

Chương 2. Học có giám sát

Ts. Nguyễn An Tế

Khoa CNTT kinh doanh – ĐH Kinh tế TPHCM tena@ueh.edu.vn

2025

Nội dung

- 1. Học có giám sát
- 2. Một số phương pháp học có giám sát

- □ Học có giám sát (Supervised Learning) sắp xếp items vào K lớp biết trước → phân lớp (Classification)
 - xây dựng mô hình phân lớp dựa trên các quan sát đã biết (Learning by Examples)
 - xác định các lớp/nhãn (label): nominal, ordinal data
 - hồi quy (Regression): numerical data

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

3

1. Học có giám sát

- ☐ Học có giám sát (Supervised Learning)
 - trước khi khảo sát dữ liệu: chưa nhận diện được các lớp
 - sau khi khảo sát dữ liệu: tất cả các lớp đều được nhận diện liên quan đến những đặc trưng của dữ liệu

predefined classes: sau khi khảo sát dữ liêu!

- ☐ Phân lớp (Classification): sắp xếp items vào K lớp biết trước
 - gán nhãn, dự báo

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

5

1. Học có giám sát

☐ Phân lớp (Classification): ứng dụng dự báo

Thời tiết: có mưa hay không? Sức gió, độ ẩm,...

Kinh doanh: doanh số trong tháng sẽ tăng hay giảm ? Chỉ số tiêu dùng, yếu tố xã hội, lễ-Tết, sự kiện,...

Thị trường chứng khoán: cổ phiếu X lên hay xuống? Giá vàng, giá ngoại tệ, bất động sản,...

- \square Phân lớp nhị phân (*Binary Classification*): tổng số lớp K = 2
 - ứng dụng: chẩn đoán y khoa, ngân hàng-tín dụng, phát hiện gian lận, spam, ...
 - phương pháp phổ biến: Logistic Regression, Decision Trees,
 Support Vector Machine, Naïve Bayes, ...

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

7

- ☐ Phân lớp đa lớp (Multi-class Classification): tổng số lớp K > 2
 - ứng dụng: nhận dạng khuôn mặt (Face Recognition), chữ viết (Optical Character Recognition), giống loài sinh vật, ...
 - phương pháp phổ biến: Random Forest, Gradient Boosting,
 Logistic Regression, Support Vector Machine, ...

- □ Phân lớp đa nhãn (*Multi-label Classification*): 1 item có thể thuộc <u>nhiều hơn</u> 1 lớp
 - ứng dụng: phân loại (chủ đề) văn bản/ảnh, tagging, ...
 - phương pháp: cải biên từ các phương pháp binary/multi-class

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

9

1. Học có giám sát

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

- ☐ Quy trình 2 bước (Two-Step Process)
 - **B1:** Xây dựng mô hình phân lớp (*Model Construction*)
 - **B2:** Sử dụng mô hình phân lớp (*Model Usage*)
 - + Đánh giá mô hình phân lớp (độ chính xác, ...)
 - + Phân lớp những dữ liệu mới

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

11

1. Học có giám sát

- ☐ Bước B1: Xây dựng mô hình phân lớp
 - giai đoạn huấn luyện (*training*)

12

☐ Bước B2.1: Đánh giá mô hình phân lớp

• giai đoạn thử nghiệm, đánh giá (testing)

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

13

1. Học có giám sát

☐ Bước B2.2: Phân lớp dữ liệu mới

☐ Phương pháp có tham số (Parametric Methods)

output

"A learning model that summarizes data with a set of parameters of fixed size (independent of the number of training examples) is called a parametric model." [Russell+]

intput

"... parametric where we assume that the sample is drawn from some distribution that obeys a known model, for example, Gaussian." [Alpaydin]

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

- ☐ Phương pháp có tham số (Parametric Methods)
 - mô hình được dựa trên một số lượng parameters không nhiều
 - phương pháp ước lượng các tham số của phân phối giả định:
 (Maximum Likelihood Estimation MLE)

☐ Phương pháp phi tham số (Nonparametric Methods)

"A nonparametric model is one that cannot be characterized by a bounded set of parameters." [Russell+]

"Nonparametric methods do not assume any a priori parametric form for the underlying densities; ... a nonparametric model is not fixed but its complexity depends on the size of the training set." [Alpaydin]

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

17

- ☐ Phương pháp phi tham số (Nonparametric Methods)
 - không dựa trên bất kỳ giả thiết nào về phân phối của dữ liệu
 - khai thác những "yếu tố" từ chính bản thân dữ liệu

- ☐ Phương pháp phi tham số (Nonparametric Methods)
 - "similar inputs have similar outputs"
 - tốc đô biến thiên châm của các hàm
 - tính chất tương đồng trong lân cận (láng giềng)

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

19

- ☐ Phương pháp phi tham số: cách tiếp cận để tạo ouputs
 - không dựa trên một mô hình toàn cục (global model)
 - tìm kiếm những thể hiện tương tự với inputs → áp dụng nhiều mô hình cục bộ (*local models*)
 - áp dụng phương pháp nội suy (*interpolation*)
 - độ phức tạp phụ thuộc vào kích thước dữ liệu

☐ Học phi tham số Instance-based hay Memory-based Learning

- lưu trữ dữ liệu huấn luyện ($training\ instances$) ightarrow nội suy
- độ phức tạp không gian lưu trữ: O(N)
- độ phức tạp tìm kiếm những thể hiện tương tự với input: O(N)

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

21

Nội dung

1. Học có giám sát

2. Một số phương pháp học có giám sát

- k-NN (k-Nearest Neighbors)
- Cây quyết định (Decision Tree)
- Naïve Bayes Classification
- SVM (Support Vector Machine)

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

23

2.1 K-NN (*k-Nearest Neighbors*)

☐ Phương pháp Lazy Learning

- target của một quan sát mới được dựa trên những "láng giềng" (gần nhất)
- trì hoãn việc tính toán, xây dựng mô hình (cục bộ) cho đến khi xuất hiện quan sát mới (>< Earger Learning)
 - ightarrow giai đoạn dự đoán >> giai đoạn "học" (lưu trữ các quan sát)
- không lưu lại những kết quả trung gian

