Study Guide: Finite difference methods for vibration problems

Hans Petter Langtangen 1,2

 $^1{\rm Center}$ for Biomedical Computing, Simula Research Laboratory $^2{\rm Department}$ of Informatics, University of Oslo

Sep 9, 2013

Contents

1	A -	······1	-
1		imple vibration problem	1
	1.1	A centered finite difference scheme; step 1 and 2	1
	1.2	A centered finite difference scheme; step 3	2
	1.3	A centered finite difference scheme; step 4	2
	1.4	Computing the first step	2
	1.5	The computational algorithm	2
	1.6	Operator notation; ODE	3
	1.7	Operator notation; initial condition	3
	1.8	Computing u'	3
2	Imp	plementation	3
	2.1	Core algorithm	3
	2.2	Plotting	4
	2.3	Main program	4
	2.4	User interface: command line	4
	2.5	Running the program	5
3	Ver	ification	5
	3.1	First steps for testing and debugging	5
	3.2	Checking convergence rates	5
	3.3	Implementational details	5
	3.4	Nose test	6
1	Lon		6
4		g time simulations	
	4.1	Effect of the time step on long simulations	6
	4.2	Using a moving plot window	7

5	Ana	lysis of the numerical scheme	7
	5.1	Deriving an exact numerical solution; ideas	7
	5.2	Deriving an exact numerical solution; calculations (1)	8
	5.3	Deriving an exact numerical; calculations (2)	8
	5.4	Polynomial approximation of the phase error	8
	5.5	Plot of the phase error	9
	5.6	Exact discrete solution	9
	5.7	Convergence of the numerical scheme	9
	5.8	Stability	10
	5.9	The stability criterion	10
	5.10	Summary of the analysis	11
6	Alte	ernative schemes based on 1st-order equations	11
	6.1	Rewriting 2nd-order ODE as system of two 1st-order ODEs	11
	6.2	The Forward Euler scheme	11
	6.3	The Backward Euler scheme	12
	6.4	The Crank-Nicolson scheme	12
	6.5	Comparison of schemes via Odespy	12
	6.6	Forward and Backward Euler and Crank-Nicolson	13
	6.7	Phase plane plot of the numerical solutions	13
	6.8	Plain solution curves	13
	6.9	Observations from the figures	13
		Runge-Kutta methods of order 2 and 4; short time series	14
		Runge-Kutta methods of order 2 and 4; longer time series	15
		Crank-Nicolson; longer time series	15
		Observations of RK and CN methods	16
		The Euler-Cromer method; idea	16
		The Euler-Cromer method; complete formulas	16
		Equivalence with the scheme for the second-order ODE	17
		Comparison of the treatment of initial conditions	17
		A method utilizing a staggered mesh	17
		Centered differences on a staggered mesh	18
		Comparison with the scheme for the 2nd-order ODE	18
7	Gen	eralization: damping, nonlinear spring, and external exci-	
•	tatio		18
	7.1	A centered scheme for linear damping	
	7.2	Initial conditions	19
	7.3	Linearization via a geometric mean approximation	19
	7.4	A centered scheme for quadratic damping	20
	7.5	Initial condition for quadratic damping	20
	7.6	Algorithm	20
	7.7	Implementation	20
	7.8	Verification	21
	7.9	Demo program	21
		Euler-Cromer formulation	22

7.11	Staggered grid														22
7.12	Linear damping														22
7.13	Quadratic damping														22
7.14	Initial conditions .														23

1 A simple vibration problem

$$u''t + \omega^2 u = 0$$
, $u(0) = I$, $u'(0) = 0$, $t \in (0, T]$. (1)

Exact solution:

$$u(t) = I\cos(\omega t). \tag{2}$$

u(t) oscillates with constant amplitude I and (angular) frequency ω . Period: $P=2\pi/\omega$.

1.1 A centered finite difference scheme; step 1 and 2

- Strategy: follow the four steps¹ of the finite difference method.
- Step 1: Introduce a time mesh, here uniform on [0,T]: $t_n = n\Delta t$
- Step 2: Let the ODE be satisfied at each mesh point:

$$u''(t_n) + \omega^2 u(t_n) = 0, \quad n = 1, \dots, N_t.$$
 (3)

1.2 A centered finite difference scheme; step 3

Step 3: Approximate derivative(s) by finite difference approximation(s). Very common (standard!) formula for u'':

$$u''(t_n) \approx \frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2}$$
 (4)

Use this discrete initial condition together with the ODE at t=0 to eliminate u^{-1} (insert (4) in (3)):

$$\frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2} = -\omega^2 u^n \,. \tag{5}$$

1.3 A centered finite difference scheme; step 4

Step 4: Formulate the computational algorithm. Assume u^{n-1} and u^n are known, solve for unknown u^{n+1} :

$$u^{n+1} = 2u^n - u^{n-1} - \Delta t^2 \omega^2 u^n.$$
 (6)

Nick names for this scheme: Störmer's method or Verlet integration².

