	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	531.00	46.32	11.464	< 0.0001
region[South]	-12.50	56.68	-0.221	0.8260
region[West]	-18.69	65.02	-0.287	0.7740

TABLE 3.8. Least squares coefficient estimates associated with the regression of balance onto region in the Credit data set. The linear model is given in (3.30). That is, region is encoded via two dummy variables (3.28) and (3.29).

From Table 3.8, we see that the estimated balance for the baseline, East, is \$531.00. It is estimated that those in the South will have \$18.69 less debt than those in the East, and that those in the West will have \$12.50 less debt than those in the East. However, the p-values associated with the coefficient estimates for the two dummy variables are very large, suggesting no statistical evidence of a real difference in average credit card balance between South and East or between West and East. ¹² Once again, the level selected as the baseline category is arbitrary, and the final predictions for each group will be the same regardless of this choice. However, the coefficients and their p-values do depend on the choice of dummy variable coding. Rather than rely on the individual coefficients, we can use an F-test to test $H_0: \beta_1 = \beta_2 = 0$; this does not depend on the coding. This F-test has a p-value of 0.96, indicating that we cannot reject the null hypothesis that there is no relationship between balance and region.

Using this dummy variable approach presents no difficulties when incorporating both quantitative and qualitative predictors. For example, to regress balance on both a quantitative variable such as income and a qualitative variable such as student, we must simply create a dummy variable for student and then fit a multiple regression model using income and the dummy variable as predictors for credit card balance.

There are many different ways of coding qualitative variables besides the dummy variable approach taken here. All of these approaches lead to equivalent model fits, but the coefficients are different and have different interpretations, and are designed to measure particular *contrasts*. This topic is beyond the scope of the book.

contrast

3.3.2 Extensions of the Linear Model

The standard linear regression model (3.19) provides interpretable results and works quite well on many real-world problems. However, it makes several highly restrictive assumptions that are often violated in practice. Two of the most important assumptions state that the relationship between the predictors and response are additive and linear. The additivity assumption means that the association between a predictor X_j and the response Y does not depend on the values of the other predictors. The linearity assumption states that the change in the response Y associated with a one-unit change in X_j is constant, regardless of the value of X_j . In later chapters of this book, we examine a number of sophisticated methods that relax these two

additive linear

¹²There could still in theory be a difference between South and West, although the data here does not suggest any difference.

assumptions. Here, we briefly examine some common classical approaches for extending the linear model.

Removing the Additive Assumption

In our previous analysis of the Advertising data, we concluded that both TV and radio seem to be associated with sales. The linear models that formed the basis for this conclusion assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media. For example, the linear model (3.20) states that the average increase in sales associated with a one-unit increase in TV is always β_1 , regardless of the amount spent on radio.

However, this simple model may be incorrect. Suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases. In this situation, given a fixed budget of \$100,000, spending half on radio and half on TV may increase sales more than allocating the entire amount to either TV or to radio. In marketing, this is known as a synergy effect, and in statistics it is referred to as an interaction effect. Figure 3.5 suggests that such an effect may be present in the advertising data. Notice that when levels of either TV or radio are low, then the true sales are lower than predicted by the linear model. But when advertising is split between the two media, then the model tends to underestimate sales.

Consider the standard linear regression model with two variables,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon.$$

According to this model, a one-unit increase in X_1 is associated with an average increase in Y of β_1 units. Notice that the presence of X_2 does not alter this statement—that is, regardless of the value of X_2 , a one-unit increase in X_1 is associated with a β_1 -unit increase in Y. One way of extending this model is to include a third predictor, called an *interaction term*, which is constructed by computing the product of X_1 and X_2 . This results in the model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon. \tag{3.31}$$

How does inclusion of this interaction term relax the additive assumption? Notice that (3.31) can be rewritten as

$$Y = \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon$$

$$= \beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 + \epsilon$$
(3.32)

where $\tilde{\beta}_1 = \beta_1 + \beta_3 X_2$. Since $\tilde{\beta}_1$ is now a function of X_2 , the association between X_1 and Y is no longer constant: a change in the value of X_2 will change the association between X_1 and Y. A similar argument shows that a change in the value of X_1 changes the association between X_2 and Y.

For example, suppose that we are interested in studying the productivity of a factory. We wish to predict the number of units produced on the basis of the number of production lines and the total number of workers. It seems likely that the effect of increasing the number of production lines

	Coefficient	Std. error	$t ext{-statistic}$	<i>p</i> -value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes}{\tt radio}$	0.0011	0.000	20.73	< 0.0001

TABLE 3.9. For the Advertising data, least squares coefficient estimates associated with the regression of sales onto TV and radio, with an interaction term, as in (3.33).

will depend on the number of workers, since if no workers are available to operate the lines, then increasing the number of lines will not increase production. This suggests that it would be appropriate to include an interaction term between lines and workers in a linear model to predict units. Suppose that when we fit the model, we obtain

```
units \approx 1.2 + 3.4 \times \text{lines} + 0.22 \times \text{workers} + 1.4 \times (\text{lines} \times \text{workers})
= 1.2 + (3.4 + 1.4 \times \text{workers}) \times \text{lines} + 0.22 \times \text{workers}.
```

In other words, adding an additional line will increase the number of units produced by $3.4 + 1.4 \times \text{workers}$. Hence the more workers we have, the stronger will be the effect of lines.

