Covid19 Germany Deutschland (RKI data)

April 8, 2020

```
[1]: # This Python 3 environment comes with many helpful analytics libraries
     \rightarrow installed
     # It is defined by the kaggle/python docker image: https://github.com/kaggle/
     \rightarrow docker-python
     # For example, here's several helpful packages to load in
     import os
     import urllib
     import numpy as np # linear algebra
     import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
     import matplotlib as mpl
     import matplotlib.pyplot as plt
     import seaborn as sns
     # Input data files are available in the "../input/" directory.
     # For example, running this (by clicking run or pressing Shift+Enter) will list⊔
     →all files under the input directory
     # import os
     # for dirname, _, filenames in os.walk('/kaggle/input'):
           for filename in filenames:
               print(os.path.join(dirname, filename))
     # # Any results you write to the current directory are saved as output.
     sns.set()
     %matplotlib inline
     # This checks if the notebook is executed on Kaggle or on your local machine and
     # acts accordingly with filenames. On Kaggle the dataset is already managed by \Box
     \rightarrowa managed
     # and downloaded to (URLs are linked) a dataset there.
     try:
         os.environ['KAGGLE_DATA_PROXY_TOKEN']
     except KeyError:
         # daily infections in Germany
```

```
url_daily_corona = "https://opendata.arcgis.com/datasets/
 {\scriptstyle \hookrightarrow} dd4580c810204019a7b8eb3e0b329dd6\_0.csv"
    # infections per 100k residents in German states
    url_corona_bl_100k = "https://opendata.arcgis.com/datasets/
 →ef4b445a53c1406892257fe63129a8ea 0.csv"
    # infections per 100k residents in German provinces
    url_corona_provinces = "https://opendata.arcgis.com/datasets/
 \hookrightarrow 917fc37a709542548cc3be077a786c17_0.csv"
    fname1 = "./RKI_covid19_daily_de.csv"
    fname2 = "./RKI_covid19_states_100k.csv"
    fname3 = "./RKI_covid19_provinces_100k.csv"
    urllib.request.urlretrieve(url_daily_corona, fname1)
    urllib.request.urlretrieve(url_daily_corona, fname2)
    urllib.request.urlretrieve(url_daily_corona, fname3)
    fname4 = "./additional_data/covid19_events_measures.csv"
else:
    dirname = "/kaggle/input/covid19-data-germany-robert-koch-institute/"
    dirname_additional = "/kaggle/input/additional-covid19-data/additional_data/
    # daily infections in Germany
    fname1 = dirname + "dd4580c810204019a7b8eb3e0b329dd6_0.csv"
    # infections per 100k residents in German states
    fname2 = dirname + "ef4b445a53c1406892257fe63129a8ea_0.csv"
    # infections per 100k residents in German provinces
    fname3 = dirname + "917fc37a709542548cc3be077a786c17 0.csv"
    fname4 = dirname_additional + "covid19_events_measures.csv"
df_daily_data = pd.read_csv(fname1, parse_dates=["Meldedatum"],__
→date_parser=lambda ts: pd.Timestamp(ts).strftime('%Y-\%m-\%d'))
df_measures_events = pd.read_csv(fname4, parse_dates=["Date"])
df_daily_data.sort_values(['Meldedatum'], inplace=True)
df_measures_events.sort_values(['Date'], inplace=True)
```

