

Team Evolution and Dynamics in Online Multiplayer Games

Mentor: Goran Murić, ISI Artificial Intelligence Division

Students: Kevin Tsang (MS Applied Data Science/Year 1)
Jiaqi Liu (MS Electrical Engineering/Year 1)

New Game Find Servers Options

Motivation

Esports is a booming multi-billion-dollars industry where millions of players and viewers actively play and watch games everyday.

Gaming community, especially games with teamwork, is a fruitful environment to explore and analyze some of the real-world collaborative phenomena.

Insight to whether a team performance changes when a player(s) switch teams elucidates about the human collaboration and competition and aid in decision making for owners and coaches.

Problem

This project aims to study the changes in team dynamics when a player transfer teams in Counter Strike: Global Offense (CS:GO).

First, we will need a complete data collection on CS:GO statistics.

Our goal is to build models to explain the following questions:

- What is the effect on a player after changing the team?
- How does player transfer affects the team performance?

Data Source

HLTV.org is the most prominent website that keeps track of all major professional events in CS:GO.

Tabular data available:

- Players
- Teams
- Matches
- Events
- Maps

Our Data Schema

player_stats	
id	int
player_id	int
Headshot %	float
K/D Ratio	float
Damage / Round	float
Grenade dmg / Round	float
Kills / round	float
Assists / round	float
Deaths / round	float
Saved by teammate / round	float
Saved teammates / round	float
weapons stats	varchar

Challenges in data collection

- Understanding of how the website is organized by the administrators of HLTV.org
 - ➤ E.g. Map ID vs Match ID (Each Match has several Maps and the Match results is the sum of all of the maps combined)
- Some of our first times in web scraping data and learning how to organize our data to avoid redundancy.
- Data cleaning and imputation on missing value for data
 - ➤ E.g. Calculate player tenure in various teams, or over the entire career

Approach

- 1. The data has been collected by web scraping using Python BeautifulSoup library 4.4.0 and Selenium.
- 2. A structured data schema has been created to organize the data sets and demonstrate relationships amongst data values.
- 3. We organized the data into dataframes and exported as csv files.
- 4. We analyze the following:
- Relation between player characteristics and player performance
- Relation between team characteristics and team performance
- What happens with player performance when switching the team

Data statistics

Data Type	Count
Players	13706
Teams	4832
Matches	76450
Events	4051

Best Teams and Players of CS:GO

fnatic

mousesports

Younger players play better

Linear Regression: Player Age vs Player Performance

- Older players have less kills per match (-0.0768)
- Older players have lower Kill-to-Death ratio (-0.0024)
- Older players have lower damage per round (-0.2067)
- Older players have fewer kills per round (-0.0025)
- p<0.0001

Players improve with the experience

Linear regression: Player Tenure vs Player Performance

- More kills per day (0.0014)
- More damage per round (0.0016)
- More kills per round (2.28e-05)
- Similar kill/death ratio (5.992e-05)
- Similar headshot ratio (-0.0005)

Good players change teams often

21

20

19

15

14

Average kills per match

Average number of teams a player played for in a year

Linear regression coef:

Team number 0.24

R-squared: 0.20

Good teams are more stable - do not change players often

Linear regression coef: Player number -0.04 Constant 12.6

R-squared: 0.059

Change team does not affect player performance

For each player that played in at least 2 teams, we calculate the performance before and after the change, and compare it:

The average kills before change a team: 16.38

The average kills after change a team: 16.34

