Solving Systems of Linear Equations Answers and Explanations

Answer

1. B 2. C 3. D 4. D 5. C 6. D 7. A 8. B 9. D 10. C

Answer Key

1. B. In this problem we will use substitution to solve the system of equations. First, we will isolate the x-value in the first equation $2x - 4y = -8 \rightarrow x - 2y = -4 \rightarrow x = 2y - 4$. We will then plug this x-value into the second equation to find our *v*-value:

$$4x - 2y = -16$$

$$2x - y = -8$$

$$2(2y-4)-y=-8$$

$$4y - 8 - y = -8$$

$$3 y = 0$$

$$y = 0$$

Knowing that our y-value is zero we can solve for our x-value:

$$2x-4(0)=-8$$

$$2x = -8$$

$$x = -4$$

Therefore, the value of x + y is equal to -4 which makes answer choice (B) correct.

2. C. For this problem we will isolate the x-value in the second equation

$$x + 6y = 3$$

$$x = 3 - 6y$$

Then we will substitute this into our first equation to find our y-value

$$3x - y = 2y + 2$$

$$3x = 3y + 2$$

$$3(3-6v)=3v+2$$

$$3(3-6y)=3y+2$$

 $9-18y=3y+2$

$$7 = 21 v$$

$$y = \frac{1}{3}$$

Knowing that our y-value is $\frac{1}{3}$ we can solve for our x-value:

$$x+6y=3$$

$$x+6\left(\frac{1}{3}\right)=3$$

$$x + 2 = 3$$

$$x = 1$$

Therefore, the value of $x \times y = \left(\frac{1}{3}\right)(1) = \frac{1}{3}$ which makes answer choice (C) correct.

Solving Systems of Linear Equations Answers and Explanations

3. D. In this problem, we will use elimination to solve the system of equations. First, we will add the two linear equations together cancelling out the *y*-value

$$(5x+2y=6)$$

$$+(4x-2y=12)$$

$$9x = 18$$
$$x = 2$$

Knowing that our x-value is 2 we can solve for our y-value

$$5x + 2y = 6$$

$$5(2)+2y=6$$

$$2y = -4$$

$$y = -2$$

Therefore, the value of x-y=2-(-2)=4 which makes answer choice (D) correct.

4. **D.** Here we have two obscure linear equations that can be simplified

$$36x - 9y = 108 \rightarrow 4x - y = 12$$

$$14x - 7y = 28 \rightarrow 2x - y = 4$$

Now we can isolate our y-value in our second equation

$$2x - y = 4 \rightarrow y = 2x - 4 \rightarrow 4x - (2x - 4) = 12 \rightarrow 2x = 8 \rightarrow x = 4$$

Knowing that our x-value is 4 we can solve for our y-value

$$2x-y=4 \to 2(4)-y=4 \to y=4$$

Therefore, the value of x + y = (4) + (4) = 8

5. C. In this problem we will use substitution to solve the system of equations. First, we will isolate the y-value in the second equation $5y = 4x \rightarrow y = \frac{4}{5}x$. We will then plug this y-value into the first equation to find our x-value.

$$3y = \frac{4}{3} - \frac{x}{3} \rightarrow 3\left(\frac{4}{5}x\right) = \frac{4}{3} - \frac{x}{3} \rightarrow \frac{12}{5}x = \frac{4}{3} - \frac{x}{3} \rightarrow \frac{36}{15}x + \frac{5}{15}x = \frac{20}{15} \rightarrow \frac{41}{15}x = \frac{20}{15} \rightarrow x = \frac{20}{41}$$

Knowing that our x-value is $\frac{20}{41}$ we can solve for our y-value:

$$5y = 4x \rightarrow y = \frac{4}{5} \left(\frac{20}{41} \right) = \frac{80}{205} = \frac{16}{41}.$$

Now that we have our x and y-values the question is asking for the dividend of our x and y-values.

$$\frac{x}{y} = \frac{\frac{20}{41}}{\frac{16}{41}} = \frac{20}{41} \times \frac{41}{16} = \frac{20}{16}$$
 which means answer choice (C) is correct.

6. D. Here we are only asked to find the *x*-value of the systems of equations; therefore, we will isolate the *y*-value in this first equation to find our *x*-value.

$$-x + y = -2.5 \rightarrow y = x - 2.5$$

Now we can substitute our *y*in the second equation to find our *x*-value.

$$x+3y=10.5 \rightarrow x+3(x-2.5)=10.5 \rightarrow x+3x-7.5=10.5 \rightarrow 4x=18 \rightarrow x=4.5$$

Knowing that our x-value is 4.5 answer choice (D) is correct.

Solving Systems of Linear Equations Answers and Explanations

- 7. A. For this problem, we are presented with an isolated x-value in the first equation; therefore, we will simplify and substitute to solve for our y-value. $2x=2y-6 \rightarrow x=y-3$. Now we can substitute our x-value into the second equation to find our y-value. $(y-3)+4y=12 \rightarrow 5y=15 \rightarrow y=3$. Knowing that our y-value is 3 we can substitute this value into our first equation to get an x-value. $2x=2(3)-6 \rightarrow x=0$. Therefore, the ordered pair (x,y) that satisfies the system of equations is (0,3) which means answer choice (A) is correct.
- 8. B. Here we have a problem testing our knowledge of systems of equations with infinitely many solutions. When a system of equations has infinitely many solutions the two lines are exactly the same; therefore, we can multiply our first equation in order to align our *y*-intercepts. $ax + by = 14 \rightarrow 5ax + 5by = 70$. Now we know that *a* and *b* are constants, and we also know that our equations must match therefore we can set the *x*-values and *y*-values equal to each other in order to get the values of *a* and *b*. $5ax = 3x \rightarrow a = \frac{3}{5}$ $5by = 5y \rightarrow b = 1$. Knowing that our *a* and *b* values are $\frac{3}{5}$ and 1 respectively we can now solve for the dividend of $\frac{a}{b} = \frac{\frac{3}{5}}{1} = \frac{3}{5}$ which means answer choice (B) is correct.
- 9. **D**. Here we have a problem that is testing our knowledge on the systems of equations with no solutions. When a system of equations has no solutions the two lines must be parallel and never intersect, which means they have the same slope, but different y-intercepts. Therefore, we will put the two equations in slope-intercept form $3x+6y=10 \rightarrow y=-\frac{1}{2}x+\frac{5}{3}$ and $6x+cy=12 \rightarrow y=-\frac{6}{c}x+12$. Looking at the two equations in order for them to be parallel our value of c must equal 12 which means answer choice (D) is correct.

10. C. Here we have a problem testing our knowledge of systems of equations with infinitely many solutions. When a system of equations has infinitely many solutions the two lines are exactly the same; therefore, we can

multiply our first equation in order to align our *y*-intercepts. $cx+3y=24 \rightarrow 4cx+12y=72$. Furthermore, we can put both equations into slope-intercept form in order to determine the slope. $192x+64y=384 \rightarrow y=-3x+6$ and $4cx+12y=72 \rightarrow y=-\frac{4c}{12}x+\frac{72}{12} \rightarrow y=-\frac{4c}{12}x+6$. In order to make these lines exactly the same our *c*-value must equal 9 which makes answer choice (C) correct.