THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE OF. (U) PURDUE UNIV LAFAYETTE IN SCHOOL OF INDUSTRIAL ENGINEERING R VENUGOPAL ET AL. OCT 85 N80014-83-K-0385 F/G 13/9 AD-R163 598 1/4 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURGALL DE STANDARDS-1963-A

THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST—EFFECTIVE MANUFACTURE OF HIGH PRECISION ENGINEERING PRODUCTS

ONR Contract No 83K0385 FINAL REPORT Vol. 4

AD-A163 598

THERMAL EFFECTS ON THE ACCURACY OF NUMERICALLY CONTROLLED MACHINE TOOLS

PREPARED BY Raghunath Venugopal and M. M. Barash

OCTOBER 1985

Schools of Industrial, Electrical and Mechanical Engineering Purdue University
West Lafayette, Indiana 47907

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

None	A1)-1	4/63 5	-9 X		
SECURITY CLASSIFICATION OF THIS PAGE	REPORT DOCUM				
1. REPORT SECURITY CLASSIFICATION None		16 RESTRICTIVE N	MARKINGS		
2. SECURITY CLASSIFICATION AUTHORITY None		3. DISTRIBUTION/	AVAILABILITY OF	FREPORT	
26 DECLASSIFICATION / DOWNGRADING SCHEDUL None					
Final Report Vol. 4	₹(5)	S MONITORING	ORGANIZATION R	EPORT NUMBER	((S)
60 NAME OF PERFORMING ORGANIZATION PURDUE UNIVERSITY	6b OFFICE SYMBOL (If applicable)		onitoring ORGA of Defense Naval Resea	2	
6c ADDRESS (City. State, and ZIP Code) School of Industrial Engineer West Lafayette, Indiana 479(ring 07	76 ADDRESS (City, State, and ZIP Code) Arlington, VA 22217-5000			
8a NAME OF FUNDING SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable) 614A	9 PROCUREMENT	-K-0385/12/1	-	NUMBER
8c ADDRESS (City State, and ZIP Code)		10 SOURCE OF F PROGRAM ELEMENT NO ONR: 433			WORK UNIT ACCESSION NO
THERMAL EFFECTS ON THE ACCURACY OF NUMERICALLY CONTROLLED MACHINE TOOLS 12 PERSONAL AUTHOR(S) Venugopal, Raghunath and M. M. Barash 13a TYPE OF REPORT Final 13b TIME COVERED FROM 1-1-83 TO 8-15-85 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 365					
16 SUPPLEMENTARY NOTATION 17 COSATI CODES FIELD GROUP SUB GROUP 13	of machine	<pre>l design; M/l tools; M/T th</pre>	「accuracy; nermal error	Computer m	nodeling
19 ABSTRACT (Continue on reverse if necessary Thermal effects on the accumportant in the context of unmating. Removal of the operator from problems in terms of maintaining effects on the accuracy of numer. The initial part of the resumachine. The thermal characterist uating the errors exhibited by the predicting thermally induced errors the method for computing the workspanish machine tools are generally	prediction; and identify by block uracy of numeric anned manufactur rom the direct of g accuracy. The rically control search report is stics of this ma the slides of th rors by the use	Metrology; Anumber) cally control re or under control of the e objective of led machine to s concerned we achine are st he machine ar of regression	led machine conditions of this resections. With the anactudied. Numer proposed on equations	e tools are of precision cting proce earch is to alysis of a erical meth and the po	specially n metal cut- ss has created study thermal hypothetical ods for eval-

Dr. David Mizell, Scientific Officer
DD FORM 1473,84 MAR 83 APR editor

20 DISTRIBUTION AVAILABILITY OF ABSTRACT

228 NAME OF RESPONSIBLE INDIVIDUAL

QUNCLASSIFIED UNLIMITED - SAME AS RPT

derived.

c Officer 818-795-5971 x 56

83 APR edition may be used until exhausted SECUL

All other editions are obsolete

DTIC USERS

problem of heat flow in a box made of thin plates is studied and analytic solutions are

SECURITY CLASSIFICATION OF THIS PAGE

433

(over)

21 ABSTRACT SECURITY CLASSIFICATION

22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

None

19. (continued)

COM PRESIDE REVERSE SESSION

The final part is concerned with the actual measurement of errors on a modern CNC machining center. Thermal influences on the errors is the main objective of the expermental work. Based on experimental evidence, it is shown that thermal effects on the accuracy of machine tools can be predicted by the use of simple regression equations. Finally, numerical methods are used to predict thermal influences on the errors of machine tools. These methods make use of measured values of temperatures for prediction of errors.

Based on the evidence presented in this report it is shown conclusively that thermal influences on the errors of machine tools are predictable. Techniques for determining thermal effects on machine tools at a design stage are also presented.

THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE OF HIGH PRECISION ENGINEERING PRODUCTS

ONR Contract No. 83K0385 Final Report Vol. 4

THERMAL EFFECTS OF THE ACCURACY OF NUMERICALLY CONTROLLED MACHINE TOOLS

Prepared by Raghunath Venugopal and M. M. Barash

October 1985

Acce	sion For	
NTIS DTIC Unan	CRA&I TAB nounced ication	
By L Dist. it	to. o	file
-	lvailabilit y	Codes
Dist	Avail ar Spec	nd / or ial
A-1	23	

Schools of
Industrial, Electrical and Mechanical Engineering
Purdue University
West Lafayette, Indiana 47907

This report represents, with minor changes, the thesis submitted by Mr. Raghunath Venugopal to the Faculty of Purdue University for the award of the Degree of Doctor of Philosophy.

Research described in this report has been supported by the Office of Naval Research through Contract No. N83K0385 in the framework of the ONR Precision Engineering projects.

M. M. Barash served as Major Professor for the thesis; he is a member of the faculty of the School of Industrial Engineering at Purdue University.

Work on the Precision Engineering project at Purdue University greatly benefited from the use of the technical facilities of the Purdue Computer Integrated Design, Manufacturing and Automation Center (CIDMAC) and the advice of the CIDMAC member companies*, which is gratefully acknowledged.

Moshe M. Barash Principal Investigator

C. Richard Llu Principal Investigator

^{*}Member companies of CIDMAC are:

Cincinnati Milacron; TRW; Ransburg Corporation; Cummins Engine Co.; Control Data Corporation; ALCOA.

TABLE OF CONTENTS

	Page
	_
LIST OF TABLES	v
LIST OF FIGURES	vii
LIST OF FIGURES	V 11
NOTATION	хi
ABSTRACT	xiii
CHAPTER 1. INTRODUCTION	1
CHAPTER 1. INTRODUCTION	•
1.1 General	1
1.2 Problem Statement and Objectives	3
1.3 Literature Review	9
1.3.1 Quasistatic Errors of a	
Machine Tool	10
1.3.2 Thermal Effects	
CHAPTER 2. TEMPERATURE AND ELASTIC	
DEFORMATION CALCULATIONS	32
2.1 General	
2.2 Heat Transfer Problem	
2.3 Boundary Conditions	37
2.4 Evaluation of Heat Transfer	
Coefficient	
2.5 Some Numerical Results	
2.6 The Elastic Problem	40
Allanden 3 CONDUMATION OF MAGUITUS	
CHAPTER 3. COMPUTATION OF MACHINE	
ERRORS	49
3.1 General	49
3.2 Evaluation of Structural Errors	
3.3 Assessment of Volumetric Errors	
3.3.1 Model 1	
3.3.2 Model 2	60
3.3.3 Model 3	62

Results	3.4	Regress	ion Mo	iel and Predi	ction	
4.1 General		Results				5 5
4.1 General						
4.2 A Problem of 3 D Thermoelasticity 74 4.3 Heat Conduction in a Cube	CHAPTER	R 4.	ANALYT	C SOLUTIONS.		13
4.2 A Problem of 3 D Thermoelasticity 74 4.3 Heat Conduction in a Cube		_			_	
4.3 Heat Conduction in a Cube				*		_
4.4 Solution of Displacement in a Cube						
Cube) 1
### CHAPTER 5. EXPERIMENTAL WORK	4.4	Solution	n of D	isplacement i		
5.1 General		Cube	• • • • •	• • • • • • • • • • • • •	• • • • • • •	106
5.1 General	6 !! A D G D !	n r	EV. D. D. D. T.	. D. N. D. L. L. L. D. V.		
5.2 Equipment Used for Measurement of Machine Tool Errors	CHAPTE	R 5.	EXPERI	MENTAL WORK	• • • • • • • •	108
5.2 Equipment Used for Measurement of Machine Tool Errors	5 1	Conoral			,	100
Machine Tool Errors	-					106
5.3 Experimental Conditions	3.2					100
5.3.1 Additional Sources of	5 3					
Experimental Error	3.3	-				110
5.4 Experimental Results						
5.4.1 Discussion on Positioning	5					
Errors	J.4					. 24
5.4.2 Other Errors					•	
5.5 Prediction by Numerical Methods						
5.6 Conclusions						
5.7 Recommendations for Further Research						
Research						1 00
LIST OF REFERENCES	5.7					1 6 0
APPENDICES Appendix 1		Kesear	2n • • • •	• • • • • • • • • • • • •	•••••	100
APPENDICES Appendix 1	LIST O	F REFERE	ENCES	.		171
Appendix 1	DIOI O	. KDI DKI				
Appendix 2	APPEND	ICES				
Appendix 2						
Appendix 2	Appe	endix 1.				177
Appendix 4						195
Appendix 4	Appe	endix 3.			• • • • • • • •	201
						316
						347

LIST OF TABLES

Tab	le	Page
2.1	Comparison of Number of Nodes	41
2.2	Comparison of Time Step	41
3.1	Error of Outer Most Point of	
	Work Space of Machine Tool, Numerical Work	64
5.1	Expansion of Lead Screw (microns)	136
5.2	Error of Work Space, Experimental	
	Work, No Lead Screw Errors	144
5.3	Error of Work Space, Computed, by Regression Equations No Lead	
	Screw Errors	145
5.4	Error of Work Space, Experimental	
	Work, Lead Screw Error is Considered	146
5.5	Error of Work Space, Computed,	
	by Regression Equations, Lead Screw Error is Considered	147
5.6	Error Components Used to Determine	
	Work Space Errors	148
ppendi	ж	
able		
A1.1	Conditions for which Solutions	
	Have been Obtained - z axis	177
A1.2	Conditions for which Solutions	178

A1.3	Prediction Capabilities of Regression Equations (t>60 mins)	194
A1.4	Prediction Capabilities of	
	Regression Equations (0 <t<60 mins).<="" td=""><td>194</td></t<60>	194
A2.1	Location of Thermocouples	
	on the x axis	195
A2.2	Location of Thermocouples	
	on the y axis	196
A2.3	Location of Thermocouples	

LIST OF FIGURES

Figu	ıre	Page
1.1	Achievable Machining Accuracy [42]	2
1.2	Machine Structure	8
1.3	The Six Degrees of Freedom [52]	11
1.4	Definition of Squareness [41]	13
1.5	A Typical Machine and its Vector Diagram [33]	15
1.6	Diagram of Thermal Effects in Manufacturing and Metrology [41]	20
2.1	Grid Point Cluster and And Notation [24]	36
2.2	A Typical Eight Node Solid Brick Element	44
2.3	A Typical Plate Element	44
2.4	Deformation of x axis, T = 180 mins.	45
2.5	Deformation of y axis, $T = 180$ mins.	46
2.6	Deformation of z axis, $T = 180$ mins.	47
3.1	The Six Degrees of Freedom [52]	50
3.2	Calculation of Roll	53
3.3	Calculation of Pitch	53
3.4	Errors, x axis	5 5
3.5	Errors, y axis	56
3.6	Errors, z axis	57

3.7	Error of Non-Orthogonality	61
3.8	Error of Drift	61
3.9	Volumetric Accuracy	63
3.10	Methodology for Calculation of Thermal Error Regression Functions	67
3.11	Check of Regression Equations, x axis	68
3.12	Check of Regression Equations, y axis, case 1	69
3.13	Check of Regression Equations, y axis, case 2	70
3.14	Check of Regression Equations, z axis	7 1
4.1	Body of Thin Plates	82
4.2	Boundary Conditions	82
4.3	Conventions on Cube	93
5.1	Experimental Setup	111
5.2	Calibration Of Machine Tool [45]	120
5.3	Problem Of Drift	125
5.4	Hysteresis in Machine Tool Errors	125
5.5	Standard Deviation of Position Error, x axis	127
	Standard Deviation of Yaw Error, x axis	128
	Prediction of Position Error, x axis	133
	Prediction of Position Error, y axis	134
	Prediction of Position Error, z axis	135
3.10	Prediction of Other Errors, x axis	138

5.11	Prediction of Other Errors,	
3.1.	y axis	139
	,	,
5.12	Prediction of Other Err rs,	
	z axis	140
5.13	Volumetric Error, Actual vs	
	Computed	143
	•	
5.14	Prediction by Numerical Methods	150
5.15	Measurement of Vertical	
	Straightness, z axis	155
5.16	Vertical Straightness from	
	Experiment, z axis	156
5 17	Vertical Straightness from	
3.17	Calculations, z axis	157
	Calculations, 2 axis	137
5.18	Calculation vs Experiment for	
	Vertical Straightness, z axis,	
	Test I used to get built in error	158
	g	
5.19	Calculation vs Experiment for	
	Pitch, z axis	
	(drift correction)	161
5.20	Calculation vs Experiment for	
	Vertical Straightness, x axis	
	(drift corrected)	162
5 21	Calculation we Encode for	
3.21	Calculation vs Experiment for Pitch, x axis (drift corrected)	163
	riten, x axis (drift corrected)	103
5 - 22	Calculation vs Experiment for	
,,,,	Yaw, x axis (drift corrected)	164
	iow, a unit (dilit collected)	104
5.23	Effect of Nonsymmetric Heat Sources.	166
	• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Appendi	x	
Figure		
A1.1	Structure, x axis	179
41 4	Structure	100
A1.2	Structure, y axis	180
A1 2	Structure, z axis	181
W 1 • 3	Detacture, & Axibossossossossoss	101
	Inaction of Heat Courses	100

A1.5	Location of Temperature Points, x axis (Numerical)	183
A1.6	Location of Temperature Points, y axis (Numerical)	184
A1.7	Location of Temperature Points, z axis (Numerical)	185
A2.1	Location of Temperature Points, x axis (Experimental)	198
A2.2	Location of Temperature Points, y axis (Experimental)	199
	Location of Temperature Points,	200

NOTATION

- Surface area - Heat capacity - Delta function **e**1(j) = Rotational error in direction i for motion in direction j E - Modulus of Elasticity - Acceleration due to gravity h = Heat convection coefficient NU, Nusselt number K - Thermal conductivity - Length - Prandtl number Pr - Perimeter P - Heat loss by radiation q, q_ь = Heat loss by convection - Heat generation rate Q Ral = Rayleigh number = Temperature T Tb - Temperature at boundary - Temperature of fluid Coefficient of thermal expansion β = Coefficient of volume expansion

t = Time

 $\nabla = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$

 Δx = Control volume in x direction

 Δy = Control volume in y direction

 Δz = Control volume in z direction

ε = Stefan Boltzmann's constant

σi = Stress in the i 'th direction

v = Poisson's ratio

ABSTRACT

Thermal effects on the accuracy of numerically controlled machine tools are specially important in the context of unmanned manufacture or under conditions of precision metal cutting. Removal of the operator from the direct control of the metal cutting process has created problems in terms of maintaining accuracy. The objective of this research is to study thermal effects on the accuracy of numerically controlled machine tools.

The initial part of the research report is concerned with the analysis of a hypothetical machine. The thermal characteristics of this machine are studied. Numerical methods for evaluating the errors exhibited by the slides of the machine are proposed and the possibility of predicting thermally induced errors by the use of regression equations is investigated. A method for computing the workspace error is also presented.

Machine tools are generally made of box type structures. Based on analysis of box type structures, theoretical evidence for the prediction of machine tool errors is presented. The problem of heat flow in a box made of thin plates is studied and analytic solutions are derived.

The final part is concerned with the actual measurement of errors on a modern CNC machining center. Thermal influences on the errors is the main objective of the experimental work. Based on experimental evidence, it is shown that thermal effects on the accuracy of machine tools can be predicted by the use of simple regression equations. Finally, numerical methods are used to predict thermal influences on the errors of

machine tools. These methods make use of measured values of temperatures for prediction of errors.

Based on the evidence presented in this report, it is shown conclusively that thermal influences on the errors of machine tools are predictable. Techniques for determining thermal effects on machine tools at a design stage are also presented.

CHAPTER 1. INTRODUCTION

1.1 General

Precision engineering is concerned with the manufacture of artifacts to a high dimensional accuracy. Accuracy is defined as " A measure of the degree of conformance to recognized international or national standards" [41]. Broadly speaking, in terms of accuracy, machining can be split into three classes, normal, precision and ultra precision machining. Chronologically tolerances dealing with location were to tenths of a millimeter, then to hundreds of a millimeter. During World War 2, tolerances began to be expressed in micro meters. In the post war period, tolerances of fractions of a micro meter are common place. Figure 1.1 shows the development of achievable accuracy over the last 40 years and highlights what can be confidently expected by the end of the century [42].

The stringent requirements of precision engineering set grounds for development of better machines and manufacturing processes. Unfortunately high accuracy manufacture is coupled with high costs. Hence it is

Fig. 1.1 Achievable Machining Accuracy [42]

beneficial to search for new ways in which working tolerances can be maintained when machining at high production rates. Several methods of measurement, production and control have emerged over the last decade to meet the above mentioned goals. A significant event the last decade is the merging of electronic information sciences and production control techniques with metrology and manufacturing process into a single integrated system [25]. The advent of computers and sensors have in a sense allowed for the possibility of unmanned manufacture. While such a goal is desirable, it leaves much to be said in terms of maintaining accuracy. The intention of this research is to fill a between ultra precision engineering which is gap mastered, for example at Lawrence Livermore Laboratory, conventional economic production technology and practiced in the U.S. industry [46].

1.2 Problem Statement and Objectives

たんちょうこと 日本のののののの

Accuracy of large machine tool structures is affected considerably by their dimensional stability under conditions of temperature and variable load distribution. Initial geometric accuracy of any machine is limited by the precision of the control equipment used during the different stages of the manufacturing process of the said machine. Deviations from accurate performance, are called as errors. Formally errors are

defined as "The difference between the actual response of a machine to a command issued according to the accepted protocol of that machine's operation and the response to that command anticipated by that protocol" [41]. Inaccuracy of a workpiece can be attributed to several factors. These factors are listed as follows [41]:

- Geometric and kinematic errors of the machine tool.
- 2. Spindle errors of the machine tool.
- 3. Thermal effects on the machine tool and on the workpiece.
- 4. Static loading.
- 5. Dynamic loading.
- 6. Tool wear.
- 7. Errors due to work holding.

This thesis concentrates on thermal effects on the accuracy of numerically controlled machine tools. The reason for concentrating on thermal effects alone is because it is known that thermal effects account for about 60 - 70 percent of the total error in machine tools. In this context errors of interest are generally referred to as "quasistatic" machine tool errors. Quasistatic errors are those errors of relative position between tool and workpiece that are slowly varying in time and are related to the structure of the machine

tool itself. Quasistatic errors are generally classified as follows: those due to geometry and kinematics of the machine, those due to static and slowly varying forces such as the dead weight of the machine, workpiece weights and the like, and those due to thermally induced strains in the machine tool structure [41].

Improvement in accuracy of machine tools achieved by two means, one approach is error avoidance. Error avoidance calls for elimination of the source of This is mainly a design problem. Although much effort has been spent, error avoidance is by completely solved [25]. Typical methods means evaluating the effect of various types of influences machine tool structures are finite difference methods and finite element methods. The second approach to reduction is error error compensation. Error compensation is defined in [41] as "A method canceling the effect of the error by predicting it using a model built for the purpose". Software compensation is rapidly being accepted as a means of maintaining workpiece accuracy. Software compensation of errors, is generally achieved by storing error values in computer memory. The process of compensation is generally carried out by automatic correction of positioning commands or position feedback. The problem associated with this

approach is that it is not possible to hold infinite sets of error matrices in computer memory. It is due to this limitation there is need for the development of working models of the process whereby a source gives rise to an error.

In spite of the fact that much research has been done in the field of thermal analysis there are no simple expressions relating the effect of temperature on geometric and kinematic errors. In fact much confusion exists even on classification and measurement schemes for these errors [41] and it appears that much of the work done in the field of thermal effects on machine highly repetitive. Representation and tools 1s correction of errors has been carried out [13,30,23]. However, the methods used generally store errors in the form of a matrix (look up table) and those that attempt on line compensation, correct a single error (eg. spindle growth [23]). Hence it is felt that a detailed analysis of thermal effects on machine tool structures is required. The present study will attempt to provide cause and effect relationships for each of quasistatic errors exhibited by the slides of a machine While the study will concentrate on a single tool. machine, sufficient generality will be provided so that the methods of analysis and experimental verification can be applied to any machine tool (of the same class at least). The machine under consideration has 3 linear axes of motion and a rotary axis, Figure 1.2. The axis of motion are in the x, y and z directions. The directions are as shown in the Figure 1.2. For the rest of the thesis, part of the structure that supports motion in the x direction is referred to x axis, similarly for y axis and z axis. Attention will be focussed mainly on the linear axes. In all 18 error terms will be studied six for each axis. The idea is to see if these errors can be modeled by simple equations. The equations so derived will form the basis for correction of thermally induced errors by the use of sensors, located at a few strategic points.

The main objective of this thesis is to determine if thermal effects on the quasistatic errors of machine tools can be predicted by monitoring the temperature of a few points on the machine tool. This objective is primary and is essential for software correction of numerically controlled machine tools. Associated with this objective are problems of representation and prediction of error as a function of temperature and space variables. The other objective is to use numerical methods for the evaluation of thermal effects on machine tools at a design stage.

The thesis is broadly split into three parts.

Chapter 1 provides a general introduction to the whole

Fig. 1.2 Machine Structure

area and current status of research is discussed. Chapters 2 and 3 known numerical methods for evaluation of thermal effects on machine tool structures are discussed. Results as evaluated for a hypothetical structure are presented and work space error evaluation techniques are derived. Also it is shown in Chapter 3 that errors of machine tools can be predicted by the use of simple regression equations. Chapter 4 addresses analytic questions and it is shown here that the use of regression equations is valid for prediction of errors. Chapter 4 also shows analytic solutions of thermal profiles and displacements for simple cases of cubes made of thin plates. However the solutions obtained are very restrictive. Chapter 5 is concerned with experimental evaluation of machine tool errors. In Chapter 5, it is conclusively shown that thermal influences on machine tool structures can be predicted by use of simple equations. Experimentally measured errors are presented in the appendices.

1.3 Literature Review

The following section describes the various errors of a machine tool. Thermal effects on error terms will be discussed, and status of current research in these topics will be presented in the next section.

1.3.1 Quasistatic Errors of a Machine Tool

All machine tools are composed of moving carriages, tables or other elements whose purpose is to position the workpiece with respect to the tool for metal removal. It is customary (as far as possible) to design each positioning element such that it behaves as a rigid body with five of its six degrees of freedom eliminated, then to drive the element in the remaining direction and measure its motion in that direction as accurately as necessary for that application. Normally the desired motion is pure linear or rotary. Exceptions to this practice are few [41]. A typical linear carriage is shown in Figure 1.3. The following assumptions are made:

- l. It is designed for linear motion.
- 2. It is a rigid body.
- 3. Has a device for measuring position.

On such a carriage, one can measure at least six error terms. Three of these are translational (linear) and three are rotational. The rotational terms are generally called pitch, roll and yaw. These are defined with respect to the direction of motion. Linear errors are more difficult to define, the reason being due to presence of angular motion. Of the linear errors, it is customary to measure one error as the difference between the actual carriage position in the motion direction and

Fig. 1.3 The Six Degrees of Freedom [52]

the scale reading and two errors of motion along machine axes perpendicular to this direction. The first error is called a "positioning error", and the other two as "straightness of motion" [41]. It is desired to measure positioning errors as close to the scale as is feasible to reduce Abbe offset errors. The Abbe principle is defined as: " The displacement measuring system should be in line with the functional point whose displacement is to be measured. If this is not possible either the slideways that transfer the displacement must be free of angular motion or angular motion data must be used to calculate the consequence of the offset " [32]. Besides translational angular errors, errors of nonand orthogonality present themselves. These are shown in Figure 1.4. Non-orthogonality errors are generally defined as squareness errors.

Having described errors of interest, it is desirable to present statistical issues for the specification of measured errors. Much effort has been spent towards this end [11,12,41]. Two of the more important documents that specify the positioning accuracy of machine tools are published by VDI in Germany and NMTBA in America [12]. NMTBA defines spread of machine tool error as the standard deviation of the error in reaching a particular point.

In X-Y Plane

Fig. 1.4 Definition of Squareness [41]

VDI defines spread as follows [11]:

$$\sigma_{i} = R_{i}/d \tag{1.1}$$

where

R, = range of sample

d = correction factor

Correction factors are provided in tabular form by the VDI [12]. All the papers [11,12,37,40] identify two groups of errors: a) Systematic errors and b) Statistical errors. Systematic errors are those that are reproducible while statistical errors are those that are not. In [40], the effect of hysteresis is also shown. The concept of an error template is proposed in [40,37]. The error template defines the acceptable range for an error graph.

The problem discussed in [17,18,33,40] deals with evaluation of the combined error in the work space of a given machine. In [33], the analysis is based on vector diagrams. Every machine can be described by vector diagrams. A typical diagram is shown in Figure 1.5. Using vectors to represent each axis, it is shown that the error vector will be of the form

$$Z + EZ + \begin{vmatrix} EAZ \\ EBZ \\ ECZ \end{vmatrix} (X+EX) + \begin{vmatrix} EAX \\ EBX \\ ECX \end{vmatrix} \begin{vmatrix} EAZ \\ EBZ \\ ECZ \end{vmatrix} (W+EW) =$$

$$Y + EY + \begin{vmatrix} EAY \\ EBY \\ ECY \end{vmatrix} T \qquad (1.2)$$

where A, B, C are rotational axes, EAZ is the rotation

Fig. 1.5 A Typical Machine and its Vector Diagram [33]

of Z axis along A etc. The workpiece error is represented by EW. In equation (1.2), the terms X, Y, Z are vectors along the x, y and z directions.

In [26], an analytical method to evaluate the workpiece errors is presented. This study is based on the use of mathematical properties of infinitely small linear transformations. To determine lathe accuracy, dimensional chain analysis is used. A coordinate system is assigned to every link of the chain which describes the motion of the element with respect to the previous link. Using these transformations, errors are combined. The final error term is defined by the following relationship:

$$\delta_{r0} = (E_0 r_0 + \delta_0) + \sum_{i=0}^{i=k} A_{01} A_{12} \cdots A_{i-1,i} (E_i r_i + \delta_i) (1.3)$$

where

$$\mathbf{E}_{\mathbf{i}} = \begin{bmatrix} 0 & -\lambda_{\mathbf{i}} & \beta_{\mathbf{i}} \\ \lambda_{\mathbf{i}} & 0 & -\alpha_{\mathbf{i}} \\ -\beta_{\mathbf{i}} & \alpha_{\mathbf{i}} & 0 \end{bmatrix}$$

$$\delta_{i} = \begin{bmatrix} \delta_{xi} \\ \delta_{yi} \\ \delta_{zi} \end{bmatrix}$$
 (1.4)

 δ_i is the matrix of displacements, r_i is the vector of tool point in the i th coordinate system, $A_{i-1,i}$ is transformation between the i-l th and the i th system,

 α_i , λ_i and β_i are angular errors. In [17], a comparative analysis of machining error components is done. The authors list out machine error components as belonging to one of the following two classes: a) errors of the NC system and b) errors of the MFTW system. (MTFW Machine tool, fixture, tool, workpiece). These errors are combined to give the overall effective error. A similar analysis is done by Donaldson in [41]. He proposes a system of error budget. This concept deals with the determination of the complete set of error sources in a machine tool, finding the resultant displacement error, dividing them into directions, combining errors in the same direction and finding the resultant displacement error and the workpiece geometry.

A major effort has been launched at NBS [13] to explain the problem of three dimensional metrology. Three different techniques are used for understanding machine behavior. These are: a) rigid body kinematics b) temporal modeling and production sampling and c) techniques of multiple redundancy. Rigid body kinematics calls for choosing minimum number of ideal reference frames (coordinate systems) necessary to characterize a machine. Matrix transformations are used to relate coordinates in these chosen frames. Three coordinate systems are chosen: the space system, table

and the object Using system system. error transformations, relations are obtained for expressing errors in the object system. Temporal modeling deals with use of statistical means to eliminate drift and temporal variations in measured values. The technique calls for using a single point as a gauge point and k other points as check points. Using the gauge point as one which is employed in every measured cycle, drift is The drift so obtained is used to correct determined. all other check points. Multiple redundancy method is used to eliminate non-orthogonality and scale errors in measurement. The result of this effort is that the general error term is a function of machine position, and of such variables as loading and temperature. is confirmed with experimental work carried out at NBS. They also propose methods for computer compensation of errors by storing the actual error values in matrix form. The study, however, has been carried out on a measuring machine. Measuring machines as compared with NC machine tools work in a better environment and are generally not subject to forces experienced by machine tools. This will be a fundamental difference between the present research effort and the one carried out at NBS.

In [18], an analysis of the displacement, planar and volumetric errors of multi-axis machines is

presented. The combined effects of all errors in the measuring system and errors in geometric features such as linearity of motions and orthogonality of axes of motion is considered. Using measured values of errors, the authors show that it is possible to evaluate volumetric error in the work space of a machine tool.

1.3.2 Thermal Effects

Thermally induced errors in machine tools compare in size and type to those resulting from tool wear and mechanical deformations [8,20,41]. Awareness of thermal effects as an error source requiring attention in the basic design of machine tools is typically increased each time that the human operator is removed from the direct control of the process.

Thermal effects in manufacturing and metrology can be categorized as in Figure 1.6 [41]. Speaking broadly, thermally induced errors are caused by three types of sources: temperature of the environment, external heat sources and internal heat sources. External heat sources are pumps, motors, cutting forces and chips produced during machining operation. Internal heat sources are bearings, gears, clutches, slideways and hydraulic oil. Heat dissipation from these sources into the structure and workpiece result in thermal gradients with consequent structural and workpiece deformations.

Fig. 1.6 Diagram of Thermal Effects in Manufacturing and Metrology [41]

Generated heat also influences the measuring system of the machine, hence contributing to positioning error.

The theoretical basis for the evaluation of the deformation behavior of solids due to thermal loads is generally known [7,10,22,36], but, mathematical difficulties in treating the problem of thermoelasticity are considerable. Hence only a few rigorous solutions have been obtained [7,22]. Due to such complications, numerical techniques are generally used.

Several studies have been carried out in the area of thermal deformations [16,19,20,21,23,27,28,29,31]. In these studies, the finite element technique is generally used to evaluate deformation characteristics of machine tools. Then experimental data is used to evaluate the accuracy of predictions by numerical methods. However it should be noted that due to inadequacy of information on heat sources and transfer of heat at joints, computations to determine thermal deformation behavior of machine tools provide no more than trend predictions.

Spur and De Haas study the effect of temperature on machine tools [34]. The machine used in [34] is driven by a lead screw, and is of the open loop system type. The study done consists of experimental findings. The authors propose methods for improving the thermal

stability of machine tool structures. The methods proposed include insulating the measurement system, which reduced the original error by 90 percent. Cooling of the machine tool is also experimented with. Heat is removed by splashing oil on the inner surfaces of the machine tool. This along with cooling of clutches by splashing oil causes substantial reductions in the deformation behavior. One of the experiments concerned with transfer of heat by hot chips. Experimental work proved that heat transfer is not affected by the temperature of chips, their form, or by the manner of pouring (all at once or continuously). The authors propose two methods for reducing the influence of heat input from chips. a) Removal of chips (but this would call for auxiliary energy) and b) Insulation of the machine tool. Insulation of the machine tool by a cool layer of chips shows a reduction in heat transfer rate with increase in thickness of the layer of cool chips.

A recent study done in Japan [28] shows innovative methods for improving the accuracy of machining centers by software correction. Geometric error is measured in advance by using a standard master part fixed on the table. Relative displacement between workpiece and spindle caused by thermal deformations is evaluated by a simple finite element model of the machine. The finite

element model is programmed on a dedicated minicomputer and uses on line temperature measurements. NC command pulses are modified by the computer to account for the geometric error and deformation of the machine. Errors in three dimensions cannot be measured accurately, hence they are measured in a single plane. Once these planar errors are measured, equations of the following form are fitted to measured data.

$$\delta x = c1x + c2y + c3x^{2} + c4xy + c5y^{2}$$

 $\delta y = c6x + c7y + c8x^{2} + c9xy + c10y^{2}$ (1.5)

The coefficients cl.. cl0 are evaluated by the use of least square estimators. A method of evaluating deformations due to thermal effects by finite element method is also formulated. An equation of the following form was used for the on line evaluation of thermal deformations:

$$(\delta x)^{i} = [M](f)^{j} + [N](\theta)^{k}$$
 (1.6)

where

 (δx) = displacement vector

(f) = force vector

 (θ) = temperature at heat source.

[M] * inverse of force stiffness vector, $[K]^{-1}$.

[N] = [K] [F]

[F] = Force conversion Matrix

In equation (1.6), i denotes the node at which

displacement is required, for nodal force at j and heat at k, and [K] is the stiffness matrix. It is shown by experimental methods that the technique causes a reduction in error. In [27], a machine tool structural analysis program has been developed. The program is capable of analyzing the static, thermal and dynamic behavior of machine tool structures. Data input is designed so that analysis can be carried out bу providing structural information as a combination of plate elements, modules and units. The program evaluates static, dynamic and thermal rigidity of a given structure.

In [23], displacement of the spindle is correlated to temperature of a single point on the spindle head. The correlation is linear and the analysis shows that the response of loss in accuracy due to heat generation rate follows a first order time lag. However there is no time lag between temperature raise and displacements. It should be mentioned that this is one of the few efforts correlate thermal displacements to temperature of a specific point on the machine tool structure. The report also provides interesting information on software compensation of thermally induced error.

In [16,29,38], principles and examples of calculation of thermal deformations by finite element

technique are provided. The calculation sequence is divided into two complexes, calculation of temperature distribution and calculation of thermally caused deformations. These two calculations are independent of each other except that calculation of the thermal problem must precede calculation of the deformation problem [38]. A variational principle for evaluation of the temperature distribution is presented in [38].

$$(\Phi^{e}) = [H^{e}]^{-1}(Q^{e}) \tag{1.7}$$

where

e (Φ) = temperature distribution

[H e] = temperature stiffness matrix

(Q) = matrix of heat input or heat loss.

Similarly equations are derived for deformation of a bar

$$(u^e) = [K^e]^{-1} | (F^e) + (F_v^e) |$$
 (1.8)

where

(u^e) = deformation

[K] = stiffness matrix

(F) = matrix of external forces.

 (F_{v}^{e}) = matrix of thermal forces.

The analysis is based on one dimensional conditions, however it can be extended to multi-dimensional cases. Calculation of thermal deformations and measured values of temperature are plotted against duration of heat

generation. The authors point out that in spite of satisfactory correlation between measurement and calculation, the use of calculation sequences to determine thermally induced errors is suspect. The reason for this suspicion is due to lack of information on thermal and mechanical boundary conditions.

In [29], a method for calculating the deformation of structures due to thermal loads is presented. The development here is two dimensional. The machine is modeled as a thin walled structure, and results of the analysis are compared with experimental work. The other interesting aspect of the paper is the development of a method for evaluating the intensity of heat sources. The method is one of matrix partitioning. It calls for partitioning the thermal relation matrix into two parts, nodes that are connected with heat sources and nodes that are not. The authors also propose methods for evaluating both the intensity of heat sources as well as the temperature of nodes not associated with heat sources, based on measured values of temperatures of nodes connected with heat sources.

Attempts towards clarification of methods used for curbing thermal deformation as well as methods used for control of thermal deformation of machine tools are presented in [16,28]. In [16], computer methods are used to evaluate the effect of column and guide

aran kan lan dan dan bangan Karangan Tanggan Banggan Banggan Banggan Banggan Banggan Banggan Banggan Banggan B

structures, cooling units and types of spindle bearings on the thermal behavior of a machine tool. The study restricts itself to horizontal type machining centers. Three types of structures are considered, single column, partially symmetric double column, and a fully symmetric double column. All models have about the same height about the same stroke. and Spindle bearings and hydraulic pumps are taken to be the two main generators of heat. Design parameters considered are type of guide: sliding guide (whole surface is in contact) and roller guide (contact is restricted to a small portion of the guide-way). Three types of cooling devices are considered: no cooling, fan cooler and refrigeration cooler. Finite element analysis of the three different structures is carried out and the differences in performances noted. Use of a refrigerating cooler has dramatic effects on the deflection pattern. Under ideal conditions (cooling capacity of cooler is equal to heat generating rate of the machine) a small temperature elevation is noted. This type of refrigeration is not sufficient for control of thermal influences, hence the authors recommend use of an excess capacity refrigerator to maintain the temperature of the circulating oil to within I degree Celsius.

Attempts to control thermal deformations are discussed in [28, 29]. In both papers, methods are

identified for control of thermal deformation through the use of heaters. The problem is modeled as a time optimization one. The general approach is to use heaters to heat up the structure to steady state temperatures and maintain these temperatures over time. Experimental results are compared to theoretical solutions. In this context, the efforts of J.B. Bryan at Lawrence Livermore Labs [41] should be mentioned. Thermal stability is achieved by immersing the whole machine in a bath of oil. It appears that a brute force approach as in [41] will succeed.

R.L. Murthy has analyzed the thermal deformation of a semi-automatic chucking machine [21]. Heat sources considered are: power pack, motor, pump, relief valve, and friction in bearings. He evaluates the temperature along the spindle shaft as:

$$T = 12e^{4x} + 52e^{-4x}$$
 (1.9)

where T is the temperature and x is the distance from rear bearing. Using a one dimensional thermal diffusion equation, thermal shift of the spindle is calculated.

Attempts to correct the error induced due to thermal expansion of the tool are discussed in [35,30]. Both methods rely on the assumption that thermal expansion of a tool can be expressed as function of heat generation rate and time. Software correction indicates

that errors can be reduced from 80 micrometers to 15 micrometers.

This last section is devoted to current research in thermal contact resistance as applied to machine tool structures. In the past few years much work has been done in this field typically by M.H. Attia and L.Kops [1,2,3,4,5,6]. Analysis of the process of heat transfer across joints in machine tool structures reveals their non-linear thermoelastic behavior. Nonlinear behavior is exhibited due to two causes: a) material nonlinearity due to the fact that surface asperities take a nonlinear load dependent form, b) nonlinearity resulting from the thermoelastic behavior of contacting elements, which experience a closed loop interaction between the thermal field and thermal deformation of structural elements in This interaction causes changes in contact contact. pressure and the change is reflected in redistribution of thermal resistance. Hence thermal contact resistance is to be defined as a distribution, not a single value [6]. In their work Attia and Kops include the time dependent behavior of a joint in the analysis of machine This theory is a departure from tool structures. existing methods in which thermal contact resistance is measured as a single average value, not representing realistically the conditions of heat transfer across machine tool joints. In [6], the theory is verified by

photoelastic models. Using the developed theory, deformation of structures is studied in [2]. The difference between results obtained from a model with thermoelastic interactions and a model without thermoelastic interactions is presented in [2]. The analysis however is restricted to two-dimensional cases. The formula for equivalent thermal conductivity is given as follows:

$$k_{c} = \frac{A1}{a} \left| \frac{\sigma}{k \tan \theta} \left(\frac{H_{B}}{p_{c}} \right) + 4 \frac{b}{k} \left| \frac{\sum_{n=1}^{n} \frac{1}{n}}{n} \right|^{-1} \right| + \left(1.10 \right)$$

$$\left| \int_{0}^{1} \frac{p_{c}}{p_{av}} + \cos(n \pi y) dy \right|^{2} *p_{c} * \sum_{i=1}^{n} \frac{1}{p_{ci}}$$
(1.10)

In Equation (1.10), the terms are defined as follows

a = crossectional area of contact element.

A = nominal interface area

b = length of contact

H_R = hardness

k = thermal conductivity.

k = equivalent thermal cond. of contact c

element.

1 * length of contact element

N = number of contact elements along joint.

p = local contact pressure.

p = average contact presure.

 $\overline{y} = y/b$ dimensionless variable.

σ = standard deviation of contacting surface.

 $\tan\theta$ = mean abs. slope of surface irregularities. The second term may be neglected without causing much error. This leads to the following simplification

$$k_{c} = \begin{vmatrix} \frac{A}{1} & \frac{k \tan \theta}{B \sigma} \\ \frac{B}{1} & \frac{B}{1} & \frac{B}{1} & \frac{B}{1} \end{vmatrix} P_{c}$$
 (1.11)

For the same problem, the authors show the equivalent modulus of elasticity to be $\mathbf{E}_{\mathcal{C}}$

$$E_{c} = \frac{1}{C} \left| \frac{A}{a} \right| p_{c}^{1-m}$$
 (1.12)

In equation (1.12), C and m are constants. Using the above formulas, the thermal problem and elasticity problem are solved. The solutions are compared and significant differences are shown. One drawback appears to be that the solutions of the thermal and elastic equations for machine tool structures are not compared with experimental results.

Although much work has been done in the area of thermal effects on accuracy of machine tools, it has not yet been established that thermally induced errors can be predicted by monitoring the temperature of a few points on the machine tool structure. This problem and associated issues will be discussed in the next few chapters of the thesis.

CHAPTER 2. TEMPERATURE AND ELASTIC DEFORMATION CALCULATIONS

2.1 General

Analysis of thermal behaviour is possible by two methods, numerical and experimental. Chapter 2 is concerned with the usage of known numerical methods for the evaluation of thermally induced deformations. structure chosen is a hypothetical one. It resembles the one shown in Figure 1.2. Details of the structure are shown in Appendix 1, Figures Al.1, Al.2 and Al.3. For the purpose of calculations, the z axis (part of the structure that supports motion in the z direction) of the machine is considered independent of the \boldsymbol{x} and \boldsymbol{y} axes. The reason for doing this is because the z axis is not an integral part of the machine. The x and y axes are modeled together. The analysis is three dimensional. The reason for resorting to three dimensional analysis is because heat sources are not located symmetrically on the machine. Location of heat sources is shown in Appendix 1, Figure Al.4.

Calculation of thermal behavior of a structure be divided into two complexes: calculation of the temperature distribution and calculation of thermally caused deformation. These two complexes are independent of each other, except that the temperature calculation must precede the deformation calculation [38]. The mathematical relationship is formulated in equations of heat transfer and elasticity. The precise analytical solution of these differential equations in technical applications usually impossible, because is complicated boundary conditions and complex shapes. So approximations have to be used. The approximations used are finite difference equations for the heat transfer problem and the finite element technique for the elastic deformation problem. For the purpose of calculations, the structure is assumed to be made of an isotropic homogeneous material.

2.2 Heat Transfer Problem

The heat transfer equation to be solved is as follows [15]:

$$\partial^{2}T/\partial x^{2} + \partial^{2}T/\partial y^{2} + \partial^{2}T/\partial z^{2} + Q/K =$$
 (2.1)
 $(\rho c_{p}/K) * \partial T/\partial t$

Equation (2.1) governs the conduction of heat in a solid. Solution of Equation (2.1) is carried out by subdividing the calculation domain into a number of

smaller subdomains or elements and evaluating the value of the dependent variable within each element. In this manner the continuum calculation domain is discretized. It is this systematic discretization of space and dependent variables that makes it possible to replace the governing differential equations with simple algebraic equations, which can be solved with relative ease. Solution of Equation (2.1) is desired over time to define the thermal profile of the machine tool. Since time is a one-way coordinate, the solution is obtained by marching in time from a given initial distribution of temperature. The task is: Given a set of temperatures at time t(i) it is desired to obtain the value of temperatures at time t(i+l) and so Discretization of the heat transfer Equation (2.1) can lead to several forms of equations:

- l. The Implicit form
- 2. The Explicit form
- 3. The Crank-Nicolson form

The implicit form is used in this thesis because of limitations on time step size in the explicit form and of possible errors in the assumption of linear variation of temperature over the time step in the Crank Nicolson solution [24].

Applying the principle of discretization to Equation (2.1), it can be represented as follows [24]:

a T = a T + a T + a T + a T + a T + B (2.2)
p p e e w w n n s s t t b b

Where each of the terms is defined as follows.

$$a = K \Delta y \Delta z / \partial x$$

$$a = K \Delta y \Delta z / \partial x$$

$$a_n = K \Delta z \Delta x / \partial y$$

$$a_n = K \Delta z \Delta x / \partial y$$

$$a_s = K \Delta z \Delta x / \partial y$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$b \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$b \Delta x \Delta y / \partial z$$

$$b \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$b \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$b \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y / \partial z$$

$$a_t = K \Delta x \Delta y \Delta y \Delta z$$

$$a_t = K \Delta x \Delta y \Delta y \Delta z$$

$$a_t = K \Delta x \Delta y \Delta y \Delta z$$

$$a_t = K \Delta x \Delta y \Delta y \Delta z$$

$$a_t = K \Delta x \Delta y \Delta y \Delta z$$

$$a_t = K \Delta x \Delta y \Delta y \Delta z$$

$$a_t = K \Delta x \Delta y \Delta y \Delta z$$

Referring to Figure 2.1, the meaning of this discretized equation is readily clear. The Equation (2.2) defines the value of temperature any point discretization grid as the linear sum of the temperatures of it's neighboring points. Calculation of steady state condition is possible by setting $\Delta(t) = \infty$, in Equation (2.3). Solution of the above discretized equation is obtained by an iterative method, for large problems. Sparseness of matrix and lack of tri-diagonal matrix structure prevent easy matrix inversion, hence iterative methods have Here bе used. overrelaxation scheme is used and convergence of solution is checked for, at each iteration.

Fig. 2.1 Grid Point Cluster And Notation [24]

2.3 Boundary Conditions

Evaluation of boundary conditions is the most difficult task in the determination of temperature profile of any machine. While a wide variety of boundary conditions are available for modeling of heat transfer from structures, dynamic conditions present on the surface prevent exact modeling. Inclusion of boundary conditions in the numerical solution do not present any great difficulty. Three types of boundary conditions are used for analysis:

- Natural boundary condition (Heat transfer to atmosphere)
- 2. Heat transfer in closed cavities.
- 3. Insulated boundary conditions.

Natural boundary conditions are used for the surface of the structure. The form of the boundary condition is as follows [15]

$$q_b = h(T_f - T_b) \tag{2.4}$$

This boundary condition is incorporated into the heat diffusion equation as follows [24]:

where

$$a_{1} = \frac{K_{1}}{\partial x_{1}} \tag{2.6}$$

$$b \approx hT \tag{2.7}$$

The term a is written out as [24]:

$$a = a + h$$
 (2.8)

Inclusion of insulated boundary conditions (on the base of the machine) is easily achieved by setting h to zero. Boundary conditions within closed cavities are more difficult to handle, because it is impossible to make any realistic estimate of temperature distribution within a cavity. Hence for the problem on hand, internal cavity temperature is assumed to be the average of the inner wall temperatures. The cavity temperature is calculated from time step to time step. Also, exact evaluation of heat transfer coefficient within a cavity is not possible. It is expected that with rotating parts, some form of turbulent convection will be taking place.

2.4 Evaluation of Heat Transfer Coefficient

Heat transfer coefficients are evaluated for each of the plates (horizontal and vertical) on the machine using the following relationships. For vertical plates, it is known that [15]:

$$R_{al} = \frac{g\beta(T_b - T_f)L^3}{\alpha v}$$
 (2.9)

In Equation (2.9), the terms are as follows:

 α = thermal diffusivity

υ = kinematic viscosity

The Nusselt number NU_1 is evaluated as [15]:

$$NU_{1} = \begin{vmatrix} 0.825 + \frac{0.387R_{a1}^{1/6}}{|1+0.492/Pr^{9/16}|8/27} \end{vmatrix}^{2}$$

$$h = NU_{1} K/L$$
(2.10)

For Horizontal Plates [15]:

$$L = A_s/P \tag{2.11}$$

$$NU_{1} = 0.27 Ra_{1}^{1/4}$$
 (2.12)

Now calculation of h is as before with Equation (2.10). For Cavities [15]:

$$Ra_{1} = \frac{g\beta(T_{b}-T_{f})L^{3}}{\alpha v}$$
 (2.13)

Evaluation of Nusselt number is as follows [15]:

$$NU_{1} = 0.18(Pr\frac{Ra_{1}}{0.2+Pr})$$
(2.14)

Evaluation of overall heat transfer coefficient for the machine is done by averaging each of the above values based on the respective contribution to heat loss (depending on the surface area). Radiation effects are also considered. Radiation heat loss is as follows [15]:

$$q_r = \varepsilon \sigma (T_b^4 - T_f^4) \qquad (2.15)$$

2.5 Some Numerical Results

Following are some of the numerical results result of the finite difference obtained as calculations for the z axis. Room temperature is assumed to be at zero degrees Celsius. Table 2.1 indicates the difference in solution of temperature field by using a very large grid (1224 nodes) as compared to a smaller grid (648 nodes). Table 2.2 indicates the difference in solution with a time step of 15 minutes as compared with a time step of 5 minutes. The temperature is given in degrees Celsius. Tables 2.1 and 2.2 present the temperature in Celsius at the source point. It is seen that the temperature does not vary by more than a degree Celsius for both cases. solutions have been carried out with a time step size of 15 minutes and 648 nodes. Similar analysis on the x y axis indicates that a time step of 15 minutes and 1652 nodes is sufficient.

2.6 The Elastic Problem

One of the causes of strains in a body is its non-uniform heating. With rising temperature, the elements of a body expand. Such expansion generally cannot proceed freely in a continuous body. Hence thermally induced stresses and strains result. Deformation of a body under non-uniform heating is typically an elastic

Table 2.1 Comparison of Number of Nodes

no of nodes	Temp at Source
6 48	7.4
1 2 2 4	7.0

Table 2.2 Comparison of Time Step

Time step(mi	n) Temp at sour	сe
1 5	7.4	
5	8.5	

problem. Laws of elasticity being linear allow for easy solution of the deformation characteristics of the structure. Laws governing deformation of any structure follow from Hooke's law. Theory of elasticity defines these laws as follows [36]:

$$\varepsilon_{x} = \frac{1}{E} (\sigma_{x} - \nu(\sigma_{y} + \sigma_{z})) + \alpha T$$

$$\varepsilon_{y} = \frac{1}{E} (\sigma_{y} - \nu(\sigma_{x} + \sigma_{z})) + \alpha T$$

$$\varepsilon_{z} = \frac{1}{E} (\sigma_{z} - \nu(\sigma_{x} + \sigma_{y})) + \alpha T$$
(2.16)

Associated with stress strain relations given above, are equations of equilibrium, equations of compatibility and boundary conditions that have to be satisfied. Reference [7,36,22] provide a good review of the required material.

For a finite element formulation, displacements in a structure is represented in matrix form as follows:

$$[K] \{D\} = \{R\}$$
 (2.17)

[D] is the vector of displacements to be calculated, given the nodal loads {R} and stiffness of the structure. Each node in a finite element mesh has associated with it a certain number of degrees of freedom, (depending on the type of element). Each degree of freedom is a displacement and is represented as an equation in the matrix representation of (2.17). In Equation (2.17) the stiffness matrix [K] is explained as follows: The jth column of [K] is the vector of nodal

forces that must be applied to the nodes to maintain has unit static equilibrium when the jth d.o.f. displacement and all other d.o.f. have zero displacement [48]. Boundary conditions are incorporated into degrees of freedom of a particular node. Those that are active are kept as equations in the matrix Equation (2.17), while those that are not active have no equations associated. Having obtained the vector of displacements, it is possible to evaluate stresses and strains from theory of elasticity.

In Equation (2.17) evaluation of the stiffness matrix is done at two levels:

- 1. At each element in the structure
- 2. For the whole structure (global stiffness matrix) from element matrices.

A variety of methods are available for formulation of the stiffness matrix given in Equation (2.17). Any standard text in finite elements presents these issues.

For evaluation of displacements the structure under consideration, the SAP 5 finite element program from University of California, Berkeley is used. Two type of elements are used for modeling the structure:

- Eight node solid elements (three d.o.f./node ,Figure 2.2)
- Thin plate elements (six d.o.f./node ,Figure 2.3)

Fig. 2.2 A Typical Eight Node Solid Brick Element

Fig 2.3 A Typical Plate Element

Fig. 2.4 Deformation of x axis, T = 180 mins

Fig. 2.5 Deformation of y axis, T = 180 mins

Fig. 2.6 Deformation of z axis, T = 180 mins

Eight node solid elements are in the shape of a brick and have eight nodal points, with three degrees of freedom per node. Thin plate elements are used for modeling plates in the structure. These nodes have six degrees of freedom per node. At nodal points common to both types of nodes, non-trivial degrees of freedom are found by combination. For the problem on hand, all nodes associated with the base of the machine are given zero degrees of freedom (essentially the base is fixed). All other nodes are given all possible degrees of freedom.

Results of numerical calculations are presented in the form of plots. For sake of clarity the plots presented show each of these axes independently. Displacements obtained at time 180 minutes for heat source type 1 (refer Appendix 1, Table Al.1 and Table Al.2) are plotted for each of axis, Figures 2.4, 2.5 and 2.6. The variety of conditions for which solutions have been obtained is presented in Appendix 1, Tables Al.1 and Al.2. Each of the Figures 2.4, 2.5 and 2.6 have local coordinate systems and these are shown in the respective figures. These coordinate systems different from the machine coordinate system, shown in Figure 1.2. All calculations have been performed with respect to coordinate systems as shown in respective figures.

CHAPTER 3. COMPUTATION OF MACHINE ERRORS

3.1 General

Numerical techniques for evaluation of thermally induced displacements in machine tools were presented in chapter 2. Evaluation of errors from a distorted structure is discussed in the present chapter.

A typical linear carriage is shown in Figure 3.1. The following assumptions are made about the carriage:

- 1. It is designed for linear motion in x direction.
- 2. It is a rigid body.
- 3. Has a measuring device for x position.

 On such a carriage, one can measure at least six different error terms, one for each degree of freedom [41]. Besides these errors, errors of drift and errors of non-orthogonality of the various axes present themselves. Each of these errors vary with temperature and it is suspected that strong relations exist between these errors and thermal fields in a machine tool structure. While some of these errors, typically positioning errors are a function of the positioning

Fig. 3.1 The Six Degrees of Freedom [52]

system (lead screw, resolvers etc), rotational errors, and errors of straightness, will exhibit strong dependence, on machine structural distortions. A procedure for evaluation of structurally dependent errors is presented here. Combination of all errors causes the accuracy of a machine tool to deteriorate in it's work space. This is the principle offered by "Abbe offset" errors [32]. A method for evaluating the combined error in the work space is proposed. This chapter also discusses the possibility of prediction of thermally induced errors in machine tools. The approach proposed here uses regression equations and the method is verified with numerically evaluated data.

3.2 Evaluation of Structural Errors

を記していたい

Errors of interest are the six degrees of freedom exhibited by a carriage. The idea used here is to simulate carriage motion on a distorted structure (numerically computed) to obtain the error characteristics of the carriage. The methodology for obtaining structural errors is related to rigid body motion.

The carriage itself is represented as a line that spans the guideways. Motion of the carriage is numerically implemented by moving the line (representing the carriage) along that portion of the distorted

structure represented by the guideways. As the line moves along the guideways, it will exhibit six degrees of freedom (errors) which are similar in nature to the errors exhibited by a moving carriage.

The technique is explained in Figures 3.2 and 3.3. In Figures 3.2 and 3.3, the shaded portion is the guideway, while the line itself is the carriage. Figure 3.2 shows the calculation of vertical straightness error and roll. Figure 3.3 shows the calculation of pitch. Calculation of vertical straightness error is done by averaging the values of displacements at points 1,2,3 and 4. For calculation of roll, displacements at points 1 and 2 are averaged to give displacement at point 5. Displacements at points 3 and 4 are averaged to give the displacement at point 6. Roll is now calculated as

Roll = $atan(\Delta z/d1)$ (3.1) Δz and dl are as shown in Figure 3.2. Figure 3.3 shows the technique for the calculation of pitch. Similarly yaw and horizontal straightness can be evaluated by considering the horizontal displacements of the guideways.

A few comments are appropriate here to distinguish between measurement of errors and evaluation of errors, as proposed above. Errors are invariably measured with respect to some reference frame. It is not possible to

Fig. 3.2 Calculation of Roll

Fig. 3.3 Calculation of Pitch

measure error magnitudes in terms of absolutes. In contrast, in the above method, one has a fixed reference frame, namely the undistorted structure to compare against. This undistorted ("nice") structure does not exist in the case of experimental work. Further it is not possible to evaluate errors that are built into the machine. These errors are associated with manufacture and mounting of the machine in question.

As regards positional errors, it is well known that these are a function of the lead screw errors (pitch errors of lead screw) and of linear expansion of the lead screw. The lead screw is not incorporated into the model, hence it is not possible to evaluate lead screw induced errors. However, if it is assumed that lead screw expansion follows that of the structure, then it is reasonable to deduce that linear expansion of the lead screw is at least of the same magnitude as that evaluated by structural calculations. The calculated errors are plotted in Figures 3.4,3.5 and 3.6.

3.3 Assessment of Volumetric Errors

Volumetric error is defined here as the error vector of all combined errors in the work space of the machine. It is importance to determine how errors detected at the various axis combine in the work space of the machine. Evaluation of the combined error

Fig. 3.4 Errors, x axis

Fig. 3.5 Errors, y axis

Fig. 3.6 Errors, z axis

provides an indication of the actual error a workpiece will experience. Here it should be stressed that errors of the cutting process and errors in location of tool and workpiece are not considered. For this part of the analysis, three models are formulated,

- 1. The coordinate system is orthogonal (model 1)
- Non orthogonality of the coordinate system is considered (model 2)
- 3. Errors of drift are introduced (model 3)

Using the above models, it is possible to determine the error vector in the work space of a machine tool. The relations are defined for a three axis machine. Extension to larger number of axes is easy.

3.3.1 Model 1

The model derived here defines the volumetric error for a perfectly orthogonal system. By a perfectly orthogonal system, it is meant that motion along all three axes follows along three orthogonal lines. All errors are defined with respect to a single reference point and this point is the zero of the machine tool coordinate system. Second order effects are not considered.

Homogeneous transformations are are ideal for representation of errors. They are also ideal for calculation of volumetric errors. Combining errors for

x axis, the following transformation results [49]:

$$\begin{vmatrix} 1 & -ez(x) & ey(x) & \Delta x(x) \\ ez(x) & 1 & -ex(x) & \Delta y(x) \\ -ey(x) & ex(x) & 1 & \Delta z(x) \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
 (3.2)

Similarly matrix transformations can be obtained for axes y and z. It is known that neglecting second order terms, these matrices possess the following property:

$$[X] [Y] = [Y] [X]$$
 (3.3)

Matrices obtained for x, y and z axes can be combined to obtain the volumetric error matrix as follows:

$$E = \begin{bmatrix} 1 & -EAZ & EAY & \Delta x \\ EAZ & I & -EAX & \Delta y \\ -EAY & EAX & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (3.4)

Each of the above terms is defined as follows:

$$EAX = ex(x)+ex(y)+ex(z)$$

$$EAY = ey(x)+ey(y)+ey(z)$$

$$EAZ = ez(x)+ez(y)+ez(z)$$

$$\Delta x = \Delta x(x) + \Delta x(y) + \Delta x(z)$$

$$\Delta y = \Delta y(x) + \Delta y(y) + \Delta y(z)$$

$$\Delta z = \Delta z(x) + \Delta z(y) + \Delta z(z)$$

$$(3.5)$$

Now volumetric error is calculated at any point in the work space as follows: If the vector of a point in the work space is given as:

then the volumetric error is:

$$[V] = [E] [pos] - [pos]$$
 (3.7)

3.3.2 Model 2

Here errors of non-orthogonality are considered. Errors of non-orthogonality are due to non orthogonal motion of slides on the axes. Referring to Figure 3.7:

 $\begin{array}{c} 2\\ \text{oa} + (\text{oa*tan}(\beta)) \\ \end{array}^2 + (\text{oa*tan}(\alpha)) \\ \end{array}^2 = \text{ob} \\ \\ \text{Defining the following,} \\ \end{array}$

$$conl = \sqrt{1 + \tan^2 \alpha + \tan^2 \beta}$$
 (3.8)

real motion along any axis say x, is obtained as

Real motion =
$$X$$
 conl (3.9)

In Equation (3.9), X is the x component of the [pos] vector. Similarly real motions along the other two axes are calculated. The calculation yields a vector of the form,

Equation (3.10) is necessary for calculation of volumetric error and it should be used in the place of

Fig. 3.7 Error of Non-Orthogonality

Fig. 3.8 Error of Drift

[pos]. It should be noted that out of plane displacements, are represented as straightness errors and these have already been considered in model 1.

3.3.3 Model 3

The problem of drift is considered here. Referring to Figure 3.8, drift is defined as the following vector:

If, after the calculations of models 1 and 2, the following error vector results,

$$\begin{vmatrix} a_{i} \\ b_{j} \\ c_{k} \end{vmatrix}$$
 (3.12)

then the volumetric error is

$$\begin{vmatrix} a_1 + xd \\ b_j + yd \\ c_k + zd \end{vmatrix}$$
 (3.13)

This vector effectively represents the error that a workpiece will experience. Calculation of this vector for the machine under consideration at various thermal states is shown in Figure 3.9. The calculations are for a cubic work space of 66 Centimeters (26 Inches). Error values as computed for the outer most point (66,66,66) of the cube are presented in Table 3.1.

Fig. 3.9 Volumetric Accuracy

Table 3.1 Error of Outer Most Point of Work Space of Machine Tool, Numerical Work.

Time	Error (Microns)		
Mins	X dir.	Y dir.	Z dir.
30.	-14.31	11.41	20.37
60.	-24.76	27.24	34.48
120.	-38.95	59.97	57.75
180.	-48.18	87.97	82.52

3.4 Regression Model and Prediction Results

The objective is to obtain equations which will predict the errors of a machine at any point in time, simply based on the temperature values measured at certain points on the machine tool structure. The technique used is shown in Figure 3.10. With this objective in mind two models have been formulated. One is for time periods greater than 60 minutes while the other is for time periods less than 60 minutes. The models are developed and validated using numerical results computed by the techniques of section 3.2.

The models attempted are as follows:

Error =
$$\sum_{i=1}^{i=n} (a_i T_i + b_i X T_i + c_i X^2 T_i)$$
 (3.14)

Error =
$$\sum_{i=1}^{i=n} (a_i \log T_i + b_i \times \log T_i + c_i \times^2 \log T_i) + d$$
 (3.15)

In Equations (3.14 and 3.15), X indicates the position of the axis at which the error is evaluated and T_i is the temperature of the i'th point on the machine tool. For evaluation of the prediction equations, a maximum of l1 temperature points are used. Eight of these points are the corner points that make up a cube and the remaining are those that are associated with heat sources. Location of the temperature points are shown in

Appendix 1, Figures Al.5, Al.6 and Al.7.

Equation (3.14) is used for time periods greater than 60 minutes, while Equation (3.15) is used for time periods less than 60 minutes. The coefficients of Equations (3.14, 3.15) are evaluated using a standard SPSS package. Equation (3.15) is used because of the exponential nature of the heating process. The reason for using higher order terms of X is because it is known temperature and displacement fields are generally represented as sine and cosine terms of Xmultiplied by eigen values. Hence higher order terms of X are used. Results of the regression indicate in each the 18 cases considered (6 on each axis), a coefficient of multiple determination greater than 0.95. Equations (3.14,3.15) for the machine being modeled are presented in Appendix 1. Appendix 1, Tables Al.3 and Al.4 present the accuracy obtainable by regression equations. It should be mentioned that the errors in the first 60 minutes of operation are of very small magnitude in comparison with those at later times. Due to this characteristic, it is felt that compensation based on look up tables would work very well for the first 60 minutes. The look up table would consist of average values of errors.

The prediction capabilities of the regression equations are presented in Figures 3.11, 3.12, 3.13 and

Fig. 3.10 Methodology for Calculation of Thermal Error Regression Functions

AND SECRECIA RESISTANCE PROSE

Fig. 3.11 Check of Regression Equations, x axis

Fig. 3.12 Check of Regression Equations, y axis, case 1

Fig. 3.13 Check of Regression Equations, y axis, case 2

Fig. 3.14 Check of Regression Equations, z axis

3.14. The data points in Figures 3.11, 3.13 and 3.14 have not been used in the evaluation of the regression equations. Figure 3.12 shows the fit of the regression equation for data used to generate the equation. Figure 3.13 is specially relevant because the location of the heat source on the y axis has been shifted. In spite of the shift in the heat source, the form of the errors is the same, although there is a change in the constant term associated with the regression equation.

The data used for analysis has been generated by numerical methods and hence is idealistic. The real test of methods proposed is when the models of the type used in Equations (3.14,3.15), is tested with experimental data.

CHAPTER 4. ANALYTIC SOLUTIONS

4.1 General

Machine tools are generally made up of box type structures. Analysis of machine tool structures has been done in the past and a detailed discussion of the subject is present in [50]. However the discussion in [50] does not cover thermal deformations. Analysis of box type structures made of isotropic, homogeneous materials is of concern in this chapter and two types of analysis are covered here. One shows that thermal effects on the errors of machine tools can be predicted by the use of simple regression equations as shown in Chapter 3. The second gives analytic expressions for the evaluation of thermal fields in cubic box type structures. The second analysis has been extended to cover thermal deformations. Both analysis make use of quasistatic approximations. Experimental presented in chapter 5, indicate that quasistatic conditions are present. Quasistatic approximations permit solution of uncoupled thermoelastic equations.

4.2 A Problem of 3 D Thermoelasticity

The problem of interest is to show that thermally induced displacements in a box made of thin plates can be predicted by monitoring the temperature of a few points. Machine tools are generally made of thin plate box type structures, and so the analysis should hold them too. In this section most of the ideas for simplification of differential equations have been adopted from [36].

A technique for the evaluation of machine tool errors has been presented in chapter 3. This technique essentially relates machine tool errors to displacements by simple transformations. Because of simple relationships between errors and displacements, prediction of displacements leads to the conclusion that prediction of errors is possible. The analysis also provides indications regarding the location of the minimum number of thermocouples required for prediction of thermally induced errors. It should be noted that as the number of thermocouples used increases, reliability in prediction is higher.

The thermoelastic equations to be solved are as follows [7]:

$$(\lambda + \mu) \frac{\partial e}{\partial x} + \mu \nabla^2 u - (3\lambda + 2\mu) \alpha_e \frac{\partial T}{\partial x} = 0(4.1)$$

Body forces have been neglected in the Equations (4.1) .

The terms are defined as follows:

$$e = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$
 (4.2)

u,v,w= displacements in x,y,z respectively

T = T(x,y,z,t) is temperature and t is time

$$\lambda = \frac{(v E)}{(1 + v)(1 - 2 v)}$$

$$\mu = \frac{E}{2(1 + v)}$$

v = Poisson's ratio

E = Modulus of Elasticity

 α_{e} = Coefficient of thermal expansion

For the heat transfer problem, the equation is [51],

$$\nabla^{2}T + \frac{g(t)}{K}\delta(x-x_{1})\delta(y-y_{1})\delta(z-z_{1}) - h T =$$

$$\frac{1}{(\alpha + 1)}\frac{\partial T}{\partial t}$$
(4.3)

In Equation (4.3), the terms are

T = Temperature

K = Thermal conductivity

g(t) = Heat generation

$$\alpha_t = \frac{K}{(\rho c_p)}$$

ρ = Density

c = Heat capacity

The -h T term in Equation (4.3) indicates heat loss from the surface of the body to a medium at zero temperature.

Initially the elasticity problem will be simplified and then the thermal problem will be incorporated. Define potentials of the form [36]:

$$u = \frac{\partial \psi}{\partial x} e^{-\alpha t} ht$$

$$v = \frac{\partial \psi}{\partial y} e^{-\alpha t} ht$$

$$w = \frac{\partial \psi}{\partial z} e^{-\alpha t} ht$$

Using Equations (4.5), it is seen that,

Simplifying Equations (4.8),

$$e = \nabla^2 \psi e^{-\alpha t} ht$$
(4.6)

and

$$\nabla^{2} u = \frac{\partial}{\partial x} [\nabla^{2} \psi] e^{-\alpha t^{ht}}$$

$$\nabla^{2} v = \frac{\partial}{\partial y} [\nabla^{2} \psi] e^{-\alpha t^{ht}}$$

$$\nabla^{2} w = \frac{\partial}{\partial z} [\nabla^{2} \psi] e^{-\alpha t^{ht}}$$

$$\nabla^{2} w = \frac{\partial}{\partial z} [\nabla^{2} \psi] e^{-\alpha t^{ht}}$$

Substituting Equations (4.6) and (4.5) in Equations (4.1) yields,

$$[(\lambda + \mu)\frac{\partial}{\partial x} \nabla^{2}\psi + \mu\frac{\partial}{\partial x} \nabla^{2}\psi]e^{-\alpha} t^{ht} = (3\lambda + 2\mu) \alpha_{e} \frac{\partial T}{\partial x}(4.8)$$

$$[(\lambda + \mu)\frac{\partial}{\partial y} \nabla^{2}\psi + \mu\frac{\partial}{\partial y} \nabla^{2}\psi]e^{-\alpha} t^{ht} = (3\lambda + 2\mu) \alpha_{e} \frac{\partial T}{\partial y}$$

$$[(\lambda + \mu)\frac{\partial}{\partial z} \nabla^{2}\psi + \mu\frac{\partial}{\partial z} \nabla^{2}\psi]e^{-\alpha} t^{ht} = (3\lambda + 2\mu) \alpha_{e} \frac{\partial T}{\partial z}$$

From [36], the following relationship is known:

$$\frac{(3 \lambda + 2 \mu)}{(\lambda + 2 \mu)} = \frac{(1 + \nu)}{(1 - \nu)}$$
 (4.10)

Using Equations (4.10) in Equations (4.9), yields

$$[\nabla^{2} \frac{\partial \psi}{\partial x}] e^{-\alpha} t^{ht} = \frac{(1 + \nu)}{(1 - \nu)} \alpha_{e} \frac{\partial T}{\partial x}$$

$$[\nabla^{2} \frac{\partial \psi}{\partial y}] e^{-\alpha} t^{ht} = \frac{(1 + \nu)}{(1 - \nu)} \alpha_{e} \frac{\partial T}{\partial y}$$

$$[\nabla^{2} \frac{\partial \psi}{\partial z}] e^{-\alpha} t^{ht} = \frac{(1 + \nu)}{(1 - \nu)} \alpha_{e} \frac{\partial T}{\partial z}$$

$$(4.11)$$

Equations (4.11) are satisfied if [36]

$$\begin{bmatrix} \nabla^2 \psi \end{bmatrix} e^{-\alpha ht} = \frac{(1+\nu)}{(1-\nu)} \alpha_e T \qquad (4.12)$$

The general solution of Equation (4.12) is given by [36]

$$\psi = -\frac{(1 + v) \alpha_{e}}{4 \pi (1 - v)} \iint_{D} T(\xi, \eta, \zeta, t)$$

$$\frac{1}{r} * e^{\alpha t} d\xi, d\eta, d\zeta$$
(4.13)

In Equation (4.13) r is distance between point ξ , η , ζ and x, y, z.

Also T(ξ ,n, ζ ,t) is the temperature at point ξ ,n, ζ at time t. Notice that time enters Equation (4.13) only as a parameter. Solution of Equation (4.13) is generally very difficult, hence an alternate formulation is necessary.

In Equation (4.3), the -h T term can be removed by using the following transformation. Let

$$\begin{array}{ccc}
-\alpha & \text{ht} \\
T & = L & e
\end{array}$$

Now Equation (4.3) will be written as:

$$\nabla^{2}L + \frac{g(t)}{(K)}\delta(x-x)\delta(y-y)\delta(z-z)e^{\alpha t}$$

$$= \frac{1}{\alpha_{t}} \frac{\partial L}{\partial t}$$
(4.14)

Letting

$$\frac{g(t)}{K}\delta(x-x')\delta(y-y')\delta(z-z') = \nabla^2 Q$$

enables Equation (4.14) to be written as

$$\nabla^2 L + \nabla^2 Q e^{\alpha t h t} = \frac{1}{\alpha_t} \frac{\partial L}{\partial t}$$
 (4.15)

Equation (4.15) then simplifies to

$$\nabla^{2}[L + Q e] = \frac{1}{\alpha_{+}} \frac{\partial L}{\partial t}$$
 (4.16)

Differentiating Equation (4.12) with respect to t, after $-\alpha \ ht$ making the substitution T = Le results in,

$$\nabla^{2} \frac{\partial \psi}{\partial t} = \frac{(1 + v)}{(1 - v)} \alpha_{e} \frac{\partial L}{\partial t}$$
 (4.17)

Using Equation (4.16) in (4.17) gives

$$\nabla^2 \frac{\partial \psi}{\partial t} = \frac{(1 + \nu)}{(1 - \nu)} \alpha_e \alpha_t \nabla^2 [L + Qe^{\alpha_t h t}] \qquad (4.18)$$

Replacing ∇^2 on both sides of Equation (4.18)

$$\frac{\partial \psi}{\partial t} = \frac{(1+v)}{(1-v)} \alpha_{e} \alpha_{t} [L + Qe^{\alpha_{t}^{ht}}] \qquad (4.19)$$

From Equation (4.19) ψ is evaluated to be

$$\psi = \frac{(1 + v)}{(1 - v)} \alpha_{e} \alpha_{t} \int_{0}^{t} [L + Qe^{\alpha_{t} ht}] dt \qquad (4.20)$$

Boundary conditions have to be considered. Machine tools are generally fixed at a few points on the base to

THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE OF. (U) PURDUE UNIV LAFAYETTE IN SCHOOL OF INDUSTRIAL ENGINEERING R VENUGOPAL ET AL. OCT 85 N80014-83-K-0385 F/G 13/9 2/4 AD-A163 598 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART

NATIONAL RESOLUTION TEST CHART

1963 A

the foundation. For the problem on hand, let the machine be fixed at k points on the base (x1,y1,0), (x2,y2,0) (xk,yk,0) These boundary conditions are written as

$$u(x,y,0,t) = 0$$
; at all k (4.21)
 $v(x,y,0,t) = 0$; at all k
 $w(x,y,0,t) = 0$; at all k

Inclusion of boundary conditions is generally done by splitting them into two parts as follows,

$$u = u^{(1)} + u^{(2)}$$

$$v = v^{(1)} + v^{(2)}$$

$$w = w^{(1)} + w^{(2)}$$
(4.22)

In Equations (4.22), u(x,y,z,t) is written as u. Similarly for v and w. In Equations (4.22), the terms $u^{(1)}, v^{(1)}$ and $u^{(1)}$ satisfy Equations (4.1) without any boundary conditions, while the terms $u^{(2)}, v^{(2)}$ and $u^{(2)}$ satisfy the problem of isothermal elasticity with the boundary conditions suitably modified.

