

Detailed uncertainty analysis of the ZEM-3 measurement system

Jon Mackey

Mechanical Engineering,
University of Akron

Alp Sehirlioglu

Materials Science and Engineering,
Case Western Reserve University

Fred Dyns

NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A
NASA/USRA Contract: 04555-004

Objectives

- Develop an uncertainty analysis for a common resistivity and Seebeck coefficient measurement configuration.
- Introduce a software package which includes the uncertainty analysis calculations.
- Establish measurement best practices to minimize measurement uncertainty.
- Demonstrate typical high temperature uncertainty on a Si/Ge sample.

Potentiometric Configuration (4-probe)

Power Factor Uncertainty
+7% / -25%

ULVAC ZEM-3

Linseis LSR-3

LabVIEW VI

- ZEM-3 system has been developed into a LabVIEW VI. (Independent of ULVAC Technologies)
- Software allows for versatile testing profiles.
- Includes full uncertainty analysis on data.
- Open source makes customization possible.

Custom ZEM-3 Software Available

Open Source LabVIEW VI

Contact: Jon Mackey (jam151@zips.uakron.edu or jonathan.a.mackey@nasa.gov)

General Testing Profiles

V-I and Quasi V-ΔT at Temperature

Open Source LabVIEW VI

Contact: Jon Mackey (jam151@zips.uakron.edu or jonathan.a.mackey@nasa.gov)

Resistivity Uncertainty

#	Source	Typical Values
1	Thermocouple tip radius	0.25 mm
2	Thermocouple separation length	± 0.1 mm
3	Sample uniformity	± 0.1 mm/cm
4	Caliper uncertainty	± 0.01 mm
5	Statistical variation	Calculated
6	Wire discrepancy	Calculated
7	DAQ voltage uncertainty	50 ppm +1.2 μ V
8	DAQ current uncertainty	0.2% +0.3 mA

Sample Uniformity

Typical Thermocouple Beads

Source: ULVAC

Source: Cleveland Electric

Seebeck Uncertainty Sources

#	Source	Typical Values
1	Cold-finger effect	10,000 W/(m ² K)
2	Wire Seebeck variation	±5%
3	Absolute temperature	± 2°C
4	Statistical variation	Calculated
5	Wire discrepancy	Calculated
6	DAQ voltage uncert.	50 ppm + 1.2 µV
7	DAQ temperature uncert.	50 ppm + 1.2 µV

Wire Seebeck

Cold-finger Effect

Resistivity Calculation

$$\rho = \frac{\sum z_i \sum y_i - N \sum z_i y_i}{(\sum z_i)^2 - N \sum z_i^2} \frac{wD}{L}$$

y- probe to probe voltage

z- test electrical current

w/D- sample width/depth

L- probe separation length

N- sample size

Seebeck Calculation

$$S = -\frac{\sum x_i \sum y_i - N \sum x_i y_i}{(\sum x_i)^2 - N \sum x_i^2} + S_{Wire}(T)$$

x- probe ΔT

y- probe to probe voltage

S_{Wire} - wire Seebeck coefficient

T- sample temperature

N- sample size

Error Propagation

$$\bar{y} \pm U_y = f(\bar{x} \pm U_x) \approx f(\bar{x}) \pm \left. \frac{df}{dx} \right|_{x=\bar{x}} U_x$$

Uncertainty can be calculated from a Taylor Series expansion around the nominal measurement value

FEA Model Parameters

- Autodesk Simulation Multiphysics
 - Non-linear iterative thermal solver
- Thermal domain:
 - Sample **4x4x18mm** rectangular prism
 - Thermal conductivity **4 W/(m²K)**
 - Probes **Ø0.5mm x 150mm**
 - Thermal conductivity **30 W/(m²K)**
- Boundary conditions:
 - Sample ends fixed temperatures
 - Probe ends fixed temperatures
 - Remaining faces radiation coupled
 - $\epsilon=0.2, 0.5, 0.7, 0.9$ (**40% change**)
- Parameters of study:
 - Furnace temp=200,600,1000°C
 - Differential temp=0.1 to 14°C
 - Thermal conductance= **100,000, 33,000, 10,000 W/(m²K)** (**600% change**)

Grid Independence Study

- Two meshes were generated from primarily brick elements
- Course mesh (shown above)
 - 41,000 elements
- Fine mesh
 - 55,000 elements
- Mesh agreement <0.2% change in results

Temperature Contour

- T1/T2 represent “actual” and “measured” temperatures
- Model fits experiment well at high temperature

FEA Uncertainty Results

- Uncertainty is defined as the difference between the desired and measured temperature difference.
- Uncertainty increases with furnace temperature and delta temperature.

