

QP06

Sessió nº 03 OPT Full nº 00 Data: Grup: 21

El objetivo de las sesiones dos y tres es caracterizar los componentes ópticos que formarán el sistema de comunicaciones (led, fibra óptica de plástico y fotodiodo) que se utilizará en la última sesión para transmitir la señal modulada en AM y compararlos con otros dispositivos ópticos similares (láser y fibra óptica de vidrio). También es objetivo de estas dos sesiones aprender el manejo de instrumental de medida óptico (medidores de potencia y analizador de espectros óptico).

PRECAUCIONES CON LOS CONECTORES

Los conectores de una fibra óptica son conectores macho. Para conectar dos fibras debe usarse un pasamuros (hembra-hembra). Los conectores de los instrumentos de medida son pasamuros, del que sólo tenemos acceso a un extremo. Usaremos dos tipos de conectores: SMA (usado ya en la primera sesión de laboratorio) y FC. Las fibras ópticas de plástico (POF: Plastic Optical Fiber) sólo llevan conectores SMA, las fibras de vidrio multimodo (MM: MultiMode) pueden llevar conectores SMA o FC. Las fibras de vidrio monomodo (SM: SingleMode) sólo llevan conectores FC.

Es importante observar que <u>los conectores FC van provistos de una lengüeta que encaja en una ranura del pasamuros</u>. Por lo tanto, <u>el conector sólo encaja correctamente en una posición. No forzar nunca los conectores.</u>

- Una vez introducido el conector, roscar hasta el final sin forzar. En ese momento el conector quedará correctamente posicionado.
- LAS MEDIDAS REALIZADAS CON CONECTORES MAL POSICIONADOS SON INCORRECTAS.
- Para extraer un conector, desenroscarlo por completo, y sacarlo agarrándolo de la parte metálica. En ningún caso extraer el conector tirando del cable de fibra, porque se partirá.

OPTICAL POWER MULTIMETER TQ8215 ADVANTEST

Los pasos a seguir para realizar medidas con este medidor son los siguientes:

Ajuste del offset: todo fotodiodo, en ausencia de luz, genera una corriente (llamada corriente de oscuridad) que representa un offset en la medida que debemos ajustar previamente. Para ello, con el sensor conectado al dispositivo se debe encender el medidor y, con el sensor tapado, apretar la tecla ZERO CAL. En la pantalla aparecerá la palabra ZERO y cuando desaparezca ya estaremos en condiciones de realizar medidas. En ese

Revisat per: Data rev.: pàgina: 1

QP06

Sessió nº 03 OPT Full nº 00 Data: Grup:

momento ya podemos quitar la tapa de la cabeza sensora y poner el adaptador SMA. El ajuste del offset debe realizarse cada vez que se apague el medidor.

Ajuste de sensibilidad: la respuesta de todo fotodiodo depende de la longitud de onda de la radiación a medir. El ajuste de sensibilidad se realiza apretando la tecla CF (de Center Frequency). En pantalla aparecerá la longitud de onda previamente seleccionada o la que tiene el medidor por defecto. Con las teclas UP y DOWN se aumenta o disminuye el valor del dígito subrayado y con la tecla AUTO/MNL se cambia de dígito (el último dígito no puede modificarse). Una vez conseguida la longitud de onda deseada, se aprieta ENTER para confirmar y desde ese momento las medidas presentadas en el display vendrán afectadas por la corrección de sensibilidad correspondiente a la longitud de onda que se haya seleccionado.

Realización de la medida: las teclas UP y DOWN también sirven para cambiar de escala cuando en pantalla aparezca *over o under* indicando que la medida se sale de escala. Por último, para cambiar la presentación de las medidas se dispone de la tecla dBm/W. El resto de las teclas no las usaremos en esta práctica y se recomienda no tocarlas.

