10. Orientované grafy (orientované cesty a kružnice, souvislost a silná souvislost, turnaj, eulerovský graf, Dijkstrův a Floyd-Warshallův algoritmus pro hledání cesty minimální délky).

Orientované grafy

Orientovaný graf je trojice $G=(U,H,\varepsilon)$, kde U je konečná množina vrcholů, H je konečná množina orientovaných hran. Přitom $\varepsilon\colon H\to \{(u,v)\mid u,v\in U\}\cup \{u\mid u\in U\}$, je zobrazení, které každé hraně přiřadí buď orientovanou dvojici uzlů (u,v) nebo uzel u. V prvním případě říkáme, že hrana vede z uzlu u do v, v druhém případě říkáme, že hrana tvoří smyčku v uzlu u.

Nechť trojice $G=(U,H,\varepsilon)$ je orientovaný graf. Pak definujeme $u\in U$ pro uzel dvě čísla:

② deg. $(u) = |\{h \in H \mid \exists v \in H : \varepsilon(h) = (v, u)\}|$, které nazýváme **vstupním stupněm uzlu**;

Číslo deg $_+$ (u) se rovná počtu hran, které vedou z nějakého uzlu do u, číslo deg $_-$ (u) se rovná počtu hran, které vedou z uzlu u do nějakého uzlu.

Počteční uzel grafu má $\deg_+(u) = 0$, koncový uzel grafu má $\deg_-(u) = 0$.

Analogicky k obyčejnému grafu, lze definovat varianty orientovaného sledu, orientovaného tahu, orientované cesty a orientované kružnice.

u_1 u_2 u_3	0
u_{3} u_{4}	u_7°
u_6	

Uzel	\deg_+	deg
u_1	3	1
u_2	1	1
u_3	2	2
114	0	4
u ₅	1	0
u_6	1	0
u_7	0	0

Máme-li zadán obyčejný graf G = U, H je k němu možné definovat orientovaný graf $G' = (U, H', \varepsilon)$ tak, že pro každou hranu $\{u, v\} \in H$ existují v H' hrany h_1 a h_2 takové, že ε (h_1) = $(u, v) \land \varepsilon$ (h_2) = (v, u). Takovýto graf G' se nazývá **symetrickou orientací grafu** G. Jinými slovy hrana v obyčejném grafu mezi uzly u a v sebe nahradí oběma orientovanými hranami mezi těmito uzly v novém grafu.

Máme-li zadán obyčejný graf G = (U, H) je k němu možné definovat orientovaný graf $G' = (U, H', \varepsilon)$ tak, že pro každou hranu $\{u, v\} \in H$ existují v H' hrana h taková, že ε (h) = (u, v) a neexistuje hrana h' taková, že ε (h) = (v, u). Tento graf se nazývá **orientace grafu** G. Je zřejmé, že na rozdíl od symetrické

orientace grafu, která je jednoznačně definována, může existovat k obyčejnému grafu více jeho orientací a navíc orientace grafu neobsahuje smyčky.

Máme-li zadán orientovaný graf $G=(U,H,\varepsilon)$, potom k němu můžeme sestrojit obyčejný graf G'=(U,H'), který se nazývá **symetrizací grafu** G, kde $H'=\{\{u,v\}\mid u,v\in H,u\neq v,\exists h\in H\colon \varepsilon\ (h)=(u,v)\ \lor \varepsilon\ (h)=(v,u)\}$. Jinými slovy symetrizace vznikne "zanedbáním" šipek, vícenásobných hran a smyček v původním grafu.

Říkáme, že orientovaný graf je **slabě souvislý**, jestliže jeho symetrizací vznikne obyčejný souvislý graf. Říkáme, že orientovaný graf $G = (U, H, \varepsilon)$ je **silně souvislý**, jestliže pro libovolné dva uzly $u, v \in U$ existuje orientovaná cesta z u do v.

Orientovaný graf $G = (U, H, \varepsilon)$ se nazývá **turnaj**, když pro:

Řečeno jinak existuje pro každou dvojici různých uzlů jediná orientovaná hrana jdoucího z jednoho uzlu do druhého a u každého uzlu je smyčka.

Eulerovské grafy

Orientovaný graf $G = (U, H, \varepsilon)$ se nazývá **eulerovským grafem**, jestliže v něm existuje UZAVŘENÝ tah (\iff "nakreslí se jedním tahem a skončí se tam, kde se začalo") délky obsahující všechny orientované hrany. Vzhledem k tomu, že v tahu se nesmějí opakovat hrany, je orientovaný graf eulerovský právě tehdy, když se všechny jeho orientované hrany dají nakreslit ve směru šipek jedním tahem, aniž zvedneme tužku s papíru a po jedné hraně táhneme právě jednou.

