PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-222944

(43)Date of publication of application: 09.08.2002

(51)Int.CI.

HO1L 21/8234 H01L 27/088

H03K 19/00

(21)Application number: 2001-018133

(71)Applicant: KITAKIYUUSHIYUU TECHNO CENTER:KK

(22)Date of filing:

(72)Inventor:

ARIMA YUTAKA

(54) SEMICONDUCTOR ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a semiconductor element which realizes highly precise electric characteristic modulation without suppressing high integration, realizes the mounting of a mechanism circuit for automatically adjusting an element parameter by on-chip and correcting characteristic dispersion on any LSI, and realizes wholly new active LSI such as self-optimized LSI and self-adaptive LSI, which permit large element characteristic dispersion to a certain degree.

SOLUTION: The semiconductor element can adjust the gain coefficient of a transistor by controlling the direction (angle) of an electric field with respect to a gate or a channel. It is preferable that the element has a first gate forming a channel area in a rectangle or parallelogram, and second gates forming channel areas which substantially include triangles between the channel area formed in the first gate and a source area and a drain area. Thus, it is preferable that all the channel areas including the channel area formed by the first gate and the channels formed by the second gates on both sides are substantially formed in the rectangles or the parallelograms.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-222944 (P2002-222944A)

(43)公開日 平成14年8月9日(2002.8.9)

(51) Int.CL'		識別記号	ΡI		デーヤコート*(参考)	
H01L	29/78		HOSK	19/00	C 5F048	
	21/8234		H01L	29/78	301G 5F140	
·	27/088			27/08	· 102A 5J056	
H03K	19/00		·	29/78	301H	

審査請求 未請求 請求項の数8 OL (全 8 頁)

(21)出題番号	特質2001-18133(P2001-18133)	(71)出題人 800000046		
		株式会社北九州テクノセンター		
(22)出廣日	平成13年1月26日(2001.1.26)	福岡県北九州市戸畑区中原新町2番1号		
		(72)発明者 有馬 裕		
		福岡県飯塚市川津680-4 九州工業大学		
	,	マイクロ化総合技術センター内		
		(74)代理人 100094581		
		弁理士 鯨田 雅信		
		F ターム(参考) 5F048 AA00 AA01 AA08 AB10 AC03		
÷		BB02 BB03 BC01 BD01 BD06		
		5F140 AA04 AB01 AC09 AC33 B801		
	•	BF46 BF51		
•		5J056 BB38 BB60 DD13 HH01 HH02		
		KK02 KK03		

(54) 【発明の名称】 半導体素子

(57)【要約】

【目的】 高集積化を阻害せず高精度な電気的特性変調を可能にする新しい半導体素子であって、オンチップで素子パラメータを自動調整し特性パラツキを補正する機構回路をあらゆるLSIに実装することを可能にし、ある程度大きな素子特性パラツキを許容する自己最適化LSIや自己適応型LSIなどの全く新しい能動型LSIを実現することができる半導体素子を提供する。

【構成】 本発明による半導体素子は、ゲートあるいはチャネルに対する電界の向き (角度)を制御することによってトランジスターの利得係数を調整することを特徴としている。また、矩形あるいは平行四辺形のチャネル領域を形成する第1のゲートと、第1のゲートで形成されるチャネル領域とソース領域およびドレイン領域の間に各々、実質的に三角形を含むチャネル領域を形成する第2のゲートを備えているのがよい。さらに、第1のゲートで形成されるチャネル領域を含み、その両側にある第2のゲートで形成されるチャネル領域を含み、その両側にある第2のゲートで形成されるチャネル領域を含んだ全てのチャネル領域が実質的に矩形あるいは平行四辺形を成しているのがよい。

【特許請求の範囲】

【請求項1】 ゲートあるいはチャネルに対する電界の 向き又は角度を制御することによってトランジスターの 利得係数を調整するようにした、ことを特徴とする半導 体素子。

