

Frekvencijska karakteristika sustava

Signali i sustavi

Profesor Branko Jeren

30. travanj 2007.

Profesor Branko Jeren

Odziv sustava na nobudu eksponencijalom

Odziv sustava na pobudu eksponencijalom

razmotrimo odziv sustava na svevremensku eksponencijalu

$$t \in Realni, \qquad s \in Kompleksni$$

 $u(t) = e^{st}$

odziv mirnog sustava određujemo konvolucijom pa je

$$y(t) = h(t) * u(t) = h(t) * e^{st} =$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau =$$

$$= e^{s(t)} \underbrace{\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau}_{H(s)}$$

pa je

$$y(t) = H(s)e^{st}$$

gdje je

$$H(s) = \int_{-\infty}^{\infty} h(\tau) e^{-s\tau} d\tau$$

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

funkcija Frekvencijska karakteristika vremenski kontinuiranih

Odziv sustava na pobudu eksponencijalom

- za konkretnu kompleksnu frekvenciju pobude s, dakle kompleksni broj, H(s) je također kompleksan broj, pa vrijedi:
- za pobudu kompleksnom eksponencijalom odziv je istog oblika i rezultat je množenja pobude s konstantom
- kompleksnu eksponencijalu nazivamo karakterističnom ili vlastitom funkcijom sustava
- budući sinusoidni signali mogu biti razmatrani kao eksponencijale $(cos(\Omega t) = 0.5e^{j\Omega t} + 0.5e^{-j\Omega t})$, svevremenske sinusoide su također vlastite ili karakteristične funkcije linearnih vremenski stalnih sustava (što je već i pokazano izračunavanjem odziva sustava II reda)

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

funkcija Frekvencijska karakteristika vremenski

Odziv sustava na pobudu eksponencijalom

kontinuirani SISO sustav opisan je diferencijalnom jednadžbom

$$\frac{d^N y}{dt^N} + a_1 \frac{d^{N-1} y}{dt^{N-1} y} + \dots + a_{N-1} \frac{dy}{dt} + a_N y(t) =$$

$$= b_{N-M} \frac{d^M u}{dt^M} + b_{N-M+1} \frac{d^{M-1} u}{dt^{M-1} u} + \dots + b_{N-1} \frac{du}{dt} + b_N u(t)$$

 podsjetimo se, kako uvođenjem operatora deriviranja D, koji predstavlja operaciju deriviranja d/dt, gornju jednadžbu zapisujemo kao

$$\underbrace{(D^{N} + a_{1}D^{N-1} + \ldots + a_{N-1}D + a_{N})}_{A(D)}y(t) = \underbrace{(b_{0}D^{N} + b_{1}D^{N-1} + \ldots + b_{N-1}D + b_{N})}_{B(D)}u(t) \quad (1)$$

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

funkcija Frekvencijska karakteristika vremenski kontinuiranih

Odziv sustava na pobudu eksponencijalom

• diferencijalnu jednadžbu možemo zapisati i kao

$$y(t) = \left(\frac{B(D)}{A(D)}\right)u(t) \Rightarrow y(t) = H(D)u(t)$$

• složeni operator H(D) pridružuje vremenskoj funkciji y(t) funkciju u(t) i predstavlja formalni zapis diferencijalne jednadžbe (1)

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija Frekvencijsk karakteristik vremenski

Odziv sustava na pobudu eksponencijalom

sustav pobuđujemo kompleksnom eksponencijalom

$$u(t) = Ue^{st}, \qquad U = |U|e^{j\varphi}$$

U – kompleksna amplituda pobude,

|U| – amplituda,

 φ — faza

s – neka konkretna kompleksna frekvencija $s=\sigma+j\Omega$

- partikularno rješenje je oblika $y_p(t) = Ye^{st}$
- kompleksnu amplitudu odziva Y određujemo iz polazne jednadžbe metodom neodređenih koeficijenata pa slijedi

$$(s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N})Ye^{st} =$$

= $(b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N})Ue^{st}$

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija Frekvencijsl

karakteristika vremenski kontinuiranih sustava

Odziv sustava na pobudu eksponencijalom

pa je kompleksna amplituda odziva Y

$$Y = \underbrace{\frac{b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N}}{s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N}}}_{H(s)}U = H(s)U$$

ullet amplituda partikularnog rješenja Y određena je amplitudom pobude, svojstvima sustava, te konkretnom kompleksnom frekvencijom s

