

Sunbeam Institute of Information Technology Pune and Karad PG - DESD

Module - Data Structures

Trainer - Devendra Dhande

Email - devendra.dhande@sunbeaminfo.com

Sunbeam Infotech

www.sunbeaminfo.com

Hash Table

- The implementation of hash tables is frequently called as **Hashing**.
- Hashing is a technique used for performing insertions, deletions and finds in constant average time
- The ideal hash table is an array of some fixed size, containing the keys, where each key is a string with an associated value.
- Each Key is mapped into some number in the range 0 to TableSize-1 and placed in the appropriate cell (slot).
- The mapping of keys with its corresponding cell is called a hash function.

0	
1	
2	
3	John 25000
4	Phil 31500
5	
6	Dave 27500
7	Mary 28000
8	
9	

In this example, john hashes to 3, phil hashed to 4, dave hashes to 6 and marry hashes to 7.

Sunbeam Infotech

www.sunbeaminfo.com

Hash Table

· Hash function

- The mapping is called a hash function.
- It is mathematical function of the key that yields slot of the hash table where key-value is stored.
- Ideally it should be simple to compute and should ensure that any two distinct keys get different cells.
- Since there are a finite number of cells and infinite supply of keys, this is clearly
 impossible and thus we seek a hash function that distributes the keys evenly among the
 cells.
- Simplest example is: f(k) = k % size.

· Collision:

- There is possibility that two keys hash to the same value(cell). This is called collision.
- Must be handled using one of the collision handling technique.
 - Open Addressing
 - 1. Linear Probing
 - 2. Quadratic Probing
 - 3. Double Hashing

- Closed Addressing
 - 1. Chaining / Separate chaining

Sunbeam Infotech

www.cunhoaminfo.com

Hash Table

Open Addressing:

- All key-value pairs are stored in the hash table itself.
- If key (to find) is not matching with the key in the slot calculated by hash function, it is probed in next possible slot using one of the following.
- **Linear Probing:** In linear probing, if collision occurs next free slot will be searched/probed linearly.
- Quadratic Probing: In quadratic probing, if collision occurs next free slot will be searched/probed quadratically.
- **Double Hashing:** In double hashing, if collision occurs next free slot will be searched/probed by using another hash function, so two hash functions can be use to find next/probe next free slot.

Sunbeam Infotech

www.sunbeaminfo.com

Hash Table

- Load Factor = n / m
 - n = Number of key-value pairs to be inserted in the hash table
 - m = Number of slots in the hash table
 - If n < m, then load factor < 1
 - If n = m, then load factor = 1
 - If n > m, then load factor > 1
- · Limitations of Open Addressing
 - Open addressing requires more computation.
 - Cannot be used if load factor is greater than 1 (i.e. number of pairs are more than number of slots in the table).
- Chaining/Separate Chaining:
 - Another collision handling technique.
 - Each slot of hash table holds a collection of key-values for which hash value of keys are same.
 - This collection in each slot is also referred as bucket.
 - Chaining is simple to implement, but requires additional memory outside the table.

Sunbeam Infotech

www.sunbeaminfo.con

Thank you!

Devendra Dhande devendra.dhande@sunbeaminfo.com/

Sunbeam Infotech

www.sunbeaminfo.com