SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

RIEŠENIE PREURČENÉHO SYSTÉMU ROVNÍC METÓDOU NAJMENŠÍCH ŠTVORCOV (REKURZÍVNE METÓDY)

ZADANIE

2023 Bc. Maroš Kocúr

Obsah

Ú۱	vod	1
1	Úlohy	2
2	Riešenie	3
3	Odmocninová rekurzivná metóda najmenších štvorcov bez zabúdania	4
4	Algoritmus REFIL bez zabúdania	5
Zá	iver	7

Úvod

Cieľ om zadania je otestovať iteračná metódy odhadov parametrov, bez použitia inverzii matíc pre zjednodušenie výpočtov.

1 Úlohy

Predpokladajme sústavu rovníc v tvare:

$$(x_{w+1} - x_w)\theta_1 + (x_{w+2} - x_w)\theta_2 + \dots + x_{w+n+1} - x_w w = 0$$
(1.1)

pre w=0,1,..., N-n-1, čo predstavuje m = N-n rovníc o n neznámych parametroch, pričom hodnoty x_i sú dané v nasledovnej tabul'ke:

i	0	1	2	3	4	5	6	7	8	9	10
x_i	0	2.7	6.8	9	9.2	8.6	8	7.8	7.8	7.9	8

Dostaneme teda preurčený systém rovníc v tvare

$$H\hat{\theta} - y = e \tag{1.2}$$

Minimálny počet potrebných vzoriek pre požadované n = 3 bude N = 7, určený z podmienky

$$\hat{\pmb{\theta}} = \begin{pmatrix} \hat{\pmb{\theta}}_1 \\ \hat{\pmb{\theta}}_2 \\ \vdots \\ \hat{\pmb{\theta}}_n \end{pmatrix} \qquad \pmb{H} = \begin{pmatrix} x_1 - x_0 & x_2 - x_0 & \dots & x_n - x_0 \\ x_2 - x_1 & x_3 - x_1 & \dots & x_{n+1} - x_1 \\ \vdots & \vdots & \ddots & \vdots \\ x_{N-n} - x_{N-n-1} & x_{N-n+1} - x_{N-n-1} & \dots & x_{N-1} - x_{N-n-1} \end{pmatrix} \qquad \pmb{y} = - \begin{pmatrix} x_{n+1} - x_0 \\ x_{n+2} - x_1 \\ \vdots \\ x_N - x_{N-n-1} \end{pmatrix}$$

m = N - n > n (M rovníc, n neznámych).

- Riešte preurčený systém rovníc:
 - rekurzívnou metódou najmenších štvorcov (RMNŠ) a zabúdania, pričom uvažujte počiatočné podmienky:

$$P_0 = 10^{10} I \qquad \hat{\theta}_0^* = 0$$

odmocninovou verziou RMNŠ bez zabúdania, pričom uvažujte počiatočné podmienky:

$$G_0 = 10^{10} I \qquad \hat{\theta}_0^* = 0$$

– algoritmom REFIL bez zabúdania, pričom uvažujte počiatočné podmienky: $G_0=10^{10}I$ $\hat{\theta}_0^*=0$

– algoritmom LDFIL bez zabúdania, pričom uvažujte počiatočné podmienky: $L_0=I \qquad D_0=10^{10}I \qquad \hat{\theta}_0^*=0$

2

- Určite vektor parametrov $\hat{\theta}^*$ a hodnotu účelovej funkcie $Q(\hat{\theta}^*)$.

2 Riešenie

Zo zadania sme riešili metódy b) a c) s $x_i = x_i * 7.5$. Postupujeme výpočtom z prednášky pasivny_experimenta.pdf a priklad_rekurz_met.pdf Vytvorili sme si v programe Matlab funkcie na výpočet algoritmov RMNS.m REFIL.m a skripty na definovanie parametrov pre funkcie zad1a.m a zad1b.m, pomocov ktorých sme vypočítali parametre a overili správnosť výpočtov. Výpočty sme písomne spracovali v dokumente nižšie.

Vypočítali sme si maticu H a vektor Y pre riešenie oboch metód, ktoré vyzerajú nasledovne.

$$H = \begin{pmatrix} 20.25 & 51 & 67.5 \\ 30.75 & 47.25 & 48.75 \\ 16.5 & 18 & 13.5 \\ 1.5 & -3 & -7.5 \end{pmatrix}$$
 (2.1)

$$Y = \begin{pmatrix} -69 \\ -44.25 \\ -9 \\ 9 \end{pmatrix} \tag{2.2}$$

3 Odmocninová rekurzivná metóda najmenších štvorcov bez zabúdania

Pred začatim výpočtu pomocou ORMNS sme si zadefinovali maticu G ako jednotkovú maticu vynásobenú 10^{10} a stĺpcový vektor = 0.

Následne sme m-krát zavolali funkciu ORMNS, ktorá nám vypočítala parametre θ_k^* , G_k , e_k a Q_k . Funkcia počítala pomocou vzorcov nižšie.

