Page 1 sur 4

${\rm CB}\ { m N}^{\circ}5$ - ${\rm Espaces}\ {\rm préhilbertiens}\ {\rm réels}$ - ${\rm Sujet}\ 1$

EXERCICE 1

Pour $(P,Q) \in \mathbb{R}[X]$, on note

$$\varphi(P,Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

- 1. Montrer que φ est un produit scalaire sur $\mathbb{R}_2[X]$.
 - φ est clairement symétrique et linéaire par rapport à sa première composante, donc bilinéaire. Soit $P \in \mathbb{R}_2[X]$; $\varphi(P,P) = P(0)^2 + P(1)^2 + P(2)^2 \ge 0$ et $\varphi(P,P) = 0$ si et seulement si P(0) = P(1) = P(2) = 0. Comme P est de degré au plus 2 et qu'il a au moins trois racines, il est nul.

Ainsi, φ est définie positive, et c'est un produit scalaire sur $\mathbb{R}_2[X]$.

- **2.** φ est-il un produit scalaire sur $\mathbb{R}[X]$? P = X(X-1)(X-2) vérifie $\varphi(P,P) = 0$, donc φ n'est pas un produit scalaire sur $\mathbb{R}[X]$.
- **3.** On se place dans $\mathbb{R}_2[X]$ muni du produit scalaire φ . On note $F = \{P \in \mathbb{R}_2[X], P(1) = 0\}$
- **a.** Donner une base de F.

$$F = \text{Vect}\{X - 1, X(X - 1)\}.$$

b. Expliciter la projection orthogonale sur F du polynôme X^2 . On orthonormalise la base de F donnée ci-dessus en (P_1, P_2) .

$$\varphi(X-1,X-1)=2$$
; on prend $P_1=\frac{1}{\sqrt{2}}(X-1)$.

On pose
$$Q_2 = X(X-1) - \frac{1}{2}\varphi(X-1, X(X-1))(X-1) = X^2 - 2X + 1.$$

$$\varphi(Q_2, Q_2) = 2$$
; on prend $P_2 = \frac{1}{\sqrt{2}}(X^2 - 2X + 1)$.

on a:
$$p_F(X^2) = \varphi(X^2, P_1)P_1 + \varphi(X^2, P_2)P_2 = \frac{1}{2}\varphi(X^2, X - 1)(X - 1) + \frac{1}{2}\varphi(X^2, (X - 1)^2)(X - 1)^2 = 2(X - 1) + 2(X - 1)^2 = 2X^2 - 2X$$

EXERCICE 2

On se place dans $E=C^2\left([0,1],\mathbb{R}\right)$. Pour $(f,g)\in E^2,$ on note :

$$\psi(f,g) = \int_0^1 \left(f(t)g(t) + f'(t)g'(t) \right) dt$$

- 1. Montrer que ψ est un produit scalaire sur E.
 - ψ est clairement symétrique et linéaire par rapport à sa première variable (par linéarité de l'intégrale et de l'opérateur de dérivation), donc bilinéaire.

Soit
$$f \in E$$
; $\psi(f, f) = \int_0^1 \left(f(t)^2 + f'(t)^2 \right) dt \ge 0$, et $\psi(f, f) = 0 \Leftrightarrow f(t) = 0$, $\forall t \in [0, 1]$.

 ψ est donc définie positive, et c'est un produit scalaire sur E.

- **2.** On note $F = \{f \in E, f(0) = f(1) = 0\}$ et $G = \{f \in E, f'' = f\}$, et on munit E du produit scalaire ci-dessus.
- a. Montrer que F et G sont orthogonaux (on pourra utiliser une intégration par parties).

Soit
$$(f,g) \in F \times G$$
; $\psi(f,g) = \int_0^1 (f(t)g(t) + f'(t)g'(t)) dt = \int_0^1 f(t)g''(t)dt + \int_0^1 f'(t)g'(t)dt$.

Spé PT B

Dans la première intégrale, on effectue une intégration par parties, toutes les fonctions étant de classe C^1 ; on obtient:

$$\psi(f,g) = \left[f(t)g'(t)\right]_0^1 - \int_0^1 f'(t)g'(t)dt + \int_0^1 f'(t)g'(t)dt = 0 \text{ (car } f(0) = f(1) = 0).$$
 On en déduit que F et G sont orthogonaux.

b. Justifier que $f_1: t \mapsto e^t$ et $f_2: t \mapsto e^{-t}$ forment une base orthogonale de G.

