We claim:

1. A method of determining an uncoded bit error rate p_b based on a target symbol error rate ε_s , comprising:

determining the uncoded bit error rate p_b based on a weighted series expansion of the target symbol error rate ε_s , comprising weights W that are a function of a maximum number of symbol errors that can be corrected t and a number of symbols in an information field K; and

selecting the maximum number of symbol errors t and the number of symbols in the information field K such that the uncoded bit error rate p_b that produces a symbol error rate that is less than or equal to the target symbol error rate \mathcal{E}_s is largest.

- 2. The method of claim 1 wherein the weighted series expansion comprises at least a first term, wherein second order and higher terms are ignored to determine the uncoded bit error rate p_b .
 - 3. The method of claim 1 wherein the symbols comprise Reed-Solomon symbols.
- 4. The method of claim 1 wherein the weighted series expansion to determine the uncoded bit error p_b rate comprises the following relationship:

$$4 p_b = 1 - \left(1 - W(t, K) \varepsilon_s^{\frac{1}{(t+1)}}\right)^{1/\alpha}$$

6 wherein

8
$$W(t,K) = \left[\binom{K+C+R-1}{t} \right]^{\frac{1}{(t+1)}},$$

 ε_s represents a target symbol error rate, and C + R represents a number of symbols in an error correction field.

1 2

5. A method of determining an optimum bit load per subchannel in a multicarrier system with forward error correction, comprising:

computing one or more values of a maximum number of symbol errors that can be corrected t, and a number of symbols in the information field K to determine the optimum bit load per subchannel in accordance with the following relationship:

$$1 - \left(1 - W(t, K)\varepsilon_{s}^{\frac{1}{t+1}}\right)^{1/\alpha} = \omega(b)\left(1 - 2^{-b_{i}(t, K)/2}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{i}/10}} / \left(2^{b_{i}(t, K)+1} - 2\right)\right)$$

$$\times \left[2 - \left(1 - 2^{-b_{i}(t, K)/2}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{i}/10}} / \left(2^{b_{i}(t, K)+1} - 2\right)\right)\right]$$

wherein
$$W(t,K) = \begin{bmatrix} \binom{K+C+R-1}{t} \end{bmatrix}^{\frac{1}{(t+1)}}$$
,

$$\omega(b) = \frac{1}{b \cdot 2^b} \sum_{i=1}^{2^b} \sum_{j \neq i}^{\chi_i} \frac{d_H(a_i, a_j)}{\chi_i},$$

 ε_s represents a target symbol error rate, C + R represents a number of symbols in an error correction field, b represents a number of bit positions of a quadrature-amplitude-modulation symbol, $\omega(b)$ represents an average fraction of erroneous bits in an erroneous b-sized quadrature-amplitude-modulation symbol, a_i represents a label for the ith point of a constellation associated with a subchannel, a_i

represents a label for the j^{th} point of a constellation associated with a subchannel, χ_i represents a coordination number of the a_i^{th} point, $d_H(a_i, a_j)$ represents a Hamming distance between respective binary vectors associated with points a_i and a_j ; and

selecting the maximum number of symbol errors that can be corrected t, and the number of symbols in the information field K such that the uncoded bit error rate p_b that produces a symbol error rate that is less than or equal to the target symbol error rate is increased.

6. A method of determining an optimum bit load per subchannel in a multicarrier system with forward error correction, comprising:

computing one or more values of a maximum number of symbol errors that can be corrected t, and a number of symbols in the information field K to determine the optimum bit load per subchannel in accordance with the following relationship:

$$1 - \left(1 - W(t, K)\varepsilon_{s}^{\frac{1}{t+1}}\right)^{1/\alpha} = \omega(b)\left(1 - 2^{-b_{i}(t, K)/2}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{i}/10}} / \left(2^{b_{i}(t, K)+1} - 2\right)\right) ,$$

$$\times \left[2 - \left(1 - 2^{-b_{i}(t, K)/2}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{i}/10}} / \left(2^{b_{i}(t, K)+1} - 2\right)\right)\right]$$

wherein
$$W(t,K) = \left[\begin{pmatrix} K+C+R-1 \\ t \end{pmatrix} \right]^{-\frac{1}{(t+1)}}$$
,

 ε_s represents a target symbol error rate, C + R represents a number of symbols in an error correction field, b represents a number of bit positions of a quadrature-amplitude-modulation symbol, $\omega(b)$ represents an approximate average fraction of erroneous bits in an erroneous b-sized quadrature-amplitude-modulation symbol; and

2

3

5

6

selecting the maximum number of symbol errors that can be corrected t, and the number of symbols in the information field K such that the uncoded bit error rate p_b that produces a symbol error rate that is less than or equal to the target symbol error rate is increased.