Profesor Branko Jeren

karakteristika sustava Odziv sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

funkcija Frekvencijsk

Frekvencijska karakteristika vremenski kontinuiranih sustava

Prijenosna funkcija

• H(s) je veličina koja određuje odnos kompleksne amplitude prisilnog odziva Ye^{st} i kompleksne amplitude pobude Ue^{st}

$$H(s) = \frac{b_{N-M}s^{M} + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_{N}}{s^{N} + a_{1}s^{N-1} + \dots + a_{N-1}s + a_{N}} = \frac{Y}{U}$$

 za konkretnu frekvenciju s, H(s) ima značenje faktora kojim treba množiti kompleksnu amplitudu ulaza da se dobije amplituda izlaza

$$Y = H(s)U$$

 H(s) možemo formalno zapisati iz složenog operatora H(D), zamjenom operatora D s kompleksnom frekvencijom s

sustavi školska godina 2006/2007 Predavanje 15

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prijenosna funkcija

• H(s), za $s \in Kompleksni$, nazivamo prijenosna funkcija ili transfer funkcija i možemo je definirati kao

$$t \in Realni, \quad s \in Kompleksni$$
 $H(s) = \frac{izlazni \ signal}{ulazni \ signal} \Big|_{u(t) = e^{st}}$

• transfer ili prijenosna funkcija sustava H(s) racionalna je funkcija koju možemo prikazati kao

$$H(s) = K \frac{(s-s_1)(s-s_2)\cdots(s-s_M)}{(s-p_1)(s-p_2)\cdots(s-p_N)}$$

K je konstanta

 s_1, s_2, \ldots, s_M su nule prijenosne funkcije p_1, p_2, \ldots, p_N su polovi¹ prijenosne funkcije

¹dolazi od engleske riječi tent-pole

2006/2007

Frekvencijsk karakteristik sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prijenosna funkcija

• svaki od članova $(s-s_k)$ ili $(s-p_k)$ može biti predstavljen kao vektor u kompleksnoj s ravnini

• vektor $(s - p_k)$ je usmjeren od p_k do s i može biti prikazan u polarnom obliku

$$(s-p_k)=|s-p_k|e^{j\angle(s-p_k)}$$

sustavi školska godina 2006/2007 Predavanje 15

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponenciialom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prijenosna funkcija

prijenosnu funkciju možemo pisati kao produkt i kvocijent vektora

$$H(s) = K \frac{|s - s_1|e^{j\angle(s - s_1)}|s - s_2|e^{j\angle(s - s_2)} \cdots |s - s_M|e^{j\angle(s - s_M)}}{|s - p_1|e^{j\angle(s - p_1)}|s - p_2|e^{j\angle(s - p_2)} \cdots |s - p_N|e^{j\angle(s - p_N)}}$$

ullet prijenosnu funkciju H(s) možemo pisati i kao

$$H(s) = |H(s)|e^{j\angle H(s)}$$

pri čemu su

$$|H(s)| = |K| \frac{|s - s_1||s - s_2| \cdots |s - s_M|}{|s - p_1||s - p_2| \cdots |s - p_N|}$$

i

$$\angle H(s) = \angle K + [\angle(s-s_1) + \angle(s-s_2) + \dots + \angle(s-s_M)] - [(\angle(s-p_1) + \angle(s-p_2) + \dots + \angle(s-p_N)]]$$

҈ 11

2006/2007 Predavanje 15

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

karakteristika vremenski kontinuiranih

Primjer određivanja prijenosne funkcije

za sustav opisan jednadžbom

$$\ddot{y}(t) + 0.2\dot{y}(t) + 0.16y(t) = u(t)$$

pobuđen s

$$u(t) = Ue^{st}$$

partikularno rješenje je

$$y_p(t) = Ye^{st}$$

kompleksna amplituda odziva je

$$Y = \frac{1}{s^2 + 0.2s + 0.16}U$$

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Primjer određivanja prijenosne funkcije

partikularno rješenje je

$$y_p(t) = \frac{1}{s^2 + 0.2s + 0.16} Ue^{st} = H(s) Ue^{st}$$

• pa je prijenosna funkcija zadanog sustava

$$H(s) = \frac{1}{s^2 + 0.2s + 0.16} = \frac{1}{(s - p_1)(s - p_2)}$$

odnosno

$$H(s) = \frac{1}{[s - (-0.1 + j0.3873)][s - (-0.1 - j0.3873)]}$$

 |H(s)| i ∠H(s), izračunate iz diferencijalne jednadžbe, možemo prikazati i odgovarajućim plohama iznad kompleksne ravnine²

²plava krivulja označuje vrijednosti H(s) za $s=\pm j\Omega$, odnosno, presjecište ploha s ravninom koju određuje imaginarna os

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Primjer određivanja prijenosne funkcije

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Primjer određivanja prijenosne funkcije

Profesor Branko Jeren

Frekvencijski karakteristiki sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prisilni odziv sustava

- razmatraju se specijalni slučajevi kompleksne frekvencije pobude s=0 i $s=j\Omega$
- za s=0, pobuda je $u(t)=Ue^{st}=Ue^{0\cdot t}=U$, dakle, konstanta amplitude U

$$H(s) = \frac{b_{N-M}s^M + b_{N-M+1}s^{M-1} + \dots + b_{N-1}s + b_N}{s^N + a_1s^{N-1} + \dots + a_{N-1}s + a_N}\bigg|_{s=0} = \frac{b_N}{a_N}$$

• pa je prisilni odziv

$$y_p(t) = H(0)U$$

sustavi školska godina 2006/2007 Predavanje 15

Profesor Branko Jeren

Frekvencijska karakteristika sustava

pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prisilni odziv sustava

• za $s=j\Omega$, pobuda je harmonijski (sinusoidalni) signal konstantne amplitude

$$u(t) = Ue^{j\Omega t} = U[\cos(\Omega t) + j\sin(\Omega t)], \text{ za } U \in \textit{Realni}$$

• kompleksna amplituda prisilnog odziva je

$$Y = \frac{b_{N-M}(j\Omega)^{M} + b_{N-M+1}(j\Omega)^{M-1} + \dots + b_{N-1}(j\Omega) + b_{N}}{(j\Omega)^{N} + a_{1}(j\Omega)^{N-1} + \dots + a_{N-1}(j\Omega) + a_{N}}U$$

• pa je prisilni odziv

$$y_p(t) = H(j\Omega)Ue^{j\Omega t}$$

• $H(j\Omega)$ je frekvencijska karakteristika sustava

sustavi školska godina 2006/2007 Predavanje 15

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Prisilni odziv sustava

za pobudu

$$u(t) = Ue^{-j\Omega t} = U[\cos(\Omega t) - j\sin(\Omega t)], \text{ za } U \in \textit{Realni}$$

kompleksna amplituda prisilnog odziva je

$$Y = \frac{b_{N-M}(-j\Omega)^{M} + \dots + b_{N-1}(-j\Omega) + b_{N}}{(-j\Omega)^{N} + a_{1}(-j\Omega)^{N-1} + \dots + a_{N-1}(-j\Omega) + a_{N}}U$$

• pa je prisilni odziv

$$y_p(t) = H(-j\Omega)Ue^{-j\Omega t}$$

2006/2007 Predavanje 15

Profesor Branko Jeren

Frekvencijski karakteristiki sustava

Odziv sustava na pobudu

Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih

Prisilni odziv sustava

• za pobudu

$$u(t) = \frac{Ue^{j\Omega t} + Ue^{-j\Omega t}}{2} = U\cos(\Omega t),$$
 za $U \in Realni$

prisilni odziv je

$$y_p(t) = \frac{H(j\Omega)Ue^{j\Omega t} + H(-j\Omega)Ue^{-j\Omega t}}{2},$$

$$y_p(t) = \frac{H(j\Omega)Ue^{j\Omega t}}{2} + \left(\frac{H(j\Omega)Ue^{j\Omega t}}{2}\right)^*,$$

