# Systemy cyfrowe i podstawy elektroniki

Adam Szmigielski

aszmigie@pjwstk.edu.pl

materially: ftp(public): //aszmigie/SYC

Układy cyfrowe - wprowadzenie - wykład 6

#### Sygnał cyfrowy - TTL



- Układy TTL zbudowane są z tranzystorów bipolarnych i zasila się je napięciem stałym 5 V.
- Gdy potencjał ma wartość od  $0V \div 0,8V$  (w odniesieniu do masy) sygnał TTL jest niski **logiczne 0**.
- Dla potencjału między  $2V \div 5V$  jest stan wysoki **logiczna 1**.
- $\bullet$ Gdy wartość napięcia jest z przedziału 0,8<br/>  $V \div 2V$  sygnał jest nieokreślony.

#### Sygnał cyfrowy - CMOS



- Układy CMOS zbudowane są z się z tranzystorów MOS o przeciwnym typie przewodnictwa i połączonych w taki sposób, że w ustalonym stanie logicznym przewodzi tylko jeden z nich,
- Układy CMOS są relatywnie proste i tanie w produkcji, umożliwiając uzyskanie bardzo dużych gęstości upakowania,
- Układy cyfrowe wykonane w technologii CMOS mogą być zasilanie napięciem  $3 \div 18V$ ,

- Praktycznie nie pobierają mocy statycznie, tylko przy zmianie stanu logicznego,
- Poziomy logiczne są zbliżone do napiąć zasilających (masa logiczne "0", zasilanie "1"). Czasami stosuje się klasyfikacje procentową "0" odpowiadają napięcia z zakresu 0-30%, "1" 70-100%.

#### Układy niskonapięciowe (Low Voltage)

- Obecnie istnieje wyraźna tendencja do obniżania napięcia zasilania,
- Produkowane są serie układów cyfrowych CMOS przystosowane do zasilania napięciem 3, 3V, 2, 5V czy nawet 1, 8V,

#### Trzeci stan logiczny i bramki typu open collector

- Oprócz logicznego '0' i logicznej '1' istnieje trzeci stan logiczny stan wysokiej impedancji (ang. high impedance),
- Gdy punkt układu nie jest połączony galwanicznie z układem cyfrowym znajduje się on w w stanie wysokiej impedancji,
- Aby punkt obwodu będący w stanie wysokiej impedancji mógł być traktowany jako logiczne '0' albo '1' należy poprzez rezystor połączyć go odpowiednio do masy lub zasilania. Rezystory tego typu noszą nazwę **rezystorów podciągających** (ang. pull up resistor),
- Budowane są bramki logiczne, których wyjście pozostawać może w stanie wysokiej impedancji.

#### Popularne bramki logiczne

$$A - \overline{A}$$

$$A \rightarrow B$$

$$A \rightarrow A \lor B$$

| A | мот A | A | В | A AND B | A | В | A or B |  |
|---|-------|---|---|---------|---|---|--------|--|
| 0 | 1     | 0 | 0 | 0       | 0 | 0 | 0      |  |
| 1 | 0     | 0 | 1 | 0       | 0 | 1 | 1      |  |
|   |       | 1 | 0 | 0       | 1 | 0 | 1      |  |
|   |       | 1 | 1 | 1       | 1 | 1 | 1      |  |

$$A \Rightarrow A \oplus B$$

$$A \cap A \cap B$$

$$A \longrightarrow \overline{A \vee B}$$

| <br>A       | В           | A xor B     | _ | A           | В           | A nand B    | _ | A           | В           | A nor B     |
|-------------|-------------|-------------|---|-------------|-------------|-------------|---|-------------|-------------|-------------|
| 0<br>0<br>1 | 0<br>1<br>0 | 0<br>1<br>1 |   | 0<br>0<br>1 | 0<br>1<br>0 | 1<br>1<br>1 | _ | 0<br>0<br>1 | 0<br>1<br>0 | 1<br>0<br>0 |
| 1           | 1           | 0           |   | 1           | 1           | 0           |   | 1           | 1           | 0           |

