به نام خدا

تاریخ آزمون: ۹۹/۹/۷ مدت آزمون: ۱۵۰ دقیقه

صفحهٔ ۱ از ۸

آزمون میان ترم اول

جبر خطی

سميرا حسين قربان

 $(a+b-c,c-d, \Upsilon a+c,a-b+d)$ را به (a,b,c,d) را به \mathbb{R}^{4} است که هر بردار مانند T تبدیلی خطی روی \mathbb{R}^{4} است که هر بردار مانند T انتخاب کنید و ماتریس نمایش T را در آن پایه بنویسید. \mathbb{R}^{4} انتخاب کنید و ماتریس نمایش T را در آن پایه بنویسید.

 T^{-1} فرض کنید T تبدیلی خطی روی \mathbb{R}^n است که هر بردار مانند (u,v,w) را به (u+v+w,u+v,u) میبرد. اثر (u,v,w) میبرد. اثر (u,v,w) را توصیف کنید و ماتریس نمایش (u+v+w,u+v,u) را در پایه استاندارد محاسبه کنید.

پاسخ.

(الف) پایهٔ استاندارد $E = \{e_1, \dots, e_{\mathsf{f}}\}$ را برای \mathbb{R}^{f} در نظر بگیرید. ماتریس نمایش T در این پایه برابر است با

(ب) ماتریس نمایش T در پایهٔ استاندارد $E = \{e_1, e_7, e_7\}$ برابر است با

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

ماتریس وارون A به روش گاوس ـ ژوردان برابر است با

$$A^{-1} = \begin{bmatrix} \circ & \circ & 1 \\ \circ & 1 & -1 \\ 1 & -1 & \circ \end{bmatrix}$$

بنابراین $\mathbb{R}^{\mathsf{T}} \longrightarrow \mathbb{R}^{\mathsf{T}}$ برداری مانند (x,y,z) را به (x,y-z,x-y) میبرد.

 $\operatorname{rank}(A) = \mathsf{Y}$ است، $\mathsf{Y} \times \mathsf{Y}$ و $\mathsf{rank}(A)$ فرض کنید A یک ماتریس $\mathsf{Y} \times \mathsf{Y}$

$$x_1 = \begin{bmatrix} -7 \\ 1 \\ \circ \\ \circ \end{bmatrix}, \quad x_7 = \begin{bmatrix} 7 \\ \circ \\ -7 \\ 1 \end{bmatrix}$$

جوابهای ax = 0 هستند.

(الف) ماتریس تحویل یافته سطری ـ پلکانی R را برای ماتریس A به دست بیاورید.

صفحهٔ ۲ از ۸

به نام خدا

آزمون میان ترم اول

جبر خطی

سميرا حسين قربان

(ب) بُعد فضاهای بنیادی $C(A^\intercal)$ ، N(A) و $C(A^\intercal)$ را حساب کنید.

پاسخ.

(الف) بردارهای x_1 و x_2 مستقل خطیاند؛ بنابراین ماتریس سطری ـ پلکانی x_1 متناظر با x_2 مستون محوری دارد. ابتدا فرض کنید اولین ستون محوری آن ستون اول است؛ پس

$$R = \begin{bmatrix} 1 & a & d & g \\ 0 & b & e & h \\ 0 & c & f & i \end{bmatrix}, \qquad Rx_1 = 0.$$

و در نتیجه

$$Rx_1 = \begin{bmatrix} -7 + a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \circ \\ \circ \\ \circ \end{bmatrix}.$$

پس ۲ $=b=\circ$ و و منابراین

$$R = \begin{bmatrix} \mathbf{1} & \mathbf{Y} & d & g \\ \mathbf{0} & \mathbf{0} & e & h \\ \mathbf{0} & \mathbf{0} & f & i \end{bmatrix}.$$

پس ستون دوم نمی تواند محوری باشد و دومین ستون محوری ستون سوم است. لذا

$$R = \begin{bmatrix} \mathbf{1} & \mathbf{Y} & \circ & g \\ \circ & \circ & \mathbf{1} & h \\ \circ & \circ & \circ & i \end{bmatrix}.$$

