Matrix-Conic

SHREYASH CHANDRA PUTTA

October 16, 2022

Contents

- 1 Problem Statement
- 2 Solution
- 3 Software
- 4 Conclusion

1 Problem Statement

To find the locus of mid point of \overline{PQ} where **P** is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and **Q** is a point on the locus $y^2 = 8x$

Symbol	Value	Description
P	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	given point
Q	$\begin{pmatrix} x' \\ y' \end{pmatrix}$	point on given locus
X	$\begin{pmatrix} x \\ y \end{pmatrix}$	mid point of \overline{PQ}

Table 1: Parameters

2 Solution

- 1 Let X be any point on the Locus formed by the midpoint joining the point P and any
- 1 point on the given locus say, point Q

2 Where,
$$\mathbf{P} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{Q} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ and $\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix}$

 $\mathbf{2}$

Figure 1: Found the locus equation

The given equation of parabola $y^2 = 8x$ can be written in the general quadratic form as

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0 \tag{1}$$

where

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \qquad (2) \quad 4\mathbf{X}^{\mathsf{T}}\mathbf{V}\mathbf{X} + 4\mathbf{u}^{\mathsf{T}}\mathbf{X} + 8 = 0 \quad (11)$$

$$\mathbf{u} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}, \qquad (3) \qquad \text{Therefore, required Locus equation of the mid point of given point } \mathbf{P} \text{ and } \mathbf{Q} \text{ is obtained}$$

f = 0 (4) as:

Substitute \mathbf{Q} and data in eq1 .

$$\mathbf{Q}^{\top}\mathbf{V}\mathbf{Q} + 2\mathbf{u}^{\top}\mathbf{Q} = 0 \tag{5}$$

By section formula mid point of line joining ${\bf P}$ and ${\bf Q}$ as ${\bf X}$ is:

$$\mathbf{X} = \frac{\mathbf{Q} + \mathbf{P}}{2} \tag{6}$$

$$\mathbf{Q} = 2\mathbf{X} - \mathbf{P} \tag{7}$$

From eq5 and eq7 We get

$$(2\mathbf{X} - \mathbf{P})^{\top} \mathbf{V} (2\mathbf{X} - \mathbf{P}) + 2\mathbf{u}^{\top} (2\mathbf{X} - \mathbf{P}) = 0 \quad (8)$$

$$(2\mathbf{X}^{\top}\mathbf{V} - \mathbf{P}^{\top}\mathbf{V})(2\mathbf{X} - \mathbf{P}) + 2\mathbf{u}^{\top}2\mathbf{X} - 2\mathbf{u}^{\top}\mathbf{P} = 0 \quad (9)$$

$$(2\mathbf{X}^{\top}\mathbf{V}2\mathbf{X} - 2\mathbf{X}^{\top}\mathbf{V}\mathbf{P}) + 2\mathbf{u}^{\top}2\mathbf{X} - 2\mathbf{u}^{\top}\mathbf{P} = 0 \quad (10)$$

$\mathbf{X}^{\mathsf{T}}\mathbf{V}\mathbf{X} + \mathbf{u}^{\mathsf{T}}\mathbf{X} + 2 = 0 \quad (12)$

3 Software

Download the following code using,

svn co https://github.com/chanduputta/ FWC-Module1Assignments/blob/ main/conic/code/conic.py

and execute the code by using command cmd:Python3 conic.py

4 Conclusion

We found the locus of mid point of \overline{PQ} where **P** is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and **Q** is a point on the locus $y^2 = 8x$ as $y^2 = 4x - 2$.