IN THE CLAIMS

Claim 1 (original): A process for the catalytic asymmetric synthesis of an optically active compound of the formula (1a) or (1b)

wherein R is an organic group; X is halogen; R_1 and R_2 which may be the same or different represents H, or an organic group or R_1 and R_2 may be bridged together forming part of a ring system; R and R_2 may be bridged together forming part of a ring system; with the provisio that R and R_1 are different and R_2 when different from H is attached through a carbon-carbon bond, comprising the step of reacting a compound of the formula (2)

$$\begin{array}{c|c}
H & O \\
C & R_1 & R_2
\end{array}$$
(2)

with a halogenating agent in the presence of a catalytic amount of a chiral nitrogen containing organic compound.

Claim 2 (original): The process according to claim 1, wherein R_2 is H or an optionally substituted $C_{1\text{--}10}$ alkyl group or R and R_2 are bridged together forming part of a ring system.

Claim 3 (currently amended): The process according to claim 1 $\frac{1}{2}$, wherein R_1 is H or an optionally substituted C_{1-10} alkyl group.

Claim 4 (currently amended): The process according to any of the preceding claims claim 1, wherein R is an optionally substituted

 C_{1-10} alkyl group, an optionally substituted C_{2-8} alkylene group or a C_{1-3} -alkylaryl group.

Claim 5 (original): The process according to claim 4 wherein R is an optionally substituted C_{1-6} alkyl group, an optionally substituted C_{2-4} alkylene group or a C_{1-2} -alkylaryl group.

Claim 6 (currently amended): The process according to claim 4 or $\frac{5}{100}$ wherein R_1 and R_2 are H.

Claim 7 (original): The process according to claim 1 wherein the chiral nitrogen containing organic compound is selected among compounds having a primary or secondary nitrogen atom or when appropriate in one of its salt forms.

Claim 8 (original): The process according to claim 7 wherein the chiral nitrogen containing organic compound is selected among compounds of the formula (3)

$$R_{5}$$
 R_{6}
 R_{7}
 R_{8}
 R_{9}
 R_{10}
 R_{9}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

wherein q is 0 or 1;

 R_5 , R_6 , R_7 , R_8 , which may be the same or different represents H, alkyl, haloalkyl, alkoxyl, OH, amino, amide, silyl, silyl ether, COR_{11} , optionally substituted aryl, an optionally substituted heterocycle, alkyl substituted with at least one OH group, an optionally substituted amino group or optionally substituted aryl or heterocycle or R_5 and R_6 together or R_7 and R_8 together may represent a carbonyl group or when q is 1, R_5 with either R_7 or R_8 may be bridged together forming part of a ring system; R_{11} represents an optionally substituted amino group or OR_{12} wherein R_{12} represents H, alkyl or phenyl;

 R_9 and R_{10} , which may the same or different represents H, alkyl, OH, or alkoxy; or R_9 and R_{10} may be bridged together forming part of a ring system;

Z is S, O, C=O, $C(R_{14})_2$, N- R_{14} wherein R_{14} is R_5 ; with the provisio that the groups R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{14} , and Z are selected so that the compound (3) is a chiral compound.

Claim 9 (original): The process according to claim 8 wherein q is 1; R_5 , R_6 , R_7 , R_8 which may the same or different represents H, COR_{11} , optionally substituted aryl or methyl substituted with at least one of the following, an OH group, an optionally substituted amino group or an optionally substituted aryl or heterocycle group; or R_5 and R_7 together represents a C_{3-5} alkylene bridge;

R₁₁ represents OH, NH₂ or NH-alkyl;

 R_9 and R_{10} are H or R_9 and R_{10} together represents a methylene bridge optionally substituted with phenyl, benzyl, COOH or COalkoxy;

Z is $CH-R_{14}$ or $N-R_{14}$ wherein R_{14} represents H or alkyl.

Claim 10 (original): The process according to claim 9 wherein either R_5 or R_6 represents H; R_7 and R_8 represents H; R_9 and R_{10} together represents a methylene bridge and Z is CH_2 .

Claim 11 (original): The process according to claim 3 wherein R_1 is H and R and R_2 each represents an optionally substituted C_{1-10} alkyl group or R_2 together with R forms an optionally substituted C_{3-5} -alkylene bridge optionally with one or more of the carbon atoms being replaced by a heteroatom.

Claim 12 (original): The process according to claim 1 wherein one or more acids are added to the reaction media.

Claim 13 (original): The process according to claim 8, wherein the compound of formula (3) is a compound of formula (4)

wherein Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 which may be the same or different represents H, an alkyl, haloalkyl, an aryl, an alkylaryl, a heterocycle, a halogen, a hydroxyl, a carbonyl, an alkoxyl, an ester, an amine, an amide, a silyl, a silyl ether, or Y_2 and Y_3 or Y_4 and Y_5 may be bridged together forming part of a ring system one of Q_1 and Q_2 represent H, alkyl, haloalkyl, alkylaryl and the other the group $CY_7Y_8(OY_9)$ wherein Y_7 and Y_8 which may be the same or different represents alkyl, haloalkyl, an alkylaryl, a heterocycle, or optionally substituted aryl and Y_9 represents a silyl group.

Claim 14 (original): A compound of the formula (4) as disclosed in claim 13.

Claim 15 (original): The compound according to claim 14, wherein Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 each represents H; one of Q_1 and Q_2 repre; sents H; Y_7 and Y_8 each represents an optionally substituted aryl group, wherein the substituents are selected among alkyl and haloalkyl; Y_9 represents tri-alkyl silyl.

Claim 16 (original): The compound according to claim 15, wherein Y_7 and Y_8 each represents 3,5-di-trifluoromethyl phenyl and Y_9 represents trimethyl silyl.

Claim 17 (original): The compound according to claim 15, wherein Y_7 and Y_8 each represents 3,5-di-methyl phenyl and Y_9 represents trimethyl silyl.