Page 1

16

<223>

<210>

<211>

<212>

<213>

<220>

<400> 2

tcgacccacg cgtccg

3

12

DNA

Artificial

<223> ds oligonucleotide adapter

ds oligonucleotide adapter

<400> gggtgc		12
<210><211><212><212><213>	4 18 DNA Artificial	
<220> <223>	PCR primer	
<400> tgtaaa	4 acga cggccagt	18
<210><211><212><213>	5 18 DNA Artificial	
<220> <223>	PCR primer	
<400> caggaa	5 acag ctatgacc	18
	6 20 DNA Artificial	
<220> <223>	T3 primer	
<400> caatta	6 accc tcactaaagg	20
<210><211><212><212><213>	7 23 DNA Rattus rattus	
<400> gcatta	7 tgac ccagaaaccg gac	23
<210><211><211><212><213>	23 DNA	
<400> aggtage	8 cgcc cttcctcaca ttc	23
<210><211><212><212><213>		
<220> <223>	PCR primer	
<400>	9	

A-378CIP5.ST25.txt gactagtccc acaatgaaca agtggctgtg 30 <210> 10 <211> 45 <212> DNA <213> Artificial <220> <223> PCR primer <400> 10 ataagaatgc ggccgctaaa ctatgaaaca gcccagtgac cattc 45 <210> 11 <211> 21 <212> DNA <213> Artificial <220> <223> PCR primer <400> 11 21 gcctctagaa agagctggga c <210> 12 <211> 21 <211> 21 <212> DNA <213> Artificial <220> <223> PCR primer <400> 12 21 cgccgtgttc catttatgag c <210> 13 <211> 24 <212> DNA <213> Rattus rattus <400> 13 atcaaaggca gggcatactt cctg 24 <210> 14 <211> 24 <212> DNA <213> Rattus rattus <400> 14 gttgcactcc tgtttcacgg tctg 24 <210> 15 <211> 24 <212> DNA <213> Rattus rattus <400> 15 caagacacct tgaagggcct gatg 24 <210> 16 <211> 24

A_378CTD5 CT25 +v+

	A-3/8C1P5.ST25.tXt	
<212> <213>	DNA Rattus rattus	
<400> taactt	16 ttac agaagagcat cagc	24
<210> <211> <212> <213>	17 33 DNA Rattus rattus	
<400> agcgcgg	17 gccg catgaacaag tggctgtgct gcg	33
<210><211><212><212><213>	18 31 DNA Rattus rattus	
<400> agctcta	18 agag aaacagccca gtgaccattc c	31
<210><211><211><212><213>	19 24 DNA Rattus rattus	
<400> gtgaago	19 ctgt gcaagaacct gatg	24
<210><211><211><212><213>	20 24 DNA Rattus rattus	
<400> atcaaag	20 ggca gggcatactt cctg	24
<210><211><211><212><213>	21 24 DNA Homo sapiens	
<400> cagatco	21 ctga agctgctcag tttg	24
<210><211><211><212><213>	22 33 DNA Homo sapiens	
<400> agcgcgg	22 gccg cggggaccac aatgaacaag ttg	33
<210> <211> <212> <213>	23 33 DNA Homo sapiens	
<400> agctcta	23 agaa ttgtgaggaa acagctcaat ggc Page 4	33

<210><211><212><212><213>	24 39 DNA Artificial				
<220> <223>	PCR primer				
<400> atagcgg	24 gccg ctgagcccaa	atcttgtgac	aaaactcac		39
	25 45 DNA Artificial				
<220> <223>	PCR primer				
<400> tctagag	25 gtcg acttatcatt	tacccggaga	cagggagagg	ctctt	45
	26 38 DNA Mus musculus				
<400> cctctga	26 agct caagcttccg	aggaccacaa	tgaacaag		38
<210><211><211><212><213>					
<400> cctctg	27 eggc egetaageag	cttattttca	cggattgaac	ctg	43
<210><211><211><212><213>	28 38 DNA Mus musculus				
<400> cctctga	28 agct caagcttccg	aggaccacaa	tgaacaag		38
<210><211><211><212><213>	29 24 DNA Homo sapiens				
<400> tccgtaa	29 agaa acagcccagt	gacc			24
<210><211><211><212><213>	30 31 DNA Mus musculus				
<400>	3.0				

A-378CIP5.ST25.txt				
cctctgcggc cgctgttgca tttcctttct g	31			
<210> 31 <211> 19 <212> PRT <213> Mus musculus				
<400> 31				
Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His 1 10 15				
Gln Leu Leu				
<210> 32 <211> 21 <212> DNA <213> Mus musculus				
<400> 32 tcccttgccc tgaccactct t	21			
<210> 33 <211> 34 <212> DNA <213> Mus musculus				
<400> 33 cctctgcggc cgcacacacg ttgtcatgtg ttgc	34			
<210> 34 <211> 21 <212> DNA <213> Mus musculus				
<400> 34 tcccttgccc tgaccactct t	21			
<210> 35 <211> 34 <212> DNA <213> Mus musculus				
<400> 35 cctctgcggc cgccttttgc gtggcttctc tgtt	34			
<210> 36 <211> 37 <212> DNA <213> Homo sapiens				
<400> 36 cctctgagct caagcttggt ttccggggac cacaatg	37			
<210> 37 <211> 38 <212> DNA <213> Homo sapiens				
<400> 37 cctctgcggc cgctaagcag cttattttta ctgaatgg	38			

	<210> 38 <211> 37 <212> DNA <213> Homo sapiens	
	<400> 38 cctctgagct caagcttggt ttccggggac cacaatg	37
	<210> 39 <211> 33 <212> DNA <213> Homo sapiens	
	<400> 39 cctctgcggc cgccagggta acatctattc cac	33
	<210> 40 <211> 35 <212> DNA <213> Mus musculus	
	<400> 40 ccgaagcttc caccatgaac aagtggctgt gctgc	35
	<210> 41 <211> 40 <212> DNA <213> Mus musculus	
	<400> 41 cctctgtcga ctattataag cagcttattt tcacggattg	40
	<210> 42 <211> 21 <212> DNA <213> Mus musculus	
	<400> 42 tecettgee tgaccactet t	21
	<210> 43 <211> 35 <212> DNA <213> Mus musculus	
	<400> 43 cctctgtcga cttaacacac gttgtcatgt gttgc	35
	<210> 44 <211> 21 <212> DNA <213> Mus musculus	
	<400> 44 tcccttgccc tgaccactct t	21
-	<210> 45 <211> 35 <212> DNA	

<213> Mus musculus

<400> 45

cctctgtcga cttacttttg cgtggcttct ctgtt

35

<210> 46 <211> 1548 <212> DNA

<212> DNA <213> Artificial

<220>

<223> Human sequence modified to include unique AatII and SacII sites.

<400> 46 tgcacgcatt	gcatacgtac	cagaggggta	cgctctcatc	ccttgacggt	ccgtagttta	60
ttttgctttc	cgagtcagct	ttctgacccg	gaaagcaaaa	tagacaacaa	acagccactt	120
gcgagaggac	tcatcctgtt	taggcggccc	tcgcctaaac	ttgcaacgct	tcgttgccgg	180
gcctcccacc	gcccgtcctg	cgggcggtat	ttgacggtcc	gtagtttaat	tcgtcttccg	240
gtaggactgc	ctaccggaaa	aacgcaaaga	tgtttgagaa	aacaaataaa	aagatttatg	300
taagtttata	cctgcagcat	gaattgaaaa	tttcataccc	gttagttaac	gaggacaatt	360
ttaacgaaat	ctttatgaaa	ccgtcgccaa	acaacataac	tcaaagtaaa	cgcgtaacca	420
atttaccttt	cactggcacg	cgaatgatgt	cggattataa	aaactttata	gggttctcga	480
aaaaggaagc	gtacgggtgc	gatttgtaag	aaaaagagaa	aaccaattta	gcaacaaact	540
aaataataaa	cgatataaat	aaaaagctat	taatagttga	tctcttcctt	gttaattacc	600
atacaagtat	gtgcgtacat	ttttatttga	tagatatatc	aacagaaaga	gacttacacg	660
ttttgattcg	taaggcttcg	gtaataatcg	tcatacttat	ccctttgatt	tgggtcacta	720
ttctggacta	ctaaagcgaa	gaaattaatg	taaacctcta	aaaaataaat	gtcgtaacaa	780
aagtttatat	aaggttaatt	agccacttac	taacctcaat	cttattagat	gatatcctag	840
tataaaataa	tttaatcgca	gtagtattat	aacggaggta	aaaaatccca	ttaataggtc	900
ttaactttat	agtctaaatt	ggtatcttac	tcctatttac	tagcgctcat	ttattataag	960
tgttacatgg	taaaatcagt	atagtctatt	cgtaactaat	tatagtaata	acgaagatgt	1020
ccgaaattaa	aataattaat	aagacattca	cagcagccgt	aaatacagaa	agtatgggta	1080
gagaaatagg	aatggataac	aaacagcgtt	caaaacgcac	aatatatagt	aattttgcca	1140
ttatctaact	gtaaactaag	attatttaac	ctaaaaacag	tgtgataata	tagcgaactt	1200
tatgttaaca	aattgtattc	atggacatcc	tagcatgtcc	aaatgcgttc	ttttaccaaa	1260
caatatcagc	taattagcta	aactaagatc	taaacaaaat	tgattaattt	cctccttatt	1320
gtataccaat	tgcgcaacct	taagctcgag	tgatcacagc	tggacgtccc	atggtacctt	1380
cgaatgagct	cctaggcgcc	tttcttcttc	ttcttcttct	ttcgggcttt	ccttcgactc	1440
aaccgacgac	ggtggcgact	cgttattgat	cgtattgggg	aaccccggag	atttgcccag	1500
aactccccaa	aaaacgactt	tcctccttgg	cgagaagtgc	gagaagtg		1548

