In [1]: In [2]:	<pre>import pandas as pd import numpy as np import matplotlib.pylab as plt from datetime import datetime import seaborn as sns from scipy import stats as st #ctp5 = pd.read_csv("ctp.csv")</pre>
<pre>In [3]: Out[3]:</pre>	ctp = pd.read_csv("ctp_partie2.csv") ctp.head() id_prod date session_id client_id price categ sex birth 0 0_1483 2021-04-10 18:37:28.723910 s_18746 c_4450 4.99 0.0 f 1977 1 2_226 2022-02-03 01:55:53.276402 s_159142 c_277 65.75 2.0 f 2000 2 1_374 2021-09-23 15:13:46.938559 s_94290 c_4270 10.71 1.0 f 1979 3 0_2186 2021-10-17 03:27:18.783634 s_105936 c_4597 4.20 0.0 m 1963
<pre>In [4]: Out[4]:</pre>	#Je change le format de date pour separer date et heure ctp['date'] = ctp["date"].astype('datetime64[ns]')#transfo format date methode datetime ctp['price'] = pd.to_numeric(ctp["price"])#transformation de la variable prix en numerique ctp['time'],ctp['date']= ctp['date'].apply(lambda x:x.time()), ctp['date'].apply(lambda x:x.date()) #methode lambda pour ajouter pour ajouter une colonne 'time' pour pouvoir separer date et time ctp.head() id_prod date session_id client_id price categ sex birth time 0 0_1483 2021-04-10 s_18746 c_4450 4.99 0.0 f 1977 18:37:28.723910
In [5]: In [6]:	#pour simplifier l'analyse je calcule l'age et ajoute une colonne 'age'
Out[6]:	0 0_1483 2021-04-10 s_18746 c_4450 4.99 0.0 f 1977 18:37:28.723910 44 1 2_226 2022-02-03 s_159142 c_277 65.75 2.0 f 2000 01:55:53.276402 21 2 1_374 2021-09-23 s_94290 c_4270 10.71 1.0 f 1979 15:13:46.938559 42 3 0_2186 2021-10-17 s_105936 c_4597 4.20 0.0 m 1963 03:27:18.783634 58
<pre>je procede a In [7]: Out[7]:</pre>	
<pre>In [8]: Out[8]:</pre>	361 2022-02-25 18.20326 362 2022-02-26 19.75958 363 2022-02-27 19.02183 364 2022-02-28 18.71994 ctp_evol.shape (365, 2)
	#ctp_evoll.plot(x='date', y='ventes_keuros') ventes = ctp_evol["ventes_keuros"] temps = ctp_evol["date"] fig, ax = plt.subplots() plt.plot(temps, ventes) ax.set(xlabel='temps (mois)', ylabel='Ventes (k€)',
	Evolution des ventes 10 11 12 14 12 12 13 14 12 14 15 16 17 18 18 18 18 18 18 18 18 18
	#help(plt.subplots) pir une rupture des ventes en octobre. #Je zoom sur les ventes en octobre pour pouvoir identifier des raisons pour cette baisse startdate = pd.to_datetime("2021-10-01").date()
Out[11]:	enddate = pd.to_datetime("2021-10-31").date() ctp_oct = ctp[(ctp["date"] >= startdate) & (ctp["date"] <= enddate)] id_prod
	17 0_1452 2021-10-15 s_105078 c_6297 13.77 0.0 f 1969 10:07:12.401758 52 28 0_1572 2021-10-18 s_106579 c_8589 8.61 0.0 m 1958 10:44:56.742021 63 31 0_1127 2021-10-02 s_98883 c_2041 5.99 0.0 f 1975 10:41:36.135881 46 55 0_1034 2021-10-11 s_103080 c_4870 14.38 0.0 f 1981 04:23:29.599571 40 142 0_1420 2021-10-17 s_106247 c_390 11.53 0.0 f 1982 19:28:49.619771 39 160 0_1348 2021-10-17 s_106138 c_1656 12.03 0.0 f 1982 13:29:31.536194 39 163 2_227 2021-10-22 s_108583 c_5841 50.99 2.0 m 1996 17:41:17.347164 25 175 0_1435 2021-10-13 s_104041 c_3000 13.99 0.0 f 1985
	242 0_1247 2021-10-05 s_100274 c_7850 15.99 0.0 f 1981 08:28:58.911451 40 260 2_233 2021-10-03 s_99180 c_4958 172.99 2.0 m 1999 01:57:22.634598 22 331 1_348 2021-10-01 s_98327 c_2543 16.15 1.0 m 1952 08:21:33.009615 69 332 0_1253 2021-10-26 s_110214 c_412 12.99 0.0 m 1976 03:13:10.751184 45 344 1_435 2021-10-28 s_111122 c_7146 11.99 1.0 m 1971 01:36:30.625115 50 350 0_515 2021-10-20 s_107496 c_6999 11.99 0.0 f 1981 10:05:59.517060 40 351 0_1623 2021-10-20 s_107730 c_1361 7.99 0.0 f 1981 08:26:10.739306 30 368 0_1562 2021-10-21 <
