Applications of EM

Gaussian Mixture Model revisited

$$p(x \mid \theta) = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) + \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

$$\theta = \{\pi_1, \pi_2, \pi_3, \mu_1, \mu_2, \mu_3, \Sigma_1, \Sigma_2, \Sigma_3\}$$

E-step

EM: For each point compute

$$q(t_i) = p(t_i \mid x_i, \theta)$$

E-step

EM: For each point compute
$$q(t_i) = p(t_i \mid x_i, \theta)$$

GMM: For each point compute $p(t_i \mid x_i, \theta)$

E-step

EM: For each point compute
$$q(t_i) = p(t_i \mid x_i, \theta)$$

GMM: For each point compute $p(t_i \mid x_i, \theta)$

M-step

EM: Update parameters to maximize $\max_{\theta} \mathbb{E}_q \log p(X, T \mid \theta)$

GMM: Update Gaussian parameters to fit points assigned to them

$$\mu_1 = \frac{\sum_{i} p(t_i = 1 \mid x_i, \theta) x_i}{\sum_{i} p(t_i = 1 \mid x_i, \theta)}$$

E-step

EM: For each point compute
$$q(t_i) = p(t_i \mid x_i, \theta)$$

GMM: For each point compute $p(t_i \mid x_i, \theta)$

M-step

EM: Update parameters to maximize $\max_{\theta} \mathbb{E}_q \log p(X, T \mid \theta)$

GMM: Update Gaussian parameters to fit points assigned to them

$$\mu_1 = \frac{\sum_{i} p(t_i = 1 \mid x_i, \theta) x_i}{\sum_{i} p(t_i = 1 \mid x_i, \theta)}$$