Rockchip RKMedia Development Guide

文件标识: RK-KF-YF-382

发布版本: V1.0.0

日期: 2020-09-03

文件密级:□绝密□秘密□内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2020 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: www.rock-chips.com

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文主要描述了RKMedia 媒体开发参考。

产品版本

芯片名称	内核版本
RK1126/RK1109	Linux V4.19

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V0.0.1	范立创 / 余永镇	2020-08-31	初始版本
V1.0.0	林刘迪铭	2020-09-03	增加数据类型和错误码,关联链接

Rockchip RKMedia Development Guide

- 1. 系统概述
 - 1.1 概述
 - 1.2 系统架构
 - 1.3 系统资源数目表
- 2. 系统控制
 - 2.1 概述
 - 2.2 功能描述
 - 2.2.1 系统绑定
 - 2.3 API参考
 - 2.3.1 RK MPI SYS Init
 - 2.3.2 RK_MPI_SYS_DumpChn
 - 2.3.3 RK_MPI_SYS_Bind
 - 2.3.4 RK MPI SYS UnBind
 - 2.3.5 RK MPI SYS RegisterEventCb
 - 2.3.6 RK_MPI_SYS_RegisterOutCb
 - 2.3.7 RK MPI SYS SendMediaBuffer
 - $2.3.8~RK_MPI_SYS_GetMediaBuffer$
 - 2.3.9 RK_MPI_MB_ReleaseBuffer
 - 2.3.10 RK MPI MB GetPtr
 - 2.3.11 RK_MPI_MB_GetFD
 - 2.3.12 RK MPI MB GetSize
 - 2.3.13 RK MPI MB GetModeID
 - 2.3.14 RK MPI MB GetChannelID
 - 2.3.15 RK_MPI_MB_GetTimestamp

2.4 数据类型

- 2.4.1 基本数据类型
 - 2.4.1.1 公共数据类型
 - 2.4.1.2 IMAGE TYPE E
 - 2.4.1.3 CODEC_TYPE_E
 - 2.4.1.4 MOD ID E
 - 2.4.1.5 Sample Format E
 - 2.4.1.6 RECT S
- 2.4.2 系统控制数据类型
 - 2.4.2.1 MPP_CHN_S
 - 2.4.2.2 EventCbFunc
 - 2.4.2.3 MEDIA BUFFER
 - 2.4.2.4 OutCbFunc
 - 2.4.2.5 MB IMAGE INFO S
- 2.5 错误码
- 3. 视频输入
 - 3.1 概述
 - 3.2 功能描述
 - 3.2.1 VI节点名称
 - 3.2.2 VI工作模式
 - 3.3 API参考
 - 3.3.1 RK_MPI_VI_EnableChn
 - 3.3.2 RK MPI VI DisableChn
 - 3.3.3 RK MPI VI SetChnAttr
 - $3.3.4~RK_MPI_VI_GetChnRegionLuma$
 - 3.3.5 RK_MPI_VI_StartStream
 - 3.4 数据类型
 - 3.4.1 VI MAX DEV NUM
 - 3.4.2 VI_MAX_CHN_NUM
 - 3.4.3 VI_PIPE

- 3.4.4 VI CHN
- 3.4.5 VI_CHN_ATTR S
- 3.4.6 VIDEO REGION INFO S

3.5 错误码

4. 视频编码

- 4.1 概述
- 4.2 功能描述
 - 4.2.1 数据流程图
 - 4.2.2 码率控制
 - 4.2.3 GOP Mode
 - 4.2.4 感兴趣区域(ROI)
 - 4.2.5 旋转(Rotation)

4.3 API参考

- 4.3.1 RK MPI VENC CreateChn
- 4.3.2 RK MPI VENC DestroyChn
- 4.3.3 RK MPI VENC SetRcParam
- 4.3.4 RK MPI VENC SetRcMode
- 4.3.5 RK MPI VENC SetRcQuality
- 4.3.6 RK MPI VENC SetBitrate
- 4.3.7 RK MPI VENC RequestIDR
- 4.3.8 RK MPI VENC SetFps
- 4.3.9 RK MPI VENC SetGop
- 4.3.10 RK MPI VENC SetAvcProfile
- 4.3.11 RK MPI VENC InsertUserData
- 4.3.12 RK MPI VENC SetRoiAttr
- 4.3.13 RK MPI VENC SetGopMode
- 4.3.14 RK MPI VENC RGN Init
- 4.3.15 RK MPI VENC RGN SetBitMap
- 4.3.16 RK MPI VENC RGN SetCover
- 4.3.17 RK MPI VENC SetJpegParam
- 4.3.18 RK MPI VENC StartRecvFrame

4.4 数据类型

- 4.4.1 VENC MAX CHN NUM
- 4.4.2 VENC CHN
- 4.4.3 VENC ATTR JPEG S
- 4.4.4 VENC ATTR MJPEG S
- 4.4.5 VENC ATTR H264 S
- 4.4.6 VENC ATTR H265 S
- 4.4.7 VENC ATTR S
- 4.4.8 VENC MJPEG CBR S
- 4.4.9 VENC MJPEG VBR S
- 4.4.10 VENC H264 CBR S
- 4.4.11 VENC H264 VBR S
- 4.4.12 VENC_H265_CBR_S
- 4.4.13 VENC H265 VBR S
- 4.4.14 VENC RC MODE E
- 4.4.15 VENC RC ATTR S
- 4.4.16 VENC GOP MODE E
- 4.4.17 VENC_GOP_ATTR_S
- 4.4.18 VENC CHN ATTR S
- 4.4.19 VENC PARAM MJPEG S
- 4.4.20 VENC PARAM H264 S 4.4.21 VENC PARAM H265 S
- 4.4.22 VENC RC PARAM S
- 4.4.23 VENC RC QUALITY E
- 4.4.24 VENC ROI ATTR S
- 4.4.25 OSD REGION ID E
- 4.4.26 OSD REGION INFO S

```
4.4.27 OSD_PIXEL_FORMAT_E
       4.4.28 BITMAP S
       4.4.29 COVER INFO S
       4.4.30 VENC RECV PIC PARAM S
       4.4.31 VENC JPEG PARAM S
   4.5 错误码
5. 移动侦测
   5.1 概述
   5.2 功能描述
   5.3 API参考
       5.3.1 RK MPI ALGO MD CreateChn
       5.3.2 RK MPI ALGO MD DestroyChn
   5.4 数据类型
       5.4.1 ALGO MD MAX CHN NUM
       5.4.2 ALGO MD ROI RET MAX
       5.4.3 ALGO MD CHN
       5.4.4 ALGO MD ATTR S
   5.5 错误码
6. 遮挡侦测
   6.1 概述
   6.2 功能描述
   6.3 API参考
       6.3.1 RK MPI ALGO OD CreateChn
       6.3.2 RK MPI ALGO OD DestroyChn
   6.4 数据类型
       6.4.1 ALGO OD MAX CHN NUM
       6.4.2 ALGO OD ROI RET MAX
       6.4.3 ALGO OD CHN
       6.4.4 ALGO OD ATTR S
   6.5 错误码
7. 音频
   7.1 概述
   7.2 功能描述
       7.2.1 音频输入输出
       7.2.2 音频编解码
       7.2.3 音频算法
   7.3 API参考
       7.3.1 音频输入
           7.3.1.1 RK_MPI_AI_EnableChn
           7.3.1.2 RK MPI AI DisableChn
           7.3.1.3 RK MPI AI SetChnAttr
           7.3.1.4 RK MPI AI SetVolume
           7.3.1.5 RK_MPI_AI_GetVolume
           7.3.1.6 RK_MPI_AI_SetTalkVqeAttr
           7.3.1.7 RK MPI AI GetTalkVqeAttr
           7.3.1.8 RK MPI AI SetRecordVqeAttr
           7.3.1.9 RK MPI AI GetRecordVqeAttr
           7.3.1.10 RK_MPI_AI_EnableVqe
           7.3.1.11 RK_MPI_AI_DisableVqe
       7.3.2 音频输出
           7.3.2.1 RK MPI AO EnableChn
           7.3.2.2 RK MPI AO DisableChn
           7.3.2.3 RK_MPI_AO_SetChnAttr
           7.3.2.4 RK MPI AO SetVolume
           7.3.2.5 RK MPI AO GetVolume
           7.3.2.6 RK_MPI_AO_SetVqeAttr
           7.3.2.7 RK MPI AO GetVqeAttr
           7.3.2.8 RK MPI AO EnableVqe
```

```
7.3.2.9 RK_MPI_AO_DisableVqe
       7.3.3 音频编码
           7.3.3.1 RK MPI AENC CreateChn
           7.3.3.2 RK MPI AENC DestroyChn
       7.3.4 音频解码
          7.3.4.1 RK MPI ADEC CreateChn
           7.3.4.2 RK MPI ADEC DestroyChn
   7.4 数据类型
       7.4.1 音频输入
          7.4.1.1 AI MAX CHN NUM
          7.4.1.2 AI CHN
           7.4.1.3 AI CHN ATTR S
          7.4.1.4 AI TALKVQE CONFIG S
          7.4.1.5 AI RECORDVQE CONFIG S
       7.4.2 音频输出
          7.4.2.1 AO MAX CHN NUM
          7.4.2.2 AO CHN
          7.4.2.3 AO CHN ATTR S
          7.4.2.4 AO VQE CONFIG S
       7.4.3 音频编码
          7.4.3.1 AENC MAX CHN NUM
          7.4.3.2 AENC CHN
          7.4.3.3 AENC_ATTR_AAC_S
           7.4.3.4 AENC ATTR MP2 S
           7.4.3.5 AENC ATTR G711A S
          7.4.3.6 AENC ATTR G711U S
           7.4.3.7 AENC ATTR G726 S
          7.4.3.8 AENC CHN ATTR S
       7.4.4 音频解码
          7.4.4.1 ADEC MAX CHN NUM
          7.4.4.2 ADEC CHN
           7.4.4.3 ADEC ATTR AAC S
          7.4.4.4 ADEC ATTR MP2 S
           7.4.4.5 ADEC ATTR G711A S
           7.4.4.6 ADEC ATTR G711U S
          7.4.4.7 ADEC ATTR G726 S
           7.4.4.8 ADEC CHN ATTR S
   7.5 错误码
       7.5.1 音频输入错误码
       7.5.2 音频输出错误码
       7.5.3 音频编码错误码
       7.5.4 音频解码错误码
8. RGA
   8.1 概述
   8.2 功能描述
   8.3 API参考
       8.3.1 RK MPI RGA CreateChn
       8.3.2 RK_MPI_RGA_DestroyChn
   8.4 数据类型
       8.4.1 RGA_MAX_CHN_NUM
       8.4.2 RGA CHN
       8.4.3 RGA INFO S
       8.4.4 RGA_ATTR_S
   8.5 错误码
9. 视频输出
   9.1 概述
   9.2 功能描述
```

9.3 API参考

9.3.1 RK_MPI_VO_CreateChn 9.3.2 RK_MPI_VO_DestroyChn 9.4 数据类型 9.4.1 VO_MAX_CHN_NUM 9.4.2 VO_CHN 9.4.3 VO_CHN_ATTR_S 9.5 错误码 10. 使用限制

1. 系统概述

1.1 概述

RKMedia提供了一种媒体处理方案,可支持应用软件快速开发。RKMedia在各模块基础API上做进一步封装,简化了应用开发难度。该平台支持以下功能: VI(输入视频捕获)、VENC(H.265/H.264/JPEG/MJPEG编码)、VDEC(H.265/H.264/JPEG、MJPEG解码)、VO(视频输出显示)、RGA视频处理(包括旋转、缩放、裁剪)、AI(音频采集)、AO(音频输出)、AENC(音频编码)、ADEC(音频解码)、MD(移动侦测)、OD(遮挡侦测)。

1.2 系统架构

1.3 系统资源数目表

模块名称	通道数量
VI	4
VENC	16
VDEC	16
AI	1
AO	1
AENC	16
ADEC	16
MD	4
OD	4
RGA	16
VO	2

2. 系统控制

2.1 概述

系统控制基本系统的初始化工作,同时负责完成各个模块的初始化、反初始化以及管理各个业务模块的 绑定关系、提供当前系统版本、系统日志管理。

2.2 功能描述

2.2.1 系统绑定

RKMedia提供系统绑定接口(RK_MPI_SYS_Bind),即通过数据接收者绑定数据源来建立两者之间的关联(只允许数据接收者绑定数据源)。绑定后,数据源生成的数据将自动发送给接收者。目前支持的绑定关系如表 2-1所示。

表2-1 RKMedia支持的绑定关系

数据源	数据接受者
VI	VO/RGA/VENC/MD/OD
VDEC	VO/RGA/VENC/MD/OD
RGA	VO/VENC/MD/OD
AI	AO/AENC
ADEC	AO

2.3 API参考

2.3.1 RK_MPI_SYS_Init

【描述】

初始化系统。

【语法】

RK_S32 RK_MPI_SYS_Init();

【参数】

无。

【返回值】

返回值	描述
0	成功。
丰6	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

2.3.2 RK_MPI_SYS_DumpChn

【描述】

打印通道信息。

【语法】

 $RK_VOID\ RK_MPI_SYS_DumpChn(\underline{MOD_ID_E}\ enModId);$

【参数】

参数名称	描述	输入/输出
enModId	模块号。	输入

【返回值】

返回值	描述
0	成功。
≢ E 0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

2.3.3 RK_MPI_SYS_Bind

【描述】

数据源到数据接收者绑定接口。

【语法】

RK_S32 RK_MPI_SYS_Bind(const MPP_CHN_S *pstSrcChn,const MPP_CHN_S *pstDestChn);

【参数】

参数名称	描述	输入/输出
pstSrcChn	源通道指针。	输入
pstDestChn	目的通道指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

系统目前支持的绑定关系,请参见表2-1。

如果使用了此函数,则不能使用RK MPI MB ReleaseBuffer获取数据。

【举例】

无。

【相关主题】

RK MPI SYS UnBind

2.3.4 RK_MPI_SYS_UnBind

【描述】

数据源到数据接收者解绑定接口。

【语法】

 $RK_MPI_SYS_UnBind(const\ \underline{MPP_CHN_S}\ *pstSrcChn,const\ \underline{MPP_CHN_S}\ *pstDestChn);$

