Cubic Curves

CS 418
Interactive Computer Graphics
John C. Hart

Why Cubic Curves

• Polynomials (like degree 3 cubics) are well understood with beautiful mathematical formulations

$$At^3 + Bt^2 + Ct + D$$

• Cubics provide enough flexibility to space curves, whereas quadratics are limited to planar curves

$$A_{x}t^{3} + B_{x}t^{2} + C_{x}t + D_{x}$$
 $B_{x}t^{2} + C_{x}t + D_{x}$ $A_{y}t^{3} + B_{y}t^{2} + C_{y}t + D_{y}$ $B_{y}t^{2} + C_{y}t + D_{y}$ $A_{z}t^{3} + B_{z}t^{2} + C_{z}t + D_{z}$ $B_{z}t^{2} + C_{z}t + D_{z}$

$$y = x^2 - 1$$

$$y = x^2 - 1$$

$$y = x^3 - x$$

$$y = x^2 - 1$$

$$y = x^3 - x$$

$$y = \sin x$$

(Bezout's

Theorem)

$$y = x^2 - 1$$

$$y = x^3 - x$$

$$y = \sin x = x - (1/3!) x^3 + (1/5!) x^5 - \dots$$

Cubic polynomial

$$y = Ax^3 + Bx^2 + Cx + D$$

• Solve for

$$D = 0$$

$$1 = A(1/3)^3 + B(1/3)^2 + C(1/3)$$

$$-1 = A(2/3)^3 + B(2/3)^2 + C(2/3)$$

$$0 = A + B + C$$

Result

$$y = 27 x^3 - 40\frac{1}{2} x^2 + 13\frac{1}{2} x$$

$$(0,1)$$
 $(1,1)$ $(2,1)$ $(0,0)$ $(2,0)$ $(1,0)$

$$At^5 + Bt^4 + Ct^3 + Dt^2 + E^t + F$$

