

EXERCICE D'ORAL

ELECTROMAGNETISME

-EXERCICE 28.5-

• ENONCE :

« Oscillateurs couplés par un champ magnétique »

On considère 2 rails conducteurs parallèles horizontaux distants de L ; sur ces rails sont posés transversalement 2 barres de même masse m ; la résistance du circuit ainsi formé est notée R.

Les barres sont ramenées vers leur position d'équilibre (notées \mathcal{O}_1 et \mathcal{O}_2) par des ressorts de raideur k et il n'y a pas de frottements mécaniques.

Comme on peut le voir sur la figure ci-dessous, l'ensemble est plongé dans un champ magnétique permanent et uniforme (les phénomènes d'auto-induction seront négligés) :

- 1) Déterminer les modes propres du système ainsi formé et donner $x_1(t)$ et $x_2(t)$ dans chacun des cas possibles.
- 2) Quelles conditions initiales faut-il imposer pour obtenir l'un **ou** l'autre des modes propres ? Pour chacun des modes, comparer $x_1(t)$ et $x_2(t)$.

ELECTROMAGNETISME

EXERCICE D'ORAL

CORRIGE :

- « Oscillateurs couplés par un champ magnétique »
- 1) Equation électrique : Ici, la surface du circuit varie de manière continue ; en orientant le courant i dans le sens trigonométrique, de façon à ce que le flux de B soit positif (c'est plus facile pour les vérifications de signe par la loi de Lenz), nous pouvons donc écrire :

$$e = -\frac{d\varphi}{dt} = -B\frac{dS}{dt} = -B\frac{d[L(O_1O_2 + x_2 - x_1)]}{dt} = -BL(\frac{dx_2}{dt} - \frac{dx_1}{dt})$$

<u>Vérification</u>: si $(\frac{dx_2}{dt} - \frac{dx_1}{dt}) > 0$, alors la surface du circuit augmente, le flux (>0) augmente, la

f.e.m doit donc être négative afin de créer un champ d'auto-induction dans le sens contraire du précédent (ainsi, son flux négatif compensera l'augmentation du précédent) ; d'où :

$$e = BL(\frac{dx_1}{dt} - \frac{dx_2}{dt}) = Ri$$
 (en négligeant l'auto-inductance du circuit, en accord avec l'énoncé)

• Equations mécaniques : on applique le P.F.D à la barre repérée par x_1 , on le projette

sur
$$Ox_1$$
: $m\frac{d^2x_1}{dt^2} = -kx_1 + F_1^{Lap}$ (on peut vérifier que pour $x_1 > 0$, le ressort est contracté \Rightarrow il

tend à s'allonger \Rightarrow il exerce sur la barre de « gauche » une force <0) ; calculons $F_1^{\it Lap}$:

$$\vec{F}_1^{Lap} = \int_M^Q i dy \vec{e}_y \wedge B \vec{e}_z = -iBL \vec{e}_x = -\frac{B^2 L^2}{R} (\frac{dx_1}{dt} - \frac{dx_2}{dt}) \vec{e}_x \quad \text{(on intègre de M à Q, car le sens est trigo)}.$$

De même, on aurait : $\vec{F}_2^{Lap} = \int_P^N i dy \vec{e}_y \wedge B \vec{e}_z = +iBL \vec{e}_x = \frac{B^2 L^2}{R} (\frac{dx_1}{dt} - \frac{dx_2}{dt}) \vec{e}_x$; on a alors :

$$m\frac{d^{2}x_{1}}{dt^{2}} + \frac{B^{2}L^{2}}{R}\frac{dx_{1}}{dt} + kx_{1} - \frac{B^{2}L^{2}}{R}\frac{dx_{2}}{dt} = 0$$
 (1)
$$m\frac{d^{2}x_{2}}{dt^{2}} + \frac{B^{2}L^{2}}{R}\frac{dx_{2}}{dt} + kx_{1} - \frac{B^{2}L^{2}}{R}\frac{dx_{1}}{dt} = 0$$
 (2)

- Résolution : les grandeurs $x_1(t)$ et $x_2(t)$ sont des combinaisons linéaires de solutions particulières appelées « modes » du système ; lorsque les termes d'amortissement ou dissipatifs en $\frac{dx}{dt}$ sont nuls, les modes sont purement harmoniques et on peut leur associer des
- « pulsations propres ». Ce n'est pas le cas ici, et l'on pourrait chercher des modes de la forme $\alpha \exp(st)$, où s est à priori complexe.

En fait, pour un système de 2 équations couplées, nous utiliserons la méthode simple et « classique » où l'on pose :

$$u=x_1+x_2$$
 et: $v=x_1-x_2$; on fait la somme (1)+(2) pour obtenir:
$$m\frac{d^2u}{dt^2}+ku=0 \Rightarrow u(t)=a\cos(\omega_0t)+b\sin(\omega_0t) \quad \text{où}: \quad \boxed{\omega_0^2=k/m}$$

ELECTROMAGNETISME

EXERCICE D'ORAL

On fait ensuite la différence (1)-(2) : $m\frac{d^2v}{dt^2} + \frac{2B^2L^2}{R}\frac{dv}{dt} + kv = 0 \; ; \; \text{ on retrouve une discussion}$ également « classique » en cherchant des solutions de la forme $v(t) \sim \exp(st)$. L'équation caractéristique sera : $ms^2 + \frac{2B^2L^2}{R}s + k = 0$.

• si $\Delta' = \frac{(BL)^4}{R^2} - km > 0$: les racines sont réelles et le régime est **APERIODIQUE** de la forme :

$$R^{2}$$

$$v(t) = a \exp(s_{1}t) + b \exp(s_{2}t) \quad \text{où:} \quad s_{1} = -\frac{(BL)^{2}}{mR} + \sqrt{\frac{(BL)^{4}}{(mR)^{2}} - \frac{k}{m}} \quad \text{et:} \quad s_{2} = -\frac{(BL)^{2}}{mR} - \sqrt{\frac{(BL)^{4}}{(mR)^{2}} - \frac{k}{m}}$$

• si $\Delta' = \frac{(BL)^4}{R^2} - km < 0$: les racines sont complexes et le régime est **PSEUDO-PERIODIQUE** :

$$v(t) = \exp(-\frac{B^2 L^2}{mR}t) \times (a\cos\Omega t + b\sin\Omega t) \text{ avec: } \Omega = \omega_0 \sqrt{1 - \frac{(BL)^4}{kR^2}}$$
 (\Omega = pseudo-pulsation)

Les solutions seront données par : $x_1(t) = \frac{u(t) + v(t)}{2}$ et: $x_2(t) = \frac{u(t) - v(t)}{2}$

2) • Si l'on veut n'obtenir que le mode u(t), on constate que : $x_1(t) = x_2(t) \ \forall t$, en

particulier à t=0 \Rightarrow les conditions initiales sont : $x_1(0) = x_2(0)$ et: $\frac{dx_1}{dt}(0) = \frac{dx_2}{dt}(0)$; les 2 barres

oscillent alors **EN PHASE**, la surface du circuit et donc le flux restent constants \Rightarrow il n'y a pas de phénomènes d'induction, donc pas de dissipation d'énergie électrique dans la résistance R : il est logique d'obtenir pour ce mode une oscillation harmonique, de pulsation $\omega_0^2 = k/m$ purement mécanique (en l'absence de frottements mécaniques).

• En ce qui concerne le mode v(t), on voit que : $x_1(t) = -x_2(t) \ \forall t$; les conditions

initiales seront cette fois : $x_1(0) = -x_2(0)$ et: $\frac{dx_1}{dt}(0) = -\frac{dx_2}{dt}(0)$; les barres oscillent maintenant

EN OPPOSITION DE PHASE, et le mouvement (de type apériodique ou pseudo-périodique) finit toujours par s'amortir.

 $\mathbf{Rq}:$ dans le cas général, on remarque que les termes en $\mathbf{v}(t)$ disparaissent au bout de quelques constantes de temps \Rightarrow les 2 barres finissent par se $\mathbf{SYNCHRONISER}$; au bout du compte, on peut affirmer que ce sont les termes dissipatifs (ici, les pertes joules dues aux courants induits) qui synchronisent les oscillateurs (cette remarque a une portée générale).