7. The method of claim 6 wherein $\omega(b_i)$ is determined in accordance with the following relationship:

 $\omega(b_i) = \frac{4}{3 + 2b_i}$

- 8. A method of selecting forward error correction parameters in a channel having a plurality of subchannels in a multicarrier communications system, comprising:

 determining a signal-to-noise ratio representing a subset of the subchannels;

 and
 - selecting forward error correction parameters of the channel based on the signal-to-noise ratio.
- 9. The method of claim 8 wherein the subset of the subchannels comprises all of the subchannels of the channel.
- 1 10. The method of claim 8 wherein the forward error correction parameters are utilized in Reed-Solomon encoding.
- 1 11. The method of claim 8 wherein the signal-to-noise ratio is an average 2 signal-to-noise ratio of respective signal-to-noise ratios of the subset of the 3 subchannels.

- 1 12. The method of claim 8 wherein the signal-to-noise ratio represents all of the subchannels.
- 1 13. The method of claim 8 wherein the selecting comprises applying a mean field approximation to evaluate a bit load over the subset of subchannels.
- 1 14. The method of claim 13 wherein the selecting comprises adjusting the mean 2 field approximation.
- 1 15. The method of claim 14 wherein the adjusting is applied when the number of bits per subchannel is less than or equal to two.
- 1 16. The method of claim 14 wherein the adjusting is a linear adjustment with respect to a bit load of a subchannel.
- 1 17. The method of claim 8 further comprising:
 2 determining the representative performance measurement as an average
 3 signal-to-noise ratio γ_{eff} for the channel in accordance with the following
 4 relationship:

6
$$\gamma_{eff} = \frac{1}{n_{eff}} \sum_{\gamma_i > \gamma_*} \gamma_i$$
, wherein

$$n_{eff} = \sum_{\gamma_i > \gamma_*} 1,$$

7

9

10

11

 γ_i represents a signal-to-noise measurement for an ith subchannel, and n_{eff} represents a number of subchannels for which the signal-to-noise ratio γ_i was

- measured for which γ_i is greater than γ_* , and γ_* represents a threshold signal-to-noise ratio.
- 1 18. A method of determining a bit load b per subchannel in a multicarrier system with forward error correction, comprising:

computing one or more values of a maximum number of symbol errors that can be corrected t, and a number of symbols in the information field K to determine the bit load per subchannel in accordance with the following relationship:

3

4

5

$$7 b = [\gamma + \Phi(\gamma, t, K, \varepsilon)]/10 \log 2,$$

8

wherein

11

$$= 10 \log \left\{ 10^{-\gamma/10} + \frac{3 \log e}{2 \log \left[\frac{\alpha \langle \omega(b) \rangle \sqrt{8/\pi}}{W(t, K)(\alpha \varepsilon / \beta)^{\frac{1}{(t+1)}}} \right] - \log \log \left[\frac{\alpha \langle \omega(b) \rangle \sqrt{8/\pi}}{W(t, K)(\alpha \varepsilon / \beta)^{\frac{1}{(t+1)}}} \right] + \log \left(\frac{\log e}{2} \right) \right\}$$

14
$$W(t,K) = \left[\binom{K+C+R-1}{t} \right]^{-\frac{1}{(t+1)}} \left[\binom{K+C+R}{t+1} \right]^{-\frac{k-1}{(t+1)}},$$

$$\langle \omega(b) \rangle = \frac{1}{h} \int_{-\infty}^{b_{\text{max}}} \omega(b) (1 - 2^{-b/2}) db$$

