▼ 3.0 - Derivate e differenziabilità

▼ 3.1 - Derivate parziali

Insiemi aperti in \mathbb{R}^n

Dato un insieme $A\subseteq R^n$, si dice che A è **aperto** se $\forall \ \overline{x}\in A, \exists \ \epsilon>0 \mid B(\overline{x},\epsilon)\subseteq A$, dove $B(\overline{x},\epsilon)$ è l'intorno sferico di centro \overline{x} e raggio ϵ .

Esempio:

• Nella seguente figura osserviamo due insiemi, uno chiuso e uno aperto:

Notiamo che A_1 è un insieme chiuso in quanto esiste un $\overline{x}\in A_1$ che viola la definizione di insieme aperto, mentre in A_2 , preso un qualunque $\overline{x}\in A_2$, questo rispetta la definizione di insieme aperto.

Derivate parziali

Caso \mathbb{R}^2

Siano $A\subseteq\mathbb{R}^2$ aperto, $f:A o\mathbb{R}$ e $(\overline{x},\overline{y})\in A$, poniamo:

$$rac{\partial f}{\partial x}(\overline{x},\overline{y}) = \partial_x f(\overline{x},\overline{y}) = \lim_{t o 0} rac{f(\overline{x}+t,\overline{y})-f(\overline{x},\overline{y})}{t}$$

е

$$rac{\partial f}{\partial y}(\overline{x},\overline{y}) = \partial_y f(\overline{x},\overline{y}) = \lim_{t o 0} rac{f(\overline{x},\overline{y}+t) - f(\overline{x},\overline{y})}{t}$$

Se i due limiti esistono finiti diciamo che f è derivabile parzialmente in $(\overline{x}, \overline{y})$.

Inoltre, nel caso in cui f è derivabile parzialmente in $(\overline{x}, \overline{y})$, è possibile definire il **gradiente** di f in $(\overline{x}, \overline{y})$ come:

$$abla f(\overline{x},\overline{y}) = (\partial_x f(\overline{x},\overline{y}),\partial_y f(\overline{x},\overline{y}))$$

È possibile altrimenti calcolare equivalentemente i due limiti nel seguente modo:

$$rac{\partial f}{\partial x}(\overline{x},\overline{y}) = \lim_{x o \overline{x}} rac{f(x,\overline{y}) - f(\overline{x},\overline{y})}{x - \overline{x}}$$

е

$$rac{\partial f}{\partial y}(\overline{x},\overline{y}) = \lim_{x o \overline{x}} rac{f(\overline{x},y) - f(\overline{x},\overline{y})}{y - \overline{y}}$$

Esempio grafico delle tangenti che consentono di determinare il valore delle derivate parziali nel punto (x_0, y_0) .

Esercizi:

lacksquare Sia $f(x,y)=xy^2$, calcolare $rac{\partial f}{\partial x}(\overline{x},\overline{y})$ e $rac{\partial f}{\partial y}(\overline{x},\overline{y})$.

Per calcolare $\frac{\partial f}{\partial x}(\overline{x},\overline{y})$ occorre calcolare la derivata della funzione in funzione di x e trattare il parametro y come se fosse una costante, dunque $\frac{\partial f}{\partial x}(\overline{x},\overline{y})=y^2$.

Lo stesso deve essere fatto per calcolare $rac{\partial f}{\partial y}(\overline{x},\overline{y})$, dunque $rac{\partial f}{\partial y}(\overline{x},\overline{y})=2xy$.

Caso generale

Siano $A\subseteq\mathbb{R}^n$ aperto, $f:A o\mathbb{R}^n$ e $\overline{x}=(\overline{x}_1,\ldots,\overline{x}_n)\in A$, poniamo:

$$rac{\partial f}{\partial x_{i}}(\overline{x}) = \lim_{t o 0} rac{f(\overline{x} + te_{j}) - f(\overline{x})}{t}$$

Dove $j \in \{1, \dots, n\}$ e e_j è il vettore standard avente un 1 in posizione j. Se i limiti esistono diciamo che f è **derivabile parzialmente** in \overline{x} .

Inoltre, nel caso in cui f è derivabile parzialmente in \overline{x} , è possibile definire il **gradiente** di f in \overline{x} come:

$$abla f(\overline{x}) = (rac{\partial f}{\partial x_1}(\overline{x}), \ldots, rac{\partial f}{\partial x_n}(\overline{x}))$$

Esercizi:

▼ Sia $f(x,y,z) = rac{xe^{z^2}}{x+y^2}$, calcolare il gradiente di f.

