Lecture 1 — Functional Programming

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

CO2008 Functional Programming (In a nutshell)

• Write a program to add up the first n square numbers:

ssquares
$$n = 0 + 1^2 + 2^2 + ... + (n-1)^2 + n^2$$

• Clear **Haskell** solution:

```
ssquares :: Int -> Int
ssquares 0 = 0
ssquares n = n*n + sumSquares (n-1)
```

• Less clear, possibly incorrect **Java** solution:

```
public int ssquares(int n) {
private int s,i;
s=1; i=1;
while (i<n) { i = i+1;s = s+i*i; } }</pre>
```

 Key ideas (functions, types and recursion) lead to clear and succinct programs. It is good to have Haskell on your CV!

Overview of Lecture 1

From Imperative to Functional Programming:

- What is imperative programming?
- What is functional programming?

Key Ideas in Functional Programming:

- Types: Provide the data for our programs
- Functions: These are our programs!

• Advantages:

- Haskell code is typically short
- Haskell code is close to the algorithms used

• **Problem:** write a program to add up the first n square numbers

ssquares
$$n = 0 + 1^2 + 2^2 + \dots + (n-1)^2 + n^2$$

• Program: We could write the following in Java

```
public int ssquares(int n) {
  private int s,i;
  s=0; i=0;
     while (i<n) {i = i+1;s = s+i*i;}
}</pre>
```

• Execution: We may visualize running the program as follows

• **Key Idea:** Imperative programs transform the memory

The Two Aspects of Imperative Programs

- Functional Content: What the program achieves
 - Programs take some input values and return an output value
 - ssquares takes a number and returns the sum of the squares up to and including that number
- Implementational Content: How the program does it
 - Imperative programs transform the memory using variable declarations and assignment statements
 - ssquares uses variables i and s to represent locations in memory.
 The program transforms the memory until s contains the correct number.

What is Functional Programming?

- Motivation: Problems arise as programs contain two aspects:
 - High-level algorithms and low-level implementational features
 - Humans are good at the former but not the latter
- Idea: The idea of functional programming is to
 - Concentrate on the functional (I/O) behaviour of programs
 - Leave memory management to the language implementation
- **Summary:** Functional languages are more abstract and avoid low level detail.

• **Types:** First we give the type of summing-squares

```
hssquares :: Int -> Int
```

• Functions: Our program is a function

```
hssquares 0 = 0
hssquares n = n*n + hssquares (n-1)
```

• Evaluation: Run the program by expanding definitions

```
hssquares 3 \Rightarrow 3*3+ hssquares 2

\Rightarrow 9 + (2*2 + hssquares 1)

\Rightarrow 9 + (2*2 + (1*1 + hssquares 0)

\Rightarrow 9 + (4 + (1+0)) \Rightarrow 14
```

• Comment: No mention of memory in the code.

Key Ideas in Functional Programming I — Types

- Motivation: Recall from CO1003/4 that types model data.
- Integers: Int is the Haskell type $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- **String**: **String** is the Haskell type of lists of characters.
- Complex Datatypes: Can be made from the basic types, eg lists of integers.
- Built in Operations ("Functions on types"):
 - Arithmetic Operations: + * div mod abs
 - Ordering Operations: > >= == /= <= <</pre>

Reminder

- Arithmetic Operations: + * div mod abs
- div is the (Euclidean) division on integers. It is the process of division of two integers, which produces a quotient and a remainder. div outputs the quotient. 17 'div' 3 = 5. (back quote ')
- mod is the modulo operation on integers. It finds the remainder after division of one number by another (sometimes called modulus).
 5 'mod' 3 = 2, 8 'mod' 2 = 0.
- abs is the absolute value function on integers. It assigns x to a positive integer x and -x to a negative integer x.

```
abs (-1) = abs (1) = 1
```

• Intuition: Recall a function (or if you prefer method) $f: a \to b$ between sets associates to <u>every</u> input-value a <u>unique</u> output-value

$$x \in a \longrightarrow \boxed{ Function \ f } \xrightarrow{?} y \in b$$

• Example: The square and cube functions are written

• In General: In Haskell, functions are defined as follows

```
\langle \text{ function-name} \rangle :: \langle \text{ input type} \rangle -> \langle \text{ output type} \rangle
\langle \text{ function-name} \rangle \langle \text{ variable} \rangle = \langle \text{ expression} \rangle
```

• Intuition: A function f with n inputs is written f::a1->...->an->a

$$x_1 \in a_1 \longrightarrow x_2 \in a_2 \longrightarrow x_n \in a_n \longrightarrow$$
 Function $f \longrightarrow y \in a$

• Example: The "distance" between two integers

diff :: Int
$$\rightarrow$$
 Int \rightarrow Int diff x y = abs (x - y)

In General:

```
\langle \text{ function-name} \rangle :: \langle \text{ type } 1 \rangle -> \dots -> \langle \text{ type } n \rangle -> \langle \text{ output-type} \rangle
\langle \text{ function-name} \rangle \langle \text{ variable } 1 \rangle \dots \langle \text{ variable } n \rangle = \langle \text{ expression} \rangle
```

- Motivation: Get the result/output of a function by applying it to an argument/input
 - Write the function name followed by the input
- In General: Application is governed by the typing rule
 - If f is a function of type a->b, and e is an expression of type a,
 - then f e is the result of applying f to e and has type b
- **Key Idea:** Expressions are fragments of code built by applying functions to arguments.

```
square 4 square (3 + 1) square 3 + 1 cube (square 2) diff 6 7 square 2.2(?)
```

Key Ideas in Functional Programming IV — Evaluating Expressions

• More Expressions: Use back quotes ' to turn functions into infix operations and brackets () to turn infix operations into functions

```
5 * 4 (*) 5 4 \mod 13 4 13 \mod 4 5-(3*4) (5-3)*4 7 >= (3*3) 5 * (-1)
```

- Precedence: Usual rules of precedence and bracketing apply
- Example of Evaluation:

• The final outcome of an evalution is called a value

Summary — Comparing Functional and Imperative Programs

- **Difference 1:** Level of Abstraction
 - Imperative Programs include low level memory details
 - Functional Programs describe only high-level algorithms
- **Difference 2:** How execution works
 - Imperative Programming based upon memory transformation
 - Functional Programming based upon expression evaluation
- **Difference 3:** Type systems
 - Type systems play a key role in functional programming

Today You Should Have Learned ...

- Types: A type is a collection of data values
- Functions: Transform inputs to outputs
 - We build complex expressions by defining functions and applying them to other expressions
 - The simplest (evaluated) expressions are (data) values
- Evaluation: Calculates the result of applying a function to an input
 - Expressions can be evaluated to values by hand or by GHCi (the interpreter of the Glasgow Haskell Compiler)
- Now: Go and look at the first practical!

Lecture 2 — More Types and Functions

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

- New Types: Today we shall learn about the following types
 - The type of booleans: Bool
 - The type of characters: Char
 - The type of strings: String
 - The type of fractions: Float
- New Functions and Expressions: And also about the following functions
 - Conditional expressions and guarded functions
 - Error handling and local declarations

- Values of Bool: Contains two values True, False
- Logical Operations: Various built in functions

```
&& :: Bool -> Bool -> Bool
|| :: Bool -> Bool -> Bool
not :: Bool -> Bool
```

• **Example:** Define the exclusive-OR function which takes as input two booleans and returns **True** just in case they are different

```
exOr :: Bool -> Bool -> Bool
```

• Example: Maximum of two numbers

```
maxi :: Int -> Int -> Int
maxi n m = if n>=m then n else m
```

• Example: Testing if an integer is 0

```
isZero :: Int -> Bool
isZero x = if (x == 0) then True else False
```

• Conditionals: A conditional expression has the form

```
if b then e1 else e2
```

where

- b is an expression of type Bool
- e1 and e2 are expressions with the <u>same</u> type

• Example: doubleMax returns double the maximum of its inputs

• **Definition:** A guarded function is of the form

```
\label{eq:continuous_series} $$ \langle function-name \rangle :: \langle type \ 1 \rangle -> ... -> \langle type \ n \rangle -> \langle output \ type \rangle $$ $$ \langle function-name \rangle \langle var \ 1 \rangle ... \langle var \ n \rangle $$ $$ | \langle guard \ 1 \rangle = \langle expression \ 1 \rangle $$ $$ | ... = ... $$ | \langle guard \ m \rangle = \langle expression \ m \rangle $$ $$ where <math>\langle guard \ 1 \rangle, ..., \langle guard \ m \rangle :: Bool $$
```

- Elements of Char: Letters, digits and special characters
- Forming elements of Char: Single right quotes (apostrophes) form characters:

```
'd' :: Char '3' :: Char
```

• Functions: Characters have codes and conversion functions

```
chr :: Int -> Char ord :: Char -> Int
```

Erratum: use *import Data.Char* or *:module Data.Char* to import these goodies!

