Linear Algebra

Vector Spaces and Subspaces

The Nullspace of A: Solving Ax = 0

충남대학교 컴퓨터공학과 이만호

Nullspace of A in Ax = 0

- Solving Ax = 0, where A is mxn matrix
 - If A is invertible, then x = 0 is the unique solution.
 - If A is not invertible, then there are many nonzero solutions.
- Definition : nullspace of A (notation N(A))
 - -N(A): set of all solutions to Ax = 0
 - -N(A): vector space
 - -N(A): subspace of \mathbb{R}^n (cf. C(A): subspace of \mathbb{R}^m) Suppose $x, y \in N(A)$.
 - $\Rightarrow Ax = 0, Ay = 0$
 - $\Rightarrow A(x + y) = Ax + Ay = 0, A(cx) = cAx = 0$
 - $\Rightarrow x + y \in N(A), cx \in N(A)$
 - \Rightarrow N(A) : subspace

Nullspace of A – Example 1

• Example : x + 2y + 3z = 0

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

- $-A = [1 \ 2 \ 3] : 1x3 \text{ matrix.}$
- $-(0,0,0) \subseteq \{ \text{ solutions of } Ax = 0 \} : \text{ trivial solution.}$
 - Are there other solutions? Yes. Can you answer for example?
- Solutions of Ax = 0, N(A), is a subspace of \mathbb{R}^3 . Why?
- Solutions of Ax = [6], is not a subspace of \mathbb{R}^3 . Why?

Nullspace of A – Example 2

• Example: nullspace of $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ in Ax = 0

$$\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{\text{Elimination}} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies x_1 + 2x_2 = 0$$

- Choose any one special solution : $\mathbf{s} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$
 - For convenience, choose components as 1 or 0.
- Span of $\{s\} = \{cs\}$: linear combinations of s

$$c\mathbf{s} = c \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2c \\ c \end{bmatrix} \implies (-2c) + 2(c) = 0 \implies c\mathbf{s} : \text{solution}$$

- \Rightarrow Span of { s }: nullspace of A = N(A). Why?
- * The nullspace consists of all combinations of the special solutions. (span of the special solutions)

N(A): Span of Special Solutions – Ex

- Example: x + 2y + 3z = 0 \Rightarrow $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$ 2 special solutions: $s_1 = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$, $s_2 = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$ Chosen specially $\Rightarrow N(A)$: span of $\{s_1, s_2\}$
- Example: $\begin{cases} x_1 + 2x_2 = 0 \\ 3x_1 + 8x_2 = 0 \end{cases} \Rightarrow \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} : A\mathbf{x} = \mathbf{0}$ $\begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix} \xrightarrow{\text{Elimination}} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \Rightarrow N(A) = \{ \mathbf{0} \}$ $\begin{bmatrix} x_1 + 2x_2 = 0 \\ 2x_2 = 0 \end{bmatrix}$ $B = \begin{bmatrix} A \\ 2A \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 2 & 4 \\ 6 & 16 \end{bmatrix} \xrightarrow{\text{Elimination}} \begin{bmatrix} 1 & 2 \\ 3 & 8 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow N(B) = N(A) = \{ \mathbf{0} \}$

Extra rows/equations

Free/Pivot Variable

- Variables can be divided into two groups
 - Free variable : column without pivot
 - Pivot variable : column with pivot

$$C = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix} \Rightarrow U = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix} \Rightarrow Ux = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
Pivot columns Free columns

Pivot variables: x_1, x_2 Free variables: x_3, x_4

Choose 2 special solutions
$$\begin{cases} s_1 : x_3 = 1, x_4 = 0 \implies x_1 = -2, x_2 = 0 \\ s_2 : x_3 = 0, x_4 = 1 \implies x_1 = 0, x_2 = -2 \end{cases}$$

The pivot variables x_1, x_2 are determined by Ux = 0

$$\mathbf{s}_1 = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{s}_2 = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 1 \end{bmatrix}$$

N(A): span of $\{s_1, s_2\}$ Why?

Reduced Row Echelon Form

- Reduced Row Echelon Form (rref)
 - 1. Produce zeros below the pivots, by eliminating downward.
 - 2. Produce zeros above the pivots, by eliminating upward.
 - 3. produce ones in the pivots, by dividing the whole row by its pivot
- Example

$$A = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16 \end{bmatrix} \Rightarrow U = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 0 & 2 & 0 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix} = R$$

$$\mathbf{s}_1 = \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix}, \quad \mathbf{s}_2 = \begin{bmatrix} 0\\-2\\0\\1 \end{bmatrix}$$

Finding special solutions is much easier.

Solving Ax = 0 by Elimination

- Solving Ax = 0 by elimination where A : mxn matrix (rectangular)
 - 1. Forward elimination from A to a U or R = rref(A)
 - 2. Back substitution in Ux = 0 or Rx = 0 to find x
 - # When m < n and a column doesn't have no pivot, go on to the next column.
- Note:
 - N(A) = N(U) = N(R) = N(rref(A))
 - If $N(A) = \mathbf{Z} = \{ \mathbf{0} \},$
 - Columns of *A* are independent.
 - All columns have pivots.
 - No columns are free.

