MC458 — Projeto e Análise de Algoritmos I

C.C. de Souza C.N. da Silva O. Lee

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando Lee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - José Coelho de Pina
 - Orlando Lee
 - ▶ Paulo Feofiloff
 - ▶ Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

Problema da mochila

Seja $I = \{1, 2, ..., n\}$ um conjunto de itens. Cada item i tem um valor c_i e um peso w_i . Suponha que temos uma mochila com capacidade W (peso máximo que suporta).

O objetivo é escolher um subconjunto $S \subseteq I$ de itens tais que

- ullet a soma dos pesos dos itens em S não ultrapassa W e
- a soma dos valores dos itens em S é máximo.

Problema da mochila

Seja $I = \{1, 2, ..., n\}$ um conjunto de itens. Cada item i tem um valor c_i e um peso w_i . Suponha que temos uma mochila com capacidade W (peso máximo que suporta).

O objetivo é escolher um subconjunto $S \subseteq I$ de itens tais que

- ullet a soma dos pesos dos itens em S não ultrapassa W e
- a soma dos valores dos itens em S é máximo.
- **Exemplo:** n = 3, v = (10, 8, 9), w = (1, 2, 4) e W = 6. Uma solução ótima é $S = \{1, 3\}$. O peso de S é $w_1 + w_3 = 1 + 4 \le 6$ e o valor de S é $c_1 + c_3 = 10 + 9 = 19$.

Problema da mochila

Seja $I = \{1, 2, ..., n\}$ um conjunto de itens. Cada item i tem um valor v_i e um peso w_i . Suponha que temos uma mochila com capacidade W (peso máximo que suporta).

O objetivo é escolher um subconjunto $S \subseteq I$ de itens tais que

- ullet a soma dos pesos dos itens em S não ultrapassa W e
- a soma dos valores dos itens em S é máximo.
- **Exemplo:** n = 4, v = (10, 7, 25, 24), w = (2, 1, 6, 5) e W = 7. Uma solução ótima é $S = \{1, 4\}$. O peso de S é $w_1 + w_4 = 2 + 5 \le 7$ e o valor de S é $v_1 + v_4 = 10 + 24 = 34$.

Problema da mochila

Seja $I = \{1, 2, ..., n\}$ um conjunto de itens. Cada item i tem um valor v_i e um peso w_i . Suponha que temos uma mochila com capacidade W (peso máximo que suporta).

O objetivo é escolher um subconjunto $S \subseteq I$ de itens tais que

- ullet a soma dos pesos dos itens em S não ultrapassa W e
- a soma dos valores dos itens em S é máximo.

O número de subsconjuntos de I é 2^n . Assim, é impraticável enumerar todas as soluções viáveis.

Problema da mochila

Seja $I = \{1, 2, ..., n\}$ um conjunto de itens. Cada item i tem um valor v_i e um peso w_i . Suponha que temos uma mochila com capacidade W (peso máximo que suporta).

O objetivo é escolher um subconjunto $S \subseteq I$ de itens tais que

- ullet a soma dos pesos dos itens em S não ultrapassa W e
- a soma dos valores dos itens em S é máximo.

O número de subsconjuntos de I é 2^n . Assim, é impraticável enumerar todas as soluções viáveis.

Hipótese: os pesos w_i e a capacidade W são **inteiros**.

 Podemos formular o problema da mochila como um problema de Programação Linear Inteira:

- Podemos formular o problema da mochila como um problema de Programação Linear Inteira:
 - ightharpoonup Para cada item *i* temos uma variável x_i :
 - $x_i = 1$, se o item i estiver na solução ótima e
 - $x_i = 0$, caso contrário.

- Podemos formular o problema da mochila como um problema de Programação Linear Inteira:
 - Para cada item i temos uma variável x_i: x_i = 1, se o item i estiver na solução ótima e x_i = 0, caso contrário.
 - ► A modelagem do problema é simples:

$$\max \sum_{i=1}^{n} v_i x_i \tag{1}$$

$$\sum_{i=1}^{n} w_i x_i \le W \tag{2}$$

$$x_i \in \{0,1\} \tag{3}$$

- Podemos formular o problema da mochila como um problema de Programação Linear Inteira:
 - Para cada item i temos uma variável x_i: x_i = 1, se o item i estiver na solução ótima e x_i = 0, caso contrário.
 - ► A modelagem do problema é simples:

$$\max \sum_{i=1}^{n} v_i x_i \tag{1}$$

$$\sum_{i=1}^{n} w_i x_i \le W \tag{2}$$

$$x_i \in \{0,1\} \tag{3}$$

• (1) é a função objetivo e (2-3) é o conjunto de restrições.

Considere uma instância do Problema da Mochila com n itens e uma mochila de capacidade W. Seja S uma solução ótima do problema. Considere o item n.

Considere uma instância do Problema da Mochila com n itens e uma mochila de capacidade W. Seja S uma solução ótima do problema. Considere o item n.

