EXERCISE - I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

1.
$$\int \frac{dx}{\sin x \cdot \sin(x + \alpha)}$$
 is equal to

(A) cosec
$$\alpha \ \ell n \ \left| \frac{\sin x}{\sin(x + \alpha)} \right| + C$$

(B) cosec
$$\alpha \ \ell n \ \left| \frac{\sin(x+\alpha)}{\sin x} \right| + C$$

(C) cosec
$$\alpha \ \ell n \left| \frac{\sec(x+\alpha)}{\sec x} \right| + C$$

(D) cosec
$$\alpha \ \ell n \ \left| \frac{\sec x}{\sec(x+\alpha)} \right| + C$$

2.
$$\int \frac{a^{\sqrt{x}}}{\sqrt{x}} dx$$
 is equal to

(A)
$$\frac{a^{\sqrt{x}}}{\sqrt{x}} + c$$
 (B) $\frac{2a^{\sqrt{x}}}{\log a} + c$

(B)
$$\frac{2a^{\sqrt{x}}}{\log a} + c$$

(C)
$$2a^{\sqrt{x}}.\ell n \ a + c$$

(D) None of these

3.
$$\int 5^{5^{5^{x}}} . 5^{5^{x}} . 5^{x} dx$$
 is equal to

(A)
$$\frac{5^{5^x}}{(\log 5)^3} + c$$

(B)
$$5^{5^{5^x}} (\ell n \ 5)^3 + c$$

(C)
$$\frac{5^{5^{5^{x}}}}{(\log 5)^{3}} + c$$

(D) None of these

4.
$$\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx \text{ is equal to}$$

(A)
$$2\sqrt{\tan x} + c$$

(B)
$$2\sqrt{\cot x} + c$$

(C)
$$\frac{\sqrt{\tan x}}{2} + c$$

(D) None of these

5. If
$$\int \frac{2^x}{\sqrt{1-4^x}} dx = K \sin^{-1}(2^x) + C$$
, then K is equal to

(A) $\ln 2$ (B) $\frac{1}{2} \ln 2$ (C) $\frac{1}{2}$ (D) $\frac{1}{\ln 2}$

6. If
$$y = \int \frac{dx}{(1+x^2)^{3/2}}$$
 and $y = 0$ when $x = 0$, then value of y when $x = 1$ is

(A)
$$\sqrt{\frac{2}{3}}$$
 (B) $\sqrt{2}$ (C) $3\sqrt{2}$ (D) $\frac{1}{\sqrt{2}}$

7.
$$\int \frac{dx}{x^2 + x + 1}$$
 is equal to

(A)
$$\frac{\sqrt{3}}{2} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + c$$
 (B) $\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + c$

(B)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + e^{-\frac{x^2}{3}}$$

(C)
$$\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) + c$$
 (D) None of these

