# Lecture Slides 5: Differentiability of functions of several variables

Department of Mathematics IIT Guwahati

Question: Let  $f : \mathbb{R}^n \to \mathbb{R}$ . What does it mean to say that f is differentiable?

Question: Let  $f : \mathbb{R}^n \to \mathbb{R}$ . What does it mean to say that f is differentiable?

Task: Define differentiability of f at  $\mathbf{a} \in \mathbb{R}^n$  and determine the derivative  $\mathrm{D}f(\mathbf{a})$ .

Question: Let  $f : \mathbb{R}^n \to \mathbb{R}$ . What does it mean to say that f is differentiable?

Task: Define differentiability of f at  $\mathbf{a} \in \mathbb{R}^n$  and determine the derivative  $\mathrm{D}f(\mathbf{a})$ .

#### Wish List:

• f is differentiable at  $\mathbf{a} \Rightarrow f$  is continuous at  $\mathbf{a}$ .

Question: Let  $f : \mathbb{R}^n \to \mathbb{R}$ . What does it mean to say that f is differentiable?

Task: Define differentiability of f at  $\mathbf{a} \in \mathbb{R}^n$  and determine the derivative  $\mathrm{D}f(\mathbf{a})$ .

#### Wish List:

- f is differentiable at  $\mathbf{a} \Rightarrow f$  is continuous at  $\mathbf{a}$ .
- Sum, product and chain rules hold for  $Df(\mathbf{a})$ .

Question: Let  $f: \mathbb{R}^n \to \mathbb{R}$ . What does it mean to say that f is differentiable?

Task: Define differentiability of f at  $\mathbf{a} \in \mathbb{R}^n$  and determine the derivative  $\mathrm{D}f(\mathbf{a})$ .

#### Wish List:

- f is differentiable at  $\mathbf{a} \Rightarrow f$  is continuous at  $\mathbf{a}$ .
- Sum, product and chain rules hold for  $Df(\mathbf{a})$ .
- Mean Value Theorem and Taylor's Theorem hold for f.



# Differentiability of $f:(c,d)\subset\mathbb{R} o\mathbb{R}$

• Conventional: f is differentiable at  $a \in (c, d)$  if there exists  $\alpha \in \mathbb{R}$  such that

$$\alpha = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

# Differentiability of $f:(c,d)\subset\mathbb{R} o\mathbb{R}$

• Conventional: f is differentiable at  $a \in (c, d)$  if there exists  $\alpha \in \mathbb{R}$  such that

$$\alpha = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

• Clever: f is differentiable at  $a \in (c, d)$  if there exists  $\alpha \in \mathbb{R}$  such that

$$\lim_{h\to 0}\frac{|f(a+h)-f(a)-\alpha h|}{|h|}=0.$$

# Differentiability of $f:(c,d)\subset\mathbb{R} o\mathbb{R}$

• Conventional: f is differentiable at  $a \in (c, d)$  if there exists  $\alpha \in \mathbb{R}$  such that

$$\alpha = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

• Clever: f is differentiable at  $a \in (c, d)$  if there exists  $\alpha \in \mathbb{R}$  such that

$$\lim_{h\to 0}\frac{|f(a+h)-f(a)-\alpha h|}{|h|}=0.$$

• Smart: f is differentiable at  $a \in (c, d)$  if there exists a linear map  $L : \mathbb{R} \to \mathbb{R}$  such that

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - L(h)|}{|h|} = 0.$$

# Differentiability of $f: U \subset \mathbb{R}^n \to \mathbb{R}$

Smart: Let  $U \subset \mathbb{R}^n$  be open. Then  $f: U \subset \mathbb{R}^n \to \mathbb{R}$  is differentiable at  $\mathbf{a} \in U$  if there exists a linear map  $L: \mathbb{R}^n \to \mathbb{R}$  such that

$$\lim_{\mathbf{h}\to 0} \frac{|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-L(\mathbf{h})|}{\|\mathbf{h}\|} = 0. \tag{*}$$

The linear map L is called the derivative of f at  $\mathbf{a}$  and is denoted by  $\mathrm{D}f(\mathbf{a})$ , that is,  $L=\mathrm{D}f(\mathbf{a})$ .



