

Taewook Ko

**SCONE** Lab.

### Contents



- 1. Neural Network
  - a. Forward Propagation
  - b. Back Propagation
- 3. Multi-Layer Perceptron
- 4. Convolutional Neural Network
- 5. Application Examples

Seoul National University 2022-03-14

SCONE Lab.

- Taxonomy
  - Artificial Intelligence (AI)
    - Anything automatically working
  - Machine Learning (ML)
    - Models with parameters
    - Parameter train (learning)
      - Logistic Regression
      - Support Vector Machine
      - Decision Tree
  - Deep Learning (DL)
    - Neural Network
    - Staking several layers
    - Huge number of parameters to train
      - GPT-3 175 billion

o train

ΑI

ML

DL

Seoul National University 2022-03-14

3

### Neural Network

SCONE Lab.

- What is neural network?
  - Neuron<sup>1</sup>



- Artificially mimic neuron process
  - Perceptron



[1] Wiki Image, en.wikipedia.org/wiki

Seoul National University 2022-03-14

SCONE Lab.

- What is neural network?
  - Neural Network Components
    - Neuron
    - Connection
    - Input layer (data)
    - Output layer (prediction)
    - Hidden layer
    - Parameters
      - Weights
      - Bias



Hidden layers

- Two hidden layer NN
  - First hidden layer with *r* nodes
  - Second hidden layer with *k* nodes
- Output layer with *n* nodes

Seoul National University 2022-03-14

5

### Neural Network

SCONE Lab.

- How the neural network work?
  - For a single neuron
  - $output = f(\sum_{x} x_i w_i + b)$



Seoul National University 2022-03-14

(

SCONE Lab.

- How the neural network work?
  - Simple Example: A coffee menu classifier
    - input = [espresso, water, milk, ice]
    - output = ice americano: 0, americano: 1, ice latte: 2, latte:3
    - input = [1,1,0,1]  $\rightarrow$  output =  $f(w_0 + w_1 + w_3 + b) = 0$
    - input = [1,0,1,0]  $\rightarrow$  output =  $f(w_0 + w_2 + b) = 3$



Seoul National University 2022-03-14

7

# Neural Network

SCONE Lab.

- How the neural network work?
  - Output value is another input for next layer neuron
  - $output = f(\sum_{x} x_i w_i + b)$



Seoul National University 2022-03-14

SCONE Lab.

### • Forward Propagation

- $-\ Input = X \in \mathbb{R}^{1 \times m}$ 
  - *m* dimensional input
- $-H^1 = f(XW^1 + b^1)$   $\bullet W^1 \in \mathbb{R}^{m \times r}, b^1 \in \mathbb{R}^{1 \times r}$
- $-H^2 = f(H^1W^2 + b^2)$   $\bullet W^2 \in \mathbb{R}^{r \times k}, b^2 \in \mathbb{R}^{1 \times k}$
- $Output = f(H^2W^0 + b^0)$ •  $W^0 \in \mathbb{R}^{k \times n}, b^0 \in \mathbb{R}^{1 \times n}$



Repeating Matrix multiplication

Seoul National University 2022-03-14

9

### Neural Network

SCONE Lab.

#### Notations

- $W^l$ : weight matrix of l-th layer
  - $\bullet \ W^l \in \mathbb{R}^{d_1 \times d_2}$
  - *d<sub>i</sub>* :# of layer nodes
- $b^l$ : bias vector of l-th layer
  - $b^1 \in \mathbb{R}^{1 \times d2}$
- *H*<sup>l</sup>: hidden representation
  - $\bullet \ H^l \in \mathbb{R}^{1 \times d_2}$
- Output : desire output shape
  - Prediction value
  - Percentage

Input layer  $x_1$   $x_2$   $x_3$   $x_4$   $x_4$   $x_5$   $x_6$   $x_6$   $x_6$   $x_6$   $x_6$   $x_7$   $x_8$   $x_8$  x

Hidden layers

# of layer nodes = dimension size

Seoul National University 2022-03-14



#### • Activation Function

- $output = f(\sum_i x_i w_i + b)$
- Neural networks are the process of repeating matrix multiplication
- No difference from linear algebraic models
  - Linear regression / SVM
- Activation function is the key which makes the difference!
  - Non-linear function
  - Gives non-linearity characteristic to the model









[2] Johnson, N. S., et al. 2020

Seoul National University 2022-03-14

11

### Parameter Train



#### • Neural network

- Input features are fed into the neural network
- Get the output after forward propagation
- Output should be similar to the ground-truth
  - ex. Cat and Dog image classification
  - Dog → forward propagation → Dog: 99% Cat: 1%
  - Cat → forward propagation → Dog: 2% Cat: 98%

### • Train the neural network parameters $\theta(W^l, b^l)$

- To make proper output

Seoul National University 2022-03-14

SCONE Lab.

