Chapitre 5 Programmation dynamique

HLIN401 : Algorithmique et complexité

L2 Informatique Université de Montpellier 2020 – 2021

1. Premier exemple : plus longue sous-suite croissante

2. Qu'est-ce que la programmation dynamique?

3. Deuxième exemple : choix de cours, le retour

4. Troisième exemple : la distance d'édition

5. Quatrième exemple : calcul de plus courts chemins

6. Bonus : le voyageur de commerce

Définition

Une **plus longue sous-suite croissante (PLSSC)** d'un tableau T d'entiers est une suite la plus grande possible d'indices $0 \le i_1 < i_2 < \cdots < i_k \le n-1$ telle que

 $T_{[i_1]} \leq T_{[i_2]} \leq \cdots \leq T_{[i_k]}.$

Entrée Un tableau T de n entiers Sortie 1 Une PLSSC de T

Entrée Un tableau T de n entiers

Sortie 1 Une PLSSC de TSortie 2 La longueur d'une PLSSC de T

Sortie 1 Une PLSSC de T

Entrée Un tableau T de n entiers

```
Sortie 2 La longueur d'une PLSSC de T

Exemple précédent

Entrée T = [6, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 3, 10]

Sortie 1 [6, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 3, 10]

ou [6, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 3, 10]

ou ...

Sortie 2 6
```

```
Entrée Un tableau T de n entiers
Sortie 1 Une PLSSC de T
Sortie 2 La longueur d'une PLSSC de T
```

Exemple précédent

```
Entrée T = [6, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 3, 10]

Sortie 1 [6, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 3, 10]

ou [6, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 3, 10]

ou ...
```

Sortie 2 6

▶ Algo. naïf : considérer toutes les sous-suites $\rightsquigarrow O(2^n)$

```
Entrée Un tableau T de n entiers
Sortie 1 Une PLSSC de T
Sortie 2 La longueur d'une PLSSC de T
```

Exemple précédent

```
Entrée T = [6, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 3, 10]

Sortie 1 [6, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 3, 10]

ou [6, 1, 9, 5, 13, 3, 11, 7, 15, 2, 10, 6, 14, 4, 12, 8, 16, 3, 10]

ou ...
```

Sortie 2 6

▶ Algo. naïf : considérer toutes les sous-suites $\rightsquigarrow O(2^n)$

Algorithme de complexité polynomiale?

- \blacktriangleright $\ell(T)$: longueur des PLSSC de T
- ightharpoonup : longueur des PLSSC de \mathcal{T} finissant en case $\mathcal{T}_{[i]}$

- \blacktriangleright $\ell(T)$: longueur des PLSSC de T
- ightharpoonup : longueur des PLSSC de \mathcal{T} finissant en case $\mathcal{T}_{[i]}$

Remarque

$$\ell(T) = \max_{0 \le i < n} \ell_i$$

- \blacktriangleright $\ell(T)$: longueur des PLSSC de T
- ightharpoonup $oldsymbol{\ell}_i$: longueur des PLSSC de T finissant en case $oldsymbol{\mathcal{T}}_{[i]}$

Remarque

$$\ell(T) = \max_{0 \le i < n} \ell_i$$

Lemme

$$\ell_i = egin{cases} 1 & \textit{si } i = 0 \ 1 + \max\{\ell_j : j < i \textit{ tels que } T_{[j]} \leq T_{[i]}\} & \textit{pour } 1 \leq i < n \end{cases}$$

- \blacktriangleright $\ell(T)$: longueur des PLSSC de T
- ightharpoonup $oldsymbol{\ell}_i$: longueur des PLSSC de T finissant en case $oldsymbol{T}_{[i]}$

Remarque

$$\ell(T) = \max_{0 \le i < n} \ell_i$$

Lemme

$$\ell_i = egin{cases} 1 & ext{si } i = 0 \ 1 + \max\{\ell_j : j < i ext{ tels que } T_{[j]} \leq T_{[i]}\} & ext{pour } 1 \leq i < n \end{cases}$$

Preuve On montre deux inégalités :

$$\geq$$
 si max = ℓ_{j_m} , il existe une SSC de $\lg r \ell_{j_m} : T_{[j_0]} \leq \cdots \leq T_{[j_m]}$; donc $T_{[j_0]} \leq \cdots \leq T_{[j_m]} \leq T_{[i]}$ est une SSC de $\lg r \ell_{j_m} + 1$

- \blacktriangleright $\ell(T)$: longueur des PLSSC de T
- ightharpoonup : longueur des PLSSC de T finissant en case $T_{[i]}$

Remarque

$$\ell(T) = \max_{0 \le i < n} \ell_i$$

Lemme

$$\ell_i = egin{cases} 1 & ext{si } i = 0 \ 1 + \max\{\ell_j : j < i ext{ tels que } T_{[j]} \leq T_{[i]}\} & ext{pour } 1 \leq i < n \end{cases}$$

Preuve On montre deux inégalités :

- \geq si max = ℓ_{j_m} , il existe une SSC de $\lg r \ell_{j_m} : T_{[j_0]} \leq \cdots \leq T_{[j_m]}$; donc $T_{[j_0]} \leq \cdots \leq T_{[j_m]} \leq T_{[i]}$ est une SSC de $\lg r \ell_{j_m} + 1$
- \leq il existe une SSC de $\lg r \ell_i : T_{[j_0]} \leq \cdots \leq T_{[j]} \leq T_{[i]}$; alors $T_{[j_0]} \leq \cdots \leq T_{[j]}$ est une SSC de $\lg r \ell_i 1 : \ell_j \geq \ell_i 1$; donc $\max_{j < i, T_{[j]} \leq T_{[j]}} \ell_j \geq \ell_i 1$

$$oldsymbol{\ell}_i = egin{cases} 1 & ext{si } i = 0 \ 1 + ext{max} \{oldsymbol{\ell}_j : j < i ext{ tels que } T_{[j]} \leq T_{[i]} \} & ext{pour } 1 \leq i < n \end{cases}$$

$$oldsymbol{\ell}_i = egin{cases} 1 & ext{si } i = 0 \ 1 + ext{max} \{oldsymbol{\ell}_j : j < i ext{ tels que } T_{[j]} \leq T_{[i]} \} & ext{pour } 1 \leq i < n \end{cases}$$

```
Algorithme : L(T, i)

si i = 0 : renvoyer 1

\max \leftarrow 0

pour j = 0 à i - 1 :

\begin{vmatrix} \mathbf{si} \ T_{[j]} \le T_{[i]} : \\ L \leftarrow L(T, j) \\ \mathbf{si} \ L > \max : \max \leftarrow L \end{vmatrix}

renvoyer 1 + \max
```

$$oldsymbol{\ell}_i = egin{cases} 1 & ext{si } i = 0 \ 1 + ext{max} \{oldsymbol{\ell}_j : j < i ext{ tels que } T_{[j]} \leq T_{[i]} \} & ext{pour } 1 \leq i < n \end{cases}$$

```
Algorithme : L(T, i)

si i = 0 : renvoyer 1

\max \leftarrow 0

pour j = 0 à i - 1 :

\begin{vmatrix} \mathbf{si} \ T_{[j]} \le T_{[i]} : \\ L \leftarrow L(T, j) \\ \mathbf{si} \ L > \max : \max \leftarrow L \end{vmatrix}

renvoyer 1 + \max
```

$$t_L(i) \leq \sum_{j < i} t_L(j)$$

$$t_L(i) = O(2^i)$$

$$oldsymbol{\ell}_i = egin{cases} 1 & ext{si } i = 0 \ 1 + ext{max} \{oldsymbol{\ell}_j : j < i ext{ tels que } T_{[j]} \leq T_{[i]} \} & ext{pour } 1 \leq i < n \end{cases}$$

Algorithme : L(T, i)si i = 0 : renvoyer 1 $max \leftarrow 0$ **pour** $j = 0 \ \hat{a} \ i - 1$: si $T_{[i]} \leq T_{[i]}$: $\begin{vmatrix}
L & \leftarrow L(T, j) \\
si L > max : max \leftarrow L
\end{vmatrix}$ renvoyer $1 + \max$

$$oldsymbol{\ell}_i = egin{cases} 1 & ext{si } i = 0 \ 1 + ext{max} \{oldsymbol{\ell}_j : j < i ext{ tels que } T_{[j]} \leq T_{[i]} \} & ext{pour } 1 \leq i < n \end{cases}$$

Algorithme : L(T, i)si i = 0 : renvoyer 1 $max \leftarrow 0$ pour i = 0 à i - 1: si $T_{[i]} \leq T_{[i]}$: $\begin{vmatrix}
\vec{L} \leftarrow \vec{L}(T, j) \\
si \ L > max : max \leftarrow L
\end{vmatrix}$ renvoyer $1 + \max$

► Retenir les valeurs calculées

Retenir les valeurs calculées

```
Algorithme: MEMO(T, i, L)
si i=0: renvoyer 1
max \leftarrow 0
pour i = 0 \ a \ i - 1:
    si T_{[i]} \leq T_{[i]}:
        si L_{[j]} = None:
         L_{[i]} \leftarrow \mathsf{MEMO}(T, j, L)
        si L_{[i]} > \max : \max \leftarrow L_{[i]}
renvoyer 1 + \max
```

Retenir les valeurs calculées

```
Algorithme: MEMO(T, i, L)
si i = 0: renvoyer 1
max \leftarrow 0
pour j = 0 \ \hat{a} \ i - 1 :
    si T_{[i]} \leq T_{[i]}:
         si L_{[j]} = None:
           L_{[j]} \leftarrow \mathsf{MEMO}(T, j, L)
         si L_{[i]} > \max : \max \leftarrow L_{[i]}
renvoyer 1 + \max
```


Retenir les valeurs calculées

```
Algorithme: MEMO(T, i, L)
si i = 0: renvoyer 1
max \leftarrow 0
pour j = 0 \ aar i - 1 :
    si T_{[j]} \leq T_{[i]}:
         si[L_{[j]} = None]:
           L_{[j]} \leftarrow \mathsf{MEMO}(T, j, L)
         si L_{[i]} > \max : \max \leftarrow L_{[i]}
renvoyer 1 + \max
```


On calcule ℓ_i par valeurs de i croissantes!

Algorithme PLSSC

```
Algorithme: PLSSC(T)
L \leftarrow tableau de taille n, initialisé à 1
M \leftarrow L_{[0]}
                                                                                              //M = \max_i L_{[i]}
pour i = 1 à n - 1:
     max \leftarrow 0
                                                                  // \max = \max\{L_{[i]} : j < i, T_{[i]} \le T_{[i]}\}
    pour i = 0 à i - 1:
         si T_{[i]} \le T_{[i]} et L_{[i]} > \max :
          \max \leftarrow L_{[i]}
    L_{[i]} \leftarrow 1 + \max
    \mathsf{si}\ L_{[i]} > M : M \leftarrow L_{[i]}
renvoyer M
```

Correction et complexité

Théorème

L'algorithme PLSSC calcule $\ell(T)$ en temps $O(n^2)$.

```
Algorithme: PLSSC(T)
L \leftarrow tableau de taille n, initialisé à 1
M \leftarrow L_{[0]}
pour i = 1 \ a \ n - 1:
      max \leftarrow 0
      pour j = 0 \ aab i - 1:
             si T_{[j]} \leq T_{[i]} et L_{[j]} > \max:
               \max \leftarrow L_{[i]}
      \operatorname{si}^{L_{[i]}} > M : M \leftarrow L_{[i]}
renvoyer M
```

Correction et complexité

Théorème

L'algorithme PLSSC calcule $\ell(T)$ en temps $O(n^2)$.

