IPD电机调节软件设计

一、规范更新日志

更新日期	更新人	更新说明	
2023.6.7	李洋 李洋 黄欣然	更新了第一阶段实现,通过按键控制ipd,左右屈光度	等的电机运动。
2023.6.13	李洋 黄欣然	更新了指令模块,通过串口调试发送指令控制电机运部分的功能验证。	动。并完成了ipd
2023.6.14	李洋 黄欣然	加入hall检测ipd调节是否到达极限位(暂时用了其它	磁铁测试)
2023.11.28	黄欣然	加入i2c发送指令控制ipd,deep sleep mode休眠	

二、背景与需求

- 1.背景
- 2.需求
- 三、软件设计
- 3.1 整体设计
- 3.1.1 整体设计框图

3.1.2 设计思路

系统整体分为3个任务:分别控制ipd电机(aw8646),左屈光度电机(l_diopter_aw8646),右屈光度电机(r_diopter_aw8646)。按键控制 IPD、屈光度左、屈光度右共6个按键,按键按下开始运动,系统启动后,弹起停止运动,按下过程中如触发极限位则停止运动。

说明:三个电机的运动不受其他电机影响,完全独立。

3.2 ipd电机运动实现

3.2.1 pwm频率计算

· 研究 60061137 405		#### 60061137 ZVZ	and the	四次 60061137 202
		IPD		
需求	行程(mm)	^{EOA POOP E} 时间(s)	方向数	速度(mm/s)
	16	0.5	13.42 2	1.666666667
	3	0074年04月	9B	- 2024年04月09日
电机+齿轮箱	步距角(°)	齿轮箱速比	电机控制电流(mA)预设	40 6006113
	18	23	208.5	
	黄欣然 60061137 202 4	And a second	被依然 60061137 2024 ^{年04月31} 5年	
丝杆	螺距(mm)	头数	外径(mm)	
	0.4	6 0000113172024#E04F	^{9日}	- 60061137 2024年04月09日
3:42		13.42	73 Mg	A2
控制	细分	上升沿和下降沿触发	PWM频率(Hz)	最大脉冲数
	32	1	16000	48000

说明:暂时设置总运动时长为3s,可以通过修改时间来改变pwm频率。

3.2.2 具体实现步骤

ipd调节马达驱动芯片的step控制引脚为PA7,定时器选择TIMER2_CH1。

- 1. 检测ipd的某个按钮(共两个)按下,电机开始运动,若按下从左到右运动的按键(PB7)则调用 aw8646_start_play(AW_POSITIVE),按下右到左运动的按键(PB8)则调用 aw8646_start_play(AW_NEGATIVE);
- 2. 检测到未加入hall即adc_hall=0时,使用步数进行检测,步数(cur_step)已达到最大脉冲数或已减少到0,调用aw8646_stop_play(),停止运动;加入hall时,检测到电压大于等于adc_value_max或小于adc_value_min时,停止运动(如果是指令模式仍然需要加上步数的判断);

注:步数检测和hall检测全部在中断中完成,可能比较耗时,后续可能要试验+修改。

3. 两个按键优先级相同,若先按下一个,另一个无效。代码中int变量ipd_increase_PB7和 ipd decrease PB8为按键是否按下的标识。

3.2.3 通过HALL元件判读位置

用adc_hall判断,1表示添加了HALL元件。

设置adc_value_max和adc_value_min表示运动过程的极限位置。

3.3 屈光度电机运动实现

3.3.1 屈光度的pwm频率计算

次然 60061131 202 3:42		屈光度	類欣 13.4	预欣然 60061137 202 13.42	
		出几层	ζ		
需求	运动角度(°)	^{■04月09日} 时间(s)	速度(°/s)	速度(rpm)	
	65	5	13 ^{,A2} 13	2.166666667	
77.707.4F04F09E		107.2024年04月09日			
电机+齿轮箱	步距角(°)	齿轮箱速比	电机控制电流(mA)预设	600ejra,	
	18	350	305		
	養欣然 60061137 2024	\$20117	並依然 60061137 2024 ^{年以初}		
控制	细分	上升沿和下降沿触发	PWM频率(Hz)	最大脉冲数	
	32	1 2024年04月	8088.888889	40444.44444	

说明:暂时设置总运动时长为5s,可以通过修改时间来改变pwm频率。

左屈光度调节马达驱动芯片的step控制引脚为PB0,定时器选择TIMER0_CH1_ON。

右屈光度调节马达驱动芯片的step控制引脚为PB15,定时器选择TIMER14 CH1。

3.3.2 左屈光度电机运动实现

- 1. 检测左屈光度的某个按钮(共两个)按下,电机开始运动,若按下增加屈光度的按键(PB5)则调用aw8646_start_play_l(AW_POSITIVE),按下减少屈光度的按键(PB6)则调用aw8646_start_play_l(AW_NEGATIVE);
- 2. 检测到通过限位开关(两个): 前端(PA11)和后端(PA12)的按下,调用 aw8646_stop_play_l(),停止运动;
- 3. 两个按键优先级相同,若先按下一个,另一个无效。代码中int变量l_increase_PB5和 l_decrease_PB6为按键是否按下的标识。

3.3.3 右屈光度电机运动实现

- 1. 检测右屈光度的某个按钮(共两个)按下,电机开始运动,若按下增加屈光度的按键(PB9)则调用aw8646_start_play_r(AW_POSITIVE),按下减少屈光度的按键(PB10)则调用aw8646_start_play_r(AW_NEGATIVE);
- 2. 检测到通过限位开关(两个): 前端(PC13-TAMPER-RTC)和后端(PA15)的按下,调用 aw8646_stop_play_r(),停止运动;
- 3. 两个按键优先级相同,若先按下一个,另一个无效。代码中int变量r_increase_PB9和 r decrease PB10为按键是否按下的标识。

3.4 指令控制

3.4.1 指令设计

- 代码中key_mode表示按键模式,command_mode表示指令模式,可在代码里设置,1表示开启。
- 暂定13个指令。指令1-6发送1000个对应的pwm脉冲,7-12发送10000脉冲,help指令会打印其它指令。精细调节可使用指令1-6,粗略调节使用7-12。
- 使用方式例如: ins1。然后ipd会从左到右运动1000个pwm。

指令1: ipd increase 1000step---->ins1

指令2: ipd decrease 1000step---->ins2

指令3: lincrease 1000step ---->ins3

指令4: I decrease 1000step ---->ins4

指令5: rincrease 1000step ---->ins5

指令6: r decrease 1000step ---->ins6

指令7: ipd increase 10000step---->ins7

指令8: ipd decrease 10000step---->ins8

指令9: lincrease 10000step ---->ins9

指令10: I decrease 10000step ---->insa

指令11: rincrease 10000step ---->insb

指令12: r decrease 10000step ---->insc

注意: 若是执行指令7,运动7000个pwm就已到极限位,那么将不会运动10000个pwm。

3.4.2细节实现

- 1. 在main.c的while(1)中,会判断目前模式,如果command_mode=1,那么将进入指令模式;
- 2. ins_num[x]=1表示指令x正在执行,在定时器中判断使用的模式和对应的指令。注意,在指令1正在执行的时候,发送命令执行指令2,指令2将不会执行。

3.4 i2c指令控制

3.5 低功耗休眠模式

```
1 /* configure tamper key EXTI */
 2 gd_eval_key_init(KEY_USER, KEY_MODE_EXTI);
 4 rcu_periph_clock_enable(RCU_GPIOA);
 5 rcu_periph_clock_enable(RCU_GPIOB);
 6 rcu_periph_clock_enable(RCU_GPIOC);
 7
 8 gpio_mode_set(GPIOA, GPIO_MODE_ANALOG, GPIO_PUPD_PULLUP, GPIO_PIN_ALL);
 9 //gpio_mode_set(GPIOB, GPIO_MODE_ANALOG, GPIO_PUPD_PULLUP, GPIO_PIN_ALL);
   gpio_mode_set(GPIOC, GPIO_MODE_ANALOG, GPIO_PUPD_PULLUP, GPIO_PIN_ALL);
10
11
12 rcu_periph_clock_enable(RCU_PMU);
13 rtc_pre_config();
14
15 pmu_to_deepsleepmode(PMU_LDO_LOWPOWER, PMU_LOWDRIVER_DISABLE, WFI_CMD);
16 system_clock_84m_hxtal();
17 rcu_periph_clock_enable(RCU_GPIOA);
18 rcu_periph_clock_enable(RCU_GPIOB);
19 rcu_periph_clock_enable(RCU_GPIOC);
20
   gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_ALL);
22 gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_ALL);
```

```
gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_PULLUP, GPIO_PIN_ALL);

//systick_config();
printf("init start2\r\n");
```

将boot0拉高可以强制下载,如果不小心进入deep sleep mode,可用此法唤醒