Arduino Interfacing

INTRODUCTION TO ARDUINO

Arduino

- Arduino is an open-source electronics platform based on easy-to-use hardware and software.
- Arduino boards are able to read inputs (ex. light on a sensor, a finger on a button, or a Twitter message -)
- Turn it into an output (ex. activating a motor, turning on an LED, publishing something online)
- You can tell your board what to do by sending a set of instructions to the microcontroller on the board.
- To do so you use the Arduino programming language (based on Wiring), and the Arduino Software (IDE).

History of Arduino

- Arduino is invented by Massimo Banzi.
- In the year 2005 the first ever Arduino board was born in the classrooms of the Interactive Design Institute in Ivrea, Italy.

Types of Arduino

- Leonardo
- Nano
- Micro
- Lily Pad
- Esplora
- Mega
- Uno etc.

Leonardo

It is based on the **ATmega32u4** microprocessor.

It has **20 digital input/output** pins (of which 7 can be used as PWM outputs and **12** as **analog inputs**)

16 MHz crystal oscillator, a micro USB connection, a power jack, an ICSP header, and a reset button

Arduino Nano

- It is based on the ATmega328 or ATmega168 microprocessor.
- It can be powered via the Mini-B USB connection.

Arduino Micro

It is based on the ATmega32U4 microprocessor.

 It has 20 digital input/output pins (of which 7 can be used as PWM outputs and 12 as analog inputs)

LilyPad Arduino

- It is based on the ATmega168V or ATmega328V microprocessor.
- It is designed for e-textiles and wearable projects.
- It can be sewn to fabric and similarly mounted power supplies, sensors and actuators with conductive thread

Arduino Esplora

- The Arduino Esplora is an Arduino Leonardo based board with integrated sensors and actuators.
- It uses an ATmega32U4 AVR microprocessor.

Arduino Mega

- It is based on the ATmega168V or ATmega1280 microprocessor.
- It has 54 digital input/output pins, 14 can be used as PWM.
- 16 analog inputs, 4 UARTs.

Arduino Uno R3

Characteristics of Arduino Uno R3

- Inexpensive
- Cross-platform
- Simple, clear programming environment
- Open source and extensible software The Arduino software is published as open source tools, available for extension by experienced programmers.
- Open source and extensible hardware The plans of the Arduino boards are published under a Creative Commons license, so experienced circuit designers can make their own version of the module, extending it and improving it.

Specifications of Arduino Uno R3

USB

Arduino

ATMEGA328

Power

POWER A2 A2 A3 A5 A5

ANALOG IN

Powering to Arduino

- Operating Voltage: 5V
- Input Voltage (recommended): 7 12V
- Input Voltage (limit): 6 20V

Through USB

Through Type B USB

Through Adapter Power

(limit)

Through Battery

Arduino Uno Powering Options (One at a Time)

USB

ATMEGA328

POWER.

ATMEGA 328 IC

- Operating Voltage: 1.8 to 5V
- Clock Speed: 20MHz(Max)
- Flash Memory: 32KB
- SRAM: 2KB
- EEPROM: 1KB
- 8 Bit Microcontroller
- Inbuilt 10 bit A/D Coverter
- 6 PWM channels

Arduino Uno R3

14 digital pins (**D0 – D13**) can be set as **input** or **output**.

DC Current per I/O Pin: 30mA

Arduino

ATMEGA328

RESET 333 GND 57 SND 69 ANALOG IN

6 analog pins (A0 – A5) can be used to Analog INPUT(Read), also used for Digital OUTPUT

Tilt(~) pins as **PWM** pins for **Analog OUTPUT**

Arduino

Powering External Devices

Can use for Powering External Devices

Specifications of Arduino Uno R3

- Microcontroller: ATmega328
- Operating Voltage: 5V
- Input Voltage (recommended): 7 12V
- Input Voltage (limit): 6 20V
- Digital Input Pins: 14
- Digital Output Pins : 20
- PWM Output Pins: 6
- Analog Input Pins: 6
- DC Current per I/O Pin : 30mA
- DC Current for 3.3V Pin: 50mA.

Contd...

Memories & Clock Speed

• Flash Memory: 32KB of which 0.5 KB used to bootloader.

• SRAM: 2KB

EEPROM: 1KB

Clock Speed: 16MHz

Physical Specifications

• Length: 68.6mm

Width: 53.4mm

• Weight : 25g

Arduino IDE(Software)

 The Arduino Software or an IDE(Integrated Development Environment);

- >A text editor,
- ➤ A toolbar,
- ➤ An inbuilt compiler,
- ➤ Serial Monitor

Upload the **program**

Arduino Program Basics

Two functions:

- void setup()
- void loop()
- Declare variables globally or locally
 - E.g. int sensorValue;
- Instructions to be written in void setup():
 - pinMode (pin number, function)
 - E.g. pinMode (13, OUTPUT)
 - E.g. pinMode (5, INPUT)

Arduino Program Basics

- Instructions to be written in void loop():
 - digitalWrite(pin no., status)
 - E.g. digitalWrite (13, HIGH);
 - E.g. digitalWrite (13, LOW)
 - digitalRead (pin no)
 - digitalRead (5)
 - analogRead(pin no)
 - analogRead (A0)

Pulse Width Modulation(PWM)

- Technique for getting analog results with digital means.
- Instruction and command:
 - > analogWrite (pin no, value);

Arduino

Interfacing Diagram

#