Package 'ClustBlock'

May 21, 2024

Title Clustering of Datasets

Version 4.0.0

Maintainer Fabien Llobell <fabienllobellresearch@gmail.com>

Description Hierarchical and partitioning algorithms to cluster blocks of variables. The partitioning algorithm includes an option called noise cluster to set aside atypical blocks of variables. The CLUSTATIS method (for quantitative blocks) (Llobell, Cariou, Vigneau, Labenne & Qannari (2020) <doi:10.1016/j.foodqual.2018.05.013>, Llobell, Vigneau & Qannari (2019) <doi:10.1016/j.foodqual.2019.02.017>) and the CLUSCATA method (for Check-All-That-Apply data) (Llobell, Cariou, Vigneau, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2018.09.006>, Llobell, Giacalone, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2019.05.017>) are the core of this package. The CATATIS methods allows to compute some indices and tests to control the quality of CATA data. Multivariate analysis and clustering of subjects for quantitative multiblock data, CATA, RATA, Free Sorting and JAR experiments are available. Clustering of rows in multi-block context (notably with ClusMB strategy) is also included.

Depends R (>= 3.4.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports FactoMineR

Suggests ClustVarLV

Date 2024-05-21

RoxygenNote 7.2.3

NeedsCompilation no

Author Fabien Llobell [aut, cre] (Oniris/XLSTAT),

Evelyne Vigneau [ctb] (Oniris), Veronique Cariou [ctb] (Oniris),

El Mostafa Qannari [ctb] (Oniris)

Repository CRAN

Date/Publication 2024-05-21 16:10:03 UTC

57

Index

R topics documented:

ClustBlock-package	3
catatis	4
catatis_jar	5
catatis_rata	7
change_cata_format	9
change_cata_format2	10
cheese	11
choc	11
cluscata	12
cluscata_jar	14
cluscata_kmeans	17
cluscata_kmeans_jar	18
cluscata_rata	20
ClusMB	22
clustatis	24
clustatis_FreeSort	26
clustatis_FreeSort_kmeans	28
clustatis_kmeans	30
clustRowsOnStatisAxes	32
consistency_cata	33
consistency_cata_panel	34
ish	36
ndicesClusters	36
plot.catatis	38
blot.cluscata	39
blot.clustatis	40
blot.statis	41
preprocess_FreeSort	42
preprocess_JAR	43
print.catatis	44
print.cluscata	45
print.clusRows	45
print.clustatis	46
orint.statis	46
RATAchoc	47
simil_groups_cata	47
======================================	48
statis	49
statis_FreeSort	50
- straw	52
summary.catatis	52
summary.cluscata	53
summary.clusRows	54
summary.clustatis	55
summary.statis	56

ClustBlock-package 3

ClustBlock-package Clustering of Datasets

Description

Hierarchical and partitioning algorithms of blocks of variables. The CLUSTATIS method and the CLUSCATA method are the core of this package. The CATATIS methods allows to compute some indices and tests to control the quality of CATA data. Multivariate analysis and clustering of subjects for quantitative multiblock data, CATA, RATA, Free Sorting and JAR experiments are available. Clustering of rows in multi-block context (notably with ClusMB strategy) is also included.

Details

Package: ClustBlock
Type: Package
Version: 4.0.0
First version Date: 2019-03-06
Last version Date: 2024-05-21

Author(s)

Fabien Llobell, Evelyne Vigneau, Veronique Cariou, El Mostafa Qannari

Maintainer: <fabienllobellresearch@gmail.com>

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2020). Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food Quality and Preference, 79, 103520.

Llobell, F., Vigneau, E., & Qannari, E. M. (2019). Clustering datasets by means of CLUSTATIS with identification of atypical datasets. Application to sensometrics. Food Quality and Preference, 75, 97-104.

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2019). A new approach for the analysis of data and the clustering of subjects in a CATA experiment. Food quality and preference, 72, 31-39.

Llobell, F., Giacalone, D., Labenne, A., & Qannari, E. M. (2019). Assessment of the agreement and cluster analysis of the respondents in a CATA experiment. Food Quality and Preference, 77, 184-190.

Llobell, F., & Qannari, E. M. (2020). CLUSTATIS: Cluster analysis of blocks of variables. Electronic Journal of Applied Statistical Analysis, 13(2), 436-453.

Llobell, F. (2020). Classification de tableaux de données, applications en analyse sensorielle (Doctoral dissertation, Nantes, Ecole nationale vétérinaire).

4 catatis

catatis	Perform the CATATIS method on different blocks from a CATA experiment

Description

CATATIS method. Additional outputs are also computed. Non-binary data are accepted and weights can be tested.

Usage

```
catatis(Data,nblo,NameBlocks=NULL, NameVar=NULL, Graph=TRUE, Graph_weights=TRUE,
    Test_weights=FALSE, nperm=100)
```

Arguments

Data	data frame or matrix where the blocks of binary variables are merged horizontally. If you have a different format, see change_cata_format
nblo	integer. Number of blocks (subjects).
NameBlocks	string vector. Name of each block (subject). Length must be equal to the number of blocks. If NULL, the names are S1,Sm. Default: NULL
NameVar	string vector. Name of each variable (attribute, the same names for each subject). Length must be equal to the number of attributes. If NULL, the colnames of the first block are taken. Default: NULL
Graph	logical. Show the graphical representation? Default: TRUE
Graph_weights	logical. Should the barplot of the weights be plotted? Default: TRUE
Test_weights	logical. Should the the weights be tested? Default: FALSE

Value

a list with:

nperm

- S: the S matrix: a matrix with the similarity coefficient among the subjects
- compromise: a matrix which is the compromise of the subjects (akin to a weighted average)

integer. Number of permutation for the weight tests. Default: 100

- weights: the weights associated with the subjects to build the compromise
- weights_tests: the weights tests results
- lambda: the first eigenvalue of the S matrix
- overall error: the error for the CATATIS criterion
- error_by_sub: the error by subject (CATATIS criterion)
- error_by_prod: the error by product (CATATIS criterion)
- s_with_compromise: the similarity coefficient of each subject with the compromise
- homogeneity: homogeneity of the subjects (in percentage)

catatis_jar 5

- CA: the results of correspondence analysis performed on the compromise dataset
- eigenvalues: the eigenvalues associated to the correspondence analysis
- inertia: the percentage of total variance explained by each axis of the CA
- scalefactors: the scaling factors of each subject
- nb_1: the number of 1 in each block, i.e. the number of checked attributes by subject.
- · param: parameters called

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2019). A new approach for the analysis of data and the clustering of subjects in a CATA experiment. Food Quality and Preference, 72, 31-39.

Bonnet, L., Ferney, T., Riedel, T., Qannari, E.M., Llobell, F. (September 14, 2022) .Using CATA for sensory profiling: assessment of the panel performance. Eurosense, Turku, Finland.

See Also

```
plot.catatis, summary.catatis, cluscata, change_cata_format, change_cata_format2
```

Examples

```
data(straw)
res.cat=catatis(straw, nblo=114)
summary(res.cat)
plot(res.cat)

#Vertical format with sessions
data("fish")
chang=change_cata_format2(fish, nprod= 6, nattr= 27, nsub = 12, nsess= 3)
res.cat2=catatis(Data= chang$Datafinal, nblo = 12, NameBlocks = chang$NameSub, Test_weights=TRUE)

#Vertical format without sessions
Data=fish[1:66,2:30]
chang2=change_cata_format2(Data, nprod= 6, nattr= 27, nsub = 11, nsess= 1)
res.cat3=catatis(Data= chang2$Datafinal, nblo = 11, NameBlocks = chang2$NameSub)
```

catatis_jar

Perform the CATATIS method on Just About Right data.

Description

CATATIS method adapted to JAR data.

Usage

```
catatis_jar(Data, nprod, nsub, levelsJAR=3, beta=0.1, Graph=TRUE, Graph_weights=TRUE,
Test_weights=FALSE, nperm=100)
```

6 catatis_jar

Arguments

Data data frame where the first column is the Assessors, the second is the products

and all other columns the JAR attributes with numbers (1 to 3 or 1 to 5, see

levelsJAR)

nprod integer. Number of products.

nsub integer. Number of subjects.

levelsJAR integer. 3 or 5 levels. If 5, the data will be transformed in 3 levels.

beta numerical. Parameter for agreement between JAR and other answers. Between

0 and 0.5.

Graph logical. Show the graphical representation? Default: TRUE

Graph_weights logical. Should the barplot of the weights be plotted? Default: TRUE

Test_weights logical. Should the the weights be tested? Default: FALSE

nperm integer. Number of permutation for the weight tests. Default: 100

Value

a list with:

• S: the S matrix: a matrix with the similarity coefficient among the subjects

• compromise: a matrix which is the compromise of the subjects (akin to a weighted average)

• weights: the weights associated with the subjects to build the compromise

• weights_tests: the weights tests results

• lambda: the first eigenvalue of the S matrix

• overall error: the error for the CATATIS criterion

• error by sub: the error by subject (CATATIS criterion)

• error_by_prod: the error by product (CATATIS criterion)

• s with compromise: the similarity coefficient of each subject with the compromise

• homogeneity: homogeneity of the subjects (in percentage)

• CA: the results of correspondance analysis performed on the compromise dataset

• eigenvalues: the eigenvalues associated to the correspondance analysis

• inertia: the percentage of total variance explained by each axis of the CA

• scalefactors: the scaling factors of each subject

• nb_1: Can be ignored

· param: parameters called

References

Llobell, F., Vigneau, E. & Qannari, E. M. ((September 14, 2022). Multivariate data analysis and clustering of subjects in a Just about right task. Eurosense, Turku, Finland.

See Also

catatis, plot.catatis, summary.catatis, cluscata_jar, preprocess_JAR, cluscata_kmeans_jar

catatis_rata 7

Examples

```
data(cheese)
res.cat=catatis_jar(Data=cheese, nprod=8, nsub=72, levelsJAR=5)
summary(res.cat)
#plot(res.cat)
```

Description

CATATIS method for RATA data. Additional outputs are also computed. Non-binary data are accepted and weights can be tested.

