# 6. Regularization

# 6.1 ปัญหา Overfitting

Krittameth Teachasrisaksakul

### Summary about supervised learning

- If you have continuous  $\mathcal{X}$  and continuous  $\mathcal{Y}$ , your first go-to model should be linear regression. Also, consider non-linear transformation of the inputs.
- If you have continuous  $\mathcal{X}$  and discrete  $\mathcal{Y}$  but don't know much about p(x|y), your first go-to model should be logistic or softmax regression, or may come up with a new GLM from scratch.
- If you have continuous  $\mathcal{X}$  and discrete  $\mathcal{Y}$  and know something about p(x|y), you should model the distribution accurately, as a Gaussian (GDA) or build a new generative model from scratch.
- If you have discrete  $\mathcal{X}$  and  $\mathcal{Y}$ , you should probably start with naive Bayes and build up from there.



(1) ใช้โมเดลเส้นตรง o จุดข้อมูลไม่อยู่บนเส้นตรง o เส้นตรง ไม่เหมาะกับ ข้อมูลชุดนี้

ทำนายค่า y จาก  $x \in \mathbb{R}$  :







'Underfit'

ightarrow hypothesis function h เข้ากับข้อมูลได้ไม่ดี

'High bias'

→ สาเหตุ: function เรียบง่าย (simple) เกินไป หรือ ใช้ feature จำนวนน้อยเกินไป

ทำนายค่า y จาก  $x \in \mathbb{R}$  :







(2) เพิ่ม feature 1 ตัว ( $\mathbf{X}^2$ )  $\longrightarrow$  ได้โมเดล ที่เข้ากับข้อมูล มาก ขึ้นเล็กน้อย  $\longrightarrow$  เหมือนว่า ยิ่งมี feature มาก ยิ่งได้ผลดีขึ้น

ทำนายค่า y จาก  $x \in \mathbb{R}$  :



(3) ใช้ฟังก์ชั่นพหุนาม (5<sup>th</sup> order polynomial)  $\rightarrow$  โมเดล / เส้นโค้ง จะลากผ่านจุดข้อมูลทุกจุดอย่าง perfect  $\rightarrow$  แต่ โมเดลนี้ อาจไม่ได้เป็น ตัวทำนายที่ดีของ ราคา ( $\emph{Y}$ ) ของบ้าน ( $\emph{X}$ ) ต่างๆ



Size  $\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$ 

**สาเหตุ:** ใช้ feature จำนวนมากเกินไป หรือ function ที่ซับซ้อน จะมีส่วนโค้งและมุม ที่ไม่สอดคล้อง (unrelated) กับข้อมูล

'Overfit'

'High variance'

# Overfitting คืออะไร?

$$(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$$

ตัวอย่าง: Linear regression (ราคาบ้าน / housing prices)







ผล -> hypothesis ที่เรียนรู้ อาจ<u>ประมาณค่า ชดข้อมล training set ได้ดีมากๆ</u> แต่ไม่สามารถประมาณค่า (generalize) ข้อมูลใหม่ ที่ไม่เคย เจอมาก่อน (ก็คือ ทำนายราคาของตัวอย่างใหม่)

## Overfitting ใน Logistic Regression



$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
  
(g is a sigmoid function)



$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$



$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

## Overfitting ใน Logistic Regression



$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
  
(g is a sigmoid function)

'Underfit'

'High bias'



$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$



#### คำถาม

พิจารณาปัญหาการวินิจฉัยโรค (medical diagnosis) ที่แบ่งประเภทเนื้องอกเป็น ร้าย (malignant) หรือ ไม่ร้าย (benign) ถ้า hypothesis  $h_{ heta}(x)$  overfit ชุดข้อมูล training set หมายความว่าอะไร ?

