1 Pracovní úkol

- 1. Změřte dynamickou viskozitu parafinového oleje Stokesovou metodou.
- 2. Změřte dynamickou viskozitu ricinového oleje Stokesovou metodou.
- 3. Ověřte, zda jsou pro dané experimentální uspořádání splněny podmínky platnosti Stokesova vzorce pro odpor prostředí při pohybu koule.
- 4. Hustotu skleněných kuliček určete pyknometrickou metodou.

2 Teoretický úvod

2.1 Stokesova metoda měření viskozity

Na pohybující se se těleso v tíhovém poli působí obecně tři síly - tíhová síla určena vztahem G=mg (standardně m je hmotnost tělesa, g je tíhové zrychlení), vztlaková síla a odporová síla. Vztlaková síla má dle Archimedova zákona tvar $Fvz=V\varrho g$, kde V je objem tělesa a ϱ je hustota tekutiny. Pokud se jedná o pohyb kulově symetrického tělesa a jsou splněny podmínky laminárního obtékání popisuje odporovou sílu Stokesův vztah

$$F = 6\pi \eta r v \,, \tag{1}$$

kde η je dynamická viskozita kapaliny, r je poloměr tělesa, v je jeho rychlost. Kromě laminarity proudění jsou zde předpokládány neomezené rozměry prostředí v němž se kulička pohybuje.

Kriterium laminarity proudění je určeno Reynoldsovým číslem Re, které je definováno

$$Re = \frac{2r\varrho v}{\eta},\tag{2}$$

kde ϱ je hustota tekutiny. Pokud je $Re \ll 1$ jedná se dle [1] o laminární proudění.

Pokud se tedy jedná o pád kuliček ve válcové nádobě splňující podmínku laminárního proudění je viskozita tekutiny v ní dle [1] určena

$$\eta = \frac{2r^2(\varrho_k - \varrho)g}{9v\left(1 - \frac{2Ar}{R}\right)},\tag{3}$$

kde ϱ_K je hustota kuliček, R je poloměr válcové nádoby a ϱ_k je husota kuliček...

2.2 Pyknometrická metoda pro určení hustoty pevných látek

Pro určení hustoty malých objektů určíme jejich hmotnost m_1 na vzduchu. Poté určíme hmotnost m_2 celého pyknometru naplněného kapalinou o hustotě ϱ_z . Nakonec určíme

hmotnost m_3 tak, že do pyknometru naplněného vodou nasypeme objekty o hmotnosti m_1 . Pak je tedy výsledná hustota tělísek ϱ_k dle [5]

$$\varrho_k = \frac{m_1}{m_1 + m_2 - m_3} (\varrho_z - \varrho_{vzduch}) + \varrho_{vzduch}, \qquad (4)$$

kde ϱ_{vzduch} je hustota vzduchu.

3 Měření

3.1 Parametry kuliček

Kuličky jsou dvou typů - velké a malé. Od každého typu jsem si vybrala 10 kuliček. Pro ty jsem určila průměr pomocí dilenského mikroskopu. Naměřené hodnoty jsou v tabulce 2 (je zde uvedeno pouze 7 kuliček velkých - ostatní nebyly využity). Pro první tři velké kuličky a první dvě malé kuličky jsem provedla vždy po pěti měření (tabulka 1) a dle [2] jsem určila směrodatné odchylky, které jsem kvadraticky sečetla s polovinou nejmenšího dílku přístroje, tj 0,005 mm . Pro ostatní kuličky jsem z časových důvodů tolik měření nemohla provést, proto jako chybu určení průměru ostatních kuliček beru aritmetický průměr statisticky určených chyb. Kuličky jsem si odkládala do číslovaných boxů. V dalším měření, jsem pak mohla rozlišovat jednotlivé velikosti kuliček.

Hustotu kuliček jsem určila pyknometrickou metodou. Tedy za předpokladu konstatní hustoty měřeného materiálu jsem vybrala soubor kuliček s nímž jsem pak prováděla měření nezávisle na číslovaných kuličkách. Naměřené hodnoty jsou v tabulce 7. Chyby jsou spočteny dle kvadratického hromadění chyb. Chyby jednotlivých hmotností jsem brala jako velikost předposledního digitu na měřících vahách, tedy 0,001 g. Váhy mi na posledním desetinném místě i po doporučeném čase 3 s přišly nestabilní.

Hustotu ϱ_z destilované vody jsem odečetla z přítomné tabulky po určení teploty $t_z = (23, 0 \pm 0, 1)$ °C jako $\varrho = 997, 3 \,\mathrm{kg} \cdot \mathrm{m}^{-3}$.

Dále jsem určila atmosferický tlak $p_A = (987, 0 \pm 2)$ hPa a teplotu vzduchu $t_v = (24, 8 \pm 0, 4)^{\circ}$ C. Tyto chyby byly odečteny z dokumentace měřících přístrojů. Na základě těchto hodnot určím z [2] pomocí stavové rovnice hustotu vzduchu $\varrho_{vzduch} = (1, 15 \pm 0, 02)$ kg·m⁻³, kde pro určení chyb jsem kvadraticky sečetla relativní chyby teploty a tlaku. Dosazením do (4) pro hustoty kuliček dostanu¹

$$\varrho_k^V = (2506 \pm 40) \,\mathrm{kg \cdot m^{-3}},$$

$$\varrho_k^M = (2469 \pm 53) \,\mathrm{kg \cdot m^{-3}},$$

kde chyba těchto veličin byla určena standardními vztahy pro rozdíl resp. podíl relativních chyb z [2].

 $^{^{1}}$ index v načí velké kuličky, index m značí malé kuličky

3.2 Měření viskozity

Do odměrného válce naplněného kapalinou jsem postupně pouštěla jednotlivé kuličky. Měřila jsem čas t, za který kulička urazila vzdálenost l_r nebo l_p ². Při předpokladu, že v měřeném úseku je rychlost kuličky již maximální možná rychlost, kterou při daném průměru v dané kapalině může dosáhnout, určím rychlost pádu kuličky ze vztahu pro rovnoměrný pohyb. Naměřené hodnoty jsou v tabulkách 3, 4, 5 a 6.

Hustota kapalin je uvedena přímo u měřených kapalin jako $\varrho_r = 950 \, \mathrm{kg \cdot m^{-3}}$ a $\varrho_p = 850 \, \mathrm{kg \cdot m^{-3}}$.

Pro počáteční charakteristiku proudění v jednotlivých kapalinách jsem pomocí tabul-kových hodnot viskozit [3], tedy $\eta_r = (986 \cdot 10^3) \,\mathrm{kg \cdot m^{-1} s^{-1}}, \, \eta_p = (101, 8 \cdot 10^3) \,\mathrm{kg \cdot m^{-1} s^{-1}},$ určila hodnotu Reynoldsova čísla. Pro ricinový olej se jedná vždy o proudění laminární. Pro olej parafinový byla podmínka hodnoty 2 pro velké kuličky porušena. Proto jsem provedla pouze 2 měření pro ověření teoretického výpočtu.

Dosazením hodnot do vztahu 3 jsem určila hodnotu viskozity pro každou kuličku zvlášť. Následně jsou určila jejich střední hodnotu, tedy

$$\begin{array}{rcl} \eta_r^V & = & (832 \pm 37) \, \mathrm{kg} \cdot \mathrm{mm}^{-1} \mathrm{s}^{-1}, \\ \eta_r^M & = & (732 \pm 52) \, \mathrm{kg} \cdot \mathrm{mm}^{-1} \mathrm{s}^{-1}, \\ \eta_p^V & = & (46 \pm 4) \, \mathrm{kg} \cdot \mathrm{mm}^{-1} \mathrm{s}^{-1}, \\ \eta_p^V & = & (61 \pm 4) \, \mathrm{kg} \cdot \mathrm{mm}^{-1} \mathrm{s}^{-1}, \end{array}$$

kde chyby byly určeny postupem z [2] a [4] pomocí kvadratického sčítání relativních chyb a statistického zpracování souboru hodnot. Chybu určení času jsem na stopkách s přesností 0,01s odhadla i s reakční dobou na 0,1s.

4 Diskuze

4.1 Parametry kuliček

Při měření hustoty kuliček pyknometrem se předpokládá, že hustota souboru je vzhledem k jejich výrobnímu postupu u všech kuliček stejná. Pokud by jejich hustoty takové nebyly určili bychom pouze průměrnou hustotu celého souboru a tím bychom vnesli chybu do celkového výsledku.

U měření průměrů kuliček je vidět jejich značná různorodost. Navíc všechny kuličky nemají přesně kulový tvar a tedy pro ně neplatí Stokesův vztah. Celkový výsledek měření je na určení průměru kuliček velmi citlivý, proto by se přesnost zvýšila větším počtem měření pro každou kuličku.

 $^{^2}$ index rznačí ricínový olej, index pznačí parafínový olej

4.2 Měření viskozity

Výsledné hodnoty se s hodnotami tabulkovými ([3]) neshodují ani v rámci určené chyby. To může být částečně způsobeno rozdílným složením měřených látek a částečně také teplotou. Tabulková hodnota byla udána pro 20°C. Nicméně se neshodují v rámci chyby ani určené viskozity pro jednotlivé velikosti kuliček.

Rozdílná hodnota výsledků při měření parafínového oleje se vzhledem k turbulentnímu charakteru proudění v případě velkých kuliček očekávala. Ale u oleje ricinového se dle hodnoty 2 pro velké i malé kuličky jednalo o laminární proudění a tedy hodnoty by se neměli příliš lišit.

Důvodem rozdílnosti těchto hodnot by mohl být nerovnoměrný pohyb na měřeném úseku. Další chybu vnáší již zmiňovaná tvarová nepravidelnost kuliček a tedy neoprávněné užití Stokesova vztahu. Také vztah 3, který platí přesně při pádu kuličky středem válce, čehož nešlo vždy přesně docílit.

5 Závěr

Změřila jsem průměry kuliček dilénským mikroskopem. Naměřené hodnoty zobrazují tabulky 1 a 2.

