Linear Homogeneous Recurrence Relations

with Constant Coefficients

Definition:A linear **homogeneous** recurrence relation of degree k with constant coefficients is a recurrence

relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$

where $c1, c2, \ldots, ck$ are real numbers, and $ck \neq 0$. Example:

Recurrence relations	Initial values	Solutions
$F_n = F_{n-1} + F_{n-2}$	$a_1 = a_2 = 1$	Fibonacci number
$F_n = F_{n\text{-}1} + F_{n\text{-}2}$	$a_1 = 1, a_2 = 3$	Lucas Number
$F_n = F_{n-2} + F_{n-3}$	$a_1 = a_2 = a_3 =$	Padovan
E 2E . E	1	sequence
$F_n = 2F_{n-1} + F_{n-2}$	$a_1 = 0, a_2 = 1$	Pell number

How to solve linear recurrence relation: **characteristic equation**

The basic approach for solving linear homogeneous recurrence relations is to look for solutions

of the form $a_n = r^n$, where r is a constant. Note that $a_n = r^n$ is a solution

of the recurrence

relation
$$\mathbf{a}_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$
 if and only if

$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k}$$
.

When both sides of this equation are divided by r^{n-k} and the right-hand side is subtracted from

 $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \dots - c_{k-1} r - c_k = 0.$ Consequently, the sequence $\{and c_1\}$ with

the left, we obtain the equation

 $a_n = r^n$ is a solution if and only if r is a solution of this last equation. We call this the **characteristic equation** of the recurrence relation. **characteristic roots:** The solutions

of this equation are called the **characteristic roots** of the recurrence relation.

Theorem1:Let C_1 and C_2 be real numbers. Suppose that $r^2 - c_1 r - c_2 = 0$,

has two distinct roots r_1

and Γ_2 . Then the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = C_1 a_{n-1} + C_2 a_{n-2}$ if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$,

for n = 0, 1, 2, ..., where $\alpha 1$ and $\alpha 2$ are constants.

Proof: We must do two things to prove

the theorem. First, it must be shown that if Γ_1 and Γ_2 are the roots of the characteristic

equation, and α_1 and α_2 are constants,

of the recurrence relation. Because r_1 and r_2 are roots of $r^2-c_1r-c_2=0$, it follows that $r_1^2=c_1r_1+c_2, r_2^2=c_1r_2+c_2$

From these equations, we see that

then the sequence $\{an\}$ is a solution

then the sequence $\{an\}$ with

Second, it must be shown that

for some constants α_{1} and α_{2} .

is a solution of the recurrence relation.

if the sequence $\{a_n\}$ is a solution,

 $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n, \quad$

then $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$,

Now we will show that if

 $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n,$

$$c_1 a_{n-1} + c_2 a_{n-2} = c_1 (\alpha_1 r_1^{n-1} + \alpha_2 r_2^{n-1}) + c_2 (\alpha_1 r_1^{n-2} + \alpha_2 r_2^{n-2})$$

$$= \alpha_1 r_1^{n-2} (c_1 r_1 + c_2) + \alpha_2 r_2^{n-2} (c_1 r_2 + c_2)$$

$$= \alpha_1 r_1^{n-2} r_1^2 + \alpha_2 r_2^{n-2} r_2^2$$

$$= \alpha_1 r_1^n + \alpha_2 r_2^n$$

$$= a_n.$$

with $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$, is a solution of the recurrence relation.

Theorem2:Let c1 and c2 be real numbers with $c2 \neq 0$. Suppose that $c^2 - c_1 r - c_2 = 0$, has only one

This shows that the sequence $\{\mathbf{d}_n\}$

 $C_2 \partial_{n-2}$ if and only if $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$, for $n = 0, 1, 2, \ldots$, where $\alpha 1$ and $\alpha 2$ are constants.

root r0.A sequence {an} is a solution of

the recurrence relation $a_n = C_1 a_{n-1} + C_1 a_{n-1} + C_2 a_{n-1} + C_2 a_{n-1} + C_2 a_{n-1} + C_3 a_{n-1} + C_4 a_{n-1} + C_5 a_{n-1}$

Theorem3:Let C_1, C_2, \ldots, C_k be real

numbers. Suppose that the characteristic equation
$$r^k - c_1 r^{k-1} - \cdots - c_k = 0$$

has k distinct roots $r1, r2, \ldots, rk$. Then a sequence $\{an\}$ is a solution of the recurrence relation $a_n = C_1 a_{n-1} + C_2 a_{n-2} + \cdots + C_k a_{n-k}$ if and only if

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \dots + \alpha_k r_k^n$$
 for $n = 0, 1, 2, \dots$, where $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots$,

 α_k are constants.

