VNH2SP30-E

Automotive fully integrated H-bridge motor driver

Datasheet - production data

Features

Туре	R _{DS(on)}	I _{out}	V _{ccmax}
VNH2SP30-E	19 mΩ max (per leg)	30 A	41 V

- AEC-Q100 qualified
- 5 V logic level compatible inputs
- Undervoltage and overvoltage shutdown
- Overvoltage clamp
- Thermal shutdown
- · Cross-conduction protection
- Linear current limiter
- Very low standby power consumption
- PWM operation up to 20 kHz
- Protection against loss of ground and loss of V_{CC}
- Current sense output proportional to motor current
- Package: ECOPACK[®]

Description

The VNH2SP30-E is a full bridge motor driver intended for a wide range of automotive applications. The device incorporates a dual monolithic high side driver and two low side switches. The high side driver switch is designed

using STMicroelectronics well known and proven proprietary VIPower[™] M0 technology which permits efficient integration on the same die of a true power MOSFET with intelligent signal/protection circuitry.

The low side switches are vertical MOSFETs manufactured using STMicroelectronics proprietary EHD (STripFET™) process. The three die are assembled in a MultiPowerSO-30 package on electrically isolated leadframes. This package, specifically designed for the harsh automotive environments, offers improved thermal performance thanks to exposed die pads. Moreover, its fully symmetrical mechanical design allows superior manufacturability at board level. The input signals INA and INB can directly interface with the microcontroller to select the motor direction and brake condition. The DIAG_A/EN_A or DIAG_B/EN_B, when connected to an external pull-up resistor, enable one leg of the bridge. They also provide a feedback digital diagnostic signal. The normal operating condition is explained in the truth table. The motor current can be monitored with the CS pin by delivering a current proportional to its value. The speed of the motor can be controlled in all possible conditions by the PWM up to 20 kHz. In all cases, a low level state on the PWM pin will turn off both the LS_A and LS_B switches. When PWM rises to a high level, LS_A or LS_B turn on again depending on the input pin state.

Table 1. Device summary

Package	Order code
rackage	Tape and reel
MultiPowerSO-30	VNH2SP30TR-E

Contents VNH2SP30-E

Contents

1	Bloc	k diagr	am and pin description	5
2	Elec	trical s _l	pecifications	8
	2.1	Absolu	ute maximum ratings	8
	2.2	Electri	cal characteristics	9
	2.3	Electri	cal characteristics curves	17
3	Арр	lication	information 2	21
	3.1	Rever	se battery protection	22
4	Pacl	kage an	d PCB thermal data 2	26
	4.1	Power	SSO-30 thermal data	26
		4.1.1	Thermal calculation in clockwise and anti-clockwise operation in steady-state mode	
		4.1.2	Thermal resistance definitions (values according to the PCB heatsink area)	27
		4.1.3	Thermal calculation in transient mode	27
		4.1.4	Single pulse thermal impedance definition (values according to the PCB heatsink area)	27
5	Pacl	kage inf	formation	31
	5.1	MultiP	owerSO-30 package information	31
	5.2	Packir	ng information 3	33
6	Revi	ision his	story 3	34

VNH2SP30-E List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Block description	
Table 3.	Pin definitions and functions	6
Table 4.	Pin functions description	7
Table 5.	Absolute maximum ratings	8
Table 6.	Power section	9
Table 7.	Logic inputs (INA, INB, ENA, ENB)	9
Table 8.	PWM	10
Table 9.	Switching (V_{CC} = 13 V, R_{LOAD} = 0.87 W, unless otherwise specified)	10
Table 10.	Protection and diagnostic	11
Table 11.	Current sense (9 V < V _{CC} < 16 V)	12
Table 12.	Truth table in normal operating conditions	
Table 13.	Truth table in fault conditions (detected on OUTA)	15
Table 14.	Electrical transient requirements	16
Table 15.	Thermal calculation in clockwise and anti-clockwise operation in steady-state mode	27
Table 16.	Thermal parameters	
Table 17.	MultiPowerSO-30 mechanical data	
Table 18.	Document revision history	34