【参数】

参数名称	描述	输入/输出
pstSrcChn	源通道指针。	输入
pstDestChn	目的通道指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI SYS Bind

2.3.5 RK_MPI_SYS_RegisterEventCb

【描述】

注册事件回调,比如移动侦测事件。

【语法】

RK_S32 RK_MPI_SYS_RegisterEventCb(const <u>MPP_CHN_S</u> *pstChn, <u>EventCbFunc</u> cb);

【参数】

参数名称	描述	输入/输出
pstChn	指定通道指针。	输入
cb	事件回调函数。	输出

【返回值】

返回值	描述
0	成功。
丰6	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

2.3.6 RK_MPI_SYS_RegisterOutCb

【描述】

注册数据输出回调。

【描述】

注册数据输出回调。注意:回调函数不能处理耗时操作,否则对应通道数据流将被阻塞。

【语法】

RK_S32 RK_MPI_SYS_RegisterOutCb(const MPP_CHN_S *pstChn, OutCbFunc cb);

【参数】

参数名称	描述	输入/输出
pstChn	指定通道指针。	输入
cb	数据输出回调函数。	输出

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

回调函数不能处理耗时操作, 否则对应通道数据流将被阻塞。

【举例】

无。

【相关主题】

无。

2.3.7 RK_MPI_SYS_SendMediaBuffer

【描述】

向指定通道输入数据,比如将本地yuv文件送入编码器编码。

【语法】

RK_S32 RK_MPI_SYS_SendMediaBuffer(MOD_ID_E enModID, RK_S32 s32ChnID, MEDIA_BUFFER buffer);

【参数】

参数名称	描述	输入/输出
enModID	模块号。	输入
s32ChnID	通道号。	输入
buffer	缓冲区。	输入

【返回值】

返回值	描述
0	成功。
丰0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI SYS GetMediaBuffer

${\bf 2.3.8~RK_MPI_SYS_GetMediaBuffer}$

【描述】

从指定通道中获取数据。

【语法】

 $\label{eq:mediabuffer} $$ \underline{\text{MEDIA_BUFFER}}$ RK_MPI_SYS_GetMediaBuffer(MOD_ID_E\ enModID,\ RK_S32\ s32ChnID,\ RK_S32\ s32MilliSec);$

【参数】

参数名称	描述	输入/输出
enModID	模块号。	输入
s32ChnID	通道号。	输入
s32MilliSec	阻塞等待时间。	输入

【返回值】

返回值类型	描述
MEDIA_BUFFER	缓冲区指针。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

如果使用了RK MPI SYS Bind,则此函数获取不到数据。

【举例】

无。

【相关主题】

RK MPI SYS SendMediaBuffer

RK MPI MB ReleaseBuffer

${\bf 2.3.9~RK_MPI_MB_ReleaseBuffer}$

【描述】

释放缓冲区。

【语法】

RK_S32 RK_MPI_MB_ReleaseBuffer(<u>MEDIA_BUFFER</u> mb);

【参数】

参数名称	描述	输入/输出
mb	缓冲区。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

【相关主题】

RK MPI SYS GetMediaBuffer

2.3.10 RK_MPI_MB_GetPtr

【描述】

从指定的MEDIA BUFFER中获取缓冲区指针。

【语法】

void *RK_MPI_MB_GetPtr(MEDIA_BUFFER mb);

【参数】

参数名称	描述	输入/输出
mb	缓冲区。	输入

【返回值】

返回值类型	描述
void *	缓冲区指针。

【需求】

头文件: rkmedia_buffer.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

2.3.11 RK_MPI_MB_GetFD

【描述】

从指定的MEDIA BUFFER中获取文件描述符。

【语法】

int RK_MPI_MB_GetFD(MEDIA_BUFFER mb);

【参数】

参数名称	描述	输入/输出
mb	缓冲区。	输入

【返回值】

返回值类型	描述
int	文件描述符。

【需求】

头文件: rkmedia_buffer.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

$2.3.12~RK_MPI_MB_GetSize$

【描述】

从指定的MEDIA_BUFFER中获取缓冲区大小。

【语法】

size_t RK_MPI_MB_GetSize(MEDIA_BUFFER mb);

【参数】

参数名称	描述	输入/输出
mb	缓冲区。	输入

【返回值】

返回值类型	描述
size_t	缓冲区大小。

【需求】

头文件: rkmedia_buffer.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

2.3.13 RK_MPI_MB_GetModeID

【描述】

从指定的MEDIA BUFFER中获取模块ID。

【语法】

MOD_ID_E RK_MPI_MB_GetModeID(MEDIA_BUFFER mb);

【参数】

参数名称	描述	输入/输出
mb	缓冲区。	输入

【返回值】

返回值类型	描述
MOD_ID_E	模块ID。

【需求】

头文件: rkmedia_buffer.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

2.3.14 RK_MPI_MB_GetChannelID

【描述】

从指定的MEDIA_BUFFER中获取通道ID。

【语法】

RK_S16 RK_MPI_MB_GetChannelID(<u>MEDIA_BUFFER</u> mb);

【参数】

参数名称	描述	输入/输出
mb	缓冲区。	输入

【返回值】

返回值类型	描述
RK_S16	通道ID。

【需求】

头文件: rkmedia_buffer.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

$2.3.15~RK_MPI_MB_GetTimestamp$

【描述】

从指定的MEDIA BUFFER中获取时间戳。

【语法】

 $RK_U64\ RK_MPI_MB_GetTimestamp(\underline{MEDIA_BUFFER}\ mb);$

【参数】

参数名称	描述	输入/输出
mb	缓冲区。	输入

【返回值】

返回值类型	描述
RK_S16	时间戳。

【需求】

头文件: rkmedia_buffer.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

2.4 数据类型

2.4.1 基本数据类型

基本数据类型定义如下:

2.4.1.1 公共数据类型

```
1 typedef unsigned char RK U8;
  typedef unsigned short RK U16;
3 typedef unsigned int RK_U32;
5 typedef signed char RK_S8;
6 typedef short RK S16;
7 typedef int RK_S32;
9
   typedef unsigned long RK UL;
10 typedef signed long RK_SL;
   typedef float RK FLOAT;
13
   typedef double RK_DOUBLE;
14
15 #ifndef _M_IX86
16 typedef unsigned long long RK_U64;
17
   typedef long long RK_S64;
18
19
  typedef unsigned int64 RK U64;
20 typedef __int64 RK_S64;
   #endif
   typedef char RK CHAR;
24 #define RK_VOID void
26 typedef unsigned int RK HANDLE;
27
   /*----*
29
   * const defination
   *----*/
31 typedef enum {
    RK_FALSE = 0,
    RK_TRUE = 1,
34
  } RK BOOL;
36 #ifndef NULL
37 #define NULL OL
   #endif
```

```
39
40 #define RK_NULL OL
41 #define RK_SUCCESS O
42 #define RK_FAILURE (-1)
43
44 #define MAX_FILE_PATH_LEN 256
```

2.4.1.2 IMAGE_TYPE_E

【说明】

定义图像格式枚举类型。

【定义】

```
typedef enum rk_IMAGE_TYPE_E {
    IMAGE TYPE UNKNOW = 0,
    IMAGE_TYPE_GRAY8,
    IMAGE_TYPE_GRAY16,
    IMAGE TYPE YUV420P,
    IMAGE_TYPE_NV12,
6
7
    IMAGE TYPE NV21,
    IMAGE_TYPE_YV12,
8
9
    IMAGE TYPE FBC2,
    IMAGE TYPE FBC0,
11
    IMAGE_TYPE_YUV422P,
12
    IMAGE TYPE NV16,
    IMAGE_TYPE_NV61,
13
14 IMAGE TYPE YV16,
    IMAGE TYPE YUYV422,
15
16
    IMAGE_TYPE_UYVY422,
17
    IMAGE_TYPE_RGB332,
    IMAGE_TYPE_RGB565,
19
   IMAGE TYPE BGR565,
   IMAGE_TYPE_RGB888,
20
    IMAGE_TYPE_BGR888,
    IMAGE_TYPE_ARGB8888,
    IMAGE_TYPE_ABGR8888,
23
24
    IMAGE_TYPE_JPEG,
26
    IMAGE TYPE BUTT
27 } IMAGE TYPE E;
```

2.4.1.3 CODEC_TYPE_E

【说明】

定义编解码格式枚举类型。

【定义】

```
1 typedef enum rk_CODEC_TYPE_E {
2    RK_CODEC_TYPE_NONE = -1,
3    // Audio
4    RK_CODEC_TYPE_AAC,
```

```
RK_CODEC_TYPE_MP2,
     RK_CODEC_TYPE_VORBIS,
7
    RK CODEC TYPE G711A,
    RK_CODEC_TYPE_G711U,
9
    RK_CODEC_TYPE_G726,
    // Video
11
    RK CODEC TYPE H264,
12
    RK_CODEC_TYPE_H265,
13
   RK_CODEC_TYPE_JPEG,
    RK_CODEC_TYPE_MJPEG,
15
    RK CODEC TYPE NB
16 } CODEC_TYPE_E;
```

2.4.1.4 MOD ID E

【说明】

定义模块 ID 枚举类型。

【定义】

```
typedef enum rkMOD_ID_E {
    RK_ID_UNKNOW = 0,
3
    RK ID VB,
    RK_ID_SYS,
4
5
    RK_ID_VDEC,
    RK_ID_VENC,
6
    RK_ID_H264E,
8
    RK ID JPEGE,
    RK_ID_H265E,
9
10
    RK_ID_VO,
11
    RK_ID_VI,
    RK_ID_AIO,
12
13
   RK ID AI,
    RK_ID_AO,
14
    RK_ID_AENC,
16
    RK ID ADEC,
17
    RK_ID_ALGO_MD,
18
    RK_ID_ALGO_OD,
19
    RK_ID_RGA,
    RK_ID_BUTT,
22 } MOD_ID_E;
```

2.4.1.5 Sample_Format_E

【说明】

定义采样格式枚举类型。

【定义】

```
typedef enum rkSample_Format_E {
    RK_SAMPLE_FMT_NONE = -1,
    RK_SAMPLE_FMT_U8,
```

```
RK_SAMPLE_FMT_S16,
RK_SAMPLE_FMT_S32,
RK_SAMPLE_FMT_FLT,
RK_SAMPLE_FMT_U8P,
RK_SAMPLE_FMT_S16P,
RK_SAMPLE_FMT_S32P,
RK_SAMPLE_FMT_FLTP,
RK_SAMPLE_FMT_G711A,
RK_SAMPLE_FMT_G711U,
RK_SAMPLE_FMT_G711U,
SAMPLE_FMT_NB
SAMPLE_FMT_NB
SAMPLE_FMT_NB
```

2.4.1.6 RECT_S

【说明】

定义区域属性结构体。

【定义】

```
1
2 typedef struct rkRECT_S {
3    RK_S32 s32X;
4    RK_S32 s32Y;
5    RK_U32 u32Width;
6    RK_U32 u32Height;
7 } RECT_S;
```

【成员】

成员名称	描述
s32X	区域的X轴坐标
s32Y	区域的Y轴坐标
u32Width	区域的宽度
u32Height	区域的高度

【注意事项】

无。

【相关数据类型及接口】

无。

2.4.2 系统控制数据类型

系统控制相关数据类型定义如下:

MPP CHN S: 定义模块设备通道结构体。

EventCbFunc: 事件回调函数指针。

MEDIA BUFFER: 数据缓冲区指针。

OutCbFunc: 数据输出回调函数指针。

MB IMAGE INFO S: 图像信息结构体。

2.4.2.1 MPP_CHN_S

【说明】

定义模块设备通道结构体。

【定义】

```
typedef struct rkMPP_CHN_S {

MOD_ID_E enModId;

RK_S32 s32DevId;

RK_S32 s32ChnId;

MPP_CHN_S;
```

【成员】

成员名称	描述
enModId	模块号。
s32DevId	设备号。
s32ChnId	通道号。

2.4.2.2 EventCbFunc

【说明】

事件回调函数指针。

【定义】

```
1 typedef struct rkMD EVENT S {
   RK_U16 u16Cnt;
3 RK_U32 u32Width;
    RK_U32 u32Height;
4
    RECT_S stRects[4096];
6 } MD_EVENT_S;
8 typedef struct rkOD EVENT S {
   RK_U16 u16Cnt;
RK_U32 u32Width;
9
11 RK_U32 u32Height;
    RECT_S stRects[10];
    RK U16 u16Occlusion[10];
14 } OD_EVENT_S;
16 typedef struct rkEVENT_S {
    EVENT_TYPE_E type;
```

```
MOD_ID_E mode_id;
union {

MD_EVENT_S md_event;

OD_EVENT_S stOdEvent;

};

EVENT_S;

typedef void (*EventCbFunc) (EVENT_S *event);
```

【成员】

成员名称	描述
type	事件类型。
mode_id	模块号。
md_event	移动侦测事件。
stOdEvent	遮挡侦测事件。

2.4.2.3 MEDIA_BUFFER

【说明】

数据缓冲区指针。

【定义】

```
1 | typedef void *MEDIA_BUFFER;
```

【相关数据类型及接口】

OutCbFunc

2.4.2.4 OutCbFunc

【说明】

数据输出回调函数指针。

【定义】

```
1 | typedef void (*OutCbFunc)(MEDIA_BUFFER mb);
```

【相关数据类型及接口】

MEDIA_BUFFER

2.4.2.5 MB_IMAGE_INFO_S

【说明】

图像信息结构体。

【定义】

```
typedef struct rkMB_IMAGE_INFO {
   RK_U32 u32Width;
   RK_U32 u32Height;
   RK_U32 u32VerStride;
   RK_U32 u32HorStride;
   IMAGE_TYPE_E enImgType;
} MB_IMAGE_INFO_S;
```

【成员】

成员名称	描述
u32Width	宽度。
u32Height	高度。
u32VerStride	虚宽。
u32HorStride	虚高。
enImgType	图像格式类型。

【相关数据类型及接口】

IMAGE_TYPE_E

2.5 错误码

系统控制错误码如表2-2所示:

