

NEW 2-PYRIMIDINYLOXY-N-ARYL-BENZYLAMINE DERIVATIVES, THEIR PROCESSES AND USES

Patent number:

WO0234724

Publication date:

2002-05-02

Inventor:

LU LONG (CN); CHEN JIE (CN); WU JUN (CN); LING WEN (CN); MAO LISHENG (CN); LI MINGZHI (CN); CAI XIAN (CN); PENG WEILI (CN); WU YONG (CN); WU SHENGGAN (CN); WANG HONGJUN (CN); WANG GUOCHAO (CN); CUI HU (CN); HAN SHIDONG (CN);

QIU WEILIAN (CN); WANG YONGHUA (CN)

Applicant:

SHANGHAI INST ORGANIC CHEM (CN); ZHEJIANG CHEMICAL INDUSTRY RES (CN); LU LONG (CN); CHEN JIE (CN); WU JUN (CN); LING WEN (CN); MAO LISHENG (CN); LI MINGZHI (CN); CAI XIAN (CN); PENG WEILI (CN); WU YONG (CN); WU SHENGGAN (CN); WANG HONGJUN (CN); WANG GUOCHAO (CN); CUI HU (CN); HAN SHIDONG (CN); QIU WEILIAN (CN);

WANG YONGHUA (CN)

Classification:

- international:

A01N43/54; C07D239/60; A01N43/48; C07D239/00;

(IPC1-7): C07D239/34; A01N43/54; C07D401/12;

C07D409/12

- european:

A01N43/54; C07D239/60

Application number: WO2001CN01395 20010913

Priority number(s): CN20000130735 20001016; CN20010112689

20010420; CN20010113199 20010629

Also published as:

EP1327629 (A1) US6800590 (B2) US2003220198 (A1) CA2425984 (A1)

Cited documents:

EP0468695

Report a data error here

Abstract of WO0234724

This invention relates to new 2-pyrimidinyloxy-N-aryl-benzylamine derivatives of formula (I), processes for their preparation and their uses as chemical herbicide in agriculture, wherein D, E, X, and R1-R3 have the meanings given in the description.

Data supplied from the esp@cenet database - Worldwide

(12) 按照专利合作条约所公布的国际申请

(19) 世界知识产权组织 际局

1786 A 1970 I S 1770 ANG BULLA DE COLO EN ESTA DE ANTONIO DE ANTO

(43) 国际公布日: 2002年5月2日(02.05.02)

PCT

(10) 国际公布号: WO 02/34724 A1

(51) 国际分类号7: C07D 239/34, 401/12, 409/12, A01N

(21) 国际申请号:

PCT/CN01/01395

(22) 国际申请日:

2001年9月13日(13.09.01)

(25) 申请语言:

中文

(26) 公布语言:

中文

(30) 优先权:

00130735.5 2000年10月16日(16.10.00) 01112689.2 2001年4月20日(20.04.01) 2001年6月29日(29.06.01) 01113199.3

CN CN

(71) 申请人(对除美国以外的所有指定国): 中国科学院上 海有机化学研究所(SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY, CHINESE ACADEMY OF SCIENCES) [CN/CN]; 中国上海市枫林路 354 号, Shanghai 200032 (CN)。浙江省化工研究院 (ZHEJIANG CHEMICAL INDUSTRY RESEARCH INSTITUTE) [CN/CN]; 中国浙江省杭州市环城北路 47号, Zhejiang 310023 (CN)。

(72) 发明人;及
(75) 发明人/申请人(仅对美国): 吕龙(LU, Long) [CN/CN];
中国上海市枫林路 354 号, Shanghai 200032
(CN)。陈杰(CHEN, Jie) [CN/CN]; 吴军(WU, Jun)
[CN/CN]; 中国浙江省杭州市天目山路 387 号,
Hangzhou 310023 (CN)。该文(LING, Wen) [CN/CN];
毛礼胜(MAO, Lisheng) [CN/CN]; 中国上海市枫林路
354 号, Shanghai 200023 (CN)。李明智(LI, Mingzhi)
[CN/CN]; 中国浙江省杭州市天目山路 387 号,
Zhailong 310023 (CN)。 李明智(CAI Xian) [CN/CN]; 中 [CN/CN]; 中国浙江省杭州市大自山路 387 号, Zhejiang 310023 (CN)。 蔡娴(CAI, Xian) [CN/CN]; 中国上海市枫林路 354 号, Shanghai 200032 (CN)。 影伟立(PENG, Weili) [CN/CN]; 中国浙江省杭州市天自山路 387 号, Zhejiang 310023 (CN)。 吴勇(WU, Yong) [CN/CN]; 中国上海市枫林路 354 号, Shanghai 200032 (CN)。 吴声敢(WU, Shenggan) [CN/CN]; 中国浙江省杭州市天自山路 387 号, Zhejiang 310023 (CN)。 王红军(WANG, Hongjun) [CN/CN]; 中国上海市枫林路 354 号, Shanghai 200032 (CN)。 王国超(WANG, Guochao) [CN/CN]; 中国杭州市天自山路 387 号, Zhejiang 310023 (CN)。 崔虎(CUI, Hu) 387号, Zhejiang 310023 (CN)。崔虎(CUI, Hu)

[CN/CN]; 中国上海市枫林路 354 号, Shanghai [CN/CN]; 中国上海市保体场 354 号, Shanghai 200032 (CN)。韩世东(HAN, Shidong) [CN/CN]; 中国浙江省杭州市天目路 387 号, Zhejiang 310023 (CN)。邱维莲(QIU, Weilian) [CN/CN]; 中国上海市根林路 354 号, Shanghai 200032 (CN)。王永华(WANG, Yonghua) [CN/CN]; 中国浙江省杭州市天目山路 387 号, Zhejiang 310023 (CN)。

- (74) 代理人: 上海智信专利代理有限公司(SHANGHAI ZHI XIN PATENT AGENT LTD.); 中国上海市肇嘉 浜路 446 号伊泰利大厦 10 楼, Shanghai 200031 (CN).
- (81) 指定国(国家): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CO, CR, CU, CZ, DE DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW
- (84) 指定国(地区): ARIPO专利(GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), 欧亚专利(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧洲专利(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI专利(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

根据细则4.17的声明:

- 关于申请人在国际申请日有权申请并被授予专利(细则
- 4.17(ji))对除美国以外的所有指定国 关于申请人在国际申请日有权要求该在先申请的优先 权(细则4.17(lii))对除美国以外的所有指定国
- 关于申请人在国际申请日有权要求该在先申请的优先 权(细则4.17(iii))对下列指定国:美国
- 发明人资格(细则4.17(iv))仅对美国

本国际公布:

包括国际检索报告。

所引用双字母代码和其它缩写符号,请参考刊登在每期 PCT公报期刊起始的"代码及缩写符号简要说明"。

- (54) Title: NEW 2-PYRIMIDINYLOXY-N-ARYL-BENZYLAMINE DERIVATIVES, THEIR PROCESSES AND USES
- (54) 发明名称: 2 嘧啶氧基 N 芳基苄胺衍生物、制备方法及应用
- (57) Abstract: This invention relates to new 2-pyrimidinyloxy-N-aryl-benzylamine derivatives of formula (I), processes for their preparation and their uses as chemical herbicide in agriculture, wherein D, E, X, and R1-R3 have the meanings given in the description.

(57) 摘要

本发明涉及一类新的 2—嘧啶氧基-N-芳基苄胺衍生物、制备方法及其作为农用

化学除草剂的应用,该化合物结构如下所示:

氢、卤素、 C_1-C_4 烷基、 C_1-C_4 烷氧基、 C_1-C_4 卤代烷基或 C_1-C_4 卤代烷氧基, R^1 为氢、卤素、 C_1-C_4 烷基、 C_1-C_4 烷氧基, R^2 为氢、卤素、 C_1-C_4 烷基、 C_1-C_4 烷氧基、 C_1-C_4 烷氧基、 C_1-C_4 烷酯基、 C_1-C_4 卤代烷基、氰基、硝基、羧基或其碱金属盐、碱土金属盐或有机铵盐、 C_1-C_4 烷酰氨基、 C_1-C_4 卤代烷酰氨基、杂环酰氨基、苯或取代苯甲酰氨基、苯并或取代苯并化合物, R^3 为氢、 C_1-C_4 烷酰基、 C_1-C_4 卤代烷酰基、 C_1-C_4 卤代烷酰基、 C_1-C_4 00亿烷酰基、 C_1-C_4 00亿烷酰基、 C_1-C_4 00亿烷酰基。

2—嘧啶氧基-N-芳基苄胺衍生物、制备方法及应用

技术领域

本发明涉及一类新的 2—嘧啶氧基-N-芳基苄胺衍生物、制备方法及其作为农用 化学除草剂的应用。

背景技术

农药是人类获得粮食,确保农业稳产、非产不可缺少的生产资料,近百年来,农药如杀虫剂、杀菌剂、除草剂等为人类作出了巨大的贡献。近年来,随着世界人口的不断增长,人类对粮食的需要也在不断增加,但是耕地增长的速度远远跟不上人口增长的速度,要解决这个世界性难题,必须依靠提高单位面积的粮食产量和改善作物品质,这就必须采用各种手段,如育种、栽培、施肥等,而农药的应用也是其中必不可少的手段之一。但是,应该看到的是,农药在为人类文明作出巨大贡献的同时,由于认识方面的局限性,高毒、高残留的农药也给人类赖以生存的环境带来了负面影响。随着社会的进步和文明的提高,开发高效、低毒、易降解、安全性和环境相容性好的绿色农药,以取代那些低效、高毒、高残留及抗性高的传统农药已成为当今新农药创制的方向。

嘧啶氧基苯类衍生物可以作为化学除草剂已经早有文献报道,如 Agr. Biol. Chem.,Vol. 30, P896 (1966): 日本专利 79-55729: 美国专利 4,248,619 和 4,427,437。. 近来,在嘧啶氧基苯类衍生物的基础上,一类具有优异除草活性的化合物——嘧啶水杨酸类衍生物被发现,如欧洲专利 223,406、249,708、287,072、287,079、315,889、321,846、330,990、335,409、346,789、363,040、402,751、435,170、435,186、457,505、459,243、468,690、658,549 和 768034;日本专利 04368361:英国专利 2,237,570;德国专利 3,942,476等。其中具有代表性的例子有: 嘧草硫醚 (Pyrithiobac-sodium, KIH—2031,欧洲专利 315889)、双草醚 (Bispyribac-sodium, KIH—2023,欧洲专利 321846)、嘧草醚 (Pyriminobac-methyl, KIH—6127,日本专利 04368361)、嘧啶肟草醚 (Pyribenzoxim,欧洲专利 658549)和环脂草醚 (Pyriftalid,欧洲专利 768034),它们的作用机制与磺酰脲类除卓剂相同,均为乙酰乳酸合成酶 (ALS)的抑制剂,破坏植物体内氨基酸如缬氨酸、亮氨酸和异亮氨酸的合成。虽然嘧啶水杨酸类化合物具有很高的除草活性,但是目前仅适用于棉花阳和水稻田的除草。

发明目的

本发明目的是提供一种 2一嘧啶氧基-N-芳基苄胺衍生物。

本发明目的还提供一种上述的 2一嘧啶氧基-N-芳基苄胺衍生物的制备方法。

本发明的另一目的是提供一种上述的 2一嘧啶氧基-N-芳基苄胺衍生物作为有效 活性成分在农用化学除草的应用。

发明概要

本发明是一种 2一嘧啶氧基一N一芳基苄胺衍生物。系由水杨醛与芳胺反应制备中间体 (II), 通过还原可以合成中间体 (III), 将中间体 (III) 与 2-甲砜基-4-D,6-E-取代嘧啶在碱的存在下反应制得目标产物中的一种 2一嘧啶氧基一N一芳基苄胺,该化合物与酸酐或酰氯化合物及碱的反应可制得另一种目标产物 2一嘧啶氧基一N一芳基苄胺的酰化产物。本发明的化合物是一种农药化学除草剂的活性组份,采用农药工业制剂加工的一般方法,加入助剂,可配制成各种水剂、油剂、乳剂、粉剂、粒剂或胶囊剂等,用于油菜、棉花、水稻、大豆等农作物的杂草防治。

发明内容

本发明的 2-嘧啶氧基-N-芳基苄胺衍生物的结构如下述结构式(I) 所示:

$$\begin{array}{c|c}
D & E \\
N & N \\
O & \\
& & \\
& & \\
R^1 & 5
\end{array}$$

$$\begin{array}{c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

其中:

D 和 E 可以是相同的或者不同的基团,分别为氢、卤素、 C_1-C_4 烷基、 C_1-C_4 烷基、 C_1-C_4 烷基、 C_1-C_4 卤代烷氧基,特别可取的是 D 和 E 两者均为甲氧基。

