of EEE201

CMOS Digital Integrated Circuits

Department of Electrical & Electronic Engineering Xi'an Jiaotong-Liverpool University (XJTLU)

Monday, 04th November 2024

☐ Drawing CMOS IC Layout

- > CMOS inverter: schematic to device structure
- > seven mask layers
- drawing each mask layer to give the layout

CMOS Inverter

(from schematic design to device structures on wafer)

To make the CMOS inverter (and in general CMOS digital ICs), the pMOSFET and nMOSFET fabrication on a silicon wafer need to be well-defined by a set of mask layers in the IC layout.

Note the explicit substrate

Semester 1, 2024/2025 by S.Lam@XJTLU

CMOS Inverter

(from schematic design to device structures on wafer)

- ☐ To fabricate NMOS transistors alone on a **p**-type silicon wafer, at least four masks are needed.
 - ⇒ four mask layers in the IC layout for NMOS transistors
- □ To fabricate both NMOS and PMOS transistors on a p-type silicon wafer, at least seven masks are needed: ⇒ 7 mask layers in the IC layout for CMOS circuits

Mask 1: *n*-well; Mask 2: active; Mask 3: polysilicon (gate)

Mask 4: **p**-select (for defining the **p**-type doping)

Mask 5: *n*-select (for defining the *n*-type doping)

Mask 6: contact (to active & polysilicon)

Mask 7: metal 1

CMOS IC Layout

(schematic circuit to physical structures in fabrication)

- ☐ In drawing the IC layout, we need to be aware of what device structure will be fabricated from each mask layer.
 - ⇒ *physical* layout design in CMOS ICs (digital & analogue)
- ☐ In drawing the IC layout, it is a process of turning the schematic circuit into *physical* design in a planar representation (with very precise geometrical shapes & dimensions).
 - ➤ Electronic design automation (EDA) software (e.g. Cadence) is used nowadays to create the **layout design** for IC fabrication. Within Cadence, Virtuso is the IC layout editor.

CMOS IC Layout

(schematic circuit to physical layout)

The mask number is the sequence in IC fabrication. But it doesn't matter in drawing which mask layers first & which later.

(start with the active mask layer for one MOSFET)

Mask 2: active

Start drawing NMOS transistor in this case.

Note that one dimension of the geometrical shape drawn for the active mask will define the channel width W of the MOSFET.

(active mask layer for MOS transistor)

(polysilicon mask layer for MOS transistor)

Mask 3: polysilicon

Note that the smaller size of the geometrical shape drawn for the **polysilicon** gate will define the <u>channel</u> <u>length</u> *L* of the MOSFET.

(polysilicon gate of the MOSFET)

(one-sized square-shaped contact to active)

Mask 6: contact

The contacts shown here connect the source/drain regions. It is the same contact mask layer for connecting to polysilicon.

(covering contact with metal)

Mask 7: metal

The contacts
must be
covered with
the metal mask
layer, literally
metal 1.

(*n*-select or called *n*-diffusion implant)

(*n*-select for regions to be doped *n*-type)

Mask 5: *n*-select

The *n*-select mask layer covers the **active** mask layer & the polysilicon mask layer in the NMOS transistor. \Rightarrow The polysilicon gate is heavily doped \Rightarrow more conducting

(substrate contact in NMOS transistor)

The substrate contact to the **p**-type wafer can be explicitly created in **n**MOSFET.

(same active mask layer for PMOS transistor)

Mask 2: active

The PMOS transistor layout also starts with the **active** mask layer, which is essentially the same as that of the NMOS transistor.

(same polysilicon mask layer for PMOS transistor)

Mask 3: polysilicon

The PMOS transistor's gate electrode is defined by the same polysilicon mask layer of the NMOS transistor, in the same way.

(contact to source/drain regions of PMOS transistor)

Mask 6: contact

The same
contact mask
layer in the
NMOS
transistor
applies to the
PMOS
transistor.

(same square contact covered with metal)

Mask 7: metal

The same one-sized square contacts of the PMOS transistor must also be covered with the **metal** 1 mask layer.

(p-select for defining regions of p-type doping)

Mask 6: *p*-select

In the PMOS transistor, the **p-select** mask layer defines the source/drain regions for **p**-type doping.

(n-well mask layer for PMOS transistor)

Mask 1: n-well

To make **PMOS** transistors on a **p**-type wafer, the *n*well mask layer defines an *n*-type region for the pMOSFET.

(substrate contact of PMOS transistor)

In the PMOS transistor, the substrate contact to the *n*-well is necessary.

Note 4 mask layers on *n*-well: active, contact, *n*-select & metal.

(use of metal mask layer for electrical wiring)

The metal mask layer is used to define the interconnect as **electrical** wiring of the circuit (e.g. connection to power supply & ground).

There can be metal 2, 3, ...

(polysilicon gates connection)

The polysilicon gates of the PMOS & **NMOS** transistors are connected together with a contact & ___ metal to the input of the **CMOS** inverter.

IC Layout

(CMOS logic gate)

- When given a simple CMOS digital IC layout, can you recognise the logic circuit?
- □ Can you also identify the mask layers in the layout?
 - What mask layers missing?

IC Layout

(≥7 masks in CMOS)

Mask 1: n-well

Mask 2: active

Mask 3: polysilicon

Mask 6: contact

Mask 7: metal 1

Two mask layers are missing on the previous slide:

Mask 4: p-select

Mask 5: *n*-select