Usage

```
catatis_rata(Data,nblo,NameBlocks=NULL, NameVar=NULL, Graph=TRUE, Graph_weights=TRUE,
   Test_weights=FALSE, nperm=100)
```

Arguments

Data	data frame or matrix where the blocks of variables are merged horizontally. If you have a different format, see change_cata_format
nblo	integer. Number of blocks (subjects).
NameBlocks	string vector. Name of each block (subject). Length must be equal to the number of blocks. If NULL, the names are \$1,Sm. Default: NULL
NameVar	string vector. Name of each variable (attribute, the same names for each subject). Length must be equal to the number of attributes. If NULL, the colnames of the first block are taken. Default: NULL
Graph	logical. Show the graphical representation? Default: TRUE
Graph_weights	logical. Should the barplot of the weights be plotted? Default: TRUE
Test_weights	logical. Should the the weights be tested? Default: FALSE
nperm	integer. Number of permutation for the weight tests. Default: 100

Value

a list with:

- S: the S matrix: a matrix with the similarity coefficient among the subjects
- compromise: a matrix which is the compromise of the subjects (akin to a weighted average)
- weights: the weights associated with the subjects to build the compromise
- weights_tests: the weights tests results

8 catatis_rata

- lambda: the first eigenvalue of the S matrix
- overall error: the error for the CATATIS criterion
- error_by_sub: the error by subject (CATATIS criterion)
- error_by_prod: the error by product (CATATIS criterion)
- s with compromise: the similarity coefficient of each subject with the compromise
- homogeneity: homogeneity of the subjects (in percentage)
- CA: the results of correspondence analysis performed on the compromise dataset
- eigenvalues: the eigenvalues associated to the correspondence analysis
- inertia: the percentage of total variance explained by each axis of the CA
- scalefactors: the scaling factors of each subject
- param: parameters called

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2019). A new approach for the analysis of data and the clustering of subjects in a CATA experiment. Food Quality and Preference, 72, 31-39.

Bonnet, L., Ferney, T., Riedel, T., Qannari, E.M., Llobell, F. (September 14, 2022) .Using CATA for sensory profiling: assessment of the panel performance. Eurosense, Turku, Finland. Bonnet, L., Llobell, F., Qannari, E.M. (Pangborn 2023). Assessment of the panel performance in a RATA experiment.

See Also

```
catatis, plot.catatis, summary.catatis, change_cata_format, change_cata_format2
```

Examples

```
#RATA data with session
data(RATAchoc)
chang2=change_cata_format2(RATAchoc, nprod= 12, nattr= 13, nsub = 9, nsess= 3)
res.cat4=catatis_rata(Data= chang2$Datafinal, nblo = 9, NameBlocks = chang2$NameSub)
summary(res.cat4)

#RATA data without session
Data=RATAchoc[1:108,2:16]
chang2=change_cata_format2(Data, nprod= 12, nattr= 13, nsub = 9, nsess = 1)
res.cat5=catatis_rata(Data= chang2$Datafinal, nblo = 9, NameBlocks = chang2$NameSub)
summary(res.cat5)
graphics.off()
```

change_cata_format 9

change_cata_format	Change format of CATA datasets to perform CATATIS or CLUSCATA function
--------------------	--

Description

CATATIS and CLUSCATA operate on data where the blocksvariables are merged horizontally. If you have a different format, you can use this function to change the format. Format=1 is for data merged vertically with the dataset of the first subject, then the second,... with products in same order Format=2 is for data merged vertically with the dataset for the first product, then the second... with subjects in same order

Unlike change_cata_format2, you don't need to specify products and subjects, just make sure they are in the right order.

Usage

```
change_cata_format(Data, nprod, nattr, nsub, format=1, NameProds=NULL, NameAttr=NULL)
```

Arguments

Data data frame or matrix. Correspond to your data
--

nprod integer. Number of products
nattr integer. Number of attributes
nsub integer. Number of subjects.

format integer (1 or 2). See the description

NameProds string vector with the names of the products (length must be nprod)

NameAttr string vector with the names of attributes (length must be nattr)

Value

The arranged data for CATATIS and CLUSCATA function

See Also

```
catatis, cluscata, change_cata_format2
```

change_cata_format2

change_cata_format2

Change format of CATA datasets to perform the package functions

Description

CATATIS and CLUSCATA operate on data where the blocks of variables are merged horizontally. If you have a vertical format, you can use this function to change the format. The first column must contain the sessions, the second the subjects, the third the products and the others the attributes. If you don't have sessions, then the first column must contain the subjects and the second the products. Unlike change_cata_format function, you can enter data with sessions and/or mixed data in terms of products/subjects. However, you have to set columns to indicate this beforehand.

Usage

```
change_cata_format2(Data, nprod, nattr, nsub, nsess)
```

Arguments

Data	data frame or matrix. Correspond to your data
nprod	integer. Number of products
nattr	integer. Number of attributes
nsub	integer. Number of subjects.
nsess	integer. Number of sessions

Value

The arranged data for CATATIS and CLUSCATA function and the subjects names in the correct order.

See Also

```
catatis, cluscata, change_cata_format
```

Examples

```
#Vertical format with sessions
data("fish")
chang=change_cata_format2(fish, nprod= 6, nattr= 27, nsub = 12, nsess= 3)
res.cat2=catatis(Data= chang$Datafinal, nblo = 12, NameBlocks = chang$NameSub)

#Vertical format without sessions
Data=fish[1:66,2:30]
chang2=change_cata_format2(Data, nprod= 6, nattr= 27, nsub = 11, nsess= 1)
res.cat3=catatis(Data= chang2$Datafinal, nblo = 11, NameBlocks = chang2$NameSub)
res.clu3=cluscata(Data= chang2$Datafinal, nblo = 11, NameBlocks = chang2$NameSub)
```

cheese 11

cheese

cheese Just About Right data

Description

cheese Just About Right data

Usage

data(cheese)

Format

JAR data. A data frame with Assessors, Products and JAR attributes. 8 products, 9 attributes and 72 subjects.

References

Luc, A., Lê, S., Philippe, M., Qannari, E. M., & Vigneau, E. (2022). Free JAR experiment: Data analysis and comparison with JAR task. Food Quality and Preference, 98, 104453.

Examples

data(cheese)

choc

chocolates data

Description

chocolates data

Usage

data(choc)

Format

Free sorting data. A data frame with 14 rows (the chocolates) and 25 columns (the subjects). The numbers indicate the groups to which the products (rows) are assigned.

References

Courcoux, P., Qannari, E. M., Taylor, Y., Buck, D., & Greenhoff, K. (2012). Taxonomic free sorting. Food Quality and Preference, 23(1), 30-35.

Examples

data(choc)

12 cluscata

Description

Clustering of subjects (blocks) from a CATA experiment. Each cluster of blocks is associated with a compromise computed by the CATATIS method. The hierarchical clustering is followed by a partitioning algorithm (consolidation). Non-binary data are accepted.

Usage

Arguments

-	-	
	Data	data frame or matrix where the blocks of binary variables are merged horizontally. If you have a different format, see <pre>change_cata_format</pre>
	nblo	numerical. Number of blocks (subjects).
	NameBlocks	string vector. Name of each block (subject). Length must be equal to the number of blocks. If NULL, the names are S1,Sm. Default: NULL
	NameVar	string vector. Name of each variable (attribute, the same names for each subject). Length must be equal to the number of attributes. If NULL, the colnames of the first block are taken. Default: NULL
	Noise_cluster	logical. Should a noise cluster be computed? Default: FALSE
	Itermax	numerical. Maximum of iteration for the partitioning algorithm. Default:30
	Graph_dend	logical. Should the dendrogram be plotted? Default: TRUE
	Graph_bar	logical. Should the barplot of the difference of the criterion and the barplot of the overall homogeneity at each merging step of the hierarchical algorithm be plotted? Default: TRUE
	printlevel	logical. Print the number of remaining levels during the hierarchical clustering algorithm? Default: FALSE
	gpmax	logical. What is maximum number of clusters to consider? Default: $\min(6, nblo-2)$
	rhoparam	numerical. What is the threshold for the noise cluster? Between 0 and 1, high value can imply lot of blocks set aside. If NULL, automatic threshold is computed.
	Testonlyoneclus	e+

Testonlyoneclust

logical. Test if there is more than one cluster? Default: FALSE

alpha numerical between 0 and 1. What is the threshold to test if there is more than

one cluster? Default: 0.05

cluscata 13

nperm numerical. How many permutations are required to test if there is more than one

cluster? Default: 50

Warnings logical. Display warnings about the fact that none of the subjects in some clus-

ters checked an attribute or product? Default: FALSE

Value

Each partitionK contains a list for each number of clusters of the partition, K=1 to gpmax with:

• group: the clustering partition after consolidation. If Noise_cluster=TRUE, some subjects could be in the noise cluster ("K+1")

- rho: the threshold for the noise cluster
- homogeneity: homogeneity index (
- s_with_compromise: similarity coefficient of each subject with its cluster compromise
- weights: weight associated with each subject in its cluster
- compromise: the compromise of each cluster
- CA: list. the correspondance analysis results on each cluster compromise (coordinates, contributions...)
- inertia: percentage of total variance explained by each axis of the CA for each cluster
- s_all_cluster: the similarity coefficient between each subject and each cluster compromise
- criterion: the CLUSCATA criterion error
- · param: parameters called
- type: parameter passed to other functions

There is also at the end of the list:

- dend: The CLUSCATA dendrogram
- cutree_k: the partition obtained by cutting the dendrogram in K clusters (before consolidation).
- overall_homogeneity_ng: percentage of overall homogeneity by number of clusters before consolidation (and after if there is no noise cluster)
- diff_crit_ng: variation of criterion when a merging is done before consolidation (and after if there is no noise cluster)
- test_one_cluster: decision and pvalue to know if there is more than one cluster
- · param: parameters called
- type: parameter passed to other functions

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2019). A new approach for the analysis of data and the clustering of subjects in a CATA experiment. Food Quality and Preference, 72, 31-39.

Llobell, F., Giacalone, D., Labenne, A., Qannari, E.M. (2019). Assessment of the agreement and cluster analysis of the respondents in a CATA experiment. Food Quality and Preference, 77, 184-190.

14 cluscata_jar

See Also

plot.cluscata, summary.cluscata, catatis, cluscata_kmeans, change_cata_format, change_cata_format2

Examples

```
data(straw)
#with 40 subjects
res=cluscata(Data=straw[,1:(16*40)], nblo=40)
#plot(res, ngroups=3, Graph_dend=FALSE)
summary(res, ngroups=3)
#With noise cluster
res2=cluscata(Data=straw[,1:(16*40)], nblo=40, Noise_cluster=TRUE,
Graph_dend=FALSE, Graph_bar=FALSE)
#With noise cluster and defined rho threshold
#(high threshold for this example, you can put low threshold
#(ex: 0.2 or 0.3) to avoid set aside lot of respondents)
res3=cluscata(Data=straw[,1:(16*40)], nblo=40, Noise_cluster=TRUE,
Graph_dend=FALSE, Graph_bar=FALSE, rhoparam=0.6)
#with all subjects
res=cluscata(Data=straw, nblo=114, printlevel=TRUE)
#Vertical format
data("fish")
Data=fish[1:66,2:30]
chang2=change_cata_format2(Data, nprod= 6, nattr= 27, nsub = 11, nsess= 1)
res3=cluscata(Data= chang2$Datafinal, nblo = 11, NameBlocks = chang2$NameSub)
```

cluscata_jar

Perform a cluster analysis of subjects in a JAR experiment.

