

Département MIDO, première année

Analyse 1

Fondements de l'analyse réelle Exercices

Responsable de l'UE : Emeric Bouin

(version du 27 novembre 2024)

 $Responsable\ de\ l'UE: Emeric\ Bouin$

CEREMADE, Université Paris-Dauphine, 75016 Paris, France.

 $E ext{-}mail: {\tt bouin@ceremade.dauphine.fr}$

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Partage dans les mêmes conditions 4.0 International".

Il est protégé par le code de la propriété intellectuelle : toute utilisation illicite pourra entraı̂ner des poursuites disciplinaires ou judiciaires.

Ce polycopié a été créé avec IATEX; pour la mise en forme, nous avons adapté des fichiers de style fournis par la Société Mathématique de France, notamment la classe smfbook.

ANALYSE 1

Responsable de l'UE : Emeric Bouin

TABLE DES MATIÈRES

Exercices du chapitre 1	1
Exercices du chapitre 2	7
Exercices du chapitre 3	16
Exercices du chapitre 4	20

EXERCICES DU CHAPITRE 1

Rappels sur les quantificateurs

Exercice 1

- 1. Ecrire la négation de chacune des assertions suivantes, puis dire (en justifiant) si chaque assertion est vraie ou fausse.
 - (a) $\forall x \in \mathbb{R}, \quad \forall y \in \mathbb{R}, \quad x + y > 0$;
 - (b) $\forall x \in \mathbb{R}, \quad \exists y \in \mathbb{R}, \quad x + y > 0$;
 - (c) $\exists x \in \mathbb{R}, \quad \forall y \in \mathbb{R}, \quad x + y > 0$;
 - (d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x$.

Dans tous les cas, écrire leur négation en termes de quantificateurs.

- 2. Soit f une application de \mathbb{R} dans \mathbb{R} . Écrire à l'aide de quantificateurs les assertions
 - (a) « f est la fonction constante de valeur 1 » ;
 - (b) « f n'est pas la fonction constante de valeur 1 »;
 - (c) « f est une fonction constante »;
 - (d) « f n'est pas une fonction constante ».

Exercice 2

- 1. Soient x, y deux réels. Montrer l'équivalence : $x = y \iff (\forall \varepsilon > 0, |x y| < \varepsilon)$. (nous utiliserons souvent ce résultat dans la suite du cours)
- 2. Soient x, y deux réels. Montrer l'équivalence : $x \le y \iff (\forall \epsilon > 0, x < y + \epsilon)$.
- 3. Soient x, y deux réels. On suppose : $\forall n \in \mathbb{N}^*, x \leq y < x + \frac{1}{n}$. Montrer que x = y.

Exercice 3

Dire si les assertions suivantes sont vraies ou fausses, en justifiant soigneusement votre réponse.

- 1. La somme d'un nombre rationnel et d'un nombre irrationnel est irrationnelle.
- 2. La somme de deux nombres irrationnels positifs est irrationnelle.
- 3. La racine carrée d'un nombre irrationnel positif est irrationnelle.

Exercice 4 (\star)

Soit n un entier naturel. Montrer qu'il y a équivalence entre

- (a) $\sqrt{n} \in \mathbb{Q}$
- (b) n est un carré parfait (c'est-à-dire : il existe un entier k de \mathbb{N} tel que $n=k^2$).

Parties majorées, minorées, borne supérieure et inférieure : premières manipulations

Exercice 5 Vrai ou faux? Justifier vos réponses.

- 1. (a) $\{x \in \mathbb{R} \mid \cos(x) + x > 0\}$ est borné.
 - (b) $\{\cos(x) + x, x \in \mathbb{R}^+\}$ est minoré.
 - (c) $\{\cos(x) + x, x \in \mathbb{R}^+\}$ est majoré.
- 2. (a) $\mathbb{Q} \cap [-7, 4]$ admet un plus petit élément.
 - (b) $\mathbb{Q} \cap [-7, 4]$ admet un plus grand élément.
 - (c) \mathbb{R}_{-}^{*} admet un plus grand élément.
- 3. (a) $\{n \in \mathbb{N} \mid n^2 + 9 > n\}$ admet un plus petit élément.
 - (b) $\{n \in \mathbb{N} \mid n^2 + 9 < n\}$ admet un plus petit élément.
 - (c) $\{n \in \mathbb{N} \mid n^2 + 9 > n\}$ admet un plus grand élément.

Exercice 6

- 1. Vérifier que \mathbb{R}_{-}^{*} admet une borne supérieure et que : $\sup(\mathbb{R}_{-}^{*}) = 0$.
- 2. Vérifier que \mathbb{R}_{-}^* n'a pas de borne inférieure.
- 3. L'ensemble $\bigcup_{n\in\mathbb{N}}[2n,2n+1[$ admet-il une borne supérieure? inférieure? Si oui, que valent-elles?
- 4. Mêmes questions pour les ensembles $\bigcup_{n\in\mathbb{Z}}[2n,2n+1[$ et $\bigcup_{n\in\mathbb{N}^{\star}}[\frac{1}{2n+1},\frac{1}{2n}[$.

Exercice 7

Soit A un sous-ensemble non vide de \mathbb{R} . On définit

$$-A = \{-a, \ a \in A\}.$$

Donnez des conditions nécessaires et suffisantes pour que -A soit majoré, minoré, borné. Dans le cas où elles existent, que valent $\sup(-A)$ et $\inf(-A)$?

Exercice 7 bis

Soit A une partie non vide de \mathbb{R} . On suppose qu'il existe des réels a,b vérifiant :

$$\begin{cases} (\mathrm{i}) & b>a>0\\ (\mathrm{ii}) & A\subset [a,b]. \end{cases}$$

On considère la partie $B = \{\frac{1}{x}, x \in A\}.$

- 1. Montrer que B est bornée.
- 2. Exprimer $\sup(B)$ et $\inf(B)$ en fonction de $\sup(A)$ et $\inf(A)$.

Exercice 8

Soit A une partie non vide de \mathbb{R} ; notons $A^c = \mathbb{R} - A$ son complémentaire dans \mathbb{R} .

- 1. Montrer que si l'ensemble $\{M \in \mathbb{R},]M, +\infty[\subset A\}$ admet une borne inférieure, il admet un plus petit élément.
- 2. Montrer que si A^c admet une borne supérieure, alors $\sup(A^c) = \min\{M \in \mathbb{R}, \]M, +\infty[\subset A\}.$
- 3. Montrer qu'il est impossible que A et A^c soient tous les deux majorés.

Exercice 9 Cet exercice est long!

Pour chacun des ensembles

- $A = [0, 1] \cup \{2\},$
- $B = \{e^n; n \in \mathbb{N}\},\$
- $\bullet \ C = \{x^2 + 3x + 1; \ x \in]0,1]\},$

- $D = \{\frac{1}{n} + (-1)^n; n \in \mathbb{N}^*\},$ $E = \{x \in \mathbb{R}^*; -2 < x + \frac{1}{2x} \le 2\},$
- $F = \left\{ \sum_{k=0}^{n} \binom{n}{k} 2^{-k}, n \text{ pair } \right\},$
- (a) essayer de s'en faire une idée par un dessin,
- (b) deviner s'il est majoré, minoré, borné, s'il a une borne supérieure, une borne inférieure, un plus grand élément, un plus petit élément, donner les valeurs de ces quantités lorsqu'elles existent.
- (c) Prouver vos affirmations.

Exercice 10

- 1. Soit $A = \left\{ \frac{1}{n} + \frac{1}{m}, (m, n) \in \mathbb{N}^* \times \mathbb{N}^* \right\}$.
 - (a) Montrer que A admet une borne supérieure et une borne inférieure.
 - (b) Déterminer $\sup(A)$ et $\inf(A)$.
- 2. Mêmes questions pour $B = \left\{ \frac{1}{n} \frac{1}{m}, (m, n) \in \mathbb{N}^* \times \mathbb{N}^* \right\}$.

Exercice 11

Soit $A = \{0, 1; 0, 11; 0.101; 0.1001; 0, 10001; ...\}$. Déterminer $\sup(A)$ et $\inf(A)$.

Exercice 12

Soient A et B deux parties non vides de \mathbb{R} vérifiant :

$$\forall a \in A, \forall b \in B, \ a \leq b.$$

- 1. Montrer que $\sup(A)$ et $\inf(B)$ existent et montrer l'inégalité : $\sup(A) \leq \inf(B)$.
- 2. Montrer l'équivalence : $\sup(A) = \inf(B) \iff \forall \varepsilon > 0, \ \exists a \in A, \ \exists b \in B, \ b-a \leq \varepsilon.$ On dit dans ce cas que A et B sont adjacentes.
- 3. Donner un exemple de parties adjacentes.

Exercice 13

Soit n un élément de \mathbb{N}^* . On considère $A_n = \{k + \frac{n}{k}, k \in \mathbb{N}^*\}$.

- 1. Étudier la fonction $x \mapsto x + \frac{n}{x}$ définie sur \mathbb{R}_+^* .
- 2. Montrer que A_n admet une borne inférieure, mais pas de borne supérieure.
- 3. Montrer l'inégalité $\inf(A_n) \geq 2\sqrt{n}$. À quelle condition y a-t-il égalité?
- 4. Montrer que A_n admet un plus petit élément.