List of figures VNH2SP30-E

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	6
Figure 3.	Current and voltage conventions	8
Figure 4.	Definition of the delay times measurement	12
Figure 5.	Definition of the low side switching times	13
Figure 6.	Definition of the high side switching times	13
Figure 7.	Definition of dynamic cross conduction current during a PWM operation	14
Figure 8.	On state supply current	17
Figure 9.	Off state supply current	17
Figure 10.	High level input current	17
Figure 11.	Input clamp voltage	17
Figure 12.	Input high level voltage	17
Figure 13.	Input low level voltage	
Figure 14.	Input hysteresis voltage	18
Figure 15.	High level enable pin current	18
Figure 16.	Delay time during change of operation mode	
Figure 17.	Enable clamp voltage	18
Figure 18.	High level enable voltage	
Figure 19.	Low level enable voltage	
Figure 20.	PWM high level voltage	
Figure 21.	PWM low level voltage	
Figure 22.	PWM high level current	
Figure 23.	Overvoltage shutdown	
Figure 24.	Undervoltage shutdown	
Figure 25.	Current limitation	
Figure 26.	On state high side resistance vs Tcase	
Figure 27.	On state low side resistance vs Tcase	
Figure 28.	Turn-on delay time	
Figure 29.	Turn-off delay time	
Figure 30.	Output voltage rise time	
Figure 31.	Output voltage fall time	
Figure 32.	Typical application circuit for DC to 20 kHz PWM operation short-circuit protection	
Figure 33.	Behavior in fault condition (how a fault can be cleared)	
Figure 34.	Half-bridge configuration	
Figure 35.	Multi-motor configuration	
Figure 36.	Waveforms in full bridge operation	
Figure 37.	Waveforms in full bridge operation (continued)	
Figure 38.	MultiPowerSO-30™ PC board	
Figure 39.	Chipset configuration	
Figure 40.	Auto and mutual Rthj-amb vs PCB copper area in open box free air condition	
Figure 41.	MultiPowerSO-30 HSD thermal impedance junction ambient single pulse	
Figure 42.	MultiPowerSO-30 LSD thermal impedance junction ambient single pulse	
Figure 43.	Thermal fitting model of an H-bridge in MultiPowerSO-30	
Figure 44.	MultiPowerSO-30 package outline	
Figure 45.	MultiPowerSO-30 suggested pad layout	
Figure 46	MultiPowerSO-30 tane and real shipment (suffix "TR")	33

1 Block diagram and pin description

Figure 1. Block diagram

Table 2. Block description

Name	Description
Logic control	Allows the turn-on and the turn-off of the high side and the low side switches according to the truth table
Overvoltage + undervoltage	Shuts down the device outside the range [5.5V16V] for the battery voltage
High side and low side clamp voltage	Protects the high side and the low side switches from the high voltage on the battery line in all configurations for the motor
High side and low side driver	Drives the gate of the concerned switch to allow a proper $R_{DS(on)}$ for the leg of the bridge
Linear current limiter	Limits the motor current by reducing the high side switch gate-source voltage when short-circuit to ground occurs
Overtemperature protection	In case of short-circuit with the increase of the junction's temperature, shuts down the concerned high side to prevent its degradation and to protect the die
Fault detection	Signals an abnormal behavior of the switches in the half-bridge A or B by pulling low the concerned $\rm EN_x/DIAG_x$ pin

Figure 2. Configuration diagram (top view)

Table 3. Pin definitions and functions

Pin no.	Symbol	Function
1, 25, 30	OUT _A , Heat Slug3	Source of high side switch A / Drain of low side switch A
2, 4, 7, 12, 14, 17, 22, 24, 29	NC	Not connected
3, 13, 23	V _{CC} , Heat Slug1	Drain of high side switches and power supply voltage
6	EN _A /DIAG _A	Status of high side and low side switches A; open drain output
5	IN _A	Clockwise input
8	PWM	PWM input
9	CS	Output of current sense
11	IN _B	Counter clockwise input
10	EN _B /DIAG _B	Status of high side and low side switches B; open drain output
15, 16, 21	OUT _B , Heat Slug2	Source of high side switch B / Drain of low side switch B
26, 27, 28	GND _A	Source of low side switch A ⁽¹⁾
18, 19, 20	GND _B	Source of low side switch B ⁽¹⁾

^{1.} GND_A and GND_B must be externally connected together.

6/35 DocID10832 Rev 10

Table 4. Pin functions description

Name	Description
V _{CC}	Battery connection
GND _A , GND _B	Power grounds; must always be externally connected together
OUT _A , OUT _B	Power connections to the motor
IN _A , IN _B	Voltage controlled input pins with hysteresis, CMOS compatible. These two pins control the state of the bridge in normal operation according to the truth table (brake to V_{CC} , brake to GND, clockwise and counterclockwise).
PWM	Voltage controlled input pin with hysteresis, CMOS compatible. Gates of low side FETs are modulated by the PWM signal during their ON phase allowing speed control of the motor.
EN _A /DIAG _A , EN _B /DIAG _B	Open drain bidirectional logic pins. These pins must be connected to an external pull up resistor. When externally pulled low, they disable half-bridge A or B. In case of fault detection (thermal shutdown of a high side FET or excessive ON state voltage drop across a low side FET), these pins are pulled low by the device (see truth table in fault condition).
cs	Analog current sense output. This output sources a current proportional to the motor current. The information can be read back as an analog voltage across an external resistor.

2 Electrical specifications

Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Table 5. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	+41	V
I _{max}	Maximum output current (continuous)	30	Α
I _R	Reverse output current (continuous)	-30	
I _{IN}	Input current (IN _A and IN _B pins)	±10	
I _{EN}	Enable input current (DIAG _A /EN _A and DIAG _B /EN _B pins)	±10	mA
I _{pw}	PWM input current	±10	
V _{CS}	Current sense maximum voltage	-3/+15	V
V _{ESD}	Electrostatic discharge (R = 1.5kΩ, C = 100pF) – CS pin – logic pins – output pins: OUT _A , OUT _B , V _{CC}	2 4 5	kV kV kV
Tj	Junction operating temperature	Internally limited	
T _c	Case operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	

8/35 DocID10832 Rev 10

2.2 Electrical characteristics

 V_{CC} = 9V up to 16 V; -40°C < T_{J} < 150°C, unless otherwise specified.

Table 6. Power section

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
V _{CC}	Operating supply voltage		5.5		16	V	
Is	Supply current	Off state with all Fault Cleared & ENx=0 $IN_A = IN_B = PWM = 0$; $T_j = 25$ °C; $V_{CC} = 13V$ $IN_A = IN_B = PWM = 0$ Off state: $IN_A = IN_B = PWM = 0$		12	30 60	μΑ μΑ mA	
		On state: IN _A or IN _B = 5V, no PWM			10	mA	
D	Static high side resistance	I _{OUT} = 15A; T _j = 25°C			14		
R _{ONHS}		I_{OUT} = 15A; T_j = -40 to 150°C			28	mΩ	
D	Static low side resistance	I _{OUT} = 15A; T _j = 25°C			5	11122	
R _{ONLS}		I_{OUT} = 15A; T_j = -40 to 150°C			10		
V _f	High side free- wheeling diode forward voltage	I _f = 15A		0.8	1.1	٧	
	High side off state	$T_j = 25^{\circ}C; V_{OUTX} = EN_X = 0V; V_{CC} = 13V$			3		
I _{L(off)}	output current (per channel)	T _j = 125°C; V _{OUTX} = EN _X = 0V; V _{CC} = 13V			5	μΑ	
I _{RM}	Dynamic cross- conduction current	I _{OUT} = 15A (see <i>Figure 7</i>)		0.7		Α	

