VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur-603203

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

SUBJECT : CS8391- DATA STRUCTURES

SEM/YEAR :III/II

Q. No	Questions	BT Level	Competence
1	Define ADT. Give any two examples.	BTL1	Remember
2	Distinguish between linear and nonlinear data structures.	BTL2	Understand
3	Compare calloc() and realloc() function and mention its application in linkedlist.	BTL4	Analyze
4	Describe the differences between singly and doubly linked lists.	BTL1	Remember
5	List out the areas in which data structures are applied extensively.	BTL1	Remember
6	Define nonlinear data structure.	BTL1	Remember
7	Compare singly linked list with circular linked list.	BTL5	Evaluate
8	State the advantage of ADT.	BTL1	Remember
9	List out the advantage of circular linked list.	BTL1	Remember
10	Binary search cannot be performed on a linked list. Examine .	BTL3	Apply
11	Discuss the advantages and disadvantages of linked lists and arrays.	BTL2	Understand
12	Give an example for linked list application.	BTL2	Understand
13	Specify the use of Header node in a linked list.	BTL6	Create
14	Illustrate the use of linked list with an example.	BTL3	Apply
15	Show the ways in which list ADT can be implemented.	BTL3	Apply
16	Differentiate arrays and linked lists.	BTL2	Understand
17	Analyze and write a find routine in array implementation.	BTL4	Analyze
18	Analyze and write the array representation of a polynomial: $p(x) = 4x^3 + 6x^2 + 7x + 9$	BTL4	Analyze
19	Should arrays or linked lists be used for the following types of applications?	BTL5	Evaluate
	Support your justification.		
	1. Many search operations in sorted list.		
	2. Many search operations in Unsorted list.		
20	Develop an algorithm for insertion operation in a singly linked list.	BTL6	Create
	PART – B		
1	Describe the following:	BTL1	Remember
	i. Applications of lists. (5)		
	ii. Polynomial manipulation. (8)		
2	i. What is a linked list? (2)	BTL1	Remember
	ii. Describe the suitable routine segments for any four operations. (11)		
3	List an algorithm to perform the following operations in a doubly linked list.	BTL1	Remember
	i.Insert a node at the end of the list. (6)		
	ii.Delete the last node in the list. (7)		
4	i. Discuss the insertion and deletion procedures for cursor based linked	BTL2	Understand

	lists.	(7)		
	ii. Give an algorithm for the deletion and reverse operations on doubly	(6)		
	linkedlist.	(0)		
5	i. Give the algorithm to perform insertion on a doubly linked list.	(7)	BTL2	Understand
	ii. Give the algorithm to perform deletion on a doubly linked list.	(6)		
5	Write an algorithm to demonstrate a polynomial using a linked list for			
	i.Addition and Subtraction.	(7)	BTL3	Analyze
	ii.Multiplication operations.	(6))
7	Analyze and write algorithm for Circular Linked list for the		BTL4	Analyze
	following operations using structure pointer.			
	i.Create& Insert	(6)		
	ii. Delete & Display.	(7)		
3	Explain the application of linked list in detail.		BTL4	Apply
	i. Radix sort.	(7)		
	ii. Multi list.	(6)		
)	Consider an array A[1: n] Given a position, write an algorithm to insert	(13)	BTL5	Evaluate
	anelement in the Array. If the position is empty, the element is inserted			
	easily. If the position is already occupied the element should be inserted			
	with theminimum number of shifts. (Note: The elements can shift to the			
	left or to theright to make the minimum number of moves).			
10	Develop a program to add the values of the nodes of a linked list and then	(13)	BTL6	Create
	calculate the mean.			
11	Describe the various operations of the list ADT with examples.	(13)	BTL1	Remember
12	i) Illustrate the polynomial representation for $6x^3 + 9x^2 + 7x + 1$ using	(7)	BTL3	Analyze
	linked list. Write procedure to add and multiply two polynomial and			
	explain with suitable example.			
	ii) What are the ways to insert a node in linked list? Write an algorithm	(6)		
	for inserting a node before a given node in a linked list.			
13	Explain the steps involved in the following insertion operations in a		BTL4	Apply
	singlylinked list.			
	i.Insert the node in the start and End.	(7)		
	ii.Insert the node in the middle of the List	(6)		
14_	Discuss an algorithm for linked list implementation of list.	(13)	BTL2	Understand
	PART – C	(4.5)		
1	Create an algorithm to add two polynomials using linked list.	(15)	BTL6	Create
2	Explain an algorithm to split a linked list into two sub lists containing		BTL5	Evaluate
	odd andeven ordered elements in them respectively.	(15)		
3	Explain an algorithm to merge two sorted linked lists into a single	/4 = \	BTL5	Evaluate
	sortedlist.	(15)	D.TT. 6	<u> </u>
4	Design algorithm for various operations performed on circular linked	(1.5)	BTL6	Create
	list.Extend the algorithm defined in the previous question for the doubly	(15)		
	linkedcircular list.			

