Basi di Dati

Federico Matteoni

A.A. 2019/20

Indice

1	Intr	roduzio	one	5			
2	Base di Dati						
	2.1	2.1 Costruzione di una Base di Dati					
		2.1.1	Figure Coinvolte	7			
		2.1.2	Sistemi Informativi	7			
		2.1.3	Sistemi Informatici	8			
		2.1.4	Classificazione dei sistemi informatici	9			
		2.1.5	Requisiti per l'Analisi dei Dati	10			
		2.1.6	Big Data	10			
	2.2 DBMS		S	10			
		2.2.1	Dati	11			
		2.2.2	DDL	12			
		2.2.3	DML	12			
		2.2.4	Schemi e Istanze	13			
		2.2.5	Meccanismi per il controllo dei dati	13			
		2.2.6	Transazioni	13			

4 INDICE

Capitolo 1

Introduzione

Obiettivi del corso Modelli dei dati, linguaggi e sistemi per lo sviluppo di applicazioni che prevedono l'uso di grandi quantità di dati permanenti organizzati in basi di dati.

Testo di Riferimento Fondamenti di Basi di Dati, A. Albano, G. Ghelli e R. Orsini, Zanichelli. Scaricabile liberamente da fondamentidibasididati.it

Esame Scritto + orale

Terminologia

Base di dati: tecnologia di base, gestione delle attività quotidiane dell'organizzazione e tema di questo corso

Data Warehouse, Data Lake, Big Data, Data Science: termini che hanno a che vedere con l'analisi dei dati e che non rientrano nei temi trattati nel corso.

Capitolo 2

Base di Dati

Cos'è una base di dati? Una base di dati è un insieme organizzato di dati usati per il supporto allo svolgimento di una attività (di un ente, azienda, ufficio, persona...)

Qualche esempio

Materie									
${f Titolo}$	Codice	Syllabus							
Basi di Dati	AA024	Progettazione e interrogazione							
Reti di Calcolatori	AA019	Realizzazione e uso di reti, protocollo TCP							

Corsi								
Materia	$\mathbf{A}\mathbf{A}$	Semestre	Titolare					
AA024	2007	1	Albano					
AA024	2007	1	Ghelli					
AA019	2007	1	Brogi					

2.1 Costruzione di una Base di Dati

2.1.1 Figure Coinvolte

Committente

Dirigente

Operatore

Fornitore

Direttore del progetto

Analista

Progettista del DB

Programmatore di applicazioni che usano il DB

Manutenzione e messa a punto del DB – Gestione del DBMS

Amministratore del DBMS

2.1.2 Sistemi Informativi

Definizione Un sistema informativo di un'organizzazione è una combinazione di risorse, umane e materiali, e di procedure organizzate per raccolta, archiviazione, elaborazione e scambio delle informazioni necessarie alle attività:

Operative (informazioni di servizio)

Programmazione e controllo (informazioni di gestione)

Pianificazione strategica (informazioni di governo)

Esempi di sistemi informativi Un comune

Gestione servizi demografici (anagrafe, stato civile, servizio elettorale e vaccinale) e della rete viaria

Gestione attività finanziaria secondo la normativa vigente

Gestione del personale per il calcolo della retribuzione in base al tipo di normativa contrattuale

Gestione dei servizi amministrativi e sanitari delle USL

Gestione della cartografia generale e tematica del territorio

Sistema informativo nelle organizzazioni

2.1.3 Sistemi Informatici

Sistema Informativo Automatizzato Quella parte del sistema informativo in cui le informazioni sono raccolte, elaborate, archiviate e scambiate usando un sistema informatico.

Sistema Informatico Insieme delle tecnologie informatiche e della comunicazione (ICT, Information and Communication Technologies) a supporto delle attività di un'organizzazione.

Terminologia

Sistema informativo \longrightarrow Sistema informativo automatizzato Sistema informativo automatizzato \longrightarrow Sistema informatico

Classificazione dei sistemi informatici 2.1.4

Sistemi Informatici Operativi — Sistemi Informatici Direzionali

Sistemi Informatici Operativi I dati sono organizzati di DB. Le applicazioni si usano per svolgere le classiche attività strutturate e ripetitive dell'azione nelle aree amministrativa e finanziaria: vendite, risorse umane, produzione...

Alcune sigle:

DP Data Processing **EDP** Electronic Data Processing

TPS Transaction Processing Systems

Sistemi Informatici Direzionali I dati sono organizzati in data warehouse (DW) e gestiti ad un opportuno sistema. Le applicazioni, dette di business intelligence, sono strumenti di supporto ai processi di controllo delle prestazioni aziendali e di decisione manageriale. Terminologia:

MIS Management Information Systems

DSS Decision Support Systems, data-based o model-based

EIS Executive Information System

DBMS Le caratteristiche del DB sono garantite da un sistema per la gestione della base di dati (DBMS, Data Base Management System) che ha il controllo dei dati e li rende accessibili agli utenti autorizzati.

