Appendix 1

- WES library preparation

Library preparation, exome capture, sequencing and data analysis have been done by IntegraGen SA (Evry, France). Genomic DNA is captured using Twist Mouse Exome Panel, Twist Bioscience. For detailed explanations of the process, see Gnirke publication in Nature Methods [1]. Sequence capture, enrichment and elution are performed according to manufacturer's instruction and protocols (Twist Bioscience) without modification except for library preparation performed with NEBNext® Ultra II kit (New England Biolabs®). For library preparation 150 ng of each genomic DNA are fragmented by sonication and purified to yield fragments of 150-200 bp. Paired- end adaptor oligonucleotides from the NEB kit are ligated on repaired, a-tailed fragments then purified and enriched by 7 PCR cycles. 500ng of these purified Libraries are then hybridized to the Twist oligo probe capture library for 16 hr in a singleplex reaction. After hybridization, washing, and elution, the eluted fraction is PCR- amplified with 8 cycles, purified and quantified by QPCR to obtain sufficient DNA template for downstream applications. Each eluted-enriched DNA sample is then sequenced on an Illumina NovaSeq as Paired End 100 reads. Image analysis and base calling is performed using Illumina Real Time Analysis with default parameters. [1]: Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27, 182-189 (2009).

- RNA-seq library preparation

RNA sequencing: RNA-Seq libraries are performed with NEBNext® UltraTM II Directional RNA Library Prep Kit for Illumina according to supplier recommendations (NEB). The capture is then performed on cDNA libraries with the Twist Mouse Exome Enrichment System according to supplier recommendations (Twist Bioscience). First of all, an RNA quality control is performed on Fragment Analyzer (Agilent) with the RNA kit (DNF-489) to check the integrity Subdirección General de Evaluación y Fomento de la Investigación Health Research Project application form, page 14 2021 UNIÓN EUROPEA of the RNA profile and to assess the RNA concentration. The protocol permits to convert total RNA into a library of template molecules of known strand origin. Then a capture of the coding regions of the transcriptome is performed and the resulting library is suitable for subsequent cluster generation and sequencing. Briefly, the RNA is fragmented into small pieces using divalent cations under elevated temperature. cDNA is generated from the cleaved RNA fragments using random priming during first and second strand synthesis and sequencing adapters are ligated to the resulting double-stranded cDNA fragments and enriched by 12 PCR cycles. The coding regions of the transcriptome are then captured from this library using sequence- specific probes to create the final library. For that purpose, 190ng of each purified Libraries are hybridized to the Twist oligo probe capture library for 16 hours in a multiplex reaction. After hybridization, washing, and elution, the eluted fraction is PCR-amplified with 8 cycles, purified and quantified by QPCR to obtain sufficient DNA template for downstream applications. Each eluted enriched DNA sample is then sequenced on an Illumina NovaSeq as paired-end 100b reads. Image analysis and base calling are performed using the last version of Illumina Real Time Analysis with default parameters (V3.4.4). RNA sequencing will be performed at IntegraGen SA (Evry, France).

Exome NGS Workflow

Fig 1. Bioinformatics pipeline for WES processing. Exome NGS workflow including exome sequencing, mapping and variant detection, and variant prioritization.

Fig 2. Bioinformatics pipeline for RNAseq processing. RNA sequencing NGS workflow for processing sequences, including a quality control.

	Sample Name	% Aligned	M Aligned	% rRNA
		74.7%	66.7	-
1	RnD1-104_R1_val_1	72.4%	129.3	29.5%
2	RnD1-132_R1_val_1	81.8%	172.3	15.7%
3	RnD1-134_R1_val_1	72.3%	91.9	29.7%
4	RnD1-162_R1_val_1	81.4%	161.2	15.0%
5	RnD1-195_R1_val_1	74.9%	100.6	24.6%
6	RnD1-207_R1_val_1	75.2%	122.7	23.6%
7	RnD1-214_R1_val_1	72.9%	93.7	22.1%
8	RnD1-228_R1_val_1	73.3%	103.7	23.9%
9	RnD1-36_R1_val_1	76.7%	135.6	22.6%
10	RnD1-81_R1_val_1	71.5%	101.8	25.8%
11	RnD12-135_R1_val_1	81.7%	146.7	14.7%
12	RnD12-145_R1_val_1	84.4%	138.6	11.0%
13	RnD12-169_R1_val_1	83.6%	155.1	13.1%
14	RnD12-178_R1_val_1	79.2%	122.9	17.2%
15	RnD12-184_R1_val_1	82.3%	163.2	14.1%
16	RnD12-185-1_R1_val_1	77.2%	98.6	21.7%
17	RnD12-185-2_R1_val_1	71.1%	76.9	25.9%
18	RnD12-205_R1_val_1	82.2%	319.6	-
19	RnD12-212_R1_val_1	81.4%	146.3	14.5%
20	RnD12-229_R1_val_1	79.1%	100.4	20.8%
21	RnD12-231_R1_val_1	73.7%	84.2	25.6%
22	RnD12-24_R1_val_1	79.8%	140.0	16.7%
23	RnD12-49_R1_val_1	67.5%	130.5	29.4%
24	RnD12-51_R1_val_1	45.8%	49.0	68.3%
25	RnD3-11_R1_val_1	82.5%	130.1	15.0%
26	RnD3-168_R1_val_1	82.3%	190.3	-
27	RnD3-203_R1_val_1	62.4%	75.7	41.0%
28	RnD3-212_R1_val_1	78.5%	170.8	18.8%
29	RnD3-232_R1_val_1	79.7%	109.7	18.5%
30	RnD3-233_R1_val_1	80.2%	143.7	17.5%
31	RnD3-66_R1_val_1	60.2%	106.9	35.7%
32	RnD3-92_R1_val_1	81.3%	171.1	15.9%
33	RnD6-132_R1_val_1	80.5%	142.1	16.9%
34	RnD6-152_R1_val_1	71.1%	83.9	32.3%
35	RnD6-179 R1 val 1	75.5%	128.5	27.9%

