课程编号: MTH07054 北京理工大学 2014-2015 学年第一学期

2013 级计算机学院《数值分析》期末试卷 A 卷

到	旺级学 ⁻	를	姓名	成绩	
注ī	意: ① 答题方式为闭卷。③ 请将填空题的答案	_		賃, + 会 心 题纸上。	
_、	填空题(每空2分,	+ 40 分)			
1.		数 x1=1.21,x2=	$3.65, x_3=9.81, $	则由它们计算的 $\frac{x_1x_2}{x_3}$ 的相对	- 付 —
2.	要使√13的近似值的标	<u></u> 」。 <u>○</u> ∃对误差不超	过0.1‰,至少	、 要取【 <u></u> 】位有效数	汝
	字。				
3.)用 Taylor 级数 $\cos x = 1$	$-\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x}{6}$	。 _ + ··· 计算 cos !	1,如果要有9位有效数字,	需
		(-	$(x)^{\lfloor \frac{1}{2} \rfloor}$		
	要在级数中计算到的最	<u>后一</u> 项为【 <u>`</u> [_	<u> </u>	及数运算 <u>中每项要取【</u>	_]
	位有效数字。				
4.	为求方程 f(x)=x³-x²-1=	0 在区间[1,2]	的解,首先构造	造迭代函数 $\varphi(x)=x+f(x)=x+$	
	x³-x²-1; 其次使用对分	法选取初值,	若要求初值的	的误差限不大于 0.1 要对分	
	【】次;最月	言使用埃特肯	法,取初值 <i>x</i> o=	=1.45,埃特肯迭代一次后的	勺
	值 x1=【 <u>1. 4.666</u>	, 】。(计算 [,]	中保留到小数,	点后 5 位)	
5.	_			至少应分【21/2】等分才	能
	使截断误差不超过 0.5	· · · · · · · · · · · · · · · · · · ·			
		_	• 4 4 7		
6.	线性方程组 AX=B 的系		$egin{bmatrix} -2 & -1 & 1 \ 1 & 1 & 1 \ 1 & 1 & -2 \end{bmatrix},$	当采用雅克比迭代法求	
	解时,迭代矩阵的谱=		】 】,该i	迭代法【 ^{リる~} 】(均	真:
	·			迭代矩阵的谱半径为	
7.	$A = \begin{bmatrix} 1 & 0.5 & 0.9 \\ 0.4 & 1 & 0.8 \\ 0.6 & 0.7 & 2 \end{bmatrix}, \ A$	∞=【 <u>}`</u>].		
	_ -				

1

|逐次松弛法的迭代公式为
|
$$X_{1}^{(b+1)} = X_{1}^{(b)} + \frac{0.5}{(0)} (-) - (0)X_{1}^{(b)} - X_{2}^{(b)} + 5 X_{2}^{(b)})$$

| $X_{1}^{(b+1)} = X_{1}^{(b)} + \frac{0.5}{g} (11 - X_{1}^{(b+1)} - f X_{1}^{(b)} + f X_{2}^{(b)} + f X_{2}^{(b)})$
| $X_{2}^{(b+1)} = X_{2}^{(b)} + \frac{0.5}{-g} (23 - (3X_{1}^{(b+1)} - 2X_{2}^{(b+1)} + f X_{2}^{(b)} - X_{2}^{(b)})$
| $X_{2}^{(b+1)} = X_{2}^{(b)} + \frac{0.5}{g} (1) - X_{1}^{(b+1)} + 2 X_{1}^{(b+1)} - 2 X_{2}^{(b+1)} - 2 X_{2}^{(b)})$

取【 之 】 个结点。

12. 填写如下差商表

$x_0=0.0$	$f[x_0] = $		
$x_1=0.4$	$f[x_1] = \begin{bmatrix} \\ \\ \end{bmatrix}$	$f[x_0, x_1] = \begin{bmatrix} & & \end{bmatrix}$	
$x_2=0.7$	$f[x_2]=6$	$f[x_1, x_2]=10$	$f[x_0, x_1, x_2] = \frac{50}{7}$

13. 在用带松弛因子的逐次松弛法解线性方程组 AX=b 时,若松弛因子 ω 满足 【 いとり 以 いこ かいこと 时, 则迭代一定发散。

计算题(每题10分,共60分)

- 1. 用 Newton 法求方程 x-lnx=2 在区间(2, + ∞)内的近似解。(计算中保留到小数点后 5 位)
- 2. 已知函数 f(x)的如下数据,根据表中数据利用斯梯林插值公式计算 f(0.42)的近似 值。(计算中保留到小数点后 5 位)