OPTICAL LOSS TEST MS0901A ANRITSU

Procedimiento de medida:

- Con el medidor apagado, colocar el led. Encender el medidor y corregir el offset (esta operación es necesaria para situar el nivel de oscuridad del sensor y calibrarlo) apretando, con el sensor tapado, sucesivamente las teclas SHIFT+OFFSET.
- Conectar el led y el sensor mediante el tramo de fibra (antes de proceder a la conectorización, preguntar al profesor como hacerlo). Apretar la tecla OPTOUT para que el led emita luz. Anotar la medida de la potencia en dBm. Volver a apretar la tecla OPTOUT para que el led deje de emitir.

Antes de iniciar la sesión, cada grupo deberá traer impreso este documento (dos copias). Al finalizar cada medida, cada grupo deberá cumplimentar todos los apartados del documento y, al finalizar la sesión, entregarlo al profesor.

Revisat per:

Data rev.:

Sessió nº 03 OPT Full nº 01	Data:	Grup:
-----------------------------	-------	-------

MEDIDA 1: Característica V-I del fotodiodo FDR 850 IR

(Sesión 1) Con ayuda del osciloscopio y del led FFT2000 BHR, obtener la característica V-l del fotodiodo para diversas potencias de luz a su entrada.

Esta medida SÓLO la deben realizar los grupos que no la realizaron en la sesión nº 1.

PREPARACION DEL EXPERIMENTO

RELACIÓN DE MATERIAL NECESARIO

(Para <u>fuentes de alimentación</u>, indicar el valor o valores de tensión requeridos. Para <u>generadores de funciones</u>, indicar la frecuencia y la amplitud y offset medidos en circuito abierto con ayuda de un osciloscopio)

Instrumentos	Cables	Transiciones	Dispositivos
IIISHUMENIOS	Capies	Hansiciones	Dispositivos
	-		

Revisat per:

Data rev.:

Escola Politècnica Superior de Castelldefels

UNIVERSITAT POLITÈCNICA DE CATALUNYA

QP06

Full nº 01 Grup: Sessió nº 03 OPT Data:

PROCEDIMIENTO DE MEDIDA

- « Conectamos todo cano el dibyto.

 « En el osciloscopio creamos funcion xy.

RESULTADOS OBTENIDOS

escala horizontal (tiempo/division)	2μ5
escala vertical (tension/division)	a 1 / 2 100 ml

Revisat per:

Data rev.:

QP06

I I I I I I I I I I I I I I I I I I I

CUESTIONES:

1) En el montaje utilizado, realmente no se mide la tensión en bornes del fotodiodo. Teniendo en cuenta los valores de la corriente que circula, ¿se comete un error importante en la medida?

El error en 6 medide dependeré de le tolorancie de R i del error esser mogninaia

2) ¿Qué ocurre al aumentar la potencia de luz que incide sobre el fotodiodo?

au ayunto la tension ou R.

INCIDENCIAS:

Revisat per:

Data rev.:

QP06

Sessió nº 03 OPT Full nº 02 Data: Grup:	
---	--

MEDIDA 2: Atenuación de la fibra óptica

Medir la atenuación de la fibra óptica de plástico para diversas longitudes de onda utilizando leds modulados con una señal senoidal de 100 kHz, receptor óptico y un analizador de espectros de señal eléctrica. Medir las pérdidas de un pasamuros o adaptador SMA-SMA.

PREPARACION DEL EXPERIMENTO

RELACIÓN DE MATERIAL NECESARIO

(Para fuentes de alimentación, indicar el valor o valores de tensión requeridos. Para generadores de funciones, indicar la frecuencia y la amplitud y offset medidos en circuito abierto con ayuda de un osciloscopio)

Instrumentos	Cables	Transiciones	Dispositivos
Entrenador de fibra óptica PROMAX	2 fibras POF de 1 m	Pasamuros SMA	
Lemnadon de Funciones	Fibra POF de 2 m		
Osci lo scopio	Fibra POF de 5 m		
Analizador de espectos			
		N-BNC	
		7 5 7 2	

ESQUEMA DEL MONTAJE					
G. Fuciones Fire Enaporation Fire Enaporation					

pàgina: 6 Data rev.: Revisat per:

QP06

Sessió nº 03 OPT	Full nº 02	Data:	Grup: 21
------------------	------------	-------	----------

Entramos al entrenador PROMAX una señal de 100 KHZ con unos 3,800 de pico. Ajustamos el antrenador colocando el osciloscopio a la salida para que los amplificadores no recenter la señal (saturación), y que sea una señal senoidal. Procedemos a completar la table adjunta.

