Problem Statement

Linear Regression

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import sead_csv("Sales.csv")
a
```

HoursLeas	HoursOwn	Dept. Name	Dept_ID	City	StoreID	Country	Time index	MonthYear		Out[3]:
0.	3184.764	Dry	1.0	London (I)	88253.0	United Kingdom	1.0	10.2016	0	
0.	1582.941	Frozen	2.0	London (I)	88253.0	United Kingdom	1.0	10.2016	1	
0.	47.205	other	3.0	London (I)	88253.0	United Kingdom	1.0	10.2016	2	
0.	1623.852	Fish	4.0	London (I)	88253.0	United Kingdom	1.0	10.2016	3	
0.	1759.173	Fruits & Vegetables	5.0	London (I)	88253.0	United Kingdom	1.0	10.2016	4	
									•••	
0.	6322.323	Checkout	12.0	Gothenburg	29650.0	Sweden	9.0	06.2017	7653	
0.	4270.479	Customer Services	16.0	Gothenburg	29650.0	Sweden	9.0	06.2017	7654	
0.	0	Delivery	11.0	Gothenburg	29650.0	Sweden	9.0	06.2017	7655	
0.	2224.929	others	17.0	Gothenburg	29650.0	Sweden	9.0	06.2017	7656	
0.	39652.2	all	18.0	Gothenburg	29650.0	Sweden	9.0	06.2017	7657	

 $7658 \text{ rows} \times 14 \text{ columns}$

To display top 10 rows

```
In [4]: c=a.head(15) c
```

\cap	п÷		1 .
\circ	ич	1 +	١.

	MonthYear	Time index	Country	StoreID	City	Dept_ID	Dept. Name	HoursOwn	HoursLease	
0	10.2016	1.0	United Kingdom	88253.0	London (I)	1.0	Dry	3184.764	0.0	39
1	10.2016	1.0	United Kingdom	88253.0	London (I)	2.0	Frozen	1582.941	0.0	8
2	10.2016	1.0	United Kingdom	88253.0	London (I)	3.0	other	47.205	0.0	43
3	10.2016	1.0	United Kingdom	88253.0	London (I)	4.0	Fish	1623.852	0.0	30
4	10.2016	1.0	United Kingdom	88253.0	London (I)	5.0	Fruits & Vegetables	1759.173	0.0	16
5	10.2016	1.0	United Kingdom	88253.0	London (I)	6.0	Meat	8270.316	0.0	171
6	10.2016	1.0	United Kingdom	88253.0	London (I)	13.0	Food	16468.251	0.0	310
7	10.2016	1.0	United Kingdom	88253.0	London (I)	7.0	Clothing	4698.471	0.0	21
8	10.2016	1.0	United Kingdom	88253.0	London (I)	8.0	Household	1183.272	0.0	5.
9	10.2016	1.0	United Kingdom	88253.0	London (I)	9.0	Hardware	2029.815	0.0	5
10	10.2016	1.0	United Kingdom	88253.0	London (I)	14.0	Non Food	7911.558	0.0	32
11	10.2016	1.0	United Kingdom	88253.0	London (I)	15.0	Admin	4308.243	0.0	
12	10.2016	1.0	United Kingdom	88253.0	London (I)	12.0	Checkout	5825.097	0.0	343
13	10.2016	1.0	United Kingdom	88253.0	London (I)	16.0	Customer Services	3320.085	0.0	
14	10.2016	1.0	United Kingdom	88253.0	London (I)	11.0	Delivery	0	0.0	
4										•

To find Missing values

In [5]: c.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 15 entries, 0 to 14 Data columns (total 14 columns):

- 0. 0.			
#	Column	Non-Null Count	Dtype
0	MonthYear	15 non-null	object
1	Time index	15 non-null	float64
2	Country	15 non-null	object
3	StoreID	15 non-null	float64
4	City	15 non-null	object
5	Dept_ID	15 non-null	float64
6	Dept. Name	15 non-null	object

```
7
                   15 non-null
                                   object
    HoursOwn
                   15 non-null
                                   float64
8
    HoursLease
9
    Sales units
                   15 non-null
                                   float64
10
                   15 non-null
                                   float64
    Turnover
11 Customer
                                   float64
                   0 non-null
12 Area (m2)
                   15 non-null
                                   object
13 Opening hours 15 non-null
                                   object
dtypes: float64(7), object(7)
memory usage: 1.8+ KB
```

To display summary of statistics

```
In [6]:
          a.describe()
Out[6]:
                 Time index
                                  StoreID
                                              Dept_ID
                                                       HoursLease
                                                                      Sales units
                                                                                     Turnover Customer
         count 7650.000000
                              7650.000000 7650.000000 7650.000000 7.650000e+03 7.650000e+03
                                                                                                     0.0
                   5.000000 61995.220000
                                             9.470588
                                                         22.036078 1.076471e+06 3.721393e+06
                                                                                                    NaN
         mean
                   2.582158 29924.581631
                                                       133.299513 1.728113e+06 6.003380e+06
                                             5.337429
                                                                                                   NaN
           std
           min
                   1.000000 12227.000000
                                             1.000000
                                                          0.000000 0.000000e+00 0.000000e+00
                                                                                                   NaN
           25%
                   3.000000 29650.000000
                                             5.000000
                                                          0.000000 5.457125e+04 2.726798e+05
                                                                                                   NaN
           50%
                   5.000000 75400.500000
                                             9.000000
                                                          0.000000 2.932300e+05 9.319575e+05
                                                                                                   NaN
                   7.000000 87703.000000
                                                          0.000000 9.175075e+05 3.264432e+06
                                                                                                   NaN
           75%
                                            14.000000
                   9.000000 98422.000000
                                            18.000000 3984.000000 1.124296e+07 4.271739e+07
                                                                                                   NaN
           max
```

To display column heading

Pairplot

```
In [8]: s=a.dropna(axis=1)
s
```

```
Out[8]: MonthYear

0 10.2016
1 10.2016
2 10.2016
3 10.2016
4 10.2016
...
```

	MonthYear
7653	06.2017
7654	06.2017
7655	06.2017
7656	06.2017
7657	06.2017

7658 rows × 1 columns

```
In [9]:
          s.columns
         Index(['MonthYear'], dtype='object')
Out[9]:
In [10]:
          sns.pairplot(a)
Out[10]: <seaborn.axisgrid.PairGrid at 0x1533f98ba90>
```

0.04 0.02 0.00 -0.02

Distribution Plot

```
In [12]:
            sns.distplot(c['MonthYear'])
Out[12]: <AxesSubplot:xlabel='MonthYear', ylabel='Density'>
              1.2
              1.0
              0.8
           Density
9.0
              0.4
              0.2
              0.0
                        9.8
                                 10.0
                                            10.2
                                                      10.4
                                                                10.6
                                         MonthYear
```

Correlation

Train the model - Model Building

```
In [15]: g=c[['MonthYear']]
```

```
h=c['MonthYear']
```

To split dataset into training end test

```
from sklearn.model_selection import train_test_split
g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

Coeffecient

```
In [20]: coeff=pd.DataFrame(lr.coef_,g.columns,columns=['Co-effecient'])
coeff
```

Out[20]: Co-effecient

MonthYear 0.0

Best Fit line

Out[21]: <matplotlib.collections.PathCollection at 0x15344bac400>

To find score