Course at a Glance

Plan

The Course at a Glance provides a useful visual organization of the AP Calculus AB and AP Calculus BC curricular components, including:

- Sequence of units, along with approximate weighting and suggested pacing.
 Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the big ideas and mathematical practices across units.

Teach

MATHEMATICAL PRACTICES

Mathematical practices spiral throughout the course.

- Implementing
 Mathematical
 Processes
- Justification
 Communication
 and Notation
- 2 Connecting Representations

BIG IDEAS

Big ideas spiral across topics and units.

- CHA Change
- FUN Analysis of Functions

BC ONLY

The purple shading represents BC only content.

Assess

Assign the Personal Progress Checks—either as homework or in class—for each unit. Each Personal Progress Check contains formative multiple-choice and free-response questions. The feedback from the Personal Progress Checks shows students the areas where they need to focus.

Limits and Continuity

AP EXAM WEIGHTING

10-12% AB 4-7% BC

CLASS PERIODS ~22-23 AB ~13-14 BC

СНА	Introducing Calculus:
2	Can Change Occur at an Instant?
	 D C : T: '/ 1

- 1.2 Defining Limits and Using Limit Notation
- 1.3 Estimating Limit
 Values from Graphs
- 1.4 Estimating Limit
 Values from Tables
- 1.5 Determining Limits
 Using Algebraic
 Properties of Limits
- 1.6 Determining Limits
 Using Algebraic
 Manipulation
- 1.7 Selecting Procedures for Determining Limits
- 1.8 Determining Limits
 Using the Squeeze
 Theorem
- 1.9 Connecting Multiple
 Representations
 of Limits
- 1.10 Exploring Types of Discontinuities
- 1.11 Defining Continuity at a Point
- 1.12 Confirming Continuity over an Interval
- 1.13 Removing
 Discontinuities
- 1.14 Connecting Infinite
 Limits and Vertical
 Asymptotes
- 2 1.15 Connecting Limits at Infinity and Horizontal Asymptotes
- 1.16 Working with the
 Intermediate Value
 Theorem (IVT)

UNIT 2

Differentiation: Definition and Basic Derivative Rules

AP EXAM WEIGHTING

10-12% AB 4-7% BC

CLASS PERIODS ~13-14 AB ~9-10 BC

CHA 2	2.1	Defining Average and Instantaneous Rates of Change at a Point
CHA 1 4	2.2	Defining the Derivative of a Function and Using Derivative Notation
CHA 1	2.3	Estimating Derivatives of a Function at a Point
FUN 3	2.4	Connecting Differentiability and Continuity: Determining When Derivatives Do and Do Not Exist
FUN 1	2.5	Applying the Power Rule
FUN 1	2.6	Derivative Rules: Constant, Sum, Difference, and Constant Multiple
FUN LIM 1	2.7	Derivatives of $\cos x$, $\sin x$, e^x , and $\ln x$
FUN 1	2.8	The Product Rule
FUN 1	2.9	The Quotient Rule
FUN 1	2.10	Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions

Personal Progress Check 1

Multiple-choice: ~45 questions Free-response: 3 questions (partial)

Personal Progress Check 2

Multiple-choice: ~30 questions Free-response: 3 questions (partial)

NOTE: Partial versions of the free-response questions are provided to prepare students for more complex, full questions that they will encounter on the AP Exam.

Differentiation: Composite, Implicit, and **Inverse Functions**

AP EXAM WEIGHTING

9-13% AB 4-7% BC

CLASS PERIODS

~10-11 AB ~8-9 BC

- FUN 3.1 The Chain Rule
- FUN 3.2 Implicit Differentiation
- FUN
- 3.3 Differentiating Inverse unctions
- FUN
- Differentiating nverse Trigonometric Functions
- FUN
- Selecting Procedures or Calculating **Derivatives**
- FUN
- 3.6 Calculating Higher-**Order Derivatives**

