From Fields to Trees

Firas Hamze, Nando De Freitas UAI 2004

Presented by: samy

February 20, 2014

Papers

From Fields to Trees Firas, Hamze 2004

Covariance Structure of the Gibbs Sampler \dots Liu, Wong, Kong 1994

Markov Chain Strategies in Scientific Computing Jun Liu, 2001

The Problem

Given: Graphical Model with known Parameters.

Goal: Estimate $\mathbb{E}[h(X)]$

E.g.: $\mathbb{1}_A(x)$, $\sum_i X_i$

Generate Samples: $X^{(1)}, X^{(2)}, \dots X^{(N)}$

Empirical Estimator

$$\mu_0 = \frac{1}{N} \sum_{i=1}^{N} h(X^{(i)})$$

Gibbs Sampling

Current Sample: $X^{(t)}$

$$X_1^{(t+1)}\mid X_{2,3,4,5,6}^{(t)}$$

$$X_2^{(t+1)} \mid X_1^{(t+1)}, X_{3,4,5,6}^{(t)}$$

. .

$$X_6^{(t+1)} \mid X_{1,2,3,4,5}^{(t+1)}$$

Next Sample: $X^{(t+1)}$

 $X^{(1)} \to X^{(2)} \to \dots$ is a Markov Chain with eqlb^m distribution P.

Blocked Gibbs Sampling

Current Sample: $X^{(t)}$

$$X_{1,3}^{(t+1)}\mid X_{2,4,5,6}^{(t)}$$

$$X_{2,4,5}^{(t+1)}\mid X_{1,3}^{(t+1)},X_{6}^{(t)}$$

$$X_6^{(t+1)} \mid X_{1,2,3,4,5}^{(t+1)}$$

Next Sample: $X^{(t+1)}$

 $X^{(1)} \to X^{(2)} \to \dots$ is a Markov Chain with eqlb^m distribution P.

Blocked Gibbs Sampling

Why Blocked Gibbs?

Sampling from conditional distribution is difficult.

BUT, Chain mixes faster \implies better samples.

How to Block (Partition) the Variables?

Outline

- Digression
 - MCMC Theory
 - Rao-Blackwellisation
- 2 Primary Idea
 - Tree Partitions
- 3 Hamze & Freitas, 2004
- My 701 Course Project

MCMC Theory (Jun Liu, 2001)

$$X^{(1)} \to X^{(2)} \to \cdots \to X^{(t)} \to X^{(t+1)} \to \cdots$$

 $\pi \leftarrow \text{Equilibrium Distribution}$

MCMC Theory (Jun Liu, 2001)

$$X^{(1)} \to X^{(2)} \to \cdots \to X^{(t)} \to X^{(t+1)} \to \cdots$$

 $\pi \leftarrow \text{Equilibrium Distribution}$

$$L_0(\pi) = \{h : \Omega \to \mathbb{R} : \mathbb{E}_{\pi} h(X) = 0, \mathbb{V}_{\pi} h(X) < \infty \}$$

 $\langle h, g \rangle = \mathsf{Covar}_{\pi} (h(X), g(X))$
 $(L_0(\pi), \langle \cdot, \cdot \rangle)$ is a Hilbert Space.

MCMC Theory (Jun Liu, 2001)

$$X^{(1)} \to X^{(2)} \to \cdots \to X^{(t)} \to X^{(t+1)} \to \cdots$$

 $\pi \leftarrow \text{Equilibrium Distribution}$

$$L_0(\pi) = \{h : \Omega \to \mathbb{R} : \mathbb{E}_{\pi} h(X) = 0, \mathbb{V}_{\pi} h(X) < \infty \}$$

 $\langle h, g \rangle = \mathsf{Covar}_{\pi} (h(X), g(X))$
 $(L_0(\pi), \langle \cdot, \cdot \rangle)$ is a Hilbert Space.

$$\|h\|^2 = \langle h, h \rangle = \mathsf{Covar}_{\pi}(h(X), h(X)) = \mathbb{V}_{\pi}(h(X))$$

Define
$$F: L(\pi) \to L(\pi)$$
, $[Fh](z) = \mathbb{E}[h(X^{(1)})|X^{(0)} = z]$

Define
$$F: L(\pi) \to L(\pi)$$
, $[Fh](z) = \mathbb{E}[h(X^{(1)})|X^{(0)} = z]$

Norm of operator: $||F|| = \sup_{\|h\| \le 1} ||Fh||$.

Define
$$F: L(\pi) \to L(\pi)$$
, $[Fh](z) = \mathbb{E}[h(X^{(1)})|X^{(0)} = z]$

Norm of operator: $||F|| = \sup_{\|h\| \le 1} ||Fh||$.

$$||Fh||^{2} = \mathbb{V}_{X^{(0)} \sim \pi}(\mathbb{E}[t(X^{(1)})|X^{(0)}])$$

$$\leq \mathbb{V}_{X^{(0)} \sim \pi}(h(X^{(1)})) = \mathbb{V}_{X^{(1)} \sim \pi}(h(X^{(1)})) = ||h||^{2}$$

Hence, $||F|| \leq 1$.

