Machine/Statistical Learning PCA and Kernel PCA

Nicolas Keriven CNRS, IRISA, Rennes

ENSTA 2025

Dimension Reduction: motivation

- Compression : reduction of the size of the data
- Interpretability: which dimensions are important/linked for prediction, data visualization

Dimension Reduction: motivation

- Compression : reduction of the size of the data
- Interpretability: which dimensions are important/linked for prediction, data visualization
- Curse of dimensionality: the amount of data to "fill" the space is exponential in the dimension. High dimensional spaces are mostly empty!
- ► Intrinsic dim. ≪ representation dim. : high-dim data often live in an (unknown) lower dimensional space

Dimension Reduction: motivation

- Compression : reduction of the size of the data
- Interpretability: which dimensions are important/linked for prediction, data visualization
- Curse of dimensionality: the amount of data to "fill" the space is exponential in the dimension. High dimensional spaces are mostly empty!
- ► Intrinsic dim. ≪ representation dim. : high-dim data often live in an (unknown) lower dimensional space
- ▶ dimension reduction → noise reduction : noise "visits" all possible dimensions

Extraction techniques (manifold learning)

- Physically based methods, k-NN graphs, geodesic distances...
- Statistical methods, dictionary learning
- ► Filtering (linear/non linear)
- Deep autoencoders...

Extraction techniques (manifold learning)

- Physically based methods, k-NN graphs, geodesic distances...
- Statistical methods, dictionary learning
- ► Filtering (linear/non linear)
- Deep autoencoders...

Finding/learning data representation ("features extraction") is somehow the core of modern ML. PCA is a foundational idea.

▶ PCA is a linear dimension reduction method

- ▶ PCA is a linear dimension reduction method
- ▶ Idea : find "directions" in the data such that :

- ▶ PCA is a linear dimension reduction method
- ▶ Idea : find "directions" in the data such that :
 - the first explains most the variation of the data

- ▶ PCA is a linear dimension reduction method
- ▶ Idea : find "directions" in the data such that :
 - the first explains most the variation of the data
 - the second most of the remaining variation (while being orthogonal to the first)
 - etc. (here d = 2 but usually d very high!)

- ▶ PCA is a linear dimension reduction method
- ▶ Idea : find "directions" in the data such that :
 - the first explains most the variation of the data
 - the second most of the remaining variation (while being orthogonal to the first)
 - etc. (here d = 2 but usually d very high!)

Mathematically:

Find p orthonormal vectors v_1, \ldots, v_p where $p \ll d$ such that :

- ▶ PCA is a linear dimension reduction method
- ▶ Idea : find "directions" in the data such that :
 - the first explains most the variation of the data
 - the second most of the remaining variation (while being orthogonal to the first)
 - etc. (here d = 2 but usually d very high!)

Mathematically:

- Find p orthonormal vectors v_1, \ldots, v_p where $p \ll d$ such that :
 - $ightharpoonup v_1 = \operatorname{arg\,max}_v \left[\operatorname{var}(\langle v, x \rangle) \right] \text{ s.t. } \|v\| = 1$

- PCA is a linear dimension reduction method
- ▶ Idea : find "directions" in the data such that :
 - the first explains most the variation of the data
 - the second most of the remaining variation (while being orthogonal to the first)
 - etc. (here d = 2 but usually d very high!)

Mathematically:

- Find p orthonormal vectors v_1, \ldots, v_p where $p \ll d$ such that :
 - $\mathbf{v}_1 = \operatorname{arg\,max}_{\mathbf{v}} \left[\operatorname{var}(\langle \mathbf{v}, \mathbf{x} \rangle) \right] \text{ s.t. } \|\mathbf{v}\| = 1$
 - $ightharpoonup v_2 = \operatorname{arg\,max}_v \left[\operatorname{var}(\langle v, x \rangle) \right] \text{ s.t. } \|v\| = 1, \langle v, v_1 \rangle = 0$

- ▶ PCA is a linear dimension reduction method
- ▶ Idea : find "directions" in the data such that :
 - the first explains most the variation of the data
 - the second most of the remaining variation (while being orthogonal to the first)
 - etc. (here d = 2 but usually d very high!)

