2002 年"字振杯"上海市初中数学竞赛 答案

一、填空题

1、【答案】2或9

【解析】设"□"中数字为 a,那么五位数 20□02 的数值为 2×10000 +a×100+2=20002+a×100. 因为 20002 除以 7 的余数为 3,所有,要使得五位数 20□02 能被 7 整除,那么 a×100 除以 7 的余数必须为 4,而 0, 100, 200, 300,…,900 中,被 7 除余数为 4 的只有 200 和 2000,即 2000,所有,嵌入的数码"□"是 2 或 9.

$$2$$
、【答案】 $x < \frac{1-a}{1+a}$

【解析】已知
$$a^3 < a < a^2$$
,即
$$\begin{cases} a - a^2 = a(1 - a) < 0 \\ a^3 - a = a(a^2 - 1) < 0 \end{cases}$$

(1) 如果 a>0,上不等式组等价于
$$\begin{cases} a>0 \\ 1-a<0 \end{cases}$$
,即, $\begin{cases} a>0 \\ a>1 \end{cases}$ 。这是一个矛盾不等式组, $a^2-1<0$

所以,这种情况应舍去。

(2) 如果 a<0,上不等式组等价于
$$\begin{cases} a>0\\ 1-a>0 \end{cases}$$
,即, $\begin{cases} a<0\\ a<1 \end{cases}$,解得 a<-1 $a<-1$ 或 $a>1$

此时,不等式 x+a>1-ax 等价于(1+a) x>1-a,因为 a<-1,即 1+a<0,那么(1+a) x>1-a 等价于 $x<\frac{1-a}{1+a}$,所以,原不等式的解为 $x<\frac{1-a}{1+a}$

3、【答案】9

【解析】由纸片的折叠方式知,△A′BC≌△ABC,所以,过 A 点到 BC 的高等于过 A′点到 BC 的高,即△ABC 中 BC 上的高与△ADE 中 DE 上的高的比为-1:2,又因为 DE /BC, 所以,

 $\triangle ABC \hookrightarrow \triangle ADE$,由相似三角形的性质得 $\triangle ABC$ 的面积: $\triangle ADE$ 的面积= $\left(\frac{1}{2}\right)^2 = \frac{1}{4}$,从而,梯

形 BDEC 的面积为 \triangle ABC 面积的 3 倍。已知 AB=2,AC=3,所以, \triangle ABC 的面积为 $\frac{1}{2}$ × 2 × 3=3,从而,梯形 BDEC 的面积为 3×3=9.

4、【答案】-11<a<-9

5、【答案】221

【解析】已知 A (10,0)、B (0,10), 所以, 直线 AB 的方程为 y=-x+10

在 \triangle ABO 内,当一个点的横坐标为 1 时,如果这个点在直线 AB 上,那么这个点的纵坐标为 -1+10=9,所以,只要横坐标为 1,纵坐标大于等于 0 小于等于 9 的点都在 \triangle ABO 的内部或者 AB 边或者 AO 边上,共 10 个点,显然这些点均符合题意。

同理, 当一个点的横坐标为 2 时, 如果这个点在直线 AB 上, 那么这个点的纵坐标为-2+10=8, 所以, 只要横坐标为 2, 纵坐标大于等于 0 小于等于 8 的点都在 \triangle ABO 的内部或者 AB 边或者 AO 边上, 共 9 个点,显然这些点均符合题意。

• • •

当一个点的横坐标为 9 时,如果这个点在直线 AB 上,那么这个点的纵坐标为-9+10=1,所以,只要横坐标为 9,纵坐标大于等于 0 小于等于 1 的点都在 \triangle ABO 的内部或者 AB 边或者 AO 边上,共 2 个点,显然这些点均符合题意,当一个点的横坐标为 10 时,只有(10,0)点符合题意,所以,在 \triangle ABO 内,共有 10+9+8+····+1=11×5=55 个点符合题意。由正方形的对称性知, \triangle BOC, \triangle DOC, \triangle AOD 中各有 55 个点符合题意,显然,(0,0)点也符合题意。综上,符合题意的点共有 55×4+1=221 个。

6、【答案】
$$\frac{5}{12}$$

7、【答案】 √6

8、【答案】99

9、【答案】4

【解析】因为 x, y, z>0, 则(x+y)(y+z) =xy+yy+xz+yz=(x+y+z)y+yz令 (x+y+z) y=a,yz=b,则(x+y)(y+z) =xy+yy+xz+yz=(x+y+z)y+yz=a+b

又因为 $\frac{a+b}{2} \ge \sqrt{ab} = \sqrt{(x+y+z)xyz} = \sqrt{4} = 2$,所以,a+b 的最小值为 4,即(x+y)(y+z) 的最小值为 4.

