# Chapter 4: Writing your own functions

## Contents

| 1        |     | es to write a function:              | ] |
|----------|-----|--------------------------------------|---|
|          | 1.1 | Make and check body                  | 2 |
|          | 1.2 | Generalization                       | 2 |
|          | 1.3 | Apply                                | 2 |
| <b>2</b> | Ove | erview of some useful functions in R | • |
|          | 2.1 | Functions to convert to integers     | 9 |
|          | 2.2 | Integer operators                    | 3 |
|          | 2.3 | Some common functions                | 4 |
|          | 2.4 | Functions on 1 vector                | 4 |
|          | 2.5 | Functions on 2 vectors or more       | 4 |
|          | 2.6 | Statistical functions                | 4 |
| 3        | Exe | ercises                              | F |

Syntax:

 $name\_function <- function(arg1, arg2, \ldots) \{Expression\}$ 

Expression is an R expression that uses the arguments (arg1, arg2,...) to calculate a value.

## 1 Rules to write a function:

- 1. Make and check the body of the function.
- 2. If the body of the function is OK, generalize it.
- 3. Apply the function.

#### Example

Write a function Pythagoras to calculate the length of hypotenuse from length of the legs of a right-angled triangle (Theorem of Pythagoras).



Apply your function when a = 1 and b = 1 and apply the function when a = 3 and b = 4.

#### 1.1 Make and check body

Step 1: Make the body of the function for a specific case and check whether the body of the function is OK:

```
# Step 1: Make and check the body of the function
a <- 3
b <- 4
c <- sqrt(a^2 + b^2)
c</pre>
## [1] 5
```

#### 1.2 Generalization

**Step 2:** If the body of the function is OK, generalize it:

```
# Step 2: Write the function
Pythagoras <- function(a,b)
{
    c <- sqrt(a^2 + b^2)
    print(a)
    print(b)
    c
}</pre>
```

#### 1.3 Apply

Step 3: Apply the function.

How to apply?

- Highlight and submit the function. Then R will recognize it as an R function.
- Apply the created function for other values of the argument(s).

```
# Step 3: Apply the function
Pythagoras(a=1,b=1)

## [1] 1
## [1] 1
## [1] 1.414214

Pythagoras(a=3,b=4)

## [1] 3
## [1] 4
## [1] 5
```

- Remark:
  - 1. The last command executed is the **return value** of the function. This can be forced by:
    - using return function;
    - using print function to force the printout.
  - 2. If you want to obtain several components as result of your function, you have to make use of a list statement.

```
# Use of the list function in your Pythagoras function
Pythagoras <- function(a,b)</pre>
  c \leftarrow sqrt(a^2 + b^2)
 list(a=a, b=b, hypothenusa=c)
# Apply your function
Pythagoras(a=1,b=1)
## $a
## [1] 1
##
## $b
## [1] 1
##
## $hypothenusa
## [1] 1.414214
Pythagoras(a=3,b=4)
## $a
## [1] 3
##
## $b
## [1] 4
## $hypothenusa
## [1] 5
```

## 2 Overview of some useful functions in R

Some standard functions

#### 2.1 Functions to convert to integers

```
x < -3.526
```

| Function              | Description                                              | Result in R for $x = -3.526$ |
|-----------------------|----------------------------------------------------------|------------------------------|
| round(x)              | rounds to nearest integer                                | -4                           |
| trunc(x)              | leaves out the decimal part                              | -3                           |
| floor(x)              | takes the nearest integer which is smaller than <b>x</b> | -4                           |
| <pre>ceiling(x)</pre> | takes the nearest integer which is larger than <b>x</b>  | -3                           |

## 2.2 Integer operators

```
x1 <- 21
x2 <- 5
```

| Function | Description      | Alternative way    | Result in R for $x1 = 21$ and $x2 = 5$ |
|----------|------------------|--------------------|----------------------------------------|
| %/%      | Integer divide   | floor(x1/x2)       | 4 1                                    |
| %%       | Modulu reduction | x1-floor(x1/x2)*x2 |                                        |

### 2.3 Some common functions

abs (computes the absolute value), log, sqrt (computes the square root), exp, sin, cos, tan, acos, asin, atan, cosh, sinh, tanh...

log(x, base) has a second (optional) argument, i.e. the base number (default e)

#### 2.4 Functions on 1 vector

| Function               | Description                                                        | Result in R for vec <- 1:5 |
|------------------------|--------------------------------------------------------------------|----------------------------|
| length(vec)            | Returns the length of an object                                    | 5                          |
| sum(vec)               | Returns the sum of all the values present in vec                   | 15                         |
| <pre>prod(vec)</pre>   | Returns the product of all the values present in vec               | 120                        |
| cumsum(vec)            | Returns a vector whose elements are the cumulative sums of vec     | 1, 3, 6, 10, 15            |
| cumprod(vec)           | Returns a vector whose elements are the cumulative products of vec | 1, 2, 6, 24, 120           |
| max(vec)               |                                                                    | 5                          |
| min(vec)               |                                                                    | 1                          |
| cummax(vec)            | Returns a vector whose elements are the cumulative maxima of vec   | 1, 2, 3, 4, 5              |
| <pre>cummin(vec)</pre> | Returns a vector whose elements are the cumulative minima of vec   | 1, 1, 1, 1, 1              |
| range(vec)             | Returns a vector containing the minimum and maximum                | 1, 5                       |
| sort(vec)              |                                                                    | 1, 2, 3, 4, 5              |
| rev(vec)               |                                                                    | 5, 4, 3, 2, 1              |

#### 2.5 Functions on 2 vectors or more

pmax(vec1, vec2...), pmin(vec1, vec2...), max(vec1, vec2...), min(vec1, vec2...), etc.

| Function                 | Description                                                       | Result in R |
|--------------------------|-------------------------------------------------------------------|-------------|
| pmax(c(1,7,3), c(3,4,5)) | Returns a vector with the parallel maxima of the argument vectors | 3, 7, 5     |
| max(c(1,7,3), c(3,4,5))  | Returns the maximum of all the values present in their arguments  | 7           |

#### 2.6 Statistical functions

 ${\tt mean(vec)},\,{\tt var(vec)},\,{\tt sd(vec)}$ 

### 3 Exercises

- 1. Write a function which gives the most elementary statistics for a sample x: min, median, max, mean, sd and length. Apply your function on a vector x with values from 25 to 80.
- 2. Write a function fun1 which produces the text 'Non-negative number' if you apply fun1 to a positive number and 'negative number' if you apply fun1 to a negative number. You can make use of the ifelse function in R. Apply this function to the values 9 and -13:

| Input           | Desired output        |  |
|-----------------|-----------------------|--|
| x <- 9; fun1(x) | "Non-negative number" |  |
| x <13; fun1(x)  | "Negative number"     |  |

3. Write a function to solve an equation of second degree  $(ax^2+bx+c=0)$ . To solve this equation, first calculate  $D=b^2-4ac$ . In the case D>0, there are two roots:  $x_1=\frac{-b+\sqrt{D}}{2a}$  and  $x_2=\frac{-b-\sqrt{D}}{2a}$ . If possible, make also a plot of the function. Apply your function for the equation  $-8x^2+6x+4=0$ .