Systematic Study of K Values in Global Arithmetic Torsion for the 4_1 Knot

Manus

May 12, 2025

1 Introduction

This document presents a systematic study of the integer K that appears in the global arithmetic torsion formula, $\mathcal{T}(S) = \Delta(t)(t^K - 1)$, specifically for the figure-eight knot (4_1) . This investigation aims to understand the conditions under which K takes certain values by analyzing various paths (relators) in the knot group $G(4_1)$, using data provided in the 'aeg-paper' repository.

The figure-eight knot, denoted as 4_1 , is a prime, alternating knot with a crossing number of four. It is the simplest hyperbolic knot.

2 Background: Global Arithmetic Torsion

The concept of global arithmetic torsion is given by the expression $\mathcal{T}(S) = \Delta(t)(t^K - 1)$. Here, $\Delta(t)$ is the Alexander polynomial of the knot $(t^2 - 3t + 1 \text{ for the } 4_1 \text{ knot})$, t is a parameter, and K is an integer that depends on the chosen path S (a relator) within the knot group $G(4_1)$.

3 Analysis of K Values from Provided Data

Data for the knot 4_1 is available in the 'knots/results.tex' file within the 'aeg-paper' repository. The relevant section for knot 4_1 is presented and analyzed below.

3.1 Data from results. tex for Knot 4_1

The provided data indicates the following for knot 4_1 :

- Alexander polynomial: $\Delta(a) = a^2 3a + 1$.
- Cyclotomic polynomials: $\Phi_1(a) = a 1$, $\Phi_2(a) = a + 1$.
- Path-dependent terms: $p(a) = \nu(S_R)(0, a)$ and $q(a) = \nu(S_{R_{rev}})(0, a)$.
- Torsion: $\tau(a) = p(a) q(a)$.

Table 1: Summary of Arithmetic Torsion Analysis for Knot 4₁ (Unified Mapping, from results.tex).

Relator(s) Used	p(a)	$q\left(a\right)$	$ \begin{array}{l} \mathbf{Torsion} \ \tau(a) \\ p(a) - q(a) \end{array} $	= Torsion Factors	Notes $(k_p, k_q, \sigma_{\text{eff}};$ Cyclot. Factors)
aaBAbbbAB, abbbaBAAB	$-\Delta(a)$	$-\frac{\Delta(a)}{a^2}$	$\frac{-\Delta(a)(a^{2}-1)}{a^{2}}$	$\frac{-\Delta(a)\Phi_{1}(a)\Phi_{2}(a)}{a^{2}}$	$k_p = 0, k_q = 2, \sigma_{\rm eff} = -1;$ Cyclot. $\Phi_1 \Phi_2$
aBAABabbb, bbbABaaBA bbbaBAABa	$A, \qquad -\frac{\Delta(a)}{a}$	$=rac{\Delta(a)}{a}$	0	0	$k_p = 1, k_q = 1, p(a) = q(a)$; No cyclot. part

3.2 Derivation of K

We use the formula $\mathcal{T}(S) = \Delta(a)(a^K - 1)$. The term $\mathcal{T}(S)$ corresponds to the "Torsion $\tau(a)$ " column from Table ?? (with the variable t replaced by a for consistency with the table notation). Thus, $a^K - 1 = \frac{\tau(a)}{\Delta(a)}$.

standalone amsthm amssymb amsfonts amsmath mathtools pgf pgfplots tikz tkz-euclide tkz-graph graphicx

Figure 1: The Figure-Eight Knot (4_1) .

3.2.1 Case 1: Relators aaBAbbbAB, abbbaBAAB

From Table ??, for these relators:

$$\tau(a) = \frac{-\Delta(a)(a^2 - 1)}{a^2}$$

Assuming $\Delta(a) \neq 0$, we substitute this into the equation for $a^K - 1$:

$$a^K - 1 = \frac{1}{\Delta(a)} \left(\frac{-\Delta(a)(a^2 - 1)}{a^2} \right) = \frac{-(a^2 - 1)}{a^2} = \frac{1 - a^2}{a^2}$$

Therefore,

$$a^K = 1 + \frac{1 - a^2}{a^2} = \frac{a^2 + 1 - a^2}{a^2} = \frac{1}{a^2} = a^{-2}$$

This implies that for these relators, K = -2.

The notes in the table $(k_p = 0, k_q = 2, \sigma_{\text{eff}} = -1)$ provide parameters related to the specific computational framework used to derive p(a) and q(a). The derived K = -2 is a direct consequence of the torsion formula and the reported $\tau(a)$.

3.2.2 Case 2: Relators aBAABabbb, bbbABaaBA, bbbaBAABa

From Table ??, for these relators:

$$\tau(a) = 0$$

Assuming $\Delta(a) \neq 0$, we have:

$$a^K - 1 = \frac{0}{\Delta(a)} = 0$$

This implies $a^K = 1$. If a is not a root of unity, then K = 0. This case is of particular interest as it signifies a vanishing component of the arithmetic torsion. The notes confirm p(a) = q(a) for these paths, leading directly to $\tau(a) = 0$.

4 Discussion of Path Properties and K Values

The analysis reveals two distinct K values for the provided sets of relators for the 4_1 knot:

- K = -2 for relators like aaBAbbbAB.
- K=0 for relators like aBAABabbb.

Further investigation would involve:

- 1. **Algebraic Structure of Relators: ** Analyzing the word structure of these relators in the generators of $G(4_1)$ (e.g., Wirtinger presentation or other common presentations like $\langle x,y \mid xyx^{-1}yxy^{-1}x^{-1}y^{-1}\rangle = 1$) to identify features correlating with K = -2 versus K = 0. This could involve looking at exponent sums, subword patterns, or relationships to specific group operations.
- 2. **Geometric Interpretation in (U,V) Space: ** Visualizing these paths in the (U,V) reference space, as conceptualized in related research questions. The geometric properties (net displacement, enclosed area, winding numbers) of paths leading to K=-2 versus K=0 could reveal underlying geometric reasons for the different K values.

Figure 2: Conceptual example of a path in the (U,V) reference space. Specific paths from Table $\ref{Table 1}$ would be plotted to analyze their geometric characteristics.

3. **Role of $k_p, k_q, \sigma_{\text{eff}}$: ** Understanding the precise relationship between the parameters $k_p, k_q, \sigma_{\text{eff}}$ (from the notes in Table ??) and the derived integer K. These parameters likely encode information about how p(a) and q(a) are constructed from $\Delta(a)$ and cyclotomic factors, which in turn determines K.

5 Conclusion

By directly analyzing the provided data for the 4_1 knot, we have determined specific integer K values associated with different relators. For the relator set including aaBAbbbAB, K=-2. For the set including abAABabbb, K=0 (assuming a is not a root of unity). This detailed analysis, incorporating the explicit data from 'results.tex', provides a concrete foundation for understanding the behavior of K in the arithmetic torsion formula for the 4_1 knot. Future work should focus on correlating these K values with the algebraic and geometric properties of the paths.