 $^{^1 \\ \}text{http://tinyurl.com/k3sdbuv/pub/decay-sphinx/main_decay.html\#the-forward-euler-scheme} \\ ^2 \\ \text{http://en.wikipedia.org/wiki/Velocity_Verlet}$

1.4 Computing the first step

- The formula breaks down for u^1 because u^{-1} is unknown and outside the mesh!
- And: we have not used the initial condition u'(0) = 0.

Discretize u'(0) = 0 by a centered difference

$$\frac{u^1 - u^{-1}}{2\Delta t} = 0 \quad \Rightarrow \quad u^{-1} = u^1 \,. \tag{7}$$

Inserted in (6) for n = 0 gives

$$u^{1} = u^{0} - \frac{1}{2}\Delta t^{2}\omega^{2}u^{0}. \tag{8}$$

1.5 The computational algorithm

- 1. $u^0 = I$
- 2. compute u^1 from (8)
- 3. for $n = 1, 2, \dots, N_t 1$:
 - (a) compute u^{n+1} from (6)

More precisely expressed in Python:

```
t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step.
u = zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):
    u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
```

Note: w is consistently used for ω in my code.

1.6 Operator notation; ODE

With $[D_t D_t u]^n$ as the finite difference approximation to $u''(t_n)$ we can write

$$[D_t D_t u + \omega^2 u = 0]^n. (9)$$

 $[D_tD_tu]^n$ means applying a central difference with step $\Delta t/2$ twice:

$$[D_t(D_t u)]^n = \frac{[D_t u]^{n+1/2} - [D_t u]^{n-1/2}}{\Delta t}$$

which is written out as

$$\frac{1}{\Delta t}\left(\frac{u^{n+1}-u^n}{\Delta t}-\frac{u^n-u^{n-1}}{\Delta t}\right)=\frac{u^{n+1}-2u^n+u^{n-1}}{\Delta t^2}\,.$$

1.7 Operator notation; initial condition

$$[u=I]^0, \quad [D_{2t}u=0]^0,$$
 (10)

where $[D_{2t}u]^n$ is defined as

$$[D_{2t}u]^n = \frac{u^{n+1} - u^{n-1}}{2\Delta t} \,. \tag{11}$$

1.8 Computing u'

u is often displacement/position, u' is velocity and can be computed by

$$u'(t_n) \approx \frac{u^{n+1} - u^{n-1}}{2\Delta t} = [D_{2t}u]^n.$$
 (12)

2 Implementation

2.1 Core algorithm

```
from numpy import *
from matplotlib.pyplot import *

def solver(I, w, dt, T):
    """
    Solve u'' + w**2*u = 0 for t in (0,T], u(0)=I and u'(0)=0,
    by a central finite difference method with time step dt.
    """
    dt = float(dt)
    Nt = int(round(T/dt))
    u = zeros(Nt+1)
    t = linspace(0, Nt*dt, Nt+1)

u[0] = I
    u[1] = u[0] - 0.5*dt**2*w**2*u[0]
    for n in range(1, Nt):
        u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
    return u, t
```

2.2 Plotting

```
def exact_solution(t, I, w):
    return I*cos(w*t)

def visualize(u, t, I, w):
    plot(t, u, 'r--o')
    t_fine = linspace(0, t[-1], 1001) # very fine mesh for u_e
    u_e = exact_solution(t_fine, I, w)
    hold('on')
    plot(t_fine, u_e, 'b-')
    legend(['numerical', 'exact'], loc='upper left')
    xlabel('t')
    ylabel('u')
    dt = t[1] - t[0]
    title('dt=%g' % dt)
```

```
umin = 1.2*u.min(); umax = -umin
axis([t[0], t[-1], umin, umax])
savefig('vib1.png')
savefig('vib1.pdf')
savefig('vib1.eps')
```

2.3 Main program

```
I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w  # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)
```

2.4 User interface: command line

```
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--I', type=float, default=1.0)
parser.add_argument('--w', type=float, default=2*pi)
parser.add_argument('--dt', type=float, default=0.05)
parser.add_argument('--num_periods', type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods
```

2.5 Running the program

vib_undamped.py³:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Generates frames tmp_vib%04d.png in files. Can make movie:

Terminal> avconv -r 12 -i tmp_vib%04d.png -vcodec flv movie.flv

Can use ffmpeg instead of avconv.

