ECE 544NA HW5

Jiaqi Mu jiaqimu2

Department of Electrical and Computer Engineering

November 13, 2016

1 TensorFlow

In this portion of the assignment, you will use a vanilla RNN and a LSTM to perform digit classification on the MNIST dataset.

- Setting 1 (Sequence of Pixels): It is assumed that each 28×28 image, x, in the MNIST dataset is a sequence of single pixels, x(1), ..., x(784), where x(t) is a single scalar value. The network reads one pixel at a time from the top left corner of the image to the bottem right of the image.
- Setting 2 (Sequence of Columns): It is assumed that each 28×28 image, x, in the MNIST dataset is a sequence of vectors, x(1), ..., x(28), where x(t) is a 28×1 vector representing one column in the image. The network reads one column at a time from left to right.

Train a basic (vanilla) RNN and a LSTM for each the two settings using a single layer RNN and LSRM with 100 hidden nodes. Perform classification on the last frame using cross entropy loss.

Revelant Tensorflow Doc: Tensorflow provides some API for recurrent neural network, please use the following:

- tf.nn.rnn: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/api_docs/python/functions_and_classes/shard0/tf.nn.rnn.md
- tf.nn.rnn_cell: https://www.tensorflow.org/versions/r0.11/api_docs/python/rnn_cell.html#neural-network-rnn-cells

1.1 Methods

• Describe the functions you wrote, and the overall structure of your code.

Proof. We implemented RNN and LSTM in rnn.py and lstm.py respectively. The overall structures for both implementations are quite similar. Therefore, we simply describe the structure of a vanilla RNN. In LSTM, we simply replace the rnn_cell with a lstm_cell. In the RNN class, we implemented two functions for training and testing:

- fit: to fit the data and learn the parameters from training data. In this module we build a graph structure using a RNN cell (tf.nn.rnn_cell.BasicRNNCell) and plug this in an existing RNN module.

- predict: to predict labels for test data.

1.2 Results

• Provide one figure with four subfigures, showing convergence plots of all four (2 settings, 2 models) classifiers (abscissa = training iteration, ordinate = training-corpus accuracy)

Proof. The figures are listed in Figure 1. Due to memory issue, we downsampled an image to 7×7 .

Figure 1: Convergence plots.

• Provide a table reporting the testing accuracies.

Proof. The accuracy is reported in Table 1.

	28*28	49*1
RNN	0.4586	0.1233
LSTM	0.9060	0.6183

Table 1: Accuracy.