Statistical modelling of complex data

Anne Gégout-Petit Université de Lorraine, Faculté des Sciences, IECL, Inria Nancy

4 Lectures high-dimensional statistical analysis

- 1. Multiple testing issues
 - FWER: Family Wise Error Rate
 - False Discovery Rate
- 2. Model selection and assessment
 - Problematic, error
 - Criteria for linear model : AIC, BIC, Cp
 - Cross Validation and bootstrap method
 - Variable selection: subset
- 3. Regularization Methods for regression
 - Ridge Regression
 - Lasso method
 - ► Flastic-net
- 4. Reduction dimension methods
 - Principal Component Analysis

 - Partial Least Square regression
 - Sparse Methods
 - Discriminant Analysis version

Modelling complex data

1. Handling missing data

- Framework, definition
- Method using maximisation of the likelihood: EM algorithm
- Imputation methods
- Method for and with PCA

2. General Additive model

- What is Additive Model?
- What is GAM
- Add smooth effect
- Some tools for model selection

3. Network Inference

- What is a network ...
- Inference of a network
- Graphical Gaussian Model

Organisation of a session

After 1h or more : we split into two groups to practice on your computer

- You have to come with your laptop
- ▶ Some of the reports (code + pdf) must be submitted on Arche

Project, evaluation

- 1. Some reports of practical work are evaluated
- 2. Project at the end of the course : choose between
 - 2.1 Analysis of a complex dataset
 - 2.1.1 You find yourself your data and issue
 - 2.1.2 Validation of dataset and questions (by me !)
 - 2.1.3 One session (in November) for tutorial
 - 2.2 Study of a methodology
 - 2.2.1 Identify a research paper about a learning methodology
 - 2.2.2 Study the different steps
 - 2.2.3 Conduct a simulation study
 - 2.2.4 Apply on data
 - 2.3 For both of them
 - 2.3.1 You shall write a dissertation and the R programm
 - 2.3.2 Last session for the defences ...
 - 2.3.3 One note for the report
 - 2.3.4 One note for the defences
 - 2.4 December the 2nd: defense of the projects

High Dimensional Data: Challenge

Data Structure

Identify which of the p covariates in X are associated with the outcome Y

Exemple: X are the omics data (p=20000) and Y is the occurrence of a disease Very frequently, we have n < p and even $n \ll p$:

- ▶ More predictors than observations
- numerically intractable statistical inferences

High Dimensional Data: Challenge Data Structure

Identify which of the p covariates in X are associated with the outcome Y If n < p, several possibilities

- ▶ tackle the link between Y and each of the covariates
 - ► How ?

High Dimensional Data: Challenge

Identify which of the p covariates in X are associated with the outcome Y If n < p, several possibilities

- tackle the link between Y and each of the covariates
 - ► How ?
 - by p statistical tests
 - by *p* regression with one regressor
 - ▶ by a multiple regression ⇒ not possible without penalisation
 - summarize X into a matrix of lower dimension
 - ► How ?

High Dimensional Data: Challenge

Identify which of the p covariates in X are associated with the outcome Y

If n < p, several possibilities

- ▶ tackle the link between Y and each of the covariates
 - ► How ?
 - by p statistical tests
 - by p regression with one regressor
 - ▶ by a multiple regression ⇒ not possible without penalisation
- summarize X into a matrix of lower dimension
 - ► How ?
 - by Principal Component Analysis
 - by other factorial analysis
 - by "conducted" dimension reduction method
- ▶ Variable selection approach: find the best combination of covariates to predict Y

Example: Genome Wide Association Study (GWAS)

- Genetic variation associated to an univariate or multivariate disease phenotypes (Phenotypes: how geneticists spell Y)
 - univariate and binary Phenotype: Disease status
 - First successful GWAS in 2005: investigated patients age-related macular degeneration
 - a lot of variants has been found to various complex diseases: prostate or breast cancer, Crohn's disease, ...
 - more recent question about "personnalised medicine", what are the variants associated to the success of a treatment?

