Universidad Autónoma de Madrid

Análisis Matemático. Soluciones al examen Parcial del 15 de Octubre de 2021.

1.1 Sea $A \subset \mathbb{R}$ un conjunto con más de un elemento, que satisface la siguiente condición:

 $Si \ x, y \in A, \ entonces \ (x+y)/2 \in A.$

- a) Dado un punto cualquiera $x_* \in A$, encontrar una sucesión $\{x_n\}$ (no constante) contenida en A, tal que $\{x\}_n \to x_*$.
- b) Dar un ejemplo de conjunto abierto y acotado A que cumpla la condición del enunciado.
- c) Escribir la caracterización de conjunto cerrado en términos de sucesiones. Explicar por qué la propiedad demostrada en el apartado (a) no es suficiente para que A sea cerrado.

Solución.

a) Elegimos un punto $p \in A$ distinto de x_* y definimos:

$$x_1 = \frac{x_* + p}{2}$$
, $x_2 = \frac{x_* + x_1}{2}$, ..., $x_j = \frac{x_* + x_{j-1}}{2}$, ...

Resulta una sucesión $\{x_n\}_{n=1}^{\infty}$ contenida en A. Además

$$|x_* - x_n| = \left|x_* - \frac{x_* + x_{n-1}}{2}\right| = \frac{1}{2}|x_* - x_{n-1}| = \frac{1}{2} \cdot \frac{1}{2}|x_* - x_{n-2}| = \dots = \frac{1}{2^n}|x_* - p|,$$

y es evidente que $|x_* - x_n| \to 0$ cuando $n \to \infty$. Los x_n son distintos dos a dos porque, al ser $|x_* - p| > 0$, las distancias de los x_n al punto x_* son distintas entre sí.

- b) El conjunto A = (0,1) es abierto y acotado. Cumple la condición del enunciado porque es convexo.
- c) Un conjunto $E \subseteq \mathbb{R}$ es cerrado si toda sucesión contenida en E y convergente en \mathbb{R} tiene su límite en E.

La propiedad demostrada en a) (de existencia de una sucesión en A convergente a x_*) no es suficiente para que A sea cerrado porque, además de las sucesiones construidas en a), hay que considerar muchas otras.

1.2 Considera la matriz

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \\ 1 & 2 \end{array}\right) .$$

Halla, razonadamente, la norma |||A||| de A como operador $(\mathbb{R}^2, \|\cdot\|_{\infty}) \to (\mathbb{R}^3, \|\cdot\|_2)$.

Solución. Calculamos:

$$\left\| M \left(\begin{array}{c} x \\ y \end{array} \right) \right\|_2 = \left\| \left(\begin{array}{c} x \\ 2y \\ x + 2y \end{array} \right) \right\|_2,$$

de donde

$$|||A||| = \sup_{\|(x,y)\|_{\infty} \le 1} \left\| \begin{pmatrix} x \\ 2y \\ x + 2y \end{pmatrix} \right\|_{2} = \sup_{|x|,|y| \le 1} \left\| \begin{pmatrix} x \\ 2y \\ x + 2y \end{pmatrix} \right\|_{2} \le \sqrt{1 + 2^{2} + (1 + 2)^{2}}.$$

1

Ya tenemos $|||A||| \le \sqrt{14}$.

Por otra parte:

$$\left\| \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\|_{\infty} = 1 \quad \text{y} \quad \left\| M \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\|_{2} = \left\| \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\|_{2} = \sqrt{14},$$

luego $|||A||| \ge \sqrt{14}$. Juntando esto con el resultado anterior, llegamos a $|||A||| = \sqrt{14}$.

2. En este problema $\langle \ , \ \rangle$ denota el producto escalar usual de \mathbb{R}^n y $\| \ \|$ su norma asociada.

(a) Sean $x_1=(0,1), x_2=(\frac{\sqrt{3}}{2},\frac{1}{2}), x_3=(\frac{\sqrt{3}}{2},-\frac{1}{2})$ tres elementos de \mathbb{R}^2 . Prueba que para todo $v=(x,y)\in\mathbb{R}^2$

$$|\langle v, x_1 \rangle|^2 + |\langle v, x_2 \rangle|^2 + |\langle v, x_3 \rangle|^2 = \frac{3}{2} ||v||^2.$$

Solución. Hacemos el siguiente cálculo, teniendo en cuenta que los términos en xy se cancelan:

$$y^2 + \left(\frac{\sqrt{3}}{2}x + \frac{y}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}x - \frac{y}{2}\right)^2 \ = \ y^2 + \frac{3}{4}x^2 + \frac{1}{4}y^2 + \frac{3}{4}x^2 + \frac{1}{4}y^2 \ = \ \frac{3}{2}x^2 + \frac{3}{2}y^2 \ = \ \frac{3}{2}\|(x,y)\|^2 \ .$$

