(i)
$$\begin{bmatrix} \frac{1}{4} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} \end{bmatrix}$$
 (ii) $\frac{1}{25} \begin{bmatrix} 4 & 3 \\ -7 & 1 \end{bmatrix}$ (iii) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (ii) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iii) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (ii) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iii) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv) $\frac{1}{25} \begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ (iv

$$\begin{bmatrix} 0 & -2 & 0 & -3 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 1 & 13 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 13 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -5\lambda_3 + \lambda_3 + 3\lambda_4 & = 0 \\ 0 & -5\lambda_3 - t + 13t & = 0 & \lambda_3 & = \frac{t}{5} \\ 0 & \lambda_4 + \frac{24t}{5} - 3t & = 0 & \text{or } \lambda_1 & = \frac{-9t}{5} \\ 0 & \lambda_4 + \frac{24t}{5} - 3t & = 0 & \text{or } \lambda_1 & = \frac{-9t}{5} \\ 0 & \lambda_1 + \frac{24t}{5} - 3t & = 0 & \text{or } \lambda_1 & = \frac{-9t}{5} \\ 0 & \lambda_1 + \frac{22t}{5} + \frac{t}{5} - tX_1 + tX_4 & = 0 & \text{or } -\frac{9X_1}{5} + \frac{12X_2}{5} - X_3 + X_4 & = 0 \\ 0 & \lambda_1 - 12X_2 + 5X_3 - 5X_4 & = 0 & \text{or } -\frac{9X_1}{5} + \frac{12X_2}{5} - X_3 + X_4 & = 0 \\ 0 & \lambda_1 - 12X_2 + 5X_3 - 5X_4 & = 0 & \text{or } -\frac{9X_1}{5} + \frac{12X_2}{5} - X_3 + X_4 & = 0 \\ 0 & \lambda_1 + \lambda_2 + 3X_3 + 3X_4 + 3X_4 & = 0 \\ 0 & \lambda_1 + \lambda_2 + 3X_3 + 3X_4 + 3X_4 & = 0 \\ 0 & \lambda_1 + \lambda_2 + 3X_3 + 3X_4 + 3X_4 & = 0 \\ 0 & \lambda_1 + \lambda_2 + 3X_3 + 4X_4 - 6X_4 & = 0 \\ 0 & \lambda_1 + \lambda_2 + 3X_3 + 3X_4 + 3X_4 & = 0 \\ 0 & \lambda_1 + \lambda_2 + 3X_3 + 3X_4 & = 0 \\ 0 & \lambda_1 +$$

$$\lambda_1 + 3\lambda_2 + 4\lambda_3 - 6\lambda_4 = 0$$
$$\lambda_2 + 6\lambda_3 = 0$$

$$18\lambda_3 + 9\lambda_4 = 0$$

$$18\lambda_3 + 91 = 0$$
 or $\lambda_3 = \frac{1}{2}$

$$\lambda_2 - 3t = 0$$
 or $\lambda_2 = 3t$

$$+91-21-61=0$$
 $\lambda_{1}=-1$

Substituting the values of
$$\lambda_1$$
, λ_2 , λ_3 and λ_4 in (1), we get

$$-tX_1 + 3tX_2 - \frac{t}{2}X_3 + tX_4 = 0 \text{ or } 2X_1 - 6X_2 + X_3 - 2X_4 = 0$$
Example 55. is the system of vectors
$$X_1 = (2, 2, 1)^T, X_2 = (1, 3, 1)^T, X_3 = (1, 2, 2)^T$$

linearly dependent.

Solution. Here
$$X_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$$
 $X_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $X_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (*T* stands for transposition

Consider the matrix equation

$$\lambda_{1} x_{1} + \lambda_{2} x_{2} + \lambda_{3} x_{5} = 0$$

$$\lambda_{1} \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \lambda_{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$2\lambda_1 + 3\lambda_2 + 2\lambda_3 = 0$$
$$\lambda_1 + \lambda_2 + 2\lambda_3 = 0$$

$$2\lambda_1 + 3\lambda_2 + 2\lambda_3 = 0$$
$$\lambda_1 + \lambda_2 + 2\lambda_3 = 0$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ \lambda_2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

 $\lambda_2 - 2\lambda_3 = 0$ $5\lambda_3 = 0 \Rightarrow \lambda_1 = 0$

$$\lambda_2 = 0 \implies \lambda_1 = 0$$

$$\lambda_2 = 0 \text{ and } \lambda_1 = 0$$

$$\lambda_1 = 0 \text{ and } \lambda_2 = 0$$

em of vectors is not linearly dependent. ro values of λ. λ, λ, do not exist which can satisfy (1). Hence by definition

owing system of vectors for linear dependence. If dependent, find the relation between them. $X_1 = (2, 1, 1), X_2 = (3, 0, 2).$ Exercise 4.18 Ans. Dependent, $X_1 + X_2 - X_3 = 0$

[-1,0), $V_1 = (0,1,-1)$, $V_1 = (0,0,1)$ be elements of R^2 . The set of vectors $\{V_1, V_2, V_3\}$ is 4), $X_2 = (2, 2, -3), X_3 = (0, -4, 1).$ $(0), X_2 = (2, 1, 1, 1), X_3 = (3, -1, 2, -1), X_4 = (3, 0, 3, 1).$ (1), $X_1 = (1, -1), Z_2 = (3, 1, 0, 1)$ $X_1 = (1, 2, 3, 4), X_2 = (2, 3, 4, 7).$ pendent (b) linearly dependent (c) null (d) none of these (AMIETE Dec. 2005) Ans. (b) Ans. Dependent, $2X_1 - 3X_2 - X_3 = 0$ Ans. Dependent, $2X_1 + X_2 - X_3 = 0$ Ans. Dependent, $X_1 + X_2 - X_3 = 0$ Ans. Independent

The value of α so that the vectors (1, 2, 9, 8), (2, 0, 0, α), (α , 0, 0, 8), (0, 0, 1, 0) are linearly $(0,1), V_i = (1,1,1,1), V_j = (4,4,1,1) \text{ and } V_i = (1,0,0,1)$ (A.M.I.E.T.E., June 2006) Ans. Lincarly independent Ans. Dependent, $X_1 + X_2 - X_4 = 0$

RITIONING OF MATRICES

natrix A matrix obtained by deleting some of the rows and columns of a matrix

(A.M.I.E.T.E., Summer 2005) Ans. $\alpha = \pm 4$.

oning: A matrix may be subdivided into sub matrices by drawing lines parallel to lollumns. These sub matrices may be considered as the elements of the original then $\begin{bmatrix} 4 & 1 \\ 5 & 2 \end{bmatrix}$, $\begin{bmatrix} 5 & 2 \\ 6 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ are the sub matrices.

$$A = \begin{bmatrix} 2 & 1 & 0 & 4 & 1 \\ 1 & 0 & 2 & 3 & 4 \\ 4 & 5 & 1 & 6 & 5 \end{bmatrix}$$

$$A_{11} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \quad A_{12} = \begin{bmatrix} 0 & 4 & 1 \\ 2 & 3 & 4 \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} 4 & 5 \end{bmatrix} \quad A_{22} = \begin{bmatrix} 1 & 6 & 5 \end{bmatrix}$$

matrix is partitioned. The dotted lines divide the matrix into sub-matrices. In d_B are the sub-matrices but behave like elements of the original matrix A. The be partitioned in several ways.