Automatic proofs for establishing the structure of integer sequences avoiding a pattern

Eric Rowland Hofstra University

Joint work with Lara Pudwell

Applications of Computer Algebra Jerusalem, 2017–07–20

Squares on a 3-letter alphabet

A square is a nonempty word of the form $w^2 = ww$. Are squares are avoidable on a 3-letter alphabet?

Axel Thue (1863-1922)

Are there arbitrarily long square-free words on $\{0, 1, 2\}$?

Choose an order on $\{0, 1, 2\}$ and try to construct one:

01020120210120102012021020102101201020120210...

The backtracking algorithm builds the lexicographically least sequence (if it exists).

Squares on an infinite alphabet

On an infinite alphabet, the backtracking algorithm doesn't backtrack.

Are squares avoidable on $\mathbb{Z}_{\geq 0} = \{0, 1, 2, \dots\}$? Yes.

$$\boldsymbol{s}_2 = 01020103010201040102010301020105\cdots$$

Let
$$\varphi(n)=0$$
 $(n+1)$ for each $n\in\mathbb{Z}_{\geq 0}$.
$$\varphi(0)=01$$

$$\varphi^2(0)=0102$$

$$\varphi^3(0)=01020103$$

$$\vdots$$

$$\varphi^\infty(0)=01020103010201040102010301020105\cdots$$

Since $|\varphi(n)| = 2$, we say φ is a 2-uniform morphism.

Fractional powers

01110111 = $(0111)^2$ is a square. 011101 = $(0111)^{3/2}$ is a $\frac{3}{2}$ -power.

abracadabra = $(abracad)^{11/7}$ is an $\frac{11}{7}$ -power.

Definition

A word w is an $\frac{a}{b}$ -power if

$$w = v^e x$$

where $e \ge 0$ is an integer, x is a prefix of v, and $\frac{|w|}{|v|} = \frac{a}{b}$.

Notation

For $\frac{a}{b} > 1$, let $\mathbf{s}_{a/b}$ be the lex. least $\frac{a}{b}$ -power-free sequence on $\mathbb{Z}_{\geq 0}$.

We assume gcd(a, b) = 1 from now on.

Avoiding 3/2-powers

 $\mathbf{s}_{3/2} = 001102100112001103100113001102100114001103\cdots$

$$s(6n+5)=s(n)+2$$

Theorem (Rowland-Shallit 2012)

The sequence $\mathbf{s}_{3/2}$ is generated by a 6-uniform morphism.

Why 6?

s_{5/3} wrapped into 100 columns

$$\mathbf{s}_{5/3} = 000010100001010000101000010100001020000101 \cdots$$

s_{5/3} wrapped into 7 columns

$$\mathbf{s}_{5/3} = 000010100001010000101000010100001020000101 \cdots$$

Theorem

 $\mathbf{s}_{5/3} = \varphi^{\infty}(0)$, where $\varphi(n) = 000010(n+1)$ is a 7-uniform morphism.

s_{8/5} wrapped into 100 columns

s_{8/5} wrapped into 733 columns

$$\mathbf{s}_{8/5} = 00000001001000001001000000100110000000100 \cdots$$

Theorem

$\mathbf{s}_{8/5}=arphi^{\infty}(0)$ for the 733-uniform morphism

s_{7/4} wrapped into 100 columns

s_{7/4} wrapped into 50847 columns

$$\mathbf{s}_{7/4} = 0000001001000000100100000110000000 \cdots$$

Theorem

 $\mathbf{s}_{7/4} = \varphi^{\infty}(0)$ for some 50847-uniform morphism $\varphi(n) = u(n+2)$.

\$5/4 wrapped into 144 columns

 $\mathbf{s}_{5/4} = 000011110202101001011212000013110102101302\cdots$

We don't know the structure of $\mathbf{s}_{5/4}$.

