```
#Build a horses-or-humans classifier that will tell if a given image contains a horse or a human,
# where the network is trained to recognize features that determine which is which.
# have to do some processing of the data before can be trained.
# Data Downloading:
!wget \
 https://storage.googleapis.com/learning-datasets/horse-or-human.zip \
  -0 /tmp/horse-or-human.zip
    --2024-02-12 20:42:09-- <a href="https://storage.googleapis.com/learning-datasets/horse-or-human.zip">https://storage.googleapis.com/learning-datasets/horse-or-human.zip</a>
    Resolving storage.googleapis.com (storage.googleapis.com)... 172.253.122.207, 172.253.63.207, 142.250.31.207, ...
    Connecting to storage.googleapis.com (storage.googleapis.com)|172.253.122.207|:443... connected.
    HTTP request sent, awaiting response... 200 OK
    Length: 149574867 (143M) [application/zip]
    Saving to: '/tmp/horse-or-human.zip'
    /tmp/horse-or-human 100%[=========] 142.65M 175MB/s
    2024-02-12 20:42:10 (175 MB/s) - '/tmp/horse-or-human.zip' saved [149574867/149574867]
# The following Python code will use the OS library to use operating system libraries,
# giving you access to the file system and the zip file library, therefore allowing to unzip the data.
# The contents of the zip file are extracted to the base directory /tmp/horse-or-human, which contain horses and human subdirectories.
# In short, the training set is the data that is used to tell the neural network model
# that "this is what a horse looks like" and "this is what a human looks like."
# Data Acquiring
import os
import zipfile
local_zip = '/tmp/horse-or-human.zip'
zip ref = zipfile.ZipFile(local zip, 'r')
zip_ref.extractall('/tmp/horse-or-human')
zip_ref.close()
# Use the ImageGenerator to label and prepare the data
# ImageDataGenerator being used, which reads images from subdirectories and automatically labels them from the name of that subdirectory.
# For example, you have a training directory containing a horses directory and a humans directory.
# ImageDataGenerator will label the images appropriately , reducing a coding step.
## Define each of those directories:
# Directory with our training horse pictures
train_horse_dir = os.path.join('/tmp/horse-or-human/horses')
# Directory with our training human pictures
train_human_dir = os.path.join('/tmp/horse-or-human/humans')
# The filenames look like in the horses and humans training directories:
train_horse_names = os.listdir(train_horse_dir)
print(train_horse_names[:10])
train_human_names = os.listdir(train_human_dir)
print(train_human_names[:10])
    ['horse17-2.png', 'horse14-8.png', 'horse23-6.png', 'horse20-9.png', 'horse36-6.png', 'horse18-9.png', 'horse37-3.png', 'horse16-0.png', 'horse04-0.png', 'horse41-5.png']
    ['human09-23.png', 'human16-07.png', 'human09-30.png', 'human08-16.png', 'human04-20.png', 'human15-18.png', 'human17-16.png', 'human14-26.png', 'human06-27.png', 'human15-25.png']
# The total number of horse and human images in the directories:
print('total training horse images:', len(os.listdir(train_horse_dir)))
print('total training human images:', len(os.listdir(train_human_dir)))
    total training horse images: 500
    total training human images: 527
# Explore the data:
# Configure the matplot parameters:
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# Parameters for our graph; we'll output images in a 4x4 configuration
nrows = 4
ncols = 4
# Index for iterating over images
pic_index = 0
# Display a batch of eight horse pictures and eight human pictures.
# One can rerun the cell to see a fresh batch each time.
# Set up matplotlib fig, and size it to fit 4x4 pics
fig = plt.gcf()
fig.set_size_inches(ncols * 4, nrows * 4)
pic_index += 8
next_horse_pix = [os.path.join(train_horse_dir, fname)
                for fname in train_horse_names[pic_index-8:pic_index]]
next_human_pix = [os.path.join(train_human_dir, fname)
                for fname in train_human_names[pic_index-8:pic_index]]
for i, img_path in enumerate(next_horse_pix+next_human_pix):
  # Set up subplot; subplot indices start at 1
  sp = plt.subplot(nrows, ncols, i + 1)
  sp.axis('Off') # Don't show axes (or gridlines)
  img = mpimg.imread(img_path)
  plt.imshow(img)
plt.show()
```



```
# Define the model:
import tensorflow as tf
# Then, add convolutional layers and flatten the final result to feed into the densely connected layers.
# Finally, add the densely connected layers.
# Note that because you're facing a two-class classification problem (a binary classification problem)
# you'll end your network with a sigmoid activation so that the output of your network will be a single scalar between 0 and 1,
# encoding the probability that the current image is class 1 (as opposed to class 0).
model = tf.keras.models.Sequential([
   # Note the input shape is the desired size of the image 300x300 with 3 bytes color
   # This is the first convolution
   tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(300, 300, 3)),
   tf.keras.layers.MaxPooling2D(2, 2),
   # The second convolution
   tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
   tf.keras.layers.MaxPooling2D(2,2),
   # The third convolution
   tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
   tf.keras.layers.MaxPooling2D(2,2),
   # The fourth convolution
   tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
   tf.keras.layers.MaxPooling2D(2,2),
   # The fifth convolution
   tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
   tf.keras.layers.MaxPooling2D(2,2),
   # Flatten the results to feed into a DNN
   tf.keras.layers.Flatten(),
   # 512 neuron hidden layer
   tf.keras.layers.Dense(512, activation='relu'),
   # Only 1 output neuron. It will contain a value from 0-1 where 0 for 1 class ('horses') and 1 for the other ('humans')
   tf.keras.layers.Dense(1, activation='sigmoid')
])
```