We now return to the Advertising example. A linear model that uses radio, TV, and an interaction between the two to predict sales takes the form

sales =
$$\beta_0 + \beta_1 \times \text{TV} + \beta_2 \times \text{radio} + \beta_3 \times (\text{radio} \times \text{TV}) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times \text{radio}) \times \text{TV} + \beta_2 \times \text{radio} + \epsilon$. (3.33)

We can interpret β_3 as the increase in the effectiveness of TV advertising associated with a one-unit increase in radio advertising (or vice-versa). The coefficients that result from fitting the model (3.33) are given in Table 3.9.

The results in Table 3.9 strongly suggest that the model that includes the interaction term is superior to the model that contains only main effects. The p-value for the interaction term, TV×radio, is extremely low, indicating that there is strong evidence for $H_a: \beta_3 \neq 0$. In other words, it is clear that the true relationship is not additive. The R^2 for the model (3.33) is 96.8%, compared to only 89.7% for the model that predicts sales using TV and radio without an interaction term. This means that (96.8-89.7)/(100-89.7)=69% of the variability in sales that remains after fitting the additive model has been explained by the interaction term. The coefficient estimates in Table 3.9 suggest that an increase in TV advertising of \$1,000 is associated with increased sales of $(\hat{\beta}_1+\hat{\beta}_3\times {\rm radio})\times 1,000=19+1.1\times {\rm radio}$ units. And an increase in radio advertising of \$1,000 will be associated with an increase in sales of $(\hat{\beta}_2+\hat{\beta}_3\times {\rm TV})\times 1,000=29+1.1\times {\rm TV}$ units.

In this example, the *p*-values associated with TV, radio, and the interaction term all are statistically significant (Table 3.9), and so it is obvious that all three variables should be included in the model. However, it is sometimes the case that an interaction term has a very small *p*-value, but the associated main effects (in this case, TV and radio) do not. The *hierarchical principle* states that *if we include an interaction in a model, we*

main effect

hierarchical principle should also include the main effects, even if the p-values associated with their coefficients are not significant. In other words, if the interaction between X_1 and X_2 seems important, then we should include both X_1 and X_2 in the model even if their coefficient estimates have large p-values. The rationale for this principle is that if $X_1 \times X_2$ is related to the response, then whether or not the coefficients of X_1 or X_2 are exactly zero is of little interest. Also $X_1 \times X_2$ is typically correlated with X_1 and X_2 , and so leaving them out tends to alter the meaning of the interaction.

In the previous example, we considered an interaction between TV and radio, both of which are quantitative variables. However, the concept of interactions applies just as well to qualitative variables, or to a combination of quantitative and qualitative variables. In fact, an interaction between a qualitative variable and a quantitative variable has a particularly nice interpretation. Consider the Credit data set from Section 3.3.1, and suppose that we wish to predict balance using the income (quantitative) and student (qualitative) variables. In the absence of an interaction term, the model takes the form

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 & \text{if ith person is a student} \\ 0 & \text{if ith person is not a student} \end{cases} \\ & = & \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_0 + \beta_2 & \text{if ith person is a student} \\ \beta_0 & \text{if ith person is not a student} \end{cases}$$
 (3.34)

Notice that this amounts to fitting two parallel lines to the data, one for students and one for non-students. The lines for students and non-students have different intercepts, $\beta_0 + \beta_2$ versus β_0 , but the same slope, β_1 . This is illustrated in the left-hand panel of Figure 3.7. The fact that the lines are parallel means that the average effect on balance of a one-unit increase in income does not depend on whether or not the individual is a student. This represents a potentially serious limitation of the model, since in fact a change in income may have a very different effect on the credit card balance of a student versus a non-student.

This limitation can be addressed by adding an interaction variable, created by multiplying income with the dummy variable for student. Our model now becomes

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 + \beta_3 \times \mathbf{income}_i & \text{if student} \\ 0 & \text{if not student} \end{cases} \\ & = & \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathbf{income}_i & \text{if student} \\ \beta_0 + \beta_1 \times \mathbf{income}_i & \text{if not student.} \end{cases} \end{aligned} \tag{3.35}$$

Once again, we have two different regression lines for the students and the non-students. But now those regression lines have different intercepts, $\beta_0 + \beta_2$ versus β_0 , as well as different slopes, $\beta_1 + \beta_3$ versus β_1 . This allows for the possibility that changes in income may affect the credit card balances of students and non-students differently. The right-hand panel of Figure 3.7

FIGURE 3.7. For the Credit data, the least squares lines are shown for prediction of balance from income for students and non-students. Left: The model (3.34) was fit. There is no interaction between income and student. Right: The model (3.35) was fit. There is an interaction term between income and student.

shows the estimated relationships between income and balance for students and non-students in the model (3.35). We note that the slope for students is lower than the slope for non-students. This suggests that increases in income are associated with smaller increases in credit card balance among students as compared to non-students.