Preuve de correction : utilisation de la formule récursive Preuve de complexité : double boucle

```
\begin{aligned} & \textbf{Algorithme}: \texttt{PLSSC}(T) \\ & L \leftarrow \texttt{tableau} \ \texttt{de} \ \texttt{taille} \ n, \ \texttt{initialis\'e} \ \texttt{à} \ 1 \\ & M \leftarrow L_{[0]} \\ & \textbf{pour} \ i = 1 \ \texttt{\grave{a}} \ n - 1 : \\ & \max \leftarrow 0 \\ & \textbf{pour} \ j = 0 \ \texttt{\grave{a}} \ i - 1 : \\ & & \underbrace{ \  \  }_{\substack{\textbf{si} \ T_{[j]} \leq T_{[j]} \ \textbf{et} \ L_{[j]} > \text{max} : } \\ & & \underbrace{ \  \  }_{\substack{\textbf{max} \leftarrow L_{[j]} \ \textbf{max} \in L_{[j]} \ \textbf{max} : } \\ & \underbrace{ \  \  }_{\substack{\textbf{i} \ L_{[i]} > M : M \leftarrow L_{[i]} \ \textbf{renvoyer} \ M} \end{aligned}
```

Correction et complexité

Théorème

L'algorithme PLSSC calcule $\ell(T)$ en temps $O(n^2)$.

Preuve de correction : utilisation de la formule récursive Preuve de complexité : double boucle

```
Algorithme: PLSSC(T)
L \leftarrow \text{tableau de taille } n, initialisé à 1
M \leftarrow L_{[0]}
pour i = 1 à n - 1:
      max \leftarrow 0
      pour i = 0 \ a \ i - 1:
             si T_{[i]} \leq T_{[i]} et L_{[i]} > \max:
                \max \leftarrow L_{[i]}
      L_{[i]} \leftarrow 1 + \max
      \operatorname{si} L_{[i]} > M : M \leftarrow L_{[i]}
renvoyer M
```

Comment calculer une PLSSC (en plus de sa longueur)?

- Retenir les indices des max
- ► Reconstruire a posteriori

Algorithme PLSSC avec reconstruction

```
Algorithme: PLSSC(T)
L \leftarrow tableau de taille n. initialisé à 1
\mathsf{Prec} \leftarrow \mathsf{tableau} \; \mathsf{de} \; \mathsf{taille} \; n, initialisé à -1
i_M \leftarrow 0 // fin de la PLSSC courante
pour i=1 à n-1:
     max \leftarrow 0
     pour i = 0 \ \hat{a} \ i - 1:
         si T_{[i]} \leq T_{[i]} et L_{[j]} > \max:
        \max \leftarrow L_{[j]}; \text{Prec}_{[i]} \leftarrow j
     L_{[i]} \leftarrow 1 + \max
    \operatorname{si} L_{[i]} > L_{[i_M]} : i_M \leftarrow i
renvoyer L_{[i_M]}, i_M et Prec
```

Algorithme PLSSC avec reconstruction

```
Algorithme: PLSSC(T)
L \leftarrow tableau de taille n. initialisé à 1
\mathsf{Prec} \leftarrow \mathsf{tableau} \; \mathsf{de} \; \mathsf{taille} \; n, initialisé à -1
i_M \leftarrow 0 // fin de la PLSSC courante
pour i=1 à n-1:
     max \leftarrow 0
     pour i = 0 \ \hat{a} \ i - 1:
          si T_{[i]} \leq T_{[i]} et L_{[j]} > \max:
        \max \leftarrow L_{[i]}; \text{Prec}_{[i]} \leftarrow j
     L_{[i]} \leftarrow 1 + \max
    \operatorname{si} L_{[i]} > L_{[i_M]} : i_M \leftarrow i
renvoyer L_{[i_M]}, i_M et Prec
```

Algorithme PLSSC avec reconstruction

```
Algorithme: PLSSC(T)
L \leftarrow tableau de taille n, initialisé à 1
\mathsf{Prec} \leftarrow \mathsf{tableau} \; \mathsf{de} \; \mathsf{taille} \; n, initialisé à -1
i_M \leftarrow 0 // fin de la PLSSC courante
pour i=1 à n-1:
     max \leftarrow 0
     pour i = 0 à i - 1:
         si T_{[i]} \le T_{[i]} et L_{[i]} > \max :
         \max \leftarrow L_{[i]}; \text{Prec}_{[i]} \leftarrow j
     L_{[i]} \leftarrow 1 + \max
    \operatorname{si} L_{[i]} > L_{[i_M]} : i_M \leftarrow i
renvoyer L_{[i_M]}, i_M et Prec
```

```
Algorithme: PLSSC_REC(T, i_M, Prec)
S \leftarrow \text{tab.} de taille n, initialisé à 0
i \leftarrow i_M
tant que i \neq -1:
\begin{array}{c} S_{[i]} \leftarrow 1 \\ i \leftarrow \text{Prec}_{[i]} \end{array}
renvoyer S
```

Lemme

L'algo. PLSSC_REC reconstruit une PLSSC de T en temps O(n).

- 1. Premier exemple : plus longue sous-suite croissante
- 2. Qu'est-ce que la programmation dynamique?
- 3. Deuxième exemple : choix de cours, le retour
- 4. Troisième exemple : la distance d'édition
- 5. Quatrième exemple : calcul de plus courts chemins
- 6. Bonus : le voyageur de commerce

Idée générale

Programmation dynamique = récursion sans répétition

Idée générale

Programmation dynamique = récursion sans répétition

Ingrédients

- 1. Formule récursive pour la valeur optimale
 - en fonction des valeurs de sous-problèmes
 - sous-problèmes possiblement nombreux et non disjoints

Idée générale

Programmation dynamique = récursion sans répétition

Ingrédients

- 1. Formule récursive pour la valeur optimale
 - en fonction des valeurs de sous-problèmes
 - sous-problèmes possiblement nombreux et non disjoints
- 2. Algorithme itératif pour la valeur optimale
 - en commençant par les plus petits sous-problèmes
 - approche « bottom-up »

Idée générale

Programmation dynamique = récursion sans répétition

Ingrédients

- 1. Formule récursive pour la valeur optimale
 - en fonction des valeurs de sous-problèmes
 - sous-problèmes possiblement nombreux et non disjoints
- 2. Algorithme itératif pour la valeur optimale
 - en commençant par les plus petits sous-problèmes
 - approche « bottom-up »
- 3. Reconstruction de la solution *a posteriori*
 - ajout d'informations à l'algo. pour la valeur
 - algorithme de reconstruction indépendant

Idée générale

Programmation dynamique = récursion sans répétition

Ingrédients

- 1. Formule récursive pour la valeur optimale
 - en fonction des valeurs de sous-problèmes
 - sous-problèmes possiblement nombreux et non disjoints
- 2. Algorithme itératif pour la valeur optimale
 - en commençant par les plus petits sous-problèmes
 - approche « bottom-up »
- 3. Reconstruction de la solution *a posteriori*
 - ajout d'informations à l'algo, pour la valeur
 - ▶ algorithme de reconstruction indépendant
- « Diviser pour régner »

Partie la plus importante (et difficile)!

Partie la plus importante (et difficile)!

Étapes

- 1. Spécification **précise** du problème
- Formule récursive basée sur les solutions d'instances plus petites du même problème exactement

Partie la plus importante (et difficile)!

Étapes

- 1. Spécification **précise** du problème
- Formule récursive basée sur les solutions d'instances plus petites du même problème exactement

Plus longue sous-suite croissante

- 1. Définition de ℓ_i en pas seulement $\ell(T)$
- 2. Expression de ℓ_i en fonction des ℓ_j , j < i

Partie la plus importante (et difficile)!

Étapes

- 1. Spécification précise du problème
- 2. Formule récursive basée sur les solutions d'instances plus petites du même problème exactement

Plus longue sous-suite croissante

- 1. Définition de ℓ_i en pas seulement $\ell(T)$
- 2. Expression de ℓ_i en fonction des ℓ_j , j < i

En pratique, étape souvent (très) guidée

Partie plutôt facile... mais attention quand même!

Partie plutôt facile... mais attention quand même!

Étapes

- 1. choix d'une structure de données (très souvent un tableau)
- 2. ordre de calcul si tableau multi-dimensionnel
- 3. écriture effective de l'algorithme
- 4. analyse de complexité

cf. ex. suivants

Partie plutôt facile... mais attention quand même!

Étapes

- 1. choix d'une structure de données (très souvent un tableau)
- 2. ordre de calcul si tableau multi-dimensionnel
- 3. écriture effective de l'algorithme
- 4. analyse de complexité

Plus longue sous-suite croissante

- 1. Tableau L
- 2. Ordre croissant

cf. ex. suivants

Partie plutôt facile... mais attention quand même!

Étapes

- 1. choix d'une structure de données (très souvent un tableau)
- 2. ordre de calcul si tableau multi-dimensionnel

cf. ex. suivants

- 3. écriture effective de l'algorithme
- 4. analyse de complexité

Plus longue sous-suite croissante

- 1. Tableau L
- 2. Ordre croissant

En pratique, étape souvent non guidée

Partie de difficulté très variable!

Partie de difficulté très variable!

Étapes

- 1. ajout d'informations supplémentaires à l'algo. précédent
- 2. redescente depuis la solution générale vers les instances petites

Partie de difficulté très variable!

Étapes

- 1. ajout d'informations supplémentaires à l'algo. précédent
- 2. redescente depuis la solution générale vers les instances petites

Plus longue sous-suite croissante

- 1. tableau Prec, indice i_M
- 2. descente depuis $T_{[i_M]}$, en suivant Prec

Partie de difficulté très variable!

Étapes

- 1. ajout d'informations supplémentaires à l'algo. précédent
- 2. redescente depuis la solution générale vers les instances petites

Plus longue sous-suite croissante

- 1. tableau Prec, indice i_M
- 2. descente depuis $T_{[i_M]}$, en suivant Prec

En pratique, étape pas toujours effectuée

Problématique de la mémoire

- ▶ Dans PLSSC, tableau Prec de taille n
 - ► Complexité *en espace O(n)*
 - Si $n = 2^{25}$: env. 1Mo de mémoire

Problématique de la mémoire

- ▶ Dans PLSSC, tableau Prec de taille n
 - ► Complexité *en espace O*(*n*)
 - ► Si $n = 2^{25}$: env. 1Mo de mémoire
- ► En général : la prog. dyn. est gourmande en mémoire
 - parfois le réactif limitant
 - ▶ souvent : possible de limiter l'espace mémoire si pas de reconstruction
 - plus de détails dans les exemples suivants

Conclusion sur la programmation dynamique

Comparaison avec les algorithmes gloutons :

- ► Algo. glouton : cas particulier de programmation dynamique avec un seul sous-problème
- Souvent pas suffisant

Conclusion sur la programmation dynamique

Comparaison avec les algorithmes gloutons :

- ► Algo. glouton : cas particulier de programmation dynamique avec un seul sous-problème
- Souvent pas suffisant

Les algorithmes gloutons fonctionnent rarement!

Conclusion sur la programmation dynamique

Comparaison avec les algorithmes gloutons :

- ► Algo. glouton : cas particulier de programmation dynamique avec un seul sous-problème
- Souvent pas suffisant

Les algorithmes gloutons fonctionnent rarement!

D'où vient ce nom?

- ▶ Bellman (1940) : travaux en optimisation mathématique
 - ▶ Programmation : planification, ordonnancement
 - ▶ Dynamique : « it's impossible to use the word dynamic in a pejorative sense »
- Origine du mot peu claire : référence à la programmation linéaire, et/ou problèmes de financements (cf Wikipédia)

- 1. Premier exemple : plus longue sous-suite croissante
- 2. Qu'est-ce que la programmation dynamique?
- 3. Deuxième exemple : choix de cours, le retour
- 4. Troisième exemple : la distance d'édition
- 5. Quatrième exemple : calcul de plus courts chemins
- 6. Bonus : le voyageur de commerce

Revisitons nos classiques

Choix de cours valué

Entrée cours $C_i = (d_i, f_i, e_i)$ [début, fin, crédits ECTS], $0 \le i < n$

Sortie un sous-ensemble de cours compatibles qui maximise le nombre total de crédits ECTS

Revisitons nos classiques

Choix de cours valué

Entrée cours $C_i = (d_i, f_i, e_i)$ [début, fin, crédits ECTS], $0 \le i < n$

Sortie un sous-ensemble de cours compatibles qui maximise le nombre total de crédits ECTS

Lemme

L'algorithme CHOIXCOURSGLOUTON vu pour le choix de cours non valué est arbitrairement mauvais sur ce problème!

Revisitons nos classiques

Choix de cours valué

Entrée cours $C_i = (d_i, f_i, e_i)$ [début, fin, crédits ECTS], $0 \le i < n$

Sortie un sous-ensemble de cours compatibles qui maximise le nombre total de crédits ECTS

Lemme

L'algorithme CHOIXCOURSGLOUTON vu pour le choix de cours non valué est arbitrairement mauvais sur ce problème!

Exemple

- ► CHOIXCOURSGLOUTON renvoie une solution à 2 ECTS
- L'optimal est 50 fois meilleur!

Formule récursive pour le choix de cours valué

Cours triés par ordre de fin croissante $C_0, C_1, \ldots, C_{n-1}$

Notations

- $lackbox{pred}(k) = \max\{j: f_j \leq d_k\}$ (avec $\max(\emptyset) = -1$)
- ▶ maxects(k): nb. maximal d'ects avec les cours $C_0, ..., C_k$ (maxects(-1) = 0)

Formule récursive pour le choix de cours valué

Cours triés par ordre de fin croissante C_0 , C_1 , ..., C_{n-1}

Notations

- $lackbox{pred}(k) = \max\{j: f_j \leq d_k\}$ (avec $\max(\emptyset) = -1$)
- ► maxects(k): nb. maximal d'ects avec les cours $C_0, ..., C_k$ (maxects(-1) = 0)

Lemme

```
maxECTS(0) = e_0 et pour 1 \le k < n, maxECTS(k) = max(maxECTS(k-1), e_k + maxECTS(pred(k)))
```

Formule récursive pour le choix de cours valué

Cours triés par ordre de fin croissante C_0 , C_1 , ..., C_{n-1}

Notations

- ► maxects(k): nb. maximal d'ects avec les cours $C_0, ..., C_k$ (maxects(-1) = 0)

Lemme

```
maxECTS(0) = e_0 et pour 1 \le k < n, maxECTS(k) = max(maxECTS(k-1), e_k + maxECTS(pred(k)))
```

Preuve : la solution optimale pour C_0, \ldots, C_k contient-elle C_k ?

- ▶ Si oui, les autres cours choisis sont parmi $C_0, \ldots, C_{\operatorname{pred}(k)} \leadsto \operatorname{nb} \operatorname{d'ECTS} : e_k + \operatorname{maxECTS}(\operatorname{pred}(k))$
- ▶ Si non, nb d'ECTS : maxects(k-1)

Algorithme pour le choix de cours valué

```
Algorithme: MAXECTS(C)
Trier C par dates de fin croissantes
P \leftarrow \text{tableau de taille } n, initialisé à -1
                                                                                                    prédécesseurs
pour k=1 à n-1:
    pour j = 0 à k - 1:
     \mathbf{si}\ f_i \leq d_k : P_{[k]} \leftarrow j
M \leftarrow \text{tableau de taille } n, initialisé à 0
M_{[0]} \leftarrow e_0
pour k=1 à n-1:
     \text{si } P_{[k]} \neq -1 : M_{[k]} \leftarrow \max(M_{[k-1]}, e_k + M_{[P_{[k]}]})
    \mathsf{sinon}: M_{\lceil k \rceil} \leftarrow \mathsf{max}(M_{\lceil k-1 \rceil}, e_k)
renvoyer M_{[n-1]}
```

Algorithme pour le choix de cours valué

```
Algorithme: MAXECTS(C)
Trier C par dates de fin croissantes
P \leftarrow \text{tableau de taille } n, initialisé à -1
                                                                                                   prédécesseurs
pour k=1 à n-1:
    pour j=0 à k-1:
     \mathbf{si} \ f_i \leq d_k : P_{[k]} \leftarrow j
M \leftarrow \text{tableau de taille } n, initialisé à 0
M_{[0]} \leftarrow e_0
pour k=1 à n-1:
     \text{si } P_{[k]} \neq -1 : M_{[k]} \leftarrow \max(M_{[k-1]}, e_k + M_{[P_{[k]}]})
    \mathsf{sinon}: M_{\lceil k \rceil} \leftarrow \mathsf{max}(M_{\lceil k-1 \rceil}, e_k)
renvoyer M_{[n-1]}
```

Complexité : $O(n^2)$ (calcul de P, calcul de M en O(n))

Et pour le sac-à-dos?

Sac-à-dos (non fractionnaire)

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble d'objets qui rentre dans le sac, et maximise la valeur totale

Et pour le sac-à-dos?

Sac-à-dos (non fractionnaire)

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble d'objets qui rentre dans le sac, et maximise la valeur totale

Lemme

L'algorithme SADFRACGLOUTON n'est pas optimal pour le sac-à-dos non fractionnaire.

Et pour le sac-à-dos?

Sac-à-dos (non fractionnaire)

Entrée un ensemble d'objets, ayant une taille t_i et une valeur v_i une taille T de sac-à-dos

Sortie un sous-ensemble d'objets qui rentre dans le sac, et maximise la valeur totale

Lemme

L'algorithme SADFRACGLOUTON n'est pas optimal pour le sac-à-dos non fractionnaire.

- Exemples vus en cours et TD
- ► Algos de programmation dynamique optimaux → cf. TD

- 1. Premier exemple : plus longue sous-suite croissante
- 2. Qu'est-ce que la programmation dynamique?
- 3. Deuxième exemple : choix de cours, le retour
- 4. Troisième exemple : la distance d'édition
- 5. Quatrième exemple : calcul de plus courts chemins
- 6. Bonus : le voyageur de commerce

AGORRYTNES

 ${\color{blue} {\tt ALGORITHMES}}$

ALGORITHMES

À quelle distance se trouve-t-on du mot correct?

Corrigeons les erreurs

ALGORITHMES

À quelle distance se trouve-t-on du mot correct?

Distance 5

A G G R R Y T N E S

L G O R I T H M E

La distance d'édition

Définition

La distance d'édition (ou de Levenshtein, ou d'Ulam) entre deux mots A et B est le nombre minimal de désaccords dans un alignement de A et B

A 🔲 G O R R Y T 📒 N E S

ALGORITHMES

La distance d'édition

Définition

La distance d'édition (ou de Levenshtein, ou d'Ulam) entre deux mots A et B est le nombre minimal de désaccords dans un alignement de A et B

A C G O R R Y T N E S A C G O R R I T H M E S

Définition équivalente

Longueur de la plus courte suite de transformations pour passer de A à B, avec les transformations suivantes :

- insertion d'une nouvelle lettre
- suppression d'une lettre
- remplacement d'une lettre par une autre

Définition du problème

```
Entrée Deux mots A et B sur un alphabet (mot : chaîne de caractère ou tableau de caractères ou ...)

Sortie 1 La distance d'édition entre A et B

Sortie 2 Un alignement optimal de A et B
```

Définition du problème

```
Entrée Deux mots A et B sur un alphabet (mot : chaîne de caractère ou tableau de caractères ou ...)

Sortie 1 La distance d'édition entre A et B
```

Utilité

- Orthographe :
 - Correcteur orthographique

Sortie 2 Un alignement optimal de A et B

- Reconnaissance optique de caractères
- Linguistique (proximité de langues)
- Bioinformatique :
 - similarité de séquences ADN
 - similarité d'arbres phylogénétiques

- $A_{[0,i[} = A_{[0]}A_{[1]} \cdots A_{[i-1]} \text{ et } B_{[0,j[} = B_{[0]}B_{[1]} \cdots B_{[j-1]}$
- $\operatorname{edit}(i,j)$: distance entre $A_{[0,i[}$ et $B_{[0,j[}$
 - ightharpoonup edit(i,0)=i

- $A_{[0,i[} = A_{[0]}A_{[1]}\cdots A_{[i-1]} \text{ et } B_{[0,j[} = B_{[0]}B_{[1]}\cdots B_{[j-1]}$
- edit(i, j) : distance entre $A_{[0,i[}$ et $B_{[0,j[}$
 - ightharpoonup edit(i,0)=i
- ▶ si |A| = m et |B| = n, on cherche edit(m, n)

- $A_{[0,i]} = A_{[0]}A_{[1]} \cdots A_{[i-1]}$ et $B_{[0,i]} = B_{[0]}B_{[1]} \cdots B_{[i-1]}$
- ightharpoonup edit(i,j): distance entre $A_{[0,i]}$ et $B_{[0,i]}$
 - ightharpoonup edit(i, 0) = i
 - ightharpoonup edit(0, i) = i
- ightharpoonup si |A| = m et |B| = n, on cherche edit(m, n)

Trois alignements possibles

$$A_{[0,i-1[} \ B_{[0,j[} \ -$$

$$\begin{array}{c|c}
A_{[0,i-1[} & A_{[i-1]} \\
B_{[0,j-1[} & B_{[j-1]}
\end{array}$$

- $ightharpoonup A_{[0,i[} = A_{[0]}A_{[1]} \cdots A_{[i-1]} \text{ et } B_{[0,j[} = B_{[0]}B_{[1]} \cdots B_{[j-1]}$
- edit(i,j) : distance entre $A_{[0,i]}$ et $B_{[0,j]}$
 - ightharpoonup edit(i, 0) = i
 - ightharpoonup edit(0,j)=j
- ▶ si |A| = m et |B| = n, on cherche edit(m, n)

Trois alignements possibles

Alignements AGORR et ALGOR

Lemme

$$\operatorname{edit}(i,j) = \min egin{cases} \operatorname{edit}(i-1,j) + 1 \ \operatorname{edit}(i,j-1) + 1 \ \operatorname{edit}(i-1,j-1) + \epsilon_{ij} \end{cases}$$
 où $\epsilon_{ij} = 1$ si $A_{[i-1]}
eq B_{[j-1]}$, 0 sinon

Lemme

$$\operatorname{edit}(i,j) = \min egin{cases} \operatorname{edit}(i-1,j) + 1 \ \operatorname{edit}(i,j-1) + 1 \ \operatorname{edit}(i-1,j-1) + \epsilon_{ij} \end{cases}$$
 $o\grave{u}$ $\epsilon_{ij} = 1$ si $A_{[i-1]}
eq B_{[j-1]}$, 0 $sinon$

Lemme

$$\mathsf{edit}(i,j) = \mathsf{min} egin{cases} \mathsf{edit}(i-1,j) + 1 \ \mathsf{edit}(i,j-1) + 1 \ \mathsf{edit}(i-1,j-1) + \epsilon_{ij} \end{cases}$$

où $\epsilon_{ij}=1$ si $A_{[i-1]} \neq B_{[j-1]}$, 0 sinon

$$\qquad \mathsf{edit}(i,j) \leq \mathsf{edit}(i-1,j) + 1 : \boxed{ \begin{matrix} A_{[0,i-1[} \\ B_{[0,j[} \end{matrix}] \end{matrix} } \ \begin{matrix} A_{[i-1]} \\ - \end{matrix}$$

Lemme

$$\mathsf{edit}(i,j) = \mathsf{min} egin{cases} \mathsf{edit}(i-1,j) + 1 \ \mathsf{edit}(i,j-1) + 1 \ \mathsf{edit}(i-1,j-1) + \epsilon_{ij} \end{cases}$$

où $\epsilon_{ij} = 1$ si $A_{[i-1]} \neq B_{[j-1]}$, 0 sinon

$$ightharpoonup$$
 edit $(i,j) \leq \operatorname{edit}(i-1,j) + 1$:

$$ightharpoonup$$
 edit $(i,j) \leq \operatorname{edit}(i-1,j) + 1$:

$$ightharpoonup$$
 edit $(i,j) \leq \operatorname{edit}(i,j-1) + 1$:

▶
$$\operatorname{edit}(i,j) \leq \operatorname{edit}(i-1,j) + 1 : \begin{bmatrix} A_{[0,i-1[} \\ B_{[0,j[} \end{bmatrix} \\ A_{[i-1]} \end{bmatrix}$$

▶ $\operatorname{edit}(i,j) \leq \operatorname{edit}(i,j-1) + 1 : \begin{bmatrix} A_{[0,i-1[} \\ B_{[0,j-1[} \end{bmatrix} \\ B_{[0,j-1[} \end{bmatrix} \end{bmatrix}$

$$B_{[j-1]}$$

Lemme

$$\mathsf{edit}(i,j) = \mathsf{min} egin{cases} \mathsf{edit}(i-1,j) + 1 \ \mathsf{edit}(i,j-1) + 1 \ \mathsf{edit}(i-1,j-1) + \epsilon_{ij} \end{cases}$$

où $\epsilon_{ij}=1$ si $A_{[i-1]}
eq B_{[j-1]}$, 0 sinon

Lemme

$$\mathsf{edit}(i,j) = \mathsf{min} egin{cases} \mathsf{edit}(i-1,j) + 1 \ \mathsf{edit}(i,j-1) + 1 \ \mathsf{edit}(i-1,j-1) + \epsilon_{ij} \end{cases}$$

où $\epsilon_{ij} = 1$ si $A_{[i-1]} \neq B_{[j-1]}$, 0 sinon

$$\qquad \mathsf{edit}(i,j) \leq \mathsf{edit}(i-1,j-1) + \epsilon_{ij} : \begin{vmatrix} A_{[0,i-1[} \\ B_{[0,j-1[} \end{vmatrix} & B_{[j-1]} \end{vmatrix}$$

Lemme

$$\mathsf{edit}(i,j) = \mathsf{min} \begin{cases} \mathsf{edit}(i-1,j) + 1 \\ \mathsf{edit}(i,j-1) + 1 \\ \mathsf{edit}(i-1,j-1) + \epsilon_{ij} \end{cases}$$
 $o\grave{u} \ \epsilon_{ij} = 1 \ \mathit{si} \ A_{[i-1]} \neq B_{[j-1]}, \ 0 \ \mathit{sinon}$

$$\mathsf{Preuve} \ \mathsf{Si} \ \mathsf{edit}(i,j) = d,$$

Lemme

$$ext{edit}(i,j) = \min egin{cases} \operatorname{edit}(i-1,j) + 1 \ \operatorname{edit}(i,j-1) + 1 \ \operatorname{edit}(i-1,j-1) + \epsilon_{ij} \end{cases}$$
 $o\grave{u}$ $\epsilon_{ij} = 1$ si $A_{[i-1]}
eq B_{[j-1]}$, 0 $sinon$

Preuve Si edit(i, j) = d,

$$ightharpoonup A_{[i-1]} = B_{[j-1]} \implies \operatorname{edit}(i-1, j-1) = d$$

Lemme

$$\mathsf{edit}(i,j) = \mathsf{min} \left\{ egin{aligned} \mathsf{edit}(i-1,j) + 1 \ \mathsf{edit}(i,j-1) + 1 \ \mathsf{edit}(i-1,j-1) + \epsilon_{ij} \end{aligned}
ight.$$

où
$$\epsilon_{ij}=1$$
 si $A_{[i-1]} \neq B_{[j-1]}$, 0 sinon

Preuve Si edit(i, j) = d,

$$ightharpoonup A_{[i-1]} = B_{[j-1]} \implies \operatorname{edit}(i-1, j-1) = d$$

- $ightharpoonup A_{[i-1]}
 eq B_{[j-1]}$:
 - ▶ $edit(i-1, j-1) \ge d-1$
 - ightharpoonup edit $(i, j-1) \geq d-1$
 - ightharpoonup edit $(i-1,j) \geq d-1$

Lemme

$$\operatorname{edit}(i,j) = \min egin{cases} \operatorname{edit}(i-1,j) + 1 \ \operatorname{edit}(i,j-1) + 1 \ \operatorname{edit}(i-1,j-1) + \epsilon_{ij} \end{cases}$$
 $o\grave{u}$ $\epsilon_{ij} = 1$ si $A_{[i-1]}
eq B_{[j-1]}$, 0 $sinon$

Preuve Si edit
$$(i, j) = d$$
,

- $ightharpoonup A_{[i-1]} = B_{[j-1]} \implies \text{edit}(i-1, j-1) = d$
- $ightharpoonup A_{[i-1]} \neq B_{[j-1]}$:
 - ▶ $edit(i-1, j-1) \ge d-1$
 - ightharpoonup edit $(i, j-1) \geq d-1$
 - ightharpoonup edit $(i-1,j) \geq d-1$

$$\implies$$
 edit $(i, j) \ge \min\{\dots\}$

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1									
L	2									
G	3									
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0								
L	2									
G	3									
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2									
G	3									
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1								
G	3									
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1							
G	3									
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3									
0	4									
R	5									
Ι	6									
Т	7									
Н	8									
M	9									
E	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2								
0	4									
R	5									
Ι	6									
T	7									
Н	8									
M	9									
E	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1							
0	4									
R	5									
Ι	6									
Т	7									
Н	8									
M	9									
E	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4									
R	5									
Ι	6									
Т	7									
Н	8									
M	9									
E	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5									
Ι	6									
T	7									
Н	8									
М	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6									
T	7									
Н	8									
M	9									
Ε	10									

		A	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
I	6	5	4	3	2	2	3	4	5	6
Т	7									
Н	8									
М	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	Ε
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3		5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8									
M	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
I	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9									
Ε	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
E	10									

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
E	10	9	8	7	6	6	6	6	6	5

L'algorithme

```
Algorithme: EDITION(A, B)
(m, n) \leftarrow \text{tailles de } A \text{ et } B
E \leftarrow \text{tableau de dimensions } m+1 \text{ par } n+1
pour i = 0 à m : E_{[i,0]} \leftarrow i
                                                                             // cas de
pour j = 0 à n : E_{[0,j]} \leftarrow j
                                                                                       base
pour i = 1 \ a \ m:
      pour j = 1 \ a n:
     \begin{array}{c} \textbf{si } A_{[i-1]} \neq B_{[j-1]} : \epsilon \leftarrow 1 \\ E_{[i,j]} \leftarrow \min(E_{[i-1,j]} + 1, E_{[i,j-1]} + 1, E_{[i-1,j-1]} + \epsilon) \end{array}
renvoyer E_{[m,n]}
```

L'algorithme

```
Algorithme: EDITION(A, B)
(m, n) \leftarrow \text{tailles de } A \text{ et } B
E \leftarrow \text{tableau de dimensions } m+1 \text{ par } n+1
pour i = 0 à m : E_{[i,0]} \leftarrow i
                                                                   // cas de
pour j = 0 à n : E_{[0,j]} \leftarrow j
                                                                           base
pour i = 1 \ a m:
     pour j = 1 \ a n:
          \epsilon \leftarrow 0
         \mathsf{si}\ A_{[i-1]} \neq B_{[j-1]} : \epsilon \leftarrow 1
        E_{[i,j]} \leftarrow \min(E_{[i-1,j]}+1, E_{[i,j-1]}+1, E_{[i-1,j-1]}+\epsilon)
renvoyer E_{[m,n]}
```

Lemme

L'algorithme EDITION renvoie la distance entre A et B en temps O(mn), en utilisant un espace O(mn).

Version efficace en mémoire

Pour remplir la ligne i, on n'a besoin que des lignes i et i-1!

Version efficace en mémoire

Pour remplir la ligne i, on n'a besoin que des lignes i et i-1!

```
Algorithme: EDITIONMINMEMOIRE(A, B)
(m, n) \leftarrow \text{tailles de } A \text{ et } B
                                                      // Hyp. : m > n
P \leftarrow \text{tableau de dimension } n+1 // Ligne précédente
C \leftarrow \text{tableau de dimension } n+1 // Ligne courante
\mathbf{pour}\ j = 0\ \grave{a}\ n: P_{[j]} \leftarrow j
                                                        // cas de base
pour i = 1 \ a m:
    C_{[0]} \leftarrow i
                                                        // cas de base
    pour i = 1 \ an:
         \epsilon \leftarrow 0 si A_{[i-1]} = B_{[i-1]}, 1 sinon
      C_{[i]} \leftarrow \min(P_{[i]} + 1, C_{[i-1]} + 1, P_{[i-1]} + \epsilon)
    pour j = 0 à n : P_{[i]} \leftarrow C_{[i]}
renvoyer C_{[n]}
```

Version efficace en mémoire

Pour remplir la ligne i, on n'a besoin que des lignes i et i-1!

```
Algorithme: EDITIONMINMEMOIRE(A, B)
(m, n) \leftarrow \text{tailles de } A \text{ et } B
                                                         // Hyp. : m > n
P \leftarrow \text{tableau de dimension } n+1 // Ligne précédente
C \leftarrow \text{tableau de dimension } n+1 // Ligne courante
pour j = 0 à n : P_{[i]} \leftarrow j
                                                           // cas de base
pour i = 1 \ a m:
    C_{[0]} \leftarrow i
                                                           // cas de base
    pour i = 1 \ an:
         \epsilon \leftarrow 0 si A_{[i-1]} = B_{[i-1]}, 1 sinon
      C_{\lceil i \rceil} \leftarrow \min(P_{\lceil i \rceil} + 1, C_{\lceil i - 1 \rceil} + 1, P_{\lceil i - 1 \rceil} + \epsilon)
     pour j = 0 à n : P_{[i]} \leftarrow C_{[i]}
renvoyer C_{[n]}
```

Lemme

EDITIONMINMEMOIRE calcule la distance entre A et B en temps O(mn) et espace O(n).

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
I	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
E	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
I	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
М	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	T	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Н	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

		Α	G	0	R	R	Y	Т	N	E
	0	1	2	3	4	5	6	7	8	9
Α	1	0	1	2	3	4	5	6	7	8
L	2	1	1	2	3	4	5	6	7	8
G	3	2	1	2	3	4	5	6	7	8
0	4	3	2	1	2	3	4	5	6	7
R	5	4	3	2	1	2	3	4	5	6
Ι	6	5	4	3	2	2	3	4	5	6
T	7	6	5	4	3	3	3	3	4	5
Η	8	7	6	5	4	4	4	4	4	5
M	9	8	7	6	5	5	5	5	5	5
Ε	10	9	8	7	6	6	6	6	6	5

A G O R R Y T N E A L G O R I T H M E

Algorithme de reconstruction

```
Algorithme: ALIGNEMENT(A. B. E)
(i, j) \leftarrow (m, n)
                                                                        // tailles de A et B
tant que i > 0 et i > 0:
    si E_{[i,j]} = E_{[i-1,j-1]} et A_{[i-1]} = B_{[i-1]}:
                                                                                   // A_{[i-1]}/B_{[i-1]}
     (i, i) \leftarrow (i - 1, i - 1)
                                                                                   // A_{[i-1]}/B_{[i-1]}
    sinon si E_{[i,i]} = E_{[i-1,i-1]} + 1:
     (i,i) \leftarrow (i-1,i-1)
                                                                                         // A_{[i-1]}/_{-}
    sinon si E_{[i,j]} = E_{[i-1,j]} + 1:
        Insérer « \_ » en j^{\text{ème}} position dans B: i \leftarrow i-1
                                                                                        // _{-}/B_{[i-1]}
    sinon si E_{[i,j]} = E_{[i,j-1]} + 1:
      Insérer « \_ » en i^{\text{ème}} position dans A; j \leftarrow j-1
Insérer i symboles « \_ » en tête de A
                                                                                        // 1'un ou
Insérer i symboles « \_ » en tête de B
                                                                                        // l'autre
renvover A et B
```

