Expectation-Maximization

Machine Learning 1

ISIS survey

Outline

K-Means clustering

Gaussian Mixture Model (GMM)

Expectation Maximization

Maximum likelihood for latent variables A lower bound on the log-likelihood

Clustering

Given N d-dimensional datapoints $X = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ (no labels),

partition data into K disjoint sets S_k based on similarity.

$$\forall k \forall I \ \mathcal{S}_k \cap \mathcal{S}_I = \emptyset, \quad \bigcup_{k=1}^K \mathcal{S}_k = \mathcal{D}$$

K-Means

Define clusters by minimum Euclidean distance to cluster mean.

ightarrow Find $oldsymbol{ heta} = \{\mathcal{S}_1, \dots, \mathcal{S}_K\}$ that minimize

$$J(\theta) = \sum_{k=1}^K \sum_{\mathbf{x}_n \in \mathcal{S}_k} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$
, where $\boldsymbol{\mu}_k = \frac{1}{|\mathcal{S}_k|} \sum_{\mathbf{x}_n \in \mathcal{S}_k} \mathbf{x}_n$

Algorithm ("Expectation Maximization")

- 1. Choose K random points as initial cluster centers $\mu_1^{(0)}, \dots, \mu_K^{(0)}$
- 2. Assignment (E):

$$\mathcal{S}_{k}^{(t)} = \left\{ \mathbf{x}_{n} : \left\| \mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t)} \right\|^{2} \leq \left\| \mathbf{x}_{n} - \boldsymbol{\mu}_{l}^{(t)} \right\|^{2} \ \forall l, 1 \leq l \leq K \right\}$$

- 3. **Update (M):** $\mu_k^{(t+1)} = \frac{1}{|S_b^{(t)}|} \sum_{\mathbf{x}_n \in S_k^{(t)}} \mathbf{x}_n$
- 4. Iterate 2. and 3. until convergence to local minimum

K-Means

Figures from Bishop 2006

Density estimation

Multivariate Gaussian:

$$p(\mathbf{x}|\boldsymbol{\mu}, \Sigma) = rac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\left[-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{ op} \Sigma^{-1}(\mathbf{x}-oldsymbol{\mu})
ight] \ \sim \mathcal{N}(oldsymbol{\mu}, \Sigma)$$

Does not always model data (e.g. class-conditional densities) well.

Gaussian Mixture Model (GMM)

$$egin{aligned} p(\mathbf{x}|oldsymbol{ heta}) &= \sum_{k=1}^K au_k p_k(\mathbf{x}|oldsymbol{\mu}_k, \Sigma_k) \ p_k(\mathbf{x}|oldsymbol{\mu}_k, \Sigma_k) &\sim \mathcal{N}(oldsymbol{\mu}_k, \Sigma_k) \ & au_k : ext{scaling or "prior" of } p(\mathbf{x}|oldsymbol{\mu}_k, \Sigma_k) \ &\sum_{k=1}^K au_k = 1 \ oldsymbol{ heta} &= \{ au_1, \dots, au_K, oldsymbol{\mu}_1, \dots, oldsymbol{\mu}_K, \Sigma_1, \dots, \Sigma_K\} \end{aligned}$$

Gaussian Mixture Model (GMM)

GMM's are universal density approximators.

Figures from Eugene Weinstein, Yu Zhu

As a byproduct, they provide a clustering solution.

Fitting a GMM using ML

Log-likelihood:

$$\begin{split} L(\theta) &= \log \left[p(X|\theta) \right] \\ &= \log \left[\prod_{n=1}^{N} \sum_{k=1}^{K} \tau_k p_k(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right] \\ &= \sum_{n=1}^{N} \log \left[\sum_{k=1}^{K} \tau_k p_k(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right] \\ &= \sum_{n=1}^{N} \log \left[\sum_{k=1}^{K} \tau_k \left(\frac{2\pi)^{-d/2}}{(|\boldsymbol{\Sigma}_k|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right] \right) \right] \end{split}$$

Difficult to optimize:
$$\frac{\partial L(\theta)}{\partial \theta_k} = \sum_{n} \frac{1}{\sum_{k} f(\theta_k)} \frac{\partial f(\theta_k)}{\theta_k}$$

No analytic solution.