Format	Codec and filename									
Flash	-vcodec flv movie.flv									
MP4	<pre>-vcodec libx64 movie.mp4</pre>									
Webm	<pre>-vcodec libvpx movie.webm</pre>									
Ogg	<pre>-vcodec libtheora movie.ogg</pre>									

 $^{^3 \}verb|http://tinyurl.com/jvzzcfn/vib/vib_undamped.py|$

3 Verification

3.1 First steps for testing and debugging

- Testing very simple solutions: u = const or u = ct + d do not apply here (without a force term in the equation: $u'' + \omega^2 u = f$).
- Hand calculations: calculate u^1 and u^2 and compare with program.

3.2 Checking convergence rates

The next function estimates convergence rates, i.e., it

- performs m simulations with halved time steps: $2^{-k}\Delta t$, $k=0,\ldots,m-1$,
- computes the L_2 norm of the error, $E = \sqrt{\Delta t_i \sum_{n=0}^{N_t-1} (u^n u_e(t_n))^2}$ in each case,
- estimates the rates r_i from two consecutive experiments $(\Delta t_{i-1}, E_{i-1})$ and $(\Delta t_i, E_i)$, assuming $E_i = C\Delta t_i^{r_i}$ and $E_{i-1} = C\Delta t_{i-1}^{r_i}$:

3.3 Implementational details

```
def convergence_rates(m, num_periods=8):
    Return m-1 empirical estimates of the convergence rate
    based on m simulations, where the time step is halved
    for each simulation.
    w = 0.35; I = 0.3
    dt = 2*pi/w/30 # 30 time step per period <math>2*pi/w
    T = 2*pi/w*num_periods
    dt_values = []
E_values = []
    for i in range(m):
        u, t = solver(I, w, dt, T)
u_e = exact_solution(t, I, w)
        E = sqrt(dt*sum((u_e-u)**2))
        dt_values.append(dt)
        E_values.append(E)
        dt = dt/2
    r = [log(E_values[i-1]/E_values[i])/
         log(dt_values[i-1]/dt_values[i])
         for i in range(1, m, 1)]
    return r
```

Result: r contains values equal to 2.00 - as expected!

3.4 Nose test

Use final r[-1] in a unit test:

```
def test_convergence_rates():
    r = convergence_rates(m=5, num_periods=8)
    # Accept rate to 1 decimal place
    nt.assert_almost_equal(r[-1], 2.0, places=1)
```

Complete code in vib_undamped.py⁴.

4 Long time simulations

4.1 Effect of the time step on long simulations

- The numerical solution seems to have right amplitude.
- There is a phase error (reduced by reducing the time step).
- The total phase error seems to grow with time.

4.2 Using a moving plot window

- In long time simulations we need a plot window that follows the solution.
- Method 1: scitools.MovingPlotWindow.
- Method 2: scitools.avplotter (ASCII vertical plotter).

Example:

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

Movie of the moving plot window 5 .

⁴http://tinyurl.com/jvzzcfn/vib/vib_undamped.py

 $^{^5 {\}tt http://tinyurl.com/k3sdbuv/pub/mov-vib/vib_undamped_dt0.05/index.html}$

5 Analysis of the numerical scheme

5.1 Deriving an exact numerical solution; ideas

- Linear, homogeneous, difference equation for u^n .
- Has solutions $u^n \sim A^n$, where A is unknown (number).
- Here: $u_e(t) = I\cos(\omega t) \sim I\exp(i\omega t) = I(e^{i\omega\Delta t})^n$
- Trick for simplifying the algebra: $u^n = A^n$, with $A = \exp(i\tilde{\omega}\Delta t)$, then find $\tilde{\omega}$
- $\tilde{\omega}$: unknown numerical frequency (easier to calculate than A)
- $\omega \tilde{\omega}$ is the phase error
- Use the real part as the physical relevant part of a complex expression

5.2 Deriving an exact numerical solution; calculations (1)

$$u^n = A^n = \exp(\tilde{\omega}\Delta t n) = \exp(\tilde{\omega}t) = \cos(\tilde{\omega}t) + i\sin(\tilde{\omega}t)$$
.