• Examples: Try them out! (Also try isDigit and digitToInt)

```
offset :: Int
offset = ord 'A' - ord 'a'
capitalize :: Char -> Char
capitalize ch = chr (ord ch + offset)
```

```
isLower :: Char -> Bool
isLower x = ('a' <= x) && (x <= 'z')</pre>
```

The String type

- Elements of String: Lists of characters
- Forming elements of String: Double quotes form strings

 "Newcastle Utd" "1a"
- Special Strings: Newline and Tab characters

```
"Super \n Alan" "1\t2\t3" putStr( "Super \n Alan")
```

• Combining Strings: Strings can be combined by ++

```
"Super " ++ "Alan " ++ "Shearer" = "Super Alan Shearer"
```

• Example: duplicate gives two copies of a string

- Elements of Float: Contains decimals, eg -21.3, 23.1e-2
- Built in Functions: Arithmetic, Ordering, Trigonometric
- Conversions: Functions between Int and String

```
ceiling, floor, round :: Float -> Int
fromIntegral :: Int -> Float
show :: Float -> String
read :: String -> Float
```

 Overloading: Overloading is when values/functions belong to several types

```
2 :: Int show :: Int -> String
2 :: Float show :: Float -> String
```

- Motivation: Informative error messages for run-time errors
- Example: Dividing by zero will cause a run-time error

```
myDiv :: Float -> Float
myDiv x y = x/y
```

• Solution: Use an error message in a guarded definition

• Execution: If we try to divide by 0 we get

```
Prelude > mydiv 5 0
Program error: Attempt to divide by 0
```

- Motivation: Functions will often depend on other functions
- Example: Summing the squares of two numbers

```
sq :: Int -> Int
sq x = x * x

sumSquares :: Int -> Int -> Int
sumSquares x y = sq x + sq y
```

- Problem: Such definitions clutter the top-level environment
- Answer: Local definitions allow auxiliary functions

• Quadratic Equations: The solutions of $ax^2 + bx + c = 0$ are

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• Types: Our program will have type

```
roots :: Float -> Float -> String
```

• Guards: There are 4 cases to check so use a guarded definition

• Code: Now we can add in the answers

- **Problem:** This program uses several expressions repeatedly
 - Being cluttered, the program is hard to read
 - Similarly the program is hard to understand
 - Repeated evaluation of the same expression is inefficient

• Local decs: Expressions used repeatedly are made local

Today You Should Have Learned

- **Types:** We have learned about Haskell's basic types. For each type we learned
 - Its basic values (elements)
 - Its built in functions
- Expressions: How to write expressions involving
 - Conditional expressions and Guarded functions
 - Error Handling and Local Declarations

Lecture 3 — New Types from Old

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

- Building New Types: Today we will learn about the following compound types
 - Pairs
 - Tuples
 - Type Synonyms
- **Describing Types:** As with basic types, for each type we want to know
 - What are the values of the type
 - What expressions can we write and how to evaluate them

From simple data values to complex data values

- Motivation: Data for programs modelled by values of a type
- Problem: Single values in basic types too simple for real data
- Example: A point on a plane can be specified by
 - A number for the x-coordinate and another for the y-coordinate
- Example: A person's complete name could be specified by
 - A string for the first name and another for the second name
- Example: The performance of a football team could be
 - A string for the team and a number for the points

New Types from Old I — Pair Types and Expressions

- Examples: For instance
 - The expression (5,3) has type (Int, Int)
 - The name ("Alan", "Shearer") has type (String, String)
 - The performance ("Newcastle", 22) has type (String, Int)
- Question: What are the values of a pair type?
- Answer: A pair type contains pairs of values, ie
 - If e1 has type a and e2 has type b
 - Then (e1,e2) has type (a,b)

- Types: Pair types can be used as input and/or output types
- Examples: The built in functions fst and snd are vital

```
fst :: (a,b) -> a
fst (x,y) = x

winUpdate :: (String,Int) -> (String,Int)
winUpdate (x,y) = (x,y+3)

movePoint :: Int -> Int -> (Int,Int) -> (Int,Int)
movePoint m n (x,y) = (x+m,y+n)
```

- **Key Idea:** If input is a pair-type, use $(\langle var1 \rangle, \langle var2 \rangle)$ in definition
- **Key Idea:** If output is a pair-type, result is often $(\langle exp1 \rangle, \langle exp2 \rangle)$

New Types from Old II — Tuple Types and Expressions

- Motivation: Some data consists of more than two parts
- Example: Person on a mailing list
 - Specified by name, telephone number, and age
 - A person p on the list can have type (String, Int, Int)
- Idea: Generalise pairs of types to collections of types
- Type Rule: Given types a1,...,an, then (a1,...,an) is a type
- Expression Formation: Given expressions e1::a1, ..., en::an, then

$$(e1,\ldots,en)$$
 : $(a1,\ldots,an)$

• Example 1: Write a function to test if a customer is an adult

```
isAdult :: (String,Int,Int) -> Bool
isAdult (name, tel, age) = (age >= 18)
```

• Example 2: Write a function to update the telephone number

```
updateMove :: (String,Int,Int) -> Int -> (String,Int,Int)
```

• Example 3: Write a function to update age after a birthday

```
updateAge :: (String,Int,Int) -> (String,Int,Int)
```

General Definition of a Function: Patterns with Tuples

• **Definition:** Functions now have the form

```
<function-name> :: <type 1> -> ... -> <type n> -> <out-type> <function-name> <pat 1> ... <pat n> = <exp out>
```

- Patterns: Patterns are
 - Variables x: Use for any type
 - Constants 0, True, 'cherry': Definition by cases
 - Tuples (x,...,z): If the argument has a tuple-type
 - Wildcards _: If the output doesn't use the input
- In general: Use several lines and mix patterns.

• Example: Using values and wildcards

```
isZero :: Int -> Bool
isZero 0 = True
isZero _ = False
```

• Example: Using tuples and multiple arguments

```
expand :: Int \rightarrow (Int,Int) \rightarrow (Int,Int,Int) expand n (x,y) = (n, n*x, n*y)
```

• Example: Days in the month

```
days :: String -> Int -> Int
days "January" year = 31
days "February" year = if isLeap year then 29 else 28
days "March" year = 31
.....
```

- Motivation: More descriptive names for particular types.
- **Definition:** Type synonyms are declared with the keyword type.

```
type Team = String
type Goals = Int
type Match = ((Team,Goals), (Team,Goals))
numu :: Match
numu = (("Newcastle", 4), ("Manchester Utd", 3))
```

• Functions: Types of functions are more descriptive, same code

```
homeTeam :: Match -> Team
totalGoals :: Match -> Goals
```

Today You Should Have Learned

- **Tuples:** Collections of data from other types
- Pairs: Pairs, triples etc are examples of tuples
- Type synonyms: Make programs easier to understand
- Pattern Matching: General description of functions covering definition by cases, tuples etc.
- Pitfall! What is the difference between

```
addPair :: (Int,Int) -> Int
addPair (x,y) = x + y

addTwo :: Int -> Int -> Int
addTwo x y = x + y
```

Lecture 4 — List Types

Fer-Jan de Vries

Department of Informatics University of Leicester

March 16, 2021

Overview of Lecture 4 — List Types

- **Lists:** What are lists?
 - Forming list types
 - Forming elements of list types
- Functions over lists: Some old friends, some new friends
 - Functions from CO1003/4: cons, append, head, tail
 - Some new functions: map, filter
- Clarity: Unlike Java, Haskell treatment of lists is clear
 - No list iterators!

- Example 1: [3, 5, 14] :: [Int] and [3, 4+1, double 7] :: [Int]
- Example 3: ['d','t','g'] :: [Char]
- Example 4: [['d'], ['d','t'], ['d','t','g']] :: [[Char]]
- Example 5: [double, square, cube] :: [Int -> Int]
- Empty List: The empty list is [] and belongs to all list types
- List Expressions: Lists are written using square brackets [....]
 - If e1,..., en are expressions of type a
 - Then [e1, ..., en] is an expression of type [a]

• Cons: The cons function: adds an element to a list

Append: Append joins two lists together

```
++ :: [a] -> [a] -> [a]

[True, True] ++ [False] = [True, True, False]
[1,2] ++ ([3] ++ [4,5]) = [1,2,3,4,5]
([1,2] ++ [3]) ++ [4,5] = [1,2,3,4,5]
[] ++ [54.6, 67.5] = [54.6, 67.5]
[6,5] ++ (4 : [7,3]) = [6,5,4,7,3]
```

• **Head and Tail:** Head gives the first element of a list, tail the remainder

```
head [double, square] = double
head ([5,6]++[6,7]) = 5

tail [double, square] = [square]
tail ([5,6]++[6,7]) = [6,6,7]
```

• Length and Sum: The length of a list and the sum of a list of integers

length (tail
$$[1,2,3]$$
) = 2
sum $[1+4,8,45]$ = 58

• Sequences: The list of integers from 1 to n is written

String is actually a list type

- **Note:** The type **String** is a type synonym for [Char].
- Hence we can use list notation on strings: eg.

```
head "abcdef" = 'a'
tail "abcdef" = "bcdef"

"Fer"++"-Jan" = "Fer-Jan"

"abcd"= 'a':"bcd"
```

Two New Functions — Map And Filter

- Map: Map is a function which has two inputs.
 - The first input is a function eg f
 - The second is a list eg [e1,e1,e3]

The output is the list obtained by applying the function to every element of the input list eg [f e1, f e2, f e3]

- Filter: Filter is a function which has two inputs.
 - The first is a test, ie a function returning a Bool.
 - The second is a list

The output is the list of elements of the input list which the function maps to True, ie those elements which pass the test.

• Even Numbers: The even numbers less than or equal to n

```
- evens::Int->[Int]
```

• Solution 1 — Using filter.

• Solution 2 — Using map

Today You Should Have Learned

- **Types:** We have looked at list types
 - What list types and list expressions looks like
 - What built in functions are available

New Functions:

- Map: Apply a function to every member of a list
- Filter: Delete those that don't satisfy a property or test
- Algorithms: Develop an algorithm by asking
 - Can I solve this problem by applying a function to every member of a list or by deleting certain elements.

Lecture 5 — List Comprehensions

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

• Recall Map: Map is a function which has two inputs.

map add2
$$[2, 5, 6] = [4, 7, 8]$$

• Recall Filter: Filter is a function which has two inputs.

filter is Even
$$[2, 3, 4, 5, 6, 7] = [2, 4, 6]$$

Both Map and Filter essentially construct new lists from old lists.

- List comprehension: An alternative way of constructing lists
 - Definition of list comprehension
 - Comparison with map and filter

• Example 1: If xs = [2,4,7] then

$$[2*x | x < -xs] = [4,8,14]$$

• Example 2: If isEven :: Int->Bool tests for even-ness

```
[ isEven x | x <- xs ] = [True,True,False]
```

• In General: (Simple) list comprehensions are of the form

- Evaluation: The meaning of a list comprehension is
 - Take each element of list-exp, evaluate the expression exp for each element and return the results in a list.

• Example 1: A function which doubles a list's elements

```
double :: [Int] -> [Int]
```

• Example 2: A function which tags an integer with its evenness

```
isEvenList :: [Int] -> [(Int,Bool)]
```

• Example 3: A function to add pairs of numbers

```
addpairs :: [(Int,Int)] -> [Int]
```

• In general: map f 1 = [f x | x < -1]

- Intuition: List Comprehension can also select elements from a list
- Example: We can select the even numbers in a list

```
[ e | e <- 1, isEven e]
```

• Example: Selecting names beginning with A

```
names :: [String] -> [String]
names l = [ e | e <- l , head e == 'A' ]</pre>
```

Example: Combining selection and applying functions

```
doubleEven :: [Int] -> [Int]
doubleEven l =[ 2*e | e <- l , isEven e ]</pre>
```

• In General: These list comprehensions are of the form

```
[ \langle \exp \rangle | \langle \text{variable} \rangle \leftarrow \langle \text{list-exp} \rangle, \langle \text{test} \rangle ]
```

• Example: In fact, we can use several tests — if 1 = [2,5,8,10]

```
[2*e \mid e < -1, isEven e, e>3] = [16,20]
```

• **Key Example:** Cartesian product of two lists is a list of all pairs, such that for each pair, the first component comes from the first list and the second component from the second list.

Removing Duplicates

- **Problem:** Given a list remove all duplicate entries
- Algorithm: Given a list,
 - Keep first element
 - Delete all occurrences of the first element
 - Repeat the process on the tail
- Code:

Today You Should Have Learned

- List Types: We have looked at list types
 - What list types and list expressions looks like
 - What built in functions are available
- List comprehensions: Like filter and map. They allow us to
 - Select elements of a list
 - Delete those that dont satisfy certain properties
 - Apply a function to each element of the remainder

Lecture 6 — Recursion over Natural Numbers

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

Overview of Lecture 6

- Recursion: General features of recursion
 - What is a recursive function?
 - How do we write recursive functions?
 - How do we evaluate recursive functions?
- Recursion over Natural Numbers: Special features
 - How can we guarantee evaluation works?
 - Recursion using patterns.
 - Avoiding negative input.

• Example: Adding up the first n squares

hssquares
$$n = 1^2 + ... + (n-1)^2 + n^2$$

• **Types:** First we give the type of summing-squares

```
hssquares :: Int -> Int
```

• **Definitions:** Our program is a function

```
hssquares 0 = 0
hssquares n = n*n + hssquares (n-1)
```

• **Key Idea:** hssquares is recursive as its definition contains hssquares in a right-hand side — the function name "recurs".

General Definitions

- Definition: A function is recursive if the name recurs in its definition.
- Intuition: You will have seen recursion in action before
 - Imperative procedures which call themselves
 - Divide-and-conquer algorithms
- Why Recursion: Recursive definitions tend to be
 - Shorter, more understandable and easier to prove correct
 - Compare with a non-recursive solution

nrssquares
$$n = n * (n+0.5) * (n+1)/3$$

• Example 1: Let's calculate hssquares 4

```
hssquares 4 \Rightarrow 4*4 + hssquares 3

\Rightarrow 16 + (3*3 + hssquares 2)

...

\Rightarrow 16 + (9 + ... (1 + hssquares 0))

\Rightarrow 16 + (9 + ... (1 + 0)) \Rightarrow 30
```

• Example 2: Here is a non-terminating function

```
mydouble n = n + mydouble (n/2)

mydouble 4 \Rightarrow 4 + mydouble 2

\Rightarrow 4 + 2 + mydouble 1

\Rightarrow 4 + 2 + 1 + mydouble 0.5 \Rightarrow .....
```

• Question: Will evaluation stop?

Problems with Recursion

- Questions: There are some outstanding problems
 - 1. Is hssquares defined for every number?
 - 2. Does an evaluation of a recursive function always terminate?
 - 3. What happens if hssquares is applied to a negative number?
 - 4. Are these recursive definitions sensible: f n = f n, g n = g (n+1)
- Answers: Here are the answers
 - 1. Yes: The variable pattern matches every input.
 - 2. Not always: See examples.
 - 3. Trouble: Evaluation doesn't terminate.
 - 4. No: Why not?

Primitive Recursion over Natural Numbers

- Motivation: Restrict definitions to get better behaviour
- Idea: Many functions defined by three cases
 - A non-recursive call selected by the pattern 0
 - A recursive call selected by the pattern n
 - The error case deals with negative input
- Example Our program now looks like

• Example 1: star uses recursion over Int to return a string

```
star :: Int -> String
star 0 = []
star n
   | n>0 = '*' : star (n-1)
   | n<0 = error ''Negative input''</pre>
```

• Example 2: power is recursive in its second argument

• In General: Use the following style of definition

- Evaluation: Termination guaranteed!
 - If the input evaluates to 0, evaluate $\langle \exp 1 \rangle$
 - If not, if the input is greater than 0, evaluate $\langle \exp 2 \rangle$
 - If neither, return the error message

- **Problem:** Produce a table for perf :: Int -> (String, Int) where perf 1 = ("Arsenal",4) etc.
- Stage 1: We need some headings and then the actual table

• Stage 2: Convert each "row" to a string, recursively.

```
rows :: Int -> String
rows 0 = .....
rows n
| n > 0 = .....
| n < 0 = .....
```

Fer-Jan de Vries Leicester, March 16, 2021 • Base Case: If we want no entries, then just return []

$$rows 0 = []$$

- Recursive Case: Convert n-rows by
 - recursively converting the first n-1-rows, and
 - adding on the n-th row
- Code: Code for the recursive call

```
perf :: Int -> (String,Int)
perf 1 = ("Arsenal",4)
perf 2 = ("Notts",5)
perf 3 = ("Chelsea",7)
perf n = error "perf out of range"
rows :: Int -> String
rows n
  n=0 = 1
  | n>1 = rows (n-1) ++ fst(perf n) ++ "\t "
                 ++ show(snd(perf n)) ++ "\n"
  | n < 0 = error"rows out of range"
printTable :: Int -> IO()
printTable numberTeams = putStr(header ++ rows numberTeams)
                         where
                         header = "Team\t\t Points\n"
```

Today You Should Have Learned

- **Recursion:** Allows new functions to be written.
 - Advantages: Clarity, brevity, tractability
 - Disadvantages: Evaluation may not stop
- Primitive Recursion: Avoids bad behaviour of some recursive functions
 - The value at 0 is non-recursive
 - Each recursive call uses a smaller input
 - An error-clause catches negative inputs
- **Algorithm:** Ask yourself, what needs to be done to the recursive call to get the answer.

Lecture 7 — Recursion over Lists

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

Overview of Lecture 7

- Lists: Another look at lists
 - Lists are a recursive structure
 - Every list can be formed by [] and :
- List Recursion: Primitive recursion for Lists
 - How do we write primitive recursive functions
 - Examples ++, length, head, tail, take, drop, zip
- Avoiding Recursion?: List comprehensions revisited

Recursion over lists

- Question: This lecture is about the following question
 - We know what a recursive function over Int is
 - What is a recursive function over lists?
- Answer: In general, the answer is the same as before
 - A recursive function mentions itself in its definition
 - Evaluating the function may reintroduce the function
 - Hopefully this will stop at the answer

- **Recall:** The two basic operations concerning lists
 - The empty list []
 - The cons operator (:) :: a -> [a] -> [a]
- **Key Idea:** Every list is either empty, or of the form x:xs

```
[2,3,7] = 2:3:7:[] [True, False] = True:False:[]
```

- **Recursion:** Define recursive functions using the scheme
 - Non-recursive call: Define the function on the empty list []
 - Recursive call: Define the function on (x:xs) by using the function only on xs

• Example 1: Doubling every element of an integer list

```
double :: [Int] -> [Int]
double [] = []
double (x:xs) = (2*x) : double xs
```

• Example 2: Selecting the even members of a list

• Example 3: Flattening some lists

```
flatten :: [[a]] -> [a]
flatten [] = []
flatten (x:xs) = x ++ flatten xs
```

• **Definition:** Primitive Recursive List Functions are given by

```
\begin{array}{lll} & \langle \text{function-name} \rangle \; [] & = \langle \text{expression 1} \rangle \\ & \langle \text{function-name} \rangle \; (\text{x:xs}) \; = \; \langle \text{expression 2} \rangle \end{array} where \begin{array}{lll} \langle \text{expression 1} \rangle & \text{does not contain} & \langle \text{function-name} \rangle \\ & \langle \text{expression 2} \rangle & \text{may contain expressions} & \langle \text{function-name} \rangle \; \text{xs} \end{array}
```

