

Social Network Analysis

NETWORK MEASURES

SLIDE CREDITS: TEACHING MATERIAL ON SOCIAL NETWORK ANALYSIS BY TANMOY CHAKRABORTY, WILEY, 2021

Where's the similarity?

Official Release

Jul 15, 2012 Nov 16, 2011

Popularity

One billion views in 6 months 30 million views within 2 months

Total YouTube Views

Over 3.9 billion Over 235 million views by 2021 views by 2020

VIRAL MARKETING

https://www.businesstoday.in/magazine/case-study/kolave

Online Social Media: Some Interesting Questions

☐What is the dynamics when one's post receive high visibility on online social media?
☐ How to publicise one's post in online social media?
☐ How to find the social media celebrities in such a vast online world?
☐ How to identify the prolific users in a specific domain in social media?
☐What are the role of prolific users when a post becomes viral in social network?
☐ How to determine if two social media users are similar in terms of online activities?
☐ How do we know if similar users are connected in a network?
☐What are the relevant quantities and how to measure these quantities?

Network Measures: Classification

■ Microscopic

- ❖Degree
- Local clustering coefficient
- ❖Node centrality

■ Mesoscopic

- Connected components
- ❖Giant components
- Group centralities

■ Macroscopic

- ❖ Degree Distribution
- ❖Path and Diameter
- Edge density
- $\begin{tabular}{l} \diamondsuit Global clustering coefficient \\ \end{tabular}$
- Reciprocity and Assortativity

Degree of a Node

- ☐ For an undirected, unweighted network, degree of a node v is defined as the number of nodes in the network to which there is an edge from the node v.
- \square In other words, for an undirected, unweighted network, degree of a node \mathbf{v} is the number of edges of the network that are incident on the node \mathbf{v} .
- \square Putting differently, for an undirected, unweighted network, degree of a node \mathbf{v} is the number of neighbours of the node \mathbf{v} .
- \square In graph G_1 , degrees of the nodes 1 through 5 are 2, 3, 4, 2, 3.
- \square In graph G_2 , degrees of the nodes 1 through 5 are 3, 5, 7, 5, 4.
- □ Note: A self-loop is counted twice in evaluating degree of a node.

Weighted Degree of a Node

- ☐ For an undirected, weighted network, the weighted degree of a node is defined as the sum of weights of the edges incidents on that node
- \square For the weighted undirected graph G_3 , the weighted degrees of the nodes are as follows:
 - Weighted degree of node 1 is 11
 - Weighted degree of node 2 is 22
 - Weighted degree of node 3 is 26
 - Weighted degree of node 4 is 16
 - Weighted degree of node 5 is 22

Indegree and Outdegree of a Node

☐ In a directed network, the indegree of a node is defined as the number of incoming edges to the node

☐ In a directed network, the outdegree of a node is defined as the number of outgoing edges from the node

G₄

 \square For the directed graph G_4 , the indegrees and outdegrees of the nodes are as follows:

- Indegrees of the nodes 1 through 5 are 2, 2, 3, 1, 1
- Outdegrees of the nodes 1 through 5 are 1, 3, 1, 2, 2

Sum of the Degrees...

☐ For an unweighted, undirected network, the sum of the degrees of the nodes in a graph is twice the number of edges in the graph

□ Proof

- ✓ When we add an edge **e** to graph, it joins a pair of vertices v_i and v_i of the graph.
- \checkmark Prior to the addition of the edge **e** to graph, let the degrees of the nodes v_i and v_j be d_i and d_j .
- ✓ After addition of the edge \mathbf{e} to graph, the revised degrees of the nodes v_i and v_j be d_i+1 and d_j+1 . The degrees of the other nodes remain unaffected.
- ✓ Then, on addition of an edge e, the sum of degrees of the nodes in G is incremented by 2 from its previous value. The fact is true for the addition of any edge to the graph.
- ✓ If we add |E| number of edges to the graph one-by-one, the sum of the degrees is enhanced by $2 \times |E|$.
- ✓ If a graph has no edges, all the nodes have degree zero, and so, the sum of the degrees is zero.
- ✓ Thus, a graph with |E| edges has its sum of the degrees of the nodes as $2 \times |E|$.

Sum of the Weighted Degrees...

