Example

Eigenfaces for face recognition

• Training:

- Calculate the eigenspace for all faces in the training database
- Project each face into the eigenspace
 - → feature reduction

• Classification:

- Project new face into eigenspace
- Nearest neighbor in the eigenspace

Eigenface

Training stage

Recognition stage

- Example (con't)
 - Eigenfaces for face recognition

• Step 1: a set of trair

 $X = \{x_1, x_2, \cdots, x_n\}$

- Example (con't)
 - Eigenfaces for face recognition
 - Step 2 : Image Norm

 Step 2

- Example (con't)
 - Eigenfaces for face recognition

 $\mu = \frac{1}{n} \sum_{i=1}^{n} X_i$

Step 3 : Calculate the meail

- Example (con't)
 - Eigenfaces for face recognition
 - Step 4 : Calculation of difference $\lim_{i \to \infty} x_i = x_i$ vector and mean vector

• Step 5 : Covariance matrix

$$C = \frac{1}{n} \sum_{i=1}^{n} \Psi_i \Psi_i^T$$

- Example (con't)
 - Eigenfaces for face recognition
 - Step 6: Eigenvector of covariance

$$\Phi_i = \sum_{j=1}^K w_j u_j \quad \Rightarrow w_j = u_j^T \Phi_i \quad \Rightarrow \Omega_i = [w_1 ... w_K]^T \quad (i = 1..M)$$

Step 7 : (Face Recognition) Project new face into eigenspace

```
Input (the probe): \Gamma \Rightarrow \Phi = \Gamma - \psi

Project \Phi into the face space: \Omega = [w_1' \dots w_K']^T

Compute: e_r

= \min_{1 \le i \le M} ||\Omega - \Omega_i||, ||. || is a distance measure

If e_r \le \theta, the probe is recognized
```

Input: Γ_1 , Γ_2 $\Rightarrow \Phi_1 = \Gamma_1 - \psi$, $\Phi_2 = \Gamma_2 - \psi$ Project into the face space: Ω_1 , Ω_2 Compute: $e_r = ||\Omega_1 - \Omega_2||$ If $e_r \leq \theta$, matched (accepted) and vice

• Eigenface

