

AD-A107 918

NAVAL RESEARCH LAB WASHINGTON DC  
THE PHARO CODE. (U)  
NOV 81 E HYMAN, M MULBRANDON, S L OSSAKOW  
NRL-MR-4667

F/6 18/3

UNCLASSIFIED

NL

1 of 1  
AD-A107-918

END  
DATE  
FILED  
1 82  
DTIG

ADA107918

(11) 39  
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           | READ INSTRUCTIONS BEFORE COMPLETING FORM |                   |         |                    |                           |          |                                        |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------|-------------------|---------|--------------------|---------------------------|----------|----------------------------------------|---------|--|
| 1. REPORT NUMBER<br><b>NRL Memorandum Report 4667</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. GOVT ACCESSION NO.<br><b>AD-A107918</b>                                                | 3. RECIPIENT'S CATALOG NUMBER            |                   |         |                    |                           |          |                                        |         |  |
| 4. TITLE (and Subtitle)<br><b>THE PHARO CODE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5. TYPE OF REPORT & PERIOD COVERED<br><b>Interim report on a continuing NRL problem.</b>  |                                          |                   |         |                    |                           |          |                                        |         |  |
| 7. AUTHOR(s)<br><b>E. Hyman*, M. Mulbrandon, and S. L. Ossakow</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. PERFORMING ORG. REPORT NUMBER                                                          |                                          |                   |         |                    |                           |          |                                        |         |  |
| 8. PERFORMING ORGANIZATION NAME AND ADDRESS<br><b>Naval Research Laboratory<br/>Washington, DC 20375</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br><b>62704H; 47-0890-0-1</b> |                                          |                   |         |                    |                           |          |                                        |         |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br><b>Defense Nuclear Agency<br/>Washington, DC 20305</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12. REPORT DATE<br><b>November 24, 1981</b>                                               |                                          |                   |         |                    |                           |          |                                        |         |  |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13. NUMBER OF PAGES<br><b>29</b>                                                          |                                          |                   |         |                    |                           |          |                                        |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15. SECURITY CLASS (of this report)<br><b>UNCLASSIFIED</b>                                |                                          |                   |         |                    |                           |          |                                        |         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                |                                          |                   |         |                    |                           |          |                                        |         |  |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><br><b>Approved for public release; distribution unlimited.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                          |                   |         |                    |                           |          |                                        |         |  |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |                                          |                   |         |                    |                           |          |                                        |         |  |
| 18. SUPPLEMENTARY NOTES<br><b>*Present address: Science Applications, Inc., McLean, Virginia 22102<br/>This research was sponsored by the Defense Nuclear Agency under Subtask S99QAXHC, work unit 00011, and work unit title, "Phoenix."</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                          |                   |         |                    |                           |          |                                        |         |  |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br><table><tbody><tr><td>Visible radiation</td><td>Sensors</td></tr><tr><td>Infrared radiation</td><td>Line and band transitions</td></tr><tr><td>Isophots</td><td>High altitude nuclear data comparisons</td></tr><tr><td>Cameras</td><td></td></tr></tbody></table>                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                          | Visible radiation | Sensors | Infrared radiation | Line and band transitions | Isophots | High altitude nuclear data comparisons | Cameras |  |
| Visible radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sensors                                                                                   |                                          |                   |         |                    |                           |          |                                        |         |  |
| Infrared radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Line and band transitions                                                                 |                                          |                   |         |                    |                           |          |                                        |         |  |
| Isophots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High altitude nuclear data comparisons                                                    |                                          |                   |         |                    |                           |          |                                        |         |  |
| Cameras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |                                          |                   |         |                    |                           |          |                                        |         |  |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br><b>The PHARO code predicts the visible and infrared radiative output of high altitude nuclear bursts. Using the results of the large scale NRL hydrocodes, both the spatial and temporal variation of the radiation (watts/cm<sup>2</sup>sr) in arbitrary wavelength intervals is determined. The results are a series of "isophot" plots for arbitrarily placed cameras or sensors which can be directly compared with experiment. In addition to monitoring the important line and band transitions the bound-bound, free-bound, and free-free radiation is calculated for a recombining oxygen plasma. In particular, the bound-bound</b> |                                                                                           |                                          |                   |         |                    |                           |          |                                        |         |  |
| <i>S vs. cm</i><br><b>(Continues)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           |                                          |                   |         |                    |                           |          |                                        |         |  |

DD FORM 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE  
S/N 0102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT (Continued)

radiation does not assume a Saha population of excited levels but calculates this radiation as a function of electron temperature and density and ground state oxygen density. Comparisons with representative high altitude data are exhibited.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

## CONTENTS

|                                                |    |
|------------------------------------------------|----|
| I. INTRODUCTION .....                          | 1  |
| II. HANE RADIATIVE EMISSION CALCULATIONS ..... | 2  |
| III. PHARO GEOMETRY .....                      | 5  |
| IV. RESULTS AND DISCUSSIONS .....              | 6  |
| ACKNOWLEDGMENT .....                           | 8  |
| REFERENCES .....                               | 18 |

|                     |                                     |
|---------------------|-------------------------------------|
| Accession For       |                                     |
| NTIS GRA&I          | <input checked="" type="checkbox"/> |
| DTIC TAB            | <input type="checkbox"/>            |
| Unannounced         | <input type="checkbox"/>            |
| Justification       |                                     |
| By _____            |                                     |
| Distribution/ _____ |                                     |
| Availability Codes  |                                     |
| DIST                | Avail and/or<br>Special             |
| A                   |                                     |

DTIC  
ELECTED  
S DEC 1 1981 D  
D

## THE PHARO CODE

### SECTION I

#### INTRODUCTION

PHARO, an acronym for "Phenomenology and Radiation Output," is a computer code developed to calculate the visible and infrared (IR) emission from a disturbed atmosphere. As part of NRL's high altitude nuclear effects (HANE) program, it utilizes the results of NRL's high altitude phenomenology calculations, specifically the MRHYDE (and its successor, PHOENIX) computer code. It is currently being used, also, to study LWIR emission from plasma cloud releases, using codes which model the development of spatial irregularities in the high altitude atmosphere. PHARO calculates emission in the visible and IR from all sources of radiation including:

- (1) bound-bound transitions in the decaying atomic plasma and transitions from the low lying metastable states of atoms and atomic ions,
- (2) band emission from molecules due to electron impact excitation or heavy particle reactions, which leave a product species in an excited electronic or vibrational state (e.g., chemiluminescence),
- (3) free-bound and free-free continuum transitions.