# Differentiability of $f: U \subset \mathbb{R}^n \to \mathbb{R}$

Smart: Let  $U \subset \mathbb{R}^n$  be open. Then  $f: U \subset \mathbb{R}^n \to \mathbb{R}$  is differentiable at  $\mathbf{a} \in U$  if there exists a linear map  $L: \mathbb{R}^n \to \mathbb{R}$  such that

$$\lim_{\mathbf{h}\to 0} \frac{|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-L(\mathbf{h})|}{\|\mathbf{h}\|} = 0. \tag{*}$$

The linear map L is called the derivative of f at  $\mathbf{a}$  and is denoted by  $\mathrm{D}f(\mathbf{a})$ , that is,  $L=\mathrm{D}f(\mathbf{a})$ .

Fact: If  $L : \mathbb{R}^n \to \mathbb{R}$  is linear then  $L(\mathbf{x}) = \mathbf{p} \bullet \mathbf{x} = \langle \mathbf{x}, \mathbf{p} \rangle$  for some  $\mathbf{p} := (L(\mathbf{e}_1), \dots, L(\mathbf{e}_n)) \in \mathbb{R}^n$ .

# Differentiability of $f: U \subset \mathbb{R}^n \to \mathbb{R}$

Smart: Let  $U \subset \mathbb{R}^n$  be open. Then  $f: U \subset \mathbb{R}^n \to \mathbb{R}$  is differentiable at  $\mathbf{a} \in U$  if there exists a linear map  $L: \mathbb{R}^n \to \mathbb{R}$  such that

$$\lim_{\mathbf{h}\to 0} \frac{|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-L(\mathbf{h})|}{\|\mathbf{h}\|} = 0. \tag{*}$$

The linear map L is called the derivative of f at  $\mathbf{a}$  and is denoted by  $\mathrm{D}f(\mathbf{a})$ , that is,  $L=\mathrm{D}f(\mathbf{a})$ .

Fact: If  $L : \mathbb{R}^n \to \mathbb{R}$  is linear then  $L(\mathbf{x}) = \mathbf{p} \bullet \mathbf{x} = \langle \mathbf{x}, \mathbf{p} \rangle$  for some  $\mathbf{p} := (L(\mathbf{e}_1), \dots, L(\mathbf{e}_n)) \in \mathbb{R}^n$ .

• Considering  $\mathbf{h} := t\mathbf{e}_i$  for  $t \in \mathbb{R}$  in (\*) and letting  $t \to 0$ , we have

$$\mathbf{p} = (\partial_1 f(\mathbf{a}), \dots, \partial_n f(\mathbf{a})).$$



Theorem: If  $f: U \subset \mathbb{R}^n \to \mathbb{R}$  is differentiable at  $\mathbf{a} \in U$  then partial derivatives  $\partial_1 f(\mathbf{a}), \ldots, \partial_n f(\mathbf{a})$  exist and the derivative  $\mathrm{D} f(\mathbf{a}) : \mathbb{R}^n \to \mathbb{R}$  is given by

$$\mathrm{D}f(\mathbf{a})\mathbf{h} = \nabla f(\mathbf{a}) \bullet \mathbf{h} = \langle \mathbf{h}, \, \nabla f(\mathbf{a}) \rangle,$$

where  $\nabla f(\mathbf{a}) := (\partial_1 f(\mathbf{a}), \dots, \partial_n f(\mathbf{a}))$  is called the gradient of f at  $\mathbf{a}$ .

Theorem: If  $f: U \subset \mathbb{R}^n \to \mathbb{R}$  is differentiable at  $\mathbf{a} \in U$  then partial derivatives  $\partial_1 f(\mathbf{a}), \ldots, \partial_n f(\mathbf{a})$  exist and the derivative  $\mathrm{D} f(\mathbf{a}) : \mathbb{R}^n \to \mathbb{R}$  is given by

$$Df(\mathbf{a})\mathbf{h} = \nabla f(\mathbf{a}) \bullet \mathbf{h} = \langle \mathbf{h}, \, \nabla f(\mathbf{a}) \rangle,$$

where  $\nabla f(\mathbf{a}) := (\partial_1 f(\mathbf{a}), \dots, \partial_n f(\mathbf{a}))$  is called the gradient of f at  $\mathbf{a}$ .

