This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

11) Veröffentlichungsnummer:

0 135 727 Δ1

EUROPÄISCHE PATENTANMELDUNG

21 Anmeldenummer: 84109153.1

61 Int. Cl.4: C 08 F 20/44

Anmeldetag: 02.08.84

30 Priorität: 05.08.83 DE 3328276

Anmelder: HOECHST AKTIENGESELLSCHAFT, Postfach 80 03 20, D-6230 Frankfurt am Main 80 (DE)

Weröffentlichungstag der Anmeldung: 03.04.85 Patentblatt 85/14

Erfinder: Krakkay, Tibor, Dr., Lenzfriederstrasse 14, D-8000 München 19 (DE)
Erfinder: Poggl, Tatjana, Alte Schule Mitterfecking, D-8424 Saal (DE)
Erfinder: Schubert, Ernst, Dr., Traubenweg 15, D-8420 Kelhelm/Donau (DE)

Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI NL

- Polyacrylnitrile mit geringem K-Wert, Verfahren zu ihrer Herstellung und geelgnete Verwendung.
- Die Erfindung betrifft Homo- und Copolymerisate des Acrylnitriis mit sehr geringen K-Werten nach Fikentscher von 34–15 und einem Gesamtgehalt an Sulfonat- und Sulfat-Endgruppen, die nicht von entsprechend substituierten Comonomeren stammen, von 250 bis 1000 Milliäquivalent pro Kilogramm Polymerisat, wobei 180 bis 900 Milliäquivalent pro Kilogramm als Sulfonatendgruppen vorliegen sowie geeignete halbkontinuierliche oder kontinuierlich Fällungspolymerisationsverfahren zu ihrer Herstellung mittels Redoxsystem in wässrigem Medium.

Die erhaltenen Polymerisate können zu geformten Körpern extrudiert werden. Sie sind insbesondere nach einer Hydrolyse als Emulgatoren und Tiefbohrhilfsmittel verwendbar.

135 727

Polyacrylnitrile mit geringem K-Wert, Verfahren zu ihrer Herstellung und geeignete Verwendung

Die Erfindung betrifft ein Verfahren zur Herstellung von Homo- und Copolymerisaten des Acrylnitrils
mit extrem niedrigen K-Werten von 34 bis 15 sowie die
dabei erhaltenen Produkte und ihre Verwendung.

5

Homopolymerisate und Copolymerisate des Acrylnitrils mit hohem Molekulargewicht werden in der Industrie großtechnisch hergestellt. Sie dienen vor allen als Rohstoff für die Herstellung von Fasern und Fäden. Der K-Wert dieser hochmolekularen Polymerisate liegt in der Regel bei 80 bis 90. Die Herstellung der Polymerisate erfolgt überwiegend nach dem Verfahren der Fällungspolymerisation in wäßrigem Medium. Üblicherweise bevorzugt man das Verfahren der Redox-Polymerisation, wobei ein Radikalspender – eine anorganische Perverbindung – zusammen mit einem Reduktionsmittel eingesetzt werden.

Zum Begriff und zur Bestimmung des K-Wertes siehe Fikentscher, Cellulosechemie 13 (1932), 58.

Homopolymerisate und Copolymerisate des Acrylnitrils mit niederem Molekulargewicht sind bereits öfters beschrieben worden. Ein Vergleich der dabei erhaltenen Resultate ist jedoch mühsam, da die Berechnung der viskosimetrisch ermittelten Molekulargewichte M_V aus der viskosimetrisch bestimmten Grenzviskositätszahl / ½ 7 nach den verschiedensten Gleichungen erfolgte. Manche Autoren haben statt der viskosimetrisch ermittelten Werte auf osmometrische Bestimmungen zurückgegriffen und Molekulargewichte M_n als Zahlenmittel angegeben. Bekanntlich stimmen die Werte für die Molekulargewichte M_V und M_n nur in den seltensten Fällen überein, der Wert für M_n kann beispielsweise nur die Hälfte von dem Wert M_V ausmachen. Im vor-

liegenden Text wurde zur Charakterisierung der durch-

schnittlichen Molekülgröße die Kennzahl "K-Wert" nach Fikentscher verwendet. Sie ist die in der Technik allgemein übliche Kennzahl für Acrylnitrilpolymerisate.

- In Colloid and Polymer Science 256, 1027 (1978) wird bereits die Herstellung von Acrylnitril-Homopolymerisaten mit niedrigen Molekulargewichten M_V von 21.690 bis 8.650 beschrieben. Die Polymerisation wird nach dem Lösungspolymerisations-Verfahren in Dimethylformamid unter Verwendung einer organischen Azoverbindung als Radikalspender durchgeführt. Das Endprodukt fällt bei diesem Verfahren in Lösung an und muß noch aufwendig isoliert werden. Derartige Polymerisate weisen keine Sulfonat- und/oder Sulfat-Endgruppen auf.
- 15 Ein weiteres Lösungspolymerisations-Verfahren zur Herstellung niedrig molekularer Polyacrylnitrile mit Molekulargewichten M_V von ca. 30 000 bis 2 000 wird auch in der US-PS 2 763 636 beschrieben. Die Polymerisation erfolgt in konzentrierten Salzlösungen z.B. Zinkchlorid-Lösungen mit H₂O₂ bzw. K₂S₂O₈ als Katalysator. Es wird
- 20 Lösungen mit H₂O₂ bzw. K₂S₂O₈ als Katalysator. Es wird jedoch ohne Reduktionsmittel in Gegenwart von Cu²⁺ -Ionen gearbeitet.

Auch die in US-PS 3 208 962 beschriebenen Homo- und Copolymerisate des Acrylnitrils sind nach Lösungspolymerisationsverfahren in konzentrierten Zinkchloridlösungen mittels
H₂O₂ und Oxysäuren des Chlors hergestellt worden. Wie bei
den oben beschriebenen Verfahren ist das Endprodukt nur
aufwendig isolierbar, die Rückgewinnung der eingesetzten
Salzlösungen mit erheblichen Schwierigkeiten verbunden.

In der deutschen Auslegeschrift 26 55 714 werden Verfahren zur Herstellung von Homopolymerisaten des Acrylnitrils mit sehr niedrigen K-Werten beschrieben, die auch nach einem Verfahren der Fällungspolymerisation hergestellt werden. Als Reaktionsmedium wird jedoch eine Mischung aus Isopropanol und Wasser eingesetzt und die Polymerisation

5

diskontinuierlich ausgeführt. Die Anwesenheit von Isopropanol in der Reaktionsmischung erschwert die Rückgewinnung des nicht umgesetzten monomeren Acrylnitrils, da statt Acrylnitril und Wasser ein Dreikomponentensystem jetzt destillativ getrennt werden muß. Bei dieser Vorliteratur wird H₂O₂ als Katalysator und Hydroxylamin- bzw. Hydrazinsalze als Aktivator beschrieben. Diese Reduktionsmittel führen infolge ihrer Giftigkeit zu Umweltschutzproblemen in den Abwässern. Außerdem enthalten die obigen Polymere keine Sulfonat- und/oder Sulfat-Endgruppen im Kettenmolekül.

