9.3.4 加法器

透過組合邏輯的組合,可以進行相當複雜的運算邏輯,首先介紹加法器, 我們知道計算機可以執行很複雜的運算,但是其最基本的運算,卻是二進位的 相加,加法器能執行兩個一位元的相加,故該電路需二個輸入變數,即被加數 與加數;且由於執行結果會產生和(sum)及進位(carry),所以也需要二個 輸出函數。由於全加器的定義為:能執行三個一位元的相加,所以該電路具有 三個輸入變數,即被加數、加數與從前一級加法器送來的進位;而輸出仍為二 個函數,即三者相加之和及進位。

圖 9-10 加法器的電路圖。

列數		輸入	輸出		
	A_i	\mathbf{B}_{i}	C_{i-1}	C_{i}	S_i
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
_3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1 .	1	1

全加器之真值表

Sum	1	0	1	1	1	0	
В		1	1	0	1	1	
Α		1	0	0	1	1	
Carry	1	0	0	1	1		

圖 9-11 加法器的真值表與運算方式。