#### Algebry Boole'a

- Algebry Boole'a to rodzina wszystkich podzbiorów ustalonego zbioru wraz działaniami na zbiorach jako operacjami algebry zbiorów (część wspólna, suma, dopełnienie), np. dwuelementowa algebra wartości logicznych {0,1} z działaniami koniunkcji ∧, alternatywy ∨ i negacji ¬.
- Istnieją inne tradycje oznaczeń w teorii algebr Boole'a:
  - część wspólna  $\cap$ , suma  $\cup$  i dopełnienie  $\sim$
  - koniunkcja ∧, alternatywa ∨ i negacja ¬
  - koniunkcji ·, alternatywy + i negacji –

# Własności algebry Boole'a

| łączność     | (ab)c = a(bc)                  | (a+b)+c=a+(b+c)               |
|--------------|--------------------------------|-------------------------------|
| przemienność | ab = ba                        | a+b=b+a                       |
| rozdzielność | $a + (bc) = (a+b) \cdot (a+c)$ | $a \cdot (b+c) = (ab) + (ac)$ |
| absorpcja    | a(a+b) = a                     | a + (ab) = a                  |
| pochłanianie | $a + \overline{a} = 1$         | $a \cdot \overline{a} = 0$    |

Istotne dla techniki cyfrowej prawa algebry Boole'a

• prawa de Morgana:

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$
$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

 $\bullet \ a\overline{b} + ab = a$ 

#### Funkcja Boolowska



- Funkcją boolowską n argumentową nazywamy odwzorowanie  $f: B^n \to B$ , gdzie  $B = \{0,1\}$  jest zbiorem wartości funkcji.
- Funkcja boolowska jest matematycznym modelem układu kombinacyjnego.

## Opis funkcji Boolowskiej - tabele prawdy

 $\bullet\,$ funkcja jednej zmiennej (np. negacja  $f(a) = \neg a)$ 

| $oxed{a}$ | f(a) |
|-----------|------|
| 0         | 1    |
| 1         | 0    |

• Funkcja dwóch zmiennych (np. funkcja mod2:  $f(a,b) = a \otimes b$ )

| a | b | f(a,b) |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 0      |

#### Zbiory zer i jedynek w postaci binarnej i dziesiętnej

| a | b | f(a,b) |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 0      |

$$f^1 = \begin{bmatrix} 01 \\ 10 \end{bmatrix}$$
 - zbiór jedynek w postaci binarnej

$$f^0 = \begin{bmatrix} 00 \\ 11 \end{bmatrix}$$
 - zbiór zer w postaci binarnej

 $f^1 = \{1,2\}$ -zbi<br/>ór jedynek w postaci dziesiętnej

 $f^0 = \{0,3\}$ -zbi<br/>ór zer w postaci dziesiętnej

Postać sumacyjna - DNF (ang. Disjunctive Normal Form)

| a | b | f(a,b) |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 0      |

Postać sumacyjna: funkcja f jest sumą iloczynów

$$f = \dots (\dots \wedge \dots \wedge \dots) \vee (\dots \wedge \dots \wedge \dots) \vee (\dots \wedge \dots \wedge \dots) \dots$$

Wyrażenie w nawiasie (iloczyn) odpowiada jednej jedynce.

W tym konkretnym przypadku:  $f(a,b) = (\overline{a} \wedge b) \vee (a \wedge \overline{b}).$ 

Zapis dziesiętny:  $f(a,b) = \sum (1,2)$ 

Postać iloczynowa - CNF (ang. Conjunctive Normal Form)

| a | b | f(a,b) |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 0      |

Postać sumacyjna: funkcja f jest iloczynem sum

$$f = \dots (\dots \vee \dots \vee \dots) \wedge (\dots \vee \dots \vee \dots) \wedge (\dots \vee \dots \vee \dots) \dots$$

Wyrażenie w nawiasie (suma) odpowiada jednemu zeru.