OLTP On-Line Transaction Processing, modo d'uso principale dei DBMS. Tradizionale elaborazione di transazioni, che realizzano processi operativi per il funzionamento di organizzazioni:

Operazioni predefinite e relativamente semplici

Ogni operazione coinvolge pochi dati

Dati di dettaglio, aggiornati

On-Line Analytical Processing modo d'u-OLAPso principale dei DW. Analisi dei dati di supporto alle decisioni:

Operazioni complesse e casuali

Ogni operazione può coinvolgere molti dati

Dati aggregati, storici, anche non attualissimi

Differenze tra OLTP e OLAP

	OLTP	OLAP
\mathbf{Scopi}	Supporto operatività	Supporto decisioni
${f Utenti}$	Molti, esecutivi	Pochi, dirigenti e analisti
\mathbf{Dati}	Analitici, relazionali	Sintetici, multidimensionali
$\mathbf{U}\mathbf{si}$	Noti a priori	Poco prevedibili
Quantità di dati per attività	Bassa (decine)	Alta (milioni)
Orientamento	Applicazione	Soggetto
${f Aggiornamenti}$	Frequenti	Rari
Visione dei dati	Corrente	Storica
Ottimizzati per	Transazioni	Analisi

2.1.5 Requisiti per l'Analisi dei Dati

Aggregati Non interessa un dato, ma la somma, la media, il minimo/massimo di una misura...

Multidimensionale Interessa incrociare le informazioni, per analizzarle da punti di vista diversi e valutare i risultati del business per intervenire sui problemi critici o per cogliere nuove opportunità

Diversi livelli di dettaglio Per esempio, una volta scoperto un calo delle vendite in un determinato periodo in una specifica regione, si passa ad un'analisi dettagliata nell'area di interesse per cercare di scoprirne le cause (dimensioni con **gerarchie**)

2.1.6 Big Data

Ampio Big data è un termine ampio riferito a situazioni in cui l'approccio "schema-first" tipico di DB e DW risulta troppo restrittivo o troppo lento.

3 V Volume, Varietà, Velocità

I Big Data sono in genere associati a sistemi NoSQL, machine learning e approcci Data Lake.

2.2 **DBMS**

Un **DBMS** è un sistema (**software**) in grado di **gestire collezioni di dati** che siano, tra le altre cose:

Grandi

Persistenti, con un periodo di vita indipendente dalle singole esecuzioni dei programmi che le utilizzano

Condivise, usate da applicazioni diverse

garantendo **affidabilità** (resistenza a malfunzionamenti hardware e software-recovery) e **privacy** (con una disciplina e un controllo degli accessi.

Come ogni altro software, un DBMS deve essere **efficiente** (usare al meglio le risorse di spazio e tempo del sistema) ed **efficace** (rendere produttive le attività degli utilizzatori). Un DBMS offre opportuni linguaggi per:

Definire lo schema di un DB, che va definito prima di creare dati

Scegliere le strutture dati per la memorizzazione

Memorizzare i dati **rispettando i vincoli** definiti nello schema

Recuperare e modificare i dati, interattivamente (query language, linguaggio di interrogazione) o da programmi

2.2. DBMS 11

2.2.1 Dati

I dati permanenti contenuti in un DB sono divisi in due categorie:

Metadati

Descrivono datti sullo schema dei dati, utenti autorizzati, applicazioni, parametri quantitativi...

I metadati sono descritti da uno schema usando il modello dei dati usato dal DBMS e sono interrogabili con le stesse modalità previste dai dati

Dati

Rappresentazioni di certi fatti conformi alle definizioni dello schema. Hanno le seguenti caratteristiche:

Organizzati in **insiemi strutturati e omogenei**, fra i quali sono definite delle **relazioni**. La struttura dei dati e le relazioni sono **descritte nello schema** usando i meccanismi di astrazione del modello dei dati del DBMS.

Sono molti, sia in assoluto che rispetto ai metadati, e non possono essere gestiti in memoria temporanea

Sono accessibili mediante transazioni, unità di lavoro atomiche che non possono avere effetti parziali

Sono **protetti** sa **da accesso da parte di utenti non autorizzati**, sia da **corruzione** dovuta a malfunzionamenti hardware o software

Sono utilizzabili contemporaneamente da utenti diversi

Il modello relazionale dei dati è il più diffuso fra i DBMS commerciali. Il meccanismo di astrazione fondamentale è la relazione (tabella), sostanzialmente un insieme di record dai campi elementari.

Lo schema di una relazione ne definisce il nome e ne descrive la struttura dei possibili elementi della relazione (insieme di attributi con il loro tipo)

Esempio

```
Definizione del DB
```

create database EsempioEsame

Definizione schema

```
create table Esami(Materia \mathbf{char}(5), Candidato \mathbf{char}(8), Voto \mathbf{int}, Lode \mathbf{char}(1), Data \mathbf{char}(6))
```

Inserzione dati

```
insert into Esami values ('BDSI1', '080709', 30 'S', '070900')
```

Interrogazione

```
select Candidato from Esami where Materia = "BDSI1" and Voto = 30 > Candidato > 080709
```

2.2.2 DDL

Data Definition Language Linguaggio per la definizione della base di dati. Utile distinguere tre diversi livelli di descrizione dei dati (**schemi**):

Livello di vista logica

Livello logico

Livello fisico

Livello Logico Descrive la struttura degli insiemi di dati e delle relazioni fra loro, secondo un erto modello dei dati, senza nessun riferimento alla loro organizzazione fisica nella memoria permanente. Esempi:

```
\textbf{Studenti}\left(\texttt{Matricola~char}\left(8\right),~\texttt{Nome~char}\left(20\right),~\texttt{Login~char}\left(8\right),~\texttt{AnnoNascita~int}\,,~\texttt{Reddito~float}\right)
```

```
Corsi(IdeC \mathbf{char}(8), Titolo \mathbf{char}(20), Credito \mathbf{int})
Esami(Matricola \mathbf{char}(8), IdeC \mathbf{char}(8), Voto \mathbf{int})
```

Livello Fisico Descrive come vanno organizzati fisicamente i dati nelle memorie permanenti e quali strutture dati ausiliarie prevedere per facilitarne l'uso (schema fisico o interno).

Esempi: relazioni Studenti e Esami organizzate in modo seriale, Corsi organizzata sequenziale con indice, indice su Matricola.

Vista Logica Descrive come deve apparire la struttura del DB ad una certa applicazione (schema esterno o vista). Esempio:

```
InfCorsi (IdeC char(8), Titolo char(20), NumEsami int)
```

Nell'organizzazione di una banca, lo schema logico conterrà tutte le tabelle e i dati relativi ai conti correnti, ma anche al personale. Lo schema logico conserva tutte le informazioni della banca. Nello schema esterno ogni correntista potrà accedere solo ad alcune informazioni di suo interesse: quelle del proprio conto corrente.

Indipendenza L'approccio con tre livelli è stato proposto per garantire le proprietà di indipendenza logica e fisica dei dati, fra gli obiettivi più importanti dei DBMS.

Indipendenza fisica: i programmi applicativi non devono essere modificati in seguito a modifiche dell'organizzazione fisica dei dati

Indipendenza logica: i programmi applicativi non devono essere modificati in seguito a modifiche dello schema logico

2.2.3 DML

Data Manipulation Language Linguaggio per l'uso dei dati.

Un DBMS deve prevedere più modalità d'uso per soddisfare esigenze di diverse categorie d'utenti: GUI per accedere ai dati, linguaggio di interrogazione per i non programmatori, linguaggio di programmazione per chi sviluppa le applicazioni, linguaggio di sviluppo per le interfacce delle applicazioni.

Linguaggi vari e interfacce diverse:

Linguaggi testuali interattivi, SQL

Comandi (come quelli del linguaggi interattivo) immersi in un linguaggio ospite, come il C

2.2. DBMS 13

Comandi (come quelli del linguaggi interattivo) immersi in un linguaggio ad hoc (come PL/SQL) con anche altre funzionalità (come grafici e stampe strutturate)

Interfacce amichevoli

2.2.4 Schemi e Istanze

Schema Descrive la struttura dei dati, sostanzialmente invariante nel tempo: le "classi", intestazione delle tabelle

Istanza Valori attuali dei dati che possono cambiare anche molto rapidamente: gli "oggetti", il corpo di ciascuna tabella

2.2.5 Meccanismi per il controllo dei dati

Caratteristica molto importante dei DBMS è il tipo di meccanismi usati per garantire le seguenti proprietà

Integrità: mantenimento delle proprietà specificate nello schema

Sicurezza: protezione da usi non autorizzati

Affidabilità: protezione da malfunzionamenti e interferenze dovute all'accesso concorrente di più utenti

2.2.6 Transazioni

Definizione Una transazione è una sequenza di azioni di lettura/scrittura in memoria permanente e di elaborazione dati in memoria temporanea, con le seguenti proprietà:

Atomicità: le transazioni che terminano prematuramente (aborted transactions) sono trattate dal sistema come se non fossero mai iniziate. Eventuali effetti sul DB sono annullati.

Serializzabilità: esecuzioni concorrenti di più transazioni danno come effetto quello di una esecuzione seriale

Persistenza: le modifiche sul DB di una transazione terminata normalmente sono permanenti, cioè non alterabili da malfunzionamenti