$$\begin{aligned} & \mathbf{e}_{N+1} = \mathbf{y}_{N+1} - \mathbf{h}_{N+1}^{T} \hat{\mathbf{\theta}}_{N}^{*} & \mathbf{z}_{N+1} = \mathbf{G}_{N} \mathbf{h}_{N+1} \\ & \rho_{N+1} = \left(1 + \mathbf{z}_{N+1}^{T} \mathbf{z}_{N+1}\right)^{-1} & Q(\hat{\mathbf{\theta}}_{N+1}^{*}) = Q(\hat{\mathbf{\theta}}_{N}^{*}) + \rho_{N+1} \mathbf{e}_{N+1}^{2} \\ & \hat{\mathbf{\theta}}_{N+1}^{*} = \hat{\mathbf{\theta}}_{N}^{*} + \rho_{N+1} \mathbf{e}_{N+1} \mathbf{G}_{N}^{T} \mathbf{z}_{N+1} & \mathbf{G}_{N+1} = \left(\mathbf{I} - \frac{\rho_{N+1}}{1 + \sqrt{\rho_{N+1}}} \mathbf{z}_{N+1} \mathbf{z}_{N+1}^{T}\right) \mathbf{G}_{N} \end{aligned}$$

k	1	2		
$ heta_k^*$	$\begin{pmatrix} -0.1846 \\ -0.4650 \\ -0.6155 \end{pmatrix}$	$\begin{pmatrix} 0.4987 \\ -0.2360 \\ -0.9935 \end{pmatrix}$		
G_k	$10^9 * \begin{pmatrix} 9.4581 & -1.3648 & -1.8063 \\ -1.3648 & 6.5628 & -4.5492 \\ -1.8063 & -4.6592 & 3.9790 \end{pmatrix}$	$10^9 * \begin{pmatrix} 2.4082 & -3.7279 & 2.0942 \\ -3.7279 & 5.7707 & -3.2418 \\ 2.0942 & -3.2418 & 1.8211 \end{pmatrix}$		
e_k	-69	13.4047		
Q_k	$6.2915 * 10^{-21}$	$1.2915 * 10^{-20}$		

k	3	4			
	(1.6486)	(0.8408)			
θ_k^*	-2.0160	-0.7439			
	(0.0064)	(-0.7139)			
	$\begin{pmatrix} -0.1561 & 0.3061 & -0.1810 \end{pmatrix}$	$\left(\begin{array}{ccc} 0.0480 & -0.0153 & 0.0010 \end{array}\right)$			
G_k	$10^9 * $	$\begin{bmatrix} -1.3805 & 2.1055 & -1.1667 \end{bmatrix}$			
	$\left(\begin{array}{cccc} 2.7664 & -4.3808 & 2.4915 \end{array}\right)$	$\left(\begin{array}{cccc} 1.3782 & -2.1947 & 1.2537 \end{array}\right)$			
e_k	0.4319	0.5272			
Q_k	$6.7820*10^{-20}$	0.0808			

4 Algoritmus REFIL bez zabúdania

Algoritmus REFIL navrhol Václav Pertek, aby sme vedeli dosiahnuť optimálny odhad parametrov bez potreby inverzie matice. Počiatočné parametre sme nastavili rovnako ako v predošlej metóde a algoritmus nám vypočítal veličiny θ_k^* , G_k a Q_k . Vo funkcii sme použili vzorce uvedené nižšie.

$$\begin{split} \boldsymbol{\hat{\theta}_k^{\star}} &= -\frac{\boldsymbol{g}}{\gamma} & Q(\boldsymbol{\hat{\theta}_k}) = \frac{1}{\gamma^2} \\ \boldsymbol{f}_{k+1} &= \boldsymbol{G_k} \boldsymbol{z}_{k+1} \\ \boldsymbol{s}_0^2 &= \lambda^2 & \boldsymbol{s}_q^2 = \boldsymbol{s}_{q-1}^2 + \boldsymbol{f}_q^2 & q = 1, 2, \dots, k \\ \\ \boldsymbol{k}_{+1} \boldsymbol{g}_{ij} &= \frac{1}{\lambda} \frac{\boldsymbol{s}_{i-1}}{\boldsymbol{s}_i} \left({}^k \boldsymbol{g}_{ij} - \frac{\boldsymbol{f}_i}{\boldsymbol{s}_{i-1}^2} \sum_{m=j}^{i-1} \boldsymbol{f}_m \ {}^k \boldsymbol{g}_{mj} \right) \end{split}$$

k	1						
$ heta_k^*$	$\begin{pmatrix} -0.1846 \\ -0.4650 \\ -0.6155 \end{pmatrix}$						
	$\int 0.0494$	0	0	0			
G_k	$-9.2942 * 10^9$		0	0			
G_k	$-2.8636*10^9$	$-7.2118*10^9$	$6.3080*10^9$	0			
	$1.4466 * 10^9$	$3.6433*10^9$	$4.8220*10^9$	$7.8346 * 10^9$			
Q_k		1.6292 *	10^{-20}				

k		2		
$ heta_k^*$		$\begin{pmatrix} 0.498 \\ -0.423 \\ -0.993 \end{pmatrix}$	60	
	(0.0272	0	0	0
G_k	-0.1104	0.0602	0	0
G_k	$4.9073*10^9$	$-7.5965 * 10^9$	$4.2674*10^9$	0
	$\sqrt{-3.29944 * 10^9}$	$1.5589*10^9$	$6.5633*10^9$	$6.6060*10^{9}$
Q_k		2.2915 * 1	10^{-20}	

k	3					
$ heta_k^*$		0160 064				
	$\int 0.0248$	0	0	0		
G_k	-0.0854	0.0499	0	0		
G_k	3.4465 * 10	-5.4113	3.0587	0		
	$(-5.9096*10^9)$	$7.2267*10^{9}$	$-2.2906*10^9$	$3.5847 * 10^9$		
Q_k	$7.7820*10^{-20}$					

k	4					
θ_k^*						
	(0.0248	0	0	0		
G_k	-0.0820	0.0481	0	0		
$ G_k $	1.9494	-3.0410	1.7127	0		
	-2.9583	2.6173	2.5118	3.5185		
Q_k	0.8088					

Záver

Naučili sme sa pracovať s rekurzívnymi metódami odhadu parametrov. S oboma metódami sme získali rovnáke parametre odhadu, ktoré sme porovnáli s Gausovým vzťahom. S týmto porovnaním môžeme povedať, že obe metódy nás dostali ku nami žiadanému výsledku.