Table 7. Logic inputs (IN_A, IN_B, EN_A, EN_B)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
V_{IL}	Input low level voltage				1.25		
V_{IH}	Input high level voltage	Normal operation (DIAG _X /EN _X pin acts as an input pin)					
V _{IHYST}	Input hysteresis voltage	,	0.5			V	
V	Input clamp voltage	I _{IN} = 1mA	5.5	6.3	7.5		
V _{ICL}		I _{IN} = -1mA	-1.0	-0.7	-0.3		
I _{INL}	Input low current	V _{IN} = 1.25V	1				
I _{INH}	Input high current	/ _{IN} = 3.25V			10	μA	
V_{DIAG}	Enable output low level voltage	Fault operation (DIAG $_{\rm X}$ /EN $_{\rm X}$ pin acts as an output pin); I $_{\rm EN}$ = 1mA			0.4	V	

Table 8. PWM

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{pwl}	PWM low level voltage				1.25	V
I _{pwl}	PWM pin current	V _{pw} = 1.25V	1			μA
V _{pwh}	PWM high level voltage		3.25			V
I _{pwh}	PWM pin current	V _{pw} = 3.25V			10	μA
V _{pwhhyst}	PWM hysteresis voltage		0.5			
V	PWM clamp voltage	I _{pw} = 1mA	V _{CC} + 0.3	V _{CC} + 0.7	V _{CC} + 1.0	V
V _{pwcl}	F vvivi ciamp voltage	I _{pw} = -1mA	-6.0	-4.5	-3.0	
C _{INPWM}	PWM pin input capacitance	V _{IN} = 2.5V			25	pF

Table 9. Switching (V_{CC} = 13 V, R_{LOAD} = 0.87 Ω , unless otherwise specified)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
f	PWM frequency		0		20	kHz
t _{d(on)}	Turn-on delay time	Input rise time < 1µs (see <i>Figure 6</i>)			250	
t _{d(off)}	Turn-off delay time	me Input rise time < 1µs (see <i>Figure 6</i>)			250	
t _r	Rise time	(see Figure 5)		1	1.6	μs
t _f	Fall time	(see Figure 5)		1.2	2.4	
t _{DEL}	Delay time during change of operating mode	(see Figure 4)	300	600	1800	
t _{rr}	High side free wheeling diode reverse recovery time	(see Figure 7)		110		ns
t _{off(min)} ⁽¹⁾	PWM minimum off time	9V < V _{CC} < 16V; T _j = 25°C; L = 250μH; I _{OUT} = 15A			6	μs

^{1.} To avoid false short to battery detection during PWM operation, the PWM signal must be low for a time longer than 6 μ s.

Table 10. Protection and diagnostic

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V	Undervoltage shutdown				5.5	
V _{USD}	Undervoltage reset			4.7		V
V _{OV}	Overvoltage shutdown		16	19	22	
I _{LIM}	High side current limitation		30	50	70	Α
V _{CLP}	Total clamp voltage (V _{CC} to GND)	I _{OUT} = 15A	43	48	54	V
T _{TSD}	Thermal shutdown temperature	V _{IN} = 3.25V	150	175	200	
T _{TR}	Thermal reset temperature		135			°C
T _{HYST}	Thermal hysteresis		7	15		

Table 11. Current sense (9 V < V_{CC} < 16 V)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
K ₁	I _{OUT} /I _{SENSE}	I_{OUT} = 30A; R _{SENSE} = 1.5kΩ; T _j = -40 to 150°C	9665	11370	13075	
K ₂	I _{OUT} /I _{SENSE}	I_{OUT} = 8A; R _{SENSE} = 1.5kΩ; T _j = -40 to 150°C		11370	13644	
dK ₁ / K ₁ ⁽¹⁾	Analog sense current drift	I_{OUT} = 30A; R _{SENSE} = 1.5kΩ; T _j = -40 to 150°C	-8		+8	%
$dK_2 / K_2^{(1)}$	Analog sense current drift	I_{OUT} > 8A; R _{SENSE} = 1.5kΩ; T _j = -40 to 150°C	-10		+10	70
I _{SENSEO}	Analog sense leakage current	$I_{OUT} = 0A; V_{SENSE} = 0V;$ $T_j = -40 \text{ to } 150^{\circ}\text{C}$	0		65	μA

Analog sense current drift is deviation of factor K for a given device over (-40 °C to 150 °C and 9 V < V_{CC} < 16 V) with respect to its value measured at T_j = 25°C, V_{CC} = 13 V.

