# Física Ambiental 2020

#### Clase 2

Composición del aire atmosférico: constituyentes principales, minoritarios y variables, aerosol atmosférico. Distintas expresiones de concentración (presión parcial, volumen parcial, relación de mezcla).

| FORMULA                          | N O M B R E<br>(según sistema estequiométrico) |      |       |     |
|----------------------------------|------------------------------------------------|------|-------|-----|
| - CO                             | Monóxido de carbono                            |      |       |     |
| - CO <sub>2</sub>                | Dióxido de carbono                             |      |       |     |
| - B2O <sub>3</sub>               | Trióxido de diboro                             |      |       |     |
| - NO                             | Monóxido de nitrógeno                          | 2.4  | ,     | . ^ |
| - NO <sub>2</sub>                | Dióxido de nitrógeno                           | Ho 5 | acido | 501 |
| - N2O <sub>5</sub>               | Pentóxido de dinitrógeno                       | . 12 |       | 1   |
| - SO                             | Monóxido de azufre                             |      |       |     |
| - SO <sub>2</sub>                | Dióxido de azufre                              |      |       |     |
| - CI <sub>2</sub> O              | Monóxido de dicloro                            |      |       |     |
| - Cl <sub>2</sub> O <sub>3</sub> | Trióxido de dicloro                            |      |       |     |
| - CI <sub>2</sub> O <sub>5</sub> | Pentóxido de dicloro                           |      |       |     |
| - Cl <sub>2</sub> O <sub>7</sub> | Heptóxido de dicloro                           |      |       |     |

| O O de Niteres       |                   | Nt                            | ty OH HI          | Compuesto        | Sistemática                          | Stock                 | Tradicional             |
|----------------------|-------------------|-------------------------------|-------------------|------------------|--------------------------------------|-----------------------|-------------------------|
| $O = Oxido\ Nitroso$ |                   |                               | AM                | c so             | monóxido de azufre                   | óxido de azufre (II)  | Anhidrido hiposulfurosc |
| COMPUESTO            | FÓRMULA           | ESTADO<br>(760 mm Hg y 20 °C) | RIQUEZA<br>(N, %) | 7                | •                                    |                       |                         |
| Nitrógeno            | $N_2$             | Gas                           | 100               | SO <sub>2</sub>  | dióxido de azufre                    | óxido de azufre (IV)  | Anhidrido sulfuroso     |
| Nitrato sódico       | NaNO <sub>3</sub> | Sólido                        | 16.5              |                  |                                      |                       |                         |
| Nitrato potásico     | KNO <sub>3</sub>  | Sólido                        | 13.9              | SO <sub>3</sub>  | trióxido de azufre                   | óxido de azufre (VI)  | Anhídrido sulfúrico     |
| Amoníaco             | NH <sub>3</sub>   | Gas                           | 82.4              |                  |                                      |                       |                         |
| Amonio (ión)         | NH4*              | Combinado ó disuelto          | 77.8              | co               | monóxido de carbono                  | óxido de carbono (II) | Anhidrido carbonoso     |
| Óxido nitroso        | N <sub>2</sub> O  | Gas                           | 63.6              | No de la company | to the expression of the first state |                       |                         |
| Dióxido de nitrógeno | NO <sub>2</sub>   | Gas                           | 30.4              | CO,              | dióxido de carbono                   | óxido de carbono (IV) | Anhídrido carbónico     |
| Nitrato (ión)        | NO <sub>3</sub> * | Combinado ó disuelto          | 22.6              |                  |                                      |                       |                         |
| Nitrito (ión)        | NO <sub>2</sub>   | Combinado ó disuelto          | 30.4              |                  |                                      |                       |                         |