□Sum of the weighted degrees of the nodes in an undirected weighted graph is twice the sum of weights of the edges in the graph

Sum of Indegrees and Outdegrees

- ☐ In a directed network, the sum of indegrees is same as the sum of outdegrees.
- □ Proof. Proved following the same line of approach

Proof: Proved following the same line of approach

Number of Odd-degree Nodes...

- □ Number of odd-degree nodes in an undirected network is always even.
- ■Proof.
 - ✓ If possible, let the number of odd degree nodes of the graph G(V, E) be an odd integer.
 - ✓ Then, the sum of the degrees of these odd-degree nodes is an odd integer, say N_{odd} .
 - ✓ All the remaining nodes of the graph have even degrees.
 - \checkmark Clearly, the sum of the degrees of these even-degree nodes is an even integer, say N_{even} .
 - \checkmark Then, the sum of the degrees of all the nodes of the graph is $N_{odd} + N_{even}$, which is odd integer.
 - ✓ However, the sum of the degrees of all the nodes is $2 \times |E|$
 - ✓So, $N_{odd} + N_{even} = 2 \times |E|$, which is a contradiction, as the LHS is odd and RHS is even!
 - √ Hence the result.

Degree Distribution

- □ Degree distribution of a network is the (probability) distribution of the degrees of nodes over the whole network.
- \square Let a network has N = |V| nodes.
- \square Let P_k denotes the probability that a randomly chosen node has degree k.
- \square Then, $P_k = \frac{N_k}{N}$, where N_k refers to the number of nodes of degree k in the network.
- \square The distribution (k, P_k) represents the degree distribution of the concerned graph,
- □ The mean degree, denoted $\langle k \rangle$, is given by $\langle k \rangle = \sum_k k P_k$.

Cumulative Degree Distribution

- \square Cumulative degree distribution (CDD) is given by the fraction of nodes with degree smaller than k.
- \Box In other words, it is the distribution(k , \mathcal{C}_k), where $\mathcal{C}_k = \frac{\sum_{k' < k} N_{k'}}{N}$
- ightharpoonup Complementary cumulative degree distribution (CCDD) is given by the fraction of nodes with degree greater than or equal to k.
- \square In other words, it is the distribution(k, CC_k), where $CC_k = 1 C_k$

Degree Distribution: Example

Some Graph Preliminaries...

- ■In an undirected network,
 - ☐ Two nodes are called adjacent if they are linked by an edge.
 - ☐ Two edges are called incident if they share a common end-node.
- \square In graph G_1 , the nodes **1** and **2** are adjacent, **1** and **3** are adjacent, and so on.
- \square In graph G_1 , the edges e_1 and e_2 are incident, e_1 and e_3 are incident, and so on
- □ A walk in a network is an alternating sequence of nodes and edges, where every consecutive node pair is adjacent, and every consecutive edge pair is incident.
- ■A walk may pass through a node or an edge more than once. Length of a walk is the number of edges in the sequence.
- □ In graph G_1 , the sequence {3, e_3 , 2, e_4 , 5, e_6 , 3, e_5 , 4, e_7 , 5, e_4 , 2} is a walk of length 6.
- ☐ For a simple graph, the edges from the above sequence may be omitted.

Some Graph Preliminaries...

■A walk in a network is called

- a closed walk if the last node in the sequence is same as the first node; else it is called an open walk.
- a trail if the sequence has no repeated edge.
- a path if the sequence has neither a repeated edge nor a repeated node. In other words, a path is an open trail having no repeated nodes.
- a cycle if the sequence has all the edges distinct, and all the nodes, except the first and the last nodes, are also distinct. In other words, a cycle is a closed path with the only repetition of the first and the last nodes in the sequence.
- \square In graph G_1 ,
 - ☐ the sequence {2,5, 4, 3, 2, 1, 3, 4, 5, 2} is a closed walk.
 - ☐ the sequence **{5, 4, 3, 2, 1, 3}** is a trail.
 - ☐ the sequence **{5, 4, 3, 2, 1}** is a path.
 - ☐ the sequence **{5, 4, 3, 2, 5}** is a cycle.

Some Graph Preliminaries...

- The distance between nodes v_i and v_j in a graph is defined as the length of the shortest path between the nodes v_i and v_j .
- \square In graph G_1 , the distance between 1 and 4 is 2 the same between 1 and 5 is also 2.
- ☐ The diameter of a network is defined as the maximum distance between any pair of nodes in the network.
- \square The diameter of the graph G_1 is \mathbb{Z} .
- \square For a graph G with n nodes, the average path length l_G is defined as the average number of steps along the shortest paths for all possible pairs of nodes in the network.

$$l_G = rac{\Sigma_{i
eq j} \, d_{ij}}{n(n-1)}$$
, where d_{ij} is distance between nodes v_i and v_j

Some Graph Preliminaries...

