ötödik osztály, 2019. április, 1/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

4748 + 459720 = 464468	999129 + 839015 = 1838144
25283 + 31420 = 56703	3153 + 411269 = 414422
31853 + 8694 = 40547	1528 + 899317 = 900845
3711 + 21175 = 24886	829927 + 93277 = 923204
931439 + 85878 = 1017317	95038 + 7548 = 102586
65860 - 48427 = 17433	806605 - 13923 = 792682
792937 - 7812 = 785125	800171 - 279714 = 520457
38378 - 6600 = 31778	892664 - 18215 = 874449
399368 - 3946 = 395422	64787 - 7659 = 57128
19875 - 2990 = 16885	81466 - 2609 = 78857

Megoldás 1.4

2 pont/db

$$4 + (-29) + 86 = 61$$

$$93 - 56 + (-95) = -58$$

$$30 + 6 + (-700) = -664$$

$$56 - (-52) + 56 = 164$$

$$384 + 581 + (-751) = 214$$

$$25 - (-13) + 20 = 58$$

$$(-4) + (-16) + (-126) = -146$$

$$(-5) + 411 + 36 = 442$$

$$(-84) + 211 - 4 = 123$$

$$4 - 16 + (-434) = -446$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Megoldás 2	.3				20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2, \, \mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5, \, \mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$140 = 2^2 \cdot 5 \cdot 7$	$286 = 2 \cdot 11 \cdot 13$
$98 = 2 \cdot 7^2$	$2210 = 2 \cdot 5 \cdot 13 \cdot 17$
$96 = 2^5 \cdot 3$	$666 = 2 \cdot 3^2 \cdot 37$
$12376 = 2^3 \cdot 7 \cdot 13 \cdot 17$	$182 = 2 \cdot 7 \cdot 13$
$2200 = 2^3 \cdot 5^2 \cdot 11$	$1120 = 2^5 \cdot 5 \cdot 7$
$16 = 2^4$	$330 = 2 \cdot 3 \cdot 5 \cdot 11$
$60 = 2^2 \cdot 3 \cdot 5$	$1012 = 2^2 \cdot 11 \cdot 23$
$600 = 2^3 \cdot 3 \cdot 5^2$	$4524 = 2^2 \cdot 3 \cdot 13 \cdot 29$
$112 = 2^4 \cdot 7$	$180 = 2^2 \cdot 3^2 \cdot 5$
$2100 = 2^2 \cdot 3 \cdot 5^2 \cdot 7$	$3150 = 2 \cdot 3^2 \cdot 5^2 \cdot 7$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

ötödik osztály, 2019. április, 2/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

660290 + 57755 = 718045	661386 + 5502 = 666888
5390 + 303234 = 308624	8946 + 6062 = 15008
77046 + 21752 = 98798	949337 + 91252 = 1040589
52862 + 4109 = 56971	71359 + 399114 = 470473
3019 + 733473 = 736492	39062 + 68937 = 107999
71119 - 8475 = 62644	89774 - 30182 = 59592
62703 - 23824 = 38879	84728 - 8507 = 76221
58881 - 49429 = 9452	829554 - 14645 = 814909
39198 - 8230 = 30968	95363 - 2845 = 92518
32367 - 14978 = 17389	394093 - 58123 = 335970

