BUNDESREPUBLIK DEUTSCHLAND

INTERNAT. KL. C 07 c

AUSLEGESCHRIFT 1013284

Sch 19803 IV b / 12 o

ANMELDETAG: 22. MÄRZ 1956

BEKANNTMACHUNG DER ANMELDUNG UND AUSGABE DER AUSLEGESCHRIFT:

8. AUGUST 1957

1

Bekanntlich ist die 17 a-ständige Oxygruppe solcher Steroide, die am Kohlenstoffatom 17 gleichzeitig eine CH3 · CO-Gruppe tragen, nur unter Anwendung verschärfter Reaktionsbedingungen zu verestern. Immerhin gelingt diese Veresterung mit den im allgemeinen gut reaktionsfähigen aliphatischen Carbonsäuren recht glatt, wenn man deren Anhydride bzw. Säurechloride, letztere vorteilhaft als Lösung in der zugehörigen Säure, in Gegenwart stark wirksamer Veresterungskatalysatoren, wie p-Toluolsulfosäure, auf die obengenannten $17\,a$ -Oxysteroide einwirken läßt. Auch diese Methode versagt indessen beim Versuch der Veresterung genannter Steroide mit reaktionsträgeren Säuren, wie der β -Cyclopentyl-propionsäure; denn selbst bei Ausdehnung der Einwirkungszeit von Cyclo- 15 pentylpropionsäurechlorid in Gegenwart von Cyclopentylpropionsäure als Lösungsmittel auf 8 Tage läßt sich unter Verwendung von bis zu 1,1 Moläquivalenten p-Toluolsulfosäure als Veresterungskatalysator weder bei 20 noch bei 37° eine auch nur an- 20 deutungsweise Veresterung z.B. des 17 a-Oxypregn-5-en-3 $\bar{\beta}$ -ol-20-on-3-acetats in 17-Stellung erzielen.

Es wurde nun gefunden, daß man die angestrebte Veresterung der 17α-ständigen Oxygruppe mit reaktionsträgeren Säuren, wie der β-Cyclopentylpropion- 25 säure, auch bei Steroiden. die am 17ständigen Kohlenstoffatom gleichzeitig eine Acetylgruppe tragen, gleichwohl erzwingen kann, wenn man die reaktionsträgere Säure wasserfrei in Gegenwart von Trifluoressigsäureanhydrid bei etwas erhöhten Temperaturen, 30 vorzugsweise bei 80 bis 90°, auf die genannten Steroide einwirken läßt. Die Einführung des β -Cyclopentylpropionsäureester in die 17 α-ständige Oxygruppe erfolgt hierbei in überraschend kurzer Zeit und mit ausgezeichneter Ausbeute. Sterische Umlage- 35 rungen des Steroids im Bereich des Cyclopentanringes treten nicht in Erscheinung (vgl. Beispiel 2). Sogar gegebenenfalls zusätzlich im Steroidmolekül vorhandene Ketogruppen, die bekanntlich bei Verwendung von p-Toluolsulfosäure als Veresterungsmittel in 40 Enolester übergehen, bleiben bei der erfindungsgemäßen Veresterungsmethode unangegriffen.

Unter »wenig reaktionsfähigen Carbonsäuren« werden hierbei solche Säuren verstanden, bei denen eine Veresterung der $17\,\alpha$ -ständigen Öxygruppen 45 unter Anwendung ihrer Säurechloride selbst in Gegenwart der bekannten Veresterungskatalysatoren nicht oder nur mit schlechten Ausbeuten möglich ist.

Die neuen Steroidester sollen als Heilmittel oder als Zwischenprodukte zur Herstellung solcher verwendet 50 werden. Sie zeichnen sich vor den schon länger bekannten Cyclopentylpropionaten anderer Steroide durch eine vergleichsweise überraschend gute Löslichkeit in öligen Lösungsmitteln aus.

Verfahren zur Einführung der Reste wenig reaktionsfähiger Carbonsäuren, insbesondere des β -Cyclopentyl-propionylrestes, in die 17a-ständige Oxygruppe solcher Steroide, die am Kohlenstoffatom 17 neben der Oxygruppe eine Acetylgruppe tragen

Anmelder:

Schering Aktiengesellschaft, Berlin N 65, Müllerstr. 170-172

Dr. Karl Heinz Pawlowski, Berlin-Hermsdorf, und Dr. Martin Schenck, Berlin-Frohnau, sind als Erfinder genannt worden

Natürlich ist die erfindungsgemäße Veresterungsmethode auch auf die reaktionsfähigeren aliphatischen Carbonsäuren übertragbar, allerdings ohne hierbei im allgemeinen besondere Vorteile zu bieten.

Beispiel 1

5 g 17α-Oxypregn-5-en-3-ol-20-on-3-acetat werden in eine 80° heiße Mischung aus 10 ccm Cyclopentylpropionsäure und 5 ccm Trifluoressigsäureanhydrid eingetragen. Das homogene Reaktionsgemisch wird 45 Minuten bei dieser Temperatur gehalten und nach Erkalten in Wasser eingegossen. Das hierbei ausfallende Öl wird in Äther aufgenommen, zur Entfernung der überschüssigen Säure mit verdünnter Natronlauge ausgewaschen, über Natriumsulfat getrocknet und durch Eindampfen im Vakuum vom Äther befreit. Der ölige Rückstand wird mit Pentan zur Kristallisation gebracht und aus Isopropyläther umkristallisiert.

Ausbeute 5.53 g = 83.7% der Theorie 17α -Oxypregnenolon-3-acetat-17-cyclopentylpropionat, F. = 137 bis 138,5°.

Beispiel 2

1 g 17 α-Oxyprogesteron, 4 ccm Capronsäure und 1 ccm Trifluoressigsäureanhydrid werden analog Bei-

10

= 66,5% der Theorie 17α -Oxyprogesteroncapronat.

 $F. = 120 \text{ bis } 121^{\circ}.$

=71% der Theorie. F. =128 bis 131°

PATENTANSPRUCH

 $= +53.6^{\circ} (c = 1; \text{ in CHCl}_3).$ $\lambda_{max} = 241 \text{ m}\mu; \text{ E } 17\,000 \text{ (Methanol)}.$

Es ist identisch mit authentischem Material, das nach bekanntem Verfahren mit Capronsäureanhydrid 5 in Gegenwart von p-Toluolsulfosäure dargestellt wurde. Das beweißt, daß trotz der sehr energischen Reaktionsbedingungen keine sterischen Umlagerungen im Bereich des Cyclopentanringes eingetreten sind.

Beispiel 3

1 g $17\,\alpha$ -Oxyprogesteron wird der 80° heißen Mischung aus 4 ccm Cyclopentylpropionsäure und 1 ccm Trifluoressigsäureanhydrid zugesetzt und analog 15 Beispiel 1 umgesetzt und aufgearbeitet. Ausbeute an $17\,\alpha$ -Oxyprogesteron-17-cyclopentyl
propionat 980 mg

Verfahren zur Einführung der Reste wemg reaktionsfähiger Carbonsäuren, insbesondere des β-Cyclopentyl-propionylrestes in die 17 α-ständige Oxygruppe solcher Steroide, die am Kohlenstoff atom 17 neben der Oxygruppe eine Acetylgruppe tragen, dadurch gekennzeichnet, daß man die g nannten Säuren wasserfrei in Gegenwart von Tris fluoressigsäureanhydrid bei etwas erhöhten Temperaturen, vorzugsweise bei 80 bis 90°, auf die ge nannten Steroide einwirken läßt.

@ 709 656/343 7.57