Информатика. Графы: матрица смежности и список рёбер.

ДЗ

Задача 1

По заданной квадратной матрице n×n из нулей и единиц определите, может ли данная матрица быть матрицей смежности простого неориентированного графа.

Формат входных данных

На вход программы поступает число n $(1 \le n \le 100)$ – размер матрицы, а затем n строк по n чисел, каждое из которых равно 0 или 1, – сама матрица.

Формат выходных данных

Выведите «YES», если приведенная матрица может быть матрицей смежности простого неориентированного графа, и «NO» в противном случае.

Входные данные	Выходные данные
3	Q.
011	
101	YES
110	~10
Входные данные	Выходные данные
3	\$JJ.
0 1 0	
101	NO
110	×0.0
Входные данные	Выходные данные
3	7/ ₂ ,
0 1 0	\$ [*]
111	NO
0 1 0	0,017,

По заданной матрице смежности неориентированного графа определите, содержит ли он петли.

Формат входных данных

На вход программы поступает число n ($1 \le n \le 100$) — количество вершин графа, а затем n строк по n чисел, каждое из которых равно 0 или 1, — его матрица смежности.

Формат выходных данных

Выведите «YES», если граф содержит петли, и «NO» в противном случае.

Выходные данные
SILL
NO
30.0
Выходные данные
77.6°,
87
YES
Olli

Простой неориентированный граф задан матрицей смежности. Найдите количество ребер в графе.

Формат входных данных

На вход программы поступает число n ($1 \le n \le 100$) – количество вершин в графе, а затем n строк по n чисел, каждое из которых равно 0 или 1, – его матрица смежности.

Формат выходных данных

Выведите одно число – количество ребер заданного графа.

Входные данные	Выходные данные
3	SJI.
0 1 1	3
101	
110	×10.

Ориентированный граф задан матрицей смежности. Найдите количество ребер в графе.

Формат входных данных

На вход программы поступает число n ($1 \le n \le 100$) – количество вершин в графе, а затем n строк по n чисел, каждое из которых равно 0 или 1, – его матрица смежности.

Формат выходных данных

Выведите одно число – количество ребер заданного графа.

Входные данные	Выходные данные
3	377
011	6
101	
0 1 1	²¹ 0.0,

Простой неориентированный граф задан матрицей смежности, выведите его представление в виде списка ребер.

Формат входных данных

Входные данные включают число n ($1 \le n \le 100$) — количество вершин в графе, а затем n строк по n чисел, каждое из которых равно 0 или 1, — его матрицу смежности.

Формат выходных данных

Выведите список ребер заданного графа (в любом порядке).

Выходные данные
SJI.
1 2
2 3
13

Простой неориентированный граф задан списком ребер, выведите его представление в виде матрицы смежности.

Формат входных данных

На вход программы поступают числа n ($1 \le n \le 100$) — количество вершин в графе и m $\left(1 \le m \le \frac{n(n-1)}{2}\right)$ — количество ребер. Затем следует m пар чисел — ребра графа.

Формат выходных данных

Выведите матрицу смежности заданного графа.

		7 1	
Входн	ые данные	Выходнь	е данные
3 3		SIL	
1 2	0	0 1 1	
2 3	lin	101	
1 3	0,0,7,	110	

Ориентированный граф задан матрицей смежности, выведите его представление в виде списка ребер.

Формат входных данных

На вход программы поступает число n ($1 \le n \le 100$) — количество вершин графа, а затем n строк по n чисел, каждое из которых равно 0 или 1, — его матрица смежности.

Формат выходных данных

Выведите список ребер заданного графа.

Входные данные	Выходные данные
3	1 2
0 1 0	2 3
0 0 1	3 1
110	3 2

Простой ориентированный граф задан списком ребер, выведите его представление в виде матрицы смежности.

Формат входных данных

На вход программы поступают числа n ($1 \le n \le 100$) — количество вершин в графе и m ($1 \le m \le n(n-1)$ — количество ребер. Затем следует m пар чисел — ребра графа.

Формат выходных данных

Выведите матрицу смежности заданного графа.

Входные данные	Выходные данные
3 4	90,
1 2	010
2 3	001
3 1	110
32	1/0

Мальчик Вася очень любит разворачивать ориентированные графы. Помогите ему в этом.

