МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 5.5.5 Компьютерная сцинтилляционная γ -спектрометрия

	Салтыкова Дарья
	Б04-105
Допуск	
Зыполнени	e
Сдача	

1 Цель работы

Снять и исследовать спектры излучения различных источников, характеризовать различные пики в спектрах радиоактивных веществ.

2 В работе используются:

Сцинтиллятор, $\Phi \ni Y$, предусилитель импульсов, высоковольтный блок питания для $\Phi \ni Y$, АЦП, компьютер.

3 Теоретические положения

Фотоэффект - это процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия $T_e = E_{\gamma} - I_i$, где E_{γ} – энергия гамма-кванта, I_i – потенциал ионизации i-той оболочки атома. Фотоэффект особенно существенен для тяжелых веществ, где он идет с заметной вероятностью даже при высоких энергиях гамма-квантов. В легких веществах фотоэффект становится заметен лишь при относительно небольших энергиях гамма-квантов.

Эффект Комптона - это упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона. Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 180° и равна

$$E_{\text{max}} = \frac{\eta \omega}{1 + \frac{mc^2}{2\eta \omega}}.$$

Процесс образования электрон-позитронных пар. При достаточно высокой энергии гаммакванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – образование электрон-позитронных пар. Процесс образования пар не может происходить в пустоте, так как в этом случае не выполняются законы сохранения энергии и импульса. В присутствии ядра или электрона процесс образования пары гамма-квантов возможен, так как можно распределить энергию и импульс гамма-кванта между тремя частицами без противоречия с законами сохранения. При этом если процесс образования пары идет в кулоновском поле ядра или протона, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта E_0 , необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_0 \cong 2mc^2 = 1.022$ МэВ.

Появившийся в результате процесса образования пар электрон свою энергию на ионизацию среды. Таким образом, вся энергия электрона остается в детекторе. Позитрон будет двигаться до тех пор, пока практически не остановится, а затем аннигилирует с электроном среды, в результате чего появятся два гамма-кванта. Т.е., кинетическая энергия позитрона также останется в детекторе. Далее возможны три варианта развития событий:

- 1. оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E=E_{\gamma}$;
- 2. один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E = E_{\gamma} E_{0}$, где $E_{0} = mc^{2} = 511$ кэB;
- 3. оба родившихся гамма-кванта покидают детектор, и в спектре появляется пик, соотвествующий энергии $E=E_{\gamma}-2E_{0}$, где $2E_{0}=2mc^{2}=1022$ кэВ.

Таким образом, любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Как описано выше, основными физическими процессами взаимодействия гамма-квантов с веществом является фотоэффект, эффект Комптона и образование электрон-позитронных пар, и каждый из них вносит свой вклад в образование спектра. Помимо этих процессов, добавляется экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния, образующийся при энергии квантов $E_{\gamma} \gg mc^2/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле:

$$E_{\text{ofp}} = \frac{E}{1 + 2E/mc^2},$$

где E – энергия фотопика.

Энергетическое разрешение спектрометра. Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано:

- 1. со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления,
- 2. с различной вероятностью доставки фотона к фотоприемнику из разных точек сцинтиллятора,
- 3. с разбросом высвечиваемого числа фотонов

В результате в набранном спектре линия (которая для идеального детектора представляла бы дельта-функцию) оказывается размытой, её часто описывают гауссианом.

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i},$$

где ΔE_i — ширина пика полного поглощения, измеренная на половине высоты, E_i — энергия регистрируемого γ -излучения. Значение E_i пропорционально среднему числу фотонов $\overline{n_i}$ на выходе $\Phi \ni Y$, т.е.:

$$E_i = \alpha \overline{n_i}$$
.

Полуширина пика полного поглощения ΔE_i пропорциональна среднеквадратичной флуктуации $\overline{\Delta n_i}$. Т.к. n_i является дискретной случайной величиной, которая распределена по закону Пуассона, то $\overline{\Delta n_i} = \sqrt{\overline{n_i}}$ и поэтому

$$\Delta E_i = \alpha \overline{\Delta n_i} = \alpha \sqrt{\overline{n_i}}.$$

Из (3), (3) получаем, что

$$R_i = \frac{\Delta E_i}{E_i} = \frac{\text{const}}{\sqrt{E_i}}.$$

Поскольку энергетическое разрешение зависит от энергии, его следует указывать для конкретной энергии. Чаще всего разрешение указывают для энергии гамма-линии ¹³⁷Cs (661.7 кэВ).

4 Ход работы

1. Проведем измерения гамма-спектров для ^{137}Cs , ^{22}Na , ^{60}Co , ^{241}Am , ^{152}Eu , а также измерение фона. Вычтем фон и определим номера каналов, отвечающие центрам пиков полного поглощения ^{137}Cs , ^{22}Na , ^{60}Co , см. Приложение.

Построим калибровочный график зависимости номера канала от энергии γ -кванта (Рис. 1).

Рис. 1: Калибровочный график

Используя калибровочный график, определим для всех остальных источников значения энергии пиков полного поглощения E, их ширины на полувысоте ΔE , и энергетическое разрешение R. Результаты сведем в таблицу.

Образец	N	ΔN	E, кэ B	ΔE , кэ B	R	1/E, $1/$ кэВ	R^2
^{22}Na	781	34	511,7881	24,7093	0,04828	0,001954	0,002331
^{22}Na	1831	91	1274,869	66,1337	0,051875	0,000784	0,002691
^{137}Cs	988	77	662,2241	55,95929	0,084502	0,00151	0,007141
^{60}Co	1688	120	1170,945	87,20928	0,074478	0,000854	0,005547
^{60}Co	1913	196	1334,462	142,4418	0,106741	0,000749	0,011394
^{152}Eu	136	21	43,03818	15,26162	0,354607	0,023235	0,125746
^{152}Eu	249	33	125,1603	23,98255	0,191615	0,00799	0,036716
^{152}Eu	548	16	342,4567	11,6279	0,033954	0,00292	0,001153
^{241}Am	116	18	28,5033	13,08139	0,458943	0,035084	0,210629
^{241}Am	167	2	65,56725	1,453488	0,022168	0,015252	0,000491

2. По результатам измерения энергии края комптоновского поглощения построим график, по одной оси которого отложим экспериментальные значения, а по другой расчетные значения этой энергии (Рис. 2).

Образец	$E_{ m reop}$, кэ ${ m B}$	$E_{ ext{компт}}$, кэ ${ m B}$	$E_{ m pacq},$ кэ ${ m B}$	$E_{\text{обр}}$, кэ B
^{22}Na	511	325,0149	340	
^{22}Na	1274	1086,643	1062	187,6602
^{137}Cs	662	476,9044	477	206,5556
^{60}Co	1173	1016,148	963	232,7184
^{60}Co	1332			
^{152}Eu	41,2			43,03818
^{152}Eu	121			
^{152}Eu	344			
^{241}Am	26,3			
^{241}Am	59,6			

Рис. 2: Энергия края комптоновского поглощения: зависимость экспериментальных значений от расчетных

Коэффициент при абсциссе близок к единице, а значит экспериментальные значения близки к расчетным.

- 3. Построим график $R^2=f(1/E)$. Значение минимальной энергии для ^{241}Am из-за большой погрешности исключим (Рис. 3).
- 4. Построим график зависимости энергии пика обратного рассеяния от энергии фотопика (Рис. 4).
- 5. Получим на экране осциллографа устойчивое изображение импульсов с выхода ФЭУ. Для лучшего наблюдения импульсов приставим к экрану осциллографа специальный резиновый кожух, предохраняющий от внешней засветки. Форма импульсов на выходе ФЭУ определется выражением:

$$U(t) = const \cdot e^{-\frac{t}{RC}} (1 - e^{-\frac{t}{\tau_0}}),$$

где τ_0 - время высвечивания сцинтиллятора, RC - постоянная времени (R и C - сопротивление и емкость в анодной цепи ФЭУ). Данное выражение справедливо при $RC >> \tau_0$. По фотографии

Рис. 3: Зависимость спектрального разрешения прибора от величины, обратной энергии полного поглощения

Рис. 4: Зависимость энергии пика обратного рассеяния от энергии фотопика

импульсов оценим величину τ_0 (по переднему фронту импульса) и постоянную времени RC(по заднему фронту импульса):

$$au_0 \approx 2$$
 мкс, $RC \approx 10$ мкс.

Рис. 5: Осциллограмма импульсов с выхода ФЭУ

5 Вывод

В ходе работы были сняты и исследованы спектры образцов ^{137}Cs , ^{22}Na , ^{60}Co , ^{241}Am , ^{152}Eu . Были определены пики полного поглощения (фотопики), комптоновские края, пики обратного рассеяния, пик аннигиляции позитронов в спектре натрия (511 кЭв). Полученные экспериментально значения энергий пиков хорошо сходятся с табличными.

Также была проверена линейная зависимость спектрального разрешения прибора от 1/E, где E - энергия полного поглощения.

По осциллограмме импульсов с выхода ФЭУ определены время высвечивания сцинтиллятора τ_0 и RC - постоянная времени: $\tau_0 \approx 2$ мкс, $RC \approx 10$ мкс.

Заметим, что на графиках для цезия и европия в левой части спектра присутствует узкий пик, предположительно соответстсующий характеристическому излучению свинца, служащего защитой спектрометра от внешнего излучения. Энергия этого пика $E_{\rm свинца} \approx 40~{\rm кэ}{\rm B}$.

6 Приложение

Рис. 6: Спектр ^{137}Cs

Рис. 7: Спектр ^{60}Co

Рис. 8: Спектр ^{22}Na

Рис. 9: Спектр ^{241}Am

Рис. 10: Спектр ^{152}Eu