- continuous phenotype univariate or multivariate: blood lipid (HDL, LDL cholesterol, triglyceride), blood pressure, ...
 - markers of cardiovascular disease
- ► Aim: identify the predictors associated to disease phenotypes

How ?

Perform as many statistical tests as the number of covariates

Keep the covariates with p-value < threshold

In typical omics dataset, the number of covariates p > 30000 ! \Rightarrow multiple testing !

5 Lectures on Model Selection and high-dimensional statistical analysis

- 1. Today Multiple testing issues
 - ► FWER: Family Wise Error Rate
 - ► False Discovery Rate
- 2. Model selection and assessment
 - Problematic, error
 - Criteria for linear model : AIC, BIC, Cp
 - Cross Validation and bootstrap method
 - Variable selection: subset
- 3. Regularization Methods
 - Ridge Regression
 - Lasso method
 - ► Elastic-net
- 4. Reduction method
 - Principal Component Analysis
 - Partial Least Square regression
 - Sparse Methods
 - Discriminant Analysis version
- 5. General Additive model
 - ▶ What is Additive Model?
 - What is GAM
 - Add smooth effect
 - Some tools for model selection

Multiple testing

Aims

- ▶ Define the multiple testing issue and related concepts
- Methods for addressing multiple testing (FWER and FDR)
- ▶ Pratical implementation using R software

How it works?

ightharpoonup You put an hypothesis that is called H_0

- You put an hypothesis that is called H₀ typically H₀: the mean of X_j is the same in population 1 and in population 2
- \blacktriangleright Find the distribution of a statistics T that measures something under H_0

- You put an hypothesis that is called H₀ typically H₀: the mean of X_j is the same in population 1 and in population 2
- Find the distribution of a statistics T that measures something under H_0 typically ($T = \frac{\overline{X_1} \overline{X_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ and under good hypotheses $T \simeq \mathcal{N}(0,1)$)

- You put an hypothesis that is called H₀ typically H₀: the mean of X_j is the same in population 1 and in population 2
- Find the distribution of a statistics T that measures something under H_0 typically ($T = \frac{\overline{X_1} \overline{X_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ and under good hypotheses $T \simeq \mathcal{N}(0,1)$)
- ▶ Choose a risk α , there are two equivalent ways to conclude, for this we have to compute the value t of T on a sample
 - 1. Reject if $t \in \Gamma_{\alpha}$ such that $P(T \in \Gamma_{\alpha} | H_0) = \alpha$ typically

- You put an hypothesis that is called H₀ typically H₀: the mean of X_j is the same in population 1 and in population 2
- Find the distribution of a statistics T that measures something under H_0 typically ($T = \frac{\overline{X_1} \overline{X_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ and under good hypotheses $T \simeq \mathcal{N}(0,1)$)
- ▶ Choose a risk α , there are two equivalent ways to conclude, for this we have to compute the value t of T on a sample
 - 1. Reject if $t \in \Gamma_{\alpha}$ such that $P(T \in \Gamma_{\alpha} | H_0) = \alpha$ typically
 - 2. Compute the p-value of the test : pv the smallest risk such that the value t is rejected and reject if $pv \leq \alpha$ Typically

	Decision	
"Truth" (unknown)	Reject H_0	Keep H_0
H_0	Incorrect decision	Correct decision
true		
H_1	Correct decision	Incorrect decision
true		

	Decision	
"Truth" (unknown)	Reject H_0	Keep H_0
H_0	Incorrect decision	Correct decision
true	Type I error	
H_1	Correct decision	Incorrect decision
true		

$$\alpha = \textit{P}(\mathsf{Type}\;\mathsf{I}\;\mathsf{error})$$

If we perform one test, we reject if the p-value< α

	Decision	
"Truth" (unknown)	Reject H_0	Keep H ₀
H_0	Incorrect decision	Correct decision
true	Type I error	
H_1	Correct decision	Incorrect decision
true		Type II error

$$\alpha = P(\mathsf{Type}\;\mathsf{I}\;\mathsf{error}) \qquad \beta = P(\mathsf{Type}\;\mathsf{II}\;\mathsf{error})$$

