Chapitre

Suites réelles

2. Limites d'une suite

Soit u une suite réelle.

Théorème 1.1 : Unicité d'une limite d'une suite convergente

Si (U_n) est convergente, sa limite l'est unique on note $l=\lim_{n\to\infty}u_n$.

π Preuve 1.1 : Démonstration par l'absurde

Supposons que (U_n) admette l_1 et l_2 comme limite, avec $l_1 \neq l_2$. Nous avons donc, pour tout $\epsilon > 0$:

$$\exists N_1 \in \mathbb{N}, \forall n \ge N_1, |u_n - l_1| \le \epsilon \tag{2.1}$$

$$\exists N_2 \in \mathbb{N}, \forall n \ge N_2, |u_n - l_2| \le \epsilon \tag{2.2}$$

On pose alors $\epsilon = \frac{|l_1 - l_2|}{3}$. Il existe donc N_1 et N_2 tel que les 2 assertions sont vraies

Choisissons un nombre entier supérieur à N_1 et N_2 , comme $\max(N_1,N_2)$.

Pour cette valeur de n, nous avons à la fois $|u_n-l_1|<\epsilon$ et $|u_n-l_2|<\epsilon$.

Par l'inégalité triangulaire, on obtient :

$$3\epsilon = |l_1 - l_2| = |(u_n - l_2) - (u_n - l_1)| \le |u_n - l_1| + |u_n - l_2| \le 2\epsilon$$

Le nombre réel vérifie à la fois $\epsilon>0$ et $3\epsilon\leq 2\epsilon$, ce qui est absurde. Donc $l_1=l_2$.

Théorème 1.2 : Borne d'une suite convergente

Toute suite convergente est bornée

π Preuve 1.2

Soit $(U_n)_{n\in\mathbb{N}}$ une suite réelle convergente. Notons l sa limite $\in \mathbb{R}$. Elle est convergente $\iff \forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N_{\epsilon} \Rightarrow$ $|u_n - l| \le \epsilon$.

Pour $\epsilon = 1$:

$$\exists N_1 \in \mathbb{N}, n \ge N_1 \Rightarrow |u_n - l| \le 1$$
$$\Rightarrow -1 \le u_n - l \le 1$$
$$\Rightarrow -1 + l \le u_n \le 1 + l$$

Donc pour $n \ge N_1, |u_n| \le \max(|-1+l|, |1+l|)$

Donc pour $n < N_1$, le nombre de terme de (U_n) est fini.

Donc $M = \max(|u_k|)$ existe et est fini, avec $0 \le k \le N_1 - 1$ et $|U_n| \le M, \forall 0 \le n \le N_1 - 1.$

2. Limites

2.2. \$uites adjacentes

Théorème 2.1 : Convergence de suites adjacentes

Si les suites (U_n) et (V_n) sont adjacentes, alors elles sont convergentes de même limite.

Preuve 2.1

 $\forall n \in \mathbb{N}, u_n \geq v_n \geq v_0 \; \mathrm{car} \; (v_n) \; \mathrm{est} \; \mathrm{croissante.} \; \mathrm{Donc} \; (U_n) \; \mathrm{est}$ décroissante et minorée par v_0 donc convergente. Notons $l_1 =$ $\lim U_n$.

De même, $\forall n \in \mathbb{N} v_n \leq u_n \leq u_n \leq u_n$ car (u_n) est décroissante. Donc

 (v_n) est croissante et majorée par v_0 donc convergente. Notons $l_2 = \lim_{+\infty} v_n.$

De plus,
$$\lim_{n \to \infty} U_n - V_n = 0 = l_1 - l_2 \iff l_1 = l_2$$

Donc, si elles sont adjacentes, (U_n) et (V_n) convergent vers un unique *l*.

Somme des limites

π Preuve 2.2 : Somme des limites l et l'

On veut savoir si $\forall \epsilon > 0, \exists ?N \in \mathbb{N}, n \geq N \Rightarrow |u_n + v_n - (l + l')| < \epsilon.$

On sait que d'après l'inégalité triangulaire, $|u_n + v_n - (l + l')| =$ $|u_n - l + v_n - l'| \le |u_n - l| + |v_n - l'|.$

Or $\lim u_n = l$, donc $\exists N_1 \in \mathbb{N}, n \geq N_1$, alors $|u_n - l| \leq \frac{\epsilon}{2}$.

De même, $\lim_{n \to \infty} v_n = l'$, donc $\exists N_2 \in \mathbb{N}, n \geq N_2$, alors $|u_n - l'| \leq \frac{\epsilon}{2}$

Donc si $n \geq N_1 + N_2$, alors $|u_n - l| \leq \frac{\epsilon}{2}$ et $|v_n - l'| \leq \frac{\epsilon}{2}$

Donc $|u_n+v_n-(l+l')|\leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Donc u_n+v_n est convergente et $\lim u_n + v_n = l$.

Produit des limites

Preuve 2.3: Produit des limites l et l'

Soit $(u_n),(v_n)$ 2 suites convergentes. On veut démontrer que $\lim_{n \to \infty} u_n v_n = \lim_{n \to \infty} u_n \lim_{n \to \infty} v_n.$ Notons que $\lim_{n \to \infty} u_n = l \in \mathbb{R}$ et $\lim_{n \to \infty} v_n = l$ $l' \in \mathbb{R}$. On doit démontrer que la définition de la limite existe pour la suite $u_n v_n$, i.e, $\forall n \in \mathbb{N}, n \geq N_0 \Rightarrow |u_n v_n - ll'| \leq \epsilon > 0$.

$$|u_n v_n - ll'| = |(u_n - l)v_n + lv_n - ll'|$$

$$= |v_n(u_n - l) + l(v_n - l')|$$

$$\le |v_n||u_n - l| + |l||v_n - l'|$$

 (v_n) convergen, donc est bornée, donc, $\exists M > 0, \forall n \in \mathbb{N} |v_n| \leq M$.

$$\leq M|u_n - l| + |l||v_n - l'|$$

$$\leq M\frac{\epsilon}{2M} + |l|\frac{\epsilon}{2M + 1 + |l|}$$

On a donc:

- · $\lim_{\substack{\infty \\ N_1 \Rightarrow |u_n-l| < \frac{\epsilon}{2M}}} u_n = l$, donc pour $\epsilon' = \frac{\epsilon}{2M} > 0, \exists N_1 \in \mathbb{N}$, donc $n \geq N_1 \Rightarrow |u_n-l| < \frac{\epsilon}{2M}$.
- $\begin{array}{ll} \cdot \lim\limits_{\infty} \, v_n \, = \, l' \text{, donc pour } \epsilon'' \, = \, \frac{\epsilon}{2(1+|l|)} \, > \, 0, \exists N_2 \, \in \, \mathbb{N} \text{, donc} \\ n \geq N_2 \Rightarrow |u_n l| < \frac{\epsilon}{2(1+|l|)}. \end{array}$

Donc $\forall n\geq N_1+N_2$, on a $|u_nv_n-ll'|\leq M\frac{\epsilon}{2M}+|l|\frac{\epsilon}{2M+1+|l|}$, puis $|u_nv_n-ll'|\leq \frac{\epsilon}{2}+1$ et $|u_nv_n-ll'|\leq \epsilon$

On a bien l'inégalité, CQFD

2.2. Limites et inégalités

Théorème 2.2 : Théorème des gendarmes

Si on a 3 suites réelles avec $u_n \leq w_n \leq v_n$. Si u_n et v_n sont convergentes de même limite l, alors w_n est convergente vers l.

π Preuve 2.4

Soit $\epsilon > 0$, on cherche $N_0 \in \mathbb{N}, n \geq N_0 \Rightarrow |w_n - l| \leq \epsilon$, avec $\lim_{n \to \infty} u_n = l = \lim_{n \to \infty} w_n$ et $u_n \leq w_n \leq v_n, \forall n \in \mathbb{N}$.

$$\begin{aligned} |w_n - l| &= |w_n - u_n + u_n - l| \\ &\leq |w_n - u_n| + |u_n - l| \\ &\leq |v_n - u_n| + |u_n - l| \\ &\leq |v_n - l + l - u_n| + |u_n - l| \\ &\leq |v_n - l| + |l - u_n| + |u_n - l| \\ &\leq |v_n - l| + 2|u_n - l| \\ &\leq \frac{\epsilon}{2} + 2\frac{\epsilon}{4} \end{aligned}$$

On a : $\lim_{\substack{\infty \\ \infty}} u_n = l$, donc $\exists N \in \mathbb{N}, n \geq N_1 \Rightarrow |u_n - l| \leq \frac{\epsilon}{4}$ et $\lim_{\substack{\infty \\ \infty}} v_n = l$, donc $\exists N \in \mathbb{N}, n \geq N_1 \Rightarrow |v_n - l| \leq \frac{\epsilon}{2}$.

Donc pour $N_3=N_1+N_2$, on a : $n\geq N_0\Rightarrow |w_n-l|\leq \frac{\epsilon}{2}+2\times \frac{\epsilon}{4}=\epsilon$. Ce qui démontre bien l'égalité souhaitée.