表2-2 系统控制 API 错误码

错误代码	宏定义	描述
1	RK_ERR_SYS_NULL_PTR	空指针错误
2	RK_ERR_SYS_NOTREADY	系统控制属性未配置
3	RK_ERR_SYS_NOT_PERM	操作不允许
4	RK_ERR_SYS_NOMEM	分配内存失败,如系统内存不足
5	RK_ERR_SYS_ILLEGAL_PARAM	参数设置无效
6	RK_ERR_SYS_BUSY	系统忙
7	RK_ERR_SYS_NOT_SUPPORT	不支持的功能

3. 视频输入

3.1 概述

视频输入(VI)模块实现的功能: ISPP驱动实现标准V4L2设备,通过对V4L2 API的封装,可以采集到 ISPP多通道视频数据。VI 将接收到的数据存入到指定的内存区域,实现视频数据的采集。

3.2 功能描述

3.2.1 VI节点名称

VI的创建需要指定视频节点名称,比如"/dev/video0"。在RV1126/RV1109平台则比较特殊,对应节点名称如下所示。

表3-1 ISPP节点名称(RV1126/RV1109芯片)

ISPP 节点名称	视频节点 路径	最大宽度	支持的输出格式
rkispp_m_bypass	/dev/video13	不支持设置分辨率,不 支持缩放	NV12/NV16/YUYV/FBC0/FBC2
rkispp_scale0	/dev/video14	3264, 最大支持8倍缩放	NV12/NV16/YUYV
rkispp_scale1	/dev/video15	1280, 最大支持8倍缩放	NV12/NV16/YUYV
rkispp_scale2	/dev/video16	1280, 最大支持8倍缩放	NV12/NV16/YUYV

3.2.2 VI工作模式

VI有两种工作模式,如下表所示

模式名称	宏定义名称	功能说明
正常模式	VI_WORK_MODE_NORMAL	相对于"亮度模式", 该模式下正常读取Camera数据并发给后级。
亮度模式	VI_WORK_MODE_LUMA_ONLY	亮度模式下,VI仅用于亮度统计。 此时VI模块无法通过回调函数或者 RK_MPI_SYS_GetMediaBuffer获取数据。

3.3 API参考

3.3.1 RK_MPI_VI_EnableChn

【描述】

启用VI通道。

【语法】

RK_S32 RK_MPI_VI_EnableChn(<u>VI_PIPE</u> ViPipe, <u>VI_CHN</u> ViChn);

【参数】

参数名称	描述	输入/输出
ViPipe	VI 管道号。	输入
ViChn	VI 通道号。取值范围: [0, <u>VI_MAX_CHN_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI VI DisableChn

3.3.2 RK_MPI_VI_DisableChn

【描述】

关闭VI通道。

【语法】

RK_S32 RK_MPI_VI_DisableChn(<u>VI_PIPE</u> ViPipe, <u>VI_CHN</u> ViChn);

【参数】

参数名称	描述	输入/输出
ViPipe	VI 管道号。	输入
ViChn	VI 通道号。取值范围: [0, VI_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
≢ 1€0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI VI EnableChn

3.3.3 RK_MPI_VI_SetChnAttr

【描述】

设置VI通道属性。

【语法】

 $RK_MPI_VI_SetChnAttr(\underline{VI_PIPE}\ ViPipe, \underline{VI_CHN}\ ViChn, const\ \underline{VI_CHN_ATTR_S}\ *pstChnAttr);$

【参数】

参数名称	描述	输入/输出
ViPipe	VI 管道号。	输入
ViChn	VI 通道号。取值范围: [0, VI_MAX_CHN_NUM)。	输入
pstChnAttr	VI 通道属性结构体指针。	输入

【返回值】

返回值	描述
0	成功。
≒ E 0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

3.3.4 RK_MPI_VI_GetChnRegionLuma

【描述】

获取区域亮度信息。

【语法】

RK_S32 RK_MPI_VI_GetChnRegionLuma(<u>VI_PIPE</u> ViPipe, <u>VI_CHN</u> ViChn, const <u>VIDEO_REGION_INFO_S</u> *pstRegionInfo, RK_U64 *pu64LumaData, RK_S32 s32MilliSec);

【参数】

参数名称	描述	输 入/ 输 出
ViPipe	VI 管道号。	输入
ViChn	VI 通道号。取值范围: [0, <u>VI_MAX_CHN_NUM</u>)	输入
pstRegionInfo	区域信息。其中 pstRegionInfo->pstRegion 为统计区域的区域属性,即起始位置、宽、高; pstRegionInfo->u32RegionNum 为统计区域的个数。	输入
pu64LumaData	接收区域亮度和统计信息的内存指针,该内存大小应该大于或等于sizeof(RK_U64)×pstRegionInfo->u32RegionNum。	输出
s32MilliSec	超时参数 s32MilliSec: -1 表示阻塞模式; 0 表示非阻塞模式; 大于 0 表示超时模式,超时时间的单位为毫秒(ms)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

该接口不支持FBC0/FBC2压缩格式。

【举例】

无。

【相关主题】

无。

$3.3.5~RK_MPI_VI_StartStream$

【描述】

启动视频流。

【语法】

RK_S32 RK_MPI_VI_StartStream(<u>VI_PIPE</u> ViPipe, <u>VI_CHN</u> ViChn);

【参数】

参数名称	描述	输入/输出
ViPipe	VI 管道号。	输入
ViChn	VI 通道号。取值范围: [0, VI_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
≢ E 0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

3.4 数据类型

视频输入相关数据类型定义如下:

VI MAX DEV NUM: 定义VI设备的最大个数。

VI MAX CHN NUM: 定义 VI 物理通道和扩展通道的总个数。

VI PIPE: VI管道号。

VI CHN: VI通道号。

VI CHN ATTR S: VI 通道属性结构体指针。

VIDEO REGION INFO S: 定义视频区域信息。

3.4.1 VI_MAX_DEV_NUM

【说明】

定义VI设备的最大个数。

【定义】

```
1 RV1109/RV1126:
2 #define VI_MAX_DEV_NUM 4
```

3.4.2 VI MAX CHN NUM

【说明】

定义VI物理通道和扩展通道的总个数。

【定义】

```
1 RV1109/RV1126:
2 #define VI MAX CHN NUM VI MAX DEV NUM
```

3.4.3 VI PIPE

【说明】

VI管道号。

【定义】

```
1 | typedef RK_S32 VI_PIPE;
```

3.4.4 VI_CHN

【说明】

VI通道号。

【定义】

```
1 typedef RK_S32 VI_CHN;
```

3.4.5 VI_CHN_ATTR_S

【说明】

VI通道属性结构体指针。

【定义】

```
typedef char RK_CHAR;
3 typedef enum rkVI_CHN_WORK_MODE {
4 VI WORK MODE NORMAL = 0,
    // for vi single caculate luma.
6
    // In this mode, vi has no output,
7
    // and data cannot be obtained from vi.
    VI_WORK_MODE_LUMA_ONLY,
   } VI_CHN_WORK_MODE;
9
11 typedef struct rkVI_CHN_ATTR_S {
12
    const RK_CHAR *pcVideoNode;
    RK U32 u32Width;
14
    RK_U32 u32Height;
    IMAGE_TYPE_E enPixFmt;
    RK_U32 u32BufCnt; // VI capture video buffer cnt.
16
17
    VI_CHN_WORK_MODE enWorkMode;
18 } VI_CHN_ATTR_S;
```

【成员】

成员名称	描述
pcVideoNode	video节点路径。
u32Width	video宽度。
u32Height	video高度。
enPixFmt	video格式。
u32BufCnt	VI捕获视频缓冲区计数
enWorkMode	VI通道工作模式

【注意事项】

VI_WORK_MODE_LUMA_ONLY模式,用于VI亮度统计,在此模式下VI没有输出,并且无法从VI获取数据。

【相关数据类型及接口】

IMAGE TYPE E

RK MPI VI SetChnAttr

3.4.6 VIDEO_REGION_INFO_S

【说明】

定义视频区域信息。

【定义】

```
typedef struct rkVIDEO_REGION_INFO_S {
RK_U32 u32RegionNum; /* count of the region */
RECT_S *pstRegion; /* region attribute */
VIDEO_REGION_INFO_S;
```

【成员】

成员名称	描述
u32RegionNum	视频区域个数。
pstRegion	视频区域位置信息指针。

【相关数据类型及接口】

RECT_S

RK_MPI_VI_GetChnRegionLuma

3.5 错误码

视频输入 API 错误码如表3-2所示:

表3-2 视频输入 API 错误码

错误代码	宏定义	描述
10	RK_ERR_VI_INVALID_CHNID	视频输入通道号无效
11	RK_ERR_VI_BUSY	视频输入系统忙
12	RK_ERR_VI_EXIST	视频输入通道已存在
13	RK_ERR_VI_NOT_CONFIG	视频输入未配置
14	RK_ERR_VI_TIMEOUT	视频输入超时
15	RK_ERR_VI_BUF_EMPTY	视频输入缓存为空
16	RK_ERR_VI_ILLEGAL_PARAM	视频输入参数设置无效
17	RK_ERR_VI_NOTREADY	视频输入系统未初始化

4. 视频编码

4.1 概述

VENC 模块,即视频编码模块。本模块支持多路实时编码,且每路编码独立,编码协议和编码 profile 可以不同。支持视频编码同时,调度 Region 模块对编码图像内容进行叠加和遮挡。支持H264/H1265/MJPEG/JPEG编码。

4.2 功能描述

4.2.1 数据流程图

注: 虚线框所述功能为可选,只有对编码器进行相应配置才会触发。

4.2.2 码率控制

编码器类型	支持码控类型
H265	CBR / VBR
H264	CBR / VBR
MJPEG	CBR / VBR

4.2.3 GOP Mode

GOP Mode用于定制参考帧的依赖关系,目前支持如下模式。注:可根据需求定制。

名称	宏定义	描述
普通模式	VENC_GOPMODE_NORMALP	最常见场景,每隔GopSize一个I帧
智能P帧模式	VENC_GOPMODE_SMARTP	每隔GopSize一个虚拟I帧,每隔BgInterval 一个I帧
多层时域参考模式	VENC_GOPMODE_TSVC	编码依赖关系划分为多层,可根据 RK_MPI_MB_GetTsvcLevel获取层信息, 从而定制码流。 比如只播放第0层码流,可实现快速预览。

4.2.4 感兴趣区域(ROI)

通过配置编码器感兴趣区域,可实现指定区域QP的定制。比如一个对着走廊的镜头,用户真正感兴趣的是走廊中央。可通过配置ROI让走廊中央编码质量更高,图像更清晰,走廊的边框(墙体、天花板等)非感兴趣区域图像质量会偏低。通过这种方式实现保持码率基本不变情况下,突出显示用户关心区域。

系统提供8个感兴趣区域,优先级从REGION_ID_0~REGION_ID_7递增。在多个ROI重叠的区域,其QP 策略会按照优先级高的区域进行配置。

```
REGION_ID_0
REGION_ID_1
REGION_ID_2
REGION_ID_3
REGION_ID_4
REGION_ID_5
REGION_ID_6
REGION_ID_6
REGION_ID_7
```

4.2.5 旋转(Rotation)

编码器支持4种类型的旋转,分别为0°,90°,180°,270°。编码器旋转目前不支持FBC格式,FBC格式的旋转则需要通过ISPP的旋转来实现。

4.3 API参考

4.3.1 RK_MPI_VENC_CreateChn

【描述】

创建编码通道。

【语法】

 $RK_MPI_VENC_CreateChn(\underline{VENC_CHN}\ VeChn, \underline{VENC_CHN_ATTR_S}\ *stVencChnAttr);$

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
stVencChnAttr	编码通道属性指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.2 RK_MPI_VENC_DestroyChn

【描述】

销毁编码通道。

【语法】

RK_S32 RK_MPI_VENC_DestroyChn(<u>VENC_CHN</u> VeChn);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.3 RK_MPI_VENC_SetRcParam

【描述】

设置码率控制参数。

【语法】

RK_MPI_VENC_SetRcParam(<u>VENC_CHN</u> VeChn, const <u>VENC_RC_PARAM_S</u> *pstRcParam);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
pstRcParam	编码通道码率控制器的高级参数。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.4 RK_MPI_VENC_SetRcMode

【描述】

设置码率控制模式。

【语法】

RK_S32 RK_MPI_VENC_SetRcMode(<u>VENC_CHN</u> VeChn, <u>VENC_RC_MODE_E</u> RcMode);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
RcMode	码率控制模式。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.5 RK_MPI_VENC_SetRcQuality

【描述】

设置编码质量。用于H264/H265编码器。

【语法】

RK_MPI_VENC_SetRcQuality(<u>VENC_CHN</u> VeChn, <u>VENC_RC_QUALITY_E</u> RcQuality);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
RcQuality	编码质量。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.6 RK_MPI_VENC_SetBitrate

【描述】

设置码率。

【语法】

RK_MPI_VENC_SetBitrate(<u>VENC_CHN</u> VeChn, RK_U32 u32BitRate, RK_U32 u32MinBitRate, RK_U32 u32MaxBitRate);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, VENC_MAX_CHN_NUM)。	输入
u32BitRate	目标码率。	输入
u32MinBitRate	最小码率。	输入
u32MaxBitRate	最大码率。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.7 RK_MPI_VENC_RequestIDR

【描述】

请求IDR帧。调用该接口后,编码器立即刷新IDR帧。

【语法】

RK_S32 RK_MPI_VENC_RequestIDR(<u>VENC_CHN</u> VeChn, RK_BOOL bInstant);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
bInstant	是否使能立即编码 IDR 帧。	输入

【返回值】

返回值	描述
0	成功。
≢ E 0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.8 RK_MPI_VENC_SetFps

【描述】

设置编码帧率。

【语法】

 $RK_S32\ RK_MPI_VENC_SetFps(\underline{VENC_CHN}\ VeChn,\ RK_U8\ u8OutNum,\ RK_U8\ u8OutDen,\ RK_U8\ u8InNum,\ RK_U8\ u8InDen);$

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
u8OutNum	编码输出帧率分母。	输入
u8OutDen	编码输出帧率分子。	输入
u8InNum	编码输入帧率分母。	输入
u8InDen	编码输入帧率分子。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

输出帧率不能大于输入帧率。

【举例】

无。

【相关主题】

无。

4.3.9 RK_MPI_VENC_SetGop

【描述】

设置GOP。用于H264/H265编码器。

【语法】

RK_S32 RK_MPI_VENC_SetGop(VENC_CHN VeChn, RK_U32 u32Gop);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
u32Gop	GOP.	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.10 RK_MPI_VENC_SetAvcProfile

