K-theory and G-theory of projective bundles and derived blow-ups (plus miscellany)

Jeroen Hekking

KTH Royal Institute of Technology hekking@kth.se

April 11, 2022

Overview

- Finiteness conditions
- 2 Operations in *K*-theory
- 3 Operations in *G*-theory
- 4 Blow-ups
- 5 K- and G-theory of blow-ups
- 6 End

The Noetherian assumption

Convention: everything derived, (Sp,\otimes) is the symmetric monoidal category of spectra.

Definition

A ring $A \in s\Re ing$ is Noetherian is $\pi_0 A$ is Noetherian and each $\pi_n A$ is finitely generated (= finitely presented) over $\pi_0 A$.

Definition

An algebraic stack X is *Noetherian* if it is qcqs and if for any smooth map $Spec\ A \to X$, the ring A is Noetherian.

Throughout, we assume all algebraic stacks to be Noetherian, hence all rings to be Noetherian.

Perfect modules

Definition

Finiteness conditions

000000

Let $A \in s\Re$ ing.

- The category of finitely presented modules $\operatorname{Mod}_A^{tp}$ is the smallest stable subcategory of Mod_A which contains A.
- The category of perfect modules is the closure of Mod_A^{p} under extensions in Mod_A .

Lemma

 $M \in \mathcal{M}\mathrm{od}_A$ is finitely presented if and only if it is obtained from 0 by a finite number of cell attachments.

Fnd

Perfect modules

Lemma

 $M\in \operatorname{\mathcal{M}od}_{\mathcal{A}}$ is perfect iff it is compact iff it is dualizable .

Coherent modules

Definition

 $M \in \mathcal{M}\mathrm{od}_A$ is *coherent* if $\pi_n M$ if finitely presented over $\pi_0 A$ for all n, and M has bounded homotopy. Notation: $\mathrm{Coh}(A)$.

^aLurie does not demand the boundedness assumption (e.g. in SAG). We want this due to the Eilenberg-Mazur swindle.

Coherent modules

Definition

Finiteness conditions

000000

 $M \in \operatorname{Mod}_A$ is *coherent* if $\pi_n M$ if finitely presented over $\pi_0 A$ for all n, and M has bounded homotopy. Notation: $\operatorname{Coh}(A)$.

Lemma

If $R \in Coh(A)$, then $Perf(A) \subset Coh(A)$.

Global versions & K-theory (once more)

Write Art for the category of algebraic stack. Fix $X \in Art$.

- $\mathcal{M} \in \mathrm{QCoh}(X)$ is coherent or perfect if it is so smooth-locally.
- Notation: Coh(X) and Perf(X).
- If X has bounded structure sheaf, then $\operatorname{Perf}(X) \subset \operatorname{Coh}(X)$.
- The K-theory space of X is $K(X) := K(\operatorname{Perf}(X))$ (resp. the *spectrum* is $K^B(X) := K^B(\operatorname{Perf}(X))$).
- The *G*-theory space of X is G(X) := K(Coh(X))(resp. the *spectrum* is $G^B(X) := K^B(Coh(X))$.

Recall, $K^B(\mathcal{C})$ is roughly (equivalent to the spectrum defined) as follows:

- Define $\mathcal{C} \subset F\mathcal{C}$ such that $K(F\mathcal{C}) = 0$, and put $\Sigma\mathcal{C} := F\mathcal{C}/\mathcal{C}$.
- Then $\mathcal{C} \to F\mathcal{C} \to \Sigma\mathcal{C}$ is (strict?) exact, so $K_{n+1}(\Sigma\mathcal{C}) = K_n(\mathcal{C})$.
- Put $K^B(\mathcal{C}) := \operatorname{colim}_n \Omega^n K(\Sigma^n \mathcal{C})$.
- Note $\pi_n \Omega^m K(\Sigma^m \mathcal{C}) = \pi_{n+m} K(\Sigma^m \mathcal{C}) = \pi_n K(\mathcal{C})$.

