CRT-based Fully Homomorphic Encryption over the Integers with Shorter Public key

1 Preliminaries

Notation. We use $\mathbf{a} \leftarrow A$ to denote choosing an element a from a set A randomly. When \mathcal{D} is a distribution, we use $\mathbf{a} \leftarrow \mathcal{D}$ to denote choosing an element a according to the distribution \mathcal{D} . We use $\mathbb{Z}_p := \mathbb{Z} \cap \left(\frac{-p}{2}, \frac{p}{2}\right]$ and $x \mod p$ denotes a number in $\mathbb{Z} \cap \left(\frac{-p}{2}, \frac{p}{2}\right]$ and $\langle x \rangle_p$ is $x \mod p$ in $\mathbb{Z} \cap [0, p)$ which is equivalent to $x \mod p$. We use notation $(a_i)^k$ for a vector $(a_1, ..., a_k)$.

For pairwise coprime integers $p_1, ..., p_k$, we define $CRT_{(p_1,...,p_k)}(m_1,...,m_k)$ as a number in $\mathbb{Z} \cap \left(\frac{-p}{2}, \frac{p}{2}\right]$ which is equivalent to m_i modulos p_i for all $i \in 1,...,k$ where $x_0 = \prod_{i=1}^k p_i$. This is,

$$CRT_{(p_1,...,p_k)}(m_1,...,m_k) = \sum_{i=1}^k m_i \, \hat{p_i} \, (\hat{p_i}^{-1} \mod p_i) \mod x_0$$

where
$$\hat{p_i} = \frac{x_0}{p_i} = \frac{\prod_{j=0}^k p_j}{p_i}$$

2 CRT-based Fully Homomorphic Encryption

The message space is $\prod_{i=1}^k \mathbb{Z}_{Q_i}$. If $Q_1,...,Q_k$ are pairwise coprime integers, the message space can be considered \mathbb{Z}_Q where $Q = \prod_{i=1}^k Q_i$.

2.1 Parameters

We give some descriptions about the parameters.

 λ : the security parameter

 ρ : the bit length of the error

 η : the bit length of the secret primes

 γ : the bit length of a ciphertext

 τ : the number of encryptions of zero in public key

k: the number of distinct secret primes

 l_Q : the bit length of Q_i for i=1,...k

Roughly speaking, k determines the size of the message space. The parameter l_Q can be an integer from 2 to $\eta/8$ depending on the multiplicative depth of the scheme.

- $-\gamma = \eta^2 \omega(\log(\lambda))$ to resist Cohn and Heninger's attack [1] and the attack using Lagarias algorithm [2] on the approximate GCD problem
- $-\eta = \widetilde{\Omega}(\lambda^2 + \rho.\lambda)$), to resist the factoring attack using the elliptic curve method [3] and to permit enough multiplicative depth.
- $\rho = \widetilde{\mathcal{O}}(\lambda)$, to be secure against Chen-Nguyen's attack [4] and Howgrave-Graham's attack [5].
- $\tau = \gamma + \omega(\log(\lambda))$, in order to use left-over hash lemma in the security proof.

We choose $\gamma = \widetilde{\mathcal{O}}(\lambda^5)$, $\eta = \widetilde{\mathcal{O}}(\lambda^2)$, $\rho = 2\lambda$, $\tau = \gamma + \lambda$ which is similar to the DGHV's convenient parameter setting [6].

2.2 Construction

KeyGen $(\lambda, \rho, \eta, \gamma, \tau, l_Q, k)$: Choosen η -bit distinct primes $p_1, ..., p_k$ and $q_0 \leftarrow \mathbb{Z} \cap [0, \frac{2^{\gamma}}{\prod_{i=1}^k p_i})$ and set x_0 . Choosen l_Q -bit integers $Q_1, ..., Q_k$ with $gcd(Q_i, x_0) = 1$ for i = 1, ..., k. Output the public key p_k as follows:

$$pk = \left(x_0, \{Q_i\}_{i=0}^k, X := \{x_j = CRT_{(q_0, p_1, ..., p_k)}(e_{j0}, e_{j1}Q_1, ..., e_{jk}Q_k)\}_{j=0}^{\tau}, Y := \{y_l = CRT_{(q_0, p_1, ..., p_k)}(e'_{l0}, e'_{l1}Q_1 + \delta_{l1}, ..., e'_{lk}Q_k + \delta_{lk})\}_{j=0}^k\right)$$

where $e_{j0}, e'_{l0} \leftarrow \mathbb{Z} \cap [0, q_0), \ e_{ji} \leftarrow \mathbb{Z} \cap (-2^{\rho}, 2^{\rho}), \ e'_{li} \leftarrow \mathbb{Z} \cap (-2^{\rho}, 2^{\rho})$ for $i, l \in [1, k], j \in [1, \tau]$ and δ_{ij} in Kronecker delta. Output the secret key $sk = (p_1, ..., p_k)$.