	Decision	
"Truth" (unknown)	Reject H_0	Keep H ₀
H_0	Incorrect decision	Correct decision
true		
H_1	Correct decision	Incorrect decision
true	Power	

$$\alpha = P(\mathsf{Type}\;\mathsf{I}\;\mathsf{error}) \qquad \beta = P(\mathsf{Type}\;\mathsf{II}\;\mathsf{error}) \qquad 1 - \beta = "\mathsf{Power}\;\mathsf{of}\;\mathsf{the}\;\mathsf{test}"$$

Some review about standard statistical test

 $\mathsf{HTA} = \mathsf{hypertension} \ \mathsf{status}$

	AGE	HTA
1	48	0
2	18	0
3	18	0
4	21	0
5	18	0
6	25	0
7	43	0
8	80	0
9	38	0
10	60	1
11	37	0
12	66	0
13	70	0
14	53	0
15	66	0
16	19	0
17	22	0
18	22	0
19	32	0
20	25	0
21	48	0
22	75	1
23	42	1
24	25	0
25	30	0
26	41	0

X quantitative, Y binary

```
> mean(HTA$AGE[which(HTA$HTA==1)])
[1] 54.752
> mean(HTA$AGE[which(HTA$HTA==0)])
[1] 41.54513
> var(HTA$AGE[which(HTA$HTA==1)])
[1] 216.8493
> var(HTA$AGE[which(HTA$HTA==0)])
[1] 272.0605
> length(which(HTA$HTA==1))
[1] 125
> length(which(HTA$HTA==0))
[1] 277
```

X quantitative, Y binary

```
> mean(HTA$AGE[which(HTA$HTA==1)])
[1] 54.752
> mean(HTA$AGE[which(HTA$HTA==0)])
[1] 41.54513
> var(HTA$AGE[which(HTA$HTA==1)])
[1] 216.8493
> var(HTA$AGE[which(HTA$HTA==0)])
[1] 272.0605
> length(which(HTA$HTA==1))
[1] 125
> length(which(HTA$HTA==0))
[1] 277
```

Decision? p-value?

X quantitative, Y binary

```
> mean(HTA$AGE[which(HTA$HTA==1)])
[1] 54.752
> mean(HTA$AGE[which(HTA$HTA==0)])
[1] 41.54513
> var(HTA$AGE[which(HTA$HTA==1)])
[1] 216.8493
> var(HTA$AGE[which(HTA$HTA==0)])
[1] 272.0605
> length(which(HTA$HTA==1))
[1] 125
> length(which(HTA$HTA==0))
[1] 277
```

Student-Test comparison of the means of two independent samples

```
> t.test(HTA$AGE[which(HTA$HTA==1)], HTA$AGE[which(HTA$HTA==0)], conf.level=0.95)

Welch Two Sample t-test

data: HTA$AGE[which(HTA$HTA == 1)] and HTA$AGE[which(HTA$HTA == 0)]

t = 8.0123, df = 265.87, p-value = 3.559e-14
alternative hypothesis: true difference in means is not equal to 0

9.9cercent confidence interval:
9.9c145 16.45230

sample estimates:
mean of x mean of y
54.75200 41.54513
```


Some review about standard statistical test

	ETHNIE	IMC
1	1	12.26948
2	2	14.70538
3	2	14.86326
4	2	14.87290
5	1	16.00366
6	1	16.02294
7	1	16.18427
8	1	16.20308
9	1	16.22736
10	3	16.22784
11	2	16.32653
12	1	16.40625
13	1	16.41959
14	2	16.76574
15	1	16.82423
16	1	16.90103
17	2	16.97959
18	1	17.08744
19	1	17.11635
20	3	17.12247
21	3	17.18750
22	3	17.30104
23	1	17.43285
24	1	17.44126
25	1	17.50639
26	1	17.51463
27	3	17.57812
28	1	17.78197
29	1	17.83591
30	1	17.85652

