Report.md 2024-12-04

Homework: 2024/11/27

1. Information Matrix of Binary Choice Models

a.
$$L_{n}(\beta) = \sum_{i=1}^{n} (Y_{i} L_{n}G(X_{i}^{i}\beta) + (I-Y_{i}^{i})L_{n}(I-G(X_{i}^{i}\beta))) = \sum_{i=1}^{n} (Y_{i} L_{n}G(X_{i}^{i}\beta) + (I-Y_{i}^{i})L_{n}(G(X_{i}^{i}\beta)))$$

$$= \sum_{i=1}^{n} L_{n}G(Z_{i}^{i}\beta) , \quad \beta y \quad \text{the definition}$$

$$Z_{i} = \begin{bmatrix} X_{i} & Y_{i} = I \\ -X_{i} & Y_{i} = 0 \end{bmatrix}$$
scene function $S_{n}(\beta) = Y_{\beta} L_{n}(\beta) = \sum_{i=1}^{n} \frac{Y_{\beta}G(Z_{i}^{i}\beta)}{G(Z_{i}^{i}\beta)} = \sum_{i=1}^{n} Z_{i}L_{i}(Z_{i}^{i}\beta) , \quad \text{for } L(x) = \frac{\lambda}{2x}L_{n}G(x)$

$$\text{Messian matrix } H_{n}(\beta) = Y_{\beta}L_{n}(\beta) = \sum_{i=1}^{n} Z_{i}Z_{i}^{i}L_{i}^{i}(Z_{i}^{i}\beta) , \quad \text{for } L(x) = \frac{\lambda}{2x}L_{n}G(x)$$

$$\therefore \text{Information matrix } B_{n}(\beta) = Y_{\beta}L_{n}(\beta) = \sum_{i=1}^{n} Z_{i}Z_{i}^{i}L_{i}^{i}(Z_{i}^{i}\beta) , \quad \text{for } L(x) = \frac{\lambda}{2x}L_{n}G(x)$$

$$b. \quad \text{To } \text{ prove the information matrix } \text{ equality }, \quad \text{noe must } \text{ have } E[H_{n}(\beta)] + E[B_{n}(\beta)] = 0$$

$$E[H_{n}(\beta)] = \sum_{i=1}^{n} Z_{i}Z_{i}^{i}E[H_{i}(Z_{i}^{i}\beta)] = \sum_{i=1}^{n} Z_{i}Z_{i}^{i}E[H_{i}(Z_{i}^{i}\beta) + L_{i}^{i}\beta) + L_{i}^{i}\beta]$$

$$= \sum_{i=1}^{n} Z_{i}Z_{i}^{i}E[L_{i}(Z_{i}^{i}\beta)] = \sum_{i=1}^{n} Z_{i}Z_{i}^{i}E[H_{i}(Z_{i}^{i}\beta)], \quad \text{since } G \text{ is } \text{ symmetric }, \quad \text{we } \text{ have } E[H_{n}(\beta)] + E[B_{n}(\beta)] = 0$$

$$\therefore E[H_{n}(\beta)] + E[B_{n}(\beta)] = \sum_{i=1}^{n} Z_{i}Z_{i}^{i}E[\frac{G^{i}(Z_{i}^{i}\beta)}{G(Z_{i}^{i}\beta)}], \quad \text{since } G \text{ is } \text{ symmetric }, \quad \text{we } \text{ have } E[\frac{G^{i}(Z_{i}^{i}\beta)}{G(Z_{i}^{i}\beta)}] = 0$$

$$\therefore E[H_{n}(\beta)] + E[B_{n}(\beta)] = 0, \quad \text{information } \text{matrix } \text{ equality } \text{ holds } . \quad E[\frac{G^{i}(Z_{i}^{i}\beta)}{G(Z_{i}^{i}\beta)}] = 0$$

2.

market-cycle-index sequence & its predictions of different models

Report.md 2024-12-04

Score values of probit and logit models

```
Probit Model Score Values:

dfy infl svar tms
-3.153491e-02 5.566595e-03 1.069826e-03 -1.183443e-02 9.980074e-05
tbl dfr dp ltr ep
3.347931e-02 1.836287e-02 1.131310e-01 9.999583e-03 1.080522e-01
bmr ntis
1.721287e-02 3.724040e-03

Logit Model Score Values:

dfy infl svar tms
9.167080e-03 1.201280e-03 3.991171e-04 1.976480e-04 -6.553894e-04
tbl dfr dp ltr ep
-1.381212e-04 -2.052281e-03 -3.783134e-02 5.836199e-05 -2.658905e-02
bmr ntis
-1.890811e-03 -2.159018e-03
```

By observing the score values, we can see that the score values of probit and logit models are close to zero, which indicates that the numerical optimization is successfully converged.

3. Source Code

Source Code