End

Finiteness conditions

00000

Cup product

Lemma

A biexact functor $\mathbb{C} \times \mathbb{D} \to \mathcal{E}$ induces $K^B(\mathbb{C}) \otimes K^B(\mathbb{D}) \to K^B(\mathcal{E})$, which induces maps $K_n(\mathbb{C}) \times K_m(\mathbb{D}) \to K_{n+m}(\mathcal{E})$.

Now

$$\operatorname{\mathcal{P}erf}(X) \times \operatorname{\mathcal{P}erf}(X) \xrightarrow{(-)\otimes(-)} \to \operatorname{\mathcal{P}erf}(X)$$

is biexact, which gives us a map

$$\cup: K^B(X) \otimes K^B(X) \to K^B(X)$$

called the *cup product*. This makes $K^B(X)$ into an \mathbb{E}_{∞} -ring spectrum. (Reason: use naturality in multilinear functors and symmetric monoidal structure on $\mathcal{P}erf(X)$?)

Pullback & Gysin map

For $f: X \to Y$ in $\mathcal{A}\mathrm{rt}$, the exact, symmetric monoidal functor $f^*: \mathrm{Perf}(Y) \to \mathrm{Perf}(X)$ induces a map of \mathbb{E}_{∞} -ring spectra

$$f^*: K^B(Y) \to K^B(X)$$

Definition

If $f_*: \operatorname{QCoh}(X) \to \operatorname{QCoh}(Y)$ preserves perfect complexes, then we have the *Gysin map*

$$f_*: K^B(X) \to K^B(Y)$$

Remark

In [K21], certain technical conditions are given to ensure the Gysin map exists and interacts nicely with the cup product. I will highlight one.

End

Finite cohomological dimension

Definition

Let $f: X \to Y$ in Art.

- f is of finite cohomological dimension (fcd) if there is $n \ge 0$ such that $f_*(\operatorname{QCoh}(X)_{>0}) \subset \operatorname{QCoh}(Y)_{>-n}$
- f is universally of fcd if for all qcqs Y' over Y, the base change $X' \rightarrow Y'$ is of fcd

Now consider a cartesian square

$$X' \xrightarrow{g_2} X$$

$$\downarrow^{f'} \qquad \downarrow$$

$$Y' \xrightarrow{g_1} Y$$

This gives a natural map

$$\varphi: g_1^* f_* \to f_*' g_2^*$$

If f is universally of fcd, it satisfies base-change, i.e., φ is an equivalence.

Finite cohomological dimension

Proposition

If $f: X \to Y$ is universally of fcd, then $f_*: \operatorname{QCoh}(X) \to \operatorname{QCoh}(Y)$ preserves perfect complexes iff it does so smooth-locally.

Projection formula

Lemma

If $f: X \to Y$ is universally of fcd, then it satisfies the projection formula, stating that

$$f_*(M) \otimes N \to f_*(M \otimes f^*N)$$

is an equivalence, for all $M \in \mathrm{QCoh}(X)$, $N \in \mathrm{QCoh}(Y)$.

Proposition

If $f: X \to Y$ is universally of fcd such that f_* preserves perfect complexes, then

$$f_*(m) \cup y \simeq f_*(m \cup f^*(y))$$

for all $m \in K^B(X)$, $y \in K^B(Y)$.

Projection formula

Proposition

If $f: X \to Y$ is universally of fcd such that f_* preserves perfect complexes, then

$$f_*(m) \cup y \simeq f_*(m \cup f^*(y))$$

for all $m \in K^B(X)$, $y \in K^B(Y)$.

Absolute perfection

Definition

Let $X \in Art$.

