# **Data Mining**

Tamás Budavári - budavari@jhu.edu Class 5

- Regularization
- Principal Component Analysis
- Lagrange multipliers
- Explained variance

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

# **Continued from Last Lecture**

# **Linear Regression**

- A linear combination of known  $\phi_k(\cdot)$  basis functions

$$f(t; \boldsymbol{\beta}) = \sum_{k=1}^{K} \beta_k \, \phi_k(t)$$

It's a <u>dot product (https://en.wikipedia.org/wiki/Dot\_product#Definition)</u> with  $\boldsymbol{\beta} = (\beta_1, \dots, \beta_K)^T$ 

• Evaluated at all data points  $x = (x_1, x_2, \dots, x_N)$ 

$$f(x; \boldsymbol{\beta}) = X\boldsymbol{\beta}$$
 where  $X_{ik} = \phi_k(x_i)$ 

# **Method of Least Squares**

· At the optimum

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T y$$
 (c.f. Lecture Note 04)

Hat matrix

$$H = X (X^T X)^{-1} X^T$$

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}} = X(X^TX)^{-1}X^T\mathbf{y} = H\mathbf{y}$$

```
In [2]: # Generate a dataset with errors
    x = 3 * random.rand(50)  # uniform between 0 and 3
    eps = 1 * random.randn(x.size) # add normal noise
    y = 10*cos(x+1) + eps;

# Plot the data
    plot(x, y, 'bx');  # 'b' for color(blue) and 'x' for marker
```



```
In [3]: # Function to construct X matrix as [1, X, X^2, ..., X^n]
        def poly(x,n):
           X = np.zeros((x.size,n+1));
           for i in range(X.shape[1]):
               X[:,i] = x**i
            return X
        # Show data in black
        plot(x,y,'kx');
                                    # control the range of y-axis to be (-20, 20)
        ylim(-20, 20);
        xx = np.linspace(-1,4,500) # grid on x
        color = 'yrgbm' * 5
                                    # color sequence
        for n in range((2,9):
                                         # design matrix for fitting
           X = poly(x,n)
           bHat = linalq.pinv(X).dot(y)
                                         # estimate beta
           yy = poly(xx,n).dot(bHat)
                                         # prediction
                                         # plot to compare the truth and prediction
            plot(xx,yy,'-',c=color[n]);
```



## Regularization

Penalize large coefficients in  $\beta$ 

• Ridge regression uses L<sub>2</sub>

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} |y - X\beta|_2^2 + \lambda |\beta|_2^2$$

or even with a constant matrix  $\Gamma$ 

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} |y - X\beta|_2^2 + \lambda |\Gamma\beta|_2^2$$

• Lasso regression uses  $L_1$ 

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} |y - X\beta|_2^2 + \lambda |\beta|_1$$

 $L_1$  yields sparse results

Different geometric meanings!

Note

You may think of this as one application of bias-variance tradeoff into regression. We want to find a model that could have a good performence and in the meantime not too complex. After introducing some regularization into  $\hat{\beta}$ , it will be composed of two part where first term would measure bias and second term would measure variance. And  $\lambda$  (strength) could be used to balance bias (accuracy) and variance (complexity). If  $\lambda$  is very small, then it will not care much about the complexity (second term) and may give us a relatively complex and accurated model. On the other hand, if  $\lambda$  is very large, then it will not care much about the accuracy (first term) and give us a relatively simple model with a bad performance.

• More about Bias-variance tradeoff (https://en.wikipedia.org/wiki/Bias%E2%80%93variance\_tradeoff)

#### **Linear Combinations**

• Coefficients mix a given set of basis vectors, functions, images, shapes, ...

$$f(x;\beta) = \sum_{k} \beta_k \phi_k(x)$$

Fourier series

Discrete Cosine Transform (JPEG)

Spherical Harmonics



• What is a good basis like?

# **Principal Component Analysis**

### **Statistical Learning**

| <b>Output Type</b> | Supervised     | Unsupervised             |
|--------------------|----------------|--------------------------|
| Discrete           | Classification | Clustering               |
| Continuous         | Regression     | Dimensionality Reduction |



#### **Directions of Maximum Variance**

• Let  $X \in \mathbb{R}^N$  be a continuous random variable with  $\mathbb{E}[X] = 0$  mean and covariance matrix C. What is the direction of maximum variance?

