KeyStone Architecture Fast Fourier Transform Coprocessor (FFTC)

User Guide

Literature Number: SPRUGS2A December 2010

Release History

Release	Date	Chapter/Topic	Description/Comments
1.0A	December 2010	Chapter 2	Modified formula for "LTE Frequency Shift"Section 2.1.2.1.6 (Page 2-5)
1.0	November 2010	All	Initial Release

www.ti.com Contents

Contents

	Release History List of Tables List of Figures	ø-vi
	Preface	ø-ix
	About This Manual Notational Conventions Related Documentation from Texas Instruments Trademarks	ø-ix ø-x
Chapter 1		
	Introduction 1.1 Purpose of the Peripheral	1-2 1-3 1-3
Chapter 2		
	Overview 2.1 Architecture 2.1.1 Configuration Registers 2.1.2 FFT Engine. 2.1.3 Packet DMA (PKTDMA) 2.1.4 FFTC Streaming Interface. 2.1.5 FFTC Scheduler 2.2 Interrupts. 2.3 Emulation Considerations 2.4 Reset 2.4.1 Software Reset. 2.4.2 Hardware Reset	2-22-102-112-132-142-15
Chapter 3		
	Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC 3.1 Protocol-specific Flags 3.1.1 Control Header 3.1.2 Local Configuration Words 3.1.3 DFT Size List Configuration Words 3.1.4 Protocol-specific Pass-through Words	3-2 3-3 3-3
Chapter 4		
	Receive PKTDMA Descriptor and Packet For FFTC 4.1 Side Information. 4.1.1 Block Exponent 4.1.2 Clip Detection 4.1.3 Error Indication 4.1.4 Destination Tag 4.1.5 Source Id	4-3 4-4 4-4

	W	ww.ti.com
	4.1.6 Flow Id	
Chapter 5		
-	Endian Mode Support	5-1
	Endian Wode Support	<i>J</i> 1
Chapter 6		
	Halt Modes	6-1
Chapter 7		
	Errors	7-1
	7.1 Types of Errors	7-2
	7.1.1 Configuration Error	
	7.1.2 Receive Buffer Starvation Error	
	7.1.3 EOP Error	
	7.1.4 Invalid Configuration Length Error	
	7.2 FFTC Error Conditions Behavior	/-4
Chapter 8		
	Interrupt Servicing	8-1
Chapter 9		
	Registers	9-1
	9.1 Peripheral ID Register (FFTC_PID_REGISTER)	9-5
	9.2 Configuration Register (FFTC_CONFIGURATION_REGISTER)	9-6
	9.3 Control Register (FFTC_CONTROL_REGISTER)	9-7
	9.4 Status Register (FFTC_STATUS_REGISTER)	
	9.5 Emulation Control Register (FFTC_EMULATION_CONTROL_REGISTER)	
	9.6 Error Interrupt Status Register (FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER)	
	9.7 Error Interrupt Set Register (FFTC_ERROR_INTERRUPT_SET_REGISTER)	
	9.8 Error Interrupt Clear Register (FFTC_ERROR_INTERRUPT_CLEAR_REGISTER)	9-12
	9.9 Error Interrupt Enabled Status Register	0.12
	(FFTC_ERROR_INTERRUPT_ENABLED_STATUS_REGISTER)	
	9.11 Error Interrupt Enable Clear Register (FFTC_ERROR_INTERRUPT_ENABLE_CLEAR_REGISTER) .	
	9.12 Halt on Error Enable Register (FFTC_HALT_ON_ERROR_REGISTER)	
	9.13 End of Interrupt Register (FFTC_END_OF_INTERRUPT_REGISTER)	
	9.14 Queue Clipping Detect Register (FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER)	
	9.15 Queue Destination Queue And Shifting Register	
	(FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGISTER)	9-19
	9.16 Queue Scaling Register (FFTC_QUEUE_X_SCALING_REGISTER)	
	9.17 Queue Cyclic Prefix Register (FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER)	9-21
	9.18 Queue Control Register (FFTC_QUEUE_X_CONTROL_REGISTER)	
	9.19 Queue LTE Frequency Shift Register (FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER)	
	9.20 DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)	9-24
	9.21 Destination Queue and Shifting Status Register	
	(FFTC_BLOCK_X_DESTINATION_QUEUE_AND_SHIFTING_REGISTER)	
	9.22 Scaling Status Register (FFTC_BLOCK_X_SCALING_REGISTER)	
	9.23 Cyclic Prefix Status Register (FFTC_BLOCK_X_CYCLIC_PREFIX_REGISTER)	
	9.24 Control Status Register (FFTC_BLOCK_X_CONTROL_REGISTER)	9-28

www.ti.com Contents

9.25 LTE Frequency Shift Status Register (FFTC_BLOCK_X_LTE_FREQUENCY_SHIFT_REGIS 9.26 Packet Size Status Register (FFTC_BLOCK_X_PACKET_SIZE_STATUS_REGISTER)	
9.27 Tag Status Register (FFTC_BLOCK_X_TAG_STATUS_REGISTER)	
Index	IX-1

List of Tables www.ti.com

List of Tables

Table 1-1	Terminology
Table 2-1	Maximum Allowed Value for 'ZERO_PAD_VAL' in Multiply Mode
Table 2-2	Supported Block Sizes2-7
Table 2-3	Index and Number of Stages for Supported Block Sizes
Table 3-1	Bit Description for TX PS Flags
Table 3-2	PS Control Header Word
Table 3-3	PS Local Configuration Words3-3
Table 5-1	Little-endian Word Format5-1
Table 5-2	Big-endian Word Format5-2
Table 7-1	Configuration Errors
Table 7-2	Unflagged Configuration Errors
Table 7-3	FFTC Errors
Table 9-1	Register Map
Table 9-2	Peripheral ID Register (FFTC_PID_REGISTER) Field Description
Table 9-3	FFTC_CONFIGURATION_REGISTER Field Description
Table 9-4	FFTC_CONTROL_REGISTER Field Description9-7
Table 9-5	FFTC_STATUS_REGISTER Field Description9-8
Table 9-6	FFTC_EMULATION_CONTROL_REGISTER Field Description9-9
Table 9-7	FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER Field Description9-10
Table 9-8	FFTC_ERROR_INTERRUPT_SET_REGISTER Field Description9-11
Table 9-9	FFTC_ERROR_INTERRUPT_CLEAR_REGISTER Field Description9-12
Table 9-10	FFTC_ERROR_INTERRUPT_ENABLED_STATUS_REGISTER Field Description9-13
Table 9-11	FFTC_ERROR_INTERRUPT_ENABLE_REGISTER Field Description9-14
Table 9-12	FFTC_ERROR_INTERRUPT_ENABLE_CLEAR_REGISTER Field Description9-15
Table 9-13	FFTC_HALT_ON_ERROR_REGISTER Field Description9-16
Table 9-14	FFTC_END_OF_INTERRUPT_REGISTER Field Description9-17
Table 9-15	FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER Field Description
Table 9-16	FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGISTER Field Description9-19
Table 9-17	FFTC_QUEUE_X_SCALING_REGISTER Field Description9-20
Table 9-18	FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER Field Description
Table 9-19	FFTC_QUEUE_X_CONTROL_REGISTER Field Description9-22
Table 9-20	FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER Field Description
Table 9-21	FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER Field Description9-24
Table 9-22	FFTC_BLOCK_X_DESTINATION_QUEUE_REGISTER Field Description9-25
Table 9-23	FFTC_BLOCK_X_SCALING_REGISTER Field Description9-26
Table 9-24	FFTC_BLOCK_X_CYCLIC_PREFIX_REGISTER Field Description9-27
Table 9-25	FFTC_BLOCK_X_CONTROL_REGISTER Field Description9-28
Table 9-26	FFTC_BLOCK_X_LTE_FREQUENCY_SHIFT_REGISTER Field Description9-29
Table 9-27	FFTC_BLOCK_X_PACKET_SIZE_STATUS_REGISTER Field Description
Table 9-28	FFTC_BLOCK_X_TAG_STATUS_REGISTER Field Description9-31

www.ti.com List of Figures

List of Figures

Figure 1-1	FFTC Block Diagram	1-3
Figure 2-1	FFT Engine	2-3
Figure 2-2	FFTC Variable Shift Example with 1200 Carriers	2-4
Figure 2-3	Scaling	2-6
Figure 2-4	Cyclic Prefix Addition	2-9
Figure 2-5	Cyclic Prefix Removal	2-11
Figure 3-1	Organization of the PKTDMA Protocol-Specific Words for FFTC	3-2
Figure 4-1	PKTDMA RX Payload Format with SUPPRESS_SIDE_INFO Off	4-2
Figure 4-2	PKTDMA RX Payload Format with SUPPRESS_SIDE_INFO Set	4-3
Figure 9-1	Peripheral ID Register (FFTC_PID_REGISTER)	9-5
Figure 9-2	Configuration Register (FFTC_CONFIGURATION_REGISTER)	9-6
Figure 9-3	Control Register (FFTC_CONTROL_REGISTER)	9-7
Figure 9-4	Status Register (FFTC_STATUS_REGISTER)	9-8
Figure 9-5	Emulation Control Register (FFTC_EMULATION_CONTROL_REGISTER)	9-9
Figure 9-6	Error Interrupt Status Register (FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER)	9-10
Figure 9-7	Error Interrupt Set Register (FFTC_ERROR_INTERRUPT_SET_REGISTER)	9-11
Figure 9-8	Error Interrupt Clear Register (FFTC_ERROR_INTERRUPT_CLEAR_REGISTER)	9-12
Figure 9-9	Error Interrupt Enabled Status Register (FFTC_ERROR_INTERRUPT_ENABLED_STATUS_REGISTER)	9-13
Figure 9-10	Error Interrupt Enable Register (FFTC_ERROR_INTERRUPT_ENABLE_REGISTER)	
Figure 9-11	Error Interrupt Enable Clear Register (FFTC_ERROR_INTERRUPT_ENABLE_CLEAR_REGISTER)	9-15
Figure 9-12	Halt on Error Enable Register (FFTC_HALT_ON_ERROR_REGISTER)	9-16
Figure 9-13	End of Interrupt Register (FFTC_END_OF_INTERRUPT_REGISTER)	9-17
Figure 9-14	Queue Clipping Detect Register (FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER)	9-18
Figure 9-15	Queue Destination Queue and Shifting Register	
	(FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGISTER)	
Figure 9-16	Queue Scaling Register (FFTC_QUEUE_X_SCALING_REGISTER)	
Figure 9-17	Queue Cyclic Prefix Register (FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER)	
Figure 9-18	Queue Control Register (FFTC_QUEUE_X_CONTROL_REGISTER)	
Figure 9-19	Queue LTE Frequency Shift Register (FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER)	
Figure 9-20	DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)	
Figure 9-21	Destination Queue and Shifting Status Register (FFTC_BLOCK_X_DESTINATION_QUEUE_REGISTER)	
Figure 9-22	Scaling Status Register (FFTC_BLOCK_X_SCALING_REGISTER)	
Figure 9-23	Cyclic Prefix Status Register (FFTC_BLOCK_X_CYCLIC_PREFIX_REGISTER)	9-27
Figure 9-24	Control Status Register (FFTC_BLOCK_X_CONTROL_REGISTER)	9-28
Figure 9-25	LTE Frequency Shift Status Register (FFTC_BLOCK_X_LTE_FREQUENCY_SHIFT_REGISTER)	
Figure 9-26	Packet Size Status Register (FFTC_BLOCK_X_PACKET_SIZE_STATUS_REGISTER)	
Figure 9-27	Tag Status Register (FFTC_BLOCK_X_TAG_STATUS_REGISTER)	9-31

List of Figures www.ti.com

Preface

About This Manual

This user guide describes the functionality and operation of the Fast Fourier Transform Coprocessor (FFTC) module. The FFTC module is accessible across all the C66x cores on a multicore DSP. This module can be used to accelerate the FFT and IFFT computations that are required in various applications like LTE systems.

Notational Conventions

This document uses the following conventions:

- Commands and keywords are in **boldface** font.
- Arguments for which you supply values are in *italic* font.
- Terminal sessions and information the system displays are in screen font.
- Information you must enter is in **boldface screen font**.
- Elements in square brackets ([]) are optional.

Notes use the following conventions:

Note—Means reader take note. Notes contain helpful suggestions or references to material not covered in the publication.

The information in a caution or a warning is provided for your protection. Please read each caution and warning carefully.

CAUTION—Indicates the possibility of service interruption if precautions are not taken.

WARNING—Indicates the possibility of damage to equipment if precautions are not taken.

Preface www.ti.com

Related Documentation from Texas Instruments

AIF1-to-AIF2 Antenna Interface Migration Guide for KeyStone Devices	SPRABH8
Connecting AIF2 with FFTC	SPRABF3
Antenna Interface 2 (AIF2) for KeyStone Devices User Guide	SPRUGV7
C66x CorePac User Guide	SPRUGWO
Enhanced Direct Memory Access 3 (EDMA3) for KeyStone Devices User Guide	SPRUGS5
Multicore Navigator for KeyStone Devices User Guide	SPRUGR9
Turbo Decoder Coprocessor 3 (TCP3d) for KeyStone Devices User Guide	SPRUGS0
Turbo Encoder Coprocessor 3 (TCP3e) for KeyStone Devices User Guide	SPRUGS1

Trademarks

TMS320C66x and C66x are trademarks of Texas Instruments Incorporated.

All other brand names and trademarks mentioned in this document are the property of Texas Instruments Incorporated or their respective owners, as applicable.

Chapter 1

Introduction

- 1.1 "Purpose of the Peripheral" on page 1-2
- 1.2 "Terminology Used in This Document" on page 1-2
- 1.3 "Features" on page 1-3
- 1.4 "Functional Block Diagram" on page 1-3
- 1.5 "Industry Standard(s) Compliance Statement" on page 1-4

1.1 Purpose of the Peripheral

This document describes the functionality and operation of the Fast Fourier Transform Coprocessor (FFTC) module. The FFTC module is accessible across all the C66x cores on a multicore DSP. This module can be used to accelerate the FFT and IFFT computations that are required in various applications like LTE systems.

