Resistive Wall Mode

R. Fitzpatrick^a

Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin TX 78712, USA

I. VACUUM SOLUTION

A. Normalization

Let all lengths be normalized to the major radius of the magnetic axis, R_0 . Let all magnetic field-strengths be normalized to the toroidal magnetic field-strength at the magnetic axis, B_0 .

B. Toroidal Coordinates

Let μ , η , ϕ be toroidal coordinates such that

$$R = \frac{\sinh \mu}{\cosh \mu - \cos \eta},\tag{1}$$

$$Z = \frac{\sin \eta}{\cosh \mu - \cos \eta},\tag{2}$$

where R, ϕ , Z are cylindrical coordinates. The scale-factors of the toroidal coordinate system are

$$h_{\mu} = h_{\eta} = \frac{1}{\cosh \mu - \cos \eta} = h,\tag{3}$$

$$h_{\phi} = \frac{\sinh \mu}{\cosh \mu - \cos \eta} = h \sinh \mu. \tag{4}$$

C. Perturbed Magnetic Field

The perturbed magnetic field in the vacuum region is written

$$\mathbf{b} = i \nabla \left[V(\mu, \eta) e^{-i n \phi} \right], \tag{5}$$

a rfitzp@utexas.edu

where

$$\nabla^{2}V = (z - \cos \eta)^{3} \left\{ \frac{\partial}{\partial z} \left[\frac{z^{2} - 1}{z - \cos \eta} \frac{\partial V}{\partial z} \right] + \frac{\partial}{\partial \eta} \left[\frac{1}{z - \cos \eta} \frac{\partial V}{\partial \eta} \right] - \frac{n^{2} V}{(z^{2} - 1)(z - \cos \eta)} \right\} = 0.$$
 (6)

Here, $z = \cosh \mu$.

Let

$$f_z = z^2 - 1, (7)$$

$$f_{\eta} = (z - \cos \eta)^{1/2}.\tag{8}$$

It follows that

$$\frac{df_z}{dz} = 2z, (9)$$

$$\frac{\partial f_{\eta}}{\partial z} = \frac{1}{2f_{\eta}},\tag{10}$$

$$\frac{\partial f_{\eta}}{\partial \eta} = \frac{\sin \eta}{2 f_{\eta}}.\tag{11}$$

Let

$$V(z,\eta) = \sum_{m} f_{\eta} U_{m}(z) e^{-i m \eta}.$$
 (12)

Then, taking the sum and eikonal as read, and letting '=d/dz, we get

$$\frac{\partial V}{\partial z} = \frac{U_m}{2 f_\eta} + f_\eta U_m',\tag{13}$$

$$\frac{\partial}{\partial z} \left(\frac{f_z}{f_\eta^2} \frac{\partial V}{\partial z} \right) = \frac{\partial}{\partial z} \left(\frac{f_z U_m}{2 f_\eta^3} + \frac{f_z U_m'}{f_\eta} \right) = \frac{z U_m}{f_\eta^3} - \frac{3 f_z U_m}{4 f_\eta^5} + \frac{f_z U_m'}{2 f_\eta^3} + \frac{2 z U_m'}{f_\eta} - \frac{f_z U_m'}{2 f_\eta^3} + \frac{f_z U_m''}{f_\eta} \right) \\
= \frac{z U_m}{f_\eta^3} - \frac{3 (z^2 - 1) U_m}{4 f_\eta^5} + \frac{2 z U_m'}{f_\eta} + \frac{(z^2 - 1) U_m''}{f_\eta}, \tag{14}$$

$$\frac{\partial V}{\partial \eta} = \frac{\sin \eta \, U_m}{2 \, f_\eta} - \mathrm{i} \, m f_\eta \, U_m,\tag{15}$$