The problem of isothermal elasticity is defined as follows

$$(\lambda + \mu) \frac{\partial e^{(2)}}{\partial x} + \mu \nabla^{2} u^{(2)} = 0$$

$$(\lambda + \mu) \frac{\partial e^{(2)}}{\partial y} + \mu \nabla^{2} v^{(2)} = 0$$

$$(\lambda + \mu) \frac{\partial e^{(2)}}{\partial z} + \mu \nabla^{2} v^{(2)} = 0$$

For the isothermal problem, the boundary conditions are

written as Equations (4.24), from (4.22).

$$u^{(2)} = -u^{(1)}$$
; at all k; (4.24)
 $v^{(2)} = -v^{(1)}$; at all k;
 $w^{(2)} = -w^{(1)}$; at all k;

Equations (4.24) force the base to remain fixed at all k points. From Equation (4.20) and (4.5) the displacements are

$$u^{(1)} = \frac{\partial \psi}{\partial x} e^{-\alpha_t h t}$$

$$v^{(1)} = \frac{\partial \psi}{\partial y} e^{-\alpha_t h t}$$

$$w^{(1)} = \frac{\partial \psi}{\partial z} e^{-\alpha_t h t}$$

$$(4.25)$$

Using Equations (4.25), the boundary conditions for the isothermal problem are written as

$$u^{(2)} = -\frac{\partial \psi}{\partial x} e^{-\alpha} ht$$

$$v^{(2)} = -\frac{\partial \psi}{\partial y} e^{-\alpha} ht$$

$$v^{(2)} = -\frac{\partial \psi}{\partial y} e^{-\alpha} ht$$

$$w^{(2)} = -\frac{\partial \psi}{\partial x} e^{-\alpha} ht$$

$$u^{(2)} = -\frac{\partial \psi}{\partial x} e^{-\alpha} ht$$

The isothermal problem defined by Equation (4.23) and associated boundary conditions of Equation (4.26) is solved by a superposition principle over the k points where the displacements are zero. Despite the simple appearance of Equations (4.23), their treatment is not very simple. One method of solving such Equations is presented in [36]. The method is calls for setting up displacements as follows

$$u = \phi_{1} - \frac{\alpha \partial}{\partial x} (\phi_{0} + x \phi_{1} + y \phi_{2} + z \phi_{3})$$

$$v = \phi_{1} - \frac{\alpha \partial}{\partial y} (\phi_{0} + x \phi_{1} + y \phi_{2} + z \phi_{3})$$

$$w = \phi_{1} - \frac{\alpha \partial}{\partial z} (\phi_{0} + x \phi_{1} + y \phi_{2} + z \phi_{3})$$
(4.27)

In Equations (4.27)

$$4\alpha = \frac{1}{1 - y} \tag{4.28}$$

also the functions are to satisfy the following conditions.

$$\nabla^{2} \phi_{0} = 0$$

$$\nabla^{2} \phi_{1} = 0$$

$$\nabla^{2} \phi_{2} = 0$$

$$\nabla^{2} \phi_{3} = 0$$
(4.29)

Essentially the isothermal problem is to be solved at the k points where displacements are to be equal to zero. Explicit solution of the isothermal problems will not be attempted here. Let $u^{k(2)}$, $v^{k(2)}$ and $v^{k(2)}$ be the solution of the k th problem. Solution of the displacement problem is now written out as

$$u = \frac{1+\nu}{1-\nu} \alpha_{e} \alpha_{t} \int_{0}^{t} \left[\frac{\partial}{\partial x}(L+Qe^{\alpha t^{ht}}) + \sum_{j=1}^{k} u^{j}(2)\right] e^{-\alpha t^{ht}} d(4.30)$$

$$v = \frac{1+\nu}{1-\nu} \alpha_{e} \alpha_{t} \int_{0}^{t} \left[\frac{\partial}{\partial y}(L+Qe^{\alpha t^{ht}}) + \sum_{j=1}^{k} v^{j}(2)\right] e^{-\alpha t^{ht}} dt$$

$$w = \frac{1+\nu}{1-\nu} \alpha_{e} \alpha_{t} \int_{0}^{t} \left[\frac{\partial}{\partial z}(L+Qe^{\alpha t^{ht}}) + \sum_{j=1}^{k} w^{j}(2)\right] e^{-\alpha t^{ht}} dt$$

The thermal solution will be included into the above equation. For the thermal problem, variation of temperature through thickness will be neglected and the

Fig. 4.1 Body of Thin Plates

Fig. 4.2 Boundary Conditions

analysis will be restricted to a single plate. Consider the body shown in Figure (4.1). The body is heated by a point heat source, and the observed boundary conditions are as as shown in Figure (4.2). Explicitly the boundary conditions are written out as

$$T = f_4(y,t)$$
 at $x = 0$ (4.31)
 $T = f_2(y,t)$ at $x = a$
 $T = f_1(x,t)$ at $y = 0$
 $T = f_3(x,t)$ at $y = b$

The boundary conditions as defined by Equations (4.31), are assumed to satisfy the heat conduction equation, and so are separable into functions of space and time. Explicitly $f_{\underline{\lambda}}(y,t)$ can be written as

$$f_4 = F_4(y) e^{-p t}$$
 (4.32)

In Equation (4.32), $F_4(y)$ is a function of the variable y, while e^{-p} is the variation with time p is a constant and the variation with time is negative exponential. All the functions f_1 , f_2 , f_3 and f_4 are expressible as products of space and time.

$$f_1(x,t) = F_1(x)e^{-p} t$$

 $f_2(x,t) = F_2(x)e^{-p} t$
 $f_3(y,t) = F_3(y)e^{-p} t$
 $f_4(y,t) = F_4(y)e^{-p} t$

The initial condition is

$$T(x, y, z, 0) = 0$$
 (4.33)

Typically in an experiment, if the temperatures of corner points are measured, then, the temperature of corner point 1 (refer Figure 4.2) will be given as

Temp at point $l = F_1(0)e^{-p}$ $t = F_4(0)e^{-p}$ Similarly the temperatures of the other 7 corner points can be derived from equations like (4.32). The heat transfer problem (two dimensional version) given by Equation (4.3) will be considered. Using the following $-\alpha$ ht simplification $T = Le^{-t}$, Equation (4.3) is written as

$$\nabla^2 L + \frac{1}{K} e^{\alpha_t h t} g(t) \delta(x - x_1) \delta(y - y_1) = \frac{1 \partial L}{(\alpha_t) \partial t}$$
 (4.34)

The boundary conditions as expressed by Equations (4.31) will undergo the same transformations and are written as

$$L = f_4(y,t) e^{\alpha} \text{ at } x = 0$$

$$L = f_2(y,t) e^{\alpha} \text{ at } x = a$$

$$L = f_1(x,t) e^{\alpha} \text{ at } y = 0$$

$$L = f_3(x,t) e^{\alpha} \text{ at } y = b$$

$$(4.35)$$

The initial condition is

$$T(x,y,z,0) = 0$$
 ie $L(x,y,z,0) = 0$ (4.36)

The Green's function for the problem is given as [51],

$$G(x,y,t|x,y,\tau) = \frac{4}{ab} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} e^{-\alpha_{t}(\beta_{m}^{2} + \eta_{n}^{2})(t-\tau)} \star$$

$$\sin(\beta_{m}x)\sin(\eta_{n}y)\sin(\beta_{m}x)\sin(\eta_{n}) \qquad (4.37)$$

In Equation (4.37), β_m and η_n are the eigen values.

$$\beta_{m} = \frac{m\pi}{a} \; ; \; \eta_{n} = \frac{n\pi}{b} \; ; \; m = 1, 2, \ldots n = 1, 2, \ldots.$$
 Letting,

$$c = \alpha_{t}(\beta_{m}^{2} + \eta_{n}^{2})$$

a nd

$$cI = \alpha_{t}(\beta_{m}^{2} + \eta_{n}^{2} + h)$$

solution of the heat transfer problem is now written out

$$L = \frac{4\alpha_{t}}{(Kab)} \int_{\tau=0}^{t} \int_{x}^{a} \int_{y=0}^{b} \sum_{mn} \sum_{n} \sum_{n} \sum_{mn} \sum_{n} \sum_{n} \sum_{mn} \sum_{n} \sum$$

Term by term simplification can be done. The first term

of Equation (4.38) is written as (under constant heat generation conditions ie g(t) = g)

$$\frac{4\alpha_{t}}{K}\sum_{mn}\sum_{g}\left[\frac{e^{t}-e^{-ct}}{\alpha_{t}h+c}\right]\sin(\beta_{m}x) *$$

$$\sin(\eta_{n}y)\sin(\beta_{m}x_{1})\sin(\eta_{n}y_{1})$$
(4.39)

The second integral on simplification will give

$$\alpha_{t} \sum_{m} \sum_{2n-1} e^{-ct} \beta_{m} \sin(\beta_{m} x) \sin(\eta_{n} y) \frac{2}{\eta_{n}} \left[\frac{e^{(c1-p)t}}{c1-p} * (4.40) \right]$$

Note that n is replaced by (2n-1), indicating that n will take on only odd values. This notation will be adopted henceforth. In the above simplification, the second and higher derivatives of \mathbf{F}_4 with respect to y have not been considered. During the simplification, it is seen that the odd derivatives drop out, while the even derivatives will produce functions of the form

$$-\int_{0}^{b} \sin(\eta_{n} y) f_{4}(y, \tau) dy \qquad (4.41)$$

In Equation (4.41) f_4 denotes the second derivative with respect to y . It is seen that the Equation (4.41) will essentially produce a series of the form

$$\frac{-1}{\eta_n}[-\cos(\eta_n y)f_4(y,\tau)+\frac{1}{\eta_n}[\cos(\eta_n y)f_4(y,\tau)....$$

The whole thermal profile is written as

$$\begin{array}{c} \frac{4g\alpha_{t}}{K}\sum_{m}\sum_{n}\frac{\left[e^{\frac{\alpha}{t}}\frac{h^{t}}{c^{t}+\alpha_{t}h}\right]}{c^{t}+\alpha_{t}h} \\ & sin(\beta_{m}x)sin(\eta_{n}y)sin(\beta_{m}x_{1})sin(\eta_{n}y_{1}) \\ & \frac{(\alpha_{t}h-p)t}{c^{t}-p}(\frac{2\beta_{m}}{\eta_{n}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & \frac{e^{\frac{\alpha}{t}}h-p}{c^{t}-p}(\frac{2\beta_{m}(-1)^{m}}{\eta_{n}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & \frac{(\alpha_{t}h-p)t}{c^{t}-p}(\frac{2\beta_{m}(-1)^{m}}{\eta_{n}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{2m-1}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{c^{t}-p}(\frac{2\eta_{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{2m-1}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{c^{t}-p}(\frac{2\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & -\alpha_{t}\sum_{2m-1}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{c^{t}-p}(\frac{2\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{2m-1}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{c^{t}-p}(\frac{2\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{2m-1}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{c^{t}-p}(\frac{\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{2m-1}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{c^{t}-p}(\frac{\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{2m-1}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{c^{t}-p}(\frac{\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{c^{t}-p}(\frac{\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{c^{t}-p}(\frac{\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{n}(\frac{\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\eta_{n}y_{1}) \\ & +\alpha_{t}\sum_{n}\frac{e^{\frac{\alpha}{t}}c^{t}-p}{n}(\frac{\eta_{n}(-1)^{n}}{\beta_{m}})sin(\beta_{m}x)sin(\beta_{m}x)sin(\beta_{m}x)sin(\beta_{m}$$

For computation of the errors of machine tools refer to chapter 3, where a technique has been described for evaluation of the errors as a function of displacements. Essentially the method calls for the evaluation of displacements along two lines of interest. The slide essentially moves along these two lines. To show that errors are predictable, as a function of temperatures, it will be sufficient if we show that displacements u,v and w are predictable. Also variation of errors is of interest only along a particular

direction and this direction is the one along which motion takes place. For this particular problem, assume that the direction of motion is the x axis, then if it can be shown that displacements along x (with y, z being held constant) can be predicted as a function of temperatures it will be sufficient. This will be done for one of the displacement u, since for v and w the same analysis will hold. u is defined to be

$$u = \frac{1+\nu}{1-\nu}\alpha_{e}\alpha_{t}\int_{0}^{t} \left[\frac{\partial}{\partial x}(L+Qe^{\alpha t}) + \sum_{j=1}^{k} u^{j(2)}\right] e^{-\alpha t} dt$$

Now a term by term simplification will be carried out.

The first term L is defined in Equation (4.42).

Differentiating L with respect to x, integrating L with respect to t and noting that y is a constant yields the following result (neglecting constants)

$$\frac{1}{K_{mn}^{\Sigma}} \sum_{t=1}^{\infty} \frac{e^{-c \cdot t} - 1}{c \cdot 1} = \frac{\beta_{m}}{c \cdot 1} \cos(\beta_{m}x) \qquad (4.43)$$

$$-\alpha_{t} \sum_{m=2n-1}^{\infty} \sum_{n=1}^{\infty} \frac{2\beta_{m}^{2}}{\eta_{n}} \cos(\beta_{m}x) \left[F_{4}(b) - F_{4}(0)\right] \frac{e^{-pt}}{(c \cdot 1 - p)p}$$

$$+\alpha_{t} \sum_{m=2n-1}^{\infty} (-1)^{m} \frac{2\beta_{m}^{2}}{\eta_{n}} \cos(\beta_{m}x) \left[F_{2}(b) - F_{2}(0)\right] \frac{e^{-pt}}{(c \cdot 1 - p)p}$$

$$-\alpha_{t} \sum_{2m-1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (-1)^{n} 2\eta_{n} \cos(\beta_{m}x) \left[F_{1}(a) - F_{1}(0)\right] \frac{e^{-pt}}{(c \cdot 1 - p)p}$$

$$+\alpha_{t} \sum_{2m-1}^{\infty} \sum_{n=1}^{\infty} (-1)^{n} 2\eta_{n} \cos(\beta_{m}x) \left[F_{3}(a) - F_{3}(0)\right] \frac{e^{-pt}}{(c \cdot 1 - p)p}$$
In Equation (4.43), $F_{4}(b)e^{-pt}$ and similar terms represent the corner temperatures. It is also known

that

$$\cos(\beta_{m}x) = 1 - \frac{(\beta_{m}x)^{2}}{2} + \frac{(\beta_{m}x)^{4}}{24} \dots$$
 (4.44)

Substituting the Equation (4.44) in (4.43), it is seen that $\int_0^t \frac{\partial L}{\partial x}$ can be represented as a function of the corner temperatures and the heat source point. Carrying out the same analysis on all six plates that make up a box, it will be seen that temperatures of all 8 corner points will be required. To carry out the process of monitoring temperatures, it will be necessary to place thermocouples at the corner points as well as on the heat source points.

The second term Q is known to be

$$\nabla^2 Q = \frac{g}{k} \delta(x - x_1) \delta(y - y_1)$$

The solution of this equation will contain terms of the form $\delta(x-x,), \delta(y-y,)$ and polynominals of x and y.

The last term $u^{2(k)}$, is the contribution of the isothermal part of the problem. The isothermal problem is defined by Equations (4.23). By assuming a potential of the form

$$u = \frac{\partial \phi}{\partial x}$$

$$v = \frac{\partial \phi}{\partial y}$$

$$w = \frac{\partial \phi}{\partial z}$$

the isothermal problem reduces to

$$\nabla^2 \frac{\partial \phi}{\partial x} = 0 \tag{4.45}$$

$$\nabla \frac{2\partial \phi}{\partial y} = 0$$

$$\nabla \frac{2\partial \phi}{\partial z} = 0$$

An approximate solution to the problem is given as

$$\phi = ax^2 + by^2 + cz^2 + dxy + fyz + gzx$$
 (4.46)

This solution will satisfy the isothermal problem, and the boundary conditions (4.26) will help determine the constants of the Equation (4.46). u is evaluated to be

$$u = 2 ax+dy+gz (4.47)$$

since u is required only as variable in x (y,z being constants), the Equation (4.47) will reduce to

$$u = 2 ax+k$$
 (4.48)

In Equation (4.48), k is some constant. It should be noted that the isothermal problem is mainly concerned with inclusion of boundary conditions. It is known from Saint-Venant's principle, that these influences will be local and so they can be neglected without significantly affecting dispacements and stresses at far away points.

Adding the three terms of the Equation (4.30), it is evident that the displacements can be represented as linear function of the temperatures. A typical function is given below, Equation (4.49)

$$u = a + b \Sigma T_{i} + cx \Sigma T_{i} \dots$$
 (4.49)

In the Equation (4.49), the terms a, b,c..., are to be determined from simple regression equations, while the

T_i terms are the temperatures measured at the corners and at the heat sources. Due to the existence of such simple regression equations, it is possible to predict errors as a function of temperatures. An objectives of chapter 3 is to show that such regression equations exist based on numerically computed results. Chapter 5 presents experimental evidence to show that expressions like Equation (4.49) can be obtained for complex machine tools.

4.3 Heat Conduction in a Cube

The problem is to solve the heat conduction equation in a cube made of thin plates. Figure (4.3) shows the cube and the conventions used. The cube is assumed to be in a medium at zero degrees. Define the following, Figure (4.3)

 $T_{1,0}$ = Temperature at x = 0 plane

T = Temperature at x = a plane 1.a

 $T_{2.0} = Temperature at y = 0 plane$

T = Temperature at y = a plane

 $T_{3,0}$ = Temperature at z = 0 plane

 $T_{3,c}$ = Temperature at z = a plane

The problem to be solved is defined as follows

$$\frac{\partial^2 T_{1,0}}{\partial y^2} + \frac{\partial^2 T_{1,0}}{\partial z^2} - \beta T_{1,0} = \frac{1}{\alpha_t} \frac{\partial T_{1,0}}{\partial t}$$
 (4.50)

$$\frac{\partial^{2} T_{1,a}}{\partial y^{2}} + \frac{\partial^{2} T_{1,a}}{\partial z^{2}} - \beta T_{1,a} = \frac{1}{\alpha_{t}} \frac{\partial T_{1,a}}{\partial t}$$

$$\frac{\partial^{2} T_{2,0}}{\partial x^{2}} + \frac{\partial^{2} T_{2,0}}{\partial z^{2}} - \beta T_{2,0} = \frac{1}{\alpha_{t}} \frac{\partial T_{2,0}}{\partial t}$$

$$\frac{\partial^{2} T_{2,b}}{\partial x^{2}} + \frac{\partial^{2} T_{2,b}}{\partial z^{2}} - \beta T_{2,b} = \frac{1}{\alpha_{t}} \frac{\partial T_{2,b}}{\partial t}$$

$$\frac{\partial^{2} T_{3,0}}{\partial x^{2}} + \frac{\partial^{2} T_{3,0}}{\partial y^{2}} - \beta T_{3,0} = \frac{1}{\alpha_{t}} \frac{\partial^{2} T_{3,0}}{\partial t}$$

$$\frac{\partial^{2} T_{3,c}}{\partial x^{2}} + \frac{\partial^{2} T_{3,c}}{\partial y^{2}} - \beta T_{3,c} = \frac{1}{\alpha_{t}} \frac{\partial^{2} T_{3,c}}{\partial t}$$

In Equations (4.50), β is $\frac{h}{K}$, where h is the heat transfer coefficient and K is the thermal conductivity. α_t , is $\frac{K}{\rho * c_p}$. Where ρ is density and c_p is heat capacity. The boundary conditions are

$$T_{1,0}(0,z) = T_{2,0}(0,z)$$

$$-\frac{\partial T_{1,0}}{\partial y}(0,z) = \frac{\partial T_{2,0}}{\partial x}(0,z)$$

$$T_{1,0}(a,z) = T_{2,b}(0,z)$$

$$\frac{\partial T_{1,0}}{\partial y}(a,z) = \frac{\partial T_{2,b}}{\partial x}(0,z)$$

$$\frac{\partial T_{2,0}}{\partial x}(a,z) = \frac{\partial T_{1,a}}{\partial y}(0,z)$$

$$T_{2,b}(a,z) = T_{1,a}(a,z)$$

$$-\frac{\partial T_{2,b}}{\partial x}(a,z) = \frac{\partial T_{1,a}}{\partial y}(a,z)$$

$$T_{1,0}(y,0) = T_{3,0}(0,y)$$

$$\frac{\partial T_{1,0}}{\partial z}(y,0) = \frac{\partial T_{3,0}}{\partial x}(0,y)$$

$$T_{1,0}(y,a) = T_{3,c}(0,y)$$

$$\frac{\partial T_{1,0}}{\partial z}(y,a) = \frac{\partial T_{3,c}}{\partial z}(0,y)$$

```
0\(\frac{1}{1},0(y,z) = Temp. on plane x = 0.\)
\(T_{1,0}(y,z) = Temp. on plane x = a.\)
\(T_{2,0}(x,z) = Temp. on plane y = 0.\)
\(T_{2,b}(x,z) = Temp. on plane y = a.\)
\(T_{3,0}(x,y) = Temp. on plane z = 0.\)
\(T_{3,c}(x,y) = Temp. on plane z = a.\)
```


Fig. 4.3 Conventions On Cube

$$T_{3,0}(a,y) = T_{1,a}(y,0)$$

$$\frac{\partial T_{3,0}}{\partial x}(a,y) = \frac{\partial T_{1,a}}{\partial z}(y,0)$$

$$T_{3,c}(a,y) = T_{1,a}(y,a)$$

$$-\frac{\partial T_{3,c}}{\partial x}(a,y) = \frac{\partial T_{1,a}}{\partial z}(y,a)$$

$$T_{2,0}(x,0) = T_{3,0}(x,0)$$

$$\frac{\partial T_{2,0}}{\partial z}(x,0) = \frac{\partial T_{3,0}}{\partial y}(x,0)$$

$$T_{2,0}(x,a) = T_{3,c}(x,0)$$

$$\frac{\partial T_{2,0}}{\partial z}(x,a) = \frac{\partial T_{3,c}}{\partial y}(x,0)$$

$$T_{3,0}(x,a) = T_{2,b}(x,0)$$

$$\frac{\partial T_{3,0}}{\partial y}(x,a) = \frac{\partial T_{2,b}}{\partial z}(x,0)$$

$$T_{3,c}(x,a) = T_{2,b}(x,a)$$

$$T_{3,c}(x,a) = T_{2,b}(x,a)$$

$$T_{3,c}(x,a) = T_{2,b}(x,a)$$

To simplify the problem, the β term in Equations (4.50) is factorized out by the substitution

$$L = T e$$

$$(4.52)$$

Using Equation (4.52), in Equation (4.50), it is seen that Equation (4.50), reduces to

$$\frac{\partial^{2} L_{1,0}}{\partial y^{2}} + \frac{\partial^{2} L_{1,0}}{\partial z^{2}} = \frac{1}{\alpha_{t}} \frac{\partial L_{1,0}}{\partial t}$$

$$\frac{\partial^{2} L_{1,a}}{\partial y^{2}} + \frac{\partial^{2} L_{1,a}}{\partial z^{2}} = \frac{1}{\alpha_{t}} \frac{\partial L_{1,a}}{\partial t}$$

$$\frac{\partial^{2} L_{2,0}}{\partial x^{2}} + \frac{\partial^{2} L_{2,0}}{\partial z^{2}} = \frac{1}{\alpha_{t}} \frac{\partial L_{2,0}}{\partial t}$$

$$\frac{\partial^{2} L_{2,b}}{\partial x^{2}} + \frac{\partial^{2} L_{2,b}}{\partial z^{2}} = \frac{1}{\alpha_{t}} \frac{\partial L_{2,b}}{\partial t}$$
(4.53)

$$\frac{\partial^{2}L_{3,0}}{\partial x^{2}} + \frac{\partial^{2}L_{3,0}}{\partial y^{2}} - \frac{\partial^{2}L_{3,0}}{\partial t}$$

$$\frac{\partial^{2}L_{3,c}}{\partial x^{2}} + \frac{\partial^{2}L_{3,c}}{\partial y^{2}} - \frac{\partial^{2}L_{3,c}}{\partial t}$$

The boundary conditions defined by Equations (4.51), remain the same, but the term T is replaced by L.

The problem defined by Equations (4.53), is represented in the form of an operator as

$$0 = \begin{vmatrix} -\frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} & 0 & 0 \\ 0 & -\frac{\partial^2}{\partial z^2} - \frac{\partial^2}{\partial x^2} & 0 \\ 0 & 0 & -\frac{\partial^2}{\partial z^2} - \frac{\partial^2}{\partial y^2} \end{vmatrix}$$
(4.54)

The domain of the operator is

D(0) = All functions satisfying

boundary conditions (4.51)

also

$$\underline{0} = [0, D(0)] \tag{4.55}$$

The under bar is used in Equation (4.55), to indicate that it is a vector. The temperatures are written in the form of a matrix as

$$\underline{L} = \begin{pmatrix} L_{1,0} & L_{1,a} \\ L_{2,0} & L_{2,b} \\ L_{3,0} & L_{3,c} \end{pmatrix}$$
(4.56)

The whole problem is conveniently defined as

$$\frac{1}{\alpha_{t}} \frac{\partial}{\partial t} \underline{L} = -0 \underline{L} \tag{4.57}$$

Equation (4.57) is written as

$$\frac{1}{\alpha_{\underline{t}}} \frac{\partial}{\partial \underline{t}} \langle \underline{L}, \underline{U} \rangle = -\langle 0 \underline{L}, \underline{U} \rangle \qquad (4.58)$$

The α term is absorbed into time and is written as $\tau = \alpha$ t Now the Equation (4.58), is written as

$$\frac{\partial}{\partial \tau} \langle \underline{L}, \underline{U} \rangle = -\langle 0 \underline{L}, \underline{U} \rangle \qquad (4.59)$$

Equation (4.59) is simplified to give

$$\frac{\partial}{\partial \tau} \langle \underline{L}, \underline{U} \rangle = -\lambda \langle \underline{L}, \underline{U} \rangle$$

The above Equation is possible because

$$\langle 0 \ \underline{L}, \underline{U} \rangle = \underline{\langle L}, \underline{0}\underline{U} \rangle = \lambda \langle \underline{L}, \underline{U} \rangle$$

The inner product for the operator O is written as

$$\frac{\langle \mathbf{U} , \mathbf{v} \rangle}{\langle \mathbf{U} , \mathbf{v} \rangle} = \int_{00}^{aa} [\mathbf{U}_{1,0}^{V} \mathbf{1}_{1,0}^{+U} \mathbf{1}_{1,a}^{V} \mathbf{1}_{1,a}^{]dydz} + (4.60)$$

$$= \int_{00}^{aa} [\mathbf{U}_{2,0}^{V} \mathbf{2}_{,0}^{+U} \mathbf{2}_{,b}^{V} \mathbf{2}_{,b}^{]dxdz} + (4.60)$$

$$= \int_{00}^{aa} [\mathbf{U}_{3,0}^{V} \mathbf{3}_{,0}^{+U} \mathbf{3}_{,c}^{V} \mathbf{3}_{,c}^{]dxdy}$$

In Equations (4.60), U, V are eigen functions. The operator O is self adjoint because [47],

$$\langle 0 \ \underline{U} \ \underline{V} \rangle = \langle \underline{U} \ \underline{V} \rangle$$
 (4.61)

To show that the Equation (4.61) is true, boundary conditions (4.51) are required. Also in Equation (4.61), the term $\langle 0 \ \underline{U} \ ^{\circ} \ \underline{V} \rangle$ is defined in terms of the inner product as

$$\int_{00}^{aa} - \left[\frac{\partial^{2}U_{1,0} + \partial^{2}U_{1,0}}{\partial y^{2} + \partial z^{2}} \right] V_{1,0} dy dz
- \left[\frac{\partial^{2}U_{1,a} + \partial^{2}U_{1,a}}{\partial y^{2} + \partial z^{2}} \right] V_{1,a} dy dz
+ \int_{00}^{aa} - \left[\frac{\partial^{2}U_{2,0} + \partial^{2}U_{2,0}}{\partial x^{2} + \partial z^{2}} \right] V_{2,0} dx dz
- \left[\frac{\partial^{2}U_{2,b} + \partial^{2}U_{2,b}}{\partial x^{2} + \partial z^{2}} \right] V_{2,b} dx dz
+ \int_{00}^{a} - \left[\frac{\partial^{2}U_{3,0} + \partial^{2}U_{3,0}}{\partial x^{2} + \partial y^{2}} \right] V_{3,0} dx dy
- \left[\frac{\partial^{2}U_{3,c} + \partial^{2}U_{3,0}}{\partial x^{2} + \partial y^{2}} \right] V_{3,c} dx dy
- \left[\frac{\partial^{2}U_{3,c} + \partial^{2}U_{3,c}}{\partial x^{2} + \partial y^{2}} \right] V_{3,c} dx dy$$

A good overview of linear operator theory as applied to heat and mass transfer is provided in [47]. Applying separation of variables, and defining the following

$$U_{1,0} = Y_{1,0}^{Z}_{1,0}$$

$$U_{2,0} = X_{2,0}^{Z}_{2,0}$$

$$U_{3,0} = X_{3,0}^{Y}_{3,0}$$

$$U_{1,a} = Y_{1,a}^{Z}_{1,a}$$

$$U_{2,b} = X_{2,b}^{Z}_{2,b}$$

$$U_{3,c} = X_{3,c}^{Y}_{3,c}$$
(4.63)

The boundary conditions in the separated form is written as

$$Y_{1,0}^{(0)} z_{1,0} = X_{2,0}^{(0)} z_{2,0}$$

$$- Y_{1,0}^{(0)} z_{1,0} = X_{2,0}^{(0)} z_{2,0}$$

$$Y_{1,0}^{(a)} z_{1,0} = X_{2,b}^{(0)} z_{2,b}$$

$$Y_{1,0}^{(a)} z_{1,0} = X_{2,b}^{(0)} z_{2,b}$$

$$(4.64)$$

In Equations (4.64), the prime indicates differentiation. From Equations (4.64), it is apparent that

$$\frac{x}{X_{2,0}} = \frac{x}{X_{2,b}} = \frac{x}{X_{3,c}} = \frac{x}{X_{3,c}} = \mu^{2} (4.65)$$

$$\frac{y}{Y_{1,0}} = \frac{y}{Y_{1,b}} = \frac{y}{Y_{3,c}} = \frac{y}{Y_{3,c}} = \eta^{2}$$

$$\frac{z}{z_{1,0}} = \frac{z}{z_{1,b}} = \frac{z}{z_{2,b}} = \frac{z}{z_{2,b}} = \delta^2$$

But it is also known that [47]

$$0\underline{U} = \lambda \underline{U} \tag{4.66}$$

Substituting the Equation (4.65), in (4.66), it is seen that

$$\eta^{2} + \delta^{2} = \lambda \qquad (4.67)$$

$$\mu^{2} + \delta^{2} = \lambda$$

$$\mu^{2} + \eta^{2} = \lambda$$

Equations (4.67), indicate that $\mu^2 = \eta^2 = \delta^2$. This leads to the conclusion that

$$\lambda = 2\mu^2 \tag{4.68}$$

The assumed solution is written out as

$$X_{2,0} = \xi^{a}_{2,0}\cos(\mu x) + \xi^{b}_{2,0}\sin(\mu x)$$

$$X_{2,b} = \xi^{a}_{2,b}\cos(\mu x) + \xi^{b}_{2,b}\sin(\mu x)$$

$$X_{3,0} = \xi^{a}_{3,0}\cos(\mu x) + \xi^{b}_{3,0}\sin(\mu x)$$

$$X_{3,c} = \xi^{a}_{3,c}\cos(\mu x) + \xi^{b}_{3,c}\sin(\mu x)$$

$$Y_{1,0} = \eta^{a}_{1,0}\cos(\mu y) + \eta^{b}_{1,0}\sin(\mu y)$$

$$Y_{1,a} = \eta^{a}_{1,a}\cos(\mu y) + \eta^{b}_{1,a}\sin(\mu y)$$

$$Y_{3,0} = \eta^{a}_{3,0}\cos(\mu y) + \eta^{b}_{3,0}\sin(\mu y)$$

$$Y_{3,c} = \eta^{a}_{3,c}\cos(\mu y) + \eta^{b}_{3,c}\sin(\mu y)$$

$$Z_{1,0} = \xi^{a}_{1,0}\cos(\mu z) + \xi^{b}_{1,0}\sin(\mu z)$$

$$Z_{1,a} = \xi^{a}_{1,a}\cos(\mu z) + \xi^{b}_{1,a}\sin(\mu z)$$

$$Z_{2,0} = \xi^{a}_{2,0}\cos(\mu z) + \xi^{b}_{2,0}\sin(\mu z)$$

$$Z_{2,b} = \xi^{a}_{2,b}\cos(\mu z) + \xi^{b}_{2,b}\sin(\mu z)$$

Also from the boundary conditions it is known that

$$\frac{z_{1,0}}{z_{2,0}} = c$$

$$\frac{z_{1,0}}{z_{2,b}} = c1$$

$$\frac{z_{2,0}}{z_{1,a}} = c2$$

$$\frac{z_{2,b}}{z_{1,a}} = c3$$
(4.70)

In Equation (4.70), c, cl, c2 and c3 are some constants. Due to the conditions defined in Equation (4.64), it is seen that

$$\frac{\zeta^{a}_{1,0}}{\zeta^{b}_{1,0}} = \frac{\zeta^{a}_{1,a}}{\zeta^{b}_{1,a}} = \frac{\zeta^{a}_{2,0}}{\zeta^{b}_{2,0}} = \frac{\zeta^{a}_{2,b}}{\zeta^{b}_{2,b}} = k_{z}$$
 (4.71)

Similarly for x,y it is seen that

$$\frac{\prod_{\substack{n=1\\ n \ 1,0}}^{a} = \frac{\prod_{\substack{n=1\\ n \ 1,a}}^{a} = \frac{\prod_{\substack{n=1\\ n \ 3,0}}^{a} = \frac{\prod_{\substack{n=1\\ n \ 3,c}}^{a} = k_{y}}{\prod_{\substack{n=1\\ n \ 2,0}}^{a} = \frac{\prod_{\substack{n=1\\ k \ 2,b}}^{a} = \frac{\prod_{\substack{n=1\\ k \ 3,0}}^{a} = \frac{\prod_{\substack{n=1\\ k \ 3,c}}^{a} = k_{z}}{\prod_{\substack{n=1\\ k \ 2,b}}^{a} = \frac{\prod_{\substack{n=1\\ k \ 3,c}}^{a} = k_{z}}{\prod_{\substack{n=1\\ k \ 3,c}}^{b} = k_{z}}$$

Due to the simplification offered by Equations (4.71) and (4.72), the assumed solution is written out as

$$U_{1,0} = K_{1,0}(\cos(\mu y)) \qquad (4.73)$$

$$+k_{y}\sin(\mu y))(\cos(\mu z)+k_{z}\sin(\mu z))$$

$$U_{1,a} = K_{1,a}(\cos(\mu y)+k_{y}\sin(\mu y))(\cos(\mu z)+k_{z}\sin(\mu z))$$

$$U_{2,0} = K_{2,0}(\cos(\mu x)+k_{x}\sin(\mu x))(\cos(\mu z)+k_{z}\sin(\mu z))$$

$$U_{2,b} = K_{2,b}(\cos(\mu x)+k_{x}\sin(\mu x))(\cos(\mu z)+k_{z}\sin(\mu z))$$

$$U_{3,0} = K_{3,0}(\cos(\mu x)+k_{x}\sin(\mu x))(\cos(\mu y)+k_{y}\sin(\mu y))$$

 $U_{3,c} = K_{3,c} (\cos(\mu x) + k_{sin}(\mu x))(\cos(\mu y) + k_{sin}(\mu y))$ In Equations (4.73), the terms $K_{1,0}$, $K_{1,a}$, $K_{3,0}$, $K_{1,a}$, $K_{3,c}$ and $K_{3,c}$ are constants to be determined. Using boundary conditions, it is seen that the eigen values are

$$\sin(\mu a) = 0$$
 ie $\mu = \frac{n\pi}{a}$; $n = 0, 1, 2, \dots$ (4.74)

The constants are

$$K_{1,0} = K_{2,0} = K_{3,0} = 1$$
 (4.75)

and

$$K_{1,a} = K_{2,b} = K_{3,c} = (-1)^n$$

It is also seen that another solution exists, for $\lambda \, = \, 0 \, . \quad \text{This solution is obtained by solving}$

$$U_{1,0} = a_{1} + a_{2}y + a_{3}z + a_{4}yz$$

$$U_{1,a} = a_{5} + a_{6}y + a_{7}z + a_{8}yz$$

$$U_{2,0} = a_{9} + a_{10}x + a_{11}z + a_{12}xz$$

$$U_{2,b} = a_{13} + a_{14}x + a_{15}z + a_{16}xz$$

$$U_{3,0} = a_{17} + a_{18}x + a_{19}y + a_{20}xy$$

$$U_{3,c} = a_{21} + a_{22}x + a_{23}y + a_{24}xy$$

$$(4.76)$$

In Equations (4.76), the terms a_1, a_2, \dots are constants to be determined. Application of boundary conditions shows

$$a_1 = a_5 = a_9 = a_{13} = a_{17} = a_{21}$$
 (4.77)

The normalizing constant is calculated as [47]:

For the constant term, the normalizing constant is

$$N = \iint_{00}^{aa} dydz + \iint_{00}^{aa} dydz + \iint_{00}^{aa} dxdz$$

$$+ \iint_{00}^{d} dxdz + \iint_{00}^{d} dxdy + \iint_{00}^{d} dxdy$$

$$= \int_{00}^{aa} dxdz + \int_{00}^{aa} dxdy + \int_{00}^{aa} dxdy$$

$$= \int_{00}^{aa} dxdz + \int_{00}^{aa} dxdy + \int_{00}^{aa} dxdy$$

For the cosine terms, it is

$$N1 = \iint_{00}^{aa} \cos^{2}(\mu y) \cos^{2}(\mu z) dy dz$$

$$+ \iint_{00}^{aa} \cos^{2}(\mu y) \cos^{2}(\mu z) dy dz$$

$$+ \iint_{00}^{aa} \cos^{2}(\mu x) \cos^{2}(\mu z) dx dz$$

$$+ \iint_{00}^{aa} \cos^{2}(\mu x) \cos^{2}(\mu z) dx dz$$

$$+ \iint_{00}^{aa} \cos^{2}(\mu x) \cos^{2}(\mu y) dx dy$$

$$+ \iint_{00}^{aa} \cos^{2}(\mu x) \cos^{2}(\mu y) dx dy$$

The terms are evaluated to be

$$N = 6a^2$$
 (4.80)

and

$$N1 = 6a^{2}/4 (4.81)$$

The solution is now written out as

$$L_{1,0} = \frac{C}{N} + \sum_{n=1}^{\infty} \frac{C}{N!} \cos(\mu y) \cos(\mu z) e^{-2\mu^2 \alpha} t$$

$$L_{1,a} = \frac{C}{N} + \sum_{n=1}^{\infty} \frac{C}{(-1)^n \frac{n}{N!}} \cos(\mu y) \cos(\mu z) e^{-2\mu^2 \alpha} t$$

$$L_{2,0} = \frac{C}{N} + \sum_{\substack{n=1 \\ n=1}}^{\infty} \frac{n}{N1} \cos(\mu x) \cos(\mu z) e^{-2\mu^{2}\alpha} t^{t}$$

$$L_{2,b} = \frac{C}{N} + \sum_{\substack{n=1 \\ n=1}}^{\infty} \frac{C}{N1} \cos(\mu x) \cos(\mu z) e^{-2\mu^{2}\alpha} t^{t}$$

$$L_{3,0} = \frac{C}{N} + \sum_{\substack{n=1 \\ n=1}}^{\infty} \frac{n}{N1} \cos(\mu x) \cos(\mu y) e^{-2\mu^{2}\alpha} t^{t}$$

$$L_{3,c} = \frac{C}{N} + \sum_{\substack{n=1 \\ n=1}}^{\infty} \frac{C}{N1} \cos(\mu x) \cos(\mu y) e^{-2\mu^{2}\alpha} t^{t}$$

The temperature is obtained in terms of T from Equations $-\alpha \beta t$ (4.82), by simply multiplying each of them by e . The solution in terms of T is given as

$$T_{1,0} = \frac{C}{N}e^{-\beta\alpha_{t}t}$$

$$+ \sum_{\substack{n=1 \\ -\beta\alpha_{t}t}} \frac{C_{n}}{N_{1}}\cos(\mu y)\cos(\mu z)e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

$$+ \sum_{\substack{n=1 \\ -\beta\alpha_{t}t}} \frac{C_{n}}{N_{1}}\cos(\mu y)\cos(\mu z)e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

$$+ \sum_{\substack{n=1 \\ -\beta\alpha_{t}t}} \frac{C_{n}}{N_{1}}\cos(\mu y)\cos(\mu z)e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

$$+ \sum_{\substack{n=1 \\ -\beta\alpha_{t}t}} \frac{C_{n}}{N_{1}}\cos(\mu x)\cos(\mu z)e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

$$T_{2,b} = \frac{C}{N}e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

$$+ \sum_{\substack{n=1 \\ -\beta\alpha_{t}t}} \frac{C_{n}}{N_{1}}\cos(\mu x)\cos(\mu x)\cos(\mu z)e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

$$T_{3,0} = \frac{C}{N}e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

$$+ \sum_{\substack{n=1 \\ -\beta\alpha_{t}t}} \frac{C_{n}}{N_{1}}\cos(\mu x)\cos(\mu y)e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

$$T_{3,c} = \frac{C}{N}e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

$$+ \sum_{\substack{n=1 \\ -\beta\alpha_{t}t}} \frac{C_{n}}{N_{1}}\cos(\mu x)\cos(\mu y)e^{-(2\mu^{2}+\beta)\alpha_{t}t}$$

In Equations (4.83), the constants C and C have to be evaluated. These constants are obtained from the initial temperature conditions. Let the initial temperature condition, \underline{T}_0 be

$$\underline{T}_{0} = \begin{vmatrix} F_{1,0} & F_{1,a} \\ F_{2,0} & F_{2,b} \\ F_{3,0} & F_{3,c} \end{vmatrix}$$
 (4.84)

In Equations (4.84), the functions F are defined over the respective regions of interest. The constant C is evaluated as follows

$$C = \iint_{00}^{aa} [F_{1,0} + F_{1,0}] dy dz$$

$$+ \iint_{00}^{aa} [F_{2,0} + F_{2,b}] dx dz$$

$$+ \iint_{00}^{aa} [F_{3,0} + F_{3,c}] dx dy$$

$$= \frac{1}{2} [F_{3,0} + F_{3,c}] dx dy$$

$$= \frac{1}{2} [F_{3,0} + F_{3,c}] dx dy$$

The constant Cl is obtained as

C1 =
$$\int_{00}^{aa} [F_{1,0}\cos(\mu y)\cos(\mu z)] dydz$$
+ $F_{1,a}(-1)^{n}\cos(\mu y)\cos(\mu z)]dydz$
+
$$\int_{00}^{aa} [F_{2,0}\cos(\mu x)\cos(\mu z)] dxdz$$
+ $F_{2,b}(-1)^{n}\cos(\mu x)\cos(\mu z)]dxdz$
+
$$\int_{00}^{aa} [F_{3,0}\cos(\mu x)\cos(\mu y)] dxdz$$
+
$$\int_{00}^{aa} [F_{3,0}\cos(\mu x)\cos(\mu y)] dxdy$$

All the above constants are calculated over the inner

product. The calculation of the constants C and Cl are written symbolically as $\langle \underline{T}_0, U_1 \rangle$, where \underline{T}_0 is the vector denoting the initial temperature condition. To incorporate heat sources, the constants C and Cl are calculated from [47],

$$\int_{0}^{\tau} \frac{\langle Q, \underline{U}_{1} \rangle e^{-\lambda^{2}(\tau - \xi)} d\xi \qquad (4.87)$$

In Equation (4.87), \underline{Q} , is the representation of heat sources in the body. This representation is similar to the representation of the initial temperature field \underline{T}_0 , given in Equation (4.84). In Equation (4.87), the term ξ is an integration constant.

The solution given in Equation (4.83) has restrictions. The initial temperature conditions should satisfy the boundary conditions (4.51). Arbitrary initial conditions cannot be used. Heat sources have to be located symmetrically on each plate. Also it is seen that the solution can be written out in a convenient form as

$$T(x,y,z,t) = \frac{C}{N}e^{-\beta\alpha}t^{t} + (4.88)$$

$$\sum_{n=1}^{\infty} \frac{C}{N!}\cos(\mu x)\cos(\mu y)\cos(\mu z)e^{-(2\mu^{2}+\beta)\alpha}t^{t}$$

The representation as given in equation (4.88), is possible because, $\cos(\mu i)$, i = x,y or z will be zero at i = 0 and will be $(-1)^n$ at i = a. This concludes the thermal solution.

4.4 Solution of Displacement in a Cube

The thermal field in a cube made of thin plates is presented in equations (4.88). Let u,v and w be the displacements in the directions x,y and z. The boundary conditions for the displacements equations are defined at the 4 corner points on the base. This condition is written out as (4.89):

$$u = v = w = 0$$
 (4.89)

at
$$(0,0,0)$$
, $(0,a,0)$, $(a,0,0)$, $(a,a,0)$

The solution of the displacements problem is composed of two parts. One is the direct solution of the thermal problem and the other is the solution of the isothermal problem with the boundary conditions suitably modified.

For the problem on hand, it is seen that the moments generated on each plate will be zero. Moments are calculated by [7],

In equation (4.90), h is the thickness and T is the temperature distribution. Evaluation of moments for T (given by Equation (4.88), indicates that the they are zero. Such situations exist for symmetric loading conditions [7]. Under symmetric loading conditions the main displacements will be inplane and the curvature of the plate will be zero [7]. Solution of the

thermoelastic potential is presented in equation (4.20). For the inplane stress problem, the equation (4.20) will hold, but the term $\frac{(1+\nu)}{(1-\nu)}$ will be replaced by $(1+\nu)$. Equation (4.20) for a source free distribution in terms of T, is

$$\psi = (1 + v) \alpha_{e} \alpha_{t_{0}}^{f} [T] dt$$
 (4.91)

Substituting equation (4.88), in equation (4.91), it is seen that the potential is written as (4.92):

$$\psi = (1 + v) \alpha_{e} \alpha_{t}^{\int_{0}^{\infty} \frac{C}{N}} e^{-\beta \alpha_{t}^{t}} dt + (4.92)$$

$$\stackrel{\infty}{\sim} C \qquad \qquad -(2\mu^{2} + \beta) \alpha_{t}^{t}$$

$$\stackrel{\Sigma}{\sim} \frac{n}{N \cdot 1} \cos(\mu x) \cos(\mu y) \cos(\mu z) e \qquad dt$$

Without considering edge equilibrium conditions, the displacements are given by

$$u = \frac{\partial \psi}{\partial x}$$

$$v = \frac{\partial \psi}{\partial y}$$

$$w = \frac{\partial \psi}{\partial z}$$
(4.92)

Also for the isothermal problem, it is seen that the displacements at the four corner points of interest are satisfied. This completes solution of the displacement problem. It is seen that the solutions obtained are very restrictive and much more work has to be done to model heat flow and associated displacement problems in non cubic box type structures.

CHAPTER 5. EXPERIMENTAL WORK

5.1 General

chapter is primarily concerned experimental work. The type of experiments conducted, results obtained as well as the comparison experimental and numerical work will be discussed in this chapter. Essentially a numerically controlled machine tool is taken as a test machine. The machine used for experimental work resembles the one shown in The idea is to see if the theory built up Figure 1.2. till now will hold under experimental conditions. The main intention of the experimental work is to see if thermal effects on the accuracy of machine tools can be predicted by monitoring the temperature of a few points located on the machine tool. Errors of interest are the geometric and kinematic errors of each of the axes of the machine tool. Of the errors studied, three are linear and three are angular. In all eighteen errors have been measured and studied. At the onset it should be mentioned that the straightness errors as measured are different from errors that are computed by the methods of Chapter 3. In Chapter 3, computed errors are not corrected for slope. Slope is the angle associated with the error. It is a measure of the rate of change in error with position. Measured errors on the other hand, are presented without this slope component. This is in accordance with the recommendations of [52]. It is also apparent that this slope is a measure of non orthogonality. In fact squareness error is measured based on the difference of the slopes of two perpendicular axis [52].

Broadly speaking, the chapter is split into two parts, the first is concerned with the measurement of machine errors and the other is comparison of numerical and experimental work. Finite element methods are used here again. The prime motivation is to see if experimental results can be duplicated with simple numerical techniques. An excellent review of testing the accuracy of numerically controlled machine tools is presented in [45]. For thermal effects on machine tool accuracy, Mc Clure's thesis [20] is an outstanding piece of work.

5.2 Equipment Used for Measurement of Machine Tool Errors

All experiments are designed to measure the effect of temperature on machine tool errors. A plan of the experimental setup for the measurement of thermal

effects on the accuracy of a machine tool is shown in Figure 5.1. The instrumentation used is divided into two parts.

- 1. Measurement of temperature
- 2. Measurement of Errors.

It is known that heat sources are classified into two types, external heat sources and internal heat sources. The environment is probably the largest external heat source. The machine is in large room and is not exposed to direct sunlight. Unfortunately the room has facilities for control of room temperature and this has mixed blessings. On one hand, the environment is representative of what can be expected in a typical FMS (flexible manufacturing system) and so measured errors are indicative of what can be expected for typical situations. On the other hand, there are no easy techniques to separate the effect of internal heat sources and external heat sources. The temperature of the room is measured by placing four thermometers at four locations around the machine. Resolution of degree Centigrade. Based on thermometers 18 one experimental evidence, it was found that the variation in room temperature over time was about one degree Centigrade.

Fig. 5.1 Experimental Setup

Internal heat sources are motors, pumps, generated by friction (due to motion) etc. Thermocouples are used for measurement of temperatures induced by internal sources. Copper constantan type thermocouples are used. The range of temperatures expected from machine tool activity falls well into the range of linear performance of the copper constantan Thermocouples used are of the shielded thermocouple. variety. Shielded thermocouples are used to cut down external noise. Noise may be an issue because some of the thermocouple leads are as long as 40 meters. Measurement of thermocouple voltage is performed by a Hewlett Packard data acquisition system (3497 A). system measures voltages using a digital voltmeter and it has a twenty channel relay multiplexer assembly. The multiplexer assembly has an isothermal reference block. The isothermal reference block permits the possibility of using different types of thermocouples in a single multiplexer assembly. Measured voltages are converted to temperatures by a program that resides in the mini computer shown in Figure 5.1.

Temperatures of fifty five points on the machine are measured using thermocouples. Location of these measured points are shown in Appendix 2, Figures A2.1, A2.2 and A2.3. Tables A2.1, A2.2 and A2.3 in Appendix 2 relate the location of each thermocouple to a specific

point on the machine tool. From Tables A2.1, A2.2 and A2.3, it is seen that each heat source thermocouple placed on it. Remaining thermocouples are distributed almost evenly on the machine. The thermocouples are glued to the machine by high temperature epoxy. The epoxy holds the thermocouple bead to the machine tool and has very high thermal conductivity. The other approach is to embed thermocouple bead in a hole. The second approach should offer higher accuracy because the bead is less exposed to the environment. The standard limits of error for the copper constantan thermocouple (type T) is +/- 1 degree Centigrade, based on manufacturer's reports. data acquisition system accuracy, based on manufacture's reports is better than half a degree Centigrade. A hand held digital thermometer has been used to check the accuracy of the data acquisition system.

Errors of interest are measured using a Hewlett Packard laser measurement system and an electronic level from Federal Products. The laser measurement system consists of a helium-neon gas laser and additional optics for the measurement of individual error components. The optics used depend on the type of error in question. For example, remote interferometer, corner cubes and reflectors are required for measurement of positioning errors. A detailed listing of additional

accessories required is available in the Hewlett Packard Laser manuals [52]. The laser system is capable of measuring better than 0.5 parts per million. This value compares favorably with the best physical standards available and is certainly acceptable for machine tool calibration [41]. Due to variations in the environment and due to random vibrations, it is expected that the accuracy of the laser system will be of the order of 1 micron or better. For measurement of angular errors the laser system has a resolution of one tenth of an arc second.

Laser wavelength depends on the environment and suitable compensation is necessary. Correction for variations in environmental conditions is achieved by using an automatic compensation device. The device has sensors for measurement of ambient conditions. conditions of interest are room temperature, barometric pressure and relative humidity. The process compensation is automatic. The automatic compensation system also has sensors for measuring the temperature of the machine being calibrated. Using measured temperatures, the compensation system corrects expansion or contraction of the machine. In all the experiments, compensation for machine expansion has not been included. The reason for not doing this is to establish a reference temperature. In the absence of

compensation for machine expansion, the laser assumes that the machine is at 20 degrees. Centigrade. This is relevant because automatically a reference temperature is setup. Also it is known that the temperature field is three dimensional and so it is not possible to correct for expansions or contractions caused by a three dimensional thermal field based on 3 or 4 temperature readings.

Measurement of roll is not possible using a laser system. It is accomplished using an electronic level. The level used is from Federal Products. Two levels are used in a differential mode. A differential mode is adopted to cancel out the effect of vibrations. The level has a repetition accuracy of better than half an arc second. The resolution of the electronic level is half an arc second. Here again while performing the experiments, the lowest resolution is not used due to external noise. The estimated accuracy of the level is about 1 arc second.

Figure 5.1, shows a schematic of the experimental setup. The experimental setup is controlled by a Hewlett Packard 9816 mini computer. The computer is interfaced to the data acquisition system by a HP-IB cable. The 9816 is connected to the display of the laser by a BCD interface. Collection of temperature data is independent of laser data. The 9816 has the capability

for up-loading data collected in a experiment to a Vax 11/780 for the purpose of further analysis. Collection of roll errors and room temperature data is manual.

5.3 Experimental Conditions

The test system has three basic features [45]:

- It is a non-machining system of tests which can be called "tracing of a universal master part".
- 2. It assumes that individual sources of error and their effects can be, to a reasonable extent, isolated and systematically combined.
- 3. The tests are formulated from a user's point of view and not from a builder's point of view.

Each of the above features need to be explained. Broadly speaking, testing of machine tools can be split into two classes. They are cutting tests and geometric tests [20]. Both tests provide information but neither are conclusive by themselves. It is not possible to include all types of conditions in cutting tests and so generally it is very difficult to use such tests for identification of error sources. Further cutting tests depend on cutting conditions and fixturing methods and these effects are related to the size and shape of workpiece. Hence it is very difficult to assess what can be optimally achieved [45].

In support of geometric tests, it must be said that they provide information on the sources of error within the machine but are not indicative of the type of process present while cutting. Geometric tests however provide indications on the tolerances that can be achieved by machine tools. From geometric tests, the user knows if a particular machine will meet a certain tolerance or not [20]. Besides this distinction, it is important to keep in mind the type of conditions under which the machine would be required to meet specified tolerances. For example in precision machining (the type under study here), it is known that cutting forces will be almost negligible. This is because precision machining is generally done at high speeds and low feeds. Under conditions of high speed and low feed, cutting forces are generally low and heat generated in the cutting process is taken out by the chip.

In feature 2, it is desirable to know if individual effects can be separated and subsequently superimposed. The main question is, how many of the effects are statistical and how many can be explained using existing knowledge [45]. Of the errors that are under study here, it is known that all of them have both statistical components and systematic components. The identification of the systematic components is important for software compensation [45]. Based on past

experience it is known that the statistical components are relatively small [45].

In feature 3, all tests are from a user's point of view and not from a builder's point of view [45]. The user has different requirements from the builder but both of them are related in one form or the other. The whole test has to be conducted so as to consider the errors of the workpiece resulting from the errors of the machine tool motions. To illustrate the distinction from a builder's point of view, instead of checking straightness of guideways, straightness of motion is checked [45].

Geometric tests have to be capable of measuring effects due to spindle rotation. This is because it is known that heat is generated at spindle bearings, and this has to be considered for evaluating thermal effects on machine tool accuracy. However, the optics associated with the laser system cannot be mounted in a rotating spindle. To account for this additional heat, the machine is heated by artificial heaters. The artificial heaters are placed below the spindle bearings.

Broadly speaking, the approach used here is to split the machine into subsystems, each of which have definite and measurable properties that relate to the accuracy of the machine. The above approach has been

used by many people in the past [20]. For the machine under study, the sub systems are the three axis of the machine, x, y and z, Figure 1.2. Each subsystem is composed of positioning elements and a slide way for the purpose of positioning and guiding the slide. Associated with the positioning elements is the positioning error, while associated with the slide way are straightness errors (horizontal and vertical) and angular errors (pitch, roll and yaw).

The approach is illustrated in Figure 5.2. workspace of the machine is divided by 3 lines A, B and C. These three lines are mutually perpendicular to one an /other. Six errors are associated with each of these lines. Three of them are angular and three of them are The objective is to measure each of these six errors along all three lines. The table on the z axis of the machine is used as a reference surface for the purpose of locating the three mutually perpendicular axis A,B and C. All errors are measured with respect to a single spot on the table. This spot is that corner of the table closest to (0,0,0) of the machine, Figure 5.2. All errors are measured with respect to a single point on the machine tool table to reduce the possibility of additional errors being introduced in the measurement. Additional errors are possible due to lack of straightness of the table itself.

Fig. 5.2 Calibration of Machine Tool [45]

Three factors are important while thermal accuracy of machine tools are studied [20]. They are

- 1. The thermal environment
- 2. The affected structure
- 3. Operating procedure

The thermal environment is composed of all heat sources. explained earlier, heat sources are generally classified into two types. One type is those heat sources associated with the machine tool itself and the other is heat sources associated with the room. It should be realized that the room itself is probably the largest heat source. Under ideal conditions, the machine would be expected to work in an environment that is at 20 degrees Centigrade. Any change from this would cause the machine's characteristics to change. While such a requirement is ideal, it in generally not possible to hold such conditions except with temperature controlled rooms. For the experiments conducted, the machine is in a room and the temperature of the room is monitored using four accurate thermometers placed around the machine. Because the machine is not exposed to sunlight and based on the experimental data collected, it is seen that the variation of room temperature (over time) is about one degree Centigrade. As explained earlier, temperature of the machine is measured by placing thermocouples on the structure of the machine.

The process of heating affects the structure which causes the geometric error to change. The purpose of each experiment is to evaluate the effect of change caused by temperature. The operating procedure affects the process of heating and so this is an important factor to be considered.

Each of the eighteen experiments conducted lasted for 10 to 14 hours. During this period, the machine is sent through cycles of heating and cooling. The process of heating and cooling causes the structure to change and these changes present themselves as measurable errors. Each error is measured at as many points as permissible, because the optics take up space. Also, it is not advisable to measure near the end points of travel. Simultaneously thermal readings are taken. Typically each reading consists of a set of temperature measurements and a set of error measurements. The error readings are repeated at least six times at each point of interest (three times up and three time down). All statistical data is based on bidirectional error measurements. Bidirectional error measures include the effect of hysteresis.

During each experiment, once the laser is aligned, it is not turned off. The reason for this is to measure

the cumulative effect of temperature on error. explained, the laser has a temperature compensation system. Part of the temperature compensation system is to measure the temperature of the body under study. For all experiments, the material temperature compensation is turned off. This is done to establish all errors with respect to some temperature datum. The datum selected is 20 degrees Centigrade. This feature is preset in the system. All errors are measured relative to specific point (fixed point). Each of these fixed points are specified in Appendix 3, where experimental results are presented. It is known that both fixed point and measured point move, and the objective is to determine the relative displacement or rotation. The relative displacement or rotation is a measure of the error. For further reference on the laser measurement system please consult the appropriate Hewlett Packard manuals. All experiments have been conducted as per recommendations of [52].

5.3.1 Additional Sources of Experimental Error

Of the possible errors of measurement, temperature errors have already been discussed. Errors of the laser system and the electronic level have also been discussed. Other errors include vibrations present in the machine. While performing a straightness test on the y axis, it was observed that the vertical

straightness at any point on the axis fluctuated by about 2 to 4 microns. The source of the vibrations was established as the lubricant pump. The vibrations were reduced by changing the length of the reflector holder. It is also felt that the method of measuring straightness, especially those associated with the vertical axis is extremely complicated. Simpler methods for measuring such errors need to be developed. Roll on the vertical axis (the y axis) is a problem. The electronic level cannot detect out of plane rotations on a vertical axis accurately.

Fixturing the optics on the machine is a problem. The fixturing should be such that it should prevent rotations or displacements and at the same time it should not scratch or harm the optical components in any way. The ideal is make the optics an integral part of the machine components being calibrated.

5.4 Experimental Results

Before experimental results can be presented, error characteristics have to be disussed. A typical error plot is shown in Figure 5.3. With regard to this error plot, certain terms have to described. The terminology described in this paragraph will be used through out the discussion in sections 5.4 and 5.5. Drift is as shown in Figure 5.3. The cause of drift not always clear,

Fig. 5.3 Problem of Drift

Fig. 5.4 Hysteresis in Machine Tool Errors

although it has on occasions been traceable to lack of balance in the null-circuit of the machine system. Whatever the cause, the main effect has been to increase the observed dispersion [12]. Hysteresis (lost motion, dead zone) is defined in terms of the difference between the right and left approach means at any given point [12]. Hysteresis is shown in Figure 5.4. Pitch errors of the lead screw are directly related to the pitch of the lead screw and these are prominent for short ranges. Lead screw pitch error components are present only in the case of positioning accuracy.

All experimental results are presented in Appendix

3. For the purpose of discussion, errors are classified into two groups:

- Positioning errors
- 2. All other errors

The reason for the above classification is apparent on referring to Figures 5.5 and (5.6). Figure 5.5 shows the standard deviation over time of a positioning error and Figure 5.6 shows the same for one of the other errors. It is apparent from Figures 5.5,5.6 that the standard deviations of the positioning errors vary dramatically. All errors, other than the positioning error exhibit small variation of standard deviations. Standard deviations of all errors are presented in Appendix 3.

 $_{\Delta}$ 75372 $_{+}$ 76373 $_{ imes}$ 76374 $_{+}$ 76375 $_{+}$ 76376 $_{ imes}$ 76373 $_{ imes}$ 76374 $_{ imes}$ 76374

Fig. 5.5 Standard Deviation of Position Error, x axis

TESTI A TESTO + TESTO X TESTO + TESTS + TESTO X TESTO X TESTO

Fig. 5.6 Standard Deviation of Yaw Error, x axis

5.4.1 Discussion on Positioning Errors

Positioning errors are a result of motion of the slide on a lead screw. The positioning error is caused by a misused concept of metrology. The idea of using a screw to measure as well as to clamp is against all principles of metrology. However it is an accepted practice among machine tool manufacturers to use a single lead screw for multi purpose activities. This situation does not exist in lathes where a separate screw is used for thread cutting.

From experimental data, it is seen that positioning errors are very prominent errors in terms of magnitudes and the effect of temperature on these errors is very high. Positioning errors of all three axis x, y and z show identical characteristics, namely large standard deviations. This characteristic makes it impossible to predict this error by the use of statistical techniques of chapters 3 and 4. The reason for this characteristic is due to an extremely active heat source associated with the nut on the lead screw. The problem is all the more complicated because the heat source moves. Some work has been done on the prediction of positioning errors [44]. The approach taken in [44], is to model the system using moving heat source principles. Operating characteristics are also a part of the prediction process. Bearing preloads are also considered in the

analysis of the lead screw of the machine.

It is felt that there are quite a few alternatives to solving the problem of positioning errors. One solution is to develop theoretical models as discussed in [44]. Although this approach is feasible, boundary conditions are a problem and accurate determination of heat transfer coefficients will be difficult.

A different idea is to use an external measure for the evaluation of this error. This technique has been proposed in [46]. The idea is to mount accurate scales on the machines and use these for measurement of the positioning error. Other techniques are to use lasers as at Lawrence Livermore Laboratory [41]. Reports are available [43], where mention is made of an attempt to correct for thermally induced errors at Kerney and Trecker machine Tool Company.

An attempt has been made to predict thermally induced errors in the lead screw. The results are based on measured values of error. It is known that positioning errors have several components. These components are listed as

- 1. Periodic Error of the lead screw
- 2. Hysteresis Error of the lead screw

Thermal Error of the lead screw

4. Scatter

It is known that for the machine under consideration, the resolution is 0.0001 inches (2.5 microns). Due to this limitation it is not possible to position better than the above said number. In the method proposed, the cumulative average error is predicted based on a single temperature value. The average error is the mean of the bidirectional errors at a point on the axis. The cumulative error is the sum of all the error components listed above. The method is the simplest form of prediction and makes use of the following equation.

Error = *L*(T-20) (5.1)

In Equation (5.1), , is the coefficient of thermal expansion, L is the location of the point at which the error is measured, and T is the temperature of the nut. (T-20) is used in Equation (5.1) due to the reference temperature principle explained earlier. The prediction capabilities of the Equation (5.1) is shown in Figures 5.7,5.8,5.9. In all the following figures, test refers to the test numbers of Appendix 3. In all the Figures 5.7,5.8,5.9, thermal drift has been corrected. Correction of thermal drift is performed by setting the value of the error at the zero scale position to zero and making corresponding changes at all other points. It is seen that the prediction is quite good. It should be noted that the data in Figures 5.7,5.8,5.9, show the prediction capabilities for later time periods. In the initial time periods (near start up), the predictions do not seem to be good.

Certain features need to be discussed here about this method of prediction. The method is not capable of predicting thermal drift. To predict drift, some other external reference will be needed. Use of a tool setting station is recommended for this purpose. alternative to a tool setting station will be metrology pallet as described in [53]. A feature necessary for prediction of this error is the building of a duty cycle based model. The need for building a duty cycle model is because of the large standard deviations associated with this error. It is seen that in spite of the good prediction offered by Equation (5.1) (on the mean), experimental results indicate that the lead screw expands by as much as 2 microns on each traverse. Experimental results to support this point are shown in Table 5.1. Results in Table 5.1, are for the y axis of the machine. The measurements are taken only at the end points of the said axis and time between readings is almost negligible. The speed used in this experiment is 3000 mm/min. It is seen that the error increases by as much as 2 microns for each pass. error reduces by as much as 10 to 15 microns, 10 minutes

Fig. 5.7 Prediction of Position Error, x axis

たといけ●はいのにはははは ●ににたれらればに

Fig. 5.8 Prediction of Position Error, y axis

Fig. 5.9 Prediction of Position Error, z axis

Table 5.1 Expansion of Lead Screw (microns)

pass	pos. at 0 mm	pos at 484 mm
1	21.36	88.30
2	20.75	89.42
3	20.51	90.28
4	19.83	91.80
5	20.3	92.04
6	20.72	93.22
7	21.30	93.60
8	21.1	94.35
9	22.0	95.15
10	21.75	95.80
20	24.26	100.30

after the motion is stopped. This characteristic is very disturbing and so there is a need to develop duty cycle based models in addition to the prediction offered by Equation (5.1).

5.4.2 Other Errors

The other errors are those associated with slide ways. These errors are straightness errors and angular errors. The method used for prediction of these errors is a statistical one, similar to the one used in Chapter 3. Results of the statistical prediction capabilities shown are i n Figures 5.10,5.11,5.12. 5.10,5.11,5.12 show that the errors are predictable. All Figures 5.10,5.11,5.12 are predicted against measured values. All comparisons are for test set 5 of each error except y axis vertical straightness. For y axis vertical straightness, the comparison is done for test set 6. Please refer to Appendix 3 for experimental data. Also it should be noted that the data used to compare regression results with actual results has not been used in the determination of the regression equation. The predictions are on the mean and to get the actual values, constant offsets are to be used based on hysteresis. Exerimental results show that the hysteresis

Fig. 5.10 Prediction of Other Errors, x axis

Fig. 5.11 Prediction of Other Errors, y axis

Fig. 5.12 Prediction of Other Errors, z axis

is relatively constant over time. It should also be noticed that some of the errors are relatively constant. The effect of temperature on these few errors is small. This feature is typical of errors in the z axis. Thermal effects are lower because there is only one heat source on the z axis. Hence some of the errors are less affected.

Of interest is to determine how errors in the workspace of the machine reduce due to prediction by regression equations. To determine this, the techniques developed in Chapter 3 are used again. Measured values of errors are combined in the workspace of the machine and these are compared with values as obtained from the regression equations. The difference between the two is an indication of the error. In case 1, the position errors are not included. In case 2, the position errors are included, with prediction of position error by Equation (5.1). In case 2, thermal drift in not considered for position error. The results of case l is presented in Table (5.2). Table (5.3), shows the error as predicted by using regression functions. (5.4), shows the volumetric error with position error considered. Table (5.5) shows the same error as Table (5.3), but the position error is predicted by using Equation (5.1). It should also be mentioned that values computed for the (0,0,0) point do not have any error components. This is because it is not possible to measure any error at this point. Figure 5.13, shows the results. Table 5.6 shows the tests (refer Appendix 3) of individual error components used to determine the workspace error.

がは、MACACACAC MACACACAC MACACAC

The experiments conducted prove without a doubt that thermal effects on eighteen errors of a particular machine tools can be predicted by using simple regression equations. This conclusion should hold for all machine tools of the same class (at least). This does not conclude the work needed in the area of thermal effects on machine tools. Much more work has to be done especially on squareness errors between the three axis. Squareness errors and errors of parallelism were not measured. It is suspected that simple regression equations can be obtained for prediction of squareness errors and errors of parallelism.

5.5 Prediction by Numerical Methods

A statistical method for the prediction of errors has been presented in the last section. The problem associated with statistical methods is that the prediction is valid only within the observed ranges of the independent variables (in this case temperature). In order to obtain reliable results one would have to perform experiments over a very wide range of

Fig. 5.13 Volumetric Error,
Actual vs Computed

Table 5.2 Error of Work Space, Experimental Work, No Lead Screw Errors

x pos	y pos	z pos	err x	err y	err z
0.	0.	0.	0.	0.	0.
0.	0.	66.00	41.34	-154.74	0.
0.	66.00	0.	40.88	0.	155.43
0.	66.00	66.00	74.60	-174.78	180.38
66.00	0.	0.	0,	-1.23	47.28
66.00	0.	66.00	-13.37	-136.74	58.57
66.00	66.00	0.	32.56	-4.63	191.10
66.00	66.00	66.00	11.57	-160.16	227.33

Table 5.3 Error of Work Space, Computed, by Regression Equations No Lead Screw Errors

x pos	y pos	z pos	err x	err y	err z
0.	0.	0.	0.	0.	0.
0.	0.	66.00	46.15	-120.63	0.
0.	66.00	0.	45.02	0.	118.40
υ.	66.00	66.00	76.18	-140.10	141.24
66.00	0.	0.	0.	0.95	49.20
66.00	0.	66.00	-11.01	-101.06	55.24
66.00	66.00	0.	33.47	0.95	163.97
66.00	66.00	66.00	7.48	-120.53	192.85

Table 5.4 Error of Work Space, Experimental Work, Lead Screw Error is Considered

x pos	y pos	z pos	err x	err y	err z
0.	0.	0.	0.	0.	0.
0.	0.	66.00	41.34	-154.74	108.29
0.	66.00	0.	40.88	68.11	155.43
0.66	0.	66.00	74.60	-106.67	288.67
66.00	0.	0.	64.49	-1.23	47.28
66.00	0.	66.00	51.12	-136.74	166.86
66.00	66.00	0.	97.05	63.48	191.10
66.00	66.00	66.00	76.06	-92.05	335.62

Table 5.5 Error of Work Space, Computed, by Regression Equations, Lead Screw Error is Considered

x pos	y pos	z pos	err x	err y	err z
0.	0.	0.	0.	0.	0.
0.	0.	66.00	46.15	-120.63	99.39
0.	66.00	0.	45.02	84.41	118.40
0.	66.00	66.00	76.18	-55.69	240.63
66.00	0.	0.	81.56	0.95	49.20
66.00	0.	66.00	70.55	-101.06	154.63
66.00	66,00	0.	115.03	85.36	163.97
66.00	66.00	66.00	89.04	-36.12	292.24

で、からは | 一方本のなるのは | 一のなるのでは | 一ののできない。

Table 5.6 Error Components used to Determine Work Space Errors

Error	x axis test	y axis test	z axis test
Position.	10	6	6
Vert. St.	5	6	5
Horz. St.	5	5	5
Pitch.	5	5	5
Roll.	5	5	5
Yaw.	5	5	5

conditions. To overcome this problem, a numerical solution is proposed. The approach has been tested only for the x and z axis.

The general approach for the numerical solution is presented in Figure 5.14. The technique uses finite elements to determine the temperature field of the machine based on the temperatures of a few measured The inputs to the finite element program are the structure and the temperatures of the measured points. The finite element program calculates the temperature of the remaining nodal points. structure is the same as in Appendix 1, Figures Al.1 and The only difference is the thickness of the structure. The present structure has a wall thickness of 1.9 Centimeters (0.75 in). Internal plates are the same as before. For the elasticity problem, SAP 5 is used again. Instead of solid elements, all elements in the present formulation are plate elements.

Error calculations from the distorted structure is the same as was used before, in Chapter 3. Straightness errors are corrected for slope, in a manner similar to that done in the experimental work. As mentioned before in Chapter 3, there are fundamental differences between measured errors and calculated errors. The basic difference is that in the calculation sequence, all errors are calculated with respect to a nice undistorted

Fig. 5.14 Prediction by Numerical Methods

absolute. The calculated errors are in a sense absolute. The errors as measured are relative to some specific point. This immediately creates problems because the relative displacement or rotation between two points is measured as error. There are also problems regarding built in errors of the machine. Without experimental work, built in errors can never be determined. Built in errors are typically related to the process used in the manufacture of the said machine. They are also caused by improper assembly procedures.

In spite of the above problems, a model has been developed and it will be presented. As explained before the model is based on a finite element approach. Machine tool inaccuracy is written out in a linear form as follows:

The thermal error component of Equation (5.2) is given by

In Equations (5.2,5.3), error is referred to as a vector. Vectors are distinguished by box brackets and [Error], is used in a generic sense to represent all errors other than the position error. Vector in this

context means that associated with each point on the axis of the machine tool, is a particular error value. The set of error values corresponding to the whole axis of the machine is [Error]. In the above equations, i, refers to time. Essentially Equation (5.3) says that at all points in time, error vectors are identical to one an other but, they differ by drift, which is a scalar and some other component. This additional component is also a vector. [Built in Error], of Equation (5.2), is also a vector.

The finite element approach is used to explain the errors induced in machine tools. Estimation of angular errors and straightness errors have been attempted by the finite element approach. Let [E(i)], be the error at time (i). [E(i)], is a vector in the sense explained before. [E(i)] has a set of values which corresponds to errors at specific points on the axis of the machine tool. [E(i)] has been evaluated at some state T(i). T(i) is the temperatures measured by the thermocouples on the axis of the machine. Let [M(i)], be the measured value of error also at temperature T(i). Now built in error of Equation (5.2) is obtainable as

[Built in Error] = [E(i)] - [M(i)] (5.4) Drift as explained, is scalar and it can be removed easily. This is done by setting the error associated with the zero scale position to zero and by making corresponding adjustments to all the other readings.

Errors as obtained from finite element methods are compared to measured errors for the x and z axis. The y axis is not studied because of the complex structure and also because of the moving heat source (the spindle) associated with this axis. On the z axis only two of the errors show significant changes with temperature. These are pitch and vertical straightness. comparisons have been made for only these two errors. On the x axis, only three of the errors have been compared. The three errors that have been compared show appreciable change with position on the axis. On the x axis, roll and horizontal straightness errors have not been compared as they are relatively constant for variation in position. The reason for this will be explained in the next few paragraphs.

Comparison of numerical and experimental results is done on a error by error basis. This is because thermal fields are not exactly the same for any two different errors. The first step is to determine the built in error vector based on a specific temperature using Equation (5.4). Having evaluated the built in error, the errors are recomputed for a different thermal state. To this new error vector, the built in errors are added. The so computed error is corrected for drift and compared with corresponding experimental results. The

experimental results are also corrected for drift.

