ANALIZA ELEKTROENERGETSKOG SUSTAVA

Predavanje br. 7.

VRSTE ČVORIŠTA

- Čvorište tereta (poznato P, Q)
- Generatorsko čvorište (poznato |V|, P, Qmin, Qmax)
- Čvorište regulacijske elektrane (poznato $|V|, \angle \delta$)

• SNAGE U ČVORIŠTIMA (1)

$$\begin{split} \vec{S}_{i} &= \vec{U}_{i} \cdot \vec{I}_{i}^{*} = P_{i} + jQ_{i} \\ \vec{U}_{i} &= \left| \vec{U}_{i} \right| \cdot e^{j\delta_{i}} \\ \vec{I}_{i} &= \sum_{j=1}^{n} \vec{Y}_{ij} \cdot \vec{U}_{j} \quad \Rightarrow \quad \vec{I}_{i}^{*} = \sum_{j=1}^{n} \vec{Y}_{ij}^{*} \cdot \vec{U}_{j}^{*} \end{split}$$

SNAGE U ČVORIŠTIMA (2)

$$\begin{split} \vec{\mathbf{U}}_{j}^{*} &= \left| \vec{\mathbf{U}}_{j} \right| \cdot e^{-j\delta_{j}} \\ \vec{\mathbf{Y}}_{ij} &= \left| \vec{\mathbf{Y}}_{ij} \right| \cdot e^{j\Theta_{ij}} \quad \longrightarrow \quad \text{Admitancije čvorišta} \\ \vec{\mathbf{Y}}_{ij}^{*} &= \left| \vec{\mathbf{Y}}_{ij} \right| \cdot e^{-j\Theta_{ij}} \\ \vec{\mathbf{C}}_{ij} &= \left| \vec{\mathbf{Y}}_{ij} \right| \cdot e^{-j\Theta_{ij}} \end{split}$$

$$\vec{S}_i = \vec{U}_i \cdot \vec{I}_i^* = \vec{U}_i \cdot \sum_{i=1}^n \vec{Y}_{ij}^* \cdot \vec{U}_j^*$$

$$\vec{S}_{i} = \left| \vec{U}_{i} \right| \cdot e^{j\delta_{i}} \cdot \sum_{i=1}^{n} \left| \vec{Y}_{ij} \right| \cdot e^{-j\Theta_{ij}} \, \left| \vec{U}_{j} \right| \cdot e^{-j\delta_{j}}$$

$$\vec{S}_i = \left| \vec{U}_i \right| \cdot \sum_{i=1}^n \left| \vec{Y}_{ij} \right| \cdot \left| \vec{U}_j \right| \cdot e^{j(\delta_i - \delta_j - \Theta_{ij})}$$

SNAGE U ČVORIŠTIMA (3)

$$\vec{S}_{i} = \left| \vec{U}_{i} \right| \cdot \sum_{j=1}^{n} \left| \vec{U}_{j} \right| \cdot \left| \vec{Y}_{ij} \right| \cdot \left[\cos \left(\delta_{i} - \delta_{j} - \Theta_{ij} \right) + j \sin \left(\delta_{i} - \delta_{j} - \Theta_{ij} \right) \right]$$

DJELATNA SNAGA U ČVORIŠTU i (Pi)

$$P_{i} = \left| \vec{U}_{i} \right| \cdot \sum_{i=1}^{n} \left| \vec{U}_{j} \right| \cdot \left| \vec{Y}_{ij} \right| \cdot \cos \left(\delta_{i} - \delta_{j} - \Theta_{ij} \right)$$

JALOVA SNAGA U ČVORIŠTU i (Qi)

$$\mathbf{Q}_{i} = \left| \vec{\mathbf{U}}_{i} \right| \cdot \sum_{i=1}^{n} \left| \vec{\mathbf{U}}_{j} \right| \cdot \left| \vec{\mathbf{Y}}_{ij} \right| \cdot \sin \left(\delta_{i} - \delta_{j} - \Theta_{ij} \right)$$

