

ENCARGO

TAREA DE PROGRAMACIÓN

- Quiero un programa que dado los datos académicos de un alumno me calcule si la nota final es aprobado o no.
- Quiero hacerlo como se hizo en otros años, pero no me dijeron cuál era el criterio
- Lo que tengo son los datos de esos años pasados

ENCARGO

TAREA DE PROGRAMACIÓN

• Lo que tengo son los datos de esos años pasados

nombre	teoria	practicas	final
al	false	false	false
a2	false	true	false
a3	true	true	true

Most slides come from

Machine Learning Techniques for Data Mining

Eibe Frank University of Waikato New Zealand

Introduction to Machine Learning

Oscar Luaces

SYLLABUS

Input data

nombre	teoria	practicas
al	false	false
a2	false	true
a3	true	true

• Output data (class ...)

final false false true ..

- Automatic programming
- More data than knowledge

Index

Induction as a tool for knowledge acquisition

- 1. Bibliography and laboratory software
- 2. The conceptual problem of Machine Learning or pattern analysis
- 3. Pattern recognition tasks

Bibliography and laboratory software

Ian H. Witten, Eibe Frank
Data Mining: Practical Machine Learning
Tools and Techniques (Second Edition)
Morgan Kaufmann, 2005

• The material provided in this course

http://www.cs.waikato.ac.nz/ml/weka/

13

Linearly separable

Weight	Length	Class
61.2	172.8	Yes
54.3	165.5	No
77.4	182.3	Yes
81.2	175.3	Yes
57.7	162.2	No

The conceptual problem of Machine Learning: training examples

Classification

Which class of iris am I?

Linearly not separable

Weight	Length	Class
61.2	172.8	Yes
54.3	165.5	No
87.2	182.3	No
81.2	175.3	Yes
57.7	162.2	No

Pattern recognition tasks

Searching for regularities on data

• Supervised (classes): Induction of functions:

classification (class discrete values/nominal)
regression (class continuous (ordinal) values)
ranking (learning to order)

- Unsupervised (no classes): Clustering
- Dimensionality reduction (for graphical representations, but not only)

17

INDUCTIVE LEARNING FORMAL FRAMEWORK

From a dataset

\mathbf{A}_1	\mathbf{A}_2	An	Pred.
V _{1,1}	V _{1,2}	 V _{1,n}	C_1
$V_{2,1}$	V _{2,2}	 V _{2,n})-	C_2
V _{m,1}	V _{m,2}	 V _{m,n}	Cm

■ We aim is to obtain a **hypothesis** $h \in H$, such that assigns the *right* class from the other attribute values (A₁, A₂, ...)

Right predictions = correct in unseen cases

Given

$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}\$$

where

 $x_i \in X$ input space; $y_i \in Y$ output space (classes)

The aim, a hypothesis

$$h: X \longrightarrow Y$$

(in a space of hypotheses: linear, polynomial, ...)

such that

minimize the expected loss over all test sets S' drawn from the same distribution of S (independent and identically distributed i.i.d.)

Loss functions

$$S' = \{(x'_1, y'_1), \dots, (x'_n, y'_{n'})\}\$$

Classification
$$\Delta((h(x_1'),\dots,h(x_{n'}')),(y_1',\dots,y_{n'}')) = \frac{1}{n'}\sum_{i=1}^{n'} 1_{(h(x_i') \neq y_i')}$$

$$\Delta((h(x_1'), \dots, h(x_{n'}')), (y_1', \dots, y_{n'}')) = \frac{1}{n'} \sum_{i=1}^{n} |h(x_i') - y_i'|$$

$$\Delta((h(x_1'),\ldots,h(x_{n'}')),(y_1',\ldots,y_{n'}')) = \frac{1}{n'} \sum_{i=1}^{n'} (h(x_i') - y_i')^2$$

Classifiers: Simplicity first

- Simple algorithms often work very well!
- * There are many kinds of simple structure, eg:
 - ☐ One attribute does all the work
 - ☐ Instance-based: use a few prototypes
- Success of method depends on the domain

Classifiers: Simplicity first Zero R

- Computes the most frequent class in training set
- In testing always predict that class
- It uses zero attribute values

Classifiers: Simplicity first Zero R

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

In ANY case Play? Yes

Simplicity: 1 R (OneR)

- ❖ 1R: learns a 1-level decision tree
 - ☐ I.e., rules that all test one particular attribute
- Basic version
 - One branch for each value
 - ☐ Each branch assigns most frequent class
 - ☐ Error rate: proportion of instances that don't belong to the majority class of their corresponding branch
 - Choose attribute with lowest error rate

(Assumes nominal attributes)

25

Instance based learning

- Simplest form of learning: rote learning
 - Training instances are searched for instances that most closely resembles new instance
 - The instances themselves represent the knowledge
 - Also called instance based learning

Similarity function defines what's "learned"

Instance based learning is lazy learning

Methods: nearest neighbor (NN), k-nearest neighbor (kNN)

Evaluating the weather attributes

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Attribute	Rules	Errors	Total errors
Outlook	Sunny → No	2/5	4/14
	Overcast → Yes	0/4	
	Rainy → Yes	2/5	
Temp	Hot → No*	2/4	5/14
	Mild → Yes	2/6	
	Cool → Yes	1/4	
Humidity	High → No	3/7	4/14
	Normal → Yes	1/7	
Windy	False → Yes	2/8	5/14
	True → No*	3/6	

* indicates a tie

26

An example of classification by neighborhood

Which class of iris am I?

2

Instance based learning:

The distance function

- Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved

Several numeric attributes: normally, Euclidean distance is used and attributes are normalized

Nominal attributes: distance is set to 1 if values are different, 0 if they are equal

Are all attributes equally important?

Weighting the attributes might be necessary

29

Neighborhood, problems with metrics

- Mess numeric and nominal values
- Relevance of attributes

Nearest Neighbor variants: k-NN

The most prudent neighbor asks to more (k) people

Saves all training set

To classify new data

- searches for the k nearest training sets to the new data
- predicts the most **frequent** class in these k examples

30

Lo que se hace en 2022

Función de pérdida

$$\hat{\mathbf{y}} = h_{\theta}(\mathbf{x})$$

$$\theta \leftarrow \underset{\theta}{\operatorname{argmin}} \frac{1}{|D|} \sum_{(x,y) \in D} \operatorname{loss}(y, h_{\theta}(\boldsymbol{x}))$$