

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : B01D 11/04		A1	(11) Numéro de publication internationale: WO 96/18445
			(43) Date de publication internationale: 20 juin 1996 (20.06.96)
<p>(21) Numéro de la demande internationale: PCT/FR95/01638</p> <p>(22) Date de dépôt international: 11 décembre 1995 (11.12.95)</p> <p>(30) Données relatives à la priorité: 94/14923 12 décembre 1994 (12.12.94) FR</p> <p>(71) Déposant (<i>pour tous les Etats désignés sauf US</i>): COMMIS-SARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31-33, rue de la Fédération, F-75015 Paris (FR).</p> <p>(72) Inventeurs; et</p> <p>(75) Inventeurs/Déposants (<i>US seulement</i>): SARRADE, Stéphane [FR/FR]; Résidence des Arènes, 560, avenue Charles-de-Gaulle, F-84100 Orange (FR). CARLES, Maurice [FR/FR]; 2, boulevard Laennec, F-26700 Pierrelatte (FR). PERRE, Christian [FR/FR]; 7, allée Henri-Daumier, F-26700 Pierrelatte (FR). VIGNET, Paul [FR/FR]; 383, descente Princes-des-Baux, F-84100 Orange (FR).</p> <p>(74) Mandataire: BREVATOME; 25, rue de Ponthieu, F-75008 Paris (FR).</p>			<p>(81) Etats désignés: FI, JP, NO, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p>Publiée</p> <p><i>Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.</i></p>
<p>(54) Title: PROCESS AND PLANT FOR SEPARATING HEAVY AND LIGHT COMPOUNDS BY EXTRACTION WITH A SUPERCRITICAL FLUID AND BY NANOFILTRATION</p> <p>(54) Titre: PROCEDE ET INSTALLATION DE SEPARATION DE COMPOSES LOURDS ET LEGERS, PAR EXTRACTION PAR UN FLUIDE SUPERCRITIQUE ET NANOFILTRATION</p> <p>(57) Abstract</p> <p>According to the process, a solid or liquid phase containing the compounds to be separated is contacted with a supercritical fluid in the extractor (1), and the supercritical fluid charged with compounds and coming out of the extractor (1) is subjected to a nanofiltration in the device (3) in order to collect a permeate stream containing the separated light compounds (at 51) and a retentate stream containing the heavy compounds (at 57). The starting phase may be butter or a fish oil with the aim to fractionate the fatty substances.</p>			

(57) Abrégé

L'invention concerne un procédé et une installation de séparation de composés lourds et légers, par extraction par un fluide supercritique et nanofiltration. Selon ce procédé, on met en contact une phase solide ou liquide contenant les composés à séparer avec un fluide supercritique dans l'extracteur (1), puis on soumet le fluide supercritique chargé de composés sortant de l'extracteur (1) à une nanofiltration dans le dispositif (3) pour récupérer un courant de perméat contenant les composés légers séparés (en 51) et un courant de rétentat contenant des composés lourds (en 57). La phase de départ peut être du beurre ou une huile de poisson en vue de fractionner les corps gras.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauritanie
AU	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	IE	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italie	PL	Pologne
BR	Brésil	JP	Japon	PT	Portugal
BY	Bélarus	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique de Corée	SD	Soudan
CG	Congo	KR	République de Corée	SE	Suède
CH	Suisse	KZ	Kazakhstan	SI	Slovénie
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovaquie
CM	Cameroun	LK	Sri Lanka	SN	Sénégal
CN	Chine	LU	Luxembourg	TD	Tchad
CS	Tchécoslovaquie	LV	Lettonie	TG	Togo
CZ	République tchèque	MC	Monaco	TJ	Tadjikistan
DE	Allemagne	MD	République de Moldova	TT	Trinité-et-Tobago
DK	Danemark	MG	Madagascar	UA	Ukraine
ES	Espagne	ML	Mali	US	Etats-Unis d'Amérique
FI	Finlande	MN	Mongolie	UZ	Ouzbékistan
FR	France			VN	Viet Nam
GA	Gabon				

PROCEDE ET INSTALLATION DE SEPARATION DE COMPOSES LOURDS ET LEGERS, PAR EXTRACTION PAR UN FLUIDE SUPERCRITIQUE ET NANOFILTRATION.

5 La présente invention a pour objet un procédé de séparation de composés lourds et légers à partir d'une phase solide ou liquide les contenant.

10 Un tel procédé peut trouver de nombreuses applications dans des domaines très divers tels que l'industrie alimentaire, par exemple pour le fractionnement de triglycérides issus du beurre ou d'huile de poissons, la séparation de biomolécules à haute valeur ajoutée telles que les vitamines, les colorants et les pigments, et l'industrie des polymères 15 pour le fractionnement de polymères intéressant l'industrie de pointe tels que les silicones, etc.

20 Pour toutes ces applications, les produits de départ sont des phases solides ou liquides de composition complexe qui nécessitent l'emploi de nombreuses étapes de fractionnement pour parvenir à isoler les molécules intéressantes.

25 De façon plus précise, l'invention concerne l'utilisation conjointe des techniques d'extraction par fluide supercritique et des techniques de nanofiltration pour parvenir à extraire des molécules intéressantes de produits complexes, ce qui, pour le moment, n'a jamais été envisagé.

30 En effet, les techniques d'extraction par fluide supercritique ont été utilisées jusqu'à présent pour extraire des composés intéressants à partir de produits solides ou liquides tels que des plantes, par exemple pour obtenir des extraits de parfum à partir de diverses plantes ou pour récupérer des principes actifs, comme il est décrit dans de nombreux documents 35 parmi lesquels on peut citer l'ouvrage de E. Stahl

"Extraction dense gases for extraction and refining" de 1987. Après l'opération d'extraction, on utilise l'extrait tel quel ou on le sépare par des procédés de distillation.

5 Les techniques de séparation par membrane ont été utilisées dans divers domaines tels que la séparation isotopique par diffusion gazeuse, le dessalement de l'eau de mer, la séparation de protéines etc., mais elles n'ont jamais été associées à une unité 10 d'extraction par fluide supercritique.

