Math 615 NADE (Bueler)

Not turned in!

Worksheet: Stable time-steps for 2nd-order ODE schemes

METHODS. Consider these 3 ODE IVP methods for an autonomous ODE system u' = f(u):

method	book reference	formula
TR: trapezoidal	(5.22)	$U^{n+1} = U^n + \frac{k}{2} \left(f(U^n) + f(U^{n+1}) \right)$
EM: explicit midpoint	(5.30)	$U^{n+1} = U^n + kf\left(U^n + \frac{k}{2}f(U^n)\right)$
AB2: Adams-Bashforth	p. 132	$U^{n+2} = U^{n+1} + \frac{k}{2} \left(-f(U^n) + 3f(U^{n+1}) \right)$

All 3 methods have $O(k^2)$ local truncation error. Note EM is an explicit RK2 method.

PROBLEMS. Consider the following three linear ODE systems:

S1. u' = Au where $u(t) \in \mathbb{R}^3$ and

$$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & -5 \end{bmatrix}$$

S2. u' = Au where $u(t) \in \mathbb{R}^2$ and

$$A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$$

S3. u'=Au where $u(t)\in\mathbb{R}^{25}$ and A is the tridiagonal matrix shown in equation (2.10) for the m=25 case (i.e. h=1/26 case); this A approximates a second derivative in space

TASKS.

- (a) For each of the one-step METHODS, find the stability function R(z), for $z=k\lambda$, and write a MATLAB etc. code, using contourf or imagesc or similar as needed, to plot the region of absolute stability.
- (b) For the AB2 METHOD, which is a multistep scheme, a slightly different approach is needed to plot the stability region. Following the approach of section 7.3, use the facts that $\rho(\zeta) = \zeta^2 \zeta$, $\sigma(\zeta) = (3/2)\zeta (1/2)$ to compute a quadratic polynomial $\pi(\zeta;z)$. Then you can either follow the approach of 7.6.1 or check the root condition at every point in a mesh and apply contourf etc.²
- (c) For each PROBLEM, compute/approximate all of the eigenvalues λ_p of A.
- (d) For each pair (METHOD, PROBLEM), determine the maximum absolutely-stable time step $k_{\rm stab}$, or explain why there is no stability restriction on the time step ($k_{\rm stab} = +\infty$). For $k_{\rm stab} < \infty$ cases show a figure which has the relevant z-values ($z = k_{\rm stab} \lambda_p$) plotted on top of the stability region.
- **(e)** For each of the PROBLEMS, give expert advice: which METHOD is best and why? For this question think of various ways in which a given method does or does not preserve "qualities" relevant to the particular problem. Computational cost is a consideration too; assume your computer is slow. (*Hints. See section 7.5 and think about* k_{stab} *and* k_{acc} . *See also sections 8.3 and 8.4; A-stable and L-stable properties are relevant.*)

¹R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Diff. Eqns., SIAM Press 2007

²Give this task a shot here on the worksheet. But it will not be on homework, and don't sweat it.