# On the Altermatic Number of Graphs

#### Hossein Hajiabolhassan

Joint Work With Meysam Alishahi

Department of Mathematical Sciences Shahid Beheshti University Tehran, Iran

Frontiers in Mathematical Sciences Institute for Research in Fundamental Sciences

December 30, 2014





#### CHROMATIC NUMBER

#### Definition (Chromatic number)

The chromatic number  $\chi(G)$  of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.







#### CHROMATIC NUMBER

### Definition (Chromatic number)

The chromatic number  $\chi(G)$  of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.







#### CHROMATIC NUMBER

#### Definition (Chromatic number)

The chromatic number  $\chi(G)$  of a graph G is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.



#### Chromatic number

It is NP-hard to compute the chromatic number of a graph!

#### Graphs Homomorphism

## Definition (Graph Homomorphism)

A homomorphism  $f: G \longrightarrow H$  from a graph G to a graph H is a map  $f: V(G) \longrightarrow V(H)$  such that if  $uv \in E(G)$  then  $f(u)f(v) \in E(H)$ . Also, the existence of a homomorphism is indicated by the symbols  $G \longrightarrow H$ . Also,  $G \longleftrightarrow H$  means that  $G \longrightarrow H$  and  $H \longrightarrow G$ .





#### Graphs Homomorphism

## Definition (Graph Homomorphism)

A homomorphism  $f: G \longrightarrow H$  from a graph G to a graph H is a map  $f: V(G) \longrightarrow V(H)$  such that if  $uv \in E(G)$  then  $f(u)f(v) \in E(H)$ . Also, the existence of a homomorphism is indicated by the symbols  $G \longrightarrow H$ . Also,  $G \longleftrightarrow H$  means that  $G \longrightarrow H$  and  $H \longrightarrow G$ .







#### Graphs Homomorphism

## Definition (Graph Homomorphism)

A homomorphism  $f: G \longrightarrow H$  from a graph G to a graph H is a map  $f: V(G) \longrightarrow V(H)$  such that if  $uv \in E(G)$  then  $f(u)f(v) \in E(H)$ . Also, the existence of a homomorphism is indicated by the symbols  $G \longrightarrow H$ . Also,  $G \longleftrightarrow H$  means that  $G \longrightarrow H$  and  $H \longrightarrow G$ .



#### Observation

For any graph G, we have  $\chi(G) = \min\{n : G \longrightarrow K_n\}$ .

## Kneser Representation

$$V(H) = A \text{ ground set} = \{1, 2, \dots, n\}$$

$$E(H)=\{e,f,g,\ldots\}\subseteq 2^{V(H)}$$







#### Kneser Representation

For a hypergraph H, consider the graph  $\mathrm{KG}(H)$  whose vertex set is E(H) and whose edge set consists of all disjoint pairs. For instance, if

$$V(H) = \{1, 2, 3, 4, 5\},\$$

$$E(H) = \binom{[5]}{2},$$

then



KG(H) = KG(5,2) = Petersen Graph.





#### Kneser Representation

For a hypergraph H, consider the graph KG(H) whose vertex set is E(H) and whose edge set consists of all disjoint pairs. For instance, if

$$V(H) = \{1, 2, 3, 4, 5\},\$$

$$E(H) = \{\{1,2\},\{3,4\},\{1,5\},\{2,3\},\{4,5\}\},$$

then

$$KG(H) = C_5.$$







# Kneser Representations of Graphs







# Kneser Representations of Graphs







## Kneser Representations of Graphs







$$V(H) = \{1, 2, 3, 4, 5\} \quad \& \quad E(H) = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}\}$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$





A subsequence of nonzero elements is termed an alternating subsequence if any two consecutive terms in this subsequence are different.





A subsequence of nonzero elements is termed an alternating subsequence if any two consecutive terms in this subsequence are different.



A subsequence of nonzero elements is termed an alternating subsequence if any two consecutive terms in this subsequence are different.



$$V(H) = \{1, 2, 3, 4, 5\}$$
 &  $E(H) = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}$ 

Alt(H) = The number of nonzero elements of a longest alternating subsequence which does not contain a positive OR negative hyperedge of H



$$V(H) = \{1, 2, 3, 4, 5\}$$
 &  $E(H) = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}$ 

Alt(H) = The number of nonzero elements of a longest alternating subsequence which does not contain a positive OR negative hyperedge of H



$$V(H) = \{1, 2, 3, 4, 5\} & E(H) = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}\}$$

$$1 & 2 & 3 & 4 & 5$$

$$+ & - & + & - & +$$

$$0 & + & - & + & -$$

$$\{1, 3\} & \{3, 5\}$$

A/t(H) = The number of nonzero elements of a longest alternating subsequence which does not contain a positive OR negative hyperedge of H



Alt(H) = The number of nonzero elements of a longest alternating subsequence which does not contain a positive OR negative hyperedge of H

$$|V(H)| - Alt(H) = 2$$





$$V(H) = [m] = \{1, 2, \dots, m\} \quad \& \quad E(H) = {m \choose n}$$

$$KG(H) = KG(m, n)$$

## Theorem (L. Lovász 1978)

For any  $m \ge 2n$ , we have  $\chi(\mathrm{KG}(m,n)) = m-2n+2$ .





$$V(H) = [m] = \{1, 2, \dots, m\} \quad \& \quad E(H) = {[m] \choose n}$$

$$KG(H) = KG(m, n)$$

## Theorem (L. Lovász 1978)

For any m > 2n, we have  $\chi(\mathrm{KG}(m,n)) = m - 2n + 2$ .





