- 6. 品質管理除包括舊的(指消極的品質管制)之外,加上積極的品質管制,除了強調物(產品)的品質管理,更著重事(系統化)的品質管理與人(事在人爲)的管理哲學。
- 7. 品質保證就是一切有規劃與系統化的活動,讓生產者有信心能夠提供顧客滿 意的產品與服務。
- 8. 品質管理的精髓與目的就要達成品質保證。

第二章

1. 數據大致可以分成二大類

其一,計量值:指可量測的連續數據。如 1.5cm, 15g 等等之數值。

其二,計數值:指不可量測不連續數據。如良品不良品之個數,每週重大公 安事件的次數等等之數值。

2. 線上品管:

指生產線上現場所執行的品質管制。一般而言,它的制度是操作人員與品檢員 依規定到生產線上,成品或半成品所在之處,定時定量抽樣檢驗其品質管制項 目。以爭取時效,反映製程的狀況。

指凡是生產線上不方便做的品管,如現場環境油污或油氣過重不適宜擺精密 或靈敏之儀器,或者產品之品質特性(管制項目)過多或數量較大,在時 間上不適合在線上量測,因此,需要定時定量抽樣送到實驗室進行量測,與 執行總計分析。它包括完成品的經檢或出貨前的抽驗的品管。

3.								X_h	X_{ℓ}
	10	17	9	17	18	20	16	20	9
	7	17	19	13	15	14	13	19	7
	12	13	15	14	13	10	14	15	10
	11	15	14	11	15	15	16	16	11
	9	18	15	12	14	13	14	18	9
	13	14	16	15	16	15	15	16	13
	14	15	15	16	13	12	16	16	12
	10	16	14	13	16	14	15	16	10
	6	15	13	16	15	16	16	16	6
	12_	14	16	15	16	13	15	16	12

 $X_{\text{max}} = 20$, $X_{\text{min}} = 6$

$$R = X_{\text{max}} - X_{\text{min}} = 20 - 6 = 14$$
 , $n = 70$

組數 $\kappa = 1 + 3.322 \log n = 1 + 3.322 \log 70 = 7.13$, 取 8,

組距
$$=i=\frac{R}{\kappa}=\frac{14}{8}=1.75$$
,修正為 $i=2$

最左柱子的下組界 =
$$X_{min} - 1 \times \frac{1}{2} = 6 - \frac{1}{2} = 5.5$$

中間値 = 下組界
$$+\frac{1}{2} \times$$
組距 = $5.5 + \frac{1}{2} \times 2 = 6.5$

次數分配表

組別	組界	中間値	次數標記	次 數
1	5.5~7.5	6.5	II	2
2	7.5~9.5	8.5		2
3	9.5~11.5	10.5	 	5
4	11.5~13.5	12.5	 	14
5	13.5~15.5	14.5	## ## ## ##	27
6	15.5~17.5	16.5	 	16
7	17.5~19.5	18.5		3
8	19.5~21.5	20.5	1	1
合計				70

4.

										X_{h}	X,
6.00	5.98	6.01	6.01	5.97	5.99	5.98	6.01	5.99	5.98	6.01	5.97
5.98	5.99	5.99	6.03	5.99	6.01	5.98	5.99	5.97	6.01	6.03	5.97
5.97	6.01	6.00	5.96	6.00	5.97	5.95	5.99	5.99	6.01	6.01	5.95
6.01	6.03	6.01	5.99	5.99	6.02	6.00	5.98	6.01	5.98	6.03	5.98
6.00	5.98	6.04	6.00	6.00	5.98	5.99	6.00	5.97	6.0	6.04	5.97
6.00	5.98	6.00	5.94	5.99	6.02	6.00	5.98	6.02	6.01	6.02	5.94
5.97	6.01	6.04	6.02	6.01	5.97	5.99	6.02	5.99	6.02	6.04	5.97
6.02	5.99	6.01	5.98	5.99	6.00	6.02	5.99	6.02	5.95	6.02	5.95
5.96	5.99	6.00	6.00	6.01	5.99	5.96	6.01	6.00	6.01	6.01	5.96
6.00	5.99	5.96	5.99	6.03	5.99	6.02	5.98	6.02	6.02	6.03	5.98
							· -			$X_{\text{max}} = 6.04$	$X_{\min} = 5.94$

$$R = X_{\text{max}} - X_{\text{min}} = 6.04 - 5.94 = 0.10$$

組數 $\kappa=1+3.322\log 100=7.644$,因其基本量測單位為 0.01 ,而且全距 R=0.1,幾乎為本量測單位的 10 倍,因此,宜採用石川馨博士的查表法,取 $\kappa=11$ 組,組距 $=i=\frac{R}{\kappa}=\frac{0.1}{11}=0.009$,修正為基本量測單位的倍數,取 i=0.01,

