Project for Database Design

Phase II. Relational Schema

Anand K Rajagopalan akr170430@utdallas.edu

Kartikey Gupta kxg173430@utdallas.edu

(October 23, 2017)

0. Pre-Illumination

For clearly describing the relational schema design, we separate this report into four sections. In Section 1 we modify the original EER diagram and explain what are changed, respect to our Phase I EER diagram. And then, in Section 2 we give the relational schemas converted from our Phase I EER diagram with detailed mapping step by step. Section 3 is the documentation of relational schemas. This documentation mainly describes data type and format for each attribute in each relational schema. We also explain our assumptions for the documentation in this section. Finally, a short summary is given at the end of this report.

1. Modified EER diagram

We have added an attribute **event_staff_id** as primary key in the union entity type **EVENT_STAFF**. The attribute has been added as a surrogate key to implement relational model for the union entity type. Foreign keys will be added in the corresponding relations of the super-class entity types.

The modification does not mean that the original design is incorrect. Actually, our original design is more close to real life. But when we implement, we want to make the process easier. Besides, the new way will not affect the functionality of this database. The modified EER diagram is shown in Figure on the second last page.

2. Mapping Relational Schemas

We use seven-step algorithm to convert the basic EER model constructs into relations. The following are detailed mapping process.

2.1 Mapping of Regular Entity Types, Specializations.

For every strong Entity E in the ER schema we map it and its attributes directly into a relation.

Here, EMPLOYEE is the superclass and specialised into HOUSE_KEEPING, CONCIERGE, RECEPTION, LICENSED_EMP, MANAGEMENT, DINING subclasses. Each of these subclasses are made into relations with Emp_ID as the primary key and foreign key referring to the EMPLOYEE relation. The attributes of the corresponding subclass are also mapped to this relation. Also, address is a composite attributes in the employee entity. We map the Atomic attributes of the composite attribute into the employee relation.

EMPLOYEE

Emp_ID	Name	Age	Salary_rate	Street_no	Street_name	city	state	Zip_code
--------	------	-----	-------------	-----------	-------------	------	-------	----------

HOUSE_KEEPING

Emp_ID	Yrs_experience
--------	----------------

CONCIERGE

Emp_ID	Yrs_experience
--------	----------------

RECEPTION

Emp ID

LICENSED_EMP

Emp ID	Licensed_emp_type
--------	-------------------

MANAGEMENT

Emp_ID	Title
--------	-------

DINING

Emp ID	Shift_type
--------	------------

Similarly, DINING entity is the superclass to the specialised subclasses CATERING, BUFFET, FINE_DINING and LOUNGE/BAR. A separate relation is created for each of these subclasses with Emp_id as the primary key and foreign key referring to the DINING relation. The attributes of the corresponding subclasses are also mapped into this relation.

\sim	۸ -	$\overline{}$		IN	\sim
.	Α	ΓE	к	III	ľ

Emp ID

BUFFET

Emp_ID

FINE_DINING

Emp_ID

LOUNGE/BAR

Emp_ID

All strong entity types are mapped directly into a separate relation with their corresponding attributes. One of the key attributes of the strong entity type is chosen as the primary key of the relation. The relations of the strong entity types are mapped to their corresponding relations are shown below.

ROOM

Room_no F	Price_per_night	Room_type	Bed_type
-----------	-----------------	-----------	----------

BILL

Bill_id	Bill_amount	Date_issued
---------	-------------	-------------

EVENT

Event_ID Event_staff_ID	Manager_ID	Time	Date
-------------------------	------------	------	------

CLIENT

Client ID

ORGANIZATION

Client ID

INDIVIDUAL

Client_ID	D_O_B	Sex	Name	
-----------	-------	-----	------	--

The EVENT_STAFF is a union type of the superclasses LICENSED_EMP, MANAGEMENT and CATERING. Here, we Event_staff_ID is the primary key of the EVENT_STAFF relation and is also called the surrogate key. Hence we add Event_staff_ID as a foreign key in each of the superclasses namely LICENSED_EMP, MANAGEMENT, CATERING of the union type EVENT_STAFF.

EVENT_STAFF

Event_staff_ID On-Call_no

LICENSED_EMP

 Emp_ID
 Event_staff_ID
 Licensed_emp_type

MANAGEMENT

Emp_ID Event_staff_ID Title

CATERING

Emp_ID Event_staff_ID

2.2 Mapping of Weak Entity Types

For each weak entity type W in the ER schema with owner entity type E, we create a relation R and include all simple attributes (or simple components of composite attributes) of W as attributes of R. In addition, include as foreign key attributes of R, the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s); this takes care of mapping the identifying relationship type of W. The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.