$$V(H) = [m] = \{1, 2, \dots, m\} \quad \& \quad E(H) = {[m] \choose n}$$

$$KG(H) = KG(m, n)$$

### Theorem (L. Lovász 1978)

For any  $m \ge 2n$ , we have  $\chi(\mathrm{KG}(m,n)) = m-2n+2$ .

$$Alt(H) = 2n - 2$$





$$V(H) = [m] = \{1, 2, \dots, m\} \quad \& \quad E(H) = {[m] \choose n}$$

$$KG(H) = KG(m, n)$$

#### Theorem (L. Lovász 1978)

For any  $m \ge 2n$ , we have  $\chi(\mathrm{KG}(m,n)) = m-2n+2$ .

$$|V(H)| - Alt(H) \ge m - 2n + 2$$





### STRONG ALTERMATIC NUMBER

$$V(H) = \{1,2,3,4,5\} & E(H) = \{\{1,3\},\{1,4\},\{2,4\},\{2,5\},\{3,5\}\}\}$$

$$1 & 2 & 3 & 4 & 5$$

$$+ & - & 0 & + & -$$

$$\{1,4\} & \{2,5\}$$

SAlt(H) = The number of nonzero elements of a longest alternating subsequence which does not contain a positive AND negative hyperedge of H

$$|V(H)| - SAIt(H) + 1$$



#### STRONG ALTERMATIC NUMBER

SAlt(H) = The number of nonzero elements of a longest alternating subsequence which does not contain a positive AND negative hyperedge of H

$$|V(H)| - SAIt(H) + 1 = 3$$



## Definition (Altermatic Number and Strong Altermatic Number)

The altermatic number  $\zeta(G)$  and the strong altermatic number  $\zeta_s(G)$  of a graph G are defined, respectively, as follows:

$$\zeta(G) = \max_{H} \{ |V(H)| - Alt(H) : KG(H) \longleftrightarrow G \}.$$

$$\zeta_s(G) = \max_H \{|V(H)| - SAIt(H) + 1 : KG(H) \longleftrightarrow G\}.$$





## Definition (Alternatic Number and Strong Alternatic Number)

The altermatic number  $\zeta(G)$  and the strong altermatic number  $\zeta_s(G)$  of a graph G are defined, respectively, as follows:

$$\zeta(G) = \max_{H} \{ |V(H)| - Alt(H) : KG(H) \longleftrightarrow G \}.$$

$$\zeta_s(G) = \max_H \{ |V(H)| - SAlt(H) + 1 : KG(H) \longleftrightarrow G \}.$$

#### Theorem (M. Alishahi and H.H., 2013)

For any graph G, we have

$$\chi(G) \geq \zeta(G)$$
,

$$\chi(G) \geq \zeta_s(G)$$
.





$$V(H) = \{1, 2, 3, 4, 5\}$$

$$E(H) = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}\}$$

$$|V(H)| - A/t(H) = 2$$







$$V(H) = \{1, 2, 3, 4, 5, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$$
 
$$E(H) = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}$$







$$V(H) = \{1, 2, 3, 4, 5, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$$
 
$$E(H) = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}$$

3 *b* 5 *c* 2







 $\{1,3\}$   $\{2,4\}$ 











$$V(H) = \{1, 2, 3, 4, 5, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$$
  
$$E(H) = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}$$

 $\{1,4\}$ 



$$|V(H)| - Alt(H) = 3$$









$$V(H)$$
= A ground set= $\{1, 2, ..., n\}$ 

$$E(H)=\{e, f, g, ...\}\subseteq 2^{V(H)}$$

$$e \qquad f$$

$$KG(H)$$

$$g$$



V(H) = The edge set of the graph G

E(H) = Every subgraph of G isomorphic to F

$$KG(H) = ?$$





V(H) = The edge set of the graph G

E(H) = Every subgraph of G isomorphic to F

KG(H) = Petersen Graph = KG(G, F)





#### GENERAL KNESER GRAPHS

## Definition (General Kneser Graphs)

Let G be a graph and  $\mathcal{F}$  be a family of graphs. By  $\mathrm{KG}(G,\mathcal{F})$ , we denote the general Kneser graph whose vertex set is the set of all subgraphs of G isomorphic to some member of  $\mathcal{F}$  and in which two vertices are adjacent if the corresponding subgraphs are edge-disjoint.



 $KG(C_5, 2K_2)$ 



#### GENERAL KNESER GRAPHS

### Definition (General Kneser Graphs)

Let G be a graph and  $\mathcal{F}$  be a family of graphs. By  $\mathrm{KG}(G,\mathcal{F})$ , we denote the general Kneser graph whose vertex set is the set of all subgraphs of G isomorphic to some member of  $\mathcal{F}$  and in which two vertices are adjacent if the corresponding subgraphs are edge-disjoint.



$$KG(C_5, 2K_2) = C_5$$





### A Representation For Some Graphs

### Kneser Graphs

- **1** Kneser Graphs:  $KG(nK_2, rK_2)$ , where  $nK_2$  is a matching of size n.
- $\chi(KG(nK_2, rK_2)) = n 2r + 2$  (L. Lovász, 1978)





### A REPRESENTATION FOR SOME GRAPHS

### Kneser Graphs

- **1** Kneser Graphs:  $KG(nK_2, rK_2)$ , where  $nK_2$  is a matching of size n.
- $\chi(KG(nK_2, rK_2)) = n 2r + 2$  (L. Lovász, 1978)