【描述】

设置 profile。用于H264 编码器。

【语法】

 $RK_MPI_VENC_SetAvcProfile(\underline{VENC_CHN}\ VeChn,\ RK_U32\ u32Profile,RK_U32\ u32Level);$

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
u32Profile	Profile IDC值。	输入
u32Level	Level IDC值。	输入

【返回值】

返回值	描述
0	成功。
丰6	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

暂时只支持u32Profile为66、77、100,分别对应Baseline、Main Profile、High Profile。

【举例】

无。

【相关主题】

无。

4.3.11 RK_MPI_VENC_InsertUserData

【描述】

插入用户数据,插入后的数据将在码流的SEI包中体现。用于H264/H265编码器。

【语法】

 $RK_MPI_VENC_InsertUserData(\underline{VENC_CHN}\ VeChn,\ RK_U8\ *pu8Data,\ RK_U32\ u32Len);$

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
pu8Data	用户数据指针。	输入
u32Len	用户数据长度。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

暂时只支持u32Profile为66、77、100,分别对应Baseline、Main Profile、High Profile。

【举例】

无。

【相关主题】

无。

4.3.12 RK_MPI_VENC_SetRoiAttr

【描述】

设置ROI编码感兴趣区。用于H264/H265编码器。

【语法】

RK_MPI_VENC_SetRoiAttr(<u>VENC_CHN</u> VeChn,const <u>VENC_ROI_ATTR_S</u> *pstRoiAttr);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
pstRoiAttr	ROI 区域参数。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.13 RK_MPI_VENC_SetGopMode

【描述】

设置GopMode。用于H264/H265编码器。

【语法】

RK_S32 RK_MPI_VENC_SetGopMode(<u>VENC_CHN</u> VeChn, <u>VENC_GOP_ATTR_S</u> GopMode);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
GopMode	GOP属性结构体。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.14 RK_MPI_VENC_RGN_Init

【描述】

初始化OSD。

【语法】

RK_S32 RK_MPI_VENC_RGN_Init(<u>VENC_CHN</u> VeChn);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, VENC_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
≢ E 0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

在调用<u>RK_MPI_VENC_RGN_SetBitMap</u>或<u>RK_MPI_VENC_RGN_SetCover</u>之前,必须先调用该接口,并且每个编码通道只能调用一次。

【举例】

无。

【相关主题】

RK_MPI_VENC_RGN_SetBitMap

4.3.15 RK_MPI_VENC_RGN_SetBitMap

【描述】

设置OSD位图。

【语法】

RK_S32 RK_MPI_VENC_RGN_SetBitMap(<u>VENC_CHN</u> VeChn, const <u>OSD_REGION_INFO_S</u> *pstRgnInfo, const <u>BITMAP_S</u> *pstBitmap);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
pstRgnInfo	OSD区域信息。	输入
pstBitmap	位图信息和数据。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

在调用此接口之前,必须先调用RK_MPI_VENC_RGN_Init。

【举例】

无。

【相关主题】

RK MPI VENC RGN Init

4.3.16 RK_MPI_VENC_RGN_SetCover

【描述】

设置隐私遮挡。

【语法】

RK_S32 RK_MPI_VENC_RGN_SetCover(<u>VENC_CHN</u> VeChn, const <u>OSD_REGION_INFO_S</u> *pstRgnInfo, const <u>COVER_INFO_S</u> *pstCoverInfo);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, <u>VENC_MAX_CHN_NUM</u>)。	输入
pstRgnInfo	OSD区域信息。	输入
pstCoverInfo	隐私遮挡信息。	输入

【返回值】

返回值	描述
0	成功。
⊒⊨0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

在调用此接口之前,必须先调用RK MPI VENC RGN Init。

【举例】

无。

【相关主题】

RK MPI VENC RGN Init

4.3.17 RK_MPI_VENC_SetJpegParam

【描述】

设置JPEG编码参数。

【语法】

RK_S32 RK_MPI_VENC_SetJpegParam(<u>VENC_CHN</u> VeChn, const <u>VENC_JPEG_PARAM_S</u> *pstJpegParam);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, VENC_MAX_CHN_NUM)。	输入
pstJpegParam	JPEG 协议编码通道的高级参数。	输入

【返回值】

返回值	描述
0	成功。
丰6	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

4.3.18 RK_MPI_VENC_StartRecvFrame

【描述】

设置编码器接收帧的数量。默认创建编码器将持续不断的接收VI数据,通过 RK_MPI_VENC_StartRecvFrame接口可以设置接收帧数量,到达指定数目后,编码器将休眠,直至下一 次调用该接口改变接收帧数目。

【语法】

RK_S32 RK_MPI_VENC_StartRecvFrame(<u>VENC_CHN</u> VeChn, const <u>VENC_RECV_PIC_PARAM_S</u> *pstRecvParam);

【参数】

参数名称	描述	输入/输出
VeChn	编码通道号。取值范围: [0, VENC_MAX_CHN_NUM)。	输入
pstRecvParam	接收图像参数结构体指针,用于指定需要接收的图像帧数。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

```
【注意】
```

无。

【举例】

无。

【相关主题】

无。

4.4 数据类型

视频编码相关数据类型定义如下:

VENC MAX CHN NUM: 定义 VENC物理通道和扩展通道的总个数。

VENC CHN: VENC通道号。

VENC ATTR JPEG S: 定义 JPEG 抓拍编码器属性结构体。

VENC ATTR MJPEG S: 定义MJPEG 编码器属性结构体。

VENC ATTR H264 S: 定义 H.264 编码器属性结构体。

VENC ATTR H265 S: 定义H.265 编码器属性结构体。

VENC ATTR S: 定义编码器属性结构体。

VENC MJPEG CBR S: 定义 MJPEG 编码通道 CBR 属性结构。

VENC MJPEG VBR S: 定义 MJPEG 编码通道 VBR 属性结构。

VENC H264 CBR S: 定义 H.264 编码通道 CBR 属性结构。

VENC H264 VBR S: 定义 H.264 编码通道 VBR 属性结构。

VENC H265 CBR S: 定义 H.265 编码通道 CBR 属性结构。

VENC H265 VBR S: 定义 H.265 编码通道 VBR 属性结构。

VENC RC MODE E: 定义编码通道码率控制器模式。

VENC RC ATTR S: 定义编码通道码率控制器属性。

VENC GOP MODE E: 定义 Gop Mode 类型。

VENC GOP ATTR S: 定义编码器 GOP 属性结构体。

VENC CHN ATTR S: VENC通道属性结构体。

VENC PARAM MJPEG S: MJPEG 通道参数。

VENC PARAM H264 S: H.264 通道参数。

VENC PARAM H265 S: H.265 通道参数。

VENC RC PARAM S: 编码通道码率控制器的高级参数。

VENC_RC_QUALITY_E: 编码质量。

<u>VENC_ROI_ATTR_S</u>: ROI 属性结构体。

OSD REGION ID E: OSD区域ID枚举类型。

OSD REGION INFO S: OSD区域信息。

OSD PIXEL FORMAT E: OSD像素格式类型枚举。

BITMAP S: 位图信息和数据。

COVER INFO S: 隐私遮挡信息。

VENC RECV PIC PARAM S: 接收图像参数结构体指针,用于指定需要接收的图像帧数。

VENC JPEG PARAM S: JPEG 协议编码通道的高级参数。

4.4.1 VENC_MAX_CHN_NUM

【说明】

VENC物理通道和扩展通道的总个数。

【定义】

```
1 RV1109/RV1126:
2 #define VENC_MAX_CHN_NUM 16
```

4.4.2 VENC_CHN

【说明】

VENC通道号。

【定义】

```
1 | typedef RK_S32 VENC_CHN;
```

4.4.3 VENC ATTR JPEG S

【说明】

定义 JPEG 抓拍编码器属性结构体。

【定义】

```
typedef struct rkVENC_ATTR_JPEG_S {

RK_U32 u32ZoomWidth; // Zoom to specified width

RK_U32 u32ZoomHeight; // Zoom to specified height

RK_U32 u32ZoomVirWidth;

RK_U32 u32ZoomVirHeight;

VENC_ATTR_JPEG_S;
```

【成员】

成员名称	描述
u32ZoomWidth	缩放的指定宽度。
u32ZoomHeight	缩放的指定高度。
u32ZoomVirWidth	缩放的虚拟高度。
u32ZoomVirHeight	缩放的虚拟宽度。

4.4.4 VENC_ATTR_MJPEG_S

【说明】

定义 MJPEG 编码器属性结构体。

【定义】

```
typedef struct rkVENC_ATTR_MJPEG_S {

RK_U32 u32ZoomWidth; // Zoom to specified width

RK_U32 u32ZoomHeight; // Zoom to specified height

RK_U32 u32ZoomVirWidth;

RK_U32 u32ZoomVirHeight;

VENC_ATTR_MJPEG_S;
```

【成员】

成员名称	描述
u32ZoomWidth	缩放的指定宽度。
u32ZoomHeight	缩放的指定高度。
u32ZoomVirWidth	缩放的虚拟宽度。
u32ZoomVirHeight	缩放的虚拟高度。

4.4.5 VENC ATTR H264 S

【说明】

定义 H.264 编码器属性结构体。

【定义】

```
typedef struct rkVENC_ATTR_H264_S {

RK_U32 u32Level;

// reserved

VENC_ATTR_H264_S;
```

【成员】

成员名称	描述
u32Level	Profile IDC值。

4.4.6 VENC_ATTR_H265_S

【说明】

定义 H.265 编码器属性结构体。

【定义】

```
1 typedef struct rkVENC_ATTR_H265_S {
2    // reserved
3 } VENC_ATTR_H265_S;
```

4.4.7 VENC ATTR S

【说明】

定义编码器属性结构体。

```
typedef struct rkVENC ATTR S {
 3
     CODEC TYPE E enType; // RW; the type of encodec
     IMAGE TYPE E imageType; // the type of input image
     RK U32 u32VirWidth; // stride width, same to buffer width, must greater
    than
                          // width, often set vir width=(width+15)&(~15)
6
7
     RK_U32 u32VirHeight; // stride height, same to buffer_height, must greater
                          // than height, often set vir_height=(height+15) &
    (\sim 15)
    RK U32 u32Profile; // RW;
                          // H.264: 66: baseline; 77:MP; 100:HP;
                          // H.265: default:Main;
                         // Jpege/MJpege: default:Baseline
    RK_BOOL bByFrame; // RW; Range:[0,1];
14
                         // get stream mode is slice mode or frame mode
    RK U32 u32PicWidth; // RW; width of a picture to be encoded, in pixel
     RK U32 u32PicHeight; // RW; height of a picture to be encoded, in pixel
16
     VENC ROTATION E enRotation;
18
    union {
19
      VENC ATTR H264 S stAttrH264e; // attributes of H264e
       VENC ATTR H265 S stAttrH265e; // attributes of H265e
       VENC ATTR MJPEG S stAttrMjpege; // attributes of Mjpeg
       VENC ATTR JPEG S stAttrJpege; // attributes of jpeg
     };
24 } VENC ATTR S;
```

成员名称	描述
enType	编码协议类型。
imageType	输入图像类型。
u32VirWidth	stride宽度(与buffer_width相同),必须大于width,通常设置vir_width=(width+15)&(~15)。
u32VirHeight	stride高度(与buffer_height相同),必须大于 height,通常设置vir_height=(height+15)& (~15)。
u32Profile	编码的等级。 H.264: 66: Baseline; 77:Main Profile; 100:High Profile; H.265: default:Main; Jpege/MJpege: default:Baseline
bByFrame	是否按帧模式获取码流。取值范围: [0,1]。 1: frame mode。 0: slice mode。
u32PicWidth	编码图像宽度。以像素为单位。
u32PicHeight	编码图像高度。以像素为单位。
stAttrH264e/stAttrH265e/stAttrMjpege/stAttrJpege	某种协议的编码器属性。

【相关数据类型及接口】

VENC ATTR JPEG S

VENC ATTR MJPEG S

VENC ATTR H264 S

VENC ATTR H265 S

VENC CHN ATTR S

4.4.8 VENC_MJPEG_CBR_S

【说明】

定义 MJPEG 编码通道 CBR 属性结构。

```
typedef struct hiVENC_MJPEG_CBR_S {
   RK_U32 u32SrcFrameRateNum;
   RK_U32 u32SrcFrameRateDen;
   RK_FR32 fr32DstFrameRateNum;
   RK_FR32 fr32DstFrameRateDen;
   RK_FR32 fr32DstFrameRateDen;
   RK_U32 u32BitRate; // RW; Range:[2000, 98000000]; average bitrate
} VENC_MJPEG_CBR_S;
```

【成员】

成员名称	描述
u32SrcFrameRateNum	数据源帧率分子。
u32SrcFrameRateDen	数据源帧率分母。
fr32DstFrameRateNum	目标帧率分子。
fr32DstFrameRateDen	目标帧率分母。
u32BitRate	平均比特率,取值范围: [2000,98000000]。

4.4.9 VENC_MJPEG_VBR_S

【说明】

定义 MJPEG 编码通道 VBR 属性结构。

【定义】

```
typedef struct hiVENC_MJPEG_VBR_S {
   RK_U32 u32SrcFrameRateNum;
   RK_U32 u32SrcFrameRateDen;
   RK_FR32 fr32DstFrameRateNum;
   RK_FR32 fr32DstFrameRateDen;
   RK_FR32 fr32DstFrameRateDen;
   RK_U32 u32BitRate; // RW; Range:[2000, 98000000]; average bitrate
} VENC_MJPEG_VBR_S;
```

【成员】

成员名称	描述
u32SrcFrameRateNum	数据源帧率分子。
u32SrcFrameRateDen	数据源帧率分母。
fr32DstFrameRateNum	目标帧率分子。
fr32DstFrameRateDen	目标帧率分母。
u32BitRate	平均比特率,取值范围: [2000,98000000]。

