第 11、12 章
1 、关于稳恒电流磁场的磁场强度 \bar{H} ,下列几种说法中哪个是正确的?
(A) \vec{H} 仅与传导电流有关.
(B) 若闭合曲线内没有包围传导电流,则曲线上各点的 $ar{H}$ 必为零.
(C) 若闭合曲线上各点 \bar{H} 均为零,则该曲线所包围传导电流的代数和为零.
(D) 以闭合曲线 L 为边缘的任意曲面的 \bar{H} 通量均相等. [C]
2、磁介质有三种,用相对磁导率μ _r 表征它们各自的特性时,
(A) 顺磁质 $\mu_r > 0$,抗磁质 $\mu_r < 0$,铁磁质 $\mu_r >> 1$.
(B) 顺磁质 $\mu_r > 1$,抗磁质 $\mu_r = 1$,铁磁质 $\mu_r > > 1$.
(C) 顺磁质 $\mu_r > 1$,抗磁质 $\mu_r < 1$,铁磁质 $\mu_r > > 1$.
(D) 顺磁质 $\mu_r < 0$,抗磁质 $\mu_r < 1$,铁磁质 $\mu_r > 0$.
3、一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕 10 匝. 当导
线中的电流 I 为 2.0 A 时,测得铁环内的磁感应强度的大小 B 为 1.0 T,则可求得
铁环的相对磁导率 μ_r 为(真空磁导率 $\mu_0 = 4\pi \times 10^{-7} \mathrm{T \cdot m \cdot A^{-1}}$)
(A) 7.96×10^2 (B) 3.98×10^2
(C) 1.99×10^2 (D) 63.3
4、一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡
流(感应电流)将
(A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.
(C) 对磁场不起作用. (D) 使铜板中磁场反向. []
5、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是
(A) 线圈绕自身直径轴转动,轴与磁场方向平行.
(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.
(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.
(D) 线圈平面平行于磁场并沿垂直磁场方向平移. []
6 、半径为 a 的圆线圈置于磁感强度为 \bar{B} 的均匀磁场中,线圈平面与磁场方向垂直,
线圈电阻为 R ; 当把线圈转动使其法向与 \bar{B} 的夹角 $\alpha=60^\circ$ 时,线圈中通过的电荷

与线圈面积及转动所用的时间的关系是

- (A) 与线圈面积成正比,与时间无关.
- (B) 与线圈面积成正比,与时间成正比.
- (C) 与线圈面积成反比,与时间成正比.
- (D) 与线圈面积成反比,与时间无关.

7、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变
化率相等,则不计自感时
(A) 铜环中有感应电动势, 木环中无感应电动势.
(B) 铜环中感应电动势大, 木环中感应电动势小.
(C) 铜环中感应电动势小,木环中感应电动势大.
(D) 两环中感应电动势相等. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
8、尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环
的自感时,环中
(A) 感应电动势不同.
(B) 感应电动势相同,感应电流相同.
(C) 感应电动势不同,感应电流相同.
(D) 感应电动势相同,感应电流不同. [$oldsymbol{\mathcal{D}}$]
9、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场 \bar{B} 中,另一半位于
磁场之外(在纸面的右边),磁场 \bar{B} 的方向垂直指向纸内. 欲使圆线环中产生逆
时针方向的感应电流,应使
(A) 线环向右平移. (B) 线环向上平移.
(C) 线环向左平移. (D) 磁场强度减弱. [C]
10、自感为 0.25 H 的线圈中, 当电流在(1/16) s 内由 2 A 均匀减小到零时, 线圈
中自感电动势的大小为: (A) 7.8 ×10 ⁻³ V. (B) 3.1 ×10 ⁻² V.
(A) $7.8 \times 10^{\circ} \text{ V}$. (B) $3.1 \times 10^{\circ} \text{ V}$. (C) 8.0 V . (D) 12.0 V .
11、两个相距不太远的平面圆线圈,怎样可使其互感系数近似为零?设其中一线图的想象
圈的轴线恰通过另一线圈的圆心.
 (A) 两线圈的轴线互相平行放置. (B) 两线圈并联. (C) 两线圈的轴线互相垂直放置. (D) 两线圈串联. 「 C]
12 、对于单匝线圈取自感系数的定义式为 $L=\phi/I$. 当线圈的几何形状、大小及周围联合库分布不变。且无铁磁性物质时,无线圈中的中流程度变少。则线圈的自
围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自 感系数 <i>L</i>
(A) 变大,与电流成反比关系.
(B) 变小.(C) 不变.
(C) 11×.

17、用线圈的自感系数 L 来表示载流线圈磁场能量的公式 $W_m = \frac{1}{2}LI^2$

- (A) 只适用于无限长密绕螺线管.
- (B) 只适用于单匝圆线圈.
- (C) 只适用于一个匝数很多, 且密绕的螺绕环.
- (D) 适用于自感系数 L 一定的任意线圈.

18、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为 r_1 和 r_2 . 管内 充满均匀介质,其磁导率分别为 μ_1 和 μ_2 . 设 r_1 : r_2 =1:2, μ_1 : μ_2 =2:1, 当将两 只螺线管串联在电路中通电稳定后,其自感系数之比 $L_1:L_2$ 与磁能之比 $W_{m_1}:W_{m_2}$ 分别为:

(B)
$$L_1: L_2=1:2$$
, $W_{m1}: W_{m2}=1:1$. $\sim r^{2M}$
(C) $L_1: L_2=1:2$, $W_{m1}: W_{m2}=1:2$. $\sim r^{2M}$

(C)
$$L_1: L_2=1:2$$
, $W_{m1}: W_{m2}=1:2$.
(D) $L_1: L_2=2:1$, $W_{m1}: W_{m2}=2:1$.

19、真空中一根无限长直细导线上通电流 I,则距导线垂直距离为 a 的空间某点 处的磁能密度为

(A)
$$\frac{1}{2}\mu_0(\frac{\mu_0 I}{2\pi a})^2$$
 (B) $\frac{1}{2\mu_0}(\frac{\mu_0 I}{2\pi a})^2$

(C)
$$\frac{1}{2} \left(\frac{2\pi a}{\mu_0 I}\right)^2$$
 (D) $\frac{1}{2\mu_0} \left(\frac{\mu_0 I}{2a}\right)^2$

20、两根很长的平行直导线, 其间距离为 a, 与电源组成闭合回路, 已知导线上 的电流为I,在保持I不变的情况下,若将导线间的距离增大,则空间的

- (A) 总磁能将增大.
- (B) 总磁能将减少.
- (C) 总磁能将保持不变. (D) 总磁能的变化不能确定.

 C_1

答案:

C C B B B/A D D C C/C C D C C/C D C B A