- X is perfect if the canonical map $\operatorname{Ind}(\operatorname{\mathcal Perf}(X)) \to \operatorname{QCoh}(X)$ is an equivalence.
- For $Z \subset |X|$ closed, write QCoh(X on Z) for the full subcategory of $F \in \mathrm{QCoh}(X)$ supported on Z. Similarly for $\mathrm{Perf}(X \text{ on } Z)$.
- Now X is absolutely perfect if

$$\operatorname{Ind}(\operatorname{\mathcal Perf}(X \text{ on } Z)) \xrightarrow{\simeq} \operatorname{QCoh}(X \text{ on } Z)$$

for all cocompact closed $Z \subset |X|$.

Note: if X is perfect then $\operatorname{Perf}(X) = \operatorname{QCoh}(X)^{\omega}$.

Localization

Put $K^B(X \text{ on } Z) := K^B(\text{Perf}(X \text{ on } Z)).$

Proposition

If X is absolutely perfect, then for every cocompact $Z \subset |X|$, we have an exact triangle

$$K^B(X \ on \ Z) \to K^B(X) \xrightarrow{j^*} K^B(X \setminus Z)$$

The G-spectrum is the G-space

Proposition

The canonical map $G(X) \rightarrow G^B(X)$ is an equivalence.

Roughly:

- The theorem of the heart says that if \mathcal{C} has bounded t-structure, then $K(\mathcal{C}) \simeq K(\mathcal{C}^{\heartsuit})$.
- An abelian category is *noetherian* if all objects are noetherian.
- If \mathcal{C} has bounded *t*-structure and the heart is noetherian, then $K(\mathcal{C}) \simeq K^B(\mathcal{C})$.
- Since Coh(X) has bounded t-structure and $Coh(X)^{\heartsuit}$ is noetherian, the claim follows.

Cap product

Observe that

$$\operatorname{\mathcal{P}erf}(X) \times \operatorname{\mathcal{C}oh}(X) \xrightarrow{(-)\otimes (-)} \operatorname{Q}\operatorname{\mathcal{C}oh}(X)$$

lands in Coh(X). Indeed, for Spec $A \to X$,

$$\operatorname{Mod}_A^{fp} \times \operatorname{Coh}(A) \xrightarrow{(-)\otimes (-)} \operatorname{Mod}_A$$

lands in Coh(A) since $A \otimes M = M$. Now use that Coh(A) is stable under retracts.

Definition

The functor $\operatorname{Perf}(X) \times \operatorname{Coh}(X) \xrightarrow{(-)\otimes(-)} \operatorname{Coh}(X)$ induces the *cap product*

$$\cap: K^B(X) \otimes G(X) \rightarrow G(X)$$

making G(X) a $K^B(X)$ -module.

Gysin map

Suppose that $f: X \to Y$ is of finite Tor-amplitude n. Then f^* restricts to a functor $\operatorname{QCoh}(Y)_{\leq 0} \to \operatorname{QCoh}(X)_{\leq n}$, and therefore gives a functor

$$f^*: \operatorname{Coh}(Y) \to \operatorname{Coh}(X)$$

Definition

For f of finite Tor-amplitude, pulling back induces the Gysin map

$$f^*: G(Y) \rightarrow G(X)$$

Projection formula

Suppose $f_*: \operatorname{QCoh}(X) \to \operatorname{QCoh}(Y)$ preserves coherent complexes. Then we have a *direct image map*

$$f_*: G(X) \to G(Y)$$

If moreover f is universally of fcd, then

$$y \cap f_*(x) \simeq f_*(f^*(y) \cap x)$$

for all $x \in G(X)$, $y \in K^B(Y)$. Moreover, base-change holds against maps of finite Tor amplitude.

