Shrinkage methods for regression

Motivation

more accurate predictions

Image credit: Elements of Statistical Learning

Motivation

sift through many candidate predictors

enable inference when $p\gg n$, e.g.

- Feature engineering
- Genome Wide Association Studies (GWAS)

The idea

we want a model that fits the data, but we also don't want coefficients to be too big

we don't care about obtaining an unbiased estimator of the coefficients

shrink coefficients toward zero by adding a penalty on their size

The idea

linear regression:

$$egin{aligned} \hat{eta} &= rgmin_{eta} \{ \mathrm{RSS}(eta) \} \ & ext{RSS}(eta) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \ & extbf{\hat{y}} = lpha + extbf{X}eta \end{aligned}$$

penalized regression:

$$\hat{eta}^{ ext{penalized}} = \operatorname*{argmin}_{eta} \{ ext{RSS}(eta) + f(eta) \}$$

Two penalties:

Ridge regression

Hoerl & Kennard (1970) - link

The lasso

Tibshirani (1996) - link

Ridge regression

penalise sum of beta squared (the L2-norm)

$$f(eta) = \lambda \sum_{i=1}^p eta^2$$

$$\hat{eta}^{ ext{ridge}} = \operatorname*{argmin}_{eta} \{ ext{RSS}(eta) + \lambda \sum_{i=1}^p eta^2 \}$$

Ridge regression demo

Ridge regression

as constrained optimisation

$$\hat{eta}^{ ext{ridge}} = rgmin_{eta} \{ ext{RSS}(eta)\} \quad ext{ s. t. } \sum_{i=1}^p eta^2 < t.$$

The lasso

penalise sum of modulus of beta (the L1-norm)

$$f(eta) = \lambda \sum_{i=1}^p |eta|$$

SO

$$\hat{eta}^{ ext{lasso}} = \operatorname*{argmin}_{eta} \{ ext{RSS}(eta) + \lambda \sum_{i=1}^{p} |eta| \}$$

or equivalently

$$\hat{eta}^{ ext{lasso}} = rgmin_{eta} \{ ext{RSS}(eta)\} \quad ext{ s. t. } \sum_{i=1}^p |eta| < t$$

ridge vs. lasso

Lasso shrinks coefficients to zero!

Why does lasso shrink to zero?

Estimation

linear regression:

$$\hat{eta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

ridge regression:

$$\hat{eta}^{ ext{ridge}} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$$

lasso has no closed-form solution, so we optimize numerically

practical issues

ridge and lasso estimates are influenced by scale of covariates, so we usually standardize covariates first

select lambda by cross-validation

```
library (glmnet)

# lasso
cv.glmnet(x, y, alpha = 0, nfolds = 5)

# ridge
cv.glmnet(x, y, alpha = 1, nfolds = 5)
```

Bayesian equivalence

$$egin{aligned} p(eta|\mathbf{X},y) &\propto p(y|\mathbf{X}eta)p(eta) \ &\hat{eta}_{MAP}(\mathbf{X},y) = \mathop{argmin}_{eta}\{RSS(eta) + -ln\,p(eta)\} \end{aligned}$$

Other shrinkage methods

Least Angle Regression

closely related to lasso

Elastic net

a mixture of ridge and lasso penalties

$$f(eta) = \lambda \sum_{i=1}^p a eta_i^2 + (1-a) |eta_i|$$

materials

slides, code, interactives

github.com/goldingn/shrinkage_lecture

glmnet R package

including introductory vignette