Equilibrio de fases

Queremos determinar la solubilidad de un gas (2) en un solvente líquido. El punto de partida,

$$\mu_1^L = \mu_1^V$$

$$\mu_2^L = \mu_2^V$$

Para el solvente podemos utilizar fácilmente

$$x_1 \gamma_1 f_1^{0,L} = y_1 \hat{\phi}_1^V P$$

Para el soluto puede ser conveniente usar otra forma,

$$x_2 \gamma_2^* H_{2,1} = y_2 \hat{\phi}_2^V P$$

El coeficiente de actividad, γ_2^\star es el coeficiente de actividad según la escala de Henry.

El coeficiente de actividad

El coeficiente de actividad debe cumplir con

$$\lim_{x_2 \to 0} \gamma_2^{\star} = 1$$

Notar que esto es diferente del criterio de Raoult,

$$\lim_{x_1 \to 1} \gamma_1 = 1$$

¿Necesitamos nuevos modelos de actividad para la escala de Henry?

La constante de Henry

La constante de Henry se define mediante

$$\lim_{x_k \to 0} \frac{\hat{f}_k}{x_k} = H_{k,j}$$

Notemos que, dado que $\hat{f}_k = x_k \gamma_k f_k^0$,

$$H_{k,j} = \gamma_k^{\infty} f_k^0$$

Para que la fugacidad sea la misma, debe cumplirse que,

$$x_2 \gamma_2^{\star} H_{2,1} = \hat{f}_2 = x_2 \gamma_2 f_2^0$$

para todo x_2 . Luego,

$$\frac{\gamma_2}{\gamma_2^{\infty}} = \gamma_2^{\star}$$

Usando una EOS,

$$H_{k,j} = \hat{\phi}_j^{L,\infty} P$$

Dependencia de la constante de Henry con la presión

A partir de la definición de la constante de Henry, podemos probar que

$$\left(\frac{\partial \ln(H_{2,1})}{\partial P}\right)_{T,n_k} = \frac{\bar{v}_2^{\infty}}{RT}$$

Si integramos desde un valor conocido de presión,

$$H_{2,1}(P) = H_{2,1}(P_r) \exp\left(\frac{\bar{v}_2^{\infty}(P - P_r)}{RT}\right)$$

La forma general de la ecuación de equilibrio,

$$x_2 \gamma_2^{\star} H_{2,1}(P_r) \exp\left(\frac{\bar{v}_2^{\infty} (P - P_r)}{RT}\right) = y_2 \hat{\phi}_2^V P$$

Efecto de la temperatura

La dependencia de la constante de Henry con la temperatura se puede obtener a partir de la ecuación de Benson y Krause,

$$\ln\left(\frac{H_{2,1}}{P^0}\right) = \alpha\left(1 - \frac{T_2}{T}\right) + \beta\left(1 - \frac{T_2}{T}\right)^2$$

En general, la solubilidad de los gases disminuye con la temperatura. Sin embargo, algunos gases presentan solubilidad creciente (por ejemplo, hidrógeno en agua) o mínimos de solubilidad en función de la temperatura.

Formas simplificadas

Ley de Henry

$$x_2 H_{2,1} = y_2 P$$

Ecuación de Krichevsky-Kasarnovsky

$$\ln\left(\frac{\hat{f}_2^V}{x_2}\right) = \ln\left(H_{2,1}\right) + \frac{\bar{v}_2^{\infty}}{RT} \left(P - P_1^{sat}\right)$$

Ecuación de Krichevsky-Ilinskaya

$$\ln\left(\frac{\hat{f}_{2}^{V}}{x_{2}}\right) = \ln\left(H_{2,1}\right) + \frac{\bar{v}_{2}^{\infty}}{RT}\left(P - P_{1}^{sat}\right) + \frac{A}{RT}\left(x_{1}^{2} - 1\right)$$

Estimación de Shair para la solubilidad

Shair y Prausnitz propusieron que hay dos etapas durante la disolución del gas,

$$\Delta g = \Delta g_c + \Delta g_m$$

El primero es,

$$\Delta g_c = RT \ln \left(\frac{f_2^{0,L}}{f_2^G} \right)$$

El segundo,

$$\Delta g_m = RT \ln(x_2 \gamma_2)$$

Utilizando la teoría de Scatchard-Hildebrand,

$$\ln\left(\gamma_2\right) = \frac{v_2^L}{RT} \left(\delta_2 - \bar{\delta}\right)^2$$

con

$$\bar{\delta} = \sum_{j=1}^{N} \Phi_j \delta_j$$

Dependencia de H con la composición del solvente

Así,

$$\frac{1}{x_2} = \frac{f_2^{0,L}}{f_2^G} \exp\left(\frac{v_2^L}{RT} \left(\delta_2 - \bar{\delta}\right)^2\right)$$

Shair y Prausnitz proporcionaron una correlación para $f_2^{0,L}$ en términos de la temperatura.

Si el g^E puede describirse mediante un desarrollo de Wohl,

$$\frac{g^E}{RT} = a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3$$

O'Connell probó que

$$\ln(H_{2,m}) = x_1 \ln(H_{2,1}) + x_3 \ln(H_{2,3}) - a_{13}x_1x_3$$

Notar que dependiendo de los valores de a_{13} la constante de Henry puede presentar valores mayores o menores a los de los componentes puros.

Cálculo de costos de equipos

El costo de los equipos en ingeniería química generalmente puede ser estimado a partir de alguna variable característica de los mismos,

- Bombas Caudal y altura
- Compresores Potencia
- ► Intercambiadores de calor Área
- ► Hornos Calor intercambiado

Por ejemplo, para un intercambiador de doble tubo,

$$C_B = \exp(7, 1248 + 0, 16 [\ln(A)]),$$

siendo A el área de intercambio en ${\rm ft^2}$ y C_B el costo base del equipo en dólares estadounidenses.

Intercambiador doble tubo

Cálculo de costos de equipos

Dependiendo del equipo, debemos afectar el costo base por ciertos factores para obtener el costo de compra *f.o.b.*, siguiendo con el ejemplo anterior,

$$C_P = F_P F_M C_B,$$

en donde F_M está relacionado con el material del equipo y F_P con la presión a la que opera.

¿Por qué la presión de operación afecta el costo económico?

Inflación

Los valores de C_P que obtenemos de la expresión anterior son para un determinado año, en consecuencia, debemos afectarlo por un factor I para considerar la inflación en dólares,

$$C_{P,i} = C_{P,k} \left(\frac{I_i}{I_k} \right),\,$$

por ejemplo para el año 2018,

$$C_{P,2018} = C_{P,2000} \left(\frac{603,1}{394} \right).$$

Algunos índices de actualización son,

- Chemical Engineering Plant Cost Index (CEPCI).
- ► Marshall and Swift Cost Index (M & S).

Algunas consideraciones

Existen casos en donde no basta con una sola correlación para estimar el costo total del equipo. Por ejemplo, para columnas de destilación debemos calcular por separado,

- ► El costo de la columna (recipiente).
- El costo de los platos.
- El costo de plataformas y escaleras.

Otros gastos a considerar en cualquier planta incluyen, entre otros,

- Costo de puesta en marcha.
- Costo de servicios (electricidad, vapor, etc).
- Regalías por uso de patentes.