TÉLÉCHARGER EN PDF

SITUATION

On peut calculer l'aire sous la courbe représentative d'une fonction f à l'aide d'un calcul d'intégrales.

ÉNONCÉ

Soit f la fonction définie sur $\mathbb R$ par :

$$f\left(x\right) = x^3$$

Dans un repère orthonormal où une unité d'aire représente 4 cm², on trace la courbe représentative de la fonction f. Calculer l'aire de la zone hachurée.

ETAPE 1

Exprimer l'aire que l'on veut calculer

On détermine la fonction f et les réels a et b tels que l'aire à calculer soit celle de la surface comprise entre la courbe $\,C_f$, l'axe des abscisses et les droites d'équation $\,x=a\,$ et $\,x=b\,$.

APPLICATION

On cherche à déterminer l'aire de la surface comprise entre $\,C_f$, l'axe des abscisses et les droites

d'équation
$$x=-2$$
 et $x=1$.

ETAPE 2

Déterminer le signe de f sur [a;b]

On détermine le signe de f sur $\left[a;b
ight]$. On peut l'obtenir grâce à la position de $\left.C_f\right.$ par rapport à l'axe des abscisses si la représentation graphique est donnée par l'énoncé.

APPLICATION

La courbe est située :

- ullet En dessous de l'axe des abscisses sur [-2;0]
- ullet Au-dessus de l'axe des abscisses sur [0;1]

Ainsi, f est négative sur $\left[-2;0\right]$ et positive sur $\left[0;1\right]$.

ETAPE 3

Exprimer l'aire en fonction d'une intégrale

Trois cas se présentent :

- ullet Si f est positive sur $\left[a;b
 ight]$, alors $A=\int_{a}^{b}f\left(x
 ight)\,\mathrm{d}x$.
- Si f est négative sur $\left[a;b
 ight]$, alors $A=-\int_{a}^{b}f\left(x
 ight)\,\mathrm{d}x$.
- ullet Si f change de signe sur [a;b] , on utilise la relation de Chasles pour obtenir plusieurs intégrales vérifiant l'un des deux premiers cas.

APPLICATION

f étant négative sur $\left[-2;0\right]$ et positive sur $\left[0;1\right]$, on a :

$$A = -\int_{-2}^{0} f\left(x
ight) dx + \int_{0}^{1} f\left(x
ight) dx$$

On remplace *f* par son expression :

$$A = -\int_{-2}^{0} x^3 dx + \int_{0}^{1} x^3 dx$$

ETAPE 4

Calculer les intégrales

On calcule la ou les intégrale(s) nécessaire(s). On peut alors conclure quant à la valeur de A. Cette valeur est exprimée en unités d'aire (u.a.).

APPLICATION

Une primitive de
$$x \longmapsto x^3$$
 sur \mathbb{R} est $x \longmapsto \frac{x^4}{4}$.

On a donc:

$$A=-\left[rac{x^4}{4}
ight]_{-2}^0+\left[rac{x^4}{4}
ight]_0^1$$

$$A = -\left(\frac{0^4}{4} - \frac{(-2)^4}{4}\right) + \left(\frac{1^4}{4} - \frac{0^4}{4}\right)$$

$$A = \frac{16}{4} + \frac{1}{4} = \frac{17}{4}$$

A vaut donc $\frac{17}{4}$ u.a..

ETAPE 5

Donner l'aire dans l'unité demandée

Si l'énoncé le demande, on peut donner l'aire en centimètres carrés. Pour cela, grâce à l'échelle du graphique, on donne l'aire en centimètres carrés du carreau correspondant à une unité en abscisse et une unité en ordonnée. Si cette aire vaut n cm², alors 1 u.a. vaut n cm².

I

Ainsi, si A=k u.a., on a alors A=k imes n cm 2 .

APPLICATION

Comme 1 u.a. vaut 4cm², on a finalement :

$$A=rac{17}{4} imes 4=17$$
 cm 2

Sommaire

- 1 Exprimer l'aire que l'on veut calculer
- 2 Déterminer le signe de f sur [a;b]
- 3 Exprimer l'aire en fonction d'une intégrale
- Calculer les intégrales
- **5** Donner l'aire dans l'unité demandée

