3 网络管理

KUROSE ROSS

Computer Networking: A Top Down Approach 6th edition lim Kurose, Keith Ross Addison-Wesley

> 网络管理 3 -1

2021中科大高网

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:01D
 - 语法: ASN. 1
 - 传输编码: BER
 - SNMP: 互联网网络管理协议
 - 安全性

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:01D
 - 语法: ASN. 1
 - 传输编码: BER
 - SNMP: 互联网网络管理协议
 - 安全性

3 - 2

2021中科大高网

网络管理的必要性

- ❖ 机构网络的现状
 - 设备数量多: 几百台
 - 设备种类多:链路、交换机、路由器、主机、协议等
- ❖ 出现问题很正常
 - 设备本身故障
 - 配置问题
 - 对资源 (例如链路带宽) 过度使用
- ❖ 网络管理的必要性
 - 协助网管定位和解决问题
 - 提前发现问题, 预警

设备管理的现实例子

- ❖ 飞机控制室、DCS控制系统
- ❖ 设备管理的功能
 - 监测系统各部件的运行状态 (输入)
 - 管理人员查询设备(查询, 定期)
 - 设备在异常时主动上报
 - 根据状态和目标,干涉系统的运行,发出执行动作(输出)
- ❖ 最终目的: 监控各设备运行状态, 保证系统的正 常运行

网络管理 3-5

2021中科大高网

早期互联网的网络管理

- ❖ 人工ping设备,判断问题
- ❖ 远程电话让同事帮忙
- ❖ 自己去解决问题

希望网络管理达到的目标

- ❖ 监测网络(各部件)的运行状态
- ❖ 故障时异常时报警
- ◆允许管理人员干涉系统的运行(重启、配置参数等)
- ❖ 自动、远程

羽络管理 3-6

2021中科大高网

网络管理的功能举例

- ❖ 检测主机或路由器的网卡故障 (网卡发去的帧错误增加)
- ❖ 自动监测主机的活跃程度;
- ❖ 监测流量:
 - 某网段的流量增加,可以将服务器迁到另一个网段
 - 某网段的流量超过阈值,在用户感知之前,升级带宽
- ❖ 路由表格的快速变化,配置问题,在网络发生问题前发现并 修复。
- ❖ SLA监测: 掉线率, 延迟, 吞吐量,达到下限报警
- ❖ 入侵检测:攻击行为,检测和报警;

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:01D语法: ASN.1传输编码: BER
 - SNMP:互联网网络管理协议
 - 安全性

网络管理 3-9

2021中科大高网

网络管理的定义

❖ 网络管理包括了硬件、软件和人类元素的设置、综合和协调,以便监测、测试、轮询、配置、分析、评价和控制网络和网元资源,用合理的成本满足实时性、运行能和服务质量的要求

网络管理的5大功能

- ❖ 性能管理:
 - 性能(利用率、吞吐量)量化、测量、报告、分析和控制不同网络 部件的性能
 - 涉及到的部件: 单独部件(网卡,协议实体),端到端的路径
- ❖ 故障管理:记录、检测和响应故障:
 - 性能管理为长期监测设备性能
 - 故障管理: 突然发生的强度大的性能降低, 强调对故障的响应
- ❖ 配置管理: 跟踪设备的配置, 管理设备配置信息
- ❖ 账户管理: 定义、记录和控制用户和设备访问网络资源
 - 限额使用、给予使用的收费,以及分配资源访问权限
- ❖ 安全管理: 定义安全策略, 控制对网络资源的使用

网络管理 3-10

2021中科大高网

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:01D
 - 语法: ASN. 1
 - 传输编码: BER
 - SNMP:互联网网络管理协议
 - 安全性

网络管理的实质

- ❖ 实质: 远程(分布式)监测(查询、定期上报, 以及异常异步报告)和控制
- ❖实例:集团和分支机构

■ 分支定期报告,产量等信息;

■ 分支主动报告异常;

■ 总部问分支:上报信息(指标)

■ 总部发出指令, 让分支动作; }

分支向总部报告: 主动或被动

总部向分支: 发出指令

网络管理 3-13

2021中科大高网

网络管理体系结构

网络管理体系结构

- ❖ 管理实体: 在NOC网络管理工作站上的应用程序(老板)
 - 执行网络管理动作: 收集、处理、分析、显示
- ❖ 被管设备: 主机、路由器、交换机、打印机、modem (分支机构)
 - 被管设备包括若干被管对象
 - 硬件的一个部分(网卡)
 - 某些硬件或软件的配置参数集合(RIP路由协议)
 - 被管对象的信息收集在:管理信息库MIB中
 - 被管设备中驻留**网络管理代理agent,**与管理实体通信,在被管设 备上**执行本地动作**
- ❖ 网络管理协议
 - 在管理实体和被管设备之间
 - 允许实体查询设备的信息,报告异常事件
 - 通过代理对设备间接地采取动作

网络管理 3-14

2021中科大高网

目前已有的网络管理协议

◆ OSI: CMISE/CMIP

❖ 互联网: SNMP

■ SNMP仅仅是互联网网络管理体系中的一个组成部分

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:01D
 - 语法: ASN. 1
 - 传输编码: BER
 - SNMP: 互联网网络管理协议
 - 安全性

网络管理 3-17

2021中科大高网

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:01D
 - 语法: ASN. 1
 - 传输编码: BER
 - SNMP:互联网网络管理协议
 - 安全性

• 被管设备需要管理和维护的信息: 被管对象

网管需要解决的问题

* 需要监视和控制被管设备的什么信息

- 例如: 到目前为止接收到的错误分组个数, 系统的描述信息等
- 相关被管对象形成:模块
- 被管设备中的被管模块形成本地存储: MIB库
- ❖ 被控信息什么形式进行定义和传输
 - 数据定义语言: SMI
 - MIB库中的所有对象和模块采用SMI (ASN. 1) 定义
 - BER: 定义的被管对象和模块采用BER转换成标准码流进行数据交换
- ❖ 什么格式和时机进行管理信息的交换: SNMP协议

SNMP协议和MIB、SMI相互独立 便于独立演化

网络管理 3-18

被管对象的属性

2021中科大高网

上下了人民,「生」 从最小的对象属性开始; SMI的3个组成:

❖ 名字: 一个唯一的标示

如何标示, 如何定义, 以及如何编码

- MIB库由一堆对象构成,每个对象需要一个唯一标示
- 需要一个标示方法, SMI的内容之一
- ❖ 语法:
 - 定义对象的数据类型 (整数,字符串……).
 - ASN. 1的子集和超集
- ❖编码方法: BER, 定义编码从而在网络上进行传输

root (unamed)

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI: 管理信息结构
 - 命名:01D
 - 语法: ASN. 1
 - 传输编码: BER
 - SNMP: 互联网网络管理协议
 - 安全性

网络管理 3-21

2021中科大高网

对象标识树

对象的命名: OID和OID树

❖ 平面命名: 重名(命名或者编号). 不便于管理, 也不携带对象之间的关 mu 系=>层次命名: 像域名空间

❖ 一个对象的标示符 (对象ID)唯一确定 了在MIB层次结构中的一个被管对象

❖ 层次: 一棵树, 根不命名, 一层层分 配命名(有对应标号)

❖ 01D: 一个对象可以用从树根到树叶的 节点名字(或者数字)来标示

• iso. org. dod. internet. mgmt. mib <=>1. 3. 6. 1. 2. 1

❖ MIB库就是一个按照层次组织起来的 OID集合

■ 定义了被管对象的属性

mgmt 2

网络管理 3-22

SNMP MIB

2021中科大高网

MIB模块被SMI规范 **MODULE-IDENTITY**

(100 标准MIBs, 更多生产厂商的规范)

对象 构成组 (组+对象) 构成 模块

一些标准模块 形成:MIB库

MIB-I

- ❖ MIB-I是一个标准模块, 1988提出(RFC1156 and RFC1212)
- ❖ 定义了100个被管对象
- ❖定义了8个对象组(group)
 - system object group (1.3.6.1.2.1.1)
 - Interface object group (1.3.6.1.2.1.2)
 - Address translation object group (1.3.6.1.2.1.3)
 - IP object group (1.3.6.1.2.1.4)
 - ICMP object group (1.3.6.1.2.1.5)
 - TCP object group (1.3.6.1.2.1.6)
 - UDP object group (1.3.6.1.2.1.7)
 - EGP object group (1.3.6.1.2.1.8)

网络管理 3-25

2021中科大高网

MIB-II

- ❖ 1990定义 (RFC 1158 and RFC 1213)
- ❖11个对象组、包含171对象
 - MIB-1的超集
 - 定了一些SNMPv2所需要的功能性
- ❖ MIB-II中的新对象组
 - Transmission object group (1.3.6.1.2.1.10)
 - SNMP object group (1.3.6.1.2.1.11)

