Additional experiments

Table 1: Real data - Full data sets. Accuracy (in %) on test samples. FedAvg and SCAFFOLD are not personalised FL approaches but stand for well-known FL benchmarks.

	CIFAR-10		CIFAR-100	
(# clients b, # classes per client S)	(100, 2)	(100, 5)	(100, 5)	(100, 20)
Local learning only	89.79	70.68	75.29	41.29
FedAvg (McMahan et al., 2017) SCAFFOLD (Karimireddy et al., 2020)	42.65 37.72	51.78 47.33	23.94 20.32	31.97 22.52
LG-FedAvg (Liang et al., 2019) Per-FedAvg (Fallah et al., 2020) L2GD (Hanzely and Richtárik, 2020) APFL (Deng et al., 2021) DITTO (Li et al., 2021) FedRep (Collins et al., 2021) FedAvg + fine-tuning (FT)	84.14 82.27 81.04 83.77 85.39 87.70 85.63	63.02 67.20 59.98 72.29 70.34 75.68 71.32	72.44 72.05 72.13 78.20 78.91 79.15 79.03	38.76 52.49 42.84 55.44 56.34 56.10 56.19
FedSOUL (this paper)	91.12	79.48	79.56	59.73

Table 2: Real data - Full data sets using Motley experimental design for the cross-device setting. Accuracy (in %) on test samples.

	EMNIST	${\bf StackOverflow}$
Local learning only	93.6	6.20
FedAvg (McMahan et al., 2017)	85.2	26.9
FedAvg + fine-tuning (FT)	98.9	28.2
SCAFFOLD (Karimireddy et al., 2020)	82.5	25.7
DITTO (Li et al., 2021)	98.8	28.4
FedRep (Collins et al., 2021)	99.1	28.8
FedSOUL (this paper)	99.0	29.1

References

- Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting Shared Representations for Personalized Federated Learning. In *International Conference on Machine Learning*, pages 2089–2099, 2021.
- Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive Personalized Federated Learning, 2021.
- Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach. In *Advances in Neural Information Processing Systems*, 2020.
- Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv preprint arXiv:2002.05516, 2020.
- Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning. In *International Conference on Machine Learning*, pages 5132–5143, 2020.
- Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning through personalization. In *ICML*, pages 6357–6368, 2021. URL http://proceedings.mlr.press/v139/li21h.html.
- Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, and Louis-Philippe Morency. Think locally, act globally: Federated learning with local and global representations. In NeurIPS 2019 Workshop on Federated Learning, 2019.
- Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti Singh and Jerry Zhu, editors, *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics*, volume 54 of *Proceedings of Machine Learning Research*, pages 1273–1282, Fort Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.