

I3304 Network administration and security

Ahmad Fadlallah

Reference Textbooks

Outline

- Introduction
 - Introduction to the course
- Network Layer
 - Static Routing
 - O Dynamic Routing
 - Dynamic Routing Algorithm
 - Dynamic Routing Protocols
 - NAT (Network Address Translation)
 - IPv6
- Transport Layer
 - Function of the transport layer
 - O UDP Protocol
 - - Connection management
 - Flow control
 - Congestion control

- Application Layer
 - HTTP protocol
 - FTP protocol
 - Mail protocols
 - DNS
- Introduction to Security
 - Security services
 - Cryptography
 - Digital Signature
 - Principle of network security protocols

References

• The slides are based on the:

⊙Jim Kurose, Keith Ross Slides for the Computer Networking: A Top-Down Approach, 8th edition, Pearson, 2020

Network Layer Network Address Translation (NAT)

Motivation

- Every IP-capable device needs an IP address
- Proliferation of Small Office, Home Office (SOHO) subnets
- Need to allocate a range of addresses (by the ISP) to cover all of the SOHO's IP devices (including phones, tablets, gaming devices, IP TVs, printers and more)
 - The address block size depends on the number of devices
- But what if the ISP had already allocated the contiguous portions of the SOHO network's current address range?
- Is the public IPv4 address space sufficient for all connected devices?

 NAT: all devices in local network share just one IPv4 address as far as outside world is concerned

all datagrams leaving local network have same source NAT IP address: 138.76.29.7, but different source port numbers

datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

• All devices in local network have 32-bit addresses in a "private" IP address space (10/8, 172.16/12, 192.168/16 prefixes) that can only be used in local network

Advantages:

- Just one IP address needed from provider ISP for all devices
- Ocan change addresses of host in local network without notifying outside world
- ○Can change ISP without changing addresses of devices in local network
- <u>Security</u>: devices inside local network not directly addressable → not visible by outside world

- Implementation: NAT router must (transparently):
 - Outgoing datagrams: Replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - Remote clients/servers will respond using (NAT IP address, new port #) as destination address
 - ⊙ Remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
 - <u>OIncoming datagrams:</u> Replace (NAT IP address, new port #) in destination fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

- NAT has been controversial:
 - Routers "should" only process up to layer 3
 - Port numbers are meant to be used for addressing processes, not for addressing hosts.
 - **⊙Address** "shortage" should be solved by IPv6
 - Oviolates end-to-end argument (port # manipulation by network-layer device)
 - **ONAT traversal**: what if client wants to connect to server behind NAT?
- But NAT is here to stay:
 - ⊙Extensively used in home and institutional nets, 4G/5G cellular nets

Network Layer Internet Protocol version 6 (IPv6)

IPv6: motivation

- Initial Motivation: 32-bit IPv4 address space would be completely allocated
- The designers of IPv6 also took this opportunity to tweak and augment other aspects of IPv4, based on the accumulated operational experience with IPv4.
- Additional motivation:
 - Speed processing/forwarding: 40-byte fixed length header
 - ⊙enable different network-layer treatment of "flows"

IPv6 datagram format

flow label: identify datagrams in same "flow." (concept of "flow" not well defined).

What's missing (compared with IPv4):

- No checksum (to speed processing at routers)
- No fragmentation/reassembly
- No options (available as upper-layer, next-header protocol at router)

Transition from IPv4 to IPv6

- Not all routers can be upgraded simultaneously
 - ⊙No "flag days"
 - ⊙How will network operate with mixed IPv4 and IPv6 routers?
 - Tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers ("packet within a packet")
 - tunneling used extensively in other contexts (4G/5G)

Tunneling and encapsulation

IPv4 network connecting two IPv6 routers

Tunneling and encapsulation

Tunneling

IPv6: adoption

- Google¹: ~ 40% of clients access services via IPv6
- NIST: 1/3 of all US government domains are IPv6 capable

https://www.google.com/int l/en/ipv6/statistics.html

IPv6: adoption

- Google¹: ~ 40% of clients access services via IPv6
- NIST: 1/3 of all US government domains are IPv6 capable
- Long (long!) time for deployment, use
 - **⊙** 25 years and counting!
 - think of application-level changes in last 25 years: WWW, social media, streaming media, gaming, telepresence, ...
 - **⊙** Why?

¹ https://www.google.com/intl/en/ipv6/statistics.html