Fizyka układów złożonych Błądzenie losowe

Małgorzata Krawczyk

Zadanie 1 Rozważamy błądzenie losowe w jednym wymiarze, czyli wykonujemy N kroków o równej długości wzdłuż prostej. Przyjmujemy jednakowe prawdopodobieństwo p wykonania kroku w prawo lub w lewo. Przez n_1 oznaczymy liczbę kroków wykonanych w prawo, a przez n_2 liczbę kroków wykonanych w lewo.

Odległość od punktu początkowego po N krokach dana jest wzorem:

$$d_N = n_1 - n_2 = 2n_1 - N$$

• (25p) proszę narysować pięć przykładowych zależności odległości od liczby kroków, dla $N_{max}\,=\,200$

• (25p) proszę sporządzić histogram odległości uzyskanej po N=20 krokach dla 10^6 powtórzeń i porównać z wartością oczekiwaną:

$$P_N(d) = \frac{1}{2^N} \left(\frac{N}{2} \right)$$

Zadanie 2 (25p) Rozważamy błądzenie losowe w dwóch wymiarach, na siatce kwadratowej o wymiarach $M \times M$. Przyjmujemy jednakowe prawdopodobieństwo p wykonania kroku w czterech kierunkach: lewo, prawo, góra i dół. Proszę wyznaczyć częstość odwiedzania poszczególnych węzłów dla M=10 i $N=10^6$, przy czym przyjmujemy periodyczne warunki brzegowe. Wynik proszę podać jako wartość średnią \pm odchylenie standardowe.

Zadanie 3 (25p) Rozważamy błądzenie losowe w dwóch wymiarach bez siatki. Proszę sprawdzić w jakiej odległości od początku układu współrzędnych, skąd rozpoczynamy błądzenie, się znajdujemy po N=10,100,200 krokach, wynik proszę uśrednić po $N\times 10$ powtórzeniach. Spodziewamy się $d=\sqrt{N}$, a dokładnie:

$$l\sqrt{\frac{2N}{D}}\frac{\Gamma\left(\frac{D+1}{2}\right)}{\Gamma\left(\frac{D}{2}\right)},$$

gdzie: l - długość kroku, D - wymiar.