# Comparing Two State-of-the-Art LLMs: Owen 2.5 7B Instruct vs Mistral 7B Instruct

By: Daniel Mehta

## Objectives:

- Understand the design goals and use cases of Owen 2.5 and Mistral 7B Instruct
- Compare their training approaches, architectures, and data sources
- Evaluate each model's strengths, limitations, and real-world performance
- Highlight key differences in speed, scalability, and accuracy
- Develop insight into how model design affects downstream capabilities

# What is the main goal or purpose of the model?

# Model Purpose: Qwen 2.5 7B Instruct

- Part of the Qwen 2.5 family, open-source LLMs designed for broad general-purpose use
- Optimized for instruction following, long-context reasoning, and multilingual tasks
- Fine-tuned to perform well in chat-style dialogue and structured data analysis
- Excels in code, math, and tasks requiring extended coherence
- Post-training enhances alignment with human preferences

# Model Purpose: Mistral 7B Instruct

- Instruction-tuned version of Mistral 7B, focused on fast and efficient general-purpose reasoning
- Designed as a lightweight, open-source alternative to larger LLMs
- Intended to demonstrate the ease of fine-tuning the base
   Mistral model for instruction following
- No built-in moderation, meant for research and developer experimentation
- Targeted at use cases where performance, speed, and local deployment matter

# How was the model trained, and what data was used?

### Training & Data: Owen 2.5 7B Instruct



- Pretrained on 18 trillion tokens, up from
   7T in the previous version
  - Covers common sense, expert knowledge, and reasoning
- Uses high-quality curated datasets, likely including web data, code, and multilingual corpora
- Post-training includes instruction fine-tuning and alignment to improve:
  - Long-text coherence
  - Structured data understanding
  - Human preference alignment
- Offers both base and instruct-tuned variants; quantized versions also available
- Larger proprietary MoE versions (Turbo and Plus) used in Alibaba Cloud Studio

### Training & Data: Mistral 7B Instruct



- Built on Mistral 7B, a dense
   7B-parameter model optimized for performance and efficiency
- Uses advanced architecture techniques:
  - Grouped-query attention (GQA) for faster inference
  - Sliding window attention (SWA) for handling long sequences efficiently
- Trained on a diverse, curated corpus (exact datasets not disclosed)
- Instruction-tuned to follow human prompts, resulting in strong general-purpose dialogue performance

# What are the main strengths and weaknesses of each model?

## Strengths & Weaknesses: Owen 2.5 7B Instruct

| Aspect                    | Strengths                                                        | Weaknesses                                             |  |
|---------------------------|------------------------------------------------------------------|--------------------------------------------------------|--|
| Knowledge & Reasoning     | Deep training on massive token corpus, provides strong reasoning | Lacks live/world event updates                         |  |
| Long-context Handling     | Exceptional for long docs, structured generation                 |                                                        |  |
| Multilingual Support      | Fluent across 29+ languages                                      |                                                        |  |
| Code & Math               | High benchmark scores in programming/math tasks                  | Needs refinement for complex coding quality            |  |
| Instruction-Following     | Strong alignment via SFT + RLHF                                  | Alignment sensitivity may lead to censorship or bias   |  |
| Creativity & Conversation | Solid but less imaginative than peers (e.g., Llama, Claude)      |                                                        |  |
| Safety                    | Generally aligned but susceptible in VL setups                   | Prompt injection/jailbreak risk in multimodal variants |  |

## Strengths & Weaknesses: Mistral 7B Instruct

| Aspect           | Strengths                                                                           | Weakness                                          |  |
|------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|--|
| Benchmarks       | Outperforms Llama Falls short on in-dep<br>13B/34B across tasks multi-step reasonin |                                                   |  |
| Efficiency       | Fast inference (GQA/SWA), great for edge/home                                       | Lower max context length (~4K tokens)             |  |
| Accessibility    | Fully open-source (Apache 2.0)                                                      | No built-in safety<br>guardrails                  |  |
| Real-world use   | Highly praised for real-time use and deployment efficiency                          | Susceptible to hallucination and prompt injection |  |
| Language Support | Solid English performance                                                           | Less reliable for multilingual use                |  |

04

# Model Comparison

# Performance Comparison: Qwen 2.5 7B Instruct

#### Speed (vLLM, 1 GPU)

| Input<br>Length | BF16 Speed<br>(tokens/s) | GPTQ Int4 Speed<br>(tokens/s) |
|-----------------|--------------------------|-------------------------------|
| 1               | 84.3                     | 154.1                         |
| 6144            | 80.7                     | 142.0                         |
| 14336           | 77.7                     | 129.4                         |
| 30720           | 70.3                     | 108.3                         |
| 63488           | 50.9                     | 68.0                          |
| 129024          | 28.9                     | 26.4                          |

#### Accuracy

- Outperformed GPT-4o, GPT-4, and Claude in a 2024 medical exam benchmark (CNNLE)
- Scored 88.9% in a 2024 benchmark on China's national medical licensing exam, the highest among 7 major LLMs
- Demonstrated strong clinical reasoning, especially in practical and case-based questions