SNAGE U GRANAMA

$$\begin{split} \vec{I}_{i-j} &= \left(\vec{U}_i - \vec{U}_j\right) \cdot \vec{y}_{i-j} + \vec{U}_i \cdot \vec{y}_{i0} \\ \vec{S}_{i-j} &= \vec{U}_i \cdot \vec{I}_{i-j}^* = \vec{U}_i \left[\left(\vec{U}_i^* - \vec{U}_j^*\right) \cdot \vec{y}_{i-j}^* + \vec{U}_i^* \cdot \vec{y}_{i0}^* \right] \\ \vec{I}_{j-i} &= \left(\vec{U}_j - \vec{U}_i\right) \cdot \vec{y}_{i-j} + \vec{U}_j \cdot \vec{y}_{j0} \\ \vec{S}_{i-i} &= \vec{U}_i \cdot \vec{I}_{i-i}^* = \vec{U}_i \left[\left(\vec{U}_i^* - \vec{U}_i^*\right) \cdot \vec{y}_{i-j}^* + \vec{U}_i^* \cdot \vec{y}_{i0}^* \right] \end{split}$$

GUBICI SNAGE U GRANAMA

$$\begin{split} \Delta \vec{S} &= \vec{S}_{i-j} + \vec{S}_{j-i} \\ \Delta \vec{S} &= \left(\vec{U}_i^* - \vec{U}_j^*\right) \cdot \vec{y}_{i-j}^* \cdot \left(\vec{U}_i - \vec{U}_j\right) + \left|\vec{U}_i\right|^2 \cdot \vec{y}_{i0}^* + \left|\vec{U}_j\right|^2 \cdot \vec{y}_{j0}^* \end{split}$$

- Napomena: $\; \vec{y}_{i-i} \; \text{-} \; \text{uzdužna} \; \text{admitancija} \; \text{grane} \;$
 - \overline{Y}_{ij} međusobna admitancija čvorišta (između čvorišta i i j), element matrice admitancija čvorišta

$$\bar{Y}_{ij} \neq \bar{y}_{i-j}$$

PRORAČUN TOKOVA SNAGA

- Osnovne metode proračuna tokova snaga:
 - METODA GAUSS SEIDEL POMOĆU Z MATRICE
 - METODA GAUSS SEIDEL POMOĆU Y MATRICE
 - METODA NEWTON RAPHSON

METODA GAUSS-SEIDEL POMOĆU Z MATRICE

Mreža od *n* čvorišta – jedno čvorište referentno

$$\vec{\mathbf{U}}_{i} - \vec{\mathbf{U}}_{ref.} = \sum_{\substack{j=1 \ j \neq ref}}^{n} \vec{\mathbf{Z}}_{ij} \cdot \vec{\mathbf{I}}_{j}$$

$$\left| \Delta \vec{U} \right| = \left| \vec{Z} \right| \cdot \left| \vec{I} \right|$$

$$\left| \vec{Z} \right| = \left| \vec{Y} \right|^{-1}$$

- Matrica Y se dobije uzimajući u obzir samo uzdužne parametre grana
- Poprečne admitancije grana sačinjavaju novu matricu Y´

Matrica Y

- Kod ove metode u matricu Y ulaze samo uzdužne admitancije
- Poprečne admitancije se koriste za formiranje matrice Y'
- Primjer:

Matrica Y'

– Primjer:

$$\vec{\mathbf{Y}}' = \begin{bmatrix} \vec{\mathbf{y}}_{01} \\ \vec{\mathbf{y}}'_{02} + \vec{\mathbf{y}}''_{02} \\ \vec{\mathbf{y}}_{03} \end{bmatrix}$$

