Week 1: The Learning Problem

Table of Contents

- What is Machine Learning?
- Components of Machine Learning

What is Machine Learning

- 1. **Machine learning** is the process of acquiring skill with experience accumulated from *data*
- A more concrete definition: Improve some *performance measure* with experience **computed** from data
- 2. Application of ML:
 - When human cannot program the system manually
 - When human cannot define the solution clearly
 - WHen rapid decision making is involved
 - · Need to tailor to invidual use cases at massive scale
- 3. Key essence of ML (Which problems can make use of ML?)
 - Exists some *underlying pattern* to be learned (so performance measure can improve as more experiences are gained)
 - But without programmable/clear definition
 - There are *data* about the pattern (inputs to learn from)

Components of Machine Learning

- 1. Components of a ML problem and its corresponding model
 - **Unknown** target function *f* (real world pattern)
 - Collection of training examples $D:(x_1,y_1),...,(x_N,y_N)$
 - Learning algorithm A
 - Hypothesis g, with the hope that $g \approx f$ (training outcome)
 - Assume there exists a set of hypothesis H, such that $g \in H = \{h_k\}$
 - *H* can contain both good and invalid hypotheses
 - The hope is that training algorithm *A* will pick out the hypothesis *g*, which closest resembles the real world pattern *f*
- 2. In summary: Machine learning uses data to compute **hypothesis** g that approximtes **target** f