In der deutschen Patentschrift 2 318 609 wird die Herstellung von Homo- und Copolymerisaten des Acrylnitrils nach dem Verfahren der Fällungspolymerisation beschrieben. Als 15 Reaktionsmedium dient Wasser, es wird mit einem Persulfat-Katalysator und einem Pyrosulfit-Aktivator gearbeitet. Das Verfahren führt jedoch nur zu Polymerisaten bis zu einem K-Wert von 35. Nachteilig ist auch, daß nur in verdünnten wäßrigen Lösungen bei niedrigen Acrylnitril-Konzentrationen von 0,1 bis 1,5 Gew.-%, bezogen auf die Reaktionsmischung, 20 gearbeitet wird, was zwangsläufig zu niedrigen Raum-Zeit-Ausbeuten führt. Die Polymerisation wird in Abwesenheit von Eisenionen durchgeführt, man gibt der Reaktionsmischung, Polyphosphate zu, die als Komplexbildner für Eisen und Schwermetallspuren dienen. Auch in der US-PS 3 488 336 25 werden niedermolekulare Acrylnitril-Homopolymerisate beschrieben, die durch eine diskontinuierliche Fällungspolymerisation in wäßrigem Medium bei pH-Werten > 4 mittels Persulfat-Katalysatoren ohne Anwendung von Aktivatoren 30 und Beschleunigern hergestellt wurden. Die sehr niedrigen Molekulargewichte werden nur dadurch erreicht, daß die Polymerisation des Acrylnitrils in sehr großer Verdünnung bei Monomerkonzentrationen von 0,05 bis 0,5 Gew.-% und sehr langen Reaktionszeiten durchgeführt wird. Die Ausbeuten betragen maximal 23 %, daraus errechnet sich eine Raum-Zeit-35 Ausbeute von nur 0,01 bis 0,2 g Polymerisat pro Liter Reaktionslösung und Stunde. Somit ist die angegebene Methode

für ein technisches Verfahren ungeeignet. Die erhaltenen Polymerisate enthalten darüberhinaus praktisch keine Sulfonat-Endgruppen.

Sowohl in der DE-PS 2 318 609 als auch in der US-PS 3,488,336 wird betont, daß man niedermolekulare Polyacrylnitrile nur dann erhalten kann, wenn die Polymerisation des Acrylnitrils in sehr verdünnter wäßriger Lösung durchgeführt wird.

10

Es bestand daher immer noch die Aufgabe, Acrylnitrilhomound -copolymerisate herzustellen, die sehr niedrige
K-Werte und einen hohen Gehalt an stark sauren Endgruppen aufweisen und dazu ein Verfahren auszuarbeiten, das großtechnisch durchgeführt werden kann, sich möglichst an das
in der Industrie im großen Rahmen betriebene Fällungspolymerisationsverfahren zur Herstellung von Polyacrylnitrilen als Faserrohstoff anlehnt, keine neuen bzw.
weiteren Chemikalien benötigt als dies zur Herstellung

der bekannten Polyacrylnitrilrohstoffe notwendig ist, die Notwendigkeit einer Trennung von Dreifachgemischen bei der Aufarbeitung der Reaktionslösungen vermeidet und die Herstellung von Acrylnitrilpolymerisaten mit sehr hohem Gehalt an Sulfonat und Sulfat-Endgruppen bereits ohne jeden Zusatz von entsprechend substituierten Comonomeren gestattet.

Es wurde nun überraschend gefunden, daß entgegen den Lehren des Standes der Technik es doch möglich ist, Acrylnitril30 homo- und -copolymerisate mit dem gewünschten sehr niedrigen K-Wert von 34 bis 15 und sehr hohem Anteil an Sulfonatund Sulfat-Endgruppen herzustellen und zwar unter Einsatz sehr hoher Monomerkonzentration nach dem Verfahren der Fällungs-

35 polymerisation in wäßriger Lösung mittels eines RedoxSystems. Bei dem gefundenen Verfahren kann mit hohen RaumZeit-Ausbeuten gearbeitet werden.

Gegenstand der Erfindung ist daher u.a. ein kontinuierliches oder halbkontinuierliches Verfahren zur Herstellung von Acrylnitrilhomo- oder -copolymerisaten mit mindestens 60 Gew.-% Acrylnitril-Einheiten und bis zu 40 Gew.-% mit Acrylnitril copolymerisierbaren Einheiten, die K-Werte . 2 nach Fikentscher von 34 bis 15 aufweisen. Diese K-Werte entsprechen mittleren Molekulargewichten M_{vr} (aufgrund von viskosimetrischen Messungen) von etwa 10 000 bis 2 700. Diese Werte wurden nach Marzolph und Scholtan, Makromolekulare Chemie 57, 52 (1962) berechnet. Diese Polymerisate 10 werden nach dem Verfahren der Fällungspolymerisation unter Einsatz hoher Monomerkonzentrationen von 12 bis 30 Gew.-%, bevorzugt 12 bis 27 % bezogen auf die in der gleichen Zeiteinheit zudosierten Gesamtmengen an Wasser und Mono-15 meren in wäßrigem Medium mittels eines Redox-Systems kontinuierlich oder halbkontinuierlich polymerisiert, wobei das Redox-System aus Persulfat-Katalysator in Konzentrationen von 0.5 bis 2.5 Gew.-% (gerechnet als $S_2O_8^{-2}$), aus Sulfit-Aktivator in Konzentrationen von 5 bis 25 Gew.-% (gerechnet als S2052-) und Eisenionen als Beschleuniger 20 in Konzentrationen von 6 x 10⁻⁴ bis 2 x 10⁻² Gew.-%, bezogen jeweils auf die in der gleichen Zeiteinheit zudosierten Menge an Wasser, besteht, das Gewichtsverhältnis von Persulfat zu Pyrosulfit von 1:2 bis 1:30 variiert und die mittlere Verweilsdauer der Monomeren in der Reak-25 tionsmischung während der Polymerisation 1 bis 4 Stunden, bevorzugt 1,5 bis 2,5 Stunden beträgt. Bevorzugt wird der Einsatz von Kaliumpersulfat als Katalysator, Natriumpyrosulfit als Aktivator und Mohr'schem Salz als Lieferant der Eisenionen. Die Polymerisationstemperatur beträgt üb-30 licherweise 30 bis 65 °C, bevorzugt zwischen 45 und 60°C. Als Comonomeres kann jede mit Acrylnitril copolymerisierbare Verbindung eingesetzt werden. Bevorzugte Comonomere sind Methylacrylat und Vinylacetat. Die Raum-Zeit-Ausbeute bei der Polymerisation nach dem erfindungsgemäßen Verfahren beträgt 25 bis 105, vorzugsweise 50 bis 95 g/l·h und ist somit um ein Vielfaches größer als die Raum-Zeit-Ausbeute von Verfahren gemäß dem Stande der Technik.

Die erfindungsgemäßen Acrylnitrilhomo – und -copolymerisate mit den gewünschten niedrigen K-Werten von 34 bis 15 werden nur dann erhalten, wenn die folgenden 5 Parameter innerhalb der geforderten Grenzen eingehalten werden:

Konzentration an Persulfat - Katalysator Konzentration an Sulfit-Aktivator Konzentration an Eisenionen als Beschleuniger Verhältnis Persulfat zu Pyrosulfit und Verweilszeit der Monomeren in der Reaktionsmischung.

ilerden die angegebenen Werte der Bereicheüberschritten, so wird bei einem höheren Aufwand kein weiterer technischer Effekt erzielt. Werden die angegebenen unteren Grenzen der Bereiche dieser 5 Parameter unterschritten, so erhält man keine Polymerisate mehr mit den gewünschten K-Werten von unter 34.

Es ist selbstverständlich, daß die Parameter in ihren oben angegebenen Grenzen nicht willkürlich gewählt werden können, Sie sind von einander abhängig und müssen deshalb aufeinander abgestimmt werden, um die gewünschten Poly-

20 merisate mit K-Werten 434 zu erhalten. Hierzu sollen neben den Angaben in den Beispielen die folgenden Richt-linien dienen.