 $N_2 O = Oxido Nitroso$ 

| C        |   |
|----------|---|
| Š        |   |
| Ĺ        |   |
| <b>=</b> | , |
|          |   |
|          | Ļ |

| Table A.1                                        |                  |                                                                |  |  |
|--------------------------------------------------|------------------|----------------------------------------------------------------|--|--|
| Constant                                         | Symbol           | Numerical value                                                |  |  |
| Universal constants                              |                  |                                                                |  |  |
| Universal gas constant                           | R                | 8.31 J K <sup>-1</sup> mol <sup>-1</sup>                       |  |  |
| or (SI value)                                    |                  | $8.31 \times 10^3  \mathrm{J  K^{-1}  kmol^{-1}}$              |  |  |
| Avogadro's number                                | $N_{\mathbf{A}}$ | $6.02 \times 10^{23}  \text{mol}^{-1}$                         |  |  |
| or (SI value)                                    |                  | $6.02 \times 10^{26}  \text{kmol}^{-1}$                        |  |  |
| Planck constant                                  | h                | $6.63 \times 10^{-34} \mathrm{J}\mathrm{s}$                    |  |  |
| Boltzmann constant                               | $k_{\mathrm{B}}$ | $1.38 \times 10^{-23} \mathrm{J  K^{-1}}$                      |  |  |
| Speed of light                                   | c                | $3.00 \times 10^8 \mathrm{ms^{-1}}$                            |  |  |
| Stefan-Boltzmann constant                        | σ                | $5.67 \times 10^{-8} \mathrm{W}\mathrm{m}^{-2}\mathrm{K}^{-4}$ |  |  |
| (Note that $\sigma = 2\pi^5 k^4 / (15h^3 c^2)$ ) |                  |                                                                |  |  |
| The Earth                                        |                  |                                                                |  |  |
| Mean acceleration due to                         |                  |                                                                |  |  |
| gravity at the Earth's surface                   | g                | $9.81 \mathrm{m  s^{-2}}$                                      |  |  |
| The Earth's mean radius                          | а                | 6371 km                                                        |  |  |
| The Earth's mean rate of                         |                  |                                                                |  |  |
| rotation                                         | Ω                | $7.29 \times 10^{-5}  \text{s}^{-1}$                           |  |  |
| Standard surface pressure                        | $P_0$            | 1013.25 hPa                                                    |  |  |
| The Sun                                          |                  |                                                                |  |  |
| Solar constant                                   | $F_{s}$          | $1370 \mathrm{W}\mathrm{m}^{-2}$                               |  |  |
| Mean distance between                            |                  |                                                                |  |  |
| the Earth and the Sun                            |                  | $1.50 \times 10^{11} \mathrm{m}$                               |  |  |
| Mean radius of the Sun                           |                  | $6.96 \times 10^{8} \mathrm{m}$                                |  |  |
|                                                  |                  | (continued)                                                    |  |  |

