Inferring R_t

Inferring R_t

How to model varying serial intervals?

How to model varying serial intervals?

How to model varying serial intervals?

SI depends on infectivity profile, incubation period and population bheaviour

Trivial R inference with varying SIs

Incidence data is generated from a constant R (=2)

Which method is best?

Black inference is (I think) not using a good model. Red is (I think) the best using the most realistic model.

In reality, we'd expect something more like this:

Idea

CORONAVIRUS

Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions

Sheikh Taslim Ali¹*, Lin Wang^{2,3}*, Eric H. Y. Lau¹*, Xiao-Ke Xu⁴, Zhanwei Du⁵, Ye Wu^{6,7}, Gabriel M. Leung¹, Benjamin J. Cowling¹†

- •Use this paper to look at how R inference is different with and without using varying serial intervals AND with and without hybrid serial intervals
- See how R t inference tracks interventions
- This paper also looks at continuously changing SIs

Ideal: Novel Case Study

- Ideal situation is having data where we either: a)
 have the serial interval varying through time or b)
 have data where we can generate the serial
 interval in a sliding window.
- Then we can use R_t inference using different techniques. Although in this kind of analysis, it's tricky to decide which technique is optimum.

Issues

- How to use negative serial intervals? This is very important for diseases like Covid.
- However, I don't think it is simple to implement this into our inference technique?
- Is the hybrid solution useless? We need to have instant access to the new SI (unrealistic) and it is only helpful for a few days. More likely that SI prediction is useful/possible.