Testing Samples & Profile

- $\text{Si}_{80}\text{Ge}_{20}$ samples prepared by milling and spark plasma sintering elemental powders
 - 2at% P doped
 - Ø 1" pucks machined to 4x4x18mm
- Samples measured from 25 to 950°C
- Equilibrium definition:
 - Furnace <5% change in 120 seconds
 - Isothermal <0.1°C in 120 seconds
- Resistivity measurement:
 - -50 to +50 mA increment 5mA
- Seebeck measurement:
 - +1°C/min up to 10°C

Example Measurement Data

Resistivity Uncertainty

Seebeck Uncertainty

- Resistivity uncertainty is fairly temperature independent, due to geometric nature.
- Thermocouple tip radius dominates uncertainty.

- Seebeck uncertainty is highly temperature dependent.
- Cold-finger effect dominates at all temperatures, and is asymmetric.

Overall Results

- Resistivity uncertainty is $\pm 7.0\%$ at all temperatures.
- Absolute Seebeck uncertainty ranges from $\pm 1.0\%$ at room temperature to $+1.0\%/-13.1\%$ at high temperature.

Power Factor Results

- Power factor uncertainty ranges from $\pm 7.5\%$ at room temperature to $+7.3\%/-25.0\%$ percent at high temperature.
- These values all assume the conservative parameter values listed.

Conclusion

- LabVIEW VI is available to operate the ZEM-3 and calculate the uncertainty.
- Resistivity uncertainty is primarily geometric, and can be reduced with careful preparation.
- Seebeck uncertainty is primarily due to the cold-finger effect, and can be reduced with good thermal contact.
- Power factor uncertainty is $\pm 7.5\%$ at room temperature and $+7.3\%/-25.0\%$ percent at high temperature.

The
University
of Akron

CASE WESTERN RESERVE
UNIVERSITY EST. 1826
think beyond the possible®

Acknowledgements

Tom Sabo, Ray Babuder, Ben Kowalski, Clayton Cross
NASA Glenn Research Center

Dr. Sabah Bux, Dr. Jean-Pierre Fleurial
JPL

NASA Cooperative Agreement:
NNX08AB43A

NASA/USRA Contract:
04555-004

Appendix

Error Propagation

$$\bar{y} \pm U_y = f(\bar{x} \pm U_x) \approx f(\bar{x}) \pm \frac{df}{dx} \Big|_{x=\bar{x}} U_x$$

$$e_{y_x} = \frac{1}{\bar{y}} \frac{\partial y}{\partial x} \Big|_{x=\bar{x}} U_x$$

$$e_{Total} = \sqrt{e_{y_1}^2 + e_{y_2}^2 + e_{y_3}^2 + \dots}$$

Resistivity and Seebeck

$$\rho = \frac{\sum z_i \sum y_i - N \sum z_i y_i}{(\sum z_i)^2 - N \sum z_i^2} \frac{wD}{L}$$

$$S = -\frac{\sum x_i \sum y_i - N \sum x_i y_i}{(\sum x_i)^2 - N \sum x_i^2} + S_{Wire}(T)$$

x- probe temperature difference
y- probe voltage
z- electrical current
N- sample size

Statistical Uncertainty

$$U_{Stat} = t_{v, 95\%} \sqrt{\frac{N \sum (y_i - y_c(z_i))^2}{v(N \sum z_i^2 - (\sum z_i)^2)}}$$

FEA Verification

Temperature Celsius	Model $\Delta T_{\text{Probe}}/\Delta T$	Experiment $\Delta T_{\text{Probe}}/\Delta T$
200	0.33	0.18
600	0.17	0.10
1000	0.07	0.06

Temperature Contour

- T1 desired temperature
- T2 measured temperature
 - accounts for thermal contact conductance

FEA Uncertainty Results

- Uncertainty is defined as the difference between the desired and measured temperature difference.
- Uncertainty increases with furnace temperature and delta temperature.

Influence of Thermal Contact Conductance

- Thermal contact conductance plays a significant role in the Cold-finger effect and displays a power law dependence.

Furnace Temperature 1000°C
Delta Temperature 14°C