A detailed description of these lines and bands is given in Section II.

The output of the PHARO code consists of contour plots of radiative intensity (watts/cm<sup>2</sup>ster) or "isophot" plots for arbitrarily placed sensors. These will be described in more detail in Section III. A series of these plots give both a spatial and

Manuscript submitted August 25, 1981.

temporal picture of the radiation, which is directly comparable with experiments. In Section IV we present a comparison between PHARO results and some measured values, and a discussion of further potential comparisons.

Briefly, PHARO works as follows: the calculation of the radiation starts with the results of a computer code such as MRHYDE, a three-dimensional, two fluid MHD reactive flow code which describes both the hydrodynamics and chemistry of the high altitude burst. MRHYDE begins its calculations on the order of one second after burst, using as initial conditions the atmosphere after prompt x-ray emissions and deposition of uv energy, debris energy, and inclusion of a blast wave.

The PHARO code reads from tape the MRHYDE results at prespecified times and at a large number of mesh points. For the results we will present in this report, there were of order  $10^4$  mesh points (due to reflection symmetry about a vertical plane through the magnetic field there are effectively twice this number).

This report will describe PHARO II which differs from PHARO I<sup>(1)</sup> primarily in the treatment of the bound-bound radiation. In PHARO I the calculations assumed a hydrogenic recombining plasma with Saha populations of the excited states. In PHARO II an oxygen plasma is assumed and actual population densities of the excited states are calculated.<sup>(2)</sup>

## SECTION II

### HANE RADIATIVE EMISSION CALCULATIONS

The species carried in the MRHYDE code are given in Figure 1. The temperatures listed are the electron temperature,  $T_e$ , the

vibrational temperature of  $N_2$ ,  $T_v$ , and the heavy particle kinetic temperature,  $T_a$ . Some of the HANE codes currently carry separately the ion temperature,  $T_i$ , and the neutral temperature,  $T_n$ .  $N_2^+$  is not carried in MRHYDE since it is generally a minor ion by the time the MRHYDE calculations are initiated. It is carried in the uv deposition code which provides initial conditions for MRHYDE, however. In Figure 2 we exhibit the major line emissions from metastable states and molecular bands that the PHARO code monitors. It is apparent that not all of the excited state species that we require for PHARO are carried in MRHYDE. Those not carried we assume to be in quasi-steady state equilibrium and calculate their populations. The species for which this assumption is used are  $N(^2P)$ ,  $O(^1S)$ ,  $N^+(^1S)$ ,  $O^+(^2D)$ ,  $O^+(^2P)$ ,  $O_2(a^1\Delta)$ , and  $O_2(b^1\Sigma)$ .

To calculate the NO chemiluminescence in the fundamental at  $5.3\mu$  and the overtone at  $2.7\mu$  the following assumptions were used. The vibrationally excited NO, formed via the reaction  $N + O_2 \rightarrow NO + O$ , is sufficiently exothermic to populate NO up to the 6th vibrational state. In addition,  $N(^2D) + O_2 \rightarrow NO + O$  can excite up to the 18th vibrational level of NO. We assume half the exothermicity is available to vibrational states. A straight-forward steady state calculation then gives the number of photons of the fundamental and overtone for these reactions. Since quenching has not been included, this will give an upper limit to the emitted radiation. Also, we include the translation-vibration reaction between NO and hot O atoms which is frequently a critically important source of  $5.3\mu$  and  $2.7\mu$  radiation. In some applications more sophisticated models have been used for determining the number of photons/reaction.

In a similar way the  $\text{NO}^+$  radiation from vibrational transitions at  $4.3\mu$  and  $2.15\mu$  are calculated<sup>(3)</sup> assuming formation of vibrationally excited  $\text{NO}^+$  via  $\text{N}^+ + \text{NO} \rightarrow \text{N} + \text{NO}^+$ ,  $\text{N} + \text{O}_2^+ \rightarrow \text{NO}^+ + \text{O}$ ,  $\text{N}_2 + \text{O}^+ \rightarrow \text{NO}^+ + \text{N}$ ,  $\text{N}^+ + \text{O}_2 \rightarrow \text{NO}^+ + \text{O}$ . In addition, the  $\text{N}_2^+$  Meinel Bands are assumed to arise<sup>(3)</sup> via  $\text{N}_2 + \text{O}^+(\text{^2D}) \rightarrow \text{N}_2^+(\text{A}^2\pi, v = 1) + \text{O}$  and the second negative of  $\text{O}_2^+$  in the visible is assumed<sup>(3)</sup> to result from  $\text{O}^+(\text{^2D}) + \text{O}_2 \rightarrow \text{O}_2^+(\text{A}^2\pi) + \text{O}$ . Finally, a model for the  $4.3\mu$  and  $10.6\mu$  radiation from  $\text{CO}_2$  is included.

To calculate the late-time atomic bound-bound line radiation PHARO II assumes the late-time disturbed atmosphere to be a decaying oxygen plasma. Calculation of the radiation requires a knowledge of the population of the excited states of oxygen as a function of electron density and temperature and, for sufficiently high temperature, the ground state population,  $\text{O}(\text{^3P})$ . To accomplish this a model<sup>(2)</sup> has been developed which determines the population densities of all triplet and quintet oxygen levels up to  $n = 18$  as a function of these parameters. These calculations have been performed for 11 electron temperatures ranging between .03 and 2.0 eV, 7 electron densities between  $10^6$  and  $10^{12} \text{ cm}^{-3}$ , and, in the case of electron temperatures equal to or greater than .5 eV, the same range of oxygen ground state densities.

The results of the above calculations, the population of 338 excited levels for each of the above set of parameters, are stored on disk. Once wavelength intervals are specified a separate code reads the disk and determines the radiation emitted in each wavelength interval for each set of parameters. These results are, in turn, stored on a disk which is read by the PHARO code for

interpolation to the actual temperature and densities at a given point.

Finally, the continuum radiation, oxygen free-bound and free-free emission, are based on the calculations of Davis and Lewis. (4)

### SECTION III

#### PHARO GEOMETRY

In Figure 3 we display the geometry used in the PHARO code to produce the "isophot" plots.  $B$  represents the initial burst position. The X-axis is in the direction of the horizontal component of the earth's magnetic field. The proposed position of the camera or sensor is specified by its distance from the burst point,  $s$ , a polar angle relative to the upward vertical direction at the burst,  $\Theta$ , and an azimuthal angle,  $\phi$ , measured relative to the horizontal magnetic field direction. A camera at this position may have an arbitrary orientation relative to the burst point. Two angles specify the direction of the line of sight of the sensor: a polar angle,  $\theta$ , relative to the burst-sensor line and an azimuth angle,  $\psi$ , (not shown in Figure 3) measured relative to the plane defined by the burst point, the sensor position, and the center of the earth.

