1 Sets

1.1 Definitions and Notations

Set: A collection of objects, called elements.

- Notation: Sets are represented by uppercase letters; elements by lowercase letters.
- Example: If a is in set A, we write $a \in A$. If not, $a \notin A$.

Subset: A set B is a subset of A if every element in B is also in A.

- Notation: $B \subseteq A$.
- Extensionality Principle: Two sets are equal if they contain the same elements.
- Equality: A = B if $A \subseteq B$ and $B \subseteq A$.

Set Representation:

- Listing Elements: $\{a_1, a_2, \ldots, a_n\}$.
- Describing by Properties: $\{x \mid x \text{ satisfies } P\}$.

1.2 Set Operations

- Union $(A \cup B)$: Elements in A or B.
- Intersection $(A \cap B)$: Elements in both A and B.
- **Difference** $(A \setminus B)$: Elements in A but not in B.
- Symmetric Difference (AΔB): Elements in either A or B, but not in both.

Properties of Set Operations:

- Associative: $(A \cup B) \cup C = A \cup (B \cup C)$
- Commutative: $A \cup B = B \cup A$
- **Distributive**: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

1.3 Important Set Types

- **Empty Set** (\emptyset): The unique set with no elements.
- Singleton: A set with only one element.
- Universal Set (V): The fixed larger set within which all sets are considered.
- Complement: For a set A in the universal set V, the complement $\overline{A} = V \setminus A$.

Complement Properties:

- Identity: $A \cup \emptyset = A$, $A \cap V = A$.
- Double Complement: $\overline{(\overline{A})} = A$.
- De Morgan's Laws:
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}.$
 - $\overline{A \cap B} = \overline{A} \cup \overline{B}.$

1.4 Families of Sets

Definition: A collection of sets, often denoted as \mathcal{A}, \mathcal{B} , etc.

- Union of Families: $\bigcup A = \{x \mid \exists A \in A : x \in A\}.$
- Intersection of Families: $\bigcap A = \{x \mid \forall A \in A : x \in A\}.$

1.5 Power Set

Definition: The set of all subsets of a set A, including \emptyset and A itself.

- Notation: 2^A or $\mathcal{P}(A)$.
- **Example**: For $A = \{0, 1\}$, $\mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$.

1.6 Cartesian Product

Definition: An ordered pair where order matters, denoted as (a, b).

- For sets A_1, \ldots, A_n , the **Cartesian product** is $A_1 \times \cdots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i\}.$
- Example: If $A = \{1, 2\}$ and $B = \{x, y\}$, $A \times B = \{(1, x), (1, y), (2, x), (2, y)\}$.

Relations and Functions

Relations and Functions

Relation

Definition: A relation between two sets A and B is a subset of their Cartesian product $A \times B$. Denoted as $R \subseteq A \times B$.

- Notation: If $(a, b) \in R$, write it as aRb.
- Example: A relation from the set of integers to the set of natural numbers.

Domain and Range:

- **Domain**: Set of all elements in A that relate to some element in B.
- Range: Set of all elements in B related to at least one element in A.

Inverse Relation:

• **Definition**: For a relation $R \subseteq A \times B$, its inverse is **Partitioning** $R^{-1} \subseteq B \times A$.

Equipotent Relation:

• **Definition**: A relation $R \subseteq A \times B$ is equipotent if there exists a bijection between A and B.

Properties of Relations

- Reflexive: aRa for all $a \in A$.
- Symmetric: aRb implies bRa.
- Transitive: aRb and bRc imply aRc.
- Antisymmetric: aRb and bRa imply a = b.
- Compositional Relations: If $R \subseteq A \times B$ and $S \subseteq B \times C$, then the composition is $S \circ R \subseteq A \times C$.

Functions

Definition: A relation $F \subseteq A \times B$ is a function if for all $a \in A$, there exists a unique $b \in B$.

- Injective (One-to-one): F(a) = F(a') implies a = a'.
- Surjective (Onto): For every $b \in B$, there is some $a \in A$ such that F(a) = b.
- Bijective: Both injective and surjective.

Equivalence Relations 2.2

Definition

A relation $R \subseteq A \times A$ is an **equivalence relation** if it is:

- Reflexive: xRx for all $x \in A$.
- Symmetric: xRy implies yRx.
- Transitive: xRy and yRz imply xRz.

Equivalence Class: The set of all elements in A that are equivalent to a. Defined as $[a] = \{b \in A \mid a \sim b\}$.

