Math Logic Assignment 2

```
— ▲ 饶翔云 520030910366
— ② 2022 9 28
```

Q1

Proof: Assume \mathcal{R} is countable $\Rightarrow \mathcal{R}$ is enumerble $\Rightarrow \exists$ a non-repetitive listing of \mathcal{R} . Suppose A,B,C... are items of the listing and we can find write it down in the binary form:

```
1,, 0.1,, 0.01,, 0.001,, ....

A T F F F

B F T F

C F F

X F F T

...
```

T or F convey whether the corresponding bit has value. And we can find from the above picture that we can always construct a $X \in \mathcal{R}$ but \notin the listing of \mathcal{R} in the way of diagonal argument.

Therefore, R is uncountable.

Q2

```
input i:
    if i == 1
        print yes.
        halt
for j in 2,3.....,i-1:
        if i % j ==0:
            print no.
            halt
print yes
halt
```

Q3

```
initial P as empty sets.
for i in 1,2,3.....:
   if i % j != 0 for j in P and j < i:
        print i
        add i to P as a new member.
   continue</pre>
```

Q4

Proof: Suppose $\mathcal A$ is a algorithm for computing f. From ppt p63 we know that rng(f) is an effectively enumerable set. Obviously rng(f) is a subset of $\mathbb N$. We can construct a algorithm $\mathcal B$:

```
input a
for i in 1,2,3.....:
   if A(i) has no output:
        continue
   if A(i) < a:
        continue
   if A(i) = a:
        print yes
   if A(i) > a:
        print no
```

For total function:

Because of the strict increasing property of f, we can always find $A(i) \ge a$ in finite steps(less than a).

For partial function:

Suppose the domain of f is $\{a_1, a_2, a_3, a_4, \dots\}$, and the biggest distance between neighbers is d. Then we can we can always find A(i) \geq a in finite steps(less than a*d) Then we can decide whether $a \in rng(f)$ in finite steps.

Therefore, rng(f) is effectively decidable.

Q5

Proof: We can adjust the algorithm $\mathcal B$ for listing $\mathcal A$ in this way($\mathcal C$ for listing $\mathbb N\setminus\mathcal A$)

```
for input n
for i in 1,2,3.....,n:
    conduct B and C:
    check which list n is in:
    if n is in listing of B:
        print yes
    else print no
```

Since \mathcal{B} and \mathcal{C} can list every member in finite step, we first run \mathcal{B} and \mathcal{C} then we just judge which list n is in. This process costs finite steps. **Therefore**, \mathcal{A} is **effectively enumerble**.

Q6

Proof: Suppose the algorithm A is the listing algorithm of R, then we can construct the following algorithm:

```
initial R as empty set
print 0
for i in 1,2,3.....:
    continue running A until it prints i-th member n.
    add it to R
    for j in 1,2,3.....:
        if j not in R:
            break
        if j+1 has been printed:
            return
        print j+1
```

Let the listing of $A^{'}$ be p_0, p_1, p_2, \ldots , and $p_0 = 0$. If exist $p_{i+1} - p_i \geq 1$, then we will have no element $> p_i + 1$, because we can always say $\forall n > p_i + 1$, $\exists p_i \notin R$. And we can output members of R in finite step. So if we want to output the i_{th} member of P, we will first list all members in R and < n. Since this process is finite, we can easily know whether i_{th} member exists by judging the forward elements whether they are continuous. If it exists we can just output it in finite steps as above.

Therefore, P is effectively enumerble.