- (i) มันทำนายตัวอย่างใน training set ได้ แม่นยำ และ generalize ได้ดี ทำให้ทำนายตัวอย่างใหม่ ที่ไม่เคยเจอ ได้แม่นยำด้วย
- (ii) มันทำนายตัวอย่างใน training set ได้ <mark>ไม่</mark>แม่นยำ และ generalize ได้ดี ทำให้ทำนายตัวอย่างใหม่ ที่ไม่เคยเจอ ได้แม่นยำด้วย
- (iii) มันทำนายตัวอย่างใน training set ได้ แม่นยำ และ generalize ได้<mark>ไม่</mark>ดี ทำให้ทำนายตัวอย่างใหม่ ที่ไม่เคยเจอ ได้<mark>ไม่</mark>แม่นยำ
- (iv) มันทำนายตัวอย่างใน training set ได**้ ไม่**แม่นยำ และ generalize ได้<mark>ไม่</mark>ดี ทำให้ทำนายตัวอย่างใหม่ ที่ไม่เคยเจอ ได้<mark>ไม่</mark>แม่นยำ

### คำถาม

พิจารณาปัญหาการวินิจฉัยโรค (medical diagnosis) ที่แบ่งประเภทเนื้องอกเป็น ร้าย (malignant) หรือ ไม่ร้าย (benign) ถ้า hypothesis  $h_{ heta}(x)$  overfit ชุดข้อมูล training set หมายความว่าอะไร ?

(i) มันทำนายตัวอย่างใน training set ได้ แม่นยำ และ generalize ได้ดี ทำให้ทำนายตัวอย่างใหม่ ที่ไม่เคยเจอ ได้แม่นยำด้วย

jj) มันทำนายตัวอย่างใน training set ได้ <mark>ไม่</mark>แม่นยำ และ generalize ได้ดี ทำให้ทำนายตัวอย่างใหม่ ที่ไม่เคยเจอ ได้แม่นยำด้วย

มันทำนายตัวอย่างใน training set ได้ แม่นยำ และ generalize ได้<mark>ไม่</mark>ดี ทำให้ทำนายตัวอย่างใหม่ ที่ไม่เคยเจอ ได้<mark>ไม่</mark>แม่นยำ

มันทำนายตัวอย่างใน training set ได้ <mark>ไม่</mark>แม่นยำ และ generalize ได้<mark>ไม่</mark>ดี ทำให้ทำนายตัวอย่างใหม่ ที่ไม่เคยเจอ ได้<mark>ไม่</mark>แม่นยำ

Machine Learning | Krittameth Teachasrisaksakul

# จัดการปัญหา Overfitting

ใช้ features จำนวนมากเกินไป อาจทำให้เกิด overfitting

• 
$$X_1 =$$
ขนาดพื้นที่บ้าน

$$ullet$$
  $X_3 = \hat{\mathfrak{A}}$  =  $\hat{\mathfrak{A}}$ 

• 
$$X_4$$
 = อายุบ้าน

$$ullet$$
  $X_5^{}$  = รายได้เฉลี่ยของบริเวณใกล้เคียง

• 
$$X_6 = vun n \vec{w} u \vec{h} \dot{w} o v n \vec{s} z$$

:

 $\bullet$   $X_{100}$ 



## จัดการปัญหา Overfitting

#### 1. ลดจำนวน features

- เลือก features ที่จะเก็บไว้ ด้วยมือ
- ใช้ algorithm ที่ทำการเลือก model (Model selection algorithm)

#### 2. Regularization

- ullet เก็บ features ทั้งหมดไว้ แต่ลดขนาด (magnitude) หรือ ค่าของ parameters  $heta_j$
- ullet ทำงานได้ดีเมื่อเรามีจำนวน features มากๆ โดยที่ feature แต่ละตัวส่งผลให้ทำนาย yได้

# 6. Regularization

## 6.2 Cost Function

Krittameth Teachasrisaksakul



$$\theta_0 + \theta_1 x + \theta_2 x^2$$



$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$



$$\theta_0 + \theta_1 x + \theta_2 x^2$$

#### Optimization objective:

(เป้าหมายของ optimization หรือ การปรับค่า parameter เพื่อ หาค่าที่เหมาะสม)



$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$



$$\theta_0 + \theta_1 x + \theta_2 x^2$$



$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

สมมติเรา penalize (ทำโทษ) และทำให้  $\theta_{_3}$ ,  $\theta_{_4}$  น้อยมากๆ (ก็คือ ไม่สนับสนุนให้ใช้  $\theta_{_3}$ ,  $\theta_{_4}$ ) ปรับ Optimization objective เป็น:

$$\therefore \theta_3 \approx 0, \theta_4 \approx 0$$

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + 1000\theta_{3}^{2} + 1000\theta_{4}^{2}$$



$$\theta_0 + \theta_1 x + \theta_2 x^2$$



$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

สมมติเรา penalize (ทำโทษ) และ ทำให้  $heta_{_{\! 3}}, heta_{_{\! 4}}$  น้อยมากๆ (ก็คือ ไม่สนับสนุนให้ใช้  $heta_{_{\! 3}}, heta_{_{\! 4}}$ ) ปรับ Optimization objective เป็น:  $\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + 1000\theta_{3}^{2} + 1000\theta_{4}^{2}$ 

