1. For elements a, b, c in a lattice, show that if $a \leq b$, then $a \vee (b \wedge c) \leq b \wedge (a \vee c)$.

Solution: We have

$$a \le b$$
$$b \land c \le b.$$

Thus,

$$a \lor (b \land c) \le b \lor b = b. \tag{1}$$

Also, we have

$$a \le a \lor c$$
$$b \land c \le c \le a \lor c.$$

Thus,

$$a \lor (b \land c) \le (a \lor c) \lor (a \lor c) = (a \lor c). \tag{2}$$

Using (1) and (2), we have

$$a \lor (b \land c) = (a \lor (b \land c)) \land (a \lor (b \land c) \le b \land (a \lor c).$$

2. For elements a, b, c in a lattice, show that, then $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$ and $(a \land b) \lor (a \land c) \le a \land (b \lor c)$.

Solution: For the first inequality, note

$$a \le a \lor b$$
$$a \le a \lor c.$$

Thus, we have

$$a = a \land a \le (a \lor b) \land (a \lor c). \tag{3}$$

Also,

$$b \wedge c \le b \le a \vee b$$
$$b \wedge c \le c \le a \vee c.$$

Thus, we have

$$b \wedge c = (b \wedge c) \wedge (b \wedge c) \le (a \vee b) \wedge (a \vee c). \tag{4}$$

Thus, combining equations (3) and (4), we have

$$a \vee (b \wedge c) \leq ((a \vee b) \wedge (a \vee c)) \vee ((a \vee b) \wedge (a \vee c)) = (a \vee b) \wedge (a \vee c).$$

For the second inequality, $a \wedge b \leq a$ and $a \wedge c \leq a$. Thus, we have $(a \wedge b) \vee (a \wedge c) \leq a \vee a = a$. Further, $a \wedge b \leq b \leq b \vee c$ and $a \wedge c \leq c \leq b \vee c$. Therefore, we have $(a \wedge b) \vee (a \wedge c) \leq (b \vee c) \vee (b \vee c) = b \vee c$.

Now, combining the above, we have

$$(a \wedge b) \vee (a \wedge c) = ((a \wedge b) \vee (a \wedge c)) \wedge ((a \wedge b) \vee (a \wedge c)) \leq a \wedge (b \vee c).$$

- 3. There are 15 non-isomorphic lattices on six elements. List them in the form of Hasse diagrams. Among these, identify the seven lattices that are self-dual.
- 4. Given an associative, commutative, idempotent binary operation \vee on a set P, define a relation \leq on P as: for $x \leq y$ if and only if $x \vee y = y$ (for all $x, y \in P$). Show that (P, \leq) is a poset.

Solution: We just need to verify the conditions of Reflexivity, Antisymmetry and Transitivity.

- Reflexivity: for $x \in P$, we have $x \vee x = x$ from the idempotent property of the binary operation \vee . Thus, $x \leq x$.
- Antisymmetry: if $x \le y$ and $y \le x$, i.e., $x \lor y = y$ and $y \lor x = x$, we have $x = y \lor x = x \lor y = y$ where the second equality follows by commutative property of the binary operation \lor . Thus, x = y.
- **Transitivity**: if $x \leq y$ and $y \leq z$, we have $x \vee y = y, y \vee z = z$. Then, $x \vee z = x \vee (y \vee z) = (x \vee y) \vee z = y \vee z = z$. Here we have used the associative property of the binary operation \vee in Step 2. Thus, $x \leq z$.
- 5. For a fixed integer $n \geq 1$, let B be the set of all binary strings of length n. Define a relation \leq on B as follows. For two strings $\mathbf{x} = x_1 x_2 \dots x_n$ and $\mathbf{y} = y_1 y_2 \dots y_n$ in B, $\mathbf{x} \leq \mathbf{y}$ if and only if for each i, whenever the bit $y_i = 0$, the bit $x_i = 0$ as well (Example: $0101 \leq 1101$). Show that (B, \leq) is a lattice. Describe the join and meet operations of two strings in terms of the bits of the string.

Solution: We use the following result:

A poset (L, <) is a lattice if $\sup\{a, b\}$ and $\inf\{a, b\}$ exist for all $a, b \in L$.

