Révivsion pour l'exam de 233

Ibrahim EL KASSIMI

Ibrahim El Kassimi École Normale Supérieure Paris-Saclay ibrahim.el_kassimi@ens-paris-saclay.fr

Abstract

Ce document contient les remarques et les formules importantes prises lors de la révision pour l'examen de 233.

Contents

1.	EXAM 2018	. 2
	1.1. Puissances actives et réactives	. 2
	1.2. Circuit magnétique	. 2
	1.3. Machine électrique élemenatire	
	Conclusion	

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do.

1. EXAM 2018

1.1. Puissances actives et réactives

- 1. Puissance active
- $P = Re(\underline{V}.(I))$
- 1. Puissance réactive Q = Im(V.I*)
- 2. Hypothèses pour passer du triphasé au monophasé.
 - 1. Sys equilibré charges et tensions identiques.
 - 2. Tensions sinusoïdales et déphasées de 120°.
 - 3. Courant dans le neutre nul.
 - 4. Pas de couplage entre les phases.

1.2. Circuit magnétique

- 1. $B = \mu_0 \mu_r H$
- 2. Thé d'Ampère $\int_v \! \left(\vec{\mathbf{H}} \vec{\mathbf{dl}} \right) = \sum (\mathbf{I_enlac\acute{e}s})$
- 3. $\text{mu}_0 = 4\pi 10^{-7}$
- 4. $R = \frac{l}{\mu S}$
- 5. N $\varphi \stackrel{\cdot}{=} LI$ et N $I = \Re_{\rm tot} \varphi$ ($\Re_{\rm tot}$: la reluctrance totale du C.M)

donc
$$N^2I = \Re_{\text{tot}}\Phi$$

donc
$$N^2I=\mathfrak{R}_{\mathrm{tot}}\Phi$$
 d'ou $L=rac{\Phi}{I}=rac{N^2}{\mathfrak{R}_{\mathrm{tot}}}$

$$L = \frac{N^2}{\mathfrak{R}_{ ext{tot}}}$$

1.3. Machine électrique élemenatire

2. Conclusion