Basic Forces and Kepler's Laws

1. Two identical spheres of gold are in contact with each other. The gravitational force of attraction between them is

- 1) Directly proportional to the square of their radius
- 2) Directly proportional to the cube of their radius
- 3) Directly proportional to the fourth power of their radius
- 4) Inversely proportional to the square of their radius.

2. Find the false statement

- 1) Gravitational force acts along the line joining the two interacting particles.
- 2) Gravitational force is independent of medium.
- 3) Gravitational force forms an action- reaction pair.
- 4) Gravitational force does not obey the principle of superposition.

3. Among the following find the wrong statement

- 1) Law of gravitation is framed using Newton's third law of motion.
- 2) Law of gravitation cannot explain why gravity exists.
- 3) Law of gravitation does not explain the presence of force even when the particles are not in physical contact.
- 4) When the range is long, gravitational force becomes repulsive.

4. Law of gravitation is not applicable if

- A) Velocity of moving objects are comparable to velocity of light.
- B) Gravitational field between objects whose masses are greater than the mass of sun.

1) A is true, B is false

2) A is false, B is true

3) Both A & B are true

4) Both A & B are false

5.	Statement A: Modification of space by	atement A: Modification of space by a mass particle is called gravitation				
	field					
	Statement B: Law of gravitation is a consequence of "Action at a distance					
	concept".					
	1) A is true, B is false	2) A is false, B is true				
	3) Both A & B are true	4) Both A & B are false				
6.	The earth revolves round the sun in an ell	liptical orbit, its speed is				
	1) Going on decreasing continuously	2) Greatest when it is close	est to the sun			
	3) Greatest when it is farthest from the sun	4) Constant at all the points	s on the orbit			
7.	How do you divide total mass M into tw	two parts so that the gravitational force				
	between them at a given distance is maximum?					
	1) $\frac{M}{4}$, $\frac{3}{4}$ 2) $\frac{M}{3}$, $\frac{2M}{3}$	3) $\frac{M}{5}$, $\frac{4M}{5}$	$)\frac{M}{2},\frac{M}{2}$			
8.	An infinite number of particles each of 1	n infinite number of particles each of mass 1kg are placed on the positive x-				
	axis at 1m, 2m, 4m, 8m from the origin. The magnitude of the resultant					
	gravitational force on 1kg mass kept at the origin is					
	1) 0 2) G	3) $\frac{3G}{4}$ 4)	$\frac{4G}{3}$			
9.	Two metal spheres of same material an	d radius 'r' are in contac	t with each			
	other. The gravitational force of attraction	on between the spheres is gi	ven by (k in			
	a constant).					
	1) $F = kr^4$ 2) $F = k/r^2$	3) $F = k/4r^2$ 4)	$F = kr^2$			
10.	Three uniform spheres each having mass	hree uniform spheres each having mass 'm' and radius 'R' kept in such a way				
	that each two touches the other. The magnitude of the gravitational force on					
	any sphere, due to the other two is					
	1) $\sqrt{3} \frac{Gm^2}{4R^2}$ 2) $\frac{Gm^2}{4R^2}$	$3) \frac{\sqrt{3}Gm}{2R^2} $	$) \sqrt{3} \frac{Gm}{R^2}$			

11. Two particles each of mass 'm' move in a circle of radius 'r' under the action of

their mutual gravitational attraction. Then speed of each particle is

	1) $\sqrt{\frac{Gm}{r}}$	$2) \sqrt{\frac{Gm}{4r}}$	3) $\sqrt{\frac{Gm}{2r}}$	4) $\sqrt{\frac{2Gm}{r}}$			
12.	There are	two bodies of masses 100k	kg and 10,000 kg separ	rated by a distance of			
	1 metre. At what distance from the smaller body, will the intensity of the						
	gravitation	nal field be zero?					
	(1) 1/9m	(2) 1/10m	(3) 1/11m	(4) 10/11m			
13.	If the dist	tance between two bodies	is increased by 25%, t	hen the % change in			
	the gravitational force is						
	1) Decreas	ses by 36%	2) Increases by 36 %				
	3) Increase	es by 64%	4) Decreases by 64 %	%			
14.	The time period of revolution of a planet A around the sun is 8 times that of						
	another planet B. The distance of planet A from the sun is how many times						
	greater than that of the planet B from the sun						
	1) 2	2) 3	3) 4	4) 5			
15.	A planet revolves round the sun. Its velocity at the nearest point, distant d						
	from sun, is v ₁ . The velocity of the planet at the farthest point distant d ₂ from						
	sun will be						
	$(1) \ \frac{d_1^2 v_1}{d_2^2}$	$(2) \frac{d_2 v_1}{d_1}$	$(3) \frac{d_1 v_1}{d_2}$	$(4) \ \frac{d_2^2 v_1}{d_1^2}$			
16.	A tunnel is dug along a diameter of earth. The force on a particle of mass						
	distant x from the centre in this tunnel will be						
	$(1) \frac{GM_e m}{R^3 x}$	$(2) \frac{GM_e mR^3}{x}$	$(3) \frac{GM_e mx}{R^2}$	$(4) \frac{GM_e mx}{R^3}$			