• Conventional:  $f: U \subset \mathbb{R}^n \to \mathbb{R}$  is differentiable at  $\mathbf{a} \in U$  if  $\nabla f(\mathbf{a}) := (\partial_1 f(\mathbf{a}), \dots, \partial_n f(\mathbf{a}))$  exists and

$$\lim_{\mathbf{h}\to 0}\frac{|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-\nabla f(\mathbf{a})\bullet\mathbf{h}|}{\|\mathbf{h}\|}=0.$$



Consider  $f:\mathbb{R}^2 \to \mathbb{R}$  given by f(0,0)=0 and

$$f(x,y) := xy \frac{x^2 - y^2}{x^2 + y^2}$$
 if  $(x,y) \neq (0,0)$ . Then

• f is continuous at (0,0) and  $\nabla f(0,0) = (0,0)$ .

Consider  $f: \mathbb{R}^2 \to \mathbb{R}$  given by f(0,0) = 0 and  $f(x,y) := xy \frac{x^2 - y^2}{x^2 + y^2}$  if  $(x,y) \neq (0,0)$ . Then

- f is continuous at (0,0) and  $\nabla f(0,0) = (0,0)$ .
- Now

$$\frac{|f(h,k) - f(0,0) - \nabla f(0,0) \bullet (h,k)|}{\|(h,k)\|} \le \frac{|hk|}{\|(h,k)\|} \to 0$$

Hence f is differentiable at (0,0).



Consider  $f: \mathbb{R}^2 \to \mathbb{R}$  given by f(0,0) = 0 and  $f(x,y) := xy \frac{x^2 - y^2}{x^2 + y^2}$  if  $(x,y) \neq (0,0)$ . Then

- f is continuous at (0,0) and  $\nabla f(0,0) = (0,0)$ .
- Now

$$\frac{|f(h,k) - f(0,0) - \nabla f(0,0) \bullet (h,k)|}{\|(h,k)\|} \le \frac{|hk|}{\|(h,k)\|} \to 0$$

Hence f is differentiable at (0,0).

Consider  $g : \mathbb{R}^3 \to \mathbb{R}$  given by g(x, y, z) := 3x + 5y - z. Then g is differentiable. Find Dg(x, y, z).



# Affine approximation

Define the error function  $e: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$  by

$$e(\mathbf{h}) := \frac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - \nabla f(\mathbf{a}) \bullet \mathbf{h}}{\|\mathbf{h}\|}.$$

# Affine approximation

Define the error function  $e: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$  by

$$e(\mathbf{h}) := \frac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - \nabla f(\mathbf{a}) \bullet \mathbf{h}}{\|\mathbf{h}\|}.$$

Then f is differentiable at a if and only if

$$f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+\nabla f(\mathbf{a})\bullet\mathbf{h}+e(\mathbf{h})\|\mathbf{h}\|$$
 and  $e(\mathbf{h})\to 0$  as  $\|\mathbf{h}\|\to 0$ .



# Affine approximation

Define the error function  $e: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$  by

$$e(\mathbf{h}) := rac{f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - \nabla f(\mathbf{a}) \bullet \mathbf{h}}{\|\mathbf{h}\|}.$$

Then f is differentiable at a if and only if

$$f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+\nabla f(\mathbf{a})\bullet\mathbf{h}+e(\mathbf{h})\|\mathbf{h}\|$$
 and  $e(\mathbf{h})\to 0$  as  $\|\mathbf{h}\|\to 0$ .

• The affine function  $y = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{h}$  approximates  $f(\mathbf{a} + \mathbf{h})$  for small  $\|\mathbf{h}\| \iff f$  is differentiable at  $\mathbf{a}$ .



Let  $f: \mathbb{R}^n \to \mathbb{R}$  be differentiable at  $\mathbf{a} \in \mathbb{R}^n$ . Then

$$y = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{x}$$

represents

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be differentiable at  $\mathbf{a} \in \mathbb{R}^n$ . Then

$$y = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{x}$$

#### represents

• For n = 1: a line y = f(a) + f'(a)x passing through  $(0, f(a)) \in \mathbb{R}^2$  that approximates f(a + x).



Let  $f: \mathbb{R}^n \to \mathbb{R}$  be differentiable at  $\mathbf{a} \in \mathbb{R}^n$ . Then

$$y = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{x}$$

#### represents

- For n = 1: a line y = f(a) + f'(a)x passing through  $(0, f(a)) \in \mathbb{R}^2$  that approximates f(a + x).
- For n=2: a plane  $z=f(a,b)+f_x(a,b)x+f_y(a,b)y$  passing through  $(0,0,f(a,b))\in\mathbb{R}^3$  that approximates f(a+x,b+y).