Column without Pivot - Example 1

• Example: 3x4 matrix with 2 pivots

$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 2 & 8 & 10 \\ 3 & 3 & 10 & 13 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 4 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} x_1 + x_2 & + x_4 = 0 \\ x_3 + x_4 = 0 \end{cases}$$

pivot variable: x_1, x_3

free variable: x_2, x_4

Choose special solutions $\begin{cases} s_1 : x_2 = 1, x_4 = 0 & \text{then } x_1 = -1, x_3 = 0 \\ s_2 : x_2 = 0, x_4 = 1 & \text{then } x_1 = -1, x_3 = -1 \end{cases}$

$$\Rightarrow s_1 = \begin{bmatrix} -1 & 1 & 0 & 0 \end{bmatrix}^T, \quad s_2 = \begin{bmatrix} -1 & 0 & -1 & 1 \end{bmatrix}^T$$

N(A): subspace spanned by $\{s_1, s_2\}$

Complete solution:

Since x_2, x_4 are free variables,

$$x = x_2 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -x_2 - x_4 \\ x_2 \\ -x_4 \\ x_4 \end{bmatrix}$$
 Linear combination of special solutions

Column without Pivot - Example 2

• Example : nullspace of $U = \begin{bmatrix} 1 & 5 & 7 \\ 0 & 0 & 9 \end{bmatrix}$

$$U = \begin{bmatrix} 1 & 5 & 7 \\ 0 & 0 & 9 \end{bmatrix} \implies R = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{pivot variable : } x_1, x_3$$
 free variable : x_2

Choose special solution $s: x_2 = 1$ then $x_1 = -5, x_3 = 0$

$$\Rightarrow s = \begin{bmatrix} -5 & 1 & 0 \end{bmatrix}^T$$

N(U): subspace spanned by $\{s\}$

Complete solution : N(U)

Since x_2 is a free variable,

$$x = x_2 \begin{bmatrix} -5\\1\\0 \end{bmatrix}$$
 Linear combinations of special solutions
Line in \mathbb{R}^3

Forward Elimination for Echelon Matrices

- Forward elimination for Echelon Matrices goes from A to U
 - By row operations including row exchanges
 - Go on to the next column when no pivot is available in the current column
- Form of echelon matrix (4x7)

$$U = \begin{bmatrix} p_1 & x & x & x & x & x & x \\ 0 & p_2 & x & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & p_3 & x \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 pivot variables: x_1, x_2, x_6 free variables: x_3, x_4, x_5

free variables: x_3, x_4, x_5, x_7

Column Space and Nullspace of Echelon Matrix

$$U = \begin{bmatrix} p_1 & x & x & x & x & x & x & x \\ 0 & p_2 & x & x & x & x & x \\ 0 & 0 & 0 & 0 & 0 & p_3 & x \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 pivot variables: x_1, x_2, x_6 free variables: x_3, x_4, x_5, x_7

- Column space, C(U): subspace of \mathbb{R}^4
 - Columns have 4 components.
 - 4th component of every column is 0.

$$\Rightarrow$$
 $C(U) = \{ [b_1 \ b_2 \ b_3 \ 0]^T | b_1, b_2, b_3 \in \mathbf{R} \}$

- Nullspace, N(U): subspace of \mathbb{R}^7
 - Free variables : x_3 , x_4 , x_5 , x_7
 - Choose 4 set of special values of free variables: set one free variable to 1 and set the others 0
 - For each set of special values of free variables, solve Ux = 0 for the pivot variables $x_1, x_2, x_6 \Rightarrow$ we get 4 special solutions, s_1, s_2, s_3, s_4 .
 - N(U): subspace spanned by $\{s_1, s_2, s_3, s_4\}$

Remarks on Ax = 0

- When A: $m \times n$ matrix, m < n
 - There is at least (n-m) free variables.
 - There are at least (n-m) special solutions, s_1, s_2, \dots, s_{n-m}
 - Special solutions are not **0**, i.e. nontrivial solutions.
 - N(A): subspace spanned by $\{s_1, s_2, \dots, s_{n-m}\}$
 - Dimension of N(A): the number of free variables $\geq n-m$
- When m < n, dimension of N(A) in \mathbb{R}^n ?
 - If there is no free variable, dimension of $N(A) = \frac{2}{3}$
 - If there is 1 free variable, dimension of $N(A) = \frac{1}{2}$
 - If there are 2 free variables, dimension of $N(A) = \frac{1}{2}$

Reduced Row Echelon Matrix R

- Getting Reduced Row Echelon Form (rref)
 - 1. Produce zeros below the pivots, by eliminating downward.
 - Row exchanges may be required.
 - We get echelon matrix *U*.
 - 2. Produce zeros above the pivots, by eliminating upward.
 - 3. produce ones in the pivots, by dividing the whole row by its pivot

$$R = \text{rref}(A) = \begin{bmatrix} 1 & 0 & x & x & x & 0 & x \\ 0 & 1 & x & x & x & 0 & x \\ 0 & 0 & 0 & 0 & 1 & x \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{pivot variables} : x_1, x_2, x_6$$

$$\text{free variables} : x_3, x_4, x_5, x_7$$

$$R = \operatorname{rref}(A)$$
 – Example

• Example: 3x4

$$A \Rightarrow U = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$$
 Pivot variables: x_1, x_3 Free variables: x_2, x_4

Choose 2 special solutions $\begin{cases} s_1 : x_2 = 1, x_4 = 0 \implies x_1 = -1, x_3 = 0 \\ s_2 : x_2 = 0, x_4 = 1 \implies x_1 = -1, x_3 = -1 \end{cases}$

N(A) = N(U) = N(R): all linear combinations of the special solutions Complete solution:

Since x_2 , x_4 are free variables,

$$\boldsymbol{x} = x_2 \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -1\\0\\-1\\1 \end{bmatrix}$$

Invertible Matrix *A* and rref(*A*)

- If A is invertible,
 - -A is $n \times n$ square matrix.
 - rref(A) is the identity matrix, i.e. R = I
 - $-N(A)=\mathbf{Z}$

Question?