DATA CLEANING TECHNIQUES

1. Creation of data frame (unclean data set)

```
data=data.frame(x1=c(1:4,99999,1,NA,1,1,NA),

x1=c(1:5,1,"NA",1,1,"NA"),

x1=c(letters[c(1:3)],"x x","x","y y y","x","a","a",NA),

x4= "",

x5=NA)

print(data)
```

	x1	x1.1	x1.2	x4 x5
1	1	1	a	NA
2	2	2	b	NA
3	3	3	C	NA
4	4	4	X X	NA
5	99999	5	X	NA
6	1	1	ууу	NA
7	NA	NA	X	NA
8	1	1	a	NA
9	1	1	a	NA
10	NA	NA	<na></na>	NA

2. Modify the column names

colnames(data)=c("col1","col2","col3","col4","col5")
print(data)

	col1	col2	col3	col4	col5
1	1	1	a		NA
1 2 3	2	2	b		NA
3	3	3	c		NA
4	4	4	хх		NA
5	99999	5	X		NA
6	1	1	ууу		NA
7	NA	NA	X		NA
8	1	1	a		NA
9	1	1	a		NA
10	NA	NA	<na></na>		NA

3. Replace blank with NA

```
col1 col2
                  col3 col4 col5
1
        1
              1
                      a < NA >
                                NA
2
        2
              2
                       <NA>
                                NA
3
        3
              3
                       <NA>
                                NA
4
              4
        4
                       <NA>
                                NA
                   х х
5
   99999
              5
                       <NA>
                                NA
6
        1
              1 y y y
                        <NA>
                                NA
7
       NA
             NA
                        <NA>
                                NA
8
                       <NA>
        1
              1
                                NA
9
        1
              1
                      a < NA >
                                NA
                  <NA> <NA>
       NA
             NA
10
                                NA
```

4. Preliminary Analysis

```
ncol(data)
nrow(data)
colSums(is.na(data))
rowSums(is.na(data))
```

5. Drop empty columns

data=data[,colSums(is.na(data)) !=nrow(data)]
print(data)

```
col1 col2
                   col3
         1
               1
1
                       a
2
         2
               2
                       b
3
         3
               3
                       C
4
               4
         4
                    X X
5
   99999
               5
                       Х
               1 y y y
6
         1
7
       NA
              NA
                       X
8
         1
               1
                       a
9
         1
               1
                       a
10
       NA
              NA
                   <NA>
```

6. Drop empty rows

data=na.omit(data)
print(data)

	col1	col2	col3
1	1	1	a
2	2	2	b
3	3	3	С
4	4	4	хх
5	99999	5	X
6	1	1	ууу
8	1	1	a
9	1	1	a

7. Remove duplicate observation

data=unique(data)
print(data)

8. To fix the datatype issue

sapply(data,class)
data=type.convert(data,as.is=TRUE)
sapply(data,class)

```
sapply(data,class) #checking the data type
    col1    col2    col3
"numeric" "character" "character"
data=type.convert(data,as.is=TRUE) #type conversion
sapply(data,class)
    col1    col2    col3
"integer" "integer" "character"
```

9. Outlier treatment

```
boxplot_stats=boxplot.stats(data$col1)
print(boxplot_stats)
print(boxplot_stats$stats[1])
print(boxplot_stats$stats[5])
```

```
$stats

[1] 1.0 1.0 2.5 4.0 4.0

$n

[1] 6

$conf

[1] 0.5649031 4.4350969

$out

[1] 99999

> print(boxplot_stats$stats[1])

[1] 1

> print(boxplot_stats$stats[5])

[1] 4
```

10. finding the lower limit (under outlier treatment)

lower_fence=boxplot_stats\$stats[1] -1.5* IQR(data\$col1)
print(lower_fence)

11. Find the upper limit

upper_fence=boxplot_stats\$stats[5] + 1.5* IQR(data\$col1)
print(upper_fence)

data=data[data\$col1 >=lower_fence & data\$col1 <= upper_fence,]
print(data)</pre>

	col1	col2	col3	
1	1	1	a	
2	2	2	b	
3	3	3	С	
4	4	4	X X	
6	1	1	ууу	

13. Removing the spaces in between the text data

data\$col3=gsub(" ","",data\$col3)
print(data)

	col1	col2	col3
1	1	1	a
2	2	2	b
3	3	3	C
4	4	4	XX
6	1	1	ууу