C,A,D,F,C,F,E,B,E,D,B,A,C

Platí věta, že souvislý orientovaný graf $G = (U, H, \varepsilon)$ je právě tehdy eulerovský, když platí deg $_+$ (u) = deg $_-$ (u) pro $\forall u \in U$.

Délky hran a cest

Pro účely měření délek hran a cest budeme od teď pracovat orientovanými grafy bez vícenásobných

hran a smyček. "Hrana" bude vždy znamenat orientovanou hranu a "cesta" orientovanou cestu.

Nechť G = (U, H) je graf a každé hraně $h \in H$ nechť je přiřazeno reálné číslo l(h). Potom tomuto číslu budeme říkat **délka hrany** h. **Délka** d(p) **cesty** p v grafu G se definuje jako součet délek všech hran obsažených v cestě p.

Nechť je dán graf G = (U, H) a $u, v \in U$. Pokud existuje mezi uzly u a v cesta minimální délky, definujeme d(u, v) jako délku této cesty. Pokud z uzlu u do uzlu v vůbec žádná cesta neexistuje, klademe $d(u, v) = \infty$.

Algoritmy pro hledání minimální cesty Dijkstrův algoritmus

Horní odhad vzdálenosti z uzlu s do uzlu v je číslo $D(v):D(v) \ge d(s,v)$.

Pro každý uzel $v \in U$ bude symbol $\pi(v)$ označovat uzel, který bezprostředně předchází uzlu v v cestě minimální délky z s do v zkonstruované Dijsktrovým algoritmem. Pokud taková cesta dosud nebyla zkonstruována, pak $\pi(v) = \emptyset$.

Pro každý uzel $v \in U$ definujeme symbol N(v) označující množinu všech uzlů spojených přímo nějakou hranou s uzlem v, tedy $N(v) = \{w \in U \mid (v,w) \in H\}$.

 $S \subseteq U$ je množina všech uzlů v, pro které už byla Dijsktrovým algoritmem definitivně stanovena cesta minimální délky p(s,v) odpovídající minimální vzdálenosti c(s,v).

Schéma Dijsktrova algoritmu po selsku:

- (1) Přiřaď vzdálenosti všem uzlům, počátečnímu 0 a všem ostatním nekonečno ∞;
- (2) Označ všechny uzly jako nenavštívené, počáteční uzel nastav jako aktuální zpracovávaný;
- (3) Pro aktuální uzel zvaž všechny jeho dosud nenavštívené sousedy a přepočítej pro ně vzdálenosti od počátečního uzlu přes aktuální. Pokud je přepočítaná vzdálenost menší, než ta současná, přiřaď mu tuto vzdálenost.
- (4) Ve chvíli, kdy je přepočet vzdáleností sousedních uzlů hotov, označ aktuální uzel jako navštívený (už nikdy se nebude kontrolovat, jeho hodnota udává konečnou vzdálenost od počátečního uzlu);
 - (5) Z množiny dosud nenavštívených uzlů vyber ten s nejmenší vzdáleností od počátečního uzlu a pokračuj krokem (3) do doby, dokud je množina nenavštívených uzlů neprázdná.

1. krok:
$$S = [s]$$
, $Q = [u, v, w]$, $D(s) = 0$, $D(u) = D(v) = D(w) = \infty$

2. krok:
$$S = \{s, u\}, Q = \{v, w\}, D(s) = 0, D(u) = 3, D(v) = 7, D(w) = \infty$$

 $\pi(u) = s, \pi(v) = s$

3. krok:
$$S = \{s, u, w\}, Q = \{v\}, D(s) = 0, D(u) = 3, D(v) = 6, D(w) = 5$$

 $\pi(u) = s, \pi(v) = u, \pi(w) = u$

4. krok:
$$S = \{s, u, w, v\}, Q = \emptyset, D(s) = 0, D(u) = 3, D(v) = 6, D(w) = 5$$

 $\pi(u) = s, \pi(v) = u, \pi(w) = u$
 $p(s, u) = s \rightarrow u, p(s, v) = s \rightarrow u \rightarrow v, p(s, w) = s \rightarrow u \rightarrow w$

Dijkstrův algoritmus nelze použít, pokud se v grafu objevují hrany se zápornou délkou, tento nešvar řeší...

Floyd-Warshallův algoritmus

Při každém zadání délek hran tento algoritmus nalezne cestu minimální délky z každého uzlu do každého jiného uzlu, a pokud taková cesta neexistuje kvůli kružnici se zápornou délkou, tuto kružnici odhalí.

Uvažujme graf G = (U,H), který má |U| = n uzlů a délky hran jsou zadány maticí A, pak budeme používat matici P, kde jsou jednotlivé prvky p_{ij} nastaveny na hodnou sloupce j ve, kterém se nacházejí. Algoritmus má vždy n iterací.

Začneme s maticí $A^0=A$, $P^0=P$ a v i-té iteraci vytvoříme matice A^i , P^i pomocí matic A^{i-1} , P^{i-1} . Nakonec tedy dostaneme matice A^n , P^n . Prvky matic A^j , P^j , j=1,2,...,n se vypočítají následujícím způsobem:

• if
$$\left(a_{ik}^{j-1} \leq a_{ii}^{j-1} + a_{ik}^{j-1}\right)$$
 then $\left\{a_{ik}^{j} = a_{ik}^{j-1}; \ p_{ik}^{j} = p_{ik}^{j-1}\right\}$

• if
$$\left(a_{ik}^{j-1}>a_{ij}^{j-1}+a_{jk}^{j-1}\right)$$
 then $\left\{a_{ik}^{j}=a_{ij}^{j-1}+a_{jk}^{j-1};\ p_{ik}^{j}=j\right\}$

$$\Rightarrow A^{0} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ \infty & 10 & 0 & 3 \\ 5 & 6 & 6 & 0 \end{bmatrix}, P^{0} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

$$j=1:A^0=\begin{bmatrix}0&4&-3&\infty\\-3&0&-7&\infty\\\infty&10&0&3\\5&6&6&0\end{bmatrix}\Rightarrow A^1=\begin{bmatrix}0&4&-3&\infty\\-3&0&-7&\infty\\\infty&10&0&3\\5&6&2&0\\6>(5-3)\end{bmatrix}, P^1=\begin{bmatrix}1&2&3&4\\1&2&3&4\\1&2&3&4\\1&2&1&4\end{bmatrix}$$

$$j = 2: A^{1} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ \infty & 10 & 0 & 3 \\ 5 & 6 & 2 & 0 \end{bmatrix} \Rightarrow A^{2} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ 7 & 10 & 0 & 3 \\ \infty > (-3+10) & & & & \\ 3 & 6 & -1 & 0 \\ 5 > (-3+6) & 2 > (-7+6) \end{bmatrix}, P^{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

$$j = 3: A^{2} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & \infty \\ 7 & 10 & 0 & 3 \\ 3 & 6 & -1 & 0 \end{bmatrix} \Rightarrow A^{3} = \begin{bmatrix} 0 & 4 & -3 & 0 \\ & & & \infty > (-3+3) \\ -3 & 0 & -7 & -4 \\ & & & \infty > (3-7) \\ 7 & 10 & 0 & 3 \\ 3 & 6 & -1 & 0 \end{bmatrix}, P^{3} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

$$j = 4: A^{3} = \begin{bmatrix} 0 & 4 & -3 & 0 \\ -3 & 0 & -7 & -4 \\ 7 & 10 & 0 & 3 \\ 3 & 6 & -1 & 0 \end{bmatrix} \Rightarrow A^{4} = \begin{bmatrix} 0 & 4 & -3 & \infty \\ -3 & 0 & -7 & -4 \\ 6 & 9 & 0 & 3 \\ 7 > (3+3) & 10 > (3+6) \\ 3 & 6 & -1 & 0 \end{bmatrix}, P^{4} = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 4 & 4 & 3 & 4 \\ 2 & 2 & 2 & 4 \end{bmatrix}$$

Pro iteraci j sledujeme matici A^{j-1} , a to pouze její j-tý řádek a j-tý sloupec (tedy takový kříž). Pro všechny prvky z A^{j-1} porovnáváme jejich hodnotu s průmětem na tento kříž (tedy se součtem s odpovídajícími prvky na stejném řádku a sloupci v kříži). Pokud je součet menší, v matici A^j zapíšeme součet a v matici P^j zapíšeme hodnotu j.

Pokud kdykoli na hlavní diagonále *A* vyjde něco jiného než 0, tak v grafu existuje záporná kružnice a tedy neexistuje cesta s minimální délkou.