Работа 122

Резонанс напряжений в последовательном контуре

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение AЧX и Φ ЧX, а также определение основных параметров контура.

Оборудование: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

1. Теоретическая справка

Общие уравнения. Рассмотрим электрическую цепь, состоящую из последовательно соединенных конденсатора с емкостью C и активным сопротивлением R_S , катушки с индуктивностью L и активным сопротивлением R_L и резистора с сопротивлением R, которая подключена к источнику переменного тока с амплитудой напряжения E и частотой f. Тогда общее активное сопротивление цепи R_{Σ} выражается формулой

$$R_{\Sigma} = R + R_S + R_L,\tag{1}$$

а циклическая частота ω формулой

$$\omega = 2\pi f. \tag{2}$$

Отсюда импеданс цепи определяется выражением

$$Z = R_{\Sigma} + i \left(\omega L - \frac{1}{\omega C} \right), \tag{3}$$

из которого можно легко найти формулу для комплексной амплитуды тока \widehat{I} :

$$\widehat{I} = \frac{\widehat{E}}{Z} = \frac{E}{R_{\Sigma} + i\left(\omega L - \frac{1}{\omega C}\right)}.$$
(4)

Из предыдущего выражения несложно получить формулы для комплексной амплитуды напряжения на конденсаторе \hat{U}_C , а также для его амплитуды U_C и сдвига фаз φ_C :

$$\widehat{U}_C = E \frac{R_S - \frac{i}{\omega C}}{R_\Sigma + i \left(\omega L - \frac{1}{\omega C}\right)};\tag{5}$$

$$U_C = E \sqrt{\frac{R_S^2 \omega^2 C^2 + 1}{\frac{1}{Q^2} \left(\frac{\omega}{\omega_0}\right)^2 + \left(\left(\frac{\omega}{\omega_0}\right)^2 - 1\right)^2}};$$
(6)

$$\varphi_C = -\arccos\left(\frac{\frac{1}{Q}R_S\omega C - \left(\left(\frac{\omega}{\omega_0}\right)^2 - 1\right)^2}{\sqrt{R_S^2\omega^2 + 1}\sqrt{\frac{1}{Q^2}\left(\frac{\omega}{\omega_0}\right)^2 + \left(\left(\frac{\omega}{\omega_0}\right)^2 - 1\right)^2}}\right).$$
(7)

Здесь были использованы следующие обозначения:

$$\begin{cases} \omega_0 = \frac{1}{\sqrt{LC}} \text{ - собтвенная циклическая частота контура;} \\ Q = \frac{1}{R} \sqrt{\frac{L}{C}} \text{ - добротность контура.} \end{cases}$$
 (8)

Приближение вблизи резонанса. Видно, что выражения (6) - (7) являются достаточно громоздкими. Для их упрощения примем, что добротность контура велика $(Q \ge 10)$ и $R_S \ll R$, и будем рассматривать поведение цепи вблизи резонанса. Тогда можно считать ω_0 резонансной циклической частотой контура, а эти выражения примут вид:

$$U_C = EQ \frac{\omega}{\omega_0} \frac{1}{\sqrt{1 + (\tau \Delta \omega)^2}}; \tag{9}$$

$$\varphi_c = -\frac{\pi}{2} + \delta - \arctan(\tau \Delta \omega). \tag{10}$$

Новые использованные обозначения:

$$\begin{cases} \tau = \frac{2Q}{\omega_0} \text{ - постоянная времени контура;} \\ \delta = \arctan(RC\omega) \text{ - параметр конденсатора (см. рис. 1).} \\ \Delta\omega = \omega - \omega_0 \end{cases}$$
 (11)

