# Higher Dimensional Topological Order Higher Category and A Classification in 3+1D

#### Tian I an

Department of Physics, The Chinese University of Hong Kong

BIMSA, March 16, 2022

In collaboration with Liang Kong and Xiao-Gang Wen

PRX 8, 021074 (2018), arXiv:1704.04221; PRX 9, 021005 (2019), arXiv:1801.08530.



## **Working Definitions**

- Physical definition: topological orders are gapped quantum liquid states without any symmetry.
- In this talk we focus on topological defects and excitations.
   Properties of excitations determine the phase up to invertible ones.
- Topological defects/excitations: Gapped defects. At fixed-point, physical observables depend on only their topologies (no dependence on metrics, scales, ...,) excitations viewed as defects between trivial defects

### 3+1D Topological Order



- String-like excitations in addition to point-like excitations.
- They can braid with each other.
- Particles braid with particles trivially.

### Knots and Links?





Difficult! However, for a classification we do not need to study them!

### Motivation

Lesson learned during the study of 2+1D SET (symmetry enriched topological) phases,

- Tannaka Duality Reconstruct G from Rep(G)
- Rep(*G*): the braided tensor category of group representations.
- Example: G = SU(2), Rep(G) consists of spins  $\{0, 1/2, 1, ...\}$  plus the following structures:
  - the degeneracy of spins (direct sum):  $0 \oplus 0 \oplus 1/2 \oplus 1$ .
  - the fusion of spins (tensor product):  $1/2 \otimes 1/2 = 0 \oplus 1$ .
  - the Clebsch–Gordan coefficients: basis change  $\{\text{tensor product: } |00\rangle, |10\rangle, |01\rangle, |11\rangle\} \Leftrightarrow \{\text{spin 0 singlet: } |01\rangle |10\rangle, \text{ spin 1 triplet: } |00\rangle, |01\rangle + |10\rangle, |11\rangle\}.$
  - bosonic exchange,  $x \otimes y \to y \otimes x$ . can choose fermionic exchange  $x \otimes y \to -y \otimes x$  which will reconstruct a super group

### Motivation

- **Deligne's Theorem** Symmetric (trivial double exchange) tensor category subject to certain finite condition, must be of the form Rep(G, z).
- Physically, a finite spectrum of bosons and fermions, must carry the symmetry charge of certain group G.
- In 3+1D, particles braids trivially, there is thus a hidden group G.
  - Ordinary gauge theory? Almost, but there are examples beyond gauge theory.
  - Dijkgraaf-Witten  $G, \omega_4 \in H^4[G, U(1)]$  gauge theory? Yes if all particles are bosons.
  - Gauged SPT (symmetry protect topological) phases? Yes!

### **Recent Progress**

- The mathematical theory of higher (braided) fusion categories was not ready at the time of this work.
- Recent development on higher category theory definition of fusion 2-category by
   Douglas and Reutter, arXiv:1812.11933, notion of condensation completion by Johnson-Freyd and Gaiotto,
   arXiv:1905.09566 shed more light on the study of higher dimensional topological orders.
- In particular, Theo Johnson-Freyd arXiv:2003.06663 presented an n-cat-model-independent proof to our classification.
- I will mainly stick to the original simpler ideas and comment on some important modifications.

### **Outline**

- Higher category picture of topological defects/excitations
- Boundary-bulk duality:
  - Boundary: anomalous topological order
  - Bulk: anomaly-free topological order (braiding non-degeneracy)
  - Boundary uniquely determines bulk
- Trivial mutual statistics of low-dimensional excitations
   point-like excitations determines a hidden "gauge group"
- Condensation of excitations with trivial statistics condensing enough excitations can create a boundary
- Applying above ideas in 3+1D leads to a classification:
   3+1D topological orders can all be obtained by gauging SPT.

## **Higher Category**

- Category, namely 1-cat, consists of objects (0-morphism), and morphisms (1-morphism) which are arrows between objects.
- 2-cat consists of 0-morphisms, 1-morphisms, and 2-morphisms which are arrows between 1-morphisms.
- . . .
- n-cat consists of 0-morphisms, 1-morphisms, ..., n-1-morphisms and n-morphisms which are arrows between n-1-morphisms.
- Globular picture: 0-morphisms are points, 1-morphisms are paths, 2-morphisms are surfaces, . . .
- n-morphisms can be composed in n ways.



## Higher Category of Topological Defects

Dual to the globular picture:



k-morphisms are co-dimension k topological defects. composition of k-morphisms = fusion of defects

## Higher Category of Topological Defects



#### In n+1 dimensions:

| k-morphism | spacial dimension of defects |                    |
|------------|------------------------------|--------------------|
| <u> </u>   | n                            | bulk phase         |
| 1          | n-1                          |                    |
| :          | :                            |                    |
| n-1        | 1                            | line defects       |
| n          | 0                            | point defects      |
| n+1        | "Instanton"                  | physical operators |

They form an (n+1)-category  $TO_{n+1}$ .

