SAMPLE EXAM #3B ELEG 305 SIGNALS AND SYSTEMS SPRING 2019

Note: Last year, the third exam included Chapter 10. So, there are some problems that will not be relevant for this year's Exam #3, which includes Chapters 5, 7, and 9. I have marked the problems that cover material that will NOT be on Exam #3 using # signs right next to the problem.

Problem #1 (30 points)

Consider a continuous-time LTI system, with input x(t) and output y(t), described by the following differential equation:

$$\frac{d^2y(t)}{dt^2} - 9y(t) = x(t) + \frac{dx(t)}{dt}$$

- a.) (6 pts) Determine the transfer function, H(s), for this system.
- b.) (6 pts) Determine the locations of the poles and zeros, and plot them in the s-plane.
- c.) (6 pts) Draw the three different possibilities for the region of convergence (ROC), and label which one is for a right-sided signal, a left-sided signal, and a two-sided signal.
- d.) (10 pts) Derive the impulse response, h(t), for a *stable* system.
- e.) (2 pts) For which ROC is this system causal? Please justify your answer.

Problem #2 (25 points)

Consider the following impulse response for a discrete-time LTI system:

$$h[n] = \left(\frac{1}{4}\right)^n u[n] + \frac{4}{3} \left(\frac{1}{3}\right)^n u[-n-1]$$

- a.) (10 pts) Determine the transfer function, H(z), and the region of convergence (ROC).
- b.) (5 pts) Determine the poles and zeros, and plot them in the z-plane along with the ROC.
- c.) (6 pts) Derive the difference equation relating the input and the output of this system.
- d.) (2 pts) Does the Fourier transform of h[n] exist? Please justify your answer.
- e.) (2 pts) Is this system causal? Please justify your answer

Problem #3 (35 points)

- a.) (14 pts) Consider an impulse response $h(t) = e^{t} u(t)$; this system is clearly not stable.
 - (i) (6 pts) Compute the transfer function, H(s), and the region on convergence.
 - (ii) (8 pts) Then, consider the following feedback structure:

For what values of A is the system stable?

b.) (8 pts) Consider a linear time-invariant system with impulse response

$$h(t) = e^{-3t} \sin 4t \ u(t)$$

What is the region of convergence?

c.) (8 pts) Compute the Laplace transform of

$$x(t) = e^{-t} \frac{d}{dt} (e^{-(t+1)} u(t+1))$$

d.) (5 pts) Consider the following transfer function for a causal LTI system.

$$H(s) = \frac{-3s^2 + 2}{s^3 + s^2 + 3s + 2}$$

Compute (i) h(t) at t=0 and (ii) h(t) as $t \to \infty$.

Problem #4 (10 points)

Consider the following transfer function, H(z), for a discrete-time LTI system:

$$H(z) = \frac{z^2}{z^2 + \frac{8}{3}z - 1}$$

Draw the three possible regions of convergence. Please make three separate plots.

Extra Credit (10 points)

Assume that the Fourier transform of h(t) exists and that its Laplace transform is rational. If H(s) is known to have a pole at s=1/2, *could* h(t) be

- a.) a left-sided signal?
- b.) a right-sided signal?
- c.) a two-sided signal?

Please give a reason with your answer for each part.