Description

Hierarchical clustering of subjects from a JAR experiment. Each cluster of subjects is associated with a compromise computed by the CATATIS method. The hierarchical clustering is followed by a partitioning algorithm (consolidation).

Usage

cluscata_jar 15

Arguments

Data data frame where the first column is the Assessors, the second is the products

and all other columns the JAR attributes with numbers (1 to 3 or 1 to 5, see

levelsJAR)

nprod integer. Number of products. nsub integer. Number of subjects.

levelsJAR integer. 3 or 5 levels. If 5, the data will be transformed in 3 levels.

beta numerical. Parameter for agreement between JAR and other answers. Between

0 and 0.5.

Noise_cluster logical. Should a noise cluster be computed? Default: FALSE

Itermax numerical. Maximum of iteration for the partitioning algorithm. Default:30

Graph_dend logical. Should the dendrogram be plotted? Default: TRUE

Graph_bar logical. Should the barplot of the difference of the criterion and the barplot of

the overall homogeneity at each merging step of the hierarchical algorithm be

plotted? Default: TRUE

printlevel logical. Print the number of remaining levels during the hierarchical clustering

algorithm? Default: FALSE

gpmax logical. What is maximum number of clusters to consider? Default: min(6,

nblo-2)

rhoparam numerical. What is the threshold for the noise cluster? Between 0 and 1, high

value can imply lot of blocks set aside. If NULL, automatic threshold is com-

puted.

Testonlyoneclust

logical. Test if there is more than one cluster? Default: FALSE

alpha numerical between 0 and 1. What is the threshold to test if there is more than

one cluster? Default: 0.05

nperm numerical. How many permutations are required to test if there is more than one

cluster? Default: 50

Warnings logical. Display warnings about the fact that none of the subjects in some clus-

ters checked an attribute or product? Default: FALSE

Value

Each partitionK contains a list for each number of clusters of the partition, K=1 to gpmax with:

- group: the clustering partition after consolidation. If Noise_cluster=TRUE, some subjects could be in the noise cluster ("K+1")
- rho: the threshold for the noise cluster
- homogeneity: homogeneity index (
- s_with_compromise: similarity coefficient of each subject with its cluster compromise
- · weights: weight associated with each subject in its cluster
- compromise: the compromise of each cluster

16 cluscata_jar

• CA: list. the correspondance analysis results on each cluster compromise (coordinates, contributions...)

- inertia: percentage of total variance explained by each axis of the CA for each cluster
- s_all_cluster: the similarity coefficient between each subject and each cluster compromise
- criterion: the CLUSCATA criterion error
- param: parameters called
- type: parameter passed to other functions

There is also at the end of the list:

- dend: The CLUSCATA dendrogram
- cutree_k: the partition obtained by cutting the dendrogram in K clusters (before consolidation).
- overall_homogeneity_ng: percentage of overall homogeneity by number of clusters before consolidation (and after if there is no noise cluster)
- diff_crit_ng: variation of criterion when a merging is done before consolidation (and after if there is no noise cluster)
- test_one_cluster: decision and pvalue to know if there is more than one cluster
- param: parameters called
- type: parameter passed to other functions

References

Llobell, F., Vigneau, E. & Qannari, E. M. ((September 14, 2022). Multivariate data analysis and clustering of subjects in a Just about right task. Eurosense, Turku, Finland.

See Also

```
\verb|plot.cluscata|, \verb|summary.cluscata|, \verb|catatis_jar|, \verb|preprocess_JAR|, \verb|cluscata_kmeans_jar| \\
```

Examples

```
data(cheese)
res=cluscata_jar(Data=cheese, nprod=8, nsub=72, levelsJAR=5)
#plot(res, ngroups=4, Graph_dend=FALSE)
summary(res, ngroups=4)
```

cluscata_kmeans 17

cluscata_kmeans	Compute the CLUSCATA partitioning algorithm on different blocks from a CATA experiment. Can be performed using a multi-start strat-
	egy or initial partition provided by the user.

Description

Partitioning of binary Blocks from a CATA experiment. Each cluster is associated with a compromise computed by the CATATIS method. Moreover, a noise cluster can be set up.

Usage

Arguments

Data	data frame or matrix where the blocks of binary variables are merged horizon- tally. If you have a different format, see change_cata_format
nblo	numerical. Number of blocks (subjects).
clust	numerical vector or integer. Initial partition or number of starting partitions if integer. If numerical vector, the numbers must be 1,2,3,,number of clusters
nstart	numerical. Number of starting partitions. Default: 100
rho	numerical between 0 and 1. Threshold for the noise cluster. If 0, there is no noise cluster. Default: 0
NameBlocks	string vector. Name of each block. Length must be equal to the number of blocks. If NULL, the names are S1,Sm. Default: NULL
NameVar	string vector. Name of each variable (attribute, the same names for each subject). Length must be equal to the number of attributes. If NULL, the colnames of the first block are taken. Default: NULL
Itermax	numerical. Maximum of iterations by partitionning algorithm. Default: 30
Graph_groups	logical. Should each cluster compromise graphical representation be plotted? Default: TRUE
print_attempt	logical. Print the number of remaining attempts in multi-start case? Default: FALSE
Warnings	logical. Display warnings about the fact that none of the subjects in some clusters checked an attribute or product? Default: FALSE

Value

a list with:

- group: the clustering partition. If rho>0, some subjects could be in the noise cluster ("K+1")
- rho: the threshold for the noise cluster

cluscata_kmeans_jar

homogeneity: percentage of homogeneity of the subjects in each cluster and the overall homogeneity

- s_with_compromise: Similarity coefficient of each subject with its cluster compromise
- weights: weight associated with each subject in its cluster
- compromise: The compromise of each cluster
- CA: The correspondance analysis results on each cluster compromise (coordinates, contributions...)
- inertia: percentage of total variance explained by each axis of the CA for each cluster
- s all cluster: the similarity coefficient between each subject and each cluster compromise
- param: parameters called
- criterion: the CLUSCATA criterion error
- type: parameter passed to other functions

References

18

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2019). A new approach for the analysis of data and the clustering of subjects in a CATA experiment. Food Quality and Preference, 72, 31-39.

Llobell, F., Giacalone, D., Labenne, A., Qannari, E.M. (2019). Assessment of the agreement and cluster analysis of the respondents in a CATA experiment. Food Quality and Preference, 77, 184-190.

See Also

```
plot.cluscata, summary.cluscata, catatis, cluscata, change_cata_format
```

Examples

```
data(straw)
cl_km=cluscata_kmeans(Data=straw[,1:(16*40)], nblo=40, clust=3)
#plot(cl_km, Graph_groups=FALSE, Graph_weights = TRUE)
summary(cl_km)
```

cluscata_kmeans_jar

Perform a cluster analysis of subjects in a JAR experiment.

Description

Partitionning of subject from a JAR experiment. Each cluster is associated with a compromise computed by the CATATIS method. Moreover, a noise cluster can be set up.

cluscata_kmeans_jar 19

Usage

cluscata_kmeans_jar(Data, nprod, nsub, levelsJAR=3, beta=0.1, clust, nstart=100, rho=0,
Itermax=30, Graph_groups=TRUE, print_attempt=FALSE, Warnings=FALSE)

Arguments

Data data frame where the first column is the Assessors, the second is the products

and all other columns the JAR attributes with numbers (1 to 3 or 1 to 5, see

levelsJAR)

nprod integer. Number of products. nsub integer. Number of subjects.

levelsJAR integer. 3 or 5 levels. If 5, the data will be transformed in 3 levels.

beta numerical. Parameter for agreement between JAR and other answers. Between

0 and 0.5.

clust numerical vector or integer. Initial partition or number of starting partitions if

integer. If numerical vector, the numbers must be 1,2,3,...,number of clusters

nstart numerical. Number of starting partitions. Default: 100

rho numerical between 0 and 1. Threshold for the noise cluster. If 0, there is no

noise cluster. Default: 0

Itermax numerical. Maximum of iterations by partitionning algorithm. Default: 30

Graph_groups logical. Should each cluster compromise graphical representation be plotted?

Default: TRUE

print_attempt logical. Print the number of remaining attempts in multi-start case? Default:

FALSE

Warnings logical. Display warnings about the fact that none of the subjects in some clus-

ters checked an attribute or product? Default: FALSE

Value

a list with:

- group: the clustering partition. If rho>0, some subjects could be in the noise cluster ("K+1")
- rho: the threshold for the noise cluster
- homogeneity: percentage of homogeneity of the subjects in each cluster and the overall homogeneity
- s_with_compromise: Similarity coefficient of each subject with its cluster compromise
- · weights: weight associated with each subject in its cluster
- compromise: The compromise of each cluster
- CA: The correspondance analysis results on each cluster compromise (coordinates, contributions...)
- inertia: percentage of total variance explained by each axis of the CA for each cluster
- s all cluster: the similarity coefficient between each subject and each cluster compromise
- param: parameters called
- criterion: the CLUSCATA criterion error
- type: parameter passed to other functions

20 cluscata_rata

References

Llobell, F., Vigneau, E. & Qannari, E. M. ((September 14, 2022). Multivariate data analysis and clustering of subjects in a Just about right task. Eurosense, Turku, Finland.

See Also

```
plot.cluscata, summary.cluscata, catatis_jar, preprocess_JAR, cluscata_jar
```

Examples

```
data(cheese)
res=cluscata_kmeans_jar(Data=cheese, nprod=8, nsub=72, levelsJAR=5, clust=4)
#plot(res)
summary(res)
```

cluscata_rata

Perform a cluster analysis of subjects from a RATA experiment

Description

Hierarchical clustering of subjects (blocks) from a RATA experiment. Each cluster of blocks is associated with a compromise computed by the CATATIS method. The hierarchical clustering is followed by a partitioning algorithm (consolidation).

Usage

Arguments

Data data frame or matrix where the blocks of binary variables are merged horizon-

tally. If you have a different format, see change_cata_format

nblo numerical. Number of blocks (subjects).

