

Lista de Exercícios – Cálculo Diferencial e Integral I 2019.2 - Turma A1 **Prof.: Tuanny Maciel**

- 1. Mostre, usando a definição, que as funções abaixo são deriváveis.
 - a. $y = x^2 + 1$;
 - b. $y = 2x^3$;
 - c. $y = x^2 5$;
 - d. $y = \frac{1}{x+1}$.
- 2. Considere a função real dada por $f: \begin{cases} -x; se \ x \le 0 \\ 2, se \ x > 0 \end{cases}$. Calcule as derivadas laterais $f'_{+}(0)$, $f'_{-}(0)$. É correto afirmar que existe a derivada no ponto zero?
- 3. Existe algum ponto no qual a função $f(x) = |x^2 4x|$ não é diferenciável? Justifique.
- **4.** Encontre o valor das variáveis a e b para que a função abaixo seja diferenciável no ponto x = 1.

$$f(x) = \begin{cases} 3x^2, & \text{se } x \le 1\\ ax + b, \text{se } x > 1 \end{cases}$$

- 5. Determine o coeficiente angular da reta tangente aos gráfico da função f no ponto P indicado em cada item.
 - a. f(x) = 3 2x; P(-1, 5)
 - b. $f(x) = 2x^2 4$, P(1, -2)

 - c. $f(x) = 3x t^2$; P(-2, -2)d. $f(x) = 4 x^2$; P(2, 0)e. $f(x) = \frac{3}{2}x + 1$; P(-2, -2)
 - f. $f(x) = t^2 + 3$; P(-2,
- 6. Determine a equação da reta tangente e da reta normal ao gráfico da função $f(x) = \frac{1}{\sqrt[4]{x^3}}$ no ponto x = 16.
- 7. Considere a função $f(x) = \begin{cases} x^2, se \ x \le 1 \\ 2, se \ x > 1 \end{cases}$. A função é contínua no ponto x = 1? A função é diferenciável no ponto x = 1?
- 8. Sendo $f(x) = 3x^4 + x^3 2x$, calcule f'(x), f''(x), f'''(x) e $f^{18}(x)$.

9. Calcule a derivadas de primeira ordem das funções abaixo:

a.
$$f(x) = 7x^3 + 25x^2 + 3$$

b.
$$f(x) = \frac{\pi}{x} + \ln 2$$

c.
$$f(x) = e^x \cos(x)$$

d.
$$f(x) = (3 - 2senx)^5$$

e.
$$f(x) = \arccos(x)$$

f.
$$f(x) = \arccos(e^x)$$

g.
$$f(x) = \sqrt{xe^x + x}$$

h.
$$f(x) = \ln(senx)$$

i.
$$f(x) = 2x + 5\cos^3 x$$

- **10.** Uma partícula se move, no instante t, pela função $s(t) = \frac{1}{3}t^3 t^2 3t$.
 - a. Encontre as expressões que representam, em função de *t*, a velocidade e a aceleração da partícula;
 - b. Em qual instante a velocidade será nula?
 - c. Em qual instante a aceleração será nula?
- **11.** Com base no estudo das derivadas e regras de derivação assinale o item correto com respeito a função e sua derivada.

a. Se
$$f(x) = 3x^2 + 4x$$
 então a sua função derivada é $f'(x) = 3x + 4$;

b. Se
$$f(x) = e^{-x}$$
, então a sua função derivada é $f'(x) = -e^{-x-1}$;

c. Se
$$f(x) = \frac{x-1}{x+2}$$
, então a sua derivada $f'(x) = \frac{3}{(x+2)^2}$;

d. Se
$$f(x) = sen(x)$$
, a derivada será $f'(x) = -cos(x)$;

e. Se
$$f(x) = \frac{1}{x}$$
, a derivada será $f'(x) = \ln(x)$.

12. Assinale a alternativa que determina a equação da reta tangente à curva $y = x^2$ no ponto (2, 4).

a.
$$y = 4x - 4$$

b.
$$y = 4x$$

c.
$$y = x - 4$$

d.
$$y = 4x + 8$$

e.
$$v = 2x^2$$

- **13.** Seja a função $f(x) = \begin{cases} x^2; se \ x \le 1 \\ 2, se \ x > 1 \end{cases}$
 - a. Esboce o gráfico da função f;

- b. Mostre f é contínua em x = 1;
- c. Mostre que f é diferenciável em x = 1.
- **14.** Suponha x = x(t) seja diferenciável em R. Se $y = \frac{1}{x^2 + 1}$, verifique que, para todo $t \in R$, $\frac{dy}{dt} = -2xy^2 \frac{dx}{dt}$.
- 15. Verifique que $y = xe^{-x}$ é solução da equação xy' = (1 x)y.
- **16.** O logaritmo de um número N>0, em uma base b, $0 < b \ne 1$, é definido por meio da equivalência $\log_b N = a \iff b^a = N$.
 - a. Mostre a propriedade de mudança de base $\log_b N = \frac{\ln N}{\ln b}$;
 - b. Se f é definida por $f(x) = \log_b x$, x > 0, mostre que $f'(x) = \frac{1}{x \cdot lnb}$.
- 17. (Teorema do Valor Médio) Suponha a < b e seja $f: [a, b] \to R$ função contínua. Mostre que se f é diferenciável em (a, b) então existe $c \in (a, b)$ tal que

