

Chiffrement et Codes Correcteurs

Nasko Karamanov

1 Cryptographie et courbes elliptiques

Acquis d'apprentissage visés

- Utiliser les algorithmes d'un schema de chiffrement donné.
- Mettre en oeuvre un algorithme d'attaque pour déchiffrer un message donné.
- Expliquer quelques techniques standard de perturbation / sécurisation des cryptosystemes standards
- Identifier les algorithmes de chiffrement fragiles dans un contexte post-quantique.

Question 1-1 Soit $E: y^2 = x^3 + 2x + 3$ sur \mathbb{F}_7 et P = (2, 1).

- a) Le point (3,4) est-il sur la courbe?
- b) Vérifier que P est sur la courbe.
- c) Donner les coordonnées de -P?
- d) Donner une formule pour l'inverse de $Q(x_Q, y_Q)$ en tant qu'élément de $E(\mathbb{F}_7)$.
- e) Calculer 2P.
- f) Lister tous les points sur la courbe
- g) Vérifier que le nombre de point corresponds à l'encadrement donné par le théorème de Hasse.
- h) Faire le table d'addition.
- i) Montrer que P est un générateur de $E(\mathbb{F}_7)$.
- j) Si Q = (3,1) que vaut $\log_P(Q)$?

Pour s'entraîner

- k) Mêmes questions pour $E: y^2 = x^3 + x + 2$ sur \mathbb{F}_5 et P = (1,2)
- 1) Mêmes questions pour $E: y^2 = x^3 + 2x + 5$ sur \mathbb{F}_{11} et P = (0,4)

Solution 1-1

- a) $3^3 + 2 \cdot 3 + 3 \equiv 1 \mod 7$ et $4^2 \equiv 2 \mod 7$ donc le point n'est pas sur la courbe.
- b) $2^3 + 2 \cdot 2 + 3 \equiv 1 = 1^2 \mod 7$ donc *P* est sur la courbe
- c) Par défintion sur $E(\mathbb{R})$ l'inverse de P est -P = (2, -1) et $-1 \equiv 6 \mod 7$ donc -P = (2, 6).
- d) $-Q = (x_Q, -y_Q) = (x_Q, n y_Q)$
- e) On utilise les formules vues dans le cours : $m = (3x_P^2 + a)(2 \cdot y_P)^{-1} = (3 \cdot 2^2 + 2)(2 \cdot 1)^{-1} = 0 \cdot 2^{-1} = 0 \mod 7$. Donc $x = m^2 - x_P - x_P = 0 - 2 - 2 \equiv 3 \mod 7$ et $y = m(x_P - x) - y_P = -1 = 6 \mod 7$. Donc 2P = (3,6).
- f) Le tableau suivant permet d'obtenir les points différents de l'élément neutre

x	$x^3 + 2x + 3$	x^2
0	3	0
1	6	1
2	1	4
2 3	1	2
4 5	5	2
-	5	4
6	0	1

Pour la dernière colonne on peut utiliser le fait que $x^2 = (-x)^2 = (n-x)^2$ pour faire la moitié des calculs. On obtient donc $E(\mathbb{F}_7) = \{ \mathscr{O}, (2,1), (2,6), (3,1), (3,6), (6,0) \}$

g) Le théorème d'Hasse dit que $7+1-2\sqrt{7} \leq \operatorname{Card} E(\mathbb{F}_7) \leq 7+1+2\sqrt{7}$ donc $3 \leq \operatorname{Card} E(\mathbb{F}_7) \leq 13$ donc 6 est bien dans cet intervalle.

h)

	R	(2.1)	(2.6)	(2 1)	(2.6)	(6.0)
		_ , _ ,	(2,6)			
0	0	(2,1)	(2,6)	(3,1)	(3,6)	(6,0)
(2,1)	(2,1)	(3,6)	0	(2,6)	(6,0)	(3,1)
(2,6)	(2,6)	0	(3,1)	(6,0)	(2,1)	(3,6)
(3,1)	(3,1)	(2,6)	(6,0)	(3,6)	0	(2,1)
(3,6)	(3,6)	(6,0)	(2,1)	0	(3,1)	(2,6)
(6,0)	(6,0)	(3,1)	(3,6)	(2,1)	(2,6)	0

- i) En utilisant le tableau on trouve : 2P = (3,6), 3P = (6,0), 4P = (3,1), 5P = (2,6) et $6P = \mathcal{O}$ donc P engendre $E(\mathbb{F}_7)$.
- j) $4P = Q \operatorname{donc} \log_P(Q) = 4$.

