Synthesis of Parametric Hybrid Automata from Time-Series

Miriam García Soto, Thomas A. Henzinger & Christian Schilling ATVA 2022 - October 2022

Motivation

Main goal of many sciences is to create a model from a real system

Experimental data

Challenge

How to automatically create a model?

Motivation

Main goal of many sciences is to create a model from a real system

Experimental data

- Correctness Specifications Time-series data
- Synthesis Algorithm Two phases based on clustering and polyhedral construction
- Model linear **hybrid automaton** with constant dynamics

Hybrid Automata capture the mixed continuous and discrete behaviour.

Piecewise linear (PWL) function x(time) $x_i(time) = m_i$

Problem: find a LHA model that is close to the data

Problem

ε-capturing

An LHA H ε -captures a PWL function f if there exists an execution x in H with $d(f, x) \le \varepsilon$

Synthesis problem

Given a set of PWL functions F and $\varepsilon \ge 0$, construct an LHA H that ε -captures all $f \in F$

Synchronous time **switchings** for f and x

Synthesis algorithm

- Offline synthesis algorithm
- **Finite** set of time-series
- Family of linear hybrid automata models
- Parameter polyhedron represents all the model solutions
- ε is not given but minimised

Synthesis algorithm

For every time-series s(t) there exists an execution x(t) in H such that distance(s(t), x(t)) $\leq \varepsilon$ at every time t

Phase I: time-series to PWL function

Time series approximation

Piecewise linear (PWL) function f(t)

- **Simplification** of time-series
- Linear interpolation
- Variant of Ramer-Douglas-Peucker algorithm

Phase I: symbolic synthesis

- Send slope vectors of pieces to clustering algorithm (k-means)
- Clustering cost for different **numbers of clusters** k, together with relative improvement compared to k-1
- Mapping from pieces in the PWL function to clusters

Phase II: flow polyhedron

Intersection of the flow polyhedra for each time-series

Phase II: parameter polyhedron

- time-series $\mathbf{s} = s_0, s_1, ..., s_p$ with p linear pieces
- with time instants t₀, ..., t_p
- \mathbf{m}_1 , ..., \mathbf{m}_{λ} as parameters for slopes
- Initial state x₀ of execution x
- M: $\{1, ..., p\} \mapsto \{1, ..., \lambda\}$

Flow polyhedron for time-series s

$$\begin{split} \mathsf{P}_{\mathsf{S}} &= \{ (\mathbf{m}_1, ..., \mathbf{m}_{\lambda}, \mathbf{x}_0, \epsilon) \in \mathbb{R}^{\,\lambda \mathsf{n} \,+\, \mathsf{rn}} \, \, \mathbf{x} \, \mathbb{R}^{\,\geq\, 0} \, \, | \, \, \mathbf{x}_0 \in \mathsf{B}_{\epsilon}(s_0), \\ & \quad \quad \mathbf{x}_0 + (t_1 - t_0) \mathsf{m}_{M(1)} \in \mathsf{B}_{\epsilon}(s_1), \\ & \quad \quad \mathbf{x}_0 + (t_1 - t_0) \mathsf{m}_{M(1)} + (t_2 - t_1) \mathsf{m}_{M(2)} \in \mathsf{B}_{\epsilon}(s_2), \\ & \quad \quad \mathbf{x}_0 + (t_1 - t_0) \mathsf{m}_{M(1)} + ... + (t_p - t_{p-1}) \mathsf{m}_{M(p)} \in \mathsf{B}_{\epsilon}(s_p) \}. \end{split}$$

$$P = \bigcap_{s \in Data} P_s$$

Phase II: hybrid automaton model

- Choose a point p in the parameter polyhedron P
- Minimisation of ε provides a point $\mathbf{p} = (\mathbf{m}_1, ..., \mathbf{m}_{\lambda}, x_0^{(1)}, ..., x_0^{(r)}, \varepsilon)$
- \mathbf{m}_1 , ..., \mathbf{m}_{λ} define the dynamics for each of the hybrid automaton modes ($\dot{\mathbf{x}} = \mathbf{m}_i$)
- The **invariant** of each mode is the ε-bloated convex hull around all data points associated with the mode
- The guard of each transition is the ε-bloated convex hull around all data points associated with the transition

Correctness

Synthesis problem

Given a finite set of time-series and a discrete structure, find the minimal value $\epsilon \geq 0$ and a hybrid model H with the given discrete structure such that H ϵ -captures each time-series.

Theorem

Phase II solves problem in polynomial time

Implementation

HySynthParametric

- Julia programming language
- Evaluation in two case studies
- Synthetic data for the **thermostat** and **cell-cycle** models
- Scalability evaluation for the thermostat
- Synthesis of mammalian cell-cycle from biological model

https://github.com/HySynth/HySynthParametric

Evaluation: scalability

• r time series with p data points, n dimensions and λ locations

Evaluation: cell cycle regulation

Summary

- Automatic synthesis of linear hybrid automaton from time-series data
- Two algorithmic phases
- Phase I: discrete structure of the hybrid automaton
- Phase II: parameter space of all the possible models
- Selects a model by solving a linear program
- The **model** is **ε-close** to the time-series
- ε is minimal for the discrete structure chosen in the phase I
- Algorithm is polynomial and scales to thousands of data points