

Технологические основы Интернета Вещей Лекция 2 - Аппаратные комплексы Интернета Вещей

Жматов Дмитрий Владимирович кандидат технических наук, доцент доцент кафедры Математического обеспечения и стандартизации информационных технологий



Объект управления — обобщающий термин кибернетики и теории автоматического управления, обозначающий устройство или динамический процесс, управление поведением которого является целью создания системы автоматического управления.

Ключевым моментом ТАУ создание математической модели, описывания поведение объекта управления в завясимости от его состояния, управляющих воздействий и возможных возмущений (помех).

Считается, что управляющее воздействие на объект управления оказывает устройство управления.

В реальных системах устройство управления интегрировано с объектом управления, поэтому для результативной теории важно точно определить границу между этими звеньями одной цепи.

В каждой технической системе (ТС) существует функциональная часть – объект управления (ОУ).

Функции ОУ ТС заключаются в восприятии управляющих воздействий (УВ) и изменении в соответствии с ними своего технического состояния (далее – состояния).

ОУ ТС не выполняет функций принятия решений, то есть не формирует и не выбирает альтернативы своего поведения, а только реагирует на внешние (управляющие и возмущающие) воздействия, изменяя свои состояния предопределенным его конструкцией образом.

Объекты управления ТС состоят из двух функциональных частей — **сенсорной и исполнительной**.

Исполнительное устройство (исполнительный элемент, актуатор, актюатор) — функциональный элемент системы автоматического управления, который воздействует на объект управления, изменяя поток

энергии или материалов, которые поступают на объект. Большинство исполнительных устройств имеет механический или электрический выход.



### Реле

Реле' (фр. relais) – коммутационный аппарат, который при воздействии на него внешних физических явлений скачкообразно принимает конечное число значений выходной величины





#### Реле

Назначение реле в промышленной автоматизации заключается в замыкании-размыкании электрической цепи.

По виду физических величин, на которые реагируют:

- Электрические (ток; напряжение; мощность; частота; сопротивление; фаза)
- Механические (Давления; Вакуума; Перемещения; Скорости; Течения; Ускорения; Усилия)
- Тепловые
- Оптические
- Акустические
- Магнитные

## Транзистор

Транзистор (англ. transistor), полупроводниковый триод — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи, что позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов.



Биполярный NPN-транзистор



Биполярный PNPтранзистор



N-канальный полевой транзистор



Р-канальный полевой транзистор

### ШИМ

Широтно- импульсная модуляция (ШИМ, англ. pulse-width modulation (PWM)) — процесс управления мощностью методом пульсирующего включения и выключения потребителя энергии.





#### Скважность

Скважность— безразмерная величина, одна из характеристик импульсных систем, определяющая отношение периода следования (повторения) импульсов к длительности импульса.

$$S=rac{T}{ au}=rac{1}{D},$$
  $D=rac{ au}{T}=rac{1}{S},$ 

Где S — скважность (1...inf)

Т – период импульсов, т – длительность импульса,

D – коэффициент заполнения. (0..1)

**Датчик** — конструктивно обособленное устройство, содержащее один или несколько первичных измерительных преобразователей.

Датчик предназначен для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем.

Измерительный преобразователь техническое средство нормируемыми метрологическими преобразования характеристиками, служащее ДЛЯ измеряемой величины В другую величину ИЛИ сигнал, удобный измерительный ДЛЯ обработки, хранения, дальнейших преобразований, индикации передачи, но непосредственно не воспринимаемый оператором.

$$F(t) \rightarrow U(t)$$



Индикатор токовой петли

Средство измерений — техническое предназначенное для измерений, средство, нормированные метрологические характеристики, имеющее воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.

**Измерительный прибор** — средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Часто измерительным прибором называют средство измерений для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия оператором.

Измерительный прибор **прямого действия** — измерительный прибор, например, манометр, амперметр в котором осуществляется одно или несколько преобразований измеряемой величины и значение её находится без сравнения с известной одноимённой величиной.

Измерительный прибор **сравнения** — измерительный прибор, предназначенный для непосредственного сравнения измеряемой величины с величиной, значение которой известно.