	389 0_1521 2021-10-13 s_104093 c_722 17.99 0.0 f 1987 08:13:27.087469 34 426 0_1434 2021-10-18 s_106482 c_1609 8.58 0.0 m 1980 05:54:53.183680 41 443 0_1209 2021-10-11 s_103004 c_4780 8.99 0.0 f 1954 00:43:05.992073 67 458 0_1287 2021-10-11 s_103082 c_1855 11.99 0.0 f 1987 04:37:41.556855 34 459 0_410 2021-10-23 s_109088 c_1080 25.23 0.0 f 1969 19:04:21.253947 52 466 0_1644 2021-10-18 s_106420 c_6406 4.77 0.0 m 1988 03:31:01.073318 33 478 0_1123 2021-10-31 s_112551 c_2239 12.99 0.0 m 1989 04:08:41.904426 32
	487 0_2171 2021-10-25 s_110069 c_4824 4.99 0.0 m 1974 20:42:44.831312 47 513 0_944 2021-10-17 s_106067 c_8326 13.38 0.0 m 1983 10:19:11.816939 38 577 0_1474 2021-10-30 s_112100 c_89 9.88 0.0 m 1971 03:47:06.880002 50 583 0_1301 2021-10-16 s_105489 c_528 5.99 0.0 f 1989 07:35:19.682714 32 624 0_1564 2021-10-21 s_107880 c_8537 11.12 0.0 f 1991 05:16:04.282100 30 625 0_1038 2021-10-29 s_111864 c_1200 9.74 0.0 m 1979 16:37:30.563775 42 627 0_1632 2021-10-06 s_100936 c_887 9.21 0.0 m 1976 16:27:50.702968 45 644 0_1447 2021-10-09
(28/29/30/3	655 0_1804 2021-10-31 s_112873 c_5797 16.95 0.0 m 1983 20:17:36.803427 38 656 1_392 2021-10-28 s_111152 c_6516 18.11 1.0 m 1967 03:12:21.949302 54 659 0_1586 2021-10-26 s_110553 c_4015 12.71 0.0 m 1986 20:18:16.744314 35 672 0_1412 2021-10-13 s_104314 c_7245 11.73 0.0 f 1983 19:36:20.548005 38 694 0_1877 2021-10-08 s_101944 c_2037 9.99 0.0 m 1971 19:57:08.279713 50 1 semble present uniquement a certains joursLes ventes de la categorie 1 semble sousrepresentés car ils apparaissent que au debut du mois d'octobre (1. octobre) et en fin de mois 1 octobre). Je supprime donc le mois d'octobre care des données sont manquantes. affiche le graphique pour le mois d'octobre uniquement pour la cat 1 pour pouvoir argumenter #Je zoom sur les ventes en octobre pour pouvoir identifier des raisons pour cette baisse
Out[12]:	<pre>startdate2 = pd.to_datetime("2021-10-01").date() enddate2 = pd.to_datetime("2021-10-31").date() ctp_ssOct = ctp[(ctp["date"] < startdate2) (ctp["date"] > enddate)] ctp_ssOct.describe(include = "all") # != exclusion des dates qui ne contient pas 2021-10 str.contains 2021.10 id_prod</pre>
	top 1_369 2021-09-30 s_118668 c_1609 NaN NaN m NaN 23:05:52.903346 NaN freq 1066 1311 14 11839 NaN NaN 158144 NaN 1 NaN mean NaN NaN NaN 17.379074 0.446823 NaN 1977.751983 NaN 43.248017 std NaN NaN NaN 17.862571 0.592598 NaN 13.604129 NaN 13.604129 min NaN NaN NaN NaN NaN 1929.00000 NaN 17.00000 25% NaN NaN NaN NaN NaN NaN 13.99000 0.00000 NaN 1980.00000 NaN 41.00000 50% NaN NaN NaN NaN 19.040000 1.00000 NaN 1987.000000 NaN 51.000000
347322 (ctp In [13]: Out[13]:	max NaN NaN NaN NaN NaN 300.00000 2.00000 NaN 2004.00000 NaN 92.00000 p) - 22298 (ctp_oct) = 325024 (ctp_ssOct) #Agrégation des données transactionnelles par fréquence mensuelle (méthode .groupby()) ctp_evol_ssOct = ctp_ssOct.groupby('date').sum().reset_index() ctp_evol_ssOct['ventes_keuros'] = ctp_evol_ssOct["price"] / 1000 ctp_evol_ssOct = ctp_evol_ssOct[['date', 'ventes_keuros']] ctp_evol_ssOct.tail() date ventes_keuros 329 2022-02-24 20.20037
In [14]:	330 2022-02-25 18.20326 331 2022-02-26 19.75958 332 2022-02-27 19.02183 333 2022-02-28 18.71994 #ctp_evoll.plot(x='date', y='ventes_keuros') ventes = ctp_evol_ssOct["ventes_keuros"] temps = ctp_evol_ssOct["date"] fig, ax = plt.subplots() plt.plot(temps_ventes_keuros)
	ax.set(xlabel='temps (mois)', ylabel='Ventes (k€)',
	18 17 16 15 14 2021-03 2021-05 2021-07 2021-09 2021-11 2022-01 2022-03 temps (mois)
