Diseño y Análisis de Algoritmos Tarea 1 - Demostraciones de las propiedades de los órdenes asintóticos

Santiago Sinisterra Sierra

28 de octubre de 2020

1. Transitividad

Propiedad 1.1 Si f(n) es O(g(n)) y g(n) es $O(h(n)) \Rightarrow f(n)$ es O(h(n))

f(n) es O(g(n)) es verdadero si hay dos constantes n_f y c_f tal que para toda $n \ge n_f$, $c_f g(n) \ge f(n)$.

La segunda, la afirmación de g(n) es O(h(n)) es verdadera si hay dos constantes n_g y c_g tal que para toda $n \ge n_g$, $c_g h(n) \ge g(n)$.

Ambas afirmaciones se realizan a partir de la definición de O.

El consecuente indica que f(n) es O(h(n)) si hay hay dos constantes n_h y c_h tal que para toda $n \ge n_h$, $c_h h(n) \ge f(n)$. c_h debe ser igual a $c_f c_g$ y n_h debe ser igual al valor mayor entre n_f y n_g , o sea máx $\{n_f, n_g\}$.

Propiedad 1.2 Si f(n) es $\Omega(g(n))$ y g(n) es $\Omega(h(n)) \Rightarrow f(n)$ es $\Omega(h(n))$

f(n) es $\Omega(g(n))$ es verdadero si hay dos constantes n_f y c_f tal que para toda $n \ge n_f$, $c_f g(n) \le f(n)$.

La segunda, la afirmación de g(n) es $\Omega(h(n))$ es verdadera si hay dos constantes n_g y c_g tal que para toda $n \geq n_g$, $c_g h(n) \leq g(n)$.

Ambas afirmaciones se realizan a partir de la definición de Ω .

El consecuente indica que f(n) es $\Omega(h(n))$ si hay hay dos constantes n_h y c_h tal que para toda $n \geq n_h$, $c_h h(n) \leq f(n)$. c_h debe ser igual a $c_f c_g$ y n_h debe ser igual al valor mayor entre n_f y n_g , o sea máx $\{n_f, n_g\}$.

Propiedad 1.3 Si f(n) es $\Theta(g(n))$ y g(n) es $\Theta(h(n)) \Rightarrow f(n)$ es $\Theta(h(n))$

f(n) es $\Theta(g(n))$ si hay dos constantes c_{1f} y c_{2f} tales que $c_{1f}g(n) \geq f(n)$ (pertenencia a O) y $c_{2f}g(n) \leq f(n)$ (pertenencia a Ω); así como un valor n_f para el cual, para toda $n \geq n_f$, $c_{1f}g(n) \leq f(n)$ y $c_{2f}g(n) \geq f(n)$.

g(n) es $\Theta(h(n))$ si hay dos constantes c_{1g} y c_{2g} tales que $c_{1g}h(n) \geq g(n)$ (pertenencia a O) y $c_{2g}h(n) \leq g(n)$ (pertenencia a Ω); así como un valor n_g para el cual, para toda $n \geq n_g$, $c_{1g}h(n) \geq g(n)$ y $c_{2g}h(n) \leq g(n)$.

f(n) es $\Theta(h(n))$ si hay dos constantes c_{1h} y c_{2h} , así como un valor n_h para el cual $c_{1h}h(n) \ge f(n)$ (pertenencia a O) y $c_{2h}h(n) \le f(n)$ (pertenencia a Ω).

 c_{1h} tiene que ser igual a $c_{1f} \cdot c_{1g}$ para garantizar que f(n) esté debajo de g(n) y h(n); mientras que c_{1h} tiene que ser igual a $c_{2f} \cdot c_{2g}$ para garantizar que f(n) esté encima de g(n) y h(n). n_h es el valor mayor entre n_f y n_g , ya que si a partir de n_f la función siempre es mayor, cuando llegue n_g , que es el valor que cumple la condición, hará que ambas condiciones se cumplan.

2. Reflexividad

Propiedad 2.1 f(n) es O(f(n))

Esta propiedad se cumple porque para pertenecer a O, hay un c_f tal que $c_f f(n) \ge f(n)$ para todo valor de n a partir de cierto valor n_f . Al ser igual, se satisface la condición de "mayor o igual qué"; es decir, que existe un $c_f f(n) \ge f(n)$, el cual es igual a 1. n_f puede ser cualquier valor de n, ya que siempre se cumplirá que $n_f \ge n$.

Propiedad 2.2 f(n) es $\Omega(f(n))$

Esta propiedad se cumple porque para pertenecer a Ω , hay un c_f tal que $c_f f(n) \leq f(n)$ para todo valor de n a partir de cierto valor n_f . Al ser igual, se satisface la condición de "menor o igual qué"; es decir, que existe un $c_f f(n) \leq f(n)$, el cual es igual a 1. n_f puede ser cualquier valor de n, ya que siempre se cumplirá que $n_f \geq n$.