1.2 Terminology Used in This Document

Table 1-1 Terminology

Acronym	Description
AIF	Antenna Interface
CPPI	Communication Port Programming Interface (Packet DMA)
EDMA3	Enhanced Direct Memory Access version 3
FFT	Fast Fourier Transform
FFTC	FFT Coprocessor
IFFT	Inverse Fast Fourier Transform
LTE	"Long Term Evolution" term to describe the first 3GPP OFDM standard
PKTDMA	Packet DMA (CPPI)
PS	Protocol-specific Protocol-specific
QM	Queue Manager
RB	LTE resource block – a set of 12 subcarriers as defined in the LTE standard
TCP3	Turbo coprocessor version 3

1.3 Features

The FFTC provides the following features.

- IFFT and FFT
- Sizes
 - $-2^a \times 3^b$ for 2 a 13, 0 b 1 maximum 8192
 - $12 \times 2^a \times 3^b \times 5^c$ for sizes between 12 and 1296
- LTE 7.5kHz frequency shift
- 16 bits I/ 16 bits Q input and output
- 444 Msubcarriers/sec throughput
- 77dB SNR
- Dynamic and programmable scaling modes
- Dynamic scaling mode returns block exponent
- Support for "FFT shift" (switch left/right halves)
- Support for cyclic prefix (addition and removal)
- Ping/Pong input, output buffers
- Input data scaling with shift
- Output data scaling

1.4 Functional Block Diagram

Figure 1-1 FFTC Block Diagram

www.ti.com

1.5 Industry Standard(s) Compliance Statement

This peripheral does not conform to any specific industry standard.

Chapter 2

Overview

The FFTC is an accelerator that can be used to perform FFT and IFFT on data. Using the FFTC to perform computations that otherwise would have been done in software frees up CPU cycles for other tasks. The FFTC module has been designed to be compatible with various OFDM based wireless standards like WiMax and LTE.

- 2.1 "Architecture" on page 2-2
- 2.2 "Interrupts" on page 2-13
- 2.3 "Emulation Considerations" on page 2-14
- 2.4 "Reset" on page 2-15

Chapter 2—Overview www.ti.com

2.1 Architecture

The "FFTC Block Diagram" on page 1-3 shows the blocks that make up the FFT coprocessor:

- Configuration registers
- FFT Engine
- Packet DMA
- FFTC Streaming interface
- FFTC Scheduler

2.1.1 Configuration Registers

The FFTC maintains four sets of configuration registers. These register sets are identical and consist of five registers. Each set corresponds to one of the four TX queues delivering the PKTDMA data to the FFTC. Each set specifies the configuration that needs to be applied to the data originating from the respective queues.

The configuration properties controlled by these registers are as follows:

- Clipping Detection
- Destination queue for the RX PKTDMA data packet
- Scaling & shifting parameters
- Cyclic prefix parameters
- LTE frequency shift parameters

2.1.2 FFT Engine

The FFT engine computes either the *Discrete Fourier Transform* or the *Inverse Discrete Fourier Transform* of the data samples that are input to the FFTC. It uses a 'Decimation-in-Frequency' method of *Fast Fourier transform* (FFT) algorithm to implement the transforms.

The DFT is give by the formula:

and the IDFT is given by the formula:

where
$$W_N^{-nk} = e^{-2nk/N}$$

The FFT engine is a block based architecture meaning it computes one full radix stage at a time. The FFT engine can compute two radix-4, two radix-3, four radix-2 or one radix-5 butterflies every clock cycle.

The memory buffer of the FFT engine is divided into three banks. Each bank can hold a maximum of 4096 FFT words. Each complex FFT input sample is made up of a 16-bit real and 16-bit imaginary part. The engine performs its computations in-place. The purpose of the three banks is to allow the system to read from one bank, write to another while the engine is processing the data in the third when the FFT sizes are not more that 4096. For FFT sizes 6144 and 8192, two of the three banks are used and therefore simultaneous reading and writing of data cannot be performed while the engine is processing data.

Internally the engine maintains one copy of the configuration register set for each of the three banks. The internal register set corresponding to a bank is updated from the appropriate set of the configuration registers when a bank starts accepting new data.

Figure 2-1 FFT Engine

2.1.2.1 Features

2.1.2.1.1 FFT Left-Right Shift

The engine can shift the input and output samples to flip the left and right halves of the data. If enabled sequence $\{x(0),...,x(N-1)\}$ is cyclically shifted to $\{x(N/2),...,x(N-1),0,...,x((N/2-1))\}$. This FFT shift can be enabled either by writing directly to the FFTC_QUEUE_X_SCALING_AND_SHIFTING_REGISTER or by using the protocol-specific section of the PKTDMA data packet descriptor (Chapter 3 "Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC" on page 3-1).

2.1.2.1.2 FFT Variable Shift

In some cases, the input data is organized with the subcarriers centered on the DC subcarrier, whereas the FFTC expects the DC subcarrier at the beginning of the data packet. The variable shift feature can be used to handle such cases. The shift rotates the input samples to the right by the amount 2*variabale_shift_value.

www.ti.com

Figure 2-2 shows an example where the input stream contains 1200 subcarriers and the DC subcarrier. The FFTC is configured for FFT size 2048 with zero-padding enabled. In this case a simple left-right shift will not be able to transform the input sequence to the desired processed sequence. A circular right shift of 1448 samples to the input sequence is required to achieve the desired result. The input buffer must be padded with three zeros manually (to make the input data length 1204 samples) by the application to satisfy the criterion that the zero-pad value must always be a multiple of four in add mode (zero-pad value = 844). To do this the LEFT_RIGHT_SHIFT_INPUT_EN must be set to '0' and the VARIABLE_SHIFT_INPUT (FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGISTER) value

The variable shift is only valid for FFT sizes 128, 256, 512, 1024, 2048, 4096, 8192, 1536, 3072 and 6144. The behavior is undefined for other sizes.

FFTC Variable Shift Example with 1200 Carriers Figure 2-2

(1) DC Centered Input Sequence

must be set to 724 (1448/2).

2.1.2.1.3 Zero Padding

Zero padding is used for upsampling. One of two methods can be chosen for interpreting the zero pad value, the 'Add' or the 'Multiply' method. Zero padding can be enabled and configured either by writing directly to the FFTC_QUEUE_X_CONTROL_REGISTER or by using the protocol-specific section of the PKTDMA data packet descriptor (Chapter 3 "Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC" on page 3-1).

2.1.2.1.4 Zero Pad Add Method

In this method the data samples used (data length) is calculated as follows: Data length = FFT size - zero pad value

2-4

2.1.2.1.5 Zero Pad Multiply Method

In this method the data samples used (data length) is calculated as follows: Data length = FFT size * 2^{-(zero pad value)}

Note—When 'Multiply' mode is used the 'Data Length' value should always compute to a multiple of four. This restricts the range of values that can be used for different FFT sizes. Table 2-1 lists the maximum allowed value for 'ZERO_PAD_VAL' for each FFT size in multiply mode.

Table 2-1 Maximum Allowed Value for 'ZERO_PAD_VAL' in Multiply Mode

DFT Size	Max. Allowed	DFT Size	Max. Allowed	DFT Size	Max. Allowed
4	0	384	4	1296	2
8	1	768	4	972	0
16	2	1536	4	60	0
32	3	3072	4	120	1
64	4	6144	4	240	2
128	4	36	0	480	3
256	4	72	1	960	4
512	4	144	2	180	0
1024	4	288	3	360	1
2048	4	576	4	720	2
4096	4	1152	4	540	0
8192	4	108	0	1080	1
12	0	216	1	300	0
24	1	432	2	600	1
48	2	864	3	900	0
96	3	324	0	1200	2
192	4	648	1		

2.1.2.1.6 LTE Frequency Shift

A frequency shift can be applied to the input data according to the LTE requirements. The frequency shift is a term-by-term multiplication of the complex input data with the sequence given by

$$H(n) = e^{\pm j2*pi*(n+4*n_0)a/M}$$

Where n – Sample index

n_o - Phase offset (SHIFT_PHASE)

a – Multiplication factor. (2^{SHIFT_FACTOR})

M – Reference size, either 16384 or 12288

The values for the various parameters of H(n) can be programmed either by writing directly to the $FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER$ or by using the protocol-specific section of the PKTDMA data packet descriptor (Chapter 3 "Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC" on page 3-1).

www.ti.com

2.1.2.1.7 Scaling

Figure 2-3 Scaling

Scaling is performed in the engine on a block basis before and after each radix stage. This means that the complex values in the block all have the same scaling applied to them. The scaling is a divide operation that is implemented internally as a left shift by 0, 1, 2 or 3 (divide by 1, 2, 4 or 8 respectively) to ensure that saturation does not occur at the output of each radix stage. The scaling applied after each stage is tracked and the overall scaling applied is reported back by the engine ("Block Exponent" on page 4-3).

The internal precision of the FFT engine is 22/19 bits - the inputs are first scaled to 22 bits by shifting left 6 bits, then 19 of the 22 bits are selected based on the shift factor. A shift of 0 bits means that the 19 LSBs are selected.

Additionally there is also an 8-bit output scaling that is provided. The value programmed for the output scaling is interpreted as a fixed point Q7 unsigned value (0x80 = 1) and is multiplied to the output of the last stage.

The engine supports two modes of scaling applied to each stage, static scaling and dynamic scaling. Output scaling only supports static mode.

2.1.2.1.8 Static Scaling

In static scaling mode the user configures the scaling that is applied at each stage. The scaling values are programmed either by writing directly to the FFTC_QUEUE_X_SCALE_SHIFT_REGISTER or by using the protocol-specific section of the PKTDMA data packet descriptor (Chapter 3 "Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC" on page 3-1).

2.1.2.1.9 Dynamic Scaling

In dynamic scaling mode all internal scaling values except that for output scaling are chosen by the hardware based on the norm of the signal. The LTE shift scaling value is also generated dynamically if enabled. The gains are selected such that the signal is as large as possible after each stage. Dynamic scaling can be enabled via the FFTC_QUEUE_X_SCALE_SHIFT_REGISTER or by using the protocol-specific section of the PKTDMA data packet descriptor (Chapter 3 "Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC" on page 3-1).

2.1.2.1.10 FFT/IFFT

The engine can be configured to compute either the FFT or IFFT. It can support sizes of $2^{a \times 3^{b}}$ where 0 b 1 and 0 a 13 and $2^{a \times 3^{b \times 5^{c}}}$ for all integer values of a, b and c up to 1296. Table 2-2 shows the 50 FFT/IFFT sizes supported.

Table 2-2 **Supported Block Sizes**

Classification	Supported Sizes
Power of 2	4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192
LTE	12, 24, 36, 48, 60, 72, 96, 108, 120, 144, 180, 192, 216, 240, 288, 300, 324, 360, 384, 432, 480, 540, 576, 600, 648, 720, 768, 864, 900, 960, 972, 1080, 1152, 1200, 1296
Other	1536, 3072, 6144

2.1.2.1.11 Transform Size Table

The FFT or IFFT block size corresponding to each PKTDMA data packet is specified in the configuration register (FFTC_QUEUE_X_CONTROL_REGISTER) as an index. This index maps to the block sizes as shown in Table 2-3 "Index and Number of Stages for Supported Block Sizes" on page 2-8.

2.1.2.1.12 Mixed Transform Sizes

Typically the same configuration parameters are applied to all the blocks contained in a packet. However it is possible to use different block sizes within a packet. This is achieved by setting the *DFT_size* field in the

FFTC_QUEUE_X_CONTROL_REGISTER to 0x3F. When this is done the FFTC uses the DFT_SIZE_LIST_GROUP_x registers to determine the block sizes. The FFTC supports a maximum of 128 blocks in a packet. There are 25

DFT_SIZE_LIST_GROUP_x registers. The first 25 registers contain fields for 5 blocks each the DFT_SIZE_LIST_GROUP_26 register contains fields to declare for 3 block sizes.

For each new PKTDMA data packet that is configured to use the DFT size list the FFTC will always start reading from the DFT_SIZE_0 field of DFT_SIZE_LIST_GROUP_0 register for the block size of the first FFT block, DFT_SIZE_1 for the second block in the packet and so on until it reaches the en-of-packet (maximum of 128 FF blocks per packet).

apter 2—Overview www.ti.com

Unlike the other configuration registers of which a unique instance exists for each of the four queues there is only one instance of the *DFT_SIZE_LIST_GROUP_x* registers. Therefore only one queue can operate in the mixed transform size mode at any given time. A queue can start using *DFT_SIZE_LIST_GROUP_x* registers only after the last block of a queue currently operating in mixed transform size mode and using the *DFT_SIZE_LIST_GROUP_x* registers has been loaded into the FFTC.

Note—When using mixed transform sizes the number of blocks must either be 128 or the number of blocks in the packet must not exceed the DFT_sizes_list_length field specified in the PS control header ("Control Header" on page 3-2). The size specified in the PS control header is used to configure the DFT size list registers only, while processing the data the FFTC starts from the top of the list for each PKTDMA data packet and applies the list entry value corresponding to each block number in the packet.

2.1.2.1.13 Number of Stages and Radix Sizes

The FFTC engine, based on the block size can have up to seven stages. Each stage can have a different radix. Table 2-3 shows the number of stages and the radix size for each stage for each supported FFT size.