<pre>In [15]: Out[15]:</pre>	<pre>#Représentation des effectifs par catégories de vente(méthode .value_counts()) effectif = ctp_ssOct['categ'].value_counts() #value_counts compte le nombre de chaque categorie tab = pd.DataFrame(effectif, columns = ['categ']) #création du tableau à partir des effectifs tab["n"] = effectif.values tab["% des ventes"] = round(tab["n"] / len(ctp),2) * 100 #determine le % de chaque categorie tab categ</pre>
In [34]:	#Pie Chart pour représenter la part de chacune des catégories de vente labels = 'Cat 0', 'Cat 1', 'Cat 2' sizes = tab['% des ventes'] explode = (0.06, 0.06, 0.06) #fait sortir chaque part, les choffres determine la distance pour chaque part, trois ici figl, axl = plt.subplots(figsize=(12,6)) axl.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=False, startangle=90) #autopict permet visulaiser le % sur chaque part, startangle turn le grapphique axl.axis('equal')
	plt.title('Répartition des catégories') plt.savefig("repartition_categories.png") plt.show() Répartition des catégories Cat 2
	Cat 1 Cat 0
In [17]: In [33]:	<pre>#help(plt.pie) #Je determine la contribution de chaque categorie au chiffre d'affaire par un pie chart ctp_price = ctp_ssOct.groupby(by = ctp_ssOct["categ"]).sum() labels = 'Cat 0', 'Cat 1', 'Cat 2' sizes = ctp_price['price'] explode = (0.06, 0, 0) fig1, ax1 = plt.subplots(figsize=(12,6)) ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%', shadow=False, startangle=90)</pre>
	ax1.axis('equal') plt.title('Contribution des categories au CA') plt.savefig("repartition_categories2.png") plt.show() Contribution des categories au CA Cat 2
	Cat 0 22.5% 40.4%
<pre>In [19]: Out[19]:</pre>	#distribution des prix par categorie representé par un boxplot sns.boxplot(x = ctp_ssOct["categ"], y = ctp_ssOct["price"]) <axessubplot:xlabel='categ', ylabel="price"> 300 250</axessubplot:xlabel='categ',>
la categorie	2 resprente la categorie avec des prix les plus elevés.les points en dehors du boxplot sont les outliers. Chaque part de la boite a moustache represente 25%. Elle indique egalement la
mediane. In [20]:	<pre>#help(sns.boxplot) #Courbe de Lorenz sur la variables des prix price = ctp_ssOct['price'] #Sélection du sous-échantillon de travail que l'on appelle price #On place les observations dans une variable lorenz_price = np.cumsum(np.sort(price)) / price.sum() #Tri des individus dans l'ordre croissant des valeurs de la variable, #Calcul de la somme cumulée et normalisation en divisant par la somme des observations</pre>
	<pre>plt.plot(np.linspace(0,1,len(lorenz_price)), lorenz_price, drawstyle='steps-post', color='rosybrown', label='Lorenz') plt.fill_between(np.linspace(0,1,len(lorenz_price)) ,lorenz_price , color='#539ecd') plt.plot([0, 1], [0, 1], 'r-', lw=2, label='Distribution égalitaire')#x,y, red solid line plt.vlines(x=.76, ymin=0, ymax=.5, color='blue', linestyle='', linewidth=1, label='Medial') plt.hlines(xmin=.76, xmax=0, y=.5, color='blue', linestyle='', linewidth=1) plt.title('Courbe de Lorenz des prix de vente') plt.xlabel("Distribution des ventes (%)") plt.ylabel("Cumul des prix de ventes (%)") plt.legend(loc="best") plt.savefig("lorenz_price.png") plt.show()</pre>
	Courbe de Lorenz des prix de vente 10
In [23]:	0.0 0.2 0.4 0.6 0.8 1.0 Distribution des ventes (%)
	aire_ss_courbe_price = lorenz_price[:-1].sum()/len(lorenz_price) #Aire entre la le bissectrice et la courbe de Lorenz S = 1 - (2 * aire_ss_courbe_price) gini_price = round(S, 2) print("L'indice de Gini est égal à {}".format(gini_price)) L'indice de Gini est égal à 0.39 alité des ventes. gini=0 egalité parfaite, surface blanche. Avec une valeur de gini de 0.39 les ventes semble relativement bien equilibre #Visualisation (Histogramme) de la distribution de l'âge clients #ctp_2021_ssoct['age'].astype(float)