<210><211><212><213>	47 48 DNA Homo sapiens	
<400> ccggcgg	47 gaca tttatcacac agcagctgat gagaagtttc ttcatcca	48
<210><211><211><212><213>	48 55 DNA Artificial	
<220> <223>	PCR primer	
<400> cgattt	48 gatt ctagaaggag gaataacata tggttaacgc gttggaattc ggtac	55
<210><211><211><212><213>	49 49 DNA Artificial	
<220> <223>	PCR primer	
<400> taaacta	49 aaga tetteeteet tattgtatae caattgegea aeettaage	49
<210><211><212><212><213>	50 1546 DNA Artificial	
<220> <223>	Human sequence modified to include unique AatII and SacII stickends	ςУ
<220> <221> <222> <223>	misc_feature (1, 2, 1545 and)(1546) Unique AatII and SacII sticky ends	
<400> gcgtaa	50 cgta tgcatggtct ccccatgcga gagtagggaa ctgccaggca tcaaataaaa	60
cgaaag	gete agtegaaaga etgggeettt egttttatet gttgtttgte ggtgaaeget	120
ctcctg	agta ggacaaatcc gccgggagcg gatttgaacg ttgcgaagca acggcccgga	180
gggtgg	cggg caggacgccc gccataaact gccaggcatc aaattaagca gaaggccatc 2	240
ctgacg	gatg gcctttttgc gtttctacaa actcttttgt ttatttttct aaatacattc	300
aaatat	ggac gtcgtactta acttttaaag tatgggcaat caattgctcc tgttaaaatt	360
gcttta	gaaa tactttggca gcggtttgtt gtattgagtt tcatttgcgc attggttaaa	420
tggaaa	gtga ccgtgcgctt actacagcct aatatttttg aaatatccca agagcttttt	480
ccttcg	catg cccacgctaa acattctttt tctcttttgg ttaaatcgtt gtttgattta	540

ttattt	A-378CIP5.ST25.txt	600
ttcata	acacg catgtaaaaa taaactatct atatagttgt ctttctctga atgtgcaaaa	660
ctaagc	catto ogaagooatt attagoagta tgaataggga aactaaacoo agtgataaga	720
cctgat	gatt tegettettt aattacattt ggagattttt tatttacage attgttttea	780
aatata	attcc aattaatcgg tgaatgattg gagttagaat aatctactat aggatcatat	840
tttatt	aaat tagcgtcatc ataatattgc ctccattttt tagggtaatt atccagaatt	900
gaaata	atcag atttaaccat agaatgagga taaatgatcg cgagtaaata atattcacaa	960
tgtacc	cattt tagtcatatc agataagcat tgattaatat cattattgct tctacaggct	1020
ttaatt	ttat taattattot gtaagtgtog toggoattta tgtotttoat accoatotot	1080
ttatcc	ttac ctattgtttg tcgcaagttt tgcgtgttat atatcattaa aacggtaata	1140
gattga	catt tgattctaat aaattggatt tttgtcacac tattatatcg cttgaaatac	1200
aattgt	ttaa cataagtacc tgtaggatcg tacaggttta cgcaagaaaa tggtttgtta	1260
tagtcg	gatta atcgatttga ttctagattt gttttaacta attaaaggag gaataacata	1320
tggtta	acgc gttggaattc gagctcacta gtgtcgacct gcagggtacc atggaagctt	1380
actcga	aggat ccgcggaaag aagaagaaga agaagaaagc ccgaaaggaa gctgagttgg	1440
ctgctg	ccac cgctgagcaa taactagcat aaccccttgg ggcctctaaa cgggtcttga	1500
ggggtt	tttt gctgaaagga ggaaccgctc ttcacgctct tcacgc	1546
<210> <211> <212> <213> <223>	51 47 DNA Artificial Part of oligonucleotide duplex used in vector formation	
<400> tatgaa	51 acat catcaccatc accatcatgc tagcgttaac gcgttgg	47
<210><211><211><212><213>	52 49 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> actttg	52 rtagt agtggtagtg gtagtacgat cgcaattgcg caaccttaa	49
<210><211><211><212><213>	53 141 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400>	53	

A-378CIP5.ST25.txt ctaattccga tctcacctac caaacaatgc cccctgcaa aaaataaatt catataaaaa 60 acatacagat aaccatctgc ggtgataaat tatctctggc ggtgttgaca taaataccac 120 tggcggtgat actgagcaca t 141 <210> 54 <211> 147 <212> DNA <213> Artificial <220> <223> Part of oligonucleotide duplex used in vector formation <400> 54 tgcagattaa ggcgagagtg gatggtttgt tacgggggga cgttttttat ttaagtatat 60 tttttgtatg tctattggta gacgccacta tttaatagag accgccacaa ctgtatttat 120 ggtgaccgcc actatgactc gtgtagc 147 <210> 55 <211> 55 <212> DNA <213> Artificial <220> <223> Part of oligonucleotide duplex used in vector formation <400> 55 55 cgatttgatt ctagaaggag gaataacata tggttaacgc gttggaattc ggtac <210> 56 <211> 49 <212> DNA <213> Artificial <220> <223> Part of oligonucleotide duplex used in vector formation 49 taaactaaga tetteeteet tattgtatae caattgegea aeettaage <210> 57 <211> 668 <212> DNA <213> Artificial <220> <223> Part of oligonucleotide duplex used in vector formation <400> 57 60 tgcacgcatt gcatacgtac cagaggggta cgctctcatc ccttgacggt ccgtagttta 120 ttttgctttc cgagtcagct ttctgacccg gaaagcaaaa tagacaacaa acagccactt 180 gcgagaggac tcatcctgtt taggcggccc tcgcctaaac ttgcaacgct tcgttgccgg 240 gcctcccacc gcccgtcctg cgggcggtat ttgacggtcc gtagtttaat tcgtcttccg gtaggactgc ctaccggaaa aacgcaaaga tgtttgagaa aacaaataaa aagatttatg 300 360 taagtttata cctgcagagt attaaaaatt ttttaagtaa actgtttacg attttaagaa

A-378CIP5.ST25.txt ctaattataa gagttaacac tcgcgagtgt taaatagcta aactaagatc taaactcaat	420
tgattaattt cctccttatt gtataccaat tgcgcaacct taagctcgag tgatcacagc	480
tggacgtccc atggtacctt cgaatgagct cctaggcgcc tttcttcttc ttcttcttct	540
ttegggettt cettegaete aacegaegae ggtggegaet egttattgat egtattgggg	600
aaccccggag atttgcccag aactccccaa aaaacgactt tcctccttgg cgagaagtgc	660
gagaagtg	668
<210> 58 <211> 726 <212> DNA <213> Artificial	
<220> <223> Part of oligonucleotide duplex used in vector formation	
<400> 58 gcgtaacgta tgcatggtct ccccatgcga gagtagggaa ctgccaggca tcaaataaaa	60
cgaaaggctc agtcgaaaga ctgggccttt cgttttatct gttgtttgtc ggtgaacgct	120
ctcctgagta ggacaaatcc gccgggagcg gatttgaacg ttgcgaagca acggcccgga	180
gggtggcggg caggacgccc gccataaact gccaggcatc aaattaagca gaaggggcct	240
cccaccgccc gtcctgcggg cggtatttga cggtccgtag tttaattcgt cttcgccatc	300
ctgacggatg gcctttttgc gtttctacaa actcttttgt ttatttttct aaatacattc	360
aaatatggac gtctcataat ttttaaaaaa ttcatttgac aaatgctaaa attcttgatt	420
aatattctca attgtgagcg ctcacaattt atcgatttga ttctagattt gttttaacta	480
attaaaggag gaataacata tggttaacgc gttggaattc gagctcacta gtgtcgacct	540
gcagggtacc atggaagctt actcgaggat ccgcggaaag aagaagaaga agaagaaagc	600
ccgaaaggaa gctgagttgg ctgctgccac cgctgagcaa taactagcat aaccccttgg	660
ggcctctaaa cgggtcttga ggggtttttt gctgaaagga ggaaccgctc ttcacgctct	720
tcacgc	726
<210> 59 <211> 44 <212> DNA <213> Homo sapiens	
<400> 59 tacgcactgg atccttataa gcagcttatt tttactgatt ggac	44
<210> 60 <211> 27 <212> DNA <213> Homo sapiens	
<400> 60 gtcctcctgg tacctaccta aaacaac	27