Non-linear Relationships

As discussed previously, the linear regression model (3.19) assumes a linear relationship between the response and predictors. But in some cases, the true relationship between the response and the predictors may be non-linear. Here we present a very simple way to directly extend the linear model to accommodate non-linear relationships, using *polynomial regression*. In later chapters, we will present more complex approaches for performing non-linear fits in more general settings.

polynomial regression

Consider Figure 3.8, in which the mpg (gas mileage in miles per gallon) versus horsepower is shown for a number of cars in the Auto data set. The orange line represents the linear regression fit. There is a pronounced relationship between mpg and horsepower, but it seems clear that this relationship is in fact non-linear: the data suggest a curved relationship. A simple approach for incorporating non-linear associations in a linear model is to include transformed versions of the predictors. For example, the points in Figure 3.8 seem to have a quadratic shape, suggesting that a model of the form

quadratic

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$
 (3.36)

may provide a better fit. Equation 3.36 involves predicting mpg using a non-linear function of horsepower. But it is still a linear model! That is, (3.36) is simply a multiple linear regression model with $X_1 = \text{horsepower}$ and $X_2 = \text{horsepower}^2$. So we can use standard linear regression software to estimate β_0, β_1 , and β_2 in order to produce a non-linear fit. The blue curve in Figure 3.8 shows the resulting quadratic fit to the data. The quadratic

FIGURE 3.8. The Auto data set. For a number of cars, mpg and horsepower are shown. The linear regression fit is shown in orange. The linear regression fit for a model that includes horsepower² is shown as a blue curve. The linear regression fit for a model that includes all polynomials of horsepower up to fifth-degree is shown in green.

	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
${\tt horsepower}^2$	0.0012	0.0001	10.1	< 0.0001

TABLE 3.10. For the Auto data set, least squares coefficient estimates associated with the regression of mpg onto horsepower and horsepower².

fit appears to be substantially better than the fit obtained when just the linear term is included. The R^2 of the quadratic fit is 0.688, compared to 0.606 for the linear fit, and the p-value in Table 3.10 for the quadratic term is highly significant.

If including horsepower² led to such a big improvement in the model, why not include horsepower³, horsepower⁴, or even horsepower⁵? The green curve in Figure 3.8 displays the fit that results from including all polynomials up to fifth degree in the model (3.36). The resulting fit seems unnecessarily wiggly—that is, it is unclear that including the additional terms really has led to a better fit to the data.

The approach that we have just described for extending the linear model to accommodate non-linear relationships is known as *polynomial regression*, since we have included polynomial functions of the predictors in the regression model. We further explore this approach and other non-linear extensions of the linear model in Chapter 7.

3.3.3 Potential Problems

When we fit a linear regression model to a particular data set, many problems may occur. Most common among these are the following:

- 1. Non-linearity of the response-predictor relationships.
- 2. Correlation of error terms.
- 3. Non-constant variance of error terms.
- 4. Outliers.
- 5. High-leverage points.
- 6. Collinearity.

In practice, identifying and overcoming these problems is as much an art as a science. Many pages in countless books have been written on this topic. Since the linear regression model is not our primary focus here, we will provide only a brief summary of some key points.

1. Non-linearity of the Data

FIGURE 3.9. Plots of residuals versus predicted (or fitted) values for the Auto data set. In each plot, the red line is a smooth fit to the residuals, intended to make it easier to identify a trend. Left: A linear regression of mpg on horsepower. A strong pattern in the residuals indicates non-linearity in the data. Right: A linear regression of mpg on horsepower and horsepower². There is little pattern in the residuals.

The linear regression model assumes that there is a straight-line relationship between the predictors and the response. If the true relationship is far from linear, then virtually all of the conclusions that we draw from the fit are suspect. In addition, the prediction accuracy of the model can be significantly reduced.

Residual plots are a useful graphical tool for identifying non-linearity. Given a simple linear regression model, we can plot the residuals, e_i

residual plot

 $y_i - \hat{y}_i$, versus the predictor x_i . In the case of a multiple regression model, since there are multiple predictors, we instead plot the residuals versus the predicted (or *fitted*) values \hat{y}_i . Ideally, the residual plot will show no discernible pattern. The presence of a pattern may indicate a problem with some aspect of the linear model.

fitted

The left panel of Figure 3.9 displays a residual plot from the linear regression of mpg onto horsepower on the Auto data set that was illustrated in Figure 3.8. The red line is a smooth fit to the residuals, which is displayed in order to make it easier to identify any trends. The residuals exhibit a clear U-shape, which provides a strong indication of non-linearity in the data. In contrast, the right-hand panel of Figure 3.9 displays the residual plot that results from the model (3.36), which contains a quadratic term. There appears to be little pattern in the residuals, suggesting that the quadratic term improves the fit to the data.

If the residual plot indicates that there are non-linear associations in the data, then a simple approach is to use non-linear transformations of the predictors, such as $\log X$, \sqrt{X} , and X^2 , in the regression model. In the later chapters of this book, we will discuss other more advanced non-linear approaches for addressing this issue.

2. Correlation of Error Terms

An important assumption of the linear regression model is that the error terms, $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$, are uncorrelated. What does this mean? For instance, if the errors are uncorrelated, then the fact that ϵ_i is positive provides little or no information about the sign of ϵ_{i+1} . The standard errors that are computed for the estimated regression coefficients or the fitted values are based on the assumption of uncorrelated error terms. If in fact there is correlation among the error terms, then the estimated standard errors will tend to underestimate the true standard errors. As a result, confidence and prediction intervals will be narrower than they should be. For example, a 95 % confidence interval may in reality have a much lower probability than 0.95 of containing the true value of the parameter. In addition, p-values associated with the model will be lower than they should be; this could cause us to erroneously conclude that a parameter is statistically significant. In short, if the error terms are correlated, we may have an unwarranted sense of confidence in our model.

As an extreme example, suppose we accidentally doubled our data, leading to observations and error terms identical in pairs. If we ignored this, our standard error calculations would be as if we had a sample of size 2n, when in fact we have only n samples. Our estimated parameters would be the same for the 2n samples as for the n samples, but the confidence intervals would be narrower by a factor of $\sqrt{2}$!

