1. Znajdź ogólną postać rozwiązań następujących równań rekurencyjnych za pomocą anihilatorów i rozwiąż jedno z równań do końca:

(b)
$$a_{n+2} = 4a_{n+1} - 4a_n + n2^{n+1}$$
, gdy $a_0 = a_1 = 1$.

(c)
$$a_{n+2} = \frac{1}{2^{n+1}} - 2a_{n+1} - a_n$$
, gdy $a_0 = a_1 = 1$.

- 2. Niech c_n oznacza liczbę ciągów długości nzłożonych z n cyfr ze zbioru {0,1,2}, nie zawierających dwóch następujących po sobie zer i dwóch następujących po sobie jedynek. Wyprowadź zależność rekurencyjną, jaką spełniają liczby c_n przyjmując $c_0 = 1$. Rozwiąż otrzymaną zależność rekurencyjną.
 - (-) Stosując met odę anihilatorów rozwiąż następujące zależności rekuren-

(a)
$$t_n=t_{n-1}+3^n$$
dla $n>1$ i $t_1=3.$

(b)
$$h_n = h_{n-1} + (-1)^{n+1}n$$
 dla $n > 1$ i $h_1 = 1$.

Rozwiąż następujące zależności rekurencyjne:

(a)
$$a_{n+1} = \left| \sqrt{a_n^2 + a_{n-1}^2} \right|, a_0 = a_1 = 1,$$

(b)
$$b_{n+1} = \left| \sqrt{b_n^2 + 3} \right|, b_0 = 8,$$

(c)
$$c_{n+1} = (n+1)c_n + (n^2+n)c_{n-1}, c_0 = 0, c_1 = 1.$$

Rozwiąż zależności rekurencyjne:

(a)
$$c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$$

(b) $d_0 = 1, d_1 = 2, d_n = d_{n-1}^2/d_{n-2}$

(b)
$$d_0 = 1, d_1 = 2, d_n = d_{n-1}^2/d_{n-2}$$

- 6. Na ile sposobów można ułożyć domina na prostokącie o rozmiarze $2 \times n$? Domino ma wymiar 1×2 .
- Rozwiąż zależność rekurencyjną.
 - $a_n^2=2a_{n-1}^2+1$ z warunkiem początkowym $a_0=2$ i założeniem, że $a_n > 0$ dla każdego naturalnego n.
- 8. Ile jest wyrazów złożonych z n liter należących do 25-literowego alfabetu łacińskiego, zawierających parzystą liczbę liter a?
- (2p) Wieża Hanoi składa się z n krążków n różnych rozmiarów, po 1 krażku każdego rozmiaru. W jednym kroku przenosimy dokadnie jeden krążek i nie możemy kłaść większego krążka na mniejszym. Ile kroków jest potrzebnych, aby przenieść wieżę z pręta A na pręt C, posługując się przy tym prętem B, jeśli bezpośrednie ruchy z pręta A na C są zakazane, ale ruchy w drugą stronę z pręta C na A są dozwolone?
- 10. Podaj i udowodnij regułę sprawdzania podzielności przez 11 liczby naturalnej zapisanej w systemie dziesiętnym.
- 11. Podaj dwie ostatnie cyfry liczby $98^{7^{6^{5^{4^{3^{2}}}}}}$ w rozwinięciu dziesiętnym.
 - 1. Znajdź ogólną postać rozwiązań następujących równań rekurencyjnych za pomocą anihilatorów i rozwiąż jedno z równań do końca:

(a)
$$a_{n+2} = 2a_{n+1} - a_n + 3^n - 1$$
, gdy $a_0 = a_1 = 0$.

(b)
$$a_{n+2} = 4a_{n+1} - 4a_n + n2^{n+1}$$
, gdy $a_0 = a_1 = 1$.

(c)
$$a_{n+2} = \frac{1}{2^{n+1}} - 2a_{n+1} - a_n$$
, gdy $a_0 = a_1 = 1$.

(a) $a_{n+2} = 2a_{n+1} - a_n + 3^n - 1$, gdy $a_0 = a_1 = 0$

 $\begin{array}{c} (F^2-2F+1)Q_n=3^n-1\\ (F-1)^2Q_n=3^n-1 & F-1 \text{ tu sign nie stokujo, bo tom to bey/o}\\ (F-1)^2Q_n=3^n-1 & F-1 \text{ tu sign nie stokujo, bo tom to bey/o}\\ (F-1)^3(F-3)Q_n=0 & \text{restorency nog} \end{array}$ (ω, n²+ β, n+ γ) 1 + σ 3 n ω, n²+ β, n + γ+ σ 3 n

Q: γ+ σ=0 α+β+γ+3σ=0 γ=-σ α+β+2σ=0=>=-β-2σ

(b)
$$a_{n+2} = 4a_{n+1} - 4a_n + n2^{n+1}$$
, gdy $a_0 = a_1 = 1$

On-2 -40AH +400 = n2m-1 $(E^{2}-4E+4)_{n}=n2^{n+4}$ $(E-2)^{2}_{0n}=n2^{n+4}$ $(E-2)^4 Q_0 = 0$ $\alpha n^3 + \beta n^2 + \gamma n + \delta \left(\frac{1}{2}\right)^{n+1}$

Operator	Functions annihilated	
E-1	α	
E-a	αa^n	
(E-a)(E-b)	$\alpha a^n + \beta b^n$	[if $a \neq b$]
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n$	[if a _i distinct]
$(E-1)^2$	$an + \beta$	
$(E-a)^2$	$(an + \beta)a^n$	
$(E-a)^2(E-b)$	$(\alpha n + \beta)a^b + \gamma b^a$	[if $a \neq b$]
$(E-a)^d$	$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$	

 $(E-2)=2^{n+3}-2^{n+3}=0$

(c)
$$a_{n+2} = \frac{1}{2^{n+1}} - 2a_{n+1} - a_n$$
, gdy $a_0 = a_1 = 1$

$$\alpha_{n} + \beta_{n} + \gamma_{n} + \delta_{n} + \gamma_{n} + \delta_{n} + \delta_{$$

$$(E-2)2^{-n-1}=2^{-2^{-n}}=0$$

2. Niech c_n oznacza liczbę ciągów długości nzłożonych z n cyfr ze zbioru {0,1,2}, nie zawierających dwóch następujących po sobie zer i dwóch następujących po sobie jedynek. Wyprowadź zależność rekurencyjną, jaką spełniają liczby c_n przyjmując $c_0=1$. Rozwiąż otrzymaną zależność rekuren

6=1

ncvina.			
1:40,1,24	2:401,	02,10,12	, 20,24,229

- 3. (-) Stosując metodę anihilatorów rozwiąż następujące zależności rekuren-
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$.
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.

n=1:3 n=2:12 n=3:39

Functions annihilated	
а	
αa^n	
$\alpha a^n + \beta b^n$	$[if a \neq b]$
$\sum_{n=0}^{k} \alpha_{i} \alpha_{i}^{n}$	[if a _i distinct
$an + \beta$	
$(an + \beta)a^n$	
$(\alpha n + \beta)a^b + \gamma b^a$	$[if a \neq b]$
$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$	
nen X also annihilat	es Ef.
g, then X also anni	
	a aa^{α} $aa^{\alpha} + \beta b^{\alpha}$ $\sum_{i=0}^{k} a_i a_i^{\alpha}$ $an + \beta$ $an + \beta$ $(an + \beta)a^{\alpha}$ $(an + \beta)a^{b} + \gamma b^{a}$ $(\sum_{i=0}^{d-1} a_i n^{i})a^{\alpha}$ then X also annihilating

(a) $t_n=t_{n-1}+3^n$ dla n>1 i $t_1=3$.

 $(E-1) +_0 = 3^{n+1}$ (E-1)(E-3) tn=0 $3\alpha + \beta = 3$ $3^{n+1}(E-3) = 3^{n+2} - 3 \cdot 3^{n+2} = 0$

Listy Strona 2

(b)
$$h_{n} = h_{n-1} + (-1)^{n+1} n \text{ dla } n > 1 \text{ i } h_{1} = 1.$$

$$h_{n} - h_{n-1} = (-1)^{n+1} \cdot 0 \qquad (-1)^{n} (n+1) (E+1) (E-1)^{n}$$

$$(E-1)h_{n} = (-1)^{n+2} \cdot (n+1) \qquad (E+1)(-1)^{n} = (-1)^{n+1} + 1 \cdot (-1)^{n} = 0$$

$$(E-1)^{3} (E+1)h_{n} = 0 \qquad \text{(E+1)}(-1)^{n} = 0$$

$$(E-1)^{3} (E+1)h_{n} = 0 \qquad \text{(E+1)}(-1)^{n} = 0$$

$$(E-1)^{3} (E+1)h_{n} = 0 \qquad \text{(E+1)}(-1)^{n} = 0$$

Rozwiąż następujące zależności rekurencyjne:

(a)
$$a_{n+1} = \left| \sqrt{a_n^2 + a_{n-1}^2} \right|$$
, $a_0 = a_1 = 1$,

(b)
$$b_{n+1} = \left| \sqrt{b_n^2 + 3} \right|$$
, $b_0 = 8$,

(c)
$$c_{n+1} = (n+1)c_n + (n^2+n)c_{n-1}$$
, $c_0 = 0$, $c_1 = 1$.

(a)
$$a_{n+1} = |\sqrt{a_n^2 + a_{n-1}^2}|$$
, $a_0 = a_1 = 1$,
 $Q_0 = |\sqrt{a_n^2 + a_{n-1}^2}|$, $a_0 = a_1 = 1$,
 $Q_3 = |\sqrt{a_n^2 + a_{n-1}^2}|$, $a_0 = a_1 = 1$,
 $Q_3 = |\sqrt{a_n^2 + a_{n-1}^2}|$, $a_0 = a_1 = 1$,
 $Q_3 = |\sqrt{a_n^2 + a_{n-1}^2}|$, $a_0 = a_1 = 1$,
 $Q_4 = |\sqrt{a_n^2 + a_{n-1}^2}|$, $a_0 = a_1 = 1$,
 $Q_5 = |\sqrt{a_n^2 + a_{n-1}^2}|$, $a_0 = a_1 = 1$,
 $Q_5 = |\sqrt{a_n^2 + a_{n-1}^2}|$, $a_0 = a_1 = 1$,
 $Q_5 = |\sqrt{a_n^2 + a_{n-1}^2}|$, $a_0 = a_1 = 1$,
 $Q_6 = |\sqrt{a_n^2 + a_{n-1}^2}|$ and $a_0 = a_1 = 1$,
 $Q_6 = |\sqrt{a_n^2 + a_{n-1}^2}|$ and $a_0 = a_1 = 1$,
 $Q_6 = |\sqrt{a_n^2 + a_{n-1}^2}|$ and $a_0 = a_1 = 1$,
 $Q_6 = |\sqrt{a_n^2 + a_{n-1}^2}|$ and $a_0 = a_1 = 1$,
 $Q_6 = |\sqrt{a_n^2 + a_{n-1}^2}|$ and $a_0 = a_1 = 1$,
 $Q_6 = |\sqrt{a_n^2 + a_{n-1}^2}|$ and $a_0 = a_1 = 1$,
 $Q_6 = |\sqrt{a_n^2 + a_{n-1}^2}|$ and $a_0 = a_1 = 1$,
 $Q_6 = |\sqrt{a_n^2 + a_{n-1}^2}|$ and $a_0 = a_1 = 1$,
 $Q_6 = |\sqrt{a_n^2 + a_{n-1}^2}|$ and $a_0 = a_1 = 1$.

On =
$$\sqrt{F_{n+1}}$$

I story story = induky by to udowoon e

I $Q_0 = 1 = \sqrt{F_1}$

I $Q_0 = 1 = \sqrt{F_1}$

I $Q_0 = 1 = \sqrt{F_1}$

On $Q_0 = F_{0+1}$

On $Q_0 = F_{0+1}$

On $Q_0 = F_{0+1}$
 $Q_0 = \sqrt{F_{0+1}}$

(b)
$$b_{n+1} = \sqrt{b_n^2 + 3}$$
, $b_0 = 8$.
 $b_0 = \sqrt{67}$
 $b_2 = \sqrt{701}$
 $b_3 = \sqrt{737}$

$$\int_{0}^{2} = 64 + 30$$
I $b_{0}^{2} = 64 \sqrt{100}$
I $b_{0}^{2} = 64 \sqrt{100}$
I $b_{0}^{2} = 64 + 30$, $c = 64 + 3$

5. Rozwiąż zależności rekurencyjne:

(a)
$$c_0 = 1, c_n = c_0 + c_1 + \dots, c_{n-1}$$

(b)
$$d_0 = 1, d_1 = 2, d_n = d_{n-1}^2/d_{n-2}$$
.

(a)
$$c_0 = 1$$
, $c_n = c_0 + c_1 + \dots, c_{n-1}$

$$C_0 = 1$$

$$C_1 = 1$$

$$C_2 = 2$$

$$C_3 = 4$$

$$C_4 = 8$$

$$C_5 = 16$$

$$C_6 = 32$$

$$C_0 = 2^{n-1}$$

$$0 = 1$$

$$C_1 = 2^{n-1}$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$0 = 1$$

$$d_{4} = \frac{G_{4}}{4} = \frac{1}{16} \quad Hipotezo: \quad o_{n} = 2^{n}. \quad Udowadnismy to$$

$$\text{korcystoge} \quad z \quad zosooly indulying$$

$$I \quad zolo \quad olo = 2^{n} = 1. \quad V$$

$$I \quad zolo \quad zolo = 2^{n} = 1. \quad V$$

$$I \quad zolo \quad zolo = 2^{n} = 1. \quad V$$

$$Uolowoolnismy \quad ze \quad d_{n+n} = 2^{n+1}$$

$$Uolowoolnismy \quad ze \quad d_{n+n} = 2^{n+1} = 2^{n+1} = 2^{n+1}$$

$$Uolowoolnismy \quad ze \quad d_{n+n} = 2^{n+1} = 2^{n+1} = 2^{n+1}$$

6. Na ile sposobów można ułożyć domina na prostokącie o rozmiarze $2 \times n$? Domino ma wymiar 1×2 .

7. Rozwiąż zależność rekurencyjną $a_n^2=2a_{n-1}^2+1$ z warunkiem początkowym $a_0=2$ i założeniem, że $a_n>0$ dla każdego naturalnego n.

$$Q_{1}^{2} - 2Q_{1-1}^{2} = 1$$
 $b_{1} = Q_{1}^{2}$
 $b_{2} = 1$
 $b_{3} = 1$
 $b_{4} = 0$
 $b_{5} = 1$
 $b_{6} = 1$
 $b_{7} = 1$
 $b_{8} = 1$
 $b_{8} = 0$
 $b_{9} = 0$
 $b_{1} = 0$
 $b_{1} = 0$
 $b_{1} = 0$
 $b_{2} = 0$
 $b_{3} = 0$
 $b_{4} = 0$
 $b_{5} = 0$
 $b_{7} = 0$
 $b_{8} = 0$
 $b_{8} = 0$
 $b_{9} = 0$
 $b_{1} = 0$
 $b_{1} = 0$
 $b_{2} = 0$
 $b_{3} = 0$
 $b_{4} = 0$
 $b_{5} = 0$
 $b_{7} = 0$
 $b_{8} = 0$
 $b_{8} = 0$
 $b_{9} = 0$
 $b_{9} = 0$
 $b_{1} = 0$
 $b_{1} = 0$
 $b_{1} = 0$
 $b_{1} = 0$
 $b_{2} = 0$
 $b_{3} = 0$
 $b_{4} = 0$
 $b_{5} = 0$
 $b_{7} = 0$
 $b_{8} = 0$
 $b_{9} = 0$
 b

8. Ile jest wyrazów złożonych z nliter należących do 25-literowego alfabetu łacińskiego, zawierających parzystą liczbę litera?

Voodhijny do dowolneyo r-literowego allabetu

Qo = 1 (1/combinação O-literowych)

Qu = r-l (wzystkie titery oprócz a)

Momy nosze bose casey, teroz returenção:

Qn=(r-1)Qn-1+ 1-1-0n-1

10. Podaj i udowodnij regułę sprawdzania podzielności przez 11 liczby naturalnej zapisanej w systemie dziesiętnym. chatost

Reguła podzielności przez 11:

Liczba jest podzielna przez 11, jeśli różnica między sumą cyfr na miejscach nieparzystych a sumą cyfr na miejscach parzystych (licząc od prawej strony) jest podzielna przez 11 (lub jest zerem).

Inaczej mówiąc:

- 1. Weź cyfry liczby i oznacz je a_1,a_2,a_3,\ldots,a_n , gdzie a_1 to cyfra jedności, a_2 to cyfra dziesiątek, i tak dalei.
- 2. Oblicz różnice:

$$S=(a_1+a_3+a_5+\dots)-(a_2+a_4+a_6+\dots)$$

3. Liczba jest podzielna przez 11, jeśli S jest podzielne przez 11 (czyli $S\equiv 0\pmod{11}$).

Dowód reguły:

Dla liczby ${\it N}$ zapisanej w systemie dziesiętnym:

$$N = a_n \cdot 10^{n-1} + a_{n-1} \cdot 10^{n-2} + \dots + a_2 \cdot 10 + a_1$$

gdzie a_1, a_2, \ldots, a_n to cyfry liczby N

Zauważmy, że $10 \equiv -1 \pmod{11}$. W efekcie, w systemie modularnym modulo 11, liczba N może być przedstawiona jako:

$$N \equiv a_n \cdot (-1)^{n-1} + a_{n-1} \cdot (-1)^{n-2} + \dots + a_2 \cdot (-1)^1 + a_1 \cdot (-1)^0 \pmod{11}$$

Zauważmy, że $10\equiv -1\pmod{11}$. W efekcie, w systemie modularnym modulo 11, liczba N może być przedstawiona jako:

$$N \equiv a_n \cdot (-1)^{n-1} + a_{n-1} \cdot (-1)^{n-2} + \dots + a_2 \cdot (-1)^1 + a_1 \cdot (-1)^0 \pmod{11}$$

Dla nieparzystych miejsc (czyli a_1, a_3, a_5, \ldots) występuje dodatni znak, a dla parzystych (czyli a_2, a_4, a_6, \ldots) znak jest ujemny. Ostatecznie otrzymujemy więc różnicę pomiędzy sumą cyfr na miejscach nieparzystych a sumą cyfr na miejscach parzystych.

Zatem, jeśli różnica ta jest podzielna przez 11, to liczba $\it N$ również jest podzielna przez 11.

11. Podaj dwie ostatnie cyfry liczby $9^{8^{7^6}}^{5^43^{2^1}}$ w rozwinięciu dziesiętnym.

98%****
98700000
98race
9870:302144
5^{202144} is too large to calculate, but we can find the last digits.
5^n ends in 25 for all $n \geq 2$ so the last 2 digits of
Powers of 6 pattern: 6, 36 , 2 16 , 12 96 , 77 76 , 466 56 , 36 , 16 etc.
A number that ends in 25 is 0 mod 5 so the last two digits of $6^{5^{e^{2^{1}}}}$ are 76
Powers of 7 pattern: 7, 49, 343, 2401, 16807,49,43,01 etc.
A number that ends in 76 is 0 mod 4 so the last two digits of $7^{e^{se^{s^{3}}}}$ are 01
Powers of 8 pattern: 8 , 6 4 , 51 2 , 409 6 , 3276 8 , 26214 4 , 209715 2 , 1677721 6 , 8 , 4 , 2 etc.
A number that ends in 01 is 1 mod 4 so the last digit of $8^{7^{6}}$ is 8
9^n where $m{n} \equiv 8 mod 10$ ends in 21.
The last two digits of $9^{R^{yeleccol}}$ are 21.

Number	Cyclicity	Power Cycle
1	1	1
2	4	2,4,8,6
3	4	3,9,7,1
4	2	4,6
5	1	5
6	1	6
7	4	7,9,3,1
8	4	8,4,2,6
9	2	9,1
0	1	0