Problem 1.8

- (a) Using parameters N=40, E=40, and d=3, the mean energy of the demon $\langle E_d \rangle$, after running the program for some time, starts to approach a steady value.
- (b) After running the program for a reasonable time (> 100000 mcs), the mean energy of the demon $\langle E_d \rangle$ appears to have stabilized at a value of 0.655, while system mean energy $\langle E \rangle$ appears to have stabilized at a value of 39.345, which corresponds to a $\langle E \rangle/N$ value of 0.984, indicating that the mean energy per particle is greater than the demon's mean energy. The ratio $\nu = \frac{\langle E_d \rangle}{\langle E \rangle/N}$ is 0.667.
- (c) Doubling the value of E and running the program for the same amount of time, $\langle E_d \rangle$ and $\langle E \rangle/N$ respectively approach values of 1.308 and 1.967, corresponding to the ratio $\nu = 0.665$.

Table 1: Energy values for different N and E.

N	E	$\langle E_d \rangle$	$\langle E \rangle$	$\langle E \rangle / N$	ν
40	40	0.655	39.345	0.984	0.667
60	40	0.436	39.564	0.659	0.662
80	40	0.331	39.669	0.496	0.667
100	40	0.265	39.735	0.397	0.667
40	80	1.308	78.692	1.967	0.665
60	80	0.879	79.121	1.319	0.667
80	80	0.66	79.34	0.992	0.665
100	80	0.532	79.468	0.795	0.669

Figure 1: Plot showing the relation of the mean demon energy and mean system energy.

By varying the values of N and E, a linear relation between the mean demon energy and mean system energy can be observed, as shown in Table 1 and Figure 1. The ratio ν remains fairly constant, and via linear regression, this value appears to be in the neighborhood of $1.507 \approx 3/2$, which corresponds to a familiar relation

$$\frac{\langle E \rangle}{N} = \frac{3}{2} \langle E_d \rangle. \tag{1}$$

(d) From the mean energy of an ideal gas in 3 dimensions and rearranging some terms,

$$\frac{\langle E \rangle_{ideal}}{N} = \frac{3}{2} k_B T \tag{2}$$

Comparing this with (1), it is evident that

$$k_B T \propto \langle E_d \rangle$$
 (3)

but then, we have set units of $k_B = 1$. Therefore,

$$T \propto \langle E_d \rangle$$
 (4)

(e)