Localization

Since Coh(X) has bounded *t*-structure, the theorem of the heart says that

$$G(X) \simeq K(\operatorname{Coh}(X)^{\heartsuit}) \simeq K(\operatorname{Coh}(X_{\operatorname{cl}})^{\heartsuit}) \simeq G(X_{\operatorname{cl}})$$

Lemma

Let $i: Z \to X$ be a closed immersion with open complement $j: U \to X$. Then we have an exact triangle

$$G(Z) \xrightarrow{i_*} G(X) \xrightarrow{j^*} G(U)$$

As before, we have an exact sequence

$$\operatorname{Coh}(X \text{ on } Z) \to \operatorname{Coh}(X) \xrightarrow{j^*} \operatorname{Coh}(U)$$

Fnd

Dévissage for closed immersions

Lemma

Let $A \subset B$ be an inclusion of abelian categories, such that A is closed under subobjects and quotients, and each $B \in B$ has a filtration

$$0 = B_r \subset B_{r-1} \subset \cdots \subset B_1 \subset B_0 = B$$

such that all B_i/B_{i-1} lie in A. Then $K(\mathcal{B}) \simeq K(A)$.

By proper pushforward, we have $Coh(Z) \to Coh(X \text{ on } Z)$. We will show this induces an equivalence on K-theory.

Nil invariance

Corollary

Let $Z \rightarrow X$ be a surjective closed immersion. Then

$$i_*:G(Z)\to G(X)$$

is an equivalence.

Étale excision

Let $j:U\to X$ be an open immersion with closed complement $Z\subset |X|$. Let $X'\to X$ be étale (\Rightarrow finite Tor-amplitude) such that $f^{-1}(Z)_{\mathrm{red}}\cong Z_{\mathrm{red}}$. Then the following induced square is cartesian

$$G(X) \longrightarrow G(U)$$

$$\downarrow_{f^*} \qquad \qquad \downarrow_{f^*}$$

$$G(X') \longrightarrow G(f^{-1}U)$$

Quasi-smoothness and virtual codimension

Let $f: X \to Y$ in Art.

- f is quasi-smooth if it is locally of finite presentation and $L_{X/Y}$ has Tor-amplitude $[-\infty, 1]$.
- If f is a closed immersion of schemes, then it is quasi-smooth iff Zariski-locally on the target it is of the form $V(f_1, \ldots, f_n) \to Y$ for sections f_i on Y.
- If f is a closed immersion of algebraic stack, then it is quasi smooth iff it has a smooth atlas of schemes which is a quasi-smooth closed immersion.
- The virtual codimension of a quasi-smooth closed immersion is the number of sections being cut out.
- Equivalently, $N_{X/Y} := L_{X/Y}[-1]$ is smooth-locally of finite presentation with rank the virtual codimension.

Derived blow-ups

Let $Z \to X$ be a closed immersion in Art. A virtual Cartier divisor is a quasi-smooth closed immersion $D \to T$ of virtual codimenson 1.

Definition

The blow-up of X in Z is the space

$$\mathsf{BI}_Z \, X(T) := \left\{ \begin{array}{c} D \stackrel{i_D}{\longrightarrow} T \\ \downarrow_g & \downarrow \\ Z \longrightarrow X \end{array} \right. \quad \begin{array}{c} \bullet \ i_D \text{ is a virtual Cartier divisor} \\ \bullet \ D_{\mathrm{cl}} \cong (T \times_X Z)_{\mathrm{cl}} \\ \bullet \ g^* N_{Z/X} \to N_{D/T} \text{ surjective} \end{array}$$

- i_D is a virtual Cartier divisor

Proposition

The stack BI_7X is algebraic. If Z, X are schemes, then so is BI_7X .

26 / 38

Fnd

Projective bundles

Definition

Let $X \in \operatorname{Art}$ and $\mathcal{E} \in \operatorname{QCoh}(X)$ locally free of finite rank. Then the *projective bundle* of \mathcal{E} is the stack $\pi : \mathbb{P}(\mathcal{E}) \to X$ such that

$$\mathbb{P}(\mathcal{E})(f:T\to X):=\{(\mathcal{L},u)\mid \mathcal{L}\in \mathfrak{P}\mathrm{ic}(T),u:f^*(\mathcal{E})\twoheadrightarrow \mathcal{L}\}$$

Since line bundles on X are defined smooth-locally, the data (\mathcal{L}, u) glue into an invertible sheaf $\mathcal{O}(1)$ on $\mathbb{P}(\mathcal{E})$ and a surjection $\pi^*(\mathcal{E}) \to \mathcal{O}(1)$.