Table 2-3 Index and Number of Stages for Supported Block Sizes (Part 1 of 2)

			Radix of each stage						
Index	FFT Size	Number of Stages	0	1	2	3	4	5	6
0	4	1	4						
1	8	2	2	4					
2	16	2	4	4					
3	32	3	4	2	4				
4	64	3	4	4	4				
5	128	4	4	4	2	4			
6	256	4	4	4	4	4			
7	512	5	4	4	4	2	4		
8	1024	5	4	4	4	4	4		
9	2048	6	4	4	4	4	2	4	
10	4096	6	4	4	4	4	4	4	
11	8192	7	4	4	4	4	4	2	4
12	12	2	3	4					
13	24	3	3	2	4				
14	48	3	4	3	4				
15	96	4	4	3	2	4			
16	192	4	4	4	3	4			
17	384	5	4	4	3	2	4		
18	768	5	4	4	4	3	4		
19	1536	6	4	4	3	4	2	4	
20	3072	6	4	4	4	3	4	4	
21	6144	7	4	3	4	4	4	2	4
22	36	3	3	3	4				
23	72	4	3	3	2	4			
24	144	4	4	3	3	4			

Table 2-3 Index and Number of Stages for Supported Block Sizes (Part 2 of 2)

								·· =,	
			Radix of each stage						
	6:	N 1 66		_				_	
Index	FFT Size			1	2	3	4	5	6
25	288	5	4	3	3	2	4		
26	576	5	4	4	3	3	4		
27	1152	6	4	4	3	3	2	4	
28	108	4	3	3	3	4			
29	216	5	3	3	3	2	4		
30	432	5	4	3	3	3	4		
31	864	6	4	3	3	3	2	4	
32	324	5	3	3	3	3	4		
33	648	6	3	3	3	3	2	4	
34	1296	6	4	3	3	3	3	4	
35	972	6	3	3	3	3	3	4	
36	60	3	5	3	4				
37	120	4	5	3	2	4			
38	240	4	5	3	4	4			
39	480	5	5	4	3	2	4		
40	960	5	5	4	4	3	4		
41	180	4	5	3	3	4			
42	360	5	5	3	3	2	4		
43	720	5	5	4	3	3	4		
44	540	5	5	3	3	3	4		
45	1080	6	5	3	3	3	2	4	
46	300	4	5	5	3	4			
47	600	5	5	5	3	2	4		
48	900	5	5	5	3	3	4		
49	1200	5	5	5	4	3	4		

2.1.2.1.14 Cyclic Prefix Addition

Figure 2-4 Cyclic Prefix Addition

apter 2—Overview www.ti.com

On the output the engine can add the cyclic prefix by transmitting the last 'n' samples of the FFT block before transmitting the full block. This feature is especially useful when the output is sent directly to the AIF. This feature can be enabled and configured either by writing directly to the FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER or by using the protocol-specific section of the PKTDMA data packet descriptor (Chapter 3 "Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC" on page 3-1).

Note—When the cyclic prefix addition length (CYCLIC_PREFIX_ADDITION) is not a multiple of four only one FFT block per PKTDMA data packet is supported.

2.1.3 Packet DMA (PKTDMA)

The FFTC uses the Multicore Navigator to receive input data and deliver output results. This is the only input and output data interface available on the FFTC. PKTDMA moves data from one place to another without any CPU intervention working in conjunction with hardware queues. These hardware queues are managed by the 'Queue Manager' (QM). The queues hold *descriptors* which carry information about the packet like the source address, length *etc*. These descriptors are used by the PKTDMA. See the *Multicore Navigator User Guide* in "Related Documentation from Texas Instruments" on page Ø-x for a detailed description and programming instruction for those modules.

The FFTC supports four input hardware queues. These queues can be used to deliver the input data and the configuration information (if necessary) to the FFTC. The FFTC supports both monolithic and host type PKTDMA descriptors.

For the FFTC a PKTDMA data packet can contain one or more FFT blocks. The block sizes are determined by the FFTC configuration values. The FFTC performs the transforms on each of these blocks. The transform results of the blocks that were present in the same PKTDMA data packet coming into the FFTC will be combined to form one output PKTDMA data packet.

Each queue has a unique set of registers in the FFTC that determine the configuration parameters applied to the data delivered to the FFTC from that queue. These registers can be updated by either directly writing to them or by delivering the information as a PKTDMA data packet. Refer to section Chapter 3 "Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC" on page 3-1 for the packet format information.

2.1.4 FFTC Streaming Interface

The streaming interface links the PKTDMA to the FFT engine. In addition to providing the necessary handshaking signals to the PKTDMA, it keeps track of the status of the FFT engine and the PKTDMA to manage the flow of data between them. It can stall the PKTDMA if the FFT engine is busy and is unable to accept new data or hold off on delivering data to the PKTDMA is the destination queue is not ready.

In addition the streaming interface is also responsible for following functions.

- 1. Decodes the protocol-specific packets from the PKTDMA and updating the FFTC configuration registers appropriately.
- 2. Manages endianess and deliver the data to the engine in the correct format.
- 3. Removes Cyclic prefix.

2.1.4.1 Cyclic Prefix Removal

Removing the cyclic prefix is done by simply not writing the first 'k' samples into the FFT engine, where k is the difference between the packet length and the block size. This allows for a seamless interface between the AIF and the FFTC without any CPU intervention. For more information, see the application report *Connecting AIF2 with FFTC* in "Related Documentation from Texas Instruments" on page Ø-x.

Additionally an offset can also be specified to advance the starting position of the FFT block. Figure 2-5 illustrates cyclic prefix removal.

Figure 2-5 Cyclic Prefix Removal

Remove Offset = p

Cyclic prefix removal can be configured either by writing directly to the *FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER* or by using the protocol-specific section of the PKTDMA data packet descriptor (Chapter 3 "Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC" on page 3-1).

Note—When cyclic prefix removal is enabled each PKTDMA data packet can contain only one FFT block.

2.1.5 FFTC Scheduler

The scheduler determines which input queue should be serviced by the streaming interface. It uses a round-robin algorithm taking into account the queue priorities programmed into the FFTC to determine the active queue. A queue can be interrupted by a packet from a higher priority queue at block boundaries, i.e. if a higher priority queue becomes active while processing a FFT block (of a multiblock PKTDMA data packet), the FFTC completes receiving the block, suspends the rest of the packet and starts servicing the higher priority queue. When the queues have the same priority a complete PKTDMA data packet is serviced before servicing next queue.

www.ti.com

TEXAS INSTRUMENTS

The scheduler also guarantees, optionally, that no queue is ever starved without being serviced. The scheduler has a counter for each queue. If the starvation preventing mechanism is enabled (FFTC_CONFIGURATION_REGISTER) then the counters start counting in steps of 8µs up to a maximum of 2ms. Whenever a queue is serviced the counter is reset. If the counter reaches the programmed period is reached the priority level of that queue is increased by one level and the counter restarts. This continues until the queue is serviced after which the priority level is returned to its original value.

2.2 Interrupts

The FFTC module can generate two maskable interrupts an error interrupt and a debug interrupt. The error interrupt signals that an error has occurred and the debug interrupt is generated if either the input PKTDMA data packet descriptor was tagged with the 'Debug halt' flag or it signals that processing of a packet is complete if the input packet descriptor tagged to generate the interrupt.

The interrupts can be enabled using the *FFTC_ERROR_INTERRUPT_ENABLE* register.

The FFTC supports the 'End Of Interrupt' (EOI) interface. The system has an external module called the 'Interrupt Distributor Component' (IDC) that routes the interrupts from the FFTC to the C66x cores. The EOI is used to indicate to the IDC whether an interrupt was served or cleared.

2.3 Emulation Considerations

FFTC supports a soft and a hard mode for emulation suspend.

At *hard stop* the FFTC will stop immediately by not asserting request and ready signals to the PKTDMA.

At *soft stop* the FFTC will stop at the first coming end of an outgoing (Rx) packet or if the FFTC is idle. This stop will be done by not asserting any threads ready indications to the PKTDMA.

Any new FFTC errors and interrupts are suppressed while in emulation mode, and any active errors/interrupts that are awaiting service are held at the active high level. Any suppressed errors/interrupts will be generated when the FFTC exits emulation mode.

2.4 Reset

The FFTC supports hardware and software reset.

2.4.1 Software Reset

The software reset allows the C66x cores to reset the FFTC. When software reset is issued all the internal state machines and registers are reset. The software reset is issued by setting the *software_reset* bit of the *FFTC_CONTROL_REGISTER*

Note—In the case of a software reset care should be taken to make sure that the FFTC is not active before issuing the reset.

2.4.2 Hardware Reset

The hardware reset is issued through the 'Local Power Sleep Control' (LPSC) module that is a chip-wide module that provides the reset signal to the FFTC. When hardware reset is issued all the internal state machines and registers are reset.

www.ti.com

Transmit PKTDMA Protocol-specific Descriptor Fields and Words for FFTC

The Multicore Navigator interface has some protocol-specific fields allocated in the packet descriptor and protocol-specific words that are part of the payload. These fields and words are defined for each of the IP modules that support PKTDMA. Figure 3-1 "Organization of the PKTDMA Protocol-Specific Words for FFTC" on page 3-2 shows how the PKTDMA protocol-specific words are defined for the FFTC.

3.1 Protocol-specific Flags

The bits of the 'Protocol-specific Flags' field present in word 2 of the PKTDMA data packet descriptor that are pushed into one of the four FFTC queues are defined in Table 3-1.

Table 3-1 Bit Description for TX PS Flags

Bit	Field	Description
0	Header Present	0: Control header not present in packet.
		1: Control header present in packet.
1	Debug Halt	0: Do nothing
		1: Issue a halt
2	EOP Interrupt	0: Do nothing
		1: FFTC generates the debug interrupt.
3	Reserved	

Figure 3-1 Organization of the PKTDMA Protocol-Specific Words for FFTC

3.1.1 Control Header

The Control Header is the first protocol-specific word in the transmit packet if bit-0 is set in the Protocol Flags field of the packet descriptor pushed into one of the four FFTC queues. The control header is described in Table 3-2.

Table 3-2 PS Control Header Word (Part 1 of 2)

Bit	Field	Description
31:29	RESERVED	
28:24	PS_field_length	The length of the pass-through data, in 32-bit words (1 to 4)
23:21	RESERVED	
20:16	DFT_sizes_list_length	Indicates the length of the DFT sizes list in 32-bit words (1 to 26)
15:3	RESERVED	

Table 3-2 PS Control Header Word (Part 2 of 2)

Bit	Field	Description
2	PS pass-through present	Indicates that there is a protocol-specific field that should be forwarded to the receiver
		0 – Pass-through word not present
		1 – Pass-through word present
1	DFT sizes list present	Indicates that the list of DFT sizes is present
		0 – DFT sizes list not present.
		1 – DFT sizes list present.
0	Local configuration data present	Indicates that the five local control registers are present. If present, configuration data is always 5 32-bit words.
		0 – Configuration word not present.
		1 – Configuration word present.

3.1.2 Local Configuration Words

The local configuration words follow the Control Header in the transmit packet if bit-0 of the Control Header is set. If present these words carry the configuration parameters that should be applied to the payload data in that queue. The local configuration is made up of five words and all five of them must be included. Each word maps to a corresponding FFTC configuration register and carry the data that will be stored in that register and follow the respective register format. The mapping of the words and registers are shown in Table 3-3.

Table 3-3 PS Local Configuration Words

Word	Register
1	FFTC_QUEUE_x_DESTINATION_QUEUE_AND_SHIFTING_REGISTER
2	FFTC_QUEUE_x_SCALING
3	FFTC_QUEUE_x_CYCLIC_PREFIX_REGISTER
4	FFTC_QUEUE_x_CONTROL_REGISTER
5	FFTC_QUEUE_x_LTE_FREQUENCY_SHIFT_REGISTER

3.1.3 DFT Size List Configuration Words

If *bit-1* of the *Control Header* is set to 1 then the five 'Local Configuration Words' are followed by the *DFT_size_list* words. The number of words present must match the *DFT_size_list_length* parameter in the *Control Header*. These values are loaded into the *DFT_SIZE_LIST_GROUP_x* registers and follow the same format.

3.1.4 Protocol-specific Pass-through Words

The PS pass-through words are not used by the FFTC but are forwarded and appear as protocol-specific data in the receive PKTDMA data packet.

If *bit-2* of the Control Header is set to 1, the last block in the PS section is the PS pass-through words. The number of words present must match the Protocol_specific_field_length parameter in the Control Header.

The pass-through words can also be enabled even if the control header is not used (bit -0 of TX ps_flag = 0). For this. the "Protocol Specific Valid Word Count" field of the TX descriptor must be set to match the number of pass-through words included (1 to 4). This method can be used when the AIF2 interfaces directly with the FFTC.

Receive PKTDMA Descriptor and Packet For FFTC

The FFTC receive packet consists of the FFT or IFFT results, pass-through words and side information.

4.1 Side Information

Figure 4-1 PKTDMA RX Payload Format with SUPPRESS_SIDE_INFO Off

Figure 4-2 PKTDMA RX Payload Format with SUPPRESS_SIDE_INFO Set

In addition to FFT or IFFT results the FFTC also generates some side information. Some of the side information is output as part of the receive packet descriptor while others are part of the receive packet. The side information values that are included in the descriptor as follows:

- Clip Detection
- Error Indication

The following side information values are a part of the descriptor packet payload if side-info suppression is disabled

- Block Exponent
- Destination Tag
- Source IdD
- Flow ID

It is possible to suppress the side information from being included in the receive packet by setting the *suppress_side_info*' field in the *FFTC_QUEUE_x_CONTROL_REGISTER* register.

4.1.1 Block Exponent

The block exponent value is a simple summation of the shift values calculated ("Scaling" on page 2-6) at each radix stages including the LTE scaling factor. The block exponent is returned as part of the PKTDMA data packet. The reported block exponent is given by the equation

SUM $(s_i) + s_{out} - 3 + (LTE_FREQ_EN * S_{LTE})$ Where i= 0 to NUM_STAGES -1 LTE_FREQ_EN = 0 if LTE frequency shift disabled 1 if LTE frequency shift enabled

4.1.2 Clip Detection

In static scaling mode it is possible for clipping to occur during the transform. Clipping occurs when, after any stage, any one of the real or imaginary results exceeds the allocated range of values. In this case the FFTC saturates the results and increments the count in the FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER for that queue. The count is incremented only once per block irrespective of how many times the situation occurs within a block. The clipping detection is also reported by setting bit-1 of the 'Error Flags' field (word 2) in the packet descriptor; in this case the clipping detection indicates that there was clipping in at least one block within the packet.