8.
$$\int (x-1)e^{-x} dx$$
 is equal to

(A)
$$- xe^{x} + C$$
 (B) $xe^{x} + C$ (C) $-xe^{-x} + C$ (D) $xe^{-x} + C$

(B)
$$xe^x + C$$

(C)
$$-xe^{-x} + C$$

9.
$$\int \tan^3 2x \sec 2x \, dx$$
 is equal to

(A)
$$\frac{1}{3} \sec^3 2x - \frac{1}{2} \sec 2x + c$$

(B)
$$-\frac{1}{6} \sec^3 2x - \frac{1}{2} \sec 2x + c$$

(C)
$$\frac{1}{6} \sec^3 2x - \frac{1}{2} \sec 2x + c$$

(D)
$$\frac{1}{3} \sec^3 2x + \frac{1}{2} \sec 2x + c$$

10.
$$\int e^{\tan^{-1}x} \left(\frac{1+x+x^2}{1+x^2} \right) dx$$
 is equal to

(A)
$$x e^{tan^{-1}x} + c$$

(B)
$$x^2 e^{\tan^{-1}x} + c$$

(C)
$$\frac{1}{x} e^{\tan^{-1} x} + c$$

(D) None of these

- **11.** $\int \frac{1}{v^2(v^4+1)^{3/4}} dx$ is equal to
- (A) $\left(1 + \frac{1}{\sqrt{4}}\right)^{1/4} + c$ (B) $(x^4 + 1)^{1/4} + c$
- (C) $\left(1 \frac{1}{v^4}\right)^{1/4} + c$ (D) $-\left(1 + \frac{1}{v^4}\right)^{1/4} + c$
- **12.** If $\int \frac{1}{1+\sin x} dx = \tan \left(\frac{x}{2}+a\right) + b$, then
- (A) $a = -\frac{\pi}{4}$, $b \in R$ (B) $a = \frac{\pi}{4}$, $b \in R$
- (C) $a = \frac{5\pi}{4}$, $b \in R$ (D) None of these
- **13.** $\int [f(x)g''(x) f''(x)g(x)] dx$ is equal to
- (A) $\frac{f(x)}{g'(x)}$
- (B) f'(x) g(x) f(x) g'(x)
- (C) f(x) g'(x) f'(x) g(x) (D) f(x) g'(x) + f'(x) g'(x)
- **14.** $\int (\sin 2x \cos 2x) dx = \frac{1}{\sqrt{2}} \sin (2x a) + b$, then
- (A) $a = \frac{5\pi}{4}$, $b \in R$ (B) $a = -\frac{5\pi}{4}$, $b \in R$
- (C) $a = \frac{\pi}{4}$, $b \in R$
- (D) None of these
- **15.** $\int \frac{\cos 2x}{(\sin x + \cos x)^2} dx \text{ is equal to}$
- (A) $\frac{-1}{\sin x + \cos x} + c$ (B) $\ln (\sin x + \cos x) + c$
- (C) $\ln (\sin x \cos x) + c$ (D) $\ln (\sin x + \cos x)^2 + c$
- **16.** $\int \frac{1}{x(x^n + 1)} dx$ is equal to
- (A) $\frac{1}{n} \ln \left(\frac{x^n}{x^n + 1} \right) + c$ (B) $\frac{1}{n} \ln \left(\frac{x^n + 1}{x^n} \right) + c$
- (C) $\ln \left(\frac{x^n}{x^n + 1} \right) + c$ (D) None of these

- 17. $\int [1 + \tan x \cdot \tan(x + \alpha)] dx$ is equal to
- (A) $\cos \alpha \cdot \ln \left| \frac{\sin x}{\sin(x+\alpha)} \right| + C$
- (B) $\tan \alpha \cdot \ln \left| \frac{\sin x}{\sin(x+\alpha)} \right| + C$
- (C) $\cot \alpha \cdot \ln \left| \frac{\sec (x + \alpha)}{\sec x} \right| + C$
- (D) $\cot \alpha \cdot \ell n \left| \frac{\cos(x+\alpha)}{\cos x} \right| + C$
- **18.** $\int \sqrt{\frac{e^x 1}{a^x + 1}} dx is equal to$
- (A) $\ln (e^x + \sqrt{e^{2x} 1}) \sec^{-1} (e^x) + C$
- (B) $\ln (e^x + \sqrt{e^{2x} 1}) + \sec^{-1} (e^x) + C$
- (C) $\ln (e^x \sqrt{e^{2x} 1}) \sec^{-1} (e^x) + C$
- (D) None of these
- **19.** If $\int \frac{dx}{x^4 + x^3} = \frac{A}{x^2} + \frac{B}{x} + \ln \left| \frac{x}{x+1} \right| + C$, then
- (A) $A = \frac{1}{2}$, B = 1 (B) A = 1, $B = -\frac{1}{2}$
- (C) A = $-\frac{1}{2}$, B = 1 (D) None of these
- **20.** $\int \sqrt{\sec x 1} dx$ is equal to
- (A) $2 \ln \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} \frac{1}{2}} \right) + C$
- (B) $2 \ln \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} \frac{1}{2}} \right) + C$
- (C) $-2 \ln \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} \frac{1}{2}} \right) + C$
- (D) None of these

21. $\int \frac{dx}{\cos^3 x \sqrt{\sin 2x}}$ is equal to

(A)
$$\sqrt{2} \left(\sqrt{\cos x} + \frac{1}{5} \tan^{5/2} x \right) + C$$

(B)
$$\sqrt{2} \left(\sqrt{\tan x} + \frac{1}{5} \tan^{5/2} x \right) + C$$

(C)
$$\sqrt{2} \left(\sqrt{\tan x} - \frac{1}{5} \tan^{5/2} x \right) + C$$
 (D) None of these

22. If
$$\int \frac{4e^x + 6e^{-x}}{9e^x - 4e^{-x}} dx = Ax + B \ln (9e^{2x} - 4) + C$$
, then

(A)
$$A = -\frac{3}{2}$$
, $B = \frac{35}{36}$, $c = 0$

(B)
$$A = \frac{35}{36}$$
, $B = -\frac{3}{2}$, $C \in R$

(C)
$$A = -\frac{3}{2}$$
, $B = \frac{35}{36}$, $c \in R$

23. If $f(x) = \int \frac{2\sin x - \sin 2x}{x^3} dx$ where $x \ne 0$ then $\lim_{x \to 0} \frac{1}{[(x-1)^3(x+2)^5]^{1/4}} dx$ is equal to

f '(x) has the value

- (A) 0
- (B) 1
- (C) 2

24. If $\int \frac{\cos 4x + 1}{\cot x - \tan x} dx = A \cos 4x + B$ where A & B are $\int \left(C \right) \frac{1}{3} \left(\frac{x - 1}{x + 2} \right)^{1/4} + C$ (D) $\frac{1}{3} \left(\frac{x + 1}{x - 2} \right)^{1/4} + C$

constants, then

- (A) A = -1/4 & B may have any value
- (B) A = -1/8 & B may have any value
- (C) A = -1/2 & B = -1/4

(D) None of these

25.
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} (x + \sqrt{x}) dx$$
 is equal to

(A)
$$2e^{\sqrt{x}}[\sqrt{x}-x+1]+c^{-1}$$

(A)
$$2e^{\sqrt{x}}[\sqrt{x}-x+1]+c$$
 (B) $2e^{\sqrt{x}}[x-2\sqrt{x}+1]+c$

(C)
$$2e^{\sqrt{x}}[x-\sqrt{x}+1]+c$$
 (D) $2e^{\sqrt{x}}[x+\sqrt{x}+1]+c$

(D)
$$2e^{\sqrt{x}}[x+\sqrt{x}+1]+c$$

26. $\int e^{\tan \theta} (\sec \theta - \sin \theta) d\theta$ is equal to

- (A) $-e^{\tan \theta} \sin \theta + c$ (C) $e^{\tan \theta} \sec \theta + c$
 - (B) $e^{\tan \theta} \sin \theta + c$ (D) $e^{\tan \theta} \cos \theta + c$

27. $\int \frac{1-x^7}{x^{1}+x^{7}} dx$ is equal to

(A)
$$\ln x + \frac{2}{7} \ln (1 + x^7) + c$$

(B)
$$\ln x - \frac{2}{7} \ln (1 - x^7) + c$$

(C)
$$\ln x - \frac{2}{7} \ln (1 + x^7) + c$$

(D)
$$\ln x + \frac{2}{7} \ln (1 - x^7) + c$$

28. $\int \sqrt{\frac{1-\cos x}{\cos \alpha - \cos x}} dx \text{ where } 0 < \alpha < x < \pi, \text{ is equal to}$

(A)
$$2 \ln \left(\cos \frac{\alpha}{2} - \cos \frac{x}{2}\right) + c$$
 (B) $\sqrt{2} \ln \left(\cos \frac{\alpha}{2} - \cos \frac{x}{2}\right) + c$

(C)
$$2\sqrt{2} \ln \left(\cos \frac{\alpha}{2} - \cos \frac{x}{2}\right) + c$$

(D) None of these
$$(D) -2 \sin^{-1} \left(\frac{\cos \frac{x}{2}}{\cos \frac{\alpha}{2}} \right) + c$$

