Ax-Grothendieck in lean

Joseph Hua

June 15, 2022

Imperial College London

Motivation

Definition (Polynomial maps)

Polynomial maps on a field K are regular endomorphisms on K^n , i.e. n polynomials in $K[x_1, \ldots, x_n]$.

Definition (Polynomial maps)

Polynomial maps on a field K are regular endomorphisms on K^n , i.e. n polynomials in $K[x_1, \ldots, x_n]$.

Examples

• Surjective but not injective: $f: \mathbb{C} \to \mathbb{C} := x \mapsto x^2$

Definition (Polynomial maps)

Polynomial maps on a field K are regular endomorphisms on K^n , i.e. n polynomials in $K[x_1, \ldots, x_n]$.

Examples

- Surjective but not injective: $f: \mathbb{C} \to \mathbb{C} := x \mapsto x^2$
- Neither surjective nor injective: $f: \mathbb{C}^2 \to \mathbb{C}^2 := (x, y) \mapsto (x, xy)$

Definition (Polynomial maps)

Polynomial maps on a field K are regular endomorphisms on K^n , i.e. n polynomials in $K[x_1, \ldots, x_n]$.

Examples

- Surjective but not injective: $f: \mathbb{C} \to \mathbb{C} := x \mapsto x^2$
- Neither surjective nor injective: $f: \mathbb{C}^2 \to \mathbb{C}^2 := (x, y) \mapsto (x, xy)$
- Bijective: $f: \mathbb{C}^3 \to \mathbb{C}^3 := (x, y, z) \mapsto (x, y, z + xy)$

Definition (Polynomial maps)

Polynomial maps on a field K are regular endomorphisms on K^n , i.e. n polynomials in $K[x_1, \ldots, x_n]$.

Examples

- Surjective but not injective: $f: \mathbb{C} \to \mathbb{C} := x \mapsto x^2$
- Neither surjective nor injective: $f: \mathbb{C}^2 \to \mathbb{C}^2 := (x, y) \mapsto (x, xy)$
- Bijective: $f: \mathbb{C}^3 \to \mathbb{C}^3 := (x, y, z) \mapsto (x, y, z + xy)$
- Bijective $f: \overline{\mathbb{F}_2} \to \overline{\mathbb{F}_2} := x \mapsto x^2$

Definition (Polynomial maps)

Polynomial maps on a field K are regular endomorphisms on K^n , i.e. n polynomials in $K[x_1, \ldots, x_n]$.

Examples

- Surjective but not injective: $f: \mathbb{C} \to \mathbb{C} := x \mapsto x^2$
- Neither surjective nor injective: $f: \mathbb{C}^2 \to \mathbb{C}^2 := (x, y) \mapsto (x, xy)$
- Bijective: $f: \mathbb{C}^3 \to \mathbb{C}^3 := (x, y, z) \mapsto (x, y, z + xy)$
- Bijective $f: \overline{\mathbb{F}_2} \to \overline{\mathbb{F}_2} := x \mapsto x^2$
- Surjective but not injective $f: \overline{\mathbb{F}_3} \to \overline{\mathbb{F}_3} := x \mapsto x^2$

Theorem (Ax-Grothendieck)

Any injective polynomial map over an algebraically closed field is surjective. In particular injective polynomial maps over $\mathbb C$ are surjective.

Theorem (Ax-Grothendieck)

Any injective polynomial map over an algebraically closed field is surjective. In particular injective polynomial maps over $\mathbb C$ are surjective.

 Amazing fact (Lefschetz): true for a single algebraically closed field of characteristic *n* (a model of ACF_n) → true for any model of ACF_n (*n* is zero or prime).

Theorem (Ax-Grothendieck)

Any injective polynomial map over an algebraically closed field is surjective. In particular injective polynomial maps over $\mathbb C$ are surjective.

- Amazing fact (Lefschetz): true for a single algebraically closed field of characteristic *n* (a model of ACF_n) → true for any model of ACF_n (*n* is zero or prime).
- Amazing fact (Lefschetz): true for ACF_p for all large prime $p \to \mathsf{true}$ for ACF_0 .

Theorem (Ax-Grothendieck)

Any injective polynomial map over an algebraically closed field is surjective. In particular injective polynomial maps over $\mathbb C$ are surjective.