$$\frac{\partial}{\partial \eta} \left(\frac{1}{f_{\eta}^{2}} \frac{\partial V}{\partial \eta} \right) = \frac{\partial}{\partial \eta} \left(\frac{\sin \eta U_{m}}{2 f_{\eta}^{3}} - \frac{i m U_{m}}{f_{\eta}} \right) = \frac{\cos \eta U_{m}}{2 f_{\eta}^{3}} - \frac{3 \sin^{2} \eta U_{m}}{4 f_{\eta}^{5}} - \frac{i m \sin \eta U_{m}}{2 f_{\eta}^{3}} + \frac{i m \sin \eta U_{m}}{2 f_{\eta}^{3}} - \frac{m^{2} U_{m}}{f_{\eta}} = \frac{\cos \eta U_{m}}{2 f_{\eta}^{3}} - \frac{3 \sin^{2} \eta U_{m}}{4 f_{\eta}^{5}} - \frac{m^{2} U_{m}}{f_{\eta}}, \tag{16}$$

$$-\frac{n^2 V}{f_z f_\eta^2} = -\frac{n^2 U_m}{(z^2 - 1) f_\eta}. (17)$$

Thus,

$$0 = \frac{\partial}{\partial z} \left(\frac{f_z}{f_\eta^2} \frac{\partial V}{\partial z} \right) + \frac{\partial}{\partial \eta} \left(\frac{1}{f_\eta^2} \frac{\partial V}{\partial \eta} \right) - \frac{n^2 V}{f_z f_\eta^2}$$

$$= \frac{z U_m}{f_\eta^3} - \frac{3 (z^2 - 1) U_m}{4 f_\eta^5} + \frac{2 z U_m'}{f_\eta} + \frac{(z^2 - 1) U_m''}{f_\eta}$$

$$+ \frac{\cos \eta U_m}{2 f_\eta^3} - \frac{3 \sin^2 \eta U_m}{4 f_\eta^5} - \frac{m^2 U_m}{f_\eta} - \frac{n^2 U_m}{(z^2 - 1) f_\eta}$$

$$= \frac{1}{f_\eta} \left[(z^2 - 1) U_m'' + 2 z U_m' + \left(\frac{1}{4} - m^2 \right) U_m - \frac{n^2 U_m}{z^2 - 1} \right]. \tag{18}$$

The most general solution of the previous equation is

$$U_m(z) = p_m P_{m-1/2}^n(z) + q_m Q_{m-1/2}^n(z),$$
(19)

where p_m and q_m are arbitrary complex coefficients. Note that

$$P_{-m-1/2}^{n}(z) = P_{m-1/2}^{n}(z), (20)$$

$$Q_{-m-1/2}^{n}(z) = Q_{m-1/2}^{n}(z), (21)$$

SO

$$U_m(z) = p_m P_{|m|-1/2}^n(z) + q_m Q_{|m|-1/2}^n(z),$$
(22)

Let

$$p_m = \bar{p}_m \, \hat{p}_m, \tag{23}$$

$$q_m = \bar{q}_m \, \hat{q}_m, \tag{24}$$

$$\bar{p}_{m\neq 0} = \cos(|m|\pi) \frac{\sqrt{\pi} \Gamma(|m| + 1/2 - n) \epsilon^{|m|}}{2^{|m|-1/2} |m|!}, \tag{25}$$

$$\bar{q}_{m\neq 0} = \cos(n\,\pi)\,\cos(|m|\,\pi)\,\frac{2^{|m|+1/2}\,(|m|-1)!\,\epsilon^{-|m|}}{\sqrt{\pi}\,\Gamma(|m|+1/2+n)},\tag{26}$$

$$\bar{p}_0 = \frac{\sqrt{\pi} \Gamma(1/2 - n)}{\sqrt{2}},\tag{27}$$

$$\bar{q}_0 = \cos(n\pi) \frac{\sqrt{2}}{\sqrt{\pi} \Gamma(n+1/2)}.$$
(28)

D. Toroidal Electromagnetic Angular Momentum Flux

The outward flux of toroidal angular momentum across a constant-z surface is

$$T_{\phi}(z) = -\oint \oint \mathcal{J} b_{\phi} b^{\mu} d\eta d\phi, \qquad (29)$$

where

$$\mathcal{J} = (\nabla \mu \times \nabla \eta \cdot \nabla \phi)^{-1} = h^3 \sinh \mu. \tag{30}$$