model.summary()

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv2d_5 (Conv2D)	(None, 298, 298, 16)	448
<pre>max_pooling2d_5 (MaxPoolin g2D)</pre>	(None, 149, 149, 16)	0
conv2d_6 (Conv2D)	(None, 147, 147, 32)	4640
<pre>max_pooling2d_6 (MaxPoolin g2D)</pre>	(None, 73, 73, 32)	0
conv2d_7 (Conv2D)	(None, 71, 71, 64)	18496
max_pooling2d_7 (MaxPoolin	(None, 35, 35, 64)	0

```
13/02/2024, 02:51
         g2D)
         conv2d_8 (Conv2D)
                                                                 36928
                                      (None, 33, 33, 64)
         max_pooling2d_8 (MaxPoolin (None, 16, 16, 64)
                                                                 0
         conv2d_9 (Conv2D)
                                                                 36928
                                      (None, 14, 14, 64)
         max_pooling2d_9 (MaxPoolin (None, 7, 7, 64)
         g2D)
         flatten_1 (Flatten)
                                      (None, 3136)
                                                                 0
                                      (None, 512)
                                                                 1606144
         dense_2 (Dense)
```

Total params: 1704097 (6.50 MB)

(None, 1)

Trainable params: 1704097 (6.50 MB) Non-trainable params: 0 (0.00 Byte)

dense_3 (Dense)

```
# The output shape column shows how the size of your feature map evolves in each successive layer.
```

The convolution layers reduce the size of the feature maps by a bit due to padding and each pooling layer halves the dimensions.

513

```
# Compile the model:
# Next, configure the specifications for model training.
# Train the model with the binary_crossentropy loss because it's a binary classification problem, here final activation is a sigmoid.
# Use the rmsprop optimizer with a learning rate of 0.001. During training, monitor classification accuracy.
from tensorflow.keras.optimizers import RMSprop
model.compile(loss='binary_crossentropy',
              optimizer=RMSprop(lr=0.001),
              metrics=['acc'])
```