All n-cat are assumed weak, unitary, and satisfying other necessary physical requirements.



## Topological order (potentially anomalous)

Anomaly free can be realized by lattice model in the same dimension must be boundary of lattice model in one higher dimension

### Focus on one phase $C \in TO_{n+1}$ .

Trivial defects are identity morphisms:

$$\mathrm{id}_{0,\mathbf{C}} \equiv \mathbf{C}, \mathrm{id}_{1,\mathbf{C}} \equiv \mathrm{id}_{\mathbf{C}} : \mathbf{C} \rightarrow \mathbf{C}, \dots, \mathrm{id}_{k,\mathbf{C}} \equiv \mathrm{id}_{\mathrm{id}_{k-1},\mathbf{C}} : \mathrm{id}_{k-1,\mathbf{C}} \rightarrow \mathrm{id}_{k-1,\mathbf{C}}, \mathrm{id}_{n+1,A} \equiv \mathrm{id}_{\mathrm{id}_{n,A}} = 1 \in \mathbb{C}.$$

• Excitations are defects between trivial defects. Co-dimension k excitations (including defects on them):  $\operatorname{Hom}(\operatorname{id}_{k-1,C},\operatorname{id}_{k-1,C})$ 

Excitations in C, Hom(C, C)

- = (n+1)-cat with only one 0-morphism (object) C
- = monoidal n-cat  $\mathcal{C}:=$  Hom $(\mathbf{C},\mathbf{C})$

In physical applications require "nice" properties: fusion n-cat

## Topological order (anomaly-free)

Braiding is the only physical probe in topological theories. Necessary condition for anomaly-free:

### Braiding non-degeneracy

All topological excitations must be detectable via braidings.

A. Kitaev, Ann. Phys. 321, 2 (2006); M. Levin, PRX 3, 021009 (2013); L. Kong and X.-G. Wen, arXiv:1405.5858

Co-dimension k > 2 excitations can braid.

(n+1)-cat with only one 0-morphism  ${\bf C}$  and only 1-morphism  ${\rm id}_{\bf C}$ 

= braided monoidal (n-1)-cat  $\mathscr{C} := \text{Hom}(\text{id}_{\mathbf{C}}, \text{id}_{\mathbf{C}})$ 

& should be non-degenerate braided fusion (n-1)-cat

Co-dimension 1 defects can not (full) braid and are determined by co-dimension  $k \ge 2$  excitations via codensation completion.

D. Gaiotto, T. Johnson-Freyd, arXiv:1905.09566,

T. Johnson-Freyd, arXiv:2003.06663.

## Boundary-bulk duality (Holography)

Given an n+1D boundary theory, i.e., a (potentially) anomalous topological order in n+1D or a <u>fusion n-cat</u>,

- The boundary theory must involve at least a small neighbourhood in the bulk near the boundary.
- For topological theories there is no scale dependence, a small neighbourhood is the same as the whole bulk.

L. Kong and X.-G. Wen, arXiv:1405.5858; L. Kong, X.-G. Wen, and H. Zheng, Nucl. Phys. B 922, 62 (2017)

# Boundary-bulk duality (Holography)

A boundary, a fusion n-cat, uniquely determines the bulk, a non-degenerate braided fusion n-cat,

### Higher Drinfeld center ( $E_1$ center)

 $\mathcal{Z}_{1}^{(n)}$  : fusion n-cat ightarrow non-degenerate braided fusion n-cat

Concrete constructions: Turaev-Viro TQFT, Levin-Wen model, Walker-Wang model, . . .

### Anomaly-free condition

Has a trivial bulk if viewed as a boundary:

A fusion n-cat  $\mathcal{C}$  is anomaly-free if  $\mathcal{Z}_1^{(n)}(\mathcal{C}) = n \text{Vec.}$ 

L. Kong and X.-G. Wen, arXiv:1405.5858; L. Kong, X.-G. Wen, and H. Zheng, Nucl. Phys. B 922, 62 (2017)

## Low-dimensional excitations have symmetric braidings

Full braiding path between low-dimensional excitations is <u>homotopic to</u> trivial path.

- In 3+1D or higher, particle and particle braid symmetrically (boson/fermion).
- In 4+1D or higher, particle-particle and particle-string braidings are symmetric.
- In 5+1D or higher, particle-particle, particle-string and string-string braidings are symmetric.
- ...



# Braiding non-degeneracy and even-odd dimensionality

In n+1D, the braiding between p-dimensional excitation and q-dimensional excitation is compare the spacetime dimension n+1 with p+1 (worldsheet) + q+1

(worldsheet) + 1 (braiding path)

- Symmetric, if p + q < n 2.
- Non-degenerate, if p+q=n-2 pdimensional excitations and n-2-p-dimensional excitations detect each other.
- If p + q > n 2, can be decomposed to braidings between dimension reduced excitations p' < p, q' < q where p' + q' = n - 2.

