

Pregunta 1

Finalizado

Se puntúa 1,00 sobre 1,00

La altura (del inglés height) de una relación difusa $S:A\times B\to [0,1]$, denotado h(S), se define como:

- \bigcirc a. $\sup_{a \in A} S(a, b)$.
- \odot b. $\sup_{b \in B} \sup_{a \in A} S(a, b)$;
- \bigcirc c. $\sup_{b \in B} S(a, b)$.
- O d. ninguna de las otras respuestas.

Pregunta 2

Finalizado

Se puntúa 1,00 sobre 1,00

En la relación R-S, la notación a(R-S)b es equivalente a decir:

- \bigcirc a. $aRb \circ aSb$.
- \odot b. aRb y a $\not Sb$.
- \bigcirc c. $aRb \circ a \not Sb$.
- \bigcirc d. aRb y aSb.

Pregunta 3

Finalizado

Se puntúa 1,00 sobre 1,00

Una función ${\cal R}$ en un conjunto ${\cal A}$ es transitiva si y solo si:

- \bigcirc a. $(a,a) \in R$ para todo $a \in A$.
- \bigcirc b. $(b,a)\in R$ si y solo si $(a,b)\in R$ para todo $a,b\in A$.
- $\bigcirc \ \, {\rm c.}\ \, (a,b)\in R\, {\rm y}(b,a)\in R\, {\rm implica}\, a=b\, {\rm para}\, {\rm todo}\, a,b\in A.$
- $@ \ {\rm d.} \ \ {\rm si}(a,b) \in R \ {\rm y}(b,c) \in R \ {\rm entonces}(a,c) \in R \ {\rm para} \ {\rm todo} \ a,b,c \in A.$

Pregunta 4

Finalizado

Se puntúa 1,00 sobre 1,00

Sea R una relación difusa en X_1, X_2, \ldots, X_n . La proyección de R en $Z = X_i \times X_j \times \cdots \times X_k$ donde $I = \{i, j, \ldots, k\} \subseteq \{1, 2, \ldots, n\}$, es una relación difusa definida como:

$$\bigcirc$$
 a. $R_Z(x_i,x_j,\ldots,x_k)=\inf_{x_l,x_m,\ldots,x_p}R(x_l,x_m,\ldots,x_p)$ donde $J=\{l,m,\ldots,p\}, J\cup I=\{1,\ldots,n\}$ y $I\cap J=\emptyset$

$$\textcircled{o} \ \text{ b. } \ R_Z(x_i,x_j,\ldots,x_k) = \sup_{x_l,x_m,\ldots,x_p} R(x_l,x_m,\ldots,x_p) \ \text{donde} \ J = \{l,m,\ldots,p\}, \\ J \cup I = \{1,\ldots,n\} \ \text{y} \ I \cap J = \emptyset.$$

- O c. ninguna de las otras respuestas.
- \circ d. $R_Z(x_i, x_j, \dots, x_k) = \sup_{x_l, x_m, \dots, x_p} R(x_l, x_m, \dots, x_p)$

Pregunta 5

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $S: X_{j_1} \times \cdots \times X_{j_k}$ una relación difusa donde $\{j_1, \ldots, j_k\}$ es una subsecuencia de $\{1, 2, \ldots, n\}$. La extensión cilíndrica de S en $X_1 \times X_2 \times \cdots \times X_n$ es una relación difusa cylS en $X_1 \times X_2 \times \cdots \times X_n$ tal que:

$$\bigcirc$$
 a. $cylS(x_{j_1},\ldots,x_{j_k})=S(x_1,\ldots,x_n)$

$$\bigcirc$$
 b. $cylS(x_1,\ldots,x_n)=S(x_1,\ldots,x_n)$.

$$\bigcirc$$
 c. $cylS(x_{j_1},...,x_{j_k}) = S(x_{j_1},...,x_{j_k})$.

d.
$$cylS(x_1, \ldots, x_n) = S(x_{j_1}, \ldots, x_{j_k}).$$

Pregunta 6

Finalizado

Se puntúa 1,00 sobre 1,00

Sea S una relación difusa en $A \times B$. La traspuesta de S, denotada S^T , se define para todo $a,b \in A \times B$ como:

$$\circ$$
 a. $S^{T}(a,b) = 1 - S(a,b)$.

$$\bigcirc$$
 b. $S^T(a) = \min_{b \in B} S(a, b)$

$$\odot$$
 c. $S^T(b,a) = S(a,b)$

$$\bigcirc$$
 d. $S^T(b) = \max_{a \in A} S(a, b)$.

