Email: jxding17@gmail.com https://djx06.github.io/ Mobile: +1-206-383-4296

EDUCATION

University of Washington

Seattle, WA Start at Sept. 2024

Ph.D. in Electrical & Computer Engineering Master of Science in Technology Innovation

Sept. 2022 - March 2024

Tsinghua University

Beijing, China

Master of Engineering in Data Science and Information Technology Bachelor of Engineering in Computer Science and Technology

Sept. 2021 - March 2024 Sept. 2017 - June 2021

Research Interests

Human Computer Interaction, Ubiquitous Computing

Wearable Sensing, Assisting Reading by LLM, Wireless, Acoustic Ranging

Publications

- * denotes equal contributions.
 - [1] (Under Review) Ding, J.*, Zhao, B.* et al. 2025. : EnWord: Unknown Word Detection for English as a Second Language (ESL) Learners Using Gaze and Pre-trained Language Models. CHI Conference on Human Factors in Computing Systems (CHI 25).
 - [2] (Under Review) Chatterjee, I.*, **Ding, J.*** et al. 2025. FlowRing: Integrating Microgestures and Surface Interaction for Seamless XR Input. CHI Conference on Human Factors in Computing Systems (CHI 25).
 - [3] Ding, J., Chatterjee, I. et al. 2023. Demo of FlowRing: Seamless Cross-Surface Interaction via Opto-Acoustic Ring. Adjunct Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (UIST 24 Adjunct).
 - [4] (Best Demo) Waghmare, A., Ding, J. et al. 2023. Demo of Z-Ring: Context-Aware Subtle Input Using Single-Point Bio-Impedance Sensing. Adjunct Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology (UIST 23 Adjunct).
 - [5] **Ding, J.***, Zhao, B.* et al. 2023. GazeReader: Detecting Unknown Word Using Webcam for English as a Second Language (ESL) Learners. Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (CHI EA 23).
 - [6] Wang, Y.*, **Ding**, J.* et al. 2022. FaceOri: Tracking Head Position and Orientation Using Ultrasonic Ranging on Earphones. CHI Conference on Human Factors in Computing Systems (CHI 22).

Experience

NEWT Lab, University of Washington

Seattle, WA

Research Assistant, Advisor: Prof. Akshay Gadre

Sept. 2024 - Present

- Conduct research in using **millimeter wave** radar to tracking human activity.
- Build hardware prototypes to transmit and receive the millimeter wave and use synthetic-aperture radar (SAR) to generate images.

AnalyticDB, Alibaba Cloud

Beijing, China

Software Engineer

June. 2024 - Sept. 2024

- o Developed a churn prediction model and a payment prediction model of game users based on **Behavior Sequence** Transformer with the accuracy of 71.3%, potentially saving millions of dollar for game company.
- Trained the model distributively using **DeepSpeed**. Deployed the model and inferenced the prediction results using **Triton**. Processed game log data using Spark.

Ubicomp Lab, University of Washington

Seattle, WA

Research Assistant, Advisor: Prof. Shwetak Patel

Sept. 2022 - March 2024

- Built a ring prototype with a contact microphone and an optic flow sensor and connected it to the PC by BLE.
- o Designed and trained an opto-acoustic multimodal model to detect microgestures and on-surface interaction.

• Developed a music player demo to show that the ring can enable **context-aware interactions**.

Pervasive HCI Lab, Tsinghua University

Beijing, China

Research Assistant, Advisor: Prof. Yuanchun Shi, Prof. Yuntao Wang

June 2020 - June 2024

- Proposed and implemented the idea of detecting unknown words for English learners by a gaze-text multimodal model and using a **language model** to improve the accuracy on noisy data collected by a webcam. [5]
- Solved calibration issue in **distributed acoustic ranging** by synchronizing time among nodes using **Bluetooth**.
- Improved the acoustic ranging accuracy in low SNR scenarios when tracking head orientation using earbuds. [6]

SELECTED PROJECTS

ReadEasy: an LLM-based Academic Reading Assistant

Sept. 2023 - Present

- Led the development and definition of ReadEasy, an **LLM**-based app that assists academic reading by providing personalized word explanation and summary using **OpenAI Assistants API**.
- Built a transformer-based model to detect unknown words using gaze and text data with 97.6% accuracy.
- o Developed an web-based PDF viewer using **React** and **PDF.**; is with personalized word explanation and summary.

FlowRing: Integrating Microgestures and Surface Interaction for XR Input June 2023 - Nov. 2023

- Detected in-air gestures and on-surface interaction with a ring using CNN+LSTM and achieved 92.7% accuracy.
- Transmitted data via **BLE** and read acoustic data from the contact microphone using interrupt on Seeed Xiao.
- Used CUDA to train the model on GPUs and built a multithreaded app to operate a music player by gestures.

GazeReader: Unknown Word Detection Using Gaze and Language Model Jan. 2023 - Sept. 2023

- Implemented a transformer-based model to detect unknown words in which the positional data of gaze and text is embedded using an **encoder-decoder model** and the textual information is embedded using **RoBERTa**. The accuracy is 97.6% and the F1-score is 71.1%.
- Demonstrated the robustness of our method on less-precise webcam-based gaze data and achieved the accuracy of 97.3% and the F1-score of 65.1%.

AcousLink: Distributed Ultrasonic Ranging Method and Applications

Apr. 2022 - Present

- Implemented the **FMCW**-based ultrasonic ranging module with a 100kHz sampling rate on Nordic Semi nRF52840-DK using the tweeter and high sensitivity microphone using **C**.
- Enabled calibration-free ranging by leveraging **Bluetooth** for the time synchronization between two boards.
- Achieved 2.5 cm tracking accuracy in the range of 5 m.

FaceOri: Tracking Head Position and Orientation Using Acoustic Ranging July 2020 - Sept. 2021

- Calculated the real-time distance between the speaker and the microphones embedded in the commodity earbuds using the **FMCW**-based acoustic ranging method to detect face orientations.
- Conducted user study and achieved a median absolute error of 10.9 mm in the distance, 3.7 in yaw, and 5.8 in pitch, better than AirPods Pro.
- Enabled the attention detection with 93.5% accuracy and built an **Android** app with auto-screen-lock function.

TECHNICAL SKILLS

Languages: C/C++, Python, JavaScript, TypeScript, React, Node.js, HTML/CSS, Java

Technologies: Pytorch, Tensorflow, Android, Unity, Linux, Firebase, CUDA, Git, Django, Azure **Electrical engineering skills**: oscilloscope, function generator, logic analyzer, multimeter, soldering

Wireless: Bluetooth, BLE