

Lineare Algebra - WS 19/20

Prof. Dr. Anne Frühbis-Krüger Dr. Bernd Schober

Übungsblatt 0

Abgabe: Präsenzblatt

Für zwei Aussagen A, B definieren wir $\neg A$ (die Negation von A), $A \wedge B$ (A und B), $A \vee B$ (A oder B), $A \Longrightarrow B$ (A impliziert B, oder aus A folgt B) und $A \Longleftrightarrow B$ (A äquivalent B) mittels folgender Wahrheitstabelle (w = wahr, f = falsch)

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \Longrightarrow B$	$A \Longleftrightarrow B$
w	w	f	w	w	w	w
w	f	f	f	w	f	f
f	w	w	f	w	w	f
f	f	w	f	f	w	w

Sei M eine Menge und sei A(x) für jedes $x \in M$ eine Aussage. Wir definieren die Quantoren \forall und \exists wie folgt: $\forall x \in M : A(x)$ Für alle $x \in M$ ist A(x) wahr.

 $\exists x \in M : A(x)$ Es gibt (mindestens) ein $x \in M$, für das A(x) wahr ist.

Präsenzaufgabe 0.1. Negieren Sie folgende Aussagen und formulieren Sie die Aussagen (a), (c) und (e) mit Hilfe von Quantoren:

- (a). Alle Menschen sind ehrlich.
- (b). $\forall x \in M : A(x)$.
- (c). Es gibt Mathematiker, die Fahrrad fahren.
- (d). $\exists x \in M : A(x)$.
- (e). Keiner mag alle Farben Smarties.

Präsenzaufgabe 0.2 (*Beweistechniken*). (a). Es seien A und B beliebige Aussagen. Zeigen Sie mittels einer Wahrheitstafel, dass folgende Aussagen äquivalent sind:

- (i) $A \Longrightarrow B$ (direkter Beweis)
- (ii) $\neg B \Longrightarrow \neg A$ (Beweis durch Kontraposition, indirekter Beweis)
- (iii) $(A \land \neg B) \Longrightarrow f$ (Beweis durch Widerspruch)
- (b). Sei $p \in \mathbb{N}$ eine natürliche Zahl. Zeigen Sie mittels Beweis durch Kontraposition: Ist p^2 durch 3 teilbar, dann ist auch p durch 3 teilbar.
- (c). Beweisen Sie mittels Beweis durch Widerspruch: $\sqrt{3}$ ist irrational. Hinweis: Zum Beweis einer Aussage ohne Prämise durch Widerspruch gilt: $A \iff (\neg A \Longrightarrow f)$.

Achten Sie hierbei auf eine saubere Form unter Verwendung von Voraussetzung/Behauptung/Beweis. (Siehe das Beispiel am Ende).

Präsenzaufgabe 0.3. Seien A, B, C Aussagen. Suchen Sie die Fehler in folgenden Aussagen und geben Sie je ein Gegenbeispiel an:

(a).
$$(\neg B \Longrightarrow \neg A) \Longleftrightarrow (A \Longrightarrow B) \Longrightarrow (B \Longrightarrow A)$$
.

(b).
$$A \Longrightarrow (A \land \neg A) \Longrightarrow B \Longrightarrow \neg (A \land B) \Longleftrightarrow \neg A \lor \neg B$$
.

Achten Sie hierbei auf eine saubere Form unter Verwendung von Voraussetzung/Behauptung/Beweis.

Präsenzaufgabe 0.4. Erarbeiten Sie in gemeinsamer Diskussion ein Beispiel, das zeigt, dass die Quantoren \forall und \exists im Allgemeinen nicht vertauschen.

Achten Sie hierbei auf eine saubere Form unter Verwendung von Voraussetzung/Behauptung/Beweis.

Zum Abschluss noch ein Beispiel für einen formal sauberen Beweis:

Beispiel-Aufgabe 0.5. Seien $x, y \in \mathbb{R}$ zwei positive reelle Zahlen mit $x \le 1$, $y \ge 1$ und $xy \le 1$. Zeigen Sie, dass $x + y \ge xy + 1$ gilt.

Voraussetzung: $x, y \in \mathbb{R}$ mit $x \le 1, y \ge 1$ und $xy \le 1$.

Behauptung: Es gilt $x + y \ge xy + 1$.

Beweis: Da $0 < x \le 1$ ist, gilt

$$x = 1 - a$$
, für ein $a \in [0; 1)$.

Ferner impliziert $y \ge 1$, dass

$$y = 1 + b$$
, für ein $b \in \mathbb{R}$ mit $b \ge 0$.

Daraus ergeben sich x + y = 2 - a + b und

$$xy + 1 = (1 - a)(1 + b) + 1 = 1 - a + b - ab + 1 = 2 - a + b - ab = x + y - ab.$$

Da $ab \ge 0$ ist, folgt hieraus die Behauptung $x+y \ge xy+1$.