$$y_p(t) = 2Re\left(\frac{H(j\Omega)Ue^{j\Omega t}}{2}\right) = Re\left(|H(j\Omega)|e^{j\angle H(j\Omega)}Ue^{j\Omega t}\right)$$

$$y_p(t) = U|H(j\Omega)|\cos(\Omega t + \angle H(j\Omega))$$

2006/2007 Predavanje 15

Profesor Branko Jeren

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika kontinuiranog sustava

frekvencijska karakteristika je kompleksna funkcija pa vrijedi

$$H(j\Omega) = Re[H(j\Omega)] + jIm[H(j\Omega)] = |H(j\Omega)|e^{j\angle H(j\Omega)}$$

pri čemu su

amplitudna frekvencijska karakteristika

$$|H(j\Omega)| = \sqrt{(Re[H(j\Omega)])^2 + (Im[H(j\Omega)])^2}$$

• fazna frekvencijska karakteristika³

$$\angle H(j\Omega) = \arctan\left(\frac{Im[H(j\Omega)]}{Re[H(j\Omega)]}\right)$$

³zbog višeznačnosti *arctan* funkcije treba se računati *arctan* za sva četiri kvadranta. U MATLAB-u se u tu svrhu koristi funkcija *atan*2 ⋅ ≥ ⋅ ≥ ⋅ ∞

Profesor Branko Jeren

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika kontinuiranog sustava

• prijenosna funkcija sustava opisanog jednadžbom $\ddot{y}(t)+0.2\dot{y}(t)+0.16y(t)=u(t)$ je

$$H(s) = \frac{1}{s^2 + 0.2s + 0.16} = \frac{1}{(s + 0.1 - j0.387)(s + 0.1 + j0.387)}$$

pa je frekvencijska karakteristika

$$H(j\Omega) = rac{1}{(j\Omega)^2 + 0.2(j\Omega) + 0.16} \ H(j\Omega) = rac{1}{(j\Omega - 0.4e^{j0.3873})(j\Omega - 0.4e^{-j0.3873})}$$

Profesor Branko Jeren

Frekvencijsk karakteristik sustava

Odziv sustava r pobudu eksponencijalon Prijenosna funkcija

funkcija Frekvencijska karakteristika vremenski kontinuiranih

sustava

Frekvencijska karakteristika

školska godina 2006/2007 Predavanje 15

Profesor Branko Jeren

Frekvencijsk karakteristik sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

$ H(j\Omega) $	$\angle H(j\Omega)$
6.2500	0.0000
7.9057	-0.3218
12.5000	-1.5708
4.2875	-2.6012
1.9764	-2.8198
1.1581	-2.9078
0.7679	-2.9562
0.5490	-2.9873
0.4130	-3.0090
0.3225	-3.0252
0.2590	-3.0378
	7.9057 12.5000 4.2875 1.9764 1.1581 0.7679 0.5490 0.4130 0.3225

vidi Simulink primjer Pred15_Primjer7

sustavi školska godina 2006/2007 Predavanje 15

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

 razmotrimo još jednom utjecaj polova na frekvencijsku karakteristiku

$$H(j\Omega) = \frac{1}{(j\Omega - p_1)(j\Omega - p_2)} = \frac{1}{(d_1e^{j\theta_1})(d_2e^{j\theta_2})} = \frac{1}{d_1d_2}e^{-j(\theta_1 + \theta_2)}$$

Profesor Branko Jeren

Sustava
Odziv sustava n
pobudu
eksponencijalom

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

- uvidom u frekvencijsku karakteristiku sustava, u prethodnom primjeru, zaključujemo da sustav ima filtarska svojstva tzv. niskopropusnog filtra
- sustav "propušta" sinusoidne pobude nižih frekvencija (recimo nižih od neke granične frekvencije Ω_c), a "guši" sinusoidne pobude viših frekvencija
- primjer jasno pokazuje kako položaj polova (kasnije se pokazuje i za položaj nula) određuje frekvencijsku karakteristiku sustava
- intuitivno zaključujemo kako, odgovarajućim razmještajem polova i nula, možemo projektirati sustav odgovarajuće frekvencijske karakteristike
- ovdje će se kroz nekoliko primjera, pogodnim razmještajem polova i nula, ilustrirati "projektiranje" sustava raznih filtarskih karakteristika⁴