For any vector  $a \in \mathbb{R}^N$ , we have

$$\mathbb{V}\mathrm{ar}[a^TX] = \mathbb{E}\left[(a^TX - \mathbb{E}[a^TX])(a^TX - \mathbb{E}[a^TX])^T\right] = \mathbb{E}\left[(a^TX - 0)(a^TX - 0)^T\right] = \mathbb{E}\left[(a^TX)(X^Ta)\right] = \mathbb{E}\left[a^T(XX^T)a\right]$$

Note that

$$C = \mathbb{E}\left[ (X - \mathbb{E}[X])(X - \mathbb{E}[X])^T \right] = \mathbb{E}\left[ (X - 0)(X - 0)^T \right] = \mathbb{E}\left[ XX^T \right]$$

Then we have

$$Var[a^T X] = a^T \mathbb{E}[XX^T] a = a^T C a$$

We have to maximize this such that  $a^T a = ||a||^2 = 1$ .

# **Constrained Optimization**

• Lagrange multiplier: extra term with new parameter  $\lambda$ 

$$\hat{a} = \arg \max_{a \in \mathbb{R}^N} \left[ a^T C a - \lambda \left( a^T a - 1 \right) \right]$$

• Partial derivatives vanish at optimum

$$\frac{\partial}{\partial \lambda} \rightarrow \hat{a}^T \hat{a} - 1 = 0 \text{ (duh!)}$$

$$\frac{\partial}{\partial a_k} \rightarrow ?$$

• More about Lagrange multiplier (https://en.wikipedia.org/wiki/Lagrange multiplier)

#### With Indices

$$\max_{a \in \mathbb{R}^N} \left[ \sum_{i,j} a_i C_{ij} a_j - \lambda \left( \sum_i a_i^2 - 1 \right) \right]$$

• Partial derivatives  $\partial/\partial a_k$  vanish at optimum

$$\sum_{i,j} \frac{\partial a_i}{\partial a_k} C_{ij} a_j + \sum_{i,j} a_i C_{ij} \frac{\partial a_j}{\partial a_k} - 2\lambda \left( \sum_i a_i \frac{\partial a_i}{\partial a_k} \right)$$

$$= \sum_{i,j} \delta_{ik} C_{ij} a_j + \sum_{i,j} a_i C_{ij} \delta_{jk} - 2\lambda \left( \sum_i a_i \delta_{ik} \right)$$

$$= \sum_j C_{kj} a_j + \sum_i a_i C_{ik} - 2\lambda a_k$$

$$= 0$$

#### **With Vectors and Matrices**

• Write the equation above with indices as

$$C\hat{a} + C^T\hat{a} - 2\lambda\hat{a} = 0$$

Note that C is symmetric, i.e.  $C = C^T$ , then we have

$$C \hat{a} = \lambda \hat{a}$$

• Eigenproblem !! (quick review (https://en.wikipedia.org/wiki/Eigendecomposition of a matrix#Fundamental theory of matrix eigenvectors and eigenvalues))

#### Result

• The value of maximum variance is

$$\hat{a}^T C \hat{a} = \hat{a}^T \lambda \hat{a} = \lambda \hat{a}^T \hat{a} = \lambda$$

the largest eigenvalue  $\lambda_1$  of C.

• The direction of maximum variance is the corresponding eigenvector  $a_1$ 

$$Ca_1 = \lambda_1 a_1$$

• This is the 1st Principal Component

## **2nd Principal Component**

· Direction of largest variance uncorrelated to 1st PC

Given 
$$a_1$$
, we want to maximize  $\mathbb{Var}[a^TX]$  such that  $a^Ta=1$  and  $\mathbb{Cov}[a^TX,a_1^TX]=a^TCa_1=0$  
$$\hat{a}=\arg\max_{a\in\mathbb{R}^N}\left[a^TC\,a-\lambda\,(a^Ta-1)-\lambda'(a^TC\,a_1)\right]$$

· Partial derivatives vanish at optimum

$$2C\,\hat{a} - 2\lambda\,\hat{a} - \lambda'Ca_1 = 0$$

### **Result**

• Multiply the equation above by  $a_1^T$ 

$$2a_1^T C\hat{a} - 2a_1^T \lambda \hat{a} - a_1^T \lambda' C a_1 = 0$$

$$0 - 0 - \lambda' \lambda_1 = 0 \quad \Rightarrow \quad \lambda' = 0$$

• Still just an eigenproblem

$$C \hat{a} = \lambda \hat{a}$$

• Solution  $\lambda_2$  and  $a_2$ , where  $\lambda_2$  is the second-largest eigenvalue and  $a_2$  is the associated eigenvector.