Pyknometrickou metodou jsem určila hustu malých i velkých kuliček. Naměřené hodnoty jsou v tabulce 7. Výsledné hodnoty husotot jsou

$$\varrho_k^V = (2506 \pm 40) \,\mathrm{kg \cdot m^{-3}},$$

$$\varrho_k^M = (2469 \pm 53) \,\mathrm{kg \cdot m^{-3}}.$$

Dále jsem určila dynamickou viskozitu racínového a parafínového oleje pro obě velikosti kuliček. Tedy 3

$$\begin{array}{rcl} \eta_r^V & = & (832 \pm 37) \, \mathrm{kg} \cdot \mathrm{mm}^{-1} \mathrm{s}^{-1}, \\ \eta_r^M & = & (732 \pm 52) \, \mathrm{kg} \cdot \mathrm{mm}^{-1} \mathrm{s}^{-1}, \\ \eta_p^V & = & (46 \pm 4) \, \mathrm{kg} \cdot \mathrm{mm}^{-1} \mathrm{s}^{-1}, \\ \eta_p^V & = & (61 \pm 4) \, \mathrm{kg} \cdot \mathrm{mm}^{-1} \mathrm{s}^{-1}. \end{array}$$

Hodnoty jsou v tabulkách 4-6.

Reference

[1] Studijní text - Volný pád koule ve viskózní kapalině, http://physics.mff.cuni.cz/vyuka/zfp/txt_119.pdf, 13.3 2011

 $^{^3{\}rm Kde}$ dolní index značí druh kapaliny (r - racínový olej, p - parafínový olej) a horní index velikost kuličky.

- [2] Mikulčák, J. a kol. Matematické, fyzikální a chemické tabulky, Prometheus, Praha 2007, 1. vydání
- [3] Brož, J a kol. Fyzikální a matematické tabulky, SNTL, Praha 1980
- [4] Čížek, J. Úvod do praktické fyziky, http://physics.mff.cuni.cz/kfnt/, 13.3 2011
- [5] Studijní text Pyknometrická metoda pro určení hustoty pevných látek, http://physics.mff.cuni.cz/vyuka/zfp/txt_119_pyknometr.pdf,13.3 2011

Tabulka 1: Průměry kuliček u kterých bylo provedeno více měření

	d_{1V}/mm	d_{2V}/mm	d_{3^V}/mm	d_{1M}/mm	d_{1^M}/mm
	2,656	2,585	2,57	1,465	1,54
	2,58	2,56	2,58	1,425	1,525
	2,57	2,575	2,555	1,46	1,54
	2,59	2,605	$2,\!565$	1,48	1,525
	2,575	2,57	2,56	1,46	1,52
\overline{d}/mm	$2,59 \pm 0,06$	$2,58 \pm 0,03$	$2,59 \pm 0,02$	$1,46 \pm 0,04$	$1,53 \pm 0,02$

Tabulka 2: Výsledné průměry kuliček

d_{k^V}/mm	d_{k^M}/mm
2,59	1,46
2,58	1,53
2,57	1,53
2,57	1,54
2,62	1,52
2,50	1,57
2,54	1,59
	1,57
	1,53
	1,50

Tabulka 3: Určení viskozity - velké kuličky ricinový olej

$t_r^V/{ m s}$	$v_r^V/\mathrm{cm}\cdot\mathrm{s}^{-1}$	$\eta_r^V/\mathrm{kgmm^{-1}\cdot s^{-1}}$
26,4	0,62	844,932
25,85	0,64	818,026
26,19	0,63	820,762
26,48	0,62	832,343
26,03	0,63	845,990

Tabulka 4: Určení viskozity - malé kuličky ricinový olej

t_r^M/s	$v_r^M/\mathrm{cm}\cdot\mathrm{s}^{-1}$	$\eta_r^M/\mathrm{kgmm}^{-1}\cdot\mathrm{s}^{-1}$
67,79	0,24	692,121
66,9	0,25	750,529
66,56	0,25	746,715
66,37	0,25	749,345
65,03	0,25	720,262

Tabulka 5: Určení viskozity - malé kuličky parafinový olej

t_p^M/s	$v_p^M/\mathrm{cm}\cdot\mathrm{s}^{-1}$	$\eta_p^M/\mathrm{kgmm}^{-1}\cdot\mathrm{s}^{-1}$
3,05	5,44	63,448
3,14	5,28	63,098
3,2	5,18	60,399
3,07	5,40	59,851
3,16	5,25	56,298

Tabulka 6: Určení viskozity - velké kuličky parafínový olej

	t_p^V/s	$v_p^V/\mathrm{cm}\cdot\mathrm{s}^{-1}$	$\eta_p^V/\mathrm{kgmm}^{-1}\cdot\mathrm{s}^{-1}$
	1,32	12,56	42,006
Ī	1,58	10,49	49,714

Tabulka 7: Pyknometrické určení hustoty kuliček

	velké kuličky	malé kuličky
m_1 g	4,77	3,49
m_2 g	11,66	11,41
m_3 g	14,54	13,50