A-378CTP5 ST25 txt

-211-	A-376CIF3.S123.CXC	
<211> <212>	54 DNA	
<213>	Homo sapiens	
-400-		
<400>	61 tgaa gaaacttete ateagetget gtgtgataaa tgteegeegg gtae	54
	ogua guancocco accagoogee gegegaeana egeeegeegg geac	
<210>	62	
<211>	19	
	PRT	
<213>	Homo sapiens	
<400>	62	
W 2-	m Oliv Oliv Mha Com His Oliv Lov Lov Cur Nam Live Cur Duo Duo	
Met As	p Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro 5 10 15	
Gly Th	r Tyr	
<210> <211>	63 84	
<211>		
<213>	Artificial	
<220>		
<223>	Sequence used in vector formation using human sequence with E.	cc
	li codon	
<400>	63	
tatgga	aact tttcctccaa aatatcttca ttatgatgaa gaaacttctc atcagctgct	60
gtgtga	taaa tgtccgccgg gtac	84
5-5-5-		٠.
<210>	64	
	78	
	DNA Data i fi ni ni	
<213>	Artificial	
<220>		
<223>	Sequence used in vector formation using human sequence with E. li codon	CC
	11 Codon	
<400>	64	-
ccggcg	gaca tttatcacac agcagctgat gagaagtttc ttcatcataa tgaagatatt	60
ttggag	gaaa agtttcca	78
<210>	65	
<211>	44	
<212> <213>	DNA Artificial	
<220> <223>	PCR primer	
<400>	65	A 4
Lacyca	ctgg atccttataa gcagcttatt ttcacggatt gaac	44
-010		
<210> <211>	66 38	
<212>	DNA	
<213>	Artificial	

A-378CTP5.ST25 txt

	A-376CIP3.5125.CXC	
<220> <223>	PCR primer	
<400> gtgctco	66 ctgg tacctaccta aaacagcact gcacagtg	38
<210> <211> <212> <213>	67 84 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> tatggaa	67 aact ctgcctccaa aatacctgca ttacgatccg gaaactggtc atcagctgct	60
gtgtgat	taaa tgtgctccgg gtac	84
<210><211><211><212><213>	68 78 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> ccggago	68 caca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt	60
ttggag	gcag agtttcca	78
<210><211><211><212><213>	69 54 DNA Mus musculus	
<400> tatggad	69 ccca gaaactggtc atcagctgct gtgtgataaa tgtgctccgg gtac	54
<210><211><211><212><213>	70 48 DNA Mus musculus	
<400> ccggago	70 caca tttatcacac agcagctgat gaccagtttc tgggtcca	48
<210><211><211><212><213>	71 87 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> tatgaaa	71 agaa actctgcctc caaaatacct gcattacgat ccggaaactg gtcatcagct	60
gctgtgt	tgat aaatgtgctc cgggtac	87

<211> <212> <213>	81 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> ccggago	72 caca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt	60
ttggagg	gcag agtttctttc a	81
<210><211><211><212><213>	73 71 DNA Artificial	
<220> <223>	PCR primer	
<400> gttctcc	73 ctca tatgaaacat catcaccatc accatcatga aactctgcct ccaaaatacc	60
tgcatta	acga t	71
<210><211><211><212><213>	74 43 DNA Mus musculus	
	74 ctca tatgaaagaa actctgcctc caaaatacct gca	43
<210><211><211><212><213>	75 76 DNA Mus musculus	
<400> tacgcad	75 ctgg atccttaatg atggtgatgg tgatgatgta agcagcttat tttcacggat	60
tgaacct	tgat teceta	76
<210><211><211><212><213>	76 47 DNA Mus musculus	
<400> gttctcc	76 ctca tatgaaatac ctgcattacg atccggaaac tggtcat	47
<210><211><211><212><213>	77 43 DNA Homo sapiens	
<400> gttctcc	77 ctat taatgaaata tetteattat gatgaagaaa ett	43
<210><211><212>	78 40 DNA	

<213>	Homo sapiens	
<400> tacgca	78 ctgg atccttataa gcagcttatt tttactgatt	40
<210><211><211><212><213>	79 40 DNA Mus musculus	
	79 ctca tatggaaact ctgcctccaa aatacctgca	40
<210><211><212><213>	80 43 DNA Mus musculus	
<400> tacgcad	80 ctgg atccttatgt tgcatttcct ttctgaatta gca	43
<212>	81 18 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> ccggaaa	81 acag ataatgag	18
<210><211><211><212><213>	18	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> gatcct	82 catt atctgttt	18
<210><211><211><212><213>	83 30 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> ccggaaa	83 acag agaagccacg caaaagtaag	30
<210><211><211><212><213>	84 30 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	

<400> gatcctt	84 tact tttgcgtggc ttctctgttt	30
<210><211><211><212><213>	85 12 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> tatgtta	85 aatg ag	12
<210><211><211><212><213>	86 14 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> gatcct	86 catt aaca	14
<210><211><211><212><213>	87 21 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> tatgtto	87 ccgg aaacagttaa g	21
<210><211><211><212><213>	88 23 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> gatcctt	88 taac tgtttccgga aca	23
<210><211><211><212><213>	89 36 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> tatgtto	89 ccgg aaacagtgaa tcaactcaaa aataag	36
<210><211><211><212><213>	90 38 DNA Artificial	

<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> gatcct	90 tatt tttgagttga ttcactgttt ccggaaca	38
<210><211><211><212><213>	91 100 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> ctagcg	91 acga cgacgacaaa gaaactctgc ctccaaaata cctgcattac gatccggaaa	60
ctggtc	atca gctgctgtgt cataaatgtg ctccgggtac	100
<210><211><211><212><213>	92 92 DNA Artificial	
<220> <223>	Part of oligonucleotide duplex used in vector formation	
<400> ccggag	92 caca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt	60
ttggag	gcag agtttctttg tcgtcgtcgt cg	92
<210><211><212><212><213>	93 26 DNA Artificial	
<220> <223>	Used to produce fusion protein with human OPG	
<400> acaaac	93 acaa tcgatttgat actaga	26
<210><211><211><212><213>	94 50 DNA Artificial	
<220> <223>	Used to produce fusion protein with human OPG	
<400> tttgtt	94 ttaa ctaattaaag gaggaataaa atatgagagg atcgcatcac	50
<210><211><211><212><213>	95 50 DNA Artificial	
<220> <223>	Used to produce fusion protein with human OPG	

<400> catcac	95 catc acgaaacctt cccgccgaaa tacctgcact acgacgaaga	50
<210><211><212><212><213>	96 49 DNA Artificial	
<220> <223>	Used to produce fusion protein with human OPG	
<400> aacctc	96 ccac cagctgctgt gcgacaaatg cccgccgggt acccaaaca	49
<210><211><211><212><213>	97 26 DNA Artificial	
<220> <223>	Used to produce fusion protein with human OPG	
<400> tgtttg	97 ggta cccggcgggc atttgt	26
<210><211><212><212><213>	98 50 DNA Artificial	
<220> <223>	Used to produce fusion protein with human OPG	
<400> cgcaca	98 gcag ctggtgggag gtttcttcgt cgtagtgcag gtatttcggc	50
<210><211><211><212><213>	99 49 DNA Artificial	
<220> <223>	Used to produce fusion protein with human OPG	
<400> gggaag	99 gttt cgtgatggtg atggtgatgc catcctctca tattttatt	49
<210><211><212><213>	100 50 DNA Artificial	
<220> <223>	Used to produce fusion protein with human OPG	
<400> cctcct	100 ttaa ttagttaaaa caaatctagt atcaaatcga ttgtgtttgt	50
<210><211><211><212><213>	101 59 DNA Homo sapiens	

