Question	Answer		Mark
number	TI CAT AI	(1)	
13	• Use of $\Delta E_{\text{grav}} = mg\Delta h$	(1)	
	Idea that centripetal force at top of loop equals weight for	(1)	
	minimum speed	(1)	
	• Use of $F = mv^2/r$	(1)	
	• Use of $E_k = \frac{1}{2} mv^2$	(1)	
	• Add E_{grav} at top of loop and required E_{k}		
	Or Subtract E_{grav} at top of loop from E_{grav} at launch	(1)	
	Or Subtract required E_k from E_{grav} at launch	(1)	
	• $(\Delta E_{\text{grav}} \text{ at start of}) 0.081 \text{ J is less than } 0.089 \text{ J (for sum of })$		
	$E_{\rm grav}$ at top of loop and required $E_{\rm k}$, so insufficient energy),		
	so it does not complete the loop		
	Or (Height required of) 0.275 m is greater than 0.25 m,		
	(the height of launch position, so insufficient energy), so it		
	does not complete the loop		
	Or E_k at height of top of loop would be 0.0097 J which is		
	less than the required 0.071 J (so insufficient energy), so it		
	does not complete the loop		
	Or v at height of top of loop would be 0.77 m s^{-1} which is		
	less than the required 1.04 m s^{-1} so it does not complete the		
	loop		
	$\mathbf{Or} mv^2/r = 0.18 \text{ N}$ which is less than weight of 0.32 N so it		
	does not complete the loop	(1)	6
	Do not credit parts of calculation or derivation unambiguously		
	using the formula for uniform acceleration $v^2 = 2as$, i.e. if the		
	symbols are seen and substitution is from them and not from $mg\Delta h$		
	$= \frac{1}{2} mv^2$		
	Example of calculation		
	ΔE_{grav} at release point = 0.033 kg × 9.81 N kg ⁻¹ × 0.25 m = 0.0809 J		
	$W = 0.033 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.324 \text{ N}$		
	At minimum speed $W = mv^2/r$		
	$0.324 \text{ N} = 0.033 \text{ kg} \times v^2 / 0.11 \text{ m}$		
	$v = 1.04 \text{ m s}^{-1}$		
	$E_k = \frac{1}{2} \times 0.033 \text{ kg} \times (1.04 \text{ m s}^{-1})^2 = 0.0178 \text{ J}$		
	ΔE_{grav} at top of loop = 0.033 kg × 9.81 N kg ⁻¹ × 0.22 m = 0.0712 J		
	Total energy required to complete loop		
	= 0.0178 J + 0.0712 J = 0.089 J		
	0.0809 J < 0.089 J		
	Total for question 13		6