(2) 
$$\therefore \theta_3 \approx 0, \theta_4 \approx 0$$

จากการปรับ optimization objective ทำให้ได้กราฟเส้น ใหม่ (สีฟ้าอ่อน)

ถ้ามี hypothesis function ที่ overfitting เมื่อใช้กับข้อมูล

- (1) เพิ่ม 2 พจน์ท้าย
- เพิ่ม cost ของ  $\theta_2$ ,  $\theta_4$
- ลดค่าน้ำหนัก (weight)  $heta_{ exttt{3}}$ ,  $heta_{ exttt{4}}$  ของบางพจน์ ใน function
- (2) ถ้าอยากให้ cost function เข้าใกล้ 0  $\rightarrow$ ต้องลดค่า  $heta_{ exttt{3}}$ ,  $heta_{ exttt{4}}$  ให้ใกล้ 0

## Regularization : อธิบายแบบทางการ

ค่าที่น้อย ของ parameter  $heta_{ exttt{1}}$ ,  $heta_{ exttt{2}}$ , ...,  $heta_{ exttt{n}}$  จะทำให้เกิด

- Hypothesis ที่ง่ายขึ้น (smooth มากขึ้น)
- มีแนวโน้ม overfitting น้อยลง

ตัวอย่าง การทำนายราคาบ้าน:

• Features:  $X_1, X_2, ..., X_{100}$ 

ullet Parameters:  $oldsymbol{ heta_1}$ ,  $oldsymbol{ heta_2}$ , ...,  $oldsymbol{ heta_{100}}$ 

Cost function (ของ linear regression):

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \left( \frac{1}{2} \sum_{i=j}^{n} \theta_j^2 \right)^2 \right]$$



$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

เพิ่มพจน์นี้ o ทำให้ค่า output ของ hypothesis function smooth o เพื่อ

ลด everfitting

ถ้า  $\lambda$  มีค่ามากเกินไป $\longrightarrow$  อาจ smooth out function มากเกินไป $\longrightarrow$  ทำให้เกิด underfitting

## Regularization : อธิบายแบบทางการ

#### **Regularized cost function:**

ed cost function: regularization term
$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underbrace{\lambda \sum_{j=1}^{n} \theta_j^2}_{\text{parameter}} \right]$$
regularization parameter

**Goal:**  $\min J(\theta)$ 





#### คำถาม

ใน regularized linear regression เราเลือกค่า heta เพื่อทำให้  $extcolor{black}{J}( heta)$  น้อยที่สุด

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

ถ้า  $\lambda$  ถูกตั้งค่าเป็นค่าที่เยอะมากๆ (อาจมากเกินไปสำหรับปัญหาของเรา สมมติ  $\lambda=10^{10}$ )

- (i) Algorithm ทำงานได้ดี; ตั้งค่า  $\lambda$  เป็นค่าเยอะมาก ไม่มีผลอะไร
- (ii) Algorithm ไม่สามารถแก้ปัญหา overfitting ได้
- (iii) Algorithm ทำให้เกิด underfitting (ไม่สามารถหา parameter ของ training set ได้)
- (iv) Gradient descent จะไม่ converge

#### คำถาม

ใน regularized linear regression เราเลือกค่า heta เพื่อทำให้  $extcolor{black}{J}( heta)$  น้อยที่สุด

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

ถ้า  $\lambda$  ถูกตั้งค่าเป็นค่าที่เยอะมากๆ (อาจมากเกินไปสำหรับปัญหาของเรา สมมติ  $\lambda=10^{10}$ )

- (i) Algorithm ทำงานได้ดี; ตั้งค่า  $\lambda$  เป็นค่าเยอะมาก ไม่มีผลอะไร
- (ii) Algorithm ไม่สามารถแก้ปัญหา overfitting ได้
- (iii) Algorithm ทำให้เกิด underfitting (ไม่สามารถหา parameter ของ training set ได้)
- (iv) Gradient descent จะไม่ converge

# 6. Regularization

Krittameth Teachasrisaksakul

- สามารถใช้ regularization ได้กับ linear regression และ logistic regression
- พิจารณา linear regression ก่อน

### Cost Function (Recap / ทบทวน)

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

### Gradient Descent (เดิม)

Repeat {

$$\theta_j := \theta_j - \sqrt{\frac{1}{m}} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \qquad (j = 0, 1, 2, ..., n)$$

- ปรับเปลี่ยน gradient descent function เพื่อแยก  $heta_{
  ho}$  ออกจาก parameter ตัวอื่นๆ
- เพราะเราไม่อยาก penalize  $heta_{_{\! o}}$  (ลงโทษ / ขัดขวางการใช้  $heta_{_{\! o}}$ )



Repeat { 
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$
 
$$\theta_j := \theta_j - \alpha \Big[ \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \Big( \frac{\lambda}{m} \theta_j \Big) \Big]$$
 
$$\gamma = \theta_j = \theta_j \Big( 1 - \alpha \frac{\lambda}{m} \Big) - \alpha \frac{1}{m} \sum_{i=1}^m \Big( h_\theta(x^{(i)}) - y^{(i)} \Big) x_j^{(i)} \Big)$$
 เป็น:

Repeat { 
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$
 
$$\theta_j := \theta_j - \alpha \left[ \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j \right]$$
 
$$\{j = \emptyset, 1, 2, \dots, n\}$$
 หลังการปรับปรุง กฎในการปรับค่า (update rule) ของ parameter  $\theta$  จะ เป็น:

$$\theta_j := \theta_j \left( 1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

พจน์แรกมาจาก การดึงตัว ร่วม  $heta_j$ 



### คำถาม

สมมติเรากำลังทำ gradient descent กับชุดข้อมูล training set ที่มีตัวอย่างจำนวน m>0 ตัวอม่าง โดยใช้ learning rate ที่ค่อนข้างน้อย lpha>0 และ regularization parameter  $\lambda > 0$  พิจารณา update rule (กฎการปรับค่า parameter)

$$\theta_j := \theta_j \left( 1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

ข้อใดเป็นจริงเกี่ยวกับพจน์

$$\int (1-\alpha \frac{\lambda}{m})$$

$$1 - \alpha \frac{\lambda}{m} > 1$$
  $1 - \alpha \frac{\lambda}{m} = 1$   $1 - \alpha \frac{\lambda}{m} < 1$  None of these

$$1 - \alpha \frac{\lambda}{m} < 1$$

#### คำถาม

สมมติเรากำลังทำ gradient descent กับชุดข้อมูล training set ที่มีตัวอย่างจำนวน m>0 ตัวอย่าง โดยใช้ learning rate ที่ค่อนข้างน้อย lpha>0 และ regularization parameter  $\lambda > 0$  พิจารณา update rule (กฎการปรับค่า parameter)

ข้อใดเป็นจริงเกี่ยวกับพจน์

$$\theta_j := \theta_j \left( 1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$\left( 1 - \alpha \frac{\lambda}{m} \right)$$

$$1 - \alpha \frac{\lambda}{m} > 1$$
  $1 - \alpha \frac{\lambda}{m} = 1$   $\left[1 - \alpha \frac{\lambda}{m} < 1\right]$ 

$$\left(1 - \alpha \frac{\lambda}{m} < 1\right)$$

None of these

### Normal Equation (Recap)

$$X = \begin{bmatrix} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^m$$

$$m \times (n+1)$$

Goal:  $\min_{\theta} J(\theta)$ 

### Normal Equation (Recap)

$$X = \begin{bmatrix} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^m$$

Goal:  $\min J(\theta)$ 

Solution: 
$$\theta = (X^T X)^{-1} X$$

### Normal Equation (Recap)

$$X = \begin{bmatrix} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix}_{m \times (n+1)} \qquad y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix} \in \mathbb{R}^m$$

$$Quation: ใช้สมการเดิม + เพิ่ม 1 (เพื่อทำ regularization)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$$
Goal: min  $J(\theta)$ 

ทำ ด้วยวิธี regularization Normal Equation: ใช้สมการเดิม + เพิ่ม 1 พจน์ในวงเล็บ

$$\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$$

Goal: 
$$\min_{\theta} J(\theta)$$

Solution: 
$$\theta = (X^T X \overset{\text{fill}}{=} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix})^{-1} X^T y$$

# ปัญหา non-invertibility (การหา inverse matrix ไม่ได้)

- m= จำนวน examples / ตัวอย่าง, n= จำนวน features
- ถ้า  $m < n \rightarrow$  แล้ว ( $X^TX$ ) เป็น non-invertible / singular (หา inverse matrix ไม่ได้)
- ถ้า m=n  $\longrightarrow$  แล้ว ( $X^TX$ ) อาจเป็น be non-invertible

อย่างไรก็ตาม regularization สามารถจัดการกับปัญหา non-invertibility ได้



# 6. Regularization

# 6.4 Regularized Logistic Regression

Krittameth Teachasrisaksakul

เพื่อหลีกเลี่ยงปัญหา overfitting  $\rightarrow$  ทำ regularization กับ logistic regression ด้วย วิธีคล้ายๆกับบทก่อนหน้า (ทำ regularization กับ linear regression)

### Logistic Regression (Recap)



$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

#### **Cost function:**

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + \left( -\overline{y^{(i)}} \right) \log \left( 1 - h_{\theta}(x^{(i)}) \right) \right]$$

### Regularized Logistic Regression





regularized function (เส้นสีชมพู) มีแนวโน้มที่จะ overfit น้อยกว่า non-regularized function (เส้นสีน้ำเงิน):

#### **Cost function:**

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)})\right)\right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

### Regularized Logistic Regression



#### **Cost function:**

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

#### Regularize โดยเพิ่มพจน์ท้ายสุด

- ullet vector  $oldsymbol{ heta}$  มี index จาก 0 ถึง n (มีทั้งหมด n+1 ตัว :  $oldsymbol{ heta}_{ heta}$  ถึง  $oldsymbol{ heta}_{ heta}$
- ullet ผลรวมข้าม  $oldsymbol{ heta}_{o}$ โดยให้ j เป็น 1 ถึง n (ข้าม 0)
- ullet ก็คือ แยก พจน์์ bias term  $oldsymbol{ heta_{o}}$  ออก

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

### Regularized Logistic Regression

Repeat {

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} \theta_{j} \right]$$

$$(i = \emptyset, 1, 2, \dots, n)$$

นี่ **ไม่ใช่** algorithm เดียวกับ gradient descent สำหรับ regularized linear regression เพราะ ...

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

#### คำถาม

เมื่อใช้ regularized logistic regression วิธีใดเป็นวิธีที่ดีที่สุดที่จะสังเกตการณ์ว่า gradient descent ทำงานอย่างถูกต้อง ?

(i) Plot [ 
$$-[\frac{1}{m} \Sigma_{i=1}^m y^{(i)} \log h_{\theta}(x^{(i)}) + (1-y^{(i)}) \log (1-h_{\theta}(x^{(i)}))]$$

(ii) Plot 
$$\lim_{i \to 1} -[\frac{1}{m} \sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_\theta(x^{(i)}))] + \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2$$

(iii) Plot เป็น function ของจำนวน iterations และทำให้แน่ใจว่ามันลดลง 
$$\Sigma_{i=1}^n heta_i^2$$

### คำถาม

เมื่อใช้ regularized logistic regression วิธีใดเป็นวิธีที่ดีที่สุดที่จะสังเกตการณ์ว่า gradient descent ทำงานอย่างถูกต้อง ?

(i) Plot - [
$$\frac{1}{m} \Sigma_{i=1}^m y^{(i)} \log h_{\theta}(x^{(i)}) + (1-y^{(i)}) \log (1-h_{\theta}(x^{(i)}))$$
]

Plot [ii) Plot [
$$\frac{1}{m} \Sigma_{i=1}^{m} \sum_{i=1}^{m} \sum_{j=1}^{m} h_{\theta}(x^{(i)}) + (1-y^{(i)}) \log(1-h_{\theta}(x^{(i)})) + \frac{\lambda}{2m} \Sigma_{j=1}^{n} \theta_{j}^{2}$$

(iii) Plot เป็น function ของจำนวน iterations และทำให้แน่ใจว่ามันลดลง 
$$\Sigma_{i=1}^n heta_i^2$$

#### References

- 1. Andrew Ng, Machine Learning, Coursera.
- 2. Teeradaj Racharak, Al Practical Development Bootcamp.
- 3. What is Machine Learning?, <a href="https://www.digitalskill.org/contents/5">https://www.digitalskill.org/contents/5</a>