

IRFI4019HG-117P

DIGITAL AUDIO MOSFET

Features

- Integrated Half-Bridge Package
- Reduces the Part Count by Half
- Facilitates Better PCB Layout
- Key Parameters Optimized for Class-D Audio Amplifier Applications
- Low $R_{DS(ON)}$ for Improved Efficiency
- Low Qg and Qsw for Better THD and Improved Efficiency
- Low Qrr for Better THD and Lower EMI
- Can Delivery up to 200W per Channel into 8Ω Load in Half-Bridge Configuration Amplifier
- Lead-Free Package
- Halogen-Free

Key Parameters ⑥		
V_{DS}	150	V
$R_{DS(ON)}$ typ. @ 10V	80	$m\Omega$
Q_g typ.	13	nC
Q_{sw} typ.	4.1	nC
$R_{G(int)}$ typ.	2.5	Ω
T_J max	150	°C

G1, G2	D1, D2	S1, S2
Gate	Drain	Source

Description

This Digital Audio MosFET Half-Bridge is specifically designed for Class D audio amplifier applications. It consists of two power MosFET switches connected in half-bridge configuration. The latest process is used to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery, and internal Gate resistance are optimized to improve key Class D audio amplifier performance factors such as efficiency, THD and EMI. These combine to make this Half-Bridge a highly efficient, robust and reliable device for Class D audio amplifier applications.

Absolute Maximum Ratings ⑥

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	150	V
V_{GS}	Gate-to-Source Voltage	± 20	
I_D @ $T_C = 25^\circ C$	Continuous Drain Current, $V_{GS} @ 10V$	8.7	A
I_D @ $T_C = 100^\circ C$	Continuous Drain Current, $V_{GS} @ 10V$	6.2	
I_{DM}	Pulsed Drain Current ①	34	
E_{AS}	Single Pulse Avalanche Energy ②	77	mJ
$P_D @ T_C = 25^\circ C$	Power Dissipation ④	18	W
$P_D @ T_C = 100^\circ C$	Power Dissipation ④	7.2	
	Linear Derating Factor	0.15	W/°C
T_J	Operating Junction and	-55 to + 150	°C
T_{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)	

Thermal Resistance ⑥

	Parameter	Typ.	Max.	Units
$R_{θJC}$	Junction-to-Case ④	—	6.9	
$R_{θJA}$	Junction-to-Ambient	—	65	

Notes ① through ⑥ are on page 2

Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified) ⑥

	Parameter	Min.	Typ.	Max.	Units	Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	150	—	—	V	$V_{GS} = 0\text{V}, I_D = 250\mu\text{A}$
$\Delta BV_{DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient	—	0.19	—	V/ $^\circ\text{C}$	Reference to $25^\circ\text{C}, I_D = 1\text{mA}$
$R_{DS(on)}$	Static Drain-to-Source On-Resistance	—	80	95	$\text{m}\Omega$	$V_{GS} = 10\text{V}, I_D = 5.2\text{A}$ ③
$V_{GS(th)}$	Gate Threshold Voltage	3.0	—	4.9	V	$V_{DS} = V_{GS}, I_D = 50\mu\text{A}$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient	—	-11	—	mV/ $^\circ\text{C}$	
I_{DSS}	Drain-to-Source Leakage Current	—	—	20	μA	$V_{DS} = 150\text{V}, V_{GS} = 0\text{V}$
		—	—	250		$V_{DS} = 150\text{V}, V_{GS} = 0\text{V}, T_J = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Forward Leakage	—	—	100	nA	$V_{GS} = 20\text{V}$
	Gate-to-Source Reverse Leakage	—	—	-100		$V_{GS} = -20\text{V}$
g_{fs}	Forward Transconductance	11	—	—	S	$V_{DS} = 50\text{V}, I_D = 5.2\text{A}$
Q_g	Total Gate Charge	—	13	20	nC	$V_{DS} = 75\text{V}$ $V_{GS} = 10\text{V}$ $I_D = 5.2\text{A}$ See Fig. 6 and 19
Q_{gs1}	Pre-Vth Gate-to-Source Charge	—	3.3	—		
Q_{gs2}	Post-Vth Gate-to-Source Charge	—	0.8	—		
Q_{gd}	Gate-to-Drain Charge	—	3.9	—		
Q_{godr}	Gate Charge Overdrive	—	5.0	—		
Q_{sw}	Switch Charge ($Q_{gs2} + Q_{gd}$)	—	4.1	—		
$R_{G(int)}$	Internal Gate Resistance	—	2.5	—	Ω	
$t_{d(on)}$	Turn-On Delay Time	—	7.0	—	ns	$V_{DD} = 75\text{V}, V_{GS} = 10\text{V}$ ③ $I_D = 5.2\text{A}$ $R_G = 2.4\Omega$
t_r	Rise Time	—	6.6	—		
$t_{d(off)}$	Turn-Off Delay Time	—	13	—		
t_f	Fall Time	—	3.1	—		
C_{iss}	Input Capacitance	—	810	—	pF	$V_{GS} = 0\text{V}$ $V_{DS} = 25\text{V}$ $f = 1.0\text{MHz}$, See Fig.5 $V_{GS} = 0\text{V}, V_{DS} = 0\text{V to } 120\text{V}$
C_{oss}	Output Capacitance	—	100	—		
C_{rss}	Reverse Transfer Capacitance	—	15	—		
C_{osss}	Effective Output Capacitance	—	97	—		
L_D	Internal Drain Inductance	—	4.5	—	nH	Between lead, 6mm (0.25in.) from package and center of die contact
L_S	Internal Source Inductance	—	7.5	—		

