Galois Categories and the Étale Fundamental Group

or, what should be taught in MA 811

Swayam Chube

Indian Institute of Technology, Bombay

April 18, 2025

Let k be a field and fix its separable and algebraic closures $k_s \subseteq \overline{k}$. Let $G_k := \operatorname{Gal}(k_s \mid k)$, which is a profinite group through the isomorphism:

$$\operatorname{\mathsf{Gal}}(k_s \mid k) \cong \varprojlim_{\substack{k \subseteq K \subseteq k_s \\ [L:k] < \infty}} \operatorname{\mathsf{Gal}}(L \mid k).$$

Let k be a field and fix its separable and algebraic closures $k_s \subseteq \overline{k}$. Let $G_k := \operatorname{Gal}(k_s \mid k)$, which is a profinite group through the isomorphism:

$$\operatorname{\mathsf{Gal}}(k_{\mathfrak{s}}\mid k)\cong \varprojlim_{\substack{k\subseteq K\subseteq k_{\mathfrak{s}}\ [L:k]<\infty}}\operatorname{\mathsf{Gal}}(L\mid k).$$

If L is a finite separable extension of k, then there is a natural action of G_k on $\operatorname{Hom}_k(L, k_s)$ given by

$$G_k \times \operatorname{\mathsf{Hom}}_k(L, k_s) \to \operatorname{\mathsf{Hom}}_k(L, k_s) \qquad (g, \varphi) \mapsto g \circ \varphi.$$

Let k be a field and fix its separable and algebraic closures $k_s \subseteq \overline{k}$. Let $G_k := \operatorname{Gal}(k_s \mid k)$, which is a profinite group through the isomorphism:

$$\operatorname{\mathsf{Gal}}(k_s \mid k) \cong \varprojlim_{\substack{k \subseteq K \subseteq k_s \\ [L:k] < \infty}} \operatorname{\mathsf{Gal}}(L \mid k).$$

If L is a finite separable extension of k, then there is a natural action of G_k on $\operatorname{Hom}_k(L, k_s)$ given by

$$G_k \times \operatorname{\mathsf{Hom}}_k(L, k_s) \to \operatorname{\mathsf{Hom}}_k(L, k_s) \qquad (g, \varphi) \mapsto g \circ \varphi.$$

The stabilizer of $\varphi \in \operatorname{Hom}_k(L, k_s)$ is $\operatorname{Gal}(k_s \mid \varphi(L))$, i.e., an open subgroup of G_k , whence $\operatorname{Hom}_k(L, k_s)$ is a continuous G_k -set.

Let k be a field and fix its separable and algebraic closures $k_s \subseteq \overline{k}$. Let $G_k := \operatorname{Gal}(k_s \mid k)$, which is a profinite group through the isomorphism:

$$\operatorname{\mathsf{Gal}}(k_s \mid k) \cong \varprojlim_{\substack{k \subseteq K \subseteq k_s \\ [L:k] < \infty}} \operatorname{\mathsf{Gal}}(L \mid k).$$

If L is a finite separable extension of k, then there is a natural action of G_k on $\operatorname{Hom}_k(L, k_s)$ given by

$$G_k \times \operatorname{\mathsf{Hom}}_k(L, k_s) \to \operatorname{\mathsf{Hom}}_k(L, k_s) \qquad (g, \varphi) \mapsto g \circ \varphi.$$

The stabilizer of $\varphi \in \operatorname{Hom}_k(L, k_s)$ is $\operatorname{Gal}(k_s \mid \varphi(L))$, i.e., an open subgroup of G_k , whence $\operatorname{Hom}_k(L, k_s)$ is a continuous G_k -set. Clearly, this action is also transitive.

Étale Algebras and the Fundamental Theorem

Definition

A finite-dimensional k-algebra A is said to be *étale* over k if it is isomorphic to a finite direct product of separable extensions of k.

Étale Algebras and the Fundamental Theorem

Definition

A finite-dimensional k-algebra A is said to be *étale* over k if it is isomorphic to a finite direct product of separable extensions of k.

