Hierarchical time-series decomposition for retail sales forecasting

Andrea Cognolato, Constantin Merbecks
Bayesian Data Analysis, Aalto University
December 2021

Introduction and Motivation

- Interest in time series analysis
- Discovery of Facebook Prophet
 - Built for time series modelling
 - Based on Bayesian statistics using separate model idea
- Goal
 - Rebuild the model and make it hierarchical
- Suitable, interesting data needed:
 - Walmart store sales time series
 - Multiple Stores and multiple departments

Data

Model: trend

Model: seasonality

Model: trend, seasonality, residuals

Model: hierarchical structure

Department-wide Sales

(Department 12, store location 1, 2, 3, 4)

Priors: trend samples

Priors: seasonality samples

Priors: seasonality + trend samples vs. actuals

Priors: sensitivity analysis

Posterior predictive checking

Comparing 1-week-ahead forecast against the truth, for the last 43 weeks

Model comparison

Expected Log Posterior Density (OOS)

		Store				
Model	1	2	3	4		
Separate	-57	-45	-67	-50		
Hierarchical	-48	-42	-53	-43		

Mean Average Error (OOS)

	Store				
Model	1	2	3	4	
Separate	0.7	0.5.	0.9	0.6	
Hierarchical	0.5	0.5	0.7	0.5	

- Computed using 1-week-ahead leave-future-out cross validation
- 100 week in-sample training
- 43 week out-of-sample testing

Discussion

- Issues:
 - Runtime and model size
 - Seasonality decomposition not perfectly matching
 - Lower effective sample size for the hierarchical model

- Future Improvements:
 - External Variables: Weather, gas prices, holidays
 - Extending the data sets to more stores

Summary and take-home message

- Additive time series model captures sales dynamics
- Hierarchical model able to generalize and share information across stores

Contact info:

- andrea.cognolato@aalto.fi
- constantin.merbecks@aalto.fi

Appendix

Model: trend component formulation

 $trend_t = growth_t + offset_t$ $growth_t = (k + A\delta)t$ $offset_t = m - As\delta$ $(A)_{t's'} = t' > s'$

Priors – Separate Model

$$\sigma_{
m obs} \sim N(0, 0.5)$$
 $k_j \sim N(0, 5)$
 $m_j \sim N(0, 5)$
 $\delta_{lj} \sim N(0, 5)$
 $\beta_{kj} \sim N(0, 5/20)$

Priors – Hierarchical Model

	$\sigma_{\mathrm{obs}} \sim N(0, 0.5)$		$\mu_k \sim N(0,5)$
			$\mu_m \sim N(0,5)$
	$k_j \sim N(\mu_k, \sigma_k)$		$\mu_\delta \sim N(0,5)$
Priors	$m_j \sim N(\mu_m, \sigma_m)$	Hyperpriors	$\mu_eta \sim N(0,5)$
			$\sigma_k \sim \text{Inv-}\chi^2(1)$
	$\delta_{lj} \sim N(\mu_{\delta}, \sigma_{\delta})$		$\sigma_m \sim \text{Inv-}\chi^2(1)$
	$eta_{kj} \sim N(\mu_eta, \sigma_eta)$		$\sigma_\delta \sim \text{Inv-}\chi^2(1)$
			$\sigma_{\beta} \sim \text{Inv-}\chi^2(1)$

Convergence Diagnostics – R-hat

Convergence Diagnostics – N_{eff}

Hierarchical Model

Model: trend component formulation

 $\operatorname{trend}_t = \operatorname{growth}_t + \operatorname{offset}_t$ $\operatorname{growth}_t = (k + A\delta)t$ $\operatorname{offset}_t = m - As\delta$ $(A)_{t's'} = t' > s'$

Model: seasonality

seasonality_{$$t$$} =

$$\sum_{k=1}^{K} \beta_{k,1} cos(2\pi k \frac{t}{T}) +$$

$$\beta_{k,2} sin(2\pi k \frac{t}{T})$$

```
transformed parameters {
  vector[T] growth = k + A * delta;
  vector[T] offset = m + A * (-s .* delta);
  vector[T] trend = (growth .* t) + offset;
  vector[T] seasonality = X * beta;
  vector[T] prediction = trend + seasonality;
model {
  k \sim normal(0, 5);
  m \sim normal(0, 5);
  delta \sim normal(0, 5);
  beta ~ normal(0, 5);
  sigma \sim normal(0, 0.5);
  y ~ normal(prediction, sigma);
```