Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Temporada Académica de Verano 2011

Curso : Probabilidad y Estadística

Sigla : EYP1113-1 Pauta : Examen

Profesor : Ricardo Alonso Olea Ortega Ayudantes : María Ignacia Vicuña Loyola

Examen

Problema 1

Una empresa fiscalizadora de obras esta realizando pruebas de resistencia a cubos de hormigón que se recolectan en terreno. Estudios anteriores muestran que una distribución Log-Normal (o una distribución Gamma) con moda igual a 15 ksi. y un coeficiente de variación del 50 % ajusta de buena manera el comportamiento de los datos. Si las resistencias logradas en las pruebas se clasificó de la siguiente manera:

Intervalo	[0-10)	[10 - 20)	[20 - 30)	[30 - 40)	[40 - 50)	≥ 50
Frecuencia	45	138	72	32	10	3

¿Cuál de las dos distribuciones propuestas por los estudios anteriores recomendaría bajo un criterio estadístico para ajustar a los datos?

Observación: En sus cálculos considere un redondeo hasta el tercer decimal.

Solución

Para una distribución Gamma (k, ν) tenemos que:

[0.5 ptos] Mo =
$$\frac{k-1}{\nu}$$
 y $\delta = \frac{1}{\sqrt{k}}$ [0.5 ptos]

Despejando y evaluando se obtiene que

$$k = 4$$
 y $\nu = 0.2$ [0.5 ptos]

Mientras que en la distribución Log-Normal (λ, ζ)

[0.5 ptos] Mo = exp
$$(\lambda - \zeta^2)$$
 y $\zeta^2 = \ln(1 + \delta^2)$ [0.5 ptos]

Despejando y evaluando se tiene que

$$\zeta = 0.4723807$$
 y $\lambda = 2.931194$ [0.5 ptos]

Si $X \sim \text{Gamma}(4, \nu)$ su función de distribución de probabilidad acumulada es

$$F_X(x) = 1 - \sum_{s=0}^{4-1} \frac{(\nu x)^s e^{-\nu x}}{s!}, \quad \text{si } k \in \mathbb{N}$$

$$= 1 - e^{-\nu x} - (\nu x) e^{-\nu x} - \frac{1}{2} (\nu x)^2 e^{-\nu x} - \frac{1}{6} (\nu x)^3 e^{-\nu x}$$

$$= 1 - e^{-\nu x} \left[1 + (\nu x) + \frac{(\nu x)}{2} + \frac{(\nu x)^3}{6} \right] \quad [\textbf{0.3 ptos}]$$

Si $X \sim \text{Log-Normal}(\lambda, \zeta)$ su función de distribución de probabilidad acumulada es

$$F_X(x) = \Phi\left(\frac{\ln x - \lambda}{\zeta}\right)$$
 [0.2 ptos]

Reemplazando tenemos que

	$\operatorname{Gamma}(k \nu)$	$Log-Normal(\lambda, \zeta)$
x	$F_X(x)$	$F_X(x)$
0	0,000	0,000
10	$0,\!143$	0,092
20	$0,\!567$	$0,\!554$
30	0,849	0,840
40	0,958	0,946
50	0,990	0,981

[0.5 ptos]

Luego,

Intervalo	[0-10)	[10 - 20)	[20 - 30)	[30 - 40)	[40 - 50)	≥ 50
Frecuencia Observada	45,0	138,0	72,0	32,0	10,0	3,0
Frecuencia Esperada Gamma	42,9	127,2	84,6	32,7	9,6	3,0
Frecuencia Esperada Log-Normal	27,6	138,6	85,8	31,8	10,5	5,7

[0.5 ptos]

Las hipótesis a testear son

$$H_0: X \sim \text{Gamma}(4; 0,2) \quad \text{vs} \quad H_a: X \nsim \text{Gamma}(4; 0,2)$$
 (1)

$$H_0: X \sim \text{Log-Normal}(2.931194; 0.4723807)$$
 vs $H_a: X \nsim \text{Log-Normal}(2.931194; 0.4723807)$ (2)

Los estadísticos de pruebas para (1) y (2) son respectivamente

$$\begin{split} X_{\rm Gamma}^2 &= \frac{(45-42.9)^2}{42.9} + \frac{(138-127.2)^2}{127.2} + \frac{(72-84.6)^2}{84.6} + \frac{(32-32.7)^2}{32.7} + \frac{(10-9.6)^2}{9.6} + \frac{(3-3.0)^2}{3.0} \\ &= 2.928 \quad \textbf{[0.3 ptos]} \\ X_{\rm Log-Normal}^2 &= \frac{(45-27.6)^2}{27.6} + \frac{(138-138.6)^2}{138.6} + \frac{(72-85.8)^2}{85.8} + \frac{(32-31.8)^2}{31.8} + \frac{(10-10.5)^2}{10.5} + \frac{(3-5.7)^2}{5.7} \\ &= 14.496 \quad \textbf{[0.3 ptos]} \end{split}$$

Como ambas distribuciones son propuestas por estudios anteriores, ambos estadísticos se compara con una distribución Chi-Cuadrado(f), con f = (6-1) - 0 = 5. [0.2 ptos]

Los respectivos valores-p se encuentran en los siguientes intervalos:

Ajuste Gamma
$$\Rightarrow 10\%$$
 < valor-p < 90% [0.2 ptos]
Ajuste Log-Normal $\Rightarrow 1\%$ < valor-p < 2,5% [0.2 ptos]

Por lo tanto, se recomienda utilizar la distribución Gamma. [0.3 ptos]

+ 1 Punto Base

Problema 2

Estudios clínicos han demostrado que la circunferencia de cintura es un buen predictor de diversos problemas de salud. Para ilustrar su utilidad se selecciono en un consultorio a 60 adultos mayores de 18 años a los cuales se les midió la circunferencia de cintura y además se les registró su peso. Si los datos obtenidos fueron los siguientes:

$$\sum_{i=1}^{n} y_i = 4236,2; \quad \sum_{i=1}^{n} x_i = 5456,1; \quad \sum_{i=1}^{n} y_i^2 = 310556,0; \quad \sum_{i=1}^{n} x_i^2 = 504675,3; \quad \sum_{i=1}^{n} x_i \cdot y_i = 393756,1$$

- (a) [4.0 Ptos.] Obtenga la recta de regresión lineal y los estadísticos asociados. ¿Qué puede concluir sobre la relación entre la circunferencia de cintura y el peso de una persona?
- (b) [2.0 Ptos.] Bajo el supuesto de normalidad, cual es la probabilidad que una adulto con una circunferencia de cintura igual a 85 cm tenga un peso superior a 80 kilos.

Solución

(a) La recta de regresión estimadas

$$y' = \hat{\alpha} + \hat{\beta} \cdot x$$

tiene coeficientes

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i \cdot y_i - n \cdot \overline{x} \cdot \overline{y}}{\sum_{i=1}^{n} x_i^2 - n \cdot \overline{x}^2} = 1,001455 \quad [\textbf{0.5 ptos}]$$

$$\hat{\alpha} = \overline{y} - \hat{\beta} \cdot \overline{x} = -20,46401 \quad [\textbf{0.5 ptos}]$$

