POMO: Policy Optimization with Multiple Optima for Reinforcement Learning

24.08.09

김정현

I Introduction

Introduction

- 현실 세계의 조합 최적화 (Combinatorial optimization, CO) 문제는 각기 다른 고유한 제약 조건을 가지고 있음
 - → 일반적으로 전문가들이 설계한 휴리스틱 방법으로 처리해왔음
- POMO는 강화학습을 이용하여 CO문제를 해결하였고, TSP, CVRP, KP와 같은 문제에 대한 최적의 솔루션을 우수한 속도로 찾을 수 있었음
- POMO는 CO문제 솔루션의 대칭성을 활용하도록 설계되었음

Contribution

- CO문제를 해결하기 위한 강화학습 방법에서 대칭성을 식별하여 병렬 다중 롤아웃을 통해 신경망 훈련에 활용함
- 다양한 경로 그룹에서 파생된 새로운 낮은 분산 베이스라인을 고안하여 학습의 local minima 취약성을 감소시킴
- 다중 그리디 롤아웃 기반의 효과적인 추론 방법과 CO 문제의 대칭성을 더욱 활용하는 instance augmentation기법을 도입

II Motivation

Motivation

- 기존의 Baseline을 사용하던 방법: 같은 문제를 여러 번 반복하여 얻은 결과의 평균을 사용함
 - → Local Optima에 빠지는 문제 발생 (인공지능이 반복해 풀어 얻는 솔루션은 보통 서로 크게 다르지 않기 때문)
- 이를 해결하기 위해 같은 문제를 다양한 각도로 대칭 변형하여 인공지능이 다른 문제로 인식하도록 함
- 많은 CO문제의 해는 노드 시퀀스로 여러 가지 형태를 가질 수 있음
- TSP의 최적해가 τ = (v1,v2,v3,v4,v5)라면, τ' = (v2,v3,v4,v5, v1)도 동일한 최적 솔루션임
- 즉, 어떤 노드를 먼저 출력하는지에 관계없이 동일한 솔루션을 도출하기 위해 대칭을 활용하여 Policy를 학습하도록 함

POMO Algorithm - Explorations from multiple starting nodes

■ 일반적인 조합최적화를 푸는 방법 – 1개의 솔루션

- 어떤 Policy Network에 start token을 넣어 첫번째 action을 뽑고, 이 action이 다음에 어떤 노드를 방문할지 결정함
- 이전의 action인 output값을 다음 단계의 network에 넣어주고, 이 단계를 반복함

■ POMO 방법 - N개의 솔루션

- 서로 다른 starting node를 start token 대신 넣어줌
- 서로 다른 starting node에서 출발하기 때문에, 각 node에서 시작한 거리를 최소화하도록 구할 수 있음
- → 이러한 접근법은 동일한 문제를 여러 각도에서 반복적으로 바라보도록 함
- → Multiple trajectories를 구하고, 모든 trajectories를 종합하여 baseline을 구하기 때문에 학습 효율을 높일 수 있음

 (a_M^1)

policy

network

POMO Algorithm - A shared baseline for policy gradients

- POMO는 한번에 n개의 솔루션을 도출하게 됨
- 이 n개의 솔루션에서 Reward를 계산하고, 그 값들의 평균값을 Baseline으로 사용함
- 각 n개의 솔루션의 Reward 가 이 평균값보다 낮은지, 높은지를 통해 평가받음
- N개의 솔루션에 같은 Baseline을 공유하면 local minima를 방지할 수 있음

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} (R(\mathbf{\tau}^{i}) - b^{i}(s)) \nabla_{\theta} \log p_{\theta}(\mathbf{\tau}^{i}|s)$$

$$p_{\theta}(\mathbf{\tau}^{i}|s) \equiv \prod_{t=2}^{M} p_{\theta}(a_{t}^{i}|s, a_{1:t-1}^{i})$$

$$b^{i}(s) = b_{\text{shared}}(s) = \frac{1}{N} \sum_{j=1}^{N} R(\boldsymbol{\tau}^{j})$$
 for all i .

