

INSTITUTE OF SCIENCE, TECHNOLOGY & ADVANCED STUDIES (VISTAS)
(Deemed to be University Estd. u/s 3 of the UGC Act, 1956)
PALLAVARAM - CHENNAI

ACCREDITED BY NAAC WITH 'A' GRADE

Marching Beyond 30 Years Successfully

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

21PBAI62-PRACTICAL - COGNITIVE LEARNING

LABORATORY

YEAR 2023 -2024

NAME OF THE STUDENT :

REGISTER NUMBER :

COURSE :

YEAR :

SEMESTER :

VELS

VELS INSTITUTE OF SCIENCE, TECHNOLOGY AND ADVANCED STUDIES (VISTAS)

Deemed to be University Estd. U/S 3 of the UGC ACT, 1956 NAAC ACCREDITED WITH 'A' GRADE PALLAVARAM, CHENNAI

BONAFIDE CERTIFICATE

Reg. No.

INTERNAL EXAMINER

This is to ce	rtify th	at the Bonat	fide Rec	ord of th	nis Practio	cal Work y	was comple	eted
by Mr./Ms.	•						•	
SCIENCE	AND	ENGINEE	RING	(ARTI	FICIAL	INTELL	IGENCE	&
MACHINE academic ye		•	the Co	ognitive	Learning	g Laborato	ory during	the
HEAD OF THE	E DEPA	RTMENT				STAFF-IN	-CHARGE	
Submitted for	the Pr	actical Exa	minatio	n held o	on	••••••	·····	

EXTERNAL EXAMINER

INDEX

S.NO	DATE	EXPERIMENT NAME	PAGE NO	MARKS	SIGNATURE
1		FACIAL RECOGNITION			
2		IMAGE RECOGNITION			
3		SPEECH RECOGNITION			
4		GESTURE RECOGNITION			
5		PATTERN RECOGNITION			
6		FEATURE COMPARISON MODELS			
7		LAB RECOGNITION			
8		NETWORKS MODELS			

Ex. No:1	FACIAL RECOGNITION	
IM:		
PROCEDURE:		

```
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
import os
# Path to your training dataset
train data dir = '/content/drive/MyDrive/Colab Notebooks/archive/cropped images'
# Count the number of subdirectories (classes)
num classes = len(os.listdir(train data dir))
# Define your model
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input shape=(224, 224, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(num classes, activation='softmax'))
# Compile the model
model.compile(optimizer=Adam(lr=0.001), loss='categorical_crossentropy',
metrics=['accuracy'])
# Create an ImageDataGenerator for data augmentation and loading images
batch size = 32
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(224, 224),
batch_size=batch_size,
class mode='categorical')
# Train the model
epochs = 10 # You can adjust the number of epochs based on your needs
model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples // batch_size,
```

```
epochs=epochs)
# Save the model
model.save('facial_recognition_model.h5')
WARNING:absl:lr is deprecated in Keras optimizer, please use learning_rate or use the legacy
optimizer,
e.g.,tf.keras.optimizers.legacy.Adam.
Found 274 images belonging to 5 classes.
<ipython-input-3-99a3c70880cf>:49: UserWarning: Model.fit generator is deprecated and will be
removed in a future version.
Please use Model.fit, which supports generators.
model.fit_generator(
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
              8/8 [==========
Epoch 8/10
Epoch 9/10
Epoch 10/10
/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are
saving your model as an
HDF5 file via model.save(). This file format is considered legacy. We recommend using instead
the native Keras format, e.g.
model.save('my_model.keras').
saving api.save model(
from tensorflow.keras.models import load model
from tensorflow.keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt
# Load the trained model
model = load_model('/content/facial_recognition_model.h5')
```

```
# Map class indices to actor names
actor_mapping = {
0: 'Chris Evans',
1: 'Chris Hemsworth',
2: 'Mark Ruffalo',
3: 'Robert Downey Jr. (RDJ)',
4: 'Scarlett Johansson'
# Path to the image you want to predict
image path = '/content/drive/MyDrive/Colab
Notebooks/archive/cropped_images/robert_downey_ir/robert_downey_ir1.png'
# Load and preprocess the image
img = image.load_img(image_path, target_size=(224, 224))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array /= 255.0 # Rescale to [0, 1]
# Make predictions
predictions = model.predict(img_array)
# Get the class with the highest probability
predicted_class = np.argmax(predictions)
# Get the predicted actor name
predicted_actor = actor_mapping.get(predicted_class, 'Unknown')
# Display the image
plt.imshow(img)
plt.axis('off')
plt.title(f"Predicted actor: {predicted_actor}")
plt.show()
```


