- 1. (10 points) (**Logic**)
 - (a) Let A and B be logical statements. Use truth tables to show that the statement " $\sim (A \Rightarrow B)$ " is equivalent to " $A \land (\sim B)$."
 - (b) Find the negation of

"For some $x \in \mathbb{R}$, $x^2 > 5$ and x < -3,"

equivalently,

" $\exists x \in \mathbb{R}$ such that $(x^2 > 5) \land (x < -3)$."

(a)	A	B	A⇒B	~ B	A^(~B)
	T	T	T	F	F
	T	F	F	T	一
	F	T	丁	F	F
	Ë	F	T	T	F

opposite truth values

Since $A \Rightarrow B$ and $A \land (\sim B)$ have apposite truth values, they are negations of each other. Thu, $\sim (A \Rightarrow B)$ is equivalent to $A \cap (\sim B)$.

(b) $\forall x \in \mathbb{R}, x^2 \leq 5 \text{ or } x \geq -3$.

2. (10 points) Let $x \in \mathbb{R}$. Consider the statement: "If $x \neq 0$, then $\exists \varepsilon > 0 \text{ such that } x \geq \varepsilon.$ " (a) Write the contrapositive of this statement without using the word "not.":				
If $\forall \varepsilon > 0 \ x < \varepsilon$, then $x = 0$.				
(b) Write the converse of this statement:				
If $\exists \varepsilon > 0 \ . \ x \ge \varepsilon$, then $x \ne 0$				
(c) Let $x \in \mathbb{R}$. Prove the if and only if statement, $\forall \varepsilon > 0$, $ x < \varepsilon$ iff $x = 0$ by proving both implications: ¹				
\Rightarrow ("only if"): We need to prove If $\forall \varepsilon > 0$, $ x < \varepsilon$, then $x = 0$ It is easier to prove the (logically equivalent) contrapositive statement If $x \neq 0$, then $\exists \varepsilon > 0$ such that $ x \geq \varepsilon$. Proof:				
If $x \neq 0$, then $ x > 0$. Let $\varepsilon = \frac{ x }{2}$. Then multiplying both sides of the inequality $1 > \frac{1}{2}$ by the positive number $ x $, we obtain $ x > \frac{1}{2} x = \varepsilon.$				
$\Leftarrow \text{ ("if"): We need to show}$ $= \text{If } x = 0, \text{ then } \forall \varepsilon > 0, \ x < \varepsilon$ $= \text{Proof: If } x = 0 \text{ then } x = 0 \text{ as well, so obviously}$ $= \text{whenever } \varepsilon > 0, \text{ we have in particular } x = 0 < \varepsilon, \text{ or}$ $\forall \varepsilon > 0, x < \varepsilon$				
3. (10 points) (Inf and sup) Fitzpatrick, §1.1, p. 11, #13. Suppose that <i>S</i> is a nonempty set of real numbers that is bounded. Prove that inf <i>S</i> ≤ sup <i>S</i> .				
Proof: Let $a = \inf(S)$ and $b = \sup(S)$. Since S is nonempty we can pick some $s \in S$. Then by definition, $a \leq s$ and $s \leq b$. By transitivity, $a \leq b$.				

4. (10 points) (Irrationality) Prove that $\sqrt{10}$ is not a rational number. You may use the unique factorization property of integers.
Proof by contradiction. Assume that NIO is rotional.
This means $NIO = m/n$, where $m, n \in \mathbb{Z}$ and $n \neq 0$.
By cancelling out common factors, we may assume m/n in lowest
terms. Since $\sqrt{10}$ is positive, we may assume $m, n \in \mathbb{N}$.
(If m, n are both negative, the negative signs cancel out.)
Square both sides to get $10 = m^2/n^2$, or
$lon^2 = m^2 (1)$
Factor M, n into prime factors: m=8,-8, n=RPr. Then
$10n^2 = m^2 \implies 2.5 p_1^2 - p_r^2 = g_1^2 - g_2^2$
By UF (unique factorization), 2 must be equal to a factor
9; on the right. Then 2 is a factor of m, so m = 2k
for some REN. Eq. (1) becomes
$10 n^2 = m^2 = (2R)^2 = 4R^2$
$5n^2 = 2\hbar^2$
By UF again, since 2 is a factor of RHS, it is a factor
of LHS 5 n2 and so 2 is a factor of n. Then
both m and n have 2 as a factor, contradicting the
fact that Mn is in lowest terms. Therefore, the
initial hypothesis is false and 110 is not rational.