Having specified the sensor position and orientation a set of rays is constructed. The first ray is along the line of sight of the sensor (as indicated in Figure 3) and the others are arrayed on a set of equally spaced cones with common apex at the sensor point and common axis along the sensor line of sight. On each cone the rays are equally spaced around the cone. Next, a set of equally spaced points is chosen along each ray, from the sensor to

the far side of the MRHYDE mesh. By interpolation between the MRHYDE mesh points and these points the total emission at each point along the rays is determined for each wavelength interval of interest, using an appropriate volume as illustrated in Figure 3. Finally, a summation is performed along each ray and the total radiation (watts/cm<sup>2</sup> ster) from each ray direction determined. In the present version of the code, PHARO II, the emission is assumed to be optically thin. Furthermore, the code permits attenuation of the radiation as it travels from its source through the ambient atmosphere to the sensor. An atmospheric model has been developed and incorporated into PHARO based on the models of McClatchey at AFGL.

The set of ray directions relative to the sensor line of sight form a two-dimensional polar grid of intensities from which the contour plots are constructed. In some applications of the PHARO code, the rays are arrayed on a rectangular grid and the contour plots are constructed from a two-dimensional rectangular grid. With a PHARO sensor placed where measurements were taken it is possible to construct plots that can be directly compared with experimental isophot plots.

#### SECTION IV

#### RESULTS AND DISCUSSION

In Figures 4-8 we exhibit typical PHARO plots predicting the radiance (watts/cm<sup>2</sup> ster) in the 8-14 $\mu$  band from a high altitude nuclear burst at successive times following initiation of the MRHYDE calculation (times 0.0, 20.0, 60.0, 100.0, and 140.0 seconds). The camera is a distance of 500 km from the burst with its optic

axis passing through the burst point. The ordinate and abscissa give the angle in degrees from the camera axis. Alternate contours are solid lines or dots, with the latter, only, labeled. The numbers at the top of the plot label the radiance values. Reading from left to right, the leftmost value corresponds to contour number 1 which is the smallest radiance value that can be plotted, the middle number to contour number 10, and the rightmost number the inverse of the number of contours per logarithmic decade. Thus, in Figure 4, contour 8 represents a radiance of  $1 \times 10^{-5}$  watts/cm<sup>2</sup>ster and contour 2 is  $1 \times 10^{-8}$  watts/cm<sup>2</sup>ster. The Figures 4-8 exhibit clearly the temporal effects: the effect of the hydrodynamics in heating the atmosphere and diffusing the plasma, and the chemistry in reducing the emission.

In Figure 9 we see a measured isophot plot of visible radiation from a high altitude burst (on the right) and the corresponding PHARO prediction. Additional predictions and comparisons with data have been documented in the literature.

We view the PHARO code as a very versatile code particularly useful in providing predictions that are easily compared directly with measurements. Specifically, the high altitude bursts that can be modeled by a MRHYDE (PHOENIX) 3D 2-fluid magnetohydrodynamic code provide a set of measurements that can provide direct tests of our understanding of disturbed atmosphere phenomenology. In the past several years there have been important improvements in our understanding of a variety of these atmospheric phenomena that directly bear on measurements that were made, and that have not been tested by comparison with these results.

Consider the Starfish event. There are a set of isophot plots of visible radiation that have been published for times out to 33.9 seconds of the northern conjugate region from an aircraft. There are similar data from other locations that has not been analyzed. This kind of data is in an ideal form for comparison with PHARO predictions.

In addition, there were IR measurements made with a variety of detectors on each of two aircraft. In many cases data above background were obtained for  $10^3$  seconds. The measurements include the  $1.1 - 3.0\mu$  band (spatial radiometer),  $4.8 - 5.5\mu$  band and  $2.6 - 2.7\mu$  band (filter photometer), a variety of bands between  $1.5$  and  $2.8\mu$  (filter wheel radiometer),  $1.55 - 1.62\mu$  (PbS radiometer),  $5.0 - 5.5\mu$  (IR Spectrometer). There are, in addition, a variety of uv, visible, and near infrared measurements made both from aircraft and ground stations. The reliability, extent, and state of analysis of this large quantity and variety of data require evaluation. But, in principle, PHARO predictions make these measurements directly accessible to analysis.

#### ACKNOWLEDGMENT

This work was supported by the Defense Nuclear Agency.

$\text{N}_2, \text{O}_2, \text{NO}$

$\text{O}_2^+, \text{NO}^+$

$\text{N}, \text{N}(^2\text{D}), \text{N}^+$

$\text{O}, \text{O}(^1\text{D}), \text{O}^+$

$T_e, T_v, T_a$

Fig. 1 — Chemical species and temperatures carried in MRHYDE  
(and PHOENIX) 3D hydrocode

**PHARO II**

**PHENOMENOLOGY AND RADIATION OUTPUT CODE**

**OPTICAL AND IR TRANSITIONS**

|                             |                    |
|-----------------------------|--------------------|
| O                           | 6300Å, 5577Å       |
| N                           | 5200Å, 1.04μ       |
| N <sup>+</sup>              | 6527Å, 5754Å       |
| O <sup>+</sup>              | 7320Å              |
| N <sub>2</sub> <sup>+</sup> | 3914Å, 9212Å, 1.5μ |
| O <sub>2</sub>              | 7619Å, 1.26μ       |
| NO                          | 2.7μ, 5.4μ         |
| NO <sup>+</sup>             | 2.15μ, 4.3μ        |

Fig. 2 — Important visible and infrared transitions monitored in PHARO

## PHARO GEOMETRY



Fig. 3 — Line integration of volume emission from conical segments at a particular wavelength, along a ray, to obtain radiance.  $s$  is the distance between camera and burst point,  $B$ .  $\Theta$  and  $\Phi$  define the direction from burst to camera.  $\theta$  and  $\phi$  (not shown) define the direction of the camera line of sight relative to the burst point.



Fig. 4 — Radiance in the  $8-14 \mu$  band (watts/cm $^2$ ster) from a high altitude burst  $\sim 1.$  sec after burst. Abscissa and ordinate in degrees.



