EST-24107: Tarea 2

Carlos Lezama, Marco Medina, Emiliano Ramírez y Santiago Villarreal Viernes, 10 de septiembre de 2021

Tenemos $V_i \sim \mathcal{U}(-1,1)$, $\forall i \in \{1,2\}$, tal que no generamos nuevas uniformes si caemos dentro del círculo unitario — nuestra zona de aceptación — cuya área es $(0.5)^2\pi = \pi/4 \approx 0.7853982$.

Basta ver que $X \sim \text{Geo}(\pi/4)$ para concer el número de rechazos antes de aceptar. Por lo tanto, $\mathbb{E}[X] = 1/(\pi/4) = 4/\pi \approx 1.2732395$.

```
set.seed(1234)
mezcla <- function(n, p, mu1, mu2, s1, s2) {</pre>
    p * rmvnorm(n, mean = mu1, sigma = s1) + (1 - p) * rmvnorm(n, mean = mu2, sigma = s2)
}
n <- 1000 # observaciones
p <- 0.5 # mezcla al 50%
mu1 < -c(0, 0, 0, 0)
mu2 <- c(2, 3, 4, 5)
s1 <- s2 <- diag(4)
z <- as.data.frame(mezcla(n, p, mu1, mu2, s1, s2))</pre>
 30
 20
 10
  0 -
                                                   0
V1
                             -1
  10
```



```
Primer método
wishart1 <- function(k, n, mean, sigma) {</pre>
    require(mvtnorm)
    W <- list(NULL)</pre>
    for (i in 1:k) {
         X <- rmvnorm(n, mean = mean, sigma = sigma)</pre>
        W[[i]] <- t(X) %*% X
    }
    return(W)
}
Método de Bartlett
wishart2 <- function(k, n, mean, sigma) {</pre>
    W <- list(NULL)</pre>
    d <- length(mean)</pre>
    A \leftarrow matrix(0, nrow = d, ncol = d)
    for (i in 1:k) {
         A[lower.tri(matrix(0, nrow = d, ncol = d))] <-
             rnorm(d * (d + 1) / 2 - d)
         diag(A) \leftarrow sqrt(rchisq(d, n - (1:d) + 1))
         L <- chol(sigma)
         W[[i]] <- L %*% A %*% t(A) %*% t(L)
    }
    return(W)
}
Comparación
k < -10000; n < -10
mean <- c(0, 0, 0, 0, 0)
sigma <- diag(5)</pre>
tic('First method')
test1 <- wishart1(k, n, mean, sigma)</pre>
toc()
## First method: 4.15 sec elapsed
tic('Bartlett decomposition')
test2 <- wishart2(k, n, mean, sigma)</pre>
toc()
## Bartlett decomposition: 0.612 sec elapsed
```