DYNAMIC INEFFICIENCY IN DIAMOND MODEL

	Equilibrium	in	Ramsey	model	was	Pareto	efficient
--	-------------	----	--------	-------	-----	--------	-----------

 \Box Diamond model admits the possibility of inefficiency o It is possible that k^* is greater than Golden Rule k

o Why? Because survival in old age depends on saving lots of income regardless of rate of return.

o It is possible that the saving rate that is optimal for an individual might be higher than the saving rate that leads to Golden Rule level of k^*

Ref: https://www.reed.edu/economics/parker/314/notes1.html

SUPPOSE THAT K* > KGR

- o Suppose that there was another (than capital) way of transferring money from youth to old age (Social Security) so that saving could go down
- o Young would be better off because they could consume more
- o Future generations would be better off because $k^*\downarrow$ means higher steady-state c^*
- o Everyone is made better off and no one worse off, so original equilibrium must not have been Pareto optimal

HOW CAN MODEL BY INEFFICIENT? WHERE IS THE MARKET FAILURE?

- o No externalities, but an absent market: no way for current generation to trade effectively with future generations
- o Only way to provide for retirement is through saving, even if rate of return is zero or negative
- o From social standpoint, it is desirable to avoid low- or negative-return investment, but for individual facing retirement this is only choice
- o If benevolent government were to establish transfer scheme from young to old (like Social Security), then they would not need to accumulate useless capital in order to eat in retirement
- o You will do a problem this week looking at the effect of alternative Social Security regimes in the Diamond model

FIGURE 2.11 The dynamics of k

Logarithmic Utility and Cobb-Douglas Production

When θ is 1, the fraction of labor income saved is $1/(2 + \rho)$ (see equation [2.55]). And when production is Cobb-Douglas, f(k) is k^{α} and f'(k) is $\alpha k^{\alpha-1}$. Equation (2.59) therefore becomes

$$k_{t+1} = \frac{1}{(1+n)(1+g)} \frac{1}{2+\rho} (1-\alpha) k_t^{\alpha}.$$
 (2.60)

Figure 2.11 shows k_{t+1} as a function of k_t . A point where the k_{t+1} function intersects the 45-degree line is a point where k_{t+1} equals k_t . In the case we are considering, k_{t+1} equals k_t at $k_t = 0$; it rises above k_t when k_t is small; and it then crosses the 45-degree line and remains below. There is thus a unique balanced-growth-path level of k (aside from k = 0), which is denoted k^* .

- **2.17. Social security in the Diamond model.** Consider a Diamond economy where *g* is zero, production is Cobb-Douglas, and utility is logarithmic.
 - (a) Pay-as-you-go social security. Suppose the government taxes each young individual an amount T and uses the proceeds to pay benefits to old individuals; thus each old person receives (1 + n)T.
 - (i) How, if at all, does this change affect equation (2.60) giving k_{t+1} as a function of k_t ?
 - (ii) How, if at all, does this change affect the balanced-growth-path value of *k*?
 - (iii) If the economy is initially on a balanced growth path that is dynamically efficient, how does a marginal increase in T affect the welfare of current and future generations? What happens if the initial balanced growth path is dynamically inefficient?
 - (b) Fully funded social security. Suppose the government taxes each young person an amount T and uses the proceeds to purchase capital. Individuals born at t therefore receive $(1 + r_{t+1})T$ when they are old.
 - (i) How, if at all, does this change affect equation (2.60) giving k_{t+1} as a function of k_t ?
 - (ii) How, if at all, does this change affect the balanced-growth-path value of k?

http://listinet.com/bibliografia-comuna/Cdu339-52C2.pdf

Page 60, Romer, 2.16. Social Security
Since the budget constraint changes, we have to solve the Diamond model again.