Intervalles

Exercice 14

1. Soient a et b deux réels vérifiant a < b. Montrer l'égalité

$$[a,b] = \{ (1-t)a + tb, t \in [0,1] \}.$$

2. Considérons l'ensemble

$$I = \{ x - y , x \in [-1, 4], y \in [-3, -1] \}.$$

Montrer qu'il existe deux réels a et b vérifiant : I = [a, b]. (On pourra commencer par deviner ce que valent $a \ et \ b.)$

Exercice 15

1. Montrer que la réunion de deux intervalles n'est pas un intervalle en général.

2. Montrer que l'intersection de deux intervalles est un intervalle (éventuellement vide).

Exercice 16 (\star)

1. Soit I un intervalle de \mathbb{R} . Montrer que I est un intervalle ouvert si et seulement si

$$\forall x \in I, \exists \varepsilon > 0,]x - \varepsilon, x + \varepsilon [\subset I.$$

2. Montrer que l'intersection de deux intervalles ouverts est un intervalle ouvert (éventuellement vide).

Partie entière

Exercice 17

- 1. Soit $\varepsilon > 0$. Quels sont les entiers naturels n vérifiant : $\frac{1}{n^2+1} < \varepsilon$?
- 2. Soit A > 0. Quels sont les entiers naturels n vérifiant : $\sqrt{n^2 n} > A$?

Exercice 17 bis

- 1. Soit $\varepsilon > 0$. Quels sont les entiers n de \mathbb{N}^* vérifiant : $\frac{1}{\ln(n)} < \varepsilon$?
- 2. Soit A > 0. Quels sont les entiers n vérifiant : $3^n > A$?

Exercice 18

- 1. Montrer que pour tout x de \mathbb{R} , on a : E(x+1) = E(x) + 1.
- 2. Montrer que pour tout (x,y) de \mathbb{R}^2 , on a : $E(x) + E(y) \leq E(x+y) \leq E(x) + E(y) + 1$.

Exercice 18 bis

- 1. Montrer que pour tout x de \mathbb{R} , on a : $E(2x) = E(x) + E\left(x + \frac{1}{2}\right)$.
- 2. (\star) Montrer : $\forall n \in \mathbb{N}^*, \, \forall x \in \mathbb{R}, \, E\left(\frac{E(nx)}{n}\right) = E(x).$

Exercice 19

- 1. Soit n un élément de \mathbb{N}^* . En utilisant la formule du binôme, montrer que $(2+\sqrt{3})^n+(2-\sqrt{3})^n$ est un entier pair.
- 2. En déduire que pour tout n de \mathbb{N}^{\star} , l'entier $E\left((2+\sqrt{3})^n\right)$ est impair.

Exercice 20

- 1. Montrer: $\forall x \in \mathbb{R}, \ E(x) + E(-x) = \begin{cases} 0 \text{ si } x \in \mathbb{Z}, \\ -1 \text{ si } x \notin \mathbb{Z}. \end{cases}$
- 2. (\star) En déduire que si p,q sont deux entiers naturels non nuls premiers entre eux, alors

$$\sum_{k=1}^{q-1} E\left(k\frac{p}{q}\right) = \frac{(p-1)(q-1)}{2}.$$

Indication: on pourra faire le changement de variable k' = q - k dans la somme.

Parties bornées de R

Exercice 21

Montrer que les ensembles suivants sont bornés :

- 1. $\{x \in \mathbb{R} \mid x^2 < 12\};$
- 2. $\{x^7 8x^3 5, x \in]-2, 2[\};$
- 3. $\left\{ \left(\sin(x) + \frac{3}{x^2 + 4} \right)^5, \ x \in \mathbb{R} \right\}$.

Exercice 22

Soit A une partie non vide et bornée de \mathbb{R} . On définit

$$B = \{ |x - y|, (x, y) \in A^2 \}.$$

- 1. Montrer que B admet une borne supérieure et une borne inférieure.
- 2. Montrer que B admet un plus petit élément.
- 3. Montrer l'inégalité : $\sup(B) \le (\sup(A) \inf(A))$.
- 4. Montrer l'assertion suivante : $\forall \varepsilon > 0, \ \exists (x,y) \in A^2, \ |x-y| > \sup(A) \inf(A) 2\varepsilon$.
- 5. En déduire l'égalité $\sup(B) = (\sup(A) \inf(A))$.

Exercice 23

Soit A et B des parties non vides et bornées de \mathbb{R} . Montrer que $C=\{a+e^b-a^2\ ,\ a\in A\ ,\ b\in B\}$ est bornée.

Exercice 23 bis

Soit A et B des parties non vides de $\mathbb R$ avec A bornée. Montrer que $D = \{\ln(1+a^2) + \frac{b}{1+|b|} - 2$, $a \in A$, $b \in B\}$ est bornée

Exercice 24

Montrer que l'ensemble $\left\{\frac{2xy}{x^2+y^2}; \ x>0 \ , y\geq 0\right\}$ est borné.

Parties denses de \mathbb{R}

Exercice 25

Soit U une partie dense de \mathbb{R} . Montrer que si a et b sont deux réels et a < b, alors l'ensemble $U \cap [a, b]$ est infini.

Exercice 26

Soit U une partie dense dans \mathbb{R} .

- 1. Montrer que $V = \{2x 1, x \in U\}$ est dense dans \mathbb{R} .
- 2. Montrer que $W = \{\ln(|x|), x \in U \text{ et } x \neq 0\}$ est dense dans \mathbb{R} .

Exercice 27

Soit U l'ensemble des nombres rationnels ayant, dans leur écriture sous forme de fraction irréductible, un dénominateur impair. Montrer que U est dense dans \mathbb{R} .

Exercice 28 (\star)

Soit A une partie de \mathbb{R} vérifiant les deux propriétés suivantes :

$$\left\{ \begin{array}{l} \text{(i) } \forall x \in \mathbb{R}, \ \exists (a,b) \in A^2, \ a < x < b \\ \text{(ii) } \forall (a,b) \in A^2, \ \frac{a+b}{2} \in A. \end{array} \right.$$

Montrer que A est dense dans \mathbb{R} . Donner un exemple de sous-ensemble non trivial de \mathbb{R} vérifiant les points (i) et (ii).

Exercice 29

Donne la borne supérieure de l'ensemble

$$A = \{ q \in \mathbb{Q}; \ q^2 < 2 \}.$$

Exercices de synthèse

Exercice 30 Révisions (I)

Étudier les ensembles suivants (majoré, minoré, borné, admet un plus petit/grand élément).

- $\bullet \ A =]-\infty, 1[\cup\{10\}.$
- $B = \left\{ \frac{n}{\sqrt{|n|+1}}; \ n \in \mathbb{Z} \right\}.$
- $C = \mathbb{Q} \cap]-\sqrt{3},\sqrt{7}]$

$$\bullet D = \left\{ \frac{x+1}{x+2} \, ; \ x \le -3 \right\}.$$

Exercice 31 Révisions (II)

Dire si les assertions suivantes sont vraies ou fausses, en justifiant votre réponse

- 1. L'ensemble $\{x\in\mathbb{R}\ ,\, |\tan(x)|<1\}$ est borné.
- 2. Pour tout réel x, on a $E\left(\frac{-1}{1+x^2}\right)=-1$.
- 3. Pour tous réels x et y, on a $|x + y| \ge |y| |x|$.
- 4. L'ensemble $\{x \in \mathbb{R}, \pi x \notin \mathbb{Q}\}$ est dense dans \mathbb{R} .

Exercice 32 Inclusion

Soit A et B deux parties non vides de \mathbb{R} telles que $A \subset B$.

- 1. On suppose ici que B est majorée. Montrer que A admet une borne supérieure et que $\sup(A) < \sup(B)$.
- 2. On suppose ici que B est minorée. Montrer que A admet une borne inférieure et que $\inf(B) \leq \inf(A)$.

Exercice 33 Un exercice sur la densité

Soit $A = \{x \in \mathbb{R} ; \exists p, q \in \mathbb{Z}, x = p + q\sqrt{2}\}$. Le but de l'exercice est de montrer que A est dense dans \mathbb{R} . On note dans la suite $u = \sqrt{2} - 1$.

- 1. Montrer que pour tout $k \in \mathbb{Z}$ et tout $x \in A$, on a : $kx \in A$.
- 2. Montrer que pour tout n de \mathbb{N} , u^n appartient à A.
- 3. Montrer que $0 < u < \frac{1}{2}$. En déduire que : $\forall n \in \mathbb{N}^*, 0 < u^n < \frac{1}{n}$.
- 4. Soient a et b des réels vérifiant a < b. Montrer qu'il existe un entier $n \ge 1$ tel que : $0 < u^n < b a$.
- 5. (*) Conclure.

Exercice 34

Soit f une fonction de \mathbb{R} dans \mathbb{R} vérifiant :

- (i) f n'est pas la fonction nulle
- (ii) $\forall (x,y) \in \mathbb{R}^2$, f(x+y) = f(x) + f(y)
- (iii) $\forall (x, y) \in \mathbb{R}^2$, f(xy) = f(x)f(y).
 - 1. (a) Montrer que f(0) = 0 et f(1) = 1.
 - (b) Montrer que f(x) = x pour tout x de \mathbb{N} , puis pour tout x de \mathbb{Z} , puis pour tout x de \mathbb{Q} .
 - 2. (a) Soit x un nombre réel. Montrer que si $x \ge 0$, alors $f(x) \ge 0$.
 - (b) En déduire que f est croissante.
 - 3. (a) Montrer que pour tout réel $x \notin \mathbb{Q}$ et tout $n \in \mathbb{N}^*$, il existe $r \in \mathbb{Q}$, $r < x < r + \frac{1}{n}$.
 - (b) Montrer que pour tout $x \in \mathbb{R}$, f(x) = x.