Determiniamo innanzitutto il dominio della funzione f, ovvero $Dom(f)=\{(x,y,z)\in\mathbb{R}^3|x+y^2\neq 0\}.$

Calcoliamo poi le 3 derivate parziali:

•
$$rac{\partial f}{\partial x}(x,y,z)=rac{y^2e^{z^2}}{(x+y^2)^2}$$

•
$$\frac{\partial f}{\partial x}(x,y,z) = -\frac{2xye^{z^2}}{(x+y^2)^2}$$

•
$$\frac{\partial f}{\partial x}(x,y,z) = \frac{2xze^{z^2}}{x+y^2}$$

Possiamo dunque concludere che il gradiente di f è il seguente:

$$abla f(x,y,z) = (rac{y^2 e^{z^2}}{(x+y^2)^2}, -rac{2xy e^{z^2}}{(x+y^2)^2}, rac{2xz e^{z^2}}{x+y^2}) \quad (
abla f: Dom(f)
ightarrow \mathbb{R}^3)$$

Matrice Jacobiana

Sia $f:\mathbb{R}^n o\mathbb{R}^q$ tale che $f(x)=(f_1(x),\ldots,f_q(x))$ con $x=(x_1,\ldots,x_n)$, allora la **matrice Jacobiana** $J_f(x)\in\mathbb{R}^{q\times n}$ di tale funzione è definita nel seguente modo:

$$J_{f(x)} = egin{pmatrix} rac{\partial}{\partial x_1}f_1 & \dots & rac{\partial}{\partial x_n}f_1 \ & \dots & \ rac{\partial}{\partial x_1}f_q & \dots & rac{\partial}{\partial x_n}f_q \end{pmatrix}$$

▼ 3.2 - Differenziabilità

Legame tra derivabilità e continuità

L'esistenza della derivata parziale non implica la continuità.

Dimostrazione

È possibile dimostrare tale teorema attraverso un esempio. Prendiamo la seguente funzione:

$$f:\mathbb{R}^2 o\mathbb{R}, f(x,y)=egin{cases} rac{xy}{x^2+y^2} & ext{se }(x,y)
eq (0,0) \ 0 & ext{se }(x,y)=(0,0) \end{cases}$$

Possiamo infatti dimostrare che:

• f è derivabile parzialmente in (0,0)Calcoliamo infatti le derivate parziali in (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0 \text{ e } \frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0$$

• f è discontinua in (0,0)Utilizziamo il metodo delle successioni e scegliendo la successione $(\frac{1}{k},\frac{1}{k})$ troviamo che:

$$(rac{1}{k},rac{1}{k}) \stackrel{k o +\infty}{\longrightarrow} (0,0), f(rac{1}{k},rac{1}{k}) = rac{rac{1}{k}rac{1}{k}}{rac{1}{k^2}+rac{1}{k^2}} = rac{1}{2}
eq f(0,0) = 0$$

O-piccolo in \mathbb{R}^2

Sia $\mathbb{R}^2 o \mathbb{R}$ e p>0, si scrive $f(x,y)=o(|(x,y)|^p)$ se:

$$orall \ \epsilon > 0, \exists \ \delta > 0 \quad | \quad rac{f(x,y)}{|(x,y)|^p} \leq \epsilon \quad orall \ (x,y) \ | \ |(x,y)| < \delta$$

Alternativamente:

$$orall \; (x_n,y_n)
ightarrow (0,0), \quad \lim_{n
ightarrow \infty} rac{f(x_n,y_n)}{|(x_n,y_n)|^p} = 0$$

Proposizioni

• f(x,y): polinomio di grado $>p \implies f(x,y)=o(|(x,y)|^p)$ Ad esempio, $x^3+xy+2y=o(|(x,y)|^2)$

Esercizi

lacksquare Verificare che $f(x,y)=x^2=o(|(x,y)|)$

Per verificare ciò dobbiamo dimostrare che $\lim_{(x,y) o (0,0)} rac{x^2}{|(x,y)|} = 0.$

Utilizziamo il teorema del confronto, sapendo che:

$$f(x,y) = 0 \xrightarrow[(x,y) o (0,0)]{} 0 \leq rac{x^2}{|(x,y)|} \leq f(x,y) = rac{|(x,y)|^2}{|(x,y)|} = |(x,y)| \xrightarrow[(x,y) o (0,0)]{} 0$$

Otteniamo dunque che $\frac{x^2}{|(x,y)|} \xrightarrow{(x,y) \to (0,0)} 0$, verificando quindi il limite.