(D) Not defined
$$(A) \frac{4}{3} \left(\frac{x-1}{x+2} \right)^{1/4} + C$$
 $(B) \frac{4}{3} \left(\frac{x+1}{x-2} \right)^{1/4} + C$

(B)
$$\frac{4}{3} \left(\frac{x+1}{x-2} \right)^{1/4} + C$$

(C)
$$\frac{1}{3} \left(\frac{x-1}{x+2} \right)^{1/4} + C$$

(D)
$$\frac{1}{3} \left(\frac{x+1}{x-2} \right)^{1/4} + C$$

30. $\int (x e^{\ln \sin x} - \cos x) dx$ is equal to :

- (B) $\sin x x \cos x + c$
- (A) $x \cos x + c$ (C) $-e^{\ln x} \cos x + c$
- (D) $\sin x + x \cos x + c$

31. Antiderivative of $\frac{\sin^2 x}{1 + \sin^2 x}$ w.r.t. x is :

(A)
$$x - \frac{\sqrt{2}}{2}$$
 arctan ($\sqrt{2}$ tan x) + c

(B)
$$x + \frac{1}{\sqrt{2}} \arctan \left(\frac{\tan x}{\sqrt{2}} \right) + c$$

(C)
$$x - \sqrt{2}$$
 arctan ($\sqrt{2}$ tan x) + c

(D) x -
$$\sqrt{2}$$
 arctan $\left(\frac{\tan x}{\sqrt{2}}\right)$ + c

- **32.** $\int 4\sin x \cos \frac{x}{2} \cos \frac{3x}{2} dx$ is equal to
- (A) $\cos x \frac{1}{2} \cos 2x + \frac{1}{2} \cos 3x + c$
- (B) $\cos x \frac{1}{2} \cos 2x \frac{1}{3} \cos 3x + c$
- (C) $\cos x + \frac{1}{2} \cos 2x + \frac{1}{3} \cos 3x + c$
- (D) $\cos x + \frac{1}{2} \cos 2x \frac{1}{3} \cos 3x + c$
- **33.** $\int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx \text{ is equal to}$
- (A) $\sqrt{x} \sqrt{1-x} 2\sqrt{1-x} + \cos^{-1}(\sqrt{x}) + c$
- (B) $\sqrt{x} \sqrt{1-x} + 2\sqrt{1-x} + \cos^{-1}(\sqrt{x}) + c$
- (C) $\sqrt{x} \sqrt{1-x} 2\sqrt{1-x} + \cos^{-1}(\sqrt{x}) + c$
- (D) $\sqrt{x} \sqrt{1-x} + 2\sqrt{1-x} \cos^{-1}(\sqrt{x}) + c$
- **34.** $\int \sin x \cdot \cos x \cdot \cos 2x \cdot \cos 4x \cdot \cos 8x \cdot \cos 16 x dx$ is equal to
- (A) $\frac{\sin 16x}{1024}$ + c (B) $-\frac{\cos 32x}{1024}$ + c
- (C) $\frac{\cos 32x}{1096}$ + c (D) $-\frac{\cos 32x}{1096}$ + c
- **35.** $\int \frac{1}{\cos^6 + \sin^6 x} dx$ is equal to

- (A) $\tan^{-1} (\tan x + \cot x) + c$ (B) $-\tan^{-1} (\tan x + \cot x) + c$ (C) $\tan^{-1} (\tan x \cot x) + c$ (D) $-\tan^{-1} (\tan x \cot x) + c$
- **36.** $\int \left\{ \ln(1+\sin x) + x \tan\left(\frac{\pi}{4} \frac{x}{2}\right) \right\} dx \text{ is equal to}$
- (A) $\times \ln (1 + \sin x) + c$
- (B) ℓ n (1 + sin x) + c
- (C) $-x \ln (1 + \sin x) + c$
- (D) ℓ n (1 sin x) + c
- **37.** $\int \sqrt{\frac{x-1}{x+1}} \cdot \frac{1}{x^2} dx$ is equal to
- (A) $\sin^{-1} \frac{1}{x} + \frac{\sqrt{x^2 1}}{x}$ (B) $\frac{\sqrt{x^2 1}}{x} + \cos^{-1} \frac{1}{x} + c$
- (C) $\sec^{-1} x \frac{\sqrt{x^2 1}}{x^2 1} + c$ (D) $\tan^{-1} \sqrt{x^2 1} \frac{\sqrt{x^2 1}}{x^2 1} + c$

- **38.** $\int \frac{dx}{\cos^3 x \cdot \sqrt{\sin 2x}}$ is equal to
- (A) $\frac{\sqrt{2}}{c}$ $(\tan x)^{5/2} + 2\sqrt{\tan x} + c$
- (B) $\frac{\sqrt{2}}{5}$ (tan² x + 5) $\sqrt{\tan x}$ + c
- (C) $\frac{\sqrt{2}}{5}$ (tan² x + 5) $\sqrt{2 \tan x}$ +c (D) None of these
- **39.** If $\int \frac{dx}{\sqrt{\sin^3 x \cos^5 x}} = a \sqrt{\cot x} + b \sqrt{\tan^3 x} + c$ where

c is an arbitrary constant of integration then the values of 'a' and 'b' are respectively:

- (A) $-2 \& \frac{2}{3}$
- (B) $28 \frac{2}{3}$
- (C) 2 & $\frac{2}{3}$
- (D) None of these
- **40.** $\int \left\{ \frac{(\log x 1)}{1 + (\log x)^2} \right\}^2 dx$ is equal to
- (A) $\frac{x}{(\log x)^2 + 1} + c$ (B) $\frac{xe^x}{1 + x^2} + c$
- (C) $\frac{x}{x^2 + 1} + c$ (D) $\frac{\log x}{(\log x)^2 + 1} + c$
- **41.** If $\int \frac{\sin x}{\sin(x-a)} dx = Ax + B \log \sin (x-a) + c$, then

value of (A, B) is

- (A) ($\sin \alpha$, $\cos \alpha$)
- (B) (cos α , sin α)
- (C) $(-\sin \alpha, \cos \alpha)$
- (D) $(-\cos \alpha, \sin \alpha)$
- **42.** $\int \frac{dx}{\cos x \sin x}$ is equal to
- (A) $\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} \frac{3\pi}{8} \right) \right| + c$ (B) $\frac{1}{\sqrt{2}} \log \left| \cot \left(\frac{x}{2} \right) \right| + c$
- (C) $\frac{1}{\sqrt{2}} \log \left| \cot \left(\frac{x}{2} \frac{3\pi}{8} \right) \right| + c$ (D) $\frac{1}{\sqrt{2}} \log \left| \tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) \right| + c$

43. If $\int \frac{1}{x+x^5} dx = f(x) + C$, then the value of $\int \frac{x^4}{x+x^5} dx$ is equal to

- (A) $\log x f(x) + C$
- (B) $f(x) + \log x + C$
- (C) $f(x) \log x + C$
- (D) None of these
- **44.** Primitive of $\frac{3x^4 1}{(x^4 + x + 1)^2}$ w.r.t. x is
- (A) $\frac{x}{x^4 + x + 1} + c$ (B) $-\frac{x}{x^4 + x + 1} + c$
- (C) $\frac{x+1}{x^4+x+1}$ + c (D) $-\frac{x+1}{x^4+x+1}$ + c

45. If
$$\int \frac{x^4 + 1}{x(x^2 + 1)^2} dx = A \ln |x| + \frac{B}{1 + x^2} + c$$
,

where c is the constant of integration then

- (A) A = 1; B = -1
- (B) A = -1; B = 1
- (C) A = 1; B = 1
- (D) A = -1; B = -1

46.
$$\int x \cdot \frac{\ln(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} dx$$
 is equal to

