Ayudantía 2 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

21 de marzo de 2023

Problema 1. Clasifique, módulo isomorfismo, todos los grupos de orden primo.

Indicación: Considere un elemento $x \in G$ grupo de orden primo y use el teorema de Lagrange en $\langle x \rangle$. Muestre que todo par de grupos cíclicos del mismo orden son isomorfos.

Teorema (Pequeño teorema de Fermat). Si $p \in \mathbb{Z}$ es un número primo entonces $a^p \equiv a \pmod{p}$ para todo $a \in \mathbb{N}^{\geq 1}$.

Problema 2. Demuestre el pequeño teorema de Fermat utilizando el teorema de Lagrange en el grupo multiplicativo $(\mathbb{Z}/p\mathbb{Z})^{\times}$ con p primo.

Problema 3. Sea G un grupo y $H \leq G$ un subgrupo normal. Demuestre que:

- 1. Si G es de tipo finito (o finitamente generado) entonces G/H es de tipo finito.
- 2. Si H y G/H son de tipo finito, entonces G es de tipo finito.

Problema 4. Sea G un grupo, $H \subseteq G$ subgrupo normal y $K \subseteq G$ subgrupo.

- 1. Muestre que si K es también normal en G y $K \leq H$, entonces se tiene un isomorfismo $(G/K)/(H/K) \cong G/H$.
- 2. Muestre que HK es un subgrupo de G y que HK = KH.
- 3. Demuestre que H es normal en HK y que $K/(K \cap H) \cong (HK)/H$.

Problema 5. Sea G grupo finito y H, K subgrupos de G con H normal y tales que |K| y [G:H] son primos relativos. Demuestre que H está contenido en K.