# Braiding non-degeneracy and even-odd dimensionality

$$2_{1}(A)=1$$

Braiding non-degeneracy put strong relations between p-dimensional excitations and (n-2-p)-dimensional excitations. More precisely, according to Johnson-Freyd arXiv:2003.06663

#### Theorem

If there is a dimension p such that excitations with dimension  $\leq p$  are all trivial (i.e. equivalent to (p+1)Vec), then defects with dimension  $\geq p-2-p$  are also "trivial" in the sense that higher dimensional defects can all be built from

condensations or lower dimensional defects, the topological order is determined by defects with dimension < n - 2 - p.



For n odd, low and high dimensional excitations are properly paired. For n even, in the middle (n/2-1)-dimensional excitations pair with themselves.



## Point-like excitations in 3+1D or higher

They are bosons or fermions with trivial double braidings.

- ⇔ Point-like excitations form a symmetric fusion category
- $\Leftrightarrow \text{Rep}(G, z), (G, z)$  is uniquely determined up to isomorphisms.

Here  $z \in G$  is involutive  $z^2 = 1$  and central zg = gz,  $\forall g \in G$ .

P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2002), no. 2, 227-248

- z = 1: usual representation category Rep(G).
- z is nontrivial: z corresponds to the fermion number parity; the representations where z acts non-trivially are fermions. To emphasize the fermionic nature, for non-trivial z, we use the notations  $G^f \equiv (G, z)$ ,  $sRep(G^f) \equiv Rep(G, z)$ ,  $Z_2^f \equiv \{1, z\}$ .

Symmetric braiding is a very strong constraint.

### Classification in 3+1D

- In 3+1D, there are only point-like and string-like excitations.
- Point-like excitations must have trivial statistics, fully determined by (G, z).
- Braiding non-degeneracy puts very strong constraints on the string-like excitations.
  - Expect: determined by (G, z) plus certain extra data
- Hard to extract due to technical difficulty on braided monoidal 2-cats.
- A "detour": condensation

Conjecture: similar results for odd spacial dimensions:

- Low dimensional excitations have symmetric braidings
   higher representations of higher (super-)group.
- High dimensional excitations are determined by such higher group to certain extent.

Add interactions to make certain subset A of excitations to condense.

Whether A can be condensed or not depends only on itself:
 Effectively, the condensate is a "sea" where condensed excitations in A can fluctuate freely.

• Let  $|\psi_A\rangle$  be the state of A condensate and W an operator that creates some excitations in A (for example open Wilson loop operators). The above means

$$W|\psi_A\rangle = |\psi_A\rangle$$

- Condensation means making all possible W=1 the most favorable. Whave common eigenstates, they should commute (at least in the low energy subspace). Then if there are local projections  $P_W$  onto W=1 for all W in a compatible way, it suffices for A to be condensable, by adding interaction of the form  $-h\sum P_W$ ,  $h\to +\infty$ .
- Such W includes those describing the braidings of the condensed excitations.
  - ⇒ The mutual statistics of condensed excitations must be trivial.
- Pw corresponds to some algebraic structures on A.







When only point-like excitations are condensed, it is known that 
 amust have an (connected commutative separable) algebra
 structure. ⇒ A consists of bosons.

Review: L. Kong, Anyon condensation and tensor categories, Nuclear Physics B 886 (2014)

- Whether A can be condensed or not, does not depend on excitations not in A.
- Excitations not in A may be confined or deconfined excitations in the A condensed phase, depending on their mutual statistics with A.



In 2+1D, condensing A in phase C, we obtain a new phase D, together with a gapped defect M between C and D.

- A condensate is the new vacuum in D.
- Excitations in the new phase D and on the interface M come from the old ones in C and necessarily carry "representations" of A (A-modules).



- Excitations not condensed are divided into two classes
  - those having trivial mutual statistics with A are deconfined (local A-modules);
  - those having non-trivial mutual statistics with A are confined, and stuck on the interface M.
- Mathematically,
  - A condensed phase  $\mathcal{D} = \mathscr{C}_A^{loc}$ : local A-modules in  $\mathscr{C}$
  - Induced gapped interface  $\mathcal{M} = \mathscr{C}_A$ : (all) A-modules in  $\mathscr{C}$





- When A is "large" enough (Langragian algebra) such that  $\mathscr{D}=\operatorname{Vec}$  is the trivial phase, M is a boundary. By boundary-bulk duality we have  $\mathscr{C}=\mathcal{Z}_1^{(1)}(\mathcal{M})$ . However, in 2+1D not every  $\mathscr{C}$  contains a Langragian algebra.
- Fortunately, in 3+1D there is always "large" enough A to create a boundary, which in turn determines the bulk.
   Just need to study such boundary!