Funzione differenziabile

Caso generale

Dato $A\subseteq\mathbb{R}^n$, sia $f:A o\mathbb{R}$, f è differenziabile in $\overline{x}\in A$ se:

- $\exists \ \partial_1 f, \dots, \partial_n f$ nel punto \overline{x}
- $f(\overline{x}+h)=f(\overline{x})+\langle
 abla f(\overline{x}),h
 angle +o(|h|)$, dove $h=(h_1,\ldots,h_n)\in \mathbb{R}^n$.

Caso n=2

Sia $f:\mathbb{R}^2 o\mathbb{R}$, f è differenziabile in $(\overline{x},\overline{y})$ se:

- $\exists \ \partial_x f(\overline{x}, \overline{y}), \partial_y f(\overline{x}, \overline{y})$
- $f(\overline{x}+h,\overline{y}+k)=f(\overline{x},\overline{y})+\langle
 abla f(\overline{x},\overline{y}),(h,k)
 angle +o(|(h,k)|)$

Polinomio di Taylor di grado 1

Se f è differenziabile possiamo sviluppare l'equazione della derivabilità impostando $x=\overline{x}+h$ e $y=\overline{y}+k$ e ottenendo il cosiddetto polinomio di Taylor di grado 1 e punto iniziale $(\overline{x},\overline{y})$:

$$T(x,y) = f(\overline{x},\overline{y}) + \langle \nabla f(\overline{x},\overline{y}), (x-\overline{x},y-\overline{y}) \rangle + o(|(x-\overline{x},y-\overline{y})|)$$

Tale polinomio descrive il **piano tangente** al grafico di f nel punto $(\overline{x}, \overline{y}, f(\overline{x}, \overline{y}))$.

Esercizi

lacktriangle Trovare il piano tangente della funzione $x^2+y^2+z^2=1$ nel punto (0,0,1).

Per trovare il piano tangente a tale funzione occorre calcolare il polinomio di Taylor di grado 1.

Riscriviamo innanzitutto l'equazione in funzione di $z=\sqrt{1-x^2-y^2}$ (non inseriamo il \pm poichè dobbiamo calcolare la funzione nella parte positiva dell'asse z). Per fare ciò occorre prima di tutto calcolare le derivate parziali di f:

$$\partial_x f(x,y) = rac{-2x}{2\sqrt{1-x^2-y^2}} = -rac{x}{\sqrt{1-x^2-y^2}}$$

$$\partial_y f(x,y) = rac{-2y}{2\sqrt{1-x^2-y^2}} = -rac{y}{\sqrt{1-x^2-y^2}}$$

Calcoliamo a questo punto il polinomio di Taylor ottenendo il piano:

$$z = \sqrt{1-0-0} + \langle (-rac{0}{\sqrt{1-0-y^2}}, -rac{0}{\sqrt{1-x^2-0}}), (x-0,y-0)
angle \ = 1+0x+0y=1$$

Possiamo infatti visualizzare che il piano z=1 è tangente alla sfera $x^2+y^2+z^2=1$ nel punto (0,0,1).

lacktriangledown Scrivere il polinomio di Taylor per la funzione $f(x,y,z)=xe^{x^2yz^2}$ in (-1,2,1) dando per scontato che sia differenziabile.

Il polinomio di Taylor per funzioni con 3 variabili è il seguente:

$$T(x,y,z) = f(\overline{x},\overline{y},\overline{z}) + \langle \nabla f(\overline{x},\overline{y},\overline{z}), (x-\overline{x},y-\overline{y},z-\overline{z}) \rangle + o(|(x-\overline{x},y-\overline{y},z-\overline{z})|)$$

Per calcolare dunque il gradiente di f nel punto (-1,2,1) occorre calcolare innanzitutto le 3 derivate parziali:

$$\partial_x f = 5e^2, \quad \partial_y f = -e^2, \quad \partial_z f = -4e^2$$

A questo otteniamo il polinomio di Taylor nel seguente modo:

$$T(x,y,z) = f(-1,2,1) + \langle (\partial_x f, \partial_y f, \partial_z f), (x+1,y-2,z-1) \rangle + o(|(x+1,y-2,z-1)|) + o(|(x+1,y-2,z-1)|) = -e^2 + \langle (5e^2, -e^2, -4e^2), (x+1,y-2,z-1) \rangle + o(|(x+1,y-2,z-1)|) = -e^2 + 5e^2(x+1) - e^2(y-2) - 4e^2(z-1)$$

Proposizioni

• $f: \mathbb{R}^2 o \mathbb{R}^2$ differenziabile in $(\overline{x}, \overline{y}) \in \mathbb{R}^2 \implies f$ continua in $(\overline{x}, \overline{y})$.