W tym konkretnym przypadku:  $f(a,b) = (a \lor b) \land (\overline{a} \lor \overline{b})^{a}$ .

Zapis dziesiętny:  $f(a,b) = \prod (0,3)$ 

a należy pamiętać o zanegowaniu zmiennych, tj. Nawiasowi  $(a \vee b)$  odpowiada sytuacja, gdy a=0 i b=0.

#### Schematy układów logicznych



- 1. Schemat logiczny opisuje logiczną strukturę funkcji boolowskich,
- 2. Przepływ informacji jest od wejścia do wyjścia, tj. y = f(a, b, c),
- 3. Kropka oznacza połączenie,
- 4. Prezentowany schemat realizuje funkcje boolowską:

$$y = f(a, b, c) = (\overline{a}b + a\overline{b}) \cdot (a + \overline{b} + c)$$

## Realizacja funkcji boolowskiej opisanej tabelą prawdy

| a | b | c | y = f(a, b, c) |
|---|---|---|----------------|
| 0 | 0 | 0 | 0              |
| 0 | 0 | 1 | 0              |
| 0 | 1 | 0 | 0              |
| 0 | 1 | 1 | 1              |
| 1 | 0 | 0 | 1              |
| 1 | 0 | 1 | 1              |
| 1 | 1 | 0 | 0              |
| 1 | 1 | 1 | 0              |

• Sumacyjna postać kanoniczna (szukamy '1' na wyjściu):

$$y = f(a, b, c) = \overline{a}bc + a\overline{b}\overline{c} + a\overline{b}c$$

#### Realizacja funkcji boolowskiej na bramkach

| a | b | c | y = f(a, b, c) |
|---|---|---|----------------|
| 0 | 0 | 0 | 0              |
| 0 | 0 | 1 | 0              |
| 0 | 1 | 0 | 0              |
| 0 | 1 | 1 | 1              |
| 1 | 0 | 0 | 1              |
| 1 | 0 | 1 | 1              |
| 1 | 1 | 0 | 0              |
| 1 | 1 | 1 | 0              |



- $y = f(a, b, c) = \overline{a}bc + a\overline{b}\overline{c} + a\overline{b}c$
- Czy można użyć mniejszej liczby bramek?

#### Przekształcenia funkcji boolowskiej

1. 
$$y = f(a, b, c) = \overline{a}bc + a\overline{b}\overline{c} + a\overline{b}c$$

2. 
$$\overline{a}bc + a\overline{b}\overline{c} + a\overline{b}c = \overline{a}bc + a\overline{b}\overline{c} + a\overline{b}c + a\overline{b}c$$

3. 
$$\overline{a}bc + a\overline{b}\overline{c} + a\overline{b}\overline{c} + a\overline{b}c = \overline{a}bc + a\overline{b}(\overline{c} + c) + a\overline{b}c = \overline{a}bc + a\overline{b} + a\overline{b}c$$

4. 
$$\overline{a}bc + a\overline{b} + a\overline{b}c = \overline{a}bc + aa\overline{b} + a\overline{b}\overline{b} + a\overline{b}c$$

5. 
$$\overline{a}bc + aa\overline{b} + a\overline{b}\overline{b} + a\overline{b}\overline{c} = \overline{a}bc + aa\overline{b} + a\overline{b}\overline{b} + a\overline{b}c + a\overline{a}b + ab\overline{b}$$

6. 
$$\overline{a}bc + aa\overline{b} + a\overline{b}\overline{b} + a\overline{b}c + a\overline{a}b + ab\overline{b} = a\overline{b}(a + \overline{b} + c) + \overline{a}b(a + \overline{b} + c)$$

7. 
$$a\overline{b}(a+\overline{b}+c)+\overline{a}b(a+\overline{b}+c)=(a\overline{b}+\overline{a}b)(a+\overline{b}+c)$$

