

Generative kernel embedding for weighted directed networks

Erwan Celanie, Alex Barbier-Chebbah, Christian L. Vestergaard, Jean-Baptiste Masson

Decision and Bayesian Computation - Épiméthée

Computational Biology & Neuroscience departments

Institut Pasteur - CNRS UMR 3571 - Université de Paris - INRIA Institut Prairie

Context: Real connectome instances

Full connectome instances at synaptic resolution

C. elegans connectome

Drosophila larva central nervous system

Drosophila adult brain

Connectome representation

Graph with weighted adjacency matrix :

 $\hat{w}_{i,j}$ nb synapses from i to j

Dimensions: nb of neurons n

Memory size : $O(n^2)$

Objective & Approach: Latent space embedding

How to have a better representation with weighted directed graph?

Latent space graph embedding

Memory size : O(nd), $d \ll n$

Desired properties of the approach:

Low dimensional
Generative
Latent space properties
Looking for structures and circuits

$$\mathcal{L} = -\sum_{x_i \in \text{Pre-n}, y_j \in \text{Post-n}} \ln \left(\mathbb{P}(w_{i,j} = \hat{w}_{i,j} | k(x_i, y_j)) \right)$$
Log likelihood