## **Quick Review of Matrix Decomposition**

```
In [4]: from scipy import linalg
```

• Eigendecomposition (more (https://en.wikipedia.org/wiki/Eigendecomposition of a matrix))

Only for diagonalizable matrices (https://en.wikipedia.org/wiki/Diagonalizable matrix)

A square matrix  $\underline{A}$  is called diagonalizable if there exists an invertible matrix  $\underline{P}$  such that  $\underline{P}^{-1}\underline{AP}$  is a diagonal matrix.

```
In [5]: # Eigendecomposition
    A = np.array([[1, 2], [3, 4]])
    print('Original Matrix: \n', A, '\n')

    eigenvalues, eigenvector = linalg.eig(A)
    print('Eigenvalues: \n', eigenvalues, '\n')
    print('Eigenvector: \n', eigenvector)

Original Matrix:
    [[1 2]
    [3 4]]

Eigenvalues:
    [-0.37228132+0.j 5.37228132+0.j]

Eigenvector:
    [[-0.82456484 -0.41597356]
    [ 0.56576746 -0.90937671]]
```

• Singular-value decomposition (more (https://en.wikipedia.org/wiki/Singular value decomposition))

The generalization of the eigendecomposition

For example, a symmetric  $n \times n$  matrix with positive eigenvalues to any  $n \times m$  matrix

 $X_{n \times m} = UWV^{\top}$  where

- $U_{n \times n}$ ,  $U^{\mathsf{T}}U = I$   $W_{n \times m}$ , diagonal  $V_{m \times m}$ ,  $V^{\mathsf{T}}V = I$

More generalized statement (https://en.wikipedia.org/wiki/Singular value decomposition#Statement of the theorem)

```
In [6]: # Example
        n, m = 5, 3
        A = np.random.randn(n, m)
        print('Original Matrix: \n', A, '\n')
        # SVD
        U, s, Vh = linalg.svd(A)
        print('Singular values: \n', s, '\n')
        print('Left-singular vectors: \n', U, '\n')
        print('Right-singular vectors: \n', Vh)
        Original Matrix:
         [-1.11923878 -0.75099072 -0.22806693]
         [ 1.42047089  0.46163772  -0.01221367]
         [-0.13676406 -0.53157936 -0.44999876]
         [ 0.65507513  0.60338112  -0.36001278]
         [-0.97670832 -1.08267532 1.93307017]]
        Singular values:
         Left-singular vectors:
         [[-0.35533327 -0.55066852 -0.16363605 0.39389217 -0.62335756]
         [0.41656871 \quad 0.49873175 \quad -0.57911445 \quad 0.05894697 \quad -0.48876257]
         [-0.04691975 -0.32481689 -0.76937247 0.04794572 0.54594846]
         [0.32594378 \quad 0.08287577 \quad 0.18125689 \quad 0.88833888 \quad 0.25473955]
         [-0.76926456 \quad 0.57935862 \quad -0.11428748 \quad 0.223449
                                                              0.09790063]]
        Right-singular vectors:
         [ [ 0.67620816 \quad 0.52201985 \quad -0.51984402 ]
         [ 0.52874351  0.14747065  0.83587242]
         [-0.51300373 \quad 0.8400879 \quad 0.17629375]
```

• A little bit more about <a href="maig.eig">scipy.linalg.eig</a> (<a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eig.html">https://docs.scipy.eig.html</a>) and <a href="maig.scipy.linalg.svd">scipy.linalg.svd</a> (<a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd">https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd</a>. A little bit more about <a href="maig.scipy.linalg.eig.html">scipy.linalg.eig.html</a>) and <a href="maig.scipy.linalg.svd">scipy.linalg.svd</a> (<a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd</a>. A little bit more about <a href="maig.scipy.linalg.eig.html">scipy.linalg.svd</a> (<a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.svd</a>. A little bit more about <a href="maig.scipy.linalg.svd">scipy.linalg.svd</a>. A little bit more about <a href="maig.scipy.linalg.scipy.linalg.svd">scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg.scipy.linalg

