forall \theta \in \mathbb{R} \; , \; T_{n+2}(\cos\theta) = 2\cos\theta T_{n+1}(\cos\theta) - T_n(\cos\theta) = 2\cos\theta\cos(n+1)\theta - \cos n\theta = \cos(n+2)\theta \; .$$

Récurrence établie.

2.b Pour $\theta = 0$, $T_n(\cos \theta) = \cos n\theta$ donne $T_n(1) = 1$.

En dérivant la relation $T_n(\cos\theta) = \cos n\theta$, on obtient $-\sin\theta T_n'(\cos\theta) = -n\sin n\theta$

donc pour
$$\theta =]0,\pi[$$
, $T'_n(\cos\theta) = \frac{n\sin n\theta}{\sin\theta}$

Quand
$$\theta \to 0$$
, $T'_n(\cos \theta) \to T'_n(1)$ et $\frac{n \sin n\theta}{\theta} \sim n^2$ donc $T'_n(1) = n^2$.

2.c Soit $x \in [-1,1]$ une racine de T_n .

Pour $\theta = \arccos x \in [0, \pi]$ on a $x = \cos \theta$ et $T_n(x) = \cos n\theta = 0$.

Donc il existe
$$k \in \mathbb{Z}$$
 tel que $n\theta = \frac{\pi}{2} + k\pi$ puis $\theta = \frac{(2k+1)\pi}{2n}$

Sachant $\theta \in [0,\pi]$, on peut affirmer $k \in \{0,1,...,n-1\}$.

Ainsi
$$x = \cos \frac{\pi}{2n}, \cos \frac{3\pi}{2n}, \dots$$
, ou $\cos \frac{(2n-1)\pi}{2n}$.

Inversement, par calculs, ces éléments sont racine de $\,T_{\scriptscriptstyle n}\,.$

Ainsi les racines de
$$T_n$$
 sont les x_1, \dots, x_n avec $x_k = \cos \frac{(2k-1)\pi}{2n}$.

Pour
$$k \in \{1,...,n\}$$
 les $\frac{(2k-1)\pi}{2n}$ sont des éléments deux à deux distincts de $[0,\pi]$.

La fonction cosinus étant injective sur $[0,\pi]$, on peut dire que les x_1,\ldots,x_n sont deux à deux distincts.

Le polynôme T_n possède donc n racines dans l'intervalle [-1,1].

Or $\deg T_n = n$, on peut donc affirmer qu'il n'y a pas d'autres racines et que ces dernières sont simples.

1.a
$$\frac{1}{X(X-1)} = \frac{X - (X-1)}{X(X-1)} = \frac{1}{X-1} - \frac{1}{X}.$$

$$\sum_{k=2}^{n} \frac{1}{k(k-1)} = \sum_{k=2}^{n} \frac{1}{k-1} - \frac{1}{k} = \sum_{k=1}^{n-1} \frac{1}{k} - \sum_{k=2}^{n} \frac{1}{k} = 1 - \frac{1}{n}$$
Pour tout $k \ge 2$, on a $\frac{1}{k^2} \le \frac{1}{k(k-1)}$ donc

$$S_n = 1 + \sum_{k=2}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \frac{1}{k(k-1)} \le 2 - \frac{1}{n}.$$

- 1.b $S_{n+1} S_n = \frac{1}{(n+1)^2} \ge 0$ donc (S_n) est croissante. De plus (S_n) est majorée par 2 donc (S_n) converge.
- 2.a $S_{2n} = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{(2n)^2}$. En séparant les termes d'indices paris et impairs :

$$S_{2n} = \left(\frac{1}{2^2} + \frac{1}{4^2} + \dots + \frac{1}{(2n)^2}\right) + \left(\frac{1}{1^2} + \frac{1}{3^2} + \dots + \frac{1}{(2n-1)^2}\right) = \frac{1}{4}S_n + S'_n.$$

2.b
$$S'_n = S_{2n} - \frac{1}{4}S_n \xrightarrow[n \to +\infty]{} \frac{3}{4}\ell \text{ car } S_{2n}, S_n \to \ell.$$

3.a T_n étant de coefficient dominant 2^{n-1} et de racines x_1, \dots, x_n , on peut écrire :

$$T_n = 2^{n-1} \prod_{\ell=1}^n (X - x_\ell) \cdot T_n' = 2^{n-1} \sum_{k=1}^n \prod_{\ell=1 \atop \ell \neq k}^n (X - x_\ell) \text{ puis } \frac{T_n'}{T_n} = \sum_{k=1}^n \frac{1}{X - x_k} \cdot \frac{1}{X - x_k} \cdot$$

3.b L'évaluation de $\sum_{k=1}^{n} \frac{1}{X - x_k} = \frac{T'_n}{T_n}$ en 1 donne $\sum_{k=1}^{n} \frac{1}{1 - \cos{\frac{(2k-1)\pi}{2n}}} = n^2$.

Sachant
$$1 - \cos x = 2\sin^2 \frac{x}{2}$$
 on a $\sum_{k=1}^{n} \frac{1}{\sin^2 \frac{(2k-1)\pi}{4n}} = 2n^2$.

soit encore
$$\sum_{k=1}^{n} 1 + \frac{\cos^2 \frac{(2k-1)\pi}{4n}}{\sin^2 \frac{(2k-1)\pi}{4n}} = 2n^2 \text{ d'où } \sum_{k=1}^{n} \frac{1}{\tan^2 \frac{(2k-1)\pi}{4n}} = 2n^2 - n.$$

4.a La fonction sinus est concave sur $[0,\pi/2[$ donc en dessous de sa tangente en 0 d'équation y=x. La fonction tangente est convexe sur $[0,\pi/2[$ donc au dessus de sa tangente en 0 d'équation y=x. Ainsi $\forall x \in [0,\pi/2[$, $\sin x \le x \le \tan x$.

4.b
$$\forall x \in]0, \pi/2[, \frac{1}{\tan^2 x} \le \frac{1}{x^2} \le \frac{1}{\sin^2 x}.$$

Pour
$$k \in \{0,1,...,n-1\}$$
, $x = \frac{(2k-1)\pi}{4n} \in \left]0, \frac{\pi}{2}\right[$

donc:
$$\sum_{k=1}^{n} \frac{1}{\tan^2 \frac{(2k-1)\pi}{4n}} \le \sum_{k=1}^{n} \frac{16n^2}{(2k-1)^2 \pi^2} \le \sum_{k=1}^{n} \frac{1}{\sin^2 \frac{(2k-1)\pi}{4n}},$$

puis :
$$\frac{(2n^2 - n)\pi^2}{16n^2} \le \sum_{k=1}^n \frac{1}{(2k-1)^2} \le \frac{\pi^2}{8}$$

Par le théorème des gendarmes : $S_n' = \sum_{k=1}^n \frac{1}{(2k-1)^2} \xrightarrow[n \to \infty]{} \frac{\pi^2}{8} = \ell'$ puis $\ell' = \frac{4}{3} \frac{\pi^2}{8} = \frac{\pi^2}{6}$.