Pour tout réel strictement positif α , on se propose d'étudier la fonction S_{α} de la variable réelle x définie (sous réserve de convergence) comme somme de la série de fonctions suivante :

$$S_{\alpha}(x) = \sum_{n=0}^{+\infty} e^{-x n^{\alpha}} = 1 + e^{-x} + e^{-2^{\alpha} x} + e^{-3^{\alpha} x} + e^{-4^{\alpha} x} + \dots$$

On étudie dans la partie I le domaine de définition et les premières propriétés de la fonction S_{α} . Dans la partie II, on approfondit le cas particulier $\alpha=2$, autrement dit l'étude de la fonction S_2 . Puis on introduit dans la partie III des intégrales auxiliaires afin d'obtenir de façon plus générale des équivalents de $S_{\alpha}(x)$ lorsque x tend vers 0 et $+\infty$.

■ PARTIE I : Premières propriétés des fonctions S_{α} ($\alpha > 0$)

- 1°) Etude du cas particulier de la fonction S₁
- a) Etudier la convergence simple et expliciter la somme de la série de fonctions définissant S_1 :

$$S_1(x) = \sum_{n=0}^{+\infty} e^{-xn}.$$

- b) Préciser la limite et un équivalent de $S_1(x)$ quand x tend vers 0.
- c) Préciser la limite de $S_1(x)$ quand x tend vers $+\infty$, et un équivalent de $S_1(x) 1$ en $+\infty$.
- 2°) Etude du domaine de définition des fonctions S_{α} ($\alpha > 0$)
- a) Examiner pour $x \le 0$ la nature de la série $\sum_{n=0}^{\infty} e^{-x^n n^n}$.
- b) Pour tout réel x > 0, déterminer la limite de la suite $n \mapsto n^2 e^{-x n^{\alpha}}$. En déduire la nature de la série $\sum e^{-x n^{\alpha}}$ pour x > 0.
- c) Préciser le domaine de définition de la fonction S_{α} pour $\alpha > 0$.
- 3°) Premières propriétés des fonctions S_{α} ($\alpha > 0$)
- a) Pour tout $\varepsilon > 0$, établir la convergence normale de la série de fonctions $\sum e^{-x n^{\alpha}} \sup [\varepsilon, +\infty[$. En déduire la continuité de la fonction S_{α} sur $]0, +\infty[$ (on explicitera le théorème utilisé).
- b) Comparer $S_{\alpha}(x)$ et $S_{\alpha}(y)$ pour $0 < x \le y$ et préciser le sens de variation de la fonction S_{α} . En déduire que la fonction S_{α} admet une limite finie ou infinie en 0 et en $+\infty$.
- c) A l'aide d'un théorème dont on précisera l'énoncé, montrer que $\lim_{x\to +\infty} S_{\alpha}(x) = 1$.
- d) En exploitant l'inégalité $S_{\alpha}(x) \geq \sum_{n=0}^{N} e^{-x n^{\alpha}}$ pour tout entier naturel N et pour tout réel x > 0, établir, pour tout entier naturel N, que $\lim_{x \to 0} S_{\alpha}(x) \geq N + 1$. Quelle est la limite de $S_{\alpha}(x)$ lorsque x tend vers 0?

■ PARTIE II : Etude de la fonction S_2

On étudie dans cette partie la fonction définie par :

$$\forall x > 0$$
, $S_2(x) = \sum_{n=0}^{+\infty} e^{-xn^2} = 1 + e^{-x} + e^{-4x} + e^{-9x} + e^{-16x} + \dots$

- 4°) Recherche d'un équivalent de S2 en 0
- a) Etablir l'inégalité suivante pour tout entier naturel n et tout réel x > 0':

$$e^{-x(n+1)^2} \le \int_n^{n+1} e^{-xt^2} dt \le e^{-xn^2}.$$

b) En exploitant l'égalité $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$, en déduire la double inégalité suivante :

$$S_2(x) - 1 \le \frac{\sqrt{\pi}}{2\sqrt{x}} \le S_2(x).$$

- c) Retrouver alors $\lim_{x\to 0} S_2(x)$, puis donner un équivalent de $S_2(x)$ quand x tend vers 0.
- 5°) Recherche d'un équivalent de $S_2 1$ en $+\infty$
- a) Pour tout réel x > 0, établir que :

$$S_2(x) - 1 - e^{-x} \le \sum_{n=2}^{+\infty} e^{-x n}.$$

- b) En calculant cette dernière somme, démontrer que $S_2(x) = 1 + e^{-x} + o(e^{-x})$ en $+\infty$. En déduire un équivalent de $S_2(x) - 1$ quand x tend vers $+\infty$.
- 6°) Recherche d'une valeur approchée de $S_2(x)$ pour x > 0
- a) En raisonnant comme à la question 4.a), établir pour tout entier naturel N et tout réel x > 0:

$$\sum_{n=N+1}^{+\infty} e^{-x} n^2 \le \int_N^{+\infty} e^{-xt^2} dt.$$

b) A l'aide d'un changement de variable dans cette dernière intégrale, en déduire que :

$$\forall \ N \in \mathbb{N}^*, \quad S_2(x) \, - \, \sum_{n=0}^N \, e^{-x \, n^2} \, \leq \, \frac{1}{2 \, \sqrt{x}} \, \int_{x \, N^2}^{+\infty} \frac{e^{-u}}{\sqrt{u}} \, \mathrm{d}u \, \, \leq \, \frac{e^{-x \, N^2}}{2 \, N \, x}.$$

- c) En déduire un algorithme permettant d'obtenir une valeur approchée de $S_2(x)$ à $\varepsilon > 0$ près.
- d) Préciser une valeur approchée de $S_2(1)$ à 10^{-7} près.

■ PARTIE III : Etude de $S_{\alpha}(x)$ quand x tend vers 0 et $+\infty$

7°) Comparaison de deux intégrales

On considère pour tous réels $\alpha > 0$ et x > 0 les deux intégrales suivantes :

$$\Gamma(\alpha) = \int_0^{+\infty} e^{-u} u^{\alpha - 1} du$$
 et $I(\alpha) = \int_0^{+\infty} e^{-xt^{\alpha}} dt$.

- a) Pour quelles valeurs de α les intégrales $\int_0^1 e^{-u} u^{\alpha-1} du$ et $\int_1^{+\infty} e^{-u} u^{\alpha-1} du$ convergent-elles? En déduire que l'intégrale $\Gamma(\alpha)$ converge pour $\alpha > 0$.
- b) A l'aide d'une intégration par parties, exprimer $\Gamma(\alpha + 1)$ en fonction de $\Gamma(\alpha)$. Calculer $\Gamma(1)$ et en déduire $\Gamma(n+1)$ pour tout entier naturel n.

- c) Pour tout x > 0, effectuer dans l'intégrale $\Gamma\left(\frac{1}{\alpha}\right)$ le changement de variables défini par $u = x t^{\alpha}$. Qu'en déduit-on pour l'intégrale $I(\alpha)$, et quelle relation obtient-on entre $\Gamma\left(\frac{1}{\alpha}\right)$ et $I(\alpha)$?
- 8°) Recherche d'un équivalent de S_{α} en 0 ($\alpha > 0$)
- a) En raisonnant comme à la question 4.a), établir pour $\alpha > 0$ et x > 0 l'inégalité suivante :

$$0 \leq S_{\alpha}(x) - \frac{1}{\alpha} \Gamma\left(\frac{1}{\alpha}\right) \frac{1}{r^{1/\alpha}} \leq 1.$$

- b) Retrouver $\lim_{x\to 0} S_{\alpha}(x)$, puis donner un équivalent de $S_{\alpha}(x)$ quand x tend vers 0.
- 9°) Majoration d'une intégrale auxiliaire ($\alpha > 0$)
- a) Justifier pour tous réels $\alpha > 0$ et x > 0 la relation suivante :

$$\int_{1}^{+\infty} e^{-xt^{\alpha}} dt = \frac{1}{\alpha x^{1/\alpha}} \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du.$$

b) Etablir l'égalité suivante pour tous réels $\alpha > 0$ et x > 0:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du = e^{-x} x^{\frac{1}{\alpha}-1} + \left(\frac{1}{\alpha} - 1\right) \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-2} du.$$

Justifier ensuite l'inégalité suivante pour tous réels $\alpha > 0$ et x > 0:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-2} du \leq \frac{1}{x} \int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du$$

En déduire enfin l'équivalence suivante lorsque x tend vers $+\infty$:

$$\int_{x}^{+\infty} e^{-u} u^{\frac{1}{\alpha}-1} du \underset{x \to +\infty}{\sim} e^{-x} x^{\frac{1}{\alpha}-1}.$$

- c) En conclure que l'intégrale $\int_1^{+\infty} e^{-xt^{\alpha}} dt$ est négligeable devant e^{-x} lorsque x tend vers $+\infty$.
- 10°) Recherche d'un équivalent de S_{α} en $+\infty$ ($\alpha > 0$)
- a) Etablir pour $\alpha > 0$ et x > 0 l'inégalité suivante :

$$\sum_{n=2}^{+\infty} e^{-x n^{\alpha}} \le \int_{1}^{+\infty} e^{-x t^{\alpha}} dt.$$

b) En déduire un équivalent de $S_{\alpha}(x) - 1$ quand x tend vers $+\infty$.