BioGears Models: Multi-Trauma Physiology

A. Baird¹, J. Carter¹, L. Marin¹, M. McDaniel¹, N. Tatum¹, S. White¹

1. Applied Research Associates Inc.

Outline

- Multi-trauma Overview
 - BioGears Trauma Models
- Medical Interventions
 - BioGears Treatment Models
 - What Can Go Wrong?
- BioGears Simulation Results
- Conclusions
 - How BioGears Can Impact This Field?

Multi-Trauma Physiology

- Multi-Trauma: subjected to multiple traumatic injuries
 - Hemorrhaging across body
 - Tension pneumothorax
 - Burn
 - Musculoskeletal injury
 - Traumatic brain injury
- Physiological changes vary not only based on injury, but on
 - Patient variability
 - Interventions
 - Time to intervention

Multi-Trauma Physiology

- Multi-Trauma in BioGears
 - Hemorrhage
 - Tension pneumothorax
- Tactical Combat Casualty Care (TCCC) emphasizes hemorrhage and airway management^[1]
- Goals
 - Medic: Decrease mortality and morbidity of the patient
 - BioGears: Physiological simulation to accurately depict multi-trauma scenarios

Incidences Background

- Hemorrhage: Bleeding, either internally or externally, from a broken blood vessel
 - May lead to inadequate blood gas exchange
 - Largest cause of combat deaths, over 80%^[1]
- Pneumothorax: When air gets trapped in the space between the lungs and chest wall (pleural cavity)
 - One way valve effect of respiratory exchange
 - Traumatic vs non traumatic
 - 10-15% of preventable deaths^[1]
 - third most potentially survivable cause of death^[2]
 - 5% of subjects arrived at a support hospital w/o a definitive airway^[1]

BioGears Trauma Models

- Hemorrhage
 - Circuit pathway with a switch connected to ground is modified to instantiate bleeding
 - Resistance based on flow rate
- Tension Pneumothorax
 - Closed traumatic injury causing a "sucking chest wound"
 - Progressive build up of air within pleural space compartment of BioGears circuit structure

Input Diagram

byright 2020. All rights reserved. Applied Research Associates, Inc

Now What?

 If we can accurately depict a patient state after injury, we can also explore care/treatment scenarios

Background: Medical Intervention

- In prolonged field care, combat medics have limited tools
 - Substances
 - Tranexamic Acid (TXA)
 - Tylenol
 - Whole Blood (more commonly FWB is required)
 - Tools
 - Transfusion bag
 - Tourniquet
 - Decompression needle
- However, specificity and variability can make decision making hard
 - If medics aren't trained on specific physiology, patient response becomes harder to predict
- BioGears set-up reduces computational cost of modeling/simulation

Background

Tranexamic Acid (TXA)

- Control of bleeding takes precedence over infusing fluids (TCCC) [2]
- Clinical Practice Guidelines^[2]
 - TXA should be given to casualties at risk of hemorrhagic shock as soon as feasible

Transfusion

- Increase in blood volume increases blood gas transfer and immune health
- Massively transfused casualties have a high (33%) mortality rate^[2]
- In austere conditions, fresh whole blood is obtainable via a walking blood bank (WBB) program^[2]
 - Improperly done can lead to transfusion reaction

Needle Decompression

- Decompress any suspected tension pneumothorax^[1,2]
- Causalities with multi-trauma showing no pulse or highly decreased respiration should have a bilateral
 needle decompression performed^[1,2]

Background: Transfusion Reactions

- Any adverse event associated with blood transfer
 - Hemolytic transfusion reaction (HTR) is most common [3]
- The blood type on identification tags is occasionally incorrect (last correlated data equated to about 4% inaccurate) [4]
- Can cause noticeable metabolic and respiratory distress in patients [3]

Tranexamic Acid: BioGears Validation

Pharmacokinetics [5,6]

Tranexamic Acid: BioGears Validation

- Pharmacodynamics
 - 1. Short Scenario based on calculated blood volume after hemorrhage [7,8]
 - 2. Long Scenario based on time of survival after dosage [9]

1

2

Hemorrhage Survival Time	Hemorrhage w/ TXA Survival Time	Change	Time To Death
4691.4 s	5341.2 s	+ 13.9 %	Increases

BioGears Transfusion Model

0000 to:large by 2000 total and 2000

biogears

Model: Transfusion Reaction

- Predator-Prey Relationship of Agglutination^[10]
- Assume:
 - Surface area estimated as cylinders
 - Four cells is "stable" and remove those cells/attachments
 - Only unlike cells can agglutinate

	Expected	Timing	Value	% Change	Result	Notes	Source
Core Temperature	Increase(>1 degC)	after	37.1	0.27027027		one degree change reached at 1820 secs	Davenport2005Pathop hysiology/Anaesth201 4Adverse
Respiration Rate	Increase		20.55	30.14566181			Davenport2005Pathop hysiology
Blood Pressure	Change(Systolic, +/- ~20% @ severe)	during/shortly after	117	2.631578947		Can show increase OR decrease, key is change, severe not defined	Davenport2005Pathop hysiology/Anaesth201 4Adverse
Pulse	Increase(Tachycardia)	Immediately after	93.75	28.12628126		Tachycardia reached about 2.5 mins after end of transfusion	Davenport2005Pathop hysiology/Anaesth201 4Adverse