As in the preceding slide, there is a natural continuous action:

$$G_k \times \operatorname{\mathsf{Hom}}_k(A, k_s) \to \operatorname{\mathsf{Hom}}_k(A, k_s) \qquad (g, \varphi) \mapsto g \circ \varphi.$$

Étale Algebras and the Fundamental Theorem

Definition

A finite-dimensional k-algebra A is said to be *étale* over k if it is isomorphic to a finite direct product of separable extensions of k.

As in the preceding slide, there is a natural continuous action:

$$G_k \times \operatorname{Hom}_k(A, k_s) \to \operatorname{Hom}_k(A, k_s) \qquad (g, \varphi) \mapsto g \circ \varphi.$$

Theorem (Fundamental Theorem of Galois Theory)

The functor mapping a finite étale k-algebra A to the finite G_k -set $\operatorname{Hom}_k(A, k_s)$ gives an anti-equivalence between the category of finite étale k-algebras and the category of finte sets with a continuous G_k -action. Here separable extensions correspond to transitive G_k -sets.

Let X be a path connected, locally path connected, semilocally simply connected topological space and fix a basepoint $x_0 \in X$.

Let X be a path connected, locally path connected, semilocally simply connected topological space and fix a basepoint $x_0 \in X$. If $p: Y \to X$ is a finite-sheeted covering space, there is a natural action of $\pi_1(X, x_0)$ on the (finite) fibre $p^{-1}(x_0)$, known as the monodromy action.

Let X be a path connected, locally path connected, semilocally simply connected topological space and fix a basepoint $x_0 \in X$. If $p: Y \to X$ is a finite-sheeted covering space, there is a natural action of $\pi_1(X, x_0)$ on the (finite) fibre $p^{-1}(x_0)$, known as the monodromy action.

Since this action factors through a finite quotient of $\pi_1(X, x_0)$, it induces a natural continuous action of the profinite completion $\widehat{\pi_1(X, x_0)}$ on $p^{-1}(x_0)$.

Let X be a path connected, locally path connected, semilocally simply connected topological space and fix a basepoint $x_0 \in X$. If $p: Y \to X$ is a finite-sheeted covering space, there is a natural action of $\pi_1(X, x_0)$ on the (finite) fibre $p^{-1}(x_0)$, known as the monodromy action.

Since this action factors through a finite quotient of $\pi_1(X, x_0)$, it induces a natural continuous action of the profinite completion $\widehat{\pi_1(X, x_0)}$ on $p^{-1}(x_0)$.

Theorem (Classification of Covering Spaces)

The aforementioned fibre functor induces an equivalence between the category of finite-sheeted covers of X and the category of continuous finite sets with a continuous $\widehat{\pi_1(X,x_0)}$ -action. Here connected covers correspond to transitive $\widehat{\pi_1(X,x_0)}$ -sets.

The Zariski topology on an algebraic variety is way too coarse. In fact:

Proposition

Every irreducible algebraic variety over an uncountable algebraically closed field is contractible in the Zariski Topology.

The Zariski topology on an algebraic variety is way too coarse. In fact:

Proposition

Every irreducible algebraic variety over an uncountable algebraically closed field is contractible in the Zariski Topology.

It is therefore clear that the naïve definition of a fundamental group using homotopy classes of paths is bound to fail for algebraic varieties.

The Zariski topology on an algebraic variety is way too coarse. In fact:

Proposition

Every irreducible algebraic variety over an uncountable algebraically closed field is contractible in the Zariski Topology.

It is therefore clear that the naïve definition of a fundamental group using homotopy classes of paths is bound to fail for algebraic varieties.

Motivated by the classification theorem for finite-sheeted covering spaces, Grothendieck envisioned a definition of an algebraic fundamental group.

The Zariski topology on an algebraic variety is way too coarse. In fact:

Proposition

Every irreducible algebraic variety over an uncountable algebraically closed field is contractible in the Zariski Topology.

It is therefore clear that the naïve definition of a fundamental group using homotopy classes of paths is bound to fail for algebraic varieties.

Motivated by the classification theorem for finite-sheeted covering spaces, Grothendieck envisioned a definition of an algebraic fundamental group.

To do this, he needed the "right" notion of a finite covering space in algebraic geometry. This purpose is served by the *finite étale morphisms*.

The Zariski topology on an algebraic variety is way too coarse. In fact:

Proposition

Every irreducible algebraic variety over an uncountable algebraically closed field is contractible in the Zariski Topology.

