Continuous-discrete smoothing of diffusions

Frank van der Meulen Moritz Schauer Imperial College London 2017-15-12

Delft University of Technology Mathematical Institute Leiden

Overview

Problem description

Simulating diffusion bridges

The general case: blockwise updating

The general case: single block updating

A novel smoothing algorithm

Numerical illustrations

Lorenz attractor

Simple pendulum

• Suppose X is a multivariate diffusion process in \mathbb{R}^d :

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t,$$

where $b \in \mathbb{R}^d$, $\sigma \in \mathbb{R}^{d \times d'}$ and W a $\mathbb{R}^{d'}$ -valued Wiener process.

• Suppose X is a multivariate diffusion process in \mathbb{R}^d :

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t,$$

where $b \in \mathbb{R}^d$, $\sigma \in \mathbb{R}^{d \times d'}$ and W a $\mathbb{R}^{d'}$ -valued Wiener process.

ullet Informally, for h small and $Z \sim N_{d'}(0,I)$

$$X_{t+h} = X_t + hb(t, X_t) + \sigma(t, X_t)\sqrt{h}Z,$$

• Suppose X is a multivariate diffusion process in \mathbb{R}^d :

$$dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t,$$

where $b \in \mathbb{R}^d$, $\sigma \in \mathbb{R}^{d \times d'}$ and W a $\mathbb{R}^{d'}$ -valued Wiener process.

• Informally, for h small and $Z \sim N_{d'}(0,I)$

$$X_{t+h} = X_t + hb(t, X_t) + \sigma(t, X_t)\sqrt{h}Z,$$

• Let $t_0 < t_1 < \ldots < t_n$ and assume observations

$$V_i = L_i X_{t_i} + \eta_i \qquad i = 0, \dots, n,$$

with each L_i an $m_i \times d$ matrix with $m_i \leq d$ and $\{\eta_i\}$ a sequence of IID random variables (independent of X).

Examples for L_i

- 1. Suppose X is two-dimensional.
 - $L_i = I_2$: observe all components.
 - $L_i = \begin{bmatrix} 1 & 0 \end{bmatrix}$: observe only first component.
 - ullet $L_i = egin{bmatrix} 1 & 1 \end{bmatrix}$: observe the sum of the two components.

Examples for L_i

- 1. Suppose X is two-dimensional.
 - $L_i = I_2$: observe all components.
 - $L_i = \begin{bmatrix} 1 & 0 \end{bmatrix}$: observe only first component.
 - ullet $L_i = egin{bmatrix} 1 & 1 \end{bmatrix}$: observe the sum of the two components.
- 2. Suppose X is three-dimensional.

$$L_i = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

Observe the difference between

- components one and two;
- components two and three.

Let

$$\mathcal{D} = \{V_i, i = 0, \dots, n\}.$$

 ${\bf Continuous\text{-}discrete\ smoothing}:\ {\bf reconstruct\ the\ path}$

$$X := (X_t, t \in [0, t_n])$$
, conditional on \mathcal{D} .

Let

$$\mathcal{D} = \{V_i, i = 0, \dots, n\}.$$

Continuous-discrete smoothing: reconstruct the path $X:=(X_t,\,t\in[0,t_n])$, conditional on $\mathcal{D}.$

Motivation: suppose b and σ depend on parameter θ .

Let

$$\mathcal{D} = \{V_i, i = 0, \dots, n\}.$$

Continuous-discrete smoothing: reconstruct the path $X:=(X_t,\,t\in[0,t_n])$, conditional on $\mathcal{D}.$

Motivation: suppose b and σ depend on parameter θ .

• Equip θ with a prior distribution and compute $\theta \mid \mathcal{D}$.

Let

$$\mathcal{D} = \{V_i, i = 0, \dots, n\}.$$

Continuous-discrete smoothing: reconstruct the path $X := (X_t, t \in [0, t_n])$, conditional on \mathcal{D} .

Motivation: suppose b and σ depend on parameter θ .

- Equip θ with a prior distribution and compute $\theta \mid \mathcal{D}$.
- ullet Main difficulty: transition densities of X are intractable.

Let

$$\mathcal{D} = \{V_i, i = 0, \dots, n\}.$$

Continuous-discrete smoothing: reconstruct the path $X := (X_t, t \in [0, t_n])$, conditional on \mathcal{D} .

Motivation: suppose b and σ depend on parameter θ .

- Equip θ with a prior distribution and compute $\theta \mid \mathcal{D}$.
- ullet Main difficulty: transition densities of X are intractable.

Data-augmentation: Sample from $(\theta, X) \mid \mathcal{D}$ by alternating the steps

- 1. sample $\theta \mid X$;
- 2. sample $X \mid (\theta, \mathcal{D})$.

A simplified problem

Problem is easier in case of

- full observations and
- no noise on the observations.

Simulation of independent diffusion bridges.

Simulating diffusion bridges

Notation: $X_0 = x_0$, we condition on $X_T = x_T$.

• Consider $dX_t = \sigma dW_t$, with $\sigma \in (0, \infty)$.

Notation: $X_0 = x_0$, we condition on $X_T = x_T$.

• Consider $dX_t = \sigma dW_t$, with $\sigma \in (0, \infty)$.

The conditioned process X^* satisfies the SDE

$$dX_t^* = \frac{x_T - X_t^*}{T - t}dt + \sigma dW_t, \qquad X_0^* = x_0.$$

Notation: $X_0 = x_0$, we condition on $X_T = x_T$.

• Consider $dX_t = \sigma dW_t$, with $\sigma \in (0, \infty)$.

The conditioned process X^* satisfies the SDE

$$dX_t^* = \frac{x_T - X_t^*}{T - t}dt + \sigma dW_t, \qquad X_0^* = x_0.$$

ullet Assume transition densities p of X so that

$$P^{(t,x)}(X_T \in A) = \int_A p(t,x;T,v)dv.$$

Notation: $X_0 = x_0$, we condition on $X_T = x_T$.

• Consider $dX_t = \sigma dW_t$, with $\sigma \in (0, \infty)$.

The conditioned process X^* satisfies the SDE

$$dX_t^* = \frac{x_T - X_t^*}{T - t}dt + \sigma dW_t, \qquad X_0^* = x_0.$$

ullet Assume transition densities p of X so that

$$P^{(t,x)}(X_T \in A) = \int_A p(t,x;T,v)dv.$$

• Define $r(t,x) \equiv r(t,x;T,x_T) = \nabla_x \log p(t,x;T,x_T)$. Then

$$dX_t^* = ar(t, X_t^*)dt + \sigma dW_t, \qquad X_0^* = u,$$

where $a = \sigma \sigma'$.

