Statistics MM4: Hypothesis testing 1

Lecturer: Israel Leyva-Mayorga

email: ilm@es.aau.dk

Schedule

- 1. Introduction to statistics
- 2. Parameter estimation
- 3. Confidence intervals
- 4. Hypothesis testing 1
- 5. Hypothesis testing 2
- 6. Regression
- 7. Workshop: wrap-up and exam problems

Outline

Recap on confidence intervals

Introduction to hypothesis testing

Tests with one normally distributed population and known variance

- Two-sided test for the mean
- One-sided test for the mean

Recap on confidence intervals

Confidence intervals

Our estimators are RVs, so they must have a distribution

The confidence interval (CI) is the best answer to the question:

What is the range of values $C_{1-\alpha} = (a, b)$ around the estimate $\hat{\theta}_n$ such that we are confident with probability $1 - \alpha$ that the true value θ is inside the range?

$$P(\theta \in C_{1-\alpha}) \ge 1 - \alpha$$

Usually $\alpha = 0.05$ so we look at the 95% confidence interval $C_{0.95} = (a,b)$

Confidence intervals for normal RVs with known σ^2

If $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$, we know that the MLE of the μ is the sample mean

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Therefore, the variance of our estimator is $var(\hat{\mu}_n) = \sigma^2/n$ and the CI is

$$C_{1-\alpha} = \left(\hat{\mu}_n - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \hat{\mu}_n + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

For normal RVs, 95% of outcomes are between $\hat{\mu}_n - 1.96\sigma$ and $\hat{\mu}_n + 1.96\sigma$

$$C_{0.95} = \left(\hat{\mu}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \hat{\mu}_n + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

Why this formula?

$$C_{1-\alpha} = \left(\hat{\mu}_n - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \hat{\mu}_n + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

So we don't have to obtain the quantiles $1 - \alpha$ for each distribution $N(\hat{\mu}_n, \hat{\sigma}_n^2/n)$

Introduction to hypothesis testing

Types of tests based on the populations

Parameter estimation with 1 population

There is some idea about the value of a parameter Is that idea correct?

Example: Is it true that the average age is 20?

Compare 2 populations with each other

No parameter known a priori

- Begin with different populations
- One initial population divided into 2

Can we find differences between populations?

How do we conduct the tests?

We begin with two opposing hypotheses:

H₀: The **null hypothesis**, the one assumed to be true

H₁: The alternative hypothesis, which contradicts H₀

We try to find evidence to support H₀

If we cannot, then we say we can **reject** H₀

Accepting a hypothesis does not mean it is true, but that the data support it

Example in a pharmaceutical setup:

 H_0 : The new drug is **not** effective \rightarrow We know something about the baseline case

 H_1 : The new drug is effective \rightarrow We may not know how effective it is

How do we formulate the hypotheses?

H₀: The null hypothesis

The baseline case: Oftentimes, it has a simple formulation

Example: A parameter θ may take values in the set Θ and we test the value of θ

 H_0 : $\theta = \theta_0 \in \Theta$

 $H_1: \theta \neq \theta_0$

If we reject H_0 , then it means that H_1 : $\theta \neq \theta_0$ is true but still $\theta \in \Theta$

We could also define the hypotheses as H_0 : $\theta \in \Theta_0$ versus H_1 : $\theta \in \Theta_1$

As long as $\Theta_0 \cap \Theta_1 = \emptyset$ and $\Theta_0 \cup \Theta_1 = \Theta$

Types of tests with a single population

One-sided tests

The null hypothesis is that the true value lies in an interval with one finite limit

H₀:
$$\theta \in \Theta$$
 where $\Theta = (-\infty, b]$ or $\Theta = [a, \infty)$

The same as H_0 : $\theta \le b$ or $\theta \ge a$

Two-sided tests

The null hypothesis is that the true value lies in an interval with finite limits

$$\mathbf{H_0}$$
: $\theta \in \Theta = [a, b]$

The same as H_0 : $a \le \theta \le b$

There is a special case: If Θ has a single element $\theta = a = b$

Procedure for testing

- 1. Choose a parameter for testing θ
- 2. Formulate the null hypothesis H_0 and the alternative hypothesis H_1 about θ
- 3. Design the test and define the rejection region $R = \{x: T(x) > c\}$
- 4. Collect a sample $X_1, X_2, X_3, ..., X_n$ of i.i.d. RVs
- 5. If the observation regarding θ is close enough to the value(s) in H₀
 H₀ cannot be rejected
- 6. Else:

Reject H₀ and accept H₁

Test outcomes and errors

Errors can occur even when we follow a proven methodology If a test statistic is in the rejection region R, H_0 is rejected

	Accept	Reject
H ₀ is True	All good!	Type I error
H ₀ is False	Type II error	All good!

Significance level α

The probability of Type I error should not exceed α The probability of Type I error is equal to the probability of being outside of the CI We want α to be small: We don't want to reject H_0 when it's true

Trade-off between Type I and Type II errors

If we reduce α , we have fewer Type I errors, but more Type II errors

The choice of α depends on the application:

Computer security: H₀ is that the user fingerprint is correct (unlock the phone)

Medicine: H_0 is that the patient has cancer

We have to evaluate the consequences of Type I and Type II errors

Finally, the coin toss example from the first lecture

A fair dice should have the exact same probability of rolling any of the numbers Can you say if a dice is fair by rolling it once?

Twice?

After rolling it 100 times, how confident are you that it is fair?

Procedure

- 1. Choose a parameter for testing θ Each coin toss is a RV $X_i \sim \text{Bernoulli}(p)$, so $\theta = p$
- **2.** Formulate the null hypothesis H_0 and the alternative hypothesis H_1 A fair coin should have p = 1/2, so H_0 : p = 1/2 and H_1 : $p \neq 1/2$

Finally, the coin toss example from the first lecture

3. Design the test and define the rejection region

Toss the coin n times and count the number of heads Generate an estimate for p as

$$\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

We define our **test statistic** as $T = |\hat{p}_n - p_0|$ where $p_0 = 1/2$

If $T = |\hat{p}_n - p_0| \le c$, we cannot reject H_0

Otherwise, if $T = |\hat{p}_n - p_0| > c$, we reject H_0

Rejection region: $R = {\hat{p}_n: T > c}$

Finally, the coin toss example from the first lecture

- 4. Collect a sample $X_1, X_2, X_3, \dots, X_n$ of i.i.d. RVs
- 5. If the observation regarding θ is close enough to the value(s) in H_0

H₀ cannot be rejected

6. Else:

Reject H₀ and accept H₁

How do we choose c and α ?

We're not done yet

We still need to define the probability of Type I error α

$$P(\text{Type I error}) = P(T > c \mid \text{H}_0 \text{ is True}) = \alpha$$

This means that the probability that we fall in the rejection region given that H_0 is True should be, at most, equal to α

How do we choose c and α ?

We know that

$$\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i \approx N\left(p, \frac{\sigma^2}{n}\right)$$

And we have a powerful definition of Confidence interval (CI):

Range of values $C_{1-\alpha} = (a, b)$ around the estimate $\hat{\theta}_n$ such that: we are confident with probability $1 - \alpha$ that the **true value** θ is inside the range

$$P(\theta \in C_{1-\alpha}) \ge 1 - \alpha$$

So, we can use what we know about CIs for testing, at least in principle

Two-sided test for the mean: Normal population with known variance

Defining hypothesis for μ

H₀: $\mu = \mu_0$

Our test statistic is derived from $|\hat{\mu}_n - \mu_0|$ and we aim for $P(\text{Type I error}) = \alpha$

Rejection region is $R = \{X_1, X_2, ..., X_n : |\hat{\mu}_n - \mu_0| > c\}$

How to choose c and α ?

Recall that $Z_{\alpha} = \inf\{z \in R : \Phi(z) \ge 1 - \alpha\}, \quad \alpha \in [0,1]$

The total area of the region outside the CI is α

$$C_{1-\alpha} = \left(\hat{\mu}_n - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \hat{\mu}_n + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

Reject H₀ if
$$|\hat{\mu}_n - \mu_0| > Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Accept H₀

Defining hypothesis for μ

H₀: $\mu = \mu_0$

Our test statistic is derived from $|\hat{\mu}_n - \mu_0|$ and we aim for $P(\text{Type I error}) = \alpha$

Rejection region is $R = \{X_1, X_2, ..., X_n : |\hat{\mu}_n - \mu_0| > c\}$

How to choose c and α ?

Recall that $Z_{\alpha} = \inf\{z \in R : \Phi(z) \ge 1 - \alpha\}, \quad \alpha \in [0,1]$

The total area of the region outside the CI is α

$$C_{1-\alpha} = \left(\hat{\mu}_n - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \hat{\mu}_n + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

Reject H₀ if
$$\frac{|\widehat{\mu}_n - \mu_0|\sqrt{n}}{\sigma} > Z_{\alpha/2}$$

Accept H₀

Example

It is known that if a signal of value μ is sent from location A, then the received value at location B is normally distributed with mean μ and $\sigma=2$. This means that Gaussian noise that is added to the signal is a RV with distribution N(0,4). There is reason for people at location B to suspect that $\mu=8$ will be sent today. Test this hypothesis when the signal value is sent 5 times and the sample average at location B is $\bar{X}_5=9.5$. Use a 5% level of significance.

- 1. Define the hypothesis
- 2. Compute the test statistic
- 3. Compute the z-value
- 4. Decide on acceptance

Example

We know that the MLE for parameter μ is $\hat{\mu}_5 = \bar{X}_5 = 9.5$

- 1. H_0 : $\mu = 8$
- 2. We accept H_0 if $\frac{|\widehat{\mu}_n \mu_0|\sqrt{n}}{\sigma} \le Z_{\alpha/2}$. Therefore, the test statistic is $T = \frac{|\widehat{\mu}_n \mu_0|\sqrt{n}}{\sigma}$
- 3. We recall that, for $\alpha = 0.05$, we have $Z_{\alpha/2} = 1.96$
- 4. We cannot reject H_0 because $T = \frac{|\hat{\mu}_n \mu_0|\sqrt{n}}{\sigma} = 1.677 \le 1.96$

By doing this, our CI includes the real value of μ with 95% confidence

How close was the decision to reject or not?

