Determinisztikus idősorelemzés, dekompozíciós idősormodellek: trend, szezonalitás és ciklus

Ferenci Tamás tamas.ferenci@medstat.hu

Utoljára frissítve: 2023. május 9.

- Determinisztikus idősorelemzés
 - Alapgondolat
 - Determinisztikus idősormodellezés regresszióval
 - Trend és szezonalitás

- Determinisztikus idősorelemzés
 - Alapgondolat
 - Determinisztikus idősormodellezés regresszióval
 - Trend és szezonalitás

- Determinisztikus idősorelemzés
 - Alapgondolat
 - Determinisztikus idősormodellezés regresszióval
 - Trend és szezonalitás

- Az idősor alakulása elvileg függvényszerűen felírható bizonyos tényezők alapján

- Az idősor alakulása elvileg függvényszerűen felírható bizonyos tényezők alapján
- Csak azért nem tudjuk tökéletesen megtenni, mert nem ismerjük e tényezőket, nem tudjuk milyen függyényformával hatnak, nem tudjuk pontosan mérni stb. ezért fogunk hibázni

- Az idősor alakulása elvileg függvényszerűen felírható bizonyos tényezők alapján
- Csak azért nem tudjuk tökéletesen megtenni, mert nem ismerjük e tényezőket, nem tudjuk milyen függyényformával hatnak, nem tudjuk pontosan mérni stb. ezért fogunk hibázni
- De pont: a hibának csak ennyi szerepe van...

- Az idősor alakulása elvileg függvényszerűen felírható bizonyos tényezők alapján
- Csak azért nem tudjuk tökéletesen megtenni, mert nem ismerjük e tényezőket, nem tudjuk milyen függyényformával hatnak, nem tudjuk pontosan mérni stb. ezért fogunk hibázni
- De pont: a hibának csak ennyi szerepe van...
- …beállítja az aktuális időszaki értéket, és kész

Dekompozíciós idősormodellek

- Minderre a legtipikusabb és egyben legklasszikusabb példát a dekompozíciós idősormodellek jelentik

$$Y_t = R_t + C_t + S_t + u_t,$$

Dekompozíciós idősormodellek

- Minderre a legtipikusabb és egyben legklasszikusabb példát a dekompozíciós idősormodellek jelentik
- A legismertebb additív modell:

$$Y_t = R_t + C_t + S_t + u_t,$$

ahol R_t , C_t és S_t a trend, a ciklus és a szezonalitás t-edik időszakbeli értéke rendre, u_t pedig a már említett eltérésváltozó

Dekompozíciós idősormodellek

- Minderre a legtipikusabb és egyben legklasszikusabb példát a dekompozíciós idősormodellek jelentik
- A legismertebb additív modell:

$$Y_t = R_t + C_t + S_t + u_t,$$

ahol R_t , C_t és S_t a trend, a ciklus és a szezonalitás t-edik időszakbeli értéke rendre, u_t pedig a már említett eltérésváltozó

Becslés?

- Determinisztikus idősorelemzés
 - Alapgondolat
 - Determinisztikus idősormodellezés regresszióval
 - Trend és szezonalitás

- Az előbbi modell teljesen természetesen becsülhető regresszióval, ha R_t , C_t és S_t helyébe beírjuk a feltételezett paraméteres függvényformákat
- (Most tehát mindvégig paraméteres regressziót fogunk használni)
- Legegyszerűbb eset: $R_t = \alpha + \beta t$, $C_t = 0$ és $S_t = 0$ (egyszerű lineáris trend)
- Az így kapott modell OLS-sel becsülhető

- Az előbbi modell teljesen természetesen becsülhető regresszióval, ha R_t , C_t és S_t helyébe beírjuk a feltételezett paraméteres függvényformákat
- (Most tehát mindvégig paraméteres regressziót fogunk használni)
- Legegyszerűbb eset: $R_t = \alpha + \beta t$, $C_t = 0$ és $S_t = 0$ (egyszerű lineáris trend)
- Az így kapott modell OLS-sel becsülhető