- α represents a number of bits per symbol, γ represents a signal-to-noise ratio, t
- represents a maximum number of symbol errors that can be corrected, ε represents a
- target bit error rate, C + R represents a number of symbols in an error correction field,

3

19	b repr	b represents a number of bit positions of a quadrature-amplitude-modulation symbol,		
20	ω(b) r	$\omega(b)$ represents an average fraction of erroneous bits in an erroneous b-sized		
21	quadr	quadrature-amplitude-modulation symbol, b_{max} is a maximum bit load per		
22	subch	subchannel; and		
23		selecting a bit load per subchannel in accordance with the maximum number		
24	of syn	of symbol errors that can be corrected t , and a number of symbols in the information		
25	field I	K.		
1	19.	The method of claim 18 wherein $\Phi(\gamma, t, K, \varepsilon)$ is evaluated at γ equals $-\infty$.		
1	20.	The method of claim 18 wherein b is greater than or equal to three.		
1	21.	A method of selecting forward error correction parameters for use in a channel		
2	having	having a plurality of subchannels, comprising:		
3		determining an average signal-to-noise ratio of at least a subset of the		
4	subch	subchannels; and		
5		selecting forward error correction parameters based on the average signal-to-noise		
6	ratio,	ratio, and a count of the number of subchannels in the subset.		
1	22.	The method of claim 21 wherein the selecting the forward error correction		

- 22. The method of claim 21 wherein the selecting the forward error correction parameters comprises selecting the forward error correction parameters based on a predicted gain from application of the selected forward error correction parameters.
- 23. The method of claim 22 wherein the gain is a performance gain.

24. A method of selecting at least one forward error correction parameter, comprising:

computing one or more values representing a number of information symbols K in a frame accordance with the following relationship:

$$\left[\frac{\alpha(K+s+zs)}{s n_{eff}} + 1.5\right] \left[1 - \left(1 - \left(\left[\binom{K+C+R-1}{t}\right]^{-\frac{1}{(t+1)}}\right) e^{\frac{1}{t}/(t+1)}\right)^{1/\alpha}\right] \\
= 2\left(1 - 2^{-\frac{\alpha(K+s+zs)}{2sn_{eff}}}\right) erfc \sqrt{1.5 \cdot 10^{\gamma_{eff}/10} / 2^{\frac{\alpha(K+s+zs)}{sn_{eff}}} - 1}\right) \\
\times \left[2 - \left(1 - 2^{-\frac{\alpha(K+s+zs)}{2sn_{eff}}}\right) erfc \sqrt{1.5 \cdot 10^{\gamma_{eff}/10} / 2^{\frac{\alpha(K+s+zs)}{sn_{eff}}} - 1}\right)\right]$$

wherein
$$t = \left[\frac{sz+1+e_r}{2}\right]$$
, $e_r \le sz$, and

s represents a number of discrete multi-tone symbols in a frame, z represents a number of error correction symbols in a discrete multi-tone symbol, α represents a number of bits per code symbol, C+R represents a number of redundant symbols in an error correction field, n_{eff} represents a number of subchannels exceeding a threshold performance value, γ_{eff} represents an effective signal-to-noise ratio associated with the number of subchannels exceeding the threshold performance value, ε_s represents a target symbol error rate; and e_r represents a number of erasures; and

17 an

determining a number of bits per subchannel in accordance with the one or more values of K.

1	25.	The method of claim 24 wherein K is a continuous variable.		
1	26.	The method of claim 24 wherein K is computed using dichotomy, for values		
2	of γ_{eff}	s , n_{eff} , z , and s .		
1	27.	The method of claim 24 further comprising:		
2		determining a net coding gain associated with values of γ_{eff} , n_{eff} , z , and s ;		
3		determining an incremental number of bits per subchannel associated with the		
4	net co	net coding gain; and		
5		storing associated values of γ_{eff} , n_{eff} , z , s and the incremental number of bits		
6	per sı	per subchannel.		
1	28.	A method of selecting transmission parameters of a multicarrier system		
2	havin	g a channel comprising a plurality of subchannels, comprising:		
3		selecting a number (s) of discrete multi-tone symbols in a		
4	forwa	ard-error-correction frame, and a number (z) of forward-error-correction control		
5	symb	symbols in a discrete multitone symbol based on a signal-to-noise ratio and a number		
6	of sul	of subchannels associated with the signal-to-noise ratio; and		
7		transmitting information in accordance with the selected number (s) of		
8	discre	discrete multi-tone symbols, and a number (z) of forward-error-correction control		
9	symb	ols in the discrete multitone symbol.		
1	29.	The method of claim 28 wherein the selecting comprises selecting an		
2	adjus	tment value per subchannel based on the signal-to-noise ratio and the number of		
3	subcl	subchannels associated with the signal-to-noise ratio; and		
4		adjusting a number of bits per subchannel for at least one subchannel in		
5	accor	accordance with the adjustment value.		

34.

uncoded bit error rate p_b .

1

2

3

1	30. The method of claim 28 wherein the signal-to-noise ratio is an average		
2	signal-to-noise ratio of the associated number of subchannels.		
1	31. The method of claim 28 further comprising:		
2	storing, in a table, the number (s) of discrete multi-tone symbols in the		
3	forward-error-correction frame, the number (z) of forward-error-correction control		
4	symbols in the discrete multitone symbol associated with the signal-to-noise ratio and		
5	the number of subchannels associated with the signal-to-noise ratio, for different		
6	values of s, z, signal-to-noise ratios and numbers of subchannels.		
1	32. The method of claim 31 wherein for each value of signal-to-noise ratio and		
2	number of bits per subchannel of the table, the associated value of s and z provide a		
3	maximal net coding gain g_n , and the associated value of s and z is selected from a		
4	subset of associated s and z values.		
1	33. An apparatus for determining an uncoded bit error rate p_b based on a target		
2	symbol error rate \mathcal{E}_s , comprising:		
3	means for determining the uncoded bit error rate p_b based on a weighted series		
4	expansion of the target symbol error rate ε_s , comprising weights W that are a function of		
5	a maximum number of symbol errors that can be corrected t and a number of symbols in		
6	an information field K; and		
7	means for selecting the maximum number of symbol errors t and the number of		
8	symbols in the information field K such that the uncoded bit error rate p_b that produces a		
9	symbol error rate that is less than or equal to the target symbol error rate ε_s is largest.		

The apparatus of claim 33 wherein the weighted series expansion comprises at

least a first term, wherein second order and higher terms are ignored to determine the

- 35. The apparatus of claim 33 wherein the symbols comprise Reed-Solomon symbols.
- 1 36. The apparatus of claim 33 wherein the weighted series expansion to determine the uncoded bit error p_b rate comprises the following relationship:

$$4 p_b = 1 - \left(1 - W(t, K) \varepsilon_S^{\frac{1}{(t+1)}}\right)^{1/\alpha}$$

6 wherein

$$W(t,K) = \begin{bmatrix} \binom{K+C+R-1}{t} \end{bmatrix}^{-\frac{1}{(t+1)}},$$

 ε_s represents a target symbol error rate, and C + R represents a number of symbols in an error correction field.

37. An apparatus for determining an optimum bit load per subchannel in a multicarrier system with forward error correction, comprising:

means for computing one or more values of a maximum number of symbol errors that can be corrected t, and a number of symbols in the information field K to determine the optimum bit load per subchannel in accordance with the following relationship:

$$1 - \left(1 - W(t, K)\varepsilon_{S}^{\frac{1}{t+1}}\right)^{1/\alpha} = \omega(b)\left(1 - 2^{-b_{i}(t, K)/2}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{i}/10}} / \left(2^{b_{i}(t, K)+1} - 2\right)\right)$$

$$\times \left[2 - \left(1 - 2^{-b_{i}(t, K)/2}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{i}/10}} / \left(2^{b_{i}(t, K)+1} - 2\right)\right)\right]$$

wherein
$$W(t,K) = \begin{bmatrix} K+C+R-1 \\ t \end{bmatrix}^{-\frac{1}{(t+1)}}$$
,

$$\omega(b) = \frac{1}{b \cdot 2^b} \sum_{i=1}^{2^b} \sum_{j \neq i}^{\chi_i} \frac{d_H(a_i, a_j)}{\chi_i},$$

 ε_s represents a target symbol error rate, C + R represents a number of symbols in an error correction field, b represents a number of bit positions of a quadrature-amplitude-modulation symbol, $\omega(b)$ represents an average fraction of erroneous bits in an erroneous b-sized quadrature-amplitude-modulation symbol, a_i represents a label for the i^{th} point of a constellation associated with a subchannel, a_j represents a label for the j^{th} point of a constellation associated with a subchannel, χ_i represents a coordination number of the a_i^{th} point, $d_H(a_i, a_j)$ represents a Hamming distance between respective binary vectors associated with points a_i and a_j ; and

means for selecting the maximum number of symbol errors that can be corrected t, and the number of symbols in the information field K such that the uncoded bit error rate p_b that produces a symbol error rate that is less than or equal to the target symbol error rate is increased.

38. An apparatus for determining an optimum bit load per subchannel in a multicarrier system with forward error correction, comprising:

means for computing one or more values of a maximum number of symbol errors that can be corrected t, and a number of symbols in the information field K to determine the optimum bit load per subchannel in accordance with the following relationship:

$$1 - \left(1 - W(t, K)\varepsilon_{S}^{\frac{1}{t+1}}\right)^{1/\alpha} = \omega(b)\left(1 - 2^{-b_{t}(t, K)/2}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{t}/10}} / \left(2^{b_{t}(t, K)+1} - 2\right)\right)$$

$$\times \left[2 - \left(1 - 2^{-b_{t}(t, K)/2}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{t}/10}} / \left(2^{b_{t}(t, K)+1} - 2\right)\right)\right]$$

wherein
$$W(t,K) = \begin{bmatrix} K+C+R-1 \\ t \end{bmatrix}^{-\frac{1}{(t+1)}}$$
,

 ε_s represents a target symbol error rate, C + R represents a number of symbols in an error correction field, b represents a number of bit positions of a quadrature-amplitude-modulation symbol, $\omega(b)$ represents an approximate average fraction of erroneous bits in an erroneous b-sized quadrature-amplitude-modulation symbol; and

selecting the maximum number of symbol errors that can be corrected t, and the number of symbols in the information field K such that the uncoded bit error rate p_b that produces a symbol error rate that is less than or equal to the target symbol error rate is increased.

1 39. The apparatus of claim 38 wherein $\omega(b_i)$ is determined in accordance with the following relationship:

$$\omega(b_i) = \frac{4}{3 + 2b_i}$$

- 1 40. An apparatus for selecting forward error correction parameters in a channel
- 2 having a plurality of subchannels in a multicarrier communications system,
- 3 comprising:

4	means for determining a signal-to-noise ratio representing a subset of the		
5	subchannels; and		
6	means for selecting forward error correction parameters of the channel based		
7	on the signal-to-noise ratio.		
1	41. The apparatus of claim 40 wherein the subset of the subchannels comprises all		
2	of the subchannels of the channel.		
1	42. The apparatus of claim 40 wherein the forward error correction parameters are		
2	utilized in Reed-Solomon encoding.		
1	43. The apparatus of claim 40 wherein the signal-to-noise ratio is an average		
2	signal-to-noise ratio of respective signal-to-noise ratios of the subset of the		
3	subchannels.		
1	44. The apparatus of claim 40 further comprising:		
2	means for determining a signal-to-noise ratio representing all of the		
3	subchannels.		
1	45. The apparatus of claim 40 wherein the means for selecting comprises means		
2	for applying a mean field approximation to evaluate a bit load over the subset of		
3	subchannels.		
1	46. The apparatus of claim 40 wherein the means for selecting comprises means		
2	for adjusting the mean field approximation.		
1	The apparatus of claim 46 wherein the means for adjusting is applied when		

the number of bits per subchannel is less than or equal to two.

- 1 48. The apparatus of claim 46 wherein the means for adjusting is a linear adjustment with respect to a bit load of a subchannel.
- 1 49. The apparatus of claim 46 further comprising:

means for determining the representative performance measurement as an average signal-to-noise ratio γ_{eff} for the channel in accordance with the following relationship:

$$\gamma_{eff} = \frac{1}{n_{eff}} \sum_{\gamma_i > \gamma_s} \gamma_i, \text{ wherein}$$

$$n_{eff} = \sum_{\gamma_i > \gamma_*} 1,$$

- γ_i represents a signal-to-noise ratio measurement for an ith subchannel, and n_{eff} represents a number of subchannels for which the signal-to-noise ratio γ_i was measured for which γ_i is greater than γ_* , and γ_* represents a threshold signal-to-noise ratio.
- 1 50. The apparatus of claim 49 further comprising:

means for determining the representative performance measurement as an average signal-to-noise ratio $\gamma_{\it eff}$ for the channel in accordance with the following relationship:

6
$$\gamma_{eff} = \frac{1}{n_{eff}} \sum_{\gamma_i > \gamma_e} \gamma_i$$
, wherein

$$n_{\rm eff} = \sum_{\gamma_{\rm t} \geq \gamma_{\rm s}} 1,$$

 γ_i represents a signal-to-noise measurement for an ith subchannel, and n_{eff} represents a number of subchannels for which the signal-to-noise ratio γ_i was measured for which γ_i is greater than or equal to than γ_* , and γ_* represents a threshold signal-to-noise ratio.

51. An apparatus for determining a bit load b per subchannel in a multicarrier system with forward error correction, comprising:

means for computing one or more values of a maximum number of symbol errors that can be corrected t, and a number of symbols in the information field K to determine the bit load per subchannel in accordance with the following relationship:

$$b = [\gamma + \Phi(\gamma, t, K, \varepsilon)]/10 \log 2,$$

wherein

$$=10\log\left\{10^{-\gamma/10} + \frac{3\log e}{2\log\left[\frac{\alpha\langle\omega(b)\rangle\sqrt{8/\pi}}{W(t,K)(\alpha\varepsilon/\beta)^{\frac{1}{(t+1)}}}\right] - \log\log\left[\frac{\alpha\langle\omega(b)\rangle\sqrt{8/\pi}}{W(t,K)(\alpha\varepsilon/\beta)^{\frac{1}{(t+1)}}}\right] + \log\left(\frac{\log e}{2}\right)\right\}$$

$$W(t,K) = \left[\binom{K+C+R-1}{t} \right]^{-\frac{1}{(t+1)}} \left[\binom{K+C+R}{t+1} \right]^{-\frac{k-1}{(t+1)}},$$

$$\langle \omega(b) \rangle = \frac{1}{b_{\text{max}}} \int_{1}^{b_{\text{max}}} \omega(b) (1 - 2^{-b/2}) db$$

17

18

19

20

21

22

23

24

25

26

1

1 2

3

4

5

6

 α represents a number of bits per symbol, γ represents a signal-to-noise ratio, t represents a maximum number of symbol errors that can be corrected, ε represents a target bit error rate, C + R represents a number of symbols in an error correction field, b represents a number of bit positions of a quadrature-amplitude-modulation symbol, $\omega(b)$ represents an average fraction of erroneous bits in an erroneous b-sized quadrature-amplitude-modulation symbol, b_{max} is a maximum bit load per subchannel; and

means for selecting a bit load per subchannel in accordance with the maximum number of symbol errors that can be corrected t, and a number of symbols in the information field K.

- 52. The apparatus of claim 51 wherein $\Phi(\gamma, t, K, \varepsilon)$ is evaluated at γ equals $-\infty$.
- The apparatus of claim 51 wherein b is greater than or equal to three.
 - 54. An apparatus for selecting forward error correction parameters for use in a channel having a plurality of subchannels, comprising:
 - means for determining an average signal-to-noise ratio of at least a subset of the subchannels; and
 - means for selecting forward error correction parameters based on the average signal-to-noise ratio, and a count of the number of subchannels in the subset.
- The apparatus of claim 54 wherein the means for selecting the forward error correction parameters selects the forward error correction parameters based on a predicted gain from application of the selected forward error correction parameters.

