1 Espaces Vectoriels Normés

1.1 Norme Uniforme (Sup)

Soit $E = C^0([a, b], \mathbb{R})$ l'espace des fonctions continues sur [a, b] à valeurs réelles. La norme uniforme (ou norme sup) est définie par :

$$||u||_{\infty} = \sup_{x \in [a,b]} |u(x)|$$

Cette norme est aussi appelée $\|.\|_U$ dans les notes.

Considérons l'intégrale $I(u) = \int_a^b u(x)dx$. Montrons que I est une application linéaire continue de $(E, \|.\|_{\infty})$ dans $(\mathbb{R}, |.|)$.

Proposition 1.1. L'application $I:(E,\|.\|_{\infty})\to (\mathbb{R},|.|)$ définie par $I(u)=\int_a^b u(x)dx$ est linéaire et continue.

Preuve. Linéarité : Pour $\lambda, \mu \in \mathbb{R}$ et $u, v \in E$,

$$I(\lambda u + \mu v) = \int_{a}^{b} (\lambda u(x) + \mu v(x)) dx$$
$$= \lambda \int_{a}^{b} u(x) dx + \mu \int_{a}^{b} v(x) dx$$
$$= \lambda I(u) + \mu I(v)$$

Continuité (Bornée) :

$$|I(u)| = \left| \int_{a}^{b} u(x) dx \right|$$

$$\leq \int_{a}^{b} |u(x)| dx$$

$$\leq \int_{a}^{b} \sup_{t \in [a,b]} |u(t)| dx$$

$$= \int_{a}^{b} ||u||_{\infty} dx$$

$$= (b-a)||u||_{\infty}$$

Donc $|I(u)| \leq C||u||_{\infty}$ avec C = (b-a). L'application I est donc continue (bornée).

Calcul de la norme de I.

Proposition 1.2. La norme de l'application linéaire I est ||I|| = (b-a).

Preuve. On sait que $||I|| = \sup_{\|u\|_{\infty} = 1} |I(u)|$. On a montré $|I(u)| \le (b-a)\|u\|_{\infty}$, donc $||I|| \le (b-a)$. Prenons la fonction constante $u_0(x) = 1$. Alors $||u_0||_{\infty} = 1$. $I(u_0) = \int_a^b 1 dx = (b-a)$. Donc $|I(u_0)| = (b-a) = (b-a)\|u_0\|_{\infty}$. Ainsi, le sup est atteint et ||I|| = (b-a).

1.2 Convergence Uniforme

Soit (f_n) une suite de fonctions dans $C^0([a,b],\mathbb{R})$.

Definition 1.3. On dit que (f_n) converge uniformément vers f si $||f_n - f||_{\infty} \to 0$.

Ceci est équivalent à :

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall n \geq N, \forall x \in [a, b], |f_n(x) - f(x)| \leq \epsilon$$

La convergence uniforme implique la convergence simple.

Lemma 1.4. Si (f_n) converge uniformément vers f sur [a,b] et si chaque f_n est continue, alors f est continue. L'espace $(C^0([a,b],\mathbb{R}),\|.\|_{\infty})$ est un espace de Banach (complet).

Lemma 1.5. Si (f_n) converge uniformément vers f sur [a,b], alors

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx = \int_a^b f(x) dx$$

Preuve. On veut montrer que $\left| \int_a^b f_n(x) dx - \int_a^b f(x) dx \right| \to 0$.

$$\left| \int_{a}^{b} (f_n(x) - f(x)) dx \right| \le \int_{a}^{b} |f_n(x) - f(x)| dx$$

$$\le \int_{a}^{b} \sup_{t \in [a,b]} |f_n(t) - f(t)| dx$$

$$= \int_{a}^{b} ||f_n - f||_{\infty} dx$$

$$= (b - a) ||f_n - f||_{\infty}$$

Comme $||f_n - f||_{\infty} \to 0$ par convergence uniforme, on a $(b - a)||f_n - f||_{\infty} \to 0$.

1.3 Exemple de Calcul de Norme

Considérons $E = C^0([-1,1],\mathbb{R})$ muni de la norme $\|.\|_{\infty}$. Soit $A: E \to E$ définie par $(Au)(x) = \int_0^x u(t)dt$. A est linéaire.

Proposition 1.6. L'opérateur $A: E \to E$ défini par $(Au)(x) = \int_0^x u(t)dt$ est borné et sa norme ||A|| = 1 (pour la norme $||.||_{\infty}$).

Preuve. Montrons que A est bornée et calculons sa norme ||A||.

$$|(Au)(x)| = \left| \int_0^x u(t)dt \right|$$

$$\leq \left| \int_0^x |u(t)|dt \right|$$

$$\leq \left| \int_0^x ||u||_{\infty}dt \right|$$

$$= ||u||_{\infty}|x|$$

Donc $\|Au\|_{\infty} = \sup_{x \in [-1,1]} |(Au)(x)| \le \sup_{x \in [-1,1]} \|u\|_{\infty} |x| = \|u\|_{\infty} \sup_{x \in [-1,1]} |x| = \|u\|_{\infty} \times 1$. On a $\|Au\|_{\infty} \le 1 \times \|u\|_{\infty}$. Donc A est bornée et $\|A\| \le 1$.

Pour montrer que ||A|| = 1, cherchons une fonction u telle que $||u||_{\infty} = 1$ et $||Au||_{\infty}$ est proche de 1.

Prenons $u_0(x) = 1$. Alors $||u_0||_{\infty} = 1$. $(Au_0)(x) = \int_0^x 1 dt = x$. $||Au_0||_{\infty} = \sup_{x \in [-1,1]} |x| = 1$. Comme $||Au_0||_{\infty} = 1 \times ||u_0||_{\infty}$, le sup est atteint et ||A|| = 1.

Proposition 1.7. Soit $||A||_1 = \sup_{\|u\|_{\infty} \le 1} \int_{-1}^1 |(Au)(x)| dx$. Alors $\|A\|_1 = 1$.

Preuve. Soit $||A||_1 = \sup_{||u||_{\infty} \le 1} \int_{-1}^{1} |(Au)(x)| dx$.

$$\begin{split} \int_{-1}^{1} |(Au)(x)| dx &\leq \int_{-1}^{1} \|u\|_{\infty} |x| dx \\ &= \|u\|_{\infty} \int_{-1}^{1} |x| dx \\ &= \|u\|_{\infty} \left(\int_{-1}^{0} -x dx + \int_{0}^{1} x dx \right) \\ &= \|u\|_{\infty} \left(\left[-\frac{x^{2}}{2} \right]_{-1}^{0} + \left[\frac{x^{2}}{2} \right]_{0}^{1} \right) \\ &= \|u\|_{\infty} \left((0 - (-\frac{1}{2})) + (\frac{1}{2} - 0) \right) = \|u\|_{\infty} \times 1 \end{split}$$

Donc $||A||_1 \le 1$. Prenons $u_0(x) = 1$. $\int_{-1}^1 |(Au_0)(x)| dx = \int_{-1}^1 |x| dx = 1$. Donc $||A||_1 = 1$.

Considérons la fonction $u(x) = 1 - |x| \operatorname{sur} [-1, 1]$.

Figure 1: Fonction u(x) = 1 - |x|.

Considérons une suite de fonctions (f_n) dans $C^0([a,b],\mathbb{R})$. Soit $f_n(x)$ la fonction "chapeau" centrée en x_0 , de hauteur C_n et de largeur 2/n.

$$f_n(x) = \begin{cases} 0 & \text{si } x \le x_0 - 1/n \\ C_n(1 - n|x - x_0|) & \text{si } x_0 - 1/n \le x \le x_0 + 1/n \\ 0 & \text{si } x \ge x_0 + 1/n \end{cases}$$

Supposons $a < x_0 - 1/n$ et $x_0 + 1/n < b$. L'intégrale de f_n est l'aire du triangle :

$$\int_{a}^{b} f_{n}(x)dx = \frac{1}{2} \times \text{base} \times \text{hauteur} = \frac{1}{2} \times \frac{2}{n} \times C_{n} = \frac{C_{n}}{n}$$

Si on veut $||f_n||_1 = \int_a^b |f_n(x)| dx = 1$, il faut choisir $C_n = n$. Dans ce cas, $f_n(x) = n(1 - n|x - x_0|)$ sur $[x_0 - 1/n, x_0 + 1/n]$. La norme sup est $||f_n||_{\infty} = \max f_n(x) = f_n(x_0) = C_n = n$. Donc on a $||f_n||_1 = 1$ mais $||f_n||_{\infty} = n \to \infty$. Les normes $||.||_1$ et $||.||_{\infty}$ ne sont pas équivalentes sur $C^0([a, b])$.