On a toutefois réalisé certaines études sur la filtration de fluides supercritiques tels que CO₂, par exemple pour séparer le CO₂ supercritique de l'éthanol sur une membrane asymétrique en polyimide 15 kapton, (Semenova et al... 1992), et pour séparer le CO₂ du polyéthylène glycol 400 sur des membranes en polyimide ou en SiO₂ (Nakamura et al, "Membrane separation of supercritical fluid mixture" pp 820-822 in Developments in Food Engineering, Ed. par T.Yamo, R. 20 Matsuno et K.Nakamura Blacku Academic & professional (Chapman & Hall) London, New York, Tokyo, 1994)

Ainsi, aucune étude n'a été effectuée sur l'emploi de la nanofiltration pour séparer 25 sélectivement des solutés contenus dans un fluide supercritique.

Dans les techniques de nanofiltration, on utilise une membrane de nanofiltration qui retient les substances ayant un poids moléculaire supérieur au seuil de coupure de la membrane, situé dans la gamme 30 des poids moléculaires allant de 50 à 1000 Daltons, mais qui laisse passer les substances ayant un poids moléculaire inférieur à ce seuil, pour séparer des substances en fonction de leur poids moléculaire. Cette propriété n'a jamais été utilisée avec des fluides 35 supercritiques car dans toutes les études effectuées,

les produits à séparer sont retenus par la membrane, même s'ils ont un poids moléculaire faible comme c'est le cas pour l'éthanol.

La présente invention a précisément pour 5 objet un procédé de séparation de composés léger(s) et lourd(s) par extraction de tous les composés dans un fluide supercritique, suivie d'une séparation sur une membrane de nanofiltration.

Selon l'invention, le procédé pour séparer 10 au moins un composé léger ayant une masse moléculaire de 50 à 1000 Daltons, d'au moins un composé lourd ayant une masse moléculaire plus élevée que celle du composé léger, à partir d'une phase solide ou liquide les contenant, se caractérise en ce qu'il comprend les 15 étapes suivantes :

a) mettre en contact ladite phase solide ou liquide avec un fluide supercritique à une pression P_1 supérieure à la pression critique P_c du fluide et à une température T_1 supérieure à la température critique T_c du fluide, pour extraire dans celui-ci les composés 20 léger(s) et lourd(s) ;

b) soumettre le fluide supercritique ayant 25 extrait les composés à une filtration sur une membrane de nanofiltration, en appliquant de l'autre côté de la membrane une pression P_2 inférieure à P_1 mais supérieure à P_c , pour séparer le fluide supercritique en un courant de rétentat appauvri en composé(s) léger(s) et en un courant de perméat constitué de fluide supercritique enrichi en composé(s) léger(s) ; 30 et

c) récupérer le(s) composé(s) léger(s) du courant de perméat.

Dans ce procédé, on réalise donc en premier lieu, une extraction des composés légers et lourds dans 35 un fluide supercritique en profitant ainsi du pouvoir

solvant amélioré des fluides supercritiques, puis on sépare les composés voisins extraits dans ce fluide en fonction de leur masse moléculaire par nanofiltration au travers d'une membrane présentant des 5 caractéristiques appropriées pour cette séparation.

L'utilisation conjointe de ces deux techniques permet d'obtenir une sélectivité accrue et la séparation de composés de structure et de masse moléculaire voisines.

10 Par rapport à la séparation simple par membrane de nanofiltration, l'utilisation d'un fluide supercritique comme fluide vecteur des composés à séparer permet une amélioration du transfert transmembranaire et de meilleures performances de 15 séparation.

Par ailleurs, le fait d'associer une séparation par nanofiltration à l'extraction par fluide supercritique permet d'obtenir un gain énergétique non négligeable.

20 En effet, dans les processus d'extraction par fluide supercritique, il est nécessaire en fin d'opération d'effectuer une détente de la totalité du fluide utilisé pour l'extraction afin de séparer celui-ci à l'état gazeux des produits extraits qui restent à 25 l'état liquide. Ceci nécessite un coût énergétique important car il est nécessaire de recomprimer ensuite la totalité du fluide supercritique utilisé pour le recycler dans l'installation d'extraction. Dans l'invention, en associant au processus d'extraction une 30 séparation par nanofiltration, on peut récupérer le produit intéressant qui se trouve dans le perméat, en soumettant à la détente seulement une fraction du fluide supercritique utilisé pour la séparation.

Pour la mise en oeuvre du procédé de 35 l'invention, on peut utiliser différents fluides

supercritiques tels que CO_2 , N_2O , NO_2 , alcanes légers en C_1 à C_6 , CFC ou substituts de CFC, gaz rares, ammoniac, alcools légers en C_1 à C_4 , SF_6 ; purs ou en mélanges.

5 Dans certains cas, il est nécessaire d'ajouter au fluide supercritique un cosolvant, tiers corps améliorant les qualités solvantes de l'ensemble. Comme solvant, on peut utiliser l'eau et les alcools légers en C_1 à C_6 à des teneurs comprises entre 0 et 10 %.

10 De préférence, on utilise du CO_2 supercritique qui présente l'avantage d'avoir une température critique T_c et une pression critique P_c peu élevées (31°C et 7,3MPa).

15 Dans le cas où on utilise comme fluide supercritique du CO_2 supercritique, la pression P_1 a avantageusement une valeur allant de 7,3 à 35MPa et la température T_1 a avantageusement une valeur de 31 à 120°C.

20 De préférence P_1 est supérieur à 10 MPa pour obtenir un rendement d'extraction plus élevé en raison du pouvoir solvant amélioré du fluide aux pressions élevées.

25 Dans l'étape de séparation par nanofiltration, on applique une pression P_2 inférieure à P_1 mais supérieure à P_c , qui est choisie en fonction des composés à séparer de façon à avoir une sélectivité élevée des composés légers par rapport aux composés lourds. Généralement la pression P_2 est telle que 30 $(P_1 - P_2)$ se situe dans l'intervalle de 1 à 5 MPa.

