Part II: Number Theory

- Number theory is the part of mathematics devoted to the study of the integers and their properties.
- Number theory has a long history.
 - E.g.: Chinese Remainder Theorem 1700 years old
- For a long time, it had been regarded as pure mathematics and useless.
 - G. H. Hardy (prominent British mathematician): Pure mathematics is "beautiful" and "useless". Applied mathematics is "trivial", "ugly", and "dull"
- However, number theory has found numerous applications in computer science in recent decades.

L05: Modular Arithmetic

- Divisibility
- Modular Arithmetic
- Congruences
- Applications of Modular Arithmetic

Reading: Rosen 4.1, 4.5

Divisibility

Definition:

Let a and b be integers with $a \neq 0$. Then a divides b if there exists an integer c such that b = ac.

- The notation $a \mid b$ denotes that a divides b.
- If $a \mid b$, then b/a is an integer.
- If a does not divide b, we write $a \nmid b$.
- When a divides b we say that a is a factor or divisor of b and that b is a multiple of a.

• Example:

Determine whether 3 | 7 and whether 3 | 12.

Properties of Divisibility

Theorem:

Let a, b, and c be integers, where $a \neq 0$.

- i. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$;
- ii. If $a \mid b$, then $a \mid bc$ for all integers c;
- iii. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof:

(i) Suppose $a \mid b$ and $a \mid c$, then it follows that there are integers s and t with b = as and c = at. Hence,

$$b + c = as + at = a(s + t)$$

Therefore, $a \mid (b + c)$.

Proofs for (ii) and (iii) are left as exercises.

Example

Corollary:

If a, b, and c be integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid mb + nc$ whenever m and n are integers.

Proof:

By (ii) of the theorem, we have $a \mid mb$ and $a \mid nc$. By (i) of the theorem, we have $a \mid mb + nc$.

Euclid's Division Theorem

Theorem:

Euclid (325 B.C.E. – 265 B.C.E.)

For any $a \in \mathbb{Z}$, $d \in \mathbb{Z}^+$, there exist unique integers q and r, with $0 \le r < d$, such that a = dq + r.

- d is called the divisor.
- a is called the dividend.
- q is called the quotient.
- r is called the remainder.

Examples

- 11 div 3 = 3, 11 mod 3 = 2.
- -11 div 3 = -4, -11 mod 3 = 1.

Notation:

$$q = a \operatorname{div} d$$

 $r = a \operatorname{mod} d$

Proof of Existence

- Let $S = \{x \mid x = a dq, x \ge 0, q \in \mathbf{Z}\}.$
 - Note: The set is nonempty since -dq can be made as large as needed.
- Let r be the smallest integer in S. By the definition of S, there is a $q \in \mathbf{Z}$ such that

$$r = a - dq$$

- By the definition of S, we have $r \ge 0$.
- We must also have r < d. If not, then there would be a smaller nonnegative integer in S, which is

$$a - d(q + 1) = a - dq - d = r - d > 0$$

Proof of Uniqueness

• Suppose there are q_1, r_1, q_2, r_2 such that

$$a = dq_1 + r_1$$
 (1)
 $a = dq_2 + r_2$ (2)
 $0 \le r_1 < d$
 $0 \le r_2 < d$

■ (1) – (2):

$$0 = d(q_1 - q_2) + (r_1 - r_2)$$
$$d(q_1 - q_2) = r_2 - r_1$$

- So, $d | (r_2 r_1)$
- Since $-d < r_2 r_1 < d$, we must have $r_2 r_1 = 0$, so $r_1 = r_2$, and $q_1 = q_2$

Outline

- Divisibility
- Modular Arithmetic
- Congruences
- Applications of Modular Arithmetic

Lemma

For any $a, k \in \mathbb{Z}$, $m \in \mathbb{Z}^+$, $a \mod m = (a + km) \mod m$.

Proof

■ By Euclid's Division Theorem, there exist unique $q, r, 0 \le r < m$, s.t.

$$a = mq + r \tag{1}$$

- Similarly, there exist unique $q', r', 0 \le r' < m$, s.t. a + km = mq' + r' (2)
- Adding *km* to both sides of (1):

$$a + km = m(q + k) + r$$

• By the uniqueness in Division Theorem, we have r = r'

■ By definition of mod, $a \mod m = (a + km) \mod m$.

Example

Prove the property

 $(a \bmod mn) \bmod n = a \bmod n$

Proof:

- a = qmn + s, $0 \le s < mn$
- $s = pn + r, 0 \le r < n$
- Then, $(a \mod mn) \mod n = r$
- On the other hand

$$a = (qm + p)n + r,$$

- So, $a \mod n = r$
- The equation is proved.

Theorem

```
For any a, k \in \mathbb{Z}, m \in \mathbb{Z}^+, (a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m
```

Proof:

• By Euclid's Division Theorem, there exist unique q_1, q_2 , s.t.

$$a = q_1 m + (a \mod m)$$

$$b = q_2 m + (b \mod m)$$

- Adding these 2 equations and take modulo m $(a + b) \mod m$ $= ((q_1 + q_2)m + (a \mod m) + (b \mod m)) \mod m$
- The theorem then follows from the previous Lemma.

Theorem

```
For any a, k \in \mathbb{Z}, m \in \mathbb{Z}^+, (a \cdot b) \mod m = ((a \mod m) \cdot (b \mod m)) \mod m
```

Proof:

Similar to the previous theorem.

Theorems

```
For any a, k \in \mathbf{Z}, m \in \mathbf{Z}^+,

(a+b) \mod m = (a+(b \mod m)) \mod m

(a+b) \mod m = ((a \mod m)+b) \mod m

(a \cdot b) \mod m = (a \cdot (b \mod m)) \mod m

(a \cdot b) \mod m = ((a \mod m) \cdot b) \mod m
```

Modular Arithmetic on \mathbf{Z}_m

Definition

$$\mathbf{Z}_m = \{0,1,...,m-1\}$$

Definition

For $a, b \in \mathbf{Z}_m$

- $a +_m b = (a + b) \bmod m$
- $\bullet \ a \cdot_m b = (a \cdot b) \bmod m$

Examples

- $-7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$
- \bullet 7 \cdot_{11} 9 = (7 \cdot 9) mod 11 = 63 mod 11 = 8

Properties of Arithmetic Modulo m

- Closure: If a and b belong to \mathbf{Z}_m , then $a +_m b$ and $a \cdot_m b$ belong to \mathbf{Z}_m .
- Associativity: If a, b, and c belong to \mathbf{Z}_m , then

$$(a +m b) +m c = a +m (b +m c)$$

$$(a \cdotm b) \cdotm c = a \cdotm (b \cdotm c)$$

- Commutativity: If a and b belong to \mathbf{Z}_m , then

$$a +_m b = b +_m a$$
$$a \cdot_m b = b \cdot_m a$$

• Distributivity: If a, b, and c belong to \mathbf{Z}_m , then

$$a \cdot_{m(b+_m c)} = (a \cdot_m b) +_m (a \cdot_m c)$$

Proof of Associativity

$$a +_{m} (b +_{m} c)$$

$$= (a + (b +_{m} c)) \mod m$$

$$= (a + ((b + c)) \mod m) \mod m$$

$$= (a + (b + c)) \mod m$$

$$= ((a + b) + c) \mod m$$

$$= ((a + b)) \mod m + c) \mod m$$

$$= ((a +_{m} b) + c) \mod m$$

$$= (a +_{m} b) +_{m} c$$

Proof of other properties are similar.

Additive inverses and multiplicative inverses

- Identity elements: The elements 0 and 1 are identity elements for addition and multiplication modulo m, respectively.
 - For $a \in \mathbb{Z}_m$, $a +_m 0 \equiv a$ and $a \cdot_m 1 = a$.
- Additive inverses

For $a \in \mathbf{Z}_m$, $(-a \mod m)$ is the additive inverse of a:

- $a +_m (-a \mod m) = (a + (-a \mod m)) \mod m$ $= (a + (-a)) \mod m = 0$
- Example: What is the additive inverse of 27 in \mathbb{Z}_{58} ?
- Answer: 31
- For $a \in \mathbf{Z}_m$, b is its multiplicative inverse if $a \cdot_m b = 1$
- Example: Let m=4. What is the multiplicative inverse of 3? What is the multiplicative inverse of 2?

Outline

- Divisibility
- Modular Arithmetic
- Congruences
- Applications of Modular Arithmetic

Congruences

Definition

Let $a, b \in \mathbb{Z}, m \in \mathbb{Z}^+$. Then a is congruent to b modulo m if $a \mod m = b \mod m$.

- Notation: $a \equiv b \pmod{m}$
- $a \equiv b \pmod{m}$ is a congruence with modulus m

Example

- $17 \equiv 5 \pmod{6}$
- $24 \not\equiv 14 \pmod{6}$

Note

- In $a \mod m$, mod is a binary operator
- $a \equiv b \pmod{m}$ denotes an equivalence relationship between a and b.

Modular Arithmetic and Congruences

- Congruences provide another way to express modular arithmetic, by replacing $+_m$, \cdot_m , = with +, \cdot , \equiv , adding (mod m) in the end.
- For any integer a, b, c, positive integer m
 - Associativity:

$$(a+b)+c \equiv a+(b+c) \pmod{m}$$

 $(a \cdot b) \cdot c \equiv a \cdot (b \cdot c) \pmod{m}$

Commutativity:

$$a + b \equiv b + a \pmod{m}$$

 $a \cdot b \equiv b \cdot a \pmod{m}$

Distributivity:

$$a(b+c) \equiv ab + ac \pmod{m}$$

Modular Arithmetic and Congruences

- Difference:
 - $+_m$ and \cdot_m are defined only on elements of \mathbf{Z}_m
 - Congruences are defined over Z
- Examples
 - \bullet 6 +₈ 7 = 5
 - $6 + 15 \equiv 5 \pmod{8}$
 - $6 + 15 \equiv 21 \pmod{8}$
 - Can't write $6 +_8 7 = 13$ or $6 +_8 15 = 5$

More on Congruences

Theorem

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

$$a + c \equiv b + d \pmod{m}$$

 $ac \equiv bd \pmod{m}$

Proof in textbook

Example

Because $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, it follows that

$$18 = 7 + 11 \equiv 2 + 1 = 3 \pmod{5}$$

 $77 = 7 \cdot 11 \equiv 2 \cdot 1 = 2 \pmod{5}$

More on Congruences

Corollary

```
If a \equiv b \pmod{m} and c \equiv d \pmod{m}, then a - c \equiv b - d \pmod{m}
```

- Note: $a/c \not\equiv b/d \pmod{m}$
- Corollary

```
If a \equiv b \pmod{m}, then for any c \in \mathbf{Z}, a + c \equiv b + c \pmod{m} a - c \equiv b - c \pmod{m} ac \equiv bc \pmod{m}
```

Outline

- Divisibility
- Modular Arithmetic
- Congruences
- Applications of Modular Arithmetic

Parity Bits

- Digital information is transmitted as a bit stream 00010010111110101010101010101
- Denote the bits as $x_1, x_2, ..., x_n$
- At the end of the stream, we often add a parity bit $x_{n+1} = (x_1 + x_2 + \dots + x_n) \mod 2$
- This can detect one wrong bit
 - Or an odd number of wrong bits
- It cannot detect if there are an even number of wrong bits
 - Will come back to this later

Hash Functions

Example

During exam checking, how to organize the exam papers so that the TA can quickly find the paper for any given student?

Solution

- $h(id) = id \mod 10$
- Hash by initials
- A hash function maps a universe of keys to a small set of locations

Hash Table

Example

- Build a student database, where each student had id, name, address, phone, GPA, etc.
- Given a student id, wants to quickly retrieve it.

Solution

- Suppose there are n students.
 Create an array H of size n.
- Put student with id x at location H[h(x)].
- Resolving collision: H[i] stores a linked list of elements x with h(x) = i.

Hashing Strings

- Each character is an integer between 0 and 255
- Need to take all characters into account
- A commonly used hash function Suppose characters of a s are accessed as s[0], s[1], ... $h(s) = \left(\left(s[0] \cdot 31 + s[1] \right) \cdot 31 + s[2] \right) \cdot 31 + \cdots \right) \mod n$
- Hash function in Java string library (note that overflows are equivalent to modular arithmetic)

```
int h(String s, int n) {
   int hash = 0;
   for (int i = 0; i < s.length(); i++)
      hash = ((31 * hash) + s[i]);
   return hash % n;
}</pre>
```

Random Numbers

- Random numbers are needed for many purposes
 - Computer games
 - Computer simulation
 - Gambling
 - **.** . . .
- But how to generate random numbers?
 - rand()

Pseudorandom Numbers

- Pseudorandom numbers are generated by systematic methods. (So they are not truly random!)
- Linear congruential method
 - Given modulus m, the multiplier a, the increment c, and seed x_0
 - The seed is usually given by user (often use system time)
 - The other two are hard-coded
 - Generate a sequence of pseudorandom numbers:

$$x_{n+1} = (ax_n + c) \bmod m$$

- Example:
 - $m = 9, a = 7, c = 4, x_0 = 3$
 - **3**, 7, 8, 6, 1, 2, 0, 4, 5, 3, 7, 8, 6, 1, 2, 0, 4, 5, 3,...

Pseudorandom Numbers

- The linear congruential method generates repeating patterns
 - It has been found that with $m = 2^{31} 1$, $a = 7^5$, c = 0, it generates $2^{31} 2$ different numbers before repeating
 - Take another mod if random numbers in a certain range are needed
- It generates uniformly distributed numbers
- But they are not random!
- Don't use for lotteries, etc.
- Whole theory about pseudorandom number generators
- http://www.random.org provides truly random numbers (from atmospheric noise)