Trabajo Práctico Nro. 3 Lenguajes Regulares. Autómatas Finitos.

Autómatas Finitos

1. ¿Qué características tienen las palabras aceptadas por este autómata? $\Sigma=\{0,1\}~Q=\{q_0,q_1,q_2,q_3\}~F=\{q_0\}$

δ	0	1
q_0	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	q_1	q_2

2. Minimizar los siguientes autómatas finitos:

a) $A_1=\langle \{p,q,r,s,t,u\},\{a,b\},\delta_1,p,\{q,r\}\rangle$ δ_1 definida por:

δ_1	a	b
p	q	p
q	r	s
r	q	t
s	t	u
t	s	u
u	q	u

b) $A_2 = \langle \{q_0, q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta_2, q_0, \{q_3, q_4, q_5\} \rangle$

c) $A_3 = \langle \{q_0, q_1, q_2, q_3, q_4, q_5\}, \{a, b\}, \delta_3, q_0, \{q_5\} \rangle$

δ_3	a	b
q_0	q_1	q_2
q_1	q_3	q_4
q_2	q_4	q_3
q_3	q_5	q_4
q_4	q_5	q_3
q_5	q_5	q_5

3. Construir AFD para los siguientes lenguajes:

- a) Palabras sobre $\Sigma = \{a, b\}$ en las cuales el símbolo b es inmediatamente precedido y seguido de a.
- b) Números naturales múltiplos de 3.
- c) Palabras sobre $\Sigma = \{a, b\}$ que no contengan la subcadena abaab.
- d) Cadenas sobre $\Sigma = \{a,b\}$ que no contengan más de 3 símbolos a.
- e) $L = \{x/x \in \{1, 2, 3\}^* \text{ y } |x| > 0 \text{ y la suma de los símbolos de } x \text{ es múltiplo de 3 y } x \text{ termina en el símbolo 2}\}.$
- 4. Se cuenta con una canilla y dos jarras, una tiene una capacidad de 4 litros y la otra es de 3 litros. ¿Es posible obtener 2 litros de agua en una de las jarras? Modelar el problema con un AFD y escribir una secuencia de configuraciones que lleve a la solución.
- 5. Comprobar si los siguientes AFD son equivalentes:

$A_1 = \langle \{a, b, c\}, \{p, q, q,$						
δ_1	a	b	c			
p	r	t	q			
q	q	v	p			
r	p	u	r			
s	q	t	u			
t	t	v	u			
u	t	t	v			
v	u	u	t			

mentes ArD son equivalentes:								
$\{q,r,s,t,y,v\},\delta_1,p,\{s,t,u,v\}$	$A_2 = $	$\langle \{a, b\}$	$,c\},\{$	p, q,	$r, s, t\},$	$\delta_2, p, $	$\{r,s,t\}$	\rangle
=	δ_2	a	b	c				
	$egin{array}{c} p \\ q \\ r \\ s \\ t \end{array}$	s	q	p				
	q	t	p	q				
	r	q	t	s				
	s	s	t	s				
	t	t	s	s				

- 6. Construir un AFD que reconozca el lenguaje $L=\{a^n/n\geq 0\}\cup \{b^na/n\geq 1\}.$
- 7. Para cada uno de los AFND siguientes, calcula un AFD equivalente mínimo.
 - a) $A_a = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta_a, q_0, \{q_1\} \rangle$

b)
$$A_b = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta_b, q_0, \{q_1\} \rangle$$

0

c) $A_c = \langle \{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta_c, q_0, \{q_1\} \rangle$

8. Determinar si los siguientes autómatas son equivalentes:

$$A_a = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta_a, q_0, \{q_0, q_2\} \rangle$$

$$A_b = \langle \{p, q, r, s\}, \{a, b\}, \delta_b, p, \{p, r\} \rangle$$

9. Determinar si los siguientes autómatas son equivalentes:

$$A_a = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta_a, q_0, \{q_0, q_1, q_2\} \rangle$$

$$A_b = \langle \{p, q, r, s\}, \{a, b\}, \delta_b, p, \{p, r\} \rangle$$

- 10. Construir un AFND para cada uno de los siguientes lenguajes y luego transformar en AFD:
 - a) $L = \{abc, abd, aacd\}$
 - b) Palabras del alfabeto $\{a,b,c\}$ tal que su último símbolo aparece una única vez en la palabra (al final).
 - c) Palabras del alfabeto $\{a,b,c\}$ tal que su último símbolo aparece más de una vez en la palabra.
- 11. Sea $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ un AFND que verifica la siguiente propiedad:

$$\forall q \in Q, \forall z \in \Sigma: \#\{p \in Q/\delta(q, z) = p\} \le 1$$

Encontrar luego un AFD equivalente.

- 12. Considerar el autómata $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ donde:
 - $\bullet \Sigma = \{a\}.$
 - $Q = \{q_0, q_1, q_2\}.$
 - $F = \{q_2\}.$
 - $\bullet \delta(q_0, a) = \{q_1\}, \, \delta(q_1, a) = \{q_2\}, \, \delta(q_2, a) = \{q_0\}.$
 - $\forall q_i \in Q : \delta(q_i, \lambda) = \{\}.$

Probar que $L(A) = \{(aaa)^n aa, n \in N\}^1$

¹El conjunto N por definición de teoría de conjuntos incluye al 0

Lenguajes Regulares

- 13. Dado $\Sigma = \{a, b\}$, **indicar** si los siguientes son lenguajes regulares:
 - a) $L = \{\lambda\}$
 - b) $L = \{a, b\}$
 - c) $L = \{aa, ab, ba, bb\}$
 - d) $L = \{\lambda, aa, ab, ba, bb\}$
 - $e)\ L=\{a^ib^i/i\geq 0\}$
 - $f) \ L = \{a^i b^j / i \ge 0, j \ge 0\}$
 - $g) L = \{a^i b^{i^2} / i \ge 0\}$
 - h) $L = \{(ab)^i / i \ge 0\}$
 - i) $L = \{\omega \omega^r / \omega \in \{0, 1\}^*, |\omega| < 5\}$
 - $j) L = \{\omega \omega^r / \omega \in \{0, 1\}^*\}$
 - k) $L = \{a^m b^n c d^p / m, n > 0, p \ge 0\}$
 - l) $L = \{a\beta c^n/n \ge 0, \beta \in \{a, b\}^+\}$
 - m) $L = \{\omega \in \{0,1\}^*/\omega \text{ contiene dos unos seguidos }\}$
 - n) $L=\{\omega\in\{0,1\}^*/\omega \text{ no contiene dos unos seguidos }\}$