، $Rx_7 = 0$ استفاده از

$$R = \begin{bmatrix} \mathbf{Y} + g \\ -\mathbf{Y} + h \\ i \end{bmatrix} = \begin{bmatrix} \circ \\ \circ \\ \circ \end{bmatrix},$$

پس $i=\circ$ و در نتیجه $i=\circ$ و در نتیجه

$$R = \begin{bmatrix} 1 & 7 & \circ & -7 \\ \circ & \circ & 1 & 7 \\ \circ & \circ & \circ & \circ \end{bmatrix}.$$

از طرفی چون $\dim(N(A)) = \mathsf{Y} \cdot R$ از طرفی چون

$$\dim(C(A^{\mathsf{T}})) = \dim(C(A))$$

صفحهٔ ۳ از ۸

به نام خدا

آزمون میان ترم اول

جبر خطی

سميرا حسين قربان

9

$$\dim N(A^{\mathsf{T}}) + \dim C(A^{\mathsf{T}}) = \mathsf{T}$$

$$\dim N(A^{\intercal}) = ۱$$
باید

۳. فرض کنید

 $C = \begin{bmatrix} A & \mathsf{Y}A \end{bmatrix}$.

فضای پوچ ماتریسهای B ، A و C را پیدا کنید.

پاسخ.

(الف) فرض کنید
$$x \neq 0$$
 ، $(A + I\lambda)x = 0$ ؛ بنابراین

$$\begin{cases} (1-\lambda)x_1 + x_7 = \circ \\ -\Delta x_1 + (Y-\lambda)x_7 = \circ \end{cases}$$

$$\Delta+(1-\lambda)(\mathsf{V}-\lambda)=0$$
و در نتیجه $x_1\neq 0$ در نتیجه $x_1\neq 0$ در نتیجه $x_1\neq 0$. اگر $x_1\neq 0$ آنگاه $x_1\neq 0$ پس باید $x_1\neq 0$ در نتیجه $x_1\neq 0$. در نتیجه ماتریس $x_1\neq 0$ به ازای $x_1\neq 0$ وارونپذیر است. $x_1\neq 0$ یا $x_1\neq 0$ در نتیجه ماتریس $x_1\neq 0$ به ازای $x_1\neq 0$ به ازای $x_1\neq 0$ وارونپذیر است.

$$($$
ب $)$ از حل دستگاه متناظر با $x=\circ$ بهسادگی بهدست می آید که $x=\circ$ پس $x=\circ$ بی میدانیم که $x=\circ$

$$rank(N(B)) + rank(C(B)) =$$

و
$$\operatorname{rank}(N(B)) = \{\circ\}$$
 ماتریس سطری ـ پلکانی $\operatorname{rank}(N(B)) = \{\circ\}$ و در نتیجه $\operatorname{rank}(N(B)) = \{\circ\}$ ماتریس سطری ـ پلکانی $\operatorname{rank}(N(B)) = \{\circ\}$

$$C = \begin{bmatrix} 1 & 1 & 7 & 7 \\ -\Delta & Y & -1 & 14 \end{bmatrix}$$

است بهصورت زیر است:

$$U = \begin{bmatrix} 1 & 1 & 7 & 7 \\ 0 & 17 & 0 & 77 \end{bmatrix}.$$

صفحهٔ ۴ از ۸

به نام خدا

آزمون میان ترم اول

جبر خطی

سميرا حسين قربان

قرار دهید

$$v_1 = \begin{bmatrix} -\mathbf{Y} \\ \circ \\ \mathbf{Y} \\ \circ \end{bmatrix}$$

 $v_{\mathsf{Y}} = \begin{bmatrix} \circ \\ -\mathsf{Y} \\ \circ \end{bmatrix}$.

 $N(C) = \mathrm{span}(\{v_\mathtt{N}, v_\mathtt{T}\})$ پس $Uv_\mathtt{T} = \circ$ و $Uv_\mathtt{N} = \circ$ ون ستون اول و دوم محوری هستند،

(۵ نمره) فرض کنید
$$A^\intercal = -A$$
 و $A \in M_n(\mathbb{R})$ نشان دهید $A + A$ و ارونپذیر است.

(ب) فرض کنید
$$J,A\in M_n(\mathbb{R})$$
 و همهٔ درایههای J برابر یک است. نشان دهید $(+1)$ $\operatorname{rank}(A-J)\geq \operatorname{rank}(A)$

(ج) فرض کنید
$$M \in M_n(\mathbb{R})$$
 ماتریسی با درایههای صفر و یک است که درایههای روی قطر آن صفر است و همچنین به ازای هر $M \in M_n(\mathbb{R})$ ماتریسی با درایههای صفر و یک است که درایههای روی قطر آن صفر است و همچنین به ازای هر $M_{ij} = \circ$ ، $M_{ij} = \circ$.

ياسخ.

(الف) فرض کنید
$$x^\intercal = x^\intercal A$$
 و $x = -Ax = A^\intercal x$ یس $x = x^\intercal A$ و در نتیجه $x^\intercal x = x^\intercal A$ و در نتیجه $x^\intercal x = x^\intercal (A^\intercal x) = -(x^\intercal A)x = -x^\intercal x$

يس
$$x = x$$
. اگر

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

آنگاه $\circ = X^\intercal = X^\intercal + \cdots + X^\intercal = X^\intercal + \cdots + X^\intercal = N$ و در نتیجه I + A وارونپذیر است. $X = x + X^\intercal + \cdots + X^\intercal = X^\intercal + \cdots + X^\intercal + \cdots + X^\intercal = X^\intercal + \cdots + X^\intercal + \cdots + X^\intercal = X^\intercal + \cdots + X^\intercal + X^\intercal$

$$rank(A + B) \le rank(A) + rank(B)$$
.

$$A = (A - J) + J$$
چون

$$rank(A) = rank((A - J) + J) \le rank(A - J) + rank(J).$$

صفحهٔ ۵ از ۸

به نام خدا

آزمون ميان ترم اول

جبر خطی

سميرا حسين قربان

از طرفی ۱ $\operatorname{rank}(J) = 1$ ؛ پس

$$rank(A) - 1 \le rank(A - J).$$

(ج) با توجه به تعریف
$$M+M^\intercal=J-I$$
، از طرفی $M+M^\intercal=J-I$ از طرفی (ج) با توجه به تعریف $A=I+M-M^\intercal$ ، پس ماتریس $A=I+M-M^\intercal$ وارون پذیر است و درنتیجه بنا به قسمت (ب)،

$$n-1 \le \operatorname{rank}(A-J)$$
.

از طرفی $\operatorname{rank}(A-J) = \operatorname{rank}(M^\intercal)$ پس $(A-J) = \operatorname{rank}(M^\intercal)$ چون رتبهٔ فضای سطری و ستونی یکسان است، $\operatorname{rank}(M) = \operatorname{rank}(M)$ پس $\operatorname{rank}(M) = \operatorname{rank}(M)$

۵.(الف) فرض كنيد

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad v_7 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad v_7 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad v_8 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad v_0 = \begin{bmatrix} 7 \\ 1 \\ 0 \end{bmatrix}$$

و ($\{v_1,\dots,v_{\mathsf{d}}\}$ را حساب کنید. $V=\mathrm{span}(\{v_1,\dots,v_{\mathsf{d}}\})$ و

(ب) فرض کنید $v_1,\ldots,v_m\in\mathbb{R}^n$ بردارهای ناصفر باشند.

$$w_1 = v_1 + k_1 v_m, \ w_7 = v_7 + k_7 v_m, \ \dots, \ w_{m-1} = v_{m-1} + k_{m-1} v_m.$$

 v_m ،... ، v_1 به ازای هر $k_1,\ldots,k_{m-1}\in\mathbb{R}$ مستقل خطی هستند اگر و تنها اگر w_{m-1} ،... ، w_1 مستقل خطی باشند.

پاسخ.

(الف) v_{t} ، v_{t}

$$A = \begin{bmatrix} 1 & 0 & 1 & -1 & 7 \\ 0 & 1 & -1 & 0 & 1 \\ 1 & 0 & 7 & 7 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

صفحهٔ ۶ از ۸

به نام خدا

آزمون میان ترم اول

جبر خطی

سميرا حسين قربان

ماتریس تحویل شدهٔ سطری ـ پلکانی آن بهصورت

$$R = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

است؛ پس $V = \mathbb{R}^{\mathsf{f}}$ است.