Ex. No:2	IMAGE RECOGNITION
AIM:	
PROCEDURE:	

```
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Define data directories
train_dir = '/content/drive/MyDrive/fruits'
validation_dir = '/content/drive/MyDrive/validation/validation 1'
# Image size and batch size
img_size = (64, 64)
batch size = 32
# Data augmentation for training
train datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
# Validation data should not be augmented
validation_datagen = ImageDataGenerator(rescale=1./255)
# Create data generators
train_generator = train_datagen.flow_from_directory(
train_dir,
target size=img size,
batch size=batch size,
class mode='categorical'
)
validation_generator = validation_datagen.flow_from_directory(
validation_dir,
target_size=img_size,
batch_size=batch_size,
class_mode='categorical'
# Define the model architecture
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(6, activation='softmax') # 6 classes, adjust as needed])
```

```
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Train the model
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // batch_size,
epochs=10, # Adjust as needed
validation_data=validation_generator,
validation_steps=validation_generator.samples // batch_size
# Save the trained model
model.save('/content/fruit_recognition_model_trained.h5')
Found 654 images belonging to 6 classes.
Found 60 images belonging to 6 classes.
Epoch 1/10
val_loss: 1.1222 - val_accuracy: 0.6250
Epoch 2/10
val loss: 0.6546 - val accuracy: 0.7188
Epoch 3/10
val_loss: 0.7804 - val_accuracy: 0.6875
Epoch 4/10
val loss: 0.6536 - val accuracy: 0.7500
Epoch 5/10
val loss: 0.7574 - val accuracy: 0.5938
Epoch 6/10
val_loss: 0.3115 - val_accuracy: 0.9062
Epoch 7/10
val loss: 0.4432 - val accuracy: 0.8125
Epoch 8/10
val loss: 0.3246 - val accuracy: 0.8750
Epoch 9/10
val loss: 0.3943 - val accuracy: 0.8125
Epoch 10/10
```

```
val_loss: 0.2202 - val_accuracy: 0.9062evaluation = model.evaluate(validation_generator,
steps=validation_generator.samples // batch_size)
print("Validation Accuracy: {:.2f}%".format(evaluation[1] * 100))
Validation Accuracy: 90.62% from tensorflow.keras.models import load model
# Load the trained model
loaded_model = load_model('/content/fruit_recognition_model_trained.h5')
# Example usage for making predictions on a new image
new image path = '/content/drive/MyDrive/fruits/pomegranate/Image 3@.jpg'
processed_new_image = preprocess_image(new_image_path)
prediction = loaded model.predict(processed new image)
predicted class = np.argmax(prediction)
# Mapping class index to fruit name
class names = {0: 'peas', 1: 'pineapple', 2: 'pomegranate', 3: 'potato', 4: 'tomato', 5:
'watermelon'}
predicted_fruit_name = class_names[predicted_class]
print("Predicted Class Index:", predicted_class)
print("Predicted Fruit Name:", predicted_fruit_name)
1/1 [======] - 0s 77ms/step
Predicted Class Index: 2
Predicted Fruit Name: pomegranate
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load model
import numpy as np
import matplotlib.pyplot as plt
# Load the trained model
loaded model = load model('/content/fruit recognition model trained.h5')
# Mapping class index to fruit name
class_names = {0: 'peas', 1: 'pineapple', 2: 'pomegranate', 3: 'potato', 4: 'tomato', 5:
'watermelon'}
# Function to preprocess the input image
def preprocess image(image_path):
img = image.load_img(image_path, target_size=(64, 64))
img array = image.img to array(img)
img_array = np.expand_dims(img_array, axis=0)
return img array / 255.0
# Function to make predictions
def predict_and_display_image(image_path):
processed image = preprocess image(image path)
prediction = loaded model.predict(processed image)
predicted_class = np.argmax(prediction)
predicted_fruit_name = class_names[predicted_class]
```

```
# Display the image
img = image.load_img(image_path)
plt.imshow(img)

plt.title(f"Predicted Class: {predicted_class}, Predicted Fruit:
{predicted_fruit_name}")
plt.axis('off')
plt.show()
print("Predicted Class Index:", predicted_class)
print("Predicted Fruit Name:", predicted_fruit_name)
# Example usage
new_image_path = '/content/drive/MyDrive/fruits/pomegranate/Image_3@.jpg'
predict_and_display_image(new_image_path)
```


Ex. No:3	SPEECH RECOGNITION	
IM:		
ROCEDURE:		

```
import speech_recognition as sr
# Initialize the recognizer
recognizer = sr.Recognizer()
# Specify the path to the audio file
audio_file = "/content/03-01-08-02-02-01.wav"
# Load the audio file
with sr.AudioFile(audio_file) as source:
audio = recognizer.record(source) # Read the entire audio file
# Recognize speech using Google Speech Recognition
try:
print("Transcription: " + recognizer.recognize_google(audio))
except sr.UnknownValueError:
print("Sorry, could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Speech Recognition service;
{0}".format(e)
```

