LES ALGORITHMES GÉNÉTIQUES: APPLICATION AU PROBLÈME DU VOYAGEUR DE COMMERCE

27/11/2014

ABDALLAH MOHAMED KAMIL Marwa BARRY Dian Mamadou YOUSFI Ahcene

1

MOTIVATIONS

• Le problème est NP-difficile

 La méthode séparation et évaluation devient obsolète à partir d'un certain nombre de sommets n considérés

 Pour un grand n, peut-on résoudre le problème en un temps raisonnable?

SOMMAIRE

- I) Introduction
- II) Étapes des algorithmes génétiques
- III) Problème du voyageur de commerce
- IV) Principe des algorithmes génétiques
- V) Pseudo-code
- VI) Exemple
- VII) Diverses applications
- VIII) Conclusion

I) INTRODUCTION

- Métaheuristique.
- Algorithmes évolutionnistes
- 1975: Adaptation In Natural Artificial System. John Holland.
- Mécanismes de la sélection naturelle et de la génétique.
- Manipule une population de solutions potentielles d'un problème d'optimisation (ou de recherche).

II) ÉTAPES DE L'ALGORITHME GÉNÉTIQUE (1)

Terminologie

- Gène : Une partie de la solution (une ville)
- Individu : Une solution (un chemin, une tournée)
- Population : Ensemble de solutions (de tournées)
- Fitness: fonction d'adaptation d'un individu.
- Génération: une itération de notre algorithme

II) ÉTAPES DE L'ALGORITHME GÉNÉTIQUE (2)

Les phases sont:

- 1 Initialisation
- 2- Evaluation
- 3-Sélection
- 4- Croisement
- 5- Mutation
- 6- Répétition

II) ÉTAPES DE L'ALGORITHME GÉNÉTIQUE (3)

http://khayyam.developpez.com/articles/algo/genetic/

III) PROBLÈME DU VOYAGEUR DE COMMERCE

 Consiste à trouver un chemin minimal permettant à un voyageur de visiter n villes.

•Le chemin minimal forme un cycle Hamiltonien.

IV) PRINCIPE DES ALGORITHMES GÉNÉTIQUES

INITIALISATION ET ÉVALUATION

- Création une population initiale.
- Génération aléatoire des individus.
- La population peut être de toute taille.
- Evaluation de chaque individu.
- Exemple d'une population initiale :

SÉLECTION

- Améliorer une population en éliminant les mauvaises conceptions et en garder que les meilleurs individus.
- Il existe plusieurs types de sélection :
 - La roulette
 - La sélection par rang
 - L'élitisme
 - Sélection par tournoi

http://khayyam.developpez.com/articles/algo/genetic/

CROISEMENT

- Création de nouveaux individus en combinant les gènes des individus sélectionnés.
- Une nouvelle génération où chaque individu hérite des meilleures caractéristiques de ses parents.
- Exemple:

http://informatique.coursgratuits.net/methodes-numeriques/algorithmes-genetiques.php

MUTATION

- On modifie aléatoirement quelques individus de notre population.
- Pour un individu, on permute deux gènes.
- L'individu muté doit être de la forme d'une solution potentielle Exemple :

 $A = \{ \underline{0}, 4, 3, \underline{2}, 1 \}$ après mutation $A = \{ \underline{2}, 4, 3, \underline{0}, 1 \}$

ÉLITISME

- •Impose la présence des X% meilleurs individus des populations précédentes dans la population finale.
- Dans de nombreux cas, X est équivalent à 1/N.
- Les meilleurs individus sont sélectionnés en fonction de leur fitness.

V) PSEUDO-CODE

```
Pour chaque Individu dans Population
     Initialiser Individu
FinPour
Pour nombre_d'itération
     NewPopulation = []
     NewPopulation[0] = Sélection du meilleur Individu dans Population
     Pour i allant de 1 à Population.taille()
          Parent A = Sélection_d'un_Individu (Population)
          Parent B = Sélection_d'un_Individu (Population)
          Fils = Croisement(Parent A, Parent B)
          NewPopulation[i] = Fils
     FinPour
     For i de 1 à Population.taille()
          Si hasard < pourcentage Alors
              Appliquer_une_mutation_à Fils
          FinSi
     FinPour
```

FinPour

- Critères d'arrêt :
 - un nombre prédéfini de générations est atteint.
 - Il n'y a plus d'évolution dans la capacité d'adaptation des individus d'une population à l'autre.

