Optimización de hiperparámetros en Deep Learning

En su aplicación a closificación de EEG

Javier León Palomares

Contenidos

- 1. Introducción y motivación
- 2. Objetivos
- 3. Un poco de trasfondo
- 4. Metodología
- 5. Resultados
- 6. Conclusiones y trabajo futuro

1.1 — Introducción

- BCI: comunicación directa entre el cerebro y un dispositivo externo.
- EEG: un tipo de BCI no invasivo.
- Red neuronal: modelo complejo de aprendizaje automático.
- Algoritmo genético: metaheurística bioinspirada.

1.2 — Motivación

- El campo de las redes neuronales está en auge.
- Conocimientos útiles para un ingeniero informático hoy en día.
- Experiencia con un problema real.
- Buenos resultados abren nuevas vías de investigación.
- Interés personal.

2 — Objetivos

- Adquirir experiencia práctica en el uso de las redes neuronales.
- Aprender acerca de técnicas de optimización aplicables.
- Conseguir los mejores resultados posibles en el caso de estudio.
- Crear una base de código que pueda ser reutilizada y extendida.

3.1 — Redes neuronales

- Modelos capaces de predecir a partir de unos datos.
- Compuestas por:
 - Capa de entradas.
 - > Capas ocultas.
 - Capa de salida.
- A optimizar: número de capas, tamaño de las mismas, tasa de aprendizaje, función de activación...

3.2 — Algoritmos genéticos

- Población de soluciones actualizada en cada generación según fitness.
- No garantizan máximos globales, pero suelen ser muy efectivos.

3.3 — Selección de características

- No todas las características tienen por qué ser importantes.
- Reducir su número tiene ventajas:
 - Entrenamiento más rápido.
 - Menor overfitting.
 - Mayor interpretabilidad (a veces).
- Es un problema NP-duro, por lo que necesitamos heurísticas.

4.1 — Conjunto de datos

- Patrones de EEG (178 de entrenamiento y 178 de test).
- Tres sujetos de prueba (104, 107 y 110).
- 3600 características inicialmente.
- Tres clases:
 - Mover la mano izquierda.
 - > Mover la mano derecha.
 - Mover los pies.

4.2 — Algoritmo genético multiobjetivo l

- Basado en los frentes de Pareto, soluciones que no mejoran a las demás en todas las medidas.
- Generalmente, nos interesa el primero de ellos (marcado en amarillo en la gráfica).
- Las más separadas tienen más prioridad.
- Queda a nuestra elección cuál de las soluciones nos conviene más.

4.2 — Algoritmo genético multiobjetivo II

- Evaluación
- Ordenación
- Reemplazo generacional


```
Algorithm 1: NSGA-II
 Procedure NSGA-II
     Input: population size, generations, data, max features
     Output: final population
     population ← Initialize(population size, max features);
     evaluation ← Evaluate(population, data);
     population ← NDSort(population, evaluation);
     for gen = 0 to max generations do
        parents \leftarrow Selection(population);
        offspring ← CreateOffspring(parents);
        shared population \leftarrow population \cup offspring;
        evaluation ← Evaluate(shared population, data);
        shared population ← NDSort(shared population,
        evaluation);
        population ← Replace(shared population, population
        size);
     end
     return population;
  end
```

4.2 — Algoritmo genético multiobjetivo II

- Evaluación
- Ordenación
- Reemplazo generacional

```
Algorithm 1: NSGA-II
  Procedure NSGA-II
     Input: population size, generations, data, max features
     Output: final population
     population ← Initialize(population size, max features);
     evaluation ← Evaluate(population, data);
     population \leftarrow NDSort(population, evaluation);
    for gen = 0 to max generations do
        parents ← Selection(population);
        offspring ← CreateOffspring(parents);
        shared population \leftarrow population \cup offspring;
        evaluation ← Evaluate(shared population, data);
        shared population ← NDSort(shared population,
        evaluation);
        population - Replace(shared population, population
        size);
     end
     return population;
  end
```

4.2 — Algoritmo genético multiobjetivo II

- Evaluación
- Ordenación
- Reemplazo generacional

```
Población anterior

+
Descendencia

Ordenar y truncar

Población nueva
```

```
Algorithm 1: NSGA-II
  Procedure NSGA-II
     Input: population size, generations, data, max features
     Output: final population
     population ← Initialize(population size, max features);
     evaluation ← Evaluate(population, data);
     population ← NDSort(population, evaluation);
     for gen = 0 to max generations do
        parents ← Selection(population);
        offspring ← CreateOffspring(parents);
        shared population \leftarrow population \cup offspring;
        evaluation ← Evaluate(shared population, data);
        shared population ← NDSort(shared population,
        evaluation);
        population — Replace(shared population, population
        size);
     end
     return population;
  end
```

4.3 — Pasos de optimización

- 1. Selección de características.
- 2. Optimización de estructuras de las redes.
- 3. Optimización de parámetros de aprendizaje.

El proceso es incremental: en cada paso se usan los resultados de los anteriores.

5.1 — Configuración experimental

Software:

- Python, Keras (con TensorFlow como backend), Scikit-Learn y NumPy para obtener resultados experimentales.
- R para crear gráficas.