 R^1 为氢、卤素、 C_1 一 C_4 烷基、 C_1 一 C_4 烷氧基,它在苯环上可处于 3、4、5、6 位中的任何一个位置。

 R^2 为氢: 卤素: C_1-C_4 烷基: C_1-C_4 烷氧基: C_1-C_4 胺甲酰基: C_1-C_4 烷酯基: C_1-C_4 卤代烷基特别是三氟甲基: 氰基: 硝基: 羧基或其碱金属盐、碱上金属盐或有机铵盐: C_1-C_4 烷酰氨基: C_1-C_4 卤代烷酰氨基: 苯或取代苯甲

酰氨基(取代基可以为处于邻位、间位或对位的卤素、 C_1-C_4 烷基、 C_1-C_4 烷氧基、三氟甲基、氰基、硝基等);杂环酰氨基(如吡啶、噻吩、噻唑、嘧啶等)。其中 R2 可以处于苯环的邻位、间位或对位,n=1-3,也可以为苯并或取代苯并化合物,其中尤为可取的是 R^2 为可以处于苯环邻位、间位或对位的单取代的卤素;甲基;甲氧基;三 佩甲基; C_1-C_4 烷酯基; C_1-C_4 烷 甲酰基;羧基或其钠盐、钾盐或铵盐; C_1-C_4 烷 既 氨基;苯或取代苯甲酰氨基;杂环酰氨基等。

 R^3 为氢、 C_1-C_4 烷酰基、 C_1-C_4 卤代烷酰基、苯甲酰基和 C_1-C_4 烷氧乙酰基,其中较为可取的是氢、乙酰基、氯乙酰基、二氯乙酰基、苯甲酰基或甲氧乙酰基,尤为可取的是 R^3 为氢。

X 为氢或氮, 尤为可取的是 X 为氢。

下面,我们将本发明所涉及的典型化合物列干表 1。

		₁	· · · · · · · · · · · · · · · · · · ·		
化合物 编号	D=E	R ¹	$R^2 \qquad \left[\begin{array}{c} \overset{6}{\overbrace{)}} \overset{5}{\underbrace{)}} \overset{4}{\underbrace{)}} \overset{1}{\underbrace{)}} \overset{1}{\underbrace$	R³	X
1-1	OMe	Н	Н	Н	Н
I-2	OMe	6-CI	Н	Н	Н
1-3	OMe	5-F	Н	Н	Н
I-4	OMe	5-OMe	Н	Н	Н
I-5	OMe	5-C1	Н	Н	Н
1-6	ОМе	Н	2一氟	Н	Н
I-7	ОМе	11	2一瓴	-COCH ₂ OCH ₃	Н
1-8	OMe	Н	2-氟	-COCH ₂ Cl	Н
1-9	OMe	Н	3一氟	-COCH ₂ Cl	Н
I-10	OMe	6-Cl	4一	Н	Н
1-11	OMe	Н	2一氯	Н	Н
1-12	OMe	ŀΙ	2一氯	-COCH <u>.</u> CI	Н
I-13	OMe	Н	3一氯	Н	Н

表 1、 2-嘧啶氧基-N-芳基苄胺衍生物

1-14	ОМе	Н	3一氯	-COCH ₂ Cl	H
I-15	OMe	Н	3一氯	-COCH ₂ OCH ₃	Н
I-16	ОМе	Н	4一氯	Н	Н
I-17	OMe	Н	4一氯	-COCH₂Cl	Н
1-18	OMe	I-I	4一氯	-COCH ₂ OCH ₃	Н
1-19	OMe	3-OMe	2-澳	Н	Н
1-20	OMe	Н	4-溴	Н	Н
I-21	OMe	Н	4一溴	-CO(CH ₂) ₃ CI	Н
I-22	OMe	Н	4- 溴	-COPh	Н
1-23	OMe	Н	4一溴	-COCHCl ₂	Н
I-24	OMe	Н	4一溴	-COCH ₂ CH ₃	Н
I-25	ОМе	Н	4一溴	-COCHCl ₂	Н
I-26	OMe	Н	2一碘	Н	Н
I-27	OMe	Н	2一碘	-COCH ₂ Cl	Н
I-28	OMe	Н	3一碘	Н	Н
1-29	OMe	Н	3一碘	-COCH ₂ Cl	Н
I-30	OMe	Н	3一碘	-COCH ₂ OCH ₃	Н
I-31	OMe	Н	4一碘	Н	Н
1-32	OMe	Н	4一碘	-COCH ₂ Cl	Н
I-33	OMe	Н	4一碘	-COCHCl ₂	Н
I-34	OMe	Н	4一碘	-COCH ₃	Н
1-35	OMe	Н	4一碘	-COCH ₂ OCH ₃	Н
I-36	OMe	ŀł	2一甲基	Н	Н
1-37	OMe	Н	2一甲基	-COCH ₂ Cl	Н
1-38	ОМе	Н	4一甲基	Н	Н
1-39	OMe	Н	4一甲基	-COCH₂Cl	H
1-40	OMe	Н	2一三氟甲基	I-I	Н
1-41	OMe	Н	2一三氟甲基	-COCH₂Cl	H
1-42	OMe	Н	4一三氟甲基	Н	Н

I-43	OMe	Н	4一三氟甲基	-COCH₂Cl	Н
I-44	OMe	Н	4-OMe	Н	Н
I-45	OMe	Н	4-OMe	-COCHCI ₂	Н
I-46	OMe	Н	4-OMe	-CO(CH ₂) ₃ Cl	Н
1-47	ОМе	Н	3,4一二氟	Н	Н
1-48	OMe	Н	2,5一二氯	Н	Н
I-49	ОМе	Н	2,5一二氯	-COCH ₂ Cl	Н
I-50	OMe	Н	2,3一二氯	Н	Н
I-51	OMe	Н	2,3一二氯	-COCH ₂ Cl	Н
I-52	OMe	Н	3,4一二氯	Н	Н
I-53	OMe	Н	3,4一二氯	-COCH ₂ Cl	Н
I-54	ОМе	Н	3,4一二氯	-COCH ₂ OCH ₃	Н
I-55	ОМе	3-OMe	3,4一二氯	Н	Н
1-56	OMe	Н	3,5一二氯	Н	Н
I-57	OMe	Н	3,5一二氯	-COCH ₂ Cl	Н
1-58	OMe	Н	2,4一二氯	Н	Н
1-59	ОМе	Н	2,4一二氯	-COCH ₂ Cl	Н
I-60	OMe	· H	2,4一二氯一3一氟	Н	Н
1-61	OMe	3-OMe	2,4一二氣一3一氣	Н	Н
I-62	OMe	Н	2-氟-4-溴	Н	Н
1-63	ОМе	3-OMe	2-氟-4-溴	Н	Н
I-64	OMe	Н	2-甲基-5-氯	Н	Н
1-65	OMe	Н	2一甲基一5一氯	-COCH ₂ CI	Н
I-66	OMe	Н	2一甲基一3一氯	Н	Н
I-67	OMe	Н	2,4一二甲基	Н	Н
1-68	OMe	Н	2,4一二甲基	-COCH ₂ Cl	Н
1-69	OMe	Н	3,4一二甲基	Н	Н
I-70	OMe	Н	2,6一二乙基	Н	Н
I-71	OMe	Н	3,4一:甲基	-COCH ² Cl	Н

1-72	OMe	Н	2,6一二乙基	-COCH₂CI	Н
1-73	OMe	Н	2一氯一5一三氟甲基	Н	Н
I-74	OMe	Н	2一氯一5一三氟甲基	-COCH ₂ Cl	Н
1-75	OMe	Н	4-NO ₂	Н	Н
I-76	OMe	Н	4-CO ₂ Me	Н	Н
I-77	OMe	Н	4-CO ₂ Et	Н	Н
1-78	OMe	Н	4-CO ₂ CH ₂ CH ₂ CH ₃	Н	Н
I-79	OMe	Н	4-CO ₂ CH(CH ₃) ₂	Н	Н
1-80	OMe	Н	4-CO ₂ CH ₂ CH ₂ CH ₂ CH ₃	Н	Н
1-81	OMe	Н	4-CO ₂ C(CH ₃) ₃	Н	Н
1-82	OMe	Н	4-CO ₂ CH ₂ CH(CH ₃) ₂	Н	Н
1-83	OMe	Н	4-CO ₂ CH ₂ CF ₃	Н	Н
I-84	OMe	Н	4-CO ₂ CH ₂ CF ₂ CF ₂ H	Н	Н
I_—85	OMe	Н	4-CO ₂ CH(CF ₃) ₂	Н	Н
1-86	OMe	Н	4-CO ₂ CH ₂ C≡CH	Н	Н
1-87	OMe	Н	4-CO ₂ CH ₂ CH=CH ₂	Н	· H
I-88	OMe	5-n-C ₉ H ₁₉	4-CO ₂ CH ₂ CH ₂ CH ₃	Н	Н
1-89	OMe	3-OMe	4-CO ₂ CH ₂ CH ₂ CH ₃	Н	Н
1-90	OMe	Н	2-CO ₂ Me	Н	Н
1-91	ОМе	Н	2-CO ₂ Et	Н	Н
1-92	OMe	Н	2-CO ₂ CH ₂ CH ₂ CH ₃	Н	Н
I-93	OMe	Н	3-CO ₂ Me	H	Н
1-94	OMe	Н	3-CO ₂ Et	Н	Н
1-95	OMe	Н	3-CO ₂ CH ₂ CH ₂ CH ₃	Н	Н
1-96	OMe	Н	3-CO ₂ CH(CH ₃) ₂	Н	Н
1-97	OMc	Н	4-CONEt ₂	Н	Н
1-98	OMe	Н	4-CONHCH ₂ CH ₂ CH ₃	Н	Н
1-99	OMe	Н	4-CONHCH ₂ CH ₂ CH ₂ CH ₃	Н	Н
1-100	OMe	Н	4-CO ₂ H	Н	Н
1-101	OMe	Н	4-NHCOCH(CH ₃) ₂	Н	Н
1-102	OMe	Н	4-NHCOPh	Н	H
1-103	OMe	Н	4-NHCOCF ₃	H	Н

1-104	OMe	Н	4-NHCOCH ₃	Н	Н
1-105	OMe	3-OMe	4-NHCOCH(CH ₃) ₂	Н	Н
I-106	OMe	3-OMe	4-NHCOCH ₃	Н	Н
I-107	OMe	Н	4-NHCOCH(CH ₃) ₂	Ac	Н
I-108	ОМе	. Н	4-NHCO	Н	H
I-109	OMe	Н	4-NIICO	Н	Н
1-110	OMe	Н	$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}_{B_{r}}$	Н	Н
I-111	OMe	Н		Н	Н
I-112	OMe	Н		-COCH₂CI	Н
I-113	OMe	Н		Н	Н
I-114	OMe	Н		-COCH ₂ CI	Н
I-115	ОМе	Н	H [Н	N
I-116	OMe	6-Cl	H [Н	N

I-117	OMe	Н	3一甲基		
			CH ₃	Н	N
1-118	OMe	Н	4一甲基 [————————————————————————————————————	Н	N
1-119	OMe	Н	5-甲基	Н	N
1-120	OMe	Н	5一甲基 [————————————————————————————————————	−COCHCI <u>.</u>	7
I-121	OMe	Н	5一甲基 [-COCH₂CH₃	N
I-122	OMe	Н	4一氯 [————————————————————————————————————	Н	N
1-123	OMe	H	6- (4, 6-二甲氧基- 2-嘧啶) 氧基 [OMe]	Н	N

本发明所涉及的化合物 2一嘧啶氧基-N-芳基苄胺衍生物可以用如下的反应步骤 合成:

OH
$$(R^3)_n$$
 OH $(R^3)_n$ Reduction $(R^3)_n$ (H) $(R^3)_n$ (H) $(R^3)_n$ (H) (H)

上述反应式中的 R^1 , R^2 和 R^3 以及 D, E 所代表的取代基如前所述, X 为氢或氮原子。

中间体 (II) 的合成通过水杨醛与芳胺反应制备,摩尔比为 1:1 至 1:2。溶剂可以为苯、甲苯或二甲苯等烃类溶剂;二氯甲烷、二氯乙烷或氯仿等卤代烃溶剂;四氢呋喃或二氧六环等醚类溶剂;丙酮或甲基异丁基酮等酮类溶剂;甲醇、乙醇或异丙醇等醇类溶剂;也可以用二甲基甲酰胺、二甲亚砜、乙腈以及上述溶剂的混合物,该反应的最佳溶剂为醇类。反应温度为室温至溶剂沸点,反应时间为 0.5 到 12 小时。反应可以在无催化剂的情况下进行,加入催化剂有时可以加快反应速度和提高反应收率,反应中所用的催化剂可以是对甲基苯磺酸、甲磺酸、硫酸、盐酸或醋酸等,催化剂与芳胺的摩尔比推荐为 0.01—0.1。