【請求項2】 矩形あるいは平行四辺形の形状を有する チャネル領域を形成する第1のゲートと、

第1のゲートで形成されるチャネル領域とソース領域と の間、及び、第1のゲートで形成されるチャネル領域と ドレイン領域との間に、各々、実質的に三角形の形状又 10 は実質的に三角形を含む台形の形状を有するチャネル領 域を形成する第2のゲートと、を備えていることを特徴 とする半導体素子。

【請求項3】 請求項2の半導体素子において、第1の ゲートで形成されるチャネル領域とその両側にある第2 のゲートで形成されるチャネル領域とを含む全てのチャ ネル領域が、実質的に矩形又は平行四辺形の形状を有し ている、ことを特徴とする半導体素子。

【請求項4】 請求項2の半導体素子において、第1の ゲートで形成されるチャネル領域のコンダクタンスと第 20 2のゲートで形成されるチャネル領域のコンダクタンス とが互いに異なっている、ことを特徴とする半導体素 子。

【請求項5】 請求項2の半導体素子において、第1の ゲートで形成されるチャネル領域のコンダクタンスと第 2のゲートで形成されるチャネル領域のコンダクタンス とが互いに同一である、ことを特徴とする半導体素子。 【請求項6】 請求項2の半導体素子において、第1の ゲートと第2のゲートとが各々異なる工程で製造・形成 されていることを特徴とする半導体素子。

【請求項7】 請求項2の半導体素子において、第1の ゲートと第2のゲートとが同一の工程で製造・形成され ていることを特徴とする半導体素子。

【請求項8】 請求項4の半導体素子において、第1の ゲートで形成されるチャネル領域のコンダクタンスより 第2のゲートで形成されるチャネル領域のコンダクタン スが大きくなっていることを特徴とする半導体素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、MOSトランジス 40 ターの利得係数βをアナログ的に電圧変調可能にした半 導体素子に係り、この半導体素子をLSIに組み込むこ とで、オンチップで素子ごとの特性を調整することを可 能にし、LSIの大規模化に伴う内蔵機能回路間の動作 タイミングや、素子の微細化に伴い増大する素子特性バ ラツキを自動補正する機構を実現でき、チップ個々の最 適化に基づくLSIの高性能化に貢献することが期待で きる半導体素子に関する。すなわち、本発明は、将来の 大規模・高集積LSIの新しい高性能化アプローチとし て、自己最適化LSIや自己適応型LSIなどの能動型 50 12のゲート電極はスイッチ13に依って信号電圧かO

LSIを実現するための基礎となる半導体素子に関する ものである。

[0002]

【従来の技術】半導体集積回路(LSI)デバイスは、 発明以来約30年に渡り、主に素子の微細化によってそ の性能を確実に進展させてきた。しかし、素子敬細化に おいて様々な物理的限界が顕在化してきた昨今では、集 積回路素子を安定・均質に製造することが極めて困難に なりつつある。もはや、素子の微細化だけに頼ったLS 「デバイスの高性能化は限界に近づいており、均質な素 子製造を前提とした従来のLSI設計手法についても見 直す時期を迎えている。

【0003】また、最近のLSIデバイスは、素子微細 化の進展に伴いますます大規模化・高集積化が進み、シ ステムオンチップ化が現実のものとなって、チップ内部 に多種多様な機能回路を多数集積することが不可欠とな ってきた。そのような大規模LSIデバイスの設計で は、集積された多数の機能回路同士を正しく動作させる 為に、機能回路間の動作タイミングなどを最適化調整す ることが特に重要である。しかし、LSIに集積する機 能の多様化・複雑化に伴って、LSIの製造過程で避け ることが出来ないプロセス変動をカバーするための動作 マージン確保が、今後の大規模LSIデバイスの更なる 高性能化を阻むようになってきた。つまり、今後、LS Iデバイスの高性能化を推進する為には、ある程度大き な素子特性バラツキを前提とした新たなLS I 設計・製 造手段の開拓が不可欠となっている。