Mathematically:

- Find p orthonormal vectors v_1, \ldots, v_p where $p \ll d$ such that :
 - \triangleright $v_1 = \operatorname{arg\,max}_v \left[\operatorname{var}(\langle v, x \rangle) \right] \text{ s.t. } ||v|| = 1$
 - $ightharpoonup v_2 = \operatorname{arg\,max}_v \left[\operatorname{var}(\langle v, x \rangle) \right] \text{ s.t. } \|v\| = 1, \langle v, v_1 \rangle = 0$
 - $ightharpoonup v_3 = \operatorname{arg\,max}_{v}\left[\operatorname{var}(\langle v, x \rangle)\right] \text{ s.t. } \|v\| = 1, \langle v, v_1 \rangle = 0, \langle v, v_2 \rangle = 0, \text{ etc}$

Find $v_1 = \arg \max_{v} \left[\operatorname{var}(\langle v, x \rangle) \right]$ s.t. ||v|| = 1: we have $\operatorname{var}(\langle v, x \rangle) = \mathbb{E}(\langle v, x - \mathbb{E}(x) \rangle)^2 = v^\top \mathbb{E}[(x - \mathbb{E}(x))(x - \mathbb{E}(x))^\top] v = v^\top \Sigma v$ where $\Sigma = \operatorname{Cov}(x)$.

Find $v_1 = \arg \max_v [var(\langle v, x \rangle)]$ s.t. ||v|| = 1: we have

$$\operatorname{var}(\langle v, x \rangle) = \mathbb{E}(\langle v, x - \mathbb{E}(x) \rangle)^{2} = v^{\top} \mathbb{E}[(x - \mathbb{E}(x))(x - \mathbb{E}(x))^{\top}] v = v^{\top} \Sigma v$$
where $\Sigma = \operatorname{Cov}(x)$.

Form the Lagrangian (Recall : constrained optimization)

$$\mathcal{L}(v,\lambda) = v^{\top} \Sigma v + \lambda (1 - v^{\top} v)$$

Find $v_1 = \arg \max_{v} [var(\langle v, x \rangle)]$ s.t. ||v|| = 1: we have

$$\operatorname{var}(\langle v, x \rangle) = \mathbb{E}(\langle v, x - \mathbb{E}(x) \rangle)^{2} = v^{\top} \mathbb{E}[(x - \mathbb{E}(x))(x - \mathbb{E}(x))^{\top}] v = v^{\top} \Sigma v$$
where $\Sigma = \operatorname{Cov}(x)$.

Form the Lagrangian (Recall : constrained optimization)

$$\mathcal{L}(v,\lambda) = \mathsf{v}^{\top} \mathsf{\Sigma} v + \lambda (1 - v^{\top} v)$$

Compute the gradient wrt v

$$\nabla_{\mathbf{v}} \mathcal{L} = 2 \Sigma \mathbf{v} - 2 \lambda \mathbf{v}$$

ightharpoonup v is an eigenvector of Σ , λ is an eigenvalue :

$$[\nabla \mathcal{L} = 0] \Leftrightarrow [\Sigma v = \lambda v]$$

► The variance is $v^{\top}\Sigma v = \lambda$.

Find $v_1 = \arg \max_v [var(\langle v, x \rangle)]$ s.t. ||v|| = 1: we have

$$\operatorname{var}(\langle v, x \rangle) = \mathbb{E}(\langle v, x - \mathbb{E}(x) \rangle)^{2} = v^{\top} \mathbb{E}[(x - \mathbb{E}(x))(x - \mathbb{E}(x))^{\top}] v = v^{\top} \Sigma v$$
where $\Sigma = \operatorname{Cov}(x)$.

Form the Lagrangian (Recall : constrained optimization)

$$\mathcal{L}(v,\lambda) = \mathsf{v}^{\top} \mathsf{\Sigma} v + \lambda (1 - v^{\top} v)$$

Compute the gradient wrt v

$$\nabla_{\mathbf{v}} \mathcal{L} = 2 \Sigma \mathbf{v} - 2 \lambda \mathbf{v}$$

ightharpoonup v is an eigenvector of Σ , λ is an eigenvalue :

$$[\nabla \mathcal{L} = 0] \Leftrightarrow [\Sigma v = \lambda v]$$

- ► The variance is $v^{\top} \Sigma v = \lambda$.
- v₁ is the eigenvector that corresponds to the maximum eigenvalue of the covariance of the data

Let's do v_2 !

▶ Find $v_2 = \arg\max_{v} \left[\operatorname{var}(\langle v, x \rangle) \right]$ s.t. $\|v\| = 1, \langle v, v_1 \rangle = 0$

Let's do v2!

- Find $v_2 = \arg \max_{v} \left[var(\langle v, x \rangle) \right]$ s.t. $||v|| = 1, \langle v, v_1 \rangle = 0$
- Form the Lagrangian

$$\mathcal{L}(v, \lambda, \beta) = v^{\top} \Sigma v + \lambda (1 - v^{\top} v) + \beta (0 - v_1^{\top} v)$$

► Compute the gradient

$$\nabla \mathcal{L} = 2\Sigma v - 2\lambda v - \beta v_1 = 0$$

Let's do v_2 !

- Find $v_2 = \arg \max_{v} \left[var(\langle v, x \rangle) \right]$ s.t. $||v|| = 1, \langle v, v_1 \rangle = 0$
- Form the Lagrangian

$$\mathcal{L}(v, \lambda, \beta) = v^{\top} \Sigma v + \lambda (1 - v^{\top} v) + \beta (0 - v_1^{\top} v)$$

► Compute the gradient

$$\nabla \mathcal{L} = 2\Sigma v - 2\lambda v - \beta v_1 = 0$$

- ▶ Multiplying by v_1^\top , and using $v_1^\top v = 0$, $||v_1|| = 1$, $\sum v_1 = \lambda_1 v_1 : \beta = 0$
- Finally, $\Sigma v = \lambda v : (\lambda, v)$ is again a pair eigval./eigvec., and thus $\lambda = \lambda_2$

Let's do v2!

- Find $v_2 = \arg \max_{v} \left[var(\langle v, x \rangle) \right]$ s.t. $||v|| = 1, \langle v, v_1 \rangle = 0$
- ► Form the Lagrangian

$$\mathcal{L}(v, \lambda, \beta) = v^{\top} \Sigma v + \lambda (1 - v^{\top} v) + \beta (0 - v_1^{\top} v)$$

Compute the gradient

$$\nabla \mathcal{L} = 2\Sigma v - 2\lambda v - \beta v_1 = 0$$

- ▶ Multiplying by v_1^\top , and using $v_1^\top v = 0$, $||v_1|| = 1$, $\sum v_1 = \lambda_1 v_1 : \beta = 0$
- Finally, $\Sigma v = \lambda v : (\lambda, v)$ is again a pair eigval./eigvec., and thus $\lambda = \lambda_2$
- v₂ is the eigenvector that corresponds to the second maximum eigenvalue of the covariance of the data

Let's do v2!

- Find $v_2 = \operatorname{arg\,max}_v \left[\operatorname{var}(\langle v, x \rangle) \right] \text{ s.t. } \|v\| = 1, \langle v, v_1 \rangle = 0$
- ► Form the Lagrangian

$$\mathcal{L}(v, \lambda, \beta) = v^{\top} \Sigma v + \lambda (1 - v^{\top} v) + \beta (0 - v_1^{\top} v)$$