(ب) فرض کنید w_1, \dots, w_m به ازای هر k_1, \dots, k_{m-1} حقیقی مستقل خطی است. چون w_1, \dots, w_{m-1} به ازای همه k_1, \dots, k_{m-1} ها واز جمله

$$k_1 = \cdots = k_{m-1} = \circ$$

مستقل خطیاند، پس v_1, \cdots, v_{m-1} مستقل خطیاند. پس فرض وابسته خطی بودن v_1, \cdots, v_{m-1} منجر به وجود c_1, \cdots, c_{m-1}

$$v_m = c_1 v_1 + \dots + c_{m-1} v_{m-1} \tag{1}$$

 $k_1=\frac{1}{c_1}$ که حداقل یکی از $c_1
eq 0$ ها $1\leq i\leq m-1$ ناصفر است. بدون از دست دادن کلیت فرض کنید $1\leq i\leq m-1$ قرار دهید $1\leq i\leq m-1$ و $1\leq i\leq m-1$ بنا به $1\leq i\leq m-1$

$$w_{1} = v_{1} - \frac{1}{c_{1}}v_{m}$$

$$= v_{1} - \frac{1}{c_{1}}(c_{1}v_{1} + \dots + c_{m-1}v_{m-1})$$

$$= -\frac{1}{c_{1}}(c_{1}v_{1} + \dots + c_{m-1}v_{m-1})$$

$$= -\frac{c_{1}}{c_{1}}v_{1} - \dots - \frac{c_{m-1}}{c_{1}}v_{m-1}$$

$$= -\frac{c_{1}}{c_{1}}w_{1} - \dots - \frac{c_{m-1}}{c_{1}}w_{m-1}$$

که ممکن نیست؛ پس v_1, \ldots, v_m مستقل خطیاند.

حال فرض کنید w_1,\dots,w_m مستقل خطی هستند. ثابت میکنیم که w_1,\dots,w_{m-1} نیز مستقل خطی اند.اگر v_1,\dots,v_m نیز مستقل خطی $\dots+c_{m-1}w_{m-1}$

$$c_1v_1 + \cdots + c_{m-1}v_{m-1} + (c_1k_1 + \cdots + c_{m-1}k_{m-1})v_m = 0$$

و

$$c_1 = \cdots = c_{m-1} = \circ, \quad c_1 k_1 + \cdots + c_{m-1} k_{m-1} = \circ$$

پس w_1,\ldots,w_{m-1} مستقل خطی هستند.

به نام خدا

تاریخ آزمون: ۹۹/۹/۷ مدت آزمون: ۱۵۰ دقیقه

صفحهٔ ۷ از ۸

آزمون میان ترم اول

جبر خطی

سميرا حسين قربان

(الف) نشان دهید که بهازای هر
$$\mathbb{R}^n$$
 اگر و تنها اثر و تنها اثر

(ب) نشان دهید که بهازای هر
$$\mathbb{R}^n$$
 اگر و تنها اگر $x=Ry$ اگر و تنها اگر $x=Ry$ اگر و تنها اثر و

 (π) نشان دهید که رتبهٔ ماتریس Z برابر m است و

$$MM^{\mathsf{T}} = AA^{\mathsf{T}} + ZZ^{\mathsf{T}}.$$

(۱۰ نمره)

(د) نشان دهید
$$M$$
 وارونپذیر است.

پاسخ.

(الف) به ازای $x\in\mathbb{R}^n$ اگر سطرهای X آنگاه $x\in N(A^\intercal)$ آنگاه $x\in\mathbb{R}^n$ آنگاه $x\in\mathbb{R}^n$ آنگاه $y\in\mathbb{R}^m$ آنگاه $y\in\mathbb{R}^m$ با $x\in\mathbb{R}^n$ نشان بدهیم، $x\in\mathbb{R}^m$ وجود دارد که

$$x = y_1 L_1 + \dots + y_m L_m$$

$$= \begin{bmatrix} L_1^{\mathsf{T}} & \dots & L_m^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = L^{\mathsf{T}} y.$$

