Computational Methods - Problem Sheet

1. Write down $p_4(x)$, the fourth degree Lagrange polynomial, defining in separate expressions $l_i(x)$, i = 0, 1, 2, 3, 4. By considering each expression for $l_i(x)$, show that

$$p_4(x_2) = y_2.$$

2. Write down in full an expression for

$$S = \sum_{i=0}^{2} l_i(\alpha).$$

By forming a common denominator and multiplying out the expression show that S=1.

- 3. Estimate $\sin(\pi/4)$ by fitting a Lagrange polynomial of degree three to the data points $(x, \sin x)$ at $x = 0, \pi/6, \pi/3, \pi/2$. Check your calculation by taking an appropriate sum. Obtain the actual error in your estimate.
- 4. Given the data

$$\ln(1) = 0$$
, $\ln(1.1) = 0.09531$, $\ln(1.3) = 0.26236$

use a Lagrange interpolating quadratic to estimate $\ln(1.2)$. What is the actual error in the approximation?

5. Use the Composite Trapezoidal rule to evaluate the following integrals:

$$I = \int_{1}^{2} (x + 1/x) dx$$

$$I = \int_0^1 \frac{dx}{1+x^2}$$

$$I = \int_0^{\pi/2} \sin x dx$$

For each integral calculate the actual error.

- 6. Repeat question 5 by using the Composite Simpson's Rule (for the same number of strips). Calculate the actual error. What do you notice?
- 7. The curve $y = 2 \ln (2e x)$ intersects the line y = x at a single point where $x = \alpha$. Show that α lies between 1 and 3. Solve the recurrence relation

$$x_{n+1} = 2\ln\left(2e - x_n\right)$$

with $x_1 = 1$ to obtain x_2 and x_3 to three decimal places.