Los estadísticos asociados son:

$$\begin{split} s_Y^2 &= \frac{1}{n-1} \left[\sum_{i=1}^n x_i^2 - n \cdot \overline{x}^2 \right] = 194,3417 \quad \textbf{[0.5 ptos]} \\ s_X^2 &= \frac{1}{n-1} \left[\sum_{i=1}^n y_i^2 - n \cdot \overline{y}^2 \right] = 144,4889 \quad \textbf{[0.5 ptos]} \\ s_{Y\mid x}^2 &= \frac{(n-1)}{(n-2)} \left[s_Y^2 - \hat{\beta} \cdot s_X^2 \right] = 50,49843 \quad \textbf{[0.5 ptos]} \\ r^2 &= 1 - \frac{s_{Y\mid x}^2}{s_Y^2} = 0,7401565 \quad \textbf{[0.5 ptos]} \\ \rho &= \sqrt{1 - \frac{(n-2)}{(n-1)} \cdot \frac{s_{Y\mid x}^2}{s_Y^2}} = \hat{\beta} \cdot \sqrt{\frac{s_X^2}{s_Y^2}} = 0,863507 \quad \textbf{[0.5 ptos]} \end{split}$$

A partir del valor de ρ se infiere que la relación lineal entre ambas variables es positiva y fuerte. Además la variabilidad presente en los datos es explicada en un 74,01 %. Por lo tanto, conocer la circunferencia de cintura de una persona nos permite predecir su verdadero peso.

[0.5 ptos]

(b) Bajo el supuesto de normalidad se tiene que

$$Y \mid X = x \sim \text{Normal}\left(\mu_{Y \mid X = x} = \hat{\alpha} + \hat{\beta} \cdot x, \, \sigma_{Y \mid X = x} = s_{Y \mid x}\right)$$
 [1.0 ptos]

Se pide

$$\begin{split} P(Y > 80 \,|\, X = 85) &= 1 - \Phi\left(\frac{80 - \hat{\alpha} - \hat{\beta} \cdot 85}{s_{Y \,|\, x}}\right) \quad \textbf{[0.5 ptos]} \\ &= 1 - \Phi(2,158714) \quad \textbf{[0.2 ptos]} \\ &\approx 1 - \Phi(2,16) \quad \textbf{[0.1 ptos]} \\ &= 1 - 0,9846 \quad \textbf{[0.1 ptos]} \\ &= 0,0154 \quad \textbf{[0.1 ptos]} \end{split}$$

+ 1 Punto Base

Problema 3

Sean X_1 y X_2 variables aleatorias independientes e idénticamente distribuidas Bernoulli(p). Considere las siguientes variables aleatorias:

$$Z = \min\{X_1, X_2\}$$
 y $W = \max\{X_1, X_2\}$

- (a) [3.0 Ptos.] Hallar P(Z = z, W = w) y P(W = w).
- (b) [3.0 Ptos.] Calcule P(Z = W).

Solución

(a) Tenemos que $\Theta_Z = \{0, 1\}$ y $\Theta_W = \{0, 1\}$.

La función de probabilidad conjunta de (Z, W), P(Z = z, W = w) esta dada por:

$$\begin{split} P(Z=0,W=0) &= P(X_1=0,X_2=0) \\ &= P(X_1=0) \cdot P(X_2=0), \quad \text{por independencia} \\ &= (1-p)^2 \quad \textbf{[0.5 ptos]} \\ P(Z=0,W=1) &= P([X_1=0,X_2=1] \cup [X_1=1,X_2=0]) \\ &= P(X_1=0,X_2=1) + P(X_1=1,X_2=0), \quad \text{por ser eventos disjuntos} \\ &= P(X_1=0) \cdot P(X_2=1) + P(X_1=1) \cdot P(X_2=0), \quad \text{por independencia} \\ &= 2p(1-p) \quad \textbf{[0.5 ptos]} \\ P(Z=1,W=0) &= 0 \quad \textbf{[0.5 ptos]} \\ P(Z=1,W=1) &= P(X_1=1,X_2=1) \\ &= P(X_1=1) \cdot P(X_2=1), \quad \text{por independencia} \\ &= p^2 \quad \textbf{[0.5 ptos]} \end{split}$$

y la función marginal de W, P(W = w) se obtiene por probabilidades totales:

$$\begin{split} P(W=0) &= P([W=0,\,Z=0] \cup [W=0,\,Z=1]) \\ &= P(W=0,\,Z=0) + P(W=0,\,Z=1), \quad \text{por ser eventos disjuntos} \\ &= P(W=0) \cdot P(Z=0) + P(W=0) \cdot P(Z=1), \quad \text{por independencia} \\ &= (1-p)^2 + 0 \\ &= (1-p^2) \quad \textbf{[0.5 ptos]} \\ P(W=1) &= P([W=1,\,Z=0] \cup [W=1,\,Z=1]) \\ &= P(W=1,\,Z=0) + P(W=1,\,Z=1), \quad \text{por ser eventos disjuntos} \\ &= P(W=1) \cdot P(Z=0) + P(W=1) \cdot P(Z=1), \quad \text{por independencia} \\ &= 2 \, p \, (1-p) + p^2 \\ &= p \, (2-p) \quad \textbf{[0.5 ptos]} \end{split}$$

(b) La probabilidad que P(Z = W) es equivalente a

$$\begin{split} P(Z=W) &= P([Z=0,\,W=0] \cup [Z=1,\,W=1]) \quad \textbf{[1.0 ptos]} \\ &= P(Z=0,\,W=0) + P(Z=1,\,W=1), \quad \text{por ser eventos disjuntos} \quad \textbf{[0.5 ptos]} \\ &= P(Z=0) \cdot P(W=0) + P(Z=1) \cdot P(W=1), \quad \text{por independencia} \quad \textbf{[0.5 ptos]} \\ &= (1-p)^2 + p^2 \quad \textbf{[0.5 ptos]} \\ &= 1 - 2p + 2p^2 \quad \textbf{[0.5 ptos]} \end{split}$$

+ 1 Punto Base

Formulario

- Sea X_1, \ldots, X_n una muestra aleatoria independiente e idénticamente distribuida con función de probabilidad p_X o de densidad f_X , determinada por un parámetro θ . Si $\hat{\theta}$ es el estimador máximo verosímil del parámetro θ , entonces:
 - $\mathbf{E}(\hat{\theta}) \to \theta$, cuando $n \to \infty$.
 - $\mathbf{Var}(\hat{\theta}) = \frac{1}{I_n(\theta)}$, con $I_n(\theta) = -\mathbf{E} \left[\frac{\partial^2}{\partial \theta^2} \ln L(\theta) \right]$.
 - $\hat{\theta} \stackrel{.}{\sim} \text{Normal}\left(\theta, \sqrt{\frac{1}{I_n(\theta)}}\right)$, cuando $n \to \infty$.
 - El estimador máximo verosímil de $g(\theta)$ es $g(\hat{\theta})$, cuya varianza está dada por: $\mathbf{Var}[g(\hat{\theta})] = \frac{\left[g'(\theta)\right]^2}{I_n(\theta)}$.
- Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas Normal (μ, σ) , entonces

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim \text{Normal}(0, 1), \quad \frac{\overline{X}_n - \mu}{s/\sqrt{n}} \sim \text{t-student}(n-1), \quad \frac{s^2 \left(n-1\right)}{\sigma^2} \sim \chi_{n-1}^2$$

con
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$
.

• Para un modelo de regresión simple $y' = \alpha + \beta \cdot x$ se tiene que

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}, \quad \hat{\alpha} = \overline{y} - \hat{\beta} \cdot \overline{x}, \quad r^2 = 1 - \frac{s_{Y|X}^2}{s_Y^2}, \quad s_{Y|X}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - y_i')^2, \quad s_Y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$\hat{\rho}^2 = 1 - \left(\frac{n-2}{n-1}\right) \cdot \frac{s_Y^2|_X}{s_Y^2}, \quad s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

$$<\mu_{Y\,|\,x_i}>_{1-\alpha}=\overline{y}_i\pm t_{(1-\alpha/2),\,n-2}\cdot s_{Y\,|\,x}\cdot\sqrt{\frac{1}{n}+\frac{(x_i-\overline{x})^2}{\sum\limits_{j=1}^n(x_j-\overline{x})^2}},\quad \overline{y}_i=\hat{\alpha}+\hat{\beta}\cdot x_i$$

