Definíciók és tételek az 1. zh-hoz Analízis 2.

Programtervező informatikus szak

2017-2018. tanév tavaszi félév

• Függvények határértéke

1. Mikor mondja azt, hogy egy $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely $a \in \overline{\mathbb{R}}$ helyen van határértéke?

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $a \in \mathcal{D}_f'$. Ekkor azt mondjuk, hogy az f függvénynek az a helyen van határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \ x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : \ f(x) \in K_{\varepsilon}(A).$$

2. Adja meg egyenlőtlenségek segítségével a *végesben vett véges* határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}'_f \cap \mathbb{R}$, $A \in \mathbb{R}$. Ekkor:

$$\lim_{a} f = A \in \mathbb{R} \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in \mathcal{D}_f, \ 0 < |x - a| < \delta: \quad |f(x) - A| < \varepsilon.$$

3. Adja meg egyenlőtlenségek segítségével a *végesben vett plusz végtelen* határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, \ a \in \mathcal{D}_f' \cap \mathbb{R}$. Ekkor:

$$\lim_{a} f = +\infty \iff \forall P > 0 \ \exists \delta > 0 \ \forall x \in \mathcal{D}_f, \ 0 < |x - a| < \delta : \ f(x) > P.$$

4. Adja meg egyenlőtlenségek segítségével a *plusz végtelenben vett plusz végtelen* határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, +\infty \in \mathcal{D}_f'$. Ekkor:

$$\lim_{+\infty} f = +\infty \iff \forall P > 0 \ \exists x_0 > 0 \ \forall x \in \mathcal{D}_f, x > x_0 : f(x) > P.$$

5. Mit tud mondani a hatványsor összegfüggvényének a határértékéről?

Válasz. Tegyük fel, hogy a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor R konvergenciasugara pozitív. Legyen

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \quad (x \in K_R(a))$$

az összegfüggvény. Ekkor bármely $b \in K_R(a)$ esetén létezik a $\lim_b f$ határérték és

$$\lim_{b} f = f(b) = \sum_{n=0}^{+\infty} \alpha_n (b-a)^n.$$

6. Definiálja függvény jobb oldali határértékét.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $a \in (\mathcal{D}_f \cap (a, +\infty))'$. Azt mondjuk, hogy az f függvénynek az a helyen létezik a jobb oldali határértéke, ha a

$$g(x) := f(x)$$
 $(x \in \mathcal{D}_f \cap (a, +\infty))$

függvénynek a-ban van határértéke. Ezt a határértéket az f függvény a helyen vett jobb oldali határértékének nevezzük és így jelöljük:

$$\lim_{a \to 0} f := \lim_{a} g \in \overline{\mathbb{R}}.$$

• Függvények folytonossága

7. Definiálja egy $f \in \mathbb{R} \to \mathbb{R}$ függvény pontbeli folytonosságát.

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény az $a \in \mathcal{D}_f$ pontban folytonos, ha

$$\forall \epsilon > 0 \text{ számhoz } \exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ |x - a| < \delta \text{ pontban } |f(x) - f(a)| < \epsilon.$$

8. Mi a kapcsolat a pontbeli folytonosság és a határérték között?

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f \cap \mathcal{D}_f'$. Ekkor $f \in C\{a\} \iff \exists \lim_a f$ és $\lim_a f = f(a)$.

9. Milyen tételt ismer hatványsor összegfüggvényének a folytonosságáról?

 ${f V\'alasz}$. Hatványsor összegfüggvénye a konvergenciahalmaz minden belső pontjában folytonos.

10. Hogyan szól a folytonosságra vonatkozó átviteli elv?

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$. Ekkor

$$f \in C\{a\} \iff \forall (x_n) : \mathbb{N} \to \mathcal{D}_f, \lim_{n \to +\infty} x_n = a \text{ sorozatra } \lim_{n \to +\infty} f(x_n) = f(a).$$

11. Mit jelent az, hogy egy függvény jobbról folytonos egy pontban?

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \mathcal{D}_f$. Azt mondjuk, hogy az f függvény jobbról folytonos az a pontban, ha

$$\forall \epsilon > 0 \text{ számhoz } \exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ a \leq x < a + \delta \text{ pontban } |f(x) - f(a)| < \epsilon.$$

12. Mit tud mondani a korlátos és zárt $[a, b] \subset \mathbb{R}$ intervallumon folytonos függvény értékkészletéről?

Válasz. Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n. Ekkor f korlátos [a,b]-n.

