Informe Act4: Diagnóstico Bayesiano de COVID-19

Carmen Azorín Martí

El informe muestra una tabla con ejemplos de uso del programa en el que se ve cómo cambia la probabilidad de covid según la zona de incidencia, vacuna, fiebre, tos y test.

Incidencia	Vacunación	Fiebre	Tos	Test	P(COVID)
Alta	Ninguna	Alta	No	Desconocido	0.33206
Alta	Completa	Alta	Sí	Desconocido	0.81306
Desconocida	Ninguna	Alta	Sí	Desconocido	0.89215
Desconocida	Ninguna	?	?	Negativo	0.00419

Cálculo del caso 4: usando el Teorema de Bayes:

$$\begin{split} P(\text{COVID} \mid \text{TestNeg}) &= \frac{P(\text{TestNeg} \mid \text{COVID}) \cdot P(\text{COVID})}{P(\text{TestNeg} \mid \text{COVID}) \cdot P(\text{COVID}) + P(\text{TestNeg} \mid \text{no COVID}) \cdot P(\text{no COVID})} \\ &= \frac{0.10 \cdot 0.89215}{0.10 \cdot 0.9613 + 0.99 \cdot (1 - 0.89215)} \approx \frac{0.089215}{0.089215 + 0.10677} \approx 0.43969 \end{split}$$

Por el enunciado:

- $P(\text{Test Negativo} \mid \text{COVID}) = 1 0.9 = 0.1$
- $P(\text{Test Negativo} \mid \text{no COVID}) = 0.99$
- P(COVID) = 0.89215