MODÉLISATION (UML)

EXEMPLE

Soit le graphe suivant avec 5 Sommets:

PREMIÈRE ÉTAPE

Initialiser la population de taille 5 et générer les 5 individus aléatoirement:

Individu 1	Individu 2	Individu 3	Individu 4	Individu 5
1	4	0	3	2
4	2	3	1	0
0	1	2	0	3
3	0	1	4	4
2	3	4	2	1
COUT= 21	COUT= 23	COUT= 21	COUT= 29	COUT= 19

Choisir L'individu 5 car il a la meilleure fitness. La solution initiale est donc l'individu 5: [2, 0, 3, 4, 1]

DEUXIÈME ÉTAPE (1)

Créer une nouvelle population vide. NewPopulation[0]= Individu 5 Première génération:

P1	0	3	2	1	4
P2	1	4	0	3	2
F1	0	3	2	1	4

P1	1	4	0	3	2
P2	2	4	1	0	3
F2	2	4	1	0	3

P1	0	3	2	1	4
P2	2	4	1	0	3
F2	2	4	1	0	3

P1	2	4	1	0	4
P2	1	4	0	3	2
F2	1	4	0	3	2

Individu 1	2	0	3	4	1
Fils 1	0	3	2	1	4
Fils 2	2	4	1	0	3
Fils 3	2	4	1	0	3
Fils 4	1	4	0	3	2

DEUXIÈME ÉTAPE (2)

Mutations possibles: dans la génération précédente, il n'y a pas eu de mutation.

Deuxième génération:

NewPopulation[0]= Individu 1

P1	2	4	1	0	3
P2	2	4	1	0	3
F1	2	4	1	0	3

P1	1	4	0	3	2
P2	2	4	1	0	3
F2	2	4	1	0	3

P1	0	3	2	1	4
P2	2	4	1	0	3
F2	2	4	1	0	3

P1	0	3	2	1	4
P2	2	4	1	0	3
F2	0	3	2	1	4

Individu 1	2	0	3	4	1
Fils 1	2	4	1	0	3
Fils 2	2	4	1	0	3
Fils 3	2	4	1	0	3
Fils 4	0	3	2	1	4

ANALYSE ET DISCUSSION (1)

- Pour n=5 sommets, l'algorithme Séparation et Évaluation est plus performant
- A partir de n=15, l'algorithme génétique devient plus performant que l'algorithme exact
- Temps d'exécution > 1 minute pour n>150

Algorithme	5	Villes	15	Villes	20	Villes	50	Villes	100	Villes	150	Villes
	Dist	Temps	Dist	Temps	Dist	Temps	Dist	Temps	Dist	Temps	Dist	Temps
Génétique	114	0,142	202	0,309	267	0,733	559	3,98	832	18,6	1709	50,37
Séparation et évaluation	114	0,00057	139	10,68	-	> 1min	-	_	_	_	-	-

ANALYSE ET DISCUSSION (2)

Courbe d'evolution en fonction du temps et de Nb villes

Nb Villes	Temps
15	0,338
20	0,448
25	0,674
30	0,903
35	1,196
40	1,55
45	2,064
50	2,487
75	6,109
100	12,595
125	150
150	20,31
200	68,417

VII) DIVERSES APPLICATIONS

- Recherche : Problème du voyageur de commerce.
- Industrie:
 - Motorola : utilisé pour tester des Apps informatiques.
 - NASA : utilisé dans la gestion des déplacements du robot Pathfinder : pour les mission d'exploration sur Mars.
 - Sony: utilisé dans son robot AIBO.
- Informatique décisionnelle :
 - Utilisé dans la recherche d'une solution d'optimum.
- Utilisé pour faire des études d'optimisation d'un réseau (banque, assurance ...).

VIII) CONCLUSION

- Différences avec Séparation-et-évaluation:
 - Pas une solution, mais un ensemble de solutions
- Solution obtenue proche du solution optimale, à l'aide des mécanismes d'évolution.
- Plus le nombre de génération est grand, plus on s'approche d'une solution optimale.
- A utiliser lorsqu'une solution approchée est acceptable.

