Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2024-2025Professeur : $Zakaria\ Haouzan$ Établissement : $Lyc\acute{e}e\ SKHOR\ qualifiant$

Devoir surveillé N°1 Durée 2h00 2-BAC Section des sciences expérimentales: Option de sciences physiques

Fiche Pédagogique _____

I Introduction

Le programme d'études de la matière physique chimie vise à croître un ensemble de compétences visant à développer la personnalité de l'apprenant. Ces compétences peuvent être classées en Compétences transversales communes et Compétences qualitatives associées aux différentes parties du programme.

II cadre de référence

L'épreuve a été réalisée en adoptant des modes proches à des situations d'apprentissages et des situations problèmes, qui permettent de compléter les connaissances et les compétences contenues dans les instructions pédagogiques et dans le programme de la matière physique chimie et aussi dans le cadre de référence de l'examen national.

Tout en respectant les rapports d'importance précisés dans les tableaux suivants :

Restitution des Connaissances	Application des Connaissances	Situation Problème
50%	25%	25%

III tableau de spécification

Niveau d'habileté		Restitution des Connaissances	Application des Connaissances	Situation Problème	la somme
Les Ondes 53%	Les Ondes mécaniques progressives	6,5% 1Q - 0,5pts	3,25% 1Q - 1pt	3,25%	53% 13pts
	Les Ondes	10%	5%	5%	14Q
	périodiques	1Q - 0,5pts	1Q - 1pt	2Q - 1pt	65min
	Les Ondes	10%	5%	5%	
	lumineuse	4Q - 3pts	5Q - 4pt	1Q - 2pt	
	lentes				
Les	et	4%	2%	1%	47%
Transformations	rapides	3Q - 2.5pts			7pts
d'un système chimique 47%	Suivi temporel	20% 1Q - 0,5pts	10% 1Q - 0,5pts	10% 2Q - 1,25pts	12Q 55min
_		50% 13Q - 11pts	25% 6Q - 4,5pts	25% 8Q - 4,5pts	

Devoir surveillé $N^{\circ}1$ Semestre I

	Chimie			(7pts)				
Suivi t	Suivi temporel d'une transformation chimique							
$N^{\circ}\mathbf{Q}$.	Réponse			Note				
1.	les quantités de matière initiales des réactifs.					1 nt e		
1.	$n_0(CaCO_{3(s)}) = 3.10^{-3} mol \text{ et } n_0(H_3O_{(aq)}^+) = 5.10^{-3} mol$			1pts				
	le tableau d'avancement de cette réaction.							
	Equation de la réaction $2H_3O^+ + CaCO_3 \rightarrow Ca^{2+} + CO_2 + 3H_2O$							
	états	états avancement quantité de Matière en mol						
2.	Etat initial	0	0,04	0,01	0	0	0	0,5pts
	Etat de	x	0,04-2x	0,01-x	x	x	x	
	transformation	J.						
	Etat final	x_{max}	$0.04 - 2x_{max}$			x_{max}	x_{max}	
3	$x_{max} = 10^{-3} mol$ et le réactif limitant H_3O^+ .					1pts		
4	Montrer que $V(CO_2) = 2,44.10^{-2}.x$				0.5pt			
5	Montrer que $V(CO_2)_{t1/2} = 25mL$ et $t_{1/2} = 75s$			0,75pt				
6	la vitesse volumique de la réaction à l'instant de date $t=0$ $V(t=0)=0,24mol/L.s$				0,5pts			
7	La valeur du temps de demi- réaction est inférieure à la valeur précédente			0,5pt				
	Partie 2 : Mesure de conductivité(2,25pts)							
$N^{\circ}\mathbf{Q}$	Réponse			Note				
1	conductivité du mélange réactionnel à l'état initial.			0,75pt				
	$\sigma_i = \lambda_{H_3O^+}[H_3O^+] + \lambda_{Cl^-}[Cl^-] = 0,8526S/m$							
2	Montrer que l'avancement : $\sigma = -580.x(t) + \sigma_i$				0,5pt			
3	Montrer que la vitesse volumique $v(t) = -17, 2.\frac{d\sigma(t)}{dt}$			1pt				

	Physique (13pts)		
Partie	e 1 : le mouvement des vagues	(3pts)		
$N^{\circ}\mathbf{Q}$.	Réponse	Note		
1	L'onde étudiée est transversale			
2	la courbe représentant l'élongation du point M. courbe 1			
	Par exploitation des courbes précédentes, :			
3	$\tau = 8.10^{-2} s \text{ et } t_1 = 24.10^{-2} s;$	$\parallel 2pt$		
	$d = 26.10^{-2} m \text{ car } v = \frac{80.10^{-2}}{24.10^{-2}} = 3,33 m/s$			
3	$Y_s(t)$ $T/2$ T	0,5pt		
1	Montrer que $\lambda' = \sqrt{2}.\lambda$	0,5pt		
Partie	Partie 2 : Étude du phénomène ondulatoire			
1	Nom du phénomène observé diffraction la nature de la lumière monochromatique	$\parallel 1pt$		
2	a l'aide de la figure 1 $\theta = \frac{L}{2D}$	0,5pt		
3	En utilisant les résultats des mesures $\theta = 3, 15.10^{-3} rad$	0,5pt		
4	la relation qui lie les grandeurs $\theta = \frac{\lambda}{a}$	0,5pt		
5	la valeur de la longueur d'onde $\lambda = 0,63m$	0,5pt		
9	elle appartient au domaine visible			
	-on remplace la lumière émise par le LASER (lumière rouge) par une lumière bleue			
	L diminue	$\begin{vmatrix} 2pt \end{vmatrix}$		
6	-n diminue la largeur de la fente a L augmente			
	-différencier expérimentalement une lumière monochromatique d'une lumière			
	polychromatique par un prisme			