- Amazing fact (Lefschetz): true for a single algebraically closed field of characteristic *n* (a model of ACF_n) → true for any model of ACF_n (*n* is zero or prime).
- Amazing fact (Lefschetz): true for ACF_p for all large prime p → true for ACF₀.
- Good news: We can easily show it for algebraic closures of finite fields.

Definition (Locally finite fields)

Let K be a field of characteristic p a prime. Then the following are equivalent definitions for K being a *locally finite field*:

1. The minimal subfield generated by any finite subset of K is finite.

Definition (Locally finite fields)

Let K be a field of characteristic p a prime. Then the following are equivalent definitions for K being a *locally finite field*:

- 1. The minimal subfield generated by any finite subset of K is finite.
- 2. $\mathbb{F}_p \to K$ is algebraic.

Definition (Locally finite fields)

Let K be a field of characteristic p a prime. Then the following are equivalent definitions for K being a *locally finite field*:

- 1. The minimal subfield generated by any finite subset of K is finite.
- 2. $\mathbb{F}_p \to K$ is algebraic.
- 3. K embeds into an algebraic closure of \mathbb{F}_p .

Definition (Locally finite fields)

Let K be a field of characteristic p a prime. Then the following are equivalent definitions for K being a *locally finite field*:

- 1. The minimal subfield generated by any finite subset of K is finite.
- 2. $\mathbb{F}_p \to K$ is algebraic.
- 3. K embeds into an algebraic closure of \mathbb{F}_p .

Theorem

Locally finite fields satisfy Ax-Grothendieck.

Proof.

$$\mathbb{F}_{\rho} \hookrightarrow \mathbb{F}_{\rho}(\mathsf{coeffs}) \hookrightarrow K$$

 $\downarrow_{\mathbb{F}_p(\mathsf{coeffs})}$ respects injectivity

Theorem (Lefschetz principle)

Let ϕ be a sentence in the language of rings. Then the following are equivalent:

1. Some model of ACF₀ satisfies ϕ . (If you like $\mathbb{C} \models \phi$.)

Theorem (Lefschetz principle)

Let ϕ be a sentence in the language of rings. Then the following are equivalent:

- 1. Some model of ACF₀ satisfies ϕ . (If you like $\mathbb{C} \models \phi$.)
- 2. $ACF_0 \models \phi$

Theorem (Lefschetz principle)

Let ϕ be a sentence in the language of rings. Then the following are equivalent:

- 1. Some model of ACF₀ satisfies ϕ . (If you like $\mathbb{C} \models \phi$.)
- 2. $ACF_0 \models \phi$
- 3. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, $\mathsf{ACF}_p \vDash \phi$

Theorem (Lefschetz principle)

Let ϕ be a sentence in the language of rings. Then the following are equivalent:

- 1. Some model of ACF₀ satisfies ϕ . (If you like $\mathbb{C} \models \phi$.)
- 2. $ACF_0 \models \phi$
- 3. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, $ACF_p \models \phi$
- 4. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, some model of ACF_p satisfies ϕ .

Model Theory

Languages

```
structure Language : Type (u+1) := (functions : \mathbb{N} \to \mathsf{Type}\ \mathsf{u}) (relations : \mathbb{N} \to \mathsf{Type}\ \mathsf{u})
```

Languages

```
structure Language : Type (u+1) := 
 (functions : \mathbb{N} \to \mathsf{Type}\ \mathsf{u}) 
 (relations : \mathbb{N} \to \mathsf{Type}\ \mathsf{u})
```

Definition (Language of rings)

Let the following be the language of rings:

- The function symbols are the constant symbols $0, 1, +, \times$ for addition and multiplication and for taking additive inverse.
- There are no relation symbols.

Languages

```
structure Language : Type (u+1) := 
 (functions : \mathbb{N} \to \mathsf{Type}\ \mathsf{u}) 
 (relations : \mathbb{N} \to \mathsf{Type}\ \mathsf{u})
```

Definition (Language of rings)

Let the following be the language of rings:

- The function symbols are the constant symbols $0, 1, +, \times$ for addition and multiplication and for taking additive inverse.
- There are no relation symbols.

More examples

- · Language of groups
- Language of monoid actions from a monoid *M* and modules on a ring *A*
- Single binary relations

Terms are "free algebraic expressions" on some number of variables, i.e. sensible combinations of variable and function symbols.