Figure 2: Fonction chapeau $f_n(x)$ avec $C_n = n$ pour que $||f_n||_1 = 1$.

Considérons la preuve que si $||f_n||_1 \to 0$, alors $||f_n||_{\infty}$ ne tend pas forcément vers 0. Soit $f_n(x)$ comme ci-dessus avec $C_n = \sqrt{n}$. $||f_n||_1 = C_n/n = \sqrt{n}/n = 1/\sqrt{n} \to 0$. $||f_n||_{\infty} = C_n = \sqrt{n} \to \infty$.

Considérons l'opérateur $m: C^0([a,b]) \to C^0([a,b])$ défini par (mf)(x) = m(x)f(x) où m(x) est une fonction continue donnée. Soit A = m. A est linéaire. ||(Af)(x)|| = |m(x)f(x)| = |m(x)||f(x)|. $||Af||_{\infty} = \sup_x |m(x)f(x)| \le (\sup_x |m(x)|)(\sup_x |f(x)|) = ||m||_{\infty} ||f||_{\infty}$. Donc $||A|| \le ||m||_{\infty}$. Pour montrer l'égalité, supposons m non nulle. Soit x_0 tel que $|m(x_0)| = ||m||_{\infty}$. Considérons une suite de fonctions (f_n) "pic" centrées en x_0 telles que $f_n(x_0) = 1$, $||f_n||_{\infty} = 1$ et le support de f_n se contracte vers x_0 . Par exemple, $f_n(x) = \max(0, 1 - n|x - x_0|)$.

Figure 3: Fonction pic $f_n(x)$ utilisée dans la preuve.

 $|(Af_n)(x)| = |m(x)f_n(x)|. \quad ||Af_n||_{\infty} = \sup_x |m(x)f_n(x)|. \quad \text{Comme } f_n \text{ est concentr\'ee autour de } x_0, \text{ et } f_n(x_0) = 1, \quad ||Af_n||_{\infty} \text{ sera proche de } |m(x_0)|||f_n||_{\infty} = ||m||_{\infty}. \quad \text{Plus formellement : Soit } \epsilon > 0. \quad \text{Par continuit\'e de } m, \text{ il existe } \delta > 0 \text{ tel que si } |x - x_0| < \delta, \text{ alors } |m(x) - m(x_0)| < \epsilon. \quad \text{Choisissons } n \text{ assez grand pour que } 1/n < \delta. \quad \text{Alors le support de } f_n \text{ est dans } [x_0 - \delta, x_0 + \delta]. \quad \text{Pour } x \text{ dans le support de } f_n, \text{ on a } |m(x)| \geq |m(x_0)| - |m(x) - m(x_0)| > ||m||_{\infty} - \epsilon. \quad ||Af_n||_{\infty} = \sup_{|x - x_0| \leq 1/n} |m(x)f_n(x)|. \quad \text{Puisque } f_n(x_0) = 1, \\ ||Af_n||_{\infty} \geq |m(x_0)f_n(x_0)| = |m(x_0)| = ||m||_{\infty}. \quad \text{D'autre part, } ||Af_n||_{\infty} = \sup_{|x - x_0| \leq 1/n} |m(x)|. \quad \text{Par continuit\'e, } \\ \sup_{|x - x_0| \leq 1/n} |m(x)| \times ||f_n||_{\infty}. \quad \text{Comme } ||f_n||_{\infty} = 1, \quad ||Af_n||_{\infty} \leq \sup_{|x - x_0| \leq 1/n} |m(x)|. \quad \text{Par continuit\'e, } \\ \lim_{n \to \infty} \sup_{|x - x_0| \leq 1/n} |m(x)| = |m(x_0)| = ||m||_{\infty}. \quad \text{Donc } \lim_{n \to \infty} ||Af_n||_{\infty} = ||m||_{\infty}. \quad \text{Puisque } ||Af_n||_{\infty} \leq ||A||. \\ \|A||||f_n||_{\infty} = ||A||, \text{ en passant à la limite, on obtient } ||m||_{\infty} \leq ||A||. \quad \text{Comme on avait d\'ejà } ||A|| \leq ||m||_{\infty}, \text{ on conclut que } ||A|| = ||m||_{\infty}.$

1.4 Normes équivalentes

Definition 1.8 (Normes topologiquement équivalentes). Soit E un espace vectoriel. Soit N_1 et N_2 deux normes sur E. On dit que N_1 et N_2 sont topologiquement équivalentes si (E, N_1) et (E, N_2) ont les mêmes ensembles ouverts.

