Impedance controller and design of desired parameters

Senthur Raj

May 30, 2019

Introduction

This report describes the way of approach, the progress and the results obtained. The research objective is to find a novel way to design the impedance parameters $(M_d, B_d \text{ and } K_d)$ with the help of passivity analysis.

Passivity

Let us consider a system H with input u(t) and output y(t), where H is regarded as a mapping from input space to output space. Then, passivity of the map can be defined as [1],

The system $H:u \implies y$ is said to be passive if there exists a positive constant β such that,

$$\int_0^\tau y^T(t)u(t)dt \ge -\beta$$

for all input signals u(t) and for all $\tau \in \mathbb{R}^+$. In addition, H is said to be

• Input strictly passive if there exists a positive scalar δ_u such that

$$\int_0^\tau y^T(t)u(t)dt \geq -\beta + \delta_u \int_0^\tau ||u(t)||^2 dt,$$

• Output strictly passive if there exists a positive scalar δ_y such that

$$\int_0^\tau y^T(t)u(t)dt \geq -\beta + \delta_y \int_0^\tau ||y(t)||^2 dt,$$

For example, let us consider a n-link manipulator, the robot dynamics can be written as

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = T \tag{1}$$

where q, \dot{q} and \ddot{q} represent joint angles, velocities, and accelerations respectively, and T represents the input torque vector. The matrices M(q) and $C(q,\dot{q})$ represent the manipulator inertia matrix and Coriolis matrix respectively and the gravity vector G(q) can be written as

$$G(q) = \left(\frac{\partial P(q)}{\partial q}\right)^T$$

where P(q) is potential energy of the system.

It is well known that M(q) is positive definite and the matrix

$$\dot{M(q)} - 2C(q,\dot{q})$$

is skew-symmetric by defining $C(q,\dot{q})$ using the Christoffel symbols. Let us take the summation of the kinetic energy and potential energy as the storage function as

$$S(q, \dot{q}) = \frac{1}{2} \dot{q}^T M(q) \dot{q} + P(q)$$

Then, the time derivative of S along the trajectories of Eq:(1) satisfies

$$\begin{split} \dot{S} &= \dot{q}^T M(q) \ddot{q} + \frac{1}{2} \dot{q}^T M(q) \dot{q} + \left(\frac{\partial P(q)}{\partial q} \right) \dot{q} \\ \\ &= \dot{q}^T (T - C(q, \dot{q} - G(q)) + \frac{1}{2} \dot{q}^T M(q) \dot{q} + G(q)^T \dot{q}) \\ \\ &= \dot{q}^T T - \frac{1}{2} \dot{q}^T (M(q) - 2C(q, \dot{q})) \dot{q} \\ \\ &\implies \dot{S} = \dot{q}^T T \end{split}$$

The last equation holds because of the skew symmetry of $\dot{M}(q) - 2C(q, \dot{q})$. This means passivity of the manipulator dynamics from the input torque T to the joint velocity \dot{q} .

Impedance control

The designed controller is capable of imposing the desired behavior defined by impedance on the original complicated behavior of the end-effector [2]. The actual dynamic model of a 5-bar manipulator can be expressed as

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = T_{inp} - T_{ext}$$
(2)

The desired impedance model according to the specific work requirements which is usually specified as a second-order dynamic equation:

$$M_d\ddot{e} + B_d\dot{e} + K_de = -T_{ext} \tag{3}$$

where $e = (q - q_d)$.

After substituting the target impedance [Eq:3] into the actual manipulator dynamics [Eq:2] by eliminating \ddot{q} , a specific control law is obtained as

$$T_{inp} = u + (1 + MM_d^{-1})T_{ext} + C(q, \dot{q})\dot{q} + G(q) + M(q)[\ddot{q}_d - M_d^{-1}[B_d\dot{e} + K_de + T_{ext}]] \tag{4}$$

since

$$\ddot{q} = \ddot{q_d} - M_d^{-1} [B_d \dot{e} + k_d e + T_{ext}]$$

The control law [Eq:4] is the desired one to make the actuators produce torque T_{inp} . Then the manipulator driven by T_{inp} will perform the behavior defined by impedance in [Eq:3].