☐ Giá trị target của quan sát mới

- classification: chọn lớp phổ biến trong số k láng giềng
- regression: trung bình giá trị target của k láng giềng

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

25

2.1 K-NN

☐ Hai vấn đề quan trọng

- độ tương đồng (similarity), khoảng cách (distance)
- số lượng láng giềng (k)

- ☐ Độ tương đồng (numerical data)
 - cosine:

$$sim(x, y) = \frac{\sum_{i=1}^{n} x_{i}.y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}$$

• tích vô hướng (scalar product):

$$sim(x, y) = \langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot y_i$$

Đối với categorical data: so sánh giá trị (Hamming distance)

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

27

2.1 K-NN

- ☐ Hàm khoảng cách (numerical data)
 - khoảng cách Manhattan:

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

• khoảng cách Euclid:

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$

• khoảng cách Minkowski: (p > 2)

$$d(x, y) = \sum_{i=1}^{n} (|x_i - y_i|^p)^{1/p}$$

Đối với categorical data: so sánh giá trị (Hamming distance)

☐ Xác định số lượng láng giềng k

Với k = 3: $\rightarrow \triangle$

Với k = 7: ? → ★

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

29

2.1 K-NN

- ☐ Vai trò của các láng giềng
 - vai trò đều như nhau
 - vai trò phụ thuộc vào khoảng cách (trọng số)

☐ Xác định số lượng láng giềng k

- k chẵn hay lẻ?
- k = 1: dễ bị ảnh hưởng bởi nhiễu
- k nhỏ: đường biên quyết định không trơn, dễ gây ra ovetfitting
- k lớn: phá vỡ những cấu trúc cục bộ (tiềm ẩn) trong dữ liệu
- khi số lượng quan sát N đủ lớn: k = SQRT(N) / 2

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

31

2.1 K-NN

☐ Xác định số lượng láng giềng k

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

□ Ưu điểm

- đơn giản, dễ triển khai
- chi phí thấp trong giai đoạn học
- có thể áp dụng cho classification và regression
- nhiều khả năng chọn lựa linh hoạt (hàm khoảng cách)

☐ Khuyết điểm

- xác định giá trị của k
- chi phí tính toán trong giai đoạn dự đoán
- kém hiệu quả khi phân phối của target bị lệch

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

33

2.2 Cây quyết định (Decision Tree)

- ☐ Cách tiếp cận suy diễn theo cấu trúc cây (tree induction)
 - chia để trị (divide-and-conquer)

• đệ quy từ trên xuống (top-down recursive)

 KHÔNG lan truyền ngược (backpropagation)

2/

☐ Cấu trúc cây quyết định đơn biến (*univariate tree*)

- nút lá (*leaf node*): nhãn phân lớp (*decision node*)
- nút gốc (*root*), nút trong (*internal node*): thuộc tính (kiểm tra)
- nhánh (branch): trường hợp của thuộc tính

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

35

2.2 Cây quyết định

- ☐ Cấu trúc cây quyết định đơn biến (univariate tree)
 - dựa trên các biên quyết định "thẳng" | "phẳng" (rectilinear decision boundary)

☐ Phương pháp học phi tham số

- không cần giả thiết về phân phối của các lớp (nhãn)
- cấu trúc cây không được xác định trước → gắn liền với dữ liệu quan sát được

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

37

2.2 Cây quyết định

☐ Xây dựng cây quyết định từ tập huấn luyện

sắp xếp các thuộc tính → các nút (≠ lá)

• phân chia các nhánh: phân hoạch tuples

CSDL: training set Income Student Buy Age NO youth high NO high youth middle **YES** high **YES** senior medium no **YES** senior low yes senior low yes NO **YES** middle low yes youth medium no NO **YES** youth medium senior medium **YES** yes

Student

38

VD: Tạo phân hoạch các tuples từ thuộc tính Age

Tid	Age	Income	Student	Rating	Buy
T1	youth	high	no	fair	NO
T2	youth	high	no	excellent	NO
Т3	middle	high	no	fair	YES
T4	senior	medium	no	fair	YES
T5	senior	low	yes	fair	YES
T6	senior	low	yes	excellent	NO
T7	middle	low	yes	excellent	YES
T8	youth	medium	no	fair	NO
Т9	youth	low	yes	fair	YES
T10	senior	medium	yes	fair	YES
T11	youth	medium	yes	excellent	YES
T12	middle	medium	no	excellent	YES
T13	middle	high	yes	fair	YES
T14	senior	medium	no	excellent	NO

<u> </u>				
Age	Income	Student	Rating	Buy
middle	high	no	fair	YES
middle	low	yes	excellent	YES
middle	medium	no	excellent	YES
middle	high	yes	fair	YES
		5.0		
Age	Income	Student	Rating	Buy
senior	medium	no	fair	YES
senior	low	yes	fair	YES
senior	low	yes	excellent	NO
senior	medium	yes	fair	YES
senior	medium	no	excellent	NO
Age	Income	Student	Rating	Buy
youth	high	no	fair	NO

youth high excellent no youth medium fair NO no YES fair youth yes youth excellent YES medium

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

2.2 Cây quyết định

<u>VD</u>: Tạo các phân hoạch (nhiều cấp)

Tid	Age	Income	Student	Rating	Buy
T1	youth	high	no	fair	NO
T2	youth	high	no	excellent	NO
T3	middle	high	no	fair	YES
T4	senior	medium	no	fair	YES
T5	senior	low	yes	fair	YES
T6	senior	low	yes	excellent	NO
T7	middle	low	yes	excellent	YES
T8	youth	medium	no	fair	NO
T 9	youth	low	yes	fair	YES
T10	senior	medium	yes	fair	YES
T11	youth	medium	yes	excellent	YES
T12	middle	medium	no	excellent	YES
T13	middle	high	yes	fair	YES
T14	senior	medium	no	excellent	NO

☐ Xây dựng cây quyết định từ tập huấn luyện

- đệ quy từ nút gốc → top-down
- thuật toán "tham lam" (greedy algorithm), không quay lui
- chia để trị (divide-and-conquer): phân hoạch trên các quan sát

