Fuel Economy Analysis

This demo is an example of performing data mining on historical fuel economy data. We have data from various cars built from year 2000 up to 2012.

Import Data into Table

Import from Excel using modified auto-generated function from Import Tool

```
carData = importfile('2006dat.xlsx');
```

Visualize

Plot MPG versus Rated Horsepower

createfigure(carData.RatedHP, carData.MPG);

Examine Grouping Effects of Categorical Data

In order to extract all "cars":

```
carIDs = carData.Car_Truck == "car";
```

In order to extract "city" data for "trucks":

```
city_truckIDs = (carData.City_Highway == "city" & carData.Car_Truck == "truck");
```

City versus Highway

```
cityIDs = carData.City_Highway == "city";
highwayIDs = carData.City_Highway == "highway";
```

Grouped Visualizations

Scatter plot by group.

Extract Data for Curve Fitting

Create these variables for Curve Fitting App

```
RatedHPCity = carData.RatedHP(cityIDs);
MPGCity = carData.MPG(cityIDs);
% Use the App to develop a curve fit.
```

Curve Fitting

Equation:

$$MPG = b_1 + \frac{b_2}{RatedHP}$$

We can solve this using the Curve Fitting Tool

cftool(carData.RatedHP, carData.MPG)

The following is a modified version of the auto-generated m-file from cftool.

```
cf = createFit(carData.RatedHP, carData.MPG);
```


Plot Data and Model

The result from the Curve Fitting Toolbox has a plot method for displaying the result graphically. We can choose to display the prediction bounds for the fit.

```
figure
hh = plot(cf, 'r', carData.RatedHP, carData.MPG, 'predobs', 0.95);
hh(2).LineWidth = 2;
for ii = [3 4]
    hh(ii).LineStyle = '-';
    hh(ii).Color = [0 0.5 0];
end
```


Plot of Data and Model (for different groups)

We will apply the similar modeling technique to the data for different combinations of groups (Car-Truck and City-Highway)

Model different combinations:

```
[mdl,gof] = modelMPG(carData, 'car', 'city')
```

```
car - city
   70
                                                           data
                                                           fitted curve
   60
                                                           prediction bounds
   50
   40
MPG
   30
   20
   10
    0
                200
                                        600
     0
                            400
                                                   800
                                                               1000
                                                                          1200
                               Rated Horsepower
```

```
mdl =
    Linear model:
    mdl(x) = a + b*1/x
    Coefficients (with 95% confidence bounds):
    a = 9.443 (8.874, 10.01)
    b = 2784 (2675, 2894)
gof = struct with fields:
    sse: 5.7126e+03
    rsquare: 0.7763
        dfe: 721
adjrsquare: 0.7760
    rmse: 2.8148
```

```
[mdl,gof] = modelMPG(carData, 'car', 'highway')
```

```
car - highway
   90
                                                         data
                                                         fitted curve
   80
                                                         prediction bounds
   70
   60
D 50
   40
   30
   20
   10
                                      600
     0
               200
                           400
                                                 800
                                                            1000
                                                                       1200
                              Rated Horsepower
```

```
mdl =
    Linear model:
    mdl(x) = a + b*1/x
    Coefficients (with 95% confidence bounds):
    a = 21.12 (20.37, 21.86)
    b = 3061 (2918, 3205)
gof = struct with fields:
    sse: 9.6775e+03
    rsquare: 0.7108
        dfe: 715
adjrsquare: 0.7104
    rmse: 3.6790
```

[mdl,gof] = modelMPG(carData, 'truck', 'city')

```
truck - city
   40
                                                          data
                                                          fitted curve
   35
                                                          prediction bounds
   30
   25
MPG
   20
   15
   10
    5
                                       300
    100
             150
                      200
                              250
                                                350
                                                        400
                                                                 450
                                                                          500
                               Rated Horsepower
```

```
mdl =
    Linear model:
    mdl(x) = a + b*1/x
    Coefficients (with 95% confidence bounds):
    a = 8.685 (7.729, 9.641)
    b = 2175 (1977, 2373)
gof = struct with fields:
    sse: 4.4074e+03
    rsquare: 0.4689
        dfe: 527
adjrsquare: 0.4679
    rmse: 2.8919
```

```
[mdl,gof] = modelMPG(carData, 'truck', 'highway')
```



```
mdl =
    Linear model:
    mdl(x) = a + b*1/x
    Coefficients (with 95% confidence bounds):
    a = 16.34 (15.13, 17.54)
    b = 2471 (2221, 2721)
gof = struct with fields:
        sse: 6.8494e+03
        rsquare: 0.4176
        dfe: 526
adjrsquare: 0.4165
        rmse: 3.6086
```

Copyright 2017 The MathWorks, Inc.