	uction) Prove by mathematical induction n $n + 1$ $n + 1$	on the summation
formula for geometric series: For	$r r \in \mathbb{R}, r \neq 1: \sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}.$	
Both sides equal Inductive Step: $\sum_{k=0}^{n}$ Then $\sum_{k=0}^{n+1} r^k = \sum_{k=0}^{n}$ $= \frac{1}{n+1}$ $= \frac{1}{n+1}$ $= \frac{1}{n+1}$	$r^0=0$, the statement is that $r^0=-\frac{1-r^1}{1-r}$. In a , suppose for some n we know that $r^k=-\frac{1-r^{n+1}}{1-r}$.	
	1-1	

 6. (15 points) (Subsets, equality of sets) Let f: A → B and let C and D be subsets of B. (a) (7 points) Prove or provide a counterexample that f⁻¹(C∩D) ⊂ f⁻¹(C) ∩ f⁻¹(D). To prove this, you need to show every element of f⁻¹(C∩D) is in f⁻¹(C) ∩ f⁻¹(D). To provide a counterexample, you give a specific A, B, f: A → B and subsets C and D of B, such that the assertion is not true for this specific A, B, C, D and f. (b) (7 points) Prove or provide a counterexample to the assertion f⁻¹(C) ∩ f⁻¹(D) ⊂ f⁻¹(C∩D) and prove your answer. To prove the assertion, you need to show every element of f⁻¹(C) ∩ f⁻¹(D) is in f⁻¹(C∩D). To provide a counterexample, you give 						
(c) (1 point) Does $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ in general?						
	means $f(x) \in C \cap D$, in other words, $f(x) \in$					
	D, which in turn means $x \in f^{-1}(C)$ and $x \in C$ is is precisely the statement that $x \in f^{-1}(C) \cap C$					
$f^{-1}(D)$.						
$f^{-1}(D)$ means $f(x) \in$	reasoning backwards: $x \in f^{-1}(C) \cap C$ and $f(x) \in D$, which is the same is the definition of $x \in f^{-1}(C \cap D)$.					
(c) From (a), we get	f'(cnd) = f'(c) nf(d).					
From (b), we get	f'(c) n f'(D) = f'(C D)					
	f-1(c1D) = f-1(c) 1 f-1(D)					
holds.	D					

7. (10 points) (**Injection, surjection, image, preimage**) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = $2x^3-3x^2$. You may, for purposes of this problem, use what you know from Calc I-II to determine the location of maxima and minima and intervals of monotonicity. Use the definition of f and the shape of the graph of f to answer the questions. (a) Is f injective? Why or why not? (b) Is f surjective? Why or why not? (c) What is f([0,3/2])? (d) what is $f^{-1}([0,\infty))$? Since $f'(x) = 6x^2 - 6x = 6x(1x - 1)$, we see that there are two Solution critical points, x = 0 and x = 1; the function is strictly increasing on $(-\infty,0]$ and $[1,\infty)$, and strictly decreasing on [0,1]. Also, $f(x) \to -\infty$ as $x \to -\infty$ f(0) = 0f(1) = -1 $f\left(\frac{3}{2}\right) = 0 \text{ (since } f(x) = x^2(2x - 3) \text{)}$ $f(x) \to \infty \text{ as } x \to \infty$ From this we conclude that the graph of f(x) looks like this: (a) Is f injective? Why or why not? No: for -1 < y < 0, the equation y = f(x) has three distinct solutions: one each in (-1,0), (0,1), and $(1,\frac{3}{2})$. (b) Is f surjective? Why or why not? Yes, since f is continuous and goes to $\pm \infty$ as x does. (c) What is f([0, 3/2])? On each of the intervals [0,1] and $[1,\frac{3}{2}]$, f(x) is strictly monotone; since $f(0) = f(\frac{3}{2}) = 0$ and f(1) = -1, $f([0, \frac{3}{2}]) = [-1, 0]$. Clearly, $f(x) \in [0, \infty)$ for $x \in \left[\frac{3}{2}, \infty\right)$. But also, f(0) = 0. Since no other points have nonnegative image,

$$f^{-1}([0,\infty)) = \{0\} \cup \left[\frac{3}{2},\infty\right).$$