Analiza traficului si profile utilizatori în retele virtualizate pentru decizii de QoS Sesiunea de licentă – iulie 2015

Cristina Georgiana Opriceană Coordonator: Răzvan Deaconescu

Facultatea de Automatică și Calculatoare, Universitatea POLITEHNICA București

9 julie 2015

Virtualizarea rețelelor de comunicații

Context

Virtualizarea retelelor de comunicatii

- Abordare curentă
 - echipamente dedicate interconectate

Context

Virtualizarea retelelor de comunicatii

- Abordare curentă
 - echipamente dedicate interconectate
 - routere, switchuri, firewall-uri, IDS/IPS

Virtualizarea retelelor de comunicatii

- Abordare curentă
 - echipamente dedicate interconectate
 - routere, switchuri, firewall-uri, IDS/IPS

Virtualizarea rețelelor de comunicații

- Abordare curentă
 - echipamente dedicate interconectate
 - routere, switchuri, firewall-uri, IDS/IPS
- Rețele virtualizate
 - abstractizare peste infrastructura fizică

Virtualizarea rețelelor de comunicații

- Abordare curentă
 - echipamente dedicate interconectate
 - routere, switchuri, firewall-uri, IDS/IPS
- Rețele virtualizate
 - abstractizare peste infrastructura fizică
 - mutarea echipamentelor dedicate în software

Context

Network Function Virtualization

[1] http://blog.3g4g.co.uk

Motivație

Motivatie

• îmbunătățirea experienței utilizatorilor pe Internet

Motivație

- îmbunătățirea experienței utilizatorilor pe Internet
- automatizarea procesului de configurare a rețelelor

Motivatie

- îmbunătătirea experientei utilizatorilor pe Internet
- automatizarea procesului de configurare a rețelelor
- solutie flexibilă

- îmbunătățirea experienței utilizatorilor pe Internet
- automatizarea procesului de configurare a retelelor
- solutie flexibilă
- costuri scăzute prin replicare software

- îmbunătătirea experientei utilizatorilor pe Internet
- automatizarea procesului de configurare a retelelor
- solutie flexibilă
- costuri scăzute prin replicare software
- testarea capabilitătilor NFV

Motivatie

- îmbunătătirea experientei utilizatorilor pe Internet
- automatizarea procesului de configurare a retelelor
- solutie flexibilă
- costuri scăzute prin replicare software
- testarea capabilitătilor NFV
- domeniu de reaserch

■ vPersonna, modul NFV cu mai multe capabilități

- vPersonna, modul NFV cu mai multe capabilităti
 - analiză trafic la nivel II, III în stiva TCP/IP

- vPersonna, modul NFV cu mai multe capabilităti
 - analiză trafic la nivel II, III în stiva TCP/IP
 - agregare date

- vPersonna, modul NFV cu mai multe capabilități
 - analiză trafic la nivel II, III în stiva TCP/IP
 - agregare date
 - management descentralizat al politicilor de QoS

- vPersonna, modul NFV cu mai multe capabilităti
 - analiză trafic la nivel II, III în stiva TCP/IP
 - agregare date
 - management descentralizat al politicilor de QoS
- utlizarea statisticilor pentru decizii

- vPersonna, modul NFV cu mai multe capabilități
 - analiză trafic la nivel II, III în stiva TCP/IP
 - agregare date
 - management descentralizat al politicilor de QoS
- utlizarea statisticilor pentru decizii
 - traffic shaping

- vPersonna, modul NFV cu mai multe capabilităti
 - analiză trafic la nivel II, III în stiva TCP/IP
 - agregare date
 - management descentralizat al politicilor de QoS
- utlizarea statisticilor pentru decizii
 - traffic shaping
 - caching

- vPersonna, modul NFV cu mai multe capabilităti
 - analiză trafic la nivel II, III în stiva TCP/IP
 - agregare date
 - management descentralizat al politicilor de QoS
- utlizarea statisticilor pentru decizii
 - traffic shaping
 - caching

Cui se adresează vPersonna?

- vPersonna, modul NFV cu mai multe capabilităti
 - analiză trafic la nivel II, III în stiva TCP/IP
 - agregare date
 - management descentralizat al politicilor de QoS
- utlizarea statisticilor pentru decizii
 - traffic shaping
 - caching

Cui se adresează vPersonna?