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x=0,\ldots,n$	$n,\;p$	$\mu_X = n p$ $\sigma_X^2 = n p (1 - p)$
Geométrica	$p(1-p)^{x-1}$	$x=1,2,\ldots$	p	$\sigma_X^2 = \frac{1/p}{\sigma_X^2}$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x=r,r+1,\ldots$	$r,\ p$	$\mu_X = r/p$ $\sigma_X^2 = r (1 - p)/p^2$
Poisson	$\frac{(\nut)^xe^{-\nut}}{x!}$	$x = 0, 1, \dots$	ν	$\mu_X = \nu t$ $\sigma_X^2 = \nu t$
Exponencial	$\nu e^{-\nu} x$	$x \ge 0$	ν	$\begin{array}{l} \mu_X = 1/\nu \\ \sigma_X^2 = 1/\nu^2 \end{array}$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu} x$	$x \ge 0$	$k,\ u$	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$
Gamma Trasladada	$\frac{\nu^k}{\Gamma(k)} (x - \gamma)^{k-1} e^{-\nu (x - \gamma)}$	$x \geq \gamma$	$k,\ u,\ \gamma$	$\mu_X = k/\nu + \gamma$ $\sigma_X^2 = k/\nu^2$
Normal	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	$\mu,~\sigma$	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$
Log-Normal	$\frac{1}{\sqrt{2\pi(\zetax)}}\exp\left[-\frac{1}{2}\left(\frac{\lnx-\lambda}{\zeta}\right)^2\right]$	$x \ge 0$	$\lambda,\ \zeta$	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2\left(e^{\zeta^2} - 1\right)$
Uniforme	$\frac{1}{(b-a)}$	$a \le x \le b$	$a,\ b$	$\mu_X = (a+b)/2$ $\sigma_X^2 = (b-a)^2/12$
Beta	$\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	$a \leq x \leq b$	$q,\ r$	$\begin{split} \mu_X &= a + \frac{q}{q+r} (b-a) \\ \sigma_X^2 &= \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)} \end{split}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\max\{0, n+m-N\} \leq x \leq \min\{n, m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

- Propiedades función $\Gamma(\cdot)$:
- $(1) \quad \Gamma(k) = \int_0^\infty u^{k-1} \, e^{-u} \, du; \quad (2) \quad \Gamma(a+1) = a \, \Gamma(a);$
 - (3) $\Gamma(n+1) = n!$, si $n \in \mathbb{N}$; (4) $\Gamma(1/2) = \sqrt{\pi}$
- \blacksquare Propiedades función $B(\cdot,\ \cdot)\colon$
- $(1) \quad B(q,\,r) = \int_0^1 x^{q-1} \, (1-x)^{r-1} \, dx; \quad (2) \quad B(q,\,r) = \frac{\Gamma(q) \, \Gamma(r)}{\Gamma(q+r)}$
- Propiedad distribución Gamma:
- $\mathrm{Si}\ T \sim \mathrm{Gamma}(k,\,\nu) \Rightarrow F_T\left(t\right) = 1 \sum_{x=0}^{k-1} \frac{\left(\nu\,t\right)^x\,e^{-\nu\,t}}{x!}\,,\quad \mathrm{si}\ k \in \mathbb{N}$

