Table 1. Cluster sample with radio halo detections and upper limits.

	Redshift	$L_{\rm X}$	K_0	P _{1.4 GHz}	Reference
C'		10 ⁴⁴ erg s ⁻¹	keV cm ²	$10^{31} \text{ erg s}^{-1} \text{ Hz}^{-1}$	
Giant radio halos	0.2004	22.02 1.01	200 4 10 6	20.21 1.05	4.04
1E50657-558	0.2994	23.03 ± 1.81	299.4 ± 19.6	28.21 ± 1.97	4, 24
A209	0.2060	6.29 ± 0.65	100.7 ± 26.3	1.19 ± 0.26	4,28
A520	0.2010	8.83 ± 1.99	325.5 ± 29.2	3.91 ± 0.39	12, 2
A521	0.2475	8.18 ± 1.36	201.6 ± 36.1	1.16 ± 0.11	4, 9
A545	0.1530	5.66 ± 0.49	_	1.48 ± 0.06	4, 2
A665	0.1816	9.84 ± 1.54	134.6 ± 23.5	3.98 ± 0.39	12, 19
A754	0.0535	4.31 ± 0.33	70.4 ± 23.8	1.08 ± 0.06	11, 2
A773	0.2170	8.10 ± 1.35	244.3 ± 31.7	1.73 ± 0.17	12, 21
A1300	0.3075	13.97 ± 2.05	_	6.09 ± 0.61	4, 15
A1656 (Coma)	0.0231	3.77 ± 0.10	154.0 ± 43.0	0.72 ± 0.07	11, 23, 10, 25
A1914	0.1712	10.71 ± 1.02	63.3 ± 22.3	5.21 ± 0.24	11, 2
A2163	0.2030	23.17 ± 1.48	437.3 ± 82.7	18.44 ± 0.24	4, 16
A2219	0.2281	12.73 ± 1.37	411.6 ± 43.2	12.23 ± 0.59	12, 2
A2254	0.1780	4.32 ± 0.92	_	2.94 ± 0.29	11, 2
A2255	0.0808	2.65 ± 0.12	529.1 ± 28.2	0.89 ± 0.05	11, 22
A2256	0.0581	3.81 ± 0.17	349.6 ± 11.6	0.68 ± 0.12	11, 8, 6
A2319	0.0559	7.40 ± 0.40	270.2 ± 4.8	1.12 ± 0.11	11, 15
A2744	0.3066	12.92 ± 2.41	295.1 ± 113.4	17.16 ± 1.71	4, 21
CL0016+16	0.5545	18.83 ± 1.88	_	6.74 ± 0.67	27, 19
MACSJ0717	0.5548	24.60 ± 0.3	158.7 ± 111.6	50.00 ± 10.00	14, 31, 5
RXCJ2003.5-2323	0.3171	9.25 ± 1.53	_	12.30 ± 0.71	4, 18
Radio mini-halos					
A426 (Perseus)	0.018	8.31	19.4 ± 0.2	4.40	1, 26
A2142	0.089	10.89	58.5 ± 2.7	0.66	30, 19
A2390	0.2329	13.43 ± 3.16	14.7 ± 7.0	9.77 ± 0.45	12, 2
A2626	0.0604	1.96	23.2 ± 2.9	0.43	30, 20
PKS0745-191	0.1028	14.06	11.9 ± 0.7	27.00	30, 3
RXCJ1314.4-2515	0.2439	10.94 ± 1.81	_	0.75 ± 0.15	4, 28, 17
Z7160	0.2578	8.41 ± 2.12	18.8 ± 3.2	2.19 ± 0.26	12, 7
No radio halo detection					
A141	0.2300	5.76 ± 0.90	144.1 ± 31.3	< 0.36	4, 29
A611	0.2880	8.86 ± 2.53	124.9 ± 18.6	< 0.40	13, 29
A781	0.2984	11.29 ± 2.82	_	< 0.36	12, 29
A1423	0.2130	6.19 ± 1.34	58.8 ± 12.6	< 0.41	12, 29
A2537	0.2966	10.17 ± 1.45	106.7 ± 19.6	< 0.50	4, 29
A2631	0.2779	7.57 ± 1.50	308.8 ± 37.4	< 0.39	4, 29
A2667	0.2264	13.65 ± 1.38	12.3 ± 4.0	< 0.42	4, 29
A2697	0.2320	6.88 ± 0.85	_	< 0.40	4, 29
A3088	0.2537	6.95 ± 1.20	32.7 ± 9.5	< 0.42	4, 29
RXCJ1115.8+0129	0.3499	13.58 ± 2.99	14.1 ± 5.1	< 0.45	4, 29
RXCJ1512.2-2254	0.3152	0.19 ± 1.76	_	< 0.63	4, 29
RXJ0027.6+2616	0.3649	12.29 ± 3.88	_	< 0.68	13, 29
RXJ1532.9+3021	0.3450	16.49 ± 4.50	14.3 ± 1.9	< 0.62	12, 29
RXJ2228.6+2037	0.4177	19.44 ± 5.55	_	< 0.91	13, 29
S780	0.2357	15.53 ± 2.80	_	< 0.36	4, 29
Z2089	0.2347	6.79 ± 1.76	_	< 0.27	12, 29
Z2701	0.2140	6.59 ± 1.15	34.0 ± 4.2	< 0.42	12, 29
Z5699	0.3063	8.96 ± 2.24	– .2	< 0.54	13, 29
Z5768	0.2660	7.47 ± 1.66	_	< 0.36	13, 29
Z7215	0.2897	7.34 ± 1.00 7.34 ± 1.91	_	< 0.55	13, 29
L141J	0.2097	1.34 ± 1.71		<0.33	13, 29

Notes. Sample base from Brunetti et al. (2009). Four mini-halos are added from Gitti et al. (2004). The X-ray luminosities are as in Brunetti et al. (2009), for the four additional mini-halos data was added from Reiprich & Böhringer (2002), and for A2626 from Stott et al. (2008). Central values for the entropy indicator $K_0 = kT_{x,0}n_{e,0}^{-2/3}$ are taken from the extrapolation method in Cavagnolo et al. (2009) applied to Chandra data. K_0 of Coma at 12 kpc is from Rafferty et al. (2008).

References. 1 = Allen et al. (1992), 2 = Bacchi et al. (2003), 3 = Baum & O'Dea (1991), 4 = Böhringer et al. (2004), 5 = Bonafede et al. (2009), 6 = Brentjens (2008), 7 = Cassano et al. (2008), 8 = Clarke & Enßlin (2006), 9 = Dallacasa et al. (2009), 10 = Deiss et al. (1997), 11 = Ebeling et al. (1996), 12 = Ebeling et al. (1998), 13 = Ebeling et al. (2000), 14 = Ebeling et al. (2007), 15 = Feretti (2002), 16 = Feretti et al. (2001), 17 = Giacintucci (2007), 18 = Giacintucci et al. (2009), 19 = Giovannini & Feretti (2000), 20 = Gitti et al. (2004), 21 = Govoni et al. (2001b), 22 = Govoni et al. (2005), 23 = Kim et al. (1990), 24 = Liang et al. (2000), 25 = Rafferty et al. (2008), 26 = Sijbring (2007), 27 = Tsuru et al. (1996), 28 = Venturi et al. (2007), 29 = Venturi et al. (2008), 30 = White et al. (1997), 31 = van Weeren et al. (2009).