

Digital Signal Processing $\,\Pi\,$

4th EXPERIMENT

Report

(4th report of DSP2 course)

Subject	Digital Signal Processing II
Professor	Je Hyeong Hong
Submission Date	September 24th, 2021
University	Hanyang University
School	College of Engineering
Department	Department of Computer Science & Engineering
Student ID	Name
2019009261	최가온(CHOI GA ON)

Exercises

In this part, there are several exercise questions. Each exercise consists of code and its result. All documents including MATLAB code, result, and this report are uploaded in this website :

https://github.com/Gaon-Choi/ELE3077/tree/main/lab_experiment04

Exercise 1

(a) Rearrange H(z) in the form of

$$\frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

by using "residuez" function.

$$H(z) = 2 - \frac{9}{1 - 0.5z^{-1}} + \frac{8}{1 - z^{-1}}$$

$$H(z) = \frac{2(1 - 1.5z^{-1} + 0.5z^{-2}) - 9(1 - z^{-1}) + 8(1 - 0.5z^{-1})}{(1 - 0.5z^{-1})(1 - z^{-1})} = \frac{1 + 2z^{-1} + z^{-2}}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

(MATLAB Code) lab4_exercise1_a.m

```
R = [ -9.0000; 8.0000 ];
p = [ 0.5000; 1.0000 ];
C = 2;
[num, den] = residuez(R, p, C)
```

(Result)

(b) Calculate zeros and poles by using "roots" function.

(MATLAB Code)

lab4_exercise1_b.m

```
R = [ -9.0000; 8.0000 ];
p = [ 0.5000; 1.0000 ];
C = 2;
% num: numerator
% den: denominator
[num, den] = residuez(R, p, C);
zeros = roots(num)
poles = roots(den)
```

(Result)

```
Sel 35

>> lab4_exercise1_b

zeros =

-1
-1
-1|

poles =

1.0000
0.5000

fx >> |
```

(c) Plot the pole-zero plot of H(z) by using "zplane" function and results of Q1-b.

Hint: xlabel("Real part"), ylabel("Imaginary part")

(MATLAB Code)

lab4_exercise1_c.m

```
R = [ -9.0000; 8.0000 ];
p = [ 0.5000; 1.0000 ];
C = 2;
% num: numerator
% den: denominator
[num, den] = residuez(R, p, C);
zeros = roots(num);
poles = roots(den);
zplane(zeros, poles)
zplane(num, den)
```

```
xlabel("Real part");
ylabel("Imaginary part");
title("Pole-Zero Plot of H(z)");
```

(Result)

(d) Plot the 3D graphs of H(z).

(MATLAB Code)

lab4_exercise1_d.m

```
x = linspace(-2, 2, 51);
y = linspace(-2, 2, 51);
[X, Y] = meshgrid(x, y);

z = X + 1j * Y;
Z = abs(2 - (9 ./ (1 - 0.5*(s.^-1))) + (8 ./ (1-(s.^-1))));
mesh(X, Y, abs(Z));
title("3D plot");

xlabel("Real axis");
ylabel("Imaginary axis");
```

(Result)

Exercise 2

(a) Using freqz with N=512, make the plots of the magnitude and phase responses $|H(\Omega)|$ and $\angle H(\Omega)$ for $0 \le \Omega \le \pi$.

$$H(z) = \frac{1 + \frac{1}{3}z^{-1}}{1 - 1.85\cos\left(\frac{\pi}{18}\right)z^{-1} + 0.83z^{-2}}$$

(MATLAB Code)

lab4_exercise2_a.m

```
num = [1, 1/3]; % numerator
den = [1, -1.85 * cos(pi / 18), 0.83]; % denominator
N = 512;
[h,w] = freqz(num, den, N);
mag h = abs(h);
mag h = 20 * log10 (mag h);
ang h = angle(h);
subplot(2, 1, 1);
plot(w/pi, mag h);
xlabel("frequency in \pi unit");
ylabel("Magnitude (dB)");
grid on
subplot(2, 1, 2);
plot(w/pi, ang h * 180/pi);
xlabel("frequency in \pi unit");
ylabel("Phase (degrees)");
grid on
```

(Result)

(b) Explain what type of filter this system represents briefly.

(i.e. lowpass, highpass, bandpass, etc.)

The range of frequency is $\mathbb{R} \in [-\pi, \pi]$. According to the result of (a), the magnitude of X(w) decreases as the frequency increases. It means that lower-frequency information passes, while higher-frequency information is blocked, thus X(w) is a low-pass filter.