Universal virtual Cartier divisor

The identity map $BI_ZX \rightarrow BI_ZX$ corresponds to the square

$$\mathbb{P}_{Z}(N_{Z/X}) \xrightarrow{i_{D}} \operatorname{BI}_{Z} X$$

$$\downarrow^{g} \qquad \downarrow$$

$$Z \xrightarrow{X} X$$

which is the universal square such that

- i_D is a virtual Cartier divisor
- It is cartesian on $(-)_{cl}$
- $g^*N_{Z/X} \to N_{\mathbb{P}_Z(N_{Z/X})/\operatorname{Bl}_Z X}$ surjective

Semi-orthogonal decompositions

Definition

Let $\mathcal C$ be a stable category with full stable subcategory $\mathcal D.$

 \bullet The category of $\textit{left orthogonals to } \mathfrak D$ is the full subcategory

$$^{\perp}\mathcal{D}:=\{x\in\mathcal{C}\mid\forall d\in\mathcal{D}:\mathcal{C}(x,d)\simeq*\}$$

Definition

Let \mathcal{C} be stable. A *semi-orthogonal decomposition* of \mathcal{C} is a sequence $\mathcal{C}(0), \ldots, \mathcal{C}(-n)$ of full stable subcategories such that

- For all integers i > j it holds $\mathfrak{C}(i) \subset {}^{\perp}\mathfrak{C}(j)$;
- \mathbb{C} is generated by $\mathbb{C}(0), \dots, \mathbb{C}(-n)$ under finite limits and finite colimits.

Fnd

Lemma

Let \mathcal{C} be stable, with semi-orthogonal decomposition $(\mathcal{C}(0),\ldots,\mathcal{C}(-n))$. For $0 \le m \le n$, define $\mathcal{C}_{\le -m} \coloneqq \mathrm{span}(\mathcal{C}(-m) \cup \cdots \cup \mathcal{C}(-n))$ and put $\mathcal{C}_{\le -n-1} \coloneqq \{0\}$. Then there are split short exact sequences

$$\mathcal{C}(-m) \to \mathcal{C}_{\leq -m} \to \mathcal{C}_{\leq -m-1}$$

for each $0 \le m \le n$.

Lemma ('Generalized additivity theorem')

Let C be stable, with semi-orthogonal decompostion (C(0), ..., C(-n)). For E an additive invariant (= exact on split exact sequences), it holds

$$E(\mathcal{C}) \simeq \bigoplus_{0 < m < n} E(\mathcal{C}(-m))$$

Semi-orthogonal decomposition on $\mathrm{QCoh}(\mathbb{P}(\mathcal{E}))$

Let \mathcal{E} be locally free of rank n+1, and consider $\pi: \mathbb{P}(\mathcal{E}) \to X$.

Lemma

For each $0 \le k \le n$ we have a fully faithful functor

$$\operatorname{QCoh}(X) o \operatorname{QCoh}(\mathbb{P}(\mathcal{E})) : \mathcal{F} \mapsto \pi^* \mathcal{F} \otimes \mathcal{O}(-k)$$

Definition

For any -k, let $\mathcal{C}(-k)$ be the essential image of the functor $\mathcal{F} \mapsto \pi^* \mathcal{F} \otimes \mathcal{O}(-k)$.

Semi-orthogonal decomposition on $\operatorname{QCoh}(\mathbb{P}(\mathcal{E})), \operatorname{Perf}(\mathbb{P}(\mathcal{E})), \operatorname{Coh}(\mathbb{P}(\mathcal{E}))$

Proposition

The categories $C(0), \ldots, C(-n)$ form a semi-orthogonal decomposition of $QCoh(\mathbb{P}(\mathcal{E}))$. These restrict to $Perf(\mathbb{P}(\mathcal{E}))$, $Coh(\mathbb{P}(\mathcal{E}))$.

