

MH-AutoML: Transparência, Interpretabilidade e Desempenho na Detecção de Malware Android

Joner Assolin^{1,}, Gabriel Canto^{1,}, Diego Kreutz², Eduardo Feitosa^{1,}

Universidade federal do Amazonas¹, Universidade Federal do Pampa²

Motivação

Motivação

Motivação

Desafio(s)

- 1 Transparência
 - Qual etapa está sendo executada?
 - Qual método de seleção de características foi utilizado?
 - Quais foram as características selecionadas?
 - Quais hiperparâmetros foram otimizados?

Desafio(s)

2 Interpretabilidade

- Qual classe tem mais impacto na predição?
- Quais características mais contribuem para predição?

Auto-Sklearn

```
{ 2: { 'balancing': Balancing(random state=1)
       'classifier': kautosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f36d2517ee0>,
       'cost': 0.024) 19101123393344.
       'data preprocessor': <autosklearn.pipeline.components.data preprocessing.DataPreprocessorChoice object at 0x7f36d253b0d0>,
       'ensemble weight': 0.14,
       'feature preprocessor': <autosklearn.pipeline.components.feature preprocessing.FeaturePreprocessorChoice object at 0x7f36d2517550>,
       'model id': 2,
       'rank': 1,
       'sklearn classifier': RandomForestClassifier(max features=7, n estimators=512, n jobs=1,
                       random state=1, warm start=True)},
  3: { 'balancing': Balancing(random state=1, strategy='weighting'),
       'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f36d2335550>,
       'cost': 0.011235955056179803.
       'data preprocessor': <autosklearn.pipeline.components.data preprocessing.DataPreprocessorChoice object at 0x7f36d253b4c0>,
       'ensemble weight': 0.04,
       'feature preprocessor': <autosklearn.pipeline.components.feature preprocessing.FeaturePreprocessorChoice object at 0x7f36d2335790>,
       'model id': 3,
       'rank': 2.
       'sklearn classifier': SVC(C=21.59109048521139, cache size=1665.7630208333333, class weight='balanced',
    gamma=5.060493057005212, max iter=-1.0, random state=1, shrinking=False,
    tol=0.00012027336497045934)},
```


Auto-Sklearn

```
{ 2: { 'balancing': Balancing(random state=1),
       'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f36d2517ee0>,
       'cost': 0.024719101123595544,
       'data preprocessor': <autosklearn.pipeline.components.data preprocessing.DataPreprocessorChoice object at 0x7f36d253b0d0>,
       'ensemble weight': 0.14,
       'feature preprocessor': <autosklearn.pipeline.components.feature preprocessing.FeaturePreprocessorChoice object at 0x7f36d2517550>,
        model id': 2,
        rank': 1,
        sklearn classifier': RandomForestClassifier(max features=7, n estimators=512, n jobs=1,
                       random state=1, warm start=True)},
       'balancing': Balancing(random_state=1, strategy='weighting'),
       'classifier': <autosklearn.pipeline.components.classification.ClassifierChoice object at 0x7f36d2335550>,
       'cost': 0.011235955056179803.
       'data preprocessor': <autosklearn.pipeline.components.data preprocessing.DataPreprocessorChoice object at 0x7f36d253b4c0>,
       'ensemble weight': 0.04,
       'feature preprocessor': <autosklearn.pipeline.components.feature preprocessing.FeaturePreprocessorChoice object at 0x7f36d2335790>,
       'model id': 3,
       'rank': 2.
       'sklearn classifier': SVC(C=21.59109048521139, cache size=1665.7630208333333, class weight='balanced',
    gamma=5.060493057005212, max_iter=-1.0, random_state=1, shrinking=False,
```


tol=0.00012027336497045934)},

AutoGluon

```
'NN_TORCH': {},

'GBM': [{'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, {}, 'GBMLarge'],

'CAT': {},

'XGB': {},

'FASTAI': {},

'RF': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy

'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy

'XT': [{'criterion': 'gini', 'ag_args': {'name_suffix': 'Gini', 'problem_types': ['binary', 'multiclass']}}, {'criterion': 'entropy

'KNN': [{'weights': 'uniform', 'ag_args': {'name_suffix': 'Unif'}}, {'weights': 'distance', 'ag_args': {'name_suffix': 'Dist'}}],
```

- Valores pré-definidos
- N-neighbourd?
- N_estimator?

