XII. Nemzetközi Magyar Matematika Verseny

Eger, 2003. ápr. 15-19.

11. osztály

1. feladat: Bizonyítsuk be, hogy a 23,203,2003,20003... sorozatban végtelen sok 7-tel osztható szám van!

Benedek Ilona (Budapest)

1. feladat I. megoldása: Könnyen látható, hogy 203 osztható 7-tel.

Tekintsük a 2000...03 számot! Ez felírható $(203 - 3) \cdot 10^n - 3$ alakban, és ebben a számban a 0-ák száma n + 1 (n természetes szám).

Ezzel:

$$(203 - 3) \cdot 10^n + 3 = 203 \cdot 10^n - 3 \cdot (10^n - 1).$$

Azt kell megvizsgálni, hogy a $10^n - 1$ milyen n-ekre osztható 7-tel.

Megmutatjuk, hogy n=6k megfelelő. Ekkor:

$$10^{6k} - 1 = (10^6)^k - 1 = (10^6 - 1) \cdot (10^{6k - 6} + 10^{6k - 12} + \dots + 1)$$

$$10^6 - 1 = (10^3 - 1) \cdot (10^3 + 1) = (10^3 - 1) \cdot 1001 = (10^3 - 1) \cdot 7 \cdot 143.$$

Ebből látható, hogy $10^n - 1$ mindig osztható 7-tel, ha n = 6k, vagyis a sorozat minden olyan tagja osztható 7-tel, amelyben a 0-ák száma 6k + 1, ahol k természetes szám. A sorozat nyilván végtelen sok ilyen számot tartalmaz.

2. feladat: Milyen tulajdonságú az a háromszög, amelynek két oldala és a harmadik oldalhoz tartozó f_c szögfelezője között a következő összefüggés érvényes:

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f_c}$$

Pintér Ferenc (Nagykanizsa)

2. feladat I. megoldása: A feltételből következik, hogy $f_c = \frac{ab}{a+b}$.

Mérjük fel az AC oldal meghosszabbítására a CE=CB szakaszt! A BCE háromszög egyenlő szárú ezért a BE alapon fekvő szögei a külső szög tételéből adódóan $\frac{\gamma}{2}$ -vel egyenlők. Így az $ADC\triangle$ hasonló az $ABE\triangle$ -höz, ezért a megfelelő oldalaik aránya is egyenlő: $f_c:b=BE:(a+b)$, vagyis $f_c=\frac{BE\cdot b}{a+b}$.

Utóbbi egyenlet és a feltételi egyenlet összehasonlításából adódik, hogy BE=a, tehát $BCE\triangle$ szabályos, és így $\frac{1}{2}\gamma=60^{\circ}$, azaz $\gamma=120^{\circ}$.

Az $ABC\triangle$ -ről tehát annyit mondhatunk, hogy legnagyobb szöge 120°-os.

- 3. feladat: Oldjuk meg a valós számok halmazán a $\log_3(2^x + 5) = \log_2(3^x 5)$ egyenletet! Orbán Edit (Zalaegerszeg)
- 3. feladat I. megoldása: Vizsgáljuk a következő két függvényt:

$$f: \mathbb{R} \to]\log_3 5; +\infty[$$
 $f(x) = \log_3(2^x + 5)$
 $g:]\log_3 5; +\infty[\to \mathbb{R}$ $g(x) = \log_2(3^x - 5)$

Mivel a két függvény egymás inverze, ezért grafikonjuk az y=x egyenletű egyenesre szimmetrikus, így grafikonjaik csak ezen az egyenesen metszhetik egymást. Ezért az egyenletnek olyan x szám a megoldása, melyre $\log_3(2^x+5)=x=\log_2(3^x-5)$, vagyis $2^x+5=3^x$. Ebből a $3^x-2^x=5$ egyenletet kapjuk, aminek csak a pozitív számok halmazában lehet gyöke, hiszen $x\leq 0$ esetén $3^x\leq 2^x$.

Az x = 2 nyilván megoldás, több megoldás pedig azért nincs, mert a $3^x - 2^x$ függvény a pozitív számok halmazán szigorúan monoton nő, ezért minden értéket csak egyszer vesz fel.

4. feladat: Az ABCD parallelogrammában A-nál hegyesszög van. Rajzoljunk a BC és CD oldalak, mint átmérők fölé köröket, és az A pontból húzzunk érintőket ezekhez a körökhöz, az érintési pontok legyenek E és F. Bizonyítsuk be, hogy az AC, AE és AF szakaszokból derékszögű háromszög szerkeszthető!

Balogh János (Kaposvár)

4. feladat I. megoldása: Készítsünk a feltételeknek megfelelő ábrát!

Legyen P és Q a C pontból az AB és AD oldalegyenesekre állított merőlegesek talppontja. A Thalésztétel miatt P és Q a körökön vannak. A külső pontból a körökhöz húzott szelő-és érintőszakaszok tétele szerint $AE^2 = AB \cdot AP$ és $AF^2 = AD \cdot AQ$, ezért $AE^2 + AF^2 = AB \cdot AP + AD \cdot AQ$.

Ha a paralellogramma A-nál levő szöge α , akkor $BP = BC \cdot \cos \alpha$ és $DQ = DC \cdot \cos \alpha$, tehát $AP = AB + BP = AB + BC \cdot \cos \alpha$, illetve $AQ = AD + DQ = BC + DQ = BC + CD \cdot \cos \alpha = BC + AB \cdot \cos \alpha$. Emiatt $AB \cdot AP = AB^2 + AB \cdot BC \cdot \cos \alpha$ és $AD \cdot AQ = BC \cdot AQ = BC^2 + AB \cdot BC \cdot \cos \alpha$. Ebből következik, hogy

$$AB \cdot AP + AD \cdot AQ = AB^2 + BC^2 + 2 \cdot AB \cdot BC \cdot \cos \alpha = AB^2 + BC^2 - 2 \cdot AB \cdot BC \cdot \cos(180^\circ - \alpha) \quad (1)$$

Az (1) összefüggés viszont nem más, mint az $ABC\triangle$ -ben az AC oldalra felírt koszinusztétel, így tehát

$$AE^2 + AF^2 = AC^2 \tag{2}$$

A Pitagorasz tétel megfordítása miatt (2) éppen azt jelenti, hogy AC, AE és AF szakaszokból derékszögű háromszög szerkeszthető.

5. feladat: Melyik az a legkisebb p pozitív prímszám, amelyre az $\frac{x^2-2x-13}{\sqrt{x^2-2x-14}}=2\cdot\sin\frac{\pi\cdot x+p\cdot\pi}{4}$ egyenletnek van olyan pozitív egész megoldása, hogy $x \leq p$ teljesül?

5. feladat I. megoldása: Nyilvánvaló, hogy $x^2 - 2x - 14 > 0$. Az $f(x) = x^2 - 2x - 14$ függvény zérushelyei: $x_1 = 1 - \sqrt{15}$ és $x_2 = 1 + \sqrt{15}$. Ebből következően $x < 1 - \sqrt{15}$, vagy $x > 1 + \sqrt{15}$. Mivel x egész szám kell, hogy legyen és $1-\sqrt{15}>1-\sqrt{16}$, illetve $1+\sqrt{15}<1+\sqrt{16}$, azaz $1-\sqrt{15}>-3$ és $1+\sqrt{15}<5$, ezért $x\leq -3$ vagy $x\geq 5$, ugyanakkor x pozitív egész, így csak az $x\geq 5$ feltételt vesszük figyelembe.

A kiinduló egyenletet átalakítjuk:

$$\frac{x^2 - 2x - 14 + 1}{\sqrt{x^2 - 2x - 14}} = 2 \cdot \sin \frac{\pi \cdot x + p \cdot \pi}{4}.$$

Legyen most $\sqrt{x^2-2x-14}=a!$ Ekkor $\frac{a^2+1}{a}=2\cdot\sin\frac{\pi\cdot x+p\cdot\pi}{4}$, vagyis $a+\frac{1}{a}=2\cdot\sin\frac{\pi\cdot x+p\cdot\pi}{4}$. A feltételek miatt a>0, ezért $a+\frac{1}{a}\geq 2$ egy ismert egyenlőtlenség szerint. Ezért $2\cdot\sin\frac{\pi\cdot x+p\cdot\pi}{4}\geq 2$ azaz $\sin\frac{\pi\cdot x+p\cdot\pi}{4}\geq 1$. Ez csak úgy lehetséges, ha $\sin\frac{\pi\cdot x+p\cdot\pi}{4}=1$, vagyis ha $\sin\frac{\pi\cdot x+p\cdot\pi}{4}=\frac{\pi}{2}+k\cdot 2\cdot \pi$ (k+1)egész szám).

Ebből rendezés után

$$x + p = 2 + 8k \tag{3}$$

következik. Ugyanakkor $a+\frac{1}{a}=2$ is igaz, ebből pedig a=1 adódik. Eszerint $\sqrt{x^2-2x-14}=1$, ahonnan $x^2-2x-15=0$ kapható. Ennek az egyenletnek a gyökei $x_1 = 5$ és $x_2 = -3$. Ezek közül csak az $x_1 = 5$ pozitív egész szám, és ez megfelel az $x \ge 5$ feltételnek is. Vessük ezt össze (1)-gyel! Ekkor 5 + p = 2 + 8k, tehát p = 8k - 3.

Mivel p pozitív prímszám, ezért a legkisebb keresett p a k=1-ből következő p=5 prímszám. Erre az a feltétel is teljesül, hogy $x \le p$. Végeredményünk szerint a p = 5 az a legkisebb pozitív prímszám, amelyre a kiinduló egyenletnek van olyan pozitív egész megoldása, hogy $x \leq p$ is igaz. Ez a megoldás az x = 5. Behelyettesítéssel ellenőrizhető, hogy ez valóban gyöke az eredeti egyenletnek.

6. feladat: Bizonyítsuk be, hogy ha $1 \le x_1 \le 2, 1 \le x_2 \le 2, \dots, 1 \le x_n \le 2$ (n természetes szám), akkor

$$\left(\frac{1}{2}\right)^{x_1 + \frac{2}{x_n}} + \left(\frac{1}{2}\right)^{x_2 + \frac{2}{x_{n-1}}} + \ldots + \left(\frac{1}{2}\right)^{x_n + \frac{2}{x_1}} \ge \frac{n}{8}!$$

Kacsó Ferenc (Marosvásárhely)

6. feladat I. megoldása: Ha $1 \le x_k \le 2$, akkor $(x_k - 1) \cdot (x_k - 2) \le 0$, vagyis $x_k^2 - 3x_k + 2 \le 0$, innen pedig

$$x_k + \frac{2}{x_k} \le 3 \quad (k = 1, 2, ...n)$$
 (4)

Alkalmazzuk a számtani és mértani közép közötti egyenlötlenséget és az (1)-ben szereplő összefüggéseket:

$$\left(\frac{1}{2}\right)^{x_1 + \frac{2}{x_n}} + \left(\frac{1}{2}\right)^{x_2 + \frac{2}{x_{n-1}}} + \dots + \left(\frac{1}{2}\right)^{x_n + \frac{2}{x_1}} \ge n \cdot \sqrt[n]{\left(\frac{1}{2}\right)^{\left(x_1 + \frac{2}{x_n}\right) + \left(x_2 + \frac{2}{x_{n-1}}\right) + \dots + \left(x_n + \frac{2}{x_1}\right)} } = n \cdot \sqrt[n]{\left(\frac{1}{2}\right)^{\left(x_1 + \frac{2}{x_1}\right) + \left(x_2 + \frac{2}{x_2}\right) + \dots + \left(x_n + \frac{2}{x_n}\right)} }$$

ezért

$$\left(\frac{1}{2}\right)^{x_1 + \frac{2}{x_n}} + \left(\frac{1}{2}\right)^{x_2 + \frac{2}{x_{n-1}}} + \ldots + \left(\frac{1}{2}\right)^{x_n + \frac{2}{x_1}} \ge n \cdot \sqrt[n]{\left(\frac{1}{2}\right)^{\left(x_1 + \frac{2}{x_1}\right) + \left(x_2 + \frac{2}{x_2}\right) + \ldots + \left(x_n + \frac{2}{x_n}\right)}} \ge n \cdot \sqrt[n]{\left(\frac{1}{2}\right)^{3+3 + \ldots + 3}} = n \cdot \sqrt[n]{\left(\frac{1}{2}\right)^{3n}} = \frac{n}{8}.$$

Ezzel a feladat állítását bebizonyítottuk.