大学数学习题册(第三版)	单元测验			3
学院	姓名	学号	教师	

单元测验

一、填空题(每小题	3分,共	15分).
-----------	------	-------

1. 曲线
$$y = x + \arctan x$$
 上平行于 $y = \frac{3}{2}x + 1$ 的切线方程为 $\frac{1}{2} - (1+\frac{1}{4}) = \frac{3}{2} (1-1) \cdot \frac{1}{2} + \frac{3}{2} \cdot \frac{1}{2} + \frac{$

2.
$$y = A \arctan x + \frac{1}{x}$$
的导数 $y' < 0$,则 A 的取值范围为 (一))

3. 由
$$\begin{cases} x = 1 - t^3 \end{cases}$$
,确定的函数 $y = y(x)$ 在 x 的区间 (1,十四) 上有 $\frac{\mathrm{d}y}{\mathrm{d}x} > 0$.

4. 椭圆 $4x^2 + 3y^2 = 16$ 在点(-1,2)处与切线垂直且方向向外的单位向量坐标为(-1,2)处与切线垂直且方向向外的单位向量坐标为(-1,2)0。(-1,2)0.

- 二、选择题(每小题 3 分,共 15 分).
- 1. y = f(x)在 $(x_0, f(x_0))$ 处切线存在是y = f(x)在 x_0 处可导的(| | | | | |)条件.
 - A. 充分
- B. 必要
- C. 充要
- D. 既不充分也不必要

2. 下面(\bigcap)存在是 $f'(x_0)$ 存在的充要条件.

A.
$$\lim_{x\to 0} \frac{f(x_0 + x^2) - f(x_0)}{x^2}$$

B.
$$\lim_{x\to 0} \frac{f(x_0 + x) - f(x_0 - x)}{x}$$

C.
$$\lim_{x\to 0} \frac{f(x_0 + \sin x) - f(x_0)}{\ln(1+x)}$$

D.
$$\lim_{n \to \infty} \frac{f(x_0 + \frac{1}{n}) - f(x_0)}{\frac{1}{n}}$$
 (n 是自然数)

- $3. y = f(u), u = g(x), u_0 = g(x_0), f(u)$ 在 u_0 可导且 g(x)在 x_0 处可导是复合函数 y =f(g(x))在 x_0 处可导的(\bigwedge)条件.
 - A. 充分
- C. 充要
- D. 既不充分也不必要

$$\Delta f''(x_0)$$
存在且不为 0 ,则(β).

- A. f'(x)未必在 x_0 处连续
- B. f(x)必在 x_0 的某邻域内可导
- C. f''(x)在 x_0 处必连续
- D. $y = f(x_0 + |x|)$ 在 x = 0 处也能二阶可导
- 5. $y = x^{x^2}$,则 y' = ()). A. x^{x^2+1} B.
- B. $r^{x^2} \ln r$
- C. $x^{x^2+1} + x^{x^2} \ln x$ D. $2x^{x^2+1} \ln x + x^{x^2+1}$

三、计算下列各题(每小题8分,共32分).

1.
$$y = \sqrt[3]{\frac{x^2(1-x)^5}{e^{x^2}(x-2)}}$$
, $\Re y'$. $\sqrt[4]{=\frac{13}{3}} \sqrt[3]{\frac{x^2(1-x)^5}{e^{x^2}(x-2)}} \left(\frac{2}{7} - \frac{5}{1-7} - 27 - \frac{1}{7-2}\right)$

2.
$$y = (x^2 - 1) \arctan x$$
, x , $y^{(n)}(0)$.

1. $y = \sqrt[3]{\frac{x^2(1-x)^5}{e^{x^2}(x-2)}}$, 求 y'. $y' = \frac{1}{3}\sqrt[3]{\frac{x^2(1-x)^5}{e^{x^2}(x-2)}}$ $(\frac{2}{3} - \frac{5}{1-3} - 2) - \frac{1}{7-2}$ $(\frac{2}{3} - \frac{5}{1-3} - 2)$ $(\frac{2}{3} - \frac{5}{1-3} - \frac{5}{1-3} - 2)$ $(\frac{2}{3} - \frac{5}{1-3} - \frac{5}{1-3} - \frac{5}{1-3}$ $(\frac{2}{3} - \frac{5}{1-3} - \frac{5}{1-3} - \frac{5}{1-3} - \frac{5}{1-3}$ $(\frac{2}{3} - \frac{5}{1-3} - \frac{5}{1-3} - \frac{5}{1-3} -$

$$\frac{d\eta}{dx} = \frac{f(t) + tf'(t)}{f'(t)}, \quad \frac{d\dot{\eta}}{dt^2} = \frac{d}{dt} \left(t + \frac{f(t)}{f'(t)} \right) \cdot \frac{dt}{dx} = \frac{2}{f'(t)} - \frac{f(t)f''(t)}{(f'(t))^{39}}$$

教师

4. y = y(x)由方程 $xy^3 + e^x = y$ 决定.

(1) 求 x = 0 对应点处的切线、法线方程. 切代方程: $y = -\frac{1}{2}x + 1$ 、 区代方程: $y = -\frac{1}{2}x + 1$ (2) $\Re \frac{d^2 y}{dx^2}\Big|_{x=0}$. 4''(0) = 13

四、解答题(每小题 10 分,共 30 分).

- 1. f(x)在 x = 0 处可导且 $f'(0) = \ln 2$,且对任意的 $x, y \in \mathbb{R}$ 有 f(x + y) = f(x) f(y),
- 2. 分别作出一个函数 f(x),g(x)满足: f(x),g(x)定义域为实数集 $\mathbf{R},f(x)$ 在任意点不可 导,g(x)只在一点可导,但f(g(x))在**R**上均可导...
- 3. 已知 f(x) 在 x = 0, x = 2 处均可导,且 f(0) = 1 f(2) = 3, f'(0) = 1, f'(2) = 3, 求

$$\lim_{x \to 0} \frac{\ln \frac{3f(x)}{f(2+x)}}{x}. = 0$$

fon= 50, 对为无理数 gin= 50, 对无理数

五、应用题(8分).

甲、乙两人从同点分别朝东、北两方向跑去,甲每分钟跑 $\frac{400}{3}$ 米,乙的路程 y 与时间 t 关系为 y=100t(4-t),求他们跑出3分钟时距离的变化率.

$$S(t) = \sqrt{\left(\frac{400}{3}t\right)^2 + \left(/00t(4-t)\right)^2} \implies \frac{ds}{dt}\Big|_{t=3} = 8520 \text{ m/m/m}$$