Figure 4. Definition of the delay times measurement

PWM

Vouta, B

90%

10%

t

t

Figure 5. Definition of the low side switching times

Figure 7. Definition of dynamic cross conduction current during a PWM operation

Table 12. Truth table in normal operating conditions

INA	IN _B	DIAG _A /EN _A	DIAG _B /EN _B	OUTA	OUTB	cs	Operating mode				
1	1				ш	ш	ш	Н	Н	High Imp.	Brake to V _{CC}
'	0	L	I – I /K	Clockwise (CW)							
0	1	1	'	'	'		Н	$I_{SENSE} = I_{OUT}/K$	Counterclockwise (CCW)		
	0			L	L	L	High imp.	Brake to GND			

Table 13. Truth table in fault conditions (detected on OUT_A)

INA	IN _B	DIAG _A /EN _A	DIAG _B /EN _B	OUTA	OUTB	cs	
1	1				Н	High Imp.	
•	0		1		L	r light limp.	
0	1		'	OPEN 0	Н	I _{OUTB} /K	
0	0	0			L	High Imp.	
	Х		0		OPEN	Tilgitiliip.	
X	1		1		Н	I _{OUTB} /K	
	0				L	High Imp.	
		Fault Inf	ormation	Protection	on Action		

Note:

The saturation detection on the low side power MOSFET is possible only if the impedance of the short-circuit from the output to the battery is less than 100 m Ω when the device is supplied with a battery voltage of 13.5 V.

Table 14. Electrical transient requirements

ISO T/R - 7637/1 test pulse	Test level	Test level	Test level	Test level IV	Test levels delays and impedance
1	-25V	-50V	-75V	-100V	2ms, 10Ω
2	+25V	+50V	+75V	+100V	0.2ms, 10Ω
3a	-25V	-50V	-100V	-150V	0.1μs, 50Ω
3b	+25V	+50V	+75V	+100V	υ. τμο, σους
4	-4V	-5V	-6V	-7V	100ms, 0.01Ω
5	+26.5V	+46.5V	+66.5V	+86.5V	400ms, 2Ω

ISO T/R - 7637/1 test pulse	Test levels result l	Test levels result II	Test levels result III	Test levels result IV
1				
2				
3a	C	С	С	С
3b	С			
4				
5 ⁽¹⁾		E	E	E

^{1.} For load dump exceeding the above value a centralized suppressor must be adopted.

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

16/35 DocID10832 Rev 10

2.3 Electrical characteristics curves

Figure 8. On state supply current

Figure 9. Off state supply current

Figure 10. High level input current

Figure 11. Input clamp voltage

Figure 12. Input high level voltage

Figure 13. Input low level voltage

Figure 14. Input hysteresis voltage

Vihyst (V) 1.75 Vcc=13V 1.5 1.25 0.75 0.5 0.25 -50 -25 0 25 50 75 100 125 150 175 Tc (°C)

Figure 15. High level enable pin current

Figure 16. Delay time during change of operation mode

Figure 18. High level enable voltage

Figure 19. Low level enable voltage

18/35 DocID10832 Rev 10

Figure 20. PWM high level voltage

Figure 21. PWM low level voltage

Figure 22. PWM high level current

Figure 23. Overvoltage shutdown

Figure 24. Undervoltage shutdown

Figure 25. Current limitation

Figure 26. On state high side resistance vs T_{case} Figure 27. On state low side resistance vs T_{case}

Figure 28. Turn-on delay time

Figure 29. Turn-off delay time

Figure 30. Output voltage rise time

Figure 31. Output voltage fall time

20/35 DocID10832 Rev 10

3 Application information

In normal operating conditions the $DIAG_X/EN_X$ pin is considered as an input pin by the device. This pin must be externally pulled high.

