

实验一神经网络报告

江辉--171250506

软件学院

目录		
一、	实验目的	1
二、	内容描述	1
1、	环境及配置	1
2、	项目目录描述	1
三、	运行用例和截图	2
1、	不同的 keep_prob 值的对照试验	2
2、	不同的网络层结构的对照试验	3
3、	不同的卷积核大小的对照试验	4
4、	不同的学习速率大小的对照试验	5
四、	思路方法	6
五、	假设	6
六、	过程分析描述	7
1、	数据预处理	7
2、	数据分割	7
3、	构造 CNN 网络层和训练	8
4、	结果保存和分析	9
七、	重要函数	10
1,	卷积核、池化核、全连接参数的初始化	10
2,	卷积计算	10
3,	池化	10
八、	核心参数	11
1、	5*5 的卷积核	11
2、	2*2 的池化核	11
3、	2 层的全连接网络	11
4、	其余超参数	12
九、	实验中出现的问题和相应的解决办法	12
十、	对实验的评价和感觉	12

一、实验目的

本次实验使用 python 构建一个 CNN 神经网络完成 MNIST"手写体识别"任务,

二、内容描述

本程序用 python 编写,使用 TensorFlow 框架实现 CNN 神经网络。预先定义好各个层卷积层的卷积核大小、池化层函数和全连接层的网络大小,运用 Adam 优化算法来学习,使用 dropout 来避免过拟合。并且通过对比试验观察不同参数、结构的网络执行的效率和准确率等情况。

1、环境及配置

本项目推荐使用 pycharm 打开

最好配好 TensorFlow-gpu+ cuDNN+CUDA, 这样可以用 gpu 训练

我的 gpu 配置是 GTX1050,大概是 3-4s 左右一次迭代,一次训练约 1-2min, (4w 训练集),不同环境运行时可能不同,仅供参考

2、项目目录描述

- **1_1models** 存放了使用 1 层卷积层 + 1 层全连接层训练的结果
- **2_2models** 存放了使用 2 层卷积层 + 2 层全连接层训练的结果

saver 后面的数字是对应存档的测试集准确率 dataset 存放了 MNIST 的数据文件

然后下面是我用 pyplot 画出来的几个对比试验结果图

Driver.py 里写了 main 函数和几个对照试验的参数,我把对应的对照试验都封装成函数了,可以直接在 main 函数里调用运行

functions.py 里写了整个 model 的所有函数,所有模型相关的函数入口和参数都以注释的形式写在这个文件里了

Toos.py 里有我写的用来测试是否使用 gpu 的函数,和一个我写的用 matplotlib.pyplot 将结果可视化的函数,如果需要跑程序的话可以参考使用 difference_xxxxx.png 是我完成各个对照试验的 结果可视化后的折线图

三、运行用例和截图

1、不同的 KEEP_PROB 值的对照试验

右图为输入的用例数据,下图 为相应展示的结果折线图, 折 线图里点上的数字是运行的时 间(s), 可以看到, keep_prob 为 0.7 和为 1.0 的情况都可以在 测试集上达到 99%以上的正确 率, 且运行时间上没有很大差 别(一次迭代约5s, keep_prob 为 1.0 时平均运行时间稍长一 些), 但是当不使用 dropout (即 keep_prob=1.0) 时, 训练 的效果会有一定波动,且平均 准确率略低于使用了 dropout 的情况(keep_prob=0.7), 而且 不使用 dropout 的 loss 曲线在 迭代次数多了之后有一点向上 升高的趋势, 开始变得过拟 合,而使用了 dropout 的则没 有发现这个趋势

```
def different_dropout():
    conv1_shape = [5, 5, 1, 20]
    conv2_shape = [5, 5, 20, 50]
fc1_shape = [7 * 7 * 50, 500]
    fc2_shape = [500, 10]
    learning_rate = 0.001
    keep_prob = 0.7 # -------关键参数--0.7
    max_iteration = 20
    result1 = _2_2_model(conv1_shape, conv2_shape, fc1_shape, fc2_shape,
                             learning_rate=learning_rate, keep=keep_prob,
max_iteration=max_iteration, save_result=True)
    conv1_shape = [5, 5, 1, 20]
    conv2_shape = [5, 5, 20, 50]
    fc1_shape = [7 * 7 * 50, 500]
    fc2_shape = [500, 10]
    learning_rate = 0.001
    keep_prob = 1.0 # ------关键参数--1.0
    max iteration = 20
    result2 = _2_2_model(conv1_shape, conv2_shape, fc1_shape, fc2_shape,
                             learning_rate=learning_rate, keep=keep_prob,
max_iteration=max_iteration, save_result=True)
    plot(result1, result2,
```


2、不同的网络层结构的对照试验

右图为输入的用例数据,下图为相应展示的结果折线图里点上的数字是运行的时间(s),可以看到,当采用1层卷积 + 1层全连接的结构时结果缓慢上升,接近稳定在98%附近,而采用2层卷积+2层全连接的结构则很快就稳定在了99%的准确率。

运行时间上有较大差别, 1 层卷积 +1层全连接 20 次迭代总时间 34s, 而 2 层卷积 +2层全连接则花费了 66s, 是前者的 2 倍, 因此准确率和时间需要作出权衡

```
def different_layer_num():
    conv1_shape = [3, 3, 1, 20]
    fc1_shape = [14 * 14 * 20, 10] # -------关键参数--全连接层1
    learning_rate = 0.001
    keep\_prob = 0.7
    max_iteration = 20
    result1 = _1_1_model(conv1_shape, fc1_shape,
                         learning_rate=learning_rate, keep=keep_prob,
                         max iteration=max_iteration, save_result=True)
    conv1_shape = [5, 5, 1, 20]
    conv2_shape = [3, 3, 20, 50]
    fc1_shape = [7 * 7 * 50, 500]
    fc2_shape = [500, 10]
    learning_rate = 0.001
    keep\_prob = 0.7
    max_iteration = 20
    result2 = _2_2_model(conv1_shape, conv2_shape, fc1_shape, fc2_shape,
                         learning_rate=learning_rate, keep=keep_prob,
                         max_iteration=max_iteration, save_result=True)
    plot(result1, result2, "1+1", "2+2", "different_layer_num")
```


3、不同的卷积核大小的对照试验

右图为输入的用例数据,下图为相应展示的结果折线图,折线图里点上的数字是运行的时间(s),可以看到,采用 3*3 的卷积核在刚开始时效率会稍微比用 5*5 的卷积核差一些,但是在几次迭代后两者就没有什么差别了,最终都达到了 99%的准确率,不过 3*3 的收敛稳定性稍差一些。

在运行时间上, 3*3 的卷积核在 20 次迭代总用时 65s, 而 5*5 的卷积核用时 86s, 因此在这个对比条件下效率和准确率也是负相关的关系。

```
def different_filter_size():
    conv1_shape = [3, 3, 1, 20]
    conv2_shape = [3, 3, 20, 50]
    fc1_shape = [7 * 7 * 50, 500]
    fc2_shape = [500, 10]
    learning_rate = 0.001
    keep\_prob = 0.7
    max iteration = 20
    result1 = _2_2_model(conv1_shape, conv2_shape, fc1_shape, fc2_shape
                           learning_rate=learning_rate, keep=keep_prob,
max_iteration=max_iteration, save_result=True)
                                     conv1_shape = [5, 5, 1, 20]
    conv2_shape = [5, 5, 20, 50]
    fc1_shape = [7 * 7 * 50, 500]
    fc2_shape = [500, 10]
    learning_rate = 0.001
    keep\_prob = 0.7
    max_iteration = 20
    result2 = _2_2_model(conv1_shape, conv2_shape, fc1_shape, fc2_shape
                           learning_rate=learning_rate, keep=keep_prob,
max_iteration=max_iteration, save_result=True)
    plot(result1, result2, "3*3 filter", "5*5 filter",
```


4、不同的学习速率大小的对照试验

```
different_learning_rate():
conv1_shape = [5, 5, 1, 20]
conv2_shape = [5, 5, 20, 50]
fc1_shape = [7 * 7 * 50, 500]
fc2_shape = [500, 10]
learning_rate = 0.001
                          # ------关键参数--学习率, 0.001
keep\_prob = 0.7
max_iteration = 2
result1 = 2 2 model(conv1_shape, conv2_shape, fc1_shape, fc2_shape,
                        learning_rate=learning_rate, keep=keep_prob,
max_iteration=max_iteration, save_result=True)
conv1_shape = [5, 5, 1, 20]
conv2_shape = [5, 5, 20, 50]
fc1_shape = [7 * 7 * 50, 500]
fc2_shape = [500, 10]
learning_rate = 0.0005 # -----关键参数--学习率,0.0005
keep\_prob = 0.7
max_iteration = 2
result2 = _2_2_model(conv1_shape, conv2_shape, fc1_shape, fc2_shape,
                        learning_rate=learning_rate, keep=keep_prob,
max_iteration=max_iteration, save_result=True)
plot(result1, result2, "0.001", "rate0.0005", "different_learning_rate")
```