Fig. 5 — Radiance in the  $8-14 \mu$  band ( $\text{watts}/\text{cm}^2\text{ster}$ ) from a high altitude burst  $\sim 20.$  sec after burst. Abscissa and ordinate in degrees.

B 14M CAMERA 2 T(SEC) 6.000E 01  
CONTOURS 3.1E-12 TO 1.0E-07 DEC. 5.0E-01



Fig. 6 — Radiance in the  $8-14 \mu$  band (watts/cm<sup>2</sup>ster) from a high altitude burst  $\sim 60.$  sec after burst. Abscissa and ordinate in degrees.



Fig. 7 — Radiance in the  $8-14 \mu$  band ( $\text{watts/cm}^2\text{ster}$ ) from a high altitude burst  $\sim 100.$  sec after burst. Abcissa and ordinate in degrees.



Fig. 8 — Radiance in the  $8-14 \mu$  band (watts/cm<sup>2</sup>ster) from a high altitude burst  $\sim 140.$  sec after burst. Abscissa and ordinate in degrees.



Fig. 9 — PHARO radiance contour predictions compared with measured contours for a high altitude burst in the visible spectrum at ~ 60. sec.

#### REFERENCES

1. Hyman, E., A.W. Ali and T.P. Coffey, "PHARO I - Phenomenology and Radiation Output Code," DNA Second Conference of Applications of Chemistry to Nuclear Weapons Effects, IDA, Arlington, September, 1972.
2. Hyman, E., P. Julienne and J. Davis, "Departure from LTE in an Oxygen Plasma, II. Collisional Model," DNA Atmospheric Effects Symposium, San Diego, April, 1973 and NRL Memorandum Report 2740, March 1974.
3. Ali, A.W., "Optical and Infrared Emission from Disturbed E and F Layers, Part 1: Theoretical Considerations," NRL Memorandum Report 2404, April, 1972.
4. Davis, J. and J. Lewis, "Photoionization Cross Sections and Recombination Coefficients for Oxygen and Nitrogen Plasmas," NRL Memorandum Report 2558, December, 1972.

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE  
COMM, CMD, CONT 7 INTELL  
WASHINGTON, D.C. 20301  
01CY ATTN J. BABCOCK  
01CY ATTN M. EPSTEIN

DIRECTOR  
COMMAND CONTROL TECHNICAL CENTER  
PENTAGON RM BE 685  
WASHINGTON, D.C. 20301  
01CY ATTN C-650  
01CY ATTN C-312 R. MASON

DIRECTOR  
DEFENSE ADVANCED RSCH PROJ AGENCY  
ARCHITECT BUILDING  
1400 WILSON BLVD.  
ARLINGTON, VA. 22209  
01CY ATTN NUCLEAR MONITORING RESEARCH  
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER  
1860 WIEHLE AVENUE  
RESTON, VA. 22090  
01CY ATTN CODE R820  
01CY ATTN CODE R410 JAMES W. MCLEAN  
01CY ATTN CODE R720 J. WORTHINGTON

DIRECTOR  
DEFENSE COMMUNICATIONS AGENCY  
WASHINGTON, D.C. 20305  
(ADR CNWDI: ATTN CODE 240 FOR)  
01CY ATTN CODE 1018

DEFENSE TECHNICAL INFORMATION CENTER  
CAMERON STATION  
ALEXANDRIA, VA. 22314

2CY ATTN TC

DIRECTOR  
DEFENSE INTELLIGENCE AGENCY  
WASHINGTON, D.C. 20301  
01CY ATTN DT-1B  
01CY ATTN DB-4C E. O'FARRELL  
01CY ATTN DIAAP A. WISE  
01CY ATTN DIAST-5  
01CY ATTN DT-1BZ R. MORTON  
01CY ATTN HO-TR J. STEWART  
01CY ATTN W. WITTIG DC-7D

DIRECTOR  
DEFENSE NUCLEAR AGENCY  
WASHINGTON, D.C. 20305  
01CY ATTN STVL  
04CY ATTN TITL  
01CY ATTN DDST  
03CY ATTN RAAE

COMMANDER  
FIELD COMMAND  
DEFENSE NUCLEAR AGENCY  
KIRTLAND, AFB, NM 87115  
01CY ATTN FCPR

DIRECTOR  
INTERSERVICE NUCLEAR WEAPONS SCHOOL  
KIRTLAND AFB, NM 87115  
01CY ATTN DOCUMENT CONTROL  
JOINT CHIEFS OF STAFF  
WASHINGTON, D.C. 20301  
01CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR  
JOINT STRAT TGT PLANNING STAFF  
OFFUTT AFB  
OMAHA, NB 68113  
01CY ATTN JLTW-2  
01CY ATTN JPST G. GOETZ

CHIEF  
LIVERMORE DIVISION FLD COMMAND DNA  
DEPARTMENT OF DEFENSE  
LAWRENCE LIVERMORE LABORATORY  
P.O. BOX 808  
LIVERMORE, CA 94550  
01CY ATTN FCPRL

DIRECTOR  
NATIONAL SECURITY AGENCY  
DEPARTMENT OF DEFENSE  
FT. GEORGE G. MEADE, MD 20755  
01CY ATTN JOHN SKILLMAN R52  
01CY ATTN FRNK LEONARD  
01CY ATTN W14 PAT CLARK  
01CY ATTN OLIVER H. BARTLETT W32  
01CY ATTN R5

COMMANDANT  
NATO SCHOOL (SHAPE)  
APO NEW YORK 09172  
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG  
DEPARTMENT OF DEFENSE  
WASHINGTON, D.C. 20301  
01CY ATTN STRATEGIC & SPACE SYSTEMS  
(OS)

WWMCCS SYSTEM ENGINEERING ORG  
WASHINGTON, D.C. 20305  
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR  
ATMOSPHERIC SCIENCES LABORATORY  
U.S. ARMY ELECTRONICS COMMAND  
WHITE SANDS MISSILE RANGE, NM 88002  
01CY ATTN DELAS-EO F. NILES

DIRECTOR  
BMD ADVANCED TECH CTR  
HUNTSVILLE OFFICE  
P.O. BOX 1500  
HUNTSVILLE, AL 35807  
01CY ATTN ATC-T MELVIN T. CAPPS  
01CY ATTN ATC-O W. DAVIES  
01CY ATTN ATC-R DON RUSS

