Approximations du problème du voyageur de commerce

Deuxième revue de TIPE

11907: BOURNEUF Romain 2269: JALOUZOT Louis

Table des matières

- 1 Présentation du problème
- 2 Algorithme de Christofides
- 3 Implémentation
- 4 Résultats
- 6 Annexes

Introduction: exemple

Objectif: Trouver un chemin de longueur minimale passant une et une seule fois par chacune des villes.

Introduction: exemple

Objectif: Trouver un chemin de longueur minimale passant une et une seule fois par chacune des villes.

Solution naïve : tester tous les chemins, complexité exponentielle 15 villes = 43 milliards de possibilités = 12h de calcul

Introduction: exemple

Objectif: Trouver un chemin de longueur minimale passant une et une seule fois par chacune des villes.

Solution naïve : tester tous les chemins, complexité exponentielle 15 villes = 43 milliards de possibilités = 12h de calcul

Pas de solution efficace connue, problème NP-complet

Approximations

Idée : Déterminer une solution approchée, faisable en temps polynomial

Approximations

Idée : Déterminer une solution approchée, faisable en temps polynomial

Facteur d'approximation : C'est le rapport

qappro qexacte

en notant *qappro* la qualité de la solution approchée, et *qexacte* la qualité de la solution exacte

Approximations

Idée : Déterminer une solution approchée, faisable en temps polynomial

Facteur d'approximation : C'est le rapport

qappro qexacte

en notant *qappro* la qualité de la solution approchée, et *qexacte* la qualité de la solution exacte

Algorithme de Christofides: 3/2-approximation

Table des matières

- 1 Présentation du problème
- 2 Algorithme de Christofides
- 3 Implémentation
- 4 Résultats
- 6 Annexes

Modélisation

Objet : Graphe complet pondéré et non orienté

Modélisation

Objet : Graphe complet pondéré et non orienté

Definition

Un **cycle hamiltonien** est un chemin qui passe par tous les sommets une fois et une seule.

On appelle **poids** d'un ensemble d'arêtes la somme des poids de ses arêtes.

Modélisation

Objet : Graphe complet pondéré et non orienté

Definition

Un **cycle hamiltonien** est un chemin qui passe par tous les sommets une fois et une seule.

On appelle **poids** d'un ensemble d'arêtes la somme des poids de ses arêtes.

Objectif: Cycle hamiltonien de poids minimal

L'algorithme 1/3

Soit G = (V, E) un graphe.

Hypothèse : Les arêtes respectent l'inégalité triangulaire.

L'algorithme 1/3

Soit G = (V, E) un graphe. **Hypothèse**: Les arêtes respectent l'inégalité triangulaire.

Definition

Un **arbre** de G est un sous-graphe de G connexe sans cycle.

Un arbre de *G* est dit **couvrant** s'il contient tous les sommets de *G*.

L'algorithme 1/3

Soit G = (V, E) un graphe.

Hypothèse : Les arêtes respectent l'inégalité triangulaire.

Definition

Un **arbre** de G est un sous-graphe de G connexe sans cycle.

Un arbre de *G* est dit **couvrant** s'il contient tous les sommets de *G*.

1. Déterminer un arbre couvrant de poids minimal T de G.

L'algorithme 2/3

On note I l'ensemble des **sommets de degré impair** de T et $G|_I$ le sous-graphe induit par ces sommets.

L'algorithme 2/3

On note I l'ensemble des **sommets de degré impair** de T et $G|_I$ le sous-graphe induit par ces sommets.

Definition

Un **couplage parfait** M de G est un ensemble d'arêtes de G tel que chaque sommet de G soit adjacent à une unique arête de M.

L'algorithme 2/3

On note I l'ensemble des **sommets de degré impair** de T et $G|_I$ le sous-graphe induit par ces sommets.

Definition

Un **couplage parfait** M de G est un ensemble d'arêtes de G tel que chaque sommet de G soit adjacent à une unique arête de M.

2. Déterminer un couplage parfait de poids minimal M de $G|_{I}$.

L'algorithme 3/3

Definition

On appelle **cycle eulérien** de G tout cycle de G passant une et une seule fois par chaque arête de G.