Enc(pk, m): For any $m = (m_1, ..., m_k)$ with $m_i \in \mathbb{Z}_{\mathbb{Q}}$, outputs $c = \sum_{i=1}^k m_i y_i + \sum_{j \in S} x_j \mod x_0$ where S is a random subset of $\{1, ..., \tau\}$.

 $\mathbf{Dec}(sk, \mathbf{c})$: Output $(m_1, ..., m_k) = ((c \mod p_1) \mod Q_1, ..., (c \mod p_k) \mod Q_k)$.

Remark 1. There are $(\tau + k)$ integers of γ -bit and k integers of l_Q -bit in the public key. The public key size is $\widetilde{\mathcal{O}}$ $((\tau + k)\gamma + kl_Q) = \widetilde{\mathcal{O}}$ (λ^{10}) under the parameters in the Section 2.1

3 Our CRT encrytion Public Key Compression Technique

3.1 Description

KeyGen. Generate a random distinct η -bit prime integers $p_1,..,p_k$ and $q_0 \leftarrow \mathbb{Z} \cap [0,\frac{2^\gamma}{\prod_{i=1}^k p_i})$ and let $p=\prod_{i=1}^k p_i,\ q=\prod_{i=1}^k Q_i$ and $x_0=pq$. Initialize a pseudo-random number generator f with a random seed se. Use f(se) to generate a set of integers $\chi_i \in [0,2^\gamma)$ for $1 \leq i \leq \tau$. For all $1 \leq i \leq \tau$ compute:

$$\mu_i = \langle \chi_i \rangle_p + \xi_i \cdot p - r_i \cdot q$$

where $r_i \leftarrow \mathbb{Z} \cap (-2^{\rho+k\cdot\eta}/q, 2^{\rho+k\cdot\eta}/q)$ and $\xi \leftarrow \mathbb{Z} \cap [0, 2^{\lambda+k\cdot\eta}/p)$. For all $1 \leq i \leq \tau$ compute:

$$x_i = \chi_i - \mu_i \tag{1}$$

Let $p_k = (\text{se}, x_0, \{Q_i\}_{i=1}^k, \{\mu_i\}_{i=1}^\tau, \{y_i\}_{i=1}^k)$ and $sk = (p_1, ..., p_k)$ where x_0, Q_i, y_i are same values as in the section 2.2.

Encrypt (p_k, m) : use f(se) to recover the integers χ_i and let $x_i = \chi_i - \mu_i$ for all $1 \le i \le \tau$. And do the encryption same as the $\mathbf{Enc}(p_k, m)$ in section 2.2.

The main difference with the original CRT-based encryption scheme instead of storing the large x_i 's in the public key we store only store the much smaller μ_i 's. The new public key for the somewhat homomorphic scheme has size $\widetilde{\mathcal{O}}(k\eta\tau + k\gamma + kl_Q) = \widetilde{\mathcal{O}}(\lambda^7)$ instead of $\widetilde{\mathcal{O}}(\lambda^{10})$.

References

- [1] H. Cohn and N. Heninger. Approximate common divisors via lattices. *IACR Cryptology ePrint Archive*,. 2011:437, 2011.
- [2] J. C. Lagarias. The computational complexity of simultaneous diophantine approximation problems. SIAM J. Comput., 14(1):196-209, 1985.
- [3] J. Lenstra, H. W. Factoring integers with elliptic curves. *The Annals of Mathematics*, 126(3):pp. 649-673, 1987.

- [4] Y. Chen and P. Nguyen. Faster algorithms for approximate common divisors: Breaking fully-homomorphic corryption challenges over the integers. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 502-519. Springer Berlin Heidelberg, 2012.
- [5] N. Howgrave-Graham. Approximate integer common divisors. In *CaLC*, pages 51-66, 2001.
- [6] M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. In H. Gilbert, editor, Advances in Cryptology EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 24-43. Springer Berlin Heidelberg, 2010.