NameBlocks string vector. Name of each block (subject). Length must be equal to the number

of blocks. If NULL, the names are S1,...Sm. Default: NULL

NameVar string vector. Name of each variable (attribute, the same names for each subject).

Length must be equal to the number of attributes. If NULL, the colnames of the

first block are taken. Default: NULL

Noise_cluster logical. Should a noise cluster be computed? Default: FALSE

Itermax numerical. Maximum of iteration for the partitioning algorithm. Default:30

cluscata_rata 21

Graph_dend logical. Should the dendrogram be plotted? Default: TRUE

Graph_bar logical. Should the barplot of the difference of the criterion and the barplot of the overall homogeneity at each merging step of the hierarchical algorithm be plotted? Default: TRUE

printlevel logical. Print the number of remaining levels during the hierarchical clustering algorithm? Default: FALSE

gpmax logical. What is maximum number of clusters to consider? Default: min(6,

nblo-2)

rhoparam numerical. What is the threshold for the noise cluster? Between 0 and 1, high

value can imply lot of blocks set aside. If NULL, automatic threshold is com-

puted.

Testonlyoneclust

logical. Test if there is more than one cluster? Default: FALSE

alpha numerical between 0 and 1. What is the threshold to test if there is more than

one cluster? Default: 0.05

nperm numerical. How many permutations are required to test if there is more than one

cluster? Default: 50

Warnings logical. Display warnings about the fact that none of the subjects in some clus-

ters checked an attribute or product? Default: FALSE

Value

Each partitionK contains a list for each number of clusters of the partition, K=1 to gpmax with:

- group: the clustering partition after consolidation. If Noise_cluster=TRUE, some subjects could be in the noise cluster ("K+1")
- rho: the threshold for the noise cluster
- homogeneity: homogeneity index (
- s_with_compromise: similarity coefficient of each subject with its cluster compromise
- · weights: weight associated with each subject in its cluster
- compromise: the compromise of each cluster
- CA: list. the correspondance analysis results on each cluster compromise (coordinates, contributions...)
- inertia: percentage of total variance explained by each axis of the CA for each cluster
- s all cluster: the similarity coefficient between each subject and each cluster compromise
- criterion: the CLUSCATA criterion error
- param: parameters called
- type: parameter passed to other functions

There is also at the end of the list:

- dend: The CLUSCATA dendrogram
- cutree_k: the partition obtained by cutting the dendrogram in K clusters (before consolidation).

22 ClusMB

- overall_homogeneity_ng: percentage of overall homogeneity by number of clusters before consolidation (and after if there is no noise cluster)
- diff_crit_ng: variation of criterion when a merging is done before consolidation (and after if there is no noise cluster)
- test_one_cluster: decision and pvalue to know if there is more than one cluster
- param: parameters called
- type: parameter passed to other functions

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2019). A new approach for the analysis of data and the clustering of subjects in a CATA experiment. Food Quality and Preference, 72, 31-39.

Llobell, F., Giacalone, D., Labenne, A., Qannari, E.M. (2019). Assessment of the agreement and cluster analysis of the respondents in a CATA experiment. Food Quality and Preference, 77, 184-190. Conference to come (Eurosense 2024)

See Also

plot.cluscata, summary.cluscata, catatis_rata, change_cata_format, change_cata_format2

Examples

```
#RATA data without session
data(RATAchoc)
Data=RATAchoc[1:108,2:16]
chang2=change_cata_format2(Data, nprod= 12, nattr= 13, nsub = 9, nsess = 1)
res.clus=cluscata_rata(Data= chang2$Datafinal, nblo = 9, NameBlocks = chang2$NameSub)
summary(res.clus)
plot(res.clus)
```

ClusMB

Perform a cluster analysis of rows in a Multi-block context with the ClusMB method

Description

Clustering of rows (products in sensory analysis) in a Multi-block context. The hierarchical clustering is followed by a partitioning algorithm (consolidation).

Usage

```
ClusMB(Data, Blocks, NameBlocks=NULL, scale=FALSE, center=TRUE,
nclust=NULL, gpmax=6)
```

ClusMB 23

Arguments

Data	data frame or matrix. Correspond to all the blocks of variables merged horizontally
Blocks	numerical vector. The number of variables of each block. The sum must be equal to the number of columns of Data.
NameBlocks	string vector. Name of each block. Length must be equal to the length of Blocks vector. If NULL, the names are B1,Bm. Default: NULL
scale	logical. Should the data variables be scaled? Default: FALSE
center	logical. Should the data variables be centered? Default: TRUE. Please set to FALSE for a CATA experiment
nclust	numerical. Number of clusters to consider. If NULL, the Hartigan index advice is taken.
gpmax	logical. What is maximum number of clusters to consider? Default: min(6, number of blocks -2)

Value

• group: the clustering partition after consolidation.

• nbgH: Advised number of clusters per Hartigan index

• nbgCH: Advised number of clusters per Calinski-Harabasz index

• cutree_k: the partition obtained by cutting the dendrogram in K clusters (before consolidation).

• dend: The ClusMB dendrogram

• param: parameters called

• type: parameter passed to other functions

References

Llobell, F., Qannari, E.M. (June 10, 2022). Cluster analysis in a multi-bloc setting. SMTDA, Athens, Greece.

Llobell, F., Giacalone, D., Qannari, E. M. (Pangborn 2021). Cluster Analysis of products in CATA experiments.

Paper submitted

See Also

 $indices {\tt Clusters}, summary. clus {\tt Rows}, clust {\tt RowsOnStatisAxes}$

Examples

```
#####projective mapping####
library(ClustBlock)
data(smoo)
res1=ClusMB(smoo, rep(2,24))
summary(res1)
```

24 clustatis

```
indicesClusters(smoo, rep(2,24), res1$group)

####CATA####
data(fish)
Data=fish[1:66,2:30]
chang2=change_cata_format2(Data, nprod= 6, nattr= 27, nsub = 11, nsess= 1)
res2=ClusMB(Data= chang2$Datafinal, Blocks= rep(27, 11), center=FALSE)
indicesClusters(Data= chang2$Datafinal, Blocks= rep(27, 11), cut = res2$group, center=FALSE)
```

clustatis

Perform a cluster analysis of blocks of quantitative variables

Description

Hierarchical clustering of quantitative Blocks followed by a partitioning algorithm (consolidation). Each cluster of blocks is associated with a compromise computed by the STATIS method. Moreover, a noise cluster can be set up.

Usage

```
clustatis(Data,Blocks,NameBlocks=NULL,Noise_cluster=FALSE,scale=FALSE,
   Itermax=30, Graph_dend=TRUE, Graph_bar=TRUE,
   printlevel=FALSE, gpmax=min(6, length(Blocks)-2), rhoparam=NULL,
   Testonlyoneclust=FALSE, alpha=0.05, nperm=50)
```

Arguments

Data	data frame or matrix. Correspond to all the blocks of variables merged horizontally
Blocks	numerical vector. The number of variables of each block. The sum must be equal to the number of columns of Data
NameBlocks	string vector. Name of each block. Length must be equal to the length of Blocks vector. If NULL, the names are B1,Bm. Default: NULL
Noise_cluster	logical. Should a noise cluster be computed? Default: FALSE
scale	logical. Should the data variables be scaled? Default: FALSE
Itermax	numerical. Maximum of iteration for the partitioning algorithm. Default: 30
Graph_dend	logical. Should the dendrogram be plotted? Default: TRUE
Graph_bar	logical. Should the barplot of the difference of the criterion and the barplot of the overall homogeneity at each merging step of the hierarchical algorithm be plotted? Default: TRUE
printlevel	logical. Print the number of remaining levels during the hierarchical clustering algorithm? Default: FALSE
gpmax	logical. What is maximum number of clusters to consider? Default: min(6, number of blocks -2)

clustatis 25

rhoparam numerical. What is the threshold for the noise cluster? Between 0 and 1, high

value can imply lot of blocks set aside. If NULL, automatic threshold is com-

puted.

Testonlyoneclust

logical. Test if there is more than one cluster? Default: FALSE

alpha numerical between 0 and 1. What is the threshold to test if there is more than

one cluster? Default: 0.05

nperm numerical. How many permutations are required to test if there is more than one

cluster? Default: 50

Value

Each partitionK contains a list for each number of clusters of the partition, K=1 to gpmax with:

• group: the clustering partition of datasets after consolidation. If Noise_cluster=TRUE, some blocks could be in the noise cluster ("K+1")

- rho: the threshold for the noise cluster (computed or input parameter)
- homogeneity: homogeneity index (
- rv_with_compromise: RV coefficient of each block with its cluster compromise
- · weights: weight associated with each block in its cluster
- comp_RV: RV coefficient between the compromises associated with the various clusters
- compromise: the W compromise of each cluster
- · coord: the coordinates of objects of each cluster
- inertia: percentage of total variance explained by each axis for each cluster
- rv all cluster: the RV coefficient between each block and each cluster compromise
- criterion: the CLUSTATIS criterion error
- param: parameters called in the consolidation
- type: parameter passed to other functions

There is also at the end of the list:

- · dend: The CLUSTATIS dendrogram
- cutree_k: the partition obtained by cutting the dendrogram for K clusters (before consolidation).
- overall_homogeneity_ng: percentage of overall homogeneity by number of clusters before consolidation (and after if there is no noise cluster)
- diff_crit_ng: variation of criterion when a merging is done before consolidation (and after if there is no noise cluster)
- test_one_cluster: decision and pvalue to know if there is more than one cluster
- param: parameters called
- type: parameter passed to other functions

26 clustatis_FreeSort

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2018). Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food Quality and Preference, in Press.

Llobell, F., Vigneau, E., Qannari, E. M. (2019). Clustering datasets by means of CLUSTATIS with identification of atypical datasets. Application to sensometrics. Food Quality and Preference, 75, 97-104.

See Also

```
plot.clustatis, summary.clustatis, clustatis_kmeans, statis
```

Examples

```
data(smoo)
NameBlocks=paste0("S",1:24)
cl=clustatis(Data=smoo,Blocks=rep(2,24),NameBlocks = NameBlocks)
#plot(cl, ngroups=3, Graph_dend=FALSE)
summary(cl)
#with noise cluster
cl2=clustatis(Data=smoo,Blocks=rep(2,24),NameBlocks = NameBlocks,
Noise_cluster=TRUE, Graph_dend=FALSE, Graph_bar=FALSE)
#with noise cluster and defined rho threshold
cl3=clustatis(Data=smoo,Blocks=rep(2,24),NameBlocks = NameBlocks,
Noise_cluster=TRUE, Graph_dend=FALSE, Graph_bar=FALSE, rhoparam=0.5)
```

clustatis_FreeSort

Perform a cluster analysis of free sorting data

Description

Hierarchical clustering of free sorting data followed by a partitioning algorithm (consolidation). Each cluster of blocks is associated with a compromise computed by the STATIS method. Moreover, a noise cluster can be set up.

