Automatic Differentiation and Other Building Blocks of Deep Learning

Adam Celarek

Research Unit of Computer Graphics
Institute of Visual Computing & Human-Centered Technology
TU Wien, Austria

Overview

- Deep Neural Networks (DNN)
 - A Neuron and its activation function
 - Layers
- Learning
 - Cost function, Gradient descent
 - Automatic differentiation
- Implementation / Demo

Deep Neural Networks

A Neuron and its activation function

several options for transfer function

$$neuron(\vec{v}) = \varphi(\vec{w}^T \vec{v} + b)$$

Layers

$$net(\vec{v}) = \varphi_{out} \Big(W_2 \varphi \big(W_1 \varphi (W_0 \vec{v} + \vec{b_0}) + \vec{b_1} \big) + \vec{b_2} \Big)$$

5

Learning / Cost function, Gradient descent

$$net(\vec{v}, W_0, W_1, W_2, \vec{b_0}, \vec{b_1}, \vec{b_2}) = \varphi_{out}\Big(W_2\varphi\big(W_1\varphi(W_0\vec{v} + \vec{b_0}) + \vec{b_1}\big) + \vec{b_2}\Big)$$

learn from examples

$$\begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vec{v}_3 \\ \dots \\ \vec{v}_M \end{pmatrix} \longrightarrow \begin{pmatrix} \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_3 \\ \dots \\ \vec{t}_M \end{pmatrix}$$
input
$$target$$

Change weights and biases in a way that the input is optimally mapped to the target => Minimise cost function using gradient descent.

Learning / Gradient descent

compute gradient (derivative) of f(x) and go in opposite direction $x_{n+1} = x_n - \alpha * (d f(x_n) / d x_n)$

Learning / Cost function, Gradient descent

$$\begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vec{v}_3 \\ \dots \\ \vec{v}_M \end{pmatrix} \longrightarrow \begin{pmatrix} \vec{t}_1 \\ \vec{t}_2 \\ \vec{t}_3 \\ \dots \\ \vec{t}_M \end{pmatrix}$$

Minimise cost function using gradient descent.

$$cost(W_0, W_1, W_2, \vec{b_0}, \vec{b_1}, \vec{b_2}) = \frac{1}{M} \sum_{m}^{M} \left(net(\vec{v}_m, ...) - \vec{t_m} \right)^2$$
more generally

we want to minimise that function => compute gradients for $W_0, W_1, W_2, \vec{b_0}, \vec{b_1}, \vec{b_2}$ and go into opposite direction => gradient descend

loss $(\text{net}(\vec{v}_m,...),\vec{t_m})$

Learning / Cost function, Gradient descent

$$cost(W_0, W_1, W_2, \vec{b_0}, \vec{b_1}, \vec{b_2}) = \frac{1}{M} \sum_{m}^{M} loss (net(\vec{v}_m, ...), \vec{t_m})$$

we want to compute the gradients / derivatives of a complicated function with many parameters (can be up to gigabytes of floats).

Differentiation methods:

- symbolic
- numeric
- automatic

$$f(x, y) = (x + y) * (y + 3)$$

 $x = 1, y = 2$
 $f(x, y) = ?$
 $df / dx = ?$
 $df / dy = ?$

$$f(x, y) = (x + y) * (y + 3)$$

 $x = 1, y = 2$
 $a = x + y$
 $b = y + 3$
 $f(x, y) = a * b$

$$f(x, y) = (x + y) * (y + 3)$$

 $x = 1, y = 2$
 $a = x + y$
 $b = y + 3$
 $f(x, y) = a * b$

$$f(x, y) = (x + y) * (y + 3)$$

 $x = 1, y = 2$
 $a = x + y$
 $b = y + 3$
 $f(x, y) = a * b$
 $f(x, y) = 15$
 $df / dx = ?$
 $df / dy = ?$

$$f(x, y) = (x + y) * (y + 3)$$

 $x = 1, y = 2$
 $a = x + y$
 $b = y + 3$
 $f(x, y) = a * b$

$$f(x, y) = 15$$

$$\frac{df}{dx} = \frac{df}{da} \frac{da}{dx}$$

$$\frac{df}{dy} = \frac{df}{da} \frac{da}{dy} + \frac{df}{db} \frac{db}{dy}$$

$$f(x, y) = (x + y) * (y + 3)$$

 $x = 1, y = 2$
 $a = x + y$
 $b = y + 3$
 $f(x, y) = a * b$

$$f(x, y) = 15$$

$$\frac{df}{dx} = \frac{df}{da} \frac{da}{dx} = 5 * 1$$

$$\frac{df}{dy} = \frac{df}{da} \frac{da}{dy} + \frac{df}{db} \frac{db}{dy} = 5 * 1 + 3 * 1 = 8$$

$$f(x, y) = (x + y) * (y + 3)$$

 $x = 1, y = 2$
 $a = x + y$
 $b = y + 3$
 $f(x, y) = a * b$

$$f(x, y) = 15$$

$$\frac{df}{dx} = \frac{df}{da} \frac{da}{dx} = 5 * 1$$

$$\frac{df}{dy} = \frac{df}{da} \frac{da}{dy} + \frac{df}{db} \frac{db}{dy} = 5 * 1 + 3 * 1 = 8$$

check:

$$f(x,y) = xy + 3x + y^2 + 3y$$

 $df/dx = y + 3 = 5$
 $df/dy = x + 2y + 3 = 1 + 4 + 3 = 8$

AD / Why are we summing in the leaves

AD / A complicated implementation

Quick look at a 140 line python implementation

A full DNN implementation (C++ demo)

Longer look at the C++ DNN implementation

AD with matrices

$$net(\vec{v}, W_0, W_1, W_2, b_0, b_1, b_2) = \varphi_{out} \Big(W_2 \varphi \big(W_1 \varphi (W_0 \vec{v} + b_0) + b_1 \big) + b_2 \Big)$$

per element operations (

Matrix addition

In every node there is a gradient coming from the top. We need to compute the derivative wrt left and right, multiply and send it on.

Matrix multiplication, x new dimensions

W

 \vec{b}

AD with matrices

$$net(\vec{v}, W_0, W_1, W_2, b_0, b_1, b_2) = \varphi_{out}\Big(W_2\varphi\big(W_1\varphi(W_0\vec{v} + b_0) + b_1\big) + b_2\Big)$$

easv per element operations $W \times V = O$ (m*n) x (n*o) = (m*o)Matrix addition Matrix multiplication, gradient going to the left, right, coming from top new dimensions W

AD with matrices

new dimensions

$$A \times B = C$$
 $(m*n) \times (n*o) = (m*o)$

gradient going to the left, right, coming from top

$$\frac{d\Phi}{dC}\frac{dC}{dA} = \frac{d\Phi}{dC}B^{T}$$
$$\frac{d\Phi}{dC}\frac{dC}{dB} = A^{T}\frac{d\Phi}{dC}$$

do you see what's wrong with that?

$$f(x,y) = \frac{e^x}{e^x + e^y}$$

- AD with matrices
- Numerical stability
- Vanishing gradients
- Exploding gradients
- Dying neurons
- How to initialise the weights and biases

*

Summary and questions

 DNNs are just a bunch of matrices and transfer functions in the right order

They use gradient descent for learning, something a school kid could do

 However, there are some challenges during implementation

github.com/cg-tuwien/deep_learning_demo

Questions?