Megoldás 1.4

2 pont/db

$$282 + 201 + (-45) = 438$$

$$52 - 7 + 0 = 45$$

$$89 - 91 - (-569) = 567$$

$$(-135) - 6 + 1 = -140$$

$$3 - (-40) - (-69) = 112$$

$$82 + (-91) + 85 = 76$$

$$667 - 1 - (-15) = 681$$

$$(-24) + 37 - (-507) = 520$$

$$680 + 93 + (-16) = 757$$

$$(-81) - (-3) - (-16) = -62$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Megoldás 2	.3				20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$352 = 2^5 \cdot 11$	$16 = 2^4$
$204 = 2^2 \cdot 3 \cdot 17$	$900 = 2^2 \cdot 3^2 \cdot 5^2$
$1680 = 2^4 \cdot 3 \cdot 5 \cdot 7$	$5100 = 2^2 \cdot 3 \cdot 5^2 \cdot 17$
$108 = 2^2 \cdot 3^3$	$432 = 2^4 \cdot 3^3$
$30 = 2 \cdot 3 \cdot 5$	$312 = 2^3 \cdot 3 \cdot 13$
$68 = 2^2 \cdot 17$	$51870 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 19$
$12880 = 2^4 \cdot 5 \cdot 7 \cdot 23$	$1190 = 2 \cdot 5 \cdot 7 \cdot 17$
$210 = 2 \cdot 3 \cdot 5 \cdot 7$	$1144 = 2^3 \cdot 11 \cdot 13$
$532 = 2^2 \cdot 7 \cdot 19$	$112 = 2^4 \cdot 7$
$2850 = 2 \cdot 3 \cdot 5^2 \cdot 19$	$102 = 2 \cdot 3 \cdot 17$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

ötödik osztály, 2019. április, 3/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

6496 + 5889 = 12385	3663 + 994059 = 997722
86854 + 43404 = 130258	32077 + 71979 = 104056
82993 + 168358 = 251351	317416 + 81793 = 399209
78247 + 2241 = 80488	299457 + 46568 = 346025
40993 + 69584 = 110577	4151 + 90199 = 94350
38467 - 32523 = 5944	86753 - 79973 = 6780
89982 - 75832 = 14150	559601 - 48053 = 511548
41464 - 33330 = 8134	56272 - 8299 = 47973
65836 - 8941 = 56895	40958 - 21573 = 19385
65735 - 54315 = 11420	134506 - 88419 = 46087

Megoldás 1.4

2 pont/db

$$62 + (-9) + (-36) = 17$$

$$8 + (-202) - 61 = -255$$

$$(-35) - 5 + (-66) = -106$$

$$2 - (-816) + 0 = 818$$

$$79 - (-8) - 94 = -7$$

$$(-72) + 0 + 65 = -7$$

$$(-26) + (-89) + (-63) = -178$$

$$172 + 68 + (-873) = -633$$

$$7 - (-227) - 17 = 217$$

$$(-13) + (-44) + (-62) = -119$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Megoldás 2	.3				20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2,\,\mathbf{A}=3.$ Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5,\,\mathbf{O}=7.$

Megoldás 2.5

2 pont/db

$420 = 2^2 \cdot 3 \cdot 5 \cdot 7$	$72 = 2^3 \cdot 3^2$
$280 = 2^3 \cdot 5 \cdot 7$	$25740 = 2^2 \cdot 3^2 \cdot 5 \cdot 11 \cdot 13$
$180 = 2^2 \cdot 3^2 \cdot 5$	$11220 = 2^2 \cdot 3 \cdot 5 \cdot 11 \cdot 17$
$12 = 2^2 \cdot 3$	$744 = 2^3 \cdot 3 \cdot 31$
$1210 = 2 \cdot 5 \cdot 11^2$	$48 = 2^4 \cdot 3$
$1755 = 3^3 \cdot 5 \cdot 13$	$176 = 2^4 \cdot 11$
$2178 = 2 \cdot 3^2 \cdot 11^2$	$8 = 2^3$
$276 = 2^2 \cdot 3 \cdot 23$	$696 = 2^3 \cdot 3 \cdot 29$
$40 = 2^3 \cdot 5$	$45 = 3^2 \cdot 5$
$144 = 2^4 \cdot 3^2$	$990 = 2 \cdot 3^2 \cdot 5 \cdot 11$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

ötödik osztály, 2019. április, 4/12

1. Összeadás és kivonás

így 11x = 847, amiből x = 77.

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

38647 + 32499 = 71146	24084 + 79963 = 104047
26801 + 51596 = 78397	343832 + 92931 = 436763
7569 + 867378 = 874947	54406 + 9989 = 64395
6225 + 8757 = 14982	6749 + 73546 = 80295
30922 + 6891 = 37813	631073 + 25041 = 656114
682380 - 5598 = 676782	41837 - 5114 = 36723
674265 - 17731 = 656534	31398 - 5461 = 25937
7871 - 7700 = 171	115147 - 81878 = 33269
165252 - 77773 = 87479	315012 - 23964 = 291048
44171 - 2742 = 41429	105798 - 23647 = 82151