Question 1-2

- a) Expliquer comment on peut adapter l'algorithme d'exponentiation rapide pour calculer nP.
- b) Soit $E: y^2 = x^3 + 3x + 2 \text{ sur } E(\mathbb{F}_{23})$ et P = (0,5). Calculer 13P.

Solution 1-2

- a) Si $n = \sum 2^{n_i}$ est la décomposition binaire de n où $n_i \in \{0,1\}$ alors on calcule $2^{n_i}P$ et donc $nP = \sum (2^{n_i}P)$.
- b) $13 = 1 + 2^2 + 2^3$. Avec les formules d'addition on obtient 2P = (4,3), 4P = (1,11), 8P = (11,3). Donc 13P = P + 4P + 8P = (12,15) + (11,3) = (6,11)

••

Question 1-3 Le cryptosystème de Menezes-Vanstone est une variante de ElGamal pour les courbes elliptiques. Son schéma de chiffrement est donné dans le tableau suivant.

Alice	Bob					
KeyGen						
Choisir p premier, E une courbe elliptique et un générateur $G \in E(\mathbb{F}_p)$						
	Choisir $b < \operatorname{Card} E(\mathbb{F}_p), K_b = bG$					
	Clé privée de Bob : $sk = b$					
clé publique : $\mathbf{pk} = (p, g, K_b)$						
Chiffrement						
Choisir $a < p$						
Choisir un couple de messages $\mathbf{m} = (\mathbf{m}_1, \mathbf{m}_2) \in (\mathbb{Z}/p\mathbb{Z})^2$						
$K_a = aG, K_1 = a(K_b) = (x_1, y_1)$						
$\boldsymbol{c}_1 \equiv x_1 \boldsymbol{m}_1 \mod p$						
$c_2 \equiv y_1 m_2 \mod p$						
$\boldsymbol{c} = \operatorname{Enc}(\boldsymbol{m}, \operatorname{pk}) = (K_a, \boldsymbol{c}_1, \boldsymbol{c}_2)$						
Dechiffrement						
	$K_2 = bK_a = (x_2, y_2)$					
	$\boldsymbol{m}_1' \equiv x_2^{-1} \boldsymbol{c}_1 \mod p$					
	$m_2' \equiv y_2^{-1} c_2 \mod p$					
	$\mathrm{Dec}(\boldsymbol{c},\mathbf{sk}) = (\boldsymbol{m}_1',\boldsymbol{m}_2')$					

- a) Décrire les ensembles de messages \mathcal{M} et messages chiffrés \mathscr{C} .
- b) Vérifier que $K_1 = K_2$
- c) Vérifier la validité de ce cryptosystème.
- d) Alice et Bob utilisent ce cryptosystème avec $E: y^2 = x^3 + 2x + 1$ sur \mathbb{F}_{23} et G = (2,6) d'ordre 30. La clé privé de Bob est sk = 4. Bob a reçu le message : c = ((18,21),16,6). Quel est le message que Alice a envoyé?
- e) Ce cryptosystème est il fragilisé par les ordinateur quantiques?

