设计目录

1.5万吨每年氯苯筛板精馏塔工艺设计计算说明书

- 一、设计任务
- 二、设计条件
- 三、物性数据
 - (1) 简单物性
 - (2) 饱和蒸汽压
 - (3) 组分的液相密度
 - (4) 组分的表面张力
 - (5) 组分的气化潜热
 - (6) 组分的比热容
 - (7) 组分粘度数据
 - (8)其它物性数据
- 四、工艺说明与流程
 - 工艺说明
 - 工艺流程
- 五、全塔物料衡算
 - 5.1 料液与产品中苯的摩尔分数
 - 5.2 平均摩尔质量
 - 5.3 进出物料流量
- 六、全塔热量衡算
 - 6.1 进料焓 H_F 的计算
 - 6.2 预热器供热Q_F的计算 进料泡点温度 平均比热容

@toc

1.5万吨每年氯苯筛板精馏塔工艺设计计算说 明书

中国的氯苯行业在国际上占有重要的地位,产量及规模均为世界第一位。作为重要的有机化工基础原料,氯苯类主要用于染料、农药、有机合成工业以及氯乙烯清漆树脂等。一氯苯在国内主要用于合成对、邻硝基氯苯、2,4-二硝基氯苯、二苯醚等,并有少量用作农药合成和溶剂。一氯苯作为氯碱生产企业平衡氯气的耗氯产品之一,国内氯苯装置基本都是在氯碱企业的基础上建立的,并配套建设硝基氯苯装置。国内60%左右的氯苯产量用于供企业配套硝基氯苯装置自用,40%外销商品量及出口。

- 一氯苯深度氯化可得对二氯苯和邻二氯苯,这两种产品都是重要的有机化工原料,主要用于杀虫剂、防霉剂、防臭剂及 2.5-二硝基氯苯以及工程塑料聚苯硫醚、农用化学品、染料化学品等的生产。
- 一氯苯的工业生产主要采用苯液相氯化法。 苯与氯气在铁催化剂作用下连续氯化生成氯化液及氯化氢, 氯化氢气体进入回收装置用水吸收得副产盐酸。 氯化液经水洗、中和、干燥,再经初馏脱苯、精馏蒸出氯苯。 塔釜中残留物为二氯苯及多氯化物。苯氯化反应式为:

$$C_6H_6 + Cl_2 \xrightarrow{Fe/FeCl_3} C_6H_5Cl + C_6H_4Cl_2 + C_6H_3Cl_3 + HCl + Q \tag{1}$$

氯苯生产工艺流程框图如图 1所示。

图1 一氯苯生产流程框图

本设计试根据设计条件设计一座筛板塔完成苯-氯苯二元混合反应产物液的精馏分离,且暂不考虑 苯氯化反应液中二氯化苯和三氯化苯的存在。

一、设计任务

- 1. 年产氯苯 15000t;
- 2. 原料液中含苯 65% (质量分数,下同),即含氯苯 35%;
- 3. 塔底氯苯产品纯度 99.8%, 塔顶馏出液中含氯苯不高于 1%。

二、设计条件

- 1. 塔顶压力: 4kpa (表压);
- 2. 进料热状态:饱和液体进料 (q=1);
- 3. 塔釜加热蒸汽压力: 506kpa;
- 4. 单板压降: 不大于0.7kpa;
- 5. 工时: 24 小时连续运行, 每年运行时间 7000h;
- 6. 回流比: 自定。

三、物性数据

根据 2 获取苯的物性数据, 3 获取氯苯的物性数据。根据 4 进行单位换算工作。以下代表物质的下标中,使用A代表苯,B代表氯苯

(1) 简单物性

苯的分子量为78.115, 苯的沸点为80.1^\circ C; ³ 氯苯的分子量为112.559, 沸点Tb=131.7^\circ C。

(2) 饱和蒸汽压

数据来源中,不同温度下,饱和蒸汽压的单位并不统一,,按照 1mmHg=0.1333kPa,1atm=101.33kPa 进行换算。

组分的饱和蒸汽压随温度关系如下表所示:

温度 $/^{\circ}C$	p_A°/kpa	p_B°/kpa
10	6.069	-
20	10.024	-
30	15.871	2.099
40	24.308	3.52
50	36.079	5.678
60	52.063	8.846
70	73.256	13.371
80	100.763	19.654
90	135.78	28.143
100	176.943	39.748
110	234.376	53.393
120	300.342	73.008
130	379.582	96.684
140	473.616	126.042

(3) 组分的液相密度

数据来源中,液相密度单位为 g/cm^3 ,统一化为 kg/m^3 组分的液相密度如下表所示:

温度 /° C	$ ho_A/kpa$	$ ho_B/kpa$
10	887.3	1118
20	877.4	1107
30	867.5	1097
40	857.3	1086
50	847.0	1075
60	836.6	1064
70	825.9	1053
80	815.0	1042
90	803.9	1031
100	792.5	1019
110	780.8	1008
120	768.9	996.4
130	756.7	984.7
140	744.1	972.9

进行线性拟合可得:

$$\rho_A = 912.13 - 1.1886t
\rho_B = 1124.4 - 1.0657t$$
(2)

(4) 组分的表面张力

查找的数据中,表面张力非国际单位制,按照 4 $_{1$ 达因 / 厘米 $=1 \times 10^{-3}$ $_{+}$ 顿 / 米 =1mN/m 换算。组分的表面张力如下:

温度 /° C	$\sigma_A/(mN/m)$	$ ho_B/(mN/m)$
10	30.09	33.96
20	28.8	32.8
30	27.52	31.64
40	26.25	30.49
50	24.99	29.35
60	23.74	28.21
70	22.5	27.08
80	21.27	25.96
90	20.06	24.85
100	18.85	23.75
110	17.66	22.65
120	16.49	21.57
130	15.32	20.49
140	14.17	19.42

对于混合液的表面张力 σ_m 按照下式计算:

$$\sigma_m = rac{\sigma_A \sigma_B}{\sigma_A x_B + \sigma_B x_A}$$
,式中 x_A , x_B 为 A , B 组分的摩尔分数。

(5) 组分的气化潜热

查找的数据中,表面张力非国际单位制,按照 ⁴ 1卡/克分子=4.1868J/mol=4.1868kJ/kmol换算。 两纯组分的气化潜热如下表所示:

温度 /° C	$\gamma_A/(kJ/mol)$	$\gamma_B/(kJ/mol)$
10	34080.55	41085.07
20	33678.62	40729.19
30	33251.57	40352.38
40	32807.76	39954.63
50	32334.66	39540.14
60	31844.8	39100.53
70	31325.64	38644.16
80	30785.54	38166.87
90	30220.32	37668.64
100	29629.98	37145.29
110	29014.52	36605.19
120	28369.76	36044.16
130	27691.5	35458
140	26988.11	34850.92

纯组分的气化潜热与温度关系如下:

$$\frac{\mathrm{r_2}}{\mathrm{r_1^{0.38}}} = \left(\frac{\mathrm{t_c} - \mathrm{t_2}}{\mathrm{t_c} - \mathrm{t_1}}\right)^{0.38} \tag{3}$$

其中, t_c 为临界温度。氯苯的临界温度为 $359.2^{\circ}C$

(6) 组分的比热容

数据换算同(5)。

温度 /° C	$C_{pA}/[kJ/(kmol\cdot^{\circ}C)]$	$C_{pB}/[kJ/(kmol \cdot ^{\circ}C)]$
10	132.51	149.43
20	134.07	150.01
30	135.82	150.77
40	138.01	152.36
50	140.19	153.57
60	142.38	154.79
70	144.57	157.55
80	146.95	160.4
90	149.76	163.24