- Az előbbi modell teljesen természetesen becsülhető regresszióval, ha R_t , C_t és S_t helyébe beírjuk a feltételezett paraméteres függvényformákat
- (Most tehát mindvégig paraméteres regressziót fogunk használni)
- Legegyszerűbb eset: $R_t = \alpha + \beta t$, $C_t = 0$ és $S_t = 0$ (egyszerű lineáris trend)
- Az így kapott modell OLS-sel becsülhető

- Az előbbi modell teliesen természetesen becsülhető regresszióval, ha R_t , C_t és S_t helvébe beírjuk a feltételezett – paraméteres – függvényformákat
- (Most tehát mindvégig paraméteres regressziót fogunk használni)
- Legegyszerűbb eset: $R_t = \alpha + \beta t$, $C_t = 0$ és $S_t = 0$ (egyszerű lineáris trend)
- Az így kapott modell OLS-sel becsülhető

Negyedéves GDP (éves) lineáris trenddel I.

on V	-2,02165e+ 103398,	008 1,5 7512,1		-13,4214 13,7641	0,000
	Mean dependent var	5161052	S.D. dependent v		270,3
	Sum squared resid R ²	1,50e+13 0,695356	S.E. of regression Adjusted R ²		924,3 91686
	F(1, 83)	189,4494	P-value(F)	3,94€	
	Log-likelihood	-1221,169	Akaike criterion	2446	5,339
	Schwarz criterion	2451,224	Hannan-Quinn	2448	3,304
	$\hat{ ho}$	0,315141	Durbin-Watson	1,34	3686

Negyedéves GDP (éves) lineáris trenddel II.

Mi ezzel a baj? Hibatag jól specifikált? Aligha!

Negyedéves GDP (éves) lineáris trenddel és szezonalitással I.

Coeffi	cient	Std. Error	t-ratio	p-value
-2.04	994e+008	$1.06300e \pm 0.07$	-19.2845	0.0000
104985,		5301,64	19,8024	0,0000
-815807		91469,3	-8,9189	0,0000
-375072		92487,9	-4,0554	0,0001
-203380,		92487,9	-2,1990	0,0308
ependent var	5161052	S.D. dependent var	765270,3	
uared resid	7,19e + 12	S.E. of regression	299695,1	
	0,853937	Adjusted R ²	0,846634	
)	116,9271	P-value(F)	1,34e-32	
lihood	-1189,928	Akaike criterion	2389,855	
criterion	2402,068	Hannan-Quinn	2394,768	
	0,946516	Durbin-Watson	0,116617	
	-2,04 104985, -815807, -375072,	815807, 375072, 203380, ependent var uared resid 7,19e+12 -0,88392 0) 116,9271 -1189,928 c criterion 2402,068	1,06300e+007 1,063000e+007 1,06300e+007 1,06300e+007 1,06300e+007 1,06300e+007 1,06	-2,04994e+008 1,06300e+007 -19,2845 104985, 5301,64 19,8024 -815807, 91469,3 -8,9189 -375072, 92487,9 -4,0554 -203380, 92487,9 -2,1990 ependent var 5161052 S.D. dependent var uared resid 7,19e+12 S.E. of regression 299695,1 0,853937 Adjusted R ² 0,846634 0,116,9271 P-value(F) 1,34e-32 dihod -1189,928 Akaike criterion 2398,855 c criterion 2402,068 Hannan-Quinn 2394,768

Negyedéves GDP (éves) lineáris trenddel és szezonalitással II.

A szezonalitás jónak tűnik, de az alaptrendet még mindig nem sikerült megragadni:

Negyedéves GDP (éves) kvadratikus trenddel és szezonalitással I.

Negyedéves GDP (éves) kvadratikus trenddel és szezonalitással II.

