1. Ans:

- (a) Take path y = mx, limit does not exist.
- (b) Take path y = mx, limit does not exist.
- (c) Take path $x = my^2$, limit does not exist.
- (d) Put $x = r \cos \theta$, $y = r \sin \theta$, limit does not exist.
- (e) Take path $y = mx^2$, limit does not exist.
- (f) Take path y = mx, limit does not exist.
- (g) Take path y = mx, limit does not exist.
- (h) Put $x = r \cos \theta$, $y = r \sin \theta$; limit= 1.
- (i) $\lim_{\to} =0$.
- (j) Put $x = r \cos \theta$, $y = r \sin \theta$; limit =0.
- (k) Take path $x = mz^2, y = nz^2$; limit does not exist.
- (1) Take path y = mx, limit does not exist.
- (m) Put xy 2 = t, $\lim_{t \to 0} t = 1/3$.
- (n) Take path y = x and $y = \sin x$, limit does not exist.
- (o) Take path x = 1 and y = x 1, limit does not exist.
- (p) Put $x = r \cos \theta$, $y = r \sin \theta$; limit=1.
- 2. Use $\epsilon \delta$ method.
- 3. Use $\epsilon \delta$ method.

4. Ans

- (a) Put $x = r \cos \theta$, $y = r \sin \theta$; not continuous.
- (b) Put $x = r \cos \theta$, $y = r \sin \theta$; continuous.
- (c) Use $\epsilon \delta$ method; continuous.
- (d) Take $\epsilon = \frac{1}{2}$; not continuous.
- (e) Put $x = r \cos \theta$, $y = r \sin \theta$; not continuous.
- (f) Put $x = r \cos \theta$, $y = r \sin \theta$; continuous.
- (g) Use $\epsilon \delta$ method; continuous.

- (h) Put $x = r \cos \theta$, $y = r \sin \theta$; continuous.
- (i) Use $\epsilon \delta$ method; continuous.
- (j) Put $x = r \cos \theta$, $y = r \sin \theta$; not continuous.
- (k) Use $\epsilon \delta$ method; use $-1 \le \sin x \le 1$; continuous.
- (1) Take path x = 0 and y = 0; not continuous.
- 5. n < 1
- 6. Ans:
 - (a) c = 0
 - (b) c = 0
 - (c) c = 1
 - (d) c = 0
 - (e) c = 0
 - (f) c = -1
 - (g) c = 0
 - (h) c = 0
- 7. Ans:
 - (a) Discontinuous along the line 1 + x + y = 0.
 - (b) No points of discontinuity.
 - (c) No points of discontinuity.
- 8. Hint:
 - (a) Discontinuous for x = m and $y = n, n, m \in \mathbb{Z}$.
 - (b) Discontinuous for x = 0 or y = 0.
- 9. Put $x = r \cos \theta$ and $y = r \sin \theta$; not possible.
- 10. Ans:
 - (i) $\lim_{t\to 0}$.
 - (ii) Not continuous.