Christoffer Mølck

Eks nr: 187952 Std nr: 202009347

#### Opgave 1

I en glasproduktion inspiceres de færdige glas for fejl. Ved inspektionen findes der erfaringsmæssigt 6.2 glas med fejl pr. time.

a. Hvilken sandsynlighedsfordeling er hensigtsmæssig at anvende til beskrivelse af antal glas med fejl pr. time?

Opskriv det generelle udtryk for denne fordelings sandsynlighedsfunktion (tæthedsfunktion).

Da vi har et gøre med nået pr tid eller pr enhed ville det være en god ide at pro poissons fordeling.

$$p(y) = \frac{\lambda^y}{y!} e^{-\lambda}$$

## b. Bestem fordelingens middelværdi, varians og standardafvigelse.

u = 6.2 %Middelværdig også ligmed lamda

u = 6.2000

varians = u

varians = 6.2000

stdafvigelse = sqrt(varians)

stdafvigelse = 2.4900

# c. Bestem sandsynligheden for netop 4 glas med fejl.

lambda = 6.2

lambda = 6.2000

poisspdf(4, lambda) %den ikke komuleret chance

ans = 0.1249

# d. Bestem sandsynligheden for mindst 5 glas med fejl.

1 - poisscdf(4, lambda) %chancen må være 1 - den samlet sandsynlighed for 1 - 4.

ans = 0.7408

% det ville sige alt over 5 uden grænse ville være % inkluderet i den chance. Den burde være høj da der generelt % produceres 6.2 fejl i timen. %det passer meget godt.

### e. Bestem sandsynligheden for mindst 5 og højst 9 glas med fejl.

%Nu skal vi egentlig gøre det samme men fratrække det overstøe så vi ikke %får uendelig høj.

(1 - poisscdf(4, lambda)) - (1 - poisscdf(10, lambda))

ans = 0.6894

%jeg tænker poisscdf(10) da 9 skal inkluderes.

# f. Bestem sandsynligheden for netop 10 glas med fejl i et tilfældigt valgt interval på 2 timer.

jeg tænker at vis det er over 2 timer så må mængden af fejl være fordoblet, så lamda = 12.4 fejl.

```
lambda_2t = 6.2 * 2
```

```
poisspdf(10, lambda_2t) %NETTOP 10 fejl, så chancen for at få lige precis den mængde fejl er ikke så stor.
```

ans = 0.0975

a. Beregn sandsynlighederne for følgende:

Propelbladet er intakt, P(In)

Propelbladet er defekt, P(D)

Propelbladet er fremstillet på maskine A, P(A)

Propelbladet er fremstillet på maskine B, P(B)

Propelbladet er fremstillet på maskine C, P(C)

```
Totalt = 50 + 45 + 45 %Total mængde produceret på alle maskiner
Totalt = 140
In_tot = 39 + 41 + 36 %Mængde produceret som er OK på alle maskiner
In_tot = 116
D_tot = 11 + 4 + 9 %Mængde produceret som er er defejte på alle maskiner
D_tot = 24
P_in = In_tot/Totalt %Chance for at delen er OK
P in = 0.8286
P D = D tot/Totalt %Chance for delen er defekt
PD = 0.1714
%Eller
P_D = 1 - P_in %Chance for delen er defekt
PD = 0.1714
P_A = 50 / Totalt %Mængden produceret på maskine A
P A = 0.3571
P_B = 45 / Totalt %Mængden produceret på maskine B
P B = 0.3214
P_C = 45 / Totalt %Mængden produceret på maskine C
P C = 0.3214
P_A + P_B + P_C %Skal give 1, sanity check
ans = 1
```

Antag, at der er uafhængighed mellem kvaliteten af de fremstillede propelblade, og hvilken maskine propelbladene er fremstillet på.

 Udfyld nedenstående tabel med forventede antal propelblade pr. døgn. Nødvendige mellemregninger skal fremgå.

### Tabel over forventede antal propelblade pr. døgn:

Vis det er over samme tid, så ændre total mængden sig vel ikke? Vis der er uafhængighed imellem kvaliteten og hvilke maskine det bliver produceret på så må det betyde at det er tilfældigt hvor de defekkte propeller bliver produceret og hvor de gode bliver produceret.

|     | А       | В       | С       | Alt                |
|-----|---------|---------|---------|--------------------|
| In  | = 116/3 | = 116/3 | = 116/3 | 116                |
| D   | = 24/3  | = 24/3  | = 24/3  | 24                 |
| Tot | 50      | 45      | 45      | 50 + 45 + 45 = 140 |
|     |         |         |         |                    |

Det skal nu undersøges ved hjælp af en hypotesetest om kvaliteten af de fremstillede propelblade er uafhængig af hvilken maskine propelbladene er fremstillet på. Ved hypotesetesten anvendes et signifikansniveau på 10%.

Opstil nulhypotese og alternativ hypotese for hypotesetesten.

Der skal undersøges om 2 variabler er uafhængige så en chi i anden test bruges.

Til denne opsættes hypostesen:

H0 = Kvaliteten af det produceret propelblad er afhængig af maskinen

Ha = Kavliteten af det produceret propelblad er IKKE afhængig af maskinen

d. Opstil en formel for teststørrelsen (teststatistikken), og angiv hvilken fordeling den følger.

```
\label{eq:displayFormula} \begin{split} \text{displayFormula("chi_0^2 = (Sigma_i)^k*(Sigma_j)^k*((O_ij - E_ij)^2/E_ij)")} \\ \chi_0^2 = \Sigma_i^k \Sigma_j^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \end{split}
```

Da det det er antal fejl over en vis mængde tid, er det formentlig en poission fordeling.

- e. Bestem den kritiske værdi og angiv det kritiske område for testen, når der vælges et signifikansniveau på 10%.
- f. Beregn teststørrelses (teststatistikkens) værdi. Mellemregninger skal fremgå.

```
forv = KontingensTabel(Tabl) %Først lave en kontigens tabel til testen.
```

```
Data navn In | D

"Maskine A" 41.429 8.5714

"Maskine B" 37.286 7.7143

"Maskine C" 37.286 7.7143

forv = 3×2

41.4286 8.5714

37.2857 7.7143

37.2857 7.7143

Tabl = [[39, 11] : [41, 41:[36, 9]]'
```

```
Tabl = [[39, 11] ;[41, 4];[36, 9]]'

Tabl = 2×3
```

7.7143 7.7143

36

39 41

8.5714

"%90"

```
forv = [forv(1,:); forv(2,:); forv(3,:)]'

forv = 2×3

41.4286 37.2857 37.2857
```

```
chi2normal_Test_8_uafh(Tabl, forv, 10)
```

2.9888

```
Formel for teststørrelsen \chi_0^2 = \Sigma_i^k \Sigma_j^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}} Antal frihedsgrader \mathrm{dfs} = (r-1) \; (c-1) Kritiske grænse - MATLAB kommando \chi_\alpha^2 = \mathrm{chi} 2\mathrm{inv} \; \alpha \; \mathrm{dfs} Signifikansniveau Frihedsgrader Kritisk grænse Teststørrelse
```

2

0.21072



### g. Konkluder på hypotesetesten.

Det kan hurtigt se at testørelsen > kritiske grænse. Derfor må vi forkaste H0 og sige at Ha er sand, det ville sige at kavliteten af det produceret propelblad er IKKE afhængig af maskinen og derfor godt kan producere på alle maskiner lige meget uden at være bekymret for at nogle af dem laver flere fejl en andre.

### h. Bestem p-værdien.

```
p = 1 - chi2cdf(2.988, 2)
p = 0.2245
data = importdata("Christoffer\StatEksamen\Data_M4STI1_2023F.xlsx", "H:I")
data = struct with fields:
       data: [14×7 double]
    textdata: {4×9 cell}
data = data.data(:,6:7);
data = 14 \times 2
        0
            22.7000
    5.0000 165.5000
   10.0000 236.5000
   10.0000 214.3000
   15.0000 255.6000
   20.0000 226.1000
   20.0000 255.0000
   25.0000
           249.7000
   25.0000 233.6000
   30.0000 254.8000
data_x = data(:,1);
data_y = data(:,2); %Nået data import sjov.
```

a. Lav en lineær regression med y som funktion af x og skriv regressionsligningen op.

```
%Jeg laver lige et scatter plot først får at få overblik over data
figure(1)
scatter(data_x, data_y)
lsline
```



```
%Ja det gør det jo ret tydligt at linær nok ikke ligefrem er den beste
%model til denne data.
mdl = fitlm(data_x, data_y)
```

```
mdl = Linear regression model: y \sim 1 + x1
```