 Pour récupérer les composés légers du courant de perméat, on peut effectuer une détente de ce courant de perméat à une pression P_3 inférieure à P_c afin d'éliminer le fluide supercritique à l'état gazeux

et de le séparer du (des) composé(s) léger(s) qui restent à l'état liquide.

Les membranes de nanofiltration utilisées dans le procédé de l'invention peuvent être de 5 différents types à condition qu'elles présentent un seuil de coupure situé dans la gamme des poids moléculaires allant de 50 à 1000 Daltons.

Ces membranes qui peuvent être organiques, minérales ou organominérales, doivent présenter une 10 résistance "globale" (mécanique, thermique, structurelle, chimique...) adaptée au milieu particulier du fluide supercritique utilisé.

Les membranes organominérales sont des 15 nanofiltres asymétriques composites qui comportent un support macroporeux en matériau inorganique, par exemple en alumine, revêtu d'une couche active en matériau organique tel qu'un polymère, avec interposition éventuelle entre le support et la couche active d'une couche mésoporeuse en matériau 20 inorganique, par exemple en TiO_2 .

Des membranes organominérales de ce type sont décrites dans WO-A-92/06775.

De telles membranes comprennent un support poreux en substance inorganique revêtu sur une face

25 - d'une première couche mésoporeuse en matériau inorganique ayant un rayon moyen de pore inférieur à 10nm, et

30 - d'une seconde couche active disposée sur la première couche mésoporeuse, ayant une épaisseur de 0,1 à $1\mu m$, réalisée en polymère organominéral ou en polymère organique choisi dans le groupe comprenant les polysulfones sulfonées, les polybensimidazonones, les polyfluorures de vinylidène greffés par du méthacrylate de diaminoéthyle et les ionomères perfluorés.

De préférence, on utilise des membranes organominérales à support macroporeux en $Al_2O_3\alpha$, revêtu d'une couche mésoporeuse d'oxyde de titane et d'une couche en ionomère perfluoré tel que le Nafion®, car 5 elles présentent une perméabilité au CO_2 supercritique assez grande pour obtenir un courant de perméat assez élevé.

L'invention a également pour objet une installation pour la mise en oeuvre du procédé décrit 10 ci-dessus. Cette installation comprend :

- un extracteur apte à recevoir une phase solide ou liquide contenant les composés à extraire,
- un dispositif de nanofiltration comportant au moins une membrane de nanofiltration,
- des moyens pour faire circuler un fluide supercritique successivement dans l'extracteur et dans 15 le dispositif de nanofiltration,
- des moyens pour récupérer à la sortie du dispositif de nanofiltration un courant de perméat 20 contenant une partie des composés extraits et un courant de rétentat contenant l'autre partie des composés extraits,
- des moyens pour séparer du courant de rétentat les produits extraits totalement ou 25 partiellement et recycler dans l'extracteur le fluide supercritique à l'état pur ou chargé d'une partie résiduelle des composés dissous, et
- des moyens pour séparer du courant de perméat les produits extraits.

30 D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit, donnée bien entendu à titre illustratif et non limitatif, en référence au dessin annexé.

La figure annexée est une représentation schématique d'une installation de mise en oeuvre du procédé de l'invention.

En se reportant à la figure, on peut voir que l'installation de mise en oeuvre du procédé de l'invention comprend comme constituants principaux l'extracteur (1) et le module de nanofiltration (3).

On peut introduire dans l'extracteur (1) la phase solide ou liquide qui constitue le produit de départ du procédé de l'invention, par une conduite (5) munie d'une vanne (7), les produits résiduels pouvant être éliminés en fin d'opération par la conduite (9) munie d'une vanne (11).

Le fluide supercritique peut être introduit dans l'extracteur (1) à partir d'un réservoir de stockage (13) par l'intermédiaire de la conduite (15) munie d'une pompe (17) et de deux vannes (19) et (21), dans un circuit (23) comprenant un premier échangeur de chaleur (25), un volume tampon (27), une deuxième pompe (29), un deuxième échangeur de chaleur (31) et des vannes (33, 35 et 37). Sur ce circuit d'alimentation en fluide supercritique, est également prévu un injecteur (39) en amont de ce second échangeur (31).

A la sortie de l'extracteur (1) le fluide supercritique ayant extrait les composés lourds et légers sort par une conduite (41) munie d'une vanne (43) pour être dirigé dans le module de nanofiltration (3) qui est maintenu à la température voulue par une étuve (45). Dans ce module de nanofiltration, l'alimentation en fluide chargé de composés lourds et légers se sépare en un courant de perméat ayant traversé les membranes de nanofiltration qui est évacué par la conduite (47) munie de la vanne de détente (49) vers un séparateur (51), et un courant de rétentat qui

est évacué par la conduite (53) munie de la vanne de détente (55) vers un séparateur (57).

Dans le premier séparateur (51), on sépare le courant de perméat supercritique en fluide à l'état gazeux qui est évacué par la conduite (59) munie d'une vanne de détente (61), et en un produit liquide correspondant au(x) composé(s) léger(s) qui est évacué par la conduite (63) munie d'une vanne (64).

Dans le séparateur (57) le courant de rétentat supercritique est séparé en fluide à l'état gazeux ou supercritique qui est recyclé dans le circuit d'alimentation (23) en fluide supercritique ou gazeux muni de la vanne (65) et en composé(s) lourd(s) qui sont évacués par la conduite (67) munie d'une vanne (69).

Cette installation comprend de plus une conduite (71) munie d'une vanne (73) pour mettre à la pression voulue le circuit de perméat, et une conduite (75) munie d'une vanne (77) pour régénérer le module de nanofiltration sans passer dans l'extracteur (1).

Dans cette installation on a un circuit fonctionnant sous haute pression entre la pompe (29) et le module de nanofiltration (3), des circuits basse pression qui correspondent au circuit de perméat (47), et des circuits moyennes ou basses pressions correspondant au circuit de rétentat (53) et au circuit (23) dans sa partie recyclage et sa partie alimentation jusqu'à la pompe (29).