<400> acaaaca	101 acaa tcgatttgat actagatttg ttttaactaa ttaaaggagg aataaaatg	59
<210><211><212><212><213>	102 48 DNA Homo sapiens	
<400> ctaatta	102 aaag gaggaataaa atgaaagaaa cttttcctcc aaaatatc	48
<210><211><211><212><213>	103 31 DNA Homo sapiens	
<400> tgtttg	103 ggta cccggcggac atttatcaca c	31
<210><211><211><212><213>	104 59 DNA Homo sapiens	
<400> acaaaca	104 acaa tcgatttgat actagatttg ttttaactaa ttaaaggagg aataaaatg	59
<210><211><211><212><213>	105 54 DNA Homo sapiens	
<400> ctaatt	105 aaag gaggaataaa atgaaaaaaa aagaaacttt tcctccaaaa tatc	54
<210><211><212><212><213>	106 31 DNA Homo sapiens	
<400> tgtttg	106 ggta cccggcggac atttatcaca c	31
<210><211><211><212><213>	44 DNA	
<220> <221> <223>		
<400> cagccc	107 gggt aaaatggaaa cgtttcctcc aaaatatctt catt	44
<210><211><211><212><213>	DNA	

Page 20

<220> <223> PCR primer for	FchOPG fusion protein	
<400> 108 cgtttccatt ttacccgggc	tgagcgagag gctcttctgc gtgt	44
<210> 109 <211> 45 <212> DNA <213> Artificial		
<220> <223> PCR primer for	FcmuOPG fusion protein	
<400> 109 cgctcagccc gggtaaaatg	gaaacgttgc ctccaaaata cctgc	45
<210> 110 <211> 39 <212> DNA <213> Artificial		
<220> <223> PCR primer for	FcmuOPG fusion protein	
<400> 110 ccattttacc cgggctgagc	gagaggetet tetgegtgt	39
<210> 111 <211> 36 <212> DNA <213> Artificial		
<220> <223> PCR primer for	muOPG-Fc fusion protein	
<400> 111 gaaaataaga tgcttagctg	cagctgaacc aaaatc	36
<210> 112 <211> 34 <212> DNA <213> Artificial		
<220> <223> PCR primer for	muOPG-Fc fusion protein	
<400> 112 cagctgcagc taagcagctt	attttcacgg attg	34
<210> 113 <211> 36 <212> DNA <213> Artificial		
<220> <223> PCR primer for	huOPG-Fc fusion protein	
<400> 113 aaaaataagc tgcttagctg	cagctgaacc aaaatc	36

<210><211><211><212><213>	114 35 DNA Artificial	
<220> <223>	PCR primer for huOPG-Fc fusion protein	
<400> cagctgo	114 cagc taagcagctt atttttactg attgg	35
<210><211><211><212><213>	115 102 DNA Artificial	
<220> <223>	PCR primer for huOPG-Fc fusion protein	
	misc_feature Linker with XbaI and KpnI sites inserted into human sequence.	
<400> ctagaaq	115 ggag gaataacata tggaaacttt tgctccaaaa tatcttcatt atgatgaaga	60
aactagt	tcat cagctgctgt gtgataaatg tccgccgggt ac	102
<210><211><211><212><213>	116 94 DNA Artificial	
<220> <223>	Linker with XbaI and KpnI sites inserted into human sequence	
<400> ccggcgg	116 gaca tttatcacac agcagctgat gactagtttc ttcatcataa tgaagatatt	60
ttggag	caaa agtttccata tgttattcct cctt	94
<210><211><211><212><213>	117 62 DNA Artificial	
<220> <223>	Linker with XbaI and SpeI sites inserted into human sequence	
<400> ctagaag	117 ggag gaataacata tggaaacttt teetgetaaa tatetteatt atgatgaaga	60
aa		62
<210><211><211><212><213>	118 62 DNA Artificial	
<220> <223>	Linker with XbaI and SpeI sites inserted into human sequence	
<400>	118	

A-378CIP5.ST25.txt	
ctagtttctt catcataatg aagatattta gcaggaaaag tttccatatg ttattcctcc	60
tt	62
<210> 119 <211> 51 <212> PRT <213> Homo sapiens	
<400> 119	
Tyr His Tyr Tyr Asp Gln Asn Gly Arg Met Cys Glu Glu Cys His Met 1 5 10 15	
Cys Gln Pro Gly His Phe Leu Val Lys His Cys Lys Gln Pro Lys Arg 20 25 30	
Asp Thr Val Cys His Lys Pro Cys Glu Pro Gly Val Thr Tyr Thr Asp 35 40 45	
Asp Trp His 50	
<210> 120 <211> 2432 <212> DNA <213> Rattus rattus	
<220> <221> CDS <222> (124)(1326)	
<400> 120 atcaaaggca gggcatactt cctgttgccc agaccttata taaaacgtca tgttcgcctg	60
atcaaaggca gggcatactt cctgttgccc agaccttata taaaacgtca tgttcgcctg	60 120
atcaaaggca gggcatactt cctgttgccc agaccttata taaaacgtca tgttcgcctg ggcagcagag aagcacctag cactggccca gcggctgccg cctgaggttt ccagaggacc	
atcaaaggca gggcatactt cctgttgccc agaccttata taaaacgtca tgttcgcctg ggcagcagag aagcacctag cactggccca gcggctgccg cctgaggttt ccagaggacc aca atg aac aag tgg ctg tgc tgt gca ctc ctg gtg ttc ttg gac atc Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile 1 5 10 15	120
atcaaaggca gggcatactt cctgttgccc agaccttata taaaacgtca tgttcgcctg ggcagcagag aagcacctag cactggccca gcggctgccg cctgaggttt ccagaggacc aca atg aac aag tgg ctg tgc tgt gca ctc ctg gtg ttc ttg gac atc Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile 1 5 10 15 att gaa tgg aca acc cag gaa acc ttt cct cca aaa tac ttg cat tat Ile Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr 20 25 30	120 168
atcaaaggca gggcatactt cctgttgccc agaccttata taaaacgtca tgttcgcctg ggcagcagag aagcacctag cactggccca gcggctgccg cctgaggttt ccagaggacc aca atg aac aag tgg ctg tgc tgt gca ctc ctg gtg ttc ttg gac atc Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile 1 5 10 15 att gaa tgg aca acc cag gaa acc ttt cct cca aaa tac ttg cat tat Ile Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr 20 25 30 gac cca gaa acc gga cgt cag ctc ttg tgt gac aaa tgt gct cct ggc Asp Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly 35 40 45	120 168 216
atcaaaggca gggcatactt cctgttgccc agaccttata taaaacgtca tgttcgcctg ggcagcagag aagcacctag cactggccca gcggctgccg cctgaggttt ccagaggacc aca atg aac aag tgg ctg tgc tgt gca ctc ctg gtg ttc ttg gac atc Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile 1	120 168 216 264
atcaaaggca gggcatactt cctgttgccc agaccttata taaaacgtca tgttcgcctg ggcagcagag aagcacctag cactggccca gcggctgccg cctgaggttt ccagaggacc aca atg aac aag tgg ctg tgc tgt gca ctc ctg gtg ttc ttg gac atc Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile 1	120 168 216 264
atcaaaggca gggcatactt cetgttgccc agacettata taaaacgtca tgttegeetg ggcagcagag aagcacetag cactggccca geggetgeeg cetgaggttt ceagaggace aca atg aac aag tgg ctg tgc tgt gca ctc ctg gtg ttc ttg gac atc Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile 1	120 168 216 264 312

ttg ggt gtg ctg cag gct ggg acc cca gag cga aac acg gtt tgc aaa Leu Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys 552 aga tgt ccg gat ggg ttc ttc tca ggt gag acg tca tcg aaa gca ccc Arg Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro 600 150 648 tgt agg aaa cac acc aac tgc agc tca ctt ggc ctc ctg cta att cag Cys Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Leu Ile Gln 160 165 aaa gga aat gca aca cat gac aat gta tgt tcc gga aac aga gaa gca 696 Lys Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala 180 185 190 act caa aat tgt gaa ata gat gtc acc ctg tgc gaa gag gca ttc ttc 744 Thr Gln Asn Cys Glu Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe 200 agg ttt gct gtg cct acc aag att ata ccg aat tgg ctg agt gtt ctg 792 Arg Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu 215 840 gtg gac agt ttg cct ggg acc aaa gtg aat gca gag agt gta gag agg Val Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg 230 888 ata aaa cgg aga cac agc tcg caa gag caa act ttc cag cta ctt aag Ile Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys 245 250 240 936 ctg tgg aag cat caa aac aga gac cag gaa atg gtg aag aag atc atc Leu Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile caa gac att gac ctc tgt gaa agc agt gtg caa cgg cat atc ggc cac 984 Gln Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Ile Gly His 280 gcg aac ctc acc aca gag cag ctc cgc atc ttg atg gag agc ttg cct Ala Asn Leu Thr Thr Glu Gln Leu Arg Ile Leu Met Glu Ser Leu Pro 1032 295 1080 ggg aag aag atc agc cca gac gag att gag aga acg aga aag acc tgc Gly Lys Lys Ile Ser Pro Asp Glu Ile Glu Arg Thr Arg Lys Thr Cys 310 305 1128 aaa ccc agc gag cag ctc ctg aag cta ctg agc ttg tgg agg atc aaa Lys Pro Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys 320 325 330 1176 aat gga gac caa gac acc ttg aag ggc ctg atg tac gca ctc aag cac Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His 340 ttg aaa gca tac cac ttt ccc aaa acc gtc acc cac agt ctg agg aag 1224 Leu Lys Ala Tyr His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys 360 acc atc agg ttc ttg cac agc ttc acc atg tac cga ttg tat cag aaa 1272 Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys ctc ttt cta gaa atg ata ggg aat cag gtt caa tca gtg aag ata agc 1320 Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Page 24