Un graphe est dit **eulérien** s'il admet un tel cycle.

L'algorithme 3/3

Definition

On appelle **cycle eulérien** de G tout cycle de G passant une et une seule fois par chaque arête de G.

Un graphe est dit **eulérien** s'il admet un tel cycle.

TUM

3. Déterminer le cycle eulérien de $T \cup M$ et retirer les sommets qui y apparaissent 2 fois pour avoir le cycle hamiltonien.

Table des matières

- 3 Implémentation

Arbre couvrant de poids minimal

On note n le nombre de sommets de G et m son nombre d'arêtes.

Algorithme de Prim : Complexité $O(n^2) = O(m)$ ici

Algorithme de Kruskal : Complexité O(mlog(m))

Algorithme de Boruvka : Complexité O(mlog(n))

Algorithme de Drake et Hougardy : 2-approximation de complexité O(m)

Algorithme de Drake et Hougardy : 2-approximation de complexité O(m)

Algorithme de Christofides "affaibli": 2-approximation

Algorithme de Drake et Hougardy : 2-approximation de complexité O(m)

Algorithme de Christofides "affaibli" : 2-approximation

Déroulement :

► Choisir un point de départ *S* (arbitraire)

Algorithme de Drake et Hougardy : 2-approximation de complexité O(m)

Algorithme de Christofides "affaibli" : 2-approximation

Déroulement :

- ► Choisir un point de départ *S* (arbitraire)
- ► Initialiser deux couplages *M*1 et *M*2 vides

Algorithme de Drake et Hougardy : 2-approximation de complexité O(m)

Algorithme de Christofides "affaibli": 2-approximation

Déroulement :

- ► Choisir un point de départ *S* (arbitraire)
- ► Initialiser deux couplages *M*1 et *M*2 vides
- ► Ajouter l'arête la plus légère adjacente à S à M1, notons-la (ST)

Algorithme de Drake et Hougardy : 2-approximation de complexité O(m)

Algorithme de Christofides "affaibli": 2-approximation

Déroulement :

- ► Choisir un point de départ *S* (arbitraire)
- ► Initialiser deux couplages *M*1 et *M*2 vides
- ► Ajouter l'arête la plus légère adjacente à S à M1, notons-la (ST)
- Ajouter l'arête la plus légère adjacente à *T* à M2 (autre que (ST)), notons-la (TU)

► Itérer le processus à partir de *U* sans revenir sur un sommet déjà visité

- ► Itérer le processus à partir de *U* sans revenir sur un sommet déjà visité
- Quand tous les sommets ont été visités,
 M1 et M2 sont des couplages parfaits

- ► Itérer le processus à partir de *U* sans revenir sur un sommet déjà visité
- Quand tous les sommets ont été visités,
 M1 et M2 sont des couplages parfaits
- ► Le plus léger des deux sera au pire deux fois plus lourd qu'un couplage parfait de poids minimal

Propriété : Un graphe connexe dont tous les sommets sont de degré pair est eulérien.

Propriété : Un graphe connexe dont tous les sommets sont de degré pair est eulérien.

Algorithme d'Euler-Hierholzer : Complexité O(m)

Propriété : Un graphe connexe dont tous les sommets sont de degré pair est eulérien.

Algorithme d'Euler-Hierholzer : Complexité O(m)

Principe:

► On choisit un sommet (arbitraire)

Propriété : Un graphe connexe dont tous les sommets sont de degré pair est eulérien.

Algorithme d'Euler-Hierholzer : Complexité O(m)

Principe:

- ► On choisit un sommet (arbitraire)
- On parcourt le graphe afin de créer un cycle

Second cycle: 4, 5, 6, 7, 4 Concaténation: 1, 2, 3,

4, 5, 6, 7, 4, 1

 On recommence tant qu'il reste un sommet avec une arête adjacente non déjà visitée

Cycle eulérien 2/2

Second cycle: 4, 5, 6, 7, 4 Concaténation: 1, 2, 3,

4, 5, 6, 7, 4, 1

- On recommence tant qu'il reste un sommet avec une arête adjacente non déjà visitée
- On insère chaque cycle obtenu dans le cycle initial

