

쇼우나우

시각장애인을 위한 편의점 음료 인식 서비스

기간 22.01.02~22.02.17

팀명 3조

팀원 이창재 김성모 박성혜 임보라 정유석

Contents

1.

개요

- 시각장애인 시야
- 편의점 음료 점자 실태
- ・쇼우나우
- 타겟과 기대효과

2.

팀 소개 및 수행 일정

- •팀 구성과 역할
- 수행방법과 절차

3.

프로젝트 수행결과

- •데이터 소개
- ・모델 소개
- 어플 소개

4.

평가와 확장

- 한계점
- 추후 확장 방안

시각장애인이 음료를 고르려면?

쇼무나우는 시각장애인을 위한 편의점 음료 인식 어플입니다.

시각장애인을 위한 편의점 음료 인식 서비스

• 로고 Story

- ㆍ눈에 띄는 노란색
- ·카메라 이미지+<mark>인식을 의미하는 눈</mark>

- <mark>●</mark> 이름 Story
 - ·Show Now의 한국어 발음
 - <mark>ㆍ'지금 보여준다'는</mark> 의미

설명 화면

쇼우나우는

<mark>소비자를 고려</mark>하여 제작되었습니다.

UI Story

- ㆍ가독성을 고려한 폰트와 버튼의 크기
- ㆍ쉽게 구분할 수 있는 확실한 색 차이

2배속으로 듣기 4배속으로 듣기 6배속으로 듣기 시작하기 **©**

Details

ㆍ듣기 능력 편차를 고려한 맞춤 버튼

촬영 화면

시각장애인도 어플을 사용할 수 있습니다.

'쇼우나우'를 통한 기대효과

2. 수행 역할과 일정

3조 구성 및 역할

이름	역할	개인 업무	공동 업무		
이창재	팀장	모델 변환	모델 학습, 데이터 정제		
김성모	팀원	웹 개발 시도	데이터 정제		
박성혜	팀원	Raw data 수집, 어플 UI 제작, PPT 제작	모델 학습, 데이터 정제		
임보라	팀원	어플 개발, Raw data 수집, 발표	모델 학습, 데이터 정제		
정유석	팀원	어플 개발, 모델 성능 개선	모델 학습, 데이터 정제		

23.01.02-23.02.17			1월			2월			
업무 내용	1주차	2주차	3주차	4주차	5주차	6주차	7주차		
주제 선정 및 기획									
레퍼런스 수집									
데이터 수집									
데이터 정제									
어플 개발 공부									
모델 학습									
YOLOv8-TFite 변환 작업									
웹 개발 공부									
모델 성능 개선									
어플 개발									
어플 UI 제작									
PPT 제작									

3. 수행결과 사용한데이터와모델, 그리고 어플

데이터 출처

1. 직접 촬영

ㆍ규모∶약 700장

ㆍ출처 : 알파코 근처 편의점 3곳

이마트24

GS25

CU

2. Al Hub

ㆍ규모∶약800장

·출처 : Al Hub 상품 이미지 데이터

Al Hub 데이터 예시

3. 웹크롤링

ㆍ규모∶약 1800장

ㆍ출처 : 다수의 검색 엔진

데이터 규모와 정제 방식

ㆍ총규모

종류	라벨 개수	전체 Bbox 개수	기존 이미지 수	전처리 후 이미지 수
음료, 주류, 유제품	300개	9,280개	3,663장	10,989장

- ·정제 방식(Roboflow 진행)
 - 1. Annotation : 수작업으로 객체 Bounding box 작업

2. Augmentation : 각 이미지 5% crop, 25% crop 진행

모델

어플

모델 선정 및 분석

Q. YOLO Series란?

A. Papers-with-code에서 발표한 가장 빠른 실시간 객체 인식 SOTA 모델 중 하나

*SOTA: 'State-of-the-art'의 약자. '현재 최고 수준의 결과'를 가진 모델로, 현재 수준에서 가장 정확도가 높은 모델

모델 선정 및 분석

· CPU에서 가장 빠른 YOLO 모델

모델 선정 및 분석

· GPU에서 가장 빠른 YOLO 모델

*2022.11.29 LearnOpenCV 발표

모델 선정 및 분석

ㆍ실제 3조 데이터로 비교한 모델 성능

YOLOv7 tiny VS YOLOv5 nano

*동일 데이터로 진행

Models	mAP50	mAP50-95	epoch	Class	File Size	Video Inference time - 50s (CPU)	Video Inference time – 50s (GPU)	
YOLOv7 tiny	0.92	0.79	500	300	13.9MB	483.2ms (2.06 fps)	10.5ms (94.9 fps)	
YOLOv5 nano	0.97	0.83	250	300	4.5MB	236.5ms (4.22 fps)	11.5ms (86.9 fps)	

→ YOLOv5 nano 최종 선정

CPU: Intel (R) Xeon(R) CPU @ 2.30GHz (Dual-Core)

GPU: Nvidia Tesla T4 GPU Memory: 8GB Single-Precision Performance: 5.5 TeraFLOPS

모델 개요

- ·YOLOv5 란?
 - 2020년 6월 Glenn Jocher가 발표한 One-stage detect 모델
 - Bounding box의 위치와 클래스 확률을 구하는 과정을 하나의 회귀 문제로 재정의
 - → 이전 YOLO 모델에 비해 빠른 속도와 높은 정확도 확인 가능