• Compare: Very similar to recursion over Int

```
\langle \text{function-name} \rangle 0 = \langle \text{expression } 1 \rangle
\langle \text{function-name} \rangle n = \langle \text{expression } 2 \rangle
```

where

```
⟨expression 1⟩ does not contain ⟨function-name⟩
⟨expression 2⟩ may contain expressions ⟨function-name⟩ (n-1)
```

• Example 4: Append is defined recursively

• Example 5: Testing if an integer is an element of a list

• Example 6: Reversing a list

```
reverse :: [a] -> [a]
```

• Mapping: Applying a function to every member of the list

```
double [2,3,72,1] = [2*2, 2*3, 2*72, 2*1]
isEven [2,3,72,1] = [True, False, True, False]
```

• Filtering: Selecting particular elements

onlyEvens
$$[2,3,72,1] = [2,72]$$

- Taking Lists Apart: head, tail, take, drop
- Combining Lists: zip
- Folding: Combining the elements of the list

sumList
$$[2,3,7,2,1] = 2 + 3 + 7 + 2 + 1$$

• Recall: List comprehensions look like

```
[\langle \exp \rangle \mid \langle \text{variable} \rangle \leftarrow \langle \text{list-exp} \rangle, \langle \text{test} \rangle]
```

- Intuition: Roughly speaking this means
 - Take each element of the list (list-exp)
 - Check they satisfy (test)
 - Form a list by applying $\langle \exp \rangle$ to those that do
- **Idea:** Equivalent to filtering and then mapping. As these are recursive, so are list comprehensions although the recursion is hidden

Today You Should Have Learned

- List Recursion: Lists are recursive data structures
 - Hence, functions over lists tend to be recursive
 - But, as before, general recursion is badly behaved
- Primitive List Recursion: Similar to natural numbers
 - A non-recursive call using the pattern []
 - A recursive call using the pattern (x:xs)
- List comprehension: An alternative way of doing some recursion

Lecture 8 — More Complex Recursion

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

- **Problem:** Our restrictions on recursive functions are too severe
- Solution: New definitional formats which keep termination
 - Using new patterns
 - Generalising the recursion scheme
- Examples: Applications to integers and lists
- **Sorting Algorithms:** What is a sorting algorithm?
 - Insertion Sort, Quicksort and Mergesort

- Recall: Our primitive recursive functions follow the scheme
 - Base Case: Define the function non-recursively at 0
 - Inductive Case: Define the function at positive n in terms of the function at (n-1)

```
\left(function-name) 0= \left(\exp 1\right)
\left(function-name) n
| n>0 = \left(\exp 2\right)
| n<0 = \text{error}\left(\message)</pre>
```

where

```
\begin{array}{lll} \langle \texttt{expression 1} \rangle & \texttt{does not contain} & \langle \texttt{function-name} \rangle \\ \langle \texttt{expression 2} \rangle & \texttt{may contain} & \langle \texttt{function-name} \rangle & \texttt{applied to n} \end{array}
```

 But some functions do not fit this scheme and require more complex patterns • **Example:** The first Fibonacci numbers are 0,1. For each subsequent Fibonacci number, add the previous two together

• **Problem:** The following does not terminate on input 1

```
fib 0 = 0
fib n = fib (n-1) + fib (n-2)
```

• Solution: Second base case!

```
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
```

To be more precise add error message in case (n < 0). Otherwise the funtion will not terminate at negative input.

- Recall: Our primitive recursive functions follow the pattern
 - Base Case: Defines the function at [] non-recursively
 - Inductive Case: Defines the function at (x:xs) in terms of the function at xs

```
\langle \text{function-name} \rangle [] = \langle \text{exp 1} \rangle
\langle \text{function-name} \rangle (x:xs) = \langle \text{exp 2} \rangle
```

where

```
\langle expression 1 \rangle does not contain \langle function-name \rangle
\langle expression 2 \rangle may contain \langle function-name \rangle applied to xs
```

 Motivation: As with integers, some functions don't fit this shape

More General Patterns for Lists

- **Recall:** With integers, we used more general patterns.
- Idea: Use (x:(y:xs)) pattern to access first two elements
- Example: We want a function to delete every second element

```
delete [2,3,5,7,9,5,7] = [2,5,9,7]
```

• **Solution**: Here is the code

```
delete :: [a] -> [a]
delete [] = []
delete [x] = [x]
delete (x:(y:xs)) = x : delete xs
```

• Example: To delete every third element use pattern (x:(y:(z:xs)))

• Example 1: Summing pairs in a list of pairs

```
sumPairs :: [(Int,Int)] -> Int
```

• Example 2: Unzipping lists unZip :: [(a,b)] -> ([a],[b])

• **Problem:** A sorting algorithm rearranges a list in order

```
sort [2,7,13,5,0,4] = [0,2,4,5,7,13]
```

- Recursion: Such algorithms usually recursively sort a smaller list
- **Insertsort Alg:** To sort a list, sort the tail recursively, and then insert the head
- Code:

```
inssort :: [Int] -> [Int]
inssort [] = []
inssort (x:xs) = insert x (inssort xs)
```

where insert puts the number x in the correct place

- Patterns: Insert takes two arguments, number and list
 - The recursion for insert doesn't depend on the number
 - The recursion for insert does depend on whether the list is empty or not — use the [] and (x:xs) patterns
- Code: Here is the final code

• Quicksort Alg: Given a list 1 and a number n in the list

```
sort 1 = sort those elements less than n + +
number of occurrences of n + +
sort those elements greater than n
```

• Code: The algorithm may be coded

```
where less, occs, more are auxiliary functions

Alternative: write x: occs x xs instead of occs x (x:xs)
```

- Problem: The auxiliary functions can be specified
 - less takes a number and a list and returns those elements of the list less than the number
 - occs takes a number and a list and returns the occurrences of the number in the list
 - more takes a number and a list and returns those elements of the list more than the number
- Code: Using list comprehensions gives short code

```
less, occs, more :: Int -> [Int] -> [Int]
less n xs = [x | x <- xs, x < n]
occs n xs = [x | x <- xs, x == n]
more n xs = [x | x <- xs, x > n]
```

- Mergesort Alg: Split the list in half, recursively sort each half and merge the results
- Code: Overall function reflects the algorithm

where merge combines two sorted lists

- Recursion Schemes: We've generalised the recursion schemes to allow more functions to be written
 - More general patterns
 - Recursive calls to ANY smaller value
- Examples: Applied them to recursion over integers and lists
- **Sorting Algorithms:** We've put these ideas into practice by defining three sorting algorithms
 - Insertion Sort
 - QuickSort
 - MergeSort

Lecture 8.5 — Interlude JavaScript

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

- Clickable links to background information
 - https://en.wikipedia.org/wiki/Node.js
 - https://en.wikipedia.org/wiki/JavaScript
- The official JavaScript language specification (June 2017)
 https://www.ecma-international.org/ecma-262/8.0/
- pointers to syntax and language definition
 - https://javascript.info/
 - https://developer.mozilla.org/en-US/docs/Web/JavaScript
 - https://www.w3schools.com/js/

Several methods:

- Use the developer console of Chrome browser (press F12)
 Try to type alert("I'm JavaScript!"); in the console
- From terminal (linux): js file.js
- From within an html file https://www.w3schools.com/js/

```
function fibonacci(num) {
    if (num <= 1) return 1;
    return fibonacci(num - 1) + fibonacci(num - 2);
}</pre>
```

Note the hidden double base case!

- Become familiar with the following
 - JavaScript Fundamentals
 - Functions in JavaScript Fundamentals
 - Arrays in Data Types
 - Advanced working with functions in The JavaScript language
 This explains difference between iterative thinking (for loops) and recursive thinking.

Recommendation: "Recursion gives usually shorter code."

- Arrays in Data Types
- Beware of differences in seemingly analogous array concepts in Haskell - JavaScript
 - H: all elements of array must have same type; J: an array can store elements of any type.
 - nth element of list: H list !! n; J list[n]
 - length of list: H length list; J list.length
 - head of list: H head list; J list.shift()
 - add new element to list: H a:list; J list.unshift(a) (use alert to show the change)

- last of list: H last list; J list.unshift()
- Challenge: try to code the Phonebook question of Worksheet2 in JavaScript!
- Challenge: try to code the sorting algorithms in JavaScript!