• Se $n \notin S$, então S é uma solução ótima do problema da mochila com capacidade W considerando-se apenas os n-1 primeiros itens.

Considere uma instância do Problema da Mochila com n itens e uma mochila de capacidade W. Seja S uma solução ótima do problema. Considere o item n.

- Se $n \notin S$, então S é uma solução ótima do problema da mochila com capacidade W considerando-se apenas os n-1 primeiros itens.
- Se $n \in S$, então $S \{n\}$ é uma solução ótima do problema da mochila com capacidade $W w_n$ considerando-se apenas os n-1 primeiros itens.

Considere uma instância do Problema da Mochila com n itens e uma mochila de capacidade W. Seja S uma solução ótima do problema. Considere o item n.

- Se $n \notin S$, então S é uma solução ótima do problema da mochila com capacidade W considerando-se apenas os n-1 primeiros itens.
- Se $n \in S$, então $S \{n\}$ é uma solução ótima do problema da mochila com capacidade $W w_n$ considerando-se apenas os n-1 primeiros itens.
- Note também que se $w_n > W$ então necessariamente ocorre o primeiro caso.

Seja z[i, d] o valor ótimo do problema da mochila com capacidade d considerendo-se os i primeiros itens.

Seja z[i,d] o valor ótimo do problema da mochila com capacidade d considerendo-se os i primeiros itens.

• Se i = 0 ou d = 0 então z[i, d] = 0 (caso base).

Seja z[i, d] o valor ótimo do problema da mochila com capacidade d considerendo-se os i primeiros itens.

- Se i = 0 ou d = 0 então z[i, d] = 0 (caso base).
- Se $w_i > d$ então z[i, d] = z[i 1, d].

Seja z[i, d] o valor ótimo do problema da mochila com capacidade d considerendo-se os i primeiros itens.

- Se i = 0 ou d = 0 então z[i, d] = 0 (caso base).
- Se $w_i > d$ então z[i, d] = z[i 1, d].
- Se a solução ótima não usa o item i então:

$$z[i,d] = z[i-1,d].$$

Seja z[i, d] o valor ótimo do problema da mochila com capacidade d considerendo-se os i primeiros itens.

- Se i = 0 ou d = 0 então z[i, d] = 0 (caso base).
- Se $w_i > d$ então z[i, d] = z[i 1, d].
- Se a solução ótima não usa o item i então:

$$z[i,d] = z[i-1,d].$$

• Se a solução ótima usa o item i então:

$$z[i, d] = z[i - 1, d - w_i] + v_i.$$

Seja z[i, d] o valor ótimo do problema da mochila com capacidade d considerendo-se os i primeiros itens.

- Se i = 0 ou d = 0 então z[i, d] = 0 (caso base).
- Se $w_i > d$ então z[i, d] = z[i 1, d].
- Se a solução ótima não usa o item i então:

$$z[i,d] = z[i-1,d].$$

• Se a solução ótima usa o item i então:

$$z[i, d] = z[i - 1, d - w_i] + v_i$$
.

Assim,

$$z[i,d] = \max\{z[i-1,d], z[i-1,d-w_i] + v_i\}.$$

- Seja z[i, d] o valor ótimo do problema da mochila com capacidade d considerando-se os i primeiros itens.
- Temos então a seguinte recorrência:

- Seja z[i, d] o valor ótimo do problema da mochila com capacidade d considerando-se os i primeiros itens.
- Temos então a seguinte recorrência:

$$z[i,d] = \begin{cases} 0 & \text{se } i = 0, \\ 0 & \text{se } d = 0, \\ z[i-1,d] & \text{se } w_i > d, \\ \max\{z[i-1,d], z[i-1,d-w_i] + v_i\} & \text{se } w_i \leq d. \end{cases}$$

- Seja z[i, d] o valor ótimo do problema da mochila com capacidade d considerando-se os i primeiros itens.
- Temos então a seguinte recorrência:

$$z[i,d] = \begin{cases} 0 & \text{se } i = 0, \\ 0 & \text{se } d = 0, \\ z[i-1,d] & \text{se } w_i > d, \\ \max\{z[i-1,d], z[i-1,d-w_i] + v_i\} & \text{se } w_i \leq d. \end{cases}$$

• Note que queremos calcular z[n, W].