It is therefore clear that the naïve definition of a fundamental group using homotopy classes of paths is bound to fail for algebraic varieties.

Motivated by the classification theorem for finite-sheeted covering spaces, Grothendieck envisioned a definition of an algebraic fundamental group.

To do this, he needed the "right" notion of a finite covering space in algebraic geometry. This purpose is served by the *finite étale morphisms*.

All that remains is to establish an equivalence of some suitable categories.

A *Galois category* is a pair (\mathscr{C}, F) where \mathscr{C} is a category and $F : \mathscr{C} \to \mathbf{Sets}$ is a functor with F(a) a finite set for each object $a \in \mathscr{C}$, satisfying the following axioms:

A *Galois category* is a pair (\mathscr{C}, F) where \mathscr{C} is a category and $F : \mathscr{C} \to \mathbf{Sets}$ is a functor with F(a) a finite set for each object $a \in \mathscr{C}$, satisfying the following axioms:

G1 There is a terminal object in $\mathscr C$ and all fibred products exist in $\mathscr C$.

- A *Galois category* is a pair (\mathscr{C}, F) where \mathscr{C} is a category and $F : \mathscr{C} \to \mathbf{Sets}$ is a functor with F(a) a finite set for each object $a \in \mathscr{C}$, satisfying the following axioms:
 - G1 There is a terminal object in $\mathscr C$ and all fibred products exist in $\mathscr C$.
 - G2 An initial object exists in \mathscr{C} , finite coproducts exist in \mathscr{C} , and for any object in \mathscr{C} the *quotient* by a finite group of automorphisms exists.

- A *Galois category* is a pair (\mathscr{C}, F) where \mathscr{C} is a category and $F : \mathscr{C} \to \mathbf{Sets}$ is a functor with F(a) a finite set for each object $a \in \mathscr{C}$, satisfying the following axioms:
 - G1 There is a terminal object in $\mathscr C$ and all fibred products exist in $\mathscr C$.
 - G2 An initial object exists in \mathscr{C} , finite coproducts exist in \mathscr{C} , and for any object in \mathscr{C} the *quotient* by a finite group of automorphisms exists.
 - G3 Every morphism u in $\mathscr C$ factors as u=u'u'' where u' is a monomorphism and u'' is an epimorphism. Every monomorphism $f:X\to Y$ in $\mathscr C$ is an isomorphism of X with a direct summand of Y.

- A *Galois category* is a pair (\mathscr{C}, F) where \mathscr{C} is a category and $F : \mathscr{C} \to \mathbf{Sets}$ is a functor with F(a) a finite set for each object $a \in \mathscr{C}$, satisfying the following axioms:
 - G1 There is a terminal object in $\mathscr C$ and all fibred products exist in $\mathscr C$.
 - G2 An initial object exists in \mathscr{C} , finite coproducts exist in \mathscr{C} , and for any object in \mathscr{C} the *quotient* by a finite group of automorphisms exists.
 - G3 Every morphism u in $\mathscr C$ factors as u=u'u'' where u' is a monomorphism and u'' is an epimorphism. Every monomorphism $f:X\to Y$ in $\mathscr C$ is an isomorphism of X with a direct summand of Y.
 - G4 The functor *F* sends terminal objects to terminal objects and commutes with fibred products.

- A *Galois category* is a pair (\mathscr{C}, F) where \mathscr{C} is a category and $F : \mathscr{C} \to \mathbf{Sets}$ is a functor with F(a) a finite set for each object $a \in \mathscr{C}$, satisfying the following axioms:
 - G1 There is a terminal object in $\mathscr C$ and all fibred products exist in $\mathscr C$.
 - G2 An initial object exists in \mathscr{C} , finite coproducts exist in \mathscr{C} , and for any object in \mathscr{C} the *quotient* by a finite group of automorphisms exists.
 - G3 Every morphism u in $\mathscr C$ factors as u=u'u'' where u' is a monomorphism and u'' is an epimorphism. Every monomorphism $f:X\to Y$ in $\mathscr C$ is an isomorphism of X with a direct summand of Y.
 - G4 The functor *F* sends terminal objects to terminal objects and commutes with fibred products.
 - G5 The functor F transforms initial objects into initial objects, commutes with finite sums, sends epimorphisms to epimorphisms and commutes with passage to the quotient by a finite group of automorphisms.