中间体 (III) 的合成可以通过还原化合物 (II) 制得,还原剂可以为硼氢化钠或硼氢化钾,反应物 (II) 与还原剂的摩尔比为 1:0.5-2,反应温度为室温至摄氏 40 度,

反应时间为 0.5 至 10 小时,溶剂可以为苯、甲苯或二甲苯等烃类溶剂;四氢呋喃或二氧六环等醚类溶剂;甲醇,乙醇或异丙醇等醇类溶剂;也可以用二甲基甲酰胺、二甲亚砜、乙腈以及上述溶剂的混合物,该反应的最佳溶剂为醇类。另外,该中间体(III)也可以在催化剂的作用下用氢气还原化合物(II)制得,催化剂可以是雷式镍(Raney Ni)、钯碳或铂黑等,反应物(II)与催化剂的摩尔比为 1:0.01—0.5,反应温度为室温至摄氏 40 度,反应时间为 0.5 至 10 小时,溶剂可以为苯、甲苯或二甲苯等烃类溶剂;四氢呋喃或二氧六环等醚类溶剂;甲醇,乙醇或异丙醇等醇类溶剂;也可以用二甲基甲酰胺、二甲亚砜、乙腈以及上述溶剂的混合物,该反应的最佳溶剂为醇类。

最后,将中间体(III)与 2-甲砜基-4-D,6-E-取代嘧啶在碱的存在下反应制得目标产物(I,R³=H),在该步反应中,所用碱可以是一价或二价金属的氢化物、烷氧金属化合物或其碳酸盐,如氢化钠、氢化钾、氢化钙:甲醇钠或乙醇钠、甲醇钾或乙醇钾;碳酸钠、碳酸钾或碳酸钙等,也可以是三乙胺、吡啶等有机碱。反应溶剂可以为苯、甲苯或二甲苯等烃类溶剂:二氯甲烷、二氯乙烷或氯仿等卤代烃溶剂:四氢呋喃或二氧六环等醚类溶剂:丙酮或甲基异丁基酮等酮类溶剂:甲醇,乙醇或异丙醇等醇类溶剂:也可以用二甲基甲酰胺、二甲亚砜、乙腈以及上述溶剂的混合物,该反应的最佳溶剂为醚类。反应温度为室温至溶剂沸点,反应时间为 0.5 到 20 小时。中间体(III)与 2-甲砜基-4-D,6-E-取代嘧啶和碱的摩尔比为 1: (1.0-1.2): (1-5)。最终产物经硅胶柱层析或重结晶纯化。

目标产物 $2-嘧啶氧基-N-芳基苄胺(I,<math>R^3=H$)可以进一步与相应的酸酐或酰 氮反应得到相应的 $2-嘧啶氧基-N-芳基苄胺的酰化产物(I,<math>R^3 \neq H$)。

如前所述,反应所得如结构式(I)所示(R=H)的化合物(3),即是本发明的具有除草功能的活性物之一,而若将其与酸酐或酰氯 R^3Cl 进一步在溶剂中并在碱存在的条件下反应,还可得到同样具有除草活性的如结构式(I)所示的 $R \neq H$ 的酰化物。

反应式中 R^3 为 C_1 一 C_3 烷氧乙酰基或卤代乙酰基,D和 E_xR^1 一 R^3 均如前所述, R^3 = C_1 一 C_3 烷氧乙酰基或卤代乙酰基。

在溶剂中并在碱存在的条件下和室温到回流温度下,如结构式(1)所示(R=H)的化合物(3)与酸酐或 R³Cl 和碱的摩尔比为 1:1.0-4:0-2,反应 2-8 小时得到同样具有除草活性的如结构式(1) 所示的 R≠H 的化合物。反应所用溶剂和碱与前述如结构式(1) 所示(R=H)的化合物(3)合成的第三步条件相同。上述 2 一嘧啶氧基-N-

芳基苄胺(I. $R^3=H$)结构式(I)所示(R=H)的化合物(3)、酸酐或酰氯 R^3Cl 及碱的摩尔比为 1:1.0-4:0-2 时,在溶剂中和室温到回流温度下反应 2-8 小时,制得如结构式(I)所示(R \neq H)的化合物 , $2-嘧啶氧基-N-芳基苄胺的酰化产物(I,<math>R^3\neq$ H)。

为了更加有效的实际使用,可以以本发明的化合物作为农药化学除草剂的活性组份,采用农药工业制剂加工的一般方法,加入水、有机溶剂、表面活性剂、载体等各种助剂,配制成各种水剂、油剂、乳剂、粉剂、粒剂或胶囊剂等,用于油菜、棉花、水稻、大豆等农作物的杂草防治。

本发明的化合物及其制剂,具有以下一些特点和优点:

- 1、 具有超高效的除草活性, 在低剂量下表现出较好的芽后除草效果。
- 2、 杀草谱广,不仅能有效防除农田中禾本科杂草,而且能防除阔叶杂草和莎草,对大龄禾本科杂草(3-7叶)也具有十分有效的除草活性。
- 3、 对作物具有较高的安全性,如油菜、棉花、水稻、大豆等。
- 4、 在土壤中残留期短,对轮作后茬作物生长无不良影响。
- 5、 对哺乳动物或鱼无显著毒性,具有较高的环境安全性,属低毒环境友好型农药。

本发明所提供的结构式为(I)的化合物及其制剂能有效地防治大多数农田杂草,低剂量下有效防治禾本科杂草、高剂量下有效防治阔叶杂草和莎草,具体防治对象包括稗草(Echinochloa crusgalli)、马唐(Digitaria sanguinalis)、牛筋草(Eleusine indica)、狗尾草(Setaria viridis)、早熟禾(Poa annua)、野燕麦(Avena fatua)、看麦娘(Alopecurus aequalis)、日本看麦娘(Alopecurus japonicus)、反枝苋(Amaranthus retroflexus)、刺苋(Amaranthus spinosus)、藜(Chenopodium album)、芥菜(Brassica juncea)、马齿苋(Portulaca oleracea)、铁苋菜(Acalypha australis)、异型沙草(Cyperus difformis)、下仓子(Leptochloa chinensis)、香附子(Cyperus rotundus)、日照飘浮草(Fimbristylis miliacea)、繁缕(Stallaria media)、雀舌草(Stellaria alsine)、一年蓬(Erigeron annuus)、矮慈菇(Sagittaria sagittifolia)、田旋花(Convolvulus arvensis)等。

本发明的 2—嘧啶氧基-N-芳基苄胺衍生物,不仅合成方法简便,而且产品均具 有很好的除草活性,是配制农用除草剂的有效活性物质。

最佳实施例

下面将就部分实施例给出详细的反应条件、纯化方法、物理常数和结构确认所需的

分析数据,需要指出的是本发明并不仅仅局限在下述实施例的范围内。

实施例 1: 表 1 中化合物编号 1-78 的合成

将 17.9 克 (0.1mol) 对氨基苯甲酸正丙酯溶于 200mL 无水甲醇中,滴加 14.6 克 (0.12mol) 水杨醛,在室温下搅拌反应 50 分钟后,过滤,固体用无水甲醇洗涤,得 24.8 克黄色固体 2一羟基一N一 (4一正丙氨酰基苯基) 苄亚胺,将该中间体溶于 400mL 无水甲醇中,在室温下分批加入 3.8 克 (0.10mol) 硼氢化钠, 室温下搅拌反应 60 分钟,浓缩除去甲醇,然后在残留物中加入氯仿 350mL,水 250mL,充分搅拌均匀,静置.分出有机层,有机层用饱和食盐水洗涤,无水硫酸钠干燥,浓缩得 22.7 克白色固体 2 一羟基一N一 (4一正丙氨酰基苯基) 苄胺,两步收率 80%。

取上面制得的中间体 2一羟基一N-(4-正丙氨酰基苯基) 苄胺(22.7克,0.08mol), 2-甲砜基-4,6-二甲氧基嘧啶 17.44克 (0.08mol),溶于 500mL 二氧六环中,室温下加入 22克(0.16mol)碳酸钾,回流反应 11小时,抽滤,滤饼用二氧六环洗涤(50mLx2),母液浓缩,乙酸乙酯重结晶,得 25.4克白色固体产物 2-(4,6-二甲氧基-2-嘧啶氧基)-N-(4-4-正丙氨酰基苯基) 苄胺(I-78),收率 75%。

m.p.: 96-97°C; m/z: 423(M⁺);

¹HNMR(CDCl₃, δ): 7.14-7.88(m, 8H), 6.51(d, 1H), 5.78(s, 1H), 4.45(s, 2H), 4.19(t, 2H), 3.80(s, 6H), 1.77(m, 2H), 1.03(t, 3H)ppm

元素分析: C23H25N3O5 计算值 C: 65.24; H: 5.95; N: 9.92;

实测值 C: 65.52; H: 5.86; N: 9.83;

实施例 2: 表 1 中化合物编号 1-79 的合成

将 17.9 克 (0.1mol) 对氨基苯甲酸异丙酯溶于 200mL 无水甲醇中,滴加 14.6 克 (0.12mol) 水杨醛,在室温下搅拌反应 50 分钟后,过滤,固体用无水甲醇洗涤,得 24.8 克黄色固体 2一羟基一N一 (4一异丙氨酰基苯基) 苄亚胺,将该中间体溶于 400mL 无水甲醇中,在室温下分批加入 3.8 克 (0.10mol) 硼氢化钠,室温下搅拌反应 60 分钟,浓缩除去甲醇,然后在残留物中加入氯仿 350mL,水 250mL,充分搅拌均匀,静置,分出有机层,有机层用饱和食盐水洗涤,无水硫酸钠干燥,浓缩得 23.3 克白色固体 2一羟基一N一 (4一异丙氨酰基苯基) 苄胺,两步收率 82%。

取上面制得的中间体 2一羟基一N一(4一异丙氨酰基苯基) 苄胺(23.3 克,

0.082mol), 2-甲砜基-4, 6-二甲氧基嘧啶 18.0 克 (0.083mol), 溶于 500mL 二氧六环中, 室温下加入 23 克 (0.167mol) 碳酸钾, 回流反应 12 小时, 抽滤, 滤饼用二氧六环洗涤 (50mLx2), 母液浓缩, 乙酸乙酯重结晶, 得 27 克白色固体产物 2- (4, 6-二甲氧基-2-嘧啶氧基)-N- (4-4-异丙氨酰基苯基) 苄胺 (I-79), 收率 78%。

m.p.: $83-84^{\circ}C$; m/z: $423(M^{\dagger})$;

¹HNMR(CDCl₃, δ): 7.11-7.86(m, 6H), 6.52(m, 2H), 5.77(m, 1H), 5.22(m, 1H), 4.43 (m, 2H), 3.80(s, 6H), 3.70-3.90(m, 1H), 1.35(m, 6H)ppm.

