Chapter 3: Describing data

Ex 3.1: Gliding snakes

Sample of 8 individuals

Ind	Rate
1	0.9
2	1.4
3	1.2
4	1.2
5	1.3
6	2.0
7	1.4
8	1.6

Sample mean

 The sample mean is the sum of all the observations in a sample divided by n, the number of observations

$$\overline{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

Y= variable

 Y_i = measurement for individual i

n = number of observations

$$\overline{Y} = \frac{0.9+1.2+1.2+2.0+1.6+1.3+1.4+1.4}{8} = 1.375$$

5

Spread of the distribution

Spread of the distribution

Rate	$Y_i - \overline{Y}$	$(Y_i - \overline{Y})^2$
0.9	-0.475	0.225625
1.2	-0.175	0.030625
1.2	-0.175	0.030625
1.3	-0.075	0.005625
1.4	0.025	0.000625
1.4	0.025	0.000625
1.6	0.225	0.050625
2.0	0.625	0.390625
Sum	0	0.735

sum of squares

7

Spread of the distribution

0.475	0.225625
0.175	0.030625
0.175	0.030625
0.075	0.005625
.025	0.000625
.025	0.000625
.225	0.050625
.625	0.390625
	0.735
	0.075 0.025 0.025 0.225 0.625

Variance

$$s^2 = \frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{n-1}$$

Spread of the distribution

Rate	$Y_i - \overline{Y}$	$(Y_i - \overline{Y})^2$
0.9	-0.475	0.225625
1.2	-0.175	0.030625
1.2	-0.175	0.030625
1.3	-0.075	0.005625
1.4	0.025	0.000625
1.4	0.025	0.000625
1.6	0.225	0.050625
2.0	0.625	0.390625
Sum	0	0.735

 The standard deviation is a common measure of the spread of the distribution. It indicates just how different measurements typically are from the mean

$$s = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}{n-1}}$$

9

Spread of the distribution

Rate	$Y_i - \overline{Y}$	$(Y_i - \overline{Y})^2$
0.9	-0.475	0.225625
1.2	-0.175	0.030625
1.2	-0.175	0.030625
1.3	-0.075	0.005625
1.4	0.025	0.000625
1.4	0.025	0.000625
1.6	0.225	0.050625
2.0	0.625	0.390625
Sum	0	0.735

Variance

$$s^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}{n-1} = \frac{0.735}{7} = 0.11$$

Standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}{n-1}} = \sqrt{\frac{0.375}{7}} = 0.324037$$

Standard deviation

- Never negative, and has same units as the observations
- If the frequency distribution is bell shaped:

11

Comparing spread of distribution in different populations (same units)

- Within a sample, the mean and the standard deviation have the same units (apples to apples)
- But values for the same variable can vary considerably across populations
- Consider weight in elephants (big apples) vs mice (tiny apples)
 - Standard deviation of 2 g in sample of mice might be a bigger relative spread than a standard deviation of 2000 g in elephants

Comparing spread of distribution in different populations (diff units)

- What if you have two different measurements in two different samples, and you want to know which one is more "spread out?"
- For example, weight (kg) and resting heart rate (bpm) in sample of elephants
- Now you have apples (kg) and oranges (bpm), so comparing the standard deviations doesn't make sense

13

Coefficient of variation

 The coefficient of variation is the standard deviation expressed as a percentage of the mean

$$CV = \frac{S}{Y} \times 100\%$$

Can be used to compare variability of same trait in different populations (e.g., weight in elephants vs mice) or different traits (e.g., heart rate vs cholesterol)

Ex 3.2: I'd give my right arm for a female

Tidarren spider. Males are tiny, but have large pedipalps (arrows). Male amputates one when searching for mate **TABLE 3.2-1** Running speed (cm/s) of male *Tidarren* spiders before and after voluntary amputation of a pedipalp.

Spider	Speed before	Speed after
1	1.25	2.40
2	2.94	3.50
3	2.38	4.49
4	3.09	3.17
5	3.41	5.26
6	3.00	3.22
7	2.31	2.32
8	2.93	3.31
9	2.98	3.70
10	3.55	4.70
11	2.84	4.94
12	1.64	5.06
13	3.22	3.22
14	2.87	3.52
15	2.37	5.45
16	1.91	3.40

Median

- The median is the middle measurement of a set of observations
- The "middle" value in a set of **sorted** observations

Odd number of obs:

Even number of obs:

$$Median = Y_{(n+1/2)}$$

$$Median = \left[Y_{(n/2)} + Y_{\left(\frac{n}{2}+1\right)}\right]/2$$

17

Ex 3.2: I'd give my right arm for a female

TABLE 3.2-1 Running speed (cm/s) of male *Tidarren* spiders before and after voluntary amputation of a pedipalp.

	Spider	Speed before	Sorted	Speed after
Even number of obs:	1	1.25	1.25	2.40
	2	2.94	1.64	3.50
$Median = \left[Y_{(n/2)} + Y_{\left(\frac{n}{2} + 1\right)}\right]/2$	3	2.38	1.91	4.49
$\left(\frac{n/2}{2}\right) \left(\frac{1}{2}\right)$	4	3.09	2.31	3.17
-	5	3.41	2.37	5.26
	6	3.00	2.38	3.22
[a a= a aa]	7	2.31	2.84	2.32
$Median = \frac{[2.87 + 2.93]}{2} = 2.90$	8	2.93	2.87	3.31
$Median = {2} = 2.90$	9	2.98	2.93	3.70
Z	10	3.55	2.94	4.70
	11	2.84	2.98	4.94
	12	1.64	3.00	5.06
	13	3.22	3.09	3.22
	14	2.87	3.22	3.52
	15	2.37	3.41	5.45
	16	1.91	3.55	3.40

Quartiles and interquartile range

- Quartiles are values that partition the data into quarters
- The interquartile range (IQR) is the difference between the third and first quartiles of the data. It is the span of the middle 50% of the data

Fig 3.2-1

19

Quartiles and interquartile range

- Quartiles are values that partition the data into quarters
- The interquartile range (IQR) is the difference between the third and first quartiles of the data. It is the span of the middle 50% of the data
- The Xth percentile is the sample below which X percent of the observations lie
 - If you're the 84th percentile of GPA for your class then you're GPA is higher than 84% of your classmates

21

Cumulative frequency

 Cumulative relative frequency at a given measurement is the fraction of observations less than or equal to that measurement

Fig 3.4-1

Mean vs median

- Which gives more insight of the distribution of measurements?
- Depends on the *shape* of the frequency distribution

Ex 3.3: Disarming fish

- Threespine stickleback
- Spines and bony plates reduce mortality
- Number of bony plats determined by single gene Ectodysplasin
 - -MM = many
 - -Mm = variable
 - -mm = few

https://www.youtube.com/watch?v=Pv4Ca-f4W9Q

25

Mean vs median

- When the frequency distribution is symmetric and bell-shaped the mean and median will be similar
 - e.g., MM and mm

Fig 3.3-1

27

Mean vs median

 BUT when the frequency distribution is asymmetric the values will differ

Fig 3.3-1

The median is the middle value, whereas the mean is the "center of gravity"

Fig 3.3-2

29

Proportion

 Proportion of observations in a given category

$$\hat{p} = \frac{num.\,in\,category}{n}$$

TABLE 3.5-1 The number of fish of each genotype from a cross between a marine stickle-back and a freshwater stickleback (<u>Example 3.3</u>). As written, the sum of the proportions does not add precisely to one because of rounding.

Genotype	Frequency	Proportion
MM	82	0.24
Mm	174	0.51
mm	88	0.26
Total	344	1.00