Le module de nanofiltration 3 utilisé dans cette installation peut comprendre plusieurs membranes de nanofiltration.

Généralement, on utilise des membranes tubulaires assemblées en faisceau entre deux plaques support ; la couche active de ces membranes étant la couche interne, et on fait circuler le fluide

supercritique à la pression P_1 à l'intérieur des membranes tubulaires.

Le fonctionnement de cette installation est le suivant.

5 On introduit tout d'abord dans l'extracteur (1) la phase solide ou liquide à traiter par la conduite (5). Après fermeture de la vanne (7), les vannes (37, 43, 49 et 55) étant fermées, on ouvre les vannes (33, 35, 73 et 77) et on fait circuler le fluide 10 issu du réservoir (13), par exemple du CO_2 , à l'état liquide dans la conduite (23) jusqu'à la pompe (29) où on le comprime jusqu'à la pression P_2 désirée du côté perméat de façon à permettre l'équilibrage rapide des 15 pressions de part et d'autre des membranes du module de nanofiltration. Lorsque la pression P_2 est atteinte, on ferme la vanne (73) et on continue de faire monter la 20 pression dans la conduite (75) jusqu'à atteindre la valeur P_1 , pour créer la différence de pression nécessaire au bon fonctionnement du module de nanofiltration.

Lorsque la montée en pression est achevée, on ferme la vanne (77) et on ouvre les vannes (37, 43, 49, 55, 61 et 65) pour faire circuler le fluide supercritique dans l'extracteur (1), puis dans le 25 module de nanofiltration (3). On obtient ainsi un fractionnement du fluide chargé sortant de l'extracteur (1) en un courant de perméat dont les composés légers sont séparés dans le séparateur (51), le gaz carbonique étant rejeté à l'état gazeux, et un courant de rétentat 30 séparé dans le séparateur (57) en composés lourds et en CO_2 recyclé dans le circuit (23).

En fin d'opération, on isole l'extracteur par fermeture des vannes (37) et (43) et on ouvre la vanne (77) pour faire circuler du CO_2 pur sur la 35 membrane afin de la régénérer.

Un appoint de gaz carbonique est introduit dans le circuit d'alimentation (23) de l'extracteur (1) par la conduite (15) en réglant de façon appropriée l'ouverture des vannes (19 et 21) et la pompe (17) en 5 fonction du gaz carbonique évacué dans l'atmosphère par la conduite (59).

Dans cette installation, l'étuve (45) permet de maintenir le module de nanofiltration à la température T_1 (31 à 120°C) et la pompe (29) permet de 10 véhiculer le CO₂ à un débit de 5 à 30kg/h. L'échangeur (31) amène la température du fluide à la température T_1 , l'échangeur 25 assurant seulement un préchauffage à une température inférieure à T_1 , par exemple à 10°C.

On peut bien entendu effectuer des prises 15 d'échantillons sur les conduites (63) et (69) en vue d'analyser les produits obtenus. On peut aussi, si nécessaire, recycler les produits recueillis dans les conduites (63) et (69) dans l'extracteur (1) par un ensemble thermostaté de conduites non représentées sur 20 le dessin, en les introduisant par l'injecteur (39). On peut aussi introduire par l'injecteur (39) d'autres produits, par exemple un cosolvant dans le cas où cela serait nécessaire.

Pour vérifier les performances de cette 25 installation, on détermine les perméabilités de la membrane de nanofiltration et on analyse les produits recueillis dans les séparateurs 51 et 57. La perméabilité au CO₂ pur peut être déterminée à partir de mesures de débit effectuées à l'aide d'un compteur à 30 gaz et d'un chronomètre sur le circuit (47) du perméat.

En fonctionnement, on peut effectuer la même mesure de perméabilité, toutes les 15 min., pendant toute la durée de l'opération.

L'analyse des produits recueillis en 63 et 35 67 peut être effectuée, par exemple, par

chromatographie pour déterminer la masse de produit recueilli.

On peut ainsi en déduire le taux de rétention $R_C(\%)$ de la membrane pour un composé, qui est exprimé par la formule suivante :

5 $R_C(\%) = [1 - (C_{pc}/C_{rc})] \times 100$
dans laquelle C_{pc} représente le rapport de la masse du composé c dans le perméat sur la masse de CO_2 qui a traversé la membrane et est exprimé en g de composé/kg 10 de CO_2 , et

15 C_{rc} représente le rapport massique du composé c dans le rétentat, c'est-à-dire le rapport de la masse du composé c dans le rétentat sur la masse de CO_2 entré dans le module de nanofiltration.

20 A partir des analyses, on peut aussi déterminer le facteur de sélectivité α qui est destiné à évaluer l'efficacité de séparation d'un composé c_1 par rapport à un composé c_2 . Il est déterminé à partir de la formule suivante :

$$25 \alpha_{c1/c2} = (C_{pc1}/C_{pc2})/(C_{rc1}/C_{rc2})$$

20 Lorsque ce facteur est supérieur à l'unité, cela signifie que le perméat s'est enrichi en composé c_1 et qu'il y a donc eu passage préférentiel de ce composé à travers la membrane.

25 Les exemples qui suivent illustrent les résultats obtenus en mettant en oeuvre le procédé de l'invention.

30 Dans tous ces exemples, on utilise CO_2 comme fluide supercritique et un module de nanofiltration comportant des membranes organominérales tubulaires d'une longueur de 15,5 cm, d'un diamètre interne de 0,7 cm et de 0,8 cm de diamètre externe. Elles comportent un support en $Al_2O_3\alpha$, une couche mésoporeuse en oxyde de titane et une couche finale 35 active externe en Nafion®. Les trois membranes

utilisées TN 261, TN 288, TN 292 présentent les caractéristiques suivantes :

Support en alumine à d'épaisseur 1 mm

Sous couche en TiO₂ d'épaisseur 1 μm

5 Couche active en Nafion d'épaisseur 0,1μm

Dans les exemples qui vont être décrit, on étudie les performances du procédé de l'invention sur les polyéthylène glycols. Ces polyéthylène glycols PEG ont pour formule générale H-(OCH₂-CH₂)_n-OH et leurs 10 masses moléculaires sont fonction du degré de polymérisation n. On utilise dans ces exemples des PEG ayant respectivement des masses moléculaires (Mw) de 200 (PEG 200), 400 (PEG 400) et 600 Daltons (PEG 600) ou l'éthylène glycol.