Dimostrazione:

Supponendo che f sia differenziabile, abbiamo che $f(\overline{x}+h,\overline{y}+k)-f(\overline{x},\overline{y})=\langle \nabla f(\overline{x},\overline{y}),(h,k)\rangle+o(|(h,k)|)$, che per $h,k\to +\infty$ diventa $f(\overline{x}+h,\overline{y}+k)-f(\overline{x},\overline{y})=0$, dimostrando la continuità.

Teorema della differenziabilità

Sia $f: \mathbb{R}^2 \to \mathbb{R}$ continua. Se $\exists \ \partial_x f, \partial_y f$ in ogni punto e le funzioni $\partial_x f, \partial_y f$ sono continue, allora $\forall \ (\overline{x}, \overline{y}) \in \mathbb{R}^2$, f è differenziabile in $(\overline{x}, \overline{y})$.

6

Lemma

Sia $f:\mathbb{R}^2 o \mathbb{R}$ continua con derivate prime continue $\forall~(a,b) \in \mathbb{R}^2$, allora:

- $\forall \ h \in \mathbb{R}, \exists \ \theta \in [0,1]$ tale che $f(a+h,b) f(a,b) = \partial_x f(a+\theta h,b) h$
- $orall \ k \in \mathbb{R}, \exists \ \overline{\theta} \in [0,1]$ tale che $f(a,b+k) f(a,b) = \partial_u f(a,b+\overline{\theta}k)k$

Dimostrazione lemma

ullet Definiamo $g:\mathbb{R} o\mathbb{R}$ in questo modo: $g(x)=f(x,b)\quad orall x\in\mathbb{R}$

Uso Lagrange per g nell'intervallo [a,a+h]. $\exists \ \theta \in [0,1]$ tale che $g(a+h)-g(a)=g'(a+\theta h)(a+h-a)$, dunque, per definizione di $\partial_x f$:

$$g(a+h)-g(a)=\partial_x f(a+\theta h,b)h$$

Cvd.

· Analogo.

Dimostrazione teorema della differenziabilità

Supponiamo che $f, \partial_x f, \partial_y f$ siano continue, dobbiamo dimostrare che f è differenziabile, dunque che vale Taylor:

$$f(\overline{x}+h,\overline{y}+k) = f(\overline{x},\overline{y}) + \langle \nabla f(\overline{x},\overline{y}),(h,k) \rangle + o(|(h,k)|) \ \Longrightarrow f(\overline{x}+h,\overline{y}+k) - f(\overline{x},\overline{y}) = \langle \nabla f(\overline{x},\overline{y}),(h,k) \rangle + o(|(h,k)|)$$

Riscriviamo la parte a sinistra dell'=:

$$f(\overline{x}+h,\overline{y}+k)-f(\overline{x},\overline{y})=f(\overline{x}+h,\overline{y}+k)-f(\overline{x}+h,\overline{y})+f(\overline{x}+h,\overline{y})-f(\overline{x},\overline{y})$$

Da ora in avanti, per semplificare la dimostrazione, rappresentiamo la formula ottenuta come [1]+[2], dove $[1]=f(\overline{x}+h,\overline{y}+k)-f(\overline{x}+h,\overline{y})$ e $[2]=f(\overline{x}+h,\overline{y})-f(\overline{x},\overline{y})$.

Usiamo il lemma:

- $\exists \theta \in [0,1]$ tale che $[2] = \partial_x f(\overline{x} + \theta h, \overline{y})h$
- $\exists \; \theta \in [0,1]$ tale che $[1] = \partial_{y} f(\overline{x},\overline{y} + \theta k) k$

Espandiamo le equivalenze appena ottenute nel seguente modo:

- $[2]=\partial_x f(\overline{x},\overline{y})h+(\partial_x f(\overline{x}+\theta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))h$ (aggiungendo e sottraendo $\partial_x f(\overline{x},\overline{y})h$)
- $[1] = \partial_{y} f(\overline{x}, \overline{y})k + (\partial_{y} f(\overline{x}, \overline{y} + \theta k) \partial_{y} f(\overline{x}, \overline{y}))k$ (aggiungendo e sottraendo $\partial_{y} f(\overline{x}, \overline{y})k$)

Sostituiamo dunque nell'uquaglianza iniziale gli equivalenti a [1] e [2] appena trovati ottenendo:

$$f(\overline{x}+h,\overline{y}+k)-f(\overline{x},\overline{y})=\partial_x f(\overline{x},\overline{y})h+\partial_y f(\overline{x},\overline{y})k+(\partial_x f(\overline{x}+\theta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))h+(\partial_y f(\overline{x},\overline{y})$$

