样卷 (闭卷)

院(系) 专业班级	
----------------	--

考试时可以用科学计算器

考试时间: 2 小时 30 分

,	M41.4 7 21	/14:11 4 VI 21	нн				2	11.4. = 1 20	,,
	题号	_		=	四	五	六	总分	
	得分								

得 分	
评卷人	

数据有_____位有效数字。 0.61309

2. 设
$$X = (-2,5,-3,8)$$
, $A = \begin{pmatrix} -3 & 2 \\ 2 & -3 \end{pmatrix}$, 则 $\|X\|_{1} = \underline{N}$, $Cond(A)_{2} = \underline{N}$

3. 设 $x_i = j$ (j = 0,1,2)为互异插值节点, $l_j(x)$ 为 Lagrange 插值基函数,则

$$\sum_{j=0}^{2} x_{j}^{2} l_{j}(\frac{1}{2}) = \frac{1}{2} \frac{1}{2} \cdot \frac{1}{2}$$

4. 已知求积公式 $\int_{1}^{2} f(x) dx \approx \frac{1}{6} f(1) + A f(\frac{3}{2}) + \frac{1}{6} f(2)$ 至少具有零次代数精

5. 对矩阵 $A = \begin{bmatrix} 9 & -6 & 3 \\ -6 & 5 & 2 \\ 3 & 2 & 42 \end{bmatrix}$ 进行 LU 分解,则其中单位下三角矩阵

7. 求解常微分方程初值问题的改进 Euler 方法使用 进行预估, _____公式进行校正。

得 分	
评卷人	

二、(共15分)

(1) 对于线性方程组 $\begin{cases} 3x_1 + x_2 = 2 \\ 2x_1 + 4x_2 = -2 \end{cases}$,

分别写出求解该方程的 Jacobi 迭代及 Gauss-Seidel 迭代公式,并判断其敛散性。

(2) 对于一般的线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}$$

得 分	
评卷人	

三、(共10分)应用变步长梯形法计算定积分

$$\int_{-2}^{2} \frac{1}{x^2 + 3} \, dx$$

的近似值,步长 h 从 4 逐步二分减小到 1 为止、计算过程中保留小数点后 2 位即可。

得 分	
评卷人	

四、	(共20分)	1.(10 分)	己知函数表:
----	--------	----------	--------

х	-1	0	1
f(x)	10	5	2

- (1) 试求过这 3 点的 Lagrange 插值多项式 $L_2(x)$; (2) 若还已知条件 f'(1)=0,求其三次 Hermite 插值多项式 $H_3(x)$,并写出余项表达式。
- 2.(10 分) 已知如下测量数据:

x_i	-2	-1	0	1	2
$f(x_i)$	8	5	1	4	9

求 f(x)的最小二乘拟合多项式 $p(x) = ax^2 + b$ (其中 a,b 为拟合系数)。 (第四题答案请填写在第4页)

得 分	
评卷人	

- 五、(共 20 冬)试解答下列问题:

 (1) 分别写出数值求解 $f(x) = x^2 x 1 = 0$ 在 [0,2] 之间的根的弦截法和 Newton 迭代法的具体计算公式;
- (2) 任取初值 $x_0 \ge 1$,求 $x^2 = 2$ 的根 $\sqrt{2}$ 的 Picard 迭代法:

$$x_{k+1} = \frac{x_k}{2} + \frac{1}{x_k}$$
 ($k = 0, 1, 2, ...$) 是否收敛到 $\sqrt{2}$? 为什么?

得 分	
评卷人	

六、(共15分) (1)写出用隐式 Euler 法求解初值问题

$$\begin{cases} y'(x) = -2y(x) + x, & x \in [0,1] \\ y(0) = 1 \end{cases}$$

的公式, 并取步长h = 0.2, 计算一步得到y(0.2) 的近似值;

(2) 证明求解 y' = f(x, y) 的线性二步法

$$y_{n+2} + (b-1)y_{n+1} - by_n = \frac{h}{4}[(b+3)f_{n+2} + (3b+1)f_n]$$

的收敛阶不超过2阶(其中b为实系数)。

得 分	
评卷人	

六、(共15分) (1)写出用隐式 Euler 法求解初值问题

$$\begin{cases} y'(x) = -2y(x) + x, & x \in [0,1] \\ y(0) = 1 \end{cases}$$

的公式, 并取步长h = 0.2, 计算一步得到y(0.2) 的近似值;

(2) 证明求解 y' = f(x, y) 的线性二步法

$$y_{n+2} + (b-1)y_{n+1} - by_n = \frac{h}{4}[(b+3)f_{n+2} + (3b+1)f_n]$$

的收敛阶不超过2阶(其中b为实系数)。