Из выражений (9) и (10) можно выразить добротность контура через параметры АЧХ и ФЧХ: пусть $\Delta\omega$ - ширина резонансного пика при напряжении, в $\sqrt{2}$ раз меньшем резонансного. Эту же величину можно получить как разность циклических частот между точками ФЧХ, где φ принимает значения $-\frac{\pi}{4}$ и $-\frac{3\pi}{4}$. Примем также за k коэффициент наклона графика ФЧХ в точке резонанса, тогда

$$Q = \frac{\omega_0}{\Delta\omega} = -\frac{k\omega_0}{2}. (12)$$

Рис. 1: Векторная диаграмма

Поправка к резонансной частоте. Истинное значение циклической частоты, при которой U_C максимально, отлично от ω_0 . Получим для нее более точное выражение, учитывая ранее принятые предположения. Пренебрежем R_S в формуле (6), тогда производная $\frac{dU_C^2}{df}$ примет вид

$$\frac{dU_C^2}{df} = \frac{\frac{4\omega}{\omega_0^2} - \frac{2\omega}{Q^2\omega_0^2} - \frac{4\omega^3}{\omega_0^4}}{\frac{1}{Q^2} \left(\frac{\omega}{\omega_0}\right)^2 + \left(\left(\frac{\omega}{\omega_0}\right)^2 - 1\right)^2}.$$
(13)

При максимальном напряжении значение этого выражения должно быть равно нулю, исходя из этого несложно получить выражение для ω :

$$\omega = \omega_0 \sqrt{1 - \frac{1}{2Q^2}} \approx \omega_0 \left(1 - \frac{1}{4Q^2} \right). \tag{14}$$

Зависимость R_L от частоты. При достаточно больших частотах активное сопротивление катушки индуктивности может довольно сильно отличаться от значения при постоянном токе. У этого явления есть несколько причин, как то потери энергии за счет наведенных токов в сердечнике, а также потери при перемагничивании, и скин-эффект. Потери энергии за счет перемагничивания дают сопротивление, пропорциональное ω , а за счет наведенных токов - ω^2 . Толщина скин-слоя зависит от частоты как $\frac{1}{\sqrt{\omega}}$, а значит сопротивление пропорционально $\sqrt{\omega}$. Таким образом, можно ожидать, что

$$R_L = a + b\sqrt{\omega} + c\omega + d\omega^2. \tag{15}$$

2. Измерение резонансных частот для разных емкостей

Экспериментальная установка. Схема экспериментальной установки представлена на рис. 2. С помощью вольтметров мы можем измерять действующие значения напряжения на источнике и конденсаторе, частота f определяется источником. Осциллограф позволяет получить более детальную картину колебаний. Емкость можно изменять с помощью магазина емкостей.

Заметим, что если в предыдущих формулах заменить все амплитуды на действующие значения (далее будем использовать прежние обозначения для действующих значений), величины $\frac{\omega}{\omega_0}$ на $\frac{f}{f_0}$ (f_0 - резонансная частота), а величины ω на $2\pi f$, то они останутся верными. Поэтому из (8), (9) и (11) индуктивность выражается по формуле

Рис. 2: Схема установки

$$L = \frac{1}{4\pi^2 f_0^2 C},\tag{16}$$

где f_0 - резонансная частота, добротность по формуле

$$Q = \frac{U_{C0}}{E},\tag{17}$$

где U_{C0} - действующее значение напряжение в резонансе, сопротивление по формуле

$$R_{\Sigma} = \frac{E}{U_{C0}} \sqrt{\frac{L}{C}},\tag{18}$$

действующее значение тока в цепи по формуле

$$I = \frac{E}{R_{\Sigma}}. (19)$$

Кроме этого, введем дополнительно следующие параметры:

$$\begin{cases} \rho = \sqrt{\frac{L}{C}} \text{ - реактивное (или волоновое) сопротивление контура;} \\ R_{S_{\text{max}}} = 10^{-3} \rho \text{ - максимальное активное сопротивление конденсатора.} \end{cases}$$
 (20)

