El protocolo IPv6

Integrantes:

Martín Moloeznik, Nicolás Paz Reyes martinmoloeznik@gmail.com, rubenpaz2105@gmail.com

 $Repositorio: \verb|https://github.com/N1CO-P4Z/Protocolo-IPv6||$

Índice

1. IPv6 SLAAC and EUI-64 Basics									
	1.1.	Config	uración del Router en IPv6	2					
		2. Explicacion algoritmo EUI-64							
	1.4.	Router	Advertisement	3					
2.	Neig	ghbor i	Discovery	4					
	2.1.	Local	Delivery	4					
		2.1.1.	Mensaje NDP	4					
		2.1.2.	Mensaje ICMPv6	5					
		2.1.3.	Cómo recibe el Router los mensajes del protocolo NPD?	5					
2.1.4. Próximo evento en el Switch 0									
	2.1.5. Información sobre el primer evento en PC1								
		2.1.6.	Falta de Información en Out Layers	6					
		2.1.7.	Proximo paquete ICMPv6	6					
		2.1.8.	Ultimo evento de la lista	6					
		2.1.9.	Resetear la simulación	6					
3.	Con	clusio	nes	6					
4.	Refe	erencia	us	7					

Introducción

El protocolo IPv6 fue desarrollado para reemplazar a IPv4 debido a la necesidad de una mayor cantidad de direcciones IP en el mundo. Dentro de IPv6 existen mecanismos esenciales para la configuración de direcciones y la comunicación entre dispositivos, entre los cuales se destacan SLAAC, EUI-64 y el protocolo Neighbor Discovery (NDP).

1. IPv6 SLAAC and EUI-64 Basics

1.1. Configuración del Router en IPv6

Mediante los siguientes comandos configuramos la Link Local Address del router a fe80::1 y la GUA a 2001:db8:acad:1::1/64.

Router#enable

Router#configure terminal

Router(config)#ipv6 unicast-routing

Router(config)#interface g0/0

Router(config-if)#ipv6 enable

Router(config-if)#ipv6 address fe80::1 link-local

Router(config-if)#ipv6 address 2001:db8:acad:1::1/64

Router(config-if)#no shutdown

1.2. Explicacion algoritmo EUI-64

La PC se autoconfigura su Link Local Addres siguiendo los pasos a continuacion:

48 bit MAC	00-E0-F9-98-8A-07
Separa al medio	00-E0-F9 / 98-8A-07
Insertar FF-FE	00-E0-F9 FF-FE 98-8A-07
Primeros dos hexa a binario	0000-0000-E0-F9 FF-FE 98-8A-07
Se invierte el septimo bit	0000-00 1 0-E0-F9 FF-FE 98-8A-07
64 bits host interface ID	02 -E0-F9- FF-FE -98-8A-07
Link Local Address	FE80:: 2E0:F9FF:FE98:8A07

Algoritmo
EUI-64

1.3. Router Solicitation

Luego entramos al modo simulación y cambiamos la configuración ipv6 de la pc de static a auto-config, inmediatamente, la pc envía un mensaje de router solicitation. Donde la ip de origen es la LLA de la pc que se autoconfiguró mediante EUI-64 y la ip destino es la ALL routers multicast address.

0	4	12			32		
Ver:6	TRFC		$FLOW\ LABEL$				
	$PL:12$ $NEXT:0x3a$ $HOP\ LIMIT:255$						
	SRC IP:FE80::2E0:F9FF:FE98:8A07						
		All Routers Multicast address					

1.4. Router Advertisement

La PC aprende que se esta usando IPv6 y a la LLA del router que usará como gateway.

0	8		16		
VER:6	TRFC	$FLOW\ LABEL$			
	PL:60		HOP LIMIT:255		
SRC IP: FE80::1					
DST IP: FF02::1					

El router responde con el siguiente mensaje de Router Advertisement:

0	8	16		
TYPE: 0x86	CODE: 0x00	CHECKSUM: 0x0000		
Hop Limit: 0x40	RESERVED	Router Lifetime: 0x0708		
Reachable Time: 0x00000000				
Retrans Timer: 0x00000000				

Prefix Option

0		8	16		
	TYPE: 0x03	LENGTH: 0x04	PREFIX LEN: 64	RESERVED1	
		VALID LIFET	TIME: 2592000		
	PREFERRED LIFETIME: 604800				
	RESERVED2				
	PREFIX: 2001:DB8:ACAD:1::				

Aquí la PC aprende el prefijo de red, su tamaño, el tipo y por cuanto tiempo es valida esta informacion. De esta forma, la PC se autoconfigura su IPv6 Global Unicast Address,

ya que tiene todos los elementos necesarios. Usará como interface ID lo que ya aprendio usando el algoritmo EUI-64.

En este mensaje, la PC aprende la Link Layer Address del Router.

2. Neighbor Discovery

Configuramos las IPs de las PCs y el Router con los comandos que vimos en el apartado anterior. Luego nos aseguramos que el R0 no tenga información de sus vecinos con

R0#show ipv6 neighbors

2.1. Local Delivery

Realizaremos un ping desde la consola de P0 a P1 en el modo simulación, filtrando los mensajes ICMPv6 y NDP para visualizarlos en la *Event List*

2.1.1. Mensaje NDP

En el tercer evento vemos que la PC0 envia un PDU NDP al Switch0. Este PDU va a ser de tipo 135 Neighbor Solicitation, con el objetivo de descubrir la dirección MAC de los otros dispositivos en la misma red local. El mensaje de Neighbor Solicitation se ve representado de la siguiente manera:

0	8	16
TYPE: 0x87	CODE: 0x00	CHECKSUM
$R \mid S \mid O$	-	Reserved
	Target Address: 20	01:DB8:ACAD:1::B

En TYPE se muestra en hexadecimal 0x87, que en decimal es 135, confirmando que el mensaje es de tipo Neighbor Solicitation. En el 4to y 5to evento vemos que el Switch hizo forward del NDP a la PC1 y al Router.