Notation: $X_0 = x_0$, we condition on $X_T = x_T$.

• Consider $dX_t = \sigma dW_t$, with $\sigma \in (0, \infty)$.

The conditioned process X^* satisfies the SDE

$$dX_t^* = \frac{x_T - X_t^*}{T - t}dt + \sigma dW_t, \qquad X_0^* = x_0.$$

ullet Assume transition densities p of X so that

$$P^{(t,x)}(X_T \in A) = \int_A p(t,x;T,v)dv.$$

• Define $r(t,x) \equiv r(t,x;T,x_T) = \nabla_x \log p(t,x;T,x_T)$. Then

$$dX_t^* = ar(t, X_t^*)dt + \sigma dW_t, \qquad X_0^* = u,$$

where $a = \sigma \sigma'$.

This holds in much greater generality.

Diffusion bridges

Bridge from $(0, x_0)$ to (T, x_T)

$$dX_t^{\star} = b^{\star}(t, X_t^{\star}) dt + \sigma(t, X_t^{\star}) dW_t,$$

with drift

$$b^{\star}(t,x) = b(t,x) + a(t,x) \underbrace{\nabla_x \log p(t,x;T,x_T)}_{r(t,x)}.$$

Diffusion bridges

Bridge from $(0, x_0)$ to (T, x_T)

$$dX_t^* = b^*(t, X_t^*) dt + \sigma(t, X_t^*) dW_t,$$

with drift

$$b^{\star}(t,x) = b(t,x) + a(t,x) \underbrace{\nabla_x \log p(t,x;T,x_T)}_{r(t,x)}.$$

Idea: b^* is intractable, so approximate it by something tractable.

Proposal (proxy for bridge) from $(0, x_0)$ to (T, x_T)

$$dX_t^{\circ} = b^{\circ}(t, X_t^{\circ})dt + \sigma(t, X_t^{\circ})dW_t, \quad X_0^{\circ} = x_0$$

• Delyon & Hu (2006): Take

$$b^{\circ}(t, X_t^{\circ}) = \lambda b(t, X_t^{\circ}) + \frac{x_T - X_t^{\circ}}{T - t}.$$

with $\lambda \in \{0,1\}$.

• Delyon & Hu (2006): Take

$$b^{\circ}(t, X_t^{\circ}) = \lambda b(t, X_t^{\circ}) + \frac{x_T - X_t^{\circ}}{T - t}.$$

with $\lambda \in \{0,1\}$.

• Durham & Gallant (2002): case $\lambda = 0$ with correction on Euler discretisation.

• Delyon & Hu (2006): Take

$$b^{\circ}(t, X_t^{\circ}) = \lambda b(t, X_t^{\circ}) + \frac{x_T - X_t^{\circ}}{T - t}.$$

with $\lambda \in \{0,1\}$.

- DURHAM & GALLANT (2002): case $\lambda = 0$ with correction on Euler discretisation.
- WHITAKER ET AL.(2017): suppose x(t) solves

$$dx(t) = b(t, x(t)) dt.$$

Take

$$b^{\circ}(t,X_t^{\circ}) = b(t,x(t)) + \frac{x_T - X_t^{\circ} - \int_t^T b(s,x(s)) \,\mathrm{d}s}{T - t}.$$

Other approaches

- Bladt, Finch, Sörensen (2016) coupling methods, requires ergodicity.
- \bullet Beskos and Roberts (2006) exact algorithm, requires diffusion to be reducible
- \bullet LINDSTRÖM (2012) refinement of work by Durham & Gallant
- many others

Guided proposals for diffusion bridges

Bridge from $(0, x_0)$ to (T, x_T)

$$dX_t^{\star} = b^{\star}(t, X_t^{\star})dt + \sigma(t, X_t^{\star})dW_t, \quad X_0^{\star} = x_0$$

with drift

$$b^{\star}(t,x) = b(t,x) + a(t,x) \underbrace{\nabla_x \log p(t,x;T,x_T)}_{r(t,x)}.$$

Guided proposals for diffusion bridges

Bridge from $(0, x_0)$ to (T, x_T)

$$dX_t^* = b^*(t, X_t^*)dt + \sigma(t, X_t^*)dW_t, \quad X_0^* = x_0$$

with drift

$$b^{\star}(t,x) = b(t,x) + a(t,x) \underbrace{\nabla_x \log p(t,x;T,x_T)}_{r(t,x)}.$$

Proposal (proxy for bridge) from $(0, x_0)$ to (T, x_T)

$$dX_t^{\circ} = b^{\circ}(t, X_t^{\circ})dt + \sigma(t, X_t^{\circ})dW_t, \quad X_0^{\circ} = x_0$$

with drift

$$b^{\circ}(t,x) = b(t,x) + a(t,x) \underbrace{\nabla_x \log \widetilde{p}(t,x;T,x_T)}_{\widetilde{r}(t,x)}.$$

Guided proposals for diffusion bridges

Bridge from $(0, x_0)$ to (T, x_T)

$$dX_t^* = b^*(t, X_t^*)dt + \sigma(t, X_t^*)dW_t, \quad X_0^* = x_0$$

with drift

$$b^{\star}(t,x) = b(t,x) + a(t,x) \underbrace{\nabla_x \log p(t,x;T,x_T)}_{r(t,x)}.$$

Proposal (proxy for bridge) from $(0, x_0)$ to (T, x_T)

$$dX_t^{\circ} = b^{\circ}(t, X_t^{\circ})dt + \sigma(t, X_t^{\circ})dW_t, \quad X_0^{\circ} = x_0$$

with drift

$$b^{\circ}(t,x) = b(t,x) + a(t,x) \underbrace{\nabla_x \log \widetilde{p}(t,x;T,x_T)}_{\widetilde{r}(t,x)}.$$

Take \widetilde{p} the transition density of auxiliary process \widetilde{X} with

$$d\widetilde{X}_t = \left(\widetilde{\beta}(t) + \widetilde{B}(t)\widetilde{X}_t\right)dt + \widetilde{\sigma}(t)dW_t.$$

Absolute continuity result for guided proposals

Theorem

Assume the diffusion is uniformly elliptic:

eigenvals of $a(t,x) = \sigma(t,x)\sigma(t,x)'$ are bounded away from zero.

Absolute continuity result for guided proposals

Theorem

Assume the diffusion is uniformly elliptic:

eigenvals of $a(t,x) = \sigma(t,x)\sigma(t,x)'$ are bounded away from zero.

If
$$\widetilde{a}(T) = a(T, x_T)$$
, then

$$\frac{d\mathbb{P}^{\star}}{d\mathbb{P}^{\circ}}(X^{\circ}) = \frac{\widetilde{p}(0, u; T, x_{T})}{p(0, u; T, x_{T})} \Psi(X^{\circ})$$

where
$$\Psi(X^{\circ}) = \exp\left(\int_0^T G(s, X_s^{\circ}) \, \mathrm{d}s\right)$$
 is tractable.

Independent proposals sampler:

- 1. Initialise $X = (X_t, t \in [0, T])$.
- 2. Propose $X^{\circ} = (X_t^{\circ}, t \in [0, T])$.
- 3. Update X to X° with probability $1 \wedge \Psi(X^{\circ})\Psi(X)^{-1}$.
- 4. Return to step (2).

Autoregressive proposals sampler:

There exists a mapping g such that $X^{\circ}=g(W)$, with W the driving Wiener process.

- 1. Initialise a Wiener process $Z = (Z_t, t \in [0,T])$. Set $X^{\circ} = g(Z)$.
- 2. Let ${\cal W}$ be Wiener process, independent of ${\cal Z}.$ Propose

$$Z^{\circ} = \sqrt{\lambda}Z + \sqrt{1 - \lambda}W.$$

- 3. Update Z to Z° with probability $1 \wedge \Psi(g(Z^\circ)) \Psi(g(Z))^{-1}$.
- 4. Return to step (2).

Independent proposals sampler:

- 1. Initialise $X = (X_t, t \in [0, T])$.
- 2. Propose $X^{\circ} = (X_t^{\circ}, t \in [0, T])$.
- 3. Update X to X° with probability $1 \wedge \Psi(X^{\circ})\Psi(X)^{-1}$.
- 4. Return to step (2).

Autoregressive proposals sampler:

There exists a mapping g such that $X^{\circ}=g(W)$, with W the driving Wiener process.

- 1. Initialise a Wiener process $Z = (Z_t, t \in [0,T])$. Set $X^{\circ} = g(Z)$.
- 2. Let ${\cal W}$ be Wiener process, independent of ${\cal Z}.$ Propose

$$Z^{\circ} = \sqrt{\lambda}Z + \sqrt{1 - \lambda}W.$$

- 3. Update Z to Z° with probability $1 \wedge \Psi(g(Z^\circ)) \Psi(g(Z))^{-1}$.
- 4. Return to step (2).

Independent proposals sampler:

- 1. Initialise $X = (X_t, t \in [0, T])$.
- 2. Propose $X^{\circ} = (X_t^{\circ}, t \in [0, T])$.
- 3. Update X to X° with probability $1 \wedge \Psi(X^{\circ})\Psi(X)^{-1}$.
- 4. Return to step (2).

Autoregressive proposals sampler:

There exists a mapping g such that $X^{\circ}=g(W)$, with W the driving Wiener process.

- 1. Initialise a Wiener process $Z = (Z_t, t \in [0,T])$. Set $X^{\circ} = g(Z)$.
- 2. Let ${\cal W}$ be Wiener process, independent of ${\cal Z}.$ Propose

$$Z^{\circ} = \sqrt{\lambda}Z + \sqrt{1 - \lambda}W.$$

- 3. Update Z to Z° with probability $1 \wedge \Psi(g(Z^\circ)) \Psi(g(Z))^{-1}$.
- 4. Return to step (2).

Independent proposals sampler:

- 1. Initialise $X = (X_t, t \in [0, T])$.
- 2. Propose $X^{\circ} = (X_t^{\circ}, t \in [0, T])$.
- 3. Update X to X° with probability $1 \wedge \Psi(X^{\circ})\Psi(X)^{-1}$.
- 4. Return to step (2).

Autoregressive proposals sampler:

There exists a mapping g such that $X^{\circ}=g(W)$, with W the driving Wiener process.

- 1. Initialise a Wiener process $Z = (Z_t, t \in [0,T])$. Set $X^{\circ} = g(Z)$.
- 2. Let ${\cal W}$ be Wiener process, independent of ${\cal Z}.$ Propose

$$Z^{\circ} = \sqrt{\lambda}Z + \sqrt{1 - \lambda}W.$$

- 3. Update Z to Z° with probability $1 \wedge \Psi(g(Z^\circ)) \Psi(g(Z))^{-1}$.
- 4. Return to step (2).

Independent proposals sampler:

- 1. Initialise $X = (X_t, t \in [0, T])$.
- 2. Propose $X^{\circ} = (X_t^{\circ}, t \in [0, T])$.
- 3. Update X to X° with probability $1 \wedge \Psi(X^{\circ})\Psi(X)^{-1}$.
- 4. Return to step (2).

Autoregressive proposals sampler:

There exists a mapping g such that $X^{\circ}=g(W)$, with W the driving Wiener process.

- 1. Initialise a Wiener process $Z = (Z_t, t \in [0,T])$. Set $X^{\circ} = g(Z)$.
- 2. Let ${\cal W}$ be Wiener process, independent of ${\cal Z}.$ Propose

$$Z^{\circ} = \sqrt{\lambda}Z + \sqrt{1 - \lambda}W.$$

- 3. Update Z to Z° with probability $1 \wedge \Psi(g(Z^\circ)) \Psi(g(Z))^{-1}$.
- 4. Return to step (2).

Metropolis Hastings step

Independent proposals sampler:

- 1. Initialise $X = (X_t, t \in [0, T])$.
- 2. Propose $X^{\circ} = (X_t^{\circ}, t \in [0, T])$.
- 3. Update X to X° with probability $1 \wedge \Psi(X^{\circ})\Psi(X)^{-1}$.
- 4. Return to step (2).

Autoregressive proposals sampler:

There exists a mapping g such that $X^{\circ}=g(W)$, with W the driving Wiener process.

Choose persistence parameter $\lambda \in [0, 1)$.

- 1. Initialise a Wiener process $Z = (Z_t, t \in [0,T])$. Set $X^{\circ} = g(Z)$.
- 2. Let W be Wiener process, independent of Z. Propose

$$Z^{\circ} = \sqrt{\lambda}Z + \sqrt{1 - \lambda}W.$$

- 3. Update Z to Z° with probability $1 \wedge \Psi(g(Z^\circ)) \Psi(g(Z))^{-1}$.
- 4. Return to step (2).