Tablas de Percentiles p

	Distribución Normal Estándar $\ k_p$						Distribu	ıción t-st	t_{j}	$_{p}(u)$					
k_p	0,00	0,01 0,5040	0,02	0,03 0,5120	0,04 0,5160	0,05 0,5199	0,06 0,5239	0.07 0.5279	0,08 0,5319	0,09	$\frac{\nu}{1}$	$t_{0,90}$ 3.078	$t_{0,95} = 6.314$	$t_{0,975}$ $12,706$	$\frac{t_{0,99}}{31,821}$
$0,0 \\ 0,1$	0,5398	0,5040 $0,5438$	0.5478	0.5120 0.5517	0.5557	0.5199 0.5596	0.5636	0.5279 0.5675	0.5319 0.5714	0,5359 0,5753	2	1,886	2,920	4,303	6,965
$0.1 \\ 0.2$. /	,	,	,	,	,	,	,	,	0,6141	3	1,638	2,920 $2,353$	$\frac{4,303}{3,182}$,
$0,2 \\ 0,3$	0,5793 $0,6179$	0,5832 $0,6217$	$0,5871 \\ 0,6255$	0,5910 $0,6293$	0,5948 $0,6331$	0,5987 0.6368	$0,6026 \\ 0,6406$	0,6064 $0,6443$	0,6103 $0,6480$	0.6517	4	1,533	$\frac{2,353}{2,132}$	$\frac{3,182}{2,776}$	$4,541 \\ 3,747$
$0.3 \\ 0.4$	0,6179	0.6591	0.6628	0.6664	0.6700	0.6736	0.6400 0.6772	0.6808	0.6844	0.6879	5	1,333	$\frac{2,132}{2,015}$	$\frac{2,776}{2,571}$	3,747 $3,365$
$0,4 \\ 0,5$	0,6915	0,6950	0,6985	0,0004 $0,7019$	0,0700 $0,7054$	0,7088	0.7123	0,0808 $0,7157$	0,0844 $0,7190$	0,0879 $0,7224$	6	1,440	1,943	$\frac{2,371}{2,447}$	3,303 $3,143$
	0.7257	0,0930 $0,7291$	0,0983 $0,7324$,	,	0.7422	0.7454	0.7486		,	7	1,440	1,895	2,365	2,998
$^{0,6}_{0,7}$	0,7237	0.7611	0.7642	0,7357 $0,7673$	0,7389 $0,7704$	0.7734	0.7764	0.7794	0,7517 $0,7823$	0,7549 $0,7852$	8	1,397	1,860	$\frac{2,305}{2,306}$	2,998 $2,896$
0,7	0,7881	0.7910	0.7939	0,7967	0.7995	0,8023	0.8051	0,8078	0,7823	0,7832	9	1,383	1,833	2,360 $2,262$	2,890 $2,821$
0,8	0.8159	0,7310	0,7939 $0,8212$	0,8238	0,7993 $0,8264$	0.8289	0.8315	0.8340	0,8365	0,8133	10	1,372	1,812	2,228	2,764
1,0	0.8413	0,8438	0.8461	0,8485	0,8508	0.8531	0.8554	0.8577	0,8599	0,8621	11	1,363	1,796	2,220	2,718
1,1	0.8643	0.8665	0.8686	0,8708	0.8729	0.8749	0.8770	0,8790	0,8810	0,8830	12	1,356	1,782	2,201 $2,179$	2,681
$^{1,1}_{1,2}$	0.8849	0,8869	0,8888	0,8907	0,8925	0,8944	0.8962	0,8980	0,8997	0,9015	13	1,350	1,771	2,160	2,650
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0.9162	0,9177	14	1,345	1,761	2,145	2,624
1,4	0,9192	0.9207	0,9222	0,9236	0.9251	0.9265	0.9279	0,9292	0.9306	0.9319	15	1,341	1,753	2,131	2,602
1,5	0,9332	0,9345	0.9357	0,9370	0,9382	0,9394	0.9406	0,9418	0,9429	0,9441	16	1,337	1,746	2,120	2,583
1,6	0,9452	0.9463	0,9474	0,9484	0,9495	0,9505	0.9515	0,9525	0.9535	0.9545	17	1,333	1,740	2,110	2,567
1,7	0,9554	0.9564	0.9573	0,9582	0,9591	0,9599	0.9608	0.9616	0,9625	0.9633	18	1,330	1,734	2,101	2,552
1,8	0,9641	0.9649	0.9656	0,9664	0.9671	0.9678	0.9686	0.9693	0.9699	0,9706	19	1,328	1,729	2,093	2,539
1,9	0.9713	0.9719	0.9726	0,9732	0,9738	0,9744	0.9750	0,9756	0.9761	0.9767	20	1,325	1,725	2,086	2,528
2,0	0,9772	0.9778	0.9783	0,9788	0,9793	0,9798	0.9803	0,9808	0.9812	0,9817	21	1,323	1,721	2,080	2,518
2,1	0.9821	0.9826	0.9830	0.9834	0,9838	0.9842	0.9846	0.9850	0.9854	0,9857	22	1,321	1,717	2,074	2,508
2,2	0,9861	0.9864	0.9868	0.9871	0,9875	0.9878	0.9881	0.9884	0.9887	0.9890	23	1,319	1,714	2,069	2,500
2,3	0.9893	0.9896	0.9898	0,9901	0,9904	0.9906	0.9909	0,9911	0.9913	0,9916	24	1,318	1,711	2,064	2,492
$^{-,0}_{2,4}$	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936	25	1,316	1,708	2,060	2,485
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952	26	1,315	1,706	2,056	2,479
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964	27	1,314	1,703	2,052	2,473
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974	28	1,313	1,701	2,048	2,467
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981	29	1,311	1,699	2,045	2,462
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986	30	1,310	1,697	2,042	2,457
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990	∞	1,282	1,645	1,960	2,326

