Лабораторная работа №4 по дисциплине «Физика»

Выполнил: студент 1 курса Величко А. А.

Цель работы

Измерение ЭДС источника тока методом компенсации.

Приборы и инструменты

- Источник тока;
- регулировочный реостат;
- реостат для ограничения тока гальванометра;
- реохорд;
- нулевой гальванометр;
- нормальный элемент Вестона;
- гальванические элементы с неизвестным ЭДС;
- двухполюсный переключатель;
- однополюсный ключ;
- ключ с пружинящим контактом;
- аккумуляторы.

Используемые формулы

$$\varepsilon_{X} = \varepsilon_{n} \times \frac{l_{X}}{l_{n}} \tag{1}$$

Ход работы

- 1. Собрать схему в соответствии с рис. 1;
- 2. Получить допуск;
- 3. Провести эксперимент;
- 4. Результаты записать в таблицу;
- 5. Рассчитать ε_x ;
- 6. Определить погрешность измерения ЭДС гальванического элемента;
- 7. Проанализировать результаты эксперимента.

Рисунок 1

Ход эксперимента

В ходе проведения эксперимента были выбраны необходимые приборы и инструменты, собрана цепь (рис. 1). После получения допуска, был проведён эксперимент.

Ползунок регулировочного реостата передвигался в одно из 5 положений. Затем, двухполюсный ключ переключался на нормальный элемент Вестона, ключи K2 и K1 замыкались, после чего ползунок реохорда C передвигался, пока на гальванометре не был получен ноль. Длина задействованной в этот момент нити реохорда записывалась в таблицу как l_n .

Двухполюсный ключ затем переключался на исследуемый гальванический элемент. Действия повторялись аналогично нормальному элементу, пока гальванометр не начинал показывать ноль. Длина задействованной в этот момент нити реохорда записывалась в таблицу как l_x .

После нахождения l_n и l_X и записи их в таблицу, ползунок регулировочного реостата передвигался в следующее положения и действия повторялись.

Результаты эксперимента

По итогу эксперимента была получена таблица (таблица 1).

Таблица 1

N₂	l _х , см	l _n , см	ε _n , B	ε _χ , Β	Δεχ, Β
1	25,2	17	1,02	1,51	0,05
2	27,2	19	1,02	1,46	0,01
3	31	21,5	1,02	1,47	0,00
4	33	23	1,02	1,46	0,00
5	34,5	24,7	1,02	1,42	0,04
			Среднее	1,46	0,02

Для каждой строки таблицы по формуле 1 было вычислено значение ε_x . Также были рассчитаны значения погрешностей, средняя погрешность.

Анализ результатов эксперимента

На основании данных из таблицы 1 можно сделать два вывода.

Во-первых, ЭДС исследуемого гальванического элемента составила 1,46 B \pm 0,02 B (по итогу 5 измерений).

Во-вторых, средняя погрешность измерений составила 0,02 В, что позволяет утверждать: метод компенсации для измерения ЭДС является достаточно точным.

Вывод

В ходе эксперимента была Измерена ЭДС некоторого источника тока методом компенсации. Было установлено, что ЭДС этого источника составляет 1,46 B \pm 0,02 B. Погрешность метода компенсации была оценена в 0,02 B. Была установлена относительно высокая точность данного метода.