

Home

Library

Regression Final Project:

Spotify vs. Apple Songs in Playlist!

Sashwath Chetlur, Matthew Rothman, Kayla Ventura, Tiffany Xu

Overview 01

Goal is to use dataset to create 2 regression models

Data

Involves different attributes that comprise a song

Models 03

> Predicting & comparing the amount of playlists a song will appear in based on attributes

Results

Comparison of Apple vs. Spotify models

Questions / Goals

- **Popularity**
 - What factors make a song appear more in number of Spotify playlists? Apple playlists?
- Spotify
 - Create one MLR model with the predictor being #_in_spotify_playlists
- **Apple**
 - Create one MLR model with the predictor being #_in_apple_playlists

Bias / Issues in Data

Genre

Disproportionate

Observations per genre are disproportionate

Streams

Missing Information

Total streams are only listed for Spotifu

Playlist

Disproportionate

There are a disproportionate number of Spotify vs Apple users/playlists

Home

Library

Dataset & Cleaning

Original Dataset

- Top Spotify Songs (kaggle.com)
- Contains list of popular songs for spotify and apple
- 953 Observations
- Original 24 columns

Data Cleaning

- Manually added a feature "genre" to each observation
- Removed all observations with null values and features that were not wanted
- Remaining observations = 804
- Remaining columns = 14

Regressors: Categorical

Categorical: What type of genre the song is

Key

Categorical: The note of the song

Mode

Categorical: Major or Minor

Regressors: Numerical

Numerical: Beats per minute

Valence

Numerical: The musical positivity of the song

Danceability

Numerical: How danceable the song is

Energy

Numerical: How upbeat the song is

Acousticness

Numerical: Measure of how acoustic the song is

Instrumentalness

Numerical: Measure of how instrumental the song is

Spotify Vs Apple: Genre Boxplot

Spotify Vs Apple: Key Boxplot

Spotify vs Apple : Mode Boxplot

Boxplot Summary

- In both Apple and Spotify, the pop genre had the most outliers
- Between the two streaming services the concentration of genre observations varied greatly
- Comparing the observations of key between the streaming services shows a consistent distribution for C#, but other keys have a high variability in both Spotify and Apple
- Comparing the major and minor modes, major and minor in Spotify has similar concentration of points while Apple has a wider distribution for major
- We decided to keep all categorical variables because of the variability between each regressor

Spotify: Backward Model

```
call:
lm(formula = in_spotify_playlists ~ genre + energy, data = data)
Residuals:
          10 Median
-20938 -3603 -1416
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                             2868.26 -0.007 0.994437
(Intercept)
genreBollywood
                 -3356.41
                            3760.28 -0.893 0.372349
                 -3144.54
genreCorrido
                            4119.00 -0.763 0.445441
genrecountry
                 -2633.11
                            3348.34 -0.786 0.431875
genreedm
                  4722.99
                            3262.62 1.448 0.148128
genrefunk
                 -2229.73
                            3469.26 -0.643 0.520600
                  1601.69
                            2800.52
                                      0.572 0.567537
genrehip hop
genreindie
                  3733.22
                            3011.17 1.240 0.215425
                 -2868.64
                            2845.88 -1.008 0.313767
genrek-Pop
genrek-rap
                 -3189.85
                            4119.10 -0.774 0.438925
                  7696.46
                            4440.37 1.733 0.083438
genrelounge
genrepop
                  3152.88
                             2691.58 1.171 0.241799
                   206.70
                            3053.46
                                      0.068 0.946046
genreR&B
                  2205.01
                            2744.22
                                      0.804 0.421924
genrerap
genrereggaeton
                 -1466.43
                            2798.28 -0.524 0.600394
genrerock
                 18896.60
                            2943.80
                                      6.419 2.38e-10 ***
                 -3309.37
                            4125.48 -0.802 0.422693
genresertanejo
                 -2254.09
genresierreno
                            4411.32 -0.511 0.609509
                 14742.01
genresoul
                                     3.341 0.000873 ***
genretrap
                  -701.10
                            2817.30 -0.249 0.803538
genreUrban Latino -781.87
                             3070.83 -0.255 0.799089
                              16.63 3.118 0.001889 **
energy
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
s: 7034 on 782 degrees of freedom
Multiple R-squared: 0.2648.
Adjusted R-squared: 0.2451
F-statistic: 13.41 on 21 and 782 DF. p-value: < 2.2e-16
```

Alpha: 0.05

Interpretation

- $Y = -20.00 \pm genrecoeffx_1 + 51.85x_2$
- Genre is the first regressor added, with energy added subsequently
- Energy has a low p-value (0.001889), which suggests that it is statistically significant
- The F-statistic (13.41) suggests that the model's predictors collectively have a significant effect on the dependent variable
- R² value is one of the higher model options

Spotify: Model Plots

- Light-tailed distribution
- We have more extreme values than would be expected of a normal distribution
- There are not any leverage points according to the Residuals Vs. Leverage plot.