# Schrijver Graphs

- **1** Schrijver Graphs:  $KG(C_n, rK_2)$ , where  $C_n$  is a cycle of size n.
- ②  $\chi(\text{KG}(C_n, rK_2)) = n 2r + 2$  (A. Schrijver, 1978)





### A REPRESENTATION FOR SOME GRAPHS

### Kneser Graphs

- **1** Kneser Graphs:  $KG(nK_2, rK_2)$ , where  $nK_2$  is a matching of size n.
- $\chi(KG(nK_2, rK_2)) = n 2r + 2$  (L. Lovász, 1978)

## Schrijver Graphs

- **9** Schrijver Graphs:  $KG(C_n, rK_2)$ , where  $C_n$  is a cycle of size n.
- $\chi(KG(C_n, rK_2)) = n 2r + 2$  (A. Schrijver, 1978)

#### Circular Complete Graphs and Permutation Graphs

- Circular Complete Graphs:  $KG(C_n, P_d)$ ;  $P_d$  is a path of length d.
- **2** Permutation Graphs:  $KG(K_{m,n}, rK_2)$ , where  $K_{m,n}$  is a complete bipartite graph.



### Turán Number

### Definition (Generalized Turán Number)

We define the generalized Turán number  $\operatorname{ex}(G,\mathcal{F})$  as the largest number m such that there exists a spanning subgraph K of G with m edges which contains no subgraph isomorphic to a member of  $\mathcal{F}$ .



$$\operatorname{ex}(K_6,K_3)=9$$





### Turán Number

### Definition (Generalized Turán Number)

We define the generalized Turán number  $\operatorname{ex}(G,\mathcal{F})$  as the largest number m such that there exists a spanning subgraph K of G with m edges which contains no subgraph isomorphic to a member of  $\mathcal{F}$ .







# Turán Number

### Definition (Generalized Turán Number)

We define the generalized Turán number  $\operatorname{ex}(G,\mathcal{F})$  as the largest number m such that there exists a spanning subgraph K of G with m edges which contains no subgraph isomorphic to a member of  $\mathcal{F}$ .







#### Upper Bound For Chromatic Number

#### Observation

Let G be a graph and  $\mathcal{F}$  be a family of graphs. For the general Kneser graph  $KG(G,\mathcal{F})$ , we have  $\chi(KG(G,\mathcal{F})) \leq |E(G)| - ex(G,\mathcal{F})$ .



#### Proof

Let K has no  $\mathcal{F}$ -subgraph and  $|E(K)| = \operatorname{ex}(G, \mathcal{F})$ . Consider an ordering for  $E(G) \setminus E(K)$ . Define  $c : V(\operatorname{KG}(G, \mathcal{F})) \longrightarrow \{Colors\} = E(G) \setminus E(K)$  as follows. Set c(F) to be the smallest edge of F in  $E(G) \setminus E(K)$ .

#### LOWER BOUND FOR CHROMATIC NUMBER

#### Question

Let G be a graph and  $\mathcal{F}$  be a family of graphs. What is the best lower bound for the chromatic number of the general Kneser graph  $KG(G, \mathcal{F})$ ?





### LOWER BOUND FOR CHROMATIC NUMBER

#### Question

Let G be a graph and  $\mathcal{F}$  be a family of graphs. What is the best lower bound for the chromatic number of the general Kneser graph  $KG(G, \mathcal{F})$ ?

#### Observation

$$|E(G)|$$
  $-2ex(G, \mathcal{F}) \le \chi(KG(G, \mathcal{F})) \le |E(G)| - ex(G, \mathcal{F}).$ 

#### Proof

Set  $\mathcal{F}'$  to be all subgraphs of G with exactly  $n = \operatorname{ex}(G, \mathcal{F}) + 1$  edges. Consider a graph homomorphism  $g : \operatorname{KG}(G, \mathcal{F}') \longrightarrow \operatorname{KG}(G, \mathcal{F})$ . Let m = |E(G)|. One can check that  $\chi(\operatorname{KG}(G, \mathcal{F}')) = \chi(\operatorname{KG}(m, n)) = |E(G)| - 2\operatorname{ex}(G, \mathcal{F}) \leq \chi(\operatorname{KG}(G, \mathcal{F}))$ .





# CHROMATIC NUMBER VIA TURÁN NUMBER

# Theorem (L. Lovász, 1978)

If  $n \ge 2k$ , for the Kneser graph  $KG(nK_2, kK_2)$ , we have

$$\chi(KG(nK_2, kK_2)) = |E(nK_2)| - 2ex(nK_2, kK_2) = n - 2k + 2.$$





# CHROMATIC NUMBER VIA TURÁN NUMBER

## Theorem (L. Lovász, 1978)

If  $n \ge 2k$ , for the Kneser graph  $KG(nK_2, kK_2)$ , we have

$$\chi(KG(nK_2, kK_2)) = |E(nK_2)| - 2ex(nK_2, kK_2) = n - 2k + 2.$$

## Theorem (A. Schrijver, 1978)

If  $n \geq 2k$ , for the Schrijver graph  $KG(C_n, kK_2)$ , we have

$$\chi(\mathrm{KG}(C_n, kK_2)) = |E(C_n)| - \mathrm{ex}(C_n, kK_2) = n - 2k + 2.$$





