GSS Presentation: About Tidyverse

Kim Phan January 29, 2021

Outline

- About Tidyverse
 - dplyr & ggplot2
- Exploratory Data Analysis
- More Detailed Examples

About Tidyverse

Hadley Wickham is known for his development of his "tidyverse" packages, which support a tidy data approach to import data, analysis, and modeling

About Tidyverse

- The core tidyverse includes the packages that we're likely to use in everyday data analyses
 - ggplot2 creates graphics
 - dplyr data manipulation
 - tidyr forms data into a consistent form
 - readr reads csv, tsv, fwf
 - purr works with functions and vectors
 - tibble data frame manipulation
 - stringr functions designed for string manipulation
 - forcats alleviates common problems with factors

About Tidyverse

- The core tidyverse includes the packages that we're likely to use in everyday data analyses
 - ggplot2 creates graphics
 - dplyr data manipulation

Exploratory Data Analysis

About dplyr

dplyr is used for data manipulation

dplyr is used for data manipulation

What is a "pipe"?

```
1. Take the ydat dataset, then
                2. filter() for genes in the leucine biosynthesis pathway, then
Cognitive
               3. group_by() the limiting nutrient, then
                4. summarize() to correlate rate and expression, then
process:
                5. mutate() to round r to two digits, then
                6. arrange() by rounded correlation coefficients
                arrange(
                  mutate(
                    summarize(
 The old
                      group by (
                        filter(ydat, bp=="leucine biosynthesis"),
   way:
                      nutrient),
                    r=cor(rate, expression)),
                  r=round(r, 2)),
                r)
                ydat %>%
                  filter(bp=="leucine biosynthesis") %>%
The dplyr
                  group by(nutrient) %>%
                  summarize(r=cor(rate, expression)) %>%
   way:
                  mutate(r=round(r,2)) %>%
                  arrange(r)
```

dplyr is used for data manipulation

- mutate() adds new variables
- select() picks variables based on their names
- filter() picks cases based on their values
- summarise() reduces multiple values down to a single summary
- arrange() changes the ordering of the rows

Data: Star Wars - A tibble with 87 rows and 13 variables:

- · name: Name of character
- height: Height (cm)
- · mass: Weight (kg)
- hair_color, skin_color, eye_color
- birth_year
- · sex, gender
- etc

Star Wars Data

	name	height	mass	hair_color	skin_color	eye_color	birth_year	sex
1	Luke Skywalker	172	77	blond	fair	blue	19.0	male
2	C-3PO	167	75	NA	gold	yellow	112.0	none
3	R2-D2	96	32	NA	white, blue	red	33.0	none
4	Darth Vader	202	136	none	white	yellow	41.9	male
5	Leia Organa	150	49	brown	light	brown	19.0	female

Making a summary table of Homeworld

```
x1 <- starwars %>%
  select(homeworld) %>%
  group_by(homeworld) %>%
  na.omit() %>%
  tally %>%
  arrange(desc(n))

dim(x1)

## [1] 48 2
```

Making a summary table of the Top 5 common Homeworld

Selecting by n

	homeworld	n
1	Naboo	11
2	Tatooine	10
3	Alderaan	3
4	Coruscant	3
5	Kamino	3

Basic Plot of the Top 5 Homeworld of Characters in Star Wars

```
x1 %>%
  ggplot(mapping = aes(x = homeworld, y = n)) +
  geom_bar(stat = "identity")
```


Plotting the Top 5 Homeworld and adding aesthetics

Plotting the Top 5 Homeworld and adding aesthetics

Which 5 characters appeared in the most amount of movies?

```
starwars %>%
  select(films)
## # A tibble: 87 x 1
     films
##
   t>
   1 <chr [5]>
## 2 <chr [6]>
   3 <chr [7]>
## 4 <chr [4]>
   5 <chr [5]>
## 6 <chr [3]>
   7 <chr [3]>
   8 <chr [1]>
   9 <chr [1]>
## 10 <chr [6]>
## # ... with 77 more rows
```

Which 5 characters appeared in the most amount of movies?

```
starwars %>%
 unnest(films) %>%
  select(films) %>%
 unique()
## # A tibble: 7 x 1
    films
##
     <chr>>
##
## 1 The Empire Strikes Back
## 2 Revenge of the Sith
## 3 Return of the Jedi
## 4 A New Hope
## 5 The Force Awakens
## 6 Attack of the Clones
## 7 The Phantom Menace
```