• Uz $\vec{U}_n = \vec{U}_{ref}$ vrijedi:

$$\begin{split} \vec{U}_{1} - \vec{U}_{n} &= \vec{Z}_{11} \cdot \vec{I}_{1} + \vec{Z}_{12} \cdot \vec{I}_{2} + ... + \vec{Z}_{1(n-1)} \cdot \vec{I}_{n-1} \\ &\vdots \\ \vec{U}_{i} - \vec{U}_{n} &= \vec{Z}_{i1} \cdot \vec{I}_{1} + \vec{Z}_{i2} \cdot \vec{I}_{2} + ... + \vec{Z}_{i(n-1)} \cdot \vec{I}_{n-1} \\ &\vdots \\ \vec{U}_{n-1} - \vec{U}_{n} &= \vec{Z}_{(n-1)1} \cdot \vec{I}_{1} + \vec{Z}_{(n-1)2} \cdot \vec{I}_{2} + ... + \vec{Z}_{(n-1)(n-1)} \cdot \vec{I}_{n-1} \end{split}$$

 Struje u čvorištima je potrebno odrediti pomoću injekcija snaga u čvorištima

POSTUPAK PRORAČUNA

1. korak

- Učitavanje podataka o mreži (konfiguracija, admitancije grana)
- Učitavanje podataka o injekcijama snage u čvorištima

2. korak

- Formiranje matrice Y' (samo poprečne admitancije grana)
- Formiranje matrice Y (samo uzdužne admitancije grana)

3. Korak

– Računanje matrice **Z** ($\left| ec{Z} \right| = \left| ec{Y} \right|^{-1}$)

4. Korak

– Početne vrijednosti napona čvorišta: $\vec{U}_i^{(0)} = 1 + j0$ p.u. = $1 \angle 0^{\circ}$ p.u.

5. korak

Računanje struja u čvorištima (nulta iteracija, k=0):

$$\vec{I}_{i}^{(0)} = \frac{\vec{S}_{i}^{*}}{\vec{U}_{i}^{*(0)}} - Y_{i}^{'} \cdot \vec{U}_{i}^{(0)} \qquad i = 1, 2, ..., n - 1$$

6. korak

Računanje napona $\vec{\mathbf{U}}_{i}^{(1)}$ i struja $\vec{\mathbf{I}}_{i}^{(1)}$ u čvorištima (k=1):

$$\begin{split} \vec{U}_{1}^{(1)} &= \vec{U}_{ref} + \vec{Z}_{11} \cdot \vec{I}_{1}^{(0)} + \vec{Z}_{12} \cdot \vec{I}_{2}^{(0)} + \ldots + \vec{Z}_{1(n-1)} \cdot \vec{I}_{(n-1)}^{(0)} \\ \vec{I}_{1}^{(1)} &= \frac{\vec{S}_{1}^{*}}{\vec{U}_{1}^{*(1)}} - \vec{U}_{1}^{(1)} \cdot Y_{1}^{'} \\ \vec{U}_{2}^{(1)} &= \vec{U}_{ref} + \vec{Z}_{21} \cdot \vec{I}_{1}^{(1)} + \vec{Z}_{22} \cdot \vec{I}_{2}^{(0)} + \ldots + \vec{Z}_{2(n-1)} \cdot \vec{I}_{(n-1)}^{(0)} \\ \vec{I}_{2}^{(1)} &= \frac{\vec{S}_{2}^{*}}{\vec{U}_{2}^{*(1)}} - \vec{U}_{2}^{(1)} \cdot Y_{2}^{'} \\ &\vdots \\ \vec{U}_{i}^{(1)} &= \vec{U}_{ref} + \sum_{j=1}^{i-1} \vec{Z}_{ij} \cdot \vec{I}_{j}^{(1)} + \sum_{j=i}^{n-1} \vec{Z}_{ij} \cdot \vec{I}_{j}^{(0)} \\ \vec{I}_{i}^{(1)} &= \frac{\vec{S}_{i}^{*}}{\vec{I}_{i}^{*(1)}} - \vec{U}_{i}^{(1)} \cdot Y_{i}^{'} & za \ i = 1, 2, \dots, n-1 \end{split}$$

za i = 1, 2, ..., n-1

7. Korak

– Provjera da li izračunate vrijednosti napona $\vec{\mathbf{U}}_i^{(1)}$ zadovoljavaju unaprijed postavljeni uvjet točnosti :

$$\begin{split} \left| (\vec{\mathbf{U}}_i^{(1)} - \vec{\mathbf{U}}_i^{(0)}) \right| < \epsilon \\ \epsilon = 0.001 \div 0.0001 \quad \text{(najčešće)} \end{split}$$