First to (B, \leq) is a poset, i.e., satisfy the conditions of Reflexivity, Antisymmetry and Transitivity.

- Reflexivity: for $\mathbf{x} \in B$, we have $\mathbf{x} < \mathbf{x}$ by definition.
- Antisymmetry: Suppose $\mathbf{x} \leq \mathbf{y}$ and $\mathbf{y} \leq \mathbf{x}$. We need to show, $\mathbf{x} = \mathbf{y}$, i.e., $x_i = y_i$ for all i. For any i, there are four possible cases: a) $x_i = 0, y_i = 0$, b) $x_i = 0, y_i = 1$, c) $x_i = 1, y_i = 0$ and d) $x_i = 1, y_i = 0$. Note that $x_i = 0$, since $\mathbf{y} \leq \mathbf{x}$, we must have $y_i = 0$. Similarly, if $y_i = 0$, since $\mathbf{x} \leq \mathbf{y}$, we have $x_i = 0$. Thus, case b) and case c) are not possible. In case a) and case d), we have $x_i = y_i$ as required.

• Transitivity: if $\mathbf{x} \leq \mathbf{y}$ and $\mathbf{y} \leq \mathbf{z}$, for any i, if $z_i = 0$, since $\mathbf{y} \leq \mathbf{z}$, we have $y_i = 0$. Again, since $y_i = 0$ and $\mathbf{x} \leq \mathbf{y}$, we have $x_i = 0$. Thus, $\mathbf{x} \leq \mathbf{z}$.

Next, let $\mathbf{x}, \mathbf{y} \in B$. Let $\mathbf{w} = w_1 w_2 \dots w_n$ and $\mathbf{z} = z_1 z_2 \dots z_n$ where $w_i = \max\{x_i, y_i\}$ and $z_i = \min\{x_i, y_i\}$. Observe that since $x_i, y_i \in \{0, 1\}$, we have $w_i, z_i \in \{0, 1\}$. Thus, $\mathbf{w}, \mathbf{z} \in B$. We claim that $\sup\{\mathbf{x}, \mathbf{y}\} = \mathbf{w}$ and $\inf\{\mathbf{x}, \mathbf{y}\} = \mathbf{z}$.

To show $\sup\{\mathbf{x}, \mathbf{y}\} = \mathbf{w}$ and $\inf\{\mathbf{x}, \mathbf{y}\} = \mathbf{z}$:

- **w** is an upper bound for both **x** and **y**, i.e., $\mathbf{x} \leq \mathbf{w}$ and $\mathbf{y} \leq \mathbf{w}$. For any i, if $w_i = 0$, since $w_i = \max\{x_i, y_i\}$, we have $x_i = 0, y_i = 0$. Thus, $\mathbf{x} \leq \mathbf{w}$ and $\mathbf{y} \leq \mathbf{w}$.
 - \mathbf{z} is a lower bound for both \mathbf{x} and \mathbf{y} , i.e., $\mathbf{z} \leq \mathbf{x}$ and $\mathbf{z} \leq \mathbf{y}$. For any i, if $x_i = 0$, since $z_i = \min\{x_i, y_i\}$, we have $z_i = 0$. Thus, $\mathbf{z} \leq \mathbf{x}$. Similarly if $y_i = 0$, since $z_i = \min\{x_i, y_i\}$, we have $z_i = 0$. Thus, $\mathbf{z} \leq \mathbf{y}$.
- Suppose **m** is an upper bound of both **x** and **y**. To show **w** \leq **m**. For any i, if $m_i = 0$, since **x** \leq **m** and **y** \leq **m**, we must have $x_i = 0 = y_i$. Thus, by definition, $w_i = \max\{x_i, y_i\} = 0$. Thus, **w** \leq **m**.

Suppose **m** is a lower bound of both **x** and **y**. To show $\mathbf{m} \leq \mathbf{z}$. For any i, if $z_i = 0$, since $z_i = \min\{x_i, y_i\}$, we must have either $x_i = 0$ or $y_i = 0$. If $x_i = 0$, since $\mathbf{m} \leq \mathbf{x}$, we must have $m_i = 0$. If $y_i = 0$, since $\mathbf{m} \leq \mathbf{y}$, we must have $m_i = 0$. Thus, in either case, $m_i = 0$. Thus, $\mathbf{m} \leq \mathbf{z}$.