Fitting a GMM using EM

Trick: introduce auxiliary variables indicating the membership of each sample to a Gaussian

$$\mathbf{z}_1, \dots, \mathbf{z}_N \in \mathbb{R}^K \sim \textit{Categorical}\left(oldsymbol{ au}
ight)$$
 $p(z_{nk}=1) = au_k$
 $orall n \; \exists ! \; k \quad z_{nk}=1, \; z_{nj,j
eq k}=0$
e.g. $\mathbf{z}_n = (0,0,0,1,0,\dots,0)^{ op}$

Note: this is also how to sample from a GMM

- 1. Sample $\mathbf{z} \sim \textit{Categorical}\left(oldsymbol{ au}
 ight)$
- 2. Sample $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$, where $z_k = 1$

Fitting a GMM using EM: algorithm

- 1. Initialize t=0, $\boldsymbol{\theta}^{(0)} = \{\tau_1, \dots, \tau_K, \boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K\}$ (e.g., $\tau_k^{(0)} = 1/\kappa, \boldsymbol{\Sigma}_k^{(0)} = I, \boldsymbol{\mu}_k^{(0)} = \text{rand}$)
- 2. **Expectation:** compute membership probabilities given $\theta^{(t)}$

$$\begin{split} q^{(t)}(z_{nk}) &:= p(z_{nk} = 1 | \textbf{\textit{x}}_n, \boldsymbol{\theta}^{(t)}) \overset{\text{Bayes}}{=} \frac{p(\textbf{\textit{x}}_n | z_{nk}, \boldsymbol{\theta}^{(t)}) p(z_{nk}, \boldsymbol{\theta}^{(t)})}{p(\textbf{\textit{x}}_n | \boldsymbol{\theta}^{(t)})} \\ &= \frac{\tau_k^{(t)} p_k(\textbf{\textit{x}}_n | \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})}{\sum_{l=1}^K \tau_l^{(t)} p_l(\textbf{\textit{x}}_n | \boldsymbol{\mu}_l^{(t)}, \boldsymbol{\Sigma}_l^{(t)})} \end{split}$$

3. **Maximization:** update θ given (soft) cluster assignments

$$\tau_k^{(t+1)} = \frac{1}{N} \sum_{n=1}^{N} q^{(t)}(z_{nk}) \qquad \mu_k^{(t+1)} = \frac{1}{N} \tau_k^{(t+1)} \sum_{n=1}^{N} q^{(t)}(z_{nk}) x_n$$

$$\Sigma_{k}^{(t+1)} = 1/N\tau_{k}^{(t+1)}\sum_{n=1}^{N}q^{(t)}\left(z_{nk}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}^{(t+1)}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}^{(t+1)}\right)^{\top}$$

Fitting a GMM using EM: algorithm

Note: also possible to use hard cluster assignments.

1. Expectation:

$$q^{(t)}(z_{nk}) = p(z_{nk} = 1 | \mathbf{x}_n, \boldsymbol{\theta}^{(t)})$$

$$z_{nk}^{(t)} = \begin{cases} 1 & \text{if } q^{(t)}(z_{nk}) = \max_l q^{(t)}(z_{nl}) \\ 0 & \text{otherwise} \end{cases}$$

2. **Maximization:** update θ given hard cluster assignments

$$\tau_k^{(t+1)} = \frac{1}{N} \sum_{n=1}^{N} z_{nk}^{(t)} \quad \mu_k^{(t+1)} = \frac{1}{N} \tau_k^{(t+1)} \sum_{n=1}^{N} z_{nk}^{(t)} \mathbf{x}_n
\Sigma_k^{(t+1)} = \frac{1}{N} \tau_k^{(t+1)} \sum_{n=1}^{N} z_{nk}^{(t)} \left(\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)} \right) \left(\mathbf{x}_n - \boldsymbol{\mu}_k^{(t+1)} \right)^{\top}$$

Fitting a GMM using EM

Figures from Bishop 2006

Fitting a GMM: comparison

Wikipedia

In contrast to K-means, GMM allows for

- Unequal cluster variances
- Unequal cluster probabilities
- Non-spherical clusters
- Soft cluster assignment

Fitting a GMM

Maximum Likelihood: our ultimate goal is to optimize $p(X|\theta)$.

