Colorful Image Colorization

- LAB space
- Quantize ab output space: bins with grid size = 10, Q = 313 (Number of quantized ab pairs)
- For a given input X, predict color distribution \hat{Z} :

$$\hat{Z} = G(X)$$
 where $\hat{Z} \in [0, 1]^{H \times W \times Q}$

- From \hat{Z} (a distribution) to \hat{Y} (a point in ab space):
 - Mode: vibrant but strange details
 - Mean: desaturated color, similar to Euclidean loss
 - Annealed mean: $H(Z_{h,w}) = E[f_T(Z_{h,w})], f_T(z) = \frac{e^{log(z)/T}}{\sum_q e^{log(z_q)/T}}$
- Ground truth color Y is converted to distribution Z using **soft encoding**: Find **5** nearest neighbours to Y in output space, weight them ∞ distance from Y using Gaussian kernel with $\sigma = 5$
- Multinomial cross entropy loss:

$$L_{cl}(\hat{Z}, Z) = -\sum_{h,w} v(Z_{h,w}) \sum_{q} Z_{h,w,q} log(\hat{Z}_{h,w,q})$$

- $-v(Z_{h,w})$ class rebalancing:
 - * low *ab* values dominate natural images (grayish, due to clouds, pavement, dirt, walls, etc.)
 - * Increase importance of rare colors:
 - 1. Estimate empirical probability distribution of colors in quantized ab space $p \in \Delta Q$.
 - 2. Smooth p to \tilde{p} with Gaussian kernel G_{σ} , $\sigma = 5$.
 - 3. Mix \tilde{p} with a uniform distribution $\frac{1}{Q}$ (tones down importance of rare colors slightly), then take reciprocal (rare colors importance > frequent colors): $w \propto ((1-\lambda)\tilde{p} + \lambda \times \frac{1}{Q})^{-1}$, $\lambda = .5$.
 - 4. Normalize w so that $E[w] = \sum_q \tilde{p}_q w_q = 1$