TEMA №24

Повърхнини

Съдържание

Тема 24: Повърхнини

- Сплайн повърхнини
- Подразделяне

Сплайн повърхнини

Повърхнини в графиката

Съществуват различни техники

- Пряко изчисление (като при сфера)
- Въртене на крива
 (като при ротационните повърхности)
- Плъзгане на крива (като при тунели)
- Други
 (в тази тема ще се запознаем с две от тези други)

NURBS повърхнини

NURBS повърхнини

- Non-uniform неравномерни

– Rational рационални

В базисни

– Spline сплайн

– повърхнини повърхнини

Основни идеи

Основни идеи

- 2D вариант на криви с В-сплайн
- Параметрично дефиниране чрез контролни точки и бързо изчисление
- Уважават афинните трансформации
- Точността на визуализиране не е ограничена
- Удобни за интерактивно моделиране

И някои недостатъци

- Природата им е правоъгълна
- Трудности при постигане на гладкост
- Проблеми при снаждане около особени точки

Типична NURBS повърхнина

Тензори

Обобщение на скалар и вектор

- Скалар = тензор от 0-ва степен
- Вектор = тензор от 1-ва степен
- Матрица = тензор от 2-ра степен

Параметрични повърхнини с тензори

– Базисни функции f(u) и g(v), точки P

$$p(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} f_i(u)g_i(v)P_{ij}$$

Тензори и NURBS

NURBS криви

Маркирани в тема 23

$$p(t) = \sum_{i=0}^{n} N_i^k(t) P_i$$

NURBS повърхнини

– Те са "каре" от пресичащи се фамилии криви

$$p(t) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_i^k(u) N_j^l(v) P_{ij}$$

– Пример с фамилия криви

– Параметрична координатна система с о̀си по u и v

Пълна форма

R-то на NURBS означава

– Контролните точки имат "тегла" и са в хомогенни координати $P_{ij}(x,y,z) o P_{ij}(w_{ij}x,w_{ij}y,w_{ij}z,w_{ij})$

$$p(u,v) = \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} N_i^k(u) N_j^l(v) w_{ij} P_{ij}}{\sum_{i=0}^{n} \sum_{j=0}^{m} N_i^k(u) N_j^l(v) w_{ij}}$$

- Знаменателят е с цел нормиране ($\Sigma=1$)

Опростен пример

Кубична NURBS повърхнина

- С равни тегла ($w_{ij} = 1$)
- Трета степен (k = l = 3)
- $C 4 \times 4$ контролни точки (i = j = 3)
- С многократни крайни възли
 (за постигане на интерполация в крайните контролни точки)
- Това е повърхнинен еквивалент на кривата на Безиѐ

Повърхнина на Безиѐ

Използваме частния случай на NURBS от предния слайд

- Изчисляване на точка

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} B_I^3(u) B_j^3(v) P_{ij}$$

където B са полиномите на Бернщайн

Започваме от 4×4 контролни точки

- В квадратна мрежа
- За визуално удобство движим ги само вертикално

Връхни точки

- С uv-координати (0,0), (0,1), (1,0) и (1,1)
- Съвпадат със съответните им 4 контролни точки

Контурни криви

- Всяка е дефинирана от съответните четири контурни контролни точки
- Кривите съвпадат с кривите на Безиè спрямо същите тези точки

Повърхност от триъгълници

- В параметричното uv-пространство правим квадратна мрежа
- Броят деления няма връзка с контролните точки

Плътна повърхност

- Оцветяваме и осветяваме триъгълниците в мрежата
- Нормален вектор чрез векторно произведение

За всеки триъгълник

- Две от страните са по u и v
- Векторното им произведение е нормален вектор на триъгълника

Плавно оцветяване

 Индивидуален нормален вектор за всеки връх от мрежата, а не за всеки триъгълник

Намиране

– Пак чрез векторно произведение

Отместване

Хоризонтално отместване

- В параметричното пространство
- Контролните точки може да са аранжирани по произволен друг начин