Drift correction is done as it appears that the finite element models used here are not capable of calculating these values.

It has already been mentioned that the measured errors are relative. With this in mind an attempt has been made to compare numerical results with experimental results. The error in question is the vertical straightness of the z axis. Figure 5.15 provides an indication of the process. Measured values of vertical straightness errors are as plotted in Figure 5.16. Figure 5.17 shows values as computed at the guideways, no offsets have been included and the values are for the same range of motion as the experimental values. It appears that there is no correlation between the two. The missing component is drift. Keeping in mind that the laser is measuring the relative displacement between points, a measured point and a fixed point, correction is necessary for numerically computed values. The correction required is the displacement of the fixed point. Displacement of the fixed point obtained by

Displacement = L * (room temp - 20) (5.5)

L in Equation (5.5) is length shown in Figure 5.15.

When corrections for displacement of the fixed point are made it is seen that numerical and experimental errors

Displacement Direction

THE REPORT OF THE PROPERTY OF

Fig. 5.15 Measurement of Vertical Straightness,

 \bigcirc Test 1 \triangle Test 4 + Test 7 \times Test 9

でののの Manage される Wind ないない できる Wind にいい いっかん 一番 アントルののから Mind にいっかい でき でくり ギャント

Fig. 5.16 Vertical Straightness from Experiment, z axis

The state of the s

Fig. 5.17 Vertical Straightness from Calculations, z axis

Fig. 5.18 Calculation vs Experiment for Vertical Straightness, z axis, test 1 used to get built in error

are reasonably accurate for the computed cases, Figure 5.18. In Figure 5.18, the computed errors have also been corrected for angular errors on the z axis, using methods of Chapter 3. The offset calculation is given in Equation (5.6),

Vert.St. = Computed Vert. St. at guideway (5.6)
+ pitch * offset in z + Roll * offset in x

As roll is relatively constant in z, the roll component
is not included. Also it should be remembered that the
x offset in Equation (5.6), is constant, it does not
change in the experiment.

method i s relatively straightness errors, but evaluation of rotations for the fixed point is not easy. For example, in the case of z axis pitch error, the fixed point is on the spindle. Rotations will occur only if there are thermal gradients between the sides of the spindle and evaluation of fixed point rotations will be very difficult. It is due to such complications, that the finite element procedure for evaluation of errors has not been extended. However the comparison for numerically computed errors and experimentally measured errors are presented in Figures 5.19,5.20,5.21,5.22. All errors are corrected for drift and are shown for the same range as measurement. For the x axis, it is seen that roll and horizontal straightness do not change with scale readings. Due to

this reason, computations have not been performed for these errors.

Much more work has to done to estimate the exact relationships between numerical and experimental work. It is felt that the relationships may work out to be relatively simple as in the case of the vertical straightness of the z axis.

This concludes the work done. The next sections are conclusions and ideas for future research.

5.6 Conclusions

Broadly speaking, thermal influences on machine tool structures should be approached from two view points. One deals with the design phase of the machine and the other is concerned with the software compensation process. The design phase deals with the analysis of a new machine and techniques discussed in Chapters 2 and 3 would form the basis of such an analysis. Software compensation aspects are discussed in Chapter 5. The two problems of design and software compensation are interdependent. It is obvious that good design will reduce the need for software compensation. Software compensation should be viewed as a means of reducing thermal effects that cannot be eliminated at the design phase and not as a remedy for bad design.

Fig. 5.19 Calculation vs Experiment for Pitch, z axis (drift correction)

Fig. 5.20 Calculation vs Experiment for Vertical Straightness, x axis (drift corrected)

n Test 4

△ Test 8

Fig. 5.21 Calculation vs Experiment for Pitch, x axis, (drift corrected)

① Test 4 △ Test 10

Fig. 5.22 Calculation vs Experiment for Yaw, x axis (drift corrected)

At the design phase, it is known that good design will reduce the effect of thermal influences. example of good design is shown in Figure 5.23. Ιn Figure 5.23, the effect of nonsymmetric heat sources is shown. The structure under consideration is the z axis of the machine, shown in Figure Al.3. The heat source is as shown in Figure Al.4. Figure 5.23 shows the effect 30 minutes after the heating process begins. is now obvious that the location of the heat source is extremely important and symmetry would be the deciding factor. The ideal condition would be to take the sources out of the machine. This would reduce the heat Reduction of heat input input to the structure. will reduce the deformations. In this context, cooling the lubricating oil is also important.

In terms of boundary conditions, based on numerical computations, it was observed that fixing the base of the machine rigidly would reduce the vertical straightness error by as much as 10 to 15 microns. Undoubtly fixing the base of the machine rigidly would be impossible. However, it would be worthwhile to study the effect of different types of foundations on the accuracy of machine tools.

Regarding software compensation of machine tools, it has conclusively been shown that thermal effects are predictable. Chapter 4 provides the theoretical basis

Fig. 5.23 Effect of Nonsymmetric Heat Sources

of software compensation. In Chapter 5, it is shown conclusively that thermal effects on accuracy of machine tools can be predicted. Based on experimental evidence, it should be mentioned that the number of thermocouples required for software compensation will be less than 55, the number used in experimental work. It is seen from the regression equations presented in Appendix 3, that for the x axis, ten thermocouples are required. For the y axis only six thermocouples are required and for the z axis, on seven.

Numerical prediction of thermal effects on machine tools is a definite possibility. Based on the work done, sufficient evidence exists to show that numerical methods are capable of predicting thermal effects on errors. In fact it is apparent that numerical methods will bе the suitable alternative to months of calibration. Speed is a cause for concern while using numerical methods for on line prediction of errors. Computation time can be dramatically reduced if it is recognized that the structure does not change. Under such conditions, it will be sufficient if the decomposed L-U matrices of Crout's algorithm be held in the memory of a computer. The problem now changes from one of speed to one of storage.

5.7 Recommendations for Further Research

This section outlines some of the areas that would require further research.

Numerical solution of the y axis of the machine is still a challenge. The problem is complex due to a moving heat source (spindle bearing) and additional heat sources on the column. It is possible that a superposition approach can be attempted. The idea is to model the carrier and the column independently. Once the displacement profiles are obtained, superposition of the two, with a numerical simulation of rigid body motion is feasible (similar to the method in Chapter 3).

As regards numerical methods, it is felt that a simpler technique may be possible. Based on measured temperature values, it may be possible to fit simple polynomials of x, y and z for evaluating thermal profiles based on the temperatures of a few points. The reason for using simple lower order polynomials is because it is known that almost 90 percent of the machine is at room temperature. Only 10 percent reaches temperature which are at most 20 to 30 degrees Centigrade above room temperature. It is possible that very simple polynomials will be sufficient. Using this simplified polynomial thermal field, analytic solutions can be attempted.

Analytic solutions of the form attempted in Chapter 4 are very challenging. Very few solutions are available for three dimensional problems. In the context of machine tools, the problem is essentially three dimensional. This is mainly due to non-symmetric location of heat sources. The motivation for developing analytic solutions is to see if it is possible to control thermal displacements by using additional heaters. The idea is very appealing and definitely deserves some thought.

On lead screw errors, correction techniques are available. Schemes based on scales or on lasers are known. Actual implementation of such schemes are worth while investigating.

Further experiments along the lines of Chapter 5 are required. Accuracy performance of the same machine with a variety of environmental conditions is necessary. Provision for room temperature control would be essential in this regard. Assuming that software correction techniques have been installed, the problem of determining the time between sampling temperatures has to be studied. Is the criterion to based on time or is it to be based on temperature?

From an instrumentation point of view, development of new equipment is a necessity. It is obvious by now,

that the key aspect to accuracy is good instrumentation. Straightness errors can be measured, but the set up time is long and complicated. Due to such problems newer and simpler methods for measurement are necessary. In this context, the metrology pallet concept is an extremely interesting idea [53]. So is the possibility of using lasers as tools kept in the tool chain for calibration of the machine tool. It is felt at this point, besides concentrating on errors along three axis of the machine tool, measurement of the volumetric error would be a good idea. Volumetric error measurement schemes even if based on planar regions need further research. Thermal effects are appreciable in the working volume of the machine, so direct measurement methods would be very useful.

In conclusion, the most important problem is, having modeled the machine, how does one implement the process of correcting errors ?

LIST OF REFERENCES

LIST OF REFERENCES

- 1. M.H. Attia and L. Kops, "On the Role of Fixed Joints in Thermal Deformation of Machine-Tool Structures", C.I.R.P., Vol. 27/1/1978, p 305.
- M.H. Attia and L. Kops, "Computer Simulation of Nonlinear Thermoelastic Behavior of a Joint in Machine Tool Structure and its Effect on Thermal Deformation", A.S.M.E. Transactions, Journal of Engineering for Industry, Vol. 101, No. 3, 1979, p 355.
- 3. M.H. Attia and L. Kops, "Nonlinear Thermoelastic Behavior of Structural Joints Solution to a Missing Link for Prediction of Thermal Deformation of Machine Tools", A.S.M.E. Transactions, Journal of Engineering for Industry, Vol. 101, No. 3, 1979, p 348.
- 4. M.H. Attia and L. Kops, "Calculation of Thermal Deformation of Machine Tools, in Transient State with the Effect of Structural Joints Taken into Account", C.I.R.P., Vol. 28/1/1979, p 247.
- 5. M.H. Attia and L. Kops, "System Approach to the Thermal Behavior and Deformation of Machine Tool Structures in Response to the Effect of Fixed Joints", A.S.M.E. Transactions, Journal of Engineering for Industry. Paper No: 80-WA/PROD-14, Winter Annual Meeting, Nov., 1980.
- 6. M.H. Attia and L. Kops, "A New Method for Determining the Thermal Contact Resistance at Machine Tool Joints", C.I.R.P., Vol. 30/1/1981, p 259.

- 7. B.A. Boley, J.H. Weiner, "Theory of Thermal Stresses". John Wiley and Sons., 1960.
- 8. J.B. Bryan, "International Status of Thermal Error Research" C.I.R.P., Vol. 16/1968, p-203.
- 9. A. Camera, M. Favareto, L. Militano, F. D'Aprile, "Analysis of the Thermal Behavior of a Machine Tool Table Using the Finite Element Method", C.I.R.P., Vol. 25/1/1976, p-297.
- 10. H.S. Carslaw and J.C. Jaeger, "Conduction of Heat in Solids". Oxford University Press, 1960.
- 11. C.P. Hemingray, "Some Aspects of the Accuracy Evaluation of Machine Tools", M.T.D.R., Conference Proceedings, Vol. 14, 1973, p 281.
- 12. C.P. Hemingray, "Positioning Accuracy of Numerically Controlled Machine Tools", M.T.D.R., Conference Proceedings, Vol. 12, 1971, p 319.
- 13. R. Hocken, J.A. Simpson, et al, "Three Dimensional Metrology", NBS, Washington, C.I.R.P., Vol. 26/2/1977, p 403.
- 14. K. Jutel, "Inspection and Acceptance Tests for NC Machine Tools", M.T.D.R., Conference Proceedings, Vol. 12, 1971, p 289.
- 15. Incropera and Dewitt, "Fundamentals of Heat Transfer", Wiley, N.Y. 1981.
- 16. Kiji Okushima and Yoshiaki Kakino, "An Analysis of Methods Used in Minimising Thermal Deformations of Machine Tools", M.T.D.R., Conference Proceedings, Vol. 16, 1975 p-195.
- 17. M.I. Koval and G.A. Igonin, "Comparative Analysis of Machining Error Components for a Heavy NC Machine Tool", Machines and Tooling, Vol. 50, No. 9, 1979, p 9.

- 18. W.J. Love and A.J. Scarr, "The Determination of the Volumetric Accuracy of Multi Axis Machines", M.T.D.R., Conference Proceedings, Vol.14, 1973,p 307.
- 19. E.R. McClure, "Thermally Induced Errors", Technology of Machine Tools, M.T.T.F., Vol. 5: Machine Tool Accuracy, Lawrence Livermore Laboratory, University of California, Livermore, California, UCRL-52960-5, 1980.
- 20. E. R. Mc Clure, "Manufacturing Accuracy Through the Control of Thermally Effects", D. Eng. Thesis, Lawrence Livermore National Laboratory, Livermore, California, URCL-50636, 1969.
- 21. R.L. Murty, "Thermal Deformation of a Semi-Automatic Machine: a Case Study", Precision Engineering, Vol. 2, No 1, Jan 1980, p 17.
- 22. W. Nowacki, "Thermoelasticity", International Series of monographs on Aeronautics and Astronautic, Division 1: Solid and Structural Mechanics, Volume 3, Addison-Wesley Publishing Company, 1962.
- 23. K. Okushima, Y. Kakino, A. Higashimoto, "Compensation of Thermal Displacement by Coordinate System Correction", C.I.R.P. Vol. 24/1/1975, p 327.
- 24. S.V.Patankar, "Numerical Heat Transfer and Fluid Flow", McGraw-Hill, 1982.
- 25. J. Peters, "Metrology in Design and Manufacturing Facts and Trends", C.I.R.P., Vol. 26/1/1977, p 415.
- 26. V.T. Portman, "Error Summation in Analytical Calculation of Lathe Accuracy", Machines and Tooling, Vol. 51, No. 1, 1980, p 7.
- 27. T. Sata, T. Yasui, et al, "Development Of Machine Tool Structure Analysis Program (MASAP)", C.I.R.P., Vol. 25/1/1976, p 287.

THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE OF. (U) PURDUE UNIV LAFAVETTE IN SCHOOL OF INDUSTRIAL ENGINEERING R VENUGOPAL ET AL. OCT 85 N80014-83-K-9385 F/G 13/9 AD-A163 598 3/4 UNCLASSIFIED NL.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURGAL OF STANDARDS-1963-A

- 28. T. Sata, Y. Takeuchi and N. Okubo, "Improvement of Working Accuracy of a Machining Center by Computer Control Compensation", M.T.D.R., Conference Proceedings, Vol. 17, 1976, p 93.
- 29. T. Sata, Y. Takeuchi, N. Sato, N. Okubo, "Analysis of Thermal Deformation of Machine Tool Structure and its Application". M.T.D.R., Conference Proceedings, Vol. 17, 1973, p 275.
- 30. T. Sata, Y. Takeuchi, M. Sakamoto, M. Weck, "Improvement of Working Accuracy on NC Lathe by Compensation for Thermal Expansion of Tool", C.I.R.P., Vol. 30, 1981 p 445.
- 31. T. Sata, Y. Takeuchi, N. Okubo, "Control of The Thermal Deformation of a Machine Tool", M.T.D.R., Conference Proceedings, 1975, Vol. 16, p-203.
- 32. J.B. Bryan, "The Abbe Principle Revisited: An updated Interpretation", Precision Engineering, Vol. 1, No: 3, 1979.
- 33. R. Schultschik, "The Components of the Volumetric Accuracy", C.I.R.P., Vol. 25/1/1977, p 233.
- 34. G. Spur, P. DE Haas, "Thermal Behavior of NC Machine Tools", M.T.D.R., Conference Proceedings, Vol. 14, 1973, p 267.
- 35. Y. Takeuchi, M.Sakamoto, T. Sata, "Improvement in the Working Accuracy of an NC Lathe by Compensation for Thermal Expansion", Precision Engineering, Vol. 4, No 1, 1982, p-19.
- 36. S. Timoshenko and J.N. Goodier, "Theory of Elasticity", Mc Graw Hill, 1970.
- 37. J. Tlusty, G.F. Mutch, "Testing and Evaluating Thermal Deformations of Machine Tools", M.T.D.R., Conference Proceedings, Vol. 14, 1973, p 285.

- 38. M. Weck, L. Zangs, "Computing the Thermal Behavior of Machine Tools Using the Finite Element Method Possibilities and Limitations", M.T.D.R., Conference Proceedings, Vol. 16, 1975, p 185.
- 39. H. Wiele, R. Mangelsdorf, H. Heinke, "Permanent Temperature-Control is Securing Technological Processes in Machine Tools", M.T.D.R., Conference Proceedings, Vol. 23, 1982, p-95.
- 40. "A Proposal for Defining and Specifying the Dimensional Uncertainity of Multi-Axis Measuring Machines", C.I.R.P. STC <ME> Working Party on 3DU, C.I.R.P., Vol. 27/2/1978, p 623.
- 41. Technology Of Machine Tools, M.T.T.F., Vol. 5: Machine Tool Accuracy, Lawrence Livermore Laboratory, University of California, Livermore, California, UCRL-52960-5, 1980.
- 42. P.A. McKeown, "'Mechatronics': The skill-base for Precision Engi Engineering", C.U.P.E. News, Issue 1, May 1983.
- 43. "Watching as Axis heat up and Grow", American Machinist, Nov 1984, p 146.
- 44. L.M. Kordysh, L.V. Margolin, "Thermal Calculations for the Actuating Mechanisms on the Feed Drives of NC Machine Tools", Russian Engineering, Stanki i Instrument, Vol. 54, Issue 5, 1983.
- 45. J. Tlusty, "Testing of Accuracy of NC Machine Tools", UCRL-52960 Supp. 1, Supplement 1 of Technology of Machine Tools, Lawrence Livermore Laboratory, University of California, Livermore, California, 1980.
- 46. M.M. Barash, C.R. Liu, "The Science of an Advanced Technology for Cost Effective Manufacture of High Precision engineering Products", Proposal for Research, Prepared by School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, Oct, 1982.

- 47. D. Ramakrishna, "Operator-Theoretic Methods In Heat and Mass Transfer Problems", School of Chemical Engineering, Purdue University, W. Lafayette, Indiana 47907, June 30,1982.
- 48. R.D. Cook, "Concepts and applications of Finite Element Analysis", Wiley, 1981.
- 49. R.P. Paul, "Robot Manipulators: Mathematics, Programming and Control", MIT Press, 1981.
- 50. F. Koeingsberger, J. Tlusty, "Machine Tool Structures", Pergamon Press, 1970.
- 51. Ozisik, M. Necati, "Heat Conduction", Wiley, 1980.
- 52. "Calibration of a Machine Tool", Laser Measurement System, Application Note 156-4, Hewlett Packard Co., Santa Clara Div., Santa Clara, CA.
- 53. S.K. Lee, M.M. Barash, "Accuracy Improvement of CNC Machining Center by Using a Touch Probe", Annual Report, The Science of an Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Office Of Naval Research, Purdue University, W. Lafayette, IN 47906, Jan 1,1984 Dec 31, 1984.

COOK ABOUT SECURITY OF

Appendix 1

Table Al.1 Conditions for which Solutions Have been Obtained - z axis

Conditions	Heat Source cals/min	Type
<u> </u>	900 cals/node	Continuous
2	1200 cals/node	Continuous
3	500 cals/node	Continuous
4	1000 cals/node	O <t<75 min<br="">(switched on and off at 15 min intervals)</t<75>
	800 cals/node	75 <t<360 min<br="">(switched on and off at 15 min intervals)</t<360>

2 axis has 9 heat node points associated with it

^{0.} Condition 4 is used for check of regression equation.

Table Al.2 Conditions for which Solutions Have been Obtained - x y axis

Conditions	Hea	Heat Source cals/min/node			Туре	
are	-1-1	2	3]	4	5	
1	1000	350	1110	440	650	Continuous
2	1500	500	1400	800	1000	Continuous
3	500	100	700	200	300	Continuous
4	750	200	1000	300	500	O <t<60 mir<br="">(switched on and off at 15 mir intervals)</t<60>
	1000	500	1000	500	1000	t>60 min (switched on and of at 15 min intervals

 ${\tt XY}$ axis has the following number of heat nodes attached with it

Source	Number	οf	nodes
1		8	
2		4	
3		6	
4		6	
5		18	

O. Conditions 1-3 have spindle located half way along the y axis

Condition 4 has the spindle located located at the lowest point on the y axis

Condition 4 is used for check of regression equations.

Fig. Al.1 Structure, x axis

Fig. Al.2 Structure, y axis

Dimensions are in MMs.

Spindle Motor
Y Axis Motor
Spindle Blower

Fig. Al.4 Location of Heat Sources

Fig. Al.5 Location of Temperature Points, x axis (Numerical)

Fig. Al.6 Location of Temperature Points, y axis (Numerical)

Fig. Al.7 Location of Temperature Points, z axis (Numerical)

Regression Equations, Numerical Method

The regression equations are as shown.

Figures Al.5, Al.6 and Al.7 show temperature
points

In the equations that follow, errors are referred to as erl, er2, er3, er4, er5 and er6.

erl refers to position error in x direction
er2 refers to straightness error in y direction
er3 refers to straightness error in z direction
er4 refers to pitch error
er5 refers to roll error
er6 refers to yaw error.

Errors erl, er2 and er3 are computed according to local coordinate systems shown in Figures Al.l,

Al.2 and Al.3.

equations are given in the following order

Equation for 0 < t < 60 mins

Equation for t > 60 mins

For equations in the 0 < t < 60 mins range,

all temperatures are argumented by 1.

This is done to ensure no problems arise

in cases of temperatures which are zero.

Equations are marked with a *, it means that the equation

is used to predict a constant value, because the variation

of that particular error over distance is negligible.

X AXIS

The equations predict the value of the error multiplied by le8.

 $-1.22(T5^2) - 91.89$

Y AXIS

The equations predict the value of the error multiplied by le8.

+ 38.98(X)(T5)

$$-1456.0(T5)$$

$$er5 = 1105.6 \log(T7+1)$$

$$-11.8(X) \log(T8+1)$$

$$+ 0.21e-5(X^4) log(T8+1)$$

$$+ 1.46(X)(log(T10+1)^2)$$

er5 =
$$-0.117(X^2)(T5)$$

$$+ 17.6(X)(T5)$$

$$-634.8(T6)$$

$$+ 47.11(X)$$

$$er6 = 2026.3 \log(T11+1)$$

$$+ 15.45(X)(log(T10+1)^2)$$

$$*er6 = 509.7(T11) + 25.94$$

Z AXIS

The equations predict the value of the error multiplied by le8.

+ 14871443.0

Table Al.3 Prediction Capabilities of Regression Equations (t>60 mins)

AXIS		x	Y	Z
erl	mean	2.04	0.45	0.16
	abs. mean	11.62	20.18	2.35
er2	mean	-0.57	0.5	-0.5
	abs. mean	6.2	0.6	1.9
er3	mean	2.64	0.5	10.8
	abs. mean	21.20	5.0	32.4
er4	mean	-0.21	6.3	0.1
	abs. mean	3.52	15.4	4.87
er5	mean	-4.6	-1.0	0.5
	abs. mean	30.9	8.2	20.9
er6	mean	-0.5	-0.5	18.3
	abs. mean	0.6	0.7	38.2

Table Al.4 Prediction Capabilities of Regression Equations (0 < t < 60 mins)

AXIS		X	Y	Z
erl	mean	3.1	8.6	0.5
	abs. mean	16.5	24.5	4.1
er2	mean	-0.2	-0.1	4.7
	abs. mean	6.2	1.03	44.1
er3	mean	9.2	0.5	15.2
	abs. mean	46.2	4.9	36.8
er4	mean	1.2	-1.0	-4.6
	abs. mean	12.2	10.8	25.4
er5	mean	6.2	3.35	12.7
	abs. mean	46.7	25.63	43.8
er6	mean	0.8	0.1	1.79
	abs.mean	33.9	3.46	4.87

The values are percentage error in prediction.

Appendix 2

Table A2.1 Location of Thermocouples on the x axis

Axis	Thermocouple #	Placement Point
x	1	Lead screw motor
	2	Lubricant motor
	3	Nut of lead screw
	4	Near lead screw motor
	5 - 12	On guideways
	13 - 16	On side plates
	17	On oil tank

Table A2.2 Location of Thermocouples on the y axis

Axis	Thermocouple #	Placement point
У	1	Lead screw motor
	2	Near lead screw motor
	3	Nut of lead screw
	4	Spindle motor
	5 - 12	On guideways, spindle side
	13 - 18	On back side
	19	Spindle blower
	20	On heater (simulating cutting)

Table A2.3 Location of Thermocouples on the z axis

Axis	Thermocouple #	Placement Point
z	1	Lead screw motor
	2	Near lead screw motor
	3	Nut of lead screw
	4	B axis motor
	5 - 12	On guideways
	13 - 16	On front Plate
	17 - 19	On side plates

In appendix 3, temperature readings are presented. The first of these readings is the room temperature reading. Rest of the temperature readings follow as described above. This will cause reading at thermocouple 5 to be shown in the sixth place.

Fig. A2.2 Location of Temperature Points, y axis (Experimental)

Fig. A2.3 Location of Temperature Points, z axis (Experimental)

Appendix 3

Conventions on Presentation of Results

The first two lines indicate the axis measured and the error being presented.

Then the initial starting point readings are given, this is also the point at which the zero of the laser is set.

The direction of laser indicates the positive direction.

When set to F, movement of the reflector away from the

laser is positive, while R indicates that movement of

the reflector away from the laser is negative.

The experimental readings follow next.

Individual test numbers are indicated.

Positions at which readings are taken are given (marked POS).

Temperatures recorded are given (marked TEMP). The first temperature is the average room temperature. Then the temperatures around the machine follow as given in Appendix 2.

Mean of error is given (marked Mean).

Standard Deviation is given (marked SD).

Finally the actual errors are presented. Also spread from the mean (marked by up and down) is given. Regression equations are presented at the end. Temperatures used in the regression equation are as defined in Appendix 2. When referring to T5, the thermocouple 4 is the one being addressed.

TESTS A TESTS + TESTS X TESTS + TESTS X TESTS X TESTS X TESTS X TESTS

TEST1 $_{\Delta}$ TEST2 $_{+}$ TEST3 $_{\times}$ TEST4 $_{\Phi}$ TEST5 $_{\Phi}$ TEST6 $_{\times}$ TEST7 $_{Z}$ TEST8 $_{Y}$ TEST9 $_{\times}$ TEST10

X AXIS

RESULTS OF POSITION ERROR (micron) X asis at 20.000 mms Y axis at 111,999 mms 2 axis at 660.400 mms (indep) Dir of leser F Test # 1 50. 100. 150. 350. 400. 450. 24. 38 0. 50. 300. 350. POS 200. 250. POS 500. 24. 30 TEMP 33.84 24.56 24.34 24. BB 24. 29 24.88 24. 39 24.39 24.39 24.34 TEMP TEMP 25.71 24. 26 24. 14 24. 17 36. 94 24. 56 15. 78 32. 68 15. 45 39. 20 3. 42 B. 10 9. 22 17.43 MEAN 21 21 25. 93 MEAN 23.63 0. 67 1.04 O. B7 1.00 SD 1.60 1.00 0. 92 1.07 SD 0.85 1.00 0.77 Test W 0. 50. 300. 350. 50. 100. 150. 350. 400. 450. POS 200. 250 500. POS 26. 40 25. 54 25. 48 35. 33 25. 62 25. 69 25. 98 TEMP 24. 78 24. B5 24. 73 24. 66 25. 00 24.73 TEMP 24. 54 24. BB 39. B6 26. 79 25. OB TEMP 3. 57 MEAN -0.13 3. 67 11.00 12.44 12.83 MEAN 15.73 18.60 22. 20 28.07 33.67 SD 0.42 2.30 2. 23 2. 39 2.03 SD 1.67 1.63 0.37 Test # 3 100. 150. 400. 450. POS 200. 250. ٥ 50 300. 350 POS 500. 29 59 26 88 36. 88 27. 17 TEMP 28 10 27.34 25 87 TEMP 26. 61 25. 61 25. 51 26 05 25.56 27. 95 TEMP 25.88 25. 21 25.56 41.80 26.07 MEAN -32. 20 -27. 62 ~24. 98 -16. 91 -15.55 -12.65 MEAN -B. 07 -5.50 -0.13 7. 24 13.87 2.62 4. 28 3. 95 3. 78 3 35 2 99 SD SD 2.40 1.63 1.16 0 37 Test # POS 50. 100 150 200 250. 0 350 POS 300 400. 450 500 27 70 TENP 31 61 37. 64 **28 23** 29 43 28 36 26 77 TEMP 27 60 26 35 59 50 26 96 56 53 TEMP 28 75 26 72 25.84 26 33 42 69 27 06 -57 55 -51.73 -48 87 -40 45 -38 14 -35 59 MEAN -30 41 MEAN -26 67 ~21 58 -14 28 -6 39 3.85 3 09 3 4.18 3 46 16 2.87 SD 2.55 2 00 1 48 0 91 0 B5 ΞD Test # POS 0 50 100. 150 200. 250 300. 350 POS 400 450 500 TEMP 27 73 33 67 38 26 29 72 31 40 29 16 70:07 71 P 27 53 2€ 50 27 06 P6 91 27 60 26 52 27 73 -71 13 27 31 26 30 26 94 43 14 27 94

MEZIN

ME / 1

-35 01

-65 48

-28 98

-61 57

-50 75

-41 e7

SD SD Test #	5 74 2 99 6	6 39 2. 77	5: 60 2: 27	4.74 1.78	3. 84 1. 30	3. 60
POS POS TEMP TEMP TEMP MEAN MEAN SD SD Test #	0 50. 300. 350. 27. 80 28. 69 29. 84 -60 85 -23 05 4 30 2. 76 7	100. 150. 400. 450. 35. 33 29. 71 28. 13 -55. 00 -17. 90 6. 84 2. 70		30. 37 27. 98 27. 69 -40. 53 -0. 62 5. 52 1. 69	32, 21 28, 91 43, 49 -36, 06 8, 70 4, 61 1, 22	30. 10 27. 94 27. 18 -31. 37 3. 53
POS POS TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 27. 78 28 86 29. 73 -52. 90 -13. 42 4. 18 3. 27	100. 150. 400. 450. 34. 57 29. 90 28. 05 -47. 05 -7. 82 5. 94 2. 66		30. 75 28. 27 27. 71 -30. 47 9. 44 5. 11 1. 47	32. 74 29. 15 43. 48 -26. 47 19. 80 4. 41 0. 85	30. 31 28. 12 29. 49 -21. 63 3. 60
POS POS TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 27. 48 29. 31 29. 80 ~63. 70 ~16. 27 5. 80 3. 11	400. 450. 35. 75 30. 43 28. 29		31.86 28.87 27.92 -36.88 10.22 5.22 1.32	33 55 29 65 43 50 -31 45 22 14 4 81 1 20	30. 77 28. 63 30. 04 -26. 00
POS POS TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 27. 30 29. 37 29. B1 -60. 13 -11. 97 5. 91 4. 04	35.54 30.58 28.37	200. 250. 500. 38 42 29 20 27.12 -46 32 3.75 6 41 3 05	31. 72 29. 03 28. 00 -34. 18 14. 72 5. 88 2. 40	33.44 29.76 43.35 -28.68 24.89 5.33 1.17	30 85 28 73 30 27 -21 52 4 78
POS POS TEMP TEMP TEMP MEAN MEAN SD	0. 50. 300. 350. 27.30 29.38 29.92	35 34 30, 65 28, 48		31.62 29.12 28.14 -32.27 13.83 6.14 2.39	33 34 29 85 43 31 -26 80 23 86 5 60	30 89 28 80 30 29 -21 25 4 94

~	÷	ı	v	_	-		ν	•	•	_
-	-	~	-	-	-	-	-	-	-	-

						SPREA	۱n
						Up	Down
Test #	1						• • • • • • • • • • • • • • • • • • • •
0 20	4. 30	4, 30	4.10	4.10	3, 50	-0.55	0.55
B. 10	9. 50	7. 40	8. 70	6.50	8 40	-0. 77	0.77
9. 10	10 60	B. 70	9. 60	B. 00	9. 30	-0. 62	0. <i>62</i>
16 30	16 91	15.30	16.30	14.50	15.40	-0.42	0.42
16 01	16 80	14.89	16.01	14.01	15.00	-Q. 4B	0 48
18 30	18 71	17. 40	17 59	16, 20	16.40	-0.13	0.13
22.19	22.61	21.00	21. 39	20.11	19. 99	-0.12	0.12
24. 20	24. 81	23. 59	23. 80	22, 49	22. 89	-0. 20	0. 20
27. 01	26, 89	26. 21	26.00	24, 69	24. 81	0. 04	-0.04
33. 39	33, 91	32.71	32. 81	31, 49	31.80	-0.15	0.15
40.01	40 01	39. 31	39. 31	38, 30	38 30	O .	O.
Test #	2						
-0.80	-0 30	~0 . 3 0	0.10	0. 10	0.40	-0.20	0. 20
0.50	5 30	2. 50	6.00	2.00	5.70	-2.00	2.00
1.10	5 40	1. 70	6. 10	1. 90	5. 20	-2.00	2.00
B 61	13 11	B. 70	13.50	9. 20	12.89	-2.17	2.17
11 00	14 01	10 30	14.60	10.50	14. 21	-1. BA	1.84
10.50	14 30	11.20	15.20	11.09	14. 69	-1.90	1. 90
14. 01	17 09	14. 10	17. 61	14. 59	17. 00	-1.50	1. 50
17 40 21 00	19, 99 23, 90	17. 30 20. 69	20. 29 23. 80	16. 69 20. 51	19. 90 23. 28	-1. 46 -1. 46	1. 46 1. 46
27.50	23. 90 29. 21	27, 10	29.11	26. 79	25. 25 28. 69	-0. 94	0. 94
34.00	34.00	33.81	33. 81	33. 20		0.	0. 74 0.
Test #	34.00	33.01	33. 61	33. EU	33. EU	V.	U.
-36.10	-33 30	-33, 30	~31.00	-31.00	-28.50	-1. 27	1. 27
-33 70	-25 BO	-31.00	-23. 80	-28.70	-22.70	-3, 52	3, 52
-30 70	-53 90	-28. 10	-21.60	-25 60	-20.30	-3.15	3. 15
-27 29	-15 59	-20.00	-13 79	-17.50	-12.30	-3. 02	3.02
-20 20	-14 50	-18 30	-12 80	-16 20	-11.31	-2 68	2. 68
-16 80	-11 60	-14.89	-10.41	-13.50	-B. 70	-2.42	2.42
-11 41	-7.51	-9.89	-6 01	-8 61	-5.00	-1. 90	1. 90
-7. 90	-4. 91	-6. 90	-4, 21	-5, 89	-3. 20	-1. 39	1. 39
~2 01	0.61	-1.89	1.01	-Q. 49	2. 01 8. 91	-1. 34	1. 34
6 01	7. 81	6.01	7. 90	6. 81		-0. 97	0. 9 7
13 49	13 49	13.79	13. 79	14. 31	14. 31	O .	Ο.
Test #	4						
-95 30	-58 80	-58.80	-56.00	-56.00	-53.40	-1.48	1.48
-57 BO	-51 30	-54.60	-48 50	-52.10	~46.10	~3. 10	3. 10
-54.20	-48.70	-52.10	-45 BO	-48.60	~43.80	-2.77	2. 77 2. 55
-45 39 -42 80	-39, 99 -38, 10	~43.11 ~40.41	-37, 90 -35, 90	-40, 50 -37, 70	-35, 80 -33, 91	~2 55 ~2 17	2 17
-39 70	-38 10 -35 9 0	~37.51	-33, 90 -33, 91	-37.70 -35.10	-31.40	-1.85	1.85
-33 81	-31 01	-32.10	-29, 21	-29.91	-26.40	-1.54	1. 54
-29 39	-27.01	-28.20	-25.60	-26.09	-23.71	-1. 23	1. 23
-23 59	-25 00	-22.71	-20, 69	-21.00	-19.50	-0.85	0. 85
-15 59	-14 50	-14.89	-13.89	~13.79	-13.00	-0.48	0. 48
-7 39	-7. 39	-6.29	-6 29	-5.49	~5 49	0.	0.
Test #	5				,		
-80 10	-74. 20	-74. 20	-68 60	-68, 60	-63 80	-2, 72	2.72
-74 90	-66 40	-69.30	-61 20	-64.60	-56.50	-4.12	4.12
-70 00	~63 0 0	-64 50	-58 00	-60 10	-53 BO	-3 30	3, 30
-57 67	~50 2 0	-53 21	-47 61	-49 50	-44 20	-2 75	2 75
-50 09	-40 10	-49 39	-44 69	-45 59	-41 20	-2 18	2 18
-47 30	~43 PO	-43 59	-39 70	-40 41	-37 00	-1 90	1.90
-57 44	-D: 10	-35 59	-33 51	-23 39	-31 01	-1 49	1 48

-32 99	-29 91	-30 30	-28 29	-27 59	-24 B1	-1. 31	1.31
-25 91	-24 11	-53 BO	-22 19	-20.90	-19 71	-0 77	0.77
-16 69	-15.69	-15.59	-14.10	-13 09	-11.99	-0 60	0.60
-6. 41	-6.41	-5.10	-5 10	-3.51	-3.51	-0 60 0.	0.80
Test #	6	J. 10	J. 10	-3. 31	-3. 31	O.	U
-6B. 20	-61. 70	-61.70	-59, 10	-59. 10	-55. 30	-2.15	2 15
-65. 40	-53.50	-60. 30	-50.50	-53. 90	-46. 40	-4. B7	4 87
-59. 40	-4B. 60	-55. 20	-46.00	-49.10	-42. 40	-4. 45	4.45
-48. 60	-39, 20	-45.30	-37.00	-39.60	-33.49	-3. 97	3.97
-42.50	-35. 29	-39. 99	-33.00	-35. BO	-29. BO	-3. 7 <i>/</i> -3. 36	
-36.61	-31.60	-37. 77 -33. 91	-33.00 -29.40	-30. 11	-24.60 -26.60	-	3. 36
-27, 40	-22.89	-24. 90	-21.61	-22.00	-28.80 -19.50	-2, 17 -1, 72	2. 17 1. 72
-22.09	-18.01	-19.71	-15. 90	-17.09	-14.59		
-13. 31	-10.10			~9. 19		-1.73	1.73
-3.30	-10. 10 -0. 89	-11.51 -1.71	-8.61		-7. 9 0	-1.23	1. 23
7 29	7. 29		0. 61	0. 40	1.19	-0. 92	0. 92
	7.27	8 7 9	8.79	10.01	10. 01	0.	Ο.
Test #		E4 E0	E0 70	-50 70	47 60		
-59. 50	-54.50	-54. 50	-50. 70	-50. 70	-47. 50	-2.00	2.00
-56.00	-46.00	-51.10	-42.40	-47. 30	-39. 50	-4. 42	4. 42
-49. 90	-40. 40	-45.00	-36. 90	-41.70	-33. 60	-4. 28	4. 28
-37. 99	-29.50	-33. 80	-26.70	-31.20	-23. 61	-3. 87	3. 87
-32. 90	-25. 60	-29. 60	-22. 99	-26. 99	-20. 71	-3. 36	3. 36
-26. 99	-21.10	-24.09	-18. 91	-21.80	-16. 91	-2. 66	2. 66
-1B. 31	-13.09	-15. 50	-11.20	-13.49	-8 . 91	-2. 35	2. 35
-11.51	-7. 60	-9 . 70	-5. BO	-8. 21	-4. 09	-1. 99	1. 99
-4. 09	-1.10	-2. 29	0.09	~1.01	1. 59	-1. 33	1. 33
7. 11	9. 49	8. 70	10.41	9. 49	11.41	-1.00	1.00
18.80	18.80	19. 90	19, 90	20.69	20. 69	0.	Ο.
Test #	8						
-72 90	-66.10	-66. 10	-60.10	-60.10	-56, 90	-2. 67	2.67
-65 30	-55 40	-59.00	-50. 70	-55.00	-46.40	-4. 47	4. 47
-58.20	-49. 10	-52.80	-44.50	-48.60	-40. BO	-4. 20	4. 20
-44.60	-37. 60	-39.99	-33 10	-36.30	-29.69	-3. 42	3. 42
-3B 70	-32.00	-34.30	-27.89	-30. 81	-24. 99	-3. 15	3.15
-31.80	-27. 21	-28 31	-23, 30	-24. 99	-20.40	-2. 37	2.37
-20 81	-17. 40	-17. 79	-14.40	-15.41	-11.81	-1. 73	1. 73
-13 21	-10 BO	-10.50	-7. B1	-8.09	-5.49	-1. 28	1.28
-3 81	-2 29	-1.71	0 31	0.40	1.80	-0. 82	0. 82
8 21	9 31	10.01	10 89	11.11	11 81	-0. 45	0 45
20 81	20 81	22.09	22.09	23. 50	23, 50	0	Ο.
Test #	9						
-69 10	-63 00	-63 00	-56 20	-56. 20	-53. 30	-2. 63	2.63
-63 50	-52 60	-57.80	-46. 90	-53 50	-42. 90	-5. 40	5. 40
-55.70	-46 10	-50.40	-41.20	-46. 80	-37, 70	-4.65	4.65
-43 00	-33 90	-37 BO	-29.60	-34. 70	-26 40	-4. 32	4.32
-36 70	-27 20	-35 30	-24 60	-28.90	-21 80	-3. 95	3 95
-28 59	-20 50	-24.70	-18 01	-21.80	-15.11	-3.51	3.51
-16 01	-11 51	-14 40	-9 00	-12. 39	-6. 50	-2. 97	2 97
-10.41	-4.79	-7. 20	-2.59	-5, 40	-0.49	-2. 52	2 52
-0.79	4 00	1.59	6. 29	3. 81	7.60	-2. 21	2 21
11.51	14.50	12.70	16.60	15.01	18.01	-1.65	1 65
23 50	. 23 50	25. 09	25 09	56 09	26 09	Ο.	O
Test #	10	40.00	F A				
-65 00	-60 30	-60 30	-54 70	-54.70	-51 20	-5 30	2 30
-50 50	-49 40	-55 90	-44 40	-51 70	-40 BO	-5 58	5 58
-53 50	-43 00	-49 20	-36 40	-45 30	-34 70	-5 32	5 32
- 5 (5	-31 40	-36.50	7 7 1	-03 10	-24 04	-4 70	4 70
-54 61	-26 40	-31 01	-11 11	-27 21	-19 10	-4 14	4 14
-78 11	-21 50	-24 70	-17 59	-21 UF -12 70	-14 21 -6 19	-3 46	3 4€
-17 /0	-12 (9	-15 41	9 (4)			-2 97	2 97

-10 71	-5.80	-8.09	-3 30	-5.71	-1 01	-2.40	2 40
1 10	2 99	0.61	4.70	2.90	6 99	-2.06	2 06
10 50	13 89	11.99	15.20	14.10	17. 30	-1. 63	1 63
10 50		55.00	20.00	25 00	25 00	^	D

TEST1 $_{\Delta}$ TEST2 $_{+}$ TEST3 $_{\times}$ TEST4 $_{\Phi}$ TEST5 $_{+}$ TEST6 $_{X}$ TEST7 $_{Z}$ TEST8

TESTI Δ TESTS + TESTS \times TESTN \odot TESTS + TESTS \times TESTS Z TESTS

X AXIS RESULTS OF HORZ. ST. ERROR (micron)

X axis at 25.000 mms Y axis at 91.554 mms Z axis at 320.165 mms Dir of laser F

	r of laser	F					
Test 0							
POS TEMP TEMP TEMP MEAN SD Test #	0. 50. 25. 20 24. 49 25. 69 0. 50 0. 48	100. 150. 24. 93 25. 01 24. 35 -1. 90 2. 32	34. 10 24. 64 24. 15	300. 24, 98 24, 59 24, 20 -0, 48 2, 35	24: 54 24: 61 36: 47 0: 18 2: 28	24. 95 24. 54 24. 79 1. 12 2. 30	0. 73 0. 4 0
POS TEMP TEMP		100. 150. 28. 17 25. 94		300. 26. 11 24. 86	26. 16 25. 21	26. 12	
TEMP MEAN SD	26, 95 34, 13 0, 46	24 04	24, 57	24 49	40, 32 34, 48 2, 70	24, 99 25, 28 35, 23 2, 64	34. 37 0. 27
Test #	3						
POS TEMP TEMP TEMP MEAN SD	26. 58 25. 78 27. 71 43. 27 0. 46	25 A5	36. 60 25. 48 25. 06	27: 20 25: 38 25: 38	27. 76 26. 07 41. 49 42. 87 1. 64	27, 25 25, 56 26, 14 43, 26 1, 53	43. 20 0. 54
Test #	4						
POS TEMP TEMP TEMP MEAN SD	27. 13 26. 37 28. 20 48. 70 0. 20		37, 08 26, 05	300. 27. 61 25. 93 25. 95 47. 35 2. 56	28. 44 26. 76 42. 02 48. 41 2. 39	27. 91 26. 05 26. 86 50. 32 2. 28	48. 77 0. 14
Test #							
POS TEMP TEMP TEMP MEAN SD Test #	25. 18 26. 35 27. 57 42. 20 0. 30	100. 150. 30.84 27.84 26.25 39.21 2.37	35. 67 26. 40 24. 58	28.13	28. 62 26. 57 41. 07 41. 34 2. 38	28. 11 25. 88 27. 23 42. 96 2. 02	42 . 07 0. 3 1
POS	0. 50.	100_ 150.					
TEMP TEMP TEMP MEAN SD Test 0	23 78 26 05 26 85 33 20 0.56	30. 34 27. 78 25. 73 31. 35 2. 20	34. 46 26. 49 24. 35 32. 12 2. 07	28. 05 26. 29 24. 97 32. 33 2. 15	28, 25 26, 41 39, 87 32, 60 2, 43	27, 78 25, 73 27, 20 33, 93 2, 36	33. 20 0. 56
POS TEMP TEMP	0 50. 23 65 25 75	100 150. 28. 07 27. 39	33.44	24. 95	26. 97 26. 21	27. 34 25. 43	

TEMP	26. 31	25. 16	24.00	24. 67	38. 96	27. 17	
MEAN	29. 70	27. 64	28.48	28. 73	28. 94	30. 34	29. 63
SD Test # 8	0. 2 7	2. 47	2.36	2. 42	2. 43	2. 14	0. 31
POS			200. 250.				
TEMP	24. 30	28. 34	34. 76	27. 70	27. 31	27. 34	
TEMP TEMP	25. 62 26. 87	27. 49 25. 28	26. 24 24. 03	26. 16 24. 77	26, 41 40, 04	25. 65 27. 09	
MEAN	34. 70	32. 48	32. 87	33. 57	33. 93	35. 28	34. BO
SD	0. 25	2. 56	2. 57	2. 48	2. 51	2. 31	0. 31
ACTUA	L DATA						
						SPREAD	
Test	# 1				•	Jp D	own
-0. 20		0. 30	0. 70	0. 70	1.20	-0. 23	0. 23
-4. 23		-4. 03	0. 13	-3. 70	0. 78	-2. 09	2. 09
-3. 07		-2. 67	1. 57	-2. 40	2. 07	-2. 13	2. 13
-2. 90 -2. 33		-2. 60 -1. 93	1. 60 2. 23	-2. 30 -1. 30	2. 15 2. 73	-2. 12 -2. 04	2. 12 2. 04
-1. 37		-0. 97	3. 17	-0. 50	3. 72	-2.06	2. 06
_0. 30		0. 70	0. 70	1. 20	1. 20	0.	O .
Test 33. 30		34. 10	34. 30	34. 30	34, 70	-0. 23	0. 23
28. 78		29. 48	34, 32	29. 72	34. 28	-0. 23 -2. 37	2.37
29. 57		30. 47	35, 33	30. 63	35. 17	-2. 43	2. 43
30. B5		31. 55	36. 05	31. 65	36. 15	-2. 35	2. 35
31. 43 32. 02		32. 23 33. 32	36. 97 37. 68	32. 47 33. 28	37. 23 37. 92	-2. 44 -2. 36	2. 44 2. 36
34. 10		34. 30	34. 30	34. 70	34. 70	0.00	0. 00
Test						_	
42. 90 39. 53		43. 50 39. 62	43, 60 43, 03	43, 60 40, 10	42. 50 42. 02	0. 07 -1. 42	-0. 07 1. 42
40. 27		40. 43	43. 57	40. BO	42.53	-1. 33	1. 33
41.00		41. 25	44.60	42.00	43. 75	-1.43	1.43
41. 03		41. 27	44. 63	42.00	43. 77	-1. 44	1. 44
41. 57 43. 50		41. 9B 43. 60	44, 97 43, 60	42. 20 42. 50	43. 98 42. 50	-1. 34 0.	1. 34 0.
Test		43. 50	40.00	72. 00	42. 00	J.	V.
48. 40		48. 60	48. 90	48. 90	48. 80	-0. 07	0. 07
44. 58	_	44. 52	48. 97	44, 25 44, 80	49. 23 49. 37	-2. 26 -2. 29	2. 26 2. 29
44, 57 44, 95		44, 53 44, 95	49. 23 49. 90	45. 15	49. 70	-2. 33	2. 33
46. 03		46. 27	50. 67	46. 40	50. 63	-2.18	2. 18
48, 12		48. 18	52. 53	48, 45	52. 57	-2. 07	2. 07
48.60 Test		48. 90	48. 90	4B. BO	48. B 0	0.	Ο.
42. 50		42. 10	42. 40	42. 40	41.70	0. 13	-0. 13
37. 12	41.45	36. 95	41.40	37. 07	41. 25	-2.16	2. 16
38. 13		37. 70	42. 30	38. 03	42.10	-2.19 -2.17	2. 19
39. 35 39. 27		39, 05 38, 90	44. 00 43. 50	39. 40 39. 37	43. 05 43. 20	-2. 17 -2. 16	2. 17 2. 16
41. 28		40. 85	44. 90	41. 23	44 55	-1. 84	1.84
42. 10		42. 40	42. 40	41.70	41. 70	0. 00	0. 00
Test 33, 00	–	32. 70	33. 90	33. 90	33. 00	-0. 00	-0.00
29. 67		32.70 29.37	33. 70 33. 77	29. 07	33. 42 33. 42	-1. 7 8	1. 98
							· · · -

30, 63	33. 33	30, 13	34. 53	30. 03	34. 03	-1. 85	1. 85
30.60	33. 75	30, 30	34. BO	30. 30	34. 25	-1, 93	1. 93
30. 37	33. 97	30, 17	35. 47	30.77	34. B7	-2.17	2. 17
31. 73	35. 28	31, 53	36. 83	32, 23	35. 98	-2.10	2.10
32. 70	32.70	33. 90	33. 90	33.00	33.00	0.	0.
	_	35. 70	33.70	50.00	55. 55	••	- `
Test #	7						
29 . 70	30.00	3 0. 0 0	29. 60	29. 60	29. 30	Q. 07	-0. 07
25. B3	30.08	25. 22	29.85	25. 15	29.70	-2. 24	2 24
26. 17	30. 67	26. 63	30. 90	26. 20	30. 30	-2.14	2.14
26. 70	30. 95	26. 55	31. 15	26, 35	30. 70	-2. 20	2. 20
26. 63	31. 43	27, 07	31, 10	26, 50	30, 90	-2. 21	2. 21
28. 37	32. 62	28.58	32, 25	28, 25	32, 00	-1.94	1. 94
30.00	30.00	29. 60	29, 60	29. 30	29, 30	Ο.	Ο,
Test #	8						
34. 60	34, 60	34, 60	34, 60	34. 60	35, 20	-0.10	0, 10
30. 03	34, 63	30. 12	34, 72	30. 30	35. 10	-2. 33	2, 33
30. 57	34. B7	30, 43	35. 13	30. 60	35, 60	-2, 33	2, 33
31. 30	35. 60	31. 15	35. 65	31. 50	36. 20	-2. 25	2, 25
					36. 80	-2. 27	2. 27
31. 63	35. 93	31.77	35. B7	31.60			
33. 07	37. 17	33. 18	3 7. 18	33. 30	37. BO	-2. 10	2.10
24 40	34 40	34 40	34 60	35. 20	35, 20	0.	O.

Regression Equation

T17*10.30 - 4.07*T3 + 0.19e-4*X*X + 1.88*T15 - 282.84

TEST: Δ TEST2 + TEST3 \times TEST4 \diamond TEST5 + TEST5 \times TEST7 Z TEST8 \times TEST40

TESTI A TESTS + TESTS X TESTS + TESTS TESTS Z TESTS Y TESTS X TESTIO

X AXIS
RESULTS OF VERT. ST. ERROR (micron)

X axis at 25.000 mms Y axis at 90.353 mms Z axis at 319.260 mms

	of laser						
Test # 1		•					
POS	0 50	100. 150.	200. 250.	30 0.			
TEMP	24. 90	25. 39	34. 79	26.66	25, 49 25, 22 39, 43 0, 44 0, 62	26. 05	
TEMP	25. 02	26. 02	25. 22	25. 17	25. 22	25. 02	
TEMP	26. 56	24. B7	24. 31	24. 51	39. 43	25. 54	
MEAN	-0. 22	0. 17	2. 29	1. 89	0. 44	-2 . 75	-0. 27
SD	O. 18	0. 90	0. 74	O. B4	0. 62	0. 66	0. 10
Test # 2							
POS	0. 50.	100. 150.	200. 250.	300.	25. 73		
TEMP	24.90	25. 76	34. 94	26. 05	25. 73	26. 52	
TEMP TEMP	25. 19	2 6. 32	25. 34	25. 24	25. 47	2 5. 05	
TEMP	26. 84	25. 05	24. 36	24. 68	25. 47 40. 19 17. 17 0. 61	25. 79	
MEAN	15. 78	17. 11	16. 63	18. 21	17. 17	14. 68	15. 70
SD -	0. 16	0. 78	0. 72	0. 71	0. 61	0. 65	0. 15
1087 0 3							
POS	0. 50.	100. 150.	200. 250.	30 0.			
TEMP	25. 03	26. 8 8	35. 27	26. 63	26. 39	27. 05	
TEMP	25. 51	2 6. 8 3	25. 58	25. 48	26. 39 25. 97 40. 52 11. 72 0. 58	25 . 33	
TEMP	27. 15	25. 33	24. 57	25. 02	40. 52	26. 24	
MEAN	11.77	12. 15	14. 05	13. 40	11. 72	10. 83	11. 73
_5D	0. 15	O. 83	0. 66	0. 73	O. 58	0. 59	0. 10
Test # 4							
POS	0. 50.	100. 150.	200. 250.	300.	27. 01 26. 45 41. 22 10. 93 0. 64		
TEMP	25. 25	27. 94	35. 81	27. 01	27. 01	27. 50	
TEMP	25.88	27. 25	25. 91	25. B1	26. 45	25. 69	
TEMP	27. 55	25. 71	24. 85	25. 42	41. 22	2 6. 76	
MEAN	10.48	10. 94	13. 22	11.89	10. 93	7. 86	10. 47
_SD	0. 04	1. 21	0. 69	O. B1	0. 64	0. 53	0. 05
	,						
POS	0. 50.	100. 150.	200. 250.	300.	27. 94 26. 86 41. 21 14. 63 0. 80		
TEMP	25. 13	2 9. 15	36.00	27. B6	27. 94	27. 86	
TEMP	26. 20	27. 64	26. 22	26. 10	2 6. 8 6	26. 00	
TEMP	27. 74	25. 95	25. 07	25. 73	41. 21	27. 13	
MEAN	12. 65	14. 61	14. 42	14. 06	14. 63	12. 68	12. 63
_SD	0. 16	0. 86	0. 61	0. 74	O. BO	0. 71	0. 14
1495 # 6	,						
POS	0. 50.	100. 150.	200. 250.	30 0.	28. 37 26. 92 41. 25 17. 48 0. 50		
TEMP	25. 15	30. 24	35.73	28. 24	28. 37	28. 05	
TEMP	26. 39	27. 9 0	26. 53	2 6. 3 6	26. 92	2 5. 9 9	
TEMP	27. 61	26. 04	24. 45	25. 36	41. 25	27. 41	
MEAN	15 68	17. 45	17. 17	1B. 26	17. 48	27. 41 16. 31	15.70
SD	0.12	1.00	0. 46	0. 42	0. 50	0. 37	0. 09
POS	0. 50.	100. 150.	200. 250.	300.	27. 44 26. 93		
TEMP	25 05	28. 64	35. 54	27. 22	27. 44	2B. 10	
TEMP	26. 44	28. 01	26. 51	26. 37	26. 93	25. 95	

TEMP	27. 52	25. 98	24, 23	25. 19	41. 21	27. 57	
MEAN			17. 78	18. 15	17. 82	16. 51	15. 83
SD	0. 41	O. 84	0. 65	0. 59	0. 62	0. 69	
Test 0	_						
POS		100. 150.	200 250	300.			
TEMP	25. 00	29. 57	35. 47	28. 32	29. 15	28. 05	
TEMP	26. 37	28. 05	26. 66	26. 44	26. 98	25, 98	
TEMP	27. 44	25 . 90	24, 18	25. 14	41.02	27. 59	
MEAN	17. 42	19. 58	19. 36	19. 63	19. 22	18, 07	17. 50
SD Test #		0. 91	0. 67	0. 68	0. 72	0, 72	0. 71
POS		100. 150.					
TEMP	24. BB	29. B1	35, 40	28. 35	28. 25	28.08	
TEMP TEMP	26. 37 27. 39	28. 05 25. 93	26. 71	26.46	26. 9 8	25. 97	
MEAN	19. 05	20. 49	24. 16 20. 08	25. 14 21. 44	40. 92 20. 60	27, 59 18, 26	19. 10
SD	0.16	0. 60	20, 08 0, 47	0. 24	0. 37	0.32	
Test #				• • • •	J. J.	J. J.	0.10
POS	0 50	100 150	200 000				
TEMP	24. 90	100. 150. 29. 96	200. 250. 35. 21	300. 88-36	29. 26	28.06	
TEMP	26. 33	28.06	26. 72	26. 47	27. 01	25. 98	
TEMP		25. 88	24, 17	25. 15	40.88	27. 62	
MEAN		21. 41	20. 14	21.36	21.02	18. 24	19. 27
SD	0. 15	0. 8 7	0. 65	0. 57	O. 54	0, 72	0. 14
	ML DATA				11-	SPREAD	
Test	. • 1				Up) De	own .
0. 1		-0. 20	-0.40	-0. 40	-0. 20	0. 05	~0. 05
1. 1		0. 75	-O. BB	1. 05	-0. 52	O. 81	-O. B1
2.6	7 2. 77 90 1. 25	2. 20	0. 83	2. 50	2. 77	0. 17	-0. 17
1. 2		2. 35 0. 80	0. 75 -0. 33	2. 65 0. 90	1. 25 0. 03	0. 74 0. 53	-0. 74 -0. 53
-1. 9		-2. 25	-3.62	-2. 35	-3. 18	0. 53 0. 5 7	-0. 57
<u>~</u> 0. 2		-0.40	-0. 40	-0. 20	-0. 20	0.	0.
-	; # 2 XX 15.80	45.00	15.00	45.50			
18.0		15. 80 17. 92	15. 80 16. 42	15. 80 17. 40	15, 50 16, 35	0.08 0.48	-0.08 -0.68
17. 4		17. 13	15. 93	17. 30	15. 80	0. 64	-0.64
19. 1		18. 75	17. 65	18. 60	17. 45	0. 63	-0. 63
17. 9		17. 37	16. 47	17.80	16.60	0. 52	- 0. 52
15. 3 15. 6		14. 98 15. B0	13. 98	15. 40	14. 05	0. 57	-0. 5 7
	: 4 3	15. 60	15. BO	15. 50	15 50	O .	O .
12.0		11. BO	11.60	11.60	11. BO	0. 03	-0. 03
12. 9		12. 67	11. 33	12. 87	11. 40	0. 76	-0. 76
14. 7		14. 73	13. 37	14. 43	13. 50	0. 59	-0. 59
14. 0 12. 2		14. 00 12. 07	12. 50 11. 03	14. 10	12. 90	0. 65	-0. 65
11. 5	10 35	11. 23	10. 27	12. 27 11. 33	11. 70 10. 30	0. 47 0. 53	-0. 47 -0. 53
11.6	11.80	11.60	11.60	11.80	11.60	0. 33	-0. 55 0.
Test	: # 4			_			
10.5		10. 50	10.50	10 50	10. 40	0. 02	-0.02
11 4	A 10 18			17 47	0 78		

13.77	12.77	13. 93	12.63	13. 83	12. 40	0. 62	-0. 62
12 45	11.15	12. BO	11.40	12.60	10. 95	0. 73	-0. 73
11.23	10.23	11. 57	10.57	11 67	10.30	0. 56	-0.56
8. 32	7. 52	8. 23	7. 53	8 43	7. 15	0. 46	-0.46
10 50	10 50	10.50	10.50	10.40	10.40	-0.00	-0.00
Test #	5					J. J.	J. 00
12 90	12.60	12. 60	12. 50	12. 50	12. BO	0. 02	-0. 02
15.67	13. 82	15. 07	13.65	15 35	14. 10	0. 75	-0. 75
15.03	13. 73	14. 83	13 80	15.00	14. 10	0. 54	-0. 54
14. 70	13. 45	15.00	13. 35	14. 45	13. 40	0.66	-0.66
15. 57	13. 87	15. 17	13.80	15.30	14. 10	0.71	-0.71
13. 53	12.38	13. 13	11.65	13 15	12.20	0. 60	-0.60
12.60	12. 60	12. 50	12 50	12 B0	12.80	0. G 0	-0. 50 0.
Test #	6				14. 00	U.	U.
15. 50	15. 70	15. 70	15. BO	15 BO	15. 60	-0. 02	0. 02
18.63	16. 67	18. 07	16 78	18.05	16. 32	0.86	
17. 37	16. 63	17. 63	16 77	17. 70	16. 93	0.39	-0. B6 -0. 39
18. 50	18.00	18.70	18.05	18. 65			
17. 83	17. 07	18. 17	17. 23	17. 70	17. 65 16. 87	0.36	-0. 36
16. 47	16. 13	16. 63	16. 12	16.75		0. 42	-0. 42
15. 70	15. 70	15. BO	15. 80		15.76	0. 30	-0. 30
Test 6	7	13. 60	15. 60	15. 60	15. 60	0. 00	0.00
16. 60	15. 60	15. 60	15. 70	15. 70	14 00		
19.20	17. 13	18. 65			16. 20	0. 07	-0. 07
19. 70	17. 07		17.67	18.85	17. 53	0. 73	-0. 73
19. 10	17.60	18. 20	17. 23	18.10	17. 37	0. 56	-0. 56
19.70		18.45	17.60	18. 35	17. 80	0. 4B	-0. 4B
17.60	17. 03 15. 77	18. 20 16. 75	17. 37	18.10	17. 53	0. 51	-0, 51
15.60			15. 93	16.85	16. 17	0. 56	-0. 56
Test #	15 60	15. 70	15.70	16. 20	16. 20	0.	O .
17. 30	8 19.10	10 10	14 40				
		18 10	16.60	16.60	17. BO	-0. 0 B	0.08
20.02 19.93	18 75 19.10	20 65	19.00	20. 4B	18.58	0.80	-0. BO
20 25		20 20	18 60	19.67	18. 67	0. 57	-0. 57
	19.55	20 55	18 70	19. 55	19. 15	0. 49	-0.49
19.87	19 30	20.10	18.10	19. 13	18. 63	0. 4B	-0. 4B
18 48	18.15	19.15	17.00	17. 82	17. 82	0.41	-0.41
18 10 Test #	18 10	16.60	16.60	17. BO	17.80	-0.00	-0.00
	•		40.00				
18. 90 20. 77	19. 20	19.20	18. 90	18.90	19. 20	-0. 05	0.05
	20.02	21.33	19 78	20. 90	20. 15	0.51	-0.51
20. 43	19.83	20. 57	19. 67	20.50	19. 50	0. 42	-0. 42
21 60	21.05	21.60	21.35	21 70	21. 35	0. 19	-0.19
20.67	20.17	21.03	20. 23	21.00	20. 50	0.30	- <u>o</u> . 30
18.13	17. 98	18. 57	17. 92	1B. 70	18. 25	0. 21	-0. 21
19.20	19.20	18. 90	18. 90	19. 20	19. 20	Ο.	0.
Test #	10						_
19. 40	19. 40	19. 40	19. 10	19. 10	19. 30	0. 02	-0. 02
21.98	20 PB	22. 57	20. 62	22. 05	20. 58	0. 79	- 0, 7 9
20 67	19 67	20. 83	19. 43	20. 70	19.57	0. 59	-0. 59
21. 95	20. 95	21. 90	20. 65	21.75	20. 95	0. 51	-0.51
21. 53	20 63	21. 57	20. 37	21 40	20. 63	O. 4B	-0. 4B
18.72	17 72	18. 93	17. 28	18. 95	17. B2	0. 63	− 0, 63
19. 40	19. 40	19.10	19. 10	19. 30	19.30	O .	0.

