[1] 다음 회로는 Wien oscillator 회로이다. 회로를 보고 물음에 답 • [2] 다음 회로를 보고 물음에 답하시오. 하시오.

- (a) ν_0 가 단진동할 조건을 구하라. (10점)
- (b) $R_1 = 1$ kΩ, $C = \frac{1}{6.28}$ μF 일 때 공진 주파수는 몇 Hz 인가? (5점)
- [1] The following circuit is Wien oscillator circuit. Answer the questions.
 - (a) Find the condition that v_0 is simply oscillating. (10 pts)
 - (b) When $R_1 = 1 \text{ k}\Omega$, $C = \frac{1}{6.28} \mu\text{F}$, find the oscillating frequency (Hz)? (5 pts)

- (a) $v_c(0^+)$, $\frac{dv_c}{dt}$ 는 각각 얼마인가? (5점)
- (b) t>0 일 때 v₂(t)를 구하시오. (10점)
- (c) t>0 일 때 $\nu_o(t)$ 를 구하시오. (10점)
- [2] Answer the questions.
 - (a) Find $v_c(0^+)$ and $\frac{dv_c}{dt}$. (5 pts)
 - (b) Find $v_c(t)$ for t>0. (10 pts)
 - (c) Find $v_o(t)$ for t>0. (10 pts)

- [3] 아래 회로는 node a에 연결된 채로 정상상태에 있었다. t=0에서 스위치가 a 에서 b로 움직일 때, 다음 물음에 답하시오. (20점)
 - (1) Vc 와 i∟의 초기조건을 구하시오. (3점)
 - (2) t ≥ 0 에서의 Vc 에 대한 회로방정식을 구하시오. (6점)
 - (3) Vc 가 stable한 β 의 범위를 구하시오. (6점)
 - (4) β =5일 때, Vc(t) 의 응답 특성을 구하시오. (5점)
- [3] The circuit shown below was connected to node a and remained in the steady state. At t=0, the switch moves from a to b. Answer the following questions. (20pt)
 - (1) Find initial condition of Vc and il. (3pt)
 - (2) Find circuit equation for voltage Vc for $t \ge 0$ (6pt)
 - (3) Find a region of β that Vc remains stable. (6pt)
 - (4) Let $\beta = 5$, find a type of response of Vc(t) (5pt)

- ┫4] 다음 회로를 보고 물음에 답하시오. (20점)
 - (1) t ≥ 0 에서의 회로방정식을 구하고 v_o(t) 응답의 damping coefficient와 resonant frequency를 구하시오. (8점)
 - (2) R₁=3kΩ, R₂=2kΩ, C₂=1/6μF, V_{in}=0V 일 때 v_o(t)가 underdamped가 되기위한 C₁의 범위를 구하시오. (4점)
 - (3) R₁=3kΩ, R₂=2kΩ, C₁=2/25μF, C₂=1/6μF, V_{in}=100V, V₁(0)=0V, V₂(0)=2V 일 때 t ≥ 0 에서의 V₀(t)을 구하시오. (8점)
- [4] Answer the questions using the following circuits. (20pt)
 - (1) Find circuit equation for voltage $v_0(t)$ for $t \ge 0$, and find coefficient and resonant frequency. (8pt)
 - (2) Find a region of C₁ that a type of response of V₀(t) is underdamped when R₁=3kΩ, R₂=2kΩ, C₂=1/6μF, Vin=0V. (4pt)
 - (4) Find $V_0(t)$ for $t \ge 0$ when $R_1=3k\Omega$, $R_2=2k\Omega$, $C_1=2/25\mu F$, $C_2=1/6\mu F$, $V_{in}=100V$, $v_1(0)=0V$, $v_2(0)=2V$. (8pt)

[5] (25점; 25points) 다음 그림에 대해서 문제에 답하시오. Answer the given questions for the following circuit configuration.

$$i(t) = 240 + 193e^{-6.25t}\cos(9.27t - 102^{\circ}) \text{ (mA) (for } t > 0)$$

- (a) R1, R2, C, L을 구하시오 (R1과 R2는 10의 배수가 되도록 구한 값을 반올림해서 선택하고, C는 2mF보다 큰 값이 되도록 정하시오. (15점)
- (a) Determine R1, R2, C, L. (Round up R1 and R2 values so that they are multiples of 10 and C > 2mF) (15 points)
- (b) (a)에서 구한 값을 이용하여 t>0에서 v(t)를 구하시오. (10점)
- (b) Find v(t) for t>0 using the values from (a). (10 points)

[6] (15점) 다음의 회로에 대해서 $v_o(t)$ (t>0)를 구하시오. t<0에 서는 steady state을 가정하시오. 또한 ideal comparator와 ideal op amp를 가정하시오. Comparator는 $V_H = 6$ (V), $V_L = 2$ (V)이다.

(15 points) Find $v_o(t)$ (t>0). Assume that the circuit was in a steady state for t<0 and assume ideal comparator and ideal op amp. For comparator, $V_H = 6$ (V), $V_I = 2$ (V).