# Характеристики измерительных приборов

- Диапазон измерений область значений измеряемой величины, на которую рассчитан прибор при его нормальном функционировании (с заданной точностью измерения).
- Порог чувствительности некоторое минимальное или пороговое значение измеряемой величины, которое прибор может различить.
- Чувствительность связывает значение измеряемого параметра с соответствующим ему изменением показаний прибора.
- Точность способность прибора указывать истинное значение измеряемого показателя (предел допустимой погрешности или неопределённость измерения)
- Стабильность способность прибора поддерживать неизменность во времени его метрологических свойств
- Разрешающая способность минимальная разность двух значений измеряемых однородных величин, которая может быть различима с помощью прибора.

#### Сигнал

**Сигнал** — материальное воплощение сообщения для использования при передаче, переработке и хранении информации.



#### Сигнал

Сигнал — это изменяющийся во времени физический процесс. Сигналы могут порождать в физических телах изменения свойств. Это явление называется регистрацией сигналов. Сигналы, зарегистрированные на материальном носителе, называются данными.

**Данные** - это совокупность сведений, зафиксированных на определенном носителе в форме, пригодной для постоянного хранения, передачи и обработки. Преобразование и обработка данных позволяет получить информацию.

# Информация

**Информация** - это результат преобразования и анализа данных.

Отличие информации от данных состоит в том, что данные - это фиксированные сведения о событиях и явлениях, которые хранятся на определенных носителях, а информация появляется в результате обработки данных при решении конкретных задач.

Например, в базах данных хранятся различные данные, а по определенному запросу система управления базой данных выдает требуемую информацию.

#### Знания

**Знания** - это зафиксированная и проверенная практикой обработанная информация, которая использовалась и может многократно использоваться для принятия решений.

Знания - это вид информации, которая хранится в базе знаний и отображает знания специалиста в конкретной предметной области. Знания - это интеллектуальный капитал.

Формальные знания могут быть в виде документов (стандартов, нормативов), регламентирующих принятие решений или учебников, инструкций с описанием решения задач.

Неформальные знания - это знания и опыт специалистов в определенной предметной области.

# Цифровая обработка сигналов

**Цифровая обработка сигналов** (ЦОС, DSP — англ. digital signal processing) — способы обработки сигналов на основе численных методов с использованием цифровой вычислительной техники.



# Цифровая обработка сигналов

**Теорема Котельникова** — фундаментальное утверждение в области цифровой обработки сигналов, связывающее непрерывные и дискретные сигналы и гласящее, что:

«любую функцию F(t), состоящую из частот от 0 до  $f_1$ , можно непрерывно передавать с любой точностью при поменуи дисел, следующих друг за другом менее чем через  $2f_1$ 

# Дискретизация

**Дискретизация** (от лат. discretio «различать»,— «распознавать») — в общем случае — представление непрерывной функции дискретной совокупностью её значений при разных наборах аргументов



#### Квантование

**Квантование (англ. quantization)** — в обработке сигналов — разбиение диапазона отсчётных значений сигнала на конечное число уровней и округление этих значений до одного из двух ближайших к ним уровней



# Итоговый цифровой сигнал



# АЦП И ЦАП

**Аналого-цифровой преобразователь** (АЦП, англ. Analog-to-digital converter, ADC) — устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал).

**Цифро-аналоговый преобразователь (ЦАП)** — устройство для преобразования цифрового (обычно двоичного) кода в аналоговый сигнал (ток, напряжение или заряд). Цифро-аналоговые преобразователи являются интерфейсом между дискретным цифровым миром и аналоговыми сигналами. Современные ЦАП создаются по полупроводниковым технологиям в виде интегральной схемы.

# АЦП И ЦАП



# Микроконтроллеры и их шины



#### 1-wire

1-Wire (с англ. — «один провод») — двунаправленная шина связи для устройств с низкоскоростной передачей данных (обычно 15,4 Кбит/с, максимум 125 Кбит/с в режиме overdrive), в которой данные передаются по цепи питания (то есть всего используются два провода — один общий (GND), а второй для питания и данных; в некоторых случаях используют и отдельный провод питания).