4.4.10 VENC_H264_CBR_S

【说明】

定义 H.264 编码通道 CBR 属性结构。

```
typedef struct rkVENC_H264_CBR_S {
   RK_U32 u32Gop; // RW; Range:[1, 65536]; the interval of I Frame.
   RK_U32 u32SrcFrameRateNum;
   RK_U32 u32SrcFrameRateDen;
   RK_FR32 fr32DstFrameRateNum;
   RK_FR32 fr32DstFrameRateDen;
   RK_FR32 dr32DstFrameRateDen;
   RK_U32 u32BitRate; // RW; Range:[2, 614400]; average bitrate
} VENC_H264_CBR_S;
```

【成员】

成员名称	描述
u32Gop	I帧间隔,取值范围: [1,65536]。
u32SrcFrameRateNum	数据源帧率分子。
u32SrcFrameRateDen	数据源帧率分母。
fr32DstFrameRateNum	目标帧率分子。
fr32DstFrameRateDen	目标帧率分母。
u32BitRate	平均比特率,取值范围: [2,614400]。

4.4.11 VENC_H264_VBR_S

【说明】

定义 H.264 编码通道 VBR 属性结构。

【定义】

```
typedef struct rkVENC_H264_VBR_S {
   RK_U32 u32Gop; // RW; Range:[1, 65536]; the interval of ISLICE.
   RK_U32 u32SrcFrameRateNum;
   RK_U32 u32SrcFrameRateDen;
   RK_FR32 fr32DstFrameRateNum;
   RK_FR32 fr32DstFrameRateDen;
   RK_FR32 fr32DstFrameRateDen;
   RK_U32 u32MaxBitRate; // RW; Range:[2, 614400]; the max bitrate
} VENC_H264_VBR_S;
```

【成员】

成员名称	描述
u32Gop	ISLICE间隔,取值范围: [1,65536]。
u32SrcFrameRateNum	数据源帧率分子。
u32SrcFrameRateDen	数据源帧率分母。
fr32DstFrameRateNum	目标帧率分子。
fr32DstFrameRateDen	目标帧率分母。
u32BitRate	平均比特率,取值范围: [2,614400]。

4.4.12 VENC_H265_CBR_S

【说明】

定义 H.265 编码通道 CBR 属性结构。

【定义】

```
1 typedef struct rkVENC_H264_CBR_S VENC_H265_CBR_S;
```

【相关数据类型及接口】

VENC H264 CBR S

4.4.13 VENC_H265_VBR_S

【说明】

定义 H.265 编码通道 VBR 属性结构。

【定义】

```
1 typedef struct rkVENC_H264_VBR_S VENC_H265_VBR_S;
```

【相关数据类型及接口】

VENC H264 VBR S

$4.4.14\ VENC_RC_MODE_E$

【说明】

定义编码通道码率控制器模式。

```
typedef enum rkVENC_RC_MODE_E {
    // H264

VENC_RC_MODE_H264CBR = 1,

VENC_RC_MODE_H264VBR,

// MJPEG

VENC_RC_MODE_MJPEGCBR,

VENC_RC_MODE_MJPEGVBR,

// H265

VENC_RC_MODE_H265CBR,

VENC_RC_MODE_H265CBR,

VENC_RC_MODE_H265VBR,

VENC_RC_MODE_BUTT,

VENC_RC_MODE_BUTT,

VENC_RC_MODE_E;
```

4.4.15 VENC_RC_ATTR_S

【说明】

定义编码通道码率控制器属性。

【定义】

```
typedef struct rkVENC_RC_ATTR_S {
    /* RW; the type of rc*/
    VENC_RC_MODE_E enRcMode;
union {
    VENC_H264_CBR_S stH264Cbr;
    VENC_H264_VBR_S stH264Vbr;

    VENC_MJPEG_CBR_S stMjpegCbr;
    VENC_MJPEG_VBR_S stMjpegVbr;

    VENC_MJPEG_VBR_S stMjpegVbr;

    VENC_H265_CBR_S stH265Cbr;
    VENC_H265_VBR_S stH265Vbr;
}

VENC_RC_ATTR_S;

VENC_RC_ATTR_S;
```

【成员】

成员名称	描述
enRcMode	编码协议类型。
stH264Cbr	H.264 协议编码通道 Cbr 模式属性。
stH264Vbr	H.264 协议编码通道 Vbr 模式属性。
stMjpegCbr	MJPEG 协议编码通道 Cbr 模式属性。
stMjpegVbr	MJPEG 协议编码通道 Vbr 模式属性。
stH265Cbr	H.265 协议编码通道 Cbr 模式属性。
stH265Vbr	H.265 协议编码通道 Vbr 模式属性。

【相关数据类型及接口】

```
VENC MJPEG CBR S
```

VENC MJPEG VBR S

VENC H264 CBR S

VENC H264 VBR S

VENC H265 CBR S

VENC H265 VBR S

VENC RC MODE E

4.4.16 VENC_GOP_MODE_E

【说明】

定义 Gop Mode 类型。

【定义】

```
typedef enum rkVENC_GOP_MODE_E {

VENC_GOPMODE_NORMALP = 0,

VENC_GOPMODE_TSVC,

VENC_GOPMODE_SMARTP,

VENC_GOPMODE_BUTT,

VENC_GOPMODE_E;
```

【注意】

具体模式说明可参考GOP Mode。

4.4.17 VENC_GOP_ATTR_S

【说明】

定义编码器 GOP 属性结构体。

【定义】

```
typedef struct rkVENC_GOP_ATTR_S {

VENC_GOP_MODE_E enGopMode;

RK_U32 u32GopSize;

RK_S32 s32IPQpDelta;

RK_U32 u32BgInterval;

RK_S32 s32ViQpDelta;

VENC_GOP_ATTR_S;
```

【成员】

成员名称	描述
enGopMode	编码 GOP 类型。
u32GopSize	编码 GOP 大小。
s32IPQpDelta	I 帧相对 P 帧的 QP 差值。
u32BgInterval	长期参考帧的间隔。
s32ViQpDelta	虚拟 I 帧相对于普通 P 帧的 QP 差值。

【相关数据类型及接口】

VENC GOP MODE E

4.4.18 VENC_CHN_ATTR_S

【说明】

VENC通道属性结构体。

【定义】

```
typedef struct rkVENC_CHN_ATTR_S {

VENC_ATTR_S stVencAttr;  // the attribute of video encoder

VENC_RC_ATTR_S stRcAttr;  // the attribute of rate ctrl

VENC_GOP_ATTR_S stGopAttr;  // the attribute of gop

VENC_CHN_ATTR_S;
```

【成员】

成员名称	描述
stVencAttr	编码器属性。
stRcAttr	码率控制器属性。
stGopAttr	GOP属性。

【相关数据类型及接口】

VENC ATTR S

VENC RC ATTR S

VENC GOP ATTR S

4.4.19 VENC_PARAM_MJPEG_S

【说明】

MJPEG 通道参数。

```
1 typedef struct rkVENC_PARAM_MJPEG_S {
2    // reserved
3 } VENC_PARAM_MJPEG_S;
```

4.4.20 VENC_PARAM_H264_S

【说明】

H.264 通道参数。

【定义】

【成员】

成员名称	描述
u32StepQp	QP的step值。
u32MaxQp	QP最大值,取值范围[8,51]。
u32MinQp	QP最小值,取值范围[0, 48],不能大于u32MaxQp。
u32MaxIQp	I帧的QP最大值。
u32MinIQp	I帧的QP最小值。

4.4.21 VENC_PARAM_H265_S

【说明】

H.265 通道参数。

```
1 typedef struct rkVENC PARAM H265 S {
    RK U32 u32StepQp;
    RK_U32 u32MaxQp; // RW; Range:[8, 51];the max QP value
    RK U32 u32MinQp; // RW; Range:[0, 48]; the min QP value , can not be larger
   than
                     // u32MaxQp
    RK_U32 u32MaxIQp; // RW; max qp for i frame
    RK_U32 u32MinIQp; // RW; min qp for i frame, can not be larger than
   u32MaxIQp
    // RK S32 s32MaxReEncodeTimes; /* RW; Range:[0, 3]; Range:max
   number
    // of re-encode times.*/
10
11
    // RK_U32 u32DeltIpQp;
12 } VENC_PARAM_H265_S;
```

【成员】

成员名称	描述
u32StepQp	QP的step值。
u32MaxQp	QP最大值,取值范围[8,51]。
u32MinQp	QP最小值,取值范围[0, 48],不能大于u32MaxQp。
u32MaxIQp	I帧的QP最大值。
u32MinIQp	I帧的QP最小值。

4.4.22 VENC_RC_PARAM_S

【说明】

编码通道码率控制器的高级参数。

【定义】

```
typedef struct rkVENC_RC_PARAM_S {
   RK_U32 s32FirstFrameStartQp; // RW; Start QP value of the first frame
   union {
    VENC_PARAM_H264_S stParamH264;
    VENC_PARAM_H265_S stParamH265;
    VENC_PARAM_MJPEG_S stParamMjpeg;
};

VENC_RC_PARAM_S;
```

【成员】

成员名称	描述
s32FirstFrameStartQp	第一帧的QP值。
stParamH264	H.264 通道参数。
stParamH265	H.265 通道参数。
stParamMjpeg	MJPEG 通道参数。

【相关数据类型及接口】

VENC PARAM H264 S

VENC PARAM H265 S

VENC PARAM MJPEG S

4.4.23 VENC_RC_QUALITY_E

【说明】

编码质量枚举类型。

【定义】

```
typedef enum rkVENC_RC_QUALITY_E {

venc_Rc_Quality_Highest,

venc_Rc_Quality_High,

venc_Rc_Quality_Medium,

venc_Rc_Quality_Low,

venc_Rc_Quality_Low,

venc_Rc_Quality_Lower,

venc_Rc_Quality_Lowest,

venc_Rc_Quality_Lowest,

venc_Rc_Quality_Butt,

venc_Rc_Quality_Butt,

venc_Rc_Quality_E;
```

4.4.24 VENC_ROI_ATTR_S

【说明】

ROI 区域参数。

```
typedef struct hiVENC ROI ATTR S {
    RK U32 u32Index; // RW; Range:[0, 7]; Index of an ROI. The system supports
3
                     // indexes ranging from 0 to 7
   RK BOOL bEnable; // RW; Range:[0, 1]; Whether to enable this ROI
4
    RK_BOOL bAbsQp; // RW; Range:[0, 1]; QP mode of an ROI.HI_FALSE: relative
5
                    // QP.HI_TURE: absolute QP.
6
   RK_S32 s32Qp; // RW; Range:[-51, 51]; QP value,only relative mode can QP
   value
                  // less than 0.
   RK_BOOL bIntra; // flag of forced intra macroblock
9
    RECT_S stRect; // RW; Region of an ROI
11 } VENC_ROI_ATTR_S;
```

【成员】

成员名称	描述
u32Index	ROI索引值,取值范围[0,7]。
bEnable	是否使能ROI。
bAbsQp	ROI的QP模式,取值范围: [0, 1]。 1: absolute QP。 0: relative QP。
s32Qp	QP值,取值范围: [-51,51]。 只有相对模式才能使QP值小于0。
bIntra	强制帧内宏块的标志。
stRect	ROI区域。

【相关数据类型及接口】

RECT_S

4.4.25 OSD REGION ID E

【说明】

OSD区域ID枚举类型。

```
typedef enum rkOSD_REGION_ID_E {
    REGION_ID_0 = 0,
    REGION_ID_1,
    REGION_ID_2,
    REGION_ID_3,
    REGION_ID_4,
    REGION_ID_6,
    REGION_ID_6,
    REGION_ID_7
}
SOURCE ON TO BE

Comparison of the type of type of
```

4.4.26 OSD_REGION_INFO_S

【说明】

OSD区域信息。

【定义】

```
typedef struct rkOSD_REGION_INFO_S {
   OSD_REGION_ID_E enRegionId;
   RK_U32 u32PosX;
   RK_U32 u32PosY;
   RK_U32 u32Width;
   RK_U32 u32Height;
   RK_U8 u8Inverse;
   RK_U8 u8Enable;
} OSD_REGION_INFO_S;
```

【成员】

成员名称	描述
enRegionId	OSD区域索引值,取值范围[0,7]。
u32PosX	OSD区域X轴坐标。
u32PosY	OSD区域Y轴坐标。
u32Width	OSD区域宽度。
u32Height	OSD区域高度。
u8Inverse	OSD区域是否反色。
u8Enable	OSD区域是否使能。

【相关数据类型及接口】

OSD REGION ID E

4.4.27 OSD PIXEL FORMAT E

【说明】

OSD像素格式类型枚举。

```
typedef enum rkOSD_PIXEL_FORMAT_E {
    PIXEL_FORMAT_ARGB_1555 = 0,
    PIXEL_FORMAT_ARGB_8888,
} OSD_PIXEL_FORMAT_E;
```

4.4.28 BITMAP_S

【说明】

位图信息和数据。

【定义】

```
typedef struct rkBITMAP_S {
   OSD_PIXEL_FORMAT_E enPixelFormat; /* Bitmap's pixel format */
   RK_U32 u32Width; /* Bitmap's width */
   RK_U32 u32Height; /* Bitmap's height */
   RK_VOID *pData; /* Address of Bitmap's data */
} BITMAP_S;
```

【成员】

成员名称	描述
enPixelFormat	位图像素格式。
u32Width	位图宽度。
u32Height	位图高度。
pData	位图数据的地址。

【相关数据类型及接口】

OSD PIXEL FORMAT E

4.4.29 COVER INFO S

【说明】

隐私遮挡信息。

【定义】

```
typedef struct rkCOVER_INFO_S {
   OSD_PIXEL_FORMAT_E enPixelFormat; /* Bitmap's pixel format */
   RK_U32 u32Color; /* Covered area color */
} COVER_INFO_S;
```

【成员】

成员名称	描述
enPixelFormat	位图像素格式。
u32Color	遮挡区域颜色。

【相关数据类型及接口】

OSD PIXEL FORMAT E

4.4.30 VENC_RECV_PIC_PARAM_S

【说明】

接收图像参数结构体指针,用于指定需要接收的图像帧数。

【定义】

```
typedef struct rkVENC_RECV_PIC_PARAM_S {
    RK_S32 s32RecvPicNum;
} VENC_RECV_PIC_PARAM_S;
```