Definition 1.9 (Normes équivalentes). Soit E un espace vectoriel. Soit N_1 et N_2 deux normes sur E. On dit que N_1 et N_2 sont équivalentes (on écrit $N_1 \sim N_2$) s'il existe $C_1, C_2 > 0$ telles que

$$\forall X \in E, \quad N_1(X) \le C_1 N_2(X) \quad \text{et} \quad N_2(X) \le C_2 N_1(X)$$

Ceci peut se réécrire : il existe C>0 tel que

$$\forall X \in E, \quad C^{-1}N_2(X) \le N_1(X) \le CN_2(X)$$

Theorem 1.10 (Equivalence topologique et équivalence des normes). Deux normes sur E sont topologiquement équivalentes si et seulement si elles sont équivalentes.

Preuve. (Esquisse basée sur 6.6.3 du textbook) Soit $Id: (E,N_1) \to (E,N_2)$ et $Id: (E,N_2) \to (E,N_1)$. Les deux topologies sont les mêmes si et seulement si ces deux applications identité sont continues. Une application linéaire est continue si et seulement si elle est bornée (Théorème 6.14). $Id: (E,N_1) \to (E,N_2)$ est continue \iff elle est bornée $\iff \exists C_1 > 0$ tel que $\|Id(x)\|_{N_2} \le C_1\|x\|_{N_1}$, i.e., $N_2(x) \le C_1N_1(x)$. $Id: (E,N_2) \to (E,N_1)$ est continue \iff elle est bornée $\iff \exists C_2 > 0$ tel que $\|Id(x)\|_{N_1} \le C_2\|x\|_{N_2}$, i.e., $N_1(x) \le C_2N_2(x)$. Ces deux conditions réunies correspondent à la définition de normes équivalentes.

Theorem 1.11 (Admission - Equivalence des normes en dimension finie). Soit E un espace vectoriel sur \mathbb{K} (\mathbb{R} ou \mathbb{C}) de dimension finie. Alors toutes les normes sur E sont équivalentes.

Preuve. (Esquisse basée sur Thm 6.9 du textbook) On peut supposer $\mathbb{K} = \mathbb{R}$ (en identifiant \mathbb{C} à \mathbb{R}^2). Soit $(e_1, ..., e_n)$ une base de E. On identifie E à \mathbb{R}^n . La norme $\|x\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$ est une norme sur \mathbb{R}^n . Soit N une norme quelconque sur \mathbb{R}^n . Montrons que N est équivalente à $\|.\|_{\infty}$. Pour $x = \sum x_i e_i$, on a $N(x) = N(\sum x_i e_i) \leq \sum |x_i| N(e_i) \leq (\sum N(e_i)) \max |x_i| = C \|x\|_{\infty}$ avec $C = \sum N(e_i)$. Montrons qu'il existe a > 0 tel que $a\|x\|_{\infty} \leq N(x)$. La fonction $N: (\mathbb{R}^n, \|.\|_{\infty}) \to \mathbb{R}$ est continue. En effet, $|N(x) - N(y)| \leq N(x - y) \leq C \|x - y\|_{\infty}$. Soit $S = \{x \in \mathbb{R}^n \mid \|x\|_{\infty} = 1\}$. S est la sphère unité pour $\|.\|_{\infty}$. S est fermée (car l'application $x \mapsto \|x\|_{\infty}$ est continue) et bornée. Par le théorème de Borel-Lebesgue (Thm 3.36), S est compacte. La fonction continue N atteint ses bornes sur le compact S. Comme N(x) > 0 pour $x \neq 0$ (donc pour $x \in S$), le minimum de N sur S est a > 0. Donc $\forall x \in S$, $N(x) \geq a$. Pour tout $x \neq 0$, le vecteur $y = x/\|x\|_{\infty}$ est dans S. Donc $N(y) \geq a$. $N(x/\|x\|_{\infty}) \geq a \Longrightarrow \frac{1}{\|x\|_{\infty}} N(x) \geq a \Longrightarrow N(x) \geq a \|x\|_{\infty}$. On a donc montré $a\|x\|_{\infty} \leq N(x) \leq C\|x\|_{\infty}$. N est équivalente à $\|.\|_{\infty}$. Comme l'équivalence est une relation d'équivalence, toutes les normes sont équivalentes entre elles.