В выражении для $R_{S_{
m max}}$ множитель 10^{-3} был выбран, т.к. для используемых конденсаторов $tg \delta \leq 10^{-3}$, и в силу выражения

$$R_S = \rho \operatorname{tg} \delta \tag{21}$$

Также, если дополнительно предположить, что R мало меняется с частотой, то, в силу малости R_S , из (1) получим

$$R_L = R_{\Sigma} - R. \tag{22}$$

В этой части мы будем снимать зависимость f_0 и U_{C0} от C при неизменном действующем значении напряжения на источнике:

$$E = (0, 100 \pm 0, 001) \text{ B.}$$
 (23)

Значение сопротивления резистора:

$$R = 3,45 \text{ Om.}$$
 (24)

C , н Φ	25,0	33,2	47,5	57,0	67,4	82,1	99,6
f_0 , к Γ ц	31,5	27,3	23	21,1	19,4	17,6	16
U_{C0} , B	2,60	2,33	2,02	1,87	1,75	1,60	1,48
E, B	0,100	0,100	0,100	0,100	0,100	0,100	0,100
L , м Γ н	1,02	1,02	1,01	1,00	1,00	1,00	0,99
ΔL , м Γ н	0,01	0,01	0,01	0,01	0,01	0,01	0,01
R_{Σ} , Ом	7,69	7,45	7,18	7,08	6,96	6,90	6,77
R_L , Om	4,24	4,00	3,73	3,63	3,51	3,45	3,32
$\Delta R_L, \mathrm{Om}$	0,05	0,05	0,05	0,05	0,05	0,06	0,06
Q	26,0	23,3	20,2	18,7	17,5	16,0	14,8
ρ, O_{M}	200	174	145	132	122	110	100
$R_{S\max}, O_{\mathrm{M}}$	0,200	0,174	0,145	0,132	0,122	0,110	0,100
I, мА	13,0	13,4	13,9	14,1	14,4	14,5	14,8

Таблица 1: Зависимость U_{C0} и f_0 от C

Обработка результатов. Экспериментальные данные представлены в таблице 1. Погрешность f_0 в силу неточности определения резонансной частоты была принята

$$\Delta f_0 = 0, 1 \text{ K}\Gamma\text{II}, \tag{25}$$

погрешность U_{C0}

$$\Delta U_{C0} = 0.01 \text{ B.}$$
 (26)

Погрешность L, исходя из (16), вычислялась по формуле

$$\Delta L = 2 \frac{\Delta f_0}{f_0},\tag{27}$$

т.к мы считаем значение емкости точным. Из данных таблицы можно получить среднее значение L (в дальнейшем будем обозначать L именно его), и случайную погрешность σ_L :

$$L \approx 1,00 \text{ M}\Gamma\text{H};$$
 (28)

$$\sigma_L \approx 5 \cdot 10^{-3} \text{ M}\Gamma\text{H}.$$
 (29)

Как мы видим, систематическая погрешность больше случайной, поэтому для дальнейших вычислений принималось:

$$\Delta L = 0.01 \text{ M}\Gamma\text{H}. \tag{30}$$

Погрешность R_L вычислялась по формуле

$$\Delta R_L = R_l \sqrt{\left(\frac{\Delta U_{C0}}{U_{C0}}\right)^2 + \frac{1}{4} \left(\frac{\Delta L}{L}\right)^2},\tag{31}$$

это выражение было получено из (18), т.к. из (22)

$$\Delta R_L = \Delta R_{\Sigma},\tag{32}$$

при этом мы считали, что значение R известно с достаточной точностью.

График зависимости $R_L(f)$ представлен на рис. 3. На нем представлены фитирования экспериментальных данных двумя зависимостями: вида (15) и вида

$$R_L = a + b\sqrt{f},\tag{33}$$

т.е. модели, когда отсутствует сердечник и скин-эффект влияет на всю цепь, в том числе и на R. Первая модель обозначена mod1, вторая - mod2.