Establishing the structure of $\mathbf{s}_{a/b}$

To show that $\mathbf{s}_{a/b} = \varphi^{\infty}(0)$:

1 Show that φ preserves $\frac{a}{b}$ -power-freeness:

w is $\frac{a}{b}$ -power-free $\implies \varphi(w)$ is $\frac{a}{b}$ -power-free.

Since 0 is $\frac{a}{b}$ -power-free, this implies $\varphi^{\infty}(0)$ is $\frac{a}{b}$ -power-free.

② Show that decrementing any term in $\varphi^{\infty}(0)$ introduces an $\frac{a}{b}$ -power.

We reduce both steps to finite computations.

Proving $\frac{a}{b}$ -power-freeness

We want to show that $\frac{a}{b}$ -powers in $\varphi(w)$ come from $\frac{a}{b}$ -powers in w. Where can an $\frac{a}{b}$ -power occur? $(xy)^{a/b} = xyx$ $1 < \frac{a}{b} < 2$

Example

Let $\varphi(n) = 000010(n+1)$ of length $k = |\varphi(n)| = 7$.

The word 000 occurs in $\varphi(w)$ at positions $\equiv 1,2 \mod 7$.

But each word of length 4 occurs at a unique position modulo 7.

0000 0001 0010 0101 1010 0100 1000 0102 \cdots

We say φ locates words of length 4.

Suppose φ locates words of length k.

If $\varphi(w)$ contains an $\frac{a}{b}$ -power $(xy)^{a/b} = xyx$ with $|x| \ge k$,

then *k* divides |xy| = mb (for some *m*).

Assuming gcd(b, k) = 1, then $k \mid m$.

Then k divides |xyx| = ma. By shifting, we find an $\frac{a}{b}$ -power in w.

So if w is $\frac{a}{b}$ -power-free, then $\varphi(w)$ does not contain long $\frac{a}{b}$ -powers.

Proving lex-leastness

Show that decrementing any term in $\varphi^{\infty}(0)$ introduces an $\frac{a}{b}$ -power.

We exploit the self-similarity of $\varphi^{\infty}(0)$.

Example

```
Let \varphi(n) = 000010(n+1).
```

Decrementing 1 to 0 introduces the $\frac{5}{3}$ -power $00000 = (000)^{5/3}$.

Decrementing n+1 to c=0 introduces the $\frac{5}{3}$ -power $00100=(001)^{5/3}$.

Induction on c: Assume that decrementing any letter in $\varphi^{\infty}(0)$ to c-1 introduces an $\frac{a}{b}$ -power ending at this c-1.

Let $\varphi(w)$ be a prefix of $\varphi^{\infty}(0)$ with last letter n+1. "De-substitute"; then w is a prefix of $\varphi^{\infty}(0)$ with last letter n.

Decrementing n + 1 to c produces the image, under φ , of the word obtained by decrementing n to c - 1.

So, computationally, we just need to check the base cases.

Catalogue

For many sequences $\mathbf{s}_{a/b}$, there is a related k-uniform morphism.

<u>a</u> b	k	running time
<u>3</u>	6	
<u>5</u>	7	
<u>8</u>	733	3 seconds
$\frac{7}{4}$	50847	6 hours
<u>5</u>	?	

Question

Is this true for every $\frac{a}{b} > 1$? How is k related to $\frac{a}{b}$?

A family related to \$5/3

Theorem

Let
$$\frac{5}{3} \le \frac{a}{b} < 2$$
 and $gcd(b, 2) = 1$. Let

$$\varphi(n) = 0^{a-1} \cdot 1 \cdot 0^{a-b-1} \cdot (n+1).$$

Then $\mathbf{s}_{a/b} = \varphi^{\infty}(\mathbf{0})$.

We must prove $\frac{a}{b}$ -power-freeness (and lex-leastness) symbolically.

