5. Calculá de la manera más exacta y simple posible el número de asignaciones a la variable t de los siguientes algoritmos. Las ecuaciones que se encuentran al final del práctico pueden ayudarte.

(a)
$$t := 0$$

for $i := 1$ to n do
for $j := 1$ to n^2 do
for $k := 1$ to n^3 do
 $t := t + 1$
od
od

od

(b) $t := 0$
for $i := 1$ to n do
for $j := 1$ to i do
for $k := j$ to $j + 3$ do
 $t := t + 1$
od

od

od

od

od

od

ops(C) = ops(t := 0) + ops(for i := 1 to
$$n$$
 do ... od)
= $1 + \sum_{i=1}^{n} \text{ops(for j := 1 to } n^2$ do ... od)
= $1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} \text{ops(for k := 1 to } n^3$ do ... od)
= $1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} \sum_{k=1}^{n^3} \text{ops(t := t+1)}$
= $1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} \sum_{k=1}^{n^3} 1$
= $1 + \sum_{i=1}^{n} \sum_{j=1}^{n^2} n^3$
= $1 + \sum_{i=1}^{n} n^3 * n^2$
= $1 + n^5 * n = 1 + n^6$

ops(C) = ops(t := 0) + ops(for i := 1 to n do ... od)
=
$$1 + \sum_{i=1}^{n} \text{ops(for j := 1 to } i \text{ do ... od)}$$

= $1 + \sum_{i=1}^{n} \sum_{j=1}^{i} \text{ops(for k := j to } j + 3 \text{ do ... od)}$
= $1 + \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=j}^{j+3} \text{ops(t := t+1)}$
= $1 + \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=j}^{j+3} 1$
= $1 + \sum_{i=1}^{n} \sum_{j=1}^{i} 4$
= $1 + 4 * \sum_{i=1}^{n} i$
= $1 + 4 * \frac{n(n+1)}{2} = 2n^2 + 2n + 1$