Problem 1

A VAR(p) model is specified as:

$$X_t = a + B_1 X_{t-1} + \dots + B_p X_{t-p} + \varepsilon_t$$

where $a \in \mathbb{R}^n$ is a constant vector, and $B_1, \dots, B_p \in \mathbb{R}^{n \times n}$ are constant matrices. ε_t are i.i.d random vectors with $\varepsilon_t \sim N(0, \Omega)$.

Using lag operator, we can re-write the formula as:

$$\Psi(L)X_t = (1 - B_1L - \dots - B_pL^p)X_t = a + \varepsilon_t \tag{1}$$

Let

$$B = B_1 + B_2 + \dots + B_p$$

$$\Gamma_j = -(B_{j+1} + \dots + B_p)$$

Then we can re-write:

$$B_{1}L = BL - (B_{2} + \dots + B_{p})L = BL + \Gamma_{1}L$$

$$B_{2}L^{2} = -(B_{3} + \dots + B_{p})L^{2} + (B_{2} + \dots + B_{p})L^{2} = (\Gamma_{2} - \Gamma_{1})L^{2}$$

$$B_{3}L^{3} = (\Gamma_{3} - \Gamma_{2})L^{3}$$

$$\vdots$$

$$B_{p-1}L^{p-1} = (\Gamma_{p-1} - \Gamma_{p-2})L^{p-1}$$

$$B_{p}L^{p} = -\Gamma_{p-1}L^{p}$$

To sum of the two sides:

$$B_1L + B_2L^2 + \dots + B_{p-1}L^{p-1} + B_pL^p = BL + \Gamma_1L + (\Gamma_2 - \Gamma_1)L^2 + \dots + (\Gamma_{p-1} - \Gamma_{p-2})L^{p-1} - \Gamma_{p-1}L^p$$
$$= BL + (\Gamma_1L + \Gamma_2L^2 + \dots + \Gamma_{p-1}L^{p-1})(1 - L)$$

Thereofre, equation (1) can be re-written as:

$$\Psi(L)X_t = \left[1 - BL - (\Gamma_1 L + \Gamma_2 L^2 + \dots + \Gamma_{p-1} L^{p-1})(1 - L)\right]X_t = a + \varepsilon_t \tag{2}$$

which proves equation (35) in lecture 3.

Since

$$X_t - X_{t-1} = (1 - L)X_t = \Delta X_t$$

Equation (2) can be written as:

$$X_t - BLX_t - (\Gamma_1 L + \Gamma_2 L^2 + \dots + \Gamma_{p-1} L^{p-1}) \Delta X_t = a + \varepsilon_t$$

$$\Leftrightarrow X_t - BX_{t-1} - \Gamma_1 \Delta X_{t-1} - \Gamma_2 \Delta X_{t-1} - \dots - \Gamma_{p-1} \Delta X_{t-p+1} = a + \varepsilon_t$$

Finally, we get the same formula as equation (36) from lecture 3:

$$X_{t} = a + BX_{t-1} + \Gamma_{1}\Delta X_{t-1} + \Gamma_{2}\Delta X_{t-1} + \dots + \Gamma_{n-1}\Delta X_{t-n+1} + \varepsilon_{t}$$

MTH9893 Time Series Analysis HW3

- Group 01
- Author: Pan, Hongchao & Sun, Yu
- Kernel version: Python 3.5
- · Packages: pandas, matplotlib, statsmodels, time
- Data:
 - Data were stored in the folder datasets
 - Q2: PX_LAST of SPX and VIX over last 5 years
- Notes:
 - The running time of this notebook is around 3s
 - The original SPX index is not stationary, but the 1st order differential of SPX index is stationary. Thereby test the Granger Causality between VIX and 1st order differential of SPX
 - The VIX index does have Granger Causality on SPX index, but SPX index does not have Granger Causality on VIX index with 95% confidence interval.
 - Guideline of Granger Causality Test:
 - Step 1: Staionary test of two time series data. If they both are stationary, go to Step 3. If not, go to Step 2.
 - Step 2: Data manipulation. Use methods (1st order differential works here) to make the time series data be stationary.
 - Step 3: Find the lag of VAR(p) model by using VAR.select_order() function
 - Step 4: Fit the model by using the desired lag and criterion (aic or bic)found in Step 3
 - Step 5: Granger Causality test by using test_causality function
 - All the test functions are in Python statsmodels package

