Reg.No					

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL - 576 104

FIRST SEMESTER B.E DEGREE MAKE UP EXAMINATION- 2011

SUB: ENGG. MATHEMATICS I (MAT – 101)

(REVISED CREDIT SYSTEM)

Time: 3 Hrs. Max.Marks: 50

Note: a) Answer any FIVE full questions. b) All questions carry equal marks

- Find the nth derivatives of 1A.
 - i) $\frac{x+1}{x^2-4}$
- (ii) cosx cos2x cos3x
- 1B. Find the area bounded by $r = a (1 - \cos\theta)$, a>0.
- Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{5} = \frac{y-5}{6} = \frac{z-6}{7}$ 1C.

Intersect at each other. Find the coordinates of the point of intersection.

(4+3+3)

- Find the evolute of $y^2 = 4ax$. 2A.
- Verify Lagrange's mean value theorem for f(x) = (x-1)(x-2)(x-3), $x \in [0, 4]$ 2B.
- Trace the curve $x = a(\theta \sin\theta)$, $y = a(1 \cos\theta)$, a > 0, $0 \le \theta \le 2\pi$. 2C. (4+3+3)
- 3A. **Evaluate:**

(i)
$$\int_{0}^{1} \frac{x^{6}}{\sqrt{1-x^{2}}} dx$$
 (ii) $\int_{0}^{\infty} \frac{x^{4}}{1+x^{2}} dx$

(ii)
$$\int_{0}^{\infty} \frac{x^4}{1+x^2} dx$$

3B. Evaluate
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x}$$

3C. If
$$u = tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
, $x \neq y$, show that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = Sin2u$. (4 +3+3)

- 4A. Find the entire length of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, a > 0.
- 4B. Test the convergence of the series: $\sum_{n=1}^{\infty} \sqrt{n^3 + 1} \sqrt{n^3}$
- 4C. Find the equation of the plane passing through the point (5, -5, 9) and perpendicular to the line with direction ratios are 6, 3, 2. (4 + 3 + 3)
- 5A. Find the points on the lines $\frac{x-6}{3} = \frac{y-7}{-1} = \frac{z-4}{1}$ and $\frac{x}{-3} = \frac{y+9}{2} = \frac{z-2}{4}$ which are nearest to each other. Hence find the shortest distance between the lines.
- 5B. Test for the convergence of the series $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots \infty$
- 5C. If $y = a \cos(\log x) + b \sin(\log x)$, show that $x^2 y_{n+2} + (2n+1) x y_{n+1} + (n^2+1) y_n = 0. \tag{4 + 3 + 3}$
- 6A. Obtain the expansion of log(secx) in ascending powers of x.
- 6B. Let ρ be the radius of curvature at any point P on the parabola $y^2 = 4ax$. Show that ρ^2 varies as $(SP)^3$, where S is the focus of the parabola.
- 6C. Show that plane x + 2y 2z 8 = 0 touches the sphere $x^2 + y^2 + z^2 2x4y 6z + 5 = 0.$ Find the point of contact.

(4 + 3 + 3)