Ở mỗi bước, chọn thuộc tính tạo phân hoạch **tốt nhất** trên các quan sát liên quan (truyền từ nút cha) nhiều cách tiếp cận \rightarrow độ đo

 điều kiện dừng: phân hoạch hoàn toàn tất cả quan sát, hoặc tất cả các thuộc tính đã được sử dụng (mỗi thuộc tính chỉ được xuất hiện 1 lần trong cây)

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

41

2.2 Cây quyết định (tt.)

☐ Chọn thuộc tính phân tách (*splitting attribute*)

biên quyết định (decision boundary)

42

Dộ đo entropy trong Lý thuyết thông tin (Information Theory, Shannon 1948): mức độ hỗn tạp (thuần khiết) của D

Giả sử phân hoạch D với các lớp C₁, ..., C_m.

$$Entropy(D) = -\sum_{i=1}^{m} p_i \log_2(p_i) = Info(D)$$

 $p_i = \frac{|C_{i,D}|}{|D|}$: xs để 1 phần tử của D thuộc về lớp C_i (i = 1..m)

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

43

2.2 Cây quyết định

VD: Độ đo entropy theo thuộc tính phân lớp (target attribute) Buy

Tid	Buy
T1	NO
T2	NO
Т3	YES
T4	YES
T5	YES
T6	NO
T7	YES
Т8	NO
Т9	YES
T10	YES
T11	YES
T12	YES
T13	YES
T14	NO

$$|D| = 14$$

$$p_{YES} = 9/14$$

$$p_{NO} = 5/14$$

Entropy(D) =
$$-\left(\frac{9}{14}\log_2\frac{9}{14} + \frac{5}{14}\log_2\frac{5}{14}\right) = 0.940$$

Dô đo entropy trong phân lớp nhị phân (C₁ và C₁)

- Entropy = 0: (p₊ * p_−) = 0 ⇒ S đồng nhất
- Entropy = 1: $p_+ = p_- = 0.5 \implies |C_+| = |C_-|$
- Entropy \in (0, 1): $p_i \in$ (0, 1) \Rightarrow $|C_+| \neq |C_-|$

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

45

2.2 Cây quyết định

☐ Đô đo Information Gain: ước lương đô sai biệt về thông tin TRƯỚC và SAU khi dùng thuộc tính A để phân hoạch D

Giả sử DOM(A) =
$$\{a_1, a_2, ..., a_v\}$$

Phân hoạch D từ thuộc tính A: $\{D_1^A, D_2^A, \cdots, D_v^A\}$

$$Info(D,A) = \sum_{j=1}^{\nu} \frac{|D_j^A|}{|D|} *Entropy(D_j^A) \longrightarrow \text{dể tạo phân hoạch}$$

Gain(D, A) = Entropy(D) - Info(D, A)

càng NHỞ càng tốt

Độ sai biệt về thông tin (trung bình) sau khi dùng A để tạo phân hoạch

 $A^* = \arg \max Gain(D, A)$ Iterative Dichotomiser 3 – ID.3

[Quinlan, 86]

VD: Đô đo Information Gain

Tid	Age	Income	Student	Rating	Buy
T1	youth	high	no	fair	NO
T2	youth	high	no	excellent	NO
Т3	middle	high	no	fair	YES
T4	senior	medium	no	fair	YES
T5	senior	low	yes	fair	YES
Т6	senior	low	yes	excellent	NO
T7	middle	low	yes	excellent	YES
Т8	youth	medium	no	fair	NO
Т9	youth	low	yes	fair	YES
T10	senior	medium	yes	fair	YES
T11	youth	medium	yes	excellent	YES
T12	middle	medium	no	excellent	YES
T13	middle	high	yes	fair	YES
T14	senior	medium	no	excellent	NO

= ?

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

47

2.2 Cây quyết định

VD: Đô đo Information Gain

Thuộc tính Age:

Age	Buy
youth	NO
youth	NO
middle	YES
senior	YES
senior	YES
senior	NO
middle	YES
youth	NO
youth	YES
senior	YES
youth	YES
middle	YES
middle	YES
senior	NO

middle [4/14, YES = 4, NO = 0]
senior [5/14, YES = 3, NO = 2]
youth [5/14, YES = 2, NO = 3]

$$Entropy(middle) = -\frac{4}{4}\log_2\frac{4}{4} = 0$$

$$Entropy(senior) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5} = 0.971$$

$$Entropy(youth) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5} = 0.971$$

$$Info(D, Age) = \frac{4}{14}*0 + \frac{5}{14}*0.971 + \frac{5}{14}*0.971 = 0.694$$

$$Gain(D, Age) = 0.940 - 0.694 = 0.246$$

VD: Đô đo Information Gain

[4/14, YES = 2, NO = 2] Thuộc tính Income: high

Income	Buy
high	NO
high	NO
high	YES
medium	YES
low	YES
low	NO
low	YES
medium	NO
low	YES
medium	YES
medium	YES
medium	YES
high	YES
medium	NO

low [4/14, YES = 3, NO = 1]

medium [6/14, YES = 4, NO = 2]

Entropy(high) =
$$-\frac{2}{4}log_2\frac{2}{4} - \frac{2}{4}log_2\frac{2}{4} = 1$$

Entropy(low) = $-\frac{3}{4}log_2\frac{3}{4} - \frac{1}{4}log_2\frac{1}{4} = 0.811$

Entropy(medium) = $-\frac{4}{6}log_2\frac{4}{6} - \frac{2}{6}log_2\frac{2}{6} = 0.918$

Info(D, Income) = $\frac{4}{14}*1 + \frac{4}{14}*0.811 + \frac{6}{14}*0.918 = 0.911$

Gain(D, Income) = $0.940 - 0.911 = 0.029$

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

49

2.2 Cây quyết định

VD: Đô đo Information Gain

Thuôc tính Student: no

Student Buy nο NO YES

no YES YES yes yes YES NO no **YES YES**

no

yes

YES YES

YES

NO

Entropy(no) =
$$-\frac{3}{7}log_2\frac{3}{7} - \frac{4}{7}log_2\frac{4}{7} = 0.985$$