100 温度/° <i>C</i>	$\mathcal{C}_{pA}^{52.57}[kJ/(kmol \cdot ^{\circ}C)]$	$\mathcal{L}_{pB}^{66.1}[kJ/(kmol\cdot^{\circ}C)]$
110	156.13	169.02
120	160.3	171.99
130	163.63	174.97
140	167.38	177.98

(7) 组分粘度数据

按 1厘泊 $= 1 \times 10^{-3} Pa \cdot s = 1 mPa \cdot s$ 换算。

温度 /°C	$\mu_A/(mPa\cdot s)$	$\mu_A/(mPa``s)$
10	0.742	0.916
20	0.638	0.804
30	0.554	0.712
40	0.485	0.635
50	0.429	0.57
60	0.381	0.515
70	0.342	0.469
80	0.308	0.428
90	0.279	0.394
100	0.255	0.363
110	0.233	0.337
120	0.215	0.313
130	0.198	0.293
140	0.184	0.274

(8)其它物性数据

数据来源为 2 3 4.

四、工艺说明与流程

工艺说明

含苯和氯苯的常温原料液经列管式预热器E101预热至泡点后,送入连续筛板精馏塔T101,塔顶蒸汽经列管式全凝器E102冷凝后流入回流罐V102,冷凝液经泵P102输送,一部分作为回流液,其余作为产品经E105冷却后送至苯液储罐V104;塔釜采用虹吸立式再沸器E103提供气相流,塔金产品经卧式列管式冷却器E104冷却后送入氯苯储罐V103。

工艺流程

 V101
 P101
 E101
 T101
 E102
 V102
 P102
 E103
 E104
 V103
 P103
 E105
 V104
 P104

 原料罐
 原料泵
 原料泵
 原料面
 专股器
 回流電
 回流泵
 再沸器
 釜液冷却器
 金液罐
 氯苯外送泵
 苯液冷却器
 苯酸

图2 苯-氯苯精馏分离工艺流程简图

五、全塔物料衡算

5.1 料液与产品中苯的摩尔分数

苯和氯苯的摩尔质量分别为78.11kg/kmol和112.61kg/kmol。

- 1. 进料液,含苯65%, $x_F = \frac{65/78.11}{65/78.11 + 53/112.61} = 0.728$
- 2. 塔顶产物,含苯99%, $x_D = \frac{99/78.11}{99/78.11+1/112.61} = 0.993$
- 3. 塔底产物,含苯0.2%, $x_W = \frac{0.2/78.11}{0.2/78.11+99.8/112.61} = 0.00288$

5.2 平均摩尔质量

- 1. 进料液, $M_F = 78.11 \times 0.728 + 112.61 \times (1 0.728) = 87.49 kg/kmol$
- 2. 塔顶产物, $M_D=78.11\times 0.993+112.61\times (1-0.993)=78.35 kg/kmol$
- 3. 塔底产物, $M_W=78.11 imes 0.00288+112.61 imes (1-0.00228)=112.5 kg/kmol$

5.3 进出物料流量

按照条件,年产量为15000t/a;年工作时间8000h,因此塔底产物质量流量W'=1875kg/h。

- 全塔物料衡算: F' = D' + W'
- 轻组分物料衡算: 0.65F' = 0.99D' + 0.002W'

解得:

- 进料质量流量F' = 5448kg/h,合摩尔流量5448/87.49 = 62.27kmol/h
- 塔顶质量流量D' = 3574kg/h,合摩尔流量3574/78.35 = 45.61kmol/h
- 塔底质量流量W' = 1875kg/h, 合摩尔流量1875/16.67kmol/h

六、全塔热量衡算

图片5

热量衡算,如上图所示。条件如下:

- 1. 泡点进料, 泡点回流
- 2. 以 $0^{\circ}C$ 时常温下的液态混合物状态作为基准态

全塔热量衡算如下:

$$H_F + Q_F + Q_R = Q_C + H_D + H_w$$

6.1 进料焓 HF 的计算

设进料温度为室温20°C,则定性温度为(20 + 0)/2 = 10°C,查表 5 可知,苯与氯苯的比热容分别为132.51,149.43 $kJ/(kmol\cdot ^\circ C)$ 。