(A)
$$\sqrt{1+x^2}$$
. $\ln(x+\sqrt{1+x^2})-x+c$

(B)
$$\frac{x}{2} \cdot \ell n^2 (x + \sqrt{1 + x^2}) - \frac{x}{\sqrt{1 + x^2}} + c$$

(C)
$$\frac{x}{2} \cdot \ell n^2 \left(x + \sqrt{1 + x^2} \right) + \frac{x}{\sqrt{1 + x^2}} + c$$

(D)
$$\sqrt{1+x^2} \ln(x+\sqrt{1+x^2}) + x + c$$

47. If
$$\int \frac{1}{x\sqrt{1-x^3}} dx = a \ln \left| \frac{\sqrt{1-x^3}-1}{\sqrt{1-x^3}+1} \right| + b$$
, then a is

equal to

- (A) 1/3
- (B) 2/3
- (C) -1/3
- (D) 2/3

48.
$$\int \frac{\cos^3 x}{\sin^2 x + \sin x} dx \text{ is equal to}$$

- (A) $\ell n \mid \sin x \mid + \sin x + c$ (B) $\ell n \mid \sin x \mid \sin x + c$
- (C) $\ell n \mid \sin x \mid -\sin x + c$ (D) $\ell n \mid \sin x \mid +\sin x + c$

- **49.** $\int \frac{1}{\sqrt{\sin^3 x \cos x}} dx \text{ is equal to}$
- (A) $\frac{-2}{\sqrt{\tan x}}$ + c (B) $2\sqrt{\tan x}$ + c
- (C) $\frac{2}{\sqrt{\tan x}}$ + c (D) -2 $\sqrt{\tan x}$ c
- **50.** $\int \frac{x^3 1}{x^3 + x^2} dx$ is equal to
- (A) $x \ln x + \ln (x^2 + 1) \tan^{-1} x + c$
- (B) $x \ln x + \frac{1}{2} \ln (x^2 + 1) \tan^{-1} x + c$
- (C) $x + \ln x + \frac{1}{2} \ln (x^2 + 1) + \tan^{-1} x + c$
- (D) None of these
- **51.** $\int \frac{\ell n |x|}{x \sqrt{1 + \ell n |x|}} dx \text{ is equal to}$
- (A) $\frac{2}{3}\sqrt{1+\ell n|x|}(\ell n|x|-2)+c$
- (B) $\frac{2}{3}\sqrt{1+\ln|x|}(\ln|x|+2)+c$
- (C) $\frac{1}{2}\sqrt{1+\ln|x|}(\ln|x|-2)+c$
- (D) $\frac{1}{2}\sqrt{1+\ln|x|}(3\ln|x|+2)+c$

52. If
$$\int \frac{x \tan^{-1} x}{\sqrt{1+x^2}} dx = \sqrt{1+x^2} f(x) + A \ln(x + \sqrt{x^2+1}) + C$$
,

- (A) $f(x) = \tan^{-1} x$, A = -1 (B) $f(x) = \tan^{-1} x$, A = 1 (C) $f(x) = 2 \tan^{-1} x$, A = -1 (D) $f(x) = 2 \tan^{-1} x$, A = 1

- **53.** $\int \frac{\sin^8 x \cos^8 x}{1 + 2\sin^2 x \cos^2 x} dx$ is equal to
- (A) $\frac{1}{2}\sin 2x + c$ (B) $-\frac{1}{2}\sin 2x + c$
- (C) $-\frac{1}{2}\sin x + c$ (D) $-\sin^2 x + c$
- **54.** $\int \{1 + 2\tan x(\tan x + \sec x)\}^{1/2} dx$ is equal to
- (A) ℓ n sec x (sec x tan x) + c
- (B) ℓ n cosec x (sec x + tan x) + c
- (C) ℓ n sec x (sec x + tan x) + c
- (D) ℓ n (sec x + tan x) + c

55.
$$\int \frac{x \, dx}{\sqrt{1 + x^2 + \sqrt{(1 + x^2)^3}}} \, dx \text{ is equal to}$$

(A)
$$\frac{1}{2} \ln(1 + \sqrt{1 + x^2}) + c$$
 (B) $2\sqrt{1 + \sqrt{1 + x^2}} + c$

