Logic (PHIL 2080, COMP 2620, COMP 6262) Chapter: Sequents, Semantics, and Propositional Natural Deduction — Conjunction, Implication, Theorems

Introduction

Introduction

- We want to know when one logical formula follows logically from another.
- Suppose we know that "p is true" (technically: it is *interpreted* as true), and we know that $p \to q$ holds as well. Then we can logically conclude that q also holds!
- We can express this with *sequents*: $p, p \rightarrow q \models q$
- These conclusions can be arbitrarily complicated, however!
 I.e., it might not be obvious that the conclusion follows from the premises.
- Two ways to show validity of sequents: semantics (validity by meaning) and syntactic proof system (validity by following deductive rules; natural deduction introduced soon).

Sequents

Introduction

Sequents

In general, a sequent is of the following form with X a set of formulae and A a single formula:

$$X \models A$$

- Read it: A follows from X; or X entails A.
- For example, "q follows from p and $p \rightarrow q$ "
- We write down: but that just abbreviates:

$$\underbrace{\{p,p\rightarrow q\}}_{X} \models \underbrace{q}_{A}$$

• Also $X, Y \models A$ abbreviates $X \cup Y \models A$,

 Sequents
 Natural Deduction
 Conjunction
 Implication
 Theorems
 Summary

 00●0
 000
 0000000
 00000000
 00
 00
 00

Semantically Valid Sequents

Definition:

 $X \models A$ means the sequent is *valid*. This is the case if and only if:

- A is true for every interpretation for which all the formulae in X are true. Or, equivalently:
- There is no interpretation that makes X true, but not A.

How to check/test/prove $X \models A$? Create the truth tables!

- Create a table t_X for all formulae in X (all need to be true)
- Create another table t_A for A and check validity criterion.

Checking Validity, Example 2

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

Table t_A for conclusion:

р	q	r	$p \lor q$	$(p \lor q) \to r$	Х	_	р	q	r	$p \rightarrow r$	$q \rightarrow r$	Α
0	0	0	0	1	0		0	0	0	1	1	1
0	0	1	0	1	0		0	0	1	1	1	1
0	1	0	1	0	0		0	1	0	1	0	0
0	1	1	1	1	0		0	1	1	1	1	1
1	0	0	1	0	0		1	0	0	0	1	0
1	0	1	1	1	1		1	0	1	1	1	1
1	1	0	1	0	0		1	1	0	0	0	0
1	1	1	1	1	1		1	1	1	1	1	1

Recall the definition: The sequent is valid if all interpretations that make *X* true also make *A* true!

Checking Validity, Example 2

Show
$$(p \lor q) \to r, p \models (p \to r) \land (q \to r)$$

Table t_X for premises:

Table t_A for conclusion:

р	q	r	$p \lor q$	$(p \lor q) \to r$	Х
0	0	0	0	1	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	1	1

Table 14 for continuoren								
р	q	r	$p \rightarrow r$	$q \rightarrow r$	Α			
0	0	0	1	1	1			
0	0	1	1	1	1			
0	1	0	1	0	0			
0	1	1	1	1	1			
1	0	0	0	1	0			
1	0	1	1	1	1			
1	1	0	0	0	0			
1	1	1	1	1	1			

Only two interpretations exist that make all $x \in X$ true:

1
$$I_1(p) = I_1(r) = 1, I_1(q) = 0$$
 2 $I_2(p) = I_2(q) = I_2(r) = 1$

$$I_2(p) = I_2(q) = I_2(r) = 1$$

Both of them make A true! Thus, $X \models A$.

Natural Deduction

Natural Deduction and Derivations

- Natural deduction is pure syntax manipulation and acts as proof system with a formal notion of proof as a mathematical entity (cf. informal proof in ordinary math).
- Natural Deduction exploits derivations (or formal proofs).
- A derivation is a finite sequence of formulae, which are derived from each other based on elementary formula manipulations ("1-step inference rules")
- Syntax (proof system) vs. semantics is arguably the most important distinction in formal logic.

Syntax of Sequents

- From now on, we write $X \vdash A$ rather than $X \models A$.
- X ⊢ A means A syntactically follows from X, i.e., you can formally prove the conclusion A using X as assumptions (within the system of natural deduction).
- $X \models A$ means A semantically follows from X.

Conjunction

Yoshihiro Maruyama 10.30

The 1-Step Rules: And-Elimination

What are the 1-step rules for dealing with conjunction?

Elimination rule:

$$\frac{A \wedge B}{A} \wedge E \qquad \qquad \frac{A \wedge B}{B} \wedge E$$

Which reads: If we derived $A \wedge B$, we can derive both A and B.

The 1-Step Rules: And-Introduction

What are the 1-step rules for dealing with conjunction?

Introduction rule:

$$\frac{A}{A \wedge B} \wedge I$$

Which reads: If we derived A and we derived B, we can derive $A \wedge B$.

Proof Syntax / Notation: Overview

- How to write down proofs?
- There are many different notations that describe the same thing
- We introduce two:
 - Tree-like representation of the applied rules (just since it's another standard)
 - list-like representation (only use that one!)

Yoshihiro Maruyama

13.30

Proof Syntax / Notation: Tree- and List-like Representations

- Assume we want to prove $p \land q \vdash q \land p$
- In the tree-like format:

$$\frac{p \wedge q}{q} \wedge E \quad \frac{p \wedge q}{p} \wedge E$$

$$\frac{q \wedge p}{q \wedge p} \wedge E$$

- Leaves are assumptions, root is conclusion
- Advantages: Makes the proof structure obvious
- In exercises, etc: Do not use it, unless we ask you to!

Proof Syntax / Notation: Tree- and List-like Representations

- Assume we want to prove $p \land q \vdash q \land p$
- In the list format:

column 1: assumption number column 2: line number column 3: derivation column 4: how it was derived

• Note: Each line represents a sequent! (Sequence of sequents.)

The 1-Step Rules (Based on Sequents): Derivation Rules

Derivation Rules as considered so far:

$$\frac{A \wedge B}{A} \wedge E \qquad \qquad \frac{A \wedge B}{B} \wedge E \qquad \qquad \frac{A}{A \wedge B} \wedge I$$

Re-written in terms of sequents:

$$\frac{X \vdash A \land B}{X \vdash A} \land E \qquad \frac{X \vdash A \land B}{X \vdash B} \land E \qquad \frac{X \vdash A \qquad Y \vdash B}{X, Y \vdash A \land B} \land I$$

→ I.e., now we see how premises accumulate!

The 1-Step Rules (Based on Sequents): Accumulation of Assumptions, Example

$$p, q \vdash p \land q$$

$$\overline{\frac{X\vdash A \quad Y\vdash B}{X,\,Y\vdash A\land B}}\land I$$

Implication

Yoshihiro Maruyama 17.30

The 1-Step Rules: Implication-Elimination and -Introduction

Elimination rule:

$$\frac{A \to B}{B} \to E$$

Introduction rule:

if we can derive B using A:

then we can derive $A \rightarrow B$ and discharge A:

$$\begin{bmatrix}
A \\
\vdots \\
B \\
A \to B
\end{bmatrix} \to I$$

$$A \\
\vdots \\
B$$

The 1-Step Rules: Implication-Elimination and -Introduction (Based on Sequents)

Derivation Rules as considered so far:

$$\frac{A \to B}{B} \to B$$

$$\vdots \\ \frac{B}{A \to B} \to I$$

[A]

Re-written in terms of sequents:

$$\frac{X \vdash A \to B \qquad Y \vdash A}{X, Y \vdash B} \to E$$

$$\underbrace{X,A \vdash B}_{X \vdash A \to B} \to I$$

Has side effect of removing the assumption A

• We say that A gets discharged, and annotate that in the proof.

The 1-Step Rules: Deduction Equivalence

$$X \vdash A \rightarrow B$$
 iff $X, A \vdash B$
deduction equivalence
(or deduction theorem)

Why does this hold?

• If
$$X, A \vdash B$$
, then $X \vdash A \rightarrow B$:
$$\frac{X, A \vdash B}{X \vdash A \rightarrow B} \rightarrow I$$

• If
$$X \vdash A \to B$$
, then $X, A \vdash B$:
$$\frac{X \vdash A \to B \quad A \vdash A}{X, A \vdash B} \to E$$

(That's the $\rightarrow E$ rule with Y substituted by A)

The 1-Step Rules: Implication-Introduction and -Elimination, Example 1

- Assumption α_2 is a new one, which was not given in the original sequent, so we need to eliminate it later on.
- In the last step, we discharge assumption α_2 .

 α_1

The 1-Step Rules: Implication-Introduction and -Elimination, Example 1 (cont'd)

The proof of $p \to q \vdash (p \land r) \to q$ in a tree-like structure:

$$\frac{\rho \to q}{q} \frac{\frac{[\rho \land r]^{(1)}}{\rho} \land E}{q} \to E}{\frac{(\rho \land r) \to q}{} \to I(1)}$$

Here, we denote discharged assumptions by $[\dots]^{(n)}$, where we number each assumption so that they can be distinguished from each other, i.e., so that we know which rule discharged which assumption(s).

The 1-Step Rules: Implication-Introduction and -Elimination, Example 2

$$(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$$

$$\alpha_1$$
(1) $(p \wedge q) \rightarrow r$ A
 α_2
(2) p A

$$\alpha_3$$
 (3) q A

$$\alpha_2, \alpha_3$$
 (4) $p \wedge q$ 2,3 $\wedge I$

$$\alpha_1, \alpha_2, \alpha_3$$
 (5) r 1,4 $\rightarrow E$

$$\alpha_1, \alpha_2$$
 (6) $q \to r$ $5[\alpha_3] \to l$
 α_1 (7) $p \to (q \to r)$ $6[\alpha_2] \to l$

$$\frac{X, A \vdash B}{X \vdash A \to B} \to I$$

$$\begin{array}{|c|c|}
\hline
X \vdash A \to B & Y \vdash A \\
\hline
X, Y \vdash B
\end{array}$$

24.30

$$egin{array}{lll} lpha_1,lpha_2,lpha_3 & (\mbox{n-2}) & r & & & & & & & & & & \\ lpha_1,lpha_2 & & (\mbox{n-1}) & q
ightarrow r & & & & & & & & & & & \\ \end{array}$$

$$\alpha_1$$
 (n) $p \rightarrow (q \rightarrow r)$ (n-1)[α_2] $\rightarrow I$

 α_1

Vacous Discharge: Discharging Non-existent Assumptions

 We can "discharge" assumptions that are not there; this happens if the conclusion does not depend on its assumption.

$$\begin{array}{ccccc}
\rho \vdash q \rightarrow \rho \\
\alpha_1 & (1) & p & A \\
\hline
\alpha_2 & (2) & q & A \\
\alpha_1 & (2) & q \rightarrow p & 1[] \rightarrow I
\end{array}$$

$$\frac{X, A \vdash B}{X \vdash A \to B} \to I$$

$$\begin{array}{cccc} \alpha_1, \alpha_2 & \text{(n-1)} & p \\ \alpha_1 & \text{(n)} & q \rightarrow p & \text{(n-1)}[\alpha_2] \rightarrow I \end{array}$$

- We call such a discharge a vacuous discharge.
- I.e., whenever we "would remove" some assumption α from a set of assumptions X, but $\alpha \notin X$, we write $i[] \rightarrow I$ instead of $i[\alpha] \rightarrow I$

Excursion: ⊢ vs. →: An Often Asked Question in Previous Courses

- E.g., compare $A, B \vdash C$ with $A \land B \rightarrow C$
- So what's the difference?
- ullet \rightarrow is a logical connective, whereas \vdash is not.
- is a relation between formulae and cannot be used within a formula.
- They are linked by the deduction theorem: $X, A \vdash B$ if and only if $X \vdash A \rightarrow B$. In particular: $A \vdash B$ if and only if $\vdash A \rightarrow B$

Theorems

Yoshihiro Maruyama 27.30

Unconditionally True Formulas

- Sequents that do not depend on anything are called theorems!
- Thus, A is a theorem if " $\vdash A$ ", e.g., $\vdash p \rightarrow (q \rightarrow p)$.
- Another (slightly more complex) example:

- Thus, we get $\vdash p \rightarrow (q \rightarrow (p \land q))$, so its formula is a theorem.
- Note that A in ⊢ A is a tautology!

Summary

Yoshihiro Maruyama 29.30

Content of this Lecture

- Sequents and their semantics
 - What does $X \models A$ mean?
- The most important basics of Natural Deduction!
 - How can proofs be written?
 - What does X ⊢ A mean?
 - Every logical connective comes with two 1-step rules:
 Introduction and Elimination
 - What's a theorem?
- → The Logic Notes sections:
 - 3. More about propositional logic: Truth Tables
 - 2. Propositional natural deduction: Conjunction
 - 2. Propositional natural deduction: Implication
 - 2. Propositional natural deduction: Counting assumptions (except Contraction, which you should look up!)

Yoshihiro Maruyama 30.30