$\begin{array}{c} \textbf{Projeto Mathematical Ramblings} \\ \textbf{mathematical ramblings.blogspot.com} \end{array}$

Sejam U e W subespaços de V tais que $U \cup W$ também é subespaço, mostrar que $U \subset W \vee W \subset U$.

Se $U \cup W$ é subespaço, é fechado com relação à soma. Seja $u \in U$ e $w \in W$, $u + w \in U \cup W$.

Seja $u' \in U$ e $w' \in W$, $u + w = u' \lor u + w = w'$.

Ou seja, $w = u' - u \lor u = w' - w$, ou seja, $w \in U \lor u \in W$.

Quod Erat Demonstrandum.

Documento compilado em Saturday 12th October, 2024, 17:39, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso: 🐧 💲 🧿 Atribuição-NãoComercial-CompartilhaIgual (CC BY-NC-SA).