

Conceptos básicos de mecánica de fluidos

Miguel Carrasco Chanta

Mecánica y transporte de fluidos (C0683-2023II)

Contenido

- Introducción
- Dimensiones y unidades
- Propiedades de un fluido
 - Densidad, volumen específico, peso específico, densidad relativa

SPIRITUS UND TO STREET

Ejemplos

Saberes previos

- ¿Qué es un fluido?
- ¿Qué conceptos básicos de mecánica de fluidos conocen?
- ¿Qué es y para que nos sirve el análisis dimensional?
- ¿Cuál es la diferencia entre un medio discreto y uno continuo?

Logro de la sesión

Al finalizar la sesión el estudiante entiende qué es un fluido, e identifica sus propiedades básicas, así como también entiende qué es el análisis dimensional y su importancia.

Introducción

¿Qué es un fluido?

Se define como una sustancia que se deforma continuamente cuando está sometido a un *esfuerzo cortante*.

Cuando la materia se encuentra en **estado líquido o gaseoso** se puede considerar **un fluido.**

El estado gaseoso, a diferencia del estado líquido, **no puede** formar una superficie libre ya que se expande hasta llenar **todo el espacio disponible**.

Introducción

El comportamiento de las moléculas es diferente para cada estado.

Solido: las moléculas presentan un patrón fijo.

Líquido: Las moléculas se mueven respecto a las otras

Gaseoso: Las moléculas se mueven en cualquier dirección

Concepto del medio continuo

Comúnmente se considera un fluido como un medio continuo, es decir que sus propiedades (densidad, temperatura, esfuerzo, etc) **se mantienen** a lo largo del espacio que ocupa.

Por ejemplo, la densidad para un espacio estudiado se toma como:

$$\rho = \frac{m}{V}$$

¿Qué sucede si tomamos una parte muy pequeña?

$$\rho = \frac{\delta m}{\delta V}$$

La densidad sería diferente en cada espacio pequeo, esto se le conoce como incertidumbre microscópica, que es causada por la naturaleza discontinua y fluctuante de la materia

Concepto del medio continuo

Asimismo, si se toma un volumen muy grande, pueden existir variaciones, lo cual se conoce como incertidumbre macroscópica, y ocurre debido a la variación espacial de las variables del fluido.

SPIRITUS UNITED TO STANFALL

Concepto del medio continuo

En la práctica se utiliza un rango válido δV^* en lo que se tiene una función continua. En ese sentido, un fluido se considera un medio continuo si es que se trabaja en un determinado rango.

$$\rho = \lim_{\eth V \to \eth V^*} \frac{\delta m}{\delta V}$$

Dimensiones fundamentales

Son las dimensiones básicas, y se utilizan para describir las dimensiones secundarias.

Cantidad	Dimensiones	Unidades del SI		Unidades inglesas	
Longitud l	L	metro	m	pie	ft
Masa m	M	kilogramo	kg	slug	slug
Tiempo t	T	segundo	S	segundo	S
Corriente eléctrica i		ampere	A	ampere	A
Temperatura T	Θ	kelvin	K	Rankine	$^{\circ}\mathbf{R}$
Cantidad de sustancia	M	kg-mol	kmol	lb-mol	lbmol
Intensidad luminosa		candela	cd	candela	cd
Ángulo plano		radián	rad	radián	rad
Ángulo sólido		estereorradián	sr	estereorradián	sr

Por ejemplo, para expresar la segunda ley de Newton, que indica que la fuerza (F) es igual al producto de la masa (m) por la aceleración (a)

$$F = ma$$

m: masa dimensión fundamental (M)

a: aceleración dimensión compuesta, longitud sobre tiempo al cuadrado (LT^{-2})

Para describir dimensionalmente la dimensión fuerza:

$$[F] = [m][a]$$
$$F = MLT^{-2}$$

Dimensiones secundarias o derivadas

Se generan a través del producto de dimensiones fundamentales, sus unidades son compuestas, pero no todas se expresan como el producto de estas.

- Aceleración se expresa en metros sobre segundo al cuadrado (m/s^2)
- Fuerza se expresa en la unidad Newton (N) y no en su forma compuesta. $(kg \ m/s^2)$
- Esfuerzo se puede expresar en Pascales (Pa), pero en algunos casos se suele expresar en Newton sobre metro cuadrado (N/m^2) . Sin embargo, no se suele usar en la forma compuesta $(kg/(m s^2))$

Algunas dimensiones secundarias y sus unidades

Cantidad	Dimensiones	Unidades del SI	Unidades inglesas
Área A	L^2	m^2	ft ²
Volumen ¥	L^3	m^3	ft ³
		L (litro)	
Velocidad V	L/T	m/s	ft/s
Aceleración a	L/T^2	m/s^2	ft/s ²
Velocidad angular ω	T^{-1}	rad/s	rad/s
Fuerza F	ML/T^2	kg·m/s ²	slug-ft/s ²
		N (newton)	lb (libra)
Densidad ρ	M/L^3	kg/m ³	slug/ft ³
Peso específico γ	M/L^2T^2	N/m^3	lb/ft ³
Frecuencia f	T^{-1}	s^{-1}	s^{-1}
Presión p	M/LT^2	N/m^2	lb/ft ²
r		Pa (pascal)	(psf)
Esfuerzo cortante $ au$	M/LT^2	N/m^2	lb/ft ²
		Pa (pascal)	(psf)
Tensión superficial σ	M/T^2	N/m	lb/ft
Trabajo W	ML^2/T^2	N∙m	ft-lb
· ·		J (joule)	
Energía E	ML^2/T^2	N·m	ft-lb
8		J (joule)	
Rendimiento térmico Q	ML^2/T^3	J/s	Btu/s
Par de torsión T	ML^2/T^2	N·m	ft-lb
Potencia P	ML^2/T^3	J/s	ft-lb/s
\dot{W}		W (watt)	
Viscosidad μ	M/LT	$N \cdot s/m^2$	lb-s/ft ²
Flujo másico m	M/T	kg/s	slug/s
Gasto Q	L^3/T	m^3/s	ft ³ /s
Calor específico c	$L^2/T^2\Theta$	J/kg·K	Btu/slug-°R
Conductividad K	$ML/T^3\Theta$	W/m·K	lb/s-°R

El flujo de salida de un tanque (Q), se puede expresar a través de la siguiente ecuación, la cual relaciona el área del orificio (A), aceleración de la gravedad (g) y altura (h):

$$Q = kA\sqrt{2gh}$$

¿Cuales son las unidades de la variable k?