Aller plus loin

Les exercices qui suivent sont difficiles.

Exercice 35 (\star)

Soit I un intervalle ouvert. Est-il possible de trouver deux intervalles ouverts non vides I_1 et I_2 vérifiant : $I = I_1 \cup I_2$ et $I_1 \cap I_2 = \emptyset$?

Exercice 36 (\star)

- 1. Soit un réel a. Montrer que $\mathbb{Z} + a\mathbb{Z}$ est dense dans \mathbb{R} si et seulement si $a \notin \mathbb{Q}$.
- 2. Calculer, en justifiant votre réponse, la borne supérieure et la borne inférieure de l'ensemble $B = \{\cos(n); n \in \mathbb{Z}\}.$

EXERCICES DU CHAPITRE 2

Manipulations de la définition

Exercice 1 Limites classiques

- 1. Soit α un réel strictement positif. Montrer que la suite $\left(\frac{1}{n^{\alpha}}\right)_{n\in\mathbb{N}^{\star}}$ tend vers zéro.
- 2. Soit a un réel appartenant à] -1,1[. Montrer que la suite $(a^n)_{n\in\mathbb{N}^*}$ tend vers zéro.
- 3. Soit a un réel appartenant à] -1,1[. Rappeler la formule donnant, pour chaque n de \mathbb{N}^* la valeur de $u_n = \sum_{k=0}^n a^k$.

En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge, en précisant sa limite.

Exercice 2

Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle.

- 1. (a) Écrire avec des quantificateurs ce que signifie l'expression : « u est convergente ».
 - (b) Écrire avec des quantificateurs ce que signifie l'expression : « u est divergente ».
- 2. On suppose qu'il existe un réel α et un nombre $\varepsilon > 0$ vérifiant : $|u_n \alpha| \ge \varepsilon$ à partir d'un certain rang. Montrer qu'il est impossible que $(u_n)_{n \in \mathbb{N}}$ converge vers α .

Exercice 3 Versions équivalentes de la définition

- 1. Soient ℓ un nombre réel et $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Montrer que les deux assertions suivantes sont équivalentes :
 - (a) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\forall n \geq N$, $|u_n \ell| < \varepsilon$
 - (b) $\forall \tilde{\varepsilon} > 0$, $\exists \tilde{N} \in \mathbb{N}$, $\forall n \geq \tilde{N}$, $|u_n \ell| \leq \tilde{\varepsilon}$
 - « Dans la définition de la limite, on peut indifféremment mettre $|u_n \ell| < \varepsilon$ ou $|u_n \ell| \le \varepsilon$, ça ne change pas la notion »
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Montrer que les deux assertions suivantes sont équivalentes :
 - (a) $\forall A > 0$, $\exists N \in \mathbb{N}$, $\forall n \ge N$, $u_n > A$
 - (b) $\forall \tilde{A} \in \mathbb{R}, \quad \exists \tilde{N} \in \mathbb{N}, \quad \forall n \geq \tilde{N}, \quad u_n \geq \tilde{A}$

Exercice 4 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle convergente. Notons ℓ sa limite. Considérons un réel a vérifiant : $\ell < a$. Montrer qu'à partir d'un certain rang, on a : $u_n < a$.

Exercice 5 Montrer en utilisant seulement la définition de la limite que les suites suivantes convergent vers 2 (a) $u_n = \frac{4n+1}{2n+3}$, (b) $v_n = \frac{2n^2+1}{n^2-1}$, (c) $w_n = \frac{2\sqrt{n}}{\sqrt{n}+1}$, (d) $x_n = \arctan\left(\frac{1}{n}\right) + 2$, (e) $y_n = \ln\left(e^2 + \frac{1}{n^2}\right)$.

Exercice 6 Montrer que la suite suivante converge

$$u_n = \frac{\sin(n^2) + \arctan(n)}{n^2 + 1}.$$

Exercice 7 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. Montrer que si u est convergente, alors à partir d'un certain rang, on a : $|u_{n+1} u_n| < 1$.
- 2. On suppose maintenant que u est à valeurs entières, c'est-à-dire : $\forall n \in \mathbb{N}, u_n \in \mathbb{Z}$. Montrer que si u est convergente, alors u est stationnaire.

Exercice 8

- 1. Soit U une partie de \mathbb{R} . Montrer que les assertions suivantes sont équivalentes :
 - (a) La partie U est dense dans \mathbb{R} .
 - (b) Pour tout réel x et pour tout $\varepsilon > 0$, l'intersection $U \cap]x \varepsilon, x + \varepsilon[$ est non vide.
 - (c) Pour tout réel x et pour tout n de \mathbb{N}^* , l'intersection $U \cap \left[x \frac{1}{n}, x + \frac{1}{n}\right]$ est non vide.
 - (d) Pour tout réel x, il existe une suite $(u_n)_{n\in\mathbb{N}}$ dont tous les termes appartiennent à U et qui converge vers x.
- 2. (\star) Montrer que si x est un nombre réel, alors il existe une suite *croissante* de nombres rationnels qui tend vers x.

Limites infinies, manipulations de la définition

Exercice 9 Limites classiques

- 1. Soit α un réel strictement positif. Montrer que la suite $(n^{\alpha})_{n\in\mathbb{N}}$ tend vers $+\infty$.
- 2. Soit a un réel vérifiant : a > 1. Montrer que la suite $(a^n)_{n \in \mathbb{N}}$ tend vers $+\infty$.

Exercice 10

Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui tend vers $+\infty$. Montrer (à partir de la définition) que la suite $(E(u_n))_{n\in\mathbb{N}}$ tend aussi vers $+\infty$.

Exercice 11 Montrer en utilisant seulement la définition de la limite que la suite suivante tend vers $+\infty$

$$u_n = \frac{n^3}{n+1}.$$

Opérations, encadrements, croissances comparées : exercices concrets

Exercice 12 Soit x un nombre réel. On considère la suite u définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{E(x) + E(2x) + \dots + E(nx)}{n^2}.$$

Vérifier que $(u_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.

Exercice 13 On considère la suite u définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \sum_{k=0}^n \frac{1}{n + \sqrt{k}}.$$

- 1. Montrer que pour tout k de $\{0,...,n\}$, on a : $\frac{1}{n+\sqrt{n}} \le \frac{1}{n+\sqrt{k}} \le \frac{1}{n}$.
- 2. En déduire que $(u_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.

Exercice 14

- 1. Montrer que pour tout réel positif x, on a, $x \frac{x^2}{2} \le \ln(1+x) \le x$.
- 2. Soit $a \in \mathbb{R}$. Montrer, en utilisant la définition de la limite, que $\left(e^{\frac{a}{n}}\right)_{n \in \mathbb{N}^*}$ tend vers 1.
- 3. Montrer, en utilisant la définition de la limite, que $(e^{\sqrt{n}})_{n\in\mathbb{N}}$ tend vers $+\infty$.
- 4. En déduire la convergence des suites :

(a)
$$\left(\left(1+\frac{1}{n^2}\right)^n\right)_{n\in\mathbb{N}^{\star}}$$
,

(b)
$$\left(\left(1+\frac{1}{\sqrt{n}}\right)^n\right)_{n\in\mathbb{N}^*}$$

(c)
$$\left(\left(1+\frac{1}{n}\right)^n\right)_{n\in\mathbb{N}^*}$$
.

Exercice 15

Soient (u_n) , (v_n) deux suites réelles dont tous les termes appartiennent à [0,1]. On suppose : $\lim_{n\to+\infty} u_n v_n = 1$. Montrer que (u_n) et (v_n) convergent vers 1.

Exercice 16

Soit $\alpha < 1$. Montrer que la suite $u_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$ diverge. On pourra considérer $u_{2n} - u_n$.

Opérations, encadrements, croissances comparées : exercices abstraits

Exercice 17 Suites tendant vers zéro « plus vite qu'une suite géométrique ». Soit $u = (u_n)_{n \in \mathbb{N}}$ une suite réelle qui ne s'annule pas.

- 1. Dans cette question on suppose qu'il existe $\alpha \in [0,1[$ vérifiant : $\left|\frac{u_{n+1}}{u_n}\right| \le \alpha$ à partir d'un certain rang. Montrer que u converge vers zéro.
- 2. Dans cette question on suppose qu'il existe $\ell \in]-1,1[$ vérifiant : $\frac{u_{n+1}}{u_n} \underset{n \to \infty}{\longrightarrow} \ell$. Montrer que u converge vers zéro.
- 3. Applications.
 - (a) Soit a un réel. Étudier la convergence de $\left(\frac{a^n}{n!}\right)_{n\in\mathbb{N}}.$
 - (b) Soit $a \in [-1,1]$ et p un entier naturel non nul. Étudier la convergence de $\left(\frac{a^n}{n^p}\right)_{n \in \mathbb{N}}$

Exercice 17 bis Soit $(u_n)_{n\in\mathbb{N}}$ une suite dont tous les termes sont strictement positifs.