#### Scalability

- Supports up to 128K tokens, among the longest context windows of any open model
- Available in multiple sizes (0.5B to 72B), with MoE variants for cloud-scale deployments
- Scales well on GPU clusters using FlashAttention + vLLM backends
- Quantized variants (GPTQ, AWQ) run efficiently on consumer GPUs

# Performance Comparison: Qwen 2.5 7B Instruct

#### Scalability

- Fixed 8K context window using Sliding Window Attention (SWA)
- Grouped-Query Attention (GQA) allows faster inference with reduced memory load
- Trained with byte-fallback BPE tokenizer so it handles out-of-vocab characters efficiently
- Focused on striking a balance between cost and performance for smaller deployments

#### Accuracy

- Outperforms LLaMA 2 13B and LLaMA 1 34B on reasoning, math, and code generation tasks
- Instruction-tuned version exceeds
   LLaMA 2 Chat 13B in both human and automated benchmarks
- Demonstrates strong performance despite smaller size (7B)

#### Speed (Inference Engines on A100 GPU)

| Inference<br>Engine | Model              | Num of prompts | Max token per prompt | Total input tokens | Total Output tokens | Input Token<br>Throughput<br>(Tokens/Sec) | Output Token<br>Throughput<br>(Tokens/Sec) | Execution time(sec) |
|---------------------|--------------------|----------------|----------------------|--------------------|---------------------|-------------------------------------------|--------------------------------------------|---------------------|
| BUD                 | mistralai/Mistral- | 100            | 128                  | 27270              | 12800               | 5584.06                                   | 2621.05                                    | 4.88                |
| vLLM                | mistralai/Mistral- | 100            | 128                  | 26967              | 12800               | 3826.98                                   | 1816.49                                    | 7.05                |
| TGI                 | mistralai/Mistral- | 100            | 128                  | 26967              | 12750               | 3898.79                                   | 1843.35                                    | 6.91                |

- Bud Runtime delivers best performance, ideal for production-scale deployments
- All engines tested with 100 prompts, 128 input tokens, 128 output tokens

# Real-World Inference Speed: Owen 2.5 7B vs Mistral 7B



#### Test Setup

- GPU: RTX 4060 (8GB)
- FP16 Precision (no quantization)
- Prompt: "Explain quantum entanglement in simple terms"
- Transformers v4.46

#### Results

| Model                   | Time (s) | Tokens<br>/sec |
|-------------------------|----------|----------------|
| Owen 2.5<br>7B Instruct | 83.72    | 1.31           |
| Mistral 7B<br>Instruct  | 75.83    | 1.46           |

#### Main Takeaways

- Mistral ran ~11.5% faster in tokens/sec than Qwen in local inference
- Qwen may have slightly longer latency due to tokenizer and alignment overhead

#### References

- Benchmarking Mistral 7B Inference performance on GPUs. Bud. (2024, November 25).
   https://bud.studio/content/case-study/benchmarking-mistral-7b-inference-performance-on-gpus/
- Das, A. (2023, September 28). Mistral 7B beats llama 2 13B on all benchmarks. DEV Community. https://dev.to/ananddas/mistral-7b-beats-llama-2-13b-on-all-benchmarks-55j2
- Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. de las, Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T., & Sayed, W. E. (2023, October 10). Mistral 7B. arXiv.org. https://arxiv.org/abs/2310.06825
- Mistral 7B. Mistral Al. (2023, September 27). https://mistral.ai/news/announcing-mistral-7b
- Mistral. HuggingFace. (n.d.). https://huggingface.co/docs/transformers/en/model\_doc/mistral
- Qwen2.5 speed benchmark. Qwen. (n.d.).
   https://qwen.readthedocs.io/en/v2.5/benchmark/speed\_benchmark.html
- Qwen2.5-LLM: Extending the boundary of Ilms. Qwen. (2024, September 18). https://qwenlm.github.io/blog/qwen2.5-llm/
- Vashisth, V. (2025, February 4). Codestral 25.01 vs Qwen2.5-coder-32B-Instruct: Who codes better?.
   Analytics Vidhya.
  - https://www.analyticsvidhya.com/blog/2025/02/codestral-25-01-vs-qwen2-5-coder-32b-instruct/
- Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang, J., Tu, J., Zhang, J., Yang, J., Zhou, J., Lin, J., Dang, K., ... Qiu, Z. (2025, January 3). QWEN2.5 technical report. arXiv.org. https://arxiv.org/abs/2412.15115
- Zhu, S., Hu, W., Yang, Z., Yan, J., & Zhang, F. (2025, January 10). Qwen-2.5 outperforms other large language models in the Chinese National Nursing Licensing Examination: Retrospective cross-sectional comparative study. JMIR medical informatics. https://pubmed.ncbi.nlm.nih.gov/39793017/