▼ 다중회귀분석(Multivariate Regression)

```
import warnings
warnings.filterwarnings('ignore')
```

▼ 실습용 데이터 설정

- pandas DataFrame
 - o Insurance.csv

```
import pandas as pd

url = 'https://raw.githubusercontent.com/rusita-ai/pyData/master/Insurance.csv'

DF = pd.read_csv(url)

DF.info()
```

DF.head(3)

	age	sex	bmi	children	smoker	region	expenses
0	19	female	27.90	0	yes	southwest	16884.9240
1	18	male	33.77	1	no	southeast	1725.5523
2	28	male	33.00	3	no	southeast	4449.4620

▼ I. 탐색적 데이터 분석

• 시각화 패키지

```
import matplotlib.pyplot as plt import seaborn as sns
```

▼ 1) 전체 의료비 분포

plt.figure(figsize = (9, 6))
sns.boxplot(y = 'expenses', data = DF)
plt.show()

▼ 2) 성별 별 의료비 분포

```
plt.figure(figsize = (9, 6))
sns.boxplot(x = 'sex', y = 'expenses', data = DF)
plt.show()
```


DF.sex.value_counts()

male 676 female 662 Name: sex, dtype: int64

▼ 3) 자녀수 별 의료비 분포

```
plt.figure(figsize = (9, 6))
sns.boxplot(x = 'children', y = 'expenses', data = DF)
plt.show()
```


DF.children.value_counts()

```
0 574
1 324
```

2 2403 157

4 25 5 18

Name: children, dtype: int64

▼ 4) 흡연여부 별 의료비 분포

```
plt.figure(figsize = (9, 6))
sns.boxplot(x = 'smoker', y = 'expenses', data = DF)
plt.show()
```


DF.smoker.value_counts()

no 1064 yes 274

Name: smoker, dtype: int64

▼ 5) 거주지역 별 의료비 분포

plt.figure(figsize = (9, 6))

```
sns.boxplot(x = 'region', y = 'expenses', data = DF)
plt.show()
```


DF.region.value_counts()

southeast 364 northwest 325 southwest 325 northeast 324

Name: region, dtype: int64

▼ 6) BMI 분포 및 의료비와의 관계

• BMI 분포

• BMI와 의료비 간의 관계

```
plt.figure(figsize = (9, 6))
sns.scatterplot(x = DF.bmi, y = DF.expenses)
plt.show()
```


▼ II. Modeling - sklearn Package

→ 1) Integer Encoding

• object to int64

DF.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column
             Non-Null Count Dtype
0
    age
              1338 non-null int64
              1338 non-null object
    sex
             1338 non-null float64
   bmi
3
    children 1338 non-null int64
    smoker
             1338 non-null object
4
    region
             1338 non-null object
6 expenses 1338 non-null float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

- LabelEncoder()
 - o 'sex', 'smoker', 'region' to int64

```
from sklearn.preprocessing import LabelEncoder
encoder1 = LabelEncoder()
DF['sex'] = encoder1.fit_transform(DF.sex)

encoder2 = LabelEncoder()
DF['smoker'] = encoder2.fit_transform(DF.smoker)

encoder3 = LabelEncoder()
DF['region'] = encoder3.fit_transform(DF.region)
```

• Encoding 결과 확인

DF.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
    Column
               Non-Null Count Dtype
0
               1338 non-null
                               int64
    age
               1338 non-null
                               int64
 1
    sex
2
    bmi
               1338 non-null
                               float64
3
               1338 non-null
                               int64
    children
               1338 non-null
                               int64
4
    smoker
5
    region
               1338 non-null
                               int64
    expenses
               1338 non-null
                               float64
```

dtypes: float64(2), int64(5)

• 변경된 값 확인

DF.head()

	age	sex	bmi	children	smoker	region	expenses
0	19	0	27.900	0	1	3	16884.92400
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061
4	32	1	28.880	0	0	1	3866.85520

→ 2) Train & Test Array Split(7:3)

→ 3) .fit()

Test Data: (402, 2) (402,)