Reziduumok kicsit jobbak:

- Egyrészt el kell találni a függvényformát
- Persze modelldiagnosztika (az előbb látott grafikus módszerek és tesztek is) ott var
- (Ez igazából már keresztmetszetnél is így volt)
- Pl. a kvadratikus nyilván csak erre az időszakra jó, az általánosítóképessége botrányos lenne

- Egyrészt el kell találni a függvényformát
- Persze modelldiagnosztika (az előbb látott grafikus módszerek és tesztek is) ott van
- (Ez igazából már keresztmetszetnél is így volt
- Pl. a kvadratikus nyilván csak erre az időszakra jó, az általánosítóképessége botrányos lenne
- Másrészt a hibatag diagnosztikája bonyolultabbá válik, egy új szempont is megjelenik (autokorreláció) → később még nagyon sokat fogunk róla beszélni

- Egyrészt el kell találni a függvényformát
- Persze modelldiagnosztika (az előbb látott grafikus módszerek és tesztek is) ott van
- (Ez igazából már keresztmetszetnél is így volt)
- Pl. a kvadratikus nyilván csak erre az időszakra jó, az általánosítóképessége botrányos lenne
- Másrészt a hibatag diagnosztikája bonyolultabbá válik, egy új szempont is megjelenik (autokorreláció) → később még nagyon sokat fogunk róla beszélni

- Egyrészt el kell találni a függvényformát
- Persze modelldiagnosztika (az előbb látott grafikus módszerek és tesztek is) ott van
- (Ez igazából már keresztmetszetnél is így volt)
- Pl. a kvadratikus nyilván csak erre az időszakra jó, az általánosítóképessége botrányos lenne
- Másrészt a hibatag diagnosztikája bonyolultabbá válik, egy új szempont is megjelenik (autokorreláció) → később még nagyon sokat fogunk róla beszélni

- Egyrészt el kell találni a függvényformát
- Persze modelldiagnosztika (az előbb látott grafikus módszerek és tesztek is) ott van
- (Ez igazából már keresztmetszetnél is így volt)
- Pl. a kvadratikus nvilván csak erre az időszakra jó, az általánosítóképessége botrányos lenne
- Másrészt a hibatag diagnosztikája bonyolultabbá válik, egy új szempont is megjelenik (autokorreláció) → később még nagyon sokat fogunk róla beszélni

- Determinisztikus idősorelemzés
 - Alapgondolat
 - Determinisztikus idősormodellezés regresszióval
 - Trend és szezonalitás

- Trend: "hosszú távú alapirányzat"
- A mostani trend (determinisztikus trend) bármi lehet, amit paraméteres függvényformában megadunk; például:
 - Lineáris trend: a + bt
 - Kvadratikus trend: $a + b_1 t + b_2 t^2$
 - Polinomiális trend: $a + b_1t + b_2t^2 + \ldots + b_kt^k$
 - Exponenciális trend: ae^{bt}
 - Aszimptotikus trend: $c + \frac{1}{a+bt}$
 - Logisztikus trend: $\frac{1}{c+e^{a+bt}}$
 - stb. stb
- (Persze amelyik nem lineáris, ott vagy linearizálni kell vagy ha ez nem lehetséges akkor nem OLS-sel becsülni)
- Ezek mind paraméteres trendek voltak, elképzelhető nem-paraméteres trend is, a legismertebb a spline-ok használata (de ne feledjük, annak a becslése kevésbé hatásos nem kapunk egyetlen vagy néhány számba sűrített – és jó esetben tárgyterületileg értelmezhető – eredményt, valamint az előrejelzés is problémásabb)

- Trend: "hosszú távú alapirányzat"
- A mostani trend (determinisztikus trend) bármi lehet, amit paraméteres függvényformában megadunk; például:

• Lineáris trend: a + bt

• Kvadratikus trend: $a + b_1 t + b_2 t^2$

• Polinomiális trend: $a + b_1t + b_2t^2 + \ldots + b_kt^k$

• Exponenciális trend: ae^{bt}

• Aszimptotikus trend: $c + \frac{1}{a+bt}$

• Logisztikus trend: $\frac{1}{c+e^{a+bt}}$

• stb. stb.

