1

EE5609 Assignment 18

SHANTANU YADAV, EE20MTECH12001

1 Problem

Let **M** be a $n \times n$ Hermitian matrix of rank $k, k \neq n$. If $\lambda \neq 0$ is an eigenvalue of **M** with corresponding unit column vector **u**, with $\mathbf{M}\mathbf{u} = \lambda \mathbf{u}$ then which of the following are true?

- 1) $rank(\mathbf{M} \lambda \mathbf{u}\mathbf{u}^*) = k 1$
- 2) $rank (\mathbf{M} \lambda \mathbf{u}\mathbf{u}^*) = k$
- 3) $rank (\mathbf{M} \lambda \mathbf{u}\mathbf{u}^*) = k + 1$
- 4) $(\mathbf{M} \lambda \mathbf{u}\mathbf{u}^*)^n = \mathbf{M}^n \lambda^n \mathbf{u}\mathbf{u}^*$

2 EXPLANATION

Objective	Explanation	
	Since	
	$rank(\mathbf{A} - \mathbf{B}) \ge rank(\mathbf{A}) - rank(\mathbf{B})$	(2.0.1)
	$\implies rank (\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*) \ge rank (\mathbf{M}) - rank (\mathbf{u}\mathbf{u}^*)$	(2.0.2)
	$\implies rank\left(\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*\right) \ge k - rank\left(\mathbf{u}\mathbf{u}^*\right)$	(2.0.3)
	If A is a non-zero column vector of order $m \times 1$ and B is a non-zero order $1 \times n$ then $rank(AB) = 1$. So,	on-zero row
	$rank\left(\mathbf{uu}^{*}\right)=1$	(2.0.4)
	$\implies rank \left(\mathbf{M} - \lambda \mathbf{u} \mathbf{u}^* \right) \ge k - 1$	(2.0.5)
	Also since,	
Rank of $\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*$	$\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^* = \mathbf{M} - \mathbf{M}\mathbf{u}\mathbf{u}^* = \mathbf{M}(I - \mathbf{u}\mathbf{u}^*)$	(2.0.6)
	and	
	$rank\left(\mathbf{M}\left(\mathbf{I}-\mathbf{u}\mathbf{u}^{*}\right)\right) \leq min\left(rank\left(\mathbf{M}\right), rank\left(\mathbf{I}-\mathbf{u}\mathbf{u}^{*}\right)\right)$	(2.0.7)
	$\implies rank\left(\mathbf{M}\left(\mathbf{I} - \mathbf{u}\mathbf{u}^*\right)\right) \le k$	(2.0.8)
	Thus we have from (2.0.5) and (2.0.8) that	
	$rank\left(\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*\right) = k - 1 \text{ or } k$	(2.0.9)
	Consider a matrix	
	$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(2.0.10)

Objective	Explanation	
	such that $rank(M) = 1$. The eigenvalue of M is $\lambda = 1$	and the
	corresponding eigenvector is	
	$\mathbf{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$	(2.0.11)
	$\mathbf{u} = (0)$	(2.0.11)
	Thus we have,	
	$\mathbf{M} - \lambda \mathbf{u} \mathbf{u}^* = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix}$	(2.0.12)
	$= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(2.0.13)
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	(2.0.14)
	$\implies rank\left(\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*\right) = 0$	(2.0.15)
	Hence if $rank(\mathbf{M}) = k$ then $rank(\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*) = k - 1$.	
	Let the given statement be $P(n)$: $(\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*)^n = \mathbf{M}^n - \lambda^n \mathbf{u}\mathbf{u}^*$. It can be seen that $P(1)$ is true. Assume $P(n)$ is true for some $k \in \mathbf{N}$ such that	
$(\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*)^n = \mathbf{M}^n - \lambda^n \mathbf{u}\mathbf{u}^*$	$(\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*)^k = \mathbf{M}^k - \lambda^k \mathbf{u}\mathbf{u}^*$	(2.0.16)
	Now to prove that P(k+1) is true we have	
	$(\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*)^{k+1} = (\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*)(\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*)^k$	(2.0.17)
	$= (\mathbf{M} - \lambda \mathbf{u}\mathbf{u}^*) \left(\mathbf{M}^k - \lambda^k \mathbf{u}\mathbf{u}^* \right)$	(2.0.18)
	$= \mathbf{M}^{k+1} - \lambda^k \mathbf{M} \mathbf{u} \mathbf{u}^* - \lambda \mathbf{M}^k \mathbf{u} \mathbf{u}^* + \lambda^{k+1} \mathbf{u} \mathbf{u}^* \mathbf{u} \mathbf{u}^*$	(2.0.19)
	$= \mathbf{M}^{k+1} - \lambda^{k+1} \mathbf{u} \mathbf{u}^* - \lambda^{k+1} \mathbf{u} \mathbf{u}^* + \lambda^{k+1} \mathbf{u} \ \mathbf{u}\ ^2 \mathbf{u}^*$	(2.0.20)
	$= \mathbf{M}^{k+1} - 2\lambda^{k+1}\mathbf{u}\mathbf{u}^* + \lambda^{k+1}\mathbf{u}\mathbf{u}^*$	(2.0.21)
	$= \mathbf{M}^{k+1} - \lambda^{k+1} \mathbf{u} \mathbf{u}^*$	(2.0.22)
	Hence, by the Principle of Mathematical Induction P(n) is true for all n.	
Answer	(1) and (4)	

TABLE I