- Ako je postavljeni uvjet zadovoljen za svaki **i –** KRAJ PRORAČUNA, konačno rješenje je vektor stanja $\vec{\mathbf{U}}_{i}^{(1)}$ (i=1,2,..., n-1)
- U suprotnom prelazak u sljedeću iteraciju (k=2) korištenjem izračunatog vektora struja u čvorištima $\vec{I}_i^{(1)}$, te ponovnim izvršavanjem koraka 6 (dakle računaju se $\vec{U}_i^{(2)}$ i $\vec{I}_i^{(2)}$) i koraka 7
- Ako postavljeni uvjet nije zadovoljen ni u drugoj iteraciji prelazi se u treću (k=3) korištenjem rezultata iz druge itd. dok se ne ostvari tražena točnost

Općenito za neku iteraciju k+1 vrijede sljedeći izrazi:

$$\begin{split} \vec{U}_{i}^{(k+1)} &= \sum_{j=1}^{i-1} \vec{Z}_{ij} \cdot \vec{I}_{j}^{(k+1)} + \sum_{j=i}^{n-1} \vec{Z}_{ij} \cdot \vec{I}_{j}^{(k)} + \vec{U}_{ref} \\ \vec{I}_{i}^{(k+1)} &= \frac{\vec{S}_{i}^{*}}{\vec{U}_{i}^{*(k+1)}} - \vec{U}_{i}^{(k+1)} \cdot Y_{i}^{'} \\ \end{split} \qquad \qquad za \ i = 1, 2, ..., n-1 \end{split}$$

• Proračun se zaustavlja kada je ispunjeno:

$$\left| \left(\vec{\mathbf{U}}_{i}^{(k+1)} - \vec{\mathbf{U}}_{i}^{(k)} \right) \right| < \varepsilon \qquad za i = 1, 2, ..., n-1$$

Traženo rješenje (vektor stanja) je:

$$\vec{\boldsymbol{U}}_{i}^{(k+1)} = \left| \vec{\boldsymbol{U}}_{i}^{(k+1)} \right| \angle \boldsymbol{\delta}_{i}^{k+1}$$

• PRIMJER

Zadano:

i	j	$\vec{Z}_{i-j}(p.u.)$	$y'_{i-j}/2(p.u.)$	$\vec{\mathcal{Y}}_{i-j}$
1	2	0.02+j0.06	j0.03	5-j15
1	3	0.08+j0.24	j0.025	1.25-j3.75
2	3	0.06+j0.18	j0.02	1.66-j5
2	4	0.06+j0.18	j0.02	1.66-j5
2	5	0.04+j0.12	j0.015	2.5-j7.5
3	4	0.01+j0.03	j0.01	10-j30
4	5	0.08+j0.24	j0.025	1.25-j3.75

- Vrijedi da je: $\vec{y}_{i-j} = \frac{1}{\vec{Z}_{i-j}}$ (uzdužna admitancija grane)
- Čvorište 1 je referentno

ANALIZA ELEKTROENERGETSKOG SUSTAVA – predavanje br. 7

• Zadano:

Čv.	Generator			Teret		\vec{Y}_i'
	U	MW	Mvar			1 i
1.	1.06+j0	/	/	/	/	j0.055
2.		40	30	20	10	j0.085
3.		0	0	45	15	j0.055
4.				40	5	j0.055
5.				60	10	j0.04