#### 1-wire

#### Идентификация личности

Каждая микросхема 1-Wire имеет уникальный номер. Это позволяет использовать устройства iButton в качестве простых идентификаторов личности, например, в системах контроля и управления доступом (СКУД).

#### Удалённые датчики физических величин

Устройства 1-Wire очень удобны для измерений. Не требуется отдельного питания, возможно подключить по одному проводу целую гирлянду разнообразных датчиков. Система таких датчиков легко контролируется на предмет аварий. Записи о калибровках могут храниться прямо в датчиках.

#### Маркировка оборудования

Микросхемы 1-Wire популярны для маркировки и хранения параметров дополнительного оборудования к установкам.

I<sup>2</sup>C (IIC)— последовательная асимметричная шина для связи между интегральными схемами внутри электронных приборов. Использует две двунаправленные линии связи (SDA и SCL), применяется для соединения низкоскоростных периферийных компонентов с процессорами и микроконтроллерами



Шина I2C синхронная, состоит из двух линий: данных (SDA) и тактов (SCL). Есть ведущий (master) и ведомые (slave). Инициатором обмена всегда выступает ведущий, обмен между двумя ведомыми невозможен. Всего на одной двухпроводной шине может быть до 127 устройств.

Классическая адресация включает 7-битное адресное пространство с 16 зарезервированными адресами. Это означает, что разработчикам доступно до 112 свободных адресов для подключения периферии на одну шину.

Основной режим работы — 100 кбит/с; 10 кбит/с в режиме работы с пониженной скоростью. Также немаловажно, что стандарт допускает приостановку тактирования для работы с медленными устройствами.

Такты на линии SCL генерирует master. Линией SDA ведомый управлять как мастер, так и зависимости от направления передачи. Единицей информации является пакет, обрамленный уникальными условиями на шине, именуемыми стартовым и стоповым условиями. Мастер в начале каждого пакета передает один байт, где указывает адрес ведомого и направление передачи последующих данных. Данные передаются 8-битными словами. После каждого передается один бит подтверждения приема приемной стороной.



#### Применение шины:

- доступ к модулям памяти NVRAM;
- доступ к низкоскоростным ЦАП/АЦП;
- регулировка контрастности, насыщенности и цветового баланса мониторов;
- регулировка звука в динамиках;
- управление светодиодами, в том числе в мобильных телефонах;
- чтение информации с датчиков мониторинга и диагностики оборудования, например, термостат центрального процессора или скорость вращения вентилятора охлаждения;
- чтение информации с часов реального времени (кварцевых генераторов);
- управление включением/выключением питания системных компонент;
- информационный обмен между микроконтроллерами;

**SPI** (англ. Serial Peripheral Interface, SPI bus — последовательный периферийный интерфейс, шина SPI) — последовательный синхронный стандарт передачи данных в режиме полного дуплекса, предназначенный для обеспечения и недорогого высокоскоростового сопряжения микроконтроллеров и периферии. SPI также иногда четырёхпроводным (англ. four-wire)назтакрафов</u>йсом.

В отличие от стандартного последовательного порта (англ. standard serial port), SPI является синхронным интерфейсом, в котором любая передача синхронизирована с общим тактовым сигналом, генерируемым ведущим устройством (процессором).

### SPI

В SPI используются четыре цифровых сигнала:

MOSI — выход ведущего, вход ведомого (англ. Master Out Slave In). Служит для передачи данных от ведущего устройства ведомому.

MISO — вход ведущего, выход ведомого (англ. Master In Slave Out). Служит для передачи данных от ведомого устройства ведущему.

SCLK или SCK – последовательный тактовый сигнал (англ. Serial Clock). Служит для передачи тактового сигнала для ведомых устройств.

CS или SS — выбор микросхемы, выбор ведомого (англ. Chip Select, Slave Select).

### SPI

В SPI используются четыре цифровых сигнала:

MOSI — выход ведущего, вход ведомого (англ. Master Out Slave In). Служит для передачи данных от ведущего устройства ведомому.

