Taxi Tip Comparison

Author: Logan Kaliba **Date:** February 13, 2025

Context: I'll be looking customer tips from a taxi company. The goal of this project is to determine whether there's a significant difference in average tip amount between yellow and green taxis in NYC.

This analysis uses a 2-sample t-test in Python with SciPy.

=== 1. Import Libraries ===

```
import pandas as pd
import seaborn as sns
from scipy import stats
```

=== 2. Load and Explore the Dataset ===

```
# Load the CSV file into a dataframe.
taxi_samples = pd.read_csv('https://bit.ly/taxi-samples')
# Calculate the dimensions of the dataset.
# 584 records, 8 columns
taxi_samples.shape
→▼ (584, 8)
# List the columns in the dataset along with their data types.
# The data found in the "tip" column are float types
taxi_samples.info()
→ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 584 entries, 0 to 583
    Data columns (total 8 columns):
         Column
                     Non-Null Count Dtype
         -----
                     -----
                     584 non-null
                                     int64
         passengers 584 non-null
                                     int64
     2
         color
                     584 non-null
                                     object
         distance
                     584 non-null
                                     float64
```

```
4 fare 584 non-null float64
5 tip 584 non-null float64
6 tolls 584 non-null float64
7 total 584 non-null float64
Itypes: float64(5) int64(2) object(1)
```

dtypes: float64(5), int64(2), object(1)

memory usage: 36.6+ KB

Preview the first 5 records in the dataset.
taxi_samples.head()

→		id	passengers	color	distance	fare	tip	tolls	total
	0	1	1	green	0.72	5.5	1.11	0.0	7.56
	1	2	3	yellow	2.16	10.0	2.88	0.0	15.80
	2	3	1	green	0.15	7.0	2.19	0.0	8.40
	3	4	3	yellow	7.35	22.5	5.38	0.0	27.30
	4	5	1	green	3.44	12.5	3.35	0.0	15.96

[#] Generating descriptive stats for the numeric columns in the dataset.

[#] The average tip across the dataset is \$2.65
taxi_samples.describe()

→ ▼								
<u> </u>		id	passengers	distance	fare	tip	tolls	total
	count	584.000000	584.000000	584.000000	584.000000	584.000000	584.000000	584.000000
	mean	292.500000	1.446918	2.333699	10.687500	2.651558	0.053836	15.912483
	std	168.730554	1.126900	2.038913	6.368975	1.364825	0.541843	7.891350
	min	1.000000	0.000000	0.000000	3.000000	0.060000	0.000000	4.810000
	25%	146.750000	1.000000	1.000000	6.500000	1.697500	0.000000	10.380000
	50%	292.500000	1.000000	1.595000	8.500000	2.580000	0.000000	13.555000
	75%	438.250000	1.000000	3.012500	13.125000	3.530000	0.000000	19.560000
	max	584.000000	6.000000	13.900000	50.000000	7.730000	5.760000	57.800000

=== 3. Segment Data by Cab Color and Visualize ===

```
# Here I segmented the data, so that I can have two additional dataframes -- one with yellow
# I called them "df_taxi_yellow" and "df_taxi_green".

df_taxi_yellow = taxi_samples[taxi_samples['color'] == 'green']

df_taxi_green = taxi_samples[taxi_samples['color'] == 'yellow']
```

I generated a histogram to visualize the distribution of tips within the yellow cab data.
sns.displot(df_taxi_yellow['tip']);

I generated a histogram to visualize the distribution of tips within the green cab data.
sns.displot(df_taxi_green['tip'])

<seaborn.axisgrid.FacetGrid at 0x7a41c10b43d0>

> === 4. Test for Normality ===

```
from os import stat
# Next, I will perform a normality test to see if the data within the "tip" columns for yell
# If the p-values are > 0.05, that means that each dataset is normal
x = df_taxi_yellow['tip']
y = df_taxi_green['tip']

# Perform normality test
# Based on results from the normality tests (p-values), both of the datasets is "normal enou print(stats.normaltest(x))
print(stats.normaltest(y))

NormaltestResult(statistic=18.463276952811235, pvalue=9.789270985641703e-05)
NormaltestResult(statistic=3.64258187700985, pvalue=0.16181672060489052)
```

=== 5. Test for Equal Variance (Bartlett's Test) ===

Prior to conducting the 2-sample t-test, I performed a Bartlett's test to evaluate the equa # We can assume NO differences in variance as the p-value (0.379) > 0.05. stats.bartlett(x, y)

→ BartlettResult(statistic=0.7714482981698573, pvalue=0.37976938229166823)

> === 6. Conduct 2-Sample T-Test ===

I then conducted a 2-sample t-test to determine if there is a statistically significant difstats.ttest_ind(x, y)

TtestResult(statistic=-0.04542243544132782, pvalue=0.9637861790300399, df=582.0)

Based on the results from the t-test, we cannot state there is a difference in average tip # Since the p-value 0.963 > 0.05, we fail to reject the null hypothesis and assume no differe