# Chromatic Number Via Turán Number

## Theorem (L. Lovász, 1978)

If  $n \ge 2k$ , for the Kneser graph  $KG(nK_2, kK_2)$ , we have

$$\chi(\mathrm{KG}(nK_2, kK_2)) = |E(nK_2)| - 2\mathrm{ex}(nK_2, kK_2) = n - 2k + 2.$$

### Theorem (A. Schrijver, 1978)

If  $n \ge 2k$ , for the Schrijver graph  $KG(C_n, kK_2)$ , we have

$$\chi(\mathrm{KG}(C_n,kK_2))=|E(C_n)|-\mathrm{ex}(C_n,kK_2)=n-2k+2.$$

### Theorem (P. Frankl, 1985)

For the generalized Kneser graph  $KG(K_n, K_k)$ , we have

$$\chi(\operatorname{KG}(K_n, K_k)) = |E(K_n)| - \operatorname{ex}(K_n, K_k) = (k-1)\binom{s}{2} + rs,$$

where n = (k-1)s + r,  $0 \le r < k-1$ , and n is sufficiently large.

#### Conjectures and Problems

# Problem (G.O.H. Katona and Z. Tuza, 2013)

If q is a prime power and  $n=q^2+q+1$ , does the following equality hold?  $\chi(\operatorname{KG}(K_n,C_4))=|E(K_n)|-\operatorname{ex}(K_n,C_4)=\binom{q^2+q+1}{2}-\frac{1}{2}q(q+1)^2$ 





### Conjectures and Problems

# Problem (G.O.H. Katona and Z. Tuza, 2013)

If q is a prime power and  $n=q^2+q+1$ , does the following equality hold?  $\chi(\operatorname{KG}(K_n,C_4))=|E(K_n)|-\operatorname{ex}(K_n,C_4)=\binom{q^2+q+1}{2}-\frac{1}{2}q(q+1)^2$ 

# Conjecture (G.O.H. Katona and Z. Tuza, 2013)

If k is an odd integer and n is sufficiently large, then

$$\chi(\mathrm{KG}(K_n,C_k))=|E(K_n)|-\mathrm{ex}(K_n,C_k)=\lfloor\frac{(n-1)^2}{4}\rfloor.$$





### Conjectures and Problems

# Problem (G.O.H. Katona and Z. Tuza, 2013)

If q is a prime power and  $n = q^2 + q + 1$ , does the following equality hold?  $\chi(\mathrm{KG}(K_n, C_4)) = |E(K_n)| - \mathrm{ex}(K_n, C_4) = {q^2 + q + 1 \choose 2} - \frac{1}{2}q(q+1)^2$ 

### Conjecture (G.O.H. Katona and Z. Tuza, 2013)

If k is an odd integer and n is sufficiently large, then

$$\chi(\mathrm{KG}(K_n,C_k))=|E(K_n)|-\mathrm{ex}(K_n,C_k)=\lfloor\frac{(n-1)^2}{4}\rfloor.$$

# Conjecture (P. Frankl, 1985)

If  $k > s \ge 2$ ,  $n \ge 2k - s + 1$ , and n is sufficiently large, then

$$\chi(\mathrm{KG}(K_{n,s},K_{k,s})) = |E(K_{n,s})| - \mathrm{ex}(K_{n,s},K_{k,s}),$$

where the complete hypergraph  $K_{n,s}$  contains all of s-subsets of [n].

Assume that  $\sigma = (e_1, e_2, \dots, e_t)$  is an ordering of the edges of G, where t = |E(G)|.







Assume that  $\sigma = (e_1, e_2, \dots, e_t)$  is an ordering of the edges of G, where t = |E(G)|.

# Definition (Alternating Coloring)

A 2-coloring of a subset  $T \subseteq E(G)$  (with two colors red and blue) is called an alternating coloring (with respect to  $\sigma$ ) for T, if we assign two colors alternatively to all members of T with respect to the ordering  $\sigma$ .





Assume that  $\mathcal{F}$  is a family of graphs and G is a graph G.

# Definition (Alternating Turán Number)

The maximum number of edges of a spanning subgraph of G such that there exists an alternating coloring for the edges of this subgraph with respect to the ordering  $\sigma$  and also the red subgraph AND the blue subgraph has no subgraph isomorphic to a member of  $\mathcal{F}$  is denoted by  $\operatorname{ex}_{alt}(G,\mathcal{F},\sigma)$ . Set

 $ex_{alt}(G, \mathcal{F}) = min\{ex_{alt}(G, \mathcal{F}, \sigma) : \sigma \text{ is an ordering of } E(G)\}.$ 





Assume that  $\mathcal{F}$  is a family of graphs and G is a graph G.

# Definition (Alternating Turán Number)

The maximum number of edges of a spanning subgraph of G such that there exists an alternating coloring for the edges of this subgraph with respect to the ordering  $\sigma$  and also the red subgraph AND the blue subgraph has no subgraph isomorphic to a member of  $\mathcal{F}$  is denoted by  $\operatorname{ex}_{alt}(G,\mathcal{F},\sigma)$ . Set

 $ex_{alt}(G, \mathcal{F}) = min\{ex_{alt}(G, \mathcal{F}, \sigma) : \sigma \text{ is an ordering of } E(G)\}.$ 







Assume that  $\mathcal{F}$  is a family of graphs and G is a graph G.

# Definition (Alternating Turán Number)

The maximum number of edges of a spanning subgraph of G such that there exists an alternating coloring for the edges of this subgraph with respect to the ordering  $\sigma$  and also the red subgraph AND the blue subgraph has no subgraph isomorphic to a member of  $\mathcal F$  is denoted by  $\operatorname{ex}_{alt}(G,\mathcal F,\sigma)$ . Set

$$ex_{alt}(G, \mathcal{F}) = min\{ex_{alt}(G, \mathcal{F}, \sigma) : \sigma \text{ is an ordering of } E(G)\}.$$

#### Observation

$$ex(G, \mathcal{F}) \le ex_{alt}(G, \mathcal{F}) \le 2ex(G, \mathcal{F})$$





Assume that  $\mathcal{F}$  is a family of graphs and G is a graph G.

# Definition (Alternating Turán Number)

The maximum number of edges of a spanning subgraph of G such that there exists an alternating coloring for the edges of this subgraph with respect to the ordering  $\sigma$  and also the red subgraph AND the blue subgraph has no subgraph isomorphic to a member of  $\mathcal{F}$  is denoted by  $\operatorname{ex}_{alt}(G,\mathcal{F},\sigma)$ . Set

$$ex_{alt}(G, \mathcal{F}) = min\{ex_{alt}(G, \mathcal{F}, \sigma) : \sigma \text{ is an ordering of } E(G)\}.$$

# Lemma (M. Alishahi and H.H., 2013)

$$|E(G)| - \exp_{alt}(G, \mathcal{F}) \le \chi(\operatorname{KG}(G, \mathcal{F})) \le |E(G)| - \exp(G, \mathcal{F}).$$





Assume that  $\mathcal{F}$  is a family of graphs and G is a graph G.

# Definition (Alternating Turán Number)

The maximum number of edges of a spanning subgraph of G such that there exists an alternating coloring for the edges of this subgraph with respect to the ordering  $\sigma$  and also the red subgraph AND the blue subgraph has no subgraph isomorphic to a member of  $\mathcal{F}$  is denoted by  $\operatorname{ex}_{alt}(G,\mathcal{F},\sigma)$ . Set

$$ex_{alt}(G, \mathcal{F}) = min\{ex_{alt}(G, \mathcal{F}, \sigma) : \sigma \text{ is an ordering of } E(G)\}.$$

# Lemma (M. Alishahi and H.H., 2013)

$$|E(G)| - \exp_{alt}(G, \mathcal{F}) \le \chi(\operatorname{KG}(G, \mathcal{F})) \le |E(G)| - \exp(G, \mathcal{F}).$$

# Corollary (M. Alishahi and H.H., 2013)

If 
$$ex_{alt}(G, \mathcal{F}) = ex(G, \mathcal{F})$$
, then  $\chi(KG(G, \mathcal{F})) = |E(G)| - ex(G, \mathcal{F})$ .

## STRONG ALTERNATING TURÁN NUMBER

Assume that  $\mathcal{F}$  is a family of graphs and G is a graph G.

# Definition (Strong Alternating Turán Number)

The maximum number of edges of a spanning subgraph of G such that there exists an alternating coloring for the edges of this subgraph with respect to the ordering  $\sigma$  and also the red subgraph OR the blue subgraph has no subgraph isomorphic to a member of  $\mathcal{F}$  is denoted by  $ex_{salt}(G, \mathcal{F}, \sigma)$ . Set

$$ex_{salt}(G, \mathcal{F}) = min\{ex_{salt}(G, \mathcal{F}, \sigma) : \sigma \text{ is an ordering of } E(G)\}.$$





# STRONG ALTERNATING TURÁN NUMBER

Assume that  $\mathcal{F}$  is a family of graphs and G is a graph G.

# Definition (Strong Alternating Turán Number)

The maximum number of edges of a spanning subgraph of G such that there exists an alternating coloring for the edges of this subgraph with respect to the ordering  $\sigma$  and also the red subgraph OR the blue subgraph has no subgraph isomorphic to a member of  $\mathcal F$  is denoted by  $\operatorname{ex}_{\mathit{salt}}(G,\mathcal F,\sigma)$ . Set

$$\operatorname{ex}_{salt}(G,\mathcal{F}) = \min\{\operatorname{ex}_{salt}(G,\mathcal{F},\sigma) : \sigma \text{ is an ordering of } E(G)\}.$$

# Lemma (M. Alishahi and H.H., 2013)

$$|E(G)| - \exp_{\mathsf{salt}}(G, \mathcal{F}) + 1 \le \chi(\mathrm{KG}(G, \mathcal{F})) \le |E(G)| - \exp(G, \mathcal{F}).$$

## Corollary (M. Alishahi and H.H., 2013)

If 
$$ex_{salt}(G, \mathcal{F}) - 1 = ex(G, \mathcal{F})$$
, then  $\chi(KG(G, \mathcal{F})) = |E(G)| - ex(G, \mathcal{F})$ .

#### MATCHING GRAPHS

#### Observation

$$\chi(\mathrm{KG}(nK_2, rK_2)) = n - 2r + 2 = |E(nK_2)| - \frac{2}{2}\mathrm{ex}(nK_2, rK_2).$$





#### MATCHING GRAPHS

#### Observation

$$\chi(\mathrm{KG}(nK_2, rK_2)) = n - 2r + 2 = |E(nK_2)| - 2\mathrm{ex}(nK_2, rK_2).$$

### Theorem (M. Alishahi and H.H., 2013-2014)

If G is a sufficiently large dense graph or a sparse connected graph (with some conditions), then  $\chi(\mathrm{KG}(G, rK_2)) = |E(G)| - ex(G, rK_2)$ .