(b) Dado $v \in \mathbb{R}^n$, sea $T_v : \mathbb{R}^n \longrightarrow \mathbb{R}$ el operador lineal dado por $T_v(y) = \langle v, y \rangle$. Prueba que la norma de T_v como operador de $(\mathbb{R}^n, \|\cdot\|) \to (\mathbb{R}, |\cdot|)$ es

$$|||T_v||| = ||v||.$$

Solución:

$$|||T_v||| = \sup_{\|y\|=1} |\langle v,y\rangle| = \sup_{\|y\|=1} ||v\| ||y|| |\cos\angle(v,y)| = ||v|| \cdot 1 \cdot \sup_{0 \le \theta \le 2\pi} |\cos\theta| = ||v|| \cdot 1 = ||v||.$$

(c) Sean $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}^n$ para los que existe $B \in (0,\infty)$ tal que

$$\sum_{n=1}^{\infty} |\langle v, x_n \rangle|^2 \le B \|v\|^2 \qquad \forall v \in \mathbb{R}^n.$$

Para $v \in \mathbb{R}^n$ y $N \in \mathbb{N}$ definir $v_N = \sum_{n=1}^N \langle v, x_n \rangle x_n$.

Probar que $\{v_N\}_{N=1}^{\infty}$ es una sucesión de Cauchy en \mathbb{R}^n .

Sugerencia: tener en cuenta que, según el apartado (b) anterior, podemos escribir $||v_N - v_M|| = |||T_{v_N - v_M}|||$, con $T_{v_N - v_M}(y) = \langle v_N - v_M, y \rangle$.

Solución. Basta considerar el caso N > M. Entonces

$$v_N - v_M = \sum_{n=M+1}^N \langle v, x_n \rangle x_n$$
.

Siguiendo la sugerencia, razonamos así:

$$||v_N - v_M|| = |||T_{v_N - v_M}||| = \sup_{||y|| = 1} |T_{v_N - v_M}(y)| =$$

$$= \sup_{||y|| = 1} \left| \sum_{n = M+1}^{N} \langle v, x_n \rangle \langle x_n, y \rangle \right|.$$

Ahora utilizamos la desigualdad de Cauchy-Schwarz, de la siguiente manera:

$$\left| \sum_{n=M+1}^{N} \left\langle v, x_n \right\rangle \left\langle x_n, y \right\rangle \right| \leq \left(\sum_{n=M+1}^{N} \left\langle v, x_n \right\rangle^2 \right)^{1/2} \cdot \left(\sum_{n=M+1}^{N} \left\langle y, x_n \right\rangle^2 \right)^{1/2} ,$$

y deducimos:

$$||v_N - v_M|| \leq \left(\sum_{n=M+1}^N \langle v, x_n \rangle^2\right)^{1/2} \cdot \sup_{\|y\|=1} \left(\sum_{n=M+1}^N \langle y, x_n \rangle^2\right)^{1/2} \leq$$

$$\leq \left(\sum_{n=M+1}^N \langle v, x_n \rangle^2\right)^{1/2} \cdot \sup_{\|y\|=1} \left(\sum_{n=1}^\infty \langle y, x_n \rangle^2\right)^{1/2} \leq$$

$$\leq \left(\sum_{n=M+1}^N \langle v, x_n \rangle^2\right)^{1/2} \cdot \sqrt{B} \cdot 1.$$

Fijado el vector v, tenemos una serie convergente de términos positivos:

$$\sum_{n=1}^{\infty} \langle v, x_n \rangle^2 \le B \|v\|^2 ,$$

luego la cola de esa serie tiende a cero

$$\sum_{n=M+1}^{\infty} \langle v, x_n \rangle^2 \to 0 \quad \text{cuando} \quad M \to \infty ,$$

y también

$$\sqrt{B} \cdot \left(\sum_{n=M+1}^{\infty} \langle v, x_n \rangle^2\right)^{1/2} \to 0 \text{ cuando } M \to \infty,$$

que, con lo probado anteriormente, nos da:

$$||v_N - v_M|| \to 0$$
 cuando $N > M \to \infty$,

fórmula que expresa la propiedad de que $\{v_N\}_{N=1}^{\infty}$ sea una sucesión de Cauchy.