```
from sklearn.linear_model import LinearRegression

RA = LinearRegression()
RA.fit(X_train, y_train)
```

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

→ 4) .predict()

```
y_hat = RA.predict(X_test)
```

▼ 5) 오차(Error)값 확인

• Mean Sqaured Error - sklearn

```
from sklearn.metrics import mean_squared_error
import numpy as np

mse2 = mean_squared_error(y_test, y_hat)

np.sqrt(mse2)
```

10633.607635499553

▼ III. Modeling - statsmodels Package

```
import pandas as pd

url = 'https://raw.githubusercontent.com/rusita-ai/pyData/master/Insurance.csv'

DF = pd.read_csv(url)

DF.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
# Column
             Non-Null Count Dtype
0
              1338 non-null
                            int64
    age
              1338 non-null
                            object
1
    sex
2
              1338 non-null
                            float64
    bmi
    children 1338 non-null
                            int64
4
    smoker
              1338 non-null
                            object
5 region
             1338 non-null object
6 expenses 1338 non-null float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

→ 1) Data Preprocessing

• Train & Test DataFrame Split(7:3)

train_set.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 936 entries, 8 to 887
Data columns (total 7 columns):
              Non-Null Count Dtype
# Column
0
              936 non-null
                              int64
    age
1
    sex
              936 non-null
                              object
              936 non-null
2
    bmi
                              float64
    children 936 non-null
3
                             int64
    smoker
              936 non-null
                              object
4
    region
              936 non-null
                              object
    expenses 936 non-null
                             float64
dtypes: float64(2), int64(2), object(3)
memory usage: 58.5+ KB
```

→ 2) expenses ~ age + sex

- train_set으로 모델 생성
- OLS(최소자승법): Ordinary Least Squares

▼ 3) y_hat 생성

• test_set으로 y_hat(예측값) 계산

```
y_hat_1 = Model_1.predict(test_set[['age', 'sex']])
```

▼ 4) 오차(Error)값 확인

• Mean Sqaured Error - sklearn

```
mse1 = mean_squared_error(test_set.expenses, y_hat_1)
np.sqrt(mse1)
    10633.607635499557
```

▼ IV. Package별 오차값 비교

```
print('statsmodels :', np.sqrt(mse1))
  print('sklearn :', np.sqrt(mse2))
      statsmodels: 10633.607635499557
      sklearn : 10633.607635499553
  #
→ The End
```

#

→ 2) Train & Test Array Split(7:3)

```
DF['BS'] = DF.bmi * DF.smoker
```

DF.head()

	age	sex	bmi	children	smoker	region	expenses	BS
0	19	0	27.900	0	1	3	16884.92400	27.9
1	18	1	33.770	1	0	2	1725.55230	0.0
2	28	1	33.000	3	0	2	4449.46200	0.0
3	33	1	22.705	0	0	1	21984.47061	0.0
4	32	1	28.880	0	0	1	3866.85520	0.0

```
from sklearn.model_selection import train_test_split
X = DF[['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'BS']]
y = DF['expenses']
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                     test\_size = 0.3,
                                                     random_state = 2045)
print('Train Data : ', X_train.shape, y_train.shape)
print('Test Data : ', X_test.shape, y_test.shape)
```

Train Data: (936, 7) (936,) Test Data: (402, 7) (402,)

→ 3) .fit()

from sklearn.linear_model import LinearRegression

RA = LinearRegression()
RA.fit(X_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

→ 4) .predict()

y_hat = RA.predict(X_test)

▼ 5) 오차(Error)값 확인

• Mean Sqaured Error - sklearn

from sklearn.metrics import mean_squared_error
import numpy as np

mse2 = mean_squared_error(y_test, y_hat)

np.sqrt(mse2)

5099.679895595083