Why might correlations among the error terms occur? Such correlations frequently occur in the context of *time series* data, which consists of observations for which measurements are obtained at discrete points in time. In many cases, observations that are obtained at adjacent time points will have positively correlated errors. In order to determine if this is the case for a given data set, we can plot the residuals from our model as a function of time. If the errors are uncorrelated, then there should be no discernible pat-

time series

FIGURE 3.10. Plots of residuals from simulated time series data sets generated with differing levels of correlation ρ between error terms for adjacent time points.

tern. On the other hand, if the error terms are positively correlated, then we may see *tracking* in the residuals—that is, adjacent residuals may have similar values. Figure 3.10 provides an illustration. In the top panel, we see the residuals from a linear regression fit to data generated with uncorrelated errors. There is no evidence of a time-related trend in the residuals. In contrast, the residuals in the bottom panel are from a data set in which adjacent errors had a correlation of 0.9. Now there is a clear pattern in the residuals—adjacent residuals tend to take on similar values. Finally, the center panel illustrates a more moderate case in which the residuals had a correlation of 0.5. There is still evidence of tracking, but the pattern is less along

Many methods have been developed to properly take account of correlations in the error terms in time series data. Correlation among the error terms can also occur outside of time series data. For instance, consider a study in which individuals' heights are predicted from their weights. The assumption of uncorrelated errors could be violated if some of the individuals in the study are members of the same family, eat the same diet, or have been exposed to the same environmental factors. In general, the assumption of uncorrelated errors is extremely important for linear regression as well as for other statistical methods, and good experimental design is crucial in order to mitigate the risk of such correlations.

tracking

FIGURE 3.11. Residual plots. In each plot, the red line is a smooth fit to the residuals, intended to make it easier to identify a trend. The blue lines track the outer quantiles of the residuals, and emphasize patterns. Left: The funnel shape indicates heteroscedasticity. Right: The response has been log transformed, and there is now no evidence of heteroscedasticity.

3. Non-constant Variance of Error Terms

Another important assumption of the linear regression model is that the error terms have a constant variance, $Var(\epsilon_i) = \sigma^2$. The standard errors, confidence intervals, and hypothesis tests associated with the linear model rely upon this assumption.

Unfortunately, it is often the case that the variances of the error terms are non-constant. For instance, the variances of the error terms may increase with the value of the response. One can identify non-constant variances in the errors, or heteroscedasticity, from the presence of a funnel shape in the residual plot. An example is shown in the left-hand panel of Figure 3.11, in which the magnitude of the residuals tends to increase with the fitted values. When faced with this problem, one possible solution is to transform the response Y using a concave function such as $\log Y$ or \sqrt{Y} . Such a transformation results in a greater amount of shrinkage of the larger responses, leading to a reduction in heteroscedasticity. The right-hand panel of Figure 3.11 displays the residual plot after transforming the response using $\log Y$. The residuals now appear to have constant variance, though there is some evidence of a slight non-linear relationship in the data.

Sometimes we have a good idea of the variance of each response. For example, the *i*th response could be an average of n_i raw observations. If each of these raw observations is uncorrelated with variance σ^2 , then their average has variance $\sigma_i^2 = \sigma^2/n_i$. In this case a simple remedy is to fit our model by weighted least squares, with weights proportional to the inverse variances—i.e. $w_i = n_i$ in this case. Most linear regression software allows for observation weights.

heteroscedasticity

weighted least squares

4. Outliers

An outlier is a point for which y_i is far from the value predicted by the

outlier

FIGURE 3.12. Left: The least squares regression line is shown in red, and the regression line after removing the outlier is shown in blue. Center: The residual plot clearly identifies the outlier. Right: The outlier has a studentized residual of 6; typically we expect values between -3 and 3.

model. Outliers can arise for a variety of reasons, such as incorrect recording of an observation during data collection.

The red point (observation 20) in the left-hand panel of Figure 3.12 illustrates a typical outlier. The red solid line is the least squares regression fit, while the blue dashed line is the least squares fit after removal of the outlier. In this case, removing the outlier has little effect on the least squares line: it leads to almost no change in the slope, and a miniscule reduction in the intercept. It is typical for an outlier that does not have an unusual predictor value to have little effect on the least squares fit. However, even if an outlier does not have much effect on the least squares fit, it can cause other problems. For instance, in this example, the RSE is 1.09 when the outlier is included in the regression, but it is only 0.77 when the outlier is removed. Since the RSE is used to compute all confidence intervals and p-values, such a dramatic increase caused by a single data point can have implications for the interpretation of the fit. Similarly, inclusion of the outlier causes the R^2 to decline from 0.892 to 0.805.

Residual plots can be used to identify outliers. In this example, the outlier is clearly visible in the residual plot illustrated in the center panel of Figure 3.12. But in practice, it can be difficult to decide how large a residual needs to be before we consider the point to be an outlier. To address this problem, instead of plotting the residuals, we can plot the studentized residuals, computed by dividing each residual e_i by its estimated standard error. Observations whose studentized residuals are greater than 3 in absolute value are possible outliers. In the right-hand panel of Figure 3.12, the outlier's studentized residual exceeds 6, while all other observations have studentized residuals between -2 and 2.

studentized residual

If we believe that an outlier has occurred due to an error in data collection or recording, then one solution is to simply remove the observation. However, care should be taken, since an outlier may instead indicate a deficiency with the model, such as a missing predictor.

