Yakeen NEET 2.0 2026

Physical Chemistry By Amit Mahajan Sir **Electrochemistry**

DPP: 5

- Q1 The desired amount of charge for obtaining one mole of A1 from $A1^{+3}$
 - (A) 3×96500 C
 - (B) 96500C

 - (C) $\frac{96500}{3}$ C (D) $\frac{96500}{2}$ C
- Q2 When electricity is passed through the solution of $AlCl_3$, 13.5 g of Al are deposited. The number of Faraday must be
 - (A) 0.50
- (B) 1.00
- (C) 1.50
- (D) 2.00
- Q3 One Faraday of electricity when passed through a solution of copper sulphate deposits
 - (A) 1 mole of Cu
 - (B) 1 gm atom of Cu
 - (C) 1 molecule of Cu
 - (D) $1 \mathrm{gm}$ equiv. of Cu
- **Q4** The density of Cu is $8.94~g/cm^3$ the quantity of electricity needed to plate an area
 - $10~{
 m cm} imes 10~{
 m cm}$ to a thickness of $10^{-2}~{
 m cm}$ using $CuSO_4$ solution would be
 - (A) 13586C
 - (B) 27172C
 - (C) 40758C
 - (D) 20348C
- Q5 What current strength in ampere will be required to liberate $10~\mathrm{g}$ of chlorine from sodium chloride solution in one hour?

- (A) 7.55 ampere
- (B) 7.15 ampere
- (C) 7.50 ampere
- (D) 7.45 ampere
- **Q6** A certain current liberated $0.50 \mathrm{gm}$ of hydrogen in 2 hours. How many grams of copper can be liberated by the same current flowing for the same time in a copper sulphate solution.
 - (A) 12.7gm
 - (B) 15.9gm
 - (C) 31.8gm
 - (D) 63.5gm
- Q7 One Faraday of electricity will liberate one mole of metal from solution of
 - (A) AuCl₃
 - (B) CuSO₄
 - (C) $BaCl_2$
 - (D) KCl
- One-gram metal M^{+2} was discharged by the passage of $1.81 imes 10^{22}$ electrons. What is the atomic weight of metal?
 - (A) 33.35
- (B) 133.4
- (C) 66.7
- (D) 55
- **Q9** 3 Faradays of electricity was passed an aqueous solution of iron (II) bromide. The mass of iron metal (atomic mass 56) deposited at the cathode is
 - (A) 56 g
 - (B)84g
 - (C) 112 g

- (D) 168 g
- - (A) 2.0 g
 - (B) $4.0~\mathrm{g}$
 - (C) 6.0 g
 - (D) 8.0 g
- Q11 A current of 2.6 ampere is passed through $CuSO_4 \mbox{ solution for 6 minute 20 seconds. The amount of } Cu \mbox{ deposited is (At wt. of } \\ Cu = 63.5, \mbox{ Faraday} = 96500C \mbox{)}$
 - (A) 6.35 g
 - (B) 0.635 g
 - (C) 0.325 g
 - (D) 3.175 g
- Q12 3 Faradays of electricity are passed through molten Al_2O_3 , aqueous solution of $CuSO_4$ and molten NaCl taken in three different electrolytic cells. The amount of Al, Cu and Na deposited at the cathodes will be in the ratio
 - (A) 1 mole: 2 mole: 3 mole(B) 1 mole: 1.5 mole: 3 mole(C) 3 mole: 2 mole: 1 mole(D) 1 mole: 1.5 mole: 2 mole

Answer Key

Q1	(A)	Q 7	(D)
Q2	(C)	Q8	(C)
Q3	(D)	Q9	(B)
Q4	(B)	Q10	(B)
Q5	(A)	Q7 Q8 Q9 Q10 Q11	(C)
Q6	(B)	Q12	

Master NCERT with PW Books APP