Bei Einsatz geringerer Katalysatormengen ist die Be25 schleuniger-Konzentration zu erhöhen und bei einer hohen
Aktivatorkonzentration (erhöhtes Katalysator/AktivatorVerhältnis) zu arbeiten.

Bei Anwendung eines geringen Katalysator/AktivatorVerhältnisses müssen hohen Konzentrationen an Katalysator
und Beschleuniger eingesetzt werden.
Eine geringe Menge an Eisenionen erfordert längere Verweilszeiten und hohe Einsatzmengen von Katalysator und
Aktivator sowie ein hohes Katalysator/Aktivator-Verhältnis.

Bei einer kürzeren Verweilzeit muß mit hohen Mengen an Katalysator, Aktivator und Beschleuniger sowie einen

35

hohen Katalysator/Aktivator-Verhältnis gearbeitet werden.

Eine Verringerung der Monomerkonzentration führt allgemein zu Polymerisaten mit niedrigerem K-Wert.

Bei Verwendung von reinem Acrylnitril an Stelle einer Mischung aus Acrylnitril und Comonomer(en) fällt der K-Wert des daraus hergestellten Polymerisats ebenfalls.

10

Die Einhaltung des Bereiches der Monomerkonzentration von 12 bis 30 Gew.-%, bezogen auf die in der gleichen Zeit5 einheit zudosierte Gesamtmenge an Wasser und Monomeren, gewährleistet eine rationelle technische Fertigung. Bei einem Überschreiten der Grenze ist eine vernünftige Handhabung der immer zäher werdenden Reaktionsmischung nicht mehr mit Sicherheit gewährleistet, bei einem Unterschreiten der Grenze von 12 % vermindert sich die Raum-Zeit-Ausbeute so stark, daß eine technische Realisierung nicht mehr sinnvoll erscheint.

Die erfindungsgemäß hergestellten Polyacrylnitrile mit

25 K-Werten von 34 bis 15 zeichnen sich durch einen sehr hohen Gesamtgehalt an Sulfonat- und Sulfat-Endgruppen von 250 bis 1000 Milliäquivalent/kg Polymerisat bei Gehalten an Sulfonatendgruppen von 180 bis 900 Milliäquivalent/kg Polymerisat aus. Dieser Bereich entspricht einem Gesamt
30 gehalt an -SO₃Na und -OSO₃Na von ca. 2,5 bis über 10 Gew.-%. Hierbei ist darauf hinzuweisen, daß es sich bei diesen Angaben jeweils um Gehalte an Endgruppen handelt. Diese Werte werden also erreicht ohne den Zusatz von Comonomeren die bereits entsprechende Gruppen im Molekül enthalten.

Die bei den erfindungsgemäß durchgeführten Polymerisationen erhaltenen Suspensionen können durch Filtration oder Zentrifugieren getrennt werden und fallen damit als wasserhaltige Kuchen an. Es wurde beobachtet, daß die Polymerteilchengröße mit fallendem K-Wert stark abnimmt. 5 und Waschprobleme treten jedoch nicht auf, sofern statt Filterapparaten Zentrifugen eingesetzt werden. Im Gegensatz zu Polyacrylnitril mit hohem K-Wert sind die erfindungsgemäßen Produkte nicht nur in den aprotischen Lösungsmitteln wie z.B. Dimethylformamid löslich, sondern auch in Mischungen von z.B. Acetonitril mit Wasser. 10 %ige Polymerlösungen in Dimethylformamid gelieren erst nach Zusatz von ca. 25 % Wasser. Diese erstaunliche Abweichung gegenüber. den bekannten Acrylnitrilpolymeren wird bedingt durch den 15 hohen Gehalt an Sulfonat-und Sulfat-Endgruppen.

Aufgrund dieser Eigenschaften sind die erfindungsgemäßen. Produkte geeinget als Komponenten von Anstrichsystemen und Überzügen. Die Polymerisate sind bereits in der Form des wasserhaltigen Filterkuchens leicht zu geformten Körpern extrudierbar.

Unterwirft man die erfindungsgemäßen Polymerisate beispielsweise einer alkalischen Hydrolyse, so erhält man in
25 Abhängigkeit von Alkali/Polymerisat-Verhältnis sowie von
der Verseifungszeit Polyacrylate, die im Molekül jedoch noch
Reststickstoff in Form von schwer hydrolysierbaren Heterocyclen enthalten.

Diese Hydrolyseprodukte eignen sich als Emulgatoren, Dispergatoren und Hilfsmittel insbesondere als Ablagerungsverhinderer (scale inhibitors) bei Tiefbohrungen und bei der
Erdölförderung. Insbesondere bei den mit Erdöl anfallenden
Wassermengen werden häufig sehr stark salzhaltige Wässer
beobachtet, die große Mengen an zunächst noch gelösten
Calcium- und Magnesiumverbindungen enthalten. Dieser hohe

Gehalt an Calciumverbindungen führt jedoch leicht zu einem Verlegen bzw. Verstopfen der Förderrohrleitungen.

5

20

25

Die National Association of Corrosion Engineers (NACE) hat Testmethoden standardisiert, die eine Prüfung von Verbindungen gestatten, die in der Lage sein sollen, eine Abscheidung bzw. ein Ausfällen von Calciumcarbonat bzw. Calciumsulfat aus entsprechenden Lösungen oder Solen zu verhindern. In den nachfolgenden Beispielen wurde der NACE-Standard TM 03-74 als Testmethode angewandt. Dabei 10 ergab sich, daß bereits außerordentlich geringe Mengen von z.B. 0,5 bis 1 ppm einer ca. 15 %igen wäßrigen Lösung eines Hydrolyseprodukts der erfindungsgemäßen Polymerisate genügen, um eine Calciumsulfat-Abscheidung unter den gewählten Bedingungen vollständig zu verhindern. 15 Schwieriger gestaltet sich die Verhinderung von Ablagerung von Calciumcarbonat. Hier sind nach den durchgeführten Untersuchungen etwa 5 ppm der 15 %igen Hydrolysatlösung

erforderlich, um wenigstens 60 % des sonst ausfallenden

Calciumcarbonats in Lösung zu halten.

Natürlich ist es möglich, die erfindungsgemäßen Produkte auch einer sauren Hydrolyse zu unterwerfen. Unter diesen Umständen wird jedoch meist ein höherer Reststickstoffgehalt beobachtet als bei der alkalischen Verseifung, was vermutlich auf eine höhere Beständigkeit der bei der Hydrolyse entstandenen Acrylamidgruppen zurückzuführen ist. Werden beispielsweise Copolymerisate des Acrylnitrils mit Vinylacetat einer sauren Verseifung unterworfen, so kann 30 es zur Ausbildung von Fünfringlactonen oder aber kettenvernetzenden Reaktionen über Lactonbrücken kommen.

Zur weiteren Verdeutlichung der Erfindung sollen die nachfolgenden Beispiele dienen. Sofern nicht anders ange-35 geben, beziehen sich Teil- und Prozentangaben auf Gewichtseinheiten. Es wurden folgende Meß- bzw. Bestimmungsmethoden angewandt:

Die K-Werte der obigen Polymerisate wurden nach Bestimmung der η rel -Werte an Lösungen von 0,5g Polymerisat in 100 ml Dimethylformamid bei 20°C mit Hilfe von Ubbelohde-Viskosimetern mit hängendem Kugelniveau, nach den Formeln von Fikentscher, Cellulosechemie 13, (1932), 58ff berechnet. Die Ermittlung der Molekulargewichte M $_{\rm V}$ erfolgte nach den Formeln von Marzolph und Scholtan in "Makromolekulare Chemie 57, 52ff (1962)". Die Bestimmung der Grenzviskositätszahl $\sqrt{\eta}$ 7 erfolgte ebenfalls mit Hilfe von Ubbelohde-Viskosimetern an unterschiedlich konzentrierten Lösungen in Dimethylformamid bei 20°C.