► Compute the gradient

$$\nabla \mathcal{L} = 2\Sigma v - 2\lambda v - \beta v_1 = 0$$

- ▶ Multiplying by v_1^\top , and using $v_1^\top v = 0$, $||v_1|| = 1$, $\sum v_1 = \lambda_1 v_1 : \beta = 0$
- Finally, $\Sigma v = \lambda v : (\lambda, v)$ is again a pair eigval./eigvec., and thus $\lambda = \lambda_2$
- w v₂ is the eigenvector that corresponds to the **second maximum** eigenvalue of the covariance of the data
- \square Same for v_3, \ldots, v_p

Computing PCA in practice

 \blacktriangleright Of course, for real data, we use the empirical covariance $\hat{\Sigma}$

Computing PCA in practice

ightharpoonup Of course, for real data, we use the empirical covariance $\hat{\Sigma}$

Algorithm: PCA

- 1. Compute empirical mean : $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \; (\text{cost } O(nd))$
- 2. Compute empirical cov. matrix : $\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \hat{\mu})(x_i \hat{\mu})^{\top}$ (cost $O(nd^2)$)
- 3. Compute the eigenvectors of the p largest eigenvalues of $\hat{\Sigma}$ (cost $O(d^3)$)

Computing PCA in practice

ightharpoonup Of course, for real data, we use the empirical covariance $\hat{\Sigma}$

Algorithm: PCA

- 1. Compute empirical mean : $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ (cost } O(nd))$
- 2. Compute empirical cov. matrix : $\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \hat{\mu}) (x_i \hat{\mu})^{\top}$ (cost $O(nd^2)$)
- 3. Compute the eigenvectors of the p largest eigenvalues of $\hat{\Sigma}$ (cost $O(d^3)$)

Remark: SVD

Taking X_c the matrix of centered data $x_i - \hat{\mu}$, such that $\hat{\Sigma} = X_c^\top X_c / (n-1)$, and the Singular Value Decomposition

$$X_c = U\Gamma V^{\top} \qquad (\cos t O(nd^2 + d^3))$$

we have directly $\hat{\Sigma} = V\Gamma^2 V^\top/(n-1)$. SVD is often "more convenient" (more algorithms available, more stable, etc.)

PCA: remarks

Standardization matter

- Often center and "whiten" data to unit norm column $\tilde{x}_i = \text{diag}(1/\sigma_k)(x_i \hat{\mu})$
- ▶ The low-dimensional representation of x is $z = [\tilde{x}^\top v_k]_k \in \mathbb{R}^p$. Don't forget the same pre-processing!! Scikit-learn does it automatically.

PCA: remarks

Standardization matter

- ▶ Often center and "whiten" data to unit norm column $\tilde{x}_i = \text{diag}(1/\sigma_k)(x_i \hat{\mu})$
- ▶ The low-dimensional representation of x is $z = [\tilde{x}^\top v_k]_k \in \mathbb{R}^p$. Don't forget the same pre-processing!! Scikit-learn does it automatically.

Computational cost

SVD is costly for high n or d, but we need only the p first eigenvectors! There are strategies: power iterations/Lanczos, randomized SVD...

PCA: remarks

Standardization matter

- Often center and "whiten" data to unit norm column $\tilde{x}_i = \text{diag}(1/\sigma_k)(x_i \hat{\mu})$
- ▶ The low-dimensional representation of x is $z = [\tilde{x}^\top v_k]_k \in \mathbb{R}^p$. Don't forget the same pre-processing!! Scikit-learn does it automatically.

Computational cost

SVD is costly for high n or d, but we need only the p first eigenvectors! There are strategies: power iterations/Lanczos, randomized SVD...

Model selection

Popular criterion: increase p until the "explained variance"

$$\frac{\sum_{k=1}^{p} \lambda_k}{\sum_{k=1}^{d} \lambda_k}$$

is close enough to 1. But computing full SVD may be too costly! Myriad of other strategies.

▶ When d is high, we want to avoid the cost $O(d^3)$.