Cycle eulérien 2/2

Second cycle: 4, 5, 6, 7, 4 Concaténation: 1, 2, 3,

4, 5, 6, 7, 4, 1

- On recommence tant qu'il reste un sommet avec une arête adjacente non déjà visitée
- On insère chaque cycle obtenu dans le cycle initial
- ► On obtient ainsi un cycle eulérien

Passage au cycle hamiltonien

Pour obtenir un cycle hamiltonien :Pour chaque sommet B visité plus d'une fois,

remplacer les arêtes (AB) et (BC) par (AC)

Annexes

- 1 Présentation du problème
- 2 Algorithme de Christofides
- 3 Implémentation
- 4 Résultats
- **5** Annexes

Complexité totale

- Arbre couvrant de poids minimal : $O(n^2)$
- ▶ Trouver les sommets de degré impair : O(n)
- ightharpoonup Couplage parfait de poids minimal (approché) : O(m)
- ightharpoonup Cycle eulérien : O(m)
- ▶ Trouver le cycle hamiltonien : O(n)

Complexité totale

- ightharpoonup Arbre couvrant de poids minimal : $O(n^2)$
- ▶ Trouver les sommets de degré impair : O(n)
- ightharpoonup Couplage parfait de poids minimal (approché) : O(m)
- ightharpoonup Cycle eulérien : O(m)
- ▶ Trouver le cycle hamiltonien : O(n)

► Complexité totale : $O(n^2)$

Temps d'exécution 1/2

Temps d'exécution en fonction du nombre de sommets

Temps d'exécution 2/2

 $t_{\it chris}$: temps d'exécution de l'algorithme de Christofides affaibli

t_{naif} : temps d'exécution de l'algorithme naïf

Précision

Annexes

- 1 Présentation du problème
- 2 Algorithme de Christofides
- 3 Implémentation
- 4 Résultats
- 6 Annexes

Preuve du facteur d'approximation

On note C le **cycle hamiltonien de poids minimal** et w(C) son poids.

Puisqu'en enlevant une arête à ce cycle on obtient un arbre couvrant, il vient $w(T) \le w(C)$.

Annexes

Annexes

Preuve du facteur d'approximation

On note C le cycle hamiltonien de poids minimal et w(C) son poids.

Puisqu'en enlevant une arête à ce cycle on obtient un **arbre couvrant**, il vient $w(T) \le w(C)$.

On note C' le cycle hamiltonien de poids minimal de $G|_{I}$.

▶ L'inégalité triangulaire nous assure $w(C') \le w(C)$.

0

Preuve du facteur d'approximation

On note C le cycle hamiltonien de poids minimal et w(C) son poids.

Puisqu'en enlevant une arête à ce cycle on obtient un **arbre** couvrant, il vient $w(T) \le w(C)$.

On note C' le cycle hamiltonien de poids minimal de $G|_{I}$.

- ▶ L'inégalité triangulaire nous assure $w(C') \le w(C)$.
- ▶ De plus, en enlevant une arête sur 2 de ce cycle, on obtient un **couplage parfait**. Ce dernier (ou son complémentaire) est de poids inférieur à w(C')/2 donc $w(M) \le w(C')/2 \le w(C)/2$.

0

Preuve du facteur d'approximation

On note C le cycle hamiltonien de poids minimal et w(C) son poids.

Puisqu'en enlevant une arête à ce cycle on obtient un **arbre couvrant**, il vient $w(T) \le w(C)$.

On note C' le cycle hamiltonien de poids minimal de $G|_{I}$.

- ▶ L'inégalité triangulaire nous assure $w(C') \le w(C)$.
- ▶ De plus, en enlevant une arête sur 2 de ce cycle, on obtient un **couplage parfait**. Ce dernier (ou son complémentaire) est de poids inférieur à w(C')/2 donc $w(M) \le w(C')/2 \le w(C)/2$.
- ► Finalement, $w(T) + w(M) \le 3/2w(C)$. Rq: Le passage du cycle eulérien au hamiltonien conserve cette inégalité.