13. Hogyan szól a Weierstrass-tétel?

Válasz. Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n. Ekkor f-nek létezik abszolút maximuma és abszolút minimuma.

14. Mit mond ki a *Bolzano-tétel*?

Válasz. Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n és f a két végpontban különböző előjelű értéket vesz fel, vagyis $f(a) \cdot f(b) < 0$. Ekkor van olyan $\xi \in (a,b)$, hogy $f(\xi) = 0$.

15. Mit mond ki a Bolzano-Darboux-tétel?

Válasz. Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy az $f : [a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n és $f(a) \neq f(b)$. Ekkor f minden f(a) és f(b) közötti értéket felvesz [a,b]-n, azaz ha f(a) < f(b), akkor $\forall c \in (f(a),f(b))$ -hez $\exists \xi \in (a,b) : f(\xi) = c$.

16. Mit jelent az, hogy egy f függvény Darboux-tulajdonságú?

Válasz. Legyen $I \subset \mathbb{R}$ tetszőleges intervallum. Az $f: I \to \mathbb{R}$ függvény Darbouxtulajdonságú I-n, ha minden $a,b \in I$, $-\infty < a < b < +\infty$, $f(a) \neq f(b)$ esetén az f függvény minden f(a) és f(b) közötti értéket felvesz [a,b]-ben.

17. Milyen állítást ismer az inverz függvény folytonosságáról?

Válasz. Legyen $-\infty < a < b < +\infty$. Tegyük fel, hogy az $f:[a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n és invertálható. Ekkor az f^{-1} inverz függvény folytonos a $\mathcal{D}_{f^{-1}} = \mathcal{R}_f$ halmazon.

18. Definiálja a megszüntethető szakadási hely fogalmát.

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f$ pontban megszüntethető szakadási helye van, ha

$$\exists \, \lim_a f \,$$
 véges határérték, de $\, \lim_a f \neq f(a).$

19. Definiálja az elsőfajú szakadási hely fogalmát.

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f$ pontban elsőfajú szakadási helye (vagy ugráshelye) van, ha

$$\exists \, \lim_{a \to 0} f \text{ \'es } \exists \, \lim_{a \to 0} f, \ \, \text{mindkett\'o v\'eges, de} \ \, \lim_{a \to 0} f \neq \lim_{a \to 0} f.$$

20. Mit tud mondani *monoton* függvény szakadási helyeiről?

Válasz. Tetszőleges $f:(\alpha,\beta)\to\mathbb{R}$ monoton függvénynek legfeljebb elsőfajú szakadási helyei lehetnek; azaz tetszőleges $a\in(\alpha,\beta)$ pontban az f függvény vagy folytonos vagy pedig elsőfajú szakadási helye (vagy ugráshelye) van.

• Differenciálszámítás

21. Mi a belső pont definíciója?

Válasz. Tegyük fel, hogy $\emptyset \neq A \subset \mathbb{R}$. Az $a \in A$ pont az A halmaz belső pontja, ha

$$\exists K(a), \text{ hogy } K(a) \subset A.$$

Az int A szimbólummal jelöljük az A halmaz belső pontjainak a halmazát.

22. Mikor mondja azt, hogy egy $f \in \mathbb{R} \to \mathbb{R}$ függvény differenciálható valamely pontban?

Válasz. Ha $a \in \text{int } \mathcal{D}_f$, akkor:

$$f \in D\{a\} : \iff \exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 és ez a határérték véges.

23. Mi a kapcsolat a pontbeli differenciálhatóság és a folytonosság között?

Válasz. $f\in D\{a\}\Longrightarrow f\in C\{a\}$, de fordítva nem igaz, pl. az f(x)=|x| ($x\in\mathbb{R}$) függvényre $f\in C\{0\}$, de $f\not\in D\{0\}$.

