Lecture 6: Binary Search Trees (BST)

Instructor: Saravanan Thirumuruganathan

Outline

- Data Structures for representing Dynamic Sets
 - Binary Search Trees (BSTs)
 - Balanced Binary Trees Red Black Trees (RBTs)

In-Class Quizzes

- URL: http://m.socrative.com/
- Room Name: 4f2bb99e

Data Structures

Key Things to Know for Data Structures

- Motivation
- Distinctive Property
- Major operations
- Representation
- Algorithms for major operations
- Applications

Trees

Non-Linear Data Structures:

- Very common and useful category of data structures
- Most popular one is hierarchical

Trees - Applications¹

Family Tree:

 $^{^{1}} http://interactive python.org/runestone/static/pythonds/Trees/trees.html$

Trees - Applications²

Taxonomy Tree:

 $^{^2} h {\tt ttp://interactive python.org/runestone/static/pythonds/Trees/trees.html$

Trees - Applications³

Directory Tree:

 $^{^3} http://interactive python.org/runestone/static/pythonds/Trees/trees.html\\$

Trees - Applications⁴

HTML DOM (Parse) Tree:

⁴http://interactivepython.org/runestone/static/pythonds/Trees/trees.html

Tree - Terminology

- Node
- Edge
- Root
- Children
- Parent
- Sibling
- Subtree
- Leaf/External node
- Internal node
- Level (node)
- Height (tree)
- Arity

Tree - Abstract Representation⁵

⁵http://interactivepython.org/runestone/static/pythonds/Trees/trees.html

Motivation

- Store dynamic set efficiently
- Use good ideas from ordered list (OL) and ordered doubly linked list (ODLL)
- Use hierarchical storage to avoid pitfalls of OL and ODLL
- First attempt at hierarchical data structure that tries to implement all 7 operations efficiently

Binary Trees

- Each node has at most 2 children
- Commonly referred to as left and right child
- The descendants of left child constitute left subtree
- The descendants of right child constitute right subtree

BST Property

- For every node x, the keys of left subtree $\leq key(x)$
- For every node x, the keys of right subtree $\geq key(x)$

⁶http:

//www.cs.princeton.edu/~rs/AlgsDS07/08BinarySearchTrees.pdf

BST Examples⁷

⁷http://en.wikipedia.org/wiki/Binary_search_tree

BST Height⁸

- There exists multiple possible BSTs to store same set of elements
- Minimum and Maximum Height:

⁸https://engineering.purdue.edu/~ee608/handouts/lec10.pdf

BST Height⁸

- There exists multiple possible BSTs to store same set of elements
- Minimum and Maximum Height: Ig n and n
- Best and worst case analysis (or specify analysis wrt height)

⁸https://engineering.purdue.edu/~ee608/handouts/lec10.pdf

Representation - I

- key: Stores key information that is used to compare two nodes
- value: Stores satellite/auxillary information
- parent: Pointer to parent node. parent(root) = NULL
- left: Pointer to left child if it exists. Else NULL
- right: Pointer to right child if it exists. Else NULL

Representation - I⁹

⁹CLRSFig10.9

Representation - II

Index	Key	Left	Right
1	d	2	3
2	b	4	NULL
3	f	5	6
4	a	NULL	NULL
5	е	NULL	NULL
6	g	NULL	NULL

Major Operations

- Search
- Insert
- Minimum/Maximum
- Successor/Predecessor
- Deletion
- Traversals

Search: 4


```
Tree-Search(x, k):
    if x == NULL or k == x.key
        return x
    if k < x.key
        return Tree-Search(x.left, k)
    else
        return Tree-Search(x.right, k)</pre>
```

• Analysis:

```
Tree-Search(x, k):
    if x == NULL or k == x.key
        return x
    if k < x.key
        return Tree-Search(x.left, k)
    else
        return Tree-Search(x.right, k)

    Analysis: O(h)

  • Best Case: \lg n and Worst Case: O(n)
```