Do the update equations optimize $p(X|\theta)$?

To answer this, it is easier to look at the EM algorithm in general.

ML for latent variable models

- z latent (unobserved variables)
- X observed data
- θ model parameters

We want to maximize the likelihood of the observed data (= incomplete-data likelihood), $L(\theta|X) = p(X|\theta)$:

$$\hat{\theta} = \arg\max_{\theta} \log [p(X|\theta)] = \arg\max_{\theta} \log \left[\sum_{z \in \mathcal{Z}} p(X, z|\theta) \right].$$

Maximizing this directly is difficult because of $\log \sum \ldots$

On the other hand, it is often easy to optimize the complete-data likelihood, $L(\theta|X,z) = \log p(X,z|\theta)$.

Example: GMM

Incomplete-data log-likelihood

$$\log [p(X|\theta)] = \sum_{n=1}^{N} \log \left[\sum_{k=1}^{K} \tau_k p_k(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$$

Complete-data log-likelihood

$$\log [p(X, z|\theta)] = \sum_{n=1}^{N} \log \left[\sum_{k=1}^{K} \delta_{z_{nk}=1} \tau_k p_k(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$$

ightarrow Analytic ML estimate for each $heta_k = (au_k, oldsymbol{\mu}_k, \Sigma_k)$

Problem: We don't know z.

Expectation Maximization

Since we don't know z, we need to estimate it jointly with θ .

Expectation Maximization algorithm:

- Iterate between updates of hidden variables and parameters
- **Theory:** updates are defined in a way such that $p(X|\theta)$ increases in each step
- \rightarrow Guaranteed to find local maximum of $p(X|\theta)$ (hard to find global maximum if $p(X|\theta)$ is non-concave)
 - **Technically:** optimize a lower bound on $p(X|\theta)$ and subsequently improve bound

Jensen's inequality

For any convex combination $\lambda_1, \ldots, \lambda_I$, $\lambda_i \geq 0$, $\sum_{i=1}^I \lambda_i = 1$ and any concave function f:

$$f(\sum_{i=1}^{l} \lambda_i x_i) \geq \sum_{i=1}^{l} \lambda_i f(x_i)$$
.

(conversely for convex f, analogous for continuous f)

A lower bound on the log-likelihood

 θ : a parameter setting

q(z): a probability mass function of choice on z

$$\log p(X|\theta) = \log \sum_{z} p(X, z|\theta)$$

$$= \log \sum_{z} q(z) \left[\frac{p(X, z|\theta)}{q(z)} \right]$$
Jensen's inequality \downarrow (remember that $\sum_{z} q(z) = 1$, log concave)
$$\geq \sum_{z} \underbrace{q(z)}_{\lambda_{i}} \underbrace{\log}_{f(.)} \underbrace{\left[\frac{p(X, z|\theta)}{q(z)} \right]}_{\chi_{i}}$$

$$=: F(q(z), \theta)$$

This lower bound is much easier to optimize ($\log \sum vs. \sum \log$).

Expectation Maximization

True objective: maximize the data log likelihood w.r.t. θ

$$\hat{\theta} = \arg\max_{\theta} \log p(X|\theta)$$
.

This is difficult.

EM objective: maximize, w.r.t. q and θ , the lower bound

$$\hat{q}, \hat{\theta} = \arg\max_{q,\theta} F(q(z), \theta)$$
.

Maximization of the lower bound

$$F(q(z), \theta) = \sum_{z} q(z) \log \left[\frac{p(X, z|\theta)}{q(z)} \right]$$

There are two ways to improve the lower bound:

- 1. **Expectation: improve** q(z) for given θ
- 2. Maximization: improve θ for given q(z)

How to select q(z)?

