NLP

Week2

Word representation

1-hot representation

Man (5391)	Woman (9853)	_	Queen (7157)		Orange (6257)
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$

I want a glass of orange _____.

I want a glass of apple_____.

Featurized representation: word embedding

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.7	0.69	0.03	-0.02
Food	0.04	0.01	0.02	0.01	0.95	0.97

I want a glass of orange _____.

I want a glass of apple_____.

Visualizing word embeddings

Transfer learning and word embeddings

1. Learn word embeddings from large text corpus. (1-100B words)

(Or download pre-trained embedding online.)

2. Transfer embedding to new task with smaller training set. (say, 100k words)

3. Optional: Continue to finetune the word embeddings with new data.

Relation to face encoding

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97

Analogies using word vectors

$$e_{man} - e_{woman} \approx e_{king} - e_?$$

Cosine similarity

$$sim(e_w, e_{king} - e_{man} + e_{woman})$$

Man:Woman as Boy:Girl
Ottawa:Canada as Nairobi:Kenya
Big:Bigger as Tall:Taller
Yen:Japan as Ruble:Russia

Embedding Matrix

	a (0)	Apple (456)	•••			Orange (6257)	••••	Queen (7157)	<unk> (9999)</unk>	Orange (6257)
Gender		0.00				0.01		0.97		[0]
Royal		-0.01				0.00		0.95		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Age		0.03		••••	••••	-0.02		0.69		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
••••										$\begin{bmatrix} 0 \\ \cdot \end{bmatrix}$
••••										:
Food		0.95	••••			0.97		0.01		$\begin{bmatrix} 0 \end{bmatrix}$

E.
$$O_{6257} = e_{6257} = embedding for word j$$

Neural language model

Other context/target pairs

I want a glass of orange juice to go along with my cereal.

Context: Last 4 words.

4 words on left & right

Last 1 word

Target $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{bmatrix}$

Nearby 1 word

Skip-grams

I want a glass of orange juice to go along with my cereal.

Context	Target
orange	juice
orange	glass
orange	my

Model

Vocab size = 10,000k

 θ_{t} = Parameters associated with the target t

Problems with softmax classification

$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

How to sample the context c?

Don't Select Stop words for context selection

Hierarchical Softmax

Defining a new learning problem - Negative Sampling

I want a glass of orange juice to go along with my cereal.

<u>context</u>	<u>word</u>	<u>target?</u>	
orange	juice	1	
orange	king	0	
orange	book	0	
orange	the	0	For 1 +ve sample select K negative sample
orange	of	0	K can be 5 - 20 for smaller data sets K can be 2 - 5 for larger data sets

Model - Negative Sampling

Softmax:
$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$
Binary Classification problem so using sigmoid

<u>context</u>	<u>word</u>	target'
orange	juice	1
orange	king	0
orange	book	0
orange	the	0
orange	of	0

$O_c \longrightarrow E \longrightarrow e_c$	
---	--

 $P(1/0 \mid c,t) = \sigma(\theta_t e_c)$

For a given training set, instead of training all the 10000 binary logistics units, we will be training on (K+1) units, thus speeding up the classification

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

 X_{ij} = Number of time i_t appears in the context of j_c

 X_{ji} = Number of time j_c appears in the context of i_t

$$X_{ij} = X_{ji}$$

Model

minimize
$$\sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - \log X_{ij})^2$$
Weighting
$$(\theta_t e_c)$$
Term

$$f(X_{ii}) = 0$$
 if $X_{ii} = 0$

$$X_{ij} = X_{ji}$$

So, θ_i and e_i are symmetric

$$\theta_{\rm w}^{\rm final} = (e_{\rm w} + \theta_{\rm w})/2$$