A Comparison between Power Spectral Subtraction Method and Multi-Band Spectral Subtraction Method for Enhancing Speech Corrupted by Colored Noise

By

Sravan Kumar Buggaveeti Javier Perez Ramirez

Srinivasu Rao Pudi Yousef Jaradat

Professor

Dr. Charles Cruesere

Guideline

- Introduction
- Power Spectral Subtraction (PSS)
- Multi-Band Spectral Subtraction (MBSS)
- Implementation
- Tests and Results
- Conclusions
- Demo

Introduction

- Mobile communications => Speech Signal => Corrupted by noise
- Remove the noise is difficult because the random nature of it
- There is always a tradeoff between the amount of noise removed and the distortion of the speech signal
- Spectral Subtraction techniques were developed: In this project, PSS and MBSS were studied

Power Spectral Subtraction (PSS)

- Based on the subtraction of noise (power noise spectrum) from the speech signal
- PSS estimates the noise over the silence periods or the initial silence of the speech signal
- Over-subtraction factor α is used to improve the result
 - α depends on the segmental SNR
- After the subtraction, negative values could be obtained => The speech signal in this case is floored.
- This method assumes that the noise present in the speech signal is uniformly distributed in the spectrum => This assumption fails when real noise is considered

Multi Band Spectral Subtraction (MBSS)

- Similar to PSS
- Again, an estimation of the noise is subtracted from the speech signal
- ullet Over-Subtraction α and flooring process of the enhanced speech signal are included
- New coefficient added: δ
 - δ depends on the frequency

Implementation

- Pre-Processing
- PSS implementation
- MBSS implementation
- Signal Reconstruction

- Division of the audio vector into overlapped frames
- Hamming window
- FFT of every frame
- Weighted Spectral Average

Speech vector

Temporal Matrix

Temporal Matrix

Weighted Spectral Average

FFT Matrix

- First frame is used as Estimated Noise
 - With this frame, a threshold for detecting the presence of speech signal is calculated. If the segmental SNR is lower than the threshold, the estimated noise is updated.
- Noise is subtracted from the speech signal by using the following expression:

$$|\ddot{S}(k)|^2 = |Y(k)|^2 - \alpha |\ddot{D}(k)|^2$$

$$SNR_{i}(dB) = 10log_{10} \left(\frac{\sum_{k=b_{i}}^{e_{i}} |Y_{i}(k)|^{2}}{\sum_{k=b_{i}}^{e_{i}} |\widehat{D}_{i}(k)|^{2}} \right)$$

$$\alpha_i = \begin{cases} 5, & SNR_i < -5 \\ 4 - \frac{3}{20} (SNR_i), & -5 \le SNR_i \le 20 \\ 1, & SNR_i > 20 \end{cases}$$

| FFT Matrix Averaged |2

- \times α = Enhanced Frame

$$|\ddot{S}(k)|^2 = |Y(k)|^2 - \alpha |\ddot{D}(k)|^2$$

| FFT Matrix Averaged | 2

- Similar to PSS
- Now, the spectrum is divided into bands (linear spacing approach)
- A new coefficient is considered: δ
 - δ is a vector defined by:

$$\delta_i = \begin{cases} 1, & f_i < 1 \ kHz \\ 2.5, & 1 \ kHz < f_i \le \frac{F_s}{2} - 2 \ kHz \\ 1.5, & f_i > \frac{F_s}{2} - 2 \ kHz \end{cases}$$

$$|\widehat{Si}(k)|^2 = |Y_i(k)|^2 - \alpha_i \, \delta_i |\widehat{D}_i(k)|^2$$

| FFT Matrix Averaged |²

$$|\widehat{Si}(k)|^2 = |Y_i(k)|^2 - \alpha_i \, \delta_i |\widehat{D}_i(k)|^2$$

$$|\widehat{S}_i(k)|^2 = \begin{cases} |\widehat{S}_i(k)|^2 & |\widehat{S}_i(k)|^2 > 0\\ \beta |Y_i(k)|^2 & else \end{cases}$$

Enhanced Speech Signal is floored before reconstruction β = Flooring Factor

Signal Reconstruction

Speech vector

Enhanced Speech vector

Overlap Add Method

Tests and Results

- Objective Test
- Subjective Test
- Results

Objective Test

- Perceptual Evaluation of Speech Quality test methodology (PESQ) was used as the method to evaluate the quality of the enhanced speech signal
- PESQ requires the clean and the enhanced speech file
- PESQ scores
 - 0 => When clean and enhanced signals are totally different
 - 4.5 => When clean and enhanced signals are the same

Subjective Test

- Recommendation ITU-P.835 was followed
- 8 subjects were tested
- Analysis of Variance (ANOVA) was used to analyze the data gathered
- The next templates were used for the subjective evaluation of the enhanced speech signal:
 - Speech Signal rating scale
 - Background noise rating scale
 - Overall quality ranking scale

Speech signal rating scale

Attending ONLY to the SPEECH SIGNAL, select the category which best describes the sample you just heard.

The SPEECH SIGNAL in this sample was

- 5 NOT DISTORTED
- 4 SLIGHTLY DISTORTED
- 3 SOMEWHAT DISTORTED
- 2 FAIRLY DISTORTED
- 1 VERY DISTORTED

Background noise rating scale

Attending ONLY to the BACKGROUND, select the category which best describes the sample you just heard..

The BACKGROUND in this sample was

- 5 NOT NOTICEABLE
- 4 SLIGHTLY NOTICEABLE
- 3 NOTICEABLE BUT NOT INTRUSIVE
- 2 SOMEWHAT INTRUSIVE
- 1 VERY INTRUSIVE

Overall quality rating scale

Select the category which best describes the sample you just heard for purposes of everyday speech communication.

The OVERALL SPEECH SAMPLE was

- 5 EXCELLENT
- 4 GOOD
- 3 FAIR
- 2-POOR
- 1 BAD

ITU-P.835

Results

- PESQ Scores for different situations (babble & train)
- Subjective results for different situations (babble & train)
- Parameters:
 - Fs = 8 KHz
 - $\delta => 8$ Bands
 - $\beta = 0.01$
 - Hamming Window Size = 20 ms.
 - Speech file length = 2 s.

ITU-P.835. Babble (5dB & 10dB)

Train

ITU-P.835. Train (5dB)

ITU-P.835. Train (5dB & 10dB)

PESQ. Babble (5dB & 10 dB)

PESQ.Train (5dB & 10dB)

ITU-P.835. Colored Noise. Long Speech (5dB)

PESQ. Hamming Size [0.01-0.5] s Babble. Longer speech.

PESQ. Beta [0.25-0.001] Babble .Longer speech

Conclusions

- Generally speaking, both methods perform the same
- Subjective test: PSS performs better (5 dB). MBSS performs better (10 dB).
- Objective test (short speech files): PSS performs better
- Objective test (large speech files): MBSS performs better for all β and small-medium Hamming Window size

Major concepts we have learnt

- Process speech files
- Speech segmentation (Hamming Window & Frame Overlapping)
- Spectral processing (FFT)
- Weighted Spectral Average
- PSS & MBSS techniques
- Signal Reconstruction (IFFT & Overlap Add)
- Objective & Subjective Testing
- Data analysis (ANOVA)

Questions?