Week 8

Al Seminar Series

Use-case jupyternotebooks

Credit: Slides from Andrew Ng's Coursera ML Course: lecture 13

Supervised learning

Training set: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),(x^{(3)},y^{(3)}),\dots,(x^{(m)},y^{(m)})\}$

Unsupervised learning

Training set: $\{x_{-}^{(1)}, x_{-}^{(2)}, x_{-}^{(3)}, \dots, x_{-}^{(m)}\}$

Applications

K-means algorithm

Input:

- *K* (number of clusters)
- κ (number of clusters) Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

K-means algorithm Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$ Repeat 1 Cluster for i = 1 to m $c^{(i)} := index (from 1 to <math>K)$ of cluster centroid closest to $x^{(i)}$ $c^{(i)} := index (from 1 to <math>K$) of cluster centroid closest to $x^{(i)}$ Repeat { for k = 1 to K $\Rightarrow \mu_k := \text{average (mean) of points assigned to cluster } k$ $\mu_2 = \frac{1}{4} \left[\chi^{(i)} + \chi^{(i)} + \chi^{(i)} + \chi^{(i)} \right] \in \mathbb{R}^n$

K-means optimization objective

- $\rightarrow c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned
- K ke {1,3, ~ k} $\rightarrow \mu_k$ = cluster centroid k ($\mu_k \in \mathbb{R}^n$)
 - $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned $x^{(i)} \rightarrow 5$ $x^{(i)} = x^{(i)}$

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{c^{(1)}, \dots, c^{(m)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

$$p_{i, \dots, \mu_K}$$

$$Distortion$$

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

Silhouette Score

sklearn.metrics.silhouette_score

sklearn.metrics.silhouette_score(X, labels, *, metric='euclidean', sample_size=None, random_state=None, **kwds) [source]

Compute the mean Silhouette Coefficient of all samples.

The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster distance (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a, b). To clarify, b is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficient is only defined if number of labels is 2 <= n_labels <= n_samples - 1.

This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use silhouette_samples.

The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar.

Use-cases

Inputs

- > What topics would you like to see more working examples?
- > Ideas/presentation on projects?
- > What topics could be covered in coming class?
- > Any ML work you are currently leveraging in your project?