#### Równoważność funkcji Boolowskich

- Funkcje boolowskie mogą być sobie równoważne  $\overline{a}bc + a\overline{b}\overline{c} + a\overline{b}c \Leftrightarrow (a\overline{b} + \overline{a}b)(a + \overline{b} + c)$
- Równoważne są więc realizacje tych funkcji



#### Zadanie optymalizacji funkcji

Przy projektowaniu układów kombinacyjnych dąży się do minimalizacji kosztów układu. Można tego dokonać na kilka sposobów:

- Poprzez minimalizacje liczby bramek,
- Poprzez redukcje liczby wejść bramek,
- Poprzez zmniejszenie różnorodności bramek,
- Poprzez redukcje czasu projektowania układu.

#### Redukcja różnorodności rodzajów bramek

Jaka jest najmniejsza liczba różnorodności bramek?

 $Logika\ klasyczna$  (operująca na operatorach koniunkcji  $\land$ , alternatywy  $\lor$ , implikacji  $\Rightarrow$  i negacji  $\neg$ ) jest nadmiarowa, tzn. część operatorów można zdefiniować w oparciu o pozostałe. Najmniejsze systemy to:

- Implikacyjno-negacyjny operujący negacją i implikacją,
- Koniunkcyjno-negacyjny operujący negacją i koninkcją,
- Alternatywno-negacyjny operujący negacją i alternatywą.

#### NAND i NOR - bramki uniwersalne

• NOR realizuje zanegowaną sumę logiczną  $y = \overline{a \vee b}$ ,

| a | b | NOR(a,b) |
|---|---|----------|
| 0 | 0 | 1        |
| 0 | 1 | 0        |
| 1 | 0 | 0        |
| 1 | 1 | 0        |



• NAND realizuje zanegowny iloczyn logiczny  $y = \overline{a \wedge b}$ ,

| a | b | NAND(a,b) |
|---|---|-----------|
| 0 | 0 | 1         |
| 0 | 1 | 1         |
| 1 | 0 | 1         |
| 1 | 1 | 0         |

### Realizacja negacji, iloczynu i sumy ma bramkach NAND

• Za pomocą bramek NAND można zrealizować negację, iloczyn i sumę logiczną,

$$\overline{a} \iff \overline{a} \implies \overline{a}$$

• Na bramkach NAND można zrealizować dowolną funkcję Boolowską.

# Realizacja negacji, sumy i iloczynu ma bramkach NOR

• Za pomocą bramek NOR można zrealizować negację, sumę i iloczyn logiczny,



• Na bramkach NOR można zrealizować dowolną funkcję Boolowską.

#### Kod Graya

Kod Graya jest dwójkowym kodem bezwagowym niepozycyjnym, który charakteryzuje się tym, że dwa kolejne słowa kodowe różnią się tylko stanem jednego bitu. Jest również kodem cyklicznym, bowiem ostatni i pierwszy wyraz tego kodu także spełniają w/w zasadę.

#### Regula grupowania a kod Graya

• Regula grupowania:  $a \cdot f(x_1, x_2, \dots x_n) + \overline{a} \cdot f(x_1, x_2, \dots x_n) = (a + \overline{a}) \cdot f(x_1, x_2, \dots x_n) = f(x_1, x_2, \dots x_n)$ 

| 001 | $\overline{a}\overline{b}c$ |
|-----|-----------------------------|
| 011 | $\overline{a}bc$            |
| 010 | $\overline{a}b\overline{c}$ |
| 110 | $ab\overline{c}$            |
| 111 | abc                         |
| 101 | $a\overline{b}c$            |
| 100 | $a\overline{b}\overline{c}$ |

000

 $\overline{a}\overline{b}\overline{c}$ 

• Dwa sąsiadujące wyrażenia zastępujemy jednym, pomijając ten element na którym nastąpiła zmiana np. wyrażenie  $\overline{a}bc + \overline{a}b\overline{c}$  jest równoważne wyrażeniu  $\overline{a}b$ .

#### Mapy Karnaugha



- Mapy Karnough'a są pomocne przy minimalizacji funkcji boolowskiej,
- Mapa Karnough'a jest wypełniana w oparciu o tablice prawdy,
- Zmienne w wierszach i kolumnach uporządkowane są zgodnie z kodem Graya, co znacznie ułatwia zastosowanie reguły grupowania.

## Mapy Karnaugha

| a | b | c             | y = f(a, b, c) |
|---|---|---------------|----------------|
| 0 | 0 | 0             | 0              |
| 0 | 0 | 1             | 0              |
| 0 | 1 | 0             | 0              |
| 0 | 1 | 1             | 1              |
| 1 | 0 | 0             | 1              |
| 1 | 0 | 1             | 1              |
| 1 | 1 | 0             | 0              |
| 1 | 1 | $\mid 1 \mid$ | 0              |

| abc | abc                         |   |  |
|-----|-----------------------------|---|--|
| 000 | $a\overline{b}\overline{c}$ | 0 |  |
| 001 | $\overline{a}\overline{b}c$ | 0 |  |
| 011 | $\overline{a}bc$            | 1 |  |
| 010 | $\overline{a}b\overline{c}$ | 0 |  |
| 110 | $ab\overline{c}$            | 0 |  |
| 111 | abc                         | 0 |  |
| 101 | $a\overline{b}c$            | 1 |  |
| 100 | $a\overline{b}\overline{c}$ | 1 |  |

## Różne postacie mapy Karnaugh'a

| abc                                    |   |
|----------------------------------------|---|
| $\overline{a}\overline{b}\overline{c}$ | 0 |
| $\overline{a}\overline{b}c$            | 0 |
| $\overline{a}bc$                       | 1 |
| $\overline{a}b\overline{c}$            | 0 |
| $ab\overline{c}$                       | 0 |
| abc                                    | 0 |
| $a\overline{b}c$                       | 1 |
| $a \overline{b} \overline{c}$          | 1 |

| $a \bc$ | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| 0       | 0  | 0  | 1  | 0  |
| 1       | 1  | 1  | 0  | 0  |

| $ab \backslash c$ | 0 | 1 |
|-------------------|---|---|
| 00                | 0 | 0 |
| 01                | 0 | 1 |
| 11                | 0 | 0 |
| 10                | 1 | 1 |

#### Mapy Karnaugha - grupowanie '1'

| abc                                    |   |
|----------------------------------------|---|
| $\overline{a}\overline{b}\overline{c}$ | 0 |
| $\overline{a}\overline{b}c$            | 0 |
| $\overline{a}bc$                       | 1 |
| $\overline{a}b\overline{c}$            | 0 |
| $ab\overline{c}$                       | 0 |
| abc                                    | 0 |
| $a\bar{b}c$                            | 1 |
| $a \overline{b} \overline{c}$          | 1 |

| $a \backslash bc$ | 00 | 01 | 11 | 10 |
|-------------------|----|----|----|----|
| 0                 | 0  | 0  | 1  | 0  |
| 1                 | 1  | 1  | 0  | 0  |

| $ab \backslash c$ | 0 | 1 |
|-------------------|---|---|
| 00                | 0 | 0 |
| 01                | 0 | 1 |
| 11                | 0 | 0 |
| 10                | 1 | 1 |

- Grupujemy '1' tylko w pionie albo poziomie w ilościach będących krotnością dwójki, tworząc sumacyjną postać kanoniczną,
- Pozbywamy się tej zmiennej która się zmienia.
- Minimalna sumacyjna postać kanoniczną:  $y = a\overline{b} + \overline{a}bc$ .