X quantitative, Y quali with more than 2 levels

```
> tapply(HTA1$IMC, HTA1$ETHNIE, summary)
$`1`
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
 12.27 20.36 23.24
                       23.45 26.35
                                     37.39
$`2`
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
        20.57 23.37
                       23.97 27.56
 14.71
                                      37.48
$'3'
  Min. 1st Ou. Median Mean 3rd Ou.
                                      Max.
 16.23 21.54 23.79
                       24.79 27.98
                                     37.59
```

X quantitative, Y quali with more than 2 levels

```
> tapply(HTA1$IMC, HTA1$ETHNIE, summary)
$'1'
Min. 1st Qu. Median Mean 3rd Qu. Max.
12.27 20.36 23.24 23.45 26.35 37.39

$'2'
Min. 1st Qu. Median Mean 3rd Qu. Max.
14.71 20.57 23.37 23.97 27.56 37.48

$'3'
Min. 1st Qu. Median Mean 3rd Qu. Max.
16.23 21.54 23.79 24.79 27.98 37.59
```

Anova

	SEXE	HTA
1	1	0
2	1	0
3	1	0
4	1	0
5	0	0
6	0	0
7	1	0
8	1	0
9	0	0
10	0	1
11	1	0
12	1	0
13	0	0
14	1	0
15	1	0
16	1	0
17	1	0
18	0	0
19	0	0
20	0	0
21	1	0
22	1	1
23	1	1
24	1	0
25	1	0
20		

16/39

CEVE UTA

X qualitative, Y binary

table(HTA1\$SEXE, HTA1\$HTA)

```
0 1
0 169 72
1 108 53
```

X qualitative, Y binary

table(HTA1\$SEXE, HTA1\$HTA)

```
0 169 72
1 108 53
```

Test? Decision? p-value? Chi square test

```
AGE TASM
1 48 120.0
2 18 100.0
3 18 130.0
4 21 90.0
5 18 107.5
6 25 100.0
```

X and Y qualitative

Test for the correlation

Linear regression

```
> modele<-lm(HTA1$TASM~HTA1$AGE)</pre>
> summarv(modele)
Call:
lm(formula = HTA1\$TASM \sim HTA1\$AGE)
Residuals:
   Min
            10 Median
                           30
                                  Max
-50.313 -12.940 -2.187 9.244 91.421
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 95.5669 2.6852 35.59 <2e-16 ***
HTA1$AGE 0.6392 0.0551 11.60 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.85 on 400 degrees of freedom
Multiple R-squared: 0.2518, Adjusted R-squared: 0.2499
F-statistic: 134.6 on 1 and 400 DF, p-value: < 2.2e-16
```

Linear regression

We test the link between each X_j and Y by testing H_0^j , $(1 \le j \le p)$

	Decision		
"Truth" (unknown)	Reject H_0^j Keep H_0^j		
H_0^j	Incorrect decision	Correct decision	
true	X_j false positive	X_j true negative	
H_1^j	Correct decision	Incorrect decision	
true	X_j true positive	X_j false negative	

We test the link between each X_j and Y by testing H_0^j , $(1 \le j \le p)$

	Decision		
"Truth" (unknown)	Reject ${ m H}_0^{ m j}$	Keep H_0^j	
H_0^j	Incorrect decision	Correct decision	
true	X_j false positive	X_j true negative	
H_1^j	Correct decision	Incorrect decision	
true	X_j true positive	X_j false negative	

If the p = 20~000 test are independent

- If for each test $\alpha = 0.05$, expected number of false positive test: $p \times \alpha = 1000$
- ▶ If we expect only one false positive, we have to choose $\alpha = 0.05/p = 2.5 \times 10^{-6}$
- ▶ How to control the number of false positive ?

$$P(\text{ type I error for one test}) = \alpha$$

```
P(\text{ type I error for one test}) = \alpha

P(\text{no type I error for one test}) = 1 - \alpha
```

```
P(\text{ type I error for one test}) = \alpha
P(\text{no type I error for one test}) = 1 - \alpha
P(\text{no type I error in } p \text{ tests}) = (1 - \alpha)^p
P(\text{at least 1 type I error in } p \text{ tests}) = 1 - (1 - \alpha)^p
```

