EE247 Lecture 12

- Administrative issues
 - Midterm exam Thurs. Oct. 23rd
 - o You can *only* bring one 8x11 paper with your own written notes (please do not photocopy)
 - No books, class notes or any other kind of handouts/notes, calculators, computers, PDA, cell phones....
 - o Midterm includes material covered to end of lecture 14

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 1

EE247 Lecture 12

- Data converters
 - Static converter error sources (continued)
 - Offset
 - · Full-scale error
 - Differential non-linearity (DNL)
 - Integral non-linearity (INL)
 - Measuring DNL & INL
 - · Servo-loop
 - Code density testing (histogram testing)
 - Dynamic tests
 - Spectral testing→ Reveals ADC errors associated with dynamic behavior i.e. ADC performance as a function of frequency

EECS 247 Lecture 12:

Data Converter Performance Metrics

ADC Differential Nonlinearity

- Ideal ADC transitions point equally spaced by 1LSB
- For DNL measurement, offset and full-scale error is eliminated
- DNL [k] (a vector) measures the deviation of each code from its ideal width
- Typically, the vector for the entire code is reported
- If only one DNL # is presented that would be the worst case

EECS 247 Lecture 12:

Data Converter Performance Metrics

ADC DNL

- DNL=-1 implies missing code
- For an ADC DNL < -1 not possible → undefined
- · Can show:

$$\sum^{all\,i}\;DNL[i]=0$$

• For a DAC DNL < -1 possible

EECS 247 Lecture 12:

Data Converter Performance Metrics

DAC Differential Nonlinearity

- · To find DNL for DAC
 - Draw end-point line from 1st point to last
 - Find ideal LSB size for the end-point corrected curve
 - Find segment sizes:

$$segment [m] = V[m] - V[m-1]$$

$$DNL[m] = \frac{segment[m] - V[LSB]}{V[LSB]}$$

Unlike ADC DNL, for a DAC DNL can be <-1LSB

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 7

Impact of DNL on Performance

- Same as a somewhat larger quantization error, consequently degrades SQNR
- How much later in the course...
- The term "DNL noise", usually means "additional quantization noise due to DNL"

EECS 247 Lecture 12:

Data Converter Performance Metrics

ADC Integral Nonlinearity End-Point INL = deviation of code transition from its ideal location Digital Output Code 1. Endpoints connected -1 LSB INL 2. Ideal characteristics derived eliminating offset & full-scale error (same as for DNL) 3. INL→ deviation of code transition from ideal is measured 2 3 4 5 ADC Input Voltage [Δ] EECS 247 Lecture 12: Data Converter Performance Metrics © 2008 H. K. Page 9

ADC Integral Nonlinearity Best-Fit

INL = deviation of code transition from its ideal location

Best-Fit

- A best-fit line (in the leastmean squared sense) fitted to measured data
- Ideal converter steps found then INL measured

Note: Typically INL #s smaller for best-fit compared to end-point

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 11

ADC Integral Nonlinearity Best Fit versus End-Point

- Best-Fit
 - A best-fit line (in the least-mean squared sense)
 - Ideal converter steps is found then INL is measured

EECS 247 Lecture 12:

Data Converter Performance Metrics

ADC Integral Nonlinearity

Can derive INL by:

1-

- Construct uniform staircase between 1st and last transition
- · INL for each code:

$$INL[m] = \frac{T[m] - T[ideal]}{W[ideal]}$$

2

· Can show

$$INL[m] = \sum_{i=1}^{m-l} DNL[i]$$

→ INL is found by computing the cumulative sum of DNL

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 13

ADC Differential & Integral Nonlinearity Example

$$INL[m] = \sum_{i=1}^{m-1} DNL[i]$$

Notice:

$$INL[2^{N}-1]=0$$

Code #	DNL [LSB]	INL [LSB]
0	-	-
1	0.18	0
2	-0.55	0.18
3	0.55	-0.37
4	-0.55	0.18
5	-0.27	-0.37
6	0.64	-0.64
7	-	0

EECS 247 Lecture 12:

Data Converter Performance Metrics

ADC Differential & Integral Nonlinearity Example

Max.

