KNN

K- Nearest Neighbour

Proximity: (211, 221) Two observations:

Euclidean distance (in rectoolzed notation)

Let $\chi_1 = (\chi_{11}, \chi_{21})$ and $\chi_2 = (\chi_{12}, \chi_{22})$ be two rectors.

Eucle-don distance (in general)

	×ı	X2	 ×r
QT ~	RII	121	 (A)
Q2T C	9/12	922	 2pz

The euclidean distance between 24 and 22 can be written as:

$$= \sqrt{\left(\chi_1 - \chi_2\right)^T \left(\chi_1 - \chi_2\right)}$$

(2) finding the meanest neighbour:

step 1: calculate the dist of & from 21', for all i=1(1) n

Step 2: NN = the obs. that corresponds to the shortest distance.

Simplest approach (1-HN):

- 1: min-dist = inf
- 2: for ? From 1 to len(train)
- 3: d = dist. of the test obs. from the itn obs. in boun-data
- 4: if a < min-dist:
- 5: min-dist = d #update min-dist
- nearest-obs-tridex = (
- 7: end if
- 8: end for
- 9: nearest_obs = toain [i,]

3 1-NN algorithm for classification:

10	ouning da	ta!	
	X1 X2	×p	Y
न्यू	مرا هري		41
2 T	A 12 A22	· Ap2	42
~	: :	}	}
ath,	20h, 22	ni abus	y _n

 $n_1 = no. of obs. in training data$ $n_2 = no. of obs. in test data$ A function 1: function to calwhate the eucledian distance.

distance (2, 4) -> returns euclidean alist. between the rectors

function 2: function to calculate the (orget the) NN for one fest observation.

NN (train_x, train-y, a*) -> finds the mearest obs. to at in the training data and get the value of Y for that obs.

D fonction 3:

1NN (train-X, test, trainy) -> returns the values of y for all the obs. In the test data corresp. to the nearest neighbors in the train data.