If we perform p independent tests, what is the probability to have at least one false positive ?

```
P(\text{ type I error for one test}) = \alpha
P(\text{no type I error in } p \text{ tests}) = 1 - \alpha
P(\text{no type I error in } p \text{ tests}) = (1 - \alpha)^p
P(\text{at least 1 type I error in } p \text{ tests}) = 1 - (1 - \alpha)^p
```

Compute it for p = 2, 5, 10, 20...

Probablility to have one error

Figure: Probability to have at least one type I error according to the number p of independent statistical tests ($\alpha = 0.05$ for each test)

Counting false and true decisions

Suppose we perform p tests : $H_0^1, H_0^2, \dots H_0^p$, We denote $p_0 = \#$ true hypothesis and R = # of rejected hypothesis

We have to control some numbers!

	Significant	Not significant	Total
Null true	V	U	p_0
Alternative true	S	Т	$p-p_0$
Total	R	p-R	р

Counting false and true decisions

Suppose we perform p tests : $H_0^1, H_0^2, \dots H_0^p$, We denote $p_0 = \#$ true hypothesis and R = # of rejected hypothesis

	Significant	Not significant	Total
Null true	V	U	p ₀
Alternative true	S	Т	$p-p_0$
Total	R	p-R	р

V is the number of type I errors or false positive Which quantities are known if we

perform p test from real data ?

Multiple testing Aim

- "Adjusting p-values for the number of hypotheses tests performed" means controlling the Type I error
- Very active area of statistics
- Many different methods with the same goal but with fundamentally different ways

Multiple testing Aim

- "Adjusting p-values for the number of hypotheses tests performed" means controlling the Type I error
- How ? according to $\alpha = P(\text{at least 1 type I error in } p \text{ tests})$, we modify the level α_j of the test H_0^j or in a equivalent manner the p-value pv_j .

Main FWER control procedures

FWER, Family Wise Error Rate, we want to control

- $\alpha = P(\text{at least 1 type I error in } p \text{ tests}),$
 - ► Single step approaches (Bonferroni, Sidak, ...)
 - ▶ Bonferroni, for a overall error α , level for H_0^j is $\alpha_j = \frac{\alpha}{p}$
 - In an equivalent manner, we compare $p \times pv_j$ to α , $\tilde{pv}_j^{Bonf} = min(p \times pv_j, 1)$ is called the Bonferroni adjusted pvalue and is to be compared to α

$$pv_j < \alpha/p \Leftrightarrow \tilde{pv}_j^{Bonf} < \alpha$$

Main FWER control procedures

FWER, Family Wise Error Rate, we want to control

- $\alpha = P(\text{at least 1 type I error in } p \text{ tests}),$
 - ► Single step approaches (Bonferroni, Sidak, ...)
 - ▶ Bonferroni, for a overall error α , level for H_0^j is $\alpha_j = \frac{\alpha}{p}$
 - In an equivalent manner, we compare $p \times pv_j$ to α , $\tilde{pv}_j^{Bonf} = min(p \times pv_j, 1)$ is called the Bonferroni adjusted pvalue and is to be compared to α

$$\mathit{pv}_j < \alpha/\mathit{p} \Leftrightarrow \tilde{\mathit{pv}}_j^\mathit{Bonf} < \alpha$$

- ▶ Sidak: for a overall error α we reject H_0^i at level $\alpha_i = 1 (1 \alpha)^{1/p}$
 - Exercice: compute the corresponding Sidak adjusted p-value.