【解析】令 $\sqrt[4]{x^2} = y$,则 $\sqrt{x^2} = y^2$,那么原方程等价于

$$y^2 + \frac{1}{2}y - \frac{1}{3} - a = 0 \quad (1)$$

已知原方程有两个不同的实数解,因为 $\sqrt[4]{x^2}$ =y,所以, $y^2 + \frac{1}{2}y - \frac{1}{3} - a = 0$ 必有一个实数根,未完

二、【解答】因为已知整系数二次方程有整数根,所以 \triangle =4p²-4(p²-5p-1)=4(5p+1)为完全平方。从而,5p+1 为完全平方,令 5p+1=n²,注意到 p \geqslant 2,故 n \geqslant 4,且 n 为整数,于是 5p= (n+1) (n-1)。则 n+1、n-1 中至少有一个是 5 的倍数,即 n=5k±1 (k 为正整数)。因此 5p+1=25k²±10k+1,p=k (5k±2),由 p 为质数,5k±2>1,知 k=1,p=3 或 7

当 p=3 时,已知方程变成 x^2 -6x-7=0,解得 x_1 =-1, x_2 =7;

当 p=7 时,已知方程变成 x^2 -14x+13=0,解得 x_1 =1, x_2 =13,所以 p=3 或 7.

三、【解答】(1)如图,

顶点 Z 在斜边 AB 上,取 XY 的中点 M,连 CM、ZM、CZ,并作边 AB 上的高 CN,则 $CZ \le CM + MZ = \frac{1}{2} XY + \frac{1}{2} XY = XY = \sqrt{2}$

又 $CN \le CZ$,所以 $CN \le \sqrt{2}$, $CA = \sqrt{2}$ $CN \le 2$.

(2)如图,

顶点 Z 在直角边 CA(或 CB)上,由对称性,不妨设 Z 在 CA 上,设 CX=x,CZ=y,并过 Y 作 YH \perp CA 于 H,易证 \triangle ZYH \cong \triangle XZC,得 HZ=CX=x,HY=CZ=y,又显然 \triangle AHY 为等腰三角形,则 AH=y,设 AC=b,则 2y+x=b,则 x=b-2y,在 \triangle CXZ 中,由勾股定理有 y²+(b-2y)²=1²,即 5y²-4by+b²-1=0,因为 y 为实数,则 \triangle =16b²-20(b²-1)=20-4b² \geqslant 0,b \leqslant $\sqrt{5}$,当 b= $\sqrt{5}$ 时,

$$y = \frac{2\sqrt{5}}{5}$$
, $x = \frac{\sqrt{5}}{5}$.

综合(1)、(2)知,b的最大值为 $\sqrt{5}$

四、【解答】(1) 若 7 个点中,有一点孤立(即它不与其他点连线),则剩下 6 点每 2 点必须连线,此时至少要连 15 条。

- (2) 若 7 点中,有一点只与另一点连线,则剩下 5 点每 2 点必须连线,此时至少要连 11 条。
- (3) 若每一点至少引出 3 条线段,则至少要连 $\frac{7\times 3}{2}$ 条线段,由于线段数为整数,故此时至 少要连 11 条。
- (4) 若每点至少引出 2 条线段,且确有一点(记为 A)只引出 2 条线段 AB、AC,则不与 A 相连的 4 点每 2 点必须连线,要连 $\frac{4\times3}{2}$ =6 条,由 B 引出的线段至少有 2 条,即除 BA 外海至少有一条,因此,此时至少要连 6+2+1=9 条。图中所给除的是连 6+2+1=9 条线的情况。综合(1)~(4),至少要连 9 条线段,才能满足要求。