【0004】このように、LSIデバイスの高性能化に おいて、もはや無視することが出来なくなった、チップ 30 内素子特性の空間的バラツキやプロセス変動による素子 特性中央値変動というような、製造されるLSIチップ 毎に変動する素子不均一性に関する問題は、LSIチッ プ毎にその集積素子の特性バラツキを自動的に調整・補 償してデバイス性能を高める、所謂、自己適応機能もし くは自己最適化機能をLSIチップ自身に備えることで 効果的に解決することが可能である。

【0005】しかし、従来の技術ではそれを実現するこ とが容易でなかった。従来は、自己調整機能をLSIチ ップ上に実装する手段として、複数のMOSトランジス 夕を使いその並列接続数等を電気的スイッチで切り替え る回路的方法で実現することが考えられていた。しか し、回路的に実現する方法はその調整精度と回路規模の 点から極めて非効率であった。

【0006】MOSトランジスターの実質的な利得係数 を、複数のMOSトランジスターを使って電気的に変調 できる回路構成例を図12~図15に示す。図12には 2つのMOSトランジスター11.12を並列に接続し た回路構成例を示す。 トランジスター11のゲート電極 には通常の信号電圧が与えられており、トランジスター

【0007】図13には、5つのトランジスターを並列に接続した回路構成例を示す。4つのスイッチ13の状態に依って、16通りのバリエーションを実現することができる。4つのトランジスター12の利得係数を各々2のベキ乗倍に設定することによって、16段階の係数値を等間隔にすることができる。

【0008】図14には2つのMOSトランジスターを直列に接続した回路構成例を示す。この例では、スイッチ13によってトランジスター12のゲート電極を信号電圧かON電圧(MOSトランジスターがON状態になる電圧)に接続する構成になっている。この場合では、スイッチ13がトランジスター12のゲート電極を信号電圧に接続した状態では、この回路は、トランジスター11と12が直列に接続されたMOSトランジスターとして働き、スイッチ13がトランジスター12のゲート電極をON電圧に接続した状態では、トランジスター12にトランジスター12のON抵抗が直列に接続された回路として働く。

【0009】図15では、トランジスター12のゲート 電極に制御電圧を与え、その制御電圧値によってトラン ジスター11に直列接続された抵抗値を調整する構成例 を示している。

【0010】図12,13で示した並列接続による回路構成例では、特性調整できる精度と回路規模がトレードオフの関係となり、調整精度を高める為には回路規模が大きくなるという問題がある。また、図14,15で示した直列接続による回路構成例では、回路規模が大きくなる問題に加え、入力信号に対して非線形な特性を示す抵抗成分が直列に介在していることにより、実効的な特性調整範囲が制限される問題がある。このような回路構成によるトランジスターの電気的特性変調方式は、調整すべき素子数の数倍から数十倍もの素子数を費やす必要があるという本質的な制約があることから、高集積化を推進しそのLSIの高性能化を目的とする自己調整機能実装には馴染み難い。そこで、高集積化を阻害しないで高精度な電気的特性変調を可能にするような新しい半導体素子の開発が望まれている。

[0011]

【発明が解決しようとする課題】本発明はこのような従来技術の問題点に着目してなされたものであって、高集積化を阻害しないで高精度な電気的特性変調を可能にするような新しい半導体素子であって、オンチップで素子パラメータを自動調整し特性パラツキを補正する機構回路をあらゆるLSIに実装することを可能にし、ある程度大きな素子特性パラツキを許容する自己最適化LSI

や自己適応型LSIなどの全く新しい能動型LSIを実現することができる半導体素子を提供することを目的と する。

[0012]

【課題を解決するための手段】このような従来技術の課題を解決するための本発明による半導体素子は、ゲートあるいはチャネルに対する電界の向き (角度)を制御することによってトランジスターの利得係数を調整することを特徴とするものである。

