Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM

2018-11-14

Overview

• AAAI 2018

• N-bit量化weight, scale factor为2^N(移位运算)

• ADMM优化方法

ADMM

分三步优化:

the method of multipliers. The algorithm solves problems in the form:

min
$$f(\mathbf{x}) + g(\mathbf{z})$$

s.t. $A\mathbf{x} + B\mathbf{z} = \mathbf{c}$ (1)

with variables $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{z} \in \mathbb{R}^m$, where $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$ and $\mathbf{c} \in \mathbb{R}^p$. The augmented Lagrangian of Eq.(1) can be formed as:

$$L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z}) + \mathbf{y}^{T}(A\mathbf{x} + B\mathbf{z} - \mathbf{c}) + (\rho/2)||A\mathbf{x} + B\mathbf{z} - \mathbf{c}||_{2}^{2}$$
(2)

where y is the Lagrangian multipliers, and ADMM consists of three step iterations:

$$\mathbf{x}^{k+1} := \underset{\mathbf{x}}{\operatorname{arg\,min}} L_{\rho}(\mathbf{x}, \mathbf{z}^{k}, \mathbf{y}^{k})$$

$$\mathbf{z}^{k+1} := \underset{\mathbf{z}}{\operatorname{arg\,min}} L_{\rho}(\mathbf{x}^{k+1}, \mathbf{z}, \mathbf{y}^{k})$$

$$\mathbf{y}^{k+1} := \mathbf{y}^{k} + \rho(A\mathbf{x}^{k+1} + B\mathbf{z}^{k+1} - \mathbf{c})$$

增广拉格朗日形式

交替优化 (y为拉格朗日乘子)

Objective function

$$\min_{W} \quad f(W) \qquad \text{s.t.} \quad W \in \mathcal{C} = \{-1, 0, +1\}^d$$

将离散值权重的神经网络训练定义成 一个离散约束优化问题

Since the weights are restricted to be zero or powers of two, we have constraints of this form

$$C = \{-2^N, \cdots, -2^1, -2^0, 0, +2^0, +2^1, \cdots, +2^N\}$$

• 加入scale factor之后:

Figure 1: In ternary neural network, scaling factor expands the constrained space from (a) nice discrete points to (b) four lines in the space (two dimensional space as an example).

$$\min_{W} \quad f(W) + I_{\mathcal{C}}(W)$$

where $I_{\mathcal{C}}(W) = 0$ if $W \in \mathcal{C}$, otherwise $I_{\mathcal{C}}(W) = +\infty$.

$$\min_{W,G} \quad f(W) + I_{\mathcal{C}}(G)$$

s.t.
$$W = G$$

(4) Ic(W):指示函数

(5)

lems of such form can be conveniently solved with ADMM. The augmented Lagrange of Eq.(5), for parameter $\rho > 0$, can be formulated as:

$$L_{\rho}(W, G, \mu) = f(W) + I_{\mathcal{C}}(G) + \frac{\rho}{2} ||W - G||^2 + \langle \mu, W - G \rangle$$
 (6)

where μ denotes the Lagrangian multipliers and $\langle \cdot, \cdot \rangle$ denotes the inner product of two vectors. With some basic collection of terms and a change of variable $\lambda = (1/\rho)\mu$, Eq.(6) can be equivalently formed as:

$$L_{\rho}(W, G, \lambda) = f(W) + I_{\mathcal{C}}(G) + \frac{\rho}{2} \|W - G + \lambda\|^2 - \frac{\rho}{2} \|\lambda\|^2$$
 (7)

the method of multipliers. The algorithm solves problems in the form:

min
$$f(\mathbf{x}) + g(\mathbf{z})$$

s.t. $A\mathbf{x} + B\mathbf{z} = \mathbf{c}$ (1)

with variables $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{z} \in \mathbb{R}^m$, where $A \in \mathbb{R}^{p \times n}$, $B \in \mathbb{R}^{p \times m}$ and $\mathbf{c} \in \mathbb{R}^p$. The augmented Lagrangian of Eq.(1) can be formed as:

$$L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z}) + \mathbf{y}^{T}(A\mathbf{x} + B\mathbf{z} - \mathbf{c}) + (\rho/2)||A\mathbf{x} + B\mathbf{z} - \mathbf{c}||_{2}^{2}$$
(2)

where y is the Lagrangian multipliers, and ADMM consists of three step iterations:

$$\mathbf{x}^{k+1} := \underset{\mathbf{x}}{\operatorname{arg \, min}} L_{\rho}(\mathbf{x}, \mathbf{z}^{k}, \mathbf{y}^{k})$$

$$\mathbf{z}^{k+1} := \underset{\mathbf{z}}{\operatorname{arg \, min}} L_{\rho}(\mathbf{x}^{k+1}, \mathbf{z}, \mathbf{y}^{k})$$

$$\mathbf{y}^{k+1} := \underset{\mathbf{z}}{\mathbf{y}^{k}} + \rho(A\mathbf{x}^{k+1} + B\mathbf{z}^{k+1} - \mathbf{c})$$

转化为可以用ADMM优化求解的增广拉格朗日方程

lems of such form can be conveniently solved with ADMM. The augmented Lagrange of Eq.(5), for parameter $\rho > 0$, can be formulated as:

$$L_{\rho}(W, G, \mu) = f(W) + I_{\mathcal{C}}(G) + \frac{\rho}{2} ||W - G||^2 + \langle \mu, W - G \rangle$$
 (6)

where μ denotes the Lagrangian multipliers and $\langle \cdot, \cdot \rangle$ denotes the inner product of two vectors. With some basic collection of terms and a change of variable $\lambda = (1/\rho)\mu$, Eq.(6) can be equivalently formed as:

$$L_{\rho}(W, G, \lambda) = f(W) + I_{\mathcal{C}}(G) + \frac{\rho}{2} \|W - G + \lambda\|^2 - \frac{\rho}{2} \|\lambda\|^2$$
 (7)

$$W^{k+1} := \underset{W}{\operatorname{arg\,min}} L_{\rho}(W, G^k, \lambda^k) \tag{8}$$

$$G^{k+1} := \underset{G}{\operatorname{arg\,min}} L_{\rho}(W^{k+1}, G, \lambda^{k}) \tag{9}$$

$$\lambda^{k+1} := \lambda^k + W^{k+1} - G^{k+1}$$
(10)

转化为可以用ADMM优化求解的增广拉格朗日方程

与其他算法不同,在实数空间和离散空间分别求解,然后通过拉格朗日乘子的更新将两组解联系起来

$$W^{k+1} := \underset{W}{\operatorname{arg \, min}} L_{\rho}(W, G^{k}, \lambda^{k})$$
 (8)
 $G^{k+1} := \underset{G}{\operatorname{arg \, min}} L_{\rho}(W^{k+1}, G, \lambda^{k})$ (9)
 $\lambda^{k+1} := \lambda^{k} + W^{k+1} - G^{k+1}$ (10)

$$W^{k+1} := \underset{W}{\operatorname{arg\,min}} L_{\rho}(W, G^k, \lambda^k) \tag{8}$$

(9)

$$G^{k+1} := \underset{G}{\operatorname{arg\,min}} L_{\rho}(W^{k+1}, G, \lambda^{k})$$

$$\lambda^{k+1} := \lambda^k + W^{k+1} - G^{k+1}$$
 (10)

$$L_{\rho}(W, G^{k}, \lambda^{k}) = f(W) + \frac{\rho}{2} \|W - G^{k} + \lambda^{k}\|^{2}$$

$$\partial_W L = \partial_W f + \rho (W - G^k + \lambda^k)$$

由于普通的梯度更新收敛过于缓慢,所以采用以下方法更新

$$W^{(p)} := W - \beta_p \partial_W L(W),$$

$$W^{(c)} := W - \beta_c \partial_W L(W^{(p)})$$

beta为学习率

$$W^{k+1} := \underset{W}{\operatorname{arg\,min}} L_{\rho}(W, G^k, \lambda^k) \tag{8}$$

$$G^{k+1} := \underset{G}{\operatorname{arg\,min}} L_{\rho}(W^{k+1}, G, \lambda^{k}) \tag{9}$$

$$\lambda^{k+1} := \lambda^k + W^{k+1} - G^{k+1}$$
 (10)

$$\min_{G_i,\alpha_i} \|V_i - G_i\|^2$$
s.t. $G_i \in \{0, \pm \alpha_i, \pm 2\alpha_i, \cdots, \pm 2^N \alpha_i\}^{d_i}$ (12)

Taking the scaling factor away from the constraints, the objective can be equivalently formulated as:

$$\min_{Q_i,\alpha_i} \|V_i - \alpha_i \cdot Q_i\|^2$$
s.t. $Q_i \in \{0, \pm 1, \pm 2, \cdots, \pm 2^N\}^{d_i}$ (13)

with Q_i fixed, the problem becomes an univariate optimization. The optimal α_i can be easily obtained as

$$\alpha_i = \frac{V_i^T Q_i}{Q_i^T Q_i} \tag{14}$$

With α_i fixed, the optimal Q_i is actually the projection of $\frac{V_i}{\alpha_i}$ onto $\{0, \pm 1, \pm 2, \cdots, \pm 2^N\}$, namely,

$$Q_{i} = \Pi_{\{0,\pm 1,\pm 2,\cdots,\pm 2^{N}\}} \left(\frac{V_{i}}{\alpha_{i}}\right)$$
(15)

迭代优化求解

Experiment

	Accuracy	Binary	BWN	Ternary	TWN	{-2, +2}	{-4, +4}	Full Precision
AlexNet	Top-1	0.570	0.568	0.582	0.575	0.592	0.600	0.600
	Top-5	0.797	0.794	0.806	0.798	0.818	0.822	0.824
VGG-16	Top-1	0.689	0.678	0.700	0.691	0.717	0.722	0.711
	Top-5	0.887	0.881	0.896	0.890	0.907	0.909	0.899
	Accuracy	Binary	BWN	Ternary	TWN	{-2, +2}	{-4, +4}	Full Precision
Resnet-18	Top-1	0.648	0.608	0.670	0.618	0.675	0.680	0.691
	Top-5	0.862	0.830	0.875	0.842	0.879	0.883	0.890
Resnet-50	Top-1	0.687	0.639	0.725	0.656	0.739	0.740	0.753
	Top-5	0.886	0.851	0.907	0.865	0.915	0.916	0.922
GoogLeNet	Accuracy	Binary	BWN	Ternary	TWN	{-2, +2}	{-4, +4}	Full Precision
	Top-1	0.603	0.590	0.631	0.612	0.659	0.663	0.687
	Top-5	0.832	0.824	0.854	0.841	0.873	0.875	0.889