

الاعتجال الوطني العوحد للبكالوريا الامتحال الوطني العوحد للبكالوريا المتحانات والترجيه 2013

الدورة العادية **13** الموضوع

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعب(ة) أو المسلك

NS22

معلومات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
 - مدة إنجاز موضوع الامتحان: 3 ساعات ؟
- عدد الصفحات : 3 صفحات (الصفحة الأولى تتضمن معلومات والصفحتان المتبقيتان تتضمنان تمارين الامتحان)؟
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
- في حالة عدم تمكن المترشح من الإجابة عن سؤال ما ، يمكنه استعمال نتيجة هذا السؤال لمعالجة الأسئلة الموالية ؛
 - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟
 - بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

معلومات خاصة

يتكون الموضوع من خمسة تمارين مستقلة فيما بينها و تتوزع حسب المجالات كما يلى :

النقطة الممنوحة	المجال	التمرين
3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	حساب الاحتمالات	التمرين الثالث
3 نقط	المتتاليات العددية	التمرين الرابع
8 نقط	دراسة دالة وحساب التكامل	التمرين الخامس

الامتحان الوطني الموحد للبكالوريا -الدورة العادية 13 كامي الموضوع- مادة: الرياضيات- شعبة العلوم التجريبية بمساكها وشعبة العلوم والتكنولوجيات بمسلكيها

الموضوع

التمرين الأول (3ن)

1

0.5

B(1,0,1) و A(-1,1,0) ، النقط A(-1,1,0) ، النقط A(-1,1,0) ، النقط A(-1,1,0) و نعتبر ، في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر Ω و شعاعها Ω و الفلكة Ω التي مركزها Ω وشعاعها Ω

$$(OAB)$$
 اً- بین أن $\vec{x} + y - z = 0$ و تحقق من أن $\vec{OA} \wedge \overrightarrow{OB} = \vec{i} + \vec{j} - \vec{k}$ معادلة دیکارتیة للمستوی

 $\sqrt{6}$ بـ تحقق من أن $\sqrt{3} = d(\Omega, (OAB)) = d(\Omega, (OAB))$ ثم بين أن $d(\Omega, (OAB)) = \sqrt{3}$ بين أن $d(\Omega, (OAB)) = \sqrt{3}$ ليكن $d(\Omega, (OAB)) = \sqrt{3}$ ليكن $d(\Omega, (OAB)) = \sqrt{3}$ المستقيم المار من النقطة $d(\Omega, (OAB)) = \sqrt{3}$ ليكن $d(\Omega, (OAB)) = \sqrt{3}$

$$(\Delta)$$
 المستقيم (Δ) تمثيل بارامتري للمستقيم $\begin{cases} x=1+t \\ y=1+t \end{cases}$ $(t\in IR)$: أ- بين أن $z=-1-t$

 (Γ) ب- حدد مثلوث إحداثيات مركز الدائرة 0.5

التمرين الثاني (3ن)

نعتبر ، في المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر (O,\vec{u},\vec{v}) ، النقط A و B و C التي c=-2+5i و b=4+8i و a=7+2i : a=7+2i و a=7+2i

$$\frac{c-a}{b-a} = 1+i$$
 و بين أن $(1+i)(-3+6i) = -9+3i$ أـ تحقق من أن (1 | 0.75

$$(\overrightarrow{AB}, \overrightarrow{AC})$$
 بـ استنتج أن $AC = AB\sqrt{2}$ وأعط قياسا للزاوية الموجهة

$$\frac{\pi}{2}$$
 ليكن R الدوران الذي مركزه R و زاويته (2

$$d=10+11i$$
 هو R بالدوران A هو D النقطة D النقطة D النقطة D النقطة D النقطة D

. بـ احسب
$$\frac{d-c}{b-c}$$
 و استنتج أن النقط B و C و مستقيمية $\frac{d-c}{b-c}$

التمرين الثالث (3ن)

يحتوي صندوق على 10 كرات: خمس كرات حمراء وثلاث كرات خضراء وكرتان بيضاوان (لا يمكن التمييز بين الكرات باللمس) .

نسُحب عشوائيا و في آن واحد أربع كرات من الصندوق.

المحتبر الحدثين التاليين : A : " الحصول على كرتين حمراوين و كرتين خضراوين " B : " لا توجد أية كرة بيضاء من بين الكرات الأربع المسحوبة " B : " المسحوبة "

$$P(B) = \frac{1}{3}$$
 و $P(A) = \frac{1}{7}$

. المتغير العشوائي الذي يربط كل سحبة بعدد الكرات البيضاء المسحوبة X

0.25 أـ تحقق من أن القيم التي يَأخذها المتغير العشوائي X هي 0 و 1 و 0

X بين أن $P(X=1) = \frac{8}{15}$ ثم حدد قانون احتمال المتغير العشوائي $P(X=1) = \frac{8}{15}$

التمرين الرابع (3ن)

ج- بين أن مساحة حيز المستوى المحصور بين المنحنى (C) ومحور الأفاصيل والمستقيمين اللذين

 $x \in IR$, $x^2 = e^{-x} + 4x - 4$: استعمل المنحنى (C) استعمل المنحنى (6

 $\int_{0}^{1} x^{2} e^{x} dx = e - 2$ بين أن: $e^{-x^{2}}$ بين أن: باستعمال مكاملة بالأجزاء، بين أن:

5(e-2) cm^2 هی x=1 و x=0

0.5

0.75

0.5

0.5

الملكة المغربية المفرية المنافعة المفرية المنافعة المنافعة المفرية المنافعة المفرية المنافعة المنافعة

الدورة العادية 2013 عناصر الإجابة

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعب(ة) أو المسلك

7	أو المسلك	<u> </u>	
	الأول (3 ن)	التمرين	
0.75 لحساب الجداء المتجهي و0.25 لمعادلة المستوى - 0.25 لحساب المسافة و0.5 لكون المستوى يقطع الفلكة وفق دائرة و 0.25 لشعاع الدائرة	-1 (1	2	
- 0.5 ب- 0.5 لتحديد مثلوث إحداثيات مركز الدائرة	. 1 (2	1	
	الثاني (3ن)	التمرين	
$\displaystyle rac{c-a}{b-a} = 1+i$ عن التحقق من المتساوية و $oldsymbol{0.25}$ للتوصل إلى $oldsymbol{0.25}$		1.75	
$AC=AB\sqrt{2}$ و 0.25 للتوصل إلى $\left rac{c-a}{b-a} ight =\left 1+i ight $ و 0.25 -	÷		
الكتابة $\frac{\pi}{4}$ للتوصل إلى أن $\frac{\pi}{AB}$ قياس للزاوية $\left(\left(\overline{\overline{AB}},\overline{AC}\right)\right) \equiv \arg\left(\frac{c-a}{b-a}\right)[2\pi]\right)$ في 0.25	و		
d للكتابة $d-b=i(a-b)$ أو $d-b=i(a-b)$ و d لحساب d	. j (2	1.25	
و $\frac{d-c}{b-c}=2$ للتوصل إلى $\frac{d-c}{b-c}=2$ و 0.25 لاستقامية النقط	÷		
	الثالث (3 ن)	التمرين	
و 0.25 للتوصل إلى $P(A) = \frac{C_5^2 \times C_3^2}{C_{10}^4}$ و 0.25 للحساب 0.3	5 (1	1.5	
التوصل إلى $P(B) = \frac{C_8^4}{C_{10}^4}$ و $O.5$			
0.25	`	1.5	
و 0.25 للتوصل إلى $P(X=1) = rac{C_2^1 imes C_8^3}{C_{10}^4}$ و 0.25 - 0.25 للتوصل إلى الم			
$P(X=2) = \frac{2}{15}$ ل $P(X=0) = \frac{1}{3}$ و 0.5 للتوصل إلى $P(X=0) = \frac{1}{3}$	ا وا		
) 0.5 لتحقق من المتساوية و 0.5 للترجع 10 - 10	الرا <u>بع (</u> 3 ن 1)	التمري <u>ن</u> 1	
$v_{n+1}-v_n=1$ و $v_{n+1}=\frac{10-u_n}{5-u_n}$ و 0.25 للتوصل إلى $v_{n+1}=\frac{10-u_n}{5-u_n}$	_1 (2	2	
$u_n=5-rac{5}{n}$ عن $v_n=n$ و 0.5 لاستنتاج أن $v_n=0.5$			
0.25 -	ق		

الموحد للبكالوريا -الدورة العادية كالحك حناصر الإجابة- مادة: الرياضيات- شعبة العلوم التجريبية العلوم والتكنولوجيات بمسلكيها	ن الوطني ا	الامتحا
(¿ ¿)	، الخامس	التمرين
اً- 0.25 ب- 0.25 للنهاية و 0.25 للاستنتاج	(1	0.75
اً- 0.25 ب- 0.25 للنهاية و 0.25 للتأويل الهندسي	(2	0.75
اً- 0.75 لحساب المشتقة $[2,+\infty[$ و $]-\infty,0]$ و $[2,+\infty[$ و $]-\infty,0]$ التحديد إشارة الدالة المشتقة و 0.25 ل $[2,+\infty[$ و $]-\infty,0]$	(3	2.25
و 0.25 ل f تناقصية على $[0,2]$		
5- 0.0 أ- 0.5 للمشتقة الثانية و 0.5 لأفصولي نقطتي الانعطاف	(4	2
ب- 1 (انظر الشكل أسفله)	(-	_
أ- 0.25 (تمنح كذلك 0.25 في حالة حساب (x) H دون ذكر قابلية اشتقاق H) و 0.25 لحساب التكامل ب- 0.25 لتقنية المكاملة بالأجزاء و 0.5 لحساب التكامل	(5	1.75
ج- 0.25 للمساحة ب cm^2 هي: $\int_{0}^{1} f(x) dx$ و 0.25 للحساب		
للتوصل إلى المعادلة $f(x)=1$ و 0.25 لعدد الحلول هو 3 0.25	(6	0.5
(لم يتم احترام وحدة القياس لأسباب تقنية)		
+7-		
+6-		
+5		

