Annotated slides

$\S 1.2$: The secant method

Solving nonlinear equations

MA385/MA530 – Numerical Analysis

September 2019

Idea:

- Choose two points, x_0 and x_1 .
- Take x_2 to be the zero of the line joining $(x_0, f(x_0))$ to $(x_1, f(x_1))$
- Take x_3 to be the zero of the line joining $(x_1, f(x_1))$ to $(x_2, f(x_2))$
- Etc.

The Secant Method

Choose x_0 and x_1 so that there is a solution in $[x_0,x_1]$. Then define

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}.$$
 (1)

Example 1.4

Use the Secant Method to solve $x^2 - 2 = 0$ in [0,2]. Results are shown below. We see that, not only does the method appear to converge to the true solution, it seem to do so *much* more efficiently than Bisection. We'll return to why this is later.

	Secant		Bisection	
k	X _k	$ x_k - \tau $	x_k	$ x_k - \tau $
0	0.000000	1.41	0.000000	1.41
1	2.000000	5.86e-01	2.000000	5.86e-01
2	1.000000	4.14e-01	1.000000	4.14e-01
3	1.333333	8.09e-02	1.500000	8.58e-02
4	1.428571	1.44e-02	1.250000	1.64e-01
5	1.413793	4.20e-04	1.375000	3.92e-02
6	1.414211	2.12e-06	1.437500	2.33e-02
7	1.414214	3.16e-10	1.406250	7.96e-03
8	1.414214	4.44e-16	1.421875	7.66e-03

Definition 1.5 (Linear Convergence)

Suppose that $\tau = \lim_{k \to \infty} x_k$. Then we say that the sequence $\{x_k\}_{k=0}^{\infty}$ converges to τ at least linearly if there is a sequence of positive numbers $\{\varepsilon_k\}_{k=0}^{\infty}$, and $\mu \in (0,1)$ such that

$$\lim_{k \to \infty} \varepsilon_k = 0, \tag{2a}$$

senerio".

$$|\tau - x_k| \le \varepsilon_k$$
 for $k = 0, 1, 2, \dots$ (2b)

and

and

For Example 1.4, the bisection method converges at least linearly.

As we have seen, there are methods that converge more quickly than bisection. Now we'll give a more precise description of what "more quickly" means.

Definition 1.6 (Order of Convergence)

Let $\tau = \lim_{k \to \infty} x_k$. Suppose there exists $\mu > 0$ and a sequence of positive numbers $\{\varepsilon_k\}_{k=0}^{\infty}$ such that (2a) and and (2b) both hold. Then we say that the sequence $\{x_k\}_{k=0}^{\infty}$ converges with at least order q if

$$\lim_{k\to\infty}\frac{\varepsilon_{k+1}}{(\varepsilon_k)^q}=\mu.$$

Two particular values of q are important to us:

- (i) If q = 1, and we have that $0 < \mu < 1$, then the rate is **linear**.
- (ii) If q = 2, the rate is **quadratic** for any $\mu > 0$.

Theorem 1.7

Suppose that f and f' are real-valued functions, continuous and defined in an interval $I=[\tau-h,\tau+h]$ for some h>0. If $f(\tau)=0$ and $f'(\tau)\neq 0$, then the sequence (1) converges at least linearly to τ .

i.e., the sequence generated by the Secart Method
we prove it converses at least linerly, because that's "Easy"!

- We wish to show that $|\tau x_{k+1}| < |\tau x_k|$.
- From the (MVT), there is a point $w_k \in [x_{k-1}, x_k]$ s.t.

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} = f'(w_k). \tag{3}$$

■ Also by the MVT, there is a point $z_k \in [x_k, \tau]$ such that

$$\frac{f(x_k) - f(\tau)}{x_k - \tau} = \frac{f(x_k)}{x_k - \tau} = f'(z_k). \tag{4}$$

Therefore $f(x_k) = (x_k - \tau)f'(z_k)$.

