EXAM d'Analyse numérique

Nom: Quarine

Prénom: Haitam

Classe: APQ; GRoupe

CIN: BK697085

CNE: R130009404

Questions decours: .

1 - Pour la grange:

-> Avantages: Une fois les polynomes de la base de lagrange calculés, on n'a pas besoin de calculer les coefficients y i lorrque ces coefficients sont donnés, et si ces coefficients ne sont pas donnés, ils sont simple à calculer, puisque : y: = f(scr) ou y: = p(sc;)

____ In covénients: Si on modifie un seul absaisse, on extobligé de recalculer une nouvelle base de Lagrange Cecì n'est pas le cas de la base de Newton.

Pour Newton:

-> Avantages: Sion ajoute un abraisse, on peut utiliser los calculo précédent du fableau, les différences divisée a

Conclusion: Alfant généralement utiliser la base de Newton, si on pense qu'on va ajouter un ou plusieurs abscisses L'interpolation polynomiale est une technique qui consiste à remplacer l'escpression d'une fonction par un polynôme encore plus simple

	xercice	. 7							
A		0	1	2	3	1			
	α_{λ}	-1		Λ					
	B(a)	Λ	0	Λ	16				
On	n a le	holy	04 /2m P = 0	L. L.	o allama	e est.			
	L; (α) =								
						,	1		
OW	Z.(x)	$=\left(\frac{\alpha}{\alpha_{c}}\right)$	- DC) (oc	$-\alpha_{\eta}$	$\left(\frac{2c-x^2}{x^2-x^2}\right)$			
		$\left(\frac{x}{-\lambda}\right)$	0)(<u>~</u> -1-	$\frac{1}{1}$ $\left(-\frac{1}{2}\right)$	nc - 2			
		7					-1/(x-l)	-	
e	$t \mathcal{L}_{a}(a$	r) = (-	0C - 0C	$-\left \left(\frac{\circ}{\circ}\right)\right $	~ q	$-)(\frac{\alpha}{\alpha}$	- or 3		
			,			$\int \left(\frac{x}{0} \right)^{-1}$			
							2)		
		$=\left(\frac{\alpha}{\alpha}\right)$	-1) (a_	1) (0	-2)				
\mathcal{L}_{r}	$\left(\alpha\right)$ =	∞ $- 00$	(-	000-	α_{1}	$\int \frac{\alpha^{-\alpha}}{\alpha_2}$	(3)		

 $=\frac{\left|\frac{x-1}{x-1}\right|\left(\frac{x-0}{1-0}\right)\left(\frac{x-1}{1-2}\right)}{\left(\frac{x-1}{1-2}\right)}=\left(\frac{x-1}{2}\right)\left(\frac{x-1}{1-2}\right)$ Scanné avec CamScanner

$$\mathcal{Q}_{3}(\alpha) = \frac{(\alpha - \alpha_{0})}{\alpha_{3} - \alpha_{0}} \left(\frac{\alpha - \alpha_{1}}{\alpha_{3} - \alpha_{1}} \right) \left(\frac{\alpha - \alpha_{1}}{\alpha_{3} - \alpha_{1}} \right)$$

$$= \left(\frac{\alpha + 1}{4 + 1} \right) \left(\frac{\alpha - 0}{2 - 0} \right) \left(\frac{\alpha - 1}{2 - 1} \right)$$

$$= \left(\frac{\alpha + 1}{3} \right) \frac{\alpha}{2} \left(\frac{\alpha - 1}{2} \right)$$

$$= \frac{\alpha \left(\alpha + 1 \right) \left(\alpha - 1 \right)}{6}$$

$$= 1 \left(\frac{\alpha \left(\alpha - 1 \right) \left(\alpha - 1 \right)}{6} \right) + 1 \left(\frac{(-\alpha) \left(\alpha + 1 \right) \left(\alpha - 1 \right)}{2} \right)$$

$$= 1 \left(\frac{\alpha \left(\alpha + 1 \right) \left(\alpha - 1 \right)}{6} \right) + 1 \left(\frac{(-\alpha) \left(\alpha + 1 \right) \left(\alpha - 1 \right)}{2} \right)$$

$$= -\alpha \left(\frac{\alpha^{2} - 1 \cos \alpha - 1 \cos \alpha}{6} \right) + 1 \left(\frac{\alpha^{2} - 1 \cos \alpha}{2} \right)$$

$$= 1 \cos^{3} - 6 \cos^{2} - 1 \cos \alpha - 1 \cos \alpha - \frac{1}{2} \cos^{3} - \frac{\alpha^{2} - 1 \cos \alpha}{2} \right)$$

$$= 1 \cos^{3} - 6 \cos^{2} - 1 \cos \alpha - \frac{1}{2} \cos \alpha - \frac{1}$$

$$\begin{array}{lll}
\mathcal{O}_{\alpha} &= -1 & \text{if } &= 1 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 1 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 1 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 1 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 1 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 1 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 1 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 1 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 1 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 1 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &= 0 \\
\mathcal{O}_{\alpha} &= 0 & \text{if } &=$$

Scanné avec CamScanner

 $y \in (-l, l); f(x) = y \in x^2 - l = y$ = y = 2 $= x^2 - l = y + 2$ $= x = \pm \sqrt{y} + 2$ $= x = \pm \sqrt{y} + 2$ $= x = -\sqrt{y} + 2$ $= x = -\sqrt{y} + 2$ $= x = -\sqrt{y} + 2$