Bases de Dados

Introduction

BD 2018/2019

Departamento de Engenharia Informática Instituto Superior Técnico

> Slides baseados nos slides oficiais dos livros Database Management Systems, de Ramakrishnan e Gehrke e Database System Concepts, de Silberschatz, Korth e Sudarshan

Outline

Database Management Systems

Database System Concepts

Architecture of a DBMS

Database System Design

Outline

Database Management Systems

What is a DBMS?

Why Database Systems?

Database System Concepts

Architecture of a DBMS

Database System Design

Database Management System (DBMS)

DBMS contains information about a particular enterprise

- Collection of interrelated data (i.e. a database)
- Set of programs to access the data
- An environment that is both convenient and efficient to use

Database Applications

f

P

8+

...some examples...

Banking (transactions); Airlines (reservations, schedules); Universities (registration, grades); Sales (customers, products, purchases); Online retailers (order tracking, recommendations); Manufacturing (production, inventory, orders, supply chain); Human resources (employee records, salaries, tax deductions); Social Networks (users, connections); ...

Databases touch all aspects of our lives

 In the early days, database applications were built directly on top of file systems

- In the early days, database applications were built directly on top of file systems
- Drawbacks of using file systems to store data:

- In the early days, database applications were built directly on top of file systems
- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files

- In the early days, database applications were built directly on top of file systems
- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task

- In the early days, database applications were built directly on top of file systems
- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Integrity problems
 - Integrity constraints (e.g. account balance > 0) become
 "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

• Drawbacks of using file systems (cont.)

- Drawbacks of using file systems (cont.)
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all

- Drawbacks of using file systems (cont.)
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
 - Concurrent access by multiple users
 - Concurrent accessed needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance and updating it at the same time

- Drawbacks of using file systems (cont.)
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
 - Concurrent access by multiple users
 - Concurrent accessed needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance and updating it at the same time
 - Security problems
 - Hard to provide user access to some, but not all, data

- Drawbacks of using file systems (cont.)
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
 - Concurrent access by multiple users
 - Concurrent accessed needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance and updating it at the same time
 - Security problems
 - Hard to provide user access to some, but not all, data
- Database systems offer solutions to all the above problems

- Complex software application
- Not suitable for real-time applications
- Not suitable for non-structured data
 - e.g. text, graphs, ...
- Possibly high startup overhead
 - Investment in HW and SW
 - Learning curve

Outline

Database Management Systems

Database System Concepts

Data Abstraction Levels

Data Models

Database Languages

Architecture of a DBMS

Database System Design

Levels of Abstraction

We can separate the way we view a database in several levels

Levels of Abstraction (cont.)

- Physical level: describes how a record (e.g., customer) is stored.
- Logical level: describes data stored in database, and the relationships among the data.
- View level: application programs hide details of data types.
 Views can also hide information (such as an employee's salary) for security purposes.

Data Independence

- Logical Data Independence the ability to modify the logical schema without changing the application interface
- Physical Data Independence the ability to modify the physical schema without changing the logical schema
- In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

Instances and Schemas

- Similar to types and variables in programming languages
- Schema the logical structure of the database
 - Example: The database consists of information about a set of customers and accounts and the relationship between them)
 - Analogous to type information of a variable in a program
 - Physical schema: database design at the physical level
 - Logical schema: database design at the logical level
- Instance the actual content of the database at a particular point in time
 - Analogous to the value of a variable

Data Models

- A collection of tools for describing
 - Data
 - Data relationships
 - Data semantics
 - Data constraints
- Examples:
 - Relational model
 - Entity-Relationship data model (mainly for database design)
 - Semistructured data model (XML)
 - Object-based data models (Object-oriented and Object-relational)

