Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia Departamento de Química

Fenómenos de Transferência II

Exame de recurso - 2 de Julho de 2016

T

Uma proveta com altura L e diâmetro d contém até uma altura h, contada a partir da base, um líquido A que evapora. Supondo nula pressão parcial de A no exterior da proveta e que os componentes do ar não são absorvidos no líquido A:

- a) Deduza uma expressão para o fluxo de A em função dos parâmetros do sistema.
- b) Explique como poderia obter o valor do coeficiente de difusão de A no ar com esta experiência.

П

Estuda-se a difusão de cloreto de cálcio em líquidos:

- a) Calcule o coeficiente de difusão deste electrólito numa solução aquosa de 0.001 M CaCl₂ a 25 °C.
- b) Como será afectado o resultado obtido em (a) sé a difusão de 0.001 M CaCl₂, em vez de áqua, ocorresse numa solução aquosa de 1 M de NaCl? Considere que o efeito do ião de sódio pode ser desprezado. Comente o resultado obtido.

Table 6.1-1. Diffusion coefficients of ions in water at 25°C Anion, Cation, Di H+ 9.31 OH-1.03 CI Na+ 1.96 Br Rb+ NO: CH3CH2COO 1.96 0.52 B(C,Hs); $N(C_4H_0)$ 0.79 Ca2 Mg^{2+} 0.71 0.62 0.98 Fe(CN) Note: Values at infinite dilution in 10⁻⁵ cm²/sec. Calculated from

$$D = \left(\frac{D_1 D_2 (z_1^2 c_1 + z_2^2 c_2)}{D_1 z_1^2 c_1 + D_2 z_2^2 c_2}\right)$$

Ш

data of Robinson and Stokes (1960).

- a) Pretende-se determinar o coeficiente de difusão do O2 através de um solvente não volátil. No inicio dos ensaios, o sistema encontra-se em estado não estacionário. De forma a determinar o coeficiente de difusão nestas condições, é necessário considerar a segunda lei de Fick. Identifique a condição inicial e as condições fronteira, assumindo que a altura do solvente não volátil é infinita.
- b) Considere agora que o solvente não volátil tem uma concentração inicial de O₂ igual a 1.5 mol/L. Esta solução é exposta a uma atmosfera de O₂ a 25°C, e após 50 minutos, a concentração de O₂ para a posição z = 10 mm é igual a 5 x 10⁻³ mol/cm³. Calcule a concentração de O₂ na superfície assumindo um coeficiente de difusão de O₂ no solvente não volátil igual a 8 x 10⁻⁹ cm²/s.

$$\frac{c_{As} - c_A}{c_{As} - c_{A0}} = erf\left(\frac{z}{\sqrt{4Dt}}\right)$$

$$\xi = \frac{z}{\sqrt{4Dt}}$$

Table	7-1,	Error	function	values.	For	negative a,	erf(a) is negative
a:	erf(a)	а	erf(n)	a	crf(n)

а.	Cir(a)	et.	certai	177	cratery
44.40	45.49	0.40	n courte	0.06	0.82542
0.0	0.0	0.48	0.50275	0.96	
0.04	0.04511	0.52	0.53790	00.1	0.84270
80.0	0.09008	0.56	0.57162	1.10	0.88021
0.12	0.13476	0.60	0.60386	1.20	0.91031
0.16	0.17901	0.64	0.63459	1,30	0.93401
0.20	0.22270	0.68	0.66378	1.40	0.95229
0.24	0.26570	0.72	0.69143	1.50	0.96611
0.28	9.30788	0.76	0.71754	1,60	0.97635
0.32	0.34913	0.80	0.7421	1.70	0.98379
0.36	0.38933	0.84	0.76514	1.80	0.98909
0.40	0.42839	88,0	0.78669	2.00	0.99532
0.44	0.46622	0.92	0.80677	3.24	0.99999

IV

Faz-se passar ar a 20°C por um tubo com 2.5 cm de diâmetro (d) e 2 m de comprimento (L), cuja superfície interna está revestida com o componente A. Utilizando a analogia de Chilton - Colburn, determine:

- a) O coeficiente de transferência de massa e a concentração de A à saída para uma velocidade média do ar igual a 50 cm/s.
- b) Seria possível usar a analogia de Reynolds neste caso? Justifique a sua resposta.

$$\begin{split} \text{Nu} &= 0.023 \; \text{Re}^{0.8} \; \text{Pr}^{0.33}, \, \text{para} \; \text{Re} > 10 \; 000 \qquad e \qquad \text{Nu} = 4.1, \, \text{para} \; \text{Re} \; \text{Pr} \frac{d}{L} < 17 \\ \text{Dados:} \; P^* \; \text{de A a } 20^{\circ}\text{C} = 4.0 \; \text{mm Hg} \qquad \qquad D_{\text{A-ar}} = 6.2 \; \text{x } 10^{-6} \; \text{m}^2 \; \text{s}^{-1} \\ \mu_{\text{ar}} \; (20^{\circ}\text{C}) = 1.74 \; \text{x } 10^{-5} \; \text{N s m}^{-2} \qquad c_p \; \text{do ar} \; (20^{\circ}\text{C}) = 1012 \; \text{J kg}^{-1} \; \text{K}^{-1} \\ \rho_{\text{ar}} \; (20^{\circ}\text{C}) = 1.164 \; \text{kg m}^{-3} \qquad \qquad k^T \; \text{do ar} \; (20^{\circ}\text{C}) = 0.0251 \; \text{J s}^{-1} \; \text{m}^{-1} \; \text{K}^{-1} \\ \frac{h}{\rho \; \text{u} \; c_p} \; Pr^{2/3} = \frac{k_c}{u} \; \text{Sc}^{2/3} \qquad \text{Re} = \frac{\rho \; \text{d} \; u}{\mu} \qquad \text{Sc} = \frac{\mu}{\rho \; D_{\text{AB}}} \qquad \text{Pr} = \frac{\mu \; c_p}{k^T} \qquad \textit{Nu} = \frac{hd}{k^T} \end{split}$$

V

Pretende-se remover um composto A em solução aquosa fazendo contactar com ar numa coluna. Num determinado ponto da coluna, a corrente gasosa está isenta do composto A e corrente líquida contém $1x10^{-3}\ mol/m^3$ de A. Obteve-se um coeficiente individual de transferência de massa para a fase líquida $k_L=5x10^{-4}\ m/s$ e para a fase gasosa $0.01\ kmol/(m^2\ s\ atm)$. A pressão total é 1 atm e a constante de Henry à temperatura de trabalho é $10\ atm\ m^3/kmol$.

- a) Calcule o valor da percentagem da resistência total respeitante a cada uma das fases.
- b) Determine o fluxo. Qual o sentido? Justifique.
- c) Determine as composições interfaciais.