Megoldás 1.4

2 pont/db

$$(-28) + (-54) - 65 = -147$$

$$327 - 0 - 664 = -337$$

$$77 - 10 - (-42) = 109$$

$$73 - (-167) + 6 = 246$$

$$(-57) + 14 + 1 = -42$$

$$(-46) + (-215) + (-2) = -263$$

$$(-87) - 6 - 51 = -144$$

$$33 + (-58) + (-390) = -415$$

$$(-86) - 8 + (-44) = -138$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Megoldás 2	.3				20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5 2 pont/db

$$180 = 2^{2} \cdot 3^{2} \cdot 5$$

$$72930 = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13 \cdot 17$$

$$112840 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \cdot 31$$

$$770 = 2 \cdot 5 \cdot 7 \cdot 11$$

$$12 = 2^{2} \cdot 3$$

$$18600 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 31$$

$$200 = 2^{3} \cdot 5^{2}$$

$$88 = 2^{3} \cdot 11$$

$$3404 = 2^{2} \cdot 23 \cdot 37$$

$$24 = 2^{3} \cdot 3$$

$$3405 = 2^{4} \cdot 3 \cdot 7 \cdot 41$$

$$3406 = 2^{3} \cdot 7 \cdot 11$$

$$3406 = 2^{3} \cdot 7 \cdot 11$$

$$3407 = 2^{4} \cdot 3 \cdot 7 \cdot 41$$

$$3407 = 2^{4} \cdot 3 \cdot 7 \cdot 41$$

$$3407 = 2^{4} \cdot 3 \cdot 7 \cdot 41$$

$$3407 = 2^{4} \cdot 3 \cdot 7 \cdot 41$$

$$3407 = 2^{4} \cdot 3 \cdot 7 \cdot 41$$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

ötödik osztály, 2019. április, 5/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

317554 + 61531 = 379085	94765 + 73582 = 168347
28777 + 68531 = 97308	35118 + 7781 = 42899
98621 + 602043 = 700664	99602 + 18492 = 118094
15775 + 2524 = 18299	30531 + 9328 = 39859
6228 + 16556 = 22784	443550 + 1824 = 445374
732201 - 3230 = 728971	63088 - 30729 = 32359
6590 - 6210 = 380	10601 - 9330 = 1271
723790 - 92424 = 631366	89164 - 4137 = 85027
183084 - 91390 = 91694	630265 - 84187 = 546078
6283 - 2833 = 3450	89768 - 74068 = 15700

Megoldás 1.4

2 pont/db

$$\begin{array}{lll} (-82)-(-25)+(-21)=-78 & 6+(-517)+21=-490 \\ (-29)+414+95=480 & 298+30-143=185 \\ 90+(-86)+(-4)=0 & (-1)-(-94)-(-72)=165 \\ 71-245-0=-174 & 2-16-(-526)=512 \\ 0-57-34=-91 & (-5)+12-69=-62 \end{array}$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Megoldás 2.3				20 pont	
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$124 = 2^2 \cdot 31$	$280 = 2^3 \cdot 5 \cdot 7$
$132 = 2^2 \cdot 3 \cdot 11$	$24 = 2^3 \cdot 3$
$88 = 2^3 \cdot 11$	$1672 = 2^3 \cdot 11 \cdot 19$
$120 = 2^3 \cdot 3 \cdot 5$	$2002 = 2 \cdot 7 \cdot 11 \cdot 13$
$96 = 2^5 \cdot 3$	$10472 = 2^3 \cdot 7 \cdot 11 \cdot 17$
$64 = 2^6$	$80 = 2^4 \cdot 5$
$72 = 2^3 \cdot 3^2$	$3420 = 2^2 \cdot 3^2 \cdot 5 \cdot 19$
$168 = 2^3 \cdot 3 \cdot 7$	$48 = 2^4 \cdot 3$
$84 = 2^2 \cdot 3 \cdot 7$	$30 = 2 \cdot 3 \cdot 5$
$1815 = 3 \cdot 5 \cdot 11^2$	$8 = 2^3$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

ötödik osztály, 2019. április, 6/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

97872 + 88446 = 186318	496949 + 59998 = 556947
189120 + 1768 = 190888	18740 + 9748 = 28488
9432 + 38533 = 47965	1540 + 84726 = 86266
51989 + 5394 = 57383	647350 + 307445 = 954795
40224 + 41449 = 81673	5398 + 1009 = 6407
13974 - 7058 = 6916	71928 - 7326 = 64602
961685 - 19132 = 942553	504078 - 60835 = 443243
563707 - 235894 = 327813	306908 - 7338 = 299570
280906 - 8208 = 272698	50366 - 8386 = 41980
127086 - 73213 = 53873	849903 - 8650 = 841253