• Bazna snaga: $S_B = 100 \, MVA$

• Tražena točnost: $\varepsilon = 0.001$

Matrica Y:

$$\vec{Y}_{(5)} = \begin{bmatrix}
6.25 - j18.75 & -5 + j15 & -1.25 + j3.75 & 0 & 0 \\
-5 + j15 & 10.833 - j32.5 & -1.66 + j5 & -1.66 + j5 & -2.5 + j7.5 \\
-1.25 + j3.75 & -1.66 + j5 & 12.916 - j38.75 & -10 + j30 & 0 \\
0 & -1.66 + j5 & -10 + j30 & 12.916 - j38.75 & -1.25 + j3.75 \\
0 & -2.5 + j7.5 & 0 & -1.25 + j3.75 & 3.75 - j11.25$$

 Čvorište 1 je referentno pa odbacujemo 1. red i 1. stupac

• Matrica impedancija čvorišta:

	0.016857+	0.012571+	0.013428+	0.0151743+
$\vec{Z} = \vec{Y}^{-1} =$	j0.050571	j0.03771	j0.0402857	j0.047143
	0.012571+	0.0297143+	0.0262857+	0.017143+
	j0.03771	j0.089143	j0.0788571	j0.0514286
	0.013428+	0.0262857+	0.0317143+	0.0185238+
	j0.0402857	j0.0788571	j0.09514	j0.0585714
	0.0151743+	0.017143+	0.0185238+	0.043651+
	j0.047143	j0.0514286	j0.0585714	j0.1309524

ANALIZA ELEKTROENERGETSKOG SUSTAVA – predavanje br. 7

$$\vec{I}_{2}^{(0)} = \frac{\vec{S}_{2}^{*}}{\vec{U}_{2}^{*(0)}} - Y_{2}^{'} \cdot \vec{U}_{2}^{(0)} = \frac{0.2 - j0.2}{1 - j0} - j0.085 \cdot 1 = 0.2 - j0.285$$

$$\vec{I}_{3}^{(0)} = \frac{\vec{S}_{3}^{*}}{\vec{U}_{3}^{*(0)}} - Y_{3}^{'} \cdot \vec{U}_{3}^{(0)} = \frac{-0.45 + j0.15}{1 - j0} - j0.055 \cdot 1 = -0.045 + j0.095$$

$$\vec{I}_{4}^{(0)} = \frac{\vec{S}_{4}^{*}}{\vec{U}_{4}^{*(0)}} - Y_{4}^{'} \cdot \vec{U}_{4}^{(0)} = \frac{-0.4 + j0.05}{1 - j0} - j0.055 \cdot 1 = -0.4 - j0.005$$

$$\vec{I}_{5}^{(0)} = \frac{\vec{S}_{5}^{*}}{\vec{U}_{5}^{*(0)}} - Y_{5}^{'} \cdot \vec{U}_{5}^{(0)} = \frac{-0.6 + j0.1}{1 - j0} - j0.04 \cdot 1 = -0.6 + j0.06$$

• k=1:

$$\begin{split} \vec{U}_{2}^{(1)} &= \vec{U}_{1} + \vec{Z}_{22} \cdot \vec{I}_{2}^{(0)} + \vec{Z}_{23} \cdot \vec{I}_{3}^{(0)} + \vec{Z}_{24} \cdot \vec{I}_{4}^{(0)} + \vec{Z}_{25} \cdot \vec{I}_{5}^{(0)} = 1.05122 - j0.05399 \\ \vec{I}_{2}^{(1)} &= \frac{\vec{S}_{2}^{*}}{\vec{U}_{2}^{*(1)}} - Y_{2}^{'} \cdot \vec{U}_{2}^{(1)} = 0.17544 - j0.208887 \end{split}$$

