REINFORCEMENT LEARNING Exercise 3 Submit until Thursday, November 30 at 2:00pm

Before we learn how to use the methods from this week for control – we actually implement this next week –, we first have to understand the basic concepts. So, this week is a mix of theory and practice. Please push your solutions to subdirectory exercise-03 in your assigned git-repository. We are going to submit a feedback.txt in that directory.

Preliminaries

This exercise is based on Lecture 4¹ from David Silver's RL course². Watch before the upcoming meeting on Friday, November 24.

1 Monte Carlo and $TD(\lambda)$ (10p)

Figure 1: Cliff MDP

Consider the MDP in Figure 1, where all actions (an action moves the agent in a desired direction: N,S,E,W) succeed with a probability of 0.8. With a probability of 0.2 the agent moves randomly in another direction. All transitions result in a reward of -1, except when the coffee shop is reached (terminal state $s_{2,5}$: reward of 10) or if the agent falls of the cliff (terminal states $s_{3,1}
ldots s_{3,5}$: reward of -100). The agent always starts in the start state $s_{2,1}$ as indicated in Figure 1.

¹https://youtu.be/PnHCvfgC_ZA

²http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

- (a) Using Monte-Carlo policy evaluation, calculate $V_3(i)$ for all states i based on the illustrated episodes 1 to 3 (right part of Figure 1). Use the first-visit-method, i.e. every state is updated only once on the first-visit per episode, even if the state is visited again during the episode. In this task, we estimate the value by a running mean with $\alpha_t = \frac{1}{t}$ for episode t and $V_0(i) = 0$ for all i. We do not use discount, i.e. $\gamma = 1$.
- (b) Consider now Episode 4 (magenta). Specify for all states visited during this episode the Temporal Difference error based on the value-function $V_3(\cdot)$ calculated in (a).
- (c) Using the TD(λ)-algorithm, determine for $\lambda = 0$, $\lambda = 0.5$ and $\lambda = 1.0$ the expected value $v_{\pi}(s_{2,1})$ based on the first three episodes.

2 First-visit MC Evaluation (10p)

Implement the First-visit MC Evaluation algorithm introduced in the first part of Lecture 4,

mc_evaluation(policy, env, num_episodes, discount_factor=1.0)

in YOUR_REPO/exercise-03/scripts/mc_evaluation.py, where

- policy is a function that maps an observation to action probabilities and
- env is an OpenAI gym environment.

It returns a dictionary that maps from state to value.

This task is based on the Blackjack example from the lecture³ and an implementation can be found at lib.envs.blackjack. The state is a tuple – containing the players current sum, the dealer's one showing card (1-10 where 1 is ace) and whether or not the player holds a usable ace (0 or 1) – and the value is a float. You find the tests at YOUR_REPO/exercise-03/tests/exercise-03_test.py. Run them with

or with

python -m unittest exercise-03_test.py -v.

In addition, in YOUR_REPO/exercise-03/scripts you also find a visualization script of the predicted value-functions for which you need matplotlib⁴. You can run it with

python mc_evaluation_visualization.py.

3 Bonus: Experiences (1p)

Submit an experiences.txt, where you provide a brief summary of your experience with this exercise, the corresponding lecture and the last meeting. As a minimum, say how much time you invested and if you had major problems – and if yes, where.

Please push your solutions to subdirectory exercise-03 in your assigned git-repository by Thursday, November 30 at 2:00pm. Solutions after that or via email will not be accepted.

³http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MC-TD.pdf#page=8

⁴https://matplotlib.org/users/installing.html