```
In [1]:
          import numpy as np
          import matplotlib.pyplot as plt
          import pandas as pd
In [4]: dataset = pd.read_csv('https://raw.githubusercontent.com/mk-gurucharan/Classif
          X = dataset.iloc[:,:4].values
          y = dataset['species'].values
          dataset.head(5)
Out[4]:
              sepal_length sepal_width petal_length petal_width species
           0
                       5.1
                                   3.5
                                                 1.4
                                                             0.2
                                                                   setosa
           1
                                                             0.2
                       4.9
                                   3.0
                                                 1.4
                                                                   setosa
           2
                       4.7
                                   3.2
                                                1.3
                                                             0.2
                                                                   setosa
           3
                       4.6
                                   3.1
                                                1.5
                                                             0.2
                                                                   setosa
                                                             0.2
                       5.0
                                   3.6
                                                1.4
                                                                   setosa
In [5]: from sklearn.model selection import train test split
          X train, X test, y train, y test = train test split(X, y, test size = 0.2)
In [6]: from sklearn.preprocessing import StandardScaler
          sc = StandardScaler()
          X train = sc.fit transform(X train)
          X_test = sc.transform(X_test)
In [7]: | from sklearn.naive bayes import GaussianNB
          classifier = GaussianNB()
          classifier.fit(X_train, y_train)
Out[7]:
           ▼ Gaus$ianNB
           GaussianNB()
In [8]: y pred = classifier.predict(X test)
          y_pred
Out[8]: array(['setosa', 'setosa', 'virginica', 'setosa', 'versicolor',
                  'virginica', 'versicolor', 'setosa', 'setosa', 'virginica', 'versicolor', 'virginica', 'setosa', 'setosa', 'setosa', 'versicolor', 'virginica', 'setosa', 'versicolor', 'setosa',
                   'virginica', 'setosa', 'virginica', 'versicolor', 'versicolor', 'setosa', 'versicolor', 'virginica', 'virginica'], dtype='<U10')
```

In [14]: df = pd.DataFrame({'Real Values':y_test, 'Predicted Values':y_pred})
df

Out[14]:

	Real Values	Predicted Values
0	setosa	setosa
1	setosa	setosa
2	setosa	setosa
3	virginica	virginica
4	setosa	setosa
5	versicolor	versicolor
6	versicolor	virginica
7	versicolor	versico l or
8	setosa	setosa
9	setosa	setosa
10	virginica	virginica
11	virginica	versicolor
12	virginica	virginica
13	setosa	setosa
14	setosa	setosa
15	setosa	setosa
16	versicolor	versicolor
17	virginica	virginica
18	setosa	setosa
19	versicolor	versicolor
20	setosa	setosa
21	virginica	virginica
22	setosa	setosa
23	virginica	virginica
24	versicolor	versico l or
25	versicolor	versicolor
26	setosa	setosa
27	virginica	versicolor
28	virginica	virginica
29	virginica	virginica

```
In [16]: from sklearn.metrics import confusion_matrix
         cm = confusion_matrix(y_test, y_pred)
         print('Confusion matrix\n\n', cm)
         print('\nTrue Positives(TP) = ', cm[0,0])
         print('\nTrue Negatives(TN) = ', cm[1,1])
         print('\nFalse Positives(FP) = ', cm[0,1])
         print('\nFalse Negatives(FN) = ', cm[1,0])
         Confusion matrix
          [[13 0 0]
          [0 6 1]
          [0 2 8]]
         True Positives(TP) = 13
         True Negatives(TN) = 6
         False Positives(FP) = 0
         False Negatives(FN) = 0
In [ ]:
```