Из графика видно, что точки лежат почти на одной прямой, поэтому для точного определения характера зависимости необходимы измерения в более широком диапазоне. Рассмотрим значения χ^2 для 1 и 2 моделей:

$$\chi_1^2 \approx 0.38;$$
 (34)

$$\chi_2^2 \approx 1,06,\tag{35}$$

отсюда модель 2 более вероятна, т.к. χ^2 ближе к 1. Поэтому катушка скорее всего не имеет сердечника, и все обусловлено скин-эффектом. Толщина скин-слоя на частоте 10к Γ ц равна

$$\Delta \approx 0,66 \text{ MM},$$
 (36)

что довольно мало, поэтому скин-эффект в данном случае существенный.

Рис. 3: График зависимости $R_L(f)$

3. Измерение АЧХ и ФЧХ

Экспериментальная установка. В этой части экспериментальная установка такая же, как и в предыдущей. Вместо настоящего значения фазы φ_C будем использовать $|\varphi_C|$, т.к. из формулы (7) следует, что $\varphi_C < 0$, и подобная замена просто изменит знак. Для измерения $|\varphi_C|$ синхронизация первого осциллографа была настроена на первый канал (источник), тогда осциллограмма выглядит примерно как на рис. 4. При использовании параметров, указанных на рисунке (они измеряются в делениях шкалы, т.к. нам нужно только отношение), формула для $|\varphi_C|$ примет вид

$$|\varphi_C| = \pi \frac{x}{x_0}. (37)$$

Рис. 4: Возможный вид осциллограммы

Измерения проводились при двух разных значениях емкости: 25,0 нФ и 47,5 нФ.

Обработка результатов. Экспериментальные данные представлены в таблицах 2 и 3 - для 25,0 нФ и 47,5 нФ соответственно. Измерения f считались точными (погрешность прибора с учетом случайных отклонений 10 Γ ц, что очень мало). Погрешность U_C принималась равной

$$\Delta U_C = 0.01B,\tag{38}$$

погрешности x и x_0

$$\Delta x = \Delta x_0 = 0, 1 \text{дел.} \tag{39}$$

Погрешность $\Delta \varphi$, исходя из (37), оценивалась по формуле

$$\Delta|\varphi_C| = |\varphi_C| \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta x_0}{x_0}\right)^2},\tag{40}$$

U_C, B	0.62	1.14	1.19	1.43	1.85	2.10	2.19	2.42
f , к Γ ц	28.91	30.28	30.31	30.57	30.87	31.02	31.06	31.20
x, дел	0.9	1.0	1.1	1.4	1.9	2.2	2.4	2.9
x_0 , дел	8.4	8.2	8.2	8.2	8.1	8.0	8.0	8.0
φ	0.34	0.38	0.42	0.54	0.74	0.86	0.94	1.14
$\Delta \varphi$	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
$\frac{f}{f_0}$	0.918	0.962	0.963	0.971	0.981	0.985	0.987	0.991
$\Delta \frac{f}{f_0}$	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
$\frac{U_C}{U_0}$	0.238	0.438	0.458	0.550	0.712	0.808	0.842	0.931
$\Delta \frac{\ddot{U}_C}{U_0}$	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005
U_C, B	2.51	2.60	2.57	2.32	1.94	1.52	1.14	0.63
f , к Γ ц	31.30	31.44	31.53	31.75	32.01	32.32	32.73	33.86
х, дел	3.3	3.8	4.1	5.0	5.5	6.0	6.3	6.5
x_0 , дел	7.9	7.9	7.9	7.8	7.8	7.7	7.6	7.5
φ	1.31	1.51	1.63	2.01	2.22	2.45	2.60	2.72
$\Delta \varphi$	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06
$\frac{f}{f_0}$	0.994	0.999	1.002	1.009	1.017	1.027	1.040	1.076
$\Delta \frac{f}{f_0}$	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
$\frac{U_C^{''}}{U_0}$	0.965	1.000	0.988	0.892	0.746	0.585	0.438	0.242
$\Delta \frac{U_C}{U_0}$	0.005	0.005	0.005	0.005	0.005	0.004	0.004	0.004

