Bit16 Manual

Contents

Bit16 CPU Layout	3
Bit16 Specifications	
Instructions and Cycle Times	
Registers	
RAM Module	
Format Summary	
Microcode Summary	6
ALU Opcode Summary	6
Load Operation Summary	6
Jump Instructions Summary	
Macrocode Summary	
Micro Instructions Formats	8
Format 0: Jump	8
Operation	8
Examples	8
Format 1: Load Byte	<u>C</u>
Operation	<u>C</u>
Examples	<u>C</u>
Format 2: Binary ALU Operation	10
Operation	10
Examples	10
Format 2: Unary ALU Operation	10
Operation	10
Examples	10
Format 3: ALU Operation with Constant	11
Operation	11
Examples	11
Format 4: Binary ALU Operation with Register	12
Operation	12
Examples	12

Format 5: Binary ALU Operation with Constant	13
Operation	13
Examples	13
Format 6: Load/Store	14
Operation	14
Examples	14
Format 6: Load/Store (with Immediate Offset)	15
Operation	15
Examples	15
Format 7: Load Word	16
Operation	16
Examples	16

2

Bit16 CPU Layout

Figure 1: Layout of the bit CPU

Bit16 Specifications

Instructions and Cycle Times

Each instruction is 16 bits long. More information on the formats of each type of 16-bit instruction can be found later in this document. Every microcode instruction has a clock cycle of 1 except for the *load immedia*te instruction which takes 2 clock cycles.

Registers

The bit16 CPU contains addressable registers: 4 general-purpose 16-bit registers and 4 special purpose registers. The general-purpose registers can be used for anything including arithmetic and address calculations. There is also a 16-bit instruction register that stores the current instruction being executed and a 4-bit flag register which stores the different flags from the ALU's operations.

The stack pointer (SP) register is used to keep track of the current top of the stack. The stack starts at the last address in RAM (hex FFFF) and grows downward.

The frame pointer (FP) points to the beginning of the current stack frame and is used to load and store local variables on the stack.

The link register (LR) is used for calling and returning from procedures. LR is 16 bits and should only be used to calculate addresses for the RAM module.

The program counter (PC) register keeps track of the current instruction being executed. The program counter starts at 0 and is incremented after every instruction unless the instruction is a jump instruction in which case, the value in the PC becomes the target for the jump.

Code	Mnemonic	Purpose	Bits	Addressable
0	А	General purpose	16	~
1	В	General purpose	16	~
2	С	General purpose	16	>
3	D	General purpose	16	~
4	FP	Frame pointer	16	>
5	SP	Stack pointer	16	~
6	LR	Link register	16	~
7	PC	Program counter	16	~
None	F	Flag register	4	
None	IR	Instruction register	16	

Table 1: bit16 CPU registers

RAM Module

The Random-Access-Memory (RAM) module uses full 16-bit addresses. This allows for 65,536 16-bit data/instruction locations. This makes the RAM module roughly 128 kilobytes in size.

Figure 2: Random-access-memory module

Format Summary

The bit16 instruction set formats are shown in the following figure.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	0	0	0				C	Cond										
1	0	0	1					Const8							Rd			
2	0	1	0		Op	94					Rs			Rd				
2	0	1	0	0p1	1	0	1					Rd			Rd			
3	0	1	1		Op	94			Const6						Rd			
4	1	0	0		0p3			Rs2 Rs							Rd			
5	1	0	1		0p3			Const4 Rs							Rd			
6	1	1	0	0	S			Ro Rb						Rd				
6	1	1	0	1	S		0f	fse	t5			Rb			Rd			
7	1	1	1												Rd			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		

Jump
Load byte
Binary ALU operation
Unary ALU operation
Binary ALU operation w/ immediate
Binary ALU operation
Binary ALU operation
Binary ALU operation w/ immediate
Load/store w/ register offset
Load/store w/ immediate offset
Load word

Figure 3: bit16 instruction set formats

Microcode Summary

The following section summarizes the bit16 instruction set microcode.

ALU Opcode Summary

The following table summarizes the bit16 instruction set operations.

Op3	Op4			
code	code	Mnemonic	Instruction	Condition codes set
(0	ADD	Add	
	1	CMN	Compare negative	✓
:	L 2	SUB	subtract	
	3	CMP	Compare	✓
	2 4	MUL	Multiply	
	0 (5)	NOT	Bitwise not	
	6	AND	Bitwise and	
	7	TST	Test bits	✓
	1 8	OR	Bitwise or	
!	5 10	XOR	Bitwise exclusive or	
	11	TEQ	Test bits equality	✓
(5 12	SHR	Shift right	
	1 (13)	NEG	Negate	
	7 14	SHL	Shift left	
	15	MOV	Move to register	

Table 2: bit16 instruction set opcodes

Load Operation Summary

The following table summarizes the Load operation for the bit16 instruction set.

Mnemonic	Instruction
LD	Load/store
Table 3: bit16 lo	ad instruction

6 bit16 Data Sheet

Jump Instructions Summary

The following table summarizes the jump codes for the bit16 instruction set.

Code	Mnemonic	Instruction
0	JNV	Jump never
1	JEQ	Jump if eq ual
2	JNE	Jump if n ot e qual
3	JGT	Jump if greater than
4	JLT	Jump if less than
5	JGE	Jump if greater than or equal to
6	JLE	Jump if less than or equal to
7	JR	Jump relative

Table 4: bit16 jump instructions

Macrocode Summary

The following section summarizes the bit16 instruction set macrocode. Macrocode instructions are instructions that are not supported by the hardware and are made up of one or more microcode instructions.

Mnemonic	Instruction	Microcode
PUSH	Push register(s) to stack	PUSH A = SUB SP, 1 LD [SP, 0], A
POP	Pop register(s) from stack	POP A = LD A, [SP, 0] ADD SP, 1
CALL	Call procedure	CALL L = ADD LR, PC, 3 JUMP L
RET	Return from procedure	RET = MOV PC, LR
JUMP	Jump to immediate address	JUMP L = LD PC, L
HALT	Halt execution	HALT = MOV PC, PC

Table 5: bit16 macro code instructions

Micro Instructions Formats

The following section covers the 8 different instruction formats of the bit16 CPU instruction set.

Format 0: Jump

Cond: Condition code

Offset10: Immediate signed 10-bit

offset value

Figure 4: Format 0

Operation

Instructions of this format perform a conditional relative jump. This means that the given immediate value is added to the program counter depending on the state of the flag register.

Examples

```
JR loop ; Unconditionally jumps to the label "loop"
JNE .L0 ; Jumps to the label ".L0" if the Z bit is clear
JGE end ; Jumps to label "end" if greater than or equal to
```

Format 1: Load Byte

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	1					(Con	st8					Rd	

Rd: Destination register

Const8: Immediate 8-bit value

Figure 5: Format 1

Operation

Instructions of this format load one 8-bit value into one of the addressable registers.

Examples

```
LD A, 'A'; Loads the ascii value for 'A' (65) into register A
```

LD B, '\n'; Loads the ascii value for '\n' (10) into register B

Format 2: Binary ALU Operation

15	14	13	12 11 10	9	8	7	6	5	4	3	2	1	0
0	1	0	0p4						Rs			Rd	

Rd: Source/destination register

Rs: Source register

Op4: 4-bit opcode

Figure 6: Format 2

Operation

Instructions of this format perform a binary ALU operation on the given registers and place the result in the destination register (Rd) unless it's a comparison operation (CMP, CMN, TST, TEQ).

Examples

ADD A, B; A = A + B

CMP A, B ; Subtract B from A and set the condition codes

OR A, B; $A = A \mid B$

TST A, B ; Bitwise AND A and B together and set the condition codes

MOV A, B ; Move the value in B to A

Format 2: Unary ALU Operation

Rd: Source/destination register

Op1: 1-bit opcode. (0 = NOT, 1 = NEG)

Figure 7: Format 2 (Unary)

Operation

Instructions of this format perform a unary ALU operation on the given source register and place the result in the destination register.

Examples

NOT A; $A = \sim A$

NEG A; A = -A

Format 3: ALU Operation with Constant

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1		0р	4				Con	st6)			Rd	

Rd: Source/destination register

Const6: Immediate signed 6-bit

value

Op4: 4-bit opcode

Figure 8: Format 3

Operation

Instructions of this format perform a binary ALU operation on the given register and the given immediate value and place the result in the destination register (Rd) unless it's a comparison operation (CMP, CMN, TST, TEQ).

Examples

```
ADD SP, 1 ; SP = SP + 1

CMP B, 0 ; Subtract 0 from B and set the condition codes

AND A, b111 ; A = A & 0b111

MOV A, -1 ; Move the value -1 to A
```

Format 4: Binary ALU Operation with Register

15	14	13	12 11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0p3				Rs2			Rs			Rd	

Rd: Source/destination register

Rs: Source register

Rs2: Source register 2

Op3: 3-bit opcode

Figure 9: Format 4

Operation

Instructions of this format perform a binary ALU operation on the given source registers (Rs and Rs2) and place the result in the destination register (Rd).

Examples

ADD A, B, C ; A = B + C

SHL A, B, C ; $A = B \ll C$

SUB A, A, B ; A = A - B. Equivalent to SUB A, B

Format 5: Binary ALU Operation with Constant

15	14	13	12 11 10	9	8	7	6	5	4	3	2	1	0
1	0	1	0p3	Const4					Rs			Rd	

Rd: Source/destination register

Rs: Source Register

Const4: Immediate signed 4-bit

value

Op3: 3-bit opcode

Figure 10: Format 5

Operation

Instructions of this format perform a binary ALU operation on the given source register and immediate value and place the result in the destination register (Rd).

Examples

```
ADD A, B, 1; A = B + 1

SHR A, B, 3; A = B >> 3

SUB A, A, xff; A = A - 0xff. Equivalent to SUB A, xff
```

Format 6: Load/Store

1	L5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	0	0	S				Ro			Rb			Rd	

Rd: Source/destination register

Rb: Base register

Ro: Offset register

S: Store flag (0 = Load, 1 = Store)

Figure 11: Format 6

Operation

Instructions of this format transfer 16-bit values to and from registers and the RAM module. The load or store operation depends on the S flag. The value in the offset register is added to the value in the base register and sent to the RAM module's address BUS.

Examples

LD [B, C], A ; Stores the value in A to the address B + C

LD A, [B, C]; Loads the value at address B + C into A

Format 6: Load/Store (with Immediate Offset)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	0	1	S		0f	fse	t5			Rb			Rd	

Rd: Source/destination register

Rb: Base register

Offset5: Immediate unsigned 5-bit offset

S: Store flag (0 = Load, 1 = Store)

Figure 12: Format 6 with immediate offset

Operation

Instructions of this format transfer 16-bit values to and from registers and the RAM module. The load or store operation depends on the S flag. The offset value is added to the value in the base register and sent to the RAM module's address BUS.

Examples

```
LD [SP, 2], C; Stores the value in C to the address SP + 2
LD C, [SP, 2]; Loads the value at address SP + 2 into C
LD A, [A]; Loads the value at the address in A into A
LD [B], A; Stores the value in A to the address in B
```

Format 7: Load Word

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	1												Rd	

Rd: Source/destination register

Figure 13: Format 7

Operation

Instructions of this format load a full 16-bit immediate value into one of the addressable registers. The 16-bit value is stored in the next location in memory.

Examples

```
LD A, 3000 ; Loads the value 3000 from memory into register A

LD B, =msg ; Loads the label address into register B

LD C, x7fff ; Loads the hex value 7fff into register C
```