88 5/5-39 318 21/956 AM 351973 N89-29788

COMPUTATIONAL MULTIDISCIPLINARY HIERARCHIAL PARALLEL COMPUTER ARCHITECTURE DEFINED BY MECHANICS*

Keith Johnson Joe Padovan Doug Gute

University of Akron

*Work supported by NASA Lewis and monitored by Chris Chamis

GOAL

of Schemes Parallel Simulations Employing of Enabling Optimal Handling Multidisciplinary Computation Difference Develop Architecture for and Element Fluid-Solid Processor Finite

Paper Outline

- 1. Goals
- 2. Paper Overview
- Directions Philosophical
- 4. Modeling Directions
- 5. Static Poly tree
- 6. Dynamic Poly tree
- 7. Example Problems
- Reduction Interpolative ٠ ۵
- 9. Impact on Solvers
- 10. Summary
- 11. Future Directions

Philosophical Thrusts

- Processor Per Load Reduce
- Processors of Number Reduce , N
- I/O Between Processors Reduce ო
- OF Route Natural Provide for Most 4.
- Processors I/O Flow Between
- Handling Enable Optimal J.

OF

- Model Topology
- Auto of Handling matic Mesh Refinement Optimal Enable . 0
- Venants Saint Framework Implement Generalized Reduction Logical Model Provide Type

Modelling Directions

Single Level Models Simulation) (Traditional Static

•Modelling Requirements Defined Initially No Changes Occur During Computation

Refinement Model User o£ bγ Level Established First

Refinement Automatic i, O Criteria Via of Established .Multilevels Physical

Cavitation

(Inelasticity) Strain and Formation Separation Stress Plasticity Shock High Flow

田tc.

Gradients

PARALLELISM TREE POLY STATIC

Steps

- Components into Substructural Organized Static Model Convenient Н
- i, S Number Component Substructures into Optimal Each Substructural Level Partitioned 2nd りも и .
- Substructure into Partitioned 2nd Level be Themselves Various Level 3rd May The đ ო
- 40 Repeated Poly be Multilevel May Process Ŋ Yield Y The 4.

Associated Static Mode and Levels 11 Partitions of Choice

- Each Level/Partition Boundary and Internal Yield at t 0 りも Variables Balanced Number
- Bandwidths Hierarchy of ·Optimal
- I/O Between Levels ·Minimum
- て の Contingent Levels OF Choice 7
- Processor Per Load Reducing
- Processors Speed of Ο£ Given Level ·Minimize Number Enhancement đ for

PARALLELISM TREE DYNAMIC POLY

Steps

- into Convenient i,n (Optimal Components Organized Substructural Sense) Level Static First . Н
- Refined Component Physics Each Substructural Local Per as и И
- Refinements の托 Levels Optimality, Several To Maintain May Require Processors

ო

Ø Model Level Dynamic o.f Numbers Associated: of Choice

- Static Per いる Defined Level First Tree
- Contingent and Levels Partitions Additional Associated り代 Choice **C**
- Given ಥ O£ Optimality Tree Poly · Maintaining O托 Branch
- Processor Per Load · Reducing
- Processors of Number .Minimize
- Internal Between Variables Balance External .Maintain and
- Levels Between I/o -Minimize

7

OPTIMAL PARALLEL COMPUTER ARCHITECTURE FOR INTERDISCIPLINARY MECHANICS SIMULATIONS

Example Problem

Given:

Consider Sqare Region With Fine Uniform Mesh

Problem:

Define Optimal Poly Tree

 $(N_g)^2$ - Total Mesh Points

TWO LEVEL POLY TREE

K²+1 - Total Number of Processors

ASYMPTOTIC COMPUTATIONAL EFFORT:

TWO LEVEL

· STRAIGHT FULL SIMULATION

$$c_g \sim \frac{1}{4} (N_g)^4$$

· TWO LEVEL POLY TREE

$$C_0 \sim \frac{9}{4} K(N_g)^3$$

$$C_1 \sim \frac{9}{2} \left(\frac{N_g}{K}\right)^4$$

- COMMUNICATIONS

$$C_c \sim B_r(8(N_g)^2 + 8K N_g)$$

EFFORTS COMPUTATIONAL ASYMPTOTIC

TWO LEVEL

RATIO COMPARISON

 $\phi / g \sim \frac{\psi (C_0 + C_1) + \frac{\Omega}{N_C} C_C}{C_B}$ $\phi / g \sim \psi \left\{ \frac{9}{(K)^4} + 4.5 \frac{K}{N_B} \right\} + \frac{1}{N_C} \left\{ \frac{1}{(N_B)^3} + \frac{1}{(N_B)^2} \right\}$

OPTIMAL SOLUTION

GLOBALLY OPTIMIZED

† 0 $\frac{d}{dK} (R_p/g)$ 1/5 16 N (N), 2. 8

X

OPTIMAL TWO LEVEL POLY TREE

$(N_g)^2$	×	R1/g	R _{0/g}	R _{P/B}	SPEED UP	NUMBER PROCESSORS
2.5x10 ⁵	S	.045	.0144	.0594	1.7	24
2.5x10 ⁷	8	.0072	.00219	.00939	106	64
2.5x10 ⁹	13	.00117	.000315	.00148	673	169