元素分析: C₂₃H₂₅N₃O₅ 计算值 C: 65.24; H: 5.95; N: 9.92;

实测值 C: 65.24; H: 5.95; N: 9.85;

以下化合物实验步骤与实例 1 或实例 2 相同,分析数据如下表所列:

化合物编号	熔点 m.p.	m/z	¹HNMR(δ, ppm)	元素分析 计算值	元素分析 实测值
<u>[-1</u>	81.0±	337	3.81(s, 6H), 4.35(s, 2H), 5.78(d, 1H),	C: 67.66	C: 67.82
	0.5°C		6.56(q, 2H), 6.59-6.72(t, 1H), 7.10 -	H: 5.64	H: 5.78
			7.28(m, 4H), 7.28-7.46(q, 2H), 7.48 (d,	N: 12.46	N: 12.74
			1H)		
1-3	84.4土	355	3.78(s, 6H), 4.52(s, 2H), 4.96(d, 1H),	C: 64.23	C: 64.42
	0.5°C	:	5.75(d, 1H), 7.01(m, 8H)	H: 5.07	H: 4.98
				N: 11.83	N: 11.85
I-4	96.6±	367	3.77(s, 3H), 3.81(s, 6H), 4.30(s, 2H),	C: 65.40	C: 65.50
	0.5°C		5.77(s, 1H), 6.59-6.83(m, 3H), 7.03 -	H: 5.76	H: 5.72
			7.15(m, 5H)	N: 11.44	N: 11.33
1-5	93.5±	371	3.77(s, 6H), 4.31(s, 2H), 5.79(d, 1H),	C: 61.38	C: 61.38
	0.5°C		6.59(d, 2H), 6.72(t, 1H), 7.10 -7.27(m,	H: 4.88	Н: 4.92
			5H)	N: 11.30	N: 11.23
I-6 .	104.0±	355	3.71(6H), 4.37(2H), 5.76(1H), 6.60 -		
	0.3°C		7.46(8H)		
1-11	94.1±	371	3.78(6H), 4.36(1H), 4.40(2H), 5.76		
	0.3°C		(1H), 6.60-7.34(8H)		
I-13	108.2±	371	3.80(6H), 4.19(1H), 4.30(2H), 5.77		
	0.3°C		(1H), 6.38-7.40(8H)		
1-16	114.1土	371	3.79(6H), 4.29(2H), 5.71(1H), 6.25 -		
	0.3°C		7.38(811)		

I-19	176.2±	446	2.84(s, 3H), 3.76(s, 6H), 4.43(d, 2H),	C: 53.83	C: 54.32
	0.5°C		5.24(s, 1H), 5.81(s, 1H), 6.48-6.54(t,	H: 4.52	H: 4.18
	0.5		1H), 6.62(d, 1H), 7.01-7.10(m, 3H),	N: 9.42	N: 9.43
			7.19(t, 1H)	Br: 17.90	Br: 17.80
1-20		417	3.81(s, 6H), 4.33(s, 2H), 5.78(s, 1H),		
			6.45(d, 1H), 7.11-7.48(m, 8H)		
1-26	110.6±	463	3.79(6H), 4.40(2H), 4.50(1H), 5.77		
	0.3°C		(1H), 6.38-7.63(8H)		
I-28	113.0±	463	3.79(6H), 4.18(1H), 4.28(2H), 5.77		
	0.3°C	:	(1H), 6.44-7.41(8H)		
[-31	_	463	3.80(s, 6H), 4.32(s, 2H), 5.78(s, 1H),		
			6.37(d, 1H), 7.13-7.50(m, 8H)		
I-36	95.3±	351	2.07(3H), 3.79(6H), 4.05(1H), 4.38		
	0.3°C		(2H), 5.76(1H), 5.53-7.45(8H)		
I-38	75.6±	351	2.20(3H), 3.80(6H), 4.29(2H), 5.76		
	0.3°C		(1H), 6.25-7.46(8H)		
I-40	97.7土	405	3.79(6H), 4.41(2H), 4.78(1H), 5.77		
	0.3°C		(1H), 6.63-7.42(8H)		
I-42	116.9±	405	3.78(6H), 4.37(2H), 4.42(1H), 5.77		
	0.3°C		(1H), 6.50-7.41(8H)		
1-44	_	366	3.77(s, 3H), 4.30(s, 2H), 4.83(s, 6H),		
			5.78(s, 1H), 6.53(d, 1H), 6.72(d, 2H),		
			7.06-7.48 (m, 6H)		
I-47	131.6±	373	3.85(s, 6H), 4.32(m, 2H), 5.82(s, 1H),	C: 61.12	C: 61.13
	0.3°C		6.13-6.39(m, 2H), 6.90(m, 1H), 7.2 -	H: 4.59	H: 4.61
			7.51(m, 4H)	N: 11.25	N: 11.25
I-48	115.3±	405	3.85(6H), 4.50(2H), 5.85(1H), 6.40 -		
	0.3°C		7.70(7H)		
1-50	116.7±	405	3.78(6H), 4.41(2H), 4.85(1H), 5.77		
	0.3°C		(1H), 6.25-7.38(7H)		
1-52	162.4±	405	3.79(6H), 4.20(1H), 4.28(2H), 5.77		
	0.3°C		(1H), 6.33-7.37(7H)		
1-55	128.5士	435	1.96(s, 1H), 2.82(s, 3H), 3.76(s, 6H),	C: 55.06	C: 55.03
	0.5°C		4.32(s, 2H), 5.81(d, 1H), 6.55 (q, 1H),	H: 4.39	H: 4.41
			6.70(d, 1H), 7.04(t. 2H), 7.14-7.18 (m,	N: 9.36	N: 9.42
			2H)	CI: 16.25	Cl: 16.19
1-56	146.6±	405	3.80(6H), 4.29(2H), 5.78(1H), 6.35-		
	0.3°C		7.37(7H)		

I-58	77.6生	405	3.78(6H), 4.38(2H), 4.69(1H), 5.76		
	0.3°C		(1H), 6.49-7.39(7H)	!	
I-60	101.2士	423	3.78(s, 6H), 4.48 (d, 2H), 5.81(s, 1H),	C: 53.79	C: 53.91
1 00	0.5°C	.23	5.84(s, 1H), 6.45-6.49(q, 1H), 7.12-	H: 3.80	H: 3.94
	0.5 °C		7.27(m, 3H), 7.36(t, 1H), 7.44 (d, 1H)	N: 9.90	N: 9.98
			7.27(111, 311), 7.23(4 333), 7.33 (4, 111)	Cl: 16.71	C1: 16.54
1-61	128.6±	453	2.84(s, 3H), 3.76(s, 6H), 4.47(d, 2H),	C: 52.88	C: 52.93
	0.5°C		5.73(s, 1H), 5.81(s, 1H), 6.49(q, 1H),	H: 3.99	H: 4.07
	0.5 C		6.99-7.22(m, 4H)	N: 9.25	N: 9.37
			,	Cl: 15.61	CI: 15.65
I-62	63.5±	434	3.78(s, 6H), 4.40(d, 2H), 5.51(s, 1H),	C: 52.55	C: 52.65
1-62		757	5.84(s, 1H), 6.54-6.60(t, 1H), 7.01-	Н: 3.95	H: 4.02
	0.5°C		7.05(d, 1H), 7.13-7.25(m, 3H), 7.32-	N: 9.68	N: 9.74
			7.38(t, 1H), 7.46-7.48(d, 1H)	Br: 18.12	Br: 18.12
1 (2	146.9±	464	2.83(s, 3H), 3.76(s, 6H), 4.38-4.40 (d,	C: 51.74	C: 51.65
1-63	1	707	2H), 5.46(s, 1H), 5.81(s, 1H), 6.55-	Н: 4.13	H: 3.75
	0.5°C		6.61(t, 1H), 7.01-7.05(m, 3H), 7.11-	N: 9.05	N: 9.17
			7.21(m, 2H)	Br: 17.12	Br: 16.97
	11651	385	3.00(3H), 3.85(6H), 4.40(2H), 5.80		
1-64	116.5± 0.3°C	363	(1H), 6.50-7.60(7H)		
		385	2.13(3H), 3.80(6H), 4.10(1H), 4.37		
1-66	125.0± 0.3℃	363	(2H), 5.77(1H), 6.44-7.42(7H)		
		265	2.06(3H), 2.20(3H), 3.80(6H), 4.35	<u> </u>	
I-67	163.7± 0.3℃	365			
		265	(2H), 5.76(1H), 6.44-7.45(7H)		
169	91.4± 0.3°C	365	2.11(3H), 2.13(3H), 3.79(6H), 4.29		
			(2H), 5.76(1H), 6.30-7.46(7H)		
1-73	101.8± 0.3°C	439	3.76(6H), 4.44(2H), 4.82(1H), 5.75		
	0.5 C	<u> </u>	(1H), 6.79-7.42(7H)	(2, 50, 62)	C. 50.02
1-75	173.2士	382	3:79(s, 6H), 4.42(m, 2H), 5.78(m, 1H),	C: 59.68	C: 59.82
	0.3 °C		6.47(m, 2H), 7.39-7.16(m, 4H), 8.01	H: 4.74	H: 4.76
			(d, 2H)	N: 14.65	N: 14.89
1-76	122.6土	395	3.82(s, 9H), 4.40(m, 2H), 5.76(m, 1H),	C: 63.79	C: 63.80
	0.5°C		6.50(m, 2H), 7.10-7.85 (m, 6H)	H: 5.35	H: 5.36
				N: 10.63	N: 10.48
1-77	106.2±	409	1.30(m, 3H), 3.28(m, 1H), 3.82(s, 6H),	C: 64.54	C: 64.64
	0.5°C		4.26(m, 2H), 4.40(m, 2H), 5.85 (m,	1	H: 5.72
			1H), 6.65(m, 2H), 7.12-7.78(m, 6H)	N: 10.26	N: 10.26

1-80	121.1±	437	0.95(m, 3H), 1.45(m, 2H), 1.73(m.	C: 65.89	C: 66.20
	0.3°C		2H), 3.84(s, 6H), 4.25(m, 2H), 4.45	H: 6.22	H: 6.16
			(m, 2H), 4.60(m, 1H), 5.78(m, 1H),	N: 9.60	N: 9.48
			6.50(m, 2H), 7.11-7.90(m, 6H)		
1-81	158.5±	437	1.56(s, 9H), 3.80(s, 6H), 4.38(m, 2H),	C: 65.89	C: 65.95
	0.5°C		5.78(m, 1H), 6.50(m, 2H), 7.10-7.80	H: 6.18	H: 6.21
			(m, 6H)	N: 9.61	N: 9.60
1-82	101.1±	437	1.0(s, 6H), 2.05(m, 1H), 3.82(s, 6H),	C: 65.89	C: 65.71
	0.3°C	'	4.02(m, 2H), 4.42(m, 2H), 4.66(m,	H: 6.22	H: 6.27
			1H), 5.80(m, 1H), 6.53(m, 2H), 7.11 -	N: 9.60	N: 9.36
			7.89(m, 6H)		
1-83	132.9±	463	3.83(s, 6H), 4.40(m, 2H), 4.58(m, 2H),	C: 57.02	C: 56.99
	0.3°C		4.65(m, 1H), 5.77(m, 1H), 6.52(m,	H: 4.35	H: 4.45
			2H), 7.12-7.89(m, 6H)	N: 9.07	N: 8.99
I-84	137.8±	495	3.28(m, 1H), 3.84(s, 6H), 4.45(m, 2H),	C: 55.76	C: 55.86
	0.5°C		4.75(m, 2H), 5.85(m, 1H), 6.67 (m,	H: 4.27	Н: 4.37
			2H), 7.12-7.82(m, 6H)	N: 8.48	N: 8.52
1-85	127.4±	531	3.26(m, 1H), 3.82(s, 6H), 4.46(m, 2H),	C: 51.98	C: 52.04
	0.5°C		5.85(m, 1H), 6.46(m, 1H), 6.68-6.78	Н: 3.60	H: 3.75
			(m, 2H), 7.17-7.88(m, 6H)	N: 7.91	N: 7.92
1-86	112.3±	419	2.48(m, 1H), 3.84(s, 6H), 4.40(m, 2H),		
	0.3°C		4.85(m, 2H), 5.77(m, 1H), 6.50 (m,		
			2H), 7.12-7.83(m, 6H)		
I-87	96.5±	421	3.80(s, 6H), 4.39(m, 2H), 4.76(m, 2H),		
	0.3°C		5.40-5.22(m, 2H), 5.78(d, 1H), 6.01(d,		
			1H), 6.51(q, 2H), 7.84-7.14(m, 6H)		
1-88	oil	548	3.70(s, 6H), 4.17(s, 2H), 4.53(s, 2H),	C: 69.92	C: 68.29
			5.75(d, 1H), 6.44(d, 2H), 7.34-7.02(m,	H: 7.88	H: 7.86
			3H), 7.80-7.76(m, 2H)	N: 7.644	N: 6.17
1-89		453	6.92-7.48(m, 7H,), 6.34(m, 1H), 5.80		
			(m, 1H), 4.50(m, 211), 4.28(m, 2H),		
			3.82(s, 9H), 1.75(m, 2H), 1.03(m, 3H)		
1-90	67.1±	395	3.95(s, 9H) 4.52(s, 2H), 5.78(s, 1H),		
	0.3°C		6.65(m, 2H), 7.10-7.95(m, 6H)		
1-91	74.5±	409	1.42(s, 3H), 3.80(s, 6H), 4.50(m, 2H),		
	0.3°C		5.75(m, 111), 6.58(m, 2H), 7.18-7.95		
			(m, 611)		
1-92	58.6±	423	1.05(m, 3H), 1.75(m, 3H), 3.78(s, 6H),		
1-92	58.6±	423			