- 1. Dans cette question on suppose qu'il existe $\alpha > 1$ vérifiant : $\frac{u_{n+1}}{u_n} > \alpha$ à partir d'un certain rang. Montrer que u tend vers $+\infty$.
- 2. On suppose que $\left(\frac{u_{n+1}}{u_n}\right)$ converge vers un réel strictement supérieur à 1. Montrer que u tend vers $+\infty$.
- 3. Applications.
 - (a) Soit a > 1 et p un entier naturel non nul. Étudier la convergence de $\left(\frac{a^n}{n^p}\right)_{n \in \mathbb{N}}$.
 - (b) Étudier la convergence de $\left(\frac{n^n}{n!}\right)_{n\in\mathbb{N}}$ (on pourra utiliser l'exercice 14).

Exercice 18

Dans cet exercice, on propose une preuve du théorème des croissances comparées.

- 1. Dans cette question on montre que les suites $u = \left(\frac{\ln(n)}{n}\right)_{n \in \mathbb{N}^{\star}}$ et $v = \left(\frac{\ln(\ln(n))}{\ln(n)}\right)_{n \in \mathbb{N}^{\star}}$ convergent vers zéro.
 - (a) Vérifier l'inégalité suivante : $\forall t > 0$, $\ln(t) \le t 1$.
 - (b) En déduire l'encadrement : $\forall n \in \mathbb{N}^{\star}, \quad 0 \leq \frac{\ln(n)}{n} \leq 2\frac{\sqrt{n}-1}{n}$, puis vérifier que u converge vers zéro.
 - (c) En utilisant l'inégalité (a), vérifier que v converge vers zéro.
- 2. Soient a et b deux réels strictement positifs. Montrer que $\left(\frac{e^{an}}{n^b}\right)_{n\in\mathbb{N}^*}$ tend vers $+\infty$.
- 3. Soient a et b deux réels strictement positifs. Montrer que $\left(\frac{n^b}{\ln(n)^c}\right)_{n\geq 2}$ tend vers $+\infty$.
- 4. Soient a, b et c des réels strictement positifs. Montrer que $\left(\frac{e^{an}}{n^b \ln(n)^c}\right)_{n \ge 2}$ tend vers $+\infty$.

Suites monotones, suites adjacentes

Exercice 19

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante qui converge vers zéro. Montrer que $(u_n)_{n\in\mathbb{N}}$ est positive.
- 2. Soit $(u_n)_{n\geq 0}$ une suite croissante non majorée. Montrer que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.

3. Soit $(u_n)_{n\geq 0}$ une suite croissante vérifiant $u_n\neq 0$ pour tout entier n. Que dire de la suite $\left(\frac{1}{u_n}\right)_{n\in\mathbb{N}}$?

Exercice 20

Montrer que la suite $u_n = \sum_{k=0}^n \ln\left(1 + \frac{1}{2^k}\right)$ converge. On pourra utiliser l'exercice 14.

Exercice 21

- 1. Montrer que pour $k \ge 2$, $\frac{1}{k^2} \le \frac{1}{k-1} \frac{1}{k}$. En déduire que la suite $u_n = \sum_{k=1}^n \frac{1}{k^2}$ converge.
- 2. Montrer que pour tout $\alpha \geq 2$, la suite $u_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$ converge.

Exercice 22

On définit une suite $(u_n)_{n\in\mathbb{N}}$ en posant : $u_1=1$ et $u_{n+1}=u_n\cdot\left(1-\frac{1}{(n+1)^2}\right)$ pour $n\geq 1$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente, sans trouver sa limite.
- 2. Montrer qu'en fait, $u_n = \frac{n+1}{2n}$ pour tout $n \ge 1$. Quelle est la limite de $(u_n)_{n \in \mathbb{N}}$?

Exercice 23

Soit $([a_n, b_n])_{n \in \mathbb{N}}$ une suite de segments emboîtés. On suppose que $(b_n - a_n)_{n \in \mathbb{N}}$ tend vers zéro. Montrer que l'intersection $\bigcap_{n \in \mathbb{N}} [a_n, b_n]$ est un singleton.

Exercice 24 Soient x et y des réels strictement positifs avec x < y. On définit $a_0 = y$, $b_0 = x$ et pour tout n de \mathbb{N} , $a_{n+1} = \frac{a_n + b_n}{2}$ et $b_{n+1} = \sqrt{a_n b_n}$.

- 1. Montrer par récurrence sur $n \in \mathbb{N}$ que $0 < b_n < a_n$, $a_{n+1} < a_n$, $b_{n+1} > b_n$ et $a_{n+1} b_{n+1} < \frac{a_n b_n}{2}$.
- 2. En déduire que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.

Leur limite, appelée moyenne arithmético-géométrique de x et y, ne peut s'exprimer en fonction de x et y avec les fonctions usuelles.

Exercice 25 Dans cet exercice, on montre que le nombre e est irrationnel.

Pour tout n de \mathbb{N}^* , on note

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{n! \cdot n}$.

- 1. Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
- 2. Dans cette question on montre que leur limite commune est un nombre irrationnel. Notons ℓ cette limite. On suppose par l'absurde qu'il existe des entiers p et q $(p \in \mathbb{N}, q \in \mathbb{N}^*)$ vérifiant : $\ell = \frac{p}{q}$. On définit la suite $x_n = (u_n u_q)q!$.
 - (a) Montrer que $(x_n)_{n\in\mathbb{N}}$ converge vers $x=(\ell-u_q)(q!)$. Vérifier que x est un entier.
 - (b) En encadrant x à l'aide des positions relatives de u_q , ℓ et v_q , vérifier que x appartient à]0,1[. Conclure.
- 3. Dans cette question on montre que leur limite commune est le nombre e. Pour chaque n de \mathbb{N}^* , on note $w_n = (1 + \frac{1}{n})^n$.
 - (a) Montrer que pour tout entier n de \mathbb{N}^* et tout k de $\{0,...,n\}$, on a $\frac{n!}{n^k(n-k)!} \geq 1 \frac{k(k-1)}{n}$.
 - (b) Vérifier que pour tout n de \mathbb{N}^{\star} et tout k de $\{0,..,n\}$, on a $\binom{n}{k}\frac{1}{n^k}\in\left[\frac{1}{k!}\left(1-\frac{k(k-1)}{n}\right),\frac{1}{k!}\right]$.
 - (c) En déduire que pour tout entier $n \ge 2$, on a $u_n \frac{1}{n}u_{n-2} \le w_n \le u_n$. Conclure avec l'exercice 14.

Exercice 26 Soit u une suite réelle et $\alpha \in \mathbb{R}$. Vérifier que

$$\exists n, \ \forall k \ge n, \ u_k < \alpha \qquad \Longrightarrow \qquad \limsup_{n \to +\infty} u_n \le \alpha$$

et

$$\limsup_{n \to +\infty} u_n < \alpha \qquad \Longrightarrow \qquad \exists n, \ \forall k \ge n, \ u_k < \alpha$$

Exercice 27 Donner les limites inférieure et supérieure des suites suivantes

$$\frac{(-1)^n n}{n+1}$$
, $\sin\left(\frac{2n\pi}{3}\right)$.

Exercice 28 Soient x et y deux suites réelles. Montrer les propriétés suivantes.

- 1. Si $x_n \leq y_n$ pour chaque n, alors $\underline{\lim}_{n \to \infty} x_n \leq \underline{\lim}_{n \to \infty} y_n$ et $\overline{\lim}_{n \to \infty} x_n \leq \overline{\lim}_{n \to \infty} y_n$.
- $2. Si x_n \ge 0,$

$$\overline{\lim}_{n\to\infty}\frac{1}{x_n}=\frac{1}{\underline{\lim}_{n\to\infty}x_n}.$$

- 3. Si la suite x converge vers ℓ , alors $\overline{\lim}_{n\to\infty}(x_n+y_n)=\ell+\overline{\lim}_{n\to\infty}y_n$ et $\underline{\lim}_{n\to\infty}(x_n+y_n)=\ell+\underline{\lim}_{n\to\infty}y_n$.
- 4. Si les suites x et y sont positives et x converge vers ℓ , alors

$$\overline{\lim}_{n\to\infty}(x_n+y_n)=\ell+\overline{\lim}_{n\to\infty}y_n \text{ et } \underline{\lim}_{n\to\infty}(x_ny_n)=\ell\cdot\underline{\lim}_{n\to\infty}y_n.$$

Exercice 29 (Suites sous-additives)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle positive telle que

$$u_{n+m} \le u_n + u_m$$
.

- 1. Soient $0 \le n \le N$ deux entiers. Rappeler pourquoi il existe $k \in \mathbb{N}^*$ et $r \in [0, n-1]$ tels que N = kn + r.
- 2. Montrer que, pour tout 0 < n < N entiers, il existe $r \in [0, n-1]$ tel que

$$\frac{u_N}{N} \le \frac{u_n}{n} + \frac{u_r}{N}.$$

- 3. Justifier que $\inf_{n \in \mathbb{N}^*} \frac{u_n}{n}$ existe.
- 4. Montrer que $(u_n)_{n\in\mathbb{N}^*}$ converge et donner sa limite.

Exercice 30 (A retenir - Suite de Cauchy)

Soit u une suite réelle. On dit que u est de Cauchy si elle verifie

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall p \geq N, \ \forall q \geq N, \qquad |u_p - u_q| < \epsilon.$$

- 1. Montrer que si u converge, alors elle est de Cauchy.
- 2. Soit $\epsilon > 0$. Montrer que $|\overline{\lim}_{n \to \infty} u_n \underline{\lim}_{n \to \infty} u_n| < \epsilon$. Conclure.