Recorrência:

$$z[i,d] = \begin{cases} 0 & \text{se } i = 0, \\ 0 & \text{se } d = 0, \\ z[i-1,d] & \text{se } w_i > d, \\ \max\{z[i-1,d], z[i-1,d-w_i] + v_i\} & \text{se } w_i \leq d. \end{cases}$$

MOCHILA-REC(c, w, i, d)

- 1. se i = 0 então devolva 0
- 2. se d=0 então devolva 0
- 3. se $w_i > d$ então devolva Mochila-Rec(c, w, i 1, d)
- 4. **devolva** $\max\{\text{MOCHILA-REC}(c, w, i 1, d), \\ \text{MOCHILA-REC}(c, w, i 1, d w_i) + v_i\}$

```
MOCHILA-REC(c, w, i, d)
1. se i = 0 então devolva 0
```

- 2. se d=0 então devolva 0
- 3. se $w_i > d$ então devolva Mochila-Rec(c, w, i-1, d)
- 4. **devolva** $\max\{\text{Mochila-Rec}(c, w, i-1, d), \\ \text{Mochila-Rec}(c, w, i-1, d-w_i) + v_i\}$

```
MOCHILA-REC(c, w, i, d)
```

- 1. se i = 0 então devolva 0
- 2. se d=0 então devolva 0
- 3. se $w_i > d$ então devolva Mochila-Rec(c, w, i 1, d)
- 4. **devolva** $\max\{\text{Mochila-Rec}(c, w, i-1, d), \\ \text{Mochila-Rec}(c, w, i-1, d-w_i) + v_i\}$

Pode-se construir instâncias em que a complexidade de MOCHILA-REC é $\Omega(2^n)$.

```
Mochila-Rec(c, w, i, d)
```

- 1. se i = 0 então devolva 0
- 2. se d=0 então devolva 0
- 3. se $w_i > d$ então devolva Mochila-Rec(c, w, i 1, d)
- 4. **devolva** $\max\{\text{Mochila-Rec}(c, w, i 1, d), \\ \text{Mochila-Rec}(c, w, i 1, d w_i) + v_i\}$

Pode-se construir instâncias em que a complexidade de MOCHILA-REC é $\Omega(2^n)$.

Como usual, a complexidade é decorrente da sobreposição de subproblemas: vários subproblemas são resolvidos várias vezes.

Árvore de recursão

Árvore de recursão de MOCHILA-REC(c, w, n, W) com n = 4, w = (2, 1, 6, 5) e W = 7.

ullet O número total de subproblemas a serem computados é nW.

- O número total de subproblemas a serem computados é nW.
- Isso porque tanto os pesos dos itens quanto a capacidade da mochila são inteiros.

- O número total de subproblemas a serem computados é nW.
- Isso porque tanto os pesos dos itens quanto a capacidade da mochila são inteiros.
- Podemos então usar programação dinâmica para evitar o recálculo de subproblemas.

- ullet O número total de subproblemas a serem computados é nW.
- Isso porque tanto os pesos dos itens quanto a capacidade da mochila são inteiros.
- Podemos então usar programação dinâmica para evitar o recálculo de subproblemas.
- Como o cálculo de z[i,d] depende de z[i-1,d] e $z[i-1,d-w_i]$, podemos preencher a tabela $z[\cdot,\cdot]$ linha a linha.

Preenchimento da tabela

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\}$$

Programação Dinâmica (Passo 3)

$$z[i,d] = \begin{cases} 0 & \text{se } i = 0, \\ 0 & \text{se } d = 0, \\ z[i-1,d] & \text{se } w_i > d, \\ \max\{z[i-1,d], z[i-1,d-w_i] + v_i\} & \text{se } w_i \leq d. \end{cases}$$

```
PD-MOCHILA(c, w, n, W)

1. para d \leftarrow 0 até W faça z[0, d] \leftarrow 0

2. para i \leftarrow 1 até n faça z[i, 0] \leftarrow 0

3. para i \leftarrow 1 até n faça

4. para d \leftarrow 1 até W faça

5. z[i, d] \leftarrow z[i - 1, d]

6. se w_i \leq d e z[i - 1, d - w_i] + v_i > z[i, d]

7. então z[i, d] \leftarrow z[i - 1, d - w_i] + v_i

8. devolva z[n, W]
```

\int_{i}^{d}	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0							
2	0							
3	0							
4	0							

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\}$$
 se $w_i \le d$.

i d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0							
3	0							
4	0							

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\}$$
 se $w_i \le d$.

\int_{i}^{d}	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0							
4	0							

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\}$$
 se $w_i \le d$.

i^{d}	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0							

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\}$$
 se $w_i \le d$.

i d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\} \text{ se } w_i \le d.$$

i d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\}$$
 se $w_i \le d$.

• Claramente, a complexidade de PD-MOCHILA é O(nW).

- Claramente, a complexidade de PD-MOCHILA é O(nW).
- O tamanho da entrada é n·lg C_{max} + n·lg W_{max} + lg W, onde C_{max} é o maior valor e W_{max} é o maior peso de um item.
 Informalmente, este é o número de bits necessários para descrever a entrada.

- Claramente, a complexidade de PD-MOCHILA é O(nW).
- O tamanho da entrada é n·lg C_{max} + n·lg W_{max} + lg W, onde C_{max} é o maior valor e W_{max} é o maior peso de um item.
 Informalmente, este é o número de bits necessários para descrever a entrada.
- Assim, PD-Mochila não é um algoritmo polinomial.