The mapping of the weak entity types CHECKIN, PAYMENT, ACCOUNT are shown below:

CHECKIN

Room_no	Checkin_date	Bill_ID	Receptionist_ID	Individual_ID	Check_out_date	Lounge_access	Key_type	Time

PAYMENT

Bill_ID	Payment_ID	Client_ID	date	Time	Amount	Type	Ì
---------	------------	-----------	------	------	--------	------	---

ACCOUNT

Client ID | Account No | Account_type

2.3 Mapping of Binary 1:1 Relationship Types

The mapping method is exhibited in the following table.

Relation	Mapping Method
E1 1 R E2	We use Foreign key approach to map this relationship. Since on E2 side, the relationship is total participation, we include the primary key of E1 as a foreign key in E2.

CHECKIN

Room_no	Checkin_date	Bill_ID	Receptionist_ID	Individual_ID	Check_out_date	Lounge_access	Key_type	Time

2.4 Mapping of Binary 1:N Relationship Types

The mapping method is exhibited in the following table.

Relation	Mapping Method
E1 N R E2	We use Foreign key approach to map this relationship. The <i>N-side</i> of this relationship type is E1. Thus we include the primary key of the relation E2 as foreign key in relation E1.

CHECKIN

Room no	Checkin date	Bill_ID	Receptionist_ID	Individual_ID	Check_out_date	Lounge_access	Key_type	Time
			_					

PAYMENT

ACCOUNT

Client_ID	Account_No	Account_type
-----------	------------	--------------

EVENT

Event_ID	Event_staff_ID	Manager_ID	Time	Date
----------	----------------	------------	------	------

2.5 Mapping of Binary M:N Relationship Types

SERVES

Event_staff_ID Event_ID

CONTAINS

Client_ID | Account_no | Bill_ID

HOLDS

Event ID Organizational ID Deposit

CLEANS

Housekeeping_ID Room_no Date Time

2.6 Mapping of Multi-valued Attributes

For each Multivalued attribute A in Entity E we create a separate relation R. The Relation R will include an attribute corresponding to the multivalued attribute and the primary P of the entity E it is from as a foreign key S of the relation R referring to that entity E. The primary of the new relation formed is a combination of the multivalued attribute the A and S.

Here, languages and licenses_obtained are the multivalued attributes corresponding to entities RECEPTION and LICENSED_EMP. Also, Phone_no and Membership_no are the multi valued attributes corresponding to the enitity Individual. Hence, we create a separate relation for each of them as shown below.

LANGUAGES

Emp_ID | License_obtained

LICENSES_OBTAINED

Emp_ID Language

PHONE_NO

MEMBERSHIP NO

Client_ID MEMBERSHIP_NO

2.7 Mapping of N-ary Relationship Types

PREPARES is the relation corresponding to the ternary relationship type PREPARES that connects three entity types, namely BILL, ACCOUNTANT and EVENT. We use Bill_ID as the primary key of this relation. All the columns are foreign key attributes for the three participating entity types correspondingly.

PREPARES

Bill_ID	Accountant_ID	Event_ID
---------	---------------	----------

2.8 Final Relation Schema of Hospital Database

After seven steps mapping, we can get the final result of relation schema. Besides, we point out foreign keys by arrows from foreign key to the original keys between two relations.

Figure on the last page displays all the relational schemas converted from Phase I EER diagram.

3. Documentation for schemas

3.1 Explanation for format design

After mapping the EER diagram into relation schema that can be implemented in a relational DBMS like Oracle, we should also design the format of each attribute in every relation. Here we suppose that all the assumptions, explanations and limitations in phase I are also suitable for the design in this phase. Thus, we shall not repeat them. In this section, we only explain our assumptions for the data types and formats in the documentation. The rules are shown as follows:

- All IDs are 9 digit Integers unless specified otherwise in the format tables below.
- All Age related attributes are Integers that lie in the range [0, 200].
- All Years of experience related attributes are Integers that lie in the range [0, 50].
- All the Date attributes are in the format 'MM/DD/YYYY'.
- All the Time attributes are in the format 'HH-MM-SS'
- All the phone number attributes are 9 digit Integers that are to be represented in '(xxx)xxx-xxxx' format.

3.2 Format for Every Relation

Table 3 gives data type and format for each attribute in each relational schema.

