CAPSTONE PROJECT

Al-powered Risk Analysis of Wild River Shifts

EnvAlron Team

Eva Schmidt *Geoecologist

Utku Oezkan *Marketer

Causes & Consequences | River Shifts

- 1. Erosion and sedimentation constantly reshape riverbeds.
- 2. Unpredictable changes increase the risk of flooding and infrastructure damage (e.g., 2024 in Southern Germany):
 - Six fatalities and missing persons
 - + 2 Billion Euro

Motivation

- Early warning system based on highly accurate prediction models
- Economical solution:
 - o Alternative to costly, complex and physically-based water models in the Alpine region.
- Optimize interventions to:
 - Protect infrastructure
 - Preserve natural river dynamics

Goal

- EnvAlron develops reliable models to predict river dynamics for specific project areas in the Alpine region.
- Predict the risk of river shift courses based on different scenarios
 - → Take measures like sediment removal

Data Sources

- Sentinel-2 L2A
 - Satellite Images
- Gewässerkundlicher Dienst Bayern
 - Discharge
 - Water Level
 - Precipitation
 - → Challenges: Limitation of satellite data due to temporal availability and weather

Methodology & Technology Stack

- Data Collection | Feature Engineering (i.e., Additional Factors, Google Earth Engine and
 Normalized Difference Water Index)
- Algorithm Selection : Convolutional Neural Network, Long Short-Term Memory
- Building Model
 - Training Model: Train-Generator Function
 - Evaluation Model Performance (Intersection of Union):
 - 94% of the river courses are predicted correctly.
- Local hosting with Streamlit

Processing of Satellite Images

 \Rightarrow

Labeled Map: water_mask_NDWI_4.tif

Sentinel-2 L2A Image

Binary-labeled Water Mask

Gewässerkundlicher Dienst

→

Satellite Data Processing

Filter Images

Date Range, Cloud Cover < 30%, Snow Cover < 3%

Calculate NDWI

The Normalized
Difference Water Index

Create Water Mask

Individual Threshold: 93rd percentile

Additional Data Processing

Hydrological Factors
Discharge, Precipitation, Number of
Extreme Events

Temporal Features
Time Differences, Month One-Hot
Encoding

Deep Learning Model

CNN | Image Processing
Spatial Information

Long-Short Term Memory

Temporal Information

Model Structure

3 Input Layers: 5 Past Sequential Water Masks + 5 Past Additional Factors + 1 Future Additional Factor (e. g. weather forecast)

Evaluation Metrics

Intersection of Union, Accuracy, Visual Inspection

Output

River Shift Visualization based on scenario

Interface of the Streamlit Application

Challenges

- Challenge Limitations of Sentinel-2 Imagery
 - Global availability ⇒ since April 2017
 - Resolution ⇒ 10 m
 - High cloud coverage
- Web Scraping ⇒ Digitalization of reliable sources (e.g., national authorities)
- Implement the elevation model and update it based on sedimentation and erosion processes

Future Developments

We cannot predict the future, however we can prepare for that!

- Autonomous Systems
 - Deploy drones / unmanned aerial vehicles for hyperlocal imagery to fill gaps in satellite data coverage.
- Sensor Integration & WebScraping & API Integrations on critical areas
 - Fuse IoT data (e.g., water level, soil moisture) with satellite feeds

THANKYOU!