5. High Leverage Points

We just saw that outliers are observations for which the response y_i is unusual given the predictor x_i . In contrast, observations with high leverage high have an unusual value for x_i . For example, observation 41 in the left-hand $\frac{\text{mgn}}{\text{leverage}}$

FIGURE 3.13. Left: Observation 41 is a high leverage point, while 20 is not. The red line is the fit to all the data, and the blue line is the fit with observation 41 removed. Center: The red observation is not unusual in terms of its X_1 value or its X_2 value, but still falls outside the bulk of the data, and hence has high leverage. Right: Observation 41 has a high leverage and a high residual.

panel of Figure 3.13 has high leverage, in that the predictor value for this observation is large relative to the other observations. (Note that the data displayed in Figure 3.13 are the same as the data displayed in Figure 3.12, but with the addition of a single high leverage observation.) The red solid line is the least squares fit to the data, while the blue dashed line is the fit produced when observation 41 is removed. Comparing the left-hand panels of Figures 3.12 and 3.13, we observe that removing the high leverage observation has a much more substantial impact on the least squares line than removing the outlier. In fact, high leverage observations tend to have a sizable impact on the estimated regression line. It is cause for concern if the least squares line is heavily affected by just a couple of observations, because any problems with these points may invalidate the entire fit. For this reason, it is important to identify high leverage observations.

In a simple linear regression, high leverage observations are fairly easy to identify, since we can simply look for observations for which the predictor value is outside of the normal range of the observations. But in a multiple linear regression with many predictors, it is possible to have an observation that is well within the range of each individual predictor's values, but that is unusual in terms of the full set of predictors. An example is shown in the center panel of Figure 3.13, for a data set with two predictors, X_1 and X_2 . Most of the observations' predictor values fall within the blue dashed ellipse, but the red observation is well outside of this range. But neither its value for X_1 nor its value for X_2 is unusual. So if we examine just X_1 or just X_2 , we will fail to notice this high leverage point. This problem is more pronounced in multiple regression settings with more than two predictors, because then there is no simple way to plot all dimensions of the data simultaneously.

In order to quantify an observation's leverage, we compute the *leverage* statistic. A large value of this statistic indicates an observation with high leverage. For a simple linear regression,

leverage statistic

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_{i'} - \bar{x})^2}.$$
 (3.37)

FIGURE 3.14. Scatterplots of the observations from the Credit data set. Left: A plot of age versus limit. These two variables are not collinear. Right: A plot of rating versus limit. There is high collinearity.

It is clear from this equation that h_i increases with the distance of x_i from \bar{x} . There is a simple extension of h_i to the case of multiple predictors, though we do not provide the formula here. The leverage statistic h_i is always between 1/n and 1, and the average leverage for all the observations is always equal to (p+1)/n. So if a given observation has a leverage statistic that greatly exceeds (p+1)/n, then we may suspect that the corresponding point has high leverage.

The right-hand panel of Figure 3.13 provides a plot of the studentized residuals versus h_i for the data in the left-hand panel of Figure 3.13. Observation 41 stands out as having a very high leverage statistic as well as a high studentized residual. In other words, it is an outlier as well as a high leverage observation. This is a particularly dangerous combination! This plot also reveals the reason that observation 20 had relatively little effect on the least squares fit in Figure 3.12: it has low leverage.

6. Collinearity

Collinearity refers to the situation in which two or more predictor variables are closely related to one another. The concept of collinearity is illustrated in Figure 3.14 using the Credit data set. In the left-hand panel of Figure 3.14, the two predictors limit and age appear to have no obvious relationship. In contrast, in the right-hand panel of Figure 3.14, the predictors limit and rating are very highly correlated with each other, and we say that they are collinear. The presence of collinearity can pose problems in the regression context, since it can be difficult to separate out the individual effects of collinear variables on the response. In other words, since limit and rating tend to increase or decrease together, it can be difficult to determine how each one separately is associated with the response, balance.

Figure 3.15 illustrates some of the difficulties that can result from collinearity. The left-hand panel of Figure 3.15 is a contour plot of the RSS (3.22) associated with different possible coefficient estimates for the regression of balance on limit and age. Each ellipse represents a set of coefficients

collinearity

FIGURE 3.15. Contour plots for the RSS values as a function of the parameters β for various regressions involving the Credit data set. In each plot, the black dots represent the coefficient values corresponding to the minimum RSS. Left: A contour plot of RSS for the regression of balance onto age and limit. The minimum value is well defined. Right: A contour plot of RSS for the regression of balance onto rating and limit. Because of the collinearity, there are many pairs (β_{Limit} , β_{Rating}) with a similar value for RSS.

that correspond to the same RSS, with ellipses nearest to the center taking on the lowest values of RSS. The black dots and associated dashed lines represent the coefficient estimates that result in the smallest possible RSS—in other words, these are the least squares estimates. The axes for limit and age have been scaled so that the plot includes possible coefficient estimates that are up to four standard errors on either side of the least squares estimates. Thus the plot includes all plausible values for the coefficients. For example, we see that the true limit coefficient is almost certainly somewhere between 0.15 and 0.20.