- (Persze amelyik nem lineáris, ott vagy linearizálni kell vagy ha ez nem lehetséges akkor nem OLS-sel becsülni)
- Ezek mind paraméteres trendek voltak, elképzelhető nem-paraméteres trend is, a legismertebb a spline-ok használata (de ne feledjük, annak a becslése kevésbé hatásos, nem kapunk egyetlen vagy néhány számba sűrített – és jó esetben tárgyterületileg értelmezhető – eredményt, valamint az előrejelzés is problémásabb)

- Trend: "hosszú távú alapirányzat"
- A mostani trend (determinisztikus trend) bármi lehet, amit paraméteres függvényformában megadunk; például:

• Lineáris trend: a + bt

• Kvadratikus trend: $a + b_1 t + b_2 t^2$

• Polinomiális trend: $a + b_1 t + b_2 t^2 + ... + b_k t^k$

Exponenciális trend: ae^{bt}

• Aszimptotikus trend: $c + \frac{1}{2+ht}$

• Logisztikus trend: $\frac{1}{1+x^2+bt}$

sth sth

- (Persze amelyik nem lineáris, ott vagy linearizálni kell vagy ha ez nem lehetséges akkor nem OLS-sel becsülni)

- Trend: "hosszú távú alapirányzat"
- A mostani trend (determinisztikus trend) bármi lehet, amit paraméteres függvényformában megadunk; például:
 - Lineáris trend: a + bt
 - Kvadratikus trend: $a + b_1 t + b_2 t^2$
 - Polinomiális trend: $a + b_1t + b_2t^2 + \ldots + b_kt^k$
 - Exponenciális trend: ae^{bt}
 - Aszimptotikus trend: $c + \frac{1}{a+bt}$
 - Logisztikus trend: $\frac{1}{c+e^{a+bt}}$
 - stb. stb.
- (Persze amelyik nem lineáris, ott vagy linearizálni kell vagy ha ez nem lehetséges akkor nem OLS-sel becsülni)
- Ezek mind paraméteres trendek voltak, elképzelhető nem-paraméteres trend is, a legismertebb a spline-ok használata (de ne feledjük, annak a becslése kevésbé hatásos, nem kapunk egyetlen vagy néhány számba sűrített – és jó esetben tárgyterületileg értelmezhető – eredményt, valamint az előrejelzés is problémásabb)

- Szezonalitás: "éven belüli mintázat", exogén módon rögzített hosszúságú, periodikus (vs. ciklus: "éven túli", nem feltétlenül exogén módon adott, ismert hosszúságú)
- A szezonalitásnál viszont tipikusabb a nem-paraméteres megadás: minden negyedévnek (hónapnak, félévnek stb.) saját paramétere van
- (Dummy-kkal, ld. később, regressziós keretbe szintén szépen illeszkednek!)
- Persze itt is elképzelhető paraméteres megadás, a legismertebb a trigonometrikus (harmonikus) függvények használata

- Szezonalitás: "éven belüli mintázat", exogén módon rögzített hosszúságú, periodikus (vs. ciklus: "éven túli", nem feltétlenül exogén módon adott, ismert hosszúságú)
- A szezonalitásnál viszont tipikusabb a nem-paraméteres megadás: minden negyedévnek (hónapnak, félévnek stb.) saját paramétere van
- (Dummy-kkal, ld. később, regressziós keretbe szintén szépen illeszkednek!)
- Persze itt is elképzelhető paraméteres megadás, a legismertebb a trigonometrikus (harmonikus) függvények használata

- Szezonalitás: "éven belüli mintázat", exogén módon rögzített hosszúságú, periodikus (vs. ciklus: "éven túli", nem feltétlenül exogén módon adott, ismert hosszúságú)
- A szezonalitásnál viszont tipikusabb a nem-paraméteres megadás: minden negyedévnek (hónapnak, félévnek stb.) saját paramétere van
- (Dummy-kkal, ld. később, regressziós keretbe szintén szépen illeszkednek!)
- Persze itt is elképzelhető paraméteres megadás, a legismertebb a trigonometrikus (harmonikus) függvények használata