UNIT II - LINEAR DATA STRUCTURES - STACKS, QUEUES

Stack ADT - Evaluating arithmetic expressions- other applications- Queue ADT - circular queue implementation - Double ended Queues - applications of queues

PA	RT	_	A

Q.		BT	
No	Questions	Level	Competence
1	Point out the advantage of representing stack using a linked list than array.	BTL4	Analyze
2	Point out the rules followed during the infix to postfix conversions.	BTL4	Analyze
3	Compare the working of stack and queue data structure.	BTL5	Evaluate
4	Develop an algorithm for inserting a new element into the stack.	BTL6	Create
5	What are priority queues? What are the ways to implement priority queue?	BTL1	Remember
6	List any four applications of stack.	BTL1	Remember
7	Given the prefix for an expression. Write its postfix:	BTL2	Understand
	-*-+abc/ef-g/hi		
8	Describe how the following "infix" expression is evaluated with the help of the	BTL2	Understand
	help of Stack: 5 * (6+2) - 12/4		
9	Give the postfix and prefix forms of the expression:	BTL2	Understand
	A + B* (C - D) / (P - R)		
10	Define double ended queue.		Remember
11	List the applications of a queue.	BTL1	Remember
12	What are the applications of priority queue?	BTL1	Remember
13	What is circular queue?	BTL1	Remember
14	Circular queue is better than standard linear queue, Why?	BTL2	Understand
15	Classify the different types of queues.	BTL3	Apply
16	Illustrate the difference between a queues and linked lists with an example.	BTL3	Apply
17	Complete a routine to display the contents of queue.	BTL3	Apply
18	Analyze and write a routine to check whether the queue is full or empty.	BTL4	Analyze
19	For railway reservation the queue data structure is preferred –Justify .	BTL5	Evaluate
20	Develop an algorithm for deleting an element in a double ended queue.	BTL6	Create

	PART – B			
1	Describe with an example how to evaluate arithmetic expressions	(13)	BTL1	Remember
	usingstacks.			
2	i. Explainarray based implementation of stacks.	(7)	BTL4	Apply
	ii. Explain linked list implementation of stacks.	(6)		
3	i. Describe about stack ADT in detail.	(7)	BTL1	Remember
	ii. Explain any one application of stack.	(6)		
4	Explain the following expressions with an example.			
	i.Prefix and infix .	(7)	BTL4	Apply
	ii.Postfix.	(6)		
5	i. Write an algorithm to convert an infix expression to a postfix	(8)	BTL5	Evaluate
	expression.			
	Trace the algorithm to convert the infix expression (a+b)*c/d+e/f to a			
	postfix expression.			

	ii. Justify the need for Infix and Postfix expression.	(5)		
6	i. Give an algorithm for push and pop operations on stack using a	(7)	BTL2	Understand
	linkedlist.			
	ii. Discuss about addition and deletion operations performed on a circular	(6)		
	queue with necessary algorithms.			
7	i. Describe the process of postfix expression evaluation with an example.	(7)		
	ii. Describe the process of conversion from infix expression to postfix	(6)	BTL2	Understand
	expression using stack.			
8	i. Write an algorithm that checks if expression is correctly parenthesized	(7)	BTL3	Analyze
	usingstack and illustrate with an example.			
	ii. Write the function to examine whether the stack is full() or empty()	(6)		
9	i. Describe about queue ADT in detail.	(7)	BTL1	Remember
	ii. Explain any one application of queue with suitable example.	(6)		
10	Briefly describe the operations of queue with examples.	(13)	BTL1	Remember
11	Analyze and write an algorithm to implement queue functions using	(13)	BTL4	Analyze
	arrays.			
12	Develop an algorithm to perform the four operations in a double ended	(13)	BTL6	Create
	queuethat is implemented as an array.			
13	Discuss circular queue and its implementation.	` /	BTL2	Understand
14	Illustrate the enqueue and dequeue operations on double ended queues.	(13)	BTL3	Analyze
	PART – C		1	
1	Develop and Show the simulation using stack for evaluation of the	(15)	BTL6	Create
	following expression:			
	12 + 3 * 14 - (5 * 16) + 7			
2	Explain an algorithm to implement the circular queue using arrays.	(15)	BTL5	Evaluate
	List the applications of Queues.			
3	Assess the difference between double ended queue and circular queue.	(15)	BTL5	Evaluate
	Show the simulation using stack for the following expression to convert			
	infix to postfix: $p * q = (r-s / t)$.			
4	Developan algorithm to explainPriorityQueue, deQueue and the	(15)	BTL6	Create
	applications of queues.			

