

2SC1970

DESCRIPTION

2SC1970 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 9.2dB$ $@V_{CC} = 13.5V, P_0 = 1W, f = 175MHz$
- Emitter ballasted construction, gold metallization for high reliability and good performances.
- TO-220 package similarly is combinient for mounting.

APPLICATION

0.8 to 1 watts output power amplifiers and driver in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector to base voltage		40	V,
V _{EB0}	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BÉ} ≡ ∞	17	V
lc	Collector current		0,6	A
	Collector dissipation	Ta = 25°C	1	w
Pc		T _C == 25°C	5	w
Tj	Junction temperature		150	.c
Tstg	Storage temperature		-55 to 150	*c
Ath-a		Junction to ambient	125	*c/w
Rth-c	Thermal resistance	Junction to case	25	*c/w

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Limits				
		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	IE = 1mA, IC = 0	4			V
V(BR)CB0	Collector to base breakdown voltage	$I_C = 5 \text{mA}$, $I_E = 0$	40			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C = 50mA, R _{BE} = ∞	. 17			V
сво	Collector cutoff current	V _{CB} = 25V, I _E = 0			100	μА
I _{EB0}	Emitter cutoff current	V _{EB} =3V.1 _C =0			100	μА
hre	DC forward current gain *	V _{CE} = 10 V, 1 _C = 0.1A	10	50	180	_
Po	Output power	V _{CC} =13.5V, P _{in} =0.12W, f=175MHz	1	1.2		w
$\eta_{\rm C}$	Collector efficiency		50	60		%

Note. *Pulse test, Pw=150µs, duty=5%.
Above parameters, ratings, limits and conditions are subject to change.

2SC1970

TEST CIRCUIT

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{8€} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (mA)

2SC1970

OUTPUT POWER Po (W)

0.8

0.

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER $T_{\rm C} = 25^{\circ}{\rm C}$ f=175MHz η_C (%) V_{CC} = 13,5V Po COLLECTOR EFFICIENCY 1.2 ηс

INPUT POWER Pin (W)

0,12

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)