Quotient Set: The set of all equivalence classes. Defined as $A/\sim = \{[a] \mid a \in A\}.$

Properties of Equivalence Relations:

- $\forall a \in A : a \in [a]$.
- $\bullet \ \forall a \in A : [a] \neq \emptyset \text{ and } \bigcup_{a \in A} [a] = A.$
- $\forall a, b \in A : [a] = [b] \iff a \sim b.$
- $\forall a, b \in A : [a] \cap [b] = \emptyset$ if $[a] \neq [b]$.

A partition $\mathscr{A} \subseteq 2^A$ is a partition of A if:

- $\forall X \in \mathscr{A} : X \neq \emptyset$.
- $\forall X, Y \in \mathcal{A} : X \cap Y = \emptyset \text{ if } X \neq Y.$
- $\bigcup_{X \in \mathcal{A}} X = A$.

2.3 Partial and Total Orderings

Partial Order

- **Definition**: A partial order is a relation $R \subseteq A \times A$ that is reflexive, transitive, and antisymmetric.
- Example: < on the set of real numbers.

Key Terms:

- Majorant: $m \in A$ is a majorant of $X \subseteq A$ if $\forall x \in X$:
- Minorant: $m \in A$ is a minorant of $X \subseteq A$ if $\forall x \in X$:
- **Supremum**: The least upper bound of a set $X \subseteq A$.
- **Infimum**: The greatest lower bound of a set $X \subseteq A$.

Total Order

Definition: A total order requires that for each pair of elements $x, y \in A$, either xRy or yRx.

Hasse Diagrams

Definition: A Hasse diagram is a simplified graph representing a finite poset, showing the partial order without reflexive, transitive, or redundant relations.

Construction Steps: 1. **Start with a Poset**: Identify the set A and the partial order R. 2. **Simplify Relations**: Remove reflexive and transitive edges. 3. **Arrange Vertically**: Position elements so aRb implies a is below b. 4. **Draw Edges**: Connect elements with direct relations.

Example: For $A = \{1, 2, 3, 4\}$ with R defined by divisibility: - 1 | 2,1 | 3,1 | 4,2 | 4. - The diagram shows $1 \rightarrow 2 \rightarrow 4$ and $1 \rightarrow 3$.

Key Features: - Highlights immediate relations. - Simplifies hierarchy visualization. - Useful for subsets, divisibility, and dependency graphs.

3 Proof Techniques

Definition of a Proof

Definition 3.1 (Informal Definition): A proof of a mathematical statement is a sequence of valid arguments demonstrating its truth. These arguments must be sufficiently detailed to convince the intended audience.

Trivial Proof

Definition: A proof requiring no further work. This might arise if the statement follows directly from the given information or from the principle: *Anything follows from a falsehood.*

• If $P \implies Q$ and P is false, Q is true.

Examples:

- If $x^2 + 1 = 0$, then $x^4 = 0$.
- Every human with five heads is a genius.
- If n > 0 and n is even, then n > 0.

Direct Proof

Method: To prove a statement S_n , find a sequence $S_1, S_2, \ldots, S_{n-1}, S_n$ where each S_k follows logically from the preceding statements and known hypotheses. **Example 3.3:** If n is composite, it has at least one prime factor p such that $p \leq \sqrt{n}$.

Proof. Since n is composite, there exist integers a,b>1 such that n=ab. Assume $a\leq b$. Then $n=ab\geq a^2$, so $a\leq \sqrt{n}$. If a is prime, we are done. Otherwise, a has a prime divisor p such that $p\leq a\leq \sqrt{n}$.

Proof by Contraposition

Method: To prove $P \implies Q$, prove its contrapositive $\neg Q \implies \neg P$. **Example 3.4:** If p > 1 is an integer with no divisor d such that $1 < d \le \sqrt{p}$, then p is prime.

Proof. This is the contrapositive of Example 3.3 and was proven earlier. \Box

Proof by Contradiction

Method: Assume the negation of the statement to be proven. If this assumption leads to a contradiction, the original statement is true. **Example 3.5:** $\sqrt{2}$ is irrational.

Proof. Assume $\sqrt{2}$ is rational. Then $\sqrt{2} = \frac{a}{b}$ with integers a, b (where $\gcd(a, b) = 1$). Squaring both sides gives $2b^2 = a^2$, so a^2 is even. This implies a is even, say a = 2c. Substituting gives $2b^2 = 4c^2 \implies b^2 = 2c^2$, so b^2 is even, and hence b is even. This contradicts $\gcd(a, b) = 1$.

Proof by Cases

Method: Divide the statement into exhaustive cases and prove each separately. **Example 3.6:** For all integers n, $n^3 - n$ is divisible by 2.