【0013】また、本発明の半導体素子は、矩形あるいは平行四辺形のチャネル領域を形成する第1のゲートと、第1のゲートで形成されるチャネル領域とソース領域との間、及び、第1のゲートで形成されるチャネル領域とドレイン領域との間に、各々、実質的に三角形の形状の又は実質的に三角形を含む台形の形状のチャネル領域(略三角形状のチャネル領域又は略台形状のチャネル領域)を形成する第2のゲートと、を備えていることを特徴とするものである。

【0014】また、本発明の半導体素子は、第1のゲートで形成されるチャネル領域と、その両側にある第2のゲートで形成されるチャネル領域とを含む全てのチャネル領域が、実質的に矩形あるいは平行四辺形を成していることを特徴とするものである。

【0015】また、本発明の半導体素子は、前記第1の ゲートで形成されるチャネル領域のコンダクタンスと、 前記第2のゲートで形成されるチャネル領域のコンダク タンスとが、各々互いに異なっていることを特徴とする ものである。

【0016】また、本発明の半導体素子は、前記第1の ゲートで形成されるチャネル領域のコンダクタンスと、 前記第2のゲートで形成されるチャネル領域のコンダク タンスとが、互いに同一であることを特徴とするもので ある。

【0017】また、本発明の半導体素子は、前記第1の ゲートと前記第2のゲートとが、各々互いに異なる工程 で製造・形成されていることを特徴とするものである。 【0018】また、本発明の半導体素子は、前記第1の ゲートと前記第2のゲートとが、互いに同一の工程で製 造・形成されていることを特徴とするものである。

【0019】また、本発明の半導体素子は、前記第1の ゲートで形成されるチャネル領域のコンダクタンスより 前記第2のゲートで形成されるチャネル領域のコンダク

50 タンスが大きなっていることを特徴とするものである。

5

[0020]

【発明の実施の形態】実施形態1.以下、この発明の実施形態1による半導体素子を図1~7を参照して説明する。

[素子構造]まず本実施形態1の半導体素子における基本構造の特徴を明確にするために、図1に、素子の基本構成要素に関するレイアウト構成例を示す。本実施形態1の半導体素子の構造上の特徴は、通常のMOSゲートに対して、ある一定の角度をなす制御ゲートを追加設置しているところにある。

【0021】図1において、Gは通常のMOSゲート、GCは制御ゲート、Sはソース領域、Dはドレイン領域、chCは制御チャネル領域、Cは電優引き出しの為に金属配線と電気的に接続するコンタクト領域を各々示している。

【0022】本実施形態1の半導体素子は、通常のMOSゲートGとソースSもしくはドレインD間に各々、制御ゲートGC下の制御チャネル領域chCが実質上三角形を成し、前記制御ゲートGC下の制御チャネル領域chCとMOSゲートG下チャネル領域とを含むそれらの20全チャネル領域は実質的に平行四辺形を形成していることを特徴としている。制御ゲートGCは図1内に示すようにMOSゲートGとは別のゲート層を用いて、MOSゲートGの上に重ねる様に形成することが可能である。また、制御ゲートGC下の制御チャネル部分chCは通常のMOSゲートG下のチャネルと同一特性で形成しても良いし、不純物濃度をMOSゲートG下と変えて、チャネルコンダクタンスを独立に調整できるようにしてもよい。

【0023】本実施形態1の半導体素子を製造するには、新たに追加された制御ゲートGCとその下に形成される制御チャネルchCを形成する工程以外、従来のMOSトランジスターを形成するプロセス工程と全く同様でよく、この素子を組込む為に従来の製造工程を大幅に変更する必要はない。

【0024】このように本実施形態1の半導体素子は、 従来のMOSトランジスターに制御ゲートが追加された 形状をしており、電気的には従来のMOSトランジスターに制御ゲート用電極が一つ追加されて、合計4つの電 極 (バックゲートを含めると合計5つ)を持つ特徴を有 40 している。またこの半導体素子では、図2に示すよう に、MOSゲートGの"ゲート長L"及び"ゲート幅 W"と、制御ゲートGCとMOSゲートGとの"なす角 度 の、3つの値をもって、素子特性を規定する素子 形状パラメータとしている。

 効的なゲート長及びゲート幅を変えることでトランジス ターの利得係数*B*の電圧制御を可能にしている。

【0026】次に、本実施形態1の半導体素子が利得係 数βを電気的に変調できるメカニズムについて説明す る。図3内には、制御ゲートGC下の制御チャネルch Cの抵抗値 (コンダクタンス) が、MOSゲートGのオ ン抵抗値(MOSゲートGで形成されるトランジスター 部のON抵抗値)と同程度の場合と、十分に低い場合と の電界の向きを矢印で示している。制御チャネルchC がMOSゲートG下チャネルのオン抵抗値に比べ十分に 低い場合は、図3の矢印1に示すように、電界の向き は、MOSゲートGにほぼ垂直(MOSゲートG下チャ ネルの向きに平行)となり、実質的な利得係数BはW/ Lに比例する。それに対して、制御チャネルchCがM OSゲートGのオン抵抗値と同程度の場合は、図3の矢 印2に示すように、電界の向きは、制御ゲートGCのソ ースS・ドレインD境界線に垂直な向きとなり、実質的 にLは長く、Wは短くなり、Bは小さくなる。図4内に 示すように、制御チャネル抵抗がMOSゲートのオン抵 抗と同程度の場合には、実効的なゲート長し、とゲート 幅W' は近似的に次式(1)(2)で表すことができ、 β'は次式(3)に比例する。

[0027]

【数1】

 $W=\cos\theta^*(W-L^*\cos\theta) \qquad (1)$ $L^*=\cos\theta^*(L+W^*\cos\theta) \qquad (2)$ $\theta^*=\cos(W/L+\cos\theta)/(1+W/L^*\cos\theta) \qquad (3)$

【0028】ここでは制御チャネルchCの最大抵抗値 をMOSゲートGのオン抵抗値としたが、それより大きくした場合には、利得係数βは更に小さくなると予想される。ただし、MOSゲートGと制御ゲートGCのチャネルコンダクタンスが同等のデバイスで制御チャネルchCをMOSゲートGのオン抵抗値より大きくした場合には、ドレインD側の一部の制御チャネル領域chCが飽和状態になり、上式で示すような近似が出来なくなり、単純な関係式では表現することができなくなる。しかし何れにしても、利得係数βは、制御チャネルchCの抵抗値が大きくなると、実質的に小さくなると予想さ れる。

【0029】これらの式で分かるように本実施形態1の半等体素子は、制御ゲートCGに与える電圧を調整して制御ゲートチャネルchCの抵抗値を変えることによって、利得係数βをW/Lから(W/L-tanθ)/(1+W/L*tanθ)程度(制御チャネル抵抗を最大でMOSのオン電圧と同程度とした場合)まで連続的に調整することが可能である。しかもその調整可能範囲は3つの素子形状パラメータ値の調整によって、次に説明するように、ほぼ任意に設定することが可能である。【0030】[変調特性予測]本実施形態の半導体素子

7

では、前に述べた通り、MOSゲートのゲート長し及びゲート幅Wと、MOSゲートと制御ゲートとのなす角度 のによってβの調整可能範囲が決まる。そこで図5に、本実施形態の半導体素子のβ調整可能範囲に対応するβ 比(最大値/最小値)が、素子形状パラメータであるM OSゲートのW/Lでどのように設定できるのかを角度 のをパラメータとして示した。ただしここでも、前出の 近似式を用いるために、制御チャネルの最大抵抗値をM OSゲートのオン抵抗値程度としている。