The difference between the data log-likelihood and lower bound:

$$\log p(X|\theta) - \sum_{z} q(z) \log \left[\frac{p(X, z|\theta)}{q(z)} \right]$$

The difference between the data log-likelihood and lower bound:

$$\log p(X|\theta) - \sum_{z} q(z) \log \left[\frac{p(X,z|\theta)}{q(z)} \right]$$

$$= \log p(X|\theta) - \sum_{z} q(z) \log \left[\frac{p(X|\theta)p(z|X,\theta)}{q(z)} \right]$$

$$= \log p(X|\theta) - \sum_{z} q(z) \log p(X|\theta) - \sum_{z} q(z) \log \left[\frac{p(z|X,\theta)}{q(z)} \right]$$

$$= -\sum_{z} q(z) \log \left[\frac{p(z|X,\theta)}{q(z)} \right] = \sum_{z} q(z) \log \left[\frac{q(z)}{p(z|X,\theta)} \right]$$

$$= KL(q(z)||p(z|x,\theta))$$

The difference between the data log likelihood and lower bound:

$$\log p(X|\theta) - \sum_{z} q(z) \log \left[\frac{p(X,z|\theta)}{q(z)} \right] = KL(q(z)||p(z|x,\theta))$$

$$\frac{\log p(X|\theta)}{KL(q(z)||p(z|x,\theta))}$$

$$\frac{\sum_{z} q(z) \log \left[\frac{p(X,z|\theta)}{q(z)}\right]}{\sum_{z} q(z)}$$

The Kullback-Leibler divergence

$$\mathit{KL}(P||Q) = \sum_{x} P(x) \log \frac{Q(x)}{P(x)} = \mathbb{E}_{x} \left[\log \frac{Q(x)}{P(x)} \right] \ge 0$$

Wikipedia

- Measures the distance between two distributions P and Q
- Not a true metric (not symmetric, no triangle inequality)
- Important quantity in information theory

$$KL(q(z)||p(z|x,\theta)) = 0 \iff q(z) = p(z|X,\theta)$$

 \Rightarrow Lower bound is strict if $q(z) = p(z|X, \theta)$.

Expectation step: set $q^{(t)}(z) = p(z|X, \theta^{(t)})$.

Maximization of the lower bound

$$F(q(z), \theta) = \sum_{z} q(z) \log \left[\frac{p(X, z|\theta)}{q(z)} \right]$$

There are two ways to improve the lower bound:

- 1. Expectation: improve q(z) for given θ
- 2. **Maximization: improve** θ for given q(z)

Maximization: improving θ

Goal: maximize $F(q(z), \theta)$ w.r.t. θ .

$$\begin{aligned} \theta^* &= \arg\max_{\theta} \sum_{z} q(z) \log \left[\frac{p(X,z|\theta)}{q(z)} \right] \\ &= \arg\max_{\theta} \sum_{z} q(z) \log p(X,z|\theta) - \sum_{z} q(z) \log q(z) \\ &= \arg\max_{\theta} \sum_{z} q(z) \log p(X,z|\theta) \end{aligned}$$

Approach: set gradient to zero ...

Typically, easy (analytic) solution, due to $\sum \log \operatorname{rather} \operatorname{than} \log \sum$.

Maximization: improving θ

Maximization step: set $\theta^{(t+1)} = \arg \max_{\theta} F(q(z)^{(t)}, \theta)$.

$$\frac{\sum_{z} q(z) \log \left[\frac{p(X, z | \theta^*)}{q(z)} \right]}{\sum_{z} q(z) \log \left[\frac{p(X, z | \theta)}{q(z)} \right]}$$

Iterative optimization

$$F(q(z), \theta) = \sum_{z} q(z) \log \left[\frac{p(X, z|\theta)}{q(z)} \right]$$

$$\log p(X|\theta^{(t)}) \stackrel{E-Step}{=} F(q^{(t+1)}(z), \theta^{(t)})$$

$$\stackrel{M-Step}{\leq} F(q^{(t+1)}(z), \theta^{(t+1)})$$

$$\stackrel{Jensen}{\leq} \log p(X|\theta^{(t+1)})$$

 \rightarrow Convergence to local maximum of $L(\theta|X) = \log p(X|\theta)$.

Note: update of $q(z) = p(z|X, \theta) \rightarrow$ update of z.