【成员】

成员名称	描述
s32RecvPicNum	需要接收的图像帧数。

4.4.31 VENC_JPEG_PARAM_S

【说明】

JPEG 协议编码通道的高级参数。

【定义】

```
1 typedef struct rkVENC_JPEG_PARAM_S {
2    RK_U32 u32Qfactor; // 1-10
3    RK_U8 u8YQt[64];
4    RK_U8 u8CbQt[64];
5    RK_U8 u8CrQt[64];
6    RK_U32 u32MCUPerECS;
7 } VENC_JPEG_PARAM_S;
```

【成员】

成员名称	描述
u32Qfactor	具体含义请参见 RFC2435 协议,取值范围: [1,10]。
u8YQt	Y量化表。
u8CbQt	Cb 量化表。
u8CrQt	Cr 量化表。
u32MCUPerECS	每个 ECS 中包含多少个 MCU。

4.5 错误码

视频编码 API 错误码如<u>表4-1</u>所示:

表4-1 视频编码 API 错误码

错误代码	宏定义	描述
20	RK_ERR_VENC_INVALID_CHNID	通道 ID 超出合法范围
21	RK_ERR_VENC_ILLEGAL_PARAM	参数超出合法范围
22	RK_ERR_VENC_EXIST	试图申请或者创建已经存在的设备、通道或者资源
23	RK_ERR_VENC_UNEXIST	试图使用或者销毁不存在的设备、通道或者 资源
24	RK_ERR_VENC_NULL_PTR	函数参数中有空指针
25	RK_ERR_VENC_NOT_CONFIG	使用前未配置
26	RK_ERR_VENC_NOT_SUPPORT	不支持的参数或者功能
27	RK_ERR_VENC_NOT_PERM	该操作不允许,如试图修改静态配置参数
28	RK_ERR_VENC_NOBUF	分配缓存失败,如申请的数据缓冲区太大
29	RK_ERR_VENC_BUF_EMPTY	缓冲区中无数据
30	RK_ERR_VENC_BUF_FULL	缓冲区中数据满
31	RK_ERR_VENC_NOTREADY	系统没有初始化或没有加载相应模块
32	RK_ERR_VENC_BUSY	VENC 系统忙

5. 移动侦测

5.1 概述

移动侦测(MD)模块实现运动区域检测,最大支持4096个区域。

5.2 功能描述

MD算法由软件实现,输入的分辨率不宜太大,典型分辨率640x480,分辨率越大,CPU负载也高。

5.3 API参考

5.3.1 RK_MPI_ALGO_MD_CreateChn

【描述】

创建MD通道。

【语法】

RK_MPI_ALGO_MD_CreateChn(<u>ALGO_MD_CHN</u> MdChn, const <u>ALGO_MD_ATTR_S</u> *pstChnAttr);

【参数】

参数名称	描述	输入/输出
MdChn	移动侦测通道号。取值范围: [0, ALGO_MD_MAX_CHN_NUM)。	输入
pstChnAttr	移动侦测通道属性。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI ALGO MD DestroyChn

5.3.2 RK_MPI_ALGO_MD_DestroyChn

【描述】

销毁MD通道。

【语法】

RK_S32 RK_MPI_ALGO_MD_DestroyChn(<u>ALGO_MD_CHN</u> MdChn);

【参数】

参数名称	描述	输入/输出
MdChn	移动侦测通道号。取值范围: [0, <u>ALGO_MD_MAX_CHN_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI ALGO MD CreateChn

5.4 数据类型

移动侦测相关数据类型定义如下:

ALGO MD MAX CHN NUM: 定义移动侦测通道的最大个数。

ALGO MD ROI RET MAX: 定义移动侦测每个通道的ROI区域最大个数。

ALGO MD CHN: 移动侦测通道号。

ALGO MD ATTR S: 定义移动侦测通道属性结构体。

5.4.1 ALGO_MD_MAX_CHN_NUM

【说明】

定义移动侦测通道的最大个数。

【定义】

- 1 RV1109/RV1126:
- 2 #define ALGO_MD_MAX_CHN_NUM VI_MAX_CHN_NUM

【相关数据类型及接口】

VI MAX CHN NUM

5.4.2 ALGO_MD_ROI_RET_MAX

【说明】

定义移动侦测每个通道的ROI区域最大个数。

【定义】

```
1 RV1109/RV1126:
2 #define ALGO_MD_ROI_RET_MAX 4096
```

5.4.3 ALGO_MD_CHN

【说明】

移动侦测通道号。

【定义】

```
1 | typedef RK_S32 ALGO_MD_CHN;
```

5.4.4 ALGO MD ATTR S

【说明】

定义移动侦测通道属性结构体。

【定义】

```
typedef struct rkALGO_MD_ATTR_S {

IMAGE_TYPE_E imageType; // the type of input image

RK_U32 u32Width;

RK_U32 u32Height;

RK_U16 u16RoiCnt; // RW; Range:[0, ALGO_MD_ROI_RET_MAX].

RECT_S stRoiRects[ALGO_MD_ROI_RET_MAX];

RK_U16 u16Sensitivity; // value 0(sys default) or [1 - 100].

ALGO_MD_ATTR_S;
```

成员名称	描述
imageType	输入图像类型。
u32Width	移动侦测区域宽度。
u32Height	移动侦测区域高度。
u16RoiCnt	ROI区域个数,取值范围: [0, ALGO_MD_ROI_RET_MAX]。
stRoiRects	ROI区域属性的结构体数组。
u16Sensitivity	移动侦测灵敏度,取值范围: [1,100]。

【相关数据类型及接口】

RECT S

IMAGE TYPE E

ALGO MD ROI RET MAX

5.5 错误码

视频编码 API 错误码如表5-1所示:

表5-1 视频编码 API 错误码

错误代 码	宏定义	描述
70	RK_ERR_ALGO_MD_INVALID_CHNID	通道 ID 超出合法范围
71	RK_ERR_ALGO_MD_BUSY	移动侦测系统忙
72	RK_ERR_ALGO_MD_EXIST	试图申请或者创建已经存在的设备、通 道或者资源
73	RK_ERR_ALGO_MD_NOT_CONFIG	使用前未配置
74	RK_ERR_ALGO_MD_ILLEGAL_PARAM	参数超出合法范围

6. 遮挡侦测

6.1 概述

遮挡侦测(Occlusion Detection)模块实现遮挡报警,最大支持10个区域。

6.2 功能描述

OD算法由软件实现,输入的分辨率不宜太大,典型分辨率640x480,分辨率越大,CPU负载也高。

6.3 API参考

6.3.1 RK_MPI_ALGO_OD_CreateChn

【描述】

创建OD通道。

【语法】

【参数】

参数名称	描述	输入/输出
OdChn	遮挡侦测通道号。取值范围: [0, ALGO_OD_MAX_CHN_NUM)。	输入
pstChnAttr	遮挡侦测通道属性。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI ALGO OD DestroyChn

6.3.2 RK_MPI_ALGO_OD_DestroyChn

【描述】

销毁OD通道。

【语法】

RK_S32 RK_MPI_ALGO_OD_DestroyChn(ALGO_OD_CHN OdChn);

【参数】

参数名称	描述	输入/输出
OdChn	遮挡侦测通道号。取值范围: [0, ALGO_OD_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
丰6	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI ALGO OD CreateChn

6.4 数据类型

遮挡侦测相关数据类型定义如下:

ALGO OD MAX CHN NUM: 定义遮挡侦测通道的最大个数。

ALGO OD ROI RET MAX: 定义遮挡侦测每个通道的ROI区域最大个数。

ALGO OD CHN: 遮挡侦测通道号。

ALGO OD ATTR S: 定义遮挡侦测通道属性结构体。

6.4.1 ALGO_OD_MAX_CHN_NUM

【说明】

定义遮挡侦测通道的最大个数。

【定义】

```
1 RV1109/RV1126:
```

2 | #define ALGO_OD_MAX_CHN_NUM VI_MAX_CHN_NUM

【相关数据类型及接口】

VI MAX CHN NUM

6.4.2 ALGO_OD_ROI_RET_MAX

【说明】

定义遮挡侦测每个通道的ROI区域最大个数。

【定义】

```
1 RV1109/RV1126:
2 #define ALGO_OD_ROI_RET_MAX 10
```

6.4.3 ALGO_OD_CHN

【说明】

遮挡侦测通道号。

【定义】

```
1 | typedef RK_S32 ALGO_OD_CHN;
```

6.4.4 ALGO_OD_ATTR_S

【说明】

定义遮挡侦测通道属性结构体。

【定义】

```
typedef struct rkALGO_OD_ATTR_S {

IMAGE_TYPE_E enImageType; // the type of input image

RK_U32 u32Width;

RK_U32 u32Height;

RK_U16 u16RoiCnt; // RW; Range:[0, ALGO_OD_ROI_RET_MAX].

RECT_S stRoiRects[ALGO_OD_ROI_RET_MAX];

RK_U16 u16Sensitivity; // value 0(sys default) or [1 - 100].

ALGO_OD_ATTR_S;
```

成员名称	描述
enImageType	输入图像类型。
u32Width	遮挡侦测区域宽度。
u32Height	遮挡侦测区域高度。
u16RoiCnt	ROI区域个数,取值范围: [0, ALGO_OD_ROI_RET_MAX]。
stRoiRects	ROI区域属性的结构体数组。
u16Sensitivity	遮挡侦测灵敏度,取值范围: [1,100]。

【相关数据类型及接口】

RECT_S

IMAGE TYPE E

ALGO OD ROI RET MAX

6.5 错误码

视频编码 API 错误码如表6-1所示:

表6-1 视频编码 API 错误码

错误代 码	宏定义	描述
80	RK_ERR_ALGO_OD_INVALID_CHNID	通道 ID 超出合法范围
81	RK_ERR_ALGO_OD_BUSY	移动侦测系统忙
82	RK_ERR_ALGO_OD_EXIST	试图申请或者创建已经存在的设备、通 道或者资源
83	RK_ERR_ALGO_OD_NOT_CONFIG	使用前未配置
84	RK_ERR_ALGO_OD_ILLEGAL_PARAM	参数超出合法范围

7. 音频

7.1 概述

AUDIO 模块包括音频输入、音频输出、音频编码、音频解码四个子模块。

音频输入和输出模块通过对Linux ALSA音频接口的封装,实现音频输入输出功能。

音频编码和解码模块通过对ffmpeg 音频编码器的封装实现。支持G711A/G711U/G726/MP2。

7.2 功能描述

7.2.1 音频输入输出

音频输入AI输出AO,用于和 Audio Codec 对接,完成声音的录制和播放。RKMedia AI/AO依赖于Linux ALSA设备,不同的声卡,只要支持ALSA驱动,就可以使用AI/AO接口。AI中集成了音频算法,可通过配置开启。开启算法后,AI输出经过算法处理后的PCM数据。

7.2.2 音频编解码

音频编解码是通过对ffmpeg的封装实现,目前支持G711A/G711U/G726/MP2。

7.2.3 音频算法

目前支持对讲场景AEC算法,录音场景ANR算法。

7.3 API参考

7.3.1 音频输入

7.3.1.1 RK_MPI_AI_EnableChn

【描述】

打开AI通道。

【语法】

RK_S32 RK_MPI_AI_EnableChn(AI_CHN AiChn);

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI AI DisableChn

7.3.1.2 RK_MPI_AI_DisableChn

【描述】

关闭AI通道。

【语法】

RK_S32 RK_MPI_AI_DisableChn(<u>AI_CHN</u> AiChn);

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI AI EnableChn

7.3.1.3 RK_MPI_AI_SetChnAttr

【描述】

设置AO通道属性。

【语法】

RK_S32 RK_MPI_AI_SetChnAttr(<u>AI_CHN</u> AiChn, const <u>AI_CHN_ATTR_S</u> *pstAttr);

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI MAX CHN NUM)。	输入
pstAttr	AI 通道属性指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.1.4 RK_MPI_AI_SetVolume

【描述】

设置音量。

【语法】

 $RK_S32\ RK_MPI_AI_SetVolume(\underline{AI_CHN}\ AiChn,\ RK_S32\ s32Volume);$

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入
s32Volume	音频输入通道音量大小。取值范围: [0,100]。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.1.5 RK_MPI_AI_GetVolume

【描述】

获取音量。

【语法】

RK_S32 RK_MPI_AI_GetVolume(<u>AI_CHN</u> AiChn, RK_S32 *ps32Volume);

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入
ps32Volume	音频输入通道音量大小。	输出

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.1.6 RK_MPI_AI_SetTalkVqeAttr

【描述】

设置 AI 的声音质量增强功能(Talk)相关属性。

【语法】

RK_S32 RK_MPI_AI_SetTalkVqeAttr(<u>AI_CHN</u> AiChn, <u>AI_TALKVQE_CONFIG_S</u>*pstVqeConfig);

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入
pstVqeConfig	音频输入声音质量增强配置结构体指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

$7.3.1.7\ RK_MPI_AI_GetTalkVqeAttr$

【描述】

获取 AI 的声音质量增强功能(Talk)相关属性。

【语法】

RK_S32 RK_MPI_AI_GetTalkVqeAttr(<u>AI_CHN</u> AiChn, <u>AI_TALKVQE_CONFIG_S</u>*pstVqeConfig);

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入
pstVqeConfig	音频输入声音质量增强配置结构体指针。	输出

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.1.8 RK_MPI_AI_SetRecordVqeAttr

【描述】

设置 AI 的声音质量增强功能(Record)相关属性。

【语法】

 $RK_S32\ RK_MPI_AI_SetRecordVqeAttr(\underline{AI_CHN}\ AiChn, \underline{AI_RECORDVQE_CONFIG_S}*pstVqeConfig);$

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入
pstVqeConfig	音频输入声音质量增强配置结构体指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

$7.3.1.9~RK_MPI_AI_GetRecordVqeAttr$

【描述】

获取 AI 的声音质量增强功能(Record)相关属性。

【语法】

RK_S32 RK_MPI_AI_GetRecordVqeAttr(<u>AI_CHN</u> AiChn, <u>AI_RECORDVQE_CONFIG_S</u>*pstVqeConfig);

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入
pstVqeConfig	音频输入声音质量增强配置结构体指针。	输出

