Math 151A – Applied Numerical Methods I

University of California, Los Angeles

Duc Vu

Fall 2021

This is math 151A – Applied Numerical Methods taught by Professor Jiang. We meet weekly on MWF from 1:00 pm to 1:50 pm for lecture. The recommended textbook for the class is *Numerical Analysis* 10^{th} by *Burden*, *Faires* and *Burden*. Other course notes can be found at my blog site. Please let me know through my email if you spot any typos in the note.

Contents

1 Lec 1: Sep 24, 2021 1.1 Calculus Review	2
List of Theorems	
1.2 Taylor	2

List of Definitions

$\S1$ Lec 1: Sep 24, 2021

§1.1 Calculus Review

• Intermediate Value Theorem (IVT): For continuous function C([a,b]), let $f \in C([a,b])$. Let $k \in \mathbb{R}$ s.t. k is strictly between f(a) and f(b). Then, \exists some $c \in (a,b)$ s.t. f(c) = k.

Question 1.1. Why is IVT useful?

It guarantees the existence of solution to some nonlinear equations.

Example 1.1

Let $f(x) = 4x^2 - e^x$. IVT tells us $\exists x^*$ s.t. $f(x^*) = 0$.

$$f(0) = 0 - e^{0} = -1 < 0$$
$$f(1) = 4 - e > 0$$

$$J(1)$$
 1 0 $>$

With k = 0, by IVT, $\exists c \in (0, 1)$ s.t. f(c) = 0.

• Mean Value Theorem (MVT): If $f \in C([a,b])$ and f is differentiable in (a,b), then $\exists c \in (a,b)$ s.t.

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

in which f'(c) is essentially the slope of the tangent line at (c, f(c)).

• Taylor's Theorem: Apply for a differentiable function, $f \in C^m([a,b]) - f$ is m times continuously differentiable.

Theorem 1.2 (Taylor)

Let $f \in C^n([a,b])$. Let $x_0 \in [a,b]$. Assume $f^{(n+1)}$ exists on [a,b]. Then $\forall x \in [a,b]$, $\exists \xi(x) \in \mathbb{R}$ s.t. $x_0 < \xi < x$ or $x < \xi < x_0$. Then, we can express f as

$$f(x) = P_n(x) + R_n(x)$$

where

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

and

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Example 1.3

$$f(x) = \cos(x), x_0 = 0$$

$$f(x) = \cos(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(\xi(x))}{3!}x^3$$
$$= 1 + 0 - \frac{1}{2}x^2 + \frac{1}{6}x^3\sin(\xi(x))$$

Note: Saying $f \in C^1$ is different from saying f'(x) exists.

Example 1.4

Consider

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$

Have

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} h \sin\left(\frac{1}{h}\right)$$
$$= 0$$

But f'(x) is not continuous. Specifically,

$$f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right), & x \neq 0\\ 0, & x = 0 \end{cases}$$

Take sequence $\frac{1}{2k\pi}$, $f' \to -1$ and $\frac{1}{(2k+1)\pi}$, $f' \to 1$. Thus, the function is not continuous as it converges to two different values.