Proof. • If n is even, n = 2k for some integer k. Then $n^3 - n = 2k(4k^2 - 1)$, which is even.

• If n is odd, n = 2k + 1. Then $n^3 - n = 2(4k^3 + 6k^2 + 2k)$, which is even.

Proof by Induction

Principle: To prove P(n) for all $n \ge n_0$:

- Base Case: Prove $P(n_0)$.
- Inductive Step: Assume P(k) is true (induction hypothesis). Prove P(k+1).

Example 3.9: The sum of the first n positive integers is $\frac{n(n+1)}{2}$.

Proof. Base Case: For n=1, $1=\frac{1(1+1)}{2}$. Inductive Step: Assume $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$. Then

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}.$$

4 Counting

4.1 Basic Techniques

Sum Rule

Property 4.1 (Sum Rule): If there are n(A) ways to perform A and n(B) ways to perform B, then the total number of ways to perform A or B is n(A) + n(B). This extends to multiple events:

• n(A) + n(B) + n(C) ways to perform A, B, or C, etc.

Product Rule

Property 4.2 (Product Rule): If there are n(A) ways to perform A and n(B) ways to perform B, and these are independent, the total number of ways to perform A and B is $n(A) \cdot n(B)$. This generalizes as:

• $n(A) \cdot n(B) \cdot n(C)$ ways to perform A, B, and C, etc.

Division Rule

Property 4.3 (Division Rule): If there is a k-to-1 correspondence between objects of type A and type B, and there are n(A) objects of type A, then there are $n(B) = \frac{n(A)}{k}$ objects of type B.

4.2 Inclusion-Exclusion Principle

Example 4.4: In a class, 20 students have a driver's license, 16 have a bus pass, and 7 have both. How many students have a bus pass or a driver's license?

• Add 20 and 16, then subtract the overlap: 20+16-7=29.

Property 4.5 (Inclusion-Exclusion for 2 Sets):

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Property 4.6 (Inclusion-Exclusion for 3 Sets):

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$$

For n sets, a generalization is:

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \le i < j \le n} |A_{i} \cap A_{j}| + \dots + (-1)^{n-1} \left| \bigcap_{i=1}^{n} A_{i} \right|.$$

4.3 Decision Trees

Example 4.8: A staircase has 4 steps. How many ways can you climb it, taking 1, 2, 3, or 4 steps at a time?

• Draw a tree for possibilities. Each complete path to the top corresponds to a way. Total: 8 ways.

4.4 Permutations and Combinations

Variations

Definition 4.9: A variation of k objects from n is an ordered selection of k objects from n, without repetition. If n = k, it's a permutation.

• Number of variations:

$$V_k^n = \frac{n!}{(n-k)!}$$

• Permutations: $P_n = n!$

Combinations

Definition 4.11: A combination of k objects from n is a selection of k objects without regard to order, without repetition.

• Number of combinations:

$$C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Generalizations

Definition 4.12: Allowing repetitions:

$$D_k^n = C_k^n = \binom{n+k-1}{k}$$

5 Probability

Basics

Fundamental Rules

- For any event $A: 0 \le P(A) \le 1$
- Complement: $P(A^c) = 1 P(A)$
- Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$
- Independence: P(A|B) = P(A)

Set Operations

- Intersection: $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$
- Union: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- General Union: $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i) \sum_{i < j} P(A_i \cap A_j) + \cdots$

Bayes' Theorem

- Basic form: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
- Partition form: $P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{j=1}^n P(A_j)P(B|A_j)}$

Discrete Distributions

Uniform Distribution

$$P(X = x) = \frac{1}{n}, \quad x \in \{x_1, \dots, x_n\} \ E[X] = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a+1)^2-1}{12}$$

Binomial Distribution

$$X \sim B(n,p) \ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \ E[X] = np, \ Var(X) = np(1-p)$$

Poisson Distribution

$$X \sim Pois(\lambda) \ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k \ge 0 \ E[X] = Var(X) = \lambda$$

Negative Binomial

$$X \sim NB(r,p) \ P(X=k) = \binom{k-1}{r-1} p^r (1-p)^{k-r} \ E[X] = \frac{r}{p}, \ Var(X) = \frac{r(1-p)}{p^2}$$

Continuous Distributions

Normal Distribution

$$X \sim N(\mu, \sigma^2) \ f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \ Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$$

Exponential Distribution

$$X \sim Exp(\lambda) \ f(x) = \lambda e^{-\lambda x}, \quad x \ge 0 \ E[X] = \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2}$$