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.1.10 RK_MPI_AI_EnableVqe

【描述】

使能 AI 的声音质量增强功能。

【语法】

 $RK_S32\ RK_MPI_AI_EnableVqe(\underline{AI_CHN}\ AiChn);$

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.1.11 RK_MPI_AI_DisableVqe

【描述】

禁用 AI 的声音质量增强功能。

【语法】

 $RK_S32\ RK_MPI_AI_DisableVqe(\underline{AI_CHN}\ AiChn);$

【参数】

参数名称	描述	输入/输出
AiChn	音频输入通道号。取值范围: [0, AI_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
丰6	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.2 音频输出

$7.3.2.1~RK_MPI_AO_EnableChn$

【描述】

打开AO通道。

【语法】

RK_S32 RK_MPI_AO_EnableChn(AO_CHN AoChn);

【参数】

参数名称	描述	输入/输出
AoChn	音频输出通道号。取值范围: [0, AO_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI AO DisableChn

$7.3.2.2~RK_MPI_AO_DisableChn$

【描述】

关闭AO通道。

【语法】

RK_S32 RK_MPI_AO_DisableChn(AO_CHN AoChn);

【参数】

参数名称	描述	输入/输出
AoChn	音频输出通道号。取值范围: [0, AO MAX CHN NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI AO EnableChn

$7.3.2.3~RK_MPI_AO_SetChnAttr$

【描述】

设置AO通道属性。

【语法】

RK_S32 RK_MPI_AO_SetChnAttr(<u>AO_CHN</u> AoChn, const <u>AO_CHN_ATTR_S</u> *pstAttr);

【参数】

参数名称	描述	输入/输出
AoChn	音频输出通道号。取值范围: [0, AO_MAX_CHN_NUM)。	输入
pstAttr	音频输出通道属性指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

$7.3.2.4~RK_MPI_AO_SetVolume$

【描述】

设置音量。

【语法】

 $RK_S32\ RK_MPI_AO_SetVolume(\underline{AO_CHN}\ AoChn,\ RK_S32\ s32Volume);$

【参数】

参数名称	描述	输入/输出
AoChn	音频输出通道号。取值范围: [0, AO_MAX_CHN_NUM)。	输入
s32Volume	音频输出通道音量大小。取值范围: [0,100]。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

$7.3.2.5~RK_MPI_AO_GetVolume$

【描述】

获取音量。

【语法】

RK_S32 RK_MPI_AO_GetVolume(AO_CHN AoChn, RK_S32 *ps32Volume);

【参数】

参数名称	描述	输入/输出
AoChn	音频输出通道号。取值范围: [0, AO_MAX_CHN_NUM)。	输入
ps32Volume	音频输出通道音量大小。	输出

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.2.6 RK_MPI_AO_SetVqeAttr

【描述】

设置AO的声音质量增强功能相关属性。

【语法】

RK_S32 RK_MPI_AO_SetVqeAttr(AO_CHN AoChn, AO_VQE_CONFIG_S *pstVqeConfig);

【参数】

参数名称	描述	输入/输出
AoChn	音频输出通道号。取值范围: [0, AO_MAX_CHN_NUM)。	输入
pstVqeConfig	音频输出声音质量增强配置结构体指针。	输入

【返回值】

返回值	描述
0	成功。
≢ 1€0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.2.7 RK_MPI_AO_GetVqeAttr

【描述】

获取 AO 的声音质量增强功能相关属性。

【语法】

【参数】

参数名称	描述	输入/输出
AoChn	音频输出通道号。取值范围: [0, AO_MAX_CHN_NUM)。	输入
pstVqeConfig	音频输出声音质量增强配置结构体指针。	输出

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.2.8 RK_MPI_AO_EnableVqe

【描述】

使能 AO 的声音质量增强功能。

【语法】

RK_S32 RK_MPI_AO_EnableVqe(AO_CHN AoChn);

【参数】

参数名称	描述	输入/输出
AoChn	音频输出通道号。取值范围: [0, AO_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

$7.3.2.9~RK_MPI_AO_DisableVqe$

【描述】

禁用 AO 的声音质量增强功能。

【语法】

 $RK_S32\ RK_MPI_AO_DisableVqe(\underline{AO_CHN}\ AoChn);$

【参数】

参数名称	描述	输入/输出
AoChn	音频输出通道号。取值范围: [0, AO_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

无。

7.3.3 音频编码

7.3.3.1 RK_MPI_AENC_CreateChn

【描述】

创建音频编码通道。

【语法】

RK_MPI_AENC_CreateChn(<u>AENC_CHN</u> AencChn,const <u>AENC_CHN_ATTR_S</u> *pstAttr);

【参数】

参数名称	描述	输入/输出
AencChn	音频编码通道号。取值范围: [0, AENC_MAX_CHN_NUM)。	输入
pstAttr	音频编码通道属性指针。	输入

【返回值】

返回值	描述
0	成功。
≢ E 0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

目前支持协议如音频编解码所示。

【举例】

无。

【相关主题】

RK_MPI_AENC_DestroyChn

7.3.3.2 RK_MPI_AENC_DestroyChn

【描述】

销毁音频编码通道。

【语法】

RK_S32 RK_MPI_AENC_DestroyChn(<u>AENC_CHN</u> AencChn);

【参数】

参数名称	描述	输入/输出
AencChn	音频编码通道号。取值范围: [0, AENC_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI AENC CreateChn

7.3.4 音频解码

7.3.4.1 RK_MPI_ADEC_CreateChn

【描述】

创建音频解码通道。

【语法】

RK_S32 RK_MPI_ADEC_CreateChn(<u>ADEC_CHN</u> AdecChn, const <u>ADEC_CHN_ATTR_S</u> *pstAttr);

【参数】

参数名称	描述	输入/输出
AdecChn	音频解码通道号。取值范围: [0, ADEC_MAX_CHN_NUM)。	输入
pstAttr	音频解码通道属性指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

目前支持协议如音频编解码所示。

【举例】

无。

【相关主题】

RK MPI ADEC DestroyChn

$7.3.4.2~RK_MPI_ADEC_DestroyChn$

【描述】

销毁音频解码通道。

【语法】

RK_S32 RK_MPI_ADEC_DestroyChn(<u>ADEC_CHN</u> AdecChn);

【参数】

参数名称	描述	输入/输出
AdecChn	音频解码通道号。取值范围: [0, ADEC_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

【相关主题】

RK MPI ADEC CreateChn

7.4 数据类型

7.4.1 音频输入

音频输入相关数据类型定义如下:

AI MAX CHN NUM: 音频输入通道的最大个数。

AI CHN: 音频输入通道号。

AI CHN ATTR S: 音频输入属性结构体。

AI TALKVQE CONFIG S: 音频输入声音质量增强(Talk)配置信息结构体。

AI RECORDVQE CONFIG S: 音频输入声音质量增强(Record)配置信息结构体。

7.4.1.1 AI_MAX_CHN_NUM

【说明】

音频输入通道的最大个数。

【定义】

```
1 | RV1109/RV1126:
2 | #define AI_MAX_CHN_NUM 1
```

7.4.1.2 AI CHN

【说明】

音频输入通道号。

【定义】

```
1 typedef RK_S32 AI_CHN;
```

7.4.1.3 AI_CHN_ATTR_S

【说明】

音频输入属性结构体。

```
typedef struct rkAI_CHN_ATTR_S {

RK_CHAR *pcAudioNode;

sample_Format_E enSampleFormat;

RK_U32 u32Channels;

RK_U32 u32SampleRate;

RK_U32 u32NbSamples;

AI_CHN_ATTR_S;
```

【成员】

成员名称	描述
pcAudioNode	音频设备节点路径。
enSampleFormat	采样格式。
u32Channels	通道数。
u32SampleRate	采样率。
u32NbSamples	每帧的采样点个数。

【相关数据类型及接口】

Sample Format E

7.4.1.4 AI_TALKVQE_CONFIG_S

【说明】

音频输入声音质量增强(Talk)配置信息结构体。

【定义】

```
#define AI_TALKVQE_MASK_AEC 0x1
#define AI_TALKVQE_MASK_ANR 0x2
#define AI_TALKVQE_MASK_AGC 0x4

typedef struct rkAI_TALKVQE_CONFIG_S {
    RK_U32 u32OpenMask;
    RK_S32 s32WorkSampleRate;
    RK_S32 s32FrameSample;
    RK_CHAR aParamFilePath[MAX_FILE_PATH_LEN];
} AI_TALKVQE_CONFIG_S;
```

成员名称	描述
u32OpenMask	Talk Vqe 的各功能使能的 Mask 值。 目前支持AI_TALKVQE_MASK_AEC、 AI_TALKVQE_MASK_ANR、 AI_TALKVQE_MASK_AGC。
s32WorkSampleRate	工作采样频率。
s32FrameSample	采样点数目。
aParamFilePath	参数文件路径。

【相关数据类型及接口】

MAX FILE PATH LEN

7.4.1.5 AI_RECORDVQE_CONFIG_S

【说明】

音频输入声音质量增强(Record)配置信息结构体。

【定义】

```
#define AI_RECORDVQE_MASK_ANR 0x1

typedef struct rkAI_RECORDVQE_CONFIG_S {
    RK_U32 u32OpenMask;
    RK_S32 s32WorkSampleRate;
    RK_S32 s32FrameSample;
    struct {
        RK_FLOAT fPostAddGain; /* post-gain 0*/
        RK_FLOAT fGmin; /* spectral gain floor, unit: (dB), default:-30dB */
        RK_FLOAT fNoiseFactor; /* noise suppression factor, default:0.98 */
} stAnrConfig;

AI_RECORDVQE_CONFIG_S;
```

成员名称	描述
u32OpenMask	Record Vqe 的各功能使能的 Mask 值。 目前支持AI_RECORDVQE_MASK_ANR。
s32WorkSampleRate	工作采样频率。
s32FrameSample	采样点数目。
stAnrConfig.fPostAddGain	ANR的post-gain。
stAnrConfig.fGmin	ANR频谱增益底限,单位为dB,默认值为-30dB。
stAnrConfig.fNoiseFactor	ANR噪音抑制系数,默认值为0.98。

7.4.2 音频输出

音频输出相关数据类型定义如下:

AO MAX CHN NUM: 音频输出通道的最大个数。

AO CHN: 音频输出通道号。

AO CHN ATTR S: 音频输出属性结构体。

AO VQE CONFIG S: 音频输出声音质量增强配置信息结构体。

7.4.2.1 AO MAX CHN NUM

【说明】

音频输出通道的最大个数。

【定义】

```
1 RV1109/RV1126:
2 #define AO_MAX_CHN_NUM 1
```

7.4.2.2 AO_CHN

【说明】

音频输出通道号。

【定义】

```
1 | typedef RK_S32 AO_CHN;
```

7.4.2.3 AO_CHN_ATTR_S

【说明】

音频输出属性结构体。

【定义】

```
typedef struct rkAO_CHN_ATTR_S {
   RK_CHAR *pcAudioNode;
   Sample_Format_E enSampleFormat;
   RK_U32 u32Channels;
   RK_U32 u32SampleRate;
   RK_U32 u32NbSamples;
} AO_CHN_ATTR_S;
```

成员名称	描述
pcAudioNode	音频设备节点路径。
enSampleFormat	采样格式。
u32Channels	通道数。
u32SampleRate	采样率。
u32NbSamples	每帧的采样点个数。

【相关数据类型及接口】

Sample Format E

7.4.2.4 AO_VQE_CONFIG_S

【说明】

音频输出声音质量增强配置信息结构体。

【定义】

【成员】

成员名称	描述
u32OpenMask	AO Vqe 的各功能使能的 Mask值。 目前支持AO_VQE_MASK_ANR、 AO_VQE_MASK_AGC。
s32WorkSampleRate	工作采样频率。
s32FrameSample	采样点数目。
aParamFilePath	参数文件路径。

【相关数据类型及接口】

MAX FILE PATH LEN

7.4.3 音频编码

音频编码相关数据类型定义如下:

AENC MAX CHN NUM: 音频编码通道的最大个数。

AENC CHN: 音频编码通道号。

AENC ATTR AAC S: AAC 编码协议属性结构体。

AENC ATTR MP2 S: MP2 编码协议属性结构体。

AENC ATTR G711A S: G.711A 编码协议属性结构体。

AENC_ATTR_G711U_S: G.711U 编码协议属性结构体。

AENC ATTR G726 S: G.726 编码协议属性结构体。

AENC CHN ATTR S: 音频编码属性结构体。

7.4.3.1 AENC_MAX_CHN_NUM

【说明】

音频编码通道的最大个数。

【定义】

```
1 RV1109/RV1126:
2 #define AENC_MAX_CHN_NUM 16
```

7.4.3.2 AENC_CHN

【说明】

音频编码通道号。

【定义】

```
1 typedef RK_S32 AENC_CHN;
```

7.4.3.3 AENC_ATTR_AAC_S

【说明】

AAC 编码协议属性结构体。

【成员】

成员名称	描述
u32Channels	通道数。
u32SampleRate	采样率。取值范围为: 96000, 88200, 64000, 48000, 44100, 32000, 24000, 22050, 16000, 12000, 11025, 8000, 7350。

7.4.3.4 AENC_ATTR_MP2_S

【说明】

MP2编码协议属性结构体。

【定义】

```
1 typedef struct rkAENC_ATTR_MP2_S {
2    RK_U32 u32Channels;
3    RK_U32 u32SampleRate; // 44100, 48000, 32000, 22050, 24000, 16000, 0
4 } AENC_ATTR_MP2_S;
```

【成员】

成员名称	描述
u32Channels	通道数。
u32SampleRate	采样率。取值范围为: 44100, 48000, 32000, 22050, 24000, 16000, 0。

7.4.3.5 AENC_ATTR_G711A_S

【说明】

G.711A 编码协议属性结构体。

【定义】

```
typedef struct rkAENC_ATTR_G711A_S {

RK_U32 u32Channels;

RK_U32 u32SampleRate;

RK_U32 u32NbSample;

AENC_ATTR_G711A_S;
```

成员名称	描述
u32Channels	通道数。
u32SampleRate	采样率。
u32NbSample	每帧的采样点个数。

7.4.3.6 AENC_ATTR_G711U_S

【说明】

G.711U 编码协议属性结构体。

【定义】

```
typedef struct rkANEC_ATTR_G711U_S {

RK_U32 u32Channels;

RK_U32 u32SampleRate;

RK_U32 u32NbSample;

AENC_ATTR_G711U_S;
```