PROGRAM MANAGER  
BMD PROGRAM OFFICE  
5001 EISENHOWER AVENUE  
ALEXANDRIA, VA 22333  
01CY ATTN DACS-BMT J. SHEA

CHIEF C-E- SERVICES DIVISION  
U.S. ARMY COMMUNICATIONS CMD  
PENTAGON RM 1B269  
WASHINGTON, D.C. 20310  
01CY ATTN C- E-SERVICES DIVISION

COMMANDFR  
FRADCOM TECHNICAL SUPPORT ACTIVITY  
DEPARTMENT OF THE ARMY  
FORT MONMOUTH, N.J. 07703  
01CY ATTN DRSEL-NL-RD H. BENNET  
01CY ATTN DRSEL-PL-ENV H. BOMKE  
01CY ATTN J.E. QUIGLEY

COMMANDER  
HARRY DIAMOND LABORATORIES  
DEPARTMENT OF THE ARMY  
2800 POWDER MILL ROAD  
ADELPHI, MD 20783  
(CNWDI-INNER ENVELOPE:  
ATTN: DELHD-RBH)  
01CY ATTN DELHD-TI M. WEINER  
01CY ATTN DELHD-RB R. WILLIAMS  
01CY ATTN DELHD-NP F. WIMENITZ  
01CY ATTN DELHD-NP C. MOAZED

COMMANDER  
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY  
FT. HUACHUCA, AZ 85613  
01CY ATTN CCC-EMEO GEORGE LANE

COMMANDER  
U.S. ARMY FOREIGN SCIENCE & TECH CTR  
220 7TH STREET, NE  
CHARLOTTESVILLE, VA 22901  
01CY ATTN DRXST-SD  
01CY ATTN R. JONES

COMMANDER  
U.S. ARMY MATERIAL DEV & READINESS CMD  
5001 EISENHOWER AVENUE  
ALEXANDRIA, VA 22333  
01CY ATTN DRCLDC J.A. BENDER

COMMANDER  
U.S. ARMY NUCLEAR AND CHEMICAL AGENCY  
7500 BACKLICK ROAD  
BLDG 2073  
SPRINGFIELD, VA 22150  
01CY ATTN LIBRARY

DIRECTOR  
U.S. ARMY BALLISTIC RESEARCH LABORATORY  
ABERDEEN PROVING GROUND, MD 21005  
01CY ATTN TECH LIBRARY EDWARD BAJCY

COMMANDER  
U.S. ARMY SATCOM AGENCY  
FT. MONMOUTH, NJ 07703  
01CY ATTN DOCUMENT CONTROL

COMMANDER  
U.S. ARMY MISSILE INTELLIGENCE AGENCY  
REDSTONE ARSENAL, AL 35809  
01CY ATTN JIM GAMBLE

DIRECTOR  
U.S. ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY  
WHITE SANDS MISSILE RANGE, NM 88002  
01CY ATTN ATAA-SA  
01CY ATTN TCC/F. PAYAN JR.  
01CY ATTN ATTA-TAC LTC J. MESSE

COMMANDER  
NAVAL ELECTRONIC SYSTEMS COMMAND  
WASHINGTON, D.C. 20360  
01CY ATTN NAVALEX 034 T. HUGHES  
01CY ATTN PME 117  
01CY ATTN PME 117-T  
01CY ATTN CODE 5011

**COMMANDING OFFICER**  
NAVAL INTELLIGENCE SUPPORT CTR  
4301 SUITLAND ROAD, BLDG. 5  
WASHINGTON, D.C. 20390  
01CY ATTN MR. DUBBIN STIC 12  
01CY ATTN NISC-50  
01CY ATTN CODE 5404 J. GALET

**COMMANDER**  
NAVAL OCEAN SYSTEMS CENTER  
SAN DIEGO, CA 92152  
03CY ATTN CODE 532 W. MOLER  
01CY ATTN CODE 0230 C. BAGGETT  
01CY ATTN CODE 81 R. EASTMAN

**DIRECTOR**  
NAVAL RESEARCH LABORATORY  
WASHINGTON, D.C. 20375  
01CY ATTN CODE 4700 TIMOTHY P. COFFEY  
26 CYS IF UNCLASS. 1 CY IF CLASS)  
01CY ATTN CODE 4701 JACK D. BROWN  
01CY ATTN CODE 4780 BRANCH HEAD (150  
CYS IF UNCLASS, 1 CY IF CLASS)  
01CY ATTN CODE 7500  
01CY ATTN CODE 7550  
01CY ATTN CODE 7580  
01CY ATTN CODE 7551  
01CY ATTN CODE 7555  
01CY ATTN CODE 4730 E. MCLEAN  
01CY ATTN CODE 4187

**COMMANDER**  
NAVAL SEA SYSTEMS COMMAND  
WASHINGTON, D.C. 20362  
01CY ATTN CAPT R. PITKIN

**COMMANDER**  
NAVAL SPACE SURVEILLANCE SYSTEM  
DAHLGREN, VA 22448  
01CY ATTN CAPT J.H. BURTON

**OFFICER-IN-CHARGE**  
NAVAL SURFACE WEAPONS CENTER  
WHITE OAK, SILVER SPRING, MD 20910  
01CY ATTN CODE F31

**DIRECTOR**  
STRATEGIC SYSTEMS PROJECT OFFICE  
DEPARTMENT OF THE NAVY  
WASHINGTON, D.C. 20376  
01CY ATTN NSP-2141  
01CY ATTN NSSP-2722 FRED WIMBERLY

**COMMANDER**  
NAVAL SURFACE WEAPONS CENTER  
DAHLGREN LABORATORY  
DAHLGREN, VA 22448  
01CY ATTN CODE DF-14 R. BUTLER

**OFFICER OF NAVAL RESEARCH**  
ARLINGTON, VA 22217  
01CY ATTN CODE 465  
01CY ATTN CODE 461  
01CY ATTN CODE 402  
01CY ATTN CODE 420  
01CY ATTN CODE 421

**COMMANDER**  
AEROSPACE DEFENSE COMMAND/DC  
DEPARTMENT OF THE AIR FORCE  
ENT AFB, CO 80912  
01CY ATTN DC MR. LONG

**COMMANDER**  
AEROSPACE DEFENSE COMMAND/XPD  
DEPARTMENT OF THE AIR FORCE  
ENT AFB, CO 80912  
01CY ATTN XPDQQ  
01CY ATTN XP

**AIR FORCE GEOPHYSICS LABORATORY**  
HANSOM AFB, MA 01731  
01CY ATTN OPR HAROLD GARDNER  
01CY ATTN LKB KENNETH S.W. CHAMPION  
01CY ATTN OPR ALVA T. STAIR  
01CY ATTN PHP JULES AARONS  
01CY ATTN PHD JURGEN BUCHAU  
01CY ATTN PHD JOHN P. MULLEN

