

SÉANCE 2 - ANALYSE DES DONNÉES GPS

Partie 1 : Interprétation de la trame d'un GPS

PRÉAMBULE

Le but de cette partie est d'apprendre à interpréter les données géographiques à partir d'un signal GPS reçu (appelé trame GPGGA) par un appareil situé au sol.

EXEMPLE

Un recepteur GPS reçoit le type de signal suivant :

\$GPGGA,064036.289,4836.5375,N,00740.9373,E,1,04,3.2,200.2,M,,,,0000*0E

Comment interpréter ce signal?

\$GPGGA Type de trame (ici trame GPS)

064036.289 Trame envoyée à 06h 40m 36,289s (heure UTC) 4836.5375,N Latitude : 48°36,5375' = 48,608958° Nord 00740.9373,E Longitude : 7°40.9373' = 7,682288° Est

Type de positionnement (1 signifie positionnement GPS)
Nombre de satellites utilisés pour calculer les coordonnées
Précision horizontale ou HDOP (Horizontal dilution of precision)

200.2,M Altitude 200,2 mètres

EXERCICE

1. Votre récepteur GPS capte la trame suivante :

\$GPGGA,113239.512,4545.47208,N,0449.93164,W,1,8,0.6,3.4,155.3,M,,,*4A"

- a) Analyser cette trame pour déterminer les paramètres suivants :
 - latitude :
 - longitude:
 - latitude:
 - heure d'émission de la trame :
 - nombre de satellites utilisés :
- 2. a) Ouvrir un navigateur et aller sur https://www.geoportail.gouv.fr
 - b) Dans le champ de recherche, cliquer sur + pour accéder à la recherche avancée.
 - c) Faire défiler le menu déroulant sur "Coordonnées ".
 - d) Saisir les coordonnées précédentes afin de découvrir votre position.

BUT DE CETTE PARTIE

Dans cette partie, nous allons coder le travail précédent en Python

EXERCICE

- 1. Lancer Thonny
- 2. Créer un chaine de caractère regroupant la trame reçue par le boitier GPS :

```
trame = "$GPGGA, 113239.512, 4545.47208, N, 0449.93164, W, 1, 8, 0.6, 3.4, 155.3, M, , , *4A"
```

3. Créer une liste en découpant la trame à chaque virgule :

```
liste = trame.split(',')
```

- 4. Désormais liste[0] contient \$GPGGA, liste[1] contient 113239.512, liste[2] contient 4545.47208, etc.
 - a) Saisir la fonction suivante afin de déterminer la latitude d'une liste GPS

- b) Exécuter ce programme puis le tester en rajoutant, au choix :
 - soit dans le programme, la ligne :

```
print(latitude(liste))
```

— soit dans le Shell, la ligne :

```
>>> latitude(liste)
```

c) Effectuer le même travail pour la longitude :

```
def longitude(liste):
    # fonction à compléter
```

5. a) A partir de votre programme, déterminer et afficher les coordonnées GPS relatives à la trame suivante relevée par un boitier GPS :

\$GPGGA,071512.34,4851.1791,N,0220.9959,W,1,4,0.6,3.4,62.3,M,,,*0B

b) Où se situe l'appareil?

```
Shell >>> trame
'$GPGGA,113239.512,4545.47208,N,0449.93164,W,1,8,0.6,3.4,155.3,M,,,*4A'
>>> liste
['$GPGGA', '113239.512', '4545.47208', 'N', '0449.93164', 'W', '1', '8',
'0.6', '3.4', '155.3', 'M', '', '', '*4A']
>>> longitude(liste)
4.832194
>>> latitude(liste)
45.757867999999995
```

