Tutorial 8

Ch. 7-a

Tutorial 8

• Problems: 7.25, 7.37

Sampling Theorem

Sampling Theorem:

Let x(t) be a band-limited signal with $X(j\omega) = 0$ for $|\omega| > \omega_M$. Then x(t) is uniquely determined by its samples x(nT), $n = 0, \pm 1, \pm 2, \ldots$, if

$$\omega_s > 2\omega_M$$

where

$$\omega_s = \frac{2\pi}{T}.$$

Given these samples, we can reconstruct x(t) by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample values. This impulse train is then processed through an ideal lowpass filter with gain T and cutoff frequency greater than ω_M and less than $\omega_S - \omega_M$. The resulting output signal will exactly equal x(t).

Sampling

7.25. In Figure P7.25 is a sampler, followed by an ideal lowpass filter, for reconstruction of x(t) from its samples $x_p(t)$. From the sampling theorem, we know that if $\omega_s = 2\pi/T$ is greater than twice the highest frequency present in x(t) and $\omega_c = \omega_s/2$, then the reconstructed signal $x_r(t)$ will exactly equal x(t). If this condition on the bandwidth of x(t) is violated, then $x_r(t)$ will not equal x(t). We seek to show in this problem that if $\omega_c = \omega_s/2$, then for any choice of T, $x_r(t)$ and x(t) will always be equal at the sampling instants; that is,

$$x_r(kT) = x(kT), k = 0, \pm 1, \pm 2, \dots$$

Figure P7.25

To obtain this result, consider eq. (7.11), which expresses $x_r(t)$ in terms of the samples of x(t):

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT)T \frac{\omega_c}{\pi} \frac{\sin[\omega_c(t-nT)]}{\omega_c(t-nT)}.$$

With $\omega_c = \omega_s/2$, this becomes

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT) \frac{\sin\left[\frac{\pi}{T}(t-nT)\right]}{\frac{\pi}{T}(t-nT)}.$$
 (P7.25-1)

By considering the values of α for which $[\sin(\alpha)]/\alpha = 0$, show from eq. (P7.25–1) that, without any restrictions on x(t), $x_r(kT) = x(kT)$ for any integer value of k.

Answer 7.25

$$X_{r}(t) = \sum_{n=-\infty}^{\infty} \chi(nT) \frac{\sin \left[\frac{r}{T}(t-nT)\right]}{\frac{r}{T}(t-nT)}$$

$$X_{r}(kT) = \sum_{n=-\infty}^{\infty} \chi(nT) \frac{\sin \pi(k-n)}{\pi(k-n)}$$
When $n \neq k$, k integer n integer
$$\frac{\sin \pi(k-n)}{\pi(k-n)} = 0$$
When $n = k$

$$\lim_{n \to \infty} \frac{\sin \alpha}{\alpha} = 1$$

7.37. A signal limited in bandwidth to $|\omega| < W$ can be recovered from nonuniformly spaced samples as long as the average sample density is $2(W/2\pi)$ samples per second. This problem illustrates a particular example of nonuniform sampling. Assume that in Figure P7.37(a):

- 1. x(t) is band limited; $X(j\omega) = 0$, $|\omega| > W$.
- 2. p(t) is a nonuniformly spaced periodic pulse train, as shown in Figure P7.37(b).
- 3. f(t) is a periodic waveform with period $T = 2\pi/W$. Since f(t) multiplies an impulse train, only its values f(0) = a and $f(\Delta) = b$ at t = 0 and $t = \Delta$, respectively, are significant.
- 4. $H_1(j\omega)$ is a 90° phase shifter; that is,

$$H_1(j\omega) = \begin{cases} j, & \omega > 0 \\ -j, & \omega < 0 \end{cases}.$$

5. $H_2(j\omega)$ is an ideal lowpass filter; that is,

$$H_2(j\omega) = \begin{cases} K, & 0 < \omega < W \\ K^*, & -W < \omega < 0 \\ 0, & |\omega| > W \end{cases}$$

where K is a (possibly complex) constant.

Problem 7.37 (a)

(a) Find the Fourier transforms of p(t), $y_1(t)$, $y_2(t)$, and $y_3(t)$.

We may write p(t) as

where

$$x(t-t_0) \longleftrightarrow e^{-j\omega t_o} X(j\omega)$$

Therefore,

where

$$p(t) = p_1(t) + p_1(t - \Delta),$$

$$p_1(t) = \sum_{k=-\infty}^{\infty} \delta(t - 2\pi k/W).$$

$$P(j\omega) = (1 + e^{-j\Delta\omega})P_1(j\omega),$$

$$P_1(j\omega) = W \sum_{k=-\infty}^{\infty} \delta(\omega - kW).$$

$$x(t-t_0) \longleftrightarrow e^{-j\omega t_o} X(j\omega)$$

f(t) is a periodic waveform with period $T = 2\pi/W$. Since f(t) multiplies an impulse train, only its values f(0) = a and $f(\Delta) = b$ at t = 0 and $t = \Delta$, respectively, are significant.

