

Departamento de Matemáticas 2º Bachillerato CCSS

Parcial 2^aEv.

Nombre:	Fecha:				
Tiempo: 45 minutos	Tipo: A				

Esta prueba tiene 8 ejercicios. La puntuación máxima es de 32. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	Total
Puntos:	10	4	4	2	2	3	3	4	32

1. Calcula los siquientes límites:

(a)
$$\lim_{x \to -1} \left(\frac{x^3 + x^2 - x - 1}{2x^3 + 5x^2 + 4x + 1} \right)$$

Solución: 2

(b)
$$\lim_{x \to 3} \left(\frac{\sqrt{x+1} - 2}{x^2 - 3x} \right)$$

Solución: $\frac{1}{12}$

(c)
$$\lim_{x \to -1} \left(\frac{x^3 - 3x - 2}{2x^3 + 5x^2 + 4x + 1} \right)$$

Solución: 3

(d)
$$\lim_{x \to 8} \left(\frac{\sqrt{x+1} - 3}{x^2 - 8x} \right)$$

Solución: $\frac{1}{48}$

(e)
$$\lim_{x \to -\infty} \left(\frac{x+3}{2x} \right)^{\frac{x^2}{x-3}}$$

Solución: $\frac{1}{2^{-\infty}} = \infty$

(f) $\lim_{x \to \infty} \left(\frac{x+3}{2x} \right)^{\frac{x^2}{x-3}}$

Solución: $\frac{1}{2^{\infty}} = 0$

2. Se considera la función

$$f(x) = \begin{cases} ax^2 - 1 & si \quad x < 1\\ (x - a)^2 & si \quad x \ge 1 \end{cases}$$

(a) Determine los valores de $a \in \mathbb{R}$ que hacen que f es continua en su (2 puntos) dominio

Solución:
$$f = \begin{cases} ax^2 - 1 & \text{for } x < 1 \\ (-a + x)^2 & \text{otherwise} \end{cases}$$
 $\lim_{x \to 1^-} f = a - 1 \wedge \lim_{x \to 1^-} f = (1 - a)^2 \to -a^2 + 3a - 2 = 0 \to a = 1, a = 2$

(b) Para $a = \frac{1}{2}$, determine, si existen, los puntos de corte de la gráfica (2 puntos) con el eje de las x

Solución:
$$\frac{x^2}{2} - 1 = 0 \to x = -\sqrt{2}$$

 $(x - \frac{1}{2})^2 \to x = \frac{1}{2} = 0 \notin x \ge 1$

3. Dada la función $f(x) = ax + \frac{b}{x}$:

(1 punto) (2 puntos)

(a) Determine los valores de los parámetros $a, b \in \mathbb{R}$ para que pase por el punto (2,4) y tenga un extremo relativo en ese punto.

Solución:
$$\begin{cases} f(2) = 4 \\ f'(2) = 0 \end{cases} \to f'(x) = a - \frac{b}{x^2} \to \begin{cases} 2a + \frac{b}{2} = 4 \\ a - \frac{b}{4} = 0 \end{cases} \to a = 1 \land b = 4$$

(b) Justifica qué tipo de extremo relativo es (máximo relativo o mínimo (1 punto) relativo)

Solución:
$$f''(x) = \frac{2b}{x^3} \to f''(2) = \frac{b}{4} \to f''(2) = \frac{4}{4} = 1 > 0 \to MINREL$$

4. Sea la función $f(x) = \frac{x^2 - x + 1}{x - 1}$:

(a) Determine sus asíntotas

Solución:
$$\lim_{x\to 1^-} \left(\frac{x^2-x+1}{x-1}\right) = -\infty \wedge \lim_{x\to 1^+} \left(\frac{x^2-x+1}{x-1}\right) = \infty \to x = 1A.V.$$

$$\lim_{x\to\infty} \left(\frac{x^2-x+1}{x-1}\right) = \infty \wedge \lim_{x\to -\infty} \left(\frac{x^2-x+1}{x-1}\right) = -\infty \to \nexists A.H.$$

$$\lim_{x\to\infty} \frac{f(x)}{x} = \left(\frac{x^2-x+1}{x^2-x}\right) = 1 \to m = 1 \wedge \lim_{x\to\infty} \left(f(x) - mx\right) = 0 \to u = xA.O.$$

$$\lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to -\infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left(\begin{array}{c} x - 1 \end{array} \right) = \infty \wedge \lim_{x \to \infty} \left($$

(b) Calcule f'(2)

(1 punto)

(1 punto)

Solución:
$$f'(x) = \frac{x(x-2)}{x^2-2x+1} \to f'(2) = 0$$

- 5. Se considera la función $f(x) = \frac{10}{x^2 + 2x 3}$:
 - (a) Determine el dominio de f y sus asíntotas

(1 punto)

Solución:
$$f(x) = 0 \rightarrow x = -3, x = 1 \rightarrow \lim_{x \rightarrow -3} = \infty \land \lim_{x \rightarrow -3} = \infty \rightarrow x = -3A.V.x = -1A.V.$$

$$\lim_{x \rightarrow \infty} f = \frac{10}{\infty} = 0 \rightarrow y = 0A.H.$$

(b) Obtenga los intervalos de crecimiento y decrecimiento de f(x) y determine los extremos relativos indicando si corresponden a máximos o mínimos

(1 punto)

Solución:
$$f'(x) = \frac{10(-2x-2)}{(x^2+2x-3)^2}$$

 $f'(x) = 0 \rightarrow x = -1$
 $f''(-1) = -\frac{5}{4} \rightarrow \left(-1, -\frac{5}{2}\right) MAX \ REL$

- 6. Dada la función $f(x) = \frac{2x}{1-x^2}$:
 - (a) Determine el dominio de f y sus asíntotas

(1 punto)

- (b) Obtenga los intervalos de crecimiento y decrecimiento de f(x)
- (1 punto)
- (c) Determine los extremos relativos indicando si corresponden a máximos o mínimos
 - (1 punto)

- 7. Dada la función $f(x) = x + \sqrt{1-x}$:
 - (a) Determine el dominio de f

(1 punto)(2 puntos)

- (b) Obtenga los intervalos de crecimiento y decrecimiento de f(x) y determine los extremos relativos indicando si corresponden a máximos o mínimos
- 8. Dada la función:

$$f(x) = \begin{cases} \frac{x+2}{x-1} & si \ x \le 2\\ \frac{3x^2 - 2x}{x+2} & si \ x > 2 \end{cases}$$

(a) Estudie la continuidad de f

(1 punto)

(b) Determine la recta tangente a f en el punto donde x=3

(1 punto)

(c) Calcule las asíntotas oblicuas

(2 puntos)