- Szezonalitás: "éven belüli mintázat", exogén módon rögzített hosszúságú, periodikus (vs. ciklus: "éven túli", nem feltétlenül exogén módon adott, ismert hosszúságú)
- A szezonalitásnál viszont tipikusabb a nem-paraméteres megadás: minden negyedévnek (hónapnak, félévnek stb.) saját paramétere van
- (Dummy-kkal, ld. később, regressziós keretbe szintén szépen illeszkednek!)
- Persze itt is elképzelhető paraméteres megadás, a legismertebb a trigonometrikus (harmonikus) függvények használata

Dummy-kódolás szezonalitáshoz: referenciakódolás

• Az egyik szezon indikátorát elhagyjuk: referenciakódolás

	D_{Q1}	D_{Q2}	D_{Q3}
Q1	1	0	0
Q2	0	1	0
Q3	0	0	1
Q4	0	0	0

• Értelmezés: eltérés a referenciacsoporthoz képest (ami az elhagyott indikátorú csoport)

Dummy-kódolás szezonalitáshoz: referenciakódolás

Az egyik szezon indikátorát elhagyjuk: referenciakódolás

	D_{Q1}	D_{Q2}	D_{Q3}
Q1	1	0	0
Q1 Q2 Q3	0	1	0
Q3	0	0	1
Q4	0	0	0

• Értelmezés: eltérés a referenciacsoporthoz képest (ami az elhagyott indikátorú csoport)

Dummy-kódolás szezonalitáshoz: kontrasztkódolás I.

- Egy másik népszerű megoldás a kontrasztkódolás: viszonyítsunk az átlaghoz!
- Ehhez hogyan kell kódolni…?

Dummy-kódolás szezonalitáshoz: kontrasztkódolás I.

- Egy másik népszerű megoldás a kontrasztkódolás: viszonyítsunk az átlaghoz!
- Ehhez hogyan kell kódolni...?

	C_{Q1}	C_{Q2}	C_{Q3}
Q1	1	0	0
Q2	0	1	0
Q3	0	0	1
Q4	-1	-1	-1

Dummy-kódolás szezonalitáshoz: kontrasztkódolás II.

Mert:

$$\alpha + \beta_{C_{O1}} + 0 + 0 = \overline{y}_{O1} \tag{1}$$

$$\alpha + 0 + \beta_{C_{Q2}} + 0 = \overline{y}_{Q2} \tag{2}$$

$$\alpha + 0 + 0 + \beta_{C_{O3}} = \overline{y}_{O3} \tag{3}$$

$$\alpha - \beta_{C_{Q1}} - \beta_{C_{Q2}} - \beta_{C_{Q3}} = \overline{y}_{Q4} \tag{4}$$

És így:

- $(1)+(2)+(3)+(4) \Rightarrow 4\alpha = \overline{y}_{Q1} + \overline{y}_{Q2} + \overline{y}_{Q3} + \overline{y}_{Q4} \Rightarrow \alpha$ tényleg a főátlag (mert azonosak voltak a csoportok elemszámai, különben ún. súlyozott kontraszt kellene)
- (2)+(3)+(4) \Rightarrow $3\alpha \beta_{C_{Q1}} = \overline{y}_{Q2} + \overline{y}_{Q3} + \overline{y}_{Q4} \Rightarrow \beta_{C_{Q1}} = 3\alpha (\overline{y}_{Q2} + \overline{y}_{Q3} + \overline{y}_{Q4}) = 3\alpha (4\alpha \overline{y}_{Q1}) \Rightarrow \beta_{C_{Q1}} = \overline{y}_{Q1} \alpha \Rightarrow$ tényleg az átlagtól való eltérés (és hasonlóan a másik kettő)

Dummy-kódolás szezonalitáshoz: egyebek

- Az angol irodalomban az általunk kontrasztkódolásnak nevezett módszert nagyon gyakran "effect coding"-nak nevezik…
- ... a kontraszt pedig az, amikor a csoportok tetszőleges általunk meghatározott lineáris kombinációját teszteljük

Dummy-kódolás szezonalitáshoz: egyebek

- Az angol irodalomban az általunk kontrasztkódolásnak nevezett módszert nagyon gyakran "effect coding"-nak nevezik...
- ... a kontraszt pedig az, amikor a csoportok tetszőleges általunk meghatározott lineáris kombinációját teszteljük