Regression Equation

T17*22.52 - T1*73.87 - 3.13*T8 - 0.65e - 7*X*X + 1033.87

TEST1 $_\Delta$ TEST2 $_+$ TEST3 $_ imes$ TEST4 $_\Phi$ TEST5 $_+$ TEST6 $_ imes$ TEST7 $_ imes$ TEST8 $_ imes$ TEST10

X e115 RESULTS OF PITCH ERROR (erc-secs)

X axis at 20.000 mms Y axis at 111.999 mms Z axis at 660.400 mms (indep) Dir of laser F

		_	
Te	38		- 1

Test #	<u>1</u>					
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.				
TEMP	25, 25	25. 69	34. 6B	25. 34	26. to	25. 81
TEMP	24. 73	25, 69	24. 83	24. 75	24. 98	24. 66
TEMP	26, 45	24. 61	24. 24	24. 46	39. 50	25. 22
MEAN	0.76	0. 74	0. 51	-0. 10	-0. 12	-0.40
MEAN	-1.04	-1, 32	-1. 45	-1. 34	-1. 57	
SD	0. 16	0. 35	0. 36	0. 33	0. 26	0. 32
SD	0. 35	0. 33	0. 34	0. 32	0. 04	J.
Test #	2	V. 33	J. J.	J. 52	0.00	
POS		100 150	200 250			
POS		100. 150.	200. 250. 500.			
TEMP	300. 350.	400. 450.		26.44	24 44	24 42
	26. 00 28. 22	27. 21	35. 60	26. 11	26.06	26. 62
TEMP TEMP	25. 20 23. 14	26. 18	25. OB	25. 01	25. 55	25. 01
	27. 16	25. 15	24. 66	24. 98	40. 87	25. 67
MEAN	-1. 59	-1. 94	-2. 10	-2. 47	-2. 57	-3. 04
HEAN	-3. 39	-3. 46	-3. 83	-3. 7 9	-3. 66	
SD	0. 35	0. 60	0. 57	0. 56	0.60	0. 51
SD	0. 62	0. 57	Ø. 22	0. 27	0. 13	
Test #	3					
209	O. 5 0.	100. 150.	200. 250.			
209	300. 350.	400. 450.	500.			
TEMP	26. 93	29. 02	36. 32	27. 16	27. 34	27. 34
TEMP	25. 79	26. B5	25, 52	25, 45	26. 19	25. 50
TEMP	27. 80	25. 77	25, 13	25, 57	41. 65	26 . 31
MEAN	-4. 78	-4 . 78	-5. 16	-5. 60	-5. 60	-6.06
MEAN	-6. 63	-6. B2	-6. 61	-7. 04	-6. 93	
SD	0. 17	0. 35	0.38	0. 43	0. 38	0. 39
SD	0. 41	0. 31	0. 42	0. 41	0. 07	
Test #	4					
POS	0. 5 0.	100. 150.	200. 250.			
POS	300. 350.		500.			
TEMP	27. 38	32.35	37. 07	-28, 49	29. 19	28. 24
TEMP	26. 65	27. 83	26, 31	26.19	27. 07	26. 24
TEMP	28. 46	26. 53	25. 70	26. 26	42. 39	27. 22
MEAN	-7. 64	-7. 56	-8.17	-B. 54	-B. 51	-8. 91
MEAN	-9. 63	-9. 70	-9.74	-10.17	-9 , 99	J. 7.
SD	0. 21	0. 52	0.57	0. 51	0. 61	0. 47
SD	0. 36	0. 45	0. 35	0.38	0. 11	0. 47
Test #	5	0. 45	0. 33	U. JU	U. 1.	
POS	0. 50.					
POS	300. 350.					
TEMP	27.00	30. 29	37. 55	27. 66	28. 56	28. 85
TEMP	27. 29	28. 32	26. 88	26. 73	27. 76	26. 71
TEMP	28.90	27. 00	26. 14	26. B5	42. 80	27. 88
MEAN	-10. 75	-10.57	-11.06	-11.57	-11.51	-12. 12
MEAN	-12.72	-12. 71	-12. 74	-13 30	-13. 27	

SD SD	0, 20 0, 3 7	0. 37 0. 34	0. 33 0. 43	0. 51 0. 25	0. 43 0. 13	0. 43
	6	0. 34	0. 43	0. 23	0. 13	
PDS PDS	0. 50.).		
TEMP	300. 35 0. 26. 75	. 400. 450 33.66	37. 58	30. 13	30. 66	29, 52
TEMP	28.01	29. 32	27. 79	27. 71	28. 66	27, 59
TEMP	29. 20	27. 49	26. 49	27. 30	42. 87	28. 93
MEAN	-13.08	-12. 78	-13.48	-14. OB	-14. 32	-14.63
MEAN SD	-15. 38 0. 07	-15. B1 0. 4B	-15. 75 0. 47	-16. 33 0. 64	-16. 34 0. 50	0. 54
SD	0. 5 6	0. 50	0. 44	0. 30	0. 07	0. 54
Test #	7	3. 2.2		5. 25		
		400 .50				
POS POS	0. 50. 300. 350).		
TEMP	26. 55	33. 58	37. 45	30. 12	31. 02	29. 68
TEMP	28. 19	29. 41	28.00	27. 90	28. 78	27. 73
TEMP	29. 27	27. 66	26. 61	27. 44	42. 77	29. 10
MEAN	-13. 14	-13.16	~13.73	-14. 3B	-14. 63	-15. 16
MEAN SD	−15. 73 0. 10	-16. 19 0. 36	~16. 33 0. 43	-16. 70 0. 41	-16. B2 0. 39	0. 45
SD	0. 42	0. 36	0. 41	0. 37	0.08	0.40
Test #	8					
POS	0. 50.	. 100. 150	. 200. 250			
POS	0. 50. 300. 350.) .		
TEMP	26. 40	33.88	37.66	30. 64	31. 27	29. 86
TEMP	28. 32	29. 64	28. 23	28. 13	28. 93	27. 91
TEMP	29. 32	27. 79	26. 69	27. 57	42.66	29. 32
MEAN MEAN	-12. 76 -15. 70	-12. 76 -15. 62	-13, 50 -15, 96	~14. 16 ~16. 65	-14. <u>23</u> -16. 86	-14. 86
SD	0. 04	0. 30	0.48	0.42	0.48	0, 45
SD	0. 44	0. 50	0. 38	0.40	0. 12	
Test #	9					
POS	0. 50.	. 100. 150	. 200. 250	١		
POS		400. 450		•		
TEMP	26.30	34. 13	37. 09	30. 52	31. 27	30. 04
TEMP	28. 50	29. 91	28. 43	28. 40	29 . 18	28. 09
TEMP MEAN	29. 23 -12. 08	27. 77 -12. 01	26. 69 -12. 68	27. 55 -13. 27	42, 50 ~13, 66	29. 60 -14. 32
MEAN	-14. B1	-15. 54	-15. B7	-16. 31	-16. 39	. T. DE
SD	0. 20	0. 39	0. 56	0. 44	0. 40	0. 42
SD	0. 65	0. 40	0. 20	0. 40	0. 26	
Test #	10					
POS	0. 50.	100. 150	. 200. 250) .		
POS	300. 350					
TEMP TEMP	26. 20 28. 49	32. 37 29. 85	36. 76 28. 41	27 4 6 28. 36	26.28 29.09	29. 94 28. 07
TEMP	29. 90 29. 09	27. 65 27. 65	26. 41 26. 67	20. 36 27. 51	42. 17	29. 63
MEAN	-11.52	-11.56	-12.16	-12.86	-13. 14	-13.77
MEAN	-14. 41	-14. 8 6	-15. 31	-15.62	-16.00	
GB CD	0. 07	0.38	0. 43	0.39	0. 46	0. 34
SD	0. 35	0. 39	0. 32	0. 29	0. 07	

ACTUAL DATA

-10. 35

-10.75

-10.75

-10.87

-10.87

-10.91

0.09

-0.09

FFARESS							
							EAD
						Up	Down
Test #							
0. 47	 0. 7 9	0.70	0, 91	0. 91	0. 71	-0.04	0.04
0. 51	0. 51	0. 79 0. 9 8	0. 63	1. 34	0. 47	0, 20	-0.20
0.51	0. 04	0. B7	0. 24	0.98	0. 39	0. 29	-0.29
-0.04	-0. 55	0.08	-0.16	0.39	-0. 35	0. 25	-0.25
	-0. 24	0. 12	-0.31	0. 28	-0, 35	0. 18	-0.1B
-0, 43	-0. 75	-0.12	-0.55	0.08	-0. 63	0. 24	-0.24
-1.06	-1.42	-0. 39	~1.18	-0. 98	-1. 22	0. 23	-0. 23
-0. 91	-1. 65	-1.06		-1.14	-1.73	Q. 28	~0. 28
-1, 54	-1. 93	-1.10		-1.06		0. 22	-0. 22
-1. 38	-1.77				-1.61	0. 22	
-1.61		-1. 57	~1. 57	-1.54	-1.54	Ο.	Ο.
Test #							
	-1. 65	~1.65	-1. 57	-1. 57	-2.09	0. 18	-0, 1B
-1.06	-2.09	-1.65		-1.81	-2.87	0. 43	~0.43
-1. 34	-2. 32	-1.77	-2.44	-1. 81	-2.91	0.46	-0.46
-1.65	-2. 52	-2.09	~2. B3	-2.44	-3.27	0. 41	-0, 41
-1.85	-2. 80	-2.01	-2. 95	-2. 40	-3 43	0.49	-0.49
-2. 20	-3. 15	-2. 99	-3. 23	-2. 91	-3. 7B	0. 34	-0.34
-2.40	-3. 46	-3, 11	-3. 66	-3. 3 9	-4. 29	0. 42	-0.42
-2. 60	-3. 66	-2, 99	~3. 70	∽3. 56	-4. 21	0. 40	-0 . 40
-3. 46	-3. 78	-3, 7B		-3. 82		0. 14	-0. 14
-3. 43	-4.06	~3. 54	-4. 02 -3. 54	-3. 74	-3. 98	0. 22	-0. 22
-3. 62	-3.62	-3, 54	-3. 54	-3. 62	~3. BZ	О.	Ο.
Test #							
-4. 49	-4. 84	-4. B4	-4. 92	-4. 92	-4. 65	0. 03	-0. 03
-4. 41	-4. 65	-4, 57	-5. 16	-4. 61	-5. 28	0. 25	-0. 25
-4. 76	-5. 47	-4. B4	-5. 47	-4. BA	-5, 55	0. 34	-0.34
-5. 28	~5, 94	~5. 04	-5. 98	-5. 35	-6. 02	0. 3B	-0.38
-5. 24	-5, 91	-5. 12		~5. 47	-5. 98	0. 33	-0. 33
-5. 71	-6. 34	-5. 79		-5. <u>6</u> 3	6. 5 0	0. 35	-0. 35
-6. 38	-6. 91	-6. 1B		-6. 26	-7. 13	0. 35	-0. 35
-6. 50	-7. 13	-6. 50		-6.69	-7. 20	0. 26	-0. 26
-6. 46 -6. 42	-7. 05 -7. 28	-6. 38 -6. 69				0. 33 0. 32	-0. 33 -0. 32
-6. 85	-6. 8 5	~6. 93	-6. 93		-7. O1	0. 32 0.	-0. 32 0.
Test #		0. 75	J. 15	- 7. 01	7.01	U .	V.
∽ 7. 56	-7, 44	-7, 44	-7. 72	-7. 72	-7. 99	0. 07	-0. 07
~6 . 8 1	-8. 03	-7. 2 0	∽7. 91	-7. 32	-B. 07	0. 45	-0.45
−7. 60	-8.46	∽ 7. 72	B. 74	-7. 69	-B. 82	0. 51	-0. 51
∽7. 95	-B. 98	~8 . 11	-8.82	-8. 23	-9. 17	0. 45	-0. 45
-B. 07	-9, 06	-7. 68	-9.06	-8. 19	-9. 02	0. 53	-0. 53
∽8. 50 -8. 35	-9. 33 -9. 74	-B. 31	-9. 3 7	-8.66	-9. 29	0. 42	-0.42
~9, 25 ~9, 17	-9, 76 -9, 72	-9. 25 -9. 49	-10, 04 -10, 16	-9, 45 -9, 37	~10, 00 ~10, 3 1	0. 31 0. 36	-0. 31 -0. 36
	-10.04	-9. 41	-10. 18 -10. 08		-10. GI	0. 36 0. 31	-0.38 -0.31
	-10.39				-10 29	0.31	-0. 31 -0. 31
	-10.04	-9.84	-9. B4	-10.08	-10 OB	0. 31 0. 31 -0. 00	~0.00
Test #			- -			· · · ·	

-10.16 -10.51 -10.83 -11.02 -11.57 -12.24 -12.20 -12.13 -13.03 -13.23 Test #		-10.28 -10.74 -11.38 -11.14 -11.93 -12.44 -12.56 -12.56 -12.99 -13.43	-10.75 -11.42 -12.01 -11.97 -12.76 -12.87 -13.11 -13.19 -13.54 -13.43	-10 39 -10 98 -11 42 -11 22 -11 85 -12 64 -12 44 -13 35 -13 15	-11.18 -11.34 -12.28 -11.97 -12.44 -13.31 -13.07 -13.15 -13.58 -13.15	0. 30 0. 25 0. 37 0. 38 0. 33 0. 28 0. 23 0. 37 0. 18 0.	~0 30 -0 25 -0 37 -0 38 -0 33 -0 28 -0 23 -0 37 -0 18 0
-12. 95 -12. 24 -13. 07 -13. 50 -13. 82 -14. 21 -15. 00 -15. 47 -15. 55 -16. 02 -16. 42	-13. 11 -13. 19 -13. 94 -14. 65 -14. 72 -15. 12 -15. 83 -16. 22 -16. 06 -16. 46 -16. 42	-13, 11 -12, 32 -13, 11 -13, 58 -13, 86 -14, 06 -14, 65 -15, 20 -15, 08 -16, 26	-13.07 -13.23 -13.82 -14.57 -14.76 -15.08 -16.30 -16.30 -16.22 -16.61 -16.26	-13.07 -12.48 -12.99 -13.43 -13.94 -14.17 -15.00 -15.43 -15.55 -16.10 -16.34	~13. 15 ~13. 23 ~13. 98 ~14. 76 ~14. 84 ~15. 16 ~15. 98 ~16. 26 ~16. 06 ~16. 69 ~16. 34	0. 03 0. 43 0. 43 0. 58 0. 45 0. 47 0. 50 0. 45 0. 36 0. 26 0. 26	-0. 03 -0. 43 -0. 43 -0. 58 -0. 45 -0. 50 -0. 45 -0. 36 -0. 26
Test # -13.11 -12.76 -13.39 -13.86 -14.37 -14.80 -15.31 -15.94 -16.46 -16.93 Test #	-13. 19 -13. 66 -14. 25 -14. 84 -15. 08 -15. 67 -16. 26 -16. 46 -16. 47 -17. 13 -16. 93	-13. 19 -12. 99 -13. 35 -14. 13 -14. 37 -14. 76 -15. 47 -15. 94 -16. 30 -16. 77	-13, 19 -13, 23 -13, 98 -14, 65 -14, 96 -15, 55 -16, 02 -16, 46 -16, 65 -16, 85 -16, 77	-13. 19 -12. 83 -13. 31 -14. 06 -14. 13 -14. 69 -15. 28 -15. 75 -15. 75 -16. 38 -16. 77	-12.95 -13.46 -14.09 -14.72 -14.88 -15.47 -16.02 -16.61 -17.09 -16.77	~0.03 0.30 0.38 0.36 0.34 0.41 0.37 0.37 0.35 0.35	0. 03 -0. 30 -0. 38 -0. 34 -0. 34 -0. 37 -0. 31 -0. 35 -0. 32 0.
	-12.76 -12.99 -14.45 -14.80 -15.16 -16.18 -16.26 -16.30 -17.01 -16.85	-12. 76 -12. 36 -13. 11 -13. 78 -13. 86 -14. 45 -15. 20 -15. 63 -16. 06 -16. 73	~12. 76 ~13. 15 ~13. 94 ~14, 69 ~14, 57 ~15. 24 ~15. 98 ~16. 22 ~16. 18 ~16. 89 ~16. 73	-12. 76 -12. 68 -13. 15 -13. 70 -13. 82 -14. 37 -15. 35 -15. 28 -15. 75 -16. 38 -17. 01	-12.72 -12.87 -13.82 -14.45 -15.39 -16.10 -16.30 -16.42 -17.05	~0. 02 0. 25 0. 43 0. 37 0. 43 0. 40 0. 39 0. 44 0. 33 0. 33	0. 02 -0. 25 -0. 43 -0. 37 -0. 40 -0. 39 -0. 44 -0. 33 -0. 00
-12.20 -11.69 -12.44 -12.95 -13.46 -14.02 -14.84 -15.16 -15.83		-12. 20 -11. 81 -12. 32 -12. 91 -13. 31 -13. 86 -14. 49 -15. 08 -15. 59	-12.09 -12.44 -13.27 -13.94 -14.25 -14.72 -15.43 -15.98 -16.14	-12.09 -11.61 -12.13 -13.03 -13.78 -14.33 -13.74 -15.39 -15.79	~11.69 ~12.01 ~12.40 ~13.07 ~13.86 ~14.06 ~14.84 ~15.59 ~15.33	-0. 09 0. 31 0. 38 0. 30 0. 29 0. 25 0. 45 0. 33 0. 14	0.09 -0.31 -0.38 -0.30 -0.28 -0.25 -0.45 -0.33 -0.14

-16.02	-16. 89	-15. 91	-16. 61	-16. 42	-15. 9 8	0.19	-0.19
-16. 50	-16. 50	-16.06	-16.06	-16.61	-16.61	Ο.	0.
Test 6	10						
-11.54	-11. 57	-11. 57	-11.54	-11.54	-11.38	-0. 03	0. 03
-11.10	-12. 01	-11.26	-11.89	-11.30	-11.81	0. 34	-0.34
-11.89	-12. 72	-11.81	-12. 52	-11.65	-12.36	0. 37	~0.37
-12. 68	-13. 31	-12.40	-13.31	-12.52	-12, 95	0. 33	-0.33
-12. 80	-13.66	-12.60	-13. 54	-12.80	-13.43	0.41	-0.41
-13.50	-14, 17	-13.46	-14. 02	-13. 43	-14.02	0.30	-0.30
-14, 13	-14. BO	-14, 13	-14.76	-14. 02	-14.61	0. 31	-0.31
-14.57	-15. 28	-14, 45	-15. 28	-14. 53	-15.04	0. 34	-0.34
-15.00	-15. 67	-15.16	-15.47	-14.96	-15.63	0.28	-0.28
-15.59	-15.94	-15, 43	-15.87	-15. 16	-15.71	0. 22	-0.22
-15 91	-15 91	-16 06	-16 06	-16 02	-16 02	-0.00	-0.00

Regression Equation

-3.37*T14 - 0.23e-3*T2*X - 1.62*T3 +0.82*T1 + 119.56

TEST1 Δ TEST2 + TEST3 \times TEST4 \oplus TEST5 + TEST6 \times TEST7 Z TEST8

X AXIS
RESULTS OF ROLL ERROR (erc-sec)

X axis at 30.000 mms Y axis at 140.000 mms Z axis at 349.999 mms

	Z exis et 3	49. 999 mas				
	Ref is + ve					
Test #	1	_				
POS	0. 50.		200. 250.	•		
POS		400. 450.				
TEMP	25. 45	25. 92	35. 15	26: 39	26: 7 0	26. 83
TEMP	25. 63	26. 75	25, 95	25. 92	26. 07	25. 77
TEMP	27. 17	25. 41	25.06	25. 28	40. 28	26. 31
MEAN	1.87	2. 08	2. 07	1. 83	2. 08	1. 73
MEAN	1. 57	1. 23	1. 53	1. 30	1. 17	
SD	0. 94	0. 69	0.44	0. 46	0. 31	0. 22
SD		0. 10	0. 29	0. 22	0. 14	
Test #						
POS		100. 150.	200 250			
POS		400. 450.		•		
TEMP	26. 15	27. 33	36, 24	27. 03	26. B1	27. 79
TEMP	26. 32	27. 64	26. 42	26. 32	26. 94	26. 20
TEMP		26. 0B	25. 49	26. 03	41.60	27. 21
MEAN		0. 05	-0.15	-0. 12	-0. 37	-0. 52
MEAN	-0. 73	-0. 77	-0. 73	-1.05	-0. 90	-U. DE
SD	0. 05	0.08	0. 24	0. 15	0. 05	0. 16
SD	0. 10	0. 12	0.08	0. 16	0. 09	V. 10
Test #	3	·	0, 55	U. 10	U. U ,	
POS	0. 50.	100, 150,	200. 250	•		
POS		400. 450.				
TEMP	26, 48	28. 25	36, 70	27. 81	27. 52	28. 25
TEMP	26. 74	28. 01	26. 74	26. 66	27, 45	26. 54
TEMP		26. 42	25, 76	26. 40	42. 05	27. 69
MEAN	-1. 92	-1. 83	-1. 75	-1.58	-1. 92	-2. 33
MEAN	-2. 08	-2. 58	-2. 75	-2. 42	-2.67	_
SD	0. 20	0. 41	0. 27	0. 38	0. 20	0. 26
SD	0. 38	0. 38	0. 27	0. 20	0. 26	
	4					
POS	0. 50.	100. 150.	200. 250			
POS		400, 450.				
TEMP	26. 60	29. 24	36. 92	20. 48	20. 31	28. 58
TEMP	27. 02	28. 36 26. 67	27.02	26. 92	27. 78	26. 82
TEMP	28. 53	26.67	25. 92	26. 63	42. 29	28. 04
MEAN	-10.42		-10.00	-10.08	-10. 33	-10. 33
MEAN SD		-10.92	-10.67	-10.76	-10. 50	
SD	0. 20	0. 20	0.	0. 20	0. 26	0. 41
Test #	0. 3B 5	0. 20	0. 41	0. 40	0. 45	
POS		100. 150.	200 250			
POS		400 350.		•		
TEMP	26. 75	31.08		29. 33	29. 37	28. 96
TEMP	27.35	28. 72			28. 11	27. 13
TEMP	28.77	26. 94	26.13	26. B6	42. 43	28. 40
MEAN	-24.00		27, 33 26, 13 -24, 00 -25, 00	-24. 08	-24. 58	-24. 75
MEAN			-25.00	-25.00	-25.00	

65	•		_			
SD	O.	0. 20	o .	0. 20		0. 27
_SD		0. 20	O .	0.	Ο.	
Test #	_6 					
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.	500.			
TEMP	26. 43	32. 66	37. 21	29. 80	30. 16	29 . 26
TEMP	2 7. 70	29. 02	27. 65	27. 53	28.16	27. 14
TEMP	28. 70	27. 01	25. 40	26. 43	42. 48	28.65
MEAN	-24. 75	-24. 17	-24. 5B	-24 B3	-24. 83	-25.00
MEAN	-25. 00	-25. 00	-25. 00	-25.00	-25. 00	
8D	0. 27	0. 41	0. 20	0.41	0. 26	Q.
SD	O .	0.	0.	0.	0.	
Test #	7					
						
POS	0. 50.					
POS	300. 350.				_	
TEMP	26. 55	30. B9	37. 24		29 . 14	29 . 36
TEMP	27. 83				28 . 27	27. 12
TEMP	28. 83			2 6. 5 3	42. 39	28 . 80
			-25. 00	-25.00	~25 . 17	-25. 08
	~25 . 33	-25. 42	-26. 00			
SD	0. 20	0. 26 0. 49	O .	Ο.	0. 41	0. 20
SD	0. 52	0. 49	Ο.	0. 39	O .	
Test #	8					
POS	o. 5 0.	100. 150.	. 200. 250			
POS	300. 350.	400. 450.	. 500.			
TEMP	26. 28	34. 03	37. 18	30. 57	31, 15	29. 72
TEMP	28. 23	29. 65	28. 23	28.06	28. 67	27. 65
TEMP	29. 04	27. 55	26. 11	26. 96	42. 15	29. 31
MEAN	-2.75	-2. 33	-2. 42	-3. 00	-2. 92	-3.00
MEAN	-3. 00	-3. 00	-3. 00	-3. 00	-3. 67	
SD	0. 27	0. 52	0. 49	0.	0. 20	0.
SD	Ο.	0.	0.	Ō.	0. 26	

ACTUAL DATA

						SPREAD)
						Up	Down
Test #	1					•	
0.	2.00	2. 00	2. 30	2. 30	2.60	-0. 43	0. 43
0. 70	2. 20	2. 30	2. 30	2. 60	2.40	-0. 22	0. 22
1. 20	2.00	2. 30	2. 30	2. 30	2.30	-0. 13	0. 13
1.10	1. BO	1. 50	2. 20	2. 20	2. 20	-0. 23	0. 23
1. 50	2. 10	2. 00	2. 30	2. 30	2. 30	-0. 15	0. 15
1.30	1.80	1.80	1. 90	1. BO	1.80	-0. 10	0.10
1. 10	1.80	1.40	1. BO	1. BO	1. 50	-0. 13	0. 13
1.10	1. 20	1.40	1. 20	1.30	1. 20	0. 03	-0. 03
1. 40	1.10	1.80	1. 50	1. 90	1. 50	0. 17	-0.17
1.40	0. 90	1. 50	1. 20	1.40	1.40	0. 13	-0. 13
1.00	1.00	1. 20	1. 20	1.30	1. 30	-0.00	-0.00
Test #	2						
0.	0.	0.	-0. 10	-0. 10	-0. 10	0. 02	-0. 02
0 .	0. 20	0.	0. 10	0.	0.	-0. 05	0. 05
-0.10	-0. 20	0. 30	-0. 30	-0. 40	-0. 20	0. OB	-0.08
-0. 30	0.	-0.10	0.	-0.30	Ο.	-0.12	0.12
-0. 40	-0.30	- 0. 40	-0. 30	-0.40	-0.40	-0. 03	0.03

-0. 50	-0. 50	-0. 80	-0. 50	-0. 30	-0. 50	-0. 02	0. 02
-0.60	-0.70	-0. 90	-0 BO	-0.70	-0. 70	0.	0.
-0. 70	-0. 90	-0. 90	-0. 80	-0.60	-0. 70	0. 03	-0. 03
- 0. 70	- 0. 9 0	-0. 70	-0. 70	-0. 70	-0. 70	0. 03	-0. 03
-0. 9 0	-1. 20	-0. 90	-1. 20	-0. 9 0	-1.20	0. 15	-0.15
-1.00 Test #	~1.00 : 3	-0. 9 0	-0. 90	-0. 80	-0. 80	0. 00	0. 00
-1. 50	-2. 00	-2. 00	-2. 00	-2. 00	-2. 00	0. 08	-O. OB
-1. 50	-1.50	-1.50	-2.00	-2.00	-2. 50	0. 17	-0.17
-1.50	-2. 00	-1. 50	-2. 00	-1.50	-2.00	0. 25	-0. 25
-1. 50	-1.00	-1.50	-1.50	-2.00	-2.00	-O. OB	O. 08
-2.00	~1. 50	-2.00	-2.00	-2.00	-2.00	-0. 08	0. OB
-2. 00 -2. 00	-2. 00 -1. 50	-2. 50 -2. 00	-2. 50 -2. 0 0	-2.50 -2.50	-2. 50 -2. 50	0. -0.08	0. 0. 08
-2.00	-2 50	-2.50	-3.00	-2.50	-3.00	0. 25	-0. 25
-2. 50	~2. 50	-2.50	-3.00	-3.00	-3. 00	O. OB	-0. OB
-2.00	~2. 50	-2. 50	-2. 50	-2. 50	-2. 50	0.08	-0.08
-2. 50	-2. 50	-2. 50	-2. 50	-3. 00	-3.00	Ο.	0.
Test # -10.00	4 -10. 50	-10. 50	-10 50	-10. 50	-10. 50	0. 08	-0 OB
-10.00 -9.50	-10. 90 -10. 00	-10. 50 -10. 00	-10.50 -10.00	-10. 50 -10. 00	-10. 00	0. OB	-0.08 -0.08
-10.00	-10.00	-10.00	-10.00	-10.00	-10.00	0.	0.
-10.00	-10.00	-10.00	-10.00	-10.50	-10.00	-O. OB	0. OB
~10.00	-10.00	-10. 50	-10, 50	-10. 50	-10. 50	0.	0.
-10.00	-10.00	-10.00	-10.50	-10. 50	-11.00	0. 17	-0. 17
-10.00 -11.00	-10.00 -10.50	-10.50 -11.00	-10, 50 -11, 00	-10.50 -11.00	-11.00 -11.00	0.08 -0.08	-0.08 0.08
~10.00	-10. 50 -10. 50	-11.00	-11.00 -10.50	-11.00	-11.00	-0. 05 0.	0.08
-10.05	-11.00	-10.50	-11.00	-11.00	-11.00	0. 24	-0. 24
-10.00	-10.00	-10.50	-10. 50	-11.00	-11.00	0.	Ο.
Test #							
-24. 00	-24. 00	-24.00	-24.00	-24.00	-24.00	0.	0.
-24. 50 -24. 00	-24, 00 -24, 00	-24. 00 -24. 00	-24. 00 -24. 00	-24.00 -24.00	-24. 00 -24. 00	-0. 08 0.	0. 08 0.
-24.00	-24.50	-24.00	-24.00	-24.00	-24.00	O. OB	-0. OB
-24. 50	-24.50	-25.00	-24. 50	-24. 50	-24. 50	-0. 08	0. 0 8
~25. 00	-24.50	-24. 50	-25.00	-25. 00	-24. 50	-0. 08	0.08
-24. 50	-25. 00	-24. 50	-25. 00	-25. 00	-25. 00	0. 17	-0. 17
-24.50	-25.00 -25.00	-25. 00 -35. 00	-25.00	-25.00	-25. 00	0.08	-0.08
-25. 00 -25. 00	-25.00 -25.00	-25. 00 -25. 00	-25.00 -25.00	-25. 00 -25. 00	-25. 00 -25. 00	O. O.	0. 0.
-25.00	-25.00	-25. 00	-25.00	-25.00	-25.00	Ö.	Ö.
Test 4	6						
-25. <u>0</u> 0	-25. 00	-25. 00	-24. 50	-24. 50	-24. 50	-0. OB	0. OB
-24.00	-24.00	-24.00	-24.00	-25. 00	-24.00	-0. 17	0. 17
-24. 50 -25. 00	-24.50 -25.00	-24, 50 -25, 00	-24, 50 -24, 00	-25. 00 -25. 00	-24, 50 -25, 00	-0. 08 -0. 17	0.08 0.17
-25.00	-24. 50	-25. 00	-24. 50	-25.00	-25.00	-0. 17 -0. 17	0.17
-25. 00	-25.00	-25. 00	-25.00	-25.00	-25. 00	0.	0.
-25. 00	-25. 00	-25. 00	-25.00	-25.00	-25.00	Ö.	0.
-25. 00	-25. 00	-25. 00	-25. 00	-25.00	-25. 00	0.	O .
-25.00	-25. 00 -25. 00	-25.00 -35.00	-25. 00 -35. 00	-25.00 25.00	-25.00 -25.00	O.	0.
-25. 00 -25. 00	-25.00 -25.00	-25. 00 -25. 00	-25. 00 -25. 00	-25.00 -25.00	-25. 00 -25. 00	0. 0.	O. O.
Test 4		25.00	25.00	25.00	20.00	V.	U.
-25. 50	-25. 00	-25. 00	-25.00	-25. 00	-25. 00	-O. OB	0. OB
-25. 00	-25. 00	-25. 50	-25. 00	-25. 50	-25.00	-0. 17	0.17
-25. 00	-25.00	-25.00	-25, 00	-25.00	-25. 00	0.	0.
-25.00 -26.00	-25 00 -25 00	-25.00 -25.00	-25.00 -25.00	-25. 00 -25. 00	-25. 00 -25. 00	0. - 0. 17	0. 0 17
20.00	25.00	- 23.00	- EJ. UU	-25.00	- EJ. UU	-0.17	U 1/

-25. 50	~25. 00	-25. 00	-25.00	-25. 00	-25. 00	-O. OB	0.08
-26.00	~25. 00	-25. 00	-25.00	-26.00	-25.00	-0. 33	0. 33
-26. 00	~26. 00	-25.00	-25. 00	-25. 50	-25. 00	-O. OB	0.08
-26.00	-26.00	-26. 00	-26.00	-26.00	-26.00	Ö.	0.
-26.00	-26.00	-25. 05	-26.00	-26.00	-26, 00	0.16	-0.16
-26. 00	~26.00	-26. 00	-26.00	-26.00	-26, 00	O.	O.
Test (8 8					<u>.</u>	
-2. 50	-3. 00	-3. 00	-2. 50	-2. 50	-3.00	0.08	-0.08
-2. 00	-2. 00	-2. 00	-3. 00	-2. 00	-3. 00	0. 33	-0. 33
-2. 50	-2. 00	-2.00	-3.00	-2.00	-3, 00	0. 25	-0. 25
-3. 00	-3. 00	-3.00	-3.00	-3.00	-3.00	O.	0.
-3. 00	-2, 50	-3.00	~3. 00	-3.00	-3.00	-O. OB	0.08
-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	O.	0.
-3. 00	-3.00	-3.00	-3.00	-3.00	-3. 00	Ö.	0.
-3. 00	-3. 00	-3. 00	-3. 00	-3.00	-3.00	Ö.	O.
-3. 00	-3.00	-3.00	~3.00	-3.00	-3.00	Ö.	Ο.
-3. 00	-3.00	-3.00	-3.00	-3.00	-3.00	Ö.	0.
-4.00	-4 00	-3.50	-3.50	-3 50	-3 50	Ď.	Ô

-33.91*T9 + 21.74*T13 - 5.01*T15 - 0.63e-4*X*T5 + 416.68

TESTI & TESTS + TESTS X TESTS + TESTS + TESTS X TESTS X TESTS X TEST 10

TESTI A TESTS + TESTS X TESTS + TESTS X TESTS X TESTS X TESTS X TEST 10

X AXIS RESULTS OF YAW ERROR (atc-secs)

X axis at 40.000 mms Y axis at 111.999 mms Z axis at 660.400 mms (indep) Dir of laser F

D	ir of laser		1110441			
Test #						
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.	50 0.			
TEMP	24. 58	24.88	34. 39	24. 56	24. 56	24. 92
TEMP	24. 38		24. 38	24. 36	24.46	24. 38
TEMP	25. 88	24. 39	24. 26	24. 29	37. 66	2 4. 53
MEAN	~0. 28	0. 26	1. 31	2. 70	4. 30	5. 86
MEAN	7. 50		11. 13	12. 79	13. 32	
SD	0. 19	0. 44	0. 36	0. 52	0. 59	0. 61
SD	0. 67	0. 72	0. 75	0. 63	0.10	
Test #	_					
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.	500.			
TEMP	24. 95	25. 95	34. 87	28-39	25.45	25. 76
TEMP	24.68	25. 39	24. 63	24. 60	24. 92	24. 60
TEMP	26. 54	24. 75	24. 41	24. 58	39. 93	25. 02
MEAN	~1 . 27	-0.42	0. 73	2. 28	4.06	5. 78
MEAN	7. 49		11. 12	12.88	13. 37	
SD	0. 19	0. 40	O. 55	0.62	0.60	0. 71
SD	0. 80	0. 92	0.86	0. 93	0.14	
Test #						
POS	0. 5 0.	100 150	200. 250.			
POS		400. 450.				
TEMP	25. 30	27. 80		26. 46	26. 68	26. 53
TEMP	25. 11			24. 96	25. 48	24.96
TEMP	27. 04		24. 62	24. 99	40. 73	25. 65
MEAN	-3.86	25. 16 -2. 97	-1.71	-0.09	1.62	3. 39
MEAN	5. 11	7. 11	8. 76	10.77	11.38	
SD	0. 22	0.40	0. 53	0. 65	0. 65	0. 73
SD	0. 8 9	0. 7B	0.85	0. 87	0.00	
Test #	4					
POS	0. 50.	100 150	200, 250.			
POS	300. 350.					
TEMP	26. 02			- 20. 0 6	29. 09	27. 67
TEMP	26 08		25. 79	25. 71	26. 35	25. 59
TEMP	27. 72		24. 63	25. 37	41.86	26. 65
MEAN	-5. 66	-4. 92	-3. 50	-1. 71	0. 13	2. 09
MEAN	4. 07	6. 25	8. 19	9.85	10. 14	
SD	0. 15	0. 79	0. 74	0. 82	0. 79	0. 95
SD	1 00	1.02	1.12	1.07	0.14	
Test #	5					
POS	O. 50.	100 150	200, 250.			
POS	300 350.					
TEMP	26. 95		37. 27	28. 56	29. 93	28. 37
TEMP	26 78		26 37	26 24	27. 73 27. 17	26. 24
TEMP	28 42		25. 5B	26. 24	42 40	27. 34
MEAN	-6 54	-5 61	-4 26	-2 36	-0.45	1 33
MEAN	3.42		7.32	9.08	10-04	

SD	0. 04	0. 42	0. 52	0. 79	0. 75	0. 63
SD	0. 79	0. 95	1. 01	0. 99	0, 21	
Test #	6					
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.	500.	20 22	30.43	20 05
TEMP	27. 05	33. 94	37. 81 26. 92	29. 22 26. BO	30. 63 27. 78	28. 95 26. 80
TEMP	27. 39	28. 3 9	26. 92 26. 02	26. 60 26. 75	42.87	27. 98
TEMP MEAN	28. 85 -6. 96	27. 02 -6. 03	-4. 70	-2.88	-1. 27	0.91
MEAN	2. 93	5. 07	7. 28	9. 25	9.46	U . 7.
SD	0. 07	0. 65	0. 79	0.98	0.89	0. 90
SD	1.11	1.15	1. 17	1. 14	0. 07	
Test #	7					
POS	0. 50.	100. 150.	200. 250.			
POS	300, 350.	400. 450.	500.			
TEMP	27. 23	34. 22	38. 24	29. 5 0	30. 96	29. 30
TEMP	27. 74	28. 79	27. 30	27. 18	26. 21	27. 18
TEMP	29. 14	27. 33	26. 28	27. 06	43. 14	28. 40
MEAN	-7. 48	-6. 57	-5. 28	-3. 58	-1. 63	0. 36
MEAN	2. 46	4. 57	6. 75 0. 43	8. 65 0. 64	9, 28 0, 68	0. 75
SD SD	0. 04 0. 87	0. 53 0. 98	0. 62 0. 94	1.03	0. 12	0.75
Test #	8	U. 76	0. 77	1. 03	V. 1E	
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.	500.			
TEMP	2 7. 23	35. 24	38. 41	20. 6 0	3 1 86	30. 02
TEMP	28. 49	29. 58	28. 10	28.00	29. 10	2 7. 9 7
TEMP	29. 53	27. 88	26. B2	27. 6B	43, 41	29. 29
MEAN	-8.33	-7. 73	-6. 27	-4. 42	-2. 49	-0.56
MEAN	1. 46	3. 74	5. 95	7. B1	8. 32 0. 33	0.00
SD	0.05	0. 64	0. 88	0. 78 1. 10	0. 83 0. 09	O. 89
SD Test #	1. 09 9	1. 07	1. 03	1. 10	0. 07	
	7					
POS	0. 50.	100. 150.	200, 250.			
POS	300. 350.	400. 450.	500.			
TEMP	27. 18	33. 03	37. 96	29. 31	30.53	29. 97
TEMP	28. 61	29. 80	28. 29	28. 14	29. 05	27. 88
TEMP	29. 39	27. BO	26. 53	27. 41	43. 34	29. 46
MEAN	-4 . 00	-3. 09	-1. 54	0. 22	2.19	4. 17
MEAN	6. 13	B. 45	10. 30	12. 11	12.83	
SD	0. 31	0. 69	0. 67	0. 6B	0. 96	0. 90
SD	0. 95	1. 16	1.06	1.03	0. 21	
Test #	10					
POS	o. 5 0.	100, 150,	200. 250.			
POS	300. 350.	400. 450.	500.			
TEMP	27. 18	33. 08	38.18	30. 46	31. 19	30.13
TEMP	28. 64	29. 93	28. 47	28. 35	29. 30	28.18
TEMP	29. 59	27. 96	26. BB	27. 76	43. 21	29.66
MEAN	-4. 25	-3. 20	-1.75	-0.14	1. 76	3. 76
MEAN	5. 70	7. 95	10.04	11. 94	12, 28	
SD	0.06	0. 50	0.65	0.68	0 68	0. 73
SD	0 83	0.88	0. 87	O. 98	0.11	

٨	C.	T	U	A	L		D	A	T	٨	
_	_	_	_	_	_	_	_	_	_	_	

						SPREAD	
						Üp	Down
Test # 1						•	
-0. 04	-0.16	-0.16	-0. 39	-0. 3 9	-0. 55	0. 09	-0.09
0.16	0. 79	-0.12	0. 63	-0. 35	0. 43	-0. 36	0.36
0. 94	1.89	0. 75	1. 89	0. 75	1. 45	-0. 50 -0. 50	0. 50
	3. 27						
2. 36		2. 13	3. 15	2. 20	3. 07	-0. 47	0. 47
3 . 98	4. 96	3. 70	4. B4	3. 66	4. 65	-0. 52	0. 52
5. 47	6. 57	5. 28	6. 3 8	5. 20	6. 26	~ 0. 54	0. 54
7. 09	8. 27	6 . 81	8. 11	6. B1	7. 91	-0. 60	0.60
6 . 78	10.08	8. 62	9. 96	8. 58	9. 84	-0. 65	0. 65
10. 59	11. 9 7	10. 47	11.81	10. 31	11.61	-0.67	0.67
12. 13	13.66	12. 01	13. 54	11. 97	13. 43	-0. 75	0. 75
13.39	13.39	13. 39	13.39	13. 19	13. 19	0.	Ö.
	13.07	10.07	10.07	15. 17	10.17	U .	U .
-0. 91	-1. 26	-1. 26	-1.39	-1. 38	-1.42	0. 09	-0. 09
-0. 35	Ο.	-Q. 87	-0.08	- 0. 94	-0. 28	-0. 30	0.30
0. 51	1.34	0. 20	1. 22	0. 04	1.06	-0. 48	0.48
1.89	2. 95	1. 81	2. 76	1. 50	2. 80	-0. 55	0. 55
3. 70	4. 72	3. 66	4, 53	3, 23	4. 49	-0.52	0. 52
5. 35	6. 57	5. 12	6. 34	4. 96	6, 34	-0.64	0.64
6. 85	B. 35	6. 73	B. 15	6.69	B. 15	-0. 73	0.73
8. 70	10. 35	8. 46	10.08		10. OB		0. 73 0. 83
				B. 39		-0. 83	
10. 59	12.01	10. 31	11. B5	10. 12	11. B1	-0. 77	0. 77
12. 13	13. 62	11, 97	13, 78	12. 01	13. 58	-0. 85	Q. 85
13. 54	13. 54	13, 35	13. 35	13. 23	13. 2 3	O .	0.
Test # 3							
-3. 74	-3. 70	-3. 70	-3. B6	-3. B6	-4. <i>2</i> 9	0. 09	-0.09
-3, 03	-2.64	-3. 43	-2.64	-3. 46	-2.60	-0.34	0. 34
-2.13	-1. 10	-2. 28	-1. 22	-2. 17	-1. 38	-0. 48	O. 4B
-0.47	0.71	-0.79	0.43	-0.71	0.31	-0. 57	0.57
				-	-		
0. 94	2. 36	1.06	2. 13	1. 10	2. 13	-0. 5B	0. 58
2. 72	4. 13	2.60	3. 98	2. 87	4. 02	-0. 66	0.66
4, 49	6. 18	4. 17	5. 75	4. 29	5. 7 9	~ 0. 79	0. 79
6. 4⊋	7. 91	6. 42	7. 91	6. 38	7. 64	-0.71	0.71
8 . 0 3	9. 80	8. 23	9.76	B. 31	9. 61	- 0. 77	0.77
10.04	11.57	9. 8 8	11.65	10.00	11.46	-0. 79	0.79
11.38	11.38	11.38	11.39	11. 38	11.38	٥.	0.
Test # 4							
-5.63	-5. 71	-5.71	-5. 51	-5, 51	-5. 91	0. 05	-0.05
-5.51	-4.33	-5. 63	-3.90	-5. 71	-4. 45	-0.70	0.70
-4, 29	-2.72	-4.13	-2.68				
				-4.02	-3, 15	-0. 65	0.65
-2. 48	-0. 98	-2. 52	-0 83	-2. 36	-1.10	-0. 74	0. 74
-0. 47	0. 98	-0.55	0.67	-0. 71	0, 87	-0.71	0.71
1, 22	3.07	1. 22	2. 87	1. 22	2, 91	-0. 87	O. 87
3.15	4.96	3. 27	5.08	3.07	4, 92	-0. 91	0. 91
5, 20	7 24	5. 31	7.17	5. 43	7.13	-0. 93	0. 93
7. 20	9.49	7. 20	9. 21	7. 13	8.90	-1.01	1.01
8.82	10 71	8 86	10 83	8.94	10.94	-0. 9B	0. 9B
9.96	9, 96	10.24	10.24	10. 24	10. 24	0.	0. 75
Test # 5	0	• • • • •		4V. K7	. V. E.7	♥.	•
	_4 =0	_4 =0	_4 =7	_4 =7	_4 84	0.00	0.00
-6. 54	-6 50	-6 5 0	-6 57	-6.57	-6. 54	0.00	0. 00
-5 98	-5 43	-5 83	-5 16	-6. 10	-5. 16	-0. 36	0. 36
-4 65	-3, B2	-4 76	-3 58	-4. 72	-4.02	- 0. 45	0.45
-2 95	-1 85	-3 15	-1 65	-3 11	-1.46	-0.71	0.71
-1 10	0.47	-1 02	-0 12	-1.22	0.28	-0.66	0.66
0 59	2 13	0.83	1.61	0.91	1.89	~0.55	0. 55
2 72	4 17	2.64	3 94	2 76	4 29	-0.72	0 72
4.57	6 26	4.47	6.02	4 .49	6 42	-0 86	0.86
4.3.	0	7 7/	0	→ '7"	0.45		U 80

6 26	B 15	6 57	B 39	6.38	B 15	-0. 91	0.91
8 07	9 76	8 27	9 96	8 23	10. 20	-0. 89	0 89
9 76	9 76	10 16	10.16	10 20	10.20	Ο.	0
Test # 6					-	_	_
-6 93	~7 05	-7.05	-6 B9	-6.89	-6, 93	O .	Ο.
-6 61	-5 63	-6. 57	-5 24	-6 65	-5. 47	-0. 58	0 58
-5 08	-3 94	-5 47	-3 98	-5.67	-4.09	-0.70	0.70
-3.54	-2 01	-3 B2	-2 32	-3.90	-1.69	-0. B7	0.87
-1 93	-0 39	-2 09	-0 47	-2 20	-0.51	-0. B1	0 81
0.31	1.61	0.04	1. 81	-0 08	1.73	-0. B1	0.81
2 28	4 02	1. 73	4.02	1. 61	3.74	-0. 99	0.99
4 41	6 06	3.86	6 38	3 86	5 83	-1.02	1.02
6 50	8 07	6 14	8.66	6.06	B. 23		
6.19	10 20	6 58	10.35	7. 91		-1.04	1. 04
9 49	9.49	9.53	9 53		10 28	-1.02	1.02
Test # 7	7. 47	7. 33	7 33	9. 37	9. 37	O .	Ο.
-7. 52	~7. 44	-7. 44	-7. 52	~ ~~	44		
-7. 0 5	-5 9 8	-7. 01		-7.52	-7. 44	-0.01	0. 01
-5 B7			-6. 1 8	-7. O 9	-6. 10	-0 4B	0.48
	-4 53	-5. 87	-4. B4	-5. 79	-4. BO	-0. 56	0.56
-4. 21	-2. 91	-4. 13	-2. 95	-4. 13	-3. 11	-0. 5B	0.58
-2 28	-0.83	-2. 17	-1.14	-2.28	-1.06	-0. 62	0.62
-0 28	1. 14	- 0. 35	1. 10	-0.31	O. 87	-0. 68	0.68
1. 65	3. 46	1. 73	3. 23	1.65	3. 03	- 0. 78	0.78
3. 74	5. 55	3. 66	5. 47	3. 62	5. 35	-O. 89	O. 89
6 02	7. 80	5. 91	7. 64	5. 79	7. 36	-0. B5	O. 85
7 83	9. 69	7. 83	9. 53	7. 48	9. 53	-0. 93	0. 93
9. 13	9. 13	9. 41	9. 41	9. 29	9. 29	0.	Ο.
Test # B							
-8. 39	-8. 27	~8 . 27	-B. 35	-8 35	~8. 35	-0. 01	0.01
-8 . 31	-7. 13	~8 . 31	-7. 32	-B. 31	-7. 01	-0. 58	0 58
−7. 13	-5. 43	-7.13	-5. 51	-6. 97	-5.47	-0. BO	O. 80
-5. 31	-3.50	-5. 12	~3. 7B	-4. 88	-3. 90	-0.69	0.69
-3.31	-1.85	-3, 35	~1.89	-3. 03	~1.50	-0. 74	0.74
-1.38	0. 39	~1. 50	0. 04	-1. 22	0. 28	-O. BO	0 80
O. 55	2. 20	0. 31	2. 68	0. 55	2. 44	-0. 98	0. 9B
2. 87	4. 69	2.91	4. 72	2. 52	4. 72	-0. 97	0.97
4. 96	6. 85	5. 04	7. 13	5. OB	6. 65	-0.93	0.93
6. 77	8. 90	6. 77	8. 78	6.89	8. 78	-1.00	1.00
B. 31	8. 31	8. 23	8. 23	8. 43	8.43	Ö.	0.
Test # 9				0. 40	0. 43	•	U .
-4. 61	-3. B6	-3. B6	~3. 82	-3, 82	-4. 02	-0. 10	0. 10
-4.13	-2.32	-3.58	~2.64	-3, 27	-2.60	-0. 10 -0. 57	0. 57
-2. 32	-0. 98	-1. 97	-0. 79	-2, 13	~1.06	-0.60	0. 60
-O. B7	0. 83	-0.16	0.75	0.	0.75	-0. 56	0. 50 0. 56
1. 14	3.31	1. 69	3. 15	1. 22			
3. 11	5. 04	3. 54	5. 04	1. 22 3. 43	2. 64 4. 84	-0. B4	0. 84
4. 88	6. 77	5. 67	7. 17			-0. B1	0. B1
6. 93	9, 49	7. 52	7. 17 9. 49	5. 35 7. 83	6. 93	-0.83	0.83
9. 02	11.06	9. 61			9. 45	-1.02	1.02
7. 0 <u>2</u> 10. 94	12. 95		11.34	9. 41	11.34	-0. 95	0. 95
12. 56		11.10	13.03	11.50	13. 11	-0. 93	0. 93
12.56 Test # 10	12. 56	12. 95	12. 95	12. 99	12. 99	Ο.	Ο.
	-4. 29	-4 00	4 00			_	_
-4. 17 -2. 44		-4. 29	-4. 29	-4. 29	-4. 17	O .	0.
-3.66	-2.63	-3. 58	-2.76	-3. 70	~2. 64	-0. 45	0. 45
-2.36 -0.30	-1.10	-2.40	-1.18	-2. 24	~1.18	-0. 59	0. 59
-0. 79	0. 39	-0.87	0. 47	-0. 59	0. 55	-0. 61	0.61
1. 18	2. 40	1. 10	2. 36	1.14	2. 36	-0 62	0 62
3 03	4.41	3.15	4.45	3 11	4 41	-0.66	0.66
4. 96	6.46	5. 00	6 50	4.88	6 42	-0 75	0 75
7 05	8 74	7 24	8 82	7 17	B 70	- 0 80	0 80

	10 00	0 20	10.67	9, 21	10. B3	-0. 79 -0. 88	0. 79
		44 04	12 BO	10 91	14.70	-0.67	V. U.
12 40	12 40	12. 17	12. 17	12. 28	12. 2B	0.	O.

0.35e-1*X - 1.16*T2 + 1.42*T8 - 8.94

TESTE A TESTS + TESTS X TESTS & TESTS A TESTS X TESTS X TESTS X TESTS

TEST1 $_{\Delta}$ TEST2 $_{+}$ TEST3 $_{\times}$ TEST4 $_{\Phi}$ TEST5 $_{+}$ TEST6 $_{\times}$ TEST8 $_{\times}$ TEST9 $_{\times}$ TEST10

		Y AXIS				
	RESULTS OF POS					
	*********			<u>.</u>		
	X axis at 140.	000 mms				
	Y axis at 140.	000 mms				
	Z axis at 230.	COU MANS				
	Dir of laser /	-				
Test						
POS	0. 50.	100, 150,	200. 250.			
POS	300, 350.	400.				
TEMP	25. 75	27. 99	27. 91	27. 33	27. 87	27. 28
TEMP	27, 50	27. OB		26. 13	25.88	25. 79
TEMP	25. 66	<i>2</i> 9. 55	<i>2</i> 7. 50	26. 94	26. 65	26. 45
TEMP	26. 16	39. 79	26. 50		0.40	-2, 28
MEAN		-10. 93	-7. 9 7	-2. 92	-3. 62	-R. 20
MEAN	3. 13	9. 68	10. 53	0. 58	0. 67	0. 69
SD	5. 02	1. 30	0. 91 0. 40	U. 36	0.67	J. J.
SD	0. 83	1. 21	0. 40			
Test						
PD5	0, 50.	100 150	200. 250.			
POS POS	300, 350.		200. 200.			
TEMP	27. 3B	32. 77	32. 77	30. 35	29. 93	29. 93
TEMP	29. 74	28. 88	28. 57	28. 06	27. 37	27. 25
TEMP	26. 66	32. 82	30. 23	29. 23	29. 62	28. 03
TEMP	27. 47	41.86	29. 10			
MEAN	5. 68	-4 . 18	1. OB	7. 5 8	9. 50	13. 10
MEAN	21.82	3 0. 35	31. 53			. 70
SD	0. 71	0. B2	1. 56	2.17	1. 97	1. 7B
SD	2. 42	3. 60	0. 89			
Test						
	0. 50.	100 150	200. 250.			
POS POS	300. 350.		200, 230.			
TEMP	27. 75	37. 42	37. 47	33. 57	30. 69	31. 73
TEMP	31. 78	31.30	30. 96	30. 47	29 . 57	28. 79
TEMP	28. 23	35. 69	32. 05	30. 84	30. 50	29. 3 8
TEMP	29. 01	42. 50	29. 10			
MEAN	20. 85	26. 57	35. 54	45. 64	50. 67	5B. 04
MEAN	68. 47	B1. B2	B5. 74			2. 67
SD	2. 33	1. 83	1. 79	2. 94	2. 41	€. 67
SD	3. 27	4. 54	3. 54			
Test						
	0, 50.	100 150	200. 250.			
POS POS	300, 350.		200. 200.			
TEMP		37. 42	37. 47	33. 57	30. 69	31.73
TEMP	31. 78	31.30	30. 96	30. 47	29. 57	28. 79
TEMP		35. 69	32. 05	30. B4	30. 50	29. 38
TEMP	29. 01	42. 50	30.80			
MEAN	20. 85	26. 57	35. 54	45.64	50. 67	58 . 04
MEAN		81.82	85. 74	2	2 41	2. 67
SD	2. 33	1. B3	1.79	2. 94	2. 41	£. 6/
SD	3. 27	4. 54	3. 54			
Test						
POS	0. 50	100 150	200. 250.			
705	300 350.					
TEM		39.97	38.35	34.32	30.88	32.36
1 6 (1)	Z 1: 1V	2 1. 11	-0.55	_ ,		

TEMP	32 44	32. 07	31. 95	31. 22	30 57	29 50
JEMP	29. 01	36. 15	32. 73	31 52	31.25	29 99
TEMP	29.74	42. 67	30. BO			
MEAN	25. BO	32. 22	40. B7	52 05	58 35	66 20
MEAN	76. 55	90. 60	95. 67			
SD	1. 93	1.78	1.88	3. 01	2. 79	2 93
SD	3. 69	4. B6	3. 22			
Test 0	6					
POS	0. 50.		200. 250.			
POS	300. 350.	400.				
TEMP	27. 50	37. BB	39. 41	35. 34	30.50	32 95
TEMP	32. 66	32. 47	32. 51	31. 57	31. 03	29 65
TEMP	29. 11	36. 42	32. 92	31. 52	31. 28	29 96
TEMP	29. 67	42. 3B	31.00			
MEAN MEAN	40. B5	4B. 90	60. 28	73. 8 5	B1, 47	91 17
SD	103. 70 2. 0 9	119.35 2.06	125. 26 2. 80	2 47	2 22	2 02
SD	4. 61	5. 89	2. 60 4. 48	3. 57	3, 33	3 92
Test #	7	J. 87	7. 70			
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400.	200. 200.			
TEMP	27. 33	35. 78	36. 74	33. 66	30, 29	32 33
TEMP	32. 37	32. 35	32. 47	31. 50	31.41	29 95
TEMP	29 . 63	34. 62	32. 62	31. 53	31. 50	30. 27
TEMP	30. 10	42. 23	31. 50			
MEAN	13. 67	18. 65	26. 33	36. 59	41.74	47, 75
MEAN	57. 33	70. 08	74. 04			
SD	0. 3B	0. 72	1.41	2. 75	2. 11	2.11
SD	2. 87	4. 08	0. 23			
Test #	8					
200		100 100	200 250			
POS	0. 50.		200. 250.			
POS	0. 50. 300. 350.	400.		25 12	20.20	22 22
POS TEMP	0. 50. 300. 350. 27. 35	400. 36. 0 9	37. 81	35. 12 21. 52	29. 39 31. 18	32. 23 28. 70
POS TEMP TEMP	0, 50, 300, 350, 27, 35 32, 20	400. 36. 09 32. 30	37. 81 32. 44	31. 52	31, 18	29. 70
POS TEMP TEMP TEMP	0. 50. 300. 350. 27. 35 32. 20 29. 39	400. 36. 09 32. 30 36. 08	37. 81 32. 44 32. 40			
POS TEMP TEMP TEMP TEMP	0. 50, 300. 350, 27. 35 32. 20 29. 39 29. 85	400. 36. 09 32. 30 36. 08 41. 20	37. 81 32. 44 32. 40 31. 50	31, 52 31, 43	31, 18 31, 28	29. 70 30. 12
POS TEMP TEMP TEMP	0. 50. 300. 350. 27. 35 32. 20 29. 39 29. 85 40. 87	400. 36. 09 32. 30 36. 08 41. 20 49. 55	37. 81 32. 44 32. 40 31. 50 61. 32	31. 52	31, 18	29. 70
POS TEMP TEMP TEMP TEMP MEAN	0. 50, 300. 350, 27. 35 32. 20 29. 39 29. 85	400. 36. 09 32. 30 36. 08 41. 20	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33	31, 52 31, 43 73, 75	31, 18 31, 28 81, 30	29, 70 30, 12 91, 19
POS TEMP TEMP TEMP TEMP MEAN MEAN	0. 50. 300. 350. 27. 35 32. 20 29. 39 29. 85 40. 87 104. 79	400. 36. 09 32. 30 36. 08 41. 20 49. 55 120. 43	37. 81 32. 44 32. 40 31. 50 61. 32	31, 52 31, 43	31, 18 31, 28	29. 70 30. 12
POS TEMP TEMP TEMP TEMP MEAN MEAN SD	0. 50. 300. 350. 27. 35 32. 20 29. 39 29. 85 40. 87 104. 79 1. 54	400. 36.09 32.30 36.08 41.20 49.55 120.43 1.92 5.32	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21	31, 52 31, 43 73, 75	31, 18 31, 28 81, 30	29, 70 30, 12 91, 19
POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9	400. 36. 09 32. 30 36. 08 41. 20 49. 55 120. 43 1. 92 5. 32	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42	31, 52 31, 43 73, 75	31, 18 31, 28 81, 30	29, 70 30, 12 91, 19
POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9	400. 36.09 32.30 36.08 41.20 49.55 120.43 1.92 5.32	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21	31, 52 31, 43 73, 75	31, 18 31, 28 81, 30	29, 70 30, 12 91, 19
POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 27. 35 32. 20 29. 39 29. 85 40. 87 104. 79 1. 54 4. 34 9	400. 36.09 32.30 36.08 41.20 49.55 120.43 1.92 5.32 100. 150. 400.	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42	31, 52 31, 43 73, 75 3, 21	31, 18 31, 28 81, 30 2, 84	29, 70 30, 12 91, 19 3, 45
POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD Test # POS POS TEMP	0. 50. 300. 350. 27. 35 32. 20 29. 39 29. 85 40. 87 104. 79 1. 54 4. 34 9	400. 36. 09 32. 30 36. 08 41. 20 49. 55 120. 43 1. 92 5. 32 3 100. 150. 400. 36. 20	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09	31, 52 31, 43 73, 75 3, 21	31, 18 31, 28 81, 30 2, 84	29, 70 30, 12 91, 19 3, 45
POS TEMP TEMP TEMP MEAN MEAN SD Test # POS POS POS TEMP TEMP	0. 50. 300. 350. 27. 35 32. 20 29. 39 29. 85 40. 87 104. 79 1. 54 4. 34 9 0. 50. 300. 350. 27. 23 31. 93	400. 36.09 32.30 36.08 41.20 49.55 120.43 1.92 5.32 3 100. 150. 400. 36.20 32.17	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39	31. 52 31. 43 73. 75 3. 21 34. 99 31. 51	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22	29, 70 30, 12 91, 19 3, 45 32, 09 29, 74
POS TEMP TEMP TEMP MEAN MEAN SD SD SD FOS POS POS TEMP TEMP TEMP	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 0. 50. 350. 27. 23 31. 93 29. 42	400. 36.09 32.30 36.08 41.20 49.55 120.43 1.92 5.32 100. 150. 400. 36.20 32.17 35.81	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24	31, 52 31, 43 73, 75 3, 21	31, 18 31, 28 81, 30 2, 84	29, 70 30, 12 91, 19 3, 45
POS TEMP TEMP TEMP MEAN MEAN SD SD SD Test # POS POS TEMP TEMP TEMP	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 0. 50. 350. 27. 23 31. 93 29. 42 29. 74	400. 36. 09 32. 30 36. 08 41. 20 49. 55 120. 43 1. 92 5. 32 100. 150. 400. 36. 20 32. 17 35. 81 40. 76	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24 31. 50	31, 52 31, 43 73, 75 3, 21 34, 99 31, 51 31, 29	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22 31, 13	29. 70 30. 12 91. 19 3. 65 32. 09 29. 74 30. 03
POS TEMP TEMP TEMP TEMP MEAN SD SD Test # POS POS TEMP TEMP TEMP TEMP MEAN	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	400. 36. 09 32. 30 36. 08 41. 20 49. 55 120. 43 1. 92 5. 32 100. 150. 400. 36. 20 32. 17 35. 81 40. 76 53. 00	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24 31. 50 64. 52	31. 52 31. 43 73. 75 3. 21 34. 99 31. 51	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22	29, 70 30, 12 91, 19 3, 45 32, 09 29, 74
POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD Test # POS POS TEMP TEMP TEMP TEMP TEMP MEAN MEAN	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 0. 50. 350. 27. 23 31. 93 29. 42 29. 74 44. 58 108. 85	400. 36. 09 32. 30 36. 08 41. 20 49. 55 120. 43 1. 92 5. 32 100. 150. 400. 36. 20 32. 17 35. 81 40. 76 53. 00 124. 68	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24 31. 50 64. 52 129. 70	31. 52 31. 43 73. 75 3. 21 34. 99 31. 51 31. 29 78. 15	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22 31, 13 85, 91	29. 70 30. 12 91. 19 3. 65 32. 09 29. 74 30. 03 95. 50
POS TEMP TEMP TEMP MEAN MEAN SD Test # POS POS POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP SD	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 0. 50. 350. 27. 23 31. 93 29. 42 29. 74 44 58 108. 85 1. 87	400. 36.09 32.30 36.08 41.20 49.55 120.43 1.92 5.32 100. 150. 400. 36.20 32.17 35.81 40.76 53.00 124.68 1.86	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24 31. 50 64. 52 129. 70 2. 34	31, 52 31, 43 73, 75 3, 21 34, 99 31, 51 31, 29	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22 31, 13	29. 70 30. 12 91. 19 3. 65 32. 09 29. 74 30. 03
POS TEMP TEMP TEMP MEAN MEAN SD SD SD POS POS TEMP TEMP TEMP TEMP TEMP TEMP SD SD SD SD SD SD SD SD SD SD SD SD SD	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 0. 50. 350. 27. 23 31. 93 29. 42 29. 74 44. 58 108. 85 1. 87 4. 49	400. 36. 09 32. 30 36. 08 41. 20 49. 55 120. 43 1. 92 5. 32 100. 150. 400. 36. 20 32. 17 35. 81 40. 76 53. 00 124. 68	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24 31. 50 64. 52 129. 70	31. 52 31. 43 73. 75 3. 21 34. 99 31. 51 31. 29 78. 15	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22 31, 13 85, 91	29. 70 30. 12 91. 19 3. 65 32. 09 29. 74 30. 03 95. 50
POS TEMP TEMP TEMP MEAN MEAN SD Test # POS POS POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP SD	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 0. 50. 350. 27. 23 31. 93 29. 42 29. 74 44. 58 108. 85 1. 87 4. 49 10	400. 36.09 32.30 36.08 41.20 49.55 120.43 1.92 5.32 100. 150. 400. 36.20 32.17 35.81 40.76 53.00 124.68 1.86	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24 31. 50 64. 52 129. 70 2. 34	31. 52 31. 43 73. 75 3. 21 34. 99 31. 51 31. 29 78. 15	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22 31, 13 85, 91	29. 70 30. 12 91. 19 3. 65 32. 09 29. 74 30. 03 95. 50
POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD Test # POS POS TEMP TEMP TEMP TEMP TEMP MEAN MEAN MEAN SD TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 0. 50. 350. 27. 23 31. 93 29. 42 29. 74 44. 58 108. 85 1. 87 4. 49 10	400. 36.09 32.30 36.08 41.20 49.55 120.43 1.92 5.32 100. 150. 400. 36.20 32.17 35.81 40.76 53.00 124.68 1.86	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24 31. 50 64. 52 129. 70 2. 34 4. 38	31. 52 31. 43 73. 75 3. 21 34. 99 31. 51 31. 29 78. 15	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22 31, 13 85, 91	29. 70 30. 12 91. 19 3. 65 32. 09 29. 74 30. 03 95. 50
POS TEMP TEMP TEMP TEMP MEAN SD SD Test # POS POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD TEMP TEMP TEMP SD SD TEMP TEMP TEMP TEMP	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 9 0. 50. 350. 27. 23 31. 93 29. 42 29. 74 44. 58 108. 85 1. 87 4. 49 10	400. 36. 09 32. 30 36. 08 41. 20 49. 55 120. 43 1. 92 5. 32 100. 150. 400. 36. 20 32. 17 35. 81 40. 76 53. 00 124. 68 1. 86 5. 43	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24 31. 50 64. 52 129. 70 2. 34 4. 38	31. 52 31. 43 73. 75 3. 21 34. 99 31. 51 31. 29 78. 15	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22 31, 13 85, 91	29. 70 30. 12 91. 19 3. 65 32. 09 29. 74 30. 03 95. 50
POS TEMP TEMP TEMP MEAN MEAN SD Test # POS POS POS POS TEMP TEMP TEMP MEAN SD SD TEMP TEMP TEMP MEAN SD SD Test # POS POS POS POS POS POS POS POS POS POS	0. 50. 350. 27. 35 32. 20 29. 85 40. 87 104. 79 1. 54 4. 34 9 0. 50. 350. 27. 23 31. 93 29. 42 29. 74 44. 58 108. 85 1. 87 4. 49 10 0. 50	400. 36. 09 32. 30 36. 08 41. 20 49. 55 120. 43 1. 92 5. 32 100. 150. 400. 36. 20 32. 17 35. 81 40. 76 53. 00 124. 68 1. 86 5. 43	37. 81 32. 44 32. 40 31. 50 61. 32 126. 33 2. 21 4. 42 200. 250. 38. 09 32. 39 32. 24 31. 50 64. 52 129. 70 2. 34 4. 38	31. 52 31. 43 73. 75 3. 21 34. 99 31. 51 31. 29 78. 15	31, 18 31, 28 81, 30 2, 84 28, 89 31, 22 31, 13 85, 91	29. 70 30. 12 91. 19 3. 65 32. 09 29. 74 30. 03 95. 50

TEMP	31. 81	32. 15	32. 34	31, 42	31. 13	29. 70
TEMP	29. 41	35. 65	32. 13	31, 16	30. 94	30. 01
TEMP	29. 65	40. 44	31.00			
MEAN	45, 77	53. 85	65. 73	78. 83	B6. 35	96.17
MEAN	109.30	124. 39	129. 96			
SD	1. 55	1. 89	2, 54	3. 41	3. 05	3. 63
SD.	4 40	5 40	4 08			

ACTUAL DATA

	-						
						΄ υ _ρ	SPREAD Down
Test 0 1							
	12. 30	12. 30	12. 30	12. 30	12. 70	-2. 10	2. 10
-9 . 70	-11. 90	-9 . 50	~12. 20	-10.10	-12. 20	1. 17	-1.17
-7 . 3 0	-B. BO	-6. 60	-8. 20	-7. 9 0	-9. 00	0. 70	-0. 70
-2 . 11	-2. B1	-2. 50	-3. 01	-3. 69	-3. 40	0. 15	-0.15
	-2. 50	-3. 91	-3. 40	-4. 50	-3. 91	-0. 35	0. 35 0. 35
	-1.69	-2. 81	-1.60	-3. 30	-2. 50	-0. 35	
3. 11	4. 30	2. 20	3. 69 10. 59	2. 20	3. 30	-0. 63	0, 63
	11. 20	9. 09	10. 59	8. 00	10. 31	-1. 02	1. 02
	10. 99	10, 50	10. 50	10. 10	10. 10	0.	0.
Test # 2							
4. 90	5. 20	5. 20	6. 00		6. BO		
-3. 10	-3. 70	-4. 70	-3. 8 0			-0. 22	
	3. 10	-0, 40	2. 10		1. 40	-1. 12	
7. 00	10. 50	6. 00	B. 10		9. 29	-1. 72	1. 72
	11. 99	7. 71	11.31		10. 10	-1. 63	1. 63
12. 70	15. 50 24. 81	11.60	14. 10	10. 70 18. 71		-1.44	1. 44
							1.98
28. 69 32. 59	34. 61	27. 10 31. 40	33. 81 31. 40	26. 00 30. 61	31. 89 30. 61	-3. 09 0.	3. 09 0.
Test # 3	32. J7	31. 40	31. 40	30. 61	30. 61	U.	O.

24. 90	21. 40	21.40					
	28. 20	26. 60	26. 20		24. 30	0. 33	-0. 33
36. 9 0	37. 90	35, 10	36. 10	33. 10	34. 10	-0.50	
_	49. BO	43. 90	47. 61	41. 31	45. 39	-1. 97	
	54. 20 61. 71	49. 70	52. 00 59. 10	47. 20	49. 50 56. 00	-1. 23	1. 23 0. 90
70. 01	73. 30	57. 01 67. 20	59. 10 69. 79	63. 90			
82. 31	/3.30 DD 50	70 40	84. B1	75.01	80. 9 0		2.95
89. B1	89. B1	B5. 51	85. 51	61 D1	B1. 91		Ö.
Test # 4		JU. 0.	00. 01	U1. / 1	U1. /1	U .	•
24. 90	21. 40	21, 40	19. 60	19. 60	18. 20	1. 12	-1, 12
29. 10	28. 20	26.60	26. 20	25. 00	24. 30	0. 33	-0. 33
	37. 90	35. 10	36. 10	33. 10	34. 10	-0. 50	
	49.80	43. 90	47. 61	41. 31	45. 39	-1. 9 7	1. 97
	54. 20	49, 70	52.00	47. 20	49. 50	-1.23	
	61.71	57. 01	59. 10		56. 00	-0. 90	0. 90
							1.43
B2. 31	88. 59	67. 20 78. 49	84. B1	75. B1			
	89. B1		85.51			0.	0.
Test # 5							
28. 70	26. 70	26, 70	24.70	24. 70	23. 30	0. 90	-0 90

34, 60	33. 90	32.10	32. 10	30. 30	30, 30	0.12	-0.12
42 40		39. 80	40. 90	38. 20	40. 40	-0.73	0. 73
52. 40	56 40	49 RO	53 50	47 70	50 61	-2.08	2. OB
59.69	42 19	54.70	50 00	54 31	57. 40	-1.45	
68.10	20.21	44.00	47.24	44 80	44.00	-1. 73	1. 45 1. 24
	70. 21	84. 70	67.31	51.70	64. BO	-1. 24	1.24
77. 91	82.31	74. 31	78. 19	54. 31 61. 90 71. 81 83. 80	74. 80 90. 61	-1.88	I. 88
90. 61	9 7. 60	56. 70 64. 90 74. 31 87. 10 95. 61	93. 90	83 . 8 0	90.61	-1, 88 -3, 43 0,	3. 43
99 . 3 0	<i>9</i> 9. 30	95 . 61	95. 6 1	92 . 10	92.10	O.	O.
Test #	6						
43. BO	41. 90 50. 40	41. 90	39 . 80	39. BO	37. 90	0, 9B	-0. 98
51.80	50. 40	49. 10	48. 70	47. 30			
62 60	64 00	59 80	40.90	54 80	57 40	-0. 55	0.55
75.10	79 40	71 70	74 10	40.41	77. 60	-0.00	0. 55
73. 10	76.60	71.77	76. 10	00. 71	73. 10	-2. UB	2. UB
83. 40	80. ZU	80.00	B2. 79	76. 80	79.61	-1.40	1.40
94. 10	96. 41	B9. 60	92. 41	85. 49	89. 00	-1, 44	1. 44
106. 41	109. 89	101.41	105. 99	96. 98	101.50	-2. 10	2. 10
120. 70	127. B1	115. 91	1 <i>2</i> 2. 99	110. 81	117. 89	-3, 55	3. 55
130.49	130. 49	49. 10 59. 80 71. 79 80. 00 89. 60 101. 41 115. 91 124. 79	124.79	120. 51	120. 51	O .	O.
Test #	7						
14, 30	13. 80	13. BO	13.40	13.40	13. 30	0 17	-0 17
17, 20	19. 50	18. 20	13. 40 18. 90	17 50	18.60	-0. 35	0. 35
25 50	28 20	25.00	27 40	24. 80	27. 10	-1. 23	1. 23
24.41	20. 20	24.10	20.70		27. 10	-1. 23	1. 23
34. 61	28. 20 37. 51 44. 10 50. 20	34. 10	27. 40 38. 70 43. 50 49. 39 59. 39	33. 60	39. 00 43. 30 49. 30	-2. 48 -1. 90	2. 48
34. 51	44. 10	39. 90	43. 50	40. 10	43. 30	-1. 90	1. 90
46. 40	50. 20	45. 30	49. 39	45. 90	49. 30	-1 88	1.88
55. 21	60. 7 9	54. B1	59. 39	54, 29	59. 51	-2.56	2. 56
66. 99	74. 5B	<i>6</i> 6. 19	73. 70	66 . 01	73. 00	-3. 68	3. 68
74. 01	74, 01	74. 31	74. 31	73. 79	73. 79	0.	O.
74.01 Test #	74, 01 B	74. 31	74. 31	73. 79	73. 79	-2. 56 -3. 68 0.	0.
Test 4	8						
Test 4	8 41, 80	41. 80	40. 1 <i>0</i>	40 10	38.60	0.70	
42.80 52.40	8 41, 80	41. 80	40. 1 <i>0</i>	40 10	38.60	0.70	~0. 70 ~0. 47
42.80 52.40	8 41, 80	41. 80	40. 1 <i>0</i>	40 10	38.60	0.70	~0. 70 ~0. 47
42.80 52.40 63.00	41.80 51.10 64.50	41.80 49.70 60.80	40. 1 <i>0</i> 48. 80 61. 40	40. 10 47. 80 58. 30	38. 60 47. 50 59. 90	0. 70 0. 42 -0. 62	-0. 70 -0. 42 0. 62
42.80 52.40 63.00	41.80 51.10 64.50	41.80 49.70 60.80	40. 1 <i>0</i> 48. 80 61. 40	40. 10 47. 80 58. 30	38. 60 47. 50 59. 90	0. 70 0. 42 -0. 62	-0. 70 -0. 42 0. 62
42.80 52.40 63.00	41.80 51.10 64.50	41.80 49.70 60.80	40. 1 <i>0</i> 48. 80 61. 40	40. 10 47. 80 58. 30	38. 60 47. 50 59. 90	0. 70 0. 42 -0. 62	-0. 70 -0. 42 0. 62
42.80 52.40 63.00	41.80 51.10 64.50	41.80 49.70 60.80	40. 1 <i>0</i> 48. 80 61. 40	40. 10 47. 80 58. 30	38. 60 47. 50 59. 90	0. 70 0. 42 -0. 62	-0. 70 -0. 42 0. 62
42.80 52.40 63.00	41.80 51.10 64.50	41.80 49.70 60.80	40. 1 <i>0</i> 48. 80 61. 40	40. 10 47. 80 58. 30	38. 60 47. 50 59. 90	0. 70 0. 42 -0. 62	-0. 70 -0. 42 0. 62
42.80 52.40 63.00	41.80 51.10 64.50	41.80 49.70 60.80	40. 1 <i>0</i> 48. 80 61. 40	40. 10 47. 80 58. 30	38. 60 47. 50 59. 90	0. 70 0. 42 -0. 62	-0. 70 -0. 42 0. 62
74. 91 63. 00 74. 91 63. 30 94. 10 106. 99 131. 29	8 41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41.80 49.70 60.80	40. 1 <i>0</i> 48. 80 61. 40	40. 10 47. 80 58. 30	38. 60 47. 50 59. 90	0. 70 0. 42 -0. 62	-0. 70 -0. 42 0. 62
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	8 41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41. 80	40. 1 <i>0</i> 48. 80 61. 40	40. 10 47. 80 58. 30	38. 60 47. 50 59. 90	0. 70 0. 42 -0. 62	-0. 70 -0. 42 0. 62
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41. 80 51. 10 64. 50 78. 29 85. 21 96. 21 110. 90 128. 30 131. 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40, 10 48, 80 61, 40 75, 81 82, 31 92, 30 106, 99 123, 11 126, 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	38. 60 47. 50 59. 90 72. 30 79. 41 88. 10 102. 81 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41. 80 51. 10 64. 50 78. 29 85. 21 96. 21 110. 90 128. 30 131. 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40, 10 48, 80 61, 40 75, 81 82, 31 92, 30 106, 99 123, 11 126, 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	38. 60 47. 50 59. 90 72. 30 79. 41 88. 10 102. 81 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0. 70 -0. 42 0. 62 1. 71 1. 00 1. 02 2. 12 3. 10 0.
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0. 70 -0. 42 0. 62 1. 71 1. 00 1. 02 2. 12 3. 10 0.
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0. 70 -0. 42 0. 62 1. 71 1. 00 1. 02 2. 12 3. 10 0.
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0. 70 -0. 42 0. 62 1. 71 1. 00 1. 02 2. 12 3. 10 0. -0. 88 -0. 10 0. 65 2. 02 1. 18 1. 37
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0. 70 -0. 42 0. 62 1. 71 1. 00 1. 02 2. 12 3. 10 0. -0. 88 -0. 10 0. 65 2. 02 1. 18 1. 37
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test #	41, 80 51, 10 64, 50 78, 29 85, 21 96, 21 110, 90 128, 30 131, 29	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0. 70 -0. 42 0. 62 1. 71 1. 00 1. 02 2. 12 3. 10 0. -0. 88 -0. 10 0. 65 2. 02 1. 18 1. 37
78 t \$ 42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test \$ 47.00 55.20 66.40 78.99 87.91 97.90 110.81 125.70 134.70	41. 80 51. 10 64. 50 78. 29 85. 21 110. 90 128. 30 131. 29 9 45. 60 55. 10 67. 90 83. 80 90. 19 100. 60 115. 11 132. 69 134. 70	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0. 70 -0. 42 0. 62 1. 71 1. 00 1. 02 2. 12 3. 10 0. -0. 88 -0. 10 0. 65 2. 02 1. 18 1. 37
7est \$ 42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test \$ 47.00 55.20 66.40 78.99 87.91 97.90 110.61 125.70 Test \$	41. 80 51. 10 64. 50 78. 29 85. 21 96. 21 110. 90 128. 30 131. 29 9 45. 60 55. 10 67. 90 83. 80 90. 19 100. 60 115. 11 132. 69 134. 70	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31	40. 10 48. 80 61. 40 75. 81 82. 31 92. 30 106. 99 123. 11 126. 31	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40	3B. 60 47. 50 59. 90 72. 30 79. 41 BB. 10 102. B1 119. 20 121. 40	0.70 0.42 -0.62 -1.71 -1.00 -1.02 -2.12 -3.10 0.88	-0. 70 -0. 42 0. 62 1. 71 1. 00 1. 02 2. 12 3. 10 0. -0. 88 -0. 10 0. 65 2. 02 1. 18 1. 37
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test # 47.00 55.20 66.40 78.99 87.91 97.90 110.81 125.70 134.70 Test #	41. 80 51. 10 64. 50 78. 29 85. 21 196. 21 110. 90 128. 30 131. 29 9 45. 60 55. 10 67. 90 83. 80 90. 19 100. 60 115. 11 132. 69 134. 70	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31 45. 60 52. 50 63. 50 76. 10 84. 59 93. 90 106. 29 121. 19 129. 49	40, 10 48, 80 61, 40 75, 81 82, 31 92, 30 106, 99 123, 11 126, 31 43, 80 53, 00 64, 90 79, 90 87, 10 96, 80 111, 39 127, 69 129, 49	40. 10 47. 80 58. 30 69. 31 77. 31 78. 40 98. 60 112. 70 121. 40 43. 80 51. 60 61. 70 73. 30 81. 70 90. 61 102. 39 116. 91 124. 91	38. 60 47. 50 59. 90 72. 30 79. 41 88. 10 102. 81 119. 20 121. 40 41. 70 50. 60 62. 70 76. 80 84.00 93. 20 107. 09 123. 90 124. 91	0. 70 0. 42 -0. 62 -1. 71 -1. 00 -1. 02 -2. 12 -3. 10 0. 8B 0. 10 -0. 65 -2. 02 -1. 18 -1. 37 -2. 35 -3. 41	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10 0. -0.88 -0.10 0.65 2.02 1.18 1.37 2.35 3.41
42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test # 47.00 55.20 66.40 78.99 87.91 97.90 110.81 125.70 134.70 Test #	41. 80 51. 10 64. 50 78. 29 85. 21 96. 21 110. 90 128. 30 131. 29 9 45. 60 55. 10 67. 90 83. 80 90. 19 100. 60 115. 11 132. 69 134. 70	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31 45. 60 52. 50 63. 50 76. 10 84. 59 93. 90 106. 29 121. 19 129. 49	40. 10 48. 80 61. 40 75. 81 82. 31 72. 30 106. 99 123. 11 126. 31 43. 80 53. 00 64. 90 79. 90 87. 10 96. 80 111. 39 127. 69 129. 49	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40 43. 80 51. 60 61. 70 73. 30 81. 70 90. 61 102. 39 116. 91 124. 91	38. 60 47. 50 59. 90 72. 30 79. 41 88. 10 102. 81 119. 20 121. 40 41. 70 50. 60 62. 70 76. 80 84.00 93. 20 107. 09 123. 90 124. 91	0. 70 0. 42 -0. 62 -1. 71 -1. 00 -1. 02 -2. 12 -3. 10 0. 8B 0. 10 -0. 65 -2. 02 -1. 18 -1. 37 -2. 35 -3. 41	-0. 70 -0. 42 0. 62 1. 71 1. 00 1. 02 2. 12 3. 10 0. 65 2. 02 1. 18 1. 37 2. 35 3. 41 0
7est \$ 42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test \$ 47.00 55.20 66.40 78.99 87.91 10.61 125.70 134.70 Test \$	41. 80 51. 10 64. 50 78. 29 85. 21 10. 90 128 30 131. 29 9 45 60 55. 10 67. 90 83. 80 90. 19 100. 60 115. 11 132. 69 101	41. 80 49. 70 60. 80 71. 90 89. 71 102. 51 117. 40 126. 31 45. 60 52. 50 63. 50 76. 10 84. 59 93. 90 106. 29 121. 19 129. 49	40. 10 48. 80 61. 40 75. 81 82. 30 106. 99 123. 11 126. 31 43. 80 53. 00 64. 90 79. 80 87. 10 96. 80 111. 39 127. 69 127. 69 127. 69	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40 43. 80 51. 60 61. 70 73. 30 81. 70 90. 61 102. 39 116. 91 124. 91	38. 60 47. 50 59. 90 72. 30 79. 41 88. 10 102. 81 119. 20 121. 40 41. 70 50. 60 62. 70 76. 80 84. 00 93. 20 107. 09 123. 90 124. 91	0. 70 0. 42 -0. 62 -1. 71 -1. 00 -1. 02 -2. 12 -3. 10 0. 88 0. 10 -0. 65 -2. 02 -1. 18 -1. 37 -2. 35 -3. 41 0. 73	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10 0. -0.88 -0.10 0.65 2.02 1.18 1.37 2.35 3.41
7est \$ 42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test \$ 47.00 55.20 66.40 78.99 87.91 10.61 125.70 134.70 Test \$	41. 80 51. 10 64. 50 78. 29 85. 21 10. 90 128 30 131. 29 9 45 60 55. 10 67. 90 83. 80 90. 19 100. 60 115. 11 132. 69 101	41. 80 49. 70 60. 80 71. 90 89. 71 102. 51 117. 40 126. 31 45. 60 52. 50 63. 50 76. 10 84. 59 93. 90 106. 29 121. 19 129. 49	40. 10 48. 80 61. 40 75. 81 82. 30 106. 99 123. 11 126. 31 43. 80 53. 00 64. 90 79. 80 87. 10 96. 80 111. 39 127. 69 127. 69 127. 69	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40 43. 80 51. 60 61. 70 73. 30 81. 70 90. 61 102. 39 116. 91 124. 91	38. 60 47. 50 59. 90 72. 30 79. 41 88. 10 102. 81 119. 20 121. 40 41. 70 50. 60 62. 70 76. 80 84. 00 93. 20 107. 09 123. 90 124. 91	0. 70 0. 42 -0. 62 -1. 71 -1. 00 -1. 02 -2. 12 -3. 10 0. 88 0. 10 -0. 65 -2. 02 -1. 18 -1. 37 -2. 35 -3. 41 0. 73	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10 0. -0.88 -0.10 0.65 2.02 1.18 1.37 2.35 3.41
7est \$ 42.80 52.40 63.00 74.91 83.30 94.10 106.90 121.89 131.29 Test \$ 47.00 55.20 66.40 78.99 87.91 10.61 125.70 134.70 Test \$	41. 80 51. 10 64. 50 78. 29 85. 21 10. 90 128 30 131. 29 9 45. 60 55. 10 67. 90 83. 80 90. 19 100. 60 115. 11 132. 69 101	41. 80 49. 70 60. 80 71. 90 89. 71 102. 51 117. 40 126. 31 45. 60 52. 50 63. 50 76. 10 84. 59 93. 90 106. 29 121. 19 129. 49	40. 10 48. 80 61. 40 75. 81 82. 30 106. 99 123. 11 126. 31 43. 80 53. 00 64. 90 79. 80 87. 10 96. 80 111. 39 127. 69 127. 69 127. 69	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40 43. 80 51. 60 61. 70 73. 30 81. 70 90. 61 102. 39 116. 91 124. 91	38. 60 47. 50 59. 90 72. 30 79. 41 88. 10 102. 81 119. 20 121. 40 41. 70 50. 60 62. 70 76. 80 84. 00 93. 20 107. 09 123. 90 124. 91	0. 70 0. 42 -0. 62 -1. 71 -1. 00 -1. 02 -2. 12 -3. 10 0. 8B 0. 10 -0. 65 -2. 02 -1. 18 -1. 37 -2. 35 -3. 41 0. 0. 73 -0. 35 -1. 10 -2. 27	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10 00.88 -0.10 0.65 2.02 1.18 1.37 2.35 3.41 0
Test # 42 80 52 40 63 00 74 91 83 30 94 10 106 90 121 89 131 29 Test # 47 00 55 20 66 40 78 99 87 90 110 81 125 70 134 70 Test # 47 80 55 80 67 10 79 19 88 00	41. 80 51. 10 64. 50 78. 29 85. 21 110. 90 128. 30 131. 29 9 45. 60 55. 10 67. 90 83. 80 90. 19 100. 60 115. 11 132. 69 134. 70 10 46. 60 56. 00 69. 20 83. 69 90. 61	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31 45. 60 52. 50 63. 50 76. 10 84. 59 93. 90 106. 29 121. 19 129. 49 46. 60 53 20 64. 80 76. 51 84. 59	40, 10 48, 80 61, 40 75, 81 92, 30 106, 99 123, 11 126, 31 43, 80 53, 00 64, 90 79, 90 87, 10 96, 80 111, 39 127, 69 129, 49 45, 10 54, 50 67, 00 81, 21 87, 80	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40 43. 80 51. 60 61. 70 73. 30 81. 70 90. 61 102. 39 116. 91 124. 91 45. 10 51. 50 62. 00 74. 01 82. 00	38. 60 47. 50 59. 90 72. 30 79. 41 88. 10 102. 81 119. 20 121. 40 41. 70 50. 60 62. 70 76. 80 84. 00 93. 20 107. 09 123. 90 124. 91 43. 40 52. 10 64. 30 78. 40 85. 10	0. 70 0. 42 -0. 62 -1. 71 -1. 00 -1. 02 -2. 12 -3. 10 0. 8B 0. 10 -0. 65 -2. 02 -1. 18 -1. 37 -2. 35 -3. 41 0. 0. 73 -0. 35 -1. 10 -2. 27	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10 00.88 -0.10 0.65 2.02 1.18 1.37 2.35 3.41 0
Test # 42 80 52 40 63 00 74 91 83 30 94 10 106 90 121 89 131 29 Test # 47 00 55 20 66 40 78 99 87 90 110 81 125 70 134 70 Test # 47 80 55 80 67 10 79 19 88 00	41. 80 51. 10 64. 50 78. 29 85. 21 10. 90 128 30 131. 29 9 45. 60 55. 10 67. 90 83. 80 90. 19 100. 60 115. 11 132. 69 101	41. 80 49. 70 60. 80 71. 90 80. 20 89. 71 102. 51 117. 40 126. 31 45. 60 52. 50 63. 50 76. 10 84. 59 93. 90 106. 29 121. 19 129. 49 46. 60 53 20 64. 80 76. 51 84. 59	40. 10 48. 80 61. 40 75. 81 82. 30 106. 99 123. 11 126. 31 43. 80 53. 00 64. 90 79. 80 87. 10 96. 80 111. 39 127. 69 127. 69 127. 69	40. 10 47. 80 58. 30 69. 31 77. 39 86. 70 98. 60 112. 70 121. 40 43. 80 51. 60 61. 70 73. 30 81. 70 90. 61 102. 39 116. 91 124. 91	38. 60 47. 50 59. 90 72. 30 79. 41 88. 10 102. 81 119. 20 121. 40 41. 70 50. 60 62. 70 76. 80 84. 00 93. 20 107. 09 123. 90 124. 91 43. 40 52. 10 64. 30 78. 40 85. 10	0. 70 0. 42 -0. 62 -1. 71 -1. 00 -1. 02 -2. 12 -3. 10 0. 88 0. 10 -0. 65 -2. 02 -1. 18 -1. 37 -2. 35 -3. 41 0. 73	-0.70 -0.42 0.62 1.71 1.00 1.02 2.12 3.10 00.88 -0.10 0.65 2.02 1.18 1.37 2.35 3.41 0

