Compléments : Suites, épisode 1

Ce cours a pour objet d'approfondir les notions vues au programme de Terminale sur l'étude des suites numériques : monotonie, «bornitude», convergence, et d'en introduire des aspects allant au-delà. On s'intéressera ici à l'étude des suites récurrentes d'ordre un, dans un contexte plus général que ce que vous avez pu rencontrer au détour d'un exercice, et on introduira la notion de série numérique.

1 Suites arithmético-géométriques

On commence par étudier le cas particulier des suites récurrentes vérifiant une relation affine $u_{n+1} = au_n + b$. Vous connaissez les cas a = 1 et b = 0.

Définition 1.1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On dit que u est arithmético-géométrique si et seulement s'il existe deux réels a et b, avec $a \neq 1$, tels que

$$\forall n \in \mathbb{N} \quad u_{n+1} = au_n + b.$$

Théorème 1.2 (Expression des suites arithmético-géométriques). Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmético-géométrique de paramètres a et b. Soit c l'unique réel vérifiant c=ac+b. Alors:

$$\forall n \in \mathbb{N} \quad u_n = (u_0 - c)a^n + c.$$

Exercice .1 (F). Soit u une suite arithmético-géométrique. Dans chacun des cas suivants, déterminer son expression en fonction de n, étudier sa convergence :

1.
$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}u_n - 1 \end{cases}$$

$$\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{1}{5}u_n + 2 \end{cases}$$

$$\begin{cases} u_0 = 0 \\ u_{n+1} = -3u_n + 5 \end{cases}$$

$$\begin{cases} u_0 = -4 \\ u_{n+1} = \frac{5}{4}u_n + 2 \end{cases}$$

Exercice .2 (M). Démontrer le théorème 1.2.

2 Suites récurrentes d'ordre un

2.1 Généralités

Définition 2.1 (Suite récurrente d'ordre un). Une suite $(u_n)_{n\in\mathbb{N}}$ est dite récurrente d'ordre un s'il existe une fonction réelle $f:A\subset\mathbb{R}\to\mathbb{R}$, telle que

$$\forall n \in \mathbb{N} \quad u_{n+1} = f(u_n).$$

Ce type de problème rentre dans le domaine d'étude des *systèmes dynamiques*, fondamental en mathématiques pures comme appliquées, en physique, en chimie, en biologie.

Exemple 2.1. La suite réelle définie par $u_0 = 2$ et $u_{n+1} = \frac{1}{2}u_n^2 + u_n + 1$ est une suite récurrente d'ordre un ; quelle est la fonction f correspondante ?

Pour des fonctions f assez moches, il n'est pas possible d'obtenir une expression explicite de u_n en fonction de n, même en utilisant des astuces classiques (par exemple composer par des fonctions usuelles bien choisies...). Et pourtant, des fonctions f assez moches interviennent dans la plupart des systèmes dynamiques que l'on peut rencontrer.

L'étude des solutions au problème $u_{n+1} = f(u_n)$ sera donc exclusivement qualitative: déjà, vérifier la bonne définition de la suite à tout rang, voir si elle est monotone, si elle est bornée, si elle converge, et ce en fonction des valeurs de son premier terme u_0 .

Remarque. Il faut vérifier que la suite (u_n) est bien définie, c'est-à-dire que $u_n \in A$ pour tout n. En effet pour $u_0 = 1$ et f définie sur $[0, +\infty[$ par $f(x) = \sqrt{x} - 1$, la suite de relation de récurrence $u_{n+1} = f(u_n)$ n'est pas définie à partir du rang 2...

Proposition 2.2. Si A est stable par f (i.e. $f(A) \subset A$), alors u est bien définie.

Exercice .3 (M). Démontrer la proposition 2.2.

2.2 Monotonie

En général, les deux méthodes suivantes permettent de traiter la plupart des suites récurrentes d'ordre un :

- étudier le signe de $u_{n+1} u_n = f(u_n) u_n$, en étudiant celui de la fonction $g: x \mapsto f(x) x$.
- étudier les variations de f: si f est croissante sur A, on compare u_0 et u_1 . Si on a $u_0 \le u_1 = f(u_0)$, une récurrence donne $u_n \le u_{n+1} = f(u_n)$ par croissance de f. Si on a $u_1 \le u_0$ alors par récurrence $u_{n+1} \le u_n$.
- si f est décroissante, alors $f \circ f$ est croissante : on peut étudier séparément les deux sous-suites (u_{2n}) et (u_{2n+1}) , qui sont vérifient la relation de récurrence $v_{n+1} = f \circ f(v_n)$...

Bien sûr, le sens de variation de f ou le signe de g peuvent changer sur A. Dans ce cas, il faut chercher un intervalle $I \subset A$ sur lequel g est de signe constant ou f ne change pas de sens de variation, et qui vérifierait $u_n \in I \quad \forall n \in \mathbb{N}$.

2.3 Convergence

Proposition 2.3. On suppose que f est continue et que u converge. Soit ℓ sa limite.

- Si ℓ est dans A alors par continuité de f on a $f(\ell) = \ell$.
- Sinon, ℓ est un bord de A mais n'y appartient pas (comme 0 avec]0,1]).

Remarque. Bien évidemment, si $\ell \notin A$ mais f admet une limite en ℓ , on prolonge f en ℓ en posant $f(\ell)$ égal à cette limite. La fonction obtenue est continue sur $A \cup \{\ell\}$ et on se ramène au cas précédent.

Exercice .4 (M). La suite de l'exemple 2.1 est-elle monotone ? Converge-t-elle ?

Exercice .5 (D). Soit u la suite récurrente définie par $u_0 = 1$ et $u_{n+1} = -u_n^2 + 2$. Montrer que u est croissante. Étudier sa convergence.

Exercice .6 (D). On considère la suite (u_n) de premier terme un entier $u_0 \ge 2$ et vérifiant la relation de récurrence

$$u_{n+1} = \frac{u_n^2 + 2}{2u_n}.$$

- 1. Montrer par récurrence que c'est une suite de nombres rationnels.
- 2. Montrer que la demi-droite $[\sqrt{2}, +\infty[$ est stable par la fonction $f: x \longmapsto \frac{x^2+2}{2x}$.
- 3. Étudier le signe de $g: x \longmapsto f(x) x$; en déduire que (u_n) est décroissante.
- 4. Montrer qu'elle converge vers $\sqrt{2}$.

Exercice .7 (TD). Soit $f: x \in \mathbb{R} \longmapsto (x-1)^3$. On cherche à étudier les suites de la forme $u_{n+1} = f(u_n)$, où $u_0 \leq 1$.

- 1. Montrer que l'intervalle $]-\infty,1]$ est stable par f.
- 2. Étudier le signe de $g: x \longmapsto f(x) x$ sur \mathbb{R} . En conclure que (u_n) est strictement décroissante.
- 3. Montrer que $u_n \xrightarrow[n \to +\infty]{} -\infty$.