

Generation intervals in space

Understanding the effects of spatial and network structure on links between generation interval and growth rate

Jonathan Dushoff¹, Sang Woo Park¹, and David Champredon²

¹McMaster University, Hamilton, Ontario, Canada; ²York University, Toronto, Ontario, Canada

Introduction

- ► Generation interval (GI) measures time between when a person is infected and when that person infects another person
- ► GI distribution, $g(\tau)$, plays an important role in linking exponential growth rate, r, and reproductive number, \mathcal{R} , of an epidemic [1]:

$$1/\mathcal{R} = \int g(au) \exp(-r au) d au$$

- ► Previous work showed that measuring GI through contact tracing data can introduce bias [2]
- Trapman et al. [3] demonstrated that network structure can affect \mathcal{R} ; ultimately, it changes GI distribution and $r \mathcal{R}$ relationship

Temporal correction on a homogeneous network

The intrinsic GI distribution can be recovered from an observed GI distribution during an outbreak by appropriately weighting the observed distribution. Solid line: intrinsic GI distribution. Dotted line: GI distribution expected to observed during exponential growth phase. Histogram: (left) observed GI distribution simulated with a stochastic SEIR model on a homogeneous network (right) weighted histogram of observed GI distribution. Model parameters: $\mathcal{R}\approx 6$, population size at 60000, mean latent and infectious periods equal to 1 and 2 time units, respectively.

Different types of generation intervals

Local approximation to spatial effect

Local approximation predicts shorter mean GI and predicts saturating $r-\mathcal{R}$ **relationship.** (Left) Solid line: intrinsic GI distribution. Dotted line: intrinsic GI distribution accounting for spatial effect when $\mathcal{R}\approx 6$. Histogram: simulated GI distribution using local networks (Right) Solid line: expected $r-\mathcal{R}$ relationship using intrinsic GI distribution. Dotter line: expected $r-\mathcal{R}$ relationship accounting for spatial effect and degree distribution.

Simulation on an empirical network

Reproductive number predicted by using the corrected GI distributions matches empirical estimate of the reproductive number. Write something here????

Summary and future direction

- spatiotemporal effects makes GI shorter
- \blacktriangleright correcting an observed GI distribution is crucial to estimating ${\cal R}$
- \blacktriangleright temporal correction is sensitive to long infections and ${\cal R}$ can be overestimated by a large factor

▶ ??

Bibliography

- [1] Jacco Wallinga and Marc Lipsitch. How generation intervals shape the relationship between growth rates and reproductive numbers. *Proceedings of the Royal Society of London B: Biological Sciences*, 274(1609):599–604, 2007.
- [2] David Champredon and Jonathan Dushoff. Intrinsic and realized generation intervals in infectious-disease transmission. In *Proc. R. Soc. B*, volume 282, page
- 20152026. The Royal Society, 2015.

 B] Pieter Trapman, Frank Ball, Jean-Stéphane Dhersin, Viet Chi Tran, Jacco Wallinga, and Tom Britton. Inferring r0 in emerging epidemicsthe effect of

common population structure is small. Journal of the Royal Society Interface, 13(121):20160288, 2016.