	0.3°C		4.15(m, 2H), 4.45(m, 2H), 5.75(m,		
			1H), 6.55(m, 2H), 7.15-7.90(m, 6H),		
			8.15(m, 1H)		
1-93	136.3±	395	3.79(s, 6H), 3.87(m, 3H), 4.40(m, 2H),		
	0.3°C		5.75(m, 1H), 6.70(m, 1H), 7.11-7.50		
			(m, 7H)		
1-94	134.7±	409	1.46(s, 3H), 3.90(s, 6H), 4.40(m, 4H),		
	0.3°C		5.80(m, 1H), 6.67(m, 1H), 7.12-7.52		
			(m, 7H)		
I-95	107.1±	423	1.03(m, 3H), 1.76(m, 2H), 3.80(s, 6H),	·	
	0.3°C		4.25(m, 2H), 4.40(m, 2H), 5.75(m,		
			1H), 6.75(m, 1H), 7.10-7.55(m, 7H)		
I96	78.3±	423	1.30(s, 6H), 3.80(s, 6H), 4.36(m, 2H),	C: 65.24	C: 64.85
	0.3°C		5.20(m, 1H), 5.77(m, 1H), 6.70(m,	H: 5.95	H: 5.95
			iH), 7.08-7.50(m, 7H)	N: 9.92	N: 9.87
I-97	112.6±	436	1.20(s, 6H), 3.45(m, 4H), 3.80(s, 6H),	C: 66.04	C: 65.97
	0.3°C		4.35(m, 2H), 5.74(m, 1H), 6.54 (m,	H: 6.47	Н: 6.36
			2H), 7.15-7.49(m, 6H)	N: 12.84	N: 12.65
1-98	122.0±	422	0.98(s, 3H), 1.57(m, 2H), 3.36(m, 2H),	C: 65.39	C: 65.50
	0.3°C		3.81(s, 6H,), 4.38(m, 2H), 5.77 (m,	Н: 6.20	H: 6.24
			1H), 6.00(m, 1H), 6.52(m, 2H), 7.10-	N: 13.26	N: 13.37
			7.60(m, 6H)		
1-99	130.6±	436	0.95(m, 3H), 1.40(m, 2H), 1.55(m,	C: 66.04	C: 66.15
	0.3°C		2H), 3.40(m, 2H), 3.78(s, 6H), 4.38	H: 6.47	H: 6.38
			(m, 2H), 5.77(m, 1H), 5.98(m, 1H),	N: 12.84	N: 12.82
		:	6.52(m, 2H,), 7.10-7.60(m, 6H)		
I-100	168.1±	381	1.10(m, 1H), 3.78(s, 6H), 4.27(m, 2H),	C: 63.00	C: 62.23
	0.3°C		5.96(m, 1H), 6.54(m, 2H), 7.12-7.72	H: 5.02	H: 5.44
			(m, 6H)	N: 11.02	N: 10.22
I-101	134.4土	422	1.24(d, 6H), 1.76(m, 1H), 2.45(m, 1H).	C: 65.39	C: 65.39
	0.3°C		3.80(s, 6H), 4.35(m, 1H), 5.75 (m,	H: 6.20	H: 6.06
		ļ	1H), 6.45-6.57(m, 2H), 6.96-7.49(m,	N: 13.26	N: 13.40
			8H)		
1-102	153.1±	456	1.69(m, 1H), 3.82(s, 6H), 4.4(m, 1H),	C: 68.41	C: 67.70
	0.3°C		5.75(m, 1H), 6.55(m, 2H), 7.1-7.9(m,	H: 5.30	H: 5.34
		<u></u>	13H)	N: 12.27	N: 12.12

159.3±	448	1.6(m, 1H), 3.84(s, 6H), 4.36(m, 1H),	C: 56.25	C: 56.37
0.3°C		5.78(m,1H), 6.56(m,2H), 7.10-7.78(m,	H: 4.27	H: 4.27
		8H)	N:12.49	N: 12.54
162.4±	394	1.70(m, 1H), 2.12(s, 3H), 3.80(s, 6H),	C: 63.95	C: 64.49
0.3°C		4.25(s, 1H), 5.80(m, 1H), 6.5 (m, 2H),	H: 5.62	H: 5.78
		7.10-7.5(m, 8H)	N: 14.20	N: 13.80
171.9±	452	0.87(d, 6H), 2.22-2.32(m, 1H), 2.59 (s,	C: 63.70	C: 63.79
0.5°C		3H), 3.53(s, 6H), 4.02-4.03(d, 2H),	H: 6.24	H: 6.55
		4.97(S, 1H), 5.57(s, 1H), 6.27(d, 2H),	N: 12.38	N: 12.41
		6.75-6.82(m, 2H), 6.88-6.93(t, 1H),		
		7.08- 7.11(d, 2H), 8.40 (s, 1H)		
170.2±	424	1.72(s, 1H), 2.59(s, 3H), 3.52(s, 6H),	C: 62.25	C: 61.86
0.5°C		4.01-4.03(d, 2H), 4.97(s, 1H), 5.56(s,	H: 5.70	H: 5.71
:		1H), 6.27(d, 2H), 6.74 -6.82(m, 2H),	N: 13.20	N: 13.10
		6.88-6.93(t, 1H), 7.05(d, 2H), 8.50(s,		
		IH)		
147.5±	464	1.76(m, 1H), 3.84(s, 6H), 4.16(m, 1H),	C: 62.32	C: 62.21
0.3°C		4.35(m, 2H), 5.76(m, 1H), 6.52 (m,	H: 4.79	H: 4.73
		2H), 7.0-7.78(m, 8H)	N: 12.11	N: 12.13
150.4±	524	1.65(m, 1H), 3.82(s, 6H), 4.30(m, 1H),	C: 61.83	C: 61.85
0.3°C		5.8(m, 1H), 6.55(m, 2H), 7.1 -8.15(m,	H: 4.42	H: 4.46
	,	12H)	N: 10.68	N: 10.67
-	465	3.79(s, 6H), 4.53(s, 2H), 5.61(s, 1H),		
		6.48 (d, 1H), 7.13-8.19 (m, 10H)		
124.1±	387	3.70(6H), 4.35(1H), 4.50(2H), 5.60		
0.3°C	}	(1H), 6.40-7.90(11H)		
126.2±	387	3.70(6H), 4.35(1H), 4.50(2H), 5.60		
0.3°C		(1H), 6.40-7.90(11H)		
94.0±	338	3.81(6H), 4.50(2H), 5.28(1H), 6.30 -		
0.3°C		7.50(7H), 8.25(1H)		
101.4±	352	2.50(3H), 3.85(6H), 4.50(2H), 5.20		
0.3°C		(1H), 5.85(1H), 6.10-7.70(7H)		_
79.8±	352	2.10(3H), 3.85(6H), 4.50(2H), 5.00		
0.3°C		(1H), 5.75(1H), 6.20-7.90(7H)		
90.4±	352	2.14(s, 3H), 3.81(s, 6H), 4.50(d, H).		
0.3°C		5.00(s, 1H), 5.78(s, 1H), 6.12(s, H).		
		6.39(d. 111), 7.10-7.93 (m, 5H)		
	0.3°C 162.4± 0.3°C 171.9± 0.5°C 170.2± 0.5°C 147.5± 0.3°C 150.4± 0.3°C	0.3°C 162.4± 394 0.3°C 171.9± 452 0.5°C 170.2± 424 0.5°C 150.4± 524 0.3°C - 465 124.1± 387 0.3°C 126.2± 0.3°C 126.2± 0.3°C 94.0± 338 0.3°C 101.4± 0.3°C 79.8± 0.3°C 90.4± 352	0.3°C	0.3°C 5.78(m,1H), 6.56(m,2H), 7.10-7.78(m, H: 4.27 N:12.49 162.4± 394 1.70(m, 1H), 2.12(s, 3H), 3.80(s, 6H), C: 63.95 4.25(s, 1H), 5.80(m, 1H), 6.5 (m, 2H), H: 5.62 7.10-7.5(m, 8H) 171.9± 452 0.87(d, 6H), 2.22-2.32(m, 1H), 2.59 (s, C: 63.70 3H), 3.53(s, 6H), 4.02-4.03(d, 2H), H: 6.24 4.97(s, 1H), 5.57(s, 1H), 6.27(d, 2H), C: 62.49 6.75-6.82(m, 2H), 6.88-6.93(t, 1H), 7.08-7.11(d, 2H), 8.40 (s, 1H) 170.2± 424 1.72(s, 1H), 2.59(s, 3H), 3.52(s, 6H), C: 62.25 H: 5.70 Hi), 6.27(d, 2H), 6.74-6.82(m, 2H), 6.88-6.93(t, 1H), 7.05(d, 2H), 8.50(s, 1H) 147.5± 464 1.76(m, 1H), 3.84(s, 6H), 4.16(m, 1H), C: 62.32 H: 4.35(m, 2H), 5.76(m, 1H), 6.52 (m, 2H), 7.0-7.78(m, 8H) 150.4± 524 1.65(m, 1H), 3.82(s, 6H), 4.30(m, 1H), C: 61.83 H: 4.42 N: 12H) - 465 3.79(s, 6H), 4.53(s, 2H), 5.61(s, 1H), 6.48 (d, 1H), 7.13-8.19 (m, 10H) 124.1± 387 3.70(6H), 4.35(1H), 4.50(2H), 5.60 (1H), 6.40-7.90(11H) 126.2± 387 3.70(6H), 4.35(1H), 4.50(2H), 5.60 (1H), 6.40-7.90(11H) 126.2± 0.3°C (1H), 6.40-7.90(11H) 94.0± 338 3.81(6H), 4.50(2H), 5.28(1H), 6.30 - 7.50(7H), 8.25(1H) 101.4± 352 2.50(3H), 3.85(6H), 4.50(2H), 5.20 (1H), 5.85(1H), 6.10-7.70(7H) 79.8± 352 2.10(3H), 3.85(6H), 4.50(2H), 5.00 (1H), 5.75(1H), 6.20-7.90(7H) 90.4± 352 2.14(s, 3H), 3.81(s, 6H), 4.50(d, H), 5.00 (1H), 5.75(1H), 6.20-7.90(7H) 90.4± 352 2.14(s, 3H), 3.81(s, 6H), 4.50(d, H), 5.00 (1H), 5.75(1H), 6.20-7.90(7H)

I-122	103.9± 0.3°C	372	3.80(6H), 4.50(2H), 5.10(1H), 5.80 (1H), 6.20-7.50(6H), 8.05(1H)	
I-123	115.5± 0.3℃	352	1.95(3H), 3.75(6H), 4.60(1H), 4.72 (2H), 5.75(1H), 6.35-7.70(6H), 8.10 (1H)	

实施例 3: 表 1 中化合物编号 1-107 的合成

将 1.38g(10mmol)对硝基苯胺溶于 10mL 冰醋酸中,在室温下缓慢地滴加 1.88ml(20mmol)乙酸酐,加热回流 30 分钟,冷却至室温,加入到冰水中,过滤,冰水洗至中性,干燥得 1.688 克产品,收率 93.8%。

将 1.688g(9.38mmol)对乙酰氨基硝基苯,溶于 10mL 无水甲醇中,加入适量 0.1266gRaney-Ni 和 0.83g(14.1mmol,85%)水合肼,室温下反应 6 小时,抽滤,得滤液,将滤液浓缩得到产物为对乙酰氨基苯胺,收率达理论量。

将 1.405 克 (9.37mmol) 对乙酰氨基苯胺溶于 15mL 无水乙醇中,加入 1.709 克 (11.44mmol) 邻香兰素,在室温下搅拌反应完全,TLC 控制反应终点,过滤,固体用无水乙醇洗涤,得 2.177 克黄色固体产物,收率 81.8%。

取上述制得的化合物 2.177 克 (7.665mmol),溶于 20mL 无水乙醇中,在室温下分批加入 0.445 克 (11.5mmol, 96%) 硼氢化钠,室温下搅拌反应 30 分钟,将反应物倒入冰水中,过滤,干燥,得 2.190 克产品,收率达理论量。

取上面制得的化合物 2.190 克 (7.66mmol), 2-甲砜基-4, 6-二甲氧基嘧啶 1.670 克 (7.66mmol), 溶于 30mL 二氧六环中, 室温下加入 2.114 克 (15.32mmol) 碳酸钾, 问流反应 11 小时, 抽滤,滤饼用 20mL 二氧六环洗涤, 母液浓缩, 残留产物加入 10mL 乙醇搅拌, 抽滤得 2.83 克白色固体产物 2- (4, 6-二甲氧基-2-嘧啶氧基) -3-甲氧基-N- (4-乙酰氨基苯基) 苄胺, 收率 87.0%, 在乙酸乙酯中重结晶得纯品。

将 0.604 克 (1.533mmol) 2- (4,6-二甲氧基-2-嘧啶氧基) -N- (4-乙酰氨基苯基) 苄胺和 0.423 克 (3.066mmol) 的碳酸钾溶解在 10ml 无水的四氢呋喃中,在 20℃以下,滴加 0.13ml (1.84mmol) 乙酰氯,在室温下搅拌至反应完全,控制终点。将混合物过滤,减压除去溶剂,得 0.654 克 2- (4,6-二甲氧基-2-嘧啶氧基)-N-乙酰氨基一N- (4-乙酰氨基苯基) 苄胺,收率 97.8%,柱层析(乙酸乙酯/正己烷)分离纯化。