Usage

clustatis_FreeSort 27

Arguments

Data data frame or matrix. Corresponds to all variables that contain subjects results.

Each column corresponds to a subject and gives the groups to which the products

(rows) are assigned

NameSub string vector. Name of each subject. Length must be equal to the number of

clumn of the Data. If NULL, the names are S1,...Sm. Default: NULL

Noise_cluster logical. Should a noise cluster be computed? Default: FALSE

Itermax numerical. Maximum of iteration for the partitioning algorithm. Default: 30

Graph_dend logical. Should the dendrogram be plotted? Default: TRUE

Graph_bar logical. Should the barplot of the difference of the criterion and the barplot of

the overall homogeneity at each merging be plotted? Default: FALSE

printlevel logical. Print the number of remaining levels during the hierarchical clustering

algorithm? Default: FALSE

gpmax logical. What is maximum number of clusters to consider? Default: min(6,

number of subjects -1)

rhoparam numerical. What is the threshold for the noise cluster? Between 0 and 1, high

value can imply lot of blocks set aside. If NULL, automatic threshold is com-

puted.

Testonlyoneclust

logical. Test if there is more than one cluster? Default: FALSE

alpha numerical between 0 and 1. What is the threshold to test if there is more than

one cluster? Default: 0.05

nperm numerical. How many permutations are required to test if there is more than one

cluster? Default: 50

Value

Each partitionK contains a list for each number of clusters of the partition, K=1 to gpmax with:

- group: the clustering partition of subjects after consolidation. If Noise_cluster=TRUE, some subjects could be in the noise cluster ("K+1")
- rho: the threshold for the noise cluster
- homogeneity: homogeneity index (
- rv with compromise: RV coefficient of each block with its cluster compromise
- weights: weight associated with each subject in its cluster
- comp_RV: RV coefficient between the compromises associated with the various clusters
- compromise: the W compromise of each cluster
- coord: the coordinates of objects of each cluster
- inertia: percentage of total variance explained by each axis for each cluster
- rv_all_cluster: the RV coefficient between each subject and each cluster compromise
- criterion: the CLUSTATIS criterion error
- param: parameters called in the consolidation

• type: parameter passed to other functions

There is also at the end of the list:

- dend: The CLUSTATIS dendrogram
- cutree_k: the partition obtained by cutting the dendrogram for K clusters (before consolidation).
- overall_homogeneity_ng: percentage of overall homogeneity by number of clusters before consolidation (and after if there is no noise cluster)
- diff_crit_ng: variation of criterion when a merging is done before consolidation (and after if there is no noise cluster)
- test_one_cluster: decision and pvalue to know if there is more than one cluster
- param: parameters called
- type: parameter passed to other functions

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2018). Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food Quality and Preference, in Press.

Llobell, F., Vigneau, E., Qannari, E. M. (2019). Clustering datasets by means of CLUSTATIS with identification of atypical datasets. Application to sensometrics. Food Quality and Preference, 75, 97-104.

See Also

```
clustatis, preprocess_FreeSort, summary.clustatis, , plot.clustatis
```

Examples

```
data(choc)
res.clu=clustatis_FreeSort(choc)
plot(res.clu, Graph_dend=FALSE)
summary(res.clu)
```

clustatis_FreeSort_kmeans

Compute the CLUSTATIS partitionning algorithm on free sorting data

Description

Partitionning algorithm for Free Sorting data. Each cluster is associated with a compromise computed by the STATIS method. Moreover, a noise cluster can be set up.

Usage

clustatis_FreeSort_kmeans(Data, NameSub=NULL, clust, nstart=100, rho=0,Itermax=30,
Graph_groups=TRUE, Graph_weights=FALSE, print_attempt=FALSE)

Arguments

Data	data frame or matrix. Corresponds to all variables that contain subjects results. Each column corresponds to a subject and gives the groups to which the products (rows) are assigned
NameSub	string vector. Name of each subject. Length must be equal to the number of clumn of the Data. If NULL, the names are S1,Sm. Default: NULL
clust	numerical vector or integer. Initial partition or number of starting partitions if integer. If numerical vector, the numbers must be 1,2,3,,number of clusters
nstart	integer. Number of starting partitions. Default: 100
rho	numerical between 0 and 1. Threshold for the noise cluster. Default:0
Itermax	numerical. Maximum of iterations by partitionning algorithm. Default: 30
Graph_groups	logical. Should each cluster compromise be plotted? Default: TRUE
Graph_weights	logical. Should the barplot of the weights in each cluster be plotted? Default: FALSE
print_attempt	logical. Print the number of remaining attempts in the multi-start case? Default: FALSE

Value

a list with:

- group: the clustering partition. If rho>0, some subjects could be in the noise cluster ("K+1")
- rho: the threshold for the noise cluster
- homogeneity: percentage of homogeneity of the subjects in each cluster and the overall homogeneity
- rv_with_compromise: RV coefficient of each subject with its cluster compromise
- weights: weight associated with each subject in its cluster
- comp_RV: RV coefficient between the compromises associated with the various clusters
- compromise: the W compromise of each cluster
- coord: the coordinates of objects of each cluster
- inertia: percentage of total variance explained by each axis for each cluster
- rv_all_cluster: the RV coefficient between each subject and each cluster compromise
- criterion: the CLUSTATIS criterion error
- param: parameters called
- type: parameter passed to other functions

30 clustatis_kmeans

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2018). Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food Quality and Preference, in Press.

Llobell, F., Vigneau, E., Qannari, E. M. (2019). Clustering datasets by means of CLUSTATIS with identification of atypical datasets. Application to sensometrics. Food Quality and Preference, 75, 97-104.

See Also

clustatis_FreeSort, preprocess_FreeSort, summary.clustatis, , plot.clustatis

Examples

```
data(choc)
res.clu=clustatis_FreeSort_kmeans(choc, clust=2)
plot(res.clu, Graph_groups=FALSE, Graph_weights=TRUE)
summary(res.clu)
```

clustatis_kmeans

Compute the CLUSTATIS partitioning algorithm on different blocks of quantitative variables. Can be performed using a multi-start strategy or initial partition provided by the user.

Description

Partitioning algorithm for quantitative variables. Each cluster is associated with a compromise computed by the STATIS method. Moreover, a noise cluster can be set up.

Usage

```
clustatis_kmeans(Data, Blocks, clust, nstart=100, rho=0, NameBlocks=NULL,
Itermax=30,Graph_groups=TRUE, Graph_weights=FALSE,
    scale=FALSE, print_attempt=FALSE)
```

Arguments

Data	data frame or matrix. Correspond to all the blocks of variables merged horizontally
Blocks	numerical vector. The number of variables of each block. The sum must be equal to the number of columns of Data
clust	numerical vector or integer. Initial partition or number of starting partitions if integer. If numerical vector, the numbers must be 1,2,3,,number of clusters
nstart	integer. Number of starting partitions. Default: 100
rho	numerical between 0 and 1. Threshold for the noise cluster. Default:0

clustatis_kmeans 31

NameBlocks string vector. Name of each block. Length must be equal to the length of Blocks vector. If NULL, the names are B1,...Bm. Default: NULL

Itermax numerical. Maximum of iterations by partitionning algorithm. Default: 30

Graph_groups logical. Should each cluster compromise be plotted? Default: TRUE

Graph_weights logical. Should the barplot of the weights in each cluster be plotted? Default: FALSE

scale logical. Should the data variables be scaled? Default: FALSE

print_attempt logical. Print the number of remaining attempts in the multi-start case? Default:

Value

a list with:

• group: the clustering partition. If rho>0, some blocks could be in the noise cluster ("K+1")

• rho: the threshold for the noise cluster

FALSE

homogeneity: percentage of homogeneity of the blocks in each cluster and the overall homogeneity

• rv_with_compromise: RV coefficient of each block with its cluster compromise

· weights: weight associated with each block in its cluster

• comp RV: RV coefficient between the compromises associated with the various clusters

• compromise: the W compromise of each cluster

• coord: the coordinates of objects of each cluster

• inertia: percentage of total variance explained by each axis for each cluster

• rv_all_cluster: the RV coefficient between each block and each cluster compromise

• criterion: the CLUSTATIS criterion error

• param: parameters called

• type: parameter passed to other functions

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2018). Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food Quality and Preference, in Press.

Llobell, F., Vigneau, E., Qannari, E. M. (2019). Clustering datasets by means of CLUSTATIS with identification of atypical datasets. Application to sensometrics. Food Quality and Preference, 75, 97-104.

See Also

plot.clustatis, clustatis, summary.clustatis, statis

32 clustRowsOnStatisAxes

Examples

```
data(smoo)
NameBlocks=paste0("S",1:24)
#with multi-start
cl_km=clustatis_kmeans(Data=smoo,Blocks=rep(2,24),NameBlocks = NameBlocks, clust=3)
#with an initial partition
cl=clustatis(Data=smoo,Blocks=rep(2,24),NameBlocks = NameBlocks,
Graph_dend=FALSE)
partition=cl$cutree_k$partition3
cl_km2=clustatis_kmeans(Data=smoo,Blocks=rep(2,24),NameBlocks = NameBlocks,
clust=partition, Graph_weights=FALSE, Graph_groups=FALSE)
graphics.off()
```

clustRowsOnStatisAxes Perform a cluster analysis of rows in a Multi-block context with clustering on STATIS axes

Description

Clustering of rows (products in sensory analysis) in a Multi-block context. The STATIS method is followed by a hierarchical algorithm.