The density of a graph G(V, E), denoted $\rho(G)$, is defined as the ratio of the number of edges in the graph to the total number of possible edges in the network. Mathematically,

$$\rho(G) = \frac{2 \times |E|}{|V| \times (|V| - 1)}$$

 \square For the graph G_1 , the average path length is:

$$\frac{2 \times (1+1+2+2+1+2+1+1+1+1)}{5 \times 4} = \frac{26}{20} = 1.3$$

 \square For the graph G_1 , the network density is:

$$\frac{2 \times 7}{5 \times 4} = 0.7$$

Clusters in Social Networks

The Friendship Network of Daniel Himmelstein

A Facebook Friendship Network Example

https://blog.dhimmel.com/friendship-network/

- ☐ In social networks, we often find
 - tightly-knit groups here and there
 - less dense ties away from these groups
- ☐ Indicative of friendship structures in social media
- Measure used to capture these phenomena
 - Local clustering coefficient
 - Global clustering coefficient

Local Clustering Coefficient

□In a network G(V, E), the local clustering coefficient of node $v_i \in V$, denoted C_i , is defined as

 $\textit{C}_i = \frac{\textit{Number of edges between neighbors of } v_i}{\textit{Number of maximum possible edges between neighbors of } v_i}$

 \square In graph G_1 ,

- the local clustering coefficient of node 2 is ²/₂
- the local clustering coefficient of node 3 is $^3/_6$ i.e. $^1/_2$
- and so on...

Local Clustering Coefficient

The local clustering coefficient C_i for a vertex v_i in a network G(V, E) is given by the proportion of edges between the vertices within its neighborhood divided by the number of links that could possibly exist between them.

$$C_{i} = \frac{2 \times |\{e_{jk} \mid v_{j}, v_{k} \in N_{i}, e_{jk} \in E\}|}{k_{i}, (k_{i} - 1)}$$

Where N_i is the neighbourhood of the vertex v_i , and $k_i = |N_i|$.

https://www.researchgate.net/publication/236604411_Suicide_Ideation_of_Individuals_in_Online_Social_Networks/figures?lo=1

Global Clustering Coefficient

 \square The global clustering coefficient C of a network G is defined as

 $C = \frac{\textit{Total number of closed triplets in G}}{\textit{Total number of triplets (open \& closed) in G}}$

 \blacksquare In the graph G_2 , there is three closed triplet viz., [1,2,3], [2,3,1], and [3,1,2].

□ In the graph G_2 , there are five open and closed triplets, viz., (1,2,3), (2,3,1), (3,1,2), (2,1,4), and (3,1,4).

 G_2

Global Clustering Coefficient

The global clustering coefficient may also be written as

$$C = \frac{3 \times Total \ number \ of \ triangles \ in \ G}{Total \ number \ of \ triplets \ (open \ \& \ closed) \ in \ G}$$

 \square In other words, if $A = (A_{ij})$ is the adjacency matrix of the graph G, then

$$C = rac{\sum_{i,j,k}(A_{ij}A_{jk}A_{ki})}{\sum_{i}k_i(k_i-1)}$$
 where $k_i = \sum_{j}A_{ij}$

Connected Components

- ☐ In a typical social network, there are loose links that connects the tightly-knit clusters
- \square In an undirected network G, two nodes v_i and v_j are said to be connected if there exists a path between v_i and v_j .
- ☐ An entire network is said to be connected if any pair of nodes in the network is connected.
- □ Connected subnetworks of a network, if exist, are called components of the network.
- □ In real-world networks, there often exist one giant component (consuming major chunk of nodes) and many smaller components.
- □In a network, connectedness shows resilience to link breakdowns.

Finding Connected Components

The network G with all nodes coloured red

Choose a random node v, colqur it blue, and set $n \neq 1$

Apply BFS from node v, and colour with blue all the nodes reached thereof, and increment n each time

No more node can be reached from \boldsymbol{v} using BFS. We get a component in blue.

