{EPIB607 CHEAT SHEET}

SAHIR RAI BHATNAGAR (MCGILL UNIVERSITY)

DATA VISUALIZATION

- Commonly used aesthetics in data visualization: position, shape, size, color, line width, line type. Some of these aesthetics can represent both continuous and discrete data (position, size, line width, color) while others can only represent discrete data (shape, line type)
- Cynthia Brewer palettes: Sequential, Diverging, Qualitative

SAMPLING DISTRIBUTIONS, CLT, CI, P-VALUE

- Standard error (SE) of the sample mean is σ/\sqrt{n}
- **SE**(\bar{y}) describes how far \bar{y} could (typically) deviate from μ
- **SD**(*y*) describes how far an individual *y* (typically) deviates from μ (or from \bar{y}).
- **Paramter**: An unknown numerical constant pertaining to a population/universe, or in a statistical model. μ : population mean, π : population proportion, λ : population rate
- **Statistic**: A numerical quantity calculated from a sample. The empirical counterpart of the parameter, used to *estimate* it. \bar{y} : sample mean, p: sample proportion, $\hat{\lambda}$: sample rate
- **Sampling Distribution** of a statistic is the distribution of values taken by the statistic in all possible samples of the same size from the same population. The standard deviation of a sampling distribution is called a standard error.

ONE SAMPLE MEAN

σ	known	unknown
Data	$\{y_1, y_2,, y_n\}$	$\{y_1, y_2,, y_n\}$
Pop'n param	μ	μ
Estimator	$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$	$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
SD	σ	$s = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n-1}}$
SEM	σ/\sqrt{n}	s/\sqrt{n}
$(1 - \alpha)100\%$ CI	$\overline{y} \pm z_{1-\alpha/2}^{\star}(\text{SEM})$	$\overline{y} \pm t^{\star}_{1-\alpha/2,(n-1)}$ (SEM)
test statistic	$\frac{\overline{y}-\mu_0}{\mathrm{SEM}} \sim \mathcal{N}(0,1)$	$\frac{\overline{y}-\mu_0}{\text{SEM}} \sim t_{(n-1)}$

R CODE

```
Normal Distribution Y \sim \mathcal{N}(\mu, \sigma^2)
 Cumulative Probabilities: pnorm(q = , mean = , sd = , lower.tail = TRUE)
  Quantiles: qnorm(p = , mean = , sd = )
  Linear regression: lm(y \sim x, data = df)
 \log \ln k \rightarrow : glm(y \sim x, data = df, family=gaussian(link="log"))
t Distribution Y \sim t_{(df)}
 Cumulative Probabilities: pt(q = , df = , lower.tail = TRUE)
 Quantiles: qt(p = , df = )
Binomial Distribution Y \sim Binomial(N, \pi)
  Cumulative Probabilities P(Y \le k): pbinom (q=, size=, prob=, lower.tail=TRUE)
  Cumulative Probabilities P(Y > k): pbinom (q=, size=, prob=, lower.tail=FALSE)
  Quantiles: qbinom(p = , size = , prob = )
  Probabilities P(Y = k): dbinom(x = , size = , prob = )
  Logistic regression: glm(y \sim x, data = df, family = binomial(link="logit"))
  \log \lim k \rightarrow : glm(y \sim x, data = df, family = binomial(link="log"))
Poisson Distribution Y \sim Poisson(\lambda)
  Cumulative Probabilities P(Y \le k): ppois (q = , lambda = , lower.tail=TRUE)
  Cumulative Probabilities P(Y > k): ppois (q = , lambda =, lower.tail=FALSE)
  Quantiles: qpois(p = , size = , prob = )
  Probabilities P(Y = k): dpois(x = ,lambda = )
  Poisson regression: glm (y \sim x + offset (log (PT)), data=df, family=poisson (link="log"))
```

ASSUMPTIONS

	z	t	Bootstrap
SRS			
Normal population	/ *	/ *	X
needs CLT	/ *	/ *	X
σ known		X	X
Sampling dist. center at	μ	μ	$ar{y}$
SD	σ	s	s
SEM	σ/\sqrt{n}	s/\sqrt{n}	SD(bootstrap statistics)

identity link: glm(y \sim -1 + PT + PT:x, family=poisson(link="identity"))

^a*If population is Normal then CLT is not needed. If population is not Normal then CLT is needed.