• Terms with n variables in the language of rings can be interpreted as elements of $\mathbb{Z}[x_1,\ldots,x_n]$ (this will identify x_1+x_2 and x_2+x_1 , which are *distinct terms*).

Terms are "free algebraic expressions" on some number of variables, i.e. sensible combinations of variable and function symbols.

- Terms with n variables in the language of rings can be interpreted as elements of $\mathbb{Z}[x_1, \ldots, x_n]$ (this will identify $x_1 + x_2$ and $x_2 + x_1$, which are *distinct terms*).
- Terms with *n* variables in the language of groups can be interpreted as elements of the free group on $\{x_1, \ldots, x_n\}$.

Terms are "free algebraic expressions" on some number of variables, i.e. sensible combinations of variable and function symbols.

- Terms with n variables in the language of rings can be interpreted as elements of $\mathbb{Z}[x_1, \ldots, x_n]$ (this will identify $x_1 + x_2$ and $x_2 + x_1$, which are *distinct terms*).
- Terms with *n* variables in the language of groups can be interpreted as elements of the free group on $\{x_1, \ldots, x_n\}$.
- Terms with n variables in the language of modules over a ring A can be interpreted as elements of the free module $A^{\oplus n}$.

Terms are "free algebraic expressions" on some number of variables, i.e. sensible combinations of variable and function symbols.

- Terms with n variables in the language of rings can be interpreted as elements of $\mathbb{Z}[x_1, \ldots, x_n]$ (this will identify $x_1 + x_2$ and $x_2 + x_1$, which are *distinct terms*).
- Terms with n variables in the language of groups can be interpreted as elements of the free group on $\{x_1, \ldots, x_n\}$.
- Terms with *n* variables in the language of modules over a ring *A* can be interpreted as elements of the free module $A^{\oplus n}$.
- Terms with *n* variables in the language of binary relations is just the set $\{x_1, \ldots, x_n\}$.

Formulas are logical combinations of terms, equality, (and other relation symbols from the language if there are any).

$$x_0^2 + 2x_1 + 1 = x_2$$

We only need $\bot, =, \rightarrow, \forall$, and the relation symbols from the language.

Formulas are logical combinations of terms, equality, (and other relation symbols from the language if there are any).

$$x_0^2 + 2x_1 + 1 = x_2$$

$$x_0^2 + 2x_1 + 1 = x_2 \rightarrow x_2 \neq x_0$$

We only need \bot , =, \rightarrow , \forall , and the relation symbols from the language.

Formulas are logical combinations of terms, equality, (and other relation symbols from the language if there are any).

$$x_0^2 + 2x_1 + 1 = x_2$$

$$x_0^2 + 2x_1 + 1 = x_2 \rightarrow x_2 \neq x_0$$

$$\forall x_2 x_1, \exists x_0, x_0^2 + 2x_1 + 1 = x_2 \rightarrow x_2 \neq x_0$$

We only need $\bot,=,\rightarrow,\forall$, and the relation symbols from the language.

If L is a language and M is a set then an L-structure on M consists of the following

• Each function symbol f of arity n is interpreted as a function $M^n \to M$.

If L is a language and M is a set then an L-structure on M consists of the following

- Each function symbol f of arity n is interpreted as a function $M^n \to M$.
- Each relation symbol r of arity n is interpreted as a proposition on $M^n \to \text{Prop}$, or equivalently as a subset $S \hookrightarrow M^n$.

If L is a language and M is a set then an L-structure on M consists of the following

- Each function symbol f of arity n is interpreted as a function $M^n \to M$.
- Each relation symbol r of arity n is interpreted as a proposition on $M^n \to \text{Prop}$, or equivalently as a subset $S \hookrightarrow M^n$.

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \overline{\mathbb{Q}}, \mathbb{F}_{\rho}, \{0\}$ can be made into structures in the language of rings.

If L is a language and M is a set then an L-structure on M consists of the following

- Each function symbol f of arity n is interpreted as a function $M^n \to M$.
- Each relation symbol r of arity n is interpreted as a proposition on $M^n \to \text{Prop}$, or equivalently as a subset $S \hookrightarrow M^n$.

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \overline{\mathbb{Q}}, \mathbb{F}_p, \{0\}$ can be made into structures in the language of rings. \emptyset cannot be.