Die Bestimmung der Gesamtmenge an stark sauren Gruppen (Sulfonat- und Sulfat-Gruppen) erfolgte mit Hilfe verschiedener Ionenaustauschersäulen. Dazu werden beispiels-15 weise 5 g des zu untersuchenden Polymerisats in 500 ml Dimethylformamid gelöst und über eine erste Ionenaustauschersäule mit 100 ml eines stark sauren Austauscherharzes((R) Levatit S 100 der Firma Bayer AG) gegeben. Das 20 erhaltene Eluat wird dann über einen zweiten Ionenaustauscher mit 100 ml Mischbettharz aus stark sauren und stark basischen Ionenaustauscherharzen (Levatit S 100/ (R) Duolite A 101D derFirma Diamond Shamrock) schließend nochmals über 100 ml eines stark sauren Ionenaustauschers gegeben. Durch die Verwendung des Mischbettaustauschers werden sämtliche nicht an dem Polymerisat gebundenen Salze aus der zu untersuchenden Lösung entfernt.

Der Gesamtgehalt an stark sauren Sulfonat- und Sulfat30 Endgruppen ergibt sich dann durch potentiometrische
nicht wäßrige Titration einer vorgegebenen Menge an
Eluat , das nach Passage durch die dritte Ionenaustauschersäule erhalten wird. Parallel dazu wird eine Trockengehaltsbestimmung von ca. 20 g Eluat durchgeführt, wobei
35 die entsprechende Probe in einem Vakuumtrockenschrank
bei Temperaturen zwischen 100 und 120°C getrocknet wird.

5

10

20

Zur Bestimmung der an das Polymerisat direkt gebundenen Sulfonatgruppen wird das zu untersuchende Polymerisat zunächst einer sauren wäßrigen Hydrolyse unterworfen. Dazu werden beispielsweise 15 g des Polymerisatpulvers mit 100 ml einer 0,2 %igen wäßrigen Oxalsäurelösung versetzt und 4 Stunden unter Rückfluß gekocht. Die Reaktionslösung wird anschließend filtriert, der Rückstand sorgfältig mit heißem destillierten Wasser säurefrei gewaschen, mit Alkohol nachbehandelt und bei 60°C getrocknet. Von dieser hydrolysierten gewaschenen und getrockneten Probe, die jetzt nur noch Sulfonatgruppen enthält, da

Probe, die jetzt nur noch Sulfonatgruppen enthält, da die Sulfatestergruppen abgespalten worden sind, wird wie vorher beschrieben, eine ca. 1 %ige Lösung in Dimethylformamid hergestellt und der Gehalt nach Passieren durch das Ionenaustauschersäulen-System und anschließende

potentiometrische Titration sowie getrennte Trockenwertbestimmung, analysiert.

Der Gehalt an Sulfatgruppen ergibt sich als Differenz aus dem Gesamtgehalt aus Sulfonat und Sulfatgruppen abzüglich dem getrennt bestimmten Gehalt an Sulfonatgruppen. Bei den durchgeführten Polymerisationen wurde stets destilliertes oder vollentsalztes Wasser eingesetzt.

In einem 5 1-Vierhalsglaskolben, der mit Doppelflügelrüher und Auslauf versehen war, wurden nach Verdrängung der Luft durch CO2, 2622 ml destilliertes Wasser, 264 mg $(NH_4)_2$ Fe $(SO_4)_2 \cdot 6$ H_2O , 8,2 ml einer 10 %igen H_2SO_4 , 12,2 g $^{\mathrm{K_2S_2O_8}}$ gelöst in 600 ml dest. $^{\mathrm{H_2O}}$ und 146,4 g $^{\mathrm{Na_2S_2O_5}}$ gelöst in 970 ml dest. H₂O vorgelegt. Die Mischung wurde auf 55°C aufgeheizt und mit Hilfe eines Thermostaten bei dieser Temperatur gehalten. Nach Erreichen der vorgegebenen Temperatur wurde mit der kontinuierlichen Dosierung der folgenden vier Dosierflüssigkeiten begonnen. Pro Stunde wurden dosiert

- 611 ml Monomermischung, bestehend aus 585 ml Acrylnitril und 26 ml Acrylsäuremethylester
- 2. 1166 ml dest. $\rm H_2O$, darin enthalten 93,4 mg $(\mathrm{NH_4})_2\mathrm{Fe}(\mathrm{SO_4})_2\cdot 6~\mathrm{H_2O}$ und 2,8 ml einer 10 %igen $\mathrm{H_2SO_4}$,
 - 3. 8,6 g $K_2S_2O_8$, gelöst in 160 ml dest. H_2O und
 - 4. 103,2 g $Na_2S_2O_5$ gelöst in 160 ml dest. H_2O .
- Aus dem Reaktionskolben wurden kontinuierlich 2100 ml Polymersuspension pro Stunde mit Hilfe einer Schlauchpumpe entnommen, wodurch das Reaktionsvolumen und die mittlere Verweilzeit der Reaktanten während der Polymerisation konstant gehalten wurden.

25

30

getrocknet.

Die Polymerisation sprang nach ca. 15 Minuten an, was durch eine Trübung der Lösung beobachtet werden konnte, das Polymerisationsgleichgewicht wurde innerhalb von 8 Stunden erreicht, wonach der K-Wert, die Polymerausbeute, die Teilchenform und die Polymereigenschaften konstant blieben. Der pH-Wert der Reaktionslösung wurde zu 2,87 gemessen. Die entnommene Polymersuspension wurde in einem zweiten Kolben mit Hilfe einer 5 %igen NaOH-Lösung neutralisiert, damit auch die Polymerisation abgestoppt, das 35 Polymerisat durch Filtration bzw. Zentrifugieren isoliert mit Wasser gewaschen und bei 40°C im Vakuumtrockenschrank Der K-Wert des erhaltenen Copolymerisats betrug 34, das Molgewicht M_V ca. 9000. Die Polymerausbeute betrug 80 %, die Raum-Zeit-Ausbeute 95 g Polymerisat/l h. Das Polymer enthielt 1,04 % Schwefel, 260 mÄq/kg stark saure Sulfonatund Sulfatgruppen davon 190 mÄq/kg Sulfonatgruppen.

Ein Abstoppen der Polymerisationsreaktion ist natürlich auch durch Zusatz anderer bekannter Verbindungen wie z.B. Hydrochinon möglich, insbesondere wenn auf eine Neutralisation der Reaktionslösung verzichtet werden soll.

Beispiel 2

Es wurde wie unter Beispiel 1 gearbeitet, jedoch in der Vorlage 292,8 g Na₂S₂O₅ gelöst in 970 ml dest. Wasser

- 15 eingesetzt. Die anderen Komponenten blieben unverändert. Die stündlichen Dosierungen betrugen:
 - 1. 611 ml Monomergemisch wie im Beispiel 1,
 - 2. 1006 ml dest. $\rm H_2O$, enthaltend 93,4 mg (NH₄) $_2\rm Fe(SO_4)_2\cdot 6~H_2O$ und 2,8 ml 10 %ige $\rm H_2SO_4$
- 20 3. 8,6 g $\mathrm{K_{2}S_{2}O_{8}}$ gelöst in 160 ml dest. $\mathrm{H_{2}O}$
 - 4. 206,4 g $\mathrm{Na_2S_2O_5}$ gelöst in 320 ml dest. $\mathrm{H_2O}$

Der pH-Wert der Reaktionsmischung im Gleichgewicht betrug 2,74.

