Contents

1 Liouville (theorem 2.3) sage: v = matrix([[1, a, b, a*b, b^2, a*b^2]]).transpose() sage: v Γ 1] a] b] [a*b] [b^2] [a*b^2] sage: A = matrix([. . . . : [0, 1, 0, 0, 0, 0], [2, 0, 0, 0, 0, 0], : [0, 0, 0, 1, 0, 0], : : [0, 0, 2, 0, 0, 0],[0, 0, 0, 0, 0, 1], : [0, 0, 0, 0, 2, 0] ::]) sage: A*v a] [2] [a*b] [2*b] [a*b^2] [2*b^2] sage: B = matrix([[0, 0, 1, 0, 0, 0], : [0, 0, 0, 1, 0, 0], : [0, 0, 0, 0, 1, 0], : [0, 0, 0, 0, 0, 1], : [2, 0, 0, 0, 0, 0], : [0, 2, 0, 0, 0, 0] ::]) sage: B*v [b] [a*b] [b^2] [a*b^2] Γ 21 [2*a] sage: $A_B = A + B$ sage: matrix.identity(6) [1 0 0 0 0 0] [0 1 0 0 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1] sage: x*matrix.identity(6) [x 0 0 0 0 0] $[0 \times 0 \times 0 \times 0]$ $[0 \ 0 \ x \ 0 \ 0]$ $[0 \ 0 \ x \ 0 \ 0]$ $[0 \ 0 \ 0 \ x \ 0]$ [0 0 0 0 0 x] sage: (x*matrix.identity(6) - A_B).determinant() $x^6 - 6*x^4 - 4*x^3 + 12*x^2 - 24*x - 4$

 $\mathbf{2}$

1 Liouville (theorem 2.3)

$$|\alpha - p/q| > 1 > 1/q^n$$

So lets take $|a - p/q| \le 1$.

Mean value theorem gives us $f'(\gamma)$.

 $q^n f(p/q)$ is an integer means $|f(p/q)| \ge 1/q^n$.

$$\alpha < \gamma < p/q, |\alpha - p/q| \le 1 \Rightarrow |\gamma - \alpha| < 1$$

Then observe

$$|f(\alpha) - f(p/q)| < C|\alpha - p/q| < C$$

So then $f'(\gamma) < C = 1/c_0$.

Combine these

$$\left|\alpha - \frac{p}{q}\right| = \left|\frac{p/q}{f'(\gamma)}\right| > \frac{c_0}{q^n}$$