Structures

Fix a structure M in a language L. Terms with n variables are interpreted as functions from the structure to itself.

Structures

Fix a structure *M* in a language *L*. Terms with *n* variables are interpreted as functions from the structure to itself.

• Variables are interpreted as projection to an affine line.

9

Structures

Fix a structure *M* in a language *L*. Terms with *n* variables are interpreted as functions from the structure to itself.

• Variables are interpreted as projection to an affine line.

Formulas with n free variables are interpreted as predicates on the structure in the obvious way.

9

Structures

Fix a structure M in a language L. Terms with n variables are interpreted as functions from the structure to itself.

· Variables are interpreted as projection to an affine line.

Formulas with n free variables are interpreted as predicates on the structure in the obvious way. Example: b, c are elements of M then

$$\forall x_0, x_0^2 + 2x_1 + 1 = x_2$$

applied to *b*, *c* is interpreted as the proposition

"for all a in
$$M$$
, $a^2 + 2b + 1 = c$ "

9

A theory is a set of sentences (formulas with no free variables), a model is a structure that satisfies all those sentences.

A theory is a set of sentences (formulas with no free variables), a model is a structure that satisfies all those sentences. The theory of rings contains the sentences corresponding to the axioms of a ring.

A theory is a set of sentences (formulas with no free variables), a model is a structure that satisfies all those sentences. The theory of rings contains the sentences corresponding to the axioms of a ring. Example: commutativity of multiplication

```
def mul_comm : sentence ring_signature := \forall' \forall' ( x_ 0 * x_ 1 \simeq x_ 1 * x_ 0 )
```

A theory is a set of sentences (formulas with no free variables), a model is a structure that satisfies all those sentences. The theory of rings contains the sentences corresponding to the axioms of a ring. Example: commutativity of multiplication

```
def mul_comm : sentence ring_signature := \forall' \forall' ( x_ 0 * x_ 1 \simeq x_ 1 * x_ 0 )
```

- Ring axioms
- Field axioms = ring axioms \cup inverse \cup 0 \neq 1
- ACF
- Characteristic

A theory is a set of sentences (formulas with no free variables), a model is a structure that satisfies all those sentences. The theory of rings contains the sentences corresponding to the axioms of a ring. Example: commutativity of multiplication

```
def mul_comm : sentence ring_signature := \forall' \forall' ( x_ 0 * x_ 1 \simeq x_ 1 * x_ 0 )
```

- Ring axioms
- Field axioms = ring axioms \cup inverse \cup 0 \neq 1
- ACF
- Characteristic

The Lefschetz principle

Theorem (Lefschetz principle)

Let ϕ be a sentence in the language of rings. Then the following are equivalent:

- 1. Some model of ACF₀ satisfies ϕ . (If you like $\mathbb{C} \models \phi$.)
- 2. $ACF_0 \models \phi$
- 3. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, $\mathsf{ACF}_p \vDash \phi$
- 4. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, some model of ACF_p satisfies ϕ .

The Lefschetz principle

Theorem (Lefschetz principle)

Let ϕ be a sentence in the language of rings. Then the following are equivalent:

- 1. Some model of ACF₀ satisfies ϕ . (If you like $\mathbb{C} \models \phi$.)
- 2. $ACF_0 \models \phi$
- 3. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, $\mathsf{ACF}_p \vDash \phi$
- 4. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, some model of ACF_p satisfies ϕ .

Proof.

 $(1. \leftrightarrow 2.)$ and $(3. \leftrightarrow 4.)$ "ACF_n is complete" by Vaught's test.

The Lefschetz principle

Theorem (Lefschetz principle)

Let ϕ be a sentence in the language of rings. Then the following are equivalent:

- 1. Some model of ACF₀ satisfies ϕ . (If you like $\mathbb{C} \models \phi$.)
- 2. $ACF_0 \models \phi$
- 3. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, $\mathsf{ACF}_p \vDash \phi$
- 4. There exists $n \in \mathbb{N}$ such that for any prime p greater than n, some model of ACF_p satisfies ϕ .

Proof.

- $(1. \leftrightarrow 2.)$ and $(3. \leftrightarrow 4.)$ "ACF_n is complete" by Vaught's test.
- $(2. \leftrightarrow 3.)$ " χ -change" by compactness theorem.

Ax-Grothendieck proof

