Advanced Algorithms & Data Structures Assignment 1

Waseem, Zeerak - csp265 McGillon, Sarah - qfm201 April 26, 2015

Contents

1	$b ext{-flow}$	3
2	Rectilinear Planar Embedding	4
	2.1 Exercise 2.1	4

1 b-flow

Find for each of the two graphs in Figure 1, a b-flow for the graph or argue that the graph has no b-flow

For a directed graph G=(V,E). For each vertex $v\in V$ let $\delta^+(v)$ be the set of outgiong edges from v and $\delta^-(v)$ be the set of incoming edges to v. Given is that each a b-flow under the following constraints

$$\sum_{e \in \delta^{-}(v)} x_e - \sum_{e \in \delta^{+}(v)} x_e = b_v, \forall v \in V$$
 (1)

$$0 \le x_e \le u_e, \forall e \in E \tag{2}$$

Given these constraints we find that the following b-flows exist for graph (a)

$$\delta(v_2v_4) = 2$$
$$\delta(v_5v_3) = 4$$
$$\delta(v_5v_1) = 3$$

Figure 1: Graph 1A b-flow

We find that there is no b-flow in graph (b) as there is no outgoing edge from v_4 and we do not allow for negative flows. Thus only some of the nodes can satisfy equations (1) and (2) resulting in no existing b-flow.

2 Rectilinear Planar Embedding

2.1 Exercise 2.1

Table 1 shows the values for x_{vf} that correspond to Figure 3 from the Assignment Document.

x_{vf}	a	b	\mathbf{c}	d	e
$\overline{v_1}$	0	1	1	0	0
v_2	0	0	1	1	0
v_3	1	0	1	1	1
v_4	0	0	0	-1	1
v_5	1	0	0	0	-1
v_6	1	1	0	1	1
v_7	0	0	0	0	0

Table 1: x_{vf} values for Figure 3 in Assignment Document

Table 2 shows the values for z_{fg} that correspond to Figure 3 from the Assignment Document. There are 13 break-points in this graph.

z_{fg}	a	b	\mathbf{c}	d	e
a	-	0	0	0	0
b	2	-	1	1	0
\mathbf{c}	1	1	-	0	0
d	0	1	0	-	
e	4	0	0	0	-

Table 2: z_{fg} values for Figure 3 in Assignment Document