Teoría de Lenguajes

Práctica 0 (Preliminares)

- 1. Sea $\Sigma = \{a,b\}$ un alfabeto. Hallar $\Sigma^0, \Sigma^1, \Sigma^2, \Sigma^*, \Sigma^+, |\Sigma|, |\Sigma^0|$ (|A| indica cantidad de elementos de A)
- 2. Sea x=abb una cadena. Calcular $x^0, x^1, x^2, x^3, \Pi_{k=0...3}X^k=x^0.x^1.x^2.x^3, x^r$ (x^r indica la reversa de x)
- 3. Decidir si dado $\Sigma = \{a, b\}$ vale : $\lambda \in \Sigma, \lambda \subseteq \Sigma, \lambda \in \Sigma^+, \lambda \in \Sigma^*, \Sigma^0 = \{\lambda\}, \Sigma^0 = \lambda$
- 4. Sean las cadenas: x=abb e y=acb. Utilizando la operación de concatenación de cadenas, calcular: $xy, (xy)^r, y^r, y^rx^r, \lambda x, \lambda y, x\lambda y, x^2\lambda^3y^2$
- 5. Dados $\Sigma = \{a,b\}, A = \{a,c\}$, calcular $\Sigma \cup A, \Sigma \cap A, \Sigma.A, \Sigma.A^+, \Sigma^+.A, (\Sigma.A)^+, (\Sigma.A)^*, \Sigma^*.A^*, \Sigma.\Lambda.A$

$$(\Lambda = {\lambda})$$

- 6. Sea $V = \{a, b\}, W = \{a, c\}$, decidir si valen:
 - $a) \ (a,a) \in V \times W$
 - b) $(a, b, a) \in V \times W \times V$
 - c) $(a, a, a) \in V \times W \times W$
 - d) $(a, a, \lambda) \in V \times W \times (W \cup \Lambda)$
 - e) $(a, \lambda) \in V \times W$
 - f) $(a, \lambda) \in V \times (W \cup \Lambda)$
 - g) $(a, \lambda, \lambda) \in V \times (W \cup \Lambda) \times (W \cup \Lambda)$
 - $h) \ (a, c, \lambda) \in V \times W \times W^*$
- 7. Dar ejemplos de cadenas que pertenezcan a los siguientes lenguajes:
 - a) $L = \{a^k b^k \mid k \ge 0\}$

- b) $L = \{a^k b^k \mid k \ge 1\}$
- c) $L = \{a^k b^j \mid k \ge 0 \land j \ge 1\}$
- d) $L = \{a^k b^j \mid k \ge 1 \land j \ge 0\}$
- e) $L = \{a^n(ac)^p(bab)^q \mid n \ge 0, q = p + 2, p \ge 1\}$
- f) $L = \{a, b\}^3 \cup \Lambda$
- $g) L = \{xx^r \mid x \in \{a, b\}^+\}$
- h) $L = \{z \in \{a, b\}^+ \mid z = z^r\}$
- 8. Definir por comprensión los siguientes lenguajes:

 $L_1 = \{ab, aabb, aaabbb, \ldots\}$

 $L_2 = \{aab, aaaabb, aaaaaabbb, \ldots\}$

 $L_3 = \{aaabccc, aaaabcccc, aaaaabccccc, \ldots\}$

(donde el "crecimiento" en la cantidad de cada símbolo es lineal en cada caso)

- 9. Demostrar que:
 - a) $|a.(a.\alpha)| = 2 + |\alpha|$ $\Sigma = \{a\}, \alpha \in \Sigma^*$
 - b) $|x^r| = |x|$ $x \in \Sigma^*$
 - c) |x.x| = 2|x| $x \in \Sigma^*$
 - d) $(\alpha.\beta)^r = (\beta^r.\alpha^r)$ $\alpha, \beta \in \Sigma^*$
 - $e) (\alpha^r)^r = \alpha \quad \alpha \in \Sigma^*$
 - $f) (\alpha^r)^n = (\alpha^n)^r \qquad \alpha \in \Sigma^*$

 $|\alpha|$: longitud de la cadena α .

- 10. Siendo
 - S(L): subcadenas del lenguaje L
 - I(L): subcadenas iniciales del lenguaje L
 - F(L): subcadenas finales del lenguaje L

Demostrar que, si A es un lenguaje,

- a) F(F(A)) = F(A)
- b) S(S(A)) = S(A)
- c) $F(AB) = F(B) \cup F(A)B$
- d) $I(A \cup B) = I(A) \cup I(B)$
- $e) F(A \cup B) = F(A) \cup F(B)$
- f) I(S(A)) = S(I(A)) = F(S(A)) = S(F(A)) = S(A)