# An Introduction to Atmospheric Physics

Second Edition

| Table A.1 (cont.)                                     |                     |                                         |  |  |
|-------------------------------------------------------|---------------------|-----------------------------------------|--|--|
| Constant                                              | Symbol              | Numerical value                         |  |  |
| Dry air                                               |                     |                                         |  |  |
| Molar mass of dry air                                 | M                   | 28.97 kg kmol <sup>-1</sup>             |  |  |
| Density of dry air at STP                             | $\rho_0$            | $1.29  \mathrm{kg}  \mathrm{m}^{-3}$    |  |  |
| Specific heat capacity of dry air at STP:             |                     |                                         |  |  |
| at constant pressure                                  | $c_p$               | 1005 J K <sup>-1</sup> kg <sup>-1</sup> |  |  |
| at constant volume                                    | $c_v$               | $718\mathrm{JK^{-1}kg^{-1}}$            |  |  |
| Specific gas constant for dry air                     | $R_{\rm d}$         | 287 J K <sup>-1</sup> kg <sup>-1</sup>  |  |  |
| Water                                                 |                     |                                         |  |  |
| Molar mass of water                                   | $M_{ m W}$          | 18.02 kg kmol <sup>-1</sup>             |  |  |
| Density of liquid water at STP                        | $\rho_{\mathrm{W}}$ | $1000  \mathrm{kg}  \mathrm{m}^{-3}$    |  |  |
| Density of ice at STP                                 | $\rho_{\rm i}$      | $917  \text{kg m}^{-3}$                 |  |  |
| Specific heat capacity of water                       |                     |                                         |  |  |
| vapour at 0 °C:                                       |                     |                                         |  |  |
| at constant pressure                                  |                     | 1850 J K <sup>-1</sup> kg <sup>-1</sup> |  |  |
| at constant volume                                    |                     | 1390 J K <sup>-1</sup> kg <sup>-1</sup> |  |  |
| Specific heat capacity of liquid                      |                     |                                         |  |  |
| water at 0 °C                                         |                     | 4217 J K <sup>-1</sup> kg <sup>-1</sup> |  |  |
| Specific heat capacity of ice at 0 °C                 |                     | 2106 J K <sup>-1</sup> kg <sup>-1</sup> |  |  |
| Specific gas constant for water vapour                | $R_{\rm V}$         | 461 J K <sup>-1</sup> kg <sup>-1</sup>  |  |  |
| Specific latent heat of vaporization                  |                     |                                         |  |  |
| at 0°C                                                | $L_{v}$             | $2.50 \times 10^6 \mathrm{Jkg^{-1}}$    |  |  |
| Specific latent heat of vaporization                  |                     |                                         |  |  |
| at 100 °C                                             | L                   | $2.26 \times 10^6  \mathrm{Jkg^{-1}}$   |  |  |
| Specific latent heat of fusion at 0 °C                | $L_{\mathrm{f}}$    | $0.33 \times 10^6 \mathrm{Jkg^{-1}}$    |  |  |
| Specific latent heat of sublimation                   |                     |                                         |  |  |
| at 0°C                                                | $L_{\rm S}$         | $2.83 \times 10^6 \mathrm{Jkg^{-1}}$    |  |  |
| (Note that $L_S = L_V + L_f$ )                        |                     |                                         |  |  |
| Sources include Kaye and Laby (1986) and Lide (1995). |                     |                                         |  |  |

© D. G. Andrews 2010 First edition © Cambridge University Press 2000

|                             | TABLA 1.1                    | -           | -                        |
|-----------------------------|------------------------------|-------------|--------------------------|
|                             | Constituyentes del aire seco |             |                          |
|                             | ,                            | ,           |                          |
| Constituyentes mayoritarios |                              |             |                          |
|                             | Fracción molar               | Tiempo de   |                          |
|                             |                              |             | estimado                 |
| $N_2$                       | 0,7809                       |             | $2 \times 10^7$ años     |
| O <sub>2</sub>              | 0,2095                       |             |                          |
| Ar                          | 0,0093                       |             |                          |
| CO <sub>2</sub>             | 0,00033                      |             |                          |
| Constituyentes minoritarios |                              |             |                          |
| No variables                | Concentración                | Permanentes |                          |
|                             | ppm (en volumen)             |             |                          |
| Ne                          | 18                           |             |                          |
| He                          | 5                            |             | 3 x 10 <sup>o</sup> años |
| Kr                          | 1                            |             |                          |
| Xe                          | 0,09                         |             |                          |
| CH <sub>4</sub>             | 1,5                          |             | 3 años                   |
| CO                          | 0,1                          | Semi-       | 0,35 años                |
| H <sub>2</sub>              | 0,5                          | permanentes |                          |
| $N_2O$                      | 0,25                         |             |                          |
| Variables                   | Concentración típica         |             |                          |
| O <sub>3</sub>              | hasta 10 ppm en estratosfera |             |                          |
|                             | 5-50 ppmm(aire no poluído)   |             |                          |
|                             | hasta 500 ppmm en aire       |             |                          |
|                             | poluído en superfície        |             |                          |
| H <sub>2</sub> S            | 0,2 ppmm (superficie)        |             | 10 días                  |
| SO <sub>2</sub>             | 0,2 ppmm (superficie)        |             | 5 días                   |
| NH <sub>3</sub>             | 6 ppmm (superficie)          |             | 1 - 4 días               |
| NO <sub>2</sub>             | 1 ppmm (superficie)          |             | 2 - 8 días               |
|                             | 100 ppmm en aire poluído     |             |                          |
| CH <sub>2</sub> O           | 0 - 10 ppmm                  |             |                          |
|                             |                              |             |                          |

| N <sub>2</sub>  | conforman  | conforman el | conforman      |
|-----------------|------------|--------------|----------------|
| O <sub>2</sub>  | > 99 % del | 99,97 % del  | > 99,997 % del |
| Ar              | aire seco  | aire seco    | aire seco      |
| CO <sub>2</sub> |            |              |                |