Hardware:

- Primer servidor dedicado:
 - Dos Intel® Xeon® E5-2620 v2 @ 2.10GHz, 32GB DDR3.
 - NVIDIA Tesla® K20c, 5GB GDDR5.
- Segundo servidor dedicado:
 - Intel® Xeon® E5-2620 v4 @ 2.10GHz, 32GB DDR4.
 - NVIDIA Tesla® K40m, 12GB GDDR5.

5.2.1 — Selección de características: crossover l

5.2.1 — Selección de características: crossover II

104	Single-point	Two-point
Uniform	p = 0.000027	p = 0.000835
Single-point		p = 0.056282

107	Single-point	Two-point
Uniform	p = 0.000023	p = 0.000104
Single-point		p = 0.678133

110	Single-point	Two-point
Uniform	p = 0.000454	p = 0.006561
Single-point		p = 0.299489

5.2.2 — Selección de características: tamaño I

104: individuals and generations comparison (CV)

104: individuals and generations comparison (Kappa)

5.2.2 — Selección de características: tamaño II

104	300-150	500-100
800-200	p = 0.000144	p = 0.000301
300-150		p = 0.884484

107	300-150	500-100
800-200	p = 0.000016	p = 0.000005
300-150		p = 0.002441

110	300-150	500-100
800-200	p = 0.003392	p = 0.000005
300-150		p = 0.034037

5.2.3 — Selección de características: modelo

5.2.3 — Selección de características: modelo

Logistic Regression against SVM					
104 107 110					
p = 0.917098	p = 0.000025	p = 0.000060			

5.2.4 — Selección de características: resultados

Los mejores resultados hasta el momento son:

	Feature selection		No featur	e selection
Subject	Log Reg	SVM	Log Reg	SVM
104	0.042246	0.033781	0.279954	0.305215
107	0.101059	0.075823	0.327885	0.328009
110	0.117981	0.101107	0.404468	0.404545

(1 - Coeficiente Kappa sobre el conjunto de test)

5.3.1 — Optimización de estructuras: fitness

Cambiamos validación cruzada por una medida de simplicidad.

$$T_s = T_{cv} - \left(\frac{k}{k+1}\right) T_{cv} = \left(\frac{1}{k+1}\right) T_{cv}$$

Subject	Cross-validation	Simplicity	
104	0.09289	0.08456	
107	0.16840	0.19395	
110	0.15169	0.17690	

5.3.2 — Optimización de estructuras: resultados

Los resultados promedio y pico de la optimización de estructuras son:

	Average	Best
104	0.09037 ± 0.0089	0.07598
107	0.21734 ± 0.0328	0.14319
110	0.20895 ± 0.0147	0.18543

(1 - Coeficiente Kappa sobre el conjunto de test)

5.4.1 — Optimización de aprendizaje: descripción

Buscamos optimizar tres hiperparámetros en concreto:

- Épocas de entrenamiento: en el rango [1,→).
- Tasa de aprendizaje: en el rango (0,1].
- Tasa de dropout: en el rango [0,1).

5.4.2 — Optimización de aprendizaje: evolución

Evolution of the average Kappa loss in learning optimization

5.4.3 — Optimización de aprendizaje: comparativa

	Average	Best
104	0.06756 ± 0.0119	0.05907
107	0.08636 ± 0.0106	0.07582
110	0.11794 ± 0.0069	0.10953

Optimización de redes neuronales

Selección de características

	Feature selection		No feature	e selection
Subject	Log Reg	SVM	Log Reg	SVM
104	0.042246	0.033781	0.279954	0.305215
107	0.101059	0.075823	0.327885	0.328009
110	0.117981	0.101107	0.404468	0.404545

5.4.4 — Optimización de aprendizaje: modelos

Aquí se muestran las mejores redes obtenidas para los tres sujetos de prueba:

- 104: 50 características, 1 capa oculta (110 neuronas), 283 épocas, 0.027 tasa de aprendizaje, 0% dropout, función de activación ELU.
- 107: 46 características, 2 capas ocultas (89 y 102 neuronas), 239 épocas,
 0.048 tasa de aprendizaje, 5% dropout, función de activación ELU.
- 110: 50 características, 1 capa oculta (34 neuronas), 286 épocas, 0.066 tasa de aprendizaje, 5% dropout, función de activación ELU.

5.5.1 — Eficiencia: selección de características

Si comparamos los modelos que evalúan las características:

LogReg (s)	SVM (s)
1043.635	2220.472

Y si evaluamos con SVM pero en paralelo con 16 hebras:

Sequential (s)	Parallel (s)
2220.472	922.550

5.5.2 — Eficiencia: paralelización de hebras

Evolution of feature selection time with multiple threads

Evolution of training time with multiple threads

6 — Conclusiones y trabajo futuro

6.1 — Conclusiones

- El código¹ cumple su función, además de ser reutilizable y paralelizable.
- Se utilizan tecnologías actuales (como Python o TensorFlow...).
- Hemos obtenido resultados muy prometedores sobre el conjunto de datos.
- La selección de características es una fase tan importante como la optimización de modelos.

1. Código fuente disponible en: https://github.com/jleon95/UGR_TFG

6.2 — Trabajo futuro

- Explorar el límite de características en la fase de selección.
- Optimizar los SVM para tratar de mejorar los resultados.
- Aplicar técnicas de paralelismo más avanzadas.
- Estudiar una posible transferencia de características.