- Claramente, a complexidade de PD-MOCHILA é O(nW).
- O tamanho da entrada é n·lg C_{max} + n·lg W_{max} + lg W, onde C_{max} é o maior valor e W_{max} é o maior peso de um item.
 Informalmente, este é o número de bits necessários para descrever a entrada.
- Assim, PD-Mochila não é um algoritmo polinomial.
- PD-MOCHILA é um algoritmo pseudo-polinomial: sua complexidade depende de W.

- Claramente, a complexidade de PD-MOCHILA é O(nW).
- O tamanho da entrada é n·lg C_{max} + n·lg W_{max} + lg W, onde C_{max} é o maior valor e W_{max} é o maior peso de um item.
 Informalmente, este é o número de bits necessários para descrever a entrada.
- Assim, PD-Mochila não é um algoritmo polinomial.
- PD-MOCHILA é um algoritmo pseudo-polinomial: sua complexidade depende de W.

Outro exemplo: o algoritmo ingênuo para testar se um número n é primo tem complexidade O(n). Este é pseudo-polinomial pois o tamanho da entrada é $\lg n$.

• O algoritmo PD-MOCHILA não devolve o subconjunto de valor total máximo, apenas o valor máximo.

- O algoritmo PD-MOCHILA não devolve o subconjunto de valor total máximo, apenas o valor máximo.
- É fácil recuperar o subconjunto a partir da tabela z preenchida, lembrando das escolhas que levam à solução ótima.

- O algoritmo PD-MOCHILA não devolve o subconjunto de valor total máximo, apenas o valor máximo.
- É fácil recuperar o subconjunto a partir da tabela z preenchida, lembrando das escolhas que levam à solução ótima.
- Considere o subproblema de calcular z[i, d]. O item i faz parte de uma solução ótima deste subproblema se w_i < d e z[i, d] = z[i - 1, d - w_i] + v_i.

- O algoritmo PD-MOCHILA não devolve o subconjunto de valor total máximo, apenas o valor máximo.
- É fácil recuperar o subconjunto a partir da tabela z preenchida, lembrando das escolhas que levam à solução ótima.
- Considere o subproblema de calcular z[i, d]. O item i faz parte de uma solução ótima deste subproblema se $w_i < d$ e $z[i, d] = z[i-1, d-w_i] + v_i$.

Ou equivalentemente,

$$w_i \leq d e z[i,d] \neq z[i-1,d].$$

```
Mochila-Solução(x, z, n, W)
  para i := 1 até n faça x[i] \leftarrow 0
  Mochila-Solução-Aux(x, z, n, W)
  devolva (x)
Mochila-Solução-Aux(x, z, i, d)
se i \neq 0 então
  se z[i,d] = z[i-1,d] então
     x[i] \leftarrow 0:
     MOCHILA-SOLUÇÃO-AUX(x, z, i - 1, d)
  senão
     x[i] \leftarrow 1;
     MOCHILA-SOLUÇÃO-AUX(x, z, i - 1, d - w_i)
```

• Exemplo: $c = \{10, 7, 25, 24\}$, $w = \{2, 1, 6, 5\}$ e W = 7.

\int_{i}^{d}	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

$$x = (?,?,?,?)$$

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\} \text{ se } w_i \le d.$$

• Exemplo: $c = \{10, 7, 25, 24\}$, $w = \{2, 1, 6, 5\}$ e W = 7.

i d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

$$x = (?, ?, ?, 1)$$

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\} \text{ se } w_i \le d.$$

• Exemplo: $c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\} \text{ e } W = 7.$

0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0
0	0	10	10	10	10	10	10
0	7	10	17	17	17	17	17
0	7	10	17	17	17	25	32
0	7	10	17	17	24	31	34
	0 0 0	0 0 0 0 0 7 0 7	0 0 0 0 0 10 0 7 10 0 7 10	0 0 0 0 0 0 10 10 0 7 10 17 0 7 10 17	0 0 0 0 0 0 0 10 10 10 0 7 10 17 17 0 7 10 17 17	0 0 0 0 0 0 0 10 10 10 10 0 7 10 17 17 17 0 7 10 17 17 17	0 0 0 0 0 0 0 0 10 10 10 10 10 0 7 10 17 17 17 17 0 7 10 17 17 17 25

$$x = (?, ?, 0, 1)$$

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\} \text{ se } w_i \le d.$$

• Exemplo: $c = \{10, 7, 25, 24\}$, $w = \{2, 1, 6, 5\}$ e W = 7.

i d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

$$x = (?, 0, 0, 1)$$

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\} \text{ se } w_i \le d.$$

• Exemplo: $c = \{10, 7, 25, 24\}, w = \{2, 1, 6, 5\} \text{ e } W = 7.$

i d	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	10	10	10	10	10	10
2	0	7	10	17	17	17	17	17
3	0	7	10	17	17	17	25	32
4	0	7	10	17	17	24	31	34

$$x = (1, 0, 0, 1)$$

$$z[i, d] = \max\{z[i-1, d], z[i-1, d-w_i] + v_i\} \text{ se } w_i \le d.$$

Complexidade

• Mochila-Solução tem complexidade O(n).