四、思路方法

详细实现在六、过程分析描述中,也可以在 Driver 代码中执行 custom()方法,然后进入 terminal 输入 tensorboard --logdir=log,进入 TensorBoard 查看流程图

- 1、 首先通过 TensorFlow 提供的数据集读取函数读取数据
- 2、 对数据集进行 batch=400 的分割
- 3、 构建 LeNet-5 结构的 CNN 网络, 即 2 层(卷积层+池化层) + 2 层全连接层
- 4、 对中间层采用 relu 激活,对输出层采用 softmax 激活
- 5、 使用 adam 优化学习算法进行后向传播学习参数

五、假设

假设输入的数据已经去噪和归一化,这也是我在载入 MNIST 数据集后简单观测到的结果

六、过程分析描述

1、数据预处理

TensorFlow 已经提供了读取 MNIST 数据的方法,因此我直接调用了它的方法。我本来想对数据进行去噪、归一化等操作,但是发现里面数据已经是归一化的数据,且看了几张图的数据之后我没有找到噪声点,所以就省去了这两个步骤。图中可以看到数组里的片段中数据 ∈ [0, 1.0],且非常集中,周围没有噪声

2、数据分割

MNIST 数据集里有 6w 数据,我选择训练集为 4w, 交叉验证集 1w, 测试集 1w

并以 batch=400 将其分割为 100 个小数据集,每次迭代将学习 100 次

```
# tensorflow内置了解析数据源的函数,因此这里直接调用,省去了数据源的解析
# 默认训练集为4w,交叉验证集为1w,测试集1w

dataset = input_data.read_data_sets('dataset', validation_size=10000
# 设置batch值为400,每轮共学习100次

batch_size = 400
n_batch = dataset.train.num_examples // batch_size
```

3、构造 CNN 网络层和训练

我主要采用的是 LeNet-5 结构,即 2 层(卷积层+池化层) + 2 层全连接层的 CNN 神经网络使用 5 * 5 的卷积核,中间层使用 rule 激活,且每次卷积后进行 2 * 2 池化(步长为 2),即缩小一半,相关的 shape 参数和初始化各层参数的方法会在后面说明

```
# 初始化第一层卷积核 W 和第一层偏差值 b
W conv1, b_conv1 = init_layer_variable(conv1_shape)
# 把输入的图片矩阵x和权值向量进行卷积,再加上偏置值得到Z
Z_conv1 = conv2d(x_image, W_conv1) + b_conv1
# 通过relu激活
A conv1 = tf.nn.relu(Z_conv1)
# 进行max_pooling 池化层
A pool1 = max_pool(A_conv1)

# 初始化第二层卷积核 W 和第二层偏差值 b
W conv2, b_conv2 = init_layer_variable(conv2_shape)
# 把第一个池化层结果和权值向量进行卷积,再加上偏置值
Z_conv2 = conv2d(A_pool1, W_conv2) + b_conv2
# 通过relu激活
A conv2 = tf.nn.relu(Z_conv2)
# 进行max_pooling 池化层
A_pool2 = max_pool(A_conv2)
```

经过两次卷积后的激活值进行 2 次全连接和 relu 激活,最后经过 softmax 函数输出 10 个预测值,并计算代价函数(交叉熵),学习时采用 adam 优化算法,其实也可以用 momentum 或 RMSprop,不过 adam 已经是二者结合的方式,所以就不做多的对比测试了

