Lab -9 PRML Support vector machine (SVM)

Name: Akshaykumar Kanani (B19EE008)

Q1:

First we did some preprocessing and got the data as:

0	mn_train_s_df.head()																	
₽		label	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.10	0.11	0.12	0.13	0.14	0.1
	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	_	70	_															

5 rows × 785 columns

And we remove the target 5,6,7,8,9 as we only have to work on 0,1,2,3,4 as per the instruction.

And for all remaining target we get:

And then we split the data and do model fitting and processing and got the following result after grid search:

Before normalization:

For SVM:

We got

Score = 0.961

Best grid-parameters from train data: {'C': 0.1, 'gamma': 1, 'kernel': 'linear'}

For KNeighborsClassifier

We got

score = 0.983

Best grid-parameters from train data: {'metric': 'euclidean', 'n neighbors': 3}

For Perceptron

We got

score = 0.947

Best grid-parameters from train data: {'alpha': 0.0001, 'tol': 0.001}

After Normalization:

For SVM:

We got

score = 0.966

Best grid-parameters from train data: {'C': 0.1, 'gamma': 1, 'kernel': 'linear'}

For KNeighborsClassifier

We got

score = 0.953

Best grid-parameters from train data: {'alpha': 0.0001, 'tol': 0.001}

For Perceptron

We got

score = 0.953

Best grid-parameters from train data: {'alpha': 0.0001, 'tol': 0.001}

Q2: First we did some preprocessing and got the data as:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

And also from data.describe method we got:

<bound m<="" th=""><th>ethod NDFrame</th><th>.desc</th><th>ribe</th><th>of</th><th>Pregnancies</th><th>Glucose</th><th> Age</th><th>Outcome</th></bound>	ethod NDFrame	.desc	ribe	of	Pregnancies	Glucose	 Age	Outcome
0	6	148		50	1			
1	1	85		31	0			
2	8	183		32	1			
3	1	89		21	0			
4	0	137		33	1			
763	10	101		63	0			
764	2	122		27	0			
765	5	121		30	0			
766	1	126		47	1			
767	1	93		23	0			

[768 rows x 9 columns]>

And then we did data split and grid search and get the result: For linear kernel:

score = 0.831

Best grid-parameters from train data: {'C': 1, 'kernel': 'linear'}

For rbf kernel:

score = 0.805

Best grid-parameters from train data: {'C': 10, 'kernel': 'rbf'}

And got the accuracy=0.8441558441558441

Thank you