- 1. Define an m x n matrix of zeros and then enters a nested-for loop to fill the locations of the matrix, only if the two indexes differ.
 - The purpose is to create a lower triangular matrix, that is a matrix whose elements below the main diagonal are non-zero, the others are left untouched to their initialized zero value.
 - When the indexes are equal (if condition in the inner loop, which runs over j, the column index), a break is executed and the innermost loop is interrupted with a direct jump to the instruction following the inner loop, which is a print; then control gets to the outer for condition (over the rows, index i), which is evaluated again.
 - > If the indexes differ, the assignment is performed and the counter is incremented by 1.
 - At the end, the program prints the counter ctr, which contains the #number of elements that were assigned.

```
m = 10;
n = 10;
ctr = 0;
x_mat = matrix(0,m,n)
x_mat
```

```
[,2]
0
              [,4]
0
                                    [,7]
0
                                                   [,9]
0
                      [,5]
0
                             [,6]
0
                                            [,8]
0
                                                          [,10]
0
 0
        0
                0
                       0
                              0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
 0
        0
                0
                       0
                              0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
 0
        0
                0
                       0
                              0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
 0
        0
                0
                       0
                              0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
                                                                    0
 0
                0
                                     0
                                                    0
        0
                       0
                              0
                                             0
                                                            0
        0
                0
                       0
                              0
                                     0
                                             0
                                                            0
 0
        0
                0
                       0
                              0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
 0
        0
                0
                       0
                              0
                                     0
                                             0
                                                    0
                                                            0
                                                                    0
 0
                                     0
        0
                0
                                             0
                                                    0
                                                            0
                                                                    0
```

```
for(i in 1:m){
  for(j in 1:n){
    if(i == j){
      break;
  }else{
      x_mat[i,j] = i+j
      ctr = ctr+1
  }
  }
  print(i+j)
```

```
[1] 2

[1] 4

[1] 6

[1] 8

[1] 10

[1] 12

[1] 14

[1] 16
```

```
[1] 18
[1] 20
```

} print(ctr)

[1] 45

x_mat

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
[1,]	0	0	0	0	0	0	0	0	0	0
[2,]	3	0	0	0	0	0	0	0	0	0
[3,]	4	5	0	0	0	0	0	0	0	0
[4,]	5	6	7	0	0	0	0	0	0	0
[5,]	6	7	8	9	0	0	0	0	0	0
[6,]	7	8	9	10	11	0	0	0	0	0
[7,]	8	9	10	11	12	13	0	0	0	0
[8,]	9	10	11	12	13	14	15	0	0	0
[9,]	10	11	12	13	14	15	16	17	0	0
[10,]	11	12	13	14	15	16	17	18	19	0