FiniteElements3DPoisson_CUBE

May 27, 2019

1 Simulation of the 3D Poisson equation on the cube

2 (by Sedrick Kameni Ngwamou, PhD student)

2.1 1 - Finite element method for 3D Poisson equation

2.1.1 1.1 - The Poisson problem on a cube

We consider the following Poisson problem with Dirichlet boundary conditions

$$\begin{cases}
-\Delta u = f, & \text{in } \Omega \\
u = 0, & \text{on } \partial\Omega,
\end{cases}$$

where $\Omega = [0,1] \times [0,1] \times [0,1]$ is the unit cube in \mathbb{R}^3 , the right hand side $f \in \mathbf{L}^2(\Omega)$ and the unknown u is to be sought in $\mathbf{H}^1_0(\Omega)$.

With the following choice for f:

$$f = 3\pi^3 \sin(\pi x) \sin(\pi y) \sin(\pi z),$$

he unique solution of the problem is

$$u(x, y, z) = \sin(\pi x)\sin(\pi y)\sin(\pi z).$$

2.1.2 1.2 - Existence and uniqueness of the solution

Weak formulation Using the **Green-Ostrograski** formula, the above problem is transformed into the following **weak formulation** by:

Find $u \in \mathbf{H}_0^1$ such that:

$$\forall v \in \mathbf{H}_{0}^{1}, \quad \int_{\Omega} \vec{\nabla} u . \vec{\nabla} v dx = \int_{\Omega} f v dx. \tag{1}$$

Existence of the weak solution The bilinear form $a(u,v) = \int_{\Omega} \vec{\nabla} u \cdot \vec{\nabla} v dx$, a(.,.) is continuous and coercive thanks to **Poincaré inequality**. The linear form $b(v) = \int_{\Omega} f v dx$, b(.) is continuous. Thanks to these properties, the **Lax-Milgram theorem** ensures the existence and uniqueness of the **weak solution** of the variational formulation (1).

Regularity of the solution The weak solution $u \in \mathbf{H}_0^1$ of the variational problem (1) actually belongs to \mathbf{H}_0^2 that is it is twice weakly differentiable with $-\Delta u = f$ in the weak sense.

More generally, for $m \geq 0$, if $\Omega \in (\mathbb{R}^N)$ is an open bounded set with piecewise C^{m+2} boundary and $f \in \mathbf{H}^m(\Omega)$. Then the unique solution $u_f \in \mathbf{H}^1_0(\Omega)$ of the weak formulation (1) belongs to $\mathbf{H}^{m+2}(\Omega)$. Furthermore, u_f depends continuously of $f \in \mathbf{H}^m(\Omega)$:

$$\exists C > 0, \ \forall f \in \mathbf{L}^2, \ ||u_f||_{\mathbf{H}_0^{m+2}(\Omega)} \le C||f||_{\mathbf{H}^m(\Omega)}.$$

2.1.3 1.3 - The P1 finite element for Poisson problem

The P_1 finite element is the set $(\mathbf{K}, \mathbf{\Sigma}, \mathbf{P})$ in which

- **K** is a geometric element of \mathbb{R}^N .
- Σ is a finite set of linear forms: $\tau_i : \mathbf{P} \to \mathbb{R}$.
- **P** is a finite dimensional set of polynomials of degree one.

Let $V_h \subset H_0^1(\Omega)$, u_h the projection of the exact solution u on V_h and v_h the projection of the test function v on V_h . Then the above variational formulation becomes

find
$$u_h \in V_h$$
 such that $a(u_h, v_h) = b(v_h), \forall v_h \in V_h$, (2)

where $a_h(u_h, v_h)$ is a symmetric positive-definite bilinear form.

Taking V_h generated by the nodal basis functions $(\phi_j)_{1 \le j \le N_h}$, we have $u_h = \sum_{j=1}^{N_h} u_j \phi_j$, and the above problem becomes

find
$$u_h \in \mathbb{R}^{N_h}$$
 such that $a(\sum_{j=1}^{N_h} u_j \phi_j, \phi_i) = b(\phi_i), \quad \forall 1 \leq i \leq N_h.$

Which can be written in the form of a linear system

$$A_h U_h = b_h, \tag{3}$$

with matrix $(A_h)_{ij} = (a_{ij})$, right hand side $(b_h)_i = (b_j)$, and unknown $U_h = (u_1, ..., u_{N_h})$.

$$a_{ij} = a(\phi_i, \phi_j) = \int_{\Omega} \vec{\nabla} \phi_i . \vec{\nabla} \phi_j dx. \tag{4}$$

$$b_j = b(\phi_i) = \int_{\Omega} f \phi_i dx. \tag{5}$$

 A_h is a symmetric, positive definite M-matrix, hence the existence of a discrete solution. The domain Ω is decomposed into the trahedral cells \mathcal{T}_k . * $|\mathcal{T}_k|$ is the measure of the cell \mathcal{T}_k .

• $\phi_j(\vec{x}_{s_i^k}) = \delta_{ij}$ is the test function on the cell \mathcal{T}_k at the node $\vec{x}_{s_i^k}$, where s_1^k , s_2^k , s_3^k and s_4^k are the vertices of the cell \mathcal{T}_k .

 A_h is an $n \times n$ symetric positive definite sparse matrix with entries given by:

$$a_{ij} = \sum_{k} \int_{\mathcal{T}_k} \vec{\nabla} \phi_i \cdot \vec{\nabla} \phi_j = \sum_{k} a_i^k,$$