(Intercept) 46.73 49.296 0.94795 0.36186 x1 10.851 1.9283 5.6275 0.00011118

Number of observations: 14, Error degrees of freedom: 12 Root Mean Squared Error: 92.2 R-squared: 0.725, Adjusted R-Squared: 0.702

syms x

```
y(x) = 46.73 + 10.851 * x %ville være ligningen
```

 $y(x) = \frac{10851 \, x}{1000} + \frac{4673}{100}$ 

**b.** Vurder ud fra regressionsanalysens statistikker (f.eks.  $R^2$ , F og p-værdier), om modellen beskriver observationerne godt.

Ud fra r^2 adjusted kan vi se at den ligger på en 0.7 hvilket ikke er fantastisk og betyder at vores model nok ikke passer særlig godt til dataen.

c. Lav et plot, der viser data og regressionsligningen. Diskutér sammenhængen mellem regressor- og responsvariablen.

```
fplot(y(x))
hold on
scatter(data_x, data_y)
hold off
```



plottet er heldigvis identisk med sanity plottet jeg lavet først i ogave a. Det burde den da også helst være men godt nok lige at tjække at alt stemmer overens

Sammenhængende imellem regressor og responsvariabel ses som at være positiv da vi ser en positiv trænd i både fit linjen men også i scatter dataen.

### **d.** Lav en polynomiel regression, der udtrykker y som et tredjegradspolynomium af x:

$$y = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

hvor  $b_0$ ,  $b_1$ ,  $b_2$  og  $b_3$  er konstanter. Skriv regressionsligningen op.

```
polyfit = fitlm(data_x, data_y, 'y ~ x1 + x1^2 + x1^3')
```

polyfit =

Linear regression model:

 $y \sim 1 + x1 + x1^2 + x1^3$ 

Estimated Coefficients:

|             | ESTIMATE | SE        | τετατ   | pvaiue     |
|-------------|----------|-----------|---------|------------|
|             |          |           |         |            |
| (Intercept) | 27.325   | 14.127    | 1.9343  | 0.081848   |
| x1          | 35.085   | 2.6749    | 13.116  | 1.2604e-07 |
| x1^2        | -1.8455  | 0.13924   | -13.254 | 1.141e-07  |
| x1^3        | 0.031651 | 0.0020149 | 15.708  | 2.2424e-08 |
|             |          |           |         |            |

Number of observations: 14, Error degrees of freedom: 10 Root Mean Squared Error: 15 7  $\,$ 

plot(polyfit)



```
scatter(data_x, data_y)
y(x) = 27.325 + 35.085 * x + -1.8455 * x^2 + 0.031651 * x^3;
hold on
fplot(y(x))
hold off %Sanity check, det passer ganske fint
```



$$y(x) = 27.325 + 35.085 * x + -1.8455 * x^2 + 0.031651 * x^3 % ville være vores polynomie$$

$$\begin{array}{l} y(x) = \\ \frac{2280694908894457 \, x^3}{72057594037927936} - \frac{3691 \, x^2}{2000} + \frac{7017 \, x}{200} + \frac{1093}{40} \end{array}$$

e. Er den polynomielle regressionsmodel bedre end den lineære model? Begrund dit svar.

Ja markant bedre. R^2 korrigeret er helt oppe på 0.991 hvilket er en rigtig godt passende model.

**f.** Lav et residualplot, der viser studentiserede residualer mod  $\hat{y}$ . Diskutér resultatet.

```
ris = STAT.Residual(polyfit, [data_x, data_y])
```



Jammen det ser sådan set ganske findt ud. Risidualerne ligger tilfældigt hvilket er som ønsket og viser at poly modellen passer godt med dataen. Der er ingen trends.

g. Undersøg om der er unormale observationer i datasættet og angiv eventuelle unormale observationer med deres type (outliers, løftestangs-punkter eller indflydelsespunkter).