110 B1	115.30	106.51	112.30	102 60	109 31	-2. 67	2 67
125, 21	131. 90	120. 61	128.60	116.61	123. 41	-3. 5B	3. 5B
174 41	174 41	120 70	120 70	125 40	125 40	•	^

THE CONTRACT STATES OF THE PARTY OF THE PART

TESTI A TESTS + TESTS X TESTS + TESTS A TESTS X TESTS X TESTS X TESTS

Y AXIS
RESULTS OF HORIZONTAL STRAIGHTNESS (micron)

TEMP

51 83

28 05

24 69

23 71

X axis at 197.64 mms Y axis at 299.99 mms Z axis at 168.36 mms Dir of laser F POS 0. 50. 100. 150. 200. 250. 300. 23 52 22 76 22 85 22.10 22.39 23.70 21.58 19 93 TEMP 20.87 22. 53 TEMP 22 88 20. 95 21.76 21 02 22 00 24.82 22.39 TEMP 22.05 22. 36 TEMP 33. 26 22. 73 -0. 61 0. 51 -0.60 MEAN -0.5B -1.17 -0.34 0. 53 -1.10 SD 0 19 0.15 0. 23 0.10 0.16 0.24 Test# POS 0 50 100. 150. 200. 250. 300 TEMP 19.83 22. 55 24.57 24. 32 20.97 23.04 22. 01 TEMP 23. 07 22.58 23. 02 21.81 21.22 25. 97 33. 44 23. 27 22. 97 21 22 TEMP 22. 87 22.60 22. 28 TEMP 0.13 -0.76 1.70 0. 78 1. 27 MEAN 0.01 1. 87 1.69 0. 13 0. 05 0.05 SD 1.20 1. 23 1.66 Test# 50. 100. 150. 20. 59 POS Ο. 200. 250. 300. TEMP 18.80 22. 89 23. 24 20.07 22. 23 22. 37 TEMP 22 18 21. 93 21.16 21.41 20.69 TEMP 20.79 24. 22 22.30 21. 98 21.91 21.83 32. 23 -1 43 TEMP 21.58 22. 24 -0. 94 MEAN -0. 6B -0.16 -0.73 SD 0.19 1. 27 0. 97 1.07 0.14 Test# 100. 150. 200. 250. POS 0 300. 50. 24.64 22.72 23.19 22 92 22 35 19 77 24. 25 21. 69 22. 50 TEMP 21.12 22. 92 TEMP 22 85 21. 12 21.71 22.45 TEMP 26 19 21.09 22.16 21 94 TEMP 33. 22 30. 27 -3 07 MEAN -1.72 -2. 47 ~1.93 -2. 22 -3.07 -2. 46 O. 48 0. 51 0. 23 SD 0 23 0. 31 0.73 0.69 Test# 5 POS Ο. 100 150 200. 250. 300. 25.64 22.72 TEMP 20.33 25. 67 27. 43 22.15 24.07 TEMP 23. B5 23. 36 23.60 22.49 21.83 27. 53 24.37 23. 33 TEMP 21 63 23.38 22.74 22 49 15 28 0 04 32. 40 TEMP 34.20 16. 56 0. 71 16.60 0.66 16. 19 MEAN 16.89 15.88 15.30 0.53 SD 0.48 0.38 Test# 6 100 150 POS 0 200. 250 300 50 26 31 23 71 TEMP 28. 12 23. 95 26 24 23 07 20 33 22.40 24 47 22 79 TEMP 24 25 22 10

TEMP	22. 77	34 40	32 72				
MEAN	14. 32	15 43	15.41	15 94	15 67	15. 10	14 27
SD	0 12	0 20	0 13	0.16	0. 25	0.13	0 14
Test#	7						
POS	0. 5	0 100 150	200 250.	300.			
TEMP	21.00	27.13	29 11	26 93	22.78	25, 07	
TEMP	24.75	24. 23	24.48	23.47	23 22	22 48	
TEMP	22, 26	28. 54	25.19	24.09	24. 19	23, 18	
TEMP	23. 20	34. 80	42.61				
MEAN	16.72	1B. 64	18. 29	18.09	17. 89	18, 26	16.70
az	0. 12	0. 26	0. 33	0. 29	0. 56	0, 60	0. 09
Teste	8						
POS	_	0. 100. 150.	200. 250.	300.			
TEMP	21.15	27. 55	30. 01	27.57	22, 96	25.79	
TEMP	25, 22	25.03	25. 30	24, 07	23, 92	23, 08	
TEMP	22. B1	28.55	25. 59	24.58	24. 91	23. 60	
TEMP	23. 75	35. 07	45.79				
MEAN	14.88	15. 55	15. 56	16. 27	16. 03	15. 58	14. 90
az	0. 04	0. 44	0. 49	0.60	0. 65	0, 37	Ο.
Test#	9						
POS		io. 100. 150.	200. 250.	300.			
TEMP	21.00	27, 55	29. 89	28. 26	22, 94	25, 91	
TEMP	25. 62	25, 32	25. 64	24, 39	24. 27	23. 21	
TEMP	22. 99	29, 16	25. 79	24. BB	24. 78	23. 90	
TEMP	23. BO	35, 02	46. 36				
MEAN	13. 35	14, 80	15.18	14. 31	13.86	13, 52	13. 33
SD	0. 28	0, 70	0. 63	0. 58	0. 67	0. 44	0. 27
T	• • •						
Test#	10						
		60. 100. 150.	200. 250.	300.			
		60. 100. 150. 24,34	200. 250. 27. 45	300. 27. 55	22. 56	25. 81	
POS TEMP TEMP	0. 5 20. 83 25. 39	24, 34 25, 44	27. 45 25. 86	27, 55 24, 21	24. 56	23. 25	
POS TEMP TEMP TEMP	0. 5 20.83 25.39 23.20	24, 34 25, 44 27, 30	27. 45 25. 86 25. 42	27. 55			
POS TEMP TEMP TEMP TEMP	0. 5 20.83 25.39 23.20 23.94	24, 34 25, 44 27, 30 34, 90	27, 45 25, 86 25, 42 47, 33	27, 55 24, 21 24, 78	24. 56 24. 68	23. 25 24. 02	14.57
POS TEMP TEMP TEMP TEMP MEAN	0. 5 20.83 25.39 23.20 23.94 14.55	24, 34 25, 44 27, 30 34, 90 16, 25	27, 45 25, 86 25, 42 47, 33 16, 66	27, 55 24, 21 24, 78 16, 09	24. 56 24. 88 14. 89	23. 25 24. 02 14. 70	14. 57
POS TEMP TEMP TEMP TEMP	0. 5 20.83 25.39 23.20 23.94	24, 34 25, 44 27, 30 34, 90	27, 45 25, 86 25, 42 47, 33	27, 55 24, 21 24, 78	24. 56 24. 68	23. 25 24. 02	14. 57 0. 19
POS TEMP TEMP TEMP TEMP MEAN	0. 5 20.83 25.39 23.20 23.94 14.55	24, 34 25, 44 27, 30 34, 90 16, 25	27, 45 25, 86 25, 42 47, 33 16, 66	27, 55 24, 21 24, 78 16, 09	24. 56 24. 88 14. 89	23. 25 24. 02 14. 70	
POS TEMP TEMP TEMP TEMP MEAN SD	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16	24, 34 25, 44 27, 30 34, 90 16, 25	27, 45 25, 86 25, 42 47, 33 16, 66	27, 55 24, 21 24, 78 16, 09	24. 56 24. 88 14. 89	23. 25 24. 02 14. 70	
POS TEMP TEMP TEMP TEMP MEAN SD	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16	24, 34 25, 44 27, 30 34, 90 16, 25	27, 45 25, 86 25, 42 47, 33 16, 66	27, 55 24, 21 24, 78 16, 09	24. 56 24. 88 14. 89	23. 25 24. 02 14. 70	
POS TEMP TEMP TEMP TEMP MEAN SD	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16	24, 34 25, 44 27, 30 34, 90 16, 25	27, 45 25, 86 25, 42 47, 33 16, 66	27, 55 24, 21 24, 78 16, 09	24. 56 24. 88 14. 89	23. 25 24. 02 14. 70	
POS TEMP TEMP TEMP TEMP MEAN SD	0. 5 20.83 25.39 23.20 23.94 14.55 0.16	24, 34 25, 44 27, 30 34, 90 16, 25	27, 45 25, 86 25, 42 47, 33 16, 66	27, 55 24, 21 24, 78 16, 09	24. 56 24. 88 14. 89	23. 25 24. 02 14. 70 0. 98 SPREAD	0.19
POS TEMP TEMP TEMP TEMP MEAN SD	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48	27. 55 24. 21 24. 78 16. 09 0. 70	24. 56 24. 68 14. 89 0. 88	23. 25 24. 02 14. 70 0. 98 SPREAD	O. 19
POS TEMP TEMP TEMP MEAN SD ACTU	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48	27. 55 24. 21 24. 78 16. 09 0. 70	24. 54 24. 68 14. 89 0. 88	23. 25 24. 02 14. 70 0. 98 SPREAD Dog	0. 19 un 0. 07
POS TEMP TEMP TEMP MEAN SD ACTU	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48	27. 55 24. 21 24. 78 16. 09 0. 70	24. 54 24. 68 14. 89 0. 88 Up -0. 80 -0. 23	23. 25 24. 02 14. 70 0. 98 SPREAD Dou	0. 19 un 0. 07 0. 04
POS TEMP TEMP TEMP MEAN SD ACTU	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48	27. 55 24. 21 24. 78 16. 09 0. 70 -1. 30 -0. 22 -0. 93	24. 56 24. 68 14. 89 0. 88 Up -0. 80 -0. 23 -0. 67	23. 25 24. 02 14. 70 0. 98 SPREAD Dou -0. 07 -0. 04 -0. 09	0. 19 0. 07 0. 04 0. 09
POS TEMP TEMP TEMP MEAN SD ACTU ************************************	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48	27. 55 24. 21 24. 78 16. 09 0. 70 -1. 30 -0. 22 -0. 93 -0. 55	24. 56 24. 88 14. 89 0. 88 0. 88	23. 25 24. 02 14. 70 0. 98 SPREAD Dou -0. 07 -0. 04 -0. 09 0. 05	0. 19 0. 07 0. 04 0. 09 -0. 05
POS TEMP TEMP TEMP MEAN SD ACTU	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48	27. 55 24. 21 24. 78 16. 09 0. 70 -1. 30 -0. 22 -0. 93	24. 56 24. 68 14. 89 0. 88 Up -0. 80 -0. 23 -0. 67	23. 25 24. 02 14. 70 0. 98 SPREAD Dou -0. 07 -0. 04 -0. 09	0. 19 0. 07 0. 04 0. 09
POS TEMP TEMP TEMP MEAN SD ACTU Wmmm Test# -1. 20 -0. 49 -0. 47 -0. 55 0. 57 -0. 22 -1. 20	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA ===================================	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48 -1. 30 -0. 17 -0. 23 -0. 70 0. 63	27. 55 24. 21 24. 78 16. 09 0. 70 -1. 30 -0. 22 -0. 93 -0. 55 0. 43	24. 56 24. 88 14. 89 0. 88 0. 88 0. 80 -0. 23 -0. 67 -0. 50 0. 77	23. 25 24. 02 14. 70 0. 98 SPREAD Dou -0. 07 -0. 04 -0. 09 0. 05 -0. 06	0. 19 0. 07 0. 04 0. 09 -0. 05 0. 06
POS TEMP TEMP TEMP MEAN SD ACTU ************************************	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA 1 ~1. 20 ~0. 48 ~0. 57 ~0. 08 ~1. 20	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51 -1, 20 -0, 45 -0, 60 -0, 55 0, 40 -1, 15 -1, 30	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48 -1. 30 -0. 17 -0. 23 -0. 70 0. 63 -1. 03 -1. 30	27. 55 24. 21 24. 78 16. 09 0. 70 -1. 30 -0. 22 -0. 93 -0. 55 0. 43 -0. 98 -0. 80	24. 56 24. 68 14. 89 0. 88 -0. 80 -0. 23 -0. 67 -0. 50 0. 77 -0. 37 -0. 80	23. 25 24. 02 14. 70 0. 98 SPREAD Dou -0. 07 -0. 04 -0. 09 0. 05 -0. 06 -0. 17 0. 00	0. 19 0. 07 0. 04 0. 09 -0. 05 0. 06 0. 17 0. 00
POS TEMP TEMP TEMP TEMP MEAN SD ACTU ************************************	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA ===================================	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51 -1, 20 -0, 45 -0, 60 -0, 55 0, 40 -1, 15 -1, 30 0, 10	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48 -1. 30 -0. 17 -0. 23 -0. 70 0. 63 -1. 03 -1. 30 0. 20	27. 55 24. 21 24. 78 16. 09 0. 70 -1. 30 -0. 22 -0. 93 -0. 55 0. 43 -0. 80 0. 20	24. 56 24. 68 14. 89 0. 88 14. 89 0. 88 -0. 80 -0. 23 -0. 67 -0. 50 0. 77 -0. 37 -0. 80 0. 10	23. 25 24. 02 14. 70 0. 98 SPREAD Dou -0. 07 -0. 04 -0. 09 0. 05 -0. 06 -0. 17 0. 00	0. 19 0. 07 0. 04 0. 09 -0. 05 0. 06 0. 17 0. 00
POS TEMP TEMP TEMP MEAN SD ACTU WMAR -1.20 -0.49 -0.55 0.57 -0.22 -1.20 Test# 0.10	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA ===================================	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51 -1, 20 -0, 45 -0, 60 -0, 55 0, 40 -1, 15 -1, 30 0, 10 -2, 18	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48 -1. 30 -0. 17 -0. 23 -0. 70 0. 63 -1. 03 -1. 30 -1. 30 -1. 30	27. 55 24. 21 24. 78 16. 09 0. 70 -1. 30 -0. 22 -0. 93 -0. 55 0. 43 -0. 98 -0. 80 0. 20 -2. 33	24. 54 24. 68 14. 89 0. 88 -0. 80 -0. 23 -0. 67 -0. 50 0. 77 -0. 37 -0. 80 0. 10 1. 15	23. 25 24. 02 14. 70 0. 98 SPREAD Dou -0. 07 -0. 04 -0. 09 0. 05 -0. 06 -0. 17 0. 00	0. 19 0. 07 0. 04 0. 09 -0. 05 0. 06 0. 17 0. 00 0. 1. 53
POS TEMP TEMP TEMP MEAN SD ACTU #### 1. 20 -0. 49 -0. 47 -0. 55 0. 57 -0. 22 -1. 20 Test# 0 10 0 10	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA ===================================	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51 -1, 20 -0, 45 -0, 60 -0, 55 0, 40 -1, 15 -1, 30 0, 10 -2, 18 -1, 77	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48 -1. 30 -0. 17 -0. 23 -0. 70 0. 63 -1. 03 -1. 30 -1. 30 -1. 30	27. 55 24. 21 24. 78 16. 09 0. 70 -1. 30 -0. 22 -0. 93 -0. 55 0. 43 -0. 98 -0. 80 -0. 20 -2. 33 -1. 27	24. 54 24. 68 14. 89 0. 88 -0. 80 -0. 23 -0. 67 -0. 50 0. 77 -0. 37 -0. 80 0. 10 1. 15 1. 80	23. 25 24. 02 14. 70 0. 98 SPREAD -0. 07 -0. 04 -0. 09 0. 05 -0. 06 -0. 17 0. 00 01. 53 -1. 50	0. 19 0. 07 0. 04 0. 09 -0. 05 0. 06 0. 17 0. 00 0. 1. 53 1. 50
POS TEMP TEMP TEMP MEAN SD ACTU WMAR -1.20 -0.49 -0.55 0.57 -0.22 -1.20 Test# 0.10	0. 5 20. 83 25. 39 23. 20 23. 94 14. 55 0. 16 AL DATA ===================================	24, 34 25, 44 27, 30 34, 90 16, 25 0, 51 -1, 20 -0, 45 -0, 60 -0, 55 0, 40 -1, 15 -1, 30 0, 10 -2, 18	27. 45 25. 86 25. 42 47. 33 16. 66 0. 48 -1. 30 -0. 17 -0. 23 -0. 70 0. 63 -1. 03 -1. 30 -1. 30 -1. 30	27. 55 24. 21 24. 78 16. 09 0. 70 -1. 30 -0. 22 -0. 93 -0. 55 0. 43 -0. 98 -0. 80 0. 20 -2. 33	24. 54 24. 68 14. 89 0. 88 -0. 80 -0. 23 -0. 67 -0. 50 0. 77 -0. 37 -0. 80 0. 10 1. 15	23. 25 24. 02 14. 70 0. 98 SPREAD Dou -0. 07 -0. 04 -0. 09 0. 05 -0. 06 -0. 17 0. 00	0. 19 0. 07 0. 04 0. 09 -0. 05 0. 06 0. 17 0. 00 0. 1. 53

O 27	2 47	0 7B	3 07	0 73	2 85	-1 10	1 10
0 10	0 10	0 20	0 20	0 10	0.10	0	o ``
Test# =	3				0.10	v	U
-0 40	-0 60	-0 60	-0.90	-0. 90	-0 70	0.05	-0 05
-5 58	-0. 52	-2.73	-0.1B	-2 90	0.03		
-2 37	0.67	-2 07	-0.27	-2.10		-1. 21	1 21
-0.45	0. 95	-1.60	0. 95		0. 47	~1. 23	1, 23
0. 67	2. 23			-1 70	0. 9 0	~1.09	1 09
0.18		-0. 03	1. 47	-0.10	1.73	-0. B2	0 B2
	1.62	-0. 97	0. 68	-0. 5 0	1. 37	-0. B6	0. B6
-0. 60	-0. 60	- 0. 9 0	-0. 90	-0. 70	∽ 0. 70	Ο.	Ο.
Test# =	4						
-3. 10	-2. BO	-2. BO	-3, 30	-3.30	-3. 10	O .	0.
-2. 78	-2.13	-2.78	-2. 17	-3. 07	-1. 83	-0.42	0.42
-2 . 5 7	-1.37	-1.67	-1. 73	-1. 93	-1.07	-0. 33	0. 33
-2. 9 5	-2.00	-2. 45	-2, 40	-2.60	~2. 40	-0. 20	0. 20
-3. 03	-1.43	~2, 43	-1. 57	-2. 07	~1.03	-0. 58	0. 58
-3. 12	-1. 37	-2 62	-2.43	-2.03	-1.57	-0. 43	
-2. 80	-2. BO	-3.30	-3. 30	-3.10	-3.10		0. 43
Test# =	5		J. JU	-3.10	-3.10	Ο.	0
15. 20	15.30	15. 30	15. 30	15. 30	45.00		
17.05	16.07	17.17	16. 27		15.30	-0. 02	0. 02
16.70	16. 43	17. 73		17 33	15. 73	U. 58	-0. 5 8
16. 65	16. 00		16. 03	16. 77	15. 67	0. 51	-0 . 51
17. 30		16.60	15. 70	16. 70	15.50	0. 46	-0.46
	17. 07	16. 87	16. 17	17. 43	16. 53	0. 31	-0. 31
16. 15	15. 33	16. 13	15. 53	16. 27	15. 87	0.30	-0.30
15. 30	15. 30	15. 30	15. 30	15. 30	15. 30	Ø.	0.
Test# =	6						
14, 40	14. 40	14.40	14.30	14, 30	14, 10	0.05	-0. 05
15. 25	15. 65	15, 38	15. 47	15. 1B	15, 65	-0.16	0.16
15.30	15, 50	15, 27	15. 43	15. 37	15, 60	-0.10	0.10
15.85	16.05	16 05	16.00	15. 65	16, 05	-0. 09	0. 09
15, 90	15, 80	15. B3	15. 67	15.63	15. 20	0. 12	-0.12
15. 15	15, 25	15. 22	15.03	14. 92	15. 05	-0. 01	0. 01
14, 40	14, 40	14, 30	14. 30	14. 10	14. 10	0.00	0.00
Test# =	7			1-1. 10	14. 10	0.00	0.00
16, 90	16. 60	16, 60	16. 70	16, 70	16. 80	0.00	-0.00
19, 10	18, 55	18 62	18.43	18.75	18. 37	0. 02	-0. 02
18.80	18.00	18. 43	17.87	18. 30		0. 19	-0. 19
18, 50	17, 75	18.05	17.80		18. 33	0. 22	-0. 22
18,00	17.30	18.27	17. 23	18. 25	18. 20	0. 17	-0.18
17. 80	17.75	17.88		18. 70	17. B7	0. 43	~0. 43
16.60	16.60		18. 47	18.35	19. 33	-0. 25	0, 25
Test# =	8	16, 70	16. 70	16. 80	16. BO	-0.00	~0.00
14.80	14. 90	14.00					
15, 55	-	14. 90	14.90	14. 90	14. 90	-0.02	0.02
15. 00	16.07	15. 27	15. 47	14. 93	16. 03	-0. 30	0.30
	16. 03	14. 93	15.73	15. 57	16. 07	-0 39	0. 39
15, 65	16.60	15 50	16.50	16. 30	17. 10	-0.46	0.46
16, 50	16. 27	15, 77	15. 47	15. 23	16. 93	-0.19	0.19
15. 55	15 93	15 03	15. 93	15. 27	15. 77	-0. 30	0.30
14, 90	14. 90	14 90	14. 90	14. 90	14. 90	O.	0.
Test# =	9					_	
13. 50	13.00	13.00	13. 60	13. 60	13.40	0.02	-0.02
15. 37	13 98	15.30	14.80	15. 43	13.90	0.57	-0.57
16. 03	14. 37	15.50	15. 30	15. 37	14. 50	0.46	-0.46
14. 90	13. 55	14. 70	14.20	14.80	13. 70	0.49	-0.49
14. 97	13. 23	13 90	13.80	14. 13	13. 10	0.48	-0.48
13 93	13 22	13 70	13.90	13. 57	12.80	0.21	
	13.00	13.60	13.60	13. 40	13.40		-0.21
Test# =	10			. 3. 70	13. 40	~0. 0 0	-0 00
	14 50	14 50	14. 40	14 40	14.60		
			14. 4 0	14. 40	14. 80	-0.02	0 05

	15. 77	17. 03	15.62	16, 40	16, 27	0. 36	-0.36
16. 40 16. BO	16.13	16.87	16.03	17. 30	16. 83	0.33	-0. 33
16. 10	15.00	16. 50	15. 65	17.00	16. 30	0. 44	-0.44
15. 50	13. 97	15. 93	13. 87	15. 50	14. 57	0. 76	-0. 76 -0. 72
15.00	13. 23	15. 17	14. 0B	16. 10 14. BO	14. 63 14. 80	0. 72 -0. 00	-0.72 -0.00

20.97*T5 - 11.05*T1 - 3.79*T14 - 123.43

Y AXIS
RESULTS OF VERTICAL STRAIGHTNESS (micron)

X axis at 164.440 mms Y axis at 299.999 mms Z axis at 162.999 mms Dir of laser F

Test#	1						
POS	0. 5	0. 100. 150.	200. 250.	300.			
TEMP	24. 27	27 01	28 21	28 09	26. 43	27. 26	
TEMP	27. 53	26. 48 29. 62	26. 87 27. 33	25. 50	25. 57	24. 59	
TEMP	24. 51	29. 62	27. 33	26. 57	26. 67	25. 74	
TEMP	25. 59						
MEAN	-1.17	38.88 -0.48	-1.46	-1. 93	-1. 98	-1.86	-1.40
SD	0. 64	1. 45	1. 13	1. 24	1. 19	1. 37	0. 15
Test#	0. 64 2						
POS	0. 5	0. 100. 150.	200. 250.	30 0.			
TEMP	24 92	29. 23	29. 87	29. 69	27. 30	28. 70	
TEMP	28. 65	20 04	20 42	27 01	97 14	24 1R	
TEMP	26.13	29. 04 30. 81	28. 79	28. 01	28. 11	27. 33	
TEMP	27. 19	39. 81	28. 46				
MEAN	0. 22	30. 81 39. 81 0. 80 1. 01	0. 01	-0. 4B	-0. 54	-0. 35	-0. 03
SD	0. 59	1. 01	1. 07	0. 93	1. 20	1.10	0.10
Test#	3						
		0. 100. 150.	200. 250.	300.			
TEMP	24. 88	90. 100. 150. 29. 41	31.04	30, 53	27. 41	29. 07	
TEMP	29. 09	28. 36	28. 78	27.46	27. 48 29. 36	26. 43	
TEMP	26. 31	32. 16	29, 22	28. 31	28. 36	27, 56	
TEMP	27. 36 2. 85	39. 61	28. 62				
MEAN	2.85	39. 61 3. 51	2. 53	2. 16	2. 07	2.04	2.87
5D	0. 08	1. 29	0. 88	1.03	1.14	1.02	0.05
Test#	0. 0 8 4						
POS		0. 100. 150.	200. 250.	300.			
TEMP	24, 85	30. 36	32, 19	31, 20	27. 31	29, 39	
TEMP	29. 29	28. 63 32. 83	29. 02	27. 82	27. 63	26. 65	
TEMP	26, 38	32. 63	29. 46	28. 48	28. 48	27. 75	
TEMP	27.46	39. 70 -6. 76	36. 54				
MEAN	27. 46 ~7. 25	-6.76	-7. 63	-8.19	-8. 34	-8. 54	−7. 47
SD Test#	0. 52	1. 41	1.75	1. 70	1.70	1.62	0. 46
Test#							
POS		0. 100. 150.	200. 250.	300.			
TEMP	24, 78	31 97	33 91	32 29	27. 35	29. 74	
TEMP	⊋ 9 , 57	29. 01	29.35	28. 30	27. 94	26. 94	
TEMP	26.57	33. 55	29. 84	28.77	28 74	27. 91	
TEMP	27. 62	39. 71	38.04				
MEAN	-14.85	39.71 -14.59	-15, 38	-16.06	~16. OB	-15.96	-15. 23
SD	0.83	1.62	1.80	2, 01	2 09	2.03	
Test#							
POS		0. 100. 150.	200. 250.	300.			
TEMP	24.33	26.17	27. 98	29.00	25 B3	27 59	
TEMP	28.00	27 54 29 8 3	27. 98	26. 81	26 P1	26. 02	
TEMP	25 93	29 83	27. 91	27 27	27 35	56 93	

TEMP MEAN SD	26. 76 15. 95 0. 48	37 97 16 74 1 21	27 86 16 01 1 32	15. 49 1. 24	15. 08 1. 48	15 03 1, 53	15 67 0 49
	JAL DATA						
						SPREAD	
					Up		yn
Test# 0.10 2.10 0.20 -0.20 -0.30 0.10 -1.30 Test#	-1. 30 -1. 73 -2. 67 -3. 40 -3. 23 -3. 47 -1. 30	-1.30 0.02 -0.87 -1.15 -1.23 -0.92 -1.60	-1. 60 -1. 73 -2. 57 -3. 00 -3. 13 -3. 07 -1. 60	-1.60 -0.33 -0.87 -1.30 -1.33 -1.37 -1.30	-1. 30 -1. 18 -1. 97 -2. 55 -2. 63 -2. 42 -1. 30	0. 23 1. 07 0. 94 1. 05 1. 02 1. 13 -0. 00	-0. 23 -1. 07 -0. 94 +1. 05 -1. 02 -1. 13 -0. 00
1,40 1,90 1,30 0,80 1,00 1,10 0,10	0. 10 -0. 32 -0. 83 -1. 15 -1. 67 -1. 38 0. 10	0. 10 1. 58 0. 77 0. 25 0. 13 0. 42 -0. 10	-0.10 -0.05 -1.20 -1.65 -1.80 -1.35 -0.10	-0. 10 1. 65 0. 80 -0. 15 0. 40 0. 35 -0. 10	-0. 10 0. 05 -0. 80 -0. 95 -1. 30 -1. 25 -0. 10	0. 25 0. 91 0. 95 0. 77 1. 05 0. 98 0.	-0. 25 -0. 91 -0. 95 -0. 77 -1. 05 -0. 98 0.
2.70 4.18 3.27 3.05 2.83 2.92 2.90 Test#	2. 90 2. 22 1. 63 1. 15 1. 07 1. 08 2. 90	2. 90 5. 43 3. 07 3. 30 3. 03 2. 77 2. 90	2, 90 2, 43 1, 67 1, 10 0, 93 0, 97 2, 90	2. 90 4. 20 3. 60 2. 90 3. 40 3. 20 2. B0	2.80 2.58 1.97 1.45 1.13 1.32 2.80	-0. 02 1. 10 0. 78 0. 93 1. 02 0. 92 0.	0. 02 ~1. 10 ~0. 78 ~0. 92 ~1. 02 ~0. 92 0.
-6.60 -5.08 -5.47 -6.45 -6.63 -7.12 -6.90 Test#	~6. 90 ~7. 53 ~8. 67 ~9. 20 ~9. 43 ~9. 37 ~6. 90	-6. 90 -5. 62 -6. 13 -6. 45 -6. 47 -6. 78 -7. 60	-7. 60 -8. 03 -9. 27 -9. 70 -9. 63 -10. 07 -7. 60	-7. 60 -5. 88 -6. 67 -7. 15 -7. 43 -7. 42 -7. 90	-7. 90 -8. 43 -9. 57 -10. 20 -10. 43 -10. 47 -7. 90	0. 22 1. 24 1. 54 1. 51 1. 49 1. 43	-0, 22 -1, 24 -1, 54 -1, 51 -1, 49 -1, 43 -0, 00
-13.20 -12.68 -13.17 -13.55 -13.13 -13.32 -15.00	-15.00 -15.68 -16.47 -17.65 -17.53 -17.42 -15.00	-15, 00 -13, 23 -13, 97 -14, 70 -15, 13 -14, 87 -15, 20	-15. 20 -16. 07 -17. 13 -17. 90 -18. 17 -19. 03 -15. 20	-15. 20 -13. 52 -14. 23 -14. 55 -14. 57 -15. 08 -15. 50	~15. 50 ~16. 37 ~17. 33 ~18. 00 ~17. 97 ~16. 03 ~15. 50	0.38 1.45 1.59 1.79 1.81 1.54	-0.38 -1.45 -1.59 -1.79 -1.81 -1.54
16. 10 17. 97 17. 13 16. 20 16. 47 16. 53 16. 50	16, 50 15, 63 15, 07 15, 60 14, 43 14, 17 16, 50	16. 50 17. 78 17. 37 16. 75 16. 83 16. 92 15. 50	15. 50 15. 82 14. 83 14. 05 13. 87 13. 88 15. 50	15. 50 17. 75 17. 10 16. 45 15. 70 15. 55 15. 60	15. 60 15. 47 14. 53 13. 90 13. 17 13. 13 15. 60	0. 08 1. 10 1. 19 0. 97 1. 26 1. 30 0 00	-0. 08 -1. 10 -1. 17 -0. 98 -1. 26 -1. 30 0.00

-17.90*T20 + 30.30*T1 - 0.96*T21 - 15.33

TESTI & TESTE + TESTS X TESTS + TESTS X TESTS X TESTS X TESTS X TESTS

TESTI A TESTO + TESTO X TESTO + TESTO X TESTO X TESTO X TESTO X TESTO

							Y	i S
RE	SL	IL	75	OF	PI	TCH	ERROR	(arc-sec)
		-						********
X	41	ιi	\$ 6	e t	126	. 57:	3 mm s	
Υ	41	ı i	8 (e t	140	. 000) mms	
Z	4:	ij		e t	237	. 691	zmm E	
D:	i r	٥	#		er i	F		

POS 0. 50. 100. 150. 200. 250. POS 300. 350. 400. TEMP 20. 85 21. 87 22. 07 20. 88 20. 31 19. 62 TEMP 18. 20 23. 60 21. 62 20. 68 20. 31 19. 62 TEMP 19. 25 34. 61 21. 10 -0. 56 -1. 10 -1. 39 MEAN -2. 05 -2. 61 -2. 51 SD 0. 12 0. 35 0. 26 0. 26 0. 26 0. 24 0. 36 SD 0. 41 0. 46 0. 05 TEMP 23. 07 350. 400. TEMP 23. 07 350. 400. TEMP 23. 04 21. 86 21. 41 20. 82 20. 00 20. 05 TEMP 19. 41 26. 34 23. 64 22. 53 21. 83 21. 07 TEMP 20. 55 35. 66 46. 30 TEMP 20. 62 20. 65 20. 00 20. 05 TEMP 20. 62 20. 65 20. 00 20. 05 TEMP 20. 62 20. 65 20. 00 20. 05 TEMP 20. 62 20. 65 20. 00 20. 05 TEMP 20. 62 20. 65		OF LAWRT	•				
POS 300. 350. 400. 150. 200. 250. POS 300. 350. 400. TEMP 20. 85 21. 87 22. 07 20. 58 22. 41 21. 57 TEMP 21. 70 19. 89 19. 84 18. 87 18. 55 18. 45 21. 62 23. 60 21. 62 20. 68 20. 31 19. 62 TEMP 19. 25 34. 61 21. 10 MEAN 0. 26 0. 35 -0. 11 -0. 58 -1. 10 -1. 39 MEAN -2. 05 -2. 61 -2. 51 SD 0. 12 0. 35 0. 26 0. 26 0. 24 0. 36 SD 0. 40 TEMP 22. 02 25. 21 24. 81 23. 04 23. 81 23. 17 TEMP 22. 02 25. 21 24. 81 23. 04 23. 81 23. 17 TEMP 23. 04 21. 86 21. 41 20. 82 20. 00 20. 05 TEMP 19. 41 26. 34 23. 66 22. 53 21. 83 21. 67 TEMP 20. 55 35. 66 46. 30 MEAN 0. 35 0. 54 -0. 06 -0. 83 -1. 31 -1. 85 MEAN -2. 51 -3. 14 -2. 89 SD 0. 18 0. 58 0. 50 0. 40 0. 51 0. 63 SD 0. 62 0. 69 0. 31 Test * 3 POS 0. 50. 100. 150. 200. 250. POS 300. 350. 400. Temp 22. 38 28. 50 28. 50 25. 83 25. 00 24. 98 SD 0. 62 0. 69 0. 31 Temp 22. 38 28. 50 28. 50 25. 83 25. 00 24. 98 TEMP 20. 82 25. 22. 87 21. 87 21. 40 TEMP 22. 38 28. 50 28. 50 25. 83 25. 00 24. 98 TEMP 20. 84 28. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 26. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 26. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 26. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 26. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 26. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 26. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 26. 32 23. 97 23. 43 22. 44 TEMP 20. 84 26. 55 26. 32 26. 50							
POS			5 0 100	150 000	250		
TEMP 20. 85 21. 87 22. 07 20. 50 22. 41 21. 57 TEMP 21. 70 19. 89 19. 84 18. 87 18. 55 18. 45 TEMP 18. 20 23. 60 21. 62 20. 68 20. 31 19. 62 TEMP 19. 25 34. 61 21. 10 MEAN 0. 26 0. 35 -0. 11 -0. 58 -1. 10 -1. 39 MEAN -2. 05 -2. 61 -2. 51 SD 0. 12 0. 35 0. 26 0. 26 0. 26 0. 24 0. 36 SD 0. 41 0. 46 0. 05 Test # 2 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400. TEMP 22. 02 25. 21 24. 81 23. 04 23. 81 23. 17 TEMP 23. 04 21. 86 21. 41 20. 82 20. 00 20. 05 TEMP 19. 41 26. 34 23. 66 22. 53 21. 83 21. 07 TEMP 20. 55 35. 66 A6. 30 MEAN 0. 35 0. 54 -0. 06 -0. 83 -1. 31 -1. 85 MEAN 0. 35 0. 54 -0. 06 -0. 83 -1. 31 -1. 85 SD 0. 18 0. 58 0. 50 0. 40 0. 51 0. 63 SD 0. 62 0. 69 0. 31 Test # 3 POS 300. 350. 400. TemP 22. 38 28. 50 28. 50 25. 83 25. 00 24. 98 TEMP 24. 63 23. 57 23. 33 22. 61 21. 87 21. 40 TEMP 20. 84 28. 55 25. 32 23. 97 23. 43 22. 44 TEMP 20. 84 28. 55 25. 32 23. 97 23. 43 22. 44 TEMP 21. 90 36. 92 46. 80 MEAN -4. 09 -4. 04 -4. 69 -5. 61 -6. 31 -7. 01 MEAN -7. 72 -8. 46 -8. 15 SD 0. 60 0. 71 0. 12 Test # 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22. 90 30. 24 30. 49 27. 51 25. 46 25. 87 TEMP 23. 74 29. 76 26. 14 24. 72 24. 33 23. 05 TEMP 25. 66 24. 67 24. 52 23. 71 23. 05 22. 18 TEMP 21. 74 29. 76 26. 14 24. 72 24. 33 23. 05 TEMP 22. 68 37. 41 37. 30 MEAN -3. 34 -4. 25 -4. 50 SD 0. 30 350 400 TEMP 22. 68 37. 41 37. 30 MEAN -3. 34 -4. 25 -4. 50 SD 0. 30 350 400 TEMP 22. 68 37. 41 37. 30 MEAN -3. 34 -4. 25 -4. 50 SD 0. 30 350 400 Test # 5 POS 0. 50 100 150 200 250 POS 300 350 400 Test # 5					≇ 50.		
TEMP 21.70 19.89 19.84 18.87 18.55 18.45 TEMP 18.20 23.60 21.62 20.68 20.31 19.62 TEMP 19.25 34.61 21.10 MEAN 0.26 0.35 -0.11 -0.58 -1.10 -1.39 MEAN 0.26 0.35 0.26 0.26 0.26 0.24 0.36 SD 0.12 0.35 0.26 0.26 0.26 0.24 0.36 SD 0.41 0.46 0.05 Test * 2 POS 300. 350. 400. TEMP 22.02 25.21 24.81 23.04 23.81 23.17 TEMP 23.04 21.86 21.41 20.82 20.00 20.5 TEMP 19.41 26.34 23.66 22.53 21.83 21.07 TEMP 20.55 35.66 A6.30 MEAN 0.35 0.54 -0.06 -0.83 -1.31 -1.85 MEAN 0.35 0.58 0.50 0.40 0.51 TEST * 3 POS 0.62 0.69 0.31 Test * 3 POS 0.62 0.69 0.31 TEMP 22.08 25.02 25.02 250. TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 24.69 23.57 23.33 22.61 21.87 21.40 TEMP 20.95 25.66 A6.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.66 0.71 0.12 TEMP 22.08 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 35.46 25.87 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.90 30.24 30.49 27.51 35.46 25.87 TEMP 22.68 37.41 37.30 MEAN -3.34 -4.25 -4.50 30.00 250 SD 0.38 0.42 0.10 150. 200. 250 TEMP 22.68 37.41 37.30 MEAN -3.34 -4.25 -4.50 30.00 0.21 0.30 0.35 SD 0.36 0.42 0.10 150.200 250 TEMP 22.68 37.41 37.30 MEAN -3.34 -4.25 -4.50 30.00 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test * 5 POS 0.00 300 350 400					.00 50	22 41	21 87
TEMP 18.20 23.60 21.62 20.68 20.31 19.62 TEMP 19.25 34.61 21.10 MEAN 0.26 0.35 -0.11 -0.58 -1.10 -1.39 MEAN -2.05 -2.61 -2.51 SD 0.12 0.35 0.26 0.26 0.26 0.24 0.36 SD 0.41 0.46 0.05 Test # 2 POS 0.50.100 150.200.250. TEMP 22.02 25.21 24.81 23.04 23.81 23.17 TEMP 23.04 21.86 21.41 20.82 20.00 20.05 TEMP 20.35 35.66 A6.30 MEAN 0.35 0.54 -0.06 -0.89 -1.31 -1.85 MEAN 0.35 0.54 -0.06 -0.89 -1.31 -1.85 MEAN -2.51 -3.14 -2.89 SD 0.18 0.58 0.50 0.40 0.51 Test # 3 POS 300.350.400 TEMP 22.38 28.50 28.50 25.83 25.00 24.98 TEMP 22.38 28.50 28.50 25.83 25.00 24.98 TEMP 22.38 28.50 28.50 25.83 25.00 24.98 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 A6.80 MEAN -7.72 -8.46 -80 MEAN -7.72 -8.46 -80 15 SD 0.66 0.71 0.12 Test # 4 POS 0.50.100 150.200.250. POS 300.350.400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 21.90 36.92 A6.80 MEAN -7.72 -8.46 -8.15 SD 0.66 0.71 0.12 Test # 4 POS 0.50.100 150.200.250. POS 300.350.400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 21.74 29.76 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 24.54 52 23.71 23.05 22.18 TEMP 21.74 29.76 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 24.67 24.52 23.71 23.05 24.90 TEMP 22.68 37							
TEMP 19.25 34.61 21.10 MEAN 0.26 0.35 -0.11 -0.58 -1.10 -1.39 MEAN 0.26 0.35 -0.11 -0.58 -1.10 -1.39 MEAN 0.26 0.35 0.26 0.26 0.26 0.24 0.36 SD 0.12 0.35 0.26 0.26 0.26 0.24 0.36 SD 0.41 0.46 0.05 Test # 2 POS 0.50.100 150.200.250. TEMP 22.02 25.21 24.81 23.04 23.81 23.17 TEMP 23.04 21.86 21.41 20.82 20.00 20.05 TEMP 19.41 26.34 23.66 22.53 21.83 21.07 TEMP 20.35 35.66 46.30 MEAN 0.35 0.54 -0.06 -0.89 -1.31 -1.85 MEAN -2.51 -3.14 -2.89 SD 0.62 0.69 0.31 Test # 3 POS 0.50.100 150.200.250. POS 300.350.400 TEMP 22.38 28.50 28.50 25.83 25.00 24.98 TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 46.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.06 0.71 0.12 Test # 4 POS 0.50.100 150.200.250. POS 300.350.400 TEMP 22.90 30.24 0.69 0.50 0.60 0.50 0.50 POS 10.06 0.71 0.12 Test # 4 POS 0.50.100 150.200.250. POS 10.06 0.71 0.12 Test # 4 POS 0.50.100 150.200.250. POS 10.06 0.71 0.12 Test # 4 POS 0.50.100 150.200.250. POS 10.06 0.71 0.12 Test # 4 POS 0.50.100 150.200.250. POS 10.06 0.71 0.12 Test # 5 POS 0.50.100 150.200.250. POS 10.06 0.33 0.24 0.24 0.21 0.30 0.35 D 0.06 0.33 0.24 -0.83 -1.74 -2.40 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN 1.26 0.93 0.24 0.21 0.30 0.35 D 0.06 0.33 0.24 0.24 0.21 0.30 0.35 POS 0.00 350 400							
MEAN 0. 26 0. 35 -0. 11 -0. 58 -1. 10 -1. 39 MEAN -2. 05 -2. 61 -2. 51 SD 0. 24 0. 36 SD 0. 12 0. 35 0. 26 0. 26 0. 24 0. 36 First # 2 POS 30. 350. 400. TEMP 22. 02 25. 21 24. 81 23. 04 23. 81 23. 17 TEMP 19. 41 26. 34 23. 46 22. 53 21. 63 21. 07 TEMP 19. 41 26. 34 23. 64 22. 53 21. 63 21. 07 TEMP 20. 55 35. 64 A6. 30		10.20			20.00	20. 51	37. UE
MEAN -2.05 -2.61 -2.51 SD					-0 50	-1 10	-1 70
SD 0.12 0.35 0.26 0.26 0.26 0.24 0.36 SD 0.41 0.46 0.05 Test # 2 POS 0.50.100.150.200.250. TEMP 22.02 25.21 24.81 23.04 23.81 23.17 TEMP 23.04 21.86 21.41 20.82 20.00 20.05 TEMP 19.41 26.34 23.46 22.53 21.83 21.07 TEMP 20.55 35.66 46.30 MEAN 0.35 0.54 -0.06 -0.83 -1.31 -1.85 MEAN -2.51 -3.14 -2.89 SD 0.18 0.58 0.50 0.40 0.51 0.63 SD 0.62 0.69 0.31 Test # 3 POS 300.350 400. TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 46.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.06 0.71 0.12 Test # 4 POS 0.50.100 150.200.250. POS 300.350.400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 30.49 27.51 23.05 22.18 TEMP 22.68 37.41 37.30 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 POS 0.06 0.33 0.24 0.21 0.30 0.35 POS 0.06 0.33 0.24 0.21 0.30 0.35 Test # 5 POS 0.00 350 400 Test # 5					-0. 36	-1, 10	1.0,
Test # 2 POS					0.24	A 74	0.34
POS		0.12			U. ZD	O. E-	Q. 30
POS 300. 350. 400. TEMP 22.02 25.21 24.81 23.04 23.81 23.17 TEMP 23.04 21.86 21.41 20.82 20.00 20.05 TEMP 19.41 26.34 23.66 22.53 21.83 21.07 TEMP 20.55 35.66 A6.30 MEAN 0.35 0.54 -0.06 -0.83 -1.31 -1.85 MEAN -2.51 -3.14 -2.89 SD 0.18 0.58 0.50 0.40 0.51 0.63 SD 0.62 0.69 0.31 Temp 22.38 28.50 28.50 25.83 25.00 24.98 TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 A6.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.66 0.71 0.12 Test # 4 POS 0.50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.47 27.51 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.24 0.21 0.30 0.35 SD 0.06 0.33 0.24 0.24 0.21 0.30 0.35 D 0.06 0.33 0.24 0.24 0.21 0.30 0.35 SD 0.06 0.33 0.24 0.24 0.21 0.30 0.35 SD 0.06 0.33 0.24 0.24 0.21 0.30 0.35 SD 0.06 0.33 0.24 0.21 0.30 0.35 TEMP 22.68 37.41 37.30 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.06 0.33 0.24 0.21 0.30 0.35 POS 300 350 400			U. 46	U. US			
POS 300. 350. 400. TEMP 22. 02 25. 21 24. B1 23. 04 23. B1 23. 17 TEMP 23. 04 21. 86 21. 41 20. 82 20. 00 20. 05 TEMP 19. 41 26. 34 23. 66 22. 53 21. 83 21. 07 TEMP 20. 55 35. 66 A6. 30 MEAN 0. 35 0. 54 -0. 06 -0. 89 -1. 31 -1. 85 MEAN -2. 51 -3. 14 -2. 89 SD 0. 18 0. 58 0. 50 0. 40 0. 51 0. 63 SD 0. 62 0. 69 0. 31 Test 8 3 POS 300. 350. 400. TEMP 22. 38 28. 50 28. 50 25. 83 25. 00 24. 98 TEMP 24. 63 23. 57 23. 33 22. 61 21. 87 21. 40 TEMP 20. 84 28. 55 25. 32 23. 97 23. 43 22. 44 TEMP 21. 90 36. 92 A6. 80 MEAN -4. 09 -4. 04 -4. 69 -5. 61 -6. 31 -7. 01 MEAN -7. 72 -8. A6 -8. 15 SD 0. 0. 60 0. 71 0. 12 Test 8 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22. 90 30. 24 30. 49 27. 51 25. 46 25. 87 TEMP 21. 74 29. 76 26. 14 24. 72 24. 33 23. 05 TEMP 22. 68 37. 41 37. 30 MEAN -3. 34 -4. 25 -4. 50 SD 0. 06 0. 33 0. 24 0. 24 0. 21 0. 30 0. 35 SD 0. 06 0. 33 0. 24 0. 20 0. 25 SD 0. 06 0. 33 0. 24 0. 21 0. 30 0. 35 SD 0. 06 0. 33 0. 24 0. 21 0. 30 0. 35 SD 0. 06 0. 33 0. 24 0. 21 0. 30 0. 35 SD 0. 06 0. 33 0. 24 0. 21 0. 30 0. 35 SD 0. 06 0. 33 0. 24 0. 21 0. 30 0. 35 SD 0. 06 0. 33 0. 24 0. 21 0. 30 0. 35 SD 0. 06 0. 30 100 150 200 250 POS 300 350 400							
POS			50 100	150 700	280		
TEMP 22. 02 25. 21 24. 81 23. 04 23. 81 23. 17 TEMP 19. 41 26. 34 23. 66 22. 53 21. 83 22. 07 TEMP 20. 55 35. 66 A6. 30 MEAN -2. 51 -3. 14 -2. 89 SD 0. 18 0. 58 0. 50 0. 40 0. 51 0. 63 SD 0. 62 0. 69 0. 31 Test # 3 POS 0. 50. 100. 150. 200. 250. PDS 300. 350. 400. TEMP 21. 90 36. 92 A6. 80 MEAN -4. 09 -4. 04 -4. 69 -5. 61 -6. 31 -7. 01 MEAN -7. 72 -8. 46 -8. 15 SD 0. 66 0. 71 0. 12 Test # 4 POS 0. 50. 100 150. 200. 250. PCS 300. 350. 400 TEMP 21. 90 36. 92 A6. 80 MEAN -7. 72 -8. 46 -8. 15 SD 0. 66 0. 71 0. 12 Test # 4 POS 0. 50. 100 150. 200. 250. PCS 300. 350. 400 TEMP 22. 90 30. 24 30. 49 27. 51 25. 46 25. 87 TEMP 21. 74 29. 76 26. 14 24. 72 24. 33 23. 05 TEMP 22. 68 37. 41 37. 30 MEAN -3. 34 -4. 25 -4. 50 SD 0. 30 0. 38 0. 42 0. 10 Test # 5 POS 0. 50. 100 150 200 250 POS 300 350 400 TEMP 22. 68 37. 41 37. 30 MEAN -3. 34 -4. 25 -4. 50 SD 0. 06 0. 33 0. 24 -0. 83 -1. 74 -2. 40 MEAN -3. 34 -4. 25 -4. 50 SD 0. 30 0. 350 400 Test # 5		300	350. 100.	150. 200.	E 50.		
TEMP 23 04 21 86 21 41 20 82 20 00 20 05 TEMP 19 41 26 34 23 66 22 53 21 83 21 07 TEMP 20 55 35 66 A6 30 MEAN 0 35 0 54 ~0.06 ~0.89 -1.31 -1.85 MEAN -2.51 -3.14 -2.89 SD 0.18 0.58 0.50 0.40 0.51 0.63 SD 0.62 0.69 0.31 Test * 3 POS 300 350 400 TEMP 22 38 28 50 28 50 25 83 25 00 24 98 TEMP 24 63 23 57 23 33 22 61 21 87 21 40 TEMP 20 84 28 55 25 32 23 97 23 43 22 44 TEMP 21 90 36 92 A6 80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.66 0.71 0.12 Test * 4 POS 300 350 400 TEMP 22 90 30 24 30 49 27 51 25 46 25 87 TEMP 21 74 29 76 26 14 24 72 24 33 23 05 TEMP 22 68 37 41 37 30 TEMP 22 68 37 41 37 30 TEMP 23 00 36 0 42 0 10 TEMP 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		300.	350. 400.	24 D1	23.04	23 81	23 17
TEMP 19.41 26.34 23.66 22.53 21.83 21.07 TEMP 20.35 35.66 Ab.30 MEAN 0.35 0.54 -0.06 -0.83 -1.31 -1.85 MEAN -2.51 -3.14 -2.89 SD 0.18 0.58 0.50 0.40 0.51 0.63 SD 0.62 0.69 0.31 Test * 3 POS 0.50.100.150.200.250. TEMP 22.38 28.50 25.83 25.00 24.98 TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 21.90 36.92 Ab.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.66 0.71 0.12 Test * 4 POS 0.50.100 150.200.250. POS 300.350.400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 21.74 29.76 26.14 24.72 24.33 23.05			21. 21		20.07		
TEMP 20.95 35.66 A6.30 MEAN 0.35 0.54 -0.06 -0.83 -1.31 -1.85 MEAN -2.51 -3.14 -2.89 SD 0.18 0.58 0.50 0.40 0.51 0.63 SD 0.62 0.69 0.31 Test # 3 POS 300.350 400. TEMP 22.38 28.50 28.50 25.83 25.00 24.98 TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 A6.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.09 0.66 0.71 0.12 Test # 4 POS 300.350.400 TEMP 22.90 30.24 30.49 27.51 35.46 25.87 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 Test # 5			24. DD				
MEAN		17. 41 20. 88	25. 34 35. LL		EE. UU	£4. 00	2.
MEAN -2.51 -3.14 -2.89 SD 0.18 0.58 0.50 0.40 0.51 0.63 SD 0.62 0.69 0.31 Test * 3 POS 0. 50. 100. 150. 200. 250. PDS 300. 350. 400. TEMP 22.38 28.50 28.50 25.83 25.90 24.98 TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 46.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.09 0.66 0.71 0.12 Test * 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.06 0.350 400 Test * 5 POS 0.06 0.33 0.24 0.21 0.30 0.35					~A P3	-1 31	-1 85
SD 0.18 0.58 0.50 0.40 0.51 0.63 SD 0.62 0.69 0.31 Test # 3 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400. TEMP 22.38 28.50 28.50 25.83 25.00 24.78 TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 46.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.09 0.68 0.64 0.56 0.65 0.71 SD 0.66 0.71 0.12 Test # 4 POS 0.50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.38 0.42 0.10 Test # 5 POS 0 50. 100 150 200 250 POS 300 350 400					~0. 63	-4.01	2. 00
Test # 3 POS					0.40	D 51	0.63
POS 0. 50. 100 150. 200. 250. POS 300. 350. 400. TEMP 22. 38 28. 50 28. 50 25. 83 25. 00 24. 78 TEMP 24. 63 23. 57 23. 33 22. 61 21. 87 21. 40 TEMP 20. 84 28. 55 25. 32 23. 97 23. 43 22. 44 TEMP 21. 90 36. 92 A6. 80 MEAN -4. 09 -4. 04 -4. 69 -5. 61 -6. 31 -7. 01 MEAN -7. 72 -8. 46 -8. 15 SD 0. 66 0. 71 0. 12 Test # 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22. 90 30. 24 30. 49 27. 51 25. 46 25. 87 TEMP 21. 74 29. 76 26. 14 24. 72 24. 33 23. 05 TEMP 22. 68 37. 41 37. 30 MEAN -3. 34 -4. 25 -4. 50 SD 0. 36 0. 32 40. 24 0. 24 -0. 83 -1. 74 -2. 40 MEAN -3. 34 -4. 25 -4. 50 SD 0. 38 0. 42 0. 10 Test # 5 PDS 0. 50. 100 150 200 250 POS SD 0. 300 350. 400		0.18	0.56	0.30	0.40	0. 51	0. 55
POS 300. 350. 400. TEMP 22. 38 28. 50 28. 50 25. 83 25. 00 24. 98 TEMP 24. 63 23. 57 23. 33 22. 61 21. 87 21. 40 TEMP 20. 84 28. 55 25. 32 23. 97 23. 43 22. 44 TEMP 21. 90 36. 92 46. 80 MEAN -4. 09 -4. 04 -4. 69 -5. 61 -6. 31 -7. 01 MEAN -7. 72 -8. 46 -8. 15 SD 0. 66 0. 71 0. 12 Test # 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 25. 65 24. 67 24. 52 23. 71 23. 05 22. 18 TEMP 21. 74 29. 76 26. 14 24. 72 24. 33 23. 05 TEMP 22. 68 37. 41 37. 30 MEAN -3. 34 -4. 25 -4. 50 SD 0. 36 0. 42 0. 10 Test # 5 PDS 0. 300. 350. 400 Test # 5			U. 67	0. 31			
POS 300. 350. 400. TEMP 22. 38 28. 50 28. 50 25. 83 25. 00 24. 98 TEMP 24. 63 23. 57 23. 33 22. 61 21. 87 21. 40 TEMP 20. 84 28. 55 25. 32 23. 97 23. 43 22. 44 TEMP 21. 90 36. 92 46. 80 MEAN -4. 09 -4. 04 -4. 69 -5. 61 -6. 31 -7. 01 MEAN -7. 72 -8. 46 -8. 15 SD 0. 09 0. 68 0. 64 0. 56 0. 65 0. 71 SD 0. 66 0. 71 0. 12 Test # 4 POS 300. 350. 400 TEMP 22. 90 30. 24 30. 49 27. 51 25. 46 25. 87 TEMP 21. 74 29. 76 26. 14 24. 72 24. 33 23. 05 TEMP 22. 68 37. 41 37. 30 MEAN -3. 34 -4. 25 -4. 50 SD 0. 36 0. 35 0. 24 0. 21 0. 30 SD 0. 36 0. 37 0. 24 0. 21 SD 0. 30 0. 35 0. 400 Temp 23. 34 -4. 25 -4. 50 SD 0. 36 0. 37 0. 24 0. 21 0. 30 Test # 5 POS 300 350 400 Test # 5 POS 300 350 400							
PDS 300. 350. 400. TEMP 22. 38 28. 50 28. 50 25. 83 25. 00 24. 98 TEMP 24. 63 23. 57 23. 33 22. 61 21. 87 21. 40 TEMP 20. 84 28. 55 25. 32 23. 97 23. 43 22. 44 TEMP 21. 90 36. 92 46. 80 MEAN -4. 09 -4. 04 -4. 69 -5. 61 -6. 31 -7. 01 MEAN -7. 72 -8. 46 -8. 15 SD 0. 09 0. 68 0. 64 0. 56 0. 65 0. 71 SD 0. 66 0. 71 0. 12 Test # 4			50 100	150 200	250		
TEMP 22.38 28.50 28.50 25.83 25.00 24.98 TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 46.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.09 0.68 0.64 0.56 0.65 0.71 SD 0.66 0.71 0.12 Test # 4 PDS 0.50, 100 150, 200, 250, POS 300, 350, 400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN -3.34 -4.25 -4.50 SD 0.36 0.32 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50, 100 150 200 250 PDS 0 300 350 400		300	250 400		250.		
TEMP 24.63 23.57 23.33 22.61 21.87 21.40 TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 A6.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.09 0.68 0.64 0.56 0.65 0.71 SD 0.66 0.71 0.12 Test # 4 POS 0.50.100 150.200.250. POS 300.350.400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.38 0.42 0.10 Test # 5 PDS 0.50.100 150 200 250 PDS 300 350 400		22 28	20 60		25 83	25 00	24 98
TEMP 20.84 28.55 25.32 23.97 23.43 22.44 TEMP 21.90 36.92 A6.80 MEAN -4.09 -4.04 -4.69 -5.61 -6.31 -7.01 MEAN -7.72 -8.46 -8.15 SD 0.09 0.68 0.64 0.56 0.65 0.71 SD 0.66 0.71 0.12 Test # 4 POS 300.350.400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.36 0.42 0.10 Test # 5 PDS 0 50.100 150 200 250 PDS 300 350 400				^~ ~~			
SD 0.66 0.71 0.12 Test # 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50. 100 150 200 250 POS 300 350 400		20.03	20.57	28.22	23 87	23 43	
SD 0.66 0.71 0.12 Test # 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50. 100 150 200 250 POS 300 350 400		20.04	34 83	AL BO	ES. 77	25. 45	
SD 0.66 0.71 0.12 Test # 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50. 100 150 200 250 POS 300 350 400		-A 00	-A DA	~A 49	-5 61	-A 31	~7 01
SD 0.66 0.71 0.12 Test # 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50. 100 150 200 250 POS 300 350 400		-7. U7 -7. 77	-D AL	-9.15	0.02	D . U .	
SD 0.66 0.71 0.12 Test # 4 POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50. 100 150 200 250 POS 300 350 400		0.00	0.40	0.44	0.56	0.65	0.71
Test # 4 POS	20	U. U,	0.21	0.12	0.00	0.00	•
PDS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22. 90 30. 24 30. 49 27. 51 25. 46 25. 87 TEMP 25. 65 24. 67 24. 52 23. 71 23. 05 22. 18 TEMP 21. 74 29. 76 26. 14 24. 72 24. 33 23. 05 TEMP 22. 68 37. 41 37. 30 MEAN 1. 26 0. 93 0. 24 -0. 83 -1. 74 -2. 40 MEAN -3. 34 -4. 25 -4. 50 SD 0. 06 0. 33 0. 24 0. 21 0. 30 0. 35 SD 0. 38 0. 42 0. 10 Test # 5 PDS 0 50. 100 150 200 250 PDS 300 350 400			0.71	U. 12			
POS 0. 50. 100 150. 200. 250. POS 300. 350. 400 TEMP 22.90 30. 24 30. 49 27. 51 25. 46 25. 87 TEMP 25. 65 24. 67 24. 52 23. 71 23. 05 22. 18 TEMP 21. 74 29. 76 26. 14 24. 72 24. 33 23. 05 TEMP 22. 68 37. 41 37. 30 MEAN 1. 26 0.93 0. 24 -0. 83 -1. 74 -2. 40 MEAN -3. 34 -4. 25 -4. 50 SD 0. 06 0. 33 0. 24 0. 21 0. 30 0. 35 SD 0. 38 0. 42 0. 10 Test # 5 PDS 0 50. 100 150 200 250 PDS 300 350 400							
POS 300. 350. 400 TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50. 100 150 200 250 PDS 300 350 400		0	50 100	150 200	250		
TEMP 22.90 30.24 30.49 27.51 25.46 25.87 TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50.100 150 200 250 PDS 300 350 400				1-0			
TEMP 25.65 24.67 24.52 23.71 23.05 22.18 TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50.100 150 200 250 PDS 300 350 400			30.24	30.49	27 51	75. 46	25, 87
TEMP 21.74 29.76 26.14 24.72 24.33 23.05 TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50.100 150 200 250 PDS 300 350 400				24 52	-		
TEMP 22.68 37.41 37.30 MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50.100 150 200 250 PDS 300 350 400							
MEAN 1.26 0.93 0.24 -0.83 -1.74 -2.40 MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50.100 150 200 250 PDS 300 350 400			37 41		• =	•	
MEAN -3.34 -4.25 -4.50 SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50, 100 150 200 250 PDS 300 350 400					-0.83	~1.74	-2.40
SD 0.06 0.33 0.24 0.21 0.30 0.35 SD 0.38 0.42 0.10 Test # 5 PDS 0 50.100 150 200 250 PDS 300 350 400					J. 22	•	
SD 0.38 0.42 0.10 Test # 5 PDS 0 50.100 150 200 250 PDS 300 350 400					0.21	0.30	0. 35
Test # 5 PDS 0 50 100 150 200 250 PDS 300 350 400						-· - -	
PDS 0 50 100 150 200 250 PDS 300 350 400				• • • •			
PDS 0 50, 100 150 200 250 PDS 300 350 400		-					
PDS 300 350 400		0	50, 100	150 200	250		
TEMP 22 95 32 30 32 76 28 87 25 94 26 87		300			. = =		
		22 95		32.76	28 87	25 94	26 87

__

TEMP	26 60	25. 74	25. 69	24 83	24, 20	23 09
TEMP	22. 62	30.77	26 92	25.50	25. 25	23 73
TEMP	23. 48	37.98	37. 20			
MEAN	-0. 20	-0.46	-1.52	-2.49	-3 . 5 5	-4 21
MEAN	-5. 28	-6 25	-6. 27			
SD	0.11	0. 45	0 40	0 38	0. 37	0 45
SD Test #	0. 57	0. 56	0 05			
1625 #	6					
POS	0.	50. 100.	150. 200.	250		
POS	30 0.	350. 400.				
TEMP	23. 00	33. 28	33. 38	29. 42	26. 20	27.67
TEMP	27. 50	27. 13	27. 03	26. OB	25. 59	24. 24
TEMP	23. B4	30. 76	27. 74	26. 37	26. 30	24. 65
TEMP	24. 51	38. 31	51. 30		45.55	
MEAN	-9. 34	-9. 63	-10. 77	-11. 93	-12. 97	−13. 96
MEAN SD	-15. 02 2. 16	-16. 22 1. 81	-16. 05 1. 93	1 80	1. 75	1. 79
SD	1.75	1. 80	1. 77	1 60	1. 75	1. 77
Test #	7	1. 60	1. //			
POS	0.	50. 100.	150. 200.	250 .		
POS	300.					
TEMP	22. 65	30. 38	32.10	29. 14	26. 18	27. 99
TEMP	27. 43	27. 11	27. 41	25. 67	25. 69	24. 47
TEMP	24. 20	29. 55	27. 70	26. 53	26. 70	24. 9B
TEMP MEAN	24. 93 -0. 83	38. 29 -1. 05	35. 50 -2. 08	-3. 24	-4. 42	-5. 34
MEAN	-6. 54	-7. 72	-2. 85	-3. 24	-9. 42	-5. 34
SD	0. 27	0. 59	0. 4B	0. 50	0. 46	0. 53
SD	0. 63	0. 69	0. 13	0. 50	0. 40	0. 00
Test #	8	0.07	V. 12			
POS	0.	50. 100.	150. 200.	25 0.		
POS TEMP	22. 96	350. 400. 33. 59	34. 63	31. 31	25. 80	28, 27
TEMP	28. 08	28. 12	28. 22	27. 42	26. 95	25. 33
TEMP	24. 92	31. 99	28. 47	27. 22	26. 98	25. 90
TEMP	25. 53	37. 89	46. 50	27. 22	20. 70	20. 70
MEAN	-13. 83	-14.34	-15.5B	-16, 78	-17, 96	-18.86
MEAN	-20. 30	-21. 24	-21.57			
SD	0. 05	0. 56	0. 47	0. 37	0.41	0. 50
SD	0. 49	0. 53	0. 03			
Test #	9					
POS	 0.	50. 100.	150. 200.	250		
POS	300.		150. 200.	25 0.		
TEMP	22. 7B	33. 58	35. 51	31. 62	25, 50	28. 68
TEMP	28. 24	28. 39	28. 56	27. 63	27. 26	25. 70
TEMP	25. 18	32. 11	28.70	27. 51	27. 19	26.11
TEMP	25. 75	37. 52	49. 10	_,, ,-		20: 11
MEAN	-16.60	-17. 17	-18.48	-19.76	-20, 95	-21, 98
MEAN	-23.28	-24. 36	-24.66		-	
SD	0. 14	0. 59	0. 53	0.40	0. 44	0. 47
SD	0. 49	0. 58	0. 05			
Test #	10					
POS						
	^	50 100	150 200	250		
POS	0. 300	50. 100. 350. 400	150. 200.	25 0.		
POS TEMP		50. 100. 350. 400. 32. 38	150. 200. 33. 54	250. 30 44	25. 37	28 30

TEMP	27. 96	28, 27	28. 42	27. 74	27, 49	25, 78
TEMP	25, 32	30. 59	28. 45	27. 30	27. 08	26.17
TEMP	25.88	37. 10	31. 50			
MEAN	-6. 15	-6. B1	-B. 16	-9. 52	-10.74	-11.77
MEAN	-13.05	-14. 23	-14. 61			
SD	0.74	0. 54	0. 55	0. 56	0. 55	0. 51
en en	0.50	A 74	0.25			

ACTUAL DATA

						SPREAD	
						Up	Down
Test #	1						
0. 04	0. 24	0. 24	0. 35	0.35	0. 31	-0. 05	0 05
0. 43	-0. 04	0. 67	0.12	O. 83	0. 12	0. 29	-0. 29
0. 04	-0. 43	0. 12	-0. 2B	0.20	-0.31	0. 23	-0. 23
-0. 43	- 0. 91	-0.31	- 0. 71	-0. 31	-0. 83	0. 23	-0. 23
-0. 91	-1.42	-0. 87	-1.26	-0. 87	-1. 26	0. 22	- 0. 22
-1. 22	-1. B1	-1.02	-1.61	~O. 98	-1.69	0. 31	-0.31
ー1.フフ	-2. 48	-1.61	-2.40	-1.65	-2.40	0. 37	-0. 37
-2. 24	-3. 03	-2. 20	-3. 07	-2.13	-2. 99	0. 42	-0.42
-2. 56	-2. 56	-2.52	-2. 52	-2.44	-2.44	~0.00	-0.00
Test #	2						
0.28	0. 55	0. 55	0. 31	0. 31	0.08	0. 03	-0.03
1.02	0. 28	1. 22	0.04	O 87	-0. 20	0.50	-0 50
0. 35	-0. 24	0. 43	~ 0. 47	0. 31	-0.75	0. 43	-0.43
- 0. 47	-1. 02	~0. 43	-1.10	~0. 55	-1.42	0. 35	~0.35
-0. B3	-1.50	-0. 83	-1.69	-0. 98	-2, 05	0. 43	-0. 43
-1.14	-2. 17	-1. 22	-2.24	-1.61	-2. 72	0.52	~0.52
-1.81	~2. 68	-1. 93	-3.11	~2. 24	~3. 31	0 52	-0 52
-2. 40	~3. 35	~2.4B	~3 86	~2.80	~3. 98	0. 58	~0.5B
~2.60	~2. 60	-2. BO	-2.80	~3. 27	~3. 27	O .	O .
Test #	3						
~4.06	~4. 02	~4. 02	~4. 09	~4. 09	~4. 25	0. 03	-0 03
~3. 46	~4 . 5 3	-3.31	~4. 65	~3. 50	~4.76	0. 61	~0.61
~4, 25	~5. 16	-3. 94	~5. 20	~4 . 17	~5. 43	0. 57	-0.57
~5 04	~5. 98	~5. 12	-6.10	~5.16	~6. 26	0.51	~0.51
~5. 75	~6. B1	~5. 71	~6. B9	~5. 71	- 7. 01	0. 59	~0.59
~6 . 38	-7.52	~6. 30	-7.44	~6 . 5 0	-7. 95	0. 62	-0.62
~7. 13	-8.19	-7. 01	~B. 27	-7. 24	~B. 46	0. 59	-0 59
~7.68	-9. 02	-7. <i>9</i> 9	~9. 09	-7. BO	-9 . 17	0. 64	-0 64
~8 .07	−8 . 07	-B. Ø7	-8.07	-8. 31	-8.31	0.	0
Test #	4						
1. 22	1. 22	1.22	1 26	1. 26	1. 38	-0.03	0 03
1 22	0. 63	1.26	0. 63	1.22	0.63	0 30	-0 30
0.43	0 04	0.47	0 00	0. 47	0. 04	0. 22	-0. 22
-0 87	-0.91	-0.83	-1 06	-0 43	-0 91	0 12	-0 12
-1.42	-1 93	-1 61	-2 13	-1.42	-1. 93	0. 26	-0 26
-2.20	-2 83	-2.05	-2 68	-2. 01	-2 60	0. 31	-0 31
-2 91	-3 66	-3 03	-3 74	-3. 03	-3 66	0 35	-0 35

