Remarques sur le sondage linéaire

Inconvénients :

- deux clés ayant même adresse primaire auront la même suite d'adresses
- formation de groupements : l'insertion successive de clés avec la même adresse primaire remplit une zone contigüe de la table
- une collision en adresse primaire ⇒ une collision sur les autres adresses

Avantages:

- très simple à calculer
- fonctionne correctement pour un taux de remplissage moyen

Taux de remplissage

C'est le rapport entre le nombre de clés effectivement dans la table et sa capacité :

$$\tau = \frac{n}{M}$$

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

26/51

Remarques sur le sondage quadratique

Inconvénients:

 difficulté de choisir les constantes a et b et la taille de la table pour s'assurer de parcourir toute la table
 Exemple de parcours (a=b=1)

			,					
i	0	1	2	3	4	5	6	
$i + i^{2}$	0	2	5	12	20	30	42	
M = 10	0	2	5	2	0	0	2	
M = 11	0	2	5	1	9	8	9	
M = 13	0	2	5	12	7	4	3	

 comme pour le sondage linéaire, deux clés ayant même adresse primaire auront la même suite d'adresses

Avantages:

- plus efficace que le sondage linéaire
- moins d'effet de formation de groupements

Adressage ouvert - sondage quadratique

Sondage quadratique

 $h'(k,i) = (h(k) + a \times i + b \times i^2) \mod M$, a et b des constantes non nulles

Prenons a = 1 et b = 2. $h'(k, i) = h(k) + i + 2i^2 \mod 5$.

Note : si on avait choisi a=b=1 on aurait eu la séquence $0 \to 2 \to 1 \to 2 \to 0 \to 0 \to 2 \to 1 \to 2 \to 0 \cdots$

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

27/5

Adressage ouvert - double hachage

On utilise deux fonctions de hachage primaire.

Double hachage

$$h'(k,i) = (h_1(k) + i \times h_2(k)) \mod M$$

 h_1 est calculée sur le rang de la dernière lettre du mot modulo 5 alors que h_2 est calculée sur le rang de l'avant-dernière lettre.

				h'(k,i)				
		k	V	$h_1(k)$	$h_2(k)$	i = 0	1	2
0	hachage ,12	hachage	12	0	2	0		
1	parcouru,7	fonction	36	4	0	4		
2	rang ,81	parcouru	7	1	3	1		
3	adresse ,24	rang	81	2	4	2		
4	fonction ,36	adresse	24	0	4	0	4	3

Remarques sur le double hachage

Inconvénients:

choix des deux fonctions de hachage

Pour être sûr de parcourir toute la table, il faut que $h_2(k)$ soit premier avec M. Un schéma classique :

$$M = 2^{p},$$

 $h_{1}(k) = k \mod M,$
 $h_{2}(k) = 1 + (k \mod M')$

avec M' un peut plus petit que M.

Avantages:

- contrairement aux précédents sondages, les suites d'adresses ne sont pas nécessairement linéaires : fourni de l'ordre de M² séquences de sondage au lieu de M comme dans l'exemple, les deux fonctions de hachage n'utilisent pas la même donnée de la clé
- bien meilleur que les sondages précédents

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

30/51

Les types et variables utilisés

```
1 (* association <cle,valeur> *)
2 type couple = { cle : String; val : int }
3
4 (* taille de la table (M) *)
5 let capacite = ...
6
7 (* la table *)
8 let table = couple array
9 (* utilise pour verifier si une alveole est deja remplie *)
10 let occupe = bool array
```

CU : l'insertion d'une clé déjà présente aura pour effet de remplacer l'ancienne valeur associée par la nouvelle

Pire des cas et meilleur des cas

Meilleur des cas

L'alvéole d'insertion est vide (insertion), il existe une seule clé k dans la table ayant pour adresse h'(k,0) (recherche), on est en $\Theta(1)$.