- A *Galois category* is a pair (\mathscr{C}, F) where \mathscr{C} is a category and $F : \mathscr{C} \to \mathbf{Sets}$ is a functor with F(a) a finite set for each object $a \in \mathscr{C}$, satisfying the following axioms:
 - G1 There is a terminal object in $\mathscr C$ and all fibred products exist in $\mathscr C$.
 - G2 An initial object exists in \mathscr{C} , finite coproducts exist in \mathscr{C} , and for any object in \mathscr{C} the *quotient* by a finite group of automorphisms exists.
 - G3 Every morphism u in $\mathscr C$ factors as u=u'u'' where u' is a monomorphism and u'' is an epimorphism. Every monomorphism $f:X\to Y$ in $\mathscr C$ is an isomorphism of X with a direct summand of Y.
 - G4 The functor *F* sends terminal objects to terminal objects and commutes with fibred products.
 - G5 The functor F transforms initial objects into initial objects, commutes with finite sums, sends epimorphisms to epimorphisms and commutes with passage to the quotient by a finite group of automorphisms.
 - G6 If u is a morphism in $\mathscr C$ such that F(u) is an isomorphism, then u is an isomorphism.

- A *Galois category* is a pair (\mathscr{C}, F) where \mathscr{C} is a category and $F : \mathscr{C} \to \mathbf{Sets}$ is a functor with F(a) a finite set for each object $a \in \mathscr{C}$, satisfying the following axioms:
 - G1 There is a terminal object in $\mathscr C$ and all fibred products exist in $\mathscr C$.
 - G2 An initial object exists in \mathscr{C} , finite coproducts exist in \mathscr{C} , and for any object in \mathscr{C} the *quotient* by a finite group of automorphisms exists.
 - G3 Every morphism u in $\mathscr C$ factors as u=u'u'' where u' is a monomorphism and u'' is an epimorphism. Every monomorphism $f:X\to Y$ in $\mathscr C$ is an isomorphism of X with a direct summand of Y.
 - G4 The functor *F* sends terminal objects to terminal objects and commutes with fibred products.
 - G5 The functor F transforms initial objects into initial objects, commutes with finite sums, sends epimorphisms to epimorphisms and commutes with passage to the quotient by a finite group of automorphisms.
 - G6 If u is a morphism in $\mathscr C$ such that F(u) is an isomorphism, then u is an isomorphism.

In this case, the functor *F* is called a *fundamental functor*.

Examples of Galois Categories

 Clearly, the category of finite sets FinSets with the forgetful functor *U*: FinSets → Sets is a Galois category.

Examples of Galois Categories

- Clearly, the category of finite sets FinSets with the forgetful functor *U*: FinSets → Sets is a Galois category.
- Let π be a profinite group. The pair (π-sets, U), where π-sets is the category of finite π-sets with a continuous action and U: π-sets → Sets is the forgetful functor is a Galois category.

Examples of Galois Categories

- Clearly, the category of finite sets FinSets with the forgetful functor *U* : FinSets → Sets is a Galois category.
- Let π be a profinite group. The pair (π-sets, U), where π-sets is the category of finite π-sets with a continuous action and U: π-sets → Sets is the forgetful functor is a Galois category.
- Let X be a connected scheme. Let \mathbf{FEt}_X denote the category of finite étale maps $Y \to X$ with morphisms $f: Y \to Z$ making

commute. Fix a geometric point x_0 : Spec $\Omega \to X$. This defines a fibre functor Fib_{x_0}: **FEt**_X \to **Sets**. The pair (**FEt**_X, Fib_{x_0}) forms a Galois category.

Let (\mathscr{C}, F) be a *small* Galois category.

Let (\mathscr{C}, F) be a *small* Galois category. Note that $\operatorname{Aut}_{\mathscr{C}}(F)$ is a group of natural isomorphisms $\eta: F \to F$.

Let (\mathscr{C},F) be a *small* Galois category. Note that $\operatorname{Aut}_{\mathscr{C}}(F)$ is a group of natural isomorphisms $\eta:F\to F$. Each such natural isomorphism can be identified with a tuple $(\eta_X)_{X\in\mathscr{C}}$, where $\eta_X:F(X)\to F(X)$ is an isomorphism in **Sets**, i.e., is a bijection of sets.