Exercice 31 (A retenir – Formule de Cauchy-Hadamard)

On se donne $(a_n)_{n\in\mathbb{N}}$ une suite réelle. Soit $x\in\mathbb{R}$. On définit

$$u_n = \sum_{k=0}^n a_k x^k,$$
 $\Delta^{-1} := \overline{\lim}_{n \to \infty} |a_n|^{\frac{1}{n}},$

avec la convention que $\Delta = 0$ si $|a_n|^{\frac{1}{n}}$ n'est pas bornée.

- 1. On suppose que $|x| < \Delta$. On veut montrer que $(u_n)_{n \in \mathbb{N}}$ converge.
 - (a) Justifier que pour tout $y \in \mathbb{R}$ tel que $|x| < |y| < \Delta$, la suite $(|a_n||y|^n)_{n \in \mathbb{N}}$ est bornée.
 - (b) Soient p < q deux entiers. Montrer qu'il existe M > 0 tel que

$$|u_q - u_p| < M \sum_{n=p+1}^{q} \left(\frac{|x|}{|y|} \right)^k$$

- (c) En déduire que $\left|\overline{\lim}_{n\to\infty}u_n \underline{\lim}_{n\to\infty}u_n\right| = 0$. Conclure.
- 2. On suppose que $|x| > \Delta$. On veut montrer que $(u_n)_{n \in \mathbb{N}}$ diverge.

- (a) Justifier que si u_n converge, alors $(|a_n||x|^n)_{n\in\mathbb{N}}$ tend vers 0.
- (b) Justifier que la suite $(|a_n||x|^n)_{n\in\mathbb{N}}$ n'est pas bornée.
- (c) En déduire que $(u_n)_{n\in\mathbb{N}}$ n'est pas convergente.

On a ainsi démontré la formule de Cauchy-Hadamard, utile lors de l'étude des séries entières en seconde année de licence : le rayon de convergence de la série entière $\sum a_k x^k$ est Δ .

Suite extraite, valeurs d'adhérence

Exercice 32 Donner l'exemple d'une suite qui admet une unique valeur d'adhérence mais qui n'est pas convergente.

Exercice 33 Donner les valeurs d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_n = (-1)^n + \frac{1}{n+1}.$$

Exercice 34 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée telle que

$$\left(u_n + \frac{u_{2n}}{2}\right)_{n \in \mathbb{N}}$$

tend vers 0.

- 1. Montrer que si λ est une valeur d'adhérence de u, alors -2λ aussi.
- 2. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et donner sa limite.
- 3. Le résultat est il toujours vrai si l'on remplace $\left(u_n + \frac{u_{2n}}{2}\right)_{n \in \mathbb{N}}$ par $\left(u_n \frac{u_{2n}}{2}\right)_{n \in \mathbb{N}}$?

Exercice 35 Soit u et v deux suites réelles vérifiant

$$\lim_{n \to +\infty} (u_n + v_n) = 0 \qquad \text{et} \qquad \lim_{n \to +\infty} (e^{u_n} + e^{v_n}) = 2.$$

- 1. Montrer que u et v sont majorées.
- 2. Montrer que u et v sont minorées.
- 3. Justifier que u et v ont au moins une valeur d'adhérence.
- 4. Montrer que si λ est valeur d'adhérence de u alors $-\lambda$ est valeur d'adhérence de v. Montrer qu'il est possible de construire une extractrice commune.
- 5. Montrer que 0 est la seule valeur d'adhérence possible de u.
- 6. Montrer que u et v convergent et donner leur limite.

Montrer que u et v convergent vers 0.

Exercice 36 Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui tend vers $+\infty$. Montrer que toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$.

Exercice 37

Soit $(u_n)_{n\in\mathbb{N}}$ une suite non majorée.

- 1. Soit A > 0. Montrer que $F_A = \{n \in \mathbb{N} , u_n > A\}$ est infinie.
- 2. En déduire qu'il existe une sous-suite de $(u_n)_{n\in\mathbb{N}}$ tendant vers $+\infty$.

Exercice 38 Soit u une suite croissante qui admet une suite extraite convergente. Montrer que u converge.

Exercice 39

On considère la suite u définie par : $\forall n \in \mathbb{N}, u_n = \sqrt{n} - E(\sqrt{n})$. Soit $\alpha \in \{0, 1, 2\}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $0 \le \sqrt{n^2 + \alpha n} n < 1$.
- 2. Montrer que la suite $(u_{n^2+\alpha n})_{n\in\mathbb{N}}$ converge en déterminant sa limite.
- 3. En déduire que la suite u est divergente.

Exercice 40

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. Montrer que si les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite $\ell\in\mathbb{R}$, alors $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- 2. Montrer que si les trois suites $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ et $(u_{3n})_{n\in\mathbb{N}}$ convergent respectivement vers ℓ_1 , ℓ_2 et ℓ_3 alors
 - on a nécessairement $\ell_1 = \ell_2 = \ell_3$;
 - la suite $(u_n)_{n\in\mathbb{N}}$ converge vers cette limite commune.
- 3. Les deux conclusions de la question 2 sont-elles toujours vraies si les trois sous-suites (u_{3n}) , (u_{3n+1}) et (u_{3n+2}) convergent?

Exercice 41 Soit u une suite telle que $(u_{n+1} - u_n)_{n \in \mathbb{N}}$ tende vers 0. Soient a, b, c des réels avec a < b < c. On suppose qu'il existe une suite extraite de u qui converge vers a et qu'il existe une suite extraite de u qui converge vers c. Montrer qu'il existe une suite extraite de u qui converge vers b. En déduire que l'ensemble des valeurs d'adhérence de u est un intervalle.

Exercice 42

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Soit ℓ un nombre réel. Montrer que les assertions suivantes sont équivalentes :

- (a) La suite (u_n) ne converge pas vers ℓ ,
- (b) Il existe un nombre $\varepsilon > 0$ et une extraction $\varphi : \mathbb{N} \to \mathbb{N}$ vérifiant : $\forall k \in \mathbb{N}, |u_{\varphi(k)} \ell| \geq \varepsilon$.

Exercice 43

- 1. Démontrer la formule de trigonométrie suivante : $\forall (\alpha, \beta) \in \mathbb{R}^2$, $\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha + \beta}{2}\right)\cos\left(\frac{\alpha \beta}{2}\right)$.
- 2. Démontrer que la suite $(\sin(n))_{n\in\mathbb{N}}$ est divergente (on pourra considérer la quantité $\sin(n+2) + \sin(n)$).

Exercice 44 Soient u une suite réelle bornée et ℓ un nombre réel. On suppose que toutes les suites extraites de u qui sont convergentes ont pour limite ℓ . Montrer que u converge vers ℓ .

Exercices de synthèse

Exercice 45 Révisions (I)

Montrer en utilisant la définition de la limite que

- 1. la suite $u_n = \frac{n^2}{n^2+2}$ converge vers 1.
- 2. la suite $v_n = \frac{2n}{n^2+1}$ converge vers 0.
- 3. la suite $w_n = \frac{n^3}{1-n^2}$ tend vers $-\infty$.
- 4. la suite $x_n = \frac{\sin(n^4) 2\cos(n^3)}{\ln(n)}$ converge vers 0.
- 5. la suite $y_n = \sqrt{n}e^{-n}$ converge vers 0 (utiliser et montrer que pour tout réel $x \ge 0, e^x \ge 1 + x$).

Exercice 46 Révisions (II)

Dire si les assertions suivantes sont vraies ou fausses, en justifiant votre réponse.

- 1. Si la suite $(|u_n|)$ est majorée, la suite (u_n) est bornée.
- 2. Si (u_n) et (v_n) sont deux suites divergentes, la suite somme $(u_n + v_n)$ est aussi divergente.
- 3. Si la suite $(|u_n|)$ est divergente, il en est de même de la suite (u_n) .
- 4. Si (u_n) et (v_n) sont deux suites telles qu'à partir d'un certain rang on ait $u_n \leq v_n$, alors la convergence de (v_n) implique celle de (u_n) .
- 5. La convergence d'au moins une suite extraite implique la convergence de la suite elle-même.
- 6. Toute suite positive décroissante est convergente de limite nulle.
- 7. Toute suite positive de limite nulle est décroissante à partir d'un certain rang.
- 8. Toute suite qui converge vers une limite $\ell > 0$ est strictement positive à partir d'un certain rang.
- 9. Si $\left(\frac{u_{n+1}}{u_n}\right)$ tend vers 1, alors (u_n) converge vers 1.
- 10. Si (u_n) converge vers une limite non nulle, alors $(\frac{u_{n+1}}{u_n})$ tend vers 1.

- 11. Si une suite de termes strictement positifs (u_n) converge vers 0, alors $(\frac{u_{n+1}}{u_n})$ tend vers 1.
- 12. Si (u_n) tend vers $+\infty$, alors $(\frac{u_{n+1}}{u_n})$ converge vers 1.

Exercice 47 Suite de Fibonacci

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0=0, u_1=1$ et pour tout n de \mathbb{N}^* , $u_{n+2}=u_{n+1}+u_n$.

- 1. Montrer que $u_n \ge 1$ pour tout $n \in \mathbb{N}^*$ et que $(u_n)_{n \in \mathbb{N}}$ tend vers $+\infty$.
- 2. Montrer l'égalité suivante : $\forall n \in \mathbb{N}^*, \ u_{n+1}^2 u_n u_{n+2} = (-1)^n$.
- 3. On considère la suite $(v_n)_{n\in\mathbb{N}^*} = \left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}^*}$. Exprimer v_n en fonction de u_n .
- 4. En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ converge. Trouver sa limite.