Entropy(yes) = $-\frac{6}{7}log_2\frac{6}{7} - \frac{1}{7}log_2\frac{1}{7} = 0.592$

Info(D,Student) =
$$\frac{7}{14}$$
 * 0.985 + $\frac{7}{14}$ * 0.592 = 0.789

$$Gain(D, Student) = 0.940 - 0.788 = 0.151$$

VD: Độ đo Information Gain

Thuộc tính Rating: excellent [6/14, YES = 3, NO = 3]

Rating	Buy
fair	NO
excellent	NO
fair	YES
fair	YES
fair	YES
excellent	NO
excellent	YES
fair	NO
fair	YES
fair	YES
excellent	YES
excellent	YES
fair	YES
excellent	NO

Entropy(excellent) =
$$-\frac{3}{6}log_2\frac{3}{6} - \frac{3}{6}log_2\frac{3}{6} = 1$$

Entropy(yes) = $-\frac{6}{8}log_2\frac{6}{8} - \frac{2}{8}log_2\frac{2}{8} = 0.811$

Info(D, Rating) =
$$\frac{6}{14} * 1 + \frac{8}{14} * 0.811 = 0.892$$

Gain(D, Rating) = 0.940 - 0.892 = 0.048

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

2.2 Cây quyết định

VD: Độ đo Information Gain

Age	Income	ne Student Rating		Buy
youth	high	no	fair	NO
youth	high	no	excellent	NO
middle	high	no	fair	YES
senior	medium	no	fair	YES
senior	low	yes	fair	YES
senior	low	yes	excellent	NO
middle	low	yes	excellent	YES
youth	medium	no	fair	NO
youth	low	yes	fair	YES
senior	medium	yes	fair	YES
youth	medium	yes	excellent	YES
middle	medium	no	excellent	YES
middle	high	yes	fair	YES
senior	medium	no	excellent	NO

$$Gain(D, Age) = 0.246$$

$$Gain(D, Income) = 0.029$$

$$Gain(D, Student) = 0.151$$

$$Gain(D, Rating) = 0.048$$

VD: Tạo các phân hoạch theo thuộc tính Age \rightarrow đệ quy

Tid	Age	Income	Student	Rating	Buy
T1	youth	high	no	fair	NO
T2	youth	high	no	excellent	NO
T3	middle	high	no	fair	YES
T4	senior	medium	no	fair	YES
T5	senior	low	yes	fair	YES
T6	senior	low	yes	excellent	NO
T7	middle	low	yes	excellent	YES
T8	youth	medium	no	fair	NO
Т9	youth	low	yes	fair	YES
T10	senior	medium	yes	fair	YES
T11	youth	medium	yes	excellent	YES
T12	middle	medium	no	excellent	YES
T13	middle	high	yes	fair	YES
T14	senior	medium	no	excellent	NO

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

53

2.2 Cây quyết định

☐ Trường hợp A là thuộc tính liên tục

Sắp xếp DOM(A) = $\{a_1, a_2, ..., a_v\}$ tăng dần: $a_i < a_j, \forall i < j$

Tạo (v-1) điểm giữa $\{mp_1, mp_2, ..., mp_{v-1}\}$ của các cặp (a_i, a_{i+1})

Với mỗi mp_i, ta có phân hoạch của D gồm 2 tập con:

$$D_{left} = \sigma_{\{A \leq mpi\}}(D)$$
 và $D_{right} = D - D_{left}$

Chọn mp_i sao cho Info(D, A) nhỏ nhất.

☐ Information Gain có xu hướng "thiên vị" những thuộc tính mang nhiều giá trị

Age	Income	Student	Rating	When	Buy?
youth	high	no	fair	3 pm	NO
youth	high	no	excellent	3 pm	NO
middle	high	no	fair	5 pm	YES
senior	medium	no	fair	4 pm	YES
senior	low	yes	fair	6 pm	YES
senior	low	yes	excellent	7 pm	NO
middle	low	yes	excellent	4 pm	YES
youth	medium	no	fair	5 pm	NO
youth	low	yes	fair	3 pm	YES
senior	medium	yes	fair	3 pm	YES
youth	medium	yes	excellent	6 pm	YES
middle	medium	no	excellent	5 pm	YES
middle	high	yes	fair	6 pm	YES
senior	medium	no	excellent	4 pm	NO

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

55

2.2 Cây quyết định

VD: Độ đo Information Gain

Thuộc tính When:

When	Buy
3 pm	NO
3 pm	NO
5 pm	YES
4 pm	YES
6 pm	YES
7 pm	NO
4 pm	YES
5 pm	NO
3 pm	YES
3 pm	YES
6 pm	YES
5 pm	YES
6 pm	YES
4 pm	NO

3pm [4/14, YES = 2, NO = 2]
4pm [3/14, YES = 2, NO = 1]
5pm [3/14, YES = 2, NO = 1]
6pm [3/14, YES = 3, NO = 0]
7pm [1/14, YES = 0, NO = 1]

$$Entropy(3pm) = -\frac{2}{4}log_2\frac{2}{4} - \frac{2}{4}log_2\frac{2}{4} = 1$$

 $Entropy(4pm) = Entropy(5pm) = -\frac{2}{3}log_2\frac{2}{3} - \frac{1}{3}log_2\frac{1}{3} = 0.918$
 $Entropy(6pm) = Entropy(7pm) = 0$
 $Entropy(6pm) = \frac{4}{14}*1 + \frac{3}{14}*0.918 + \frac{3}{14}*0.918 = 0.679$

56

Gain(D,When) = 0.940 - 0.679 = 0.261

VD: Độ đo Information Gain

Age	Income	Student	Rating	When Buy?	
youth	high	no	fair	3 pm	NO
youth	high	no	excellent	3 pm	NO
middle	high	no	fair	5 pm	YES
senior	medium	no	fair	4 pm	YES
senior	low	yes	fair	6 pm	YES
senior	low	yes	excellent	7 pm	NO
middle	low	yes	excellent	4 pm	YES
youth	medium	no	fair	5 pm	NO
youth	low	yes	fair	3 pm	YES
senior	medium	yes	fair	3 pm	YES
youth	medium	yes	excellent	6 pm	YES
middle	medium	no	excellent	5 pm	YES
middle	high	yes	fair	6 pm	YES
senior	medium	no	excellent	4 pm	NO

$$Gain(D, Age) = 0.246$$

 $Gain(D, Student) = 0.151$
 $Gain(D, Rating) = 0.048$
 $Gain(D, Income) = 0.029$
 $Gain(D, When) = 0.261$