G est l'ensemble des fonctions de classe C^2 solutions sur [0,1] de l'équation différentielle y''-y=0, admettant 1 et -1 comme solutions de l'équation caractéristique. C'est un sous-espace vectoriel de dimension 2, dont f_1 et f_2 sont deux vecteurs non liés, qui en forment donc une base.

$$\psi(f_1, f_2) = \int_0^1 (1 - 1) dt = 0$$
; la base (f_1, f_2) est donc orthogonale pour le produit scalaire ψ .

c. Cette base est-elle orthonormée? $\psi(f_1,f_1)=\int_0^1 2\mathrm{e}^{2t}=\mathrm{e}^2-1\neq 1 \text{ donc la base n'est pas orthonormée.}$

d. Montrer que pour tout $f \in E$, il existe $g \in G$ tel que $f - g \in F$.

Soient $f \in E$ et $g = \lambda e^t + \mu e^{-t} \in G$;

$$f - g \in F \Leftrightarrow \begin{cases} f(0) = \lambda + \mu \\ f(1) = \lambda e^{1} + \mu e^{-1} \end{cases}$$

 $f - g \in F \Leftrightarrow \begin{cases} f(0) = \lambda + \mu \\ f(1) = \lambda e^{1} + \mu e^{-1} \end{cases};$ $comme \begin{vmatrix} 1 & 1 \\ e^{1} & e^{-1} \end{vmatrix} \neq 0, \text{ ce système d'inconnues } (\lambda, \mu) \text{ admet une solution donc il existe } g \in G \text{ tel}$ que $f - q \in F$.

Que peut-on en déduire pour F et G?

Le résultat précédent donne $E \subset F + G$, l'autre inclusion étant évidente, on a E = F + G.

Comme F et G sont orthogonaux, on a de plus $F \stackrel{\perp}{\oplus} G = E$.

Spé PT B

CB N°5 - ESPACES PRÉHILBERTIENS RÉELS - SUJET 2

EXERCICE 1

Pour $(f, g) \in (C^2([0, 1], \mathbb{R}))^2$, on note :

$$\varphi(f,g) = f(0)g(0) + \int_0^1 f'(t)g'(t)dt$$

- **1.** Montrer que φ est un produit scalaire sur $E = C^2([0,1],\mathbb{R})$.
 - φ est clairement symétrique et linéaire par rapport à sa première variable (par linéarité de l'intégrale et de l'opérateur de dérivation), donc bilinéaire.

Soit
$$f \in E$$
; $\varphi(f, f) = f(0)^2 + \int_0^1 f'(t)^2 dt \ge 0$;

- de plus $\varphi(f,f) = 0 \Leftrightarrow f(0) = 0$ et f'(t) = 0, $\forall t \in [0,1] \Leftrightarrow f(t) = f(0) = 0$, $\forall t \in [0,1]$.
- φ est donc définie positive, et c'est un produit scalaire sur E.
- **2.** On note $F = \{ f \in E, f'' = f \}$
- **a.** Justifier que $f_1: t \mapsto e^t$ et $f_2: t \mapsto e^{-t}$ forment une base orthogonale de F.

F est l'ensemble des fonctions de classe C^2 solutions sur [0,1] de l'équation différentielle y''-y=0, admettant 1 et -1 comme solutions de l'équation caractéristique. C'est un sous-espace vectoriel de dimension 2, dont f_1 et f_2 sont deux vecteurs non liés, qui en forment donc une base.

$$\varphi(f_1, f_2) = 1 - \int_0^1 1 dt = 0$$
; la base (f_1, f_2) est donc orthogonale pour le produit scalaire φ .

b. Expliciter la projection orthogonale sur F pour le produit scalaire φ de la fonction $t \mapsto t^2$.

On orthonormalise la base (f_1, f_2) en normant les deux vecteurs qui sont déjà orthogonaux.

$$\varphi(f_1, f_1) = \frac{1}{2}(1 + e^2); \varphi(f_2, f_2) = \frac{1}{2}(3 - e^{-2});$$

on note
$$g_1 = \sqrt{\frac{2}{1+e^2}} f_1$$
, $g_2 = \sqrt{\frac{2}{3-e^{-2}}} f_2$, et $f: t \mapsto t^2$.

