Assume that the neurons have a sigmoid activation function, perform a forward pass and a backward pass on the network.
 Assume that the actual output of y is 0.5 and learning rate is 1.
 Perform another forward pass.

Back Propagation Solved Example - 1

Forward Pass: Compute output for y3, y4 and y5.

$$a_{j} = \sum_{j} (w_{i,j} * x_{i}) \qquad y_{j} = F(a_{j}) = \frac{1}{1 + e^{-a_{j}}}$$

$$a_{1} = (w_{13} * x_{1}) + (w_{23} * x_{2}) \checkmark$$

$$= (0.1 * 0.35) + (0.8 * 0.9) = 0.755$$

$$y_{3} = f(a_{1}) = 1/(1 + e^{-0.755}) = 0.68$$

$$a_{2} = (w_{14} * x_{1}) + (w_{24} * x_{2}) \checkmark$$

$$= (0.4 * 0.35) + (0.6 * 0.9) = 0.68$$

$$y_{4} = f(a_{2}) = 1/(1 + e^{-0.68}) = 0.6637$$

$$a_{3} = (w_{35} * y_{3}) + (w_{45} * y_{4}) \checkmark$$

$$= (0.3 * 0.68) + (0.9 * 0.6637) = 0.801 \checkmark$$

$$y_{5} = f(a_{3}) = 1/(1 + e^{-0.801}) = 0.69 \text{ (Network Output)}$$

Error =
$$y_{\text{target}} - y_5 = -0.19$$

Forward Pass: Compute output for y3, y4 and y5.

$$a_j = \sum_{i} (w_{i,j} * x_i)$$
 $y_i = F(a_i) = \frac{1}{1 + e^{-a_i}}$

$$a_1 = (w_{13} * x_1) + (w_{23} * x_2)$$

= $(0.1 * 0.35) + (0.8 * 0.9) = 0.755$
 $y_3 = f(a_1) = 1/(1 + e^{-0.755}) = 0.68$

$$a_2 = (w_{14} * x_1) + (w_{24} * x_2)$$

$$= (0.4 * 0.35) + (0.6 * 0.9) = 0.68$$
 $y_4 = f(a_2) = 1/(1 + e^{-0.68}) = 0.6637$

$$a_3 = (w_{35} * y_3) + (w_{45} * y_4)$$

$$= (0.3 * 0.68) + (0.9 * 0.6637) = 0.801$$

$$y_5 = f(a_3) = 1/(1 + e^{-0.801}) = 0.69 \text{ (Network Output)}$$

Back Propagation Solved Example - 1

Error =
$$y_{\text{target}} - y_{\text{S}} = -0.182$$

Forward Pass: Compute output for y3, y4 and y5.

$$a_j = \sum_j (w_{i,j} * x_i)$$
 $yj = F(aj) = \frac{1}{1 + e^{-a_j}}$

$$a_1 = (w_{13} * x_1) + (w_{23} * x_2)$$

$$= (0.0991 * 0.35) + (0.7976 * 0.9) = 0.7525$$

$$y_3 = f(a_1) = 1/(1 + e^{-0.7525}) = 0.6797$$

$$\begin{aligned} \mathbf{a}_2 &= (\mathbf{w}_{14} * \mathbf{x}_1) + (\mathbf{w}_{24} * \mathbf{x}_2) \\ &= (0.3971 * 0.35) + (0.5926 * 0.9) = 0.6723 \\ \mathbf{y}_4 &= \mathbf{f}(\mathbf{a}_2) = 1/(1 + \mathbf{e}^{-0.6723}) = 0.6620 \end{aligned}$$

$$a_3 = (w_{35} * y_3) + (w_{45} * y_4)$$

= $(0.2724 * 0.6797) + (0.8731 * 0.6620) = 0.7631$
 $y_5 = f(a_3) = 1/(1 + e^{-0.7631}) = 0.6820$ (Network Output)

· Each weight changed by:

$$\Delta w_{ji} = \eta \delta_j o_i.$$

$$\delta_j = o_j (1 - o_j)(t_j - o_j) \qquad \text{if } j \text{ is an output unit}$$

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj} \qquad \text{if } j \text{ is a hidden unit}$$

- where η is a constant called the learning rate
- · tj is the correct teacher output for unit j
- δj is the error measure for unit j

Back Propagation Solved Example - 1

Backward Pass: Compute $\delta 3$, $\delta 4$ and $\delta 5$.

For output unit:

$$\delta_5 = y(1-y) (y_{target} - y)$$

= 0.69*(1-0.69)*(0.5-0.69)= -0.0406

Compute new weights

$$\Delta w_{ji} = \eta \delta_j o_i$$

$$\Delta w_{45} = \eta \delta_5 y_4 = 1 * -0.0406 * 0.6637 = -0.0269$$

 $w_{45} \text{ (new)} = \Delta w_{45} + w_{45} \text{ (old)} = -0.0269 + (0.9) = 0.8731$

$$\Delta w_{45} + \eta \delta_5 y_4 = 1 * -0.0406 * 0.6637 = -0.0269$$

 $w_{45} \text{ (hew)} = \Delta w_{45} + w_{45} \text{(old)} = -0.0269 + (0.9) = 0.8731$

$$w_{45} (\text{new}) = \Delta w_{45} + w_{45} (\text{old}) = -0.0269 + (0.9) = 0.8731$$

 $\Delta w_{14} = 0.0269 + (0.9) = 0.8731$

 W_{14} (new) = $\Delta W_{14} + W_{14}$ (old) = -0.00287+ 0.4 = (0.397)

$$\delta_3 = y_3(1-y_3) w_{35} * \delta_5$$

= 0.68*(1 - 0.68)*(0.3 * -0.0406) = -0.00265

$$\delta_4 = y_4(1-y_4)w_{45} * \delta_5$$

= 0.6637*(1 - 0.6637)* (0.9 * -0.0406) = -0.0082

Similarly, update all other weights

i	j	\mathbf{w}_{ij}	δ	x _i	η	Updated w _{ij}
1	3	0.1	-0.00265	0.35	1	0.0991
2	3	0.8	-0.00265	0.9	1	0.7976
1	4	0.4	-0.0082	0.35	1	0.3971
2	4	0.6	-0.0082	0.9	1	0.5926
3	5	0.3	-0.0406	0.68	1	0.2724
4	5	0.9	-0.0406	0.6637	1	0.8731

$$Error = y_{target} - y_5 = -0.182$$

Forward Pass: Compute output for y3, y4 and y5.

$$a_j = \sum_i (w_{i,j} * x_i)$$
 $yj = F(aj) = \frac{1}{1 + e^{-a_j}}$

$$a_1 = (w_{13} * x_1) + (w_{23} * x_2)$$

= (0.0991 * 0.35) + (0.7976 * 0.9) = 0.7525
 $y_3 = f(a_1) = 1/(1 + e^{-0.7525}) = 0.6797$

$$\begin{aligned} \mathbf{a}_2 &= (\mathbf{w}_{14} * \mathbf{x}_1) + (\mathbf{w}_{24} * \mathbf{x}_2) \\ &= (0.3971 * 0.35) + (0.5926 * 0.9) = 0.6723 \\ \mathbf{y}_4 &= \mathbf{f}(\mathbf{a}_2) = 1/(1 + e^{-0.6723}) = 0.6620 \end{aligned}$$

$$a_3 = (w_{35} * y_3) + (w_{45} * y_4)$$

= $(0.2724 * 0.6797) + (0.8731 * 0.6620) = 0.7631$
 $y_5 = f(a_3) = 1/(1 + e^{-0.7631}) = 0.6820$ (Network Output)