RESULTADOS OBTENIDOS

		Potencias	medidas
λ (en nm)	Atenuación (dB/km)	1m fibra (dBm)	5m fibra (dBm)
565	12,50dB/Ken	-21 d Bru	-26 dBm
635	3250 dB/Km	-22 y d Bm	-9,3 1 fm
850	3250 db/Km	3dBm	-10,52 dBM

(1) En la sesión nº 2 se medirá por otro procedimiento la atenuación y de la fibra y se podrán comparar los resultados obtenidos.

Pérdidas adaptador o pasa	imuros SMA-SMA para fibra	a de plástico y λ=635 nm
Potencia me	edida (dBm)	Pérdidas adaptador
POF(1m)+adap+POF(1m)	POF(2m)	(dB)
- 5 058 d Bru	-358 dbm	ZdB

INCIDENCIAS:

B

se dobe a ga si mo, satura

Revisat per:

Data rev.:

QP06

		<u></u>	
Sessió nº 03 OPT	Full nº 03	Data:	Grup:

MEDIDA 3: Característica I_{ph}-P_{opt} del fotodiodo FDR 850 IR

Obtener la característica fotocorriente-potencia óptica del fotodiodo FDR 850 IR para diversas longitudes de onda.

PREPARACION DEL EXPERIMENTO

RELACIÓN DE MATERIAL NECESARIO (Para fuentes de alimentación, indicar el valor o valores de tensión requeridos. Para generadores de funciones, indicar la frecuencia y la amplitud y offset medidos en circuito abierto con ayuda de un osciloscopio) Instrumentos Cables Transiciones Dispositivos Entrenador de fibra óptica PROMAX SMA

PROMAX
Optical Power Multimeter
TQ8215 Advantest
Cabezal óptico TQ82014
Advantest

ESQUEMA DEL MONTAJE

1				
i				
i				
I				
I				
1				
1				
1				
i				
I				
I				
I				
I				
1				
1				
1				
1				
1				
I				
i				
1				
1				
1				
1				
1				
1				
1				
1				
i				
1				
1				
i				
l				
l				
i				
i				
i				
1				
1				
i				
1				
1				
i				
i				
1				
1				
i				
1				
I				
1				
1				
1				
1				
i				
i				
I				
I				
I				
I				
I				
i				
i				
I				
I				
I				
I				
I				
	 	 •••••	 	

Revisat per:

Data rev.:

QP06

Sessió nº 03 OPT	Full nº 03	Data:		Grup:	
PROCEDIMIENTO DE MEDIDA					
	. 1100	· · · · · · · · · · · · · · · · · · ·	WEDIDA		
	·				

RESULTADOS OBTENIDOS

		TABLA DE	VALORES		
$\lambda = 56$	35 nm	λ=60	35 nm	λ = 85	50 nm
P _{op} (μW)	Ι (μΑ)	P _{op} (μW)	I (μA)	P _{op} (μW)	Ι (μΑ)
0,002	810 O	116	0,5	6,8	3,03
0,05	0	2	0,6	10	4,4
0/1	0,05	6	211	2 6	16,6
013	0,12	ĹŎ	3/0	122,18	53,0
016	0,19	20	616	215,3	93,5
	0(ク	25,5	8,05	334	145,25

	RECTA D	E REGRESIÓ	N
	λ = 565 nm	λ = 635 nm	λ = 850 nm
m (1)	0,0617	116/86	28,99
n	0,1093	2,19	4 8,55
R ²	0,9114	0,9182	0,900

(1) m = pendiente de la recta de regresión; n = ordenada en el origen
 (2) R = factor de correlación. Se considera que existe buena correlación cuando R² >= 0.99

CUESTIONES:

1) Comparar el valor obtenido de la responsividad con el que suministra el fabricante.

