# Theory of Computation

CFG and PDA Equivalence

Manar Elkady, Ph.D.

#### Lemma:

If a **PDA** recognizes a language, then it is context-free.

#### **Proof idea:**

Given PDA P = (Q,  $\Sigma$ ,  $\Gamma$ ,  $\delta$ , q, F)

Construct a CFG  $G = (V, \Sigma, R, S)$  such that L(G) = L(P)

First, simplify P to have the following form:

(1) It has a unique accept state, q<sub>acc</sub>

(2) It empties the stack before accepting

(3) Each transition either pushes a symbol or pops a symbol, but not both at the same time

## **SIMPLIFY**



### (1) It has a unique accept state, q<sub>acc</sub>



Idea For Our Grammar G: For every pair of states p and q in PDA P,

G will have a variable  $A_{pq}$  whose production rules will generate all strings x that can take:

P from p with an empty stack to q with an empty stack

$$V = \{A_{pq} \mid p,q \in Q \}$$

$$S = Aq_0q_{acc}$$

WANT: A<sub>pq</sub> generates all strings that take p with an empty stack to q with empty stack

#### Let x be such a string

- P's first move on x must be a push
- P's last move on x must be a pop

#### Two possibilities:

- 1. The symbol popped at the end is exactly the one pushed at the beginning
- 2. The symbol popped at the end is not the one pushed at the beginning

x = ayb takes p with empty stack to q with empty stack

1. The symbol f popped at the end is exactly the one pushed at the beginning





$$\delta(\mathbf{p}, \mathbf{a}, \epsilon) \to (\mathbf{r}, \mathbf{f})$$

$$\delta(\mathbf{s}, \mathbf{b}, \mathbf{f}) \to (\mathbf{q}, \epsilon) \qquad \mathbf{A}_{\mathbf{pq}} \to \mathbf{a} \mathbf{A}_{\mathbf{rs}} \mathbf{k}$$

# 2. The symbol popped at the end is not the one pushed at the beginning



#### Formally:

$$V = \{A_{pq} \mid p, q \in Q \}$$
$$S = A_{q_0q_{acc}}$$

For every p, q, r, s  $\in$  Q, f  $\in$   $\Gamma$  and a, b  $\in$   $\Sigma_{\epsilon}$  If  $\delta(p, a, \epsilon) = (r, f)$  and  $\delta(s, b, f) = (q, \epsilon)$  add the rule  $A_{pq} \rightarrow aA_{rs}b$ 

For every p, q,  $r \in Q$ , If  $\delta(p, a, \epsilon) = (r, f)$  and  $\delta(r, b, \epsilon) = (q, \epsilon)$  add the rule  $A_{pq} \to A_{pr} A_{rq}$  For every  $p \in Q$ , add the rule  $A_{pp} \to \epsilon$ 

# **Example**

Write a CFG for the following PDA





1. 
$$\delta(q0, \epsilon, \epsilon) = (q1,\$)$$
  
2.  $\delta(q1, a, \epsilon) = (q1,a)$   
3.  $\delta(q1, b, \epsilon) = (q1,b)$   
4.  $\delta(q1, \epsilon, \epsilon) = (q2, \epsilon)$   
5.  $\delta(q2, a, a) = (q2, \epsilon)$   
6.  $\delta(q2, b, b) = (q2, \epsilon)$   
7.  $\delta(q2, \epsilon, \$) = (q3, \epsilon)$ 

| $A_{03} \rightarrow \epsilon A_{12} \epsilon$ | 1   |
|-----------------------------------------------|-----|
| $A_{01} \rightarrow A_{01}A_{11}$             | 1   |
| $A_{01} \rightarrow A_{01}A_{11}$             | 1   |
| $A_{02} \rightarrow A_{01}A_{12}$             | 1   |
|                                               | 1   |
|                                               | _ 1 |
| $A_{14} \rightarrow A_{14}A_{14}$             | 2   |

1,7  

$$A_{12} \rightarrow bA_{12}b$$
 3,6  
1,3  
1,4  
 $A_{12} \rightarrow A_{12}A_{22}$  4,5  
1,5  
 $A_{12} \rightarrow A_{12}A_{22}$  4,6  
1,6  
 $A_{13} \rightarrow A_{12}A_{23}$  4,7  
2,3  
 $A_{22} \rightarrow A_{22}A_{23}$  5,6  
2,4  
 $A_{23} \rightarrow A_{22}A_{23}$  5,7  
2,5  
 $A_{23} \rightarrow A_{22}A_{23}$  6,7

3,4

$$A_{00} \rightarrow \varepsilon$$

$$A_{11} \rightarrow \varepsilon$$

$$A_{22} \rightarrow \varepsilon$$

$$A_{33} \rightarrow \varepsilon$$

$$A_{12} \rightarrow A_{11}A_{12}$$

$$A_{12} \rightarrow aA_{12}a$$

2,5

|                                                                                                                                                         | $A_{03} \rightarrow \varepsilon A_{12} \varepsilon$ $A_{01} \rightarrow A_{01} A_{11}$ $A_{01} \rightarrow A_{01} A_{11}$ $A_{02} \rightarrow A_{01} A_{12}$ | 1,7<br>1,2<br>1,3<br>1,4<br>1,5 | $A_{12} \rightarrow A_{11}A_{12}$ $A_{12} \rightarrow bA_{12}b$ $A_{12} \rightarrow A_{12}A_{22}$ $A_{12} \rightarrow A_{12}A_{22}$ $A_{13} \rightarrow A_{12}A_{23}$ | 3,4<br>3,5<br>3,6<br>3,7<br>4,5<br>4,6<br>4,7 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| $\begin{array}{c} A_{00} \rightarrow \epsilon \\ A_{11} \rightarrow \epsilon \\ A_{22} \rightarrow \epsilon \\ A_{33} \rightarrow \epsilon \end{array}$ | $A_{11} \rightarrow A_{11}A_{11}$ $A_{12} \rightarrow A_{11}A_{12}$ $A_{12} \rightarrow aA_{12}a$                                                            | 2,3<br>2,4<br>2,5<br>2,6<br>2,7 | $A_{22} \rightarrow A_{22}A_{22}$ $A_{23} \rightarrow A_{22}A_{23}$ $A_{23} \rightarrow A_{22}A_{23}$                                                                 | 5 ,6<br>5 ,7<br>6 ,7                          |

 $A_{03} \rightarrow \epsilon A_{12} \epsilon$ 

 $A_{12} \rightarrow aA_{12}a$ 

 $A_{12} \rightarrow bA_{12}b$ 

$$A_{03} \rightarrow A_{12}$$

$$A_{12} \rightarrow aA_{12}a$$

$$A_{12} \rightarrow bA_{12}b$$