Примери с NURBS/Безие повърхнини

- Степени на гладкост
- Терен с наводнение
- Стол от една единствена NURBS

"Stitching NURBS" http://youtu.be/c1kTuLv6gQQ

"Chair" http://youtu.be/ZYIA-259YNw http://youtu.be/mAWM8hfrECQ

Малко по-сложни примери

- Анимирани вълнѝ
- Деформации при земетресение
- Проекция върху сфера

"Water waves" http://youtu.be/lx6XUzG0Dt4

"Earthquake" http://youtu.be/tYzX4kmx1OY

"Equirectangular Projection" http://youtu.be/3lc5Zlf74Ls

Подразделяне

(subdivision)

Подразделяне

Основна цел

- Моделиране на сложни повърхнини с произволна топология
- Избягване на проблемите на парметричните и сплайн повърхнини
- Висока степен на интуитивност
- Лекота на изчисление
- Лесно постигане на гладкост

Как се постига

Начални данни

- Груб модел на обект чрез мрежа (граф)
- Няколко прости правила за преобразуване на мрежата в по-ситна мрежа

Всяко преобразуване

- Прави обекта по-гладък
- Увеличава броя на възлите, ръбовете и стените

Методи

Апроксимиращи

- Раздробената мрежа се отдалечава затихващо от контролните точки
- Като цяло мрежата се свива

Някои по-известни метода

- Метод на Катмул-Кларк (Catmull–Clark)
- Метод на Лууп (Loop)
- Метод $\sqrt{3}$

Интерполиращи

- Раздробената мрежа е през контролните точки
- Като цяло мрежата се раздува

Някои по-известни метода

- Метод на пеперудата (Butterfly)
- Метод на средната точка (Midedge)
 Забележка: Май има и апроксимиращ метод с това име

На английски

Subdivision, subdiv, ...

Особености

Преимущества

– Произволна топология

Недостатъци

- Нуждае се от много памет
- Някои методи са само за конкретни мрежи (3-ъгълни или 4-ъгълни)
- Модификацията се прави на ниво 0
- Трудно се съшиват мрежи от различни нива

Метод на Лууп

Идея на метода

- Описана от Чарлз Лууп (Charles Loop)
- Работи само с триъгълна мрежа
- Добавят се нови върхове и ръбове
- Старите върхове и ръбове се променят
- Граничната повърхност е предимно С²
- − Тя е С¹ само около особените върхове

Особен връх

Характеристики

- В него мрежата променя структурата си
- Невъзможно да се избегне
- Подразделянето се справя прилично с тях, но на сплайните им е доста трудно

Конкретно в този пример

- Шествалентните върхове са нормални
- Другите са особени

Алгоритъм

Стъпка 1 – нови върхове

– За всеки ръб се създава нов връх Е

$$E = \frac{3A + 3B + C + D}{8}$$

Стъпка 2 – стари връхове

— Всеки стар връх V се преизчислява според околните му n стари върха

$$V = (1 - n\beta)V + \beta \sum_{i=1}^{n} A_i$$

като:

$$\beta = \frac{3}{16}$$
 при $n = 3$ $\beta = \frac{3}{8n}$ при $n > 3$

Неясно е какво става?

Преход от мрежа към следващата

– Всеки триъгълник се разбива на четири по-малки

Метод на Катмул-Кларк

Идея на метода

- Описана от Едуин Катмул и Джим Кларк (Edwin Catmull, Jim Clark)
- Аналогичен на метода на Лууп
- Работи с четириъгълници
 (след първата стъпка стените стават четириъгълни)
- Нормалните точки са четиривалентни

Геометрични маски по Катмул-Кларк

– За стенен, ръбен и върхов връх

Неясно е какво става?

Преход от мрежа към следващата

- Четворно повече стени
- Всички стени стават четириъгълници

Пример

Дупка през дупка на дупка

- Оригинална мрежа с едно подразделяне
- Още степени на подразделяне

Последен пример

Динамично подразделяне

– Човечето от горния ляв ъгъл

Въпроси?

Повече информация

[BAGL]	стр. 32-34	[KLAW]	стр. 155-160
[MORT]	стр. 283-285	[PAQU]	стр. 198-225
[SALO]	другата половина	[SEAK]	стр. 181-187
[VINC]	стр. 142-146	[ZHDA]	стр. 384-387

А също и:

- The Simplest Subdivision Scheme for Smoothing Polyhedra http://www.cs.purdue.edu/research/technical_reports/1996/TR%2096-032.pdf
- Subdivision Zoo
 http://www.cmlab.csie.ntu.edu.tw/~robin/courses/gm/note/subdivision-prn.pdf

Край