Child Ferrari 프로젝트

목차

- 1. 페라리 제원
- 2. 금주 진행 상황
- 3. BOM
- 4. 문제점
- 5. 해결 방안

<u>1. 페라리 제원</u>

- 대호 토이즈 페라리 F12 베를리네타
- 1. 공차 중량 : 11.3kg
- 2. 타이어 직경: 215mm
- 3. 이 차량의 기어 비 1:80
- 4. 사람(70kg)이 탑승 했을 때 이 전동차를 구동하기위한 최소 토크: (타이어 반경 (CM) x 차량의 중량(kgf)) / 기어 비 (10.75 x 81.3) / 80 = 10.924kgf.cm

구동계의 마찰이나 효율, 타이어의 접지력, 노면의 마찰력 등을 고려하여 2배 값을 적용

- 최종 20kg-cm 필요.
- 5. Hobbywing 社 (Xerun 4274-2250kV 센서드 타입 모터 + Xerun XR8 PLUS변속기 조합) → 변경(Xerun 3652-3100kv 센서드 타입 + Xerun XR8 SCT)

토크: 6.49~41.12kg-cm → 4.3987~27.649kg-cm

속도km/h: [{rpm/(기어비)} x 바퀴 직경 x 3.14] / 1000 x 60 =

최대 25km/h→17.42km/h

2. Child Ferrari 프로젝트 진행 보고서

하드웨어 PART								
금주(1/28~2/1)	-							
※ RC카 구동계 가공 및 보드 세팅 현황 1) 조향축에 사용될 서보모터 선정 - POWER HD 社 LM-25MG(7.4v, 25kg-cm) - 조향 파트와 서보 모터간 로드를 이용한 결합 구상 중 2) 뒷 바퀴 구동 축 가공 및 메탈기어 주문제작 신청 - 기어제작 완료 3) 뒷 바퀴 구동 축 추가 수정 - 업체 일정 지연 - 일정이 확인 되는대로 장착예정	-							
소프트웨어 PART								
※ 기본 기능 동작 확인 - GPIO , SCI, 모터 기능 동작 확인	-							

3. BOM(엑셀)

	Α	В	С	D	E	F	G	Н	
1	Child	l Perra	ri Part List						
2		~~~~~~							
3	VI	RSION	Rev1.0						
4		DATE	2019.1.17						
5		작성	김현승						
6									
7	MAIN								
8									
9	NO	구분	Part NO	Description	Q'ty	Manufacture	단가	납기	비고
10	NO	十世	Part NO	Description	9.54	Manufacture	- 건가	답기	미끄
11									
12	1	유아 전동차	페라리 F12 베를리네타	6V 1모터 구동	1	대호토이즈	₩25,000		
13	2	GEAR	metal gear 1	10:38	1	신진정밀	₩70,000 3~4일		주문제작품
14	3	GEAR	metal gear 2	10:43	1	신진정밀	₩70,000	3~4일	주문제작품
15	4	BEARING	UFL200 + 지지대	우측 , 좌측 구동 축 지지대 베어링	2	신진정밀			주문제작품
16	5	shaft	body shaft	뒷 바퀴 구동축, 10파이,500mm	1	신진정밀	₩110,000		주문제작품
17	6	mount	mount shaft	제작 베어링 고정용, 6파이, 270mm	1	신진정밀	1		1 1 1 1
18	7	MOTOR + ESC Combo		3S,3100kV,sensored, 140/880A	1	hobbywing	₩204,000		
19	8	BATTERY	EP Power Series 7 600mAh	3s,7600mAh, 60C, 모터용	1	<u>E</u> P POWER	₩69,900		
20	9	CHARGER CABLE	UPXT150CH-T1	리포배터리 충전용 케이블	1	UP-Korea	₩9,900		
21	10		XT150-R	배터리 , 변속기, 전원공급용커넥터	2		₩7,000		
22	11	CONNECTOR	XT150-BK	배터리 , 변속기, 전원공급용커넥터	2	~~~	₩7,000		
23	12	CONNECTOR	XT150/AS150	XT150 PARALLEL Y CABLE RED & BLACK	1	hobbywing KING total	₩12,900 ₩585,700		+
24 25						total	제품 추후 추가될 예정		+
26							46 11 11 12 110		
27	1		볼트 M6	6mm					
28	2		너트	6mm					
29			와셔	6.2 x 12.5					
30		구	드릴 비트	11x35					
31	5		드라이버						
32	6		조각 그라인더	TH2.4X7.0					