tgc tta tagttaggaa tggtcactgg gctgtttctt caggatgggc caacactgat Cys Leu 400	1376
ggagcagatg gctgcttctc cggctcttga aatggcagtt gattcctttc tcatcagttg	1436
gtgggaatga agateeteea geecaacaea caeaetgggg agtetgagte aggagagtga	1496
ggcaggctat ttgataattg tgcaaagctg ccaggtgtac acctagaaag tcaagcaccc	1556
tgagaaagag gatattttta taacctcaaa cataggccct ttccttcctc tccttatgga	1616
tgagtactca gaaggcttct actatcttct gtgtcatccc tagatgaagg cctctttat	1676
ttatttttt attcttttt tcggagctgg ggaccgaacc cagggccttg cgcttgcgag	1736
gcaagtgctc taccactgag ctaaatctcc aacccctgaa ggcctctttc tttctgcctc	1796
tgatagtcta tgacattctt ttttctacaa ttcgtatcag gtgcacgagc cttatcccat	1856
ttgtaggttt ctaggcaagt tgaccgttag ctatttttcc ctctgaagat ttgattcgag	1916
ttgcagactt ggctagacaa gcaggggtag gttatggtag tttatttaac agactgccac	1976
caggagtcca gtgtttcttg ttcctctgta gttgtaccta agctgactcc aagtacattt	2036
agtatgaaaa ataatcaaca aattttattc cttctatcaa cattggctag ctttgtttca	2096
gggcactaaa agaaactact atatggagaa agaattgata ttgcccccaa cgttcaacaa	2156
cccaatagtt tatccagctg tcatgcctgg ttcagtgtct actgactatg cgccctctta	2216
ttactgcatg cagtaattca actggaaata gtaataataa taatagaaat aaaatctaga	2276
ctccattgga tctctctgaa tatgggaata tctaacttaa gaagctttga gatttcagtt	2336
gtgttaaagg cttttattaa aaagctgatg ctcttctgta aaagttacta atatatctgt	2396
aagactatta cagtattgct atttatatcc atccag	2432

<210> 121

<211> 401

<212> PRT

<213> Rattus rattus

<400> 121

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile Ile 1 5 10 15

Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Pro Glu Thr Gly Arg Gln Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 55 60

Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80 Page 25

Val	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90	Gln	Thr	Val	Lys	Gln 95	Glu
Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105	Glu	Cys	Glu	Glu	Gly 110	Arg	Tyr
Leu	Glu	Leu 115	Glu	Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Leu
Gly	Val 130	Leu	Gln	Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg
Cys 145	Pro	Asp	Gly	Phe	Phe 150	Ser	Gly	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160
Arg	Lys	His	Thr	Asn 165	Cys	Ser	Ser	Leu	Gly 170	Leu	Leu	Leu	Ile	Gln 175	Lys
Gly	Asn	Ala	Thr 180	His	Asp	Asn	Val	Cys 185	Ser	Gly	Asn	Arg	Glu 190	Ala	Thr
Gln	Asn	Cys 195	Glu	Ile	Asp	Val	Thr 200	Leu	Cys	Glu	Glu	Ala 205	Phe	Phe	Arg
Phe	Ala 210	Val	Pro	Thr	Lys	Ile 215	Ile	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val
Asp 225	Ser	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240
Lys	Arg	Arg	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255	Leu
Trp	Lys	His	Gln 260	Asn	Arg	Asp	Gln	Glu 265	Met	Val	Lys	Lys	Ile 270	Ile	Gln
Asp	Ile	Asp 275	Leu	Cys	G1u	Ser	Ser 280	Val	Gln	Arg	His	Ile 285	Gly	His	Ala
Asn	Leu 290	Thr	Thr	Glu	Gln	Leu 295	Arg	Ile	Leu	Met	Glu 300	Ser	Leu	Pro	Gly
Lys 305	Lys	Ile	Ser	Pro	Asp 310	Glu	Ile	Glu	Arg	Thr 315	Arg	Lys	Thr	Cys	Lys 320
Pro	Ser	Glu	Gln	Leu 325	Leu	Lys	Leu	Leu	Ser 330	Leu	Trp	Arg	Ile	Lys 335	Asn
Gly	Asp	Gln	Asp 340	Thr	Leu	Lys	Gly	Leu 345		Tyr ge 2		Leu	Lys 350	His	Leu

Lys Ala Tyr His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr 355 360 365

Ile Arg Phe Leu 370	His Ser Phe Th 375	r Met Tyr Arg Le 38	ı Tyr Gln Lys Leu)	
Phe Leu Glu Met 385	Ile Gly Asn Gl 390	n Val Gln Ser Va 395	l Lys Ile Ser Cys 400	
Leu				
<210> 122 <211> 1325 <212> DNA <213> Mus muscu	lus			
<220> <221> CDS <222> (91)(12	93)			
<220> <221> misc_feat <223> At position	ure on 11, R is a]	purine.		
<400> 122 ccttatataa racgt	catga ttgcctgg	gc tgcagagacg cad	ctagcac tgacccagcg	60
gctgcctcct gaggt	ttccc gaggacca		gg ctg tgc tgc gca rp Leu Cys Cys Ala 5	114
ctc ctg gtg ctc of Leu Leu Val Leu 1	ctg gac atc atc Leu Asp Ile Ile 15	t gaa tgg aca acc e Glu Trp Thr Thi 20	c cag gaa acc ctt Gln Glu Thr Leu	162
ctt cca aag tac Leu Pro Lys Tyr 1 25	ttg cat tat gad Leu His Tyr Asp 30	c cca gaa act ggt p Pro Glu Thr Gly 35	cat cag ctc ctg His Gln Leu Leu 40	210
Cys Asp Lys Cys A	gct cct ggc aco Ala Pro Gly Th: 45	c tac cta aaa cag r Tyr Leu Lys Glr 50	g cac tgc aca gtg n His Cys Thr Val 55	258
agg agg aag aca f Arg Arg Lys Thr 1 60			. • •	306
agc tgg cac acc a Ser Trp His Thr : 75				354
gaa ctg cag tcc g Glu Leu Gln Ser v 90	gtg aag cag gag Val Lys Gln Gli 95	g tgc aac cgc acc ı Cys Asn Arg Thı 100	His Asn Arg Val	402
tgt gag tgt gag g Cys Glu Cys Glu (105	gaa ggg cgt tad Glu Gly Arg Tyn 110	c ctg gag atc gaa r Leu Glu Ile Glu 115	ttc tgc ttg aag Phe Cys Leu Lys 120	450
cac cgg agc tgt o	ccc ccg ggc tco	e ggc gtg gtg caa Page 27	gct gga acc cca	498

His	Arg	Ser	Cys	Pro 125	Pro	Gly	Ser	A-37 Gly		P5.ST Val			Gly	Thr 135	Pro	
								tgt Cys 145								546
								ata Ile								594
								gga Gly								642
								caa Gln								690
								ttt Phe								738
								gac Asp 225								786
								aaa Lys								834
								tgg Trp								882
								gac Asp								930
								aac Asn								978
								aag Lys 305								1026
								tcg Ser								1074
								ggt Gly								1122
								aaa Lys								1170
								atg Met								1218
atg Met	tac Tyr	aga Arg	ctg Leu 380	tat Tyr	cag Gln	aag Lys	ctc Leu	ttt Phe 385	tta Leu	gaa Glu	atg Met	ata Ile	ggg Gly 390	aat Asn	cag Gln	1266
gtt	caa	tcc	gtg	aaa	ata	agc	tgc	tta		tago ge 2		ggto	cacto	g		1313

Val Gln Ser Val Lys Ile Ser Cys Leu

1325 gctgtttctt ca

- <210> 123 <211> 401
- <212> PRT
- <213> Mus musculus
- <220>
- <221> misc_feature
- <223> At position 11, R is a purine.
- <400> 123
- Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Leu Leu Asp Ile Ile
- Glu Trp Thr Thr Gln Glu Thr Leu Leu Pro Lys Tyr Leu His Tyr Asp
- Pro Glu Thr Gly His Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr
- Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro
- Cys Pro Asp His Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80
- Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu
- Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 105
- Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser 115
- Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys 130 135
- Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys
- Ile Lys His Thr Asn Cys Ser Thr Phe Gly Leu Leu Leu Ile Gln Lys
- Gly Asn Ala Thr His Asp Asn Cys Cys Ser Gly Asn Arg Glu Ala Thr
- Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 200

Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val 215

Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 230 235

Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu

Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln

Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Leu Gly His Ser

Asn Leu Thr Thr Glu Gln Leu Leu Ala Leu Met Glu Ser Leu Pro Gly

Lys Lys Ile Ser Pro Glu Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys

Ser Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu

Lys Thr Ser His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr

Met Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 375

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

<210> 124 <211> 1356

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (95)..(1297)

<220>

<221> misc_feature

<223> At position 63, Y is a pyrimidine.