15 Les caractéristiques de ces produits sont présentées dans le tableau 1 qui suit.

Pour effectuer cette séparation, on introduit dans l'extracteur (1) 200 ou 300g des produits à séparer dans une phase stationnaire 20 d'appoint constituée de silice diatomée représentant 1/3 du mélange de PEG, soit 300g de mélange de PEG et 150g de dicalite ou 200 g de mélange et 100 g de dicalite. Dans le cas du mélange contenant du PEG 600, celui-ci est préalablement fondu au bain marie à 50°C.

25 Exemples 1 à 3 : Etude de la composition du mélange de deux polyéthylène glycols de masse moléculaire différente entrant dans la membrane.

On utilise comme membrane de nanofiltration, la membrane TN 261, et on réalise 30 l'extraction en faisant circuler le CO₂ supercritique à la pression P₁ et à la température T₁ données dans le tableau 2 qui suit, en maintenant une différence de pression (P₁ - P₂) entre le côté rétentat P₁ et le côté perméat P₂ de 3 MPa.

On détermine dans un premier temps la composition de l'extrait contenu dans le CO₂ entrant dans la membrane, en fonction de P₁ et T₁.

Les résultats obtenus sont également donnés 5 dans le tableau 2. Ils permettent d'optimiser les conditions de températures T₁ et de pression P₁ pour que la composition de l'extrait extrait soit parfaitement connue et relativement bien équilibrée en PEG 200 et 600

10 Exemples 4 à 7 : Séparation éthylène glycol, polyéthylène glycol 400.

Dans ces exemples, on suit le même mode opératoire que dans l'exemple 1 avec la membrane TN 288, et on réalise l'extraction à une température T₁ 15 de 60°C et une pression P₁ de 31MPa. On applique de l'autre côté de la membrane de nanofiltration une pression P₂ qui varie de 27 à 30MPa.

Les résultats obtenus sont donnés dans le tableau 3 qui suit.

20 Les résultats de ce tableau montrent que la sélectivité $\alpha_{EG/PEG400}$ dépend de la différence de pression P₁-P₂. Ainsi, pour une différence de pression de 1MPa, l'éthylène glycol traverse la membrane plus facilement que le PEG, le perméat est alors plus riche 25 en éthylène glycol que le rétentat. En revanche, à partir d'une différence de pression de 2MPa, la sélectivité est proche de l'unité, donc la membrane n'a pas joué son rôle de barrière sélective puisqu'elle présente la même perméabilité pour les deux solutés. 30 Ceci est dû au fait que les deux composés ont une masse moléculaire faible par rapport aux possibilités de rétention de la membrane (seuil de 500 à 1000 Daltons).

Exemples 8 à 11 : Séparation de mélanges de polyéthylène glycol 200 et 600.

Dans ces exemples, on utilise comme membrane de nanofiltration, la membrane TN 261 en 5 opérant à une pression P_1 de 31MPa et une température T_1 de 60°C avec une différence de pression P_1-P_2 variant de 1 à 4 MPa.

On détermine comme précédemment les 10 quantités de composé récupérées dans le perméat et le rétentat, ainsi que les rapports massiques en composé dans le perméat C_p , dans le rétentat C_r , le taux de rétention R et la sélectivité α PEG 200/PEG 600.

Les résultats obtenus sont donnés dans le 15 tableau 4, montrant que l'optimum de sélectivité (α le plus grand) se situe entre 2 et 3 MPa de ΔP .

Exemples 12 à 15.

Dans ces exemples, on suit le même mode 20 opératoire que dans les exemples 8 à 11 mais on utilise comme membrane de nanofiltration la membrane TN 288, en appliquant une différence de pression P_1-P_2 allant de 1 à 4 MPa.

Les résultats obtenus sont donnés dans le 25 tableau 5.

Les résultats des tableaux 4 et 5 montrent que le facteur d'enrichissement augmente avec la 30 différence de pression appliquée jusqu'à une valeur limite de 4MPa, l'optimum étant obtenu pour une différence de pression de 2MPa pour la membrane TN 288 et de 3MPa pour la membrane TN 261. Pour une différence de pression de 4MPa, il semble que la force motrice appliquée soit trop importante et entraîne un passage 35 forcé des deux composés dans le courant de perméat.

Il est donc important de limiter la différence de pression P_1-P_2 à une valeur faible pour 35 obtenir une séparation optimale.

Exemple 16 : Fractionnement des triglycérides.

Dans cet exemple, on traite du beurre pour en fractionner les triglycérides.

On sait qu'une forte demande industrielle existe concernant l'élaboration de produits allégés en lipides et en cholestérol.

Le beurre est une émulsion d'huile dans l'eau dont la composition moyenne est la suivante :

- protéines : 0,7 à 1%
- 10 - lipides : 81 à 83%
- glucides : 0,3 à 1%
- sels minéraux : 0,1 à 0,3%
- eau : 15 à 17%.

Les lipides du beurre sont constitués essentiellement de triglycérides (97,5% en masse), le cholestérol représentant 0,31% en masse. Les triglycérides sont formés d'acides gras contenant entre 4 et 54 atomes de carbone. 75% d'entre eux sont saturés et forment les acides gras à chaîne longue, principalement l'acide palmitique (20 à 30%) et l'acide stéarique (10%), et les acides gras à chaîne courte, de 4 à 10 atomes de carbone (10%) dont 1/3 d'acide butyrique. Le beurre contient aussi du cholestérol à la concentration de 250mg pour 100g.