Problem1: What is the solution of the

recurrence relation
$$an = an-1 + 2an-2$$
with $a0 = 2$ and $a1 = 7$?

with a0 = 2 and a1 = 7?

Solve: The characteristic equation of the recurrence relation is $r^2 - r - 2 = 0$. Its roots are r = 2 and r = -1. Hence, the sequence $\{an\}$ is a solution to the recurrence relation if and only if

 $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$,

$$\mathbf{\partial}_1 = 7 = \mathbf{\Omega}_1 \cdot 2 + \mathbf{\Omega}_2 \cdot (-1)$$
.
Solving these two equations shows that $\mathbf{\Omega}_1 = 3$ and $\mathbf{\Omega}_2 = -1$. Hence, the

for some constants α_1 and α_2 . From the

initial conditions, it follows that

 $a_0 = 2 = \alpha_1 + \alpha_2$

roots of the

$$a_n = 3 \cdot 2^n - (-1)^n$$
.

Problem2: Find an explicit formula for

the Fibonacci numbers. Solve: Recall that the sequence of Fibonacci numbers satisfies the recurrence relation

recurrence relation
$$f_n = f_{n-1} + f_{n-2}$$
 and also satisfies the initial conditions $f0 = 0$ and $f1 = 1$. The roots of the characteristic equation $r^2 - r - 1 = 0$ are $r1 = (1 + \sqrt{5})/2$ and $r2 = (1 - \sqrt{5})/2$.

Therefore, from Theorem 1 it follows that the Fibonacci numbers are given by $f_n = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n,$

for some constants
$$\alpha 1$$
 and $\alpha 2$. The initial conditions $f0 = 0$ and $f1 = 1$ can be used to find these constants. We

have $f_0 = \alpha_1 + \alpha_2 = 0,$

$$a_n = 6a_{n-1} - 9a_{n-2}$$

with initial conditions $a_0 = 1$ and

Problem3: What is the solution of the

 $f_1 = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right) = 1.$

equations for $\alpha 1$ and $\alpha 2$ is

 $\alpha 1 = 1/\sqrt{5}, \alpha 2 = -1/\sqrt{5}.$

recurrence relation

are given by

The solution to these simultaneous

Consequently, the Fibonacci numbers

 $f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$

with initial conditions $\partial_0 = 1$ and $\partial_1 = 6$? Solve: The only root of $r^2 - 6r + 9 = 0$ is r = 3. Hence, the solution to this recurrence

relation is
$$a_n=\alpha_1 3^n + \alpha_2 n 3^n$$
 for some constants $\pmb{\alpha}_1$ and $\pmb{\alpha}_2$. Using

the initial conditions, it follows that $a_0 = 1 = \alpha_1$, $a_1 = 6 = \alpha_1 \cdot 3 + \alpha_2 \cdot 3$.

Solving these two equations shows that
$$\alpha_{1}=1$$
 and $\alpha_{2}=$. Consequently, the solution

solution to this recurrence relation and the initial conditions is $a_n = 3^n + n3^n$.

recurrence relation

Problem4: Find the solution to the

$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$

Solve: The characteristic polynomial of this recurrence relation is $r^3 - 6r^2 + 11r - 6$

$$r^3 - 6r^2 + 11r - 6$$
.
The characteristic roots are $r = 1$, $r = 2$, and $r = 3$, because $r^3 - 6r^2 + 11r - 6 = (r - 1)(r - 2)(r - 3)$. Hence, the solutions to this recurrence relation are of the form $a_n = \alpha_1 \cdot 1^n + \alpha_2 \cdot 2^n + \alpha_3 \cdot 3^n$.

with the initial conditions $\partial_0 = 2$, $\partial_1 = 2$

5, and $a_2 = 15$.

use the initial conditions. This gives $\mathbf{a}_0 = 2 = \mathbf{\alpha} 1 + \mathbf{\alpha}_2 + \mathbf{\alpha}_3$, $\mathbf{a}_1 = 5 = \mathbf{\alpha} 1 + \mathbf{\alpha}_2 \cdot 2 + \mathbf{\alpha}_3 \cdot 3$, $\mathbf{a}_2 = 15 = \mathbf{\alpha} 1 + \mathbf{\alpha}_2 \cdot 4 + \mathbf{\alpha}_3 \cdot 9$. When these three simultaneous

To find the constants α_1 , α_2 , and α_3 .