Main FWER control procedures

FWER, Family Wise Error Rate, we want to control

- $\alpha = P(\text{at least 1 type I error in } p \text{ tests}),$
 - Single step approaches (Bonferroni, Sidak, ...)
 - ▶ Bonferroni, for a overall error α , level for H_0^j is $\alpha_j = \frac{\alpha}{p}$
 - In an equivalent manner, we compare $p \times pv_j$ to α , $\tilde{pv}_j^{Bonf} = min(p \times pv_j, 1)$ is called the Bonferroni adjusted pvalue and is to be compared to α

$$pv_j < \alpha/p \Leftrightarrow \tilde{pv}_j^{Bonf} < \alpha$$

- lacksquare Sidak: for a overall error lpha we reject H_0^i at level $lpha_j=1-(1-lpha)^{1/p}$
 - Exercice: compute the corresponding Sidak adjusted p-value.
- These two procedures are very conservative! High probability of type II error of not rejecting the general null hypothesis when important effects exist
- Very contre-intuitive: a results for one covariates depends on the number of tests!
- ▶ The adjusting procedure does not depend on the p-value

FWER sequential adjustment

- Sequential method means that the adjustement depends on the order of the p-value
- Simplest sequential method is Holms Method
 - 1. Order the unadjusted p-values such that $pv_{(1)} \le pv_{(2)} \le \ldots \le pv_{(p)}$ and also the associated hypothesis $H_0^{(1)} H_0^{(2)} \ldots H_0^{(p)}$
 - 2. For a given significance level α , let k be the minimal index such that $pv_{(k)} > \frac{\alpha}{p+1-k}$
 - 3. Reject $H_0^{(1)} H_0^{(2)} \dots H_0^{(k-1)}$ and do not reject $H_0^{(k)} H_0^{(2)} \dots H_0^{(p)}$
 - 4. The corresponding adjusted p-values are

FWER sequential adjustment

- Sequential method means that the adjustement depends on the order of the p-value
- Simplest sequential method is Holms Method
 - 1. Order the unadjusted p-values such that $pv_{(1)} \leq pv_{(2)} \leq \ldots \leq pv_{(p)}$ and also the associated hypothesis $H_0^{(1)} H_0^{(2)} \ldots H_0^{(p)}$
 - 2. For a given significance level α , let k be the minimal index such that $pv_{(k)} > \frac{\alpha}{p+1-k}$
 - 3. Reject $H_0^{(1)} H_0^{(2)} \dots H_0^{(k-1)}$ and do not reject $H_0^{(k)} H_0^{(2)} \dots H_0^{(p)}$
 - 4. The corresponding adjusted p-values are

$$\tilde{pv}_{(j)}^{Holms} = min\left((p-j+1) \times pv_{(j)}, 1\right)$$

▶ The point here is that we don't multiply every pv_j by the same factor p: it is sequential or stepwise

Not making ANY type I Errors?

- FWER is appropriate when you want to guard against ANY false positives
- However, in many cases (particularly in genomics) we can tolerate a moderate number of False Positive
- In these cases, the more relevant quantity to control is the false discovery rate (FDR)

What is False Discovery Rate?

	Significant	Not significant	Total
Null true	V	U	p 0
Alternative true	S	Т	$p - p_0$
Total	R	p-R	р

What is random in this table ? What is unknown in this table ?

What is False Discovery Rate?

	Significant	Not significant	Total
Null true	V	U	p_0
Alternative true	S	T	$p-p_0$
Total	R	p-R	р

- ▶ FDR = $\mathbb{E}[V/R]$. It is the expected proportion of False Positive among the significant tests (R)
- ▶ The adjustment aim is to ensure that FDR is upper bounded by a desired value
- ▶ Main FDR procedure: Benjamini Hochberg, it is stepwise
- ► FDR vs. FWER control: FDR is less stringent than FWER
 - FWER controls $P(V \ge 1)$.
 - ► FDR control: over p experiments the average of $FP/R \le \alpha$
 - FDR control may be preferred in an exploratory context

First task : Estimating p_0

	Significant	Not significant	Total
Null true	V	U	p_0
Alternative true	S	Т	$p-p_0$
Total	R	p-R	р

What is observed in this table ?