## All-boson (AB) 3+1D topological orders

PRX 8, 021074 (2018), arXiv:1704.04221

In 3+1D, when all point-like excitations are bosons, they form Rep(G). Condense them [A = Fun(G)]:

- New phase has no point-like excitations.
- Also no nontrivial string-like excitations due to braiding non-degeneracy. Everything is confined, trivial phase.
- Obtain a boundary (fusion 2-cat) that also has no point-like excitation, only string-like excitations
- Study the braiding between the string on boundary with particles: Strings on boundary given by G (Tannaka Duality).



## All-boson (AB) 3+1D topological orders

PRX 8, 021074 (2018), arXiv:1704.04221

• Such fusion 2-cat classified by  $(G, \omega_4)$ ,  $\omega_4 \in H^4[G, U(1)]$ , just G-graded 2-vector-spaces  $2\mathrm{Vec}_G^{\omega_4}$ .

Similar as bosonic symmetric protected topological (SPT) phases

X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G Wen, Phys. Rev. B 87, 155114 (2013), Science 338, 1604 (2012)

• Non-degenerate braided fusion 2-cat whose point-like excitations are  $\operatorname{Rep}(G)$ , are all of the form  $\mathcal{Z}_1^{(2)}(2\operatorname{Vec}_G^{\omega_4})$ .

Dijkgraaf-Witten gauge theory in 3+1D

R. Dijkgraaf and E. Witten, Comm. Math. Phys. 129, 393 (1990)

Gauged bosonic SPT



## Emergent-fermion (EF) 3+1D topological orders

PRX 9, 021005 (2019), arXiv:1801.08530

In 3+1D, when some point-like excitations are emergent fermions, they form sRep(G'). Condense all bosonic point-like excitations  $[A = Fun(G_b = G^f/Z_2^f)]$ :

- ullet In the new phase, point-like excitations form  $\mathrm{sRep}(Z_2^f) \simeq \mathrm{sVec.}$
- Such 3+1D topological order  $C_{Z_2^f}^4$  is unique. Its string-like excitations can be condensed, after which a boundary  $A_{Z_2^f}^3$  with only point-like excitations  $\operatorname{sRep}(Z_2^f)$  is obtained. Strictly speaking there are also Majorana chains, as condensation descendent from fermions.
- The gapped interface  $A_w^3$  between the original phase  $C_{EF}^4$  and  $C_{Z_2^f}^4$ , the new phase  $C_{Z_2^f}^4$  and its boundary  $A_{Z_2^f}^3$ , form a "sandwich" boundary  $A_b^3$  of the original phase.



## Emergent-fermion (EF) 3+1D topological orders

PRX 9, 021005 (2019), arXiv:1801.08530

- Alternatively, condensing all bosons together with some strings leads to a boundary of the original phase.
- On this boundary, only non-trivial point-like excitation is the fermion. String-like excitations similarly have group-like fusion rules. Closed strings form  $G_b$ . But when considering open strings, there is an extra  $\mathbb{Z}_2^m$  string corresponding to Majorana chain. There are further two cases:
  - EF1 String fusion given by  $G_b \times Z_2^m$ .
    - Classification similar as group super-cohomology theory for fermionic SPTs.

Z.-C. Gu and X.-G Wen, Phys. Rev. B 90, 115141 (2014)

EF2 String fusion given by a nontrivial  $Z_2^m$  extension of  $G_b$ . This case must have emergent Majorana zero modes.

This also has counterpart in fermionic SPTs.

A. Kapustin and R. Thorngren, arXiv:1701.08264; Q.-R. Wang and Z.-C. Gu, arXiv:1703.10937

## Emergent-fermion (EF) 3+1D topological orders

PRX 9, 021005 (2019), arXiv:1801.08530

• Non-degenerate braided fusion 2-cat whose point-like excitations are  $sRep(G^f)$ , are all of the form  $\mathcal{Z}_1^{(2)}(\mathcal{A})$ , with  $\mathcal{A}$  being one of the above two types of fusion 2-cats (called EF 2-cats). They may be realized by higher gauge theories or more complicated tensor network models.

C. Zhu, TL, and X.-G. Wen, PRB 100, 045105 (2019), arXiv:1808.09394.

Gauged fermionic SPT

#### Main result in short

All 3+1D topological orders correspond to gauged SPTs.

## Summary

- Topological defects form n-category
- Anomalous (anomaly-free) topological order and (non-degenerate braided) fusion n-cat
- Boundary-bulk duality and higher Drinfeld center
- Braiding of low-dimensional excitations must be trivial
- Condensation of topological excitations
- Classification in 3+1D
   Gauged bosonic/fermionic SPT

### Thanks for attention!