Probability Theory and Random Processes (MA225)

Lecture SLIDES
Lecture 02

Indian Institute of Technology Guwahati

July-Nov 2022

Events

Def: A set $E \in \mathcal{F}$ is said to be an event. We will say "the event E occurs" if the outcome of a performance of the random experiment is in E.

Example 1: In measuring height of a student, it turns out to be 4.5 feet. We will say the event (4, 5) has occured.

Axiomatic Definition of Probability

Def: A set function $P: \mathcal{F} \to \mathbb{R}$ is called a probability if

- $P(E) \geq 0$ for all $E \in \mathcal{F}$
- **2** P(S) = 1
- **3** (Countable Additivity) Let $E_1, E_2, \ldots \in \mathcal{F}$ be a sequence of disjoint events then

$$P\left(\cup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

Axiomatic Definition of Probability

Def: A set function $P: \mathcal{F} \to \mathbb{R}$ is called a probability if

- $P(E) \geq 0$ for all $E \in \mathcal{F}$
- P(S) = 1
- **3** (Countable Additivity) Let $E_1, E_2, \ldots \in \mathcal{F}$ be a sequence of disjoint events then

$$P\left(\cup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

• Notice that, the domain of P is \mathcal{F} , not \mathcal{S} .

Def: [**Probability Space**] Let $\mathcal S$ be a sample space and $\mathcal F$ be a σ -field on the subsets of $\mathcal S$. Let P be a probability defined on $\mathcal F$. The triplet $(\mathcal S,\,\mathcal F,\,P)$ is called a probability space.

MA225

3/7

Examples of Probability

Example 2: Toss a coin: $S = \{H, T\}$ and F = P(S);

Consider a function $P: \mathcal{F} \to \mathbb{R}$ defined by

$$P(\phi) = 0$$
, $P(H) = 0.6$, $P(T) = 0.4$ and $P(S) = 1$.

Check that *P* is a probability.

Example 3: For a throw of a die, $S = \{1, 2, ..., 6\}$, F = P(S).

- Scenario 1: define, $P(\phi) = 0$, P(i) = 1/6 for $i \in \mathcal{S}$.
- Scenario 2: define, $P(\phi) = 0$, P(i) = i/21 for $i \in S$.

Note that in above two scenarios, the function $P(\cdot)$ have not defined for all the members in \mathcal{F} . However, if we assume that $P(\cdot)$ is a probability defined on the σ -field \mathcal{F} , we can uniquely extend $P(\cdot)$ for all other members of \mathcal{F} .

 \blacktriangleright Choice of $\mathcal F$ is an important issue.

Example 4: Let $S = \{1, 2, ..., 60\}$ and F = P(S). Define $P(E) = \frac{\#E}{\#S}$ for all $E \in F$.

Example 5: Now consider the changed problem where $S = \mathbb{N}$. Let us see if we can use the above definition of P to get a probability for each and every subset of S. The natural extension is

$$P(E) = \limsup_{n \to \infty} \frac{N_n(E)}{n}$$

for $E \in \mathcal{F} = \mathcal{P}(\mathbb{N})$, where $N_n(E)$ is the number of times E occurs in the first n natural numbers.

Let $A = \{ \omega \in \mathbb{N} : \omega \text{ is a multiple of } 3 \}$. Then

$$\frac{N_n(A)}{n} = \begin{cases} \frac{m}{3m} & \text{if } n = 3m\\ \frac{m}{3m+1} & \text{if } n = 3m+1\\ \frac{m}{3m+2} & \text{if } n = 3m+2. \end{cases}$$

Hence for all
$$n\in\mathbb{N},\, \frac{1}{3+\frac{6}{n-2}}\leq \frac{N_n(A)}{n}\leq \frac{1}{3}\Rightarrow P(A)=\frac{1}{3}.$$
 Similarly, $P(B)=\frac{1}{4}$ for $B=\{\omega\in\mathbb{N}:\omega \text{ is a multiple of }4\}.$

Now assume that $C = \{2\}$. Then

$$\frac{N_n(C)}{n} = \begin{cases} 0 & \text{if } n = 1\\ \frac{1}{n} & \text{if } n \ge 2. \end{cases}$$

Hence P(C) = 0.

Similarly, P(D) = 0 for any singleton set D.

However, $\mathcal{S}=\mathbb{N}=\cup_{i\in\mathbb{N}}\{i\}$. Hence if P satisfies the 3rd axiom then $P(\mathcal{S})=\sum_{i=1}^{\infty}P(\{i\})=0\neq 1$, which contradicts the 2nd axiom.

- ▶ This P defined on the power set of S does not satisfy all the three axioms but this P gives meaningful probabilities for sets like A and B.
- ▶ This example suggests, depending on our objective we may need to choose from the set of all subsets of S, certain subsets (not all) of S on which to define a probability P.

Note that we can always define a probability on the power set of a sample space. For example, let $\omega_0 \in \mathcal{S}$ be a fixed element. Define $P: \mathcal{P}(\mathcal{S}) \to \mathbb{R}$ by

$$P(A) = \begin{cases} 1 & \text{if } \omega_0 \in A \\ 0 & \text{if } \omega_0 \notin A. \end{cases}$$

- ▶ It is easy to see that $P(\cdot)$ is a probability.
- ▶ However, in practice, a probability is used to model a practical situation, where the probability may need to satisfy extra conditions other then three conditions mentioned in the definition of probability.

Properties of Probability

- $P(\phi) = 0$.
- If E_1, E_2, \ldots, E_n are n disjoint events, then $P(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P(E_i)$.
- P is monotone, i.e., for $E_1, E_2 \in \mathcal{F}$ and $E_1 \subseteq E_2, P(E_1) \leq P(E_2)$.
- P is subtractive, i.e., for $E_1, E_2 \in \mathcal{F}$ and $E_1 \subseteq E_2$, $P(E_2 E_1) = P(E_2) P(E_1)$.
- $0 \le P(E) \le 1$.
- If $E_1, E_2 \in \mathcal{F}$, then $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \cap E_2)$.
- If $E_1, E_2 \in \mathcal{F}$, then $P(E_1 \cup E_2) \leq P(E_1) + P(E_2)$.
- If $E \in \mathcal{F}$, then $P(E^c) = 1 P(E)$.

- ▶ A single-ton event is called an elementary event.
- ▶ If $\mathcal S$ is finite, and $\mathcal F=\mathcal P(\mathcal S)$, it is sufficient to assign probability to each elementary event. Then for any $E\in\mathcal F$, $P(E)=\sum_{\omega\in E}P(\{\omega\})$. If the elementary events are equally likely, then we get the classical definition of probability.
- ▶ If $\mathcal S$ is countably infinite, and $\mathcal F=\mathcal P(\mathcal S)$, it is still sufficient to assign probability to each elementary event. Then for any $E\in\mathcal F$, $P(E)=\sum_{\omega\in E}P(\{\omega\})$. However, in this case we can not assign equal probability to each elementary event.
- ▶ If S is uncountable, and F = P(S), one can not make an equally likely assignment of probabilities. Indeed, one can not assign positive probability to each elementary event without violating the axiom P(S) = 1.