First task : Estimating p_0

	Significant	Not significant	Total
Null true	V	U	p_0
Alternative true	S	Т	$p - p_0$
Total	R	p-R	р

 $p \ \mbox{tests} \Rightarrow p \ \mbox{p-values} \ !$ Use properties of p-values under H_0 to estimate p_0

Under H_0 p-values are uniformly distributed on [0,1].

Under H_0 p-values are uniformly distributed on [0,1].

Under the alternative hypothesis H_1 , p-values are skewed towards 0

Under the alternative hypothesis H_1 , p-values are skewed towards 0

If we have a mixture of the two hypotheses p_0 under H_0 and $p-p_0$ under H_1 :

Histogram of pval

How to disentangle the null from the alternatives ?

If we have a mixture of the two hypotheses p_0 under H_0 and $p-p_0$ under H_1 :

How to disentangle the null from the alternatives ?

We locate the threshold λ of uniformity: here for p-values greater than $\lambda=0.25$, we assume they mostly represent observations from null hypothesis

We locate the threshold λ of uniformity: here for p-values greater than $\lambda=0.5$, we assume they mostly represent observations from null hypothesis

We locate the threshold λ of uniformity: here for p-values greater than $\lambda=0.5$, we assume they mostly represent observations from null hypothesis

Estimating p_0

One can estimate p_0 by

One can estimate
$$p_0$$
 by $\hat{p}_0 = \dfrac{\#\{p_i > \lambda\}}{(1-\lambda)}$

Histogram of pval

5000 10000 15000

0.4

0.0

0.2

Simulations : $p_0=100000, p=120000$ Estimations : for $\lambda=0.25, \ \hat{p}_0=102805, \ \text{for} \ \lambda=0.5, \ \hat{p}_0=101760, \ \text{for} \ \lambda=0.6, \ \hat{p}_0=101843,$

p-values

0.6

0.8

1.0

After estimating p_0 , choose to reject the \hat{p}_0 smallest p-values

In our exemples

	Significant	Not significant	Total
Null true	4284	95716	100000
Alternative true	13956	6044	20000
Total	18240	101760	120000

Here FDR=4284/18240=0.235

Second task: Estimating p_0 but control FDR

Benjamini & Hochberg (1995) (BH) proposed a step-wise method for controlling FDR

 Compare the largest p-value among the p with the chosen specified significance level α: if

$$pv_{(p)} > \alpha$$

then do not reject the corresponding hypothesis $H_0^{(p)}$

2. Compare the second one to a modified threshold:

$$pv_{(p-1)} > \alpha \times (p-1)/p$$
, \Rightarrow do not reject $H_0^{(p-1)}$

3.

$$pv_{(p-2)} > \alpha \times (p-2)/p$$
, \Rightarrow do not reject $H_0^{(p-2)}$

- 4. ...
- Stop when p-value is lower than the modified threshold, all other null hypotheses (with smaller p-values) are rejected

BH adjusted p-values

- ► FDR is being controlled
- If the hypotheses are independent, the set of decisions verifies

$$FDR = \mathbb{E}\left[\frac{V}{R}\right] \le (p_0/p)\alpha \le \alpha$$

Property of BH method

$$\underbrace{H_0^{(1)} \dots H_0^{(j^*)}}_{\text{rejected}} \underbrace{H_0^{(j^*+1)} \dots H_0^{(p)}}_{\text{not rejected}}$$

$$j^* = \min\{j \text{ such that } pv_{(j+1)} > \alpha \frac{j+1}{p}\}$$

$$j^* = \min\{j \text{ such that } \frac{p \cdot pv_{(j+1)}}{j+1} > \alpha\}$$

$$\underbrace{pv_{(1)} \leq \dots \leq pv_{(j^*)}}_{<\frac{\alpha j^*}{p}} \leq \underbrace{pv_{(j^*+1)} \leq \dots \leq pv_{(p)}}_{\text{each}pv_{(k)} > \frac{\alpha k}{p} \geq \frac{\alpha j^*}{p}}$$

Adjusted p-values could be given by $p\frac{p_{(k)}}{j^*}$, but j* depends on α and on the p-values ! Software compute the adjusted Benjamini-Hochberg p-values by

$$\tilde{pv}_{(j)}^{BH} = \min\left(\min_{i \geq j}(p * pv_{(i)}/i), 1\right)$$

Property of BH method

$$j^* = \min\{j \text{ such that } pv_{(j+1)} > \alpha \frac{j+1}{p}\}$$

$$\underbrace{pv_{(1)} \leq \ldots \leq pv_{(j^*)}}_{<\frac{\alpha j^*}{p}} \leq \underbrace{pv_{(j^*+1)} \leq \ldots \leq pv_{(p)}}_{\text{each}pv_{(k)} > \frac{\alpha k}{p} \geq \frac{\alpha j^*}{p}}$$

Threshold is given by the intersection between the inverse of the CDF and line of

Results for $\alpha = 0.1$

In our exemples

	Significant	Not significant	Total
Null true	549	79541	100000
Alternative true	8328	11672	20000
Total	9024	110976	120000

Here FDR=549/9024=0.060

Results for $\alpha = 0.2$

In our exemples

	Significant	Not significant	Total
Null true	1813	78187	100000
Alternative true	8087	11672	20000
Total	14169	105831	120000

Here FDR=1813/14169=0.128

A Bayesian approach to FDR

Storey (2000)

$$pFDR = \mathbb{E}\left[\left(\frac{V}{R}|R>0\right)\right]$$

- Assume i.i.d. statistics $T_1 ... T_p$ and rejection region Γ.
- ▶ Define Z_i equals 0 if H_0^j is true and 1 otherwise

$$T_j|Z_j\simeq (1-Z_j)F_0+Z_jF_1$$

for some distribution F_0 and F_1 .

▶ Letting $P(Z_i = 0) = \pi_0$, we have

$$T_j \simeq \pi_0 F_0 + (1 - \pi_0) F_1$$

Storey showed

$$pFDR(\Gamma) = P(Z_j = 0 | T_j \in \Gamma)$$

posterior probability that the null hypothesis is true given than test statistics falls in the rejection region for the test.

positive False Discovery Rate (pFDR)

How to estimate the pFDR ?

$$pFDR = \mathbb{P}(H_0|T \in \Gamma)$$

$$= \frac{\mathbb{P}(T \in \Gamma|H_0)\mathbb{P}(H_0)}{\mathbb{P}(T \in \Gamma)}$$

- ▶ $\mathbb{P}(T \in \Gamma | H_0)$ (proba of type 1 error risk when coosing Γ)
- ▶ $\mathbb{P}(T \in \Gamma) = R/p$ (proportion of hypotheses rejected)
- $ightharpoonup \mathbb{P}(H_0) = \pi_0$ (to be estimated from the data by $\hat{\pi}_0 = \frac{\#\{p_i > \lambda\}}{p(1-\lambda)}$ for instance)

The qualues

qvalue, Definition: The q-value of a test T_j is defined to be the smallest pFDR over all rejection regions that reject T_j .

$$pFDR = \frac{\mathbb{P}(T_j \in \Gamma | H_0) \mathbb{P}(H_0)}{\mathbb{P}(T_j \in \Gamma)}$$
$$q_j = \hat{\pi}_0 p v_j p / R$$

- Note similarity between the adjusted p-values using the BH method
- q-values are not linear w.r.t. p-values because of R (number of rejected nulls, it is a $R(\Gamma)$, it changes with Γ or with the risk

References

Review of frequentist methods, controlling error rates:

Dudoit, Shaffer & Boldrick (2003), Statistical Science 18, p 71. http://www.stat.berkeley.edu/sandrine/ Patterson N, Price AL, Reich D. 2006. Population structure and eigenanalysis. PLoS Genet 2:e190.

About FDR

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B, 57:289-300. Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165-1188.

Estimating pFDR:

Storey JD. 2002. A direct approach to false discovery rates. J R Stat Soc Series B Stat Methodol 64:479-498.

Storey JD. 2003. The positive false discovery rate: A Bayesian interpretation and the q-value. Ann Stat 31:2013-2035