平成26年度

大学院博士前期課程(修士)一般入学試験問題

工業熱力学

注意事項:解答用紙に指示してある問題番号,解答の仕方にしたがって記入すること.

岡山大学大学院自然科学研究科(工学系) 機械システム工学専攻(機械系)

工業熱力学

- 【1】 図1のように、シリンダ内に漏れなく、摩擦なく動くピストンが入っており、ストッパにより図の位置で停止している。そのとき、質量m、大気圧 P_0 、温度 T_0 のガスが閉じ込められており、その容積は V_0 であった(状態0)。まず、シリンダ内のヒータにより、ガスに熱量Qが与えられた(状態1)。ここで、ガスは理想気体とし、定容比熱を c_v 、比熱比を κ とする。また、この閉じた系は周囲とは断熱されており、ヒータの容積は無視する。以下の問いに答えよ。
 - (1) 状態1における温度および圧力を求めよ.
 - (2) 状態 0 から状態 1 までのエントロピーの変化を求めよ.

次に、ストッパを外すと、シリンダ内の圧力が大気圧 P_0 となるまでピストンが移動した(状態 2).

- (3) 状態2におけるシリンダ内の温度および容積を求めよ.
- (4) 状態1から状態2までのエントロピーの変化を求めよ.
- (5) ピストンが外部になした仕事を求めよ.
- (6) 状態 0 から状態 2 までの経過を示す P-V (圧力-容積)線図および T-S (温度-エントロピー)線図を描け.

図 1

工業熱力学

- 【2】 P-V (圧力-容積)線図が図2で表されるサイクルを考える. 状態1から,質量m の作動ガスを圧縮して発生した熱がこの系から取り去られ,等温のまま状態2となる. その後,ガスは容積一定で冷却され,状態3となる. 次に,ガスを等温で膨張させることにより,この系の外部から熱を奪い,状態4となる. 最後に,容積一定でガス温度を上昇させ,状態1に戻る. 状態2から状態3へ変化するとき,この系から外部に出る熱は,熱交換器を通して完全に再利用されて,状態4から状態1へ変化する際にこの系に入る熱に等しい.ここで,ガスは理想気体とし,ガス定数をR,定容比熱をC0とする. また,状態iにおける状態量はそれぞれ添字iを付ける. 圧縮比C0~1/C1/C2とする. 以下の問いに答えよ.
 - (1) T-S (温度-エントロピー) 線図を描き、熱の流れも示せ.
 - (2) 状態2から状態3に変化するとき、熱量の変化および外部になす仕事を求めよ.
 - (3) 状態3から状態4に変化するとき、熱量の変化および外部になす仕事を求めよ.
 - (4) このサイクルの成績(動作)係数を求めよ.

図 2

工業熱力学

- 【3】 気体の流れに関する以下の問いに答えよ. ただし, ノズル内流れに摩擦は作用しない.
 - (1) 先細ノズルの入口で圧力 P_1 , 比容積 v_1 とし、出口では、圧力 P_2 , 比容積 v_2 とする. ノズル内を流れる気体は理想気体で断熱変化をし、比熱比 κ である. ノズル出口の圧力 P_2 を求めよ.
 - (2) ノズルの臨界圧力 P_c を入口の圧力 P_1 と比熱比 κ を用いて示せ.
 - (3) ノズル内流れが臨界流れの場合、出口での速度 w_2 をノズル入口の圧力 P_1 , 比容積 v_1 および比熱比 κ を用いて示せ、ただし、入口速度 w_1 は w_1 =0 としてよい。
 - (4) 問(1), (2), (3)で得られた関係より, 臨界流れのノズル出口速度は音速と一致することを示せ.
 - (5) 圧力 P_1 の空気または蒸気を,ノズルにより断熱的に圧力 P_2 まで膨張させる.以下の各場合では,先細ノズルと末広ノズルのどちらを使用すればよいか. 理由とともに示せ.なお,比熱比 κ における臨界圧力比は,表 1 を使用してよい.
 - (a) 空気 (κ =1.40) を P_1 =0.18 MPa から P_2 =0.10 MPa に膨張させる場合
 - (b) 過熱蒸気(κ =1.30)を P_1 =4.00 MPa から P_2 =2.08 MPa に膨張させる場合

表1 比熱比に対する臨界圧力比

比熱比	臨界圧力比
1.40	0.5283
1.30	0.5457