UNIT III -NON LINEAR DATA STRUCTURES-TREES						
Tree ADT – tree traversals - Binary Tree ADT – expression trees – applications of trees – binary search						
tree	ADT – Threaded Binary Trees – AVL Trees – B-Tree - B+ Tree - Heap – Applica	tions of	heap.			
	PART-A					
Q. No	Questions	BT	Competence			
No	No Level					
1	If the depth of the binary tree is k, the maximum number of nodes in the	BTL5	Evaluate			
	binary tree is 2 ^k -1. Justify					

2	For the given hinery seems tree if we remove the rest and realize it.	BTL5	Evoluete
2	For the given binary search tree, if we remove the root and replace it with	BILS	Evaluate
	something from left subtree. What will be the value of the new root? Justify		
	your answer.		
	,14,		
	2 / 22		
	1' '5 20 30		
	\tilde{I} \tilde{I} \tilde{I}		
	/ / /		
	4 17 40		
3	Define a fully binary tree. Give an example.	BTL1	Remember
4	Create an expression tree for the expression. $a^*(b+c)+((d+e^*f)^*g)$	BTL6	Create
5	How does the AVL tree differ from binary search tree?	BTL4	Analyze
6	What are the various rotations in AVL trees?	BTL1	Understand
7	List the applications of trees.	BTL1	Remember
8	What are threaded binary trees? Give its advantages	BTL2	Understand
9	Define balance factor of AVL Tree.	BTL1	Remember
10	How do we calculate the balance factor for each node in an AVL tree?	BTL2	Understand
11	Simulate the result of inserting 3,1,4,6,2,8,9 into an initially empty AVLTree.	BTL6	Create
12	Discuss with respect to following tree:	BTL2	Understand
	a) List the siblings for node E.		
	b) Compute the height		
	o) truly are arrigin		
	(A)		
	K		
	D E		
	(M)		
13	Number the following binary tree to traverse it in	BTL2	Understand
	i.Preorder		
	ii.Inorder		
	\bigcirc		
	Q Q Q		
	\prec \prec \prec \succ		
1.4	Thurst 1, 12,, 1,	DOT 4	A 1
14	Explain why binary search cannot be performed on a linked list.	BTL4	Analyze
15	How do you calculate the depth of a B-Tree?	BTL3	Apply
16	List out the various operations that can be performed on B-trees	BTL1	Remember

	PART C				
17	List out the properties of B+ -Trees	BTL1	Remember		
18	Illustrate the steps in the construction of a heap of records with thefollowing	BTL3	Apply		
	key values:12,33,67,8,7,80,5,23				
19	Analyze the properties of binary heap.	BTL4	Analyze		
20	Define a heap and show how it can be used to represent a priority queue.	BTL3	Apply		

