Toetsing van programmatuur

- Doel is om foute te vind—nie om te wys die programmatuur is "korrek" nie.
- Toetsing neem tyd en kos geld; maak dit effektief (kry baie foute met min toetse)
- Ontwerp toetsgevalle—toevoer data wat bedoel is om spesifieke eienskappe te toets:
 - wat gebeur as die "then"-deel van 'n "if"-opdrag uitvoer?
 - wat gebeur as 'n while-lus glad nie uitvoer nie?
 - wat gebeur as die toevoerdata buite die spesifikasie se grense is? (byvoorbeeld 'n negatiewe getal as die spesifikasie 'n positiewe getal vereis)

1

Kan jy die volgende riglyne motiveer?

- Toetsgevalle moet die korrekte afvoer beskryf vir elke toevoer.
- Programmeerders moenie hulle eie kode toets nie
- Sluit geldige sowel as ongeldige toetsdata in
- Dokumenteer toetsgevalle sodat toetse herhaal kan word as 'n stelsel verander word.
- Aanvaar dat foute gevind sal word.
- As baie foute gevind word in 'n sekere komponent, is daar waarskynlik nog baie meer foute in daardie komponent.

2

Kodeinspeksie

- Verduidelik wat jou kode doen aan iemand anders.
- Baie foute word in 'n beperkte tyd op dié manier gevind.
- Tipiese strategie vir kodeinspeksie:
 - Die programmeerder wat die kode geskryf het verduidelik hoe alles werk aan 'n ander programmeerder wat kennis het van die komponent en programmeertaal.
 - Die programmeerder wat die kode geskryf het moet self beter oplossings uitdink en foute regmaak; foute word gedokumenteer.

Ontwerp van toetsgevalle

'n Program aanvaar drie positiewe heel getalle wat die lengtes van die sye van 'n driehoek voorstel. Die program se afvoer is een van die volgende: (1) gelyksydige driehoek (2) gelykbenige driehoek (3) reghoekige driehoek (4) ongelyksydige driehoek.

Ontwerp 'n stel toetsgevalle om die program deeglik te toets.

(1) Funksionele toetsing

- Funksionele toetsing: gebruik die *spesifikasie* om toetse te ontwerp.
- Toets elke prosedure as 'n geheel: toetsgevalle bestaan uit geldige en ongeldige toevoerwaardes en ooreenstemmende resultate.
- Toegang tot bronkode onnodig.

(a) Toetsing van grenswaardes

- Vir elke parameter kies VIER grenswaardes (minimum waarde, waarde net bo minimum, maksimum waarde en 'n waarde net onder maksimum) en EEN tussenin waarde
- Kies alle kombinasies van 'n grenswaarde vir EEN parameter saam met tussenin waardes vir die ander parameters. (Motivering: min foute is afhanklik daarvan dat meer as een parameter by 'n grenswaarde moet wees.)
- 4n+1 toetsgevalle nodig vir prosedure met n parameters.

Wanneer werk toetse vir grenswaardes goed?

- Prosedures met parameters wat onafhanklik is van mekaar.
- Parameters kan ten minste 5 verskillende waardes aanneem.
- Toevoerwaardes word gebruik in relatief ingewikkelde berekenings of as indekse. Dit beteken die waarskynlikheid van foute is redelik hoog.

Oefening: grenswaardes

Ontwerp toetse vir 'n prosedure wat driehoeke klassifiseer. Aanvaar die minimum lengte van 'n sy is 1 en die maksimum 200.

- Daar is 3 toevoerwaardes (3 lengtes)
- Daar moet dus 13 toetse wees.
- Toevoer waardes: 1, 2, 100, 199, 200
- Lys alle toetsgevalle en die verwagte resultate.
- Is die toetse sinvol?

7

٤

6

Oefening: grenswaardes

Ontwerp toetse vir 'n roetine wat 'n datum in die formaat dd/mm/yy omskakel na die formaat ddd/yy (Juliaanse datum formaat)

- Daar is 3 toevoer parameters (13 toetsgevalle)
- Bepaal die grenswaardes
- Is die toetse sinvol?

c

(c) Toetsing van ekstreme kondisies

- Toets wat gebeur as *meer as een* parameter 'n grenswaarde aanneem.
- Aantal toetsgevalle: 5^n (5 waardes, alle kombinasies)
- Baie meer moeite, deegliker.
- Gebruik wanneer parameters afhanklik is van mekaar en betroubaarheid baie belangrik is.

(b) Toetsing van robuustheid

- Kies waardes weerskante van elke grens— SEWE waardes dus.
- Twee waardes is dus ongeldig.
- Tipiese foute wat gevind word:
 - Indeks buite grense (veral nuttig om C programme te toets)
 - Deel deur nul
 - Poging om nul-wyser te gebruik
 - Oorvloei of ondervloei van buffers

10

Toetsing van spesiale waardes

- Soms weet ons dat sekere toevoerwaardes "spesiaal" is en kan dan spesifiek toetse vir sulke gevalle insluit.
- Dikwels baie effektief, alhoewel geen riglyne anders as kennis van die aard van 'n prosedure.
- Voorbeelde:
 - Vir kode wat datums hanteer is Februarie spesiaal omdat dit verband hou met skrikkeljare.
 - Die waarde 0 is spesiaal saam met deling
 - Leë karakterstringe en leë leêrs is bekende gevalle wat probleme veroorsaak.

Verdeling van toevoerdata in ekwivalensieklasse

- Verdeel toevoerdata in onderling uitsluitende klasse wat *eenders* is op een of ander manier en selekteer verteenwoordigende toetsdata uit elke klas.
- Voorbeeld: parameter se waarde is negatief,
 0 of positief; kies byvoorbeeld -3, 0 en 5.
- Idee agter die tegniek: waardes uit dieselfde klas word dikwels op dieselfde manier hanteer deur 'n program.
- Die sukses van die tegniek hang af van geskikte definisies van die klasse

Verskillende tipes ekwivalensieklas toetsing

- Swak ekwivalensieklas toetsing: verteenwoordig elke ekwivalensieklas minstens EEN keer in die toetsdata.
- Sterk ekwivalensieklas toetsing: gebruik alle moontlike kombinasies van waardes uit alle ekwivalensieklasse.

Voorbeeld

'n Prosedure het 3 heeltallige parameters a, b en c. Verdeel a en b in die klasse negatief, 0 en positief en c in die klasse ewe en onewe.

- 1. Ontwerp geskikte toetsdata volgens die swak ekwivalensieklas tegniek.
- 2. Hoeveel toetsgevalle is nodig vir sterk ekwivalensieklas toetsing?

Toetsing volgens beslissingstabelle

- Tegniek nuttig vir programme wat komplekse logika bevat en verskillende resultate gee onder verskillende omstandighede.
- Lys alle kondisies en ooreenstemmende resultate.
- Selekteer toevoerwaardes om verskillende kondisies waar te maak en kyk of die verwagte resultaat gelewer word.

15

13

16

14

Voorbeeld

Toetsdata vir program wat driehoeke klassifiseer.

Toetsgeval	1	2	3	4	5	6	7	8	9	10	11
a < b + c	F	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
b < a + c	*	F	Т	Т	Т	Т	Т	Т	Т	Т	Т
c < a + b	*	*	F	Т	Т	Т	Т	Т	Т	Т	Т
a = b	*	*	*	Т	Т	Т	Т	F	F	F	F
a = c	*	*	*	Т	Т	F	F	Т	Т	F	F
b = c	*	*	*	Т	F	Т	F	Т	F	Т	F
Geen driehoek	Х	Х	Х								
Ongelyksydig											Х
Gelykbenig							Х		Х	Х	
Gelyksydig				Х							
Onmoontlik					Х	Х		Χ			

Selekteer toetsdata deur waardes te kies wat aan die vereistes van die tabel voldoen. (Vereistes aangedui as * kan enige waardes aanneem.)