Формат входных данных

Во входном файле записано число N ($1 \le N \le 50000$) - количество вершин в графе. В следующих N строках записан граф в виде списков смежности: в і-ой строке, в порядке возрастания, записаны номера вершин, в которые идут ребра из і-ой вершины. Нумерация начинается с единицы. Гарантируется, что ребер в графе не более 50000.

Формат выходных данных

Выведите развернутый граф в том же формате, что и исходный.

Входные данные	Выходные данные
4	4
2 3	140,
3	1 4
7	12
2	

Неориентированный граф задан списком ребер. Проверьте, содержит ли он параллельные ребра.

Формат входных данных

Сначала вводятся числа n ($1 \le n \le 100$) – количество вершин в графе и m ($1 \le m \le 10$ 000) – количество ребер. Затем следует m пар чисел – ребра графа.

Формат выходных данных

Выведите «YES», если граф содержит параллельные ребра, и «NO» в противном случае.

Входные данные	Выходные данные
3 3	
1 2	
2 3	NO
13	1/20
Входные данные	Выходные данные
Входные данные 3 3	Выходные данные
	Выходные данные
3 3	Выходные данные УЕЅ

Ориентированный граф задан списком ребер. Проверьте, содержит ли он параллельные ребра.

Формат входных данных

Сначала вводятся числа n ($1 \le n \le 100$) – количество вершин в графе и m ($1 \le m \le 10$ 000) – количество ребер. Затем следует m пар чисел – ребра графа.

Формат выходных данных

Выведите «YES», если граф содержит параллельные ребра, и «NO» в противном случае.

Выходные данные
NO
150
1970,
Выходные данные
ODI
YES
10/4
Super

Неориентированный граф задан матрицей смежности. Найдите степени всех вершин графа.

Формат входных данных

Сначала вводится число n ($1 \le n \le 100$) — количество вершин в графе, а затем n строк по n чисел, каждое из которых равно 0 или 1, — его матрица смежности.

Формат выходных данных

Выведите и чисел – степени вершин графа.

Входные данные	Выходные данные
3	121
0 1 0	
101	
010	×10.

Неориентированный граф задан списком ребер. Найдите степени всех вершин графа.

Формат входных данных

Сначала вводятся числа n ($1 \le n \le 100$) – количество вершин в графе и m $\left(1 \le m \le \frac{n(n-1)}{2}\right)$ – количество ребер. Затем следует m пар чисел – ребра графа.

Формат выходных данных

Выведите п чисел – степени вершин графа.

	4 1 2
Входные данные	Выходные данные
4 4	2 2 3 1
1 2	
13	
2 3	₂₁ 0.0
3.4	1/2

Ориентированный граф задан матрицей смежности. Найдите полустепени захода и полустепени исхода всех вершин графа.

Формат входных данных

Сначала вводится число $n (1 \le n \le 100)$ – количество вершин в графе, а затем n строк по n чисел, каждое из которых равно 0 или 1, – его матрица смежности.

Формат выходных данных

Выведите п пар чисел – для каждой вершины сначала выведите полустепень захода и затем полустепень исхода.

Входные данные	Выходные данные
4	
0 1 0 1	2 2
1011	3 3
0 1 0 0	21
1111	3 4

Ориентированный граф задан списком ребер. Найдите степени всех вершин графа.

Формат входных данных

Сначала вводятся числа n ($1 \le n \le 100$) — количество вершин в графе и m ($1 \le m \le n(n - 1)$) — количество ребер. Затем следует m пар чисел — ребра графа.

Формат выходных данных

Выведите п пар чисел – для каждой вершины сначала выведите полустепень захода и затем полустепень исхода.

Входные данные	Выходные данные
4 4	SJI.
1 2	0 2
13	11
2 3	21
3 4	10

Напомним, что вершина ориентированного графа называется истоком, если в нее не входит ни одно ребро и стоком, если из нее не выходит ни одного ребра.

Ориентированный граф задан матрицей смежности. Найдите все вершины графа, которые являются истоками, и все его вершины, которые являются стоками.

Формат входных данных

Сначала вводится число $n (1 \le n \le 100)$ – количество вершин в графе, а затем n строк по n чисел, каждое из которых равно 0 или 1, – его матрица смежности.

Формат выходных данных

В первой строке выведите k — число истоков в графе и затем k чисел — номера вершин, которые являются истоками, в возрастающем порядке. Во второй строке выведите информацию о стоках в том же порядке.

