PUBLIC-KEY CERTIFICATION AUTHORITY

Aditya Singh Rathore, 2018007

Jaspreet Saka, 2018237

ENCRYPTION AND DECRYPTION

```
def encrypt(plainText:str, e:int, n:int)->str:
        """ Encrypts each character of plain text using RSA."""
        l = [chr(pow(ord(M),e,n)) for M in plainText];
        return ''.join(l);
 5
    def decrypt(cypherText:str, d:int, n:int)->str:
 6
        """Decrypts each character of cypher text which was encrypted using
        encrypt(...)."""
 8
        l = [chr(pow(ord(C),d,n)) for C in cypherText];
        return ''.join(l);
10
        return ''.join(l);
        l = [chr(pow(ord(C),d,n)) for C in cypherText];
```

CLIENT-TO-CA

- Everyone knows the public key of CA
- Client encrypts
 using this public key.

CA-TO-CLIENT

- Client registers its keys with CA and gets ID.
- For the first time,
 Client sends its public key along with request to register to CA.
- After that, CA can access the public key using ID.

CLIENT-TO-CLIENT

- A gets Public
 Certificate of B from
 CA.
- B gets public certificate of A from CA.
- They communicate using Public keys from these certificates.

ISSUES

- Obvious vulnerability is that the statistical nature of text remains. Thus, it can be subjected to character frequency analysis.
- Length of plain text is equal to the length of encrypted text.

WHY

- The reasons were purely implementation based.
- Correct way would have been to convert string to a byte array and convert that byte array into a number.
- But the size of string in certificate may become too long.
- If we were to implement this for a product that was to be used in reality rather than a proof of concept, we would have used Symmetric encryption like AES to encrypt data and use RSA to encrypt AES keys.

APPLICATION

CERTIFICATE

Parameter	Type	Description
ID_A	int	Identification number of A
PU_A	(e:int,n:int)	Public Key of A
TIME	unix-time	Time at issuing of certificate
DURATION	seconds	How long is the certificate valid?
ID_CA	int	Identification number of Certification Authority
ID_CA	int	Identification number of Certification Authority

CERTIFICATION AUTHORITY

- Handles three kinds of queries:
 - getCertificateSelf
 - getCertificateOther
 - verifyCertificate

GET-CERTIFICATE-SELF

GET-CERTIFICATE-OTHER

VERIFY-CERTIFICATE

APPLICATION FLOW

