Project Report: Speed Control of BLDC Motor Using PID Controller in Simulink

1. Aim and Objective

The aim of this project is to **design and simulate a speed control system for a Brushless DC (BLDC) motor** using a **PID controller** in MATLAB/Simulink.

The objectives are:

- To control motor speed accurately using feedback and tuning.
- To implement electronic commutation using logic gates and Hall-effect sensors.
- To understand gate pulse generation and inverter switching for BLDC motor operation.

2. Introduction to BLDC Motor

A **Brushless DC (BLDC) motor** is a type of synchronous motor that operates using **DC power through an electronic inverter**. The rotor has **permanent magnets**, and the stator has **electromagnet coils**.

Unlike traditional brushed motors, a BLDC motor:

- Has **no brushes**, reducing wear and increasing lifespan.
- Requires **electronic commutation** using position feedback.
- Offers high efficiency, fast dynamic response, and low maintenance.

3. Working Principle of a BLDC Motor

- When DC power is supplied to the stator windings through an inverter, a rotating magnetic field is produced.
- The **permanent magnet rotor** follows this rotating field, causing motion.
- Hall-effect sensors detect the rotor's position and send signals to commutation logic circuits.
- This logic controls the **MOSFET switches** in the inverter to energize the correct windings at the right time.
- The process continues in a loop, producing continuous rotation.

4. Description of the Simulink Model

The Simulink model consists of the following major blocks:

➤ PMSM Block (BLDC Motor Equivalent)

Used to simulate the actual BLDC motor. This block includes rotor dynamics and electromagnetic torque behavior.

➤ PID Controller

Compares actual rotor speed with reference speed and adjusts the output to reduce the error. It controls the DC voltage input to the inverter.

➤ Hall-effect Sensors

Generate 3-bit binary output indicating rotor position. This feedback is essential for determining commutation sequences.

➤ Commutation Logic

Implements **AND gates**, **MUX**, and **DEMUX** to generate switching signals based on Hall sensor inputs.

➤ Gate Pulse Generator

Generates control pulses for 6 MOSFETs of a 3-phase inverter. These pulses determine when and how long a MOSFET conducts.

➤ 3-Phase Inverter

A set of 6 MOSFET switches that convert DC to 3-phase AC to drive the motor.

5. Control Strategy

- A PID controller is used for speed control. It minimizes error by adjusting the control input to the inverter.
- Hall-effect sensors detect rotor position and send feedback.
- Commutation logic decodes Hall signals and generates gate pulses.
- The **inverter switches** respond to these gate pulses and drive the motor windings.

6. Circuit Diagram:

Gate pulse block:

Commutation Block:

7. Simulation and Results

The Simulink simulation produces:

- Rotor Speed (rad/s) Plotted against time to see how quickly and accurately the motor reaches the desired speed.
- **Electromagnetic Torque** Shows the torque generated by the motor in real time.
- Gate Pulses Logical waveforms showing switching patterns for MOSFETs.
- Hall-effect Signals Position feedback signals to verify commutation sequence.

7. Output Waveform:

8. Advantages of This Approach

- Simple and effective control using PID.
- Smooth and reliable electronic commutation.
- Easy to simulate and modify in MATLAB.
- Close to real-time behavior with realistic component modeling.
- Scalable to actual embedded system implementation.

9. Alternatives and Enhancements

Component	Alternatives
PID Controller	Fuzzy Logic, Sliding Mode, Adaptive Control
Hall Sensors	Optical Encoder, Resolver
MOSFET Inverter	IGBT, SiC Switches
Simulink PMSM Block	Custom motor model using Simscape blocks
Gate Pulse Logic	SVPWM or Sinusoidal PWM techniques

10. Conclusion

This project successfully demonstrates **speed control of a BLDC motor using PID** in Simulink.

It highlights key aspects like:

- Electronic commutation logic using logical blocks.
- Use of gate pulse generation for MOSFET control.
- Integration of PID control and sensor feedback.

The system achieved accurate speed regulation, smooth motor operation, and practical modeling of a BLDC drive system, making it suitable for real-world embedded applications.