3.1 Dada $f: \mathbb{R}^2 \to \mathbb{R}$, diferenciable en todo punto, desarrolla la siguiente expresión utilizando la regla de la cadena

$$\frac{\partial}{\partial x} f(f(x,y), 5x - y)$$
.

Solución. Para evitar confusiones, elegimos otras dos letras (distintas de las letras x, y) para designar a las variables independientes de la función f: f(u, v), y entonces escribimos:

$$f(f(x,y), 5x - y) = f(u,v) \Big|_{\substack{u=f(x,y)\\v=5x-2y}}$$
,

y calculamos así:

$$\frac{\partial}{\partial x} f(u, v) = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} = \left(\frac{\partial f}{\partial u}\right)_{\substack{u=f(x,y)\\v=5x-2y}} \cdot f_x(x, y) + \left(\frac{\partial f}{\partial v}\right)_{\substack{u=f(x,y)\\v=5x-2y}} \cdot 5 =$$

$$= f_x(f(x, y), 5x - 2y) \cdot f_x(x, y) + f_y(f(x, y), 5x - 2y) \cdot 5.$$

3.2 Sea $F: \mathbb{R}^2 \to \mathbb{R}$ una función de clase C^{∞} en un entorno de (0,0). Sabiendo que su polinomio de Taylor de orden 3 alrededor de (0,0) es

$$P(x,y) = 2 + 3x + 4xy - y^2 + 2x^2y + x^3$$
, se pide:

- a) Determinar razonadamente cuánto valen $\frac{\partial F}{\partial y}(0,0)$, $\frac{\partial^2 F}{\partial x \partial y}(0,0)$, $\frac{\partial^3 F}{\partial x^2 \partial y}(0,0)$.
- b) Definimos $g(x) = F(x, x^2)$. Determinar razonadamente el polinomio de Taylor de grado 3 alrededor de x = 0 para la función g(x).

Solución.

a) Una de las definiciones del polinomio de Taylor de orden 3 es: el único de grado ≤ 3 que tiene las misma derivadas que f, de órdenes entre cero y 3, en el punto donde está centrado. En particular:

$$\frac{\partial F}{\partial y}(0,0) = \frac{\partial P}{\partial y}(0,0) = \frac{\partial}{\partial y}\Big|_{(0,0)} \left(2 + 3x + 4xy - y^2 + 2x^2y + x^3\right) = 0,$$

$$\frac{\partial^2 F}{\partial x \partial y}(0,0) = \frac{\partial^2 P}{\partial x \partial y}(0,0) = \frac{\partial^2}{\partial x \partial y}\Big|_{(0,0)} \left(2 + 3x + 4xy - y^2 + 2x^2y + x^3\right) = \frac{\partial^2 (4xy)}{\partial x \partial y}(0,0) = 4,$$

$$\frac{\partial^3 F}{\partial x^2 \partial y}(0,0) = \frac{\partial^3 P}{\partial x^2 \partial y}(0,0) = \frac{\partial^3}{\partial x^2 \partial y}\Big|_{(0,0)} \left(2 + 3x + 4xy - y^2 + 2x^2y + x^3\right) = \frac{\partial^3 (2x^2y)}{\partial x^2 \partial y}(0,0) = 4.$$

b) Escribamos Q(x) para designar al polinomio de orden 3 de g(x) centrado en x=0. Tenemos otra definición de este polinomio: el único de grado ≤ 3 tal que $g(x)-Q(x)=\mathrm{o}(|x-0|^3)=\mathrm{o}(|x|^3)$. Más aún, sabemos que, por ser g(x) de clase \mathcal{C}^{∞} , esa condición es equivalente a $g(x)-Q(x)=\mathrm{O}(x^4)$ y análogamente para funciones de dos variables, como es el caso de F(x,y):

$$F(x,y) \equiv 2 + 3x + 4xy - y^2 + 2x^2y + x^3 + O(\|(x,y) - (0,0)\|^4) \equiv$$
$$\equiv 2 + 3x + 4xy - y^2 + 2x^2y + x^3 + O(\|(x,y)\|^4).$$

Sustituyendo y por x^2 en esta última identidad, obtenemos

$$g(x) \equiv F(x, x^2) \equiv 2 + 3x + 4xx^2 - (x^2)^2 + 2x^2x^2 + x^3 + \mathcal{O}(\|(x, x^2)\|^4) \equiv$$

$$\equiv 2 + 3x + 4x^3 + x^3 + (-x^4 + 2x^4 + \mathcal{O}(x^4)) \equiv$$

$$\equiv 2 + 3x + 5x^3 + \mathcal{O}(x^4),$$

luego $Q(x) \equiv 2 + 3x + 5x^3$.