7.1. produto interno, norma, ângulo entre vectores//vectores ortogonais

página 1/4

departamento de matemática

universidade de aveiro

- 1. Verifique quais das seguintes expressões definem produtos internos no espaço vectorial real indicado.
 - (a) em \mathbb{R}^2 :

i.
$$(x_1, x_2) \bullet (y_1, y_2) = 3x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2;$$

ii.
$$(x_1, x_2) \bullet (y_1, y_2) = 4x_1y_1 + 2x_1y_2 + 2x_2y_1 + 4x_2y_2$$
;

iii.
$$(x_1, x_2) \bullet (y_1, y_2) = x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$$
;

iv.
$$(x_1, x_2) \bullet (y_1, y_2) = x_1y_1 + 2x_1y_2 + x_2y_1 + x_2y_2$$
.

- (b) em \mathbb{R}^3 :
 - i. $(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = x_1y_1 + 2x_2y_2 + x_1y_2 + x_2y_1 + x_3y_3$;
 - ii. $(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = x_1y_1 + x_2y_2 2x_1y_2 2x_2y_1 + 2x_3y_3$;
 - iii. $(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = 3x_1y_1 x_1y_2 x_2y_1 + 3x_1y_3 + 3x_3y_1 + x_3y_3$;
 - iv. $(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = x_1y_1 2x_1y_2 x_1y_3 x_2y_2 x_3y_1 + x_3y_3$.
- 2. Considere o espaço vectorial real $M_{2\times 2}(\mathbb{R})$ e seja $A = [a_{ij}] \in M_{2\times 2}(\mathbb{R})$. Define-se traço da matriz A como sendo o escalar $\operatorname{tr}(A) = a_{11} + a_{22}$.

Prove que a seguinte expressão define um produto interno de $M_{2\times 2}(\mathbb{R})$:

$$A \bullet B = \operatorname{tr}(A^T B), \quad \text{com } A, B \in M_{2 \times 2}(\mathbb{R}).$$

3. Considere o espaço vectorial real $P_2[x]$. Prove que a seguinte expressão define um produto interno em $P_2[x]$:

$$p(x) \bullet g(x) = \int_0^1 p(x)g(x)dx$$
, com $p(x), g(x) \in P_2[x]$.

- 4. Calcule a norma do vector:
 - (a) $u = (3, 2) \in \mathbb{R}^2$, supondo fixo neste espaço vectorial real os produtos internos referidos no exercício 1.(a) i. e 1.(a) ii..
 - (b) $v = (1, -2, 3) \in \mathbb{R}^3$, supondo fixo neste espaço vectorial real o produto interno referido no exercício 1.(b) i.
 - (c) $M = \begin{bmatrix} 1 & -2 \\ 3 & -1 \end{bmatrix} \in M_{2\times 2}(\mathbb{R})$, supondo fixo nesse espaço vectorial real o produto interno definido no exercício 2.
 - (d) $p(x) = 2x^2 + 1 \in P_2[x]$, supondo fixo nesse espaço vectorial real o produto interno definido no exercício 3.

7.1. produto interno, norma, ângulo entre vectores/vectores ortogonais

página 2/4

5. Seja E um espaço euclidiano e sejam u, v e w vectores de E tais que:

$$u \bullet v = 2$$
, $v \bullet w = -3$, $w \bullet u = 5$, $||u|| = 1$, $||v|| = 2$ e $||w|| = 3$

Calcule:

- (a) $(u+v) \bullet (w+v)$;
- (b) $(2v w) \bullet (3u + 2w)$;
- (c) ||u+v||;
- (d) ||u 2v + 4w||.
- 6. Considere, no espaço vectorial real \mathbb{R}^3 , os vectores a = (1, 2, 1) e b = (-1, 1, 1). Calcule o ângulo entre a e b, para cada dos seguintes produtos internos de \mathbb{R}^3 :
 - (a) $(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = x_1y_1 + x_2y_2 + x_3y_3$;
 - (b) $(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = 2x_1y_1 + x_1y_3 + 2x_2y_2 x_2y_3 + x_3y_1 x_3y_2 + 2x_3y_3$;
 - (c) $(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = 3x_1y_1 + x_1y_2 + x_2y_2 + 2x_3y_3$.
- 7. Considere o espaço vectorial real \mathbb{R}^3 munido do produto interno canónico. Calcule, para cada alínea, o seno e o coseno do ângulo formado pelos vectores a e b.
 - (a) a = (1, 1, 1) e b = (1, -2, 3);
 - (b) a = (1, 1, -1) e b = (6, -3, 1);
 - (c) a = (1, -1, 2) e b = (2, 2, -5).
- 8. Considere o espaço vectorial real \mathbb{R}^3 munido do produto interno canónico. Sejam u=(1,-1,2), v=(0,1,-2) e w=(2,2,0) vectores de \mathbb{R}^3 . Determine um vector a tal que:
 - (a) a é ortogonal a u e a v e tem norma $\sqrt{10}$;
 - (b) a é ortogonal a v e a w e tem norma $\sqrt{15}$.
- 9. Considere o espaco vectorial real \mathbb{R}^2 munido do produto interno definido por:

$$(x_1, x_2) \bullet (y_1, y_2) = x_1y_1 + 2x_1y_2 + 2x_2y_1 + 5x_2y_2.$$

Calcule a norma do vector u=(2,-1) e encontre um vector unitário v tal que $\angle(u,v)=\frac{\pi}{3}$.

- 10. No espaço vectorial real \mathbb{R}^3 munido do produto interno canónico, determine, para cada alínea, os valores de $\alpha \in \mathbb{R}$ tais que os vectores a e b são ortogonais.
 - (a) $a = (2, \alpha, 1)$ e b = (4, -2, -2);
 - (b) $a = (-1, 2, \alpha) \in b = (-5, -2\alpha, -1);$
 - (c) $a = (\alpha, -1, -3)$ e $b = (\alpha, 1, 1)$.

7.1. produto interno, norma, ângulo entre vectores//vectores ortogonais

página 3/4

- 11. No espaço vectorial real \mathbb{R}^3 munido do produto interno canónico, todos os vectores de \mathbb{R}^3 que são ortogonais ao vector (1,1,-1).
- 12. Considere, no espaço vectorial real \mathbb{R}^3 , o produto interno definido por:

$$(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = 2x_1y_1 + x_1y_2 - x_1y_3 + x_2y_1 + 3x_2y_2 - x_3y_1 + x_3y_3.$$

- (a) Diga para que valores de $\alpha \in \mathbb{R}$ os vectores $a = (2, \alpha, 1)$ e $b = (\alpha + 1, 2, -1)$ são ortogonais.
- (b) Determine um vector unitário w ortogonal a u = (1, -1, 2) e a v = (2, 1, -1).
- 13. Considere, no espaço vectorial real \mathbb{R}^3 , o produto interno definido por:

$$(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = 5x_1y_1 + 2x_1y_2 + 2x_2y_1 + x_2y_2 - x_1y_3 - x_3y_1 + x_3y_3.$$

Sejam $u = (0, -1, \alpha)$ e $v = (\beta, 0, -1)$. Determine os valores de $\alpha, \beta \in \mathbb{R}$ para os quais $||u|| = \sqrt{3}$ e u é ortogonal a v.

14. Considere a aplicação $\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$\varphi((x_1, x_2), (y_1, y_2)) = x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2.$$