Algorithm 1 POMO Training

```
1: procedure TRAINING(training set S, number of starting nodes per sample N, number of training
      steps T, batch size B)
            initialize policy network parameter \theta
            for step = 1, \dots, T do
 3:
                   s_i \leftarrow \text{SAMPLEINPUT}(S) \quad \forall i \in \{1, \dots, B\}
 4:
                   \{\alpha_i^1, \alpha_i^2, \dots, \alpha_i^N\} \leftarrow \text{SELECTSTARTNODES}(s_i) \quad \forall i \in \{1, \dots, B\}
 5:
                   \boldsymbol{\tau}_{i}^{j} \leftarrow \text{SAMPLEROLLOUT}(\alpha_{i}^{j}, s_{i}, \pi_{\theta}) \qquad \forall i \in \{1, \dots, B\}, \forall j \in \{1, \dots, N\}
 6:
                  b_i \leftarrow \frac{1}{N} \sum_{j=1}^{N} R(\boldsymbol{\tau}_i^j) \quad \forall i \in \{1, \dots, B\}
 7:
                   \nabla_{\theta} J(\theta) \leftarrow \frac{1}{BN} \sum_{i=1}^{B} \sum_{j=1}^{N} (R(\mathbf{\tau}_{i}^{j}) - b_{i}) \nabla_{\theta} \log p_{\theta}(\mathbf{\tau}_{i}^{j})
 8:
                   \theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)
 9:
10:
             end for
11: end procedure
```


POMO Algorithm - Multiple greedy trajectories for inference

Instance Augmentation

- CO 문제에서의 Inference Mode는 일반적으로 "Greedy Mode"와 "Sampling Mode"가 있음
- POMO는 여러 시작 노드를 사용하여 여러 개의 그리디 경로를 생성할 수 있음 (Multi-Greedy Mode)
 - → 그리디 경로의 수가 시작 노드의 수(N)로 제한되어 있음
- 문제를 재구성하여 더 많은 그리디 경로를 생성할 수 있는 방법
- 예를 들어, 2D routing optimization문제에서 모든 노드의 좌표를 뒤집거나 회전시켜 새로운 인스턴스를 생성함
 - → 동일한 최적해를 가지면서 더 많은 그리디 경로를 얻을 수 있음

POMO Algorithm - Multiple greedy trajectories for inference

Algorithm 2 POMO Inference

- 1: **procedure** INFERENCE(input s, policy π_{θ} , number of starting nodes N, number of transforms
- 2: $\{s_1, s_2, \dots, s_K\} \leftarrow \text{AUGMENT}(s)$ 3: $\{\alpha_k^1, \alpha_k^2, \dots, \alpha_k^N\} \leftarrow \text{SELECTSTARTNODES}(s_k) \quad \forall k \in \{1, \dots, K\}$
- $\boldsymbol{\tau}_k^j \leftarrow \text{GreedyRollout}(\alpha_k^j, s, \pi_\theta) \quad \forall j \in \{1, \dots, N\}, \forall k \in \{1, \dots, K\}$
- $k_{\max}, j_{\max} \leftarrow \operatorname{argmax}_{k,j} R(\boldsymbol{\tau}_k^j)$
- return $oldsymbol{ au}_{k_{ ext{max}}}^{\jmath_{ ext{max}}}$
- 7: end procedure

