Abstract. This text is presented to provide a lower bound of logistic regression loss by ρ_t^{\perp} , which can support our claim that increasing ρ_t^{\perp} can lead to increasing loss.

To lower bound the loss by ρ_t^{\perp} , we need introduce the new techniques, which is originally from [1]. Here is the scaffolding assumption.

Assumption 0.1 (Non-degenerate data). Let ℓ be ℓ_{log} and $\hat{\mathbf{w}}$ be the SVM solution as presented in Definition 5. And let \mathcal{S} is the support vector set of the dataset. Assume that there exists $\alpha_i > 0, \forall i \in \mathcal{S}$ such that $\hat{\mathbf{w}} = \sum_{i \in \mathcal{S}} \alpha_i y_i \mathbf{x}_i$.

Remark 0.2. It is worth to mention that this assumption is mild. It holds almost surely for all linearly separable dataset that is sampled from continuous distributions (refer to Appendix B of [2]).

Here is the scaffolding lemma.

Lemma 0.3 (Margin Offset). Suppose that Assumption 0.1 and Assumption 4 hold. There exists the margin offset b > 0 such that

$$-b := \max_{\mathbf{w} \in span^{\perp}\{\hat{\mathbf{w}}\} \cap span\{\mathbf{x}_1, \cdots, \mathbf{x}_n\}} \min_{i \in [n]} y_i \cdot \langle \mathbf{x}_i, \mathbf{w} \rangle / \|\mathbf{w}\|$$

We mention that Definition 5, Assumption 4 and Eq. (1) are in the original paper.

Remark 0.4. This immediately implies that: for any $\mathbf{w} \in \text{span}\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ such that $\mathbf{w}^T \hat{\mathbf{w}} = 0$, there exist $i \in [n]$ such that $y_i \cdot \langle \mathbf{x}_i, \mathbf{w} \rangle \leq -b \cdot ||\mathbf{w}||$.

Proof. Assumption 4 assumes the data overparameterization setting, which suggests that all sample \mathbf{x}_i in the dataset is support vector. Therefore we have $\operatorname{span}\{\mathbf{x}_1,\cdots,\mathbf{x}_n\}=\operatorname{span}\{\mathbf{x}_i|\mathbf{x}_i\in\mathcal{S}\}$

If Assumption 0.1 holds, we can prove for any $\mathbf{v} \in \text{span}\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ such that $\langle \mathbf{v}, \hat{\mathbf{w}} \rangle = 0$, there exist $i, j \in S$, such that $y_i \cdot \langle \mathbf{x}_i, \mathbf{v} \rangle < 0$, $y_j \cdot \langle \mathbf{x}_j, \mathbf{v} \rangle > 0$. To see this, we have

$$0 = \langle \mathbf{v}, \hat{\mathbf{w}} \rangle = \sum_{i \in \mathcal{S}} \alpha_i y_i \langle \mathbf{v}, \mathbf{x}_i \rangle$$

Because $\mathbf{v} \in \text{span}\{\mathbf{x}_1, \dots, \mathbf{x}_n\} = \text{span}\{\mathbf{x}_i | \mathbf{x}_i \in \mathcal{S}\}$, there must exist $i, j \in [n]$, such that $y_i \cdot \langle \mathbf{x}_i, \mathbf{v} \rangle < 0$, $y_j \cdot \langle \mathbf{x}_j, \mathbf{v} \rangle > 0$. Therefore, the constant b as described in this lemma always exists.

This lemma introduces an important constant b that helps us lower bound loss value.

