PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

IOP224 INVESTIGACIÓN DE OPERACIONES

Lista de ejercicios Primer semestre 2025

Aquellos ejercicios marcados con (*) o (**) son más retadores para alumnos sin previa exposición a cursos de análisis en \mathbb{R}^n y microeconomía. Todos los ejercicios se pueden resolver aplicando análisis convexo y optimización, sin importar el contexto del problema..

Valores y vectores propios

- 1. Sea A una matriz cuadrada de orden $n \times n$ no singular con valores propios $\lambda_1, \ldots, \lambda_n$. ¿Cuáles son los valores propios de la matriz A^{-1} ? ¿Cuáles son sus vectores propios?
- 2. Dada la matriz A que se da a continuación, encuentre A^k para todo $k \in \mathbb{N}_0$:

$$A = \begin{bmatrix} -2 & -3 \\ 1 & 2 \end{bmatrix}.$$

- 3. Pruebe que si A y B son equivalentes, entonces |A| = |B|.
- 4. Pruebe que si A y B son equivalentes, entonces A^k y B^k también lo son.
- 5. Considere el siguiente sistema de ecuaciones en diferencias:

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 1-\delta & 0 \\ \delta & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix}, \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} x_{10} \\ x_{20} \end{bmatrix}$$

con $k \in \mathbb{Z}_+$ y $\delta \in (0,1)$. Suponga que x_1 es un insumo y x_2 un output.

- Interprete el modelo. Identifique qué podrían ser x_1 y x_2 .
- Analice $\lim_{k\to\infty} x_i(k)$ e interprete.
- 6. Considere la matriz $A = \begin{bmatrix} 1 & 0 & 3 \\ 1 & -1 & 2 \\ -1 & 1 & -2 \end{bmatrix}$. Calcule sus valores propios, vectores propios y obtenga los espacios propios correspondientes. Analice si la matriz es diagonalizable.
- 7. Considere el sistema $A\mathbf{x} = \mathbf{b}$ donde

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 0 \\ 1 & -1 & 1 & -1 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1/2 \\ 1 \\ 1/2 \\ 0 \end{bmatrix}.$$

Obtenga un conjunto solución al sistema lineal. Para esto, transforme el sistema: $D\mathbf{y} = \mathbf{c}$ con $\mathbf{y} = P^{-1}\mathbf{x}$ y $\mathbf{c} = P^{-1}\mathbf{b}$.

Formas cuadráticas

1. Pruebe que si $A \in \mathcal{M}_{m \times n}$, entonces $A^T A$ es una matriz simétrica de orden $n \times n$. Pruebe, además, que $A^T A$ es positivo semidefinida; esto es, todos sus valores propios son no negativos.

1

- 2. Sea $A = \operatorname{Hess}(f)(\mathbf{x}_0)$ donde $f : \mathbb{R}^n \to \mathbb{R}$. ¿Bajo qué condiciones sobre f, $\mathbf{x}^T A \mathbf{x}$ es una forma cuadrática «en el formato estándar»?
- 3. Considere que una firma puede escoger entre dos procesos de producción (1 y 2) que le generan los siguientes costos de producción:

$$C_1(x_1, x_2, x_3) = 2x_1^2 + 4x_1x_2 + 3x_2^2 + 5x_3^2 + 2x_2x_3$$
$$C_2(x_1, x_2, x_3) = 2x_1x_2 + x_2^2 + 3x_3^2.$$

Aquí x_1, x_2 y x_3 son insumos de producción. La firma desea que su costo sea el menor posible para cualquier combinación de insumos (x_1, x_2, x_3) . Determine qué proceso de producción escogerá.

4. Clasifique las formas cuadráticas

$$f_1(x_1, x_2) = 4x_1^2 + 8x_1x_2 + 5x_2^2$$

$$f_2(x_1, x_2, x_3) = 3x_1^2 - 2x_1x_2 + 3x_1x_3 + x_2^2 - 4x_2x_3 + 3x_3^2$$

$$f_3(x_1, x_2, x_3, x_4) = 4x_1^2 - 4x_1x_2 + x_2^2 + 9x_3^2 - 6x_3x_4 + x_4^2.$$

- 5. ¿Para qué valores de α , la forma cuadrática $f: \mathbb{R}^3 \to \mathbb{R}$ definida por $x_1^2 + \alpha x_2^2 + 8x_2x_3 + \alpha x_3^2$ es definida positiva?
- 6. En la base canónica de \mathbb{R}^2 una forma cuadrática $f:\mathbb{R}^2\to\mathbb{R}$ está dada por la siguiente expresión

$$f(x_1, x_2) = 2x_1^2 - 4x_1x_2 + 6x_2^2.$$

Determine cuál es la expresión de la función f en la base de \mathbb{R}^2 formada por los vectores $\mathbf{u} = (1,1)$ y $\mathbf{v} = (-2,2)$.

Elementos de topología

1. Pruebe que para $\mathbf{x} \in \mathbb{R}^n$ se cumple

$$\|\mathbf{x}\|_{\infty} = \lim_{n \to \infty} \|\mathbf{x}\|_{p}.$$

2. (*) Sea $A \in \mathcal{M}_{n \times n}$ y $\|\cdot\|$, la norma dada por

$$||A|| = \sup_{\mathbf{x} \in \partial \mathcal{B}(\mathbf{0};1)} ||A\mathbf{x}||.$$

Pruebe que $\rho(A) \leq ||A||$ (recuerde que $\rho(A)$ es el radio espectral de A).

- 3. Pruebe que si S es un conjunto abierto no vacío y A es cualquier otro conjunto no vacío, S+A es abierto.
- 4. Pruebe que el conjunto presupuestario (Walrasiano) es compacto. Interprete.
- 5. Interprete el uso de las normas $||\cdot||_1, ||\cdot||_2$ y $||\cdot||_{\max}$.
- 6. Pruebe que C[0,1] con la norma $||\cdot||_p$, $1 \le p < \infty$ no es completo.
- 7. Pruebe que C[0,1] con la norma $||\cdot||_{\infty}$ es completo.
- 8. Sean $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ dos puntos fijos y $r_1, r_2 > 0$. Pruebe que

$$\mathcal{B}(\mathbf{x}, r_1) \subset \mathcal{B}(\mathbf{y}, r_2) \Leftrightarrow \|\mathbf{y} - \mathbf{x}\| < r_2 - r_1.$$

- 9. Pruebe que (i) la unión finita y la intersección arbitraria de conjuntos cerrados es un conjunto cerrado, (ii) la intersección finita de conjuntos compactos es un conjunto compacto.
- 10. Se define un vector unitario como aquel cuya norma es 1. Diga cuáles de los siguientes vectores son unitarios.

- $\mathbf{x} = (1, 0, 2)$, respecto de la norma Euclidiana.
- $\mathbf{x} = (1/\sqrt{2}, -1/\sqrt{2})$, respecto de la norma Euclidiana.
- $\mathbf{x}(t) = t^2 4t + 3$, $t \in [0,4]$, respecto de la norma $\|\cdot\|_1$.
- 11. Pruebe que para las matrices A de orden $m \times n$ y B, de orden $n \times k$, se cumple la siguiente desigualdad para las correspondientes normas inducidas:

$$||AB|| \le ||A|| ||B||.$$

Deduzca de aquí que si A es cuadrada, entonces $||A^k|| \leq ||A||^k$ para todo $k \in \mathbb{N}_0$.

12. Calcule la distancia entre las funciones $\mathbf{x}(t) = t^3 - 2t + 5$ e $\mathbf{y}(t) = 3t^2 + t + 3$, $t \in [-3, 3]$ en $C([-3, 3], \|\cdot\|_1)$.

Profesor del curso: Jorge Chávez.

Asistente de docencia: Marcelo Gallardo.