Since $n \neq 9$, we choose a red node as v, repeat the steps above to find other components

Connectedness in Directed Networks

- \square A directed network G is strongly connected if there exists a (directed) path between every pair of nodes in G.
- \square If we replace all the directed edges of a directed network G with undirected edges, then the resultant network is called an undirected version of the directed network G.
- □ A directed network *G* is said to be weakly connected if its undirected version is connected.

Can you say the below graph G₄ is strongly connected or weakly connected?

 G_4

Centrality in a Network

- ☐ Influential players often play central roles in a network
- Defining/Identifying influential players always remain hard
 - Some players attract limelight
 - Some others play behind the scene
 - Many others do important linkage
 - and so on...
- ☐ To identify influential players, we require
 - to define a notion of influence
 - to device measure that can capture that influence

Degree Centrality

- ■Centrality of the simplest kind
- ☐ In a sense, captures the popularity of a player within a network
- ■Quantifies the direct influence of a node on its local neighbourhood
- \square The degree centrality $\mathcal{C}_d(v)$ of a node v in a network G(V, E) is defined as:

$$C_d(v) = \frac{\deg(v)}{\max_{u \in V} \deg(u)}$$

Closeness Centrality

- ☐ A means for detecting nodes that can spread information very efficiently through a graph
- ☐The measure is useful in
 - Examining/restricting the spread of fake news/misinformation in social media
 - Examining/restricting the spread of a disease in epidemic modelling
 - Controlling/restricting the flow of vital information and resources within an organization (a terrorist network, for example)
- \Box The closeness centrality C(v) of a node v in a network G(V,E) is defined as

$$C(v) = \frac{|V| - 1}{\sum_{u \in V \setminus \{v\}} d(u, v)}$$

Where d(u, v) denotes the distance of node u from node v

☐ The measure indicates how close a node from the rest of the network

Closeness Centrality

 \square In graph G_1 , the closeness centrality for the nodes are as follows

$$C(1) = \frac{5-1}{1+1+2+2} = \frac{4}{6} = 0.67$$

$$C(2) = \frac{5-1}{1+1+2+1} = \frac{4}{5} = 0.80$$

$$C(3) = \frac{5-1}{1+1+1+1} = \frac{4}{4} = 1.0$$

$$C(4) = \frac{5-1}{2+2+1+1} = \frac{4}{6} = 0.67$$

$$C(1) = \frac{5-1}{2+1+1+1} = \frac{4}{5} = 0.80$$

□Clearly, node 3 is most central according to closeness centrality measure

Betweenness Centrality

- A measure to compute how central a node is in between paths of the network
- A measure to compute how many (shortest) paths of the network pass through the node
- ■Useful in identifying
 - □ the articulation points, i.e., the points in a network which, if removed, may disconnect the network
 - ☐The super spreaders in analyzing disease spreading in epidemiology
 - ☐ the suspected spies in security networks
- \Box The betweenness centrality $C_B(v)$ of a node v in a network G(V, E) is defined as

$$C_B(v) = \sum_{x,y \in V \setminus \{v\}} \frac{\sigma_{xy}(v)}{\sigma_{xy}}$$

where σ_{xy} denotes the number of shortest paths between nodes x and y in the network, $\sigma_{xy}(v)$ denotes the same passing though v. If x=y, then $\sigma_{xy}=1$.

Betweenness Centrality

- \square To find the betweenness centrality of node v=3 in graph G_1
- \Box The following matrix is of the form $\sigma_{xy}(v)|\sigma_{xy}$

$\sigma_{xy}(v) \sigma_{xy}$	1	2	3	4	5
1	0 1	0 1		1 1	1 2
2	0 1	0 1		1 2	0 1
3	-			-	-
4	1 1	1 2		0 1	0 1
5	1 2	0 1		0 1	0 1

Thus the betweenness centrality of node $3 = \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{1} + \frac{1}{2} + \frac{1}{2} = 4$

Betweenness Centrality: Variants

- ☐ The edge betweenness centrality refers to the fraction of all pairs of shortest paths of the network that pass through a given edge.
- □Computation is more-or-less similar to that of betweenness centrality
- ☐ The flow betweenness centrality the fraction of all paths (not necessarily the shortest paths) of the network that passes through a given edge.
- □Clearly, flow betweenness centrality measure is computationally expensive than betweenness or edge betweenness centrality measures.