Es wurde ein Copolymerisat mit dem K-Wert 31, einem Molgewicht M_V von ca. 7300 in einer Ausbeute von 66 % und einer Raum-Zeit-Ausbeute von 78 g Polymer/l h erhalten. Der Schwefelgehalt betrug 1,42 %, der Gehalt an Sulfonatund Sulfat-Endgruppen 367 mÄq/kg, der Sulfonat-Endgruppengehalt allein 265 mÄq/kg.

Beispiel 3

Es wurde wie im Beispiel 1 gearbeitet, jedoch mit veränderten Vorlagemengen und Dosierflüssigkeiten. Die Vorlage bestand aus 2622 ml dest. $\rm H_2O$, 264 mg($\rm NH_4$) $_2\rm Fe(SO_4)_2$.6 $\rm H_2O$, 8,2 ml einer 10 %igen $\rm H_2SO_4$, 15,2 g $\rm K_2S_2O_8$ gelöst in 600 ml $\rm H_2O$ und 364,8 g $\rm Na_2S_2O_5$ gelöst in 970 ml $\rm H_2O$. Es wurden stündlich dosiert:

1. 611 ml Monomergemisch wie in Beispiel 1

- 2. 526 ml $\rm H_2O$ mit 93,4 mg $\rm (NH_4)_2Fe(SO_4)_2\cdot 6$ $\rm H_2O$ und 2,8 ml 10 %iger $\rm H_2SO_4$
- 3. 10.8 g $K_2S_2O_8$ gelöst in 320 ml H_2O
- 4. $259.2 \text{ g Na}_2\text{S}_2\text{O}_5 \text{ gelöst in 640 ml}_{\text{H}_2}\text{O}$
- Im stationären Zustand wurde ein pH-Wert der Reaktionslösung von 2,73 gemessen. Das erhaltene Copolymerisat wies einen K-Wert von 28 und ein Molgewicht M_V von ca. 6300 auf, die Polymerausbeute betrug 54 %, die Raum-Zeit-Ausbeute 64 g Polymerisat/l h. Das Polymer enthielt 1,64 % Schwefel, 10 Gesamtgehalt an stark sauren Gruppen 424 mäg/kg davon 292 mäg/kg Sulfonatgruppen.

20

Das Beispiel 3 wurde wiederholt, wobei jedoch als Monomer nur Acrylnitril eingesetzt wurde. Die Vorlage entsprach dem Beispiel 3, die Zusammensetzung der Dosierflüssigkeiten und die Dosiermengen änderten sich nur geringfügig:

- 1. 614,4 ml Acrylnitril.
- 2. 522,7 ml ${\rm H_2O}$ mit 93,2 mg $({\rm NH_4})_2{\rm Fe}({\rm SO_4})_2 \cdot 6$ ${\rm H_2O}$ und 2,9 ml 10 %ige ${\rm H_2SO_4}$
- 3. $10.8 \text{ g K}_2\text{S}_2\text{O}_8 \text{ gelöst in 320 ml Wasser}$
- 4. 259,2 g $Na_2S_2O_5$ gelöst in 640 ml Wasser.

Im stationären Zustand wurde ein pH-Wert von 2,78 in der Reaktionsmischung gemessen. Das erhaltene Homopomyerisat wies einen K-Wert von 23 auf, das Molgewicht M_V betrug ca. 5000. Es wurde eine Polymerausbeute von 58 % und eine Raum-Zeit-Ausbeute von 68 g/l h gefunden. Der Schwefelgehalt im Polyacrylnitril betrug 2,19 %, der Gesamtge-

30 halt an Sulfonat und Sulfatgruppen 563 mäg/kg, davon waren 451 mäg/kg Sulfonatgruppen.

Beispiel 5

Die Vorlage wurde wie unter Beispiel 3 angegeben eingesetzt, dosiert wurden die folgenden Flüssigkeitsmengen:

- 35 1. 520,8 ml Acrylnitril
 - 2. 619,2 ml Wasser mit 99,0 mg $(NH_4)_2$ Fe $(SO_4)_2$ ·6 H_2 O und 3,1 ml 10 %iger H_2 SO $_4$
 - 3. 10,8 g $K_2S_2O_8$ gelöst in 320 ml Wasser
 - 4. 259,2 g Na₂S₂O₅ gelöst in 640 ml Wasser

Der pH-Wert der Reaktionslösung im stationären Zustand betrug 2,75. Es wurde ein Homopolymerisat mit einem K-Wert von 19,5, mit einem Molgewicht M_V von ca. 4000 erhalten. Die Polymerausbeute betrug 50 %, die Raum-Zeit-Ausbeute 50 g Polymer/l h. Der Schwefelgehalt des Polymerisats wurde zu 2,61 % bestimmt.

Beispiel 6

Beispiel 5 wurde wiederholt mit vermindertem Monomerein10 satz. Die Vorlage blieb unverändert, dosiert wurden pro
Stunde:

- 1. 449,5 ml Acrylnitril
- 2. 687,4 ml Wasser mit 103,5 mg $(NH_4)_2$ Fe $(SO_4)_2 \cdot 6$ H_2 O und 3,1 ml 10 %ige H_2SO_4
- 15 3. 10,8 g $K_2S_2O_8$ gelöst in 320 ml Wasser
 - 4. $259.2 \text{ g Na}_2\text{S}_2\text{O}_5 \text{ gelöst in 640 ml Wasser}$

Der pH-Wert der Reaktionsmischung betrug im stationären Zustand 2,75. Das erhaltene Homopolymerisat wies einen K-Wert von 18 und ein Molekulargewicht $\rm M_{_{\rm U}}$ von ca. 3500

20 auf. Die Polymerausbeute betrug ca. 56 %, die Raum-Zeit-Ausbeute 48 g/l h, der Schwefelgehalt 2,90 %.

Beispiel 7

Die gewählte Vorlage entsprach der des Beispiels 3, dosiert
 wurden:

- 1. 303,9 ml Acrylnitril
- 2. 832,6 ml Wasser mit 112,6 mg $(NH_4)_2$ Fe $(SO_4)_2$ ·6 H_2O und 3,5 ml einer 10 %igen H_2SO_4
- 3. $10.8 \text{ g } \text{K}_2\text{S}_2\text{O}_8 \text{ gelöst in 320 ml Wasser}$
- 30 4. $259.2 \text{ g Na}_2\text{S}_2\text{O}_5$ gelöst in 640 ml Wasser.

Der pH-Wert im stationären Zustand betrug 2,63. Das erhaltene Homopolymerisat wies einen K-Wert von 15,5 und ein Molgewicht $\rm M_{V}$ von ca. 2700 auf. Der Schwefelgehalt betrug 4,56 %, die Gesamtmenge an stark sauren Gruppen

35 986 mAq/kg davon 871 mAq Sulfonatgruppen/kg. Die Polmerausbeute betrug etwa 42 %, die Raum-Zeit-Ausbeute 24,5 g/lh.