Which 5 characters appeared in the most amount of movies?

```
starwars %>%
 unnest(films) %>%
 group_by(name) %>%
 tally %>%
 arrange(desc(n)) %>%
 slice(1:5)
## # A tibble: 5 x 2
##
    name
                       n
    <chr>
                  <int>
## 1 R2-D2
## 2 C-3PO
## 3 Obi-Wan Kenobi
## 4 Chewbacca
## 5 Leia Organa
```

```
starwars %>%
  select(name:mass, gender, species) %>%
 mutate(
   type = case when( height > 200 | mass > 200 ~ "large",
                     species == "Droid"
                                             ~ "robot",
                     TRUE
                                              ~ "other" )) %>%
  select(name, height, mass, species, type) %>%
  slice(1:5)
## # A tibble: 5 x 5
                   height mass species type
##
    name
    <chr>
                  <int> <dbl> <chr> <chr>
##
## 1 Luke Skywalker
                            77 Human
                                       other
                      172
## 2 C-3PO
                      167 75 Droid robot
## 3 R2-D2
                      96 32 Droid robot
## 4 Darth Vader
                      202
                          136 Human
                                      large
## 5 Leia Organa
                      150
                          49 Human
                                       other
```

Let's look into a different data set

data("mtcars")

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21	6	160	110	3.9	2.62	16.46	0	1	4	4
Mazda RX4 Wag	21	6	160	110	3.9	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.44	17.02	0	0	3	2

```
# Add the regression line
ggplot(mtcars, aes(x=wt, y=mpg,
                     color=as.factor(cyl), shape=as.factor(cyl))) +
  geom_point() +
  geom_smooth(method=lm)
## geom_smooth() using formula 'y ~ x'
  35 -
  30 -
                               as.factor(cyl)
  25
  20 -
  15 -
  10 -
        2
                         5
              3
                wt
```

```
# Loess method
ggplot(mtcars, aes(x=wt, y=mpg,
                    color = as.factor(cyl), shape = as.factor(cyl))) +
  geom_point() +
  geom_smooth(method=loess, alpha=0.25, aes(fill=as.factor(cyl)))
## `geom_smooth()` using formula 'y ~ x'
  40 -
  30
                               as.factor(cyl)
В
С 20 -
  10 -
   0 -
        2
                         5
              3
                wt
```

```
ggplot(mtcars, aes(x=wt, y=mpg, color = as.factor(cyl))) +
  geom_point(alpha = 0.5) +
  geom_smooth(method=lm, se=F) +
  geom_smooth(method=loess, se=F, linetype = "dashed")
```



```
ggplot(mtcars, aes(x=wt, y=mpg, color = as.factor(cyl))) +
  geom_point(alpha = 0.5) +
  geom_smooth(method=lm, se=F) +
  facet_grid(cyl~.)
```


More Special Examples

More examples of ggplot2

Countour Density Plot

```
ggplot(faithful, aes(x=eruptions, y=waiting)) +
 geom point() +
 geom density 2d() +
 labs(x="Eruption Time (min)", y="Waiting Time to Next Eruption (min)",
      title = "Old Faithful Eruption and Waiting Times")
```

Old Faithful Eruption and Waiting Times

ggfortify lets ggplot2 know how to interpret PCA objects. After loading ggfortify, we can use ggplot2::autoplot function for stats::prcomp and stats::princomp objects

Plotting PCA results with iris data

library(ggfortify)

Plotting PCA results with iris data

```
df <- iris[,1:4]
autoplot(prcomp(df))</pre>
```


Plotting PCA results with iris data

```
autoplot(prcomp(df), data = iris, colour = 'Species', loadings = T) +
  theme_bw()
```


Can also visualize survival curves for the differences in survival times of patients with advanced lung cancer between males and females

data("lung")

	inst	time	status	age	sex
1	3	306	2	74	1
2	3	455	2	68	1
3	3	1010	1	56	1
4	5	210	2	57	1
5	1	883	2	60	1

```
lung %>%
  mutate(sex = ifelse(sex == 1, "Male", "Female")) %>%
  survfit(Surv(time, status) ~ sex, data = .) %>%
  ggsurvplot(data = lung)
```


