УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Геометрија И-смер

део 8: Безијеове криве и фрактали

Тијана Шукиловић

26. новембар 2023.

Безијеове криве

Дефиниција 1.1

Нека су $P_0, P_1 \dots P_n, n \geq 2$ тачке равни. Безијеова крива степена n је:

$$\alpha_n(t) = \sum_{i=0}^n \binom{n}{i} t^i (1-t)^{n-i} P_i = \sum_{i=0}^n B_i^n(t) P_i, \ t \in [0,1].$$

Тачке P_i називају се контролне тачке, а полиноми $B_i(t)$ Бернштајнови полиноми или базне функције.

Полигонска линија $P_0P_1\dots P_n$ се зове контролна полигонска линија.

Безијеове криве на прозивољном интервалу

• $t \in [0,1]$:

$$\alpha_n(t) = \sum_{i=0}^n \binom{n}{i} t^i (1-t)^{n-i} P_i = \sum_{i=0}^n B_i^n(t) P_i.$$

Безијеове криве на прозивољном интервалу

• $t \in [0, 1]$:

$$\alpha_n(t) = \sum_{i=0}^n \binom{n}{i} t^i (1-t)^{n-i} P_i = \sum_{i=0}^n B_i^n(t) P_i.$$

• $u \in [a, b]$:

$$\alpha_n(u) = \sum_{i=0}^n \binom{n}{i} \left(\frac{u-a}{b-a}\right)^i \left(\frac{b-u}{b-a}\right)^{n-i} P_i.$$

Безијеове криве 2. и 3. степена

Слика 1: Безијеове криве степена 2 и 3

Крива 2. степена одређена је са три контролне тачке:

$$\alpha_2(t) = (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2, \ t \in [0,1];$$

Безијеове криве 2. и 3. степена

Слика 1: Безијеове криве степена 2 и 3

Крива 2. степена одређена је са три контролне тачке:

$$\alpha_2(t) = (1-t)^2 P_0 + 2t(1-t)P_1 + t^2 P_2, \ t \in [0,1];$$

Крива 3. степена одређена је са четири контролне тачке:

$$\alpha_3(t) = (1-t)^3 P_0 + 3t(1-t)^2 P_1 + 3t^2(1-t)P_2 + t^3 P_3, \ t \in [0,1].$$

Матрична репрезентација Безијеове криве

$$\alpha_2(t) = \begin{pmatrix} 1, t, t^2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 2 & 0 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} P_0 \\ P_1 \\ P_2 \end{pmatrix}.$$

Пример 1

Извести формуле матричне репрезентације кубне Безијеове криве.

• $\deg \alpha_n = n$.

- $\deg \alpha_n = n$.
- $\alpha_n(0) = P_0, \quad \alpha_n(1) = P_n.$

- $\deg \alpha_n = n$.
- $\alpha_n(0) = P_0, \quad \alpha_n(1) = P_n.$
- Тангентни вектор у P_0 је $\overrightarrow{P_0P_1}$, а у P_n је $\overrightarrow{P_{n-1}P_n}$.

- $\deg \alpha_n = n$.
- $\alpha_n(0) = P_0, \quad \alpha_n(1) = P_n.$
- Тангентни вектор у P_0 је $\overrightarrow{P_0P_1}$, а у P_n је $\overrightarrow{P_{n-1}P_n}$.
- $P_k \to P_k + \overrightarrow{v}$: $\bar{\alpha}_n(t) = \alpha_n(t) + B_{n,k}(t) \overrightarrow{v}$.

- $\deg \alpha_n = n$.
- $\alpha_n(0) = P_0, \quad \alpha_n(1) = P_n.$
- Тангентни вектор у P_0 је $\overrightarrow{P_0P_1}$, а у P_n је $\overrightarrow{P_{n-1}P_n}$.
- $P_k \to P_k + \overrightarrow{v}$: $\bar{\alpha}_n(t) = \alpha_n(t) + B_{n,k}(t) \overrightarrow{v}$.
- Особина ненегативности.