Es wurde wie bei den vorhergehenden Beispielen mit der Vorrichtung gemäß Beispiel 1 gearbeitet. Als Vorlage dienten 2022 ml Wasser mit 2640 mg(NH₄)₂Fe(SO₄)₂·6 H₂O, 8,2 ml

- 5 einer 10 %igen H₂SO₄, 18,3 g K₂S₂O₈ gelöst in 600 ml Wasser und 549,0 g Na₂S₂O₅ gelöst in 1570 ml Wasser. Pro Stunde wurden die folgenden Mengen zudosiert:
 - 1. 303,9 ml Acrylnitril
 - 2. 672,6 ml Wasser mit 1126 mg $(NH_4)_2$ Fe $(SO_4)_2 \cdot 6$ H_2O und 3,5 ml einer 10 %igen H_2SO_4
 - 3. $12.9 \cdot g \times_2 S_2 O_8$ gelöst in 320 ml Wasser
 - 4. $387.0 \text{ g Na}_2\text{S}_2\text{O}_5$ gelöst in 800 ml Wasser

Der pH-Wert der Reaktionslösung im stationären Zustand betrug 2,72, das erhaltene Homopolymerisat wies einen

15 K-Wert von 16, ein Molgewicht von ca. 3000 und einen Schwefelgehalt von 5,8 % auf.

Beispiel 9

Es wurde wiederum die Vorrichtung gemäß Beispiel 1 be- 20 nutzt. Als Vorlage dienten 2022 ml Wasser mit 2640 mg $(NH_4)_2$ Fe $(SO_4)_2$ 6 H_2 O, 8,2 ml einer 10 %igen H_2 SO $_4$, 45,8 g K_2 S $_2$ O $_8$ gelöst in 1200 ml Wasser und 126 g Na_2 S $_2$ O $_5$ gelöst in 970 ml Wasser. Pro Stunde wurden dosiert:

- 1. 303,9 ml Acrylnitril
- 25 2. 472,4 ml dest. Wasser mit 1126 mg $(NH_4)_2$ Fe $(SO_4)_2 \cdot 6$ H_2O und 3,5 ml einer 10 %igen H_2SO_4
 - 3. $39.2 \text{ g K}_2\text{S}_2\text{O}_8 \text{ gelöst in } 1000 \text{ ml Wasser}$
 - 4. $107.8 \text{ g Na}_2\text{S}_2\text{O}_5$ gelöst in 320 ml Wasser.

Die Reaktionsmischung zeigte im stationären Zustand einen 30 pH-Wert von 1,75, das erhaltene Polymerisat einen K-Wert von 19, ein Molgewicht $M_{_{\mbox{\scriptsize V}}}$ von ca. 3700 und einen Schwefelgehalt von 2,86 %.

In den nachfolgenden Beispielen 10 bis 13 wird der Einfluß 35 von Veränderungen bei den einzelnen Parameten deutlich gemacht.

5

10

Das Beispiel 1 wurde wiederholt, wobei jedoch nur noch eine Menge von 34,4 g Na2^S2^O5 pro Stunde zudosiert wurde. Durch diese Veränderung wurde das Gewichtsverhältnis Katalysator zu Aktivator von 1:12 auf 1:4 verringert. Auch bei der Vorlage wurde nur noch ein Drittel der $\mathrm{Na_2S_2O_5}$ -Menge (48.7 g) eingesetzt. Unter diesen Bedingungen stellte sich ein stationärer Zustand ein, bei dem die Reaktionsmischung einen pH-Wert von 2,53 zeigte. Das erhaltene Polymerisat wies jedoch nicht mehr

Beispiel 11

Der Ansatz des Beispiels 3 wurde wiederholt, wobei jedoch durch Verdoppelung der pro Stunde abgezogenen Reaktions-15 mischung von 2100 ml auf 4200 ml und eine entsprechende Steigerung der zudosierten Mengenauf das Doppelte die Verweilzeit des Beispiels 3 von 2 Stunden bei diesem Beispiel 11 auf 1 Stunde reduziert wurde. Im einzelnen wurden pro Stunde die folgenden Mengen dosiert:

1222 ml Monomergemisch 20 1.

einen K-Wert von 34, sondern von 44 auf.

- 1052 ml Wasser mit 186,8 mg $(NH_4)_2$ Fe $(SO_4)_2$ ·6 H_2O und 5,6 ml 10 $^{\rm giger}_{\rm H_2}^{\rm SO}_{\rm 4}$
- 3. 21,6 g $K_2S_2O_8$ gelöst in 640 ml Wasser
- 518,4 g $Na_2S_2O_5$ gelöst in 1280 ml Wasser
- Im stationären Zustand zeigte die Reaktionsmischung einen pH-Wert von 2,75. Unter diesen Umständen wurde ein Copolymerisat erzeugt, das nicht mehr einen K-Wert von 28, sondern einen von 31 aufwies.

30 Beispiel 12

Das Beispiel 11 wurde wiederholt, wobei jedoch die Menge an zudosiertem Mohr'schen Salz von 186,8 mg auf 18,7 mg pro Stunde reduziert wurde. Entsprechend wurde in der Vorlage die Menge dieser Substanz auf 26.4 mg verringert. Unter diesen Bedingungen 35 wurde ein Copolymerisat erhalten, das einen K-Wert von 45

zeigte, also außerhalb des beanspruchten Bereiches lag.

5

10

Es wurde das Beispiel 4 wiederholt, wobei jedoch die Menge an Katalysator und Aktivator vermindert wurde, das Verhältnis von Katalysator zu Aktivator jedoch unverändert 1:24 blieb. Beim Beispiel 13 wurden stündlich nur 8,6 g K₂S₂O₈ und 206,4 g Na₂S₂O₅ zugegeben. Auch der Gehalt an Katalysator und Aktivator in der Vorlage wurde entsprechend reduziert auf 12.2 g K₂S₂O₈ und 292,3 g Na₂S₂O₅. Der pH-Wert der Iösung im stationären Zustand wurde zu 2,86 gemessen. Das erhaltene Polymerisat wies jedoch einen K-Wert von 27 und nicht mehr 23, wie im Beispiel 4, auf.

Beispiel 14

In einem 4 1-Dreihalskolben mit Rührer und Rückflußkühler wurden in 2490 ml Wasser 192 g NaOH-Plätzchen aufgelöst.

- Die 7,16 %ige Natronlauge wurde zum Sieden erhitzt und anschließend innerhalb von 15 Minuten in drei Portionen insgesamt 318 g des Copolymerisates aus Acrylnitril-Acrylsäuremethylester mit dem K-Wert 34 zugegeben, das gemäß Beispiel 1 erhalten wurde. Zu Beginn der heftigen
- Reaktion, die unter Ammoniakentwicklung abläuft, verfärbt sich die Suspension tiefrot. Bei weiterem Erhitzen entsteht dann eine homogene gelbe Lösung. Die Verseifung wurde nach 6 Stunden beendet. Die Hydrolysatlösung zeigte folgende Eigenschaften:
- 25 Feststoffgehalt 19,2 %
 Reststickstoff 0,9 %
 acidimetrisch bestimmbare Carboxylgruppen 5,5 %
 - Die Hydrolyse wurde wiederholt, nur wurde das Molverhältnis von Nitrilgruppen zu NaOH von 1:0,8 auf 1:1,2 angehoben. Der höhere Alkaligehalt führte zu einer heftigeren Reaktion. Die erhaltene Hydrolyselösung zeigte folgende Werte:
- 35 Festoffgehalt 22,9 %
 Gehalt an Reststickstoff 0,5 %
 Gehalt an COOH-Gruppen 6,9 %.

