问题求解(二)作业(第三周)

161180162 许致明

2018年3月17日

CS 第一章

1.13

设第 i 天得到的钱为 p_i , 第 i 天拥有钱的总数为 P_i ,

$$p_1 = P_1 = 1$$
 $p_i = 2 \cdot p_{i-1}, i \ge 2$
 $\therefore p_i = 2^{i-1} \quad (乘法原则)$
 $\therefore P_n = \sum_{i=1}^n 2^{i-1} = 2^n - 1 \quad (加法原则)$

由此可得,第 20 天钱的总数为 $2^{20} - 1 = 1048575$, (c) 列表如下: 第 n 天钱的总数为 $2^n - 1$.

2.5

- (1) 当 $k \le n$ 时: $n^{\underline{k}} \cdot k!$
- (2) 当 k > n 时,要求发出所有的水果,则有人可能 得到多于一块。此时方案个数为: n^k .

2.15

若无先后顺序,则有 (n-1)(2n-1) 种方式,若考 5.14 虑先后顺序,则有2(n-1)(2n-1)种方式。

5.4

 n^k

5.12

(a) S(n,n) = 1: 将 n 个元素分为 n 类,则每个元素 { 为一类,一类仅含一个元素。类与类之间不可 int ret=1;

区分, 因此 S(n,n) = 1. S(n,1): 所有元素均在一个类中,因此为 1.

- (b) $S(n,n) = S(n-1,k-1) + k \cdot S(n-1,k)$: $n \uparrow$ 元素分为k个类可以看作两个过程的和:
 - 1. n-1 个元素构成了 k-1 个类,则第 n 个元 素氮素构成一个集合, 即 S(n-1,k-1)
 - 2. n-1 个元素已经构成了 k 个类,则将第 n 个 元素插入到任意一类中, 即 $k \cdot S(n-1,k)$.

上述即为此等式的含义。

1	2	3	4	5	6
1					
1	1				
1	3	1			
1	7	6	1		
1	15	25	10	1	
1	31	90	65	15	1
	1 1 1 1	1 1 1 1 1 3 1 7 1 15	1	1	1 1 1 1 1 3 1 7 6 1 1 15 25 10 1

运行缓慢的原因是递归程序不断重复计算已经算 过的数据。通过猜测并证明可以得到此递归过程的 递归式解为指数函数,随着输入数据的增大,算法 复杂度上升极快。

一个改进的版本如下:

int Binom(int n, int k)

```
if (k>n)
{
          printf("Error: "k">"!");
          exit(1);
}
else
{
          int kk=1;
          for(int i=1;i<=k;++i)
                kk*=i;
          for(int i=n;i>=n-k+1;--i)
                ret*=i;
          ret/=kk;
}
return ret;
}
```

此算法是伪多项式复杂度,对于较小的 n,k,运行时间为 O(n),好于递归版本的指数复杂度。