OUTPUT:

Transcription: dogs are sitting by the door

Ex. No:4	GESTURE RECOGNITION	
M:		
OCEDURE:		

```
%matplotlib inline
from google.colab import files
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import cv2
import pandas as pd
# Sklearn
from sklearn.model_selection import train_test_split # Helps with organizing data for training
from sklearn.metrics import confusion_matrix # Helps present results as a confusion-matrix
print(tf.__version__)
     1.13.1
# Unzip images, ignore this cell if files are already in the workspace
!unzip leapGestRecog.zip
# We need to get all the paths for the images to later load them
imagepaths = []
# Go through all the files and subdirectories inside a folder and save path to images inside list
for root, dirs, files in os.walk(".", topdown-False):
   for name in files:
    path = os.path.join(root, name)
    if path.endswith("png"): # We want only the images
      imagepaths.append(path)
print(len(imagepaths)) \# If > 0, then a PNG image was loaded
# This function is used more for debugging and showing results later. It plots the image into the notebook
def plot_image(path):
  img = cv2.imread(path) # Reads the image into a numpy.array
  img_cvt = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Converts into the corret colorspace (RGB)
  print(img_cvt.shape) # Prints the shape of the image just to check
  plt.grid(False) # Without grid so we can see better
  plt.imshow(img_cvt) # Shows the image
  plt.xlabel("Width")
  plt.ylabel("Height")
plt.title("Image " + path)
plot_image(imagepaths[0]) #We plot the first image from our imagepaths array
           Image _/leapGestRecog/01/03_fist/frame_01_03_0105.png
         50
      差 150
至 150
```

```
X - [] # Image data
y = [] # Labels
# Loops through imagepaths to load images and labels into arrays
for path in imagepaths:
  img = cv2.imread(path) # Reads image and returns np.array
  img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Converts into the corret colorspace (GRAY)
  img = cv2.resize(img, (320, 120)) # Reduce image size so training can be faster
  X.append(img)
  # Processing label in image path
  category = path.split("/")[3]
  label = int(category.split("_")[0][1]) # We need to convert 10_down to 00_down, or else it crashes
  y.append(label)
# Turn X and y into np.array to speed up train_test_split
X = np.array(X, dtype="uint8")
X = X.reshape(len(imagepaths), 120, 320, 1) # Needed to reshape so CNN knows it's different images
y = np.array(y)
print("Images loaded: ", len(X))
print("Labels loaded: ", len(y))
print(y[\theta], imagepaths[\theta]) # Debugging
     Images loaded: 2000
     Labels loaded: 2000
     3 ./leapGestRecog/01/03_fist/frame_01_03_0105.png
ts = 0.3 # Percentage of images that we want to use for testing. The rest is used for training.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=ts, random_state=42)
# Recreate the exact same model, including weights and optimizer.
# model = keras.models.load_model('handrecognition_model.h5')
# model.summary()
# To use the pre-trained model, just load it and skip to the next session.
# Import of keras model and hidden layers for our convolutional network
from keras.models import Sequential
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers import Dense, Flatten
     Using TensorFlow backend.
# Construction of model
model = Sequential()
model.add(Conv2D(32, (5, 5), activation='relu', input_shape=(120, 320, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
     WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op def library.py:263: colocate with (from te
     Instructions for updating:
Colocations handled automatically by placer.
     4
# Configures the model for training
model.compile(optimizer='adam', # Optimization routine, which tells the computer how to adjust the parameter values to minimize the loss fun
               loss='sparse_categorical_crossentropy', # Loss function, which tells us how bad our predictions are.
              metrics-['accuracy']) # List of metrics to be evaluated by the model during training and testing.
# Trains the model for a given number of epochs (iterations on a dataset) and validates it.
model.fit(X_train, y_train, epochs=5, batch_size=64, verbose=2, validation_data=(X_test, y_test))
     WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.
      Instructions for updating:
     Use tf.cast instead.
     Train on 14000 samples, validate on 6000 samples
```

```
- 305s - loss: 0.5644 - acc: 0.9133 - val loss: 0.0096 - val acc: 0.9968
     Epoch 2/5
      - 302s - loss: 0.0169 - acc: 0.9961 - val_loss: 0.0145 - val_acc: 0.9958
     Epoch 3/5
       301s - loss: 0.0045 - acc: 0.9987 - val_loss: 0.0015 - val_acc: 0.9992
     Epoch 4/5
       - 301s - loss: 6.5339e-05 - acc: 1.0000 - val_loss: 4.1817e-04 - val_acc: 0.9998
     Epoch 5/5
      - 305s - loss: 1.6688e-05 - acc: 1.0000 - val_loss: 3.7710e-04 - val_acc: 0.9998
     <keras.callbacks.History at 0x7f8c5fb09c18>
# Save entire model to a HDFS file
model.save('handrecognition_model.h5')
test_loss, test_acc = model.evaluate(X_test, y_test)
print('Test accuracy: {:2.2f}%'.format(test_acc*100))
     6000/6000 [-----] - 39s 6ms/step
     Test accuracy: 99.98%
predictions = model.predict(X_test) # Make predictions towards the test set
np.argmax(predictions[\theta]), y_test[\theta] # If same, got it right
     (8, 8)
# Function to plot images and labels for validation purposes
def validate_9_images(predictions_array, true_label_array, img_array):
 # Array for pretty printing and then figure size class_names = ["down", "palm", "l", "fist", "fist_moved", "thumb", "index", "ok", "palm_moved", "c"]
  plt.figure(figsize=(15,5))
  for i in range(1, 10):
   # Just assigning variables
    prediction - predictions array[i]
   true_label = true_label_array[i]
    ing - ing array[i]
    img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
    # Plot in a good way
    plt.subplot(3,3,1)
    plt.grid(False)
    plt.xticks([])
    plt.yticks([])
    plt.imshow(img, cmap-plt.cm.binary)
    predicted_label = np.argmax(prediction) # Get index of the predicted label from prediction
    # Change color of title based on good prediction or not
    if predicted_label -- true_label:
      color - 'blue'
    else:
      color - 'red'
    plt.xlabel("Predicted: {} {:2.0f}% (True: {}))".format(class_names[predicted_label],
                                  100*np.max(prediction),
                                  class_names[true_label]),
                                  color=color)
  plt.show()
validate_9_images(predictions, y_test, X_test)
```