WARNING:absl:`lr` is deprecated in Keras optimizer, please use `learning_rate` or use the legacy optimizer, e.g.,tf.keras.optimizers.legacy.RMSprop.

```
# Train the model from generators:
# Set up data generators that read pictures in my source folders,
# convert them to float32 tensors, and feed them (with their labels) to my network.
# I will have one generator for the training images and one for the validation images.
# My generators will yield batches of images of size 300x300 and their labels (binary).
# As I have already knew, data that goes into neural networks should usually be normalized in some way
# to make it more amenable to processing by the network. (It's uncommon to feed raw pixels into a CNN.)
# In my case, I will preprocess your images by normalizing the pixel values to be in the [0, 1] range
## (originally all values are in the [0, 255] range).
# In Keras, that can be done via the keras.preprocessing.image.ImageDataGenerator class using the rescale parameter.
# That ImageDataGenerator class allows me to instantiate generators of augmented image batches
# and their labels via .flow(data, labels) or .flow_from_directory(directory).
# Those generators can then be used with the Keras model methods that accept data generators as inputs:
## fit_generator, evaluate_generator and predict_generator.
```

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1./255)
# Flow training images in batches of 128 using train datagen generator
train_generator = train_datagen.flow_from_directory(
        '/tmp/horse-or-human/', # This is the source directory for training images
       target size=(300, 300), # All images will be resized to 150x150
       batch size=128,
       # Since we use binary_crossentropy loss, we need binary labels
       class_mode='binary')
```

Found 1027 images belonging to 2 classes.

```
# Do the training:
# Train for 15 epochs. (That may take a few minutes to run.)
history = model.fit(
  train_generator,
  steps_per_epoch=8,
  epochs=15,
  verbose=1)
 Epoch 1/15
 Epoch 2/15
 8/8 [============== ] - 80s 10s/step - loss: 0.6532 - acc: 0.7453
 Epoch 3/15
 Epoch 4/15
 Epoch 5/15
 Epoch 6/15
 8/8 [=====
      Epoch 7/15
 Epoch 8/15
 Epoch 9/15
 8/8 [=====
       Epoch 10/15
 8/8 [=============== ] - 82s 12s/step - loss: 0.1030 - acc: 0.9588
 Epoch 11/15
 Epoch 12/15
```

Note the values per epoch:

Epoch 13/15

Epoch 14/15

Epoch 15/15

```
# The Loss and Accuracy are a great indication of progress of training.
```

8/8 [===============] - 81s 10s/step - loss: 0.0365 - acc: 0.9867

8/8 [===============] - 82s 10s/step - loss: 1.1260 - acc: 0.8621

[#] It is making a guess as to the classification of the training data, and

[#] then measuring it against the known label, calculating the result.

[#] Accuracy is the portion of correct guesses.

```
# Test the model:
# Now actually run a prediction using the model.
# The code will allow you to choose one or more files from your file system.
# It will then upload them and run them through the model,
# giving an indication of whether the object is a horse or a human.
# You can download images from the internet to your file system to try them out!
# Note that you might see that the network makes a lot of mistakes despite the fact that the training accuracy is above 99%.
# That's due to something called overfitting, which means that the neural network is trained with very limited data
# (there are only roughly 500 images of each class).
# So it's very good at recognizing images that look like those in the training set,
# but it can fail a lot at images that are not in the training set.
# That's a datapoint proving that the more data that you train on, the better your final network will be!
# There are many techniques that can be used to make your training better,
# despite limited data, including something called image augmentation, but that's beyond the scope of this codelab.
import numpy as np
from google.colab import files
from keras.preprocessing import image
uploaded = files.upload()
for fn in uploaded.keys():
  # predicting images
  path = '/content/' + fn
  img = image.load_img(path, target_size=(300, 300))
  x = image.img_to_array(img)
  x = np.expand_dims(x, axis=0)
  images = np.vstack([x])
  classes = model.predict(images, batch_size=10)
  print(classes[0])
  if classes[0]>0.5:
    print(fn + " is a human")
  else:
    print(fn + " is a horse")
    Choose files 2 files
    • Screenshot 2024-02-13 at 02.43.47.png(image/png) - 225381 bytes, last modified: 13/02/2024 - 100% done
    • 69095266_2489484718002993_6091186803874794324_n.jpeg(image/jpeg) - 22210 bytes, last modified: 13/02/2024 - 100% done
    Saving Screenshot 2024-02-13 at 02.43.47.png to Screenshot 2024-02-13 at 02.43.47 (4).png
    Saving 69095266_2489484718002993_6091186803874794324_n.jpeg to 69095266_2489484718002993_6091186803874794324_n (3).jpeg
    1/1 [======= ] - 0s 43ms/step
    Screenshot 2024-02-13 at 02.43.47 (4).png is a horse
    1/1 [=======] - 0s 42ms/step
    [1.]
    69095266_2489484718002993_6091186803874794324_n (3).jpeg is a human
# Visualize intermediate representations:
# To get a feel for what kind of features your CNN has learned,
# a fun thing to do is visualize how an input gets transformed as it goes through the CNN.
# Pick a random image from the training set,
# then generate a figure where each row is the output of a layer and
# each image in the row is a specific filter in that output feature map.
# Rerun that cell to generate intermediate representations for a variety of training images.
import numpy as np
import random
from tensorflow.keras.preprocessing.image import img_to_array, load_img
# Let's define a new Model that will take an image as input, and will output
# intermediate representations for all layers in the previous model after
# the first.
successive_outputs = [layer.output for layer in model.layers[1:]]
#visualization_model = Model(img_input, successive_outputs)
visualization_model = tf.keras.models.Model(inputs = model.input, outputs = successive_outputs)
# Let's prepare a random input image from the training set.
horse_img_files = [os.path.join(train_horse_dir, f) for f in train_horse_names]
human_img_files = [os.path.join(train_human_dir, f) for f in train_human_names]
img_path = random.choice(horse_img_files + human_img_files)
img = load_img(img_path, target_size=(300, 300)) # this is a PIL image
x = img_{to_array}(img) # Numpy array with shape (150, 150, 3)
x = x.reshape((1,) + x.shape) # Numpy array with shape (1, 150, 150, 3)
# Rescale by 1/255
x /= 255
# Let's run our image through our network, thus obtaining all
# intermediate representations for this image.
successive_feature_maps = visualization_model.predict(x)
# These are the names of the layers, so can have them as part of our plot
layer_names = [layer.name for layer in model.layers]
# Now let's display our representations
for layer name, feature map in zip(layer names, successive feature maps):
 if len(feature_map.shape) == 4:
    # Just do this for the conv / maxpool layers, not the fully-connected layers
    n_features = feature_map.shape[-1] # number of features in feature map
    # The feature map has shape (1, size, size, n_features)
    size = feature_map.shape[1]
    # We will tile our images in this matrix
    display_grid = np.zeros((size, size * n_features))
    for i in range(n_features):
      # Postprocess the feature to make it visually palatable
     x = feature_map[0, :, :, i]
     x -= x.mean()
      if x.std()>0:
       x /= x.std()
      x *= 64
      x += 128
      x = np.clip(x, 0, 255).astype('uint8')
      # We'll tile each filter into this big horizontal grid
      display grid[:, i * size : (i + 1) * size] = x
    # Display the grid
    scale = 20. / n_features
    plt.figure(figsize=(scale * n_features, scale))
    plt.title(layer_name)
    plt.grid(False)
    plt.imshow(display_grid, aspect='auto', cmap='viridis')
```

25 -

25 -

conv2d_7

max_pooling2d_7

conv2d 8

max_pooling2d_8

As you can see, you go from the raw pixels of the images to increasingly abstract and compact representations.

The representations downstream start highlighting what the network pays attention to,

and they show fewer and fewer features being "activated." Most are set to zero.

That's called sparsity. Representation sparsity is a key feature of deep learning.

Those representations carry increasingly less information about the original pixels of the image,

but increasingly refined information about the class of the image.

You can think of a CNN (or a deep network in general) as an information distillation pipeline.