Clustering para caracterizar café -SenecaféAlpes

LAB 2 - BI, Sección 2 Grupo 27

Introducción

Modelo 1 - K-Means

Modelo 2 - DBSCAN

Modelo 3 -

Modelo escogido

Recomendaciones

USO IA

Contenidos

Introducción

- El objetivo de este análisis es explorar patrones en las características morfológicas de los granos de café para apoyar la clasificación y el control de calidad.
- Se aplicaron 3 algoritmos de clustering: K-Means, DBSCAN y [AGLO]
- Se prepararon los datos y se utilizaron variables físicas de los granos (área, perímetro, solidez, redondez, factores de forma, tipo de secado, relación de aspecto).

Modelo 1 - K-Means

Agrupa los datos en k grupos o clusters según su similitud. Funciona buscando los centros (centroides.

Distribución de registros:

- Cluster 0: 2715 granos (≈58% de los datos).
- Cluster 1: 2004 granos (≈42%).

Evaluación:

• Coeficiente de silueta promedio: 0.328, separación moderada entre los grupos. Hay granos que probablemente estén mal agrupados.

Modelo 2 - K-Means

La estructura de los clústeres es más definida que la obtenida con otros modelos, lo que sugiere que el método de partición logra capturar patrones relevantes en los datos.

Cluster 0 – Granos Compactos y Uniformes:

- Áreas más pequeñas (37,805) y perímetros menores (637,101), además de tener
- Valores ligeramente mayores de solidez y redondez, lo que indica granos más compactos y regulares.
- Más granos secados por el método lavado (64.8%) y una proporción más alta de granos con forma redondeada (21%)

Cluster 1 – Granos Grandes e Irregulares:

- Mayor tamaño (área promedio ≈73,185) y perímetros considerablemente más grandes (≈946,668).
- Valores ligeramente menores en los factores de solidez y redondez. Lo que indica formas irregulares.
- Proporción casi nula de formas redondeadas (≈0.3%), sugiriendo que agrupa granos de mayor tamaño pero menos uniformes.

Modelo 2 - DBSCAN

Agrupa datos según densidad y permite detectar muestras atípicas.

Distribución de registros:

- Cluster 0: 4169 granos (≈86% de los datos).
- Cluster 1: 412 granos (≈9%).
- Ruido (-1): 138 granos (≈3%), ruido.

Evaluación:

• Coeficiente de silueta promedio: 0.173 (excluyendo ruido), lo que sugiere una separación débil entre clústeres.

Modelo 2 - DBSCAN

Se muestra un importante solapamiento entre clusters, indicando que las variables actuales no logran separar completamente los grupos.

Cluster 0 – Granos predominantes:

- Valores intermedios de área y perímetro (área promedio ≈52.000 pixeles y perímetro ≈847.00)
- Mayor solidez (≈0.75) y redondez moderada.
- Predominio del método de secado lavado (≈59.5%)
- Bajo porcentaje de granos con forma redondeada (≈12%).

Cluster 1 – Granos diferenciados:

- Área y perímetro algo más bajos (≈48.000 y 822).
- Alta solidez y redondez (similares a Cluster 0).
- Más granos lavados (≈60.7%).
- Leve incremento en la relación de aspecto redondeado (≈13.3%).

Modelo 3 -

Modelo escogido: Kmeans

- 1 Print ads: Posters, Billboards, Flyers
- 2 Social Media Campaigns
- 3 Campaign Launch Event

Recomendaciones

1 Print ads: Posters, Billboards, Flyers

2 Social Media Campaigns

Campaign Launch Event

Uso IA

Para esta laboratorio se hizo uso de chatbots como ChatGPT para solución de errores y debug, asistencia en graficación y sugerencias en intepretación de datos

Gracias