Megoldás 1.4

2 pont/db

$$(-43) - 10 - 41 = -94
88 + 228 - 39 = 277
(-30) - 33 - 3 = -66
25 - 779 - (-390) = -364
(-12) - 37 + (-48) = -97$$

$$(-40) + (-83) - (-95) = -28
(-98) + 51 + (-98) = -145
13 - 64 + 96 = 45
791 + 74 - 157 = 708
65 - (-593) - (-12) = 670$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Megoldás 2.3					20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$36 = 2^2 \cdot 3^2$	$32 = 2^5$
$936 = 2^3 \cdot 3^2 \cdot 13$	$7068 = 2^2 \cdot 3 \cdot 19 \cdot 31$
$1560 = 2^3 \cdot 3 \cdot 5 \cdot 13$	$180 = 2^2 \cdot 3^2 \cdot 5$
$8 = 2^3$	$204 = 2^2 \cdot 3 \cdot 17$
$16 = 2^4$	$168 = 2^3 \cdot 3 \cdot 7$
$1452 = 2^2 \cdot 3 \cdot 11^2$	$280 = 2^3 \cdot 5 \cdot 7$
$28 = 2^2 \cdot 7$	$60 = 2^2 \cdot 3 \cdot 5$
$152 = 2^3 \cdot 19$	$480 = 2^5 \cdot 3 \cdot 5$
$132 = 2^2 \cdot 3 \cdot 11$	$112 = 2^4 \cdot 7$
$20 = 2^2 \cdot 5$	$50512 = 2^4 \cdot 7 \cdot 11 \cdot 41$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

ötödik osztály, 2019. április, 7/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10$ pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x + 10x = 11x, és így 11x = 847, amiből x = 77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

9993 + 75791 = 85784	973854 + 943945 = 1917799
30259 + 2717 = 32976	180513 + 1748 = 182261
3630 + 55206 = 58836	4566 + 900205 = 904771
7099 + 32374 = 39473	92797 + 80887 = 173684
13738 + 56527 = 70265	2245 + 610578 = 612823
337020 + 33523 = 303497	6059 - 4789 = 1270
58176 - 9523 = 48653	755894 - 72182 = 683712
723092 - 6477 = 716615	773166 - 729825 = 43341
285370 - 216769 = 68601	58236 - 50801 = 7435
39076 - 4654 = 34422	26022 - 1325 = 24697

Megoldás 1.4

2 pont/db

$$67 + (-8) + 4 = 63 \qquad (-52) - 50 - 0 = -102$$

$$0 + 387 + (-24) = 363 \qquad 494 - (-87) + (-43) = 538$$

$$(-77) - 1 + (-4) = -82 \qquad (-7) - (-56) + 15 = 64$$

$$(-92) + (-27) + (-90) = -209 \qquad (-44) - (-6) + (-37) = -75$$

$$632 + (-52) + 5 = 585 \qquad (-5) + 12 + (-677) = -670$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Megoldás 2.3					20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$8 = 2^3$	$112 = 2^4 \cdot 7$
$1400 = 2^3 \cdot 5^2 \cdot 7$	$10296 = 2^3 \cdot 3^2 \cdot 11 \cdot 13$
$63 = 3^2 \cdot 7$	$912 = 2^4 \cdot 3 \cdot 19$
$1140 = 2^2 \cdot 3 \cdot 5 \cdot 19$	$3040 = 2^5 \cdot 5 \cdot 19$
$94710 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 41$	$408 = 2^3 \cdot 3 \cdot 17$
$1352 = 2^3 \cdot 13^2$	$4784 = 2^4 \cdot 13 \cdot 23$
$140 = 2^2 \cdot 5 \cdot 7$	$20 = 2^2 \cdot 5$
$60 = 2^2 \cdot 3 \cdot 5$	$32200 = 2^3 \cdot 5^2 \cdot 7 \cdot 23$
$966 = 2 \cdot 3 \cdot 7 \cdot 23$	$735 = 3 \cdot 5 \cdot 7^2$
$6375 = 3 \cdot 5^3 \cdot 17$	$80 = 2^4 \cdot 5$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

ötödik osztály, 2019. április, 8/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