$$[D_t D_t u]^n = \frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2}$$

$$= I \frac{A^{n+1} - 2A^n + A^{n-1}}{\Delta t^2}$$

$$= I \frac{\exp(i\tilde{\omega}(t + \Delta t)) - 2\exp(i\tilde{\omega}t) + \exp(i\tilde{\omega}(t - \Delta t))}{\Delta t^2}$$

$$= I \exp(i\tilde{\omega}t) \frac{1}{\Delta t^2} (\exp(i\tilde{\omega}(\Delta t)) + \exp(i\tilde{\omega}(-\Delta t)) - 2)$$

$$= I \exp(i\tilde{\omega}t) \frac{2}{\Delta t^2} (\cosh(i\tilde{\omega}\Delta t) - 1)$$

$$= I \exp(i\tilde{\omega}t) \frac{2}{\Delta t^2} (\cos(\tilde{\omega}\Delta t) - 1)$$

$$= -I \exp(i\tilde{\omega}t) \frac{4}{\Delta t^2} \sin^2(\frac{\tilde{\omega}\Delta t}{2})$$

5.3 Deriving an exact numerical; calculations (2)

The scheme (6) with $u^n = I \exp(i\omega \tilde{\Delta}t n)$ inserted gives

$$-I\exp\left(i\tilde{\omega}t\right)\frac{4}{\Delta t^2}\sin^2\left(\frac{\tilde{\omega}\Delta t}{2}\right) + \omega^2 I\exp\left(i\tilde{\omega}t\right) = 0,\tag{13}$$

which after dividing by $Io \exp(i\tilde{\omega}t)$ results in

$$\frac{4}{\Delta t^2} \sin^2(\frac{\tilde{\omega}\Delta t}{2}) = \omega^2. \tag{14}$$

Solve for $\tilde{\omega}$:

$$\tilde{\omega} = \pm \frac{2}{\Delta t} \sin^{-1} \left(\frac{\omega \Delta t}{2} \right) \,. \tag{15}$$

- Phase error because $\tilde{\omega} \neq \omega$.
- But how good is the approximation $\tilde{\omega}$ to ω ?

5.4 Polynomial approximation of the phase error

Taylor series expansion for small Δt gives a formula that is easier to understand:

```
>>> from sympy import *
>>> dt, w = symbols('dt w')
>>> w_tilde = asin(w*dt/2).series(dt, 0, 4)*2/dt
>>> print w_tilde
(dt*w + dt**3*w**3/24 + O(dt**4))/dt # observe final /dt
```

$$\tilde{\omega} = \omega \left(1 + \frac{1}{24} \omega^2 \Delta t^2 \right) + \mathcal{O}(\Delta t^3). \tag{16}$$

The numerical frequency is too large (to fast oscillations).

5.5 Plot of the phase error

Recommendation: 25-30 points per period.

5.6 Exact discrete solution

$$u^n = I\cos(\tilde{\omega}n\Delta t), \quad \tilde{\omega} = \frac{2}{\Delta t}\sin^{-1}\left(\frac{\omega\Delta t}{2}\right).$$
 (17)

The error mesh function,

$$e^n = u_e(t_n) - u^n = I\cos(\omega n\Delta t) - I\cos(\tilde{\omega}n\Delta t)$$

is ideal for verification and analysis.

5.7 Convergence of the numerical scheme

Can easily show *convergence*:

$$e^n \to 0$$
 as $\Delta t \to 0$,

because

$$\lim_{\Delta t \to 0} \tilde{\omega} = \lim_{\Delta t \to 0} \frac{2}{\Delta t} \sin^{-1} \left(\frac{\omega \Delta t}{2} \right) = \omega,$$

by L'Hopital's rule or simply asking (2/x)*asin(w*x/2) as x->0 in Wolfra-mAlpha⁶.

5.8 Stability

Observations:

- Numerical solution has constant amplitude (desired!), but phase error.
- Constant amplitude requires $\sin^{-1}(\omega \Delta t/2)$ to be real-valued $\Rightarrow |\omega \Delta t/2| \leq 1$.
- $\sin^{-1}(x)$ is complex if |x| > 1, and then $\tilde{\omega}$ becomes complex.

What is the consequence of complex $\tilde{\omega}$?

