

Synchrophasor Applications Facilitating Interactions between Transmission and Distribution Operations

29th November 2016 – Río de Janeiro - Brazil

Luigi Vanfretti

Associate Professor, Docent

Smart Transmission Systems Laboratory EPE Department — School of EE KTH Royal Institute of Technology Sweden Iuigiv@kth.se

Thank you!

- Four years of sharing with us!
- Brazil has an enormous heart:

• It's the generosity of it's people!

Acknowledgements

- The work in this presentation is result of the research carried @KTH SmarTS Lab in the FP7 IDE4L project (2014-2016) and other projects form 2011-2016.
- Special thanks to Dr. Hossein Hooshyar, who undertook the day-to-day project management of this project at KTH SmarTS Lab. with great dedication.
- All of the following students contributed to this presentation with their hard work!

Hossein

Farhan

Reza

Αli

Ravi

Narender

Maxime

Outline

- Introduction: PMUs in distribution networks?
- PMU Application Use Case Definition using SGAM
- Methods and Tools
 - Development, Implementation and Testing using RT-HIL Simulation
 - The Reference Distribution Grid Model
- Handling PMU Data:
 - PMU Data Feature Extraction
- Applications:
 - Steady State Model Synthesis
 - Dynamic Line Rating for Distribution Feeders
 - Small-Signal Dynamic Analysis
- Conclusions

Introduction (1/2)

- It is becoming necessary to increase observability between T&D grids, because of emerging dynamics active distribution networks due to renewables
 - Fast changing conditions in the network
 - Fast behavior of components
 - Traditional monitoring technology not capable of satisfying requirements: types of signals, time-synchonization and speed of data acquisition
- There is great potential of utilizing real-time Synchrophasor data from PMUs (Phasor Measurement Unit) to extract key information related to fast changing conditions and dynamic behavior.
- The implementation of such PMU-based "information exchange" has to go through a properly designed and implemented architecture.

Introduction (2/2)

• The IDE4L architecture is built upon the 5-layer Smart Grid Architecture Model (SGAM) framework.

Layers

• The main inputs to the architecture design are the use cases.

• The IDE4L use case, including the PMU-based functions for dynamic information extraction, is presented in this presentation.

Use Case Definition

- Data flows from PMUs => PDC =>
 Super PDC => DMS computers (where
 dynamic information is extracted) =>
 TSO.
- Data processing and information derivation can occur at both the station (partially) and the operation (i.e. DMS computers) zones.
- Actors: Instrumentations, PMU, PDC, communication interface, DMS, and TSO
- Functions: electrical conversion, synchrophasor calculation, data acquisition, data concentration and timealignment, data exporting data curation, extraction of different time-scale components of the data, and derivation of key information out of the data.

Development, Implementation and Testing using

RT-HIL Simulation

- The development of the applications has been carried out using real-time hardware-in-the-loop simulation consisting of:
 - A real-time simulation model of active distribution networks.
 - The real-time simulation model is interfaced with PMUs in HIL.
 - PMU data is streamed into a computer workstation through PDC.

- The computer makes available software development tools within the LabVIEW environment.
- All data acquisition chain is carried out using the corresponding PMU standards.

The Reference Distribution Grid

Model (2/2)
• Runs on 4 cores using the

- Runs on 4 cores using the State-Space-Nodal (SSN) solver with time-step of 100µs.
- The two different implementations of the grid model can be downloaded from the KTH SmarTS Lab Github repository at

https://github.com/SmarTS-Lab/FP7-IDE4L-KTHSmarTSLab-ADN-RTModel

• The SSN implementation is also available in the ARTEMiS 7.0.5 demo section.

distribution grid model", in Proc. IEEE IECON, Florence, Italy, October 23-27, 2016.

PMU Data Curation, Extraction of Different Time-Scale Components of the Data

(Data Processing)

PMU Data Processing

- PMU measurements are normally
- polluted with
 - Undesirable noise
 - Outliers
 - Missing data

- So before being fed to the applications:
 - PMU measurements should be curated.
 - Signals required for each application should be extracted from the PMU measurements.

PMU Data Processing (2/3)

• An enhanced Kalman filtering technique has been utilized for both bad data removal, i.e. data curation, and extraction of the proper signal feature from the PMU data.

Step		Equation	Significance
1	Prediction	$\hat{x}_k^- = A\hat{x}_{k-1}^- + Bu_k$	Project the state ahead.
2		$P_k^- = AP_{k-1}A^T + Q$	Project the error covariance ahead.
3	Correction	$K_k = P_k^- H^T (H P_k^- H^T + R)^{-1}$	Compute the Kalman gain.
4		$\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-)$	Update estimate with measurement z _k .
5		$P_k = (I - K_k H) P_k^-$	Update the error covariance.

• R and Q (the measurement and process noise covariance matrices), can be updated in real-time to perform the data processing.

PMU Data Processing (3/3)

Sample results.

voltage magnitude (per unit)

voltage angle (radian)

Real-Time Steady State Model Synthesis of Distribution System

Background

- Currently, TSOs maintain reduced models of portions of the distribution networks, however:
 - The models covers limited portions of the distribution network due to the lack of network observability (measurement points) and computational burden associated with simulating large joint T&D models.
 - The models are not updated frequently.
 - The reduction methods, used by TSOs, often make assumptions that are no longer valid for active distribution networks.

Methodology and Application

• Model parameters are obtained by writing KVL equations across the model branches and equate V_i 's and I_i 's to PMU

Illustration Example (1/2)

• Steady state model of a portion of the reference grid is estimated during wind curtailment at different dispatch

Illustration Example (2/2)

• True and reproduced current and voltage phasors are compared using *TVE*.

$$TVE(n) = \sqrt{\frac{(\hat{V}_r(n) - V_r(n))^2 + (\hat{V}_i(n) - V_i(n))^2}{V_r(n)^2 + V_i(n)^2}}$$

Variables with hat are reproduced ones.

• The mean TVE is less than 2.5%.

Dynamic Line Rating for Distribution Feeders

Background

- Dynamic line rating (DLR) is a way to optimize the ampacity of transmission and distribution lines by measuring the effects of weather and actual line current.
- The inputs needed for the method:
 - Ambient data => provided by a close-by weather station.
 - Line loading => provided by PMU
 - Real-time sag => provided by a GPS-based measurement device.

Methodology and Application

LabVIEW Application

Sample Results

- Results are obtained by applying the method on data from a real feeder.
- Output shows accurate correlation with different inputs.

Small Signal Dynamic Analysis of Distribution System

Background

- For reliable operation of the power system, oscillations are required to decay.
- Accurate and real-time estimates of active distribution networks oscillatory modes has become ever so important.
- Timely extraction of these modes and related parameters from network measurements has considerable potential for near real-time dynamic security assessment.

Methodology and Application

LabVIEW Application

Implementation Architectures

Illustration Example (1/2)

• 4 PMUs were deployed in the reference grid to be used for mode estimation

under two
different
architectures
of centralized
and
decentralized

Illustration Example (2/2)

Forced local oscillatory mode detectable in

Inter-area oscillatory mode between HV section and rest of the grid

Conclusions

- The increase of intermittent renewable sources at τne distribution network will bring challenges into DSO operations
- Synchrophasor measurements have a great potential in distribution networks
 - Applications will play the role of extracting key information about the operation of the grid
- TSOs-to-DSOs interaction
 - DSOs can enhance the way they operate by having better knowledge of the system's performance
 - TSOs can gain visibility of the phenomena at lower voltage levels

Thank you!

www.ide4l.eu luigiv@kth.se

