MAT-INF4310: Mandatory assignment #2, autumn 2017

To be handed in by Sepember 28., 14:30

You must hand in commented scripts which actually compile and work. You must also use "Devilry".

Exercise 1.

a) Implement Gaussian elimination, Gaussian elimination with pivoting and Householder triangulation to solve an equation Ax = b where x and b are in \mathbb{C}^n and A is a matrix in $\mathbb{C}^{n \times n}$ for $n \geq 1$. The syntax should be " $\mathbf{x} = solvertype(\mathbf{A}, \mathbf{b})$ ".

If

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \text{ and } b = \begin{pmatrix} 9 \\ 9 \\ 14 \end{pmatrix}, \text{ then } x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Test you codes on this example.

b) Test your codes on the 2×2 matrix

$$A = \begin{pmatrix} \varepsilon & 2 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

for $\varepsilon = 10^{-12}, \varepsilon = 10^{-14}, \varepsilon = 10^{-16}$. Do this by computing the relative error

$$E_{\rm rel} = \frac{\|Ax - b\|}{\|b\|}.$$

Comment on your results.

c) Since pivoting comes at "no computational cost" in the notes, we can try to check this in practice, as well a checking whether the cost of Householder triangulation scales as twice the cost of Gaussian elimination.

In order to estimate the cost of a computation, we run the computation 5 times, and record the average elapsed time for this (in Matlab, this can be done with the tic and toc commands).

Set $n = 50 \times 2^m$ for m = 0, ..., 5, let A be a random $n \times n$ matrix with integer entries in the range -1000, ..., 1000, and let x be a vector with random integer entries (in the same range as those of A) such that b = Ax is defined. Write a script which for each m records the "cost" of the three algorithms.

Do the actual execution times scale as the number of operations? Present your results in a table or a plot and discuss.