MISO — вход ведущего, выход ведомого (англ. Master In Slave Out). Служит для передачи данных от ведомого устройства ведущему.

SCLK или SCK — последовательный тактовый сигнал (англ. Serial Clock). Служит для передачи тактового сигнала для ведомых устройств.

CS или SS — выбор микросхемы, выбор ведомого (англ. Chip Select, Slave Select).



# Преимущества SPI

Полнодуплексная передача данных по умолчанию.

Более высокая пропускная способность по сравнению с I<sup>2</sup>C или SMBus.

Возможность произвольного выбора длины пакета, длина пакета не ограничена восемью битами.

Простота аппаратной реализации:

Используется только четыре вывода, что гораздо меньше, чем для параллельных интерфейсов.

Однонаправленный характер сигналов позволяет при необходимости легко организовать гальваническую развязку между ведущим и ведомыми устройствами.

Максимальная тактовая частота ограничена только быстродействием устройств, участвующих в обмене данными.

#### **UART**

Универсальный асинхронный приёмопередатчик (УАПП, англ. Universal Asynchronous Receiver-Transmitter, UART) — узел вычислительных устройств, предназначенный для организации связи с другими цифровыми устройствами. Преобразует передаваемые данные в последовательный вид так, чтобы было возможно передать их по одной физической цифровой линии другому аналогичному устройству. Метод преобразования хорошо стандартизован и широко применяется в компьютерной технике

RS-485 (англ. Recommended Standard 485), EIA-485 (англ. Electronic Industries Alliance-485) — стандарт физического уровня для асинхронного интерфейса. Название стандарта: ANSI TIA/EIA-485-A:1998 Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems. Регламентирует электрические параметры полудуплексной многоточечной дифференциальной линии связи типа «общая шина».

Стандарт приобрел большую популярность и стал основой для создания целого семейства промышленных сетей, широко используемых в промышленной автоматизации.

### **RS-485**

Поддерживаются до 32 приёмопередатчиков в одном сегменте сети.

Максимальная длина одного сегмента сети: 1200 метров. В один момент активным может быть только один передатчик.

Максимальное количество узлов в сети — 256 с учётом магистральных усилителей.

Соотношения скорость обмена/длина линии связи

- 62,5 кбит/с 1200 м (одна витая пара),
- 375 кбит/с 500 м (одна витая пара),
- 500 кбит/с,
- 1000 кбит/с,
- 2400 кбит/с 100 м (две витых пары),
- 10 000 кбит/с 10 м.

# Топология RS-485



### **MODBUS**

**Modbus** — открытый коммуникационный протокол, основанный на архитектуре ведущий — ведомый (masterslave). Широко применяется в промышленности для организации связи между электронными устройствами.



САN (англ. Controller Area Network — сеть контроллеров) — стандарт промышленной сети, ориентированный, прежде всего, на объединение в единую сеть различных исполнительных устройств и датчиков. Режим передачи — последовательный, широковещательный, пакетный.

CAN разработан компанией Robert Bosch GmbH в середине 1980-х и в настоящее время широко распространён в промышленной автоматизации, технологиях домашней автоматизации («умного дома»), автомобильной промышленности и многих других областях. Стандарт для автомобильной автоматики.

#### CAN

#### Преимущества

- Возможность работы в режиме жёсткого реального времени.
- Простота реализации и минимальные затраты на использование.
- Высокая устойчивость к помехам.
- Арбитраж доступа к сети без потерь пропускной способности.
- Надёжный контроль ошибок передачи и приёма.
- Широкий диапазон скоростей работы.
- Большое распространение технологии, наличие широкого ассортимента продуктов от различных поставщиков.

#### CAN

#### Недостатки

- Небольшое количество данных, которое можно передать в одном пакете (до 8 байт).
- Большой размер служебных данных в пакете (по отношению к полезным данным).
- Отсутствие единого общепринятого стандарта на протокол высокого уровня, однако это - и достоинство.



Технологические основы Интернета Вещей Лекция 2 - Аппаратные комплексы Интернета Вещей