MIB例子: UDP模块

Object ID	Name	Туре	Comments
1.3.6.1.2.1.7.1	UDPInDatagrams	Counter32	total # datagrams delivered
			at this node
1.3.6.1.2.1.7.2	UDPNoPorts	Counter32	# underliverable datagrams:
			no application at port
1.3.6.1.2.1.7.3	UDInErrors	Counter32	# undeliverable datagrams:
			all other reasons
1.3.6.1.2.1.7.4	UDPOutDatagram	s Counter32	# datagrams sent
1.3.6.1.2.1.7.5	udpTable	SEQUENCE	one entry for each port
			in use by app, gives port #
			and IP address

网络管理 3-26

2021中科大高网

MIB对象细节

- ❖ 关键对象组(不包括其他5个对象组)
 - System Group 1.3.2.1.2.1.1: 给出整个系统的信息
 - sysDesc, SysObjectID, sysUpTime, sysContact, sysName, SysLocation, sysService
 - Interface Group 1.3.2.1.2.1.2: 给出接口信息
 - inNumber -> ifIndex, ifDescr ··· InOutLen, ifSpecific (total 22)
 - IP Group 1.3.2.1.2.1.4: 定义了IP分组信息
 - ipForwarding, ipDefaultTTL, ipInReceive, ipInHdrErrors ···
 ipFragCreates, ipRoutingDiscards (total 20) + ipAddrTable (5 sub
 varables) + ipRouteTable (13 sub-variables) + ipNetMedia (3 sub
 variables)
 - ICMP Group 1.3.2.1.2.1.5: 存储了有关ICMP包的信息
 - icmpInMsgs, icmpInErrors, ··· icmpOutAddrMaskReps (total 26)
 - TCP Group 1.3.2.1.2.1.6: 存储了TCP段的一些信息
 - tcpRtoAlgroithm, tcpRtoMin, ··· tcpOutRsts (total 14)+ tcpConnState (5 sub-variables)
 - UDP Group 1.3.2.1.2.1.7: 存储了UDP数据报的信息
 - udpInDatagram, UdpNoPorts, udpInErrors, udpOutDatagrams (total 4) + udpTables (2 sub variables)

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:01D
 - 语法: ASN. 1
 - 传输编码: BER
 - SNMP:互联网网络管理协议
 - 安全性

网络管理 3-29

2021中科大高网

ASN. 1介绍

- ❖ ASN. 1是SNMP用于创建实际MIB对象的数据表示格式
- ❖ ASN. 1在SNMP之前很早就存在
- ❖ MIB的定义充分利用了ASN. 1的优势
- ❖ ASN. 1是OSI的标准: ISO 8824
- ❖ SNMP采用了ASN. 1定义了交换报文的格式以及管理的对象

注: SNMP报文和被管对象(模块)都采用ASN.1定义; BER进行编码

SMI: 语法

- ❖对象的第2个属性:数据类型
- ❖ SMI采用ASN. 1的一些基本内容,另外增加了一些 定义
 - Abstract Syntax Notation One (ASN. 1)是一个数据 定义语言,用于定义MIB中被管对象,可以使其在获得 机器无关的表示一致性
 - ASN. 1采用变量和声明,类似于编程语言
 - 而后面讲到的传输编码BER像机器语言
 - 提供供应商中立、跨平台、标准的语言,用于开发者 来描述协议,系统和机器
 - 像ASN. 1的一致性语言允许不同类型的计算机能够更有 效的分享信息

网络管理 3-30

2021中科大高网

SMI中的基本数据类型

- ❖ 3种在ASN. 1中定义的简单数据类型+4种SMI中定义的数据类型
 - Integers 有符号整数, 范围: -2,147,483,648 to 2,147,483,647.
 - Octet strings 字符串 (每位字符编码在0到65535)
 - Object IDs These values are from the set of all object identifiers allocated according to the rules specified in ASN. 1.
 - Network addresses 网络地址代表一个特性协议族的地址. SNMPv1 支持32为IP地址
 - Counters 计数器值非负,可以增加一直到一个最大值,再增加到
 0. SNMPv1中,指定为32位计数器
 - Gauges Gauges非负,可以增加或者减少,但是保持一个它曾经到 达过的最大值
 - Time ticks time tick代表从某个时间开始多少时间,以10ms为单位.

