lecture 15 - Oct 07 D Onboarding Exam? D paper & pen(cil) > UP Courses that with instructor Chosed - book exam Insertion Sort for (i=1; i<N; i++) tmp = a[i]; for (j= i ; 1>0 kk tup < a[j-1]; j --) a [j] = a [j-1]; q (j) = Imp; redo Example 32. 29 input | 51 7 32 11 27 21 # comp. afteri=1 7 51 32 kg 27 21 29 i=2 7 32 51 11 27 21 29 i=3 7 11 32 51 27 21 29 51 21 1=4:7 11 27 32 3 32 5) 21 27 i=5 \7 11 i=6 7 11 21 27 29 32 51 3 // 16 comparisons

analy Sis · worst case T(N) =0(1 + 2 + 3 + 4 + 5+... + N-1) $= 0 (N^2)$ if array initially in reverse order, each pass i exactly i comparisons => O(N2) is attached · best are if array witially sorted, then exactly one comparison per pass is made, i.e., a total of N-1 comparisons (there is no better case, because onter loop nos N-1 times, always making at least one can parison). => Thest (N) = O(N). · average are goal: prove that Tang $(N) = \Theta(N^2)$, assuming that the array contains no duplicates and every permutation of list elements is equally likely Since Tworst(N)=O(N2), we also know Targ(N)=O(N2). Hence it suffices to prove Targ (N) = (2(N2) under condition (1) We prove even more:

Theorem 8	. Any s	forfing a	lgoritan	n Kat e	xchanges	
	jacent ele					
average	, under asso	umption	*			
Cemma 1.	The avg	. numb	er of j	pairs (k	l) with	
	k < ,	l and	a[k]	> all	7	
Called	"hresions")	ih an	array	with N	element i	1
		N(N- 4	-1)			
Post of Th						
	algorithm			deacent	elements	
each swap	remove	at was	t inve	ersion.		
=> avg 7	remove # swaps >	ave #	muesion	Lemma 1 N ((N-1) = Q	(N^2)
=> Tava	(N) = C	2 (N2)			9	
Proof of L						
	arrays in	to two	groups	A	ind B	
of the sam				1 0.1.		,
	list in A	5 115	reverses	a list is	m B au	A
vice ves	Δ.			B		
(2	2 4					
	, 2, 4			4, 2, 3		
1	3,4			4,3,		

Each list L in A has N(N-1) pairs of indices (K,l) with kal. Each poir is an inversion either in L or the reversed list of L in B. => Each of these $\frac{N(N-1)}{2}$ pairs is an inversion in exactly half of the arrays. =) A list has on average $\frac{N(N-1)}{2} \cdot \frac{1}{2} = \frac{N(N-1)}{4}$ thresians. =) Tava (N) = & (N2) for usertion sort!