2 Applications Linéaires et Bornées

Definition 2.1 (Application linéaire bornée). Soient $(E, ||.||_E)$ et $(F, ||.||_F)$ deux espaces vectoriels normés. Une application linéaire $A: E \to F$ est dite **bornée** (ou continue) s'il existe une constante $C \ge 0$ telle que

$$\forall x \in E, \quad ||Ax||_F \le C||x||_E$$

Proposition 2.2. Pour une application linéaire $A: E \to F$, les propriétés suivantes sont équivalentes :

- 1. A est continue.
- 2. A est continue en 0_E .
- 3. A est bornée.

Definition 2.3 (Norme d'opérateur). Si $A: E \to F$ est une application linéaire bornée, on définit sa **norme** (appelée norme d'opérateur ou norme uniforme) par :

$$||A|| = \sup_{x \in E, x \neq 0_E} \frac{||Ax||_F}{||x||_E} = \sup_{x \in E, ||x||_E = 1} ||Ax||_F = \sup_{x \in E, ||x||_E \le 1} ||Ax||_F$$

C'est la plus petite constante C telle que $||Ax||_F \le C||x||_E$ pour tout $x \in E$.

Proposition 2.4. Soit $A \in B(E, F)$ (l'espace des applications linéaires bornées de E dans F).

- 1. $\|.\|$ est une norme sur B(E,F).
- 2. On a $||Ax||_F \le ||A|| ||x||_E$ pour tout $x \in E$.
- 3. ||A|| est la plus petite constante C telle que $||Ax||_F \leq C||x||_E$.

Proposition 2.5. Si $A \in B(E, F)$ et $B \in B(F, G)$, alors $B \circ A \in B(E, G)$ et

$$||B \circ A|| \le ||B|| ||A||$$

Si E = F = G, on note B(E) = B(E, E), alors pour $A, B \in B(E)$,

$$||AB|| \le ||A|| ||B||$$

Preuve. $\|(B \circ A)x\|_G = \|B(Ax)\|_G \le \|B\| \|Ax\|_F \le \|B\| (\|A\| \|x\|_E) = (\|B\| \|A\|) \|x\|_E$. Donc $\|B \circ A\| \le \|B\| \|A\|$.

3 Le cas des matrices

On identifie une matrice $A \in M_n(\mathbb{C})$ (ou $M_n(\mathbb{R})$) avec l'application linéaire associée $A : \mathbb{K}^n \to \mathbb{K}^n$. L'espace vectoriel $M_n(\mathbb{K})$ est de dimension finie n^2 . Toutes les normes y sont donc équivalentes. La norme la plus utile est la norme uniforme (norme d'opérateur) obtenue à partir de la norme euclidienne $\|.\|_2$ sur \mathbb{K}^n .

$$||A|| = \sup_{x \in \mathbb{K}^n, ||x||_2 = 1} ||Ax||_2$$

Definition 3.1 (Matrice adjointe). Soit $A = [a_{ij}] \in M_n(\mathbb{C})$. La matrice **adjointe** de A, notée A^* , est la matrice $B = [b_{ij}]$ telle que $b_{ij} = \overline{a_{ji}}$. (Transposée conjuguée). On a la propriété : $\forall x, y \in \mathbb{C}^n$, $(Ax|y) = (x|A^*y)$, où $(u|v) = \sum_{i=1}^n u_i \overline{v_i}$ est le produit scalaire hermitien standard.

Definition 3.2 (Matrice autoadjointe). A est dite autoadjointe (ou hermitienne) si $A = A^*$.

Lemma 3.3. Pour $A \in M_n(\mathbb{C})$:

$$||A^*|| = ||A||$$
 et $||A^*A|| = ||A||^2$

Preuve. On utilise $\|A\|=\sup_{\|x\|=1,\|y\|=1}|(Ax|y)|.$ $|(Ax|y)|=|(x|A^*y)|.$ Donc $\|A\|=\sup_{\|x\|=1,\|y\|=1}|(x|A^*y)|=\|A^*\|.$ Pour la seconde égalité : $\|Ax\|_2^2=(Ax|Ax)=(x|A^*Ax).$ Donc $\|A\|^2=\sup_{\|x\|=1}\|Ax\|_2^2=\sup_{\|x\|=1}(x|A^*Ax).$ La matrice $B=A^*A$ est autoadjointe. Pour une matrice autoadjointe B, on sait que $\sup_{\|x\|=1}(x|Bx)$ est égal à la plus grande valeur propre de B. (Ceci est lié au quotient de Rayleigh). D'autre part, $\|A^*A\|=\sup_{\|x\|=1}\|(A^*A)x\|_2.$ Comme A^*A est autoadjointe, $\|A^*A\|$ est égal au maximum du module de ses valeurs propres. Les valeurs propres de A^*A sont réelles et positives ou nulles. Soit λ_{\max} la plus grande valeur propre. Alors $\|A\|^2=\sup_{\|x\|=1}(x|A^*Ax)=\lambda_{\max}(A^*A).$ Et $\|A^*A\|=\max|\lambda_i(A^*A)|=\lambda_{\max}(A^*A)$ car $\lambda_i\geq 0.$ Donc $\|A\|^2=\|A^*A\|.$

Theorem 3.4 (Calcul de la norme matricielle). Soit $A \in M_n(\mathbb{C})$. Soient $\lambda_1, ..., \lambda_n$ les valeurs propres de la matrice autoadjointe positive A^*A . Alors

$$||A|| = \sqrt{\max_{1 \le i \le n} \lambda_i}$$

Les racines carrées des valeurs propres de A^*A sont appelées les valeurs singulières de A. Donc ||A|| est la plus grande valeur singulière de A.

Preuve. Comme $||A||^2 = ||A^*A||$ et A^*A est autoadjointe, sa norme $||A^*A||$ est égale au maximum du module de ses valeurs propres (qui sont réelles et ≥ 0). Donc $||A||^2 = \max \lambda_i(A^*A)$. D'où $||A|| = \sqrt{\max \lambda_i}$. ProofDémonstration

Lemma 3.5 (Inégalité de Cauchy-Schwarz pour la norme matricielle). Soit $A \in M_n(\mathbb{C})$. $\|Ax\|_2^2 = (x|A^*Ax)$. Comme A^*A est autoadjointe, elle admet une base orthonormée $(v_1,...,v_n)$ de vecteurs propres avec les valeurs propres réelles $\lambda_1,...,\lambda_n \geq 0$. Soit $x = \sum_{i=1}^n c_i v_i$. Alors $\|x\|_2^2 = \sum |c_i|^2$. $A^*Ax = A^*A(\sum c_i v_i) = \sum c_i (A^*Av_i) = \sum c_i \lambda_i v_i$. $(x|A^*Ax) = (\sum c_j v_j|\sum c_i \lambda_i v_i) = \sum_{i,j} \overline{c_j} c_i \lambda_i (v_j|v_i) = \sum_{i=1}^n \lambda_i |c_i|^2$. Donc $\|Ax\|_2^2 = \sum_{i=1}^n \lambda_i |c_i|^2$. On a $\|Ax\|_2^2 = \sum \lambda_i |c_i|^2 \leq (\max \lambda_j) \sum |c_i|^2 = (\max \lambda_j) \|x\|_2^2$. $\max \lambda_j = \|A\|^2$. Donc $\|Ax\|_2^2 \leq \|A\|^2 \|x\|_2^2$, ce qui redonne $\|Ax\|_2 \leq \|A\| \|x\|_2$.

Definition 3.6 (Norme de Hilbert-Schmidt).

$$||A||_{HS} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^2\right)^{1/2} = \sqrt{Tr(A^*A)}$$

où Tr est la trace de la matrice.

Proposition 3.7. On a $||A|| \leq ||A||_{HS}$.

Preuve. Par Cauchy-Schwarz sur
$$\mathbb{K}^n$$
: $\|Ax\|_2^2 = \sum_{i=1}^n \left|\sum_{j=1}^n a_{ij}x_j\right|^2 \le \sum_{i=1}^n \left(\sum_{j=1}^n |a_{ij}|^2\right) \left(\sum_{k=1}^n |x_k|^2\right) \ \|Ax\|_2^2 \le \left(\sum_{i=1}^n \sum_{j=1}^n |a_{ij}|^2\right) \|x\|_2^2 = \|A\|_{HS}^2 \|x\|_2^2.$ Donc $\|A\| = \sup_{\|x\|=1} \|Ax\|_2 \le \|A\|_{HS}.$