- $\deg \alpha_n = n$.
- $\alpha_n(0) = P_0, \quad \alpha_n(1) = P_n.$
- Тангентни вектор у P_0 је $\overrightarrow{P_0P_1}$, а у P_n је $\overrightarrow{P_{n-1}P_n}$.
- $P_k \to P_k + \overrightarrow{v}$: $\bar{\alpha}_n(t) = \alpha_n(t) + B_{n,k}(t) \overrightarrow{v}$.
- Особина ненегативности.
- Особина конвексног омотача.

- $\deg \alpha_n = n$.
- $\alpha_n(0) = P_0, \quad \alpha_n(1) = P_n.$
- Тангентни вектор у P_0 је $\overrightarrow{P_0P_1}$, а у P_n је $\overrightarrow{P_{n-1}P_n}$.
- $P_k \to P_k + \vec{v}$: $\bar{\alpha}_n(t) = \alpha_n(t) + B_{n,k}(t)\vec{v}$.
- Особина ненегативности.
- Особина конвексног омотача.
- Особина мање варијације.

- $\deg \alpha_n = n$.
- $\alpha_n(0) = P_0, \quad \alpha_n(1) = P_n.$
- Тангентни вектор у P_0 је $\overrightarrow{P_0P_1}$, а у P_n је $\overrightarrow{P_{n-1}P_n}$.
- $P_k \to P_k + \overrightarrow{v}$: $\bar{\alpha}_n(t) = \alpha_n(t) + B_{n,k}(t) \overrightarrow{v}$.
- Особина ненегативности.
- Особина конвексног омотача.
- Особина мање варијације.
- Афина инваријантност.

- $\deg \alpha_n = n$.
- $\alpha_n(0) = P_0, \quad \alpha_n(1) = P_n.$
- Тангентни вектор у P_0 је $\overrightarrow{P_0P_1}$, а у P_n је $\overrightarrow{P_{n-1}P_n}$.
- $P_k \to P_k + \overrightarrow{v}$: $\bar{\alpha}_n(t) = \alpha_n(t) + B_{n,k}(t) \overrightarrow{v}$.
- Особина ненегативности.
- Особина конвексног омотача.
- Особина мање варијације.
- Афина инваријантност.

Теорема 1.1

Безијеова крива степена два је део параболе.

Одређивање тачке на кривој $\alpha_n(t)$ за неко $t \in [0,1]$:

$$P_{00} = P_0, \ P_{01} = P_1, \dots, P_{0n-1} = P_{n-1}, \ P_{0n} = P_n$$

Одређивање тачке на кривој $\alpha_n(t)$ за неко $t \in [0,1]$:

$$P_{00} = P_0, \ P_{01} = P_1, \dots, P_{0n-1} = P_{n-1}, \ P_{0n} = P_n$$

$$P_{1i} = (1-t)P_{0i} + tP_{0i+1}, \quad i = 0, \dots, n-1$$

Одређивање тачке на кривој $\alpha_n(t)$ за неко $t \in [0,1]$:

$$P_{00} = P_0, \ P_{01} = P_1, \dots, P_{0n-1} = P_{n-1}, \ P_{0n} = P_n$$

$$P_{1i} = (1-t)P_{0i} + tP_{0i+1}, \quad i = 0, \dots, n-1$$

:

Одређивање тачке на кривој $\alpha_n(t)$ за неко $t \in [0,1]$:

$$P_{00} = P_0, \ P_{01} = P_1, \dots, P_{0n-1} = P_{n-1}, \ P_{0n} = P_n$$

$$P_{1i} = (1-t)P_{0i} + tP_{0i+1}, \quad i = 0, \dots, n-1$$

$$P_{ki} = (1-t)P_{k-1i} + tP_{k-1i+1}, \ i = 0, \dots, n-k$$

Одређивање тачке на кривој $\alpha_n(t)$ за неко $t \in [0,1]$:

$$P_{00} = P_0, \ P_{01} = P_1, \dots, P_{0n-1} = P_{n-1}, \ P_{0n} = P_n$$

$$P_{1i} = (1-t)P_{0i} + tP_{0i+1}, \quad i = 0, \dots, n-1$$

:

$$P_{ki} = (1-t)P_{k-1i} + tP_{k-1i+1}, \quad i = 0, \dots, n-k$$

$$P_{n0} = (1-t)P_{n-1\,0} + tP_{n-1\,1}$$

Одређивање тачке на кривој $\alpha_n(t)$ за неко $t \in [0,1]$:

$$P_{00} = P_0, \ P_{01} = P_1, \dots, P_{0n-1} = P_{n-1}, \ P_{0n} = P_n$$

$$P_{1i} = (1-t)P_{0i} + tP_{0i+1}, \quad i = 0, \dots, n-1$$

:

$$P_{ki} = (1-t)P_{k-1i} + tP_{k-1i+1}, \quad i = 0, \dots, n-k$$

$$P_{n0} = (1-t)P_{n-1\,0} + tP_{n-1\,1}$$

 $P_{n-1\,0}P_{n-1\,1}$ – тангента на криву у тачки t

Пример 2

Показати да је де-Кастељау алгоритам коректан.

Слика 2: Де-Кастељау алгоритам за криву 5. степена и t=0.4

- Цртање кривих степена $\leq 3^1$
- Цртање криве 5. степена

Подела криве на два дела

Криву α делимо на две криве α_1 и α_2 :

$$\alpha_1: P_0 = P_{00}, P_{10}, P_{20}, \dots P_{n0} = \alpha(t),$$

$$\alpha_2: \alpha(t) = P_{n0}, P_{n-11}, P_{n-22}, \dots, P_{0n} = P_n.$$

Слика 3: Подела криве на два дела

Матрична верзија де-Кастељау алгоритма

Пример 3

Извести формуле матричне верзије де-Кастељау алгоритма за криву степена 2.

$$S_{[0,t_0]} = \begin{pmatrix} 1 & 0 & 0 \\ 1 - t_0 & t_0 & 0 \\ (1 - t_0)^2 & 2t_0(1 - t_0) & t_0^2 \end{pmatrix}$$
$$S_{[1-t_0,1]} = \begin{pmatrix} (1 - t_0)^2 & 2t_0(1 - t_0) & t_0^2 \\ 0 & 1 - t_0 & t_0 \\ 0 & 0 & 1 \end{pmatrix}$$

Глатко спајање кривих

Слика 4: Глатко спајање кривих

$$\alpha_n(t): P_0, \ldots, P_n, \quad \bar{\alpha}_{n+1}(t):$$

$$Q_0 = P_0, \ Q_i = \frac{i}{n+1} P_{i-1} + \left(1 - \frac{i}{n+1}\right) P_i, \ 1 \le i \le n, \ Q_{n+1} = P_n.$$

Слика 5: Повећање степена Безијеове криве

$$\alpha_n(t): P_0, \ldots, P_n, \quad \bar{\alpha}_{n+1}(t):$$

$$Q_0 = P_0, \ Q_i = \frac{i}{n+1} P_{i-1} + \left(1 - \frac{i}{n+1}\right) P_i, \ 1 \le i \le n, \ Q_{n+1} = P_n.$$

Слика 5: Повећање степена Безијеове криве

$$\alpha_n(t): P_0, \ldots, P_n, \quad \bar{\alpha}_{n+1}(t):$$

$$Q_0 = P_0, \ Q_i = \frac{i}{n+1} P_{i-1} + \left(1 - \frac{i}{n+1}\right) P_i, \ 1 \le i \le n, \ Q_{n+1} = P_n.$$

Слика 5: Повећање степена Безијеове криве

$$\alpha_n(t): P_0, \dots, P_n, \quad \bar{\alpha}_{n+1}(t):$$

$$Q_0 = P_0, \ Q_i = \frac{i}{n+1} P_{i-1} + \left(1 - \frac{i}{n+1}\right) P_i, \ 1 \le i \le n, \ Q_{n+1} = P_n.$$

Слика 5: Повећање степена Безијеове криве

$$\alpha_n(t): P_0, \dots, P_n, \quad \bar{\alpha}_{n+1}(t):$$

$$Q_0 = P_0, \ Q_i = \frac{i}{n+1} P_{i-1} + \left(1 - \frac{i}{n+1}\right) P_i, \ 1 \le i \le n, \ Q_{n+1} = P_n.$$