则,其平均比热容 C_{PFm} 为: $132.51 \times 0.728 + 149.43 \times (1-0.728) = 137.71kJ/(kmol \cdot ^{\circ}C)$ 因此,进料液焓 $H_F=62.27kmol/h \times 137.11kJ/(kmol \cdot ^{\circ}C) \times (20-0)^{\circ}C$ $=1.7 \times 10^5 kJ/h$

6.2 预热器供热 Q_F 的计算

进料泡点温度

首先计算进料温度。泡点进料,故此即进料泡点。查 ⁶ 得苯(A)和氯苯(B)的Antoine常数,有:

$$ln p_A(mmHg) = 15.9008 - \frac{2788.51}{T(K) - 52.36}$$
(4)

$$ln p_B(mmHg) = 16.0676 - \frac{3295.12}{T(K) - 55.6}$$
(5)

使用如下的 Mathematica 代码求解进料泡点温度:

```
pA := Exp[15.9008 - 2788.51/(T - 52.36)];

pB := Exp[16.6076 - 3295.12/(T - 55.6)];

xA = 0.728; xB = 1 - xA; atm = 760;

root = FindRoot[xA pA + xB pB == atm, {T, 273.15}];

T - 273.15 /. root

Out[1] = 86.5768
```

可以得到, $t_{bF} = 86.58^{\circ}C$.

平均比热容

初温: $20^{\circ}C$, 末温: $86.58^{\circ}C$; 故定性温度: $(20+86.58)/2=53.29^{\circ}C$ 由表 7 知:

苯在 $50^{\circ}C$ 时比热容为 $140.19kJ/(kmol \cdot ^{\circ}C)$; $60^{\circ}C$ 时的比热容为 $142.38kJ/(kmol \cdot ^{\circ}C)$, 通过插值计算得苯在 $53.29^{\circ}C$ 时的比热容为:

$$C_{PFA} = C_{P50} + \frac{C_{P60} - C_{P50}}{60 - 50} (53.29 - 50)$$

$$= 140.19 + \frac{142.38 - 140.19}{60 - 50} \times 3.29$$

$$= 140.91(kJ/(kmol \cdot C))$$
(6)

氯苯在 $50^{\circ}C$ 时比热容为 $153.57kJ/(kmol\cdot^{\circ}C)$; $60^{\circ}C$ 时的比热容为 $154.79kJ/(kmol\cdot^{\circ}C)$, 通过插值计算得氯苯在 $53.29^{\circ}C$ 时的比热容为:

$$C_{PFB} = C_{P50} + \frac{C_{P60} - C_{P50}}{60 - 50} (53.29 - 50)$$

$$= 153.57 + \frac{154.79 - 153.57}{60 - 50} \times 3.29$$

$$= 153.97(kJ/(kmol \cdot C))$$
(7)

故,混合物原料的比热容为:

$$C_{PFm} = x_A C_{PFA} + x_B C_{PFB}$$

= 144.46(kJ/(kmol \cdot C))

因此,预热器供热量 $Q_F = F \times C_{PFm} \times \Delta T$

\$\$

=

\$\$

$$(9)$$

- 1. 任志远,陈楠.氯苯行业生产现状及二恶英类污染物管理分析[J].中国氯碱, 2013,(12):26~29€
- 2. 卢焕章等. 石油化工基础数据手册[M]. 化学工业出版社,1982:306↔
- 3. 卢焕章等. 石油化工基础数据手册[M]. 化学工业出版社, 1982:458 🗸 🗸 🗸
- 4. 管国锋等.化工原理 (第四版) [M]. 化学工业出版社, 2015:附录 1<u>セセセセ</u>
- 5. 本文3.6节↔
- 6. 卢焕章等. 石油化工基础数据手册[M]. 化学工业出版社,1032,1036€
- 7.3.6 组分的比热容←