Correction et complexité

Lemme

L'algorithme ALIGNEMENT aligne les mots A et B de manière optimale, en temps O(m+n).

```
Algorithme: ALIGNEMENT(A, B, E)
(i,j) \leftarrow (m,n)
tant que i > 0 et i > 0:
     si E_{[i,j]} = E_{[i-1,j-1]} et A_{[i-1]} = B_{[j-1]}:
       (i,j) \leftarrow (i-1,j-1)
     sinon si E_{[i,j]} = E_{[i-1,i-1]} + 1:
          (i,j) \leftarrow (i-1,j-1)
     sinon si E_{[i,j]} = E_{[i-1,j]} + 1:
           Insérer « \_ » en j^{\text{ème}} position dans B: i \leftarrow i-1
     sinon si E_{[i,j]} = E_{[i,j-1]} + 1:
          Insérer \ll 1 \gg en i^{\text{ème}} position dans A; j \leftarrow j-1
Insérer j symboles \ll - \gg en tête de A
Insérer i symboles \ll \_\gg en tête de B
```

renvoyer A et B

Correction et complexité

Lemme

L'algorithme ALIGNEMENT aligne les mots A et B de manière optimale, en temps O(m+n).

```
Algorithme: ALIGNEMENT(A, B, E)
(i,j) \leftarrow (m,n)
tant que i > 0 et i > 0:
     si E_{[i,j]} = E_{[i-1,j-1]} et A_{[i-1]} = B_{[j-1]}:
       (i,j) \leftarrow (i-1,j-1)
     sinon si E_{[i,j]} = E_{[i-1,i-1]} + 1:
          (i, j) \leftarrow (i - 1, j - 1)
     sinon si E_{[i,j]} = E_{[i-1,j]} + 1:
           Insérer « \_ » en j^{\text{ème}} position dans B; i \leftarrow i-1
     sinon si E_{[i,j]} = E_{[i,j-1]} + 1:
          Insérer \ll 1 \gg en i^{\text{ème}} position dans A; j \leftarrow j-1
Insérer j symboles \ll - \gg en tête de A
Insérer i symboles \ll \_\gg en tête de B
renvoyer A et B
```

Preuve de complexité : à chaque tour, i + j diminue de ≥ 1

Correction et complexité

Lemme

L'algorithme ALIGNEMENT aligne les mots A et B de manière optimale, en temps O(m+n).

```
Algorithme: ALIGNEMENT(A, B, E)
(i,j) \leftarrow (m,n)
tant que i > 0 et i > 0:
     si E_{[i,j]} = E_{[i-1,j-1]} et A_{[i-1]} = B_{[j-1]}:
       (i,j) \leftarrow (i-1,j-1)
     sinon si E_{[i,j]} = E_{[i-1,i-1]} + 1:
          (i, j) \leftarrow (i - 1, j - 1)
     sinon si E_{[i,j]} = E_{[i-1,j]} + 1:
           Insérer « \_ » en j^{\text{\'eme}} position dans B; i \leftarrow i-1
     sinon si E_{[i,j]} = E_{[i,j-1]} + 1:
          Insérer « \_ » en i^{\text{\'eme}} position dans A; j \leftarrow j-1
Insérer j symboles \ll - \gg en tête de A
Insérer i symboles \ll \_\gg en tête de B
renvoyer A et B
```

Preuve de complexité : à chaque tour, i+j diminue de ≥ 1 Preuve de correction : « en entrant dans la boucle, $A_{[i,m[}$ et $B_{[j,n[}$ sont alignés de manière optimale »

Théorème

La distance d'édition entre deux mots A et B de tailles respectives m et n peut être calculée en temps et espace O(mn). Leur alignement peut être calculé en temps O(m+n) supplémentaire.

Théorème

La distance d'édition entre deux mots A et B de tailles respectives m et n peut être calculée en temps et espace O(mn). Leur alignement peut être calculé en temps O(m+n) supplémentaire.

Peut-on faire mieux qu'un temps O(mn)?

Théorème

La distance d'édition entre deux mots A et B de tailles respectives m et n peut être calculée en temps et espace O(mn). Leur alignement peut être calculé en temps O(m+n) supplémentaire.

Peut-on faire mieux qu'un temps O(mn)?

→ un peu...

Théorème

La distance d'édition entre deux mots A et B de tailles respectives m et n peut être calculée en temps et espace O(mn). Leur alignement peut être calculé en temps O(m+n) supplémentaire.

Peut-on faire mieux qu'un temps O(mn)?

→ un peu...

Peut-on faire beaucoup mieux que O(mn)?

Théorème

La distance d'édition entre deux mots A et B de tailles respectives m et n peut être calculée en temps et espace O(mn). Leur alignement peut être calculé en temps O(m+n) supplémentaire.

Peut-on faire mieux qu'un temps O(mn)?

→ un peu...

Peut-on faire beaucoup mieux que O(mn)?

→ sans doute pas (si on veut le résultat exact)

Théorème

La distance d'édition entre deux mots A et B de tailles respectives m et n peut être calculée en temps et espace O(mn). Leur alignement peut être calculé en temps O(m+n) supplémentaire.

Peut-on faire mieux qu'un temps O(mn)?

→ un peu...

Peut-on faire beaucoup mieux que O(mn)?

- → sans doute pas (si on veut le résultat exact)
 - ▶ Problème très important en pratique. . . et en théorie!
 - Beaucoup de résultats très récents (2020!) sur le sujet

- 1. Premier exemple : plus longue sous-suite croissante
- 2. Qu'est-ce que la programmation dynamique?
- 3. Deuxième exemple : choix de cours, le retour
- 4. Troisième exemple : la distance d'édition
- 5. Quatrième exemple : calcul de plus courts chemins
- 6. Bonus : le voyageur de commerce

 $\textbf{Algorithme:} \ \mathsf{PARCOURSLARGEUR}(G,s)$

 $F \leftarrow \text{file vide}$

Ajouter s à F et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

Ajouter v à F et marquer v

Algorithme: PARCOURSLARGEUR(G, s) $F \leftarrow$ file vide

Ajouter s à F et marquer stant que F est non vide: $u \leftarrow$ défiler un élément de FAfficher upour tout voisin non marqué v de u:

Ajouter v à F et marquer v

- ► File : 0
- ► Affichage :

Algorithme: ParcoursLargeur(G, s) $F \leftarrow \text{file vide}$ Ajouter $s \ge F$ et marguer stant que F est non vide : $u \leftarrow \text{défiler un élément de } F$ Afficher 11 pour tout voisin non marqué v de u : Ajouter v à F et marquer v

- File:
- ► Affichage : 0

Algorithme: PARCOURSLARGEUR(G, s) $F \leftarrow \text{ file vide}$ Ajouter s à F et marquer stant que F est non vide: $u \leftarrow \text{ défiler un élément de } F$ Afficher upour tout voisin non marqué v de u:

Ajouter v à F et marquer v

► File: 1 2 8

► Affichage : 0

Algorithme: ParcoursLargeur(G, s) $F \leftarrow \text{file vide}$ Ajouter $s \ge F$ et marguer stant que F est non vide : $u \leftarrow \text{défiler un élément de } F$ Afficher 11 pour tout voisin non marqué v de u : Ajouter v à F et marquer v

► File : 28

► Affichage : 0 1

Algorithme: PARCOURSLARGEUR(G, s) $F \leftarrow \text{ file vide}$ Ajouter s à F et marquer stant que F est non vide: $u \leftarrow \text{ défiler un élément de } F$ Afficher upour tout voisin non marqué v de u:

Ajouter v à F et marquer v

► File: 2845

► Affichage : 0 1

Algorithme: PARCOURSLARGEUR(G, s) $F \leftarrow$ file vide

Ajouter s à F et marquer stant que F est non vide: $u \leftarrow$ défiler un élément de FAfficher upour tout voisin non marqué v de u:

Ajouter v à F et marquer v

► File : 2 8 4 5

► Affichage: 0 1 2

Algorithme: PARCOURSLARGEUR(G, s) $F \leftarrow \text{ file vide}$ Ajouter s à F et marquer stant que F est non vide: $u \leftarrow \text{ défiler un élément de } F$ Afficher upour tout voisin non marqué v de u:

Ajouter v à F et marquer v

► File: 8 4 5

► Affichage: 0 1 2 8

Algorithme: ParcoursLargeur(G, s)

 $F \leftarrow \text{file vide}$

Ajouter $s \ge F$ et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

Ajouter v à F et marquer v

► File: 4567

► Affichage: 0 1 2 8

Algorithme: ParcoursLargeur(G, s)

 $F \leftarrow \text{file vide}$

Ajouter $s \ge F$ et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

Ajouter v à F et marquer v

► File: 4567

► Affichage: 0 1 2 8 4

Algorithme: ParcoursLargeur(G, s)

 $F \leftarrow \text{file vide}$

Ajouter $s \ge F$ et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

Ajouter v à F et marquer v

► File : 5 6 7

► Affichage: 0 1 2 8 4 5

Algorithme: ParcoursLargeur(G, s)

 $F \leftarrow \text{file vide}$

Ajouter $s \ge F$ et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

Ajouter v à F et marquer v

► File : 6 7 3

► Affichage: 0 1 2 8 4 5

Algorithme: ParcoursLargeur(G, s)

 $F \leftarrow \text{file vide}$

Ajouter $s \ge F$ et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

Ajouter v à F et marquer v

► File : 6 7 3

► Affichage: 0 1 2 8 4 5 6

Algorithme: ParcoursLargeur(G, s)

 $F \leftarrow \text{file vide}$

Ajouter $s \ge F$ et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

Ajouter v à F et marquer v

► File: 7 3 9

► Affichage: 0 1 2 8 4 5 6

Algorithme: ParcoursLargeur(G, s)

 $F \leftarrow \text{file vide}$

Ajouter $s \ge F$ et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

Ajouter v à F et marquer v

► File : 7 3 9

► Affichage: 0 1 2 8 4 5 6 7

Algorithme: ParcoursLargeur(G, s)

 $F \leftarrow \text{file vide}$

Ajouter $s \ge F$ et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

3 9

Ajouter v à F et marquer v

► File :

► Affichage: 0 1 2 8 4 5 6 7 3

Algorithme: ParcoursLargeur(G, s) $F \leftarrow \text{file vide}$ Ajouter $s \ge F$ et marguer stant que F est non vide : $u \leftarrow \text{défiler un élément de } F$ Afficher 11 pour tout voisin non marqué v de u : Ajouter v à F et marquer v

File:

► Affichage: 0 1 2 8 4 5 6 7 3 9

Algorithme: ParcoursLargeur(G, s)

 $F \leftarrow \text{file vide}$

Ajouter $s \ni F$ et marquer s

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

Afficher u

pour tout voisin non marqué v de u :

Ajouter v à F et marquer v


```
Algorithme : DISTANCES(G, s)
```

 $F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u$

Ajouter s à F; $D_{[s]} \leftarrow 0$

tant que F est non vide :

 $u \leftarrow \text{défiler un élément de } F$

pour tout voisin v de u tq $D_{[v]} = +\infty$:

Ajouter v à F; $D_{[v]} \leftarrow D_{[u]} + 1$

renvoyer D


```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```


File:

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```


File:

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```


► File: 1 2 8

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```


► File : 2 8

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```

► File: 2845

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```

► File: 8 4 5

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```


► File : 4 5

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```


► File: 4567

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```

► File: 5 6 7

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```


► File : 6 7

Algorithme: DISTANCES(G, s) $F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u$ Ajouter s à F; $D_{[s]} \leftarrow 0$ tant que F est non vide : $u \leftarrow \text{défiler un élément de } F$ **pour** tout voisin v de u tq $D_{[v]} = +\infty$:

Ajouter v à F; $D_{[v]} \leftarrow D_{[u]} + 1$ renvoyer D

► File: 6 7 3

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```

► File : 7 3

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```

► File : 7 3 9

Algorithme: DISTANCES(G, s) $F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u$ Ajouter s à F; $D_{[s]} \leftarrow 0$ tant que F est non vide : $u \leftarrow \text{défiler un élément de } F$ **pour** tout voisin v de u tq $D_{[v]} = +\infty$:

Ajouter v à F; $D_{[v]} \leftarrow D_{[u]} + 1$ renvoyer D

► File : 3 9

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```


► File :

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```

File:

```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}; D_{[u]} \leftarrow +\infty \text{ pour tout } u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
      u \leftarrow \text{défiler un élément de } F
     pour tout voisin v de u tq D_{[v]} = +\infty:

Ajouter v à F; D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```


- File:
- ▶ DISTANCES calcule les distances entre s et tous les autres sommets


```
Algorithme: DISTANCES(G, s)
F \leftarrow \text{file vide}
D_{[u]} \leftarrow +\infty pour tout u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
     u \leftarrow \text{défiler un élément de } F
    pour tout voisin v de u tq D_{[v]} = +\infty:
         Ajouter v \ge F
      D_{[v]} \leftarrow D_{[u]} + 1
renvoyer D
```



```
Algorithme: DIJKSTRA(G, s, p)
F \leftarrow file de priorité vide
D_{[u]} \leftarrow +\infty pour tout u
Ajouter s à F; D_{[s]} \leftarrow 0
tant que F est non vide :
     u \leftarrow \text{défiler un élément de } F \text{ de distance minimale}
    pour tout voisin v de u :
         Ajouter v \ni F \text{ si } D_{[v]} = +\infty
      D_{[v]} \leftarrow \min(D_{[v]}, D_{[u]} + p(u, v))
renvoyer D
```


L'algorithme en détail

```
Algorithme: DIJKSTRA(G, s, p)
F \leftarrow file de priorité vide
D \leftarrow \text{tableau de } n \text{ entiers. initialisé à } +\infty
                                                            // Tableau des distances
pour chaque sommet u de G : AJOUTER(F, u, +\infty)
                                                         // Insertion dans la file
ChangerPriorité(F, s, 0); D_{[s]} \leftarrow 0
                                                                  // Distance 0 pour s
tant que F est non vide :
    u \leftarrow \mathsf{ExtraireMin}(F)
                                                   // Élément de distance minimale
   pour tout voisin v de u :
       si D_{[u]} + p(u, v) < D_{[v]}:
           D_{[v]} \leftarrow D_{[u]} + p(u,v)
                                                     // Mise à jour de la distance
        CHANGER PRIORITÉ (F, v, D_{[v]})
                                                           // Mise à jour de la file
renvoyer D
```

Théorème

Si G est connexe, DISJKTRA(G, s, p) calcule les longueurs des plus courts chemins de s à chaque sommet de G. Sa complexité est

- ► O(m log n) avec des listes d'adjacence
- $ightharpoonup O(n^2)$ avec une matrice d'adjacence

où n est le nombre de sommets, m le nombre d'arêtes.

Théorème

Si G est connexe, DISJKTRA(G, s, p) calcule les longueurs des plus courts chemins de s à chaque sommet de G. Sa complexité est

- ► O(m log n) avec des listes d'adjacence
- $ightharpoonup O(n^2)$ avec une matrice d'adjacence

où n est le nombre de sommets, m le nombre d'arêtes.

Preuve de complexité

- Listes d'adjacence :
 - ► Liste de priorité : AJOUTER/EXTRAIREMIN/CHANGERPRIORITÉ en $O(\log n)$
 - ► Chaque sommet est extrait une fois $\rightsquigarrow O(n \log n)$
 - ► Chaque arête peut déclencher un CHANGERPRIORITÉ $\rightsquigarrow O(m \log n)$

Théorème

Si G est connexe, DISJKTRA(G, s, p) calcule les longueurs des plus courts chemins de s à chaque sommet de G. Sa complexité est

- ► O(m log n) avec des listes d'adjacence
- $ightharpoonup O(n^2)$ avec une matrice d'adjacence

où n est le nombre de sommets, m le nombre d'arêtes.

Preuve de complexité

- Listes d'adjacence :
 - ► Liste de priorité : AJOUTER/EXTRAIREMIN/CHANGERPRIORITÉ en $O(\log n)$
 - ► Chaque sommet est extrait une fois $\rightsquigarrow O(n \log n)$
 - ► Chaque arête peut déclencher un CHANGERPRIORITÉ $\rightsquigarrow O(m \log n)$
- Matrices d'adjacence
 - Pas de liste de priorité : parcours de tous les sommets à chaque fois
 - \blacktriangleright « pour tout voisin v de $u \gg \rightsquigarrow n \times O(n)$

Théorème

Si G est connexe, DISJKTRA(G, s, p) calcule les longueurs des plus courts chemins de s à chaque sommet de G. Sa complexité est

- ► O(m log n) avec des listes d'adjacence
- $ightharpoonup O(n^2)$ avec une matrice d'adjacence

où n est le nombre de sommets, m le nombre d'arêtes.

Preuve de correction. On note d_u la distance minimale de u à s Invariant : « quand u est extrait de F à l'itération k, $D_{[u]} = d_u$ »

ightharpoonup k=1 : extraction de s et $D_{\lceil s \rceil}=d_s=0 \leadsto \mathsf{OK}$

Théorème

Si G est connexe, DISJKTRA(G, s, p) calcule les longueurs des plus courts chemins de s à chaque sommet de G. Sa complexité est

- ► O(m log n) avec des listes d'adjacence
- $ightharpoonup O(n^2)$ avec une matrice d'adjacence

où n est le nombre de sommets, m le nombre d'arêtes.

Preuve de correction. On note d_u la distance minimale de u à s Invariant : « quand u est extrait de F à l'itération k, $D_{[u]} = d_u$ »

- ightharpoonup k=1: extraction de s et $D_{[s]}=d_s=0 \rightsquigarrow \mathsf{OK}$
- lacktriangle Soit u le $k^{
 m ème}$ sommet extrait, k>0, et $d=D_{[u]}$ à ce moment-là
 - Supposons qu'il existe un chemin de longueur $d_u < d$ de $s \ge u$
 - ightharpoonup Il existe une arête xy sur ce chemin tq x est extrait avant l'itération k mais pas y
 - ightharpoonup À l'itération k, $D_{[x]} = d_x$ et comme y est voisin de x, $D_{[y]} \le d_x + p(x,y)$
 - Mais $d_x + p(x, y) \le d_u < d : y$ devrait avoir été choisi avant u

Algorithme de Dijkstra: reconstruction

```
Algorithme: DIJKSTRA(G, s, p)
F \leftarrow file de priorité vide
D \leftarrow \text{tableau de } n \text{ entiers. initialisé à } +\infty
P \leftarrow \text{tableau de } n \text{ entiers}
                                  // Prédecesseurs
pour chaque sommet u de G: AJOUTER(F, u, +\infty)
ChangerPriorité(F, s, 0); D_{[s]} \leftarrow 0
tant que F est non vide :
    u \leftarrow \mathsf{ExtraireMin}(F)
    pour tout voisin v de u :
        SID_{[u]} + p(u, v) < D_{[v]}:
             D_{[v]} \leftarrow D_{[u]} + p(u,v); P_{[v]} \leftarrow u
           CHANGER PRIORITÉ (F, v, D_{[v]})
renvoyer D et P
```

Algorithme de Dijkstra: reconstruction

```
Algorithme: DIJKSTRA(G, s, p)
F \leftarrow file de priorité vide
D \leftarrow \text{tableau de } n \text{ entiers. initialisé à } +\infty
P \leftarrow \mathsf{tableau} \; \mathsf{de} \; n \; \mathsf{entiers}
                                       // Prédecesseurs
pour chaque sommet u de G: AJOUTER(F, u, +\infty)
ChangerPriorité(F, s, 0); D_{[s]} \leftarrow 0
tant que F est non vide :
    u \leftarrow \mathsf{ExtraireMin}(F)
    pour tout voisin v de u :
         SID_{[u]} + p(u, v) < D_{[v]}:
              D_{[v]} \leftarrow D_{[u]} + p(u,v); P_{[v]} \leftarrow u
            ChangerPriorité(F, v, D_{[v]})
renvoyer D et P
```

```
Algorithme: DIJKSTRA_REC(G, P, u)
C \leftarrow \{u\} // Chemin tant que u \neq s:
\begin{array}{c} u \leftarrow P_{[u]} \\ \text{Ajouter } u \text{ à } C \end{array}
```

Algorithme de Dijkstra: reconstruction

```
Algorithme: DIJKSTRA(G, s, p)
F \leftarrow file de priorité vide
D \leftarrow \text{tableau de } n \text{ entiers. initialisé à } +\infty
P \leftarrow \mathsf{tableau} \; \mathsf{de} \; n \; \mathsf{entiers}
                                       // Prédecesseurs
pour chaque sommet u de G: AJOUTER(F, u, +\infty)
ChangerPriorité(F, s, 0); D_{[s]} \leftarrow 0
tant que F est non vide :
    u \leftarrow \mathsf{ExtraireMin}(F)
    pour tout voisin v de u :
         si D_{[u]} + p(u, v) < D_{[v]}:
              D_{[v]} \leftarrow D_{[u]} + p(u,v); P_{[v]} \leftarrow u
            ChangerPriorité(F, v, D_{[v]})
renvoyer D et P
```

```
Algorithme: DIJKSTRA_REC(G, P, u)
C \leftarrow \{u\}
                               // Chemin
tant que u \neq s:
    u \leftarrow P_{[\mu]}
   Ajouter u \ge C
renvoyer C
Algorithme: DIJKSTRA_ARBRE(G, P)
T \leftarrow \text{arbre vide}
```

pour tout sommet $u \neq s$:

renvoyer T

Ajouter l'arête $P_{[u]}u$ à T

Théorème

L'algorithme DIJKSTRA_ARBRE construit un arbre des plus courts chemins depuis s, en temps O(n).

Preuve (idée) : Chaque sommet a un unique prédecesseur → arbre

Théorème

L'algorithme DIJKSTRA_ARBRE construit un arbre des plus courts chemins depuis s, en temps O(n).

Preuve (idée): Chaque sommet a un unique prédecesseur --> arbre

Pour aller plus loin

- ▶ Si arêtes de poids négatif (raccourcis), mais pas de cycle strictement négatif
 - ► Algorithme de Bellman-Ford (adaptation de DIJKSTRA)

Théorème

L'algorithme DIJKSTRA_ARBRE construit un arbre des plus courts chemins depuis s, en temps O(n).

Preuve (idée): Chaque sommet a un unique prédecesseur --> arbre

Pour aller plus loin

- ▶ Si arêtes de poids négatif (raccourcis), mais pas de cycle strictement négatif
 - Algorithme de Bellman-Ford (adaptation de DIJKSTRA)
- Chemins les plus courts entre toute paire de sommets
 - ▶ *n* répétitions de DIJKSTRA $\rightsquigarrow O(mn \log n)$ ou $O(n^3)$
 - ► Algorithme de Floyd-Warshall → TD

Théorème

L'algorithme DIJKSTRA_ARBRE construit un arbre des plus courts chemins depuis s, en temps O(n).

Preuve (idée): Chaque sommet a un unique prédecesseur --> arbre

Pour aller plus loin

- ▶ Si arêtes de poids négatif (raccourcis), mais pas de cycle strictement négatif
 - ► Algorithme de Bellman-Ford (adaptation de DIJKSTRA)
- Chemins les plus courts entre toute paire de sommets
 - ▶ *n* répétitions de DIJKSTRA $\rightsquigarrow O(mn \log n)$ ou $O(n^3)$
 - ► Algorithme de Floyd-Warshall → TD
- En pratique (ex. cartes routières) : algorithme A*
 - ▶ distance par la route ≥ distance à vol d'oiseau (calcul facile)
 - ► certains sommets peuvent être ignorés → calcul plus rapide!

