Frühjahr 12 Themennummer 2 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Bestimmen Sie alle $f, g, h : \mathbb{C} \to \mathbb{C}$ mit der Eigenschaft

- a) $f(z) = -f(\overline{z}), z \in \mathbb{C}$, bzw.
- b) Re $g(z) = \sin(\text{Im } g(z)), z \in \mathbb{C}, \text{ und } g(0) = 2\pi i, \text{ bzw.}$
- c) $h'(z) = z^2 h(z), z \in \mathbb{C}.$

Lösungsvorschlag:

- a) Für alle $z \in \mathbb{R}$ gilt $f(z) = -f(\overline{z}) = -f(z)$, also f(z) = 0. Die Menge $\{z \in \mathbb{C} : f(z) = 0\}$ besitzt also Häufungspunkte und die Menge \mathbb{C} ist ein Gebiet. Nach dem Identitätssatz gilt $f \equiv 0$. Umgekehrt erfüllt die Nullfunktion natürlich die geforderte Eigenschaft und $f \equiv 0$ ist die einzige solche Funktion.
- b) Aus Im $g(z) \in \mathbb{R}$ folgt Re $g(z) = \sin(\operatorname{Im} g(z)) \le 1$ für alle $z \in \mathbb{C}$. Die Funktion $\mathbb{C} \ni z \mapsto e^{g(z)}$ ist holomorph und beschränkt wegen $|e^{g(z)}| = e^{\operatorname{Re} g(z)} \le e$, also konstant nach dem Satz von Liouville. Daraus folgt $0 = g'(z)e^{g(z)}$ und weil exp keine komplexe Nullstelle besitzt folgt g'(z) = 0 für alle $z \in \mathbb{C}$. Weil \mathbb{C} ein Gebiet ist, folgt die Konstantheit von g und wegen $g(0) = 2\pi i$ ist $g \equiv 2\pi i$. Wegen $0 = \sin(2\pi)$ erfüllt $g \equiv 2\pi i$ umgekehrt die gewünschte Eigenschaft und ist die einzige solche Funktion.
- c) Für jedes $c \in \mathbb{C}$ erfüllt $h(z) = ce^{\frac{z^3}{3}}$ die Gleichung $h'(z) = z^2h(z)$. Ist umgekehrt $h' = z^2h(z)$, so folgt für $j(z) := h(z)e^{-\frac{z^3}{3}}$, dass $j'(z) = z^2h(z)e^{-\frac{z^3}{3}} z^2h(z)e^{-\frac{z^3}{3}} = 0$ gilt. Weil \mathbb{C} ein Gebiet ist, folgt die Konstantheit von j, also $j \equiv c$ für ein $c \in \mathbb{C}$. Umstellen liefert $h(z) = ce^{\frac{z^3}{3}}$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$