Eigenvector Centrality

- Measures a node's importance by taking into consideration the preference of its neighbors
- ■Uses a recursive approach
- □A node has a higher eigenvector centrality, if it is directly connected to other nodes having high eigenvector centrality
- Generally applied on directed networks

https://www.slideshare.net/mdeiters/you-might-also-like-implementing-user-recommendations-in-rails/63-Eigenvector_Centrality_PageRankThursday_June_10

Eigenvector Centrality

 \square The eigen vector centrality x_v of a node v in a network G(V, E) is given by

$$x_v = \frac{1}{\lambda_1} \sum_{t \in N(v)} x_t = \frac{1}{\lambda_1} \sum_{t \in V} (a_{vt} \times x_t)$$

where λ_1 is the largest eigen value of the matrix $A=(a_{ij})$, the adjacency matrix of the network G

 \square The largest eigen value λ_1 is obtained by solving the equation

$$A.X = \lambda_1.X$$

 $\square X$ above is a column vector, whose v^{th} entry is x_v , the eigen vector centrality of the node v

Katz Centrality

- ■An extension of eigenvector centrality
- □Can be used to compute centrality in directed networks such as citation networks and the World Wide Web
- Mostly suitable in the analysis of directed acyclic graphs
- □ Computes the relative influence of a node in a network by considering all immediate neighbors and all further nodes connected to the node
- □ Connections with distant neighbors are, however, penalized by an attenuation factor

Katz Centrality: Attenuation Factor

https://www.geeksforgeeks.org/katz-centrality-centrality-measure/

- ☐ Let us consider the influence of Jose in the network, and also let the attenuation factor be α , $0 < \alpha < 1$
- \square Immediate neighbours of Jose are *Diego, Aziz, Bob, Priya*, and *Sri.* Influence of these neighbours on Jose would be attenuated at a factor of α
- \square Second order neighbours of Jose are **Agneta**, **John**, **Samantha**, and **Kim**. Influence of these neighbours on Jose would be attenuated at a factor of α^2
- \Box The (only) third order neighbour of Jose is **Jane.** Influence of these neighbours on Jose would be attenuated at a factor of α^3

Katz Centrality

 \Box The Katz centrality of a node v_i in a network G(V, E), denoted $C_{Katz}(i)$, is defined as

$$C_{Katz}(i) = \sum_{k=1}^{\infty} \sum_{j=1}^{|V|} \alpha^k \times A_{ji}^k$$

where A is the adjacency matrix of G

- \square Matrix A^k indicates the presence/absence of a path of length k between a node-pair
- \Box The entry A^k_{ji} in A^k matrix indicates the total number of k-hop walks between node j and node i

PageRank

- □ Devised by Larry Page and Sergey Brin in 1998
- Devised as a part of a research project about a new kind of search engine
- ☐ Based upon the concepts of eigenvector centrality and Katz centrality measures
- ■Used to rate the importance of web pages on the web
- ☐ A page's importance is determined by the importance of the web pages linked to the page
- ☐ The algorithm is inherently recursive because the page further contributes to the importance of the web pages linked to it

PageRank

The PageRank for a network node v_i in a network G(V, E), denoted $PG(v_i)$, is defined as

$$PG(v_i) = \frac{1-d}{|V|} + d \sum_{\substack{t=1\\t \neq i}}^{|V|} \frac{PG(v_t)}{outdeg(v_t)}$$

where d is constant, called the damping factor

 \square Though there are many works to determine the optimal value for d, it is usually set as d=0.85

PageRank: The Random Surfer model

- ☐ A random surfer surfing through the Internet by
 - a. opening a webpage at random, and
 - b. moving across webpages by randomly clicking hyperlinks in the page he is in
 - c. repeating the steps (a) and (b) at random
- \Box The surfer follows hyperlinks to surf with probability d
- \Box The surfer jumps to pages to surf with probability (1-d)
- ☐ Since there are |V| number of vertices in the network, the probability of choosing a random webpage is $\frac{1-d}{|V|}$
- ☐ Hence, we have the First term of the PageRank equation

PageRank: The Random Surfer model

- lacktriangle The surfer is in a page v_t and he decides to follow a hyperlink
- \Box The probability that he decides to follow hyperlink than random jump is d
- \square At node v_t , he has $outdeg(v_t)$ number of options
- lacktriangle The PageRank contribution of the page v_t is $PG(v_t)$
- ☐ The above contribution is divided across the available hyperlinks (outward links)
- ☐ However, the surfer could be anywhere in network
- $oldsymbol{\Box}$ Hence the total possible contribution with this choice $d\sum_{t=1}^{|V|}\frac{PG(v_t)}{outdeg(v_t)}$
- ☐ Hence, we have the Second term of the PageRank equation