In einem 1 1-Dreihalskolben wurden in 392 ml Wasser 30,2 g
NaOH gelöst, zum Sieden erhitzt und portionsweise 157,6 g
eines feuchten Acrylnitril-Homopolymerisates aus dem

Beispiel 7 zugegeben. Das feuchte Polymerisat war mit einem
Feststoffgehalt von 32 % als Zentrifugenrückstand angefallen und wies einen K-Wert von 15 auf. Das Material
wurde wiederum 6 Stunden lang kochend unter Rückflußverseift, das Nitrilgruppen:NaOH-Molverhältnis betrug

10 1:0,8.

Beispiel 16

Das Verseifungsprodukt . nach Beispiel 14 wurde für den Einsatz als Ablagerungsverhinderer (scale inhibitor) nach der Labortestmethode NACE-Standard TM/03/74 geprüft. Hierbei wird der Anteil des in der Lösung vorhandenen CaSO₄ bzw. CaCO₃ bei der Zugabe von Inhibitoren gegenüber einer Blindprobe bestimmt.

- CasO₄-Test: Benötigt werden zwei Lösungen, die Lösung A)
 mit 7,5 g/l NaCl und 11,1 g/l CaCl₂·2H₂O sowie eine Lösung
 B) mit 7,5 g/l NaCl und 10,66 g/l Na₂SO₄. Jeweils 50 ml
 der Lösung A) und B) werden in einer Flasche vermischt
 und nach Zugabe einer vorgegebenen Menge an Verseifungsprodukt fest verschlossen, durchgeschüttelt und bei 71°C
 72 Stunden lang temperiert. Anschließend wurde sehr vorsichtig 1 ml der über dem CasO₄-Niederschlag stehenden
 klaren, kristallfreien Lösung entnommen, in einem Kolben
 verdünnt und der Cehalt an vorhandenen Calciumionen in
 der entnommenen Probe komplexometrisch bestimmt.
- Oie Lösung A) enthält 12,15 g/l CaCl₂·2H₂O und 3,68 g/l MgCl₂·6 H₂O und33 g/l NaCl während die Lösung B) 7,36 g NaHCO₃ und 0,0294 g/l Na₂SO₄ und 33 g/l NaCl enthält.

 Beide Lösungen werden zunächst mit CO₂ gesättigt und dann jeweils 50 ml der beiden Lösungen miteinander vermischt, mit gemessenen Mengen an Verseifungsprodukt versetzt und weiter wie bei dem CaSO₄-Test behandelt.

Die Ergebnisse des CaSO₄-Tests und des CaCO₃-Tests bei Zusatz von Hydrolyselösungen, die gemäß Beispiel 14 erhalten wurden, wobei noch eine weitergehende Variation des Nitrilgruppen-NaOH-Molverhältnisses vorgenommen wurde,

- sind in den Tabellen 1 und 2 festgehalten. In den Tabellen ist neben dem genannten Molverhältnis der Gehalt an Calciumionen in mg/l in der überstehenden Lösung nach Zugabe einer entsprechenden Menge an Hydrolysatlösung wiedergegeben. Die Hydrolysatlösungen können etwa als 15 %ig angesehen werden.
- 10 Die Schwankungen der Meßwerte sind aller Wahrscheinlichkeit nach auf mitgerissene kleinste Calciumsulfat- oder Calciumcarbonatkriställchen bei der Probenahme zurückzuführen.

15 Beispiel 17:

Das Beispiel 16 wurde wiederholt, jedoch jetzt unter Zusatz einer Hydrolyselösung gemäß Beispiel 15. Auch hier wurden noch verschiedene Läufe untersucht, die bei einem unterschiedlichen Molverhältnis von Nitrilgruppen zu NaOH bei

- 20 der Verseifung anfielen. Die Ergebnisse sind in den Tabellen 3 und 4 festgehalten worden. Wie bei dem vorhergehenden Beispiel wurde wiederum eine Wirksamkeit bei dem CaSO₄-Test bis herunter zu 0,5 ppm einer ca. 15 %igen Hydrolysatlösung gefunden. Ein Einfluß des Molverhältnis
- 25 von Nitrilgruppen zu NaOH bei der Verseifung scheint beim CaSO₄-Test keine Rolle zu spielen. Im Gegensatz dazu ist aus der Tabelle 4, dem CaCO₃-Test, zu entnehmen, daß ein höheres Nitrilgruppen/NaOH-Verhältnis zu einem wirksameren Produkt führt.

TABLILE 1 CaSO₄-Test:

Lauf	Molverhält. Nitrilgr./ NaOH	Genalt an (O (Blindprobe)	n Ca ⁺⁺ -Ion 20 be)	10m rt re/1	nach Zuc 5	jabe einer 3	ca. 15 %1	igen Aydro. 0.5	Genalt an Ca ⁺⁺ -Ionen in mg/l nach Zugabe einer ca. 15 %igen Hydrolysatlösung in ppm O 20 10 5 3 1 0.5 0.1 (Blindprobe)	
 ძ	1:0.8	3620	5400	2090	5360	5260	5770	5200	3590	
. م	1:-	3600	4980	5140	5390	5170	5270	2090	3940	
ŭ	1: 1.2	3620	5100	5390	5280	5230	5200	4680	3540	
ರ	1:1.5	. 3670	5100	5170	5050	5180	5250	5220	3580	
		Maximal 1	konnten 5535 mg $Ca^{++}/1$ enthalten sein	35 mg Ca ⁺⁺	/l enthal	ten sein				

TABELLE 2 CaCO₃-Test:

Lauf	Molverhält. Nitrilgr./ NaOH	Gehalt an C O (Blindprobe)	Ca ⁺⁺ -Ionen 20 e)	in mg/l 10	nach Zu 5	igabe einer 3	an Ca ⁺⁺ -Ionen in mg/l nach Zugabe einer ta. 15 %igen Hydrolysatlösung in ppm 20 10 5 3 1 cobe)	mdd ui buns
ಹ	1:0.8	3100	3730	3740	3690	3640	3450	
q		3160	3900	4040	4100	4070	3500	
Ü	1: 1.2	3200	4100	4190	4230	4190	3750	
で	1: 1.5	3160	4340	4120	4300	3940	3360	
		Maximal k	konnten 5000 mg $Ca^{++}/1$ enthalten sein.	mg Ca ⁺⁺ /	'l entha	ulten sein.		

-Test	
CaSO)
EÍ ω	
LABELLE	

Molverhält. Nitrilgr./ NaOii		n Ca ⁺⁺ -Ione 20 e)	m in mg/l 10	nach Zuge 5	abe einer 3	cau 15	tigen Hydro	Gehalt an Ca ⁺⁺ -Ionen in mg/l nach Zugabe einer cau 15 %igen Hydrolysatlösung in ppm O 20 10 5 3 1 0,5 0,1 (Blindprobe)
: 0.8	. 3520	5100	2090	5100	5100	5030	5030	3630
l : 1.5	3520	5170	5220	5360	5280	5150	5130	4980
: 2:0	3590	5100	4980	5250	5080	5110	2060	3760
	Maximal konnten 5140 mg $Ca^{++}/1$ vorhanden sein	nten 5140 m	g Ca ⁺⁺ /1 v	orhanden	sein			

NBELLE 4 CaCO, -Test:

Lauf	Molverhält. Nitrilgr./ NaOH	Gehalt an O (Blindprobe)	n Ca' –Ione 20 e)	n in mg/l 10	nach Zu 5	gabe einer 3	ca. 15 %igen	Ca -Ionen in mg/l nach Zugabe einer ca. 15 %igen Tydrolysatlösung in ppm 20 10 5 3 1)
Φ	1:0.8	3080	3340	3560	3290	3320 .	3200	
41	.1:1.5	3080	3950	4230	4020	3640	3480	
מ	1:2.0	3200	4100	4230	3900	4040	3720	•
	7	Maximal kom	Maximal konnten 5000 mg $Ca^{++}/1$ gefunden werden.	y Ca ⁺⁺ /1 g	pefunden	werden.		