Projective bundle formulae

Theorem

Let $\mathcal E$ be a locally free complex of rank n+1 on X. Then

$$K^B(\mathbb{P}(\mathcal{E})) \simeq \bigoplus\nolimits_{0 \leq k \leq n} K^B(X)$$

$$G(\mathbb{P}(\mathcal{E})) \simeq \bigoplus_{0 \leq k \leq n} K^B(X)$$

Blow-up formulas

Let $Z \to X$ be a quasi-smooth closed immersion of virtual codimension n, write $\pi : \operatorname{Bl}_Z X \to X$ and $p : \mathbb{P}_Z(N_{Z/X}) \to Z$.

- $\pi^* : \operatorname{QCoh}(X) \to \operatorname{QCoh}(\operatorname{Bl}_Z X)$ is fully faithful. Write image as $\mathcal{D}(0)$.
- For all $1 \le k \le n-1$, the composition

$$\operatorname{QCoh}(Z) \xrightarrow{p^*(-)\otimes \mathcal{O}(-k)} \operatorname{QCoh}(\mathbb{P}(N_{Z/X})) \xrightarrow{i_*} \operatorname{QCoh}(\mathsf{Bl}_Z X)$$

is fully faithful. Write image as $\mathcal{D}(-k)$

- Now $\mathcal{D}(0), \dots, \mathcal{D}(-n+1)$ forms a semi-orthogonal decomposition on $\mathrm{QCoh}(\mathsf{Bl}_Z\,X)$.
- This restricts to perfect and coherent complexes.
- We thus have

$$K^B(\mathsf{Bl}_Z X) \simeq K^B(X) \oplus \bigoplus_{1 \leq k \leq n-1} K^B(Z)$$
 $G(\mathsf{Bl}_Z X) \simeq G(X) \oplus \bigoplus_{1 \leq k \leq n-1} G(Z)$

Vector bundles

Let \mathcal{E} be a locally free sheaf of finite rank on $X \in Art$.

- The canonical map $h: \mathcal{E} \to \mathcal{E} \oplus \mathcal{O}_X$ induces a surjection $h^{\vee}: (\mathcal{E} \oplus \mathcal{O}_X)^{\vee} \to \mathcal{E}^{\vee}$.
- We thus have a closed immersion $j : \mathbb{P}(\mathcal{E}^{\vee}) \to \mathbb{P}((\mathcal{E} \oplus \mathcal{O}_{X})^{\vee})$.
- Let $\mathbb{V}(\mathcal{E}^{\vee})$ be the vector bundle of sections of \mathcal{E} , i.e.

$$\mathbb{V}(\mathcal{E}^{\vee})(f:T\to X):=\{v:f^*\mathcal{E}^{\vee}\to\mathcal{O}_T\}$$

- We have an obvious map $i : \mathbb{V}(\mathcal{E}^{\vee}) \to \mathbb{P}((\mathcal{E} \oplus \mathcal{O}_X)^{\vee}).$
- The map i is the open complement of j.

Homotopy invariance

Proposition

For \mathcal{E} locally free of finite rank on $X \in \mathcal{A}\mathrm{rt}$, the map

$$\pi^*: G(X) \to G(\mathbb{V}(\mathcal{E}))$$

induced by $\pi: \mathbb{V}(\mathcal{E}) \to X$, is invertible.

References

Bertrand Toën & Gabriele Vezzosi (2008)

Homotopical algebraic geometry II

Algebraic K-theory of quasi-smooth blow-ups and CDH descent

Adeel Kahn (2021)

K-theory and G-theory of algebraic stacks

Jacob Lurie (2004)

Derived algebraic geometry (thesis)

Thomas Kragh (2020)

Non-connective K-theory (slides)

Charles Weibel (2013)

The K-book

Thank you!

End ○•