Hub & Authority

- ■Nodes having high out-degree are called hubs in a network
- Nodes having high in-degree are called to have authority in a network
- ☐ In connection with a citation network
 - ☐ Hub nodes are survey papers which cites large number of papers
 - □ Authoritative nodes are seminal papers that are cited by large number of papers
- ☐ PageRank algorithm considers nicely the authoritativeness of a node in a network
- ☐But it does not consider the hubness of a node separately
- ☐ However, the later kind of nodes may drag important information regarding the network, too

Hub & Authority

 \square For node v, its hubness is determined by the cumulative authoritativeness of nodes that v

$$hub(v) = \sum_{u \in out(v)} auth(u)$$

where out(v) denotes the set of nodes pointed by v

On the other hand, its authoritativeness is computed by the cumulative hubness of the nodes pointing to v,

$$auth(v) = \sum_{u \in in(v)} hub(u)$$

https://slideplayer.com/slide/10495834/

where in(v) denotes the set of nodes pointing to v

□ Kleinberg proposed Hyperlink-Induced Topic Search (HITS) algorithm exploiting these concepts

Assortative Mixing

network-analysis/homophily-and-assortativity-mixing.html

- In friendship kind of social networks,
 - ☐ individuals often choose to associate with others having similar characteristics
 - ☐ age, nationality, location, race, income, educational level, religion, or language are common characteristics
 - Homophily
- ☐ In intimate relationship kind of network,
 - ☐ mixing is also disassortative by gender
 - most people prefer to have affair with opposite
 - Heterophily
- Assortativity or assortative mixing is a measure to gauge these mixing tendencies

Assortative Mixing

- ☐ The phenomenon of particular interest is the assortative mixing by degree
 - ☐ High degree nodes often prefers to connect other high degree nodes
 - □Low degree nodes seen to connect other low degree nodes
- ☐ Assortative mixing can have impact, for example, on the spread of diseases
- ☐ Many diseases are known to have differing prevalence in different population groups
- □Such behaviors are observed in non-social types of networks, too
 - □biochemical networks in the cell
 - □computer and information networks

Assortative Mixing

- A common practice to find similarity between nodes is to use a correlation coefficient
- The Pearson correlation coefficient is a good choice if we want degree-based assortativity
- \square For two data (degree) distribution x and y, the Pearson correlation coefficient r_{xy} is given by

$$r_{xy} = \frac{N \sum xy - \sum x \sum y}{\sqrt{(N \sum x^2 - (\sum x)^2)(N \sum y^2 - (\sum y)^2)}}$$

- \square If $r_{xy} = 1$, then nodes x and y are perfectly assortative (homophily)
- \square If $r_{xy} = -1$, then nodes x and y are perfectly disassortative (heterophily)
- \square If $r_{xy} = 0$, then nodes x and y are non-assortative

Transitivity

☐A metric to determine the linkage between a pair of nodes
□Very important in social networks, and to a lesser degree in other networks
\square In abstract mathematics, if entity x is related to entity y , and also entity y is related to entity z , then the transitivity of the relation ensures that entity x is related to entity z .
□ In social networks, a complete transitivity may yield: "Friends of my friends are my friends" □ Utterly Absurd in real networks!
☐ In fact, a complete transitivity would imply that each component of a network is a clique!!
□ However, partial transitivity is useful: "Friends of my friend are more likely my friend than some randomly chosen member from the population"

Transitivity

☐ A complete graph is surely transitive
□A measure of transitivity intends to capture how close a network is to a complete graph
□A network with higher transitivity are likely to form dense clusters
☐Two ways to capture this tendency
□Local clustering coefficient
□Global clustering coefficient

Reciprocity

- ☐Relevant for directed networks
- ☐ A measure of the likelihood of vertices in a directed network to be mutually linked.
- □ Networks that transport information or material, mutual links facilitate the transportation process
- ■An important phenomenon for such applications
- □Informally, reciprocity refers to: "If you would follow me, most likely I shall follow you back"
- ☐ May be considered a simplified version of transitivity

Reciprocity

- □ Reciprocity counts the closed loops of length 2
- \Box The reciprocity R of a network G is defined as

