

CT Image Denoising

PID_1544

L&T Technology Services

Mayank Jeet Nakrani Kathane

Shubham Vishwakarma

College Name - Mukesh Patel School of Technology, Management and Engineering (NMIMS), Mumbai

Challenge Statement

Understanding the Problem

In medical imaging, particularly brain CT scans, image quality is often compromised by two prevalent types of noise:

1. Poisson Noise:

 Originates from the statistical nature of photon detection during image acquisition.

2. Periodic Noise:

 Caused by interference from electronic and mechanical components in the CT scanner.

Challenge Requirement

The objective is to develop a **software tool** capable of

- **1.** Reading and displaying CT brain scans in DICOM format.
- **2. Designing an algorithm** that reduces Poisson and periodic noise effectively.
- 3. Enhancing image clarity while preserving essential diagnostic information, leading to more accurate diagnoses.

Concept / Scope of solution

Dataset

- Autoencoder Architecture: The use of a denoising autoencoder that learns both spatial and feature representations of CT images is an innovative approach, enabling automatic noise removal while preserving critical image details for diagnosis.
- " DICOM Integration: Handles CT scans in their native DICOM format, maintaining medical data integrity.
- Medical Diagnostics: Enhances clarity in CT scans for better detection of pathologies such as tumors, hemorrhages, or structural anomalies in the brain.
- Adaptability & Scalability: Potential to extend the solution to other imaging modalities (e.g., MRI) or apply it to real-time CT imaging workflows.

Feedback from Presentation Round and its Use

- #GUI User-Friendly: Implemented an intuitive interface for easy navigation and better user engagement
- Minimal Loss in CT Scan Images: Ensured high-quality image handling through optimized compression and error-free data processing
- "Deployment: Streamlined solution deployment across multiple platforms, enabling wider accessibility
- Multiple Images Upload: Added batch upload functionality for handling multiple images simultaneously
- // Download Option: Provided a direct download feature for results, enabling offline review and further analysis

SWOT Analysis

STRENGTH

- High-quality noise reduction (Poisson & periodic noise)
- DICOM compatibility for seamless integration
- # Automated & efficient reduces manual intervention
- Scalable adaptable to MRI, ultrasound, etc.

OPPORTUNITIES

- Integration with PACS (Picture Archiving and Communication System) & hospitals
- Real-time processing with optimized models
- Expansion to other medical imaging modalities

WEAKNESS

- # High computational demand (requires GPUs)
- Data dependency needs large, high-quality datasets
- Potential artifacts risk of altering critical medical details

THREATS

- Regulatory & ethical concerns (HIPAA, GDPR)
- Resistance to AI adoption by radiologists
- Competitor AI-based solutions in medical imaging

Implementation (1/2)

Implementation (2/2)

Testing / Analysis (1/2)

Original Image

SNR: 0.98 dB

Denoised Output

SNR: 18.91 dB

SNR Improvement: Increased from 0.98 dB (original) to 18.91 dB, enhancing image quality

Testing / Analysis (2/2)

	precision	recall	f1-score	support	
0	0.50	0.50	0.50	4	
1	0.50	0.50	0.50	6	
2	0.00	0.00	0.00	4	
3	0.33	0.40	0.36	5	
accuracy			0.37	19	
macro avg	0.33	0.35	0.34	19	
weighted avg	0.35	0.37	0.36	19	

	precision	recall	f1-score	support
0	1.00	0.75	0.86	4
1	0.86	1.00	0.92	6
2	0.75	0.75	0.75	4
3	0.80	0.80	0.80	5
accuracy			0.84	19
macro avg	0.85	0.82	0.83	19
eighted avg	0.85	0.84	0.84	19

Noisy Image

Denoised Image

- Denoising Evaluation: Processed 19 noisy CT scan images through the model, resulting in increased SNR, indicating improved image quality.
- Disease Prediction Validation: Developed a separate classification model to predict disease presence and type using both noisy and denoised images.
- Performance Comparison: Generated a classification report comparing model accuracy on noisy vs. denoised images.
- Key Insight: The model extracts features more effectively from denoised images, leading to better classification accuracy and improved disease prediction.