25 Selon l'invention, on réalise l'extraction des triglycérides du beurre par du CO₂ supercritique à une pression P₁ de 31MPa, une température T₁ de 40°C et une pression P₂ de 28MPa. Pour l'extraction, on introduit dans l'extracteur (1) 200g de beurre et 60g 30 de silice diatonée et on effectue l'extraction puis la séparation sur membrane de nanofiltration, pendant 1h, avec un débit d'alimentation de CO₂ égal à 20kg/h en utilisant comme membrane de nanofiltration la membrane TN 292.

On analyse en fin d'opération les extraits récupérés dans les séparateurs (51 et 57) par chromatographie en phase gazeuse.

Dans ce but, on fond les extraits au bain marie, puis on les centrifuge pendant 10min à 2500 tours/min, on élimine le culot blanc et on recueille l'extrait anhydre. On met ensuite en solution 300mg d'extrait anhydre dans 1ml d'isooctane, puis on injecte 1ml de la solution dans le gaz vecteur (hydrogène) d'un chromatographe en phase gazeuse comprenant une colonne capillaire de type C18, et on détecte les produits séparés au moyen d'un détecteur à ionisation de flamme.

Les résultats obtenus sur le rétentat et sur le perméat sont donnés dans le tableau 6.

Dans ce tableau, on a donné également le rapport β qui correspond au rapport du triglycéride considéré dans le perméat sur le même triglycéride dans le rétentat. Lorsque β est inférieur à 1, le triglycéride est retenu par la membrane.

Les résultats du tableau 6 montrent que le rapport β est supérieur à 1 pour les triglycérides inférieurs à C40 groupe de composés dont fait également parti le cholestérol.

Exemple 18 : Séparation des triglycérides dans l'huile de poisson.

L'huile de poisson est principalement constituée de triglycérides contenant des acides gras de longueur de chaîne et de degré de saturation différents avec toutefois 75 à 90% d'acides gras saturés. Cette huile animale est très riche en acides gras très longs (nombre d'atomes de carbone supérieur à 18) certains saturés, d'autres très insaturés. Ces derniers (acides gras ω 3) auraient des effets favorables sur la santé humaine. C'est le cas notamment

des acides éicosapentaénoïque (C20:5) ou EPA, et docosahexanoïque (C22:6) ou DHA, qui en induisant une limitation de l'agrégation plaquettaire et un abaissement du taux de lipoprotéines préviendraient les maladies cardiovasculaires.

Il est donc intéressant d'obtenir à partir de l'huile de poisson une fraction riche en triglycérides à longues chaînes contenant significativement EPA et DHA.

10 Pour réaliser l'extraction des triglycérides de l'huile de poisson, on opère dans les mêmes conditions que celles de l'exemple 16 en utilisant la même membrane de nanofiltration.

15 Les résultats obtenus sont donnés dans le tableau 7.

Par ailleurs, le rapport bêta est supérieur à l'unité jusqu'à C54, donc les triglycérides supérieurs à C54 traversent difficilement la membrane.

20 Ce procédé permet donc de séparer l'huile de poisson en une fraction lourde de triglycérides dont le nombre de carbone est de 54 à 62 en opérant de la façon suivante.

25 A partir d'une charge de 20kg d'huile de poisson contenant 50% (10kg) de fraction lourde, on obtient au bout d'une heure de traitement, 0,5kg de perméat contenant 45% (0,225kg) de fraction lourde et 15kg de rétentat contenant 58% (8,7kg) de cette même fraction. La surface membranaire nécessaire à cette opération est de 0,3m², c'est-à-dire 1,5 fois la 30 surface d'échange d'une membrane multicanaux commerciale.

TABLEAU 1

Produits	Viscosité cinématique à 98,9°C (Stokes)	Température de fusion (°C)
Ethylène glycol (Mw= 62,07 Daltons)		
PEG 200	0,043	- 65
PEG 400	0,073	- 6
PEG 600	0,105	22

TABLEAU 2

EX	Composés	Charge	Composition de l'extrait entrant (%)	P ₁ (MPa)	T ₁ (°C)
1	PEG 200 PEG 600	100 g 100 g	100 0	21	80
2	PEG 200 PEG 600	100 g 200 g	80,7 18,9	21	60
3	PEG 200 PEG 600	100 g 200 g	56,3 43,7	31	60

TABLEAU 3

EX	P ₁ -P ₂ (MPa)	Composés	Rendement d'extrac- tion (%massique)	Extrait perméat (g)	Extrait rétentat (g)	C _p (g.kg ⁻¹)	C _r (g.kg ⁻¹)	R (g)	α EG/PEG400 (-)
4	1	EG	0,32	3,1	69,08	2,49	3,11	19,9	1,4
		PEG 400	0,32	2,2	68	1,75	3,06	42,8	
5	2	EG	0,38	2,8	80	2,91	3,67	20,7	1
		PEG 400	0,36	2,7	76,5	2,82	3,51	19,7	
6	3	EG	0,35	4,72	72,4	2,59	3,32	22	1
		PEG 400	0,30	4,19	61,06	2,30	2,80	17,9	
7	4	EG	0,43	9,51	61,24	3,16	3,8	16,3	1
		PEG 400	0,35	7,25	48,83	2,41	3,03	20,5	

TABLEAU 4

EX	P ₁ -P ₂ (MPa)	Composés	Rendement d'extrac- tion (g massique)	Extrait perméat (g)	Extrait rétenant (g)	C _P (g.kg ⁻¹)	C _r (g.kg ⁻¹)	R (s)	α PEG200/ 600 (-)
8	1	PEG 200	0,32	1,18	95,09	3,17	3,14	<0	1,1
		PEG 600	0,27	0,91	80,24	2,44	2,65	8	
9	2	PEG 200	0,35	2	87,22	5	3,38	<0	
		PEG 600	0,33	1,2	83,87	3	3,25	7,7	1,6
10	3	PEG 200	0,28	2,37	67,12	2,73	2,70	<0	
		PEG 600	0,23	1,33	55,79	1,53	2,22	31,1	1,5
11	4	PEG 200	0,34	4,82	82,27	4,02	3,23	<0	
		PEG 600	0,25	2,68	61,89	2,23	2,43	8,2	1,35