被管理对象的类型

❖ 简单类型: 标量对象

OBJECT-TYPE: ipInDelivers

- 定义一个单个对象实例(类 似于: C中的变量)
- SMI的基本数据类型
 - Integer (4 bytes), 来自ANS.1
 - String (variable), 来自ANS.1
 - ObjectIdentifier (variable), 来自ANS.1
 - IPAddress (4 bytes), SMI增加
 - Counter (4 bytes), SMI增加
 - Gauge (4 bytes). SMI增加
 - TimeTicks (4 bytes), SMI增

ipInDelivers OBJECT TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current **DESCRIPTION**

"The total number of input datagrams successfully delivered to IP userprotocols (including ICMP)"

 $:= \{ ip 9 \}$

网络管理 3-33

2021中科大高网

网络管理 3-34

2021中科大高网

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:0ID • 语法: ASN. 1
 - 传输编码: BER
 - SNMP: 互联网网络管理协议

被管理对象的类型

■ 简单类型和某些结构类型的组合

类型的组合 (c.f. C中的结构体)

型的序列 (c.f. C中的数组)

■ SMI 定义了2中类型: sequence 和 sequence of

■ Sequence: 1个 sequence 数据类型是一些简单数据

■ Sequence of: 1个 sequence of 数据类型是简单类

❖ 结构类型:

■ 安全性

MODULE-IDENTITY: ipMIB

ipMIB MODULE-IDENTITY LAST-UPDATED "941101000Z" ORGANZATION "IETF SNPv2 Working Group" CONTACT-INFO "Keith McCloghrie

DESCRIPTION

....."

"The MIB module for managing IP and ICMP implementations, but excluding their management of IP routes."

REVISION "019331000Z"

::= {mib-2 48}

网络管理 35

网络管理 3-36

编码方法: BER

- ❖ SMI采用BER (Basic Encoding Rules) 将SMI定义的被管对象值编码成传输的位串
- ❖ 使得不同机器获得语义上的一致性
 - 仅仅内存拷贝解决不了通信问题
 - 大端小端问题
- ❖ 每个被传输的数据(对象值和SNMP字段)都有: TLV
 - Type (1 byte) 3子字段
 - class (2 bit), format (1 bit), and number (5 bit)
 - Length: 1个或多个字节
 - Value: 根据BER定义的规则编码数据的值

网络管理 3-37

2021中科大高网

编码类型: T

- Type: 1 byte
 - Class (2bit) + format (1bit) + Number (5 bit)

Data type	class	format	Number	Tag (bin)	Tag(Hex)
Integer	00	0	00010	0000010	02
String	00	0	00100	00000100	04
OID	00	0	00110	00000110	06
Sequence,	00	1	10000	00110000	30
sequence of					
IPAddress	01	0	00000	01000000	40
Counter	01	0	00001	01000001	41
Gauge	01	0	00010	01000010	42
TimeTics	01	0	00011	01000011	43

TLV 编码

思路:被传输数据自说明

- <u>T</u>: 数据类型,某个ASN.1定义的类型
- L: 数据的字节长度
- V: 数据的值,采用ASN. 1编码标准编码

网络管理 3-38

2021中科大高网

编码长度:L

- ❖ 长度字段1个或多个字节
 - 如果1字节,最高位为0,其他7个bits定义了数据的长度
 - 如果>1字节,最高位为1,其他7个bits定义了后面有几个字节用于表示长度L

0 0 0 0 0 0 1 0

a. The colored part defines the length (2)

b. The shaded part defines the length of the length (2 bytes); the colored bytes define the length (260 bytes)

编码值: V

❖ 采用BER规则对传输的值(对象的值,字段的值) 进行编码

网络管理 3-41

BER编码的例子

- ❖ 例子:整数14
 - 02 02 0 E Integer + 2 byte value + 0 0 0 E
- ❖ 例子: 字符串 "smitch"
 - 04 | 05 | 48 | 49 | 'I'
- ❖ 格式: OID 1.3.6.1

• 06 04 01 03 06 01

- String + 5 byte value + "s" + "m" + "i" + "t" + "h"
- ❖ 格式: IPAddress 131.21.14.8

网络管理 3-42

TLV 编码: 例子

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:0ID
 - 语法: ASN. 1
 - 传输编码: BER
 - SNMP: 互联网网络管理协议
 - 安全性

2021中科大高网

SNMP协议

网络管理 3-45

2021中科大高网

SNMP报文类型

SNMP 协议:报文类型 2021中科大高网

报文类型	功能			
GetRequest GetNextRequest GetBulkRequest	管理实体-代理: "给我数据" (instance, next in list, block)			
InformRequest	实体-实体:给你MIB值			
SetRequest	实体-代理: set MIB value			
Response	代理-实体:值,对请求的响应			
Trap	代理-实体: 异常事件的报告			