Attributes Relation Names Date Type EMPLOYEE Emp id Integer Name String <= 20 chars Integer [0, 200] Age Salary_rate Float Street No Integer Street_Name String <= 20 chars City String <= 20 chars String <= 20 chars State Zip_code String <= 6 chars

Table 3. Format for Each Attribute (example)

Relation Names	Attributes	Date Type
HOUSE_KEEPING	Emp_id	Integer
	Yrs_experience	Integer [0, 50]

Relation Names	Attributes	Date Type
CONCIERGE	Emp_id	Integer
	Yrs_experience	Integer [0, 50]

Relation Names	Attributes	Date Type
LICENSED_EMP	Emp_id	Integer
	Event_staff_id	Integer
		String ('ACCOUNTANT',
	Licensed_employee_type	'TECH_SUPPORT'}

Relation Names	Attributes	Date Type
RECEPTION	Emp_id	Integer

Relation Names	Attributes	Date Type
MANAGEMENT	Emp_id	Integer
	Event_staff_id	Integer
	Title	String <= 20 chars

Relation Names	Attributes	Date Type
DINING	Emp_id	Integer
	Shift_type	Char {m, a, e, n}

Relation Names	Attributes	Date Type
LICENSES_OBTAINED	Emp_id	Integer
	License_obtained	String <= 20 chars

Relation Names	Attributes	Date Type
LANGUAGES	Emp_id	Integer
	Language	String <= 20 chars

Relation Names	Attributes	Date Type
LOUNGE_BAR	Emp_id	Integer

Relation Names	Attributes	Date Type
FINE_DINING	Emp_id	Integer

Relation Names	Attributes	Date Type
BUFFET	Emp_id	Integer

Relation Names	Attributes	Date Type
CATERING	Emp_id	Integer
	Event_staff_id	Integer

Relation Names	Attributes	Date Type
EVENT_STAFF	Event_staff_id	Integer
	On-call_no	Integer 4 digits

Relation Names	Attributes	Date Type
EVENT	Event_id	Integer 4 digits
	Event_staff_id	Integer
	Manager_id	Integer
	Time	Time
	Date	Date

Relation Names	Attributes	Date Type
SERVES	Event_staff_id	Integer
	Event_id	Integer 4 digits

Relation Names	Attributes	Date Type
ROOM	Room_no	Integer 4 digits
	Price_per_night	Float
	Room_type	String <= 20 chars
	Bed_type	String <= 20 chars

Relation Names	Attributes	Date Type
CLEANS	Housekeeping_id	Integer
	Room_no	Integer 4 digits
	Time	Time
	Date	Date

Relation Names	Attributes	Date Type
CHECKIN	Room_no	Integer 4 digits
	Checkin_date	Date
	Bill_id	Integer 6 digits
	Receptionist_id	Integer
	Individual_id	Integer 6 digits
	Checkout_date	Date
	Lounge_access	Boolean
	Key_type	String {'card', 'digital'}
	Time	Time

Relation Names	Attributes	Date Type
CLIENT	Client_id	Integer 6 digits

Relation Names	Attributes	Date Type
INDIVIDUAL	Client_id	Integer 6 digits
	d_o_b	Date
	Sex	String <= 20 chars
	Name	String <= 20 chars

Relation Names	Attributes	Date Type
PHONE_NO	Client_id	Integer 6 digits
	Phone_no	Integer

Relation Names	Attributes	Date Type
MEMBERSHIP_NO	Client_id	Integer 6 digits
	Membership_no	Integer

Relation Names	Attributes	Date Type
ORGANIZATION	Client_id	Integer 6 digits

Relation Names	Attributes	Date Type
BILL	Bill_id	Integer 6 digits
	Bill_amount	Float
	Date_issued	Date

Relation Names	Attributes	Date Type
PAYMENT	Bill_id	Integer 6 digits
	Payment_id	Integer
	Client_id	Integer 6 digits
	Time	Time
	Date	Date
	Amount	Float
	Туре	String <= 20 chars

Relation Names	Attributes	Date Type
PREPARES	Bill_id	Integer 6 digits
	Accountant_id	Integer
	Event_id	Integer 4 digits

Relation Names	Attributes	Date Type
ACCOUNT	Client_id	Integer 6 digits
	Account_no	Integer
	Account_type	String <= 20 chars

Relation Names	Attributes	Date Type
CONTAINS	Client_id	Integer 6 digits
	Account_no	Integer
	Bill_id	Integer 6 digits

Relation Names	Attributes	Date Type
HOLDS	Event_id	Integer 4 digits
	Organization_id	Integer
	Deposit	Float

3.3 Implement the Database

Use SQL to create Relation Schema and constraints in Oracle.

4. Conclusion

In this report we discussed and drew the relational schemas for Database of XXX. We also give the data type and format for each attribute in each schema. Then we explain our assumptions in the documentation. This report analyzed the

logical model of Database. The next step is to implement this database. In the future, we may change some design when facing practical difficulties and other requests.