- 1. Premier exemple : plus longue sous-suite croissante
- 2. Qu'est-ce que la programmation dynamique?
- 3. Deuxième exemple : choix de cours, le retour
- 4. Troisième exemple : la distance d'édition
- 5. Quatrième exemple : calcul de plus courts chemins
- 6. Bonus : le voyageur de commerce

- ▶ Algorithme na \ddot{i} : essayer toutes les permutations $\rightsquigarrow O(n!)$
- ightharpoonup Algorithme polynomial : impossible sauf si P = NP

- ▶ Algorithme na \ddot{i} : essayer toutes les permutations $\rightsquigarrow O(n!)$
- ightharpoonup Algorithme polynomial : impossible sauf si P = NP

Objectif: algorithme mieux que O(n!), mais pas polynomial

Formalisation

Entrée Ensemble $S = \{s_0, \ldots, s_{n-1}\}$ de points dans le plan

Sortie 1 Chemin $s_{i_0} \to s_{i_1} \to \cdots \to s_{i_{n-1}} \to s_{i_0}$ qui minimise la distance totale, avec $\delta_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$ si $s_i = (x_i, y_i)$ et $s_j = (x_j, y_j)$

Sortie 2 Longueur $\ell_S = \sum_{j=0}^{n-1} \delta_{i_j i_{j+1}}$ du chemin le plus court $(i_n = i_0)$

Formalisation

Entrée Ensemble $S = \{s_0, \ldots, s_{n-1}\}$ de points dans le plan

Sortie 1 Chemin $s_{i_0} \to s_{i_1} \to \cdots \to s_{i_{n-1}} \to s_{i_0}$ qui minimise la distance totale, avec $\delta_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$ si $s_i = (x_i, y_i)$ et $s_j = (x_j, y_j)$

Sortie 2 Longueur $\ell_S = \sum_{j=0}^{n-1} \delta_{i_j i_{j+1}}$ du chemin le plus court $(i_n = i_0)$

ightharpoonup On peut fixer $s_{i_0} = s_0$

Formalisation

- Entrée Ensemble $S = \{s_0, \dots, s_{n-1}\}$ de points dans le plan
- Sortie 1 Chemin $s_{i_0} \to s_{i_1} \to \cdots \to s_{i_{n-1}} \to s_{i_0}$ qui minimise la distance totale, avec $\delta_{ij} = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$ si $s_i = (x_i, y_i)$ et $s_j = (x_j, y_j)$
- Sortie 2 Longueur $\ell_S = \sum_{j=0}^{n-1} \delta_{i_j i_{j+1}}$ du chemin le plus court $(i_n = i_0)$
 - ightharpoonup On peut fixer $s_{i_0} = s_0$
 - ▶ Si $U \subset S$ avec $s_0, s_j \in U$, on note $\Delta(U, s_j)$ la longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

Formalisation

Entrée Ensemble $S = \{s_0, \dots, s_{n-1}\}$ de points dans le plan

- Sortie 1 Chemin $s_{i_0} \to s_{i_1} \to \cdots \to s_{i_{n-1}} \to s_{i_0}$ qui minimise la distance totale, avec $\delta_{ij} = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$ si $s_i = (x_i, y_i)$ et $s_j = (x_j, y_j)$
- Sortie 2 Longueur $\ell_S = \sum_{j=0}^{n-1} \delta_{i_j i_{j+1}}$ du chemin le plus court $(i_n = i_0)$
 - ightharpoonup On peut fixer $s_{i_0} = s_0$
 - ▶ Si $U \subset S$ avec $s_0, s_j \in U$, on note $\Delta(U, s_j)$ la longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

$$oxedsymbol{\ell_{\mathcal{S}}} = \min_{j} \Delta(\{s_0,\ldots,s_{n-1}\},s_j) + \delta_{j,0}$$

 $\Delta(U, s_j)$: longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

 $\Delta(U, s_j)$: longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

Lemme

- ▶ $\Delta(\{s_0\}, s_0) = 0$ et $\Delta(U, s_0) = +\infty$ si |U| > 1

 $\Delta(U, s_j)$: longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

Lemme

- ▶ $\Delta(\{s_0\}, s_0) = 0$ et $\Delta(U, s_0) = +\infty$ si |U| > 1

Preuve : pour aller de s_0 à s_j ,

- ightharpoonup on choisit un point s_i
- ightharpoonup on va de s_0 à s_i
- ightharpoonup puis directement de s_i à s_j

 $\Delta(U, s_j)$: longueur du plus court chemin de s_0 à s_j visitant chaque $s_i \in U$ une fois exactement

Lemme

- ▶ $\Delta(\{s_0\}, s_0) = 0$ et $\Delta(U, s_0) = +\infty$ si |U| > 1

Preuve: pour aller de s_0 à s_j ,

- \triangleright on choisit un point s_i
- ightharpoonup on va de s_0 à s_i
- ightharpoonup puis directement de s_i à s_j
 - \rightsquigarrow il *suffit* de trouver le meilleur s_i !

Algorithme TSP

```
Algorithme : TSP(S)
\Delta \leftarrow tableau à deux dimensions, indexé par les sous-ensembles de
         S contenant \{s_0\}, et par les sommets s_0 à s_{n-1}
\Delta_{[\{s_0\},s_0]} = 0
pour t=2 \grave{a} n:
     pour tous les U \subset S de taille t tels que s_0 \in U:
           \Delta_{[U,s_0]} = +\infty
          pour tout s_i \in U, j \neq 0:
           igspace \Delta_{[\mathcal{U},s_j]} = \min\{\Delta_{[\mathcal{U}\setminus\{s_j\},s_i]} + \delta_{ij}: s_i \in \mathcal{U}, i 
eq j\}
renvoyer \min_{j}(\Delta_{[\{s_0,\ldots,s_n\},s_i]}+\delta_{j0})
```

Algorithme TSP

```
Algorithme: TSP(S)
\Delta \leftarrow tableau à deux dimensions, indexé par les sous-ensembles de
         S contenant \{s_0\}, et par les sommets s_0 à s_{n-1}
\Delta_{[\{s_0\},s_0]} = 0
pour t=2 \grave{a} n:
     pour tous les U \subset S de taille t tels que s_0 \in U:
           \Delta_{[U,s_0]} = +\infty
          pour tout s_i \in U, j \neq 0:
           igspace \Delta_{[\mathcal{U},s_j]} = \min\{\Delta_{[\mathcal{U}\setminus\{s_j\},s_i]} + \delta_{ij}: s_i \in \mathcal{U}, i 
eq j\}
renvoyer \min_{j} (\Delta_{[\{s_0,\ldots,s_n\},s_i]} + \delta_{j0})
```

Lemme

L'algorithme TSP calcule ℓ_S en temps $O(n^22^n)$

Preuve de la complexité

```
1 Algorithme: TSP(S)
2 \Delta \leftarrow tableau à deux dimensions, indexé par les sous-ensembles de
          S contenant \{s_0\}, et par les sommets s_0 à s_{n-1}
4 \Delta_{[\{s_0\},s_0]} = 0
5 pour t = 2 \ \hat{a} \ n:
        pour tous les U \subset S de taille t tels que s_0 \in U:
           \Delta_{[U,s_0]} = +\infty
     pour tout s_j \in U, j \neq 0:
          10 renvoyer \min_i (\Delta_{[\{s_0,\ldots,s_n\},s_i]} + \delta_{j0})
```

Preuve

- ► Calcul du min : O(t) car |U| = t
- ▶ Boucle sur $s_i : O(t^2)$
- ▶ Boucle sur $U: \binom{n-1}{t-1}O(t^2)$ car $\binom{n-1}{t-1}$ sous-ensembles
- ▶ Boucle sur $t: \sum_{t=2}^{n} {n-1 \choose t-1} O(t^2) \le O(n^2) \sum_{t} {n \choose t} = O(n^2 2^n)$

.0111010	1				
•	<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$				
$\{s_0, s_2\}$	$+\infty$				
$\{s_0, s_3\}$					
$\{s_0, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2\}$	$+\infty$				
$\{s_0, s_1, s_3\}$	$+\infty$				
$\{s_0, s_1, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$					

.0		i				
•		s ₀	s_1	s ₂	<i>s</i> ₃	<i>S</i> ₄
•	$\{s_0\}$	0				
$\{s_0,$, $s_1\}$	$+\infty$	20,6			
$\{s_0,$	$\{s_2\}$	$+\infty$				
	, s ₃ }	$+\infty$				
$\{s_0,$, <i>s</i> ₄ }	$+\infty$				
$\{s_0, s_1,$	$\{s_2\}$	$+\infty$				
$\{s_0, s_1,$, s 3}	$+\infty$				
$\{s_0, s_1,$, <i>s</i> ₄ }	$+\infty$				
$\{s_0, s_2,$, s 3}	$+\infty$				
$\{s_0, s_2,$, <i>s</i> ₄ }	$+\infty$				
$\{s_0, s_3,$, <i>s</i> ₄ }	$+\infty$				
$\{s_0, s_1, s_2,$, s 3}	$+\infty$				
$\{s_0, s_1, s_2,$, <i>s</i> ₄ }	$+\infty$				
$\{s_0, s_1, s_3,$, <i>s</i> ₄ }	$+\infty$				
$\{s_0, s_2, s_3,$, <i>s</i> ₄ }	$+\infty$				
$\{s_0, s_1, s_2, s_3,$, s_4	$+\infty$				
$min_j(\Delta_{[S,s_j]} +$	$\delta_{j0})$					

(OIII)					
•	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
$\overline{\{s_0\}}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$				
$\{s_0, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2\}$	$+\infty$				
$\{s_0, s_1, s_3\}$	$+\infty$				
$\{s_0, s_1, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$					

(OIII)					
	<i>s</i> ₀	s_1	s ₂	s ₃	<i>S</i> ₄
$\{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2\}$	$+\infty$				
$\{s_0, s_1, s_3\}$	$+\infty$				
$\{s_0, s_1, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$					

		C-	C .	C-	C-	C .
		<i>s</i> ₀	s_1	s ₂	s ₃	<i>S</i> ₄
	$\{s_{0}\}$	0				
	$\{s_0,s_1\}$	$+\infty$	20,6			
	$\{s_0, s_2\}$	$+\infty$		18		
	$\{s_0, s_3\}$	$+\infty$			17	
	$\{s_0, s_4\}$	$+\infty$				11,7
	$\{s_0, s_1, s_2\}$	$+\infty$				
	$\{s_0, s_1, s_3\}$	$+\infty$				
	$\{s_0, s_1, s_4\}$	$+\infty$				
	$\{s_0, s_2, s_3\}$	$+\infty$				
	$\{s_0, s_2, s_4\}$	$+\infty$				
	$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0$	$, s_1, s_2, s_3 \}$	$+\infty$				
$\{s_0$	$, s_1, s_2, s_4 \}$	$+\infty$				
$\{s_0$	$, s_1, s_3, s_4 \}$	$+\infty$				
$\{s_0$	$, s_2, s_3, s_4 \}$	$+\infty$				
$\{s_0, s_1$	$, s_2, s_3, s_4 \}$	$+\infty$				
$\min_{j}(\Delta_{[}$	$S_{i,s_i]} + \delta_{j0}$					

.ср.с						
•		<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
	$\{s_0\}$	0				
	$\{s_0, s_1\}$	$+\infty$	20,6			
	$\{s_0, s_2\}$	$+\infty$		18		
	$\{s_0, s_3\}$				17	
	$\{s_0, s_4\}$	$+\infty$				11,7
	$\{s_0, s_1, s_2\}$	$+\infty$	34, 7			
	$\{s_0, s_1, s_3\}$	$+\infty$				
	$\{s_0, s_1, s_4\}$	$+\infty$				
	$\{s_0, s_2, s_3\}$	$+\infty$				
	$\{s_0, s_2, s_4\}$	$+\infty$				
	$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0$, s_1 , s_2 , $s_3\}$	$+\infty$				
$\{s_0$, s_1 , s_2 , s_4 }	$+\infty$				
$\{s_0$, s_1 , s_3 , s_4 $\}$	$+\infty$				
$\{s_0$	$, s_2, s_3, s_4 \}$	$+\infty$				
$\{s_0, s_1\}$	$, s_2, s_3, s_4 \}$	$+\infty$				
$\overline{\min_{j}(\Delta_{\lceil}}$	$S_{i,s_{j}]} + \delta_{j0}$					