36	RnD6-204_R1_val_1	83.5%	105.5	13.4%
37	RnPr109_R1_val_1	80.2%	124.9	16.0%
38	RnPr140_R1_val_1	80.3%	211.6	15.9%
39	RnPr146_R1_val_1	74.4%	189.0	22.7%
40	RnPr214_R1_val_1	79.9%	171.9	9.5%
	STARpass1	75.0%	67.0	-

Table 1. Quality control report. This table shows the mapping quality of the samples. %Aligned: % uniquely mapped reads. M aligned: uniquely mapped reads per million. % RNA: percentage of reads matched to a SortMeRNA database.

	Sample	Histology subtype	Group
1	RnD1.36	Squamous	D1
2	RnD1.81	Squamous	D1
3	RnD1.104	Adenocarcinoma	D1
4	RnD1.132	Adenocarcinoma	D1
5	RnD1.134	Squamous	D1
6	RnD1.162	Adenocarcinoma	D1
7	RnD1.195	Adenocarcinoma	D1
8	RnD1.207	Adenocarcinoma	D1
9	RnD1.214	Adenocarcinoma	D1
10	RnD1.228	Other	D1
11	RnD3.11	Other	D3
12	RnD3.66	Other	D3
13	RnD3.92	Adenocarcinoma	D3
14	RnD3.168	Adenocarcinoma	D3
15	RnD3.203	Adenocarcinoma	D3
16	RnD3.212	Adenocarcinoma	D3
17	RnD3.232	Adenocarcinoma	D3
18	RnD3.233	Adenocarcinoma	D3
19	RnD6.16	Other	D6
20	RnD6.132	Adenocarcinoma	D6

21	RnD6.152	Adenocarcinoma	D6
22	RnD6.179	Adenocarcinoma	D6
23	RnD6.204	Adenocarcinoma	D6
24	RnD12.24	Other	D12
25	RnD12.49	Squamous	D12
26	RnD12.135	Other	D12
27	RnD12.145	Adenocarcinoma	D12
28	RnD12.169	Other	D12
29	RnD12.178	Adenocarcinoma	D12
30	RnD12.184	Adenocarcinoma	D12
31	RnD12.185.1	Squamous	D12
32	RnD12.185.2	Adenocarcinoma	D12
33	RnD12.205	Other	D12
34	RnD12.212	Other	D12
35	RnD12.229	Adenocarcinoma	D12
36	RnD12.231	Adenocarcinoma	D12
37	RnPr109	Other	Pr
38	RnPr140	Adenocarcinoma	Pr
39	RnPr146	Adenocarcinoma	Pr
40	RnPr214	Adenocarcinoma	Pr

Table 2. Histology subtype and dose exposure of the overall cohort. The table contains information about the cancer types developed by each sample and which group they pertain. There are two samples from the same rat.

Fig 3. Types of variants. (a): Variant classifications. (b): varian types. (c): SNV classes of our cohort. (d): Variants per sample. (e): Variant classification summary. (f): Top 30 mutated genes.

Fig 4. Total gene fusions per exposure group. Number of gene fusions sorted by exposure group.

Fig 5. Mean gene fusions per exposure group. Mean distribution of gene fusions sorted by exposure group.

27.0	.y. <chr></chr>	group1	group2	n1	n2		p.signif		p.adj.signif
	Total_gene_fusions		D12	9	TO	0.012 <u>5</u>	*	0.125	ns
2	Total_gene_fusions	D1	D3	9	8	0.058	ns	0.58	ns
3	Total_gene_fusions	D12	D3	10	8	0.586	ns	1	ns
4	Total_gene_fusions	D1	D6	9	5	0.01	*	0.1	ns
5	Total_gene_fusions	D12	D6	10	5	0.572	ns	1	ns
6	Total_gene_fusions	D3	D6	8	5	0.322	ns	1	ns
7	Total_gene_fusions	D1	Pr	9	4	0.008 <u>48</u>	**	0.084 <u>8</u>	ns
8	Total_gene_fusions	D12	Pr	10	4	0.432	ns	1	ns
9	Total_gene_fusions	D3	Pr	8	4	0.241	ns	1	ns
10	Total_gene_fusions	D6	Pr	5	4	0.814	ns	1	ns

Table 3. Total gene fusions t-test. T-test comparing total gene fusions among exposure groups. Significant differences among groups are marked with *.