**AF WEAPONS LABORATORY**  
KIRTLAND AFT, NM 87117  
01CY ATTN SUL  
01CY ATTN CA ARTHUR H. GUENTHER  
01CY ATTN NTYCE ILT. G. KRAJEI

**AFTAC**  
PATRICK AFB, FL 32925  
01CY ATTN TF/MAJ WILEY  
01CY ATTN TN

**AIR FORCE AVIONICS LABORATORY**  
WRIGHT-PATTERSON AFB, OH 45433  
01CY ATTN AAD WADE HUNT  
01CY ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF  
RESEARCH, DEVELOPMENT, & ACQ  
DEPARTMENT OF THE AIR FORCE  
WASHINGTON, D.C. 20330  
01CY ATTN AFRDO

HEADQUARTERS  
ELECTRONIC SYSTEMS DIVISION/XR  
DEPARTMENT OF THE AIR FORCE  
HANSOM AFB, MA 01731  
01CY ATTN XR J. DEAS

HEADQUARTERS  
ELECTRONIC SYSTEMS DIVISION/YSEA  
DEPARTMENT OF THE AIR FORCE  
HANSOM AFB, MA 01732  
01CY ATTN YSEA

HEADQUARTERS  
ELECTRONIC SYSTEMS DIVISION/DC  
DEPARTMENT OF THE AIR FORCE  
HANSOM AFB, MA 01731  
01CY ATTN DCKC MAJ J.C. CLARK

COMMANDER  
FOREIGN TECHNOLOGY DIVISION, AFSC  
WRIGHT-PATTERSON AFB, OH 45433  
01CY ATTN NICD LIBRARY  
01CY ATTN ETDP B. BALLARD

COMMANDER  
ROME AIR DEVELOPMENT CENTER, AFSC  
GRIFFISS AFB, NY 13441  
01CY ATTN DOC LIBRARY/TSLD  
01CY ATTN OCSE V. COYNE

SAMSO/SZ  
POST OFFICE BOX 92960  
WORLDWAY POSTAL CENTER  
LOS ANGELES, CA 90009  
(SPACE DEFENSE SYSTEMS)  
01CY ATTN SZJ

STRATEGIC AIR COMMAND/XPFS  
OFFUTT AFB, NB 68113  
01CY ATTN XPFS MAJ B. STEPHAN  
01CY ATTN ADWATE MAJ BRUCE BAUER  
01CY ATTN NRT  
01CY ATTN DOK CHIEF SCIENTIST

SAMSO/SK  
P.O. BOX 92960  
WORLDWAY POSTAL CENTER  
LOS ANGELES, CA 90009  
01CY ATTN SKA (SPACE COMM SYSTEMS)  
M. CLAVIN

SAMSO/MN  
NORTON AFB, CA 92409  
(MINUTEMAN)  
01CY ATTN MNML LTC KENNEDY

COMMANDER  
ROME AIR DEVELOPMENT CENTER, AFSC  
HANSOM AFB, MA 01731  
01CY ATTN EEP A. LORENZEN

DEPARTMENT OF ENERGY  
LIBRARY ROOM G-042  
WASHINGTON, D.C. 20545  
01CY ATTN DOC CON FOR A. LABOWITZ

DEPARTMENT OF ENERGY  
ALBUQUERQUE OPERATIONS OFFICE  
P.O. BOX 5400  
ALBUQUERQUE, NM 87115  
01CY ATTN DOC CON FOR D. SHERWOOD

EG&G, INC.  
LOS ALAMOS DIVISION  
P.O. BOX 809  
LOS ALAMOS, NM 85544  
01CY ATTN DOC CON FOR J. BREEDLOVE

UNIVERSITY OF CALIFORNIA  
LAWRENCE LIVERMORE LABORATORY  
P.O. BOX 808  
LIVERMORE, CA 94550  
01CY ATTN DOC CON FOR TECH INFO DEPT  
01CY ATTN DOC CON FOR L-389 R. OTT  
01CY ATTN DOC CON FOR L-31 R. HAGER  
01CY ATTN DOC CON FOR L-46 F. SEWARD

LOS ALAMOS SCIENTIFIC LABORATORY  
P.O. BOX 1663  
LOS ALAMOS, NM 87545  
01CY ATTN DOC CON FOR J. WOLCOTT  
01CY ATTN DOC CON FOR R.F. TASCHER  
01CY ATTN DOC CON FOR E. JONES  
01CY ATTN DOC CON FOR J. MALIK  
01CY ATTN DOC CON FOR R. JEFFRIES  
01CY ATTN DOC CON FOR J. ZINN  
01CY ATTN DOC CON FOR P. KEATON  
01CY ATTN DOC CON FOR D. WESTERVELT

SANDIA LABORATORIES  
P.O. BOX 5800  
ALBUQUERQUE, NM 87115  
01CY ATTN DOC CON FOR W. BROWN  
01CY ATTN DOC CON FOR A. THORNBROUGH  
01CY ATTN DOC CON FOR T. WRIGHT  
01CY ATTN DOC CON FOR D. DAHLGREN  
01CY ATTN DOC CON FOR 3141  
01CY ATTN DOC CON FOR SPACE PROJECT DIV

SANDIA LABORATORIES  
LIVERMORE LABORATORY  
P.O. BOX 969  
LIVERMORE, CA 94550  
01CY ATTN DOC CON FOR B. MURPHEY  
01CY ATTN DOC CON FOR T. COOK

OFFICE OF MILITARY APPLICATION  
DEPARTMENT OF ENERGY  
WASHINGTON, D.C. 20545  
01CY ATTN DOC CON DR. YO SONG

OTHER GOVERNMENT

CENTRAL INTELLIGENCE AGENCY  
ATTN RD/SI, RM 5C48, HQ BLDG  
WASHINGTON, D.C. 20505  
01CY ATTN OSI/PSID RM 5F 19

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, D.C. 20234  
(ALL CORRES: ATTN SEC OFFICER FOR)  
01CY ATTN R. MOORE