[2]: df_daily_data

[2]:		IdBundesland	Buno	desland	1		La	andkreis	Alte	rsgruppe	\
	46228	9		Bayerr		LK	Landsberg			A15-A34	·
	51651	9		Bayerr			_	arnberg		A35-A59	
	47643	9		Bayerr		T.K	Fürstenfe	•		A15-A34	
	45743	9		Bayerr				München		A15-A34	
	37290	8	Baden-Württ	•				Mannheim		A15-A34	
			Daden ware	CIIDCI	5		DIT 1	idillilic illi		NIO NOI	
	23352	 6	•	 Hesser	1		LK Of	ffenbach	•••	A35-A59	
	23353	6		Hesser			LK Of	ffenbach		A35-A59	
	36261	8	Baden-Württ			L	K Schwäbis			A35-A59	
	60289	9		Bayerr	•		K Nürnberg			A35-A59	
	48888	9		•			chtesgader	-		A60-A79	
		_		J							
		Geschlecht A	nzahlFall Ar	nzahlTo	odesfa	11	ObjectId	Meldedat	um '	\	
	46228	M	1			0	936855	2020-01-	-28		
	51651	М	1			0	938278	2020-01-	-28		
	47643	М	1			0	936270	2020-01-	-29		
	45743	W	1			0	933370	2020-01-	-29		
	37290	W	1			0		2020-01-			
	•••	•••	•••	•••			•••				
	23352	М	1			0	912979	2020-04-	-06		
	23353	М	3			0		2020-04-			
	36261	W	1			0		2020-04-			
	60289	W	1			0		2020-04-			
	48888	W	1			0		2020-04-			
	10000	••	-			Ū	001010	2020 01			
		IdLandkreis	I	Datenst	tand l	Veu	erFall Ne	euerTodes	sfall	\	
	46228	9181	07.04.2020,	00:00	Uhr		0		-9		
	51651	9188	07.04.2020,				0		-9		
	47643	9179	07.04.2020,				0		-9		
	45743	9162	07.04.2020,				0		-9		
	37290	8222	07.04.2020,				0		-9		
			-								
	23352	6438	07.04.2020,				1		-9		
	23353		07.04.2020,				1		-9		
	36261		07.04.2020,				1		-9		
	60289		07.04.2020,				1		-9		
	48888	9172	07.04.2020,				1		- 9		
	1 0000	3112	07.04.2020,	00.00	OIII		-		J		
			Refdatum	NeuGe	enesen	Α-	nzahlGenes	sen			
	46228	2020-01-23T0			0			1			
	51651	2020-01-27T0			0			1			
	47643	2020-01-25T0			0			1			
					0			1			
	37290	2020 01 25100 2020-03-26T00			-9			0			
	01230	2020 00-20100	0.00.00.0002		- 3			J			
	 02250	2020_02 20 2 04		•••	0		•••	0			
	23352	2020-03-29T0	J.00:00.000Z		-9			0			

```
23353 2020-04-06T00:00:00.000Z -9 0
36261 2020-03-26T00:00:00.000Z -9 0
60289 2020-03-23T00:00:00.000Z 1 1 1
48888 2020-04-06T00:00:00.000Z -9 0
```

[72384 rows x 16 columns]

[3]: print("Measures taken and events/incidents concerning Covid19."
+ "These might show a connection to the falling or rising of the curves:")
df_measures_events

Measures taken and events/incidents concerning Covid19. These might show a connection to the falling or rising of the curves:

[3]: Date In_Short State \
0 2020-03-16 Schools, day care centers closed. Alle
1 2020-03-16 Entry bans and strict border controls. Alle
2 2020-03-20 Quarantine Bavaria, only vital locations open. Bayern
3 2020-03-22 Quarantine country-wide, only vital locations ... Alle

Description

- O Schools, day care centers closed.
- 1 Germany has decided on entry bans and strict c...
- 2 Only vital location, like supermarkets, doctor...
- 3 Only vital location, like supermarkets, doctor...
- [4]: print("Total sum of cases in Germany:")
 df_daily_data["AnzahlFall"].sum()

Total sum of cases in Germany:

[4]: 99164

[5]: print("Describe number of cases per day in Germany:")

df_daily_data.groupby("Meldedatum").sum()["AnzahlFall"].describe()

Describe number of cases per day in Germany:

[5]: count 56,000000 mean 1770.785714 std 2185.717870 min 1.000000 25% 8.250000 50% 460.000000 75% 3539.750000 max 6397.000000