#### Mapy Karnaugha - grupowanie '0'

| abc                                    |   |
|----------------------------------------|---|
| $\overline{a}\overline{b}\overline{c}$ | 0 |
| $\overline{a}\overline{b}c$            | 0 |
| $\overline{a}bc$                       | 1 |
| $\overline{a}b\overline{c}$            | 0 |
| $ab\overline{c}$                       | 0 |
| abc                                    | 0 |
| $a\overline{b}c$                       | 1 |
| $a \overline{b} \overline{c}$          | 1 |

| $a \backslash bc$ | 00 | 01 | 11 | 10 |
|-------------------|----|----|----|----|
| 0                 | 0  | 0  | 1  | 0  |
| 1                 | 1  | 1  | 0  | 0  |

| $ab \backslash c$ | 0 | 1 |
|-------------------|---|---|
| 00                | 0 | 0 |
| 01                | 0 | 1 |
| 11                | 0 | 0 |
| 10                | 1 | 1 |

- Sklejamy "0" tylko w pionie albo poziomie w ilościach będących krotnością dwójki, tworząc *iloczynową postać kanoniczną*,
- Pozbywamy się tej zmiennej która się zmienia. Pozostałe zmienne negujemy,
- Minimalna iloczynową postać kanoniczną:  $y = (a + b) \cdot (\overline{b} + c) \cdot (\overline{a} + \overline{b})$ .

#### Równoważność postaci sumacyjnej i iloczynowej

• Jak można się domyślać, obie postacie są sobie równoważne, tj.:

$$a\overline{b} + \overline{a}bc \Leftrightarrow (a+b) \cdot (\overline{b} + c) \cdot (\overline{a} + \overline{b})$$

• uzasadnienie:

• 
$$(a+b)\cdot(\overline{b}+c)\cdot(\overline{a}+\overline{b}) \Leftrightarrow (a\overline{b}+ac+b\overline{b}+bc)\cdot(\overline{a}+\overline{b})$$

• 
$$(a\overline{b} + ac + b\overline{b} + bc) \cdot (\overline{a} + \overline{b}) \Leftrightarrow a\overline{a}\overline{b} + a\overline{a}c + \overline{a}bc + a\overline{b}\overline{b} + a\overline{b}c + b\overline{b}c$$

• 
$$a\overline{a}\overline{b} + a\overline{a}c + \overline{a}bc + a\overline{b}\overline{b} + a\overline{b}c + b\overline{b}c \Leftrightarrow \overline{a}bc + a\overline{b} + a\overline{b}c$$

• 
$$\overline{a}bc + a\overline{b} + a\overline{b}c \Leftrightarrow a\overline{b} + \overline{a}bc$$

#### Realizacja postaci sumacyjnej na bramkach NAND



- Daną funkcję  $y=a\overline{b}+\overline{a}bc$  negujemy dwukrotnie
- $y = \overline{a\overline{b} + \overline{a}bc}$ . Dla "wewnętrznej" negacji stosujemy prawo de Morgana:
- $y = \overline{a}\overline{b} \cdot \overline{abc}$

#### Realizacja postaci iloczynowej na bramkach NOR



- Daną funkcję  $y=(a+b)\cdot(\overline{b}+c)\cdot(\overline{a}+\overline{b})$  negujemy dwukrotnie
- $y = \overline{(a+b)\cdot(\overline{b}+c)\cdot(\overline{a}+\overline{b})}$ . Dla "wewnętrznej" negacji stosujemy prawo de Morgana:
- $y = \overline{\overline{a+b} + \overline{\overline{b}+c} + \overline{\overline{a}+\overline{b}}}$

#### Zadania na ćwiczenia

- 1. Zapoznanie się ze programem *Logisim*, realizacja za pomocą bramek logicznych prostych funkcji logicznych.
- 2. Zrealizuj za pomocą bramek typu NAND bramki NOT, AND i OR (każda bramka w osobnym obwodzie),
- 3. Zrealizuj za pomocą dostępnych w logisim bramek funkcję:

$$y = a \cdot \overline{b} \cdot c + a \oplus b + c$$

4. Za pomocą zrealizowanych za pomocą bramek NAND bramek NOT AND i OR zrealizuj funkcję z poprzedniego punktu. Realizacja powinna odzwierciedlać strukturę zapisaną wzorem,