Слика 5: Повећање степена Безијеове криве

$$\alpha_n(t): P_0, \ldots, P_n, \bar{\alpha}_{n+1}(t):$$

$$Q_0 = P_0, \ Q_i = \frac{i}{n+1} P_{i-1} + \left(1 - \frac{i}{n+1}\right) P_i, \ 1 \le i \le n, \ Q_{n+1} = P_n.$$

Слика 5: Повећање степена Безијеове криве

Примери

Пример 4

- а) Одредити Безијеову криву $\alpha_2(t)$ чије су контролне тачке $P_0(1,1), P_1(-1,0), P_2(1,-1).$
- б) Одредити једначину тангенте на криву $\alpha_2(t)$ у тачки $t_0=0.5$ и показати да је тангента паралелна са правом P_0P_2 .
- в) Повећати степен криве за 1.

Рационалне Безијеове криве степена 2

Слика: Пројективна еквивалентност елипсе и параболе

Део круга као RB-крива

Пример 5

Слика 7: Четвртина круга:
$$x=\cos\theta,\ y=\sin\theta,\ \theta\in\left[0,\frac{\pi}{2}\right]$$

као RB-крива:
$$x = \frac{1-t^2}{1+t^2}, \ y = \frac{2t}{1+t^2}, \ t \in [0,1].$$

Рационалне Безијеове (RB) криве

Рационална Безијеова крива степена n са контролним тачкама P_0, \ldots, P_n и тежинама $\omega_0, \ldots, \omega_n > 0$ је дата параметризацијом:

$$r_n(t) = \frac{\sum_{i=0}^n \omega_i B_{i,n}(t) P_i}{\sum_{i=0}^n \omega_i B_{i,n}(t)}, \quad t \in [0,1],$$

где су $B_{i,n}(t)$ Бернштајнови полиноми.

Особине RB-кривих

- $r_n(0) = P_0, \quad r_n(1) = P_n.$
- Тангентни вектор у P_0 је $\overrightarrow{P_0P_1}$, а у P_n је $\overrightarrow{P_{n-1}P_n}$.
- Особина конвексног омотача.
- Пројективна инваријантност.
- Особина линеарне прецизности.
- . . .

Фрактал = геометријски лик који се може разложити на мање делове тако да је сваки од њих, макар приближно, умањена копија целине.

Слика: Музеј Илузија, Београд²

²преузето ca: https://www.muzejiluzija.rs/eksponat/kaleidoskop/

Фрактал = геометријски лик који се може разложити на мање делове тако да је сваки од њих, макар приближно, умањена копија целине.

Слика: Музеј Илузија, Београд²

²преузето ca: https://www.muzejiluzija.rs/eksponat/kaleidoskop/

Фрактал = геометријски лик који се може разложити на мање делове тако да је сваки од њих, макар приближно, умањена копија целине.

Слика: Музеј Илузија, Београд²

²преузето ca: https://www.muzejiluzija.rs/eksponat/kaleidoskop/

Фрактал = геометријски лик који се може разложити на мање делове тако да је сваки од њих, макар приближно, умањена копија целине.

Подела фрактала:

1) геометријски 2) алгебарски 3) стохастички

Слика: Питагорино дрво³

³извор:Wikipedia

Фрактал = геометријски лик који се може разложити на мање делове тако да је сваки од њих, макар приближно, умањена копија целине.

Подела фрактала:

1) геометријски 2) алгебарски 3) стохастички

Слика: Жулијин скуп³

Геометријски фрактали

• Геометријски фрактал = самослична фигура чији се општи облик задаје генератором.

Слика 10: Прве четири итерације Кохове криве

Пеанова крива

Слика 11: Прве три итерације Пеанове криве

Хилбертова крива

Слика 12: Прве три итерације Хилбертове криве

Примена геометрисјких фрактала

Примена: када је потребно линеаризовати вишедимензионе податке јер представљају оптималан начин да се вишедимензиони скупови пресликају на једнодимензионе низове.

Слика 13: Прве две итерације тродимензионе Хилбертове криве