Let (\mathscr{C}, F) be a *small* Galois category. Note that $\operatorname{Aut}_{\mathscr{C}}(F)$ is a group of natural isomorphisms $\eta: F \to F$.

Each such natural isomorphism can be identified with a tuple $(\eta_X)_{X\in\mathscr{C}}$, where $\eta_X:F(X)\to F(X)$ is an isomorphism in **Sets**, i.e., is a bijection of sets.

This tuple is an element in the profinite group

$$\Gamma := \prod_{X \in \mathscr{C}} \mathfrak{S}_{F(X)}.$$

Let (\mathscr{C}, F) be a *small* Galois category. Note that $\operatorname{Aut}_{\mathscr{C}}(F)$ is a group of natural isomorphisms $\eta: F \to F$.

Each such natural isomorphism can be identified with a tuple $(\eta_X)_{X\in\mathscr{C}}$, where $\eta_X:F(X)\to F(X)$ is an isomorphism in **Sets**, i.e., is a bijection of sets.

This tuple is an element in the profinite group

$$\Gamma := \prod_{X \in \mathscr{C}} \mathfrak{S}_{F(X)}.$$

Further the tuple must be such that for each morphism $f: X \to Y$ in \mathscr{C} , the diagram

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\uparrow_{\chi} \qquad \qquad \downarrow^{\eta_{Y}}$$

$$F(X) \xrightarrow{F(f)} F(Y)$$

commutes.

The automorphism group of F, contd.

We show that $Aut_{\mathscr{C}}(F)$ is closed in Γ .

The automorphism group of F, contd.

We show that $Aut_{\mathscr{C}}(F)$ is closed in Γ .

Fix $Y, Z \in \mathscr{C}$ and a morphism $f: Y \to Z$. Consider the set

$$C_f := \{(\eta_X)_{X \in \mathscr{C}} \in \Gamma \colon \eta_Y \circ F(f) = F(f) \circ \eta_X\}.$$

The automorphism group of F, contd.

We show that $Aut_{\mathscr{C}}(F)$ is closed in Γ .

Fix $Y, Z \in \mathscr{C}$ and a morphism $f: Y \to Z$. Consider the set

$$C_f := \{(\eta_X)_{X \in \mathscr{C}} \in \Gamma : \eta_Y \circ F(f) = F(f) \circ \eta_X\}.$$

Note that

$$C_f = \bigcup \prod_{\substack{X \in \mathscr{C} \\ X \neq Y, Z}} \mathfrak{S}_{F(X)} \times \{\eta_Y\} \times \{\eta_Z\},$$

where the union ranges over all pairs (η_Y, η_Z) satisfying $\eta_Y \circ F(f) = F(f) \circ \eta_Z$.

The automorphism group of F, contd.

We show that $Aut_{\mathscr{C}}(F)$ is closed in Γ .

Fix Y, $Z \in \mathscr{C}$ and a morphism $f: Y \to Z$. Consider the set

$$C_f := \{(\eta_X)_{X \in \mathscr{C}} \in \Gamma : \eta_Y \circ F(f) = F(f) \circ \eta_X\}.$$

Note that

$$C_f = \bigcup \prod_{\substack{X \in \mathscr{C} \\ X \neq Y, Z}} \mathfrak{S}_{F(X)} \times \{\eta_Y\} \times \{\eta_Z\},$$

where the union ranges over all pairs (η_Y, η_Z) satisfying $\eta_Y \circ F(f) = F(f) \circ \eta_Z$. Being a finite union of closed sets, C_f is closed in Γ .

The automorphism group of F, contd.

We show that $Aut_{\mathscr{C}}(F)$ is closed in Γ .