### • How to train the parameters

- Gradient Decent algorithm [studied in calculus class]
- Loss function

• Loss = 
$$(\hat{y} - y)^2 = (x * w + b - y)^2$$

- Want to minimize the loss
  - Find the global minimum value of the loss function
- Derivate on parameters
  - Gradient  $\frac{\partial loss}{\partial w}$ 
    - Direction to reducing loss



Seoul National University 2022-03-14

12

### Parameter Train



### • Update Rule

$$- w_i := w_i - \alpha \frac{\partial loss}{\partial w_i}$$

- $w_i$ : parameter
- $\frac{\partial loss}{\partial w_i}$  : gradient on parameter  $w_i$
- $\alpha$ : learning rate, learning step
- Expected to get smaller loss with newly update parameter  $w_i$
- Update the parameter to the direction to reduce loss
- Loss is a function of parameters (Outcome of forward pass)

Seoul National University 2022-03-14



#### • Chain Rule

- Hundreds, millions of parameters contributes the loss function
- Need to calculate gradient of each parameters
- Use chain rule



# Parameter Train



#### • Chain Rule

- 
$$f = f(g)$$
,  $g = g(x)$   
-  $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \times \frac{\partial g}{\partial x}$ 

$$\begin{split} & - \frac{\partial L}{\partial w_0} = \frac{\partial L}{\partial \text{out}} \times \frac{\partial \text{out}}{\partial \text{in}} \times \frac{\partial \text{in}}{\partial w_0} \\ & - \frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \text{out}} \times \frac{\partial \text{out}}{\partial \text{in}} \times \frac{\partial \text{in}}{\partial w_1} \\ & - \frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial \text{out}} \times \frac{\partial \text{out}}{\partial \text{in}} \times \frac{\partial \text{in}}{\partial w_2} \\ & - \frac{\partial L}{\partial w_3} = \frac{\partial L}{\partial \text{out}} \times \frac{\partial \text{out}}{\partial \text{in}} \times \frac{\partial \text{in}}{\partial w_3} \\ & = 1 \times \text{f '(out)} \times x_3 \\ & - \frac{\partial L}{\partial \text{b}} = \frac{\partial L}{\partial \text{out}} \times \frac{\partial \text{out}}{\partial \text{in}} \times \frac{\partial \text{in}}{\partial \text{b}} \end{split}$$



Seoul National University 2022-03-14

SCONE Lab.

#### • Chain Rule

- 
$$f = f(g)$$
,  $g = g(x)$   
-  $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \times \frac{\partial g}{\partial x}$ 

$$\begin{split} & - \frac{\partial L_0}{\partial w_0} = \frac{\partial L_0}{\partial \text{out}} \times \frac{\partial \text{out}}{\partial \text{in}} \times \frac{\partial \text{in}}{\partial w_0} \\ & - \frac{\partial L_1}{\partial w_0} = \frac{\partial L_1}{\partial \text{out}} \times \frac{\partial \text{out}}{\partial \text{in}} \times \frac{\partial \text{in}}{\partial w_0} \\ & - \frac{\partial L_2}{\partial w_0} = \frac{\partial L_2}{\partial \text{out}} \times \frac{\partial \text{out}}{\partial \text{in}} \times \frac{\partial \text{in}}{\partial w_0} \end{split}$$

$$-\frac{\partial L}{\partial w_0} = \frac{\partial L_0}{\partial w_0} + \frac{\partial L_1}{\partial w_0} + \frac{\partial L_2}{\partial w_0}$$
$$-w_0 = w_0 - \alpha \frac{\partial L}{\partial w_0}$$



Seoul National University 2022-03-14

17

### Parameter Train



#### • Chain Rule

- Hundreds, millions of parameters contributes the loss function
- Need to calculate gradient for each parameters
- Use chain rule



SCONE Lab.