Diode Characteristics ⑥

	Parameter	Min.	Typ.	Max.	Units	Conditions
$I_s @ T_c = 25^\circ\text{C}$	Continuous Source Current (Body Diode)	—	—	8.7	A	MOSFET symbol showing the integral reverse p-n junction diode.
	Pulsed Source Current (Body Diode) ①	—	—	34		
V_{SD}	Diode Forward Voltage	—	—	1.3	V	$T_J = 25^\circ\text{C}, I_s = 5.2\text{A}, V_{GS} = 0\text{V}$ ③
t_{rr}	Reverse Recovery Time	—	57	86	ns	$T_J = 25^\circ\text{C}, I_F = 5.2\text{A}$ $dI/dt = 100\text{A}/\mu\text{s}$ ③
Q_{rr}	Reverse Recovery Charge	—	140	210	nC	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
 ② Starting $T_J = 25^\circ\text{C}$, $L = 5.8\text{mH}$, $R_G = 25\Omega$, $I_{AS} = 5.2\text{A}$.
 ③ Pulse width $\leq 400\mu\text{s}$; duty cycle $\leq 2\%$.

④ R_θ is measured at T_J of approximately 90°C .

⑤ Limited by T_{jmax} . See Figs. 14, 15, 17a, 17b for repetitive avalanche information

⑥ Specifications refer to single MosFET.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com

Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage

IRFI4019HG-117P

International
Rectifier

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. On-Resistance Vs. Gate Voltage

Fig 13. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

Fig 15a. Unclamped Inductive Test Circuit

Fig 15b. Unclamped Inductive Waveforms

Fig 16a. Switching Time Test Circuit

Fig 16b. Switching Time Waveforms

Fig 17a. Gate Charge Test Circuit

Fig 17b Gate Charge Waveform

TO-220 Full-Pak 5-Pin Package Outline, Lead-Form Option 117

(Dimensions are shown in millimeters (inches))

SYMBOL	DIMENSIONS				NOTES	
	MILLIMETERS		INCHES			
	MIN.	MAX.	MIN.	MAX.		
A	4.57	4.83	.180	.190		
A1	2.57	2.83	.101	.111		
A2	2.51	2.85	.099	.112		
A3	3.73	4.24	.147	.167		
A4	5.79	6.29	.228	.248		
b	0.61	0.95	.024	.037		
b1	0.56	0.90	.022	.035	5	
b2	1.13	1.48	.044	.058		
b3	1.08	1.43	.042	.056	5	
b4	0.76	1.06	.030	.042		
b5	0.71	1.01	.028	.040	5	
c	0.33	0.63	.013	.025		
c1	0.28	0.58	.011	.023	5	
D	8.65	9.80	.341	.386	4	
d1	15.80	16.12	.622	.635		
d2	13.97	14.22	.550	.560		
d3	12.30	12.92	.484	.509		
E	9.63	10.63	.379	.419	4	

SYMBOL	DIMENSIONS				NOTES
	MILLIMETERS		INCHES		
L	MIN.	MAX.	MIN.	MAX.	
e	1.70	BSC		.067	BSC
L	13.20	13.73	.520	.541	
L1	1.91	2.31	.075	.091	3
L2	12.7	13.46	.500	.530	
L3	10.92	11.68	.430	.460	
n	6.05	6.15	.238	.242	
p ^o	3.05	3.45	.120	.136	
u	2.40	2.50	.094	.098	6
v	0.40	0.50	.016	.020	6
ø1	-	45°	-	45°	

LEAD ASSIGNMENTS	
1	SOURCE 2

TO-220 Full-Pak 5-Pin Part Marking Information

EXAMPLE: THIS IS AN IRFI4019HG-117P

TO-220AB Full-Pak 5-Pin package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at <http://www.irf.com/package/>

Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR's Web site.

International
ICR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 10/2009

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.