Exercice 48 Suites arithmético-géométriques

Soit a et b des réels. Soit α un réel.

- 1. (Suite arithmétique) On définit la suite $(u_n): u_0 = \alpha, u_{n+1} = u_n + b$. Calculer (u_n) et étudier la convergence.
- 2. (Suite géométrique) On définit la suite $(v_n): v_0 = \alpha, v_{n+1} = av_n$. Calculer (v_n) et étudier la convergence.
- 3. On définit la suite (w_n) : $w_0 = \alpha$, $w_{n+1} = aw_n + b$. On suppose que $a \neq 1$. Calculer (w_n) et étudier la convergence. On pourra introduire la suite $x_n = w_n \frac{b}{1-a}$.

Exercice 49 Une suite récurrente ayant une limite finie

Soit $\alpha \in [0,2]$. On considère la suite définie par : $u_0 = \alpha$ et pour tout n de \mathbb{N} , $u_{n+1} = \sqrt{2 + u_n}$.

- 1. Montrer que u_n est bien définie et que $0 \le u_n \le 2$ pour tout n de \mathbb{N} .
- 2. Soit x un nombre réel positif. Quel est le signe de $x \sqrt{2+x}$?
- 3. En déduire que $(u_n)_{n\in\mathbb{N}}$ est monotone.
- 4. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite notée l.
- 5. Montrer que pour tout $n \in \mathbb{N}$, on a : $|\sqrt{2+u_n} \sqrt{2+l}| \le \frac{1}{2\sqrt{2}}|u_n l|$. En déduire la valeur de l.

Exercice 50 Une suite récurrente qui tend vers $+\infty$

Soit $\alpha > 0$. On considère la suite définie par : $u_0 = \alpha$ et pour tout n de \mathbb{N} , $u_{n+1} = u_n + \arctan(u_n)$.

- 1. Monter que pour tout $n \in \mathbb{N}$, on a : $u_n > 0$ et $u_{n+1} \ge u_n$.
- 2. Montrer que pour tout $x \ge 0$ on a : $\arctan(x) \le x$.
- 3. Montrer que pour tout $n \in \mathbb{N}$, on a : $u_n \ge \arctan(\alpha)(n+1)$.
- 4. En déduire que la suite (u_n) tend vers $+\infty$.
- 5. Montrer que pour tout $n \in \mathbb{N}$, on a : $u_n \leq \alpha + n \frac{\pi}{2}$.
- 6. (a) Montrer que pour tout x > 0, on a : $\arctan(x) + \arctan(\frac{1}{x}) = \frac{\pi}{2}$.
 - (b) En déduire que pour tout $n \in \mathbb{N}$, on a $u_{n+1} \geq u_n + \frac{\pi}{2} \frac{1}{\arctan(\alpha)(n+1)}$.
 - (c) Montrer que pour tout $n \in \mathbb{N}$, on a : $2\sqrt{n+1} 2\sqrt{n} \ge \frac{1}{n+1}$.
 - (d) En déduire que pour tout $n \in \mathbb{N}$, on a : $u_n \ge \frac{\pi}{2}n + \alpha \frac{2\sqrt{n}}{\arctan(\alpha)}$.
- 7. Conclure que la suite $(\frac{u_n}{n})_{n\in\mathbb{N}^*}$ converge vers $\frac{\pi}{2}$.

Exercice 51 Théorème de Cesàro

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle et $(v_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$v_n = \frac{1}{n} \sum_{k=1}^n u_k.$$

Pour chaque n de N*, le nombre v_n est ainsi la moyenne des n premiers termes de $(u_n)_{n\in\mathbb{N}^*}$.

- 1. Dans cette question, on suppose que (u_n) converge vers 0.
 - (a) Soit $\varepsilon > 0$ fixé. Montrer qu'il existe $N \in \mathbb{N}$ vérifiant : pour tout $n \geq N$,

$$|v_n| < \left| \frac{1}{n} \sum_{k=1}^N u_k \right| + \frac{\varepsilon}{2}.$$

(b) Soit $\varepsilon > 0$ fixé et N un entier vérifiant la propriété de la question (a). Montrer qu'il existe un entier N' vérifiant :

$$\forall n \ge N', \quad \left| \frac{1}{n} \sum_{k=1}^{N} u_k \right| < \frac{\varepsilon}{2}.$$

- (c) En déduire que (v_n) converge vers 0.
- 2. Soit ℓ un nombre réel. Montrer que si (u_n) converge vers ℓ , alors (v_n) converge vers ℓ .

Exercice 52 Applications du théorème de Cesàro

- 1. Étudier la convergence de la suite $(v_n)_{n\in\mathbb{N}^*}$ définie par : $\forall n\in\mathbb{N},\ v_n=\frac{1}{n}+\frac{1}{2n}+\frac{1}{3n}+\ldots+\frac{1}{n^2}$.
- 2. Lemme de l'escalier : Montrer que si $(u_{n+1}-u_n)_{n\in\mathbb{N}^*}$ converge vers un réel ℓ , alors $\left(\frac{u_n}{n}\right)_{n\in\mathbb{N}^*}$ converge aussi vers ℓ .
- 3. (*) Soient $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ des suites qui convergent respectivement vers a et b. Montrer que la suite $(v_n)_{n\in\mathbb{N}^*}$, où $v_n=\frac{1}{n}\sum_{k=1}^n a_k b_{n+1-k}$, converge vers ab. On pourra exprimer v_n en fonction des suites $(x_k)=(a_k-a)$ et (b_k) .

Exercice 53 Soit u une suite réelle qui converge vers l. On définit la suite (b_n) par :

$$\forall n \in \mathbb{N}, \qquad b_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k.$$

En s'inspirant de la preuve du lemme de Césaro, montrer que (b_n) converge vers l.

Exercice 54 Suites convexes bornées (*)

Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. On lui associe deux suites, $(b_n)_{n\in\mathbb{N}}$ et $(c_n)_{n\in\mathbb{N}}$, définies par :

$$\forall n \in \mathbb{N}^*, \quad b_n = a_{n-1} - a_n \quad \text{et} \quad c_n = a_{n+1} + a_{n-1} - 2a_n.$$

On suppose que $c_n \geq 0$ pour tout $n \in \mathbb{N}^*$ (on dit alors que (a_n) est convexe) et que la suite $(a_n)_{n \in \mathbb{N}}$ est bornée.

- 1. Montrer que la suite $(b_n)_{n\in\mathbb{N}^*}$ est décroissante.
- 2. Supposons qu'il existe un entier non nul N tel que $b_N < 0$. Montrer que pour tout entier p et n tel que $n \ge N + p 1$, on a : $a_{n-p} a_n \le pb_N$.
- 3. En déduire que pour tout entier non nul n, on a : $b_n \ge 0$.
- 4. En déduire que $(a_n)_{n\in\mathbb{N}}$ est décroissante et converge.
- 5. (*) Une suite décroissante bornée est-elle nécessairement convexe?

EXERCICES DU CHAPITRE 3

Définition de la limite, premières manipulations

Exercice 1

Montrer en utilisant la définition de la limite que les fonctions suivantes convergent vers -1 quand x tend vers 1

(a)
$$f(x) = -x^3$$
, (b) $g(x) = \frac{x}{x-2}$, (c) $(*) h(x) = \arcsin((x-1)^2) - x$.

Exercice 2

Montrer en utilisant la définition de la limite que les fonctions suivantes convergent vers $-\infty$ quand x tend vers 2

(a)
$$f(x) = \frac{-1}{(x-2)^4}$$
, (b) $g(x) = \ln((x-2)^2)$, (c) $h(x) = \frac{1}{e^{-(x-2)^2} - 1}$.

Exercice 3

Montrer en utilisant la définition de la limite que les fonctions suivantes convergent vers $+\infty$ quand x tend vers $-\infty$

(a)
$$f(x) = e^{-x^3}$$
, (b) $g(x) = \frac{1-x}{\sqrt{2-x}}$, (c) $h(x) = \ln(x^2 - x + 1)$.

Exercice 4

Montrer en utilisant la définition de la limite que les fonctions suivantes convergent vers 1 quand x tend vers $-\infty$

(a)
$$f(x) = \frac{x}{x+2}$$
, (b) $g(x) = \frac{e^{-2x}}{(e^{-x}+1)^2}$, (c) $h(x) = \ln(e^1 + \frac{1}{x})$.

Exercice 5

Dans cet exercice, on fixe un réel x_0 et une fonction f de \mathbb{R} dans \mathbb{R} vérifiant : $f(x) \xrightarrow[x \to x_0]{} 0$.

- 1. On suppose que f est à valeurs positives. Vérifier, en utilisant uniquement la définition de la limite, que $e^{f(x)}$ tend vers 1 quand x tend vers x_0 .
- 2. Même question si on ne suppose plus que f est à valeurs positives.

Exercice 6

- 1. Soit a un réel avec a > 1. Vérifier, à l'aide de la définition de la limite, que la fonction $x \mapsto a^x$ tend vers $+\infty$ en $+\infty$.
- 2. Soient f une fonction de \mathbb{R} dans \mathbb{R} . On suppose que la fonction $x\mapsto \frac{f(x)}{x}$ admet une limite finie en $+\infty$, notée ℓ , et que $\ell>0$. Montrer, en utilisant uniquement la définition de la limite, que f tend vers $+\infty$ en $+\infty$.