最左邊柱子的下組界 = $X_{\min} - \frac{1}{2} \times 0.01 = 5.94 - 0.005 = 5.935$

中間値 = 下組界 + $\frac{1}{2}$ × 組距 = $5.935 + \frac{1}{2} \times 0.01 = 5.94$

次數分配表

組 別	組界	中間値	次數標記	次 數
1	5.935~5.945	5.94	1	1
2	5.945~5.955	5.95	II	2
3	5.955~5.965	5.96	III	3
4	5.965~5.975	5.97	 	7
5	5.975~5.985	5.98	 	14
6	5.985~5.995	5.99	## ## ##	22
7	5.995~6.005	6.00	## ##	17
8	6.005~6.015	6.01	 	17
9	6.015~6.025	6.02	 	12
10	6.025~6.035	6.03	III	3
11	6.035~6.045	6.04		2
合計				100

5.
$$\overline{X} = \frac{\sum_{i=1}^{10} X_i}{10} = \frac{6.00 + 5.98 + 5.97 + 6.01 + 6.00 + 6.00 + 5.97 + 6.02 + 5.96 + 6.00}{10}$$

$$\Rightarrow \overline{X} = 5.99$$

6. 已分組的數據,其平均值 \overline{X} ,

$$\overline{X} = \frac{\sum_{i=1}^{\kappa} f_i X_i}{\sum_{i=1}^{\kappa} f_i} \ ,$$

$$\sum_{i=1}^{6} f_i = 6 + 9 + 18 + 14 + 13 + 5 = 65$$

$$\sum_{i=1}^{6} f_i X_i = 6 \times 3.5 + 9 \times 3.8 + 18 \times 4.1 + 14 \times 4.4 + 13 \times 4.7 + 5 \times 5.0 = 276.7$$

$$\Rightarrow \overline{X} = \frac{276.7}{65} = 4.26$$

7. (1) 8,. 11, 15, 18, 22

(2) 28, 33, 35, 36, 38, 43

中位數
$$=\frac{35+36}{2}=35.5$$

- 8. (1) 聚位數 = 55
 - (2) 每一個都沒有重覆,因此沒有眾位數。
 - (3) 聚位數 = 14 與 17。

9. (1)
$$R = X_{\text{max}} - X_{\text{min}} = 25 - 14 = 11$$

(2)
$$R = 45 - 39 = 6$$

10.
$$S_{n-1} = \left[\frac{\sum_{i=1}^{5} (X_i - \overline{X})^2}{5-1} \right]^{1/2} = 8.22$$

11.
$$S_{n-1} = \left[\sum_{i=1}^{4} (X_i - \overline{X})^2 \right]^{1/2} = 0.0037 \approx 0.004 \text{ mm}$$

12. 已分組的樣本標準差之計算公式如下,

$$S_{n-1} = \left[\frac{n \sum_{i=1}^{\kappa} (f_i X_i^2) - \left(\sum_{i=1}^{\kappa} f_i X_i\right)^2}{n(n-1)} \right]^{1/2}$$

中間値 (X _i)	次數 (f _i)	f_iX_i	$f_i X_i^2$
0.5	1	0.5	0.25
0.8	16	12.8	10.24
1.1	12	13.2	14.52
1.4	10	14.0	19.60
1.7	12	20.4	34.68
2.0	18	36.0	72.00
2.3	16	36.8	84.64
2.6	3	7.8	20.28
	n = 88	$\sum_{i=1}^{8} f_i X_i = 141.5$	$\sum_{i=1}^{8} f_i X_i^2 = 256.21$

$$S_{n-1} = \left\lceil \frac{88 \times 256.21 - (141.5)^2}{88(88-1)} \right\rceil^{1/2} = 0.574$$

13. 已分組的數據求平均值與樣本標準差之公式如下,

$$\overline{X} = \frac{\sum_{i=1}^{\kappa} f_i X_i}{\sum_{i=1}^{\kappa} f_i} \cdot S_{n-1} = \left[\frac{n \sum_{i=1}^{\kappa} (f_i X_i^2) - \left(\sum_{i=1}^{\kappa} f_i X_i\right)^2}{n(n-1)} \right]^{1/2}$$

中間値 (X_i)	次數 (f_i)	$f_i X_i$	$f_i X_i^2$
10	6	60	600
13	13	169	2197
16	22	352	5632
19	17	323	6137
22	11	242	5324
25	8	200	5000
	$\nabla \mathcal{L} = 77$	$\sum_{i=1}^{6} f(V_i - 1246)$	$\sum_{i=1}^{6} f_i V_i^2$ 24800

$$\sum f_i = 77$$
 $\sum_{i=1}^6 f_i X_i = 1346$ $\sum_{i=1}^6 f_i X_i^2 = 24890$

$$\Rightarrow \overline{X} = \frac{1346}{77} = 17.48$$

$$\Rightarrow S_{n-1} = \left[\frac{77 \times 24890 - (1346)^2}{77 \times 76} \right]^{1/2} = 4.23$$

14. 偏態 =
$$SK = \frac{\sum_{i=1}^{K} f_i (X_i - \overline{X})^3 / n}{S_{n-1}^3}$$
,峰態 = $KU = \frac{\sum_{i=1}^{K} f_i (X_i - \overline{X})^4 / n}{S_{n-1}^4}$