Name: AnzahlFall, dtype: float64

```
[6]: # def annotationsForDate(df, date):
     #
     #
           Takes the measures of and a time index and returns all the short
     #
           measure descriptions as a string for the annotations below
     #
     #
           query = df_measures_events.query("Date == '{}'".format(date))
     #
     #
           for i in query.index:
               state = ""
     #
                if query["State"].iloc[i]:
     #
     #
                    state = query["State"].iloc[i] + ": "
     #
               s = query["In Short"].iloc[i]
                ann \neq s \neq ' \setminus n'
           return ann.rstrip()
```

```
[7]: gr_day_reported = df_daily_data.groupby('Meldedatum')
     # TODO: make these relative to screen size somehow
     figsize = (12,11)
     fig, ax = plt.subplots(2, 1, figsize=figsize, sharex=True,__

→gridspec_kw={'height_ratios': [5, 1]})
     fig.subplots_adjust(hspace=0.0)
     suptitel_attr = {"fontsize" : 16, "fontweight" : "bold", "ha" : "center", "va" :
     → "bottom", "y" : 0.94}
     # set plot stuff
     fig.suptitle("Sum of confirmed cases per day and growth rate thereof for ⊔
      →Germany. Below are points "
                  + "for political measures or events/incidents.", **suptitel_attr)
     for axis in ax.flat:
         axis.set xlabel('Date')
         rule = mpl.dates.rrulewrapper(mpl.dates.MONTHLY, bymonthday=(5, 10, 15,
      \rightarrow 20, 25)
         axis.xaxis.set_minor_locator(mpl.dates.RRuleLocator(rule))
         axis.xaxis.set_minor_formatter(mpl.dates.DateFormatter("%d"))
         axis.xaxis.set_major_locator(mpl.dates.MonthLocator(bymonthday=1))
         axis.xaxis.set_major_formatter(mpl.dates.DateFormatter('%Y-%m'))
     ax[1].yaxis.set_minor_locator(mpl.ticker.NullLocator())
     ax[1].yaxis.set_major_locator(mpl.ticker.NullLocator())
     sum_cases_per_day = gr_day_reported['AnzahlFall'].sum()
     growth rate = sum cases per day.diff()
     ax[0].plot(sum_cases_per_day, color='red', label='Sum')
     ax[0].plot(growth_rate, color='blue', label='Growth rate')
```

```
plt.setp(ax[0].xaxis.get_majorticklabels(), rotation=90)
plt.setp(ax[0].xaxis.get_minorticklabels(), rotation=45)

for d in df_measures_events["Date"].unique():
    #s = annotationsForDate(df_measures_events, d)
    #axs[1].annotate(s = "bla", xy=(d, sum_cases_per_day[d]), xytext=(-50,-10),
    *\times xycoords="data")
    pass

ax[1].scatter(df_measures_events["Date"].unique(),
    \times len(df_measures_events["Date"].unique()) * [100], c='k')

for axis in ax.flat:
    plt.setp(axis.xaxis.get_majorticklabels(), rotation=90)
    plt.setp(axis.xaxis.get_minorticklabels(), rotation=45)

ax[0].legend()
```

[7]: <matplotlib.legend.Legend at 0x7f8c82d53c90>

Sum of confirmed cases per day and growth rate thereof for Germany. Below are points for political measures or events/incidents.


```
[8]: g_ages = df_daily_data.groupby("Altersgruppe")
ages_cases = g_ages["AnzahlFall"].sum().reset_index()
```

[8]: Text(0.5, 1, 'Cases per day per age class')

Cases per day per age class

[9]: print("Total sum of cases per German state")
 df_daily_data.groupby(['Bundesland'])["AnzahlFall"].sum()

Total sum of cases per German state

[9]: Bundesland

Baden-Württemberg	20131			
Bayern	26157			
Berlin	3837			
Brandenburg	1384			
Bremen	395			
Hamburg	3059			
Hessen	4823			
Mecklenburg-Vorpommern	531			
Niedersachsen	6195			
Nordrhein-Westfalen	20213			
Rheinland-Pfalz	3992			
Saarland	1532			
Sachsen	2996			

Sachsen-Anhalt 987 Schleswig-Holstein 1724 Thüringen 1208 Name: AnzahlFall, dtype: int64

25%

```
[10]: print("Describe sum of daily cases per day per German state.")

df_daily_data.groupby(['Bundesland', "Meldedatum"])['AnzahlFall'].sum().

→unstack().T.fillna(0).describe().round(decimals=0)
```

Describe sum of daily cases per day per German state.

[10]:	Bundesland	Baden-W	ürttemberg	Bayern	Berl:	in Bı	randenburg	Bremen	Hamburg	١
	count		56.0	56.0	56	.0	56.0	56.0	56.0	
	mean		359.0	467.0	69	.0	25.0	7.0	55.0	
	std		449.0	635.0	85	.0	34.0	10.0	64.0	
	min		0.0	0.0	0	.0	0.0	0.0	0.0	
	25%		2.0	2.0	0	.0	0.0	0.0	0.0	
	50%		84.0	92.0	24	.0	6.0	2.0	14.0	
	75%		654.0	794.0	134	.0	44.0	11.0	128.0	
	max		1348.0	1920.0	281	.0	124.0	40.0	194.0	
	Bundesland	Hessen	Mecklenbu:	rg-Vorpon	mern	Niede	ersachsen	\		
	count	56.0			56.0		56.0			
	mean	86.0			9.0		111.0			
	std	107.0			14.0		139.0			
	min	0.0			0.0		0.0			
	25%	0.0			0.0		0.0			
	50%	18.0			2.0		26.0			
	75%	185.0			14.0		226.0			
	max	331.0			49.0		401.0			
	Bundesland	Nordrhe	in-Westfal	en Rheir	ıland-l	Pfalz	Saarland	Sachsen	\	
	count		56	.0		56.0	56.0	56.0		
	mean	36		0 71.0			27.0	54.0		
	std	d 41		.0 85.0			40.0	72.0		
	min		0	.0		0.0	0.0	0.0		
	25%		1	.0		0.0	0.0	0.0		
	50%		106	.0		12.0	4.0	7.0		
	75%		719	.0	:	143.0	42.0	116.0		
	max		1186	.0	2	268.0	175.0	235.0		
	Bundesland	Sachsen-	-Anhalt S	chleswig-	-Holst	ein T	Thüringen			
	count		56.0	J		6.0	56.0			
	mean		18.0		3:	1.0	22.0			
	std		24.0		39	9.0	29.0			
	min		0.0		(0.0	0.0			