【0031】図5のグラフで分かるように、本実施形態 10 の半導体素子のβ調整可能範囲は、W/Lに比例して増大する成分とW/Lが小さくなると急激に増大する成分との重ね合わせであり、各々の項はθに比例して大きくなる特徴をもっている。W/Lに比例する成分は、電界の向きの変調に伴う実質的ゲートチャネル長しの変調に起因しており、一方、W/Lが小さくなると急激に増大する成分は電界の向きの変調に伴う実質的ゲートチャネル幅Wの変調に起因している。また、角度θは電界方向の最大変調の大きさに比例するので、二つの成分各々に比例することになる。これらの特徴から、用途や許され 20 るデバイスサイズ等に応じて比較的自由度の高いβ調整範囲設定が可能であることが分かる。

【0032】 [効果] 以上のように、本実施形態1の半 導体素子は、その利得係数8を、制御ゲートGCに与え る電圧で連続的に変調することができ、電圧で調整でき る8の制御範囲は、3つの素子形状パラメータ、即ち、 MOSゲートGのゲート長し及びゲート幅Wと、MOS* *ゲートGと制御ゲートGCのなす角度ので決まり、現実的なデバイスサイズ (制御ゲート分の面積増加のみ)で、最小のβと最大のβの比を数倍から数百倍を超える値まで比較的自由に設定することが可能である。また、本実施形態1の半導体素子におけるβ変調の為に消費される電力は、制御ゲートのリーク電流によるものだけなので極めて小さく、実用上問題にならない程度である。さらに、本実施形態1の半導体素子は、図6で示すように、n-MOSトランジスター3、p-MOSトランジスター4、共に同様の構成で実現することができるので、図7内に例示するインバータ回路5のように、CMOS回路による各種ゲートのドライバビリティを電気的に調整することを可能し、将来の自己適応型LSIの基

【0033】実施形態2. 図8に本発明の実施形態2を示す。この実施形態2では、実施形態1と比べ、制御ゲートGCの下に形成される制御チャネルchCの形状が少々異なる。この例では各制御チャネルchCの形状が実質的に台形となっている。しかし、その形状が台形であっても、前記各制御チャネルchCとMOSゲートG下チャネル領域とも含むそれらの全チャネル領域が実質的に平行四辺形を形成していれば、同様の素子特性を実現することができる。ただし、前述した近似式(1)~

- (3) に若干の修正が必要となり、各々次の(4)
- (5)のようになり、B'は次式に比例する。

本素子としてその応用が期待される。

[0034]

【数2】

W=cos θ *(W-(L+e+b)*ths θ)

(4)

L'=cos 0 °(L+e+b+W*tai 0)

(5)

 $\beta' \subset (W/L-(1+\alpha/L+b/L)^* \tan \theta)/(1+\alpha/L+b/L+W/L^* \tan \theta)$

(6)

【0035】但し、上記式内のaおよびbは、図8内に示した各制御チャネル内の矩形部分のチャネル方向に沿った長さである。この実施形態では、制御チャネル領域の形状が必ずしも三角形に限定されないことを示している。

【0036】実施形態3. 図9に本発明の実施形態3を示す。この実施形態3では、実施形態1と比べ、制御ゲートGCがMOSゲートGと同一のゲート層で形成した 40場合を示している。制御ゲートGCとMOSゲートGとを同一のゲート層で形成する場合は、電気的に分離する為に、重ねることが出来ず、図9で示すように、制御ゲートGCとMOSゲートGとの間にある程度(分離加工できる程度)の隙間をあける必要がある。その場合でも、その制御ゲートGCとMOSゲートG間の隙間はソース・ドレインと同一工程で形成されるので、その抵抗値は極めて低く、この素子構成でも電気的には実施形態1と変わらない特性を示す。利得係数βの変調近似式は、制御ゲートGCとMOSゲートG間の隙間をa、b※50

※とすれば上記式(4)~(6)が当てはまる。この実施 形態3では、制御ゲートGCを形成するのにあえて別の ゲート層形成工程を追加する必要が無いことを示してい る。