Now,

$$b^{\mu} = \mathbf{b} \cdot \nabla \mu = i \frac{\partial V}{\partial \mu} |\nabla \mu|^2 = i \frac{\sinh \mu}{h^2} \frac{\partial V}{\partial z}, \tag{31}$$

$$b^{\phi} = \mathcal{J} \, \nabla \mu \times \nabla \eta \cdot \nabla V = n \, V, \tag{32}$$

so

$$T_{\phi}(z) = -\frac{\mathrm{i} \, n \, \pi}{2} \oint \frac{z^{2} - 1}{z - \cos \eta} \left(\frac{\partial V}{\partial z} \, V^{*} - \frac{\partial V^{*}}{\partial z} \, V \right) d\eta$$

$$= -\mathrm{i} \, n \, \pi^{2} \sum_{m} (z^{2} - 1) \left(\frac{dU_{m}}{dz} \, F_{m}^{*} - \frac{dU_{m}^{*}}{dz} \, F_{m} \right)$$

$$= -\mathrm{i} \, n \, \pi^{2} \sum_{m} (p_{m} \, q_{m}^{*} - q_{m} \, p_{m}^{*}) (z^{2} - 1) \left(\frac{dP_{|m|-1/2}^{n}}{dz} \, Q_{|m|-1/2}^{n} - \frac{dQ_{|m|-1/2}^{n}}{dz} \, P_{|m|-1/2}^{n} \right)$$

$$= \mathrm{i} \, n \, \pi^{2} \sum_{m} (p_{m} \, q_{m}^{*} - q_{m} \, p_{m}^{*}) (z^{2} - 1) \, \mathcal{W}[P_{|m|-1/2}^{n}, Q_{|m|-1/2}^{n}]. \tag{33}$$

But,

$$\mathcal{W}[P_{|m|-1/2}^n, Q_{|m|-1/2}^n] = \frac{\cos(n\pi)}{1 - z^2} \frac{\Gamma(|m| + 1/2 + n)}{\Gamma(|m| + 1/2 - n)},\tag{34}$$

SO

$$T_{\phi}(z) = 2\pi^{2} n \cos(n \pi) \sum_{m} \frac{\Gamma(|m| + 1/2 + n)}{\Gamma(|m| + 1/2 - n)} \operatorname{Im}(p_{m} q_{m}^{*}), \tag{35}$$

or

$$T_{\phi}(z) = 2\pi^2 n \sum_{m} \operatorname{Im}(\hat{p}_m \, \hat{q}_m^*) \, h_m,$$
 (36)

$$h_{m\neq 0} = \frac{2}{|m|},\tag{37}$$

$$h_0 = 1. (38)$$

II. RESISTIVE WALL PHYSICS

A. Resistive Wall

Let the resistive wall extend from $\mu = \mu_w$ to $\mu = \mu_w - \bar{d}_w \sinh \mu_w$, where $\bar{d}_w \ll 1$ is a positive constant. In other words, $\mu = \mu_w$ is the inner surface of the wall, and $\mu = \mu_w - \bar{d}_w \sinh \mu_w$ is the outer surface. The physical wall thickness is

$$d(\eta) = \frac{\bar{d}_w \sinh \mu_w}{|\nabla \mu|} = g_w(\eta) \,\bar{d}_w,\tag{39}$$

where

$$g_w(\eta) = \frac{(z_w^2 - 1)^{1/2}}{z_w - \cos \eta},\tag{40}$$

and $z_w = \cosh \mu_w$. Let the electrical conductivity of the wall material vary as

$$\sigma(\eta) = \frac{\bar{\sigma}_w}{q_w^2(\eta)},\tag{41}$$

where $\bar{\sigma}_w$ is a positive constant. It follows that $\sigma d^2 = \bar{\sigma}_w \bar{d}_w^2$.

B. Wall Matching Conditions

If we write

$$\mathbf{b} = \nabla \times \mathbf{A} \tag{42}$$

in the vacuum region then the boundary conditions at the wall are

$$\mathbf{n}_w \times \mathbf{A}|_{z_{w-}} = \frac{1}{\cosh \lambda} |\mathbf{n}_w \times \mathbf{A}|_{z_{w+}}$$
(43)

$$\mathbf{n}_{w} \times (\nabla \times \mathbf{A})|_{z_{w+}} = -\frac{\lambda \tanh \lambda}{\bar{d}_{w} g_{w}} \mathbf{n}_{w} \times (\mathbf{n}_{w} \times \mathbf{A})|_{z_{w+}} + \frac{\mathbf{n}_{w} \times (\nabla \times \mathbf{A})|_{z_{w-}}}{\cosh \lambda}, \quad (44)$$

$$\lambda = \sqrt{\mu_0 R_0^2 \,\bar{\sigma}_w \,\bar{d}_w^2 \,\gamma},\tag{45}$$

where γ is the growth-rate of the magnetic perturbation. Here, $\mathbf{n}_w = -\mathbf{e}_{\mu}$ is an outward unit normal vector to the wall. Now,

$$\nabla \times \mathbf{A} = \frac{1}{h^2 \sinh \mu} \left(\frac{\partial \hat{A}_{\phi}}{\partial \eta} - \frac{\partial \hat{A}_{\eta}}{\partial \phi} \right) \mathbf{e}_{\mu} + \frac{1}{h^2 \sinh \mu} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu} \right) \mathbf{e}_{\eta} + \frac{1}{h^2} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta} \right) \mathbf{e}_{\phi}, \tag{46}$$

where

$$\hat{A}_{\mu} = h A_{\mu},\tag{47}$$

$$\hat{A}_{\eta} = h A_{\eta}, \tag{48}$$

$$\hat{A}_{\phi} = h \sinh \mu A_{\phi}. \tag{49}$$

Furthermore,

$$\mathbf{n}_w \times \mathbf{A} = -\mathbf{e}_\mu \times \mathbf{A} = A_\phi \, \mathbf{e}_\eta - A_\eta \, \mathbf{e}_\phi, \tag{50}$$

$$\mathbf{n}_w \times (\mathbf{n}_w \times \mathbf{A}) = -\mathbf{e}_\mu \times (\mathbf{n}_w \times \mathbf{A}) = -A_\eta \, \mathbf{e}_\eta - A_\phi \, \mathbf{e}_\phi, \tag{51}$$

$$\mathbf{n}_{w} \times (\nabla \times \mathbf{A}) = -\mathbf{e}_{\mu} \times (\nabla \times \mathbf{A}) = \frac{1}{h^{2}} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta} \right) \mathbf{e}_{\eta} - \frac{1}{h^{2} \sinh \mu} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu} \right) \mathbf{e}_{\phi}.$$
(52)

Thus, the wall matching conditions become

$$\left. \hat{A}_{\eta} \right|_{z_{w-}} = \frac{1}{\cosh \lambda} \left. \hat{A}_{\eta} \right|_{z_{w+}},\tag{53}$$

$$\left. \hat{A}_{\phi} \right|_{z_{w+}} = \frac{1}{\cosh \lambda} \left. \hat{A}_{\phi} \right|_{z_{w-}},\tag{54}$$

$$\left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta}\right)_{z_{w+}} = \frac{\lambda \tanh \lambda}{\bar{d}_{w} \sinh \mu_{w}} \left.\hat{A}_{\eta}\right|_{z_{w+}} + \frac{1}{\cosh \lambda} \left(\frac{\partial \hat{A}_{\eta}}{\partial \mu} - \frac{\partial \hat{A}_{\mu}}{\partial \eta}\right)_{z_{w-}}, \tag{55}$$

$$\left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu}\right)_{z_{w+}} = -\frac{\lambda \tanh \lambda}{\bar{d}_{w} \sinh \mu_{w}} \left.\hat{A}_{\phi}\right|_{\mu_{z+}} + \frac{1}{\cosh \lambda} \left(\frac{\partial \hat{A}_{\mu}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \mu}\right)_{z_{w-}}.$$
(56)

Let

$$C(z,\eta,\phi) = \frac{\partial \hat{A}_{\eta}}{\partial \phi} - \frac{\partial \hat{A}_{\phi}}{\partial \eta}.$$
 (57)

