A PROOF OF THE CANTOR THEOREM

Theorem. There exists no bijection from any set to its power set.

Proof. Suppose $f: X \to \mathbf{2}^X$ is such a bijection. Consider $s = \{x \in X : x \notin f(x)\}$. By construction, $s \subseteq X$ and $s \in \mathbf{2}^X$. Since f is bijective, there exists a unique $r \in X$ such that f(r) = s. If $r \in s$, then $r \notin (f(r) = s)$. On the other hand, if $r \notin s$, then $r \in (f(r) = s)$ Thus, $r \in s$ only if $r \notin s$, which is a contradiction. \square