Properties

Expected Value

- Linearity: E[aX + b] = aE[X] + b
- Product: E[XY] = E[X]E[Y] if independent

Variance

- Definition: $Var(X) = E[X^2] (E[X])^2$
- Properties: $Var(aX + b) = a^2Var(X) \ Var(X + Y) = Var(X) + Var(Y)$ if independent

6 boolean algebra

Boolean expressions

```
\overline{\overline{x}} = x Law of double complement
x + x = x + is idempotent
x \cdot x = x \cdot \text{is idempotent}
x + 0 = x Identity law
x \cdot 1 = x Identity law
x + 1 = 1 1 absorbing element for +
x \cdot 0 = 0 0 absorbing element for \cdot
x + y = y + x
x \cdot y = y \cdot x Commutativity
x + (y+z) = (x+y) + z
x(yz) = (xy)z Associativity
x + yz = (x + y)(x + z)
x(y+z) = xy + xz Distributivity
\overline{xy} = \overline{x} + \overline{y}
\overline{x+y} = \overline{x} \cdot \overline{y} De Morgan's law
x + xy = x
x(x+y) = x Absorption law
x + \overline{x} = 1
x \cdot \overline{x} = 0 Unity law
```

DNF and **CNF**

Disjunctive Normal Form (DNF): A Boolean expression is in DNF if it is a disjunction (OR, +) of conjunctions (AND, \cdot) of literals. Example:

$$(A \cdot B) + (\overline{A} \cdot C) + (\overline{B} \cdot \overline{C})$$

Conjunctive Normal Form (CNF): A Boolean expression is in CNF if it is a conjunction (AND, \cdot) of disjunctions (OR, +) of literals. Example:

$$(A + \overline{B}) \cdot (B + C + \overline{D}) \cdot (\overline{A} + D)$$

Key Differences:

- **DNF**: OR of ANDs (Sum of Products).
- CNF: AND of ORs (Product of Sums).

7 Generating Functions

Definitions and Concepts

Generating Function for a Sequence: Given a sequence a_0, a_1, a_2, \ldots , the generating function G(x) is defined as:

$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n=0}^{\infty} a_n x^n.$$

Formal Power Series: A formal power series is an expression of the form:

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots,$$

where coefficients a_n are given but the series may not converge.

Useful Generating Functions

• Geometric Series:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \quad |x| < 1.$$

• Generalized Geometric Series:

$$\sum_{n=0}^{\infty} c^n x^n = \frac{1}{1 - cx}, \quad |cx| < 1.$$

• Powers of $(1-x)^{-m}$:

$$\frac{1}{(1-x)^m} = \sum_{n=0}^{\infty} \binom{n+m-1}{m-1} x^n, \quad |x| < 1.$$

• Derivative Formulas:

$$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n,$$

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n.$$

• Exponential Generating Function:

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

• Alternate Series:

$$\sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}.$$

Examples

Example 1: Fruit Selection

Given a fruit basket with 2 apples, 1 pear, 1 plum, and 1 banana, the generating function is:

$$G(x) = (1 + x + x^{2})(1 + x)(1 + x)(1 + x).$$

The coefficient of x^2 in G(x) gives the number of ways to choose 2 fruits.

Example 2: Pastries

For 3 cheese pastries, 2 apricot pastries, and 4 strawberry pastries, the generating function is:

$$G(x) = (1 + x + x^{2} + x^{3})(1 + x + x^{2})(1 + x + x^{2} + x^{3} + x^{4}).$$

Operations on Generating Functions

Addition: If A(x) and B(x) are generating functions, their sum corresponds to termwise addition of coefficients:

$$(a_0 + a_1x + \dots) + (b_0 + b_1x + \dots) = (a_0 + b_0) + (a_1 + b_1)x + \dots$$

Multiplication: The product of generating functions corresponds to convolution of coefficients:

$$A(x)B(x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) x^n.$$

Inverse Generating Functions

A generating function S(x) with $S(0) \neq 0$ has an inverse T(x) such that:

$$S(x)T(x) = 1.$$

Example:

$$S(x) = 1 + 2x + 3x^{2} + \dots \implies T(x) = 1 - 2x + x^{2}.$$

Applications

Solving Recurrence Relations: Generating functions can transform recurrence relations into algebraic equations. For example:

$$h_n = 2h_{n-1} + 1, \quad h_0 = 0.$$

Generating function: $H(x) = \frac{x}{(1-x)(1-2x)}$.

Finding Closed Forms: For a recurrence $s_n = -s_{n-1} + 6s_{n-2}$ with $s_0 = 1, s_1 = 1$, we get:

$$S(x) = \frac{1+2x}{(1+3x)(1-2x)}.$$