Weather Forecasting

Objective

To analyze global weather data and build forecasting models to predict temperature trends, using traditional time-series methods.

Dataset Overview

Name: GlobalWeatherRepository.csv

Total Records: 62558 **Total Columns:** 41

	Column Name	Data Type
0	country	object
1	location_name	object
2	latitude	float64
3	longitude	float64
4	timezone	object
5	last_updated_epoch	int64
6	last_updated	object
7	temperature_celsius	float64
8	temperature_fahrenheit	float64
9	condition_text	object
10	wind_mph	float64
11	wind_kph	float64
12	wind_degree	int64
13	wind_direction	object
14	pressure_mb	float64
15	pressure_in	float64
16	precip_mm	float64
17	precip_in	float64
18	humidity	int64
19	cloud	int64
20	feels_like_celsius	float64
21	feels_like_fahrenheit	float64

	Column Name	Data Type	
22	visibility_km	float64	
23	visibility_miles	float64	
24	uv_index	float64	
25	gust_mph	float64	
26	gust_kph	float64	
27	air_quality_Carbon_Monoxide	float64	
28	air_quality_Ozone	float64	
29	air_quality_Nitrogen_dioxide	float64	
30	air_quality_Sulphur_dioxide	float64	
31	air_quality_PM2.5	float64	
32	air_quality_PM10	float64	
33	air_quality_us-epa-index	int64	
34	air_quality_gb-defra-index	int64	
35	sunrise	object	
36	sunset	object	
37	moonrise	object	
38	moonset	object	
39	moon_phase	object	
40	moon_illumination	int64	

Data Cleaning & Preprocessing

- No missing values are present in the dataset provided.
- The 'IsolationForest' algorithm is used to detect and remove outliers from numerical columns in the dataset.
- It assigns an "outlier" label (-1) to anomalous rows based on a contamination rate of 1% and filters them out, leaving only normal data points (1).
- The "outlier" column is then dropped to clean up the dataset.

Exploratory Data Analysis

- Analyzed correlations between various features like temperature, humidity, wind, precipitation, pressure etc.
- Visualized trends in temperature and precipitation over time
- Visualized weather differences across countries

Forecasting with Multiple Models

Evaluation:

Model	MAE	MSE	RMSE	R ² Score
ARIMA	6.9863	73.4687	8.5714	-0.0367
Facebook Prophet	6.5294	75.1736	8.6703	-0.0607
SARIMAX	9.9575	164.5829	12.8290	N/A
XGBoost Regressor	8.7602	96.4141	9.8191	-0.3604
Fine-Tuned XGBoost	0.0861	0.1770	0.4207	0.9983

Inference:

1. **ARIMA**:

- Moderate performance with MAE of 7.1802 and RMSE of 8.6522.
- Negative R² (-0.0563) indicates the model does not explain the variance in the data well, suggesting it struggles with capturing complex temporal patterns.

2. SARIMAX:

- Poor performance with high MAE (9.8896) and RMSE (12.7739).
- R² is not applicable, likely due to issues in model fitting or data resolution (e.g., monthly aggregation).

3. Facebook Prophet:

- Slightly better MAE (6.5060) compared to ARIMA, but RMSE (8.6687) is slightly higher.
- Negative R² (-0.0603) implies Prophet's seasonality handling is insufficient for this dataset, possibly due to noise or irregular patterns.

4. XGBoost Regressor:

- MAE (8.8112) and RMSE (9.8686) indicate suboptimal predictions compared to ARIMA and Prophet.
- R² (-0.3742) suggests overfitting or poor feature engineering in the initial implementation.

5. Fine-Tuned XGBoost:

- Exceptional improvement with MAE (0.0990), RMSE (0.4856), and near-perfect R² (0.9978).
- Indicates effective hyperparameter tuning and feature engineering, making it the best-performing model by far.

Fine-Tuned XGBoost Model

- Temporal features and lag features are created to capture trends and dependencies in the data.
- The target and feature variables are separated, and the dataset is split into training and testing sets.
- The XGBoost Model is trained using hyperparameter tuning with randomized search to optimize its performance on predicting temperature.
- 'RandomizedSearchCV' performs hyperparameter tuning by sampling random combinations from the hyperparameter space defined in params.
 - The hyperparameters that will be tuned during the 'RandomizedSearchCV' are:
 - o **n estimators**: Number of boosting rounds or trees.
 - o max depth: Maximum depth of each tree.
 - o **learning rate**: The step size for each iteration.
 - subsample: Fraction of samples used for training each tree (used for regularization).
 - o **colsample bytree**: Fraction of features used for training each tree.
- The best model is used to make predictions on the test data.