	<pre>ctp_ssOct['age'].hist(density=True, alpha=0.5, bins=20) plt.ylabel('% des clients') plt.xlabel('age') plt.title('Distribution de la age des clients') min_ylim, max_ylim = plt.ylim() plt.axvline(ctp_ssOct.age.median(), color='k', linestyle='dashed', linewidth=1) plt.text(ctp_ssOct.age.median()*1.0, max_ylim*0.9, 'Median: {:.2f}'.format(ctp_ssOct.age.median())) plt.axvline(ctp_ssOct.age.mean(), color='k', linestyle='dashed', linewidth=1) plt.text(ctp_ssOct.age.mean()*1.0, max_ylim*0.8, 'Mean: {:.2f}'.format(ctp_ssOct.age.mean())) plt.savefig("distribution_ages_clients.png") plt.show()</pre> <pre> Distribution de la age des clients </pre>
	0.04 Media: 41.00 Mean: 43.25 90 0.02 0.01
La mediane In [26]: Out[26]:	est a 41ans et la moyenne a 43.25 ctp_ssOct.describe() price categ birth age count 315232.000000 315232.000000 315232.000000 mean 17.379074 0.446823 1977.751983 43.248017 std 17.862571 0.592598 13.604129 13.604129
In [38]:	min 0.620000 0.000000 1929.000000 17.000000 25% 8.990000 0.000000 1970.000000 34.000000 50% 13.990000 0.000000 41.000000 75% 19.040000 1.000000 51.000000 max 300.000000 2.000000 92.000000 #Visualisation (Histogramme) de la distribution des prix produits ctp_ssOct["price"].hist(color='#0504aa', alpha=0.9, density=True, bins=20)
	<pre>#alpha:densité de couleur 0-1, density=True l'echelle est en %, False achiche les nombre des evenements. min_ylim, max_ylim = plt.ylim() plt.axvline(ctp_ssOct.price.median(), color='k', linestyle='dashed', linewidth=1) plt.text(ctp_ssOct.price.median()*1.0, max_ylim*0.9, 'Median: {:.2f}'.format(ctp_ssOct.price.median())) plt.axvline(ctp_ssOct.price.mean(), color='k', linestyle='dashed', linewidth=1) plt.text(ctp_ssOct.price.mean()*1.0, max_ylim*0.8, 'Mean: {:.2f}'.format(ctp_ssOct.price.mean())) plt.title('Distribution de la variable "price"') plt.xlabel('Prix produits(€)') plt.ylabel('Fréquence d\'apparition') plt.savefig("distribution_price.png") plt.show()</pre>
	Distribution de la variable "price" 0.035
	d partie les prix sont en dessous de 30 euros. Les prix eplus tres minoritaires ne sont pas bien visualizé. Du coup je regarde les +100 et moins 100€. #Visualisation (Histogramme) de la distribution des prix produits ctp99 = ctp_ssOct[ctp_ssOct["price"] < 100] ctp99.hist(color='#0504aa', alpha=0.5, density=True, bins=20) plt.title('Distribution de la variable "price"') plt.xlabel('Prix produits(€)') plt.ylabel('Fréquence d\'apparition')
	plt.savefig("distribution_pricel.png") plt.show() price
In [36]:	#Visualisation (Histogramme) de la distribution des prix produits ctp100 = ctp_ssOct[ctp_ssOct["price"] >= 100] ctp100.hist(color='#0504aa', alpha=0.9, density=True, bins=20)
	plt.title('Distribution de la variable "price"') plt.xlabel('Prix produits(€)') plt.ylabel('Fréquence d\'apparition') plt.savefig("distribution_price2.png") plt.show() price categ
	0.075 Distribution de la variable 2 price" 0.075 0.050 0.050 0.050 0.005 0.005 0.000 20 40 60 80 Prix produits(€)
In [42]:	<pre>fig, ax = plt.subplots(figsize=(22, 12)) sns.barplot(x="categ", y=ctp_ssOct["price"], hue="categ", data=ctp_ssOct) #hue?, pas bien compris ax.set_xlabel('cetegorie') ax.set_ylabel('prix') ax.set_title('Prix des produits en fonction de la categorie') plt.savefig("barplot_prix_categorie_produit") plt.show()</pre> Prix des produits en fonction de la categorie
	70 - 60 -
	50 - \$\frac{2}{5} 40 - 30 -
	20 - 10 - 10 - 20 - 20 - 20 - 20 - 20 -
In [31]:	ies 1 et 2 representent les prix plus elevés