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be differentiable at  $\mathbf{a} \in \mathbb{R}^n$ . Then

$$y = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{x}$$

#### represents

- For n = 1: a line y = f(a) + f'(a)x passing through  $(0, f(a)) \in \mathbb{R}^2$  that approximates f(a + x).
- For n=2: a plane  $z=f(a,b)+f_x(a,b)x+f_y(a,b)y$  passing through  $(0,0,f(a,b))\in\mathbb{R}^3$  that approximates f(a+x,b+y).
- For  $n \ge 3$ : a hyperplane  $y = f(\mathbf{a}) + \partial_1 f(\mathbf{a}) x_1 + \cdots + \partial_n f(\mathbf{a}) x_n$  passing through  $(\mathbf{0}, f(\mathbf{a})) \in \mathbb{R}^{n+1}$  that approximates  $f(\mathbf{a} + \mathbf{x})$ .



# Implications of differentiability

Theorem: Let  $f: \mathbb{R}^n \to \mathbb{R}$  and  $\mathbf{a} \in \mathbb{R}^n$ .

- If f is differentiable at **a** then f is continuous at **a**.
- If f is differentiable at  $\mathbf{a}$  then directional derivatives exist for all  $\mathbf{u} \in \mathbb{R}^n$  and

$$D_{\mathbf{u}}f(\mathbf{a}) = Df(\mathbf{a})\mathbf{u} = \nabla f(\mathbf{a}) \bullet \mathbf{u}.$$



# Implications of differentiability

Theorem: Let  $f: \mathbb{R}^n \to \mathbb{R}$  and  $\mathbf{a} \in \mathbb{R}^n$ .

- If f is differentiable at a then f is continuous at a.
- If f is differentiable at  $\mathbf{a}$  then directional derivatives exist for all  $\mathbf{u} \in \mathbb{R}^n$  and

$$D_{\mathbf{u}}f(\mathbf{a}) = Df(\mathbf{a})\mathbf{u} = \nabla f(\mathbf{a}) \bullet \mathbf{u}.$$

Proof: Use

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{h} + e(\mathbf{h}) \|\mathbf{h}\|$$

and the fact that  $e(\mathbf{h}) \to 0$  as  $\|\mathbf{h}\| \to 0$ .



Consider  $f: \mathbb{R}^2 \to \mathbb{R}$  given by f(0,0) = 0 and  $f(x,y) := \frac{x^2y}{x^4 + y^2}$  if  $(x,y) \neq (0,0)$ . Then

Consider  $f: \mathbb{R}^2 \to \mathbb{R}$  given by f(0,0) = 0 and  $f(x,y) := \frac{x^2y}{x^4 + y^2}$  if  $(x,y) \neq (0,0)$ . Then

• f is NOT continuous at  $(0,0) \Rightarrow f$  is not differentiable at (0,0).

Consider  $f: \mathbb{R}^2 \to \mathbb{R}$  given by f(0,0) = 0 and  $f(x,y) := \frac{x^2y}{x^4 + y^2}$  if  $(x,y) \neq (0,0)$ . Then

- f is NOT continuous at  $(0,0) \Rightarrow f$  is not differentiable at (0,0).
- $D_{\mathbf{u}}f(0,0)$  exists for all  $\mathbf{u} \in \mathbb{R}^2$  and  $\nabla f(0,0) = (0,0)$ .

Consider  $f: \mathbb{R}^2 \to \mathbb{R}$  given by f(0,0) = 0 and  $f(x,y) := \frac{x^2y}{x^4 + y^2}$  if  $(x,y) \neq (0,0)$ . Then

- f is NOT continuous at  $(0,0) \Rightarrow f$  is not differentiable at (0,0).
- $D_{\mathbf{u}}f(0,0)$  exists for all  $\mathbf{u} \in \mathbb{R}^2$  and  $\nabla f(0,0) = (0,0)$ .
- For **u** such that  $u_1u_2 \neq 0$ , we have

$$D_{\mathbf{u}}f(0,0)=u_1^2/u_2\neq \nabla f(0,0)\bullet \mathbf{u}.$$

Consider  $f: \mathbb{R}^2 \to \mathbb{R}$  given by f(0,0) = 0 and  $f(x,y) := \frac{x^2y}{x^4 + y^2}$  if  $(x,y) \neq (0,0)$ . Then

