Шифрование гаммированием

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Гонсалес Ананина Луис Антонио, 1032175329

Группа: НФИмд-02-21

Преподаватель: д-р.ф.-м.н., проф. Кулябов Дмитрий Сергеевич

27 ноября, 2021, Москва

Цели и задачи

Цель лабораторной работы

Цель данной лабораторной работы- изучить теорию и реализовать алгоритм шифрования гаммированием с конечной гаммой.

Выполнение лабораторной

работы

Выполнение лабораторной работы

Шифры гаммирования (аддитивные шифры) являются самыми эффективными с точки зрения стойкости и скорости преобразований. Для зашифрования и дешифрования используются элементарные арифметические операции – открытое/зашифрованное сообщение и гамма, представленные в числовом виде, складываются друг с другом по модулю (mod). Напомним, что результатом сложения двух целых чисел по модулю является остаток от деления (например, $5+10 \mod 4 = 15 \mod$ 4 = 3).

В шифрах гаммирования может использоваться сложение по модулю N (общий случай) и по модулю 2 (частный случай, ориентированный на программно-аппаратную реализацию).

3/8

Выполнение лабораторной работы 2

Α	Б	В	Γ	Д	Е	Ë	Ж	3	И	Й	К	Л	Μ	Н	0	П	Р	С	Т	У	Φ	Χ	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

Figure 1: Таблица

Например, для шифрования используется русский алфавит (N = 33), открытое сообщение – «АБРАМОВ», гамма – «ЖУРИХИН». При замене символов на числа буква А будет представлена как 0, Б – 1, ..., Я – 32. Результат шифрования показан в следующей таблице [@Gamma].

	открытого	Α	Б	Р	Α	М	0	В
С	сообщения, Р _і	0	1	17	0	13	15	2
И М	FORMUL K.	Ж	У	Р	И	Χ	И	Н
В	гаммы, К _і	7	20	17	9	22	9	14

Результат выполнения работы 1

```
In [21]: alpha=[chr(i) for i in range(1072,1072+34) if i!=1104]
         alphabet=alpha[:6]+[alpha[-1]]+alpha[6:-1]
         alpha
Out[21]: ['a',
```

Figure 3: Код

Результат выполнения работы 2

```
In [22]: index={v:k+1 for k,v in enumerate(alphabet)}
Out[22]: {'a': 1.
           '6': 2,
           'B': 3,
           'д': 5,
           'e': 6,
           'ë': 7,
           'x': 8.
           's': 9,
           'и': 10,
           'й': 11,
           'K': 12.
           'л': 13,
           'M': 14,
           'H': 15.
           'o': 16.
           'n': 17,
           'p': 18,
           'c': 19.
           'T': 20.
           'y': 21,
           'φ': 22,
           'x': 23.
           'ц': 24.
           '4': 25,
           'ш': 26,
           'ш': 27.
           'ъ': 28.
           'ы': 29,
           'ь': 30,
           '9': 31.
           'ю': 32,
           's': 33}
```

Figure 4: Код1

Результат выполнения работы 3

```
'a': 33}
In [30]: def gamma(message,password,m):
             message=[index[i] for i in message.lower()]
             password=[index[i] for i in password.lower()]
             print("Message: ",message)
             print("Password: ", password)
             gamma message-[]
             for idx,char in enumerate(message):
                 cod= char + password[idx%len(password)]%m
                 gamma message +=[cod]
             text gamma= ''.join([alphabet[i-1] for i in gamma message]).upper()
             return gamma message, text gamma
In [35]: gamma message= gamma('приказ','гамма',33)
         Message: [17, 18, 10, 12, 1, 9]
         Password: [4, 1, 14, 14, 1]
In [36]: gamma_message
Out[36]: ([21, 19, 24, 26, 2, 13], 'УСЦШБЛ')
```

Figure 5: Код2

Выводы

Выводы

В ходе данной лабораторной работы была изучена теория и реализовал алгоритм шифрования гаммированием с конечной гаммой.