ДИСКРЕТНИ СТРУКТУРИ 2 ТЕОРИЯ 1

- **1.** Регулярен израз α . Регулярен израз над азбуката \sum е стринг над азбуката $\sum \cup \{ \emptyset, \cdot \, , \cup \, , ^* \, \}$, който може да се дефинира индуктивно както следва:
- \varnothing и всеки елемент от \sum е регулярен израз;
- Ако α и β са регулярни изрази, то и α . β , $\alpha \cup \beta$ и α^* са реулярни изрази;
- Нищо друго не е регулярен израз, освен ако не следва от първите две условия.
- **2.** Регулярен език $L(\alpha)$ за регулярен израз α . L е функцията, която описва връзката между регулярен израз и езика, който той задава. L е дефинирана индуктивно както следва:
- $L(\varnothing)=\varnothing,\,L(a)=\{a\}$, за всяко $a\in\sum$ (дори и за $a=\epsilon$);
- Ако α и β са регулярни изрази, то

$$L(\alpha \cdot \beta) = L(\alpha) \cdot L(\beta), L(\alpha \cup \beta) = L(\alpha) \cup L(\beta), L(\alpha^*) = (L(\alpha))^*.$$

3. Рефлексивно и транзитивно затваряне на бинарна релация. Нека релацията $R \subseteq A^2$ задава ориентиран граф над множеството от върхове A. Рефлексивно и транзитивно затваряне на R е релацията:

 $R^* = \{(a,b) : a,b \in A \text{ и съществува път от } a \text{ до } b \text{ в } R\}.$ Индуктивна дефиниция на R^* :

- за $\forall a \in A, (a, a) \in R^*$;
- ако $(a, b) \in R$, то $(a, b) \in R^*$;
- ако $(a,b)\in R^*$ и $(b,c)\in R^*$, то $(a,c)\in R^*$.
- **4.** Затваряне на множество $B\subseteq A$ относно релация $B\subseteq A^2$. Нека A е непразно множество и нека $R\subseteq A^2$ е бинарна релация в A. Тогава подмножеството B на A ($B\subseteq A$) е затворено относно R, ако $b_2\in B$, всеки път когато $b_1\in B$ и $(b_1,b_2)\in R$.
- **5.** Краен детерминиран автомат. Краен детерминиран автомат е наредената петорка $M = (K, \sum, \delta, s, F)$, където K е крайно множество от състояния, \sum е крайна азбука, $\delta:K \times \sum \to K$ е функция на преходите, $s \in K$ е началното състояние, $F \subseteq K$ е множеството от заключителни състояния.
- **6.** Краен недетерминиран автомат. Краен недетерминиран автомат е наредената петорка $M = (K, \sum, \Delta, s, F)$, където K е крайно множество от състояния, \sum е крайна азбука, $\Delta \subseteq K \times (\sum \cup \{\epsilon\}) \times K$ е релация на преходите, $s \in K$ е началното състояние, $F \subseteq K$ е множеството от заключителни състояния.