حال فرض کنید که yای وجود داشته باشد که $x=L^\intercal y$ پس x ترکیب خطی از ستونهای L است، یعنی

$$x = y_1 L_1 + \dots + y_m L_m$$

 $x \in N(A^\intercal)$ و در نتیجه

(ب) اگر x = x آنگاه $x \in N(A)$ و در نتیجه x ترکیبی خطی از ستونهای $x \in N(A)$ است؛ یعنی $x \in N(A)$ و وجود دارد که $x \in N(A)$ آنگاه x = x مشابهاً، اگر x = x آنگاه x = x آنگاه x = x مشابهاً، اگر x = x آنگاه x = x آنگاه x = x آنگاه x = x مشابهاً، اگر x = x آنگاه x = x آنگاه

(ج)

$$MM^{\mathsf{T}} = (A+Z)(A^{\mathsf{T}} + Z^{\mathsf{T}})$$

$$= AA^{\mathsf{T}} + AZ^{\mathsf{T}} + ZA^{\mathsf{T}} + ZZ^{\mathsf{T}}$$

$$= AA^{\mathsf{T}} + ARL + L^{\mathsf{T}}R^{\mathsf{T}}A^{\mathsf{T}} + ZZ^{\mathsf{T}}.$$

صفحهٔ ۸ از ۸

به نام خدا

آزمون میان ترم اول

جبر خطی

سميرا حسين قربان

است، A چون ستونهای Rپایهي فضای پوچ A

$$AR = A \begin{bmatrix} R_1 & \cdots & R_m \end{bmatrix} = \begin{bmatrix} AR_1 & \cdots & AR_m = \circ \end{bmatrix}$$

 $.MM^\intercal = AA^\intercal + ZZ^\intercal$ و در نتیجه $ZA^\intercal = \circ$ یس $.AZ^\intercal = \circ$ در نتیجه

 A^\intercal د و $x \in \mathbb{R}^n$ و در نتیجه $x \in \mathbb{R}^n$ و در نتیجه $x \in \mathbb{R}^n$ طرفین تساوی را در $x \in \mathbb{R}^n$ فرض کنید، $x \in \mathbb{R}^n$ و در نتیجه $x \in \mathbb{R}^n$ و در نتیجه فضای پوچ چپ $x \in \mathbb{R}^n$ هستند، ضرب میکنیم، پس $x \in \mathbb{R}^n$ هستند،

$$A^{\mathsf{T}}L^{\mathsf{T}} = A^{\mathsf{T}} \begin{bmatrix} L_{1}^{\mathsf{T}} & \cdots & L_{N}^{\mathsf{T}} \end{bmatrix} = \begin{bmatrix} A^{\mathsf{T}}L_{1}^{\mathsf{T}} & \cdots & A_{1}^{\mathsf{T}}L_{n}^{\mathsf{T}} \end{bmatrix} = \circ$$

در نتیجه $x^\intercal A^\intercal A x = \circ$ پس $A^\intercal A x = \circ$ اگر بردار

$$Ax = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

را در نظر بگیریم، $b_i=\circ$ ، $1\leq i\leq n$ هر نظر بگیریم، $b_i=\circ$ ، $1\leq i\leq n$ و بنابراین $x^\intercal A^\intercal Ax=b_1^\intercal+\cdots+b_n^\intercal=\circ$ و بنابراین x=Ry عالی وجود دارد که $y\in\mathbb{R}$ ، x=Ry عالی وجود دارد که نظر بگیریم، حال با توجه به قسمت x=Ry و بنابراین

$$Mx = Ax + Zx = \circ + L^{\mathsf{T}}R^{\mathsf{T}}x$$

پس v=1 و v=1 و v=1، در نتیجه v=1، در نتیجه v=1. چون سطرهای v=1 پایهای برای فضای پوچ v=1 راست تشکیل میدهند، در نتیجه v=1 v=1 باز طرفی با توجه به تمرین ۱۹ v=1 v=1 بس v=1 و بهمین ترتیب، چون سطرهای v=1 نیز پایهای برای فضای پوچ v=1 تشکیل میدهند، v=1 تشکیل میدهند،

$$\operatorname{rank}(R^{\mathsf{T}}R) = \operatorname{rank}(R) = m.$$

در نتیجه $R^\intercal R$ و بنابراین $x=\circ$ و بنابراین $x=\circ$ و بنابراین $x=\circ$ و بنابراین $x=\circ$ و بهاین ترتیب $X=\circ$ و ارون پذیر است. $X=\circ$ و ارون پذیر است.