Problem 1

Given a data set $D=\{(x_i,y_i)\}_{i=1}^m$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$. We want to use an unregularized least squares regression model to best fit this data set. This can be formulated as the following optimization problem:

$$\min_{\boldsymbol{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} \ell(\boldsymbol{w}, b) \coloneqq \frac{1}{2} \sum_{i=1}^{m} (\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_{i} + b - y_{i})^{2}.$$
 (1-1)

Try to answer the following questions:

- (1) Is the optimal parameter (w^*, b^*) unique? If not, please give the condition for guaranteeing the uniqueness of (w^*, b^*) .
- (2) The data set D is shown in the Table 1, where each sample has 3 dimensions (d_1, d_2, d_3) . Please calculate the optimal parameter (\boldsymbol{w}^*, b^*) .

d_1	2	9	8	8	2	8	4	1	3	5
d_2	9	3	3	8	1	4	3	8	3	3
d_3	5	4	2	1	6	7	8	2	6	7
\overline{y}	8	10	6	7	3	4	12	7	5	4

Table 1 Training set for linear regression

Problem 2

In a binary classification problem, each instance $x_i \in \mathbb{R}^d$ in a data set $D = \{(x_i, y_i)\}_{i=1}^m$ has a label $y_i \in \{0,1\}$. We have already known the logistic regression model Eq.(2-1) is a powerful tool to handle this kind of problem.

$$y = \frac{1}{1 + e^{-(w^{T}x + b)}} \tag{2-1}$$

To simplify this problem, we assume that $\beta = (w;b)$, $\hat{x} = (x;1)$. Since its negative log-likelihood function Eq.(2-2) is convex, we can optimize it efficiently with Gradient Descent method, Newton Method, and so on.

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{m} \left(-y_i \boldsymbol{\beta}^{\mathrm{T}} \hat{\boldsymbol{x}}_i + \ln\left(1 + e^{\boldsymbol{\beta}^{\mathrm{T}} \hat{\boldsymbol{x}}_i}\right) \right)$$
 (2-2)

- (1) Prove the Eq.(2-2) is convex.
- (2) Suppose we are facing a K-class classification problem instead of a binary classification problem, where $y_i \in \{1, 2, \dots, K\}$. Please expand the logistic regression model Eq.(2-1) to a multi-class version and give the log-likelihood function of this multi-class logistic regression model.

Problem 3

In a binary classification problem, given the true label y of the sample and the predicted values y_{C_1} , y_{C_2} of the two classifiers C_1 , C_2 , calculate the relevant performance measures.

Table 2 True label and predicted values of two classifiers

y	1	0	1	1	1	0	0	1
$y_{\mathrm{C_{l}}}$	0.62	0.39	0.18	0.72	0.45	0.01	0.32	0.93
y_{C_2}	0.36	0.12	0.82	0.89	0.17	0.75	0.36	0.97

- (1) AUC
- (2) Confusion Matrix (threshold=0.4 and 0.9 for C₁ and C₂ respectively)
- (3) F1-Score (threshold=0.4 and 0.9 for C₁ and C₂ respectively)

Problem 4

Suppose you have a regression problem where the training data has 1000 samples and each sample has 20 features. Now you fit the training data with a polynomial regression model of degree d and use mean squared error (MSE) as the loss function. Try to answer the following questions:

- (1) If d = 1, is the model prone to overfitting? Why?
- (2) If d = 20, is the model prone to overfitting? Why?
- (3) How to choose an appropriate d value to balance the bias and variance of the model?