$$\vec{U}_{3}^{(1)} = \vec{U}_{1} + \vec{Z}_{32} \cdot \vec{I}_{2}^{(1)} + \vec{Z}_{33} \cdot \vec{I}_{3}^{(0)} + \vec{Z}_{34} \cdot \vec{I}_{4}^{(0)} + \vec{Z}_{35} \cdot \vec{I}_{5}^{(0)} = 1.02777 - j0.09581$$

$$\vec{I}_{3}^{(1)} = \frac{S_{3}^{*}}{\vec{U}_{3}^{*(1)}} - Y_{3}^{'} \cdot \vec{U}_{3}^{(1)} = -0.42585 - j0.12813$$

$$\vec{U}_{4}^{(1)} = \vec{U}_{1} + \vec{Z}_{42} \cdot \vec{I}_{2}^{(1)} + \vec{Z}_{43} \cdot \vec{I}_{3}^{(1)} + \vec{Z}_{44} \cdot \vec{I}_{4}^{(0)} + \vec{Z}_{45} \cdot \vec{I}_{5}^{(0)} = 1.02521 - j0.0992$$

$$\vec{I}_{4}^{(1)} = \frac{\vec{S}_{4}^{*}}{\vec{U}_{4}^{*(1)}} - Y_{4}^{'} \cdot \vec{U}_{4}^{(1)} = -0.38782 + j0.02933$$

$$\vec{U}_{5}^{(1)} = \vec{U}_{1} + \vec{Z}_{52} \cdot \vec{I}_{2}^{(1)} + \vec{Z}_{53} \cdot \vec{I}_{3}^{(1)} + \vec{Z}_{54} \cdot \vec{I}_{4}^{(1)} + \vec{Z}_{55} \cdot \vec{I}_{5}^{(0)} = 1.01913 - j0.11403$$

$$\vec{I}_{5}^{(1)} = \frac{\vec{S}_{5}^{*}}{\vec{U}_{5}^{*(1)}} - Y_{5}^{'} \cdot \vec{U}_{5}^{(1)} = -0.57518 + j0.1212$$

Provjera

$$\left| \vec{\mathbf{U}}_{2}^{(1)} - \vec{\mathbf{U}}_{2}^{(0)} \right| = \left| (1.05112 - j0.05399) - (1 + j0) \right|$$
$$= \left| 0.05112 - j0.05399 \right|$$
$$\left| 0.05112 - j0.05399 \right| > 0.001$$

- Uvjet je neispunjen (ostale napone nije ni potrebno dalje provjeravati)-prelazak u sljedeću iteraciju
- k=2

$$\begin{split} \vec{U}_{2}^{(2)} &= \vec{U}_{1} + \vec{Z}_{22} \cdot \vec{I}_{2}^{(1)} + \vec{Z}_{23} \cdot \vec{I}_{3}^{(1)} + \vec{Z}_{24} \cdot \vec{I}_{4}^{(1)} + \vec{Z}_{25} \cdot \vec{I}_{5}^{(1)} \\ \vec{I}_{2}^{(2)} &= \frac{\vec{S}_{2}^{*}}{\vec{U}_{2}^{*(2)}} - Y_{2}^{'} \cdot \vec{U}_{2}^{(2)} \end{split}$$

:

ANALIZA ELEKTROENERGETSKOG SUSTAVA – predavanje br. 7

Iteracija	Čv. 2	Čv. 3	Čv. 4	Čv. 5
0.	1+j0	1+j0	1+j0	1+j0
1.	1.05112-	1.02777-	1.02529-	1.01913-
	j0.05399	j0.09581	j0.0992	j0.11403
2.	1.04622-	1.02041-	1.01924-	1.0122-
	j0.05286	j0.08837	j0.09454	j0.10841
3.	1.04622-	1.02035-	1.01918-	1.01212-
	j0.05129	j0.08924	j0.09502	j0.10908
	1.04748	1.02425	1.02361	1.018
	∠-28°	∠-5°	∠-5.33°	∠ -6.15°

 U trećoj iteraciji je zadovoljen postavljeni kriterij točnosti