On a:
$$p_F(f) = \frac{2}{1 + e^2} \varphi(f, f_1) f_1 + \frac{2}{3 - e^{-2}} \varphi(f, f_2) f_2$$

Des intégrations par parties (toutes les fonctions étant de classe C^1), donnent :

$$\varphi(f, f_1) = \int_0^1 2t e^t dt = \left[2t e^t\right]_0^1 - 2 \int_0^1 e^t dt = 2 \text{ et}$$

$$\varphi(f, f_2) = -\int_0^1 2t e^{-t} dt = \left[2t e^{-t}\right]_0^1 - 2\int_0^1 e^{-t} dt = 4e^{-1} - 2$$

On a donc :
$$p_F(f) = \frac{4}{1 + e^2} f_1 + \frac{4(2e^{-1} - 1)}{3 - e^{-2}} f_2$$

EXERCICE 2

On note
$$E = \{ P \in \mathbb{R}_3[X], P(0) = P(1) = 0 \}.$$

1. Montrer que E est un sous-espace vectoriel de $\mathbb{R}_3[X]$, et en donner une base.

$$P = aX^{3} + bX^{2} + cX + d \in E \Leftrightarrow \begin{cases} d = 0 \\ a + b + c + d = 0 \end{cases} \Leftrightarrow \begin{cases} c = -a - b \\ d = 0 \end{cases}$$

$$\Leftrightarrow P = a(X^{3} - X) + b(X^{2} - X) \Leftrightarrow P \in \text{Vect}\{X(X^{2} - 1), X(X - 1)\}. \text{ E est donc un sous espace}$$

vectoriel de $\mathbb{R}_3[X]$ dont $(X(X^2-1), X(X-1))$ est une base.

2. Pour $(P,Q) \in E^2$, on note

$$\psi(P,Q) = -\int_0^1 (P(x)Q''(x) + P''(x)Q(x))dx$$

a. Montrer que ψ définit un produit scalaire sur E (on pourra utiliser une intégration par parties). ψ est clairement symétrique et linéaire par rapport à sa première variable (par linéarité de l'intégrale et de l'opérateur de dérivation).

Soit $P \in E$; toutes les fonctions étant de classe C^1 , une intégration par parties donne :

$$\psi(P,P) = -2\int_0^1 P(x)P''(x)\mathrm{d}x = -2\left[P(x)P'(x)\right]_0^1 + 2\int_0^1 P'(x)^2\mathrm{d}x = 2\int_0^1 P'(x)^2\mathrm{d}x \ge 0, \text{ et } \psi(P,P) = 0 \Leftrightarrow P'(x) = 0, \ \forall x \in [0,1] \Leftrightarrow P(x) = P(0) = 0, \ \forall x \in [0,1]; \ P \text{ admettant une infinité de racines, c'est le polynôme nul.}$$

Ainsi, φ est définie positive et c'est un produit scalaire sur E.

- **b.** ψ définit-il un produit scalaire sur $\mathbb{R}_3[X]$? Justifier la réponse. On a $\psi(X^0, X^0) = 0$ donc ψ n'est pas un produit scalaire sur $\mathbb{R}_3[X]$.
- c. Donner une base orthonormée de E pour le produit scalaire ψ .

On orthonormalise la base $(X(X^2-1), X(X-1))$ en (P_1, P_2) :

$$\psi(X^3 - X, X^3 - X) = -2\int_0^1 (6x^4 - 6x^2) dx = \frac{8}{5}; \text{ on prend } P_1 = \sqrt{\frac{5}{8}}(X^3 - X).$$
Soit $Q_2 = X^2 - X - \frac{5}{8}\psi(X^2 - X, X^3 - X)(X^3 - X).$

$$\psi(X^2 - X, X^3 - X) = -\int_0^1 (6x(x^2 - x) + 2(x^3 - x) dx = 1, \text{ d'où } Q_2 = \frac{5}{8}X^3 + X^2 - \frac{3}{8}X)$$

$$\psi(Q_2, Q_2) = \frac{1}{24}$$
On prend $P_2 = 2\sqrt{6}Q_2$

 $\operatorname{Sp\'e}$ PT B Page $4 \operatorname{sur} 4$