Question 2

```
In [1]: # import packages
  import pandas as pd
  import matplotlib.pyplot as plt
  import statsmodels.tsa.vector_ar.var_model as var_model # For VAR(p)
  import statsmodels.tsa.stattools as statools
  import statsmodels.tsa.stattools as tsa # adfuller test
  import time
```

In [2]: # Record the running time of the notebook
startTALL=time.time()

```
In [3]: # Define a function to get the data
        def get data():
            # Retrive the historical daily end of the day (PX LAST)
            # of SPX and VIX over the last 5 years from folder 'datasets'
            # Get the data of SPX
            df spx=pd.read excel(io='datasets/SPX Daily.xlsx',sheetname=0,pars
        e cols='A:B',skiprows=1)
            # Get the data of VIX
            df vix=pd.read excel(io='datasets/VIX Daily.xlsx',sheetname=0,pars
        e cols='A:B',skiprows=1)
            # Both data has been sorted by the date from oldest to latest and
        has same length
            # Rename the columns of both dataframe
            df spx.columns=['Date','SPX PX LAST']
            df vix.columns=['Date','VIX PX LAST']
            # Combine the two dataframe
            df=df spx.merge(df vix,on='Date',how='inner')
            return df
```

```
In [4]: df_Q2=get_data()
```

```
In [5]: # Plot the data in 1 figure
    plt.figure(1,figsize=(12,6)) # Change figure size
    # Plot SPX index
    plt.subplot(211)
    plt.plot(df_Q2['Date'],df_Q2['SPX PX_LAST'],'r-')
    plt.ylabel('Close index')
    plt.legend(['SPX'],loc='upper left')

# Plot VIX index
    plt.subplot(212)
    plt.plot(df_Q2['Date'],df_Q2['VIX PX_LAST'],'b-')
    plt.xlabel('Date')
    plt.ylabel('Close index')
    plt.legend(['VIX'],loc='upper left')
    plt.show()
```


Figure 1 The overview of SPX and VIX close index over past 5 years

Observations:

- Figure 1 shows that VIX index jupms up when SPX index drops over the past 5 years
- SPX index has a increasing trend indicates that it is **not stationary** over past 5 years, but VIX index looks more stable indicates that it is **stationary** over past 5 years. Thereby, further stationary test needs to be applied.

Stationary test

Define a test funtion to test whether a time series is stationary with confidence interval 95%

```
In [6]: def stationary_test(TsData,CI):
    # TsData: to be tested time series data
    # CI: the critical value for test statistic, string of 1%, 5%, or
10%
    res=tsa.adfuller(TsData)

# reference: https://en.wikipedia.org/wiki/Augmented_Dickey%E2%80%
93Fuller_test
    if(res[0]>res[4][CI]):
        return (res[0],res[4][CI],'non-stationary')
else:
    return (res[0],res[4][CI],'stationary')
```

\triangle + Γ 7 1	
()11 + 1 / 1	:

	SPX	VIX
adf(test statistic)	-0.860425	-6.87366
CI value	-2.86384	-2.86384
stationary/non-stationary	non-stationary	stationary

Table 1 Stationary test of SPX index and VIX index over past 5 years

Change SPX index to stationary

Since stationary of two time series is required for Granger Causality test, we need make the SPX index to stationary.

Try differential method

```
In [8]: # Take the 1st-order difference of SPX index data
    df_Q2['SPX_diff1']=df_Q2['SPX_PX_LAST'].diff() # The 1st row of 'SPX_
    diff1' will be NaN
    plt.figure(1,figsize=(12,3)) # Change figure size
    plt.plot(df_Q2.iloc[1:]['SPX_diff1']) # Avoid NaN in 1st row
    plt.xlabel('Date')
    plt.ylabel('Close index')
    plt.legend(['SPX_diff1'],loc='upper left')
    plt.show()
```


Figure 2 SPX close index with 1st order difference over past 5 years. Clearly, the 1st order differential data should be stationary.

