

Trabajo de fin de Máster Escuela profesional de nuevas tecnologías. **Big Data**

Álvaro Martínez, Guillermo Herranz, Marta Pérez, Rubén Márquez y Pablo Andreu

INDICE

- 1. Caso de uso y planteamiento de la empresa
- 2. Arquitectura del proyecto
- 3. Búsqueda y datos
- 4. Ingesta con persistencia y data cleaning
- 5. Procesamiento en paralelo
- 6. Visualización
- 7. Modelos analíticos

Caso de uso y planteamiento de la empresa

Transporte Público

Elección idea Twitch

Accidentes tráfico

- + facilidad acceso fuentes información
- + cantidad de información
- + calidad de información

Caso de uso y planteamiento de la empresa

Caso de uso y planteamiento de la empresa

Servicios analíticos y estratégicos basados en el tratamiento de grandes cantidades de información.

Arquitectura del proyecto

Búsqueda y datos

Acceso a datos de

Accidentes de tráfico

https://datos.madrid.es/portal/site/egob

http://www.aemet.es/es/datos_abiertos

Ingesta con persistencia y LA data cleaning

Almacenamiento de la información

5 Procesamiento en paralelo

Python

Dask

Procesamiento en paralelo

No es eficiente para este tipo de muestra

Dask

Es eficiente para este tipo de muestra

Pandas

PowerBI

LESIVIDAD

MT

Tipo de Lesividad

TIPO ACCIDENTE	HG	HL	IL	MT	Total
COLISION DOBLE	4086	67520	84991	79	156676
ATROPELLO	3295	14650	27145	171	45261
COLISION MULTIPLE	419	12381	18607	15	31422
CAIDA	1114	15729	9017	32	25892
OTRO	132	5504	6254	5	11895
CHOQUE OBSTACULO FIJO	676	6784	4064	40	11564
VUELCO	76	806	339	2	1223
DESCONOCIDO	2	4	8		14
Total	9800	123378	150425	344	283947

Recuento por TIPO ACCIDENTE

O	DLISION DOBLE	ATROPELLO	COLISION	
		CAIDA	OTRO	
			CHOQUE O	

Mapa DISTRITO

Cache awareness and

out-of-core computing

XGBoost

Tree pruning using depth-first approach

Parallelized tree building

Regularization for avoiding overfitting

Efficient handling of missing data

In-built crossvalidation capability

Basado en Árboles de decisión
Multitud de árboles de decisión secuenciales
Árboles de decisión cada vez mas profundos
Algoritmo supervisado de ML
Eficiencia computacional

XGBoost

El algoritmo predice la variable objetivo 'LESIVIDAD' con una precisión del 80,74%.

30000

La cantidad de información de la categoría 'MUERTO' y 'HERIDO GRAVE' resulta muy escasa para poder hacer una estimación lo suficientemente precisa.

Si se amplia la información resultaría en un modelo robusto.

Random Forest

Equilibrio entre sesgo y varianza.

Buen modelo para la introducción de multitud de variables, discriminando las menos relevantes.

Incorpora métodos efectivos para estimar valores faltantes.

Accuracy

El modelo tiene una precisión del 78% para poder predecir la cantidad de accidentes que se van a producir.

Random Forest

Recall

Heridas graves (HG): 48% de sensibilidad Heridas leves (HL): 77% de sensibilidad Ingresos leves (IL): 78% de sensibilidad Fallecidos (MT): 1% de sensibilidad

Heridas graves (HG): 96% de sensibilidad Heridas leves (HL): 79% de sensibilidad Ingresos leves (IL): 85% de sensibilidad Fallecidos (MT): 4% de sensibilidad

Regresión Logística

Simplicidad.

Resultados facilmente interpretables.

Es extraño que exista sobreajuste

Accuracy

El modelo tiene una precisión del 96% para poder predecir la cantidad de accidentes que se van a producir.

Regresión Logística

Recall

La sensibilidad del modelo es de un 99%

Especificidad

La especificidad del modelo es de un 7%

