11. Using an interval or intervals, describe all the x-values within or including a distance of the given values.

No more than 9 units from the number 2.

- A. (-7, 11)
- B. [-7, 11]
- C. (7,11)
- D. [7, 11]
- 12. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-8x - 6 \le 5x + 5$$

$$a = \boxed{$$

- A. $(-\infty, a]$, where $a \in [-1.59, -0.03]$
- B. $[a, \infty)$, where $a \in [-3, 0.4]$
- C. $(-\infty, a]$, where $a \in [0.6, 1.1]$
- D. $[a, \infty)$, where $a \in [-0.04, 0.99]$
- E. $(-\infty, \infty)$
- 13. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-\frac{3x}{2} - \frac{8}{3} > -\frac{4x}{7} - \frac{7}{6}$$

$$a =$$

- A. (a, ∞) , where $a \in [-1, 6]$
- B. (a, ∞) , where $a \in [-5, 1]$
- C. $(-\infty, a)$, where $a \in [-5, 0]$
- D. $(-\infty, a)$, where $a \in [0, 3]$
- E. There is no solution to the inequality.

14. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-4 + 3x > 5x \quad \text{or} \quad 6 + 3x < 5x$$

A.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [-5.9, -2.2]$ and $b \in [1.2, 2.3]$

B.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-2.6, -0.3]$ and $b \in [2.36, 3.45]$

C.
$$(-\infty, a) \cup (b, \infty)$$
, where $a \in [-3.9, -2.4]$ and $b \in [1.66, 2.21]$

D.
$$(-\infty, a] \cup [b, \infty)$$
, where $a \in [-2.5, -0.2]$ and $b \in [2.9, 3.4]$

E.
$$(-\infty, \infty)$$

15. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$-4 + 4x < \frac{31x - 9}{7} \le 4 + 4x$$

$$a =$$
 $b =$

A.
$$[a, b)$$
, where $a \in [-7, -4]$ and $b \in [7, 14]$

B.
$$(a, b]$$
, where $a \in [-17, -11]$ and $b \in [4, 8]$

C.
$$[a, b)$$
, where $a \in [-14, -12]$ and $b \in [5, 8]$

D.
$$(a, b]$$
, where $a \in [-12, -6]$ and $b \in [9, 17]$

E. There is no solution to the inequality.