

LEIC-T 2024/2025

Aprendizagem - Machine Learning Homework 2

Deadline 7/10/2024 21:00

Submit on Fenix as pdf

I) Bayesian Classifier (8 pts)

Given a data set describing a sample

\mathbf{x}_1	X 2	Class
0.6 1 1.6 1.8 2 2 3	0.4 1.1 1.5 1.8 0 1	A A A A B B B
4	1.2	В

And the query vector $x = (x_1, x_2)^T = (1, 2)^T$

a) (3pts) Compute the most probable class for the query vector, under the Naive Bayes assumption, using 1-dimensional Gaussians to model the likelihoods. (Hint, the likelihood is described of each class is described by two Gaussians (Normal Distributions, each distribution is defined by a mean value and standard deviation.)

You can (should?) use your computer with Python, NumPy, MATLAB, Octave, Mathematica, etc. (whatever tool/language you like). Please indicate your results step by step.

- b) (3 pts) Compute the most probable class for the query vector assuming that the likelihoods are 2-dimensional Gaussians. Are the results from 1 a) and 1 b) the same? Why are the same or not (one sentence, no mathematical proof required)
- c) (1 pts) Given a data set

X 3	Class	
0	A	
1	A	
1	A	
0	A	
1	В	
1	В	
0	В	
1	В	

LEIC-T 2024/2025

Aprendizagem - Machine Learning Homework 2

Deadline 7/10/2024 21:00

Submit on Fenix as pdf

Compute the most probable class, with x3 being a categorial class 1=True, 0=False.

d) (1pts) Given a data set describing a sample combining the data set before

\mathbf{X}_1	\mathbf{X}_2	X 3	Class
0.6	0.4	0	A
1	1.1	1	A
1.6	0.5	1	A
1.8	1.8	0	A
2	0	1	В
2	1	1	В
3	0	0	В
4	1.2	1	В

x1 and x2 are dependable and x3 is independent of x1 and x2. x3 is a categorial class. And the query vector $x = (1,2,1)^T$ Compute the most probable class and indicate the estimated relative probability.

Hint,

$$p(A, x_{query}) = p((1,2)|A) \cdot P(1|A) \cdot p(A)$$

$$p(B, xquery) = p((1,2)|B) \cdot P(1|B) \cdot p(B)$$

you have already computed the values in b) and in c)

P(1|A) = card(A.1)/card(A) = 2/4

P(1|B) = card(A.1)/card(B) = 3/4

II Software Experiments (2pts)

Download the jupyter notebook HM2 kB.ipynb.

Split the data using the command (in the notebook)

digits = datasets.load_digits()

X, y = digits.data, digits.target

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.4, stratify=y, random_state=your_group number)

And do the experiments with kNN with k=3, k=30, and GaussNB as indicated in the file and *indicate the accuracy results*.

Load the wine data set wine = datasets.load_wine() and redo the experiments, *indicate the new accuracy values*.

Which method kNN, k=3,k=30, GaussNB gives better result for which data set? Do you know why? Please indicate in one/two sentence/s.