以下化合物实验步骤与实例 3 相同,数据如下表所列:

/	熔点	N.41	LINIAD	元素分析	元索分析
化合物编号	m.p.	M/z	HNMR	计算值	实际值
1—18	145.5± 0.3℃	443	3.30(3H), 3.73(2H), 3.76(6H), 4.96(2H), 5.73(1H), 6.92-7.46 (8H)		
I-21	139.1± 0.3℃	521	2.01(m, 2H), 2.20(t, 2H), 3.52(t, 2H), 3.79(s, 6H), 4.99(s, 2H), 5.76(s, 1H), 6.82(m, 8H)		
I22	122.3± 0.3℃	520	3.76(s, 6H), 5.20(s, 2H), 5.75(s, 1H), 6.74-7.61 (m, 13H)		
I-23	137.2± 0.3℃	527	3.85(s, 6H), 5.03(s, 2H), 5.79(s, 1H), 5.81(s, 1H), 6.92-7.48(m, 8H)		
I—24	109.0± 0.3℃	473	1.03 (t, 3H), 2.09(q, 2H), 3.81(s, 6H), 4.99(s, 2H), 5.76(s, 1H), 6.82-7.51 (m, 8H)		
I—25	_	492	3.79(s, 6H), 3.81(s, 2H), 4.99(s, 2H), 5.76(s, 1H), 6.90-7.48(m, 8H)		
1-35	137.0± 0.3°C	535	3.33(3H), 3.74(2H), 3.77(6H), 4.97(2H), 5.76(1H), 6.73-7.52 (8H)		
I—45	137.0± 0.3°C	477	3.79(s, 911), 4.99(s, 2H), 5.70(s, 1H), 5.82(s, 1H), 6.58-7.44 (m, 8H)		
1-46	107.0± 0.3℃	471	2.05(m, 2H), 2.22(t, 2H), 3.50(t, 2H), 3.79(s, 9H), 4.99(s, 2H), 5.72 (s, 1H), 6.56-7.44 (m, 8H)		
I-49	121.5± 0.3℃	481	2.03(3H), 3.68(2H), 3.77(6H), 4.70(1H), 5.27(1H), 5.71(1H), 6.88-7.54(7H)		
I-57	101.6± 0.3°C	481	3.76(6H), 3.81(2H), 5.00(2H), 5.75(111), 6.98-7.40(7H)		

	481	3.69(1H), 3.76(6H), 3.79(1H),		(1
0.3°C		4.46(1H), 5.47(1H), 5.74(1H)		
		6.94-7.48(7H)		
116.5±	461	3.73(1H), 3.79(6H), 3.80(1H),		
0.3°C		4.58(1H), 5.40(1H), 5.73(1H),		
		7.06-7.48(7H)		
113.9±	441	1.92(6H) 3.65(2H), 3.75(6H)		
0.3°C		4,99(2H), 5.64(1H), 6.80-7.73		
		(7H)		
101.8土	469	0.98(6H), 2.30(4H), 3.76(6H),		
0.3°C		4.96(2H), 5.66(1H), 6.93-7.67		!
		(7H)		
94.7	515	3.65(1H), 3.75(6H), 3.80(1H),		
±0.3°C		4.52(1H), 5.44(1H), 5.72(1H),		
		7.09-7.52(7H)		
152.4±	436	1.79(s, 1H), 2.83(s, 3H), 3.71(s,	C: 63.29	C: 63.41
0.5°C		6H), 4.90(s, 2H), 5.74(s, 1H),	H: 5.54	H: 5.61:
		7.05-7.12(t, 3H), 7.21-7.30(m,	N: 12.84	N: 13.00
		2H), 7.47-7.55(q, 3H), 9.20(s,		
		1H)		
115.1±	463	3.62(6H), 3.63(1H), 3.66(1H),		
0.3°C		4.65(1H), 5.58(1H), 5.65(1H),		
		7.10-7.80(11H)		
Oil	471	2.32(s, 3H), 3.81(s, 6H), 5.18(s,	-	
		2H), 5.75(s, 1H), 6.59(s, 1H),		
		7.00-8.30 (m, 7H)	1	
69.7±0.3℃	408	1.11(t, 3H), 2.35(m, 5H), 3.78 (s,		
]	6H), 5.12(s, 2H), 5.75(s, 1H),		
		6.88-8.26 (m, 7H)		
	0.3°C 113.9± 0.3°C 101.8± 0.3°C 94.7 ±0.3°C 152.4± 0.5°C Oil	0.3°C 441 113.9± 0.3°C 469 101.8± 0.3°C 515 ±0.3°C 463 152.4± 0.5°C 463 Oil 471	6.94-7.48(7H) 116.5± 0.3°C 461 3.73(1H), 3.79(6H), 3.80(1H), 4.58(1H), 5.40(1H), 5.73(1H), 7.06-7.48(7H) 113.9± 0.3°C 441 1.92(6H) 3.65(2H), 3.75(6H) 4.99(2H), 5.64(1H), 6.80-7.73 (7H) 101.8± 0.3°C 469 0.98(6H), 2.30(4H), 3.76(6H), 4.96(2H), 5.66(1H), 6.93-7.67 (7H) 94.7 ±0.3°C 515 3.65(1H), 3.75(6H), 3.80(1H), 4.52(1H), 5.44(1H), 5.72(1H), 7.09-7.52(7H) 152.4± 436 1.79(s, 1H), 2.83(s, 3H), 3.71(s, 6H), 4.90(s, 2H), 5.74(s, 1H), 7.05-7.12(t, 3H), 7.21-7.30(m, 2H), 7.47-7.55(q, 3H), 9.20(s, 1H) 115.1± 0.3°C 463 3.62(6H), 3.63(1H), 3.66(1H), 4.65(1H), 5.58(1H), 5.65(1H), 7.10-7.80(11H) Oil 471 2.32(s, 3H), 3.81(s, 6H), 5.18(s, 2H), 5.75(s, 1H), 6.59(s, 1H), 7.00-8.30 (m, 7H) 69.7±0.3°C 408 1.11(t, 3H), 2.35(m, 5H), 3.78 (s, 6H), 5.12(s, 2H), 5.75(s, 1H),	116.5± 461 3.73(1H), 3.79(6H), 3.80(1H), 4.58(1H), 5.40(1H), 5.73(1H), 7.06-7.48(7H) 113.9± 0.3°C 441 1.92(6H) 3.65(2H), 3.75(6H) 4.99(2H), 5.64(1H), 6.80-7.73 (7H) 101.8± 0.3°C 469 0.98(6H), 2.30(4H), 3.76(6H), 4.96(2H), 5.66(1H), 6.93-7.67 (7H) 94.7 4.52(1H), 5.44(1H), 5.72(1H), 7.09-7.52(7H) 152.4± 436 1.79(s, 1H), 2.83(s, 3H), 3.71(s, C: 63.29 (6H), 4.90(s, 2H), 5.74(s, 1H), 7.05-7.12(t, 3H), 7.21-7.30(m, 2H), 7.47-7.55(q, 3H), 9.20(s, 1H) 115.1± 0.3°C 463 3.62(6H), 3.63(1H), 3.66(1H), 4.65(1H), 5.58(1H), 5.58(1H), 5.58(1H), 5.75(s, 1H), 7.10-7.80(11H) Oil 471 2.32(s, 3H), 3.81(s, 6H), 5.18(s, 2H), 5.75(s, 1H), 6.59(s, 1H), 7.00-8.30 (m, 7H) 69.7±0.3°C 408 1.11(t, 3H), 2.35(m, 5H), 3.78 (s, 6H), 5.12(s, 2H), 5.75(s, 1H),

实施例 4 可湿性粉剂

以下给出本发明的化合物(以化合物 I-78 为例)作为活性物质组份,加工配制几种除草剂剂型的实际例子,需要指出的是本发明并不仅仅局限在下述实例的范围内。在这些配方例子中,所有的"%"均指重量百分比,"g ai/ha"均指每克活性物/公顷。

将 15%的化合物 (I-78)(表 1)、5%的木质素磺酸盐 (M_q)、1%的月桂醇聚氧乙烯醚 (JFC)、40%的硅藻土和 44%的轻质碳酸钙均匀地混合,粉碎,即得可湿性粉剂。

实施例 5 乳油

将 10%的化合物 (I-78) (表 1)、5%的农乳 500 号 (钙盐)、5%的农乳 602 号、5%的 N-甲基-2-吡咯烷酮和 75%的二甲苯加热搅拌均匀,即得乳油。

实施例6粒剂

将 5%的化合物 (I-78) (表 1)、1%的聚乙烯醇 (PVA)、4%的萘磺酸钠甲醛缩合物 (NMO) 和 90%粘土均匀地混合,粉碎,然后向此 100 份混合物加入 20 份水,捏合,用挤压成粒机,制成 14-32 目的颗粒,干燥,即得颗粒剂。

实施例 7 生物活性测定方法

下面给出使用本发明的化合物进行生物活性测定的实例,需要指出的是本发明并不仅仅局限在下述实例的范围内。

除草活性和作物安全性(即植物毒性)5级目测法评价标准列于表二。

分级	植物毒性	除草活性评语	作物安全性评语
指数	(%)	(抑制、畸形、白化等)	(抑制、畸形、白化等)
0	0	同对照,耐,淘汰	同对照,耐,正常
1	10-20	轻,稍有影响,淘汰	轻,稍有影响,可考虑
2	30-40	轻, 有影响, 淘汰	敏感,有影响,淘汰
3	50-60	敏感, 有影响, 可考虑进一步改造	较敏感, 药害重, 淘汰
4	70-80	较敏感, 可考虑	极敏感, 药害重, 淘汰
5	90-100	极敏感, 好	极敏感, 药害重, 淘汰

表 2、除草活性和植物毒性评价标准

在装有试验用土的盆钵中(直径 9.5cm)分别均匀地播种碑、马唐、牛筋、芥菜、 反枝苋和马齿苋的种子, 覆盖上 0.5cm 厚, 将盆钵置于 20~25℃的温室中培育 10 天。

植株生长二叶期时,将按照配方实例二制备的制剂用水稀释,以750g ai/ha的剂量对培养试材进行茎叶喷雾处理。定期观察各处理植株生长状态、受害症状。5级目测法评价化合物的除草活性,具体试验结果见表3。

表 3、苗后茎叶处理的除草活性评价

化合物 编号	浙江院编号	剂量 (g ai/ha)	称草	马唐	牛筋草	芥菜	反枝苋	马齿苋
I-3	ZJ0679	750	4	3	5	4	5	4
I-4	ZJ0685	750	5	3	5	5	5	4
I-5	ZJ0692	750	0	0	0	0_	3	0
I-20	ZJ0269	750	5	5	5	5	5	5
1-21	ZJ0353	750	4	4	4	4	5	5
I-22	ZJ0354	750	2	0	3	0	44	0
I-23	ZJ0355	750	0	0	0	0	4	3
I-31	ZJ0271	750	5	5	5	5	5	5
I-45	ZJ0360	750	3	3	4	0	4	0
1-46	ZJ0361	750	5	5	5	4	5	5
1-75	ZJ0754	750	. 4	4	_4	5	5	5
1-76	ZJ0700	750	5	5	5	5	4	4
I-77	ZJ0701	750	5	4	5	5	5	4
I-78	ZJ0273	750	5	5	5	5	5	5
I-79	ZJ0702	750	5	5	5	5	5	4
1-80	ZJ0736	750	4	4	4	4	5	4
1-81	ZJ0741	750	4	3	4	4	5	4
1-82	ZJ0738	750	4	4	4	4	5	4
1-83	ZJ0737	750	4	4	4	4	5	3
I-85	ZJ0740	750	4	4	4	4	5	4
1-86	ZJ0755	750	5	5_	_ 5	5	5	5
1-87	ZJ0756	750	5	4	5	5	5	5
I-90	ZJ0742	750	5	4	5	5	5	4
1-91	ZJ0743	750	4	4	4	5	4	4
I-92	ZJ0747	750	4	4	5	5	5	4
1-93	ZJ0746	750	4	4	4	4	5	4
1-94	ZJ0745	750	4	4	4	4	5	4
1-95	ZJ0744	750	4	4	5	4	5	4
1-96	ZJ0748	750	4	4	5	5	5	4
1-97	ZJ0749	750	4	4	5	5	5	4
1-98	ZJ0750	750	5	4	4	5	5	5
1-99	ZJ0751	750	-4	3	4	5	5	4
I-100	ZJ0752	750	4	4	4	5	5	5

1-101	ZJ0859	750	5	5	4	5	5	4
I-102	ZJ0860	750	_5	5	4	4	5	4
I-103	ZJ0861	750	4	5	4	4	5	4
I-110	ZJ0270	750	4	5	5	4	5	5
1-120	ZJ0358	750	4	4	4	0	5	5
I-121	ZJ0359	750	0	0	3	0	4	0