(C)
$$2(1+\sqrt{1+x^2})+c$$

(D) None of these

56.
$$\int \frac{1+x^4}{(1-x^4)^{3/2}} dx$$
 is equal to

(A)
$$\frac{1}{\sqrt{x^2 - \frac{1}{x^2}}} + c$$
 (B) $\frac{1}{\sqrt{\frac{1}{x^2} - x^2}} + c$

(B)
$$\frac{1}{\sqrt{\frac{1}{x^2}-x^2}}+c$$

(C)
$$\frac{1}{\sqrt{\frac{1}{x^2} + x^2}} + c$$

(D) None of these

57.
$$\int \left(\sqrt{\frac{a+x}{a-x}} - \sqrt{\frac{a-x}{a+x}} \right) dx \text{ is equal to}$$

(A)
$$-2\sqrt{a^2-x^2}+C$$
 (B) $\sqrt{a^2-x^2}+C$

(B)
$$\sqrt{a^2 - x^2} + C$$

(C)
$$-\sqrt{x^2-a^2}+C$$
 (D) None of these

58.
$$\int tan(x-\alpha)tan(x+\alpha)$$
 tan 2x dx is equal to

(A)
$$\ell n \left| \frac{\sqrt{\sec 2x} \cdot \sec(x + \alpha)}{\sec(x - \alpha)} \right| + C$$

(B)
$$\ell n \left| \frac{\sqrt{\sec 2x}}{\sec(x-\alpha)\sec(x+\alpha)} \right| + C$$

(C)
$$\ell n \left| \frac{\sqrt{\sec 2x} \cdot \sec(x + \alpha)}{\sec(x + \alpha)} \right| + C$$

(D) None of these

59. If
$$\int x^{13/2} \cdot (1 + x^{5/2})^{1/2} dx = A(1 + x^{5/2})^{7/2} + B(1 + x^{5/2})^{5/2} + C(1 + x^{5/2})^{3/2}$$
, then

(A)
$$A = -\frac{4}{35}$$
, $B = -\frac{8}{25}$, $C = \frac{4}{15}$

(B)
$$A = \frac{4}{35}$$
, $B = -\frac{8}{25}$, $C = -\frac{4}{15}$

(C) A =
$$\frac{4}{35}$$
, B = $-\frac{8}{25}$, C = $\frac{4}{15}$ (D) None of these

60. $2 \int \sin x \cdot \cos ec \ 4x \ dx$ is equal to

(A)
$$\frac{1}{2\sqrt{2}} \ln \frac{1+\sqrt{2}\sin x}{1-\sqrt{2}\sin x} - \frac{1}{4} \ln \frac{1+\sin x}{1-\sin x} + C$$

(B)
$$\frac{1}{2\sqrt{2}} \ln \frac{1+\sqrt{2}\sin x}{1-\sqrt{2}\sin x} + \frac{1}{4} \ln \frac{1+\sin x}{1-\sin x} + C$$

(C)
$$\frac{1}{2\sqrt{2}} \ln \frac{1-\sqrt{2}\sin x}{1+\sqrt{2}\sin x} - \frac{1}{4} \ln \frac{1+\sin x}{1-\sin x} + C$$

(D) None of these

61.
$$\int \frac{\tan^{-1} x - \cot^{-1} x}{\tan^{-1} x + \cot^{-1} x} dx$$
 is equal to

(A)
$$\frac{4}{\pi}$$
x tan⁻¹ x + $\frac{2}{\pi}$ ℓ n (1 + x²) - x + c

(B)
$$\frac{4}{\pi}$$
x tan⁻¹ x - $\frac{2}{\pi}$ ℓ n (1 + x²) + x + c

(C)
$$\frac{4}{\pi}$$
x tan⁻¹ x + $\frac{2}{\pi}$ ℓ n (1 + x²) + x + c

(D)
$$\frac{4}{\pi}$$
x tan⁻¹ x - $\frac{2}{\pi}$ ℓ n (1 + x²) - x + c