17. Imagine a light planet is revolving round a very massive star in a circular orbit

of radius R with a time period of revolution T. If the gravitational force of

	attraction between	the star and plane	et is proportional to	R ⁻ⁿ , then T ² is			
	proportional to						
	$1) R^{n+1}$	2) R^{n+2}	3) R^{n-1}	4) R ⁿ⁻²			
18.	If two planets have	their radii in the ra	atio x:y and densities	in the ratio m:n,			
	then the acceleration due to gravity on them are in the ratio						
	(1) nx/my	(2) mx/ny	(3) ny/mx	(4) my/nx			
19.	If a planet of mass	'm' is revolving arou	and the sun in a circul	ar orbit of radius			
	'r' with time period T, then the mass of the sun is						
	$1) \; \frac{4\pi^2 r^3}{GT}$	$2) \; \frac{4\pi^2 r^3}{GT^2}$	3) $\frac{4\pi^2r}{GT}$	4) $\frac{4\pi^2 r^3}{G^2 T^2}$			
21.	A satellite is launch	ed into circular orb	it of radius R around	the earth while a			
	second satellite is launched into an orbit of Radius 1.02R. The percentage						
	change in the time periods of the two satellites is						
	1) 0.7	2) 1.0	3) 1.5	4) 3			
22.	In a double star sys	tem, two stars of ma	sses m_1 and m_2 separa	ted by a distance			
d ro	otate about their cent	re of mass. Then the	ir common angular vel	ocity would be			
	$1) \sqrt{\frac{Gm_1}{d^3}}$	$2) \sqrt{\frac{Gm_2}{d^3}}$	$3) \sqrt{\frac{G(m_1+m_2)}{d^3}}$	$4) \sqrt{\frac{d^3}{G(m_1+m_2)}}$			
23.	The magnitudes o	f the gravitational fi	eld at distance and from	n the centre of a			
	uniform sphere of radius R and mass M are and respectively. Then:						
	1. $\frac{E_1}{E_2} = \frac{r_1}{r_2}$ if $r_1 < R$	and $r_2 < R$	2. $\frac{E_1}{E_2} = \frac{r_2^2}{r_1^2}$ if $r_1 > R$ and	$1 r_2 > R$			
	3. $\frac{E_1}{E_2} = \frac{r_1^3}{r_2^3}$ if $r_1 < R$		4. $\frac{E_1}{E_2} = \frac{r_1^2}{r_2^2}$ if $r_1 < R$ and	$1 r_2 < R$			

www.sakshieducation.com

24. A solid sphere of uniform density and radius R exerts attractive gravitational force F_1 on a particle placed at a distance 2R from the centre of the sphere. Now a spherical cavity of radius $\frac{R}{2}$ is made as shown. The remaining part of the sphere exerts a force F_2 on the same particle. Then F_2/F_1

- 1) 2: 9
- 2) 7: 9

- 3) 5: 9
- 4) 1: 9

- 25. Newton's law of gravitation is universal because
 - 1) It is always attractive
 - 2) It acts on all heavenly bodies and particles
 - 3) It acts on all the masses at all the distances and is not affected by the medium
 - 4) None of these

Key

- 1) 3 2) 4 3) 4 4) 3 5) 3 6) 2 7) 4 8) 4 9) 1 10) 1
- 11) 2 12) 3 13) 1 14) 3 15) 3 16) 4 17) 1 18) 2 19) 2 20) 2
- 21) 4 22) 3 23) 2 25) 3

Hints

Let the mass M is divided into x and (M -x) As $F \propto x(M-x)$ or $F = K (Mx - x^2)$ 7.