<400> 124

A-378CIP5.ST25.txt gtatatataa cgtgatgagc gtacgggtgc ggagacgcac cggcgcgctc gcccagccgc													
cgyctccaag cccctgaggt ttccggggac caca atg aac aag ttg ctg tgc tgc 115 Met Asn Lys Leu Cys Cys 1 5													
gcg ctc gtg ttt ctg gac atc tcc att aag tgg acc acc cag gaa acg Ala Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr 10 15 20	163												
ttt cct cca aag tac ctt cat tat gac gaa gaa acc tct cat cag ctg Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu 25 30 35	211												
ttg tgt gac aaa tgt cct cct ggt acc tac cta aaa caa cac tgt aca Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr 45 50 55	259												
gca aag tgg aag tcc gtg tgc gcc cct tgc cct gac cac tac tac aca Ala Lys Trp Lys Ser Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr 60 65 70	307												
gac agc tgg cac acc agt gac gag tgt cta tac tgc agc ccc gtg tgc Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys 75 80 85	355												
<pre>aag gag ctg cag tac gtc aag cag gag tgc aat cgc acc cac aac cgc Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg 90 95 100</pre>	403												
gtg tgc gaa tgc aag gaa ggg cgc tac ctt gag ata gag ttc tgc ttg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu 105 110 115	451												
aaa cat agg agc tgc cct cct gga ttt gga gtg gtg caa gct gga acc Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr 120 125 130 135	499												
cca gag cga aat aca gtt tgc aaa aga tgt cca gat ggg ttc ttc tca Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser 140 145 150	547												
aat gag acg tca tct aaa gca ccc tgt aga aaa cac aca aat tgc agt Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser 155 160 165	595												
gtc ttt ggt ctc ctg cta act cag aaa gga aat gca aca cac gac aac Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn 170 175 180	643												
ata tgt tcc gga aac agt gaa tca act caa aaa tgt gga ata gat gtt Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val 185 190 195	691												
acc ctg tgt gag gag gca ttc ttc agg ttt gct gtt cct aca aag ttt Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe 200 205 210 215	739												
acg cct aac tgg ctt agt gtc ttg gta gac aat ttg cct ggc acc aaa Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys 220 225 230	787												
gta aac gca gag agt gta gag agg ata aaa cgg caa cac agc tca caa Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln 235 240 245	835												
gaa cag act ttc cag ctg ctg aag tta tgg aaa cat caa aac aaa gcc Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Ala Page 31	883												

250

			ata Ile														931
			cag Gln														979
			ttg Leu														1027
			aaa Lys														1075
			agt Ser 330														1123
			atg Met														1171
			act Thr														1219
			tac Tyr														1267
			caa Gln								taac	etgga	aa t	ggc	catto	ya	1317
gctgtttcct cacaattggc gagatcccat ggatgataa 1												1356					
	<210 <211 <212 <213	> > >	125 401 PRT Homo	sapi	iens												
		<pre><220> <221> misc feature</pre>															

<221> misc_feature
<223> At position 63, Y is a pyrimidine.

<400> 125

Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Ser Val Cys Ala Pro 50 55

								A-37	A-378CIP5.ST25.txt								
Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	Asp						Asp	Glu	80		
Leu	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90	Gln	Tyr	Val	Lys	Gln 95	Glu		
Cys	Asn	Arg	Thr 100	His	Asn	Arg	Val	Cys 105	Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr		
Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120	His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe		
Gly	Val 130	Val	Gln	Ala	Gly	Thr 135	Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg		
Cys 145	Pro	Asp	Gly	Phe	Phe 150	Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160		
Arg	Lys	His	Thr	Asn 165	Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys		
Gly	Asn	Ala	Thr 180	His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr		
Gln	Lys	Cys 195	Gly	Ile	Asp	Val	Thr 200	Leu	Cys	Glu	Glu	Ala 205	Phe	Phe	Arg		
Phe	Ala 210	Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val		
Asp 225	Asn	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240		
Lys	Arg	Gln	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255	Leu		
Trp	Lys	His	Gln 260	Asn	Lys	Ala	Gln	Asp 265	Ile	Val	Lys	Lys	Ile 270	Ile	Gln		
Asp	Ile	Asp 275	Leu	Cys	Glu	Asn	Ser 280	Val	Gln	Arg	His	Ile 285	Gly	His	Ala		
Asn	Leu 290	Thr	Phe	Glu	Gln	Leu 295	Arg	Ser	Leu	Met	Glu 300	Ser	Leu	Pro	Gly		
Lys 305	Lys	Val	Gly	Ala	Glu 310	Asp	Ile	Glu	Lys	Thr 315	Ile	Lys	Ala	Cys	Lys 320		
Pro	Ser	Asp	Gln	Ile 325	Leu	Lys	Leu	Leu	Ser 330	Leu	Trp	Arg	Ile	Lys 335	Asn		

```
A-378CIP5.ST25.txt
Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser
Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr
        355
                            360
Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu
Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys
                    390
                                        395
Leu
<210> 126
<211>
      139
<212>
      PRT
<213> Homo sapiens
<400> 126
Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys
Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro
Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala
Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys
                        55
Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr
Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn
Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His
            100
                                105
                                                    110
Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly
                            120
Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys
<210> 127
<211> 48
<212> DNA
<213> Artificial
<220>
<223>
      Oligonucleotide capable of hybridizing to human sequence
<400> 127
acctacttct ttgaagagta gtcgacgaca cactatttac aggcggcc
                                                                      48
```

<210> 128 <211> 219 <212> PRT

<213> Rattus rattus

<400> 128

Met Leu Gly Ile Trp Thr Leu Leu Pro Leu Val Leu Thr Ser Val Ala 1 5 10 15

Arg Leu Ser Ser Lys Ser Val Asn Ala Gln Val Thr Asp Ile Asn Ser 20 25 30

Lys Gly Leu Glu Leu Arg Lys Thr Val Thr Thr Val Glu Thr Gln Asn 35 40 45

Leu Glu Gly Leu His His Asp Gly Gln Phe Cys His Lys Pro Cys Pro 50 60

Pro Gly Glu Arg Lys Ala Arg Asp Cys Thr Val Asn Gly Asp Glu Pro 65 70 75 80

Asp Cys Val Pro Cys Gln Glu Gly Lys Glu Tyr Thr Asp Lys Ala His
85 90 95

Phe Ser Ser Lys Cys Arg Arg Cys Arg Leu Cys Asp Glu Gly His Gly
100 105 110

Leu Glu Val Glu Ile Asn Cys Thr Arg Thr Gln Asn Thr Lys Cys Arg
115 120 125

Cys Lys Pro Asn Phe Phe Cys Asn Ser Thr Val Cys Glu His Cys Asp 130 135 140

Pro Cys Thr Lys Cys Glu His Gly Ile Ile Lys Glu Cys Thr Leu Thr 145 150 155 160

Ser Asn Thr Lys Cys Lys Glu Glu Gly Ser Arg Ser Asn Leu Gly Trp 165 170 175

Leu Cys Leu Leu Leu Pro Ile Pro Leu Ile Val Trp Val Lys Arg 180 185 190

Lys Glu Val Gln Lys Thr Cys Arg Lys His Arg Lys Glu Asn Gln Gly
195 200 205

Ser His Glu Ser Pro Thr Leu Asn Pro Glu Thr 210 215

<210> 129

<211> 281

<212> PRT

<213> Rattus rattus

<400> 129

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu 1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys 35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 55 60

Gly Thr Tyr Leu Thr Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr 65 70 75 80
Page 35

Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His

Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln 105 Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys 135 Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys 185 Thr Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu Leu Ser Leu Leu Phe Ile Gly Leu Met Thr Arg Thr Gln Arg Trp 235 Lys Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys 245 Glu Gly Glu Leu Glu Gly Thr Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser Phe Ser Pro Thr Pro Gly Phe Thr 275 280 <210> 130 <211> 207 <212> PRT <213> Rattus rattus <400> 130 Met Leu Arg Leu Ile Ala Leu Leu Val Cys Val Val Tyr Val Tyr Gly
1 10 15 Asp Asp Val Pro Tyr Ser Ser Asn Gln Gly Lys Cys Gly Gly His Asp 20 25 30 Tyr Glu Lys Asp Gly Leu Cys Cys Ala Ser Cys His Pro Gly Phe Tyr 35 40 45 Ala Ser Arg Leu Cys Gly Pro Gly Ser Asn Thr Val Cys Ser Pro Cys Glu Asp Gly Thr Phe Thr Ala Ser Thr Asn His Ala Pro Ala Cys Val Ser Cys Arg Gly Pro Cys Thr Gly His Leu Ser Glu Ser Gln Pro Cys Asp Arg Thr His Asp Arg Val Cys Asn Cys Ser Thr Gly Asn Tyr Cys

Leu Leu Lys Gly Gln Asn Gly Cys Arg Ile Cys Ala Pro Gln Thr Lys 115 120 125

Cys Pro Ala Gly Tyr Gly Val Ser Gly His Thr Arg Ala Gly Asp Thr 130 135 140

Leu Cys Glu Lys Cys Pro Pro His Thr Tyr Ser Asp Ser Leu Ser Pro 145 150 155 160

Thr Glu Arg Cys Gly Thr Ser Phe Asn Tyr Ile Ser Val Gly Phe Asn 165 170 175

Leu Tyr Pro Val Asn Glu Thr Ser Cys Thr Thr Thr Ala Gly His Asn 180 185 190

Glu Val Ile Lys Thr Lys Glu Phe Thr Val Thr Leu Asn Tyr Thr 195 200 205

<210> 131

<211> 227

<212> PRT

<213> Rattus rattus

<400> 131

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu

5 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr
20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Thr Thr Asp Gln 35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys
50 55 60

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 65 70 75 80

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys
85 90 95

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 115 120 125

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 135

Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 155 160

Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 175

Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly
180 185 190

Asn Ala Ser Arg Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 210 215 220

Gln His Thr

<210> 132

<211> 197

<212> PRT

<213> Rattus rattus

<400> 132

Met Val Ser Leu Pro Arg Leu Cys Ala Leu Trp Gly Cys Leu Leu Thr 1 5 10 15

Ala Val His Leu Gly Gln Cys Val Thr Cys Ser Asp Lys Gln Tyr Leu 20 25 30

His Asp Gly Gln Cys Cys Asp Leu Cys Gln Pro Gly Ser Arg Leu Thr 35 40 45

Ser His Cys Thr Ala Leu Glu Lys Thr Gln Cys His Pro Cys Asp Ser 50 55 60

Gly Glu Phe Ser Ala Gln Trp Asn Arg Glu Ile Arg Cys His Gln His 65 70 75 80

Arg His Cys Glu Pro Asn Gln Gly Leu Arg Val Lys Lys Glu Gly Thr
85 90 95

Ala Glu Ser Asp Thr Val Cys Thr Cys Lys Glu Gly Gln His Cys Thr 100 105 110

Ser Lys Asp Cys Glu Ala Cys Ala Gln His Thr Pro Cys Ile Pro Gly
115 120 125

Phe Gly Val Met Glu Met Ala Thr Glu Thr Thr Asp Thr Val Cys His 130 135

Pro Cys Pro Val Gly Phe Phe Ser Asn Gln Ser Ser Leu Phe Glu Lys 145 150 155 160

Cys Tyr Pro Trp Thr Ser Cys Glu Asp Lys Asn Leu Glu Val Leu Gln
165 170 175

Lys Gly Thr Ser Gln Thr Asn Val Ile Cys Gly Leu Lys Ser Arg Met 180 185

Arg Ala Leu Leu Val 195

<210> '133

<211> 208

<212> PRT

<213> Rattus rattus

<400> 133

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile Ile
5 10 15

Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 55 60

Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Page 38 Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Thr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr

Leu Glu Leu Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu 115 120 125

Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Leu Ile Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190

Gln Asn Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

<210> 134

<211> 224

<212> PRT

<213> Rattus rattus

<400> 134

Met Gly Ala Gly Ala Thr Gly Arg Ala Met Asp Gly Pro Arg Leu Leu 1 5 10 15

Leu Leu Leu Leu Gly Val Ser Leu Gly Gly Ala Lys Glu Ala Cys

Pro Thr Gly Leu Tyr Thr His Ser Gly Glu Cys Cys Lys Ala Cys Asn 35 40 45

Leu Gly Glu Gly Val Ala Gln Pro Cys Gly Ala Asn Gln Thr Val Cys
50 60

Glu Pro Cys Leu Asp Ser Val Thr Phe Ser Asp Val Val Ser Ala Thr 65 70 75 80

Glu Pro Cys Lys Pro Cys Thr Glu Cys Val Gly Leu Gln Ser Met Ser 85 90 95

Ala Pro Cys Val Glu Ala Asp Asp Ala Val Cys Arg Cys Ala Tyr Gly
100 105 110

Tyr Tyr Gln Asp Glu Thr Thr Gly Arg Cys Glu Ala Cys Arg Val Cys 115 120 125

Glu Ala Gly Ser Gly Leu Val Phe Ser Cys Gln Asp Lys Gln Asn Thr 130 135 140

Val Cys Glu Glu Cys Pro Asp Gly Thr Tyr Ser Asp Glu Ala Asn His 145 150 155 160

Val Asp Pro Cys Leu Pro Cys Thr Val Cys Glu Asp Thr Glu Arg Gln 165 170 175

Leu Arg Glu Cys Thr Arg Trp Ala Asp Ala Glu Cys Glu Glu Ile Pro 180 185 190

Page 39

Gly Arg Trp Ile Thr Arg Ser Thr Pro Pro Glu Gly Ser Asp Ser Thr 195 200 205

Ala Pro Ser Thr Glu Glu Pro Glu Ala Pro Pro Glu Gln Asp Leu Ile 210 215 220

<210> 135

<211> 205 <212> PRT

<213> Rattus rattus

<400> 135

Met Tyr Val Trp Val Gln Gln Pro Thr Ala Phe Leu Leu Gly Leu 1 5 10 15

Ser Leu Gly Val Thr Val Lys Leu Asn Cys Val Lys Asp Thr Tyr Pro 20 25 30

Ser Gly His Lys Cys Cys Arg Glu Cys Gln Pro Gly His Gly Met Val 35 40 45

Ser Arg Cys Asp His Thr Arg Asp Thr Val Cys His Pro Cys Glu Pro 50 55 60

Gly Phe Tyr Asn Glu Ala Val Asn Tyr Asp Thr Cys Lys Gln Cys Thr 65 70 75 80

Gln Cys Asn His Arg Ser Gly Ser Glu Leu Lys Gln Asn Cys Thr Pro 85 90 95

Thr Glu Asp Thr Val Cys Gln Cys Arg Pro Gly Thr Gln Pro Arg Gln
100 105 110

Asp Ser Ser His Lys Leu Gly Val Asp Cys Val Pro Cys Pro Pro Gly 115 120 125

His Phe Ser Pro Gly Ser Asn Gln Ala Cys Lys Pro Trp Thr Asn Cys 130 135 140

Thr Leu Ser Gly Lys Gln Ile Arg His Pro Ala Ser Asn Ser Leu Asp 145 150 155 160

Thr Val Cys Glu Asp Arg Ser Leu Leu Ala Thr Leu Leu Trp Glu Thr 165 170 175

Gln Arg Thr Thr Phe Arg Pro Thr Thr Val Pro Ser Thr Thr Val Trp 180 185 190

Pro Arg Thr Ser Gln Leu Pro Ser Thr Pro Thr Leu Val 195 200 205

<210> 136

<211> 191

<212> PRT

<213> Rattus rattus

<400> 136

Met Gly Asn Asn Cys Tyr Asn Val Val Val Ile Val Leu Leu Val 1 5 10 15

Gly Cys Glu Lys Val Gly Ala Val Gln Asn Ser Cys Asp Asn Cys Gln 20 25 30

Pro Gly Thr Phe Cys Arg Lys Tyr Asn Pro Val Cys Lys Ser Cys Pro 35 40 45

ro Ser Thr Phe Ser Ser Ile Gly Gly Gln Pro Asn Cys Asn Ile Cys 50 60									
rg Val Cys Ala Gly Tyr Phe Arg Phe Lys Lys Phe Cys Ser Ser Thr 5 70 75 80									
is Asn Ala Glu Cys Glu Cys Ile Glu Gly Phe His Cys Leu Gly Pro 85 90 95									
ln Cys Thr Arg Cys Glu Lys Asp Cys Arg Pro Gly Gln Glu Leu Thr 100 105 110									
ys Gln Gly Cys Lys Thr Cys Ser Leu Gly Thr Phe Asn Asp Gln Asn 115 120 125									
ly Thr Gly Val Cys Arg Pro Trp Thr Asn Cys Ser Leu Asp Gly Arg 130 135 140									
er Val Leu Lys Thr Gly Thr Thr Glu Lys Asp Val Val Cys Gly Pro 45 150 155 160									
ro Val Val Ser Phe Ser Pro Ser Thr Thr Ile Ser Val Thr Pro Glu 165 170 175									
ly Gly Pro Gly Gly His Ser Leu Gln Val Leu Thr Leu Phe Leu 180 185 190									
<210> 137 <211> 54 <212> DNA <213> Artificial <220> <223> Oligonucleotide capable of hybridizing to human sequence <400> 137									
400> 137									
400> 137									
400> 137 atggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac 210> 138 211> 284 212> PRT									
400> 137 atggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac 210> 138 211> 284 212> PRT 213> Mus musculus									
400> 137 atggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac 210> 138 211> 284 212> PRT 213> Mus musculus 400> 138 ys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala									
400> 137 atggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac 210> 138 211> 284 212> PRT 213> Mus musculus 400> 138 ys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala 5 10 15 ly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys Cys Pro Asp Gly Phe									
400> 137 atggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac 210> 138 211> 284 212> PRT 213> Mus musculus 400> 138 ys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala 5 10 15 ly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys Cys Pro Asp Gly Phe 20 25 30 he Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys Ile Lys His Thr Asn									
400> 137 atggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac 210> 138 211> 284 212> PRT 213> Mus musculus 400> 138 ys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala 5 10 15 ly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys Cys Pro Asp Gly Phe 20 25 he Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys Ile Lys His Thr Asn 40 ys Ser Thr Phe Gly Leu Leu Leu Ile Gln Lys Gly Asn Ala Thr His									
400> 137 atggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac 210> 138 211> 284 212> PRT 213> Mus musculus 400> 138 ys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala 5									

54

Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Arg His Ser 115 120 125

Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn 130 135 140

Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln Asp Ile Ala Leu Cys 145 150 155 160

Glu Ser Ser Val Gln Arg His Leu Gly His Ser Asn Leu Thr Thr Glu 165 170 175

Gln Leu Leu Ala Leu Met Glu Ser Leu Pro Gly Lys Lys Ile Ser Pro 180 185 190

Glu Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys Ser Ser Glu Gln Leu 195 200 205

Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr 210 215 220

Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu Lys Thr Ser His Phe 225 230 235 240

Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr Met Arg Phe Leu His 245 250 255

Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile 260 265 270

Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 275 280

<210> 139

<211> 380

<212> PRT

<213> Homo sapiens

<400> 139

Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His

1 10 15

Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His 20 25 30

Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr 35 40 45

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro 50 55 60

Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His 65 70 75 80

Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe
85 90 95

Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala
100 105 110

Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe 115 120 125

Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn

Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Page 42

Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile 355 360 365

Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 375 380

<210> 140 <211> 30

<211> 55 <212> DNA <213> Artificial

<220>

<223> PCR primer for deletion analogue

<400> 140

tggaccaccc agaagtacct tcattatgac

30

<210> 141

<211> 30 <212> DNZ

<212> DNA <213> Artificial

<220>

<223> PCR primer for deletion analogue

<400> 141

gtcataatga aggtacttct gggtggtcca

A-378CIP5.ST25.txt <210> 142 <211> 31 <212> DNA <213> Artificial <220> PCR primer for deletion analogue. <223> <400> 142 ggaccaccca gcttcattat gacgaagaaa c 31 <210> 143 <211> 31 <212> DNA <213> Artificial <220> <223> PCR primer for deletion analogue <400> 143 gtttcttcgt cataatgaag ctgggtggtc c 31 <210> 144 <211> 29 <212> DNA <213> Artificial <220> <223> PCR primer for deletion analogue <400> 144 gtggaccacc caggacgaag aaacctctc 29 <210> 145 <211> 29 <212> DNA <213> Artificial <220> <223> PCR primer for deletion analogue <400> 145 gagaggtttc ttcgtcctgg gtggtccac 29 <210> 146 <211> 29 <212> DNA <213> Artificial Sequence <220> <221> misc_feature <223> PCR primer for mutant analogue. <400> 146 cgtttcctcc aaagttcctt cattatgac 29

Page 44

<210> 147 <211> 29 <212> DNA

<220>

<213> Artificial

<223>	PCR primer for	mutant analogue	
<400> gtcata	147 atga aggaactttg	gaggaaacg	29
<210><211><211><212><213>			
<220> <223>	PCR primer for	mutant analogue	
<400> ggaaac	148 gttt cctgcaaagt	accttcatta tg	32
<210><211><211><212><213>	32 DN A		
<220> <223>	PCR primer for	mutant analogue	
<400> cataat	149 gaag gtactttgca	ggaaacgttt cc	32
<210><211><211><212><213>	27		
<220> <223>	PCR primer for	mutant analogue	
<400> cacgca	150 aaag tcgggaatag	atgtcac	27
<210><211><211><212><213>	27		
<220> <223>	PCR primer for	mutant analogue	
<400> gtgaca	151 tota ttocogaett	ttgcgtg	27
<210><211><211><212><213>	DHA		
<220> <223>	PCR primer for	mutant analogue	
<400> caccct	152 gtag gaagaggeet	tette	25
<210> <211>	153 2.5		

```
<212/5 DNA
<213>
      Artificial
<220
      PCR primer for mutant analogue
<223>
<400>
gaagaaggcc tcttccgaca gggtg
                                                                       25
<210>
       154
       2
<211>
<212>
      AMID
      Artificial
<213>
<220>
<223>
     PCR primer for mutant analogue
<400> 154
tgacctctcg gaaagcagcg tgca
                                                                       24
<210>
     155
<211>
      24
<212>
      DHA
<213> Artificial
<220>
<223> PCR primer for mutant analogue
<400> 155
                                                                       24
tgcacgctgc tttccgagag gtca
<210> 156
<211>
      24
<212> DHA
<213> Artificial
<220>
<223> PCR primer for mutant analogue
<400> 156
cctcgaaatc gagcgagcag ctcc
                                                                       24
<210> 157
      25
<211>
<212> DMA
<213> Artificial
<220>
<223> PCR primer for mutant analogue
<400> 157
                                                                       25
cgatttcgag gtctttctcg ttctc
<210> 158
<211>
       33
<212>
      D! 'A
<213> Ambificial
<220>
<223> PCR primer for mutant analogue
<400> 158
                                                                       33
ccgtgaaaat aagctcgtta taactaggaa tgg
                                      Page 46
```

<210><211><212><212><213>	159 33 DNA Art:	ificial			
<220> <223>	PCR	primer	for	mutant analogue.	
<400> ccattce	159 ctag	ttataad	gag	cttattttca cgg	33
<210><211><212><212><213>		ificial			
<220> <223>	PCR	primer	for	deletion mutant	
<400> cctctga	160 agct	caagctt	ccg	aggaccacaa tgaacaag	38
<212>		ificial			
<220> <223>	PCR	primer	for	deletion mutant	
<400> cctctct	161 tcga	gtcaggt	gac	atctattcca cacttttgcg tggc	44
<210><211><211><212><213>	DNA	ificial			
<220> <223>	PCR	primer	for	deletion mutant	
<400> cctctga	162 agct	caagctt	ccg	aggaccacaa tgaacaag	38
<210><211><212><212><213>	163 33 DNA Art:	ificial			
<220> <223>	PCR	primer	for	deletion mutant	
<400> cctctct	163 toga	gtcaagg	gaac	agcaaacctg aagaaggc	38
<210><211><211><212><213>		ificial			
<220>					

Page 47

A_378CTP5 ST25 +v+

<223>	PCR primer for deletion mutant					
<400>	164	2.0				
cctctg	aget caagetteeg aggaceaeaa tgaacaag	38				
<210>	165					
<211> <212>	38 DNA					
<213>	Artificial					
<220> <223>	PCR primer for deletion mutant					
<400>	165 tega gteactetgt ggtgaggtte gagtggee	38				
CCCCC	tega greatetyr ggrgaggree gagrggee	30				
<210>	166					
<211><212>	38 DNA					
<213>	Artificial					
<220> <223>	PCR primer for deletion mutant					
<400>	166 agct caagcttccg aggaccacaa tgaacaag	38				
CCCCG	aget caagetteeg aggaceacaa tgaacaag	30				
<210>	167					
<211><212>	38 DNA					
<213>	Artificial					
<220> <223>	PCR primer for deletion mutant					
<400>	167	38				
	tega gteaggatgt ttteaagtge ttgaggge	30				
´<210>	168					
<211><212>	16 PRT					
<21 3>	Artificial					
<220> <223>	Encoded by oligonucleotide duplex used in vector formation					
<400>	168					
Met Lys His His His His His Ala Ser Val Asn Ala Leu Glu						