Complexidade

- Mochila-Solução tem complexidade O(n).
- Portanto, a complexidade de tempo e de espaço do algoritmo de programação dinâmica para o problema da mochila é O(nW).

Complexidade

- Mochila-Solução tem complexidade O(n).
- Portanto, a complexidade de tempo e de espaço do algoritmo de programação dinâmica para o problema da mochila é O(nW).
- Se quisermos apenas o valor ótimo, é possível economizar memória da seguinte forma. Como cada linha depende apenas da anterior, podemos armazenas apenas duas linhas: a que está sendo preenchida e a anterior.

Definição: Subsequência

- (a) $i(j) \in \{1, ..., n\}$ para todo $j \in \{1, ..., p\}$;
- **(b)** i(j) < i(j+1) para todo $j \in \{1, \dots, p-1\}$;
- (c) $b_j = a_{i(j)}$ para todo $j \in \{1, ..., p\}$.

Definição: Subsequência

- (a) $i(j) \in \{1, ..., n\}$ para todo $j \in \{1, ..., p\}$;
- **(b)** i(j) < i(j+1) para todo $j \in \{1, \dots, p-1\}$;
- (c) $b_j = a_{i(j)}$ para todo $j \in \{1, ..., p\}$.
 - **Exemplo:** S = ABCDEFG e S' = ADFG.

Definição: Subsequência

- (a) $i(j) \in \{1, ..., n\}$ para todo $j \in \{1, ..., p\}$;
- **(b)** i(j) < i(j+1) para todo $j \in \{1, \dots, p-1\}$;
- (c) $b_i = a_{i(i)}$ para todo $j \in \{1, ..., p\}$.
 - **Exemplo:** S = ABCDEFG e S' = ADFG.
 - Ou seja, i(j) é a posição da cadeia S na qual b_j aparece e os b_j 's tem que aparecer na mesma ordem em S.

Definição: Subsequência

- (a) $i(j) \in \{1, ..., n\}$ para todo $j \in \{1, ..., p\}$;
- **(b)** i(j) < i(j+1) para todo $j \in \{1, \dots, p-1\}$;
- (c) $b_i = a_{i(i)}$ para todo $j \in \{1, ..., p\}$.
 - **Exemplo:** S = ABCDEFG e S' = ADFG.
 - Ou seja, i(j) é a posição da cadeia S na qual b_j aparece e os b_j 's tem que aparecer na mesma ordem em S.
 - Os caracteres não precisam ser consecutivos em nenhuma das cadeias.

Problema da Subsubsequência Comum Mais Longa

Problema da Subsubsequência Comum Mais Longa

$$X = \epsilon, Y = ABC$$

$$Z = \epsilon$$

Problema da Subsubsequência Comum Mais Longa

- $X = \epsilon$, Y = ABC $Z = \epsilon$
- X = ABC, Y = ADBZ = AB

Problema da Subsubsequência Comum Mais Longa

- $X = \epsilon$, Y = ABC $Z = \epsilon$
- X = ABC, Y = ADBZ = AB
- X = ABCDEF, Y = BAEFCDZ = AEF ou Z = ACD ou Z = BEF

Problema da Subsubsequência Comum Mais Longa

- $X = \epsilon$, Y = ABC $Z = \epsilon$
- X = ABC, Y = ADBZ = AB
- X = ABCDEF, Y = BAEFCDZ = AEF ou Z = ACD ou Z = BEF
- X = ABCBDAB, Y = BDCABAZ = BCBA ou Z = BDAB

• É um problema de otimização combinatória. Será que tem subestrutura ótima?

- É um problema de otimização combinatória. Será que tem subestrutura ótima?
- **Notação:** Seja S uma cadeia de tamanho n. Para todo i = 1, ..., n, o prefixo de tamanho i de S é denotado por S_i .

Subsequência comum mais longa

- É um problema de otimização combinatória. Será que tem subestrutura ótima?
- **Notação:** Seja S uma cadeia de tamanho n. Para todo $i = 1, \ldots, n$, o prefixo de tamanho i de S é denotado por S_i .
- **Exemplo:** Para S = ABCDEFG, $S_2 = AB$ e $S_4 = ABCD$.

Subsequência comum mais longa

- É um problema de otimização combinatória. Será que tem subestrutura ótima?
- **Notação:** Seja S uma cadeia de tamanho n. Para todo $i=1,\ldots,n$, o prefixo de tamanho i de S é denotado por S_i .
- Exemplo: Para S = ABCDEFG, $S_2 = AB$ e $S_4 = ABCD$.
- **Definição:** c[i,j] é o tamanho de uma subsequência comum mais longa dos prefixos X_i e Y_j . Logo, se |X| = m e |Y| = n, c[m,n] é o valor ótimo.

