Байесовское моделирование категориальных признаков

Надежда Бугакова

научный руководитель: к. ф.-м. н. И. Е. Кураленок

17 июня 2018 г.

СП6 АУ НОЦНТ РАН

Задача машинного обучения с учителем

Существует:

$$(x,y) \sim P, x \in X, y \in Y$$

Классификация: $y_i \in \{0,1\}$

Рис. 1: Картинки

Хотим:

$$\phi: X \to y; \phi \in \mathbb{F}$$

$$\phi = \arg\min_{\phi \in \mathbb{F}} E_{(x,y) \sim P} L(\phi(x), y)$$

Обучающая выборка:

$$\{(x_i, y_i)\}_{i=1}^m$$
, реализации Р.

Ищем:

$$\hat{\phi} = \arg\min_{\phi \in \mathbb{F}} E_{\{(x_i, y_i)\}} L(\phi(x), y)$$

Рис. 2: Вещественные признаки

Рис. 3: Категориальные признаки

Категориальные признаки

- Нет отношения порядка.
- Количество различных значений бывает очень велико.

Методы:

- One-hot-encoding
- Специализированные под предметную область (например, использование вложенности признаков)
- Оценка параметров вероятностной модели (CatBoost)

Цели и задачи

Целью данной работы является изучение эффективности иерархического байесовского моделирования категориальных признаков для задачи классификации на основе обучающего множества.

Для достижения цели необходимо решить следующие задачи:

- Исследовать механизм работы с категориальными признаками, используемый в CatBoost.
- Разработать вероятностную модель для категориальных признаков с подбором параметров на основе обучающего множества.
- Реализовать преобразование категориальных признаков в упорядоченные.
- Сравнить на задачах обучения с учителем

Вероятностная модель для категориальных признаков

Идея: моделировать зависимость целевых значений от категориальных признаков.

$$y_c \sim Ber(\theta_c)$$

Простейщая модель: θ_c независимы.

Проблема: переобучение.

Для категорий
$$y_0 \sim Ber(0.4); y_1 \sim Ber(0.5)$$

Выборка:
$$\begin{array}{c|c} \operatorname{Cat0} & 0 \\ \hline \operatorname{Cat1} & 1 \end{array} \Rightarrow \begin{array}{c|c} \hat{\theta}_0 = \frac{0}{1} = 0 \\ \hline \hat{\theta}_1 = \frac{1}{1} = 1 \end{array}$$

Решение: моделирование со временем: оцениваем θ_c только на основе целевых значений ДО текущего момента.

Оценка параметров вероятностной модели в CatBoost

Оценка параметров вероятностной модели в CatBoost

Автоматический подбор

Максимизируем правдоподобие по (α, β) :

$$\begin{split} \prod_{c} p(D_{c}|\alpha,\beta) &= \prod_{c} \int_{\theta_{c}} \prod_{i=1}^{N_{c}} p(y_{c,i}|\theta_{c}) dBeta(\alpha,\beta) \\ \int_{\theta_{c}} \prod_{i=1}^{N_{c}} p(y_{c,i}|\theta_{c}) p(\theta_{c}|(\alpha,\beta)) d\theta_{c} &= \int_{\theta_{c}} \frac{\theta_{c}^{\sum y_{c,i} + \alpha - 1} (1 - \theta_{c})^{\sum (1 - y_{c,i}) + \beta - 1}}{B(\alpha,\beta)} d\theta_{c} &= \\ &= \frac{B(\sum y_{c,i} + \alpha, \sum (1 - y_{c,i}) + \beta)}{B(\alpha,\beta)} \end{split}$$

Реализация

Были реализованы на Python:

- Оптимизация априорных значений с помощью метода Ньютона на основе библиотеки scipy.
- Преобразование категориальных признаков в вещественные тремя способами:
 - С автоматическим подбором априорных значений;
 - С фиксированными в CatBoost априорными значениями;
 - С априорными значениями, где α рассчитывалась как среднее целевого значения по всей выборке и $\beta=1$ α .
- Воспроизводимые эксперименты.

Методика сравнения

- Gradient boosting (CatBoost).
- Бутстрепинг тестовой выборки + Wilcoxon signed-rank test.

Датасеты

Name	Atributes	Categorical	Learn size	Test size
adult	14	8	39074	9768
amazon	9	9	26215	6554
appet	419	38	40000	10000
kick	439	23	58388	14595

Тестирование

Уровень статистической значимости 0.01.

AUC (модель со временем):

Name	CatBoost+time	Auto+time	Simple+time
amazon	0.8564	0.853	0.855
adult	0.9275	0.9281	0.9281
appet	0.8525	0.8475	0.8468
kick	0.7656	0.7657	0.7638

AUC (модель без времени):

Name	CatBoost	Auto	Simple
amazon	0.8053	0.8188	0.81
adult	0.9292	0.9291	0.9292
appet	0.6909	0.6628	0.6615
kick	0.7561	0.7705	0.7623

Тестирование

Время обучения в секундах:

Name	CatBoost	Auto	Simple
amazon	48	38	35
adult	55	48	48
appet	261	226	227
kick	128	105	92

Name	CatBoost+time	Auto+time	Simple+time
amazon	46	38	37
adult	54	47	47
appet	267	235	236
kick	123	90	92

Результаты

- Исследован механизм преобразования категориальных признаков в CatBoost
- Придуман и изучен автоматический метод подбора априорных значений на основе обучающей выборки.
- Реализованы разные подходы к подбору априорных значений и произведено сравнение на наборе данных

GitHub (https://github.com/N-buga/SPBAU-CategBays)

- CatBoost (https://tech.yandex.com/catboost/)
- adult (https://archive.ics.uci.edu/ml/datasets/Adult)
- appet (http://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data)
- amazon
 (https://www.kaggle.com/c/amazon-employee-access-challenge)
- kick (https://www.kaggle.com/c/DontGetKicked)