Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Práctica 04

Vianey Aileen Borrás Pablo - 316033619 Kevin Axel Prestegui Ramos - 316201373

> Arquitectura de Computadoras Dr. Jorge Luis Ortega Arjona.

Fecha de entrega: 12 de marzo de 2020.

PREGUNTAS

• Crea un decodificador de 3x8 usando decodificadores 2x4.

Para poder crearlo, necesitamos primero saber su tabla de verdad

S1	S2	S3	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Figure 1: Tabla de verdad de un codificador de 3x8

Si analizamos la tabla de verdad de un codificador de 3x8 y la dividimos en dos partes una donde S1=0 y otra donde S2=1 obtenemos las siguientes tablas.

• Cuando S1=0:

Observemos en la tabla donde S1=0, cuando de D0 hasta D3 están activadas se comportan igual que el decodificador de 2x4.

• Cuando S1=1:

Ahora observemos que cuando S1=1 y las señales de D4 hasta D7 están activadas se comportan igual que el decodificador de 2x4.

S1	S2	S3	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0

S1	S2	S3	D0	D1	D2	D3	D4	D5	D6	D7
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Por lo tanto para crear el decodificador de 3x8 necesitamos usar dos decodificadores de 2x4. Recordemos que el circuito de un decodificador de 2x4 se ve de la siguiente manera:

• Crea un enunciado parecido a los de las prácticas anteriores (Club de Toby) y crea dos circuitos que lo resuelvan, uno utilizando un decodificador y el otro sin decodificador (No es necesario que minimicen, pero puedes hacerlo).

El club de Toby tiene 4 integrantes, el cuál se rige por votos para tomar sus decisiones, el cumpleaños de Toby se acerca y los otros tres integrantes planean hacerle una fiesta sorpresa, por lo que los integrantes deciden votar para ver si se realiza o no, recordemos que el voto de Toby cuenta doble, mientras que los otros solo tienen derecho a votar una sola vez.

S1	S2	S3	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Figure 2: Tabla del Decodificador

X1	X2	Х3	FIESTA
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Figure 3: Tabla de verdad

- ¿Cómo implementarías un decodificador de 4x16 usando únicamente decodificadores de 2x4?, ¿Cuántos de estos (2x4) necesitarías?
 - Sabemos que un decodificador de 4x16 tiene 4 entradas y 16 salidas y su tabla de verdad se ve como sigue:

S3	S2	S1	S0	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Observemos que si la tabla la dividimos en bloque de 4 obtenemos cuatro casos donde:

 \bullet Cuando S₃=0 y S₂=0

De D₀ hasta D₃ están activadas, entonces se comportan igual que el decodificador de 2x4.

• Cuando $S_3=0$ y $S_2=1$

De D₄ hasta D₇ están activadas, entonces se comportan igual que el decodificador de 2x4.

• Cuando $S_3=1$ y $S_2=0$

De D₈ hasta D₁1 están activadas, entonces se comportan igual que el decodificador de 2x4.

 \bullet Cuando S₃=1 y S₂=1

De D_12 hasta D_15 están activadas, entonces se comportan igual que el decodificador de 2x4.

Basándonos en lo anterior necesitamos 4 decodificadores de 2x4 para las 16 salidas, pero necesitamos otro decodificador el cual se encargue de habilitar cado uno de los cuatro decodificadores.

Е	S1	S0	E1	E2	E3	E 4
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

Por lo tanto necesitamos 5 decodificadores de 2x4