Apple: Backward Model

```
call:
lm(formula = in_apple_playlists ~ genre + bpm + danceability +
    energy, data = data1)
Residuals:
            10 Median
-147.44 -43.11
               -18.91 15.28 560.91
coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                 -12.1194
                             38.5895 -0.314 0.75356
(Intercept)
genreBollywood
                 -77.5005
                            43.7986 -1.769 0.07721 .
genreCorrido
                 -88.8685
                            48.2114 -1.843 0.06566 .
                 -64.0704
                            39.2260 -1.633 0.10280
genrecountry
genreedm
                  46.9947
                            38.0716 1.234 0.21743
genrefunk
                 -73.8543
                            40.5913 -1.819 0.06922
genrehip hop
                 -26.4415
                            32.7012 -0.809 0.41900
genreindie
                 -14.3762
                            35.3226 -0.407 0.68412
                 -68.8622
                            33.2267 -2.072 0.03855
genrek-Pop
genrek-rap
                 -80.5834
                            48.0163 -1.678 0.09370
genrelounge
                  30,6312
                             51.8840
                                     0.590 0.55511
                  14.7070
                             31,4707
                                      0.467
genrepop
genreR&B
                 -26, 2833
                            35.7037 -0.736
genrerap
                 -38.9141
                             32.0292 -1.215 0.22475
genrereggaeton
                 -56.9888
genrerock
                  56.6562
                             34,4987
                                            0.10094
genresertanejo
                 -81.9132
                             48.1904 -1.700
                                             0.08957
genresierreno
                 -75.5975
                             51.5334 -1.467
                                            0.14279
aenresoul
                  72.9664
                             51.4257
                                     1.419 0.15634
genretrap
                 -48.0112
                             32.8944 -1.460
                                            0.14482
genreUrban Latino -51,2284
                             35.8521 -1.429 0.15344
                   0.2329
                             0.1060
                                     2.197 0.02834 *
danceability
                   0.5619
                             0.2234
                                      2.515 0.01210 *
energy
                   0.5072
                             0.1952
                                     2.598 0.00955 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
s: 81.92 on 780 degrees of freedom
Multiple R-squared: 0.1622.
Adjusted R-squared: 0.1375
F-statistic: 6.565 on 23 and 780 DF. p-value: < 2.2e-16
```

Alpha = 0.05

Interpretation

- $Y = -12.1194 \pm genrecoeffx_1 + 0.2329x_2$ $+0.5619x_3 + 0.5072x_4$
- Genre is the first regressor added, with BPM, danceability, and energy added subsequently
- The F-statistic (6.565) suggests that the model's predictors collectively have a significant effect on the dependent variable
- Energy has the lowest p-value (0.00955), which suggests that it is statistically significant
- R² value is one of the higher model options

Apple: Model Plots

- Light Right Tail Distribution
- No leverage points -all points far from Cook's D
- Distribution shows more extreme values than a normal distribution

Comparing the Two Models

- Spotify only deemed two regressors as significant for the prediction of amount of playlists a song will appear in
- Apple picked four regressors that were significant to our predictor
- Both step functions deemed genre the most significant, adding that regressor first to the model
- While energy was added in both models bpm and danceability were deemed more significant in the model for Apple playlists
- Overall the Spotify model deemed the only necessary regressors to be energy and genre while the Apple model selected genre, bpm, danceability and energy

Final Interpretation

- H_0 : All β_i are = 0
- H_1 : At least one $\beta_i \neq 0$
- Both backward models for Spotify and Apple have a statistically significant F-statistic, which suggest that all of the predictors collectively have a significant effect on the dependent variable (in_spotify_playlists & in_apple_plaulists)
- The p-values for both the Spotify and Apple backward models are 2.2e-16, which is very close to 0. This indicates an extremely high level of significance.
- Final: As both the p-values are 2.2e-16, which is less than the alpha of 0.05, we reject the null hypothesis, and conclude that models are both statistically significant.

Home

Library

Regression Final Project

Thanks!

Do you have any questions?

Sashwath Chetlur, Matthew Rothman, Kayla Ventura, Tiffany Xu

Library

Appendix

Additional Work

All additional work done that was not included in the final presentation

Home

Library

Regression Final Project

- Unknown what the original dataset's focus was.
- Unknown how regressors like danceability were created
- Compared stepwise model selection with backward. For #_in_spotify_playlists they both ended up with the same features at a 10% and 5% level. However, when comparing with apple, the backward was more stringent at both 10% and 5%. We decided to stay with backward selection to get our final model
- There does not seem to be a transformation required for linearization
- Tried Logistic Regression model on data by converting a category into 1s and 0s
- Relationship produced a strong nonlinear relationship
- Tried a few different transformation to the model such as: sqrt and log
- None of the transformations produced a linear relationship(decided to move away from this approach)