- **7.** \vdash_M за краен детерминиран автомат. За краен детерминиран автомат $M = (K, \sum, \delta, s, F)$, релацията \vdash_M дефинираме по следния начин: $(q, w) \vdash_M (q', w') \Leftrightarrow w = aw'$ и $\delta(q, a) = q', a \in \sum$; $q, q' \in K$; w, w' думи от $\sum *$.
- **8.** \vdash_M за краен недетерминиран автомат M. За краен недетерминиран автомат $M=(K,\sum_{}^{},\Delta,s,F)$, релацията \vdash_M дефинираме по следния начин: $(q,w)\vdash_M(q',w')\Leftrightarrow \exists\,u\in\sum_{}^{}\cup\{\varepsilon\}$ такова, че w=uw' и $(q,u,q')\in\Delta$. $q,q'\in K;\ w,w'$ думи от $\sum_{}^{}*$.
- **9.** L(M) за краен детерминиран (недетерминиран) автомат M. За крайния детерминиран (недетерминиран) автомат $M=(K,\sum_{},\Delta,s,F)$, езика L(M) дефинираме по следния начин: $L(M)=\{w\,|\,w\in\sum_{}^*u\,(s,w)\vdash_M^*(q,\varepsilon),q\in F\}$, където \vdash_M^* е рефлексивно и транзитивно затваряне на релацията \vdash_M^* .
- **10.** Кога една дума се разпознава (приема) от даден краен детерминиран автомат M. Казваме, че $w \in \sum_{}^{*}$ се разпознава (приема) от автомата $M = (K, \sum_{}^{}, \delta, s, F) \Leftrightarrow (s, w) \vdash_{M}^{*} (f, \epsilon)$, където $w \in \sum_{}^{*}$ $*, f \in F$.
- **11.** Релация на еквивалентност \approx_L за даден език L. Нека $L\subseteq \sum *$ е език и $x,y\in \sum *$. Казваме, че x и y са еквивалентни спрямо L и бележим $x\approx_L y$, ако за всяка дума $z\in \sum *$ е изпълнено $xz\in L \Leftrightarrow yz\in L$. Лесно се проверява, че \approx_L е релация на еквивалентност.
- **12.** E(q) за краен недетерминиран автомат. За всяко състояние $q \in K$ нека E(q) е множеството от всички състояния на M, които могат да се достигнат от q без да се четат каквито и да е букви: $E(q) = \{p \in K : (q, \epsilon) \vdash_M^* (p, \epsilon)\}.$
- **13.** Фоормулирайте лемата за разрастването за регулярни езици. *За всеки* регулярен език L, съществува естествено число $n \geq 1$ зависещо само от L такова, че *за всяка* дума $w \in L$ с дължина не по-малка от $n: |w| \geq n$, съществуват думи x,y,z за които $x \cdot y \cdot z = w, y \neq \varepsilon$ и $|x \cdot y| \leq n$ такива, че *за всяко* $i \in \mathbb{N}: x \cdot y^i \cdot z \in L$.
- **14.** Формулирайте теоремата и следствието на Майхил-Нероуд за регулярни езици. Нека $L\subset \sum *$ е регулярен език. Тогава съществува краен детерминиран автомат M, който разпознава L с точно толкова състояния, колкото са класовете на еквивалентност относно релацията \approx_L . Следствие: езикът L е регулярен \Leftrightarrow (т.с.т.к.) индексът на релацията \approx_L е краен.

- 15. Каква е сложността на изучените алгоритми за:
- Построяване на съответен регулярен израз по краен автомат *експоненциална* $\sigma(3^{|k|})$;
- Детерминизация на недетерминиран автомат *експоненциална* $\sigma(2^{|k|}\,|\,k\,|^2\,|\,\sum\,|\,|\,\Delta\,|\,|\,k\,|^3);$
- Проверка дали два крайни недетерминирани автомата са еквивалентни или не експоненциална;
- Проверка дали $L(\alpha_1) = L(\alpha_2)$ по дадени два регулярни израза α_1 и α_2 експоненциална;
- Минимизация на краен детерминиран автомат *полиномиална* $\sigma(|k|^3|\sum|);$
- Съответен краен недетерминиран автомат по регулярен израз *полиномиална* $\sigma(2\,|\,\alpha\,|\,+\,1);$
- Проверка дали два кайни детерминирани автомата са еквивалентни или не *полиномиална*.

Регулярни операции (\cup , \cdot , *) над езици, разпознавани от *НДКА*

Нека A_1, A_2 са *НДКА* (недетерминирани крайни автомати):

- **1.** Автомат A_{\cup} с език равен на $L(A_1) \cup L(A_2)$.
- 1) състояния: състоянията на A_1 и A_2 и ново състояние q;
- 2) начално състояние: q;
- 3) финални състояния: финалните състояния на A_1 и A_2 се запазват. q е финално тогава и само тогава, когато поне едно от началните състояния на A_1 и A_2 е било финално:
- 4) преходи: преходите в A_1 и A_2 остават. q повтаря преходите на началните състояния на A_1 и A_2 .
- **2.** Автомат $A \cdot \ \mathbf{c}$ език равен на $L(A_1) \cdot L(A_2)$.
- 1) състояния: състоянията на A_1 и A_2 ;
- 2) начално състояние: начално състояние на левия автомат A_1 ;
- 3) финални състояния: финалните състояния на десния автомат A_2 . Добавяме финалните състояния на A_1 тогава и само тогава, когато началното състояние на десния автомат A_2 е било финално;
- 4) преходи: преходите в A_1 и A_2 остават. Всяко финлно състояние на левия автомат A_1 повтаря преходите на началното състояние на десния автомат A_2 .
- **3.** Автомат A * с език равен на $(L(A_1))$ *.
- 1) състояния: състоянията на A_1 и ново състояние q;
- 2) начално състояние: q;
- 3) финални състояния: финалните състояния на A_1 и q;
- 4) преходи: преходите в A_1 . Всички финлни състояния на A^* повтарят преходите на началното състояние на A_1 .