Análise do uso de *feedback* de relevância no Sistema de Integração Lattes-Qualis (SILQ)

Carlos Bonetti¹

¹Bacharelando de Ciência da Computação Departamento de Informática e Estatística Centro Tecnológico Universidade Federal de Santa Catarina

Orientação: Profa. Dra. Carina F. Dorneles

Trabalho de Conclusão de Curso, 2016/2

Introdução

Histórico e Justificativa

- AGUIAR, Felipe Nedel de; COSTA, Maria Eloísa. SILQ -Sistema de Integração Lattes Qualis. Trabalho de Conclusão de Curso. Florianópolis: UFSC, 2015.
- Lattes / Qualis
- Estratos de qualidade
- Avaliação de Programas
- Qualificação automática de produções científicas através de busca por similaridade textual nos dados Qualis;

Conceitos

Desenvolvimento 2000 2000

Histórico e Justificativa

Introdução

Figura: Primeira versão do SILQ (http://silq.inf.ufsc.br)

Carlos Bonetti

Universidade Federal de Santa Catarina

Introdução •000

IR e Data Matching

- Information Retrieval (IR)
 - query
 - documentos
- Data-Matching
 - similaridade / dissimilaridade
 - threshold
 - n-grams / trigrams

Introdução •000

IR e Data Matching

- Information Retrieval (IR)
 - query
 - documentos
- Data-Matching
 - similaridade / dissimilaridade
 - threshold
 - ► n-grams / trigrams

```
"Revista": A = \{ \_R, \_Re, Rev, evi, vis, ist, sta, ta_\}
```

"Revisor":
$$B = \{_R, _Re, Rev, evi, vis, iso, sor, or_\}$$

trigrams(Revista, Revisão) =
$$\frac{|A \cap B|}{|A \cup B|} = \frac{5}{11} = 0.45 = 45\%$$

Introdução 0000

Como o SILQ avalia um currículo Lattes

Trabalho #1 (extraído do Lattes)

Título: A Strategy for Allowing Meaningful and Comparable

Scores in Approximate Matching

Ano: 2007

Area: Ciência da Computação

Evento: Conference on Information and Knowledge Management

(CIKM)

Introdução 0000

Como o SILQ avalia um currículo Lattes

Trabalho #1 (extraído do Lattes)

Título: A Strategy for Allowing Meaningful and Comparable

Scores in Approximate Matching

Ano: 2007

Área: Ciência da Computação

Evento: Conference on Information and Knowledge Management

(CIKM)

query: (título do evento, área)

 $q_T =$ (Conference on Information and Knowledge

Management (CIKM), Ciência da Computação)

0000

Como funciona o SILQ 1

Introdução

 $q_T =$ (Conference on Information and Knowledge Management (CIKM), Ciência da Computação)

Carlos Bonetti

 $q_T = ext{(Conference on Information and Knowledge}$ Management (CIKM), Ciência da Computação)

Conceito	Similaridade	Título
A1	0.71	International Conference on Information and
		Knowledge Management
B4	0.64	International Conference on Information, Pro-
		cess, and Knowledge Management

Tabela: Resultados retornados pelo SILQ para a query q_T

Resultado

Trabalho #1 recebe o conceito A1

Introdução 0000

- ▶ SILQ: sistema de IR baseado em data matching
- ▶ Utiliza trigrams para *matching* entre eventos informados no Lattes e os registrados no Qualis
- ► Threshold de 0.6 ('nível de confiança normal')

Motivação

- Atualização tecnológica e da base de dados
 - ▶ Qualis trienal → anual
 - Atualização da base de dados Qualis no SILQ
 - Considerar ano na guery
- Qual o threshold ideal para o SILQ?
- Qual a taxa de acerto do sistema? Ele está avaliando corretamente os currículos Lattes?
- ▶ É possível aumentar a taxa de acerto utilizando feedback de usuários?

Objetivos

Objetivos

Objetivo geral

Analisar o impacto que o uso de feedback de relevância tem na precisão dos resultados de avaliações realizadas pelo SILQ, efetuado sobre uma nova arquitetura da ferramenta que inclui a criação de API de integração com outros sistemas e a atualização da base de dados conforme as novas classificações Qualis.