中間値 (X_i)	次數 (f_i)	$X_i - \overline{X}$	$f_i(X_i - \overline{X})^3$	$f_i(X_i - \overline{X})^4$
3.5	6	-0.76	-2.63	2.00
3.8	9	-0.46	-0.88	0.40
4.1	18	-0.16	-0.07	0.01
4.4	14	0.14	0.04	0.01
4.7	13	0.44	1.11	0.49
5.0	5	0.74	2.03	1.50

$$\sum f_i (X_i - \overline{X})^3 = -0.4$$
 $\sum f_i (X_i - \overline{X})^4 = 4.41$

$$\overline{X} = \frac{6 \times 3.5 + 9 \times 3.8 + 18 \times 4.1 + 14 \times 4.4 + 13 \times 4.7 + 5 \times 5.0}{65} = 4.26$$

-		65	$\nabla f V = 2767$	$\sum f V^2 = 1100.25$
	5.0	5	25.0	125.00
	4.7	13	61.1	287.17
	4.4	14	61.6	271.04
	4.1	18	73.8	302.58
	3.8	9	34.2	129.96
	3.5	6	21.0	73.5
_	中間値 (X _i)	次數 (f _i)	f_iX_i	$f_i X_i^2$

$$n = 65$$
 $\sum f_i X_i = 276.7$ $\sum f_i X_i^2 = 1189.25$

$$S_{n-1} = \left[\frac{65 \times 1189.25 - (276.7)^2}{65 \times 64} \right]^{1/2} = 0.42$$

$$\Rightarrow \text{ like } SK = \frac{-0.4 / 65}{(0.42)^3} = -0.083$$

$$\Rightarrow \text{ like } KU = \frac{4.41 / 65}{(0.42)^4} = 2.18$$

15. (1)
$$Z_i = \frac{X_i - \mu}{\sigma}$$
, $X_i = 8.30 \text{ kg}$, $\mu = 9.07 \text{ kg}$, $\sigma = 0.4 \text{ kg}$

$$\Rightarrow Z_i = \frac{8.30 - 9.07}{0.4} = -1.93$$

$$P(-\infty \le Z_i - 1.93) = \int_{-\infty}^{-1.93} f(Z) dZ = 0.0268 \text{ (査表 A)}$$

(2)
$$X_i = 10.00 \Rightarrow Z_i = \frac{10 - 9.07}{0.4} = 2.33$$

$$\Rightarrow P(-\infty \le Z_i \le 2.33) = \int_{-\infty}^{2.33} f(Z) dZ = 0.9901 \text{ (査表 A)}$$

$$\Rightarrow P(Z_i < 2.33) = 1 - P(-\infty \le Z_i \le 2.32) = 1 - 0.9901 = 0.0099$$

(3)
$$X_1 = 8.00 \Rightarrow Z_1 = \frac{8 - 9.07}{0.4} = -2.67$$

 $X_2 = 10.10 \Rightarrow Z_2 = \frac{10.10 - 9.07}{0.4} = 2.57$
 $\Rightarrow P(-2.67 \le Z_i \le 2.57) = \int_{-\infty}^{2.57} f(Z)dZ - \int_{-\infty}^{-2.67} f(Z)dZ$
 $= 0.9949 - 0.0038 = 0.9911$

16.
$$X_1 = 0.567 \cdot \mu = ? \cdot \sigma = 0.018 \text{ kg}$$

已知
$$P(-\infty \le Z_i \le Z_1) = 0.015 = \int_{-\infty}^{Z_1} f(Z) dZ$$

逆查表 A
$$\Rightarrow$$
 $Z_1 = -2.17$

$$Z_1 = \frac{X_1 - \mu}{\sigma} = \mu = X_1 - Z_1 \sigma = 0.567 + 2.17 \times 0.018$$

 $\Rightarrow \mu = 0.606$

第三章

- 1. 長生不死的機率 =0, 龜毛兔角的機率 =0
- 2. (1) P (任何點數) = 1.0

(2)
$$P(5 \text{ sh}) = \frac{1}{6}$$

(3)
$$P$$
 (‡ 5 點) = $1 - P(5$ 點) = $1 - \frac{1}{6} = \frac{5}{6}$

3. (1) P (珠子)=1.0

(2)
$$P$$
 (粉紅色) = $\frac{35}{35+46+15+4}$ = 0.35

(3)
$$P$$
 (黑色) $=\frac{0}{100}=0$

(4)
$$P$$
 (藍色或綠色) = $\frac{46}{100} + \frac{15}{100} = 0.61$

4. 兩次都抽不中的機率 = 第一次沒抽中之機率 × 第二次沒抽中之機率

$$P($$
 兩次都不中 $) = \left(1 - \frac{1}{10}\right)\left(1 - \frac{1}{10}\right) = \frac{81}{100}$

$$P($$
其中至少有一次抽中 $)=1-P($ 兩次都不中 $)=1-\frac{81}{100}=\frac{19}{100}$

只抽一次之抽中率 =
$$\frac{20}{100}$$

當然要選擇只抽一次的方式。