	.y.	group1	group2	n1	n2		р	p.signif	p.adj	p.adj.signif
200	<chr></chr>	<chr></chr>	<chr></chr>	<1nt>	<int></int>		<db7></db7>	<chr></chr>	<db7></db7>	<chr></chr>
1	Inter.Chromosomal	D1	D12	9	10	0.	247	ns	1	ns
2	Inter.Chromosomal	D1	D3	9	8	0.	514	ns	1	ns
3	Inter.Chromosomal	D12	D3	10	8	Ο.	078 <u>6</u>	ns	0.786	ns
4	Inter.Chromosomal	D1	D6	9	5	0.	977	ns	1	ns
5	Inter.Chromosomal	D12	D6	10	5	0.	316	ns	1	ns
6	Inter.Chromosomal	D3	D6	8	5	0.	597	ns	1	ns
7	Inter.Chromosomal	D1	Pr	9	4	0.	0212	*	0.212	ns
8	Inter.Chromosomal	D12	Pr	10	4	0.	131	ns	1	ns
9	Inter.Chromosomal	D3	Pr	8	4	0.	006 <u>69</u>	**	0.0669	ns
10	Inter.Chromosomal	D6	Pr	5	4	0.	0355	*	0.355	ns

Table 4. Inter chromosomal gene fusions t-test. T-test comparing inter chromosomal gene fusions among exposure groups. Significant differences among groups are marked with *.

	.у.	group1	group2	n1	n2		р	p.signif	p.adj	p.adj.signif
*	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<int></int>		<db7></db7>	<chr></chr>	<db7></db7>	<chr></chr>
1	Intra.Chromosomal	D1	D12	9	10	0.	005 <u>71</u>	**	0.057 <u>1</u>	ns
2	<pre>Intra.Chromosomal</pre>	D1	D3	9	8	0.	065 <u>4</u>	ns	0.654	ns
3	<pre>Intra.Chromosomal</pre>	D12	D3	10	8	0.	365	ns	1	ns
4	Intra.Chromosomal	D1	D6	9	5	0.	008 <u>02</u>	**	0.0802	ns
5	<pre>Intra.Chromosomal</pre>	D12	D6	10	5	0.	696	ns	1	ns
6	<pre>Intra.Chromosomal</pre>	D3	D6	8	5	0.	261	ns	1	ns
7	Intra.Chromosomal	D1	Pr	9	4	0.	002	**	0.02	*
8	Intra.Chromosomal	D12	Pr	10	4	0.	27	ns	1	ns
9	Intra.Chromosomal	D3	Pr	8	4	0.	082 <u>1</u>	ns	0.821	ns
10	<pre>Intra.Chromosomal</pre>	D6	Pr	5	4	0.	509	ns	1	ns

Table 5. Intra chromosomal gene fusions t-test. T-test comparing intra chromosomal gene fusions among exposure groups. Significant differences among groups are marked with *.

Fig 6. Immune cell proportions. Deconvolution showing the detailed proportions of immune cells. Cell proportions are estimated with cibesortx from expression data.

Fig 7. Radon TMB against TCGA cohorts. Tumor Mutational Burden distribution of our rat cohort (Radon-LAML) and 33 TCGA cancer cohorts. Red lines indicate the cohorts median TMB.

	.y.	group1	group2	n1	n2	р	p.signif	p.adj	p.adj.signif
ala M	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<db7></db7>	<chr></chr>	<db7></db7>	<chr></chr>
1	total_perMB	RnD1	RnD12	10	12	0.056 <u>7</u>	ns	0.567	ns
2	total_perMB	RnD1	RnD3	10	6	0.639	ns	1	ns
3	total_perMB	RnD12	RnD3	12	6	0.036 <u>6</u>	*	0.366	ns
4	total_perMB	RnD1	RnD6	10	4	0.639	ns	1	ns
5	total_perMB	RnD12	RnD6	12	4	0.059 <u>8</u>	ns	0.598	ns
6	total_perMB	RnD3	RnD6	6	4	0.957	ns	1	ns
7	total_perMB	RnD1	RnPr	10	4	0.491	ns	1	ns
8	total_perMB	RnD12	RnPr	12	4	0.036 <u>8</u>	*	0.368	ns
9	total_perMB	RnD3	RnPr	6	4	0.797	ns	1	ns
10	total_perMB	RnD6	RnPr	4	4	0.853	ns	1	ns

Table 6. Tumor mutational burden t-test. T-test comparing the TMB of all radon exposure groups in our cohort. Significant differences among groups are marked with *.