

D. Guessing Game

Problem Name	Guessing Game
Time Limit	4 seconds
Memory Limit	1 gigabyte

В старом городе Лунд есть улица, на которой в ряд стоят N домов, пронумерованных от 0 до N-1. Эмма живет в одном из этих домов, а ее друзья Анна и Бертиль хотят выяснить, в каком именно. Вместо того чтобы просто рассказать друзьям, где она живет, Эмма решила поиграть с ними в игру. Перед началом игры Анна и Бертиль знают только количество домов на улице. В этот момент Анна и Бертиль могут выбрать положительное целое число K и договориться о стратегии. После этого любое общение запрещено.

Сама игра состоит из двух этапов. На первом этапе Эмма выбирает порядок посещения домов таким образом, чтобы ее дом был последним. Затем она ведет Анну к домам по очереди в этом порядке, не сообщая порядок Анне заранее. В каждом доме, который не является домом Эммы, Анне разрешается написать на входной двери дома мелом одно целое число от 1 до K. В последнем доме, который они посещают (в доме Эммы), Эмма сама пишет на двери целое число от 1 до K.

Во второй фазе игры Бертиль проходит по улице от дома 0 до дома N-1 и читает все номера, написанные на дверях Анной и Эммой. Теперь он хочет угадать, в каком доме живет Эмма. У него есть два шанса угадать правильный ответ, и если ему это удастся, то он и Анна выиграют игру. В противном случае в игре побеждает Эмма.

Сможете ли вы разработать стратегию, при которой Анна и Бертиль гарантированно выиграют игру? Ваша стратегия будет оцениваться по значению K (чем меньше, тем лучше).

Implementation

Ваше решение будет запущено несколько раз на одном и том же тесте. При первом запуске будет выполнена стратегия Анны. После этого будет выполнена стратегия Бертиля.

Первая строка ввода содержит два целых числа — P и N, где P — либо 1, либо 2 (номер фаза), а N — количество домов. За исключением примера из условия задачи (не используется для подсчета баллов), N всегда будет равно $100\,000$.

Следующие входные данные зависят от фазы:

Фаза 1

Ваша программа должна начать с вывода в единственной строке числа K $(1 \le K \le 1\,000\,000)$. Затем, N-1 раз она должна прочитать строку, содержащую индекс i $(0 \le i < N)$, и вывести строку с целым числом A_i $(1 \le A_i \le K)$, где A_i — это число, которое Анна написала на двери дома i. Каждый индекс i, кроме индекса дома Эммы, будет встречаться ровно один раз, в некотором порядке, определяемом тестирующей программой.

Фаза 2

Ваша программа должна прочитать строку с N целыми числами, $A_0, A_1, \ldots, A_{N-1}$, где A_i — номер, написанный на двери дома i.

Затем следует вывести строку с двумя целыми числами s_1 и s_2 $(0 \le s_i < N)$, угаданные индексы. Допускается, что s_1 и s_2 равны.

Implementation Details

Обратите внимание, что когда вы выполняете программу на Фазе 2, происходит перезапуск программы. Это означает, что вы не сможете сохранить информацию в некоторых переменных между запусками.

После каждой выведенной строки не забудьте сделать flush, иначе программа может быть оценена как Time Limit Exceeded. В Python функция print() делает flush автоматически. В C++ cout << endl; помимо вывода новой строки, также делает flush. Если используется printf, то используйте fflush(stdout).

Тестирующая программа для этой задачи может быть **адаптивной**, т.е. она может менять свое поведение в зависимости от результатов работы вашей программы, чтобы предотвратить прохождение эвристических решений. Она может выполнить пробный запуск фазы 1, посмотреть на ваш результат, а затем запустить фазу 1 по-настоящему, используя информацию, полученную в результате предыдущего запуска.

Ваша программа должна быть детерминированной, т.е. вести себя одинаково, если ее дважды выполнить на одних и тех же входных данных. Если вы хотите использовать рандом в своей программе, то обязательно используйте фиксированный random seed, чтобы ваше решение было детерменированным. Это можно сделать, передав константу в srand (в C++) или random.seed (в Python). Если тестирующая программа обнаружит, что ваша программа не является детерминированной, то вы получите вердикт Wrond Answer.

Если *сумма* времени выполнения (до 3) отдельных запусков вашей программы превысит лимит времени, то ваша отправка будет оценена как Time Limit Exceeded.

Scoring

Если ваша программа нашла индекс дома Эммы во *всех* тестах, то вы получите вердикт Accepted и оценку, которая рассчитывается следующим образом. Пусть K_{max} - максимальное значение K, используемое для любого теста. В зависимости от K_{max} :

	Score
$K_{max}>99998$	10 баллов
$10000 < K_{max} \le 99998$	$10 + \lfloor 40(1 - K_{max}/10^5) floor$ баллов
$30 < K_{max} \le 10000$	$46 + \lfloor 31(4 - \log_{10}(K))_{max}))/(4 - \log_{10}(30)) floor$ баллов
$7 < K_{max} \le 30$	$107-K_{max}$ баллов
$K_{max} \leq 7$	100 баллов

Функция оценки изображена на рисунке ниже.

Пример из условия задачи не учитывается при подсчете баллов, и ваше решение не должно на нем работать.

Testing Tool

Чтобы облегчить тестирование вашего решения, мы предлагаем простой инструмент, который вы можете скачать. См. раздел "Приложения" в нижней части Kattis страницы задачи. testing_tool является необязательным для использования, и вы можете вносить в него изменения. Обратите внимание, что официальная тестирующая программа на Kattis отличается от testing tool.

Пример использования (со значениями N=4, s=2, где s — номер, написанный на последнем посещенном доме):

Для программ на языке Python — solution.py (обычно запускается как pypy3 solution.py):

```
python3 testing_tool.py pypy3 solution.py <<<"4 2"</pre>
```

Для программ на C++, сначала скомпилируйте ее (например с помощью g++-g-02-std=gnu++17-static solution.cpp-o solution.out) и после запустите:

```
python3 testing_tool.py ./solution.out <<<"4 2"</pre>
```

testing_tool будет посещать дома в случайном порядке. Чтобы использовать фиксированный порядок, измените инструмент тестирования там, где написано "MODIFY HERE".

Example Interaction

Пример из условия задачи не учитывается при подсчете баллов, и ваше решение не должно на нем работать.

Предположим, что у нас N=4 и что Эмма живет в доме 1. Пусть A — список чисел, записанных на домах. Первоначально A=[0,0,0,0,0], где 0 означает, что на соответствующем доме не написано ни одного числа.

В первом запуске вашей программы:

N=4. Ваше решение выводит с K=3.

Для A_2 , ваше решение выводит 3. Теперь A — это [0,0,3,0].

Для A_0 , ваше решение выводит 1. Теперь A — это [1,0,3,0].

Для A_3 , ваше решение выводит 2. Теперь A — это [1,0,3,2].

Наконец, для A_1 , ваше решение выводит 2, так что в итоге A=[1,2,3,2]. На этом заканчивается первая фаза.

В фазе 2 ваша программа считывает 1 2 3 2.

И выводит 1 3.

Поскольку одно из предположений является правильным индексом дома (1), Анна и Бертиль выигрывают игру.

grader output	your output
1 4	
	3
2	
	3
0	
	1
3	
	2

grader output	your output
2 4	
1232	
	13