.0	1				
-	<i>s</i> ₀	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
$\{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$				17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34,7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$				
$\{s_0, s_1, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$					

	<i>s</i> ₀	s_1	<i>s</i> ₂	s ₃	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$				17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$					
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$					

	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$				
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$					

	<i>s</i> ₀	s_1	<i>s</i> ₂	s ₃	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$				17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$				
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$					

	<i>s</i> ₀	s_1	<i>s</i> ₂	s ₃	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$				17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
$\{s_0, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$					

	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$				17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26,5	
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$					

	<i>s</i> ₀	s_1	<i>s</i> ₂	s ₃	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$				17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$				
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$					

	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4\}$	$+\infty$				
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$					<u> </u>

	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, s_2, s_3, s_4\}$	$+\infty$				
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$					

	<i>s</i> ₀	s_1	<i>s</i> ₂	s ₃	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$				
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$					

	<i>s</i> ₀	s_1	<i>s</i> ₂	s ₃	<i>S</i> ₄
$ \{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$					<u> </u>

	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
$\{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26,5	
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46,7	45, 2
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$		59, 1	56, 9	63, 7	56, 9

	1 _	_	_	_	_
	<i>s</i> ₀	s_1	s ₂	s ₃	<i>S</i> ₄
$\{s_0\}$	0				
$\{s_0, s_1\}$	$+\infty$	20,6			
$\{s_0, s_2\}$	$+\infty$		18		
$\{s_0, s_3\}$	$+\infty$			17	
$\{s_0, s_4\}$	$+\infty$				11,7
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4		
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9	
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5	
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0	
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$		59, 1	56, 9	63,7	56, 9

(citiple i recented action							
•	<i>s</i> ₀	s_1	s ₂	s ₃	<i>S</i> ₄		
	0						
$\{s_0, s_1\}$	$+\infty$	20,6					
$\{s_0, s_2\}$	$+\infty$		18				
$\{s_0, s_3\}$	$+\infty$			17			
$\{s_0, s_4\}$	$+\infty$				11,7		
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4				
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9			
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1		
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26,5			
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28		
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4		
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0			
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2		
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2		
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9		
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46,7	45, 2		
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$		59, 1	56, 9	63, 7	56, 9		

chipic . reconstruction								
'	<i>s</i> ₀	s_1	s ₂	s ₃	<i>S</i> ₄			
$ \{s_0\}$	0							
$\{s_0, s_1\}$	$+\infty$	20,6						
$\{s_0, s_2\}$	$+\infty$		18					
$\{s_0, s_3\}$	$+\infty$			17				
$\{s_0, s_4\}$	$+\infty$				11,7			
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4					
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9				
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1			
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5				
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28			
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22,4			
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2			
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2			
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9			
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2			
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$		59, 1	56, 9	63, 7	56, 9			

chipie : reconstruction								
•	<i>s</i> ₀	s_1	s ₂	s ₃	<i>S</i> ₄			
$\{s_0\}$	0							
$\{s_0, s_1\}$	$+\infty$	20,6						
$\{s_0, s_2\}$	$+\infty$		18					
$\{s_0, s_3\}$	$+\infty$			17				
$\{s_0, s_4\}$	$+\infty$				11, 7			
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4					
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9				
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1			
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5				
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28			
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4			
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2			
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2			
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31, 9			
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2			
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$		59, 1	56, 9	63, 7	56, 9			

chipic . reconstruction								
•	<i>s</i> ₀	s_1	s ₂	s ₃	<i>S</i> ₄			
	0							
$\{s_0, s_1\}$	$+\infty$	20,6						
$\{s_0, s_2\}$	$+\infty$		18					
$\{s_0, s_3\}$	$+\infty$			17				
$\{s_0, s_4\}$	$+\infty$				11,7			
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4					
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9				
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1			
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5				
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28			
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4			
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43, 0				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2			
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2			
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31, 9			
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2			
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$		59, 1	56, 9	63, 7	56, 9			

chipic . reconstruction								
	<i>s</i> ₀	s_1	<i>s</i> ₂	s ₃	<i>S</i> ₄			
	0							
$\{s_0, s_1\}$	$+\infty$	20,6						
$\{s_0, s_2\}$	$+\infty$		18					
$\{s_0, s_3\}$	$+\infty$			17				
$\{s_0, s_4\}$	$+\infty$				11, 7			
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4					
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9				
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1			
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26,5				
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28			
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4			
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43, 0				
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2			
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2			
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9			
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46,7	45, 2			
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$		59, 1	56,9	63,7	56, 9			
*-								

terriple : reconstruction							
	<i>s</i> ₀	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄		
	0						
$\{s_0, s_1\}$	$+\infty$	20,6					
$\{s_0, s_2\}$	$+\infty$		18				
$\{s_0, s_3\}$	$+\infty$			17			
$\{s_0, s_4\}$	$+\infty$				11,7		
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4				
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28,9			
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1		
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5			
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28		
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4		
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0			
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2		
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2		
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31, 9		
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46,7	45, 2		
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$		59, 1	56, 9	63, 7	56, 9		

Chipic . reconstruction							
	<i>s</i> ₀	s_1	s ₂	s ₃	<i>S</i> ₄		
	0						
$\{s_0, s_1\}$	$+\infty$	20,6					
$\{s_0, s_2\}$	$+\infty$		18				
$\{s_0, s_3\}$	$+\infty$			17			
$\{s_0, s_4\}$	$+\infty$				11,7		
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4				
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9			
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1		
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5			
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28		
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4		
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43, 0			
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2		
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2		
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9		
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46,7	45, 2		
$min_j(\Delta_{[S,s_j]} + \delta_{j0})$		59, 1	56, 9	63,7	56, 9		

tompro i recomoti detien							
•	<i>s</i> ₀	s_1	s ₂	s 3	<i>S</i> ₄		
	0						
$\{s_0, s_1\}$	$+\infty$	20,6					
$\{s_0, s_2\}$	$+\infty$		18				
$\{s_0, s_3\}$	$+\infty$			17			
$\{s_0, s_4\}$	$+\infty$				11, 7		
$\{s_0, s_1, s_2\}$	$+\infty$	34, 7	37, 4				
$\{s_0, s_1, s_3\}$	$+\infty$	25, 2		28, 9			
$\{s_0, s_1, s_4\}$	$+\infty$	22, 1			31, 1		
$\{s_0, s_2, s_3\}$	$+\infty$		25, 5	26, 5			
$\{s_0, s_2, s_4\}$	$+\infty$		21,7		28		
$\{s_0, s_3, s_4\}$	$+\infty$			17,0	22, 4		
$\{s_0, s_1, s_2, s_3\}$	$+\infty$	34,8	37, 4	43,0			
$\{s_0, s_1, s_2, s_4\}$	$+\infty$	38, 4	38, 9		45, 2		
$\{s_0, s_1, s_3, s_4\}$	$+\infty$	25, 3		30, 3	34, 2		
$\{s_0, s_2, s_3, s_4\}$	$+\infty$		25,6	30, 2	31,9		
$\{s_0, s_1, s_2, s_3, s_4\}$	$+\infty$	38, 5	38, 9	46, 7	45, 2		
$\overline{ min_j (\Delta_{[S,s_j]} + \delta_{j0}) }$		59, 1	56, 9	63, 7	56, 9		

Algorithme de reconstruction

```
Algorithme: TSP(S)
\Delta \leftarrow tableau à deux dimensions, indexé par les sous-ensembles
         de S contenant \{s_0\}, et par les sommets s_0 à s_{n-1}
Prec ← tableau de mêmes dimensions
\Delta_{[\{s_0\},s_0]}=0
pour t = 2 \grave{a} n:
       pour tous les U \subset S de taille t tels que s_0 \in U:
              \Delta_{[U,s_0]} = +\infty
             pour tout s_i \in U, j \neq 0:
                   \Delta_{[U,s_j]} = \min\{\Delta_{[U\setminus\{s_j\},s_i]} + \delta_{ij} : s_i \in U, i \neq j\}
\text{Prec}_{[U,s_i]} \leftarrow \text{indice du minimum}
renvoyer \min_{j}(\Delta_{[\{s_0,...,s_n\},s_i]}+\delta_{j0}), indice du min et Prec
```

Algorithme de reconstruction

```
Algorithme: TSP(S)
\Delta \leftarrow tableau à deux dimensions, indexé par les sous-ensembles
         de S contenant \{s_0\}, et par les sommets s_0 à s_{n-1}
Prec ← tableau de mêmes dimensions
\Delta_{[\{s_0\},s_0]}=0
pour t = 2 \grave{a} n:
       pour tous les U \subset S de taille t tels que s_0 \in U:
              \Delta_{[U,s_0]} = +\infty
              pour tout s_i \in U, j \neq 0:
                   \Delta_{[U,s_j]} = \min\{\Delta_{[U\setminus\{s_j\},s_i]} + \delta_{ij} : s_i \in U, i \neq j\}
\text{Prec}_{[U,s_i]} \leftarrow \text{indice du minimum}
renvoyer \min_{j}(\Delta_{[\{s_0,...,s_n\},s_i]}+\delta_{j0}), indice du min et Prec
```

Algorithme de reconstruction

```
Algorithme: TSP(S)
\Delta \leftarrow tableau à deux dimensions, indexé par les sous-ensembles
         de S contenant \{s_0\}, et par les sommets s_0 à s_{n-1}
Prec ← tableau de mêmes dimensions
\Delta_{[\{s_0\},s_0]}=0
pour t = 2 \grave{a} n:
       pour tous les U \subset S de taille t tels que s_0 \in U:
              \Delta_{[U,s_0]} = +\infty
             pour tout s_i \in U, j \neq 0:
                    \Delta_{[U,s_j]} = \min\{\Delta_{[U\setminus \{s_j\},s_i]} + \delta_{ij} : s_i \in U, i \neq j\}
\text{Prec}_{[U,s_i]} \leftarrow \text{indice du minimum}
renvoyer \min_{j}(\Delta_{[\{s_0,...,s_n\},s_i]}+\delta_{j0}), indice du min et Prec
```

Lemme

L'algorithme TSP-REC construit un chemin de longueur minimale en temps O(n)

Théorème

Théorème

- ▶ Détails à régler : gestion des ensembles
 - théorie : pas de problème (bonne complexité)
 - pratique : pas si facile!

Théorème

- Détails à régler : gestion des ensembles
 - théorie : pas de problème (bonne complexité)
 - pratique : pas si facile!
- ► Fonctionne aussi hors d'un plan euclidien (carte, plans, graphes, ...)

Théorème

- Détails à régler : gestion des ensembles
 - théorie : pas de problème (bonne complexité)
 - pratique : pas si facile!
- ► Fonctionne aussi hors d'un plan euclidien (carte, plans, graphes, ...)
- ► Très utile en pratique comme en théorie!

Théorème

- Détails à régler : gestion des ensembles
 - théorie : pas de problème (bonne complexité)
 - pratique : pas si facile!
- ► Fonctionne aussi hors d'un plan euclidien (carte, plans, graphes, . . .)
- Très utile en pratique comme en théorie!
- ► Un exemple : http://map.vroom-project.org/

Conclusion sur la programmation dynamique

- ► Méthode assez systématique pour de nombreux problèmes
- ► Souvent :
 - version simple en bonne complexité
 - améliorations possibles
- Parfois (trop) gourmande en mémoire

Conclusion sur la programmation dynamique

- Méthode assez systématique pour de nombreux problèmes
- ► Souvent :
 - version simple en bonne complexité
 - améliorations possibles
- Parfois (trop) gourmande en mémoire

Également aperçu dans ce cours

- ► Algorithme exact exponential (TSP)
- ► Plus courts chemins dans des graphes (DIJKSTRA)