1 Teoria dos Números

Propriedades dos números inteiros $\mathbb Z$ com respeito às operações elementares.

Equação diofantina: Equação polinomial que permite a duas ou mais variáveis assumirem apenas valores inteiros.

2 Conceitos Fundamentais

2.1 Divisão Euclidiana

Sejam $a, b \in \mathbb{Z}$ com $b \neq 0$, a divisão euclidiana de a por b consiste na identidade

$$a = b \cdot q + r$$
 $q, r \in \mathbb{Z} \land 0 \le r < b$

2.2 Divisibilidade

Sejam $a, b \in \mathbb{Z}$ com $b \neq 0$, dizemos que b divide a, denotando $b \mid a$, se

$$\exists c \in \mathbb{Z} : a = b \cdot c$$

Propriedades:

• $\forall a \in \mathbb{Z} : a \mid 0$

• $\forall a \in \mathbb{Z} : \pm 1 \mid a$

• $\forall a \in \mathbb{Z} : \pm a \mid a$

• $\forall c \in \mathbb{Z} : a \mid b \implies ac \mid bc$

 $\bullet \ \forall \, x,y \in \mathbb{Z}: \ a \mid b \, \wedge \, a \mid c \implies a \mid (bx + cy)$

• $\forall a, b \in \mathbb{Z} : a \mid b \land b \mid a \implies b = \pm a$

2.3 Máximo Divisor Comum

Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, o máximo divisor comum de a e b é um inteiro d tal que

$$d \mid a \wedge d \mid b$$

$$\forall d': d' \mid a \wedge d' \mid b \implies d' \mid d$$

<u>Lema:</u> Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, e $q, r \in \mathbb{Z}$ com $a = b \cdot q + r$. O $\operatorname{mdc}(a, b)$, se existe, é igual a $\operatorname{mdc}(b, r)$.

Identidade de Bézout: Sejam $a,b\in\mathbb{Z}$ com $(a,b)\neq(0,0),$ então

$$\exists \alpha, \beta \in \mathbb{Z} : \alpha \cdot a + \beta \cdot b = \operatorname{mdc}(a, b)$$

1

Lema de Euclides: Sejam $a, b, c \in \mathbb{Z}$ com $a, b, c \neq 0$. Se a|bc e $\mathrm{mdc}(a, b) = 1$, então a|c.

Propriedades: Sejam $a, b, c \in \mathbb{Z}$ com $a, b, c \neq 0$

- $\operatorname{mdc}(a, c) = \operatorname{mdc}(b, c) \iff \operatorname{mdc}(ab, c) = 1$
- $\operatorname{mdc}(a,b) = d \iff \operatorname{mdc}\left(\frac{a}{d}, \frac{b}{d}\right) = 1$
- $\bullet \ a \mid c \, \wedge \, b \mid c \implies \left(\frac{ab}{\mathrm{mdc}(a,b)}\right) \bigg| \, c$
- $(a \mid c \land b \mid c \land \operatorname{mdc}(a, b) = 1) \implies ab \mid c$

2.4 Mínimo Multiplo Comum

Sejam $a,b\in\mathbb{Z}$ com $(a,b)\neq(0,0),$ o mínimo multiplo comum de a e b é um inteiro m tal que

$$\underline{\text{Teorema:}} \ \forall \, a,b \in \mathbb{Z}, (a,b) \neq (0,0): \ \operatorname{mmc}(a,b) = \frac{ab}{\operatorname{mdc}(a,b)}$$

2.5 Números Primos

Um número p é primo se os únicos divisores de p são ± 1 e $\pm p$.

Lema: Seja $p \in \mathbb{Z}$ primo, e $x_1, \ldots, x_n \in \mathbb{Z}$. Se $p \mid (x_1 \cdot \ldots \cdot x_n)$, então $p \mid x_i$ para ao menos algum $i \in [1, n] \subset \mathbb{Z}$.

Teorema: Qualquer número natural $n \ge 2$ é produto de um conjunto único e finito de números primos.

Corolário: Seja $n \in \mathbb{Z}$ com $n \neq 0, \pm 1$.

Sejam $p_1, \ldots, p_n \in \mathbb{Z}$ primos.

Sejam $h_1, \ldots, h_n \in \mathbb{Z}$ maiores que 0.

n pode ser escrito como $n=\pm\left(p_1^{h_1}+\ldots+p_n^{h_n}\right)$