모델 개요

· YOLOv5 구조 4. Dense prediction, output result CSP Darknet 53 Backbone: Extract PA Net Features 3, Neck: Fuse Future, Multi-scale 1、Input: Imagei detection 20*20*3 640*640*3 Head: Yolo Layer Extract Features Feature Map

모델 평가 및 개선

- 1. 하이퍼 파라미터 핸들링
 - YOLOv5 제작자 Ultralytics의 YOLOv5 nano 모델 학습 시 권장 하이퍼 파라미터 중, 목적에 부합하지 않은 하이퍼 파라미터 세 가지 제거 및 수정
 - ① Fliplr(좌우반전): 0.5 → 0.0 (좌우반전 불필요)
 - ② Mosaic(모자이크): 1.0 → 0.0 (불규칙한 Crop을 막으며, 객체 크기 유지)
 - ③ Scale(확대/축소): 0.5 → 0.2 (이미지 축소 방지 0.8~1.2배로 조정)

모델 평가 및 개선

- 1. 하이퍼 파라미터 핸들링
 - 하이퍼 파라미터 조정 전/후 학습 데이터셋 비교 예시

조정 전: 과도하게 확대되거나 축소된 객체

조정 후 : 일반적인 크기의 객체

모델 평가 및 개선

- 1. 하이퍼 파라미터 핸들링
 - 하이퍼 파라미터 조정 전/후 인퍼런스 비교 예시

조정 전: 큰 객체 인식 불가

조정 후 : 큰 객체 인식 가능

모델 평가 및 개선

2. 데이터 핸들링

- ① Roboflow 내부 문제로 모델 학습을 위한 데이터 다운로드 과정에서 일부 라벨 소실 → 소실 데이터 제거
- ② Al Hub 원천 데이터 라벨링 오류 → Bounding box 및 라벨 수정
- ③ 학습에 혼란을 줄 수 있는 가능성이 높은 이미지 삭제

▼ AI Hub 라벨링 오류 예시

▼ 학습에 혼란을 줄 수 있는 이미지 예시

모델 평가 및 개선

2. 데이터 핸들링

- AP가 0.6 이상인 경우 인퍼런스에서 충분한 성능 확인
 - → AP가 0.7 이하인 30개 객체에 대한 이미지 추가

	최초 mAP		이미지 정제		이미지 40장 추가		이미지 80장 추가	
Class	mAP50	mAP50-95	mAP50	mAP50-95	mAP50	mAP50-95	mAP50	mAP50-95
모든 상품(300개)	0.88	0.75	0.87	0.74	0.93	0.80	0.97	0.83
블루문캔	0.82	0.68	0.80	0.69	0.99	0.84	0.99	0.93
더단백카라멜	0.81	0.67	0.87	0.70	0.99	0.80	0.99	0.92
덴마크초코초코	0.79	0.65	0.83	0.72	0.97	0.79	0.99	0.86
일화맥 콜 250ML	0.34	0.27	0.36	0.30	0.59	0.47	0.88	0.62
몰슨캐네디언캔	0.36	0.27	0.40	0.30	0.68	0.45	0.75	0.62
스타벅스카페라떼200ml	0.33	0.24	0.41	0.27	0.50	0.44	0.71	0.62
<u> </u>								

하위 30개

어플 데이터 모델

<mark>어</mark>플 구현 과정

- '안드로이드 스튜디오' 사용
 - 운영체제 핵심 코드, 라이브러리 코드, 구글 앱 코드 등 대부분의 코드가 오픈됨
 - 소스코드 누구나 무료로 다운로드 가능
 - 어플 제작 후 구글 play 스토어 외 다양한 방법으로 사용자에게 배포 가능
 - 인식된 라벨을 음성으로 안내할 TTS API 기본으로 제공

어플 구현 방식

ㆍ객체 인식 과정

- 1. 약 1초마다 프레임에서 객체 인식 후 리스트에 저장(최소 컨피던스: 0.7)
- 2. 반복문을 이용하여 가장 중심에 있는 객체 찾기
- 3. 최종 객체에 대한 Bounding box와 라벨을 화면에 표시
- 4. 해당 라벨을 TTS로 안내

· 음성 안내

- 안드로이드 스튜디오가 제공하는 API를 사용하여 구현
- 시각장애인의 속청 능력에 따라 TTS 속도 5배속으로 설정

<mark>어</mark>플 플로우

어플 시연

어플 등록 현황

ㆍ검토에 영업일 기준 7일~14일 소요되어 현재 검토 중

업데이트 상태

○ 검토중 ●게시 개요로 이동

4. 평가와 확장

1. 투명 용기 인식에 어려움

2. 상품의 패키징이 변화함에 따라 주기적인 업데이트 필요

3. 스마트폰 기종에 따른 비와 인퍼런스 성능에 차이가 있어 개선 필요

추후 확장 방안

- 1. STT를 추가하여 소비자가 데이터 추가 요청 가능
- 2. 상품별이벤트설명가능
- 3. OCR을 추가하여 상품 별 유통기한 설명 가능
- 4. 상품군 확대 가능
- 5. 아이폰 어플 개발 가능

Q&A

시각장애인을 위한 편의점 음료 인식 서비스

기간 22.01.02~22.02.17

팀명 3조

팀원 이창재 김성모 박성혜 임보라 정유석

