MATH 202, Fall 2023 In class work 25

Name: ______ Row and Seat:_____

In class work **25** has questions **1** through **1** with a total of **6** points. Turn in your work at the end of class *on paper*. This assignment is due *Thursday 30 November at 13:20*.

"As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them."

JOHN F. KENNEDY

- 1. In polar coordinates, an equation of a curve \mathscr{C} is $r = \sqrt{\frac{1}{4} \sin(\theta)^2}$.
- (a) Use Desmos to draw a graph of this polar equation. As best you can, reproduce the graph here.

Solution: The curve is a Lemniscate of Booth. It looks like the infinity symbol. Its graph is shown below.

Notice that the natural domain of $r = \sqrt{\frac{1}{4} - \sin(\theta)^2}$ is $\theta \in [-\frac{\pi}{6}, -\frac{\pi}{6}] \cup [\frac{5\pi}{6}, \frac{7\pi}{6}]$; outside this set, the value of r is not real. Desmos recognizes this and skips over the territory where r isn't real.

[2] (b) Find all solutions to $0 = \sqrt{\frac{1}{4} - \sin(\theta)^2}$ with $\theta \in [0, 2\pi]$. These solutions give all the points on the curve that intersect the origin. To find *all* solutions to this equation, use the *source of all knowledge* (**SOAK**), that is, the unit circle.

Solution:

2

$$\left[0 = \sqrt{\frac{1}{4} - \sin(\theta)^2}\right] = \left[0 = \frac{1}{4} - \sin(\theta)^2\right], \qquad \text{(square root fact)}$$

$$= \left[0 = \left(\frac{1}{2} - \sin(\theta)\right)\left(\frac{1}{2} + \sin(\theta)\right)\right], \qquad \text{(factor)}$$

$$= \left[-\frac{1}{2} = \sin(\theta) \lor -\frac{1}{2} = \sin(\theta)\right], \qquad \text{(factor and solve)}$$

$$= \left[\theta = \frac{11\pi}{6}, \theta = \frac{\pi}{6}, \theta = \frac{5\pi}{6}, \theta = \frac{7\pi}{6}\right]. \quad \text{(SOAK)}$$

(c) For each intersection of $\mathscr C$ with the origin, find the slope of the tangent line. Using Desmos, verify that you have found the correct tangent lines. **Note:** Desmos refuses¹ to graph a polar curve of the form $\theta = f(r)$. And it particular, it will not graph the polar curve $\theta = \frac{\pi}{4}$, for example. To workaround this, you'll need to find the cartesian equation of the tangent lines.

Solution: For the polar curve $r = f(\theta)$ and assuming $f(\theta_o)$ =, we have

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{\theta=\theta_o} = \tan(\theta_o). \tag{1}$$

So the tangents to the curve at the origin are

$$y = \tan\left(\frac{\pi}{6}\right)x$$
, $y = \tan\left(\frac{5\pi}{6}\right)x$.

Or simplifying these, we have

$$y = \frac{1}{\sqrt{3}}x$$
, $y = -\frac{1}{\sqrt{3}}x$.

Here is a picture of the curve along with its tangent lines at the origin.

¹I think Desmos should hire some UNK CS graduates to fix this.

Optional For extra fun, find a cartesian equation of the curve \mathscr{C} . Show that for $x \in [-\frac{1}{2},\frac{1}{2}]$, a cartesian equation of the curve is $y=\pm \frac{\sqrt{\sqrt{64x^2+9}-8x^2-3}}{2^{\frac{3}{2}}}$. And show that the other two solutions are not real. Finally, are there any values of x that allow the nested radical $\sqrt{\sqrt{64x^2+9}-8x^2-3}$ to denest?