-3.82	-4. 61	-3. <i>82</i>	-4. 69	~3. 9 8	-4. 61	0. 38	-0 38
-4. 57	-4. 57	-4. 57	-4. 57	-4. 37	-4. 37	0.	0.
Test #	5				•		•
-0. 04	-0. 16	-0.16	-0. 31	~0. 31	-0. 24	0. 03	-0.03
-0.12	-0. 87	0. 04	-0. 67	~O. OB	-0. B7	0.41	-0.41
-1.30	-1. 89	-0. 98	-1. B1	~1. 22	-1. 89	0. 35	-0. 35
-2. 17	-2. 80	-2.09	-2. 63	~2. 17	-2. B7	0. 35	-0. 35
-3. 19	-3. 82	-3.19	-3. 86	~3. 27	-3. 98	0. 33	-0. 33
-3. 78	-4. 65	-3.74	-4. 5 7	~3. 70	-4. 65	0. 41	-0. 33 -0. 41
-4. 69	-5. 71	-4.76	-5. 71	~4. B4	-5. 94		
-5. 71	~6. 73	-5. 67	-6. 77	~5. B7	-6. 77	0. 51	-0. 51
-6. 22	-6. 22	-6. 34	-6. 34		-	0. 51	- 0. 51
Test #	6	-6. 34	-6. 34	-6. 26	-6. 26	Ο.	Ο.
-12.80	-10. 20	10 20	-6 07	. 0 . 07			
-12. 17	-11.30	-10. 20 -9. 61	-B. 07	-8 . 07	-6. 73	-1.01	1.01
-13.54	-12.32		-9.09	-7. 99	-7. 60	-0.30	0. 30
		-11.06	-10. 16	-8. 94	-8. 62	-0.41	0.41
-14. 33	-13. 54	-12. 24	-11.46	-10 OB	-9. 92	-0. 29	0. 29
-15. 16	-14.76	-12. 95	-12. 83	-10.98	~11.14	-0.06	0.06
-16.02	-16.10	-13. 66	-13. B2	-12.01	~12. 17	0. 07	- 0. 07
-16. 73	-17. 24	-14.69	-15.16	-12. BO	~13. 50	0. 28	~O. 28
-17. 99	-18.54	-15. 55	-16.42	-13. 82	-15.00	0. 43	-0.43
-18. 15	-18. 15	-15. 79	-15. <i>79</i>	-14. 21	~14. 21	0.00	0.00
Test #	7						
-1.34	-0. B3	-0. 83	-0. 59	- 0. 59	-0. 83	-0.09	0. 09
-0 . 98	-1.65	-0. 43	-1. 42	- 0. 28	- 1. 54	0. 49	~0. 49
~2.20	-2. 48	-1.50	-2. 40	-1.46	-2. 44	0. 36	-0.36
-3. 23	-3. 74	-2. 64	-3. 58	-2. 64	-3. 62	0.41	-0.41
~4. 13	-4 . 88	-3. 90	-4. B4	-3. 98	-4. 76	0. 41	-0. 41
-5 . 31	-5 . 75	-4. BO	-5. 79	-4.61	-5. 79	0, 43	-0. 43
~5. 78	-7. 20	-5. 98	−7. 01	-5. 94	-7. 13	0. 57	-0. 57
-7. 17	~8 . 43	−7. 13	-8. 31	-6. 97	-8. 31	0. 63	-0. 63
- 7. 95	-7. 95	− 7. 91	-7. 91	-7. 68	-7. 68	0.	0.
Test #	8				- · · - <u></u>	•.	•
-13.90	-13. B2	-13. B2	-13. 78	-13.78	-13. 90	Ο.	Ο.
-13. 90	-14.69	-13.74	-14. 92	-13. 90	-14. 92	0. 50	-0.50
-15.39	-15. B3	-15.04	-15. 94	-15.12	-16.18	0.40	-0. 40
-16. 50	~16.97	-16.38	-17.09	-16. 50	-17. 24	0. 32	-0.32
-17. 56	-18.31	-17. 56	-18. 27	-17.64	-18.43	0. 37	-0.37
-18.39	-19.33	-18.39	-19.25	-18.43	-19.37	0.46	-0.46
-19.76	-20.75	-19.96	-20.67	-19.84	-20. 79	0. 44	-0.44
-20.71	-21.69	-20. B3	-21.69	-20.75	-21.77	0.48	-0. 4B
-21.57	~21, 57	-21.54	-21.54	-21.61	-21.61	0. 42	0.
Test #	9				21.01	U .	V.
-16.34	~16, 61	-16.61	-16.65	-16.65	-16. 73	0. 07	-0.07
-16.46	-17. 76	-16.69	-17. 64	-16, 77	-17.68	0. 52	-0. 52
-17.80	-19, 13	-18.07	-18.74	-18 19	-18.94	0. 46	
-19. 25	-20, 12	-19.41	-20.12	-19.53	-20.12		-0. 46 -0. 34
-20.39	-21.30	-20. 51	-21.34	-20 79	-21.38	0.36	−0. 36 −0. 39
-21.42	-22.32	-21.57	-22. 48			0.39	
-22.76	-23. 66	-22. 87	-23.82	-21.69	-22. 40	0. 42	-0.42
-23.86	-24.72	-23.82		-22. 87	-23. 70	0. 45	-0. 45
-23.66 -24.61	-24.61	-23. 62 -24. 72	-25 00	-23.82	-24 92	0. 52	-0.52
Test #		TE4. / E	-24.72	-24. 65	-24.65	Ο.	Ο.
	10	_4 54	- 4 - 60				
-7. 32 -7. 44	-6 26 -7 26	-6 26	-6.02	-6. 02	-5.00	-0. 39	0 39
-7. 44 -8. 78	-7.36 -8.78	-6. 38 -7. 80	~7. 05	-6. 26	-6 38	0.12	~0.12
		-7. 8 0	-B. 31	-7. 52	-7. 76	0. 12	-0.12
-10 28	-10 08	-9. 21	~9. 57	-8 86	-9 13	0 07	-0.07
-11 46	-11 30	-10 2B	-10 87	-10 28	-10 28	0 07	-0 07
-12 09	-12 44	-11 34	-11.97	-11.06	-11 69	0. 27	-0 27
-13 15	-13 82	-12 56	-13 31	~12 40	-13 07	0, 35	-0 35

Cod Cooperate Assessed Goldens

-3.01*T3 + 3.88*T5 - 0.34e-3*T21*Y - 0.30*T21 + 8.99*T1 - 200.06

■ おおおおおおおとことのなるなるをは、ないできないできる。
■ これのなるなどのは、
■ これのなるなどのは、

TESTI Δ TESTS + TESTS \times TESTH + TESTS + TESTS \times TESTS \times TESTS \times TESTS \times TESTS

Control of the Control

TESTI A TEST2 + TEST3 X TEST4 + TEST5 + TEST6 X TEST7 Z TEST8 Y TEST9 X TEST10

Y axis RESULTS OF ROLL ERRORS (arc-sec)

X axis at 140.000 mms Y axis at 140.000 mms Z axis at 787.400 mms

	ef is + on	richt				
Test #						
POS	- 0. 5 0.	100. 150.	200. 250.			
POS	300. 350.	400 450				
TEMP	24. 90	25.74	25. 91	24. 85	26. 42	25. 52
TEMP	25. 54	24. 39	24. 29	23. 97	23.77	23. 73
TEMP	23. 70	27. 23	25. 42	24. 91	24.71	24. 37
TEMP	24. 15	38. 74	24. 25			
MEAN	0.47	-1.58	-1.67	-1. 90	-2. 07	-1.75
MEAN	-0.87	-1.07	-1.10	-3 00		
SD	0.16	2.18	2. 13	2.41	2. 56	2.76
SD	2.71	2.74	2. 78	0.15		
Test #	2			0.20		
POS		100. 150.	200 250			
POS	300 350.					
TEMP	25.10	27. 96		26 81	27, 25	26. 64
TEMP	26. 81	25 54	25. 39	24.65	24. 43	24. 24
TEMP	24. 14		26. B1	25.91		25. 10
TEMP	24. BO	39, 33	38. 97	20. 72	25.00	20. 10
MEAN	-6. 45	-B. 33	-8.03	-B. 65	-9. 12	-8. 45
MEAN	-7. 52		-8. 22	-9. 30	-7. IE	-6. 43
SD	0.08	1. 97	2. 27	2.36	2.20	2. 54
SD	2. 51	2. 51	2. 58		2. 27	£. 54
	3	2. 31	2. 36	0.15		
1885 W						
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.					
TEMP	25. 45		30. 56	28. 66	27. 80	27. 75
TEMP	27. 68		26.46	25. 72	25. 33	24.89
TEMP	24. 67	31.36	2B. 00	26. 83	26. 56	25. 75
TEMP	25 48	39. 85	41.82	20.00	20. 00	25. 75
MEAN	-5. 52			-8. 22	-8. 58	-7, 65
MEAN	-6. B7		-7. 3B	-9.00	-6. 36	-7.65
SD	0.13	2.66	2.68	2.76	2. 94	3. 23
SD	3. 03	2. 96	3.09	0.09	2. 77	3. 23
	4	E. 70	3. 07	0.04		
	•					
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.				
TEMP	25. 90	33. 57	33 93	30.76	28.45	29 . 03
TEMP	28.76	27. 98	27.76	27. 27	26. 49	25. 90
TEMP	25. 46	32. 89	29. 37	28. 03	27, 59	26.64
TEMP	26 25	40. 43	50. 69			
MEAN	-7. 83	-10. 33	-10.42	-10. B7	-11, 25	-10.47
MEAN	-10.07	-10.05	-10.47	-12.17		
SD	0. 33	2.16	2.40	2 74	2. 77	2. 69
SD	2 85	2 94	2 96	0 05		
	5		2 .0	• • • •		
	- -					
POS	0 50	100 150	200 250			
POS	300 350	400 450				
TEMP	26 3B	35 32	36 09	32 26	28 86	30 10
			JJ 0,	J- EU	20 00	50 10

TEMP	25, 95	31. 73	27. 76	26. 95	27. 32	26, 46
TEMP	26. 59	36. 86	66. 50			
MEAN	17. 64	19. 36	19. 15	18.90	1B. 56	17. 78
MEAN	16. 46	16. 12	18. 67			
SD	0. 50	2. 02	2. 29	2. 48	2. 73	2. 75
_SD	3. 02	2. 93	0. 69			
Test #	6					
POS	0. 5 0.	100 150	200. 250.			
POS	300. 350.		EUU. EUU.			
TEMP	23. 63	31.84	33. 77	31, 52	25. 03	28. 04
TEMP	28. 12	27. 97	28.48	27. 68	27. 60	26. 11
TEMP	26. 11	31. 96	27. 90	27.06	27. 50	26. 48
TEMP	26. 70	36. 75	54. 00			
MEAN	10. B1	13. 01	12. 91	12. 76	11.87	11. 37
MEAN	10. 47	9. 90	12.11			
SD SD	0. 24	2. 80	2. 91	3. 17	3. 26	3. 43
Test #	3. 33 7	3. 31	0. 11			
POS	0. 50.	100. 150.	200. 250.			
POS		400.				
TEMP	23.30	32. 57	33. 82	32. 01	24. 89	27. 93
TEMP	28. 14	28.05	28. 83	28.10	28. 12	26. 31
TEMP	26. 36	31. 99	27. 93	27. 07	27. 51	26. 51
TEMP	2 6. 80	36. 90	55. 40			
MEAN	10.87	13. 39	13.08	12. 62	12. 28	11.83
MEAN	10. 66	10. 15	12. 73			
SD SD	0. 23 3. 13	2.40	2. 61	2. 88	2. 85	2 . 98
עכ						
Tac+ #		2. 92	0. 11			
Test #	8	2. 72	0. 11			
	8	100. 150.				
POS POS	0. 50. 300. 350.	100. 150. 400.	200. 250.			
POS POS TEMP	8 0. 50. 300. 350. 23.00	100. 150. 400. 32.50	200. 25 0.	32. 26	24. 36	27.76
POS POS TEMP TEMP	8 0. 50. 300. 350. 23. 00 27. 78	100. 150. 400. 32. 50 28. 10	200. 25 0. 33. 78 28. 96	28. 20	28. 25	26. 30
POS POS TEMP TEMP TEMP	8 0. 50. 300. 350. 23.00 27.78 26.35	100. 150. 400. 32.50 28.10 31.73	200. 25 0. 33.78 28.96 27.71			
POS POS TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71	100. 150. 400. 32.50 28.10 31.73 36.17	200. 250. 33.78 28.96 27,71 53.80	28, 20 26, 93	28. 25 27. 47	26. 30 26. 44
POS POS TEMP TEMP TEMP TEMP TEMP MEAN	0. 50. 300. 350. 23.00 27. 78 26. 35 26. 71 9. 62	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94	200. 250. 33.78 28.96 27.71 53.80 11.71	28. 20	28. 25	26. 30
POS POS TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23.00 27.98 26.35 26.71 9.62 9.47	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48	28, 20 26, 93 11, 73	28, 25 27, 47 11, 01	26. 30 26. 44 10. 29
POS POS TEMP TEMP TEMP TEMP MEAN MEAN	0. 50. 300. 350. 23.00 27. 78 26. 35 26. 71 9. 62	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94	200. 250. 33.78 28.96 27.71 53.80 11.71	28, 20 26, 93	28. 25 27. 47	26. 30 26. 44
POS POS TEMP TEMP TEMP TEMP MEAN MEAN SD	0. 50. 300. 350. 23.00 27.98 26.35 26.71 9.62 9.47 0.19	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84	28, 20 26, 93 11, 73	28, 25 27, 47 11, 01	26. 30 26. 44 10. 29
POS POS TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 23.00 27.98 26.35 26.71 9.62 9.47 0.19 3.28	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76 3.14	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43	28, 20 26, 93 11, 73	28, 25 27, 47 11, 01	26. 30 26. 44 10. 29
POS POS TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 23.00 27.98 26.35 26.71 9.62 9.47 0.19 3.28	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76 3.14	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84	28, 20 26, 93 11, 73	28, 25 27, 47 11, 01	26. 30 26. 44 10. 29
POS POS TEMP TEMP TEMP TEMP MEAN SD SD Test #	0. 50. 300. 350. 23.00 27.98 26.35 26.71 9.62 9.47 0.19 3.28 9	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250.	28. 20 26. 93 11. 73 2. 95	28. 25 27. 47 11. 01 2. 95	26. 30 26. 44 10. 29 3. 12
POS POS TEMP TEMP TEMP MEAN SD SD Test	0. 50. 300. 350. 23.00 27.98 26.35 26.71 9.62 9.47 0.19 3.28 9	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16	28. 20 26. 93 11. 73 2. 95	28. 25 27. 47 11. 01 2. 95	26. 30 26. 44 10. 29 3. 12 27. 38
POS POS TEMP TEMP TEMP MEAN MEAN SD Test # POS TEMP TEMP	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76 3.14 100. 150. 400. 28.87 27.60	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91
POS POS TEMP TEMP TEMP MEAN MEAN SD Test POS POS TEMP TEMP	0. 50. 300. 350. 23.00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76 3.14 100. 150. 400. 28.87 27.60 29.29	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09	28. 20 26. 93 11. 73 2. 95	28. 25 27. 47 11. 01 2. 95	26. 30 26. 44 10. 29 3. 12 27. 38
POS POS TEMP TEMP TEMP MEAN MEAN SD Test # POS TEMP TEMP	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76 3.14 100. 150. 400. 28.87 27.60	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91
POS POS TEMP TEMP TEMP TEMP MEAAN SD SD TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23.00 27.98 26.35 26.71 9.47 0.19 3.28 9 0. 50. 300. 350. 22.85 27.48 26.21 26.45	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76 3.14 100. 150. 400. 28.87 27.60 29.29 35.70	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06
POS TEMPP TEMP MEAAN SDD TEMPP TEMP MEAAN SDD TEMPP TEMPP TEMPP TEMPP TEMPP TEMPP TEMPP TEMPP MEAAN SD	0. 50. 300. 350. 23.00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76 3.14 100. 150. 400. 28.87 27.60 29.29 35.70 10.05 6.65 2.62	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06
POS POS TEMP TEMP TEMP MEAAN SD t # POS TEMP TEMP TEMP TEMP TEMP MEAAN SD SD SD SD SD SD SD SD SD SD SD SD SD	0. 50. 300. 350. 23.00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 7 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 53 0. 12 3. 01	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 8. 31
POS TEMP TEMP TEMP MED t TEMP MED SD TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23.00 27.98 26.35 26.71 9.47 0.19 3.28 9 0. 50. 300. 350. 22.85 27.48 26.21 26.45 7.53 0.12 3.01	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76 3.14 100. 150. 400. 28.87 27.60 29.29 35.70 10.05 6.65 2.62	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 8. 31
POS TEMP TEMP TEMP MEAAN SD t # POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23.00 27.98 26.35 26.71 9.62 9.47 0.19 3.28 9 0. 50. 300. 350. 22.85 27.48 26.21 26.45 7.86 7.53 0.12 3.01	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 31. 70 10. 05 6. 65 2. 62 2. 98	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62 0. 04	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 8. 31
POS TEMP TEMP TEMP MEAAN SD Test POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 350. 23.00 27.98 26.35 26.71 9.62 9.47 0.19 3.28 9 0. 50. 350. 22.85 27.48 26.21 26.45 7.53 0.12 3.01 10 0. 50.	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65 2. 62 2. 98 100. 150.	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 8. 31
POS TEMP TEMP MEAAN SD TEMP TEMP TEMP MEAAN SD TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 350. 23.00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59 2.76 3.14 100. 150. 400. 28.87 27.60 29.29 35.70 10.05 6.65 2.62 2.98	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62 0. 04	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91 2. 82	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18 2. 85	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 8. 31 3. 13
POS TEMP TEMP TEMP MEAAN SD Test POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 350. 23.00 27.98 26.35 26.71 9.62 9.47 0.19 3.28 9 0. 50. 350. 22.85 27.48 26.21 26.45 7.53 0.12 3.01 10 0. 50.	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65 2. 62 2. 98 100. 150.	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62 0. 04	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	28. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 8. 31

TEMP	35 03	32 30	32 52	31 52	31 18	29 46
TEMP	28. 92	35. 63	32 13	31 06	30.99	29 77
TEMP	29.46	41. 20	58. 25			- · · · ·
MEAN	-6 05	-8. 72	-9. 42	-9 25	-9.30	-9 15
MEAN	-8. 93	-8.48	-8 88	-11.27		
SD	0.12	2.36	2.40	2 74	2.85	3 12
SD	3. 11	2. 98	2.98	0 21		

ACTUAL DATA

						SPREAD	
						Up	Down
Test #	1			_	_		
0. B0	0. 40	0. 40	0.40	0. 40	0. 40	0.07	-0.07
~3. BO	0. 40	-3. 50	0.60	~3. 40	0. 20	-1. 98	1. 98
~3. 90 ~4. 20	0. 20	-3.70	0.20	~3. 20	0. 40	-1. 93	1 93
-4. 20 -4. 40	0.10 0.20	-4.10 -4.40	0. 40 0. 20	~4. 00 ~4. 40	0.40	-2. 20	2, 20
-#. 40	0. 20	-4. 20	0. 20		0.40	-2. 33	2 33
-3.40	1. 90	-3. 20	1. 50	~4. 20 ~3. 40	0.70	-2.52	2.52
-3. 70	1.30	-3. 2 0	1. 60	-3. 70 -3. 70	1, 40 1, 40	-2. 47 -2. 50	2 47 2 50
-3. 90	1.40	-3.40	1.40	-3.60	1.50	-2. 50 -2. 53	2 53 2 53
~2. 90	-2.90	-2. 90	-2. 90	-3.20	-3 20	0.00	0.00
Test #	2	2. 70	L . 70	J. 20	-3 EU	0.00	0.00
-6. 30	~6. 50	~6. 50	~6.50	~6. 50	~6. 40	0.02	~0.02
~10. 20	-6.70	-10.10	-6. 50	~10.10	~6. 40	-1.80	1.80
~10.00	-6.00	-10.20	-5. 90	~10.10	-6.00	-2.07	2.07
-10.80	-6. BO	-10.80	-6. 30	~10.80	-6.40	-2.15	2.15
-11.10	-7. 10	-11.10	-7. 20	-11.40	-6. 80	-2.08	2 08
-10. 80	~6.40	-10. BO	-6 , 10	-10.70	-5. 90	-2.32	2.32
-9. BO	-5. 50	-9. BO	-5.10	-9. 80	-5. 10	-2. 28	2.28
-10.10	-5.80	-10.30	~5. BO	~10.10	-5. 20	-2.28	2, 28
-10.50	~5. 90	-10.50	-5. BO	~10. 70	-5. 90	-2.35	2 35
-9. 10	_~9. 10	-9 . 40	∽9. 40	-9. 40	-9.40	Ο.	0.
Test #	3						
-5. 70	~5. 60	-5. 60	~5. 40	-5 40	~5. 40	-O. Q5	D. 05
-10.20	-5.20	-9.80	~5. 20	-9. 70	~4. 80	-2.42	2 42
-10. 20	~5. 10	-9.60	-4. 70	-9.40	~4. 80	-2.43	2. 43
-10. 90 -11. 10	~5. 80 ~6. 10	~10.60 ~11.30	-5. 60	-10.70	~5. 70	~2.52	2 52
-10.40	~6. 10 ~4. 70	~10. BO	-5. 90	-11.40	-5. 70	-2.68	2 6B
-9. 70	-4. 20	-9.70	-4.70 -4.10	-10.60 -9.50	-4.70	-2 95	2. 9 5
-10.00	-4. 90	-10.10	-4.70	-10.30	-4, 00 -4, 60	-2.77 -2.70	2. 77 2. 70
-10.20	-4.80	-10.20	-4.50	-10.20	-4.40	-2.82	2.82
-9.10	-9.10	-9.00	-9.00	-8.90	-8.90	0.00	0 00
Test #	4	7. 00	7.00	G. 10	G. 70	0.00	0 00
-B 40	~7. 90	-7, 90	~7.70	~7. 70	~7.40	~0. 17	0.17
-12.50	~B. 50	-12.30	-B. 40	-12.10	-8.20	-1.97	1.97
-12.70	-8. 30	-12.40	-B 30	-12.70	~8.10	-2 18	2.18
-13.50	~B. 30	-13.30	-8.40	-13.30	-B. 40	-2.50	2.50
-13.90	~Ø. 40	-13.90	-8.90	-13.50	-B. 90	-2.52	2.52
-13. 10	-7. 90	~13.30	-7 80	-12 90	-7. BO	-2.63	2 63
-12.80	-7.60	-12.80	-7.40	-12.40	-7. 40	-2.60	2.60
-12.70	-7. 20	-12.80	-7.40	-12.70	-7. 50	-2.68	2.68
-13.30	-7. 90	-13. 20	-7 9 0	-13.00	-7. 5 0	-2. 70	2 70
-12.20	-12. 20	-12. 20	-12 20	-12.10	-12.10	٥.	0
Test #	5						
~6 70	~6. 90	-6. 90	~6 40	~6. 40	-6 20	-0.08	0 08

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-10. 90	-6 70	-10. BO	-6, 40	-10.80	-6. 50	-2. 15	2, 15
-11.40	-7 20	-11.40	-6.80	-11.40	-6. 40	-2.30	2 30
-12 20	-7 20	-12.00	-7.00	-12.00	-6. 90	-2. 52	2. 52
-12.40	-7. 5 0	-12.50	-7. 20	-11. 90	-6. 90	-2, 53	2. 53
-11.60	-6.30	-11. 50	-6. 50	-11.70	-6. 40	-2.60	2.60
-11.40	-6. 50	-11.40	-6. 20	-11.40	-6. 10	-2. 57	2, 57
-11.90	-6.30	-11.70	-6. 20	-11.60	-6. 10	-2, 77	2. 77
-11.70	-6.60	-11.50	-6. 40	-11.70	-6. 50	-2.57	2 57
-11.20	-11.20	-11.20	-11.20	-10.90	-10. 90	0.	0
Test #	6	20		•••	-0. /0		•
-6. 60	-5. 70	-5. 70	-4. 30	-4. 30	-4. 20	-0, 40	0.40
-10.20	-6.00	-9.40	-4. 70	-B. 20	-4. 10	-2.17	2 17
-10 Bo	-5. 9 0	-9. 80	-4. BO	-B. 80	-4.10	-2.43	2.43
-11.40	-6. 60	-10. BO	-5. 40	-9. 60	-5. 10	-2, 45	2, 45
-11. BO	~6 30	-11.10	-5. 00	-10.10	-5. 20	-2.75	2.75
-11.10	-5. 90	-10.20	-4. BO	-9.40	-4. 20	-2. 63	2. 63
-10. BO	-5. BO	-9. BO	-4. 90	-B. BO	-4.00	-2. 45	2.45
-11.10	-6. 20	-10.00	-5. 10	-9.00	-4. 20	-2. 43	2.43
-10.90	-5 90	-9.70	-4. 90	-9.10	-3. 90	-2.50	2.50
-10 30	-10.30	-9.10	-9.10	-B. 40	-B. 40	0.	O .
Test #	7						
-1.40	-1.40	-1.40	-1.30	-1. 30	-1.40	O .	Ο.
-5. 40	-0.90	-5.40	-1. BO	-5. 90	-1. BO	-2. 03	2.03
-6. 10	-1.40	-6.10	-1.60	-5. 90	-1. BO	-2. 22	2. 22
-6. 90	-1.60	-6.50	-2.00	-6 . 90	-1.90	-2. 47	2. 47
-7. 20	-1.80	-6. 90	-2.00	- 7. 00	-1. 90	-2. 57	2 . 57
-6. 90	-1. 20	-6. BO	-1.20	-6. 70	-1.80	-2. 70	2.70
-6. 40	-0. 90	-6.10	-1.00	-6. 5 0	-1.00	-2. 68	2. 48
-6.40	-1.00	-6. 20	-1. 90	-6. 40	-1.40	-2, 45	2. 45
-6.40	-1.40	-6. BO	-1.20	-6. 80	-1.30	-2. 6 8	2 68
-6.00	-6.00	-6.40	-6. 40	-6. 20	-6. 20	Ο.	0.
Test #	8						
0.60	0. 50	0.50	0. 50	0. 50	0. 40	0. 03	-0. 03
-3. 9 0	0. 20	-4.00	0. 20	-4 . 10	0. 30	-2. 12	2. 12
-4.40	0.30	-4 . 30	0. 20	-4. 30	0. 20	-2. 28	2. 28
-4. BO	Ο.	-4 , 70	Ο.	-5. 00	o. 20	-2.45	2. 45
-5.10	0.	-5.10	Ο.	-5 . 5 0	0.	-2.62	2.62
-5.10	0. 50	-5. 10	0. 50	-5. 00	0.	-2. 70	2.70
-4. 30	0. 90	-4.40	0. 90	-4. 50	0. 9 0	-2, 65	2.65
-4 30	0 50	-4 70	0. 50	-4.40	0.	-2, 40 -2, 50	2. 40 2. 50
-4. 50	0 50	-4 80	0.30	-4 . 70	0. 20		0.
-4.00	_4.00	-4.30	-4. 30	-4. 30	-4. 30	0.	O.
Test #	9	-5 50	~5 . 50	-5.50	-5. 20	-0. 03	0.03
-5 40 -9 90	-5.50 -5.90	-10.90	-5. 90	-10. 20	-6. 3 0	-2.15	2.15
		-11 20	-7. 00	-11.20	-6. 8 0	-2 12	2.12
~10 90 ~11 40	-6. 80 -6. 40	-11.40	-6.40	-11.20	-6.40	-2.47	2.47
-11 50	-6. 50	-11 50	-6.20	-11.50	-6.70	-2 52	2 52
-11 50 -11 50	-5 90	-11 40	-6.40	-11.40	-6.20	-2.63	2.63
-11.40	-5. 90	-11.20	-6.20	-11 20	-6. 20	-2 58	2.58
-10 40	-5. 30	-10 50	-5 20	-10.50	-5.50	-2 57	2 57
-10.80	-5. 70	-10 90	~5. BO	-10.80	-6.10	-2.48	2.48
~10.50	-10.50	-10.90	-10.90	-10.70	-10.70	0.	O
Test #	10	-5. ,5	-5. 75				
-5.90	-6 20	-6 20	-6 00	-6 00	-6.00	0 02	-0.02
-10 90	-6 40	-10 90	-6 60	-10 80	-6 70	-2 15	2 15
-11.50	-7. 20	-11 50	-7 40	-11 80	-7 10	-2 18	2 18
-12 00	-6 80	-12 00	-6 70	-11 20	-6 BO	-2 48	2 48
-11 90			_	4 4 000	-6 50	2 12	2 60
-11 70	-6 80	-11 90	~6 B0	-11 90	-6 50	-5 90	E 60
-12 10	-6 10	-11 90	-6 40	-12 00	-6 4 0	-5 82 -5 80	2 85

-12.00 -6.10	-11.50	-6.00	-11. BO	-6 20	-2. 83	5 03
	-11.20		-11.20		-2.72	2 72
					-2.72	2 72
-11.70 -6.20	7 -11. 50	-0. 20	-11.00		0.00	0 00

T21*-0.43 + T10*1.10 - 0.13e-3*T3*Y - 17.17

O TESTI A TESTO + TESTO X TESTO + TESTO X TESTO X TESTO X TESTO

 $_{\odot}$ TEST1 $_{\Delta}$ TEST2 $_{+}$ TEST3 $_{\times}$ TEST4 $_{\oplus}$ TEST5 $_{+}$ TEST5 $_{\times}$ TEST5 $_{\times}$ TEST5 $_{\times}$ TEST5

Y axis
RESULTS OF YAW ERROR (arc-sec)
RESULTS OF YAW ERROR (arc-sec)
RESULTS OF YAW ERROR (arc-sec)
Y axis at 140,000 ams
Y axis at 140,000 ams

	X axis at 1					
	Y axis at 1					
	Z axis at 3	30.000 mms	Div	of laser	F	
Test #	1					
POS	0. 50.		200. 250.			
PDS	300. 350.					
TEMP	23. 88	25. 71	26. 47	27. 14	25. 22	25. 91
TEMP	26. 26	26. OB	26. 21	25. 72	25. 96	25. 32
TEMP	25. 50	28. 53	<i>26.</i> 21	25. 67	26 . 01	25. 74
TEMP	25 . 87	36. 92	29. 10			
MEAN	0.16	1. 75	0. 86	0. 94	0. 63	-0.71
MEAN	-1.71	-2. 11	0. 45			
SD	0. 20	1. 78	2. 17	2. 44	2.46	2. 70
SD	2. 65	2. 61	0. 27			
Test #	2					
POS		100. 150.	200. 250.			
POS	300. 350 .					
TEMP	24. OB	27. 13	28 . 47	28. 30	25. 2 9	26. 47
TEMP	26. BB	26. 37	26. 76	26.00	26. 13	25 . 37
TEMP	25. 46	29. 81	26. 76	26. 05	26. 47	25. 95
TEMP	26.09	37. 01	36. 20			
MEAN	4. 96	6. 66	6. 14	6. 17	5. 60	4. 07
MEAN	3. 48	3. 12	5. 38			
SD	0. 34	2. 64	2. 79	2. 89	3. 06	3. 03
SD	2. 64	2. 99	0. 33	_		
Test #	3					
						•
POS	0. 50.	100, 150,	200. 250.			
POS	300 350.					
TEMP	24. 20	28. 25	29. 61	29. 10	25, 31	27. 02
TEMP	27. 20	26. 73	27. 15	26. 36	26. 39	25, 48
TEMP	25. 55	30. 75	27. 07	26. 36	26. 76	26. 10
TEMP	26. 22	37. 07	36. 80			
MEAN	4. 48	6. 52	6. 21	5. B7	5, 49	4, 42
MEAN	3.41	2.89	5. 52	J. J.	U . 4 ,	
SD	0.06	2. 35	2. 46	2. 78	2, 90	2. 97
SD	3. 08	3.13	0. 08	L . / U	L . / U	,,
Test #	4	5. 15	J. 4 0			
	•					
POS	0. 50.	100 150	200. 250.			
POS	300. 350.	400.				
TEMP	24. 33	30. 03	31.64	30. 20	25. 17	27. 52
TEMP	27. 69	27. 30	27. 79	26. 96	26. 91	25. 78
TEMP	25. 76	31.39	27. 57	26. 76	27. 21	26. 32
TEMP	26. 45	36. 92	38. 40	20. /0	27. 21	ED. JE
	4. 39	6.03	6. 17	5. 79	5. 50	4. 51
MEAN			5. 30	3. 74	5. 50	4. 51
MEAN	3. 55	2.87		3. 02		
SD	0.15	2.57	2.74	3.02	3. 13	3. 20
SD .	3. 37	3. 26	0. 09			
Test #	5					
POS		100 150	200 250			
	0 50		200 250			•
POS	300 350.	400.	22 20	20.01	25 12	22 64
TEMP	23. 68	31 22	32. 29	30 B1	25 19	27.54
TEMP	27 79	27 57	28 10	27 42	27 27	25 97

TEMP	25 . 95	31. 73	27. 76	26. 95	27. 32	26.46
TEMP	26. 59	36. 86	66. 50		55 .	-0. 45
MEAN	17. 64	19. 36	19. 15	18. 90	18. 56	17. 78
MEAN	16. 46	16. 12	18. 67			**. /5
SD	0. 50	2. 02	2. 29	2. 48	2. 73	
SD	3. 02	2. 93	0. 69	6. 70	æ. /3	2 . 75
Test 0	6	2. 73	U. 97			
POS						
	0. 50.		200. 250.			
POS	300. 350.					
TEMP	23. 63	3 1. 84	33. 77	31. 52	25. 03	28.04
TEMP	28. 12	27. 97	28. 48	27. 68	27. 60	26. 11
TEMP	26. 11	31. 96	27. 90	27. 06	27. 50	26. 48
TEMP	26. 70	36. 75	54, 00		_,	AD. 75
MEAN	10. B1	13. 01	12. 91	12. 76	11. 87	11. 37
MEAN	10. 47	9. 90	12.11	18. 70	11. 0/	11.3/
SD	0. 24	2. BO				
SD			2. 91	3. 17	3. 26	3 43
	3. 33 7	3. 31	0. 11			
Test #						
POS	0. 50 .		200. 250.			
POS	300. 350 .					
TEMP	23. 30	32. 57	33. 82	32. 01	24. 89	27. 93
TEMP	28. 14	28. 05	28. B3	28. 10	28. 12	26. 31
TEMP	26. 36	31. 99	27. 93	27. 07	27. 51	26. 51
TEMP	26. BO	36. 90	55. 40		E7. W.	20. 31
MEAN	10. 87	13. 39	13.08	12. 82	12. 28	44 00
MEAN	10. 66	10. 15	12.73	12. 02	14.40	11.83
SD	0. 23	2. 40				
SD	3. 13	2. 92	2. 61	2. 88	2. 8 5	2. 98
30						
T4 #		E. 7K	0.11			
Test #	8	E. 7K	0. 11			
	8					
PDS	0. 50.	100. 150.	200. 250.			
POS POS	0. 50. 300. 350.	100. 150. 400.				
PDS POS TEMP	0. 50. 300. 350. 23. 00	100. 150.		32. 26	24. 36	27. 76
POS POS	0. 50. 300. 350.	100. 150. 400.	200. 250.		24. 36 28. 25	27. 76 26. 30
PDS POS TEMP	0. 50. 300. 350. 23. 00	100. 150. 400. 32. 50	200. 25 0. 33. 78 28. 96	28. 20	29. 25	26. 30
POS POS TEMP TEMP	0. 50. 300. 350. 23. 00 27. 78	100. 150. 400. 32. 50 28. 10 31. 73	200. 250. 33. 78 28. 96 27. 71			
POS POS TEMP TEMP TEMP	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71	100. 150. 400. 32. 50 28. 10 31. 73 36. 17	200. 250. 33.78 28.96 27.71 53.80	28. 20 26. 93	29. 25 27. 47	26. 30 26. 44
POS POS TEMP TEMP TEMP TEMP MEAN	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62	100. 150. 400. 32.50 28.10 31.73 36.17 11.94	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71	28. 20	29. 25	26. 30
PDS POS TEMP TEMP TEMP TEMP MEAN MEAN	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59	200. 250. 33. 78 26. 96 27. 71 53. 80 11. 71 11. 48	28. 20 26. 93 11. 73	29. 25 27. 47 11. 01	26. 30 26. 44 10. 29
PDS POS TEMP TEMP TEMP TEMP MEAN MEAN SD	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76	200. 250. 33. 78 26. 96 27. 71 53. 80 11. 71 11. 48 2. 84	28. 20 26. 93	29. 25 27. 47	26. 30 26. 44
POS POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28	100. 150. 400. 32.50 28.10 31.73 36.17 11.94 8.59	200. 250. 33. 78 26. 96 27. 71 53. 80 11. 71 11. 48	28. 20 26. 93 11. 73	29. 25 27. 47 11. 01	26. 30 26. 44 10. 29
PDS POS TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76	200. 250. 33. 78 26. 96 27. 71 53. 80 11. 71 11. 48 2. 84	28. 20 26. 93 11. 73	29. 25 27. 47 11. 01	26. 30 26. 44 10. 29
PDS PDS TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43	28. 20 26. 93 11. 73	29, 25 27, 47 11, 01	26. 30 26. 44 10. 29
PDS POS TEMP TEMP TEMP MEAN MEAN SD SD Test #	0. 50. 300. 350. 23.00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14	200. 250. 33. 78 26. 96 27. 71 53. 80 11. 71 11. 48 2. 84	28. 20 26. 93 11. 73	29, 25 27, 47 11, 01	26. 30 26. 44 10. 29
PDS PDS TEMP TEMP TEMP TEMP MEAN SD SD Test #	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250.	28. 20 26. 93 11. 73 2. 95	29, 25 27, 47 11, 01	26. 30 26. 44 10. 29
PDS POS TEMP TEMP TEMP MEAN SD SD Tost #	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43	28. 20 26. 93 11. 73	29, 25 27, 47 11, 01	26. 30 26. 44 10. 29
PDS POS TEMP TEMP TEMP MEAN MEAN SD Tost #	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250.	28. 20 26. 93 11. 73 2. 95	29, 25 27, 47 11, 01 2, 95	26. 30 26. 44 10. 29 3. 12
POS POS TEMP TEMP TEMP MEAN MEAN SD Test & POS POS TEMP TEMP TEMP	0. 50. 300. 350. 23.00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09	28. 20 26. 93 11. 73 2. 95	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14	26. 30 26. 44 10. 29 3. 12 27. 38
PDS POS TEMP TEMP TEMP MEAN MEAN SD Tost #	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09	28. 20 26. 93 11. 73 2. 95	29. 25 27. 47 11. 01 2. 95	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91
POS POS TEMP TEMP TEMP MEAN MEAN SD Test & POS POS TEMP TEMP TEMP	0. 50. 300. 350. 23.00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68	28. 20 26. 93 11. 73 2. 95 30 55 27. 55 26. 38	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06
PDS POS TEMP TEMP TEMP MEAN MEAN SD Test # PDS POS TEMP TEMP TEMP	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77	28. 20 26. 93 11. 73 2. 95	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91
PDS POS TEMP TEMP TEMP MEAN SD SD Test # POS TEMP TEMP TEMP TEMP TEMP TEMP MEAN	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 86 7. 53	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 B. 31
PDS POS TEMP TEMP TEMP MEAN SD SD Test # POS TEMP TEMP TEMP TEMP TEMP TEMP MEAN MEAN MEAN	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 86 7. 53 0. 12	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65 2. 62	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62	28. 20 26. 93 11. 73 2. 95 30 55 27. 55 26. 38	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06
PDS POS TEMP TEMP TEMP MEAN MEAN SD Test & POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23.00 27. 78 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 86 7. 53 0. 12 3. 01	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 B. 31
PDS POS TEMP TEMP TEMP MEAN MEAN SD Test # POS TEMP TEMP TEMP TEMP TEMP TEMP MEAN SD	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 86 7. 53 0. 12	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65 2. 62	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 B. 31
PDS POS TEMP TEMP TEMP MEAN SD SD Test # POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 86 7. 53 0. 12 3. 01	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65 2. 62 2. 98	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62 0. 04	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 B. 31
POS TEMP TEMP TEMP TEMP MEAN SD SD Test # POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 53 0. 12 3. 01 10	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65 2. 62 2. 98	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 B. 31
PDS POS TEMP TEMP TEMP MEAN SD SD Test # POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23.00 27. 78 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 53 0. 12 3. 01	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65 2. 62 2. 98	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62 0. 04	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91 2. 82	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18 2. 85	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 B. 31 3. 13
POS POS TEMP TEMP TEMP TEMP MEAN SD SD Test # POS TEMP TEMP MEAN SD TEMP TEMP MEAN SD Test # POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23. 00 27. 98 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 86 7. 53 0. 12 3. 01 10	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65 2. 98 100. 150 400 31. 47	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62 0. 04 200. 250 33. 35	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91 2. 62	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18 2. 85	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 B. 31
PDS POS TEMP TEMP TEMP MEAN SD SD Test # POS TEMP TEMP TEMP TEMP TEMP TEMP TEMP TEMP	0. 50. 300. 350. 23.00 27. 78 26. 35 26. 71 9. 62 9. 47 0. 19 3. 28 9 0. 50. 300. 350. 22. 85 27. 48 26. 21 26. 45 7. 53 0. 12 3. 01	100. 150. 400. 32. 50 28. 10 31. 73 36. 17 11. 94 8. 59 2. 76 3. 14 100. 150. 400. 28. 87 27. 60 29. 29 35. 70 10. 05 6. 65 2. 62 2. 98	200. 250. 33. 78 28. 96 27. 71 53. 80 11. 71 11. 48 2. 84 0. 43 200. 250. 31. 16 28. 68 27. 09 54. 10 9. 77 9. 28 2. 62 0. 04	28. 20 26. 93 11. 73 2. 95 30. 55 27. 55 26. 38 9. 91 2. 82	29. 25 27. 47 11. 01 2. 95 23. 83 28. 14 27. 02 9. 18 2. 85	26. 30 26. 44 10. 29 3. 12 27. 38 25. 91 26. 06 B. 31 3. 13

TEMP 25.		31. 13	27. 03	26. 25	26. 89	25. 81	
TEMP 26	25 80	35. 40 9. 59	53. 00 9. 09	8. 76	B. 73	7. 72	
MEAN 6	41 . 22 . 63	6. 18 2. 35 2. 39	8. 56 2. 41 0. 29	2. 40	2. 56	2. 72	
ACTUAL DATA						SPREAD	
					U	p D	חשפ
Test # 1 -0.12 3.35 2.72 2.91 2.91 1.38 0.59 -0.28	0.04 -0.24 -1.30 -1.42 -1.65 -3.35 -4.33 -4.61 0.20	0. 04 3. 46 2. 83 3. 31 3. 11 1. 89 0. 79 0. 39 0. 35	0. 28 0. -1. 06 -1. 22 -1. 38 -3. 15 -4. 21 -4. 45 0. 35	0. 28 3. 82 2. 95 3. 27 3. 19 1. 97 0. 75 0. 63 0. 79	0.43 0.08 -0.98 -1.22 -1.18 -2.99 -3.82 -4.37 0.79	-0. 09 1. 80 1. 98 2. 22 2. 24 2. 45 2. 41 2. 36 0.	0.09 -1.80 -1.98 -2.22 -2.24 -2.45 -2.41 -2.36 0.
0.20 Test # 2 5.55 9.09 8.78 8.70 8.27 7.01 6.22 5.98	4, 84 4, 37 3, 66 3, 62 2, 99 1, 42 1, 06 0, 55	4, 84 8, 94 8, 62 8, 86 8, 39 7, 17 6, 26 5, 94	5. 00 4. 61 3. 82 3. 82 3. 07 1. 73 1. 14 0. 75	5. 00 9. 13 8. 66 8. 86 8. 50 6. 26 5. 71 5. 55	4, 53 3, 82 3, 31 3, 19 2, 40 0, 87 0, 51 -0, 08 5, 16	0. 17 2. 40 2. 55 2. 63 2. 78 2. 74 2. 58 2. 71 0.	-0. 17 -2. 40 -2. 55 -2. 63 -2. 78 -2. 74 -2. 58 -2. 71 0.
5. 79	5. 79	5. 79	5. <i>7</i> 9	5. 16			-0. 01
Test # 3 4, 57 8, 78 8, 58 8, 39 8, 23 7, 13 6, 18 5, 71 5, 47	4, 49 4, 33 3, 94 3, 19 2, 87 1, 89 0, 87 0, 87	8. 66 8. 43 8. 43 8. 15 7. 13 6. 22 5. 83	4, 41 4, 33 3, 98 3, 43 2, 80 1, 58 0, 39 0,	4, 41 8, 54 8, 35 8, 39 8, 03 7, 13 6, 26 5, 71 5, 47	4. 53 4. 49 3. 98 3. 39 2. 87 1. 65 0. 55 0. 12 5. 47	0. 01 2. 14 2. 24 2. 53 2. 64 2. 71 2. 81 2. 85 0. 00	-2. 14 -2. 24 -2. 53 -2. 64 -2. 71 -2. 81 -2. 85 0. 00
Test # 4 69 8 39 8 74 8 54 6 85 5 7 39	4, 37 3, 70 3, 74 2, 95 2, 64 1, 57 0, 55 -0, 31 5, 39	8. 35 8. 74 8. 54 8. 39 7. 44 5. 6. 54 5. 75	3. 07 2. 64 1. 61 0. 39 0.	4. 29 8. 39 8. 54 8. 54 8. 23 7. 40 6. 50 6. 06 5. 31	3. 07	0.06 2.34 2.50 2.76 2.86 2.92 3.08 2.97 0.	-0. 06 -2. 34 -2. 50 -2. 76 -2. 86 -2. 92 -3. 08 -2. 97 0.
Test # 5 16 93 20 71 20 71 20 63 20 35 19 80 18 86	17. 36 17. 01 16. 6 16. 20 15. 5	1 21.04 5 21.22 6 20.98 5 21.46 8 20.16	17.76 17.13 16.77 16.22 15.24	21, 22 20, 83	18. 15 17. 91 17. 52 16. 97 16. 57 15. 79 13. 90	-0. 20 1. 80 2. 05 2. 23 2. 45 2. 48 2. 74	0. 20 -1 80 -2. 05 -2 23 -2. 45 -2. 48 -2 74

18 23	13. 07	18.70	13. 19	19. 33	14 21	2. 63	-2 63
18.03	18. 03	18.46	18.46	19.53	19 53	0.00	0 00
Test # 6							
11.30	10. 71	10. 71	10.71	10.71	10.75	0.09	-0 09
15 71	10. 47	15. 59	10.39	15.39	10. 51	2. 55	-2. 55
15. 55	10.35	15. 55	10. 31	15 59	10 12	2. 65	-2 65
15. 83	9.88	15. 51	9. 96	15.59	9.76	2. 89	-2 89
14. 92	8. 9 0	14. 80	8.82	14. BO	8. 98	2. 9 7	~2 97
14. 61	8. 23	14. 29	8. 11	14. 61	8. 39	3. 13	-3.13
13. 54	7. 40	13. 43	7. 52	13. 54	7. 36	3. 04	-3. 04
12.91	6. 93	12. 91	6. 97	12. 91	6. 73	3. 02	-3. 02
12. 01	12. 01	12. 24	12. 24	12. 09	12. 09	O .	0.
Test # 7							
11. 33	10. B <u>1</u>	10. 81	10. 74	10. 74	10. 81	0. 09	-0 09
15. 78	11. 17	15.58	10. 97	15. 38	11.48	2. 19	-2. 19
15. 50	10. 81	15. 46	10. 50	15. 42	10. 78	2. 38	-2. 38
15. 70	10. 34	15. 11	10. 03	15. 54	10. 22	2. 62	-2. 62
15. 11	9. 87	14. 67	9. 48	14. 83	9. 71	2. 59	-2. 59
14. 67	9. 32	14. 40	8. 93	14. 56	9. OB	2. 72	-2. 72
13. 65	7. 98	13. 49	7. 55	13. 41	7. 9 0	2. 85	-2. 85
12. 74	7. 55	12. 78	7. 74	12. 90	7. 19	2. 66	-2. 66
12. 70	12. 70	12. 63	12. 63	12. 86	12. 86	0.	٥.
Test # 8 9.87	0.40	0.40	0.47	0.47			-0.00
14. 52	9. 40 9. 16	9. 40 14. 44	9. 67 9. 32	9. 67	9. 71 9. 79	0. 03 2. 51	-0. 03 -2. 51
14. 28	7. 10 8. 93	14. 32	7. 3∉ 9. 28	14. 40 14. 32	7. /7 9. 16	2. 51 2. 59	-2. 51 -2. 59
14. 44	6. 77	14. 32	7. 20 9. 12	14. 52	9. 24	2. 57 2. 69	-2. 57 -2. 69
13. 85	8. 22	13. 65	8. 37	13. 61	6. 37	2. 69	-2.69
12. 98	7. 23	13. 22	7. 5 5	13. 22	7.55	2. B5	-2. 85
12. 47	6. 48	12. 23	6. 68	12. 67	6 29	2. 99	-2. 99
11. 41	5. 58	11. 52	5. 85	11.44	5. 74	2. 87	-2. 87
11. 25	11. 25	12. 04	12.04	11. 17	11. 17	-0.00	-0.00
Test # 9	••••			• • • •	• • • • •	0.00	J. 33
7. 94	7. 74	7. 74	7. 98	7. 98	7. 74	0. 03	-0 03
12. 39	7. 74	12. 39	7. 70	12. 55	7. 55	2. 39	-2 39
12. 35	7. 27	11, 92	7. 63	12. 19	7. 23	2. 39	-2. 39
12. 55	7. 27	12. 47	7. 51	12. 43	7. 23	2. 57	-2 57
11.60	6. 48	11.68	6. 80	12. 04	6. 48	2. 59	-2.59
10. 97	5. 42	11.09	5. 66	11. 44	5. 30	2. 85	-2. 65
10. 30	4. 75	10. 26	4. 95	10. 26	4. 63	2. 75	-2. 75
9. 4 8	4. 00	7. 24	4. 08	9. 40	3. 73	2. 72	-2. 72
9. 28	9. 28	9. 32	9. 32	9. 24	9. 24	0.	0.
Test # 10							
7. 98	B. 02	8. 02	7. 59	7. 59	7. 63	0.06	-0.06
11.68	7. 63	11.88	7. 43	11.64	7. 27	2. 15	-2. 15
11. 17	6. 96	11.60	6. 92	11.09	6 80	2. 20	-2. 20
10. 85	6. 72	11. 25	6. 5 6	10. 74	6. 44	2. 19	-2. 19
11. 17	7. 07	11. 25	6. 37	10. 70	5. 85	2. 30	-2.30
10. 22	5. 34	10. 38	5. 30	9. 99	5. 07	2. 48	-2. 48
8. 85	4. 12	9. 24	4. 04	8. 30	3. 93	2.38	-2.38
8. 22	4. 12	8. 81	4. 12	g. 02	3.61	2. 17	-2. 17
8. 61	8. 61	8. 69	8. 89	8. 26	8. 26	0.	0.

0.47*T21 + 2.4*T5 - 73.26

TESTI A TESTO + TESTO X TESTO + TESTO X TESTO X TESTO X TESTO

TEST1 $_{\Delta}$ TEST2 $_{+}$ TEST3 $_{\times}$ TEST4 $_{\Phi}$ TEST5 $_{+}$ TEST6 $_{\times}$ TEST7 $_{Z}$ TEST8 $_{Y}$ TEST9 $_{\times}$ TEST10

		Z AXI				
	RESULTS OF PO					
	X axis at 300 Y axis at 300					
	Z axis at 40		поерл			
	Dir of leser					
Test #						
POS		100. 150.				
POS POS	400. 350. 600.	400. 450.	200. 220.	•		
TEMP	25. 43	25. 18	25, 20	25. 72	25, 45	25. 28
TEMP	25. 30	25. 40	25. 48	25. 67	25. 75	25. 70
TEMP	25. 73	25. 21	25. 21	25. 23	25. 21	25. 31
TEMP	25. 51	25. 29				
MEAN		-4. 47	-7. 71	-5. 74	-5. 47	-7. 48
MEAN		-3. 36	-2. 23	-1.03	1. 31	3. 95
MEAN SD	1. 82 2. 10	2 77	2 00	0.00	5 44	
5D	2. 10 2. 81	2. 77 3. 03	2. 88 3. 19	3.86	2. 64 3. 07	2. 5 4 3. 17
SD	2. 98	J. U J	3. 17	J. 06	3. 07	3. 47
Test #						
POS		100. 150.				
POS		400. 450.	500. 550.			
POS	600.	29. 43	26. 84	20.42	24 00	05 00
TEMP TEMP	26. 25 26. 13	25. 96	26. 10	28. 43 26. 01	26. 30 26. 11	25. 93 26. 11
TEMP		25. 86	25. 98	25. 74	25. 79	25. 74
TEMP		25. 64				
MEAN	21. 84	22. 37	20. 86	24. 76	27. 14	26. 98
MEAN		35. 09	38. 47	41.69	46. 04	50. 3 8
MEAN	49. 19					
SD SD	1. 06 0. 73	1.56 0.68	1. 49 0. 58	1.01	0. 66 0. 49	0. 91 0. 72
SD	0. 45	V. 86	0. 36	0. 41	0. 40	0. 72
Test #						
POS		100. 150.				
P05		400. 450.	500. 550.			
POS TEMP	600. 28. 15	32. 58	20 21	21 62	22 04	27 00
TEMP		27. 11		27. 04	27. 21	26. 99
TEMP	27. 82 26. 94	26. 92	27. 38 27. 46	26. 60	26. 87	26. 57
TEMP	26. 77	26. 33				
MEAN		59. 34	61. 42 94. 41	68. 16	72.58	75. 35
MEAN		B9. 06	94. 41	100.66	108.14	114. 36
MEAN SD	115.05	3. 26	0.74	0.07	/	4. 29
SD	2. 72 4. 85	5.46	3. 74 5. 49	3. 87 5. 91	3. 76 6. 53	7. 04
SD	7. 12	J. 40	J. 77	3. 71	6. 33	7.04
Test #						
POS	0. 50.		200. 250.			
POS POS	300. 350. 600.	400. 450.	500. 550.			
TEMP		34.94	31. 27	33 40	29. 20	28 20
TEMP	29 44	28 15	28. 67	28. 15	29, 20 28, 37 27, 88	28.03
TEMP	27. 93	27.86	28 81	27.42	27.88	27.50

TEMP	27, 59 55, 07	27. 15				
MEAN	55. 07	56. 62	58. 50	65. 00	68.77 103.62	71.60
MEAN	75. 67	84. 98	90. 51	97. 24	103.62	111.11
MEAN	111.82					
SD	5. 64	5. B4	6. 62	7. 05	4. 43	4. 24
SD	4. 42	4. 21	4. 53	5. 19	4. 43 5. 27	5. 74
SD Test #	5. 95					
POS		. 100. 150.	200 250			
POS	300 350	. 400. 150. . 400. 450.	. 200. 230 500 550	٠.		
PDS	600.	. 400, 430.	300. 330	•		
TEMP		32. 98	30 47	21 42	20 52	20 54
TEMP	20 02	20 52	29 12	28 36	29. 44	20.30
TEMP	28. 44	28. 36 27. 70 35. 00 58. 04	29.34	27 90	29. 53 28. 66 28. 44	28 07
TEMP	28. 15	27. 70		.	20. 44	20.07
MEAN	33. 94	35. 00	35. 55	40. 88	45, 20	46. 76
MEAN	49. 73	5B. 04	62. 60	68. 02	45. 20 73. 95	BO. 02
MEAN	01.10					
SD	0. 82	1. 83 1. 18	1.84	1. 56	1. 16	1. 09
SD	1.03	1. 18	1. 03	0. 94	1.08	1. 07
SD SD Test #	1. 13					
Test #	6					
POS		100. 150.	200 250			
POS	300. 350.	400. 150.	500. 550	•		
POS	600.		300. 330	•		
TEMP	29. 50	35. 99 29, 54 28. 81 28. 10	32 60	36.26	30 44	20 40
TEMP	30. 78	29. 54	30. 17	29 51	29 AR	29 29
TEMP	29. 22	28. 81	29. 85	28.25	28 71	28 51
TEMP	28. 61	28. 10				20. 01
MEAN	75. 95	81. 06 132. 39	86. 28	96. 80	105, 37	111, 28
MEAN	119.67	132. 39	141.63	151. 34	162.08	171. 76
MEAN	175.34					
SD	5, 13 8, 60 12, 38	5. B5	6. 57	6. B6	7. 34	B. 16
SD SD	B. B0	9. 45	10. 04	10.60	11. 56	12. 13
SD Test#	12. 38					
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.	500. 550.			
POS	600. 29. 45 31. 47 29. 92 28. 99 75. 33			•		
TEMP	29. 45	37. 19	32. 71	37. 35	30. 82	29. 85
TEMP	31. 47	29. 94	30. 96	30. 19	30. 72	29.89
TEMP	29. 92	28. 85	30. 26	28.04	28. 70	28. 63
TEMP	28. 99	2B. 19				
MEAN	75. 33 127. 86	B1. 53	88. 83	100. 27	110.65	119.00
MEAN MEAN	191.77	141. 78	152. 52	164. 39	175. 85	186. 75
SD	A A1	4 42	4 00	4 00	E 54	
	4. 41 6. 40	4. <i>62</i> 6. 74	7 23	7.77 7 44	3. <u>2</u> 4 D 47	3. /1 8 74
SD SD	B. 84	J. 74	, EG	r. 07	O. 4/	5. 70
Test #						
POS	0. 50.	100, 150.	200. 250.		•	
POS	300. 350.	400. 450	500. 550.			
POS	600					
TEMP	29. 25	35.60 29.84 28.87	32. 01	35. 58	30. B9	29.75
TEMP TEMP	31.42	27 B4	30 89	30.40	30 91	30 14
TELLE	20 31	20. d/	30 23	28 04	28 75	28 70

		55.54				
		58 56				
MEAN	60.95					
MEAN	101, 35	113. 17	122. 51	131. 73	141. 70	151.14
MEAN	155. 15					
SD	2. 52	3. 04	3. 28	3. 01	3. 17	3. 36
SD		4. 04	4. 21	4. 44	5. 09	5. 16
SD	5. 10					
Test #	9					
POS	0. 50.	100 150	200. 250)		
	300. 350.	400 450	500. 550			
POS	600.		555, 555	•		
TEMP	29. 40	36. 60	32. 60	37. 61	31. 20	30. 10
TEMP	31.70	30. 39	31. 53		31.49	30. 52
TEMP		28. 86	30. 32	28. 01	26. 74	28. 74
TEMP	29. 49	28. 28				
MEAN	63.66	70. OB	77. 34	98. 97	98. 63	106. 27
MEAN	115. 94	129. 59	139. 97	151.04	98. 63 163. 31	174.06
MEAN	179. 25					
SD	5. B9	6. 74	7. 49	7. 74	8. 29	9. 00
SD	9. 82	10. 59	11. 27	11.69	12. 79	13. 47
SD	13. 83					
Test #	10					
POS	0. 50.	100, 150,	200. 250) .		
	300. 350.	400. 450.	500. 550).		
POS	600.	-				
TEMP	29. 18					
TEMP					31. 49	
TEMP	30. 71		30. 35	27. 9 9	28. 72	28. 77
TEMP	29. 55					
	57. 3 7					
	104. 74	117.03	140.80	137. 08	149. 37	158.76
	163.09	5 47				
SD	2. 92					
SD	4. 13	4. 67	5. UU	5. 07	3. 46	6. 19
SD	6. 54					

ACTUAL DATA

COLOR BESSELLA

Spread

						Up	Down
Test# =	1					·	
-0.10	-5. 40	-5. 40	-4, 20	~4. 20	-3. 30	-0. 44	-1.51
-6. 50	-8. 80	-3. 70	-7. 50	-2. 70	-6. 30	0. 17	-3. 06
-9. 40	-12.40	-7. 30	-10.70	~5. 90	-9 . 5 0	0.18	-3 16
-7. 80	-10.50	-5.49	-8. 80	~3. 69	-7. 60	0.08	-3. 23
~7. 90	-9. BO	-6. 00	-B. OO	~4. 20	-6. 50	-0. 57	-2. 63
-10.30	-11.40	-7. BO	-9. 90	-6. 39	-8.50	-0. 69	-2. 46
-10. 99	-12 30	-8.70	-10.50	-6. 99	-8.70	-0. 94	-2.55
-6.41	-B. 30	-3. 81	-6. 29	~1.80	-4. 49	-0. 65	-3.00
-5. 0 0	-7. 39	-2. 69	-5. 40	-0.61	-3. 51	-0. 54	-3. 20
-4.49	-5, 62	-1 BO	-3. 91	0.	-1 BO	-1.07	-2. 75
-1.89	-3. 60	0 40	-1.59	2. 50	0.49	-0. 98	-2 88
0 43	-1. 22	3 30	1 28	4.82	2 99	-1.10	-2 93
-2 38	-2. 38	0	0	2.08	2 08	-1. 92	-1 92

Test# =	2						
20.70	20.80	20.80	21. 20	21.20	22.30	-0.94	-0 41
22.20	20, 00	23, 40	20. 30	23. 10	21.40	0. 53	-1.80
21. 90	18. 90	21.80	18. 90	21.60	19. 40	0. 90	-1. 79
24. 51	23. 61	25. 30	23. 41	24. 99	23. 80	0. 17	-1.16
26.70	26, 70	27. 21		26. 79		-0. 24	-0.64
			26. 20		26.60		
25.89	27, 10	26. 99	26. 31	26. 50	26. 31	-0. 52	-0. 41
27. 50	29. 21	28. 50	27. BO	28. 02	28. B1	-0.67	-0.07
35.00	35, 31	35, 49	34. 30	35. 00	33. 91	0. 07	-0 59
38. 51	38, 70	38. 51	37. 69	39.00	37. 69	0. 21	- 0. 45
41.69	41, 90	41.60	41.50	41. 20	41. 20	-0.19	-0.15
45. 99	46. 69	45, 99	45. 90	45. 50	45. 68	-0. 21	0. 05
30. 78	51, 88	50. 17	50. 17	49. 62	49. 68	-0.19	0. 20
49.62	49, 62	49. 32	49. 32	48. B9	48. 89	0. 08	O. OB
Test# =	3					-	0.00
62. 80	59, 80	59. 80	57. 20	57. 20	56. 40	2. 56	0. 43
65. 10	61, 20	62. BO	59. 50	60. 60	57. 80	3. 49	0. 16
	64.00	64. BO					
6B. 40			61.20	62. 90	59. BO	3. 94	0. 25
75. 10	72. 10	71. 30	68. 80	69. OO	67. 00	3. 64	1. 14
78. 70	77, 90	75. 20	73. 90	71. 70	71. 90	2. 62	1. 9B
B1. 21	82.20	7 7. 61	77. 90	74. 60	74. 71	2. 45	2 91
B6. 49	87. 49	B2. 79	B3.10	78. B9	79. 71	2. 73	3. 44
96. 9B	97, 41	92 . 10	92.10	88. 50	88. 01	3. 47	3. 45
102. 51	103, 21	97. 29	96.71	93. 69	93. 69	3. 42	3. 46
108. 61	110, 50	103.49	103.70	99. 21	100.49	3. 11	4. 24
117. 10	118, 59	110. 99	112.40	106. 51	107. 70	3. 40	4.76
123. 90	126, 28	116. BB	118.59	112. 18	114, 32	3. 29	5. 37
125. 92	125, 92	118.53	118.53	114. 20	114.20	4.50	4. 50
7est# =	4	116. 23	116. 33	114. 20	114. 20	4. 50	4. 30
	57. BO	57 00	EE 40	EE (0	51 50		0.10
6B 70		57. BO	55, 60	55. 60	51.50	5. 63	-0.10
70.60	59. 80	59.00	57. 30	57. 00	53. 50	5. 58	0. 25
74. 60	61.80	61.30	59.40	58.70	54.60	6. 37	D. 10
82.20	69. 40	67. 20	65, 99	64. 10	62. 30	6. 17	0. 90
76. 9 0	74. 20	71. 50	70, 50	6B. 30	67. 20	3. 46	1.86
76. 40	78, 09	74, 40	75, 30	71.20	70. 91	2.40	3. 17
80. 7 0	82. 31	78. 61	79. 41	75. 01	75. 10	2. 51	3. 27
90. 39	90. 70	88. 10	88. 71	84. 29	84.41	2. 61	2 96
96. 31	96, 59	93. 69	93. 69	89. 60	90. 30	2. 69	3. 02
103. 91	104, 40	100. B9	101.41	96. 50	97, 11	3.19	3.73
110.41	111, 39	107.09	107. 79	102.69	102, 91	3.11	3.74
117 BO	118, 53	113.71	115.11	115.11	110.90	4. 43	3. 73
120.00	120.00	115. 91	115. 91	111.57	111.57	4.01	4. 01
Test# =	5	113. 71	110. 71	111. 07	111. 37	4. 01	4. 01
35.10	34, 70	34. 70	34, 40	34. 40	33, 60	0. 79	0. 29
38.00	34, 50	37. 00	33.80	36. 40	33. 30	2.13	-1.13
39 00	35, 30	37. 70	34. 50	36. 60	33. 90	2. 22	-0 98
43.59	41.00	42. 69	40. 21	41.50	39. 70	1.72	-0. 58
47, 39	45. 59	46 30	45 30	45. 70	44, 40	1. 26	-0 10
48.60	47. 50	48. 20	46. 91	47.10	46, 20	1 21	0.11
51.30	5 0. 99	50. 29	50, 51	49. 50	49. 59	0. 63	0.63
59.69	59, 39	59. 60	58. 11	5B. 29	57, 40	1.16	0 56
64. 30	63. 81	63. 51	62.71	62. 90	62.19	0. 96	0. 30
69.40	49.00	6B. 91	68 60	67. 90	67, 81	0. 72	0. 45
75. 29	75, 50	74. 5B	75. 01	73. 61	74. 01	0. 54	0.89
B1 42	81.73	80 69	BO 87	79. 53	79, 59	0.52	0.71
82 58	82 58	82. 21	82. 21	80 B7	BO 87	0.74	0 74
Test# =	6				00 B,	J. /4	U / 4
85.20	80.60	80 60	76.90	76 90	73 70	4 95	1 12
91 10	B6 30	86 70	82 10	62 70			
		92 30	88 50	87.70	78 50	5 77	1 24
97 20	93 00				84 10	6 12	2 15

107.70	105 00	102.60	99. 59	97. 40	94.80	5. 77	3 00
116 50	114.01	110.79	109.21	105.70	104.10	5 63	
123 20	122 70	116 30	116.39	110.90		5. 52	4 00
132 20	132.29	125.09	125, 40	118.59	110.31		5 19
146 00	146.00	138.00	138, 49		118. 99	5. 62	5 88
155. 91		_		131. 29	131.50	6. 04	6 28
	156. 19	147. 31	148. 50	140. 29	140, 69	6. 21	6 83
165. 99	167. 11	157. 10	158.69	149.69	151.09	6.25	7. 63
177. BO	179. 41	168. 21	170. 01	160. 49	162, 11	6. 75	8. 43
187. 93	190. 61	177. BO	180.11	169. 62	171.69	6. 69	9. 05
193. 42	193. 42	182. 50	182.50	174. 19	174, 19	8. 03	B 03
Test# =	7					-	
B1. 90	77. 4 0	77. 40	72. 90	72, 90	69. 51	2. 07	-2. 07
88. 20	B3. 90	83 . 70	79. 10	79. 10	75. 20	2. 13	-2.13
95. 60	91. 90	91.00	86. 70	B5, 60	B2. 20	1. 90	-1. 90
107. 19	104.00	101.81	98. 40	96. 41	73 . 80	_	
117.00	115. 91	111.40	109, 89	105. 50		1. 53	-1.53
125. 79	125.00	119.00	118.90		104. 20	0. 65	-0. 65
135. 19	135. 10	127. 29		112.59	112.70	0. 13	-0.13
149.69	149, 29		127. 90	120. 70	121.00	-0.14	0.14
		141. 20	141.60	134. 49	134.40	0. 02	-0.02
160. 71	160. BO	152.01	152, 40	144. 50	144. 71	-0.12	0. 12
172.30	174. 01	163. 30	164. 31	155. 30	157. 10	- 0. 75	0. 75
184. B1	186. 40	174. 29	175. 99	166. 29	167. 30	-0. 72	0. 72
195. BO	19B. 00	185. 18	186. 52	176. 57	178, 41	-0. 90	0. 90
202. 03	202. 03	190. 98	190. 98	182. 31	182.31	O .	0.
Test# =	8	•				- ·	•
64. 30	62. 40	62, 40	59. 60	59, 60	57. 40	1. 15	-1. 15
69. BO	67. 20	67. 90	63. 90	64. 90	61.40	1. 68	
74. 70	72.30	66. 60	68. 60	68. 70	66. 50		-1.6B
83. 69	81.80	80.70	78. 20	77. 70		0. 43	-0. 43
91.71	91.40	88. 59	87. O1		75. 50	1. 10	-1.10
97. 20	97. 79	93. 70		85. 40	83. 89	0. 57	-0. 57
105.10	106.29		93. 60	90. 19	89. BO	-0. 02	0.02
		100.89	101.41	97. 29	97. 11	-0. 25	0.25
117.40	117.89	113.19	113. 31	108. 61	108. 61	-0.10	0.10
127. 01	127. 41	122. 41	122. 59	118.01	117. 61	-0. 03	0.03
136. 29	137, 21	131.20	131. 99	126. 71	127. 01	-0. 34	0. 34
146. 51	148 28	141.11	142.00	135, 59	136. 69	-0. 63	0.63
156. 01	158. 02	149. 90	151.61	145. 20	146. 12	-0. 77	0.77
160. B9	160. B9	155.09	155.09	149.48	149. 48	0.	0.
Test# =	9			•			
74. 30	69. 30	69. 30	64.60	64.60	61, 10	5. 74	1 34
8 1. 90	76 00	76 50	71. 70	71. BO	67, 10	6. 65	1 52
90.10	84.80	84.10	79. 70	78. 70	74. 50	6. 96	2 33
102.01	97. 50	95. 20	92.00	89. 80	86.90	6. 70	3. 16
111.80	108 99	105 19	101. 90	99. 20	96.50	6.77	3. B3
119 71	118.50	112.50	110.90	106, 00	105 19	6.47	
130.49	129, 49	122.71	121 19	115. 30			5. 26
144.99	144, 29	136.41	135.59	129, 79	114.81	6.89	5. B9
156.40	155.70	147.19			128.39	7.48	د. 50
167.69			146. 91	138.70	139, 10	7.46	7. 27
	167.79	158 20	158.51	149. 41	150, 30	7. 40	7. 83
181.09	182.10	171.30	171 30	161.29	162.60	7. 92	8.69
192 99	193. 97	181 58	182 68	171.69	173. B9	B. 03	9. 45
199, 10	199. 10	187, 99	187, 99	177, 49	177, 49	8. 94	B. 94
Test# =	10						
61.60	58. 60	58 80	55. 80	55 80	53, 40	1. 37	-1 37
68 40	64 00	64 70	61.00	62.40	58, 20	2. 05	-2 05
74 20	70 90	70 60	67.10	67 50	64 10	1 70	-1 70
B5 01	B2 40	80 90	78 40	77 50	75 20	1 24	-1 24
93 90	92 41	89 10	88 10	85 EO	84 70	0.60	-0 60
100 01	99 50	95 31	94 89	91 20	90 90	0 20	-0 20
109 50	109 71	103 91	104 40	100 71	100 19	-0 03	0 03
				-	· ·		

122 59	122, 19	116.79	116.79	111. 91	111.91	0. 07	-0 07
132 39	132.81	126. 10	126.59	121.31	121.61	-0.20	0 20
142.61	143.49	135. 99	136. 81	131.71	131.90	-0.32	0. 32
154.69	155. 91	147. 09	148. 28	141.51	142.70	-0.60	0. 60
164. 98	166. B1	157. 59	158.81	151.61	152.77	-0.70	0. 70
170.72	170.72	162. 41	162.41	156 13	156 13	-0. 70	0.70

TESTE & TESTS + TESTS X TESTS + TESTS A TESTS X TESTS Y TESTS X TESTS

CONTRACTOR RECEIVED RECEIVED

. TEST1 $_{\Delta}$ TEST2 $_{+}$ TEST3 $_{\times}$ TEST4 $_{\Phi}$ TEST5 $_{\Phi}$ TEST6 $_{\nabla}$ TEST7 $_{Z}$ TEST8 $_{Y}$ TEST9 $_{X}$ TEST10

Z AXIS RESULTS OF HORZ. ST. ERROR (micron)