In contrast, the right-hand panel of Figure 3.15 displays contour plots of the RSS associated with possible coefficient estimates for the regression of balance onto limit and rating, which we know to be highly collinear. Now the contours run along a narrow valley; there is a broad range of values for the coefficient estimates that result in equal values for RSS. Hence a small change in the data could cause the pair of coefficient values that yield the smallest RSS—that is, the least squares estimates—to move anywhere along this valley. This results in a great deal of uncertainty in the coefficient estimates. Notice that the scale for the limit coefficient now runs from roughly -0.2 to 0.2; this is an eight-fold increase over the plausible range of the limit coefficient in the regression with age. Interestingly, even though the limit and rating coefficients now have much more individual uncertainty, they will almost certainly lie somewhere in this contour valley. For example, we would not expect the true value of the limit and rating coefficients to be -0.1 and 1 respectively, even though such a value is plausible for each coefficient individually.

Since collinearity reduces the accuracy of the estimates of the regression coefficients, it causes the standard error for $\hat{\beta}_j$ to grow. Recall that the t-statistic for each predictor is calculated by dividing $\hat{\beta}_j$ by its standard

		Coefficient	Std. error	$t ext{-statistic}$	<i>p</i> -value
Model 1	Intercept	-173.411	43.828	-3.957	< 0.0001
	age	-2.292	0.672	-3.407	0.0007
	limit	0.173	0.005	34.496	< 0.0001
Model 2	Intercept	-377.537	45.254	-8.343	< 0.0001
	rating	2.202	0.952	2.312	0.0213
	limit	0.025	0.064	0.384	0.7012

TABLE 3.11. The results for two multiple regression models involving the Credit data set are shown. Model 1 is a regression of balance on age and limit, and Model 2 a regression of balance on rating and limit. The standard error of $\hat{\beta}_{\text{limit}}$ increases 12-fold in the second regression, due to collinearity.

error. Consequently, collinearity results in a decline in the t-statistic. As a result, in the presence of collinearity, we may fail to reject $H_0: \beta_j = 0$. This means that the power of the hypothesis test—the probability of correctly detecting a non-zero coefficient—is reduced by collinearity.

ower

Table 3.11 compares the coefficient estimates obtained from two separate multiple regression models. The first is a regression of balance on age and limit, and the second is a regression of balance on rating and limit. In the first regression, both age and limit are highly significant with very small p-values. In the second, the collinearity between limit and rating has caused the standard error for the limit coefficient estimate to increase by a factor of 12 and the p-value to increase to 0.701. In other words, the importance of the limit variable has been masked due to the presence of collinearity. To avoid such a situation, it is desirable to identify and address potential collinearity problems while fitting the model.

A simple way to detect collinearity is to look at the correlation matrix of the predictors. An element of this matrix that is large in absolute value indicates a pair of highly correlated variables, and therefore a collinearity problem in the data. Unfortunately, not all collinearity problems can be detected by inspection of the correlation matrix: it is possible for collinearity to exist between three or more variables even if no pair of variables has a particularly high correlation. We call this situation multicollinearity. Instead of inspecting the correlation matrix, a better way to assess multicollinearity is to compute the variance inflation factor (VIF). The VIF is the ratio of the variance of $\hat{\beta}_j$ when fitting the full model divided by the variance of $\hat{\beta}_j$ if fit on its own. The smallest possible value for VIF is 1, which indicates the complete absence of collinearity. Typically in practice there is a small amount of collinearity among the predictors. As a rule of thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of collinearity. The VIF for each variable can be computed using the formula

multicollinearity variance inflation

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2},$$

where $R_{X_j|X_{-j}}^2$ is the R^2 from a regression of X_j onto all of the other predictors. If $R_{X_j|X_{-j}}^2$ is close to one, then collinearity is present, and so the VIF will be large.

In the Credit data, a regression of balance on age, rating, and limit indicates that the predictors have VIF values of 1.01, 160.67, and 160.59. As we suspected, there is considerable collinearity in the data!

When faced with the problem of collinearity, there are two simple solutions. The first is to drop one of the problematic variables from the regression. This can usually be done without much compromise to the regression fit, since the presence of collinearity implies that the information that this variable provides about the response is redundant in the presence of the other variables. For instance, if we regress balance onto age and limit, without the rating predictor, then the resulting VIF values are close to the minimum possible value of 1, and the R^2 drops from 0.754 to 0.75. So dropping rating from the set of predictors has effectively solved the collinearity problem without compromising the fit. The second solution is to combine the collinear variables together into a single predictor. For instance, we might take the average of standardized versions of limit and rating in order to create a new variable that measures credit worthiness.

3.4 The Marketing Plan

We now briefly return to the seven questions about the Advertising data that we set out to answer at the beginning of this chapter.

- 1. Is there a relationship between sales and advertising budget? This question can be answered by fitting a multiple regression model of sales onto TV, radio, and newspaper, as in (3.20), and testing the hypothesis $H_0: \beta_{\text{TV}} = \beta_{\text{radio}} = \beta_{\text{newspaper}} = 0$. In Section 3.2.2, we showed that the F-statistic can be used to determine whether or not we should reject this null hypothesis. In this case the p-value corresponding to the F-statistic in Table 3.6 is very low, indicating clear evidence of a relationship between advertising and sales.
- 2. How strong is the relationship?

 We discussed two measures of model accuracy in Section 3.1.3. First, the RSE estimates the standard deviation of the response from the population regression line. For the Advertising data, the RSE is 1.69 units while the mean value for the response is 14.022, indicating a percentage error of roughly 12%. Second, the R² statistic records the percentage of variability in the response that is explained by the predictors. The predictors explain almost 90% of the variance in sales. The RSE and R² statistics are displayed in Table 3.6.
- 3. Which media are associated with sales?