93662 + 62727 = 156389	8688 + 47606 = 56294
3793 + 12374 = 16167	937593 + 54594 = 992187
1465 + 91167 = 92632	41929 + 110039 = 151968
97959 + 38524 = 136483	412354 + 211881 = 624235
42808 + 79699 = 122507	61669 + 475409 = 537078
75217 - 46325 = 28892	92725 - 1127 = 91598
477451 - 3457 = 473994	415794 - 124674 = 291120
771484 - 10980 = 760504	758481 - 32176 = 726305
23974 - 14875 = 9099	60656 - 56982 = 3674
57352 - 9721 = 47631	995633 - 553760 = 441873

Megoldás 1.4

2 pont/db

$$\begin{array}{lll} 9+(-52)-280=-323 & (-88)+(-44)+1=-131 \\ 88+(-92)+(-991)=-995 & 4-(-3)+(-587)=-580 \\ 306+(-692)-0=-386 & (-95)+(-39)+81=-53 \\ 586-94-(-3)=495 & 88-(-66)-(-584)=738 \\ 404-(-50)+83=537 & (-850)+54+(-66)=-862 \end{array}$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Megoldás 2.3					20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$350 = 2 \cdot 5^2 \cdot 7$	$176 = 2^4 \cdot 11$
$660 = 2^2 \cdot 3 \cdot 5 \cdot 11$	$48 = 2^4 \cdot 3$
$80 = 2^4 \cdot 5$	$360 = 2^3 \cdot 3^2 \cdot 5$
$40 = 2^3 \cdot 5$	$2220 = 2^2 \cdot 3 \cdot 5 \cdot 37$
$496 = 2^4 \cdot 31$	$16 = 2^4$
$944 = 2^4 \cdot 59$	$36 = 2^2 \cdot 3^2$
$1624 = 2^3 \cdot 7 \cdot 29$	$11484 = 2^2 \cdot 3^2 \cdot 11 \cdot 29$
$32 = 2^5$	$96 = 2^5 \cdot 3$
$480 = 2^5 \cdot 3 \cdot 5$	$100 = 2^2 \cdot 5^2$
$132 = 2^2 \cdot 3 \cdot 11$	$16275 = 3 \cdot 5^2 \cdot 7 \cdot 31$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

ötödik osztály, 2019. április, 9/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

39827 + 27531 = 67358	4451 + 968976 = 973427
68179 + 244726 = 312905	60906 + 51605 = 112511
958401 + 5186 = 963587	6448 + 233870 = 240318
48319 + 697364 = 745683	15637 + 3418 = 19055
2409 + 6686 = 9095	7882 + 25754 = 33636
93038 - 36742 = 56296	899201 - 65490 = 833711
36386 - 9325 = 27061	82585 - 42946 = 39639
348484 - 292072 = 56412	841284 - 9109 = 832175
76516 - 1624 = 74892	74334 - 34925 = 39409
593040 - 6438 = 586602	85381 - 77583 = 7798

Megoldás 1.4

2 pont/db

$$\begin{array}{lll} (-71)+6-(-12)=-53 & (-73)-(-711)-(-4)=642 \\ (-5)-(-32)-(-679)=706 & 8-33-(-59)=34 \\ (-57)+(-660)+(-960)=-1677 & (-425)+21+(-289)=-693 \\ (-19)-18-47=-84 & (-25)+5-67=-87 \\ (-6)-(-40)-(-4)=38 & (-99)+(-40)+15=-124 \end{array}$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Megoldás 2.3					20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$352 = 2^5 \cdot 11$	$2125 = 5^3 \cdot 17$
$87248 = 2^4 \cdot 7 \cdot 19 \cdot 41$	$4264 = 2^3 \cdot 13 \cdot 41$
$2380 = 2^2 \cdot 5 \cdot 7 \cdot 17$	$168 = 2^3 \cdot 3 \cdot 7$
$72 = 2^3 \cdot 3^2$	$56 = 2^3 \cdot 7$
$6840 = 2^3 \cdot 3^2 \cdot 5 \cdot 19$	$48 = 2^4 \cdot 3$
$64 = 2^6$	$1680 = 2^4 \cdot 3 \cdot 5 \cdot 7$
$504 = 2^3 \cdot 3^2 \cdot 7$	$32 = 2^5$
$40 = 2^3 \cdot 5$	$112 = 2^4 \cdot 7$
$24360 = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 29$	$450 = 2 \cdot 3^2 \cdot 5^2$
$1827 = 3^2 \cdot 7 \cdot 29$	$780 = 2^2 \cdot 3 \cdot 5 \cdot 13$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

