LAB MANUAL #6

Objectives:

• To learn and understand the working of NAND gate and NOR gate

Introduction to NAND Gate

74LS00 IC contains four 2-input NAND gates. The function table and connection diagram for this IC are shown below:

Function Table

Inputs		Output
A	В	\mathbf{Y}
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

Connection Diagram:

H= Logic High, L= Logic Low

Introduction to NOR Gate

74LS02 IC contains four 2-input NOR gates. The function table and connection diagram for this IC are shown below:

Function Table:

Inputs		Output
A	В	Y
L	L	Н
L	Н	L
Н	L	L
Н	Н	L

Connection Diagram:

H= Logic High, L= Logic Low

Question #1:

Simplify the Product-Of-Sums Boolean expression below.

Out=
$$(A+B+C+\overline{D})(A+B+\overline{C}+D)(A+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$$

 $(\overline{A}+\overline{B}+\overline{C}+D)(\overline{A}+B+C+\overline{D})(\overline{A}+B+\overline{C}+D)$

NOR and NAND Implementation on logic trainer:

Question#2:

Implement on Logic Works the following using only the NAND gates

- (a) Z = A.B
- **(b)** X = A + B
- (c) XNOR

Question#3:

Implement on Logic Works the following using only the NOR gates.

- (a) Z = A.B
- **(b)** X = A + B
- (c) XOR

Question #4: For the Boolean function $F1(A, B, C, D) = \sum m(2,4,12,14)$ do the following:

- a) Find truth table
- b) Find minimal SOP expression for Boolean function F1 using K-map. Draw K-map.
- c) Draw the resultant expression obtained in part (b) and implement on **Logic Works** using **only NAND** gates.