- f is NOT continuous at  $(0,0) \Rightarrow f$  is not differentiable at (0,0).
- $D_{\mathbf{u}}f(0,0)$  exists for all  $\mathbf{u} \in \mathbb{R}^2$  and  $\nabla f(0,0) = (0,0)$ .
- For **u** such that  $u_1u_2 \neq 0$ , we have

$$D_{\mathbf{u}}f(0,0)=u_1^2/u_2\neq \nabla f(0,0)\bullet \mathbf{u}.$$

Moral: The equality  $D_{\mathbf{u}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \bullet \mathbf{u}$  may not hold if f is NOT differentiable at  $\mathbf{a}$ .



## Properties of derivative

Fact: Let  $f, g : \mathbb{R}^n \to \mathbb{R}$  be differentiable at  $\mathbf{a} \in \mathbb{R}^n$ . Then

- $D(f + \alpha g)(\mathbf{a}) = Df(\mathbf{a}) + \alpha Dg(\mathbf{a}).$
- $D(fg)(\mathbf{a}) = Df(\mathbf{a})g(\mathbf{a}) + f(\mathbf{a})Dg(\mathbf{a}).$

# Properties of derivative

Fact: Let  $f, g : \mathbb{R}^n \to \mathbb{R}$  be differentiable at  $\mathbf{a} \in \mathbb{R}^n$ . Then

- $D(f + \alpha g)(\mathbf{a}) = Df(\mathbf{a}) + \alpha Dg(\mathbf{a}).$
- $D(fg)(\mathbf{a}) = Df(\mathbf{a})g(\mathbf{a}) + f(\mathbf{a})Dg(\mathbf{a}).$

Proof: Use 
$$\nabla (fg)(\mathbf{a}) = f(\mathbf{a})\nabla g(\mathbf{a}) + g(\mathbf{a})\nabla f(\mathbf{a})$$
 and

 $f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \bullet \mathbf{h} + e(\mathbf{h}) \|\mathbf{h}\|$ 

and the fact that  $e(\mathbf{h}) \to 0$  as  $\|\mathbf{h}\| \to 0$ .



Theorem: Let  $f: \mathbb{R}^n \to \mathbb{R}$  and  $\mathbf{a} \in \mathbb{R}^n$ . If  $\partial_i f(\mathbf{x})$  exists for i = 1, 2, ..., n, and are continuous on  $B(\mathbf{a}, \epsilon)$  for some  $\epsilon > 0$ , then f is differentiable at  $\mathbf{a}$ .

Theorem: Let  $f: \mathbb{R}^n \to \mathbb{R}$  and  $\mathbf{a} \in \mathbb{R}^n$ . If  $\partial_i f(\mathbf{x})$  exists for i = 1, 2, ..., n, and are continuous on  $B(\mathbf{a}, \epsilon)$  for some  $\epsilon > 0$ , then f is differentiable at  $\mathbf{a}$ .

Proof: Use MVT for partial derivatives.

Theorem: Let  $f: \mathbb{R}^n \to \mathbb{R}$  and  $\mathbf{a} \in \mathbb{R}^n$ . If  $\partial_i f(\mathbf{x})$  exists for i = 1, 2, ..., n, and are continuous on  $B(\mathbf{a}, \epsilon)$  for some  $\epsilon > 0$ , then f is differentiable at  $\mathbf{a}$ .

Proof: Use MVT for partial derivatives.

Remark: f differentiable at  $\mathbf{a} \not\Rightarrow \partial_i f(\mathbf{x})$  is continuous at  $\mathbf{a}$ .

Theorem: Let  $f: \mathbb{R}^n \to \mathbb{R}$  and  $\mathbf{a} \in \mathbb{R}^n$ . If  $\partial_i f(\mathbf{x})$  exists for i = 1, 2, ..., n, and are continuous on  $B(\mathbf{a}, \epsilon)$  for some  $\epsilon > 0$ , then f is differentiable at  $\mathbf{a}$ .

Proof: Use MVT for partial derivatives.

Remark: f differentiable at  $\mathbf{a} \not\Rightarrow \partial_i f(\mathbf{x})$  is continuous at  $\mathbf{a}$ .

Example: Consider 
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 given by  $f(0,0) = 0$  and  $f(x,y) := (x^2 + y^2) \sin(1/(x^2 + y^2))$  if  $(x,y) \neq (0,0)$ .

