Análisis Numérico

Numero de lista: 11

Grupo: 11 Tarea: 11

Fecha: 16/04/2020

Instrucciones: Es importante que su respuesta sea lo más clara posible.

Enunciado Primera Parte

DADA LA SIGUIENTE TABULACIÓN

t	0	5	10	15	20	25	30
s	0	0.5	7	27.2	68	137.5	243

- a) Obtenga "s" para t=7.5, por Newton y Lagrange
- b) Obtenga el polinomio de segundo grado que pasa por los puntos centrales.
- c) Obtenga "t" para s=27.3

Desarrollo

a) En la interpolación de Newton, con los datos proporcionados, se llega hasta una sexta diferencia, de la cual ya no se pueden realizar más diferencias, pues no se tiene mayor cantidad de datos, por lo que, se asume que al valor llegado en la sexta diferencia es constate, teniendo que el polinomio interpolante es:

$$s_{k} = s_{o} + k\Delta s_{o} + \frac{k(k-1)}{2!} \Delta s_{o}^{2} + \frac{k(k-1)(k-2)}{3!} \Delta s_{o}^{3} + \frac{k(k-1)(k-2)(k-3)}{4!} \Delta s_{o}^{4} + \frac{k(k-1)(k-2)(k-3)(k-4)}{5!} \Delta s_{o}^{5} + \frac{k(k-1)(k-2)(k-3)(k-4)(k-5)}{6!} \Delta s_{o}^{6}$$

Donde
$$k = \frac{t_k - t}{h}$$

	t	s	PD	SD	TD	CD	QD	SD		-t		
	0	0							$\nu = \frac{v_l}{l}$	$\frac{k-t}{h}$		
Espaciamiento		Τ	0.5	1					<i>κ</i> –	h		
h	5	0.5		6						IL		
	7.5		6.5	1	7.7				tk=	7.5		
	10	7		13.7		-0.8	1		t0 =	5		
			20.2		6.9		2		h =	5		
	15	27.2		20.6		1.2		-4	k =	0.5		
			40.8	 	8.1		-2		s0 =	0.5		
	20	68		28.7		-0.8	-	-4	PD =	6.5		
			69.5		7.3				SD =	13.7		
	25	137.5		36	<u> </u>				TD =	6.9		
		137.3	105.5	+					CD=	1.2	-0.046875	Cuarto término
	30	243	103.3	+					QD=	-2		Quinto término
	30	243					-		SD=		0.08203125	
		k(k	- 1)	k(k-1)((k-2)				sk =	2.44921875	0.00203123	Sexto termino
	$s_k = s_o + k$	$\epsilon \Delta s_o + \frac{1}{\epsilon}$	Δs_o^2	$+\frac{k(k-1)(k-1)}{3!}$	Δs_o^3				SK -	2.44321073		
		+	41	$(k-3)$ Δs_o								
		k(k -	(k-2)	(k-3)(k-	4) -							
		+(-/(\(\bar{\chi}\)	(k-3)(k-1) (k-3)(k-1) 6!	Δs_o^5							
		k(k -	-1)(k-2)	(k - 3)(k -	-4)(k-5)							
		+ **	1)(1 2)	61	4)(K 3)	Δs_o^6						
		+		6:								

Conclusión interpolación de Newton: $s_k = 2.44921875\,$

Para la interpolación de Lagrange tenemos que:

	t	s								
t0	0	0	s0	Numera	ador					0
t1	5	0.5	s1	t =	7.5					0.184570313
t2	10	7	s2	t1 =	0					6.459960938
t3	15	27.2	s3	t2 =	5					-11.15625
t4	20	68	s4	t3 =	10					12.55078125
t5	25	137.5	s5	t4 =	15					-7.250976563
t6	30	243	s6	t5 =	20					1.661132813
				t6 =	25			Resulta	ido =	2.449218751
				Resultado =	76904.2969					
						FRA	CCIÓN			
						1.661	132813			
				Denomir	nador					
				t0 =	30	s0 =	243			
				t1 =	0					
				t2 =	5					
				t3 =	10					
				t4 =	15					
				t5 =	20					
				t6 =	25					
				Resultado =	11250000					
_										

Conclusión interpolación de Lagrange: $s_k = 2.449218751$

b) Calculando el polinomio interpolante de segundo grado que pasa por los puntos

centrales tenemos que:

t	s	PD	SD
0	0		
		0.5	
5	0.5		6
		6.5	
10	7		13.7
t	s(t)	20.2	
15	27.2		20.6
		40.8	
20	68		28.7
		69.5	
25	137.5		36
		105.5	
30	243		

$$T_0 = 10$$

$$S_0 = 7$$

$$k = t-10/5 = t/5 - 2$$

$$PD = 20.2$$

$$SD = 20.6$$

$$s(t) = 7 + \left(\frac{t}{5} - 2\right) 20.2 + \frac{\left(\frac{t}{5} - 2\right)\left(\frac{t}{5} - 2 - 1\right)}{2} 20.6$$

- Simplificando tenemos que:

El polinomio interpolante de grado dos es:

$$s(t) = 0.412t^2 - 6.26t + 28.4$$

c) Utilizando la interpolación inversa de Lagrange tenemos que:

-			_						
	s	t							
s0	0	0	t0	Numera	ador				0
s1	0.5		t1	s =	27.3				1.377603168
s2	7	10	t2	s1 =	0				-0.409928841
s3	27.2	15	t3	s2 =	0.5				15.12837343
s4	68	20	t4	s3 =	7				0.005081942
у5	137.5	25	t5	s4 =	27.2				-0.000163958
у6	243	30	t6	s5 =	68				3.60677E-06
	·			s6 =	137.5			Resultado =	16.10096935
				Resultado =	6661460.89				
						FRA	CCIÓN		
						3.606	77E-06		
				Denomin	nador				
				s0 =	243	t0 =	30		
				s1 =	0				
				s2 =	0.5				
				s3 =	7				
				s4 =	27.2				
				s5 =	68				
				s6 =	137.5				
				Resultado =	5.5408E+13				

 $Conclusi\'on: t_k = 16.10096935$

Enunciado Segunda Parte

6. En la siguiente tabla se muestran los valores de la velocidad de un tren que frena al llegar a una estación. Calcule la aceleración para los tiempos t=15 y t=20 segundos.

X[s]	Y=v(t) [m/s]
5	6.6328
10	4.7590
15	3.6741
20	2.9164
25	2.3412
30	1.8842

Desarrollo

Partiendo de un polinomio interpolante de grado tres y un h = 3, que es el espaciamiento, tenemos que para t=15 segundos:

x[s]	y=v(t) [m/s]
5	6.6328
10	4.759
15	3.6741
20	2.9164
25	2.3412
30	1.8842

$$y' = \frac{1}{6*5} ((-2)*(4.759) + (-3)*(3.6741) + (6)*(2.9146) + (-1)*(2.3412))$$

= -0.1794367

Para t=20 segundos:

x[s]	y=v(t) [m/s]
5	6.6328
10	4.759
15	3.6741
20	2.9164
25	2.3412
30	1.8842

$$y' = \frac{1}{6*5} ((1)*(4.759) + (-6)*(3.6741) + (3)*(2.9146) + (2)*(2.3412))$$

= -0.1284667

Conclusión

Para t = 15 segundos, el valor de la aceleración es de -0.1794367 $\left[\frac{m}{s^2}\right]$ y, para un t = 20 segundos, el valor de la aceleración es de -0.1284667 $\left[\frac{m}{s^2}\right]$