0.0

0.0

0.0

```
    50%
    0.0
    5.0
    1.0

    75%
    36.0
    56.0
    38.0

    max
    78.0
    113.0
    83.0
```

```
[11]: # Get daily cases and growth rate per German state
      loc_unknown_col = "-nicht erhoben-"
      state_names = df_daily_data['Bundesland'].unique()
      # remove column name for unknown location of the case
      index = np.where(state_names == loc_unknown_col)
      state_names = np.delete(state_names, index)
      states_daily = df_daily_data.groupby(['Meldedatum',__
      → 'Bundesland'])['AnzahlFall'].sum()
      df_per_state_daily = pd.DataFrame()
      for state in state_names:
          df_per_state_daily[state] = states_daily.unstack()[state].fillna(0)
[12]: # TODO: make these relative to screen size somehow
      figsize = (19,16)
      ax label fontsize = 10.0
      legend_fontsize = 8.0
      major_tick_fontsize = 8.0
      minor_tick_fontsize = 7.0
      tick_monthdays = (10, 20)
[13]: # Plot sum of confirmed cases per day per German state
      fig, ax = plt.subplots(4, 4, sharey=True, figsize=figsize)
      fig.subplots_adjust(hspace = 0.4, wspace = 0.4)
      fig.suptitle("Sum of cases per day per German state", **suptitel_attr)
      for axis in ax.flat:
          rule = mpl.dates.rrulewrapper(mpl.dates.MONTHLY, bymonthday=tick_monthdays)
          axis.xaxis.set_minor_locator(mpl.dates.RRuleLocator(rule))
          axis.xaxis.set_minor_formatter(mpl.dates.DateFormatter("%d"))
          axis.xaxis.set_major_locator(mpl.dates.MonthLocator(bymonthday=1))
          axis.xaxis.set_major_formatter(mpl.dates.DateFormatter('%Y-%m'))
          for tick in axis.xaxis.get_major_ticks():
                  tick.label.set_fontsize(tick_fontsize)
```

plt row[0].set ylabel('Sum of cases per day', fontsize=ax label fontsize)

for plt row in ax:

for column plots in ax.T:

Sum of cases per day per German state


```
[14]: # Plot growth rate of daily confirmed cases per German state
      fig, ax = plt.subplots(4, 4, sharey=True, figsize=figsize)
      fig.subplots_adjust(hspace = 0.4, wspace = 0.4)
      fig.suptitle("Growth rate of cases per day per German state", **suptitel_attr)
      for axis in ax.flat:
          rule = mpl.dates.rrulewrapper(mpl.dates.MONTHLY, bymonthday=tick monthdays)
          axis.xaxis.set minor locator(mpl.dates.RRuleLocator(rule))
          axis.xaxis.set_minor_formatter(mpl.dates.DateFormatter("%d"))
          axis.xaxis.set_major_locator(mpl.dates.MonthLocator(bymonthday=1))
          axis.xaxis.set_major_formatter(mpl.dates.DateFormatter('%Y-%m'))
          for tick in axis.xaxis.get_major_ticks():
                  tick.label.set_fontsize(tick_fontsize)
      for plt_row in ax:
          plt_row[0].set_ylabel('Growth rate', fontsize=ax_label_fontsize)
      for column_plots in ax.T:
          column_plots[-1].set_xlabel('Date', fontsize=ax_label_fontsize)
      ix = 0
      for subp in ax.flat:
          state = state_names[ix]
          subp.plot(df_per_state_daily[state].diff(), color='blue', label = "{}".
       →format(state))
          subp.legend(fontsize=legend_fontsize, loc="upper left")
          plt.setp(subp.xaxis.get_majorticklabels(), rotation=90)
          plt.setp(subp.xaxis.get_minorticklabels(), rotation=45)
          for tick in subp.xaxis.get_major_ticks():
                  tick.label.set_fontsize(major_tick_fontsize)
          for tick in subp.xaxis.get_minor_ticks():
                  tick.label.set_fontsize(minor_tick_fontsize)
          ix += 1
```

Growth rate of cases per day per German state