 To answer this question, we can examine the p-values associated with each predictor's t-statistic (Section 3.1.2). In the multiple linear regression displayed in Table 3.4, the p-values for TV and radio are low, but the p-value for newspaper is not. This suggests that only TV and radio are related to sales. In Chapter 6 we explore this question in greater detail.

4. How large is the association between each medium and sales? We saw in Section 3.1.2 that the standard error of $\hat{\beta}_j$ can be used to construct confidence intervals for β_j . For the Advertising data, we can use the results in Table 3.4 to compute the 95% confidence intervals for the coefficients in a multiple regression model using all three media budgets as predictors. The confidence intervals are as follows: (0.043, 0.049) for TV, (0.172, 0.206) for radio, and (-0.013, 0.011) for newspaper. The confidence intervals for TV and radio are narrow and far from zero, providing evidence that these media are related to sales. But the interval for newspaper includes zero, indicating that the variable is not statistically significant given the values of TV and radio.

We saw in Section 3.3.3 that collinearity can result in very wide standard errors. Could collinearity be the reason that the confidence interval associated with newspaper is so wide? The VIF scores are 1.005, 1.145, and 1.145 for TV, radio, and newspaper, suggesting no evidence of collinearity.

In order to assess the association of each medium individually on sales, we can perform three separate simple linear regressions. Results are shown in Tables 3.1 and 3.3. There is evidence of an extremely strong association between TV and sales and between radio and sales. There is evidence of a mild association between newspaper and sales, when the values of TV and radio are ignored.

5. How accurately can we predict future sales?

The response can be predicted using (3.21). The accuracy associated with this estimate depends on whether we wish to predict an individual response, $Y = f(X) + \epsilon$, or the average response, f(X) (Section 3.2.2). If the former, we use a prediction interval, and if the latter, we use a confidence interval. Prediction intervals will always be wider than confidence intervals because they account for the uncertainty associated with ϵ , the irreducible error.

6. Is the relationship linear?

In Section 3.3.3, we saw that residual plots can be used in order to identify non-linearity. If the relationships are linear, then the residual plots should display no pattern. In the case of the Advertising data, we observe a non-linear effect in Figure 3.5, though this effect could also be observed in a residual plot. In Section 3.3.2, we discussed the inclusion of transformations of the predictors in the linear regression model in order to accommodate non-linear relationships.

7. Is there synergy among the advertising media?

The standard linear regression model assumes an additive relationship between the predictors and the response. An additive model is easy to interpret because the association between each predictor and the response is unrelated to the values of the other predictors. However, the additive assumption may be unrealistic for certain data sets. In Section 3.3.2, we showed how to include an interaction term in the regression model in order to accommodate non-additive relationships. A small p-value associated with the interaction term indicates the presence of such relationships. Figure 3.5 suggested that the Advertising data may not be additive. Including an interaction term in the model results in a substantial increase in \mathbb{R}^2 , from around 90 % to almost 97%.

3.5 Comparison of Linear Regression with K-Nearest Neighbors

As discussed in Chapter 2, linear regression is an example of a parametric approach because it assumes a linear functional form for f(X). Parametric methods have several advantages. They are often easy to fit, because one need estimate only a small number of coefficients. In the case of linear regression, the coefficients have simple interpretations, and tests of statistical significance can be easily performed. But parametric methods do have a disadvantage: by construction, they make strong assumptions about the form of f(X). If the specified functional form is far from the truth, and prediction accuracy is our goal, then the parametric method will perform poorly. For instance, if we assume a linear relationship between X and Y but the true relationship is far from linear, then the resulting model will provide a poor fit to the data, and any conclusions drawn from it will be suspect.

In contrast, non-parametric methods do not explicitly assume a parametric form for f(X), and thereby provide an alternative and more flexible approach for performing regression. We discuss various non-parametric methods in this book. Here we consider one of the simplest and best-known non-parametric methods, K-nearest neighbors regression (KNN regression). The KNN regression method is closely related to the KNN classifier discussed in Chapter 2. Given a value for K and a prediction point x_0 , KNN regression regression first identifies the K training observations that are closest to x_0 , represented by \mathcal{N}_0 . It then estimates $f(x_0)$ using the average of all the training responses in \mathcal{N}_0 . In other words,

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in \mathcal{N}_0} y_i.$$

Figure 3.16 illustrates two KNN fits on a data set with p=2 predictors. The fit with K=1 is shown in the left-hand panel, while the right-hand panel corresponds to K = 9. We see that when K = 1, the KNN fit perfectly interpolates the training observations, and consequently takes the form of a step function. When K=9, the KNN fit still is a step function, but averaging over nine observations results in much smaller regions of constant prediction, and consequently a smoother fit. In general, the optimal value for K will depend on the bias-variance tradeoff, which we introduced in Chapter 2. A small value for K provides the most flexible fit, which will have low bias but high variance. This variance is due to the fact that the prediction in a given region is entirely dependent on just one observation.

FIGURE 3.16. Plots of $\hat{f}(X)$ using KNN regression on a two-dimensional data set with 64 observations (orange dots). Left: K = 1 results in a rough step function fit. Right: K = 9 produces a much smoother fit.

In contrast, larger values of K provide a smoother and less variable fit; the prediction in a region is an average of several points, and so changing one observation has a smaller effect. However, the smoothing may cause bias by masking some of the structure in f(X). In Chapter 5, we introduce several approaches for estimating test error rates. These methods can be used to identify the optimal value of K in KNN regression.