X azis at 147.716 mms

	Y axis at					
	Z exis et 4					
	Dir of lase					
Test #	1	, ,				
POS		100, 150,	200. 250.			
TEMP	25. 15	25. 58		26. 20	25. 14	24. 95
TEMP	25. 12			25. 19	25. 27	25. 17
TEMP	25. 17		24. 83	24. 58	24. 65	24. 68
TEMP		24. 58				
MEAN	-0. 30	-0. 68	0. 33	-0. 05	-0. 33	-0. 23
SD		O. B1	0, 60	0. 44	0. 38	0. 05
Test #						
POS		100. 150.	200. 250.			
TEMP	26. 15			28. 43	25, 96	25. 52
TEMP	25, 84	25. 50		25. 59	25. 69	25. 54
TEMP	25, 57	25. 23	25. 44	25. 03	25. 18	25. 08
TEMP	25 30	24. 93				
MEAN	25 30 0, 23 0, 23	-0. 22	1. 07 0. 66	1. 05	0. 62	0. 27
SD	0. 23	0. 32	0. 66	1. 01	0. 62 0. 98	0.19
Test #	3				2	
POS		100 180	200. 250.			
TEMP	26. 9 3				24 72	26. 16
TEMP	26. 65	34.04	24 18	30. 21	26. 72 26. 28	25. 99
TEMP	26. 08	25.70	26. 18 26. 26	25 45	25. 77	25. 77
TEMP		25. 30	LU. EU	EJ. 79	E3. //	E3. 3E
MEAN	0.17	0.35	0. 62	0.08	-0.49	0.20
SD	0. 17 0. 12	0.33	0. 41	0.00	-0. 49 0. 38	0. 20
Test #	4	V. J1	0. 41	U. 27	0.36	0. 07
POS		100 150	200. 250.			
TEMP	27. 98	34 62	30 41	33 82	27. 83	27 17
TEMP	28. 27	27 14	27 32	27 07	27. 46	26. 70
TEMP	26. 85	26 63	27. 32 27. 61	26 09	26.66	26.70
TEMP		25.87	27.01	20 0,	20.00	20.27
MEAN		2 52	3 86	3 20	3. 59	3. 07
SD	3. 02 0. 13	0.36	3. 86 0. 56	0.80	O. 86	
Test #	5	J. J .	0. 55	0.00	0. 55	U
POS		100. 150.	200. 250.			
TEMP	27. 58	33. 45	31. 22	34.17	27. 76	27. 54
TEMP	29. 30	_		27 93	28. 20	27. 42
TEMP	27. 44		28 15	26. 44	26. 98	26. 76
TEMP	26. 64	26. 44				
MEAN	3. 23		3 41	3. 36	3. 20	3 13
_SD	0. 23	0 22	0.14	0 40	0 30	0. 05
Test #						
POS	0. 50.	100. 150.	200. 250.			
TEMP	27 53	34.36	31. 63	35. 54	28. 15	27 98
TEMP	30 06	28 30	29. 03	28.45	28.79	27. 82
TEMP	27 89	27 25	28 72	26. 81	27.47	27 11
TEMP	27 1B	26 79				
MEAN	1. 50	1 61	1.65	0 89	0 51	1 53

s _D	0 06	0. 99	0. 89	Q. 68	0. 71	0. 05	
Test #							
POS		100. 150.	200 250				
TEMP	27 60	34 A2	31.81	35 17	28 44	2R 24	
TEMP	27. 60 30. 41	34. 62 28. 51 27. 53	29. 46	26. 78	29.17	28, 14	
TEMP	28.19	27. 53	29. 07	27. 02	27. 75	27. 39	
TEMP	27. 56	27. 04					
MEAN	2. 17	27, 04 2, 05 0, 89	2. 95	2. 22	2. 10	2. 20	
SD	_ 0.08	0. 89	0. 72	0. 5 8	0. 39	O. 0 9	
Test #	•						
POS		100. 150.	200 250				
TEMP	27 25	33.90	32 78	36 38	28 39	28, 29	
TEMP	27. 25 30. 19	28. 80		29. 02	29.15	28.17	
TEMP	28 10	27. 31	2 3.31	26. /3	27.14	27.34	
TEMP	26. 90 1, 52 0, 22	27. 02					
MEAN	1.52	1.00	2. 29	2.07	1. 49	1. 63	
SD	0. 22	0. 52	0. 39	0. 31	0. 33	0. 21	
Test #							
POS		100. 150.	200 250				
TEMP	27 10	30 RO	29.5A	31 46	27 59	27 61	
TEMP	29.49	30. 80 28. 37	29. 51	28. 83	28. 93	27. 61 28. 39	
TEMP	28. 30	27. 24	28.44	26. 71	27, 29	27. 44	
TEMP	27, 54	27, 24 27, 15 2, 56 0, 76					
MEAN	3. 17	2. 56	3. 71	3. 45	3. 23	3. 10	
_SD	0. 30	0. 76	0. 51	0. 55	0, 45	0. 18	
Test #							
POS	0 50	100, 150.	200 250				
TEMP	26. 30	31. 34 27. 94	29.96	33. 14	27. 57	27. 55	
TEMP	29. 33	27. 94	29. 45	29.08	29. 42	27, 55 28, 35	
TEMP		27. 94 26. 89 24. 81	29, 96 29, 45 27, 86	26. 49	26 93	27.10	
TEMP	26. 89	26. 91					
MEAN	2.05	26. 99 26. 91 1. 89 1. 05	2.75	2. 20	1, 43	2.10	
SD	0. 12	1. 05	0.86	0. 83	0. 53	Q .	
ACTU	AL DATA						
====	多次学家会会会						
						SPREAD	_
Test	. # 1					Up Dow	*1
		-0 30	-0.20	-0. 20	-0.20	~0 . 07	0 07
ō	10 -1.44	-0.02	-1.50	0. OB	-1 32	0.07 0.74 0.54 0.38 0.25	0 74
0.	90 -0.28	A 774	-0.20	0 96	-0 14	0. 54 -	0 54
0.	20 -0.62	0. 24	-0 30	0. 54	-0.36	038 -	0 38
-0	50 -0.76	0. 76 0. 24 0. 22	-0. 60	0. 02	-0.3B	0 25 -	0 25
0.	30 -0.30	~0. 20	-0 20 -0 30 -0 20	-0. 20	-0. 20	0.	0
iest	10 0.50	0.50	0.20	0.30	0.10	~0.03	0 03
-0	44 0.28	~0 50	0 20	-0. 20 -0. 50	-0.30 -0.30	~0 03	0 24
_0 0	32 1 84	0.70	1 78	0.50	1 26	~0.56	0 56
ő	18 2 54	0 40	1 92	0 10	1 14	~0 B2	0 82
-0	46 2 02	0	1 46	-0 10	0 82	~0 B1	0 B1
0	50 0 50	0 20	0 20	0 10	0 10	~0 03 ~0 26 ~0 56 ~0 82 ~0 81	C .
1681	. # 3						
a	0.10	0 10	0.30	0.30	מיב ח	~0 03	0 03

0 88	-0.20	0 74	-0 12	0.82	0.00	0.46	-0 46
0.86	-0 00	0 98	0. 36	1.04	0.50	0. 34	-0 34
~0.06	-0 30	0.42	0.24	0.26	-0.10	0.13	-0 13
			-0 68	0.18	-0 70		
-0 4B	-0. 90	-0.34				0. 27	-0 27
0.10	0.10	0. 30	0 30	0. 20	0. 20	0.	0
Test #	4						
2. 90	2. 90	2. 90	3 10	3. 10	3. 20	-0. 05	0 05
2.00	3.00	2. 24	2. 6B	2. 50	2. 72	-0. 28	0 28
3.00	4. 40	3 48	4. 26	3. 70	4. 34	-0. 47	0 47
2. 40	4. 30	2. 42	3. 74	2.70	3. 66	- 0. 70	0. 70
2. 50	4. 70	2. 96	4. 22	3. 10	4.08	- 0. 74	0.74
2. 90	2. 90	3. 10	3. 10	3. 20	3. 20	- 0. 00	-0. 00
Test #	5						
3. 70	3.20	3. 20	3. 10	3. 10	3. 10	0.10	-0.10
2. 24	2. 74	2.76	2.44	2. 80	2. 40	0.00	-0.00
3. 18	3. 58	3, 32	3, 48	3. 50	3. 40	-0. 08	0 08
2. 82	3. 92	2. 98	3.42	3. 40	3. 60	-0. 29	0. 29
3. 06	3. 56	2.74	3.16	3. 20	3. 50	-0. 20	0. 20
3. 20	3. 20	3.10	3.10	3. 10	3. 10	0.	0.
Test #	5. 2 0	3. 10	3. 10	5. 10	J. 10	•.	٠.
	_	1 80	1, 50	1. 50	1. 60	-0. 03	0. 03
1.40	1.50	1.50			0.74	-0. 03 0. 89	-0.89
2. 24	0.66	2. 64	0.74	2. 62			-0. 79
2. 18	0. 62	2. 68	1. 18	2. 44	0.78	0. 79	
1. 22	0.18	1. 82	0. 52	1. 36	0. 22	0. 58	-0. 5B
0. 96	-0. 46	1.46	0.16	0.88	0.06	0. 59	-0. 59
1. 50	1. 50	1. 50	1. 50	1.60	1.60	Ο.	0.
Test #	7						
2. 10	2. 20	2. 20	2.10	2. 10	2. 30	-0. 03	0.03
2.78	1.20	2. 9 0	. 1. 18	2. 90	1. 34	O. 81	-0. B1
3. 36	2. 50	3. 70	2. 26	3.70	2. 18	O. 64	-0.64
2.84	2.00	2, 80	1.54	2. 50	1.62	0. 50	-0 . 50
2. 62	1. 90	2, 40	1.72	2. 30	1.66	0. 34	-0. 34
2. 20	2. 20	2. 10	2. 10	2. 30	2. 30	0.	0.
Test #	8						
1. 20	1. 50	1. 50	1. 50	1.50	1. 90	-0. 12	0. 12
1. 12	0.58	1.50	0.50	1.70	0. 58	0. 44	-0.44
2. 44	2.06	2.70	1.70	2.70	2.16	0. 32	-0.32
2. 16	2. 44	2. 10	1.50	2. 20	2. 04	O. 0B	-0. OB
1.68	1. 12	1. 40	1.10	1.80	1. 82	0.14	-0.14
1. 50	1. 50	1. 50	1. 50	1. 90	1. 90	0.	0. 2-4
Test #	9	1. 50	1. 50	2. 70	1. 70	•	٠.
	-	2 .0	2. 90	2. 90	3. 30	0. 07	-0 07
3. 70	3. 10	3. 10		-			
3. 42	1. 60	2. 98	1. 74	3.16	2. 44	0. 63	~0. 63
3. 94	2. 90	4. 26	3. 28	3. 92	3. 78	0.33	-0. 33
4. 06	2. 50	3. 44	3. 32	3. 48	3. 92	0. 21	-0. 21
3 38	2. 40	3. 62	3.06	3. 34	3. 56	0. 22	-0. 22
3. 10	3.10	2. 90	2. 90	3. 30	3. 30	Ο.	Ο.
Test #	10						
1. 80	2. 10	2. 10	2. 10	2.10	2. 10	-0. 05	0. 05
2. 74	1.00	2. 92	1, 02	2.88	0. 7B	0. 96	-0. 96
3.38	1. 90	3, 64	2.04	3.56	1. 96	O. 78	- 0. 78
2. 42	1.00	3.06	1, 76	3. 14	1.84	0.67	-0.67
1. 16	1.10	2. 18	1. 18	2.02	0. 92	0.36	-0.36
2.10	2.10	2, 10	2.10	2.10	2.10	-0.00	-0.00
	=						

2.17*T19 - 1.06*T7 + 0.91*T5 - 50.70

TESTI & TESTS + TESTS X TESTS + TESTS A TESTS X TESTS X TESTS X TESTSO

Z AXIS RESULTS OF VERT. ST. ERROR (micron)

X axis at 141.125 mms Y axis at 64.214 mms Z axis at 450.000 mms Dir of laser R

Test :		1
--------	--	---

Test # 1						
POS		100. 150.	200 250			
TEMP	22. 55	22. B5	200. 250.		22. 38	22. 16
TEMP	22. 26	22. 28	22. 41	22. 33	22. 46	22.38
TEMP	22. 38	22. 01	22. 16		22. 04	21. 91
TEMP	22, 29	21. 87				-
MEAN	-5. 83	-3. 81	-4. 7B	-6. 05	-6. 93	-6. 53
SD	1. 68	3. 31	3. 28	3. 18	3. 65	0.10
Test # 2	2		•			
POS		100. 150.				
TEMP	24. 3B	25. 47	23. B2	25.00	23. 62	23. 15
TEMP	23. 45	23. 03	23. 15	22.93	23. 03	23.08
TEMP	23. 23	23. 11	23. 45	22. 86	23. 20	22. 81
TEMP	23. 16	22. 59				- 40
MEAN SD	~7. 3B 0. 13	-7. 58 0. 28	-7. 93 0. 39	-7. 63 0. 44	-7. 40 0. 28	-7. 43 0. 10
	0. 13 3	V. 28	0. 34	0. 44	U. 28	0. 10
	_					
POS	0. 50.	100. 150.	200. 250.			
TEMP	25. 30	27. 73	25. 04	26. 63	24. 55	23. 81
TEMP	24. 25	23. 47	23. 59	23.47	23.69	23.52
TEMP	23. 76	23. 71	24. 1B	23. 34	23. 7 9	23. 29
TEMP	23. 69	23. 00				
MEAN	-10.67				-10.47	
SD		0. 39	0. 62	0. 54	0. 59	0.05
Test #						
POS		100. 150.	200 250			
TEMP	26. OB				25, 31	24 62
TEMP	25. 29	24. 33	24. 33	24. 21	24. 60	24.14
TEMP	24. 43	24. 33	25. 05	23. 89	24, 41	23 87
TEMP	24. 21	23. 52				
MEAN	-11.57	-11.82	-12. 62	-11.94	-11.66	-11.50
SD	0.14	0. 29	0. 35	0. 37	0. 36	0.09
	5					
POS		100, 150.			24 40	95 30
TEMP	26. 93		29. 38	31.94	26. 49 25. 91	25. 78 25. 15
TEMP TEMP	27. 11 25. 39	25. 59 25. 27	25. 76 26. 57	25. 39 24. 70	25. 49	25. 15 24. 78
TEMP	25. 10	25 27 24. 36	20.37	24. 70	23.47	24.70
MEAN	-10.35	-10.40	-11.46	-10 96	-10.45	-10. 27
SD	0.21	0. 45	0.42	0.53	0. 58	0.19
	6	J. 45	U. 12	0.00	0. 00	0
POS		100. 150				
TEMP	59 BB	35, 29	30. 89	33 61	27. 41	26 65
TEMP	28 56	26. 53	26. 97	26 41	26. 85	25 94
TEMP	26 14	25. 97	27 75	25.36	26 34	25 53
TEMP	25 72	25 06	. 74	4 05		
MEAN	~5 5 0	-5 62	-6. 74	-6 09	-5. 33	-5 43

لإوواداومه يعظب الأوازان

SD	0 20	0 33	0.42	0 64	0. 72	0 23	
Test # 7	,	0 33	0 72	0 64	0.72	0 23	
POS		100 150	200 250				
TEMP	27 02	36 93	31.79	35.00	28 17	27. 39	
TEMP	29 66	27. 41	28, 22	27. 29			
TEMP	27.00	26. 61	28. 48	25. B7	27. 02	26. 19	
TEMP	26. 39	25. 67		_			
MEAN	-2 07	-2. 20	-3. 37	-2. 43	-2. 15	-1. 97	
SD Test # 6	0, 20 3	0. 41	0. 43	0. 48	0. 49	0. 21	
POS	0. 50.	100. 150	200. 250.				
TEMP	26, 98	33.16	30. 54	31. 17	28.04	27. 33	
TEMP	29 60	27. 30		27. 38	27. 84	27. 13	
TEMP	27. 35	26. B4	28. 62	26.13	27. 21	2 6. 5 0	
TEMP MEAN	26. 69	26.01	4.04	4 40	4 5:	5.00	
SD	5. 05 0. 37	5. 11 0. 57	4. 06 0. 55	4. 60 0. 64			
Test # 9		0. 57	0. 33	U. 84	U. 49	0.31	
P05		100. 200.					
TEMP	25. 25	30. 54	28. 96	32. 26			
TEMP	28. 62	27. 25	28. 52	27. 72	27. 72	27. 08	
TEMP TEMP	27. 13 26. 03	25. 88 25. 70	27. 01	25. 37	25. 93	26. 05	
MEAN	20.00	25. 78 10. 84	18. 75	10 30	19. 96	20. 13	
SD	0. 25	0.60	0.53	0.56			
	10		0. 00	0.00	U. U.	0. 2.	
POS		100. 150.					
TEMP	25. 05	29. 76	26. 38	30. 7 3	24. 25	26. 37	
TEMP TEMP	28, 25 27, 01	26. 98 25. 68	28. 37 26. 79	27. 62 25. 19	27. 62 25. 73	26, 98 25, 93	
TEMP	26. 12	25.66	20.77	£J. 17	23.73	23. 73	
MEAN	22. 28		21. 17	21. 57	22. 13	22, 37	
SD	0. 21	22. 13 0. 31	0. 39	0. 73	0. 51		
ACTUAL	_ DATA						
						SPREAD	
Test 6						Up I	חשס
-2.40		-6 40	-6. 60	-6. 60	-6 60	0.70	-0 70
~2. 9 2			-1.62	-7. 98	-1.62	-2.49	2.49
~3 14		-8. 96	-2.94	-B. 96	-2. 94	-2. 24	2.24
-2.66	-4.86		-4.36	-10.04	-4.36	-1.53	1.53
~2. 56		-11.42	-5 38	-11.42	-5. 36	-1. 55	1. 55
_~6. 40		-6 60	-6. 60	-6.60	-6. 60	-o. o o	-0.00
Test (-				
-7. 20 -7. 60		-7. 30 -7. 84	-7. 5 0 -7. 30	~7. 50	-7. 50	0.05	-0. 05
~7. 90 ~7. 90		-7.86 -8.12	-7. 30 -7. 70	~7. 96 ~8. 6 ⊋	-7, 46 -7, 72	-0. 22 -0. 28	0, 22 0, 28
-7. 90 -7. 90			-7. 20	~B. 18		-0. 28 -0. 39	0.28
~7. 50		-7. 44	-7. 30	~7. B4	-7. 34	-0.19	0 19
-7. 30			-7.50	~7. 50	-7.50	0.	ō
Test (3						
-10 60	-10.70	-10.70	-10 70	-10.70	-10.60	O .	0

-11.28	-10.60	-11 30	-10.70	-11.40	-10.58	-0.35	0 35
-12 06	-10. 9 0	-12.00	-11.00	-11. BO	-10 66	-0.55	0 55
-11.24	-10.60	-11.70	-10.50	-11.30	-10.34	-0.47	0.47
-10.92	-10.40	-11.20	-10.00	-10.70	-9.62	-0.47	0.47
-10.70	-10.70	-10.70	-10.70	-10.60	-10.60	Ö. 7,	0.
Test #	4				10.00	U .	O.
-11. BO	-11.60	-11.60	-11. 50	-11. 50	-11. 40	-0.07	0. 07
-12. 26	-11.62	-11. 92	-11.50	-11. 92	-11.50	-0. 21	0. 21
-13.12	-12.44	-12. 94	-12. 20	-12.64	-12.40	-0.28	
-12.48	-11 86	-12.16	-11.50	-12.06			0.28
-12.14	-11.98	-11.48	-11. 40		-11.60	-0. 29	0.29
-11.60	-11.60	-11. 50	-11.50	-11.78	-11.20	-0.14	0.14
Test 0	5	-11. 50	-11. 50	-11. 40	-11.40	Ο.	Ο.
-10 60	-10. 5 0	-10 50	10.00		40.40		
-11.10		-10.50	-10. 20	-10. 20	-10.10	-0. OB	0.08
	-10. 28	-10.58	-9. 92	-10.58	-9. 96	-0. 35	0 35
-12.00	-11. 26	-11 B6	-11.04	-11.56	-11.02	-0.35	0. 35
-11. 40	-10.64	-11.54	-10.56	-11.34	-10. 2B	-0.47	0. 47
-11.30	-10. 52	-10. B2	-9.88	-10. 42	-9. 74	- 0. 40	0. 40
-10.50	-10.50	-10. 20	-10. 20	-10. 10	-10.10	O .	Ο.
Test #	6						
-5 60	-5. 70	-5. 70	-5. 40	-5.40	-5. <i>20</i>	-0.07	0.07
-6. 14	-5. 66	-5. 76	-5. 40	-5. 60	-5. 16	-0. 21	0. 21
-7. 18	-6. 92	-7. 1 <u>2</u>	-6.40	-6 . 70	-6.12	-0. 26	0 26
-6. 82	-6. 08	∽ 6. <u>6</u> 8	-5. 70	-6. 20	-5. OØ	-0.47	0. 47
-5. 96	-5. 34	-6. 34	-5. 00	-5.00	-4.34	-0.44	0.44
-5. 70	-5. 70	-5 . 40	-5. 40	-5. 20	-5. 20	-0. 00	-0.00
Test #	7						
-2. 30	-2.10	-2.10	-2.10	-2.10	-1.70	-0.10	0.10
-2.88	-2. 24	-2. 20	-1.70	-2. 34	-1. B6	-0. 27	0. 27
-3. 86	-3. 18	-3. BO	~3 . 00	-3. 58	-2.82	-0. 37	0.37
-3. 04	-2. 32	-2.60	-1. 90	-2. 82	-1. BØ	-0.39	0. 39
-2. 82	-2.16	-2.10	-1.70	-2.56	-1.54	-0. 35	0.35
-2.10	-2.10	-2.10	−2 . 10	-1.70	-1.70	-0.00	-0.00
Test #	8						
4. 50	4. 90	4. 90	5. 20	5. 20	5. 60	-0.18	0.18
4. 34	5.12	4.60	5. 76	5.12	5. 70	-0.42	0 42
3. 58	3. 94	3. 70	4. 72	3.64	4. BO	-0.42	0 42
3. 92	4. 56	4. 00	5. 08	4. 46	5. 60	-0.48	0 48
4. 46	5. OB	4. 60	5. 14	4. 48	5. 70	-0. 40	G. 40
4. 90	4. 90	5. 20	5. 20	5. 60	5. 60	0.	0.
Test #	9						-
19.60	20.00	20 00	20 00	20.00	20, 40	-0. i3	0.13
19. 16	20. 24	19. 58	20.0B	19.70	20 88	-0.46	0.46
18.02	19. 38	18.56	18. 56	18 60	19.36	-0. 35	0 35
18 68	19. 72	19. 14	19.54	19.00	20.24	-0.45	0 45
19 64	20.06	19. 72	20. 12	19. 60	20.62	-0.31	0.31
20.00	20.00	20.00	20.00	20 40	20.40	0.	0
Test #	10		-0.00		EV. 70	•	U
22.10	22. 10	22.10	22, 40	22, 40	22, 60	-0. 08	0 08
21.70	22.40	21.86	22. 42	22.04	22.38	-0. 03 -0. 27	0 03
20.50	21.40	21. 02	21 44	21 08	21.56	-0.30	0 30
20 80	21.70	20. 68	25 56	21.52	22 44	-0. 57	0 57
21, 40	22.20	21.84	22.08	22.36	22. 92	-0. 37 -0. 27	0 27
22 10	22.10	22. 40	22 40	22 60	22 60	-0, <u>2</u> / 0.	0 27
			0	22 00	E.E. DV	U.	U

7.73*T9 - 2.65*T2 - 1.05*T1 - 93.54

TESTI A TESTO + TESTO X TESTO + TESTO X TESTO X TESTO X TESTO X TESTO

TESTI & TESTO + TESTO X TESTO + TESTO + TESTO X TESTO X TESTO

X axis at 300.00 mms (indep) Y axis at 300.00 mms (indep) Z axis at 40.00 mms

Test #	axis at 40	OO mms		*		
				Dir of	leter P	
POS	0. 50.	100 150	200, 250			
POS		400. 450				
POS	600.					
TEMP	28, 25	27. 69	27. 59	29, 10	2B. 10	27. 59
TEMP	27. 62	27. 74	27. 93	28, 20		28 30
TEMP	28, 23	27. 50	27.42	27, 28	27. 23	27. 47
TEMP	27. 74	27. 30				• • • • • • • • • • • • • • • • • • • •
MEAN	~1.78	-1 87	-2 24	-2.58	~2. 88	-3 20
MEAN	~3, 67	-4.13	-4 57	-5, 14	~5.69	-6.07
MEAN	~6. 17				• • • •	J. J.
SD	1. 05	1.02 0.91	O. 86	0, 98	0. 80	O. B1
SD	0. 74	0 91	0.86 0.95	0.89		
SD	0.86			_	•	- · · ·
Test #	2					
POS						
POS	0. 50.		200 250			
204		400. 450.	500. 550.			
	600.					
TEMP	29. 20		28. 26	31, 11		27. 67
TEMP	28.17	28.07	28.48	28. 56	28. 68	28. 63
TEMP	28. 44		27. 21	26. 92	26. 31	27. 61
TEMP	27. 34	27. 31				
MEAN	-6. 95	-7. 10	-7 40	-B 0B	-B. 44	- 8. 75
MEAN	- 9. 06	-9. 73	-10 12	-10 52	-11 27	-11.54
MEAN	-11. 92					
SD	0.47	0. 47 0. 70	0 31	0 63	0. 61	0. 45
SD SD	0. 56	0. 70	0. 54	0 61	0 21	0. 49
Test #	0 35 3					
POS		100. 150.				
POS	300. 350.	400. 450.	500, 550.			
POS	600					
TEMP	29. 35	32.90	30, 50	34, 49	29.65	28 92
TEMP	29 70	29. 09	29.58	29, 38	29 68	29 29
TEMP	29.24	28. 48	28.99	28, 12	28 34	28 34
TEMP	28. 58	28. 02				
MEAN	-5.22	-5. 56	-6, 20	~6 35	-6 90	-7. 40
MEAN	-7. 72	-8:32	-9 . 00	-9.37	-9.98	-10.76
MEAN	~10.46					_
SD	0.18	0.74	0. 55	0.35	O B3	0 65
SD	0. 64	0.43	0.30	0.35	0 37	0. 45
_SD	0.07					_
Test #	4					
POS	0. 50.	100. 150	200. 250			
POS	300 350					
POS	600	.50. 450.	500. 550.			
	200					

TEMP	29. 38	33	47	31	10	25	28	29.	17	28. 59
TEMP	30.05	29			95		90	30.		29. 46
TEMP	29. 42	27.			59		49	27.		27. 96
TEMP	27. 83	27			•		••			27.70
MEAN	-11.60	-11.		-12.	71	-13.	19	-13.	65	-14, 17
MEAN	-14. 69	-15		-16.	-		82	-17.		-17. 78
MEAN	-17. 8 6	•••	••					• • • •	• •	• • • • • • • • • • • • • • • • • • • •
SD	0. 56	0.	53	0.	64	0.	62	0.	73	0. 65
SD	0. 48		49		59		49		86	
SD	0.57	•	• •	-	•	•	• •	•		U. 10
Test #	5									
POS			150							
POS	300. 350.	400	. 450	. 500). 550).				
POS	600.									
TEMP	28. 75	32.			03	35.		28.		28. 53
TEMP	30.04	28.			18		84	30.		29. 45
TEMP	29. 23	27.		28.	33	27.	26	27.	40	27. 72
TEMP	27. 62	27.								
MEAN	-12.02	-12.			7B	-13.		-14.		-14. BO
MEAN	-15. 54	-16.	24	-16.	40	-17.	81	-18.	41	-19. 02
MEAN	-19. 5B	_		_		_				
SD	0. 53	0.	65	0.	53	0.	62	0.		0. 52
SD SD	0. 67 0. 5 7	U.	67	U.	89	U.	68	U.	99	0. 94
	_									
Test #	6									
POS	0. 50.	100). 150	. 200). 250) .				
POS POS	0. 50. 300. 350.									
POS	300. 350.		450	500) .	25	29.	53	29 . 06
POS POS	300. 350. 600.	400	80 80	31. 30.	01 59). 3 6.	25 25	29 . 30.		29. 06 29. 86
POS POS TEMP	300. 350. 600. 28. 27	400 32.	80 35	31. 30.	0. 550 01). 36. 30			74	
POS POS TEMP TEMP	300. 350. 600. 28. 27 30. 45	32. 29 28. 27.	80 35 25 99	31. 30.	01 59). 36. 30	25	30.	74	29 86
POS POS TEMP TEMP TEMP	300. 350. 600. 28. 27 30. 45 29. 79	32. 29 28. 27.	80 35 25 99	31. 30. 29.	01 59). 36. 30	25 69	30.	74 21	29. 86 28. 28
POS POS TEMP TEMP TEMP TEMP	300. 350. 600. 28. 27 30. 45 29. 79 28. 69	32 29 28	80 35 25 99	31. 30. 29.	01 59 40	36. 30 27.	25 69 36	30. 28.	74 21 00	29. 86 28. 28
POS POS TEMP TEMP TEMP TEMP MEAN	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04	32. 29 28. 27. -8	80 35 25 99 31 93	31. 30. 29. -9.	01 59 40 59 56	36. 30 27. -9. -13.	25 69 36 13	30. 28. -10.	74 21 00	29.86 28.26 -10.38
POS POS TEMP TEMP TEMP TEMP MEAN MEAN	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75	32. 29 28. 27. -8	80 35 25 99 31 93	31. 30. 29. -9.	01 59 40 59 56	36. 30 27. -9. -13.	25 69 36 13	30. 28. -10. -13.	74 21 00 96	29. 86 28. 28 -10. 38 -14. 75
POS POS TEMP TEMP TEMP TEMP MEAN MEAN MEAN	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87	32. 29 28. 27. -8	80 35 25 99	31. 30. 29. -9.	01 59 40 59 56	36. 30 27. -9. -13.	25 69 36 13	30. 28. -10. -13.	74 21 00 96	29. 86 28. 28 -10. 38 -14. 75
POS POS TEMP TEMP TEMP TEMP MEAN MEAN MEAN SD	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 75 0. 70	32. 29 28. 27. -8	80 35 25 99 31 93	31. 30. 29. -9.	01 59 40 59 56	36. 30 27. -9. -13.	25 69 36	30. 28. -10. -13.	74 21 00 96	29. 86 28. 28 -10. 38 -14. 75
POS POS TEMP TEMP TEMP MEAN MEAN MEAN SD SD SD Test #	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70	32. 29 28. 27. -8	80 35 25 99 31 93	31. 30. 29. -9.	01 59 40 59 56	36. 30 27. -9. -13.	25 69 36 13	30. 28. -10. -13.	74 21 00 96	29. 86 28. 28 -10. 38 -14. 75
POS POS TEMP TEMP TEMP MEAN MEAN MEAN SD SD	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 75 0. 70	32. 29 28. 27. -8	80 35 25 99 31 93	31. 30. 29. -9.	01 59 40 59 56	36. 30 27. -9. -13.	25 69 36 13	30. 28. -10. -13.	74 21 00 96	29. 86 28. 28 -10. 38 -14. 75
POS POS TEMP TEMP TEMP TEMP MEAN MEAN MEAN SD SD SD Test #	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7	400 32. 29 28. 27. -8 -11. 0.	80 35 25 99 31 93 96 60	31. 30. 29. -9. -12.	01 59 40 59 56 31 70	36. 30. 27. -9. -13. 0.	25 69 36 13	30. 28. -10. -13.	74 21 00 96	29. 86 28. 28 -10. 38 -14. 75
POS POS TEMP TEMP TEMP MEAN MEAN MEAN SD SD SD Test #	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7	400 32. 29 28. 27. -8 -11. 0.	80 35 25 99 31 93 96 60	31. 30. 29. -9. -12. 1. 0.	01 59 40 59 56 31 70	36. 30. 27. -9. -13. 0.	25 69 36 13	30. 28. -10. -13.	74 21 00 96	29. 86 28. 28 -10. 38 -14. 75
POS POS TEMP TEMP TEMP MEAN MEAN MEAN SD SD Test #	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7 	400 32. 29 28. 27. -8 -11. 0.	80 35 25 99 31 93 96 60	31. 30. 29. -9. -12. 1. 0.	01 59 40 59 56 31 70	36. 30. 27. -9. -13. 0.	25 69 36 13	30. 28. -10. -13.	74 21 00 96	29. 86 28. 28 -10. 38 -14. 75
POS POS TEMP TEMP TEMP TEMP MEAN MEAN MEAN SD SD Test #	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 75 0. 70 0. 72 7 	400 32. 29 28. 27. -8 -11. 0. 0.	90 450 80 35 25 99 31 93 96 60	31. 30. 29. -9. -12. 1. 0.	01 59 40 59 56 31 70	36. 30 27. -9. -13. 0.	25 69 36 13 68 72	30. 28. -10. -13. 0.	74 21 00 96 67 60	29 86 28 28 -10 38 -14 75 0 88 0 52
POS POS TEMP TEMP TEMP TEMP TEMP MEAN MEAN SD SD SD Test # POS POS POS TEMP	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7 0. 50. 300. 350. 600. 28. 27	400 32. 29 28. 27. -8 -11. 0. 0.	80 35 25 99 31 93 96 60	31. 30. 29. -9. -12. 1. 0.	01 59 40 59 56 31 70	36. 30. 27. -9. -13. 0. 0.	25 69 36 13 68 72	30. 28. -10. -13. 0. 0.	74 21 00 96 67 60	29. 86 28. 28 -10. 38 -14. 75 0. 88 0. 52
POS POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD SD Test #	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7 0. 50. 300. 350. 600. 28. 27 30. 45	400 32. 29 28. 27. -8 -11. 0. 0.	80 35 25 99 31 93 96 60 . 150 . 450	31. 30. 29. -9. -12. 1. 0. 200 500	01 59 40 59 56 31 70 0. 250 01 59	36. 36. 37. 27. -9. -13. 0. 0.	25 69 36 13 68 72 25 25	30. 28. -10. -13. 0. 0.	74 21 00 96 67 60	29. 86 28. 28 -10. 39 -14. 75 0. 88 0. 52 29. 06 29. 86
POS POS TEMP TEMP TEMP TEMP MEAN MEAN MEAN SD SD Test # POS POS POS TEMP TEMP TEMP	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7 0. 50. 300. 350. 600. 28. 27 30. 45 29. 79	400 32. 29 28. 27. -8 -11. 0. 0. 400 400 32. 29. 28.	80 35 25 99 31 93 96 60 . 150 . 450 80 35 25	31. 30. 29. -9. -12. 1. 0. 200 500	01 59 40 59 56 31 70	36. 30. 27. -9. -13. 0. 0.	25 69 36 13 68 72 25 25	30. 28. -10. -13. 0. 0.	74 21 00 96 67 60	29. 86 28. 28 -10. 38 -14. 75 0. 88 0. 52
POS POS TEMP TEMP TEMP MEAN MEAN MEAN SD SD SD Test # POS POS POS TEMP TEMP TEMP TEMP	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7 0. 50. 300. 350. 600. 28. 27 30. 45 29. 79 28. 69	400 32. 29. 28. 27. -8 -11. 0. 0.	90 450 80 35 99 31 93 96 60 450 80 35 99	31.30.2912.10.00.31.30.29.	01 59 40 59 56 31 70 0. 250 0. 550	36. 30 27. -9. -13. 0. 0.	25 69 36 13 68 72 25 69	30. 28. -10. -13. 0. 0. 0.	74 21 00 96 67 60 53 74 21	29. 86 28. 28 -10. 38 -14. 75 0. 88 0. 52 29. 66 29. 86 28. 28
POS POS TEMP TEMP TEMP MEAN MEAN MEAN SD SD Test # POS POS POS POS TEMP TEMP TEMP TEMP MEAN	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7 0. 50. 300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04	32. 29 28. 27. -8. -11. 0. 0. 100. 400. 32. 29. 28. 27. -8.	90. 450 80 35 99 31 93 96 60 . 150 80 35 99 31	31. 30. 29. -9. -12. 1. 0. 200 500 31. 30. 29.	01 59 40 59 56 31 70 0. 250 01 59 40	36. 30. 27. -9. -13. 0. 0. 0.	25 69 36 13 68 72 25 25 69 46	30. 28. -10. -13. 0. 0. 0.	74 21 00 96 67 60 53 74 21	29. 86 28. 28 -10. 38 -14. 75 0. 88 0. 52 29. 06 29. 86 28. 28 -10. 43
POS POS TEMP TEMP TEMP MEAN MEAN MEAN SD SD SD Test # POS POS POS TEMP TEMP TEMP TEMP	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7 0. 50. 300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 23	400 32. 29. 28. 27. -8 -11. 0. 0.	90. 450 80 35 99 31 93 96 60 . 150 80 35 99 31	31. 30. 29. -9. -12. 1. 0. 200 500 31. 30. 29.	01 59 40 59 56 31 70 0. 250 0. 550	36. 30. 27. -9. -13. 0. 0. 0.	25 69 36 13 68 72 25 25 69 46	30. 28. -10. -13. 0. 0. 0.	74 21 00 96 67 60 53 74 21	29. 86 28. 28 -10. 38 -14. 75 0. 88 0. 52 29. 66 29. 86 28. 28
POS POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD SD Test #	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7 0. 50. 300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04	32. 29 28. 27. -8. -11. 0. 0. 100. 400. 32. 29. 28. 27. -8.	80 35 25 99 31 93 96 60 . 150 . 450 80 35 25 99 31	31. 30. 29. -9. -12. 1. 0. 200 500 31. 30. 29. -9.	01 59 40 59 56 31 70 0. 250 01 59 40	36. 30. 27. -9. -13. 0. 0. 36. 30. 27.	25 69 36 13 68 72 25 25 69 46	30. 28. -10. -13. 0. 0. 0. 29. 30. 28. -10. -14.	74 21 00 96 67 60 53 74 21	29. 86 28. 28 -10. 38 -14. 75 0. 88 0. 52 29. 06 29. 86 28. 28 -10. 43
POS POS TEMP TEMP TEMP TEMP MEAN MEAN SD SD Test # POS POS POS POS TEMP TEMP TEMP TEMP MEAN MEAN MEAN MEAN	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7	32. 29 28. 27. -8 -11. 0 0. 100 400 32. 29 28 27. -8 -12. 0	80 35 25 99 31 93 96 60 . 150 . 450 80 35 25 99 31	31. 30. 29. -9. -12. 1. 0. 200 500 31. 30. 29. -9.	01 59 40 59 56 31 70 0. 250 0. 350 01 59 40 65	36. 30. 27. -9. -13. 0. 0. 36. 30. 27. -9. -13.	25 69 36 13 68 72 25 25 69 46 23	30. 28. -10. -13. 0. 0. 0. 29. 30. 28. -10. -14.	74 21 00 96 67 60 53 74 21 11 09 78	29. 86 28. 28 -10. 39 -14. 75 0. 88 0. 52 29. 06 29. 86 28. 28 -10. 43 -14. 87 0. 94
POS POS TEMP TEMP TEMP MEAN MEAN MEAN SD SD Test # POS POS POS POS TEMP TEMP TEMP TEMP MEAN MEAN SD	300. 350. 600. 28. 27 30. 45 29. 79 28. 69 -8. 04 -11. 13 -14. 87 0. 75 0. 70 0. 72 7	32. 29 28. 27. -8 -11. 0 0. 100 400 32. 29 28 27. -8 -12. 0	90 450 80 35 25 99 31 93 96 60 150 450 80 35 25 99 31 07	31. 30. 29. -9. -12. 1. 0. 200. 500. 31. 30. 29. -9.	01 59 40 59 56 31 70 0. 250 0. 350 01 59 40 65	36. 30. 27. -9. -13. 0. 0. 36. 30. 27. -9. -13.	25 69 36 13 68 72 25 25 69 46 23 77	30. 28. -10. -13. 0. 0. 0. 29. 30. 28. -10. -14.	74 21 00 96 67 60 53 74 21 11 09 78	29. 86 28. 28 -10. 39 -14. 75 0. 88 0. 52 29. 06 29. 86 28. 28 -10. 43 -14. 87

	_						
Test #							
POS	0 50	100 150	200 250				
POS		400 450					
POS	600.			•			
TEMP	27 90	33 60	31.06	36.88	29, 26	28 87	
TEMP	30.36	29 26	30 79	30 50	29, 26 31, 23 27, 82	29 99	
TEMP	30.09	27 70	29 14	27 19	27.82	27 90	
TEMP	28 73	27 63				• • • • • • • • • • • • • • • • • • • •	
MEAN	-9 97	-10 41	-11 20	-11 96	-12.57 -17.14	-13 20	
MEAN	-13 71	-14 67	-15 52	-16 29	-17 14	-17 61	
MEAN	-17. 77	•					
SD	0.17	0.49	0.52	0.47	0. 45	0. 54	
SD	0. 17 0. 33	0.58	0. 56	0.39	0. 45 0. 48	0.51	
SD	0. 12				•		
Test #	9						
POS	0. 50	. 100. 150	200. 250				
POS	300. 350	. 400. 450	. 500, 550	١.			
POS	600.						
TEMP	28. 55	34. BO	32,00	36. 72	30. 08	29. 35	
TEMP	31. 07	29. 64	30, 93	30. 76	31. 46	30. 22	
TEMP	30. 47	28. 35	29. 57	27. 94	28. 52	28. 47	
TEMP	29.06	28. 20					
MEAN	-8. 51	-B. 90	-9. B3	-10. 53	-11.25	-11. 79	
MEAN	-12. 38	~13. 23	-13.94	-14 B5	30. 08 31. 46 28. 52 -11. 25 -15. 66	-16.22	
MEAN							
SD	0. 48	0. 48	0. 45	0. 46	0. 40 0. 40	0. 31	
SD	0. 27	0. 25	0. 25	0. 36	0. 40	0. 51	
_5D	0. 36						
Test #							
POS	0. 50 300. 350 400.	. 100. 150	. 200. 250).			
POS POS	300. 350	400. 450	. 500. 550).			
POS	600.						
TEMP	28.55	35.13	32. 21	35. 73	30, 44	29. 54	
TEMP	31. 24	29.88	31.07	30. 59	31, 32	30. 22	
TEMP	30. 37	28. 57	29.86	28. 15	28, 74	29. 64	
TEMP	29.17	28. 35					
MEAN	-8.39	-9.10	-9.69	-10.38	30, 44 31, 32 28, 74	-11.36	
MEAN	-12. 07	~12.83	-13.40	-14. 20	-15.05	-15.49	
MEAN	-15.66						
SD	0. 32	0.44	0.40	0. 47	0. 67 0. 14	0. 61	
SD		0. 39	0.40	0. 40	0.14	0. 42	
SD	0.14						
	AL DATA						
							0545
						5P	READ
						Up	Down
T.	st # = 1					•	200
-0	12 -1.30	-1.30	~1.61	-1, 61	-1, 73	0.77	0.23
^	(8.7		- 7 70		-7 67	1.14	-0.33
-0	55 -1.93	-1 34	-2 36	-1. 77	-2.63	1. 14 1. 02	-0.14
-ō.	55 -1.93 59 -2.40	-1.61	~2 68	-2.05	-2. 63 -3. 58	1 10	-0.30
· ·	_				-		

-1 69	-2, 52	-1. 97	~2. 63	-2. 09	-3. 6 6	0. 96	-0.19
~1. 77	-2. 80	-2. 28	-3. 43	-2. 68	-3. 90	0. 96	-0.17
~2.52	-3. 07	-2.87	-3. 58	-3. 35	-3. 94	0.76	0.14
~2. 52	-3. 43	-3. 27	-4. 02	-4. 02	-4.57	0. 66	0. 12
~3. 19	-3. 62	-3. 74	-4. 45	-4. 25	-5. 16	0. 85	0. 17
~3. 54	-4. 33	-4. 45	-5. 47	-4. 65	-5. 75	0. 93	-0.05
-4. 17	-4. 84	-5. 16	-5 . 79	-5. 51	-6. 26	0. 75	0.06
~4. 53	-5. 43	-5. 00	-6. 26	-5. 67	-6.54	1.00	-O. O1
~5. OB	-5. OB	-5. 43	-5. 43	-6.30	-6. 30	0. 57	0. 57
Test #							
-6. 42	-6. 61	-6. 61	-7. 48	-7. 48	-7. 09	0.11	-0 11
~6. 50 ~7. 01	-7. 47 -7. 76	-7. 32 -7. 17	-6. 50	-7. 44	-7. 36	0. 01	-0. 01
-7. 01 -6. 89	-8. 3 9	-7. 91	-7. 20	-7. 56	-7. 6B	0. 15	-0. 15
-7. 56	-8. 23	-8. 19	-8.19 -9.25	-8.58 -8.39	-8. 50 -9. 02	0. 2 8	-0. 28 -0. 39
-8.19	-9. 21	-B. 70	-8.31	-9. 2 9	-9. 7g	0. 3 9 0. 02	-0.02
-8. 74	-8.94	-9. 29	-8.27	-9. 92	-9. 21	-0. 26	0.26
-9. 37	-9.49	~10.39	-8.78	-10.67	-9. 69	-0, 41	0.41
-9.61	-10. 39	-10.24	-9. B4	-11.02	-9. 6 5	-0.16	0.16
-9. 61	-10.75	-10.39	-10.39	-11.50	-10.51	0. 03	-0.03
-11.14	-11. 57	-11.30	-10.94	-11.30	-11, 38	0. 03	-0.03
-11.50	-11. 93	-10. 98	-10. 98	-12.17	-11.69	-0. 01	0 01
-11.54	-11.54	-11. 8 9	-11.89	-12. 32	-12.32	0.	0
Test #							
-4. BB	-5.35	-5. 35	~5. 20	~5 . 2 0	- 5. 35	0. OB	-0. OB
-4. B4	-6. 54	-5.08	-5. 75	~4. 88	-6. 30	0. 63	-0. 63
-5. 87	-6. 57	-6.06	-6. 26	~5. 43	- 7. 01	0.41	-0 41
-6. 10	-6. 69	-6. 14	-6. 50	~5. 91	-6. 77	0. 30	-0 30
-5 75 -6.61	-7, 99 -7, 95	-6 61	-7.60	~6. 34	- 7. 13	0. 67	-0 67
-6. 81	-7. 73 -8. 23	-7. 76 -7. 76	-7. 48 -7. 60	-6. 5 7	-B. 03	0. 42	-0 42 -0 43
-7. 6B	-8. 50	-7.75 -8.11	-7. 80 -8. 27	-7. 32 -8. 39	-8. 62 8. 80	0. 43	-0.26
-6.58	-9 . 06	-8. 90	-9.09	-8. 86	~8. 98 -9. 49	0. 26 0. 22	-0 22
-9.02	-9. 96	-9.13	-9. 61	~9. 25	-9. 25	0. 24	-0 24
-9.45	-10.24	-9 72	-10.51	-10.00	-9. 96	0. 26	-0.26
-10.35	-10.91	-10 31	-10.79	-10 67	-11. 54	0.31	-0 31
-10. 39	-10. 39	-10.43	-10.43	-10.55	-10.55	0.	Ō
	- 4						
-11 57	-11.65	-11.65	-11.06	-11.06	-12.60	0.17	-0 17
-11.93	-12.20	-11.50	-11.85	-11.06	-12.56	0. 35	-0.35
-12.6B	-13.19	-12, 28	-12.87	-11.73	-13. 50	0.48	-0 48
-12.80 -13.78	-13.98 -13.74	-13 23	-13.03	-12.32	-13.78	0. 41	-0 41
-14, 37	-14.57	-13, 35 -13, 90	-13.50	-12.64	-14.88	0. 39	-0 39
-14,53	-15.00	-14.69	-14.25 -15.00	-13. 03 -13. 62	-14, 92 -15, 12	0. 41 0. 35	-0 41 -0 35
-15.51	-15. 94	-15 31	-15.50	-14.61	-15.12 -15.91	0.33	-0 33
-15 83	-16.93	-15.91	-16 30	-15 20	-16.38	0.45	-0 45
-17 05	-17.44	-16.38	-17 17	-16.14	-16.77	0.30	-0 30
-17 44	-17. 91	-17.2B	-17 52	-15 94	-16.93	0.28	-0 58
-18.15	-18.78	-17.60	-18.11	-16 73	-17. 28	0. 28	-0 58
-18 43	-18.43	-17, 99	-17.99	-17 17	-17.17	-0 00	-0 00
	= 5				-		
-11.73	-12. 20	-12.20	~11.54	-11.54	-12. 91	0. 20	-0 50
-12.24	-13. 11	-12 05	-12 99	-12 17	-11. 34	0 16	-0 16
~12.80	-13 27	-12.72	-13 46	-12.36	-12 05	0 15	-0 15
-13.58 -13.86	-14 76	-13.46	-13 7B	-13 23	-12.99	0. 21	-0.21
-15 16	-14 B0 -15 2B	-14.13	-14 49	-13 70	-13.35	0 16	-0 16
-15 98	-15 28	-14.96	-15 04 -15 00	-14 49	-13 90	-0 07	0 07
~16 B5	-16 97	-15.67	-15 98 -14 44	~15 31 -14 04	-14 29	-0 11	0 10
	-10 7/	-16 26	-16 46	-16 06	-15 12	-0 10	0.10

-17 80 -18 9 -18 23 -18 9		-17 28 -17 87	-16, 26 -17, 24	-15 75 -16 38	0 06 -0 09	-0 0£ 0 09
-18.62 -20.		-18 74	-17, 56	-17. 24	0 27	-0 27
-19 69 -20 ·		-19 17 -19 69	-18.35 -18.90	-17 87 -18 90	0. 14 0.	-0 14 0
-20.16 -20.		-14 64	-16. 70	-16. 70	V.	U
-6.54 -B.		-8. 43	-8. 43	-B. 46	0. 32	-0 32
-6 54 -8		-8. 98	-8. 54	~9 . 13	0.64	-0.64
-7. 83 -9 . 1		-10.31	-11, 73	-9. 13	0. 01	-0 01
-8.35 -8.1 -10.20 -8.		-10, 28 -10, 83	-9, 17 -9, 96	-9. 76 -10. 31	0. 31 ~0. 01	-0 31 0 01
-9. 21 -9.		-11.57	-10, 55	-10. 78	0. 31	-0.31
-10.43 -10.		-12. 20	-11. 50	-11.30	0. 16	-0 16
-11.42 -11.		-12.68	-12.24	-11. B9	-0. 05	0. 05
-11.73 -11		-13.50	-12.80	-12.72	Ø. 09	-0 09 -0 02
-12.44 -12. -13.11 -13.		-14.06 -14.76	-13.58 -14.06	-13. 27 -13. 86	0. 02 0. 0 9	-0.02
-14. 17 -14.		-15.67	-14.45	-14.65	0.21	-0 21
-13. 94 -13.		-15. 31	-15, 35	-15.35	0.	0.
Test # = 7						
-6.54 -8. -6.54 -8.		-8. 43 -8. 98	B. 43 B. 54	-8. 46 -9. 13	0. 32	-0.32 -0.64
-6. 54 -8. -7. 63 -9.		-10.31	-11.73	-9. 13 -9. 76	0.64 0.12	-0.12
-8.35 -B.		-10. 28	-9.17	-10.31	0. 40	-0.40
-10. 20 -8.	62 -9.88	-10. B3	-9, 96	-10. 98	0.10	-0 10
-9. 21 -9.		-11.57	-10.55	-11.30	0. 37	-0.37
-10.43 -10. -11.42 -11.	_	-12, 20 -12, 68	-11, 50 -12, 24	-11. 89 -12. 72	0. 26 0. 09	-0.26 -0.09
-11. 42 -11. -11. 73 -11.		-13. 50	-12. BO	-13. 27	0. 1B	-0.19
-12.44 -12.		-14.06	-13.58	-13. B6	0. 12	-0.12
-13.11 -13.		14.76	-14, 06	-14.65	0. 22	-0.22
-14. 17 -14.		~15.67	-14, 45	-15.35	0. 33	-0. 33
-13.94 -13. Test # = B		-15. 31	-14. 96	-14.96	٥.	0
-9.69 -10.		-10.0B	-10.08	-9. B4	0 03	-0 03
-9.64 -10		-10, 94	-10.00	-10.83	0. 44	-0 44
-10. 79 -11.		-11. 77	-10.43	-11.50	0 43	-0.43
-11.50 -12.		-12.36	-11.54	-12.20	0.41	-0.41
-12.05 -13. -13.07 -14.		-12, 87 -13, 50	-12. 13 -12. 64	-12. 63 -13. 27	0.39 0.41	-0 39 -0 4 1
-13.62 -14.		-14.06	-13.15	-13.82	0 25	-0 25
-15.12 -15.		-14.53	-13.94	-14.65	0. 24	-0 24
-15.63 -16.		-16.06	-14.61	-15 67	0. 39	-0 39
-16.50 -16.		-16. 73	-15.79	- 15 98	0. 17 0. 28	-0.17 -0.28
-17 20 -17. -17.91 -18.		-17, 36 -17, 60	-16. 30 -16. 93	+ i 7, 13 −17, 44	0. 28	-0 21
-17 91 -17		-17 76	-17.64	-17.64	0.	0.
Test # = 9)					
-0 58 -0.		-7. 95	-7. 95	~9. 17	0.10	-0 10
-8.62 - 9 .		-8.74	-B. 27	-9.65 -10.16	0.30	-0 30
-9.21 -10. -10.24 -11.		-10.04 -10.04	-9.41 -10.28	-11.02	0 37 0 22	-0 37 -0 22
-11.02 -11.		-11. 42	-10.75	-11.65	0.34	-0 34
-11.69 -12.	40 -11.54	-11.61	-11.69	-11.81	0. 15	-0.15
-12.20 -12.		-12.64	-12.17	-12. 44	0. 23	-0. 23
-13.31 -13. -13.74 -14.		-13.19 -13.94	-12.80 -13.66	-13, 35 -14, 02	0. 13 0. 17	-0.13 -0.17
-13 /4 -14. -14.57 -15.		-15 16	-14, 41	-15.16	0.32	-0 32
-15 47 -16	_	-16 02	-15.31	-15.71	0.32	-0 35
-16 34 -17.		-16 26	-15.75	-16. 30	0. 31	-0 31

-16 73	-16.73	-16 06	-16 06	-16.02	-16 02	O .	0
Test (-8 39	= 10 -8 66	-8 66	-8. 43	-B. 43	-7. 80	-0.10	0. 10
-B 98	-9. 72	-8. 8 6	-9. 53	-B. 54	-8. 9 8	0. 31	-0. 31
-9 61	-9.53	-9. 57	-10. 28	-9. 13	-10.00	0. 25	-0. 25
-10.04	-10 67	-10 12	-10.91	-9 . 76	-10.79	0.41	-0.41
-10 28	-11.69	-10.39	-11. 38	-10.51	-11.69	0. 60	-0.60
-10 59	-12 01	-11.02	-12. 17	-11.06	-11.30	0. 47	-0.47
-11.50	-12.56	-11.93	-12.56	-11.69	-12.20	0. 37	-0.37
-12 68	-13.39	-12. 72	-13. 23	-12 48	-12 48	0. 20	-0.20
-13 11	-14 06	-13. 58	-13. 50	-13. 15	-12.99	0. 12	-0.12
-13 98	-14 60	-13.94	-14, 61	-13. 94	-13. 94	0. 25	-0.25
-15 00	-15 04	-14. BO	-15. 24	-15. OB	~15.12	0. 09	-0.09
-15 24	-15 94	-15. 43	-15. 94	-14.84	-15.51	0. 31	-0.31
-15 83	-15 B3	-15.51	-15.51	-15.63	~15 A3	0	Ò

Regression Equation

The call and services and services and services

これには、 一人 こうしょう 一人 こうこう 一人 こうこうしゅう

T11*-4.07 - 0.35e-3*T2*Z + 5.72*T19 - 0.37*T2 - 34.67

STATE AND STATE OF THE PROPERTY OF THE PROPERT

TESTI $_{\Delta}$ TEST2 $_{+}$ TEST3 $_{\times}$ TEST4 $_{\Phi}$ TEST5 $_{+}$ TEST6 $_{\times}$ TEST6 $_{\times}$ TEST6 $_{\times}$ TEST10

TESTI & TESTS + TESTS X TESTS + TESTS A TESTS X TESTS X TESTS X TESTS X TESTS 10

Z AXIS RESULTS OF ROLL ERROR (arc-sec) X axis at 140.000 mms Y axis at 429.999 mms Z axis at 24.999 mms

	Z exis et	24.999 mm	• •			
T	Ref is at +	ve on rig	ht			
Test #						
POS		100. 150.				
POS			500. 550.			
TEMP TEMP	25. 40 25. 18	25. 57 25. 23	25. 25 25. 38	26.14 25.20	25, 35 25, 48	25, 11 25, 48
TEMP	25. 50	25. 01	25. 38 25. 06	24. 91	24. 99	25. 01
TEMP	25. 31	25. 01 24. 96				
MEAN	0.	-0.09	-0. 67 -5. 25	-1.08	-1. 92	-2. 50
MEAN SD	-3. 83 0.	-4. 50 0. 30	-5. 25 0. 75	-6. 50 1. 07	-7. 00 0. 86	-7, 50 0, 55
SD	0. 61	-0. 09 -4. 50 0. 20 0. 55	0. 75 0. 82	0. 55	0. 55 0. 55	0. 33 0.
Test #	2	0. 50	0. 52	0.00	0. 55	•
POS			200. 250.			
POS TEMP	26. 00	400, 450. 57 58	500. 550. 24.23	28 31	25 89	25 55
TEMP	25. 87	25. 60	26. 23 25. 84	25. 70	25. 84	25, 75
TEMP	25. 75	25. 30	25. 84 25. 60	25. 21	25. 33	25. 28
TEMP	25. 50	25. 21	25. 84 25. 60 -1. 67 -6. 08 0. 61			
MEAN MEAN	-0.83 -4.47	-0.75 -5.50	-1.67 -4.08	~2.25	-2. 75 -7. 92	−3. 67 −B. 00
SD	0.26	0.82	0.61	-7.00 0.82	0.69	-В. 00 0. 75
SD	0.75	0. 55	0.66	0. 55	0. 49	0.
Test #	3					
POS		100 150	200. 250.			
POS						
TEMP	26. 63	31 20	28. 48	31.42	26. B6	26. 37
TEMP	27. 11	26. 40	26. 79	26. 45	26.72	26. 35
TEMP	26. 37	25. 94	26. 55	25. 69	25. 96	25. 81
TEMP MEAN	26. U1 -1. 50	20.64 -1.92	-2 50	-2 R3	-3 58	-4 17
MEAN	-1.50 -5.17	-5.67	-6. 42	-7. 42	-8.00	-B. 50
SD	O .	0.49	500. 550. 28. 48 26. 79 26. 55 2. 50 6. 42 0. 55	0.41	0.66	0. 61
SD	W . 7 2	0.41	0. 49	0. 49	0. 45	Ο.
Test #						
POS		100. 150.	200. 250.			
POS	300, 350,	400 450	500 550			
TEMP	27. 23	33 02	29. 28 27. 40 27. 13	33.06	27. 42	26. 79
TEMP TEMP	27. 82 26. 77	26 84 26 28	27.40	26. 99 35. 84	27.31	26. 74
TEMP	26 25	25 91	27. 13	#J. 76	20. 33	20.11
MEAN	~0 50	-0 75	-1 50	-2 50	-2 58	-3. 33
MEAN	~4 50	-0 75 -5.00 0 82	-5.50	-6 58	-7. 50	-7. 50
SD	0 0 55	0 82 0 55	0. 55 0. 55	0.55 0.66	0 49 0.55	0 75
SD Test #		U 23	U. 33	V 66	U. 33	0.
POS	0 50	100 150	200 250			
POS	300 350 27 03	400. 450	500 550			== 0:
TEMP	27 03	33 91	30 14	33 45	27 70	27 06

TEMP	28 43	27 16	27, 89	27 33	27. 70	26 9 8
TEMP	27 04	26 50	27.60	26 16	26 65	26.35
TEMP	26 48	26.11		-0 /0		20.00
MEAN	-0 17	-0 50	-0.83	-1.75	-2.25	-2. 75
MEAN	-3 83	-4. 58	-5. 17	-5.92	-6 5B	~7.00
SD	0 41	0. 55	0. 93	0.82	0 69	0.82
SD	0. 75	0.66	0. 52	0.49	0.49	0.
Test #	6		J. 32	-		•
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.				
TEMP	25. 70	33. 79	30. 01	34. 78	27. 28	27. 04
TEMP	28. 63	27. 23	28. 77	28. 23	28 65	27. 33
TEMP	27. 31	26. 08		25. 64	26. 03	26. 21
TEMP	26. 33	26. 04				
MEAN	1.00	1. 17	1. 00	0.08	0.	Ο.
MEAN	-0. 25	-0. 83	-1. 33	-2, 50	-3. 50	-3. 50
SD	0.	0. 9B	1.10	0. 20	0.	0.
SD	0. 42	0. 98	0. 75	0. 55	0. 55	Ō.
Test #	7	- · · · -			- · - -	
POS	0. 50.	100. 150.	200. 250.			
POS	300. 350.	400. 450.				
TEMP	24. 7 8	29 . 36	27. 48	30.46	27. 56	26. 21
TEMP	27. 29	26. 45	27. 24	27. 87	28. 24	27. 09
TEMP	27. 26	25. 62	27. 24 26. 67	25. 23	25. B4	25. B2
TEMP	26. 53	25 62				
MEAN	2.00	1. 50	0. 92	0. 67	0.	Ο.
MEAN	-0. 50	-1.00	-1.33	-2.33	-3. 33	-3. 67
SD	Q.	0. 55	0. 74	O. B2	O.	O .
SD	0. 55	1.10	0. 82	0.62	0. B2	0. 52
Test #	B					
POS		100. 150.				
POS	300. 350.					
TEMP	25. 63	33. 10	29. 44		28.15	27. 17
TEMP	28. 66	27. 59		28. 32	28.73	27. 49
TEMP	27. 56	26. 19	27. 51	25 . 75	26. 39	26. 24
TEMP	26. 51	25. <i>9</i> 7				
MEAN	2.00	1. 67	1. OB	0.75	0. 25	Ο.
MEAN	-0.17	-0. 75	-0. 6 7	-2.50	-3 50	-3. 50
SD	0	O. 82	1.02	0.88	0. 27	O .
SD	0. 41	0.88	1. 03	0.55	0. 55	Ο.
Test #	9					
POS	0. 50.					
POS	300. 350.		500. 550.			
TEMP	25. 65	33. 71	30. 95	34. 94	28. 12	27. 44
TEMP	28. 66	27.86	28. 91	28. 37	28. 66	27. 54
TEMP	27. 44 24. 33	26. 15	27. 07	25. 53	25. 75	26, 22
TEMP MEAN	26. 32	25. 88		_	•	
MEAN	1.00 -1.00	0. 92 -1. 33	0. 50 -2. 08	0. -3. 33	0. -3. 9 2	0. -4.30
		-1 (()	/ ()=		- (0)	-A 70
SD SD	0. 1. 10	1. 02 0. 75	0. 55 1. 02	0. 0. 0. 75	0. 0. 74	0. 0. 46

ACTUAL DATA

						Up	Down
Test #	1						
0.	- o.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.
Ö.	Ö.	Ö.	Ö.	O.	-0. 50	0.08	-0.08
Õ.	-1.50	Ö.	-1.50	Ο.	-1.00	0. 67	-0. 67
O.	-1.50	Ö.	-2. 50	-0. 50	-2. 00	0. 92	-0. 92
-1.00	-2.50	-1.00	-2.50	-1.50	-3.00	0.75	-0.75
-2.00	-3.00	-2.00	-3.00	-2.00	-3.00	0. 50	-0. 50
-3.50	-4.00	-3.00	-4.50	-3.50	-4.50	0. 50	-0 . 5 0
-4.00	-5.00	-4.00	-5.00	-4.00	-5.00	0. 50	-0.50
-4. 50	-6.00	-4.50	-6.00	-4.50	-6.00	0. 75	-0.75
-6.00	-7 00	-6 00	-7.00	-6.00	-7.00	0.50	-0.50
-6 50	-7.50	-6.50	− 7. 50	-6. 50	-7.50	0. 50	-0.50
-7. 50	-7.50	− 7. 5 0	− 7. 50	-7. 50	- 7. 5 0	Ο.	Ο.
Test #	2				_		_
-0.5 0	-1.00	-1.00	-1.00	-1.00	-0.50	0.	0
Ο.	-1.50	0	-1.50	0.	-1.50	0. 75	-0. 75
-1.00	-2.50	-1.00	-2.00	-1.50	-2.00	0. 50	-0. 50
-1.50	-3.00	-1.50	-3.00	-1. 50	-3. 00	0. 75	-0.75
-2.00	-3. 50	-2.00	-3. 50	-2.50	-3.00	0. 5B	-0.5B
-3.00	-4. 50	-3.00	-4.50	-3.00	-4.00	0. 67	~0. 67
-4. 00	-5. 50	-4.00	-5 50	-4. 0 0	-5. 00	0. 67	-0, 67 -0, 50
-5. 00	-6.00	-5.00	-6.00	-5. 00 -5. 50	-6.00 -7.00	0. 50 0. 58	-0. 58
-5. 50	-6. 50	-5.50	÷6. 50	-6.50	-7. 5 0	0. 50 0. 50	-0. 50
-6 50	-7. 50 -8. 50	-6 50 -7 50	-7. 50 -8. 50	-7. 5 0	-8.00	0. 30	-0. 17
-7.50 -8 00	-8.00	-8 00	-B 00	-B. 00	-8.00	0.	Ö.
Test #	3	-8 00	-6 00	-6.00	-6.00	V.	U .
-1 50	-1.50	-1 50	-1. 50	-1.50	-1. 50	0.	Ο.
-1.50	-2.50	-1.50	-2.50	-1.50	-2.00	0. 42	-0 42
-2.00	-3.00	-2.00	-3 00	-2 00	-3.00	0. 50	-0. 50
-2.50	-3.00	-2 50	-3.00	-2.50	-3 50	0. 33	-0. 33
-3 00	-4 00	-3 00	-4 00	-3 00	-4 50	0. 58	-0.58
-3 50	-5 00	-3 50	-4 50	-4 00	-4 50	0.50	-0.50
-4.50	-5 50	-5.00	-5.50	-5.00	-5.50	0. 33	-0.33
-5 00	-6 00	-5.50	-6 00	-5. 50	-6 00	0. 33	-0 33
-6.00	-7. 0 0	-6 00	-6 50	-6.00	-7 00	0.42	-0.42
-7.00	-8 00	-7 00	-7 50	-7 0 0	-8 00	0.42	-0.42
-7.50	-B 50	-7 50	-B. 50	-B 00	-8.00	0 33	-0. 33
-8.50	-8 50	-B 50	-8 50	-8.50	-B 50	Ο.	Ο.
Test #	4					_	_
-0.50	-0. 50	-0 50	-0 50	-0 50	-0 50	0	0
Ο.	-1 50	0	-1.50	0	-1.50	0. 75	-0. 75
-1 00	-2.00	-1.00	-2.00	-1 00	-2.00	0. 50	-0.50
-2 00	-3 00	-2 00	-3 00	-2.00	-3 00	0. 50	-0. 50 -0. 43
-2 50	-3 00	-2 00	-3 00	-2.00	-3.00	0. 42	-0.42 -0.67
-2 50	-4 00	-2 50	-4 00 -5 00	-3. 00 -4. 00	-4 00	0. 67 0. 50	-0.50
-4 00	-5 00	-4 00	-5 00	-4 00 -4 50	-5 00 -5 5 0	0.50 0.50	-0 . 50
-4 50 -5 00	-5 50	~4 50 ~5 00	-5 50 -6 00	-4 50 -5 00	-6 00	0 50	-0.50
-5 00	-6 00 -7 00	-5 00 -6 0 0	-7 50	-5.00 -6.00	-7 00	0 58	-0.58
-6 00 -7 00	-7 00 -8 00	-7 00	-8 OO	-7 OC	-B 00	0 50	-0 50
-7 00	-6 00	- / 00	-6 00	, 00	5 50	0 00	0 30

SPREAD

Test # 5 -1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-7 50	-7. 50	-7. 50	-7. 50	-7 50	~7. 50	0	0
0 -1 00 0 -1 00 0 -1 00 0 0 -1 00 0 0 50 -0 50 0 0 0 0 0 -1 50 0 0 -1 50 0 0 -2 50 0 0 83 -0 83 -1 50 0 -2 50 0 -1 50 0 -2 50 0 75 -0 75 -1 50 -3 00 -2 00 -3 00 -2 50 0 75 -0 75 -1 50 -3 00 -2 00 -3 00 -1 50 0 -2 50 0 75 -0 75 -1 50 -3 00 -4 50 -3 50 -2 00 -3 50 -2 00 -3 50 0 75 -0 75 -3 00 -4 50 -3 50 -4 50 -3 50 -4 50 0 75 -0 75 -3 00 -4 50 -3 50 -4 50 -3 50 -4 50 0 75 -0 75 -3 00 -4 50 -3 50 -4 50 -3 50 -4 50 0 75 -0 75 -3 00 -4 50 -3 50 -4 50 -3 50 -4 50 0 75 -0 75 -3 00 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -5 50 -4 50			, 55	7. 50	. 55	, , 50		-
0								
-1. 00			-					
-1 50			-					
-2 00								
-3 00								
-4 00								
-5. 50					-4.00	-5.00	0. 5 8	-0 5B
-6.00	-5. 00	-5. 50	-5.00	-5.00				
-7.00								
Test # 6 1.00	-							
1. 00			- 7. 00	-7.00	-7.00	-7. 00	Ο.	O
2 00 0 0 2 00 1 00 2 00 0 0 0 0 0 0 0 0				1 00	1 00	1 00	0	0
2.00 0. 2.00 0 0. 2.00 0 0. 1.00 -1.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.								
0. 0. 0. 0. 50 0 0 0. 0. 0. 0. 08 -0 08 0. 0. 0. 0. 0. 0 0 0 0 0 0 0 0 0 0 0. 0. 0. 0 0 0 0								
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0								
0. 0 0 0 0 -0.50 0 -1.00 0.25 -0.25 02.00 0 03.00 -2.00 01.00 0 02.00 0 03.00 00.50 -0.50		Ō.	0.	0.	0	0	Ο.	0
0.	Ο.	Ο.			-	-		_
-0.50								
-2.00								
-3. 00		-						
-3.50								
Test # 7 2:00								
2.00			-3. 50	3. 50	U . U U	J. 00	•	•
1:50		-	2.00	2.00	2.00	2.00	O .	Ο.
1:00 0. 2:00 0. 1:00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	2.00	1.00	2.00	1.00				
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0				_				
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 01.00 01.00 0 -1.00 0. 50 -0.50 02.00 02.00 02.00 1.00 -1.00 -1.00 -1.00 -2.00 -1.00 -2.00 02.00 0. 67 -0.67 -2.00 -3.00 -2.00 -3.00 -1.00 -3.00 0.67 -0.67 -3.00 -4.00 -3.00 -4.00 -3.00 -3.00 0. 0 Test # 8 2.00 2.00 2.00 2.00 2.00 2.00 2.00 0. 0 2.00 1.00 3.00 1.00 2.00 1.00 0.67 -0.67 -2.00 0.50 2.00 0. 2.00 2.00 0. 0.92 -0.92 1.50 0. 1.00 3.00 1.00 2.00 0. 0. 0.92 -0.75 0.50 0. 0								
01.00								_
0.								
-1 00			-					
-2.00			-					-0. 67
-4.00		-3.00	-2.00	-3.00				
Test # 8 2.00								
2:00			-4 . 00	-4.00	-3.00	-3. 00	O .	0
2.00 1.00 3.00 1.00 2.00 1.00 0.67 -0.67 2.00 0.50 2.00 0. 2.00 0. 0. 92 -0.92 1.50 0. 1.00 0. 2.00 0. 0. 0.75 -0.75 0.50 0. 1.00 0.17 -0.17 01.00 01.50 02.00 0. 0.50 0. 0.75 -0.75 02.00 02.00 02.00 0. 0. 0. 0. 0. 0. 03.00 -3.00 -2.00 -3.00 -2.00 -3.00 0.50 -0.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 0. 0. Test * 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0. 0. 0. 2.00 0. 1.00 0. 1.00 0.		_	2.00	2 00	2 00	2 00	0	o
2.00 0.50 2.00 0. 2.00 0. 0.92 -0.92 1.50 0. 1.00 0. 2.00 0. 0.75 -0.75 0.50 0. 0.50 0. 0.50 0. 0.25 -0.25 0. 17 -0.17 01.00 01.50 02.00 0. 0.75 -0.75 02.00 02.00 02.00 0. 0. 0. 0. 0. 0. 75 -3.00 -3.00 -2.00 -3.00 -2.00 -3.00 0.50 -0.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 0. 0. Test * 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0. 0. 0. 0. 2.00 0. 1.00 0. 1.00 0.								
1.50 0. 1.00 0. 2.00 0. 0.75 -0.75 0.50 0. 0. 0.50 0. 0. 0.25 -0.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.								
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 0. 0. 0. 0. 0. 0. 01.00 0.17 -0.17 01.00 01.50 02.00 0.75 -0.75 02.00 02.00 0. 0. 0. 0.67 -0.67 -2.00 -3.00 -2.00 -3.00 -2.00 -3.00 0.50 -0.50 -3.00 -4.00 -3.00 -4.00 -3.00 -4.00 0.50 -0.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 0. 0. 0 Test # 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0. 0. 0 2.00 0 2.00 0 1.50 0. 0. 92 -0.92 1.00 0. 1.00 0. 1.00 0. 0. 0. 0. 0				O .	2.00	O .	0.75	-0 75
0. 0. 0. 0. 0. 0. 01.00 0.17 -0.17 01.00 01.50 02.00 0.75 -0.75 02.00 02.00 0. 0. 0. 0. 0. 0.67 -0.67 -2.00 -3.00 -2.00 -3.00 -2.00 -3.00 0.50 -0.50 -3.00 -4.00 -3.00 -4.00 -3.00 -4.00 0.50 -0.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 0. 0. 0. Test # 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0. 0. 0. 2.00 0 2.00 0 1.50 0. 0. 0. 92 -0.92 1.00 0. 1.00 0. 1.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 50	Ο.	0. 50	0.	0. 50	0.	0. 25	
01.00 01.50 02.00 0.75 -0.75 02.00 0.75 -0.75 02.00 02.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	_		_	-				
0.			-	-				
-2.00 -3.00 -2.00 -3.00 -2.00 -3.00 0.50 -0.50 -3.00 -3.00 -4.00 0.50 -0.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.								
-3.00 -4.00 -3.00 -4.00 -3.00 -4.00 0.50 -0.50 -3.50 -3.50 -3.50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.								
-3.50 -3.50 -3.50 -3.50 -3.50 -3.50 0. 0. 0. Test # 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0. 0. 0. 2.00 0 2.00 0 1.50 0. 0. 92 -0.92 1.00 0. 1.00 0. 1.00 0. 1.00 0. 0.50 -0.50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		-	_					
Test # 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0. 0. 2.00 0 2.00 0 1.50 0. 0.92 -0.92 1.00 0. 1.00 0. 1.00 0. 0.50 -0.50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		-	_					
2.00 0 2.00 0 1.50 0. 0.92 -0.92 1.00 0. 1.00 0. 0.50 -0.50 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.								
1 00 0. 1.00 0. 1.00 0. 0.50 -0.50 0.50 0.50 0.50 0.50 0.						_		
0: 0. 0. 0. 0. 0. 0. 0 0: 0: 0 0 0 0								
0. 0. 0. 0. 0. 0. 0								
	_							_

0.	-2. 00	O.	-2.00	0.	-2. 00	1.00	-1.00
-0. 50	-2. 00	-1.00	-2.00	-0. 50	-2.00	0. 67	-0.67
-1.00	-3. 00	-1.00	-3 . 00	-1.50	-3. 00	0. 92	-0. 92
-2. 50	-4 . 00	-3. 00	-4.00	-2. 50	-4.00	0. 67	-0. 67
-3 . 50	-5. 00	-3. 50	-4. 50	-3.00	-4.00	O. 58	-O. 58
-4. 90	-4. 90	-4.00	-4.00	~4.00	-4.00	0.	0.

