Biometric Passports Biometric Systems (DTU 02238)

Christoph Busch

Session 14 and 15

Overview ePassports

Structure of this session

- Motivation for ePassports
- ICAO Specification of Travel Documents
- Passport Content and Logical Data Structure
- Risk Analysis and Countermeasures
- Biometrics and Border Control
- Remaining Challenges

Motivation for ePassports

Passports

Definitions

- Wikipedia: "A passport is a document, issued by a national government, which certifies, for the purpose of international travel, the identity and nationality of its holder. The elements of identity are name, date of birth, sex, and place of birth."
- Bertold Brecht: "The passport is the most valuable part of a human. It is not so easily created as a human. A human can be created at any place, in a careless manner and without meaningful reason, but never a passport." (from Flüchtlingsgespräche - B. Brecht)

ICAO Specification of Travel Documents

Standardised Travel Documents

ICAO - International Civil Aviation Organisation

- A specialised UN agency (Headquarter Montreal)
- 193 member states
- ICAO's mandate for standards development
 - The Convention on International Civil Aviation Doc 7300 signed in December 1944 ("Chicago Convention")
 - ► ICAO works to achieve its vision of safe, secure and sustainable development of civil aviation through the cooperation of its Member States
- Technical Advisory Group on Traveller Identification Programme (TAG/TRIP)
 - New Technologies Working Group (NTWG)
- Cooperation with International Organisation for Standardisation (ISO/IEC JTC1)
 - SC17 and SC37

ICAO International Specifications

Doc 9303 Structure: 13 parts (in the 2021 edition)

- Part 1 Introduction
- Part 2 Specifications for the Security of the Design,
 Manufacture and Issuance of MRTDs
- Part 3 Specifications common to all MRTDs
- Part 4 Specifications for Machine Readable Passports (MRPs) and other TD3 size MRTDs
- Part 5 Specifications for TD1 size Machine Readable Official Travel Documents (MROTDs)
- Part 6 Specifications for TD2 size Machine Readable Official Travel Documents (MROTDs)
- Part 7 Machine Readable Visas
- Part 8 Emergency Travel Documents
- Part 9 Deployment of Biometric Identification and Electronic Storage of Data in MRTDs
- Part 10 Logical Data Structure (LDS) for Storage of Biometrics and Other Data in the Contactless Integrated Circuit (IC)
- Part 11 Security Mechanisms for MRTDs
- Part 12 Public Key Infrastructure for MRTDs
- Part 13 Visible Digital Seal (VDS)

ICAO International Specifications

Doc 9303: relevant parts

Part 2: Specification for the Security of the Design

MRTD environment: design, production, issuance

Part 3: Specifications
Common to all MRTDs

physical characteristics, visual zone, MRZ, conventions, face image

Part 4: TD3 size MRTDs electronic Passports (MRP)

MRP data page (design and data fields), primary identifier, check digits

Part 5:TD1 size MRTDs electronic citizen cards

sequence of data elements, truncation rules

Part 7: Machine Readable Visas (MRV)

specification which allow both visual and machine readable means

Part 10: Logical Data Structure (LDS)

specification for both visual and mach. readable

ICAO - Why biometric data in travel documents?

- Application
 - Biometric data generated by the enrolment process can be used in a search of one or more biometric databases (identification) to determine whether the end user is known
 - When the applicant collects the passport their biometric data can be taken again and verified against the initially captured biometric data
- Biometrics at the border:
 - Travellers ... can be verified against the reference using the image created at the time the travel document was issued.
 - Visually comparing the traveller with the digitised photograph on the Data Page of the traveller's passport.

- ICAO New Orleans Resolution March 2003
 - "ICAO TAG-MRTD/NTWG recognises that Member States currently and will continue to utilise the facial image as the primary identifier for MRTDs and as such endorses the use of standardised digitally stored facial images as the globally interoperable biometric to support facial recognition technologies for machine assisted identity verification with machine-readable travel documents.
 - ICAO TAG-MRTD/NTWG further recognises that in addition to the use of a digitally stored facial image, Member States can use standardised digitally stored fingerprint and/or iris images as an additional globally interoperable biometrics in support of machine assisted verification and/or identification.
 - Member States, in their initial deployment of MRTDs with biometrics identifiers, are encouraged to adopt contactless IC media of sufficient capacity to facilitate on-board storage of additional MRTD data and biometric identifiers."

