# CS 461 Artificial Intelligence

# **Unsupervised Learning**

# **Unsupervised Learning**

- In unsupervised learning, the agent learns patterns in the input even though no explicit feedback is supplied.
- Unsupervised learning occurs when no classifications are given and the learner must discover categories and regularities in the data.
- The most general example of unsupervised learning task is clustering:
  - potentially useful clusters developed from the input examples.
- For example, a taxi agent might gradually develop a concept of "good traffic days" and "bad traffic days".

# Clustering

- K-means is a partitioning clustering algorithm
- ▶ Let the set of data points (or instances) *D* be

$$\{x_1, x_2, ..., x_n\},\$$

#### where

- $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{ir})$  is a vector in a real-valued space  $X \subseteq R^r$ , and
- r is the number of attributes (dimensions) in the data.
- ▶ The k-means algorithm partitions the given data into k clusters.
  - Each cluster has a cluster center, called centroid.
  - *k* is specified by the user

#### Basic Algorithm:

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

# **Stopping/Convergence Criterion**

- No (or minimum) re-assignments of data points to different clusters,
- 2. No (or minimum) change of centroids, or
- 3. Minimum decrease in the sum of squared error (SSE),

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$

 $C_j$  is the  $j^{th}$  cluster,  $\mathbf{m}_j$  is the centroid of cluster  $C_j$  (the mean vector of all the data points in  $C_j$ ), and  $dist(\mathbf{x}, \mathbf{m}_j)$  is the distance between data point  $\mathbf{x}$  and centroid  $\mathbf{m}_j$ .

### K-means Clustering--- Details

- Initial centroids are often chosen randomly.
  - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
  - Often the stopping condition is changed to 'Until relatively few points change clusters'

# K-means Clustering Example



k = 3

- Initialize
  - pick k cluster centers arbitrary
  - assign each example to closest center



compute sample means for each cluster



reassign all samples to the closest mean



4. if clusters changed at step 3, go to step 2

- Pre-processing
  - Normalize the data
  - Eliminate outliers
- Post-processing
  - Eliminate small clusters that may represent outliers
  - Split 'loose' clusters, i.e., clusters with relatively high SSE
  - Merge clusters that are 'close' and that have relatively low SSE

Dr. Hashim Yasin

11

#### **Distance Function**

- Most commonly used functions are
  - Euclidean distance and
  - Manhattan (city block) distance
- We denote distance with:  $dist(\mathbf{x}_i, \mathbf{x}_j)$ , where  $\mathbf{x}_i$  and  $\mathbf{x}_j$  are data points (vectors)
- They are special cases of Minkowski distance. q is positive integer.

$$d(i,j) = \sqrt{|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q}$$

$$\downarrow_{\text{1st dimension}} + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q$$

# Distance (dissimilarity) Measures

#### Euclidean distance

$$d(x_i, x_j) = \sqrt{\sum_{k=1}^{d} (x_i^{(k)} - x_j^{(k)})^2}$$

translation invariant

#### Manhattan (city block) distance

$$d(x_{i}, x_{j}) = \sum_{k=1}^{d} |x_{i}^{(k)} - x_{j}^{(k)}|$$

 approximation to Euclidean distance, cheaper to compute

#### Chebyshev distance

$$d(x_i, x_j) = \max_{1 \le k \le d} |x_i^{(k)} - x_j^{(k)}|$$

 approximation to Euclidean distance, cheapest to compute



Time complexity for K-means clustering is

$$O(n \times K \times I \times d)$$

- n = number of points,
- K = number of clusters,
- I = number of iterations,
- d = number of attributes
- The storage required is

$$O((n+K)d)$$

- n = number of points,
- K = number of clusters,
- d = number of attributes

# Limitations in K-means Clustering

- K-means has problems when the data contains outliers
- The K-means algorithm is very sensitive to the initial seeds.

- K-means has problems when clusters are of different
  - Sizes
  - Densities
  - Non-globular shapes

K-means has problems when the data contains outliers



(A): Undesirable clusters



(B): Ideal clusters

The algorithm is sensitive to initial seeds



(A). Random selection of seeds (centroids)



(B). Iteration 1



(C). Iteration 2

The algorithm is sensitive to initial seeds



(A). Random selection of k seeds (centroids)





(C). Iteration 2

▶ The *k*-means algorithm is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).



(A): Two natural clusters



(B): k-means clusters