Experiments

Learning Curves

- 10,000개의 랜덤 인스턴스
- 인스턴스 증강을 하고 POMO를 사용한 경우가 가장 학습이 잘되었음

IV

Experiments

Experiment Results

Table 2: Experiment results on TSP

Method	TSP20			TSP50			TSP100		
	Len.	Gap	Time	Len.	Gap	Time	Len.	Gap	Time
Concorde	3.83	-	(5m)	5.69	-	(13m)	7.76	-	(1h)
LKH3	3.83	0.00%	(42s)	5.69	0.00%	(6m)	7.76	0.00%	(25m)
Gurobi	3.83	0.00%	(7s)	5.69	0.00%	(2m)	7.76	0.00%	(17m)
OR Tools	3.86	0.94%	(1m)	5.85	2.87%	(5m)	8.06	3.86%	(23m)
Farthest Insertion	3.92	2.36%	(1s)	6.00	5.53%	(2s)	8.35	7.59%	(7s)
GCN [9], beam search	3.83	0.01%	(12m)	5.69	0.01%	(18m)	7.87	1.39%	(40m)
Improv. [11], {5000}	3.83	0.00%	(1h)	5.70	0.20%	(1h)	7.87	1.42%	(2h)
Improv. [12], {2000}	3.83	0.00%	(15m)	5.70	0.12%	(29m)	7.83	0.87%	(41m)
AM [10], greedy	3.84	0.19%	(≪1s)	5.76	1.21%	(1s)	8.03	3.51%	(2s)
AM [10], sampling	3.83	0.07%	(1m)	5.71	0.39%	(5m)	7.92	1.98%	(22m)
POMO, single trajec.	3.83	0.12%	(≪1s)	5.73	0.64%	(1s)	7.84	1.07%	(2s)
POMO, no augment.	3.83	0.04%	(≪1s)	5.70	0.21%	(2s)	7.80	0.46%	(11s)
POMO, $\times 8$ augment.	3.83	0.00%	(3s)	5.69	0.03%	(16s)	7.77	0.14%	(1m)

IV

Experiments

Experiment Results

Table 3: Experiment results on CVRP

Method	CVRP20			CVRP50			CVRP100		
	Len.	Gap	Time	Len.	Gap	Time	Len.	Gap	Time
LKH3 OR Tools	6.12	4.84%	(2h) (2m)	10.38 11.22	8.12%	(7h) (12m)	15.68 17.14	9.34%	(12h) (1h)
NeuRewriter [13] NLNS [14] L2I [15]	6.16 6.19 6.12		(22m) (7m) (12m)	10.51 10.54 10.35		(18m) (24m) (17m)	16.10 15.99 15.57		(1h) (1h) (24m)
AM [10], greedy AM [10], sampling	6.40	4.45% 1.97%	(≪1s) (3m)	10.93 10.59	5.34% 2.11%	(1s) (7m)	16.73 16.16	6.72% 3.09%	(3s) (30m)
POMO, single trajec. POMO, no augment. POMO, ×8 augment.	6.35 6.17 6.14	3.72% 0.82% 0.21%	(≪1s) (1s) (5s)	10.74 10.49 10.42	3.52% 1.14% 0.45%	(1s) (4s) (26s)	16.15 15.83 15.73	3.00% 0.98% 0.32%	(3s) (19s) (2m)

IV

Experiments

Experiment Results

Table 4: Experiment results on KP

Method	KP	50	KP100		KP200	
	Score	Gap	Score	Gap	Score	Gap
Optimal Greedy Heuristics	20.127 19.917	0.210	40.460 40.225	0.235	57.605 57.267	0.338
Pointer Net [7], greedy AM [10], greedy	19.914 19.957	0.213 0.173	40.217 40.249	0.243 0.211	57.271 57.280	0.334 0.325
POMO, single trajec. POMO, no augment.	19.997 20.120	0.130 0.007	40.335 40.454	0.125 0.006	57.345 57.597	0.260 0.008

V Conclusion

Conclusion

- POMO는 전문가가 설계한 수작업 휴리스틱을 피하고, 심층 강화 학습을 기반으로 하는 데이터 기반의 조합 최적 접근 방식임
- 조합 최적화 문제의 Multiple Optima를 활용하여 훈련과 추론 단계 모두에서 최적해에 효율적으로 도달할 수 있게 함
- TSP, CVRP, KP 모든 문제에서 최적성 갭을 줄이고, 추론 시간도 단축시켜 SOTA를 달성함