ISP

Arhitectura aplicației vPersonna

Arhitectura aplicației vPersonna

■ TCP, agregare în sesiuni

- TCP, agregare în sesiuni
 - start sesine: SYN = 1, ACK = 0

- TCP, agregare în sesiuni
 - \blacksquare start sesine: SYN = 1, ACK = 0
 - final sesiune: FIN = 1

- TCP, agregare în sesiuni
 - \blacksquare start sesine: SYN = 1, ACK = 0
 - final sesiune: FIN = 1
- UDP

TCP, agregare în sesiuni

• start sesine: SYN = 1, ACK = 0

final sesiune: FIN = 1

- UDP
 - inspectare protocol de nivel aplicție

- TCP, agregare în sesiuni
 - start sesine: SYN = 1, ACK = 0
 - final sesiune: FIN = 1
- UDP
 - inspectare protocol de nivel aplicție
- Definirea tipurilor de trafic

- TCP, agregare în sesiuni
 - \blacksquare start sesine: SYN = 1, ACK = 0
 - \blacksquare final sesiune: FIN = 1
- UDP
 - inspectare protocol de nivel aplicție
- Definirea tipurilor de trafic

enum type_of_service {HTTP, TORRENT, VoIP, VIDEO, DFLT};

- TCP, agregare în sesiuni
 - \blacksquare start sesine: SYN = 1, ACK = 0
 - \blacksquare final sesiune: FIN = 1
- UDP
 - inspectare protocol de nivel aplicție
- Definirea tipurilor de trafic

enum type_of_service {HTTP, TORRENT, VoIP, VIDEO, DFLT};

Modulul de achizitie a datelor

- TCP, agregare în sesiuni
 - start sesine: SYN = 1, ACK = 0
 - final sesiune: FIN = 1
- UDP
 - inspectare protocol de nivel aplictie
- Definirea tipurilor de trafic

enum type_of_service {HTTP, TORRENT, VoIP, VIDEO, DFLT};

Componenta unei sesiuni

IP Sursă, IP Destinatie, Port Sursă, Port Destinatie, Tip de Trafic

Recunoașterea tipurilor de trafic

Recunoașterea tipurilor de trafic

pe baza porturilor

Implementare

Recunoașterea tipurilor de trafic

- pe baza porturilor
- HTTP: extragerea campului hostname din header

Recunoasterea tipurilor de trafic

- pe baza porturilor
- HTTP: extragerea campului hostname din header
- câmpul MIME din headerul HTTP

Recunoasterea tipurilor de trafic

- pe baza porturilor
- HTTP: extragerea campului hostname din header
- câmpul MIME din headerul HTTP
- VoIP: SIP, H323, ISUP, MGCP, UNISTIM din layerul superior protocolului RTP

- pe baza porturilor
- HTTP: extragerea campului hostname din header
- câmpul MIME din headerul HTTP
- VoIP: SIP, H323, ISUP, MGCP, UNISTIM din layerul superior protocolului RTP
- TORRENT: porturi specifice

Implementare

Profilul utilizatorului și interfață

Motivație Arhitectură și design **Implementare** Rezultate Întrebări

Profilul utilizatorului și interfață

Resources Management

Cristina Opriceană

niversitatea POLITEHNICA București

Sugestii pentru utilizator

- Sugestii pentru utilizator
 - algoritmul K-Clustering

- Sugestii pentru utilizator
 - algoritmul K-Clustering
 - 4 dimensiuni, corespunzătoare tipurilor de trafic

- Sugestii pentru utilizator
 - algoritmul K-Clustering
 - 4 dimensiuni, corespunzătoare tipurilor de trafic
 - sugestii conform celor mai apropiati vecini

- Sugestii pentru utilizator
 - algoritmul K-Clustering
 - 4 dimensiuni, corespunzătoare tipurilor de trafic
 - sugestii conform celor mai apropiați vecini
- 2 Caching

- Sugestii pentru utilizator
 - algoritmul K-Clustering
 - 4 dimensiuni, corespunzătoare tipurilor de trafic
 - sugestii conform celor mai apropiati vecini
- 2 Caching
 - heap cu cele mai accesate site-uri

- Sugestii pentru utilizator
 - algoritmul K-Clustering
 - 4 dimensiuni, corespunzătoare tipurilor de trafic
 - sugestii conform celor mai apropiati vecini
- 2 Caching
 - heap cu cele mai accesate site-uri
 - logging al update-urilor

- Sugestii pentru utilizator
 - algoritmul K-Clustering
 - 4 dimensiuni, corespunzătoare tipurilor de trafic
 - sugestii conform celor mai apropiati vecini
- 2 Caching
 - heap cu cele mai accesate site-uri
 - logging al update-urilor
 - roll-back pentru vizualizare între anumite ore

- Sugestii pentru utilizator
 - algoritmul K-Clustering
 - 4 dimensiuni, corespunzătoare tipurilor de trafic
 - sugestii conform celor mai apropiați vecini
- 2 Caching
 - heap cu cele mai accesate site-uri
 - logging al update-urilor
 - roll-back pentru vizualizare între anumite ore
- g proof of concept