■ Using (3) and (4), we can show that

$$\tau - x_{k+1} = (\tau - x_k) \Big(1 - f'(z_k) / f'(w_k) \Big).$$

Therefore

$$\frac{|\tau - \mathsf{x}_{k+1}|}{|\tau - \mathsf{x}_k|} \le |1 - \frac{f'(\mathsf{z}_k)}{f'(\mathsf{w}_k)}|.$$

■ Suppose that $f'(\tau) > 0$. (If $f'(\tau) < 0$ just tweak the arguments accordingly). Saying that f' is continuous in the region $[\tau - h, \tau + h]$ means that, for any $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|f'(x) - f'(\tau)| < \varepsilon$$
 for any $x \in [\tau - \delta, \tau + \delta]$.

Take $\varepsilon = f'(\tau)/4$. Then $|f'(x) - f'(\tau)| < f'(\tau)/4$. Thus

$$\frac{3}{4}f'(\tau) \le f'(x) \le \frac{5}{4}f'(\tau) \quad \text{for any } x \in [\tau - \delta, \tau + \delta].$$

Analysis of the Secant Method

(25/29)

Then, so long as w_k and z_k are both in $[\tau - \delta, \tau + \delta]$

$$\frac{f'(z_k)}{f'(w_k)} \leq \frac{5}{3}.$$

So
$$\frac{|\tau - x_{\kappa+1}|}{|\tau - x_{\kappa}|} \le |1 - \frac{5}{3}|$$

$$= \frac{2}{3} \le 1$$
So we have $\mu = \frac{2}{3}$ & the method converger at least linearly.

Given enough time and effort we *could* show that the Secant Method converges faster that linearly. In particular, that the order of convergence is

$$q = (1 + \sqrt{5})/2 \approx 1.618.$$

This number arises as the only positive root of $q^2 - q - 1$. It is called the **Golden Mean**, and arises in many areas of Mathematics, including finding an explicit expression for the Fibonacci Sequence:

$$f_0 = 1,$$

 $f_1 = 1,$
 $f_{k+1} = f_k + f_{k-1}$ for $k = 2, 3, \dots$

That gives, $f_0 = 1$, $f_1 = 1$, $f_2 = 2$, $f_3 = 3$, $f_4 = 5$, $f_5 = 8$, $f_6 = 13$,

The connection here is that it turns out that $\varepsilon_{k+1} \leq C\varepsilon_k\varepsilon_{k-1}$. Repeatedly using this we get:

- Let $r = |x_1 x_0|$ so that $\varepsilon_0 \le r$ and $\varepsilon_1 \le r$,
- Then $\varepsilon_2 < C\varepsilon_1\varepsilon_0 < Cr^2$
- Then $\varepsilon_3 \leq C\varepsilon_2\varepsilon_1 \leq C(Cr^2)r = C^2r^3$.
- Then $\varepsilon_4 < C\varepsilon_3\varepsilon_2 < C(C^2r^3)(Cr^2) = C^4r^5$.
- Then $\varepsilon_5 < C\varepsilon_4\varepsilon_3 < C(C^4r^5)(C^2r^3) = C^7r^8$.
- And in general, $\varepsilon_k = C^{f_k-1}r^{t_k}$

kth term in the Fibonacci sequend.

Exercises (28/29)

Exercise 1.6

Suppose we define the Secant Method as follows.

Choose any two points x_0 and x_1 .

For k = 1, 2, ..., set x_{k+1} to be the point where the line through $(x_{k-1}, f(x_{k-1}))$ and $(x_k, f(x_k))$ that intersects the x-axis.

Show how to derive the formula for the secant method.

Exercises (29/29)

Exercise 1.7

(i) Is it possible to construct a problem for which the bisection method will work, but the secant method will fail? If so, give an example.

(ii) Is it possible to construct a problem for which the secant method will work, but bisection will fail? If so, give an example.