Lecture 9 — Higher Order Functions

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

Overview of Lecture 9

- Motivation: Why do we want higher order functions
- **Definition:** What is a higher order function
- Examples:
 - Mapping: Applying a function to every member of a list
 - Filtering: Selecting elements of a list satisfying a property
- Application: Higher order sorting algorithms

• Example 1: A function to double the elements of a list

```
doubleList :: [Int] -> [Int]
doubleList [] = []
doubleList (x:xs) = (2*x) : doubleList xs
```

• Example 2: A function to square the elements of a list

```
squareList :: [Int] -> [Int]
squareList [] = []
squareList (x:xs) = (x*x) : squareList xs
```

• Example 3: A function to increment the elements of a list

```
incList :: [Int] -> [Int]
incList [] = []
incList (x:xs) = (x+1) : incList xs
```

- **Problem:** Three separate definitions despite a clear pattern
- Intuition: Examples apply a function to each member of a list

```
function :: Int -> Int

functionList :: [Int] -> [Int]
functionList [] = []
functionList (x:xs) = (function x) : functionList xs
```

where in our previous examples function is

double square inc

• **Key Idea:** Make auxiliary function function an input

• The Idea Coded:

```
map f [] = []
map f (x:xs) = (fx) : map f xs
```

- Advantages: There are several advantages
 - Shortens code as previous examples are given by

```
doubleList xs = map double xs
squareList xs = map square xs
incList xs = map inc xs
```

- Captures the algorithmic content and is easier to understand
- Easier code-modification and code re-use

A Definition of Higher Order Functions

- Question: What is the type of map?
 - First argument is a function
 - Second argument is a list whose elements have the same type and the input of the function.
 - Result is a list whose elements are the output type of the function.
- Answer: So overall type is map :: (a -> b) -> [a] -> [b]
- **Definition:** A function is higher-order if an input is a function.
- Another Example: Type of filter is

```
filter :: (a -> Bool) -> [a] -> [a]
```

• Idea: Recall our implementation of quicksort

- Polymorphism: Quicksort requires an order on the elements:
 - The output list depends upon the order on the elements
 - This requirement is reflected in type class information Ord a
 - Don't worry about type classes as they are beyond this course

- Example: Games tables might have type [(Team, Points)]
- **Problem:** How can we order the table?

```
Arsenal 16
AVilla 16
Derby 10
Birm. 4
```

• Solution: Write a new function for this problem

```
tSort [] = []
tSort (x:xs) = tSort less ++ [x] ++ tSort more
where more = [e| e<-xs, snd e > snd x]
less = [e| e<-xs, snd e < snd x]
```

What did we assume here?

- Motivation: But what if we want other orders, eg
 - Sort teams in order of names, not points
 - Sort on points, but if two teams have the same points, compare names
- **Key Idea:** Make the comparison a parameter of quicksort

- **Key Idea:** To use a higher order sorting algorithm, use the required order to define the function to *sort by*
- Example 1: To sort by names

```
ord (t, p) (t', p') = t < t'
```

• Example 2: To sort by points and then names

```
ord (t, p) (t', p') = (p < p') || (p == p' && t < t')
```

What should we assume about ord?

- **Higher Order Functions:** Functions which takes functions as input
 - Facilitates code reuse and more abstract code
 - Many list functions are either map, filter or fold
- HO Sorting: An application of higher order functions to sorting
 - Produces more powerful sorting
 - Order of resulting list determined by a function
 - Lexicographic order allows us to try one order and then another

Lecture 10 — (Parametric) Polymorphism

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

- Motivation: Some examples leading to polymorphism
- **Definition:** What is *parametric* polymorphism?
 - What is a polymorphic type?
 - What is a polymorphic function?
 - Polymorphism and higher order functions
 - Applying polymorphic functions to polymorphic expressions

• Example: Let us define the length of a list of integers

```
mylength :: [Int] -> Int
mylength [] = 0
mylength (x:xs) = 1 + mylength xs
```

• **Problem:** We want to evaluate the length of a list of characters

```
Prelude> mylength ['a', 'g']
ERROR: Type error in application
*** expression : mylength ['a', 'g']
*** term : ['a', 'g']
*** type : [Char]
*** does not match : [Int]
```

• **Solution:** Define a new length function for lists of characters ... but this is not very efficient!

- **Better Solution:** The algorithm's input depends on the list type, but not on the type of integers.
- **Idea:** An alternative approach to typing mylength
 - There is one input and one output: mylength :: a -> b
 - The output is an integer: mylength :: a -> Int
 - The input is a list: mylength :: [c] -> Int
 - There is nothing more to infer from the code of mylength so

This is an efficient function - works at all list types!

- **Types**: Now we will deal with the following types:
 - Basic, built in types: Int, Char, Bool, String, Float
 - Type variables representing any type: a, b, c, ...
 - Types built with type constructors: [], ->, (,)

```
[Int] a\rightarrow a \rightarrow b \rightarrow Bool (String, a\rightarrow a) [a\rightarrow Bool]
```

Some Definitions

- Polymorphism is the ability to appear in different forms
- **Definition:** A type is *parametric polymorphic* iff it contains type variables (that is, type parameters).
- **Definition:** A function is *parametric polymorphic* iff it can be called on different types of input, and it is implemented by (code for) a single algorithm
- **Definition:** A function is *overloaded* iff it can be called on different types of input, and for each type of input, the function is implemented by (code for) a particular algorithm.
- **Examples:** Of overloading are the arithmetic operators: integer and floating-point addition.

Polymorphic Expressions

- **Key Idea:** Expressions have many types
 - Amongst these is a principle type
- Example: What is the type of id x = x
 - id sends an integer to an integer. So id :: Int -> Int
 - id sends a list of type a to a list of type a. So id::[a]->[a]
 - id sends an expression of type b to an expression of type b.
 So id::b->b
- Principle Type: The last type includes the previous two why?
 - In fact the principal type of id is id::b->b why?

• Example 1: What is the type of map

```
map f [] = []
map f (x:xs) = f x : map f xs
```

• Example 2: What is the type of filter

```
filter f [] = []
filter f (x:xs) = if f x then x:filter f xs else filter f xs
```

• Example 1: What is the type of map

```
map :: (a->b)->[a]->[b]
map f [] = []
map f (x:xs) = f x : map f xs
```

• Example 2: What is the type of filter

```
filter :: (a->Bool)->[a]->[a]
filter f [] = []
filter f (x:xs) = if f x then x:filter f xs else filter f xs
```

• Example 3: What is the type of iterate

```
iterate f 0 x = x
iterate f n x = f (iterate f (n-1) x)
```

• **Example 3:** What is the type of iterate

```
iterate :: (a->a)->Int->a->a
iterate f 0 x = x
iterate f n x = f (iterate f (n-1) x)
```

Example

```
iterate (2*) 4 1 = (2*(2*(2*(2*(1))))) = 16
```

In general

iterate f n x

is

 f^n (x)

Applying Polymorphic Expressions to Polymorphic Functions

- **Previously:** The typing of applications of expressions:
 - If exp1 is an expression with type a -> b
 - And exp2 is an expression with type a
 - Then exp1 exp2 has type b
- **Problem:** How does this apply to polymorphic functions?

```
length :: [c] -> Int
[2,4,5] :: [Int]
length [2,4,5] :: Int
```

• Key Idea: Argument type can be an instance of input type

When is a Type an Instance of Another Type

- **Recall:** Two facts about expressions containing variables
 - Variables stand for arbitrary elements of a particular type
 - Instances of the expression are obtained by substituting expressions for variables
- **Key Idea:** (Parametric) polymorphic types are defined in the same way:
 - Type-expressions may contain type-variables
 - Instances of type-expressions are obtained by substituting types for type-variables
- Example: [Int] is an instance of [c] substitute Int for c

- Monomorphic: Can a function be applied to an argument?
 - If the function's input type is the same type as its argument

- Polymorphically: Can a function be applied to an argument?
 - If the function's input type is *unifiable* with argument's type

$$\frac{\mathbf{f}::\mathbf{a}\text{-}\!\!>\!\!\mathbf{b}\quad \mathbf{x}::\mathbf{c}\quad \theta \text{ unifies a,c}}{\mathbf{f}\ \mathbf{x}\,::\,\theta}\mathbf{b}$$

where θ maps type variables to types

• **Example:** In the length example, set θ c=Int

• Past Paper: Assume f is a function with principle type

Do the following expressions type check? State **Yes** or **No** with a brief reason and, if **Yes**, what is the principal type of the expression?

- 1. f (3,3) 2
- 2. f ([],[]) 5
- 3. f ([tail,head], []) 3
- 4. f ([True, False], ['x'])

• Polymorphism:

- Saves on code one function (algorithm) has many types
- This implements our algorithmic intuition
- **Type Checking:** Expressions and functions have many types including a principle one
 - Polymorphic functions are applied to expressions whose type is an instance of the type of the input of the function

Lecture 10 — Algebraic Types

Fer-Jan de Vries

Department of Informatics University of Leicester

March 16, 2021

Recall the types in Haskell we have seen so far.

- basic types like Int , Float , Char , Bool
- compound types:
 - tuple types like (Int, String)
 - list types like [Int]
 - function types like Int -> Int
 - type synonyms like type Word = String
 - polymorphic types like (a->b) -> [a] ->[b]
 - polymorphic types and classes like Ord a => [a] -> [a]

There are other types which are difficult to model using the types seen so far.

Examples include:

- The type of months: January, February, .., December.
- The type of geometric shapes whose elements are either circles or rectangles.
- The type of trees.

All these types can be modelled by Haskell algebraic types.

Algebraic Types I: Enumerated Types

Enumerated types are types which are defined by enumerating the elements.

Example. Temperatures are either hot or cold.

```
data Temp = Cold | Hot
```

The type Temp has two members Cold and Hot, such that

Cold :: Temp

Hot :: Temp

Cold and Hot are called CONSTRUCTORS.

Example.

```
data Season = Spring | Summer | Autumn | Winter
```

The type Season has four members (four constructors) which are:

Spring, Summer, Autumn and Winter.

This means that

Spring :: Season

Summer :: Season

Autumm :: Season

Winter :: Season

Example. Checking if a month is in summer.

```
isSummer :: Month -> Bool
isSummer June = True
isSummer July = True
isSummer August = True
isSummer September = True
isSummer _ = False
```

To define functions over enumerated types we use **pattern matching**.