PWM pin usage: in all cases, a "0" on the PWM pin will turn off both LS_A and LS_B switches. When PWM rises back to "1", LS_A or LS_B turn on again depending on the input pin state.

Vcc +5∖ Reg 5V Vcc 3.3K 3 3K DIAG_B/EN_E 1K DIAGA/EN 1K μС INA LSA LSB CS 10K С $\overline{\mathsf{GND}}_\mathsf{A}$ GNDB b) N MOSFET

Figure 32. Typical application circuit for DC to 20 kHz PWM operation short-circuit protection

Note:

The value of the blocking capacitor (C) depends on the application conditions and defines the voltage and current ripple on the supply line at PWM operation. Stored energy from the motor inductance may fly back into the blocking capacitor if the bridge driver goes into tristate. This causes a hazardous overvoltage if the capacitor is not large enough. As a basic guideline, 500 µF per 10 A load current is recommended.

In case of a fault condition, the $\mathsf{DIAG}_X/\mathsf{EN}_X$ pin is considered an output pin by the device. The fault conditions are:

- overtemperature on one or both high sides
- short to battery condition on the output (saturation detection on the low side power MOSFET)

Possible origins of fault conditions may be:

- OUT_A is shorted to ground \rightarrow overtemperature detection on high side A.
- OUT_A is shorted to $V_{CC} \rightarrow$ low side power MOSFET saturation detection.

When a fault condition is detected, the user can be informed of which power element is in fault by monitoring the IN_A , IN_B , $DIAG_A/EN_A$ and $DIAG_B/EN_B$ pins.

In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn on the respective output (OUT_X) again, the input signal must rise from low to high level.

Figure 33. Behavior in fault condition (how a fault can be cleared)

Note:

In case of the fault condition is not removed, the procedure for unlatching and sending the device into Stby mode is:

- Clear the fault in the device (toggle : INA if ENA=0 or INB if ENB=0)
- Pull low all inputs, PWM and Diag/EN pins within tDEL.

If the Diag/En pins are already low, PWM=0, the fault can be cleared simply toggling the input. The device will enter Stby mode as soon as the fault is cleared.

3.1 Reverse battery protection

Three possible solutions can be considered:

- 1. a Schottky diode D connected to V_{CC} pin
- 2. an N-channel MOSFET connected to the GND pin (see Figure 32: Typical application circuit for DC to 20 kHz PWM operation short-circuit protection on page 21)
- 3. a P-channel MOSFET connected to the V_{CC} pin

The device sustains no more than -30 A in reverse battery conditions because of the two body diodes of the power MOSFETs. Additionally, in reverse battery condition the I/Os of the VNH2SP30-E are pulled down to the V_{CC} line (approximately -1.5 V). A series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If I_{Rmax} is the maximum target reverse current through μC I/Os, the series resistor is:

V_{CC}

INA
INA
INA
DIAGA/ENA
DIAGA/ENA
DIAGB/ENB
PWM

OUTA
OUTA
OUTB

GNDA
GNDA
GNDB

GNDA
GNDB

Figure 34. Half-bridge configuration

Note:

The VNH2SP30-E can be used as a high power half-bridge driver achieving an On resistance per leg of 9.5 m Ω .

Figure 35. Multi-motor configuration

Note:

The VNH2SP30-E can easily be designed in multi-motor driving applications such as seat positioning systems where only one motor must be driven at a time. The $DIAG_X/EN_X$ pins allow the unused half-bridges to be put into high impedance.

Figure 36. Waveforms in full bridge operation

Figure 37. Waveforms in full bridge operation (continued)

4 Package and PCB thermal data

4.1 PowerSSO-30 thermal data

Figure 38. MultiPowerSO-30™ PC board

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 58 mm x 58 mm, PCB thickness = 2mm. Cu thickness = 35 μ m, Copper areas: from minimum pad layout to 16 cm²).

