

GTU Electronics Engineering

ELEC 331 Electronic Circuits 2

Fall Semester

Instructor: Assist. Prof. Önder Şuvak

HW 6 Questions

Updated October 20, 2017 - 13:43

Assigned:

Due:

Answers Out:

Late Due:

Contents

1
1
2
3
4
5
6

MOS Amplifier Frequency Response

7.67 Design a common-source NMOS amplifier as shown in Fig. P7.67 to give a passband gain of $20 \le$

 $|A_{\rm PB}| \le 30$, $Z_{\rm in(mid)} \ge 100~{\rm k}\Omega$, a low 3-dB frequency of $f_{\rm L} \le 10~{\rm kHz}$, and a high 3-dB frequency of $f_{\rm H} = 200~{\rm kHz}$.

FIGURE P7.67

Notes: Carry out only the analysis part of this question and provide the answers in terms of the parameters.

Additional Tasks: Study voltage-shunt feedback and current-series feedback.

Necessary Knowledge and Skills: Trans-conductance amplifier analysis, trans-resistance amplifier analysis, voltage-shunt feedback, feedback network analysis, effect of feedback on frequency response, MOS small signal model, SCTC, OCTC, Miller effect.

Cascaded MOS Amplifier - SCTC and OCTC

7.71 A two-stage amplifier is shown in Fig. P7.71. The parameters are $R_{\rm S} = 1~{\rm k}\Omega$, $R_{11} = 500~{\rm k}\Omega$, $R_{21} = 500~{\rm k}\Omega$, $R_{\rm D1} = 10~{\rm k}\Omega$, $R_{12} = 500~{\rm k}\Omega$, $R_{22} = 500~{\rm k}\Omega$, $R_{\rm D2} = 15~{\rm k}\Omega$, $R_{\rm L} = 10~{\rm k}\Omega$, $R_{\rm m1} = 20~{\rm mA/V}$, $R_{\rm m2} = 50~{\rm mA/V}$,

 C_1 = 1 μ F, C_2 = 1 μ F, C_3 = 10 μ F, C_{gd1} = C_{gd2} = 2 pF, and C_{gs1} = C_{gs2} = 5 pF. Calculate the low 3-dB frequency f_L and the high cutoff frequency f_H .

FIGURE P7.71

Notes: None.

Additional Tasks: None.

Necessary Knowledge and Skills: MOS small signal model, amplifier voltage gain computations, SCTC, OCTC, Miller's effect.

CE Amplifier Frequency Response

For Probs. 8.54–8.59 involving BJT amplifiers, use transistors whose parameters are $\beta_f = 100$, $C_{je} = 8$ pF at $V_{BE} = 100$ at $V_{\text{CE}} = 10 \text{ V}$. The transition frequency is $f_{\text{T}} = 300 \text{ MHz}$ at $V_{\text{CE}} = 20 \text{ V}$, $I_{\text{C}} = 10 \text{ mA}$. The substrate is connected to the ground. Assume $I_C=5$ mA (unless specified), $V_{CC}=15$ V, $V_{BE}=0.7$ V, $R_s=1$ k Ω , and $R_L=10$ k Ω . Use PSpice/SPICE to check your design by plotting the frequency response and give an approximate cost estimate.

8.54 Design a CE amplifier as shown in Fig. P8.54 to give a passband gain of $40 \le |A_{PB}| \le 50$, a low 3-dB frequency of $f_L \le 1$ kHz, and a high 3-dB frequency of $f_H = 50$ kHz.

FIGURE P8.54

Notes: Analyze the circuit to compute its high and low frequency response. State your answers in terms of the parameters.

Additional Tasks: None.

Necessary Knowledge and Skills: BJT small signal model, Miller effects, OCTC, SCTC.

CB Amplifier Frequency Response

For Probs. 8.54–8.59 involving BJT amplifiers, use transistors whose parameters are $\beta_f = 100$, $C_{je} = 8$ pF at $V_{BE} = 100$ $0.5 \text{ V}, C_{\mu} = 4 \text{ pF} \text{ at } V_{\text{CB}} = 5 \text{ V}, C_{\text{cs}} = 4 \text{ pF} \text{ at } V_{\text{CS}} = 8 \text{ V}, \beta_{\text{f}} = 100, V_{\text{je}} = V_{\text{jc}} = V_{\text{js}} = 0.8 \text{ V}, \text{ and } h_{\text{oe}} = 1/r_{\text{o}} = 5 \text{ } \mu\text{ } \text{ } \text{U} = 1/r_{\text{o}} = 1/r_{\text{o$ at $V_{\rm CE}=10$ V. The transition frequency is $f_{\rm T}=300$ MHz at $V_{\rm CE}=20$ V, $I_{\rm C}=10$ mA. The substrate is connected to the ground. Assume $I_C=5$ mA (unless specified), $V_{CC}=15$ V, $V_{BE}=0.7$ V, $R_s=1$ k Ω , and $R_L=10$ k Ω . Use PSpice/SPICE to check your design by plotting the frequency response and give an approximate cost estimate.

8.55 Design a CB amplifier as shown in Fig. P8.55 to give a passband gain of $20 \le |A_{PB}| \le 30$, a low 3-dB frequency of $f_L \le 1$ kHz, and a high 3-dB frequency of $f_H = 100$ kHz. Assume $R_s = 15$ k Ω and $R_L = 10$ k Ω .

FIGURE P8.55

Notes: Analyze the circuit to compute its high and low frequency response. State your answers in terms of the parameters.

Additional Tasks: None.

Necessary Knowledge and Skills: BJT small signal model, Miller effects, OCTC, SCTC.

Cascaded Amplifier Frequency Response

For Probs. 8.54–8.59 involving BJT amplifiers, use transistors whose parameters are $\beta_{\rm f}=100$, $C_{\rm je}=8$ pF at $V_{\rm BE}=0.5$ V, $C_{\rm L}=4$ pF at $V_{\rm CB}=5$ V, $C_{\rm cs}=4$ pF at $V_{\rm CS}=8$ V, $\beta_{\rm f}=100$, $V_{\rm je}=V_{\rm jc}=V_{\rm js}=0.8$ V, and $h_{\rm oe}=1/r_{\rm o}=5$ $\mu \rm T$ at $V_{\rm CE}=10$ V. The transition frequency is $f_{\rm T}=300$ MHz at $V_{\rm CE}=20$ V, $I_{\rm C}=10$ mA. The substrate is connected to the ground. Assume $I_{\rm C}=5$ mA (unless specified), $V_{\rm CC}=15$ V, $V_{\rm BE}=0.7$ V, $V_{\rm R}=1$ k Ω , and $V_{\rm CE}=10$ k Ω . Use PSpice/SPICE to check your design by plotting the frequency response and give an approximate cost estimate.

8.58 Design a CE-CC amplifier as shown in Fig. P8.58 to give a passband gain of $20 \le |A_{PB}| \le 30$, $Z_{i1(mid)} \le 100 \Omega$, a low 3-dB frequency of $f_L \le 1$ kHz, and a high 3-dB frequency of $f_H = 100$ kHz.

FIGURE P8.58

Notes: Analyze the circuit to compute its high and low frequency response. State your answers in terms of the parameters.

Additional Tasks: None.

Necessary Knowledge and Skills: BJT small signal model, Miller effects, OCTC, SCTC.