Visto che $\partial_x f(\overline{x}, \overline{y})h + \partial_y f(\overline{x}, \overline{y})k$ è equivalente a $\langle \nabla f(\overline{x}, \overline{y}), (h, k) \rangle$, per dimostrare la validità di Taylor ci basta dunque dimostrare che:

$$egin{aligned} &(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))h+(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y}))k=o(|(h,k)|)\ \Longrightarrow &rac{(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))h+(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y}))k}{|(h,k)|} &rac{(h,k) o(0,0)}{(h,k)+(0,0)} &0\ \Longrightarrow &(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))rac{h}{|(h,k)|}+(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y}))rac{k}{|(h,k)|} &rac{(h,k) o(0,0)}{(h,k)+(0,0)} &0 \end{aligned}$$

Osserviamo che $\frac{h}{|(h,k)|}$ e $\frac{k}{|(h,k)|} \leq \frac{|(h,k)|}{|(h,k)|} = 1$ in quanto $\sqrt{h^2+k^2}$ è sempre maggiore o alla peggio uguale dei singoli h e k, dunque ci basta dimostrare che:

$$(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y}))+(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y})) \xrightarrow[(h,k) o(0,0)]{} 0$$

Lo dimostriamo facilmente sostituendo ad h e k i valori ai quali tendono:

$$egin{split} \left(\partial_x f(\overline{x}+ heta h,\overline{y})-\partial_x f(\overline{x},\overline{y})
ight)+\left(\partial_y f(\overline{x},\overline{y}+ heta k)-\partial_y f(\overline{x},\overline{y})
ight) rac{}{(h,k)
ightarrow(0,0)} \ \left(\partial_x f(\overline{x},\overline{y})-\partial_x f(\overline{x},\overline{y})
ight)+\left(\partial_y f(\overline{x},\overline{y})-\partial_y f(\overline{x},\overline{y})
ight)=0+0=0 \end{split}$$

▼ 3.3 - Derivate direzionali

Rette in \mathbb{R}^n

A partire da un dominio R^n di partenza e due vettori $x=(x_1,\ldots,x_n)$ e $v=(v_1,\ldots,v_n)\neq 0$ è possibile definire la retta passante per x e avente direzione v tramite l'insieme:

$$r = \{x + tv \mid t \in \mathbb{R}\}$$

Rappresentazione grafica di una retta generica nel piano \mathbb{R}^2 .

Derivate direzionali in \mathbb{R}^2

Sia $f:\mathbb{R}^2 o\mathbb{R}, (\overline{x},\overline{y})\in\mathbb{R}^2$ e $v=(v_1,v_2)$ unitario (|v|=1). La **derivata direzionale** di f in $(\overline{x},\overline{y})$ nella direzione (v_1,v_2) è il limite, se esiste finito:

$$\lim_{t o 0}rac{f((\overline{x},\overline{y})+t(v_1,v_2))-f(\overline{x},\overline{y})}{t}=rac{\partial f}{\partial v}(\overline{x},\overline{y})=\partial_v f(\overline{x},\overline{y})=D_v f(\overline{x},\overline{y})$$

Osservazione

Sia $f: \mathbb{R}^2 \to \mathbb{R}, (\overline{x}, \overline{y}) \in \mathbb{R}^2$ e $v = (v_1, v_2)$ unitario (|v| = 1). Per calcolare $\frac{\partial f}{\partial v}(\overline{x}, \overline{y})$ è possibile introdurre una funzione ausiliaria $g: \mathbb{R} \to \mathbb{R}$ tale che:

$$g(t) = f((\overline{x}, \overline{y}) + t(v_1, v_2))$$

Utilizzando tale funzione è possibile calcolare $\frac{\partial f}{\partial v}(\overline{x},\overline{y})$, infatti è possibile dimostrare che:

$$g'(0)=rac{\partial f}{\partial v}(\overline{x},\overline{y})$$

Dimostrazione

$$g'(0) = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \lim_{t \to 0} \frac{f((\overline{x}, \overline{y}) + t(v_1, v_2)) - f(\overline{x}, \overline{y})}{t} = \frac{\partial f}{\partial v}(\overline{x}, \overline{y})$$

Esercizi

▼ Data $f(x,y) = xy^2$ e $(\overline{x},\overline{y}) = (1,2)$, calcolare $\frac{\partial f}{\partial y}(1,2)$.