Figure 39. Chipset configuration

Figure 40. Auto and mutual R_{thj-amb} vs PCB copper area in open box free air condition

577

4.1.1 Thermal calculation in clockwise and anti-clockwise operation in steady-state mode

Table 15. Thermal calculation in clockwise and anti-clockwise operation in steadystate mode

HSA	HS _B	LSA	LS _B	T _{jHSAB}	T _{jLSA}	T _{jLSB}
ON	OFF	OFF	ON	$P_{dHSA} \times R_{thHS} + P_{dLSB} \times R_{thHSLS} + T_{amb}$	P _{dHSA} x R _{thHSLS} + P _{dLSB} x R _{thLSLS} + T _{amb}	P _{dHSA} x R _{thHSLS} + P _{dLSB} x R _{thLS} + T _{amb}
OFF	ON	ON	OFF	P_{dHSB} x R_{thHS} + P_{dLSA} x R_{thHSLS} + T_{amb}	P _{dHSB} x R _{thHSLS} + P _{dLSA} x R _{thLS} + T _{amb}	$P_{dHSB} x R_{thHSLS} + P_{dLSA}$ $x R_{thLSLS} + T_{amb}$

4.1.2 Thermal resistance definitions (values according to the PCB heatsink area)

 $R_{thHS} = R_{thHSA} = R_{thHSB} = High Side Chip Thermal Resistance Junction to Ambient (HS_A or HS_B in ON state)$

 $R_{thLS} = R_{thLSA} = R_{thLSB} = Low Side Chip Thermal Resistance Junction to Ambient$

 R_{thHSLS} = $R_{thHSALSB}$ = $R_{thHSBLSA}$ = Mutual Thermal Resistance Junction to Ambient between High Side and Low Side Chips

 R_{thLSLS} = $R_{thLSALSB}$ = Mutual Thermal Resistance Junction to Ambient between Low Side Chips

4.1.3 Thermal calculation in transient mode^(a)

 $\begin{aligned} & \textbf{T_{jHSAB}} = Z_{thHS} \text{ x } P_{dHSAB} + Z_{thHSLS} \text{ x } (P_{dLSA} + P_{dLSB}) + T_{amb} \\ & \textbf{T_{jLSA}} = Z_{thHSLS} \text{ x } P_{dHSAB} + Z_{thLS} \text{ x } P_{dLSA} + Z_{thLSLS} \text{ x } P_{dLSB} + T_{amb} \\ & \textbf{T_{jLSB}} = Z_{thHSLS} \text{ x } P_{dHSAB} + Z_{thLSLS} \text{ x } P_{dLSA} + Z_{thLS} \text{ x } P_{dLSB} + T_{amb} \end{aligned}$

4.1.4 Single pulse thermal impedance definition (values according to the PCB heatsink area)

Z_{thHS} = High Side Chip Thermal Impedance Junction to Ambient

 $Z_{thLS} = Z_{thLSA} = Z_{thLSB} = Low Side Chip Thermal Impedance Junction to Ambient$

 $\mathbf{Z}_{\text{thHSLS}}$ = $\mathbf{Z}_{\text{thHSABLSA}}$ = $\mathbf{Z}_{\text{thHSABLSB}}$ = Mutual Thermal Impedance Junction to Ambient between High Side and Low Side Chips

 $\mathbf{Z}_{\mathsf{thLSLS}}$ = Z_{thLSALSB} = Mutual Thermal Impedance Junction to Ambient between Low Side Chips

a. Calculation is valid in any dynamic operating condition. P_d values set by user.

Equation 1: pulse calculation formula

$$\mathbf{Z}_{\text{TH}\delta} = R_{\text{TH}} \triangleright \delta + Z_{\text{THtp}} (1 - \delta)$$
where $\delta = t_p / T$