On the choice of \widetilde{X}

Auxiliary process used for defining X° is given by

$$d\widetilde{X}_t = \left(\widetilde{\beta}(t) + \widetilde{B}(t)\widetilde{X}_t\right) dt + \widetilde{\sigma}(t) dW_t.$$

On the choice of \widetilde{X}

Auxiliary process used for defining X° is given by

$$d\widetilde{X}_t = \left(\widetilde{\beta}(t) + \widetilde{B}(t)\widetilde{X}_t\right) dt + \widetilde{\sigma}(t) dW_t.$$

1. Simplest choice is

$$\widetilde{\beta} \equiv 0$$
 $\widetilde{B} \equiv 0$ $\widetilde{\sigma} = \sigma(T, x_T).$

In case of strong nonlinearities in the drift \boldsymbol{b} this choice will not do.

On the choice of \widetilde{X}

Auxiliary process used for defining X° is given by

$$d\widetilde{X}_t = \left(\widetilde{\beta}(t) + \widetilde{B}(t)\widetilde{X}_t\right) dt + \widetilde{\sigma}(t) dW_t.$$

1. Simplest choice is

$$\widetilde{\beta} \equiv 0$$
 $\widetilde{B} \equiv 0$ $\widetilde{\sigma} = \sigma(T, x_T).$

In case of strong nonlinearities in the drift b this choice will not do.

2. Suppose x(t) solves

$$dx(t) = b(t, x(t)) dt, x(0) = x_0.$$

Take
$$\widetilde{B} \equiv 0$$
 and $\widetilde{\beta}(t) = b(t, x(t))$.

Apply Girsanov's theorem to X and X° on $[0,T-\epsilon].$

Find solution $\gamma(s,x)$ to

$$\sigma \gamma = b - b^{\circ}$$
.

Apply Girsanov's theorem to X and X° on $[0, T - \epsilon]$.

Find solution $\gamma(s,x)$ to

$$\sigma \gamma = b - b^{\circ}$$
.

• Delyon-Hu

$$\sigma(s,x)\gamma(s,x) = \frac{x_T - x}{T - s}$$

No solution unless σ is invertible. No extension to HE case.

Apply Girsanov's theorem to X and X° on $[0,T-\epsilon].$

Find solution $\gamma(s,x)$ to

$$\sigma \gamma = b - b^{\circ}$$
.

• Delyon-Hu

$$\sigma(s,x)\gamma(s,x) = \frac{x_T - x}{T - s}$$

No solution unless σ is invertible. No extension to HE case.

• Guided Proposals

$$\sigma \gamma =$$

Apply Girsanov's theorem to X and X° on $[0,T-\epsilon].$

Find solution $\gamma(s,x)$ to

$$\sigma \gamma = b - b^{\circ}$$
.

• Delyon-Hu

$$\sigma(s,x)\gamma(s,x) = \frac{x_T - x}{T - s}$$

No solution unless σ is invertible. No extension to HE case.

• Guided Proposals

$$\sigma \gamma = a\widetilde{r} =$$

Apply Girsanov's theorem to X and X° on $[0, T - \epsilon]$.

Find solution $\gamma(s,x)$ to

$$\sigma \gamma = b - b^{\circ}$$
.

• Delyon-Hu

$$\sigma(s,x)\gamma(s,x) = \frac{x_T - x}{T - s}$$

No solution unless σ is invertible. No extension to HE case.

• Guided Proposals

$$\sigma \gamma = a\widetilde{r} = \sigma \sigma' \widetilde{r}.$$

Apply Girsanov's theorem to X and X° on $[0, T - \epsilon]$.

Find solution $\gamma(s,x)$ to

$$\sigma \gamma = b - b^{\circ}$$
.

Delyon-Hu

$$\sigma(s,x)\gamma(s,x) = \frac{x_T - x}{T - s}$$

No solution unless σ is invertible. No extension to HE case.

• Guided Proposals

$$\sigma \gamma = a\widetilde{r} = \sigma \sigma' \widetilde{r}.$$

So take

$$\gamma = \sigma' \, \widetilde{r}$$
.

Straightforward extension to HE case.

Work in progress... really need to incorporate \widetilde{B} for this to work.

The general case: blockwise updating

Sampling in blocks

- In case of incomplete observations bridges can no longer be sampled independently.
- Dynamics of the bridge depends on all future conditionings.

Sampling in blocks

- In case of incomplete observations bridges can no longer be sampled independently.
- Dynamics of the bridge depends on all future conditionings.
- Main idea: sample bridges in overlapping blocks.

Related work by Golightly & Wilkinson (2008), Fuchs (2013) and Ditlevsen, Jensen, Papaspiliopoulos.

Sampling filtered diffusion bridges

Let 0 < S < T. It suffices to consider one bridge, denoted X^* , connecting x_0 at time 0 to x_T at time T while satisfying $V_S = v_S$.

Illustration of filtered diffusion bridge with $L = [1 \ 0]$.

SDE for filtered bridge

Theorem

For $t \in [0,T)$, the diffusion conditioned on $V_S = v_S$ and $X_T = x_T$ satisfies the SDE

$$dX_t^{\star} = [b(t, X_t^{\star}) + a(t, X_t^{\star})r(t, X_t^{\star})] dt + \sigma(t, X_t^{\star}) dW_t,$$

where

SDE for filtered bridge

Theorem

For $t \in [0,T)$, the diffusion conditioned on $V_S = v_S$ and $X_T = x_T$ satisfies the SDE

$$dX_t^{\star} = [b(t, X_t^{\star}) + \mathbf{a}(t, X_t^{\star}) \mathbf{r}(t, X_t^{\star})] dt + \sigma(t, X_t^{\star}) dW_t,$$

where
$$a = \sigma \sigma'$$
 and $r(t,x) = \nabla_x \log \rho(t,x)$ with $\rho(t,x)$ equal to

$$\begin{cases} \int p(t,x;S,\xi)p(S,\xi;T,x_T)q(v_S-L\xi)\,\mathrm{d}\xi & t\in[0,S)\\ p(t,x;T,x_T) & t\in[S,T) \end{cases}.$$

SDE for filtered bridge

Theorem

For $t \in [0,T)$, the diffusion conditioned on $V_S = v_S$ and $X_T = x_T$ satisfies the SDE

$$dX_t^{\star} = [b(t, X_t^{\star}) + a(t, X_t^{\star})r(t, X_t^{\star})] dt + \sigma(t, X_t^{\star}) dW_t,$$

where $a = \sigma \sigma'$ and $r(t,x) = \nabla_x \log \rho(t,x)$ with $\rho(t,x)$ equal to

$$\begin{cases} \int p(t,x;S,\xi)p(S,\xi;T,x_T)q(v_S-L\xi)\,\mathrm{d}\xi & t\in[0,S)\\ p(t,x;T,x_T) & t\in[S,T) \end{cases}.$$

The proof is based on the theory of initial enlargement of filtrations.

