Analysis of Flip Flop Circuits

Analysis of Sequential Logic Circuits

- * State equations are similar to Boolean expressions from combinational logic
- Describe the output and transition logic of circuit
- * State table is similar to a truth table
- Describes state transition and output given combination of inputs
- * State diagrams are visual representations of the state table

Circuit to State Equation

* State equation is the Boolean expression for circuit

A = (A + X)Y'

- * Will have multiple equations
- One for output of circuit (F)
- One to describe, state, or input to flip flops
 * Each flip flop is designated A,B,C,etc.
 * Input and output to flip flop is A

What are the state equations for following circuits?

State Table

- * Similar to a truth table, it describes all the possible outputs given input combinations
- ° Inputs include current output of flip flops (A,B,..etc.) and input of circuit (X,Y,..etc.)
- Outputs include next output of flip flops (A,B,..etc.) and output of circuit (F,G,..etc.)

Input to circuit

Flip Flops next output

Flip Flops current output

			Input Next St		State	Outpu
>	A	В	×	A	В	Θ
	0	0	0	0	0	1
	0	0	1	0	1	1
	0	1	0	1	1	0
	0	1	1	0	0	0
	1	0	0	1	0	1
	1	0	1	0	1	1
	1	1	0	0	1	0
	1	1	1	1	1	1

Output of circuit

Input to state table

Output of state table

Create a State Table for the following circuit

Present State	Input	Next State	Output
Α	Χ	Α	F
0	0		
0	1		
1	0		
1	1		

State Table to K-map

* Each column of a state table output can be simplified with a K - map

Presen	Present State		Next	State	Output	
Α	В	Х	Α	В	F	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	0	1	1	0	
0	1	1	0	0	0	
1	0	0	1	0	1	
1	0	1	0	1	1	
1	1	0	0	1	0	
1	1	1	1	1	1	

3 K - maps in total

Use K - Map to draw the logic circuit from the state table

Presen	Present State		Next	State	Output
Α	В	Х	Α	В	F
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	1	1
1	1	0	0	1	0
1	1	1	1	1	1

	00	01	11	10
0				
1				

00 01 11	10
0	i
1	

\setminus	00	01	11	10
0				
1				

Finite State Machine

- * Diagram showing all states, how to transition from state to state, and output at each state
- * Mealy Output depends on current state and input. Output changes immediately
- * Moore Output only depends on current state. Output changes on next clocking event

Mealy State Diagram

Moore State Diagram

Encode States

- * States are encoded as binary values to design state diagram into a logic circuit
- * Make each state a binary number
- * Previous examples had 4 states, so 2 bits are used to represent each state. Each bit is 1 flip flop
- ° SO -> 00
- ° S1 -> 01
- ° S2 -> 10
- ° S3 -> 11

Creating State Table

* Use encoded state values and input to create table for next state and output. A and B are a single bit from state encoding.

Presen	Present State		Next	State	Output
Α	В	Х	Α	В	У
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	1	0	0

S0

S1

S2

S3

Moore State Table

	Output	State	Next	Input	t State	Presen
	У	В	Α	Х	В	Α
	0	1	0	0	0	0
	0	0	0	1	0	0
Output is depende	1	0	1	0	1	0
on present state	1	1	1	1	1	0
	1	0	0	0	0	1
	1	0	1	1	0	1
	0	0	1	0	1	1
	0	1	1	1	1	1

K – Map State Table

Inputs on K-Map

Preser	Present State		Next	State	Output
A	В	X	A	В	У
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	1	0	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	1	0	0

K-Map outputs (each column will need a K-Map)

K - Map

Present state and input from state table

K - Map

$$A = A'B'x + ABx$$

$$B = B'x + A'x$$

$$y = Bx' + Ax'$$

Build Logic Circuit

* A and B are flip flop output and fed back into flip flop input. (Using D Flip Flop in example)

What if State Doesn't Exist?

- * Mark states that don't exist as "don't care", or X on a state table
- * Same applies if a transition does not exist as well
- * Use the X when creating k-map to try and simplify circuit

* Given the following state diagram create the state table and logic circuit