Epoch 1/5

 y_pred = np.argmax(predictions, axis=1) # Transform predictions into 1-D array with label number

H = Horizontal # V = Vertical

	Predicted Thumb Down	Predicted Palm (H)	Predicted L		Predicted Fist (V)		Predicted Index	Pr
Actual Thumb Down	604	0	0	0	0	0	0	
Actual Palm (H)	0	617	0	1	0	0	0	
Actual L	0	0	621	0	0	0	0	
Actual Fist (H)	0	0	0	605	0	0	0	
Actual Fist (V)	0	0	0	0	596	0	0	
4								-

Ex. No: 5	PATTERN RECOGNITION	
M:		
ROCEDURE:		

Pattern recognition (using Convolutional Neural Network)

Import dependencies

```
# Selecting Tensorflow version v2 (the command is relevant for Colab only).
%tensorflow_version 2.x
 import tensorflow as tf
import matplotlib.pyplot as plt
import seaborn as sn
import numpy as np
import pandas as pd
import math
import datetime
import platform
print('Python version:', platform.python_version())
print('Tensorflow version:', tf.__version__)
print('Keras version:', tf.keras.__version_
      Python version: 3.7.6
       Tensorflow version: 2.1.0
      Keras version: 2.2.4-tf
# Load the TensorBoard notebook extension.
# %reload_ext tensorboard
%load ext tensorboard
Start coding or generate with AI.
# Clear any logs from previous runs.

    Load the data

mnist_dataset = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist_dataset.load_data()
print('x_train:', x_train.shape)
print('y_train:', y_train.shape)
print('x_test:', x_test.shape)
print('y_test:', y_test.shape)
      x_train: (60000, 28, 28)
y_train: (60000,)
      x_test: (10000, 28, 28)
y_test: (10000,)
```

```
# Save image parameters to the constants that we will use later for data re-shaping and for model traning.

(_, IMAGE_WIDTH, IMAGE_HEIGHT) = x_train.shape

IMAGE_CHANNELS = 1

print('IMAGE_WIDTH:', IMAGE_WIDTH);
print('IMAGE_HEIGHT:', IMAGE_HEIGHT);
print('IMAGE_CHANNELS:', IMAGE_CHANNELS);

IMAGE_CHANNELS:', IMAGE_CHANNELS:', IMAGE_CHANNELS);

IMAGE_HEIGHT: 28

IMAGE_CHANNELS: 1
```

pd.DataFrame(x_train[0])

	0	1	2	3	4	5	6	7	8	9	 18	19	28	21	22	23	24	25
0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	 175	26	166	255	247	127	0	0
6	0	0	0	0	0	0	0	0	30	36	 225	172	253	242	195	64	0	0
7	0	0	0	0	0	0	0	49	238	253	 93	82	82	56	39	0	0	0
8	0	0	0	0	0	0	0	18	219	253	 0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	80	156	 0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	14	 0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	 25	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	 150	27	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	 253	187	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	 253	249	64	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	 253	207	2	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	 250	182	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	 78	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	23	66	 0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	18	171	219	253	 0	0	0	0	0	0	0	0
23	0	0	0	0	55	172	226	253	253	253	 0	0	0	0	0	0	0	0
24	0	0	0	0	136	253	253	253	212	135	 0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0
28 rc					iris													*