- ▶ When d is high, we want to avoid the cost $O(d^3)$.
- ▶ Remember : the eigenvalue equation

$$\sum v = \frac{1}{n-1} X_c^{\top} X_c v = \lambda v$$

- ▶ When d is high, we want to avoid the cost $O(d^3)$.
- Remember : the eigenvalue equation

$$\sum v = \frac{1}{n-1} X_c^{\top} X_c v = \lambda v$$

This can be written as

$$\frac{1}{n-1}X_cX_c^{\top}X_cv = \lambda X_cv \Leftrightarrow Su = \lambda u$$

with $u = X_c v$, i.e. an eigenvalue problem on $S = \frac{1}{n-1} X_c X_c^{\top}$ instead.

- ▶ When d is high, we want to avoid the cost $O(d^3)$.
- Remember : the eigenvalue equation

$$\sum v = \frac{1}{n-1} X_c^{\top} X_c v = \lambda v$$

This can be written as

$$\frac{1}{n-1}X_cX_c^{\top}X_cv = \lambda X_cv \Leftrightarrow Su = \lambda u$$

with $u = X_c v$, i.e. an eigenvalue problem on $S = \frac{1}{n-1} X_c X_c^{\top}$ instead.

- ▶ Properties :
 - the matrix Σ is rank n < d, it has only n non-zero eigenvalues.
 - ► Same non-zero eigenvalues as full-rank S.
 - ▶ Given v_i , $X_c v_i$ is an eigenvector of S, and given u_i , $X_c^\top v_i$ is an eigenvector of Σ . Not necessarily normalized!!
- ▶ The decomposition can be done on S instead! Cost $O(n^3)$. Given u_i with $||u_i|| = 1$, v_i can be recovered (after normalization $||v_i|| = 1$) as

$$v_i = \frac{1}{\sqrt{(n-1)\lambda_i}} X_c^T u_i$$

Kernel PCA

What to do when data are far from being linearly "oriented"?

Kernel PCA

What to do when data are far from being linearly "oriented"?

▶ Assume the data is centered $\hat{\mu} = 0$. Then $S_{ij} = \frac{1}{n-1}x_i^{\top}x_j$.

Kernel PCA

What to do when data are far from being linearly "oriented"?

▶ Assume the data is centered $\hat{\mu} = 0$. Then $S_{ij} = \frac{1}{n-1}x_i^{\top}x_j$.

► (High-dim) PCA depends only on the inner products between samples.

What to do when data are far from being linearly "oriented"?

▶ Assume the data is centered $\hat{\mu} = 0$. Then $S_{ij} = \frac{1}{n-1}x_i^{\top}x_j$.

► (High-dim) PCA depends only on the inner products between samples.

▶ We can improve PCA by transforming the data into a higher-dimensional space $\Phi(x_i) \in \mathcal{H}$, as long as we know how to compute $\langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$

Definition (Positive semi-definite kernel)

A symmetric kernel $k:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{R}$ is said to be positive semi-definite (psd) iff

$$\forall n \in \mathbb{N}, \quad \forall \xi_1 \dots \xi_n \in \mathbb{R}, \quad \forall \mathsf{x}_1 \dots \mathsf{x}_n \in \mathbb{R}^d, \sum_{i,j}^n \xi_i \xi_j k(\mathsf{x}_i, \mathsf{x}_j) \geq 0$$

Definition (Positive semi-definite kernel)

A symmetric kernel $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is said to be positive semi-definite (psd) iff

$$\forall n \in \mathbb{N}, \quad \forall \xi_1 \dots \xi_n \in \mathbb{R}, \quad \forall x_1 \dots x_n \in \mathbb{R}^d, \sum_{i,j}^n \xi_i \xi_j k(x_i, x_j) \geq 0$$

This is true for any inner product : $\sum_{i,j} \xi_i \xi_j \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}} = \| \sum_i \xi_i \phi(x_i) \|_{\mathcal{H}}^2$.

