IC-252 Lab

Lab Assignment-2

due for submission on Moodle by 26th Feb

- 1. Suppose that a laboratory test to detect a certain disease has the following statistics.
 - A =event that the tested person has the disease
 - B = event that the test result is positive

It is known that P(B|A) = 0.99 and $P(B|\bar{A}) = 0.005$, and 0.1 of the population actually has the disease. What is the probability that a person has the disease given that the test result is positive?

- 2. Let there be two unbiased N-sided dice that are thrown once, for instance, a 5-sided dice will have five faces, each having 1, 2, 3, 4, 5 number of dots respectively. Write a general program which takes N as input and give the following outputs,
- (a) Sample space $S = \{ \cdot \cdot \cdot \}$.
- (b) Event E_1 that the sum of the dots on the dice equals N.
- (c) Event E_2 that the dots on the first dice is $\lfloor N/2 \rfloor$, where $\lfloor \cdot \rfloor$ indicates greatest integer function.
- (d) Event E_3 that the sum of the dots on the dice is greater than $N + \lfloor N/2 \rfloor$, where $\lfloor \cdot \rfloor$ Indicate the greatest integer function.
- (e) Event $E_4 = E_1 \cap E_3$, i.e., when the sum is N and greater than $N + \lfloor N/2 \rfloor$.
- (f) Probabilities of the events E₁, E₂, E₃, and E₄, i.e., P (E₁), P (E₂), P (E₃), and P (E₄).
- (g) Are events E_1 and E_2 independent? Also, output whether the events E_1 and E_3 independent.
- 3. Repeat Question 2 to write a general program which takes N as input to output the parts 2f and 2g without using the probability formulas. Hence, run the simulation K times in a program and compute the probabilities by utilizing the counts of the desired outcomes. In your report, prepare the below table, Table 3, for a fixed N and increasing K to state your observations.

Table 1: Table for Question-3.

For a fixed	K = 10	K = 50	K = 100	K = 1000	K = 5000
value of N =					
$P(E_1)$					
P (E ₂)					
P (E ₃)					
P (E ₄)					
Are E ₁ & E ₂					
seem independent?					
Are E ₃ & E ₄					
seem independent?					