NU Hackathon x Beeline BigData

Немного про Beeline BigData

Beeline Kazakhstan — лучшая большая компания страны для работы data-специалиста в 2022 году. Это показал независимый опрос в профессиональном сообществе Новости Казахстанского ДС (Main ML KZ). Команда Big Data состоит из 7 стримов: adTech, NLP, CV, CVM, Internal, Fintech, Devices. Наши сотрудники регулярно выступают и делятся лучшими практиками на крупнейших казахстанских конференциях.

Проблема

По мере роста потребностей бизнеса в все более новых и технологичных data-продуктах, в нашем хранилище данных пропорционально растет и объем генерируемых витрин. На хранение и обработку этих данных уходит огромное количество ресурсов, которое чаще всего расходуются неэффективно.

Несмотря на то, что источников данных в компании много, и их количество непрерывно растет, основные уникальные типы можно сосчитать по пальцам. Зачастую, одни и те же данные дублируются во многих витринах, занимая при этом место в хранилище и продлевая среднее время готовности просчета витрин (в связи с утилизацией ресурсов на обработку этих данных).

На данный момент, мы умеем выстраивать зависимости между витринами, стейджингами и источниками данных (DAG зависимостей в разрезе проектов). И мы:

- 1. Знаем какой объект зависит от другого. (DAG)
- 2. Знаем что и когда запускать. (Scheduling)
- 3. Умеем мониторить все просчеты. Реагировать в случае поломки источника. (Monitoring)
- 4. Умеем выстраивать оптимальные пайплайны. (Optimization)

Было бы здорово спуститься на один абстрактный уровень ниже.

Требования

Необходимо распарсить предложенные скрипты(.ipynb files) Описание задачи в Readme Прикладное применение для работы предложенной задачи:

- Понимать вычислительную зависимость: логическую зависимость построения показателей внутри витрин от источников
- Понимать утилизацию полей: долю использованных полей от каждого источника при расчете данной витрины
- Графическое представление зависимостей
- Полезно в случае внезапной потребности переноса источников в альтернативный контур. Например: из hadoop есть потребность перенести расчет витрины в реляционные БД и нам необходимо понять какие источники необходимо перенести
- Оптимизация кода перед выводом в продуктив и исключение неиспользуемых источников из скриптов. Посчитать количество операций внутри скрипта если много джоинов, то это значит, что нужно упрощать скрипт.

Handouts

Вам дана ссылка на репозиторий проекта. Репозиторий состоит из композиции нескольких docker-контейнеров (docker-compose):

- 1. spark_cluster мини кластер для обработки данных
- 2. workspace_server серверная среда. Она состоит из:
 - o data/
 - o **projects/** кодовая база проектов
 - <solution>/ пустой python-проект в котором необходимо реализовать решение
- 3. web service (optional) веб-сервис, для визуализации зависимостей.

Критерии оценки

Для проверки финальной версии вашего решения имеется отложенная выборка в виде одного дополнительного скрипта.

Полезные материалы

https://spark.apache.org/docs/3.1.2/api/python/reference/api/pyspark.sql.DataFrame.explain.html

https://towardsdev.com/decoding-spark-query-physical-plan-9b9682815173