Solución:

g: Gravedad (LT^{-2})

h: altura (L)

A: Área (L^2)

Q: Flujo (L^3T^{-1})

$$[Q] = [k][A]\sqrt{[g][h]}$$

La variable k es un parámetro adimensional

Densidad (ρ)

Es la masa (m) por unidad de volumen (V).

$$\rho = \frac{m}{V}$$

Volumen específico (v)

Es el volumen (V) ocupado por unidad de masa (m).

$$v = \frac{V}{m} = \frac{1}{\rho}$$

Algunas densidades de referencia

Sustancia	Densidad en kg/m³
Agua	1000
Agua con Sal	1047
Gasolina	680
Hielo	920
Alcohol	780
Mercurio	13600
Sangre	1480-1600
Aire	1,3
Butano	2,6
Dióxido de carbono	1,8
Aceite	920

Presión

La presión (P) se define como la división entre la fuerza ejercida en forma perpendicular a una superficie (F perpendicular) y el área (A) de la propia superficie.

$$P = \frac{F}{A}$$

 ΔF_n Superficie

Se expresa en unidades de fuerza sobre área

Nombre	Abreviatura	Equivalencia
Pascal (SI)	Pa	$1 \text{ Pa} = 1 \text{ N/m}^{\$}$
Bar	bar	1 atm = 101 300 Pa
Atmósfera	atm	$1 \text{bar} = 10^5 \text{Pa}$
Milímetro de mercurio	mmHg	1 mmHg = 133.322 Pa
Metro de agua	mH ₂ O	$1 \text{mH}_{\$}0 = 9810 \text{Pa}$

Presión

Presión absoluta (P_{abs}): Es el valor de la presión referido al vacío total.

Presión manométrica o relativa (P_{man}) : Es la presión medida en referencia a la atmosférica (P_{atm}) .

$$P_{man} = P_{abs} - P_{atm}$$

En mecánica de fluidos y en sistemas biológicos es común utilizar la presión manométrica.

La presión atmosférica a nivel del mar es de $P_{atm} = 101.3 \ kPa$

Temperatura

Para la temperatura, se utilizan las escalas en Celsius (°C) y Fahrenheit (F), las cuales están basadas en el punto de ebullición y congelación del agua a una presión atmosférica.

La escala absoluta correspondiente a Celsius es el Kelvin (K)

$$K = {}^{\circ}C + 273.15$$

La escala absoluta correspondiente a Fahrenheit es el Rankine (°R).

$$^{\circ}R = ^{\circ}F + 469.67$$

Para el curso, se hará uso de Kelvin.

La relación entre Fahrenheit y Celsius, se da a través de la relación:

$$^{\circ}C = \frac{5(^{\circ}F - 32)}{9}$$

Altitud	Temperatura	Presión	Densidad	Velocidad del sonido
(m)	(K)	(kPa)	(kg/m^3)	(m/s)
0	288.2	101.3	1.225	340
500	284.9	95.43	1.167	338
1 000	281.7	89.85	1.112	336
2 000	275.2	79.48	1.007	333
4 000	262.2	61.64	0.8194	325
6 000	249.2	47.21	0.6602	316
8 000	236.2	35.65	0.5258	308
10 000	223.3	26.49	0.4136	300
12 000	216.7	19.40	0.3119	295
14 000	216.7	14.17	0.2278	295
16 000	216.7	10.35	0.1665	295
18 000	216.7	7.563	0.1216	295
20 000	216.7	5.528	0.0889	295
30 000	226.5	1.196	0.0184	302
40 000	250.4	0.287	4.00×10^{-3}	317
50 000	270.7	0.0798	1.03×10^{-3}	330
60 000	255.8	0.0225	3.06×10^{-4}	321
70 000	219.7	0.00551	8.75×10^{-5}	297
80 000	180.7	0.00103	2.00×10^{-5}	269

Ejercicio

Un manómetro conectado a un tanque mide un vació de 42 kPa. Si dicho tanque se encuentra en un lugar cuya elevación es de 2000 m sobre el nivel del mar. Determine la presión absoluta dentro del tanque

Solución

Elevación para 2000 m. $p_{atm} = 79.5 \text{ kPa}$

$$p = -42 + 79.5 = 37.5 \, kPa$$

Un vacío se refiere a presión debajo a la atmosférica

SPIRAT SPIRAT

Referencias

- M. Potter, D. Wiggert y B. Ramadán, Mecánica de Fluidos (4a. ed.), México, D.F: Grupo Cengage Learning, 2015. [En Línea] Disponible en: https://bibvirtual.upch.edu.pe:2955/?il=820
- A. Zacarias Granado, J. González López, A. Granados Manzo y A. Mota Lugo, *Mecánica de fluidos: teoría con aplicaciones y modelado*. México, D.F: Grupo Editorial Patria, 2017. [En Línea] Disponible en: https://elibro.net/es/ereader/cayetano/40497