	Code	DNL	INL
	#	[LSB]	[LSB]
	0	-	-
	1	0.18	0
,	2	-0.55	0.18
7	3	0.55	-0.37
	4	-0.55	0.18
,	5	-0.27	-0.37
	6	0.64	-0.64
7	7	-	0

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 15

DAC Integral Nonlinearity

Can derive INL by:

- · Connect end points
- Find ideal output values
- INL for each code:

$$INL[m] = \frac{V[m] - V[ideal]}{V[LSB]}$$

2-

· Can show

$$INL[m] = \sum_{i=1}^{m-1} DNL[i]$$

→ INL is found by computing the cumulative sum of DNL

EECS 247 Lecture 12:

Data Converter Performance Metrics

Example: INL & DNL

Large INL & Small DNL Smooth variations in transfer curve → Small DNL

Large DNL & Small INL
Abrupt variations in transfer
curve → Large DNL

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 19

Monotonicity

Monotonicity guaranteed if

| INL $| \le 0.5$ LSB

The best fit straight line is taken as the reference for determining the INL.

· This implies

 $|DNL| \le 1 LSB$

EECS 247 Lecture 12:

Data Converter Performance Metrics

Non-Monotonic DAC

$$DNL[m] = \frac{segment[m] - V[LSB]}{V[LSB]}$$

$$Segment[4] - V[LSB]$$

$$DNL[4] = \frac{V[LSB]}{-0.5 - 1} = -1.5[LSB]$$

$$DNL[5] = \frac{2.5 - 1}{1} = 1.5[LSB]$$

- DNL< -1LSB for a DAC
 → Non-monotonicity
- When can non-monotonicity cause major problems?

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 21

Non-Monotonic ADC

- Code 011
 associated with two
 transition levels!
- For non-monotonic ADC
 - →DNL not defined @ nonmonotonic steps

EECS 247 Lecture 12:

Data Converter Performance Metrics

How to measure DNL/INL?

· DAC:

 Simply apply digital codes and use a good voltmeter to measure corresponding analog output

ADC

- Not as simple as DAC→ need to find "decision levels", i.e. input voltages at all code boundaries
 - One way: Adjust voltage source to find exact code trip points "code boundary servo"
 - More versatile: Histogram testing
 →Apply a signal with known amplitude distribution and analyze digital code distribution at ADC output

EECS 247 Lecture 12:

Data Converter Performance Metrics

Code Boundary Servo • i1 and i2 are small, and **ADC Digital Output** C1 is large, so the ADC analog input moves a small fraction 101 of an LSB each sampling period 100 For a code input of 101, the ADC analog 010 input settles to the code boundary shown 001 000 3Δ 4Δ 5Δ 6Δ **ADC Analog Input** Data Converter Performance Metrics © 2008 H. K. Page 25 EECS 247 Lecture 12:

Code Boundary Servo

- A very good digital voltmeter (DVM)
 measures the analog input voltage
 corresponding to the desired code boundary
- DVMs have some interesting properties
 - They can have very high resolutions (8½ decimal digit meters are inexpensive)
 - To achieve stable readings, DVMs average voltage measurements over multiple 60Hz ac line cycles to filter out pickup in the measurement loop

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 27

Code Boundary Servo

- ADCs of all kinds are notorious for kicking back high-frequency, signal-dependent glitches to their analog inputs
- A magnified view of an analog input glitch follows ...

EECS 247 Lecture 12:

Data Converter Performance Metrics

Code Boundary Servo

- Just before the input is sampled and conversion starts, the analog input is pretty quiet
- As the converter begins to quantize the signal, it kicks back charge

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 29

Code Boundary Servo

- The difference between what the ADC measures and what the DVM measures is not ADC INL, it's error in the INL measurement
- How do we control this error?

EECS 247 Lecture 12:

Data Converter Performance Metrics

Code Boundary Servo

- A large C₂ fixes this
- At the expense of longer measurement time

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 31

Histogram Testing

- Code boundary measurements are slow
 - Long testing time
- Histogram testing
 - Quantize input with known pdf (e.g. ramp or sinusoid)
 - Measure output pdf
 - Derive INL and DNL from deviation of measured pdf from expected result

EECS 247 Lecture 12:

Data Converter Performance Metrics

Histogram Test Setup

- Slow (wrt conversion time) linear ramp applied to ADC
- DNL derived directly from total number of occurrences of each code @ the output of the ADC

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 33

A/D Histogram Test Using Ramp Signal

Example:

ADC sampling rate: $f_s = 100 \text{kHz} \rightarrow T_s = 10 \mu \text{sec}$

1LSB =10mV For 0.01LSB measurement resolution:

- $\rightarrow n = 100 \text{ samples/code}$
- → Ramp duration per code: =100x10µsec=1msec
- → Ramp slope: 10mV/msec

EECS 247 Lecture 12:

Data Converter Performance Metrics

Example: 3 Bit ADC Process of Extracting from Histogram

- 3- Normalize:
- Divide histogram by average count/bin
 - → ideal bins have exactly the average count, which, after normalization, would be 1
 - → Non-ideal bins would have a normalized value greater of smaller than 1

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 39

Example: 3 Bit ADC DNL Extracted from Histogram

- 4- Subtract *I* from the normalized code count
- 5- Result → DNL (+-0.4Lsb in this case)

EECS 247 Lecture 12:

Data Converter Performance Metrics

Example: 3-Bit ADC Static Characteristics Extracted from Histogram

- DNL histogram → used to reconstruct the exact converter characteristic (having measured only the histogram)
- Width of all codes derived from measured DNL (Code=DNL + 1LSB)
- INL→(deviation from a straight line through the end points)- is found

EECS 247 Lecture 12:

Data Converter Performance Metrics

Measuring DNL

- Ramp speed is adjusted to provide large number of output/code - e.g. an average of 100 outputs of each ADC code (for 1/100 LSB resolution)
- Ramp test can be quite slow for high resolution ADCs
- · Example:

16bit ADC & 100conversions/code @100kHz sampling rate

 $\frac{(2^{16} \text{ or } 65,536 \text{ codes})(100 \text{ conversions/code})}{100,000 \text{ conversions/sec}} = 65.6 \text{ sec}$

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 43

ADC Histogram Testing Sinusoidal Inputs

- Ramp signal generators linear to only 8 to10bits
 - → Need to find input signal with better purity
- Solution:
 - →Use sinusoidal test signal (may need to filter out harmonics)
- Problem: Ideal ADC histogram not flat but has "bath-tub shape"

EECS 247 Lecture 12:

Data Converter Performance Metrics

Histogram Testing Correction for Sinusoidal PDF

- · References:
 - [1] M. V. Bossche, J. Schoukens, and J. Renneboog, "Dynamic Testing and Diagnostics of A/D Converters," IEEE Transactions on Circuits and Systems, vol. CAS-33, no. 8, Aug. 1986.
 - [2] IEEE Standard 1057
- Is it necessary to know the exact amplitude and offset of sinusoidal input? No!

DNL/INL Extraction Matlab Program

```
% transition levels found by:
function [dnl,inl] = dnl_inl_sin(y);
                                       T = -cos(pi*ch/sum(h));
%DNL_INL_SIN
% dnl and inl ADC output
% input y contains the ADC output
                                        % linearized histogram
\mbox{\ensuremath{\$}} vector obtained from quantizing a
                                       hlin = T(2:end) - T(1:end-1):
% sinusoid
                                        % truncate at least first and last
% Boris Murmann, Aug 2002
                                        % bin, more if input did not clip ADC
% Bernhard Boser, Sept 2002
                                        trunc=2:
                                        hlin_trunc = hlin(1+trunc:end-trunc);
% histogram boundaries
minbin=min(y);
                                        % calculate lsb size and dnl
maxbin=max(y);
                                        lsb= sum(hlin_trunc) / (length(hlin_trunc));
% histogram
                                        dnl= [0 hlin_trunc/lsb-1];
h = hist(y, minbin:maxbin);
                                        misscodes = length(find(dnl<-0.99));
% cumulative histogram
                                        % calculate inl
ch = cumsum(h);
                                        inl= cumsum(dnl);
```

EECS 247 Lecture 12: Data Converter Performance Metrics

Example: Matlab ADC Model DNL/INL Code Test

Histogram Testing Limitations

- The histogram (as any ADC test, of course) characterizes one particular converter. Test many devices to get valid statistics.
- Histogram testing assumes monotonicity
 E.g. "code flips" will not be detected.
- Dynamic sparkle codes produce only minor DNL/INL errors
 E.g. 123, 123, ..., 123, 0, 124, 124, ... → look at ADC output to detect
- Noise not detected & averaged out
 E.g. 9, 9, 9, 10, 9, 9, 10, 9, 10, 10, 10, ...