Regression Equation

-0.02*Z + 1.29*T10 - 34.39

TESTI A TESTE + TESTE X TESTE + TESTE X TESTE Z TESTE

Z AXIS RESULTS OF YAH ERROR (arc-sec) X axis at 300.00 mms (indep) Y axis at 300.00 mms (indep) 2 axis at 40.00 mms Dir of leser R 0. 50. 100. 150. 200. 250. 300. 350. 400. 450. 500. 550. POS POS POS TEMP 29.50 29.30 29. 49 30. 73 TEMP 29. OB 28.74 29. 10 28.79 28. 76 28. 61 29. 10 28. 96 TEMP 28. 74 28.49 28.64 28 57 TEMP 0. 01 -0.07 -0.09 MEAN 0.09 0.35 0. 51 1. 54 MEAN 0.83 2. 07 2. 02 2. 43 3.73 MEAN 4.19 SD. 0. 31 0. 54 0.60 0. 62 0.71 0. 74 SD 0. B4 O. BO 0. 91 0. 93 0.90 0.09 Test # 0. 50. 100. 150. 200. 250. 300. 350. 400. 450. 500. 550. POS POS POS 600. TEMP 29.38 30.13 29.49 31. 95 29. 08 29.40 28.94 29. 01 28. 74 TEMP 29. 40 29, 47 29. 25 29. 16 28. 50 TEMP 29.11 28. 94 28. 55 TEMP 28. 77 1. 22 0. 60 0.86 MEAN 1.09 1.33 1. 39 MEAN 1.88 2. 28 2.71 3.14 3.38 4.34 MEAN 4. 95 SD 0. 68 0.47 0. 51 0.83 0 83 SD 0. 65 0.61 0.84 0.94 O. B1 Test # 3 0. 50. 100. 150. 200. 250 300. 350. 400. 450. 500. 550. POS POS POS 28. 77 29. 23 TEMP 29.33 32. 95 28. 26 28. 23 28 48 27 94 29. 21 27. 62 29. 47 27. 64 TEMP 28.84 27, 94 28, 11 29. 11 TEMP 29. 01 28.08 TEMP 28. 13 MEAN -0. 94 -0.56 -0.49 1.00 1.19 -0.22 -0.41 MEAN 0. 31 1, 23 1.52 MEAN 3.12 SD 0. 94 0.82 0. 91 0. 92 1.16 0 91 SD 1.07 1. 20 0. 97 1.07 1.00 Test # 0. 50. 100. 150. 200. 250. 300. 350. 400. 450. 500. 550. POS POS POS TEMP 28.50 31, 32 30.06 34 03 29. 28 28. 91 30.06 29.86 28.86 TEMP 29.69 29.21 29.52 28.45 28.77 28.38 29 64 28 21 29.96 29.55 TEMP 28 33 28. 55 TEMP

-0 70

0 83

-0 47

1 21

MEAN

MEAN

MEAN SD SD Test #	5 					0 6	62 97	0 0.	58 97	0	72 16	0 67
POS POS	0. 3		0. 150. 0. 450.									
POS	600		-				05 00		20. 24		20. 22	
TEMP TEMP	29	7. 79	29. I	5	30.05		29. BB		28. 96 30. 34 28. 08		29 59	
TEMP TEMP	29	7. 66 3. 69	28. 2 28. 3	2	28. 74		27. 91		28.08		28. 42	
MEAN	-1. BB	-1	. 92	-1. 69		-1.	64 -	1.	46 - 59	-1.	27	
MEAN MEAN	1. 75											
SD SD	0.09	0	. 63	0.73	}	0.	71	0.	67 04	0.	91	0.75
SD Test #		Ü). 7 5	0. 94	•	Ο. '	79	1.	04	U.	30	
POS	~- O. !	50 10	0 150	200	250							
POS	300. 3	50. 40	0. 450.	500.	550							
POS Temp	600. 2	6. 6 0	31. 7	4	29. 79		35. 19		28, 58		28, 14	
TEMP	29	7. 41	28. 1	4	29. 31		30. 26		28, 58 30, 84 27, 21		29. 50	
TEMP TEMP	5(9. 92 8. 40	27. č	.5	26. 14		26. 99		27, 21		27.77	
MEAN MEAN	0. 39	0	. 60	0. 79		0.	85 31	1.	06 57	1.	40 34	
MEAN	3.64											
SD SD	0. 22	0	54	0. 36)	0.	43	0.	68 76	0.	70	0, 56
Test #	7	·	. 6 3	U. 86	J	U.	/ -	U.	/6	U.	10	
POS	 O. :	50 10	00 150	200	250							
POS	300 3	50. 40	0. 450.	500	550							
POS TEMP	600. 2	6. 5 8	30. 4	9	29. 37		34, 24		28.01		27. 89	
TEMP	5	9. 18	28.	5	29.74		29.76		30.39		29. 18	
TEMP TEMP	5.	7. 52 8. 20	26. 9 27. 1	76 37	27. 74		26. 64		28. 01 30. 39 26. 68 19 21		27. 42	
MEAN	1. 27	1	. 45	1. 59	?	1.	67	2.	19	2.	41	
SD SD	0 26 0 30	9), 54), 58	0.42	2	0.	77 85	0.	8 0 5 7	0.	59 13	0.59
Test #). 26	0.60	,	U.	6 2	U.	3 /	U.	13	
POS	0	50 10	00 150	ລຸດດ	250							
POS	300. 3											
POS TEMP	600. 2	5 70	31	4	29 41		35 22		27 85		27 73	!
TEMP	2	9 02	28	36	29 68		29. 73		27. B5 30. 36 26. 50		28. 92	
TEMP TEMP	5. 5.	9. 24 7. 90	26. 6 27. 6	5)2	27. 41		26. 31		⊋6. 50		27. 14	
MEAN	1. 20	1	. 47	1.90)	1.	91	2.	10 34	2.	15	
MEAN MEAN	5 09											
SD	0. 43	C	0. 67	0. 54	•	0.	52	0.	61 94	1.	00	1.12
SD	0. 82	Č). 83	0. 95	•	1.	09	Ø.	84	Ο.	37	

AC	TUAL	DATA

						SP	READ
							_
T4 M						Up	Down
Test #	1 -0, 43	-0. 43	0. 24	0. 24	-0.40		0.04
-0. 94	0.31	-0. 43 -0. 43	- · - ·		-0. 12	0. 04	-0.04
-0. 7 7 -0. 87	0. 24	-0. 4 7	0.16	-0. 16	0. 51	-0. 42	0. 42
-0. 04 -0. 04	0. 24	-0. 4 7	0. 63 0. 63	-0. OB	0. 63	-0. 49	0. 49
-0. 39	0. 91	_		~0. 63	0. 71	-0. 52	0. 52
0.12	1. 42	-0, 24 -0, 24	0. 94	~0. 24	1.14	-0.64	0.64
0. 12	1. 54	0.	0. 98 1. 73	-0. 31	1.06	-0. 65	0. 65
0. 55	2. 20			0. 24	1.50	-0. 75	0. 75
1.30	2. 20	1.02	2.40	0. 79	2. 24	-0. 75	0. 75
	2.72	1. 50	3. 07	1.42	2. 99	-0.67	0. 67
1. 06 1. 73		1.22	2.83	1.30	2. 99	-0. B3	0. 83
	2. 91	1. 42	3. 31	1. 69	3. 54	-0. 82	0. 82
3. 03	4, 29 4, 17	2. 99	4.72	2.76	4. 61	-0. B1	O. B 1
4.17 Test #	2 7.1/	4. 09	4. 09	4. 29	4. 29	0.00	0.00
0. 94	0. 91	0. 91	0. 98	0.00			
0. 04	0. 94	0. 20		0. 98	2. 60	-0.28	O. 28
0. 35	1. 30		1. 22	0.35	0. 83	-0. 40	0. 40
		0. 31	1. 22	0. 55	1. 42	-0, 45	0. 45
0.31	1. 54 2. 05	0.16	1.81	0. 9B	1. 73	-0. 60	0. 60
0. 35 0. 67	2.03	0, 39 0, 31	1. 97 2. 17	1.06	2. 13	-0. 72	0. 72
				1.02	2. 17	-0. 72	0.72
0. B3	2. 24	0. 94	2. 64	1.85	2. 76	-0. 67	9.67
1. 69 2. 09	2. 95 3. 35	1, 50 2, 05	2. 91 3. 15	1. 93	2. 72	-0. 58	0. 58
				2.36	3. 27	-0. 54	0. 54
2. 13 2. 01	3. 90 3. 98	2.36	3. 78	2. 48	3. 98	-0. 75	0. 75
		2.36	4. 21	3.86	3. 86	-0.64	0.64
3.39	5.00	3, 35	5. 16	4. 88	4. 29	-0. 47	0. 47
4.61 Test #	4. 61 3	4. 57	4. 57	5. 67	5. 67	-0.00	-0.00
-2.01	-1. 26	-1, 26	-0. 79	. 0. 70	0.43		
-1. 54	-0. 2B			-0. 79	0. 47	-0. 41	0. 41
-1.30	-0. 2B -1. 14	-1, 54 -1, 06	0. 24	-0. 94	0. 71	-0. 78	0. 78
-0.94	-0.63	-1, 22	0. 47 0. 83	-0. 75	0. 83	-0. 54	0. 54
-0. 74 -1. 5 7	-1. 1B	-1 22	0. 94	-0.35	0. 9B	-0.62	0. 62
-1.26	-0.51	-0.71	1. 26	-0.55	1.10	-0. 70	0.70
-0.63	0.	-0. 20	1. 26	-0. 28 -0. 16	1.50	-0. 7 5	0. 75
0.08	0. 87	0.	1. 97		1. 73	-0. 64	0 64
0. 24	0.71	0. 43	2. 17	0. 47 1. 02	2. 64 2. 60	-0.82	0.82
0.28	0. 67	0. 35	2.13	1.02	2. 91	-0. 63 -0. 68	0, 63 0, 68
0.35	1. 22	0. 39	2.72	1. 18		-0. 68 -0. 87	0.85 0.87
1.61	2.83	1. 54	3.46	2. 24	3. 23 4. 02	-0. 82	0 82
2 64	2.64	2. 95	2.95	3. 78	3.78	0.	0.
Test #	4	L . , D	L . 73	3. 76	3.76	U .	V.
-1.26	-1. 42	-1. 42	-1. 30	-1. 30	-1.02	-0. 04	0. 04
-1.85	-1 02	-1.81	-0.75	-1. 57	-0. 63	-0.47	0. 47
-1.69	-0.67	-1.38	-0 20	-1. 18	-0. 24	-0.52	0.52
-1.10	-0 31	-1. 54	-0.04	-1. 16 -1. 06	-0.12	-0. 52 -0. 54	0. 54
-0.83	0.	-0.98	0.04	~1 14	0. 12	-0.52	0.52
-0 91	0. 63	-0.55	0.20	-1.02	0.47	-0.63	0.52
-0 67	0 71	-0.39	0 79	-0.55	0.47	-0.60	0.60
-0 20	1 34	0.24	1.18	-0 16	1 30	-0.66	0.66
0 24	1 50	0 28	1 97	0 12	1 54	-0.73	0.33
0 24	1 54	0.16	1 42	0 15	1 50	-0 66	0 66
0 24	2 32	0. 47	2 09	0 31	1 85	-0 B7	0 87
			_ ,	0 01	. 03	J 6/	U U/

•

•

1 34	3 15	1 54	3 03	1 02	2 95	-0 87	0 87
2 56	2 56	2 20	2 20	2 32	2 32	0	0
Test #	5						
-1 93	-1. Bl	-1 81	~1. 97	-1 97	-1 77	-0 03	0 03
-2 72	-1.42	-2 52	~1 85	-1 93	-1 06	-0 47	0 47
-2 60	-1.34	-2 13	-0 63	-2 17	-1 30	-0 60	0 60
-2 60	-0. 91	-2 01	-1, 42	-2 09	~O 83	-0 59	0 59
-2 40	-0 71	~1 65	-0 94	-5 01	~1 06	-0 56	0 56
-2 05	-O B7	~1.85	-0.55	-2 05	~0 24	-0 72	0.72
-1.93	-0.47	~1.65	-0.75	-1.50	-0 04	-0.64	0 64
-1.38	0. 28	-0, 75	0. 43	-0 67	D A3	-0.66	0.66
-0.47	0. 51	-0.51	1.42	-0. 24	0.51	-0.61	0 61
-9, 47	1.06	-0.79	1.10	-0. 43	1 22	-0. B5	0.85
-0 24	1.10	-0. 43	1.61	-0 20	1 69	-0 88	0 68
0.35	2.09	O. 87	2.80	E4.0	2 48	-0.92	0 92
2.13	2. 13	1. 54	1. 54	1.57	1 57	Ο.	0.
Test #	6						
-0. 04	0.51	0. 51	0.51	0.51	0. 31	-0.06	0.06
-0. 04	1.46	0.16	0. 87	0 43	0.71	-0.41	0.41
0. 24	1.18	0.79	1 18	0.71	0 67	-0 22	0 22
0 39	1 14	0, 35	1 30	0 67	1 26	-0 38	0 38
0.20	1.06	0 31	1. 57	1. 34	189	-0.45	0.45
0. 47	1. 30	1. 30	1. 93	0. 98	2 44	-0.49	0.49
1. 22	1.65	1. 30	1.85	0. 91	2.48	-0.43	0. 43
1.38	2.17	1, 42	3 58	1.89	2 36	-0. 57	0. 57
1. 57	2.64	1. 22	2.76	2 20	3.50	-0. 45	0. 65
. 69	2.72	1. B9	2 91	1.54	3 11	-0.60	0.60
2. 05	3. 15	1. 85	3. 27	1.81	3. 31	-0.67	0. 67
2. 99	3.82	2. 40	4. 17	2.64	4. 02	-0. 66	0.66
_3. 82	3. 82	3.66	3. 66	3. 43	3, 43	-0.00	-0 . 00
Test #	7				_		
1. 10	1. 10	1.10	1.61	1.61	1.10	-0.00	-0.00
1.06	1. 42	1.65	2.28	0.71	1. 57	-0. 31	0. 31
1. 18	1. 73	1 18	2. 20	1.38	1.89	-0.35	0.35
0. 79	2 64	0 98	1 77	1.38	2.48	-0.62	0 62
1. 50	3. 15	1.42	3. 03	1.54	2.48	-0.70	0. 70
1.61	3 03	2.40	2 87	1. B1	2.76	-0.47	0. 47
1.69	2. 99	2.05	2.76	1.85	2. 99	-0.52	0.52
2 83	3 15	2 72	3 03	2.83	3. 54	~0. 22	0. 22
2.68	3 90 3 74	2.64	3. 23	2.52	3.66	-0.49	0. 49
2 24		2.76	3.62	2.72	3. 46	-0. 52	0.52
2 09 4 06	4 29 4 92	2. 69 3. 58	3.66 4.69	2, 68 3, 70	3.86	-0.73 -0.49	0.73 0.49
	4 72	-			4.69		_
4.72 Test #	8 72	4. 69	4. 69	4, 45	4. 45	-0.00	-0.00
1.65	0.67	0. 67	1.46	1, 46	1. 30	0.06	-0.06
0.59	1 65	1 06	2.44	1. 14	1. 93	-0.54	0. 54
1. 22	5.35	1.30	2. 28	1.73	2. 52	-0.48	0.48
1.30	2.44	1. 73	2.60	1.50	1. 69	-0 40	0.40
1.69	2 60	1.69	2.60	1.30	2.72	-0.54	0 54
1 18	2.72	1. 34	3 27	1.22	3. 15	-0.90	0 90
1 10	2 91	1.89	3. 94	1.30	3.11	-0 94	0.94
1 97	3 62	1.93	3.19	1. 73	3.46	-0.74	0 74
2 36	3 23	2 32	3. 82	2.32	4. 17	-0.70	0. 70
2 32	4.06	2. 17	4. 17	2.64	4.06	-0. Bb	0.86
2.60	4 49	2 01	4. 33	2.48	4. 13	-0.98	0.98
4. 65	5.87	3 74	5 63	4. 37	5. 51	-0.71	0.71
5, 55	5. 55	4 76	4 76	4.96	4. 96	0	0

Regression Equation

0.99e-5*Z*Z - 4.58*T20 + 1.05*T1 + 1.86*T19 +46.24

CALLED THE THE TELEVISION OF THE SECTION OF

Appendix 4

Programs Used in the Analysis of Machine Tools

```
c THIS PROGRAM WILL SOLVE FOR THE UNSTEADY STATE
c HEAT CONDUCTION PROBLEM IN THE Z AXIS OF THE TIO.
c FINITE DIFF. METHODS ARE USED.
c INPUT RQUIRED IS THE NOAL POINTS, HEAT SOURCES AND
C LOCATION OF HEAT SOURCES.
C THE PROGRAM IS WRITTEN FOR CYBER 205
c AND THE OUTPUT IS DIVERTED TO MAGTAPES ON
c CDC PURDUE MACE SYSTEM.
c THE STRUCTURE IS THICK WALLED
xxxxx,xxx,cy,ll.
resource(jcat=s2,1p=2,t1=300)
fortran.
request, tapel/1000, rt=w.
request, abcd/1000, rt=w.
load.
go.
mflink(abcd, st=la3, dd=c6, jcs=*
"access, alter, abcd, s1=1289, vpk=ceb", "skipei, abcd", "write, abcd")
            program main(input,output,tape5=input,tape6=output,tape7=tape7
          ,tapel=abcd)
          common nodel(1000),enode(1000),wnode(1000),nnode(1000),
anode(1000),tnode(1000),bnode(1000),temp(1000),dxe(1000)
common dxw(1000),dxn(1000),dxs(1000),dxt(1000),dxb(1000),
temp(1000),noden(12,10,10),xval(12,10,10),yval(12,10,10)
            ,zva1(12,10,10),indx,indy,indz
           common cond, rho, capa, tfin, tinc, rtemp, rtempi, num, numi, hval common qval(100), nqnode(100), nheat, idir(100)
            dimension rqval(100),tqval(100)
            integer nodel, enode, wnode, nnode, snode, tnode, bnode, noden, num
            integer old, nqnode, nheat, indx, indy, indz, numi real dxe, dxw, dxn, dxs, dxt, dxb, temp, templ, xval, yval, zval, cond
            real tfin, tinc, rtemp, rtempi, qval, rho, capa, hval
                         - 12
- 8
            indx
            indy
            indz
            indx, indy, indz # OF POINTS ON X,Y AND Z DIRECTIONS old = indx*indy*indz
            do 10 k = 1,10
            do 10 j = 1,10
do 10 i = 1,12
            if(i.gt.indx) go to 10
if(j.gt.indy) go to 10
if(k.gt.indz) go to 10
            read(5,20) xval(i,j,k),yval(i,j,k),zval(i,j,k),noden(i,j,k)
  20
            format(3f5.1,14)
            continue
            cond = 8.91
rho = 7.85
```

```
capa = 0.11
tnow = 0.0
            tfin = 360.0
            tinc = 15.0
            rtemp= 00.0
            hval = 0.011
            rtempi = rtemp
            nheat = 9
nheat is # of heat source points
            do 50 i = 1,nheat
read(5,60) qval(i),nqnode(i),tqval(i)
qval is value of heat source
            nquode is node associated with heat source
            tqval is the value of change in heat source
to use steady heat source set tqval to zero
 60
            format(f7.0,215,f7.0)
  50
            continue
            do 199 1 = 1, nheat
            rqval(i) = -qval(i)
  199
            continue
                       - 0
            numi
            do 70 k = 1,10
do 70 j = 1,10
do 70 j = 1,12
            if(i.gt.indx) go to 70
if(j.gt.indy) go to 70
if(k.gt.indz) go to 70
call ndegen(i,j,k)
° 70
            sets nodal connectivities
             continue
            do 80 i = 1,old
            temp(1) = rtemp
templ(1) = rtemp
  80
            continue
            num = 0
            do 130 1 = 1,old
            if(nodel(i).eq.0) then
            num = 1-1
go to 102
            endif
  130
            continue
  102
             ipr = 0
            ntemp = int(tfin/tinc)
do 90 i = 1, ntemp
            write(1,113) i
  113
            format(110)
            call nxtmp
            do 100 j = 1,01d
temp(j) = temp1(j)
            continue
rtempi = rtemp
  100
            if(numi.gt.0) call inner
            inner calculates the cavity temperature based on the wall temperatures
č
            it is the average of wall temperatures
```

```
ipr = ipr + l
            if(ipr.eq.l ) then
            call wrnd(tnow)
            call wrele
            1pr = 0
            endif
             do 197 j = 1, nheat
            qval(j) =qval(j)+rqval(j)
rqval(j) = -rqval(j)
write(6,196) qval(j),rqval(j),j
 196
            format(2f10.4,110)
 197
            continue
              if(i.eq.5) then
              do 191 j = 1,nheat
qva1(j) = qva1(j)+tqva1(j)
rqva1(j)=-qva1(j)
              write(6,196) qval(j),rqval(j),j
 191
              continue
              endif
 90
             continue
             stop
             end
c
c
             subroutine ndegen(i,j,k)
             common nodel(1000),enode(1000),wnode(1000),nnode(1000),
           snode(1000),tnode(1000),bnode(1000),temp(1000),dxe(1000)
common dxw(1000),dxn(1000),dxs(1000),dxt(1000),dxb(1000)
,temp1(1000),noden(12,10,10),xvel(12,10,10),yvel(12,10,10)
             , zval(12, 10, 10), indx, indy, indz
            common cond, rho, capa, tfin, tinc, rtemp, rtempi, num, numi, hval common qval(100), nqnode(100), nheat, idir(100)
            integer nodel, enode, wnode, nnode, snode, tnode, bnode, noden, num
integer old, nquode, nheat, indx, indy, indx, numi
real dxe, dxw, dxn, dxs, dxt, dxb, temp, templ, xval, yval, zval, cond
             real tfin, tinc, rtemp, rtempi, qual, rho, capa, hval
             integer oc,oe,ow,on,os,ot,ob
             generates nodal connectivities
c
            oc = 0
oe = 0
ow = 0
             on = 0
os = 0
ot = 0
             ob = 0
                 = noden(1,j,k)
             if(oc.eq.0) return
             if(i.eq.indx) then
             dxe(oc) = dxe(oc-1)
             else
```



```
if(noden(i+1,j,k).eq.0) oe = -2
   if(noden(i+l,j,k).ne.0) oe = noden(i+l,j,k)
   dxe(oc) = xval(i+!,j,k)-xval(i,j,k)
   endif
   if(i.eq.l) then
   ow = -1
   if(oc.gt.l) dxw(oc) = dxw(oc-1)
   if(oc.eq.1) dxw(oc) = 8.0
   if(noden(i-l,j,k).eq.0) ow = -2
if(noden(i-l,j,k).ne.0) ow = noden(i-l,j,k)
dxw(oc) = xval(i,j,k) - xval(i-l,j,k)
   endif
   if(j.eq.indy) then
   on = -1
dxn(oc) = dxn(oc-1)
   else
   if(noden(i,j+1,k).eq.0) on = -2
if(noden(i,j+1,k).ne.0) on = noden(i,j+1,k)
   dxn(oc) = yval(i,j+l,k)-yval(i,j,k)
   endif
   if(j.eq.l) then
   0. - -1
   if(\sigma c \cdot g t \cdot l) dxs(\sigma c) = dxs(\sigma c - l)
if(\sigma c \cdot e q \cdot l) dxs(\sigma c) = 8.0
   else
   if(noden(i,j-1,k).eq.0) os = -2
if(noden(i,j-1,k).ne.0) os = noden(i,j-1,k)
dxs(oc) = yval(i,j,k)-yval(i,j-1,k)
   endif
   if(k.eq.indz) then
   ot - -1
   dxt(oc) = dxt(oc-1)
   else
   if(noden(i,j,k+l).eq.0) or = -2
   if(noden(i,j,k+1).ne.0) ot = noden(i,j,k+1)
dxt(oc) = zval(i,j,k+1) - zval(i,j,k)
   endif
   if(k.eq.1) then ob = -3
   if(oc.gt.1) dxb(oc) = dxb(oc-1)
if(oc.eq.1) dxb(oc) = 8.0
   if(noden(i,j,k-1).eq.0) ob = -2
if(noden(i,j,k-1).ne.0) ob = noden(i,j,k-1)
   dxb(oc) = zval(i,j,k) - zval(i,j,k-1)
   endif
   nodel(oc) = oc
   enode(oc) = oe
   wnode(oc) = ow
   nnode(oc) = on
   snode(oc) = os
    tnode(oc) = ot
    bnode(oc) = ob
    if(oe.eq.-2.or.ow.eq.-2.or.on.eq.-2.or.os.eq.-2.or.
I ot.eq.-2.or.ob.eq.-2) numi = numi+1
```



```
return
          end
          subroutine nxtmp
          common node1(1000), enode(1000), wnode(1000), nnode(1000),
          anode(1000),tnode(1000),bnode(1000),temp(1000),dxe(1000)
common dxw(1000),dxn(1000),dxs(1000),dxt(1000),dxb(1000)
          ,templ(1000),noden(12,10,10),xva1(12,10,10),yva1(12,10,10)
           ,zval(12,10,10),indx,indy,indz
          common cond, rho, capa, tfin, tinc, rtemp, rtempi, num, numi, hval
          common qval(100),nqnode(100),nheat,idir(100)
          integer nodel, enode, wnode, nnode, anode, tnode, bnode, noden, num
          integer old, nqnode, nheat, indx, indy, indz, numi
          real dxe,dxw,dxn,dxs,dxt,dxb,temp,templ,xval,yval,zval,cond
          real tfin, tinc, rtemp, rtempi, qval, rho, capa, hval
          alpha = 1.
do 10 j = 1,100
          call solve(1,alpha,j)
if(j.gt.90) then
          write(6,100) temp1(1),temp1(100),temp1(200)
          write(6,100) temp1(300),temp1(400),temp1(500)
100
          format(3fi0.3)
          THE VALUES ARE WRITTEN TO ENSURE CONVERGENCE
          end1f
 10
          continue
          return
          end
c
c
          subroutine solve(i,alpha,iij)
          common node1(1000), enode(1000), wnode(1000), nnode(1000),
          snode(1000),tnode(1000),bnode(1000),temp(1000),dxe(1000)
common dxw(1000),dxn(1000),dxs(1000),dxt(1000),dxb(1000)
          ,temp1(1000),noden(12,10,10),xva1(12,10,10),yva1(12,10,10)
          ,zval(12,10,10),indx,indy,indz
          common cond, rho, capa, tfin, tinc, rtemp, rtempi, num, numi, hval
          common qval(100),nqnode(100),nheat,idir(100)
integer nodel,enode,wnode,nnode,snode,tnode,bnode,noden,num
          integer old, nqnode, nheat, indx, indy, indz, numi
real dxe, dxw, dxm, dxs, dxt, dxb, temp, tempi, xval, yval, zval, cond
real tfin, tinc, rtemp, rtempi, qval, rho, capa, hval
real temp2, temp3, temp4, temp5, temp6, temp7
          real delxy, delxyz, delyz, delxz, ae, aw, an, as, at, ab
          real aop, ap, q, b
          integer i,j,k,l
```

```
does the solving part
old = indx*indy*indz
hvali = 0.001949
do 10 j = 1,num
delyz = (dxn(j)+dxs(j))*(dxt(j)+dxb(j))/4.0
c
          delxz = (dxe(j)+dxw(j))*(dxt(j)+dxb(j))/4.0
delxy = (dxe(j)+dxw(j))*(dxn(j)+dxs(j))/4.0
delxyz = (dxe(j)+dxw(j))*(dxn(j)+dxs(j))*(dxt(j)+dxb(j))/8.0
           aop = rho*capa*delxyz/tinc
q = 0.0
           do 20 k = 1,nheat
if(nqnode(k).eq.nodel(j)) then
           q = qval(k)
           end1f
 20
           continue
           b = q + aop*temp(j)
           if(enode(j).lt.0 ) then if(enode(j).eq.-1) then
           temp2 - rtemp
           ae = hval*delyz
           endif
           if(enode(j).eq.-2) then
           ae - hvali * delyz
           temp2 = rtempi
           endif
           endif
           if(enode(j).gt.0) then
           temp2 = templ(enode(j))
           ae = cond*delyz/dxe(j)
           endif
           if(wnode(j).lt.0) then
if(wnode(j).eq.-1) then
temp3 = rtemp
aw = hval*delyz
           endif
           if(wnode(j).eq.-2) then
           temp3 = rtemp1
           aw = hval*delyz
           endif
           endif
           if(wnode(j).gt.0 ) then
           temp3 = temp1(wnode(j))
           aw = cond*delyz/dxw(j)
           endif
            if(nnode(j).lt.0 ) then
           if(nnode(j).eq.-1) then
           temp4 = rtemp
an = hval * delxz
           endif
           if(nnode(j).eq.-2) then
           temp4 = rtempi
an = hvali*delxz
           endif
           endif
           if(nnode(j).gt.0) then
```

temp4 = templ(nnode(j))

```
an = cond*delxz/dxn(j)
endif
if(anode(j).et.0) then
if(anode(j).eq.-1) then
temp5 = rtemp
as = hval * delxz
endif
if(snode(j).eq.-2) then
as = hval * delzz
temp5 = rtempi
endif
                                                                    temp5 - rtemp1
                                                                    endif
                                                                    end1f
                                                                    if(snode(j).gt.0) then
                                                                    temp5 = temp1(snode(j))
as = cond*delyz/dxs(j)
endif
                                                                    if(tnode(j).lt. 0) then
                                                                    if(tnode(j).eq.-l) then
                                                                    temp6 = rtemp
                                                                    at - hval * delxy
                                                                    endif
                                                                    if(tnode(j).eq.-2) then
                                                                    temp6 = rtempi
at = hvali * delxy
                                                                    endif
                                                                    endif
                                                                    if(tnode(j).gt.0) then
temp6 = templ(tnode(j))
                                                                    at = cond*delxy/dxt(j)
                                                                    endif
                                                                    if(bnode(j).lt.0 ) then
                                                                    if(bnode(j).eq.-1) then
                                                                    temp? = rtemp
                                                                    ab = hval * delxy
                                                                    endif
                                                                     if(bnode(j).eq.-2) then
                                                                     temp7 = rtempi
                                                                     ab = hvali * delxy
                                                                     endif
if(bnode(j).eq.-3) then
                                                                    temp7 = temp1(tnode(j))
ab = cond*delxy/dxb(j)
                                                                     endif
                                                                     endif
                                                                     if(bnode(j).gt.0) then
                                                                     temp7 = temp1(bnode(j))
                                                                     ab = cond*delxy/dxb(j)
                                                                     endif
                                                                 ap w ae+aw+an+as+at+ab+aop
ik = nodel(j)
templ(ik) = ae*temp2+aw*temp3+an*temp4
1 +as*temp5 + at*temp6 + ab*temp7+ b
all = templ(ik)/ap
                                                                     templ(ik) = temp(ik) + alphs*(all-temp(ik))
                                                                   continue
                                                                     return
                                                                     end
```

```
subroutine inner
        common nodel(1000), enode(1000), wnode(1000), nnode(1000),
        snode(1000),tnode(1000),bnode(1000),temp(1000),dxe(1000)
common dxw(1000),dxn(1000),dxs(1000),dxt(1000),dxb(1000)
        ,temp1(1000),noden(12,10,10),xva1(12,10,10),yva1(12,10,10)
        ,zval(12,10,10),indx,indy,indz
        common cond, rho, capa, tfin, tinc, rtemp, rtempi, num, numi, hval
        common qval(100),nqnode(100),nheat,idir(100)
        integer nodel, enode, wnode, anode, snode, tnode, bnode, noden, num
        integer old, nqnode, nheat, indx, indy, indz, numi
        real dxe,dxw,dxn,dxs,dxt,dxb,temp,templ,xval,yval,zval,cond
        real tfin, tinc, rtemp, rtempi, qval, rho, capa, hval CALCULATES CAVITY TEMP. AS AVG. OF ALL WALL TEMPS.
        rtempi = 0.0
        do 10 j = 1, num
        if(enode(j).eq.-2.or.wnode(j).eq.-2.or.snode(j).eq.-2.
        or.nnode(j).eq.-2.or.tnode(j).eq.-2.or.bnode(j).eq.-2) then
        rtempi = rtempi+ templ(j)
        endif
10
        continue
        rtempi = rtempi/numi
        return
THE REMAINING PORTION SETS THE DATA FOR SAP V
        subroutine wrele
        common nodel(1000), enode(1000), wnode(1000), nnode(1000),
        snode(1000),tnode(1000),bnode(1000),temp(1000),dxe(1000)
common dxw(1000),dxn(1000),dxs(1000),dxt(1000),dxb(1000)
,temp!(1000),noden(12,10,10),xval(12,10,10),yval(12,10,10)
        ,zva1(12,10,10),1ndx,indy,indz
        common cond, rho, capa, tfin, tinc, rtemp, rtempi, num, numi, hval
        common qual(100), nqnode(100), nheat, idir(100)
        integer nodel, enode, wnode, nnode, snode, tnode, bnode, noden, num
        integer old, nqnode, nheat, indx, indy, indz, numi
        real dxe,dxw,dxm,dxs,dxt,dxb,temp,templ,xval,yval,zval,cond
        real tfin,tinc,rtemp,rtempi,qval,rho,capa,hval
```

```
i = 5
j = 304
k = 1
1 = 1
                  write(1,10) i,j,k,l format(415)
10
                  1 = 1
1a = 2100000000
                  pr = 0.3
rho = 7.85
te = 0.0000117
                  write(1,20) i,la,pr,rho,te
format(15,110,f10.2,f10.5,f10.8)
20
                 tormat(15,110,110.2
i = 1
aj = 0.
write(1,30) i,aj,aj
format(15,2f10.2)
ai = 0
ak = 0
30
                  al = 0
                  write(1,40) ai,aj,ak,al format(4f10.2)
40
                  ai = 1
aj = 0.
ak = 0.
                  ai = 0.

write(1,40) ai,aj,ak,al

ai = 0.
                  write(1,40) ai,aj,ak,al
                  ai =0.
aj = 0.
ak = 0.
al = 0.
                   write(1,40) ai,aj,ak,al
                  aj = 1.
                   write(1,40) ai,aj,ak,al
                 ienum = 0

do 60 k = 1,10

do 60 j = 1,10

do 60 i = 1,12
                 do 60 i = 1,12
if(i.gt.indx-1) go to 60
if(j.gt.indy-1) go to 60
if(k.gt.indx-1) go to 60
n1 = noden(i.j,k)
n2 = noden(i+1,j+1,k)
n4 = noden(i,j+1,k)
n5 = noden(i,j+1,k)
n6 = noden(i+1,j+1,k+1)
n7 = noden(i+1,j+1,k+1)
n8 = noden(i+1,j+1,k+1)
io = 2
                  io = 2
mn = 1
ip = 1
sft = rtemp
```



```
if(nl.eq.0.or.n2.eq.0.or.n3.eq.0.or.n4.eq.0.or.n5.eq.0.or.
           n6.eq.0.or.n7.eq.0.or.n8.eq.0) go to 60
           ienum = ienum + l
           write(1,70) ienum,n1,n2,n3,n4,n5,n6,n7,n8,io,mn,ip,sfr format(1215,10x,f10-2)
70
60
            continue
           i = 6
j =
k = 1
                    40
           write(1,110) 1,j,k
110
           format(315)
1 = 2
           rho = 7.8
te = 0.0000117
           write(1,120) i,rho,te,te,te
format(110,10x,f10.3,10x,3f10.8)
la = 2100000000
pr = 0.3
120
           write (1,130) la,pr
format(110,f10.2)
130
            ai = 0.
            aj = 0.
ak = 0.
al = 0.
           write(1,140) ai,aj,ak,al format(4f10.0)
140
           ai = 1.0
write(1,140) ai,aj,ak,al
            41 - 0.
           write(1,140) si,aj,ak,al
write(1,140) si,aj,ak,al
           write(1,140) a1,aj,ak,a1
aj = 981.
write(1,140) a1,aj,ak,a1
ipl = (indx-3)/3
ipl = ipl + 2
           ipi = ipi + 2

ip2 = ipi + 3

ienum = 0

do 150 k = 1,10

do 150 j = 1,10

do 150 1 = 1,2

if(1.eq.1) i = ipi

if(1.eq.2) i = ip2
            if(k.gt.indz-1) go to 150
if(j.ge.2.and.j.le.indy-2) then
            if(k.ge.2.and.k.le.indz-3) then
            n4 = noden(1,j,k+1)
if(n1.eq.0.or.n2.eq.0.or.n3.eq.0.or.n4.eq.0) go to 150
            ienum = ienum + l
mi = 2
ie = i
             et =2.0
            d1 =0.0
            sft = rtemp
tgr =0.0
```


else

```
write(1,160) ienum, n1, n2, n3, n4, m1, ie, et, d1, sft, tgr
         format(515,5x,215,4f10.0)
160
         endif
         endif
         continue
150
         write(1,201)
201
         format(2x)
         af = 1
         aj = 1
ak = 0
         al = 0
         write(1,80) ai,aj,ak,al
         format(4f10.0)
80
         write(1,201)
write(1,201)
         return
         end
          subroutine wrnd(tnow)
         common nodel(1000), enode(1000), wnode(1000), nnode(1000),
         snode(1000),tnode(1000),bnode(1000),temp(1000),dxe(1000)
         common dxw(1000), dxn(1000), dxs(1000), dxt(1000), dxb(1000)
          ,temp[(1000),noden(12,10,10),xval(12,10,10),yval(12,10,10),zval(12,10,10),indx,indy,indz
common cond,rho,capa,tfin, inc,rtemp,rtemp1,num,numi,hval
          common qval(100),nqnode(100),nheat,idir(100)
          integer nodel, enode, wnode, anode, anode, tnode, bnode, noden, num
          integer old, nqnode, nheat, indx, indy, indz, numi
          real dxe,dxw,dxn,dxs,dxt,dxb,temp,templ,xval,yval,zval,cond
          real tfin, tinc, rtemp, rtempi, qval, rho, capa, hval
          j = 1
          11 - 2
          k = 0
g = 981.
          10
          format(415,14,11,415,2x,311,315,5x,f10.0)
         format(415,14,11,415,2x,33
do 20 k = 1,10
do 20 j = 1,10
do 20 i = 1,12
if(i.gt.indx) go to 20
if(j.gt.indy) go to 20
if(k.gt.indz) go to 20
if(k.gt.indz) go to 20
if(ind.eq.0) go to 20
if(bnode(ind).eq.-3) then
ith! = 1
          1 t b1 - 1
          1tb2 = 1
          1tb3 = 1
```



```
itbl = 0
itb2 = 0
itb3 = 0
endif
itb4 = 1
itb5 = 1
itb6 = 1
ix = 1
if(enode(ind).lt.0.and.wnode(ind).lt.0) then
itb4 = 0
itb5 = 0
itb6 = 0
endif
write(1,30) ind,itbl,itb2,itb3,itb4,itb5,itb6,xval(i,j,k),
1 yval(i,j,k),zval(i,j,k),ix,templ(ind)
format(lx,i4,lx,i4,515,3f10.2,lx,i4,f10.2)
continue
return
end
```

FOR THERMAL SOLUTION, SEQUENCE OF PROGRAMS REQUIRED : { SEQUENCE HAS BEEN GIVEN ONLY FOR THE X AXIS. ALL OTHER AXIS ARE THE SAME. ON OTHER AXIS. CHANGES REQUIRED WILL BE IN DISCRETIZATION AND IN NODAL COMMNECTIVITIES } THIS SEQUENCE WILL SOLVE THE HEAT TRANSFER PROBLEM INPUT IS A SET OF MEASURED TEMPERATURE VALUES AND ASSOCIATED NODAL NUMBERS A SCALING FACTOR IS USED THROUGHOUT THE WHOLE SEQUENCE OF THIS PROGRAM, THE SCALE IS 0.1 THE SEQUENCE OF PROGRAMS THAT NEED TO BE EXECUTED TO OBTAIN THE THERMAL PROFILE OF ANY AXIS ARE AS FOLLOWS {{DISCLAIMER:: ALL PROGRAMS WORK AS THEY HAVE BEEN SET UP, CHANGE OF CONSTANTS AND VARIABLES MAY CAUSE THEM TO BECOME UNRELIABLE } }

DISCRETIZE
STRUCTURE

OBTAIN ELEMENT
CONNECTIVITIES
FOR FEM

SOLVE THE FEM
MATRIX

.

```
PROGRAM
                          FOR
                                  DISCRETIZATION
                        X AXIS OF THE
                        MACHINE
¢
        c
c
c
         *THIS PROGRAM EXECUTES ON A VAX PDP-11/40*
c
c
                 To execute this program
c
                  ( NO INPUT REQUIRED)
c
            To execute type in f77. "program name
c
            After "a.out" has been generated then
c
            "a.out > filename", will produce the
c
c
               output files of the structure
c
c
c
c
        TO CHANGE THE NUMBER OF NODES
c
        CHANGE THE VARIABLES, nptx, npty, nptz
EACH OF THE VARIABLES, nptx, npty, nptz
REFER TO THE NUMBER OF NODES IN EACH
c
c
         DIRECTION.
         WHEN nptx, npty, nptz ARE CHANGED,
         CHANGE THE VALUE IN LINE # 148
        real x,y,z,xpl1,xpl2,xdr1,xdr2,xdr3,const,
        ydr1,ydr2,zdr1,zdr2,e1x1,e1y1,e1z1,gdcs,xva1(20)
         integer nptx, npty, nptz, nxrl, nxr2, nxr3, nyrl, nyr2, nzr1, nzr2, nzr3,
        i,elnum, ndnum, cordl, cord2, cord3,
        cord4
         common /base2/ x,y,z,xpli,xpl2,xdr1,xdr2,
         xdr3,ydr1,ydr2,zdr1,zdr2,zdr3,nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,
         nyr2,nyr3,nzr1,nzr2,nzr3,elx1,ely1,elz1
         common /basel/ cord1(300), cord2(300), cord3(300), cord4(300),
         gdcs(300,7)
         common /bsse4/elnum,ndnum
         const = 0.1
        x,y,z are the distances in directions x,y,z
x = 172.0 \pm const
        y = 60.0*const
z = 50.0*const
              50.0*const
         # of points in x,y,z
         aptx
                → 12
                - 4
         npty
         nptz
                - 4
         loaction of internal plates on x axis
         xval(1) = 0.*const
         xval(2) = 14.*const
```

```
xva1(3) = 26.*const
           xval(4) = 38.*const
           xval(5) = 53.*const
xval(6) = 68.*const
           xval(7) = 86.*const
xval(8) = 104.*const
xval(9) = 119.*const
           xva1(10) = 15...*const
xva1(11) = 146.*const
           xval(12) - 158.*const
           xval(13) = 172.*const
            determines number of divisions on axis
            does not work in x axis as division has
           been set up above

nyrl = int((30.0*const/y)*npty)

nyr2 = npty - nyrl

nzrl = int((z-25.0*const)/z * nptz)

nzr2 = nptz - nzrl

ydrl = (30.0*const)/nyrl
                    = (y-30.0*const)/nyr2
= 25.0*const/nzr1
           ydr2
            zdrl
            zdr2 = (z-25.0*const)/nzr2
           zdr2 = (z-25.0*co
nxrl = 13
write(6,*) nxrl
do 102 i = 1,13
write(6,*) xval(1)
102
            continue
           input to the nodal connectivities program write(6,*) x,y,z write(6,*)ydrl,ydr2 write(6,*)zdrl,zdr2
            write(6,*)nptx,npty,nptz
            write(6, *)nxrl,nxr2,nxr3
            write(6,*)nyri,nyr2
           write(6,*)nzrl,nzr2
print*,'307'
NUMBER OF NODES
            elnum = 1
            ndnum = 1
elxI = 0.
elyI = 0.
            elz1 = 0.
            ndnum = 1
            the discretization is done on a plane by plane
            basis.
            call planexy(1,xval)
            do 105 i = 1,13
if(i.eq.5.or.i.eq.7) go to 105
           elx1 = xval(i)
ely1 = 0.0
elz1 = zdr1
call planeyz(xval)
105
            continue
            elx1 = xva1(2)
ely1 = 0.0
                    - zdrl
```

elzi

CONTROL OF THE PROPERTY OF A STATE OF THE PROPERTY OF THE PROP

```
call planexz(xval)
              = xval(2)
= y
        elxi
        elyl
             = zdrl
        elzi
        call planexz(xval)
        elxl
              - 0.0
              - 0.0
        elyl
        elzi
              - z
        call planexy(2,xval)
        elxl
              = xdrl
        elyl
              =30.0*const
               = 25.0*const
        elzl
        write(6,*)ndnum-1
        8 top
        end
        subroutine planexy(ind,xval)
        real x,y,z,xpl1,xpl2,xdr1,xdr2,xdr3,
       ydrl,ydr2,zdr1,zdr2,elx1,ely1,elz1,gdcs,xva1(20)
        integer nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,nyr2,nzr1,nzr2,nzr3,
        i,j,elnum,ndnum,cordi,cord2,cord3,
        cord4
        common /base2/ x,y,z,xp11,xp12,xdr1,xdr2,
        xdr3,ydr1,ydr2,zdr1,zdr2,zdr3,nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,
        nyr2,nyr3,nzr1,nzr2,nzr3,e1x1,e1y1,e1z1
        common /basel/ cordl(300), cord2(300), cord3(300), cord4(300),
        gdcs(300,7)
        common /base4/elnum, ndnum
        integer ind, indl, ind2, ist
        The first plane xy; Z = 0
        indl = npty+l
ind2 = nptx+l
ist = l
        ist = 1

do 40 j = ist, ind1

do 50 i = ist, ind2

gdcs(ndnum,1) = xval(i)

gdcs(ndnum,2) = elyl

gdcs(ndnum,3) = elz1
        if(ind.eq.l) then
        gdcs(ndnum, 4) = 1
        gdcs(ndnum, 4) = 2
        endif
        write(6,*)gdcs(ndnum,1),gdcs(ndnum,2),gdcs(ndnum,3),
       int(gdcs(ndnum, 4))
ndnum = ndnum + 1
        continue
50
        if(j.le.nyri) elyl = elyl + ydri
if(j.gt.nyri) elyl = elyl + ydr2
if(elyl.gt.y+l) elyl = 0.0
40
        continue
        return
        end
```

```
The second plane yz; X= 0
         subroutine planeyz(xval)
         real x,y,z,xpl1,xpl2,xdr1,xdr2,xdr3,
         ydri,ydr2,zdri,zdr2,elxi,elyi,elzi,gdcs,xval(20)
         integer nptx,npty,nptz,nxrl,nxr2,nxr3,nyr1,nyr2,nzr1,nzr2,nzr3,
     1 1,j,elnum, ndnum, cordl, cord2, cord3,
         common /base2/ x,y,z,xpl1,xpl2,xdr1,xdr2,
     1 xdr3,ydr1,ydr2,sdr1,zdr2,zdr3,nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,
1 nyr2,nyr3,nzr1,nsr2,nsr3,elx1,ely1,elz1
         common /basel/ cord1(300), cord2(300), cord3(300), cord4(300),
         gdcs(300,7)
         common /base4/elnum, ndnum
         do 60 j = 1, nptz=1
do 70 i = 1, npty+1
gdcs(ndnum,1) = e1x1
gdcs(ndnum,2) = e1y1
         gdcs(ndnum, 3) = els1
gdcs(ndnum, 4) = 2
         if(abs(elyl-y).lt.0.l.or.abs(elxl-z).lt.0.l
         .or.sbs(elyl).lt.0.l.or.sbs(elzl).lt.0.l) then
         gdcs(ndnum, 5) = 1
         else
         gdce(ndnum, 5) = 0
         endif
         gdcs(ndnum, 6) = 1
         gdcs(ndaum,7) = 1
         if(i.le.nyri) elyi = elyi + ydrl
if(i.gt.nyrl) elyi = elyi + ydr2
write(6,*)gdcs(ndnum,i),gdcs(ndnum,2),gdcs(ndnum,3),int(gdcs(ndnum,4))
         ndnum = ndnum + 1
7.0
         continue
         ely1 =0.0
         if(j.le.nzrl) elzl = elzl + zdrl
         if(j.gt.nzrl) elzl = elzl + zdr2
if(elzl.gt.z+l) elzl = 0.0
         if(i.ge.nptz.and.j.ge.npty) return
 60
         continue
         return
         end
c This is the third plane xx;Y = b plane
         subroutine planexz(xval)
         real x,y,z,xpli,xpl2,xdr1,xdr2,xdr3,
        ydrl,ydr2,zdrl,zdr2,elxl,elyl,elzl,gdcs,xval(20)
         integer nptx,npty,nptz,nxrl,nxr2,nxr3,nyrl,nyr2,nzrl,nzr2,nzr3,
       1,j,elnum,ndnum,cordl,cord2,cord3,
        cord4
         common /base2/ x,y,z,xp11,xp12,xdr1,xdr2,
     1 xdr3, ydr1, ydr2, zdr1, zdr2, zdr3, nptx, npty, nptz, nxr1, nxr2, nxr3, nyr1,
      l nyr2, nyr3, nzr1, nzr2, nzr3, elx1, ely1, elz1
         common /basel/ cord1(300),cord2(300),cord3(300),cord4(300),
         gdcs(300,7)
         common /base4/elnum,ndnum
         do 80 j = 1, nptz-1
do 90 i = 1,2
         if(i.eq.l) then
```



```
elxi = xval(5)
              else
elx1 = xvs1(7)
               endif
               gdcs(ndnum, 1) = elx1
              gdcs(ndnum,1) = elxl
gdcs(ndnum,2) = elyl
gdcs(ndnum,3) = elzl
gdcs(ndnum,4) = 2
gdcs(ndnum,5) = 1
gdcs(ndnum,7) = 1
if(abs(elxl-xx).lt.0.l.or.abs(elzl-z).lt.0.l.or
.abs(elxl).lt.0.l.or.abs(elzl).lt.0.l) then
gdcs(ndnum,6) = 1
               gdcs(ndnum, 6) = 1
               else
               gdcs(ndnum, 6) = 0
               endif
               write(6,*)gdcs(ndnum,1),gdcs(ndnum,2),gdcs(ndnum,3),int(gdcs(ndnum,4))
ndnum = ndnum + 1
elxi = xvsl(1)
if(elxi.gt.x+1) elx1 = 0.0
               continue
elx! =xdr!
if(j.le.nsrl) elz! = elz! + zdr!
if(j.gt.nsrl) elz! = elz! + zdr2
if(elz!.gt.st+1) elz! = 0.0
if(i.gt.nxrl+nxr2+nxr3.and.j.gt.nzrl+nzr2) return
90
                continue
80
                return
                e nd
```

```
c
          * TO BUILD NODAL CONNECTIVITIES
         * USE THIS PROGRAM
          * INPUT IS OUTPUT OF LAST * PROGRAM
         real x,y,z,xpli,xpl2,xdrl,xdr2,xdr3,
         ydrl,ydr2,zdrl,zdr2,elxl,elyl,elzl,gdcs,xval(20)
          integer aptx, apty, apts, axr1, axr2, axr3, ayr1, ayr2, azr1, azr2, azr3,
         1,elnum, ndnum, cordl, cord2, cord3,
         cord4,bc
          common /base2/ x,y,z,xpl1,xpl2,xdr1,xdr2,
         xdr3,ydr1,ydr2,zdr1,zdr2,zdr3,nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,
         myr2, myr3, mzr1, mzr2, mzr3, elx1, ely1, elz1
        common /basel/ cordi(1000),cord2(1000),cord3(1000),cord4(1000), gdcs(1000,3),bc(1000,2) common /base4/elnum,ndnum
c The program is designed to build elements form data
c of genz.f
         read(5,*) ndnum
do 19 1 = 1,ndnum
         read(5,*) xval(1)
 19
          continue
         read (5,*) x,y,z
read(5,*) ydrl,ydr2
read(5,*) zdrl,zdr2
         read(5,*) nptx,npty,nptz
read(5,*) nxr1,nxr2,nxr3
read(5,*) nyr1,nyr2
read(5,*) nzr1,nzr2
          read(5,*) ndnum
do 10 1 = 1,ndnum
          read(5,*) gdcs(1,1),gdcs(1,2),gdcs(1,3),bc(1,1)
 10
          continue
          elaum= 1
          call elbld(xval)
         write(6,*) ndnum
do 30 i = 1,ndnum
print *,i,gdcs(i,1),gdcs(i,2),gdcs(i,3),bc(i,1)
 30
          continue
          write(6,*) elnum-l
         do 20 i = 1,elnum-1
         write(6,*)i, cord!(i),cord2(i),cord3(i),cord4(i)
 20
          continue
          stop
          end
          subroutine elbld(xval)
          real x,y,z,xpl1,xpl2,xdr1,xdr2,xdr3,
         ydri,ydr2,zdri,zdr2,elxi,elyi,elzi,gdcs,xva1(20)
          integer optx, npty, nptz, nxrl, nxr2, nxr3, nyrl, nyr2, nzrl, nzr2, nzr3,
         1,elnum, ndnum, cordl, cord2, cord3,
      l cord4,bc
```

とははいいはは、これではいると

```
common /base2/ x,y,z,xpli,xpl2,xdrl,xdr2,
          xdr3,ydr1,ydr2,zdr1,zdr2,zdr3,nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,
           nyr2,nyr3,nzr1,nzr2,nzr3,e1x1,e1y1,e1z1
           common /basel/ cord!(1000),cord2(1000),cord3(1000),cord4(1000),
           gdcs(1000,3),bc(1000,2)
           common /base4/elnum.ndnum
c This does the element finding routine, associates
  elements with nodes.
elx1 = 0.0
ely1 = 0.0
elz1 = 0.0
call elxyp(xval)
           do 105 i = 1,13
           do 103 1 = 1,13
if(i.eq.5.or.i.eq.7) go to 105
elx1 = xval(i)
ely1 = 0.0
elz1 = 0.0
           call elyzp(xvla)
 105
           continue
           elx1 = 0.0
ely1 = 0.0
           elz1 - 0.0
           call elxzp(xval)
           elx1 = 0.0
           ely1 = y
elz1 = 0.0
           call elxzp(xval)
           elx1 = 0.0
ely1 = 0.0
           elzl = z
           call elxyp(xval)
           return
           end
           subroutine elxyp(xval)
           real x,y,z,xpl1,xpl2,xdr1,xdr2,xdr3,
           ydrl, ydr2, zdrl, zdr2, elx1, ely1, elz1, gdcs, xva1(20)
integer nptx, npty, nptz, nxr1, nxr2, nxr3, nyr1, nyr2, nzr1, nzr2, nzr3,
          i,j,elnum,ndnum,cordl,cord2,cord3,
           cord4, bc
common /base2/ x,y,z,xpll,xpl2,xdr1,xdr2,
xdr3,ydr1,ydr2,zdr1,zdr2,zdr3,nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,
nyr2,nyr3,nzr1,nzr2,nzr3,elx1,ely1,elz1
common /base1/ cord1(1000),cord2(1000),cord3(1000),cord4(1000),
           gdcs(1000,3),bc(1000,2)
           common /base4/elnum,ndnum
           real e1x2,e1y2,e1z2,e1x3,e1y3,e1z3,e1x4,e1y4,e1z4
           integer ii
           do 20 j = 1 , npty
           if(j.le.nyrl) ely3 = ely1 + ydrl
           if(j.gt.nyrl) ely3 = ely1 + ydr2
do 10 i = 1 , nptx
if(i.le.nxrl) elx2 = elx1 + xdrl
           if(i.gt.nxri.and.i.le.nxr2+nxrl) elx2 = elx1 + xdr2
            if(i \cdot gt \cdot nxr2 + nxr1) = lx2 = elx1 + xdr3
```

CARAGES SEESES BEREINE BEREINS BURNING BURNING MASSESSE BEREINDER

```
elx2 = xval(i+1)
          elx3 = elx2
          elx4 = elx1
          elz2 = elz1
elz3 = elz1
          elz4 = elzi
          ely2 = ely1
ely4 = ely3
          do 101 ii = 1,ndnum
          if(abs(gdcs(ii,l)-elxl).lt.0.1) then
          if(abs(gdcs(ii,2)-ely1).lt.0.1) then
          if(abs(gdcs(ii,3)-elz!).lt.0.1) then cordl(elnum) = ii
          endif
          endif
          endif
          if(abs(gdcs(ii,1)-elx2).lt.0.1) then if(abs(gdcs(ii,2)-ely2).lt.0.1) then if(abs(gdcs(ii,3)-elz2).lt.0.1) then
          cord2(elnum) = ii
          endif
          endif
          endif
          if(abs(gdcs(ii,1)-elx3).lt.0.1) then
if(abs(gdcs(ii,2)-ely3).lt.0.1) then
if(abs(gdcs(ii,3)-elz3).lt.0.1) then
          cord3(elnum) = ii
          endif
          endif
          endif
          if(abs(gdcs(ii,1)-elx4).lt.0.1) then
if(abs(gdcs(ii,2)-ely4).lt.0.1) then
if(abs(gdcs(ii,3)-elz4).lt.0.1) then
          cord4(elnum) = ii
endif
           endif
           endif
101
           continue
          elnum = elnum + 1
elx1 = elx2
10
           continue
          ely1 = ely3
elx1 = 0.0
20
           continue
           return
           end
           subroutine elmap(xval)
           real x,y,z,xp11,xp12,xdr1,xdr2,xdr3,
ydr1,ydr2,zdr1,zdr2,elx1,ely1,elz1,gdcs,xva1(20)
           integer nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,nyr2,nzr1,nzr2,nzr3,
          1,j,eln im,ndnum,cord1,cord2,cord3,
cord4,bc
```

•

•

•

•

•

```
common /base2/ x,y,z,xpli,xpl2,xdrl,xdr2,
    1 xdr3,ydr1,ydr2,zdr1,zdr2,zdr3,nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,
        nyr2,nyr3,nzri,nzr2,nzr3,elx1,ely1,elz1
common /bssel/ cord1(1000),cord2(1000),cord3(1000),cord4(1000),
gdcs(1000,3),bc(1000,2)
        common /base4/elnum,ndnum
        real elx2, ely2, elz2, elx3, ely3, elz3, elx4, ely4, elz4
        integer ii
        do 20 j = 1, nptz
        if(j.le.nzrl) elz3 = elz1 + zdrl
if(j.gt.nzrl) elz3 = elz1 + zdr2
        do 10 i = i,nptx
if(i.le.nxrl) elx2 = elx1 + xdrl
if(i.gt.nxrl.and.i.le.nxr2+nxrl) elx2 = elx1 + xdr2
        if(i.gt.nxr2+nxr1) e1x2 = e1x1 + xdr3
        e1x2 = xval(i+1)
e1x3 = e1x2
        e1x4 = e1x1
e1y2 = e1y1
e1y3 = e1y1
        ely4 = ely1
elz2 = elz1
        elz4 = elz3
        do 101 11 = 1,ndnum
        if(abs(gdcs(ii, l)-elxl).lt.0.l) then
        if(abs(gdcs(ii,2)-elyl).lt.0.1) then
        if(abs(gdcs(ii,3)-elzl).lt.0.1) then
        cordl(elnum) = ii
        endif
        endif
        endif
        if(abs(gdcs(ii,1)-elx2).lt.0.l) then
        if(abs(gdcs(ii,2)-ely2).lt.0.1) then if(abs(gdcs(ii,3)-elz2).lt.0.1) then cord2(elnum) = ii
        endif
        endif
        endif
        if(abs(gdcs(ii,1)-elx3).lt.0.1) then
        if(abs(gdcs(ii,2)-ely3).lt.0.l) then
        if(abs(gdcs(ii,3)-elz3).lt.0.1) then
        cord3(elnum) = ii
        end1f
        endif
        endif
        if(abs(gdcs(ii,l)-elx4).lt.0.l) then
        if(abs(gdcs(11,2)-ely4).1t.0.1) then
        if(abs(gdcs(ii,3)-elz4).1t.0.1) then
        cord4(elnum) = ii
        endif
        endif
        endif
101
        continue
```

elnum = elnum + l


```
elxi = elx2
10
         continue
         elz! = elz3
elx! = 0.0
20
         continue
        return
         end
         subroutine elyzp(xval)
        real x,y,z,xpll,xpl2,xdr1,xdr2,xdr3,
ydr1,ydr2,zdr1,zdr2,elx1,ely1,elz1,gdcs,xva1(20)
        integer optx,npty,nptz,nxri,nxr2,nxr3,nyrl,nyr2,nzri,nzr2,nzr3,i,j,elnum,ndnum,cord1,cord2,cord3,
         common /base2/ x,y,z,xpl1,xpl2,xdr1,xdr2,
        xdr3,ydr1,ydr2,zdr1,zdr2,zdr3,nptx,npty,nptz,nxr1,nxr2,nxr3,nyr1,
         nyr2,nyr3,nzr1,nzr2,nzr3,elx1,ely1,elz1
         common /basel/ cordl(1000), cord2(1000), cord3(1000), cord4(1000),
         gdcs(1000,3),bc(1000,2)
         common /base4/elnum,ndnum
         real elx2,ely2,elz2,elx3,ely3,elz3,elx4,ely4,elz4
         integer ii
do 10 j = 1,nptz
         if(j.le.nzrl) elz3 = elz1 + zdrl
if(j.ge.nzrl) elz3 = elz1 + zdr2
         do 20 1 = 1, npty
         if(i.le.myrl) ely2 = ely1+ydrl
if(i.gt.myrl) ely2 = ely1+ydr2
         ely3 - ely2
         ely4 = ely1
elx2 = elx1
         elx3 = elx1
         elx4 - elxi
         elz2 = elz1
elz4 = elz3
         do 101 11 = 1,ndnum
         if(abs(gdcs(ii,1)-elx1).lt.0.1) then if(abs(gdcs(ii,2)-ely1).lt.0.1) then
         if(abs(gdcs(ii,3)-elz1).lt.0.1) then
         cord(elnum) = ii
         endif
         endif
         endif
         if(abs(gdcs(ii,1)-elx2).1t.0.1) then
         if(abs(gdcs(ii,2)-ely2).lt.0.l) then if(abs(gdcs(ii,3)-elz2).lt.0.l) then
         cord4(elnum) = ii
         endif
         end1f
         endif
         if(abs(gdcs(ii,1)-elx3).1t.0.1) then
         if(abs(gdcs(ii,2)-ely3).lt.0.1) then if(abs(gdcs(ii,3)-elz3).lt.0.1) then
```

cord3(elnum) = 11

```
endif
endif
endif
if(abs(gdcs(ii,1)=elx4).lt.0.l) then
if(abs(gdcs(ii,2)=ely4).lt.0.l) then
if(abs(gdcs(ii,3)=elz4).lt.0.l) then
cord2(elnum) = ii
endif
endif
endif
endif
101 continue
elnum = elnum + l
ely1 = ely2
20 continue
elz1 = elz3
ely1 = 0.0
10 continue
return
end
```

```
*FINAL PROGRAM POR THERMAL*
         *PROFILE
         THE SOLUTION IS OBTAINED BY SOLVING THE PROBLEM
         AS A STEADY STATE ONE.
         THE IDEA IS TO SOLVE THE STEADY STATE HEAT CONDUCTION
         PROBLEM, USING MEASURED TEMPERATURES AS BOUNDARY
         CONDITIONS.
         THE PROBLEM IS SOLVED AS A SET OF 2 D PLATES.
        **************
c THIS IS A SIMPLE FORMULATION OF FEM FOR
c SOLUTION OF HEAT TRANSFER PROBLEMS
c IT HAS NO DERIVATIVE CONDITIONS
c stiffness matrix K for the given
c structure ---- mat(540,540)
c The structure in question is the X axis of the
c T10 which is being studied.
c The input to the program is the following
c Nodal cordinates x,y,z--- gdcs(1000,3),
c boundary cond---- bc(1000,2)
  base is assumed to be insulated
c Nodal connectivities cordl, cord2, cord3, cord4
c Input thermal cond--thcond
c Input conv coeff -- convc
         NODAL CONNECTIVITIES ARE AS SHOWN
c
c
c
c
          real mat(500,500),gdcs(500,3),a,b,c,fmat(12,12),k2mat(4,4),
        integer 1,j,k,cord1(500),cord2(500),cord3(500),cord4(500),
bc(500,2),bcnode(30),nn(10),elnum,ndnum,ntmp
          real coeff, vec(500), rmtmp
         coeff = 0.01
         heat transfer coeff, coeff = 0.01 cal/cm*cm min degree C do 30 i = 1,500 do 40 j = 1,500
         mat(1,j) = 0.0
vec(1) = 0.0
          vec(1)
 40
          continue
         continue
```


and bearings appropria

```
do 200 1 - 1,4
          do 200 j = 1,4
k2mat(1,j) = 1.0
200
           continue
c k2mat is the matrix for integral x,y h*t(room)*ni*dx*dy
          k2mat(1,1) = 1/9.0*coeff
k2mat(1,2) = 1/(18.0)*coeff
           k2mar(1,3) = 1/36.*coeff
k2mar(1,4) = 1/18.*coeff
k2mar(2,1) = 1/18.0*coeff
           k2mat(2,2) = 1/9.0*coeff
           k2mat(2,3) = 1/18.0*coeff
           k2mat(2,4) = 1/36.0*coeff
           k2mat(3,1) = 1/36.0*coeff
           k2mat(3,2) = 1/18.0*coeff
           k2mat(3,3) = 1/9.0*coeff
           k2mat(3,4) = 1/18.0*coeff
           k2mat(4,1) = 1/18.0 \pm coeff
           k2mat(4,2) = 1/36.0*coeff
           k2mat(4,3) = 1/18.0*coeff
           k2mat(4,4) = 1/9.0*coeff
read (5,*) ndnum
do 10 i = 1,ndnum
read(5,*)j,gdcs(i,1),gdcs(i,2),gdcs(i,3),bc(i,1)
10
           continue
           read(5,*) elnum
do 20 i = 1,elnum
c Data reading is the same.
c No modification.
           read(5,*) j,cord1(1),cord2(1),cord3(1),cord4(1)
 20
           continue
           b = 0.0
c read in room temp values
c ntmp is number of room temp values
c the average is used
read(5,*) ntmp
do 500 i = 1,ntmp
           read(5,*) a
           b = b+a
500
           continue
           rmtmp = b/ntmp
c ntmp is number of machine temp values c bcnode(i),bctemp(i), refer to the node of the
c structure and the temperature associated with that node c Temps on the machine are set up as b.c's.

read(5,*) ntmp
do 501 i = i,ntmp
           read(5,*) bcnode(i),bctemp(i)
 501
           continue
           do 50 i = 1,elnum
a = 0.0
b = 0.0
           c = 0.0
           nn(1) = cordl(i)
nn(2) = cord2(i)
           nn(3) = cord3(1)
```

```
nn(4) = cord4(i)
            a mabe( gdcs(nn(3),1)-gdcs(nn(1),1))
b mabs( gdcs(nn(3),2)-gdcs(nn(1),2))
c mabs( gdcs(nn(3),3)-gdcs(nn(1),3))
do 80 j = 1,4
do 90 k = 1,4
c Initialize local stiffness matrix fmat(j,k) = 0.0
 90
            continue
 80
            continue
c Call for local stiffness matrix
            call funm(a,b,c,fmat)
do 201 j = 1,4
do 201 k = 1,4
c c boundary condition ,intro c here only the convection boundary condition is introduced,
c h = 2*h on all plates
c on the base where it is h
c No change in temperature through the wall thickness
            if(bc(i,l).eq.l) then
k2mat(j,k) = k2mat(j,k)*a*b
            endif
            if(bc(i,1).eq.2) then
            k2mat(j,k) =2.0*k2mat(j,k)*a*b
            endif
201
            continue
c set up the rhs of the matrix equation do 502 j = 1,4
            if(bc(nn(j),1).eq.1) then
vec(nn(j)) =vec(nn(j))+rmtmp*coeff*a*b/4.0 .
            endif
            if(bc(nn(j),1).eq.2) then
vec(nn(j)) =vec(nn(j))+2*rmtmp*coeff*a*b/4.0
             endif
            continue
do 60 j = 1,4
do 70 k = 1,4
 502
c build up the global stiffness matrix
            mat(nn(j),nn(k))
                                        = mat(nn(j),nn(k))+fmat(j,k)+k2mat(j,k)
 70
            continue
             continue
            do 202 j = 1,4
do 203 k = 1,4
            k2mat(1,1) = 1/9.0*coeff
k2mat(1,2) = 1/(18.0)*coeff
k2mat(1,3) = 1/36.*coeff
            k2mst(1,4) = 1/18.*coeff
k2mst(2,1) = 1/18.0*coeff
k2mst(2,2) = 1/9.0*coeff
            k2mat(2,3) = 1/18.0*coeff
k2mat(2,4) = 1/36.0*coeff
             k2mat(3,1) = 1/36.0*coeff
            k2mat(3,2) = 1/18.0*coeff
k2mat(3,3) = 1/9.0*coeff
k2mat(3,4) = 1/18.0*coeff
             k2mat(4,1) = 1/18.0*coeff
```

```
k2mat(4,2) = 1/36.0*coeff
           k2mat(4,3) = 1/18.0*coeff

k2mat(4,4) = 1/9.0*coeff
c reset k2mat to original value.
 203
           continue
 202
           continue
           continue
 50
c Set in the boundary conditions
c of measured room temp, and reset the rhs vector.

do 705 i = 1,ntmp

do 710 j = 1,ndnum

vec(j) = vec(j) -mat(j,bcnode(i))*bctemp(i)
 710
           continue
           vec(bcnode(i)) = bctemp(i)
           do 707 j = 1,ndnum
mat(j,bcnode(1)) = 0.0
 707
           continue
           do 708 j = 1, ndnum
           mat(bcnode(1),j) = 0.0
 708
           continue
           mat(bcnode(1),bcnode(1)) = 1.0
 705
           continue
           solve [A] {x}={b}
call solve(mat, vec, ndnum)
c
           stop
           end
c
c
           subroutine funm(a,b,c,fmat)
           real a,b,c,fmat(12,12)
           real thco, thic
           integer i,j
theo = 8.912*(1/0.1)*(1/.1)
thic = (3./4.)*(5./2.)
           theo, thermal conductivity 8.912 cal/cm min degree C theo, has been reset to account for scale.
TWO TYPES OF PLATES
c
           OUTER WALLS AND INNNER RIBS
do 10 1 = 1,10
do 20 j = 1,10
fmat(1,j) = 0.0
 20
           continue
 10
           continue
           if(a.1t.0.5) then
           a - b
            b = c
           endif
           if(b.1t.0.5) then
           b - c
           endif
            fmat(1,1) = (b*b+a*a)/(3*a*b)
           fmat(2,1) = (a*a-2*b*b)/(6*a*b)
```

```
fmat(3,1) = -(b*b+a*a)/(6*a*b)

fmat(4,1) = -(b*b-2*a*a)/(6*a*b)
             fmat(1,2) = fmat(2,1)

fmat(2,2) = fmat(1,1)

fmat(3,2) = (b^+b^-2^+a^+a)/(6^+a^+b)

fmat(4,2) = -(b^+b^+a^+a)/(6^+a^+b)
              fmat(1,3) = fmat(3,1)
              fmat(2,3) = fmat(3,2)
             fmat(3,3) = fmat(1,1)

fmat(4,3) = (a*a-2*b*b)/(6*a*b)
              fmat(1,4) = fmat(4,1)
             fmat(2,4) = fmat(4,2)
fmat(3,4) = fmat(4,3)
              fmat(4,4) = fmat(1,1)
              do 100 1 = 1,4
do 100 j = 1,4
              fmat(i,j) = fmat(i,j)*thic*thco
              continue
return
 100
              end
c The subroutine does matrix equation solution c Matrix eq is of the form [A]\{x\}=\{b\}. c determine x,given A,b
c Crouts algo is used.
c 1-u decom is done then the solution is performed
             subroutine solve(a,b,n)
real a(500,500),b(500),la(500,500),ua(500,500),cl,d(500)
              real chk(500),chk1(500)
              integer n,m,i,j,k
              do 1091 = 1,n
              chkl(i) = b(i)
  109
              continue
             continue
ua(1,1) = a(1,1)
1a(1,1) = 1.0
do 10 j = 2,n
1a(j,1) = a(j,1)/ua(1,1)
ua(1,j) = a(1,j)
if(j,gt,2) then
do 20 i = 2,j-1
             c1 = 0.0
do 30 m = 1,i-1
c1 = c1 + 1a(j,m)*ua(m,i)
  30
              continue
             la(j,i) = (a(j,i)-cl)/ua(i,i)

cl = 0.0

do 40 m = 1,i-1

cl = cl + la(i,m)*ua(m,j)
              continue
ua(i,j) = a(i,j)-cl
  40
  20
              continue
              endif
              la(j,j) = i
cl = 0.0
              do 50 m = 1,j-1
c1 = c1 + la(j,m)*ua(m,j)
50
              continue
```

```
10
                                                            ua(j,j) = a(j,j)-c1
                                                            continue
do 999 i = 1,30
do 999 j = 1,30
                                                            if(la(i,j).ne.0) then
                                                            endif
                                                 999
                                                            continue
                                                            do 998 i = 1,30
do 998 j = 1,30
if(ua(i,j).ne.0) then
                                                            endif
                                                 998
                                                            continue
                                                            c1 = 0.0

k = 1

d(1) = b(1)

do 100 i = 2, n

c1 = 0.0
                                                            do 101 j = 1,k
c1 = c1 + 1a(i,j)*d(j)
                                                 101
                                                            continue
                                                            d(i) = b(i)-c1

k = k + 1
                                                 100
                                                            continue
                                                            do 102 i = 1,n
b(i) = 0.0
                                                 102
                                                            continue
                                                                     - 0.0
                                                            c l
                                                                          - 1
                                                            b(n) = d(n)/us(n,n)
                                                            do 103 k = 1,n-1
1 = n-k
cl = 0.0
                                                            do 104 j = i+1, n
c1 = c1 + ua(i,j)*b(j)
                                                  104
                                                            continue
b(i) = (d(i)-cl)/u=(i,i)
                                                            continue
do 105 i = 1,n
print*,b(1)
                                                  103
                                                            continue
print*, error
do 200 i = 1,n
do 200 j = 1,n
chk(i) = chk(i) + a(i,j)*b(j)
                                                  105
                                                            continue
chk(i) = chkl(i)-chk(i)
print *,chk(i),i
                                                  200
                                                   201
                                                            continue
                                                            return
                                                            end
```

★書きたみためのようにはないできます。
★をいたのかののは、
★をいたしますが、
★をいたしますが、

C THIS CONCLUDES THE THERMAL SOLUTION
C THE OUTPUT IS A VECTOR OF TEMPERATURE POINTS
C EACH OF WHICH CORRESPONDS TO SPECIFIC NODAL c POINTS. C FOR SAP V, C THE OUTPUT IS FED INTO SAP V WITH ANOTHER PROGRAM C WHICH REFORMATS THIS OUTPUT TO CONFORM TO SAP V FORMAT. c CONSTANTS USED ARE c THERMAL COND. - 8.91 cals/cm min degree C c THERMAL EXP. - 11.6 micro meter/meter/ degree C HEAT TRANSPER = 0.01 cal/cm *cm min degree C c COEFF. = 0.125 cals/gm degree C = 7.859 9m/cm*cm = 2.1e6 kgf/cm*cm c SPECIFIC HEAT c DENSITY = 7.85 c MOD. OF ELAS. = 2.1e c POISSON'S RATIO = 0.3

APPENDIX 5

Project Staff in 1983-1984

Faculty

であるが、10分かりのかでは10分からなどのは10分からないのでは10分からないというでは10分からないのでは、10分からのでは、10分からないでは、10分からないでは、10分からないでは、10分からない

M. M. Barash, Ransburg Professor of Manufacturing and Professor of Industrial Engineering	Principal Investigator & Project Director
C. R. Liu, Professor of Industrial Engineering	Principal Investigator
K. S. Fu, Goss Distinguished Professor of Engineering (Elec.Eng.)	Faculty Associate
J. Modrey, Professor of Mechanical Engineering	Co-Principal Investigator
A. L. Sweet, Professor of Industrial Engineering	Co-Principal Investigator
W. Stevenson, Professor of Mechanical Engineering	Faculty Associate
J. J. Talavage, Professor of Industrial Engineering	Faculty Associate
R. Hannam*, Visiting Associate Professor of Industrial Engineering	Faculty Associate
W. Johnson**, Visiting Professor of Industrial Engineering	Faculty Associate
A. Shurnsherrudint, Visiting Associate Professor of Industrial Engineering	Faculty Associate

^{(*}University of Manchester Institute of Science and Technology, England ***University of Cambridge, England †Cranfield Institute of Technology, England)

Graduate Research Assistants

P. Chen Y.C. Chou P. Ferreira R. Khanna S.K. Lee G.R. Liang Y.T. Lin J. Lopez D. Noller

SSS PERSONAL MARKET BROKE

Y.S. Ouyang
U. Roy
S. Shodhan
R. Srinivasan
S. Venkatramen
R. Venugopal
M.C. Wu
J. York

END

FILMED

3-86

DTIC