THREE LEVEL POLY TREE

ASYMPTOTIC COMPUTATIONAL EFFORT:

THREE LEVEL

$$C_{0} = \frac{9}{4} K_{1}(N_{g})^{3}$$

$$C_{1} \sim \frac{49}{4} \frac{K_{2}(N_{g})^{3}}{(K_{1})^{3}}$$

$$C_{2} \sim \frac{9}{4} \left(\frac{N_{g}}{K_{1}K_{2}}\right)^{4}$$

$$\frac{9}{(K_1 K_2)^4} + \frac{49}{2} \frac{K_2}{(K_1)^3 N_g} + 4.5 \frac{K_1}{N_g}$$

2nd Level lst Level Oth Level LEVELS

TWO

TRENDS: SUBOPTIMAL 4.5

(8x)0 ~ X Large;

(450%) 4.5

OPTIMAL THREE LEVEL POLY TREE; N = 5000

	<u> </u>		
NO. PROCESSORS	144	255	1600
SPEED UP	170	264	110
R _{P/g}	.58x10 ⁻²	.38x10 ⁻²	.9x10 ⁻²
R2/g	.4x10 ⁻³	.18x10 ⁻³	.35x10 ⁻⁵
R1/8	.37×10 ⁻²	.91x10 ⁻³	.19x10 ⁻⁴
R _{0/g}	.18×10 ⁻²	.27x10 ⁻²	.9×10 ⁻²
K ₁ /K ₂	2/6	3/5	10/4

OPTIMAL THREE LEVEL POLY TREE; N = 50000

.18x10 ⁻³ .49x10 ⁻³
.36x10 ⁻³ .54x10 ⁻⁴
.29x10 ⁻⁶

INTERPOLATIVE REDUCTION: 3 LEVEL

MESH LEVEL	REDUCTION
Global 1 st 2 nd	T _O T ₁

LEVEL ო REDUCTION: INTERPOLATIVE

$$c_0 \sim \frac{9}{4} \, \text{K}_1 \, (\text{N}_{\text{g}})^3 \, (\text{I}_1 \text{I}_0)^3$$

$$c_1 \sim \frac{49}{4} \frac{K_2}{(K_1)^3(N_2)} (I_1)^3$$

$$c_2 \sim \frac{9}{(\kappa_1 \kappa_2)^4}$$

$$\frac{9}{(K_1K_2)^4} + \frac{49}{2} \frac{K_2}{(K_1)^3 N_g} (I_1)^3 + 4.5 \frac{K_1}{N_g} (I_1I_0)^3$$
2nd
2nd
1st

Level

Level

Level

REDUCTION EFFECTS: THREE LEVEL POLY TREE;

 $_{g} = 5000$

 $I_1 = \frac{1}{2}$, $I_0 = \frac{1}{4}$

NUMBER	PROCESSORS	225	1600
SPEED UP	REDUCED	3386	42920
SPEE	STRAIGHT	264	110
C	R _{2/g}	.18x10 ⁻³	.35×10 ⁻⁵
	R ₁ /g	1.1x10 ⁻⁴	2.3x10 ⁻⁶
	R _{0/g}	5.3×10 ⁻⁶	1.7x10 ⁻⁵
	K_1/K_2	3/5	7/01

REDUCTION EFFECTS: THREE LEVEL POLY TREE;

$$N = 50000$$

$$I_1 = \frac{1}{2}$$
, $I_0 = \frac{1}{4}$

NUMBER PROCESSORS		784	3600
SPEED UP	REDUCED	44,640	402,250
SPEE	STRAIGHT	2335	1110
	R2/8	.15×10 ⁻⁴	.7×10 ⁻⁶
R _{1/g}		6.7×10 ⁻⁶	3.6×10 ⁻⁸
R _{0/g}		7×10 ⁻⁷	1.7×10 ⁻⁶
K ₁ /K ₂		4/7	10/6

Impact on Solvers

Tree Architecture for Framework Poly Logical Static/Dynamic Ŋ Provides

- ·Direct Solvers
- ·Iterative Solvers
- Solvers (Direct/Iterative) ·Mixed
- Solver Time Scale Transient ·Multi
- Nonlinear Constrained ·Local/Global Solvers
- ·Mesh Refinement Procedures
- (Saint Venants · Interpolative Reduction
- · 由七c.

Summary

Yields Arrangement Poly .Tree The

- Given りも Number for Required 于 O Choice Processors ·Optimal Problem
- Processor Per Load · Reduces
- Procesors Between 0/1 · Reduces
- り代 Refinement Handling Optimal Automatic Mesh Enables
- for Route Natural ·Provide Most I/O Flow
- Perform Refinement t 0 Way Orderly Interpolative Mesh an · Enables

Future Directions

- Scheme 0年 Refinement Continue ٦.
- Parallel Develop Associated Solution Procedure 7
- ·Direct
- · Iterative
- ·Mixed
- ·Steady State
- · Transient

ო

System Required of Data Establish requirements Contol Based Management Overall for