Входные данные	Выходные данные
4	1/6
1001	13
0 0 0 0	2 2 4
1101	11
0 0 0 0	O.D.

Неориентированный граф называется регулярным, если все его вершины имеют одинаковую степень. Для заданного списком ребер графа проверьте, является ли он регулярным.

Формат входных данных

Сначала вводятся числа n ($1 \le n \le 100$) – количество вершин в графе и m $\left(1 \le m \le \frac{n(n-1)}{2}\right)$ - количество ребер. Затем следует m пар чисел – ребра графа.

Формат выходных данных

Выведите «YES», если граф является регулярным, и «NO» в противном случае.

Входные данные	Выходные данные
3 3	A*A
1 2	
13	YES
23	1/2
Входные данные	Выходные данные
3 2	2,
12	
2 3	NO

Неориентированный граф с кратными рёбрами называется полным, если любая пара его различных вершин соединена хотя бы одним ребром. Для заданного списком ребер графа проверьте, является ли он полным.

Формат входных данных

Сначала вводятся числа n (1≤n≤100) – количество вершин в графе и m (1≤m≤10000) - количество ребер. Затем следует m пар чисел – ребра графа.

Формат выходных данных

Выведите «YES», если граф является полным, и «NO» в противном случае.

Входные данные	Выходные данные
3 3	
1 2	
13	YES
2.3	1/20
Входные данные	Выходные данные
3 2	5)
12	11
2 3	NO

Ориентированный граф называется полуполным, если между любой парой его различных вершин есть хотя бы одно ребро. Для заданного списком ребер графа проверьте, является ли он полуполным.

Формат входных данных

Сначала вводятся числа $n (1 \le n \le 100)$ – количество вершин в графе и $m (1 \le m \le n(n - 1))$ – количество ребер. Затем следует m пар чисел – ребра графа.

Формат выходных данных

Выведите «YES», если граф является полуполным, и «NO» в противном случае.

Выходные данные
YES
1/6
Mo.
Выходные данные
O _{II} ,
NO NO
10/4

Ориентированный граф называется турниром, если между любой парой его различных вершин существует ровно одно ребро. Для заданного списком ребер графа проверьте, является ли он турниром.

Формат входных данных

Сначала вводятся числа $n (1 \le n \le 100)$ – количество вершин в графе и $m (1 \le m \le n(n - 1))$ – количество ребер. Затем следует m пар чисел – ребра графа.

Формат выходных данных

Выведите «YES», если граф является турниром, и «NO» в противном случае.

Входные данные	Выходные данные
3 3	À:.
1 2	YES
13	×10.
3 2	1/20
Входные данные	Выходные данные
3 4	5,
1 2	
2 1	NO
23	21010.
13	10/1/20

Напомним, что граф называется транзитивным, если всегда из того, что вершины и и v соединены ребром и вершины v и w соединены ребром следует, что вершины и и w соединены ребром.

Проверьте, что заданный неориентированный граф является транзитивным.

Формат входных данных

Сначала вводятся числа n $(1 \le n \le 100)$ – количество вершин в графе и m $\left(1 \le m \le \frac{n(n-1)}{2}\right)$ – количество ребер. Затем следует m пар чисел – ребра графа.

Формат выходных данных

Выведите «YES», если граф является транзитивным, и «NO» в противном случае.

Входные данные	Выходные данные
3 3	
1 2	YES
13	1/0,
3 2	1970,
Входные данные	Выходные данные
3 2	
1 2	NO
13	21010.

Напомним, что ориентированный граф называется транзитивным, если для любых трех различных вершин u, v и w из того, что из u в вершину v ведет ребро и из вершины v в вершину w ведет ребро, следует, что из вершины u в вершину w ведет ребро.

Проверьте, что заданный ориентированный граф является транзитивным.

Формат входных данных

Сначала вводится число n $(1 \le n \le 100)$ – количество вершин в графе, а затем n строк по n чисел, каждое из которых равно 0 или 1, – его матрица смежности.

Формат выходных данных

Выведите «YES», если граф является транзитивным, и «NO» в противном случае.

Входные данные	Выходные данные
3	210.
0 1 1	YES
0 0 1	1750,
0 0 0	S),
Входные данные	Выходные данные
3	0,0,0
0 1 1	NO
100	1.01/2
0 1 0	Spike