

Introduction

Infrared vs radio transmissions

Architecture of an infrastructure based IEEE 802.11 and Ad-hoc networks

Protocol architecture

Physical Layer Format of an IEEE 802.11 frame using DSSS.

Medium access control layer

MAC management- synchronization, power management, Roaming.

Bluetooth Architecture - simple Bluetooth piconet.

- Advantages
 - 1. Flexibility
 - 2. Planning
 - 3. Design
 - 4. Robust
 - 5. Cost
- Disadvantages
 - 1. Quality of Service
 - 2. Proprietary Solutions
 - 3. Restrictions
 - 4. Safety and Security

- Global operation
- Low power for battery use
- License Free Operation
- Robust transmission technology
- Simplified and Spontaneous Cooperation
- Easy to use for everyone
- Protection of investment in wired networks
- Security, privacy, safety
- Transparency for applications

Infrared

 uses LEDs, diffuse light, multiple reflections (walls, furniture etc.)

Advantages

- simple, cheap, available in many mobile devices
- no licenses needed
- simple shielding possible.

Radio

typically using the license free ISM band at 2.4 GHz

Advantages

- experience from wireless WAN and mobile phones can be used
- coverage of larger areas possible (radio can penetrate walls, furniture etc.)

Comparison: infrared vs. radio transmission

Infrared

Disadvantages

- interference by sunlight, heat sources etc.
- many things shield or absorb IR light
- low bandwidth

Example

 IrDA (Infrared Data Association) interface available everywhere

Radio

Disadvantages

- very limited license free frequency bands
- shielding more difficult, interference with other electrical devices

Example

 WaveLAN, HIPERLAN, Bluetooth

Comparison: infrastructure vs. ad-hoc networks

802.11 - Architecture Infrastructure network

Station (STA)

access mechanisms to wireless medium and radio contact to the access point

Basic Service Set (BSS)

group of stations using same radio freq.

Access Point

station integrated into wireless LAN and the distribution system.

Portal

bridge to other (wired) networks.

Distribution System

interconnection network to form one logical network (EES: Extended Service Set) based on several BSS.

802.11 - Architecture of an ad-hoc network

STA₁

 Direct communication within a limited range

Station (STA):
 terminal with access
 mechanisms to the
 wireless medium

 Independent Basic Service Set (IBSS): group of stations using the same radio frequency

IEEE standard 802.11 Protocols

infrastructure network

access point

application			
TCP			
IP			
LLC			
802.11 MAC			
802.11 PHY			

	LLC						
	802.11 MAC	802.3 MAC					
	802.11 PHY	802.3 PHY					

application			
TCP			
IP			
LLC			
802.3 MAC			
802.3 PHY			

802.11 - Layers and functions

- •MAC
 - access mechanisms, fragmentation, encryption
- MAC Management
 - synchronization, roaming, power management

PLCP Physical Layer
Convergence Protoco

- clear channel assessment signal (carrier sense)
- PMD Physical Medium Dependent
 - modulation, coding
- PHY Management
 - channel selection, MIB
- Station Management
 - coordination of all management functions

0.0	- m 18		
C	LLC		emen
DL	MAC	MAC Management	Janage
	PLCP	DLIV Managomont	Station Management
РНҮ	PMD	PHY Management	Sta

- Synchronization
 - synch., gain setting, energy detection, frequency offset compensation
- SFD (Start Frame Delimiter): 1111001110100000
- Signal : data rate of the signal
- Service : future use
- Length: length of the payload
- HEC (Header Error Check)
 - protection of signal by using checksum.

OLD

802.11 - MAC layer : Services

- Basic Services:
- 1. Asynchronous Data Service
 - Available in both modes
 - mandatory service
 - supports multicast and broadcast.
 - uses Distributed Co-ordinated Function (DCF)
- 2. Time Bounded Service
 - Not available in ad-hoc mode.
 - optional service
 - used for polling
 - uses Point Co-ordinated Function (PCF).

802.11 - MAC layer : Access Methods

DFWMAC (Distributed Foundation Wireless MAC)

- Access methods
 - DFWMAC-DCF CSMA/CA (mandatory)
 - collision avoidance via randomized "back-off" mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
 - DFWMAC-DCF w/ RTS/CTS (optional)
 - Distributed Foundation Wireless MAC
 - avoids hidden terminal problem
 - DFWMAC- PCF (optional)
 - access point polls terminals according to a list

OLD

802.11 - MAC layer

Priorities:

- Defined through different inter frame spaces
- No guaranteed, hard priorities
- □ SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
- □ PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
- □ DIFS (DCF IFS)-
 - lowest priority, for asynchronous data service

Basic DFWMAC-DCF using CSMA/CA

- station ready to send starts sensing the medium (CCA)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)

OLD

Basic DFWMAC-DCF using CSMA/CA

busy medium not idle (frame, ack etc.)

bo_e elapsed backoff time

packet arrival at MAC

oo_r residual backoff time

Basic DFWMAC-DCF using CSMA/CA

Sending unicast packets

- station has to wait for DIFS before sending data
- receivers acknowledge at once (after waiting for SIFS)
 if the packet was received correctly (CRC)
- automatic retransmission of data packets in case of transmission errors

DFWMAC-DCF with RTS/CTS Extension

Sending unicast packets

- station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
- acknowledgement via CTS after SIFS by receiver.
- sender can now send data at once, acknowledgement via ACK
- other stations store medium reservations distributed via RTS and CTS

OLD

DFWMAC-DCF with RTS/CTS Extension

Fragmentation

DFWMAC-PCF with Polling

- At t0 contention period starts but medium is busy.
- After medium become idle at t1 point coordinator has to wait for PIFS time before accessing the medium.
- PIFS is smaller than DIFS, no other station can start sending earlier.
- Point coordinator now sends downstream for each station.
- Station can answer once after waiting for SIFS time.