Proving $\frac{a}{b}$ -power-freeness symbolically

Slide length-a window through the circular word 0^{a-1} 1 0^{a-b-1} (n+1):

length-a factor	interval for i
$0^{a-1-i} 1 0^i$	$0 \le i \le a-b-1$
$0^{b-1-i} 1 0^{a-b-1} (n+1) 0^i$	$0 \le i \le 2b - a - 1$
$0^{a-b-1-i} 1 0^{a-b-1} (n+1) 0^{2b-a+i}$	$0 \le i \le 2a - 3b - 1$
$0^{2b-a-1-i} 1 0^{a-b-1} (n+1) 0^{a-b+i}$	$0 \le i \le 2b - a - 1$
$0^{a-b-1-i}(n+1)0^{b+i}$	$0 \le i \le a-b-1$

Partition each length-a factor into xyz:

x (length $a - b$)	y (length 2b − a)	z (length $a-b$)	interval for i
0 ^{a-b}	0 ^{2b-a}	$0^{a-b-1-i} 1 0^i$	$0 \le i \le a-b-1$
0^{a-b}	$0^{2b-a-1-i}$ 1 0^i	$0^{a-b-1-i}(n+1)0^i$	$0 \le i \le 2b - a - 1$
$0^{a-b-1-i}$ 1 0^i	0 ^{2b-a}	$0^{2a-3b-1-i}(n+1)0^{2b-a+i}$	$0 \le i \le 2a - 3b - 1$
$0^{2b-a-1-i}$ 1 $0^{2a-3b+i}$	$0^{2b-a-1-i}(n+1)0^i$	0^{a-b}	$0 \le i \le 2b - a - 1$
$0^{a-b-1-i}(n+1)0^i$	0 ^{2b-a}	0^{a-b}	$0 \le i \le a-b-1$

Also compute factors of length $2a, 3a, \ldots, m_{\text{max}}a$.

Check that $x \neq z$ for each factor.

We don't need a decision procedure for solvability of symbolic word equations...

Testing inequality of symbolic words

We just need to verify inequality of pairs of words we encounter.

Example

$$x = 0^{a-b-1-i} \, 1 \, 0^i, \quad z = 0^{2a-3b-1-i} \, (n+1) \, 0^{2b-a+i}.$$
 Since $n \geq 0$ and $\frac{5}{3} \leq \frac{a}{b} < 2$, we get $x \neq z$ by comparing prefixes.

Another heuristic: Delete the common prefix/suffix, or delete 0s, and recursively test inequality.

Example

$$0^{352a-621b-i-1} 1 0^{-51a+91b-1} (n+1) 0^{i}$$

 $0^{-51a+91b-j-1} (n+1) 0^{352a-621b-1} 1 0^{j}$

Deleting all explicit 0 letters in both words gives 1 (n + 1) and (n + 1) 1. But these aren't unequal if n = 0!

Instead, look at the system of equalities of the deleted block lengths. In this case, $-51a + 91b - 1 \neq 352a - 621b - 1$ on $\frac{30}{17} < \frac{a}{b} < \frac{53}{30}$.

A family with a transient

The interval $\frac{9}{7} < \frac{a}{b} < \frac{4}{3}$

Theorem

Let
$$\frac{9}{7} < \frac{a}{b} < \frac{4}{3}$$
 and $gcd(b, 6) = 1$. Let

$$\varphi(0') = 0'0^{a-2} \, 1 \, 0^{a-b-1} \, 1 \, 0^{a-b-1} \, 1 \varphi(0)$$

and

$$\begin{split} \varphi(n) &= 0^{a-b-1} \cdot 10^{2a-2b-1} \cdot 10^{-a+2b-1} \cdot 10^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10^{4a-5b-1} \cdot 10^{-a+2b-1} \cdot 10^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-2a+3b-1} \cdot 10$$

for
$$n \in \mathbb{Z}_{\geq 0}$$
. Then $\mathbf{s}_{a/b} = \tau(\varphi^{\infty}(0'))$.