The wall matching conditions reduce to

$$C(z_{w-}, \eta, \phi) = \frac{1}{\cosh \lambda} C(z_{w+}, \eta, \phi), \tag{58}$$

$$\frac{\partial C(z_{w+}, \eta, \phi)}{\partial z} = \frac{\lambda \tanh \lambda}{\bar{d}_{w} \sinh^{2} \mu_{w}} C(z_{w+}, \eta, \phi) + \frac{1}{\cosh \lambda} \frac{\partial C(z_{w-}, \eta, \phi)}{\partial z}.$$
 (59)

However, if

$$\mathbf{b} = i \,\nabla V = \nabla \times \mathbf{A} \tag{60}$$

then

$$C = -i h \sinh \mu \frac{\partial V}{\partial \mu} = -i h (z^2 - 1) \frac{\partial V}{\partial z}.$$
 (61)

Thus,

$$C = -i \frac{z^2 - 1}{z - \cos \eta} \sum_{m} \left[\frac{U_m}{2 (z - \cos \eta)^{1/2}} + (z - \cos \eta)^{1/2} \frac{dU_m}{dz} \right] e^{-i (m \eta + n \phi)}, \tag{62}$$

$$\frac{\partial C}{\partial z} = -i \sum_{m} \left[\frac{(3/4) \sin^2 \eta}{(z - \cos \eta)^{5/2}} - \frac{(1/2) \cos \eta}{(z - \cos \eta)^{3/2}} + \frac{m^2 + n^2/(z^2 - 1)}{(z - \cos \eta)^{1/2}} \right] U_m e^{-i(m\eta + n\phi)}. \quad (63)$$

It follows that

$$\sum_{m} \left[\frac{U_m}{2} + (z - \cos \eta) \frac{dU_m}{dz} \right]_{z_{w-}} e^{-i m \eta} = \frac{1}{\cosh \lambda} \sum_{m} \left[\frac{U_m}{2} + (z - \cos \eta) \frac{dU_m}{dz} \right]_{z_{w+}} e^{-i m \eta},$$
(64)

$$\sum_{m} \left[\frac{3}{4} \sin^{2} \eta - \frac{1}{2} (z - \cos \eta) \cos \eta + (z - \cos \eta)^{2} \left(m^{2} + \frac{n^{2}}{z^{2} - 1} \right) \right] U_{m} e^{-i m \eta} \bigg|_{z_{w+}} = F(\lambda) \sum_{m} (z - \cos \eta) \left[\frac{U_{m}}{2} + (z - \cos \eta) \frac{dU_{m}}{dz} \right]_{z_{w+}} e^{-i m \eta}$$

$$+\frac{1}{\cosh \lambda} \sum_{m} \left[\frac{3}{4} \sin^{2} \eta - \frac{1}{2} (z - \cos \eta) \cos \eta + (z - \cos \eta)^{2} \left(m^{2} + \frac{n^{2}}{z^{2} - 1} \right) \right] U_{m} e^{-i m \eta} \bigg|_{z_{w-}},$$
(65)

where

$$F(\lambda) = \frac{\lambda \tanh \lambda}{\bar{d}_w}.$$
 (66)

Thus, we can write

$$\sum_{m'} I_{mm'} U_{m'}(z_{w-}) = \frac{1}{\cosh \lambda} \sum_{m'} I_{mm'} U_{m'}(z_{w+}), \tag{67}$$

$$\sum_{m'} J_{mm'} U_{m'}(z_{w+}) = F(\lambda) \sum_{m',m''} K_{mm''} I_{m''m'} U_{m'}(z_{w+}) + \frac{1}{\cosh \lambda} \sum_{m'} J_{mm'} U_{m'}(z_{w-}), \quad (68)$$

$$I_{mm'} = \left(\frac{1}{2} + z \frac{d}{dz}\right) \delta_{mm'} - \frac{1}{2} \frac{d}{dz} \left(\delta_{m\,m'+1} + \delta_{m\,m'-1}\right),\tag{69}$$