Iterative optimization

$$\sum_{z} q_{n+1}(z) \log \left[\frac{p(X,z|\theta_{n+1})}{q_{n+1}(z)}\right]$$
 Expectation
$$\log p(X|\theta_n) = \sum_{z} q_{n+1}(z) \log \left[\frac{p(X,z|\theta_n)}{q_{n+1}(z)}\right]$$
 Expectation
$$\sum_{z} q_n(z) \log \left[\frac{p(X,z|\theta_n)}{q_n(z)}\right]$$

Convergence to local maximum

"Block coordinate ascent"

EM summary

- z latent (unobserved variables)
- X observed data
 - θ model parameters
- 1. Initialize $\theta^{(0)} = \text{rand}$
- 2. Expectation: $q^{(t)}(z) = p(z|X, \theta^{(t)})$
- 3. Maximization: $\theta^{(t+1)} = \arg \max_{\theta} \sum_{z} q^{(t)}(z) \log p(X, z|\theta)$
- 4. Iterate until convergence

Why "Expectation"?

Remember: maximization step

$$\begin{split} \theta^{(t+1)} &= \arg\max_{\theta} F(q^{(t)}(z), \theta) \\ &= \arg\max_{\theta} \sum_{z} q^{(t)}(z) \log p(X, z|\theta) + H(z) \\ &= \arg\max_{\theta} \sum_{z} p(z|X, \theta^{(t)}) \log p(X, z|\theta) \\ &= \arg\max_{\theta} \mathbb{E}_{z|X, \theta^{(t)}} \left[\log p(X, z|\theta) \right] \\ &=: \arg\max_{\theta} Q(\theta|\theta^{(t)}) \end{split}$$

Original "expectation" step (Dempster et al., 1977): compute

$$Q(\theta|\theta^{(t)}) = \mathbb{E}_{z|X,\theta^{(t)}} [\log p(X,z|\theta)]$$

 \rightarrow Boils down to estimating $q^{(t)}(z) = p(z|X, \theta^{(t)})$.

Fitting a GMM using EM: Expectation

Expectation step:

$$q^{(t)}(z_{nk}) := p(z_{nk} = 1 | \mathbf{x}_n, \boldsymbol{\theta}^{(t)}) = \frac{\tau_k^{(t)} p_k(\mathbf{x}_n | \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})}{\sum_{l=1}^K \tau_l^{(t)} p_l(\mathbf{x}_n | \boldsymbol{\mu}_l^{(t)}, \boldsymbol{\Sigma}_l^{(t)})}$$

Fitting a GMM using EM: Expectation

$$\begin{split} &Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = \sum_{z} q^{(t)}(z) \log p(\boldsymbol{X}, z|\boldsymbol{\theta}) \\ &= E_{Z|X,\boldsymbol{\theta}^{(t)}} \left[\log p(\boldsymbol{X}, z|\boldsymbol{\theta}) \right] \\ &= E_{Z|X,\boldsymbol{\theta}^{(t)}} \log \prod_{n=1}^{N} p(\mathbf{x}_{n}, \mathbf{z}_{n}|\boldsymbol{\theta}) \\ &= E_{Z|X,\boldsymbol{\theta}^{(t)}} \sum_{n=1}^{N} \log \left[p(\mathbf{x}_{n}, \mathbf{z}_{n}|\boldsymbol{\theta}) \right] \\ &= \sum_{n=1}^{N} E_{Z|X,\boldsymbol{\theta}^{(t)}} \left[\log p(\mathbf{x}_{n}, \mathbf{z}_{n}|\boldsymbol{\theta}) \right] \\ &= \sum_{n=1}^{N} \sum_{k=1}^{K} p(z_{nk} = 1|\mathbf{x}_{n}, \boldsymbol{\theta}^{(t)}) \log \tau_{k} p_{k}(\mathbf{x}_{n}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \\ &= \sum_{n=1}^{N} \sum_{k=1}^{K} q^{(t)}(z_{nk}) \left[\log \tau_{k} - \frac{1}{2} \log |\boldsymbol{\Sigma}_{k}| - \frac{1}{2} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu}_{k}) - \frac{d}{2} \log(2\pi) \right] \end{split}$$