When these three simultaneous equations are solved for
$$\alpha_1$$
, α_2 , and α_3 , we find that $\alpha_{1=1}$, $\alpha_{2=-1}$, and $\alpha_{3=2}$. Hence, the unique solution to this recurrence relation and

 α_3 , we find that α_{1-1} , $\alpha_{2}=-1$, and $\alpha_{3}=2$. Hence, the unique solution to this recurrence relation and the given initial conditions is the sequence $\{a_n\}$ with

$$a_n = 1 - 2^n + 2 \cdot 3^n$$
.
Problem5: Find the solution to the

Problem5: Find the solution to the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$

$$\mathbf{a}_n = -3\mathbf{a}_{n-1} - 3\mathbf{a}_{n-2} - \mathbf{a}_{n-3}$$

with initial conditions $\mathbf{a}_{0}=1$, $\mathbf{a}_{1}=-2$,

and $\partial_2 = -1$.

Solve: The characteristic equation of this recurrence relation is

Because $r^3 + 3r^2 + 3r + 1 = (r+1)^3$, there is a single root r = -1 of multiplicity three of the characteristic equation. By Theorem 4 the solutions of this recurrence

 $r^3 + 3r^2 + 3r + 1 = 0.$

gives

 $a0=1=\alpha 1.0.$

relation are of the form
$$a_n = \alpha_{1,0}(-1)^n + \alpha_{1,1}n(-1)^n + \alpha_{1,2}n^2(-1)^n$$
. To find the constants $\alpha 1, 0, \alpha 1, 1$, and $\alpha 1, 2$, use the initial conditions. This

 $\partial_{1}=-2=-\alpha_{1}$, $0-\alpha_{1}$, $1-\alpha_{1}$, 2. $\partial_{2}=-1=\alpha_{1,0}+2\alpha_{1,1}+4\alpha_{1,2}$ The simultaneous solution of these three

equations is
$$\alpha_{1,0=1,\alpha_{1,1=3}}$$
, and $\alpha_{1,2}$ = -2 .
Hence, the unique solution to this recurrence relation and the given initial conditions is the

recurrence relation and the given initial conditions is the sequence $\{a_n\}$ with $a_n = (1 + 3n - 2n^2)(-1)^n$.

Recurrence Relations with Constant Coefficients **Definition:** recurrence relation of the

form
$$a_n = C_1 a_{n-1} + C_2 a_{n-2} + \cdots + C_k a_{n-k} + F(n),$$

is known as linear nonhomogeneous recurrence relation with constant coefficient.

and F(n) is a function not identically zero depending only on n. The recurrence relation $a_n = C_1 a_{n-1} + C_2 a_{n-2} + \cdots + C_k a_{n-k}$

where C_1 , C_2 , . . . , C_k are real numbers

Theorem4: If $\{a_n^{(p)}\}$ is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients $a_n = C_1 a_{n-1} + C_2 a_{n-2} + \cdots + C_k a_{n-k} + F(n),$

then every solution is of the form {
$$a_n^{(p)} + a_n^{(h)}$$
 }, where $\{a_n^{(h)}\}$ is a solution of the associated homogeneous recurrence relation

 $a_n = C_1 a_{n-1} + C_2 a_{n-2} + \cdots + C_k a_{n-k}$. **Proof:** Because $\{a_n^{(p)}\}$ is a particular

solution of the nonhomogeneous recurrence relation, we know that
$$a_n^{(p)} = c_1 a_{n-1}^{(p)} + c_2 a_{n-2}^{(p)} + \cdots + c_k a_{n-k}^{(p)} + F(n).$$

 $a_n^{\alpha \gamma} = c_1 a_{n-1}^{\alpha \gamma} + c_2 a_{n-2}^{\alpha \gamma} + \cdots + c_k a_{n-k}^{\alpha \gamma} + F(n).$ Now suppose that $\{b_n\}$ is a second solution of the nonhomogeneous recurrence relation, so that

$$b_n = C_1 b_{n-1} + C_2 b_{n-2} + \cdots + C_k b_{n-k} + F(n)$$
. Subtracting the first of these two equations from the second shows that