$$J_{mm'} = \left[\frac{5}{8} + \left(\frac{1}{2} + z^2\right) \left(m^2 + \frac{n^2}{z^2 - 1}\right)\right] \delta_{mm'} - z \left[\frac{1}{4} + \left(m^2 + \frac{n^2}{z^2 - 1}\right)\right] \left(\delta_{m\,m'+1} + \delta_{m\,m'-1}\right) + \left[-\frac{1}{16} + \frac{1}{4} \left(m^2 + \frac{n^2}{z^2 - 1}\right)\right] \left(\delta_{m\,m'+2} + \delta_{m\,m'-2}\right), \tag{70}$$

$$K_{mm'} = z \,\delta_{mm'} - \frac{1}{2} \,(\delta_{m\,m'+1} + \delta_{m\,m'-1}). \tag{71}$$

C. Vacuum Solution

Now,

$$U_m(z) = \bar{p}_m \,\hat{p}_{m-} \, P_{|m|-1/2}^{\,n}(z) \tag{72}$$

in the region $z < z_w$, whereas

$$U_m(z) = \bar{p}_m \,\hat{p}_{m+} \, P_{|m|-1/2}^n(z) + \bar{q}_m \,\hat{q}_{m+} \, Q_{|m|-1/2}^n(z) \tag{73}$$

in the region $z > z_w$. Let $\underline{\underline{I}}_p$ be the matrix of the

$$\left\{ \left[\left(\frac{1}{2} + z \frac{d}{dz} \right) \delta_{mm'} - \frac{1}{2} \frac{d}{dz} \left(\delta_{m\,m'+1} + \delta_{m\,m'-1} \right) \right] P_{|m'|-1/2}^{n}(z) \right\}_{z_{w}} \bar{p}_{m'} \tag{74}$$

values. Let $\underline{\underline{I}}_{q}$ be the matrix of the

$$\left\{ \left[\left(\frac{1}{2} + z \, \frac{d}{dz} \right) \delta_{mm'} - \frac{1}{2} \, \frac{d}{dz} \left(\delta_{m\,m'+1} + \delta_{m\,m'-1} \right) \right] Q_{|m'|-1/2}^{\,n}(z) \right\}_{z,w} \bar{q}_{m'} \tag{75}$$

values. Let $\underline{\underline{J}}_p$ be the matrix of the

$$\left\{ \left[\frac{5}{8} + \left(\frac{1}{2} + z^2 \right) \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \delta_{mm'} - z \left[\frac{1}{4} + \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{mm'+1} + \delta_{mm'-1} \right) + \left[-\frac{1}{16} + \frac{1}{4} \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{mm'+2} + \delta_{mm'-2} \right) \right\} P_{|m'|-1/2}^n(z_w) \bar{p}_{m'} \tag{76}$$

values. Let $\underline{\underline{J}}_q$ be the matrix of the

$$\left\{ \left[\frac{5}{8} + \left(\frac{1}{2} + z^2 \right) \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \delta_{mm'} - z \left[\frac{1}{4} + \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{m\,m'+1} + \delta_{m\,m'-1} \right) + \left[-\frac{1}{16} + \frac{1}{4} \left(m^2 + \frac{n^2}{z^2 - 1} \right) \right] \left(\delta_{m\,m'+2} + \delta_{m\,m'-2} \right) \right\} Q^n_{|m'|-1/2}(z_w) \bar{q}_{m'} \tag{77}$$

values. Finally, let $\underline{\underline{K}}$ be the matrix of the

$$z_w \, \delta_{mm'} - \frac{1}{2} \left(\delta_{m \, m'+1} + \delta_{m \, m'-1} \right) \tag{78}$$

values. Likewise, let \hat{p}_+ be the vector of the \hat{p}_{m+} values, et cetera. Thus, we obtain

$$\underline{\underline{I}}_{p}\,\underline{\hat{p}}_{-} = \frac{1}{\cosh\lambda} \left(\underline{\underline{I}}_{p}\,\underline{\hat{p}}_{+} + \underline{\underline{I}}_{q}\,\underline{\hat{q}}_{+} \right),\tag{79}$$