Revisat per:

Data rev.:

QP06

Sessió nº 03 OPT	Full nº 03	Data:	Grup:

2) En la gráfica se muestra la curva típica de responsividad relativa de un fotodiodo de silicio junto a otro de germanio. Indicar, sobre la gráfica, los valores obtenidos para el fotodiodo FDR 850 IR. ¿Es el fotodiodo de silicio o de germanio?

INCIDENCIAS:

Revisat per: Data rev.: pàgina: 10

QP06

Sessió nº 03 OPT Full nº 04 Data: Grup:	
---	--

MEDIDA 4: Atenuación de la fibra óptica multimodo (MM)

Con ayuda del medidor de potencia óptica Anritsu, modelo MS 9020A, medir la atenuación de la fibra óptica multimodo (MM) para las longitudes de onda correspondientes a las tres ventanas de comunicaciones. Medir las pérdidas de un pasamuros o adaptador FC-FC.

PREPARACION DEL EXPERIMENTO

RELACIÓN DE MATERIAL NECESARIO

(Para <u>fuentes de alimentación</u>, indicar el valor o valores de tensión requeridos. Para <u>generadores de funciones</u>, indicar la frecuencia y la amplitud y offset medidos en circuito abierto con ayuda de un osciloscopio)

Instrumentos	Cables	Transiciones	Dispositivos
Optical Loss Test MS0901A Anritsu	Maletín fibra MM	Pasamuros FC	
Led Source 0,85 MS901A Anritsu			
Led Source 1,3 MS902A Anritsu			
Led Source 1,55 MS903A Anritsu			
Optical Sensor 075-1,8 MA9723A Anritsu			
			:

ESQUEMA DEL MONTAJE		
Fibra MA Theo exceptor Theo exceptor		

Revisat per:

Data rev.:

QP06

Sessió nº 03 OPT	Full nº 04	Data:	Grup:

PROCEDIMIENTO DE MEDIDA	
	ļ
	1

RESULTADOS OBTENIDOS

Medida d	le potencias usando la	a curva de responsivid	ad relativa
) (on pm)		Potencia (dBm)	
λ (en nm)	Posición 0.85	Posición 1.30	Posición 1.55
1300	-27,92	-33/11	-34,36

	Atenúació		multimodo n)/	Potencias	medidas _\
/λ (en nm)	Valor esperado (ver gráfica)		medido	1m fibra (dBm)	1 km/fibra (dBm)
850	215				
1300	1 076	/			
1550	0.5	-7			

Revisat per:

Data rev.:

Escola Politècnica Superior de Castelldefels

UNIVERSITAT POLITÈCNICA DE CATALUNYA

SISTEMES DE RADIOFREQÜENCIA I ÓPTICS

QP06

Sessió nº 03 OPT | Full nº 04 | Data:

Grup:

Pérdidas adaptador o pasamuros FC-FC para fibra multimodo para λ=1550 nmPotencia (dBm)Pérdidas adaptadorMM(1m)+adap+MM(1km)MM(1km)(dB)

CUESTIONES:

1) Comprobar, haciendo uso de la curva de responsividad relativa de la parte posterior del medidor de potencia, que las medidas realizadas (primera tabla de resultados) en las tres posiciones diferentes del medidor (0.85, 1.30 y 1.55) son coherentes.

33,11 dBm - 27,92 dBm 25dB OK

34, 51 dBm - 33, 11 2 1dB OK

1300 20 dB

2) Desde el punto de vista de las pérdidas, ¿a cuántos metros de fibra óptica multimodo es equivalente un adaptador o pasamuros FC-FC?

INCIDENCIAS:

Revisat per:

Data rev.:

