ODE Lesson 8: Parameter-Dependent Existence Problems

ODE 1 - Prof. Adi Ditkowski

1 Introduction to Parametric ODEs

Definition 1 (Parametric ODE). A parametric ODE has the form: $y' = f(x, y; \mu)$ where μ is a parameter (or vector of parameters) that affects the equation's behavior.

Key Questions for Parametric Problems:

- 1. For which μ does a solution exist?
- 2. For which μ is it unique?
- 3. How does the solution behavior change with μ ?
- 4. Where are the bifurcation points?

2 Parameter Location Analysis

2.1 Where Parameters Appear

Location	Example	Main Concern
Coefficients	$y' = \mu y$	Usually safe
Denominators	$y' = \frac{y}{x-\mu}$	Singularities
Exponents	$y' = y ^{\mu}$	Lipschitz condition
Initial conditions	$y(0) = \mu$	Starting point issues
Domain bounds	$y' = \sqrt{\mu - y^2}$	Real-valued constraints

3 Critical Parameter Values

Definition 2 (Critical Parameter). A critical parameter value μ_c is where:

• The number of equilibria changes

- Stability of equilibria changes
- Existence/uniqueness properties change
- Solution behavior undergoes qualitative change

4 Standard Examples

4.1 Example 1: Linear with Parameter

Example 1 (Exponential Growth/Decay). $y' = \mu y$, y(0) = 1 Analysis:

- Solution exists for all μ : $y = e^{\mu x}$
- Behavior changes at $\mu = 0$:
 - $-\mu < 0$: Exponential decay to 0
 - $-\mu = 0$: Constant solution
 - $-\mu > 0$: Exponential growth to ∞

Solutions for different μ values

4.2 Example 2: Parameter in Denominator

Example 2 (Moving Singularity). $y' = \frac{y}{x-\mu}$, y(0) = 1 Analysis by parameter:

- $\mu < 0$: Solution exists for all $x \ge 0$
- $\mu = 0$: No solution through (0,1) (singularity at initial point)
- $\mu > 0$: Solution exists for $x \in [0, \mu)$, blows up at $x = \mu$

General solution (when it exists): $y = \frac{C}{x-\mu}$

4.3 Example 3: Parameter Affects Lipschitz

Example 3 (Uniqueness Switch). $y' = \mu |y|^{1/2}$, y(0) = 0 Analysis:

- $\mu = 0$: Unique solution $y \equiv 0$
- $\mu \neq 0$: Not Lipschitz at y = 0, infinitely many solutions

Solution family for
$$\mu \neq 0$$
: $y(x) = \begin{cases} 0 & \text{if } |x| \leq c \\ \frac{\mu^2}{4}(x-c)^2 & \text{if } x > c \geq 0 \end{cases}$

5 Bifurcation Analysis

5.1 Types of Bifurcations

Definition 3 (Bifurcation). A bifurcation occurs at parameter value μ_c where the qualitative structure of solutions changes.

Type	Equation Form	Behavior
Saddle-node	$y' = \mu - y^2$	Equilibria appear/disappear
Transcritical	$y' = \mu y - y^2$	Equilibria exchange stability
Pitchfork	$y' = \mu y - y^3$	Symmetry breaking
Hopf	System of ODEs	Periodic orbits appear

5.2 Pitchfork Bifurcation Example

Example 4 (Pitchfork). $y' = \mu y - y^3$ Equilibria: y = 0 and $y = \pm \sqrt{\mu}$ (if $\mu > 0$)

- $\mu < 0$: Only y = 0 (stable)
- $\mu = 0$: Only y = 0 (critically stable)
- $\mu > 0$: Three equilibria:

$$-y = 0 \ (unstable)$$

$$-y = \pm \sqrt{\mu} \ (stable)$$

Pitchfork Bifurcation Diagram

6 Riccati Equation with Parameter

Example 5 (Parametric Riccati). $y' = y^2 - \mu$ Analysis:

- $\mu < 0$: No real equilibria, all solutions blow up
- $\mu = 0$: One equilibrium at y = 0 (semi-stable)
- $\mu > 0$: Two equilibria at $y = \pm \sqrt{\mu}$

Blow-up analysis:

- If $|y_0| > \sqrt{\mu}$ (when $\mu > 0$): Solution blows up
- If $|y_0| < \sqrt{\mu}$: Solution remains bounded
- If $|y_0| = \sqrt{\mu}$: Solution approaches equilibrium

7 Global Existence Criteria

For global existence, check:

- 1. No finite-time blow-up (solutions remain bounded)
- 2. No singularities in the domain

3. Lipschitz condition holds globally

Example 6 (Global Existence Analysis). $y' = y^2 + \mu y + 1$ Discriminant: $\Delta = \mu^2 - 4$

- $|\mu| < 2$: No real equilibria, all solutions blow up
- $|\mu| = 2$: One equilibrium (double root)
- $|\mu| > 2$: Two equilibria, bounded solutions possible

For global existence: Need $|\mu| \geq 2$ and appropriate initial conditions.

8 Continuous Dependence on Parameters

Theorem 1 (Continuous Dependence). If f and $\frac{\partial f}{\partial y}$ are continuous in (x, y, μ) , then the solution $y(x, \mu)$ is continuous in μ .

Continuous \neq Smooth! Small parameter changes can cause:

- Bifurcations (structure changes)
- Blow-up time shifts
- Stability switches
- Period changes (for oscillatory solutions)

9 Singular Perturbations

Definition 4 (Singular Perturbation). When a small parameter ϵ multiplies the highest derivative: $\epsilon y'' + f(y', y, x) = 0$ As $\epsilon \to 0$, the order of the equation changes!

Example 7 (Fast-Slow System). $\epsilon y' = -y + \mu$

- For $\epsilon > 0$: First-order ODE with solution $y = \mu + (y_0 \mu)e^{-x/\epsilon}$
- As $\epsilon \to 0^+$: Rapid transition to $y = \mu$
- At $\epsilon = 0$: Algebraic equation $y = \mu$

Time scale: $\tau = x/\epsilon$ shows fast dynamics.

10 Parameter Identification

Exam Question Type: "Find all μ such that..."

- 1. The solution exists globally
- 2. All solutions are periodic
- 3. The equilibrium at origin is stable
- 4. The solution through (0,1) remains bounded

11 Systematic Analysis Strategy

Parameter Analysis Algorithm:

- 1. Identify where μ appears (coefficient, denominator, etc.)
- 2. Find critical values (singularities, Lipschitz failure, etc.)
- 3. Analyze each parameter regime separately
- 4. Determine equilibria and their stability
- 5. Check for bifurcations
- 6. Sketch bifurcation diagram
- 7. Consider limiting cases $(\mu \to 0, \pm \infty)$

12 Memory Device

PARAMETER Analysis:

Position (where is μ ?)

Anomalies (singularities)

Regimes (different cases)

Analysis (each case)

Monotonicity (how solution changes)

Equilibria

Transitions (bifurcations)

Existence (global vs local)

Rate of change