TABLEAU 5

EX	P ₁ -P ₂ (MPa)	Composés	Rendement d'extracta- tion (%massique)	Extrait perméat (g)	Extrait rétentat (g)	C _P (g.kg ⁻¹)	C _r (g.kg ⁻¹)	R (%)	α PEG200/600 (-)
12	1	PEG 200	0,3	1,35	86,39	2,27	2,95	23,1	1,2
		PEG 600	0,15	0,55	43,93	0,93	1,5	38	38
13	2	PEG 200	0,3	2,1	54,43	1,78	2,89	38,4	1,4
		PEG 600	0,18	0,9	32,77	0,76	1,74	56,3	56,3
14	3	PEG 200	0,32	1,98	58,25	2,2	3,1	42,9	1,4
		PEG 600	0,21	0,94	38,9	1,04	2,07	49,8	49,8
15	4	PEG 200	0,34	3,23	89,1	2,69	3,31	18,7	1
		PEG 600	0,32	2,92	82,64	2,43	3,07	20,8	20,8

TABLEAU 6

Extrait Perméat (g)	Extrait Rétentat (g)	Triglycérides : Nombre d'atome de carbone	Composition Perméat (%)	Composition Rétentat (%)	β
10,4	147,7	28	1,12	0,85	1,32
	30	1,60	1,38	1,16	
	32	3,19	2,75	1,16	
	34	12,12	11,29	1,07	
	36	15,71	14,62	1,07	
	38	12,68	12,91	0,98	
	40	10,25	10,26	1,00	
	42	5,68	5,76	0,99	
	44	7,06	7,42	0,95	
	46	7,20	8,23	0,87	
	48	9,20	9,62	0,96	
	50	7,16	7,87	0,91	
	52	3,25	3,45	0,94	
	54	3,45	3,49	0,99	

TABLEAU 7

Extrait Perméat (g)	Extrait Rétentat (g)	Triglycérides : Nombre d'atome de carbone	Composition Perméat (%)	Composition Rétentat (%)	β
4,2	146,7	36	0,90	0,04	22,50
	38		1,20	0,39	3,08
	40		1,08	0,57	1,89
	42		1,49	0,50	2,98
	44		2,59	0,80	3,24
	46		4,92	1,87	2,63
	48		9,65	7,44	1,30
	50		17,85	15,56	1,15
	52		22,38	21,29	1,05
	54		24,02	22,82	1,05
	56		8,29	17,86	0,46
	58		3,96	8,69	0,46
	60		1,13	1,99	0,57
	62		0,01	0,05	0,20

REVENDICATIONS

1. Procédé pour séparer au moins un composé léger ayant une masse moléculaire de 50 à 1000 Daltons, d'au moins un composé lourd ayant une masse moléculaire plus élevée que celle du composé léger, à partir d'une phase solide ou liquide les contenant, caractérisé en ce qu'il comprend les étapes suivantes :
 - a) mettre en contact ladite phase solide ou liquide avec un fluide supercritique à une pression P_1 supérieure à la pression critique P_c du fluide et à une température T_1 supérieure à la température critique T_c dudit fluide pour extraire dans celui-ci les composés lourd(s) et léger(s) ;
 - b) soumettre le fluide supercritique ayant extrait les composés à une filtration sur une membrane de nanofiltration, en appliquant de l'autre côté de la membrane, une pression P_2 inférieure à P_1 et supérieure à P_c , pour séparer le fluide supercritique en un courant de rétentat appauvri en composé(s) léger(s) et un courant de perméat constitué de fluide supercritique enrichi en composé(s) légers(s) ;
 - c) récupérer le(s) composé(s) léger(s) du courant de perméat.
2. Procédé selon la revendication 1, caractérisé en ce que le fluide supercritique est du CO_2 supercritique.
3. Procédé selon la revendication 2, caractérisé en ce que P_1 a une valeur allant de 7,3 à 35MPa, et T_1 a une valeur allant de 31 à 120°C.
4. Procédé selon l'une quelconque des revendication 2 et 3, caractérisé en ce que $P_1 - P_2$ est dans l'intervalle allant de 1 à 5MPa.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'on récupère le(les) composé(s) léger(s) du courant de

perméat par détente à une pression P_3 inférieure à P_c afin d'éliminer le fluide supercritique à l'état gazeux et le séparer du(des) composé(s) léger(s) restant à l'état liquide.

5 6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la membrane de nanofiltration est une membrane organominérale comportant un support poreux en substance inorganique revêtu sur une face

10 - d'une première couche mésoporeuse en matériau inorganique ayant un rayon moyen de pore inférieur à 10nm, et

15 15 - d'une seconde couche active disposée sur la première couche mésoporeuse, ayant une épaisseur de 0,1 à 1 μ m, réalisée en polymère organominéral ou en polymère organique choisi dans le groupe comprenant les polysulfones sulfonées, les polybensimidazonones, les polyfluorures de vinylidène greffés par du méthacrylate de diaminoéthyle et les ionomères perfluorés.

20 20 7. Procédé selon l'une quelconque des revendications 2 à 6, caractérisé en ce que les composés lourd(s) et léger(s) sont des polyéthylène glycols de masse moléculaire différente.

25 25 8. Procédé selon l'une quelconque des revendications 2 à 6, caractérisé en ce que la phase de départ est du beurre ou une huile de poisson et en ce que les composés à fractionner sont des triglycérides ou acides gras à longues chaînes.