How close was the test?

The p-value

If a test rejects the null hypothesis at significance level $\alpha \in (0,1),...$

...then, it will also reject the test for any $\alpha' > \alpha$

We could calculate the smallest α at which a test is rejected

Definition:

The p-value is the smallest level at which we can reject H₀

The p-value: interpretation

The p-value is the **probability** (under H_0) of observing a value of the test statistic the same as or more extreme than what was actually observed

The p-value for a two-sided test with test statistic T and RV $Z \sim N(0,1)$ is $v = P(|Z| > T) = 2P(Z > T) = 2(1 - \Phi(T))$

For our example $v = 2(1 - \Phi(1.677)) = 0.0935 > \alpha$, so we cannot reject H₀

Type II error for two-sided test

The probability of Type II error is the probability of not rejecting H_0 given its False $P(\text{Type II error}) = P(T < c \mid H_0 \text{ is False}) = \beta$

For our case, H_0 is false if $\mu \neq \mu_0$ and we can calculate

$$\beta(\mu) = P\left(|\hat{\mu}_n - \mu_0| < Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \middle| H_0 \text{ is False}\right)$$

$$= P\left(\mu_0 - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \hat{\mu}_n \le \mu_0 + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \middle| H_0 \text{ is False}\right)$$

$$= \Phi\left(\frac{(\mu_0 - \mu)\sqrt{n}}{\sigma} + Z_{\alpha/2}\right) - \Phi\left(\frac{(\mu_0 - \mu)\sqrt{n}}{\sigma} - Z_{\alpha/2}\right)$$

One-sided test for the mean: Normal population with known variance

Defining hypothesis for μ

H₀: $\mu \le \mu_0$ and so **H₁:** $\mu > \mu_0$

Our test statistic is derived from $\hat{\mu}_n - \mu_0$ and we aim for $P(\text{Type I error}) = \alpha$

Rejection region is $R = \{X_1, X_2, ..., X_n : \hat{\mu}_n - \mu_0 > c\}$

How to choose c and α ?

The total area of the region outside the one-sided CI is α

$$C_{1-\alpha} = \left(-\infty, \hat{\mu}_n + Z_\alpha \frac{\sigma}{\sqrt{n}}\right)$$

Reject H₀ if
$$\hat{\mu}_n - \mu_0 > Z_\alpha \frac{\sigma}{\sqrt{n}}$$

Defining hypothesis for μ

H₀: $\mu \le \mu_0$ and so **H₁:** $\mu > \mu_0$

Our test statistic is derived from $\hat{\mu}_n - \mu_0$ and we aim for $P(\text{Type I error}) = \alpha$

Rejection region is $R = \{X_1, X_2, ..., X_n : \hat{\mu}_n - \mu_0 > c\}$

How to choose c and α ?

The total area of the region outside the one-sided CI is α

$$C_{1-\alpha} = \left(-\infty, \hat{\mu}_n + Z_\alpha \frac{\sigma}{\sqrt{n}}\right)$$

Reject H₀ if
$$\frac{(\hat{\mu}_n - \mu_0)\sqrt{n}}{\sigma} > Z_{\alpha}$$

Example

Go back to the previous example of the transmitted signal.

Assume that we want to test whether the signal is 8 or less.

What is the conclusion?

- 1. Define H₀
- 2. Can we reject H₀?
- 3. What is the p-value?

The p-value for a one-sided test with test statistic T and RV $Z \sim N(0,1)$ is

$$v = P(Z > T) = 1 - \Phi(T)$$

Solution

We know that $\hat{\mu}_5 = \bar{X}_5 = 9.5$

- 1. Now H_0 : $\mu \le 8$ and H_1 : $\mu > 8$
- 2. We get $T = \frac{(\widehat{\mu}_n \mu_0)\sqrt{n}}{\sigma} = 1.677 > Z_{\alpha} = 1.645$, so we reject H₀
- 3. The p-value is $v = 1 \Phi(1.677) = 0.0467 < \alpha = 0.05$

Type II error for one-sided test

The probability of Type II error is the probability of not rejecting H_0 given its False $P(\text{Type II error}) = P(T < c \mid H_0 \text{ is False}) = \beta$

For our case, H_0 is false if $\mu \neq \mu_0$ and we can calculate

$$\beta(\mu) = P\left(\hat{\mu}_n - \mu_0 > Z_\alpha \frac{\sigma}{\sqrt{n}} \middle| H_0 \text{ is False}\right)$$
$$= \Phi\left(\frac{(\mu_0 - \mu)\sqrt{n}}{\sigma} + Z_\alpha\right)$$

Summary

Summary

We have several types of tests based on:

Number of populations involved, types of hypothesis, and assumptions

We need to choose the right one

If the distribution of the population is normal and the variance is known

We can use the CIs with normal distribution for testing

Otherwise, we need more advanced mathematics... to be covered next lecture