Таблица 2: Данные для получения АЧХ и ФЧХ при C=25,0 нФ

U_C, B	0.59	0.93	1.19	1.43	1.62	1.77	1.93	1.99
f , к Γ ц	21.16	21.98	22.31	22.52	22.65	22.76	22.89	22.97
х, дел	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9
x_0 , дел	4.7	4.6	4.5	4.5	4.4	4.4	4.4	4.4
$ \varphi_C $	0.33	0.48	0.63	0.77	0.93	1.07	1.21	1.36
$\frac{f}{f_0}$	0.92	0.95	0.97	0.97	0.98	0.99	0.99	0.99
$\Delta \varphi_C $	0.067	0.069	0.071	0.072	0.074	0.075	0.077	0.078
$\Delta \frac{f}{f_0}$	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
$\frac{U_C}{U_0}$	0.292	0.460	0.589	0.708	0.802	0.876	0.955	0.985
$\Delta \frac{U_C}{U_0}$	0.005	0.005	0.006	0.006	0.006	0.007	0.007	0.007
U_C, B	2.01	1.98	1.84	1.60	1.27	0.95	0.74	0.46
f , к Γ ц	23.06	23.16	23.34	23.53	23.80	24.16	24.56	25.47
х, дел	2.1	2.3	2.7	3.0	3.3	3.5	3.5	3.6
x_0 , дел	4.3	4.3	4.3	4.3	4.2	4.2	4.1	3.9
$ \varphi_C $	1.53	1.68	1.97	2.19	2.47	2.62	2.68	2.90
$\frac{f}{f_0}$	1.00	1.00	1.01	1.02	1.03	1.05	1.06	1.10
$\Delta \varphi_C $	0.081	0.083	0.086	0.089	0.095	0.097	0.101	0.110
$\Delta \frac{f}{f_0}$	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
$\frac{U_C}{U_0}$	0.995	0.980	0.911	0.792	0.629	0.470	0.366	0.228
$\Delta \frac{U_C}{U_0}$	0.007	0.007	0.007	0.006	0.006	0.005	0.005	0.005

Таблица 3: Данные для получения АЧХ и ФЧХ при C=47,5 нФ

погрешность $\frac{f}{f_0}$ - по формуле

$$\Delta \frac{f}{f_0} = \frac{f}{f_0} \frac{\Delta f_0}{f_0},\tag{41}$$

здесь значение $\frac{\Delta f_0}{f_0}$ можно получить из 14:

$$\frac{\Delta f_0}{f_0} \approx \frac{1}{4Q^2} \approx 0,001,$$
 (42)

как будет показано в дальнейшем. Погрешность $\Delta \frac{U_C}{U_{C\,0}}$ определялась по формуле

$$\Delta \frac{U_C}{U_{C0}} = \sqrt{\left(\frac{\Delta U_C}{U_C}\right)^2 + \left(\frac{\Delta U_{C0}}{U_{C0}}\right)^2}.$$
(43)

Графики зависимости $U_C(f)$ представлены на рис. 5. Данные были профитированы зависимостью (6) с учетом того, что

$$\omega = 2\pi f. \tag{44}$$

Как мы видим, экспериментальные данные хорошо легли на эту зависимость, хотя коэффициенты χ^2 получились довольно большие (122 для 25,0 нФ и 36 для 47,5 нФ), что, скорее всего, вызвано недооценкой ошибки. Параметры зависимости для 25,0 нФ:

$$f_0 = (31, 480 \pm 0, 002) \text{ к}\Gamma\text{ц}; \qquad (45)$$

$$Q = 26,02 \pm 0,05.$$
 (46)

Как мы видим, значение Q совпадает со значением из предыдущей части. Значение R_S получилось равным

$$R_S = (0 \pm 12) \text{ OM},$$
 (47)

Рис. 5: График зависимости $U_C(f)$

таким образом, определить R_S в данном эксперименте невозможно (но это сопротивление мало), поэтому в дальнейшем это сопротивление не указывается. Для 47,5 нФ получились следующие параметры:

$$f_0 = (23, 100 \pm 0, 002) \text{ k}\Gamma\text{II};$$
 (48)

$$Q = 20,02 \pm 0,13,\tag{49}$$

что также совпадает с данными предыдущих пунктов. Для построения последующих графиков были использованы полученные значения f_0 , в качестве погрешности была взята величина

$$\frac{1}{4Q^2} \sim \frac{1}{4 \cdot 20^2} \approx 0,01,\tag{50}$$

как и было в (42).