Beadandó dolgozat megoldások

ötödik osztály, 2019. április, 10/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

2406 + 53887 = 56293	334166 + 62249 = 396415
71689 + 170310 = 241999	24792 + 9684 = 34476
62445 + 370578 = 433023	2851 + 3263 = 6114
44421 + 7092 = 51513	87512 + 70974 = 158486
57062 + 97454 = 154516	17147 + 844834 = 861981
525493 + 10342 = 515151	6857 - 2000 = 4857
82375 - 29705 = 52670	770662 - 284530 = 486132
38614 - 2304 = 36310	577518 - 291062 = 286456
25286 - 6848 = 18438	347522 - 1316 = 346206
62792 - 1321 = 61471	3253 - 1666 = 1587

Megoldás 1.4

2 pont/db

$$(-4) - 726 - (-165) = -565 9 + 475 - (-12) = 496 9 + 613 + 0 = 622 (-824) + (-96) - (-61) = -859 952 + (-84) + (-4) = 864$$

$$86 - 8 + (-299) = -221 22 - (-497) + (-2) = 517 60 - (-47) - 31 = 76 (-74) + (-91) + (-12) = -177 (-69) - (-36) + (-72) = -105$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

Mivel:

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

Az összeadás tehát:

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Sárinak igaza volt és a kockák felső lapján 3, 3, és 5 vagy 5, 5 és 3 pötty lehetett.

A három kockával legfeljebb $3\cdot 6=18$ -at lehet dobni. Ennél kisebb, de 10-nél nagyobb törzsszámok: 11 és 13. A 11 három törzsszám összegeként csak mint 3+3+5 kapható, a 13 pedig mint 5+5+3. Más megoldás nincs.

Megoldás 2	.3				20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$32 = 2^5$	$9350 = 2 \cdot 5^2 \cdot 11 \cdot 17$
$204 = 2^2 \cdot 3 \cdot 17$	$416 = 2^5 \cdot 13$
$144 = 2^4 \cdot 3^2$	$11600 = 2^4 \cdot 5^2 \cdot 29$
$4025 = 5^2 \cdot 7 \cdot 23$	$312 = 2^3 \cdot 3 \cdot 13$
$2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$	$16 = 2^4$
$34580 = 2^2 \cdot 5 \cdot 7 \cdot 13 \cdot 19$	$720 = 2^4 \cdot 3^2 \cdot 5$
$25259 = 13 \cdot 29 \cdot 67$	$14280 = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 17$
$540 = 2^2 \cdot 3^3 \cdot 5$	$61712 = 2^4 \cdot 7 \cdot 19 \cdot 29$
$728 = 2^3 \cdot 7 \cdot 13$	$30184 = 2^3 \cdot 7^3 \cdot 11$
$64 = 2^6$	$1456 = 2^4 \cdot 7 \cdot 13$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

Az a) kérdésre a választ megtaláljuk a Prímszámok segédanyag Eratosztenész szitája című fejezetében. De a következőképpen is gondolkodhatunk: jelöljük n-nel a $2\cdot 3\cdot 5\cdot 7\cdot 11$ számot, ekkor az $n+2,\ n+3,\ n+4,\ ...,\ n+11$ tíz egymást

követő szám között nincs prímszám, hiszen mindegyiknek van 1-nél nagyobb és nála kisebb osztója, mert mindegyik osztható a 2, 3, 5, 7, 11 törzsszámok valamelyikével. A prímszámtáblázatból azt olvashatjuk ki, hogy először a 114-gyel kezdődő 10 (13) egymást követő szám között nem találunk prímet.

3 pont

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

Hosszúhetény, 2019. április 14.