24. Mit jelent az, hogy egy függvény jobbról deriválható egy pontban?

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f$ és tegyük fel, hogy $\exists \delta > 0$ úgy, hogy $[a, a + \delta) \subset \mathcal{D}_f$.

$$\exists$$
 és véges a $\lim_{x\to a+0} \frac{f(x)-f(a)}{x-a}$ jobb oldali határérték,

akkor azt mondjuk, hogy az f függvény az a pontban jobbról deriválható. A fenti határértéket az f függvény a pontbeli jobb oldali deriváltjának nevezzük, és az $f'_+(a)$ szimbólummal jelöljük.

25. Milyen ekvivalens átfogalmazást ismer a pontbeli deriválhatóságra a lineáris közelítéssel?

Válasz. $f \in D\{a\} \iff \exists A \in \mathbb{R} \text{ és } \exists \varepsilon : \mathcal{D}_f \to \mathbb{R}, \lim_{\alpha} \varepsilon = 0, \text{ hogy}$

$$f(x) - f(a) = A(x - a) + \varepsilon(x)(x - a) \qquad (\forall x \in \mathcal{D}_f).$$

26. Mi az *érintő* definíciója?

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \text{int } \mathcal{D}_f$. Azt mondjuk, hogy az f függvény grafikojának az (a, f(a)) pontban van érintője, ha $f \in D\{a\}$. Ekkor f garfikonjának (a, f(a)) pontbeli érintőjén az

$$y = f'(a)(x - a) + f(a)$$

egyenletű egyenest értjük.

27. Milyen tételt ismer két függvény szorzatának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz. $f,g \in D\{a\} \implies fg \in D\{a\}$ és (fg)'(a) = f'(a)g(a) + f(a)g'(a).

28. Milyen tételt ismer két függvény hányadosának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz.
$$f,g \in D\{a\}, g(a) \neq 0 \implies \frac{f}{g} \in D\{a\}$$
 és $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}$.

29. Milyen tételt ismer két függvény kompozíciójának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz. Ha $\mathcal{R}_g\subset\mathcal{D}_f,\ g\in D\{a\}$ és $f\in D\{g(a)\},$ akkor $f\circ g\in D\{a\}$ és

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a).$$

30. Milyen tételt tanult az inverz függvény differenciálhatóságáról és a deriváltjáról?

Válasz. Tegyük fel, hogy $f:(\alpha,\beta)\to\mathbb{R}$ szigorúan monoton növő, folytonos függvény (α,β) -n, és egy $a\in(\alpha,\beta)$ pontban $f\in D\{a\}$, továbbá $f'(a)\neq 0$. Ekkor $f^{-1}\in D\{b\}$, ahol b:=f(a) és

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}.$$

31. Milyen állítást tud mondani hatványsor összegfüggvényének a deriválhatóságáról és a deriváltjáról?

Válasz. Legyen $a \in \mathbb{R}$ és $\alpha_n \in \mathbb{R}$ (n = 0, 1, 2...). Tegyük fel, hogy a $\sum \alpha_n (x - a)^n$ $(x \in \mathbb{R})$ hatványsor R konvergenciasugara pozitív, és jelölje f az összegfüggvényét:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad (x \in K_R(a)).$$

Ekkor minden $x \in K_R(a)$ pontban az f függvény differenciálható és a deriváltja az eredeti sor tagonkénti deriválásával kapott sor összege:

$$f'(x) = \sum_{n=1}^{+\infty} n\alpha_n (x-a)^{n-1}.$$

Röviden fogalmazva: Hatványsor összegfüggvénye a konvergenciaintervallum belsejében differenciálható és a hatványsor deriválását szabad tagonként végezni.

32. Definiálja az exp függvényt.

Válasz.
$$\exp(x) := e^x := \sum_{n=0}^{+\infty} \frac{x^n}{n!} \quad (x \in \mathbb{R}).$$

33. Értelmezze az ln függvényt.

Válasz. Az $\mathbb{R} \ni x \mapsto e^x$ függvény szigorúan monoton növekedő, ezért invertálható. Az

$$ln := log := exp^{-1}$$

függvényt természetes alapú logaritmusfüggvénynek nevezzük.

34. Mi a definíciója az a^x $(a, x \in \mathbb{R}, a > 0)$ hatványnak?

Válasz. $a^x := \exp(x \ln a)$.

