Fin Heat Transfer Equation Analyze and Simulation

B08611019 林大衛 B08611031 易峻章 B08611035 柯鉑霆

Outline

O1 Equation Analysis

O2 Solidworks Simulation

03 Conclusions

Brief Intro

- Try to design fin in different cross areas (Ac) and profiles (Ac(x))
- Compare the temperature and heat flux between different shape of fins

Equation Analysis

I conservation of energy

$$q_x = q_{x+dx} + dq_{conv}$$

I convection

$$dq_{conv} = hdA_s(T - T_{\infty}) = hPd_x(T - T_{\infty})$$

I Fourier's Law

$$q_x = -kA_c \frac{dT}{dx}$$

$$q_{x+dx} = q_x + \frac{dq_x}{dx} dx$$

$$= -kA_c \frac{dT}{dx} - k \frac{d}{dx} (A_c \frac{dT}{dx}) dx$$

$$\frac{d}{dx}(A_c \frac{dT}{dx}) - \frac{hP}{k}(T - T_\infty) = 0$$

$$\Rightarrow \frac{d^2T}{dx^2} + (\frac{1}{A_c} \frac{dA_c}{dx}) \frac{dT}{dx} - \frac{hP}{kA_c}(T - T_\infty) = 0$$

Drive the general equation in state space form due to the scipy applied

The general fin equation is given by

$$\frac{d^2\theta}{dx^2} + (\frac{1}{A_c}\frac{dA_c}{dx})\frac{d\theta}{dx} - \frac{hP}{kA_c}\theta = 0 \qquad \text{where } \theta(x) \equiv T(x) - T_{\infty}$$

The state-space form,

$$\frac{dy}{dx} = \begin{bmatrix} y'_0 \\ y'_1 \\ y'_2 \\ y'_3 \\ y'_4 \end{bmatrix} = \begin{bmatrix} \theta' \\ \theta'' \\ A_c \\ A'_c \\ A''_c \end{bmatrix} = \begin{bmatrix} y_1 \\ -\frac{y_4}{y_3}y_1 + \frac{hP}{ky_3}y_0 \\ y_3 \\ y_4 \end{bmatrix} \qquad y_1 = \theta'(x) = \frac{d\theta}{dx} \\ y_2 = V(x) = \int_0^x A_c dx \\ y_3 = A_c(x) \\ y_3 = A_c(x)$$

where for a polygons, $P = k\sqrt{A_c}$

Parameter Setup

- r:
 The radius for circle area (We what to let heat sinks have same volumes. Ac different P).
- k: alluminum Alloy (300 W/mk)
- h: natural convection air
- T(base): 398 K
- T(surr): 298 K

Parameter Setup

Pin Geomtry condition of fin

Cross Section Area(Ac):

Circle

EquilateralTriangle

Square

RegularPentagon

RegulareHexagon

Axial profile(Ac(x))

1. Uniform : r = constant

2. Linear : $r = r_0(1 - \frac{x}{L})$

3. Parabolic : $r = r_0(1 - \frac{x^2}{L^2})$

4. Cosine : $r = r_0 cos(\frac{\pi x}{2L})$

Model and solving state deriving

State-space form

solving with scipy

```
@final
def solve(
    self,
    bc: Callable[[np_arr_f64, np_arr_f64], np_arr_f64],
) -> PPoly:
    x = np.linspace(0, self.L, 5)
    y = np.ones((5, x.size))

self.res = scipy.integrate.solve_bvp(
    fun=self.deriv, bc=bc, x=x, y=y, max_nodes=100000
)
return self.res.sol
```


Boundary Conditions

- thermal: uniform / linear
- geometry: fin volume constant / the cross section area on tip

ya(x=0)/yb(x=L)

Cross section and Profile models

- Define the Relation between Suface Area Ac and P
- For Regular Polygon: $P = 2\sqrt{Ac*ntan(\frac{\pi}{n})}$

```
class CircleCrossSection(CrossSection):
    def P(self, Ac: np_arr_f64) -> np_arr_f64:
        return 2 * np.sqrt(np.pi * np.abs(Ac))

    class RectangleCrossSectionMeta(type):
    def __init__(self, name: str, w: float) -> None:
        super().__init__(self)

    def __new__(cls, name: str, w: float) -> type:
        kls = super().__new__(cls, name, (), {"w": w, "P": RectangleCrossSectionMeta.P})
        return kls

    @staticmethod
    def P(self, Ac: np_arr_f64) -> np_arr_f64:
        return np.full_like(Ac, 2 * self.w)
```

```
class RegularPolygonCrossSectionMeta(type):
    def __init__(self, name: str, n: int) -> None:
        super().__init__(self)
    def new (cls, name: str, n: int) -> type:
        kls = super().__new__(
           cls, name, (), {"n": n, "P": RegularPolygonCrossSectionMeta.P}
       return kls
    @staticmethod
    def P(self, Ac: np_arr_f64) -> np_arr_f64:
       return 2 * np.sqrt(self.n * np.tan(np.pi / self.n) * Ac)
EquilateralTriangleCrossSection = RegularPolygonCrossSectionMeta(
    "EquilateralTriangleCrossSection", 3
SquareCrossSection = RegularPolygonCrossSectionMeta("SquareCrossSection", 4)
RegularPentagonCrossSection = RegularPolygonCrossSectionMeta(
    "RegularPentagonCrossSection", 5
RegulareHexagonCrossSection = RegularPolygonCrossSectionMeta(
    "RegulareHexagonCrossSection", 6
```


Plotting the results

x_plot = np.linspace(0, L, 100001)
sol_uniform = CircularUniformPinFin(k, h, L, T_b, T_inf).solve(bc_uniform)(x_plot)
linear = CircularLinearPinFin(k, h, L, T_b, T_inf)
sol_linear = linear.solve(bc_linear)(x_plot)

Case Analysis

Case1: Different cross section in uniform profile (volume constant)

Testing on circle, square, triangle, pentagon and hexagon cross section

Case2: Different cross section in linear profile (volume constant)

Testing on circle, square, triangle, pentagon and hexagon cross section

Case3: Different profile in circle cross section

Testing on uniform, linear, parabolic amd cosine profile

O2 Solidworks Simulation

Case: Uniform Profile simulation

Triangular Cross section

Square Cross section

Pengaton Cross section

Hexagon Cross section

03 Conclusion

	triangle	square	circle	hexagon	pengaton
qx(w)	17620	17551	16524	16642	16742

 As the table shown above, we find that the triangular cross section fin perform best in linear profile and constant volume

As x become longer, the efficiency of heat fin becomes worse

github link:

https://github.com/dvnatanael/fin-equation-analysis/tree/david-scipy

Thanks