$$f'(c) = \frac{[f(a) - f(b)]}{b - a}$$

- **18.** Já citamos ao longo do texto a relação entre a derivada e a velocidade média. Isto é, para calcularmos a velocidade de determinada partícula, por exemplo, basta termos conhecimento do "espaço" percorrido por ela. Nesse sentido, analise a situação abaixo e encontre o que se pede.
 - "O movimento de um objeto ocorre ao longo de uma reta horizontal, de acordo com a função horária $s = t^2 + 2t 3$. Sabendo-se que a unidade de comprimento é o metro e de tempo, o segundo, calcule a velocidade no instante $t_0 = 2$ s."
- a. 8m/s
- b. 4m/s
- c. 6m/s
- d. 10m/s
- e. 0 m/s
- 19. O lucro de uma empresa pela venda diária de x peças, é dado pela função $L(x) = -x^2 + 14x 40$. Quantas peças devem ser vendidas diariamente para que o lucro seja máximo? (Dica: Utilize a teoria de máximos e mínimos)

- a. 5 peças
- b. 4 peças
- c. 6 peças
- d. 7 peças
- e. 2 peças
- **20.** O lucro de uma empresa, em uma determinada medida, pela venda diária de x peças, é dado pela função $L(x) = -x^2 + 14x 40$. Determine o lucro máximo? (Dica: Utilize a teoria de máximos e mínimos)
 - a. 9
 - b. 6
 - c. 7
 - d. 8
 - e. 5
- **21.** Suponha que a equação de demanda para uma certa mercadoria seja p = 4 0,0002x, onde x é o número de unidades produzidas semanalmente e p reais é o preço de cada unidade. O número do custo total da produção de x unidades é 800 + 3x. Se o lucro semanal deve ser o maior possível, encontre o número de unidades que serão produzidas por semana, o preço de cada unidade e o lucro semanal.
 - a. x = 2000; p = 3,00; L = 450,00
 - b. x = 2500; p = 3,00; L = 450,00
 - c. x = 2500; p = 3.50; L = 450.00
 - d. x = 2000; p = 3,00; L = 450,00
 - e. x = 1500; p = 3.00; L = 450.00
- **22.** Considere a função $f: \mathbb{R} \to \mathbb{R}$, dada por $f(x) = x^2 4x$. Analise os itens abaixo e marque a alternativa correta:
 - a. A função é decrescente no intervalo [-1, 3];
 - b. A função é decrescente para valores maiores que 2;
 - c. A função é crescente para valores menores que 1;

- d. A função é sempre crescente pois se trata de uma função de 2° grau;
- e. A função é crescente para todo x maior que 2.
- 23. Um Importador de café brasileiro calcula que consumidores locais comprarão aproximadamente $D(p) = \frac{4374}{p^2}$ quilogramas de café por semana, quando o preço brasileiro for de **p** dólares por quilograma. Estima-se que daqui a **t** semanas o preço do café brasileiro importado será $p(t) = 0.02t^2 + 0.1t + 6$ dólares por quilograma. Qual será a taxa de variação da demanda semanal de café daqui a **10** semanas?
 - a. 5 unidades semanais;
 - b. 6 unidades semanais;
 - c. 4 unidades semanais;
 - d. 25 unidades semanais;
 - e. 13 unidades semanais.
- **24.** A figura ao lado mostra um reservatório cônico de 10m de altura e 4m de raio contendo água, que escoa a uma vazão de $5m^3/h$.
 - a. Qual a relação entre as variáveis R e H?
 - b. A que taxa o nível da água diminui, quando H = 6m?

- **25.** Uma piscina está sendo esvaziada de tal forma que $V(t) = 300.(20 t)^2$ representa o número de litros de água na piscina t horas após o início da operação. Calcule a velocidade (instantânea) de escoamento da água ao cabo de 8 horas e a velocidade média desse escoamento no mesmo tempo.
- **26.** Seja a função $y = 12x x^3$, $x \in \mathbb{R}$. Classifique como verdadeiro (V), ou falso (F) as afirmações abaixo:
 - a. A função possui dois pontos críticos; ()
 - b. Um dos pontos críticos é um ponto de inflexão; ()

d. O ponto máximo é atingido quando
$$x = 2$$
. ()

27. Calcule os limites abaixo:

a.
$$\lim_{x \to 1} \frac{1 - x^2}{1 - x}$$

b.
$$\lim_{x\to 0} \frac{e^{5x}-1}{x}$$

c.
$$\lim_{x\to 0} \frac{\cos x - \sin x}{x}$$

d.
$$\lim_{x\to\infty} \frac{x^4}{e^{3x}}$$

e.
$$\lim_{x\to 0} \frac{senx \, sen(2x)}{xsen(3x)}$$

f.
$$\lim_{x\to 0} \frac{sen(2x^2)}{3x}$$

g.
$$\lim_{x\to 0} \frac{\cos(2x)}{1+senx}$$