Reduce Search Space On Competition Policy Learning for Malaria Control

0. Problem Definition

$S \in \{1,2,3,4,5\}$ Action $A_S = [a_{ITN}, a_{IRS}]$ where $a_{ITN} \in [0,1]$ and $a_{IRS} \in [0,1]$ Reward $R_{\pi} \in (-\infty,\infty)$ Action $[ITN]_{RS}$ Action $[ITN]_{RS}$ Action $[ITN]_{RS}$ Episodic Reward $R_{\pi} \in (-\infty,\infty)$

- environment about this competition
 - only 20 opportunities to interact with the environment
 - Unreachable final evaluation environment when submitting final solution

1.1 Collect high score strategy - Using Q-learning

Q-learning

State
$$s \in \{1, 2, 3, 4, 5\}$$

Action $A_s = [a_i, 1 - a_i],$
 $a_i \in \{0, 0.2, 0.4, 0.6, 0.8, 1\}$
epochs Run 1000 epochs
SARSA SARSA performence better than
Q-learning

1.2 Collect high score strategy - Using GA

Genetic Algotrithm

Initialization
$$a_i \in \{0, 0.2, 0.4, 0.6, 0.8, 1\}$$
 epochs Run 200 epochs

Mutate 1. random . 2. change x to $1-x$

Crossover Set $A_s = [a_i, b_i]$, $T = A_1, A_2, \cdot, A_5$, let crossover point is A_3 the operation is $T = A_1, A_2, A_3, A_4, A_5$
 $\downarrow \downarrow$
 $T = A_3, A_4, A_5, A_1, A_2$

2. Analyze high performance policy

Collect high score strategy

- $1:[0.6,0.2], 2:[0.0,1.0], \cdots, 5:[0.6,0.8]$
- $1:[0.2,1.0], 2:[1.0,0.0], \dots, 5:[0.0,0.5]$
- . .
- $1:[1.0,0.0], 2:[0.0,0.8], \dots, 5:[0.0,1.0]$

Analyze

- $A_i \approx 1$
- $|a_{i+1} a_i| = 1$, $|a_{i-1} a_i| = 1$
- $|b_{i+1} b_i| = 1$, $|b_{i-1} b_i| = 1$
- $a_i + b_i \approx 1$

► Test environment by hands

- when $A_i = [1, 0], A_i = [1, 0]$, the reward of A_{i+1} will be 0
- when $A_i = [0, 1], A_i = [0, 1]$, the reward of A_{i+1} will be 0
- when $A_i = [1, 0], A_i = [0, 1]$, the reward $A_{i+1} \approx 100$
- when $A_i = [0, 1], A_i = [1, 0]$, the reward $A_{i+1} \approx 100$

3.1 Reduce search space - Q-learning

Q-learning

Initialization $a_i + b_i \approx 1$, $|a_{i+1} - a_i| \ge 0.6$, so as b_i Action $A_s = [a_i, 1 - a_i]$, $a_i \in \{0, 0.2, 0.4, 0.6, 0.8, 1\}$, Check random policy $|a_{i+1} - a_i| \ge 0.6$, so as b_i

Random Set more possibility to choose random policy at first epochs

policy For each $A_i = [a_i, b_i]$, we can set $a_i = 0$ or $b_i = 0$ to reduce search space, So the policy can look like $[?, 0], [0, ?], \cdots, [?, 0]$

3.2 Reduce search space - GA

Q-learning

Initialization $a_i + b_i \approx 1$, $|a_{i+1} - a_i| \geq 0.6$, so as b_i use policy like $[?, 0], [0, ?], \cdots, [?, 0]$ mutate For mutate opertaion, force $|a_{i+1} - a_i| \approx 1$, so as b_i , force $a_i + b_i \leq 1.4$