Beadandó dolgozat megoldások

ötödik osztály, 2019. április, 11/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

868467 + 74352 = 942819	20158 + 86927 = 107085
3310 + 32615 = 35925	10844 + 1852 = 12696
10450 + 96798 = 107248	8151 + 697103 = 705254
64577 + 12946 = 77523	2531 + 34591 = 37122
806824 + 8386 = 815210	95541 + 3490 = 99031
950563 - 7747 = 942816	42140 - 13424 = 28716
97233 - 91589 = 5644	292894 - 18706 = 274188
658766 - 8400 = 650366	51454 - 4837 = 46617
13696 - 8438 = 5258	40981 - 7878 = 33103
807271 - 359563 = 447708	967315 - 5341 = 961974

Megoldás 1.4

2 pont/db

$$\begin{array}{lll} (-98)-96+(-12)=-206 & (-77)+51+86=60 \\ 11+33+0=44 & 177-(-167)+(-84)=260 \\ (-800)+295+592=87 & 8+(-40)-14=-46 \\ 5+(-39)-7=-41 & 30+54+(-36)=48 \\ 469+(-45)-42=382 & (-86)+(-366)+50=-402 \end{array}$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

Mivel:

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

Az összeadás tehát:

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Sárinak igaza volt és a kockák felső lapján 3, 3, és 5 vagy 5, 5 és 3 pötty lehetett.

A három kockával legfeljebb $3\cdot 6=18$ -at lehet dobni. Ennél kisebb, de 10-nél nagyobb törzsszámok: 11 és 13. A 11 három törzsszám összegeként csak mint 3+3+5 kapható, a 13 pedig mint 5+5+3. Más megoldás nincs.

Megoldás 2	.3				20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$$120 = 2^{3} \cdot 3 \cdot 5$$

$$12 = 2^{2} \cdot 3$$

$$1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11$$

$$240 = 2^{4} \cdot 3 \cdot 5$$

$$1120 = 2^{5} \cdot 5 \cdot 7$$

$$1120 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 19$$

$$364 = 2^{2} \cdot 7 \cdot 13$$

$$18 = 2 \cdot 3^{2}$$

$$1496 = 2^{3} \cdot 11 \cdot 17$$

$$56 = 2^{3} \cdot 7$$

$$148 = 2^{4} \cdot 3$$

$$10010 = 2 \cdot 5 \cdot 7 \cdot 11 \cdot 13$$

$$28200 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 47$$

$$176 = 2^{4} \cdot 11$$

$$8 = 2^{3}$$

$$5698 = 2 \cdot 7 \cdot 11 \cdot 37$$

$$112 = 2^{4} \cdot 7$$

$$1104 = 2^{4} \cdot 3 \cdot 23$$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

Az a) kérdésre a választ megtaláljuk a Prímszámok segédanyag Eratosztenész szitája című fejezetében. De a következőképpen is gondolkodhatunk: jelöljük n-nel a $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$ számot, ekkor az n+2, n+3, n+4, ..., n+11 tíz egymást

követő szám között nincs prímszám, hiszen mindegyiknek van 1-nél nagyobb és nála kisebb osztója, mert mindegyik osztható a 2, 3, 5, 7, 11 törzsszámok valamelyikével. A prímszámtáblázatból azt olvashatjuk ki, hogy először a 114-gyel kezdődő 10 (13) egymást követő szám között nem találunk prímet.

3 pont

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

Hosszúhetény, 2019. április 14.

Beadandó dolgozat megoldások

ötödik osztály, 2019. április, 12/12

1. Összeadás és kivonás

Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek
(III 2 17)

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

Megoldás 1.3

2 pont/db

9402 + 80662 = 90064	34189 + 347684 = 381873
94892 + 38981 = 133873	90675 + 8315 = 98990
71150 + 4424 = 75574	5971 + 322631 = 328602
148836 + 8828 = 157664	3276 + 19417 = 22693
420066 + 57747 = 477813	84964 + 19579 = 104543
585501 - 57809 = 527692	57104 - 6803 = 50301
90036 - 3758 = 86278	61093 - 5518 = 55575
42541 - 5821 = 36720	98522 - 9764 = 88758
605521 - 3151 = 602370	229900 - 6930 = 222970
515349 - 29739 = 485610	502691 - 129695 = 372996

Megoldás 1.4

2 pont/db

$$733 + 10 - 13 = 730$$

$$(-550) - 36 + (-22) = -608$$

$$(-665) + 6 + 3 = -656$$

$$52 + 912 + (-180) = 784$$

$$4 + (-1) - (-25) = 28$$

$$89 + 94 - 23 = 160$$

$$23 + (-40) + (-90) = -107$$

$$(-54) + 89 - (-55) = 90$$

$$26 + (-48) + (-74) = -96$$

$$584 + (-7) - 3 = 574$$

Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

Mivel:

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
 ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$ ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$ ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$ ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$

Az összeadás tehát:

$$5240 \\ +5210 \\ 10450$$

Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így $50 \cdot 101 = 5050$.

