ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 2

Aufgabe 7. (2 Punkte)

Führe die Details zu $\Delta w = f$ im Beweis von Theorem 1.8 aus.

Aufgabe 8. (Dimensionsunabhängige Normen) (4 Punkte)

- (i) Präzisiere die Aussage, dass sich die dimensionsunabhängigen Normen $\|\cdot\|'_{C^{k,\alpha(\Omega)}}$ unter Homothetien des Gebietes nicht ändern und beweise sie.
- (ii) Sei $u \in C^{0,\alpha}(\overline{\Omega})$, $v \in C^{0,\beta}(\overline{\Omega})$ und $\gamma = \min\{\alpha, \beta\}$. Dann ist $u \cdot v \in C^{0,\gamma}(\overline{\Omega})$ und es gilt $||u \cdot v||'_{C^{0,\gamma}(\Omega)} \le ||u||'_{C^{0,\alpha}(\Omega)} \cdot ||v||'_{C^{0,\beta}(\Omega)}$.

Aufgabe 9. (4 Punkte)

Nimm an, dass Theorem 1.11 für R=1 bereits gezeigt sei und folgere daraus die Behauptung

$$||D^2w||'_{C^{0,\alpha}(B_R(x_0))} \le C(n,\alpha) \cdot ||f||'_{C^{0,\alpha}(B_{3R}(x_0))}$$

für

$$w(x) = \int_{B_{3R}(x_0)} \Gamma(|x - y|) f(y) dy$$

und beliebige R > 0.

Aufgabe 10. (2 + 4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Sei $u \in C^0(\overline{\Omega})$. Sei $0 < \alpha < 1$.

(i) Gelte

$$\underset{B_r(x)\cap\Omega}{\operatorname{osc}} u \leq C \cdot \left(\frac{r}{R}\right)^{\alpha} \cdot \left(\underset{B_R(x)\cap\Omega}{\operatorname{osc}} u + c \cdot R^{\alpha}\right)$$

für alle $x \in \Omega$ und alle $0 < r \le R$.

Zeige, dass $u \in C^{0,\alpha}(\overline{\Omega})$ gilt.

(ii) Gelte

$$\underset{B_r(x)}{\operatorname{osc}} \, u \leq C \cdot \left(\frac{r}{R}\right)^{\alpha} \cdot \left(\underset{B_R(x)}{\operatorname{osc}} \, u + c \cdot R^{\alpha}\right)$$
 für alle $0 < r \leq R$ und $B_R(x) \subset \Omega$ sowie

$$\underset{B_r(z)\cap\Omega}{\operatorname{osc}} u \leq C \cdot \left(\frac{r}{R}\right)^{\alpha} \cdot \left(\underset{B_R(z)\cap\Omega}{\operatorname{osc}} u + c \cdot R^{\alpha}\right)$$

für alle $z \in \partial \Omega$ und alle $0 < r \le R$.

Zeige, dass $u \in C^{0,\alpha}(\overline{\Omega})$ gilt.

Hinweis: Vergleiche für $x_1, x_2 \in \Omega$ den Abstand $|x_1 - x_2|$ mit dem Abstand zu $\partial \Omega$ und benutze die beiden angegebenen Abschätzungen ggf. mehrfach.

Abgabe: Bis Dienstag, 14.11.2017, 10:00 Uhr, in die Mappe vor Büro F 402.