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

57

2.2 Cây quyết định

☐ Information Gain có xu hướng "thiên vị" những thuộc tính mang nhiều giá trị

Gain(D, When) = 0.261

(When = 7pm) \Rightarrow (Buy = NO)

Gain(D, Age) = 0.246

Confidence 7

Gain(D, Student) = 0.151

Support ✓

Gain(D, Rating) = 0.048

Gain(D, Income) = 0.029

□ Độ đo *Gain Ratio*: chuẩn hoá Information Gain bằng thông tin phân tách (*split information*)

$$SplitInfo(D, A) = -\sum_{j=1}^{\nu} \frac{|D_{j}^{A}|}{|D|} * \log_{2} \left(\frac{|D_{j}^{A}|}{|D|} \right)$$

$$GainRatio(D, A) = \frac{Gain(D, A)}{SplitInfo(D, A)}$$

C4.5

$$A^* = \underset{A}{\operatorname{arg max}} \operatorname{GainRatio}(D, A)$$
 [Quinlan, 93]

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

59

2.2 Cây quyết định

VD: Độ đo Gain Ratio

Thuộc tính Age: middle [4/14, YES = 4, NO = 0]

senior [5/14, YES = 3, NO = 2]

youth [5/14, YES = 2, NO = 3]

$$SplitInfo(D, Age) = -\frac{4}{14}\log_2\frac{4}{14} - \frac{5}{14}\log_2\frac{5}{14} - \frac{5}{14}\log_2\frac{5}{14} = 1.577$$

$$GainRatio(D, Age) = \frac{0.246}{1.577} = 0.156$$

VD: Độ đo Gain Ratio

Thuộc tính When:
$$3pm$$
 [4/14, YES = 2, NO = 2]

6pm
$$[3/14, YES = 3, NO = 0]$$

7pm
$$[1/14, YES = 0, NO = 1]$$

SplitInfo(D, When) =
$$-\frac{4}{14}\log_2\frac{4}{14} - 3\left(\frac{3}{14}\log_2\frac{3}{14}\right) - \frac{1}{14}\log_2\frac{1}{14} = 2.217$$

$$GainRatio(D, When) = \frac{0.261}{2.217} = 0.118$$

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

61

2.2 Cây quyết định

<u>VD</u>:

$$SplitInfo(D, A) = -\sum_{j=1}^{\nu} \frac{|D_{j}^{A}|}{|D|} * \log_{2} \left(\frac{|D_{j}^{A}|}{|D|}\right) \quad GainRatio(D, A) = \frac{Gain(D, A)}{SplitInfo(D, A)}$$

SplitInfo
$$\rightarrow$$
 0 ($|D^A_i| \approx |D|$) ?

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

63

2.2 Cây quyết định

- **B1**. S = { những tuples chưa được phân hoạch (nút hiện hành) }
 A = { những thuộc tính chưa tham gia vào cây quyết định }
- B2. Nếu những tuples trong S thuộc cùng 1 class thì S → nút lá.
 Ngược lại:
 - + Chọn ${\rm A_j}$ "tốt nhất" trong A để tạo phân hoạch cho S. Loại ${\rm A_j}$ khỏi A.
 - + Tạo các nhánh xuất phát từ A_j:

Nếu A_j rời rạc: tạo phân hoạch { $D_{jk} \mid a_{jk} \in DOM(A_j)$ } Nếu A_j liên tục: tạo $D_{left} = \sigma_{\{Aj \leq split_point\}}(D)$ và $D_{right} = D - D_{left}$ Nếu $(A_j \in V)$?: tạo D_{Yes} và $D_{No} = D - D_{Yes}$

B3. Đệ quy B1 với các D_{ik} được tạo từ phân hoạch bởi A_i

VD: Tạo các nhánh từ một thuộc tính A

[Han+]

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

65

2.2 Cây quyết định

- ☐ Kiểm tra thuật toán thỏa mãn 1 trong các điều kiện dừng:
 - (i) Toàn bộ các tuples trong S đều thuộc cùng 1 class.
 - (ii) Không còn A_j nào để tạo phân hoạch cho S trong B2.
 → chọn lớp phổ biến (mặc định)
 - (iii) Nhánh rỗng, nghĩa là $D_{ik} = \emptyset \rightarrow$ chọn lớp phổ biến (mặc định)

☐ Xây dựng cây quyết định từ tập huấn luyện

• có thể tạo nhiều cây quyết định khác nhau từ 1 tập huấn luyện

biab		Buy	Age		
high	no	NO	middle,		
high	no	NO	senior youth		
high	no	YES			
medium	no	YES	Student		
low	yes	YES			
low	yes	NO	no ves		
low	yes	YES			
medium	no	NO	Income		
medium	yes	YES			
medium	yes	YES	low medium, high		
		or: tink	NO YES		
H r l l r r	high medium low low low medium medium medium	nigh no medium no low yes low yes low yes medium no medium yes medium yes medium yes medium yes	high no YES medium no YES low yes YES low yes NO low yes YES medium no NO medium yes YES medium yes YES		

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

67

2.2 Cây quyết định

☐ Phân lớp dựa trên cây quyết định

68

☐ Biến đổi cây quyết định thành tập luật IF-THEN

- mỗi lộ trình \rightarrow 1 luật cơ bản (*rule base*) IF-THEN
- rule support: % dữ liệu (huấn luyện) hỗ trợ cho luật

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

69

2.2 Cây quyết định

☐ Chỉ số Gini (Gini Index)

$$Gini = 1 - \sum_{i=1}^{k} p_i^2$$

p_i: xác suất để quan sát thuộc lớp (nhãn) C_i

- Gini càng thấp thì mức độ đồng nhất càng cao
- hiệu quả khi có số lượng các lớp khá lớn (tính toán nhanh hơn entropy)