- Set $\tilde{\omega} = \tilde{\omega}_r + i\tilde{\omega}_i$.
- Since $\sin^{-1}(x)$ has a negative* imaginary part⁷ for x > 1, $\exp(i\omega \tilde{t}) = \exp(-\tilde{\omega}_i t) \exp(i\tilde{\omega}_r t)$ leads to exponential growth $e^{-\tilde{\omega}_i t}$ when $-\tilde{\omega}_i t > 0$.
- This is *instability* because the qualitative behavior is wrong.

 $^{^{6} \}texttt{http://www.wolframalpha.com/input/?i=\%282\%2Fx\%29*asin\%28w*x\%2F2\%29+as+x-\%3E0}$

http://www.wolframalpha.com/input/?i=arcsin%28x%29%2C+x+in+%280%2C3%29

5.9 The stability criterion

Cannot tolerate growth and must therefore demand a stability criterion

$$\frac{\omega \Delta t}{2} \le 1 \quad \Rightarrow \quad \Delta t \le \frac{2}{\omega} \,. \tag{18}$$

Try $\Delta t = \frac{2}{\omega} + 9.01 \cdot 10^{-5}$ (slightly too big!):

5.10 Summary of the analysis

We can draw three important conclusions:

- 1. The key parameter in the formulas is $p = \omega \Delta t$.
 - (a) Period of oscillations: $P = 2\pi/\omega$
 - (b) Number of time steps per period: $N_P = P/\Delta t$
 - (c) $\Rightarrow p = \omega \Delta t = 2\pi/N_P \sim 1/N_P$
 - (d) The smallest possible N_P is $2 \Rightarrow p \in (0, \pi]$
- 2. For $p \leq 2$ the amplitude of u^n is constant (stable solution)
- 3. u^n has a relative phase error $\tilde{\omega}/\omega \approx 1 + \frac{1}{24}p^2$, making numerical peaks occur too early

6 Alternative schemes based on 1st-order equations

6.1 Rewriting 2nd-order ODE as system of two 1st-order ODEs

The vast collection of ODE solvers (e.g., in Odespy⁸) cannot be applied to

$$u'' + \omega^2 u = 0$$

unless we write this higher-order ODE as a system of 1st-order ODEs. Introduce an auxiliary variable v=u':

$$u' = v, (19)$$

$$v' = -\omega^2 u. (20)$$

Initial conditions: u(0) = I and v(0) = 0.

6.2 The Forward Euler scheme

We apply the Forward Euler scheme to each component equation:

$$[D_t^+ u = v]^n,$$

$$[D_t^+ v = -\omega^2 u]^n,$$

or written out,

$$u^{n+1} = u^n + \Delta t v^n, \tag{21}$$

$$v^{n+1} = v^n - \Delta t \omega^2 u^n \,. \tag{22}$$

6.3 The Backward Euler scheme

We apply the Backward Euler scheme to each component equation:

$$[D_t^- u = v]^{n+1}, (23)$$

$$[D_t^- v = -\omega u]^{n+1} \,. \tag{24}$$

Written out:

$$u^{n+1} - \Delta t v^{n+1} = u^n, (25)$$

$$v^{n+1} + \Delta t \omega^2 u^{n+1} = v^n \,. \tag{26}$$

This is a coupled 2×2 system for the new values at $t = t_{n+1}$!

⁸https://github.com/hplgit/odespy

6.4 The Crank-Nicolson scheme

$$[D_t u = \overline{v}^t]^{n + \frac{1}{2}},\tag{27}$$

$$[D_t v = -\omega \overline{u}^t]^{n + \frac{1}{2}}. (28)$$

The result is also a coupled system:

$$u^{n+1} - \frac{1}{2}\Delta t v^{n+1} = u^n + \frac{1}{2}\Delta t v^n,$$
 (29)

$$v^{n+1} + \frac{1}{2}\Delta t\omega^2 u^{n+1} = v^n - \frac{1}{2}\Delta t\omega^2 u^n.$$
 (30)

6.5 Comparison of schemes via Odespy

Can use Odespy⁹ to compare many methods for first-order schemes:

```
import odespy
import numpy as np
def f(u, t, w=1):
   u, v = u # u is array of length 2 holding our [u, v]
   return [v, -w**2*u]
def run_solvers_and_plot(solvers, timesteps_per_period=20,
                        num_periods=1, I=1, w=2*np.pi):
   P = 2*np.pi/w # one period
   dt = P/timesteps_per_period
   Nt = num_periods*timesteps_per_period
   T = Nt*dt
    t_mesh = np.linspace(0, T, Nt+1)
   legends = []
    for solver in solvers:
       solver.set(f_kwargs={'w': w})
        solver.set_initial_condition([I, 0])
       u, t = solver.solve(t_mesh)
```