$$\underline{\underline{J}}_{p}\underline{\hat{p}}_{+} + \underline{\underline{J}}_{q}\underline{\hat{q}}_{+} = F(\lambda)\underline{\underline{K}}\left(\underline{\underline{I}}_{p}\underline{\hat{p}}_{+} + \underline{\underline{I}}_{q}\underline{\hat{q}}_{+}\right) + \frac{1}{\cosh\lambda}\underline{\underline{J}}_{p}\underline{\hat{p}}_{-},\tag{80}$$

which can be rearranged to give

$$\left[\tanh^{2}\lambda \underline{\underline{J}}_{p} - F(\lambda)\underline{\hat{I}}_{p}\right]\underline{\hat{p}}_{+} + \left[\underline{\underline{J}}_{pq} + \tanh^{2}\lambda \underline{\underline{J}}_{qp} - F(\lambda)\underline{\hat{I}}_{q}\right]\underline{\hat{q}}_{+}, \tag{81}$$

where

$$\underline{\hat{\underline{I}}}_p = \underline{\underline{K}} \, \underline{\underline{I}}_p, \tag{82}$$

$$\underline{\hat{\underline{I}}}_q = \underline{\underline{K}} \, \underline{\underline{I}}_q, \tag{83}$$

$$\underline{\underline{J}}_{pq} = \underline{\underline{J}}_{q} - \underline{\underline{J}}_{p} \underline{\underline{I}}_{p}^{-1} \underline{\underline{I}}_{q}, \tag{84}$$

$$\underline{\underline{J}}_{qp} = \underline{\underline{J}}_{p} \underline{\underline{I}}_{p}^{-1} \underline{\underline{I}}_{q}. \tag{85}$$

Now, $z_w \sim 1/\bar{b}_w$, where \bar{b}_w is the mean wall minor radius. In the large aspect-ratio limit $b_w \ll 1$, we have $\underline{\underline{I}}_p \sim \mathcal{O}(1)$, $\underline{\underline{I}}_q \sim \mathcal{O}(1)$, $\underline{\underline{J}}_p \sim \mathcal{O}(1/\bar{b}_w^2)$, $\underline{\underline{J}}_q \sim \mathcal{O}(1/\bar{b}_w^2)$, $\underline{\underline{K}}_p \sim \mathcal{O}(1/\bar{b}_w)$, and $\underline{\underline{K}}_q \sim \mathcal{O}(1/\bar{b}_w)$. It follows that $\underline{\underline{J}}_{pq} \sim \mathcal{O}(1/\bar{b}_w^2)$ and $\underline{\underline{J}}_{qp} \sim \mathcal{O}(1/\bar{b}_w^2)$. Thus, the ratio of the first to the second term multiplying \underline{p}_+ in Eq. (81) is

$$\tanh \lambda \, \frac{\bar{d}_w}{\lambda \, \bar{b}_w}.\tag{86}$$

However, the wall analysis is premised on the assumption that

$$\frac{\bar{d}_w}{\lambda \, \bar{b}_w} \ll 1. \tag{87}$$

Hence, the first term is negligible with respect to the second, irrespective of the value of λ . The ratios of the three terms multiplying \underline{q}_{+} in Eq. (81) are

$$\frac{\bar{d}_w}{\lambda \bar{b}_w}$$
, $\tanh^2 \lambda \frac{\bar{d}_w}{\lambda \bar{b}_w}$, $\tanh \lambda$. (88)

Thus, in the thin-shell limit $\lambda \ll 1$, the second term is negligible with respect to the first. In the thick-shell limit, $\lambda \gg 1$, the third term is dominant. Thus, we can neglect the second term. Hence, we deduce that

$$\underline{\hat{q}}_{+} = \underline{\underline{\mathcal{F}}}\,\underline{\hat{p}}_{+},\tag{89}$$

$$\underline{\underline{\mathcal{F}}} = \left[\underline{\underline{J}}_{pq} - F(\lambda)\,\underline{\hat{\underline{I}}}_{q}\right]^{-1}F(\lambda)\,\underline{\hat{\underline{I}}}_{p}.\tag{90}$$