Usage

```
clustRowsOnStatisAxes(Data, Blocks, NameBlocks=NULL, scale=FALSE,
nclust=NULL, gpmax=6, ncomp=5)
```

Arguments

Data	data frame or matrix. Correspond to all the blocks of variables merged horizontally
Blocks	numerical vector. The number of variables of each block. The sum must be equal to the number of columns of Data.
NameBlocks	string vector. Name of each block. Length must be equal to the length of Blocks vector. If NULL, the names are B1,Bm. Default: NULL
scale	logical. Should the data variables be scaled? Default: FALSE
nclust	numerical. Number of clusters to consider. If NULL, the Hartigan index advice is taken.
gpmax	logical. What is maximum number of clusters to consider? min(6, number of blocks -2)
ncomp	numerical. Number of axes to consider. Default:5

consistency_cata 33

Value

- group: the clustering partition.
- nbgH: Advised number of clusters per Hartigan index
- nbgCH: Advised number of clusters per Calinski-Harabasz index
- cutree_k: the partition obtained by cutting the dendrogram in K clusters
- · dend: The dendrogram
- param: parameters called
- type: parameter passed to other functions

References

Paper submitted

See Also

```
indicesClusters, summary.clusRows, ClusMB
```

Examples

```
#####projective mapping####
library(ClustBlock)
data(smoo)
res1=clustRowsOnStatisAxes(smoo, rep(2,24))
summary(res1)
indicesClusters(smoo, rep(2,24), res1$group)

####CATA####
data(fish)
Data=fish[1:66,2:30]
chang2=change_cata_format2(Data, nprod= 6, nattr= 27, nsub = 11, nsess= 1)
res2=clustRowsOnStatisAxes(Data= chang2$Datafinal, Blocks= rep(27, 11))
indicesClusters(Data= chang2$Datafinal, Blocks= rep(27, 11), cut = res2$group, center=FALSE)
```

consistency_cata

Test the consistency of each attribute in a CATA experiment

Description

Permutation test on the agreement between subjects for each attribute in a CATA experiment

Usage

```
consistency_cata(Data,nblo, nperm=100, alpha=0.05, printAttrTest=FALSE)
```

Arguments

Data data frame or matrix. Correspond to all the blocks of variables merged horizon-

tally

nblo numerical. Number of blocks (subjects).

nperm numerical. How many permutations are required? Default: 100 alpha numerical between 0 and 1. What is the threshold? Default: 0.05

printAttrTest logical. Print the number of remaining attributes to be tested? Default: FALSE

Value

a list with:

• consist: the consistent attributes

• no_consist: the inconsistent attributes

• pval: pvalue for each test

References

Llobell, F., Giacalone, D., Labenne, A., Qannari, E.M. (2019). Assessment of the agreement and cluster analysis of the respondents in a CATA experiment. Food Quality and Preference, 77, 184-190.

See Also

```
consistency_cata_panel, change_cata_format, change_cata_format2
```

Examples

```
data(straw)
#with only 40 subjects
consistency_cata(Data=straw[,1:(16*40)], nblo=40)
#with all subjects
consistency_cata(Data=straw, nblo=114, printAttrTest=TRUE)
```

```
consistency_cata_panel
```

Test the consistency of the panel in a CATA experiment

Description

Permutation test on the agreement between subjects in a CATA experiment

consistency_cata_panel 35

Usage

```
consistency_cata_panel(Data,nblo, nperm=100, alpha=0.05)
```

Arguments

Data data frame or matrix. Correspond to all the blocks of variables merged horizon-

tally

nblo numerical. Number of blocks (subjects).

nperm numerical. How many permutations are required? Default: 100

alpha numerical between 0 and 1. What is the threshold? Default: 0.05

Value

a list with:

• answer: the answer of the test

• pval: pvalue of the test

• dis: distance between the homogeneity and the median of the permutations

References

Llobell, F., Giacalone, D., Labenne, A., Qannari, E.M. (2019). Assessment of the agreement and cluster analysis of the respondents in a CATA experiment. Food Quality and Preference, 77, 184-190.

Bonnet, L., Ferney, T., Riedel, T., Qannari, E.M., Llobell, F. (September 14, 2022) .Using CATA for sensory profiling: assessment of the panel performance. Eurosense, Turku, Finland.

See Also

```
consistency_cata, change_cata_format, change_cata_format2
```

Examples

```
data(straw)
#with all subjects
consistency_cata_panel(Data=straw, nblo=114)
```

36 indicesClusters

fish

fish data

Description

fish data

Usage

data(fish)

Format

CATA data with sessions. A data frame with the sessions, the panelists, the products and CATA attributes.

References

Bonnet, L., Ferney, T., Riedel, T., Qannari, E.M., Llobell, F. (September 14, 2022) .Using CATA for sensory profiling: assessment of the panel performance. Eurosense, Turku, Finland.

Examples

data(fish)

indicesClusters

Compute the indices to evaluate the quality of the cluster partition in multi-block context

Description

Compute the II index to evaluate the agreement between each block and the global partition (in sensory: agreement between each subject and the global partition)

Compute the JI index to evaluate if each block has a partition (in sensory: if each subject made a partition of products)

Usage

indicesClusters(Data, Blocks, cut, NameBlocks=NULL, center=TRUE, scale=FALSE)

indicesClusters 37

Arguments

Data data frame or matrix. Correspond to all the blocks of variables merged horizon-

tally

Blocks numerical vector. The number of variables of each block. The sum must be

equal to the number of columns of Data.

cut numerical vector. The partition of the cluster analysis.

NameBlocks string vector. Name of each block. Length must be equal to the length of Blocks

vector. If NULL, the names are B1,...Bm. Default: NULL

center logical. Should the data variables be centered? Default: TRUE. Please set to

FALSE for a CATA experiment

scale logical. Should the data variables be scaled? Default: FALSE

Value

• II: the II indices

• jl: the jl indicess

References

Llobell, F., Qannari, E.M. (June 10, 2022). Cluster analysis in a multi-bloc setting. SMTDA, Athens Greece

Llobell, F., Giacalone, D., Qannari, E. M. (Pangborn 2021). Cluster Analysis of products in CATA experiments.

Paper submitted

See Also

clustRowsOnStatisAxes,, ClusMB

Examples

```
#####projective mapping####
library(ClustBlock)
data(smoo)
res1=ClusMB(smoo, rep(2,24))
summary(res1)
indicesClusters(smoo, rep(2,24), res1$group)

####CATA###
data(fish)
Data=fish[1:66,2:30]
chang2=change_cata_format2(Data, nprod= 6, nattr= 27, nsub = 11, nsess= 1)
res2=ClusMB(Data= chang2$Datafinal, Blocks= rep(27, 11), center=FALSE)
indicesClusters(Data= chang2$Datafinal, Blocks= rep(27, 11), cut = res2$group, center=FALSE)
```

38 plot.catatis

aphs	
------	--

Description

This function plots the CATATIS map and CATATIS weights

Usage

```
## S3 method for class 'catatis'
plot(x, Graph=TRUE, Graph_weights=TRUE, Graph_eig=TRUE,
   axes=c(1,2), tit="CATATIS", cex=1, col.obj="blue", col.attr="red", ...)
```

Arguments

	X	object of class 'catatis'
	Graph	logical. Show the graphical representation? Default: TRUE
	Graph_weights	logical. Should the barplot of the weights be plotted? Default: TRUE
	Graph_eig	logical. Should the barplot of the eigenvalues be plotted? Only with Graph=TRUE. Default: TRUE
	axes	numerical vector (length 2). Axes to be plotted
	tit	string. Title for the graphical representation. Default: 'CATATIS'
numerical. Numeric character expansion factor; multiplied by par("cex") yet the final character size. NULL and NA are equivalent to 1.0.		numerical. Numeric character expansion factor; multiplied by par("cex") yields the final character size. NULL and NA are equivalent to 1.0.
	col.obj	numerical or string. Color for the objects points. Default: "blue"
	col.attr	numerical or string. Color for the attributes points. Default: "red"
		further arguments passed to or from other methods

Value

```
the CATATIS map
```

See Also

catatis

Examples

```
data(straw)
res.cat=catatis(straw, nblo=114)
plot(res.cat, Graph_weights=FALSE, axes=c(1,3))
```

plot.cluscata 39

plot.cluscata	Displays the CLUSCATA graphs	

Description

This function plots dendrogram, variation of the merging criterion, weights and CATATIS map of each cluster

Usage

```
## S3 method for class 'cluscata'
plot(x, ngroups=NULL, Graph_groups=TRUE, Graph_dend=TRUE,
Graph_bar=FALSE, Graph_weights=FALSE, axes=c(1,2), cex=1,
col.obj="blue", col.attr="red", ...)
```

Arguments

x	object of class 'cluscata'.
ngroups	number of groups to consider. Ignored for cluscata_kmeans results. Default: recommended number of clusters
Graph_groups	logical. Should each cluster compromise graphical representation be plotted? Default: TRUE
Graph_dend	logical. Should the dendrogram be plotted? Default: TRUE
Graph_bar	logical. Should the barplot of the difference of the criterion and the barplot of the overall homogeneity at each merging step of the hierarchical algorithm be plotted? Also available after consolidation if Noise_cluster=FALSE. Default: FALSE
Graph_weights	logical. Should the barplot of the weights in each cluster be plotted? Default: FALSE
axes	numerical vector (length 2). Axes to be plotted. Default: c(1,2)
cex	numerical. Numeric character expansion factor; multiplied by par("cex") yields the final character size. NULL and NA are equivalent to 1.0.
col.obj	numerical or string. Color for the objects points. Default: "blue"
col.attr	numerical or string. Color for the attributes points. Default: "red"
	further arguments passed to or from other methods

Value

```
the CLUSCATA graphs
```

See Also

```
cluscata, cluscata_kmeans
```

40 plot.clustatis

Examples

```
data(straw)
res=cluscata(Data=straw[,1:(16*40)], nblo=40)
plot(res, ngroups=3, Graph_dend=FALSE)
plot(res, ngroups=3, Graph_dend=FALSE,Graph_bar=FALSE, Graph_weights=FALSE, axes=c(1,3))
```

plot.clustatis

Displays the CLUSTATIS graphs

Description

This function plots dendrogram, variation of the merging criterion, weights and STATIS map of each cluster

Usage

```
## S3 method for class 'clustatis'
plot(x, ngroups=NULL, Graph_groups=TRUE, Graph_dend=TRUE,
Graph_bar=FALSE, Graph_weights=FALSE, axes=c(1,2), col=NULL, cex=1, font=1, ...)
```

