

Lecture 17: Digital Control MATLAB Session

ELEN 472: Introduction to Digital Control

Lingxiao Wang, Ph.D.

Assistant Professor of Electrical Engineering Louisiana Tech University

The Tutorial Link

- You can find the tutorial link at: https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlDigital
- We will do 3 topics in today's class:
 - Introduction: Digital Controller Design
 - Cruise Control Design
 - DC Motor Speed: Digital Controller Design

Report

- You need to submit a report after today's class (this report is considered as a HW assignment)
- You can generate a .pdf MATLAB report via the 'Publish' button.

- The due date for this submission is **Feb. 27**th.
- The report needs to include the following sections

Introduction: Digital Controller Design

- Mass-Spring-Damper
 - Discrete transfer function
 - State Space Model
 - Pole-Zero Map
 - Step Response Plot
 - Discrete Root Locus Diagram

Cruise Control: Digital Controller Design

- Cruise Control Problem:
 - Discrete-time transfer function
 - Root Locus diagram in the z-Plane
 - Closed-loop step response
 - Compensation digital controller Root Locus
 - Step response of the closed-loop system with the compensation controller.

Motor Speed Control

- Motor Speed Control
 - The continuous transfer function
 - The discrete transfer function
 - The closed loop step response
 - The closed loop step response with original PID controller
 - The closed loop step response with PID + Compensator Controller.

Graduate Student Assignment: DC Motor Position Control

- DC Motor Position Control:
 - Continuous-time and Discrete-time TFs
 - Closed-loop Step Response
 - Root Locus Design and new Closed-loop Step Response