Problem-Based Introduction to Computer Science

2010-1

Vanishing Square Recursion Homework 2

September 16, 2010

1 Problem Statement

The program, vansquares.py, creates a canvas containing a figure of nested squares drawn from the outside inward. These nested squares share a common center, the center of the drawing canvas.

The program passes the length of the outermost square to a recursive function, which draws vanishing squares and stops when the length is less than 1. In addition to the length, the program must pass a shrinkage factor: the amount by which to shrink each successive square. Below is the program output when the side length is 32 and the shrinkage scale value is 50.

With a shrinkage factor of 50, the program draws each smaller square so that it is one half the length of the next outer square; the square shrinks by 50%. A value less than 50 will produce less shrinkage (and more squares), and a larger value will produce more shrinkage (fewer squares). Below is the program output when the side length is 32 and the shrink scale value is 20.

1.1 Constraints on the Problem Solution

- 1. The solution to this problem shall use the Python turtle library.
- 2. The window canvas shall fit the drawn elements.
- 3. Recursion shall be the only mechanism for program sequencing.

1.2 Submission

You must submit your work to the appropriate homework dropbox in MyCourses. The file vansquares.py must contain file comments with your name, the functions that solve the problem, and a description of how to run it with different shrinkages.