☐ Chỉ số Gini (Gini Index)

Dễ thấy:

$$1 = \left(\sum_{i=1}^{k} p_i\right)^2 \ge \sum_{i=1}^{k} p_i^2 \quad \Longrightarrow \quad 0 \le \left(1 - \sum_{i=1}^{k} p_i^2\right)$$

Hơn nữa, theo BĐT Cauchy-Schwarz:

$$\left(\sum_{i=1}^k a_i b_i\right)^2 \le \left(\sum_{i=1}^k a_i^2\right) \left(\sum_{i=1}^k b_i^2\right)$$

Với $a_i = p_i \text{ và } b_i = 1$:

$$1 = \left(\sum_{i=1}^{k} p_i\right)^2 \le k \sum_{i=1}^{k} p_i^2 \quad \Longrightarrow \quad \frac{1}{k} \le \sum_{i=1}^{k} p_i^2$$

$$V \hat{\mathbf{a}} \mathbf{y} : \qquad 0 \le Gini \le \left(1 - \frac{1}{k}\right)$$

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

71

2.2 Cây quyết định

- □ Ưu điểm
 - dễ hiểu, dễ diễn giải kết quả
 - có thể áp dụng cho nhiều kiểu dữ liệu khác nhau
 - không cần chuẩn hóa dữ liệu
 - không bi tác đông bởi vấn đề dữ liêu bi thiếu
 - phân lớp nhanh

2.2 Cây quyết định

☐ Khuyết điểm

- chi phí (thời gian) xây dựng mô hình: O(n * |D| * log₂|D|)
- kém hiệu quả với dữ liệu định lượng
- kém ổn định: sự thay đổi nhỏ trên tập huấn luyện cũng có thể dẫn đến những thay đổi lớn trên cấu trúc cây quyết định

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

73

2.2 Cây quyết định

☐ Một số mở rộng

- Cắt tỉa (pruning)
- Cây quyết định đa biến (Multivariate Decision Tree)
- CART (Classification And Regression Tree)

2.2 Cây quyết định

☐ Rừng ngẫu nhiên (Random Forest): số lượng features lớn

- nếu KHÔNG giới hạn độ sâu của cây quyết định → tồn tại những nút lá (nhãn) chỉ liên quan đến 1 số lượng nhỏ quan sát
- nếu giới hạn độ sâu của cây quyết định → có thể bỏ sót những điều kiện kiểm tra (phân nhánh) quan trọng
- ⇒ học kết hợp (*Ensemble Learning*): từ nhiều cây quyết định

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

75

2.2 Cây quyết định

- ☐ Rừng ngẫu nhiên (Random Forest): tạo nhiều cây quyết định
 - dựa trên các tập con của tập huấn luyện: chọn ngẫu nhiên
 - dựa trên các tập con features: chọn ngẫu nhiên, theo ngữ cảnh (ý nghĩa, mức độ quan trọng)

2.2 Cây quyết định

☐ Rừng ngẫu nhiên (Random Forest): các cơ chế kết hợp

- bài toán phân lớp
- bài toán hồi quy

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

77

2.3 Phân lớp Naïve Bayes

□ Định lý Bayes

Tuple (*evidence*) $X = (x_1, x_2, ..., x_n), x_j \in DOM(A_j)$ <u>VD</u>: X = (35 tuổi, thu nhập \$40K)

Giả thuyết H: $X \in C_k$

 $\underline{\text{VD}}$: C_{YES} = mua laptop (Buy = YES)

Xác suất hậu nghiệm (posterior probability)

Thomas Bayes (1701-1761)

<u>VD</u>: P(H | X): xs SĒ mua laptop nếu là 35 tuổi và thu nhập 40K. P(X | H): xs để người ĐÃ mua laptop là 35 tuổi và thu nhập 40K.

Xác suất tiên nghiệm (prior probability)

VD: P(H): xs sẽ mua laptop, bất kể tuổi tác, thu nhậpP(X): xs để 1 người là 35 tuổi, thu nhập 40K, dù mua hay không

2.3 Phân lớp Naïve Bayes

■ Định lý Bayes

$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

Phân lớp $X \in C_k$ nếu và chỉ nếu: $P(C_k \mid X) \ge P(C_i \mid X) \ \forall i$

P(C_k | X): maximum posterior hypothesis

$$P(C_k \mid X) = \frac{P(X \mid C_k)P(C_k)}{P(X)}$$
Hằng số $\forall C_i \in C$

$$\forall i, P(C_i) = \frac{|D|}{|C|} \text{ hoặc } P(C_i) = \frac{|\sigma_{Ci}(D)|}{|D|}$$

Số tuples thuộc C_i

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

79

2.3 Phân lớp Naïve Bayes

☐ Tính P(X|C_i) với giả định "ngây thơ" về sự độc lập của giá trị giữa các thuộc tính (*class-conditional independence*) đối với C_i

$$P(X \mid C_i) = \prod_{j=1}^n P(x_j \mid C_i)$$

- Nếu A_j <u>rời rạc</u>: $P(x_j | C_i) = \frac{|\sigma_{C_i, A_j = x_j}(D)|}{|\sigma_{C_i}(D)|}$
- Nếu A_j liên tục: $P(x_i | C_i)$ tuân theo 1 phân phối \rightarrow PDF
- ⇒ Kiểm định tính độc lập giữa các thuộc tính?

2.3 Phân lớp Naïve Bayes

VD: Phân lớp (dự đoán) với X = (youth, medium, yes, fair, ?)