- 1. Reestruturação da arquitetura e banco de dados do SILQ a fim de suportar classificações de eventos e periódicos disponibilizados em um ritmo anual;
- 2. Atualização do banco de dados do sistema com as últimas classificações disponibilizadas pelo Qualis (anos 2013 e 2014);

- Reestruturação da arquitetura e banco de dados do SILQ a fim de suportar classificações de eventos e periódicos disponibilizados em um ritmo anual;
- Atualização do banco de dados do sistema com as últimas classificações disponibilizadas pelo Qualis (anos 2013 e 2014);
- Criação de uma API pública de disponibilização dos serviços do SILQ, via camada de aplicação REST para integração com outros sistemas;

4. Alterações na interface do sistema incluindo migração de framework de interface, inclusão de controles de feedback, novos gráficos de acompanhamento de grupos de pesquisa e melhorias gerais de usabilidade;

- 4. Alterações na interface do sistema incluindo migração de framework de interface, inclusão de controles de feedback, novos gráficos de acompanhamento de grupos de pesquisa e melhorias gerais de usabilidade;
- 5. Propor novos algoritmos de avaliação baseados em similaridade textual e feedback de relevância e verificar se a taxa de acerto do sistema foi melhorada com tal ação.

Feedback de relevância

- Característica de sistemas IR
- ▶ Utilização de dados do usuário para melhorar sua precisão
- Explícito / Implícito

Métricas e avaliação de sistemas de IR

- Como saber se o sistema retorna os resultados corretos?
- Avaliação baseado em métricas
- ► Taxa de acerto (accuracy / exatidão*)

Extração e inserção dos novos dados Qualis

- Até final de 2015
 - Qualis trienal
 - **2010-2012**
 - PDFs e planilhas XLS
- Início de 2016
 - Qualis anual
 - **2010**, 2011, 2012, 2013, 2014
 - Planilhas CSV
- Limpeza manual (erros de codificação, ISSNs omitidos, etc.)
- 339.204 registros

Atualização tecnológica

- Criação da camada REST de integração
 - API pública de acesso aos dados Qualis e serviços do SILQ
- ► Migração de framework: Play → Spring
- Reescrita do front-end com AngularJS
 - Novos gráficos de avaliação para grupos de pesquisa
 - Melhorias no módulo de usuários
 - Remodelagem da página de resultados de avaliação
 - Inclusão dos controles de feedback
- Garantida da qualidade com testes automatizados

Alterações tecnológicas

Figura: Nova arquitetura do SILQ

Introdução

Figura: Nova página de avaliação do SILQ

Introdução

Obtenção de feedback

Figura: Controles de feedback da página de resultados de avaliação do SILQ

Carlos Bonetti

Algoritmos

- ▶ De que forma utilizar o *feedback* obtido?
- Criação de algoritmos baseados no trigrams do SILQ 1
 - ▶ fb(t)
 - query_aliasing
- Avaliação experimental

Algoritmo fb(1)

 $q_1 =$ ("Software Engineering Knowledge Engineering", 2009, CCO)

Carlos Bonetti

Algoritmo fb(1)

 $q_1 =$ ("Software Engineering Knowledge Engineering", 2009, CCO)

#	Evento	Similaridade
1	Software Engineering and Data Engineering (SEDE)	0.53
2	International Conference on Software Engineering and Knowledge Engineering (SEKE)	0.49

Algoritmo fb(1)

 $q_1 =$ ("Software Engineering Knowledge Engineering", 2009, CCO)

#	Evento	Similaridade
1	Software Engineering and Data Engineering (SEDE)	0.53
2	International Conference on Software Engineering and Knowledge Engineering (SEKE)	0.49

feedback 1: (ID Qualis, query)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

Algoritmo fb(1)

$$f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$$

 $q_2 =$ ("Software Engineering Knowledge Engineering", 2010, CCO)

Algoritmo fb(1)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_2 =$ ("Software Engineering Knowledge Engineering", 2010, CCO)

#	Evento	Similaridade
2	International Conference on Software Enginee-	0.49
	ring and Knowledge Engineering (SEKE)	
1	Software Engineering and Data Engineering (SEDE)	0.53

 f_1 utilizado, *match* realizado com evento #2

Algoritmo fb(1)

$$f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$$

 $q_3 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Introdução

Algoritmo fb(1)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_3 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

- Feedback 1 não é considerado
- ▶ fb(1) considera somente *queries* idênticas
- ▶ fb(t): Considerar também feedbacks com queries similares!
 - t: threshold de similaridade de feedback

Algoritmo fb(t)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_3 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Similaridade: 0.88 (trigrams)

Algoritmo fb(t)

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_3 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Similaridade: 0.88 (trigrams)

Considerando fb(0.75):

_#	#	Evento	Similaridade
	2	International Conference on Software Enginee-	0.49
		ring and Knowledge Engineering (SEKE)	
1	L	Software Engineering and Data Engineering (SEDE)	0.53

Algoritmo fb(t)

