Riassunti di Tecnologie Internet

Simone Montali monta.li

13 gennaio 2020

1 Internet

1.1 HTTP

Il World Wide Web è uno spazio di informazioni basato su internet, dove documenti e risorse sono identificati da indirizzi. Una pagina web è un documento HTML linkato ad altre pagine/risorse. Gli URI (*Uniform Resource Identifiers*) sono utilizzati in HTTP come mezzo identificativo delle risorse.

schema: [//[user:password@]host[:port]][/]path[?query][#fragment]

HyperTezt Transfer Protocol è un protocollo a livello applicativo, che adotta un modello client/server: uno user agent che inizia la connessione HTTP ed invia richieste, e un origin server che accetta le richieste e possiede le risorse. È inoltre utile definire altri tre termini:

- Local cache: memoria locale (server o client)
- Proxy: applicazione intermediaria avente funzionalità server e client
- Gateway: applicazione intermediaria che lavora per conto del server, senza renderlo noto ai client

1.1.1 Caratteristiche di HTTP

- HTTP utilizza TCP: il client inizia una connessione TCP (crea la socket) sul server, che accetta e comincia a scambiare messaggi, poi viene chiusa.
- HTTP è stateless: il server non mantiene informazioni riguardanti richieste passate

Distinguiamo tra HTTP non-persistent, dove abbiamo un invio di risorsa alla volta, e persistent HTTP, dove più risorse vengono inviate attraverso una singola connessione TCP. Consideriamo il cosiddetto **Round Trip Time** (RTT): nella prima sono richiesti 2 RTT per risorsa (apertura connessione, invio risorsa), mentre la seconda lascia la connessione aperta, e quindi riduce il numero di RTT richieste. Inoltre, la seconda permette il **pipelining**, ossia l'invio di più richieste alla volta allo scopo di ridurre i tempi, senza attendere le risposte.

Un messaggio HTTP è formato da request/status line, header, body. Una request line è composta da metodo target versioneHTTP. Una status line è versioneHTTP statusCode reasonPhrase. Gli headers sono in formato MIME e specificano i metadati della richiesta come data, versione MIME, encoding, connessione, proxy/gateway, content-type, content-length, encoding, linguaggio, scadenza, data di modifica... Termina sempre con un carriage return (

n).

1.1.2 Metodi HTTP

Prima di elencare i metodi, denotiamo due caratteristiche:

- Idempotenza: significa che il metodo, chiamato più volte, restituirà sempre lo stesso risultato.
- Safety: significa che il metodo non modifica le risorse.

Procediamo elencando i metodi:

- GET: safe ed idempotente. Utilizzato per richiedere una risorsa, ottenuta nella risposta.
- **POST**: non safe, non idempotente. Utilizzato per creare/aggiornare una risorsa. Chiamato ripetutamente, creerà più volte la risorsa.
- PUT: idempotente ma non safe. Utilizzato per creare/aggiornare una risorsa.
- **DELETE**: *idempotente ma non safe*. Elimina la risorsa specificata.
- HEAD: safe ed idempotente. Come una GET ma restituisce solo l'header del messaggio.

Prima di procedere, distinguiamo le differenze tra POST e PUT: nella creazione di risorse, POST non specifica l'ID, mentre PUT si. Nell'update, POST permette di inviare la risorsa parzialmente (solo la parte da updatare), mentre PUT richiede la risorsa completa.

1.1.3 Header delle richieste HTTP

L'header contiene varie informazioni:

- User-Agent: descrive il client che ha originato la richiesta
- Referer: URL della pagina che ha generato la richiesta
- Host: dominio e porta a cui viene eseguita la richiesta
- From: indirizzo email del requester
- Range: range della richiesta (utilizzato per riprendere i download)
- Accept, Accept-Charset, Accept-Encoding, Accept-Language: si spiega da solo; il client specifica cosa può accettare, il server decide il suo preferito
- If-Modified-Since, If-Unmodified-Since: permette di creare GET condizionali, ad esempio se ho una risorsa in cache e voglio verificare che sia aggiornata
- Authorization, Proxy Authorization

1.1.4 Messaggi di risposta HTTP

La status line contiene un codice di stato:

- 1xx Informational: temporaneo mentre la richiesta viene eseguita
- 2xx Successo: richiesta eseguita
- 3xx Redirection: il server ha ricevuto la richiesta ma sono necessarie altre azioni del client
- 4xx Client error: la richiesta è sbagliata
- 5xx Server error: il server non è riuscito ad eseguire la richiesta

Nell'header troviamo:

- Server: stringa che descrive il server
- WWW-Authenticate: contiene una challenge per il client; in caso di 401 unauthorized, il client utilizzerà la challenge per generare un codice di autorizzazione.
- Accept-Ranges: specifica il tipo di ranges accettabili (bytes/nulla)

1.1.5 Cookies

Molti siti utilizzano i cookies. Essi sono composti da 4 componenti: header line della prima risposta HTTP, header line nella prossima richiesta HTTP, file sull'host, DB sul backend del sito.

1.1.6 Proxy

Il proxy è un'applicazione intermediaria che ha funzionalità server e client. Un **transparent proxy** non modifica la richiesta o risposta (es. HTTP tunneling), un **non-transparent proxy** modifica la richiesta/risposta per fornire servizi aggiuntivi. Possiamo utilizzare un proxy server per soddisfare richieste senza coinvolgere il server originale: se la richiesta è nella cache, restituisce la risposta, altrimenti la inoltra.

1.2 Apache

Apache nasce dal desiderio di migliorare httpd, il software server più utilizzato agli inizi di internet; è attualmente utilizzato per mantenere più del 50% di internet. La sua architettura è formata da:

- Moduli: compilati staticamente nel server o contenuti in una directory /modules o /libexec, caricata dinamicamente a runtime
- Apache httpd: implementa il ciclo di processamento delle richieste, composto da più fasi
- Multi-Processing Module: strato intermedio tra Apache e il sistema operativo, che gestisce i thread/processi
- Apache Portable Runtime: librerie che forniscono uno strato tra il sistema operativo e le utilities, in modo da poter essere portable

Apache 2.0 utilizza un processo per connessione, I/O blocking. I Multi-Processing Modules bindano le porte della macchina e accettano richieste.

1.2.1 Configurazione

La configurazione è eseguita tramite semplici file di testo, posizionati in varie directory e spesso divisi in più file e caricati tramite *Include directives*. Una configurazione minimale richiede 5 directives:

- 1. User: setta lo user ID con cui il server risponderà a richieste (utilizzare i permessi minimi)
- 2. Group: setta il gruppo con cui il server risponderà a richieste (necessario avviare il server come root inizialmente)
- 3. ServerName: setta lo schema delle richieste, hostname e porta. È in pratica l'URI.
- 4. DocumentRoot: setta la directory di base delle richieste, a meno di specifiche di Alias.
- 5. Listen: setta la/le porta/e su cui accettare richieste

In più, abbiamo:

- ErrorLog: indica dove salvare il log degli errori
- CustomLog: indica un file dove salvare un log delle richieste, ed un filtro per decidere quali richieste loggare.
- Include: permette di includere altri file di configurazione
- LoadModule: linka una libreria/file oggetto e lo aggiunge ai moduli attivi.
- IfModule: permette di verificare se un modulo è installato ed eseguire directives di conseguenza.

Tramite virtual hosting possiamo hostare più siti sullo stesso server, distinguendoli in due possibili modi: tramite IP o nome. Con la seconda, non c'è necessità di IP multipli. Possiamo anche applicare delle configurazioni locali in determinate directory, e tramite le Options directives attivare/disattivare features, come: ExecCGI, FollowSymLinks, SymLinksIfOwnerMatch, Includes, IncludesNOEXEC, Indexes. Inoltre, è possibile utilizzare i file .htaccess per definire cambiamenti alla configurazione in directories: inseriamo il file in una cartella e tutte le modifiche alla configurazione verranno eseguite lì e nelle subfolders. Tramite

la AllowOverride della configurazione, decidiamo quali directives possono essere overridate dagli htaccess. Per migliorare le performance di Apache, il sistemosta può modificare le opzioni di Apache: è però sconsigliabile usare spazio di swap (RAM virtuale). Infine, con la directive ErrorDocument, specifichiamo cosa fare quando si incorre in un errore HTTP specifico, con 4 possibilità: messaggio hardcoded di errore (default), messaggio custom, redirect interno, redirect esterno.

1.2.2 Avvio di Apache

Su sistemi Unix httpd viene eseguito come daemon continuamente; se la directive Listen è sulla porta 80, è necessario avviare Apache come root perché è una porta speciale (poi verranno lanciati child processes). Lanciamo Apache con l'apachect1 control script, che setta le variabili ENV necessarie e poi avvia httpd. Se l'avvio è succesful, il server viene detacchato dalla console (scusate). Si può usare apachect1 per terminare Apache, o killare il daemon.

1.3 HTML

Il web è basato su tre risorse: gli URI, i protocolli, e HTML. HTML è un linguaggio universale che permette la creazione di documenti con formattazioni, contenuti, link, design. Nasce dalla mente di Tim Berners-Lee e conta attualmente 5 versioni major, la cui ultima è 5.2. Per promuovere l'interoperabilità, ogni documento HTML deve specificare il suo character set, formato da repertorio e code positions. Inoltre, va specificato l'encoding nell'header delle richieste HTTP. Distinguiamo tra 3 parti: una linea di versione HTML, un header, un corpo. Nell'header possiamo trovare varie tipologie di tag: TITLE, BASE, LINK, SCRIPT, STYLE, META. Nel corpo, possiamo trovare DIV (block-level) e SPAN (inline). Un heading descrive l'argomento della sezione che introduce (H1..H6 in base all'importanza). Abbiamo anche alcuni tag per il testo: BR va a capo, P delimita un paragrafo, PRE delimita un testo preformattato, EM, STRONG, CITE, DFN, CODE, SAMP, KBD, VAR, ABBR, ACRONYM, BLOCKQUOTE, Q, SUB, SUP. Possiamo creare liste: UL (Unordered List), OL(Ordered List), DL(Definition List). Possiamo creare tabelle: TABLE, TR, TD. Possiamo spaziarle utilizzando rowspan e colspan, captionarle con CAPTION. Possiamo creare links con il tag A, avente attributi href e target(_blank, _self, _parent, _top). Dando ID agli elementi HTML possiamo cercarli tramite gli anchor link (#riferimento). Con l'elemento IMG embeddiamo immagini definite nell'attributo src. Con OBJECT definiamo oggetti come risorse, applets, plugin. Con i frame possiamo generare views multiple; un frame ha head, frameset e body, con attributi rows e cols. Possiamo anche creare forms, che contengono contenuto, markup, controlli, labels e li inviano ad un'action (tramite GET o POST). In HTML5 sono stati inoltre definiti nuovi tag, semantici (header, footer, article, section), di controllo (numeri, date, orari, calendari, range), grafici (svg, canvas), multimediali (audio, video). Non sono più supportati i frames, sostituiti dagli iframes.