	PART B			
1	Write an algorithm for preorder, inorder and postorder traversal of a binarytree.	(13)	BTL1	Remember
2	Explain the following operations on a binary search tree with suitablealgorithms		BTL4	Analyze
	i. Find a node	(6)		
	ii. Find the minimum and maximum elements of binary search tree	(7)		
3	i.Write short notes on threaded binary tree	(7)	BTL1	Remember
	ii. Describe an iterative algorithm to traverse a tree in preorder	(6)		
4.	Write an algorithm for inserting and deleting a node in a binary search tree.	(13)	BTL1	Remember
5	Discuss in detail the various methods in which a binary tree can berepresented. Discuss the advantage and disadvantage of each method	(13)	BTL2	Understand
6	i. Explain the B+ tree and its properties with an Example	(7)	BTL5	Evaluate
	ii. What are the steps to convert general tree to binary tree?	(6)		
7	i. Construct B Tree to insert the following key elements(order of the tree is3) 5,2,13,3,45,72,4,6,9,22	(7)	BTL6	Create
	ii. Draw a B Tree of order 6	(6)		
8	i. Discuss how to insert an element in a AVL tree, Explain with algorithm.	(7)	BTL2	Understand
	ii.Explain how deletion can take place in AVL trees with suitable algorithms	(6)		
9	i.What are AVL trees? Describe the different rotations defined for AVL tree.	(7)	BTL1	Remember
	ii.Insert the following elements step by step in sequence into an empty AVLtree 15,18,20,21,28,2330,26	(6)		
10	i. Point out the operations of B-tree using 2-3 tree.	(7)	BTL4	Analyze
	ii.Explain the operations of threaded binary tree.	(6)		
11	Discuss the different traversal technique inbinary tree with suitablealgorithms and examples?	(13)	BTL2	Remember
12	Explain the construction of expression tree with example.	(7)	BTL4	Analyze
	Give the applications of trees	(6)		, -
13	i. Show the result of inserting 15,17,6,19,11,10,13,20,8,14,12 one at a timeinto an initially empty binary min heap.	(7)	BTL3	Apply
	ii. Show the result of performing three delete min operations in the final binarymin heap obtained.	(6)		
14	I.Illustrate How delete operation performed on binary heap?	(7)	BTL3	Apply
-	ii.Write a suitable operations for percolate up and percolate down operations in a binary heap.	(6)		FF 2

1	Consider the binary search tree given below.	(15)	BTL 5	Evaluate
	Find the result of in-order, pre-order, and post-order traversals.	()		
	Show the deletion of the root node			
	Insert 11, 22, 33, 44, 55, 66, and 77 in the tree			
	39 56 12 54 78 10 34 67 89 32 81			
2	i. Compare B trees with B+ trees.	(7)	BTL 6	Create
	ii. Create a B+ tree of order 5 for the following data arriving in sequence:	(8)		
	90, 27, 7, 9, 18, 21, 3, 4, 16, 11, 21, 72			
3	i. Draw B – Tree pf order $m = 5$ for the keys	(5)	BTL 5	Evaluate
	$\{K, O,S,V,MF,B,G,T,U,W\}$			
	ii. Delete the keys K and G in order.	(5)		
	iii. Justify the number of splits needed for inserts / delete with	(5)		
	properreasons.			
4	Construct AVL tree for the followings after rotation.		BTL 6	Create
	i. ii.	(4)		
		(4)		
	iii. 1			
	20	(7)		
	4			
			l	

UNIT IV -NON LINEAR DATA STRUCTURES –GRAPHS						
Definiti	Definition – Representation of Graph – Types of graph - Breadth-first traversal - Depth-first traversal –					
Topolog	gical Sort – Bi-connectivity – Cut vertex – Euler circuits – Applications of gra	phs.				
	PART A					
Q.No	Questions	BT Level	Competence			
1	What is a graph and its types?	BTL 1	Remember			

2	Consider the graph given below. Create the adjacency matrix of it	BTL 6	Create
	A B B F		
3	Find out the in-degree and out-degree of each node in the given graph	BTL 3	Apply
4	Create a complete undirected graph having five nodes	BTL 6	Create
5	Given the following adjacency matrix, draw the weighted graph.	BTL 2	Understand
6	When do you say a graph is bi-connected?	BTL 1	Remember
7	Give the purpose of Dijikstra's algorithm.	BTL 2	Understand
8	Differentiate cyclic and acyclic graph	BTL 4	Analyze
9	Classify strongly connected and weakly connected graph.	BTL 3	Apply
10	How to find all articulation points in a given graph?	BTL 3	Apply
11	Define the length of the graph.	BTL 1	Remember
12	Define minimum spanning tree. Give an example	BTL 2	Understand
13	State the principle of Topological sorting.	BTL 1	Remember
14	Explain procedure for Depth first search algorithm.	BTL 4	Analyze
15	Analyze Bi-connectivity.	BTL 4	Analyze
16	Prove that the number of edges in a complete graph of n vertices inn(n-1)/2	BTL 5	Evaluate
17	In a complete graph with n vertices, show that the number of spanningtrees is at least 2 ⁿ⁻¹ -1	BTL 5	Evaluate
18	What are Euler circuits?	BTL 1	Remember
19	Give two applications of graphs.	BTL 2	Understand
20	What is residual graph?	BTL 1	Remember