Propiedad 2.3 f(n) es $\Theta(f(n))$

Esta propiedad se cumple porque para pertenecer a Θ , hay dos constantes c_{1f} y c_{2f} tal que $c_{1f}f(n) \geq f(n)$ y $c_{2f}f(n) \leq f(n)$ para todo valor de n a partir de cierto valor n_f .

Al ser igual, se satisface la condición de "mayor o igual qué" para el caso de c_{1f} , es decir, que existe un $c_{1f}f(n) \geq f(n)$, el cual es igual a 1. También se satisface la condición de "menor o igual qué" para el caso de c_{1f} , es decir, que existe un $c_ff(n) \leq f(n)$, el cual es igual a 1. n_f puede ser cualquier valor de n, ya que siempre se cumplirá que $n_f \geq n$.

3. Simetría

Propiedad 3.1 f(n) es $\Theta(g(n)) \Leftrightarrow g(n)$ es $\Theta(f(n))$

Para que f(n) esté en $\Theta(g(n))$ se cumpla, tienen que existir 2 constantes c_{1f} y c_{2f} tales que $c_{1f}g(n) \geq f(n)$ y $c_{2f}g(n) \leq f(n)$ a partir de cierto valor de n llamado n_f .

Después, para que g(n) esté en $\Theta(f(n))$, tienen que existir 2 constantes c_{1g} y c_{2g} tales que $c_{1g}f(n) \geq g(n)$ y $c_{2g}f(n) \leq g(n)$ a partir de cierto valor de n llamado n_g .

La elección de constantes que haría que se cumpla esta propiedad sería $c_{1f} = c_{2g}$ y $c_{2f} = c_{1g}$ y que $n_f = n_g$; es decir, la constante que dicta el límite superior para $\Theta(g(n))$ debe ser igual a la que define límite inferior para $\Theta(f(n))$, ya que las constantes desplazan a la función verticalmente, pero nunca la mueven de forma horizontal.

4. Simetría Transpuesta

Propiedad 4.1 f(n) es $O(g(n)) \Leftrightarrow g(n)$ es $\Omega(f(n))$

f(n) es O(g(n)) si hay una constante c_f tal que $c_f g(n) \ge f(n)$ para toda $n \ge n_f$. Para que g(n) sea $\Omega(f(n))$ tiene que haber una constante c_g tal que $c_g f(n) \le g(n)$ para toda $n \ge n_g$.

En este caso, las constantes que harían que se cumpla esta propiedad es que c_f sea igual a c_g , ya que al pertenecer f(n) a O(g(n)), siempre está debajo de g(n), lo que desde la perspectiva de f(n) indica que g(n) siempre está encima de f(n), confirmando la propiedad.

5. Aditividad

Propiedad 5.1 f(n) es O(f(n)) y g(n) es O(h(n)) entonces f(n) + g(n) es O(h(n))

En este caso f(n) siempre está por debajo o es igual a g(n) al pertenecer a O. Si g(n) está debajo de h(n) también, se puede recurrir a la propiedad de transitividad para indicar que f(n) también está en O(h(n)). Al sumar f(n) con g(n), f(n) individualmente a lo mucho puede adquirir el valor de g(n), trasladando hacia arriba g(n), pero sin pasar h(n), ya que de lo contrario g(n) ya no pertenecería a O(h(n)), entrando en una contradicción.

Propiedad 5.2 f(n) es $\Omega(g(n))$ y g(n) es $\Omega(h(n))$ entonces f(n) + g(n) es $\Omega(h(n))$

En este caso f(n) siempre está encima o es igual a g(n) al pertenecer a Ω . Si g(n) está encima de h(n) también, se puede recurrir a la propiedad de transitividad para indicar que f(n) también está en $\Omega(h(n))$. Al sumar f(n) con g(n), f(n) individualmente a lo mucho puede adquirir el valor de g(n),

trasladando hacia abajo g(n), pero sin pasar h(n), ya que de lo contrario g(n) ya no pertenecería a $\Omega(h(n))$, entrando en una contradicción.

Propiedad 5.3 f(n) es $\Theta(g(n))$ y g(n) es $\Theta(h(n))$ entonces f(n)+g(n) es $\Theta(h(n))$

f(n) siempre está entre el producto de g(n), una que hace que esté debajo de g(n) y otra que hace que esté encima de g(n), esto por pertenecer a Θ . Si g(n) está entre h(n) también, se puede recurrir a la propiedad de transitividad para indicar que f(n) también está en $\Theta(h(n))$. Al sumar f(n) con g(n), f(n) individualmente a lo mucho puede adquirir el valor de g(n), trasladando verticalmente g(n), pero sin pasar h(n), ya que de lo contrario g(n) ya no pertenecería a $\Theta(h(n))$, entrando en una contradicción.