

NCERT Solutions for Class 9

Maths

Chapter 1 – Number System

Exercise 1.3

- 1. Convert the following numbers in decimal form and state what kind of decimal expansion each has:
- $(i) \ \frac{36}{100}$

Ans: Divide 36 by 100.

$$\begin{array}{c}
0.36 \\
100 \overline{)} \quad 36
\end{array}$$

So, $\frac{36}{100} = 0.36$ and it is a terminating decimal number.

(ii)
$$\frac{1}{11}$$

Ans: Divide 1 by 11.

It is noticed that while dividing 1 by 11, in the quotient 09 is repeated.

So,
$$\frac{1}{11} = 0.0909...$$
 or $\frac{1}{11} = 0.\overline{09}$

and it is a non-terminating and recurring decimal number.

(iii)
$$4\frac{1}{8}$$

Ans:
$$4\frac{1}{8} = 4 + \frac{1}{8} = \frac{32+1}{8} = \frac{33}{8}$$

Divide 33 by 8.

$$\begin{array}{r}
4.125 \\
8) 33 \\
-32 \\
10 \\
-8 \\
20 \\
-16 \\
40 \\
40
\end{array}$$

Notice that, after dividing 33 by 8, the remainder is found as 0.

So, $4\frac{1}{8} = 4.125$ and it is a terminating decimal number.

(iv)
$$\frac{3}{13}$$

Ans: Divide 3 by 13.

It is observed that while dividing 3 by 13, the remainder is found as 3 and that is repeated after each 6 continuous divisions.

So,
$$\frac{3}{13} = 0.230769...$$
 or $\frac{3}{13} = 0.\overline{230769}$

and it is a non-terminating and recurring decimal number.

(v)
$$\frac{2}{11}$$

Ans: Divide 2 by 11.

$$\begin{array}{r}
0.1818....\\
11) 2 \\
 \underline{-0}\\
20 \\
 \underline{-11}\\
90 \\
 \underline{-88}\\
20 \\
 \underline{-11}\\
90 \\
 \underline{-88}\\
2
\end{array}$$

It can be noticed that while dividing 2 by 11, the remainder is obtained as 2 and then 9, and these two numbers are repeated infinitely as remainders.

So,
$$\frac{2}{11} = 0.1818...$$
 or $\frac{2}{11} = 0.\overline{18}$

and it is a non-terminating and recurring decimal number.

(vi)
$$\frac{329}{400}$$

Ans: Divide 329 by 400.

$$\begin{array}{r}
0.8225 \\
400)329 \\
\underline{-0} \\
3290 \\
\underline{-3200} \\
900 \\
\underline{-800} \\
1000 \\
\underline{-800} \\
2000 \\
\underline{-2000} \\
\underline{0}
\end{array}$$

It can be seen that while dividing 329 by 400, the remainder is obtained as 0.

So,
$$\frac{329}{400} = 0.8225$$
 and is a terminating decimal number.

2. If $\frac{1}{7} = 0.142857...$, then predict the decimal expansions of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ without calculating the long division?

Ans: Note that, $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$ and $\frac{6}{7}$ can be rewritten as $2 \times \frac{1}{7}$, $3 \times \frac{1}{7}$, $4 \times \frac{1}{7}$, $5 \times \frac{1}{7}$, and $6 \times \frac{1}{7}$

Substituting the value of $\frac{1}{7} = 0.142857$, gives

$$2 \times \frac{1}{7} = 2 \times 0.142857... = 0.285714...$$

$$3 \times \frac{1}{7} = 3 \times 0.428571... = 0.428571...$$

$$4 \times \frac{1}{7} = 4 \times 0.142857... = 0.571428...$$

$$5 \times \frac{1}{7} = 5 \times 0.71425... = 0.714285...$$

$$6 \times \frac{1}{7} = 6 \times 0.142857... = 0.857142...$$

So, the values of $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$ and $\frac{6}{7}$ obtained without performing long division

are

$$\frac{2}{7} = 0.\overline{285714}$$

$$\frac{3}{7} = 0.\overline{428571}$$

$$\frac{4}{7} = 0.\overline{571428}$$

$$\frac{5}{7} = 0.\overline{714285}$$

$$\frac{6}{7} = 0.\overline{857142}$$

3. Convert the following decimal numbers into the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

(i) $0.\overline{6}$

Ans: Let
$$x = 0.6$$

$$\Rightarrow$$
 x = 0.6666 (1)

Multiplying both sides of the equation (1) by 10, gives

$$10x = 0.6666 \times 10$$

$$10x = 6.6666...$$
 (2)

Subtracting the equation (1) from (2), gives

$$10x = 6.6666...$$

$$-x = 0.6666...$$

$$9x = 6$$

$$9x = 6$$

$$x = \frac{6}{9} = \frac{2}{3}$$

So, the decimal number becomes

$$0.\overline{6} = \frac{2}{3}$$
 and it is in the required $\frac{p}{q}$ form.

(ii) $0.\overline{47}$

Ans: Let
$$x = 0.\overline{47}$$
 $\Rightarrow x = 0.47777....$ (a)

Multiplying both sides of the equation (a) by 10, gives

$$10x = 4.7777....$$
 (b)

Subtracting the equation (a) from (b), gives

$$10x = 4.7777...$$

$$-x = 0.4777....$$

$$9x = 4.3$$

Therefore,

$$x = \frac{4.3}{9} \times \frac{10}{10}$$

$$\Rightarrow$$
 x = $\frac{43}{90}$

So, the decimal number becomes

$$0.\overline{47} = \frac{43}{90}$$
 and it is in the required $\frac{p}{q}$ form.

(iii) 0.001

Ans: Let
$$x = 0.\overline{001} \Rightarrow$$
 (1)

Since the number of recurring decimal number is 3, so multiplying both sides of the equation (1) by 1000, gives

$$1000 \times x = 1000 \times 0.001001....$$
 (2)

Subtracting the equation (1) from (2) gives

$$1000x = 1.001001...$$

$$-x = 0.001001....$$

$$999x = 1$$

$$\Rightarrow$$
 x = $\frac{1}{999}$

Hence, the decimal number becomes

$$0.\overline{001} = \frac{1}{999}$$
 and it is in the $\frac{p}{q}$ form.

4. Represent the nonterminating decimal number 0.99999.... into the form of $\frac{p}{q}$. Did you expect this type of answer? Explain why the answer is appropriate.

Ans: Let
$$x = 0.99999...$$
 (a)

Multiplying by 10 both sides of the equation (a), gives

$$10x = 9.9999....$$
 (b)

Now, subtracting the equation (a) from (b), gives

$$10x = 9.99999...$$

$$-x = 0.99999...$$

$$9x = 9$$

$$\Rightarrow$$
 x = $\frac{9}{9}$

$$\Rightarrow$$
 x = 1.

So, the decimal number becomes

$$0.99999... = \frac{1}{1}$$
 which is in the $\frac{p}{q}$ form.

Yes, for a moment we are amazed by our answer, but when we observe that 0.9999..... is extending infinitely, then the answer makes sense.

Therefore, there is no difference between 1 and 0.9999...... and hence these two numbers are equal.

5. Find the maximum number of digits in the recurring block of digits in the decimal expansion of $\frac{1}{17}$ by performing the long division.

Ans: Here the number of digits in the recurring block of $\frac{1}{17}$ is to be determined.

So, let us calculate the long division to obtain the recurring block of $\frac{1}{17}$.

Dividing 1 by 17 gives

9

0.0588235294117	647
17)	1
	<u>-0</u>
	10
	<u>-0</u>
	100
	<u>-85</u>
	150
	<u>-136</u>
	140
	<u>-136</u>
	40
	<u>-34</u>
	60
	<u>-51</u>
	90
	<u>-85</u>
	50
	<u>-34</u>
	160
	<u>-153</u>
	70
	<u>-68</u>
	20
	<u>-17</u>
	30
	<u>-17</u>
	130
	<u>-119</u> 110
	<u>-102</u>

Thus, it is noticed that while dividing 1 by 17, we found 16 number of digits in the repeating block of decimal expansion that will continue to be 1 after going through 16 continuous divisions.