Guided proposals for filtered bridges

As p is intractable, we define Metropolis-Hastings proposals.

Define process X° by

$$\mathrm{d}X_t^\circ = [b(t,X_t^\circ) + \boldsymbol{a(t,X_t^\circ)} \widetilde{r}(t,X_t^\circ)] \; \mathrm{d}t + \sigma(t,X_t^\circ) \, \mathrm{d}W_t,$$

with $\widetilde{r}(t,x)$ derived from $\widetilde{p}(\cdot,\cdot;\cdot,\cdot)$ which is the transition density of

$$d\widetilde{X}_t = \left(\widetilde{\beta}(t) + \widetilde{B}(t)\widetilde{X}_t\right) dt + \widetilde{\sigma}(t) dW_t.$$

Absolute continuity result for guided proposals

Theorem

Assume uniform ellipticity. Let \mathbb{P}^* and \mathbb{P}° denote the laws of X^* and X° on C([0,T]) respectively. If $\widetilde{a}(T)=a(T,x_T)$, then

$$\frac{\mathrm{d}\mathbb{P}^{\star}}{\mathrm{d}\mathbb{P}^{\circ}}(X^{\circ}) = \frac{\widetilde{\rho}(0, x_{0})}{\rho(0, x_{0})} \Psi(X^{\circ})$$

where

Absolute continuity result for guided proposals

Theorem

Assume uniform ellipticity. Let \mathbb{P}^{\star} and \mathbb{P}° denote the laws of X^{\star} and X° on C([0,T]) respectively. If $\widetilde{a}(T)=a(T,x_T)$, then

$$\frac{\mathrm{d}\mathbb{P}^{\star}}{\mathrm{d}\mathbb{P}^{\circ}}(X^{\circ}) = \frac{\widetilde{\rho}(0, x_0)}{\rho(0, x_0)} \Psi(X^{\circ})$$

where

$$\Psi(X^{\circ}) = \exp\left(\int_{0}^{T} G(s, X_{s}^{\circ}) \, \mathrm{d}s\right),\,$$

with G tractable and depending on b, a, $\widetilde{\beta}$, \widetilde{B} and \widetilde{a} .

Related work

Conditioning on one partial noiseless observation ahead, say $v_T = Lx_T$.

• J.L. MARCHAND (2011): guiding term

$$a(t, X_t^{\circ})L' \left(La(t, X_t^{\circ})L'\right)^{-1} \frac{v_T - LX_t^{\circ}}{T - t}.$$

Related work

Conditioning on one partial noiseless observation ahead, say $v_T = Lx_T$.

• J.L. MARCHAND (2011): guiding term

$$a(t, X_t^{\circ})L' \left(La(t, X_t^{\circ})L'\right)^{-1} \frac{v_T - LX_t^{\circ}}{T - t}.$$

• Arnaudon, Holm, Sommer (2017), hypo-elliptic case where

$$\sigma = \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \qquad L = \begin{bmatrix} I & 0 \end{bmatrix}$$

Related work

Conditioning on one partial noiseless observation ahead, say $v_T = Lx_T$.

• J.L. Marchand (2011): guiding term

$$a(t, X_t^{\circ})L' \left(La(t, X_t^{\circ})L'\right)^{-1} \frac{v_T - LX_t^{\circ}}{T - t}.$$

• Arnaudon, Holm, Sommer (2017), hypo-elliptic case where

$$\sigma = \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \end{bmatrix} \qquad L = \begin{bmatrix} I & 0 \end{bmatrix}$$

Guiding term

$$\sigma(t, X_t^{\circ}) \Sigma_1(t, X_t^{\circ})^+ \frac{v_T - \phi(X_t^{\circ})}{T - t},$$

where ideally

$$\phi(X_t^\circ) = E[V_T \mid X_t^\circ].$$

It turns out that

$$\widetilde{r}(t,x) = \widetilde{H}(t)(\nu(t) - x).$$

It turns out that

$$\widetilde{r}(t,x) = \widetilde{H}(t)(\nu(t) - x).$$

Define
$$H^{\dagger}(t)=\widetilde{H}^{-1}(t).$$

We actually only need to keep track of $\nu(t)$ and $H^\dagger(t)$.

It turns out that

$$\widetilde{r}(t,x) = \widetilde{H}(t)(\nu(t) - x).$$

Define $H^{\dagger}(t) = \widetilde{H}^{-1}(t)$.

We actually only need to keep track of $\nu(t)$ and $H^\dagger(t)$.

(I) For
$$t \in (S,T]$$
,

$$\frac{\mathrm{d}H^{\dagger}(t)}{\mathrm{d}t} = \widetilde{B}(t)H^{\dagger}(t) + H^{\dagger}(t)\widetilde{B}(t)' - \widetilde{a}(t), \qquad H^{\dagger}(T) = 0$$
$$\frac{\mathrm{d}\nu(t)}{\mathrm{d}t} = \widetilde{B}(t)\nu(t) + \widetilde{\beta}(t), \qquad \nu(T) = x_T.$$

(II) Compute

$$H^{\dagger}(S) = H^{\dagger}(S+) - H^{\dagger}(S+)L'\left(\Sigma + LH^{\dagger}(S+)L'\right)^{-1}LH^{\dagger}(S+)$$

and

$$\nu(S) = H^{\dagger}(S) \left(L' \Sigma^{-1} v_S + \widetilde{H}(S+) \nu(S+) \right)$$

(II) Compute

$$H^{\dagger}(S) = H^{\dagger}(S+) - H^{\dagger}(S+)L'\left(\Sigma + LH^{\dagger}(S+)L'\right)^{-1}LH^{\dagger}(S+)$$

and

$$\nu(S) = H^{\dagger}(S) \left(L' \Sigma^{-1} v_S + \widetilde{H}(S+) \nu(S+) \right)$$

(III) For $t \in [0, S]$,

$$\frac{\mathrm{d}H^{\dagger}(t)}{\mathrm{d}t} = \widetilde{B}(t)H^{\dagger}(t) + H^{\dagger}(t)\widetilde{B}(t)' - \widetilde{a}(t), \qquad H^{\dagger}(S)$$

$$\frac{\mathrm{d}\nu(t)}{\mathrm{d}t} = \widetilde{B}(t)\nu(t) + \widetilde{\beta}(t), \qquad \nu(S).$$

- 1. Solve **backward** ODEs for $H^{\dagger}(t)$ and $\nu(t)$.
 - Solve for $t \in (S, T]$.
 - Extract $H^{\dagger}(S)$ and $\nu(S)$.
 - Solve for $t \in [0, S]$.
- 2. Simulate **forward** SDE for X° .