Other intervals

We have 30 symbolic $\frac{a}{b}$ -power-free morphisms, found experimentally.

Theorem

Let
$$\frac{3}{2} < \frac{a}{b} < \frac{5}{3}$$
 and $gcd(b,5) = 1$. The $(5a-4b)$ -uniform morphism

$$\varphi(n) = 0^{a-1} 1 0^{a-b-1} 1 0^{2a-2b-1} 1 0^{a-b-1} (n+1)$$

is $\frac{a}{b}$ -power-free.

Theorem

Let
$$\frac{6}{5} < \frac{a}{b} < \frac{5}{4}$$
 and $\frac{a}{b} \notin \{\frac{11}{9}, \frac{17}{14}\}$. The a-uniform morphism

$$\varphi(n) = 0^{6a-7b-1} \, 1 \, 0^{-3a+4b-1} \, 1 \, 0^{-8a+10b-1} \, 1 \, 0^{6a-7b-1} \, (n+1)$$

is $\frac{a}{b}$ -power-free.

Other intervals

Theorem 50. Let a, b be relatively prime positive integers such that $\frac{10}{6} < \frac{a}{1} < \frac{29}{10}$ and $\frac{a}{b} \neq \frac{39}{15}$ and gcd(b, 67) = 1. Then the (67a - 30b)-uniform morphism

