x の関数 $f(x)=(x^2-4)(x^2-9)$ の, $t\le x\le t+1$ という範囲における最大値を g(t) とする.t が $-3\le t\le 3$ の範囲を動く時,関数 s=g(t) を求め,そのグラフを描け.

[解] まず,

$$f'(x) = 2x(2x^2 - 13)$$

である. 故に $\alpha = \sqrt{13/2}$ とおいて下表を得る.

t		$-\alpha$		0		β	
f'	_	0	+	0	_	0	+
f	>		7		×		7

また,

$$f(t) = f(t+1)$$

 $\iff (t+3)(t-2)(4t+2) = 0$

である.故にy = f(x)のグラフは下図.

従って, 求める関数 g(x) は以下のようになる.

$$g(x) = \begin{cases} f(t+1) & (-3 \le t \le -1) \\ 36 & (-1 \le t \le 0) \\ f(t) & (0 \le t \le 2) \\ f(t+1) & (2 \le t \le 3) \end{cases}$$

 $f(x+1) = x^4 + 4x^3 - 7x^2 - 22x + 24$ に注意 して,このグラフは右上図....(答)