 $\begin{array}{ll} & \text{plt.imshow}(x_\text{train}[\theta], \text{ cmap-plt.cm.binary}) \\ & \text{plt.show}() \end{array}$


```
numbers_to_display = 25
num_cells = math.ceil(math.sqrt(numbers_to_display))
plt.figure(figsize=(10,10))
for i in range(numbers_to_display):
   plt.subplot(num_cells, num_cells, i+1)
      plt.xticks([])
      plt.yticks([])
     pit.grid(raise)
plt.imshow(x_train[i], cmap=plt.cm.binary)
      plt.xlabel(y_train[i])
plt.show()
x_train_with_chanels = x_train.reshape(
     x_train.shape[0],
     IMAGE_WIDTH,
IMAGE_HEIGHT,
IMAGE_CHANNELS
x_test_with_chanels = x_test.reshape(
    x_test.shape[θ],
      IMAGE_WIDTH,
     IMAGE_HEIGHT,
IMAGE_CHANNELS
print('x_train_with_chanels:', x_train_with_chanels.shape)
print('x_test_with_chanels:', x_test_with_chanels.shape)
       x_train_with_chanels: (60000, 28, 28, 1)
x_test_with_chanels: (10000, 28, 28, 1)
x_train_normalized = x_train_with_chanels / 255
x_test_normalized = x_test_with_chanels / 255
# Let's check just one row from the 0th image to see color chanel values after normalization.
x_train_normalized[0][18]
      array([[0.
[0.
                [0.
                 [0.
```

Ex. No:6	FEATURE COMPARISON MODEL	
M:		
ROCEDURE:		

```
# -*- coding: utf-8 -*-
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
train_data = pd.read_csv(r'C:\Users\Database\Downloads\creditcardfrauddetection\fraudTrain.csv')
test_data = pd.read_csv(r'C:\Users\Database\Downloads\creditcardfrauddetection\fraudTest.csv')
train_data.drop(columns=['unix_time'], inplace=True)
test_data.drop(columns=['unix_time'], inplace=True)
X_train = train_data.drop(columns=['category'])
y_train = train_data['category']
X_test = test_data.drop(columns=['category'])
y_test = test_data['category']
numerical_columns = X_train.columns
numerical_columns = X_train.select_dtypes(include=['int64', 'float64']).columns
preprocessor = ColumnTransformer(
  transformers=[
    ('num', StandardScaler(), numerical_columns)])
lr_classifier = Pipeline(steps=[('preprocessor', preprocessor),
                ('classifier', LogisticRegression())])
lr_classifier.fit(X_train, y_train)
lr_predictions = lr_classifier.predict(X_test)
lr_accuracy = accuracy_score(y_test, lr_predictions)
print("Logistic Regression:")
print("Accuracy:", lr_accuracy)
print("Confusion Matrix:")
print(confusion_matrix(y_test, lr_predictions))
print("Classification Report:")
print(classification_report(y_test, lr_predictions))
dt_classifier = Pipeline(steps=[('preprocessor', preprocessor),
                ('classifier', DecisionTreeClassifier())])
dt_classifier.fit(X_train, y_train)
dt_predictions = dt_classifier.predict(X_test)
dt_accuracy = accuracy_score(y_test, dt_predictions)
print("\nDecision Trees:")
print("Accuracy:", dt_accuracy)
print("Confusion Matrix:")
print(confusion_matrix(y_test, dt_predictions))
print("Classification Report:")
print(classification_report(y_test, dt_predictions))
```