 $\varphi(n) = 0^{-7a+8b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{a-b-1} \cdot 10^{-26a+29b-1} \cdot 10^{28a-31b-1} \cdot 10^{2a-2b-1} \cdot 10^{-2a-2b-1} \cdot 10^{ 0^{a-b-1} \, 10^{-25a+28b-1} \, 10^{10a-11b-1} \, 10^{2a-2b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 10^{3a-3b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 10^{3a-3b-1} \, 10^{a-b-1} \, 10^{a-b$ $0^{-25a+28b-1} + 0^{10a-11b-1} + 0^{3a-3b-1} + 0^{10a-11b-1} + 0^{-8a+9b-1} + 0^{a-b-1} + 0^{10a-11b-1} + 0^{-a-b-1} + 0^{10a-11b-1} + 0^{-a-b-1} + 0^{-a-b-1}$ $0^{-25a+28b-1} \, 10^{10a-11b-1} \, 10^{-8a+9b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 10^{2a-2b-1} \, 20^{a-b-1} \, 10^{a-b-1} \, 10^$ $0^{10a-11b-1} + 0^{-25a+28b-1} + 0^{2a-2b-1} + 0^{2a-2b-1} + 0^{10a-b-1} + 0^{10a-11b-1} + 0^{3a-3b-1} + 0^{10a-11b-1} + 0^{2a-2b-1} + 0^{2a$ $0^{-25a+28b-1}10^{3a-3b-1}10^{10a-11b-1}10^{a-b-1}10^{a-b-1}20^{a-b-1}10^{10a-11b-1}1$ $0^{-25a+28b-1}10^{a-b-1}10^{a-b-1}20^{a-b-1}10^{2a-2b-1}10^{11a-12b-1}10^{10a-11b-1}1\\$ $0^{2a-2b-1}$, $0^{-24a+27b-1}$, $0^{2a-2b-1}$, 0^{a-b-1} , $0^{10a-11b-1}$, $0^{10a-11b-1}$, $0^{2a-2b-1}$, $0^{a-b-1} \cdot 10^{-25a+28b-1} \cdot 10^{27a-30b-1} \cdot 10^{-24a+27b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{-8a+9b-1} \cdot 10^{-8a+9$ $0^{11a-12b-1}$ $10^{2a-2b-1}$ 10^{a-b-1} $10^{-25a+28b-1}$ $10^{10a-11b-1}$ $10^{2a-2b-1}$ 10^{a-b-1} $0^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{28a-31b-1} \cdot 10^{-25a+28b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{-7a+8b-1} \cdot 10^{ 0^{10a - 11b - 1} \cdot 10^{-8a + 9b - 1} \cdot 10^{a - b - 1} \cdot 10^{10a - 11b - 1} \cdot 10^{-25a + 28b - 1} \cdot 10^{10a - 11b - 1} \cdot 10^{-8a + 9b - 1} \cdot 10^{-10a - 11b - 1} \cdot 10^{-10a -$ 0^{a-b-1} $10^{10a-11b-1}$ $10^{2a-2b-1}$ $10^{10a-11b-1}$ $10^{-25a+28b-1}$ $10^{2a-3b-1}$ $10^{10a-11b-1}$ $0^{a-b-1}10^{9a-10b-1}10^{-7a+8b-1}10^{10a-11b-1}10^{-25a+28b-1}10^{a-b-1}10^{9a-10b-1}1$ $0^{-7a+8b-1}10^{2a-2b-1}10^{a-b-1}10^{10a-11b-1}10^{10a-11b-1}10^{2a-2b-1}10^{a-b-1}1$ $0^{-25a+28b-1}$ $10^{3a-3b-1}$ $10^{10a-11b-1}$ $10^{10a-11b-1}$ $10^{3a-3b-1}$ $10^{-25a+28b-1}$ $10^{27a-30b-1}$ $10^{-25a+28b-1}$ 0^{a-b-1} $10^{-25a+28b-1}$ $10^{10a-11b-1}$ $10^{10a-11b-1}$ $10^{-8a+9b-1}$ 10^{a-b-1} $10^{10a-11b-1}$ 10^{a-b-1} $0^{2a-2b-1} \cdot 2^{a-b-1} \cdot 1^{a-2ba+2bb-1} \cdot 1^{a-2ba-1} \cdot 1^{a-2b-1} \cdot 1^{a-2b-1} \cdot 2^{a-b-1} \cdot 1^{a-2b-1} \cdot 1^{a-2b-1}$ $0^{3a-3b-1}$, $0^{-25a+28b-1}$, $0^{10a-11b-1}$, $0^{3a-3b-1}$, $0^{10a-11b-1}$, 0^{a-b-1} , 0^{a-b-1} 0^{a-b-1} $10^{-25a+28b-1}$ $10^{10a-11b-1}$ 10^{a-b-1} 10^{a-b-1} 20^{a-b-1} $10^{2a-2b-1}$ $0^{11a-12b-1} \, 10^{-25a+28b-1} \, 10^{2a-2b-1} \, 10^{11a-12b-1} \, 10^{2a-2b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 1$ $0^{-25a+28b-1}$ $10^{2a-2b-1}$ 