Definition (Positive semi-definite kernel)

A symmetric kernel $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is said to be positive semi-definite (psd) iff

$$\forall n \in \mathbb{N}, \quad \forall \xi_1 \dots \xi_n \in \mathbb{R}, \quad \forall \mathsf{x}_1 \dots \mathsf{x}_n \in \mathbb{R}^d, \sum_{i,j}^n \xi_i \xi_j k(\mathsf{x}_i, \mathsf{x}_j) \geq 0$$

This is true for any inner product : $\sum_{i,j} \xi_i \xi_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \| \sum_i \xi_i \phi(\mathbf{x}_i) \|_{\mathcal{H}}^2$. But the converse is also true!!

Theorem (Mercer Theorem)

For every positive semi-definite kernel k, there exists a Hilbert space $\mathcal H$ and a feature map $\phi:\mathbb R^d\to\mathcal H$ such that $k(x,x')=\langle\phi(x),\phi(x')\rangle_{\mathcal H}$.

Definition (Positive semi-definite kernel)

A symmetric kernel $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is said to be positive semi-definite (psd) iff

$$\forall n \in \mathbb{N}, \quad \forall \xi_1 \dots \xi_n \in \mathbb{R}, \quad \forall \mathsf{x}_1 \dots \mathsf{x}_n \in \mathbb{R}^d, \sum_{i,j}^n \xi_i \xi_j k(\mathsf{x}_i, \mathsf{x}_j) \geq 0$$

This is true for any inner product : $\sum_{i,j} \xi_i \xi_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \| \sum_i \xi_i \phi(\mathbf{x}_i) \|_{\mathcal{H}}^2$. But the converse is also true!!

Theorem (Mercer Theorem)

For every positive semi-definite kernel k, there exists a Hilbert space $\mathcal H$ and a feature map $\phi: \mathbb R^d \to \mathcal H$ such that $k(x,x') = \langle \phi(x), \phi(x') \rangle_{\mathcal H}$.

It is possible to choose $\mathcal H$ as a space of functions, such that $k(\cdot,x)\in\mathcal H$, and $\langle f,k(\cdot,x)\rangle_{\mathcal H}=f(x)$. It is called the Reproducing Kernel Hilbert Space (RKHS) associated to k.

Operations on kernels

Let k_1 and k_2 be psd, and $\lambda_{1,2} > 0$ then :

- 1. $\lambda_1 k_1$, (multiplication by a positive scalar)
- 2. $\lambda_1 k_1 + \lambda_2 k_2$, (sum of kernels),
- 3. k_1k_2 , (product of kernels),
- 4. $\exp(k_1)$, (exponential of kernel),
- 5. $(x_i, x_j) \mapsto g(x_i)g(x_j)k_1(x_i, x_j)$, with $g : \mathbb{R}^d \to \mathbb{R}$, (multiplication by a function)

are all positive semi-definite, hence valid kernels.

These operations allow us to create more complicated kernels by combining simple ones.

Choosing the Kernel function

Usual kernel functions

- ▶ Linear kernel ($\mathcal{F} \equiv \mathbb{R}^d$) : $k(x, x') = x^T x'$
- ▶ Polynomial kernel (dimension of \mathcal{F} increases with the order d)

$$k(x, x') = (x^T x')^d$$
 or $(x^T x' + 1)^d$

Gaussian radial function (F with infinite dimension)

$$k(x, x') = \exp\left(-\gamma ||x - x'||^2\right)$$

Neural net kernel (\mathcal{F} with infinite dimension)

$$k(x, x') = \tanh\left(\kappa_1 x^T x' + \kappa_2\right)$$

standard practice is to estimate the optimal kernel parameters by cross-validation

Idea

Replace
$$x_i^{\top} x_j$$
 with $k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle_{\mathcal{H}}...$

In Just replace
$$S = \frac{1}{n-1} X_c X_c^{\top}$$
 with $S_K = \frac{1}{n-1} K$, where $K = [k(x_i, x_j)]_{ij}$.