- 1. Solve backward ODEs for $H^{\dagger}(t)$ and $\nu(t)$.
 - Solve for $t \in (S, T]$.
 - Extract $H^{\dagger}(S)$ and $\nu(S)$.
 - Solve for $t \in [0, S]$.
- 2. Simulate **forward** SDE for X° .

This algorithm easily extends to conditioning on multiple future observations.

The general case: single block updating

Let $\mathcal{D} = (V_0, \dots, V_n)$ be the data.

Main idea:

Update $X_0 \mid \mathcal{D}$ and next $X_{(0:n]} := (X_t, \, t \in (0,t_n])$ conditional on $(X_0,\mathcal{D}).$

Let $\mathcal{D} = (V_0, \dots, V_n)$ be the data.

Main idea:

Update $X_0 \mid \mathcal{D}$ and next $X_{(0:n]} := (X_t, \, t \in (0,t_n])$ conditional on $(X_0,\mathcal{D}).$

Questions:

• What is the guiding term?

Let $\mathcal{D} = (V_0, \dots, V_n)$ be the data.

Main idea:

Update $X_0 \mid \mathcal{D}$ and next $X_{(0:n]} := (X_t, \, t \in (0, t_n])$ conditional on (X_0, \mathcal{D}) .

Questions:

- What is the guiding term?
- If we know its form, is it tractable from a computational point of view?

Let $\mathcal{D} = (V_0, \dots, V_n)$ be the data.

Main idea:

Update $X_0 \mid \mathcal{D}$ and next $X_{(0:n]} := (X_t, \, t \in (0, t_n])$ conditional on (X_0, \mathcal{D}) .

Questions:

- What is the guiding term?
- If we know its form, is it tractable from a computational point of view?
- Won't this result in extremely small acceptance probabilities?

SDE for the conditioned process

For $t \in [t_{i-1}, t_i)$, the conditioned process satisfies the SDE

$$\mathrm{d}X_t^\star = b(t,X_t^\star)\,\mathrm{d}t + a(t,X_t^\star)r(t,X_t^\star)\,\mathrm{d}t + \sigma(t,X_t^\star)\,\mathrm{d}W_t, \qquad X_{t_{i-1}}^\star = x_{t_{i-1}}.$$

SDE for the conditioned process

For $t \in [t_{i-1}, t_i)$, the conditioned process satisfies the SDE

$$dX_t^* = b(t, X_t^*) dt + a(t, X_t^*) r(t, X_t^*) dt + \sigma(t, X_t^*) dW_t, \qquad X_{t_{i-1}}^* = x_{t_{i-1}}.$$

Here

•
$$a(t,x) = \sigma(t,x)\sigma(t,x)'$$

SDE for the conditioned process

For $t \in [t_{i-1}, t_i)$, the conditioned process satisfies the SDE

$$dX_t^* = b(t, X_t^*) dt + a(t, X_t^*) r(t, X_t^*) dt + \sigma(t, X_t^*) dW_t, \qquad X_{t_{i-1}}^* = x_{t_{i-1}}.$$

Here

- $a(t,x) = \sigma(t,x)\sigma(t,x)'$
- $r(t,x) = \nabla_x \log \rho(t,x)$, where ρ is defined by

$$\rho(t,x) = \int p(t,x;t_i,\xi_i) \prod_{j=i}^n p(t_j,\xi_j;t_{j+1},\xi_{j+1}) q_j(v_j - L_j\xi_j) \,\mathrm{d}\xi_i \cdots \,\mathrm{d}\xi_n,$$

• q_j the density of the $N(0, \Sigma_j)$ distribution.

Guided proposals

Replace p with $\widetilde{p}.$

Guided proposals

Replace p with \widetilde{p} .

• Formula for Radon-Nikodym derivative remains the same.

Guided proposals

Replace p with \widetilde{p} .

- Formula for Radon-Nikodym derivative remains the same.
- Need to evaluate

$$\widetilde{\rho}(t,x) = \int \widetilde{p}(t,x;t_i,\xi_i) \prod_{j=i}^n \widetilde{p}(t_j,\xi_j;t_{j+1},\xi_{j+1}) q_j(v_j - L_j\xi_j) d\xi_i \cdots d\xi_n,$$

but also

$$\widetilde{r}(t,x) = \nabla_x \log \widetilde{\rho}(t,x)$$

and

$$\widetilde{H}(t) = -\nabla_x^2 \log \widetilde{\rho}(t, x)$$

A novel smoothing algorithm

- Compute $\nu(t)$ and $H^{\dagger}(t)$ recursively on $[0,t_n].$
- Propose a new starting point, and conditional on that a new driving Wiener process.
- Use Metropolis-Hastings to decide acceptance of the proposal.

- Compute $\nu(t)$ and $H^{\dagger}(t)$ recursively on $[0,t_n].$
- Propose a new starting point, and conditional on that a new driving Wiener process.
- Use Metropolis-Hastings to decide acceptance of the proposal.

Choice of auxiliary process \widetilde{X} :

 \bullet Simply take $\widetilde{B}=0$ and $\widetilde{\beta}=0$ (works for uniformly elliptic diffusions).

- \bullet Compute $\nu(t)$ and $H^{\dagger}(t)$ recursively on $[0,t_n].$
- Propose a new starting point, and conditional on that a new driving Wiener process.
- Use Metropolis-Hastings to decide acceptance of the proposal.

- \bullet Simply take $\widetilde{B}=0$ and $\widetilde{\beta}=0$ (works for uniformly elliptic diffusions).
- ullet Determine \widetilde{B} and \widetilde{eta} adaptively.

- Compute $\nu(t)$ and $H^{\dagger}(t)$ recursively on $[0,t_n]$.
- Propose a new starting point, and conditional on that a new driving Wiener process.
- Use Metropolis-Hastings to decide acceptance of the proposal.