Fix Y, $Z \in \mathscr{C}$ and a morphism $f: Y \to Z$. Consider the set

$$C_f := \{(\eta_X)_{X \in \mathscr{C}} \in \Gamma : \eta_Y \circ F(f) = F(f) \circ \eta_X\}.$$

Note that

$$C_f = \bigcup \prod_{\substack{X \in \mathscr{C} \\ X \neq Y, Z}} \mathfrak{S}_{F(X)} \times \{\eta_Y\} \times \{\eta_Z\},$$

where the union ranges over all pairs (η_Y, η_Z) satisfying $\eta_Y \circ F(f) = F(f) \circ \eta_Z$. Being a finite union of closed sets, C_f is closed in Γ . Finally, since

$$\operatorname{Aut}_{\mathscr{C}}(F) = \bigcap_{\substack{Y \xrightarrow{f} \\ \text{in } \mathscr{C}}} C_f,$$

the conclusion follows.

The automorphism group of F, contd.

We show that $Aut_{\mathscr{C}}(F)$ is closed in Γ . Fix $Y, Z \in \mathscr{C}$ and a morphism $f: Y \to Z$. Consider the set

$$C_f := \{(\eta_X)_{X \in \mathscr{C}} \in \Gamma \colon \eta_Y \circ F(f) = F(f) \circ \eta_X\}.$$

Note that

$$C_f = \bigcup \prod_{\substack{X \in \mathscr{C} \\ X \neq Y, Z}} \mathfrak{S}_{F(X)} \times \{\eta_Y\} \times \{\eta_Z\},$$

where the union ranges over all pairs (η_Y, η_Z) satisfying $\eta_Y \circ F(f) = F(f) \circ \eta_Z$. Being a finite union of closed sets, C_f is closed in Γ . Finally, since

$$\operatorname{Aut}_{\mathscr{C}}(F) = \bigcap_{\substack{Y \xrightarrow{f} Z \\ \text{in } \mathscr{C}}} C_f,$$

the conclusion follows. In particular, $Aut_{\mathscr{C}}(F)$ is a profinite group.

Next, let $Y \in \mathscr{C}$. There is a natural action of $\operatorname{Aut}_{\mathscr{C}}(F)$ on F(Y) given by $(\eta_X)_{X \in \mathscr{C}} \cdot a = \eta_Y(a) \qquad \forall \ a \in F(Y).$

Next, let $Y \in \mathscr{C}$. There is a natural action of $\operatorname{Aut}_{\mathscr{C}}(F)$ on F(Y) given by

$$(\eta_X)_{X\in\mathscr{C}}\cdot a=\eta_Y(a) \qquad \forall \ a\in F(Y).$$

The stabilizer of $a \in F(Y)$ is

$$\operatorname{\mathsf{Aut}}_\mathscr{C}(F)\cap\left(\prod_{\substack{X\in\mathscr{C}\X
eq Y}}\times\operatorname{\mathsf{Stab}}_{\mathfrak{S}_{F(X)}}(a)
ight),$$

which is an open subgroup of $Aut_{\mathscr{C}}(F)$.

Next, let $Y \in \mathscr{C}$. There is a natural action of $\operatorname{Aut}_{\mathscr{C}}(F)$ on F(Y) given by

$$(\eta_X)_{X\in\mathscr{C}}\cdot a=\eta_Y(a) \qquad \forall \ a\in F(Y).$$

The stabilizer of $a \in F(Y)$ is

$$\operatorname{\mathsf{Aut}}_{\mathscr{C}}(F)\cap\left(\prod_{\substack{X\in\mathscr{C}\X
eq Y}}\times\operatorname{\mathsf{Stab}}_{\mathfrak{S}_{F(X)}}(a)\right),$$

which is an open subgroup of $\operatorname{Aut}_{\mathscr{C}}(F)$. Thus, each F(Y) is a finite $\operatorname{Aut}_{\mathscr{C}}(F)$ -set with a continuous action.

Next, let $Y \in \mathscr{C}$. There is a natural action of $\operatorname{Aut}_{\mathscr{C}}(F)$ on F(Y) given by

$$(\eta_X)_{X\in\mathscr{C}}\cdot a=\eta_Y(a) \qquad \forall \ a\in F(Y).$$

The stabilizer of $a \in F(Y)$ is

$$\operatorname{\mathsf{Aut}}_\mathscr{C}(F)\cap\left(\prod_{\substack{X\in\mathscr{C}\X
eq Y}}\times\operatorname{\mathsf{Stab}}_{\mathfrak{S}_{F(X)}}(a)
ight),$$

which is an open subgroup of $\operatorname{Aut}_{\mathscr{C}}(F)$. Thus, each F(Y) is a finite $\operatorname{Aut}_{\mathscr{C}}(F)$ -set with a continuous action.