Idea

Replace $x_i^{\top} x_j$ with $k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle_{\mathcal{H}}...$

In Just replace
$$S = \frac{1}{n-1} X_c X_c^{\top}$$
 with $S_K = \frac{1}{n-1} K$, where $K = [k(x_i, x_j)]_{ij}$.

▶ Compute the eigenvalues/eigenvectors (λ_k, u_k) of S_K .

Idea

Replace $x_i^{\top} x_j$ with $k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle_{\mathcal{H}}...$

If Just replace
$$S = \frac{1}{n-1} X_c X_c^{\top}$$
 with $S_K = \frac{1}{n-1} K$, where $K = [k(x_i, x_j)]_{ij}$.

- ▶ Compute the eigenvalues/eigenvectors (λ_k, u_k) of S_K .
- ▶ It is generally impossible to compute $v_k = \frac{\sum_i \Phi(x_i)(u_k)_i}{\sqrt{(n-1)\lambda_k}}$ since it is in \mathcal{H} ...
- ... however for any x we can compute the projection on the components $\langle \Phi(x), v_k \rangle_{\mathcal{H}} = \frac{1}{\sqrt{(n-1)\lambda_k}} \sum_i k(x,x_i) (u_k)_i$

Idea

Replace $x_i^{\top} x_j$ with $k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle_{\mathcal{H}}...$

If
$$S_K = \frac{1}{n-1}X_cX_c^{\top}$$
 with $S_K = \frac{1}{n-1}K$, where $K = [k(x_i, x_j)]_{ij}$.

- ▶ Compute the eigenvalues/eigenvectors (λ_k, u_k) of S_K .
- ▶ It is generally impossible to compute $v_k = \frac{\sum_i \Phi(x_i)(u_k)_i}{\sqrt{(n-1)\lambda_k}}$ since it is in \mathcal{H} ...
- ... however for any x we can compute the projection on the components $\langle \Phi(x), v_k \rangle_{\mathcal{H}} = \frac{1}{\sqrt{(n-1)\lambda_k}} \sum_i k(x, x_i) (u_k)_i$

Centering

- ▶ Recall that we have assumed $\hat{\mu} = 0$, or equivalently, we work with $\tilde{x} = x \hat{\mu}$.
- ▶ In the kernel space, we would like to work with $\tilde{\Phi}(x) = \Phi(x) \frac{1}{n} \sum_{i} \Phi(x_i)$.
- The inner product becomes $\langle \tilde{\Phi}(x), \tilde{\Phi}(x') \rangle_{\mathcal{H}} = k(x, x') \frac{1}{n} \sum_{i} [k(x, x_i) + k(x', x_i)] + \frac{1}{n^2} \sum_{ij} k(x_i, x_j)$

Kernel PCA summary

Kernel PCA

1. Construct the normalized Kernel Matrix

$$\tilde{K} = K - UK - KU + UKU$$

where $U = 1_{n \times n}/n$.

Kernel PCA summary

Kernel PCA

1. Construct the normalized Kernel Matrix

$$\tilde{K} = K - UK - KU + UKU$$

where $U = 1_{n \times n}/n$.

2. Solve the eigenvalue problem

$$S_{\tilde{K}}u_k = \lambda_k u_k$$

Kernel PCA summary

Kernel PCA

1. Construct the normalized Kernel Matrix

$$\tilde{K} = K - UK - KU + UKU$$

where $U = 1_{n \times n}/n$.

2. Solve the eigenvalue problem

$$S_{\tilde{K}}u_k = \lambda_k u_k$$

3. The projection of x is $z_k = \langle \tilde{\Phi}(x), v_k \rangle$ with $v_k = \frac{\sum_i (u_k)_i \Phi(x_i)}{\sqrt{\lambda_k (n-1)}}$, i.e.

$$z_k = \frac{\tilde{K}_x^\top u_k}{\sqrt{\lambda_k(n-1)}}$$

where $K_x = [k(x, x_i)]_i$ and $\tilde{K}_x = K_x - UK_x - K\frac{1_n}{n} + UK\frac{1_n}{n}$.

Example of KPCA

