CS5800 Introduction

CS5800-07 Algorithms

Fall 2020, Silicon Valley Campus

Introduction

- Goals: learn the basic concepts for designing and analyzing algorithms
- Instructional Staff:
 - Instructor: Anurag Bhardwaj
 - TA: Vishal Annamaneni, Zijun Wan, Gongzhan Xie
- Evaluation:
 - Midterm exam: 30%Final exam: 30%
 - Individual assignments: 40%
- Suggested book: Introduction to Algorithms, Third Edition, by Cormen, Leiserson, Rivest, Stein from MIT Press

CS5800 Module 1

What is an Algorithm?

A Sequence of Instructions to Perform a Task

Formal Definition

- A process or set of rules to be followed in calculations or other problem-solving operations, especially by a computer: a basic algorithm for division
- What is important in an algorithm?
 - 1. Its correctness: it does what is suppose to do
 - 2. How fast it is: its time performance
 - 3. How many resources it uses:
 - Main memory
 - Secondary memory
 - Communication
 - · Others
- Example: What is an algorithm?
- There can be many algorithms for the same problem, but

Etymology

- The word algorithm comes from a famous mathematician
 - Muḥammad ibn Mūsā al'Khwārizmī (~780-840 AC)
 - He worked in the House of Wisdom of the Caliphate of Baghdad
- Main contributions:
 - The Compendious Book on Calculation by Completion and Balancing (~820) (Arab: al-Kitāb al-mukhtaṣar fī ḥisāb **al-jabr** wal-muqābala)
 - The Book of Addition and Subtraction According to the Hindu Calculation
 - Astronomical tables of Siddhanta (includes trigonometric tables, 820)
 - Book of the Description of the Earth (833)

Historical Context: Caliphate of Baghdad

Example: Euclid's Algorithm

- This algorithm finds the greatest common divisor (GCD) of two numbers
 - Replace the largest number by the difference of the largest with the smallest
 - Stop when the two numbers are equal
 - That number is the GCD
- This is probably the oldest attributed algorithm (300 BC)
- Can be done faster?
 - Yes. Replace the largest by the reminder of dividing the largest with the smallest
 - Steps are proportional to 5 times the number of digits of the smallest number
 - That is $5 \times \log_{10}(\text{smallest number})$

(Gabriel Lamé, 1844)

Can be done faster?

Comparing Functions

- Compare the two running time functions in ms of algorithms F & G:
 - $f(n) = n^2 + 1$
 - $g(n) = n \log_{10} n + 1000 n + 9999$
- Value of the functions for n = 100:
 - $f(100) = 10,001 \cong 10$ sec. vs $g(100) = 110,199 \cong 110$ sec.
 - So can we say that F is better than G?
- What about *n* = 10,000?
 - $f(10,000) = 100,100,101 \cong 100,000$ sec. $\cong 27.7$ hours
 - $g(10,000) = 10,049,999 \cong 10,000 \text{ sec.} \cong 2.7 \text{ hours}$
- We need to focus in the dominant term (rate of growth)

Asymptotic Notations

Mathematical Tools To Compare the Efficiency of Different Algorithms

Motivation

- A mathematical tool (framework) used for describing algorithm's efficiency, considering the two abstractions we saw:
 - Constant factors are not important.
 - The most dominating term matters (growth rate)
- Fairly theoretical, mostly for understanding/gaining insights in analysis of algorithms
 - Formal definitions (big-Oh, big-Omega, ...)
- Note, in real world, constant factors and non-dominating terms could matter (sometimes seriously)
- Let's begin the theoretical journey!

O-Notation (Big-Oh)

- We say (define):
 - A function f(n) is in big-Oh of g(n) (denoted O(g(n))) iff (if and only if) there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all n that's greater than or equal to n_0 .
- In other words,
 - O(g(n)) is a set of all functions (call any such function x(n), to avoid confusion with f(n)) where there exist positive constants c and n_0 such that $0 \le x(n) \le cg(n)$ for all n that's greater than or equal to n_0 .
 - And f(n) is a member of the set O(g(n)) (is in the set).
 - Proper notation would be: $f(n) \in O(g(n))$, but we abuse =, and write f(n) = O(g(n)) most of the time.
- What does all this mean?
 - · Study the worked examples in the following slides

Big-Oh Notation Proof Examples

Time To Prove Big-Oh Notations Formally

$$|\sin \frac{1}{2}n^2 - 3n = O(n^2)?$$

 $|\text{S} \, \frac{1}{2} n^2 - 3n = O(n^2)? \quad \text{A function } f(n) \text{ is in big-Oh of } g(n) \text{ (denoted } O(g(n))) \\ \text{iff (if and only if) there exist positive constants } c \text{ and } n_0 \\ \text{such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0.$

• If you think it is, and need to prove it, you must find c and n_0 such that

$$0 \le \frac{1}{2}n^2 - 3n \le cn^2$$

for all $n \ge n_0$

- This is an easy case, after trying a few possible c and n_0 with some intuitions:
 - As long as c is at least $\frac{1}{2}$, the inequality holds for any non-negative n!
 - Thus, we can simply let $c=\frac{1}{2}$, $n_0=6$, which satisfies the definition (the inequality above) of big-Oh.
 - In fact, there are infinitely many valid c and n_0 that can be used for the proof.

Is
$$100n^2 + 123n = O(n^2)$$
?

A function f(n) is in big-Oh of g(n) (denoted O(g(n))) iff (if and only if) there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

• If you think it is, and need to prove it, you must find c and n_0 such that

$$0 < 100n^2 + 123n < cn^2$$

for all $n \geq n_0$

- This is another easy case, after trying a few possible c and n_0 with some intuitions:
 - You soon realize that c must be greater than 100. Let c = 101.
 - Then for what values of n does $100n^2 + 123n \le 101n^2$?
 - Just solve the inequality, and you get $n \ge 123$, which gives us 123 for n_0 .

$$18 100n^2 + 123n = O(n^3)?$$

• If you think it is, and need to prove it, you must find c and n_0 such that

$$0 \le 100n^2 + 123n \le cn^3$$

for all $n \ge n_0$

- This is another easy case, after trying a few possible c and n_0 with some intuitions:
 - c doesn't have to be very big here, because we have n^3 that grows fast. Let
 - Then for what values of n is $100n^2 + 123n < n^3$?
 - No need to solve the inequality precisely. Just divide both sides by n^2 , which gives us $n \ge 100 + \frac{123}{n}$, where $100 + \frac{123}{n} \le 223$, and this (223) is our n_0 .

$$\ln \frac{1}{200} n^2 = O(n)?$$

 \bullet If you think it is, and need to prove it, you must find c and n_0 such that

$$0 \le \frac{1}{200}n^2 \le cn$$

for all $n \ge n_0$

- However, you soon realize that no matter what values of c and n_0 you choose, there'll be always some n that makes $\frac{1}{200}n^2>cn$
 - Easy, just pick n=200c+1 for any c. Doesn't matter what n_0 is (in this case). This is called counterexample.
- Therefore, $\frac{1}{200}n^2 = O(n)$ is not true!

Lesson From Visualization

Rate of growth of a higher order term (n^2) can't be overcome by a constant factor c multiplied to a lower order term (n), no matter how big c can get.

More Intuitions of Big-Oh

- Lower order term (e.g., 123n in $100n^2 + 123n$) can be always ignored by setting n_0 sufficiently large.
 - $\bullet\,$ Highest order term is the "dominating" term.
- Rule of thumb: Pick the highest order term only, drop the constant factor, and that's your best big-Oh notation for a given function. E.g.,
 - $\frac{1}{2}n^2 3n$: Pick the highest order term only $(\frac{1}{2}n^2)$ and drop the constant factor $(\frac{1}{2})$, which gives $O(n^2)$.
 - $100n^2 + 123n$: Same, pick $100n^2$, drop 100, giving $\mathcal{O}(n^2)$.

Bounding Properties of Asymptotic Notations

Useful Intuitions On Asymptotic Notations

Big-Omega Notation: Asymptotic Lower Bound

- Not as frequently mentioned as big-Oh, but still important notation for asymptotic lower bound
 - E.g., algorithm A takes at least $\Omega(n)$ time for input size n
- Exactly the same patterned definition, just the different inequality:
 - A function f(n) is in $\Omega(g(n))$ iff there exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all n that's greater than or equal to n_0 .
- Exercise: Prove that $n^4 + 12n^3 34n^2 + 56n + 78$
 - Is in $\Omega(n^4)$, in $\Omega(n^3)$, in $\Omega(n^2)$, in $\Omega(n^1)$, and in $\Omega(1)$.
 - But not in $\Omega(n^5)$.

Big-Oh Is Upper Bound

- If f(n) is in $O(n^2)$, then f(n) is also in $O(n^3)$, $O(n^4)$,
 E.g., $f(n) = \frac{1}{200}n^2 + 123n$.
- But, f(n) is not in O(n) for the above example!
- The function in O() for a given function f(n) is an "asymptotic" upper bound.
- There are many upper bounds, and we'd prefer to find the "tight" upper bound.
- In the above example, it's $O(n^2)$.
 - Because it's tighter than all other $O(n^k)$ for any k > 2.
 - And also because f(n) cannot be in O(n).

Theta Notation: Asymptotic Tight Bound

- If f(n) = O(g(n)) and also $f(n) = \Omega(g(n))$, we say $f(n) = \Theta(g(n))$. In other words,
 - A function f(n) is in $\Theta(g(n))$ iff there exist positive constants c_1, c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all n that's greater than or equal to n_0 .
- Graphic examples of Θ , O, and Ω (CLRS Fig. 3.1)

Small-oh/omega Notations: Non-tight Bounds

- $2n^2 = O(n^2)$ is asymptotically tight, but $2n = O(n^2)$ is not tight.
- Use *o*-notation to denote an upper bound that is not asymptotically tight. Define:
 - A function f(n) is in o(g(n)) iff for any positive constant c>0, there exists a constant $n_0>0$ such that $0\leq f(n)< \operatorname{cg}(n)$ for all n that's greater than or equal to n_0 .
- E.g.: $2n = o(n^2)$, but $2n^2 \neq o(n^2)$.
- Similar definition for $f(n) = \omega(g(n))$.

Useful Relationships of Asymptotic Notations

Different Asymptotic Notations Are Related

Properties of Asymptotic Notations

$$f(n) = o(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

- $f(n) = \omega(g(n))$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.
- Transitivity
 - f(n) = X(g(n)) and g(n) = X(h(n)) implies f(n) = X(h(n)). (X can be any of $O, \Omega, \Theta, o, \omega$.
- Reflexivity: f(n) = X(f(n)) for $X = 0, \Omega, \Theta$.
- Symmetry: $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$.
- Transpose symmetry:
 - f(n) = O(g(n)) iff $g(n) = \Omega(f(n))$.
 - f(n) = o(g(n)) iff $g(n) = \omega(f(n))$.

Analogy with Numeric Inequalities

- f(n) = O(g(n)) is like $a \le b$.
- $f(n) = \Omega(g(n))$ is like $a \ge b$.
- $f(n) = \Theta(g(n))$ is like a = b.
- f(n) = o(g(n)) is like a < b.
- $f(n) = \omega(g(n))$ is like a > b.

Asymptotic Notations and Algorithm Analysis

How Asymptotic Notations Are Used In Algorithm Analysis

Lesson Objectives

- Analyze simple algorithms for the asymptotic notations of their running time performance (time complexities)
- Prove formally that the derived asymptotic notations are correct.

Selection Sort Analysis

- Selection sort works in two steps:
 - Find the index of the minimum of array values
 - Place the minimum in the correct position
 - And repeat this process on the smaller array
- Analysis of selection sort:
 - Time for FIND_MIN_INDEX: $T_1(n) = \Theta(n)$
 - Time for INS_SORT: $T_2(n) = T_1(n) + c + T_2(n-1)$
 - This is a recurrence!
 - Solving recurrence, get $T_2(n) = \Theta(n^2)$
- The same is derived with more detail in the following slides

Selection Sort

- Visit http://visualgo.net/sorting
 - Click SEL, then Sort to see how selection sort algorithm works
- Note sub-problem decomposition:
 - For array A[i,n]:
 - Find index of minimum of array values in index i to n. Call it j.
 - Swap A[i] and A[j].
 - Repeat the above for subarray A[i+1,n].
 - Of course if i=n, nothing to do, so just stop.

FindMinIndex(A, s)

- Input: Array A[1,n], starting index s.
- Output: Index j (between s and n) of the minimum of A[s,n]
- E.g., if A={55,88,33,44,99} and s=2, return 3 (the index of 33, which is the minimum of A[2,5])
- Steps:
 - indexOfMinimumSoFar = s
 - for i = s to n do
 - if A[i] < A[indexOfMinimumSoFar]:
 - indexOfMinimumSoFar = i
 - return indexOfMinimumSoFar

SelSort(A)

- Let m=FindMinIndex(A,1). Then swap A[1] and A[m].
- Let m=FindMinIndex(A,2). Then swap A[2] and A[m].
- ...
- Steps:
 - for s = 1 to n:
 - m = FindMinIndex(A,s)
 - tmp = A[m]; A[m] = A[s]; A[s] = tmp; // Swap A[s] and A[m]

SelSort(A) Running Time Analysis

```
• Count number of operations executed
```

```
• for s = 1 to n: // n times of 1 comparison and 1 increment, plus:
```

- tmp = A[m]; A[m] = A[s]; A[s] = tmp; // 3
- Therefore, T_SelSort(n) = $5n + \sum_{s=1}^{n} \# FindMinIndex(A, s)$
- # FindMinIndex(A,s):
 - indexOfMinimumSoFar = s // 1
 - for i = s to n: // n-s+1 times of1 comparison and 1 increment, plus:
 - if A[i] < A[indexOfMinimumSoFar]: // 1
 - indexOfMinimumSoFar = i // 0 ~ 1 (1 if condition is true, 0 otherwise)
 - return indexOfMinimumSoFar // 1
- # FindMinIndex(A,s) = $2(n-s+1)+2+(0^{-1})*(n-s+1)$ $\geq 2(n-s)+c_1 \leq 3(n-s)+c_2 \Rightarrow \Theta(n-s)$

Final T_SelSort(n): $\Theta(n^2)$

• T_SelSort(n) =
$$5n + \sum_{s=1}^{n} \# FindMinIndex(A, s)$$

 $\geq 5n + 2\{(n-1) + (n-2) + \dots + 1\} + c_1 n$
= $2\frac{n(n-1)}{2} + 5n + c_1 n$
= $n^2 + c_2 n$

• T_SelSort(n) =
$$5n + \sum_{s=1}^{n} \# FindMinIndex(A, s)$$

 $\leq 5n + 3\{(n-1) + (n-2) + \dots + 1\} + c_1 n$
= $3\frac{n(n-1)}{2} + 5n + c_1 n$
= $\frac{3}{2}n^2 + c_3 n$

• These 2 inequalities fit the definition of $\Theta(n^2)$!