University of Wisconsin-Madison Department of Economics

Econ 703 Prof. R. Deneckere Fall 2002

Homework #3 (due on Sep. 24, 2002)

- 1. Is every point of every open set $E \subset R^2$ a limit point of E? Answer the same question for closed sets in R^2 .
- 2. Sundaram, #25, p. 68.
- 3. Let (X,d) be a metric space. Prove the following statement : $A \subset X$ is closed iff for every sequence $\{x_n\} \subset A$, $x_n \to x$ implies $x \in A$.
- 4. Let (X,d) be a metric space, and let $A \subset X$. Prove that A is closed if and only if it contains all of its limit points.