Pire des cas

Il ne reste plus d'alvéole libre, on aura parcouru toute la table, on est en $\Omega(M)$.

Si la fonction h' est correctement réalisée, chaque alvéole est parcourue un nombre fini constant de fois, on est alors en $\Theta(M)$.

Et en moyenne?

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

31/5

Code de la fonction d'insertion

```
1 let inserer k v =
     let tentative = ref 1
      and adresse = ref 0
 4
      in
       adresse := hprime k tentative;
        (* recherche d'une alveole libre *)
        while occupe.(!adresse) && (table.(!adresse).cle <> k) &&
             (tentative < capacite) do begin
 9
          tentative := !tentative + 1;
10
          adresse := hprime k tentative;
11
        end (* while *):
12
        (* 3 cas : table pleine, cle presente, cle non presente *)
13
        if (tentative < CAPACITE) then begin</pre>
14
          if not occupe. (!adresse) then begin
15
             occupe.(!adresse) <- true;
16
             table.(!adresse).cle := k;
17
             table.(!adresse).val := v;
18
          end else begin
19
             table.(!adresse).val := v;
20
          end (* if *);
21
        end else begin
22
          failwith "inserer: _Table_pleine";
23
        end (* if *);
```

Code de la fonction de recherche

```
let rechercher k =
     let tentative = ref 1
     and adresse = ref 0
        tentative := 0;
        adresse := hprime k tentative;
        (* recherche de l'alveole contenant la cle *)
 8
        while occupe.(!adresse) && (table.(!adresse).cle <> k) do begin
9
        tentative := !tentative + 1;
10
        adresse := hprime k tentative;
11
        end (* while *);
12
        if occupe.(!adresse) then
13
        table.(!adresse).val
14
    failwith "rechercher: Cle non trouvee";
```

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

34/51

Recherche infructueuse 1/2

On considère qu'il y a *n* éléments dans la table.

- il y a un accès à l'alvéole d'adresse h'(k,0) avec une probabilité 1
- l'accès à h'(k,1) se fait ssi h'(k,0) était occupée avec une probabilité de $p_1 = \frac{n}{M}$
- l'accès à h'(k,2) se fait ssi h'(k,1) et h'(k,0) étaient occupées avec une probabilité de $p_2 = \frac{n}{M} \times \frac{n-1}{M-1}$
- on accède à h'(k, i) ssi les i adresses précédentes étaient occupées

avec une probabilité de $p_i = \frac{n}{M} \times \frac{n-1}{M-1} \times \cdots \times \frac{n-i+1}{M-i+1}$

On peut montrer que :

$$p_i \le \left(\frac{n}{M}\right)^i = \tau^i$$

Complexité en moyenne de la recherche

Deux cas :

- recherche infructueuse :
 - on recherche une clé qui n'est pas dans la table
 - il faudra parcourir la suite des adresses donnée par h'
 - dans le pire des cas on parcoura les n alvéoles remplies de la table
- recherche fructueuse :
 - on recherche une des *n* clés insérées dans la table

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

35/51

Recherche infructueuse 2/2

- le nombre moyen d'accès à l'adresse h'(k,0) est 1×1 1 accès avec une probabilité de 1
- le nombre moyen d'accès à l'adresse h'(k,1) est $1 \times p_1$ 1 accès avec une probabilité de p_1
-
- le nombre d'accès moyen s'exprime ainsi :

$$\sum_{i=0}^{n-1} p_i \le \sum_{i=0}^{n-1} \tau^i \le \frac{1}{1-\tau}$$

τ	nb moyen accès	τ	nb moyen accès
0.5	2	0.8	5
0.75	4	0.9	10
		0.99	100

Analyse de l'insertion en moyenne

- insérer une clé c'est rechercher une alvéole libre
- lacktriangle insérer la i-ème clé, c'est donc une recherche infructueuse dans une table contenant i-1 éléments
- le taux de remplissage avant l'insertion de la i-ème clé est $\frac{i-1}{M}$
- on peut majorer le nombre moyen d'accès a_i :