POC Demo

Aspect	POC	MVP	Upgrades / Actions
Algorithm & Model	Basic autoencoder with minimal tuning on a small dataset.	Enhanced model robustness and improvements (e.g., real-time denoising, additional features).	 Scale training with diverse data. Explore alternate architectures and refine loss functions.
Data Handling	Limited DICOM integration and curated dataset.	Automated data pipelines handling larger, diverse datasets with augmented data and integrated PACS connectivity.	 Implement automated preprocessing and labeling. Ensure data quality and compliance checks.
User Interface	Minimal UI/CLI for demonstration purposes.	Full-fledged, intuitive GUI integrated into clinical workflows with functionalities such as batch uploads, visualization, and download options.	Develop a user-friendly interface.Integrate with existing hospital systems.
Infrastructure	Limited cloud/GPU resources; manual deployment.	Scalable, automated cloud or on-premises HPC deployment with CI/CD pipelines and real-time monitoring.	 Upgrade compute resources. Automate deployment and monitoring for continuous improvement.
Compliance 8 Security	Basic anonymization and internal protocols.	Robust regulatory compliance (e.g., HIPAA/GDPR) with enhanced data security measures, audits, and documentation.	Engage in security audits.Formalize compliance processes and documentation.
Testing & Validation	Preliminary tests with manual validation.	Comprehensive testing including performance evaluation, user acceptance, and clinical validation.	 Expand test cases and validation protocols. Gather structured feedback from clinical users.

Cost for POC vs MVP

Cost Category	PoC (₹)	MVP (₹)	Description
Data Collection	NA	20,000+	Costs for obtaining and preprocessing CT scan datasets.
Computational Resources	NA	30,000 - 50,000	Cloud GPU usage, servers, and storage for training and validation.
Testing & Validation	NA	15,000 - 25,000	Costs associated with evaluating model performance (SNR calculation, validation).
Deployment & Maintenance	~ 1,500 - 2,000	40,000 - 1,00,000+	Deployment on servers, maintenance, and updates.
Personnel	NA (self/research)	1,50,000+ per month	Salaries for data scientists, engineers, and developers involved in the project.

Note: -

The above cost estimate is approximate and may vary based on project scope, resource availability, and specific requirements.

Total POC Estimated Cost: ₹1,500 - ₹2,000

Total MVP Estimated Cost: ~ ₹2,50,000+

Result / Conclusion

Significant Noise Reduction & SNR Improvement:

The model effectively reduced Poisson and periodic noise while preserving critical medical details, enhancing the Signal-to-Noise Ratio (SNR) for superior image quality.

Disease Prediction Enhancement:

A classification model demonstrated improved feature extraction and disease prediction accuracy using denoised images.

User-Friendly Solution:

Integrated a GUI with batch image upload and download options for easy usability.

Potential for Expansion:

The solution can be adapted to other medical imaging modalities (e.g., MRI) and real-time CT workflows.

References

- "List of research papers or articles on CT image denoising, Autoencoders, and related deep learning techniques."
 - Larrue, Tara, etal." Denoising Videos with Convolutional Autoencoders." (2018).
 - Xie, Junyuan, LinliXu, and EnhongChen. "Image denoising and in painting with deep neural networks." Advances in neural information processing systems. 2012.
 - Dabov, Kostad in , etal. "BM 3D image denoising with shape-adaptive principal component analysis." SPARS'09-Signal Processing with Adaptive Sparse Structured Representations. 2009.
 - Image Denoising based on Deep Learning Zeyu Li https://drive.google.com/file/d/1sJKonZFW6PhQg4-AKRriazfPnhD1v m3/view
 - Brief review of image denoising techniques Linwei Fan1,2,3, Fan Zhang2, Hui Fan2 and Caiming Zhang1,2,3 https://drive.google.com/file/d/1TA43lQucTmFZyyxK1AGY5-3-pwXDB7yq/view
- Reference to any medical imaging databases used (e.g., Kaggle).
- TensorFlow/Keras Documentation for model implementation.
- Dataset https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri

L&T Technology Services