- 56. The apparatus of claim 55 wherein the gain is a performance gain.
- 57. An apparatus for selecting at least one forward error correction parameter, comprising:

means for computing one or more values representing a number of information symbols K in a frame accordance with the following relationship:

$$\left[\frac{\alpha(K+s+zs)}{s \, n_{eff}} + 1.5\right] \left[1 - \left(1 - \left(\left[\binom{K+C+R-1}{t}\right]^{\frac{1}{(t+1)}}\right) e^{\frac{1}{t}(t+1)}\right)^{1/\alpha}\right]$$

$$= 2\left(1 - 2^{\frac{\alpha(K+s+zs)}{2sn_{eff}}}\right) erfc \left(\sqrt{1.5 \cdot 10^{\gamma_{eff}/10} \left(2^{\frac{\alpha(K+s+zs)}{sn_{eff}}} - 1\right)}\right)$$

$$\times \left[2 - \left(1 - 2^{\frac{\alpha(K+s+zs)}{2sn_{eff}}}\right) erfc \left(\sqrt{1.5 \cdot 10^{\gamma_{eff}/10} \left(2^{\frac{\alpha(K+s+zs)}{sn_{eff}}} - 1\right)}\right)\right]$$

8 wherein
$$t = \left\lfloor \frac{sz+1+e_r}{2} \right\rfloor$$
, $e_r \le sz$, and

s represents a number of discrete multi-tone symbols in a frame, z represents a number of error correction symbols in a discrete multi-tone symbol, α represents a number of bits per code symbol, C+R represents a number of redundant symbols in an error correction field, n_{eff} represents a number of subchannels exceeding a threshold performance value, γ_{eff} represents an effective signal-to-noise ratio associated with the number of subchannels exceeding the threshold performance value, ε_s represents a target symbol error rate; and e_r represents a number of erasures; and

means for determining a number of bits per subchannel in accordance with the one or more values of K.

1	58. The apparatus of claim 57 wherein K is a continuous variable.		
1	59. The apparatus of claim 57 wherein K is computed using dichotomy, for values		
2	of γ_{eff} , n_{eff} , z , and s .		
1	60. The apparatus of claim 57 further comprising:		
2	means for determining a net coding gain associated with values of γ_{eff} , n_{eff} , z ,		
3	and s;		
4	means for determining an incremental number of bits per subchannel		
5	associated with the net coding gain; and		
6	means for storing associated values of γ_{eff} , n_{eff} , z , s and the incremental		
7	number of bits per subchannel.		
1	61. An apparatus for selecting transmission parameters of a multicarrier system		
2	having a channel comprising a plurality of subchannels, comprising:		
3	means for selecting a number (s) of discrete multi-tone symbols in a		
4	forward-error-correction frame, and a number (z) of forward-error-correction control		
5	symbols in a discrete multitone symbol based on a signal-to-noise ratio and a number		
6	of subchannels associated with the signal-to-noise ratio; and		
7	means for transmitting information in accordance with the selected number (s		
8	of discrete multi-tone symbols, and a number (z) of forward-error-correction control		
9	symbols in the discrete multitone symbol.		
1	62. The apparatus of claim 61 wherein the means for selecting comprises:		
2	selecting an adjustment value per subchannel based on the signal-to-noise		
3	ratio and the number of subchannels associated with the signal-to-noise ratio; and		
4	means for adjusting a number of bits per subchannel for at least one		
5	subchannel in accordance with the adjustment value.		

2

3

4

5

6

1 2

3

4

n una Hant Ami

- 1 63. The apparatus of claim 61 wherein the signal-to-noise ratio is an average signal-to-noise ratio of the associated number of subchannels.
 - 64. The apparatus of claim 61 further comprising:
 - means for storing, in a table, the number (s) of discrete multi-tone symbols in the forward-error-correction frame, the number (z) of forward-error-correction control symbols in the discrete multitone symbol associated with the signal-to-noise ratio and the number of subchannels associated with the signal-to-noise ratio, for different values of s, z, signal-to-noise ratios and numbers of subchannels.
 - 65. The apparatus of claim 64 wherein for each value of signal-to-noise ratio and number of bits per subchannel of the table, the associated value of s and z provides a maximal net coding gain, and the associated value of s and z is selected from a subset of associated s and z values.