КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Факультет інформаційних технологій **Кафедра прикладних інформаційних систем**

напрям 6.040302 «Інформатика»

(шифр і назва напряму підготовки або спеціальності)

Звіт

з лабораторної роботи №1

На тему: «Неперервне моделювання»

Виконав: студент 4 курсу навчання групи інформатика (I-42) Довбня Дмитро Володимирович

Назва роботи: Неперервне моделювання

Мета заняття: Ознайомлення з методикою вирішення задач неперервного моделювання.

Завдання №1: Вивчення моделі Лотка-Волтерра «хижак-здобич»

А) Здійснити неперервне моделювання та побудуйте графіки шуканих змінних шляхом чисельного інтегрування системи диференціальних рівнянь Лотка-Вольтерра, яка описує модель «хижак-здобич»:

$$\begin{cases} \frac{dx}{dt} = (\alpha - \beta y)x \\ \frac{dy}{dt} = (-\gamma + \beta \delta x)y \end{cases}$$

Використати коефіцієнти:

 α - коефіцієнт народження здобичі = **0.043**

 β - ефективність охоти = 0.00043

 γ - коефіцієнт смерті хижака = **0.0180**

 δ - коефіцієнт народження хижака = **0.43**

Використати початкові умови:

 x_0 - Кількість здобичі = 630

 $\mathbf{y_0}$ - Кількість хижаків = **48**

- Б) Визначте максимальну кількість хижаків та здобичі.
- В) Побудувати часові діаграми та фазові портрети отриманих рішень.

Виконання завдання:

- 1. Зводимо систему диференційних рівнянь Лотка-Вольтерра, яка описує модель «хижак-здобич» до функції двох змінних в векторній формі
 - ${f x}$ заміняємо на ${f y}_0$
 - \mathbf{y} заміняємо на y_1

$$f(t,y) := \begin{bmatrix} \left(\alpha - \beta \cdot y_1\right) \cdot y_0 \\ \left(-\gamma + \beta \cdot \delta \cdot y_0\right) \cdot y_1 \end{bmatrix}$$

2. Знаходимо розв'язок системи диференційних рівнянь за допомогою використання методу Рунге-Кутта зі сталим кроком. Функція rkfixed середовища Mathcad

Отримуємо вираз в змінну D

$$D := rkfixed \begin{bmatrix} x0 \\ y0 \end{bmatrix}, t0, t1, M, f$$

Де x_0 та y_0 – початкові значення кількість здобичі та хижаків відповідно.

 $\mathbf{t0}$ – початкова координата часу, встановимо $\mathbf{0}$

t1 – кінцева координата часу, встановимо 1200

М – кількість кроків на заданому відрізку часу, встановимо 5000

f – функція системи рівнянь в векторній формі

Отримана матриця D складається з трьох стовпчиків, де

В першому ($D^{<0>}$) – значення часу

В другому ($D^{<1>}$) – значення x – кількість здобичі

В третьому ($D^{<2>}$) – значення у – кількість хижаків

3. Максимальні значення

- Максимальна кількість хижаків = 414 од.
- Максимальна кількість жертв = 688 од.

4. Фазовий портрет системи

5. Часова діаграма популяції здобичі

6. Часова діаграма популяції хижаків

7. Часова діаграма популяції здобичі та хижаків

Висновок: 3 отриманих результатів, можна зробити висновок що система «хижак-здобич» ϵ замкнутою і популяція учасників системи буде зберігатися на кожній фазі існування системи.

Завдання №2: Вивчення моделі розповсюдження епідемії

А) Здійснити неперервне моделювання та побудуйте графіки шуканих змінних шляхом чисельного інтегрування системи диференціальних рівнянь, яка описує розповсюдження епідемії:

$$\begin{cases} \frac{dx}{dt} = x(ky - 1) \\ \frac{dy}{dt} = -kxy \end{cases}$$

x – хворі, y – здорові люди, які не переболіли та не мають імунітету.

Використати коефіцієнти:

 ${f k}$ -коефіцієнт розповсюдження інфекції = ${f 0.00038}$

Використати початкові умови:

- x_0 Кількість хворих = 83
- y_0 Кількість здорових = **53000**
- Б) Визначте максимальну кількість хворих та день з початку епідемії, коли він досягається.
- В) Побудувати часові діаграми та фазові портрети отриманих рішень.

Виконання завдання:

- 1. Зводимо систему диференційних рівнянь Лотка-Вольтерра, яка описує розповсюдження епідемії до функції двох змінних в векторній формі
 - \mathbf{x} заміняємо на \mathbf{y}_0
 - у заміняємо на у1

$$f(t,y) := \begin{bmatrix} y_0 \cdot (k \cdot y_1 - 1) \\ -k \cdot y_0 \cdot y_1 \end{bmatrix}$$

2. Знаходимо розв'язок системи диференційних рівнянь за допомогою використання методу Рунге-Кутта зі сталим кроком. Функція rkfixed середовища Mathcad

Отримуємо вираз в змінну D

$$D := rkfixed \begin{bmatrix} x0 \\ y0 \end{bmatrix}, t0, t1, M, f$$

Де x_0 та y_0 – початкові значення кількість здобичі та хижаків відповідно.

- ${f t0}$ початкова координата часу, встановимо ${f 0}$
- t1 кінцева координата часу, встановимо 2000
- М кількість кроків на заданому відрізку часу, встановимо 20000
- \mathbf{f} функція системи рівнянь в векторній формі

Отримана матриця D складається з трьох стовпчиків, де

В першому $(D^{<0>})$ – значення часу

В другому ($D^{<1>}$) – значення x – кількість хворих

В третьому ($D^{<2>}$) – значення у – кількість здорових

- 3. Максимальні значення
 - Максимальна кількість хворих = **4184 од.**, досягається через **0.5** дня з початку епідемії
- 4. Фазовий портрет системи

 $D^{<1>}$ — кількість хворих, $D^{<2>}$ — кількість здорових

5. Часова діаграма кількості хворих та здорових

 $D^{<0>}$ – дні, $D^{<1>}$ – кількість хворих, $D^{<2>}$ – кількість здорових які можуть захворіти (не мають імунітету)

Висновок: дана система нам показує швидке зростання кількості хворих і подальше їх видужування що призводить до зменшення кількості тих хто може захворіти (не має імунітету від даної хвороби). Це пов'язано з тим, що коефіцієнт видужування хворих в даній інтерпретації моделі Бейлі рівний одиниці.