PATENTANSPRÜCHE:

10

HOE 83/F 157

- 1. Homo- oder Copolymerisat des Acrylnitrils aus wenigstens 60 Gew.-% Acrylnitrileinheiten und bis zu 40 Gew.-% aus mit Acrylnitril copolymerisierbaren Einheiten, dadurch gekennzeichnet, daß diese Polymerisate einen K-Wert nach Fikentscher von 34 bis 15 und einen Gesamtgehalt an Sulfonat- und Sulfat-Endgruppen, die nicht aus Sulfonat- oder Sulfat-gruppenhaltigen Comonomeren herrühren, von 250 bis 1000 Milliäquivalent pro kg Polymerisat bei einem Gehalt an Sulfonatendgruppen von 180 bis 900 Milliäquivalent pro kg Polymerisat aufweisen.
- Verfahren zur Herstellung von niedermolekularen Homo-2. oder Copolymerisaten des Acrylnitrils aus mindestens 60 Gew.-% Acrylnitrileinheiten und bis zu 40 Gew.-% 15 aus mit Acrylnitril copolymerisierbaren Einheiten durch kontinuierliche oder halbkontinuierliche Fällungspolymerisation mittels eines Redoxsystems in wäßrigem Medium bei pH-Werten von 1,5 bis 4,0, dadurch gekennzeichnet, daß die Polymerisation bei einer Mono-20 merkonzentration von 12 bis 30 Gew.-%, bezogen auf die in der gleichen Zeiteinheit zudosierten Menge an Wasser und Monomeren durchgeführ wird, das Redoxsystem aus einem Persulfat-Katalysator in Konzentrationen von 0,5 bis 2,5 Gew.-%, gerechnet als 25 S₂O₈²⁻, einem Sulfit-Aktivator in Konzentrationen von 5 bis 25 Gew.-%, gerechnet als S₂O₅²⁻, und Eisenionen als Beschleuniger in Konzentrationen von 6×10^{-4} bis 2×10^{-2} Gew.-%, bezogen jeweils auf die in der gleichen Zeiteinheit zudosierten Menge an Wasser, be-30 steht und das Gewichtsverhältnis Persulfat-Katalysator zu Pyrosulfit-Aktivator von 1:2 bis 1:30 eingestellt wird, die mittlere Verweilsdauer der Monomeren in der Reaktionsmischung 1 bis 4 Stunden beträgt und die Werte der Konzentrationen von Monomeren, Katalysator, Ak-35

5

tivator, Beschleuniger sowie das Katalysator/Aktivator-Verhältnis und die Verweilzeit so aufeinander abgestimmt werden, daß die erhaltenen Polymerisate einen K-Wert nach Fikentscher von 34 bis 15 aufweisen.

- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Polymerisation bei Temperaturen von 30 bis 65°C durchgeführt wird.
- 10 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die mittlere Verweilzeit der Monomeren in der Reaktionsmischung während der Polymerisation 1,5 bis 2,5 Stunden beträgt.
 - 15 5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Katalysator Kaliumpersulfat, als Aktivator Natriumpyrosulfit und als Beschleuniger Mohrsches Salz verwendet wird.
 - 20 6. Verwendung der Polymerisate gemäß Anspruch 1 nach einer Hydrolyse als Emulgatoren, Dispergatoren bzw. Hilfsmittel insbesondere als Ablagerungsverhinderer (scale inhibitor) bei Tiefbohrungen und bei der Erdölförderung.

Patentansprüche für Österreich:

- 1. Verfahren zur Herstellung von niedermolekularen Homooder Copolymerisaten des Acrylnitrils aus mindestens 60 Gew.-% Acrylnitrileinheiten und bis zu 40 Gew.-% aus mit Acrylnitril copolymerisierbaren Einheiten durch kontinuierliche oder halbkontinuierliche Fällungspolymerisation mittels eines Redoxsystems in wäßrigem Medium bei pH-Werten von 1,5 bis 4,0, dadurch gekennzeichnet, daß die Polymerisation bei einer Monomerkonzentration von 12 bis 30 Gew.-%, bezogen auf die in der gleichen Zeiteinheit zudosierten Menge an Wasser und Monomeren durchgeführt wird, das Redoxsystem aus einem Persulfat-Katalysator in Konzentrationen von 0,5 bis 2,5 Gew.-%, gerechnet als S₂O₂²⁻, einem Sulfit-Aktivator in Konzentrationen von 5 bis 25 Gew.-%, gerechnet als S₂O₅²⁻, und Eisenionen als Beschleuniger in Konzentrationen von 6 x 10⁻⁴ bis 2×10^{-2} Gew.-%, bezogen jeweils auf die in der gleichen Zeiteinheit zudosierten Menge an Wasser, besteht und das Gewichtsverhältnis Persulfat-Katalysator zu Pyrosulfit-Aktivator von 1:2 bis 1:30 eingestellt wird, die mittlere Verweilsdauer der Monomeren in der Reaktionsmischung 1 bis 4 Stunden beträgt und die Werte der Konzentrationen von Monomeren, Katalysator, Aktivator, Beschleuniger sowie das Katalysator/Aktivator-Verhältnis und die Verweilzeit so aufeinander abgestimmt werden, daß die erhaltenen Polymerisate einen K-Wert nach Fikentscher von 34 bis 15 aufweisen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Polymerisation bei Temperaturen von 30 bis 65°C durchgeführt wird.

Bozarrecch

- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die mittlere Verweilzeit der Monomeren in der Reaktionsmischung während der Polymerisation 1,5 bis 2,5 Stunden beträgt.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Katalysator Kaliumpersulfat, als Aktivator Natriumpyrosulfit und als Beschleuniger Mohrsches Salz verwendet wird.
- 5. Verwendung der nach einem der vorgehenden Ansprüche erhaltenen Polymerisate nach einer Hydrolyse als Emulgatoren, Dispergatoren bzw. Hilfsmittel insbesondere als Ablagerungsverhinderer (scale inhibitor) bei Tiefbohrungen und bei der Erdölförderung.

EUROPÄISCHER RECHERCHENBERICHT

O Aurone Ser Angeldung

EP 84 10 9153

	LINOUILA	GIGE DOKUMEN			
(ategorie	· Kennzeichnung des Dokume der maß	nts mit Angabe, soweit erf geblichen Teile	orderlich,	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
D,A	FR-A-2 225 449	(BAYER)			C 08 F 20/44
A	FR-A-1 061 952 CYANAMID CO.)	- (AMERICAN			
A	US-A-3 255 158	(H.I. ANTHES	5)		
À	US-A-2 974 123	(C.C. KETTER	RER)		
					RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
					C 08 F
		•			
				·	•
De	r vorliegende Recherchenbericht wur	de für alle Patentansprüch	e erstellt.		
	Receivement AG	Abschlußdatin de	r Besherche	. CAUWE	NBERGEC.L.M.
X : vo Y : vo ai	ATEGORIE DER GENANNTEN Der Deschaften Des Deschaften Bedeutung allein ben besonderer Bedeutung in Verbinderen Veröffentlichung derselbeschnologischer Hintergrund ichtschriftliche Offenbarung wischenliteratur	petrachtet	nach de D: in der A L: aus and	m Anmeldeda nmeldung ang ern Gründen	ent, das jedoch erst am oder tumveröffentlicht worden ist geführtes Dokument angeführtes Dokument Patentfamilie, überein-