Implementation of a Dish Radar Bias Model for Conjunction Assessment Simulation

Sabrina Thompson

Aerospace Engineer
Navigation and Mission Design Branch
NASA Goddard Space Flight Center
sabrina.n.thompson@nasa.gov

Agenda

- 1. Introduction
- 2. Problem Definition
- 3. Research Objective
- 4. Background
- 5. Methodology
 - Sensor Calibration
 - Error Model
 - Regression Analysis
- 6. Results
- 7. Summary
- 8. Future Work
- 9. Acknowledgements

Introduction

- Orbital debris poses threat to long term sustainability of space operations.
- Orbital debris mitigation efforts are in place
 - U.S. Space Policy
 - NASA policy
 - CARA

NASA CARA Process

Responsibility

Products

JSpOC (VAFB)

NASA Robotic CARA Team (NASA GSFC)

Mission Operations Teams (Global)

- Interface with Space Surveillance Network
- Request Increase
 Tracking Data Collects

- •Perform CA Risk Analysis
- Quantify Collision RiskCompute Pc
- •Interface with JSpOC analysts to ensure data product delivery
- •Assist Mission Operations Teams with avoidance maneuver strategy
- Provide ephemeris
 (state & covariance)
 to NASA Robotic
 CARA Team for
 evaluation
- Weigh CA event risk against other mission risks

• Generate daily close approach predictions

- Provide state and state uncertainty information for primary and secondary objects
- Provide miss distance Summaries
- Provide object tracking information

- Conjunction event trending
- Qualitative assessment of orbit determination solutions
- Conjunction geometry examination
- Recommendations to Mission Operations Team
- Avoidance maneuver planning
- Maneuver execution

Problem Definition

A simulation that accounts for all the data items affecting the trajectory as the TCA nears is needed to improve event characterization

CA TCA Characterization Simulation

Modules:

Tracking simulation
Observation noise
Sensor detectability
Orbit determination
Pc calculation
Monte Carlo framework

Research Objective

To describe the implementation of the model used for the calibration of equipment-induced systematic biases found in dish radars.

Background: SSN

Dish Radars in the Space Surveillance Network (SSN)Table 1	
Sensor name	Year fielded
Haystack Radar	1963
Haystack Auxiliary Radar	1993
Millstone Hill Radar	1957
Advanced Research Projects Agency (ARPA) Lincoln C-Band Observables Radar (ALCOR)	1970
ARPA Long Range Tracking and Instrumentation Radar (ALTAIR)	1970
Target Resolution and Discrimination Experiment (TRADEX)	1963
Millimeter Wave (MMW) Radar	1983
Globus II	1999
Ascension radar	1971

Background (cont'd)

- In 1979, the MITRE Corporation performed an investigation on satellite-referenced calibration techniques.
- Derived an analytical model of the equipment-induced systematic biases in a generic tracking dish radar.

Methodology

Sensor Calibration

Error Model

Range Bias Correction, ΔR

$$\Delta R = C_{1} + C_{3}(R) + C_{4}(R) + C_{5}(R) + C_{7}(\sin(Az)\cos(El)) + C_{8}(\cos(Az)\cos(El)) + C_{9}(\sin(El))$$

 C_1 = Range bias [km]

C₃ = Range bias proportional to range [km/km]

 C_4 = Range timing error [km/(km/s)]

 C_5 = Range acceleration error [km/(km/s²)]

 C_7 = Site position error (east) [km]

C₈= Site position error (north) [km]

 C_9 = Site position error (up) [km]

Azimuth Bias Correction, ΔAz

$$\Delta Az = \left[\frac{C_{7}}{DTRA} \left(\frac{\cos(Az)}{(R)\cos(El)} \right) \right] + \left[\frac{C_{8}}{DTRA} \left(\frac{-\sin(Az)}{(R)\cos(El)} \right) \right] + C_{10} + C_{11}(Az) + C_{12} \left(\frac{P}{\cot(El)} \right) + C_{13} \left(\frac{P}{\cos(El)} \right) + C_{14} \left(\frac{P}{\cot(El)} \right) \left(\sin(Az) \right) \right) + C_{15} \left(-\tan(El) \left(\cos(Az) \right) \right) + C_{16} \left(Az \right) + C_{17} \left(\frac{P}{\cot(Az)} \right) + C_{18} \left(\frac{P}{$$

C₇ = Site position error (east) [km]

C₈ = Site position error (north) [km]

 C_{10} = Azimuth bias [deg]

 C_{11} = Azimuth acceleration error

 $[deg/(deg/s^2)]$

C₁₂ = Non-orthogonality between azimuth and elevation axes [deg]

C₁₃ = Non-orthogonality between RF and elevation axes [deg]

 C_{14} = Azimuth axis tilt toward north [deg]

C₁₅ = Azimuth axis tilt toward east [deg]

C₁₆ = Azimuth timing error [deg/(deg/s)]

 C_{17} = Azimuth encoder error (#1) [deg]

C₁₈ = Azimuth encoder error (#2) [deg]

C₂₅ = Azimuth hysteresis error [deg]

 C_{34} = Azimuth square wave error [deg]

Elevation Bias Correction, ΔEl

$$\Delta El = C_{19} - C_{7} \left(\frac{\sin(Az)\sin(El)}{R} \right) - C_{8} \left(\frac{\cos(Az)\sin(El)}{R} \right) + C_{9} \left(\frac{\cos(El)}{R} \right) + C_{14} \left(\cos(Az) \right) + C_{15} \left(\sin(Az) \right) + C_{21} \left(El \right) + C_{22} \left(El \right) + C_{23} \left(El + \cos(El) + \sin(El) + \sqrt{\cos(El)} \right) + C_{27} \left(S \right) \left(El \right) \right)$$

 C_{19} = Elevation bias [deg]

C₇ = Site position error (east) [km]

C₈ = Site position error (north) [km]

 C_9 = Site position error (up) [km]

C₁₄ = Azimuth axis tilt toward north [deg]

 C_{15} = Azimuth axis tilt toward east [deg]

 C_{21} = Elevation timing error [deg/(deg/s²)]

C₂₀ = Elevation acceleration error

 $[deg/(deg/s^2)]$

 C_{27} = Elevation hysteresis error [deg]

Regression Analysis

Akaike Information Criterion (AIC):

$$AIC = (N) \ln \left(\frac{SSres}{N} \right) + 2(K)$$

N = Number of data points

SSres = Sum-of-squares residual

K = Number of fitted coefficients plus one

Results

- ALTAIR L-band Calibration results will be discussed
 - Contained the largest amount of observations
- Original range, azimuth, and elevation residuals, biases, and corrected residuals were plotted against serial time.

Elevation Bias Coefficients vs. Time

Summary

- Analytical error model was implemented and regression analysis performed
 - Best-fit model of systematic biases was determined
- Best-fit model was used to remove systematic biases
- Validity of best-fit model and regression analysis was implied
- Model is fit for observation noise module

Future Work

- Similar sensor calibration technique to be used for phased-array radars and optical sensor systems
- Implement ionospheric and tropospheric error model(s)
- Include all models in observation noise module

Acknowledgements

- Lauri Newman
- Matthew Hejduk
- Mark Beckman
- Navigation and Mission Design Branch

Any Questions?