Arguments

5022202	
x	object of class 'clustatis'.
ngroups	number of groups to consider. Ignored for clustatis_kmeans results. Default: recommended number of clusters
Graph_groups	logical. Should each cluster compromise graphical representation be plotted? Default: TRUE
Graph_dend	logical. Should the dendrogram be plotted? Default: TRUE
Graph_bar	logical. Should the barplot of the difference of the criterion and the barplot of the overall homogeneity at each merging step of the hierarchical algorithm be plotted? Also available after consolidation if Noise_cluster=FALSE. Default: FALSE
Graph_weights	logical. Should the barplot of the weights in each cluster be plotted? Default: FALSE
axes	numerical vector (length 2). Axes to be plotted. Default: c(1,2)
col	vector. Color for each object. Default: rainbow(nrow(Data))
cex	numerical. Numeric character expansion factor; multiplied by par("cex") yields the final character size. NULL and NA are equivalent to 1.0.
font	numerical. Integer specifying font to use for text. 1=plain, 2=bold, 3=italic, 4=bold italic, 5=symbol. Default: 1
	further arguments passed to or from other methods

plot.statis 41

Value

```
the CLUSTATIS graphs
```

See Also

```
clustatis, clustatis_kmeans
```

Examples

```
data(smoo)
NameBlocks=paste0("S",1:24)
cl=clustatis(Data=smoo,Blocks=rep(2,24),NameBlocks = NameBlocks)
plot(cl, ngroups=3, Graph_dend=FALSE)
plot(cl, ngroups=3, Graph_dend=FALSE, axes=c(1,3))
graphics.off()
```

plot.statis

Displays the STATIS graphs

Description

This function plots the STATIS map and STATIS weights

Usage

```
## S3 method for class 'statis'
plot(x, axes=c(1,2), Graph_obj=TRUE,
Graph_weights=TRUE, Graph_eig=TRUE, tit="STATIS", col=NULL, cex=1, font=1,
xlim=NULL, ylim=NULL, ...)
```

Arguments

х	object of class 'statis'
axes	numerical vector (length 2). Axes to be plotted. Default: c(1,2)
Graph_obj	logical. Should the compromise graphical representation be plotted? Default: TRUE
Graph_weights	logical. Should the barplot of the weights be plotted? Default: TRUE
Graph_eig	logical. Should the barplot of the eigenvalues be plotted? Only with Graph_obj=TRUE. Default: TRUE
tit	string. Title for the objects graphical representation. Default: 'STATIS'
col	vector. Color for each object. If NULL, col=rainbow(nrow(Data)). Default: NULL

42 preprocess_FreeSort

cex	numerical. Numeric character expansion factor; multiplied by par("cex") yields the final character size. NULL and NA are equivalent to 1.0.
font	numerical. Integer specifying font to use for text. 1=plain, 2=bold, 3=italic, 4=bold italic, 5=symbol. Default: 1
xlim	numerical vector (length 2). Minimum and maximum for x coordinates.
ylim	numerical vector (length 2). Minimum and maximum for y coordinates.
	further arguments passed to or from other methods

Value

the STATIS graphs

See Also

statis

Examples

```
data(smoo)
NameBlocks=paste0("S",1:24)
st=statis(Data=smoo,Blocks=rep(2,24),NameBlocks = NameBlocks)
plot(st, axes=c(1,3), Graph_weights=FALSE)
```

Description

For Free Sorting Data, this preprocessing is needed.

Usage

```
preprocess_FreeSort(Data, NameSub=NULL)
```

Arguments

Data data frame or matrix. Corresponds to all variables that contain subjects results.

Each column corresponds to a subject and gives the groups to which the products

(rows) are assigned

NameSub string vector. Name of each subject. Length must be equal to the number of

clumn of the Data. If NULL, the names are S1,...Sm. Default: NULL

preprocess_JAR 43

Value

A list with:

• new Data: the Data transformed

• Blocks: the number of groups for each subject

• NameBlocks: the name of each subject

References

Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2018). Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food Quality and Preference, in Press.

See Also

```
clustatis, clustatis_FreeSort
```

Examples

```
data(choc)
prepro=preprocess_FreeSort(choc)
```

preprocess_JAR

Preprocessing for Just About Right Data

Description

For JAR data, this preprocessing is needed.

Usage

```
preprocess_JAR(Data, nprod, nsub, levelsJAR=3, beta=0.1)
```

Arguments

Data data frame where the first column is the Assessors, the second is the products

and all other columns the JAR attributes with numbers (1 to 3 or 1 to 5, see

levelsJAR)

nprod integer. Number of products. nsub integer. Number of subjects.

levelsJAR integer. 3 or 5 levels. If 5, the data will be transformed in 3 levels.

beta numerical. Parameter for agreement between JAR and other answers. Between

0 and 0.5.

print.catatis

Value

A list with:

• Datafinal: the Data transformed

• NameSub: the name of each subject in the right order

References

Llobell, F., Vigneau, E. & Qannari, E. M. (September 14, 2022). Multivariate data analysis and clustering of subjects in a Just about right task. Eurosense, Turku, Finland.

See Also

```
catatis_jar, cluscata_jar, cluscata_kmeans_jar
```

Examples

```
data(cheese)
prepro=preprocess_JAR(cheese, nprod=8, nsub=72, levelsJAR=5)
```

print.catatis

Print the CATATIS results

Description

Print the CATATIS results

Usage

```
## S3 method for class 'catatis' print(x, ...)
```

Arguments

x object of class 'catatis'

... further arguments passed to or from other methods

See Also

catatis

print.cluscata 45

print.cluscata

Print the CLUSCATA results

Description

Print the CLUSCATA results

Usage

```
## S3 method for class 'cluscata' print(x, ...)
```

Arguments

x object of class 'cluscata'

... further arguments passed to or from other methods

See Also

cluscata, cluscata_kmeans

print.clusRows

Print the ClusMB or clustering on STATIS axes results

Description

Print the ClusMB or clustering on STATIS axes results

Usage

```
## S3 method for class 'clusRows'
print(x, ...)
```

Arguments

x object of class 'clusRows'

... further arguments passed to or from other methods

See Also

ClusMB, clustRowsOnStatisAxes

print.statis

print.clustatis

Print the CLUSTATIS results

Description

Print the CLUSTATIS results

Usage

```
## S3 method for class 'clustatis' print(x, ...)
```

Arguments

x object of class 'clustatis'

... further arguments passed to or from other methods

See Also

```
{\tt clustatis,clustatis\_kmeans}
```

print.statis

Print the STATIS results

Description

Print the STATIS results

Usage

```
## S3 method for class 'statis'
print(x, ...)
```

Arguments

x object of class 'statis'

... further arguments passed to or from other methods

See Also

statis

RATAchoc 47

RATAchoc R	PATA data on chocolates
RATACIOC	AIA data on chocolates

Description

RATA data on chocolates

Usage

```
data(RATAchoc)
```

Format

RATA data with sessions. A data frame with 3 sessions, 9 panelists, 12 products and 27 RATA attributes.

References

Pangborn 2023

Examples

data(RATAchoc)

simil_groups_cata	Testing the difference in perception between two predetermined groups
_6	of subjects in a CATA experiment
	of subjects in a Chill experiment

Description

Test adapted to CATA data to determine whether two predetermined groups of subjects have a different perception or not. For example, men and women.

Usage

```
simil_groups_cata(Data, groups, one=1, two=2, nperm=50, Graph=TRUE,
    alpha= 0.05, printl=FALSE)
```

Arguments

Data	data frame or matrix. Correspond to all the blocks of variables merged horizontally
groups	categorical vector. The groups of each subject . The length must be the number of subjects.
one	string. Name of the group 1 in groups vector.

48 smoo

two	string. Name of the group 2 in groups vector.
nperm	numerical. How many permutations are required? Default: 50
Graph	logical. Should the CATATIS graph of each group be plotted? Default: TRUE
alpha	numerical between 0 and 1. What is the threshold of the test? Default: 0.05
printl	logical. Print the number of remaining permutations during the algorithm? Default: FALSE

fault: FALSE

Value

a list with:

• decision: the decision of the test

• pval: pvalue of the test

References

Llobell, F., Giacalone, D., Jaeger, S.R. & Qannari, E. M. (2021). CATA data: Are there differences in perception? JSM conference.

Llobell, F., Giacalone, D., Jaeger, S.R. & Qannari, E. M. (2021). CATA data: Are there differences in perception? AgroStat conference.

Examples

```
data(straw)
groups=sample(1:2, 114, replace=TRUE)
simil_groups_cata(straw, groups, one=1, two=2)
```

smoo	smoothies data	

Description

smoothies data

Usage

data(smoo)

Format

Projective mapping (or Napping) data. A data frame with 8 rows (the number of smoothies) and 48 columns (the number of consumers * 2). For each consumer, we have the coordinates of the products on the sheet of paper.

statis 49

References

Francois Husson, Sebastien Le and Marine Cadoret (2017). SensoMineR: Sensory Data Analysis. R package version 1.23. https://CRAN.R-project.org/package=SensoMineR

Examples

data(smoo)

statis	Performs the STATIS method on different blocks of quantitative variables
--------	--

Description

STATIS method on quantitative blocks. SUpplementary outputs are also computed

Usage

statis(Data,Blocks,NameBlocks=NULL,Graph_obj=TRUE, Graph_weights=TRUE, scale=FALSE)

Arguments

Data	data frame or matrix. Correspond to all the blocks of variables merged horizontally
Blocks	numerical vector. The number of variables of each block. The sum must be equal to the number of columns of Data
NameBlocks	string vector. Name of each block. Length must be equal to the length of Blocks vector. If NULL, the names are B1,Bm. Default: NULL
Graph_obj	logical. Show the graphical representation od the objects? Default: TRUE
Graph_weights	logical. Should the barplot of the weights be plotted? Default: TRUE
scale	logical. Should the data variables be scaled? Default: FALSE

Value

a list with:

- RV: the RV matrix: a matrix with the RV coefficient between blocks of variables
- compromise: a matrix which is the compromise of the blocks (akin to a weighted average)
- weights: the weights associated with the blocks to build the compromise
- lambda: the first eigenvalue of the RV matrix
- overall error : the error for the STATIS criterion
- error_by_conf: the error by configuration (STATIS criterion)
- rv_with_compromise: the RV coefficient of each block with the compromise
- homogeneity: homogeneity of the blocks (in percentage)

50 statis_FreeSort

- coord: the coordinates of each object
- eigenvalues: the eigenvalues of the svd decomposition
- inertia: the percentage of total variance explained by each axis
- error_by_obj: the error by object (STATIS criterion)
- scalefactors: the scaling factors of each block
- proj_config: the projection of each object of each configuration on the axes: presentation by configuration
- proj_objects: the projection of each object of each configuration on the axes: presentation by object

References

- Lavit, C., Escoufier, Y., Sabatier, R., Traissac, P. (1994). The act (statis method). Computational 462 Statistics & Data Analysis, 18 (1), 97-119.\
- Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2018). Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food Quality and Preference, in Press.