30 30 9. Installation de mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle comprend :

- un extracteur (1) apte à recevoir une phase solide ou liquide contenant les composés à extraire,

- un dispositif de nanofiltration (3) comportant au moins une membrane de nanofiltration,
- des moyens (23, 29, 41) pour faire circuler un fluide supercritique successivement dans 5 l'extracteur (1) et dans le dispositif de nanofiltration (3),
- des moyens (47,53) pour récupérer à la sortie du dispositif de nanofiltration un courant de perméat contenant une partie des composés extraits et 10 un courant de rétentat contenant l'autre partie des composés extraits,
- des moyens (57) pour séparer du courant de rétentat les produits extraits totalement ou partiellement et recycler dans l'extracteur le fluide supercritique à l'état pur ou chargé d'une partie 15 résiduelle des composés dissous, et
- des moyens (51) pour séparer du courant de peréat les produits extraits.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR 95/01638

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 B01D11/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 B01D A23F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB,A,2 190 398 (INSTITUT FRANCAIS DU PETROLE) 18 November 1987 see claims 1,9,10 ---	1
X	WO,A,92 06775 (COMMISSARIAT A L'ENERGIE ATOMIQUE) 30 April 1992 cited in the application see claims ---	6
X	DATABASE WPI Week 8733 Derwent Publications Ltd., London, GB; AN 87-232797 XP002000861 & JP,A,62 158 223 (SHIN NENRYOYU KAIHA , SHINNENRYOYU KAIHATSU GIJUTSU) , 14 July 1987 see abstract ---	2,9
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- ‘A’ document defining the general state of the art which is not considered to be of particular relevance
- ‘E’ earlier document but published on or after the international filing date
- ‘L’ document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- ‘O’ document referring to an oral disclosure, use, exhibition or other means
- ‘P’ document published prior to the international filing date but later than the priority date claimed

- ‘T’ later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- ‘X’ document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- ‘Y’ document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- ‘&’ document member of the same patent family

2

Date of the actual completion of the international search 19 April 1996	Date of mailing of the international search report 13 -05- 1996
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Authorized officer Cordero Alvarez, M

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 95/01638

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DATABASE WPI Week 8936 Derwent Publications Ltd., London, GB; AN 89-260219 XP002000862 & JP,A,01 189 301 (EBARA SOGO KENKYUSH) , 28 July 1989 see abstract ---	1-9
A	DATABASE WPI Week 9316 Derwent Publications Ltd., London, GB; AN 93-130718 XP002000863 & JP,A,05 068 804 (CHLORINE ENGINEERS CORP , OGAWA KORYO) , 23 March 1993 see abstract ---	1-9
A	DATABASE WPI Week 8729 Derwent Publications Ltd., London, GB; AN 87-201919 XP002000864 & JP,A,62 129 102 (HITACHI) , 11 June 1987 see abstract ---	1-9
A	US,A,5 160 044 (CH-S.TAN) 3 November 1992 see claims -----	1-9

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 95/01638

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB-A-2190398	18-11-87	FR-A- 2598717 DE-A- 3715983 NL-A- 8701097	20-11-87 19-11-87 01-12-87
-----	-----	-----	-----
WO-A-9206775	30-04-92	FR-A- 2668077 DE-D- 69112076 DE-T- 69112076 EP-A- 0555269 JP-T- 6502116 US-A- 5342521	24-04-92 14-09-95 11-04-96 18-08-93 10-03-94 30-08-94
-----	-----	-----	-----
US-A-5160044	03-11-92	NONE	
-----	-----	-----	-----

RAPPORT DE RECHERCHE INTERNATIONALE

Dr de Internationale No
PCT/FR 95/01638

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 6 B01D11/04

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 6 B01D A23F

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	GB,A,2 190 398 (INSTITUT FRANCAIS DU PETROLE) 18 Novembre 1987 voir revendications 1,9,10 ---	1
X	WO,A,92 06775 (COMMISSARIAT A L'ENERGIE ATOMIQUE) 30 Avril 1992 cité dans la demande voir revendications ---	6
X	DATABASE WPI Week 8733 Derwent Publications Ltd., London, GB; AN 87-232797 XP002000861 & JP,A,62 158 223 (SHIN NENRYOYU KAIHA , SHINNENRYOYU KAIHATSU GIJUTSU) , 14 Juillet 1987 voir abrégé ---	2,9
	-/-	

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- "&" document qui fait partie de la même famille de brevets

2 Date à laquelle la recherche internationale a été effectivement achevée

19 Avril 1996

Date d'expédition du présent rapport de recherche internationale

13 -05- 1996

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Fonctionnaire autorisé

Cordero Alvarez, M

RAPPORT DE RECHERCHE INTERNATIONALE

Document de recherche internationale No
PCT/FR 95/01638

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	<p>DATABASE WPI Week 8936 Derwent Publications Ltd., London, GB; AN 89-260219 XP002000862 & JP,A,01 189 301 (EBARA SOGO KENKYUSH) , 28 Juillet 1989 voir abrégé</p> <p>---</p>	1-9
A	<p>DATABASE WPI Week 9316 Derwent Publications Ltd., London, GB; AN 93-130718 XP002000863 & JP,A,05 068 804 (CHLORINE ENGINEERS CORP , OGAWA KORYO) , 23 Mars 1993 voir abrégé</p> <p>---</p>	1-9
A	<p>DATABASE WPI Week 8729 Derwent Publications Ltd., London, GB; AN 87-201919 XP002000864 & JP,A,62 129 102 (HITACHI) , 11 Juin 1987 voir abrégé</p> <p>---</p>	1-9
A	<p>US,A,5 160 044 (CH-S.TAN) 3 Novembre 1992 voir revendications</p> <p>-----</p>	1-9

2

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demande Internationale No

PCT/FR 95/01638

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
GB-A-2190398	18-11-87	FR-A- 2598717 DE-A- 3715983 NL-A- 8701097	20-11-87 19-11-87 01-12-87
-----	-----	-----	-----
WO-A-9206775	30-04-92	FR-A- 2668077 DE-D- 69112076 DE-T- 69112076 EP-A- 0555269 JP-T- 6502116 US-A- 5342521	24-04-92 14-09-95 11-04-96 18-08-93 10-03-94 30-08-94
-----	-----	-----	-----
US-A-5160044	03-11-92	AUCUN	
-----	-----	-----	-----