

MATH521 Numerical Analysis of Partial Differential Equations

Winter 2017/18, Term 2 Timm Treskatis

Homework Assignment 1

	7	_					
Please submit the	e follov	ving files as indi	cated below:	source code	PDF file	image file	video file
Question 1 2 n	narks	🖺 Consider th	he following PI	DE:			
			$\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_1 \partial x_2}$	$\frac{1}{3} + x_2 \frac{\partial^2 u}{\partial x_2^2} + \frac{1}{3} u^3$	= 0		
(a) Tick all that	apply.	_				4.11	
and	\circ	linear	0	semi-linear	O	fully nonlinear	
and	\circ	homogeneous	0	inhomogeneous			
PDE of	_		_			d	
in	\circ	1 st order	\circ	$2^{\rm nd}$ order	\circ	$3^{\rm rd}$ order	
111	\bigcirc	1 variable	\bigcirc	2 variables	\circ	3 variables.	
` '	ne regio	-		or hyperbolic, but ptic, parabolic or			
		1		Show all	working:		

Question 2 | 3 marks | In this first assignment we set up a core component for an implementation of the finite difference method, which we will build upon next week. I recommend to use GNU Octave / MATLAB for our first assignments, as you will have extra translation work to do if you prefer to use another programming language.

 x_1

- (a) Write a function meshRectangle which meshes a two-dimensional rectangular domain. The function should take two input variables
 - x: a 1 × 4 array, which defines the coordinates of the rectangle $[x(1), x(2)] \times [x(3), x(4)]$ (NB: this notation is a Cartesian product of two intervals)

N: a 1×2 array, which specifies that the domain is to be divided into N(1) subintervals in x_1 -direction and N(2) subintervals in x_2 -direction.

Furthermore, meshRectangle should return one output variable

msh: a structure with fields

- X1, X2: both arrays of size $(N(2) + 1) \times (N(1) + 1)$ that contain the x_1 or x_2 components, respectively, of each grid point
- N: a copy of the input variable of the same name
- h: an array of size 1×2 which contains the width of the subintervals in x_1 and x_2 -direction
- (b) Complete and run the following program hw1:

```
% hw1.m
clear all; close all; clc;
% sample function
u = @(x1,x2) sin(2.*pi.*x1).*cos(6.*pi.*x2);
% mesh the rectange [0,1] x [2,3] with 20 / 60 subintervals in x1- / x2-direction, respectively
msh = meshRectangle([?,?,?,?],[?,?]);
% evaluate u on msh and draw a surface plot
surf(msh.X1,msh.X2,u(msh.X1,msh.X2));
% axis labels
???
```

Check that all details are correct, such as the exact number of subintervals in each direction and the orientation of the graph. Add labels to all three axes.

(c) Save the graph in a vector graphics format (recommended) or a high quality raster graphics format.

Hint: In GNU Octave / MATLAB, the commands linspace, meshgrid, xlabel, ylabel and zlabel may be helpful. Use the commands help linspace, help meshgrid etc. for more information and examples of use.

Submission instructions for this and all future assignments: Please upload your solutions on Canvas. You may annotate this document electronically with a stylus, or upload a scanned paper copy with your handwritten solutions. Additionally, for all computational questions, please include

- well-commented source code in its native file format, e.g. hw1.m and meshRectangle.m
- one (yes, one!) PDF file with a printout of all your code, e.g. code.pdf
- any extra files of graphs etc as instructed.

Please upload these files separately, not archived. I suggest not to include your name anywhere so that our marking will be fully blinded.

Your Learning Progress	What is the one most important thing that you have learnt from this assignment?
What is the most substantial:	new insight that you have gained from this course this week? Any aha moment?
What is the most substantial	lew insight that you have gained from this course this week. Any that moment: