Categorical inputs

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

Example: Effect of Diet on Weight Loss

WtLoss24 ~ Diet + Age + BMI

Diet	Age	ВМІ	WtLoss24
Med	59	30.67	-6.7
Low-Carb	48	29.59	8.4
Low-Fat	52	32.9	6.3
Med	53	28.92	8.3
Low-Fat	47	30.20	6.3

model.matrix()

```
model.matrix(WtLoss24 ~ Diet + Age + BMI, data = diet)
```

- All numerical values
- Converts categorical variable with N levels into N 1 indicator variables

Indicator Variables to Represent Categories

Original Data

Diet	Age	•••
Med	59	•••
Low-Carb	48	•••
Low-Fat	52	•••
Med	53	•••
Low-Fat	47	•••

Model Matrix

(Int)	DietLow- Fat	DietMed	•••
1	0	1	•••
1	0	0	•••
1	1	0	•••
1	0	1	•••
1	1	0	•••

reference level: "Low-Carb"

Interpreting the Indicator Variables

Linear Model:

```
WtLoss24 = \beta_0 + \beta_{DietLow} x_{DietLow} + \beta_{DietMed} x_{DietMed} + \beta_{Age} x_{Age} + \beta_{BMI} x_{BMI}
```

```
lm(WtLoss24 ~ Diet + Age + BMI, data = diet))
```

```
Coefficients:

(Intercept) DietLow-Fat DietMed

-1.37149 -2.32130 -0.97883

Age BMI

0.12648 0.01262
```


Issues with one-hot-encoding

- Too many levels can be a problem
 - Example: ZIP code (about 40,000 codes)
- Don't hash with geometric methods!

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Interactions

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

Additive relationships

Example of an additive relationship:

```
plant_height ~ bacteria + sun
```

- Change in height is the sum of the effects of bacteria and sunlight
 - Change in sunlight causes same change in height, independent of bacteria
 - Change in bacteria causes same change in height, independent of sunlight

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

```
plant_height ~ bacteria + sun + bacteria:sun
```

- Change in height is more (or less) than the sum of the effects due to sun/bacteria
- At higher levels of sunlight, 1 unit change in bacteria causes more change in height

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

```
plant_height ~ bacteria + sun + bacteria:sun
```

- sun: categorical {"sun", "shade"}
- In sun, 1 unit change in bacteria causes m units change in height
- In shade, 1 unit change in bacteria causes *n* units change in height

Like two separate models: one for sun, one for shade.

Example of no Interaction: Soybean Yield

yield ~ Stress + SO2 + O3

Example of an Interaction: Alcohol Metabolism

Metabol ~ Gastric + Sex

Expressing Interactions in Formulae

Interaction - Colon (:)

```
y ~ a:b
```

Main effects and interaction - Asterisk (*)

```
y ~ a*b
# Both mean the same
y ~ a + b + a:b
```

• Expressing the product of two variables - I

```
y ~ I(a*b)
```

same as $y \propto ab$

Finding the Correct Interaction Pattern

Formula	RMSE (cross validation)
Metabol ~ Gastric + Sex	1.46
Metabol ~ Gastric * Sex	1.48
Metabol ~ Gastric + Gastric:Sex	1.39

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Transforming the response before modeling

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

The Log Transform for Monetary Data

- Monetary values: lognormally distributed
- Long tail, wide dynamic range (60-700K)

Lognormal Distributions

- mean > median (~ 50K vs 39K)
- Predicting the mean will overpredict typical values

Back to the Normal Distribution

For a Normal Distribution:

- mean = median (here: 4.53vs 4.59)
- more reasonable dynamic range (1.8 - 5.8)