Per fare ciò è possibile utilizzare la funzione ausiliaria $g(t)=f((\overline{x},\overline{y})+t(v_1,v_2))=f((1,2)+t(v_1,v_2))=f((1+tv_1),(2+tv_2))=(1+tv_1)(2+tv_2)^2.$

Calcoliamo infine il valore della derivata g'(0):

$$g'(t) = v_1(2 + tv_2)^2 + (1 + tv_1)2(2 + tv_2)v_2 \ \Longrightarrow g'(0) = \frac{\partial f}{\partial v}(1, 2) = 4v_1 + 4v_2$$

Teorema del calcolo delle derivate direzionali in \mathbb{R}^2

Sia $f:\mathbb{R}^2 o\mathbb{R},(\overline{x},\overline{y})\in\mathbb{R}^2$ e $v=(v_1,v_2)$ unitario (|v|=1), se f è differenziabile in $(\overline{x},\overline{y})$, allora vale:

$$rac{\partial f}{\partial v}(\overline{x},\overline{y}) = \langle
abla f(\overline{x},\overline{y}), (v_1,v_2)
angle = \partial_x f(\overline{x},\overline{y}) v_1 + \partial_y f(\overline{x},\overline{y}) v_2$$

Dimostrazione

Dobbiamo calcolare $\lim_{t\to 0} rac{f((\overline{x},\overline{y})+t(v_1,v_2))-f(\overline{x},\overline{y})}{t}$.

Per fare ciò utilizziamo la formula di Taylor, ottenendo $f((\overline{x},\overline{y})+t(v_1,v_2))-f(\overline{x},\overline{y})=\langle \nabla f(\overline{x},\overline{y}),t(v_1,v_2)\rangle+o(|t(v_1,v_2)|).$

Osserviamo che $|t(v_1, v_2)| = |t| |(v_1, v_2)|$ e, sapendo che $|(v_1, v_2)| = 1$, otteniamo $|t(v_1, v_2)| = |t|$, quindi $o(|t(v_1, v_2)|) = o(t)$.

Calcoliamo dunque il limite iniziale sostituendo ciò che abbiamo appena trovato:

$$\lim_{t\to 0}\frac{\langle \nabla f(\overline{x},\overline{y}),t(v_1,v_2)\rangle+o(t)}{t}=\lim_{t\to 0}(\langle \nabla f(\overline{x},\overline{y}),(v_1,v_2)\rangle+\frac{o(t)}{t})=\langle \nabla f(\overline{x},\overline{y}),(v_1,v_2)\rangle$$

Derivate direzionali in \mathbb{R}^n

Sia $f:\mathbb{R}^n \to \mathbb{R}, \overline{x}=(x_1,\dots,x_n) \in \mathbb{R}^n$ e $v=(v_1,\dots,v_n)$ unitario (|v|=1). La **derivata direzionale** di f in \overline{x} nella direzione (v_1,\dots,v_n) è il limite, se esiste finito:

$$\lim_{t o 0}rac{f(\overline{x}+tv)-f(\overline{x})}{t}=rac{\partial f}{\partial v}(\overline{x})=\partial_v f(\overline{x})=D_v f(\overline{x})$$

Teorema del calcolo delle derivate direzionali in \mathbb{R}^n

Sia $f:\mathbb{R}^n o\mathbb{R},\overline{x}=(x_1,\dots,x_n)\in\mathbb{R}^n$ e $v=(v_1,\dots,v_n)$ unitario (|v|=1), se f è differenziabile in \overline{x} , allora vale:

$$rac{\partial f}{\partial v}(\overline{x}) = \langle
abla f(\overline{x}), v
angle = \sum_{k=1}^n \partial_{x_k} f(\overline{x}) v_k$$

▼ 3.4 - Direzione di massima crescita

Direzione di massima crescita in \mathbb{R}^2

Sia $f:\mathbb{R}^2 o\mathbb{R}, (\overline{x},\overline{y})\in\mathbb{R}^2, f$ differenziabile in $(\overline{x},\overline{y})$ e $abla f(\overline{x},\overline{y})
eq (0,0).$

È possibile derivare $f(\overline{x}, \overline{y})$ in ∞ direzioni v unitarie in \mathbb{R}^2 . Cerchiamo la direzione v che renda massima la derivata $\frac{\partial f}{\partial v}(\overline{x}, \overline{y})$ e la chiameremo direzione di massima crescita v_{max} .

Scriviamo il gradiente di $f(\overline{x}, \overline{y})$ utilizzando le coordinate polari: $\nabla f(\overline{x}, \overline{y}) = (r \cos \varphi, r \sin \varphi)$, con $r = |\nabla f(\overline{x}, \overline{y})|$ e $\varphi \in [0, 2\pi]$.

Dobbiamo trovare $v=(\cos\vartheta,\sin\vartheta)$ (|v|=1) tale che $\frac{\partial f}{\partial v}(\overline{x},\overline{y})$ sia massima.

Ricordiamo che $\frac{\partial f}{\partial v}(\overline{x},\overline{y})=\langle \nabla f(\overline{x},\overline{y}),(v_1,v_2)\rangle=\langle (r\cos\varphi,r\sin\varphi),(\cos\vartheta,\sin\vartheta)\rangle=r\cos\varphi\cos\vartheta+r\sin\varphi\sin\vartheta=r\cos(\varphi-\vartheta).$ Tale derivata è dunque massima se $\varphi-\vartheta=1$, ovvero $\vartheta=\varphi\pm 2k\pi$, dunque tale direzione di massima crescita è quella del vettore gradiente e notiamo inoltre che $\langle \nabla f(\overline{x},\overline{y}),(\cos\vartheta,\sin\vartheta)\rangle=r$.

In sintesi:

Sia
$$f:\mathbb{R}^2 o\mathbb{R}, (\overline{x},\overline{y})\in\mathbb{R}^2, f$$
 differenziabile in $(\overline{x},\overline{y})$ e $\nabla f(\overline{x},\overline{y})
eq (0,0)$, allora:

$$v_{max} = rac{
abla f(\overline{x},\overline{y})}{|
abla f(\overline{x},\overline{y})|} \quad \mathrm{e} \quad rac{\partial f}{\partial v}(\overline{x},\overline{y}) = |
abla f(\overline{x},\overline{y})|$$

▼ 3.5 - Curve: velocità, derivate e insiemi di livello

Funzioni di curve parametrizzate

Le funzioni di curve parametrizzate sono del tipo $r: \mathbb{R} o \mathbb{R}^n$:

$$r(t) = (r_1(t), \ldots, r_n(t))$$

Esempio di funzione di curva parametrizzata $r:\mathbb{R} o \mathbb{R}^2.$

Vettore velocità di una curva

Il ${\bf vettore}\ {\bf velocità}\ {\bf di}\ {\bf una}\ {\bf curva}\ r$ nel punto t indica la direzione tangente alla curva in tale punto e corrisponde al seguente ${\bf vettore}$:

$$r'(t)=(r'_1(t),\ldots,r'_n(t))$$

Velocità scalare di una curva

Data $r:\mathbb{R} o \mathbb{R}^n$ avente r'(t) come vettore velocità, la **velocità scalare** di tale curva è lo scalare:

Formula di Taylor per una curva

Sia $r:]a,b[
ightarrow \mathbb{R}^n$ derivabile in $t\in]a,b[$. Vale dunque:

$$egin{cases} r_1(t+h) = r_1(t) + r_1'(t)h + o(h) \ \cdots \ r_n(t+h) = r_n(t) + r_n'(t)h + o(h) \end{cases}$$

Esempio grafico dell'uguaglianza di Taylor in una curva.

Lunghezza di un tratto di curva

Sia $r:\mathbb{R} o\mathbb{R}^n$ e $[a,b]\subseteq\mathbb{R}$, se r'(t)
eq 0, allora la **lunghezza del tratto** compreso tra r(a) e r(b) vale:

$$lungh(a,b) = \int_a^b |r'(t)| dt$$

Derivata funzione composta

 $f: \mathbb{R}^n o \mathbb{R}, r: \mathbb{R} o \mathbb{R}^n$.

Funzione composta: $f\circ r:\mathbb{R} o\mathbb{R}$ tale che $(f\circ r)(t)=f(r(t)).$

Visualizzazione di una funzione composta.

Sia $f:\mathbb{R}^n o\mathbb{R}$ differenziabile, $r:\mathbb{R} o\mathbb{R}^n$ derivabile e sia definita $(f\circ r)(t)=f(r(t))\ orall\ t\in\mathbb{R}$. Tale funzione è **derivabile** $\forall\ t\in\mathbb{R}$ e vale:

$$(f\circ r)'(t)=rac{d}{dt}f(r(t))=\langle
abla f(r(t)),r'(t)
angle$$

Dimostrazione

Sia $f:\mathbb{R}^n o\mathbb{R}$ e $r:\mathbb{R} o\mathbb{R}^n$, dobbiamo dimostrare che $\lim_{h o 0}rac{f(r(t+h))-f(r(t))}{h}=\langle
abla f(t),r'(t)
angle.$