INSTITUTE FOR TELECOM SCIENCES  
NATIONAL TELECOMMUNICATIONS & INFO ADMIN  
BOULDER, CO 80303  
01CY ATTN A. JEAN (UNCLASS ONLY)  
01CY ATTN W. UTLAUT  
01CY ATTN D. CROMBIE  
01CY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN  
ENVIRONMENTAL RESEARCH LABORATORIES  
DEPARTMENT OF COMMERCE  
BOULDER, CO 80302  
01CY ATTN R. GRUBB  
01CY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
01CY ATTN I. GARFUNKEL  
01CY ATTN T. SALMI  
01CY ATTN V. JOSEPHSON  
01CY ATTN S. BOWER  
01CY ATTN N. STOCKWELL  
01CY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP  
5 OLD CONCORD ROAD  
BURLINGTON, MA 01803  
01CY ATTN RADIO SCIENCES

BERKELEY RESEARCH ASSOCIATES, INC.  
P.O. BOX 983  
BERKELEY, CA 94701  
01CY ATTN J. WORKMAN  
01CY ATTN C. PRETTIE

BOEING COMPANY, THE  
P.O. BOX 3707  
SEATTLE, WA 98124  
01CY ATTN G. KEISTER  
01CY ATTN D. MURRAY  
01CY ATTN G. HALL  
01CY ATTN J. KENNEY

BROWN ENGINEERING COMPANY, INC.  
CUMMINGS RESEARCH PARK  
HUNTSVILLE, AL 35807  
01CY ATTN ROMEO A. DELIBERIS

CALIFORNIA AT SAN DIEGO, UNIV OF  
P.O. BOX 6049  
SAN DIEGO, CA 92106

CHARLES STARK DRAPER LABORATORY, INC.  
555 TECHNOLOGY SQUARE  
CAMBRIDGE, MA 02139  
01CY ATTN D.B. COX  
01CY ATTN J.P. GILMORE

COMSAT LABORATORIES  
LINTHICUM ROAD  
CLARKSBURG, MD 20734  
01CY ATTN G. HYDE

CORNELL UNIVERSITY  
DEPARTMENT OF ELECTRICAL ENGINEERING  
ITHACA, NY 14850  
01CY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.  
BOX 1359  
RICHARDSON, TX 75080  
01CY ATTN H. LOGSTON  
01CY ATTN SECURITY (PAUL PHILLIPS)

ESL, INC.  
495 JAVA DRIVE  
SUNNYVALE, CA 94086  
01CY ATTN J. ROBERTS  
01CY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY  
SPACE DIVISION  
VALLEY FORGE SPACE CENTER  
GODDARD BLVD KING OF PRUSSIA  
P.O. BOX 8555  
PHILADELPHIA, PA 19101  
01CY ATTN M.H. BORTNER SPACE SCI LAB

GENERAL ELECTRIC COMPANY  
P.O. BOX 1122  
SYRACUSE, NY 13201  
01CY ATTN F. REIBERT

GENERAL ELECTRIC TECH SERVICES CO., INC.  
HMES  
COURT STREET  
SYRACUSE, NY 13201  
01CY ATTN G. MILLMAN

GENERAL RESEARCH CORPORATION  
SANTA BARBARA DIVISION  
P.O. BOX 6770  
SANTA BARBARA, CA 93111  
01CY ATTN JOHN ISE, JR.  
01CY ATTN JOEL GARBARINO

GEOPHYSICAL INSTITUTE  
UNIVERSITY OF ALASKA  
FAIRBANKS, AK 99701  
(ALL CLASS ATTN: SECURITY OFFICER)  
01CY ATTN T.N. DAVIS (UNCLASS ONLY)  
01CY ATTN TECHNICAL LIBRARY  
01CY ATTN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.  
ELECTRONICS SYSTEMS GRP-EASTERN DIV  
77 A STREET  
NEEDHAM, MA 02194  
01CY ATTN MARSHALL CROSS

HSS, INC.  
2 ALFRED CIRCLE  
BEDFORD, MA 01730  
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF  
107 COBLE HALL  
150 DAVENPORT HOUSE  
CHAMPAIGN, IL 61820  
(ALL CORRES ATTN DAN MCCLELLAND)  
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES  
400 ARMY-NAVY DRIVE  
ARLINGTON, VA 22202  
01CY ATTN J.M. AEIN  
01CY ATTN ERNEST BAUER  
01CY ATTN HANS WOLFARD  
01CY ATTN JOEL BENGSTON

INTL TEL & TELEGRAPH CORPORATION  
500 WASHINGTON AVENUE  
NUTLEY, NJ 07110  
01CY ATTN TECHNICAL LIBRARY

JAYCOR  
11011 TORREYANA ROAD  
P.O. BOX 85154  
SAN DIEGO, CA 92138  
01CY ATTN J.L. SPERLING

JOHNS HOPKINS UNIVERSITY  
APPLIED PHYSICS LABORATORY  
JOHNS HOPKINS ROAD  
LAUREL, MD 20810  
01CY ATTN DOCUMENT LIBRARIAN  
01CY ATTN THOMAS POTEMRA  
01CY ATTN JOHN DASSOULAS

KAMAN SCIENCES CORP  
P.O. BOX 7463  
COLORADO SPRINGS, CO 80933  
01CY ATTN T. MEAGHER

KAMAN TEMPO-CENTER FOR ADVANCED STUDIES  
816 STATE STREET (P.O DRAWER 0Q)  
SANTA BARBARA, CA 93102  
01CY ATTN DASJAC  
01CY ATTN TIM STEPHANS  
01CY ATTN WARREN S. KNAPP  
01CY ATTN WILLIAM McNAMARA  
01CY ATTN B. GAMBILL

LINKABIT CORP  
10453 ROSELLE  
SAN DIEGO, CA 92121  
01CY ATTN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC  
P.O. BOX 504  
SUNNYVALE, CA 94088  
01CY ATTN DEPT 60-12  
01CY ATTN D.R. CHURCHILL

