

$$f(x) = \sin(\pi x)$$

The dynamics has 2 fixed points. Linearize around the smaller fixed point \bar{x} . Regarding the stability of \bar{x} , which one of the following 4 possibilities is realized?

- (a) \bar{x} is stable (not a spiral)
- (b) \bar{x} is a stable spiral
- (c) \bar{x} is unstable (not a spiral)
- (d) \bar{x} is an unstable spiral

LINEARIZE AROUND THE SHALLER FIXED POINT

$$f(x) = \sin(\pi x)$$
 $f(x) = \pi \cos(\pi x)$
 $f(x) = \pi \cos(\pi$

SOCUTION: ++ UNSTABLE NOT SPIRAL

PRIMA TOCCO IN ONEZONTA CE DOCO LA PETTA PNOD

EXERCISE Consider the map

$$f(x) = \frac{1}{\alpha x + 1}$$

with state $x \geq 0$ and parameter $\alpha > 0$. Show that the dynamical system $x_{n+1} = f(x_n)$ has a single fixed point, which is always a stable spiral.

$$S(x) = \frac{1}{4x + 1}$$

$$X = \frac{1}{4 + 1} \implies 4x^{2} + x = 1$$

$$4x^{2} + x - 1 = 0$$

$$\frac{-11\sqrt{1 + 44}}{24} \implies \frac{-1 + \sqrt{1 + 44}}{24}$$

$$g(x) = \frac{1}{4^{1}} = \frac{-\alpha}{(4^{1})^{2}} = -4 \left(4^{1}\right)^{-2} = -4$$

$$= -\alpha \left(\frac{-1 + \sqrt{1 + 4\alpha}}{2} + \frac{1}{2} \right)^{2}$$

$$= -\alpha \left(\frac{\sqrt{1 + 4\alpha} + 1}{2} \right)^{2}$$

$$= -\alpha \left(\frac{\sqrt{1 + 4\alpha} + 1}{2} \right)^{2}$$

$$= -\alpha \left(\frac{2}{(\sqrt{1 + 4\alpha} + 1)^{2}} \right)^{2}$$

$$= -4\alpha \left(\frac{2}{(\sqrt{1 + 4\alpha} + 1)^{2}} \right)^{2}$$

