Detección de lenguaje en textos

IA Nexus

Integrantes Ricardo Bernabé Nicolás Carlos Eduardo González Arceo

CONTENIDO

Motivación

Introducción

Uso de Algoritmos para clasificar

Uso de una red neuronal

Resultados

Conclusiones

Motivación

La detección automática del idioma de un texto es fundamental para aplicaciones de procesamiento de lenguaje natural (NLP), como traducción automática, análisis de sentimientos y clasificación de documentos. Ejemplos de uso: Google Traductor, herramientas de Speech to Text y Text to Speech.

Ejemplo: Función detectar idioma

Si queremos hacer una traducción de un texto de un lenguaje que desconocemos, podemos utilizar esta función para detectar el idioma y después traducir

Ejemplo: Speech To text - Text to speech

Dataset

El dataset consiste en 3698 textos con su respectiva etiqueta del idioma.

1000 Español 1000 Inglés 1000 Francés 698 Italiano

	Text	1anguage	code				
0	en navidad de poco después de que interpretó	Spanish	0				
1	según el censo de [] había personas residien	Spanish	0				
2	en la copa mundial de fútbol sub- de pitó los	Spanish	0				
3	ally y buttons encuentran el descodificador y	Spanish	0				
4	los primeros habitantes se establecieron cerca	Spanish	0				
995	on march empty mirrors press published epste	English	3				
996	he [musk] wants to go to mars to back up human	English	3				
997	overall the male is black above and white belo	English	3				
998	tim reynolds born december in wiesbaden germ	English	3				
999	the total high school population was now appro	English	3				
3698 rows × 3 columns							

Generación de vectores

Se utilizó primero countVectorizer para contar las apariciones de cada token y después se utilizó TfidfTransformer para generar la matriz de pesos de tf-ldf

	0	1	2	3	4	5	6	7	8	9	 35778	35779	35780	35781	35782	35783	35784	35785	35786	35787
0	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	 0	0	2	0	0	0	0	0	0	0
4	1	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
																_		_		

Naive Bayes

Naive Bayes se basa en calcular la probabilidad de que un elemento pertenece a una clase, dada la descripción del elemento, en este caso, el producto de la probabilidad de sus tokens dado la probabilidad de la clase

3: "English")

	precision	recall	f1-score	support
0	0.99	0.98	0.98	270
1	1.00	0.96	0.98	184
2	0.99	0.99	0.99	247
3	0.96	1.00	0.98	224
accuracy			0.98	925
macro avg	0.98	0.98	0.98	925
weighted avg	0.98	0.98	0.98	925

Logistic Regression Multinomial

Utiliza la creación de varios modelos 1 vs todos para obtener varias probabilidades y poder elegir la probabilidad más alta, que define a la clase

	precision	recall	f1-score	support
0	1.00	0.99	0.99	270
1	0.99	1.00	0.99	184
2	1.00	0.99	1.00	247
3	0.98	1.00	0.99	224
accuracy			0.99	925
macro avg	0.99	0.99	0.99	925
weighted avg	0.99	0.99	0.99	925

Concluciones

- La detección de idioma es un componente fundamental en modelos de NLP.
- La comprensión de procesos como la vectorización de texto es crucial para el desarrollo de modelos más complejos.
- Los modelos desarrollados son efectivos y pueden ser la base para aplicaciones más avanzadas.