4.1.3 Error Indication

Whenever any kind of error has occurred in the FFTC this is reported in the receive packet descriptor by setting *bit-0* of the *'Error Flags'* field (word 2) in the packet descriptor.

4.1.4 Destination Tag

The destination tag that was written in the transmit packet descriptor is copied and returned in both the receive packet as well as the packet descriptor. The destination tag can be used at the user's discretion to track packets.

4.1.5 Source Id

The 'Source Id' that was written in the transmit packet descriptor (source_tag hi) is copied and returned in both the receive packet as well as the packet descriptor. The source ID can be used at the user's discretion to track packets.

4.1.6 Flow Id

The 'Flow Id' refers to the flow table to use to configure the receive channel. Refer to the PKTDMA Users Guide for a detailed description of flow tables. If the QX_FLW_ID bit of the FFTC_CONFIGURATION_REGISTER ("Configuration Register (FFTC_CONFIGURATION_REGISTER)" on page 9-6) is set, the 'Flow Id' that was written in the transmit packet descriptor is copied and returned in both the receive packet as well as the packet descriptor. Otherwise, if the QX_FLW_ID bit is not set, the flow_id is set to the incoming queue number.

Note—The 'Source Tag Low' field of the TX descriptor is used to specify the 'Flow Id'.

4.2 Pass-through Fields

Instruments

If the receive packet included pass-through fields then those packets are returned in the PS section of the PKTDMA receive packet. The PS section is specified by the 'rx_ps_location' bit in the Rx Flow N Configuration Register A of the flow configuration table.

Endian Mode Support

The FFTC supports both little and big endian modes. Its operating endian mode matches that of the system setting.

Each complex sample of the input and output data to the FFTC is a 32-bit word (16-bit I & 16-bit Q). The real part (I) always occupies the MSB and the imaginary part (Q) always occupies the LSB of the 32-bit word regardless of the endian mode of the system. However the FFTC data bus is 128-bits wide and how the four 32-bit words are arranged on the bus is endian dependent. The 128-bit data format for both the modes is shown in the Table 5-1 and Table 5-2.

Table 5-1 Little-endian Word Format

Bits	Bytes	Words	Component
127-120	15	3	I3
119-112	14		
111-104	13		Q3
103-96	12		
95-88	11	2	12
87-80	10		
79-72	9		Q2
71-64	8		
63-56	7	1	I1
55-48	6		
47-40	5		Q1
39-32	4		
31-24	3	0	10
23-16	2		
15-8	1		Q0
7-0	0		

Table 5-2 Big-endian Word Format

Bits	Bytes	Words	Component
127-120	0	0	10
119-112	1		
111-104	2		Q0
103-96	3		
95-88	4	1	l1
87-80	5		
79-72	6		Q1
71-64	7		
63-56	8	2	I2
55-48	9		
47-40	10		Q2
39-32	11		
31-24	12	3	I3
23-16	13		
15-8	14		Q3
7-0	15		

Halt Modes

The FFTC can be halted when one of the following conditions occurs:

- Errors are generated during normal operation
- A *halt*' command is issued by setting *bit-1* of the '*Protocol Specific Flags*' field present in *word* 2 of the PKTDMA data packet descriptor
- The emususp or the emususp_rt signal is asserted

The halt can either be a soft or a hard stop. For a *hard stop*, the FFTC stops immediately and no more data flows to and from it to the PKTDMA. For a *soft stop*, the FFTC continues operating until it reaches (or is already at) the end of an outgoing packet before halting.

If the FFTC is configured to halt on an error, the error always generates a *hard stop*. The halt command and the emususp (emususp_rt) assertion will generate a hard or a soft stop based on the *emu_soft_stop* bit setting in the *FFTC_STATUS_REGISTER*.

After halting, the FFTC can be made to resume operating normally by issuing a 'continue' command. A 'continue' is issued by writing '1' to bit-1 of the FFTC_CONTROL_REGISTER ("Control Register (FFTC_CONTROL_REGISTER)" on page 9-7).

Chapter 6—Halt Modes www.ti.com

Chapter 7

Errors

- 7.1 "Types of Errors" on page 7-2
- 7.2 "FFTC Error Conditions Behavior" on page 7-4

Chapter 7—Errors

7.1 Types of Errors

The FFTC generates four different types of errors:

7.1.1 Configuration Error

This error is generated when an error is detected in any of the configuration words in the incoming PKTDMA data packet. The various possible configuration errors are shown in Table 7-1.

7.1.2 Receive Buffer Starvation Error

This error is generated when the FFTC attempts to create an output packet and is unable to acquire a free buffer from the RX PKTDMA queue. In the case of buffer starvation the PKTDMA can be configured either to drop the outgoing packet or wait and keep retrying to send out the packet. It is recommended that for the FFTC the PKTDMA be configured to drop the packets. If the PKTDMA is configured to wait and retry it will effectively halt the FFTC until a descriptor becomes available.

7.1.3 EOP Error

This error is generated when the packet length is not a multiple of the FFT block size for that TX packet.

7.1.4 Invalid Configuration Length Error

This error is generated when the PS word count specified in the PKTDMA data packet descriptor does not match with what the count should be as per the 'Control Header'.

Note—Not all configuration errors are flagged by the FFTC. Only the major errors are flagged. Table 7-2 lists some of the configuration errors that are not flagged by the FFTC.

Table 7-1 Configuration Errors

Condition	Description
FFT_SHIFT_LEFT_RIGHT_OUTPUT and (FFT_SHIFT_LEFT_RIGHT_INPUT or FFT_VARIABLE_SHIFT_INPUT)	They cannot both be enabled simultaneously.
(FFT_SHIFT_LEFT_RIGHT_INPUT or FFT_VARIABLE_SHIFT_INPUT) and LTE_FREQ_SHIFT_EN	They cannot both be enabled simultaneously.
FFT size out of range	This applies to both single FFT size and to list of DFT sizes
	The DFT_SIZE is selected from a table of sizes, if the size is not a valid index, there is an error.
ZERO_PAD FFT size	The amount of zero padding must be less than the FFT size (indexed by DFT_SIZE)
ZERO_PAD values	The Zero padding values should follows these constraints:
	Multiply mode – value should be less than or equal to 5
	Add mode – value should be > 0.
CYCLIC_PREFIX_ADDITION > FFT size	You can only add a cyclic prefix up to the length of the symbol
PKTDMA data packet length – CYCLIC_PREFIX_REMOVE_OFFSET + ZERO_PAD < FFT size	If the offset is set so that it makes the overall packet length shorter than the FFT size, this is not valid
LTE_FREQ_SHIFT_PHASE * 4 > M / (a * 2) and LTE_FREQ_SHIFT_EN	The LTE frequency shift initial phase must be within the proper range
M/(a * 2) < Nfft when M = 12288 and LTE_FREQ_SHIFT_EN	For LTE frequency shift, there are limits on the factor and the FFT size when using the 12288 table
DFT_SIZE set to 0x3f on invalid queue	Only one of the 4 queues can have the DFT_SIZE set to 0x3f

www.ti.com

Each of these four errors can be used to generate the error interrupt (FFTC_ERROR_INTERRUPT_ENABLE_REGISTER) or halt (FFTC_HALT_ON_ERROR_REGISTER) the FFTC when any of the error conditions occur.

Table 7-2 **Unflagged Configuration Errors**

Condition	Description
Zero pad value (add mode) % 4 ? 0	In add mode the zero pad value must be a multiple of 4.
CYCLIC_PREFIX_REMOVE_EN and	
(ZERO_PAD_VAL > 0)	Cyclic prefix removal and zero padding cannot be enabled simultaneously.

7.2 FFTC Error Conditions Behavior

The behavior of the FFTC when error conditions occur is shown in Table 7-3.

Table 7-3 FFTC Errors

Error Type	Behavior
Configuration error	Incoming packets are flushed until the configuration is corrected.
	Empty packets are written to the free/destination queue with error bit-0 set to indicate the invalid configuration error.
	If bit-3 of the FFTC_HALT_ON_ERROR_REGISTER is set then the FFTC will halt (hard stop).
	If bit 3 of the FFTC_ERROR_INTERRUPT_ENABLE_REGISTER is set then the error interrupt will be generated.
Receive buffer starvation error	If bit-2 of the FFTC_HALT_ON_ERROR_REGISTER is set then the FFTC will halt (hard stop).
	If bit-2 of the FFTC_ERROR_INTERRUPT_ENABLE_REGISTER is set then the error interrupt will be generated.
EOP error	Last block of the packet will be corrupt.
	If bit-1 of the FFTC_HALT_ON_ERROR_REGISTER is set then the FFTC will halt (hard stop).
	If bit-1 of the FFTC_ERROR_INTERRUPT_ENABLE_REGISTER is set then the error interrupt will be generated.
Invalid Configuration Length error	Incoming packets will be flushed until either the configuration or the descriptor is corrected.
	Empty packets are written to the free/destination queue with error bit-0 set.
	If bit-0 of the FFTC_HALT_ON_ERROR_REGISTER is set then the FFTC will halt (hard stop).
	If bit-0 of the FFTC_ERROR_INTERRUPT_ENABLE_REGISTER is set then the error interrupt will be generated.

Interrupt Servicing

When either the error interrupt or the debug interrupt is issued the application has to perform the following steps.

- Read the FFTC_ERROR_INTERRUPT_ENABLED_STATUS_REGISTER
 ("Error Interrupt Enabled Status Register
 (FFTC_ERROR_INTERRUPT_ENABLED_STATUS_REGISTER)" on
 page 9-13) to determine the source of the interrupt.
- 2. After performing necessary tasks to service the interrupt the application should write a '1' to the bit position corresponding to the interrupt source in the FFTC_ERROR_INTERRUPT_CLEAR_REGISTER ("Error Interrupt Clear Register (FFTC_ERROR_INTERRUPT_CLEAR_REGISTER)" on page 9-12) to clear the FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER ("Error Interrupt Status Register (FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER)" on page 9-10).
- 3. If the 'HALTED' bit in the FFTC_STATUS_REGISTER ("Error Interrupt Status Register (FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER)" on page 9-10) is set then the application should set either the 'RESET' or 'CONTINUE' bit of the FFTC_CONTROL_REGISTER ("Control Register (FFTC_CONTROL_REGISTER)" on page 9-7).
- 4. Finally it should write an appropriate value to the FFTC_END_OF_INTERRUPT_REGISTER ("End of Interrupt Register (FFTC_END_OF_INTERRUPT_REGISTER)" on page 9-17) to re-enable the interrupts.

Registers

Table 9-1 lists the memory mapped register in the FFTC module. Refer to the device specific data sheet for the base address of the registers.

Table 9-1 Register Map (Part 1 of 4)

Offset	Acronym	Section
0000h	FFTC_PID_REGISTER	Section 9.1 "Peripheral ID Register (FFTC_PID_REGISTER)" on page 9-5
0004h	FFTC_CONFIGURATION_REGISTER	Section 9.2 "Configuration Register (FFTC_CONFIGURATION_REGISTER)" on page 9-6
0008h	FFTC_CONTROL_REGISTER	Section 9.3 "Control Register (FFTC_CONTROL_REGISTER)" on page 9-7
000Ch	FFTC_STATUS_REGISTER	Section 9.4 "Status Register (FFTC_STATUS_REGISTER)" on page 9-8
0010h	FFTC_EMULATION_CONTROL_REGISTER	Section 9.5 "Emulation Control Register (FFTC_EMULATION_CONTROL_REGISTER)" on page 9-9
0014h	FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER	Section 9.6 "Error Interrupt Status Register (FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER)" on page 9-10
0014h	FFTC_ERROR_INTERRUPT_SET_REGISTER	Section 9.7 "Error Interrupt Set Register (FFTC_ERROR_INTERRUPT_SET_REGISTER)" on page 9-11
0018h	FFTC_ERROR_INTERRUPT_CLEAR_REGISTER	Section 9.8 "Error Interrupt Clear Register (FFTC_ERROR_INTERRUPT_CLEAR_REGISTER)" on page 9-12
001Ch	FFTC_ERROR_INTERRUPT_ENABLE_STATUS_REGISTER	Section 9.9 "Error Interrupt Enabled Status Register (FFTC_ERROR_INTERRUPT_ENABLED_STATUS_REGISTER)" on page 9-13
0020h	FFTC_ERROR_INTERRUPT_ENABLE_REGISTER	Section 9.10 "Error Interrupt Enable Register (FFTC_ERROR_INTERRUPT_ENABLE_REGISTER)" on page 9-14
0024h	FFTC_ERROR_INTERRUPT_ENABLE_CLEAR_REGISTER	Section 9.11 "Error Interrupt Enable Clear Register (FFTC_ERROR_INTERRUPT_ENABLE_CLEAR_REGISTER)" on page 9-15
0028h	FFTC_HALT_ON_ERROR_REGISTER	Section 9.12 "Halt on Error Enable Register (FFTC_HALT_ON_ERROR_REGISTER)" on page 9-16
002Ch	FFTC_END_OF_INTERRUPT_REGISTER	Section 9.13 "End of Interrupt Register (FFTC_END_OF_INTERRUPT_REGISTER)" on page 9-17
0030h	FFTC_QUEUE_0_CLIPPING_DETECT_REGISTER	Section 9.14 "Queue Clipping Detect Register (FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER)" on page 9-18
0034h	FFTC_QUEUE_1_CLIPPING_DETECT_REGISTER	Section 9.14 "Queue Clipping Detect Register (FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER)" on page 9-18
0038h	FFTC_QUEUE_2_CLIPPING_DETECT_REGISTER	Section 9.14 "Queue Clipping Detect Register (FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER)" on page 9-18

Chapter 9—Registers www.ti.com

Table 9-1 Register Map (Part 2 of 4)