4、结果保存和分析

每次迭代我都会保存数据,用以在后面通过图片打印出来方便查看和分析,主要保存的数据有代价值、准确率、运行时间,前面所有的分析和展示都是基于这3个数据指标

```
with tf.Session() as sess:
   result = [[], [], []]
    start_time = time.process_time()
   sess.run(tf.global_variables_initializer())
   acc = 0.
    for epoch in range(1, max_iteration + 1):
        for batch in range(n_batch):
            x_batch, y_batch = dataset.train.next_batch(batch_size)
            sess.run(train_step,
                    feed_dict={x: x_batch, y: y_batch,
                            keep_prob: keep})
        loss = sess.run(cross_entropy,
                    feed dict={x: dataset.test.images,
                            y: dataset.test.labels,
                            keep_prob: 1.0})
        acc = sess.run(accuracy,
                    feed dict={x: dataset.test.images,
                            y: dataset.test.labels,
                            keep_prob: 1.0})
       end_time = time.process_time()
       result[0].append(loss)
       result[1].append(acc)
       result[2].append(end_time - start_time)
        print('Iter:%d, %s s, Loss=%f,Test Accuracy=%f'
                % (epoch, end_time - start_time, loss, acc))
    if save_result:
       tf.train.Saver().save(sess,
                    save path="2_2models/saver" + str(acc) + "/model")
return result
```

9

七、重要函数

1、卷积核、池化核、全连接参数的初始化

我将参数初始化封装了一个方法,只需要传入对应的 shape 即可获得随机的参数张量

```
| variable(shape):
| variable(shape):
| variable(weight):
| variable(shape):
| variable(weight):
| variable(shape):
| variable
```

2、卷积计算

我默认使用步长为 1, 1 的卷积方式填充时采用了保留边界的 SAME 填充

```
def conv2d(input, filter, strides=None, padding="SAME"):
    """
    进行卷积计算
    :param input: 输入的张量
    :param filter: 卷积核(过滤器)
    :param strides: 步长 [batch, height, weight, channel]
    :param padding: 填充方式, 默认为"SAME"
    :return: 卷积结果
    """
    if strides is None:
        strides = [1, 1, 1, 1]
    return tf.nn.conv2d(input, filter, strides=strides, padding=padding)
```

3、池化

我采用了 2*2 的池化核, 2为步长, 即将卷积输出缩小为原来的一半

八、核心参数

1、5*5 的卷积核

我在所有对照实验里主要采用 5 * 5 的卷积核, 第一层输出 20 个通道, 第二层输出 50 个通道

2、2*2的池化核

所有对照试验中的池化核都是采用默认的 2 * 2 池化

```
### John Strides | Strid
```

3、2层的全连接网络

我在所有对照实验里主要采用卷积层输出 7*7*50 个节点后进行全连接到 50 个节点,再输出 10 个预测值的全连接层

4、其余超参数

为避免折磨我的 gpu, 我选择了每组模型最多跑 20 次迭代, 实际上这也跑出了不错的结果学习率主要使用 0.001, 我尝试了 0.01 但是报错, 某处计算出了 nan 训练中的保留率主要设置为 0.7

九、实验中出现的问题和相应的解决办法

- 1、刚开始时想解析 MNIST 提供的源文件,但是后在搜索资料的时候发现 TensorFlow 已经提供了解析数据源的方法,所以就直接调用了
- 2、刚开始时想通过 excel 绘制表格来将结果进行可视化展示,后来发现每次都要操作很麻烦, 而且展示的效果也不是很好,就去学习了 pyplot 并写了展示并保存图片的方法
- 3、刚开始时看到安装 TensorFlow 要使用 gpu 的话要安装些麻烦的包,图方便就直接使用 cpu 跑程序时,发现实在太慢,即使只使用很小的网络速度也十分感人,最后还是不得已去装了 TensorFlow-gpu+ cuDNN+CUDA,最后效果很满意

十、对实验的评价和感觉

这次实验前我正在自学 CNN,正好有这个机会上手实践代码,体会到了从输入到卷积到池化到全连接再到输出的全过程,也体会到了 gpu 对机器学习计算的超强能力。这也是我第一次接触 TensorFlow 框架,以前学自学机器学习的时候都是手撸代码,实在难写,这次也算学了一个工具,本来也是想手写实现的,因为学期太紧,还有其他课程,如果时间不是那么紧张的话还是希望尝试一下手动实现 CNN 网络的。不过可惜的是写这次实验代码中因为直接使用了 TensorFlow 中对数据源的读取,没有体验到解析数据源的步骤,以后有时间的话还是得再回头写写。最后就是关于 tensorboard 的使用,刚开始做可视化时按照以前的习惯用了 pyplot。后来才知道有更方便的 tensorboard 可以用,后续的学习中一定要去学会用这些方便的工具