ENUMERATED TYPES.

```
data \langle \text{type-name} \rangle = \langle \text{constructor 1} \rangle \mid ... \mid \langle \text{constructor n} \rangle
```

FUNCTIONS ON ENUMERATED TYPES.

```
\langle \text{function-name} \rangle :: \langle \text{type-name} \rangle - \rangle \langle \text{out-type} \rangle
\langle \text{function-name} \rangle \langle \text{pat} \rangle = \langle \text{exp} \rangle
```

Rule for names: the name of the type and the names of the constructors begin with capital letters. Name of functions begin with lower case.

Example. A geometric shape is either a circle or a rectangle.

There are two ways of building an element of Shape:

1. Supplying the radius of a circle:

2. Giving the sides of a rectangle:

```
Rectangle 3.5 13.5 :: Shape
```

Key idea. Incorporate *extra type information* in type definition.

Example.

```
data Shape = Circle Float | Rectangle Float Float
```

Elements of type Shape are constructed by applying Shape and Circle to certain arguments.

```
Circle :: Float -> Shape
```

Rectangle :: Float -> Float -> Shape

Circle and Shape are called

CONSTRUCTOR FUNCTIONS or just CONSTRUCTORS.

The general form of such a definition looks like

```
\begin{array}{lll} \text{data } \langle \text{type-name} \rangle & = & \langle \text{Cons-1} \rangle & \langle \text{type} \rangle \dots \langle \text{type} \rangle \\ & | & \langle \text{Cons-2} \rangle & \langle \text{type} \rangle \dots \langle \text{type} \rangle \\ & | & \langle \text{Cons-r} \rangle & \langle \text{type} \rangle \dots \langle \text{type} \rangle \end{array}
```

Here the **constructor (functions)** are:

```
Cons-i :: type \rightarrow \ldots \rightarrow type \rightarrow type-name
```

Example. Testing if a shape is a rectangle

```
isRect :: Shape -> Bool
isRect (Circle x) = False
isRect (Rectangle h w) = True
```

Key Idea. Again, use *pattern matching* to define functions. Now, *supply variables* for the constructor functions.

Example. Area of a shape is given by

```
area :: Shape -> Float
area (Circle r) = pi * r * r
area (Rectangle h w) = h * w
```

Alternative definition:

Example.

```
data Temp = Cold | Hot
```

PROBLEM. If you type Hot to the prompt, you get an error!!!

```
Main > Hot
ERROR - Cannot find "show" function for:
*** Expression : Hot
*** Of type : Temp
```

SOLUTION. Add the clause deriving after the type definition.

What does deriving mean? What is Show?

Built-in classes and their functions

Class of types	Operators defined over the types belonging to the class
Eq	equality and inequality
Ord	order between elements
Enum	operations like [nm]
Show	operations that turn elements into textual form

If we want to define a non-standard equality on the type Temp, we have to make the type an instance of the class Eq.

If we want the standard definition of equality, Haskell generates it automatically.

Example.

```
data Season = Spring | Summer | Autumn | Winter deriving (Eq,Ord,Enum,Show)
```

Haskell automatically generates definitions of equality, ordering, enumeration and text functions.

Spring == Spring evaluates to True.

[Summer .. Winter] gives the list [Summer, Autumn, Winter].

Example. Months of the year:

Example.

```
data Shape = Circle Float | Rectangle Float Float deriving (Eq,Ord,Show)
```

We cannot enumerate shapes. Being in Enum can only be derived for enumerated types.

Algebraic Types. Algebraic types allow

- Choice in the sorts of elements that make up the type
- Elements can contain parameters which belong to other types

Functions.

- 1. Functions are defined by pattern matching.
- 2. Functions of built-in classes can be derived automatically by Haskell.

Lecture 11 — Recursive Algebraic Types

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

Recursive algebraic types are types which are described in terms of themselves.

Example. A type Exp for arithmetic expressions defined by

Key Idea: Exp also appears on the righthand side of the definition.

Informal expression	Haskell representation
5	Num 5
5 + 21	Add (Num 5) (Num 21)
8 * 10	Mul (Num 8) (Num 10)
(4*(2+5))	Add (Num 5) (Num 21) Mul (Num 8) (Num 10) Mul (Num 4) (Add (Num 2) (Num 15))

Elements of Exp are either

1. integer expressions:

```
Num 5 :: Exp
```

2. or a combination of expressions using the arithmetic operations:

```
Add (Num 5) (Num 7) :: Exp
Mul (Num 5) (Num 7) :: Exp
```

To build an element of type Elem we use a combination of the following three constructor functions:

```
Num :: Int -> Exp
Add :: Exp -> Exp -> Exp
Mul :: Exp -> Exp -> Exp
```

Example. Lists of integers can be modelled by the type:

```
data NList = Nil | Cons Int NList deriving Show
```

Instances of elements of type NList are:

```
Nil
```

```
Cons 12 Nil
Cons 17 (Cons 12 Nil)
```

The constructors are:

```
Nil :: NList
```

Cons :: Int -> NList ->NList

Example. Trees of integers can be modelled by the type:

```
data NTree = NNil | NNode Int NTree NTree deriving Show
```

Instances of elements of type NTree are:

```
NNil
```

```
NNode 12 NNil NNil
NNode 17 (NNode 12 NNil NNil) (NNode 22 NNil NNil)
```

The constructors are:

```
NNil :: NTree
```

NNode :: Int -> NTree -> NTree

Recall: functions over algebraic types are defined by pattern matching with one clause for each constructor

data Shape = Circle Float | Rectangle Float Float

```
perim :: Shape -> Float
perim (Circle x) = 2 * 3.14 * x
perim (Rectangle h w) = 2 * (h + w)
```

Example. Evaluation of expressions

```
eval :: Exp -> Int
eval (Num x) = x
eval (Add e1 e2) = eval e1 + eval e2
eval (Mul e1 e2) = eval e1 * eval e2
```

Now our functions can be *recursive*. The form of the recursive definition follows the recursion on the type definition.

There are two parts:

- 1. Non-recursive or base cases. The value of Num x is x.
- 2. Recursive cases. The value of an expression is calculated in terms of the values of its subexpresions e1 and e2.

Example. Sum the nodes of a tree:

```
sumTree :: NTree -> Int
sumTree NNil = 0
sumTree (NNode n t1 t2) = n+ sumTree t1 + sumTree t2
```

Example. Left subtree:

```
leftTree :: NTree -> NTree
leftTree NNil = NNil
leftTree (NNode n t1 t2) = t1
```

This is not a recursive definition.

Example. The depth of a tree:

```
depth:: NTree -> Int
depth NNil = 0
depth (NNode n t1 t2) = 1 + max (depth t1) (depth t2)
```

Example. Find out how many times a number **p** occurs in a tree:

Types. Algebraic types can be recursive, eg trees can contain subtrees.

Functions.

- As before, define functions on each constructor.
- There is a natural way of definining recursive functions on recursive types.

Representations: How to represent elements of a data structure as expressions of a Haskell datatype.

Lecture 12 — Polymorphic Algebraic Types

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

Example. Recall the definition of trees of integers:

```
data NTree = NNil | NNode Int NTree NTree deriving Show
```

Example. Trees of strings can be modelled by the type:

There is nothing special about numbers or strings. All these types of trees have the same structure, shape or *form*. We will define *polymorphic* trees.

Trees that carry elements of an arbitrary type at the nodes:

where a is a type variable, i.e. a ranges over types.

Key ideas: • The type Tree a is parametric on the type a.

• We have to instantiate a to get a particular type of trees:

a	Tree a	description of the type		
Int	Tree Int	trees of integers	• We get a family	
String	Tree String	trees of strings	• vve get a faililly	
[Int]	Tree [Int]	trees of lists of integers		
of types: Tree Int, Tree String, etc.				

Examples.

- 1. Nil :: Tree a for any type a
- 2. An element of Tree Int is:

Node 12 Nil Nil :: Tree Int

3. An element of Tree String is:

Node "Leicester" Nil Nil :: Tree String

4. An element of Tree [Int] is:

Node [1,2] (Node [2,5,1] Nil Nil) Nil :: Tree [Int]

The built-in type of lists can be given by the definition:

where we use the following notation:

Haskell notation	our definition
[a]	List a
	NilList
:	Cons

The type [a] is parametric on a. By instantiating a, we get a family of types: [Int], [String], [[Int]], etc.

Example. The depth of a tree

```
depth:: Tree a -> Int
depth Nil = 0
depth (Node n t1 t2) = 1 + (max (depth t1) (depth t2))
```

The function depth is *polymorphic*: it has a common definition for all the family of trees.

Example. Find out how many times a number **p** occurs in a tree:

The type of this polymorphic function is conditional: it has the condition that the type a should belong to the class Eq.

Example. The function mapTree is similar to the function map over lists:

```
mapTree :: (a->b) -> Tree a -> Tree b
mapTree f Nil = Nil
mapTree f (Node x t1 t2) = Node (f x) (mapTree f t1)
(mapTree f t2)
```

Key ideas.

- it is *higher order*, i.e. it is a function that has an argument **f** which is a function too.
- it is *polymorphic*: it has a common definition with type (a->b) -> Tree a -> Tree b for all types a and b.

Example. Consider the tree:

```
Node 3 (Node 7 Nil Nil) (Node 2 (Node 3 Nil Nil) Nil)
```

What do we have to do to get to the second occurrence of 3? First go to the right and then go to the left.

Type Definition: Encode paths as follows

- A direction is either left or right: data Dir = L | R
- A path is a list of directions: type Path = [Dir]

Example: So the path to the second occurrence of 3 is represented by the list [R,L].