	PART B							
1	Describe in detail about the following representations of a graph.		BTL 1	Remember				
	i. Adjacency Matrix	(7)						
	ii. Adjacency List	(6)						
	i.Consider the given directed acyclic graph D. Sort the nodes D by applying topological sort on 'D	(7)	BTL 3	Apply				

:: Canaidan da	and hairen halan and also mitte adia an antité in the	(6)	DTI 1	D 1
memory	graph given below and show its adjacency list in the	(6)	BTL1	Remember
incinory	A D			
	A B			
	↑ ↑ ↑			
	¥ / \			
	$(C \longrightarrow D)$			
3 i. Explain the	topological sorting of a graph G with example.	(7)	BTL4	Analyze
	tep wise procedure for topological sort.	(6)		
	depth-first search and breadth-first search traversal of a	(13)	BTL4	Analyze
	table examples.			
	algorithm, How DFS be performed on a undirected graph.	(7)	BTL4	Analyze
	gorithm for finding connected components of an undirected			
	FS, and derive the time complexity of the algorithm.	(6)		
	algorithm for Breadth first Search on a graph	(7)	BTL2	Understand
	ample based on the algorithm.	(6)		
	ruskal's algorithm to find the minimum spanning tree of a	(7)	BTL 3	Apply
graph.	assithms for the following around	(6)		
ii. I race the ai	gorithm for the following graph	(6)		
	\bigcap $^{7}\bigcap$			
	(1) 2			
	5 1 1			
	3 4 5			
	3 5			
1	two applications of Graph and describe with your own	(13)	BTL2	Analyze
example		(10)	DET 1	D 1
	one of the shortest path algorithms with suitable example	(13)	BTL1	Remember
	im's algorithm for minimum spanning tree. Give an	(13)	BTL2	Understand
example. 11 i.Write a prog	gram to find an Euler circuit in a graph.	(7)	BTL1	Remember
1	gorithm for the given graph.	(6)	DILI	Kemember
ii. Trace the ar	gortum for the given grapm.	(0)		
	5 V 3 V			
	V ₂ V ₃ 2			
(V_1 V_2			
	$\left(\begin{array}{c} \mathbf{v}_{7} \\ \end{array}\right)$			
3				
	1 4 V6			
	V_5 V_4			
12 Develop an al	gorithm to compute the shortest path using Dijkstra's	(13)	BTL6	Create
_	lidate the algorithm with suitable example.	(13)	_1_0	
	epth first approach of finding articulation points in a	(13)	BTL4	Analyze
13 Explain the d		(- /		
	ph with necessary algorithm.			
connected gra	notes on Bi-connectivity.	(7)	BTL2	Understand

		PART C				
1	Given the adjacency matrix of a graph, write a program to calculate the in-degree and the out-degree of a node N in the graph. (15)					Analyze
2	Consider five cities: (Bangalore, and (5) Kolk shown in the following graph.	BTL 6	Create			
	Flight No	Origin	Destination			
	101	2	3			
	102	3	2			
	103	5	3			
	104	3	4		Y	
	105	2	5			
	106	5	2			
	107	5	1			
	108	1	4			
	109	5	4			
	110	4	5			
2			1 : 1:		DEL 5	T 1 .
3	i.How can we efficiently ii.Describe an algorithm articulation points in G i	that uses a brute fo	orce approach to find all		BTL 5	Evaluate
4	i.Given a rooted tree, on a given node v. Which a ii. Write a program to d o the source to the destina	e desires to find the lgorithm would one etermine whether t	e shortest path from the e use to find this shortes	t path?	BTL 6	Create

	UNIT V SORTING, SEARCHING AND HASH TECHNIQUES		
	Sorting algorithms: Insertion sort - Selection sort - Shell sort - Bubble sort -		
	Quick sort - Merge sort - Radix sort - Searching: Linear search -Binary		
	Search Hashing: Hash Functions – Separate Chaining – Open Addressing –		
	Rehashing – Extendible Hashing		
	PART – A		
Q. No	Questions	BT Level	Competence
1	What are the advantage and disadvantage of separate chaining and linear probing?	BTL-1	Remember
2	Define extendible hashing.	BTL-1	Remember
3	Give the fastest searching algorithm.	BTL-2	Understand
4	What is meant by internal and external sorting? Give any two examples for each type.	BTL-1	Remember
5	Describe the complexity of bubble sort.	BTL-1	Remember
6	Name the applications of linear and binary search techniques.	BTL-1	Remember
7	Give the time complexities of bubble sort and quick sort.	BTL-2	Understand
8	Predict the fastest sorting algorithm, justify.	BTL-2	Understand

