CSM 16A

Designing Information Systems and Devices I

Week 4 Worksheet

Term: Spring 2020 Name:

Problem 1: Eigenvalues and Eigenvectors

Consider a square matrix **A** that is $n \times n$. Recall that we say λ is an eigenvalue of **A** if there exists a **non-zero** vector \vec{v} such that:

$$\mathbf{A}\vec{v} = \lambda\vec{v}$$

We call \vec{v} the eigenvector associated with λ .

1. What is the one eigenvalue and eigenvector of the matrix that you can see without solving any equations?

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

2. What are the eigenvalues and eigenvectors of the matrix

$$\mathbf{B} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

_	Week	4	Worksheet
	VVCCA	-	VVOIRSHEED

3. What are the eigenvalues of

$$\mathbf{C} = \begin{bmatrix} 2 & 0 \\ 3 & 4 \\ 1 & 3 \end{bmatrix}?$$

4. Consider a matrix that rotates a vector in \mathbb{R}^2 by 45° counterclockwise. For instance, it rotates any vector along the x-axis to orient towards the y=x line. Find its eigenvalues and corresponding eigenvectors. This matrix is given as

$$\mathbf{D} = \begin{bmatrix} \cos 45 & -\sin 45 \\ \sin 45 & \cos 45 \end{bmatrix} = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

5. What are the eigenvalues of the following matrix?

$$\mathbf{E} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

L2 4 4J
Show that a matrix and its transpose have the same eigenvalues
Hint: The determinant of a matrix is the same as the determinant of its transpose
Consider a matrix whose columns sum to one. What is one possible eigenvalue of this matrix?

Problem 2: Eigenvalue Calculations

1. Solve for the eigenvalue-eigenvector pairs for the following 2 by 2 matrix:

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$

2. Find the eigenvectors for matrix **A** given that we know that $\lambda_1 = 4, \lambda_2 = \lambda_3 = -2$ and that

$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$

3. Find the eigenvalues for matrix **A** given that we know that $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ are the

eigenvectors of \mathbf{A} , and that

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & -1 \\ 2 & 1 & -2 \\ 0 & -1 & 2 \end{bmatrix}$$

- Week 4 Worksheet

Problem 3: Mechanical PageRank

Now suppose we have a network consisting of 3 websites connected as shown below. Each of the weights on the edges represent the probability of a user taking that edge.

1.	Write down the probability transition matrix for this graph, and call it P. Can you say something about the
	eigenalues/eigenvectors of \mathbf{P}^T ? (Hint: Try to recall the properties of transition matrices).

г	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
П	
1	
1	
1	
1	
L	

2.	. We want to rank these webpages in order of important	e. But	first,	find	the ϵ	eigenvector	of I	P (corresponding
	to eigenvalue 1.								

to eigenvalue 1.		

3. Now looking at the matrix **P**, can you identify what its other eigenvalues are?

Suppose that we	e start with 90 users	s evenly distribut	ed among the we	ebsites. What is	s the steady-st	ate ni
Suppose that we of people who w	e start with 90 users vill end up at each v	s evenly distribut vebsite?	ed among the we	ebsites. What is	s the steady-st	ate n
Suppose that we for people who w	e start with 90 users ill end up at each v	s evenly distribut vebsite?	ed among the we	ebsites. What is	s the steady-st	ate nı
Suppose that we of people who w	e start with 90 users vill end up at each v	s evenly distribut vebsite?	ed among the we	ebsites. What is	s the steady-st	ate nu
Suppose that we of people who w	e start with 90 users vill end up at each v	s evenly distribut website?	ed among the we	ebsites. What is	s the steady-st	ate nu
Suppose that we of people who w	e start with 90 users vill end up at each v	s evenly distribut vebsite?	ed among the we	ebsites. What is	s the steady-st	ate nu
Suppose that wo	e start with 90 users vill end up at each v	s evenly distribut vebsite?	ed among the we	ebsites. What is	s the steady-st	ate nu
Suppose that wo	e start with 90 users vill end up at each v	s evenly distribut vebsite?	ed among the we	ebsites. What is	s the steady-st	ate nu
Suppose that wo	e start with 90 users vill end up at each v	s evenly distribut vebsite?	ed among the we	ebsites. What is	s the steady-st	ate nu
Suppose that wo	e start with 90 users vill end up at each v	s evenly distribut vebsite?	ed among the we	ebsites. What is	s the steady-st	ate nu
Suppose that wo	e start with 90 users	s evenly distribut vebsite?	ed among the we	ebsites. What is	s the steady-st	ate nu