	Distribución Chi-Cuadrado							
ν	c _{0,025}	$c_{0,05}$	$c_{0,10}$	$c_{0,90}$	$c_{0,95}$	$c_{0,975}$	$c_{0,99}$	$c_{0,995}$
1	0,00	0,00	0,02	2,71	3,84	5,02	6,63	7,88
2	0,05	0,10	0,21	4,61	5,99	7,38	9,21	10,60
3	0,22	0,35	0,58	6,25	7,81	9,35	11,34	12,84
4	0,48	0,71	1,06	7,78	9,49	11,14	13,28	14,86
5	0,83	1,15	1,61	9,24	11,07	12,83	15,09	16,75
6	1,24	1,64	2,20	10,64	12,59	14,45	16,81	18,55
7	1,69	2,17	2,83	12,02	14,07	16,01	18,48	20,28
8	2,18	2,73	3,49	13,36	15,51	17,53	20,09	21,95
9	2,70	3,33	4,17	14,68	16,92	19,02	21,67	23,59
10	3,25	3,94	4,87	15,99	18,31	20,48	23,21	25,19
11	3,82	4,57	5,58	17,28	19,68	21,92	24,72	26,76
12	4,40	5,23	6,30	18,55	21,03	23,34	26,22	28,30
13	5,01	5,89	7,04	19,81	22,36	24,74	27,69	29,82
14	5,63	6,57	7,79	21,06	23,68	26,12	29,14	31,32
15	6,26	7,26	8,55	22,31	25,00	27,49	30,58	32,80
16	6,91	7,96	9,31	23,54	26,30	28,85	32,00	34,27
17	7,56	8,67	10,09	24,77	27,59	30,19	33,41	35,72
18	8,23	9,39	10,86	25,99	28,87	31,53	34,81	37,16
19	8,91	10,12	11,65	27,20	30,14	32,85	36,19	38,58
20	9,59	10,85	12,44	28,41	31,41	34,17	37,57	40,00
21	10,28	11,59	13,24	29,62	32,67	35,48	38,93	41,40
22	10,98	12,34	14,04	30,81	33,92	36,78	40,29	42,80
23	11,69	13,09	14,85	32,01	35,17	38,08	41,64	44,18
24	12,40	13,85	15,66	33,20	36,42	39,36	42,98	45,56
25	13,12	14,61	16,47	34,38	37,65	40,65	44,31	46,93