Машинное обучениее. Линейная классификация.

Московский физико-технический институт, МФТИ

Москва

План лекции

- 1. Линейная модель классификации;
- 2. Логистическая регрессия;
- 3. Метод опорных векторов;
- 4. Метрики качества классификации;

Основные понятия и обозначения

Дано: выборка обучающих пар объектов $X^I = (x_i, y_i)_{i=1}^I$. В общем виде алгоритм классификации представим функцией a(x, w) = sign f(x, w). Задача: найти разделяющую поверхность f(x, w) = 0. Отсутпом объекта называется величина $M_i(w) = y_i f(x_i, w)$ относительно алгоритма классификации a(x, w).

Аппроксимация эмпирического риска

Пусть - монотонно невозрастающая функция отсупа, мажорирующую функцию потерь $[M < 0] \leq \mathcal{L}(M)$.

 $L(M) = \ln_2(1 + e^{-M})$

 $E(M) = e^{-M}$

$$Q(w,X^I) = \sum_{i=1}^I [M_i(w) < 0] \leq ilde{Q}(w,X^I) = \sum_{i=1}^I (M_i(w))
ightarrow \min_w.$$
 $Q(M) = (1-M)^2$ - квадратичная, $V(M) = \max\{0,1-M\}$ - кусочно-линейная, $S(M) = 2/(1+e^{-M})$ - сигмоидная,

- логистическая,

- экспоненциальная.

Аппроксимация пороговой функции

Мат модель линейной классификации

Рассмотрим классифицирующие модели вида $a(x,w)=\mathrm{sign}\,f(x,w)$, так что множество значений функционала $Y=\{-1,+1\}$. Функция доли неправильных ответов

$$Q(a,x) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i] = \frac{1}{l} \sum_{i=1}^{l} [\operatorname{sign}\langle w, x_i \rangle \neq y_i] \to \min_{w},$$

или в более компактной записи

$$Q(a,x) = \frac{1}{I} \sum_{i=1}^{I} [y_i \langle w, x_i \rangle <]$$

положим $M_i = y_i \langle w, x_i \rangle$.

Вероятностная модель данных

Применим метод максимума правдоподобия. Пусть все наблюдения **независимы** , каждое из которых описывается функцией распределения p(x,y|w), тогда правдопбие выборки можно представить $p(X^I|w) = \prod\limits_{i=1}^I p(x_i,y_i|w) \to w$, так что указанный метод эквивалентен постановке минимизации ошибок или функции потерь

$$-\sum_{i=1}^{l}\ln p(x_i,y_i|w)\mathcal{L}(y_if(x_i,w)).$$

Базовые предополжения

Предположение

Множество прецедентов $X \times Y$ является вероятностным пространством. Выборка прецедентов $X^l = (x_i, y_i)_{i=1}^l$ получена случайно и независимо согласно вероятностному распределению с плотностью $p(x,y) = P_y p_y(x) = P(y|x)p(x)$, где P_y - априорные вероятности, p_y - функции правдоподобия, P(y|x)- апостериорные вероятности классов $y \in Y$.

Предположение

Функции правдопдобия классов принадлежат экспоненциальному семейству плотностей, имеют равные значения параметров d и δ , но отличаются значениями параметров сдвига $\theta_{\rm V}$.

$$accuracy = rac{TP + TN}{TP + FP + FN + TN},$$
 $precision = rac{TP}{TP + FP},$ $recall = rac{TP}{TP + FN},$

Критерий качества на основе точности и полноты: F - мера, гармоническое среднее точности и полноты:

$$F = \frac{2 * precision * recall}{precision + recall}$$

Площадь под ROC -кривой

Доли неверно принятых объектов (False Positive Rate) и верно принятых объектов (True Positive Rate)

$$FPR = \frac{FP}{FP + TN},$$

$$FPR = \frac{TP}{TP + FN}.$$

Проблема чувствительности к соотношению классов -> решение через precision-recall кривая оценки.

Пример ROC -кривой