### MATCHING GRAPHS

#### Observation

 $\chi(\mathrm{KG}(nK_2, rK_2)) = n - 2r + 2 = |E(nK_2)| - 2\mathrm{ex}(nK_2, rK_2).$ 

### Theorem (M. Alishahi and H.H., 2013-2014)

If G is a sufficiently large dense graph or a sparse connected graph (with some conditions), then  $\chi(\mathrm{KG}(G,rK_2))=|E(G)|-e\chi(G,rK_2)$ .

#### Proof!

- **1** Present an appropriate ordering for E(G).
- ② In view of TutteBerge formula, we show that  $ex_{alt}(G, F) = ex(G, F)$  or  $ex_{salt}(G, F) 1 = ex(G, F)!$





#### GENERAL KNESER GRAPHS

# Theorem (M. Alishahi and H.H., 2013)

If G is a multigraph such that the multiplicity of each edge is at least 2 and F is a simple graph, then  $\chi(\mathrm{KG}(G,F))=|E(G)|-e\chi(G,F)$ .

#### Proof!

- **1** Present an appropriate ordering for E(G).







### SPANNING TREE GRAPHS

## Theorem (M. Alishahi and H.H., 2014)

If G is a sufficiently large dense graph and  $\mathcal{T}_n$  is the family of the spanning trees of G, then  $\chi(\mathrm{KG}(G,\mathcal{T}_n))=|\mathrm{MinimumCUT}(G)|$ .

#### Proof!

- **1** Present an appropriate ordering for E(G).



|MinimumCUT(G)| = 1





### THE ALTERMATIC NUMBER OF SPARSE GRAPHS

### Theorem (M. Alishahi and H.H., 2013)

For any graph G, we have  $\zeta(G) \leq \max\{n : K_{\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil} \text{ is a subgraph of } G\}$ .





## THE ALTERMATIC NUMBER OF SPARSE GRAPHS

## Theorem (M. Alishahi and H.H., 2013)

For any graph G, we have  $\zeta(G) \leq \max\{n : K_{\lceil \frac{n}{2} \rceil, \lceil \frac{n}{2} \rceil} \text{ is a subgraph of } G\}$ .

#### Question

Is it true that for any graph G, we have  $\zeta(G \vee K_n) \leq \zeta(G) + n$ ?





## THE ALTERMATIC NUMBER OF SPARSE GRAPHS

#### Theorem (M. Alishahi and H.H., 2013)

For any graph G, we have  $\zeta(G) \leq \max\{n : K_{\lceil \frac{n}{2} \rceil, \lfloor \frac{n}{2} \rfloor} \text{ is a subgraph of } G\}$ .

#### Question

Is it true that for any graph G, we have  $\zeta(G \vee K_n) \leq \zeta(G) + n$ ?

## Theorem (M. Alishahi and H.H., 2014)

For any graph G, we have  $\zeta(M(G)) \ge \zeta(G) + 1$ .







#### Tucker's Lemma

#### **Definition**

Let 
$$X = (x_1, \dots, x_n), Y = (y_1, \dots, y_n) \in \{-1, 0, +1\}^n$$
. Set  $X^+ = \{i \in [n]: x_i = +1\}$  and  $X^- = \{i \in [n]: x_i = -1\}$ . By  $X \leq Y$ , we mean  $X^+ \subseteq Y^+$  and  $X^- \subseteq Y^-$ .





#### Tucker's Lemma

#### **Definition**

Let  $X = (x_1, ..., x_n), Y = (y_1, ..., y_n) \in \{-1, 0, +1\}^n$ . Set  $X^+ = \{i \in [n] : x_i = +1\}$  and  $X^- = \{i \in [n] : x_i = -1\}$ . By  $X \leq Y$ , we mean  $X^+ \subseteq Y^+$  and  $X^- \subseteq Y^-$ .

#### Tucker's Lemma, 1946

```
Let \lambda: \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\} \longrightarrow \{\pm 1,\pm 2,\ldots,\pm (n-1)\}. Also, assume that for any X \in \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\}, we have \lambda(-X) = -\lambda(X). Then there exist two vectors X,Y \in \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\} such that X \preceq Y and also \lambda(X) = -\lambda(Y).
```





#### Tucker's Lemma

#### **Definition**

Let  $X = (x_1, ..., x_n), Y = (y_1, ..., y_n) \in \{-1, 0, +1\}^n$ . Set  $X^+ = \{i \in [n] : x_i = +1\}$  and  $X^- = \{i \in [n] : x_i = -1\}$ . By  $X \leq Y$ , we mean  $X^+ \subseteq Y^+$  and  $X^- \subseteq Y^-$ .

#### Tucker's Lemma, 1946

Let  $\lambda: \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\} \longrightarrow \{\pm 1,\pm 2,\ldots,\pm (n-1)\}$ . Also, assume that for any  $X \in \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\}$ , we have  $\lambda(-X) = -\lambda(X)$ . Then there exist two vectors  $X,Y \in \{-1,0,+1\}^n \setminus \{(0,\ldots,0)\}$  such that  $X \preceq Y$  and also  $\lambda(X) = -\lambda(Y)$ .