4. Errata...

하드웨어 PART

- 1. 유아 전동차에 대한 기본 데이터가 부족하여 구동 축 대부분이 같은 구조의 유형이라 생각함.
- 2. 그것으로 인하여 가격이 저렴한 제품으로만 구매 하려고 함.
- 3. 뒷바퀴 고정 축을 가공하여 연결 하려 했으나 구매한 전동차 3제품 중 2제품은 할 수 없는 구조로 되어있음.(비용 낭비 발생)
- 4. 선정한 전동차의 기어박스 기어비가 줄어들어 기존에 베어링을 삽입하여 기어를 사용하려 했으나 선정한 모터의 토크를 견디지 못할 것으로 생각하 여 스틸 재질로 변경함.
- 5. 비용을 생각하여 적정 토크에 근접한 모터와 변속기를 선정하기위한 조사 기간이 오래 걸림.
- 6. 1차 구동 축 연결 방안에 대한 문제점 발생 기존에 방식대로 연결하면 바퀴와 구동 축 간에 유격이 심함
- 7. 제작한 베어링 규격이 구동축 전동차 기구물과 맞지 않음
- 8. 기어박스 쪽 구동 축 연결 부위에 기구 간섭 발생
- 9. 업체와 제작 일정이 딜레이 되어 진행에 어려움 발생 예상 일정 보다 7일 소비

벤츠

헤네스

페라리

SERVO MOTOR (LM-25MG)

$$\label{eq:continuous} \begin{split} & \text{Torque}(6.0V): 23.0 \, \text{kg-cm} \, (319.4 \, \text{o} \, z/\text{n}) \\ & \text{Torque}(7.4V): 25.0 \, \text{kg-cm} \, (347.2 \, \text{o} z/\text{n}) \\ & \text{Speed}: 0.16 \, \text{sec} \, (6.0V) \mid 0.14 \, \text{sec} \, (7.4V) \\ & \text{Operating Vohage}: 6.0 \, \sim \, 8.4 \, \text{DC Volts} \\ & \text{Weight}: 72 \, \text{g} \, (2.54 \, \text{o} \, \text{o} \, \text{z}) \\ & \text{Bearing Type}: \text{Dall Bearing x 2} \\ & \text{Motor Type}: \text{DC Motor} \\ & \text{Gear Type}: \text{Copper & Aluminum} \\ & \text{Operating Temperature}: -20°\text{C} \sim 60°\text{C} \\ & \text{Size}: 40.7 \, \text{x} \, 20.5 \, \text{x} \, 38.6 \, \text{mm} \, (1.60 \, \text{x} \, 0.81 \, \text{x} \, 1.52 \, \text{in}) \\ \end{split}$$

- 1. 동작 전압 :6.0V~7.4V
- 2. Stall torque(7.4V): 25kg-cm
- 3. Stall Current: 3800mA
- 4. 동작 범위 : 800 ~ 2200 u sec (0~161°)

5. 문제에 대한 해결 (1차)

현재 뒷바퀴와 축 간의 연결 문제 발생

1. 바퀴 축 샤프트에 홀을 뚫어 니들 핀으로 고정후 바퀴와 결합.

5. 문제에 대한 해결 (1차)

2. 유격이 발생하여 결합 부품 가공후에 장착.

내구성이 약할 경우 메탈 재질로 제작

3. 또 다른 대안으로 바퀴 축 샤프트 양끝에 너트로 조일수 있도록 나사산을 만들어 너트로 조여 유격을 줄여 해결 함.

5. 문제에 대한 해결 (2차) - 구동 축 재 가공

1. 기존 바퀴 안쪽에 핀을 체결한 방식(안쪽에 핀을 고정한 다음 축을 고정할 방법이 없음)에서 바깥쪽으로 유격 잡는용 베어링을 삽입하여 니들핀으로 고정 후 나사산을 만든 양쪽 봉 끝에 와셔를 끼우고 너트로 조여서 고정. 바퀴 안쪽은 기존 고정 기구물로 사용.

5. 문제에 대한 해결 (2차)

1. 바퀴 바깥쪽에 구동 축을 고정시킬 베어링

2. 바퀴 안쪽에 구동 축을 고정시킬 기존 기구물

5. 문제에 대한 해결 (2차)

1. 기존에 제작한 베어링에서 체결 홀을 치수에 맞게 재 제작

5. 문제에 대한 해결 (2차)

1. 사진과 같이 철판을 장착할 것이며 화살표 표시한 곳에 제작 봉을 반대편과 연결하여 너트로 조여서 고정 할 예정. 270mm ← 6mm → 20mm **◆** → 20mm ← 나사산 작업 나사산 작업

5. 문제에 대한 해결 (2차) – 구동 축 Assembly

5. 문제에 대한 해결 (2차) – 실제 장착 사진