Example 1: Is a path valid for a particular tree?

```
isPath :: Path -> Tree a -> Bool
isPath [] (Node n t1 t2) = True
isPath (L:p) (Node n t1 t2) = isPath p t1
isPath (R:p) (Node n t1 t2) = isPath p t2
isPath _ _ = False
```

For instance, the path [L] is not a valid path for the tree Node 3 Nil (Node 2 Nil Nil) because there is nothing in the left subtree.

Example 2: What data is stored in a tree at the end of the path?

```
extract :: Path -> Tree a -> a

extract [] (Node n t1 t2) = n

extract (L:p) (Node n t1 t2) = extract p t1

extract (R:p) (Node n t1 t2) = extract p t2

extract _ _ = error "There is no data at this path"
```

We can extract the number 3 at the end of the path [R,L] from Node 3 (Node 7 Nil Nil) (Node 2 (Node 3 Nil Nil) Nil)

Example. Trees which store data in all the nodes. A Tree is

- A leaf storing data
- A node storing a left subtree, some data, and a right subtree

data Tree1 a = Leaf a | Node1 (Tree1 a) a (Tree1 a)

Example. Trees which may store no data at a leaf

- The empty tree storing no data
- A leaf storing data
- A node storing a left subtree, some data, and a right subtree

```
data Tree2 a = ND | Leaf a | Node2 (Tree2 a) a (Tree2 a)
```

Key Idea: To define a type, first work out the constructors and their types

Types: Algebraic types can be

- Polymorphic, eg trees can store different forms of data
- Polymorphic algebraic types have a type parameter, eg
 Tree Int or Tree String, not Tree

Lecture 13 — Errors

Fer-Jan de Vries

Department of Informatics
University of Leicester

March 16, 2021

Four approaches to handle errors

How should a program deal with a situation which ought not to occur?

Examples: divide by zero, head of an empty list, etc.

We will discuss four approaches for handling errors:

- 1. The error function.
- 2. Dummy values.
- 3. Auxiliary functions and the error function.
- 4. The Error types (the nicest solution).

The error function stops the computation and prints a message.

Example. Recall the cost function:

Problem. We may loose useful information for stopping the computation.

Suppose we have a database with a daily record of the number of cars produced by a factory:

```
recordcars = [ 1000, -25000, 230000, -20000, 45000, 30000]
map cost recordcars evaluates to
[7000.0,
Program error: Car production is always positive
```

Problem. The computation stops in the 2nd value and we loose the rest of the information.

Example. Recall this notion of trees:

```
data Tree2 a = ND | Leaf a | Node2 (Tree2 a) a (Tree2 a)
```

Adding an element at one ND

```
addData :: a -> Tree2 a -> Tree2 a
addData x ND = Leaf x
addData x (Leaf y) = error ''Cannot add Data''
addData x (Node2 t1 y t2) = Node2 (addData x t1) y (addData x t2)
```

Wrong! This doesn't work, because it

- replaces all ND's with the data
- crashes as soon as we hit a leaf

We want a mechanism that explains when the program worked al right

Instead of giving an error message, we can choose to give a particular value (called *dummy value*) in the error case.

```
cost n
| n < 0 = -1
| 0 <= n && n <= 1000 = 6*m + 1000
| otherwise = 4*m + 450
where m = fromIntegral n</pre>
```

This works if the cost is expected to be always positive.

Drawback. In many cases there is no way to tell when an error has occurred. For instance, imagine a cost function that substracts 1000 instead of adding it.

To solve the problem of adding data in a tree, we can define an auxiliary function. We first test whether there is some ND in the tree or not:

```
isND :: Tree2 a -> Bool

isND ND = True
isND (Leaf x) = False
isND (Node2 t1 x t2) = (isND t1) || (isND t2)
```

Then, we write a function that combines the auxiliary function and the error function:

We will see a more efficient way of solving this problem.

We return an error *value* as a result. For this, we define a polymorphic type:

data Err a = Ok a | Fail

We return a value that contains the following information:

- the program worked and returns a certain value of type a or
- the program didn't work

Key Idea. Functions now return error types. Compare with Java's try-blocks

Example. Redefining cost

```
cost n
| n < 0 = Fail
| 0 <= n && n <= 1000 = 0k(6*m + 1000)
| otherwise = 0k(4*m + 450)
where m = fromIntegral n
```

Consider the database

```
recordcars = [ 1000, -25000, 230000, -20000, 45000, 30000].
```

Now, map cost recordcars evaluates to

```
[Ok 7000.0, Fail, Ok 920450.0, Fail, Ok 180450.0, Ok 120450.0].
```

Advantage. We can see all production costs: the correct and the incorrect ones.

Example. Remove the n-th element from a list (there is no zero-th element)

Note the use of case. We have two cases: either remove n xs evaluates to Fail or it evaluates to an expression of the form OK zs.

Example. Redefining addData efficiently:

Advantage. We do not need an auxiliary function like isND. The test for ND's is incorporated into the function addData. This version of addData is *more efficient*.

• Example: What element occurs at a path in a tree

lookup :: Path -> NTree a -> Err a

• Try to write your own code for lookup.

• Final comment: instead of defining our own type Err a we could have used the standard type Maybe a.

• **Example:** What element occurs at a path in a tree even if the path points at something outside the tree...

Today You Should Have Learned

- **Trees:** Different varieties of Trees
 - Is there data stored in nodes?
 - How many subtrees does a node have?
- Paths: Do you understand what paths are?
 - Can you write functions using paths?
- Errors: Using error types as exception handlers
 - Java has try, catch blocks etc
- Practical: Combines all three of these types

Lecture 14 — IO

Fer-Jan de Vries

School of Informatics University of Leicester

March 14, 2021

Overview

Our Haskell story so far is incomplete.

We emphasised the use of functions, that calculate from input to output without interaction of the world.

The advantage is well-understood programs, that are relatively easy to reason about.

Missing is the interaction with the real world: reading from a file, writing an output etc.

In this lecture we introduce a new type construct: IO a

In the following lecture we will generalise this to "monads", of which the Maybe a type and the list type are examples.

Interactive programming

Recall that we think of a (pure) function in Haskell:

as a black box that given an input x calculates a unique output y = f(x) without any interaction with the environment (the world):

$$x :: a \longrightarrow$$
 Function $f \longrightarrow y :: b$

This idea is not suited to model interactive programs:

that require side-effects by taking additional inputs and producing additional output.

Intuition for type IO

Haskell's solution: an interactive program is a pure function that takes the current state of the world as argument and produces a modified world. It has type

```
type IO = World -> World
```

A program that produces a modified world & an integer value is of

```
type IO Int = World -> (Int, World)
```

A program that reads a string and integer value has type

```
String -> World -> (Int, World)
```

in short

```
String -> IO Int
```

We think of IO types a built-in with hidden implementation details:

```
data IO a = ... (in case of output in a)
data IO () = ... (in case of no output)
```


Values and Actions

Elements of types like Int and [Int] are called VALUES.

Elements of the IO types like IO Int and IO [Int] are called ACTIONS.

Examples of built-in actions:

```
getChar :: IO Char
reads (waits for) a character from the keyboard input;
```

```
putChar :: Char -> IO ()
```

writes a character on the screen;

```
return :: a -> IO a
```

returns/writes (without interaction with user) a value to the screen. With return we can transform pure expressions to impure actions with side effects

Sequencing or do notation

```
do v1 <- a1
    v2 <- a2
    ...
    vn <- an
    return (f v1 v2 ... vn)</pre>
```

First do action a1, call its result v1; do a2 resulting in v2; ... Finally do an resulting in vn. Then return value (f v1 v2 ... vn)

Concrete example: an action that reads three chars and returns first and third as a pair:

because (x,y)::(Char,Char) the action is of type IO (Char,Char)

Other built-in action primitives

getLine can be defined with recursion from getChar:

```
getLine :: IO String
  getLine = do x <- getChar</pre>
                if x == ' n' then
                   return
                else
                   do xs <- getLine
                      return (x:xs)
putStr writes a string to screen:
  putStr :: String -> IO()
  putStr [] = return ()
  putStr (x:xs) = do putChar x
                      putStr xs
putStrLn writes a string to screen and moves to new line:
  putStrLn :: String -> IO()
 putStrLn xs = do putStr xs
                     putChar '\n'
```

10 exercise

Define an action

```
strlen :: IO ()
strlen = ???
```

that prompts for a string to be entered from the keyboard, and displays it length using the following dialog:

```
>>> strlen
  Type a string: Haskell
  The string has 7 characters
(ignore the colours)
```

Answer

>> strlen

An action that prompts for a string to be entered from the keyboard, and displays it length using the following dialog:

```
Type a string: Haskell
  The string has 7 characters
(ignore the colours)
can be coded as follows
  strlen :: IO ()
  strlen = do putStr "Enter a string: "
              xs <- getLine
              putStr "The string has "
              putStr (show (length xs))
              putStrLn " characters"
```

isPalindrome

```
isPalindrome :: String -> Bool
isPalindrome word = word == reverse word

main :: IO()
main =
   do
   word <- getLine
   print (isPalindrome word)</pre>
```

Hutton's Hangman

```
hangman :: IO()
hangman = do putStrLn "Think of a word"
              word <- sgetLine</pre>
              putStrLn "Try to guess it:"
              play word
sgetLine :: IO String
sgetLine = do x <- getCh</pre>
               if x == ' n' then
                  do putChar x
                      return []
               else
                  do putChar '-'
                      xs <- sgetLine</pre>
                      return (x:xs)
```

Hutton's Hangman II

```
getCh :: IO Char
getCh = do
                                   (turn echo off)
           hSetEcho stdin False
                                   (otherwise getChar echo
           x <- getChar
           hSetEcho stdin True (turn echo on again)
           return x
play :: String -> IO ()
play word = do putStr "? "
               guess <- getLine</pre>
               if guess == word then
                  putStrLn "You go it!!!"
               else
                  do putStrLn (match word guess)
                     play word
```

match :: String → String → String
match xs ys = [if elem x ys then x else '- ' | x ≤ xs]

Reminder: why should we write readable code

Ps

Donald Knuth gives us the following useful perspective:

The main idea is to regard a program as communication to human beings rather than a set of instructions for a computer

Lecture 15 — Functors, Applicatives and Monads

Fer-Jan de Vries

School of Informatics University of Leicester

March 16, 2021

Overview

In the previous lecture we introduced a new type construct: IO a

This belongs to class of monads which we have seen so far lists, trees, IO, Maybe (Error)

The monad class is yet another example of abstracting from a common programming pattern.