Iniziamo scrivendo r e $f \circ r$ con Taylor:

$$r(t+h)-r(t)=r'(t)h+o(h) \ f(r(t+h))-f(r(t))=\langle
abla f(r(t)), r(t+h)-r(t)
angle +o(|r(t+h)-r(t)|)$$

Sostituiamo la prima uguaglianza nella seconda espressione ottenendo:

$$f(r(t+h)) - f(r(t)) = \langle
abla f(r(t)), r'(t)h + o(h)
angle + o(|r(t+h) - r(t)|) = \langle
abla f(r(t)), r'(t)
angle$$

A questo punto dividiamo il tutto per h, e otteniamo:

$$rac{f(r(t+h))-f(r(t))}{h} = rac{\langle
abla f(r(t)),r'(t)
angle h}{h} + rac{\langle
abla f(r(t)),o(h)
angle}{h} + rac{o(|r(t+h)-r(t)|)}{h}$$

 $\text{Calcoliamo dunque } \tfrac{\langle \nabla f(r(t)), r'(t) \rangle h}{h} + \tfrac{\langle \nabla f(r(t)), o(h) \rangle}{h} + \tfrac{o(|r(t+h) - r(t)|)}{h} \text{ per } H \to 0 :$

$$\begin{aligned} 1.\frac{\langle \nabla f(r(t)), r'(t) \rangle h}{h} &= \langle \nabla f(r(t)), r'(t) \rangle \\ 2.\frac{\langle \nabla f(r(t)), o(h) \rangle}{h} &= \langle \nabla f(r(t)), \frac{o(h)}{h} \rangle = 0 \\ 3.\frac{o(|r(t+h)-r(t)|)}{h} &\approx \frac{o(h)}{h} = 0 \quad (|r(t+h)-r(t)| \approx h \text{ viene lasciato informale}) \end{aligned}$$

Otteniamo infine l'uguaglianza:

$$\lim_{h o 0} rac{f(r(t+h)) - f(r(t))}{h} = \langle
abla f(r(t)), r'(t)
angle$$

Esercizi

lacklash Date $f(x,y)=\ln(1+xy^2)$ e $r(t)=(t^2,e^{2t})$ scrivere $f\circ r$ e calcolare $(f\circ r)'(t)$ sia direttamente che con il teorema.

Per calcolare $f \circ r$ basta sostituire $r_1(t)$ e $r_2(t)$ a x e y:

$$f(r(t)) = \ln(1 + t^2 e^{4t})$$

Calcolando $(f \circ r)'(t)$ direttamente otteniamo:

$$(f\circ r)'(t)=rac{2te^{4t}+4t^2e^{4t}}{1+t^2e^{4t}}$$

Utilizzando il teorema dobbiamo invece prima calcolare $\nabla f(x,y)$ e r'(t):

$$abla f(x,y) = (rac{y^2}{1+xy^2}, rac{2xy}{1+xy^2}), \quad r'(t) = (2t, 2e^{2t})$$

Calcoliamo poi $abla f(r(t))=(rac{e^{4t}}{1+t^2e^{4t}},rac{2t^2e^{2t}}{1+t^2e^{4t}})$ e infine la derivata:

$$(f\circ r)'(t) = \langle
abla f(r(t)), r'(t)
angle = rac{2te^{4t}}{1+t^2e^{4t}} + rac{4t^2e^{4t}}{1+t^2e^{4t}} = rac{2te^{4t}+4t^2e^{4t}}{1+t^2e^{4t}}$$

Insiemi di livello

Sia $f:\mathbb{R}^2 o\mathbb{R}$ differenziabile e $b\in\mathbb{R}.$ Si dice **insieme di livello** il seguente insieme:

$$L_b = \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = b\}$$

È possibile inoltre costruire una curva $r:\mathbb{R}\to\mathbb{R}^2$ tale che $r(t)\in L_b, \forall\ t\in\mathbb{R}$ e quindi $f(r(t))=b, \forall\ t\in\mathbb{R}$. Notiamo dunque, visto che $f\circ r$ è costante in t, la sua derivata $\frac{d}{dt}f(r(t))=0$, dunque anche $\langle \nabla f(r(t)), r'(t) \rangle =0$, il che implica che il gradiente della funzione f calcolato in un qualunque punto di L_b è perpendicolare alla derivata della curva r calcolata in quel punto.

Perpendicolarità tra vettore gradiente e derivata della curva $r(t) \in L_b$.