POST-BREACH BLACK BOX LOGGER — ENCRYPTED, TAMPER-EVIDENT

KEYLOGGER

Introduction

Today's organizations face sophisticated cyberthreats and insider attacks that often destroy or manipulate logs to conceal traces. The **Post-Breach Black Box Logger** is designed to aid cybersecurity analysts by collecting key forensic data from a compromised endpoint in a lightweight, tamper-evident, and encrypted format — without needing elevated privilege.

This tool provides a trustworthy view into attacker activity after a breach, helping incident responders piece together a timeline of events quickly and accurately.

Abstract

The **Post-Breach Black Box Logger** is a lightweight, post-incident forensic tool. It performs:

- **AES-256-GCM encryption:** To keep captured keystrokes and context confidential.
- **HMAC-SHA256:** To guarantee tamper-evident storage.

Context Capture: 1	To aid investig	gations by	, adding	directory	and proce	ss details	alongside	keystrokes.

The encrypted messages are base64-encoded and serialized in JSON format for convenient storage and eventual decryption by analysts.

Tools Used

- Python 3.x
- pynput: for keystroke capture
- pywin32, psutil: for process and directory context
- Cryptography: for AES-GCM and HMAC
- os, base64, json: for file operations and packaging

• Steps Involved in Building the Project

→ Initiate:

Logger starts upon launch and attaches to keyboard events.

⇒ Capture:

For each keystroke, it:

- Records the key pressed.
- Captures the active window title.
- Logs associated directory and process path.

⇒ Encrypt:

Encrypts this data with AES-256-GCM using a unique 96-bit nonce.

→ ** HMAC:**

Generulates HMAC-SHA256 to enable tamper-detection.

⇒ Serialize:

Packages encrypted data, HMAC, and context into base64-encoded JSON.

⇒ Store:

Writes messages safely to a local file for later decryption and analysis.

Conclusion

The **Post-Breach Black Box Logger** successfully provides:

- **✓** Tamper-evident, encrypted logging of keystrokes.
- Valuable context alongside captured data.
- ightharpoonup A lightweight, non-intrusive solution for incident response without needing elevated privilege.

This tool highlights proficient use of:

- AES-GCM, HMAC, and base64 techniques
- V Python scripting and API integration
- Security best practices for lightweight post-breach investigations

The Post-Breach Black Box Logger can aid incident handlers in accurately reconstructing attack timelines and identifying suspicious activity — all while avoiding kernel components or elevated privilege.

Final Note:

This tool underscores the ability to combine coding skills with cybersecurity principles — designing a lightweight, tamper-evident logging solution for incident response.