In what setting will a parametric approach such as least squares linear regression outperform a non-parametric approach such as KNN regression? The answer is simple: the parametric approach will outperform the nonparametric approach if the parametric form that has been selected is close to the true form of f. Figure 3.17 provides an example with data generated from a one-dimensional linear regression model. The black solid lines represent f(X), while the blue curves correspond to the KNN fits using K=1and K=9. In this case, the K=1 predictions are far too variable, while the smoother K=9 fit is much closer to f(X). However, since the true relationship is linear, it is hard for a non-parametric approach to compete with linear regression: a non-parametric approach incurs a cost in variance that is not offset by a reduction in bias. The blue dashed line in the lefthand panel of Figure 3.18 represents the linear regression fit to the same data. It is almost perfect. The right-hand panel of Figure 3.18 reveals that linear regression outperforms KNN for this data. The green solid line, plotted as a function of 1/K, represents the test set mean squared error (MSE) for KNN. The KNN errors are well above the black dashed line, which is the test MSE for linear regression. When the value of K is large, then KNN performs only a little worse than least squares regression in terms of MSE. It performs far worse when K is small.

In practice, the true relationship between X and Y is rarely exactly linear. Figure 3.19 examines the relative performances of least squares regression and KNN under increasing levels of non-linearity in the relationship between X and Y. In the top row, the true relationship is nearly linear. In this case we see that the test MSE for linear regression is still superior

FIGURE 3.17. Plots of $\hat{f}(X)$ using KNN regression on a one-dimensional data set with 50 observations. The true relationship is given by the black solid line. Left: The blue curve corresponds to K=1 and interpolates (i.e. passes directly through) the training data. Right: The blue curve corresponds to K=9, and represents a smoother fit.

FIGURE 3.18. The same data set shown in Figure 3.17 is investigated further. Left: The blue dashed line is the least squares fit to the data. Since f(X) is in fact linear (displayed as the black line), the least squares regression line provides a very good estimate of f(X). Right: The dashed horizontal line represents the least squares test set MSE, while the green solid line corresponds to the MSE for KNN as a function of 1/K (on the log scale). Linear regression achieves a lower test MSE than does KNN regression, since f(X) is in fact linear. For KNN regression, the best results occur with a very large value of K, corresponding to a small value of 1/K.

FIGURE 3.19. Top Left: In a setting with a slightly non-linear relationship between X and Y (solid black line), the KNN fits with K=1 (blue) and K=9 (red) are displayed. Top Right: For the slightly non-linear data, the test set MSE for least squares regression (horizontal black) and KNN with various values of 1/K (green) are displayed. Bottom Left and Bottom Right: As in the top panel, but with a strongly non-linear relationship between X and Y.

to that of KNN for low values of K. However, for $K \geq 4$, KNN outperforms linear regression. The second row illustrates a more substantial deviation from linearity. In this situation, KNN substantially outperforms linear regression for all values of K. Note that as the extent of non-linearity increases, there is little change in the test set MSE for the non-parametric KNN method, but there is a large increase in the test set MSE of linear regression.

Figures 3.18 and 3.19 display situations in which KNN performs slightly worse than linear regression when the relationship is linear, but much better than linear regression for nonlinear situations. In a real life situation in which the true relationship is unknown, one might suspect that KNN should be favored over linear regression because it will at worst be slightly inferior to linear regression if the true relationship is linear, and may give substantially better results if the true relationship is non-linear. But in reality, even when the true relationship is highly non-linear, KNN may still provide inferior results to linear regression. In particular, both Figures 3.18

FIGURE 3.20. Test MSE for linear regression (black dashed lines) and KNN (green curves) as the number of variables p increases. The true function is non-linear in the first variable, as in the lower panel in Figure 3.19, and does not depend on the additional variables. The performance of linear regression deteriorates slowly in the presence of these additional noise variables, whereas KNN's performance degrades much more quickly as p increases.

and 3.19 illustrate settings with p = 1 predictor. But in higher dimensions, KNN often performs worse than linear regression.

Figure 3.20 considers the same strongly non-linear situation as in the second row of Figure 3.19, except that we have added additional noise predictors that are not associated with the response. When p=1 or p=2, KNN outperforms linear regression. But for p=3 the results are mixed, and for p > 4 linear regression is superior to KNN. In fact, the increase in dimension has only caused a small deterioration in the linear regression test set MSE, but it has caused more than a ten-fold increase in the MSE for KNN. This decrease in performance as the dimension increases is a common problem for KNN, and results from the fact that in higher dimensions there is effectively a reduction in sample size. In this data set there are 50 training observations; when p=1, this provides enough information to accurately estimate f(X). However, spreading 50 observations over p=20dimensions results in a phenomenon in which a given observation has no nearby neighbors—this is the so-called curse of dimensionality. That is, the K observations that are nearest to a given test observation x_0 may be very far away from x_0 in p-dimensional space when p is large, leading to a very poor prediction of $f(x_0)$ and hence a poor KNN fit. As a general rule, parametric methods will tend to outperform non-parametric approaches when there is a small number of observations per predictor.

curse of dimensionality

Even when the dimension is small, we might prefer linear regression to KNN from an interpretability standpoint. If the test MSE of KNN is only slightly lower than that of linear regression, we might be willing to forego a little bit of prediction accuracy for the sake of a simple model that can be described in terms of just a few coefficients, and for which p-values are available.