

LABORATORY WORK SHEET

Name of the Student MADKI SAI CHARAM				
Class CSM-'C' Semester TST	Roll Number			
Course Code AFF003 Course Name Electrical and	23951A66F2			
Name of the Course Faculty M.S. M. VARALAKSHMI	Engineering Laboratory -			
Exercise Number 11 Week Number 1.1	Date 19 Tanuau			

DAY TO DAY EVALUATION:

Marks	Aim /	Algorithm / Procedure Source Code Program Execution		Program Execution	Viva -	1
Warks.	Preparation	Performance in the Lab	Calculations and Graphs	Results and Error Analysis	Voce	Total
Max. Marks	4	4	4	4	4	20
Obtained	4	LA	4	4	+	20

Signature of Faculty

START WRITING FROM HERE:

Aim: plot the V-I Characteristics of a Zenerdiade, find Zener breakdown voltage in reverse bias condition, find Static and Rynamic resistance in both forward and reverse bias conditions and perform Zenerdiade voltage regulator.

Apparatus:

S-NO	DEVICE S	RANGE/ RATING	QUANTITY
01.	Zener diode trainer Board containing		
	a) DG POWER Supply	10-1511	01
	b) Zener diode	4-7 V	01.
	c) zener diode	6-2-V	0 1
	d) courbon Fith resistor	1K-12, 1/2 W	01
02.	nc yostoneta	(0-W)	01
	De voltmeter	(0-20V)	01
03 -	DC Ammeter	(0-200 MA)	01
	DC Ammeter	(co-soma)	01
oy.	Connecting usines	SA	(0)

Procedure:

Forward Bias

- 1) connect the circuit as shown in figure 1.
- 2) Vary the supply voltage Es in steps and note down the corresponding values of Ef and If as shown in table.

Reverse Bias

- 1) connect the circuit as shown in figure 2.
- 2) Repeat the procedure as in Forward bias and note down the corresponding values of Ex and Ir as shown in table.

pre cautions:

- 1) Ensure that polarities of power supply and meters as per circuit.
- 2) Keep the input voltage knob of regulated power supply in minimum position both when switching on a off the supply-
- 3) No loose contacts at the junction.
- 4) Ensure that the ratings of meters are as per the Circuit design for precision.

Result:

- 1) V-I characteristics of Zener diode are plotted and Verified in both forward and reverse directions.
- 2) Zener breakdown voltage for 4.7v Zener diode = 4-7V.

- 3) (i) Forward Bias:
 - a) static resistance at 6mA =
 - 6) Dynamic resistance at 6 mA =

tii) Reverse Bias:

- a) static resistance at 6mA=
- b) Dynamic resistance at 6 mA=

Tabular column:

Farward			ant s	Reverse			
	Es (v)	Efwo	I4 (ma)	1	Es (v)	Er(V)	Ir (mA)
	0.1	0.25	0		0+1	0	0
	0-5	0-61	0		0.5	0.58	0.5
	1,00	0.7	0.4		1	1-14	1 - 1
	2	0.77	1.4		2	2,10	311
1	C/	0,90	3 - 3		4	3.05	5-1
l	6	1-12	5.2	300	6	1111	1521 (
	8	1.14	7-1		8	1	Name
l	10	1.16	9.2		10		7 19
	12	1-24	11+3		12	10 00000	dir !
	14	(+33	13.3	1	10	Lookt of	
		- 51	/	-			

Calculations:

Forward Bynamic resistance at 6mA = DEY/SIF

Reverse static resistance at 6 mm = Ef/If

Reverse Dynamic resistance at 6mA = DE+/DI+