

TD1: I'Atome

1. Modèle de Bohr

1.1 L'atome d'Hydrogène

Il s'agit de retrouver la relation liant l'énergie totale de l'électron de l'atome d'hydrogène au "nombre quantique principal" n selon l'hypothèse de Bohr en suivant les étapes suivantes :

- 1.1.1 Exprimer la force F_a d'attraction coulombienne s'exerçant entre deux charges (q₁ et q₂) distantes de r. Appliquer cette relation à un électron (de charge -q) et à un noyau (de charge +q). Faire l'application numérique.
- 1.1.2 Exprimer la force F_g d'attraction gravitationnelle entre les deux particules de masse respective m_1 et m_2 . Faire l'application numérique. Conclure.
- 1.1.3 Exprimer la force centrifuge F_c à laquelle est soumise l'électron (de masse m_e) s'il tourne autour du noyau (supposé immobile) à une distance r et une vitesse v (constantes).
- 1.1.4 À l'équilibre, appliquez la RFD pour exprimer r en fonction de q, me et v.
- 1.1.5 Exprimez l'énergie potentielle E_p de l'électron dans le champ électrique exercé par le noyau (indication : la force F_a dérive de ce potentiel), en fonction de q et de r.
- 1.1.6 Exprimez l'énergie cinétique E_c de l'électron en fonction de q et r.
- 1.1.7 Écrivez la relation de de Broglie associant quantité de mouvement et longueur d'onde.
- 1.1.8 Sachant que $2\pi = n\lambda$, exprimez le rayon r_n de l'orbite n de l'électron en fonction de n, m_e et q (et des constantes fondamentales).

1.2 Transitions énergétiques

En utilisant ce qui précède, il s'agit d'exprimer l'énergie nécessaire aux transitions suivantes :

- 1.2.1 Passage de l'état fondamental au 1er état ionisé
- 1.2.2 Passage de l'état fondamental au 5^{me} état excité

Lors de la relaxation, il y a émission d'une radiation d'énergie hv et de fréquence v (relaxation radiative).

- 1.2.3 Calculer la longueur d'onde correspondant à la relaxation :
 - de l'état une fois ionisé à l'état fondamental
 - du troisième état excité au 1^{er} état excité

1.2.4 Situer ces longueurs d'onde sur la figure ci-dessous

2. Quelques atomes intéressants

Nous n'allons nous intéresser qu'aux atomes que l'on retrouve dans les systèmes semi-conducteurs en utilisant la classification périodique des éléments.

2.1 Le Bore (B)

- 2.1.1 Combien a-t-il d'électrons au total ?
- 2.1.2 Quelle est la couche de valence du bore et combien comporte t elle d'électron(s) ?

2.2 Le Gallium (Ga)

2.2.1 Mêmes questions pour le Gallium

2.3 Le Silicium (Si)

2.3.1 Mêmes questions pour le Silicium

2.4 L'Arsenic (As)

2.4.1 Mêmes questions pour l'Arsenic

3. Constantes physiques

La vitesse de la lumière : c = 299 792 458 m s⁻¹

La masse de l'électron : m_e = 0,911 * 10⁻³⁰ kg

• La constante de Planck : $h = 0,662 * 10^{-33} \text{ J s } (h/(2 \pi) = 0,106 * 10^{-33} \text{ J s})$

La constante gravitationnelle : G = 66,742 8 * 10⁻¹² m³ kg⁻¹ s⁻² (ou N m² kg⁻²)

• La permittivité du vide : $\epsilon_0 = 8,854 \text{ pF m}^{-1}$

• La constante : $1/(4 \pi \epsilon_0) = 8,910^9 \text{ N m}^2 \text{ C}^{-2}$