Control theory

INTRODUCTION

I DESCRIPTION OF OPEN LOOP SYSTEMS

II SYSTEM ANALYSIS

A Time domain analysis

B Frequency domain analysis

III ANALYSIS OF CLOSED SYSTEMS

IV STABILITY OF CLOSED SYSTEMS

V PRACTICAL METHODS

VI DYNAMICS OF COMPLEX SYSTEMS

System description

System diagram

Example:

Source: potential energy of water

Process: change of flow by valve

Input: position of valve

Output: water flow in tube

The transfer function of a process

$$u_2 = Tu_1$$
 \longrightarrow $T = \frac{u_2}{u_1}$ Source Process Output u_1 u_2

For linear time-independent systems:

$$a_n \frac{d^n u_2}{dt^n} + a_{n-1} \frac{d^{n-1} u_2}{dt^{n-1}} + \dots + a_0 u_2 = u_1$$

$$T = \frac{u_2}{u_1} = \frac{1}{a_n D^n + a_{n-1} D^{n-1} + \dots + a_0}$$

Systems in series

$$u_{2} = T_{1}u_{1}$$
 $u_{3} = Tu_{1}$
 $u_{3} = T_{2}u_{2}$

$$u_{3} = Tu_{1} = T_{2}u_{2} = T_{2}(T_{1}u_{1}) = T_{2}T_{1}u_{1}$$
 $T = T_{2}T_{1}$

$$T_{2}T_{1} \neq T_{1}T_{2}$$

Linear and nonlinear process

$$T = T(u_1)$$

Linear approximation of nonlinear processes

$$T = T(u_1)$$

Time lags

System analysis

$$T = ?$$

Time domain analysis

Filling of a vessel with an outflow

$$d_{out} \approx bh$$

$$\frac{dh}{dt} = a(d_{in} - d_{out}) = a(d_{in} - bh)$$

$$\frac{dh}{dt} + abh = ad_{in}$$

$$\frac{1}{ab}\frac{dh}{dt} + h = \frac{1}{b}d_{in}$$

Solution: steady state (dh/dt = 0)

 $h = d_{in}/b$ Thus, since $d_{out} = b.h$, then $d_{out} = d_{in}$

Resistance and capacitance in series

$$u_{1} = u_{2} + u_{3}$$

$$u_{3} = iR$$

$$q = Cu_{2}$$

$$i = \frac{dq}{dt} = C\frac{du_{2}}{dt}$$

$$u_1 = u_2 + iR = u_2 + RC \frac{du_2}{dt}$$

$$RC \frac{du_2}{dt} + u_2 = u_1$$

Possible responses to a step input

Some possible responses of a system to a step input.

Normalized step response first order system

$$\tau \frac{du_2}{dt} + u_2 = \alpha U$$

Substitutions:

$$V = \frac{u_2}{\alpha U}; \quad T = \frac{t}{\tau}$$

$$\frac{dV}{dT} + V = 1$$

Response of second order system to step input

$$\frac{1}{(\omega_n)^2} \frac{d^2 u_2}{dt^2} + \frac{2\xi}{\omega_n} \frac{du_2}{dt} + u_2 = \alpha u_1 \quad \text{(with } u_1 = U \text{ for } t \ge 0\text{)}$$

Response of second order system to step input Differential equation and parameters

$$\frac{1}{(\omega_n)^2} \frac{d^2 u_2}{dt^2} + \frac{2\xi}{\omega_n} \frac{du_2}{dt} + u_2 = \alpha U \quad (t \ge 0)$$

 α : gain

 ω_n : natural frequency (eigen frequency)

 ξ : damping factor

Response of second order system to a step input

Overshoot of second order system as function of damping factor

Response of second order system to an impulse input

Response of system of order -1 to a step input

First order:
$$\tau \frac{du_2}{dt} + u_2 = \alpha u_1$$

Order -1:
$$\int u_2 dt = u_1 \quad u_2 = \frac{du_1}{dt}$$

Speedometer: Real response to a step input

Response of system of order -1 to a step input

First order:
$$\tau \frac{du_2}{dt} + u_2 = \alpha u_1$$

Order -1:
$$\int u_2 dt = u_1 \quad u_2 = \frac{du_1}{dt} \qquad u_2 = a \frac{du_1}{dt}$$

Speedometer: Real response to a step input

Frequency domain analysis

Typical system response to sinus input

Red trace: input Black trace: output

Typical system response to sinusoidal input: θ_{02} is transient term of response; θ_{01} is steady-state term of response.

Frequency domain analysis of first order system

$$\tau \frac{du_2}{dt} + u_2 = \alpha u_1 \qquad \tau \frac{du_2}{dt} + u_2 = \alpha A_1 \sin(\omega t)$$

Solution:

- o Transient terms (a number of exponential functions)
- Steady state term of the form $A_2 \sin(\omega t + \varphi)$

Steady-state system response to sinus input

$$\tau \frac{du_2}{dt} + u_2 = \alpha A_1 \sin(\omega t)$$

Frequency domain analysis first order system

$$\tau \frac{du_2}{dt} + u_2 = \alpha A_1 \sin(\omega t)$$

Steady-state output: $u_2 = A_2 \sin(\omega t + \varphi)$

$$A = A_2/A_1$$
: Gain

T: Period

v: Frequency

ω: Pulsation

φ: Phase shift

θ: Delay

$$T = 1/\nu$$
 and $\omega = 2 \pi \nu$

$$\phi = 2\pi \theta / T = \theta 2 \pi v = \theta \omega$$

First order frequency diagram

$$\omega = 0$$

$$\Rightarrow A = \alpha$$

$$\varphi = 0$$

-20 -40 -60 -80 -100

Bode diagram 1st order system

$$K = 20 \log \frac{\alpha}{\sqrt{(1 + \tau^2 \omega^2)}}$$

$$\varphi = arctg(-\tau\omega)$$

Slope =
$$20 \text{ dB/dec}$$

 $\phi_{max} = -90^{\circ}$

Phasor representation

Nyquist diagram first order system

$$A = \frac{\alpha}{\sqrt{(1 + tg^2 \phi)}}$$

$$\alpha \sqrt{\cos^2 \phi}$$

$$A = \frac{\sqrt{(\cos^{+2} \phi + \sin^{+2} \phi)}}$$

$A = \alpha \cos \phi$

$$\omega = 0 \implies A = \alpha$$

$$\phi = 0$$

$$\omega = \omega_b \implies A = \alpha/\sqrt{2}$$

$$\phi = -\pi/4$$

$$\omega = \infty \implies A = 0$$

$$\phi = -\pi/2$$

Bode diagram 2nd order system

$$\frac{1}{(\omega_n)^2} \frac{d^2 u_2}{dt^2} + \frac{2\xi}{\omega_n} \frac{du_2}{dt} + u_2 = \alpha U$$

Slope =
$$40 \text{ dB/dec}$$

 $\phi_{\text{max}} = -180^{\circ}$

Nyquist diagram of second order system

w, rad/sec	Ō	0.2	0.5	1	2	3	4	5	7	10	20	100	8
G	1	0.994	0.96	0.87	0.65	0.49	0.35	0.26	0.16	0.09	0.024	~	0
ø, degrees	0	-8	-19.5	-38	-67	-87	-102	-113	-128	-142	-160	-176	-180

Nyquist diagram of second order system

Bode diagram system order -1

$$\int u_2 dt = u_1$$

Nyquist diagram system of order -1

Bode diagram of 2 systems in series

$$T = T_2 T_1$$

 $A = A_{(1)} \cdot A_{(2)}$
 $\phi = \phi_{(1)} + \phi_{(2)}$

$$\begin{split} K &= 20 \log A \\ K &= 20 \log A_{(1)} \cdot A_{(2)} \\ K &= 20 \log A_{(1)} + 20 \log A_{(2)} \\ K &= K_{(1)} + K_{(2)} \end{split}$$

Fourier series

Examples of Fourier series

Fourier analysis of step response

Step input decomposed in sinus waves

Output signal showing reduction of the amplitude for the high frequency components

Example: Photoreceptor ganglion of the crayfish

Crayfish photoreceptor ganglion activity

Crayfish photoreceptor ganglion Steady-state transfer function

Crayfish photoreceptor ganglion

Response to sinus input

Crayfish photoreceptor ganglion Bode diagram: example

Analysis average results different expts: 20 dB/dec: First order

$$K = 22 \text{ dB}, \tau = 1.3 \text{ s}, \theta = 0.5 \text{ s}$$

Crayfish photoreceptor ganglion Nyquist diagram

Human hearing frequency response

Human hearing frequency response