Exercice 7

- 1. Soit f une fonction de \mathbb{R}^* dans \mathbb{R} . On suppose que f tend vers $+\infty$ en 0. Vérifier à l'aide de la définition de la limite que :
 - l'ensemble $\mathcal{D} = \{x \in \mathbb{R} \ / \ f(e^{-x}) \neq 0\}$ n'est pas majoré;
 - si on définit $g: \mathcal{D} \to \mathbb{R}$ par $g(x) = \frac{1}{f(e^{-x})}$ pour tout x de \mathcal{D} , alors g tend vers 0 en $+\infty$.

2. Soient f une fonction de \mathbb{R} dans \mathbb{R} et ℓ un nombre réel. On suppose que f tend vers ℓ en $+\infty$ et en $-\infty$. On définit $g: \mathbb{R}^* \to \mathbb{R}$ par : $\forall x \in \mathbb{R}^*$, $g(x) = f(\frac{1}{x})$. Vérifier à l'aide de la définition de la limite que la fonction g tend vers ℓ en 0.

Caractérisation séquentielle, premières manipulations

Exercice 8

La fonction $x \mapsto E(x) + E(-x)$ a-t-elle une limite en $+\infty$?

Exercice 9

Soient \mathcal{D} une partie de \mathbb{R} , x_0 un point de l'adhérence $\mathbf{Adh}(\mathcal{D})$ et f et g des fonctions définies sur \mathcal{D} . Montrer que si f est bornée et si g tend vers zéro en x_0 , alors la fonction fg tend vers zéro en x_0 .

Exercice 10

Soit f une fonction de \mathbb{R} dans \mathbb{R} . On suppose que la fonction f est périodique et que la fonction f admet une limite (finie) en $+\infty$. Montrer que f est constante.

Application des théorèmes généraux

Exercice 11

- 1. Déterminer, sous réserve d'existence, $\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$.
- 2. Soient a et b des réels strictement positifs. Déterminer, sous réserve d'existence, $\lim_{x\to 0+} \frac{\sqrt{1+x^a}-\sqrt{1-x^b}}{x^b}$.
- 3. Déterminer, sous réserve d'existence, $\lim_{x\to 0} \frac{\sqrt{x^2+x+1}-1}{x}$.

Exercice 12

Soient a et b des réels strictement positifs. Déterminer, sous réserve d'existence,

$$\lim_{x \to 0^+} \frac{x}{a} \cdot E\left(\frac{b}{x}\right), \quad \lim_{x \to 0} \frac{x}{a} \cdot E\left(\frac{b}{x}\right), \quad \lim_{x \to 0^+} \frac{b}{x} \cdot E\left(\frac{x}{a}\right), \quad \lim_{x \to 0} \frac{b}{x} \cdot E\left(\frac{x}{a}\right).$$

Exercice 13

1. Soient a et b des réels. Montrer que pour tout entier naturel $n \in \mathbb{N}^*$, on a

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}.$$

2. Soit α un nombre réel. Discuter l'existence et la valeur éventuelle de

$$\lim_{x \to \alpha} \frac{x^{n+1} - \alpha^{n+1}}{x^n - \alpha^n}.$$

Exercice 14

Discuter l'existence et la valeur éventuelle des limites suivantes :

$$\lim_{x \to +\infty} \sqrt{x + \sqrt{x} - \sqrt{x}}, \qquad \lim_{x \to 2} \frac{x^2 - 3x + 2}{x^3 - x^2 - x - 2}, \qquad \lim_{x \to 1} \frac{x^2 + x - 2}{x^3 - 4x^2 + 5x - 2}, \qquad \lim_{x \to 0} \frac{\tan x - \sin x}{\sin x (\cos 2x - \cos x)}.$$

Exercice 15

Soit $\alpha \geq 0$. Étudier, selon la valeur du réel α , l'existence et la valeur éventuelle des limites suivantes :

$$\lim_{x \to +\infty} \frac{x^4}{1 + x^\alpha \sin^2 x}, \quad \lim_{x \to \alpha^+} \frac{\sqrt{x} - \sqrt{\alpha} - \sqrt{x - \alpha}}{\sqrt{x^2 - \alpha^2}}.$$

Autour des fonctions croissantes majorées

Exercice 16 Le résultat est à retenir.

1. Soit f une fonction de \mathbb{R} dans \mathbb{R} . Montrer que si f est croissante et majorée, alors f admet une limite (finie) en $+\infty$.

2. Que dire de la limite de f en $-\infty$?

Exercice 17

Soit a un nombre réel. Soit une fonction $f:[a;+\infty[\to\mathbb{R} \text{ telle que } f \text{ est croissante majorée. On note } b$ la limite de f en $+\infty$. On définit $g:]a;+\infty[\to\mathbb{R} \text{ par } : g(x)=\frac{f(x)-f(a)}{x-a} \text{ pour tout } x>a$. Montrer que si g est croissante, alors f est constante.

Exercice 18

Soient $a, b \in \mathbb{R}$, a < b. Soit f une fonction de [a, b] dans \mathbb{R} qui est croissante.

- 1. Soit x_0 un élément de [a, b]. Montrer que f admet des limites à gauche et à droite en x_0 . Dans la suite de l'exercice, on note $f_-(x_0)$ la limite à gauche de f en x_0 et $f_+(x_0)$ la limite à droite de f en x_0 . On dit que f admet un saut à droite en x_0 si $f(x_0) < f_+(x_0)$.
- 2. Montrer que pour tout x_0 de [a, b], on a $f_-(x_0) \leq f(x_0) \leq f_+(x_0)$.
- 3. Montrer que les fonctions $x \mapsto f_+(x)$ et $x \mapsto f_-(x)$ sont croissantes sur [a, b].
- 4. (*) Pour $\epsilon > 0$, on note $D_{\epsilon} = \{x_0 \in [a, b]; f_+(x_0) f(x_0) > \epsilon\}$. Montrer que l'ensemble D_{ϵ} ne peut contenir qu'un nombre fini d'éléments.

Exercices divers

Exercice 19

- 1. Montrer que la fonction $x \mapsto \exp\left(\frac{1}{x}\exp\left(\frac{1}{x}\right)\right)$ n'a pas de limite en zéro.
- 2. La fonction $x\mapsto E(x)+E\left(\frac{1}{1+x}\right)$ a-t-elle une limite en zéro ?
- 3. La fonction $x \mapsto \sin(\cos(x))$ a-t-elle une limite en $+\infty$?
- 4. Montrer que la fonction $x \mapsto E\left(\frac{\sin(x)}{x}\right)$ n'admet pas de limite en $+\infty$.

Exercice 20

- 1. On considère la fonction $f: \mathbb{R}^* \to \mathbb{R}$ définie par : $\forall x \in \mathbb{R}^*, \ f(x) = x \sin(\frac{1}{x})$. Montrer que f admet une limite (finie) en 0.
- 2. Montrer que $\sin(x)\sin(\frac{1}{x})$ tend vers zéro quand x tend vers zéro.
- 3. Montrer que $\frac{x \sin x}{x^2 + 1}$ tend vers zéro quand x tend vers $+\infty$.
- 4. Montrer que la fonction $x\mapsto \frac{x^2\sin x}{x^2+1}$ n'a pas de limite en $+\infty$.

Exercice 21

1. Déterminer l'ensemble \mathcal{D} des réels x pour lesquels l'expression $\exp\left(\frac{1}{\ln(x)}\right)$ a un sens. Dans la suite de l'exercice, on considère la fonction

$$f : \mathcal{D} \to \mathbb{R}$$

$$x \mapsto \exp\left(\frac{1}{\ln(x)}\right).$$

- 2. La fonction f admet-elle des limites en 0, 1, $+\infty$? Si c'est le cas, préciser leurs valeurs. Si ce n'est pas le cas, préciser s'il y a toutefois des limites à droite et à gauche.
- 3. Montrer l'inclusion $f(\mathcal{D}) \subset \mathcal{D}$. Déterminer la fonction $f \circ f$.
- 4. Soit x un élément de \mathcal{D} . On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par récurrence par

$$u_0 = x$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$.

Déterminer une condition nécessaire et suffisante sur x pour que la suite (u_n) soit convergente. On pourra étudier les sous-suites $v_n = u_{2n}$ et $w_n = u_{2n+1}$.

$Aller\ plus\ loin$

Les exercices qui suivent sont difficiles.

Exercice 22 (\star)

Soit $f:\mathbb{R} \to \mathbb{R}$ une fonction admettant un minimum global en 0. Peut-on trouver un réel $\delta>0$ tel que f soit décroissante sur $[-\delta, 0]$ et croissante sur $[0, \delta]$?

Exercice 23 (\star)

Soit f une fonction de \mathbb{R} dans \mathbb{R} . On suppose que :

- la fonction f est à valeurs strictement positives, la fonction $x \mapsto f(x) + \frac{1}{f(x)}$ tend vers 2 en 0.

Montrer que f tend vers 1 en 0.

EXERCICES DU CHAPITRE 4

Continuité : définition et caractérisation séquentielle

Exercice 1

Pour chacune des fonctions $f: \mathbb{R} \to \mathbb{R}$ suivantes, déterminer tous les points où f est continue et tous les points où f ne l'est pas, en justifiant les réponses.

(a)
$$f(x) = \begin{cases} \frac{1}{x} & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

(b)
$$f(x) = \begin{cases} x^3 & \text{si } x \ge 0, \\ 0 & \text{si } x < 0. \end{cases}$$

(c)
$$f(x) = (x - E(x))^2 + E(x)$$
 pour tout x de \mathbb{R} .

(d)
$$f(x) = \begin{cases} x \cdot E\left(\frac{1}{x}\right) & \text{si } x \neq 0, \\ 1 & \text{si } x = 0. \end{cases}$$

Exercice 2

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue sur \mathbb{R} qui vérifie : $\forall x \in \mathbb{R}, f(x^2) = f(x)$.
 - (a) Montrer que f est paire.
 - (b) Montrer que $\forall x \in \mathbb{R}^+, f(\sqrt{x}) = f(x)$.
 - (c) Montrer que pour tout n de \mathbb{N} et pour tout x de \mathbb{R}^+ , on a $f(x^{\frac{1}{2^n}}) = f(x)$.
 - (d) Montrer que f est constante.
- 2. (*) Donner un exemple de fonction $f: \mathbb{R} \to \mathbb{R}$, non constante, vérifiant $\forall x \in \mathbb{R}, f(x^2) = f(x)$.

Exercice 3

Soit f une fonction de \mathbb{R} dans \mathbb{R} . On suppose que f vérifie la propriété suivante :

$$\forall x, y \in \mathbb{R}, \quad f(x+y) = f(x) + f(y).$$

- 1. Montrer que f(0) = 0. Montrer que $f(x) = x \cdot f(1)$ pour tout x de \mathbb{N} , puis pour tout x de \mathbb{Z} .
- 2. En déduire que f(x) = xf(1) pour tout $x \in \mathbb{Q}$.
- 3. Montrer que si f est continue sur \mathbb{R} , alors $f(x) = x \cdot f(1)$ pour tout x de \mathbb{R} .

Exercice 4 Le but de cet exercice est de montrer que la fonction logarithme est continue sur \mathbb{R}^+_* . Soit a un réel strictement positif.

- (a) Montrer que la fonction logarithme est continue à droite et à gauche en a.
- (b) En déduire la continuité de la fonction logarithme en a.

Exercice 5 Soit f une fonction continue et monotone $f: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$. Montrer que

- 1. Si f est croissante alors $\underline{\lim}_{n\to\infty} f(u_n) = f(\underline{\lim}_{n\to\infty} u_n)$ et $\overline{\lim}_{n\to\infty} f(u_n) = f(\overline{\lim}_{n\to\infty} u_n)$.
- 2. Si f est décroissante alors $\underline{\lim}_{n\to\infty} f(u_n) = f(\overline{\lim}_{n\to\infty} u_n)$ et $\overline{\lim}_{n\to\infty} f(u_n) = f(\underline{\lim}_{n\to\infty} u_n)$.

Théorème des valeurs intermédiaires

Exercice 6

1. Soit a et b des réels vérifiant a < b. Soient f et g deux fonctions continues de [a,b] dans \mathbb{R} . On suppose que $(f(a) - g(a))(f(b) - g(b)) \le 0$.

Montrer qu'il existe $x_0 \in [a, b]$ tel que $f(x_0) = g(x_0)$.

2. Montrer que l'équation $x^{12} = x^{11} + 1$ admet au moins une solution dans \mathbb{R}^+ .

Exercice 7

Pour tout n de \mathbb{N}^* , on note f_n la fonction de [0,1] dans \mathbb{R} définie par

$$\forall x \in [0,1], \quad f_n(x) = x^n + 2x^2 + x - 1.$$

- 1. Soit $n \in \mathbb{N}^*$ fixé. Vérifier que f_n est strictement croissante et que l'équation $f_n(x) = 0$ admet une unique solution dans $]0, \frac{1}{2}[$. On note x_n cette solution.
- 2. Montrer que pour tout x de [0,1], on a $f_n(x) \ge f_{n+1}(x)$. En déduire que $(x_n)_{n \in \mathbb{N}^*}$ est croissante, puis qu'elle converge.
- 3. Vérifier que la suite $(x_n^n)_{n\in\mathbb{N}^*}$ converge vers zéro. En déduire la limite de $(x_n)_{n\in\mathbb{N}^*}$.

Exercice 8 Soit f une fonction continue de [0,1] dans \mathbb{R} . On suppose que f(0)=f(1).

- 1. Vérifier qu'il existe un x de $\left[0,\frac{1}{2}\right]$ vérifiant $f(x+\frac{1}{2})=f(x)$.
- 2. (*) Théorème de la corde universelle : Soit n un entier naturel non nul. Vérifier qu'il existe deux éléments x_n et y_n de [0,1] vérifiant : $x_n y_n = \frac{1}{n}$ et $f(x_n) = f(y_n)$.

Exercice 9

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction continue. Montrer que si l'ensemble f(I) est fini, alors f est constante.

Exercice 10

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue sur \mathbb{R}^+ telle que $f(0) \geq 0$ et tel que

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} \ell \quad \text{avec } \ell < 1.$$

Montrer qu'il existe $x_0 \in [0, +\infty[$ tel que $f(x_0) = x_0$.

Théorème des bornes atteintes

Exercice 11

Soient a et b deux réels avec a < b. Soient f et g deux fonctions continues de [a, b] dans \mathbb{R} .

On suppose que : $\forall x \in [a, b], \quad f(x) < g(x).$

Montrer qu'il existe $\alpha > 0$ vérifiant : $\forall x \in [a, b], f(x) + \alpha \leq g(x)$.

Exercice 12

Existe-t-il

(a) Une fonction continue et surjective de [0,1] dans]-1,1[?]

- (b) Une fonction continue et surjective de [0, 1] dans [-1, 1]?
- (c) (\star) Une fonction continue et surjective de [0,1] dans [-1,1]?

Exercice 13

Soit f une fonction de \mathbb{R}^+ dans \mathbb{R} .

- 1. On suppose que
 - f est continue sur \mathbb{R}^+
 - -f(0) > 0
 - f tend vers 0 en $+\infty$.

Montrer que f admet un maximum.

- 2. Montrer que la conclusion reste vraie si on suppose f est continue sur \mathbb{R}^+ , $f(0) \geq 0$ et f tend vers 0 en $+\infty$.
- 3. Montrer à l'aide d'un contre-exemple que la conclusion de la question précédente n'est plus vraie si on retire l'hypothèse de continuité.
- 4. Peut-on obtenir le même résultat si f est continue sur \mathbb{R}^+ , f(0) < 0 et f tend vers 0 en $+\infty$?

Exercice 14

Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction bornée et $g: \mathbb{R} \to \mathbb{R}$ une fonction continue. Montrer que $g \circ f$ et $f \circ g$ sont bornées.

Exercice 15

Soient $(a,b) \in \mathbb{R}^2$ tel que a < b et $f : [a,b] \to \mathbb{R}$ une fonction continue, non constante, qui vérifie f(a) = f(b). On note $m = \inf_{x \in [a,b]} f(x)$ et $M = \sup_{x \in [a,b]} f(x)$.

Montrer que, pour tout y de]m, M[, il existe au moins deux éléments distincts de [a, b] dont l'image par f est y.

Prolongement par continuité

Exercice 16

Dire si chacune des fonctions de \mathbb{R}^* dans \mathbb{R} suivantes admet un prolongement par continuité à \mathbb{R} tout entier.

- 1. f est définie par : $\forall x \in \mathbb{R}^*, f(x) = \sin(x)\sin(\frac{1}{x}).$
- 2. g est définie par : $\forall x \in \mathbb{R}^*, \ g(x) = \cos(x)\cos(\frac{1}{x}).$

Exercice 17

Trouver un prolongement par continuité à $\mathbb R$ tout entier des fonctions suivantes :

- a) $f: \mathbb{R}\setminus\{-1\} \to \mathbb{R}$ est définie par : $\forall x \in \mathbb{R} \setminus \{-1\}, \quad f(x) = \frac{x^3 + 5x + 6}{x^3 + 1}$.
- b) si $\alpha > 0$, $f : \mathbb{R}^* \to \mathbb{R}$ est définie par : $\forall x \neq 0$, $f(x) = |x|^{\alpha}$.
- c) si $n \in \mathbb{N}$, $f: \mathbb{R}^* \to \mathbb{R}$ est définie par : $\forall x \neq 0, \ f(x) = \frac{(1+x)^n 1}{x}$.
- d) $f: \mathbb{R}^* \to \mathbb{R}$ est définie par $: \forall x \neq 0, \ f(x) = |x|^{\frac{1}{\ln(|x|)}}$.

Aller plus loin

Les exercices qui suivent sont difficiles.

Exercice 18 (\star)

1. Soit f une fonction définie sur un intervalle ouvert]a, b[, où a et b sont deux réels avec a < b. Montrer que si f est strictement croissante et continue sur l'intervalle]a, b[, alors on a $f(]a, b[) =]\lim_{x \to a^+} f(x), \lim_{x \to b^-} f(x)[$.

- 2. Soit I un intervalle de \mathbb{R} . Soit f une fonction définie et strictement monotone sur I. On suppose que f(I) est un intervalle. Montrer que f est continue sur I.
- 3. Existe-t-il une bijection continue de \mathbb{R} vers [-1,1]?
- 4. Existe-t-il une application strictement monotone et surjective de \mathbb{R} vers [-1,1]?

Exercice 19 (\star)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction L-lisp chitzienne pour $L \in]0,1[$. Montrer qu'il existe un unique réel x tel que f(x) = x.