See Also

```
plot.statis, clustatis
```

Examples

```
data(smoo)
NameBlocks=paste0("S",1:24)
st=statis(Data=smoo, Blocks=rep(2,24),NameBlocks = NameBlocks)
#plot(st, axes=c(1,3))
summary(st)
#with variables scaling
st2=statis(Data=smoo, Blocks=rep(2,24),NameBlocks = NameBlocks, Graph_weights=FALSE, scale=TRUE)
```

statis_FreeSort

Performs the STATIS method on Free Sorting data

Description

STATIS method on Free Sorting data. A lot of supplementary informations are also computed

Usage

```
statis_FreeSort(Data, NameSub=NULL, Graph_obj=TRUE, Graph_weights=TRUE)
```

statis_FreeSort 51

Arguments

Data data frame or matrix. Corresponds to all variables that contain subjects results.

Each column corresponds to a subject and gives the groups to which the products

(rows) are assigned

NameSub string vector. Name of each subject. Length must be equal to the number of

clumn of the Data. If NULL, the names are S1,...Sm. Default: NULL

Graph_obj logical. Show the graphical representation od the objects? Default: TRUE

Graph_weights logical. Should the barplot of the weights be plotted? Default: TRUE

Value

a list with:

a list with:

• RV: the RV matrix: a matrix with the RV coefficient between subjects

- compromise: a matrix which is the compromise of the subjects (akin to a weighted average)
- weights: the weights associated with the subjects to build the compromise
- lambda: the first eigenvalue of the RV matrix
- overall error: the error for the STATIS criterion
- error_by_conf: the error by configuration (STATIS criterion)
- rv_with_compromise: the RV coefficient of each subject with the compromise
- homogeneity: homogeneity of the subjects (in percentage)
- coord: the coordinates of each object
- eigenvalues: the eigenvalues of the svd decomposition
- inertia: the percentage of total variance explained by each axis
- error_by_obj: the error by object (STATIS criterion)
- · scalefactors: the scaling factors of each subject
- proj_config: the projection of each object of each subject on the axes: presentation by subject
- proj_objects: the projection of each object of each subject on the axes: presentation by object

References

- Lavit, C., Escoufier, Y., Sabatier, R., Traissac, P. (1994). The act (statis method). Computational 462 Statistics & Data Analysis, 18 (1), 97-119.\
- Llobell, F., Cariou, V., Vigneau, E., Labenne, A., & Qannari, E. M. (2018). Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics. Food Quality and Preference, in Press.

See Also

preprocess_FreeSort, clustatis_FreeSort

52 summary.catatis

Examples

```
data(choc)
res.sta=statis_FreeSort(choc)
```

straw

strawberries data

Description

strawberries data

Usage

data(straw)

Format

CATA data. A data frame with 6 rows (the number of strawberries) and 1824 columns (the number of consumers (114) * the number of attributes (16)). For each consumer, each attribute and eachb product, there is 1 if the attribute has been checked by the consumer for the product, and 0 if not.

References

Ares, G., & Jaeger, S. R. (2013). Check-all-that-apply questions: Influence of attribute order on sensory product characterization. Food Quality and Preference, 28(1), 141-153.

Examples

```
data(straw)
```

summary.catatis

Show the CATATIS results

Description

This function shows the CATATIS results

Usage

```
## S3 method for class 'catatis'
summary(object, ...)
```

summary.cluscata 53

Arguments

object of class 'catatis'.... further arguments passed to or from other methods

Value

a list with:

- homogeneity: homogeneity of the subjects (in percentage)
- weights: the weights associated with the subjects to build the compromise
- eigenvalues: the eigenvalues associated to the correspondance analysis
- inertia: the percentage of total variance explained by each axis of the CA

See Also

catatis

summary.cluscata

Show the CLUSCATA results

Description

This function shows the cluscata results

Usage

```
## S3 method for class 'cluscata'
summary(object, ngroups=NULL, ...)
```

Arguments

object of class 'cluscata'.

ngroups number of groups to consider. Ignored for cluscata_kmeans results. Default:

recommended number of clusters

... further arguments passed to or from other methods

Value

the CLUSCATA principal results

a list with:

- group: the clustering partition
- homogeneity: homogeneity index (
- weights: weight associated with each subject in its cluster
- rho: the threshold for the noise cluster
- test_one_cluster: decision and pvalue to know if there is more than one cluster

54 summary.clusRows

See Also

```
cluscata, cluscata_kmeans
```

summary.clusRows

Show the ClusMB or clustering on STATIS axes results

Description

This function shows the ClusMB or clustering on STATIS axes results

Usage

```
## S3 method for class 'clusRows'
summary(object, ...)
```

Arguments

object of class 'clusRows'.

... further arguments passed to or from other methods

Value

a list with:

- groups: clustering partition
- nbClustRetained: the number of clusters retained
- nbgH: Advised number of clusters per Hartigan index
- nbgCH: Advised number of clusters per Calinski-Harabasz index

See Also

ClusMB, clustRowsOnStatisAxes

summary.clustatis 55

summary.clustatis

Show the CLUSTATIS results

Description

This function shows the clustatis results

Usage

```
## S3 method for class 'clustatis'
summary(object, ngroups=NULL, ...)
```

Arguments

object of class 'clustatis'.

ngroups number of groups to consider. Ignored for clustatis_kmeans results. Default:

recommended number of clusters

... further arguments passed to or from other methods

Value

the CLUSTATIS principal results

a list with:

- group: the clustering partition
- homogeneity: homogeneity index (
- weights: weight associated with each block in its cluster
- rho: the threshold for the noise cluster
- test_one_cluster: decision and pvalue to know if there is more than one cluster

See Also

clustatis, clustatis_kmeans

56 summary.statis

summary.statis

Show the STATIS results

Description

This function shows the STATIS results

Usage

```
## S3 method for class 'statis'
summary(object, ...)
```

Arguments

object of class 'statis'.

... further arguments passed to or from other methods

Value

a list with:

- homogeneity: homogeneity of the blocks (in percentage)
- weights: the weights associated with the blocks to build the compromise
- eigenvalues: the eigenvalues of the svd decomposition
- inertia: the percentage of total variance explained by each axis

See Also

statis

Index

* Blocks	cluscata_kmeans_jar, 18
ClustBlock-package, 3	ClustBlock-package, 3
* CATA	preprocess_JAR, 43
catatis, 4	* Just About Right
change_cata_format, 9	ClustBlock-package, 3
change_cata_format2, 10	* Multi-block
cluscata, 12	ClustBlock-package, 3
cluscata_kmeans, 17	* Noise Cluster
ClusMB, 22	ClustBlock-package, 3
ClustBlock-package, 3	* Profiling
clustRowsOnStatisAxes, 32	ClustBlock-package, 3
consistency_cata, 33	* Projective mapping
consistency_cata_panel, 34	ClustBlock-package, 3
indicesClusters, 36	* RATA
plot.catatis, 38	catatis_rata,7
plot.cluscata, 39	change_cata_format2, 10
print.catatis, 44	cluscata_rata, 20
print.cluscata, 45	ClusMB, 22
print.clusRows, 45	ClustBlock-package, 3
simil_groups_cata,47	clustRowsOnStatisAxes, 32
summary.catatis, 52	consistency_cata, 33
summary.cluscata, 53	consistency_cata_panel, 34
summary.clusRows, 54	indicesClusters, 36
* Check-All-That-Apply	plot.catatis, 38
ClustBlock-package, 3	print.catatis, 44
* Cluster analysis	print.clusRows, 45
ClustBlock-package, 3	summary.catatis, 52
* Clustering	summary.clusRows, 54
ClustBlock-package, 3	* Rate-All-That-Apply
* Free Sorting	ClustBlock-package, 3
ClustBlock-package, 3	* Sensory
* FreeSorting	ClustBlock-package, 3
clustatis_FreeSort, 26	* datasets
<pre>clustatis_FreeSort_kmeans, 28</pre>	cheese, 11
preprocess_FreeSort, 42	choc, 11
statis_FreeSort, 50	fish, 36
* JAR	RATAchoc, 47
catatis_jar,5	smoo, 48
cluscata_jar, 14	straw, 52

58 INDEX

* quantitative	preprocess_FreeSort, 28, 30, 42, 51
ClusMB, 22	preprocess_JAR, 6, 16, 20, 43
clustatis, 24	print.catatis,44
clustatis_kmeans, 30	print.cluscata,45
clustRowsOnStatisAxes, 32	print.clusRows,45
indicesClusters, 36	print.clustatis,46
plot.clustatis, 40	print.statis,46
plot.statis,41	
print.clusRows, 45	RATAchoc, 47
print.clustatis,46	
print.statis, 46	simil_groups_cata,47
statis, 49	smoo, 48
summary.clusRows, 54	statis, 26, 31, 42, 46, 49, 56
summary.clustatis, 55	statis_FreeSort, 50
summary.statis, 56	straw, 52
	summary.catatis, 5 , 6 , 8 , 52
catatis, 4, 6, 8–10, 14, 18, 38, 44, 53	summary.cluscata, <i>14</i> , <i>16</i> , <i>18</i> , <i>20</i> , <i>22</i> , <i>53</i>
catatis_jar, 5, 16, 20, 44	summary.clusRows, 23 , 33 , 54
catatis_rata, 7, 22	summary.clustatis, 26, 28, 30, 31, 55
change_cata_format, 4, 5, 7, 8, 9, 10, 12, 14,	summary.statis, 56
17, 18, 20, 22, 34, 35	
change_cata_format2, 5, 8, 9, 10, 14, 22, 34,	
35	
cheese, 11	
choc, 11	
cluscata, 5, 9, 10, 12, 18, 39, 45, 54	
cluscata_jar, 6, 14, 20, 44	
cluscata_kmeans, 14, 17, 39, 45, 54	
cluscata_kmeans_jar, 6, 16, 18, 44	
cluscata_rata, 20	
ClusMB, 22, 33, 37, 45, 54	
clustatis, 24, 28, 31, 41, 43, 46, 50, 55	
clustatis_FreeSort, 26, 30, 43, 51	
clustatis_FreeSort_kmeans, 28	
clustatis_kmeans, 26, 30, 41, 46, 55	
ClustBlock (ClustBlock-package), 3	
ClustBlock-package, 3	
clustRowsOnStatisAxes, 23, 32, 37, 45, 54	
consistency_cata, 33, 35	
consistency_cata_panel, 34, 34	
consistency_cata_paner, 54, 54	
fish, 36	
indicesClusters, 23, 33, 36	
111010050105101 5, 25, 55, 50	
plot.catatis, <i>5</i> , <i>6</i> , <i>8</i> , 38	
plot.cluscata, <i>14</i> , <i>16</i> , <i>18</i> , <i>20</i> , <i>22</i> , 39	
plot.clustatis, 26, 28, 30, 31, 40	
plot.statis, 41, <i>50</i>	