Recall that a class is a collection of types that supports certain overload operations: Eq. Ord, Show, Read, Num, Integral, Fractional

We will introduce in increasing strength the classes Functor, Applicative and Monad

Recall map

```
inc :: [Int] -> [Int]
inc [] = []
inc (n:ns) = n+1 : inc ns

sq :: [Int] -> [Int]
sq [] = []
sq (n:ns) = n^2 : sq ns
```

Abstracting out the common pattern gives the library function

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (n:ns) = f(n+1) : map f ns
```

And the previous two examples can be redefined by

```
inc = map (+1)
sq = map (^2)
```


Analogous maps for other types

As we saw map is defined on list types map :: (a -> b) -> [a] -> [b] map f [] = []map f(n:ns) = f(n+1) : map f nsbut map can similarly be defined for the type of trees... data Tree a = Nil | Node a (Tree a) (Tree a) mapT :: (a -> b) -> Tree a -> Tree b mapT f = error"Do it Your Self" and for types of the form Maybe a data Maybe a = Nothing | Just a mapM :: (a -> b) -> Maybe a -> Maybe b mapM f Nothing = Nothing mapM f (Just a) = Just (f a)

The Functor class

Generalising the previous examples in which we map a function to each element of some structure, we introduce the type class:

```
class Functor f where
fmap :: (a -> b) -> f a -> f b
```

If you declare an instance of the Functor class the following laws should hold:

```
fmap id = id
fmap (g . h) = fmap g . fmap h
```

The compiler does not check this, but your peers expect it...

Instances of Functor

```
class Functor f where
    fmap :: (a -> b) -> f a -> f b
  instance Functor [] where
-- fmap :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
    fmap = map
  instance Functor Tree where
-- fmap :: (a -> b) -> Tree a -> Tree b
    fmap = mapT
  instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe a -> Maybe b
    fmap = mapM
```

You can check that the functor laws hold.

Also IO is an instance of Functor

Less obvious perhaps, but

Here g is applied to the value returned by the argument action mx

Again the functor laws hold!

Towards Applicative functors

Consider the functions (where fmap1 = fmap)

```
fmap0 :: a -> fa
fmap1 :: (a -> b) -> f a -> f b
fmap2 :: (a -> b -> c) -> f a -> f b -> f c
```

Example with f = Maybe

```
Prelude > mapf2 (+) Just 1 Just 2 Just 3
```

But we don't want to define each $fmap_n$ by hand.

The Applicative functor class

Etc...

The previous instances of Functor in fact applicative class Functor f => Applicative f where pure :: a -> f a (<*>) :: f (a->b) -> f a -> f b Convention <*> is left associative: x<*>y<*>z = (x<*>y)<*>zNote we have $fmap0 :: a \rightarrow f a$ fmap0 g = pure gfmap :: (a -> b) -> f a -> f bfmap g xs = pure g <*> xs $fmap2 :: (a \rightarrow b \rightarrow c) \rightarrow f a \rightarrow f b \rightarrow f c$ fmap2 g xs ys = pure g <*> xs <*> ys

Maybe as Applicative functor

```
class Functor f => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a->b) -> f a -> f b
data Maybe a = Nothing | | Just a
instance Applicative Maybe where
--pure :: a \rightarrow Maybe a
  pure = Just --ie. pure a = Just a
--(<*>) :: Maybe (a->b) -> Maybe a -> Maybe b
  Nothing <*> _ = Nothing
  (Just g) < *> mx = fmap g mx
fmap :: (a -> b) -> f a -> f b
fmap g xs = pure g <*> xs
```

IO as Applicative functor

```
class Functor f => Applicative f where
 pure :: a -> f a
  (<*>) :: f (a->b) -> f a -> f b
instance Applicative IO where
--pure :: a -> IO a
 pure = return --ie pure a = return a
--(<*>) :: IO (a->b) -> IO a -> IO b
 gx \ll ax = do g \ll gx
                 a \leftarrow ax
                 return (g a)
```

A(pple)Tree as Applicative functor

```
class Functor f => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a->b) -> f a -> f b
data ATree a = Leaf a | Node (ATree a) (ATree a)
instance Applicative Tree where
--pure :: a -> Tree a
 pure a = Leaf a
--(\langle * \rangle) :: ATree (a->b) -> ATree a -> ATree b
  Leaf g \ll ax = mapf g ax
  (Node t1 t2) <*> ax = Node (t1 <*> ax) (t2 <*> ax)
```

Our earlier version of tree has no simple monad representation data Tree a = Nil | Node a (Tree a) (Tree a)

The Monad class

>>= binds the value in a monad container to the first argument of a function.

The earlier instances of Applicative class belong to the Monad class...

Do-notation can be used in all Monad instances (not only in IO)

Maybe is a Monad

```
class Applicative m => Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> mb) -> m b
                              -- >>= is pronounced bind
  return = pure
instance Maybe where
  return a = Just a
 mx >>= g = case mx of Nothing -> Nothing
                         Just a -> g a
--or in do notation
 mx \gg g = do a \leftarrow mx
                ga
```

Example: using the Maybe Monad

Consider a type of expressions

```
data Expr a = Val Int | Div Expr Expr
  eval :: Expr -> Int
  eval (Val n) = n
  eval (Dix x y) = eval x `div` eval y
This gives errors when we divide by 0.
Using Maybe the computation does not have to stop
  savediv :: Int -> Int -> Maybe Int
  safediv _ 0 = Nothing
  safediv n m = Just (n `div` m)
  eval :: Expr -> Maybe Int
  eval (Val n) = Just n
  eval (Dix x y) = do n \leftarrow eval x
                       m <- eval y
                       safediv n m
```

Second example

```
type Sheep = ...
father, mother :: Sheep -> Maybe Sheep
father = ...
mother = ...
```

How can we find grandparents?

This is a bit heavy notation, which becomes worse if we would search for greatgrandparents...

Second example 2

Simplifies to

```
maternalGrandfather s =
  (Just s) >>= mother >>= father
```

Or, less abstract, using imperative style do-notation

Nb: if mother of s is unknown, then father m will output Nothing.

Second example 3

The nested case statements simplify to

```
mothersPaternalGrandfather s =
  (Just s) >>= mother >>= father >>= father
```

Or, less abstract, using imperative style do-notation

```
mothersPaternalGrandfather s = do m <- mother s
gf <- father m
father gf
```

This example demonstrates the usefulness of the Monad class!

IO is a Monad

```
class Applicative m => Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> mb) -> m b
                 -- >>= is pronounced bind
return = pure
instance IO where
--return :: a \rightarrow IO a
  return a = return a
--(>>=) :: IO a -> (a -> IO b) -> IO b
  mx \gg g = do a \leftarrow mx
                 ga
```

The definition of >>= is kind of forced by its type definition

[] is a Monad

```
class Applicative m => Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> mb) -> m b
                    -- >>= is pronounced bind
return = pure -- default definition of return
instance [] where
--return :: a \rightarrow \lceil a \rceil
  return a = [a]
--(>>=) :: \lceil a \rceil -> (a \rightarrow \lceil b \rceil)-> \lceil b \rceil
  as >>= g = [b | a <- as, b <- g a]
```

The definition of >>= is kind of forced by its type definition

A(pple)Tree is a Monad

Try it your self... class Applicative m => Monad m where return :: a -> m a (>>=) :: m a -> (a -> mb) -> m b -- >>= is pronounced bind return = pure data ATree a = Leaf a | | Node (ATree a) (ATree a) instance ATree where $--return :: a \rightarrow ATree a$ return a = Leaf a --(>>=) :: ATree a -> (a -> ATree b)-> ATree b >>= g = g a (Node t1 t2) >>= g = Node (g >>= t1) (g >>= t2)

The definition of >>= is kind of forced by its type definition

FYI: Monad Laws

You may wish to verify that all above instances of Monad satisfy the monad laws:

```
class Applicative m => Monad m where
 return :: a -> m a
  (>>=) :: m a -> (a -> mb) -> m b
               -- >>= is pronounced bind
--Monads should satisfy the monad laws
 return x >>= f = f x
 mx >>= return = mx
  (mx >>= f) >>= g = mx >>= (\x -> (f x >>= g))
```

https://wiki.haskell.org/Monad_laws

Moral

The usefulness of the type classes of

Functor
Applicative
Monads

in programming is quite a discovery.

As it happens, these classses are concepts in Category Theory.

Understanding of maths can be a secret weapon to improve your coding.

In general, the knowledge that you can design/structure your programs as functions is something that can benefit your overall programming.

Hope you could enjoy it.