6.6 Forward and Backward Euler and Crank-Nicolson

```
solvers = [
  odespy.ForwardEuler(f),
  # Implicit methods must use Newton solver to converge
  odespy.BackwardEuler(f, nonlinear_solver='Newton'),
  odespy.CrankNicolson(f, nonlinear_solver='Newton'),
  ]
```

Two plot types:

- u(t) vs t
- Parameterized curve (u(t), v(t)) in phase space
- Exact curve is an ellipse: $(I\cos\omega t, -\omega I\sin\omega t)$, closed and periodic

 $^{^9 {\}tt https://github.com/hplgit/odespy}$

6.7 Phase plane plot of the numerical solutions

Note: CrankNicolson in Odespy leads to the name MidpointImplicit in plots.

6.8 Plain solution curves

Figure 1: Comparison of classical schemes.

6.9 Observations from the figures

- Forward Euler has growing amplitude and outward (u, v) spiral pumps energy into the system.
- Backward Euler is opposite: decreasing amplitude, inward sprial, extracts energy.
- Forward and Backward Euler are useless for vibrations.
- Crank-Nicolson (MidpointImplicit) looks much better.

6.10 Runge-Kutta methods of order 2 and 4; short time series

6.11 Runge-Kutta methods of order 2 and 4; longer time series

6.12 Crank-Nicolson; longer time series

 $({\bf Midpoint Implicit\ means\ Crank Nicolson\ in\ Odespy})$

6.13 Observations of RK and CN methods

- 4th-order Runge-Kutta is very accurate, also for large $\Delta t.$
- 2th-order Runge-Kutta is almost as bad as Forward and Backward Euler.

• Crank-Nicolson is accurate, but the amplitude is not as accurate as the difference scheme for $u'' + \omega^2 u = 0$.

6.14 The Euler-Cromer method; idea

Forward-backward discretization of the 2x2 system:

- \bullet Update u with Forward Euler
- \bullet Update v with Backward Euler, using latest u

$$[D_t^+ u = v]^n, (31)$$

$$[D_t^- v = -\omega u]^{n+1}. \tag{32}$$

6.15 The Euler-Cromer method; complete formulas

Written out:

$$u^0 = I, (33)$$

$$v^0 = 0, (34)$$

$$u^{n+1} = u^n + \Delta t v^n, \tag{35}$$

$$v^{n+1} = v^n - \Delta t \omega^2 u^{n+1} \,. \tag{36}$$

Names: Forward-backward scheme, Semi-implicit Euler method¹⁰, symplectic Euler, semi-explicit Euler, Newton-Stormer-Verlet, and Euler-Cromer.

- Forward Euler and Backward Euler have error $\mathcal{O}(\Delta t)$
- What about the overall scheme? Expect $\mathcal{O}(\Delta t)$...

6.16 Equivalence with the scheme for the second-order ODE

Goal: eliminate v^n . We have

$$v^n = v^{n-1} - \Delta t \omega^2 u^n,$$

which can be inserted in (35) to yield

$$u^{n+1} = u^n + \Delta t v^{n-1} - \Delta t^2 \omega^2 u^n.$$
 (37)

Using (35),

$$v^{n-1} = \frac{u^n - u^{n-1}}{\Delta t},$$

and when this is inserted in (37) we get

$$u^{n+1} = 2u^n - u^{n-1} - \Delta t^2 \omega^2 u^n \tag{38}$$

 $^{^{10} \}mathtt{http://en.wikipedia.org/wiki/Semi-implicit_Euler_method}$

6.17 Comparison of the treatment of initial conditions

- The Euler-Cromer scheme is nothing but the centered scheme for $u'' + \omega^2 u = 0$ (6)!
- The previous analysis of this scheme then also applies to the Euler-Cromer method!
- What about the initial conditions?

$$u' = v = 0 \quad \Rightarrow \quad v^0 = 0,$$

and (35) implies $u^{1} = u^{0}$, while (36) says $v^{1} = -\omega^{2}u^{0}$.

This $u^1 = u^0$ approximation corresponds to a first-order Forward Euler discretization of u'(0) = 0: $[D_t^+ u = 0]^0$.