The Procedure

1. Log the outcome and fit a model

model <-
$$lm(log(y) \sim x, data = train)$$

The Procedure

1. Log the outcome and fit a model

```
model <- lm(log(y) \sim x, data = train)
```

2. Make the predictions in log space

```
logpred <- predict(model, data = test)</pre>
```

The Procedure

1. Log the outcome and fit a model

```
model <- lm(log(y) \sim x, data = train)
```

2. Make the predictions in log space

```
logpred <- predict(model, data = test)</pre>
```

3. Transform the predictions to outcome space

```
pred <- exp(logpred)</pre>
```

Predicting Log-transformed Outcomes: Multiplicative Error

$$log(a) + log(b) = log(ab)$$

$$log(a) - log(b) = log(a/b)$$

- Multiplicative error: pred/y
- Relative error: $(pred-y)/y=rac{pred}{y}-1$

Reducing multiplicative error reduces relative error.

Root Mean Squared Relative Error

RMS-relative error =
$$\sqrt{\frac{pred-y}{y}^2}$$

- Predicting log-outcome reduces RMS-relative error
- But the model will often have larger RMSE

Example: Model Income Directly

```
modIncome <- lm(Income ~ AFQT + Educ, data = train)</pre>
```

- AFQT: Score on proficiency test 25 years before survey
- Educ: Years of education to time of survey
- Income : Income at time of survey

Model Performance

```
test %>%
+     mutate(pred = predict(modIncome, newdata = test),
+         err = pred - Income) %>%
+         summarize(rmse = sqrt(mean(err^2)),
+             rms.relerr = sqrt(mean((err/Income)^2)))
```

RMSE	RMS-relative error
36,819.39	3.295189

Model log(Income)

modLogIncome <- lm(log(Income) ~ AFQT + Educ, data = train)</pre>

Model Performance

```
test %>%

+     mutate(predlog = predict(modLogIncome, newdata = test),

+          pred = exp(predlog),

+          err = pred - Income) %>%

+          summarize(rmse = sqrt(mean(err^2)),

+                rms.relerr = sqrt(mean((err/Income)^2)))
```

RMSE	RMS-relative error
38,906.61	2.276865

Compare Errors

log(Income) model: smaller RMS-relative error, larger RMSE

Mod	del	RMSE	RMS-relative error
On	Income	36,819.39	3.295189
On	log(Income)	38,906.61	2.276865

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Transforming inputs before modeling

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector LLC

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - $\circ \; Intelligence \sim rac{mass.brain}{mass.body^{2/3}}$

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - $\circ \; Intelligence \sim rac{mass.brain}{mass.body^{2/3}}$
- Pragmatic reasons
 - Log transform to reduce dynamic range
 - Log transform because meaningful changes in variable are multiplicative

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - $\circ \; Intelligence \sim rac{mass.brain}{mass.body^{2/3}}$
- Pragmatic reasons
 - Log transform to reduce dynamic range
 - Log transform because meaningful changes in variable are multiplicative
 - $\circ \ y$ approximately linear in f(x) rather than in x

Example: Predicting Anxiety

Anxiety as a function of hassles

Transforming the hassles variable

Anxiety vs hassles

Green: anx ~ hassles; Orange: anx ~ I(hassles^2); Purple: anx ~ I(hassles^3)

Different possible fits

Which is best?

- anx ~ I(hassles^2)
- anx ~ I(hassles^3)
- anx ~ I(hassles^2) + I(hassles^3)
- anx ~ exp(hassles)
- •

I(): treat an expression literally (not as an interaction)

Compare different models

Linear, Quadratic, and Cubic models

```
mod_lin <- lm(anx ~ hassles, hassleframe)
summary(mod_lin)$r.squared</pre>
```

0.5334847

```
mod_quad <- lm(anx ~ I(hassles^2), hassleframe)
summary(mod_quad)$r.squared</pre>
```

0.6241029

```
mod_tritic <- lm(anx ~ I(hassles^3), hassleframe)
summary(mod_tritic)$r.squared</pre>
```

0.6474421

Compare different models

Use cross-validation to evaluate the models

Model	RMSE
Linear ($hassles$)	7.69
Quadratic ($hassles^2$)	6.89
Cubic ($hassles^3$)	6.70

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