Offset	Acronym	Section
003Ch	FFTC_QUEUE_3_CLIPPING_DETECT_REGISTER	Section 9.14 "Queue Clipping Detect Register (FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER)" on page 9-18
0040h	FFTC_QUEUE_0_DESTINATION_QUEUE_AND_SHIFTING_REGISTER	Section 9.15 "Queue Destination Queue And Shifting Register (FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGIS TER)" on page 9-19
0044h	FFTC_QUEUE_0_SCALING_REGISTER	Section 9.16 "Queue Scaling Register (FFTC_QUEUE_X_SCALING_REGISTER)" on page 9-20
0048h	FFTC_QUEUE_O_CYCLIC_PREFIX_REGISTER	Section 9.17 "Queue Cyclic Prefix Register (FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER)" on page 9-21
004Ch	FFTC_QUEUE_0_CONTROL_REGISTER	Section 9.18 "Queue Control Register (FFTC_QUEUE_X_CONTROL_REGISTER)" on page 9-22
0050h	FFTC_QUEUE_O_LTE_FREQUENCY_SHIFT_REGISTER	Section 9.19 "Queue LTE Frequency Shift Register (FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER)" on page 9-23
0070h	FFTC_QUEUE_1_DESTINATION_QUEUE_AND_SHIFTING_REGISTER	Section 9.15 "Queue Destination Queue And Shifting Register (FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGIS TER)" on page 9-19
0074h	FFTC_QUEUE_1_SCALING_REGISTER	Section 9.16 "Queue Scaling Register (FFTC_QUEUE_X_SCALING_REGISTER)" on page 9-20
0078h	FFTC_QUEUE_1_CYCLIC_PREFIX_REGISTER	Section 9.17 "Queue Cyclic Prefix Register (FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER)" on page 9-21
007Ch	FFTC_QUEUE_1_CONTROL_REGISTER	Section 9.18 "Queue Control Register (FFTC_QUEUE_X_CONTROL_REGISTER)" on page 9-22
0080h	FFTC_QUEUE_1_LTE_FREQUENCY_SHIFT_REGISTER	Section 9.19 "Queue LTE Frequency Shift Register (FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER)" on page 9-23
00A0h	FFTC_QUEUE_2_DESTINATION_QUEUE_AND_SHIFTING_REGISTER	Section 9.15 "Queue Destination Queue And Shifting Register (FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGIS TER)" on page 9-19
00A4h	FFTC_QUEUE_2_SCALING_REGISTER	Section 9.16 "Queue Scaling Register (FFTC_QUEUE_X_SCALING_REGISTER)" on page 9-20
00A8h	FFTC_ QUEUE_2_CYCLIC_PREFIX_REGISTER	Section 9.17 "Queue Cyclic Prefix Register (FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER)" on page 9-21
00ACh	FFTC_QUEUE_2_CONTROL_REGISTER	Section 9.18 "Queue Control Register (FFTC_QUEUE_X_CONTROL_REGISTER)" on page 9-22
00B0h	FFTC_QUEUE_2_LTE_FREQUENCY_SHIFT_REGISTER	Section 9.19 "Queue LTE Frequency Shift Register (FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER)" on page 9-23
00D0h	FFTC_QUEUE_3_DESTINATION_QUEUE_AND_SHIFTING_REGISTER	Section 9.15 "Queue Destination Queue And Shifting Register (FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGIS TER)" on page 9-19
00D4h	FFTC_QUEUE_3_SCALING_REGISTER	Section 9.16 "Queue Scaling Register (FFTC_QUEUE_X_SCALING_REGISTER)" on page 9-20
00D8h	FFTC_QUEUE_3_CYCLIC_PREFIX_REGISTER	Section 9.17 "Queue Cyclic Prefix Register (FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER)" on page 9-21
00DCh	FFTC_QUEUE_3_CONTROL_REGISTER	Section 9.18 "Queue Control Register (FFTC_QUEUE_X_CONTROL_REGISTER)" on page 9-22
00E0h	FFTC_QUEUE_3_LTE_FREQUENCY_SHIFT_REGISTER	Section 9.19 "Queue LTE Frequency Shift Register (FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER)" on page 9-23
0100h	FFTC_DFT_SIZE_LIST_GROUP_0_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0104h	FFTC_DFT_SIZE_LIST_GROUP_1_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24

www.ti.com Chapter 9—Registers

Table 9-1 Register Map (Part 3 of 4)

Table 5	- 1 Register Map (Fart 5 Of 4)	
Offset	Acronym	Section
0108h	FFTC_DFT_SIZE_LIST_GROUP_2_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
010Ch	FFTC_DFT_SIZE_LIST_GROUP_3_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0110h	FFTC_DFT_SIZE_LIST_GROUP_4_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0114h	FFTC_DFT_SIZE_LIST_GROUP_5_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0118h	FFTC_DFT_SIZE_LIST_GROUP_6_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
011Ch	FFTC_DFT_SIZE_LIST_GROUP_7_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0120h	FFTC_DFT_SIZE_LIST_GROUP_8_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0124h	FFTC_DFT_SIZE_LIST_GROUP_9_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0128h	FFTC_DFT_SIZE_LIST_GROUP_10_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
012Ch	FFTC_DFT_SIZE_LIST_GROUP_11_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0130h	FFTC_DFT_SIZE_LIST_GROUP_12_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0134h	FFTC_DFT_SIZE_LIST_GROUP_13_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0138h	FFTC_DFT_SIZE_LIST_GROUP_14_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
013Ch	FFTC_DFT_SIZE_LIST_GROUP_15_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0140h	FFTC_DFT_SIZE_LIST_GROUP_16_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0144h	FFTC_DFT_SIZE_LIST_GROUP_17_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0148h	FFTC_DFT_SIZE_LIST_GROUP_18_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
014Ch	FFTC_DFT_SIZE_LIST_GROUP_19_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0150h	FFTC_DFT_SIZE_LIST_GROUP_20_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0154h	FFTC_DFT_SIZE_LIST_GROUP_21_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0158h	FFTC_DFT_SIZE_LIST_GROUP_22_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
015Ch	FFTC_DFT_SIZE_LIST_GROUP_23_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0160h	FFTC_DFT_SIZE_LIST_GROUP_24_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0164h	FFTC_DFT_SIZE_LIST_GROUP_25_REGISTER	Section 9.20 "DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)" on page 9-24
0170h	FFTC_BLOCK_0_DESTINATION_QUEUE_AND_SHIFT_STATUS_REGISTER	Section 9.21 "Destination Queue and Shifting Status Register (FFTC_BLOCK_X_DESTINATION_QUEUE_AND_SHIFTING_REGIS TER)" on page 9-25
0174h	FFTC_BLOCK_0_SCALING_STATUS_REGISTER	Section 9.22 "Scaling Status Register (FFTC_BLOCK_X_SCALING_REGISTER)" on page 9-26

Chapter 9—Registers www.ti.com

Table 9-1 Register Map (Part 4 of 4)

Offset	Acronym	Section
0178h	FFTC_BLOCK_0_CYCLIC_PREFIX_STATUS_REGISTER	Section 9.23 "Cyclic Prefix Status Register (FFTC_BLOCK_X_CYCLIC_PREFIX_REGISTER)" on page 9-27
017Ch	FFTC_BLOCK_0_CONTROL_STATUS_REGISTER	Section 9.24 "Control Status Register (FFTC_BLOCK_X_CONTROL_REGISTER)" on page 9-28
0180h	FFTC_BLOCK_0_LTE_FREQUENCY_SHIFTING_STATUS_REGISTER	Section 9.25 "LTE Frequency Shift Status Register (FFTC_BLOCK_X_LTE_FREQUENCY_SHIFT_REGISTER)" on page 9-29
0184h	FFTC_BLOCK_0_PACKET_SIZE_STATUS_REGISTER	Section 9.26 "Packet Size Status Register (FFTC_BLOCK_X_PACKET_SIZE_STATUS_REGISTER)" on page 9-30
0188h	FFTC_BLOCK_0_TAG_ STATUS_REGISTER	Section 9.27 "Tag Status Register (FFTC_BLOCK_X_TAG_STATUS_REGISTER)" on page 9-31
0190h	FFTC_ BLOCK_1_DESTINATION_QUEUE_AND_SHIFTING_STATUS_REGISTER	Section 9.21 "Destination Queue and Shifting Status Register (FFTC_BLOCK_X_DESTINATION_QUEUE_AND_SHIFTING_REGIS TER)" on page 9-25
0194h	FFTC_BLOCK_1_SCALING_STATUS_REGISTER	Section 9.22 "Scaling Status Register (FFTC_BLOCK_X_SCALING_REGISTER)" on page 9-26
0198h	FFTC_BLOCK_1_CYCLIC_PREFIX_STATUS_REGISTER	Section 9.23 "Cyclic Prefix Status Register (FFTC_BLOCK_X_CYCLIC_PREFIX_REGISTER)" on page 9-27
019Ch	FFTC_BLOCK_1_CONTROL_STATUS_REGISTER	Section 9.24 "Control Status Register (FFTC_BLOCK_X_CONTROL_REGISTER)" on page 9-28
01A0h	FFTC_ BLOCK _1_LTE_FREQUENCY_SHIFT_ STATUS_REGISTER	Section 9.25 "LTE Frequency Shift Status Register (FFTC_BLOCK_X_LTE_FREQUENCY_SHIFT_REGISTER)" on page 9-29
01A4h	FFTC_BLOCK_1_PACKET_SIZE_STATUS_REGISTER	Section 9.26 "Packet Size Status Register (FFTC_BLOCK_X_PACKET_SIZE_STATUS_REGISTER)" on page 9-30
01A8h	FFTC_BLOCK_1_TAG_ STATUS_REGISTER	Section 9.27 "Tag Status Register (FFTC_BLOCK_X_TAG_STATUS_REGISTER)" on page 9-31
01B0h	FFTC_BLOCK_2_DESTINATION_QUEUE_AND_SHIFTING_STATUS_REGISTER	Section 9.21 "Destination Queue and Shifting Status Register (FFTC_BLOCK_X_DESTINATION_QUEUE_AND_SHIFTING_REGIS TER)" on page 9-25
01B4h	FFTC_BLOCK_2_SCALING_STATUS_REGISTER	Section 9.22 "Scaling Status Register (FFTC_BLOCK_X_SCALING_REGISTER)" on page 9-26
01B8h	FFTC_ BLOCK _2_CYCLIC_PREFIX _ STATUS_REGISTER	Section 9.23 "Cyclic Prefix Status Register (FFTC_BLOCK_X_CYCLIC_PREFIX_REGISTER)" on page 9-27
01BCh	FFTC_ BLOCK _2_CONTROL_ STATUS_REGISTER	Section 9.24 "Control Status Register (FFTC_BLOCK_X_CONTROL_REGISTER)" on page 9-28
01C0h	FFTC_BLOCK_2_LTE_FREQUENCY_SHIFT_ STATUS_REGISTER	Section 9.25 "LTE Frequency Shift Status Register (FFTC_BLOCK_X_LTE_FREQUENCY_SHIFT_REGISTER)" on page 9-29
01C4h	FFTC_BLOCK_2_PACKET_SIZE_STATUS_REGISTER	Section 9.26 "Packet Size Status Register (FFTC_BLOCK_X_PACKET_SIZE_STATUS_REGISTER)" on page 9-30
01C8h	FFTC_BLOCK_2_TAG_ STATUS_REGISTER	Section 9.27 "Tag Status Register (FFTC_BLOCK_X_TAG_STATUS_REGISTER)" on page 9-31
End of	Table 9-1	

9.1 Peripheral ID Register (FFTC_PID_REGISTER)

The Peripheral ID register contains the revision number of the module.

Figure 9-1 Peripheral ID Register (FFTC_PID_REGISTER)

31 0 Revision

R - 0x4805 0000

Legend: R = Read only; W = Write only; -n = value after reset

Table 9-2 Peripheral ID Register (FFTC_PID_REGISTER) Field Description

Bit	Field	Access	Value	Description
31-0	Revision	R	0x4805 0000	Module Revision number

9.2 Configuration Register (FFTC_CONFIGURATION_REGISTER)

The configuration register is used to setup the TX queue priorities and RX flow ids.

Figure 9-2 Configuration Register (FFTC_CONFIGURATION_REGISTER)

Table 9-3 FFTC_CONFIGURATION_REGISTER Field Description.

Bit	Field	Access	Value	Description
31-22	Reserved	R	0	Reserved.
21	Q3_FLWID_OVRD	RW	0	Queue-3 Flow ID in TX descriptor will be passed-thru.
				The Flow ID will be overwritten and set to the thread number.
			1	
20	Q2_FLWID_OVRD	RW	0	Queue-2 Flow ID in TX descriptor will be passed-thru.
				The Flow ID will be overwritten and set to the thread number.
			1	
19	Q1_FLWID_OVRD	RW	0	Queue-1 Flow ID in TX descriptor will be passed-thru.
				The Flow ID will be overwritten and set to the thread number.
			1	
18	Q0_FLWID_OVRD	RW	0	Queue-0 Flow ID in TX descriptor will be passed-thru.
				The Flow ID will be overwritten and set to the thread number.
			1	
17-10	STARVE_PRD	RW	0	Disable feature
			0x1 – 0xFF	Max queue starvation period.
9-8	QUE_3_PRI	RW	0 - 3	Queue 3 Priority (0 – High, 3 – Low)
7-6	QUE_2_PRI	RW	0 - 3	Queue 2 Priority (0 – High, 3 – Low)
5-4	QUE_1_PRI	RW	0 - 3	Queue 1 Priority (0 – High, 3 – Low)
3-2	QUE_0_PRI	RW	0 - 3	Queue 0 Priority (0 – High, 3 – Low)
1	Reserved	R	0	Reserved
0	DISABLE ¹	RW	0	No effect
	DICTAL EL L'AL		1	Disable the FFT calculation

When the DISBALE bit is set it will disable the calculations in the FFT engine. The raw data from the memory buffers are returned with the appropriate zero-padding and cyclic prefix settings applied.

9.3 Control Register (FFTC_CONTROL_REGISTER)

The control register is described below.