Observe that $\sup\{\mathbf{x}, \mathbf{y}\} = \mathbf{w}$ represents the bitwise OR operation while $\inf\{\mathbf{x}, \mathbf{y}\} = \mathbf{z}$ represents the bitwise AND operation.

6. Show that for any two elements x, y in a distributive lattice, if there exists some element a such such that $a \lor x = a \lor y$ and $a \land x = a \land y$, then x = y.

Solution: We need to show $x \le y$ and $y \le x$. Suppose that for some element a, we have $a \lor x = a \lor y$ and $a \land x = a \land y$. Now,

$$x = x \wedge (x \vee a) \qquad \qquad \text{[using absorption identity]} \\ = x \wedge (y \vee a) \qquad \qquad \text{[using } x \vee a = y \vee a \text{]} \\ = (x \wedge y) \vee (x \wedge a) \qquad \qquad \text{[using distributive property]} \\ = (x \wedge y) \vee (y \wedge a) \qquad \qquad \text{[using } x \wedge a = y \wedge a \text{]} \\ = (y \wedge x) \vee (y \wedge a) \qquad \qquad \text{[using commutativity property]} \\ = y \wedge (x \vee a) \qquad \qquad \text{[using distributive property]} \\ = y \wedge (y \vee a) \qquad \qquad \text{[using } x \vee a = y \vee a \text{]} \\ = y \qquad \qquad \text{[using absorption identity]}.$$

7. Prove that every chain is a distributive lattice.

Solution: Let (P, \leq) be any chain. Again, to show that it is a lattice, we need to show if $a \vee b = \sup\{a, b\}$ and $a \wedge b = \inf\{a, b\}$ exist for all $a, b \in P$. Since it

is a chain, either $a \leq b$ or $b \leq a$. Let us assume $a \leq b$, the other case is similar. We claim $a \vee b = \sup\{a,b\} = b$ and $a \wedge b = \inf\{a,b\} = a$. Clearly, $a \leq b$, by assumption, and $b \leq b$ by reflexivity, thus b is an upper bound of both a and b. Now, if c is any upper bound of both a and b, by definition $b \leq c$. Thus, $b = \sup\{a,b\}$. Similarly, a is a lower bound of both a and b as $a \leq a$ by reflexivity and $a \leq b$ by assumption. If c is any lower bound of both a and b, then $c \leq a$ by definition. So, $a = \inf\{a,b\}$.

Now, to prove the distributive property, let $a,b,c\in P$. We need to show $(a\wedge b)\vee(a\wedge c)=a\wedge(b\vee c)$. Since P is a chain, either $b\leq c$ or $c\leq b$. Without loss of generality, we may assume that $b\leq c$. Now, either $a\leq b$ or $b\leq a$. If $a\leq b$, then $a\leq b\leq c$, so that $a\leq c$. Hence, LHS of the distributive property, $(a\wedge b)\vee(a\wedge c)=a\vee a=a$ and RHS of the distributive property, $a\wedge(b\vee c)=a\wedge b=a$. Now suppose $b\leq a$. Then there are two possible sub-cases: we must have either $a\leq c$ or $c\leq a$. So if $a\leq c$, LHS of the distributive property, $(a\wedge b)\vee(a\wedge c)=b\vee c=b$ and RHS of the distributive property, $(a\wedge b)\vee(a\wedge c)=b\vee c=b$ and RHS of the distributive property, $(a\wedge b)\vee(a\wedge c)=b\vee c=b$ and RHS of the distributive property, $(a\wedge b)\vee(a\wedge c)=b\vee c=b$ and RHS of the distributive property, $(a\wedge b)\vee(a\wedge c)=b\vee c=b$ and RHS of the distributive property, $(a\wedge b)\vee(a\wedge c)=b\vee c=b$ and RHS of the distributive property and $(a\wedge b)\vee(a\wedge c)=b\vee c=b$ and RHS of the distributive property in all possible cases.

8. Show that for elements a and b in a Boolean algebra, $a \vee (\bar{a} \wedge b) = a \vee b$ and $a \wedge (\bar{a} \vee b) = a \wedge b$.