Relational Model

• Example of tabular data in the relational model

customer_id	customer_name	customer_street	customer_city	account_number
192-83-7465	Johnson	12 Alma St.	Palo Alto	A-101
192-83-7465 677-89-9011	Johnson Haves	12 Alma St. 3 Main St.	Palo Alto Harrison	A-201 A-102
182-73-6091	Turner	123 Putnam St.	Stamford	A-305
321-12-3123	Jones	100 Main St.	Harrison	A-217
336-66-9999 019-28-3746	Lindsay Smith	175 Park Ave. 72 North St.	Pittsfield Rve	A-222 A-201

The Entity-Relationship Model

- Models an enterprise as a collection of entities and relationships
 - Entity: a thing or object in the enterprise that is distinguishable from other objects, described by a set of attributes
 - Relationship: an association among several entities
- Represented diagrammatically by an entity-relationship diagram:

Data Manipulation and Definition Languages

- Data Manipulation Language (DML)
 - Language for accessing and manipulating the data organized by the appropriate data model
 - Also known as query language
 - Two classes of languages
 - Procedural user specifies what data is required and how to get those data
 - Declarative (nonprocedural) user specifies what data is required without specifying how to get those data
 - SQL is the most widely used query language
- Data Definition Language (DDL)
 - Specification notation for defining the database schema
 - DDL compiler generates a set of tables stored in the database

Widely used declarative language

• Example: find the name of the customer with customer-id 192-83-7465

```
select customer_name
from customer
where customer_id = '192-83-7465'
```

• Example: creating the 'account' table

```
create table account (
    account_number char(10),
    balance integer
)
```

Outline

Database Management Systems

Database System Concepts

Architecture of a DBMS

System Architecture

DBMS Components

Database System Design

Overall System Structure

The architecture of a database systems is greatly influenced by the underlying computer system on which the database is running:

- Centralized
- Client-server
- Parallel (multi-processor)
- Distributed

Storage Management

- Storage manager is a program module that provides the interface between the low-level data stored in the database and the application programs and queries submitted to the system.
- The storage manager is responsible to the following tasks:
 - Interaction with the file manager
 - Efficient storing, retrieving and updating of data
- Issues:
 - Storage access
 - File organization
 - Indexing and hashing

Query Processing

- 1. Parsing and translation
- 2. Optimization
- 3. Evaluation

Query Processing (cont.)

- Cost difference between a good and a bad way of evaluating a query can be enormous
- Need to estimate the cost of operations
 - Depends critically on statistical information about relations which the database must maintain
 - Need to estimate statistics for intermediate results to compute cost of complex expressions
- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation

Transaction Management

- A transaction is a collection of operations that performs a single logical function in a database application
- Transaction-management component ensures that the database remains in a consistent (correct) state despite system failures (e.g., power failures and operating system crashes) and transaction failures.
- Concurrency-control manager controls the interaction among the concurrent transactions, to ensure the consistency of the database.

Outline

Database Management Systems

Database System Concepts

Architecture of a DBMS

Database System Design

Database Design

Users of Database Systems

Database Design

The process of designing the general structure of the database:

- Logical Design Deciding on the database schema. Database design requires that we find a "good" collection of relation schemas.
 - What attributes should we record in the database?
 - What relation schemas should we have and how should the attributes be distributed among the various relation schemas?
- Physical Design Deciding on the physical layout of the database

Application Architectures

Three distinct era's of application architecture:

- mainframe era (1960's and 70's)
- personal computer era (1980's)
- Web era (1990's onwards)

Database Users

Users are differentiated by the way they expect to interact with the system

- Application programmers interact with system through DML calls
- Sophisticated users form requests in a database query language
- Specialized users write specialized database applications that do not fit into the traditional data processing framework
- Naïve users invoke one of the permanent application programs that have been written previously
 - Examples, people accessing database over the web, bank tellers, clerical staff

Database Administrator

- Coordinates all the activities of the database system; the database administrator has a good understanding of the enterprise's information resources and needs.
- Database administrator's duties include:
 - Schema definition
 - Storage structure and access method definition
 - Schema and physical organization modification
 - Granting user authority to access the database
 - Specifying integrity constraints
 - Acting as liaison with users
 - Monitoring performance and responding to changes in requirements