$$a_i \le \frac{1}{1 - \frac{i-1}{M}} = \frac{M}{M - i + 1}$$

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

38/51

Gestion des suppressions

- tout ce qui a été énoncé auparavant est vrai si il n'y a pas eu de suppression d'élements dans la table
- comment gérer les suppressions?
 - 1 marquer l'alvéole d'un état spécial 'supprimé'
 - complexité : c'est le même coût qu'une recherche fructueuse.
 - 2 décaler les alvéoles de la série des h'(k,i)
 - réalisable avec un sondage dont la suite d'adresses est déterminée par h'(k,0)
 - impossible dans les autres cas : cela reviendrait à réordonner toute la table!

Recherche fructueuse

- on dispose de *n* clés dans la table, on suppose que chaque clé a la même probabilité d'être recherchée
- la recherche du *i*-ème élément se fait avec un parcours identique à l'insertion
- le nombre moyen d'accès s'exprime ainsi :

$$\frac{1}{n} \sum_{i=1}^{n} a_{i} \leq \frac{1}{n} \sum_{i=1}^{n} \frac{M}{M-i+1}$$

$$\leq \frac{M}{n} \sum_{i=0}^{n-1} \frac{1}{M-i} = \frac{M}{n} \sum_{i=M-n+1}^{M} \frac{1}{i}$$

$$\leq \frac{M}{n} \ln \left(\frac{M}{M-n}\right)$$

τ	nb. moy. accès	τ	nb. moy. accès
0.5	1.386	0.8	2.012
0.75	1.848	0.9	2.558
		0.99	4.652

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

39/51

Adressage ouvert - sondage linéaire

Sondage linéaire

$$h'(k,i) = (h(k) + i) \mod M$$

Les clés sont des mots, la valeur le nombre d'occurrences dans un texte, l'adresse est calculée sur le rang de la dernière lettre du mot modulo 5.

					h'(k,i)) = I	h(k) -	$+i \mod 5$
		k	V	h(k)	i = 0	1	2	3
0	hachage ,12	hachage	12	0	0			
1	parcouru,7	fonction	36	4	4			
2	rang ,81	parcouru	7	1	1			
3	adresse ,24	rang	81	2	2			
4	fonction ,36	adresse	24	0	0	1	2	3

- suppression de la clé 'hachage'
- la clé 'adresse' est-elle dans la table?
- h(adresse) = 0, la alvéole est vide \Rightarrow 'adresse' n'est pas dans la table

Gestion des suppressions

- tout ce qui a été énoncé auparavant est vrai si il n'y a pas eu de suppression d'élements dans la table
- comment gérer les suppressions?
 - 1 marquer l'alvéole d'un état spécial 'supprimé'
 - complexité : c'est le même coût qu'une recherche fructueuse.
 - 2 décaler les alvéoles de la série des h'(k, i)
 - réalisable avec un sondage dont la suite d'adresses est déterminée par h'(k,0)
 - impossible dans les autres cas : cela reviendrait à réordonner toute la table!

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

42/51

Résolution des collisions par chaînage

- la table a la capacité de grandir
- si une alvéole est déjà occupée, on ajoute « dans la même alvéole » le nouveau couple <clé,valeur>

Faisons le point

sur la résolution des collisions par adressage ouvert :

- la taille de la table est fixe
- on utilise des stratégies de hachage permettant de balayer les alvéoles de manières uniforme
 - inutile de réinventer la roue : il existe déjà de très nombreuses stratégies performantes
 - ces stratégies sont déjà implantées dans les bibliothèques fournissant ces structures de données
- la performance de l'insertion et de la recherche est excellente
- la suppression est délicate : on réservera l'utilisation de ces tables à l'indexation d'informations pérennes

http://groups.engin.umd.umich.edu/CIS/course.des/cis350/hashing/WEB/HashApplet.htm