- \bullet Simply take $\widetilde{B}=0$ and $\widetilde{\beta}=0$ (works for uniformly elliptic diffusions).
- ullet Determine \widetilde{B} and $\widetilde{\beta}$ adaptively.
 - 1. Initialise auxiliary process.
 - 2. Run MCMC for k iterations. Compute the average of all simulated paths to obtain $\{\bar{x}(t),\,t\in[0,t_n]\}.$

- Compute $\nu(t)$ and $H^{\dagger}(t)$ recursively on $[0, t_n]$.
- Propose a new starting point, and conditional on that a new driving Wiener process.
- Use Metropolis-Hastings to decide acceptance of the proposal.

- \bullet Simply take $\widetilde{B}=0$ and $\widetilde{\beta}=0$ (works for uniformly elliptic diffusions).
- ullet Determine \widetilde{B} and $\widetilde{\beta}$ adaptively.
 - 1. Initialise auxiliary process.
 - 2. Run MCMC for k iterations. Compute the average of all simulated paths to obtain $\{\bar{x}(t),\,t\in[0,t_n]\}$.
 - 3. Compute $\widetilde{b}(t,x) = b(t,\bar{x}(t)) + J_b(t,\bar{x}(t))(x-\bar{x}(t))$ where J_b denotes the Jacobian matrix of b

- Compute $\nu(t)$ and $H^{\dagger}(t)$ recursively on $[0, t_n]$.
- Propose a new starting point, and conditional on that a new driving Wiener process.
- Use Metropolis-Hastings to decide acceptance of the proposal.

- \bullet Simply take $\widetilde{B}=0$ and $\widetilde{\beta}=0$ (works for uniformly elliptic diffusions).
- ullet Determine \widetilde{B} and $\widetilde{\beta}$ adaptively.
 - 1. Initialise auxiliary process.
 - 2. Run MCMC for k iterations. Compute the average of all simulated paths to obtain $\{\bar{x}(t),\,t\in[0,t_n]\}$.
 - 3. Compute $\widetilde{b}(t,x) = b(t,\overline{x}(t)) + J_b(t,\overline{x}(t))(x-\overline{x}(t))$ where J_b denotes the Jacobian matrix of b.
 - 4. Recompute $H^{\dagger}(t)$ and $\nu(t)$ on $[0, t_n]$ based on $\widetilde{b}^{(i)}(t, x)$.
 - 5. Return to step 2.

1. Initialise

$$H^{\dagger}(t_n) = \left(L'_n \Sigma_n^{-1} L_n + \epsilon I\right)^{-1}$$
$$\nu(t_n) = H^{\dagger}(t_n) L'_n \Sigma_n^{-1} v_n.$$

1. Initialise

$$H^{\dagger}(t_n) = \left(L'_n \Sigma_n^{-1} L_n + \epsilon I\right)^{-1}$$
$$\nu(t_n) = H^{\dagger}(t_n) L'_n \Sigma_n^{-1} v_n.$$

- 2. For i = n 1 to 0
 - 2.1 For $t \in (t_i, t_{i+1}]$, backwards solve the ordinary differential equations

$$\frac{\mathrm{d}H^{\dagger}(t)}{\mathrm{d}t} = \widetilde{B}(t)H^{\dagger}(t) + H^{\dagger}(t)\widetilde{B}(t)' - \widetilde{a}(t),$$
$$\frac{\mathrm{d}\nu(t)}{\mathrm{d}t} = \widetilde{B}(t)\nu(t) + \widetilde{\beta}(t).$$

1. Initialise

$$H^{\dagger}(t_n) = \left(L'_n \Sigma_n^{-1} L_n + \epsilon I\right)^{-1}$$
$$\nu(t_n) = H^{\dagger}(t_n) L'_n \Sigma_n^{-1} v_n.$$

- 2. For i = n 1 to 0
 - 2.1 For $t \in (t_i, t_{i+1}]$, backwards solve the ordinary differential equations

$$\frac{\mathrm{d}H^{\dagger}(t)}{\mathrm{d}t} = \widetilde{B}(t)H^{\dagger}(t) + H^{\dagger}(t)\widetilde{B}(t)' - \widetilde{a}(t),$$
$$\frac{\mathrm{d}\nu(t)}{\mathrm{d}t} = \widetilde{B}(t)\nu(t) + \widetilde{\beta}(t).$$

2.2 Compute

$$H^{\dagger}(t_{i}) = H^{\dagger}(t_{i}+) - H^{\dagger}(t_{i}+)L'_{i}\left(\Sigma_{i} + L_{i}H^{\dagger}(t_{i}+)L'_{i}\right)^{-1}L_{i}H^{\dagger}(t_{i}+),$$

$$\nu(t_{i}) = H^{\dagger}(t_{i})\left(L'_{i}\Sigma_{i}^{-1}v_{i} + \widetilde{H}(t_{i}+)\nu(t_{i}+)\right).$$

3. Sample $X_0 \sim N\left(\nu(0), H^\dagger(0)\right)$ and a Wiener process Z on $[0, t_n]$.

3. Sample $X_0 \sim N\left(\nu(0), H^\dagger(0)\right)$ and a Wiener process Z on $[0, t_n]$. Simulate the guided proposal $X^\circ = g(X_0, Z)$, i.e.

$$\mathrm{d}X_t^\circ = \left(b(t,X_t^\circ) + a(t,X_t^\circ)\widetilde{H}(t)(\nu(t) - X_t^\circ)\right)\,\mathrm{d}t + \sigma(t,X_t^\circ)\,\mathrm{d}Z_t.$$
 Initialise X by defining $X = (X_t^\circ,\,t\in[0,t_n]).$

- 4. Repeat N times
 - 4.1 Propose a new value for X_0° as follows

$$X_0^{\circ} = \nu(0) + \sqrt{\lambda}(X_0 - \nu(0)) + \sqrt{1 - \lambda}Z,$$

with $Z \sim N(0, H^{\dagger}(0))$.

4. Repeat N times

4.1 Propose a new value for X_0° as follows

$$X_0^{\circ} = \nu(0) + \sqrt{\lambda}(X_0 - \nu(0)) + \sqrt{1 - \lambda}Z,$$

with $Z \sim \mathrm{N}(0, H^{\dagger}(0)).$ Sample independently a Wiener process W and set

$$Z^{\circ} = \sqrt{\lambda}Z + \sqrt{1 - \lambda}W.$$

Compute

$$X^{\circ} = g(X_0^{\circ}, Z^{\circ}).$$

4. Repeat N times

4.1 Propose a new value for X_0° as follows

$$X_0^{\circ} = \nu(0) + \sqrt{\lambda}(X_0 - \nu(0)) + \sqrt{1 - \lambda}Z,$$

with $Z \sim \mathrm{N}(0, H^{\dagger}(0)).$ Sample independently a Wiener process W and set

$$Z^{\circ} = \sqrt{\lambda}Z + \sqrt{1 - \lambda}W.$$

Compute

$$X^{\circ} = g(X_0^{\circ}, Z^{\circ}).$$

4.2 Compute

$$A = \Psi(X^{\circ})\Psi(X)^{-1}.$$

Draw $U \sim \mathcal{U}(0,1)$. If U < A then set $X = X^{\circ}$ and $Z = Z^{\circ}$.