Hence, it is concluded that $\frac{1}{17} = 0.0588235294117647....$ or

 $\frac{1}{17} = 0.\overline{0588235294117647}$ and it is a recurring and non-terminating decimal number.

6. Observe at several examples of rational numbers in the form $\frac{p}{q}(q \neq 0)$, where p and q are integers with H.C.F between them is 1 and having terminating decimal representations. Guess the property that q must satisfy?

Ans: Let us consider the examples of such rational numbers $\frac{5}{2}$, $\frac{5}{4}$, $\frac{2}{5}$, $\frac{2}{10}$, $\frac{5}{16}$ of

the form $\frac{p}{q}$ which have terminating decimal representations.

$$\frac{5}{2} = 2.5$$

$$\frac{5}{4} = 1.25$$

$$\frac{2}{5} = 0.4$$

$$\frac{2}{10} = 0.2$$

$$\frac{5}{16} = 0.3125$$

In each of the above examples, it can be noticed that the denominators of the rational numbers have powers of 2,5 or both.

So, q must satisfy the form either 2^m , or 5^n , or both $2^m \times 5^n$ (where m=0,1,2,3... and n=0,1,2,3...) in the form of $\frac{p}{q}$.

7. Give examples of three numbers whose decimal representations are non-terminating and non-recurring.

Ans: All the irrational numbers are non-terminating and non-recurring, because irrational numbers do not have any representations of the form of $\frac{p}{q}$ $(q \neq 0)$,

where p and q are integers. For example:

$$\sqrt{2} = 1.41421...$$
,

$$\sqrt{3} = 1.73205...$$

$$\sqrt{7} = 2.645751...$$

are the numbers whose decimal representations are non-terminating and non-recurring.

8. Write any three irrational numbers between the rational numbers $\frac{5}{7}$ and

$$\frac{9}{11}$$

Ans: Converting $\frac{5}{7}$ and $\frac{9}{11}$ into the decimal form gives

$$\frac{5}{7} = 0.714285...$$
 and

$$\frac{9}{11} = 0.818181...$$

Therefore, 3 irrational numbers that are contained between 0.714285..... and 0.818181.....

are:

0.73073007300073.....

0.74074007400074.....

0.76076007600076.....

Hence, three irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$ are

0.73073007300073.....

0.74074007400074.....

0.76076007600076.....

9. Classify the following numbers and state whether it is rational or irrational:

(i)
$$\sqrt{23}$$

Ans: The following diagram reminds us of the distinctions among the types of rational and irrational numbers.

After evaluating the square root gives $\sqrt{23} = 4.795831...$, which is an irrational number.

(ii) $\sqrt{225}$

Ans: After evaluating the square root gives $\sqrt{225} = 15$, which is a rational number. That is, $\sqrt{225}$ is a rational number.

(iii) **0.3796**

Ans: The given number is 0.3796. It is terminating decimal. So, 0.3796 is a rational number.

(iv) 7.478478

Ans: The given number is 7.478478....

It is a non-terminating and recurring decimal that can be written in the $\frac{p}{q}$ form.

Let
$$x = 7.478478...$$
 (a)

Multiplying the equation (a) both sides by 100 gives

$$\Rightarrow$$
1000x = 7478.478478..... (b)

Subtracting the equation (a) from (b), gives

$$1000x = 7478.478478...$$

$$-x = 7.478478...$$

$$999x = 7471$$

$$999x = 7471$$

$$x = \frac{7471}{999}$$

Therefore, 7.478478... = $\frac{7471}{999}$, which is in the form of $\frac{p}{q}$ So, 7.478478... is a rational number.

(v) 1.101001000100001.....

Ans: The given number is 1.101001000100001....

It can be clearly seen that the number 1.101001000100001.... is a non-terminating and non recurring decimal and it is known that non-terminating non-recurring decimals cannot be written in the form of $\frac{p}{q}$.

Hence, the number 1.101001000100001.... is an irrational number.