Linear Algebra I Summary of Lectures: Linear Transformations

Dr Nicholas Sedlmayr

1. Definition 5.1: If V and W are two vectors spaces over the same field F, then a linear transformation from V to W (also called a linear map or homomorphism) is a map $f: V \to W$ satisfying

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$$
, $\forall u, v \in V$ and $\forall \lambda, \mu \in F$.

The space of V is called the domain of F and the space of W is called the co-domain.

- 2. Lemma 5.2: A linear transformation $f: V \to W$ satisfies
 - (a) f(0) = 0,
 - (b) $f(\lambda u) = \lambda u$,
 - (c) f(-u) = -f(u),
 - (d) f(u+v) = f(u) + f(v), and
 - (e) $f(\sum_{i=1}^n \lambda_i u_i) = \sum_{i=1}^n \lambda_i f(u_i)$.
- 3. Definition 5.3: Given $f: V \to W$ as in definition 5.1, the image (or range) of f is $\{f(v): v \in V\}$. This is written as f(V) or $\operatorname{im}(f)$. The kernel (or nullspace) of f is $\{v \in V: f(v) = 0\}$, written $\ker(f)$
- 4. Proposition 5.4: If $f: V \to W$ is a linear transformation, then $\operatorname{im}(f)$ is a subspace of W and $\ker(f)$ is a subspace of V.
- 5. Proposition 5.5: A linear transformation $f: V \to W$ is injective iff $\ker(f)$ is the zero subspace $\{0\}$ of V.
- 6. Definition 5.6: The rank of f is the dimension of im(f), written r(f). The nullity of f is the dimension of ker(f), written n(f).
- 7. Theorem 5.7: The rank-nullity formula. If $f:V\to W$ is a linear transformation then

$$r(f) + n(f) = \dim(V)$$
.

- 8. Proposition 5.8: If $f:V\to W$ is a linear transformation of finite dimensional vector spaces V,W over the same field F then
 - (a) f is injective iff n(f) = 0, and
 - (b) f is surjective iff $r(f) = \dim(W)$.

- 9. Corollary 5.9: If $f:V\to W$ is a linear transformation of finite dimensional vector spaces V,W over the same field F then
 - (a) f is injective iff $r(f) = \dim(V)$, and
 - (b) f is surjective iff $n(f) = \dim(V) \dim(W)$.
- 10. Let $f_{\bf A}:F^n\to F^m$ be $f_{\bf A}({\bf v})={\bf A}{\bf v}$ where ${\bf v}\in F^n$ and ${\bf A}$ is an $m\times n$ matrix over the field F. Then
 - (a) $\operatorname{im}(\mathbf{A}) = {\mathbf{A}\mathbf{v} : \mathbf{v} \in F^n},$
 - (b) $ker(\mathbf{A}) = {\mathbf{v} \in F^n : \mathbf{A}\mathbf{x} = 0}, \text{ and }$
 - (c) $r(\mathbf{A})$ and $n(\mathbf{A})$ are the rank and nullity of \mathbf{A} , i.e. the dimensions of $\operatorname{im}(\mathbf{A})$ and $\operatorname{ker}(\mathbf{A})$ respectively.