Numerical illustrations

Lorenz attractor

SDE with highly nonlinear dynamics

$$b(x) = \begin{bmatrix} \theta_1(x_2 - x_1) \\ \theta_2 x_1 - x_2 - x_1 x_3 \\ x_1 x_2 - \theta_3 x_3 \end{bmatrix} \quad \text{and} \quad \sigma = \sigma_0 I_{3 \times 3}.$$

Take
$$\theta = \begin{bmatrix} 10 & 28 & 8/3 \end{bmatrix}'$$
, $\sigma_0 = 3$, $\Sigma_i = I$.

Figure 1: A sample path for t=[0,4], together with 101 equidistant complete noisy observations. Colours indicate progress of time, with t=0 being violet/dark.

Lorenz attractor

SDE with highly nonlinear dynamics

$$b(x) = \begin{bmatrix} \theta_1(x_2 - x_1) \\ \theta_2 x_1 - x_2 - x_1 x_3 \\ x_1 x_2 - \theta_3 x_3 \end{bmatrix} \quad \text{and} \quad \sigma = \sigma_0 I_{3 \times 3}.$$

Take
$$\theta = \begin{bmatrix} 10 & 28 & 8/3 \end{bmatrix}'$$
, $\sigma_0 = 3$, $\Sigma_i = I$.

Figure 1: A sample path for t=[0,4], together with 101 equidistant complete noisy observations. Colours indicate progress of time, with t=0 being violet/dark.

Trace and ACF-plots for X_2 : case $\widetilde{B}=0$, $\widetilde{eta}=0$, $\widetilde{\sigma}=\sigma$

Twenty samples of the posterior: case $\widetilde{B}=0$, $\widetilde{\beta}=0$, $\widetilde{\sigma}=\sigma$

Trace and ACF-plots for X_2 : adaptive choice auxiliary process

Twenty samples of the posterior: case $\widetilde{B}=0$, $\widetilde{\beta}=0$, $\widetilde{\sigma}=\sigma$: adaptive choice auxiliary process

Simple pendulum

Assume 2D-hypo-elliptic diffusion with SDE

$$dX_t = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} X_t dt + \begin{bmatrix} 0 \\ -\theta^2 \sin(X_{1t}) \end{bmatrix} dt + \begin{bmatrix} 0 \\ \gamma \end{bmatrix} dW_t,$$

where
$$X_t = \begin{bmatrix} X_{t1} & X_{t2} \end{bmatrix}'$$
.

Simple pendulum

Assume 2D-hypo-elliptic diffusion with SDE

$$dX_t = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} X_t dt + \begin{bmatrix} 0 \\ -\theta^2 \sin(X_{1t}) \end{bmatrix} dt + \begin{bmatrix} 0 \\ \gamma \end{bmatrix} dW_t,$$

where
$$X_t = \begin{bmatrix} X_{t1} & X_{t2} \end{bmatrix}'$$
.

Assume only the position is observed, i.e. $L_i = \begin{bmatrix} 1 & 0 \end{bmatrix}'$.

Simple pendulum

Assume 2D-hypo-elliptic diffusion with SDE

$$dX_t = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} X_t dt + \begin{bmatrix} 0 \\ -\theta^2 \sin(X_{1t}) \end{bmatrix} dt + \begin{bmatrix} 0 \\ \gamma \end{bmatrix} dW_t,$$

where
$$X_t = \begin{bmatrix} X_{t1} & X_{t2} \end{bmatrix}'$$
.

Assume only the position is observed, i.e. $L_i = \begin{bmatrix} 1 & 0 \end{bmatrix}'$.

Adaptive MCMC with auxiliary process initialised with

$$\widetilde{B}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad \widetilde{\beta}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \widetilde{\sigma} = \begin{bmatrix} 0 \\ \gamma \end{bmatrix}.$$

Trace- and ACF plots for X_0 : $\sigma^2 = 1$

Posterior for pendulum example: $\sigma^2 = 1$

Posterior for pendulum example: $\sigma^2 = 0.001$

Concluding remarks

Summary:

- 1. Diffusion bridge simulation: dealing with nonlinearity in the drift.
- 2. Extension to simulating bridges that take multiple incomplete noisy observations into account.

Concluding remarks

Summary:

- 1. Diffusion bridge simulation: dealing with nonlinearity in the drift.
- 2. Extension to simulating bridges that take multiple incomplete noisy observations into account.

Challenges:

- 1. Improving scalability of higher dimensions.
- 2. Dealing with nonlinearity in the observation equation.
- 3. Many more...

Main references

Derivation of the proposal process:

Schauer, M. and Van der Meulen, F. H. and Van Zanten, J. H. (2017), Guided proposals for simulating multi-dimensional diffusion bridges, Bernoulli 23(4A) (2017), 2917–2950.

Bayesian estimation (full observations without noise):

VAN DER MEULEN, F. H. AND SCHAUER, M. (2017), Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals, Electronic Journal of Statistics **11**(1), 2358–2396.

Incomplete observations:

VAN DER MEULEN, F. H. AND SCHAUER, M. (2017) Bayesian estimation of incompletely observed diffusions, Stochastics, 1–22.

Single block updating:

VAN DER MEULEN, F. H. AND SCHAUER, M. (2017) Continuous-discrete smoothing of diffusions, arXiv:1712.03807.

Advertisement: INFERENCE FOR DIFFUSION MODELS

Parallel Session D CFE-CMStatistics Saturday 16.12.2017 at 11:25 - 13:05 EO581 Room CLO 102

- Nonparametric learning of stochastic differential equations
 Andreas Ruttor, TU Berlin, Germany
- Correlated pseudo marginal schemes for partially observed diffusion processes
 - Andrew Golightly, Newcastle University, United Kingdom
- Inference for diffusion processes from observations of passage times
 - Moritz Schauer, Leiden University, Netherlands
- MCMC inference for discretely-observed diffusions: Improving efficiency
 - Christiane Fuchs, Helmholtz Center Munich, Germany