- 1. 已知 R^3 中,由 $\alpha_1 = (1,0,1,2)^T$, $\alpha_2 = (1,1,3,1)^T$, $\alpha_3 = (2,-1,a+1,5)^T$ 这三个向量生成的向量空间的维数为 2,求 a 的值。
- 2. 证 明 线 性 空 间 $R[x]_n = \{a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} \mid a_i \in R\}$ 是 n 维 的 , 并 求 $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1}$ 在基 $1, x a, (x a)^2, \dots, (x a)^{n-1}$ 下的坐标。
- 3. 在 R^3 中的线性变换 σ 将基 $\alpha_1 = (1,1,-1)^T$, $\alpha_2 = (0,2,-1)^T$, $\alpha_3 = (1,0,-1)^T$ 变为基 $\beta_1 = (1,-1,0)^T$, $\beta_2 = (0,1,-1)^T$, $\beta_3 = (0,3,-2)^T$
 - (1) 求 σ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的表示矩阵A;
 - (2) 求向量 $\xi = (1,2,3)^T \, \text{及} \, \sigma(\xi) \, \text{在基} \, \alpha_1, \alpha_2, \alpha_3 \, \text{下的坐标};$
 - (3) 求向量 $\xi = (1,2,3)^T$ 及 $\sigma(\xi)$ 在基 β_1,β_2,β_3 下的坐标;
- 4. 已知矩阵 $A = \begin{bmatrix} 3 & 0 & 0 \\ a & 3 & 0 \\ c & b & 2 \end{bmatrix}$
 - (1) 求 A 的所有可能的若当标准形;
 - (2) 给出A的可对角化的条件。
- 5. 设 n 维 复 线 性 空 间 V 的 组 基 是 $\alpha_1,\alpha_2,\cdots,\alpha_n$, 对 任 意 $\alpha,\beta\in V$, $\alpha=a_1\alpha_1+a_2\alpha_2+\cdots+a_n\alpha_n,\ \beta=b_1\alpha_1+b_2\alpha_2+\cdots+b_n\alpha_n,\ \text{对应实数}$

$$(\alpha, \beta) = \sum_{i=1}^{n} \sqrt{-1} a_i b_i$$

请问它是否为V的内积?若是请证明,若不是给出理由。

- 6. $\forall f(x), g(x) \in P[x]_3$,定义 $(f(x), g(x)) = \int_0^2 f(x)g(x)dx$,则 $P[x]_3$ 为欧氏空间,求内积在基 $1, x-1, (x-1)^2$ 下的矩阵。
- 7. 设矩阵 $A = \begin{bmatrix} 1 & 2i \\ 3+i & 4 \end{bmatrix}$,求 A 的 Frobenius 范数和 1 范数。