EU-Council Regulation No 2252/2004 - of 13 December 2004 on standards for security features and biometrics in passports and travel documents issued by Member States

Article 1

- "Passports issued by Member States to their nationals shall comply with the minimum security standards set out in the Annex.
- Passports and travel documents shall include a storage medium which shall contain a facial image. Member States shall also include fingerprints in interoperable formats. The data shall be secured and the storage medium shall have sufficient capacity and capability to guarantee the integrity, the authenticity and the confidentiality of the data"

Biometrics and Identity Cards

Regulation (EU) 2019/1157 of the European Parliament and of the Council of 20 June 2019 on strengthening the security of identity cards of Union citizens and of residence documents issued to Union citizens

- Reason for and objectives of the proposal
 - "The inclusion of biometric identifiers, and particularly the inclusion of fingerprints, renders documents more reliable and secure. In that context, it is of crucial importance to phase out documents with weak security features as quickly as possible."
 - *The inclusion of two biometric identifiers (facial image, fingerprints) will improve the identification of persons and align the level of document security of identity cards of EU citizens and residence cards issued to third country family members to the standards of, respectively, passports issued to EU citizens and residence permits issued to third country nationals who are not family members of EU citizens)."
 - https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32019R1157

Passport Content and Logical Data Structure

Electronic ICAO 9303 passports

- Contact less IC Chip ISO/IEC14443 (Proximity)
 - minimum 32 Kbyte
- Smart Card OS compliant to ISO/IEC 7816
- Data transmission 8-16 sec
- Logical Data Structure (LDS)
 - info of Machine Readable Zone (MRZ)
 - facial image and fingerprint image
 - electronic signatures
- Validity
 - > <25 5 years
 - > >25 10 years (not in all European countries)

ePassport - Data Page

Elements

- Doc type
- Issuing country
- Name
- Doc number
- Nationality
- Date of birth
- Sex
- Date of Expiry
- Check Digits

Passport/ Passeport Passeport Passeport P Name/ Nom

ERIKSSON, ANNA MARIA

Profession/ Profession

Director General-MINISTRY OF HEALTH

Nationality/ Nationalité

UTOPIAN

Date of Birth/ Date de naissance

12 AUGUST/AOUT 74

Personal No./ N° personnel

Z E 184226 B

Country code/ Code du pays Passport Number/ Nº de passeport

L898902C3

Authority/ Autorité

Sex/ Sexe Place of birth/ Lieu de naissance F ZENITH

UTO

Date of issue/ Date de délivrance

16 APR/AVR 07 PASSPORT OFFICE

Date of expiry/ Date d'expiration 15 APR/AVR 12

Source: ICAO 9303 Part 4, 2021

Christoph Busch ICAO Passport 2023

ePassport - Data Page

Machine Readable Zone

ePassport Data Group Details

Data stored on the chip (LDS)

- DG1: Information printed on the data page
- DG2: Facial image of the holder (mandatory)
- DG3: Fingerprint image of left and right index finger
- DG4: Iris image (not in the EU)
- DG15: Active Authentication Public Key Info
- DG16: Persons to notify

Document Security Object

Hash values of DGs

				DA	TA EL	EMENTS
	ISSUING STATE OR ORGANIZATION DATA	Detail(s) Recorded in MRZ	DG1	Document Type		
				Issuing State or organization		
				Name (of Holder)		
				Document Number		
				Check Digit - Doc Number		
				Nationality		
				Date of Birth		
REQUIRED				Check Digit - DOB		
				Sex		
				Data of Expiry or Valid Until Date		
				Check Digit DOE/VUD		
				Optional Data		
				-	igit - Optional Data Field	
			Glob	Composite Check Digit		
_	SSUING STATE OR ORGANIZATION DATA	Identification Feature(s)	Global Interchange Feature		DG2	Encoded Face
			Additional Feature(s)		DG3 DG4	Encoded Finger(s)
		Displayed Identification Feature(s)	DG5	Dis	DG4 Encoded Eye(s) splayed Portrait	
			DG6	Reserved for Future Use		A STATE OF THE STATE OF THE
			DG7	Displayed Signature or Usual Mark		
OPTIONAL		Encoded Security Feature(s)	DG8	Data Feature(s)		
			DG9	Structure Feature(s)		
			DG10	Substance Feature(s)		
	TAT		DG11	Additional Personal Detail(s)		rsonal Detail(s)
	NGS		DG12	Additional Document Detail(s)		
	ins		DG13	Optional Detail(s)		
	S	<u>S</u>		Security Options		
				Active Authentication Public Key Info		
	I		DG16	Person(s) to Notify		

Source: ICAO 9303 Part 10, 2015

ePassport Details

Data to be stored in the RFID-Chip

- Alpha-numeric data: 5 Kbyte
- Facial image: ISO/IEC 19794-5:2005
 - 12 Kbyte (JPEG, JPEG2000)
- Fingerprint images: ISO/IEC 19794-4:2005
 - ▶ 2* 10 Kbyte (JPEG, JPEG2000, WSQ)
- Facial image: ISO/IEC 39794-5:2019 https://www.iso.org/standard/72155.html

- Adopted by ICAO in 2020
- Fingerprint images: ISO/IEC 39794-4:2019 https://www.iso.org/standard/72156.html
 - ▶ ICAO has adopted its 9303 specification in 2020 and refers now to ISO/IEC 39794 and its Parts 1, 4 and 5.
 - Passport reader equipment must be able to handle ISO/IEC 39794 data by 2025-01-01 (5 years preparation period).
 - Between 2025 and 2030, passport issuers can use the old version or the new version of standards (5 years transition period).

ePassport Details

RFID-Chip

- Proximity Integrated Circuit Card (PICC)
- 13,56 MHz
- Readable from 5 25 cm
- Passive power consumption

Risk Analysis and Countermeasures

ePassport Properties and Threats

Claimed benefits using the RF-Chip

- Less abrasion -> longer lifetime
- Easier handling

Potential disadvantages using RF-technology

- Potential active or passive attacks
- Privacy risks for the bona fide passport holder
 - Tracking
 - Skimming

Security Requirements

Operator

- Authenticity and Integrity
 - prevention of changes to biometric and personal data
 - writing of data only by authorized organizations
- Copy Protection
 - prevention of copying ePassports
 - close link between chip (electronic data) and the document (visual data)

Passport holder

- Privacy protection
- Confidentiality: access control (who is allowed to read?)
- Guarding of the ommunication

ePassport Security Mechanisms

Data stored on chip is protected by three security mechanisms

	Protection-Goal	Cryptographic Technique	Mechanism
1.)	Authenticity	Digital Signature	Passive Authentication
2.)	Originality Challenge-Response		Active Authentication
3.)	Confidentiality Authentication & Secure Channels		Access Control

Mechanism - Passive Authentication

- 1.) Authenticity fraud immunity
 - In addition to the LDS the chip has a Document Security Object
 - Contains hash representations of the LDS content
 - Signed by the issuing state
 - Data Authenticity
 - Being checked by reading devices
 - Signing algorithms
 - RSA
 - DSA
 - ECDSA (Elliptic Curve Digital Signature Algorithm)

Mechanism - Passive Authentication

- 1.) Authenticity Passport production
 - Uses a digital signature to authenticate data stored in the data groups
 - This signature is generated by a Document Signer (usually the passport producer) in the personalization phase
 - Signature generated over a Document Security Object contains the hash values of all data groups stored on the chip

Mechanism - Passive Authentication

1.) Authenticity - Verification

A terminal has to perform the following steps to verify data stored on a chip:

- Read the Document Security Object from the chip
- Retrieve the corresponding
 - Document Signer Certificate,
 - the trusted Country Signing CA Certificate, and
 - the corresponding Certificate Revocation List
- Verify the Document Signer Certificate and the signature of the Document Security Object
- Compute hash values of all data groups and compare them to the hash values in the Security Object

Security Infrastructure for ePassports

Country Signing PKI:

- Exactly one Root-CA per country: Country Signing CA (CSCA)
- CSCA generates certificates for manufacturers of the ePass:
 Document-Signer-certificate (DS-certificate)
- Document Signer signs data on the ePass
- Reading device can check signatures using DS-certificate

Country Verifying PKI:

- Exactly one Root-CA per country: Country Verifying CA (CVCA)
- CVCA generates certificates for operators of reading devices: Document-Verifier-certificate (DV-certificate)
- ePass can check authenticity of the reading device using DV-certificate

Mechanism - Active Authentication

2.) Prevent Cloning

- Digital security feature that prevents cloning by introducing a chip-individual key pair:
 - the public key is stored in data group DG15
 - the corresponding private key is stored in secure memory and may only be used internally by the chip and cannot be read out
- The chip can prove knowledge of this private key in a challenge-response protocol, which is called Active Authentication

Mechanism - Active Authentication

2.) Prevent Cloning

- A terminal has to perform the following steps to verify originality of a chip:
 - generate a random number n
 - ▶ let the chip sign this random number *n*
 - check the signature by using the public key stored in DG15

- 3.a) Basic Access Control (BAC)
 Check that the inspection system has physical access
 - The inspection system reads the MRZ information consisting of the concatenation of
 - Document-Number, Date-of-Birth and Date-of-Expiry, including their respective check digits

```
P<UTOERIKSSON<<ANNA<MARIA<<<<<<<<<<>L898902C<3UTO6908061F9406236ZE184226B<<<<14
```

- using an OCR-B reader.
- for a 10 year old document the entropy is 56 bits at maximum
- The most significant 16 bytes of the SHA-1 hash of this MRZ information is used as key seed to derive the Document Basic Access Keys using the key derivation mechanism.
- The inspection system and the MRTD chip mutually authenticate and derive session keys.

3.a) Basic Access Control (BAC)

1) Machine readable Zone (MRZ)

```
P<UTOERIKSSON<<ANNA<MARIA<<<<<<<<>L898902C<3UTO6908061F9406236ZE184226B<<<<14
```

```
Doc. number = L898902C Check digit = 3
Date of Birth = 690806 Check digit = 1
Date of expiry = 940623 Check digit = 6
```

- 2) MRZ information = L898902C369080619406236
- 3) Calculate SHA1 hash of MRZ information
 0x239AB9CB282DAF66231DC5A4DF6BFBAEDF477565
- 4) Form K_{SEED} of most significant 16 Bytes 0x239AB9CB282DAF66231DC5A4DF6BFBAE
- 5) Calculate Basic Access Keys

 K_{ENC} = 0xAB94FDECF2674FDFB9B391F85D7F76F2 K_{MAC} = 0x7962D9ECE03D1ACD4C76089DCE131543

3.a) Check digit control

```
1) Machine readable Zone (MRZ)

P<UTOERIKSSON<<ANNA<MARIA<<<<<<<>
L898902C<3UTO6908061F9406236ZE184226B<<<<14

Doc. number = L898902C Check digit = 3

Date of Birth = 690806 Check digit = 1

Date of expiry = 940623 Check digit = 6
```

```
6 9 0 8 0 6
x x x x x x x
```

Weighting: 7 3 1 7 3 1

Step 1 (Multiplication) Product: 42 27 0 56 0 6

Step 2 (Sum of Products) Sum: 42+27+0+56+0+6 **=131**

Step 3 (Division by modulus) 131 mod 10 = 1

- 3.b) Supplemented Access Control (SAC)
 - This extended access control allows access to sensitive biometric data (fingerprints, iris, ...)
 - Aims to grant access only to authorized reading devices
 - both the pass and the reader have to authorize each other
 - only certain countries are granted access to sensitive data
 - Reading device has to provide a valid DV-certificate
 - Each country's CVCA can limit access to certain data fields using attributes within the DV-certificate

Security Infrastructure for ePassports

Country Signing PKI:

- Exactly one Root-CA per country: Country Signing CA (CSCA)
- CSCA generates certificates for manufacturers of the ePass:
 Document-Signer-certificate (DS-certificate)
- Document Signer signs data on the ePass
- Reading device can check signatures using DS-certificate

Country Verifying PKI:

- Exactly one Root-CA per country: Country Verifying CA (CVCA)
- CVCA generates certificates for operators of reading devices: Document-Verifier-certificate (DV-certificate)
- ePass can check authenticity of the reading device using DV-certificate

Security Infrastructure for ePassports

Biometrics and Border Control

Deployment of Biometric Passports

700+ million ePassports

issued by 112 states (ICAO report as of 2017)

Source:https://en.wikipedia.org/ 2020

Biometrics and Border Control

EU concepts: three categories of travellers

- ePass-Holder (e.g. EasyPASS)
 - citizen of EU/Schengen Country
 - automated, supervised control
 - subject against facial reference in ePassport
- Bona-Fide-Traveller (e.g. EES registration)
 - EU and non-EU frequent traveler
 - intensive control upon registration
 - automated control at border crossing
 - comparison against fingerprints in database
- Third-Country-Traveller
 - non-Bona-Fide-Traveller
 - no automated processing

Biometrics and Border Control (2D Face)

SmartGate - Sydney

- Started in 2003
- FRR due to facial recognition about 2%

Speed Up?

	SmartGate	Manual	
Number of travellers	182	16	
Minimum time	00:05	00:20	
Maximum time	01:32	02:12	
Average time	00:17	00:48	

Source: Jim Waymann 2004

Border Control in Frankfurt - EasyPASS

Automated but supervised Control

Survey by control personnel

Project goals:

- self-service to increase throughput
- Evaluation of face recognition algorithms and usability of ePassport under realistic environment

Operation started 2009

- 4 automated control tracks (Terminal C), 1 monitoring station
- Procedure for travellers
 - no registration needed
 - use of ePassport/Face
 - limited for EU/Schengen-Citizen (18+ years old)

Source: BSI

Border Control in Frankfurt - EasyPASS

Operational Figures - as of March 2012

Source: BSI

- 88% success rate no manual interaction needed
- 12% operational reject rate
 - additional manual inspection by border guard
 - approx. 5% rejected due to face verification failed @0,1%FAR
 - approx. 7% rejected by the system due to other reasons
 - non compliant user behaviour
 - document check failed
 - hits from background database check
- approx. 18 sec average time period to pass the eGate
 - ▶ 5-6 sec for reading and checking the ePassport data
 - ▶ 5-6 sec for the traveller to enter the eGate
 - 1 sec for biometric verification (face capture and comparison)
 - ▶ 5-6 sec for the traveller to leave the eGate

Source: BS

ICAO Traveller Identification Program (TRIP)

- Holistic approach to identification management and travel documents
- Integrates Evidence of Identity, MRTDs,
 Public Key Directory (PKD) and other dimensions of traveller identification management and border control
- Five dimensions:

A missing standard for a secure breeder document

Concept of Digital Travel Credentials (DTC)

Complementing or substituting the passport booklet

- DTC types
 - ▶ eMRTD-PC bound DTC: Passport and additional DTC-PC
 - PC-bound DTC: DTC-V and DTC-PC but no passport

Enrolment attack with morphed facial images

Subject B

Morphing attack scenario

Challenge: Morphing Attacks

Morphing attack scenario

Border control

Problem: Morphing Attacks

Verification against morphed facial images

Christoph Busch ICAO Passport 2023 51

Vulnerability of face recognition to morphing attacks

Scale of the Problem: Vulnerability of FRS

NIST IR 8430 report on FRS vulnerability [Ngan2022]

Accurate FRS are more vulnerable!

[Ngan2022] NIST IR 8430: "FRVT MORPH: Utility of 1:N Face Recognition Algorithms for Morph Detection", 2022 https://pages.nist.gov/frvt/reports/morph/frvt_morph_4A_NISTIR_8430.pdf

Christoph Busch ICAO Passport 2023 5

Unique Link

Principle of equality - in our society

One individual - one passport

Principle of unique link of ICAO

One individual - one passport

image source: https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/

Unique Link

Principle of equality - in our society

One individual - one passport

Principle of unique link of ICAO

- One individual one passport
- ICAO 9303 part 2, 2006:

"Additional security measures: inclusion of a machine verifiable biometric feature linking the document to its legitimate holder"

image source: https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/

Unique Link

Principle of unique link of ICAO

One individual - one passport

We don't want this principle of unique link to be broken

Multiple individuals - one passport

image source: https://pixabay.com/de/vectors/tick-sternchen-kreuz-rot-gr%C3%BCn-40678/

Morphing Attack Detection Scenarios

Real world scenarios

- Single image morphing attack detection (S-MAD)
 - One single facial image is analysed (e.g. in the passport application office)

