F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption

(2021 MICRO)

Introduction

Characters

- Complex operations on long vectors: modular arithmetic, several thousan elements
- Regular computation: all operations are known ahead of time,
 VLIM
- Challenging data movement: large amounts (tens of MBs) of data; encrypting data increase its size(50X); data in long vectors

Introduction

Contributions

- F1 features an explicitly managed on-chip memory hierarchy, with a heavily bank scratchpad and distributed reg files
- F1 uses mechanisms to decoupled data movement and hide access latencies by loading data far ahead of its use
- F1 uses new scheduling algorithms that maximize reuse and make the best out of limited memory bandwidth
- F1 used few functional units with hight throughtput that reduces the amount of data

Background

FHE programming model and operations

- element-wise
- addition (mod t)
- multiplication (mod t)
- a small set of particular vector permutations.

BGV implementation overview

Data types:

$$a = a_0 + a_1 x + \ldots + a_{N-1} x^{N-1} \in R_t$$

Each plaintext is encrypted into a ciphertext consisting of two polynomials of N integer coefficients modulo some $Q\gg t$. Each ciphertext polynomial is a member of R_Q .

Encrtyption and decryption:

secret key: $s\in R_Q$. To encrypt a plaintext $m\in R_t$, one samples a uniformly random $a\in R_Q$, an error (or noise) $e\in R_Q$ with small entries, and computes the ciphertext ct as

$$ct = (a, b = as + te + m)$$

Ciphertext ct=(a,b) is decrypted by recovering $e\prime=te+m=b-as\mod Q$, and then recovering $m=e\prime\mod t$. Decryption is correct as long as $e\prime$ does not "wrap around" modulo Q, i.e., its coefficients have magnitude less than Q/2.

Homomorphic operations

addition

$$ct_0=(a_0,b_0)$$
 and $ct_1=(a_1,b_1)$ $ct_{add}=ct_0+ct_1=(a_0+a_1,b_0+b_1)$

multiplication

$$egin{aligned} ct_{ imes} &= (l_2, l_1, l_0) = (a_0 a_1, a_0 b_1 + a_1 b_0, b_0 b_1) \ (u_1, u_0) &= KeySwitch(I_2) \ ct_{mul} &= (I_1 + u_1, I_0 + u_0) \end{aligned}$$

permutations

There are N automorphisms, denoted $\sigma_k(a)$ and $\sigma_{-k}(a)$ for all positive odd k < N. Specifically, $\sigma_k(a) : a_i - > (-1)^s a_{ik} \mod N$ for $i = 0, \ldots, N-1$ where s = 0 if $ik \mod 2N < N$, and s = 1 otherwise. 1.compute an automorphism on the ciphertext polynomials: $ct_\sigma = (\sigma_k(a), \sigma_k(b))$ $2.ct_{perm} = (u_1, \sigma_k(b) + u_0)$ where $(u_1, u_0) = KeySwitch(\sigma_k(a))$

Noise growth and management

Different operations induce different noise growth: addition and permutations cause little growth, but multiplication incurs much more significant growth. So, to a first order, the amount of noise is determined by **multiplicative depth**, i.e., the longest chain of homomorphic multiplications in the computation.

Noise forces the use of a large ciphertext modulus Q. For example, an FHE program with multiplicative depth of 16 needs Q to be about 512 bits. The noise budget, and thus the tolerable multiplicative depth, grow linearly $\log Q$

- Bootstrapping: strength: enable FHE computations of unbounded depth; remove noise from a ciphertext without access to the secret key weakness: need a large noise budget (large Q)
- Modulus switching: rescales ciphertexts from modulus Q to a modulus Q'. To execute an multiplicative depth 16, we start with a 512 bit modulus Q. Before multiplicatino, switch to a modulus that is 32 bits shorter.

Security and parameters

demension N and modulus Q N/logQ must be above a certain level for sufficient security.

Algorithmic insights and optimizations

- Fast polynomial multiplication via NTTs
- Avoiding wide arithmetic via Residue Number System(RNS)

Architectural analysis of FHE

Three input: a polynomial x (store in L residue polyniamials), two key-switch hint matrices ksh0,ksh1. Inputs and outputs are in the NTT domain; only y[i] are in coefficient form.

Listing 1: Key-switch implementation. RVec is an N-element vector of 32-bit values, storing a single RNS polynomial in either the coefficient or the NTT domain.

Computation vs. data movement

- ullet L 2 NTTs, $2L^2$ multiplications, $2L^2$ additions of N-element vectors
- \bullet In RNS, the rest of a homomorphic multiplication is 4L multiplications and 3L additions

$$L = 16, N = 16K$$

each RNS polynimial is 64KB, each polynimial is 1MB, each ciphertext is 2MB, key switch hints is 32MB.

key switchinging demand 10TB/s of memory andwidth.

• Performance requirement:

(1) decouples data movement from computation, as demand misses during frequent key-switches would tank performance(2) implements a large amount of on-chip storage (over 32 MB in our example) to allow reuse across entire homomorphic operations

• Functionality requirements:

Programmable FHE accelerators must support a wide range of parameters, both N (polynomial/vec-tor sizes) and L (number of RNS polynomials, i.e., number of 32-bit prime factors of Q). While N is generally fixed for a single program, L changes as modulus switching sheds off polynomials.

F1 ARCHITECTURE

Vector processing with specialized functional units

FUs process vectors of configurable length N using a fixed number of vector lanes E.

- 128 lanes
- N from 1024 to 16384
- pipelined, throughput: E =
 128 elements/cycle

Figure 2: Overview of the F1 architecture.

Compute clusters:

- 1 NTT, 1 automorphism
- 2 multipliers
- 2 adders
- a banked register file

Figure 2: Overview of the F1 architecture.

Memory system:

- a large, heavily banked scratchpad (64 MB across 16 banks)
- scratchpad interfaces with both high-bandwidth offchip memory (HBM2) and with compute clusters through an on-chip network.

Figure 2: Overview of the F1 architecture.

Static scheduling(programs are regular):

- VLIW processors
- FUs: no stalling logic
- Memory: no conflicts
- On-chip network: use switch change configuration

Figure 2: Overview of the F1 architecture.

Distribute control:

 independent instruction stream: programs have loops, unroll them avoid branches, and compile programs into linear sequences of instructions

Figure 2: Overview of the F1 architecture.

F1 ARCHITECTURE

Register file design:

use an 8-banked elementpartitioned register file design that leverages long vectors: each vector is striped across banks, and each FU cycles through all banks over time, using a single bank each cycle

Figure 2: Overview of the F1 architecture.

SCHEDULING DATA AND COMPUTATION

 Compiler: orders high level operations to maximize reuse and translates the program into a DFG

Figure 3: Overview of the F1 compiler.

 DM Scheduler: transfer between main memory and the scratchpad to achieve decoupling and maximize reuse

Figure 3: Overview of the F1 compiler.

 CL Scheduler: determine the exact cycles of all operations and produces the instruction strams for all components

Figure 3: Overview of the F1 compiler.

Translating the program to a dataflow graph

Figure 4: Example matrix-vector multiply using FHE.

Listing 2: $(4 \times 16K)$ matrix-vector multiply in F1's DSL.

Compiling homomorphic operations

It clusters operations to improve reuse and translates them down to instruction.

- Ordering: maximize the reuse of key switch hints(line 8)(line 12)
- Translation: minimize the amount of instructions intermediates

Scheduling data transfers

- data transfers decoupled from computation
- minmize off-chip data transfers
- achieve good parallelism

$$p(load) = max\{p(u)|u \in users(load)\}$$

Cycle-level scheduling(constrained by its input schedule's off-chip data movement)

- distribute comptation across clusters and manage reg file and onchip transfer
- add loads or stores in this stage
- move loads to their earliest possible issue cycle to avoid stalls on missing operands

FUNCTIONAL UNITS

Automorphism unit

how automorphism $\sigma 3$ is applied to a residue polynomial with N = 16 and E = 4 elements/cycle.

Figure 5: Applying σ_3 on an RNS polynomial of four 4-element chunks by using only permutations local to chunks.

Automorphism unit

Given a residue polynomial of $N=G \cdot E$ elements, the automorphism unit first transpose applies the column permutation to each Eelement input. Then, it feeds this to a transpose unit that reads in the whole residue polynomial interpreting it as a G × E matrix, and produces its transpose $E \times G$.

Figure 6: Automorphism unit.

Transpose unit

Figure 7: Transpose unit (right) and its component quadrantswap unit (left).

Transpose unit: Our *quadrant-swap transpose* unit transposes an $E \times E$ (e.g., 128 × 128) matrix by recursively decomposing it into quadrants and exploiting the identity

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}^{T} = \begin{bmatrix} A^{T} & C^{T} \\ \hline B^{T} & D^{T} \end{bmatrix}.$$

Four-step NTT unit

Figure 8: Example of a four-step NTT datapath that uses 4-point NTTs to implement 16-point NTTs.

Optimized modular multiplier

Multiplier	Area [μm²]	Power [mW]	Delay [ps]
Barrett	5, 271	18.40	1,317
Montgomery	2,916	9.29	1,040
NTT-friendly	2, 165	5.36	1,000
FHE-friendly (ours)	1,817	4.10	1,000

Table 1: Area, power, and delay of modular multipliers.

F1 IMPLEMENTATION

Component	Area [mm ²]	TDP [W]
NTT FU	2.27	4.80
Automorphism FU	0.58	0.99
Multiply FU	0.25	0.60
Add FU	0.03	0.05
Vector RegFile (512 KB)	0.56	1.67
Compute cluster	3.97	8.75
(NTT, Aut, $2 \times$ Mul, $2 \times$ Add, RF)		
Total compute (16 clusters)	63.52	140.0
Scratchpad (16×4 MB banks)	48.09	20.35
3×NoC (16×16 512 B bit-sliced [58])	10.02	19.65
Memory interface (2×HBM2 PHYs)	29.80	0.45
Total memory system	87.91	40.45
Total F1	151.4	180.4

Table 2: Area and Thermal Design Power (TDP) of F1, and breakdown by component.

EXPERIMENTAL METHODOLOGY

- Modeled system:
 - a cycle-accurate simulator to execute F1 programs activity-level energies from RTL synthesis to produce energy breakdowns
- Benchmarks:
 - Logistic regression: uses the HELR algorithm: 256 features, 256 samples, depth L = 16
 - Neural network:LoLa-MNIST,LoLa-CIFAR
 - DB Lookup: A BGV-encrypted query string is used to traverse an encrypted key-value store and return the corresponding value.

• Bootstrapping:

BGV: Sheriff and Peikert's algorithm

CKKS: non-packed CKKS bootstrapping

• Baseline systems:

F1 with a CPU system running the baseline programs (a 4-core, 8-thread, 3.5 GHz Xeon E3-1240v5)

EVALUATION

Performance

Benchmarks

Execution time (ms) on	CPU	F1	Speedup	
LoLa-CIFAR Unencryp. Wghts.	1.2×10^{6}	241	5,011×	
LoLa-MNIST Unencryp. Wghts.	2,960	0.17	$17,412 \times$	
LoLa-MNIST Encryp. Wghts.	5, 431	0.36	$15,086 \times$	
Logistic Regression	8,300	1.15	$7,217 \times$	
DB Lookup	29,300	4.36	$6,722 \times$	
BGV Bootstrapping	4,390	2.40	$1,830 \times$	
CKKS Bootstrapping	1,554	1.30	$1,195 \times$	
gmean speedup			5, 432×	

^{*}LoLa's release did not include MNIST with encrypted weights, so we reimplemented it in HELib.

Table 3: Performance of F1 and CPU on full FHE benchmarks: execution times in milliseconds and F1's speedup.

Microbenchmarks

	$N = 2^{12}$, $\log Q = 109$		$N = 2^{13}$, $\log Q = 218$		$N = 2^{14}, \log Q = 438$				
	F1	vs. CPU	vs. HEAX $_{\sigma}$	F1	vs. CPU	vs. HEAX $_{\sigma}$	F1	vs. CPU	vs. HEAX $_{\sigma}$
NTT	12.8	17,148×	1,600×	44.8	10,736×	1,733×	179.2	8,838×	1,866×
Automorphism	12.8	7,364×	440×	44.8	$8,250 \times$	426×	179.2	16,957×	430×
Homomorphic multiply	60.0	48,640×	172×	300	27,069×	148×	2,000	14,396×	190×
Homomorphic permutation	40.0	$17,488 \times$	256×	224	$10,814 \times$	198×	1,680	6,421×	227×

Table 4: Performance on microbenchmarks: F1's reciprocal throughput, in nanoseconds per ciphertext operation (lower is better) and speedups over CPU and HEAX $_{\sigma}$ (HEAX augmented with scalar automorphism units) (higher is better).

Architectural analysis

Data movement, Power consumption, Utilization over time

Figure 10: Functional unit and HBM utilization over time for the LoLa-MNIST PTW benchmark.

Sensitivity studies

Benchmark	LT NTT	LT Aut	CSR
LoLa-CIFAR Unencryp. Wghts.	3.5×	12.1×	_*
LoLa-MNIST Unencryp. Wghts.	5.0×	$4.2 \times$	$1.1 \times$
LoLa-MNIST Encryp. Wghts.	5.1×	11.9×	$7.5 \times$
Logistic Regression	$1.7 \times$	$2.3 \times$	$11.7 \times$
DB Lookup	$2.8 \times$	$2.2 \times$	_*
BGV Bootstrapping	1.5×	$1.3 \times$	$5.0 \times$
CKKS Bootstrapping	1.1×	1.2×	$2.7 \times$
gmean speedup	2.5×	3.6×	4.2×

*CSR is intractable for this benchmark.

Table 5: Speedups of F1 over alternate configurations: LT NT-T/Aut = Low-throughput NTT/Automorphism FUs; CSR = Code Scheduling to minimize Register Usage [37].

Scalablity

Figure 11: Performance vs. area across F1 configurations.