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

Megoldás 1.7

10 pont

$$\begin{array}{l} A=1, \ \dot{A}=2, \ B=3, \ C=4, \ Cs=5, \ D=6, \ Dz=7, \ Dzs=8, \ E=9, \ \dot{E}=10, \\ F=11, \ G=12, \ Gy=13, \ H=14, \ I=15, \ \dot{I}=16, \ J=17, \ K=18, \ L=19, \\ Ly=20, \ M=21, \ N=22, \ Ny=23, \ O=24, \ \dot{O}=25, \ \ddot{O}=26, \ \ddot{O}=27, \ P=28, \\ Q=29, \ R=30, \ S=31, \ Sz=32, \ T=33, \ Ty=34, \ U=35, \ \dot{U}=36, \ \ddot{U}=37, \\ \ddot{U}=38, \ V=39, \ W=40, \ X=41, \ Y=42, \ Z=43, \ Zs=44. \end{array}$$

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé, ami tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emmellet a adatok kódolásába is bevezet.

2. Prímszámok

Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Sárinak igaza volt és a kockák felső lapján 3, 3, és 5 vagy 5, 5 és 3 pötty lehetett.

A három kockával legfeljebb $3\cdot 6=18$ -at lehet dobni. Ennél kisebb, de 10-nél nagyobb törzsszámok: 11 és 13. A 11 három törzsszám összegeként csak mint 3+3+5 kapható, a 13 pedig mint 5+5+3. Más megoldás nincs.

Megoldás 2	.3				20 pont
2	3	5	7	11	13
17	19	23	29	31	37
41	43	47	53	59	61
67	71	73	79	83	89
97	101	103	107	109	113
127	131	137	139	149	151
157	163	167	173	179	181
191	193	197	199		

Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az $\mathbf{M}\mathbf{A}$ csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát $\mathbf{M}=2$, $\mathbf{A}=3$. Az $\mathbf{M}\mathbf{L}\mathbf{O}$ vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért $\mathbf{L}=5$, $\mathbf{O}=7$.

Megoldás 2.5

2 pont/db

$432 = 2^4 \cdot 3^3$	$1452 = 2^2 \cdot 3 \cdot 11^2$
$348 = 2^2 \cdot 3 \cdot 29$	$468 = 2^2 \cdot 3^2 \cdot 13$
$36 = 2^2 \cdot 3^2$	$48 = 2^4 \cdot 3$
$250 = 2 \cdot 5^3$	$16 = 2^4$
$630 = 2 \cdot 3^2 \cdot 5 \cdot 7$	$8364 = 2^2 \cdot 3 \cdot 17 \cdot 41$
$56100 = 2^2 \cdot 3 \cdot 5^2 \cdot 11 \cdot 17$	$208 = 2^4 \cdot 13$
$12 = 2^2 \cdot 3$	$1716 = 2^2 \cdot 3 \cdot 11 \cdot 13$
$760 = 2^3 \cdot 5 \cdot 19$	$50 = 2 \cdot 5^2$
$24 = 2^3 \cdot 3$	$8 = 2^3$
$1064 = 2^3 \cdot 7 \cdot 19$	$44 = 2^2 \cdot 11$

Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

Az a) kérdésre a választ megtaláljuk a Prímszámok segédanyag Eratosztenész szitája című fejezetében. De a következőképpen is gondolkodhatunk: jelöljük n-nel a $2\cdot 3\cdot 5\cdot 7\cdot 11$ számot, ekkor az $n+2,\ n+3,\ n+4,\ ...,\ n+11$ tíz egymást

követő szám között nincs prímszám, hiszen mindegyiknek van 1-nél nagyobb és nála kisebb osztója, mert mindegyik osztható a 2, 3, 5, 7, 11 törzsszámok valamelyikével. A prímszámtáblázatból azt olvashatjuk ki, hogy először a 114-gyel kezdődő 10 (13) egymást követő szám között nem találunk prímet.

3 pont

- b) Például: $48, 49, 50, 51, 52, \underline{53}, 54, 55, 56, 57;$ 3 pont
- c) Például: $\underline{19}$, 20, 21, 22, $\underline{23}$, 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között: $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$ de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

Hosszúhetény, 2019. április 14.