

CSSE2010/CSSE7201 Learning Lab 7

Counter Circuits

http://responsewaresg.net

Session ID: CSSE2010EXT

School of Information Technology and Electrical Engineering
The University of Queensland

Today

- Counter Circuits
 - Review of Preparation Task
 - Polling questions
 - Design
 - Build and test or Simulation (Logisim)
- Don't forget preset/clear inputs on flipflops

Peer Review of Circuit Schematics

- Check the circuit schematic
 - Naming of inputs and outputs
 - Identification of chips (U1, U2 etc) and gates within chips where applicable (:A, :B etc)
 - Identification of types of chips (74HCT00 etc.)
 - Numbering of pins (including for IO board)
 - Power supply connections
 - ✓ Circuit functionality will it do what was asked?
- Check schematic guide and device pinouts on Blackboard for more detail
- Ask a tutor if necessary
- Online sessions talk to other people in your breakout room and discuss among yourselves and make sure you have a correct design on paper

Preparation Survey: How many 74 series logic <u>chips</u> did your circuit schematic use?

32%	1.	I didn't do the preparation	
5%	2.	2	4×7640175
21%	3.	3	1 x 74# CT86 Qu
0%	4.	4	
26%	5.	5	
11%	6.	6	
0%	7.	7	
5%	8.	8 or more	

Prep Task

$$D_{0} = \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}} - \overline{Q_{1}}\overline{Q_{0}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}} = \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{0}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}}\overline{Q_{1}}\overline{Q_{1}}\overline{Q_{1}}$$

$$= \overline{Q_{1}}\overline{Q_{1}} + \overline{Q_{2}}\overline{Q_{1}$$

Q2 Q1 Q0 | D2 D1 D0

Which of the following best describes the behaviour of a 2-bit up/down binary counter? (U is an input)

Up/Down Counter

- Complete the truth table for a 2 bit up/down binary counter
 - (U=1 counts up, U=0 counts down) ✓
- Work out logic functions for D1 and D0 in terms of U, Q1, Q0
 - Sum of products ✓
 - Simpler expression?√

Input	Current State			Next State		
U	Q:	L	Q0	D1		D0
0	0 0		0	3	1	
0	10		1	0	0	O
0	2 1		0	1	D	1
0	3 1		1	2	\	0
1	0 0		0	1	0	
1	1 0		1	2		0
1	2 1		0	3	1	
1	3 1		1	0	0	0

Input	Currer	nt State	Next State		
U	Q1	Q0	D1	D0	
0	0 0	0	3 117	1	
0	10	1	0 0	0	
0	2 1	0	1 0	1	
0	3 1	1	2 1	0	
1	0 0	0	1 0	l	
1	1 0	1	2 1	0	
1	2 1	0	3 1		
1	3 1	1	0 0	0	

$$D_{1} = \overline{U} \overline{Q_{1}} \overline{Q_{2}} + \overline{U} Q_{1} Q_{0} + U \overline{Q_{1}} Q_{0} + \overline{U} Q_{1} \overline{Q_{2}}$$

$$= \overline{U} (\overline{Q_{1}} \overline{Q_{2}} + Q_{1} Q_{0}) + U (\overline{Q_{1}} Q_{0} + Q_{1} \overline{Q_{2}})$$

$$= \overline{U} (\overline{Q_{1}} \overline{Q_{2}} + Q_{2}) + U (\overline{Q_{1}} \overline{Q_{2}} Q_{2})$$

$$= \overline{U} \overline{Q_{1}} \overline{Q_{2}} = \overline{U} \overline{Q_{2}} \overline{Q_{2}}$$

$$D_0 = \overline{Q}_0 \quad \text{by inspection}$$

$$D_0 = \overline{Q}_1 \overline{Q}_0 + \overline{Q}_1 \overline{Q}_0 + \overline{Q}_1 \overline{Q}_0 + \overline{Q}_1 \overline{Q}_0 + \overline{Q}_1 \overline{Q}_0$$

$$= \overline{Q}_0 (\overline{Q}_1 + \overline{Q}_1) + \overline{Q}_0 (\overline{Q}_1 + \overline{Q}_1)$$

$$= \overline{Q}_0 (\overline{Q}_1 + \overline{Q}_1) + \overline{Q}_0 (\overline{Q}_1 + \overline{Q}_1)$$

$$= \overline{Q}_0 (\overline{Q}_1 + \overline{Q}_1)$$

Consider a 4-bit up/down counter built out of a 4-bit adder (e.g. 74HCT283) and 4 flip-flops (e.g. 74HCT175)

- Adder output is connected to flip-flop inputs
- Current count (flip-flop outputs) connected to one 4-bit adder input (A)
- What needs to be on the other 4-bit adder input (B) & Cin?
 - When counting up? ✓
 - When counting down? ✓
 - → Clicker question

If Cin is 0, what needs to be on the B input?

^{5%} 2. Up: 0001 Down: 1000

5% 4. Up: 1111 Down: 0001s: 616

11% 5. Up: 0001 Down:
$$1110_{20}^{+}$$
 $\frac{1110}{0}$ $\frac{1110}{0}$ $\frac{1110}{0}$ $\frac{1110}{0}$ $\frac{1110}{0}$

0% 6. Up: 0001 Down: 0001

Tasks

- 4 bit up/down counter built from 4-bit adder
 - Draw the circuit in Logisim
 - Use the "Adder" component
 - Work out how splitters work for wiring
 - Simulate it & verify behaviour is as expected
 - Draw a circuit schematic diagram
 - Use button for clock, switch for up/down input
 - Have it checked by a tutor then build & test it
- Build/simulate your preparation task 3-bit counter and test it√
- Draw a circuit schematic for your 2-bit up/down counter
 - Test this 2-bit up/down counter either in simulation or by building the circuit