DFWMAC-PCF with Polling

- Polling continues with third node. This time node has nothing to answer. Thus point coordinator will not receive anything after SIFS time.
- After waiting for PIFS time point coordinator resumes polling the stations.
- Finally point coordinator will send CFend to indicate end of polling and then contention period will start again.

MAC Frames

- Frame Control
- Duration ID The field value < 32768 indicates time for which medium is occupied in M--s. Other values are reserved
- Sequence Control important against duplicated frames due to lost ACKs
- Data
- Checksum(CRC)

MAC Frames – Frame Control

- Protocol Version
- Current protocol version is fixed to 0.
- Further major revisions in protocol will increase the number.
- Type
- 00 : Management Frame 01 : Control Frame
- 10 : Data 11 : Reserved
- Sub Type
- 0000 : Association Request / User data
- 1000 : Beacon
- 1011 : RTS
- 1100 : CTS

MAC Frames – Frame Control

- More Fragments
- Set to 1 for frame that have another fragment of data
- Retry
- If current frame is retransmission of previous frame then it is set to 1
- Power Management
- 1: Station goes in power saving mode
- 0 : Station is in active mode
- More Data
- Used to indicate to receiver that sender has more data to send than the current frame.

MAC Frames – Frame Control

- Wired Equivalent Privacy (WEP)
- indicates standard security mechanism.
- Order
- 1 : received frames must be processed in strict order.

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	TA	DA	SA

DS: Distribution System AP: Access Point

DA: Destination Address SA: Source Address

BSSID: Basic Service Set Identifier RA: Receiver Address

TA: Transmitter Address

MAC Frames - Special Frames

Acknowledgement

Request To Send

Clear To Send

- Uses TSF (Timing Synchronization Function)
- Achieved by sending beacon frame periodically from Access point to other connected nodes in BSS.
- Beacon contains –

timestamp and other necessary info for power management and roaming.

- According to beacon signal, other wireless nodes adjust their local timers according to the timestamp.
- "Access point is not always able to send beacon frame periodically if medium is busy but tries to schedule transmission according to expected Beacon interval."

Synchronization (Infrastructure Mode)

access point

medium

- Each node maintains it's own synchronization times and starts transmission of Beacon frame after Beacon interval.
- The standard back off algorithm is also applied to Beacon frames, so only one frame wins.
- All other stations adjust their intervals according to it.
- If collision occurs then Beacon frame will lost, then Beacon intervals shifted slightly.

Synchronization (Ad hoc Mode)

station₁

station₂

medium

- Basic Idea: Switch of transceiver whenever it is not needed.
- Two states for station
- 1. Sleep
- 2. Awake
- For power management TSF (Timing Synchronization) function is used.

- Access Point maintains two types of lists
- 1. TIM (Traffic Indication Map): List of Unicast Receivers for message transmitted by Access Point,
- DTIM (Delivery Traffic Indication Map): Broadcast / multicast receivers.
- Access Point buffers all frames to be transmitted for TIM.
- Access Point sends TIM and DTIM after TIM interval and DTIM interval respectively.
- DTIM interval is multiple of TIM interval.

Power Saving (Infrastructure Mode)

Power Management – Ad hoc mode

- Each station maintains ATIM (Ad-hoc TIM).
- ATIM is announcement of receivers by sender.
- All stations wake up before ATIM.
- If no frame is buffered for the station then that station goes in sleep mode.
- Synchronization (Beacon) is necessary in this scenario.

Drawbacks:

- No QoS guarantee under heavy load.
- 2. Collision of ATIMs is possible.

Power Saving (Ad hoc Mode)

- 2.4 GHz ISM band, 79 RF channels, 1 MHz carrier spacing
 - Channel 0: 2402 MHz ... channel 78: 2480 MHz
 - FSK modulation, 1-100 mW transmit power
- FHSS and TDD
 - Frequency hopping with 1600 hops/s
 - Hopping sequence in a pseudo random fashion, determined by a master
 - Time division duplex for send/receive separation

- Voice link SCO (Synchronous Connection Oriented)
 - FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to-point, circuit switched
- Data link ACL (Asynchronous ConnectionLess)
 - Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched
- Topology
 - Overlapping piconets (stars) forming a scatternet

Piconet -Architecture

- One unit acts as master and the others as slaves for the lifetime of the piconet
- Master determines hopping pattern, slaves have to synchronize
- Each piconet has a unique hopping pattern
- Participation in a piconet = synchronization to hopping sequence
- Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked)

M=Master S=Slave

P=Parked SB=Standby

- All devices in a piconet hop together
 - Master gives slaves its clock and device ID
 - Hopping pattern: determined by device ID (48 bit, unique worldwide)
 - Phase in hopping pattern determined by clock
- Addressing
 - Active Member Address (AMA, 3 bit)

Scatternet

Piconets (each with a capacity of < 1 Mbit/s)

M=Master S=Slave P=Parked SB=Standby