1 0											Decision Trees:	
	Regression:	0644	DEAE								Accuracy: 0.1944435946944409	
Confusion	0.142188768	0044:	3343								Confusion Matrix:	
[[Ø	0 27133	0	6256	0	5507	0	0	0	0	54	[[4194 2999 3847 1271 2618 3529 4759 3590 1897 2133 3470	2378
1154	0]	v	0230	٧	3307	v	v	U	٠	24	2640 779]	
F 0	0 27466	a	4368	0	6003	0	0	0	0	54	[2977 5270 3362 1846 2193 2745 3985 4676 1577 1928 3127	2338
1377	0]	v	4300	v	0003	U		U		24	2375 869]	
[0	0 48812	а	1790	0	2975	0	0	0	0	154	[4168 3400 19105 3075 5026 3767 5521 5219 1011 1023 3508	797
2639	0]		17.50		2313					134	710 40]	
1 0	0 14727	0	827	0	2680	0	ø	0	0	41	[1259 1868 2862 2354 1443 1396 2027 2806 391 730 1389	487
1151	0]		1 1750		1000						370 44]	2620
1 0	0 25849	0	22317	0	1603	0	0	0	0	485	[2816 2297 4865 1550 22357 2341 4180 3661 1411 1018 2129 1259 39]	2630
2299	0]										[3375 2723 3568 1424 2204 4362 4461 3515 1418 1632 3451	1974
[0	0 26435	0	3971	0	5111	0	0	0	0	52	2033 634]	10/4
1105	0]										[4675 3964 5208 2047 4032 4536 7247 5341 1973 2266 4727	3033
[0	0 37111	0	6359	0	7077	0	0	0	0	67	2587 709]	
1731	0]										[3495 4665 5016 2962 3506 3569 5145 7252 1742 2322 3924	2175
[0	0 34063	0	6568	0	6152	0	0	0	0	65	2288 631]	
1844	0]										[1904 1658 958 372 1264 1405 1961 1808 2500 2430 1784	3502
[0	0 16319	0	5240	0	5308	0	0	0	0	7	4325 1496]	
493	0]										[2151 2010 1005 779 984 1657 2110 2327 2404 6632 2136	3718
[0	0 21282	0	5268	0	7229	0	0	0	0	55	4936 1725]	
740	0]		10000		(Canada					220	[3446 3200 3475 1331 2083 3377 4548 3959 1779 2100 3738	2490
[0	0 27555	0	3984	0	6659	0	0	0	0	70	2819 982] [2359 2392 824 470 2483 1917 3007 2156 3538 3645 2532	6029
1059	0]		C204		0070						6965 2563]	0920
[0 724	0 25892	Ø.	6284	0	8879	0	0	0	0	0	[2715 2568 668 390 1217 2137 2618 2342 4329 4938 2871	6850
F 0	0] 0 27064	a	9850	o	12064	0	0	0	0	2	12741 34071	0030
811	0]	U	9630	U	12004	٠	۰			- 2	[825 872 64 39 31 672 717 611 1480 1762 981	2570
1 0	0 10137	a	2342	0	4752	0	0	0	0	40	3449 3376]]	
178	0]]		2342								Classification Report:	
170	911										33 (4	

Ex. No:7	LAB RECOGNITION	
IM:		
ROCEDURE:		

```
# google colab does not come with torch installed. And also, in course we are using torch 0.4.
# so following snippet of code installs the relevant version
from os.path import exists
from wheel.pep425tags import get_abbr_impl, get_impl_ver, get_abi_tag
platform = '{}{}-{}'.format(get_abbr_impl(), get_impl_ver(), get_abi_tag())
cuda_output = lldconfig -p|grep cudart.so|sed -e 's/.*\\([0.9]*\)\.\([0.9]*\)\$/cu\1\2/'
accelerator = cuda_output[0] if exists('/dev/nvidia0') else 'cpu'
|pip install -q http://download.pytorch.org/whl/{accelerator}/torch-8.4.1-{platform}-linux_x86_64.whl torchvision
import torch
# we will verify that GPU is enabled for this notebook
# following should print: CUDA is available! Training on GPU ...
# if it prints otherwise, then you need to enable GPU:
# from Menu > Runtime > Change Runtime Type > Hardware Accelerator > GPU
import torch
import numpy as np
# check if CUDA is available
train_on_gpu = torch.cuda.is_available()
if not train_on_gpu:
   print('CUDA is not available. Training on CPU ...')
    print('CUDA is available! Training on GPU ...')
# we need pillow version of 5.3.0
# we will uninstall the older version first
!pip uninstall -y Pillow
# install the new one
!pip install Pillow==5,3.0
# import the new one
import PIL
print(PIL.PILLOW VERSION)
# this should print 5.3.0. If it doesn't, then restart your runtime:
# Menu > Runtime > Restart Runtime
# Imports here
# we will download the required data files
!wget -cq https://github.com/udacity/pytorch_challenge/raw/master/cat_to_name.json
!wget -cq https://s3.amazonaws.com/content.udacity-data.com/courses/nd188/flower_data.zip
!rm -r flower_data || true
!unzip -qq flower_data.zip
data dir = '/flower data'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
# TODO: Define your transforms for the training and validation sets
# TODO: Load the datasets with ImageFolder
# TODO: Using the image datasets and the trainforms, define the dataloaders
dataloaders
import ison
with open('cat_to_name.json', 'r') as f:
   cat_to_name = json.load(f)
# TODO: Build and train your network
# TODO: Save the checkpoint
```

```
# TODO: Write a function that loads a checkpoint and rebuilds the model
def process_image(image):
    ''' Scales, crops, and normalizes a PIL image for a PyTorch model,
    returns an Numpy array
    # TODO: Process a PIL image for use in a PyTorch model
def imshow(image, ax-None, title-None):
    """Imshow for Tensor."""
    if ax is None:
        fig, ax = plt.subplots()
   # PyTorch tensors assume the color channel is the first dimension
    # but matplotlib assumes is the third dimension
    image = image.numpy().transpose((1, 2, 0))
    # Undo preprocessing
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
image = std * image + mean
    # Image needs to be clipped between \theta and 1 or it looks like noise when displayed
    image = np.clip(image, \theta, 1)
    ax.imshow(image)
    return ax
def predict(image_path, model, topk=5):
    ''' Predict the class (or classes) of an image using a trained deep learning model.
    # TODO: Implement the code to predict the class from an image file
```