Stationary test of 1st order differential data of SPX index

In [9]: # Stationary test of 1st order differential data of SPX index
 tsa_SPX_diff=stationary_test(df_Q2.iloc[1:]['SPX_diff1'],'5%') # Avoid
 1st row (NaN)
 sta_df['SPX_diff1']=list(tsa_SPX_diff) # Append result to the new col
 umn of stationary test result
 sta_df

Out[9]:

	SPX	VIX	SPX_diff1
adf(test statistic)	-0.860425	-6.87366	-19.4979
CI value	-2.86384	-2.86384	-2.86385
stationary/non-stationary	non-stationary	stationary	stationary

Table 2 Stationary test of SPX index, VIX index, and 1st order differential of SPX index over past 5 years

 Notes: Since the differential of SPX index has the information of SPX index and is stationary, we should use SPX_diff1 to test Granger Causality with VIX index

Test the Granger Causality between VIX and SPX (SPX_diff1)

Calculate the lag of time series X=matrix(SPX_diff1,VIX) with VAR model

```
In [10]: # Change index of df_Q2 to the date object for VAR model
    df_Q2.set_index('Date',inplace=True)
# Erase the row has NaN data and the column of 'SPX PX_LAST'
    df_gc=df_Q2.iloc[1:][['VIX PX_LAST','SPX_diff1']]
    df_gc.head()
```

Out[10]:

	VIX PX_LAST	SPX_diff1
Date		
2012-02-27	18.19	1.85
2012-02-28	17.96	4.59
2012-02-29	18.43	-6.50
2012-03-01	17.26	8.41
2012-03-02	17.29	-4.46

Table 3 Overview of SPX and VIX dataframe

```
In [11]: # VAR model
    # Reference: http://statsmodels.sourceforge.net/devel/vector_ar.html
    VAR_model2=var_model.VAR(df_gc)
    # Select the lag
    # Since the running time of the select_order function of VAR model, se
    t the maxlags=30
    res=VAR_model2.select_order(maxlags=30)
```

VAR Order Selection

VAN OTUCE DETECTION				
	aic	bic	fpe	hqic
0	7.871	7.880	2621.	7.874
1	4.736	4.761	114.0	4.745
2	4.708	4.750*	110.9	4.724*
3	4.707*	4.766	110.8*	4.729
4	4.708	4.783	110.8	4.736
5	4.709	4.801	111.0	4.744
6	4.714	4.822	111.4	4.754
7	4.716	4.841	111.7	4.763
8	4.718	4.859	111.9	4.771
9	4.719	4.877	112.0	4.778
10	4.719	4.894	112.0	4.785
11	4.723	4.915	112.6	4.796
12	4.728	4.936	113.0	4.806
13	4.730	4.955	113.3	4.814
14	4.736	4.977	113.9	4.827
15	4.735	4.993	113.9	4.832
16	4.740	5.015	114.4	4.843
17	4.744	5.036	114.9	4.854
18	4.746	5.054	115.1	4.862
19	4.748	5.073	115.4	4.871
20	4.751	5.093	115.7	4.880
21	4.749	5.107	115.5	4.884
22	4.752	5.127	115.8	4.893
23	4.754	5.146	116.1	4.902
24	4.755	5.163	116.2	4.909
25	4.759	5.183	116.6	4.918
26	4.753	5.195	116.0	4.920
27	4.759	5.217	116.6	4.931
28	4.762	5.237	117.0	4.941
29	4.764	5.256	117.3	4.949
30	4.761	5.269	116.9	4.952
=====				

^{*} Minimum

Table 4 Result of VAR(p) order selection: best model is VAR(3) based on AIC and VAR(2) based on BIC

```
In [12]: # Fit the model based on the results above from select_order function
    # Fit the model with desired lag, i.e., set the maxlags=3, ic='aic'
    model_res=VAR_model2.fit(maxlags=3,method='ols',ic='aic',verbose=False
    )
    model_res.summary()
```

