Opgave 9.2.57

Drug Reaction The reaction to x units of a drug t hours after it was administered is given by

$$R(x,t) = x^2(a-x)t^2e^{-t}$$

For $0 \le x \le a$ (Where a is a constant). Find the following

- a. $\frac{\delta R}{\delta x}$

- b. $\frac{\delta R}{\delta t}$ c. $\frac{\delta R}{\delta x^2}$ d. $\frac{\delta R}{\delta x \delta t}$

— s. 532

Opskrive funktionen

$$\begin{split} R(x,t) &= x^2(a-x)t^2e^{-t} \\ &= (ax^2-x^3)t^2e^{-t} \end{split}$$

Find R_x

$$\begin{split} R_x(x,t) &= \left((ax^2 - x^3)t^2e^{-t} \right)_x \\ &= \left(ax^2 - x^3 \right)_x \cdot t^2e^{-t} \\ &= \left(2ax - 3x^2 \right) \cdot t^2e^{-t} \end{split}$$

Find R_t

$$\begin{split} R_t(x,t) &= \left((ax^2 - x^3)t^2e^{-t} \right)_t \\ &= \left(ax^2 - x^3 \right) \left(t^2e^{-t} \right)_t \\ &= \left(ax^2 - x^3 \right) \left(2te^{-t} - t^2e^{-t} \right) \\ &= \left(ax^2 - x^3 \right) \left(2t - t^2 \right)e^{-t} \end{split}$$

Find R_{xx}

$$\begin{split} R_{xx}(x,t) &= \left(\left(2ax - 3x^2 \right) \cdot t^2 e^{-t} \right)_x \\ &= \left(2ax - 3x^2 \right)_x \cdot t^2 e^{-t} \\ &= \left(2a - 6x \right) \cdot t^2 e^{-t} \end{split}$$

Find R_{xt}

$$\begin{split} R_{xt} &= \left(\left(2ax - 3x^2 \right) \cdot t^2 e^{-t} \right)_t \\ &= \left(2ax - 3x^2 \right) \cdot \left(t^2 e^{-t} \right)_t \\ &= \left(2ax - 3x^2 \right) \cdot \left(2t e^{-t} - t^2 e^{-t} \right) \\ &= \left(2ax - 3x^2 \right) \cdot \left(2t - t^2 \right) e^{-t} \end{split}$$