[SRB2018a] U. Scherhag, C. Rathgeb, C. Busch: "Towards Detection of Morphed Face Images in electronic Travel Documents", in Proceedings of the 13th IAPR International Workshop on Document Analysis Systems (DAS 2018), April 24-27, (2018)

Christoph Busch ICAO Passport 2023 57

Morphing Attack Detection Scenarios

Real world scenarios

- Single image morphing attack detection (S-MAD)
 - ▶ One single facial image is analysed (e.g. in the passport application office)

- Differential morphing attack detection (D-MAD)
 - A pair of images is analysed and one is a trusted Bona Fide image
 - Biometric verification (e.g. at the border)

[SRB2018a] U. Scherhag, C. Rathgeb, C. Busch: "Towards Detection of Morphed Face Images in electronic Travel Documents", in Proceedings of the 13th IAPR International Workshop on Document Analysis Systems (DAS 2018), April 24-27, (2018)

Face Pre-processing and Feature Extraction

Morphing Attack Detection (S-MAD) with texture analysis

Image descriptors as hand-crafted features

Morph Detection Classifier

[SRB2018b] U. Scherhag, C. Rathgeb, C. Busch: "Detection of Morphed Faces from Single Images: a Multi-Algorithm Fusion Approach", in Proceedings if of the 2nd International Conference on Biometric Engineering and Applications (ICBEA 2018), Amsterdam, The Netherlands, May 16-18, (2018)

Christoph Busch ICAO Passport 2023

Summary of MAD Algorithms

Taxonomy of Morphing Attack Detection

[SRMBB2019] U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, C. Busch: "Face Recognition Systems under Morphing Attacks: A Survey", in IEEE Access, (2019)

Christoph Busch ICAO Passport 2023

MAD Evaluation Methodology

Face Morphing Attack evaluations are complex

- Evaluations must consider a dedicated methodology [SNR2017]
- Evaluations must consider many parameters

```
result = f (dataset-training, dataset-testing, morphing-attack, landmark-detector, feature-extractor, classifier, scenario (S-MAD vs. D-MAD), post-processing, printer, scanner, ageing)
```

[SNR2017] U. Scherhag, A. Nautsch, C. Rathgeb, M. Gomez-Barrero, R. Veldhuis, L. Spreeuwers, M. Schils, D. Maltoni, P. Grother, S. Marcel, R. Breithaupt, R. Raghavendra, C. Busch: "Biometric Systems under Morphing Attacks: Assessment of Morphing Techniques and Vulnerability Reporting", in Proceedings of the IEEE 16th International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt, September 20-22, (2017)

MAD Evaluation

Evaluations must consider many parameters

Morphing may require manual interaction

```
result = f (dataset-training, dataset-testing, morphing-attack, landmark-detector, feature-extractor, classifier, scenario (S-MAD vs. D-MAD), post-processing, printer, scanner, ageing)
```

Automated face morphing tools may introduce artifacts

Large set of accessible morphing mechanisms at zero or low cost

splicing

GIMP

- Fantamorph http://www.fantamorph.com/index.html
- openCV http://www.learnopencv.com/face-morph-using-opencv-cpp-python
- splicing http://www.piviandco.com/apps/mixbooth
- GIMP animation package http://registry.gimp.org/node/18398

NIST-FRVT-MORPH

NIST IR 8292 report presented March, 2023

FRVT-MORPH

https://pages.nist.gov/frvt/html/frvt_morph.html

- results for MAD algorithms from six research labs:
 - University of Bologna (UBO)
 - Norwegian University of Science and Technology (NTNU)
 - Hochschule Darmstadt (HDA)
 - West Virginia University (WVU)
 - Universidade de Coimbra (VIS)
 - secunet (SEC)

NISTIR 8292 DRAFT SUPPLEMENT

Face Recognition Vendor Test (FRVT)

Part 4: MORPH - Performance of Automated Face Morph

Detection

Mei Ngan Patrick Grother Kayee Hanaoka Jason Kuo Information Access Division Information Technology Laboratory

This publication is available free of charge from https://www.nist.gov/programs-projects/face-recognition-vendor-test-frvt-ongoing