ris.data

| ans : | = 14×9 table |          |        |         |         |         |          |          |          |
|-------|--------------|----------|--------|---------|---------|---------|----------|----------|----------|
|       | х            | У        | lev    | rst     | levrage | outlier | yhat     | yci      |          |
| 1     | 0            | 22.7000  | 0.8091 | -0.6545 | 1       | 0       | 27.3255  | -4.1508  | 58.8018  |
| 2     | 5            | 165.5000 | 0.2511 | 0.3464  | 0       | 0       | 160.5699 | 143.0333 | 178.1066 |
| 3     | 10           | 236.5000 | 0.2247 | 0.7966  | 0       | 0       | 225.2771 | 208.6878 | 241.8665 |
| 4     | 10           | 214.3000 | 0.2247 | -0.7780 | 0       | 0       | 225.2771 | 208.6878 | 241.8665 |
| 5     | 15           | 255.6000 | 0.2019 | 0.7245  | 0       | 0       | 245.1850 | 229.4604 | 260.9096 |
| 6     | 20           | 226.1000 | 0.1479 | -1.2750 | 0       | 0       | 244.0314 | 230.5720 | 257.4908 |
| 7     | 20           | 255      | 0.1479 | 0.7393  | 0       | 0       | 244.0314 | 230.5720 | 257.4908 |
| 8     | 25           | 249.7000 | 0.1445 | 0.2719  | 0       | 0       | 245.5543 | 232.2530 | 258.8556 |
| 9     | 25           | 233.6000 | 0.1445 | -0.8086 | 0       | 0       | 245.5543 | 232.2530 | 258.8556 |
| 10    | 30           | 254.8000 | 0.1981 | -1.3895 | 0       | 0       | 273.4916 | 257.9169 | 289.0663 |
| 11    | 30           | 288.6000 | 0.1981 | 1.0836  | 0       | 0       | 273.4916 | 257.9169 | 289.0663 |
| 12    | 35           | 345.9000 | 0.2337 | -0.3954 | 0       | 0       | 351.5812 | 334.6644 | 368.4979 |
| 13    | 40           | 529.7000 | 0.2734 | 2.3548  | 0       | 0       | 503.5609 | 485.2644 | 521.8573 |

|    | х  | у        | lev    | rst     | levrage | outlier | yhat     | у        | ci       |   |
|----|----|----------|--------|---------|---------|---------|----------|----------|----------|---|
| 14 | 45 | 740.1000 | 0.8002 | -2.1851 | 1       | 0       | 753.1686 | 721.8651 | 784.4721 |   |
| 4  |    |          |        |         |         |         |          |          |          | • |

ris.data.levrage(1)

ans = 1

ris.data.levrage(14)

ans = 1

Det ses at vi har 2 løftestangs punkter (levrage) ved x = 0 og x = 45. Ud fra risidual plottet virker de ikke til at være gale nok til at være til bekymring og kan ignoreres uden problemer. Nok grundet af de ligger ved polynomiets kraftigste hældning som får y værdigen til at ændre sig kraftigt på meget få x.

**h.** Beregn den forventede værdi af y, når x = 27. Beregn et interval for værdier af y, hvor 95 % af målinger med x = 27 må forventes at ligge indenfor.

```
vpa(y(27), 5)
ans = 252.24
coefCI(polyfit, 0.05)
ans = 4 \times 2
   -4.1508 58.8018
   29.1250 41.0453
    -2.1557 -1.5353
    0.0272 0.0361
y_h(x) = 58.8018 + 41.0453 * x + -1.5353 * x^2 + 0.0361 * x^3
y_h(x) =
\frac{361 \, x^3}{10000} - \frac{15353 \, x^2}{10000} + \frac{180519138462217 \, x}{4398046511104} + \frac{4137808821386163}{70368744177664}
y_1(x) = -4.1508 + 29.1250 * x + -2.1557 * x^2 + 0.0272 * x^3
y_1(x) =
\frac{17 x^3}{625} - \frac{21557 x^2}{10000} + \frac{233 x}{8} - \frac{10377}{2500}
vpa(y_h(27), 5) - vpa(y(27), 5)
ans = 506.11036700004478916525840759277
vpa(y(27), 5) - vpa(y_1(27), 5)
ans = 506.14063299997360445559024810791
%Det ville sige at 252.42 +- 506.1 cirka. hvilket ikke lyder helt
%rigtigt...
```

Beskriv på tilsvarende måde det blå område for hver af nedenstående tre Venn diagrammer med et eller flere af følgende fem udtryk:



2)  $(A \cap C) \cap B^c$ 



1)  $A \cap C$ 



4)  $(A \cap C \cap B^c) \cup (B \cap C \cap A^c)$