Age	Income	Student	Rating	Buy
youth	high	no	fair	NO
youth	high	no	excellent	NO
middle	high	no	fair	YES
senior	medium	no	fair	YES
senior	low	yes	fair	YES
senior	low	yes	excellent	NO
middle	low	yes	excellent	YES
youth	medium	no	fair	NO
youth	low	yes	fair	YES
senior	medium	yes	fair	YES
youth	medium	yes	excellent	YES
middle	medium	no	excellent	YES
middle	high	yes	fair	YES
senior	medium	no	excellent	NO

$$P(C_{YES}) = 9/14 = 0.643$$

$$P(C_{NO}) = 5/14 = 0.357$$

$$P(Age=youth|C_{YES}) = 2/9 = 0.222$$

$$P(Age=youth|C_{NO}) = 3/5 = 0.6$$

$$P(Income=medium|C_{YES}) = 4/9 = 0.444$$

$$P(Income=medium|C_{NO}) = 2/5 = 0.4$$

$$P(Student=yes|C_{YES}) = 6/9 = 0.667$$

$$P(Student=yes|C_{NO}) = 1/5 = 0.2$$

$$P(Rating=fair|C_{YES}) = 6/9 = 0.667$$

$$P(Rating=fair|C_{NO}) = 2/5 = 0.4$$

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

81

2.3 Phân lớp Naïve Bayes

VD: Phân lớp (dự đoán) với X = (youth, medium, yes, fair, ?)

P(Age=youth C _{YES})	= 0.222
P(Income=medium C _{YES}) = 0.444
P(Student=yes C _{YES})	= 0.667
P(Rating=fair C _{VES})	= 0.667

$$\begin{aligned} &\mathsf{P}(\mathsf{Age=youth}|\mathsf{C}_{\mathsf{NO}}) &= 0.6 \\ &\mathsf{P}(\mathsf{Income=medium}|\mathsf{C}_{\mathsf{NO}}) = 0.4 \\ &\mathsf{P}(\mathsf{Student=yes}|\mathsf{C}_{\mathsf{NO}}) &= 0.2 \\ &\mathsf{P}(\mathsf{Rating=fair}|\mathsf{C}_{\mathsf{NO}}) &= 0.4 \end{aligned}$$

$$P(X \mid C_{YES}) = P(Age=youth \mid C_{YES}) * P(Income=medium \mid C_{YES}) * \\ P(Student=yes \mid C_{YES}) * P(Rating=fair \mid C_{YES}) = \\$$

$$P(C_{YES}) = 0.643$$

$$\Rightarrow$$
 P(X | C_{YES}) * P(C_{YES}) = 0.044 * 0.643 = **0.028**

$$P(C_{NO}) = 0.357$$

$$P(X \mid C_{NO}) = P(Age=youth|C_{NO}) * P(Income=medium|C_{NO}) * P(Student=yes|C_{NO}) * P(Rating=fair|C_{NO}) = 0.6 * 0.4 * 0.2 * 0. = 0.019$$

$$\Rightarrow$$
 P(X | C_{NO}) * P(C_{NO}) = 0.019 * 0.357 = **0.007**

2.3 Phân lớp Naïve Bayes

☐ Tính P(X|C_i) với giả định "ngây thơ" về sự độc lập của giá trị giữa các thuộc tính (class-conditional independence) đối với C_i

$$P(X \mid C_i) = \prod_{j=1}^n P(x_j \mid C_i)$$

Nhân xét: $P(x_i | C_i) = 0 \implies P(X | C_i) = 0$

Phép hiệu chỉnh Laplace (Laplace correction, Laplace smoothing)

$$P(x_{j} \mid C_{i}) = \frac{|\sigma_{C_{i},A_{j}=x_{j}}(D)| + \alpha}{|\sigma_{C_{i}}(D)| + (\alpha * \beta)}$$

 α : tham số hiệu chỉnh (thường = 1)

 $\beta = | DOM(A_j) |$ (nhiều cách khác)

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

83

2.3 Phân lớp Naïve Bayes

- ☐ Giả thuyết về phân phối của các thuộc tính
 - Gaussian
 - Bernoulli
 - Multinomial

2.4 Support Vector Machine (SVM)

- ☐ Phân lớp SVM tuyến tính (Linear SVM Classification)
 - xây dựng siêu phẳng (hyperplane) có thể phân cách các lớp

linearly separable

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

85

2.4 SVM

- ☐ Phân lớp SVM tuyến tính
 - bài toán tối ưu: xác định biên cực đại (maximum margin classification)
 - bài toán "đối ngẫu": tìm các vectơ hỗ trợ (support vectors)
 → siêu phẳng phân cách

86

Chương 2: Học có giám sát (Supervised Learning)

☐ Phân lớp SVM tuyến tính

 biên (margin): khoảng cách gần nhất từ siêu phẳng phân cách đến 1 điểm dữ liệu của mỗi lớp xấp xỉ bằng nhau và cực đại

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

87

2.4 **SVM**

☐ Phân lớp SVM tuyến tính

Training set: $T = \{(x^{(i)}, y_i)\}_{i=1}^m \quad x^{(i)} \in \mathbb{R}^d \quad y_i \in \{-1, +1\}$

Siêu phẳng H: $w^T x + b = 0$ — tích vô hướng $w^T x = \langle w, x \rangle$

Khoảng cách từ $(x^{(i)}, y_i)$ đến siêu phẳng H: $d_i = \frac{y_i(w^Tx^{(i)} + b)}{\|w\|}$

Bài toán tối ưu, tìm (w, b):

$$(w,b) = \arg\max_{w,b} \left\{ \min_{i} \frac{y_{i}(w^{T}x^{(i)} + b)}{\|w\|} \right\} = \arg\max_{w,b} \left\{ \frac{1}{\|w\|} \min_{i} (y_{i}(w^{T}x^{(i)} + b)) \right\}$$

☐ Phân lớp SVM tuyến tính

thay thế w bằng k.w và b = k.b, với k > 0, thì margin không đổi
 ⇒ có thể giả sử khoảng cách từ H đến những điểm gần nhất:

$$y_i(w^T x^{(i)} + b) = 1$$
 $d_i = \frac{y_i(w^T x^{(i)} + b)}{\|w\|} = \frac{1}{\|w\|}$ max_margin = $\frac{2}{\|w\|}$

• biến đổi bài toán tối ưu:

$$(w,b) = \underset{w,b}{\operatorname{arg\,max}} \left\{ \frac{1}{\|w\|} \right\} \quad y_i(w^T x^{(i)} + b) \ge 1$$

hay:

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

2.4 SVM

☐ Phân lớp SVM tuyến tính

quy hoạch toàn phương (quadratic programming)

$$(w,b) = \underset{w,b}{\operatorname{arg\,min}} \|w\|^2 \quad 1 - y_i (w^T x^{(i)} + b) \le 0$$

- hàm mục tiêu là 1 chuẩn (L_2) : hàm lồi chặt (strictly convex funct.)
- các bất đẳng thức ràng buộc là tuyến tính \Rightarrow hàm lồi
- ⇒ nghiệm duy nhất
- phân lớp (dự đoán) dữ liệu mới:

$$class(x) = sign(w^{T}x + b)$$

☐ Phân lớp SVM tuyến tính

- bổ sung thêm những quan sát bên ngoài phạm vi 2 đường biên không ảnh hưởng đến mô hình phân lớp
- mô hình phân lớp được đặc trưng bởi các support vectors
- SVM là parametric hay nonparametric ? [Alpaydin, Russell+]

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

91

2.4 SVM

☐ Một số phương pháp SVM cải biên

- Soft Margin SVM: xử lý dữ liệu phân tách hầu như tuyến tính (almost linear separability)
- Kernel SVM: xử lý dữ liệu phân tách phi tuyến (non-linear separability)
- Multi-class SVM: bài toán đa lớp

☐ Phân lớp SVM tuyến tính

- hard margin: phân tách tuyến tính → nhạy cảm với outliers
- soft margin: cân đối giữa độ rộng của biên cực đại và giới hạn số lượng quan sát đã vi phạm đường biên (margin violation)

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

93

2.4 SVM

☐ Thuật toán Soft Margin SVM

- sử dụng siêu tham số (hyperparameter) để hiệu chỉnh độ rộng của biên cực đại → tăng/giảm số quan sát vi phạm đường biên
- độ rộng đường biên cực đại ↗ thì số lượng quan sát vi phạm ↗

94

☐ Thuật toán Soft Margin SVM

• độ "mất mát" (slack variable): $\xi_i = |w^T x^{(i)} + b - y_i|$

 $\xi_i = 0$: x_i được phân cách đúng

 $0 < \xi_i \le 1$: $\mathbf{x_i}$ không an toàn nhưng chưa lấn sang lớp sai $(\mathbf{x_2})$

 $\xi_i > 1$: x_i đã lấn sang lớp sai (x_1 và x_3)

[Vũ Hữu Tiệp]

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

95

2.4 SVM

☐ Thuật toán Soft Margin SVM

• tối ưu hóa hàm mục tiêu với các ràng buộc "mềm":

$$(w,b,\xi) = \underset{w,b,\xi}{\arg\min} \|w\|^2 + C \sum_{i=1}^{N} \xi_i \quad \text{(const } C > 0\text{)}$$
$$1 - \xi_i - y_i (w^T x^{(i)} + b) \le 0$$

☐ Phân lớp SVM phi tuyến (Nonlinear SVM Classification)

- dữ liệu không thể phân cách tuyến tính (non-linear separability)
- → tạo siêu phẳng phân cách phi tuyến

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

97

2.4 SVM

- ☐ Phân lớp SVM phi tuyến (Nonlinear SVM Classification)
 - giải pháp bổ sung features → phân cách tuyến tính

 $\underline{\text{VD}}$: Bổ sung $x_2 = (x_1)^2$

Bậc đa thức NHỞ: kém hiệu quả với những dữ liệu phức tạp

Bậc đa thức LỚN: mô hình chậm vì số lượng lớn features

- ☐ Phương pháp kernel trick [Aizerman+, 1964]
 - ánh xạ Φ (.) các quan sát x vào không gian có số chiều cao hơn (higher-dimensional feature space) \rightarrow phân cách tuyến tính

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

99

2.4 SVM

☐ Hàm kernel (kernel function)

$$k(x_i, x_j) = \Phi(x_i)^T \cdot \Phi(x_j)$$

- ước lượng độ tương đồng giữa x_i và x_j trong không gian mới (thay vì tính tọa độ $\Phi(x)$ của từng x trong không gian mới)
- hàm đối xứng và xác định dương (positive definite): điều kiện định lý Mercer nhằm bảo đảm tính lồi của hàm mục tiêu trong bài toán đối ngẫu

[https://en.wikipedia.org/wiki/Kernel method]

☐ Hàm Polynomial kernel

$$k_{Polynomial}(x_i, x_j) = (r.x_i^T.x_j + c)^d$$

Các hyperparameters:

d: bậc của đa thức

r, c: hằng số ≥ 0

Đặc biệt *Linear kernel*: $k_{Linear}(x_i, x_j) = x_i^T . x_j$

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

101

2.4 SVM

☐ Hàm Radial Basic Function – RBF kernel

$$k_{RBF}(x_i, x_j) = \exp\left(-\gamma \left\|x_i - x_j\right\|^2\right)$$

γ: hằng số > 0

Đặc biệt Gaussian kernel: $k_{Gaussian}(x_i, x_j) = \exp\left(\frac{-1}{2\sigma^2} ||x_i - x_j||^2\right)$

Chương 2: Học có giám sát (Supervised Learning)

102

□ Ưu điểm

- phân lớp nhanh, tiết kiệm bộ nhớ
- độ chính xác cao, ít bị overfitting
- xử lý dữ liệu hiệu quả trong không gian nhiều chiều
- xử lý cả dữ liệu được phân tách tuyến tính lẫn phi tuyến

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

103

2.4 SVM

☐ Khuyết điểm

- kém hiệu quả với kho dữ liệu lớn (thời gian huấn luyện)
- kém hiệu quả nếu số chiều lớn hơn số mẫu dữ liệu huấn luyện
- nhạy cảm với nhiễu
- thiếu thông tin xác suất phân lớp

Tài liệu tham khảo

Alpaydin, *Introduction to Machine Learning*, 4rd Edition, 2020.

Géron, *Hands-on ML with Scikit-Learn, Keras and TensorFlow*, 2nd Edition, 2019.

Mitchell, *Machine Learning*, 1st Edition, 1997.

Russell and Norvig, *Artificial Intelligence: A Modern Approach*, 4th Edition, 2020.

Vũ Hữu Tiệp, Machine Learning cơ bản, 2018.

Ts. Nguyễn An Tế (2025)

Chương 2: Học có giám sát (Supervised Learning)

Thảo luận

