MA2108S Homework 6

Tan Yee Jian

April 3, 2020

1. Proof. For the sake of contradiction, assume that

 $\forall d > 0, \rho(x, y) < d \text{ for all } x \in E \text{ and all } y \in F$

.

Then let

$$\rho(x_1, y_1) < 1$$

$$\rho(x_2, y_2) < \frac{1}{2}$$

 $\rho(x_n, y_n) < \frac{1}{n}$

Since E is compact, then the sequence $(x_n)_{n=1}^{\infty}$ has a convergent subsequence, $(x_{n_k})_{k=1}^{\infty}$, converging to a certain $x \in E$. We claim that $(y_{n_k})_{k=1}^{\infty}$ is also convergent to x. If this is true, then since F is closed, we have also $x \in F$. This then implies that

$$x \in (E \cap F) \iff (E \cap F) \neq \emptyset$$

, a contradiction.

To prove that $(y_{n_k})_{k=1}^{\infty}$ is convergent: let ϵ be given. Then since $(x_{n_k})_{k=1}^{\infty}$ is convergent,

$$\exists N_1 \in \mathbb{N} \text{ such that } \rho(x_{n_k}, x) < \frac{\epsilon}{2} \text{ for any } n_k > N_1$$

.

Also, we can choose N_2 such that $\frac{1}{N_2} < \frac{\epsilon}{2} \iff N_2 > \frac{2}{\epsilon}$, which implies

$$\rho(x_{n_k}, y_{n_k}) < \frac{1}{n_k} \le \frac{1}{N_2} < \frac{\epsilon}{2}$$

.

Taking $N = \max\{N_1, N_2\}$, we have for any $n \geq N$,

$$\rho(y_{n_k}, x) \le \rho(y_{n_k}, x_{n_k}) + \rho(x_{n_k}, x) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

which shows that $\lim_{k\to\infty} y_{n_k} = x$.

2. (a) *Proof.* For any $\epsilon > 0$, we can choose $\delta < \frac{\epsilon}{C}$, and thus for any $x, y \in M_1$,

$$\rho_1(x,y) < \delta < \frac{\epsilon}{C} \implies$$

$$\rho_2(f(x), f(y)) \le C\rho_1(x,y)$$

$$< C(\frac{\epsilon}{C})$$

$$= \epsilon$$

F is uniformly continuous.

(b) *Proof.* We use the fact that g is uniformly continuous: take any $\epsilon > 0$, (for example $\epsilon = 1$), then there is a $\delta > 0$ such that

$$|x - y| < \delta \implies |q(x) - q(y)| < \epsilon$$

.

I choose $r=\delta$, then we try to find C. If $|x-y|\geq r$, then we can select (n-1) "jumping points" from x to y in intervals of $\delta/2$, such that between two consecutive points, it can satisfy the uniform continuity. That is, without loss of generality, assume x< y, then we select $x, (x+\frac{\delta}{2}), \ldots, (x+(n-1)\frac{\delta}{2}), y$, where $(n-1)\frac{\delta}{2}<|x-y|$ and $\frac{n\delta}{2}\geq |x-y|$. By triangle inequality, we have

$$|g(x) - g(y)| \le |g(x) - g(x + \frac{\delta}{2})| + |g(x + \frac{\delta}{2}) - g(x + \frac{2\delta}{2})| + \dots + |g(x + \frac{(n-1)\delta}{2}) - g(y)|$$

Since each of the terms are at most $\frac{\delta}{2}$ apart, and we have

$$(n-1)\frac{\delta}{2} < |x-y| \implies n < \frac{2|x-y| + \delta}{\delta}$$

Thus

$$|g(x) - g(y)| < n\epsilon$$

 $< (\frac{2|x - y| + \delta}{\delta})\epsilon.$

Since $\delta = r \le |x - y|$,

$$\begin{split} |g(x) - g(y)| &< (\frac{2|x - y| + \delta}{\delta})\epsilon \\ &\le (\frac{2|x - y| + |x - y|}{\delta})\epsilon \\ &= (\frac{3\epsilon}{\delta})|x - y| \end{split}$$

and there we have it, $C = \frac{3\epsilon}{\delta}$.

3. Proof. Yes, a uniformly convergent sequence of uniformly continuous function would converge to a uniformly continuous function, and I will show that using the "famous" $\epsilon/3$ argument.

Let $\epsilon > 0$ be given. Then we want to show that

$$\rho_2(f(x), f(y)) \le \rho_2(f(x), f_n(x)) + \rho_2(f_n(x), f_n(y)) + \rho(f_n(y), f(y))$$

$$< \epsilon$$

Using the given ϵ , the uniform convergence of $(f_n)_{n=1}^{\infty}$ gives us $N \in \mathbb{N}$ where

$$\forall x \in M_1, \rho_2(f(x), f_n(x)) < \epsilon/3.$$

And similarly, using the given ϵ again, the uniform continuity of $f: M_1 \to M_2$ gives us $\delta > 0$ such that

$$\rho_1(x,y) < \delta \implies \rho_2(f_n(x), f_n(y)) < \epsilon/3.$$

Therefore,

$$\rho_2(f(x), f(y)) \le \rho_2(f(x), f_n(x)) + \rho_2(f_n(x), f_n(y)) + \rho(f_n(y), f(y))$$

$$< \epsilon/3 + \epsilon/3 + \epsilon/3$$

$$= \epsilon$$

 $\therefore f$ is uniformly continuous on M_1 .