### • Back Propagation

- Calculate loss (prediction, ground-truth)
- Calculate gradients with chain rule
- Updated parameters with updating rule

### • Gradient Vanishing problem

- Chain rule
  - Repeatedly multiply gradients
  - Gradients are small values
  - For deep layer, gradients will be very small

$$-\frac{\partial y}{\partial x_1} = \frac{\partial f}{\partial x_l} \times \frac{\partial x_l}{\partial x_{l-1}} \times \frac{\partial x_{l-1}}{\partial x_{l-2}} \times \frac{\partial x_{l-2}}{\partial x_{l-3}} \times \dots \times \frac{\partial x_2}{\partial x_1}$$

- There is no parameter update and training for deep layer NN
- This neural network idea was proposed in 80's
  - The gradient vanishing issue brought AI winter

Seoul National University 2022-03-14

19

## Parameter Train



#### • Activation Functions

- Sigmoid
  - Maximum derivative value of sigmoid is less than 1

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

• 
$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$



Seoul National University 2022-03-14

SCONE Lab.

#### • Activation Functions

- ReLU
  - $R(x) = \max(0, x)$
  - R'(x) = 0 or 1

Gradients are not drastically reduced Large values can get gradients



[4] N. Vinod and G. Hinton, ICML. 2010.

Seoul National University 2022-03-14

21

### Parameter Train



#### Initialization

- Initializing parameters
  - Start with small number sampled from gaussian distribution
  - Things to read
    - Xavier Weight Initialization [Xavier et al, ICML2010]
    - Normalized Weight Initialization [Xavier et al, ICML2010]
    - He Weight Initialization [He et al, CVPR2015]





### • Update Rule

- Stochastic Gradient Decent
  - Cannot load all training dataset at once
  - Train with some batch of train data (Called mini-batch learning)
  - Calculated gradients for batch data
    - It is not the exact gradient to the global minimum
  - Momentum update
    - $W = W \alpha v_w$
    - $v_{dw} = \beta v_{dw} + (1 \beta)dW$





[3] Sung K, PytorchZeroToAll

7

Seoul National University 2022-03-14

# Parameter Train



#### • Update Rule

- Things to read
  - RMSProp
    - Exponentially weighted moving average
  - AdaGrad [JMLR2011]
    - Change learning rate
  - ADAM [ICLR2015]
    - RMSProp + AdaGrad



[6] P. Kingma, et al,. ICLR2015

Seoul National University 2022-03-14

SCONE Lab.

#### Loss Functions

- Mean squared error
  - $\bullet \ L = (\widehat{y_i} y_i)^2$
- Mean absolute error
  - $\bullet \ L = |\widehat{y_i} y_i|$
- Binary Cross-Entropy

• 
$$L = -(y_i log(\hat{y_i}) + (1 - y_i) log(1 - y_i))$$

- Cross-Entropy
  - $L = y_i log(\widehat{y_i})$
- Hinge Loss
  - $L = \max(0, y \hat{y} + 1)$

Seoul National University 2022-03-14

25

### Parameter Train



#### Neural Network overview

- Network design
  - Input, output
  - Layer, node
- Initialize parameters
  - Initializing
- Forward Propagation
  - Activation functions
  - Normalization
  - Regularization
  - 0 1 1 1 1
- Calculate loss
  - Loss functions
- Back Propagation
  - Update rule
  - Learning rate

Seoul National University 2022-03-14



### Reference



- [1] https://en.wikipedia.org/wiki/Neuron
- [2] Johnson, N. S., et al. "Invited review: Machine learning for materials developments in metals additive manufacturing."  $Additive\ Manufacturing\ 36\ (2020):\ 101641.$
- [3] https://github.com/hunkim/PyTorchZeroToAll
- [4] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted boltzmann machines." *Icml*. 2010.
- [5] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." *Proceedings of the IEEE international conference on computer vision*. 2015.
- [6] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." *arXiv preprint arXiv:1412.6980* (2014).

Secul National University 2022-03-14