Ref: B. Ginetti and P. Jespers, "Reliability of Code Density Test for High Resolution ADCs," Electron. Lett., vol. 27, pp. 2231-3, Nov. 1991.

EECS 247 Lecture 12:

Data Converter Performance Metrics

Example: Hiding Problems in the Noise

- INL → 5 missing codes
- DNL "smeared out" by noise!
- Always look at both DNL/INL
- INL usually does not lie...

[Source: David Robertson, Analog Devices]

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 51

Why Additional Tests/Metrics?

- Static testing does not tell the full story
 - E.g. no info about "noise" or high frequency effects
- Frequency dependence (f_s and f_{in})?
 - In principle we can vary f_s and f_{in} when performing histogram tests
 - Result of such sweeps is usually not very useful
 - Hard to separate error sources, ambiguity
 - Typically we use f_s=f_{sNOM} and f_{in} << f_s/2 for histogram tests
- For additional info→ Spectral testing

EECS 247 Lecture 12:

Data Converter Performance Metrics

DAC Spectural Test or Simulation

Device Under Test

(DUT)

Sinusoid
Signal
Generator

Clock
Generator

- Input sinusoid → Need to have significantly better purity compared to DAC linearity
- · Spectrum analyzer need to have better linearity than DUT

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 53

Direct ADC Spectral Test via DAC

Device Under Test (DUT)

- Need DAC with much better performance compared to ADC under test
- Beware of DAC output sinx/x frequency shaping
- · Good way to "get started"...

EECS 247 Lecture 12:

Data Converter Performance Metrics

ADC Spectral Test via Data Acquisition Sytem

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 55

Analyzing ADC Outputs via Discrete Fourier Transform (DFT)

- · Sinusoidal waveform has all its power at one single frequency
- An ideal, infinite resolution ADC would preserve ideal, single tone spectrum
- · DFT used as a vehicle to reveal ADC deviations from ideality

EECS 247 Lecture 12:

Data Converter Performance Metrics

<u>Discrete Fourier Transform</u>

The DFT of a block of N time samples

$${x(k)} = {x(0), x(1), x(2),...,x(N-1)}$$

yields a set of N frequency bins

$$\{A_m\} = \{A_0, A_1, A_2, \dots, A_{N-1}\}$$

where:

$$A_m = \sum_{n=0}^{N-1} x_n W_N^{mn}$$
 $m = 0,1,2,...,N-1$

$$W_N \equiv e^{-j2\pi/N}$$

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 57

<u>D</u>iscrete <u>F</u>ourier <u>T</u>ransform (DFT) Properties

- DFT of N samples spaced $T_s = 1/f_s$ seconds:
 - N frequency bins from DC to f_s
 - Bin *m* represents frequencies at $m * f_s/N$ [Hz]
- DFT frequency resolution:
 - Proportional to f_s/N in [Hz/bin]
- DFT with $N = 2^k$ (k is an integer) can be found using a computationally more efficient algorithm named:
 - FFT → Fast Fourier Transform

EECS 247 Lecture 12:

Data Converter Performance Metrics

DFT Magnitude Plots

• Because magnitudes of DFT bins (A_m) are symmetric around $f_S/2$, it is redundant to plot $A_m/2$ for m>N/2

 Usually magnitudes are plotted on a log scale normalized so that a full scale sinusoidal waveform with rms value a_{FS} yields a peak bin of 0dBFS:

$$/A_m / [dBFS] = 20 \log_{10} \frac{/A_m /}{a_{FS} \cdot N/2}$$

EECS 247 Lecture 12:

Data Converter Performance Metrics

© 2008 H. K. Page 59

Matlab Example Normalized DFT

```
fs = 1e6;
fx = 50e3;
                                          Amplitude
0.5.0
Afs = 1;
    = 100;
% time vector
t = linspace(0, (N-1)/fs, N);
                                                                              x 10
% input signal
                                          Magnitude [ dBFS ]
s = 20 * log10(abs(dft(y)/N/Afs*2));
% drop redundant half
s = s(1:N/2);
% frequency vector (normalized to fs)
f = (0:length(s)-1) / N;
                                                            0.2
                                                                   0.3
                                                         Frequency [f/f_s]
```

EECS 247 Lecture 12:

Data Converter Performance Metrics