- (a) Mostre que φ é um produto interno.
- (b) Nas alíneas seguintes, considere o produto interno acima definido.
 - i. Calcule o produto interno entre os vectores u = (1,3) e v = (2,-1).
 - ii. Determine a expressão geral da norma de um vector arbitrário de \mathbb{R}^2 .
 - iii. Calcule o ângulo entre os vectores a = (1, 1) e b = (2, 1).
 - iv. Determine $m \in \mathbb{R}$ tal que (m, 1) é ortogonal a (2, 3).
- 15. Seja E um espaço vectorial real munido de um produto interno e seja ϕ um endomorfismo de E. Sejam ainda $u, v \in E$. Prove que:
 - (a) $4u \bullet v = ||u + v||^2 ||u v||^2$;
 - (b) $||u v||^2 + ||u + v||^2 = 2(||u||^2 + ||v||^2);$
 - (c) $u \bullet v = 0$ se e só se ||u + v|| = ||u v||;
 - (d) $\|\phi(u)\| = \|u\|$ se e só se $\phi(u) \bullet \phi(v) = u \bullet v$.
 - (e) $\angle(u, v) = \angle(-u, -v);$
 - (f) $\angle(u,v) = \pi \angle(u,-v)$;
 - (g) $u \in v$ são ortogonais se e só se $||u + v||^2 = ||u||^2 + ||v||^2$.

7.1. produto interno, norma, ângulo entre vectores//vectores ortogonais

página 4/4

- 1. são produto interno as alíneas (a) i. e ii. e (b) i.
- 4. (a) i. $||u|| = \sqrt{47}$; ii. $||u|| = \sqrt{76}$; (b) i. $||v|| = \sqrt{14}$; (c) $||M|| = \sqrt{15}$; (d) $||p(x)|| = \sqrt{\frac{47}{15}}$.
- 5. (a) 8; (b) -33; (c) 3; (d) $\sqrt{241}$.
- 6. (a) $\arccos\left(\frac{\sqrt{2}}{3}\right)$; (b) $\arccos\left(\frac{\sqrt{5}}{10}\right)$; (c) $\arccos\left(\frac{2\sqrt{55}}{55}\right)$.
- 7. (a) $\cos(\angle(a,b)) = \frac{\sqrt{42}}{21} e \sin(\angle(a,b)) = \sqrt{\frac{19}{21}}$;
 - (b) $\cos(\angle(a,b)) = \frac{2}{\sqrt{138}} e \sin(\angle(a,b)) = \sqrt{\frac{67}{69}};$
 - (c) $\cos(\angle(a,b)) = -\frac{5\sqrt{198}}{99} e \sin(\angle(a,b)) = \sqrt{\frac{49}{99}}.$
- 8. (a) $a = (0, 2\sqrt{2}, \sqrt{2})$ ou $a = (0, -2\sqrt{2}, -\sqrt{2});$
 - (b) $a = \left(-\frac{2\sqrt{15}}{3}, \frac{2\sqrt{15}}{3}, \frac{\sqrt{15}}{3}\right)$ ou $a = \left(\frac{2\sqrt{15}}{3}, -\frac{2\sqrt{15}}{3}, -\frac{\sqrt{15}}{3}\right)$.
- 9. ||u|| = 1 e $v = \left(\frac{2+\sqrt{3}}{2}, -\frac{1}{2}\right)$ ou $v = \left(\frac{2-\sqrt{3}}{2}, -\frac{1}{2}\right)$.
- 10. (a) $\alpha = 3$; (b) $\alpha = 1$; (c) $\alpha = 2$ ou $\alpha = -2$.
- 11. (a, b, a + b), com $a, b \in \mathbb{R}$.
- 12. (a) $\alpha \in \{5+\sqrt{17}, 5-\sqrt{17}\};$ (b) $w = \left(\frac{1}{\sqrt{70}}, \frac{3}{\sqrt{70}}, \frac{7}{\sqrt{70}}\right)$ ou $w = \left(-\frac{1}{\sqrt{70}}, -\frac{3}{\sqrt{70}}, -\frac{7}{\sqrt{70}}\right)$.
- 13. $\alpha = \sqrt{2} \text{ e } \beta = -\frac{\sqrt{2}}{2+\sqrt{2}} \text{ ou } \alpha = -\sqrt{2} \text{ e } \beta = \frac{\sqrt{2}}{2-\sqrt{2}}.$
- 14. (b) i. -12; ii. $||(x_1, x_2)|| = \sqrt{(x_1)^2 2x_1x_2 + 3(x_2)^2}$; iii. $\angle(a, b) = \arccos\left(\frac{\sqrt{6}}{3}\right)$; iv. m = 7.