6.18 A method utilizing a staggered mesh

- $\bullet\,$ The Euler-Cromer scheme uses two unsymmetric differences in a symmetric way...
- We can derive the method from a more pedagogical point of view where we use a *staggered mesh* and only centered differences

Staggered mesh:

- u is unknown at mesh points $t_0, t_1, \ldots, t_n, \ldots$
- v is unknown at mesh points $t_{1/2}, t_{3/2}, \ldots, t_{n+1/2}, \ldots$ (between the u points)

6.19 Centered differences on a staggered mesh

$$[D_t u = v]^{n + \frac{1}{2}},\tag{39}$$

$$[D_t v = -\omega u]^{n+1}. (40)$$

Written out:

$$u^{n+1} = u^n + \Delta t v^{n+\frac{1}{2}},\tag{41}$$

$$v^{n+\frac{3}{2}} = v^{n+\frac{1}{2}} - \Delta t \omega^2 u^{n+1} \,. \tag{42}$$

or shift one time level back (purely of esthetic reasons):

$$u^n = u^{n-1} + \Delta t v^{n-\frac{1}{2}},\tag{43}$$

$$v^{n+\frac{1}{2}} = v^{n-\frac{1}{2}} - \Delta t \omega^2 u^n \,. \tag{44}$$

6.20 Comparison with the scheme for the 2nd-order ODE

- Can eliminate $v^{n\pm 1/2}$ and get the centered scheme for $u'' + \omega^2 u = 0$
- What about the initial conditions? Their equivalent too!

$$u(0) = 0$$
 and $u'(0) = v(0) = 0$ give $u^0 = I$ and

$$v(0) \approx \frac{1}{2} (v^{-\frac{1}{2}} + v^{\frac{1}{2}}) = 0, \quad \Rightarrow \quad v^{-\frac{1}{2}} = -v^{\frac{1}{2}}.$$

Combined with the scheme on the staggered mesh we get

$$u^1 = u^0 - \frac{1}{2}\Delta t^2 \omega^2 I,$$

7 Generalization: damping, nonlinear spring, and external excitation

$$mu'' + f(u') + s(u) = F(t), \quad u(0) = I, \ u'(0) = V, \ t \in (0, T].$$
 (45)

Input data: m, f(u'), s(u), F(t), I, V, and T.

Typical choices of f and s:

- linear damping f(u') = bu, or
- quadratic damping f(u') = bu'|u'|
- linear spring s(u) = cu
- nonlinear spring $s(u) \sim \sin(u)$ (pendulum)

7.1 A centered scheme for linear damping

$$[mD_tD_tu + f(D_{2t}u) + s(u) = F]^n (46)$$

Written out

$$m\frac{u^{n+1} - 2u^n + u^{n-1}}{\Delta t^2} + f(\frac{u^{n+1} - u^{n-1}}{2\Delta t}) + s(u^n) = F^n$$
 (47)

Assume f(u') is linear in u' = v:

$$u^{n+1} = \left(2mu^n + (\frac{b}{2}\Delta t - m)u^{n-1} + \Delta t^2(F^n - s(u^n))\right)(m + \frac{b}{2}\Delta t)^{-1}.$$
 (48)

7.2 Initial conditions

u(0) = I, u'(0) = V:

$$[u=I]^0 \quad \Rightarrow \quad u^0 = I, \tag{49}$$

$$[D_{2t}u = V]^0 \Rightarrow u^{-1} = u^1 - 2\Delta tV$$
 (50)

End result:

$$u^{1} = u^{0} + \Delta t V + \frac{\Delta t^{2}}{2m} (-bV - s(u^{0}) + F^{0}).$$
 (51)

Same formula for u^1 as when using a centered scheme for $u'' + \omega u = 0$.

7.3 Linearization via a geometric mean approximation

- f(u') = bu'|u'| leads to a quadratic equation for u^{n+1}
- \bullet Instead of solving the quadratic equation, we use a geometric mean approximation

In general, the geometric mean approximation reads

$$(w^2)^n \approx w^{n-1/2} w^{n+1/2}$$
.