10^{a-b-1} $10^{10a-11b-1}$ $10^{-8a+9b-1}$ $10^{11a-12b-1}$ $10^{10a-11b-1}$ $0^{-25a+28b-1} + 0^{27a-30b-1} + 0^{-24a+27b-1} + 0^{2a-2b-1} + 0^{a-b-1} + 0^{10a-11b-1} +$ $0^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{-25a+28b-1} \cdot 10^{10a-11b-1} \cdot 10^{-7a+8b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b$ $0^{-25a+28b-1}$ $10^{28a-31b-1}$ $10^{-25a+28b-1}$ $10^{27a-30b-1}$ 10^{a-b-1} $10^{-25a+28b-1}$ $10^{10a-11b-1}$ $10^{-25a+28b-1}$ $0^{10a-11b-1} \cdot 10^{-8a+9b-1} \cdot 10^{a-b-1} \cdot 10^{10a-11b-1} \cdot 10^{3a-3b-1} \cdot 10^{-25a+28b-1} \cdot 10^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot$ $0^{3a-3b-1} \, 10^{10a-11b-1} \, 10^{a-b-1} \, 10^{-26a+29b-1} \, 10^{26a-31b-1} \, 10^{-25a+28b-1} \, 10^{10a-11b-1} \, 10^{-26a+28b-1} \, 10^{10a-11b-1} \, 10^{-26a+28b-1} \, 10^{-26a-11b-1} \, 10^{ 0^{a-b-1} \, 10^{9a-10b-1} \, 10^{-7a+8b-1} \, 10^{2a-2b-1} \, 10^{a-b-1} \, 10^{10a-11b-1} \, 10^{-25a+28b-1} \, 1$ $0^{2a-2b-1} \cdot 10^{a-b-1} \cdot 10^{10a-11b-1} \cdot 10^{3a-3b-1} \cdot 10^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{3a-3b-1} \cdot 10^{-25a-2b-1} \cdot 10^{-25a-2b-1}$ $0^{10a-11b-1} \cdot 10^{-8a+9b-1} \cdot 10^{a-b-1} \cdot 10^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{27a-30b-1} \cdot 10^{-25a+28b-1} \cdot 10^{-25a-20b-1} \cdot 10^{$ $0^{a-b-1} \, 10^{-25a+28b-1} \, 10^{2a-2b-1} \, 20^{a-b-1} \, 10^{10a-11b-1} \, 10^{10a-11b-1} \, 10^{2a-2b-1} \, 20^{a-b-1} \,$ $0^{a-b-1}10^{-25a+28b-1}10^{3a-3b-1}10^{10a-11b-1}10^{10a-11b-1}10^{3a-3b-1}10^{-25a+28b-1}1$ $0^{a-b-1}10^{a-b-1}20^{a-b-1}10^{10a-11b-1}10^{10a-11b-1}10^{a-b-1}10^{a-b-1}2$ $0^{a-b-1} \, 10^{2a-2b-1} \, 10^{-24a+27b-1} \, 10^{10a-11b-1} \, 10^{2a-2b-1} \, 10^{11a-12b-1} \, 10^{2a-2b-1} \, 10^{11a-12b-1} \, 10^{2a-2b-1} \, 10^{2a-2b-1}$ $0^{a-b-1}10^{-25a+28b-1}10^{10a-11b-1}10^{2a-2b-1}10^{a-b-1}10^{10a-11b-1}10^{-8a+9b-1}1$ $0^{11a-12b-1}\,10^{-25a+28b-1}\,10^{10a-11b-1}\,10^{-8a+9b-1}\,10^{11a-12b-1}\,10^{2a-2b-1}\,10^{a-b-1}\,1$ 010a - 11b - 1 10 - 25a + 28b - 1 $10^{2a - 2b - 1}$ $10^{a - b - 1}$ $10^{10a - 11b - 1}$ $10^{10a - 11b - 1}$ $10^{-7a + 8b - 1}$ $10^{-7a + 8b - 1}$ $0^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{10a-11b-1} \cdot 10^{-7a+8b-1} \cdot 10^{10a-11b-1} \cdot 10^{-8a+9b-1} \cdot 10^{a-b-1} \cdot 10^{a-b$ $0^{10a-11b-1} \cdot 10^{10a-11b-1} \cdot 10^{-25a+28b-1} \cdot 10^{27a-30b-1} \cdot 10^{a-b-1} \cdot 10^{-25a+28b-1} \cdot 10^{3a-3b-1} \cdot 10^{27a-30b-1} \cdot 10^{a-b-1} \cdot 10^{-25a+28b-1} \cdot 10^{3a-3b-1} \cdot 10^{-25a-26a-28b-1} \cdot 10^{-25a-28b-1} \cdot 10^{-25a-$ 0.10a - 11b - 1 1.010a - 11b - 1 1.02a - 3b - 1 1.0 - 25a + 28b - 1 1.0a - b - 1 1.09a - 10b - 1 (n + 1)

with 279 nonzero letters, locates words of length 5a - 4b and is a-power-free.

23 / 24

Coverage of $\frac{a}{b}$ -power-free morphisms