Lemma 0.5 (Lower Bound of Logistic Loss). Let ℓ be ℓ_{log} and $\hat{\mathbf{w}}$ be the SVM solution as presented in Definition 5. Suppose Assumption 4 and 0.1 holds. Consider the gradient descent (1), for all $t \geq 0$, if $\alpha_t > 0$, it holds that

$$\mathcal{R}_t \geq \frac{1}{n} \ell \left(\frac{\alpha_t}{\sqrt{\lambda_{\min}}} \left(\rho_t \gamma^2 - \rho_t^{\perp} b \gamma \right) \right)$$

Proof. Consider \mathcal{R}_t , we have

$$\mathcal{R}_t = \frac{1}{n} \sum_{i=1}^n \ell \left(\alpha_t \frac{\langle \mathbf{w}_t, \mathbf{x}_i y_i \rangle}{\|\mathbf{w}_t\|_{\mathbf{\Sigma}}} \right)$$

By Lemma 0.3, there exists a $j \in [n]$ such that

$$\left\langle y_{j}\mathbf{x}_{j}, \left(\mathbf{I} - \frac{\hat{\mathbf{w}}\hat{\mathbf{w}}^{T}}{\|\hat{\mathbf{w}}\|^{2}}\right)\mathbf{w}_{t}\right\rangle \leq -b\left\|\left(\mathbf{I} - \frac{\hat{\mathbf{w}}\hat{\mathbf{w}}^{T}}{\|\hat{\mathbf{w}}\|^{2}}\right)\mathbf{w}_{t}\right\|$$

$$= -b\frac{\left\|\left(\mathbf{I} - \frac{\hat{\mathbf{w}}\hat{\mathbf{w}}^{T}}{\|\hat{\mathbf{w}}\|^{2}}\right)\mathbf{w}_{t}\right\|}{\left\|\left(\mathbf{I} - \frac{\mathbf{w}_{t}\mathbf{w}_{t}^{T}}{\|\mathbf{w}_{t}\|^{2}}\right)\hat{\mathbf{w}}\right\|}\left\|\left(\mathbf{I} - \frac{\mathbf{w}_{t}\mathbf{w}_{t}^{T}}{\|\mathbf{w}_{t}\|^{2}}\right)\hat{\mathbf{w}}\right\|$$

$$= -b\frac{\|\mathbf{w}_{t}\|}{\|\hat{\mathbf{w}}\|}\rho_{t}^{\perp} = -\rho_{t}^{\perp}b\gamma\|\mathbf{w}_{t}\|$$

Then, we have

$$\begin{split} \langle \mathbf{w}_t, \mathbf{x}_i y_i \rangle &= \left\langle \left(\frac{\hat{\mathbf{w}} \hat{\mathbf{w}}^T}{\|\hat{\mathbf{w}}\|^2} \right) \mathbf{w}_t, \mathbf{x}_i y_i \right\rangle + \left\langle \left(\mathbf{I} - \frac{\hat{\mathbf{w}} \hat{\mathbf{w}}^T}{\|\hat{\mathbf{w}}\|^2} \right) \mathbf{w}_t, \mathbf{x}_i y_i \right\rangle \\ &\leq \gamma^2 \mathbf{w}_t^T \hat{\mathbf{w}} - \rho_t^{\perp} b \gamma \| \mathbf{w}_t \| \\ &= \gamma^2 \| \mathbf{w}_t \| \rho_t - \rho_t^{\perp} b \gamma \| \mathbf{w}_t \| \end{split}$$

Then

$$\mathcal{R}_{t} \geq \frac{1}{n} \ell \left(\alpha_{t} \frac{\langle \mathbf{w}_{t}, \mathbf{x}_{j} y_{j} \rangle}{\|\mathbf{w}_{t}\|_{\Sigma}} \right)$$

$$\geq \frac{1}{n} \ell \left(\alpha_{t} \frac{\|\mathbf{w}_{t}\|}{\|\mathbf{w}_{t}\|_{\Sigma}} \left(\rho_{t} \gamma^{2} - \rho_{t}^{\perp} b \gamma \right) \right)$$

$$\geq \frac{1}{n} \ell \left(\frac{\alpha_{t}}{\sqrt{\lambda_{\min}}} \left(\rho_{t} \gamma^{2} - \rho_{t}^{\perp} b \gamma \right) \right)$$

Appendix

[1] Wu J, Braverman V, Lee J D. Implicit bias of gradient descent for logistic regression at the edge of stability[J]. Advances in Neural Information Processing Systems, 2023, 36: 74229-74256.

[2] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1): 2822–2878, 2018.