Figure 9-3 Control Register (FFTC_CONTROL_REGISTER)

31	2	1	0
Reserved		CONTINUE	RESET
R-O		W-O	W-O

Legend: R = Read only; W = Write only; -n = value after reset

Table 9-4 FFTC_CONTROL_REGISTER Field Description

Bit	Field	Access	Value	Description
31-2	Reserved	R	0	Reserved
1	CONTINUE	W	0	Nothing
			1	This will send a 'Continue' signal to the engine. The engine will start processing data without resetting any of it state machines and variables.
0	RESET	W	0	Nothing
			1	Issues a software reset. All registers and internal state machines are reset.

9.4 Status Register (FFTC_STATUS_REGISTER)

Figure 9-4 Status Register (FFTC_STATUS_REGISTER)

Table 9-5 FFTC_STATUS_REGISTER Field Description

Bit	Field	Access	Value	Description
31-1	Reserved	R	0	Reserved
0	HALTED	R	0	FFTC active
			1	FFTC Halted

9.5 Emulation Control Register (FFTC_EMULATION_CONTROL_REGISTER)

This register is used to setup the behavior of the FFTC when an emulation stop is issued.

Figure 9-5 Emulation Control Register (FFTC_EMULATION_CONTROL_REGISTER)

Table 9-6 FFTC_EMULATION_CONTROL_REGISTER Field Description

Bit	Field	Access	Value	Description
2	EMU_RT_SEL	RW 0		Use 'emususp' signal.
		KVV	1	Use 'emususp_rt' signal.
1	SOFT_STOP	OP RW		'Soft Stop' halt mode
				'Hard Stop' halt mode
0	FREE_RUN	DW	0	Suspend enabled
		RW	1	Suspend disabled

9.6 Error Interrupt Status Register (FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER)

This register is used to report the interrupt status. The register reports any interrupt condition that occurred irrespective of whether the interrupt is enabled or not.

Figure 9-6 Error Interrupt Status Register (FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER)

31	30 29 28		28	27	26	25	24	
	Reserved	Reserved Q3_INT_ON_EOP Q3_DEBUG_HALT		Q3_CONFIG_WORD_ERR	Q3_DESC_BUF_ERR	Q3_EOP_ERR	Q3_CONFIG_INVAL_ERR	
	R-0		R-0	R-0	R-0	R-0	R-0	R-0
23		22	21	20	19	18	17	16
	Reserved		Q2_INT_ON_EOP	Q2_DEBUG_HALT	Q2_CONFIG_WORD_ERR	Q2_DESC_BUF_ERR	Q2_EOP_ERR	Q2_CONFIG_INVAL_ERR
	R-0		R-0	R-0	R-0	R-0	R-0	R-0
15		14	13	12	11	10	9	8
	Reserved		Q1_INT_ON_EOP	Q1_DEBUG_HALT	Q1_CONFIG_WORD_ERR	Q1_DESC_BUF_ERR	Q1_EOP_ERR	Q1_CONFIG_INVAL_ERR
	R-0		R-0	R-0	R-0	R-0	R-0	R-0
7		6	5	4	3	2	1	0
	Reserved		Q0_INT_ON_EOP	Q0_DEBUG_HALT	Q0_CONFIG_WORD_ERR	Q0_DESC_BUF_ERR	Q0_EOP_ERR	Q0_CONFIG_INVAL_ERR
	R-0		R-0	R-0	R-0	R-0	R-0	R-0

Table 9-7 FFTC ERROR INTERRUPT RAW STATUS REGISTER Field Description

Bit	Field	Access	Value	Description	
7+8*n - 6+8*n	Reserved	R	0	Reserved	
5+8*n	Qn_INT_ON_EOP1	R	0	No interrupt	
			1	Processing completed on packet in queue n.	
4+8*n	Qn_DEBUG_HALT ²	R	0	No interrupt	
			1	'Debug Halt' command received in queue n.	
3+8*n	Qn_CONFIG_WORD_ERR	R	0	No Interrupt.	
			1	Configuration error occurred in queue n.	
2+8*n	Qn_DESC_BUF_ERR	R	0	No Interrupt.	
			1	RX buffer starvation error occurred in queue n.	
1+8*n	Qn_EOP_ERR	R	0	No interrupt.	
			1	Unexpected EOP error has occurred in queue n.	
0+8*n	Qn_CONFIG_INVAL_ERR	R	0	No interrupt	
			1	Invalid configuration length error has occurred in queue n.	

^{1.} If bit-2 of the 'PS Flags' in the TX packet descriptor is set then the debug interrupt will be generated when processing is completed on the packet and the results written to the RX destination queue.

 $^{2. \ \} The \ 'Debug \ halt' \ command \ is \ is sued \ by \ setting \ bit-1 \ of \ the \ PS \ Flags \ in \ the \ TX \ packet \ descriptor.$

9.7 Error Interrupt Set Register (FFTC_ERROR_INTERRUPT_SET_REGISTER)

This register is used to set the various fields in the FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER. This could be used for debugging purposes.

Figure 9-7 Error Interrupt Set Register (FFTC_ERROR_INTERRUPT_SET_REGISTER)

31		30	29	28	27	26	25	24
	Reserved Q3_INT_ON_EOP Q3_DE		Q3_DEBUG_HALT	Q3_CONFIG_WORD_ERR	Q3_DESC_BUF_ERR	Q3_EOP_ERR	Q3_CONFIG_INVAL_ERR	
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
23		22	21	20	19	18	17	16
	Reserved		Q2_INT_ON_EOP	Q2_DEBUG_HALT	Q2_CONFIG_WORD_ERR	Q2_DESC_BUF_ERR	Q2_EOP_ERR	Q2_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
15		14	13	12	11	10	9	8
	Reserved		Q1_INT_ON_EOP	Q1_DEBUG_HALT	Q1_CONFIG_WORD_ERR	Q1_DESC_BUF_ERR	Q1_EOP_ERR	Q1_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
7		6	5	4	3	2	1	0
	Reserved		Q0_INT_ON_EOP	Q0_DEBUG_HALT	Q0_CONFIG_WORD_ERR	Q0_DESC_BUF_ERR	Q0_EOP_ERR	Q0_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0

Table 9-8 FFTC_ERROR_INTERRUPT_SET_REGISTER Field Description

Bit	Field	Access	Value	Description
7+8*n - 6+8*n	Reserved	W	0	Reserved
5+8*n	Qn_INT_ON_EOP	W	0	No effect.
			1	Bit is set.
4+8*n	Qn_DEBUG_HALT	W	0	No effect.
			1	Bit is set.
3+8*n	Qn_CONFIG_WORD_ERR	W	0	No effect.
			1	Bit is set
2+8*n	Qn_DESC_BUF_ERR	W	0	No effect.
			1	Bit is set
1+8*n	Qn_EOP_ERR	W	0	No effect.
			1	Bit is set.
0+8*n	Qn_CONFIG_INVAL_ERR	W	0	No effect.
			1	Bit is set

9.8 Error Interrupt Clear Register (FFTC_ERROR_INTERRUPT_CLEAR_REGISTER)

This register is used to clear the various fields in the FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER.

Figure 9-8 Error Interrupt Clear Register (FFTC_ERROR_INTERRUPT_CLEAR_REGISTER)

31	30 29 28		28	27	26	25	24	
	Reserved	Reserved Q3_INT_ON_EOP Q3_DEBUG_HALT		Q3_CONFIG_WORD_ERR	Q3_DESC_BUF_ERR	Q3_EOP_ERR	Q3_CONFIG_INVAL_ERR	
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
23		22	21	20	19	18	17	16
	Reserved		Q2_INT_ON_EOP	Q2_DEBUG_HALT	Q2_CONFIG_WORD_ERR	Q2_DESC_BUF_ERR	Q2_EOP_ERR	Q2_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
15		14	13	12	11	10	9	8
	Reserved		Q1_INT_ON_EOP	Q1_DEBUG_HALT	Q1_CONFIG_WORD_ERR	Q1_DESC_BUF_ERR	Q1_EOP_ERR	Q1_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
7		6	5	4	3	2	1	0
	Reserved		Q0_INT_ON_EOP	Q0_DEBUG_HALT	Q0_CONFIG_WORD_ERR	Q0_DESC_BUF_ERR	Q0_EOP_ERR	Q0_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0

Table 9-9 FFTC_ERROR_INTERRUPT_CLEAR_REGISTER Field Description

Bit	Field	Access	Value	Description
7+8*n - 6+8*n	Reserved	W	0	Reserved
5+8*n	Qn_INT_ON_EOP	W	0	No effect.
			1	Bit is set.
4+8*n	Qn_DEBUG_HALT	W	0	No effect.
			1	Bit is set.
3+8*n	Qn_CONFIG_WORD_ERR	W	0	No effect.
			1	Bit is set
2+8*n	Qn_DESC_BUF_ERR	W	0	No effect.
			1	Bit is set
1+8*n	Qn_EOP_ERR	W	0	No effect.
			1	Bit is set.
0+8*n	Qn_CONFIG_INVAL_ERR	W	0	No effect.
			1	Bit is set

Instruments

9.9 Error Interrupt Enabled Status Register (FFTC_ERROR_INTERRUPT_ENABLED_STATUS_REGISTER)

This is a read-only register which displays the logical AND of the FFTC_ERROR_INTERRUPT_RAW_STATUS_REGISTER and the FFTC_ERROR_INTERRUPT_ENABLE_REGISTER.

Figure 9-9 Error Interrupt Enabled Status Register (FFTC_ERROR_INTERRUPT_ENABLED_STATUS_REGISTER)

31	;	30	29	28	27	26	25	24
	Reserved	Reserved Q3_INT_ON_EOP Q3_DEBUG_HALT		Q3_CONFIG_WORD_ERR	Q3_DESC_BUF_ERR	Q3_EOP_ERR	Q3_CONFIG_INVAL_ERR	
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
23		22	21	20	19	18	17	16
	Reserved		Q2_INT_ON_EOP	Q2_DEBUG_HALT	Q2_CONFIG_WORD_ERR	Q2_DESC_BUF_ERR	Q2_EOP_ERR	Q2_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
15	,	14	13	12	11	10	9	8
	Reserved		Q1_INT_ON_EOP	Q1_DEBUG_HALT	Q1_CONFIG_WORD_ERR	Q1_DESC_BUF_ERR	Q1_EOP_ERR	Q1_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
7		6	5	4	3	2	1	0
	Reserved		Q0_INT_ON_EOP	Q0_DEBUG_HALT	Q0_CONFIG_WORD_ERR	Q0_DESC_BUF_ERR	Q0_EOP_ERR	Q0_CONFIG_INVAL_ERR

Table 9-10 FFTC_ERROR_INTERRUPT_ENABLED_STATUS_REGISTER Field Description

Bit	Field	Access	Value	Description
7+8*n - 6+8*n	Reserved	R	0	Reserved
5+8*n	Qn_INT_ON_EOP	R	0	No interrupt or interrupt masked
			1	Processing completed on packet and interrupt is enabled in queue 'n'.
4+8*n	Qn_DEBUG_HALT	R	0	No interrupt or interrupt masked
			1	'Debug Halt' command received and interrupt is enabled in queue 'n'.
3+8*n	Qn_CONFIG_WORD_ERR	R	0	No Interrupt or interrupt masked.
			1	Configuration error occurred and interrupt is enabled in queue 'n'.
2+8*n	Qn_DESC_BUF_ERR	R	0	No Interrupt or interrupt masked.
			1	RX buffer starvation error occurred and interrupt is enabled in queue 'n'.
1+8*n	Qn_EOP_ERR	R	0	No interrupt or interrupt masked.
			1	Unexpected EOP error has occurred and interrupt is enabled in queue 'n'.
0+8*n	Qn_CONFIG_INVAL_ERR	R	0	No interrupt or interrupt masked
			1	Invalid configuration length error has occurred and interrupt is enabled in queue 'n'.

9.10 Error Interrupt Enable Register (FFTC_ERROR_INTERRUPT_ENABLE_REGISTER)

This register is used to enable the various errors and debug conditions to generate the respective interrupts.

Figure 9-10 Error Interrupt Enable Register (FFTC_ERROR_INTERRUPT_ENABLE_REGISTER)

31		30	29	28	27	26	25	24
	Reserved		Q3_INT_ON_EOP	Q3_DEBUG_HALT	Q3_CONFIG_WORD_ERR	Q3_DESC_BUF_ERR	Q3_EOP_ERR	Q3_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
23		22	21	20	19	18	17	16
	Reserved		Q2_INT_ON_EOP	Q2_DEBUG_HALT	Q2_CONFIG_WORD_ERR	Q2_DESC_BUF_ERR	Q2_EOP_ERR	Q2_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
15		14	13	12	11	10	9	8
	Reserved		Q1_INT_ON_EOP	Q1_DEBUG_HALT	Q1_CONFIG_WORD_ERR	Q1_DESC_BUF_ERR	Q1_EOP_ERR	Q1_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
7		6	5	4	3	2	1	0
	Reserved		Q0_INT_ON_EOP	Q0_DEBUG_HALT	Q0_CONFIG_WORD_ERR	Q0_DESC_BUF_ERR	Q0_EOP_ERR	Q0_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0

Table 9-11 FFTC_ERROR_INTERRUPT_ENABLE_REGISTER Field Description

Bit	Field	Access	Value	Description
7+8*n - 6+8*n	Reserved	R	0	Reserved
5+8*n	Qn_INT_ON_EOP1	RW	0	Interrupt disabled.
			1	Debug interrupt enabled for Packet Processing complete in queue 'n'.
4+8*n	Qn_DEBUG_HALT ²	RW	0	Interrupt disabled.
			1	Debug interrupt enabled for 'Debug Halt' command in queue 'n'.
3+8*n	Qn_CONFIG_WORD_ERR	RW	0	Interrupt disabled.
			1	Error interrupt enabled for Configuration error in queue 'n'.
2+8*n	Qn_DESC_BUF_ERR	RW	0	Interrupt disabled.
			1	Error interrupt enabled for RX buffer starvation error in queue 'n'.
1+8*n	Qn_EOP_ERR	RW	0	Interrupt disabled.
			1	Error interrupt enabled for Unexpected EOP error in queue 'n'.
0+8*n	Qn_CONFIG_INVAL_ERR	RW	0	Interrupt disabled.
			1	Error interrupt enabled for Invalid configuration length error in queue 'n'.