This gives a natural functor $H : \mathscr{C} \to \operatorname{Aut}_{\mathscr{C}}(F)$ -sets.

Theorem (Fundamental Theorem of Galois Categories)

Let (\mathscr{C}, F) be an essentially small Galois category. Then

• The functor $H : \mathscr{C} \to \operatorname{Aut}_{\mathscr{C}}(F)$ -sets is an equivalence of categories.

Theorem (Fundamental Theorem of Galois Categories)

- The functor $H : \mathscr{C} \to \operatorname{Aut}_{\mathscr{C}}(F)$ -sets is an equivalence of categories.
- ② If π is a profinite group such that the categories $\mathscr C$ and π -sets are equivalent through an equivalence such that the composition $\mathscr C \xrightarrow{\sim} \pi$ -sets \to Sets yields the functor F, then π is canonically isomorphic to $\operatorname{Aut}_{\mathscr C}(F)$.

Theorem (Fundamental Theorem of Galois Categories)

- **1** The functor $H: \mathscr{C} \to \operatorname{Aut}_{\mathscr{C}}(F)$ -sets is an equivalence of categories.
- ② If π is a profinite group such that the categories $\mathscr C$ and π -sets are equivalent through an equivalence such that the composition $\mathscr C \xrightarrow{\sim} \pi$ -sets \to Sets yields the functor F, then π is canonically isomorphic to $\operatorname{Aut}_{\mathscr C}(F)$.
- **1** If F' is another fundamental functor on \mathscr{C} , then F and F' are naturally isomorphic.

Theorem (Fundamental Theorem of Galois Categories)

- **1** The functor $H : \mathscr{C} \to \operatorname{Aut}_{\mathscr{C}}(F)$ -sets is an equivalence of categories.
- ② If π is a profinite group such that the categories $\mathscr C$ and π -sets are equivalent through an equivalence such that the composition $\mathscr C \xrightarrow{\sim} \pi$ -sets \to Sets yields the functor F, then π is canonically isomorphic to $\operatorname{Aut}_{\mathscr C}(F)$.
- **3** If F' is another fundamental functor on \mathscr{C} , then F and F' are naturally isomorphic.
- **4** If π is a profinite group such that the categories $\mathscr C$ and π -sets are equivalent, then $\pi\cong \operatorname{Aut}_{\mathscr C}(F)$ as topological groups.

Theorem (Fundamental Theorem of Galois Categories)

- **1** The functor $H : \mathscr{C} \to \operatorname{Aut}_{\mathscr{C}}(F)$ -sets is an equivalence of categories.
- ② If π is a profinite group such that the categories $\mathscr C$ and π -sets are equivalent through an equivalence such that the composition $\mathscr C \xrightarrow{\sim} \pi$ -sets \to Sets yields the functor F, then π is canonically isomorphic to $\operatorname{Aut}_{\mathscr C}(F)$.
- **3** If F' is another fundamental functor on \mathscr{C} , then F and F' are naturally isomorphic.
- **4** If π is a profinite group such that the categories $\mathscr C$ and π -sets are equivalent, then $\pi\cong \operatorname{Aut}_{\mathscr C}(F)$ as topological groups.

The Étale Fundamental Group

Definition

Let X be a connected scheme and $x_0:\operatorname{Spec}\Omega\to X$ be a geometric point. The *étale fundamental group* $\pi_1^{\acute{e}t}(X,x_0)$ to be $\operatorname{Aut}(\operatorname{Fib}_{x_0})$.

Recall that there is an anti-equivalence between the category of commutative rings and the category of affine schemes.

Therefore, there is an anti-equivalence between the category $\mathbf{FEt}_{\mathsf{Spec}\,k}$ and the category of étale k-algebras.

Choosing a geometric point in Spec k is tantamount to fixing a separable closure k_s of k.

As we have seen earlier, $\mathbf{FEt}_{\operatorname{Spec} k}$ is equivalent to the category G_k -sets. In particular, $\pi_1^{\acute{e}t}(\operatorname{Spec} k, x_0) \cong \operatorname{Gal}(k_s \mid k)$.

La fin

Thank you for your attention!