

Kickoff Lecture Simulation Project 2020

Last ItS lecture of term: 31.01.20, 11:15

Everyone who wants to participate in SimProj must attend!

Agenda of this meeting:

- Some more information on the course
- Binding registration for the course

SimProj can be counted as

 Bachelor FIN : WPF FIN SMK or Wahlpflichtfach

Master Students can do team projects

- DigiEng: Interdisciplinary Team Project
- DKE: Applications, Team Project

Introduction to Simulation

Verification & Validation

Verification & Validation

It is VERY easy to make errors in a simulation project.

- Inaccurate measurements
- Incorrect assumptions
- Programming errors

Much may depend on simulation results

Money, property, environment, human life

V&V are thus important parts of a simulation study

- They are difficult and expensive
- Only few people do them!

Background Reading

Relevant sections of the book:

- **•** 10.1
- **10.2**
- **10.3**
- **•** 10.4

Reminder: Verification & Validation

Validation

- Compare the real system to the simulation model.
- Does the model represent the real system accurately?
- Building the right model

Verification

- Compare the conceptual model with its implementation.
- Does the simulation program represent the conceptual model?
- Building the model right

Reminder: Steps of a Simulation Study

Verification Methods

Both general and specific verification methods are available.

General methods of verification:

- Interactive debugging
- Let someone else check your program
- Trace values of variables
- Common sense
- Documentation
- Top-down programming
- Modular programming

(Standard methods of Software Engineering)

Verification Methods

Simulation-specific aids to verification:

- Conservation laws
- Test simple cases which have known results
- Successive refinement ("start simple!")
 (The final model should be as simple as possible, and as complex as necessary!)
- Plausibility checks
- Animation
- Sensitivity analysis

Verification Costs

Model complexity:

The cost of verification (and validation) depends superlinearly on the model complexity:

Successive Refinement

Validation

What are we trying to achieve?

■ "The model behaves exactly like the real system." (?!)

This is impossible!

(The model is always an approximation.)

Also: Validation is a destructive process.

- We can only prove that a model is wrong.
- We can never prove that it is correct.

A Practical Definition of Validation

New definition of validation:

"The decisions that are made based on the simulation results are the same as if we had been able to use results from the real system instead."

This means that validation is relative.

• We have to think about goals.

Validation

Validation and goals:

- The model depends on the goal of the project.
- Different goals lead to different models.
- A model can be valid for one goal, but not for another.
- Perform validation with respect to goals of project.
- First job: decide what the goal of the project is.

Validation

Selective validity:

- A model can be valid for one goal, but not for others.
- A model can be valid for one item of output data, but not for others.
- A model can be valid for certain assumptions, but not for others.

Two-Step Validation

A two-step approach to validation:

- 1 Develop a model with high face validity.
- 2 Determine the quality of the simulation output.

Face Validity

What does "Face Validity" mean?

Results appear reasonable to model users and experts.

Approaches:

- Use common sense (!)
- Involve experts in the calibration process
- Sensitivity analysis
- Use real data wherever possible
- Compare with theoretical results in simple cases
- Turing Test

Turing Test

Alan Turing (1950)

- A test person communicates with two others.
- One is person, the other is a computer.
- Can the test person tell the difference?

Use in simulation:

- Show system results and simulation results to experts.
- Can they tell the difference?

Sensitivity Analysis

Sensitivity analysis measures ...

the dependency of output values on input parameters

Given:

- Output value O
- Input parameter /
- Sensitivity S = dO / dI

Example: Simple queue with a fixed arrival rate

- /: Service rate
- O: Average queue length

Sensitivity Analysis

Example: Queue in the bank, all activities exponential

- O = average waiting time
- /= arrival rate (service rate = 1)

Sensitivity Analysis

Uses of sensitivity analysis:

- Verification
- Guide future data collection
- Guide the level of model detail
 (If S is small -> low model detail is sufficient)
 (If S is large -> more detailed model is needed)
- Detect critical parameters

Quality of Simulation Output

Determine the quality of the simulation output.

The question we are interested in:

Can the simulation model predict the future of the system?

Of course, this question cannot be answered.

However, sometimes a real system already exists.

We may then at least ask the question:

Does the simulation model "predict the past" of this system?

Making Comparisons

Idea:

Validate model using data from real system.

There are two common approaches:

- 1. Use historical input data.
- 2. Use input-output transformations.

"Historical Input Data" means raw, real data.

(Actual arrival times etc., not sampled distributions)

Complete historical data must be available.

(Nothing may be missing.)

Note:

- The simulator must be able to use raw input data.
- This is not always possible.

Compute mean and variance of replications:

- Assume *R* measurements Z_r , $r = 1 \dots R$
- Run simulation using h.i.d. to obtain R values W_r
- Compute $d_r = Z_r W_r$
- Compute $\overline{d} = d_r / R$
- Compute $S^2 = \frac{1}{R-1} \sum_{r=1}^{\infty} (\overline{d} d_r)^2$

Idea:

- We assume $d_r = Z_r W_r \sim N(\mu, \sigma)$
- Null hypothesis: H_0 : $\mu = 0$
- Choose level of significance α

$$t_0 = \frac{\bar{d} - \mu}{S / \sqrt{R}}$$

- Compute a confidence interval using
- If $|t_0| > t_{\alpha/2}$, t_{R-1} then reject H_0
- This is called a *paired t-test*

Input-Output Transformations

Input-Output Transformations

Idea:

- We need *R* results Z_r , r = 1...R from the real system
- Use random numbers in simulator
- Perform R replications to obtain $Y \stackrel{Y}{=} \frac{1}{R} \sum Y_r$
- Compute $S^2 = \frac{1}{R-1} \sum (Y_{int} \overline{Y})^2$
- Compute

- $t_0 = \frac{\bar{Z} \bar{Y}}{S / \sqrt{R}}$
- Compute a confidence interval using
- Is 0 inside the confidence interval?

Example from Simulation Project

Sensitivity Analysis of Intersection Model

 Development of queue length with increasing traffic volume gives a reasonable result:

Example from Simulation Project

Input-Output Transformation of queue length for all lanes

- Mean value of measured queue length (blue bar)
- Confidence intervals of simulation results (green box)

Learning Goals

Questions to test your knowledge:

- What is verification?
- What is validation in a simulation project?
- What is the Turing test?
- How would you perform a validation using input-output transformations?
- What is sensitivity analysis and what is it used for?
- Name and explain some validation methods for simulation models