U. D. L DE SIDI BEL ABBÈS

FACULTÉ DES SCIENCES EXACTES

Concours d'accès à l'Ecole doctorale Calcul Stochastique- Statistique et Applications

 $1^{\sf ere}$ Epreuve : Recherche opérationnelle et Equations différentielles stochastiques et Processus stochastique

Sujet 1

Exercice 01

Résoudre le problème (P) par la méthode dual simplexe et en déduire la solution optimale du dual :

$$\begin{cases} Z = x_1 + 2x_2 + 3x_3 \longrightarrow \min \\ 2x_1 + 2x_2 - x_3 \ge 2 \\ x_1 - x_2 - 4x_3 \le -3 \\ x_1 + x_2 - 2x_3 \ge 6 \\ 2x_1 + x_2 - 2x_3 \ge 3 \\ x_i \ge 0, i = 1, 2, 3 \end{cases}$$

Exercice 02

Soit l'EDS

$$dX_t = \alpha X_t dt + b dB_t, \quad X_0 = x$$

- 1. On pose $Y_t = e^{-\alpha t} X_t$, calculer la dynamique de Y_t .
- 2. Exprimer Y_t sous la forme intégrale. En déduire la forme de X_t .
- 3. Calculer $\mathbb{E}(Y_t)$ et $\mathbb{E}(Y_t^2)$.
- 4. Exprimer Y_t pout t > s, sous la forme $Y_t = Y_s + \int_s^t g(u) dB_u$ où l'on explicitera la fonction g.
- 5. Calculer $\mathbb{E}(Y_t/\mathcal{F}_s)$ et $Var(Y_t/\mathcal{F}_s)$.
- 6. En déduire $\mathbb{E}(X_t/\mathcal{F}_s)$ et $Var(X_t/\mathcal{F}_s)$.

U. D. L de Sidi Bel Abbès

FACULTÉ DES SCIENCES EXACTES

Concours d'accès à l'Ecole doctorale Calcul Stochastique- Statistique et Applications

1^{ere} Epreuve : Recherche opérationnelle et Equations différentielles stochastiques et Processus stochastique

Sujet 2

Exercice 01

Avant l'arrivage massif de nouveaux modèles, un vendeur de téléphones portables veut écouler rapidement son stock composé de huit appareils, quatre kits 'mains libres' et dix-neuf cartes avec des communications prépayées. Après une étude de marché, il sait très bien que dans cette période de soldes, il peut proposer aux clients un téléphone avec deux cartes et que cette offre va lui rapporter un profit net de sept dinars. Il peut aussi préparer à l'avance un coffret composé d'un téléphone, d'un kit "mains libres" et de trois cartes, ce qui va lui rapporter un profit net de neuf dinars. Il est assuré de pouvoir vendre tranquillement n'importe quelle quantité de ces offres dans la limite du stock disponible. Quelle quantité de chaque offre notre vendeur doit-il préparer pour maximiser son profit net? (Utiliser pour cela la méthode du simplexe).

Exercice 02

Soit a, α, b, β quatre constantes réelles. On considère l'équation diffĂl'rentielle stochastique

$$dX_t = (a + \alpha X_t) dt + (b + \beta X_t) dB_t,$$

$$X_0 = x$$

- 1. Montrer que cette équation admet une solution unique.
- 2. On note $m(t) = \mathbb{E}(X_t)$ et $M(t) = \mathbb{E}(X_t^2)$.
 - (i) Montrer que m(t) est l'unique solution de l'équation différentielle ordinaire

$$y' - \alpha y = a$$
$$y(0) = x$$

(ii) Ecrire la formule d'Itô pour X_t^2 . En déduire que M(t) est l'unique solution de l'équation differentielle ordinaire

$$y' - (2\alpha + \beta^2)y = 2(a + b\beta)m(t) + b^2$$
$$y(0) = x^2$$

(iii) En déduire $\mathbb{E}(X_t)$, $Var(X_t)$ dans le cas $a = \beta = 0$.

U. D. L de Sidi Bel Abbès

FACULTÉ DES SCIENCES EXACTES

Concours d'accès à l'Ecole doctorale Calcul Stochastique- Statistique et Applications

 $1^{\sf ere}$ Epreuve : Recherche opérationnelle et Equations différentielles stochastiques et Processus stochastique

Sujet 3

Exercice 01

Une firme fabrique deux produits P_1 et P_2 à l'aide de matières premières M_1 , M_2 et M_3 . Le plan de production est le suivant :

	P_1	P_2
M_1	2	1
M_2	4	2
M_3	0	1

La direction de la firme dispose des matières premières M_1 , M_2 et M_3 en quantités respectives 8, 7 et 3 tonnes. Le profit dû à la fabrication d'une unité de P_1 est égale à 5, et celui d'une unité de P_2 à 6. La tâche de la direction est de faire un profit maximum tout en respectant les contraintes sur les matières premières.

- 1. Ecrire le problème de programmation linéaire relatif à ce problème, et résoudre le problème graphiquement.
- 2. En utilisant la méthode du simplexe trouvez la solution de ce problème.

Exercice 02

Soit l'EDS

$$dX_t = X_t dt + dB_t, \quad X_0 = x$$

- 1. On pose $Y_t = e^{-t}X_t$, calculer la dynamique de Y_t .
- 2. Exprimer Y_t sous la forme intégrale.
- 3. Calculer $\mathbb{E}(Y_t)$ et $\mathbb{E}(Y_t^2)$.
- 4. Exprimer Y_t pout t > s, sous la forme $Y_t = Y_s + \int_s^t g(u) dB_u$ où l'on explicitera la fonction g.
- 5. Calculer $\mathbb{E}(Y_t/\mathcal{F}_s)$ et $Var(Y_t/\mathcal{F}_s)$.
- 6. En déduire $\mathbb{E}(X_t/\mathcal{F}_s)$ et $Var(X_t/\mathcal{F}_s)$.