Extension for Ergodicity Theorem

Zhanghao Wu 516030910593

Ergodicity Theorem

If P is irreducible and aperiodic, then there is a unique stationary distribution π such that

$$\forall x, \lim_{t \to \infty} P^t(x, \cdot) = \pi$$

Thoughts This theorem can be proved by using coupling, which is shown in another note by Boyu Tian. Now we introduce a extension of the this theorem in which we will prove the long-term average probability distribution $a^t(x,\cdot) = \frac{1}{t}(P^0(x,\cdot) + P^1(x,\cdot) + \cdots + P^{t-1}(x,\cdot))$ will also converge to π .

Extension

Let $a^t(x,\cdot)$ be the long term average probability distribution,

$$a^{t}(x,\cdot) = \frac{1}{t}(P^{0}(x,\cdot) + P^{1}(x,\cdot) + \dots + P^{t-1}(x,\cdot))$$

For a irreducible and aperiodic markov chain, there is a unique stationary distribution π subject to

$$\forall x, \lim_{t\to\infty} a(x,\cdot) = \pi$$

Proof 1:

Lemma Let P be the transition probability matrix for a connected Markov chain. The $n \times (n+1)$ matrix A = [P-I, 1] obtained by augmenting the matrix P-I with an additional column of ones has rank n.

Proof: We prove the lemma by contradiction. We assume that the rank of rank(A) < n. Then the subspace of solutions to Ax = 0 is at least $n+1-(n-1) \ge 2$ dimensions. Each row in P sums to one, so each row in P - I sums to 0. Thus $x_0 = (\mathbf{1},0)$ whose entries are all 1 but the last one is 0, is a solution to Ax = 0. Assume there was a second solution (x,α) different with $(\mathbf{1},0)$. Then $(P-I)x+\alpha 1=0$ and $\forall i, x_i = \sum_j p_{ij}x_j+\alpha$. Let S_{max} be the set of $i=argmax_ix_i$. As x differ from $\mathbf{1}, \bar{S} \ne \emptyset$. Irreducible implies that for some $k \in S$, x_k is adjacent to some xl of lower value. Thus, $x_k > \sum_j p_{kj}x_j \Rightarrow \alpha > 0$.

On the other hand, for the set S_{min} of $i = argmin_i x_i$, we can prove that $\alpha < 0$. A contradiction!

Proof for theorem: Similar to the lemma above, let A = [P-I, 1]. And let B = A(:, 2:end) (a notation from matlab, which means that construct a matrix consisting the second column to the last of A). As the sum of each row of P - I is 0, the first n column must be relavant. According to the lemma, rank(A) = n, and the first n column of A is relavant, so rank(B) = n. Consider,

$$a^{t}(x,\cdot)P - a^{t}(x,\cdot) = \frac{1}{t}(P^{0}(x,\cdot)P + P^{1}(x,\cdot)P + \dots + P^{t-1}(x,\cdot)P)$$
$$-\frac{1}{t}(P^{0}(x,\cdot) + P^{1}(x,\cdot) + \dots + P^{t-1}(x,\cdot))$$
$$= \frac{1}{t}(P^{t}(x,\cdot) - P^{0}(x,\cdot))$$

Let $b^t(x,\cdot) = a^t(x,\cdot)P - a^t(x,\cdot)$. We have that $|b^t(x,\cdot)| \leq \frac{2}{t} \to 0$, as $t \to \infty$. Let $c^t(x,\cdot)$ be a vector containing all of the entries of $b^t(x,\cdot)$ except the first entry. Therefore,

$$a^{t}(x,\cdot)B = [a^{t}(x,\cdot)P - a^{t}(x,\cdot), 1](:, 2 : end)$$
$$= [b^{t}(x,\cdot), 1](:, 2 : end)$$
$$= [c^{t}(x,\cdot), 1] \to [\mathbf{0}, 1]$$

As proved before, B is invertible. Therefore,

$$a^{t}(x,\cdot) \to [0,1]B^{-1}$$
, as $t \to \infty$

Because, $a^t(x,\cdot)P - a^t(x,\cdot) = b^t(x,\cdot) \to 0$, we have,

$$[\mathbf{0}, 1]B^{-1}P = [\mathbf{0}, 1]B^{-1}$$
, i.e. $\pi = [\mathbf{0}, 1]B^{-1}$

Proof 2: