## Эконометрика. Домашняя работа №9 Аверьянов Тимофей ПМ 3-1

**Задача № 1.** Исследовать гипотезу об отсутвии автокорреляции случайного возмущения в инвистиционном фрагменте в модифицированной модели Самуэльсона-Хикса экономики России.

## Решение:

Инвистиционный фрагмент в модифицированной модели Самуэльсона-Хикса экономики России имеет следующий вид:

$$I_t = b_0 + b_1 \cdot (Y_{t-1} - Y_{t-2}) + b_2 \cdot Cr_t + b_3 \cdot San_t + v_t;$$

Проверяемая гипотеза

$$H_0$$
:  $Cov(u_{t+1}, u_t) = 0$ 

Альтернативная гипотеза состоит в положительной корреляции состоит в положительной корреляции в два соседних момента времени.

$$H_1$$
:  $Cov(u_{t+1}, u_t) > 0$ 

Тест осуществляется в виде следующих шагов:

Шаг 1. Создавамая модель оценивается МНК и вычисляются: оценки остатков и

величину 
$$\sum_{i=1}^{n} \widetilde{v}_{i}^{2}$$
.

Откроем файл, который Excel вычислим оценки остатков и величину  $\sum_{i=1}^n \widetilde{v}_i^2$ .

| ДЗ |      |          |              |          |          |  |
|----|------|----------|--------------|----------|----------|--|
|    | t    | lt       | triangleYt-1 | Crt      | Sant     |  |
|    | 2004 | 6056.2   | 2102.9 0     |          | 0        |  |
|    | 2005 | 6631.1   | 2002.7       | 0        | 0        |  |
|    | 2006 | 7806.4   | 2724.1       | 0        | 0        |  |
|    | 2007 | 9526.5   | 3084.1       | 0        | 0        |  |
|    | 2008 | 10526.1  | 2058.1       | 0        | 0        |  |
|    | 2009 | 6209.8   | -3228.2      | 1        | 0        |  |
|    | 2010 | 7982.2   | 1713.6       | 0        | 0        |  |
|    | 2011 | 9656.3   | 1695.6       | 0        | 0        |  |
|    | 2012 | 10084.86 | 1515.7       | 0        | 0        |  |
|    | 2013 | 9525.048 | 767.204111   | 0        | 0        |  |
|    | 2014 | 8947.736 | 323.093343   | 0        | 0        |  |
|    | 2015 | 7848.355 | -1118.5164   | 0        | 1        |  |
|    | 2016 | 7700.652 | -74.136787   | 0        | 1        |  |
|    | 2017 | 8269.508 | 662.605739   | 0        | 1        |  |
|    |      |          |              |          |          |  |
|    |      |          |              |          |          |  |
|    |      | b3       | b2           | b1       | b0       |  |
|    |      | -1205.87 | -3663.3644   | -0.2385  | 9103.238 |  |
|    |      | 1370.406 | 2960.56432   | 0.510091 | 1020.245 |  |
|    |      | 0.248166 | 1410.96979   | #Н/Д     | #Н/Д     |  |
|    |      | 1.100268 | 10           | #Н/Д     | #Н/Д     |  |
|    |      | 6571358  | 19908357.4   | #Н/Д     | #Н/Д     |  |

Таким образом, шаг 1 выполнен рассмотрим протокол оценивания данной модели.

Величина  $\sum_{i=1}^{n} \widetilde{v}_{i}^{2}$  находится в пятой строчке второго столбца протокола.

**Шаг 2.** Вычисляется статистика по правилу: 
$$DW = \frac{\displaystyle\sum_{i=1}^{n-1} \left(\widetilde{v}_{i+1} - \widetilde{v}_i\right)^2}{\displaystyle\sum_{i=1}^{n} \left(\widetilde{v}_i\right)^2}$$

Вычислим числитель дроби:

| ДЗ |      |          |              |          |          |          |                   |  |
|----|------|----------|--------------|----------|----------|----------|-------------------|--|
|    | t    | It       | triangleYt-1 | Crt      | Sant     | vt       | $(v_{t+1}-v_t)^2$ |  |
|    | 2004 | 6056.2   | 2102.9       | 0        | 0        | -2545.5  |                   |  |
|    | 2005 | 6631.1   | 2002.7       | 0        | 0        | -1994.49 | 303603.497        |  |
|    | 2006 | 7806.4   | 2724.1       | 0        | 0        | -647.139 | 1815363.2         |  |
|    | 2007 | 9526.5   | 3084.1       | 0        | 0        | 1158.821 | 3261491.97        |  |
|    | 2008 | 10526.1  | 2058.1       | 0        | 0        | 1913.72  | 569871.969        |  |
|    | 2009 | 6209.8   | -3228.2      | 1        | 0        | 0        | 3662323.99        |  |
|    | 2010 | 7982.2   | 1713.6       | 0        | 0        | -712.343 | 507433.169        |  |
|    | 2011 | 9656.3   | 1695.6       | 0        | 0        | 957.4636 | 2788255.4         |  |
|    | 2012 | 10084.86 | 1515.7       | 0        | 0        | 1343.12  | 148731.128        |  |
|    | 2013 | 9525.048 | 767.204111   | 0        | 0        | 604.7887 | 545133.592        |  |
|    | 2014 | 8947.736 | 323.093343   | 0        | 0        | -78.4433 | 466805.886        |  |
|    | 2015 | 7848.355 | -1118.5164   | 0        | 1        | -315.778 | 56327.7431        |  |
|    | 2016 | 7700.652 | -74.136787   | 0        | 1        | -214.396 | 10278.3725        |  |
|    | 2017 | 8269.508 | 662.605739   | 0        | 1        | 530.1735 | 554383.232        |  |
|    |      |          |              |          |          | Сумма    | 14690003.1        |  |
|    |      |          |              |          |          |          |                   |  |
|    |      | b3       | b2           | b1       | b0       |          |                   |  |
|    |      | -1205.87 | -3663.3644   | -0.2385  | 9103.238 |          |                   |  |
|    |      | 1370.406 | 2960.56432   | 0.510091 | 1020.245 |          |                   |  |
|    |      | 0.248166 | 1410.96979   | #Н/Д     | #Н/Д     |          |                   |  |
|    |      | 1.100268 | 10           | #Н/Д     | #Н/Д     |          |                   |  |
|    |      | 6571358  | 19908357.4   | #Н/Д     | #Н/Д     |          |                   |  |

Получаем, что:

$$\sum_{i=1}^{n-1} \left( \tilde{v}_{i+1} - \tilde{v}_i \right)^2 = 14690003.1364207$$

Знаменатель этой дроби вычислен в шаге 1. Таким образом DW:

$$DW = \frac{14690003.1364207}{19908357.4294107} \approx 0.7378812234262531$$

При помощи Excel:

DW= 0.73788122

**Шаг 3.** По таблице Дарбина-Уотсена по аргументам (n,k) определяются две величины  $d_L,d_U.$ 

| п  | $k^1 = 1$ |       | $k^1 = 2$ |       | $k^1 = 3$ |       | $k^1 = 4$ |       | $k^1 = 5$ |       |
|----|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|
|    | $d_L$     | $d_U$ |
| 6  | 0,61      | 1,40  | 144       | ==: 7 | 40        | 1-2   |           |       |           |       |
| 7  | 0,70      | 1,36  | 0,47      | 1,90  | :         | -     |           |       |           |       |
| 8  | 0,76      | 1,33  | 0,56      | 1,78  | 0,37      | 2,29  |           |       |           |       |
| 9  | 0,82      | 1,32  | 0,63      | 1,70  | 0,46      | 2,13  |           |       |           |       |
| 10 | 0,88      | 1,32  | 0,70      | 1,64  | 0,53      | 2,02  |           |       |           |       |
| 11 | 0,93      | 1,32  | 0,66      | 1,60  | 0,60      | 1,93  |           |       |           |       |
| 12 | 0,97      | 1,33  | 0,81      | 1,58  | 0,66      | 1,86  |           |       |           |       |
| 13 | 1,01      | 1,34  | 0,86      | 1,56  | 0,72      | 1,82  |           |       |           |       |
| 14 | 1.05      | 1.35  | 0.91      | 1.55  | 0.77      | 1.78  |           |       |           |       |
| 16 | 1,10      | 1,37  | 0,98      | 1,54  | 0,86      | 1,73  | 0,74      | 1,93  | 0,62      | 2,15  |
| 17 | 1,13      | 1,38  | 1,02      | 1,54  | 0,90      | 1,71  | 0,78      | 1,90  | 0,67      | 2,10  |
| 18 | 1,16      | 1,39  | 1,05      | 1,53  | 0,93      | 1,69  | 0,82      | 1,87  | 0,71      | 2,06  |
| 19 | 1,18      | 1,40  | 1,08      | 1,53  | 0,97      | 1,68  | 0,86      | 1,85  | 0,75      | 2,02  |
| 20 | 1,20      | 1,41  | 1,10      | 1,54  | 1,00      | 1,68  | 0,90      | 1,83  | 0,79      | 1,99  |
| 21 | 1,22      | 1,42  | 1,13      | 1,54  | 1,03      | 1,67  | 0,93      | 1,81  | 0,83      | 1,96  |
| 22 | 1,24      | 1,43  | 1,15      | 1,54  | 1,05      | 1,66  | 0,96      | 1,80  | 0,86      | 1,94  |
| 23 | 1,26      | 1,44  | 1,17      | 1,54  | 1,08      | 1,66  | 0,99      | 1,79  | 0,90      | 1,92  |
| 24 | 1,27      | 1,45  | 1,19      | 1,55  | 1,10      | 1,66  | 1,01      | 1,78  | 0,93      | 1,90  |
| 25 | 1,29      | 1,45  | 1,21      | 1,55  | 1,12      | 1,66  | 1,04      | 1,77  | 0,95      | 1,89  |
| 26 | 1,30      | 1,46  | 1,22      | 1,55  | 1,14      | 1,65  | 1,06      | 1,76  | 0,98      | 1,88  |
| 27 | 1,32      | 1,47  | 1,24      | 1,56  | 1,16      | 1,65  | 1,08      | 1,76  | 1,01      | 1,86  |
| 28 | 1,33      | 1,48  | 1,26      | 1,56  | 1,18      | 1,65  | 1,10      | 1,75  | 1,03      | 1,85  |
| 29 | 1,34      | 1,48  | 1,27      | 1,56  | 1,20      | 1,65  | 1,12      | 1,74  | 1,05      | 1,84  |
| 30 | 1,35      | 1,49  | 1,28      | 1,57  | 1,21      | 1,65  | 1,14      | 1,74  | 1,07      | 1,83  |

Ріс 1: Значения статистики Дарбина - Уотсона

Число  $k=3,\; n=14$  из таблицы выбираем  $d_L=0.77,\; d_U=1.78.$ 

**Шаг 4.** Определяется интервал куда попала статистика DW.



В нашем случае статистика DW попала в интервал  $I_1$ , следовательно гипотеза  $H_0$  отвергается в пользу гипотезы  $H_1$ .

**Вывод:** Подчеркнём, что если эта предпосылка нарушается, то процедура наименьших квадратов теряет свойство оптимальности, а во-вторых, причиной нарушения этой предпосылки чаще всего служит ошибка спецификации модели, например пропуск значащих объясняющих переменных модели. По этим причинам экономисты всегда тестируют эту предпослыку.