Integrales

La Integral definida

Definición de la integral definida Si f es una función continua definida para $a \le x \le b$, divida el intervalo [a, b] en n subintervalos de igual ancho $\Delta x = (b - a)/n$. Sean $x_0 (= a), x_1, x_2, \ldots, x_n (= b)$ los puntos finales de estos subintervalos y sean $x_1^*1, x_2^*, \ldots, x_n^*$ los **puntos muestra** en estos subintervalos, de modo que x_i^* se encuentre en el i-ésimo subintervalo $[x_i, x_i]$. Entonces la **integral definida de** f, **de** a a b, es

siempre que este límite exista y dé el mismo valor para todas las posibles elecciones de los puntos muestra. Si existe, se dice que f es **integrable** en [a, b].

La suma

$$\sum_{i=1}^{n} f(x_i^*) \, \Delta x$$

que aparece en la definición 2 se llama suma de Riemann

Evaluación de integrales

Regla del punto medio

$$\int_a^b f(x) dx \approx \sum_{i=1}^n f(\bar{x}_i) \Delta x = \Delta x \left[f(\bar{x}_1) + \dots + f(\bar{x}_n) \right]$$

donde

y

$$\Delta x = \frac{b - a}{n}$$

$$\overline{x}_i = \frac{1}{2}(x_{i-1} + x_i)$$
 = punto medio de $[x_{i-1}, x_i]$

Propiedades de la integral definida

$$\int_{b}^{a} f(x) \ dx = \int_{a}^{b} f(x) \ dx$$

$$\int_a^a f(x) \ dx = 0$$

f(x)dx

Strydx

2.
$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

3.
$$\int_a^b cf(x) dx = c \int_a^b f(x) dx$$
, donde c es cualquier constante

4.
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

$$\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$$

6. S
$$f(x) \ge 0$$
 para $a \le x \le b$, entonces $\int_a^b f(x) dx \ge 0$.

7. Si
$$f(x) \ge g(x)$$
 para $a \le x \le b$, entonces $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

8. Si
$$m \le f(x) \le M$$
 para $a \le x \le b$, entonces

$$m(b-a) \le \int_a^b f(x) dx \le \underline{M(b-a)}$$

$$|f(x)| dx = m(b-a)^{b}$$

$$|f(x)| dx \leq KM.$$

$$|f(x)| dx \leq M(b-a)$$

$$|f(x)| dx \leq M(b-a)$$

$$f(x) = \cos x, \qquad 0 \le x \le 3\pi/4$$

evalúe la suma de Riemann con n=6 tomando los puntos finales izquierdos como los puntos muestra (Dé su respuesta redondeada a seis decimales). ¿Qué representa la suma de Riemann? Ilustre su respuesta con un diagrama.

SUMA PIEMANN ECOS(Xi) DX Z=0 SUMA AREA RELANGULOS

LA SUMA DE RIEMANN 11 REPRESENTA AREANETA Se muestra la gráfica de g. Estime $\int_{-2}^{4} g(x) dx$ con seis subintervalos usando (a) los puntos finales derechos, (b) los puntos finales izquierdos y (c) los puntos medios.

$$R_{4}$$

$$Ax = 4-(2)$$

$$(4)$$

$$g(x)dx$$

$$(-2)$$

En la tabla se dan los valores de una función obtenida a partir de un experimento. Con ellos estime $\int_{3}^{9} f(x) dx$ usando tres subintervalos iguales con (a) los puntos finales derechos, (b) los puntos finales izquierdos y (c) los puntos medios. Si se sabe que la función es decreciente, ¿puede decir si sus estimaciones son menores o mayores que el valor exacto de la integral?

x	3	4	5	6	7	8	9	8
f(x)	-3.4	-2.1	-0.6	0.3	0.9	1.4	1.8	

$$\int_{3}^{9} f(x) dx \approx f(5) \cdot 2 + f(7) 2 + f(9) 2.$$

$$\sum_{3}^{9} \sim -0.6(2) + 0.9(3) + 1.8 \cdot 2$$

$$\sum_{4}^{9} f(x) dx \approx -1.2 + 1.8 + 3.6 = 4.2 \text{ APPA}$$

$$\sum_{5}^{6} \text{DPBASO} \text{EJE} x$$

$$\sum_{4}^{6} \text{DPBASO} \text{EJE} x$$

17–20 Exprese cada uno de los límites siguientes como una integral definida sobre el intervalo dado.

