

Turing Machines

Reading: Chapter 8

Turing Machines are...

 Very powerful (abstract) machines that could simulate any modern day computer (although very, very slowly!)

For every input, answer YES or NC

- Why design such a machine?
 - If a problem cannot be "solved" even using a TM, then it implies that the problem is undecidable
- Computability vs. Decidability

A Turing Machine (TM)

B: blank symbol (special symbol reserved to indicate data boundary)

You can also use:

→ for R

← for L

Transition function

- One move (denoted by |---) in a TM does the following:
 - $\delta(q,X) = (p,Y,D)$

- X is the current tape symbol pointed by tape head
- State changes from q to p
- After the move:
 - X is replaced with symbol Y
 - If D="L", the tape head moves "left" by one position.
 Alternatively, if D="R" the tape head

Alternatively, if D="R" the tape head moves "right" by one position.

JD of a TM

- Instantaneous Description or ID :
 - $X_1X_2...X_{i-1}qX_iX_{i+1}...X_n$ means:
 - q is the current state
 - Tape head is pointing to X_i
 - $X_1X_2...X_{i-1}X_iX_{i+1}...X_n$ are the current tape symbols
- $\delta(q, X_i) = (p, Y, R)$ is same as: $X_1...X_{i-1}qX_i...X_n$ |---- $X_1...X_{i-1}YpX_{i+1}...X_n$
- $\delta(q, X_i) = (p, Y, L)$ is same as: $X_1...X_{i-1}qX_i...X_n$ |---- $X_1...pX_{i-1}YX_{i+1}...X_n$

Way to check for Membership

Is a string w accepted by a TM?

Initial condition:

■ The (whole) input string w is present in TM, preceded and followed by infinite blank symbols

Final acceptance:

- Accept w if TM enters <u>final state</u> and halts
- If TM halts and not final state, then reject

Example: L = {0ⁿ1ⁿ | n≥1}

Strategy:

$$w = 000111$$

TM for $\{0^n1^n \mid n \ge 1\}$

- Mark next unread 0 with X and move right
- 2. Move to the right all the way to the first unread 1, and mark it with Y
- Move back (to the left) all the way to the last marked X, and then move one position to the right
- If the next position is 0, then goto step 1.
 - Else move all the way to the right to ensure there are no excess 1s. If not move right to the next blank symbol and stop & accept.

TM for {0ⁿ1ⁿ | n≥1}

	Next Tape Symbol				
Curr. State	0	1	X	Y	В
 \rightarrow q ₀	(q_1,X,R)	-	-	(q_3,Y,R)	-
q_1	(q ₁ ,0,R)	(q ₂ ,Y,L)	-	(q_1,Y,R)	-
q_2	(q ₂ ,0,L)	-	(q_0, X, R)	(q ₂ ,Y,L)	-
q_3	-	-	-	(q_3,Y,R)	(q_4,B,R)
*q ₄	-		-	-	-

TMs for calculations

- TMs can also be used for calculating values
 - Like arithmetic computations
 - Eg., addition, subtraction, multiplication, etc.

Example 2: monus subtraction

"
$$m -- n$$
" = $max\{m-n,0\}$
 $0^{m}10^{n} \rightarrow \dots B 0^{m-n} B.. (if m>n)$
...BB...B.. (otherwise)

- For every 0 on the left (mark X), mark off a 0 on the right (mark Y)
- 2. Repeat process, until one of the following happens:
 - 1. // No more 0s remaining on the left of 1 Answer is 0, so flip all excess 0s on the right of 1 to Bs (and the 1 itself) and halt
 - 2. //No more 0s remaining on the right of 1 Answer is m-n, so simply halt after making 1 to B

Example 3: Multiplication

 \bullet 0^m10ⁿ1 (input), 0^{mn}1 (output)

Pseudocode:

- Move tape head back & forth such that for every 0 seen in 0^m, write n 0s to the right of the last delimiting 1
- Once written, that zero is changed to B to get marked as finished
- 3. After completing on all m 0s, make the remaining n 0s and 1s also as Bs

Calculations vs. Languages

A "calculation" is one that takes an input and outputs a value (or values)

The "language" for a certain calculation is the set of strings of the form "<input, output>", where the output corresponds to a valid calculated value for the input

A "language" is a set of strings that meet certain criteria

E.g., The language L_{add} for the addition operation

. .

. . .

Membership question == verifying a solution e.g., is "<15#12,27>" a member of L_{add} ?

Language of the Turing Machines

Recursive Enumerable (RE) language

Variations of Turing Machines

В

В

0

TMs with storage

В

В

Generic description
Will work for both a=0 and a=1

[q,a]: where q is current state, a is the symbol in storage

Are the standard TMs equivalent to TMs with storage?

• $\delta([q_1,a],B) = ([q_2,B], B, R)$

Yes

Standard TMs are equivalent to TMs with storage - Proof

<u>Claim:</u> Every TM w/ storage can be simulated by a TM w/o storage as follows:

- For every [state, symbol] combination in the TM w/ storage:
 - Create a new state in the TM w/o storage
 - Define transitions induced by TM w/ storage

Since there are only finite number of states and symbols in the TM with storage, the number of states in the TM without storage will also be finite

Multi-track Turing Machines

TM with multiple tracks, but just one unified tape head

Multi-Track TMs

TM with multiple "tracks" but just one

head

E.g., TM for $\{wcw \mid w \in \{0,1\}^*\}$ but w/o modifying original input string

19

Second track mainly used as a scratch space for marking

Multi-track TMs are equivalent to basic (single-track) TMs

- Let M be a single-track TM
 - M = (Q, \sum , Γ , δ , q_0 ,B,F)
- Let M' be a multi-track TM (k tracks)
 - M' = (Q', \sum ', Γ ', δ ', q_0 , B, F')
 - $\delta'(q_i, \langle a_1, a_2, ..., a_k \rangle) = (q_j, \langle b_1, b_2, ..., b_k \rangle, L/R)$

Claims:

- For every M, there is an M' s.t. L(M)=L(M').
 - (proof trivial here)

Multi-track TM ==> TM (proof)

• For every M', there is an M s.t. L(M')=L(M).

- $M = (Q, \sum, \Gamma, \delta, q_0, [B,B,...], F)$
- Where:
 - Q = Q'

 - $\Gamma = \Gamma' \times \Gamma' \times \dots$ (k times for k-track)
 - $q_0 = q'_0$
 - F = F'
 - $\delta(q_i,[a_1,a_2,...a_k]) = \delta'(q_i, \langle a_1,a_2,...a_k \rangle)$
- Multi-track TMs are just a different way to represent single-track TMs, and is a matter of design convenience.

Main idea:

Create one composite symbol to represent every combination of k symbols

Multi-tape Turing Machines

- TM with multiple tapes, each tape with a separate head
 - Each head can move independently of the

Initially:

- The input is in tape #1 surrounded by blanks
- All other tapes contain only blanks
- The tape head for tape #1 points to the 1st symbol of the input
- The heads for all other tapes point at an arbitrary cell (doesn't matter because they are all blanks anyway)

A move:

- Is a function (current state, the symbols pointed by <u>all</u> the heads)
- After each move, each tape head can move independently (left or right) of one another

Multitape TMs = Basic TMs

- Theorem: Every language accepted by a ktape TM is also accepted by a single-tape TM
- Proof by construction:
 - Construct a single-tape TM with 2k tracks, where each tape of the k-tape TM is simulated by 2 tracks of basic TM
 - k out the 2k tracks simulate the k input tapes
 - The other k out of the 2k tracks keep track of the k tape head positions

Multitape TMs ≡ Basic TMs ...

- To simulate one move of the k-tape TM:
 - Move from the leftmost marker to the rightmost marker (k markers) and in the process, gather all the input symbols into storage
 - Then, take the action same as done by the k-tape TM (rewrite tape symbols & move L/R using the markers)

Non-deterministic TMs = Deterministic TMs

Non-deterministic TMs

- A TM can have non-deterministic moves:
 - $\delta(q,X) = \{ (q_1,Y_1,D_1), (q_2,Y_2,D_2), \dots \}$
- Simulation using a multitape deterministic TM:

Marker tape

- TMs == Recursively Enumerable languages
- TMs can be used as both:
 - Language recognizers
 - Calculators/computers
- Basic TM is <u>equivalent</u> to all the below:
 - 1. TM + storage
 - Multi-track TM
 - Multi-tape TM
 - 4. Non-deterministic TM
- TMs are like universal computing machines with unbounded storage