Operating System Version	Total RAM Memory Usage (GB)	Available RAM Memo	ry (GB)	Used RAM M	emory (GB)
Vindows-10-10.0.22631-SP0	31.7357		19.7687		11.967
FO: DataFrame Size:		•	•		
Rows Columns					
15036 51					
15036 51 + FO: Data types:					
	+ !	Number of duplicate	 data	Number of n	ull value
		Number of duplicate	data 0	Number of n	null value
TO: Data types:	+ +	Number of duplicate O: Features Informat:	0 	Number of n	
TO: Data types: Data Type Count	 +		0 +	Number of n	

Columns

- Subset da seleção
 - Subset dos dados de treino
- Gráfico da importância das características
- Gráfico de divisão treino teste por classe

- Hiperparâmetros e modelos
- Ranking dos modelos
- Gráfico da importância de hiperparâmetros
- Gráfico de estudos dos parâmetros

INFO: Top ranked algorithms:

Classifier: LightGBM, Value: 0.8949 Classifier: CatBoost, Value: 0.8906

Classifier: RandomForestClassifier, Value: 0.8564 Classifier: DecisionTreeClassifier, Value: 0.8435 Classifier: ExtraTreesClassifier, Value: 0.8245

INFO: Best Model: LightGBM, Best Parameters: {'boosting_type': 'goss', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'l earning_rate': 0.417104159111871, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 115, 'n_jobs': -1, 'num_leaves': 110, 'objective': None, 'random_state': 42, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0}

INFO: Top ranked algorithms:

Classifier: LightGBM, Value: 0.8949 Classifier: CatBoost, Value: 0.8906

Classifier: RandomForestClassifier, Value: 0.8564 Classifier: DecisionTreeClassifier, Value: 0.8435 Classifier: ExtraTreesClassifier, Value: 0.8245

INFO: Best Model: LightGBM, Best Parameters: {'boosting_type': 'goss', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'l earning_rate': 0.417104159111871, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 115, 'n_jobs': -1, 'num_leaves': 110, 'objective': None, 'random_state': 42, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0}

INFO: Top ranked algorithms:

Classifier: LightGBM, Value: 0.8949 Classifier: CatBoost, Value: 0.8906

Classifier: RandomForestClassifier, Value: 0.8564 Classifier: DecisionTreeClassifier, Value: 0.8435 Classifier: ExtraTreesClassifier, Value: 0.8245

INFO: Best Model: LightGBM, Best Parameters: {'boosting_type': 'goss', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'l earning_rate': 0.417104159111871, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 115, 'n_jobs': -1, 'num_leaves': 110, 'objective': None, 'random_state': 42, 'req_alpha': 0.0, 'req_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'sub

sample_for_bin': 200000, 'subsample_freq': 0}

MLflow Tracking

- 01_preprocessing
- 02_feature_engineering
- ▼ **l** 03_model_optimization
 - Hyperparameters_Results.csv
 - Models_Ranking.csv
 - a optimization_history.png
- ▼ **■** 04_evaluation_metrics
 - best_model_20240829_225737.pkl
 - performance_metrics.jpg
- ▼ 05_interpretability
 - interpretability_0.html
 - lime_feature_importance.jpg
 - shap_summary_plot.png
- ► MH_Best_Model
- ▼ **l** report
 - report_20240829_225941.html

- Arquivos de dados (CSV)
- Arquivos de imagens(PNG...)
- Arquivos HTML
- Arquivos PKL

Dataset	Qntd.	Tipos	Total
adroit	166	Р	11476
androcrawl	141	A(26), I(8), P(84), O(23)	96744
android_permissions	151	P	26864
defensedroid_prs	2877	P(1489), I(1388)	11975
drebin	215	A(73), P(113), S(6), I(23)	15031
kronodroid_emulador	276	P(145), A(123), O(8)	63991
kronodroid_real	286	P(146), A(100), O(40)	78137

Ferramentas	Citação Google Scholar
Auto-Sklearn	2781
AutoGluon	682
TPOT	405
Lightautoml	38
Mljar	35
Auto-pytorch	5
HyperGBM	1


```
INFO: [2024-07-09 16:31] Evaluating model...
INFO: Classification Report:
              precision recall f1-score
                                                support
                   0.60
                                         0.20
                                                   2698
                                         0.80
                                                   5362
                                         0.68
                                                   8060
    accuracy
                              0.54
                    0.64
                                         0.50
                                                   8060
   macro avq
weighted avg
                    0.66
                              0.68
                                         0.60
                                                   8060
```


Tempo de Execução das Ferramentas de AutoML por Dataset adroit -- 3500 androcrawl -- 3000 d permissions -- 2500 0002 -0000 -Embo de Execução (segundos) ensedroid_prs -drebin -- 1000 roid_emulador -- 500 ronodroid_real -Auto-Sklearn AutoGluon AutoPyTorch HyperGBM LightAutoML MH-AutoML MLJar TPOT Ferramenta de AutoML

Tempo de Execução das Ferramentas de AutoML por Dataset - 3500 adroit -65 71 227 - 3000 androcrawl -3598 410 748 - 2500 android_permissions -88 69 168 Dataset defensedroid prs-287 0 784 drebin-73 95 197 - 1000 kronodroid_emulador -333 1041 490 - 500 kronodroid_real-

414

AutoGluon

410

HyperGBM

Ferramenta de AutoML

190

MH-AutoML

Demostração

Considerações finais

- Bom desempenho
- Rastreável
- Versionavel
- Transparente
- Interpretável

Trabalhos futuros

- Melhorias de desempenho
- Disponibilizar como serviço web
- Explorar novas tecnicas de explicabilidade dos modelos

Obrigado!

