Bài 2. TÍCH PHÂN

A. LÝ THUYẾT CẦN NHỚ

1. Diện tích hình thang cong

Nếu hàm số f(x) liên tục và không âm trên đoạn [a;b] thì diện tích S của hình thang cong giới hạn bởi đồ thị y=f(x), trục hoành và hai đường thẳng $x=a, \ x=b$ được tính bởi: S=F(b)-F(a) trong đó F(x) là một nguyên hàm của f(x) trên đoạn [a;b].

2. Khái niệm tích phân

Cho hàm số f(x) liên tục trên đoạn [a;b]. Nếu F(x) là nguyên hàm của hàm số f(x) trên đoạn [a;b] thì hiệu số F(b)-F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu $\int\limits_{b}^{b}f(x)\mathrm{d}x.$

Chú ý:

- $oldsymbol{\Theta}$ Hiệu số F(b)-F(a) còn được kí hiệu là $F(x)ig|_a^b$. $Vây\int\limits_a^b f(x)\mathrm{d}x=F(x)ig|_a^b=F(b)-F(a).$
- $m{\Theta}$ Ta gọi $\int\limits_a^b$ là dấu tích phân, a là cận dưới, b là cận trên, f(x) dx là biểu thức dưới dấu tích phân và f(x) là hàm số dưới dấu tích phân.
- $Quy \ \textit{u\'oc}: \int_{a}^{a} f(x) dx = 0; \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx.$
- $m{\Theta}$ Tích phân của hàm số f từ a đến b chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào biến x hay t, nghĩa là $\int\limits_{-b}^{b} f(x) \mathrm{d}x = \int\limits_{-b}^{b} f(t) \mathrm{d}t$.
- $m{\Theta}$ Ý nghĩa hình học của tích phân.

Nếu hàm số f(x) liên tục và không âm trên đoạn [a;b] thì $\int\limits_a^b f(x)\mathrm{d}x$ là diện tích S của hình thang cong giới hạn bởi đồ thị y=f(x), trục hoành và hai đường thẳng x=a, x=b.

$$S = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

 $\ref{eq:poisson}$ N
Hận XÉT. $\ensuremath{f \Theta}$ Nếu hàm số f(x) có đạo hàm
 f'(x) và f'(x) liên tục trên đoạn [a;b] thì

ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK NOTE

• •	 	 	 	
• •	 	 	 	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠

					•									•	•	

 $f(b) - f(a) = \int_{a}^{b} f'(x) dx.$

⊘ (

 $m{\Theta}$ Cho hàm số f(x) liên tục trên đoạn [a;b]. Khi đó $\frac{1}{b-a}\int\limits_a f(x)\mathrm{d}x$ được gọi là giá trị trung bình của hàm số f(x) trên đoạn [a;b].

.....

 $m{\Theta}$ Đạo hàm của quãng đường di chuyển của vật theo thời gian bằng tốc độ của chuyển động tại mọi thời điểm v(t)=s'(t). Do đó, nếu biết tốc độ v(t) tại mọi thời điểm $t\in [a;b]$ thì tính được quãng đường di chuyển trong khoảng thời gian từ a đến b theo công thức: $s=s(b)-s(a)=\int\limits_a^b v(t)\mathrm{d}t.$

.....

3. Tính chất của tích phân

Cho hai hàm số f(x), g(x) liên tục trên đoạn [a;b]. Khi đó:

a)
$$\int_a^b kf(x)\mathrm{d}x = k\int_a^b f(x)\mathrm{d}x$$
, với k là hằng số.

b)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx.$$

c)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ v\'oi } c \in (a;b).$$

.....

B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP

🖶 Dạng 1. Tính chất của tích phân

.....

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Nếu
$$\int_{0}^{3} f(x) dx = 6 \text{ thì } \int_{0}^{3} \left[\frac{1}{3} f(x) + 2 \right] dx$$
 bằng

(A)8.

B5

(C)9.

 \bigcirc 6.

.....

CÂU 2. Nếu $\int_{1}^{4} f(x) dx = 3 \text{ và } \int_{1}^{4} g(x) dx = -2 \text{ thì } \int_{1}^{4} (f(x) - g(x)) dx \text{ bằng}$

.....

CÂU 3. Nếu $\int_{1}^{4} f(x) dx = 5$ và $\int_{1}^{4} g(x) dx = -4$ thì $\int_{1}^{4} [f(x) - g(x)] dx$ bằng

 \bigcirc -1

B)-9.

 $(\mathbf{C})_{1.}$

D9.

.....

CÂU 4. Biết $\int_{1}^{2024} f(x) dx = -3 \text{ và } \int_{2024}^{1} g(x) dx = 2.$ Khi đó $\int_{1}^{2024} [f(x) - g(x)] dx$ bằng **(A)** 6. **(B)** -5. **(C)** 5. **(D)** -1.

.....

CÂU 5. Nếu $\int_{0}^{3} f(x) dx = 3 thì \int_{0}^{3} 4f(x) dx$ bằng

A3.

B12.

©36

 \bigcirc 4.

CÂU 6. Cho $\int_{0}^{2} f(x) dx = \frac{1}{2024}$. Tính $I = \int_{0}^{2} 2024 f(x) dx$.

 $\blacksquare I = \frac{1}{2024}$

 $\mathbf{C}I = 1.$

 $\bigcirc I = 2024.$

CÂU 7. Nếu
$$\int_{0}^{5} f(x) dx = 5 thì \int_{5}^{0} 5f(x) dx$$
 bằng

 \mathbf{A} 1.

$$(\mathbf{D}) - 25.$$

CÂU 8. Nếu
$$\int_{0}^{2} f(x) dx = 5 \text{ thì } \int_{0}^{2} [2f(x) - 1] dx \text{ bằng}$$

 \bigcirc 8.

$$(\mathbf{D})12.$$

$$\bigcirc$$
5.

CÂU 10. Cho
$$\int_{0}^{1} f(x) dx = 2 \text{ và } \int_{0}^{1} g(x) dx = 5, \text{ khi } \int_{0}^{1} [f(x) - 2g(x)] dx \text{ bằng}$$

 $(\mathbf{A})-8.$

$$\mathbf{B}$$
)1.

$$(\mathbf{D})12.$$

CÂU 11. Cho
$$\int_{0}^{\frac{\pi}{2}} f(x) dx = 5$$
. Tính $I = \int_{0}^{\frac{\pi}{2}} [f(x) + 2\sin x] dx$.

B
$$I = 5 + \frac{\pi}{2}$$
.

$$\bigcirc I = 3$$

$$\mathbf{D}I = 5 + \pi.$$

CÂU 12. Cho
$$\int_{1}^{2} [4f(x) - 2x] dx = 1$$
. Khi đó $\int_{1}^{2} f(x) dx$ bằng **(B)** -3 .

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 13.** Cho hai hàm f, g liên tục trên K và a, b là các số bất kỳ thuộc K.

Mệnh đề	Ð	S
a) $\int_{a}^{b} [f(x) + 2g(x)] dx = \int_{a}^{b} f(x) dx + 2 \int_{a}^{b} g(x) dx$.		
$\mathbf{b}) \int_{a}^{b} \frac{f(x)}{g(x)} dx = \frac{\int_{a}^{b} f(x) dx}{\int_{a}^{b} g(x) dx}.$		
$\mathbf{c)} \int_{a}^{b} [f(x) \cdot g(x)] \mathrm{d}x = \int_{a}^{b} f(x) \mathrm{d}x \int_{a}^{b} g(x) \mathrm{d}x.$		
$\mathbf{d}) \int_{a}^{b} f^{2}(x) \mathrm{d}x = \left[\int_{a}^{b} f(x) \mathrm{d}x \right]^{2}.$		

CÂU 14. Cho hàm số f(x), g(x) liên tục trên \mathbb{R} .

Mệnh đề	Ð	$\mid \mathbf{S} \mid$
a) Nếu $\int_{0}^{2} f(x) dx = 4 \text{ thì } \int_{0}^{2} \left[\frac{1}{2} f(x) + 2 \right] dx = 6.$		
b) Nếu $\int_{2}^{5} f(x) dx = 3 \text{ và } \int_{2}^{5} g(x) dx = -2 \text{ thì } \int_{2}^{5} [f(x) + g(x)] dx = 1.$		
c) Nếu $\int_{1}^{4} f(x) dx = 6$ và $\int_{1}^{4} g(x) dx = -5$ thì $\int_{1}^{4} [f(x) - g(x)] dx = 1$.		

\sim		•			
വ	Κ	N		Т	
			J	ш	-

QUICK NOTE	Mệnh đề	Ð	S
	3 3 3		
	d) Nếu $\int f(x) dx = 4 \text{ và} \int g(x) dx = 1 \text{ thì } \int [f(x) - g(x)] dx = 3.$		
	2 2 2		
	CÂU 15. Cho hàm số $f(x), g(x)$ liên tục trên \mathbb{R} .		
	Mệnh đề	Ð	\mathbf{S}
	$\frac{3}{f}$ $\frac{2}{f}$ $\frac{3}{f}$		
	a) Biết $\int f(x) dx = 3$ và $\int g(x) dx = 1$. Khi đó $\int [f(x) + g(x)] dx = 4$.		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	
	b) Biết $\int f(x) dx = 2022$ và $\int g(x) dx = 1$. Khi đó $\int [f(x) + g(x)] dx = 1$		
	2021.		
	a) Piết $\int_{-1}^{2} f(n) dn = 2 \text{ which is } \int_{-1}^{2} [f(n) - g(n)] dn = 1$		
	c) Biết $\int f(x) dx = 3$ và $\int g(x) dx = 2$. Khi đó $\int [f(x) - g(x)] dx = 1$.		
	5 5		
	d) Biết $\int f(x) dx = 2$. Khi đó $\int 3f(x) dx = 2$.		
	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
	CÂU 16. Cho hàm số $f(x)$ liên tục trên \mathbb{R} .		
	Mệnh đề	Ð	\mathbf{S}
	3 3		
	a) Nếu $\int f(x) dx = 3 \text{ thi } \int 2f(x) dx = 6.$		
	0 0		
	b) Nếu $\int f(x) dx = 2024 \text{ thì } \int f(x) dx = -2024.$		
	$\int_{1}^{3} \int_{1}^{3} \int_{1$		
	c) Nếu $\int f(x) dx = 12 \text{ thì } \int 2022 f(x) dx = 24264.$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	d) Nếu $\int_{\Omega} f(x) dx = 4 \text{ thi } \int_{\Omega} 2f(x) dx = 8.$		
	Phần III. Học sinh điền kết quả vào ô trống.		
	CÂU 17. Cho $\int_{0}^{3} f(x) dx = 4$. Tính $I = \int_{0}^{3} 3f(x) dx$.		
	KQ:		
	CÂU 18. Cho $\int_0^3 f(x) dx = 2$. Tính $I = \int_0^3 [f(x) + 2x] dx$.		
	CAO 10. Cho $\int_{1}^{1} f(x) dx = 2$. Thin $I = \int_{1}^{1} [f(x) + 2x] dx$.		
	KQ:		
	Ite.		
			,
	CÂU 19. Cho $\int_{1}^{1} f(x) dx = 2 \text{ và } \int_{1}^{1} g(x) dx = -1.$ Tính $I = \int_{1}^{1} [x + 2f(x) + 3]$	g(x)	$\mathrm{d}x.$
	KQ:		
	CÂU 20. Cho $\int_{0}^{\infty} f(x) dx = 1$. Tính tích phân $I = \int_{0}^{\infty} \left[2f(x) - 3x^{2} \right] dx$.		
	ő		
	KQ:		

CÂU 21. Biết
$$\int\limits_{1}^{3}f(x)\,\mathrm{d}x=3$$
. Tính giá trị của $I=\int\limits_{3}^{1}2f(x)\,\mathrm{d}x$.

KQ:

🖶 Dạng 2. Tích phân hàm số sơ cấp

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Tích phân
$$I = \int_{0}^{2} (2x+1) dx$$
 bằng

$$\bigcirc I = 5.$$

$$\mathbf{B}$$
 $I=6.$

$$(\mathbf{C})I=2.$$

$$(\mathbf{D})I = 4.$$

CÂU 2. Tích phân $\int\limits_{\Sigma} (3x+1)(x+3) dx$ bằng

$$(\mathbf{C})$$
5.

$$\bigcirc$$
6.

CÂU 3. Tính tích phân $I = \int_{-\infty}^{\infty} \left(\frac{1}{x} - \frac{1}{x^2}\right) dx$

$$\bigcirc I = \frac{1}{2}$$
.

B
$$I = \frac{1}{e} + 1.$$
 C $I = 1.$

$$\mathbf{C}I = 1.$$

$$\bigcirc I = e.$$

CÂU 4. Biết $\int\limits_{1}^{3} \frac{x+2}{x} \, \mathrm{d}x = a+b \ln c$, với $a,\,b,\,c \in \mathbb{Z},\,c < 9$. Tính tổng S=a+b+c.

$$\mathbf{\hat{A}}S = 7.$$

$$\mathbf{B}S = 5.$$

$$(\mathbf{C})S = 8.$$

$$\bigcirc S = 6.$$

CÂU 5. Tích phân $\int_{-\infty}^{\infty} e^{3x+1} dx$ bằng

(A)
$$\frac{1}{3}$$
 (e⁴ + e). **(B)** e³ - e. **(C)** $\frac{1}{3}$ (e⁴ - e). **(D)** e⁴ - e.

$$\mathbf{B}$$
 $e^3 - e$.

$$\mathbf{c}^{\frac{1}{3}} \left(e^4 - e \right)$$

$$\mathbf{D}e^4 - e$$
.

CÂU 6. Biết $\int_{-2\pi}^{1} \frac{\mathrm{e}^x}{2^x} \, \mathrm{d}x = \frac{\mathrm{e} - 1}{a - \ln b}$, $(a, b \in \mathbb{Z})$. Khi đó giá trị của P = a + b là

$$P = -3.$$

$$\bigcirc P = -1$$

$$\bigcirc P = 3.$$

CÂU 7. Giá trị của $I = \int_{-\infty}^{1} \frac{e^{2x} - 4}{e^x + 2} dx$ bằng

$$\blacksquare I = 2 (e + 3).$$

(A)
$$I = 2 (e + 3)$$
. **(B)** $I = \frac{1}{2} (e + 3)$. **(C)** $I = e - 3$.

$$\mathbf{C}I = e - 3$$

$$\mathbf{D}I = 2 (e - 3).$$

CÂU 8. Biết $\int_{1}^{z} e^{x} \left(1 - \frac{e^{-x}}{x}\right) dx = e^{2} + a \cdot e + b \ln 2$, $(a, b \in \mathbb{Z})$. Khi đó giá trị của $P = \frac{a+b}{a \cdot b}$

$$P = -3.$$
 $P = -1.$ $P = -1.$

$$\bigcirc P = -1$$

$$\bigcirc P = -2.$$

CÂU 9. Biết $I = \int_{0}^{1} \frac{\mathrm{e}^{2x-1} - \mathrm{e}^{-3x} + 1}{\mathrm{e}^{x}} \, \mathrm{d}x = \frac{1}{a} + b$, $(a, b \in \mathbb{R})$. Khi đó giá trị của $P = \frac{a+b}{a \cdot b}$

$$\mathbf{A}P = e^4 - 1.$$

$$\mathbf{B}P = \frac{e^4 - 1}{e^2}$$

(A)
$$P = e^4 - 1$$
. (B) $P = \frac{e^4 - 1}{e^2}$. (C) $P = \frac{e^4 - 1}{e^4}$. (D) $P = \frac{1 - e^4}{e^4}$.

$$\mathbf{D}P = \frac{1 - e^4}{e^4}$$

CÂU 10. Giá trị của $\int \sin x \, \mathrm{d}x$ bằng

$$(\mathbf{C})_{-1}$$
.

$$(\mathbf{D})\frac{n}{2}$$

 	 	 • • • •

• • • • • • •	 	 • • • • • • • •

ຄ	Ш	CK	Ν	OI	-
	u	$-\kappa$		v.	

•	Ī	Ī	•	Ī	Ī	•	•	Ī	Ī	•	•	•	•	•			•	Ī	Ī	•	•	•	•	•	Ī	•

CÂU 11. Biết
$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (2\sin x + 3\cos x + x) dx = \frac{a + b\sqrt{3}}{2} + \frac{\pi^2}{c}, (a, b, c \in \mathbb{Z})$$
. Khi đó giá trị của

$$P = a + 2b + 3c$$
 là $(\mathbf{A})P = 45.$

(B)
$$P = 60$$
. **(C)** $P = 65$.

$$\bigcirc P = 65.$$

$$(\widehat{\mathbf{D}})P = 70.$$

CÂU 12. Biết $\int\limits_{\frac{\pi}{c}}$ $3\tan^2 x\,\mathrm{d}x = a\sqrt{3} + b + \frac{\pi}{c},\ (a,b,c\in\mathbb{Z}).$ Khi đó giá trị của P=a+b+c

$$\mathbf{A}P = 6.$$

$$\mathbf{B})P = -4.$$

$$\mathbf{C}P = 4.$$

$$(\widehat{\mathbf{D}})P = -6.$$

CÂU 13. Biết $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \left(2\cot^2 x + 5\right) dx = \frac{\pi}{a} + b\sqrt{3} + c, \ (a, b, c \in \mathbb{Z}).$ Khi đó giá trị của P = a + b + c là **(B)** P = -4. **(C)** P = 4. **(D)** P = -6.

$$P = a + b + c$$
 là $P = 6$.

$$\mathbf{B}$$
 $P = -4$.

$$\mathbf{C}$$
 $P=4$.

$$(\widehat{\mathbf{D}})P = -6.$$

CÂU 14. Biết $\int_0^2 \sin^2 \frac{x}{4} \cos^2 \frac{x}{4} \, dx = \frac{\pi}{c} + \frac{a}{b}$ với $a, b \in \mathbb{Z}$ và $\frac{a}{b}$ là phân số tối giản. Khi đó giá

trị của
$$P=a+b+c$$
là

$$P = 17.$$

$$(\mathbf{B})P = 16$$

$$\bigcirc P = 32$$

$$(\mathbf{D})P = 49.$$

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 15. Cho hàm số y = f(x) liên tục trên [a; b]. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Đ	S
$\mathbf{a)} \int_{a}^{b} f(x) \mathrm{d}x = \int_{b}^{a} f(x) \mathrm{d}x.$		
$\mathbf{b)} \int_{a}^{b} f(x) \mathrm{d}x = -\int_{b}^{a} f(x) \mathrm{d}x.$		
c) $\int_{a}^{b} f(x) dx = 2 \int_{a}^{b} f(x) d(2x).$		
d) $\int_{a}^{a} 2024 f(x) dx = 0.$		

CÂU 16. Cho hàm số y = f(x), y = g(x) liên tục trên [a; b]. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	S
a) $\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$		
b) $\int_{a}^{b} f(x) \cdot g(x) dx = \int_{a}^{b} f(x) dx \cdot \int_{a}^{b} g(x) dx.$		
c) $\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$.		

Mệnh đề	Đ	S
$\mathbf{d}) \int_{a}^{b} \frac{f(x)}{g(x)} \mathrm{d}x = \frac{\int_{a}^{b} f(x) \mathrm{d}x}{\int_{a}^{b} g(x) \mathrm{d}x}.$		

CÂU 17. Cho hàm f(x) là hàm liên tục trên đoạn [a;b] với a < b và F(x) là một nguyên hàm của hàm f(x) trên [a;b]. Các mệnh đề sau đây đúng hay sai?

Mệnh đề	Ð	\mathbf{S}
$\mathbf{a)} \int_{a}^{b} kf(x) \mathrm{d}x = k \left[F(b) - F(a) \right].$		
$\mathbf{b)} \int_{b}^{a} f(x) \mathrm{d}x = F(b) - F(a).$		
c) Diện tích S của hình phẳng giới hạn bởi đường thẳng $x=a; x=b;$ đồ thị của hàm số $y=f(x)$ và trục hoành được tính theo công thức $S=F(b)-F(a)$.		
d) $\int_{a}^{b} f(2x+3) dx = F(2x+3) \Big _{a}^{b}$.		

CÂU 18. Các mệnh đề sau đây đúng hay sai.

Mệnh đề	Đ	\mathbf{S}
a) $\int_{0}^{1} \frac{e^{2x} - 4}{e^{x} + 2} dx = e - 3.$		
b) $\int_{0}^{1} \frac{e^{x}}{2^{x}} dx = \frac{e}{2} + 1.$		
c) $\int_{1}^{2} e^{x} \left(1 - \frac{e^{-x}}{x} \right) dx = e^{2} - e - \ln 2.$		
d) $\int_{0}^{1} \frac{e^{2x-1} - e^{-3x} + 1}{e^{x}} dx = e^{4} - 1.$		

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 19. Với a, b là các tham số thực. Tích phân

$$I = \int_{0}^{b} (3x^{2} - 2ax - 1) dx = b^{t} - b^{y}a + zb.$$

Tính t + y + z.

KQ:				
-----	--	--	--	--

CÂU 20. Cho $\int_{0}^{m} (3x^{2} - 2x + 1) dx = 6.$ Tính giá trị của tham số m.

KO		
$\mathbf{n}_{\mathcal{Q}}$.		

CÂU 21. Tính tích phân $I = \int_{1}^{2} \frac{x-1}{x} dx$ (*làm tròn đến hàng phần trăm*).

KQ:				
-----	--	--	--	--

	KQ:
.VŨ NGOC PHÁT —	

	ШС	~	N	\sim	
ည၊	ш	-10	N	O	-

CÂU 22. Tính $I = \int_{1}^{2} \left(\frac{x - \sqrt[4]{x}}{x} \right)^{1/2}$	$\left(\frac{x^3}{x^2}\right)^2 \mathrm{d}x$ (làm tròn đến hàng phần trăm
---	---

CÂU 23. Tính $I = \int_{1}^{2} (\sqrt{x} + 1) (\sqrt[3]{x} - 1) dx$ (làm tròn đến hàng phần trăm).

CÂU 24. Tính $I = \int_{1}^{2} \frac{(x^2+1)^3}{x^2} dx$ (làm tròn đến hàng phần chục).

CÂU 25. Tính $I = \int_{0}^{1} 5^{x+1} \cdot 7^{2x-1} dx$ (làm tròn đến hàng đơn vi).

CÂU 26. Tính $I = \int_{0}^{1} (x + e^{-x-2}) dx$ (làm tròn đến hàng phần trăm).

CÂU 27. Tính $I = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{3}} x^2 \left(1 - \frac{\sin x}{x^2}\right) \,\mathrm{d}x$ (làm tròn đến hàng phần trăm).

CÂU 28. Tính $I = \int\limits_{\frac{\pi}{c}}^{\frac{\pi}{2}} \left(\sin x - \frac{1}{\sqrt[3]{x^2}} \right) \mathrm{d}x$ (làm tròn đến hàng phần trăm).

CÂU 29. Biết $\int_{0}^{1} \frac{(e^{-x}+2)^2}{e^{x-1}} dx = ae+b+\frac{c}{e}+\frac{1}{e^2} (a,b,c \in \mathbb{Z})$. Tính giá trị của P=a+b+c.

CÂU 30. Biết $\int_{0}^{\frac{\pi}{3}} \frac{1 - \cos 2x}{1 + \cos 2x} \, dx = a\sqrt{3} + \frac{\pi}{b} \ (a, b \in \mathbb{Z}).$ Tính a + b.

CÂU 31. Tính $I = \int_0^1 \frac{(2024^x + 1)^2}{e^{-3x}} dx$ (làm tròn đến hàng phần trăm).

CÂU 32. Tính $I = \frac{1}{1000} \int_{0}^{1} \frac{(e^{-x} + 2)^{2}}{e^{x-1}} dx$ (làm tròn đến hàng đơn vị).

CÂU 33. Tính $I = \frac{1}{100} \int_{1}^{2} e^{2x} \left(2023 + \frac{2024e^{-2x}}{x^3} \right) dx$ (*làm tròn đến hàng phần chục*).

KQ:		

CÂU 34. Tính $I = \int \left(4x^3 - 2 \cdot 3^{x+1} + \frac{1}{x^2}\right) dx$ (làm tròn đến hàng phần chục).

Dạng 3. TÍCH PHÂN HÀM TRỊ TUYỆT ĐỐI

Tính tích phân $I = \int_{-\infty}^{\infty} |f(x)| dx$?

Phương pháp

- Θ Bước 1. Xét dấu f(x) trên đoạn [a;b].
- $oldsymbol{\Theta}$ Bước 2. Dựa vào bảng xét dấu trên đoạn [a;b] để khử |f(x)|. Sau đó sử dụng các phương pháp tính tích phân đã học để tính $I = \int |f(x)| \cdot dx$.

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Giá trị của $I = \int \sqrt{1 - \cos 2x} \, \mathrm{d}x$ bằng

- $(\mathbf{A})\sqrt{3}$.
- **B**) $4\sqrt{2}$.
- **(c)** $2\sqrt{3}$.
- $\mathbf{D}\frac{\pi}{2}$.

CÂU 2. Tính tích phân $I = \int |x-2| dx$.

- (A)I = -2.
- **(B)** I = 4.
- $\mathbf{C}I=2.$
- $(\mathbf{D})I = 0.$

CÂU 3. Tính tích phân $I = \int \left| x^3 - x \right| \, \mathrm{d}x.$

- **(A)** $I = -\frac{1}{2}$. **(B)** I = 5.

CÂU 4. Tính tích phân $I = \int |x^2 + 2x - 3| dx$.

- **(A)** I = -2. **(B)** I = 4. **(C)** I = 5.

CÂU 5. Cho tích phân $I = (\sqrt{3} + \sqrt{2}) \int_{3}^{3} |x^{2} - 1| dx = \frac{20}{3} + \frac{4}{3} + \frac{16}{3} = a\sqrt{3} + b\sqrt{2}$ với

 $a,b\in\mathbb{Q}.$ Tính P=a+b. $\textcircled{\textbf{A}} P=\frac{40}{3}. \qquad \textcircled{\textbf{B}} P=\frac{80}{3}.$

- $\mathbf{C}P = \frac{17}{2}.$ $\mathbf{D}P = \frac{98}{2}.$

CÂU 6. Tính tích phân $I = \int (|x+2| - |x-2|) dx$.

- **B**I = 44.

CÂU 7. Cho tích phân $I=\int\limits_{-c}^{c}|2^x-4|\;\mathrm{d}x=a+\frac{b}{c\ln 2}$ với $a,b,c\in\mathbb{Z}$ và $\frac{b}{c}$ là phân số tối

- $(\mathbf{C})P = 5.$
- $(\mathbf{D})P = 18.$

CÂU 8. Tính tích phân $I = \int |2^x - 2^{-x}| dx$.

QUICK NOTE

•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•

	•	•	•						•	•	•	•	•						•	
											•									
											•									

ລເມ	CK	ION	ı
9	$\mathbf{O}_{\mathbf{N}}$		ı

1
$\overline{\ln 2}$.

$$\mathbf{B}$$
ln 2.

$$\mathbf{C}$$
 $2 \ln 2$.

$$\bigcirc \frac{2}{\ln 2}$$
.

CÂU 9. Tính tích phân $I = \int_{-\infty}^{2} (|x| - |x - 1|) dx$.

$$\mathbf{\widehat{A}}I=0.$$

$$\mathbf{B}I = 2.$$

$$(\hat{\mathbf{C}})I = -2.$$
 $(\hat{\mathbf{D}})I = -3.$

$$\widehat{\mathbf{D}})I = -3.$$

CÂU 10. Cho a là số thực dương, tính tích phân $I = \int |x| dx$ theo a.

$$\mathbf{B}I = \frac{a^2 + 2}{2}.$$

(A)
$$I = \frac{a^2 + 1}{2}$$
. **(B)** $I = \frac{a^2 + 2}{2}$. **(C)** $I = \frac{-2a^2 + 1}{2}$. **(D)** $I = \frac{\left|3a^2 - 1\right|}{2}$.

CÂU 11. Cho số thực m>1 thỏa mãn $\int |2mx-1| \ \mathrm{d}x = 1$. Khẳng định nào sau đây

đúng?

$$(\mathbf{A})m \in (4;6).$$

B
$$m \in (2;4).$$

$$\bigcirc m \in (3;5).$$

$$\bigcirc m \in (1;3).$$

CÂU 12. Khẳng định nào sau đây là đúng?

CÂU 13. Tính tích phân $I = \int_{-\pi}^{4} \sqrt{x^2 - 6x + 9} dx$.

$$\mathbf{B}I = -\frac{1}{2}.$$

$$\bigcirc I = -2.$$

$$\bigcirc I = \frac{1}{2}.$$

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 14. Tính tích phân $I = \int_{a} \left| x^2 - 1 \right| \, \mathrm{d}x$ (tính gần đúng đến hàng phần chục).

CÂU 15. Tính tích phân $I = \int_{-\infty}^{\infty} \left| -x^2 - 2x + 3 \right| dx$ (tính gần đúng đến hàng phần trăm).

CÂU 16. Tính tích phân $I = \int\limits_{-\infty}^{\infty} \left| \frac{x+1}{x} \right| \, \mathrm{d}x$ (tính gần đúng đến hàng phần trăm).

CÂU 17. Tính tích phân $I = \int_{0}^{\infty} \sqrt{x^2 - 8x + 16} dx$.

KQ.		
rw.		

CÂU 18. Tính tích phân $I = \int \sqrt{4x^2 + 6x + 9} \, dx$ (*làm tròn đến hàng phần trăm*).

KQ:		

CÂU 19. Tính tích phân $I = \int_{-\infty}^{1} \sqrt{9x^2 - 6x + 1} \, dx$ (*làm tròn đến hàng phần trăm*).

CÂU 20. Tính tích phân $I = \int_{-\infty}^{2\pi} \sqrt{1 + \cos 2x} \, dx$ (*làm tròn đến hàng phần trăm*).

CÂU 21. Tính tích phân $I = \int_{-\infty}^{2\pi} \sqrt{1 - \cos 2x} \, dx$ (*làm tròn đến hàng phần trăm*).

CÂU 22. Tính tích phân $I = \int_{-\infty}^{2\pi} \sqrt{1 - \sin 2x} \, dx$, (*làm tròn đến hàng phần trăm*).

CÂU 23. Tính tích phân $I = \int_{0}^{2\pi} \sqrt{1 + \sin 2x} \, dx$ (*làm tròn đến hàng phần trăm*).

Dạng 4. Tích phân có điều kiện

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Nếu $F'(x) = \frac{1}{2x}$ và F(1) = 1 thì giá trị của F(4) bằng

$$\mathbf{A}$$
 ln 2.

B
$$1 + \ln 2$$
.

©
$$1 + \frac{1}{2} \ln 2$$
. **©** $\frac{1}{2} \ln 2$.

$$\bigcirc \frac{1}{2} \ln 2.$$

CÂU 2. Cho F(x) là một nguyên hàm của $f(x) = \frac{2}{x}$. Biết F(-1) = 0. Tính F(2) kết quả

(A) 2 ln 2 + 1.

$$lue{\mathbf{B}}$$
 $\ln 2$.

$$\bigcirc 2 \ln 3 + 2.$$

$$\bigcirc 2 \ln 2$$

CÂU 3. Cho hàm số f(x) liên tục, có đạo hàm trên [-1;2], f(-1)=8, f(2)=-1. Tích phân $\int f'(x) dx$ bằng

\sim	_
R	7
(– /	٠.

$$(\mathbf{c}) - 9.$$

$$\bigcirc$$
9.

CÂU 4. Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int \int [1+f(x)] dx$

bằng

$$\bigcirc$$
10.

$$\bigcirc \frac{26}{3}$$
.

$$\bigcirc \frac{32}{3}$$
.

CÂU 5. Biết $F(x) = x^3$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int [1 + f(x)] dx$

bằng

$$\bigcirc$$
20.

CÂU 6. Biết $F(x)=x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int [2+f(x)] \, \mathrm{d}x$

bằng

QI		$\boldsymbol{\nu}$	Ν	\sim	Ī
	шс		N		

$(\mathbf{\Delta})$	5
(-	$\boldsymbol{\circ}$.

$$\bigcirc \frac{13}{3}$$
.

$$\mathbf{D}^{\frac{7}{2}}$$
.

CÂU 7. Biết $F(x)=x^3$ là một nguyên hàm của hàm số f(x) trên $\mathbb R$. Giá trị của $\int \left[2+f(x)\right]\mathrm{d}x$

$$\frac{3}{4}$$
.

$$\bigcirc \frac{15}{4}$$

CÂU 8. Cho hàm số f(x). Biết f(0) = 4 và $f'(x) = 2\sin^2\frac{x}{2} + 1$, $\forall x \in \mathbb{R}$, khi đó $\int_0^{\frac{\pi}{4}} f(x) dx$

$$\mathbf{A} \frac{\pi^2 + 16\pi + 8\sqrt{2} - 16}{16}.$$

$$\mathbf{C} \frac{\pi^2 + 16\pi + 8\sqrt{2}}{16}.$$

$$8\sqrt{2}$$

$$\mathbf{B} \frac{\pi^2 + 16\pi + 2\sqrt{2} - 4}{16}.$$

$$\mathbf{D} \frac{\pi^2 + 16\pi - 16}{16}.$$

$$\mathbf{D} \frac{\pi^2 + 16\pi - 16}{16}.$$

CÂU 9. Cho hàm số f(x). Biết f(0) = 4 và $f'(x) = 2\cos^2\frac{x}{2} + 3$, $\forall x \in \mathbb{R}$, khi đó $\int_{-\pi}^{\pi} f(x) dx$

$$\mathbf{A} \frac{\pi^2 + 8\pi - 8 - \sqrt{2}}{8}.$$

$$\mathbf{c} \frac{\pi^2 + 6\pi + 8}{8}$$
.

B
$$\frac{\pi^2 + 8\pi - 8 - 4\sqrt{2}}{8}$$
.

$$\mathbf{D} \frac{\pi^2 + 8\pi - 4\sqrt{2}}{8}.$$

CÂU 10. Cho hàm số $f(x)=\begin{cases} e^{2x} \text{ khi } x\geq 0 \\ x^2+x+2 \text{ khi } x<0 \end{cases}$. Biết tích phân $\int\limits_{-1}^1 f(x)\mathrm{d}x=\frac{a}{b}+\frac{e^2}{c}$

 $(\frac{a}{b}$ là phân số tối giản). Giá trị a+b+c bằng

CÂU 11. Cho hàm số $f(x) = \begin{cases} x^2 - 1 \text{ khi } x \ge 2 \\ x^2 - 2x + 3 \text{ khi } x < 2 \end{cases}$. Tích phân $I = \frac{1}{2} \int\limits_{1}^{3} f(x) \mathrm{d}x$ bằng:

$$\bigcirc 23$$
.

B
$$\frac{23}{6}$$
.

$$\bigcirc \frac{17}{6}$$
.

$$\frac{1}{3}$$
.

CÂU 12. Cho hàm số $f(x) = \begin{cases} \frac{x(1+x^2)}{x-4} & \text{khi } x \geq 3\\ \frac{1}{x-4} & \text{khi } x < 3 \end{cases}$. Tích phân $I = \int\limits_2^4 f(t) \mathrm{d}t$ bằng:

$$\frac{40}{2} - \ln 2$$
.

B
$$\frac{95}{6} + \ln 2$$
.

$$\bigcirc \frac{189}{4} + \ln 2$$

$$\bigcirc 189 \over 4 - \ln 2.$$

CÂU 13. Cho số thực a và hàm số $f(x) = \begin{cases} 2x \text{ khi } x \leq 0 \\ a(x-x^2) \text{ khi } x > 0 \end{cases}$. Tính tích phân $\int_{-1}^{1} f(x) \mathrm{d}x$

$$\frac{a}{6} - 1.$$

B
$$\frac{2a}{3} + 1$$
.

$$\mathbf{c} \frac{a}{6} + 1.$$

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 14. Cho hàm số $f(x) = \begin{cases} 2x^2 + 3 \text{ khi } x \ge 1 \\ 2 - x^3 \text{ khi } x < 1 \end{cases}$.

	Mệnh đề	Đ	\mathbf{S}
a)	$\int_{1}^{2024} f(x) dx = \int_{1}^{2024} (2x^2 + 3) dx.$		
b)	$\int_{-2024}^{1} f(x) dx = \int_{-2024}^{1} (2 - x^3) dx.$		

Mệnh đề	Đ	S
c) $\int_{-2024}^{2024} f(x) dx = \int_{1}^{2024} (2x^2 + 3) dx + \int_{-2024}^{1} (2 - x^3) dx.$		
d) $\int_{-2024}^{2024} f(x) dx = \int_{1}^{2024} (2x^2 + 3) dx + \int_{-2024}^{1} (2 - x^3) dx.$		

CÂU 15. Cho hàm số $f(x)=\begin{cases} x^2-2x+3 \text{ khi } x\geq 2\\ x+1 \text{ khi } x<2 \end{cases}$

Mệnh đề	Ð	S
a) $\int_{1}^{2} f(x) dx = \int_{1}^{2} (x+1) dx.$		
b) $\int_{2}^{3} f(x) dx = \int_{2}^{3} (x^{2} - 2x + 3) dx.$		
c) $\int_{1}^{3} \frac{1}{2} f(x) dx = \frac{41}{12}$.		
d) $\int_{1}^{2} f(x) dx = \int_{1}^{2} (x^{2} - 2x + 3) dx.$		

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 16. Cho hàm số $f(x)=\begin{cases} \frac{1}{x} \text{ khi } x\geq 1\\ x+1 \text{ khi } x<1 \end{cases}$. Tích phân $I=\int\limits_2^0-3t^2f(t)\mathrm{d}t$. (*làm tròn đến hàng phần trăm*)

CÂU 17. Cho hàm số $f(x) = \begin{cases} 2x^2 - 1 \text{ khi } x < 0 \\ x - 1 \text{ khi } 0 \le x \le 2. \end{cases}$ Tính tích phân $I = \int_{-5}^{9} \frac{1}{7} f(t) dt$. (*làm* 5 - 2x khi x > 2

tròn đến hàng phần trăm)

CÂU 18. Cho hàm số $f(x) = \begin{cases} x^2 - x \text{ khi } x \ge 0 \\ x \text{ khi } x < 0 \end{cases}$. Khi đó $I = \int\limits_{-1}^1 f(x) \mathrm{d}x + \int\limits_{-1}^3 f(x) \mathrm{d}x$ bằng

bao nhiêu? (làm tròn đến hàng phần trăm)

CÂU 19. Cho hàm số $f(x)=\begin{cases} 4x \text{ khi } x>2\\ -2x+12 \text{ khi } x\leq 2 \end{cases}$. Tính tích phân $I=\int\limits_1^2f(t)\mathrm{d}t+\int\limits_1^{10}f(t)dt$

$$\frac{1}{2} \int\limits_{5}^{10} f(t) \mathrm{d}t.$$

KQ:		

CÂU 20. Biết rằng hàm số f(x)=mx+n thỏa mãn $\int\limits_0^1 f(x)\mathrm{d}x=3, \int\limits_0^2 f(x)\mathrm{d}x=8.$ Tính m+n.

KQ:		

	ШС	~	N	\sim	
ည၊	ш	-10	N	O	-

.....

.....

.....

.....

.....

.....

.....

.....

.....

CÂU 21. Biết rằng hàm số $f(x)=ax^2+bx+c$ thỏa mãn $\int\limits_0^1f(x)\mathrm{d}x=-\frac{7}{2},\int\limits_0^2f(x)\mathrm{d}x=-2$

và $\int_{0}^{3} f(x) dx = \frac{13}{2}$. Tính P = a + b + c. (làm tròn đến hàng phần trăm).

KQ:		

CÂU 22. Cho $\int_{0}^{m} (3x^2 - 2x + 1) dx = 6$. Tính giá trị của tham số m.

KO:		
116.		

CÂU 23. Cho $I = \int_{0}^{1} (4x - 2m^2) dx$. Có bao nhiêu giá trị nguyên của m để I + 6 > 0?

KQ:		

CÂU 24. Có bao nhiêu giá trị nguyên dương của a để $\int_{0}^{a} (2x-3) dx \le 4$?

KQ:		

CÂU 25. Có bao nhiêu số thực b thuộc khoảng $(\pi; 3\pi)$ sao cho $\int_{\pi}^{b} 4\cos 2x \mathrm{d}x = 1$?

τ			
	KQ:		

Dạng 5. Ứng dụng tích phân trong thực tiễn

- $m{\Theta}$ Cho hàm sốf(x) liên tục trên đoạn [a;b]. Khi đó $\frac{1}{b-a}\int_a^b f(x)\,dx$ được gọi là giá trị trung bình của hàm số f(x) trên đoạn [a;b].
- $m{\Theta}$ Đạo hàm của quãng đường di chuyển của vật theo thời gian bằng tốc độ của chuyển động tại mọi thời điểm v(t)=s'(t). Do đó, nếu biết tốc độ v(t) tại mọi thời điểm $t\in[a;b]$ thì tính được quãng đường di chuyển trong khoảng thời gian từ a đến b theo công thức

$$s = s(b) - s(a) = \int_{a}^{b} v(t) dt.$$

- ❷ Giả sử là vận tốc của vật tại thời điểm và là quãng đường vật đi được sau khoảng thời gian tính từ lúc bắt đầu chuyển động. Ta có mối liên hệ giữa vận tốc và quãng đường như sau
 - Đạo hàm của quãng đường là vận tốc s'(t) = v(t).
 - Nguyên hàm của vận tốc là quãng đường $s(t) = \int v(t) dt$.

 \Rightarrow Từ đây ta cũng có quãng đường vật đi được trong khoảng thời gian từ a đến b là

$$\int_{a}^{b} v(t) dt = s(b) - s(a).$$

Nếu gọi a(t) là gia tốc của vật thì ta có mối liên hệ giữa gia tốc và vận tốc như sau

- Đạo hàm của vận tốc là gia tốc v'(t) = a(t).
- Nguyên hàm của gia tốc là vận tốc $v(t) = \int a(t) dt$.

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.
CÂU 1. Một ô tô đang chạy với vận tốc $10m/s$ thì gặp chướng ngại vật, người lái xe đạp
phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc $v\left(t\right)=-2t+10\;(m/s)$
trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng

(A)55 m.

đường ô tô di chuyển được trong 8 giây cuối cùng. **(B)**25 m.

 $(\mathbf{C})50 \, m.$

 $(\mathbf{D})16 \, m.$

CÂU 2. Một ô tô đang chạy với tốc độ $20 \ (m/s)$ thì gặp chướng ngại vật, người lái đạp phanh, từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc $v(t) = -5t + 20 \ (m/s)$, trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiều mét (m)?

(A)20 m.

(B)30 m.

 $(\mathbf{C})_{10\,m}$.

 $(\mathbf{D})40\,m.$

CÂU 3. Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật $v\left(t\right)=\frac{1}{120}t^2+\frac{58}{45}t\ (m/s)$, trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 3 giây so với A và có gia tốc bằng $a\ (m/s^2)\ (a$ là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A. Vận tốc của Btại thời điểm đuổi kịp A bằng

(A) $21 \ (m/s)$.

(B)25 (m/s).

(C) $36 \ (m/s)$.

(D) $30 \ (m/s)$.

CÂU 4. Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật $v\left(t\right)=\frac{1}{150}t^{2}+\frac{59}{75}t$ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc a bắt đầu chuyển động. Từ trang thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển đông thẳng cùng hướng với A nhưng châm hơn 3 giây so với A và có gia tốc bằng $a (m/s^2)$ (a là hằng số). Sau khi B xuất phát được 12 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng

(A) 15 (m/s).

(B)20 (m/s).

(C) $16 \ (m/s)$.

(D)13 (m/s).

CÂU 5. Một ô tô bắt đầu chuyển động thẳng đều với vận tốc v_0 , sau 6 giây chuyển động thì gặp chướng ngại vật nên bắt đầu giảm tốc độ với vận tốc chuyển động $v(t) = -\frac{5}{2}t + a\left(m/s\right)$ với $t \geq 6$ cho đến khi dừng hẳn. Biết rằng kể từ lúc chuyển động đến lúc dừng hẳn thì ô tô đi được quãng đường là $80 \, m$. Tìm v_0 .

 $(\mathbf{A})v_0 = 35 \, m/s.$

 $(\mathbf{B})v_0 = 25 \, m/s.$

 $(\mathbf{C})v_0 = 10 \, m/s.$

 $(\mathbf{D})v_0 = 20 \, m/s.$

CÂU 6. Để đảm bảo an toàn khi lưu thông trên đường, các xe ô tô khi dừng đèn đỏ phải cách nhau tối thiểu 1 m. Một ô tô A đang chạy với vận tốc 16 m/s bỗng gặp ô tô B đang dừng đèn đỏ nên ô tô A hãm phanh và chuyển động chậm dần đều với vận tốc được biểu thị bởi công thức $v_A(t) = 16 - 4t$ (đơn vị tính bằng m/s), thời gian tính bằng giây. Hỏi rằng để hai ô tô A và B đạt khoảng cách an toàn khi dừng lại thì ô tô A phải hãm phanh khi cách ô tô B một khoảng ít nhất là bao nhiêu?

(**A**)33.

(B)12.

 $(\mathbf{C})_{31.}$

CÂU 7. Do các xe phải cách nhau tối thiểu 1m để đảm bảo an toàn nên khi dừng lại ô tô A phải hãm phanh khi cách ô tô B một khoảng ít nhất là $33 \, m$. Một chất điểm đang chuyển động với vận tốc $v_0 = 15 \, m/s$ thì tăng tốc với gia tốc $a(t) = t^2 + 4t \, (m/s^2)$. Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng vận tốc.

 $(\mathbf{A})70,25 \, m.$

(B)68,25 m.

 $(\mathbf{C})67.25\,m.$

 $(\mathbf{D})69,75 \, m.$

CÂU 8. Một vật chuyển động với vận tốc $10 \, m/s$ thì tăng tốc với gia tốc được tính theo thời gian là $a(t) = t^2 + 3t$. Tính quãng đường vật đi được trong khoảng thời gian 6 giây kể từ khi vật bắt đầu tăng tốc.

 $(\mathbf{A}) 136 \, m.$

(B) 126 m.

 $(\mathbf{C})276 \, m.$

 $(\mathbf{D})216 \, m.$

CÂU 9. Một chiếc máy bay chuyển động trên đường băng với vận tốc $v(t) = t^2 + 10t \ (m/s)$ với t là thời gian được tính theo đơn vị giây kể từ khi máy bay bắt đầu chuyển động. Biết khi máy bay đạt vận tốc $200 \ (m/s)$ thì rời đường băng. Quãng đường máy bay đã di chuyển trên đường băng là

A $\frac{2500}{3}$ (m).

(B) 2000 (m).

 $(\mathbf{C})500 \ (m).$

 $\bigcirc \frac{4000}{2} \ (m).$

CÂU 10. Một ô tô bắt đầu chuyển động nhậnh dần đều với vận tốc $v_1(t) = 7t \ (m/s)$. Đi được 5s, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động

~			
ລເມ	ICK	N	OII:

.....

.....

chậm dần đều với gia tốc $a = -70 \ (m/s^2)$. Tính quãng đường S đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.

 $(\mathbf{A})S = 96.25 \ (m).$

BS = 87.5 (m).

 $\bigcirc S = 94 \ (m).$

 $\mathbf{D}S = 95.7 \ (m).$

CÂU 11. Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc $v_1(t) = 2t \ (m/s)$. Di được 12 giây, người lái xe gặp chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc $a = -12 \ (m/s^2)$. Tính quãng đường $s \ (m)$ đi được của ôtô từ lúc bắt đầu chuyển động đến khi dừng hẳn.

 $\triangle s = 168 \ (m).$

B $s = 166 \ (m).$

 $\bigcirc s = 144 \ (m).$

 $(\mathbf{D})s = 152 \ (m).$

CÂU 12. Một ô tô đang dừng và bắt đầu chuyển động theo một đường thắng với gia tốc $a(t) = 6 - 2t \text{ (m/s}^2)$, trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quảng đường ô tô đi được từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá tri lớn nhất là bao nhiêu mét?

A 18 m.

B)36 m.

(c)22,5 m.

(D)6,75 m.

CÂU 13. Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật $v\left(t\right)=\frac{1}{180}t^2+\frac{11}{18}t$ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 5 giây so với A và có gia tốc bằng a (m/s²) (a là hằng số). Sau khi B xuất phát được 10 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng

A 15 (m/s).

B 10 (m/s).

C)7 (m/s).

(D)22(m/s).

CÂU 14. Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh I(2;9) và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó.

 $\triangle s = 25,25 \text{ (km)}.$

Bs = 24,25 (km).

 \mathbf{C} s = 24,75 (km).

 $\bigcirc s = 26,75 \text{ (km)}.$

CÂU 15. Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị vận tốc như hình bên. Trong thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh I (2; 9) và trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Tính quãng đường s mà vật chuyển động được trong 3 giờ đó (kết quả làm tròn đến hàng phần trăm).

 $(\mathbf{A})s = 21,58 \text{ (km)}.$

Bs = 23,25 (km).

 $\bigcirc s = 13,83 \text{ (km)}.$

 $\bigcirc s = 15,50 \text{ (km)}.$

CÂU 16. Một người chạy trong 2 giờ, vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị là 1 phần của đường Parabol với đỉnh I (1; 5) và trục đối xứng song song với trục tung Ov như hình vẽ. Tính quảng đường S người đó chạy được trong 1 giờ 30 phút kể từ lúc bắt đầu chạy (kết quả làm tròn đến 2 chữ số thập phân).

(A)2,11 km.

B)6,67 km.

(C)5,63 km.

 $(\mathbf{D})6,63 \text{ km}.$

Phần III. Học sinh điền kết quả vào ô trống.

CÂU 17. Một ô tô đang chạy với vận tốc là 12 (m/s) thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = -6t + 12 (m/s), trong đó t là khoảng thời gian tính bằng giây kể từ lúc đạp phanh. Hỏi từ lúc đạp phanh đến lúc ô tô dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?

KQ:		
KQ:		

CÂU 18. Một ô tô đang chạy với vận tốc 10 m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = -5t + 10 (m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dùng hẳn, ô tô còn di chuyển bao nhiêu mét?

KQ:				
-----	--	--	--	--

CÂU 19. Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật $v(t) = \frac{1}{100}t^2 + \frac{13}{30}t$ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a (m/s²) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng bao nhiêu m/s?

T.		
KQ:		
-0		

CÂU 20. Một ô tô chuyển động nhanh dần đều với vận tốc v(t) = 7t (m/s). Đi được 5 (s) người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc $a = -35 \text{ (m/s}^2)$. Tính quãng đường của ô tô đi được từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn (đơn vị tính bằng mét)?

KQ:				
-----	--	--	--	--

CÂU 21.

Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc vào thời gian t (h) có đồ thị là một phần parabol với đỉnh $I\left(\frac{1}{2};8\right)$ và trục đối xứng song song với trục tung như hình bên. Tính quảng đường s người đó chạy được trong khoảng thời gian 45 phút, kể từ khi chạy (đơn vị tính bằng km)?

KQ:

CÂU 22. Một vật chuyển động trong 4 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị của vận tốc như hình bên. Trong khoảng thời gian 3 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh I (2; 9) với trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thắng song song với trục hoành. Tính quãng đường s mà vật di chuyển được trong 4 giờ đó (đơn vị tính bằng km).

QUICK NOTE	
QUICK NOIL	

CÂU 23. Một vật chuyển động trong 6 giờ với vận tốc v (km/h) phụ thuộc vào thời gian t(h) có đồ thị như hình bên dưới. Trong khoảng thời gian 2 giờ từ khi bắt đầu chuyển động, đồ thị là một phần đường Parabol có đỉnh I(3;9) và có trục đối xứng song song với trục tung. Khoảng thời gian còn lại, đồ thị vận tốc là một đường thẳng có hệ số góc bằng $\frac{1}{4}$. Tính quảng đường s mà vật di chuyển được trong 6 giờ? (đơn vị tính bằng km, làm tròn đến chữ số thập phân thứ nhất).

KQ:				
-----	--	--	--	--

CÂU 24. Một vật chuyển động trong 4 giờ với vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường parabol có đỉnh I(1;1) và trực đối xứng song song với trực tung như hình bên. Tính quãng đường s mà vật di chuyển được trong 4 giờ kể từ lúc xuất phát (làm tròn đến chữ số thập phân thứ nhất).

KQ:					
-----	--	--	--	--	--

CÂU 25. Chất điểm chuyển động theo quy luật vận tốc v(t) (m/s) có dạng đường Parapol khi $0 \le t \le 5$ (s) và v(t) có dạng đường thẳng khi $5 \le t \le 10$ (s). Cho đỉnh Parapol là I(2;3). Hỏi quãng đường đi được chất điểm trong thời gian $0 \le t \le 10$ (s) là bao nhiêu mét? (làm tròn đến hàng đơn vị)

KQ:

C. TÍCH PHÂN HÀM ẨN BIẾN ĐỔI PHỨC TẠP

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Cho hàm số f(x) nhận giá trị không âm và có đạo hàm liên tục trên $\mathbb R$ thỏa mãn $f'(x)=(2x+1)[f(x)]^2, \forall x\in\mathbb{R}$ và f(0)=-1. Giá trị của tích phân $\int \left(x^3-1\right)f(x)\,\mathrm{d}x$

bằng

(A)1.

CÂU 2. Cho hàm số $f(x) \neq 0$, liên tục trên đoạn [1;2] và thỏa mãn $f(1) = \frac{1}{3}$;

 $x^2 \cdot f'(x) = f^2(x)$ với $\forall x \in [1; 2]$. Tính tích phân $I = \int_0^x (2x+1)^2 f(x) dx$.

(A) $I = \frac{7}{6}$. **(B)** $I = \frac{5}{6}$. **(C)** $I = \frac{37}{6}$.

CÂU 3. Cho hàm số f(x) có đạo hàm trên $\mathbb R$ thỏa mãn $3f'(x)\cdot \mathrm{e}^{f^3(x)}-\frac{2x}{f^2(x)}=0$ với

 $\forall x \in \mathbb{R}. \text{ Biết } f(1) = 0, \text{ tính tích phân } I = \int\limits_{0}^{2024} \frac{1}{\sqrt[3]{2 \ln x}} \cdot f(x) \, \mathrm{d}x.$

 $(\mathbf{C})2024.$

CÂU 4. Cho hàm số f(x) đồng biến, có đạo hàm trên đoạn [1; 4] và thoả mãn $x+2x\cdot f(x)=$

 $\left[f'(x)\right]^2$ với $\forall x \in [1;4]$. Biết $f(1) = \frac{3}{2}$, tính $I = \int f(x) \, \mathrm{d}x$.

(A) $I = \frac{1186}{45}$. **(B)** $I = \frac{1186}{9}$. **(C)** $I = \frac{1186}{5}$.

CÂU 5. Cho hàm số f(x) nhận giá trị dương và thỏa mãn $f(0) = 1, [f'(x)]^3 = e^x [f(x)]^2, \forall x \in \mathbb{R}$

 \mathbb{R} . Tính $I = \int f(x) \, \mathrm{d}x$.

(B) I = e - 1. **(C)** $I = e^2 - e$.

CÂU 6. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và thỏa mãn điều kiện $x^6 [f'(x)]^3 +$

 $27{[f(x)-1]}^4=0\,,\,\forall x\in\mathbb{R}$ và f(1)=0. Tính $I=\int\limits_{\Omega}f(x)\,\mathrm{d}x.$

(A) $I = \frac{31}{2}$. **(B)** $I = -\frac{31}{2}$. **(C)** $I = \frac{61}{4}$.

CÂU 7. Cho hàm số f(x)>0 và thỏa mãn $\left[f'(x)\right]^2+f(x)\cdot f''(x)=\mathrm{e}^x,\;\forall x\in\mathbb{R}$ và

f(0) = f'(0) = 1. Tính $I = \int f(x) dx$.

																																_
								S)	Ų			C)	K			\		9)											
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•
	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	٠	٠	٠	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•					•	•	•		•	•	•	•	•	•	•				•		•	•	•		•	•	•
							•	•	•	•	•						•							•	•					•	•	•
							•	•	•	•	•						•							•	•					•	•	•
•											•	•		•	•															•	•	
																													•			
	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•						•	•							•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	٠	٠	٠	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•
				•	•		•	•	•	•	•					•		•		•					•				•	•	•	

$$\mathbf{B}I = \mathbf{e} - \sqrt{\mathbf{e}}$$
.

(B)
$$I = e - \sqrt{e}$$
. **(C)** $I = 2e - 2\sqrt{e}$.

$$(\mathbf{D})I = 2\mathbf{e} + 2\sqrt{\mathbf{e}}.$$

CÂU 8. Cho hàm số f(x) thỏa mãn $[f'(x)]^2 + f(x) \cdot f''(x) = 2x$, và f(0) = f'(0) = 2. Tính $I = \int f^2(x) \, \mathrm{d}x.$

(A)
$$I = \frac{15}{2}$$
. **(B)** $I = \frac{1}{2}$. **(D)** $I = 15$.

$$\bigcirc I = \frac{19}{2}.$$

CÂU 9. Cho hàm số f(x) thỏa mãn: $[f'(x)]^2 + f(x) \cdot f''(x) = 15x^4 + 12x, \forall x \in \mathbb{R}$ và f(0) = f'(0) = 1. Giá trị của $f^2(1)$ bằng

A
$$\frac{5}{2}$$
.

$$\bigcirc$$
4.

CÂU 10. Cho hàm số y = f(x) thỏa mãn $[f'(x)]^2 + f(x) \cdot f''(x) = x^3 - 2x, \forall x \in \mathbb{R}$ và f(0) = f'(0) = 2. Tính giá trị của $T = f^{2}(2)$.

$$\mathbf{A} \frac{160}{15}$$
.

B
$$\frac{268}{15}$$
.

$$\bigcirc \frac{4}{15}$$
.

CÂU 11. Cho hàm số f(x) thỏa mãn $f(x) + f'(x) = e^{-x}, \ \forall x \in \mathbb{R}$ và f(0) = 2. Tính $I = \int \frac{f(x)e^x}{x} \, \mathrm{d}x.$

$$(\mathbf{A})I = 2\ln 2.$$

$$\mathbf{B})I = \ln 2.$$

$$\widehat{\mathbf{C}}I = 1 + \ln 2$$

$$\mathbf{C}I = 1 + \ln 2.$$
 $\mathbf{D}I = 1 + 2 \ln 2.$

CÂU 12. Cho hàm số f(x) có đạo hàm trên \mathbb{R} thỏa mãn $(x+2) f(x) + (x+1) f'(x) = e^x$ và $f(0) = \frac{1}{2}$. Tính $I = \int (2x + 2) f(x) dx$.

$$\mathbf{\hat{A}}I=\mathrm{e}^2.$$

B
$$I = 1 + e$$
. **C** $I = 1 + e^2$. **D** $I = e^2 - e$.

$$\bigcirc I = 1 + e^2$$

$$\mathbf{D}I = e^2 - e$$

CÂU 13. Cho hàm số y = f(x) liên tục, có đạo hàm trên $\mathbb R$ thỏa mãn điều kiện

$$f(x) + x [f'(x) - 2\sin x] = x^2 \cos x, \ x \in \mathbb{R} \text{ và } f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}. \text{ Tính } I = \int_0^{\frac{\pi}{2}} \frac{f(x)}{x} dx.$$

$$\mathbf{B}I = \frac{\pi}{2}.$$

$$\mathbf{C}I = -1.$$

$$\mathbf{C}I = -1$$

$$\bigcirc I = -\pi.$$

CÂU 14. Cho hàm số y = f(x) có đạo hàm trên $(0; +\infty)$ thỏa mãn 2xf'(x) + f(x) = 2x, $\forall x \in (0; +\infty), f(1) = 1$. Giá trị của biểu thức f(4) là

$$\bigcirc \frac{25}{6}$$
.

B
$$\frac{25}{3}$$
.

$$\frac{17}{6}$$
.

$$\bigcirc \frac{17}{3}$$
.

CÂU 15. Cho hàm số f(x) không âm, có đạo hàm trên đoạn [0;1] và thỏa mãn f(1)=1,

$$[2f(x) + 1 - x^2] f'(x) = 2x [1 + f(x)], \forall x \in [0, 1].$$
 Tích phân $\int_{0}^{1} f(x) dx$ bằng

$$\bigcirc$$
1.

$$\bigcirc$$
2

$$\mathbf{c}_{\frac{1}{3}}$$

$$\bigcirc \frac{3}{2}$$

CÂU 16. Cho hàm số y = f(x) có đạo hàm liên tục trên [0;1], thỏa mãn $[f'(x)]^2 + 4f(x) = 8x^2 + 4, \forall x \in [0; 1] \text{ và } f(1) = 2. \text{ Tính } \int_0^1 f(x) \, \mathrm{d}x.$

$$\mathbf{A} \frac{1}{3}$$
.

B 2.
$$\bigcirc \frac{4}{3}$$
.

$$\mathbf{C}$$
 $\frac{4}{3}$

$$\bigcirc \frac{21}{4}$$
.

CÂU 17. Cho hàm số y=f(x) có đạo hàm liên tục trên [0;1] thỏa mãn $3f(x) + xf'(x) \ge x^{2018}, \forall x \in [0, 1]$. Tìm giá trị nhỏ nhất của $\int_0^1 f(x) dx$.

$$lack A \frac{1}{2018 \cdot 2020}$$

$$oxed{A} rac{1}{2018 \cdot 2020}$$
. $oxed{B} rac{1}{2019 \cdot 2020}$. $oxed{C} rac{1}{2020 \cdot 2021}$. $oxed{D} rac{1}{2019 \cdot 2021}$.

$$\bullet$$
 $\frac{1}{2020 \cdot 2021}$

$$\bigcirc \frac{1}{2019 \cdot 2021}$$

CÂU 18. Cho hàm số y = f(x) có đạo hàm trên $\mathbb R$ thỏa mãn

$$\begin{cases} f(0)=f'(0)=1\\ f(x+y)=f(x)+f(y)+3xy(x+y)-1 \end{cases} \text{ với } x,y\in\mathbb{R}$$

Tính $\int f(x-1) dx$.

CÂU 19. Cho hai hàm f(x) và g(x) có đạo hàm trên [1; 4], thỏa mãn $\begin{cases} f(1) + g(1) = 4 \\ g(x) = -xf'(x), \\ f(x) = -xg'(x) \end{cases}$

với mọi $x \in [1; 4]$. Tính tích phân $I = \int_{-\pi}^{\pi} [f(x) + g(x)] dx$.

 $(\mathbf{A})3\ln 2.$

(D) $8 \ln 2$.

CÂU 20. Cho hai hàm f(x) và g(x) có đạo hàm trên [1;2] thỏa mãn f(1)=g(1)=0 và $\begin{cases} \frac{x}{(x+1)^2}g(x) + 2023x = (x+1)f'(x) \\ \frac{x^3}{(x+1)^2}g(x) + f(x) = 2024x^2 \end{cases}, \forall x \in [1; 2].$ $\frac{x^3}{x+1}g'(x) + f(x) = 2024x^2$

Tính tích phân $I = \int_{-\infty}^{\infty} \left[\frac{x}{x+1} g(x) - \frac{x+1}{x} f(x) \right] dx.$

BI = 1. **C** $I = \frac{3}{2}.$

CÂU 21. Cho hàm số f(x) xác định và liên tục trên $\mathbb{R}\setminus\{0\}$ thỏa mãn $x^2f^2(x)+(2x-1)f(x)=0$ xf'(x) - 1, với mọi $x \in \mathbb{R} \setminus \{0\}$ đồng thời thỏa mãn f(1) = -2. Tính $\int f(x) dx$.

(A) $-\frac{\ln 2}{2} - 1$. (B) $-\ln 2 - \frac{1}{2}$. (C) $-\ln 2 - \frac{3}{2}$.

CÂU 22. Cho hàm số y = f(x) có đạo hàm liên tục trên $\mathbb R$ thỏa mãn $x \cdot f(x) \cdot f'(x) =$ $f^2(x)-x,\, \forall x\in\mathbb{R}$ và có f(2)=1. Tích phân $\int f^2(x)\,\mathrm{d}x$ bằng

(**D**)4.

CÂU 23. Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} , f(0) = 0, $f'(0) \neq 0$ và thỏa mãn hệ $\operatorname{thức} f\left(x\right) \cdot f'\left(x\right) + 18x^{2} = \left(3x^{2} + x\right) f'\left(x\right) + \left(6x + 1\right) f\left(x\right), \ \forall x \in \mathbb{R}. \ \operatorname{Biết} \int \left(x + 1\right) \mathrm{e}^{f\left(x\right)} \, \mathrm{d}x = \left(3x^{2} + x\right) f'\left(x\right) + \left(6x + 1\right) f\left(x\right), \ \forall x \in \mathbb{R}.$ $ae^2 + b$, $(a, b \in \mathbb{Q})$. Giá trị của a - b bằng

(A)1.

(A)4.

(B)0.

CÂU 24. Cho hàm số y = f(x) xác định và có đạo hàm f'(x) liên tục trên [1;3]; $f(x) \neq f(x)$ $0, \forall x \in [1;3]; f'(x)[1+f(x)]^2 = (x-1)^2[f(x)]^4 \text{ và } f(1) = -1. \text{ Biết rằng } \int f(x) dx = -1$ $a \ln 3 + b \ (a, b \in \mathbb{Z})$. Giá trị của $a + b^2$ bằng $(\mathbf{C})_{2.}$ (**D**)-1.

• • • • • • • • • • • • • • • • • • • •	
=	

Bài 2.	Tích Phân	1
A	Lý thuyết cần nhớ	1
B	Phân loại và phương pháp giải bài tập	
	Dạng 1.Tính chất của tích phân	2
	Dạng 2.Tích phân hàm số sơ cấp	5
	► Dạng 3.TÍCH PHÂN HÀM TRỊ TUYỆT ĐỐI	9
	► Dạng 4.Tích phân có điều kiện	11
	Dạng 5. Ứng dụng tích phân trong thực tiễn	14
	Tích phân hàm ẩn biến đổi phức tạp	19