For |u'|u' at t_n :

$$[u'|u'|]^n \approx u'(t_n + \frac{1}{2})|u'(t_n - \frac{1}{2})|.$$

For u' at $t_{n\pm 1/2}$ we use centered difference:

$$u'(t_{n+1/2}) \approx [D_t u]^{n+1/2}, \quad u'(t_{n-1/2}) \approx [D_t u]^{n-1/2}.$$
 (52)

7.4 A centered scheme for quadratic damping

After some algebra:

$$u^{n+1} = (m+b|u^n - u^{n-1}|)^{-1} \times (2mu^n - mu^{n-1} + bu^n|u^n - u^{n-1}| + \Delta t^2(F^n - s(u^n))).$$
 (53)

7.5 Initial condition for quadratic damping

Simply use that u' = V in the scheme when t = 0 (n = 0):

$$[mD_tD_tu + bV|V| + s(u) = F]^0$$
(54)

which gives

$$u^{1} = u^{0} + \Delta t V + \frac{\Delta t^{2}}{2m} \left(-bV|V| - s(u^{0}) + F^{0} \right).$$
 (55)

7.6 Algorithm

- 1. $u^0 = I$
- 2. compute u^1 from (51) if linear damping or (55) if quadratic damping
- 3. for $n = 1, 2, \dots, N_t 1$:
 - (a) compute u^{n+1} from (48) if linear damping or (53) if quadratic damping

7.7 Implementation

7.8 Verification

- Constant solution $u_e = I$ (V = 0) fulfills the ODE problem and the discrete equations. Ideal for debugging!
- Linear solution $u_e = Vt + I$ fulfills the ODE problem and the discrete equations.
- Quadratic solution $u_e = bt^2 + Vt + I$ fulfills the ODE problem and the discrete equations with linear damping, but not for quadratic damping. A special discrete source term can allow u_e to also fulfill the discrete equations with quadratic damping.

Demo program 7.9

vib.py¹¹ supports input via the command line:

This results in a moving window following the function¹² on the screen.

7.10 **Euler-Cromer formulation**

We rewrite

$$mu'' + f(u') + s(u) = F(t), \quad u(0) = I, \ u'(0) = V, \ t \in (0, T],$$
 (56)

as a first-order ODE system

$$u' = v, (57)$$

$$v' = m^{-1} (F(t) - f(v) - s(u)) . (58)$$

¹¹http://tinyurl.com/jvzzcfn/vib/vib.py
12http://tinyurl.com/k3sdbuv/pub/mov-vib/vib_generalized_dt0.05/index.html

7.11 Staggered grid

- u is unknown at t_n : u^n
- v is unknown at $t_{n+1/2}$: $v^{n+\frac{1}{2}}$
- All derivatives are approximated by centered differences

$$[D_t u = v]^{n-1/2}, (59)$$

$$[D_t v = m^{-1} (F(t) - f(v) - s(u))]^n.$$
(60)

Written out,

$$\frac{u^n - u^{n-1}}{\Delta t} = v^{n - \frac{1}{2}},\tag{61}$$

$$\frac{v^{n+\frac{1}{2}} - v^{n-\frac{1}{2}}}{\Delta t} = m^{-1} \left(F^n - f(v^n) - s(u^n) \right) . \tag{62}$$

Problem: $f(v^n)$

7.12 Linear damping

With f(v) = bv, we can use an arithmetic mean for bv^n a la Crank-Nicolson schemes.

$$\begin{split} u^n &= u^{n-1} + \Delta t v^{n-\frac{1}{2}}, \\ v^{n+\frac{1}{2}} &= \left(1 + \frac{b}{2m} \Delta t\right)^{-1} \left(v^{n-\frac{1}{2}} + \Delta t m^{-1} \left(F^n - \frac{1}{2} f(v^{n-\frac{1}{2}}) - s(u^n)\right)\right). \end{split}$$

7.13 Quadratic damping

With f(v) = b|v|v, we can use a geometric mean

$$b|v^n|v^n \approx b|v^{n-\frac{1}{2}}|v^{n+\frac{1}{2}},$$

resulting in

$$u^{n} = u^{n-1} + \Delta t v^{n-\frac{1}{2}},$$

$$v^{n+\frac{1}{2}} = \left(1 + \frac{b}{m} |v^{n-1/2}| \Delta t\right)^{-1} \left(v^{n-\frac{1}{2}} + \Delta t m^{-1} \left(F^{n} - s(u^{n})\right)\right).$$

7.14 Initial conditions

$$u^0 = I, (63)$$

$$v^{\frac{1}{2}} = V - \frac{1}{2}\Delta t\omega^2 I. {(64)}$$

Index

```
frequency (of oscillations), 1

Hz (unit), 1

period (of oscillations), 1

stability criterion, 10

staggered Euler-Cromer scheme, 17

staggered mesh, 17
```