

- Editierdistanz
- Vergleich von zwei Zeichenketten (Symbolsequenzen)
- minimale Anzahl von Operationen zur Umwandlung der ersten in die zweite Zeichkette
 - 1. Einfügen eines Zeichens
 - 2. Entfernen eines Zeichens
 - 3. Ersetzen eines Zeichens durch ein anderes
- Beispiele
 - L("Maburg", "Marburg") = 1

Maburg
$$\xrightarrow{1}$$
 Marburg

Tier
$$\xrightarrow{3}$$
 Toer $\xrightarrow{2}$ Tor

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

		J			
i		ω	Т	0	R
	ω				
	Т				
	ı				
	Е				
	R				

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

		J				
		ω	Т	0	R	
i	ω	0	1	2	3	
	T	1				
	ı	2				
	Е	3				
	R	4				

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

				J	
i		3	T	0	R
i	3	0	1	2	3
	T	1			
	_	2			
	Е	3			
	R	4			

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

				J	
		3	T	0	R
i	3	0	1	2	3
	Т	1	0		
	ı	2			
	Ε	3			
	R	4			

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

		J			
		ε	Т	0	R
i	3	0	1	2	3
	T	1	0		
		2			
	Е	3			
	R	4			

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

		J				
		ε	Т	0	R	
i	ω	0	1	2	3	
	Т	1	0	1		
	ı	2				
	Е	3				
	R	4				

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

		J			
		ε	Т	0	R
i	3	0	1	2	3
	T	1	0	1	2
	ı	2	1		
	Ε	3			
	R	4			

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

				J	
		ε	T	0	R
i	ε	0	1	2	3
	Т	1	0	1	2
		2	1	1	
	Е	3			
	R	4			

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

				J	
		3	Т	0	R
	ε	0	1	2	3
;	Т	T 1 0	~	2	
i		2	~	~	2
	Е	3	2	2	2
	R	4	3	3	2

Ergebnis: $D_{m,n}$

- Dynamische Programmierung
- Berechnung der Distanz zwischen zwei Zeichenketten u und v

$$m = |u|, n = |v|$$

$$D_{0,0} = 0$$

$$D_{i,0} = i, 1 \le i \le m$$

$$D_{0,j} = j, 1 \le j \le n$$

$$D_{i,j} = min\begin{cases} D_{i-1,j-1} + 0 & \text{falls } u_i = v_j \\ D_{i-1,j-1} + 1 \\ D_{i,j-1} + 1 \\ D_{i-1,j} + 1 \end{cases}$$

	,,				
•		ε	T	0	R
i	ω	0	1	2	3
	Т	1	0	~	2
		2	1	~	2
	Е	3	2	2	2
	R	4	3	3	2

Ergebnis: $D_{m,n}$

Komplexität: O(mn)