#### $Z_p$ -Tucker Lemma (G.M. Ziegler, 2002)









#### Hypergraph Coloring

# <u>Definition (The Chromatic Number of Hypergraphs)</u>

Let H = (V(H), E(H)) be a hypergraph. The hypergraph H is called r-colorable if there exists a map  $c: V(H) \to \{1, 2, ..., r\}$  such that no hyperedge is monochromatic. The chromatic number  $\chi(H)$  of H is the minimum r such that H is r-colorable.





#### Hypergraph Coloring

## Definition (The Chromatic Number of Hypergraphs)

Let H = (V(H), E(H)) be a hypergraph. The hypergraph H is called r-colorable if there exists a map  $c : V(H) \to \{1, 2, \dots, r\}$  such that no hyperedge is monochromatic. The chromatic number  $\chi(H)$  of H is the minimum r such that H is r-colorable.

$$V(H) = \{A, B, C, D, a, b, c\}$$

$$E(H) = \{ \{A, B, c\}, \{A, D, a\}, \{A, C, b\} \}$$

$$\{B, D, b\}, \{B, C, a\}, \{C, D, c\} \}$$

$$\{a, b, c\} \}$$





#### Hypergraph Coloring

# Definition (The Chromatic Number of Hypergraphs)

Let H = (V(H), E(H)) be a hypergraph. The hypergraph H is called r-colorable if there exists a map  $c : V(H) \to \{1, 2, \ldots, r\}$  such that no hyperedge is monochromatic. The chromatic number  $\chi(H)$  of H is the minimum r such that H is r-colorable.





#### KNESER HYPERGRAPH

For a hypergraph H and positive integer  $r \ge 2$ , the Kneser hypergraph  $\mathrm{KG}^r(H)$  is an r-uniform hypergraph whose vertex set is E(H) and whose hyperedge set consists of all r-tuples of pairwise disjoint hyperedges of H.





#### Kneser Hypergraph

For a hypergraph H and positive integer  $r \ge 2$ , the Kneser hypergraph  $\operatorname{KG}^r(H)$  is an r-uniform hypergraph whose vertex set is E(H) and whose hyperedge set consists of all r-tuples of pairwise disjoint hyperedges of H. For instance, if r = 2,

$$V(H) = \{1, 2, 3, 4, 5\},\$$

$$E(H) = \binom{[5]}{2},$$

then

$$KG^{2}(H) = KG(H) = KG(5,2) = Petersen Graph.$$





#### Kneser Hypergraph

For a hypergraph H and positive integer  $r \ge 2$ , the Kneser hypergraph  $\operatorname{KG}^r(H)$  is an r-uniform hypergraph whose vertex set is E(H) and whose hyperedge set consists of all r-tuples of pairwise disjoint hyperedges of H. For instance, if r = 3,

$$V(H) = \{1, 2, 3, 4, 5, 6\},\$$

$$E(H) = \binom{[6]}{2},$$

then

$$E(KG^3(H)) = \{\{\{1,2\},\{3,4\},\{5,6\}\},\{\{1,3\},\{2,4\},\{5,6\}\},\dots\}.$$



#### Kneser Hypergraph

For a hypergraph H and positive integer  $r \geq 2$ , the Kneser hypergraph  $\operatorname{KG}^r(H)$  is an r-uniform hypergraph whose vertex set is E(H) and whose hyperedge set consists of all r-tuples of pairwise disjoint hyperedges of H. For

$$V(H)=[m],$$

$$E(H) = \binom{[m]}{n},$$

then denote the usual Kneser hypergraph  $KG^r(H)$  by

$$KG^{r}(m, n)$$
.





#### Usual Kneser Hypergraphs

# Observation (P. Erdős, 1976)

For  $m \ge rn$  and  $r \ge 2$ , we have  $\chi(\operatorname{KG}^r(m, n)) \le \left\lceil \frac{m - r(n-1)}{r-1} \right\rceil$ .

# Conjecture (P. Erdős, 1976)

If 
$$m \ge rn$$
 and  $r \ge 2$ , then  $\chi(\operatorname{KG}^r(m,n)) = \left\lceil \frac{m-r(n-1)}{r-1} \right\rceil$ .





#### USUAL KNESER HYPERGRAPHS

# Observation (P. Erdős, 1976)

For  $m \ge rn$  and  $r \ge 2$ , we have  $\chi(\operatorname{KG}^r(m,n)) \le \left\lceil \frac{m-r(n-1)}{r-1} \right\rceil$ .

# Conjecture (P. Erdős, 1976)

If  $m \ge rn$  and  $r \ge 2$ , then  $\chi(\operatorname{KG}^r(m,n)) = \left\lceil \frac{m-r(n-1)}{r-1} \right\rceil$ .

# Theorem (N. Alon, P. Frankl, and L. Lovász, 1986)

For  $m \ge rn$  and  $r \ge 2$ , we have  $\chi(\operatorname{KG}^r(m, n)) = \left\lceil \frac{m - r(n-1)}{r-1} \right\rceil$ .





## THE r-ALTERNATION NUMBER OF A HYPERGRAPH

$$V(H) = \{1, 2, 3, 4, 5\}$$
 &  $E(H) = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}$ 

1

2

3

4

5





## THE r-ALTERNATION NUMBER OF A HYPERGRAPH

A subsequence of nonzero elements is termed an alternating subsequence if any two consecutive terms in this subsequence are different.





## THE r-ALTERNATION NUMBER OF A HYPERGRAPH

A subsequence of nonzero elements is termed an alternating subsequence if any two consecutive terms in this subsequence are different.