χ_i	0.0	0.2	0.4	0.6	0.8
$f(x_i)$	1.00000	1.22140	1.49182	1.82212	2.22554

3. 用高斯-赛德尔迭代法解下列线性方程组,初始向量
$$X^{(0)}$$
= $(0,0,0)^T$,计算过程保留小数后 4 位。
$$\begin{cases} -5x_1-x_2+2x_3=1\\ 2x_1+6x_2-3x_3=2\\ 2x_1+x_2+7x_3=32 \end{cases}$$

- 4. 利用龙贝格公式计算定积分 $I=\int_0^1\frac{1}{x^2+1}dx$,计算结果保留小数点后 5 位。
- 5. 用高斯消元法解下列方程。

$$\begin{cases} 2x_1 + 4x_2 + 2x_3 + 6x_4 = 9 \\ 4x_1 + 9x_2 + 6x_3 + 15x_4 = 23 \\ 2x_1 + 6x_2 + 9x_3 + 18x_4 = 22 \\ 6x_1 + 15x_2 + 18x_3 + 40x_4 = 47 \end{cases}$$

6. 已知函数 y=f(x)有关数据如下:

Xi	0	1	2
$f(x_i)$	0	1	1
$f'(x_i)$	0	1	

构造埃尔米特插值多项式。

$$| \{ c \} | = \frac{|a_{L_1}|}{\frac{1}{3}} = \frac{|x \cdot dy - y \cdot dx|}{|y|} \cdot \frac{y}{3}$$

$$= \frac{|dy|}{|y|} - \frac{dx}{3}$$

$$= \frac{|dy|}{|y|} - \frac{dx}{3}$$

$$= \frac{|dy|}{|y|} - \frac{dx}{3}$$

$$= \frac{|dy|}{|y|} - \frac{dx}{3}$$

$$= \frac{|x \cdot dy - y \cdot dx|}{|x|}$$

$$= \frac{|x \cdot dy + y \cdot dx|}{|$$

 $S = \frac{(b-a)^3}{(b-a)^3} \int (s) < 0.5 \times 10^{-5}$

| XI - (I-D-1/8) | 10-11-120 - D+A1

| -2\lambda -1 | | = 0.

$$f(x) = x - [nx - 2]$$

$$f(x) = x - [nx - 2]$$

$$= \frac{x - [-(x - \ln x - 2)]}{1 - \frac{1}{x}}$$

$$= \frac{x - [-(x - \ln x - 2)]}{1 - \frac{1}{x}}$$

$$= \frac{[-(x - \ln x - 2)]}{1 - \frac{1}{x}}$$

$$= \frac{[-(x - \ln x - 2)]}{1 - \frac{1}{x}}$$

$$= \frac{[-(x - \ln x - 2)]}{1 - \frac{1}{x}}$$

$$f''(x) = \frac{2}{x^{2}}$$

$$f''(x) = \frac{2}$$

$$\begin{cases} x_1^{(b+1)} = \frac{1}{6}(1+x_1^{(b)} - 2x_1^{(b+1)}) \\ x_2^{(b+1)} = \frac{1}{6}(2-2x_1^{(b+1)} + 3x_2^{(b+1)}) \\ x_2^{(b+1)} = \frac{1}{6}(2-2x_1^{(b+1)} - x_1^{(b+1)}) \end{cases}$$

$$\begin{cases} 0 & 0 & 0 \\ -0.2 & 0.y & y.57143 \end{cases}$$

$$1.5y_3(x) & 2.10266 & 3.8455 \end{cases}$$

$$0.91086 & 1.94y.0 & y.023k \end{cases}$$

$$1.02y_3(x) & 2.0065k & 3.99175 \end{cases}$$

$$0.914y_3(x) & 1.99784 & y.0009 \end{cases}$$

$$1.00120 & 2.0004 & 3.91749 \end{cases}$$

$$0.1999 \times 1.99784 & y.0009 \end{cases}$$

$$1.0006 & 2.0003 & 3.91799 \end{cases}$$

$$0.1999 \times 1.99784 & y.0009 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179 \end{cases}$$

$$0.1999 \times 1.99785 & y.0000 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179 \end{cases}$$

$$0.1999 \times 1.99785 & y.0000 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179 \end{cases}$$

$$0.1999 \times 1.99785 & y.0000 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179 \end{cases}$$

$$0.1999 \times 1.99785 & y.0000 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179 \end{cases}$$

$$0.1999 \times 1.99785 & y.0000 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179 \end{cases}$$

$$0.1999 \times 1.99785 & y.0000 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179 \end{cases}$$

$$0.1999 \times 1.99785 & y.0000 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179 \end{cases}$$

$$0.1999 \times 1.99785 & y.0000 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179 \end{cases}$$

$$1.00006 & 2.0003 & 3.9179$$