【0037】実施形態4. 図10に本発明の実施形態4を示す。この実施形態4では、実施形態1と比べ、制御ゲートGCとMOSゲートGに関して別のレイアウト例を示している。図1で示した実施形態1との違いは、トランジスタの活性領域に対して垂直なゲートがMOSゲートGか制御ゲートGCかの違いだけで、実質的な効果は同様である。この実施形態4からは、本発明の半導体素子の特徴が、制御ゲートGCとMOSゲートGとの成す相対的角度だけに意味があって、各々のソース・ドレイン等に対する角度には限定されないことが示されている。

【0038】実施形態5. 図11に本発明の実施形態5 を示す。この実施形態5では、制御ゲートGCとMOS ゲートGとのなす角度のを大きくしたままでMOSゲー

ト幅Wを十分大きくしたい場合の実施形態を示している。つまり、実施形態4で示した素子を連続して並列に並べたに構成になっており、MOSゲートGは斜の折り返し(ギザギザ)になっている。この実施形態5は、本発明の半導体素子において利得係数8を大きくする場合に、素子のサイズを抑えるのに有効である。

[0039]

【発明の効果】以上のように、本発明によれば、MOSトランジスターの利得係数度をアナログ的に電圧変調できる半導体素子を、従来のプロセス技術で容易に製造す 10ることができ、CMOS回路で構成される従来のあらゆるLSIに組み込むことができる結果、オンチップで素子パラメータを自動調整し特性バラツキを補正する機構回路をあらゆるLSIに実装することが可能になり、ある程度大きな素子特性バラツキを許容する自己最適化LSIや自己適応型LSIなどの全く新しい能動型LSIを実現できるようになる。このように、本発明によれば、従来より大規模LSIの高性能化を阻止する要因となっていた、素子微細化に伴う特性バラツキやプロセス変動に伴う素子特性変動などの特性不均一性に起因する 20制限を、大幅に緩和できる効果がある。

【図面の簡単な説明】

【図1】本発明の実施形態1の半導体素子の構成を示す 図。

【図2】本実施形態1の半導体素子の特性を規定する形 状パラメータを示す図。

【図3】本実施形態1の半導体素子のMOSチャネルにかかる電界を示す図。

【図4】本実施形態1の半導体素子の特性変調メカニズムを説明する図。

【図5】本実施形態1の半導体素子の特性変調性能を示す図。

10

【図6】本実施形態1の半導体素子によるCMOS回路 構成例を示す図。

【図7】本実施形態1の半導体素子によるCMOS回路 構成例を示す図。

【図8】本発明の実施形態2を説明するための図。

【図9】本発明の実施形態3を説明するための図。

【図10】本発明の実施形態4を説明するための図。

【図11】本発明の実施形態5を説明するための図。

【図12】従来の半導体素子を説明するための図。

【図13】従来の半導体素子を説明するための図。

【図14】従来の半導体素子を説明するための図。

【図15】従来の半導体素子を説明するための図。 【符号の説明】

Gは通常のMOSゲート、GCは制御ゲート、Sはソース領域、Dはドレイン領域、chCは制御チャネル領域、Cはコンタクト、Lはゲート長、Wはゲート幅、θは制御ゲートGCとMOSゲートGとのなす角度、1は制御チャネルchCの抵抗値が低い場合のMOSゲート下チャネル内の電界の向き、2は制御チャネルchCの抵抗値が高い場合のMOSゲート下チャネル内の電界の向き、L'は制御チャネル抵抗がMOSゲートのオン抵抗と同程度の場合の実効的なゲート長、W'は制御チャネル抵抗がMOSゲートのオン抵抗と同程度の場合の実効的なゲートに、3は発明のn-MOS素子、4は発明のp-MOS素子、5は発明の素子で構成するCMOSインバータ回路、11は通常のMOSトランジスター、12は従来の利得係数変調回路用MOSトランジスタ

30 一、13は従来の利得係数変調回路用スイッチ。

【図1】

【図2】

【図3】