For F_{max},
$$\frac{dF}{dx} = 0$$

$$\therefore \frac{dF}{dx} = k (M - 2x) = 0 \Rightarrow x = \frac{M}{2}$$

The two parts are $\frac{M}{2}$, $\frac{M}{2}$

8.
$$F = \frac{G(1 \times 1)}{1^2} + \frac{G(1 \times 1)}{2^2} + \frac{G(1 \times 1)}{4^2} + \dots$$

$$F = G\left(1 + \frac{1}{4} + \frac{1}{16} + \dots\right)$$

$$=G\left(\frac{1}{1-1/4}\right)=\frac{4G}{3}\left(::S_{G-P}=\frac{a}{1-r}\right)$$

9.
$$F = \frac{Gm_1m_2}{r^2} = \frac{G\left(\frac{4}{3}\pi r^3\right)\rho\left(\frac{4}{3}\pi r^3\right)\rho}{r^2}$$

$$F \propto r^4$$
 or $F = Kr^4$

$$F \propto r^4 \text{ or } F = Kr^4$$
10. $F_R = \sqrt{3} F F_R = \sqrt{F^2 + F^2 + 2F^2 \cos 60}$

$$=\sqrt{3} \frac{Gm^2}{(2R)^2} = \sqrt{3} \frac{Gm^2}{4R^2}$$

11. The gravitational force between the two particles provides the necessary centripetal force for rotation

$$\frac{Gm^2}{(2r)^2} = \frac{mv^2}{r} \implies V = \sqrt{\frac{Gm}{4r}}$$

12. Let the intensity be zero at a distance from 100kg mass. Then,

$$\frac{G \times 100}{x^2} = \frac{G \times 10,000}{(1-x)^2}$$

Taking root
$$\frac{1}{x} = \frac{10}{1-x}$$
 or $x = \frac{1}{11}m$

13.
$$\frac{F_1}{F_2} = \frac{d_2^2}{d_1^2}$$

14.
$$T^2 \propto R^3$$

15. According to law of conservation of angular momentum $v_1 d_1 = v_2 d_2$

$$\operatorname{Or} v_2 = \frac{v_1 d_1}{d_2}$$

16.
$$F = G = \frac{M_x m}{x^2}$$

Or
$$F = \frac{Gm}{x^2} \cdot \frac{M}{\left(\frac{4}{3}\pi R^3\right)} \times \left(\frac{4}{3}\pi x^3\right)$$

Or
$$F = \frac{GMm}{R^3}x$$

17. If
$$\frac{GMm}{R^2} = m R \left(\frac{2\pi}{T}\right)^2 \Rightarrow T^2 \propto R^3$$

But
$$\frac{GMm}{R^n} = m R \left(\frac{2\pi}{T}\right)^2$$

$$T^2 \propto R^{h+1}$$

$$T^2 \propto R^{h+1}$$

18.
$$g \propto Rd, g_1 = k.xm, g_2 = k.yn$$

$$\therefore g_1:g_2::xm:yn$$

$$19. \quad \frac{GM_sm}{r^2} = m \ r \left(\frac{2\pi}{T}\right)^2$$

$$\Rightarrow M_s = \frac{4\pi^2 r^3}{GT^2}$$

20.
$$F_R = \sqrt{3} \ F = \frac{\sqrt{3} \ Gm}{a^2}$$

But
$$F_R = F_{cp}$$
 for rotation

$$\sqrt{3} \frac{Gm}{a^2} = m \left(\frac{a}{\sqrt{3}}\right) \omega^2$$

$$\omega = \sqrt{\frac{3Gm}{a^3}}$$

21.
$$T^2 \propto r^3$$

$$2\frac{\Delta T}{T} = 3\frac{\Delta r}{r}$$

$$\frac{\Delta T}{T} \times 100 = \frac{3}{2} \left(\frac{\Delta r}{r} \times 100 \right) = \frac{3}{2} (0.02) \times 100 = 3$$

22.
$$\frac{Gm_1m_2}{d^2} = m_1d_1\omega^2 = m_1\left(\frac{m_2d}{m_1 + m_2}\right)\omega^2$$

$$\Rightarrow \omega = \sqrt{\frac{G(m_1 + m_2)}{d^3}}$$

23. : If
$$r \le R$$
, then $E = \frac{GM}{R^3}(r) \Rightarrow E \infty r$

$$\frac{E_1}{E_2} = \frac{r_1}{r_2} \text{ if } r_1 < R \text{ and } r_2 < R$$

If
$$r \ge R$$
, then $E = \frac{GM}{r^2}(r) \Rightarrow E \propto \frac{1}{r^2}$

$$\Rightarrow \frac{E_1}{E_2} = \frac{r_2^2}{r_1^2} \text{ if } r_1 > R \text{ and } r_2 > R$$

24. Gravitational force on mass m due to whole sphere

$$F_1 = \frac{GMm}{\left(2R\right)^2} = \frac{GMm}{4R^2}$$

$$F_{2}^{1} = \frac{G\frac{M}{8} \times m}{\left(R + \frac{R}{2}\right)^{2}} = \frac{GMm}{18R^{2}} F_{2} = F_{1} - F_{2}^{1} = \frac{GMm}{4R^{2}} - \frac{GMm}{18R^{2}}$$

$$F = \frac{7}{36} \frac{GMm}{R^2} \Rightarrow \frac{F_2}{F_1} = \frac{7}{9}$$