- **35.** Szemléltesse az $\alpha \in \mathbb{R}$ kitevőjű hatványfüggvények grafikonjait.
- **36.** Mi a kétszer deriválható függvény fogalma?

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény kétszer deriválható az $a \in \operatorname{int} \mathcal{D}_f$ pontban, ha van olyan r > 0 szám, hogy $f \in D(K_r(a))$ és $f' \in D\{a\}$.

37. Mit ért azon, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely helyen lokális maximuma van?

Válasz. Az f függvénynek a $c \in \mathcal{D}_f$ pontban lokális maximuma van, ha

$$\exists K(c): f(x) \leq f(c) \qquad (x \in K(c) \cap \mathcal{D}_f).$$

38. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel?

Válasz. Ha $f \in \mathbb{R} \to \mathbb{R}$, $c \in \text{int } \mathcal{D}_f$, $f \in D\{c\}$ és az f függvénynek a c pontban lokális szélsőértéke van, akkor f'(c) = 0.

39. Mondja ki a *Rolle-tételt*.

Válasz. Legyen $a, b \in \mathbb{R}, a < b$. Ha $f \in C[a, b], f \in D(a, b), f(a) = f(b)$, akkor $\exists \xi \in (a, b) : f'(\xi) = 0$.

40. Mondja ki a Lagrange-féle középértéktételt.

Válasz. Legyen $a, b \in \mathbb{R}, a < b$. Ha $f \in C[a, b], f \in D(a, b)$, akkor

$$\exists \ \xi \in (a,b): \ \frac{f(a) - f(b)}{b - a} = f'(\xi).$$

41. Mondja ki a Cauchy-féle középértéktételt.

Válasz. Legyen $a,b \in \mathbb{R}, a < b$. Tegyük fel, hogy $f,g \in C[a,b], f,g \in D(a,b)$ és $g'(x) \neq 0$, $(x \in (a,b))$. Ekkor

$$\exists \ \xi \in (a,b): \ \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

42. Milyen *elégséges* feltételt ismer differenciálható függvény *szigorú monoton növekedésével* kapcsolatban?

Válasz. Ha $f \in C[a,b]$, $f \in D(a,b)$ $(a,b \in \mathbb{R}, a < b)$ és f' > 0 az (a,b) intervallumon, akkor f szigorúan monoton növekedő [a,b]-n.

43. Milyen *szükséges és elégséges* feltételt ismer differenciálható függvény *monoton növekedésével* kapcsolatban?

Válasz. Ha $f \in C[a,b]$ és $f \in D(a,b)$ $(a,b \in \mathbb{R}, a < b)$, akkor

$$f$$
 monoton növekedő $[a,b]$ -n $\iff f' \geq 0 \ [a,b]$ -n.

44. Mit ért azon, hogy egy függvény valamely helyen előjelet vált?

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény a $c \in \mathcal{D}_f$ pontban előjelet vált, ha f(c) = 0 és $\exists \ \delta > 0$, hogy $K_{\delta}(c) \subset \mathcal{D}_f$, $f(x) < 0 \ \forall \ x \in (c - \delta, c)$ és $f(x) > 0 \ \forall \ x \in (c, c + \delta)$ vagy fordítva.

45. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű elégséges feltétel?

Válasz. Ha $f:(a,b)\to\mathbb{R},\,f\in D(a,b)$ és f' a $c\in(a,b)$ pontban előjelet vált, akkor az f függvénynek c-ben lokális szélsőértéke van.

46. Írja le a lokális minimumra vonatkozó másodrendű elégséges feltételt.

Válasz. Ha $f:(a,b)\to\mathbb{R},\,f\in D^2\{c\},\,(c\in(a,b)),\,f'(c)=0$ és f''(c)>0, akkor az f függvénynek c-ben lokális minimuma van.

47. Írja le a lokális maximumra vonatkozó másodrendű elégséges feltételt.

Válasz. Ha $f:(a,b)\to\mathbb{R},\ f\in D^2\{c\},\ (c\in(a,b)),\ f'(c)=0$ és f''(c)<0, akkor az f függvénynek c-ben lokális maximuma van.