Para cadeias X e Y, denote por SCML(X, Y) uma subsequência comum mais longa de X e Y.

Teorema. Sejam $X = x_1x_2...x_{m-1}x_m$ e $Y = y_1y_2...y_{n-1}y_n$ cadeias e seja $Z = SCML(X, Y) = z_1z_2...z_k$.

- ② Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = SCML(X_{m-1}, Y)$.
- Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = SCML(X, Y_{n-1})$.

Para cadeias X e Y, denote por SCML(X, Y) uma subsequência comum mais longa de X e Y.

Teorema. Sejam $X = x_1x_2...x_{m-1}x_m$ e $Y = y_1y_2...y_{n-1}y_n$ cadeias e seja $Z = SCML(X, Y) = z_1z_2...z_k$.

- ② Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = SCML(X_{m-1}, Y)$.
- Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = SCML(X, Y_{n-1})$.

Prova de (1): $X = x_1 x_2 \dots x_{m-1} \alpha$ e $Y = y_1 y_2 \dots y_{n-1} \alpha$. Se $z_k \neq \alpha$, então Z é uma subsequência comum de X_{m-1} e Y_{n-1} . Mas então $Z' = Z\alpha$ é uma SCML de X e Y de comprimento maior que o de Z, uma contradição.

Para cadeias X e Y, denote por SCML(X, Y) uma subsequência comum mais longa de X e Y.

Teorema. Sejam $X = x_1x_2...x_{m-1}x_m$ e $Y = y_1y_2...y_{n-1}y_n$ cadeias e seja $Z = SCML(X, Y) = z_1z_2...z_k$.

- ① Se $x_m = y_n$ então $z_k = x_m = y_n$ e $Z_{k-1} = SCML(X_{m-1}, Y_{n-1})$.
- ② Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = SCML(X_{m-1}, Y)$.
- Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = SCML(X, Y_{n-1})$.

Prova de (1): $X = x_1 x_2 \dots x_{m-1} \alpha$ e $Y = y_1 y_2 \dots y_{n-1} \alpha$. Se $z_k \neq \alpha$, então Z é uma subsequência comum de X_{m-1} e Y_{n-1} . Mas então $Z' = Z\alpha$ é uma SCML de X e Y de comprimento maior que o de Z, uma contradição.

Assim, $z_k = \alpha$.

Para cadeias X e Y, denote por SCML(X, Y) uma subsequência comum mais longa de X e Y.

Teorema. Sejam $X = x_1 x_2 \dots x_{m-1} x_m$ e $Y = y_1 y_2 \dots y_{n-1} y_n$ cadeias e seja $Z = SCML(X, Y) = z_1 z_2 \dots z_k$.

- Se $x_m = y_n$ então $z_k = x_m = y_n$ e $Z_{k-1} = SCML(X_{m-1}, Y_{n-1})$.
- ② Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = SCML(X_{m-1}, Y)$.
- Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = SCML(X, Y_{n-1})$.

Prova de (1): $X = x_1 x_2 \dots x_{m-1} \alpha$ e $Y = y_1 y_2 \dots y_{n-1} \alpha$. Se $z_k \neq \alpha$, então Z é uma subsequência comum de X_{m-1} e Y_{n-1} . Mas então $Z' = Z\alpha$ é uma SCML de X e Y de comprimento maior que o de Z, uma contradição.

Assim, $z_k = \alpha$. Suponha por contradição que Z_{k-1} não seja uma SCML de X_{m-1} e Y_{n-1} . Assim, existe uma SCML Z' de X_{m-1} e Y_{n-1} de comprimento maior que o de Z_{k-1} . Mas então $Z'\alpha$ é uma subsequência comum de X e Y de comprimento maior que o de Z, uma contradição.

Para cadeias X e Y, denote por SCML(X, Y) uma subsequência comum mais longa de X e Y.

Teorema. Sejam $X=x_1x_2...x_{m-1}x_m$ e $Y=y_1y_2...y_{n-1}y_n$ cadeias e seja $Z=\mathrm{SCML}(X,Y)=z_1z_2...z_k$.

- ② Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = SCML(X_{m-1}, Y)$.
- Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = SCML(X, Y_{n-1})$.

Para cadeias X e Y, denote por SCML(X, Y) uma subsequência comum mais longa de X e Y.

Teorema. Sejam $X=x_1x_2...x_{m-1}x_m$ e $Y=y_1y_2...y_{n-1}y_n$ cadeias e seja $Z=\mathrm{SCML}(X,Y)=z_1z_2...z_k$.

- ① Se $x_m = y_n$ então $z_k = x_m = y_n$ e $Z_{k-1} = SCML(X_{m-1}, Y_{n-1})$.
- ② Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = SCML(X_{m-1}, Y)$.
- Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = SCML(X, Y_{n-1})$.

Prova de (2): $X = x_1 x_2 \dots x_{m-1} \alpha$ e $Y = y_1 y_2 \dots y_n$. Se $z_k \neq \alpha$, então Z é a SCML de X_{m-1} e Y. Caso contrário, existe uma SCML Z' de X_{m-1} e Y de comprimento maior que o de Z. Mas Z' também é uma subsequência comum de X e Y, uma contradição.

Para cadeias X e Y, denote por SCML(X, Y) uma subsequência comum mais longa de X e Y.

Teorema. Sejam $X=x_1x_2\ldots x_{m-1}x_m$ e $Y=y_1y_2\ldots y_{n-1}y_n$ cadeias e seja $Z=\mathrm{SCML}(X,Y)=z_1z_2\ldots z_k.$

- ① Se $x_m = y_n$ então $z_k = x_m = y_n$ e $Z_{k-1} = SCML(X_{m-1}, Y_{n-1})$.
- ② Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = SCML(X_{m-1}, Y)$.
- Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = SCML(X, Y_{n-1})$.

Prova de (2): $X = x_1 x_2 \dots x_{m-1} \alpha$ e $Y = y_1 y_2 \dots y_n$. Se $z_k \neq \alpha$, então Z é a SCML de X_{m-1} e Y. Caso contrário, existe uma SCML Z' de X_{m-1} e Y de comprimento maior que o de Z. Mas Z' também é uma subsequência comum de X e Y, uma contradição.

Prova de (3): análogo.

Para cadeias X e Y, denote por SCML(X, Y) uma subsequência comum mais longa de X e Y.

Teorema. Sejam $X=x_1x_2...x_{m-1}x_m$ e $Y=y_1y_2...y_{n-1}y_n$ cadeias e seja $Z=\mathrm{SCML}(X,Y)=z_1z_2...z_k$.

- ① Se $x_m = y_n$ então $z_k = x_m = y_n$ e $Z_{k-1} = SCML(X_{m-1}, Y_{n-1})$.
- ② Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = SCML(X_{m-1}, Y)$.
- Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = SCML(X, Y_{n-1})$.

Para cadeias X e Y, denote por SCML(X, Y) uma subsequência comum mais longa de X e Y.

Teorema. Sejam $X=x_1x_2...x_{m-1}x_m$ e $Y=y_1y_2...y_{n-1}y_n$ cadeias e seja $Z=\mathrm{SCML}(X,Y)=z_1z_2...z_k$.

- ① Se $x_m = y_n$ então $z_k = x_m = y_n$ e $Z_{k-1} = SCML(X_{m-1}, Y_{n-1})$.
- ② Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = SCML(X_{m-1}, Y)$.
- Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = SCML(X, Y_{n-1})$.

Fórmula de Recorrência:

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ ou } j = 0, \\ c[i-1,j-1] + 1 & \text{se } i,j > 0 \text{ e } x_i = y_j, \\ \max\{c[i-1,j],c[i,j-1]\} & \text{se } i,j > 0 \text{ e } x_i \neq y_j. \end{array} \right.$$

Fórmula de Recorrência:

$$c[i,j] = \begin{cases} 0 & \text{se } i = 0 \text{ ou } j = 0, \\ c[i-1,j-1]+1 & \text{se } i,j > 0 \text{ e } x_i = y_j, \\ \max\{c[i-1,j],c[i,j-1]\} & \text{se } i,j > 0 \text{ e } x_i \neq y_j. \end{cases}$$

Fórmula de Recorrência:

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ ou } j = 0, \\ c[i-1,j-1] + 1 & \text{se } i,j > 0 \text{ e } x_i = y_j, \\ \max\{c[i-1,j],c[i,j-1]\} & \text{se } i,j > 0 \text{ e } x_i \neq y_j. \end{array} \right.$$

• A recorrência diz que o valor c[i,j] depende apenas de c[i-1,j-1], c[i-1,j] e c[i,j-1].

Fórmula de Recorrência:

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ ou } j = 0, \\ c[i-1,j-1] + 1 & \text{se } i,j > 0 \text{ e } x_i = y_j, \\ \max\{c[i-1,j], c[i,j-1]\} & \text{se } i,j > 0 \text{ e } x_i \neq y_j. \end{array} \right.$$

- A recorrência diz que o valor c[i,j] depende apenas de c[i-1,j-1], c[i-1,j] e c[i,j-1].
- Assim, podemos percorrer a matriz c linha a linha e da esquerda para a direita (ou seja, do "modo natural").

Fórmula de Recorrência:

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ ou } j = 0, \\ c[i-1,j-1] + 1 & \text{se } i,j > 0 \text{ e } x_i = y_j, \\ \max\{c[i-1,j],c[i,j-1]\} & \text{se } i,j > 0 \text{ e } x_i \neq y_j. \end{array} \right.$$

- A recorrência diz que o valor c[i,j] depende apenas de c[i-1,j-1], c[i-1,j] e c[i,j-1].
- Assim, podemos percorrer a matriz c linha a linha e da esquerda para a direita (ou seja, do "modo natural").
- Com isto, podemos sempre preencher corretamente a posição atual olhando os valores de posições anteriores já preenchidas.

```
SUBCADEIA-COMUM-MAIS-LONGA(X, Y, m, n)
       para i \leftarrow 0 até m faca c[i, 0] \leftarrow 0
      para i \leftarrow 1 até n faca c[0, i] \leftarrow 0
 3.
      para i \leftarrow 1 até m faca
 4.
          para i \leftarrow 1 até n faça
 5.
              se x_i = y_i então
                 c[i, j] \leftarrow c[i-1, j-1] + 1; b[i, i] \leftarrow "\"
 6.
 7.
              senão
 8.
                 se c[i, j-1] > c[i-1, j] então
                     c[i,i] \leftarrow c[i,i-1]: b[i,i] \leftarrow "\leftarrow"
 9.
10.
                 senão
11.
                     c[i,j] \leftarrow c[i-1,j]; b[i,j] \leftarrow \text{"}\uparrow\text{"}
       devolva (c[m, n], b)
12.
```

Programação Dinâmica (Passo 3) - Exemplo

• Exemplo: X = ABCB e Y = BDCAB, m = 4 e n = 5.

	Y		В	D	C	A	В
X		0	1	2	3	4	5
	0	0	0	0	0	0	0
A	1	0	0	0	0	1	1
В	2	0	1	1	1	1	2
C	3	0	1	1	2	2	2
В	4	0	1	1	2	2	3

	Y		$^{\odot}$	D	$^{\circ}$	A	$^{\odot}$
X		0	1	2	3	4	5
	0						
A	1		1	ħ	1	1	*
$^{\odot}$	2		1	~	-	1	1
\bigcirc	3		1	1	1	~	1
$^{\odot}$	4		1	1	1	1	M

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ ou } j = 0, \\ c[i-1,j-1] + 1 & \text{se } i,j > 0 \text{ e } x_i = y_j, \\ \max\{c[i-1,j],c[i,j-1]\} & \text{se } i,j > 0 \text{ e } x_i \neq y_j. \end{array} \right.$$

se
$$i = 0$$
 ou $j = 0$,
se $i, j > 0$ e $x_i = y_j$,
se $i, j > 0$ e $x_i \neq y_i$.

Programação Dinâmica (Passo 3) - Complexidade

• Claramente, a complexidade do algoritmo é O(mn).

Programação Dinâmica (Passo 3) - Complexidade

- Claramente, a complexidade do algoritmo é O(mn).
- O algoritmo n\u00e3o encontra a subsequ\u00e9ncia comum de tamanho m\u00e1ximo, apenas seu tamanho.

Programação Dinâmica (Passo 3) - Complexidade

- Claramente, a complexidade do algoritmo é O(mn).
- O algoritmo n\u00e3o encontra a subsequ\u00e0ncia comum de tamanho m\u00e1ximo, apenas seu tamanho.
- Com a tabela b preenchida, é fácil encontrar a subsequência comum mais longa.

Recuperação da Solução (Passo 4)

```
IMPRIME-SCML(b, X, i, j)
  se i = 0 e j = 0 então retorne
   se b[i,j] = "
backsize" então
3.
      IMPRIME-SCML(b, X, i-1, j-1)
4.
      imprima x_i
5.
    senão
6.
      se b[i,j] = "\uparrow" então
7.
         IMPRIME-SCML(b, X, i - 1, j)
8.
      senão
         IMPRIME-SCML(b, X, i, j - 1)
9.
```

Para recuperar a solução, basta chamar $\underline{IMPRIME-SCML}(b, X, m, n)$.

• A determinação da subsequência comum mais longa é feita em tempo O(mn) no pior caso.

- A determinação da subsequência comum mais longa é feita em tempo O(mn) no pior caso.
- Portanto, a complexidade de tempo e de espaço do algoritmo de programação dinâmica para o problema da subsequência comum mais longa é O(mn).

- A determinação da subsequência comum mais longa é feita em tempo O(mn) no pior caso.
- Portanto, a complexidade de tempo e de espaço do algoritmo de programação dinâmica para o problema da subsequência comum mais longa é O(mn).
- Note que a tabela b é dispensável. Podemos economizar memória recuperando a solução a partir da tabela c. Ainda assim, o gasto de memória seria O(mn).

- A determinação da subsequência comum mais longa é feita em tempo O(mn) no pior caso.
- Portanto, a complexidade de tempo e de espaço do algoritmo de programação dinâmica para o problema da subsequência comum mais longa é O(mn).
- Note que a tabela b é dispensável. Podemos economizar memória recuperando a solução a partir da tabela c. Ainda assim, o gasto de memória seria O(mn).
- Caso não haja interesse em determinar a subsequência comum mais longa, mas apenas seu tamanho, é possível reduzir o gasto de memória para $O(\min\{n,m\})$: basta registrar apenas a linha da tabela sendo preenchida e a anterior.