Machine Learning Workshop 1-CSE 2793

MINOR ASSIGNMENT-3: FUNCTIONS AND LOOPS

Q 01 Write function calc_primes_up_to(max_value) to compute all prime numbers up to a given value. As a reminder, a prime number is a natural number greater than 1 and exclusively divisible by itself and by 1.

Check your algorithm with the following values:

Input	Result
15	[2, 3, 5, 7, 11, 13]
25	[2, 3, 5, 7, 11, 13, 17, 19, 23]
50	[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

Q 02 Create function calc_checksum(digits) that performs the following position-based calculation for the checksum of a number of any length given as a string, with the n digits modeled as z_1 to z_n :

$$z_1 z_2 z_3 \dots z_n \Rightarrow (1 * z_1 + 2 * z_2 + 3 * z_3 + \dots + n * z_n)\%10$$

Check your algorithm with the following values:

Input	Sum	Result
"11111"	1 + 2 + 3 + 4 + 5 = 15	15 % 10 = 5
"87654321"	8 + 14 + 18 + 20 + 20 + 18 + 14 + 8 = 120	120 % 10 = 0

Q 03 Compute all combinations of the values a, b, and c (each starting from 1 and less than 100) for which the following formula holds:

$$a^2 + b^2 = c^2$$

Bonus:

Reduce the running time of $O(n^3)$ to $O(n^2)$.

Q 04 This exercise deals with three-digit Armstrong numbers. By definition, these are numbers for whose digits x, y, and z from 1 to 9 satisfy the following equation:

$$x * 100 + y * 10 + z = x^3 + y^3 + z^3$$

Write function calc_armstrong_numbers() to compute all Armstrong numbers for x, y, and z (each < 10).

Q 05 Two numbers n_1 and n_2 are called friends (or related) if the sum of their divisors is equal to the other number:

$$sum(divisors(n_1)) = n_2$$

 $sum(divisors(n_2)) = n_1$

Write function calc_friends(max_exclusive) to compute all friends numbers up to a passed maximum value.

Input	Divisors
$\sum (divisors(220)) = 284$	div(220) = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110
$\sum (divisors(284)) = 220$	div(284) = 1, 2, 4, 71, 142
$\sum (divisors(1184)) = 1210$	div(1184) = 1, 2, 4, 8, 16, 32, 37, 74, 148, 296, 592
$\sum (divisors(1210)) = 1184$	div(1210) = 1, 2, 5, 10, 11, 22, 55, 110, 121, 242, 605

Q 06 a. Write function **gcd(a, b)** that computes the greatest common divisor (GCD) using iteration.

Implement the above using Euclid's algorithm, which is an iterative computation based on the following observation:

if x is greater than y, then if y divides x, the gcd of x and y is y; otherwise,

the gcd of x and y is the same as the gcd of x % y and y.

b. Write function lcm(a, b) that computes the greatest common divisor (GCD) using iteration.

a * b

$lcm = \frac{d}{\gcd(a, b)}$					
GCD				LCM	
Input 1	Input 2	Result	Input 1	Input 2	Result
42	7	7	2	7	14
42	28	14	7	14	14
42	14	14	42	14	42

Q 07 A perfect number is one whose divisors add up to the number.

Example: The first perfect number is 6, because 1, 2, and 3 are its proper divisors, and 1+2+3=6

Write a Python program that prints all perfect numbers in between 1 and 500.

Q 08 Write function to_binary(n) that iteratively converts the given positive integer into a textual binary representation. No call to int(x, base) may be used.

Input	Result
5	"101"
7	"111"
22	"10110"
42	"101010"
256	"10000000"

Q 09 Write conversions to octal and hexadecimal numbers by implementing the corresponding functions to octal(n) and to hex(n). Again, no call to int(x, base) may be used.

Input	Method	Result
7	octal	"7"
8	octal	"10"
42	octal	"52"
15	hexadecimal	"F"
77	hexadecimal	"4D"

- Q 10 A palindrome is a word that reads the same from the front and the back. You can extend this definition to the digits of a number. Write an iterative function <code>is_number_palindrome(number)</code> but without converting the number into a string and then using string functionalities like [::-1].
- Q 11 Write a Python program called **functionGrowth()** that prints a table of the values log N, N,N log N, N², N³, and 2^N for N = 16, 32, 64, ..., 2048. Use tabs (\tau characters) to line up columns.
- Q 12 Write the Python programs to print the following four patterns using for loop using four different programs.

(a)	(b)	(c)	(d)
*	1	1	1
* *	1 2	2 2	2 3
* * *	1 2 3	3 3 3	4 5 6
* * * *	1 2 3 4	4 4 4 4	7 8 9 10
* * * * *	1 2 3 4 5	5 5 5 5 5	11 12 13 14 15

- Q 13 Write a Python program that displays all the numbers from 100 to 1,000, ten per line, that are divisible by 5 and 6. Numbers are separated by exactly one space.
- Q 14 Write a Python program to evaluate the function sin(x) and cos(x) as defined by the infinite series expansions.

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \dots$$
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots$$

The acceptable error for computation is 10^6 .

Q 15 Assume that x is a positive variable of type double. Write a Python program that uses the Taylor series expansion to set the value of sum to

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$