- 1. Cria o rank inicial de resultados utilizando a função trigrams (idêntico ao SILQ 1)
- 2. Pesquisa pelo feedback anterior mais similar à query submetida e cuja similaridade seja t ou superior
- 3. Caso exista, adiciona o Qualis atribuído ao feedback na primeira posição do rank

Algoritmo fb(t)

- Qual o valor de t ideal?
- ▶ Desconsidera os valores de similaridade do rank inicial
- Rank não é mais ordenado por similaridade

Algoritmo query_aliasing

```
f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})
```

 $q_4 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Similaridade: 0.88 (trigrams)

Uso de feedback de relevância

Algoritmo query_aliasing

 $f_1 = (\#2, \text{ "Software Engineering Knowledge Engineering"})$

 $q_4 =$ ("Software Engineering and Knowledge Engineering", 2011, CCO)

Similaridade: 0.88 (trigrams)

_#	Evento	Rank	
2	International Conference on Software Enginee-		
	ring and Knowledge Engineering (SEKE)		
1	Software Engineering and Data Engineering	0.53	
	(SEDE)		

Uso de feedback de relevância

Algoritmo query_aliasing

- 1. Cria o rank inicial de resultados utilizando a função trigrams (idêntico ao SILQ 1)
- 2. Pesquisa pelo feedback anterior mais similar à query submetida
- 3. Caso exista, adiciona o Qualis atribuído ao feedback na lista de resultados com valor de rank igual ao valor de similaridade entre a nova query e a query do feedback

Avaliação experimental

- Conjunto de testes
 - 33 currículos de pesquisadores do PPGCC
 - 300 trabalhos aleatoriamente selecionados e avaliados manualmente
- Comparação entre o resultado retornado pelo sistema e o resultado selecionado

Avaliação de threshold ideal

Figura: Valores de exatidão e MRR para diferentes valores de threshold utilizando o método trigram

Carlos Bonetti

Universidade Federal de Santa Catarina

Exatidão dos algoritmos propostos

Algoritmo	Exatidão
trgm	88.667%
trgm + fb(1.00)	89.667%
trgm + fb(0.90)	90.667%
trgm + fb(0.80)	92.667%
trgm + fb(0.70)	92.667%
trgm + fb(0.60)	91.000%
$trgm + query_aliasing$	93.333%

Tabela: Comparação da exatidão dos diferentes algoritmos testados (utilizando threshold de 0.55)

Uso de feedback de relevância

Figura: Comparação da taxa de acerto do algoritmo trgm e do trgm + query_aliasing para diferentes thresholds

Carlos Bonetti

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis

Carlos Bonetti

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis
- Métricas de exatidão do sistema

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis
- Métricas de exatidão do sistema
- Descoberto threshold ideal: 0.55

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis
- Métricas de exatidão do sistema
- Descoberto threshold ideal: 0.55
- Inserção dos controles de feedback de relevância

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis
- Métricas de exatidão do sistema
- Descoberto threshold ideal: 0.55
- Inserção dos controles de feedback de relevância
- ► Taxa de acerto média do sistema melhorada de 87% para 93.3% com o uso de *feedback* de usuários e query_aliasing

- Criação da camada REST de integração
 - Ex.: http://silq.inf.ufsc.br/api/qualis
- Atualização da base de dados com os novos registros Qualis
- Métricas de exatidão do sistema
- Descoberto threshold ideal: 0.55
- Inserção dos controles de feedback de relevância
- ► Taxa de acerto média do sistema melhorada de 87% para 93.3% com o uso de *feedback* de usuários e query_aliasing
- ▶ SILQ 2: http://silq.inf.ufsc.br

Avaliar outras funções de similaridade

- Avaliar outras funções de similaridade
- Avaliar diferentes estratégias de uso de feedback de relevância
 - Ex.: Algoritmo de Rocchio, machine learning, etc.

- Avaliar outras funções de similaridade
- Avaliar diferentes estratégias de uso de feedback de relevância
 - Ex.: Algoritmo de Rocchio, machine learning, etc.
- Tradução de nomes de eventos

- Avaliar outras funções de similaridade
- Avaliar diferentes estratégias de uso de feedback de relevância
 - Ex.: Algoritmo de Rocchio, machine learning, etc
- Tradução de nomes de eventos
- Automatizar ainda mais o processo de avaliação de Programas de Pós-Graduação conforme regras da CAPES
 - ► Gerar valores de *I_{geral}* e *I_{restrito}*
 - Utilizar pesos considerados pela CAPES

Análise do uso de *feedback* de relevância no Sistema de Integração Lattes-Qualis (SILQ)

Obrigado!

Carlos Bonetti carlosbonetti.mail@gmail.com