График зависимости $|\varphi_C|\left(\frac{f}{f_0}\right)$ представлен на рис. 6. Функция для фитирования была получена из (7) с учетом (44) и преобразования

$$f = \frac{f}{f_0} f_0. \tag{51}$$

Эти данные хуже совпадают с полученными зависимостями, чем данные $U_C(f)$, но относительные погрешности в данном случае также больше. Тем не менее, коэффициенты χ^2 здесь ближе к 1 (1,2 для 47,5 нФ и 18 для 25,0 нФ). Такой большой коэффициент для 25,0 нФ связан, скорее всего, с плохими измерениями. Для 25,0 нФ добротность (теперь в фитировании только 2 параметра - Q и R_S) равна

$$Q = 30 \pm 2,$$
 (52)

что близко к полученным ранее значениям, но не совпадает с ними, что еще раз подтверждает предположение о плохих измерениях. Для 47,5 нФ добротность равна

$$Q = 20 \pm 2,$$
 (53)

что совпадает с предыдущими значениями.

Рис. 6: График зависимости $|\varphi|\left(\frac{f}{f_0}\right)$

График зависимости $\frac{U_C}{U_{C0}}\left(\frac{f}{f_0}\right)$ представлен на рис. 7. Для пересчета были использованы значения U_{C0} , полученные из фитирования зависимости $U_C(f)$:

$$\begin{cases} U_{C0} = (2, 61 \pm 0, 01) \text{ B - для } 25,0 \text{ нФ}; \\ U_{C0} = (2, 02 \pm 0, 01) \text{ B - для } 47,5 \text{ нФ}. \end{cases}$$
 (54)

Здесь экспериментальные данные хорошо совпадают с зависимостью, но и коэффициенты χ^2 большие (13 для 25,0 нф и 11 для 47,5 нФ). Параметрами также были только R_S и Q, значение добротности для 25,0 нФ:

$$Q = 26, 1 \pm 0, 2, \tag{55}$$

что хорошо совпадает с предыдущими данными. Добротность для 47,5 нФ:

$$Q = 20, 1 \pm 0, 1, \tag{56}$$

что также хорошо согласуется с ранее полученными данными.

Рис. 7: График зависимости $\frac{U_C}{U_{C0}}\left(\frac{f}{f_0}\right)$

4. Векторная диаграмма

Построим векторную диаграмму напряжений и токов в резонансном состоянии при минимальной добротности (т.е.

при C=99,6 нФ). Сдвиг фаз между напряжениями на источнике и конденсаторе равен $-\frac{\pi}{2}$, между напряжением на источнике и на катушке $\frac{\pi}{2}$. Соответствующие действующие значения

напряжений (в резонансе амплитуда напряжения на катушке равна амплитуде напряжения на конденсаторе) и тока можно найти в таблице 1. С учетом того, что амплитуды в $\sqrt{2}$ больше действующих значений, на рис. 8 была построена соответствующая векторная диаграмма. Подписи осей указаны в вольтах, т.к. вектор тока только один, то нет смысла вводить масштаб для силы тока.

5. Заключение

Цели работы были достигнуты, определена индуктивность контура и получена зависимость его сопротивления от частоты, хотя и в узком диапазоне. Кроме этого, значение добротность для двух емкостей получено несколькими разными способами, а именно по формуле и через графики АЧХ и ФЧХ, и получившиеся значения совпали. Также была построена векторная диаграмма для контура с самой низкой добротностью в резонансном состоянии.

Рис. 8: Векторная диаграмма для C=99,6 нФ