Linear Algebra 期中专场

时间: 2022年4月30日

- 一、判断正误题(每小题2分,共10分)
 - 1. Every matrix is row equivalent to a unique matrix in echelon form. (T/F?)
 - 2. If A is a 3×3 matrix, then $\det(2A)=2\det(A)$. (T/F?)
 - 3. If an augmented matrix $[A \ \mathbf{b}]$ is transformed into $[C \ \mathbf{d}]$ by elementary row operations, then the equations $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{d}$ have exactly the same solution sets. (T/F?)
 - 4. Rank $\mathbf{A} = \dim(\text{Nul } \mathbf{A})$. (T/F?)
 - 5. If A is $m \times n$ and the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto, then $\operatorname{rank} A = m$. (T/F?)
- 二、填空题(每小题5分,共15分)

1. 若
$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
 $X = \begin{pmatrix} 4 & -6 \\ 2 & 1 \end{pmatrix}$, 则 $X =$ _____.

2. 已知向量组

$$m{lpha}_1 = [1, -1, 2]^{\mathrm{T}}, m{lpha}_2 = [0, 3, 1]^{\mathrm{T}}, m{lpha}_3 = [3, 0, 7]^{\mathrm{T}}$$

与向量组

$$m{eta}_1 = [1, -2, 2]^{\mathrm{T}}, m{eta}_2 = [2, 1, 5]^{\mathrm{T}}, m{eta}_3 = [x, 3, 3]^{\mathrm{T}}$$

等秩,则 $x = ____.$

3. 向量组
$$\alpha_1=\begin{pmatrix}1\\1\\1\end{pmatrix},\quad \alpha_2=\begin{pmatrix}0\\2\\5\end{pmatrix},\quad \alpha_3=\begin{pmatrix}2\\4\\7\end{pmatrix},\quad \alpha_4=\begin{pmatrix}1\\2\\0\end{pmatrix}$$
 是线性______(填相关或无关)的,它的一个极大线性无关组是______.

判断正误题	1	2	3	4	5
你的判断					

填空题	1	2	3(1)	3(2)
你的答案				

计算与证明题	1	2	3	4	5
得分					

1. (15分)求解下列齐次线性方程组:

$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + 7x_4 = 0 \\ 2x_1 - 3x_2 + 3x_3 - 2x_4 = 0 \\ 4x_1 + 11x_2 - 13x_3 + 16x_4 = 0 \\ 7x_1 - 2x_2 + x_3 + 3x_4 = 0 \end{cases}$$

2. (15分)求可逆矩阵 \boldsymbol{P} 和对角矩阵 \boldsymbol{D} , 使 $\boldsymbol{A} = \boldsymbol{P}\boldsymbol{D}\boldsymbol{P}^{-1}$.

$$A = egin{bmatrix} 5 & 0 & 0 & 0 \ 0 & 5 & 0 & 0 \ 1 & 4 & -3 & 0 \ -1 & -2 & 0 & -3 \ \end{bmatrix}$$

3. (15分)设 $\mathcal{B}=\{\boldsymbol{b}_1,\boldsymbol{b}_2\}$ 和 $\mathcal{C}=\{\boldsymbol{c}_1,\boldsymbol{c}_2\}$ 是 \mathbb{R}^2 的两个基, 求由 \mathcal{B} 到 \mathcal{C} 的坐标变换矩阵和由 \mathcal{C} 到 \mathcal{B} 的坐标变换矩阵.

$$m{b}_1 = egin{bmatrix} 7 \ 5 \end{bmatrix}, m{b}_2 = egin{bmatrix} -3 \ -1 \end{bmatrix}, m{c}_1 = egin{bmatrix} 1 \ -5 \end{bmatrix}, m{c}_2 = egin{bmatrix} -2 \ 2 \end{bmatrix}$$

4. (15分)

设 $A \in n \times m$ 矩阵, $B \in m \times n$ 矩阵,其中 n < m, 若 AB = E, 证明 B 的列向量线性无关.

5. (15分)设

$$egin{aligned} V_1 &= \Big\{ oldsymbol{x} = (x_1, x_2, \cdots, x_n)^{\mathrm{T}} \mid x_1, \cdots, x_n \in \mathbb{R} & ext{id} \mathcal{Z} \ x_1 + \cdots + x_n = 0 \Big\}, \ V_2 &= \Big\{ oldsymbol{x} = (x_1, x_2, \cdots, x_n)^{\mathrm{T}} \mid x_1, \cdots, x_n \in \mathbb{R} & ext{id} \mathcal{Z} \ x_1 + \cdots + x_n = 1 \Big\}, \end{aligned}$$

问 V_1, V_2 是不是向量空间? 证明之.