Fitting a GMM using EM: Maximization

$$\begin{split} Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) &= \sum_{n=1}^{N} \sum_{k=1}^{K} q^{(t)}(z_{nk}) \big[\log \tau_{k} - \frac{1}{2} \log |\Sigma_{k}| - \frac{1}{2} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Sigma}_{k}^{-1} (\mathbf{x}_{k} - \boldsymbol{\mu}_{k}) - \frac{d}{2} \log(2\pi) \big] \\ \boldsymbol{\tau}^{(t+1)} &= \arg \max_{\boldsymbol{\tau}} Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) \quad \text{s.t.} \quad \sum_{k=1}^{K} \tau_{k} = 1 \\ &= \arg \max_{\boldsymbol{\tau}} \sum_{k=1}^{K} \log \tau_{k} \sum_{n=1}^{N} q^{(t)}(z_{nk}) + \lambda \left(1 - \sum_{k=1}^{K} \tau_{k}\right) \\ \frac{\partial Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})}{\partial \tau_{k}^{(t+1)}} &= \frac{1}{\tau_{k}^{(t+1)}} \sum_{n=1}^{N} q^{(t)}(z_{nk}) - \lambda = 0 \\ \sum_{k=1}^{K} \tau_{k}^{(t+1)} &= 1 \quad \Rightarrow \lambda = N \quad \Rightarrow \tau_{k}^{(t+1)} &= \frac{1}{N} \sum_{n=1}^{N} q^{(t)}(z_{nk}) \end{split}$$

Fitting a GMM using EM: Maximization

$$\begin{split} Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) &= \sum_{n=1}^{N} \sum_{k=1}^{K} q^{(t)}(z_{nk}) \big[\log \tau_k - \frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_k - \boldsymbol{\mu}_k) - \frac{d}{2} \log(2\pi) \big] \\ (\boldsymbol{\mu}_k^{(t+1)}, \boldsymbol{\Sigma}_k^{(t+1)}) &= \arg \max_{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k} Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) \\ &= \arg \max_{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k} \sum_{n=1}^{N} q^{(t)} (z_{nk}) \left(-\frac{1}{2} \log |\boldsymbol{\Sigma}_k| - \frac{1}{2} (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k) \right) \end{split}$$

Just a weighted version of the ML estimate for a single Gaussian.

$$\mu_{k}^{(t+1)} = \frac{1}{N} r_{k}^{(t+1)} \sum_{n=1}^{N} q^{(t)} (z_{nk}) x_{n}$$

$$\sum_{k}^{(t+1)} = \frac{1}{N} r_{k}^{(t+1)} \sum_{n=1}^{N} q^{(t)} (z_{nk}) (x_{n} - \mu_{k}^{(t+1)}) (x_{n} - \mu_{k}^{(t+1)})^{\top}$$

Summary

- EM is a "meta-algorithm" for obtaining local ML estimates
- Also applicable to maximum a-posteriori (MAP) estimation
- Particularly useful in models with latent variables z, where optimizing the incomplete-data likelihood directly is hard, but optimizing the complete-data likelihood $p(X, z|\theta)$ is easy.
- ightarrow Alternate between estimating z and heta
 - Can be applied to to a GMM, but EM is not equal to a GMM
 - Other applications:
 - Hidden Markov Models (Baum-Welch algorithm)
 - Missing/incomplete data
 - Only summary data observed

Properties

Pro

- No stepsize/learning rate
- Each iteration improves likelihood

Con

- "Only" local minima found
- Solution dependent on initialization
- Can be slow

Note: sometimes possible to use generic solvers (e.g. Newton)

But:

- Complicated gradients, update rules
- No improvement guarantee (e.g., Jensen requires densities)

References

- A. P. Dempster, N. M. Laird and D. B. Rubin. (1977).
 "Maximum Likelihood from Incomplete Data via the EM Algorithm", Journal of the Royal Statistical Society, B, vol. 39, no. 1, pp. 1-38.
- Neal, R, and Hinton, G (1999). Michael I. Jordan, ed. "A view of the EM algorithm that justifies incremental, sparse, and other variants". Learning in Graphical Models.
 Cambridge, MA: MIT Press: 355?368.
- Hastie, Tibshirani, and Friedman, The Elements of Statistical Learning, Chapter 8.5,