Agglutination Results (4 hrs)

Model: Needle Decompression

- BioGears incorporates a circuit component to permit airflow based on pressure differentials between pleural space and environment
 - Modified Resistance based on scaling factor
 - Appropriately tunes the circuit to vary breathing/air flow over time

Actions and Scenario Exploring

- Standard male patient
- Incidence
 - Closed left tension pneumothorax - moderate
 - Liver hemorrhage Class III
 - Left arm hemorrhage Class II
- Possible Interventions
 - . Do nothing
 - 2. Follow CPG
 - 3. Improper Care

Scenario Timelines

Scenario 1: Do Nothing

Exsanguination median time to death is 1.6 hours (5760 s) [12]

Scenario 2: Clinical Practice Guidelines

- — is traumatic incident: initiate multi-trauma
- — is hemostatic dressing and TXA injection: slowed blood loss
- — is needle decompression: restore breathing
- — is Blood transfusion to restore blood levels and relieve cardiovascular distress

Scenario 3: Medical Errors

- is traumatic incident: initiate multi-trauma
- — is needle decompression: restore breathing
- — is TXA injection: low dose but still slowed blood loss
- — is Blood transfusion, stopped early due to HTR

Conclusions

- BioGears can accurately depict physiological responses to multi-trauma events and a variety of interventions
- Numerous applications
 - Training: Help less experienced personnel understand the dynamics of human physiology
 - Response to proper and improper care
 - Decision making: Using faster than real time simulations can help determine if an approach is more or less likely to help a patient

Acknowledgements

- A special Thank You goes out to:
 - The BioGears team for assistance in developmental stages of presented material
 - Austin Baird
 - Steven White
 - Matthew McDaniel
 - Lucas Marin
 - Jenn Carter
 - Jonathan Wingate, MD at the University of Washington for his review and expertise of the physiological components of presented material
 - Our research partners and mentors at TATRC and JPC-1
- BioGears would not be possible without their continued guidance, encouragement, leadership, and stewardship

A

References

- 1. Gerhardt, R. T., Mabry, R. L., De Lorenzo, R., & Butler, F. (2012). Fundamentals of combat casualty care. *Combat Casualty Care: Lessons Learned from OEF and OIF. Washington, DC: United States Department of Defense*, 85-120.
- 2. Butler, F. K., & Kotwal, R. S. (2017). Tactical combat casualty care. Version 5.
- 3. Strobel, E. (2008). Hemolytic transfusion reactions. *Transfusion Medicine and Hemotherapy*, *35*(5), 346.
- 4. Cap, A. P., Beckett, A., Benov, A., Borgman, M., Chen, J., Corley, J. B., ... & Kane, S. F. (2018). Whole blood transfusion. *Military medicine*, 183(suppl_2), 44-51.
- 5. Pilbrant A, Schannong M, Vessman J. Pharmacokinetics and bioavailability of tranexamic acid. Eur J Clin Pharmacol. 1981;20(1):65-72. PubMed PMID: 7308275.
- 6. Nilsson, I. M. (1980). Clinical pharmacology of aminocaproic and tranexamic acids. *Journal of Clinical Pathology. Supplement (Royal College of Pathologists).*, 14, 41.
- 7. Kushioka, J., Yamashita, T., Okuda, S., Maeno, T., Matsumoto, T., Yamasaki, R., & Iwasaki, M. (2017). High-dose tranexamic acid reduces intraoperative and postoperative blood loss in posterior lumbar interbody fusion. *Journal of Neurosurgery: Spine*, 26(3), 363-367.
- 8. Gupta, K., Rastogi, B., Krishan, A., Gupta, A., Singh, V. P., & Agarwal, S. (2012). The prophylactic role of tranexamic acid to reduce blood loss during radical surgery: A prospective study. *Anesthesia, essays and researches*, *6*(1), 70.
- 9. Roberts I, Shakur H, Coats T, Hunt B, Balogun E, Barnetson L, Cook L, Kawahara T, Perel P, Prieto-Merino D, Ramos M, Cairns J, Guerriero C. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol Assess. 2013 Mar;17(10):1-79. doi: 10.3310/hta17100. PubMed PMID: 23477634; PubMed Central PMCID: PMC4780956.
- 10. Dolgosheina, E. B., Karulin, A. Y., & Bobylev, A. V. (1992). A kinetic model of the agglutination process. *Mathematical biosciences*, 109(1), 1-10.
- 11. Davenport, R. D. (2005, July). Pathophysiology of hemolytic transfusion reactions. In *Seminars in hematology* (Vol. 42, No. 3, pp. 165-168). WB Saunders.
- 12. Cripps, M. W., Kutcher, M. E., Daley, A., McCreery, R. C., Greenberg, M. D., Cachola, L. M., ... & Cohen, M. J. (2013). Cause and timing of death in massively transfused trauma patients. *The journal of trauma and acute care surgery*, 75(2 0 2), S255.