9	Compare internal and external sorting.	BTL-4	Analyze
10	Distinguish between linear and binary search technique.	BTL-2	Understand
11	Classify the different sorting methods.	BTL-3	Apply
12	Develop an algorithm for a quick sort.	BTL-6	Create
13	Which hashing technique is best and illustrate with an example?	BTL-3	Apply
14	Summarize the open addressing hashing method with an example.	BTL-5	Evaluate
15	Point out the advantages of using quick sort.	BTL-4	Analyze
16	Compare the working of linear and binary search techniques.	BTL-4	Analyze
17	Select the best sorting method out of the following - insertion sort, quick sort	BTL-5	Evaluate
	and merge sort and give justification.		
18	Illustrate the time complexity of insertion sort with an example.	BTL-3	Apply
19	Identify the advantage of shell sort over insertion sort.	BTL-1	Remember
20	Develop a simple algorithm for a linear search.	BTL-6	Create

PART B

1	Describe how the divide and conquer technique is implemented in binary search.	(13)	BTL-1	Remember
2	Describe the algorithm to sort the following array: 77, 33, 44, 11, 88, 22, 66,		BTL-1	Remember
	55			
	i. Insertion sort	(7)		
	ii. Shell Sort	(6)		
3	i. List the different types of hashing techniques?	(7)	BTL-1	Remember
	ii. Explain them in detail with an Example.	(6)		
4	i. Interpret the result of inserting the keys 2, 3, 5, 7, 11, 13, 15, 6, 4 into an	(7)	BTL-2	Understand
	initially empty extendible hashing data structure with $M = 3$.	(6)		
	ii. Discuss the running time of Divide-and-Conquer Merge sort algorithm.			
5	i. Sort the sequence 3, 1, 4, 1, 5, 9, 2, 6, 5 using Insertion sort.	(7)	BTL-2	Understand
	ii. Describe the routine for insertion sort.	(6)		
6	Write an algorithm to sort a set of 'N' numbers using quick sort. Demonstrate	(13)	BTL-3	Analyze
	the algorithm for the following set of numbers: 88,11,22,44,66,99,32,67,54,10.			
7	Explain the various collision resolution techniques in detail with an example.	(13)	BTL-4	Analyze
8	Compare the below different Sorting methods and discuss about each method		BTL-4	Apply
	in a very detailed Manner.	(=)		
	i. Bucket Sort.	(7)		
	ii. Selection Sort .	(6)		
9	i. Sort the given integers and Explain the intermediate results using shell sort:	(7)	BTL-5	Evaluate
	35,12,14,9,15,45,32,95,40,5.	(6)		
10	ii. Write and Explain a C code to sort an integer array.	<u> </u>	DITT. 6	~
10	i. Createa algorithm to perform a binary Search.	(7)	BTL-6	Create
	ii. Develop an algorithm for Merge sort with an example.	(6)	DET 4	
11	i. Write short notes on Bubble Sort.	(5)	BTL-3	Analyze
	ii. Illustrate an algorithm to sort the elements using bubble sort.	(8)		
12	Describe the following collision resolution techniques in detail with an		BTL-1	Remember
	example.			
	i. Separate chaining.	(7)		
	ii. Rehashing.	(6)		
13	i. Explain different hashing technique.	(5)	BTL-4	Apply
	ii. Explain the rehashing technique with suitable example.	(8)		
14	Describe the open addressing and chaining methods of collusion resolution	(13)	BTL-2	Understand

	techniques in hashing.		
	PART C		
1	Develop an algorithm to search a number in a given set of numbers using (15)	BTL-6	Create
	binary search. Develop and algorithm to explain Extendible Hashing.		
2	Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function (15)	BTL-5	Evaluate
	$h(x) = x \pmod{10}$, show the resulting		
	i) Open hash table		
	ii) Closed hash table using linear probing		
	iii) Closed hash table using quadratic probing		
3	Explain an algorithm for Shell Sort and Merge Sort and explain with example. (15)	BTL-5	Evaluate
4	Prepare a quick sort algorithm and explain with suitable example Give its (15)	BTL-6	Create
	worst case, average case and best case time complexities.		