Quantum Computing Midterm Exam

Instructions

•	Answer	all	questions.
---	--------	-----	------------

- \bullet Total marks: 60
- \bullet Clearly present your answers.
- You have 60 minutes to complete the exam.

Questions

1.	Consider the following quantum circuit. If the input to the circuit is 011⟩,
	determine its output. Please show your calculations at each stage of the
	circuit. [10 Marks]

2. Construct a \mathbf{single} unitary matrix representing the entire quantum circuit. [10 Marks]

3. Create the reverse quantum circuit and also its unitary matrix. [5 Marks]

4. Demonstrate that the following qubits are not entangled by expressing individual qubits separately. Please clearly display their amplitudes. [5 Marks]

5. Design a quantum circuit for superdense coding when Alice and Bob share an entangled qubit B_{11} . [5 Marks]

6. Prove that the columns of the unitary matrix form an orthogonal basis. [5 Marks]

7. You are given a classical function $f:\{0,1\}^n \to \{0,1\}$. The function returns true when The quantum representation of this function is $|x\rangle |y\rangle B_f = |x\rangle |y\oplus f(x)\rangle$. Determine the output of the following quantum circuit. [5 Marks]

8. Answer the following 15 multiple-choice questions and fill in the blanks. To answer these questions, you must have a deep understanding of quantum computing concepts. [15 Marks]