Quiz 8 Solution

Q1 (1pt) Adjacency Matrix ($a_{ij}=1$ if edge between node i and j)

	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0

(1pt) Degree Matrix (d_{ij}=degree of node i)

	1	2	3	4	5	6
1	2					
2		3				
3			2			
4				3		
5					3	
6						1

(1pt) Laplacian Matrix = Degree Matrix - Adjacency Matrix

	1	2	3	4	5	6
1	2	-1	0	0	-1	0
2	-1	3	-1	0	-1	0
3	0	-1	2	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	-1	0	-1	3	0
6	0	0	0	-1	0	1

Q2 (1pt) Spectral Clustering Algorithms

- 1) Pre-processing: Construct a matrix representation of the graph
- 2) Decomposition: Compute <u>eigenvalues</u> and <u>eigenvectors</u> of the matrix; Map each point to a <u>lower-dimensional representation</u> based on one or more eigenvectors
- 3) Grouping: Assign points to two or more clusters, based on the new representation

Q3 Clustering Algorithm

a) (1pt)Given a method of presenting document to some space(e.g. vector/set) with a notion of distance between documents. Group documents into some number of clusters that the similar documents are assigned to the same cluster.

b) (method 0.5pt each; distance measure & explanation 0.5pt each)

- Set of words. Jaccard distance = $1 |X \cap Y| / |X \cup Y|$
- Vector in space of selected words. Cosine distance = 1 X·Y/|X|*|Y|
- Point in space of selected words. Euclidean distance:

$$d(\mathbf{p},\mathbf{q}) = \sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + \dots + (p_i-q_i)^2 + \dots + (p_n-q_n)^2}.$$

(Hamming Distance/ Edit Distance are also correct for vector)

Q4 (key operation 0.5pt each, implementation detail 0.5pt each)

- 1) Represent a cluster of many points. Centroid when measuring distance of clusters using Euclidean distance.
- 2) Determine the "nearness" of cluster. Measuring cluster distances by distances of centroids.
- 3) Stop combining clusters when cluster number reaching the intuitive number of clusters or best combination(keep merging leads to inadequate).