 $b_n - a_n^{(p)} = c_1(b_{n-1} - a_{n-1}^{(p)}) + c_2(b_{n-2} - a_{n-2}^{(p)}) + \dots + c_k(b_{n-k} - a_{n-k}^{(p)}).$

It follows that $\{b_n - a_n^p\}$ is a solution of the associated homogeneous linear recurrence. say, $\{a_n^{(h)}\}$. Consequently, $b_n = a_n^{(p)} + a_n^{(h)}$ for all n.

Theorem5: Suppose that $\{a_n\}$ satisfies the linear nonhomogeneous recurrence relation $a_{n}=C_{1}a_{n-1}+C_{2}a_{n-2}+\cdots$

relation
$$\partial_n = C_1 \partial_{n-1} + C_2 \partial_{n-2} + \cdots$$

 $\cdot + C_k \partial_{n-k} + F(n)$,
 where C_1, C_2, \ldots, C_k are real numbers, and

 $F(n) = (b_t n^t + b_{t-1} n^{t-1} + \dots + b_1 n + b_0) s^n,$ where b_0, b_1, \ldots, b_t and s are real

numbers. When s is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form $(p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0) s^n$.

When s is a root of this characteristic equation and its multiplicity is m, there is a particular solution of the form $(p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0) s^n$.

Problem6: Find all solutions of the

recurrence relation $a_n = 3a_{n-1} + 2n$. What is the solution with a1 = 3? Solve: The associated linear

homogeneous equation is $\partial_{n}=3\partial_{n-1}$. Its solutions are $a_n^{(h)} = \alpha 3^r$ where α is a constant.

To determine whether there are any solutions of this form, suppose that

Simplifying and combining like terms gives (2 + 2c)n + (2d - 3c) = 0. It follows that cn + d

 $D_n = cn + d$ is such a solution. Then the

equation $\partial_n = 3\partial_{n-1} + 2n$ becomes

cn + d = 3(c(n-1) + d) + 2n.

is a solution if and only if
$$2 + 2c = 0$$
 and $2d - 3c = 0$. This shows that $cn + d$ is a solution if and only if $c = -1$ and $d = -3/2$.

Consequently, $a_n^{(p)} = -n - 3/2$ is a particular solution. $a_n = a_n^{(p)} + a_n^{(h)} = -n - \frac{3}{2} + \alpha \cdot 3^n,$

where
$$\alpha$$
 is a constant.
To find the solution with $\partial_1=3$, let $n=1$ in the formula we obtained for the

in the formula we obtained for the general Solution. We find that 3 = -1 - 3/2 + 3α , which implies that $\alpha = 11/6$. The

solution

find that
$$3 = -1 - 3/2 + 1$$

nplies that $\alpha = 11/6$. The

is $a_n = -n - 3/2 + (11/6)^{3^n}$ Problem7: Find all solutions of the recurrence relation $\partial_{n}=5\partial_{n-1}-6\partial_{n-2}+$

Plation
$$\mathbf{d}_n = 5\mathbf{d}_{n-1} - 6\mathbf{d}_{n-2} + 6\mathbf{d}_{n-2}$$

Solve: The solutions of its associated Homogeneous recurrence relation $a_{n}=5a_{n-1}-6a_{n-2}$

$$a_n = 5a_{n-1} - 6a_{n-2}$$
 $a_n = a_n^{(h)} = a_1 \cdot 3^n + a_2 \cdot 2^n$, where

 α_1 and α_2 are constants. Because F(n) $F(n) = 7^n$ a reasonable trial solution is $a_n^{(p)} = C \cdot 7^n$

where C is a constant. Substituting the terms of this sequence into the recurrence relation implies that $C \cdot 7^n = 5C \cdot 7^{n-1} - 6C \cdot 7^{n-2} + 7^n.$ Factoring out 7^{n-2} , this equation

becomes 49C = 35C - 6C + 49, which implies that 20C = 49, or that C = 49/20.

Hence, $a_n^{(p)} = (49/20)7^n$ is a particular solution. All solutions are of the form $a_n = \alpha_1 \cdot 3^n + \alpha_2 \cdot 2^n + (49/20)7^n$.