Figure 41. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse

Figure 42. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse

477

Figure 43. Thermal fitting model of an H-bridge in MultiPowerSO-30

Table 16. Thermal parameters⁽¹⁾

Area/island (cm2)	Footprint	4	8	16
R1 = R7 (°C/W)	0.05			
R2 = R8 (°C/W)	0.3			
R3 (°C/W)	0.5			
R4 (°C/W)	1.3			
R5 (°C/W)	14			
R6 (°C/W)	44.7	39.1	31.6	23.7
R9 = R15 (°C/W)	0.2			
R10 = R16 (°C/W)	0.4			
R11 = R17 (°C/W)	0.8			
R12 = R18 (°C/W)	1.5			
R13 = R19 (°C/W)	20			
R14 = R20 (°C/W)	46.9	36.1	30.4	20.8
R21 = R22 = R23 (°C/W)	115			
C1 = C7 (W.s/°C)	0.005			
C2 = C8 (W.s/°C)	0.008			
C3 = C11 = C17 (W.s/°C)	0.01			
C4 = C13 = C19 (W.s/°C)	0.3			
C5 (W.s/°C)	0.6			
C6 (W.s/°C)	5	7	9	11
C9 = C15 (W.s/°C)	0.003			

Table 16. Thermal parameters⁽¹⁾ (continued)

Area/island (cm2)	Footprint	4	8	16
C10 = C16 (W.s/°C)	0.006			
C12 = C18 (W.s/°C)	0.075			
C14 = C20 (W.s/°C)	2.5	3.5	4.5	5.5

^{1.} The blank space means that the value is the same as the previous one.

VNH2SP30-E **Package information**

Package information 5

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

MultiPowerSO-30 package information 5.1

Figure 44. MultiPowerSO-30 package outline

Table 17. MultiPowerSO-30 mechanical data

Symbol	Millimeters					
Symbol	Min	Тур	Max			
А			2.35			
A2	1.85		2.25			
A3	0		0.1			
В	0.42		0.58			
С	0.23		0.32			
D	17.1	17.2	17.3			
E	18.85		19.15			

Package information VNH2SP30-E

Table 17. MultiPowerSO-30 mechanical data (continued)

Symbol	Millimeters		
	Min	Тур	Max
E1	15.9	16	16.1
е		1	
F1	5.55		6.05
F2	4.6		5.1
F3	9.6		10.1
L	0.8		1.15
N			10deg
S	0deg		7deg

Figure 45. MultiPowerSO-30 suggested pad layout

VNH2SP30-E Package information

5.2 Packing information

Note: The devices are packed in tape and reel shipments (see Table 1: Device summary on page 1).

Figure 46. MultiPowerSO-30 tape and reel shipment (suffix "TR")

Revision history VNH2SP30-E

6 Revision history

Table 18. Document revision history

Date	Revision	Description of changes	
Sep-2004	1	First issue	
Dec- 2004	2	Inserted t _{off(min)} test condition modification and note Modified I _{RM} figure number	
Feb-2005	3	Minor changes	
Apr-2005	4	Public release	
01-Sep-2006	5	Document converted into new ST corporate template. Added table of contents, list of tables and list of figures Removed figure number from package outline on page 1 Changed Features on page 1 to add ECOPACK [®] package Added Section 1: Block diagram and pin description on page 5 Added Section 2:2: Electrical characteristics on page 9 Added "low" and "high" to parameters for I _{INL} and I _{INH} in Table 6 on page 9 Inserted note in Figure 32 on page 22 Added vertical limitation line to left side arrow of t _{D(off)} to Figure 7 on page 14 Added Section 4.1: PowerSSO-30 thermal data on page 27 Added Section 5: Package and packing information on page 32 Added Section 5:3: Packing information on page 34 Updated disclaimer (last page) to include a mention about the use of ST products in automotive applications	
15-May-2007	6	Document reformatted and converted into new ST template.	
06-Feb-2008	7	Corrected Heat Slug numbers in <i>Table 2: Pin definitions and functions</i> .	
02-Oct-2008	8	Added new information in <i>Table 5: Power section</i> Added <i>Figure 33: Behavior in fault condition (How a fault can be cleared)</i>	
20-Sep-2013	9	Updated Disclaimer.	
11-Jan-2017	10	 Removed all information relative to tube packing of the product Modified Section 5: Package information Added AEC-Q100 qualified in the Features section Minor text edits throughout the document 	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