$$f(t)\delta(t) = a\delta(t)$$
 $f(t)\delta(t - \Delta) = b\delta(t - \Delta)$

Let us denote the product p(t) f(t) by g(t). Then,

$$g(t) = p(t)f(t) = p_1(t)f(t) + p_1(t - \Delta)f(t).$$

This may be written as

$$g(t) = ap_1(t) + bp_1(t - \Delta).$$

Therefore,

$$G(j\omega) = (a + be^{-j\omega\Delta})P_1(j\omega),$$

with $P_1(j\omega)$ is specified in eq. (S7.37-1). Therefore,

$$G(j\omega) = W \sum_{k=-\infty}^{\infty} [a + be^{-jk\Delta W}] \delta(\omega - kW).$$

$$r(t) = s(t)p(t) \longleftrightarrow R(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S(j\theta)P(j(\omega-\theta))d\theta$$

Let us denote the product p(t)f(t) by g(t). Then,

$$g(t) = p(t)f(t) = p_1(t)f(t) + p_1(t - \Delta)f(t).$$

$$G(j\omega) = W \sum_{k=-\infty}^{\infty} [a + be^{-jk\Delta W}] \delta(\omega - kW).$$

We now have

$$y_1(t) = x(t)p(t)f(t).$$

Therefore,

$$Y_1(j\omega) = \frac{1}{2\pi} \left[G(j\omega) * X(j\omega) \right].$$

This gives us

$$Y_1(j\omega) = \frac{W}{2\pi} \sum_{k=-\infty}^{\infty} [a + be^{-jk\Delta W}] X(j(\omega - kW)).$$

In the range $0 < \omega < W$, we may specify $Y_1(j\omega)$ as

$$Y_1(j\omega) = \frac{W}{2\pi} \left[(a+b)X(j\omega) + (a+be^{-j\Delta W})X(j(\omega-W)) \right].$$

 $H_1(j\omega)$ is a 90° phase shifter; that is,

$$H_1(j\omega) = \begin{cases} j, & \omega > 0 \\ -j, & \omega < 0 \end{cases}.$$

Since $Y_2(j\omega) = Y_1(j\omega)H_1(j\omega)$, in the range $0 < \omega < W$ we may specify $Y_2(j\omega)$ as

$$Y_2(j\omega) = \frac{jW}{2\pi} \left[(a+b)X(j\omega) + (a+be^{-j\Delta W})X(j(\omega-W)) \right].$$

Since $y_3(t) = x(t)p(t)$, in the range $0 < \omega < W$ we may specify $Y_3(j\omega)$ as

$$Y_3(j\omega) = \frac{W}{2\pi} \left[2X(j\omega) + (1 + e^{-j\Delta W})X(j(\omega - W)) \right].$$

Problem 7.37 (b)

(b) Specify the values of a, b, and K as functions of Δ such that z(t) = x(t) for any band-limited x(t) and any Δ such that $0 < \Delta < \pi/W$.

f(t) is a periodic waveform with period $T = 2\pi/W$. Since f(t) multiplies an impulse train, only its values f(0) = a and $f(\Delta) = b$ at t = 0 and $t = \Delta$, respectively, are significant.

 $H_2(j\omega)$ is an ideal lowpass filter; that is,

$$H_2(j\omega) = \begin{cases} K, & 0 < \omega < W \\ K^*, & -W < \omega < 0 \\ 0, & |\omega| > W \end{cases}$$

where K is a (possibly complex) constant.

 $H_2(j\omega)$ is an ideal lowpass filter; that is,

$$H_2(j\omega) = \begin{cases} K, & 0 < \omega < W \\ K^*, & -W < \omega < 0 \\ 0, & |\omega| > W \end{cases}$$

where K is a (possibly complex) constant.

Given that $0 < W\Delta < \pi$, we require that $Y_2(j\omega) + Y_3(j\omega) = KX(j\omega)$ for $0 < \omega < W$. That is,

$$\frac{W}{2\pi}\left[(2+ja+jb)X(j\omega)\right] + \frac{W}{2\pi}\left[(1+e^{-j\Delta W}+ja+jbe^{-j\Delta W})X(j(\omega-W))\right] = KX(j\omega).$$

This implies that

$$1 + e^{-j\Delta W} + ja + jbe^{-j\Delta W} = 0.$$

Given that $0 < W\Delta < \pi$, we require that $Y_2(j\omega) + Y_3(j\omega) = KX(j\omega)$ for $0 < \omega < W$. That is,

$$\frac{W}{2\pi} \left[(2 + ja + jb) X(j\omega) \right] + \frac{W}{2\pi} \left[(1 + e^{-j\Delta W} + ja + jbe^{-j\Delta W}) X(j(\omega - W)) \right] = KX(j\omega).$$

This implies that

$$1 + e^{-j\Delta W} + ja + jbe^{-j\Delta W} = 0.$$

Solving this we obtain

$$a = 1, b = -1,$$

when $W\Delta = \pi/2$. More generally, we get

$$a = \sin(W\Delta) + \frac{(1 + \cos(W\Delta))}{\tan(W\Delta)}$$
 and $b = -\frac{1 + \cos(W\Delta)}{\sin(W\Delta)}$, except when $W\Delta = \pi/2$.

$$K = \frac{W}{2\pi} (2 + ja + jb)$$