强化学习及其应用

第二章 动态规划方法

Reinforcement Learning and Its Applications

Dynamic Programming Methods

授课人: 周晓飞 zhouxiaofei@iie.ac.cn 2018-6-25

- 2.1 Bellman 公式
- 2.2 Bellman 最优方程
- 2.3 动态规划法
- 2. 4 值迭代方法

- 2.1 Bellman 公式
- 2.2 Bellman 最优方程
- 2.3 动态规划法
- 2. 4 值迭代方法

Bellman 公式

Bellman Expectation Equation for V

Bellman 公式

Bellman Expectation Equation for V

- 2.1 Bellman 公式
- 2.2 Bellman 最优方程
- 2.3 动态规划法
- 2.4 值迭代方法

Bellman 最优方程

Bellman Optimality Equation for v*

Policy Improvement

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_{\pi}(s, a)$$

Bellman 最优方程

Bellman Optimality Equation for v*

- 2.1 Bellman 公式
- 2.2 Bellman 最优方程
- 2.3 动态规划法
- 2.4 值迭代方法

动态规划

- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems
 - For prediction:
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and policy π
 - or: MRP $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - Output: value function v_{π}
 - Or for control:
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - \blacksquare Output: optimal value function v_*
 - \blacksquare and: optimal policy π_*

Bellman 公式

Bellman 最优方程

动态规划

- A method for solving complex problems
- By breaking them down into subproblems
 - Solve the subproblems
 - Combine solutions to subproblems
 - For prediction:
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$ and policy π
 - or: MRP $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - Output: value function v_{π}
 - Or for control:
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - \blacksquare Output: optimal value function v_*
 - and: optimal policy π_{*}

Bellman 最优方程

D P 策略收敛法

初始化最优策略 u ,

Step1: 确定的最优策略 u , 以 V = V in = Vout , 求解 V ;

Step2: V→Vin, 得到Q因子

Step3: 对 S_i选择最优 a , max_aQ(S_i, a) , 形成最优策略 u ;

D P 策略收敛法

初始化最优策略 u,

Step1: 确定的最优策略 u , 以 V = V_{in}=V_{out} , 求解 V ;

Step2: V→Vin, 得到Q因子

Step3: 对 S_i选择最优 a , max_aQ(S_{i,} a) , 形成最优策略 u ;

D P 策略收敛法

初始化最优策略 u,

Step1: 确定的最优策略 u , 以 V = V_{in}=V_{out} , 求解 V ;

Step2: V→Vin, 得到Q因子

Step3: 对 S_i选择最优 a , max_aQ(S_i, a) , 形成最优策略 u ;

DP策略收敛法

初始化最优策略 u,

Step1: 确定的最优策略 u , 以 V = V_{in}=V_{out} , 求解 V ;

Step2: V→Vin, 得到Q因子

Step3: 对 S_i选择最优 a , max_aQ(S_i, a) , 形成最优策略 u ;

D P 策略收敛法

初始化最优策略 u,

Step1: 确定的最优策略 u , 以 V = V_{in}=V_{out} , 求解 V ;

Step2: V→Vin, 得到Q因子

Step3: 对 S_i选择最优 a , max_aQ(S_i, a) , 形成最优策略 u ;

D P 值迭代法

Three simple ideas for asynchronous dynamic programming:

- *In-place* dynamic programming
- Prioritised sweeping
- Real-time dynamic programming

DP值迭代法

In-place dynamic programming

Synchronous value iteration stores two copies of value function

for all s in S

$$v_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_{old}(s') \right)$$

$$V_{old} \leftarrow V_{new}$$

In-place value iteration only stores one copy of value function

for all s in S

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

Bellman 最优方程

DP值迭代法

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right) - v(s) \right|$$

误差导向的更新,例如更新最大误差或满足误差界的 s 对应的 u(s)。

Bellman 最优方程

DP值迭代法

Real-Time Dynamic Programming

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t, A_t, R_{t+1}
- \blacksquare Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$

- 2.1 Bellman 公式
- 2.2 Bellman 最优方程
- 2.3 动态规划法
- 2.4 值迭代方法

值迭代方法

值迭代方法概括

Dynamic Programming (DP)

Monte Carlo (MC)

Temporal Difference (TD)

Q-Learning

-22-

值迭代方法

Backup 比较

本讲参考文献

- Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
 An Introduction. (Second edition, in progress, draft.
- 2. David Silver, Slides@ «Reinforcement Learning: An Introduction», 2016.
- 3. Simon Haykin,申富饶等译,神经网络与学习机器,第三版。