 $C = \frac{\textit{Total number of reciprocal pairs in G}}{\textit{Total number of pairs (reciprocal \& nonreciprocal) in G}}$

 \square For graph G, the reciprocity is $\frac{1}{3}$

Reciprocity

 \square The reciprocity R for a graph G(V,E) having adjacency matrix $A=\left(a_{ij}\right)$ is given by

$$R = \frac{2}{|E|} \sum_{i < j} (a_{ij}, a_{ji})$$

On simplification,

$$R = \frac{2}{|E|} \times \frac{1}{2} Trace(A^2) = \frac{Trace(A^2)}{|E|}$$

 \square In the above expression, $Trace(\cdot)$ function denotes the sum of the diagonal elements of its argument square matrix

Similarity

				same equivalence c	

- ■An abstract ways of making sense of the patterns of relations among social actors
- ☐Three broad classes of equivalence classes
 - ☐Structural equivalence
 - ■Automorphic equivalence
 - □ Regular equivalence
- ☐ There is a hierarchy of these three equivalence concepts
 - □Any set of structural equivalences are also automorphic and regular equivalences
 - □ Any set of automorphic equivalences are also regular equivalences
 - $\ \square$ Not all regular equivalences are necessarily automorphic or structural
 - ■Not all automorphic equivalences are necessarily structural

Structural Equivalence

https://en.wikipedia.org/wiki/Similarity_(network_science)#:-:text=Similarity%20in%20network%20analysis%20occurs.automorphic%20equivalence%20%20and%20regular%20equivalence.

- ☐ Two nodes are said to be exactly structurally equivalent if they have the same relationships to all other nodes
- ☐ Two actors must be exactly substitutable in order to be structurally equivalent
- ☐ In the attached network,
 - \square nodes E and F are structurally equivalent, since these two nodes have same pattern ties (viz. a single tie) with the node E
 - \square Also, nodes H and I are structurally equivalent, since these two nodes have same pattern ties (viz. a single tie) with the node D
- Exact structural equivalence is likely to be rare (particularly in large networks)
- ☐ the degree of structural equivalence is what interests us the most

Measuring Structural Equivalence

■Common Neighbors

 \square number of common neighbors shared in the neighborhoods of the nodes a and b

$$\sigma_{CN}(a,b) = |N(a) \cap N(b)|$$

Jaccard Similarity

 $oldsymbol{\square}$ Normalizes the common neighbors by the combined size of the neighborhoods of the two nodes

$$\sigma_{CN}(a,b) = \frac{|N(a) \cap N(b)|}{|N(a) \cup N(b)|}$$

■Cosine Similarity

☐ normalizes the common neighbors by the individual sizes of the neighborhoods

$$\sigma_{CN}(a,b) = \frac{|N(a) \cap N(b)|}{\sqrt{|N(a)||N(b)|}}$$

Automorphic Equivalence

Regular Equivalence

Measuring Regular Equivalence

 \Box The regular equivalence between nodes v_i and v_j in network G(V,E) having adjacency matrix $A=(A_{ij})$ is defined as

$$\sigma_{reg} \big(v_i, v_j \big) = \alpha \sum A_{ik} A_{jl} \sigma_{reg} (v_k, v_l)$$

☐We may relax the equation as

$$\sigma_{reg} \big(v_i, v_j \big) = \alpha \sum_k A_{ik} \sigma_{reg} (v_k, v_j)$$

☐ Rewrite the above as

$$\sigma_{reg} = \alpha A \sigma_{reg}$$

■The above imply

$$\sigma_{reg} = (I - \alpha A)^{-1}$$

 \square For convergence of the above, $\alpha < \frac{1}{\lambda_1}$, where λ_1 is the largest eigen value of A

Degeneracy: Core Number

- ☐ The coreness or core number of a node is the order of the highest-order core that the node belongs to
- \square A node has a core number k in network G if
 - \square It belongs to the k-core subgraph, but
 - \square does not belong to the (k + 1)-core subgraph of G
- □ In the example network, nodes inside the central-most 4-core subgraph have core number 4
- ■Similar to centrality, core number is a measure of prestige of a node in a network

Degeneracy: Core-Periphery

- □ Real-world networks often consists of
 - □a dense and connected core, and
 - ☐surrounding the core by disconnected and scrambled periphery
- ☐ The structure above is termed as the core-periphery structure of the network