### Hypoxia effects on Hemigrapsus oregonensis

GG Foster, Will Mixon, Maddy Glasser, Erik Bengtson





Background:

How are hypoxic water masses forming and how will it affect crab fisheries?

# Background

### Climate Change and Hypoxic Water Masses

#### Water Transport

- Increasing with changing wind and temperature regimes
- Creates a seasonal pattern of hypoxic conditions

#### Eutrophication

- Driven by rising temperatures and nutrient runoff
- Lead to massive respiration-photosynthesis imbalances

### Water Transport

#### Upwelling



- Wind changes are occurring due to evolving land-sea temperature differences
- Spring-summer transportation of cold, hypoxic water to shallower coastal habitats
- Fraction of transported water that is hypoxic has increased dramatically in the last 70 years

Barth et al, 2024

### Eutrophication

#### Algal Blooms



- Algal blooms form as temperatures rise during the spring
- Raised nutrient concentrations due to runoff fuel overwhelming growth
- As nutrients are consumed, algae begins to die and decompose

Wallace and Gobler, 2021

### Eutrophication

#### Algal Blooms



- As algae die, they sink and decompose
- Decomposition consumes oxygen and leads to lower concentrations of DO at depth even as DO remains high at the surface

Wallace and Gobler, 2021

# Background

### Implications of Climate Change to Crabs

#### Stress Physiology

- Hypoxic environments
   leading to change in crab
   behavior
- Application to other marine invertebrates

#### Commercial Crab Industry

- Impacts to commercial crab industries
- Decline in revenue and job opportunities

# Stress Physiology

#### What can be tested

- Effects on respiration
  - Lactate shift to anaerobic metabolism causes increased lactate production in the hemolymph
  - Respirometry with Resazurin blue dye that when exposed to metabolically active cells reduces it to resorufin (becomes pink) by consuming oxygen; faster the change in color → more oxygen consumption, would expect a slower consumption

#### Energy

- Glucose can show signs of change in metabolic rate, feeding, and energy costs from adjusting to environment
- Triglyceride the stored lipids in crabs can show energy reserve, the building or depletion of fat stores, can indicate if stressors are causing energy depletion

# Stress Physiology

#### What can be tested

- Other signs of stress / impacts from hypoxia
  - BCA Protein low levels of hemolymph protein levels can indicate chronic stress /
     metabolic depletion; under stress they can begin to break down proteins for more energy
  - Righting Test Can indicate the energetic ability of the individual (do they have the energy to flip themselves back over)
  - Gill Tissue Wasting Atrophic gill filaments or deteriorated gill filaments is a common result of prolonged hypoxia exposure
  - **Death** strong indicator that the conditions led to high stress and physiological changes

# Commercial Crab Industry

#### Threats to the commercial crab industry due to climate change

- Sudden increase in hypoxic conditions leading to crab decliens
  - o Instances of severe hypoxic conditions from harmful algal blooms has significantly increased in the last few decades and impacts commercial fisheries abilities to catch crabs / enough
- Poor management to counteract impacts
  - Many fisheries do not have the management in place to combat these declines
  - Need to find the balance between working with those relying on crabbing for their livelihood and researchers which can prolong implementation of management
- Overall revenue decline
  - Loss of crab abundance leads to overall revenue loss, impacting companies and individuals who rely on crabbing

### **Control Tank**

#### **Control Tank:**

- High D02 from air stone
- 13 °C
- 35 ppt salinity
- Plastic rocks for cover
- No access to air

### **Controlled Variables Across Treatments:**

- Temperature
- Salinity
- Plastic rocks for cover

### Manipulated variables

#### Tank 1

- Same temp, salinity, and cover as control
- 10 crabs

### **Manipulated Variable:**

No air stone → low DO2



### Manipulated variables

#### Tank 2

- Same temp, salinity, and cover as control
- 10 crabs

### **Manipulated Variables:**

- No air stone → low DO2
- Access to air



### **Experimental Timeline**

#### **After One Week in Tanks:**

- ½ of crabs given non-lethal stress tests.
- Tested crabs marked with nail-polish and returned to tanks.

#### **Non-Lethal Stress Tests:**

- Respiration → resazurin
- Lethargy → self-righting speed

### **Experimental Timeline**

#### **After Two Weeks in Tanks:**

- All crabs given non-lethal stress tests.
- All crabs given lethal stress tests.

#### **Lethal Stress Tests:**

- Gill tissue wasting (dissection)
- Hemolymph Content
  - Glucose
  - Triglyceride

### **Research Question:**

# How will hypoxia affect the physiology of hairy shore crabs?

### Hypotheses:

Crabs with access to air will leave the water to escape the hypoxic conditions and resulting stress.

Crabs experiencing hypoxia for at least a week will be lethargic and may not be able to right themselves.

Crabs may die from long-term exposure to hypoxic water.

Crabs will switch to anaerobic metabolism and lactate in the hemolymph will increase. Hypoglycemia may occur.

Energy-consumption will increase as heightened stress levels cause fat stores to be depleted.

Gill tissues will deteriorate and BCA levels will be low in the hemolymph.



### Sources:

- Barth, J. A., Pierce, S. D., Carter, B. R., Chan, F., Erofeev, A. Y., Fisher, J. L., Feely, R. A., Jacobson, K. C., Keller, A. A., Morgan, C. A., Pohl, J. E., Rasmuson, L. K., & Simon, V. (2024). Widespread and increasing near-bottom hypoxia in the coastal ocean off the United States Pacific Northwest. *Scientific Reports*, *14*(1). htt-ps://doi.org/10.1038/s41598-024-54476-0
- Foden-Vencil, K. (2020, June 2). *Oregon now has a hypoxia season, just like a wildfire season*. opb. https://www.opb.org/news/article/oregon-coast-pacific-ocean-hypoxia-season/
- Holland, D. S., & Leonard, J. (2020). Is a delay a disaster? economic impacts of the delay of the California dungeness crab fishery due to a harmful algal bloom. *Harmful Algae*, *98*, 101904. https://doi.org/10.1016/j.hal.2020.101904
- Holland, D. S., & Leonard, J. (2020). Is a delay a disaster? economic impacts of the delay of the California dungeness crab fishery due to a harmful algal bloom. *Harmful Algae*, *98*, 101904. https://doi.org/10.1016/j.hal.2020.101904
- Wallace, R.B., Gobler, C.J. (2021). The role of algal blooms and community respiration in controlling the temporal and spatial dynamics of hypoxia and acidification in eutrophic estuaries. *Marine Pollution Bulletin*, 172. https://www.sciencedirect.com/science/article/pii/S0025326X21009425

### Thank You for Listening, Any Questions?