HCLT2021

An Empirical Study of Topic Classification for Korean Newspaper Headlines

Jeiyoon Park, Mingyu Kim, Yerim Oh, Sangwon Lee, Jiung Min, Youngdae Oh Presentation: Jeiyoon Park

- 1. Contribution
- 2. Experiments
- 3. Conclusion

- 1. Contribution
- 2. Experiments
- 3. Conclusion

Detour: Why NLU?

1. Ambiguity

- There are several levels at which ambiguity may occur in natural language: Syntactical, lexical, referential, semantic, and pragmatic level
- e.g.) "I hit the robot with the hammer"

Detour: Why NLU?

1. Ambiguity

- As humans we are adept at coping with these things, to the extent that we can usually understand each other if we speak the same language, even if words are missed out or misused.
- We usually have enough knowledge in common to disambiguate the words and interpret them correctly in context.
- We can also cope quickly with new words. This is borne out by the speed with which slang and street words can be incorporated into everyday usage.

Detour: Why NLU?

2. Applications

- Topic classification
- Named entity recognition
- Question answering
- Machine translation
- Text Summarization
- Machine reading comprehension

→ Large-scale language model

Contribution

An empirical study of Topic classification

- A good and human-like natural language understanding system should infer what the text means, not only recognize the shape of a word or sentence in a text.

- We compared the performance of various Korean large-scale models that have not been previously tested for comparison, and empirically analyzed the causes of the results.

- Open benchmark:

KLUE-TC

- Off-the-shelf baselines:

Kobert, Kobart, Koelectra, and Kcelectra

- 1. Contribution
- 2. Experiments
- 3. Conclusion

Experiments

1. Benchmark: KLUE-TC

- It collected by Yonhap News Agency from Jan 2016 to Dec 2020.
- Each headline is classified into seven classes: IT/Science, Economy, Society, Culture, World, Sports, and Politics.

Topic	Label	Headline Examples	$\# { m Training}$	$\#\mathbf{Test}$
IT/Science	0	내년 첫 5G폰 평균가 80만원 육박2023년 60만원대↓	4,824	
Economy	1	코스피 기관·개인 매수에 반등코스닥 1%대 상승종합	$6,\!222$	
Society	2	뜨거운 감자 포털 규제필요성·시행안 등 논쟁 가열종합	7,362	
Culture	3	웹툰 나이트에 참가한 작가들	5,933	
World	4	총기폭력 더 방치 못해美 초강력 총기규제안 도입종합	7,629	
Sports	5	아시안피스컵 남북 男배구 열전 펼쳐북한팀 32 승종합	6,933	
Politics	6	국회사무처 美매사추세츠大·뉴욕시립대 퀸즈칼리지와 MOU	6,751	
Total			45,654	9,131

Experiments

2. Baselines: KoBERT, KoBART, KoELECTRA, KcELECTRA

1) KoBERT

- Korean wiki (# 5M sentences), # parameters: 92M

2) KoBART

- Korean wiki (# 5M sentences) + other corpus (0.27B), # parameters: 124M

3) KoELECTRA

- Korean news, wiki, and namuwiki (14G + 20G), # parameters: 110M (note: not official, ELECTRA-base)

4) KcELECTRA

- Naver news comments (17.3G), # parameters: 110M (note: not official, ELECTRA-base)

Experiments

3. Results: KLUE-TC and NSMC task

- NSMC (left) and KLUE-TC (right)

Method	Accuracy	
KoBART	90.24	
KoELECTRA	90.63	
KcELECTRA	91.54	
KoBERT	89.59	

Method	Accuracy		
KoBART	85.62		
KoELECTRA	84		
KcELECTRA	84.57		
KoBERT	86.7		

- **KoELECTRA**: Korean news, wiki, and namuwiki (14G + 20G -> about 0.18B sentences), # parameters: 110M

- KoBERT: Korean wiki (# 5M sentences), # parameters: 92M

- 1. Contribution
- 2. Experiments
- 3. Conclusion

Conclusion

1. Analysis

- (1) KoBERT achieves highest score among baselines (86.7), despite guaranteed pretraining method and diverse and bigger corpus
- (2) This result demonstrates that we should employ training more cautiously, for instance, the noise generation method used for pretraining the Korean language model and constructing the corpus

Conclusion

2. Future work

- (1) The other KLUE benchmarks
- (2) KLUE-BERT, KLUE-RoBERTa

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE			
Our reimplementation (with NSP loss):							
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2			
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0			
Our reimplementation (without NSP loss):							
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8			
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6			
BERT _{BASE}	88.5/76.3	84.3	92.8	64.3			
$XLNet_{BASE} (K = 7)$	-/81.3	85.8	92.7	66.1			
$XLNet_{BASE} (K = 6)$	-/81.0	85.6	93.4	66.7			

Thank you

https://jeiyoon.github.io/