- Sugestii pentru utilizator
 - algoritmul K-Clustering
 - 4 dimensiuni, corespunzătoare tipurilor de trafic
 - sugestii conform celor mai apropiați vecini
- Caching
 - heap cu cele mai accesate site-uri
 - logging al update-urilor
 - roll-back pentru vizualizare între anumite ore
- g proof of concept
- 4 îmbunătățite pentru ISP

Setup Demo

- Setup Demo
 - Mai multe masini virtuale, care simulează clienti

- Setup Demo
 - Mai multe mașini virtuale, care simulează clienți
 - Scapy, POSTGre SQL, Raspberry PI

- Setup Demo
 - Mai multe masini virtuale, care simulează clienti
 - Scapy, POSTGre SQL, Raspberry PI

Iface	Packets	Loop Time (ms)	Process Time (ms)	DB Update Time (ms)	Total time (s)
eth0	10 100	45 189	174	51 2 271	0.272 4.176
	1000	2218	$\frac{1711}{6723}$	4008	12.076
wlan0	10	1389	1689	578	3.288
	100 1000	2599 10241	2024 15623	1491 8919	6.060 38.424

Rezultate

Testare și Rezultate(1)

- Setup Demo
 - Mai multe masini virtuale, care simulează clienti
 - Scapy, POSTGre SQL, Raspberry PI
- Concluzii

Iface	Packets	Loop Time (ms)	Process Time (ms)	DB Update Time (ms)	Total time (s)
eth0	10	45	174	51	0.272
	100	189	1711	2 271	4.176
	1000	2218	6723	4008	12.076
wlan0	10	1389	1689	578	3.288
	100	2599	2024	1491	6.060
	1000	10241	15623	8919	38.424

timp ridicat de looping pe interfete

■ Clusterizare simplă

Sugestii utilizator

Rezultate

■ Clusterizare simplă

view: 62.0000, 16.0000 scale: 1.00000, 1.00000

"clients info.dat"

- Sugestii utilizator
- Autoconfigurare

1 Contribuție

- 1 Contributie
 - Modulul de achiziție a datelor

- 1 Contribuție
 - Modulul de achiziție a datelor
 - Modulul de decizie

- 1 Contributie
 - Modulul de achiziție a datelor
 - Modulul de decizie
- 2 Caracteristici

- Contribuție
 - Modulul de achizitie a datelor
 - Modulul de decizie
- 2 Caracteristici
 - Suport pentru autoconfigurare bandwidth

- Contribuție
 - Modulul de achizitie a datelor
 - Modulul de decizie
- 2 Caracteristici
 - Suport pentru autoconfigurare bandwidth
 - Flexibilitate și replicare rapidă

- Contribuție
 - Modulul de achizitie a datelor
 - Modulul de decizie
- 2 Caracteristici
 - Suport pentru autoconfigurare bandwidth
 - Flexibilitate și replicare rapidă
- Îmbunătățiri ulterioare

Întrebări

- Contributie
 - Modulul de achizitie a datelor
 - Modulul de decizie
- 2 Caracteristici
 - Suport pentru autoconfigurare bandwidth
 - Flexibilitate și replicare rapidă
- Îmbunătățiri ulterioare
 - Integrare cu framework ClickOS

- 1 Contribuţie
 - Modulul de achizitie a datelor
 - Modulul de decizie
- 2 Caracteristici
 - Suport pentru autoconfigurare bandwidth
 - Flexibilitate și replicare rapidă
- 3 Îmbunătățiri ulterioare
 - Integrare cu framework ClickOS
 - Creșterea complexității analizei traficului

Motivație Arhitectură și design Implementare Rezultate **Întrebăr**i

- 1 Contribuţie
 - Modulul de achizitie a datelor
 - Modulul de decizie
- 2 Caracteristici
 - Suport pentru autoconfigurare bandwidth
 - Flexibilitate și replicare rapidă
- 3 Îmbunătățiri ulterioare
 - Integrare cu framework ClickOS
 - Cresterea complexitătii analizei traficului
 - Sistem de workeri pentru date

Contribuție

- Modulul de achizitie a datelor
- Modulul de decizie
- 2 Caracteristici
 - Suport pentru autoconfigurare bandwidth
 - Flexibilitate și replicare rapidă
- Îmbunătățiri ulterioare
 - Integrare cu framework ClickOS
 - Creșterea complexității analizei traficului
 - Sistem de workeri pentru date
 - Sistem de promoţii în profilul utilizatorului