Christoph Busch ICAO Passport 2023

NIST-FRVT-MORPH

NIST IR 8292 report presented March, 2023

- Performance of Automated Face Morph Detection https://pages.nist.gov/frvt/reports/morph/frvt_morph_report.pdf
- results for high quality morphs versus print and scanned
 - note the low number of print and scanned images

Human Experts in MAD

Border guards, case handlers, document examiners, ID experts

- S-MAD: 410 participants, 180 trials
- D-MAD: 469 participants, 400 trials (4 x 100 tasks)

[GOD2022] S. Godage, F. Løvåsdal, S. Venkatesh, K. Raja, R. Raghavendra, C. Busch: "Analyzing Human Observer Ability in Morphing Attack Detection - Where Do We Stand?", https://arxiv.org/abs/2202.12426

Christoph Busch ICAO Passport 2023

Human Experts in MAD

Overall accuracy

	D-MAD		S-MAD	
Line of work	Number of participants	Average Accuracy	Number of participants	Average Accuracy
Border Guard	30	64.66	26	55.17
Case handler- Passport, visas, ID, etc	150	63.45	137	56.65
Document examiner- 1st line	38	60.79	30	57.63
Document examiner- 2st line	40	68.64	34	62.56
Document examiner- 3rd line	30	65.74	25	61.51
Face comparison expert (Manual examination)	44	72.56	39	64.63
ID Expert	53	63.09	50	57.21
Other	84	64.66	69	55.17
Student	103	56.91	-	4
Total participants	572		410	
Experts	469		410	

[GOD2022] S. Godage, F. Løvåsdal, S. Venkatesh, K. Raja, R. Raghavendra, C. Busch: "Analyzing Human Observer Ability in Morphing Attack Detection - Where Do We Stand?", https://arxiv.org/abs/2202.12426

Human Experts in MAD

Does exposure to morphed images help?

[GOD2022] S. Godage, F. Løvåsdal, S. Venkatesh, K. Raja, R. Raghavendra, C. Busch: "Analyzing Human Observer Ability in Morphing Attack Detection - Where Do We Stand?", https://arxiv.org/abs/2202.12426

More information

The MAD website

https://www.christoph-busch.de/projects-mad.html

The MAD survey papers

 U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt, C. Busch: "Fal Systems under Morphing Attacks: A Survey", in IEEE Access, (2019) https://ieeexplore.ieee.org/document/8642312

 S. Venkatesh, R. Raghavendra, K. Raja, C. Busch: "Face Morphing Attack Generation & Detection: A Comprehensive Survey", in IEEE Transactions on Technology and Society (TTS), (2021) https://ieeexplore.ieee.org/document/9380153

Face Morphing Attack Generation & Detection A Comprehensive Survey

More information on MAD

The 2021 NBL - EAB workshop

https://eab.org/events/program/229

- Luuk Spreeuwers (University of Twente) recorded talk
 - Morphing Attacks on Face Recognition Systems
- David Robertson (University of Strathclyde) recorded talk
 - Psychological Experiments on Morphed Faces
- Kiran Raja (NTNU) recorded talk
 - Morphing Attack Detection Approaches
- Matteo Ferrara (University of Bologna) recorded talk
 - Bologna Online Evaluation Platform
- Frøy Løvåsdal (Norwegian Police) recorded talk
 - Morphing Attack Detection Capabilities of Human Examiners
- Mei Ngan (NIST) recorded talk
 - Face Morphing Detection Evaluation
- Naser Damer (Fraunhofer IGD) recorded talk
 - Generating Morphs with Generative Adversarial Networks
- Christian Rathgeb (Hochschule Darmstadt) recorded talk
 - Detection of Face Beautification Manipulations
- Uwe Seidel (BKA)
 - Research Needs for Morphing Attack Detection

References

Web

- ICAO: http://www.icao.int
- ICAO 9303: http://www.icao.int/publications/pages/publication.aspx?docnum=9303
- FRONTEX: http://frontex.europa.eu

Complementary reading

- Council Regulation (EC) No 2252/2004 of 13 December 2004 on standards for security features and biometrics in passports and travel documents issued by Member States
- ISO/IEC 19794 Biometric data interchange formats
 - Part 4: Finger image data
 - Part 5: Face image data
- ISO/IEC 39794 Extensible biometric data interchange formats
 - Part 4: Finger image data
 - Part 5: Face image data