Contextual **Applications of** Differentiation

AP EXAM WEIGHTING

10-15% AB 6-9% BC

CLASS PERIODS

~10-11 AB ~6-7 BC

- CHA 4.1 Interpreting the Meaning of the Derivative in Context
- СНА Straight-Line Motion: Connecting Position, Velocity, and Acceleration
- CHA 4.3 Rates of Change in Applied Contexts Other Than Motion
- СНА 4.4 Introduction to Related Rates
- 4.5 Solving Related Rates **Problems**
- СНА **4.6** Approximating Values of a Function Using Local Linearity and Linearization
- LIM 4.7 Using L'Hospital's Rule for Determining Limits of Indeterminate Forms

Analytical Applications of Differentiation

AP EXAM WEIGHTING

15-18% AB 8-11% BC

CLASS PERIODS ~15-16 AB ~10-11 BC

- FUN 5.1 Using the Mean Value Theorem
- FUN 5.2 Extreme Value Theorem, Global Versus Loca Extrema, and Critical
- 5.3 Determining Intervals on Which a Function Is FUN Increasing or Decreasing
- 5.4 Using the First FUN Derivative Test to Determine Relative (Local) Extrema
- 5.5 Using the Candidates FUN Test to Determine Absolute (Global) Extrema
- **Determining Concavity** 5.6 FUN of Functions over Their Domains
- FUN 5.7 Using the Second **Derivative Test to Determine Extrema**
- FUN 5.8 Sketching Graphs of Functions and Their Derivatives
- FUN Connecting a Function, Its First Derivative, and
- 5.10 Introduction to Optimization Problems FUN
- **5.11 Solving Optimization** FUN Problems
- **5.12** Exploring Behaviors of FUN **Implicit Relations**

Personal Progress Check 3

Multiple-choice: ~15 questions Free-response: 3 questions (partial/full)

Personal Progress Check 4

Multiple-choice: ~15 questions Free-response: 3 questions

Personal Progress Check 5

Multiple-choice: ~35 questions Free-response: 3 questions

UNIT 6

Integration and Accumulation of Change

AP EXAM WEIGHTING 17-20% AB 17-20% BC CLASS PERIODS ~18-20 AB ~15-16 BC

		10 20 AB 10 10 B0
CHA 4	6.1	Exploring Accumulations of Change
LIM 1	6.2	Approximating Areas with Riemann Sums
LIM 2	6.3	Riemann Sums, Summation Notation, and Definite Integral Notation
FUN 1	6.4	The Fundamental Theorem of Calculus and Accumulation Functions
FUN 2	6.5	Interpreting the Behavior of Accumulation Functions Involving Area
FUN 3	6.6	Applying Properties of Definite Integrals
FUN 3	6.7	The Fundamental Theorem of Calculus and Definite Integrals
FUN 4	6.8	Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation
FUN 1	6.9	Integrating Using Substitution
FUN 1	6.10	Integrating Functions Using Long Division and Completing the Square
FUN 1	6.11	Integrating Using Integration by Parts BC ONLY
FUN 1	6.12	Using Linear Partial Fractions BC ONLY
LIM 1	6.13	Evaluating Improper Integrals BC ONLY
FUN 1	6.14	Selecting Techniques for Antidifferentiation

Differential Equations

AP EXAM WEIGHTING 6-12% AB 6-9% BC

CLASS PERIODS ~8-9 AB ~9-10 BC

CLASSI	LINIOD	3 ~6-9 AB ~9-10 BC
FUN 2	7.1	Modeling Situations with Differential Equations
FUN 3	7.2	Verifying Solutions for Differential Equations
FUN 2	7.3	Sketching Slope Fields
FUN 4	7.4	Reasoning Using Slope Fields
FUN 1	7.5	Approximating Solutions Using Euler's Method BC ONLY
FUN 1	7.6	Finding General Solutions Using Separation of Variables
FUN 1	7.7	Finding Particular Solutions Using Initial Conditions and Separation of Variables
FUN 3	7.8	Exponential Models with Differential Equations
FUN 3	7.9	Logistic Models with Differential Equations BC ONLY

Applications of Integration

AP EXAM WEIGHTING 10-15% AB 6-9% BC CLASS PERIODS ~19-20 AB ~13-14 BC

		10 20 AD 10 14 BC
CHA 1	8.1	Finding the Average Value of a Function on an Interval
CHA 1	8.2	Connecting Position, Velocity, and Acceleration of Functions Using Integrals
CHA 3	8.3	Using Accumulation Functions and Definite Integrals in Applied Contexts
CHA 4	8.4	Finding the Area Between Curves Expressed as Functions of <i>x</i>
CHA 1	8.5	Finding the Area Between Curves Expressed as Functions of y
CHA 2	8.6	Finding the Area Between Curves That Intersect at More Than Two Points
CHA 3	8.7	Volumes with Cross Sections: Squares and Rectangles
CHA 3	8.8	Volumes with Cross Sections: Triangles and Semicircles
CHA 3	8.9	Volume with Disc Method: Revolving Around the <i>x</i> - or <i>y</i> -Axis
CHA 2	8.10	Volume with Disc Method: Revolving Around Other Axes
CHA 4	8.11	Volume with Washer Method: Revolving Around the <i>x</i> - or <i>y</i> -Axis
CHA 2	8.12	Volume with Washer Method: Revolving Around Other Axes
СНА 3	8.13	The Arc Length of a Smooth, Planar Curve and Distance Traveled BC ONLY

Personal Progress Check 6

Multiple-choice:

- ~25 questions (AB)
- ~35 questions (BC)

Free-response: 3 questions

Personal Progress Check 7

Multiple-choice:

- ~15 questions (AB)
- ~20 questions (BC)

Free-response: 3 questions

Personal Progress Check 8

Multiple-choice: ~30 questions Free-response: 3 questions

Parametric Equations, Polar Coordinates, and **Vector-Valued** Functions BC ONLY

AP EXAM WEIGHTING

N/A AB

11-12% BC

CLASS PERIODS N/A AB

~10-11 BC

- 9.1 Defining and **Differentiating Parametric Equations**
- CHA 9.2 Second Derivatives of Parametric **Equations**
- 9.3 Finding Arc Lengths of Curves Given by Parametric **Equations**
- CHA 9.4 Defining and **Differentiating Vector-Valued Functions**
- FUN 9.5 Integrating Vector-Valued Functions
- FUN 9.6 Solving Motion **Problems Using** Parametric and Vector-**Valued Functions**
- FUN 9.7 Defining Polar Coordinates and Differentiating in **Polar Form**
- CHA 9.8 Find the Area of a Polar Region or the Area Bounded by a Single **Polar Curve**
- CHA 9.9 Finding the Area of the Region Bounded by Two Polar Curves

Infinite UNIT Sequences and 10 Series BC ONLY

AP EXAM WEIGHTING

N/A AB

17-18% BC

CLASS PERIODS

N/A AB

~17-18 BC

- 10.1 Defining Convergent and Divergent Infinite Series
- LIM 10.2 Working with **Geometric Series**
- LIM 10.3 The *n*th Term Test for Divergence
- LIM 10.4 Integral Test for Convergence
- LIM 10.5 Harmonic Series and p-Series
- LIM 10.6 Comparison Tests for Convergence
- LIM 10.7 Alternating Series Test for Convergence 3
- LIM 10.8 Ratio Test for Convergence
- LIM 10.9 Determining Absolute or Conditional Convergence
- LIM 10.10 Alternating Series **Error Bound**
- 10.11 Finding Taylor Polynomial Approximations of Functions
- 10.12 Lagrange Error Bound
- 10.13 Radius and Interval of Convergence of **Power Series**
- LIM 10.14 Finding Taylor or **Maclaurin Series for** a Function
- 10.15 Representing Functions as **Power Series**

Personal Progress Check 9

Multiple-choice: ~25 questions Free-response: 3 questions

Personal Progress Check 10

Multiple-choice: ~45 questions Free-response: 3 questions