Schéma de principe

k	V	h(k)
hachage	12	0
fonction	36	4
parcouru	7	1
rang	81	2
adresse	24	0

- 1 (* la table est un tableau de listes *)
- 2 let table = couple list array

Recherche d'une clé

```
1 let rechercher k =
      (* acces direct a la bonne alveole *)
     let adresse = h k
     and p = ref [];
       (* recherche de la cle dans la liste *)
       p := table.(!adresse):
       while (!p <> []) && ((hd !p).cle <> k) do begin
 8
9
       p := tl !p;
10
       end (* while *);
11
       if !p <> [] then
12
          (hd p).val
13
     failwith "recherche: ||Cle||non||trouvee";
```

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

46/51

Coût de la recherche fructueuse d'un élément

- l'accès à la bonne alvéole est en $\Theta(1)$
- la recherche de l'élément dans la liste va dépendre de la longueur de la liste :
 - ullet $\Theta(1)$ pour le meilleur des cas (clé en première position de la liste)
 - $\Theta(n)$ pour le pire des cas (où toutes les clés insérées ont même adresse, donc dans une seule liste, et la clé recherchée est en fin de liste)

en moyenne :

- si on suppose que la fonction de hachage est uniforme, les *n* clés auront été hachées équitablement dans les alvéoles
- \blacksquare les listes auront donc une longueur de l'ordre de $\frac{n}{M}=\tau$
- lacktriangle le temps moyen de la recherche est aussi en $\Theta(1+ au)$

Coût de la recherche infructueuse d'un élément

- l'accès à la bonne alvéole est en $\Theta(1)$
- la recherche de l'élément dans la liste va dépendre de la longueur de la liste :
 - Θ(1) pour le meilleur des cas (où aucune clé ayant même adresse n'a été insérée dans la table)
 - Θ(n) pour le pire des cas (où toutes les clés insérées ont même adresse, donc dans une seule liste, et la clé recherchée a même adresse)

en moyenne :

- si on suppose que la fonction de hachage est uniforme, les n clés auront été hachées équitablement dans les alvéoles
- \blacksquare les listes auront donc une longueur de l'ordre de $\frac{n}{M}=\tau$
- le temps moyen de la recherche est en $\Theta(1+\tau)$ (le 1 est pour l'accès à l'alvéole)

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

47/51

Insertion d'une clé

```
1 let inserer k v =
2  let adresse = h k
3  and c = { cle = k; valeur = v }
4  in
5  try
6  rechercher k
7  with _ ->
8  (* si la cle n'est pas trouvee *)
9  table.(adresse) := c :: table.(adresse);
```

Note : dans cette version, si la clé est déjà présente on ne fait rien. Suivant la bibliothèque utilisée, l'insertion d'une valeur déjà présente a parfois pour effet de remplacer la valeur associée à la clé.

Coût de l'insertion et de la suppression

- insertion :
 - trouver l'alvéole : $\Theta(1)$
 - tester l'existence : $\Theta(\frac{n}{M})$
 - \blacksquare ajouter en tête de liste : $\Theta(1)$
- suppression :
 - trouver l'alvéole : $\Theta(1)$
 - trouver la position dans la liste : $\Theta(\frac{n}{M})$
 - supprimer : $\Theta(1)$ (on se souvient que la suppression d'un élément dans une liste, une fois l'élément trouvé, est en temps constant)

Université Lille 1, Info 204 - ASD, Licence Informatique S4 — Hachage

50/51

Faisons le point

sur l'adressage par chaînage

- permet de stocker autant d'éléments qu'on veut
- la performance est liée à la fois à la fonction de hachage mais aussi à la taille de la table
- l'insertion est très efficace
- la suppression est réalisable facilement

http://groups.engin.umd.umich.edu/CIS/course.des/cis350/hashing/WEB/HashApplet.htm