网络管理 3-46

2021中科大高网

SNMP报文格式

代表trap报文 TYPE类型:A7

SNMP 协议: 报文类型

2021中科大高网

网络管理 3-49

2021中科大高网

SNMP PDU格式(trap)

- ❖ enterprise 导致陷阱报文的对象类型标示
- ❖ agent address 发送此trap报文的agent IP 地址
- ❖ generic trap id 标准traps标识
- ❖ specific trap id 私有或者企业定义的trap
- ❖ time stamp trap发生的时间ticks
- ❖ variable bind-list
 - variable name OIDs
 - values get或者get next报文时,值为空

SNMP PDU

- ❖每个SNMP PDU (除了trap)有 以下格式:
 - PDU type: SNMP 非TRAP报文类型
 - request id 请求序号
 - error status 如无错0; 否则不为0
 - error index 如果不为0则指示哪一个PDU中的01D导致错误
 - variable bind-列表
 - variable name OIDs
 - values get报文和get next报文, 该字段为null

2021中科大高网

编码SNMP报文

- ❖ 也采用BER编码SNMP报文
- ❖ 用tags (PDU Type) 定义报文, Type字段包括3个子字段
 - class
 - format
 - number => for different type of message

Data	class	format	Number	Tag (bin)	Tag(Hex)	类型
GetRequest	10	1	00000	10100000	A0	0
GetNextRequest	10	1	00001	10100001	A1	1
GetResponse	10	1	00010	10100010	A2	2
SetRequest	10	1	00011	10100011	A3	3
Trap	10	1	00111	10100111	A7	4

网络管理 3-51 网络管理 3-51

GetRequest 报文例子

- ❖一个管理工作站(snmp client,管理实体) 采用GetRequest 报文读取一个路由器接收 到了UDP数据报的数量
- ❖路由器中的agent (SNMP server)用 GetResponse报文来应答

53

2021中科大高网

例子:编码GetResponse

- GetResponse (router->NM Station)
 - **30 37**
 - 02 04 00 00 00 00
 - 04 06 70 75 62 6C 69 63
 - A2 27
 - 02 04 00 01 06 11
 - 02 04 00 00 00 00
 - 02 04 00 00 00 00
 - 30 13
 - 30 11
 - 06 09 010306010201070100
 - 41 04 00 00 12 11

sequence of length 37(hex), 55(dec) integer of length 4, ver 0 string of length 6, "public" GetResponse (A2), length 39=27h integer of length 4, request 00010611 integer of length 4, error status=0 integer of length 4, error index=0 sequence of length 19=13(hex) sequence of length 17=11(hex) objectID of length 9, udpInDatagram (1.3.6.1.2.1.7.1.0) counter of length 04 with value 12 11

2021中科大高网

3:网络管理

- ❖ 网络管理引论
 - 动机
 - 功能和定义
 - 主要部件
- ❖ 互联网网络管理架构
 - SMI:管理信息结构
 - 命名:01D
 - 语法: ASN. 1
 - 传输编码: BER
 - SNMP:互联网网络管理协议
 - 安全性

SNMPv3中增加的安全性

- ❖在SNMPv3中增加了以下安全特性:
 - ✓ 报文完整性
 - 保证报文在传输中不被修改
 - ✓ 可认证性
 - 能够判断报文是不是一个有效的源发送的
 - ✓ 加密
 - 保证私密性,即使被截获无法得知发送的到底是什么
 - ✓基于视图的访问控制:
 - SNMP实体维护着不同用户的访问权限, 策略的数据库
 - 是否可访问的LCD数据库可以作为被管对象访问

网络管理 3-57

2021中科大高网

总结

- ❖ 网络管理主要功能是方便网络管理员监控网络运行状态
 - 获取被管设备的状态,报告故障等信息,控制被管设备的运行
 - 分布、自动
- ❖ 网络管理的体系结构:管理实体、agent、MIB、SNMP
- ❖ SMI:管理信息结构
 - 对象、组、模块(MIB库)命名:树形层次型对象(及模块)OID
 - ASN. 1数据语言定义(跨平台)定义对象、模块
 - BER编码规则定义将SMI定义的对象编码成传输码流(机器无关,保持语义上的一致性),也可用于编码SNMP PDU
- ❖ SNMP: 管理实体和agent间传输网管报文的协议
- ❖ 安全性

网络管理 3-58