III. PLASMA/VACUUM INTERFACE

A. Matching at Plasma/Vacuum Interface

The plasma/vacuum interface lies at $r = \epsilon$. In the vacuum region between the interface and the wall,

$$V(z,\eta) = \sum_{m} (z - \cos \eta)^{1/2} \left[\bar{p}_m \, \hat{p}_{m+} \, P_{|m|-1/2}^{\,n}(z) + \bar{q}_m \, \hat{q}_{m+} \, Q_{|m|-1/2}^{\,n}(z) \right] e^{-i \, m \, \eta}. \tag{91}$$

Thus, if we write

$$V(r,\theta) = \sum_{m} V_m(r) e^{i m \theta}, \qquad (92)$$

$$\psi(r,\theta) = \sum_{m} \psi_{m}(r) e^{i m \theta}, \qquad (93)$$

then

$$\underline{V} = \underline{\mathcal{P}}\,\hat{p}_{\perp} + \underline{\mathcal{Q}}\,\hat{q}_{\perp},\tag{94}$$

$$\underline{\psi} = \underline{\mathcal{R}}\,\hat{\underline{p}}_{+} + \underline{\mathcal{S}}\,\hat{\underline{q}}_{+},\tag{95}$$

where \underline{V} is the vector of the $V_m(\epsilon)$ values, $\underline{\psi}$ is the vector of the ψ_m values, $\underline{\underline{\mathcal{P}}}$ is the matrix of the

$$\mathcal{P}_{mm'} = \bar{p}_{m'} \oint_{r=\epsilon} (z - \cos \eta)^{1/2} P_{|m'|-1/2}^{n}(z) \exp[-i(m\theta + m'\eta)] \frac{d\theta}{2\pi}$$
 (96)

values, $\underline{\underline{\mathcal{Q}}}$ is the matrix of the

$$Q_{mm'} = \bar{q}_{m'} \oint_{z=\epsilon} (z - \cos \eta)^{1/2} Q_{|m'|-1/2}^{n}(z) \exp[-i(m\theta + m'\eta)] \frac{d\theta}{2\pi}$$
 (97)

values, $\underline{\underline{\mathcal{R}}}$ is the matrix of the

$$\mathcal{R}_{mm'} = \bar{p}_{m'} \oint_{r=\epsilon} \left\{ \left[\frac{1}{2} (z - \cos \eta)^{-1/2} P_{|m'|-1/2}^{n}(z) + (z - \cos \eta)^{1/2} \frac{dP_{|m'|-1/2}^{n}}{dz} \right] \mathcal{J} \nabla r \cdot \nabla z \right. \\
+ \left[\frac{1}{2} (z - \cos \eta)^{-1/2} \sin \eta - i m' (z - \cos \eta)^{1/2} \right] P_{|m'|-1/2}^{n}(z) \mathcal{J} \nabla r \cdot \nabla \eta \right\} \\
\times \exp[-i (m \theta + m' \eta)] \frac{d\theta}{2\pi} \tag{98}$$

values, and $\underline{\underline{\mathcal{S}}}$ is the matrix of the

$$S_{mm'} = \bar{q}_{m'} \oint_{r=\epsilon} \left\{ \left[\frac{1}{2} \left(z - \cos \eta \right)^{-1/2} Q^n_{|m'|-1/2}(z) + (z - \cos \eta)^{1/2} \frac{dQ^n_{|m'|-1/2}}{dz} \right] \mathcal{J} \nabla r \cdot \nabla z \right\}$$

$$+ \left[\frac{1}{2} (z - \cos \eta)^{-1/2} \sin \eta - i m' (z - \cos \eta)^{1/2} \right] Q_{|m'|-1/2}^{n}(z) \mathcal{J} \nabla r \cdot \nabla \eta$$

$$\times \exp[-i (m \theta + m' \eta)] \frac{d\theta}{2\pi}$$

$$(99)$$

Equations (89), (92), and (93) imply that

$$\underline{V} = \underline{H}\,\psi,\tag{100}$$

$$\underline{\underline{H}}(\underline{\underline{\mathcal{R}}} + \underline{\underline{\mathcal{S}}}\underline{\underline{\mathcal{F}}}) = \underline{\underline{\mathcal{P}}} + \underline{\underline{\mathcal{Q}}}\underline{\underline{\mathcal{F}}}.$$
(101)