Out[12]: Summary of Regression Results

=======================================	.=========		
Model:	VAR		
Method:	OLS		
Date:	Tue, 28, Feb, 2017		
Time:	11:31:37		
No. of Equations:	2.00000		4.75074
Nobs:	1255.00		4.71499
•	-6492.68		109.230
AIC:	4.69346	Det(Omega_mle):	108.022
Results for equat	_		
=========			
	coefficient	std. error	t-stat
prob			
const	1.082261	0.183868	5.886
0.000			
L1.VIX PX LAST	0.995805	0.052465	18.980
0.000			
L1.SPX_diff1	0.005975	0.004664	1.281
0.200			
L2.VIX PX_LAST	-0.086796	0.067920	-1.278
0.202			
L2.SPX_diff1	-0.001931	0.004629	-0.417
0.677	0.000567	0.051706	0 200
L3.VIX PX_LAST	0.020567	0.051726	0.398
0.691 L3.SPX diff1	0.001959	0.002563	0.764
0.445	0.001959	0.002503	0.764
=======================================			
========			
Results for equat	-		
		=======================================	
	coefficient	std. error	t-stat
prob	COSTITCIENC	pru. ETIOT	i-stat
const	-4.568336	2.067693	-2.209
0.027			
L1.VIX PX_LAST	-2.406130	0.590000	-4.078
0.000			

-0.197727

2.073284

0.052450

0.763801

L1.SPX_diff1

L2.VIX PX_LAST

0.000

0.007

-3.770

2.714

L2.SPX_diff1	-0.038	136	0.052051	-0.733
0.464	0.600	270	0.501605	1 105
L3.VIX PX_LAST 0.236	0.689	3/9	0.581685	1.185
L3.SPX diff1	0.001	838	0.028827	0.064
0.949				
=========				
Correlation matrix of residuals				
	VIX PX_LAST	SPX_diff1		
VIX PX_LAST	1.000000	-0.843096		
SPX_diff1	-0.843096	1.000000		

Table 5 Summary results of VAR model fit with maxlags=3

Granger Causality test of VIX on SPX (SPX_diff1)

```
In [13]: # Granger Causality test
# Reference: http://statsmodels.sourceforge.net/devel/generated/statsm
    odels.tsa.vector_ar.var_model.VARResults.test_causality.html
# kind 'f': F-test
# confidence interval: 95%
# Test whether 2nd variable has Granger Causality on 1st variable, i.e
    ., test VIX on SPX_diff1
# Notes: the sequence/order of variables are matter!
    gctest=model_res.test_causality('SPX_diff1','VIX PX_LAST',kind='f',sig
    nif=0.05)
Granger causality f-test
```

```
Test statistic Critical Value p-value df

10.165602 2.608468 0.000 (3, 2496)

H_0: ['VIX PX_LAST'] do not Granger-cause SPX_diff1
Conclusion: reject H 0 at 5.00% significance level
```

Table 6 The Granger Causality test of VIX index on SPX_diff1 index based on VAR(3) model

The results in table 6 shows that VIX index **does have Granger Causality** on SPX_diff1, which indicates that the VIX index **does have Granger Causality** on SPX index

Granger Causality test of SPX index (SPX_diff1) on VIX index

```
In [14]: # Granger Causality test
    # Reference: http://statsmodels.sourceforge.net/devel/generated/statsm
    odels.tsa.vector_ar.var_model.VARResults.test_causality.html
    # kind 'f': F-test
    # confidence interval: 95%
# Test whether 2nd variable has Granger Causality on 1st variable, i.e
    . test SPX_diff1 on VIX
# Notes: the sequence/order of variables are matter!
    gctest2=model_res.test_causality('VIX PX_LAST','SPX_diff1',kind='f',si
    gnif=0.05)
```


Table 7 The Granger Causality test of VIX index on SPX index based on VAR(3) model

The results in table 7 shows that SPX_diff1 **does not have Granger Causality** on VIX index, which indicates that the SPX index **does not have Granger Causality** on VIX index

Answers/Observations of Q2

- The original SPX index is not stationary, but the 1st order differential of SPX index is stationary. And stationary of two time series is required of Granger Causality test, thereby we tested Granger Causality between 1st order differential data of SPX and VIX.
- The best fitted VAR(p) model of SPX_diff1 and VIX is p=3 based on AIC and fpe and p=2 based on BIC and hgic.
- From the Granger Causality test results, SPX and the SPX does not have Granger-causality on VIX, but the VIX does have Granger-causality on SPX.