BST: Insert

Insert: 13

BST: Insert

Insert: 13

BST:

• Analysis:

BST:

- Analysis: O(h)
- Best Case: $\lg n$ and Worst Case: O(n)

BST: Minimum

BST: Minimum

BST: Minimum

```
Tree-Minimum(x)
   while x.left is not NULL
       x = x.left
   return x
• Analysis: O(h)
```

• Best Case: $\lg n$ and Worst Case: O(n)

BST: Maximum

BST: Maximum

BST: Maximum

```
Tree-Maximum(x)
  while x.right is not NULL
    x = x.right
  return x
• Analysis: O(h)
```

• Best Case: $\lg n$ and Worst Case: O(n)

BST: Successor

Successor: 15

Successor: 15

Successor: 13

Successor: 13

BST:

```
Tree-Successor(x):
    if x.right is not NULL
        return Tree-Minimum(x.right)
    y = x.parent
    while y is not NULL and x == y.right
        x = y
        y = y.parent
    return y
```

- BST Property allowed us to find successor without comparing keys
- Analysis: O(h)
- Best Case: $\lg n$ and Worst Case: O(n)

BST:

```
Tree-Predecessor(x):
    if x.left is not NULL
        return Tree-Maximum(x.left)
    y = x.parent
    while y is not NULL and x == y.left
        x = y
        y = y.parent
    return y
```

- BST Property allowed us to find predecessor without comparing keys
- Analysis: O(h)
- Best Case: $\lg n$ and Worst Case: O(n)

BST: Deletion

Trickiest Operation! Suppose we want to delete node z

- 1 z has no children: Replace z with NULL
- 2 z has one children c: Promote c to z's place
- z has two children:
 - (a) Let z's successor be y
 - (b) y is either a leaf or has **only** right child
 - (c) Promote y to z's place
 - (d) Fix y's loss via Cases 1 or 2

BST: Deletion Case I¹⁰

//www.cs.rochester.edu/u/gildea/csc282/slides/C12-bst.pdf

 $^{^{10} {}m https}$:

BST: Deletion Case II¹¹

//www.cs.rochester.edu/u/gildea/csc282/slides/C12-bst.pdf

¹¹https:

BST: Deletion Case III¹²

//www.cs.rochester.edu/u/gildea/csc282/slides/C12-bst.pdf

 $^{^{12} {\}tt https:}$

- Traversal: Visit all nodes in a tree
- Many possible traversal strategies
- Three are most popular: Pre-Order, In-Order, Post-Order


```
In-Order-Walk(x):
    if x == NULL
        return
    In-Order-Walk(x.left)
    Print x.key
    In-Order-Walk(x.right)
```

• Analysis:

```
In-Order-Walk(x):
    if x == NULL
        return
    In-Order-Walk(x.left)
    Print x.key
    In-Order-Walk(x.right)
```

- Analysis: O(n)
- Holds true for all three traversals

• In-Order:

• In-Order: 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 19, 20.

• Pre-Order:

• In-Order: 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 19, 20.

• **Pre-Order:** 7, 4, 2, 3, 6, 5, 12, 9, 8, 11, 19, 15, 20.

• Pre-Order:

- In-Order: 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 19, 20.
- **Pre-Order:** 7, 4, 2, 3, 6, 5, 12, 9, 8, 11, 19, 15, 20.
- **Pre-Order:** 3, 2, 5, 6, 4, 8, 11, 9, 15, 20, 19, 12, 7.

• Notice anything special about In-Order traversal?

- Notice anything special about In-Order traversal?
 - Returns items in sorted order!
- Successor/Predecessor can be expressed in terms on In-Order traversal

Applications

• GiG

Summary

Major Concepts:

- Search Problem
- Linear and Binary Search algorithms
- Data Structures for Dynamic Sets
- BSTs