Passivity analysis

The governing equation becomes,

$$M\ddot{e} + MM_d^{-1}B_d\dot{e} + MM_d^{-1}K_de = u$$
 (5)

Now let us take the summation of the kinetic energy and potential energy as the storage function as

$$S(e, \dot{e}) = \frac{1}{2} \dot{e}^T M(q) \dot{e} + P(e)$$

where P(e) can be written as

$$P(e) = \frac{1}{2}e^T M M_d^{-1} K_d e$$

Therefore S > 0.

Then, the time derivative of S along the trajectories of [Eq:(5)] satisfies

$$\dot{S} = \dot{e}^{T} M \ddot{e} + \frac{1}{2} \dot{e}^{T} \dot{M} \dot{e} + e^{T} M M_{d}^{-1} K_{d} \dot{e}$$

$$= \dot{e}^{T} (u - M M_{d}^{-1} B_{d} \dot{e} - M M_{d}^{-1} K_{d} e) + \frac{1}{2} \dot{e}^{T} \dot{M} \dot{e} + e^{T} M M_{d}^{-1} K_{d} \dot{e}$$

$$= \dot{e}^{T} u - \dot{e}^{T} M M_{d}^{-1} B_{d} \dot{e} + \frac{1}{2} \dot{e}^{T} \dot{M} \dot{e}$$

$$= \dot{e}^{T} u + \frac{1}{2} \dot{e}^{T} (\dot{M} - 2M M_{d}^{-1} B_{d}) \dot{e}$$

$$\Rightarrow \dot{S} = \dot{e}^{T} u$$
(6)

As $(\dot{M} - 2MM_d^{-1}B_d)$ is considered to be a **skew symmetric matrix**. [Eq:6] implies that the system [Eq:5] is **passive** from input u to output \dot{e} . Also notice that the storage function is shaped so that it takes the minimal value at e = 0 and $\dot{e} = 0$.

Substituting $\dot{e} = 0$ and u = 0 in [Eq:(5)], we get

$$e = 0$$

and hence the system is **zero-state observable** and **lyapunov stable**. Thus, the damping injection

$$u = -k_q \dot{e} \tag{7}$$

If k_q is a **diagonal positive gain matrix**, then it guarantees **asymptotic stability** of the origin $\dot{e} = 0$ and e = 0.

Modified dynamics

The dynamic model of the system as represented in [Eq:5]:

$$\begin{split} M\ddot{e} + MM_d^{-1}B_d\dot{e} + MM_d^{-1}K_de &= u\\ \ddot{e} + \frac{B_d}{M_d}\dot{e} + \frac{K_d}{M_d}e &= \frac{u}{M} \end{split}$$

Lyapunov stability

For lyapunov stability, u = 0. Therefore the system becomes

$$\ddot{e} + \frac{B_d}{M_d}\dot{e} + \frac{K_d}{M_d}e = 0$$

Natural frequency, $\omega_n=\sqrt{\frac{K_d}{M_d}}$ and Damping ratio, $\gamma=\frac{B_d}{2M_d\omega_n}$

Asymptotic stability

For asymptotic stability, $u=-k_q\dot{e}$ where k_q is a positive diagonal matrix,

$$\ddot{e} + \left(\frac{B_d}{M_d} + \frac{k_q}{M}\right)\dot{e} + \frac{K_d}{M_d}e = 0$$

The natural frequency ω_n is same as the system with lyapunov stability but the Damping ratio is

$$\gamma = \frac{B_d M + k_q M_d}{2M M_d \omega_n}$$

References

- [1] Takeshi Hatanaka, Nikhil Chopra, Masayuki Fujita, and M.W. Spong. Passivity-Based Control and Estimation in Networked Robotics. 01 2015.
- [2] P. Song, Y. Yu, and X. Zhang. Impedance control of robots: An overview. In 2017 2nd International Conference on Cybernetics, Robotics and Control (CRC), pages 51–55, July 2017.