Lossless Challenge DPCM 符号化を用いた画像圧縮

17005 荒木田祥 17096 中島雅己

1. はじめに

今回一からプログラムを作るのは困難だったため、あらかじめ用意したプログラムに内容を加えることにした。元のプログラムは画像をそのままエントロピー符号化するというものだった。今回作成したエンコーダーでは画像に対して DPCM 符号より相関除去をし、エントロピー符号化を行った。

2. DPCM 符号

このプログラムはラスタースキャン順で走査しておりその走査対象画素の画素値をxと置く、また、周辺画素の画素値a,b,cを右図のように置く、画像には空間的な連続性に起因する冗長性があるのでc-bとx-aの画素値はそれぞれ0に近い値をとる可能性が高い、よって予測値を P_x と置くと、次式のように予測できる.

図1,注目画素と参照画素

$$P_x = a + (c - b) = a + c - b$$

 P_x は予測であるのでそれに対するずれが発生する.この予測誤差をEと置くと次式のように表せる.

$$E = x - P_x$$

この E を符号化する. 画像全体で考えると E の出現確率分布が 0 付近に急峻的な分布となり冗長性が高くなる. よってエントロピー符号化した際に符号量が小さくなる. この相関除去方法が DCPM 符号である.

3. 結果

図2にDPCM 符号を用いた予測の例(ここでは Baboon を例にとる)を示す.

表1に符号化レートの比較を示す.

(a) 元画像 (Baboon)

(b) DPCM 符号化画像 (Baboon)

図 2, DPCM 符号を用いた予測の例 (Baboon)

表 1 符号化レートの比較 (bits/pel)

Image	エントロピー 符号化のみ	DPCM 符号化	JPEG-LS [1]
Camera	7.046	5.163	4.314
Couple	6.455	4.450	3.699
Noisesquare	5.786	6.300	5.683
Airplane	6.723	4.542	3.817
Baboon	7.369	6.619	6.037
Lena	7.605	5.235	4.607
Lennagrey	7.459	4.887	4.238
Peppers	7.603	5.389	4.513
Shapes	6.755	2.040	1.214
Balloon	7.354	3.576	2.904
Barb	7.562	5.534	4.691
Barb2	7.495	5.565	4.686
Goldhill	7.541	5.080	4.477
Average	7.135	4.952	4.222

参考文献

[1]ISO/IEC,14495-1:1999, "Information technology-lossless and near-lossless compression of continuous-tone still images: baseline," Dec.1999.