Discrete Random Processes (EDRP)

Lecture 9

L09 1 / 1!

Branching processes - cont'd

L09

Branching processes - a quick review

i-th individual in a population produces a random number X_i
of children according to the offspring distribution

$$\mathbf{a} = (a_0, a_1, \ldots).$$

- assumption: X_1, X_2, \ldots an i.i.d. sequence (with common distribution **a**)
- Z_n the size of the *n*-th generation (assumption: $Z_0 = 1$)
- a branching process the sequence $(Z_n)_{n\in\mathbb{N}_0}$
- $\bullet \ Z_n = \sum_{i=1}^{Z_{n-1}} X_i$

109

Review - cont'd

• μ - the mean of the offspring distribution (=the average number of children produced by any individual),

$$\mu = \sum_{k} k a_k$$

- the mean size of the *n*th generation is $\mathbb{E} Z_n = \mu^n$, $n \in \mathbb{N}_0$
- $(Z_n)_n$ is
 - subcritical if $\mu < 1$,
 - critical if $\mu = 1$,
 - and supercritical if $\mu > 1$,
- if subcritical, then $\lim_n \mathbb{E} Z_n = 0$; if critical, then $\lim_n \mathbb{E} Z_n = 1$; if supercritical, then $\lim_n \mathbb{E} Z_n = +\infty$

L09 4 / 1

A review - cont'd

• *G* - the probability generating function of the offspring distribution:

$$G(s) = \sum_{k} a_k s^k$$

 the probability of extinction is the smallest positive root of the equation

$$s = G(s)$$

- if subcritical or critical, the branching process goes extinct with probability 1
- if supercritical, there is a positive probability of eventual extinction

L09 5 / 1

A review - cont'd

• G_n - the probability generating function of the *n*th generation size Z_n :

$$G_n(s) = \mathbb{E}\left(s^{Z_n}\right) = \sum_{k=0}^{\infty} s^k \mathbb{P}(Z_n = k)$$

• the pgf od Z_n is the n-fold composition of the offspring generating function

$$G_n(s) = \underbrace{G(\dots G(G(s))\dots)}_{n-\text{fold}}$$

_09 6 / 18

Example 1

Let $\mathbf{a} = (1/2, 0, 1/2, 0, \ldots)$. What is the probability that the number of individuals born in the third generation is 0?

L09 7 / 1

Time of extinction

Let

$$T=\min\{n:Z_n=0\}$$

be the **time of extinction** for a branching process $(Z_n)_{n\in\mathbb{N}_0}$.

Theorem 1

For $n \ge 1$

$$\mathbb{P}(T = n) = G_n(0) - G_{n-1}(0).$$

Example 2

Assume that $\mathbf{a} = (1/2, 1/2, 0, ...)$. Find the distribution of the time of extinction. What is the average time of extinction?

L09 8 / 1!

Progeny

Let

$$T_n = Z_0 + Z_1 + \ldots + Z_n = 1 + Z_1 + \ldots + Z_n$$

be the **progeny** up to time n, that is the total number of individuals up through generation n.

Let

$$\phi_n(s) = \mathbb{E}\left(s^{T_n}\right)$$

be the pgf of T_n . For example,

$$\phi_0(s) = \mathbb{E}\left(s^{T_0}\right) = \mathbb{E}\left(s^{Z_0}\right) = \mathbb{E}\left(s^1\right) = s,$$

and

$$\phi_1(s) = \mathbb{E}\left(s^{T_1}\right) = \mathbb{E}\left(s^{Z_0 + Z_1}\right) = \mathbb{E}\left(s^{1 + Z_1}\right) = \mathbb{E}\left(s \cdot s^{Z_1}\right) = s\mathbb{E}\left(s^{Z_1}\right) = sG(s) = sG\left(\phi_0(s)\right).$$

09

Progeny - cont'd

It can be shown that ϕ_n satisfies the recurrence relation

$$\phi_n(s) = sG(\phi_{n-1}(s))$$
 for $n = 1, 2, ...$

This can be used to find the distribution of T_n .

Example 3

Consider a branching process whose offspring distribution has $a_0 = a_1 = 1/2$. Find the distribution of the total number of individuals up through generation n.

L09 10 / 15

Total progeny

Since

$$T_n = Z_0 + Z_1 + \ldots + Z_n = 1 + Z_1 + \ldots + Z_n$$

is the total number of individuals up through generation n,

$$\lim_{n\to\infty} T_n =: T$$

is the total progeny of the branching process.

It is fairly easy to compute the mean total progeny:

Theorem 2

The expectation of total progeny of $(Z_n)_n$ is

$$\mathbb{E}T = \begin{cases} +\infty, & \mu \ge 1, \\ \frac{1}{1-\mu}, & \mu < 1. \end{cases}$$

L09 11 / 1

Distribution of the total progeny

Theorem 3

The pgf

$$\phi(s) = \mathbb{E}\left(s^{T}\right)$$

of the total progeny T satisfies equation

$$\phi(s) = sG(\phi(s)).$$

One consequence of this is something we have already observed: in the subcritical case,

$$\mathbb{E}T = \frac{1}{1-\mu}.$$

L09 12 / I

Distribution of the total progeny - cont'd

In some cases, equation $\phi(s) = sG(\phi(s))$ can be used to find the distribution of the total progeny.

Example 4

Consider a branching process $(Z_n)_n$, whose offspring distribution has $a_0 = a_1 = 1/2$. Find the distribution of the total progeny of $(Z_n)_n$.

L09 13 / 1

Branching processes with immigration

In a **branching process with immigration** with the offspring distribution \mathbf{a} , a random number of immigrants W_n is independently added to the population at the n-th generation for $n=1,2,\ldots$ We assume that the immigrants reproduce according to the same offspring distribution \mathbf{a} , independently of all other individuals.

Theorem 4

Let H_n be be the probability generating function of W_n . Then the pgf G_n of the size of the n-th generation satisfies the recursive equation

$$G_n(s) = G_{n-1}(G(s)) \cdot H_n(s), \ n = 1, 2, 3, \dots$$

L09 14 / 15

Branching processes with immigration - cont'd

Example 5

Consider a branching process $(Z_n)_n$ with immigration, whose offspring distribution has $a_0 = a_1 = 1/2$. Assume that at each generation, one immigrant individual is added to the population. Find the distribution of the number of individuals appearing in the second generation.

L09 15 / 1