Homework Set 2, CPSC 8420, Spring 2022

Your Name

Due 03/17/2022, Thursday, 11:59PM EST

Problem 1

For PCA, from the perspective of maximizing variance, please show that the solution of ϕ to maximize $\|\mathbf{X}\phi\|_2^2$, s.t. $\|\phi\|_2 = 1$ is exactly the first column of \mathbf{U} , where $[\mathbf{U}, \mathbf{S}] = svd(\mathbf{X}^T\mathbf{X})$. (Note: you need prove why it is optimal than any other reasonable combinations of \mathbf{U}_i , say $\hat{\phi} = 0.8 * \mathbf{U}(:, 1) + 0.6 * \mathbf{U}(:, 2)$ which also satisfies $\|\hat{\phi}\|_2 = 1$.)

How to Calculate the Residual Sum of Squares

 $RSS = \sum_{i=1}^n (y^i - f(x_i))^2$

Whei

 y_i = the i^{th} value of the variable to be predicted

 $f(x_i) = predicted value of y_i$

= upper limit of summation

Problem 2

The formula for residuals is straightforward: Residual = observed y – predicted y

Formula for Residuals

When might we

Why might we prefer to minimize the sum of <u>absolute residuals</u> instead of the <u>residual sum of squares</u> for some data sets? Recall clustering method K-means when calculating the centroid, it is to take the mean value of the data-points belonging to the same cluster, so what about K-medians? What is its advantage over of K-means? Please use a synthetic (toy) experiment to illustrate your conclusion.

Problem 3

Let's revisit Least Squares Problem: minimize $\frac{1}{\beta} \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|_2^2$, where $\mathbf{A} \in \mathbb{R}^{n \times p}$.

- 1. Please show that if p > n, then vanilla solution $(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$ is not applicable any more.
- 2. Let's assume $\mathbf{A} = [1, 2, 4; 1, 3, 5; 1, 7, 7; 1, 8, 9], \mathbf{y} = [1; 2; 3; 4]$. Please show via experiment results that Gradient Descent method will obtain the optimal solution with Linear Convergence rate if the learning rate is fixed to be $\frac{1}{\sigma_{max}(\mathbf{A}^T\mathbf{A})}$, and $\boldsymbol{\beta}_0 = [0; 0; 0]$.
- 3. Now let's consider ridge regression: minimize $\frac{1}{2} \|\mathbf{y} \mathbf{A}\boldsymbol{\beta}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|_2^2$, where $\mathbf{A}, \mathbf{y}, \boldsymbol{\beta}_0$ remains the same as above while learning rate is fixed to be $\frac{1}{\lambda + \sigma_{max}(\mathbf{A}^T \mathbf{A})}$ where λ varies from 0.1, 1, 10, 100, 200, please show that Gradient Descent method with larger λ converges faster.

Problem 4

Please download the image from https://en.wikipedia.org/wiki/Lenna#/media/File:Lenna_(test_image).png with dimension $512 \times 512 \times 3$. Assume for each RGB channel data X, we have $[U, \Sigma, V] = svd(X)$. Please show each compression ratio and reconstruction image if we choose first 2,5,20,50,80,100 components respectively. Also please determine the best component number to obtain a good trade-off between data compression ratio and reconstruction image quality. (Open question, that is your solution will be accepted as long as it's reasonable.)