Домашня робота з диференціальної геометрії #8

Студента 2 курсу групи МП-21 Захарова Дмитра

12 квітня 2023 р.

Завдання 4.2.

Умова. Обчислити інтегральну кривину зі знаком $\int_{\gamma} k^* ds$ для наступної плоскої кривої:

 $\mathbf{f} = \begin{bmatrix} a\cosh t + c \\ b\sinh t + d \end{bmatrix}$

Розв'язок. Оскільки кривина зі знаком:

$$k^* = \frac{d\theta}{ds}$$

показує нахил вектора дотичної, то:

$$\int_{\gamma} k^* ds = \int_{\gamma} \frac{d\theta}{ds} ds = \int_{\gamma} d\theta$$

Отже нам достатньо дослідити на скільки в нас повертається наш одиничний вектор дотичної. На коефіцієнти c,d можемо не звертати уваги, бо вони лише рухають паралельними переносами криву. Тоді у гіперболи $\widetilde{f} = \begin{bmatrix} a \cosh t \\ b \sinh t \end{bmatrix}$ асимптотичними прямими є, як відомо, $y = \pm \frac{b}{a}x$. Вектор дотичний так само (можна це також явно показати) при $t \to \pm \infty$

буде наближатись до цих прямих. Таким чином, інтегральна крива це просто кут між цими прямими з мінусом (оскільки ми рухаємось за годинниковою стрілкою), тобто $-2 \arctan \frac{b}{a}$.

Відповідь. $-2 \arctan \frac{b}{a}$.

Завдання 4.3.

Умова. Обчислити інтегральну кривину зі знаком $\int_{\gamma} k^* ds$ для наступної плоскої кривої:

 $m{f} = egin{bmatrix} at \\ bt^3 \end{bmatrix}$

Розв'язок. Проаналізуємо орієнтацію одиничного вектора дотичної. Дотичний вектор $f' = \begin{bmatrix} a \\ 3bt^2 \end{bmatrix}$, отже одиничний вектор:

$$\boldsymbol{\tau} = \frac{1}{\sqrt{a^2 + 9b^2t^4}} \begin{bmatrix} a\\3bt^2 \end{bmatrix}$$

Розглянемо до чого прагне цей вектор, коли t прямує на плюс та мінус нескінченність. Перша компонента вочевидь прямує до 0, а друга містить парну функцію, тому і границі однакові і дорівнюють 1. Тому дотичний вектор однаковий при $t \to \pm \infty$, а тому інтегральна кривина дорівнює 0 (між $-\infty$ та $+\infty$ не було петель чи якихось особливих рухів).

Відповідь. 0.

Завдання 4.4.

Умова. Обчислити інтегральну кривину зі знаком $\int_{\gamma} k^* ds$ для наступної плоскої кривої:

$$\mathbf{f} = \begin{bmatrix} e^{at} \sin t \\ e^{at} \cos t \end{bmatrix}$$

Розв'язок. Як було знайдено в попередніх домашніх завданнях, кривина зі знаком:

$$k^* = -\frac{1}{\sqrt{1 + a^2}e^{at}} = -\frac{1}{\|\boldsymbol{f}'\|}$$

Тому:

$$\int_{\gamma} k^* ds = \int_{0}^{2\pi} -\frac{1}{\|\boldsymbol{f}'\|} \cdot \|\boldsymbol{f}'\| dt = -\int_{0}^{2\pi} dt = -2\pi$$

Відповідь. -2π .