Computational Complexity Analysis: Least Squares vs. Gradient Descent

George Michailidis

gmichail@ucla.edu

STAT 102B

Least Squares Problem

- Given data matrix $X \in \mathbb{R}^{n \times p}$ and response vector $y \in \mathbb{R}^n$
- Objective: Find $\beta \in \mathbb{R}^p$ that minimizes the sum of squared errors (SSE)

$$\min_{\beta} SSE(\beta) = \frac{1}{2n} ||X\beta - y||_2^2$$
 (1)

The closed form solution is given by:

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y \tag{2}$$

 This is exact, but can be computationally intensive for large data sets, especially in terms of number of predictors p

Clarification on Notation

In the lecture notes, I used m for the number of observations in order to differentiate from n which is reserved for the dimensionality of the argument of the objective function

$$f(x), x \in \mathbb{R}^n$$

In this slide deck, I use n for the number of observations, in order for the calculations to align with standard calculations on computational in the literature

The notation $\mathcal{O}(\cdot)$ used in subsequent slides indicates the order of computations required

Computational Steps for Least Squares

Computing the least squares solution requires:

- **Step 1**: Compute $X^{\top}X \in \mathbb{R}^{p \times p}$
 - ▶ To obtain each entry in this $p \times p$ entry we need to multiply two *n*-dimensional vectors;
 - the vector that contains the *n*-observations for variable *i* with the vector that contains the *n*-observations for variable *j*, with $i, j = 1, \dots, p$
 - **Each** such vector multiplication requires $\mathcal{O}(n)$ operations
 - ► Total: $\mathcal{O}(np^2)$ operations, since $X^\top X$ has p^2 entries and each entry requires $\mathcal{O}(n)$ operations
- **Step 2:** Compute $X^{\top}y \in \mathbb{R}^p$
 - To obtain each $(X^{\top}y)$ we need to multiply again two *n*-dimensional vectors; the vector that contains the *n*observations for each variable, with the *n*-dimensional response vector v
 - Total: $\mathcal{O}(np)$ operations

Computational Steps for Least Squares (Continued)

- **Step 3:** Solve the system $X^{\top}X\beta = X^{\top}y$
 - ► Typically requires computing the inverse $(X^\top X)^{-1}$ ► Matrix inversion requires $\mathcal{O}(\rho^3)$ operations

 - In practice, we typically solve using Cholesky decomposition, QR decomposition, or eigenvalue decomposition for better numerical stability
 - These methods also require $\mathcal{O}(p^3)$ operations
- Total computational complexity:

$$\mathcal{O}(np^2 + p^3) \tag{3}$$

Computational Burden for Large Data sets

Consider a large-scale problem with:

$$n = 10^6$$
 (samples), $p = 10^5$ (features) (4)

- $np^2 = 10^6 \cdot (10^5)^2 = 10^{16}$ operations
- $p^3 = (10^5)^3 = 10^{15}$ operations

The dominant term is $\mathcal{O}(np^2) = \left| 10^{16} \right|$ operations

- Modern CPUs can perform $\sim 10^9$ operations per second
- This would take approximately 10^7 seconds ≈ 115 days!
- Memory requirements would be enormous as well

Gradient Descent for Least Squares

Instead of computing the closed-form solution, we can iteratively approach the minimum:

- Initialize β_0 (often as zeros or small random values)
- Update rule:

$$\beta_{k+1} = \beta^{(t)} - \eta \nabla_{\beta} SSE(\beta)$$
 (5)

where $\eta > 0$ is the step size

• The gradient of the SSE function is given by:

$$\nabla_{\beta} \frac{1}{2n} \| X\beta - y \|_{2}^{2} = \frac{1}{n} [X^{\top} (X\beta - y)]$$
 (6)

Computational Steps per Iteration

Each iteration of gradient descent requires:

- **Step 1**: Compute $X\beta \in \mathbb{R}^n$
 - Each entry multiplies two p-dimensional vectors and there are n such entries
 - \triangleright Total: $\mathcal{O}(np)$ operations
- Step 2: Compute residual $r = X\beta y \in \mathbb{R}^n$
 - Simple vector subtraction
 - Total: $\mathcal{O}(n)$ operations

Computational Steps per Iteration (Continued)

- **Step 3**: Compute $X^{\top}r \in \mathbb{R}^p$
 - Each entry requires multiplication of two n-dimensional vectors and there are p such entries
 - ► Total: $\mathcal{O}(np)$ operations
- **Step 4**: Update β
 - ► Simple vector subtraction
 - Total: $\mathcal{O}(p)$ operations
- Total computational complexity per iteration:

$$O(np)$$
 (7)

Computational Advantage for Large Data sets

For our large-scale problem with:

$$n = 10^6$$
 (samples), $p = 10^5$ (features) (8)

- Cost per iteration: $np = 10^6 \cdot 10^5 = 10^{11}$ operations
- With a good choice of step size, convergence typically requires 10^2-10^3 iterations
- Total cost: $\sim 10^{13} 10^{14}$ operations

Gradient descent offers a computational advantage of $\sim 10^2-10^3$ times over the closed-form solution for large-scale problems

Conditions for Convergence

For gradient descent to find the optimal regression coefficients:

- The matrix $X^{T}X$ must be **positive definite**
 - Guarantees the existence of a unique global minimum
 - This is the same condition needed for $(X^TX)^{-1}$ to exist in the closed-form solution
- The Hessian of the SSE function is $\frac{1}{n}(X^{T}X)$
- If $X^{\top}X$ is positive definite, gradient descent with an appropriate step size will converge to the global minimum

Step Size Selection

• Theoretical bound: For convergence, the step size η must satisfy:

$$0 < \eta < \frac{2}{\lambda_{\max}(X^{\top}X)} \tag{9}$$

where $\lambda_{\max}(X^{\top}X)$ is the largest eigenvalue of $X^{\top}X$

- Computing $\lambda_{\max}(X^{\top}X)$ requires $\mathcal{O}(p^3)$ operations
 - ▶ This defeats the purpose of using gradient descent to avoid $\mathcal{O}(p^3)$ computations
- Practical solution: Backtracking line search
 - Start with a relatively large step size
 - Decrease it gradually until a sufficient decrease condition is met
 - No need to compute eigenvalues explicitly

Computational Cost Comparison

Method	Computational Complexity
Closed-form Least Squares	$\mathcal{O}(np^2+p^3)$
Gradient Descent (per iteration)	$\mathcal{O}(np)$
Gradient Descent (total, k iterations)	$\mathcal{O}(k \cdot np)$

For $n = 10^6$ and $p = 10^5$:

- ullet Closed-form: $\sim 10^{16}$ operations
- \bullet Gradient Descent (1000 iterations): $\sim 10^{14}$ operations

For large-scale problems, gradient descent offers a significant computational advantage.

When to Use Fach Method

Use closed-form solution when:

- p is small (few features)
- Exact solution is required
- Numerical stability isn't a significant concern
- Available computational resources can handle $\mathcal{O}(np^2 + p^3)$

Use gradient descent when:

- p is large (many features)
- Approximate solution is acceptable
- The problem is "well-conditioned" for faster convergence
- Memory constraints prevent storing or operating on $X^{\top}X$

Other Considerations

- Beyond basic gradient descent:

 Momentum methods: Polyak, Nesterov
 - Adaptive learning rates: AdaGrad, ADAM, ADAM-W
 - Stochastic variants: Stochastic gradient
 - Further computational savings with subsampling
 - Ideal for extremely large datasets (n ≫ p)
 - Coordinate descent: Update one coordinate at a time (will be covered after Exam I)
 - Particularly efficient when X is sparse

Numerical stability:

- Closed-form solution may suffer from ill-conditioning
- Gradient methods can be more robust with appropriate step sizes