Ley de Dalton

p. parcial de cada componente: es la que tendría si estando puro ocupara todo el V a esa T

$$p_i V = m_i R_i T,$$
  $p = \sum_i p_i$ 

$$p = \sum_{i} p_{i}$$



v. parcial de cada componente: es el volumen que ocuparía el gas si estuviera puro a la presión total P y T

$$V = \sum_{i} V_{i}$$

$$\overline{M} = M = \frac{m}{n} = \frac{\sum M_i n_i}{n}$$
 peso molecular del aire atmosférico

$$\overline{M}$$
 = 28,964 g/mol



### Leyes para la mezcla de gases atmosféricos

El aire atmosférico

# <u>N<sub>i</sub></u> Fracción molar: concentración relativa de cada especie i

$$N_i = \frac{n_i}{n} \qquad \qquad N_i = \frac{p_i}{p} = \frac{V_i}{V}$$

$$r_i = \frac{m_i}{m_d}$$

$$\overline{M} = \frac{m}{n}$$

$$M=\frac{1}{n}$$

$$n = \sum_{i} \frac{m_i}{M_i}$$

 $r_i$  Relación másica de mezcla de la especie i . El subíndice d se refiere al aire seco . Unidades g/kg para vapor de agua troposférico y en partes por millón por masa ppmm o ppm para ozono estratosférico . Para una parcela de aire  $m_d$  es constante y si la especie i no reacciona o se transforma  $r_i$  también es constante para una parcela individual de aire.

Para especie traza como ozono o el vapor de agua es casi igual a la Ni.

Se considera al aire atmosférico constituido por todos los gases (mayoritarios y minoritarios sin el vapor de agua y sin el ozono. Este aire es el llamado "aire seco".

Entonces tenemos: el aire seco, el agua en sus tres estados, el ozono y partículas sólidas y líquidas en suspensión (aerosol atmosférico)

#### Concentración de contaminantes del aire

Muchas veces para el aire y sus componentes se usan

$$\mu g/m^3$$
 ; para pasar a ppm

$$\frac{ppm =}{\left(M_{c}/PM\right) \times 22.4 \frac{l}{mol} \times \left(\frac{T_{2}}{273K}\right) \times (101325 \, kPa/P_{2})}{V_{a} \times 1000 l/m^{3}}$$

 $M_C$  es la masa de contaminante en  $\mu g$ 

Entre todos los factores que influencian el comportamiento atmosférico, la gravedad es el más importante dado que es una fuerza de importante magnitud.

Aún cuando no tiene capa límite superior, la atmósfera está contenida por la gravedad y ésta define su geometría. La mayor parte de la masa atmosférica está en los primeros 10km, menos del 1% del radio planetario. En esta pequeña capa el aire atmosférico está estratificado.

Además, la gravedad le impone un fuerte condicionamiento a la cinemática atmosférica: los movimientos verticales son despreciables salvo en frentes u otro tipo de celdas convectivas. La circulación en escalas mayores que unas decenas de km es horizontal. El ozono y el vapor de agua de describen en "estratos".

La compresibilidad del aire complica la descripción de la atmósfera así como el cambio de estado de agua o las reacciones fotoquímicas que generas nuevos compuestos a ciertos niveles  $(O_3)$ .

$$\frac{D\mathbf{u}}{Dt} = -\frac{1}{\rho} \nabla p - 2\mathbf{\Omega} \times \mathbf{u} - \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r}) - g\mathbf{k} + \mathbf{F}_{\text{visc}}$$

#### **Ecuación de Navier Stocks**:

- Ecuación de continuidad (conservación de masa).
- La rotación de la Tierra.
- Todas las fuerzas que actúan sobre una parcela que se sigue en su movimiento (Representación Lagrangiana).

$$\mathbf{g}' = -g\mathbf{k} - \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$





La fuerza centrífuga se combina con el término gravitatoria y resulta en la gravedad efectiva.



Fuerza de Coriolis

#### Dinámica atmosférica

$$\sum \bar{F} = m \; \bar{a}$$

$$\overline{F}_p + \overline{F}_c + \overline{F}_g + \overline{F}_f = \rho \Delta V \overline{a}$$



La fuerza gravitatoria actúa sobre una columna de aire de área dA

$$pdA - (p + dp)dA = \rho gdV,$$

$$\frac{dp}{dz} = -\rho g$$

Balance hidrostático que vale para toda la atmósfera, aún si la atmósfera está en movimiento ya que los desplazamientos verticales de aire y sus derivadas son pequeños comparados con las fuerzas actuantes

Pero debemos incorporar la Ley de Gases ideales reemplazando la  $\rho$  debido a la compresibilidad del aire atmosférico

$$-\frac{dp}{g\,dz} = \rho$$

$$PV = n R T$$

$$p = \frac{m}{V} \frac{RT}{M}$$

$$p = \rho \, \frac{RT}{M}$$

$$\frac{dp}{p} = -\frac{gM}{RT}dz$$

H(z)Altura de Escala: representa una dimensión vertical característica de la distribución de masas y varía desde 8 km en superficie y 6 km en regiones frías de la atmósfera

M puede ser considerado una constante hasta los 100 km y H una función sólo de T hasta los 100 km

$$d(\ln p) = -\frac{gM}{RT} dz =$$

$$\frac{p}{p_0} = exp^{-\int \frac{gM \, dz}{RT}}$$

$$H(z) = \frac{R \ T(z)}{g \ M}$$

$$p_i = p_{0i} e^{-Z/H_i}$$

$$H_i = \frac{RT}{gM_i}$$

$$p = p_0 \exp^{-\int_0^z \frac{dz}{H}}$$

La presión y la densidad decrecen exponencialmente con la altitud.

$$\frac{p}{p_s} = \exp\left[-\int_{z_s}^z \frac{dz'}{H(z')}\right]; H(z) = \frac{RT(z)}{g}$$

La presión decrece desde 1000 mb (10<sup>5</sup> Pa) a sólo un 10% de este valor a los 15 km.

El 90% de la masa atmosférica está debajo de ese nivel. Luego decrece 10% adicional por cada 15km.

La densidad decrece desde 1,2 kg/m³ en superficie a aproximadamente las mismas tasas. La forma cómo decrece la presión con la altitud implica que si p = cte una superficie isobárica es cuasi horizontal. Deflexiones de esas superficies aportan pequeñas variaciones en la horizontal que causan movimientos atmosféricos.

Por encima de los 100km la densidad y la presión también cambian exponencialmente pero a otras tasas.

Hay un cambio distintivo a los 100 km: hay una transición en los procesos que controlan la estratificación y la distribución de masa.



Figure 1.2 Global-mean pressure (solid), density (dashed), and temperature (dotted), as functions of altitude. Source: U.S. Standard Atmosphere (1976).

## Equilibrio difusivo



Figure 1.3 Global-mean pressure (bold), temperature (shaded), mean molar weight (solid), and number densities of atmospheric constituents, as functions of altitude. Source: U.S. Standard Atmosphere (1976).

A los 100 km se da una transición en los procesos que controlan la estratificación de masas y la composición del aire.

El camino libre medio de las moléculas que se asocia a la frecuencia de colisiones es inversamente proporcional a la densidad del aire: va de 10<sup>-7</sup>m en superficie a 1m a los 100km.

Dado que controla la difusión molecular, el camino libre medio determina propiedades como la viscosidad y la conductividad térmica. La difusión de momentum y el calor asociado disipan la actividad atmosférica al romper gradientes de temperatura y velocidad.

## Homósfera

Por debajo de los 100km el camino libre medio es suficientemente pequeño comparado con los eddies turbulentos de la circulación para ser débilmente amortiguado por la difusión molecular.

El transporte de volumen por turbulencia domina el movimiento de los constituyentes mayores .

Los movimientos turbulentos mezclan eficientemente los diferentes gases por lo que es una zona homogénea «bien mezclada».

$$M_d = 28,96g/mol$$
;  $R_d = 287,05 Jkg-1 K-1$ 

#### Es la homósfera

#### Por encima de 100km

El camino libre medio se hace mayor que los movimientos turbulentos y el transporte difusivo es el principal mecanismo para transferir propiedades verticalmente. Existe una zona de transición: la homopausa o turbopausa ubicada a los 100 km.



Figure 1.4 Constant-density contours of a chemical vapor trail released by a rocket traversing the turbopause. Beneath 107 km, the vapor trail is distorted by an array of turbulent eddies that form in the wake of the rocket. Above 107 km, the vapor trail remains laminar, reflecting the absence of turbulence, and expands under the action of molecular diffusion. Adapted from Roper (1977).

### La heterósfera: entre los 100 y los 500 km

El flujo es principalmente laminar. La difusión molecular estratifica los gases de modo que los más pesados son abundantes abajo y decrecen con la altitud. La concentración decrece con la altitud y también se observa el decrecimiento de  $\overline{M}$ .

cambia abruptamente a los 100km.

La separación difusiva es importante pero también lo es la fotodisociación. La radiación UV energética disocia el  $\mathcal{O}_2$  y provée de oxígeno atómico en el tope de la atmósfera. A menores alturas y con menor energía se disocia la molécula de  $H_2O$  libera H atómico que es transportado a mayores alturas por mezcla difusiva. La radiación es absorvida a esos niveles menores producto de la disociación molecular.

## La exósfera: por encima de los 500km

En la homósfera y en la heterósfera hay colisiones frecuentes entre las partículas. Por encima de los 500 km que es considerado en nivel crítico, las interacciones son muy poco frecuentes y muchas moléculas se van de la atmósfera sin interactuar con otras, se mueven de los niveles más densos al espacio.

Los intercambios de energía parecen en estas reacciones, pero también cuando una parcela de aire con vapor de agua se traslada llevando calor latente, que luego es liberado en otras regiones al condensar en forma de gotas de lluvia o hielo.

La rotación de la Tierra tiene gran influencia en la dinámica atmosférica al generar movimientos alrededor de los centros de Alta o de Baja, es decir que afectan a la circulación meridional de gran escala.

Los procesos físicos en la atmósfera no operan independientemente, por el contrario constituyen un entramado de procesos radiativos, químicos y dinámicos. Su interacción es tan importante como los procesos individuales:

- ✓ La transferencia radiativa controla la estructura térmica de la atmósfera.
- ✓ La estructura térmica determina la circulación
- ✓ La Circulación tiene influencia en la distribución de componentes radiativamente activos (ozono, vapor de agua y nubes)



Figure 1.5 Schematic cross section of the atmosphere illustrating the homosphere, heterosphere, and the exosphere, in which molecular trajectories are shown.

$$\frac{mv^2_e}{2} = \int_a^\infty mg_0 \left(\frac{a}{r}\right)^2 dr$$

Las moléculas siguen trayectorias balísticas que son determinadas por la velocidad molecular al nivel crítico y por g. La mayoría de las moléculas vuelven a la atmósfera atrapadas por la energía potencial. Pero otras tienen velocidad de escape suficientemente grande para escapar al espació. La velocidad de escape está determinada por la energía cinética adecuada para liberar la molécula del campo gravitatorio. La energía iguala al trabajo necesario para desarrollar trabajo desde el nivel crítico al infinito.

## Magnetopausa

A una 10-15 veces el radio terrestre, el campo magnético del lado iluminado por el sol (del día) cae a cero o a valores despreciables. Es la *Magnetopausa* y toda la región en su interior se denomina *Magnetósfera*. Del lado de la noche la magnetósfera se extiende a grandes distancias. Es la llamada estela magnética de la Tierra.



Física Ambiental 2020