Solution: We have

$$a \lor (\bar{a} \land b) = (a \lor \bar{a}) \land (a \lor b)$$
 [using distributive property]
= $1 \land (a \lor b)$ [using $a \lor \bar{a} = 1$]
= $a \lor b$ [using $1 \land c = c$, for $c \in L$].

Similarly, we have

$$a \wedge (\bar{a} \vee b) = (a \wedge \bar{a}) \vee (a \wedge b)$$
 [using distributive property]
= $0 \vee (a \wedge b)$ [using $a \wedge \bar{a} = 0$]
= $a \wedge b$ [using $0 \vee c = c$, for $c \in L$].

9. If a and b are two elements of a Boolean algebra, show that a = b if and only if $(a \wedge \bar{b}) \vee (\bar{a} \wedge b) = 0$.

Solution: First assume that $(a \wedge \bar{b}) \vee (\bar{a} \wedge b) = 0$. Fact if $c \vee d = 0$, then c = d = 0. Indeed, we have $c = c \wedge (c \vee d) = c \wedge 0 = 0$ and similarly $d = d \wedge (c \vee d) = d \wedge 0 = 0$. Note we have used absorption property above. Thus, $a \wedge \bar{b} = \bar{a} \wedge b = 0$.

Now

$$\begin{array}{ll} a=a\wedge 1 & \qquad \qquad [\text{using } 1\wedge c=c, \text{ for } c\in L] \\ =a\wedge (b\vee \bar{b}) & \qquad [\text{using } c\vee \bar{c}=1, \text{ for } c\in L] \\ =(a\wedge b)\vee (a\wedge \bar{b}) & \qquad [\text{using distributive property}] \\ =(a\wedge b)\vee 0 & \qquad [\text{using given condition } a\wedge \bar{b}=0] \\ =(a\wedge b)\vee (\bar{a}\wedge b) & \qquad [\text{using given condition } \bar{a}\wedge b=0] \\ =(a\vee \bar{a})\wedge b & \qquad [\text{using distributive property}] \\ =1\wedge b & \qquad [\text{using } c\vee \bar{c}=1, \text{ for } c\in L] \\ =b & \qquad [\text{using } 1\wedge c=c, \text{ for } c\in L]. \end{array}$$

Conversely assume that a = b. Now,

$$b \wedge \bar{a} = a \wedge \bar{a} = 0$$
$$\bar{a} \wedge b = \bar{a} \wedge a = 0.$$

Hence, we have $(b \wedge \bar{a}) \vee (\bar{a} \wedge b) = \bar{a} \wedge b = 0$ using $b \wedge \bar{a} = 0$ in the first step.

10. For elements a and b in a Boolean algebra, show that $a \leq b$ if and only if $\bar{a} \vee b = 1$.

Solution: Suppose $\bar{a} \lor b = 1$. We have

$$\begin{array}{lll} a \vee b = (a \wedge 1) \vee b & \qquad & [\text{using } 1 \wedge c = c, \text{ for } c \in L] \\ &= (a \wedge (\bar{a} \vee b)) \vee b & \qquad & [\text{using given condition } \bar{a} \vee b = 1] \\ &= ((a \wedge \bar{a}) \vee (a \wedge b)) \vee b & \qquad & [\text{using distributive property}] \\ &= (0 \vee (a \wedge b)) \vee b & \qquad & [\text{using } c \wedge \bar{c} = 0, \text{ for } c \in L] \\ &= (a \wedge b) \vee b & \qquad & [\text{using } 0 \vee c = c, \text{ for } c \in L] \\ &= b & \qquad & [\text{using absorption identity}]. \end{array}$$

Thus, $a \leq b$.

Conversely suppose that $a \leq b$. Hence, $a = a \wedge b$. Now, we have

$$1 = a \lor \bar{a}$$
 [using $c \lor \bar{c} = 1$, for $c \in L$]

$$= (a \land b) \lor \bar{a}$$
 [using $a = a \land b$]

$$= (a \lor \bar{a}) \land (b \lor \bar{a})$$
 [using distributive property]

$$= 1 \land (b \lor \bar{a})$$
 [using $c \lor \bar{c} = 1$, for $c \in L$]

$$= b \lor \bar{a}$$
 [using $1 \land c = c$, for $c \in L$].