Define
$$F: L(\pi) \to L(\pi)$$
, $[Fh](z) = \mathbb{E}[h(X^{(1)})|X^{(0)} = z]$

Norm of operator: $||F|| = \sup_{\|h\| \le 1} ||Fh||$.

$$\|Fh\|^2 = \mathbb{V}_{X^{(0)} \sim \pi}(\mathbb{E}[t(X^{(1)})|X^{(0)}])$$

 $\leq \mathbb{V}_{X^{(0)} \sim \pi}(h(X^{(1)})) = \mathbb{V}_{X^{(1)} \sim \pi}(h(X^{(1)})) = \|h\|^2$

Hence, $||F|| \leq 1$.

If MC is reversible, F is self-adjoint $\implies ||F^n|| = ||F||^n$.

Convergence of a MC

Rate of Convergence: ||F||

Theorem: Let $X^{(0)} \sim P^{(0)}$. $P^{(n)}, \mathbb{E}^{(n)}$: n^{th} step evolution.

$$|\mathbb{E}^{(n)}h(X)-\mathbb{E}_{\pi}h(X)|\leq C\|F\|^n\|h\|.$$

Convergence of a MC

Rate of Convergence: ||F||

Theorem: Let $X^{(0)} \sim P^{(0)}$. $P^{(n)}, \mathbb{E}^{(n)}$: n^{th} step evolution.

$$|\mathbb{E}^{(n)}h(X)-\mathbb{E}_{\pi}h(X)|\leq C\|F\|^n\|h\|.$$

$$||F|| = \sup_{f,g} Corr(f(X^{(t+1)}), g(X^{(t)}))$$

Convergence of a MC

Rate of Convergence: ||F||

Theorem: Let $X^{(0)} \sim P^{(0)}$. $P^{(n)}, \mathbb{E}^{(n)}$: n^{th} step evolution.

$$|\mathbb{E}^{(n)}h(X)-\mathbb{E}_{\pi}h(X)|\leq C\|F\|^n\|h\|.$$

$$||F|| = \sup_{f,g} \operatorname{Corr}(f(X^{(t+1)}), g(X^{(t)}))$$

Finite State space: $\|F\| \equiv 2^{nd}$ eigval of Transition Matrix.

Rao-Blackwellisation

$$(X, Y) \sim P$$
. Samples: $\{(X^{(1)}, Y^{(1)}), (X^{(2)}, Y^{(2)}), \dots (X^{(N)}, Y^{(N)})\}$

Goal: Estimate $\mathbb{E}_P[h(X)]$

Empirical Estimator
$$\mu_0 = \frac{1}{N} \sum_{i=1}^{N} h(X^{(i)})$$

Rao-Blackwellised Estimator
$$\mu_{rb} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[h(X)|Y^{(i)}\right]$$

Rao-Blackwellisation

```
(X, Y) \sim P. Samples: \{(X^{(1)}, Y^{(1)}), (X^{(2)}, Y^{(2)}), \dots (X^{(N)}, Y^{(N)})\}
```

Independent samples: RB Estimator is better.

Rao-Blackwellisation

$$(X, Y) \sim P$$
. Samples: $\{(X^{(1)}, Y^{(1)}), (X^{(2)}, Y^{(2)}), \dots (X^{(N)}, Y^{(N)})\}$

Independent samples: RB Estimator is better.

2-Stage Gibbs: RB Estimator is better (LKW 1994).

$$\mathbb{V}(\mu_0) - \mathbb{V}(\mu_{rb}) \leq \frac{\mathbb{V}(h(X))}{n^2} \left(n(1 - \|F\|) + 2(n-1)(\|F\| - \|F\|^2) \right) \\ \dots + (\|F\|^{n-1} - \|F\|^n) \right)$$

Outline

- Digression
 - MCMC Theory
 - Rao-Blackwellisation
- 2 Primary Idea
 - Tree Partitions
- 3 Hamze & Freitas, 2004
- 4 My 701 Course Project

Primary Idea

Correlated Partitions \Longrightarrow Successive Samples Correlated \Longrightarrow Large $\|F\|$

Primary Idea

Correlated Partitions \Longrightarrow Successive Samples Correlated \Longrightarrow Large $\|F\|$

Blocked Gibbs : ||F|| is determined by the partitions.

Partition the Graph so that ||F|| is small!

Primary Idea

Correlated Partitions \Longrightarrow Successive Samples Correlated \Longrightarrow Large $\|F\|$

Blocked Gibbs : ||F|| is determined by the partitions.

Partition the Graph so that ||F|| is small!

Is this the best strategy?

Tree Partitions

Lets focus on Tree Partitions.

Computing conditional distribution on trees is easy.

Tree Partitions

Lets focus on Tree Partitions.

Computing conditional distribution on trees is easy.

Best Tree Partition? Not easy.

Outline

- Digression
 - MCMC Theory
 - Rao-Blackwellisation
- Primary Idea
 - Tree Partitions
- 3 Hamze & Freitas, 2004
- 4 My 701 Course Project

Grid Graph

Checkerboard

Two-Trees

Results

H/deF use a a Rao-Blackwellised Estimator.

Outline

- Digression
 - MCMC Theory
 - Rao-Blackwellisation
- Primary Idea
 - Tree Partitions
- 3 Hamze & Freitas, 2004
- My 701 Course Project

My 701 Course Project

Incorporate Correlations via Weights.

My 701 Course Project

Incorporate Correlations via Weights.

Partitioning into K trees is NP-Hard \odot (credit: Elara W)