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>LOCKHEED MISSILES &amp; SPACE CO., INC.<br/>3251 HANOVER STREET<br/>PALO ALTO, CA 94304<br/>01CY ATTN MARTIN WALT DEPT 52-12<br/>01CY ATTN W.L. IMHOFF DEPT 52-12<br/>01CY ATTN RICHARD G. JOHNSON DEPT 52-12<br/>01CY ATTN J.B. CLADIS DEPT 52-12</p> <p>LOCKHEED MISSILE &amp; SPACE CO., INC.<br/>HUNTSVILLE RESEARCH &amp; ENGR. CTR.<br/>4800 BRADFORD DRIVE<br/>HUNTSVILLE, AL 35807<br/>ATTN DALE H. DIVIS</p> <p>MARTIN MARIETTA CORP<br/>ORLANDO DIVISION<br/>P.O. BOX 5837<br/>ORLANDO, FL 32805<br/>01CY ATTN R. HEFFNER</p> <p>M.I.T. LINCOLN LABORATORY<br/>P.O. BOX 73<br/>LEXINGTON, MA 02173<br/>01CY ATTN DAVID M. TOWLE<br/>01CY ATTN P. WALDRON<br/>01CY ATTN L. LOUGHLIN<br/>01CY ATTN D. CLARK</p> <p>MCDONNELL DOUGLAS CORPORATION<br/>5301 BOLSA AVENUE<br/>HUNTINGTON BEACH, CA 92647<br/>01CY ATTN N. HARRIS<br/>01CY ATTN J. MOULE<br/>01CY ATTN GEORGE MROZ<br/>01CY ATTN W. OLSON<br/>01CY ATTN R.W. HALPRIN<br/>01CY ATTN TECHNICAL LIBRARY SERVICES</p> <p>MISSION RESEARCH CORPORATION<br/>735 STATE STREET<br/>SANTA BARBARA, CA 93101<br/>01CY ATTN P. FISCHER<br/>01CY ATTN W.F. CREVIER<br/>01CY ATTN STEVEN L. GUTSCHE<br/>01CY ATTN D. SAPPENFIELD<br/>01CY ATTN R. BOGUSCH<br/>01CY ATTN R. HENDRICK<br/>01CY ATTN RALPH KILB<br/>01CY ATTN DAVE SOWLE<br/>01CY ATTN F. FAJEN<br/>01CY ATTN M. SCHEIBE<br/>01CY ATTN CONRAD L. LONGMIRE<br/>01CY ATTN WARREN A. SCHLUETER</p> | <p>MITRE CORPORATION, THE<br/>P.O. BOX 208<br/>BEDFORD, MA 01730<br/>01CY ATTN JOHN MORGANSTERN<br/>01CY ATTN G. HARDING<br/>01CY ATTN C.E. CALLAHAN</p> <p>MITRE CORP<br/>WESTGATE RESEARCH PARK<br/>1820 DOLLY MADISON BLVD<br/>MCLEAN, VA 22101<br/>01CY ATTN W. HALL<br/>01CY ATTN W. FOSTER</p> <p>PACIFIC-SIERRA RESEARCH CORP<br/>1456 CLOVERFIELD BLVD.<br/>SANTA MONICA, CA 90404<br/>01CY ATTN E.C. FIELD, JR.</p> <p>PENNNSYLVANIA STATE UNIVERSITY<br/>IONOSPHERE RESEARCH LAB<br/>318 ELECTRICAL ENGINEERING EAST<br/>UNIVERSITY PARK, PA 16802<br/>(NO CLASS TO THIS ADDRESS)<br/>01CY ATTN IONOSPHERIC RESEARCH LAB</p> <p>PHOTOMETRICS, INC.<br/>442 MARRETT ROAD<br/>LEXINGTON, MA 02173<br/>01CY ATTN IRVING L. KOPSKY</p> <p>PHYSICAL DYNAMICS, INC.<br/>P.O. BOX 3027<br/>BELLEVUE, WA 98009<br/>01CY ATTN E.J. FREMOUW</p> <p>PHYSICAL DYNAMICS, INC.<br/>P.O. BOX 10367<br/>OAKLAND, CA 94610<br/>ATTN A. THOMSON</p> <p>R &amp; D ASSOCIATES<br/>P.O. BOX 9695<br/>MARINA DEL REY, CA 90291<br/>01CY ATTN FORREST GILMORE<br/>01CY ATTN BRYAN GARBARD<br/>01CY ATTN WILLIAM B. WRIGHT, JR.<br/>01CY ATTN ROBERT F. LELEVIER<br/>01CY ATTN WILLIAM J. KARZAS<br/>01CY ATTN H. ORY<br/>01CY ATTN C. MACDONALD<br/>01CY ATTN R. TURCO</p> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

RAND CORPORATION, THE  
1700 MAIN STREET  
SANTA MONICA, CA 90406  
01CY ATTN CULLEN CRAIN  
01CY ATTN ED BEDROZIAN

RAYTHEON CO.  
528 BOSTON POST ROAD  
SUDBURY, MA 01776  
01CY ATTN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE  
80 WEST END AVENUE  
NEW YORK, NY 10023  
01CY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS, INC.  
P.O. BOX 2351  
LA JOLLA, CA 92038  
01CY ATTN LEWIS M. LINSON  
01CY ATTN DANIEL A. HAMLIN  
01CY ATTN E. FRIEMAN  
01CY ATTN E.A. STRAKER  
01CY ATTN CURTIS A. SMITH  
01CY ATTN JACK McDougall

SCIENCE APPLICATIONS, INC  
1710 GOODRIDGE DR.  
MCLEAN, VA 22102  
ATTN: J. COCKAYNE

SRI INTERNATIONAL  
333 RAVENSWOOD AVENUE  
MENLO PARK, CA 94025  
01CY ATTN DONALD NEILSON  
01CY ATTN ALAN BURNS  
01CY ATTN G. SMITH  
01CY ATTN L.L. CORB  
01CY ATTN DAVID A. JOHNSON  
01CY ATTN WALTER G. CHESNUT  
01CY ATTN CHARLES L. RINO  
01CY ATTN WALTER JAYE  
01CY ATTN M. BARON  
01CY ATTN RAY L. LEADABRAND  
01CY ATTN G. CARPENTER  
01CY ATTN G. PRICE  
01CY ATTN J. PETERSON  
01CY ATTN R. HAKE, JR.  
01CY ATTN V. GONZALES  
01CY ATTN D. McDANIEL

STEWART RADIANCE LABORATORY  
UTAH STATE UNIVERSITY  
1 DE ANGELO DRIVE  
BEDFORD, MA 01730  
01CY ATTN J. ULWICK

TECHNOLOGY INTERNATIONAL CORP  
75 WIGGINS AVENUE  
BEDFORD, MA 01730  
01CY ATTN W.P. BOQUIST

TRW DEFENSE & SPACE SYS GROUP  
ONE SPACE PARK  
REDONDO BEACH, CA 90278  
01CY ATTN R. K. PLEBUCH  
01CY ATTN S. ALTSCHULER  
01CY ATTN D. DEE

VISIDYNE  
SOUTH BEDFORD STREET  
BURLINGTON, MASS 01803  
01CY ATTN W. REIDY  
01CY ATTN J. CARPENTER  
01CY ATTN C. HUMPHREY

DATI  
FILM