LANGUAGE MODELS 4 THE TRANSFORMER

WHAT EXACTLY IS A LANGUAGE MODEL??

LANGUAGE REPRESENTATION

LANGUAGE REPRESENTATION

FEATURE EXTRACTIO Class Nal ML

Deep 5 LLMs

WORD EMBEDDINGS

Representing words by a vector of numbers

How long should these vectors be?

How do we know that the vector representations are correct?

Pre-trained embeddings available for download

Every word has a fixed embedding independent of the context in which it occurs in a sentence.

THE TRANSFORMER MODEL

What's the difference between these two devices in terms of how they treat the incoming information and data?

Why is the one on the left considered to be intelligent, and the one on the right considered to be dumb?

Intelligence is about being able to figure out the **essence** of a topic, and not just memorizing facts.

AUTO-ENCODERS

[lossy compression]

ENCODER BLOCK

Feed Forward Neural Network

Self-Attention

robot	must	obey	orders	<eos></eos>	<pad></pad>	 <pad></pad>	
1	2	3	4	5	6	512	

The Attention Mechanism

Taking care of the word sequence is important, but there are also long range dependencies between words.

Input	Thinking	Machines		
Embedding	X ₁	X ₂		
Queries	q ₁	q ₂		
Keys	k ₁	k ₂		
Values	V ₁	V ₂		
Score	q ₁ • k ₁ = 112	$q_1 \cdot k_2 = 96$		
Divide by 8 ($\sqrt{d_k}$)	14	12		
Softmax	0.88	0.12		

DECODER BLOCK

Feed Forward Neural Network Encoder-Decoder Self-Attention Masked Self-Attention

Input

<s></s>	robot	must	obey			
1	2	3	4	5	6	512

Self-Attention Masked Self-Attention

DECODER BLOCK

Feed Forward Neural Network Encoder-Decoder Self-Attention Masked Self-Attention

Input

<s></s>	robot	must	obey			
1	2	3	4	5	6	512

Input

<\$>	robot	must	obey			
1	2	3	4	5	6	512

DECODER

• •

DECODER

DECODER

BERT

ENCODER

• • •

ENCODER

ENCODER

WHAT EXACTLY 15 A LANGUAGE MODEL?

HOW ARE TRANSFORMER EMBEDDINGS DIFFERENT FROM WORDZVEC?

HOW ARE TRANSFORMER EMBEDDINGS DIFFERENT FROM ELMO EMBEDDINGS?

WHAT EXACTLY IS AN AUTO-ENCODER?

IN THE TRANSFORMER MODEL, WHAT DOES AN ENCODER DO?

IN THE TRANSFORMER MODEL, WHAT DOES A DECODER DO?

WHAT DOES THE ENCODER BLOCK CONTAIN?

WHAT DOES THE DECODER BLOCK CONTAIN?

HOW IS THE SELF-ATTENTION OF DECODER BLOCK DIFFERENT FROM THAT OF ENCODER BLOCK?

WHY DOES NOT THE GPT MODEL HAVE ANY ENCODER BLOCK?

WHY DOES NOT THE BERT MODEL HAVE ANY DECODER BLOCK?

SUB-WORD TOKENIZERS for TRANSFORMERS

Tokenizer	Ву	Used In	Merge Criteria	Advantage
WordPiece	Google	BERT	Normalized Score	More context
Byte Pair Encoding (BPE)	Philip Gage	GPT	Sub-word frequency	Faster training
SentencePiece	Google	Llama, XLNet, T5, PaLM	Same as BPE	Language independent


```
Vocab
        ##s
##a
                  fa
##c
        ##u
##e
                 fac
         h
                 hug
##f
                ##gfac
##g
                hugg
        hu
##i
                huggi
##n
        ##fa
       ##fac
##r
```

huggingface