La respuesta va a ser una PDU NDP de tipo Neighbor Advertisement, es decir Type 136(0x87 en hexadecimal).

0	8	16
TYPE: 0x88	CODE: 0x00	CHECKSUM
$R \mid S \mid O$		Reserved
	01:DB8:ACAD:1::B	

Esta respuesta llega al Switch, el cual nuevamente fordwardea por todas sus interfaces, menos por la que recibió el mensaje. La PC1 lo descarta y la PC0 lo acepta.

De esta manera mostramos cómo funcionan los mensajes de Neighbor Solicitation y Neighbor Advertisement.

2.1.2. Mensaje ICMPv6

En el primer evento, seleccionamos el mensaje ICMPv6 en la PC0, para analizar la PDU.

Observamos que es un mensaje ICMPv6 de TYPE 0x80, es decir 128 en decimal, lo que corresponde a un mensaje ECHO REQUEST, que cuenta con la siguiente estructura:

0		8	16
	<i>TYPE: 0x80</i>	CODE: 0x00	CHECKSUM: 0x0000
IDENTIFIER: 2			SEQUENCE NUMBER: 1

También podemos observar que la sección Out Layers del OSI Model se resuelve en la layer 3.

Luego presionamos en Next Layer y nos aparece una salida con lo sucedido en la Layer 2.

Nos explica que el next hop es una dirección unicast, por lo que el proceso de Neighbor Discovery la busca en la neighbor table. Luego ve que el next hop no se encuentra en la tabla, por lo que el protocolo NDP envía una neighbor solicitation, comenzando el proceso visto en el apartado anterior.

2.1.3. Cómo recibe el Router los mensajes del protocolo NPD?

Seleccionamos el próximo evento, el mensaje NDP en la PC0 y observamos que la dirección de destino cambió por una dirección multicast de enlace local (FF02::) que utiliza el proceso de Neighbor Discovery.

En la layer 2 vemos que tenemos la dirección MAC de origen de la PC0 y la dirección MAC de destino que es 3333.FF00.000B, que es una dirección de multidifusión. Lo que tiene de particular esta dirección es que pertenece al rango de direcciones de multidifusión de la layer 2, asignadas a IPv6. Los ultimo 32 bits de la dirección MAC coinciden con los últimos 32 bits de la dirección IPv6 de multidifusión.

Esto permite que el descubrimientos de vecinos sea mucho mas eficiente en redes IPv6.

2.1.4. Próximo evento en el Switch 0

Seleccionamos el próximo evento que ocurre en el Switch 0, y observamos que no ocurren cambios en la entrada y salida en la capa 2. Esto ocurre ya que el switch no altera o cambia nada en las tramas, solo las reenvía por todos sus puertos, excepto por el de entrada.

2.1.5. Información sobre el primer evento en PC1

■ Ethernet Destination Address: 3333.FF00.000B

■ Ethernet Source Address: 0090.0C5B.E7DC

■ IPv6 Source Address: 2001:DB8:ACAD:1::B

■ IPv6 Destination Address: FF02::1:FF00:B

2.1.6. Falta de Información en Out Layers

Al seleccionar el primer evento en el Router 0, en el que el router recibe el mensaje NDP forwardeado desde el Switch, observamos que en las Out Layers no hay información porque la dirección IP destino del mensaje NDP es la de la PC1, y no la del Router. El Router entiende que el mensaje no es para él y la descarta.

2.1.7. Proximo paquete ICMPv6

Seleccionamos el próximo evento ICMPv6 de la PC0 y observamos que efectivamente tiene toda la información para comunicarse con la PC1.

Efectivamente la PC0 tiene la dirección de IP destino y la dirección MAC de destino de la PC1, por lo que ahora la comunicación entre PCs debería ser exitosa.

2.1.8. Ultimo evento de la lista

En el último evento de la lista, que es un mensaje ICMPv6 de PC0, vemos que es un ECHO MESSAGE TYPE 129, es decir, *Echo Reply*.

2.1.9. Resetear la simulación

Reseteamos la simulación y volvemos a hacer un ping entre la PC0 y la PC1 mediante comandos, y observamos la ausencia del proceso Neighbor Discovery, ya que la PC0 ya conoce la MAC de la PC1 gracias al proceso realizado anteriormente.

Con esta información, la PC0 puede hacer pings a la PC1 cuantas veces quiera. Por esto sólo observamos los eventos ICMPv6 que van del PC0 al Switch, del Switch a la PC1 y las respuestas correspondientes.

3. Conclusiones

Aquí se sintetizan los resultados obtenidos y se discuten las ventajas y desventajas de la autoconfiguración en IPv6, así como el impacto del proceso de Neighbor Discovery en el rendimiento de la red.

4. Referencias

Para la elaboración de este informe utilizamos el contenido de los siguientes videos.

- Video 1: "IPv6 SLAAC and EUI-64 Basics in Packet Tracer", Dan Alberghetti, 2019, at https://www.youtube.com/watch?v=yMK1NVHksDE.
- Video 2: "IPv6 NDP and ICMPv6 using Packet Tracer", Dan Alberghetti, 2020, at https://www.youtube.com/watch?v=y2GpG9a0IFI
- Video 3: "Detección de vecinos IPv6 (Packet Tracer Lab 9.3.4)", RedesNetw channel, 2022, at https://www.youtube.com/watch?v=ZBVXbgF39gw +