#### **PCA**

• Spectral decomposition or eigenvalue decomposition or eigendecomposition

Let  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N \geq 0$  be the eigenvalues of C and  $e_1, \ldots, e_N$  the corresponding eigenvectors

$$C = \sum_{k=1}^{N} \lambda_k \left( e_k e_k^T \right)$$

Consider  $Ce_l = \sum_k \lambda_k e_k \left(e_k^T e_l\right) = \lambda_l e_l$  for any l

· Matrix form

With diagonal  $\Lambda$  matrix of the eigenvalues and an E matrix of  $[e_1, \ldots, e_N]$ 

$$C = E \Lambda E^T$$

• The eigenvectors of largest eigenvalues capture the most variance

If keeping only K < N eigenvectors, the best approximation is taking the first K PCs

$$C \approx \sum_{k=1}^{K} \lambda_k \left( e_k e_k^T \right) = E_K \Lambda_K E_K^T$$

## **New Coordiante System**

• The E matrix of eigenvectors is a rotation,  $EE^T = I$ 

$$Z = E^T X$$

• A truncated set of eigenvectors  $E_{\mathcal{K}}$  defines a projection

$$Z_K = E_K^T X$$

and

$$|X_K| = E_K Z_K = E_K E_K^T X = P_K X$$

# **Detour: Projections**

• If the square of a matrix is equal to itself

$$P^2 = P$$

• For example, projecting on the *e* unit vector (https://en.wikipedia.org/wiki/Unit\_vector)

Scalar times vector

$$r' = e\left(e^T r\right) = e\,\beta_r$$

Or projection of vector r

$$r' = (e e^T) r = P r$$

# **Again**

• The eigenvectors of largest eigenvalues capture the most variance

$$C pprox C_K = \sum_{k=1}^K \lambda_k \left( e_k e_k^T \right) = \sum_{k=1}^K \lambda_k P_k$$

• And the remaining eigenvectors span the subspace with the least variance

$$C - C_K = \sum_{l=K+1}^{N} \lambda_l P_l$$

## **Samples**

• Set of N-vectors arranged in matrix  $X = [x_1, x_2, \dots, x_n]$  with average of 0 \*This is NOT the random variable we talked about previously but the data matrix!\*

Sample covariance matrix is

$$C = \frac{1}{n-1} XX^T = \frac{1}{n-1} \sum_{i} x_i x_i^T$$

Singular Value Decomposition (SVD)

$$X = UWV^T$$

where  $U^T U = I$ , W is diagonal (thus  $W = W^T$ ), and  $V^T V = I$ 

Hence

$$C = \frac{1}{n-1} XX^{T} = \frac{1}{n-1} UWV^{T} (UWV^{T})^{T} = \frac{1}{n-1} UWV^{T} VWU^{T} = \frac{1}{n-1} UW^{2} U^{T}$$

So, if  $C = E\Lambda E^T$  then we have

$$E\Lambda E^T = \frac{1}{n-1} UW^2 U^T$$

$$E = U$$
 and  $\Lambda = \frac{1}{n-1} W^2$ 

#### Intution about PCA

Consider a continuous random variable  $X \in \mathbb{R}^p$  be with  $\mathbb{E}[X] = 0$  mean and covariance matrix C.

Let  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$  be the eigenvalues and  $e_1, \ldots, e_p$  be the corresponding eigenvectors of C.

• The **goal** of PCA is to seek a different representation of X under a new coordinate system

The new coordinate system is define by  $e_1, \ldots, e_p$  such that  $e_k^T e_k = 1$  and  $e_k^T e_j = 1$  for  $k \neq j$ .

For the new representation, we have  $X=(e_1^TX)e_1+\cdots+(e_p^TX)e_p$ . Note that each  $e_k^TX$  is a (random) scalar representing the project of X on the axis  $e_k$ . In other words, instead of representing  $X=(x_1,\ldots,x_n)$  under the classic Cartesian coordinate system, we can now represent  $X=(e_1^TX,\ldots,e_p^TX)$  under the new coordinate system.

