

Задание №2, Таблицы истинности

Теория

Булевый тип / Логический тип - тип данных в информатике, принимающий два возможных значения, называемых истиной (**true = 1**) и ложью (**false = 0**).

Булевая алгебра / **Алгебра логики** - раздел математики, занимающийся изучением операций с булевым типом данных.

Таблица истинности - таблица, описывающая логическую функцию, отражающая все значения функции при всех возможных значениях её аргументов.

Операции в алгебре логики (те, что встречаются на ЕГЭ) и слева их обозначения в Python:

¬А, Ā,не А — отрицание, инверсия	not
А /\ В, А * В, А × В, А и В, А & В, АВ— логическое умножение, конъюнкция	and
А ∨ В, А или В — логическое сложение, дизъюнкция	or
A → B — импликация (следование)	<=
$A \equiv B - э$ квивалентность (равносильность)	==

Таблица истинности булевых операций:

A	В	¬A	A /\ B	A∖/B	$A \rightarrow B$	$A \equiv B$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

Её очень легко усвоить, если запомнить, что:

- 1. И возвращает 1, только когда оба аргумента равны 1
- 2. ИЛИ возвращает 0, только когда оба аргумента равны 0
- 3. Импликация возвращает 0, только когда 1 → 0

Порядок выполнения логических операций:

- 1. Инверсия
- 2. Конъюнкция
- 3. Дизъюнкция
- 4. Импликация
- 5. Эквиваленция

План выполнения 2 задания:

1. Строим таблицу истинности через Python: проходим по всем возможні значениям аргументов (1 и 0 для каждой переменной) через вложеннь циклы и выводим в консоль значение функции при данных аргументах.

2. Сопоставляем полученную таблицу истинности с таблицей из условия: отсеиваем неподходящие строки, смотрим на то, сколько раз переменная принимает то или иное значение, на количество нулей и единиц в строке.

Если в python "**not**" стоит до или после "==" или "<=", то <u>необходимо</u> обернуть "**not**" в круглые скобки:

неправильный вариант

правильный вариант

Алгоритм решения

Логическая функция F задаётся выражением $(x \lor y \lor z) \to (x \land (y \lor w))$ На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий **неповторяющиеся строки**. Определите соответствие столбцов таблицы переменным в выражении.

				F
1	0		0	0
	1	1		0
1	1		1	0

В ответе напишите буквы x,y,z,w в том порядке, в котором идут соответствующие им столбцы. Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

1. Выполняем следующий код в Python:

```
print("x y z w F")
for x in [0, 1]:
    for y in [0, 1]:
    for z in [0,1]:
        for w in [0,1]:
        F = (x or y or z) <= (x and (y or w))
        if F == 0: #В таблице из условия F всегда 0, F=1 нас не интересует print (x,y,z,w,int(F))
```

2. Получаем таблицу истинности для F=0:

3. Назовём таблицу истинности из условия первой таблицей, а полученную выполнением кода - второй. Замечаем, что последней строке из первой таблицы может соответствовать только строка 0 111 из второй, т.к. в полученной таблице истинности больше нет строк с 3 и более единицами. Значит, в последней строке первой таблицы пишем 0 на пустое место и понимаем, что этот столбец может соответствовать только переменной х

4. Соотнесённые строки больше не несут никакой полезной информации, поэтому можем их игнорировать. Т.к. во второй таблице больше нет строк, где может быть больше 2-х единиц, можно понять, что в пустых ячейках второй строки первой таблицы могут быть только 0.

		X		F
1	0		0	0
0	1	1	0	0
1	1	0	1	0

5. **х** во второй строке первой таблицы равен 1. Во второй таблице x = 1 только в двух нижних строках: при 3-ёх нулях и при 2-х. Очевидно, что именно последняя строка второй таблицы соответствует второй строке первой. Вторая единица соответствует **z**, отмечаем.

	Z	Х		F
1	0		0	0
0	1	1	0	0
1	1	0	1	0
	X	v z wIF	count(1)	
		0100		
	0	0110	2	
	0	1000	1	
	0	1010	2	
	0	1100	2	
\	-0	1110	3	
	1	0000	1	
		0100	2	

6. Помимо соотнесённой строки, вычеркиваем из второй таблицы все строки, в которых **z**=1, т.к. они точно не соотносятся с оставшейся первой строкой из первой таблицы, в которой **z**=0.

	Z	X		F
1	0		0	0
0	1	1	0	0
1	1	0	1	0

7. В оставшейся первой строке первой таблицы в неотмеченных столбцах видим разные значения 1 и 0. Значит, что не соотнесённые **у** и **w** должны во второй таблице так же иметь разные значения. Вычеркиваем неподходящие строки и остаётся лишь одна.

	Z	X		F
1	0		0	0
0	1	1	0	0
1	1	0	1	0

8. **х** в оставшейся строке равен 0, **y** = 1, **w** = 0. Подписываем столбцы в первой таблице и получаем ответ: **yzxw**

У	Z	X	W	F			
1	0	0	0	0			
0	1	1	0	0			
1	1	0	1	0			
xyzwF count(1) -00100 1 -00110 2 -01010 2							
	-0	1100 2					
	-0	1110 3					
	-1	0000 1					
	-1	010 02					