Pregunta 7	
Finalizado	
Se puntúa 1,00 sobre 1,00	
Si S es una relación binaria, el conjunto $\operatorname{dom}(S)$ es:	
\odot a. $\{a \mid \text{existe } b \text{ tal que } (a,b) \in S\}.$	
\bigcirc b. $\{a \mid \text{existe } b \text{ tal que } (b,a) \in S\}$.	
\bigcirc c. $\{a \mid \text{para todo } b \text{ tal que } (b, a) \in S\}.$	
\bigcirc d. $\{a \mid \text{para todo } b \text{ tal que } (a,b) \in S\}$.	
Pregunta 8	
Finalizado	
Se puntúa 1,00 sobre 1,00	
La composición max-min no es asociativa.	
La composición max-min no es asociativa.	
Seleccione una:	
○ Verdadero	
⊚ Falso	
Pregunta 9 Finalizado	
Se puntúa 1,00 sobre 1,00	
Una relación difusa es un orden parcial difuso si es:	
Seleccione una o más de una:	
☐ a. similaridad	
☑ c. reflexivo	
☐ d. proximidad	
□ e. irreflexivo	
✓ f. antisimétrico	
☐ g. simétrico	

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación binaria de ${\it A}$ a ${\it B}$ es:

- \bigcirc a. un subconjunto de $A \cap B$.
- \bigcirc b. un subconjunto de $A \cup B$.
- \bigcirc c. un subconjunto de A=B.
- \odot d. un subconjunto de $A \times B$.

Pregunta 11

Finalizado

Se puntúa 1,00 sobre 1,00

En la relación $R \cup S$, la notación $a(R \cup S)b$ es equivalente a decir:

- \odot a. $aRb \circ aSb$.
- \bigcirc b. aRb y a $\mathcal{S}b$.
- \circ c. $aRb \circ a \not Sb$.
- \bigcirc d. aRb y aSb.

Pregunta 12

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R:A\times A\to [0,1]$ es simétrica si y solo si para todo $a,b\in A$:

- \bullet a. R(a,b) = R(b,a).
- \bigcirc b. R(a,b) > 0 y R(b,a) > 0 implica a=b.
- \circ c. R(a, a) = 1.
- $\bigcirc \ \, \mathrm{d.} \ \ \, R(a,c) \geq \sup\nolimits_{b \in A} R(a,b) * R(b,c) \, \mathrm{donde} \, * \, \mathrm{es} \, \mathrm{un} \, \mathrm{norma} \, \mathrm{t.}$
- \circ e. R(a, a) = 0.

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación de equivalencia en un conjunto $\it A$ es una relación que es:

- o a. reflexiva, antisimétrica y transitiva.
- o b. reflexiva, simétrica y transitiva.
- c. simétrica y transitiva.
- O d. reflexiva, simétrica y de orden.

Pregunta 14

Finalizado

Se puntúa 1,00 sobre 1,00

Una función R en un conjunto A es reflexiva si y solo si:

- $\bigcirc \ \, \text{a.}\ \, (b,a)\in R \text{ si y solo si}\,(a,b)\in R \text{ para todo } a,b\in A.$
- \bigcirc b. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$, entonces $(a,c) \in R$ para todo $a,b,c \in A$.
- \odot c. $(a,a) \in R$ para todo $a \in A$.
- \bigcirc d. $(a,b) \in R$ y $(b,a) \in R$ implies a=b para todo $a,b \in A$.

