

Main page Contents Featured content Current events Random article Donate to Wkipedia Wkipedia store

Interaction

Help About Wikipedia Community portal Recent changes Contact page

Tools

What links here Related changes Upload file Special pages Permanent link Page information Wikidata item Cite this page

Print/export

Create a book
Download as PDF
Printable version

Languages

فارسى

Ædit links

Article Talk Read Edit View history Search Q

Buzen's algorithm

From Wikipedia, the free encyclopedia

In queueing theory, a discipline within the mathematical theory of probability, **Buzen's algorithm** (or **convolution algorithm**) is an algorithm for calculating the normalization constant G(N) in the Gordon–Newell theorem. This method was first proposed by Jeffrey P. Buzen in 1973. [1] Computing G(N) is required to compute the stationary probability distribution of a closed queueing network. [2]

Performing a naïve computation of the normalising constant requires enumeration of all states. For a system with N jobs and M states there are $\binom{N+M-1}{M-1}$ states. Buzen's algorithm "computes G(1), G(2), …, G(N) using a total of NM multiplications and NM additions." This is a significant improvement and allows for computations to be performed with much larger networks. [1]

Contents [hide]

- 1 Problem setup
- 2 Algorithm description
- 3 Marginal distributions, expected number of customers
- 4 Implementation
- 5 References

Problem setup [edit]

Consider a closed queueing network with M service facilities and N circulating customers. Write $n_i(t)$ for the number of customers present at the ith facility at time t, such that $\sum_{i=1}^{M} n_i = N$. We assume that the service time for a customer at the ith facility is given by an exponentially distributed random variable with parameter μ_i and that after completing service at the ith facility a customer will proceed to the jth facility with probability p_{ij} .

It follows from the Gordon-Newell theorem that the equilibrium distribution of this model is

$$\mathbb{P}(n_1, n_2, \cdots, n_M) = \frac{1}{G(N)} \prod_{i=1}^{M} (X_i)^{n_i}$$

where the X_i are found by solving

$$\mu_j X_j = \sum_{i=1}^{M} \mu_i X_i p_{ij}$$
 for $j = 1, \dots, M$.

and G(N) is a normalizing constant chosen that the above probabilities sum to 1.^[1]

Buzen's algorithm is an efficient method to compute G(N).[1]

Algorithm description [edit]

Write g(N,M) for the normalising constant of a closed queueing network with N circulating customers and M service stations. The algorithm starts by noting solving the above relations for the X_i and then setting starting conditions^[1]

$$g(0,m) = 1$$
 for $m = 1, 2, \dots, M$
 $g(n,1) = (X_1)^n$ for $n = 0, 1, \dots, N$.

The recurrence relation^[1]

$$g(n,m) = g(n,m-1) + X_m g(n-1,m).$$

is used to compute a grid of values. The sought for value G(N) = g(N, M).^[1]

Marginal distributions, expected number of customers [edit]

The coefficients g(n,m), computed using Buzen's algorithm, can also be used to compute marginal distributions and expected number of customers at each node.

$$\mathbb{P}(n_i = k) = \frac{X_i^k}{G(N)} [G(N - k) - X_i G(N - k - 1)] \quad \text{for } k = 0, 1, \dots, N - 1,$$

$$\mathbb{P}(n_i = N) = \frac{X_i^N}{G(N)} [G(0)].$$

the expected number of customers at facility i by

$$\mathbb{E}(n_i) = \sum_{k=1}^{N} X_i^k \frac{G(N-k)}{G(N)}.$$

Implementation [edit]

It will be assumed that the X_m have been computed by solving the relevant equations and are available as an input to our routine. Although g is in principle a two dimensional matrix, it can be computed in a column by column fashion starting from the leftmost column. The routine uses a single column vector C to represent the current column of g.

```
C[0] := 1
for n := 1 step 1 until N do
   C[n] := 0;

for m := 1 step 1 until M do
  for n := 1 step 1 until N do
   C[n] := C[n] + X[m]*C[n-1];
```

At completion, C contains the desired values G(0), G(1) to G(N). [1]

References [edit]

- 1. ^a b c d e f g h Buzen, J. P. (1973). "Computational algorithms for closed queueing networks with exponential servers" ▶ (PDF). Communications of the ACM 16 (9): 527. doi:10.1145/362342.362345 ₺.
- 2. ^a b Gordon, W. J.; Newell, G. F. (1967). "Closed Queuing Systems with Exponential Servers". Operations Research 15 (2): 254. doi:10.1287/opre.15.2.254 & . JSTOR 168557 &.
- Jain: The Convolution Algorithm (class handout)
- Menasce: Convolution Approach to Queueing Algorithms (presentation)

v· t· e	Queueing theory [hic	de]
Single queueing nodes	D/M1 queue · M/D/1 queue · M/D/c queue · M/M1 queue (Burke's theorem) · M/M/c queue · M/M/∞ queue · M/G/1 queue (Pollaczek–Khinchine formula · Matrix analytic method) · M/G/k que G/M1 queue · G/G/1 queue (Kingman's formula · Lindley equation) · Fork–join queue · Bulk qu	
Arrival processes	Poisson process · Markovian arrival process · Rational arrival process	
Queueing networks	Jackson network (Traffic equations) · Gordon–Newell theorem (Mean value analysis · Buzen's algorithm) · Kelly network · G-network · BCMP network	
Service policies	FIFO · LIFO · Processor sharing · Shortest job first · Shortest remaining time	
Key concepts	Continuous-time Markov chain · Kendall's notation · Little's law · Product-form solution (Balance equation · Quasireversibility · Flow-equivalent server method) · Arrival theorem · Decomposition method · Beneš method	
Limit theorems	Fluid limit · Mean field theory · Heavy traffic approximation (Reflected Brownian motion)	
Extensions	Fluid queue · Layered queueing network · Polling system · Adversarial queueing network · Loss network · Retrial queue	
Information systems	Data buffer · Erlang (unit) · Erlang distribution · Flow control (data) · Message queue · Network congestion · Network scheduler · Pipeline (software) · Quality of service · Scheduling (computing) · Teletraffic engineering	
Category		

Categories: Stochastic processes | Queueing theory | Statistical algorithms

This page was last modified on 2 September 2015, at 11:10.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