Solution 1-3

- a) $\mathcal{M} = (\mathbb{Z}/p\mathbb{Z})^2$ et $\mathscr{C} = E(\mathbb{F}_p) \times (\mathbb{Z}/p\mathbb{Z})^2$
- b) $K_1 = aK_a = abG$ et $K_2 = bK_a = baG$ donc $K_1 = K_2$
- c) Comme $(x_1, y_1) = (x_2, y_2)$ on a $m_1' \equiv x_2^{-1} c_1 \equiv x_1^{-1} x_1 m_1 \equiv m_1 \mod p$. Même raisonnement pour $m_2' \equiv m_2 \mod p$.
- d) On a 4(18,21) = (21,9). En utilisant Bézout : $23 \times (-10) + 21 \times 11 = 1$ on obtient $21^{-1} \equiv 11 \mod 23$ et $23 \times (-3) + 14 \times 5 = 1$ donc $14^{-1} = 5$. $m_1 = 11 \cdot 16 \equiv 15 \mod 23$ et $m_2 = 5 \cdot 6 \equiv 7 \mod 23$. Donc m = (15,7).
- e) Oui, car basé sur le problème du log discret

Question 1-4 La Signature numérique ECDSA (Elliptic curve digital signature algorithm) a le schéma suivant (en général on l'applique à h(m) ou h est une fonction d'hachage).

Alice KeyGen

Choisir
$$p$$
 premier, E une courbe elliptique et un générateur $G \in E(\mathbb{F}_p)$ d'ordre n

Choisir $a < n$, $K_a = aG$
Clé privée de Alice : $\mathbf{sk} = a$
clé publique : $\mathbf{pk} = (p, n, G, E, K_a)$

Sign

Choisir $k < n$
Choisir un message $\mathbf{m} = \in (\mathbb{Z}/n\mathbb{Z})$
 $M = kG = (x_M, y_M)$ et $r = x_M \mod n$
Si $r = 0$ ou $\mathbf{c} = 0$ recommencer
 $\mathbf{\sigma} = (r, \mathbf{c})$

Vérification

$$B = \mathbf{c}^{-1}(\mathbf{m}G + rK_a) = (x_B, y_B)$$
Si $r \equiv x_B \mod n$ retourner 1

Validité : $c^{-1}(mG + rK_a) = k(m + ar)^{-1}(mG + raG) = k(m + ar)^{-1}(m + ar)G = kG$ et c'est bien la première coordonnée de ses points qu'on vérifie.

- a) Alice utilise cette signature avec $E: y^2 = x^3 + 2x + 2$, G = (5,1), p = 17 et n = 19. Elle décide d'utiliser a = 7, calcule $K_a = aG = (0,6)$ et publie sa clé publique. Le message que Bob a reçu est 26, signé avec $\sigma = (7,17)$. Peut-il être sûr que le message provient d'Alice?
- b) Ce schéma de chiffrement est il fragilisé par les ordinateur quantiques?

Solution 1-4

- a) Bob calcule $c^{-1} = 17^{-1} = 9 \mod 19$. $B = (mG + rK_a) = 9(26(5,1) + 7(0,6))9 \cdot 26(5,1) + 9 \cdot 7(0,6)$ Comme on s'intèresse aux coordonnées modulo $19: 9 \cdot 26 = 6 \mod 19$ et $9 \cdot 7 \equiv 6 \mod 19$ B = 6(5,1) + 6(0,6) = (7,11) et $x_B \equiv r \mod 19$ donc le message provient d'Alice.
- b) Le schéma est basé sur le logarithme discret, donc fragilisé par les ordinateurs quantiques.

Question 1-5 Soit $E: y^2 = x^3 + 2x + 6$ sur $\mathbb{F}_7, P = (1,3)$ un générateur de $E(\mathbb{F}_7)$ et Q = (4,6).

- a) Encadrer $\log_P Q$.
- b) Calculer $\log_P Q$

Pour s'entrâiner

c) Même questions avec $E: y^2 = x^3 + 2x + 2 \text{ sur } F_{13}, P = (3,3) \text{ et } Q = (6,3).$

Solution 1-5

a) Avec le théorème de Hasse on obtient $3 \le E(\mathbb{F}_7) \le 13$.

- b) Baby-step liste : \mathcal{O} , (1,3), (2,2), (5,1), Giant-step : (4,6), (5,1). La collision arrive pour 3P = Q 3P, donc Q = 6P.
- c) $L_1 = \mathcal{O}, (3,3), (4,3), (6,10), (12,8), L_2 = (6,3), (11,4), (4,3)$ donc 2P = Q 6P et Q = 9P