Pregunta 15

Finalizado

Se puntúa 1,00 sobre 1,00

Una función ${\cal R}$ en un conjunto ${\cal A}$ es antisimétrica si y solo si:

- \bigcirc a. $(b,a) \in R$ si y solo si $(a,b) \in R$ para todo $a,b \in A$.
- \bigcirc b. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$, entonces $(a,c) \in R$ para todo $a,b,c \in A$.
- \odot c. $(a,b) \in R$ y $(b,a) \in R$ implica a = b para todo $a,b \in A$.
- \bigcirc d. $(a, a) \in R$ para todo $a \in A$.

Pregunta 16

Finalizado

Se puntúa 0,00 sobre 1,00

Sean $P: A \times B \to [0,1]$ y $Q: B \times C \to [0,1]$ dos <u>relaciones difusas</u>. La composición min-max $R=P \bullet Q$ es una relación difusa en A y C definida como:

$$oldsymbol{0}$$
 a. $R(a,c) = \max_{b \in B} \min(P(a,b), Q(b,c))$.

$$\bigcirc$$
 b. $R(a,c) = \max_{b \in B} \max(P(a,b), Q(b,c))$.

$$\bigcirc$$
 c. $R(a,c) = \min_{b \in B} \min(P(a,b), Q(b,c))$.

$$\bigcirc$$
 d. $R(a,c) = \min_{b \in B} \max(P(a,b), Q(b,c))$.

Pregunta 17

Finalizado

Se puntúa 1,00 sobre 1,00

Sean A_1,A_2,\ldots,A_n conjuntos certeros. Una relación difusa en $A_1\times A_2\times\cdots\times A_n$ es una relación de la forma:

$$\bigcirc$$
 a. $R: A_1 \cup \cdots \cup A_n \rightarrow [0,1]$

$$\bigcirc$$
 b. $R: A_1 + \cdots + A_n \to [0,1]$

$$\odot$$
 c. $R: A_1 \times \cdots \times A_n \rightarrow [0,1]$

$$\bigcirc$$
 d. $R: A_1 \times \cdots \times A_n \rightarrow \{0,1\}$

Pregunta 18

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es transitiva si y solo si para todo $a,b,c \in A$:

$$\bigcirc$$
 a. $R(a,b) > 0$ y $R(b,a) > 0$ implies $a = b$.

$$\bigcirc$$
 b. $R(a, a) = 0$.

$$\bigcirc \text{ c. } R(a,a)=1.$$

$$\bigcirc$$
 d. $R(a,b) = R(b,a)$.

 \bullet e. $R(a,c) \geq \sup_{b \in A} R(a,b) * R(b,c)$ donde * es un norma t.

6 de 7

Finalizado

Se puntúa 1,00 sobre 1,00

La clausura transitiva de una relación ${\cal R}$ es:

- \bigcirc a. la relación más pequeña que contiene a R.
- \odot b. la relación transitiva más pequeña que contiene a R.
- \circ c. la relación transitiva más grande que contiene a R.
- \odot d. la relación más grande que contiene a R.

Pregunta 20

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es irreflexiva si y solo si para todo $a \in A$:

- a. R(a,a)=0.
- $\bigcirc \ \, \mathrm{b.} \ \, R(a,c) \geq \sup\nolimits_{b \in A} R(a,b) * R(b,c) \, \mathrm{donde} \, * \, \mathrm{es} \, \, \mathrm{un} \, \, \mathrm{norma} \, \mathrm{t.}$
- \bigcirc c. R(a,b) = R(b,a).
- $\bigcirc \ \, \mathrm{d.} \quad R(a,b) > 0 \, \mathrm{y} \, R(b,a) > 0 \, \mathrm{implica} \, a = b.$
- \circ e. R(a, a) = 1.

■ Guía de la Actividad 3.1. Cuestionario 3

Ir a...

Guía de la Actividad 3.2. Ejercitario 3 ▶