#### CS325 - HW1

```
1) Using limit method
```

-

- a. f(n) is O(g(n))
- b. f(n) is  $\Theta(g(n))$
- c. f(n) is O(g(n))
- d. f(n) is O(g(n))
- e. f(n) is O(g(n))
- f. f(n) is  $\Omega(g(n))$
- g. f(n) is  $\Theta(g(n))$
- h. f(n) is  $\Omega(g(n))$

2)

a. 
$$0+1+2+3+4+...+n-1$$

$${n(n+1)}/2 => sum notation$$

Then

Then O(n^2) notation

b. 
$$I = 2, 2^2, 2^4, 2^8 ...$$

Total = 1, 2, 3, 4 ...

So, 
$$O(log(log(n)))$$

c. 1st loop => 
$$\frac{1}{2}$$
 \* n

2nd loop => m

3rd loop => n\*m

Then add all loop statement =  $O(\frac{1}{2}n + m + mn)$  then = O(mn)

3) see the attached files

4)

a) See the attached files

# b) insertTime.py

| n        | time                     |
|----------|--------------------------|
| n: 5000  | time: 0.9941917260487875 |
| n: 10000 | time: 3.9892350832621255 |
| n: 15000 | time: 9.489851474761963  |
| n: 20000 | time: 17.035858154296875 |
| n: 25000 | time: 25.706602255503338 |
| n: 30000 | time: 37.78681135177612  |
| n: 35000 | time: 51.21909252802531  |
| n: 40000 | time: 66.56304383277893  |
| n: 45000 | time: 84.59582694371541  |
| n: 50000 | time: 104.73469376564026 |

# MergeTime.py

| n        | time                      |
|----------|---------------------------|
| n: 5000  | time: 0.02212969462076823 |
| n: 10000 | time: 0.04770596822102865 |
| n: 15000 | time: 0.07779479026794434 |
| n: 20000 | time: 0.10632705688476562 |
| n: 25000 | time: 0.133196751276652   |
| n: 30000 | time: 0.15685105323791504 |
| n: 35000 | time: 0.1953125           |
| n: 40000 | time: 0.22485836346944174 |
| n: 45000 | time: 0.2595655918121338  |

| n: 50000 | time: 0.2883426348368327 |
|----------|--------------------------|
|          |                          |

# c) INSERTION SORT PLOT









### d) combine



e) Comparison – How does your experimental running times compare to the theoretical running times of the algorithms?

In theoretical merge sort has O(n \* log(n)) notation but insertion sort has  $O(n^2)$  notation. So, in theory, merge sort is faster than insertion sort. Also, in experimental running times, merge sort is faster than insertion sort as seen above the graph.