Propositional Logic

Charles Aunkan Gomes
Lecturer, Dept. of CSE
United International University

Logical Equivalence

- Two logical statements P and Q are said to be logically equivalent if, and only if, they have identical truth values in every possible interpretation.
- This means that P ↔ Q (P if and only if Q) is always true, regardless of the truth values of the individual components.

In symbolic terms, $P \equiv Q$ P=Q indicates that P and Q are logically equivalent.

Logical Equivalence

Can we say $p \rightarrow q = -q \rightarrow -p$? YES

p	q	$p{ o}q$	$\neg q$	$\neg p$	$\neg q{ ightarrow} eg p$
T	Т	Т	F	F	T
Т	F	F	Т	F	F
F	T	T	F	T	Т
F	F	Т	Т	Т	T

Logical Equivalence

Prove or disprove the following equivalence using truth table: $p \rightarrow q \equiv \neg p \lor q$

p	q	$p{ o}q$	$\neg p$	$\neg p \lor q$
T	Т	Т	F	T
T	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Logical Equivalence Law

Law	Representation
Identity	$p \wedge T \equiv p$ $p \vee F \equiv p$
Domination	$p \lor T \equiv T$ $p \land F \equiv F$
Idempotent	$p \land p \equiv p$ $p \lor p \equiv p$
Negation	$p \land \neg p \equiv F$ $p \lor \neg p \equiv T$
Double negation	$\neg(\neg p) \equiv p$
Absorption	$p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$

Logical Equivalence Law

Law	Representation
Commutative	$p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$
Associative	$(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributive	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
De Morgan's Law	$\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$

Logical Equivalence Law

Law	Representation
Conditional	$p \to q \equiv \neg p \lor q$
Contrapositive	$p \to q \equiv \neg q \to \neg p$
Biconditional	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
Exclusive OR	$(p \oplus q) \equiv (\neg p \land q) \lor (p \land \neg q)$

<u>Tautology</u>: A compound proposition that is always true no matter what the truth values of the propositions that occur in it is called tautology. Ex:- PV¬P

The light is either on, or the light is not on.

<u>Contradiction</u>: A compound proposition that is always false is called contradiction. Ex:- $P \Lambda \neg P$

The light is on and the light is not on at the same time.

<u>Logical Equivalence</u>:Compound propositions that have the same truth values in all possible cases are called logically equivalent.

Ex:-
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

Prove that $\neg(p \rightarrow q) \equiv p \land \neg q$

$$\neg(p \rightarrow q)$$

$$\equiv \neg (\neg p \lor q)$$
 [Conditional]

$$\equiv \neg (\neg p) \land \neg q$$
 [De Morgan's Law]

$$\equiv p \land \neg q$$
 [Double Negation]

Prove that $\neg(pV(\neg p\Lambda q)) \equiv \neg p\Lambda \neg q$

$$\neg (p \lor (\neg p \land q))$$

$$\equiv \neg(p) \land \neg(\neg p \land q)$$

$$\equiv \neg p \land [\neg (\neg p) \lor \neg q]$$

$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$

$$\equiv F \lor (\neg p \land \neg q)$$

$$\equiv (\neg p \land \neg q)$$

[De Morgan's Law]

[De Morgan's Law]

[Double Negation]

[Distributive Law]

[Negation Law]

[Identity Law]

Prove that $(p\Lambda q)\rightarrow (pVq)$ is a tautology

$$(p \land q) \rightarrow (p \lor q)$$

$$\equiv \neg (p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv (\neg p \lor p) \lor (q \lor \neg q)$$

$$\equiv T \vee T$$

$$\equiv T$$

[Conditional]

[De Morgan's Law]

[Commutative & Associative Law]

[Negation Law]

Prove that $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$

$$(p \rightarrow q) \land (p \rightarrow r)$$

$$\equiv (\neg p \lor q) \land (\neg p \lor r)$$

$$\equiv \neg p \lor (q \land r)$$

$$\equiv p \rightarrow (q \land r)$$

[Conditional Law]

[Distributive Law]

[Conditional Law]

Prove that $\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$

$$\neg p \rightarrow (q \rightarrow r)$$

$$\equiv \neg (\neg p) \lor (q \rightarrow r)$$
 [Conditional]

$$\equiv p \lor (q \rightarrow r)$$
 [Double Negation]

$$\equiv p \lor (\neg q \lor r)$$
 [Conditional]

$$\equiv p \lor \neg q \lor r$$

$$\equiv \neg q \lor p \lor r$$
 [Commutative]

$$\equiv \neg q \lor (p \lor r)$$

$$\equiv q \rightarrow (p \lor r)$$
 [Conditional]

Prove that $\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

$$\neg(p \leftrightarrow q)$$

$$\equiv \neg((p \rightarrow q) \land (q \rightarrow p))$$

$$\equiv \neg (p \rightarrow q) \lor \neg (q \rightarrow p)$$

$$\equiv \neg(\neg p \lor q) \lor \neg(\neg q \lor p)$$

$$\equiv (\neg(\neg p)\land \neg q)\lor(\neg(\neg q)\land \neg p)$$

$$\equiv (p \land \neg q) \lor (q \land \neg p)$$

$$\equiv (p \lor q) \land (p \lor \neg p) \land (\neg q \lor q) \land (\neg q \lor \neg p)$$

$$\equiv (p \lor q) \land (\neg p \lor \neg q)$$

$$\equiv (q \lor p) \land (\neg p \lor \neg q)$$

$$\equiv (\neg(\neg q)\lor p)\land(\neg p\lor \neg q)$$

$$\equiv (\neg q \rightarrow p) \land (p \rightarrow \neg q)$$

$$\equiv (p \rightarrow \neg q) \land (\neg q \rightarrow p)$$

$$\equiv (p \leftrightarrow \neg q)$$

[Biconditional]

[De Morgan's]

[Conditional]

[De Morgan's]

[Double Negation]

[Distributive]

[Negation, Identity]

[Commutative]

[Double Neg]

[Implication]

[Commutative]

[Biconditional]

Prove that $(p\rightarrow q)\land (q\rightarrow r)\rightarrow (p\rightarrow r)$ is a tautology

$$(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$$

$$\equiv \neg ((p \rightarrow q) \land (q \rightarrow r)) \lor (p \rightarrow r)$$

$$\equiv \neg (p \rightarrow q) \lor \neg (q \rightarrow r) \lor (p \rightarrow r)$$

$$\equiv \neg (\neg p \lor q) \lor \neg (\neg q \lor r) \lor \neg p \lor r$$

$$\equiv (p \land \neg q) \lor (q \land \neg r) \lor \neg p \lor r$$

$$\equiv ((p \land \neg q) \lor \neg p) \lor ((q \land \neg r) \lor r)$$

$$\equiv ((p \vee \neg p) \wedge (\neg q \vee \neg p)) \vee ((q \vee r) \wedge (\neg r \vee r))$$

$$\equiv (T \land (\neg q \lor \neg p)) \lor ((q \lor r) \land T)$$

$$\equiv (\neg q \lor \neg p) \lor (q \lor r)$$

$$\equiv \neg p \lor (\neg q \lor q) \lor r$$

$$\equiv \neg p \lor T \lor r$$

 $\equiv T$

[Conditional]

[De Morgan's]

[Conditional]

[De Morgan's]

[Commutative & Associative]

[Distributive Law]

[Negation Law]

[Identity Law]

[Associative]

[Negation Law]

[Domination]

THANK YOU