⁴sustavni postupci projektiranja sustava izučavaju se u drugim specijaliziranim predmetima

Profesor Branko Jeren

Frekvencijska karakteristika sustava

pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

- iz prethodnog primjera možemo zaključiti kako je maksimum $H(j\Omega)$, za $j\Omega$, točno nasuprot pola
- uzevši to u obzir "projektiramo" niskopropusni filtar prvog reda
- izabiremo pol na mjestu $p_1 = -1$
- maksimum $H(j\Omega)$ će biti na frekvenciji $j\Omega=0$

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – primjer sustava prvog reda

$$H(s) = \frac{1}{s - p_1} = \frac{1}{s + 1} \Rightarrow |H(j\Omega)| = \frac{1}{\sqrt{\Omega^2 + 1}}$$

Frekvencijski karakteristiki sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

- sustav bolje formiranih filtarskih karakteristika može se postići postavljanjem "zida" polova nasuprot $j\Omega$ osi
- ovo će biti ilustrirano nizom primjera tzv. Butterworth-ovih⁵ niskopropusnih filtara za koje vrijedi da su polovi jednoliko razmješteni na kružnici radijusa $\Omega_c=1$, gdje je $\Omega_c=1$ granična frekvencija filtra
- u projektiranju koristimo Matlab naredbu za projektiranje vremenski kontinuiranih Butterworth-ovih filtara

$$[\mathit{num}, \mathit{den}] = \mathit{butter}(\mathit{n}, \Omega_\mathit{c}, `\mathit{low}`, `\mathit{s}`)$$

gdje su: n red sustava, Ω_c granična frekvencija, num izračunati brojnik, i den izračunati nazivnik prijenosne funkcije

⁵postupak projektiranja Butterworth-ovih filtara izučava se u specijaliziranim predmetima

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

2006/2007 Predavanje 15 Profesor

Branko Jeren

karakteristika sustava Odziv sustava

pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika

 ovdje je posebno napisana samo prijenosna funkcija, i vrijednosti polova, za Butterworth–ov filtar 5–tog reda

$$H(s) = \frac{1}{s^5 + 3.2361s^4 + 5.2361s^3 + 5.2361s^2 + 3.2361s + 1}$$

a vrijednosti polova su

$$\begin{array}{lll} p_1 = -0.3090 + j0.9511 & = & e^{j1.8849} = e^{j\frac{3\pi}{5}} \\ p_2 = -0.8090 + j0.5877 & = & e^{j2.5133} = e^{j\frac{4\pi}{5}} \\ p_3 = -1.0000 & = & e^{j3.1416} = e^{j\frac{5\pi}{5}} = e^{j\pi} \\ p_4 = -0.8090 - j0.5877 & = & e^{-j2.5133} = e^{-j\frac{4\pi}{5}} \\ p_5 = -0.3090 - j0.9511 & = & e^{-j1.8849} = e^{-j\frac{3\pi}{5}} \end{array}$$

Profesor Branko Jeren

Frekvencijsk karakteristik sustava

Odziv sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – doprinos nula

za prijenosnu funkciju sustava vrijedi

$$H(s)|_{s=s_j} = K \frac{(s-s_1)\cdots(s-s_M)}{(s-p_1)\cdots(s-p_N)} = 0, \quad j=1,\ldots,N$$