【成员】

成员名称	描述
u32Channels	通道数。
u32SampleRate	采样率。
u32NbSample	每帧的采样点个数。

7.4.3.7 AENC_ATTR_G726_S

【说明】

G.726 编码协议属性结构体。

【定义】

```
typedef struct rkAENC_ATTR_G726_S {

RK_U32 u32Channels;

RK_U32 u32SampleRate;

AENC_ATTR_G726_S;
```

【成员】

成员名称	描述
u32Channels	通道数。
u32SampleRate	采样率。

7.4.3.8 AENC_CHN_ATTR_S

【说明】

音频编码属性结构体。

```
typedef struct rkAENC_CHN_ATTR_S {
CODEC_TYPE_E enCodecType; /*payload type ()*/
RK_U32 u32Bitrate;
RK_U32 u32Quality;
union {
AENC_ATTR_AAC_S stAencAAC;
AENC_ATTR_MP2_S stAencMP2;
AENC_ATTR_G711A_S stAencG711A;
AENC_ATTR_G711U_S stAencG711U;
AENC_ATTR_G726_S stAencG726;
};
AENC_ATTR_G726_S stAencG726;
AENC_CHN_ATTR_S;
```

【成员】

成员名称	描述
enCodecType	编码协议类型。
u32Bitrate	比特率。
u32Quality	编码质量。
stAencAAC/stAencMP2/stAencG711A/stAencG711U/stAencG726	相关编码协议属性结构体。

【相关数据类型及接口】

CODEC TYPE E

7.4.4 音频解码

音频解码相关数据类型定义如下:

ADEC MAX CHN NUM: 音频解码通道的最大个数。

ADEC CHN: 音频解码通道号。

ADEC ATTR AAC S: AAC 解码协议属性结构体。

ADEC ATTR MP2 S: MP2 解码协议属性结构体。

ADEC ATTR G711A S: G.711A 解码协议属性结构体。

ADEC ATTR G711U S: G.711U 解码协议属性结构体。

ADEC ATTR G726 S: G.726 解码协议属性结构体。

ADEC CHN ATTR S: 音频解码属性结构体。

7.4.4.1 ADEC_MAX_CHN_NUM

【说明】

音频解码通道的最大个数。

```
1 RV1109/RV1126:
2 #define ADEC_MAX_CHN_NUM 16
```

7.4.4.2 ADEC CHN

【说明】

音频解码通道号。

【定义】

```
1 typedef RK_S32 ADEC_CHN;
```

7.4.4.3 ADEC_ATTR_AAC_S

【说明】

AAC 解码协议属性结构体。

【定义】

```
1 typedef struct rkADEC_ATTR_AAC_S {
2   // reserved
3 } ADEC_ATTR_AAC_S;
```

7.4.4.4 ADEC_ATTR_MP2_S

【说明】

MP2解码协议属性结构体。

【定义】

```
1 typedef struct rkADEC_ATTR_MP2_S {
2   // reserved
3 } ADEC_ATTR_MP2_S;
```

7.4.4.5 ADEC_ATTR_G711A_S

【说明】

G.711A 解码协议属性结构体。

```
typedef struct rkADEC_ATTR_G711A_S {
RK_U32 u32Channels;
RK_U32 u32SampleRate;
} ADEC_ATTR_G711A_S;
```

成员名称	描述
u32Channels	通道数。
u32SampleRate	采样率。

7.4.4.6 ADEC_ATTR_G711U_S

【说明】

G.711U 解码协议属性结构体。

【定义】

```
typedef struct rkADEC_ATTR_G711U_S {

RK_U32 u32Channels;

RK_U32 u32SampleRate;

ADEC_ATTR_G711U_S;
```

【成员】

成员名称	描述
u32Channels	通道数。
u32SampleRate	采样率。

7.4.4.7 ADEC_ATTR_G726_S

【说明】

G.726 解码协议属性结构体。

【定义】

```
1 typedef struct rkADEC_ATTR_G726_S {
2    // reserved
3 } ADEC_ATTR_G726_S;
```

7.4.4.8 ADEC_CHN_ATTR_S

【说明】

音频解码属性结构体。

```
typedef struct rkADEC_CHN_ATTR_S {
CODEC_TYPE_E enCodecType;
union {
    ADEC_ATTR_AAC_S stAdecAAC;
    ADEC_ATTR_MP2_S stAdecMP2;
    ADEC_ATTR_G711A_S stAdecG711A;
    ADEC_ATTR_G711U_S stAdecG711U;
    ADEC_ATTR_G726_S stAdecG726;
};
ADEC_CHN_ATTR_S;
```

【成员】

成员名称	描述
enCodecType	编码协议类型。
stAdecAAC/stAdecMP2/stAdecG711A/stAdecG711U/stAdecG726	相关解码协议属性结构体。

【相关数据类型及接口】

CODEC TYPE E

7.5 错误码

7.5.1 音频输入错误码

音频输入 API 错误码如表7-1所示:

表7-1 音频输入 API 错误码

错误代 码	宏定义	描述
40	RK_ERR_AI_INVALID_DEVID	音频输入设备号无效
41	RK_ERR_AI_BUSY	音频输入系统忙
42	RK_ERR_AI_EXIST	试图申请或者创建已经存在的设备、通道或者资源
43	RK_ERR_AI_NOTOPEN	系统未打开, 尚未初始化或使能
44	RK_ERR_AI_NOT_CONFIG	使用前未配置

7.5.2 音频输出错误码

音频输出 API 错误码如表7-2所示:

表7-2 音频输出 API 错误码

错误代 码	宏定义	描述
50	RK_ERR_AO_INVALID_DEVID	音频输出设备号无效
51	RK_ERR_AO_BUSY	音频输出系统未初始化
52	RK_ERR_AO_NOTREADY	试图申请或者创建已经存在的设备、通道或者资源
53	RK_ERR_AO_NOTOPEN	系统未打开,尚未初始化或使能

7.5.3 音频编码错误码

音频编码 API 错误码如表7-3所示:

表7-3 音频编码 API 错误码

错误代码	宏定义	描述
60	RK_ERR_AENC_INVALID_DEVID	音频编码设备号无效
61	RK_ERR_AENC_BUSY	音频编码系统忙
62	RK_ERR_AENC_CODEC_NOT_SUPPORT	音频编码不支持

7.5.4 音频解码错误码

音频解码 API 错误码如表7-4所示:

表7-3 音频解码 API 错误码

错误代码	宏定义	描述
100	RK_ERR_ADEC_INVALID_DEVID	音频解码设备号无效
101	RK_ERR_ADEC_BUSY	音频解码系统忙
102	RK_ERR_ADEC_CODEC_NOT_SUPPORT	音频解码不支持

8. RGA

8.1 概述

RGA模块用于2D图像的裁剪、格式转换、缩放、旋转、图片叠加等。

8.2 功能描述

rkmedia中RGA通道仅支持格式转换、缩放、裁剪、旋转功能,图片叠加则需要单独调用librga.so库,参见docs/Linux/Multimedia/《Rockchip_Developer_Guide_Linux_RGA_CN.pdf》

8.3 API参考

8.3.1 RK_MPI_RGA_CreateChn

【描述】

创建RGA通道。

【语法】

RK_S32 RK_MPI_RGA_CreateChn(<u>RGA_CHN</u> RgaChn, <u>RGA_ATTR_S</u> *pstRgaAttr);

【参数】

参数名称	描述	输入/输出
RgaChn	RGA通道号。取值范围: [0, RGA_MAX_CHN_NUM)。	输入
pstAttr	RGA通道属性指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK_MPI_RGA_DestroyChn

8.3.2 RK_MPI_RGA_DestroyChn

【描述】

销毁RGA通道。

【语法】

 $RK_S32\ RK_MPI_RGA_DestroyChn(\underline{RGA_CHN}\ RgaChn);$

【参数】

参数名称	描述	输入/输出
RgaChn	RGA通道号。取值范围: [0, RGA_MAX_CHN_NUM)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI RGA CreateChn

8.4 数据类型

RGA相关数据类型定义如下:

RGA MAX CHN NUM: RGA通道的最大个数。

RGA_CHN: RGA通道号。

RGA_INFO_S: RGA区域属性结构体。

RGA_ATTR_S: RGA属性结构体。

8.4.1 RGA_MAX_CHN_NUM

【说明】

RGA通道的最大个数。

【定义】

```
1 RV1109/RV1126:
2 #define RGA_MAX_CHN_NUM 16
```

8.4.2 RGA_CHN

【说明】

RGA通道号。

【定义】

```
1 | typedef RK_S32 RGA_CHN;
```

8.4.3 RGA_INFO_S

【说明】

RGA区域属性结构体。

【定义】

```
typedef struct rkRGA_INFO_S {
IMAGE_TYPE_E imgType;
RK_U32 u32X;
RK_U32 u32Y;
RK_U32 u32Width;
RK_U32 u32Height;
RK_U32 u32HorStride; // horizontal stride
RK_U32 u32VirStride; // virtual stride
```

成员名称	描述
imgType	图像格式类型。
u32X	RGA的X轴坐标。
u32Y	RGA的Y轴坐标。
u32Width	RGA的宽度。
u32Height	RGA的高度。
u32HorStride	虚宽。
u32VirStride	虚高。

【相关数据类型及接口】

IMAGE TYPE E

8.4.4 RGA_ATTR_S

【说明】

RGA属性结构体。

【定义】

```
typedef struct rkRGA_ATTR_S {
   RGA_INFO_S stImgIn; // input image info
   RGA_INFO_S stImgOut; // output image info
   RK_U16 u16Rotaion; // support 0/90/180/270.
   RK_BOOL bEnBufPool;
   RK_U16 u16BufPoolCnt;
   RGA_ATTR_S;
```

【成员】

成员名称	描述
stImgIn	输入图像信息。
stImgOut	输出图像信息。
u16Rotaion	旋转角度。取值范围: 0, 90, 180, 270。
bEnBufPool	使能缓冲池。
u16BufPoolCnt	缓冲池计数。

【相关数据类型及接口】

RGA INFO S

8.5 错误码

RGA API 错误码如<u>表8-1</u>所示:

表8-1 RGA API 错误码

错误代 码	宏定义	描述
90	RK_ERR_RGA_INVALID_CHNID	RGA输入设备号无效
91	RK_ERR_RGA_BUSY	RGA系统忙
92	RK_ERR_RGA_EXIST	试图申请或者创建已经存在的设备、通道或者 资源
93	RK_ERR_RGA_NOT_CONFIG	使用前未配置
94	RK_ERR_RGA_ILLEGAL_PARAM	非法参数

9. 视频输出

9.1 概述

VO模块用于视频输出管理。

9.2 功能描述

VO模块是对DRM/KMS的封装,支持多VOP以及多图层显示。

9.3 API参考

9.3.1 RK_MPI_VO_CreateChn

【描述】

创建VO通道。

【语法】

RK_S32 RK_MPI_VO_CreateChn(<u>VO_CHN</u> VoChn, const <u>VO_CHN_ATTR_S</u> *pstAttr);

【参数】

参数名称	描述	输入/输出
VoChn	VO通道号。取值范围: [0, VO_MAX_CHN_NUM)。	输入
pstAttr	VO通道属性指针。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK_MPI_VO_DestroyChn

9.3.2 RK_MPI_VO_DestroyChn

【描述】

销毁VO通道。

【语法】

RK_S32 RK_MPI_VO_DestroyChn(<u>VO_CHN</u> VoChn);

【参数】

参数名称	描述	输入/输出
VoChn	VO通道号。取值范围: [0, <u>VO_MAX_CHN_NUM</u>)。	输入

【返回值】

返回值	描述
0	成功。
非0	失败,其值参见 <u>错误码</u> 。

【需求】

头文件: rkmedia_api.h

库文件: libeasymedia.so

【注意】

无。

【举例】

无。

【相关主题】

RK MPI VO CreateChn

9.4 数据类型

视频输出相关数据类型定义如下:

VO_MAX_CHN_NUM: 视频输出通道的最大个数。

VO CHN: 视频输出通道号。

VO CHN ATTR S: 视频输出属性结构体。

9.4.1 VO_MAX_CHN_NUM

【说明】

视频输出通道的最大个数。

【定义】

```
1 RV1109/RV1126:
```

2 #define VO_MAX_CHN_NUM 2

9.4.2 VO_CHN

【说明】

视频输出通道号。

【定义】

```
1 typedef RK_S32 VO_CHN;
```

9.4.3 VO_CHN_ATTR_S

【说明】

视频输出属性结构体。

```
typedef struct rkVO_CHN_ATTR_S {
   RK_U32 u32Width;
   RK_U32 u32Height;
   RK_U32 u32VerStride;
   RK_U32 u32HorStride;
   IMAGE_TYPE_E enImgType;
   RK_U16 u16Fps;
   RK_U16 u16Zpos;
} VO_CHN_ATTR_S;
```

【成员】

成员名称	描述
u32Width	视频输出宽度。
u32Height	视频输出高度。
u32VerStride	虚宽。
u32HorStride	虚高。
enImgType	图像格式类型。
u16Fps	帧率。
u16Zpos	图层选择。

【相关数据类型及接口】

IMAGE TYPE E

9.5 错误码

视频输出 API 错误码如表9-1所示:

表9-1 RGA API 错误码

错误代 码	宏定义	描述
110	RK_ERR_VO_INVALID_DEVID	设备 ID 超出合法范围
111	RK_ERR_VO_EXIST	试图申请或者创建已经存在的设备、通道或者 资源
112	RK_ERR_VO_NOT_CONFIG	使用前未配置
113	RK_ERR_VO_TIMEOUT	视频输出超时
114	RK_ERR_VO_BUF_EMPTY	视频输出缓冲区为空
115	RK_ERR_VO_ILLEGAL_PARAM	非法参数
116	RK_ERR_VO_NOTREADY	系统未初始化

10. 使用限制

需要特别注意的是 rkmedia对模块的析构顺序有特殊的要求:数据流管道中后级模块要先于前级模块销毁。比如: VI --> RGA --> VENC 则建议析构顺序如下: destroy VENC destroy VI

以VI为例,VI是数据产生端。其生产的buffer在数据管道销毁时可能被后级占用,从而导致VI管理的资源也被占用。再次打开就会遇到Device Busy的错误。这个问题在频繁创建销毁数据通道时有概率发生。