实施例 9 苗前土壤处理的除草活性试验

在装有试验用土的盆钵中(直径 9.5cm)分别均匀地播种稗、马唐、牛筋、芥菜、 反枝苋和马齿苋的种子,覆盖土 0.5cm 厚,12 小时后将按照配方实例 5 制备的制剂用 水稀释,以 750g ai/ha 的剂量对培养试材进行土壤表面处理。定期观察各处理植株生长 状态、受害症状。5 级目测法评价化合物的除草活性,具体试验结果见表四。

化合物 浙江院 剂量 反枝苋 马齿苋 称草 马唐 牛筋草 芥菜 编号 编号 (g ai/ha) I-3ZJ0679 I-4ZJ0685 I-5ZJ0692 ZJ0269 I - 20I-2IZJ0353 I - 22ZJ0354 I - 23ZJ0355 ZJ0271 I-31 I - 45ZJ0360 I - 46ZJ0361 1 - 75ZJ0754 1 - 76ZJ0700 I - 77ZJ0701 I - 78ZJ0273 1 - 79ZJ0702 1 - 80ZJ0736 1 - 81ZJ0741 1 - 82ZJ0738 1 - 83ZJ0737 1-85 ZJ0740 1 - 86ZJ0755 1 - 87ZJ0756 1 - 90ZJ0742

表 4: 苗前土壤处理的除草活性评价

1-91	ZJ0743	750	4	4	4	4	4	5
I-92	ZJ0747	750	4	4	3	4	4	4
1-93	ZJ0746	750	4	4	3	4	4	4
I-94	ZJ0745	750	4	4	3	4	4	4
1-95	ZJ0744	750	4	4	3	4	4	4
I-96	ZJ0748	750	4	4	3	4	4	4
I-97	ZJ0749	750	4	4	4	4	4	5
I-98	ZJ0750	750	4	4	4	4	4	5
I-99	ZJ0751	750	3	3	3	4	4	4
I-100	ZJ0752	750	3	3	3	4	4	4
I-101	ZJ0859	750	4	4	4	5	5	5_
I-102	ZJ0860	750	4	4	4	4	4	4
I-103	ZJ0861	750	4	4	4	5	5	5
I-110	ZJ0270	750	5	4	5	4	5	4
I-120	ZJ0358	750	0	2	4	0	0	0
I-121	ZJ0359	750	0	0	0	0	0	0

以稗草、马唐、牛筋、芥菜、反枝苋和马齿苋为杂草靶标,进行不同剂量梯度试验。试验设置 3 档剂量。在禾本科杂草生长二叶期、阔叶杂草生长 2 片真叶期时,将按照配方实例 5 制备的制剂用水稀释成 3 个浓度,以三个不同剂量对培养的试材进行茎叶喷雾处理。处理后定期观察,5 级目测法评价化合物的除草活性,具体试验结果见表五:部分化合物对敏感杂草看麦娘的除草活性评价见表穴。

表 5、苗后茎叶不同剂量处理的除草活性评价

化合物	浙江院	剂量			除草	活性指数	文	
编号	编号	(gai/ha)	稗草	马唐	牛筋草	芥菜	反枝苋	马齿苋_
1-3	ZJ0679	75	0	0	0	0	3	0
		150	0	0	0	3	4	0
		300	2	0	2	3	4	3
1-4	ZJ0685	75	3	0	2	0	0	0
		150	3	0	5	3	0	0
		300	5	0	5	3	0	0
1-46	ZJ0361	120	4	3	2	3	3	2
•		245	5	5	4	3	3	1
		375	5	5	4	4	4	3
1-75	ZJ0754	75	2	0	3	0	3	0
1 , , ,		300	4	3	4	0	4	3
1-76	ZJ0700	75	0	0	2	2	2	0
. , ,		150	3	0	3	3	4	0
		300	3	0	4	3	4	0
1-77	ZJ0701	75	0	0	0	0	2	1. 0

] 1	ı	150	3	0	3	0	4	0
		300	4	2	4	3	4	0
I-78	ZJ0273	75	0	0	2	1	5	5
1-78		150	5	3	5	1	5	5
	<u> </u>	375	4	5	4	2	. 5	5
. 70	ZJ0702	75	0	0	0	0	3	0
I-79	230702	150	2		3	0	4	0
				3	4	3	5	0
	710726	300	4					0
1-80	ZJ0736	75	0	3	<u>0</u> 4	0	5	4
	770741	150	4			0		0
1-81	ZJ0741	75	2	0	<u>0</u> 4	0	3 4	3
	710730	300	4	2		0		
1-82	ZJ0738	75	3	0	3	0	4	0
	710727	300	4	4	5	2	5	3
I—83	ZJ0737	75	3	0	3	0	44	0
	} }	150	4	3	4	0	4	2
		225	4	4	4	0	5	3
1-85	ZJ0740	75	2	0	0	0	4	0
		150	3	0	3	0	4	0
		300	4	3	4	0	4	3
I-86	ZJ0755	75	2	0	2	0	4	0
		300	4	3	4	3	4	4
I-87	ZJ0756	75	2	0	0	0	4	0
		150	4	2	3	0	4	2
		300	4	4	4	0	4	4
1-90	ZJ0742	75	2	0	0	0	3	0
		300	4	2	4	3	4	4
1-91	ZJ0743	75	3	0	3	0	4	0
	1	150	4	0	4	0	4	3
		300	4	2	4	3	4	44
I-92	ZJ0747	75	3	0	2	0	3	2
		300	4	2	4	3	4	4
1-93	ZJ0746	37.5	2	0	2	0	4	0
		225	4	2	4	0	4	3
1-94	ZJ0745	75	0	0	0	0	3	0
		225	4	3	4	0	4	3
1-95	ZJ0744 [75	0	0	0	0	3	0
		300	4	2	4	0	4	4
1-96	ZJ0748	75 .	2	0	0	0	4	0
	<u> </u>	300	4	3	4	2	5	4
1-97	ZJ0749	75	0	0_	0	0	4	0
		225	4	3	4	2	4	4
1-98	ZJ0750	75	0	0	0	0	3	0
		300	4	3	4	2	4	3
1-99	ZJ0751	75	2	0	3	0	4	0
		225	4	3	4	3	4	4
I-100 Z	ZJ0752	75	2	0	3	0	4	0
1	· · · · · · · · · · · · · · · · · · ·	225	4	3	4	0	4	4

1-101	ZJ0859	75	5	4	4	5	5	5
		150	5	4	5	5	5	5
}		300	5	4	5	5	5	5
1-102	ZJ0860	75	5	4	4	5	5	5
		150	5	5	5	5	5	5
l l]	300	5	5	5	5	5	5
1-103	ZJ0861	75	4	4	4	4	5	4
}		150	5	4	4	4	4	• 4
		300	5	5	5	5	5	5
I-110	ZJ0270	75	0	0	2	0	5	5
		150	5_	3	5	1	5	4
		375	4	5	4	2	4	4

表 6、部分化合物对敏感杂草看麦娘的除草活性评价

化合物编号	浙江院编号	剂量 (g ai/ha)	看麦娘
I-76	ZJ0700	15	3
1 /0	}	30	4
		45	5
		60	5
		75	5
1-77	ZJ0701	15	4
• ,,		30	5
		45	5
		60	5 .
		75	5
1-78	ZJ0273	15	4
1 , 0		30	5
		45	5
		60	5
		75	5
1-79	ZJ0702	15	4
1 ''		30	5
		45	5
		60	5
		75	5

实施例 11 苗前土壤处理的除草活性剂量梯度试验

在装有试验用土的盆钵中(直径 9.5cm)分别均匀地播种称、马唐、牛筋、芥菜、 反枝苋和马齿苋的种子,覆盖土 0.5cm 厚,12 小时后将按照配方实例 5 制备的制剂用 水稀释,以三个不同剂量对培养试材进行上壤表面处理。定期观察各处理植株生长状态、受害症状。5 级目测法评价化合物的除草活性,具体试验结果见表 7。

表 7: 苗前土壤不同剂量处理的除草活性评价

化合物	浙江院	剂量			除草	活性指数		
编号	编号	(gai/ha)	称草	马唐	牛筋草	芥菜	反枝苋	马齿苋
1-3	ZJ0679	75	0	0	0	1	4	0
		150	0	0	0	4	4	2
		300	2	0	0	5	4	3
1-4	ZJ0685	75	0	· 0	2	0	0	0
		150	2	0	4	4	2	2
		300	3	0	4	4	3	3
I-46	ZJ0361	120	0	2	4	0	0	0
		245	2	2	4	0	0	0
		375	3	2	4	0	0	0
I-75	ZJ0754	75	0	0	3	0	4	0
		300	2	0	4	3	4	4
1-76	ZJ0700	75	0	0	0	0	0	0
		150	0	0	4	0	0	0
		300	0	0	4	0	4	0
I-77	ZJ0701	75	0	0	0	0	0	0
		150	0	0	3	0	0	0
		300	0	0	4	0	2	0
I-78	ZJ0273	75	3	0	2	0	4	4
		150	4	2	4	0	5	4
		375	5	3	4	1	5	5
1-79	ZJ0702	75	0	0	0	0	0	0
		150	0	0	3	0	0	0
		300	0	0	4	2	2	0
1-80	ZJ0736	75	0	2	4	3	4	2
		150	3	2	4	3	5	5
1-81	ZJ0741	75	0	0	0	0	4	0
		300	0	0	3	0	4	4
1-82	ZJ0738	75	0	0	3	0	4	0
		300	4	3	4	4	5	4
1-83	ZJ0737	75	0	0	4	0	4	0
		150	0	0	4	0	4	3
	<u> </u>	225	4	2	4	0	4	3
1-85	ZJ0740	75	0	0	0	0	4	0
		150	0	0	3	0	4	0
		300	0	0	4	0	4	3
1-86	ZJ0755	75	0	0	0	0	4	0
	710775	300	3	2	4	3	4	4
1-87	ZJ0756	75	0	0	2	0	4	0
		150	0	0	3	0	4	2
		300	2	0	4	0	4	4
1-90	ZJ0742	75	0	0	0	0	4	3
		300	3	22	4	0	4	4

1-91	ZJ0743	75	0	0	0	0	4	0
	2307.13	150	0	0	0	0	4	0
	į	300	3	2	2	2	4	4
1-92	ZJ0747	75	0	0	3	0	3	0
		300	3	2	4	2	4	3
I-93	ZJ0746	37.5	0	0	3	0	4	2
		225	4	2	4	3	4	4
I-94	ZJ0745	75	0	0	0	0	3	0
		225	4	3	4	3	4	4
I-95	ZJ0744	75	0	0	3	0	3	0
		300	4	3	4	0	4	4
1-96	ZJ0748	75	0	0	0	0	3	1
		300	4	3	4	3	4	4
[-97	ZJ0749	75	0	0	3	0	4	2
		225	3	3	4	0	4	4
1-98	ZJ0750	75	0	0	2	0	4	3
		300	4	3	4	2	4	4
1-99	ZJ0751	75	0	0	2	0	4	3
		225	4	3	4	3	4	4
1-100	ZJ0752	75	2	0	3	0	4	3
		225	4	3	4	0	4	4
I 101	ZJ0859	75	1	11	1	1	3	3
		150	1	1	1	1	3	3
		300	2	2	2	1	3	1
I-102	ZJ0860	75	1	1	1	1	3	3
		150	2	2	2	1	4	4
		300	3	3	3	2	4	4
I-103	ZJ0861	75	1	_1	1	1	4	4
		150	1	1	1	l l	4	4
		300	2	2	2	2	4	4
I-110	ZJ0270	75	3	0	2	0	4	4
		150	4	2	4	0	4	4
		375	5	3	4	11	5	4

实施例 12 苗后茎叶处理的作物安全性试验

在装有试验土的盆钵(直径12cm)内,分别播种棉花、油菜、大豆、玉米、小麦、水稻的常规或杂交品种,置于20~25℃温室中生长,待生长到一定时期后,将按照配方实例 5 制备的制剂用水稀释为一定浓度,以不同的剂量对培养的试材进行茎叶喷雾处理。处理后定期观察植株生长状态和受害症状,以 5 级目测法评价化合物的作物安全性,试验结果见表八,结果表明部分化合物对油菜、棉花、人豆、水稻等作物安全。