## The r-Alternation Number of a Hypergraph

 $Alt_r(H)$  = The number of nonzero elements of a longest alternating alternating subsequence with at most r signs which does not contain a positive OR negative hyperedge of H



#### THE ALTERMATIC NUMBER OF HYPERGRAPHS

# Theorem (M. Alishahi and H.H., 2013)

For any hypergraph H and positive integer r > 2, we have

$$\chi(\mathrm{KG}^r(H)) \geq \left\lceil \frac{|V(H)| - alt_r(H)}{r-1} \right\rceil.$$





#### THE ALTERMATIC NUMBER OF HYPERGRAPHS

## Theorem (M. Alishahi and H.H., 2013)

For any hypergraph H and positive integer  $r \geq 2$ , we have

$$\chi(\mathrm{KG}^r(H)) \geq \left\lceil \frac{|V(H)| - alt_r(H)}{r-1} \right\rceil.$$

#### Observation

For any positive integer  $r \ge 2$  and the hypergraph H = (V(H), E(H)), where V(H) = [m], and  $E(H) = {[m] \choose n}$ , we have  $alt_r(H) \le r(n-1)$ .





#### THE ALTERMATIC NUMBER OF HYPERGRAPHS

# Theorem (M. Alishahi and H.H., 2013)

For any hypergraph H and positive integer  $r \geq 2$ , we have

$$\chi(\mathrm{KG}^r(H)) \geq \left\lceil \frac{|V(H)| - alt_r(H)}{r-1} \right\rceil.$$

#### Observation

For any positive integer  $r \ge 2$  and the hypergraph H = (V(H), E(H)), where V(H) = [m], and  $E(H) = {[m] \choose n}$ , we have  $alt_r(H) \le r(n-1)$ .

Consequently,

# Theorem (N. Alon, P. Frankl, and L. Lovász, 1986)

For  $m \ge rn$  and  $r \ge 2$ , we have  $\chi(\operatorname{KG}^r(m,n)) = \left\lceil \frac{m-r(n-1)}{r-1} \right\rceil$ .

- ----

# Definition (*r*-Colorability Defect)

Let the r-colorability defect, denoted by  $cd_r(H)$ , be the minimum size of a subset  $X \subseteq V(H)$  such that the hyperedges of H that contain no points of X is r-colorable. Precisely.

 $\operatorname{cd}_r(H) = \min\{|X| : (V(H) \setminus X, \{F \in E(H) : F \cap X = \emptyset\}) \text{ is } r - \text{colorable}\}.$ 





# Definition (*r*-Colorability Defect)

Let the *r*-colorability defect, denoted by  $\operatorname{cd}_r(H)$ , be the minimum size of a subset  $X \subseteq V(H)$  such that the hyperedges of H that contain no points of X is r-colorable. Precisely,

$$\operatorname{cd}_r(H) = \min\{|X| : (V(H) \setminus X, \{F \in E(H) : F \cap X = \emptyset\}) \text{ is } r - \operatorname{colorable}\}.$$

On the Alternatic Number of Graphs









Theorem (V.L. Dol'nikov for r = 2 1988, I. Kříž 1992)

For any hypergraph H and positive integer  $r \ge 2$ , we have

$$\chi(\mathrm{KG}^r(H)) \ge \left\lceil \frac{\mathrm{cd}_r(H)}{r-1} \right\rceil.$$





# Theorem (V.L. Dol'nikov for r=2 1988, I. Kříž 1992)

For any hypergraph H and positive integer  $r \geq 2$ , we have

$$\chi(\mathrm{KG}^r(H)) \geq \left\lceil \frac{\mathrm{cd}_r(H)}{r-1} \right\rceil.$$

#### Observation

For any hypergraph H = (V(H), E(H)) and positive integer  $r \ge 2$ , we have  $alt_r(H) \leq |V(H)| - cd_r(H)$ .





# Theorem (V.L. Dol'nikov for r = 2 1988, I. Kříž 1992)

For any hypergraph H and positive integer  $r \geq 2$ , we have

$$\chi(\mathrm{KG}^r(H)) \geq \left\lceil \frac{\mathrm{cd}_r(H)}{r-1} \right\rceil.$$

#### Observation

For any hypergraph H = (V(H), E(H)) and positive integer  $r \ge 2$ , we have  $a|t_r(H) \le |V(H)| - \operatorname{cd}_r(H)$ .

Consequently,

#### Observation

For any hypergraph H = (V(H), E(H)) and positive integer  $r \ge 2$ , we have  $\chi(\mathrm{KG}^r(H)) \ge \left\lceil \frac{|V(H)| - alt_r(H)}{r-1} \right\rceil \ge \left\lceil \frac{\mathrm{cd}_r(H)}{r-1} \right\rceil$ .



#### REFERENCES

- M. Alishahi and H. Hajiabolhassan, On the chromatic number of general Kneser hypergraphs. ArXiv e-prints, February 2013.
- M. Alishahi and H. Hajiabolhassan, Chromatic number via Turán number. ArXiv e-prints, December 2013.
- M. Alishahi and H. Hajiabolhassan, Hedetniemi's conjecture via alternating chromatic number. ArXiv e-prints, March 2014.
- M. Alishahi and H. Hajiabolhassan, On chromatic number and minimum cut. ArXiv e-prints, July 2014.





# Thank You!

I would like to express my heartfelt gratitude to Professor Carsten Thomassen who generously shared his time with me.







# QUESTIONS?!