Under the new coordinate system

- $e_1$  is chosen such that  $Var(e_1^TX)$  is maximized and  $||e_1||^2 = 1$  to ensure a proper coordinate system
- $e_2$  is chosen such that  $\mathbb{Var}(e_2^TX)$  is maximized and  $\|e_2\|^2 = 1$ ,  $e_1^Te_2 = 0$  to ensure a proper coordinate system (note that  $Cov(e_1^TX, e_2^TX) = 0$  is equivalent to  $e_1^Te_2 = 0$ )
- etc.
- When the random variable X is replaced by data points  $x_1, \ldots, x_n$ 
  - Define  $X = [x_1, x_2, \dots, x_n]$ , where each  $x_i$  is a p-dimensional column vector for  $i = 1, \dots, n$  and  $C = \frac{1}{n-1}XX^T$ .

#### **Random Sample from Bivariate Normal**

See previous lecture

In [7]: from scipy.stats import norm

```
In [8]: # Generate multiple 2-D (column) vectors
        S = norm.rvs(0,1,(2,20))
        # Scale axis 0
        S[0,:] *= 4
        # Rotate by 45 degrees
        f = +pi/4
        R = array([[cos(f), -sin(f)],
                   [\sin(f), \cos(f)]
        X = R.dot(S)
        # Shift
        X += np.array([[1],[3]])
        # Plot the points
        figure(figsize=(5,5));
        xlim(-15,15);
        ylim(-15, 15);
        plot(X[0,:],X[1,:],'o',alpha=0.9);
```



```
In [9]: # Subtract sample mean (centering)
         avg = mean(X, axis=1).reshape(X[:,1].size,1)
         X -= avg
         # Sample covariance matrix
         C = X.dot(X.T) / (X[0,:].size-1)
         print ("Average\n", avg)
         print ("Covariance\n", C)
         Average
          [[ 1.64099666]
          [ 3.16929267]]
         Covariance
          [[ 7.364622
                         6.90883924]
          [ 6.90883924 9.21679239]]
In [10]: # Eigendecomposition of covariance matrix
         L, E = np.linalg.eig(C)
         print("eigenvalues:", E)
         print("eigenvectors:", L)
         eigenvalues: [[-0.75261388 -0.65846211]
          [ 0.65846211 -0.75261388]]
         eigenvectors: [ 1.32007642 15.26133797]
In [11]: # SVD of covariance matrix
         E, L, E same = np.linalg.svd(C)
         print("unitary vectors", E)
         print("singluar values:", L)
         # note that eigenvalues and singular values are the same since C is positive (semi-)definite matrix
         unitary vectors [[-0.65846211 -0.75261388]
          [-0.75261388 0.65846211]]
         singluar values: [ 15.26133797 1.32007642]
In [12]: \# Check EE^T = I
         E.dot(E.T)
Out[12]: array([[ 1.00000000e+00, -2.22044605e-16],
                [ -2.22044605e-16, 1.00000000e+00]])
```

```
In [13]: # Check E^T and E^(-1) are very close
         np.allclose( E.T, np.linalg.inv(E) )
Out[13]: True
In [14]: # SVD of original data matrix
         U, W, V = np.linalg.svd(X)
         print("E = U:", U)
         print("Lambda:", W**2 / (X[0,:].size-1))
         E = U: [[-0.65846211 -0.75261388]
         [-0.75261388 \quad 0.65846211]]
         Lambda: [ 15.26133797 1.32007642]
In [15]: # Alternatively
         U, W**2 / (X.shape[1]-1)
Out[15]: (array([-0.65846211, -0.75261388],
                 [-0.75261388, 0.65846211]]), array([ 15.26133797, 1.32007642]))
In [16]: \# Check UU^T = I and VV^T = I
         [ np.allclose( U.dot(U.T), np.eye(U.shape[0]) ),
           np.allclose( V.dot(V.T), np.eye(V.shape[0]) ) ]
Out[16]: [True, True]
In [17]: from sklearn import decomposition
In [18]: # Another way to do PCA
         pca = decomposition.PCA(n components=X.shape[0])
         pca.fit(X.T) # different convention: row vs col !!!
         # E and Lambda
         print("E = U:", pca.components_.T)
         print("Lambda:", pca.explained variance )
         E = U: [[-0.65846211 0.75261388]
         [-0.75261388 - 0.65846211]]
         Lambda: [ 15.26133797 1.32007642]
```