Redistricting Model

Blake Splitter

February 2021

1 Introduction

The purpose of this write-up is to propose a redistricting model for use in South Carolina's redistricting process. Because previous iterations of SC redistricting guidelines have advised (or outright outlawed) computer-generated maps, we will be using a multi-objective model to generate a wide variety of maps on the Pareto Frontier. From this selection of maps, we hope that one will be chosen for implementation in South Carolina.

2 Possible Objectives and/or constraints

The following is a non-exhaustive list of possible objectives and/or constraints that can be used in the model:

- Compactness
 - Geometry-based (Polsby-Popper, Reock, etc.)
 - Population density-based
 - Graph Theory-based
- Fairness/Competitiveness
- Population Equality
- Maintenance of city boundaries (i.e. we do not wish for cities to exist inside two different districts)
- Maintenance of county boundaries (i.e. we do not wish for counties to be split between two districts)
- Maintenance of Civil Rights Act districts
- Contiguity
- Maintenance of Communities of Interest (COIs)

3 Multiobjective Model

The following model is based on the concept used in Rincón-Garcia et al. in 2013. Let K represent the number of objective functions.

Algorithm 1: Multiobjective Redistricting Algorithm

Initialization:

Set a high simulated annealing temperature T;

Generate a wide diversified set Λ of normalized weight vectors

 $\overline{\alpha_i} = (\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{iK});$

Generate an initial districting (either randomly or nonrandomly). Let this be the current solution U;

Evaluate all objective functions for U;

Save current solution into an archive (set of Pareto solutions) and assign it a random weight vector $\overline{\alpha_i}$;

while Simulated annealing temperature is above freezing do

Apply either ReCom or Swap to generate a new districting V;

while V is discontiquous do

Apply either ReCom or Swap again to generate a new districting V:

end

Evaluate all objective functions for V and compare V to all solutions in the Pareto set;

if V dominates at least one districting in the Pareto set then Replace one of the dominated districtings with V and let V inherit the weight vector $\overline{\alpha_i}$ for the solution it replaced; U := V:

else if V is NOT dominated by any districting in the Pareto set **then**

Add V to the Pareto set and assign it a random weight vector $\overline{\alpha_i}$; U := V;

else if V is dominated by any districting in the Pareto set then

Let $\Delta f = \sum_{j=1}^{K} \alpha_{ij} (C_j(U) - C_j(V))$, where C_j is the jth objective function;

U := V with probably ρ , where

$$\rho = \begin{cases} 1, & \text{if } \Delta f \ge 0 \\ \exp\left(\frac{\Delta f}{T}\right), & \text{if } \Delta f < 0 \end{cases}$$

Reduce the simulated annealing temperature T;

 \mathbf{end}

4 Goal

After running this algorithm, the end result will be a set of high-quality maps that are on the Pareto Frontier.