• ako prije razmatranom sustavu prvog reda, s polom $p_1=-1$, dodamo "nulu" u $s_1=0$, rezultirajući sustav će postati visokopropusni filtar prvog reda s prijenosnom funkcijom

$$H(s) = \frac{s-s_1}{s-p_1} = \frac{s}{s+1}$$

• amplitudna frekvencijska karakteristika ovog sustava je

$$|H(j\Omega)| = \frac{\Omega}{\sqrt{\Omega^2 + 1}}$$

a fazna frekvencijska karakteristika je

$$\angle H(j\Omega) = \angle (j\Omega) - \angle (j\Omega + 1)$$

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – primjer sustava prvog reda

$$H(s) = \frac{s}{s+1} \Rightarrow |H(j\Omega)| = \frac{\Omega}{\sqrt{\Omega^2 + 1}}$$

2006/2007

Frekvencijski karakteristiki sustava

pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – doprinos nula

- doprinos nule na ukupnu frekvencijsku karakteristiku visokopropusnog filtra možemo razmotriti na slijedeći način
- ullet prijenosnu funkciju H(s) možemo razložiti i kao

$$H(s) = \frac{s}{s+1} = \underbrace{s}_{H_1(s)} \cdot \underbrace{\frac{1}{s+1}}_{H_2(s)} = |H_1(s)| e^{j \angle H_1(s)} |H_2(s)| e^{j \angle H_2(s)}$$

odnosno

$$H(s) = |H_1(s)| \cdot |H_2(s)| e^{j(\angle H_1(s) + \angle H_2(s))}$$

Profesor Branko Jeren

Frekvencijski karakteristiki sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – doprinos nula

Profesor Branko Jeren

Frekvencijska karakteristika sustava

odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – pojasna brana

- ilustrira se projektiranje jednostavne pojasne brane čije su nule na frekvenciji $s=\pm j0.5$
- imajući u vidu prije dane primjere Butterworth-ovih filtara, za zaključiti je kako sustavi čiji su polovi na jediničnoj kružnici daju frekvencijsku karakteristiku koja je glatka u pojasu propuštanja
- zato i ovdje biramo polove čiji su polovi razmješteni na kružnici radijusa 0.5
- neka su, dakle, nule

$$s_{1,2} = \pm j0.5$$

a polovi neka su

$$p_{1,2}=0.5e^{\pm j1.8}$$

Frekvencijsk karakteristik sustava

Odziv sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – pojasna brana

• za zadane polove i nule prijenosna funkcija je

$$H(s) = \frac{s^2 + 0.25}{s^2 + 0.2272s + 0.25}$$

Frekvencijsk karakteristik sustava

Odziv sustava n pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – pojasna brana

• i ovdje se može ilustrirati doprinos nula

2006/2007

Frekvencijski karakteristiki sustava

pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – fazna frekvencijska karakteristika

razmatra se frekvencijska karakteristika sustava

$$H(s) = \frac{1}{s^4 + 2.6131s^3 + 3.4142s^2 + 2.6131s + 1}$$

frekvencijska karakteristika je kompleksna funkcija pa vrijedi

$$H(j\Omega) = Re[H(j\Omega)] + jIm[H(j\Omega)] = |H(j\Omega)|e^{j\angle H(j\Omega)}$$

2006/2007

karakteristika sustava Odziv sustava r

pobudu eksponencijalon Prijenosna funkcija

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – fazna frekvencijska karakteristika

fazna frekvencijska karakteristika je

$$\angle H(j\Omega) = \arctan\left(\frac{Im[H(j\Omega)]}{Re[H(j\Omega)]}\right)$$

- kako je arkus funkcija višeznačna, u prikazu vrijednosti $\angle H(j\Omega)$, uzimaju se samo glavne vrijednosti faze u intevalu $-\pi$ i π (dakle faza modulo 2π)
- za primijetiti je kako ova funkcija sadrži, na nekim frekvencijama, diskontinuitete, u iznosu 2π
- pribrajanjem, ili oduzimanjem, cjelobrojnog višekratnika 2π , vrijednostima faze, na bilo kojoj frekvenciji, izvorna frekvencijska karakteristika se ne mijenja i moguće je prikazati $\angle H(j\Omega)$ u obliku tzv. nerazmotane faze (unwrapped phase)

Profesor Branko Jeren

Frekvencijski karakteristiki sustava

Odziv sustava n pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski kontinuiranih sustava

Frekvencijska karakteristika – fazna frekvencijska karakteristika