Epoch 8/20

Ex. No:8	NETWORK MODELS	
IM:		
ROCEDURE:		

```
import os
7]:
    import numpy as np
    import matplotlib.pyplot as plt
    import tensorflow as tf
    from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img
    dataset_path = r'C:\Users\User\Downloads\flowers'
    train_datagen = ImageDataGenerator(
        rescale=1./255,
        rotation range=40,
        width_shift_range=0.2,
        height_shift_range=0.2,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal flip=True,
        fill_mode='nearest',
        validation_split=0.2
    )
    train_generator = train_datagen.flow_from_directory(
        dataset path,
        target_size=(224, 224),
        batch size=32,
        class_mode='categorical',
        subset='training'
    validation_generator = train_datagen.flow_from_directory(
        dataset_path,
        target_size=(224, 224),
        batch size=32,
        class mode='categorical',
        subset='validation'
    )
    Found 3457 images belonging to 5 classes.
    Found 860 images belonging to 5 classes.
8]: from tensorflow.keras.applications import VGG16, ResNet50
    from tensorflow.keras.models import Model
    from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
    def build model(base model, num classes):
        for layer in base_model.layers:
            layer.trainable = False
        x = base_model.output
        x = GlobalAveragePooling2D()(x)
        x = Dense(1024, activation='relu')(x)
        predictions = Dense(num_classes, activation='softmax')(x)
        return Model(inputs=base_model.input, outputs=predictions)
    base_model_vgg = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224,
    model_vgg = build_model(base_model_vgg, num_classes=5)
    base_model_resnet = ResNet50(weights='imagenet', include_top=False, input_shape=(224)
    model_resnet = build_model(base_model_resnet, num_classes=5)
    Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/r
    esnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
    94765736/94765736 [=============== ] - 59s lus/step
    model_vgg.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accura
    model vgg.fit(train generator, epochs=10, validation data=validation generator)
```

```
model_resnet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc
model_resnet.fit(train_generator, epochs=10, validation_data=validation_generator)
Epoch 1/10
0.5846 - val_loss: 0.8108 - val_accuracy: 0.6860
Epoch 2/10
109/109 [=============== ] - 1335s 12s/step - loss: 0.7848 - accuracy:
0.7185 - val_loss: 0.7025 - val_accuracy: 0.7488
Epoch 3/10
109/109 [============= ] - 1336s 12s/step - loss: 0.6896 - accuracy:
0.7550 - val_loss: 0.6240 - val_accuracy: 0.7802
Epoch 4/10
0.7738 - val_loss: 0.5811 - val_accuracy: 0.7837
Epoch 5/10
109/109 [============== ] - 1334s 12s/step - loss: 0.5893 - accuracy:
0.7790 - val_loss: 0.6428 - val_accuracy: 0.7709
Epoch 6/10
0.7984 - val_loss: 0.5314 - val_accuracy: 0.8070
Epoch 7/10
109/109 [============= ] - 1334s 12s/step - loss: 0.5788 - accuracy:
0.7917 - val_loss: 0.5950 - val_accuracy: 0.7884
Epoch 8/10
109/109 [============== ] - 1351s 12s/step - loss: 0.5231 - accuracy:
0.8097 - val_loss: 0.5492 - val_accuracy: 0.7977
Epoch 9/10
0.8068 - val_loss: 0.5469 - val_accuracy: 0.8047
Epoch 10/10
0.8224 - val_loss: 0.5526 - val_accuracy: 0.7907
Epoch 1/10
109/109 [============= ] - 547s 5s/step - loss: 1.6966 - accuracy:
0.2942 - val_loss: 1.7318 - val_accuracy: 0.2558
Epoch 2/10
0.3248 - val_loss: 1.5242 - val_accuracy: 0.3523
Epoch 3/10
109/109 [============== ] - 716s 7s/step - loss: 1.5032 - accuracy:
0.3538 - val_loss: 1.5270 - val_accuracy: 0.2651
Epoch 4/10
109/109 [============= ] - 960s 9s/step - loss: 1.4876 - accuracy:
0.3749 - val_loss: 1.4600 - val_accuracy: 0.4081
Epoch 5/10
109/109 [============== ] - 566s 5s/step - loss: 1.4710 - accuracy:
0.3685 - val_loss: 1.4787 - val_accuracy: 0.3744
Epoch 6/10
109/109 [============== ] - 553s 5s/step - loss: 1.4840 - accuracy:
0.3627 - val_loss: 1.4587 - val_accuracy: 0.3965
Epoch 7/10
0.3792 - val_loss: 1.4410 - val_accuracy: 0.3907
Epoch 8/10
109/109 [============= ] - 660s 6s/step - loss: 1.4471 - accuracy:
0.3763 - val_loss: 1.6047 - val_accuracy: 0.2686
Epoch 9/10
109/109 [============== ] - 599s 5s/step - loss: 1.4582 - accuracy:
0.3827 - val_loss: 1.4147 - val_accuracy: 0.4326
Epoch 10/10
```

0.3934 - val_loss: 1.3888 - val_accuracy: 0.4244

```
def display_dataset_samples(dataset_path, num_images=3):
In [25]:
              flower_classes = os.listdir(dataset_path)
              plt.figure(figsize=(10, num_images * len(flower_classes)))
              for i, flower_class in enumerate(flower_classes):
                  flower_class_path = os.path.join(dataset_path, flower_class)
                  images = os.listdir(flower_class_path)[:num_images]
                 for j, image in enumerate(images):
                     img_path = os.path.join(flower_class_path, image)
                     img = load_img(img_path, target_size=(224, 224))
                     plt.subplot(len(flower_classes), num_images, i * num_images + j + 1)
                     plt.imshow(img)
                     plt.title(flower_class)
                     plt.axis('off')
             plt.tight_layout()
             plt.show()
         display dataset samples(dataset path)
```


def visualize_model_prediction(model, img_path, class_indices):
 img = load_img(img_path, target_size=(224, 224))
 img_array = np.expand_dims(np.array(img) / 255.0, axis=0)

```
predictions = model.predict(img_array)
    predicted_class = np.argmax(predictions, axis=1)
    plt.imshow(img)
    plt.title(f'Predicted: {list(class_indices.keys())[predicted_class[0]]}, Probabil
    plt.axis('off')
    plt.show()

# Example usage (replace 'path/to/your/test/image.jpg' with a real image path)
visualize_model_prediction(model_vgg, r'C:\Users\User\Downloads\flowers\rose\29525736
```

1/1 [========] - 1s 1s/step

Predicted: rose, Probability: 0.9993624091148376

1]: visualize_model_prediction(model_resnet, r'C:\Users\User\Downloads\flowers\rose\2952

1/1 [=======] - 2s 2s/step

Predicted: tulip, Probability: 0.36886510252952576


```
import numpy as np
from sklearn.metrics import classification_report
from math import ceil

def evaluate_model(model, generator):
    steps = ceil(generator.samples / generator.batch_size)
    predictions = model.predict(generator, steps=steps)
    predicted_classes = np.argmax(predictions, axis=1)

# HandLing cases where the number of predictions exceeds the number of true Label
    true_classes = generator.classes[:len(predicted_classes)]

class_labels = list(generator.class_indices.keys())
    report = classification_report(true_classes, predicted_classes, target_names=clas
    print(report)

# Evaluate both models
evaluate_model(model_vgg, validation_generator)
evaluate_model(model_resnet, validation_generator)
```

27/27 [=====			===] - 266s	10s/step
	precision	recall	f1-score	support
daisy	0.18	0.12	0.15	152
dandelion	0.20	0.20	0.20	210
rose	0.20	0.21	0.21	156
sunflower	0.21	0.25	0.23	146
tulip	0.26	0.27	0.26	196
accuracy			0.21	860
macro avg	0.21	0.21	0.21	860
weighted avg	0.21	0.21	0.21	860
27/27 [=====			===] - 108s	4s/step
27/27 [=====			===] - 108s f1-score	
	precision	recall	f1-score	support
daisy	precision 0.20	recall 0.20	f1-score 0.20	support 152
	precision	recall 0.20	f1-score	support 152 210
daisy dandelion	precision 0.20 0.27	0.20 0.39	f1-score 0.20 0.32	152 210 156
daisy dandelion rose sunflower	0.20 0.27 0.00 0.18	0.20 0.39 0.00	f1-score 0.20 0.32 0.00	support 152 210
daisy dandelion rose	9.20 9.27 9.00	0.20 0.39 0.00 0.12	f1-score 0.20 0.32 0.00 0.14	152 210 156 146
daisy dandelion rose sunflower	0.20 0.27 0.00 0.18	0.20 0.39 0.00 0.12	f1-score 0.20 0.32 0.00 0.14	152 210 156 146
daisy dandelion rose sunflower tulip	0.20 0.27 0.00 0.18	recall 0.20 0.39 0.00 0.12 0.37	f1-score 0.20 0.32 0.00 0.14 0.29	152 210 156 146 196
daisy dandelion rose sunflower tulip accuracy	0.20 0.27 0.00 0.18 0.23	recall 0.20 0.39 0.00 0.12 0.37	f1-score 0.20 0.32 0.00 0.14 0.29 0.23	152 210 156 146 196