^{1.} If bit-2 of the 'PS Flags' in the TX packet descriptor is set then the debug interrupt will be generated when processing is completed on the packet and the results written to the RX destination queue.

 $^{2. \ \} The \ 'Debug \ halt' \ command \ is \ is sued \ by \ setting \ bit-1 \ of \ the \ PS \ Flags \ in \ the \ TX \ packet \ descriptor.$

INSTRUMENTS

9.11 Error Interrupt Enable Clear Register (FFTC_ERROR_INTERRUPT_ENABLE_CLEAR_REGISTER)

This register is used to disable the interrupts various error and debug conditions.

Error Interrupt Enable Clear Register (FFTC_ERROR_INTERRUPT_ENABLE_CLEAR_REGISTER) Figure 9-11

31	31 30 29		29	28	27	26	25	24
	Reserved		Q3_INT_ON_EOP	Q3_DEBUG_HALT	Q3_CONFIG_WORD_ERR	Q3_DESC_BUF_ERR	Q3_EOP_ERR	Q3_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
23		22	21	20	19	18	17	16
	Reserved		Q2_INT_ON_EOP	Q2_DEBUG_HALT	Q2_CONFIG_WORD_ERR	Q2_DESC_BUF_ERR	Q2_EOP_ERR	Q2_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
15		14	13	12	11	10	9	8
	Reserved		Q1_INT_ON_EOP	Q1_DEBUG_HALT	Q1_CONFIG_WORD_ERR	Q1_DESC_BUF_ERR	Q1_EOP_ERR	Q1_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0
7		6	5	4	3	2	1	0
	Reserved		Q0_INT_ON_EOP	Q0_DEBUG_HALT	Q0_CONFIG_WORD_ERR	Q0_DESC_BUF_ERR	Q0_EOP_ERR	Q0_CONFIG_INVAL_ERR
	R-0		W-0	W-0	W-0	W-0	W-0	W-0

Table 9-12 FFTC_ERROR_INTERRUPT_ENABLE_CLEAR_REGISTER Field Description

Bit	Field	Access	Value	Description
7+8*n - 6+8*n	Reserved	R	0	Reserved
5+8*n	Qn_INT_ON_EOP	W	0	No effect.
			1	Debug interrupt is disabled for Packet Processing complete in queue 'n'.
4+8*n	Qn_DEBUG_HALT	W	0	No effect.
			1	Debug interrupt is disabled for 'Debug Halt' command in queue 'n'.
3+8*n	Qn_CONFIG_WORD_ERR	W	0	No effect.
			1	Error interrupt is disabled for Configuration error in queue 'n'.
2+8*n	Qn_DESC_BUF_ERR	W	0	No effect.
			1	Error interrupt is disabled for RX buffer starvation error in queue 'n'.
1+8*n	Qn_EOP_ERR	W	0	No effect.
			1	Error interrupt is disabled for Unexpected EOP error in queue 'n'.
0+8*n	Qn_CONFIG_INVAL_ERR	W	0	No effect.
			1	Error interrupt is disabled for Invalid configuration length error in queue 'n'.

9.12 Halt on Error Enable Register (FFTC_HALT_ON_ERROR_REGISTER)

This register setting specifies if the FFTC should halt when one of the error or debug interrupts are received.

Note—To halt the FFTC on any of the conditions the corresponding bit in the FFTC_ERROR_INTERRUPT_ENABLE_REGISTER has to be set too.

Figure 9-12 Halt on Error Enable Register (FFTC_HALT_ON_ERROR_REGISTER)

31	31 30 29		29	28	27	26	25	24	
	Reserved		Q3_INT_ON_EOP	Q3_DEBUG_HALT	Q3_CONFIG_WORD_ERR	Q3_DESC_BUF_ERR	Q3_EOP_ERR	Q3_CONFIG_INVAL_ERR	
	R-0		W-0	W-0	W-0	W-0	W-0	W-0	
23		22	21	20	19	18 17		16	
	Reserved		Q2_INT_ON_EOP	Q2_DEBUG_HALT	Q2_CONFIG_WORD_ERR	Q2_DESC_BUF_ERR	Q2_EOP_ERR	Q2_CONFIG_INVAL_ERR	
	R-0		W-0	W-0	W-0	W-0	W-0	W-0	
15		14	13	12	11	10	9	8	
	Reserved		Q1_INT_ON_EOP	Q1_DEBUG_HALT	Q1_CONFIG_WORD_ERR	Q1_DESC_BUF_ERR	Q1_EOP_ERR	Q1_CONFIG_INVAL_ERR	
	R-0	•	W-0	W-0	W-0	W-0	W-0	W-0	
7		6	5	4	3	2	1	0	
	Reserved		Q0_INT_ON_EOP	Q0_DEBUG_HALT	Q0_CONFIG_WORD_ERR	Q0_DESC_BUF_ERR	Q0_EOP_ERR	Q0_CONFIG_INVAL_ERR	
	R-0		W-0	W-0	W-0	W-0	W-0	W-0	

Table 9-13 FFTC_HALT_ON_ERROR_REGISTER Field Description

Bit	Field	Access	Value	Description
7+8*n - 6+8*n	Reserved	R	0	Reserved
4+8*n	Qn_INT_ON_EOP	RW	0	Do not halt.
			1	Halt
3+8*n	Qn_CONFIG_WORD_ERR	RW	0	Do not halt.
			1	Halt
2+8*n	Qn_DESC_BUF_ERR	RW	0	Do not halt.
			1	Halt
1+8*n	Qn_EOP_ERR	RW	0	Do not halt.
			1	Halt
0+8*n	Qn_CONFIG_INVAL_ERR	RW	0	Do not halt.
			1	Halt

9.13 End of Interrupt Register (FFTC_END_OF_INTERRUPT_REGISTER)

This register supports the EOI interface between the FFTC and the IDC. This register is used to acknowledge that an interrupt has been cleared (FFTC_ERROR_INTERRUPT_CLEAR_REGISTER) so that another interrupt of the same kind maybe issued if the condition occurs.

Figure 9-13 End of Interrupt Register (FFTC_END_OF_INTERRUPT_REGISTER)

Table 9-14 FFTC_END_OF_INTERRUPT_REGISTER Field Description

Bit Field		Access	Value	Description
31-8	Reserved	R	0	Reserved
7-0	EOI_VAL	RW	0x0 – 0xFF	EOI Value

www.ti.com

9.14 Queue Clipping Detect Register (FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER)

There is one clipping detect register for each of the four FFTC hardware queues. They keep track of the number of blocks that have been clipped in each queue. Reading the register clears the counter.

Figure 9-14 Queue Clipping Detect Register (FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER)

Table 9-15 FFTC_QUEUE_X_CLIPPING_DETECT_REGISTER Field Description

Bit	Field	Access	Value	Description		
31-0	CLIPPING_COUNT	RW	0 – 0xFFF	READ:	WRITE:	
				Clipping count.	Writing an value clears the register	

Texas

Instruments

Chapter 9—Registers

9.15 Queue Destination Queue And Shifting Register (FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGISTER)

This register is used to configure the queue number that RX descriptor of the packet should be inserted into and the shifting configuration.

Figure 9-15 **Queue Destination Queue and Shifting Register** (FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGISTER)

31	30	28	16	14	0
LEFT_RIGHT_SHIFT_OUTPUT_EN	LEFT_RIGHT_SHIFT_INPUT_EN	Reserved	VARIABLE_SHIFT_INPUT	RESERVED	DEST_QUEUE
RW-0	RW-0	R-0	RW-0	R-0	RW-0x3FFF

Legend: R = Read only; W = Write only; -n = value after reset

FFTC_QUEUE_X_DESTINATION_QUEUE_AND_SHIFTING_REGISTER Field Description Table 9-16

Bit	Field	Access	Value	Description
31	LEFT_RIGHT_SHIFT_OUTPUT_EN	RW	0	Output circular shift disabled.
			1	Output circular shift enabled.
30	LEFT_RIGHT_SHIFT_INPUT_EN	RW	0	Input circular shift disabled.
			1	Input circular shift enabled.
29-28	Reserved	R	0	Reserved
27-16	VARIABLE_SHIFT_INPUT	RW	0	Rotates the input sequence (2 * VARIABLE_SHIFT_INPUT) samples to the right.
15-14	Reserved	R	0	Reserved
13-0	DEST_QUEUE	RW	0x3FFF	Use default destination queue specified in the flow table.
				Destination queue ID
			otherwise	

9.16 Queue Scaling Register (FFTC_QUEUE_X_SCALING_REGISTER)

These registers are used to configure the "FFT Left-Right Shift" on page 2-3 and parameters for the respective queues. When dynamic scaling is disabled the scaling values that should be applied to the input of each stage is configured using this register. In addition the input and output ("FFT Left-Right Shift" on page 2-3) can also be enabled using this register.

Figure 9-16 Queue Scaling Register (FFTC_QUEUE_X_SCALING_REGISTER)

Table 9-17 FFTC_QUEUE_X_SCALING_REGISTER Field Description

Bit	Field	Access	Value	Description
31-30	Reserved	R	0	Reserved
29	DYNAMIC_SCALE_ENABLE	RW	0	Static scaling mode.
			1	Dynamic scaling mode.
28 - 26	Reserved	R	0	Reserved
25 -18	OUTPUT_SCALING	RW	0 – 1	Output scaling factor represented in unsigned Q7 format (0x80 = 1)
17 - 16	STAGE_OUT_SCALING ²	RW	0 - 3	Output stage scaling factor
15 - 14	STAGE_6_SCALING ²	RW	0 - 3	Stage-6 scaling factor
13 - 12	STAGE_5_SCALING ²	RW	0 - 3	Stage-5 scaling factor
11 - 10	STAGE_4_SCALING ²	RW	0 - 3	Stage-4 scaling factor
9 - 8	STAGE_3_SCALING ²	RW	0 - 3	Stage-3 scaling factor
7 - 6	STAGE_2_SCALING ²	RW	0 - 3	Stage-2 scaling factor
5 - 4	STAGE_1_SCALING ²	RW	0 - 3	Stage-1 scaling factor
3 - 2	STAGE_0_SCALING ¹	RW	0 - 3	Stage-0 scaling factor
0 - 1	LTE_SHIFT_SCALING ²	RW	0 - 3	LTE shift scaling factor

^{1.} These fields are used only in 'Static' scaling mode. In static mode the samples are multiplied by 2-STAGE_n_SCALING before stage-n.

^{2.} This is used only if LTE frequency shift is enabled. If used it is applied immediately after STAGE_0_SCALING by multiplying the samples with 2-LTE_SHIFT_SCALING

9.17 Queue Cyclic Prefix Register (FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER)

These registers configure the cyclic prefix properties of the data received from each of the four queues. They are described below.

Figure 9-17 Queue Cyclic Prefix Register (FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER)

Legend: R = Read only; W = Write only; -n = value after reset

Table 9-18 FFTC_QUEUE_X_CYCLIC_PREFIX_REGISTER Field Description

Bit	Field	Access	Value	Description
31	CYCLIC_PREFIX_REMOVE_EN	RW	0	Cyclic prefix removal disabled
			1	Cyclic prefix removal enabled
30 - 26	Reserved	R	0	Reserved
25 - 16	CYCLIC_PREFIX_REMOVE_OFFSET	RW	0 - 1023	Number of samples to advance the start of FFT block
15 - 13	Reserved	R	0	Reserved
12 - 0	CYCLIC_PREFIX_ADDITION	RW	0	Cyclic prefix addition disabled.
			1 - 8191	Number of cyclic prefix samples to add.

9.18 Queue Control Register (FFTC_QUEUE_X_CONTROL_REGISTER)

The register structure and description is given below.

Figure 9-18 Queue Control Register (FFTC_QUEUE_X_CONTROL_REGISTER)

	31	30	29	28 16	5 15 9	8	7	6	5 0
ſ	Reser	ved	ZERO_PAD_MODE	ZERO_PAD_VAL	Reserved	SUPPRESS_SIDE_INFO	Reserved	DFT_IDFT_SELECT	DFT_SIZE_INDEX
	R-	- 0	RW – 0	RW – 0	R – 0	RW – 0	R – 0	RW – 0	RW – 0

Legend: R = Read only; W = Write only; -n = value after reset

Table 9-19 FFTC_QUEUE_X_CONTROL_REGISTER Field Description

Bit	Field	Access	Value	Description
31 - 30	Reserved	R	0	Reserved
29	ZERO_PAD_MODE	RW	0	Add mode.
			1	Multiply mode.
28 - 16	ZERO_PAD_VAL	RW	0	Zero padding disabled
			1 - 8191	Zero pad length
15 - 9	Reserved	R	0	Reserved
8	SUPPRESS_SIDE_INFO	RW	0	Enable side info
			1	Suppress side info in RX packet
7	Reserved	R	0	Reserved
6	DFT_IDFT_SELECT	RW	0	IDFT mode
			1	DFT mode
0 - 5	DFT_SIZE_INDEX	RW	0 – 49	DFT size index
			63	Use DFT size list

NSTRUMENTS

9.19 Queue LTE Frequency Shift Register (FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER)

These registers are used to configure the LTE frequency shift properties applied to the data from the respective queues.

Queue LTE Frequency Shift Register (FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER) Figure 9-19

Legend: R = Read only; W = Write only; -n = value after reset

Table 9-20 FFTC_QUEUE_X_LTE_FREQUENCY_SHIFT_REGISTER Field Description

Bit	Field	Access	Value	Description
31 - 26	Reserved	R	0 Reserved	
25	SHIFT_DIR	RW	0 Positive (counter clockwise) direction	
			1	Negative (clockwise) direction
24 - 15	SHIFT_FACTOR1	RW	0 – 1023	Multiplication factor
14 - 2	SHIFT_PHASE	RW	0 – 8191	Starting phase for frequency shift
1	SHIFT_INDEX‡	RW	0	Reference table size is 16384
			1 Reference table size is 12288	
0	SHIFT_EN	RW	0	Disabled
			1	Enabled

^{1. (}SHIFT_FACTOR / SHIFT_INDEX) determines the effective tone spacing and shift amount

9.20 DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)

There are 26 DFT size list group registers. They are used to determine the block sizes for mixed transform size packets ("Mixed Transform Sizes" on page 2-7). The first 25 registers can hold five block sizes and the last register holds three block sizes. Together these 26 registers can specify up to 128 block sizes. Unlike the other configuration registers of which a unique instance exists for each of the four queues there is only one instance of the DFT_SIZE_LIST_GROUP_x registers. Therefore only one queue can operate in the mixed transform size mode at any given time.

Figure 9-20 DFT Size List Group Register (FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER)

Table 9-21 FFTC_DFT_SIZE_LIST_GROUP_X_REGISTER Field Description

Bit	Field	Access	Value	Description
31 - 30	Reserved	R	0	Reserved
29 - 24	DFT_SIZE_4 ¹	RW	0 - 49	DFT Size for block-4 in group X
23 - 18	DFT_SIZE_3†	RW	0 - 49	DFT Size for block-3 in group X
17 - 12	DFT_SIZE_2	RW	0 - 49	DFT Size for block-2 in group X
11 - 6	DFT_SIZE_1	RW	0 - 49	DFT Size for block-1 in group X
0 - 5	DFT_SIZE_0	RW	0 - 49	DFT Size for block-0 in group X

^{1.} These two fields are reserved fields in the FFTC_DFT_SIZE_LIST_GROUP_25_REGISTER.

9.21 Destination Queue and Shifting Status Register (FFTC_BLOCK_X_DESTINATION_QUEUE_AND_SHIFTING_REGISTER)

There are three instances of this register, Block_0, Block_1 and Block_2. They hold the destination queue being used for the current block being processed and two previously processed blocks.

Figure 9-21 Destination Queue and Shifting Status Register (FFTC_BLOCK_X_DESTINATION_QUEUE_REGISTER)

Legend: R = Read only; W = Write only; -n = value after reset

Table 9-22 FFTC_BLOCK_X_DESTINATION_QUEUE_REGISTER Field Description

Bit	Field	Access	Value	Description	
31	LEFT_RIGHT_SHIFT_OUTPUT_EN	RW	0	Output circular shift disabled.	
			1 Output circular shift enabled.		
30	LEFT_RIGHT_SHIFT_INPUT_EN	R	0 Input circular shift disabled.		
			1 Input circular shift enabled.		
29-18	Reserved	R	0 Reserved		
27-16	VARIABLE_SHIFT_INPUT	RW	0	Rotates the input sequence (2 * VARIABLE_SHIFT_INPUT) samples to the right.	
16-14	Reserved	R	0	Reserved	
13 - 0	DEST_QUEUE	RW	0x3FFF	3FFF Use default destination queue.	
			otherwise	Destination queue ID	

9.22 Scaling Status Register (FFTC_BLOCK_X_SCALING_REGISTER)

There are three instances of this register, Block_0, Block_1 and Block_2. They hold the scaling and shifting configuration being used for the current block being processed and two previously processed blocks.

Figure 9-22 Scaling Status Register (FFTC_BLOCK_X_SCALING_REGISTER)

Table 9-23 FFTC_BLOCK_X_SCALING_REGISTER Field Description

Bit	Field	Access	Value	Description
31-30	Reserved	R	0	Reserved
29	DYNAMIC_SHIFT_ENABLE	R	0	Static scaling mode.
			1	Dynamic scaling mode.
28 - 26	Reserved	R	0	Reserved
25 - 18	OUTPUT_SCALING	R	0 – 1	Output scaling factor represented in Q1.7 format (0x80 = 1)
17 - 16	STAGE_OUT_SCALING	R	0 - 3	Output stage scaling factor
15 - 14	STAGE_6_SCALING	R	0 - 3	Stage-6 scaling factor
13 - 12	STAGE_5_SCALING	R	0 - 3	Stage-5 scaling factor
11 - 10	STAGE_4_SCALING	R	0 - 3	Stage-4 scaling factor
9-8	STAGE_3_SCALING	R	0 - 3	Stage-3 scaling factor
7-6	STAGE_2_SCALING	R	0 - 3	Stage-2 scaling factor
5 - 4	STAGE_1_SCALING	R	0 - 3	Stage-1 scaling factor
3 - 2	STAGE_0_SCALING	R	0 - 3	Stage-0 scaling factor
0 - 1	LTE_SHIFT_SCALING	R	0 - 3	LTE shift scaling factor

INSTRUMENTS

9.23 Cyclic Prefix Status Register (FFTC_BLOCK_X_CYCLIC_PREFIX_REGISTER)

There are three instances of this register, Block_0, Block_1 and Block_2. They hold the cyclic prefix parameters being used for the current block being processed and two previously processed blocks.

Cyclic Prefix Status Register (FFTC_BLOCK_X_CYCLIC_PREFIX_REGISTER) Figure 9-23

31	30 26	25 16	15 13	12 0
CYCLIC_PREFIX_REMOVE_EN	Reserved	CYCLIC_PREFIX_REMOVE_OFFSET	Reserved	CYCLIC_PREFIX_ADDITION
R – 0	R – 0	R – 0	R – 0	R – 0

Legend: R = Read only; W = Write only; -n = value after reset

FFTC_BLOCK_X_CYCLIC_PREFIX_REGISTER Field Description **Table 9-24**

Bit	Field	Access	Value	Description
31	CYCLIC_PREFIX_REMOVE_EN	R	0	Cyclic prefix removal disabled
			1	Cyclic prefix removal enabled
30 - 26	Reserved	R	0	Reserved
25 - 16	CYCLIC_PREFIX_REMOVE_OFFSET	R	0 - 1023	Number of samples to advance the start of FFT block
15 - 13	Reserved	R	0	Reserved
12 - 0	CYCLIC_PREFIX_ADDITION	R	0	Cyclic prefix addition disabled.
			1 - 8191	Number of cyclic prefix samples to add.

9.24 Control Status Register (FFTC_BLOCK_X_CONTROL_REGISTER)

There are three instances of this register, Block_0, Block_1 and Block_2. They hold the queue control register values being used for the current block being processed and two previously processed blocks.

Figure 9-24 Control Status Register (FFTC_BLOCK_X_CONTROL_REGISTER)

Table 9-25 FFTC_BLOCK_X_CONTROL_REGISTER Field Description

Bit	Field	Access	Value	Description	
31 - 30	Reserved	R	0	Reserved	
29	ZERO_PAD_MODE	R	0	Add mode.	
			1	Multiply mode.	
28 - 16	ZERO_PAD_VAL	R	0‡	Zero padding disabled	
			n†	Zero pad length	
15	BLOCK_ERROR	R	0	No errors in block.	
			1	Errors in block.	
14	EOP	R	0	Not last block of the packet.	
			1	Last block of the packet.	
13	SOP	R	0	Not first block of the packet.	
			1	First block of the packet.	
12 - 11	INPUT_QUEUE	R	0 – 3	Indicates the source channel (queue) number for this block.	
10 - 9	Reserved	R	0	Reserved	
8	SUPPRESS_SIDE_INFO	R	0	Enable side info	
			1	Suppress side info in RX packet	
7	Reserved	R	0	Reserved	
6	DFT_IDFT_SELECT	R	0	IDFT mode	
			1	DFT mode	
0 - 5	DFT_SIZE_INDEX	R	0 – 49	DFT size index	
			63	Use DFT size list	

9.25 LTE Frequency Shift Status Register (FFTC_BLOCK_X_LTE_FREQUENCY_SHIFT_REGISTER)

There are three instances of this register, Block_0, Block_1 and Block_2. They hold the LTE scaling and shifting configuration being used for the current block being processed and two previously processed blocks.

Figure 9-25 LTE Frequency Shift Status Register (FFTC_BLOCK_X_LTE_FREQUENCY_SHIFT_REGISTER)

Table 9-26 FFTC_BLOCK_X_LTE_FREQUENCY_SHIFT_REGISTER Field Description

Bit	Field	Access	Value	Description
31 - 26	Reserved	R	0 Reserved	
25	SHIFT_DIR	R	0 Positive (clockwise) direction	
			1	Negative (counter clockwise) direction
24 - 15	SHIFT_FACTOR	R	0 – 1023	Multiplication factor
14 - 2	SHIFT_PHASE	R	0 – 8191	Starting phase for frequency shift
1	SHIFT_INDEX	R	0 Reference table size is 16384	
			1	Reference table size is 12288
0	SHIFT_EN	R	0	Disabled
			1	Enabled

www.ti.com

9.26 Packet Size Status Register (FFTC_BLOCK_X_PACKET_SIZE_STATUS_REGISTER)

There are three instances of this register, Block_0, Block_1 and Block_2. They hold the packet size for the current block being processed and two previously processed blocks.

Figure 9-26 Packet Size Status Register (FFTC_BLOCK_X_PACKET_SIZE_STATUS_REGISTER)

Table 9-27 FFTC_BLOCK_X_PACKET_SIZE_STATUS_REGISTER Field Description

Bit	Field	Access	Value	Description
22 - 31	Reserved	R	0	Reserved
21 - 0	PACKET_SIZE	R	0 – 0x3FFFFF	Packet size for the block

9.27 Tag Status Register (FFTC_BLOCK_X_TAG_STATUS_REGISTER)

There are three instances of this register, Block_0, Block_1 and Block_2. They hold the source ID, flow_ID and the destination tag for the current block being processed and two previously processed blocks.

Figure 9-27 Tag Status Register (FFTC_BLOCK_X_TAG_STATUS_REGISTER)

Legend: R = Read only; W = Write only; -n = value after reset

Table 9-28 FFTC_BLOCK_X_TAG_STATUS_REGISTER Field Description

Bit	Field	Access	Value	Description
31 - 24	SRC_ID	R	0 – 0xFF	Source ID
23 - 16	FLOW_ID	R	0 – 0xFF	Flow Id
15 - 0	DEST_TAG	R	0 - 0xFFFF	Destination tag used to identify the packet

Index

A	L
AIF (Antenna Interface), 1-2, 2-10 to 2-11	LPSC (Local Power/Sleep Controller), 2-15
AIF2 (Antenna Interface), 2-11 architecture, 2-2	M
architecture, 2-2	memory
В	DMA, 1-2, 2-2, 2-10
buffer, 2-2, 2-4, 7-2, 7-4, 9-10, 9-13 to 9-15	general, 2-2, 9-1, 9-6
bus(es), 5-1	mode
	debug, 2-13, 3-2, 8-1, 9-10, 9-14 to 9-16
C	module, 1-2, 2-1, 2-13, 2-15, 9-1, 9-5
clock, 2-2	Multicore Navigator (formerly CPPI), 2-10, 3-1
configuration, 2-2 to 2-3, 2-7 to 2-8, 2-10, 3-3, 4-5, 7-2, 7-4, 9-6, 9-10,	
9-13 to 9-15, 9-19, 9-24, 9-26, 9-29	0
configuration register, 2-3, 2-7, 3-3, 9-6	output(s), 1-3, 2-3, 2-6 to 2-7, 2-10, 4-3, 5-1, 7-2, 9-20
CPPI (Multicore Navigator), 1-2 CPU, 2-1, 2-10 to 2-11	n
CPU, 2-1, 2-10 to 2-11	P
D	PKTDMA (Packet DMA), 1-2, 2-2 to 2-8, 2-10 to 2-11, 2-13 to 2-14, 3-1 to 3-2, 4-1 to 4-5, 6-1, 7-2
debug, 2-13, 3-2, 8-1, 9-10, 9-14 to 9-16	3 1 10 3 2,4 1 10 4 3,0 1,7 2
debug mode, 2-13, 3-2, 8-1, 9-10, 9-14 to 9-16	Q
detection, 4-4	QM_SS (Queue Manager Subsystem), 1-2, 2-10
DFT, 2-2, 2-5, 2-7 to 2-8, 3-2 to 3-3, 7-2, 9-2 to 9-3, 9-22, 9-24, 9-28	queue, 2-2, 2-8, 2-10 to 2-12, 3-3, 4-4, 7-2, 7-4, 9-6, 9-10, 9-13 to 9-15,
DMA (Direct Memory Access), 1-2, 2-2, 2-10	9-18 to 9-19, 9-24 to 9-25, 9-28
DSP, 1-2	
	R
E	reset, 2-12, 2-15, 9-5 to 9-31
EMU (emulation), 2-14, 9-9	Rx, 2-14, 4-5
emulation, 2-14, 9-9 error reporting and messages, 2-13, 4-4, 6-1, 7-2 to 8-1, 9-10, 9-13 to 9-16	•
error reporting and messages, 2-13, 4-4, 0-1, 7-2 to 0-1, 5-10, 5-13 to 5-10	S
F	scaling, 1-3, 2-6 to 2-7, 4-3 to 4-4, 9-20, 9-26, 9-29 signal, 2-7, 2-15, 6-1, 9-7, 9-9
FFTC (Fast Fourier Transform Coprocessor), 1-2 to 1-3, 2-1 to 2-8,	Signal, 27, 213, 01, 57, 55
2-10 to 2-15, 3-1 to 3-3, 4-1, 4-3 to 4-4, 5-1, 6-1, 7-2 to 8-1, 9-1 to 9-31	Т
	TCP3 (Turbo Coprocessor ver. 3), 1-2
1	, , ,
inputs, 2-6	V
interface, 2-2, 2-10 to 2-11, 2-13, 3-1, 9-17	version, 1-2
interrupt, 2-13, 3-2, 7-3 to 8-1, 9-10, 9-13 to 9-15, 9-17	

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	<u>power.ti.com</u>	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps