Sign of the times: the lipid signature of a collapsing phytoplankton bloom

W. Kumler¹, H. Fredricks², J. Ossolinski³, A. Allen⁴, K. Thamatrakoln⁵, K. Bidle⁵, B. Van Mooy², and B. R. Edwards¹

¹Earth and Planetary Science, UC Berkeley; ²Marine Chemistry and Geochemistry, WHOI; ³JIMAR UH-NOAA; ⁴Biological Oceanography, SIO/JCVI; ⁵Marine and Coastal Sciences, Rutgers

Background

- Phytoplankton blooms are impactful, large-scale events in the ocean that periodically cycle between growth and decay
- Causes of bloom collapse include grazing pressure, viral infection and lysis, and nutrient limitation
- As phytoplankton decay, lipids such as chlorophyll degrade into biomarkers such as pheophytin

 Traditionally, studies have emphasized nutrient limitation as the major factor in bloom collapse

- Lipids are excellent biomarkers for environmental stressors and marine community composition
- In oligotrophic environments, lipid swapping has been used as a biomarker for nutrient stress
 - o P-containing lipids are replaced with betaine lipids^[1] o N-containing lipids are replaced with glycolipids^[2]
- Example: Replacing PG with SQDG conserves P

Research question: Can we use lipids to assess bloom dynamics in eutrophic systems? Approach: Pair lipidomics with biogeochemical measurements and metatranscriptomic data

Methods **Sampling locations:** Environmental samples were collected from 9 stations in the California Current Ecosystem then A. filtered onto 0.2 µm Durapore filters and **B.** extracted via a modified Bligh & Dyer. [3] These extracts were then C. analyzed via HPLC paired with HRAM MS^[4] and D. annotated via the R packages xcms, CAMERA, and LOBSTAHS.^[5] Biological and chemical measurements were made by collaborators including metatranscriptomic data used for Monterey statior community profiling

Results

1.6 2.0 2.4

PG intensity (x10⁸)

lipid found in all

domains of life

SQDG is less

common, and

produced by

cyanobacteria &

photosynthetic

eukaryotes

- Heatmap data shows the fold-change of each major intact polar lipid sub-class relative to the mean across stations
- Dendrogram group colors denote that the lipidome structure is significantly similar between those samples^[6]
- Deep samples (>10 meters) show a significant decrease in intensity, consistent with particulate organic matter produced in the surface and degraded at depth
- Among the shallow samples, all Point Reyes samples are significantly different from all Monterey samples

SQDG

PG

Station number

Monterey

6 7 8 9 10 11

Pt. Reyes

 Monterey stations have SQDG:PG ratios statistically different from Point Reyes stations (Mann-Whitney U, p-value < 0.001, n = 36)

Is Monterey nutrientlimited, or is the SQDG:PG biomarker measuring something else?

- SQDG:PG and phosphorus concentration are very weakly correlated ($R^2 < 0.01$)
- health, such as pheophytin: chlorophyll ratios, show that SQDG:PG correlates well with bloom health ($R^2 = 0.65$)

 18s rRNA sequences reveal that the SQDG:PG biomarker is instead a metric for community shift in eutrophic regions

nutrient stress induced

Common IP-DAGs: ທ

DGTS/DGTA

DGCC

MGDG

DGDG

SQDG

every station

Diatom Haptophyte

Other

Station Number

Common intact polar membrane lipids identified at

lipid swapping or shifts in community structure

Variation in relative abundances imply either

Conclusions

- Lipidomics is a powerful technique for assaying environmental lipid diversity and abundance
- The lipid signature of phytoplankton communities varies dramatically, even over small spatial and temporal scales
- Oligotrophic nutrient stress biomarkers such as SQDG:PG can become biomarkers for community composition in eutrophic environments

Acknowledgements

Thank you to the captain and crew of the R/V Point Sur for enabling the research cruise and data collection

Thank you also to our research sponsors:

 More direct proxies for bloom Oligotrophic SQDG:PG values typically vary between 2 and 7^[7]; identical to the Monterey metrics

> Phosphate (µmol L⁻¹ Pheophytin: Chlorophyll a

Dinoflagellate

Chlorophyte