表 8: 出苗后叶血处理的作物安全性评价								
化合物	浙江院	剂量	水稻	小麦	玉米	油菜	棉花	大豆
编号	编号	(g						
		ai/ha)						
I-76	ZJ0700	150	3	0	1		2	1
		300	3	1	2	2	3	2
		450	4	1	3	3	4	2
I-77	ZJ0701	150	3	0	1	1	2	1
		300	4	1	3	2	3	ı
		450	4	1	4	4	4	2
I-78	ZJ0273	75	3	1	2	0	0	1
		150	4	3	3	1	0	2
		300	4	5	5	1	0	3
		450	5	5	5	2	1	_ 3
1-79	ZJ0702	150	3	0	1	l	1	1
	ļ	300	3	1	3	2	2	2
		450	4	1	4	4	3	2
I-101	ZJ0859	75	0	1	2	11	2	0
		150	0	3	3	1	2	0
		375	11	2	4	2	3	1
I-102	ZJ0860	75	0	1	2	1	2	0
	1	150	1	2	2	1	2	0
		375	1	2	3	11	3	1
I-103	ZJ0861	75	0	1	2	1	1	1
		150	1	2	3	2	2	2
		375	1	3	4	3	2	3
1-110	ZJ0270	75	3					
1]	150	4					

表 8: 出苗后叶面处理的作物安全性评价

实施例 13 茎叶处理的移栽水稻安全性试验

300

在装有试验土的盆钵(直径 12cm)内,移栽 2-3 叶期的水稻秧苗,置于 20~30℃ 温室中生长,待生长到 4-5 叶期后,将按照配方实例 5 制备的制剂用水稀释为一定浓度,以150g ai/ha 剂量对水稻秧苗进行茎叶喷雾处理。处理后定期观察植株生长状态和受害症状,以5级月测法评价化合物对水稻苗的安全性,试验结果见表9。

化合物 编号	浙江院 编号	剂量 (gai/ha)	对分蘖的影响	矮化	叶色
1-101	ZJ0859	150	尤	<10%	恢复正常
1-102	ZJ0860	150	无	10-15%	稍黄
I-103	Zj0861	150	无	20-25%	稍黄

表 9、部分化合物对 4-5 叶期移栽水稻苗安全性评价

权利要求

1. 一种 2一嘧啶氧基-N-芳基苄胺衍生物, 其结构式如下所示:

$$\begin{array}{c|c}
D & E \\
N & N \\
O & R^3 & X
\end{array}$$

$$\begin{array}{c|c}
R^2 \\
R^1 & 5
\end{array}$$
(I)

其中:

D 或 E 为氢、卤素、 C_1 $-C_4$ 烷基、 C_1 $-C_4$ 卤代烷基或 C_1 $-C_4$ 卤代烷基基, D 和 E 可以是相同的或者不同的基团;

 R^1 为氢、卤素、 C_1 - C_4 烷基、 C_1 - C_4 烷氧基,它在苯环上可处于 3、4、5、6 位中的任何一个位置:

 R^2 为氢、卤素、 C_1-C_4 烷基、 C_1-C_4 烷氧基、 C_1-C_4 胺甲酰基、 C_1-C_4 烷酯基、 C_1-C_4 卤代烷基、氰基、硝基、羧基或其碱金属盐、碱土金属盐或有机铵盐、 C_1-C_4 烷酰氨基、 C_1-C_4 卤代烷酰氨基、杂环酰氨基、苯或取代苯甲酰氨基、苯并或取代苯并化合物:其中 R^2 可以处于苯环的邻位、间位或对位,n=1-3:

 R^3 为氢、 C_1-C_4 烷酰基、 C_1-C_4 卤代烷酰基、苯甲酰基或 C_1-C_4 烷氧乙酰基: X 为氢或氮。

- 2、如权利要求 1 所述的一种 2—嘧啶氧基-N-芳基苄胺衍生物, 其特征是其中 D 和 E 两者均为甲氧基。
- 3、如权利要求 1 所述的一种 2—嘧啶氧基-N-芳基苄胺衍生物,其特征是 R² 是三氟甲酰氨基,处于邻位、问位或对位的卤素、C₁-C₄ 烷基、C₁-C₄ 烷氧基、三氟甲基、氧基、或硝基取代的苯甲酰氨基,甲基,甲氧基,三氟甲基,C₁-C₄ 烷酯基,羧基或其钠盐、钾盐或铵盐。
- 4、如权利要求 1 所述的一种 2—嘧啶氧基-N-芳基苄胺衍生物, 其特征是 R³ 为 氢、乙酰基、氯乙酰基、二氯乙酰基、苯甲酰基或甲氧乙酰基。
- 5、如权利要求 1 所述的一种 2一嘧啶氧基-N-芳基苄胺衍生物, 其特征是所述的杂环酰氨基是吡啶、噻吩、噻唑或嘧啶杂环酰氨基。

6、一种如权利要求 1 所述的 2─嘧啶氧基-N-芳基苄胺衍生物的制备方法, 其特征是在有机溶剂中和反应温度为室温至溶剂沸点. 水杨醛、芳胺和催化剂摩尔比为 1: 1~2: 0~0.2 时, 反应为 0.5 到 12 小时制得中间体 (II), 所述的催化剂是对甲基苯磺酸、甲磺酸、硫酸、盐酸或醋酸;

在有机溶剂中和反应温度为室温至摄氏 40 度,反应物(II)与还原剂的摩尔比为 1:0.5-2,反应时间为 0.5 至 10 小时制得中间体 (III),还原剂为硼氢化钠或硼氢化钾;在有机溶剂中和反应温度为室温至摄氏 40 度,催化剂的作用下用氢气还原化合物 (II)制得中间体 (III),催化剂是雷式镍 (Raney Ni)、钯碳或铂黑 ,反应物 (II)与催化剂的摩尔比为 1:0.01-0.5,反应时间为 0.5 至 10 小时;

在有机溶剂中和反应温度为室温至溶剂沸点,中间体(III)与 2-甲砜基-4-D,6-E-取代嘧啶在碱的存在下反应 0.5 到 20 小时制得 2 一嘧啶氧基-N-芳基苄胺(R³=H),中间体(III)与 2-甲砜基-4-D,6-E-取代嘧啶和碱的摩尔比为 1: 1.0-1.2:1-5,所述的碱 是一价或二价金属的氢化物、烷氧金属化合物或其碳酸盐、三乙胺、吡啶等有机碱:

上述 2 一嘧啶氧基一N一芳基苄胺(I,R³=H)结构式(I)所示(R=H)的化合物、酸酐或酰氯 R³CI(R³ \neq H)及碱的摩尔比为 1:1.0-4:0-2 时,在溶剂中和室温到回流温度下反应 2-8 小时,制得如结构式(I)所示(R \neq H)的化合物 ,2一嘧啶氧基一N一芳基苄胺的酰化产物(I,R³ \neq H),其中中间体(II)、(III)或结构式(I)所示的化合物的结构式如下:

$$\begin{array}{c}
\text{OH} \\
\text{RI} \\
\text{N}
\end{array}$$

$$(11)$$

$$(111)$$

D

$$\begin{array}{c}
V \\
N \\
N
\end{array}$$
 $\begin{array}{c}
V \\
R^3
\end{array}$
 $\begin{array}{c}
V \\
R^2
\end{array}$
 $\begin{array}{c}
V \\
R^2
\end{array}$
 $\begin{array}{c}
V \\
R^2
\end{array}$

,结构式中 D、E、X、R¹、R²或 R³ 如权利要求 1 所述。

7、一种如权利要求 5 所述的 2—嘧啶氧基-N-芳基苄胺衍生物的制备方法, 其特征是最终产物经硅胶柱层析或重结晶纯化。

- 8、一种如权利要求 5 所述的 2—嘧啶氧基-N-芳基苄胺衍生物的制备方法, 其特征是其中制制备中间体 (II) 时, 所述的催化剂与芳胺的摩尔比为 0.01-0.1。
- 9、一种如权利要求 5 所述的 2—嘧啶氧基-N-芳基苄胺衍生物的制备方法, 其特征是所述的一价或二价金属的氢化物和烷氧金属化合物是氢化钠、氢化钾、氢化钙、甲醇钠、乙醇钠、甲醇钾、乙醇钾、碳酸钠、碳酸钾或碳酸钙。
- 10、一种如权利要求 1 所述的 2—嘧啶氧基-N-芳基苄胺衍生物的用途, 其特征 是农用化学除草剂。

INTERNATIONAL SEARCH REPORT

International application No

PC1 CX01 01395

A CLASSIFICATION OF SUBJECT MATTER				
C07D239.34 401.1. According to International Patent Classification (IPC) or to both in	2 409 12 A01N43:54 sational classification and IPC			
B HILDS SEARCHED				
Minimum documentation searched (classification system followed	by classification symbols)			
. IPC CO	7D \01X			
Documentation searched other than minimum documentation to the	ne extent that such documents are included i	in the fields searched		
1 lectronic data base consulted during the international search (nai	ne of data base and, where practicable, sear	ch terms used)		
C DOCUMENTS CONSIDERED TO BE RELEVANT				
Category* Citation of document, with indication, where a	appropriate, of the relevant passages	Relevant to claim No		
1 P- \-468695(IMPERIAL CHEMICAL INDUS) see the whole document	TRIES PLC) 29 Jan.1992	[-]0		
☐ I wither documents are listed in the continuation of Box C.	✓ See reason family annex			
		:		
Special categories of cited documents: Volument defining the general state of the art which is not considered to be of particular relevance. casher application or patent but published on or after the international filing date. document which may throw doubts on priority claim (S) or which is cated to establish the publication date of another.	"T" later document published after the or priority date and not in conflict cited to understand the principle cinvention "X" document of particular relevance cannot be considered novel or cannot an inventive step when the document	with the application but or theory underlying the i: the claimed invention the considered to involve		
Abcument referring to an oral disclosure, use, exhibition or other me ins Abcument referring to an oral disclosure, use, exhibition or other me ins Abcument published prior to the international filing date but later than the priority date claimed.	"Y" document of particular relevance cannot be considered to involve a document is combined with one of documents, such combination beautifled in the art. "&" document member of the same p	n inventive step when the r more other such ing obvious to a person		
Date of the actual completion of the international search 39/32/2003	Plate of mailing of the international sear 24 JAK. 2007 (2.4)			
Nan Cand mailing address of the PSACN 5 Noveberg Rd - Junen Bridge Handian District 100088 Berjing, Clima Jacsumle No. 86-10-62019 151	Authorzed officer Zhou Hubin Telephone No. 86-10-62093075			

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PC 1 CN01 01395

) b Jewos 7 10050150
A

	国际检索报告		[4][4][4][4][4][4][4][4][4][4][4][4][4][U1 CN01 01395
A. 主题的分	类 - C07D239'34 - 401 E 日分たた(IPC)或者同时按照日素分た(II IPC		3 54	
B. 检索 须墩			·	
	型文庫(1k明立た体報和立た号) - 207D - A01N			
	现中的等最快快度支献度经的控制支献			
	查喝的电子数据库(数据库)的名称和,如果	实际可行的,使用	的检索司)	
(. 相关文件				
:: di.*	引用文件、必要时、 报	5明相关段落		相关的权利要求超了
□ 1. p s	C信在C 与的变更更快剧出	図 見同族人科	DMFM	
37 m H (1) 1	 (これならでも別担人的) 鬼ども(支払的と付 し) (これの) といかがか しのりむをいり (これでした NOTES) よ付し りゅうし (高 った) (これでは、10円的) 水石に 1(2を) (スリンカ) 	据歷、但是引 "N" 特別相关的文 实明就不能决 "Y" 特别相关的文 结合并且这种	母に足力す即解1 得。 代(なき)と。 力足せい (の)、 件。 当っ (と) (と) (紹合)な) 本 (の) (的)な !! 本 () ()	1911年文化、ビッド、1911年 1918年(早の10年)次 1922年(1912年)。 1912年7日2日 1912年18月年(1915年) 1918年18月 - 1913年)。 1918年1
1 1 2 2 3	2001.11.10		2002 (2.4	(.01,02)
1 6 3,000	(3.4.10 a.5(1 <u>2.10</u>	受权介别 周节	ا] نهار	
中[刊]	TSA CN 北京市海淀区西土城路 6 号(100088)			

世后号码。86-10-62093075

	- 国际检索报告 スチョ5 たり成の国情度	11	nk () PC I' CN01 01395
於海銀古中界場的 专利文件	28 61100	间族专利成员	28 ft 12 ft
EP468695A	29.01.92		
		HU58299A	28 02.92
		AU8043791A	30 01 92
		CA2047510	28 01 92
		ZA9105512A	29 04 92
		P	29 05 92
		BR9103225A	26 05.92
		CN1060289A	15 04 92
		JP5163249A	29,06 93
		IL98830A	31.01.96
		EP468695B1	11.09.96
		DE6912996E	17 10.96
		HU212117B	28 02 96
		1E74711B	30 07 07
		JP3041315B	15 05 00
		KR200936	15 06 99