UCSD Cognitive Science

Trimming and Improving Skip-thought Vectors

--Representing sentences as vectors

Shuai Tang (唐帅)

Sentence — Vector

Sentence — Vector

We communicate in sentences, and they convey our thoughts.

Sentence — Vector

Vector is an efficient type of representation for machines to operate on.

Sentence — Vector

If we convert a sentence into a vector that **captures the meaning** of the sentence, then Google can do much better searches; they can search based on what's being said in a document. (Hinton, 2015)

Natural Reasoning

Machine Learning

Sentence — Vector

Learn from data!

Supervised Learning Unsupervised Learning

Supervised Learning

Supervised Learning

labels

Unsupervised Learning

Sentence — Vector

Learn from data!

Without labels!

Existing Models

- Bag-of-words (BOW)
- Continuous Bag-of-words (CBOW)/ Skip-gram
- Sequence to Sequence (Seq2Seq)
- Skip-thought

Existing Models

- Bag-of-words (BOW)
 - Harris, Word1954
- Continuous Bag-of-words (CBOW)/ Skip-gram
- Sequence to Sequence (Seq2Seq)
- Skip-thought

• Corpus

- i love you.
- however, you don't love me.
- it is a sad story.

Dictionary

• {i, love, you, however, don't, me, it, is, a, sad, story}

Representations

```
• [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
```

• Corpus

- i love you.
- however, you don't love me.
- it is a sad story.

Dictionary

• {i, love, you, however, don't, me, it, is, a, sad, story}

Representations

```
• [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
```

• Corpus

- i love you.
- however, you don't love me.
- it is a sad story.

Dictionary

• {i, love, you, however, don't, me, it, is, a, sad, story}

Representations

- [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
- [0, 0, 1, 1, 1, 0, 0, 0, 0, 0]
- [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

• Corpus

- i love you.
- however, you don't love me.
- it is a sad story.

Dictionary

• {i, love, you, however, don't, me, it, is, a, sad, story}

Representations

- [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
- [0, 0, 1, 1, 1, 0, 0, 0, 0, 0]
- [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

Fast!

- Corpus
 - i love you.
 - however, you don't love me.
 - it is a sad story.
- Dictionary
 - {i, love, you, however, don't, me, it, is, a, sad, story}
- Representations
 - [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
 - [0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0]
 - [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

Existing Models

- Bag-of-words (BOW)
- Continuous Bag-of-words (CBOW)/ Skip-gram
 - Mikolov et al., NIPS2013
- Sequence to Sequence (Seq2Seq)
- Skip-thought

cats

love

dogs

dogs love cats

Same!

cats love dogs

Existing Models

- Bag-of-words (BOW)
- Continuous Bag-of-words (CBOW)/ Skip-gram
- Sequence to Sequence (Seq2Seq)
 - Sutskever, Vinyals & Le (NIPS2014)
 - Dai & Le (NIPS2015)
- Skip-thought

With Recurrent Neural Networks

• Each training iteration...

• Each training iteration...

• Each training iteration...

With Recurrent Neural Networks

- Pros:
 - Word-order information is utilized in training.
- Cons:
 - Training is slow.

Existing Models

- Bag-of-words (BOW)
- Continuous Bag-of-words (CBOW)/ Skip-gram
- Sequence to Sequence (Seq2Seq)
- Skip-thought
 - Kiros et al., NIPS2015

Trimming and Improving Skip-thought Vectors

- Skip-thought
 - Kiros et al., NIPS2015
- Our hypotheses to improve skip-thought
- Comparison between our trimmed skip-thought model and the skip-thought model
- Conclusion

Skip-thought (Kiros et al., NIPS2015)

• Skip-thought model is for learning a generic sentence encoder.

Encoder - Decoder

Sentence
$$\xrightarrow{encode}$$
 Representation \xrightarrow{decode} Sentences

Skip-thought (Kiros et al., NIPS2015)

• The skip-thought model learns to encode a sentence, and decode its surrounding two sentences, instead of itself.

The context in which words and sentences are understood plays an important role in human comprehension. (Altmann & Steedman, 1988; Binder & Desai, 2011)

Skip-thought (Kiros et al., NIPS2015)

- The model contains
 - an encoder
 - a previous decoder
 - a next decoder

 $\begin{array}{c} & \overset{\text{decode}}{\longrightarrow} Sentence_{i-1} \\ \\ Sentence_i & \xrightarrow{encode} Representation_i \end{array}$

decode

 $Sentence_{i+1}$

3 parametric functions needs to be learned

Skip-thought (Kiros et al., NIPS2015)

- Given a sentence tuple
 - i love you.
 - however, you don't love me.
 - it is a sad story.
- Detailed encoding schemes
 - Uni-skip/ Bi-skip/ Combine-skip

Skip-thought (Kiros et al., NIPS2015)

- Given a sentence tuple
 - i love you.
 - however, you don't love me.
 - it is a sad story.
- Detailed encoding schemes
 - Uni-skip/ Bi-skip/ Combine-skip

Uni-Skip

Bi-Skip

Combine-Skip

Trimming and Improving Skip-thought Vectors

- Skip-thought (Kiros et al., NIPS2015)
- Our hypotheses to improve skip-thought
 - Neighborhood hypothesis
 - Average+Max Connection
 - Word Vectors Initialization
- Comparison between our trimmed skip-thought model and the skip-thought model
- Conclusion

Does this model really need a previous decoder and a next decoder?

 Hypothesis: Given the current sentence, inferring the previous sentence and inferring the next sentence both provide same supervision power.

Skip-thought model

Neighborhood Hypothesis

• Can we further simplify the skip-thought model?

Yes!

Skip-thought Model

Our Trimmed Skip-thought Model

$$Sentence_i \xrightarrow{encode} Representation_i \xrightarrow{decode} Sentence_{i+1}$$

- BookCorpus dataset (Zhu et al., ICCV2015)
 - 74 million contiguous sentences from 7,000 books

Encoder - Decoder

• Then, the sentence **encoder** was evaluated on 7 natural language processing (NLP) tasks.

Trimming and Improving Skip-thought Vectors

- Skip-thought
- Our hypotheses to improve skip-thought
 - Neighborhood hypothesis
 - Average+Max Connection
 - Word Vector Initialization
- Comparison between our trimmed skip-thought model and the skip-thought model
- Conclusion

• Plain Connection (Kiros et al., NIPS2015)

• Average+Max Connection (Chen et al., arXiv2017)

• Plain Connection (Kiros et al., NIPS2015)

• Average+Max Connection (Chen et al., arXiv2017)

- The average+max connection was proposed for supervised tasks, and specifically for Stanford Natural Language Inference corpus.
 - (Chen et al., arXiv2017; Bowman et al., EMNLP2015)

supervised — unsupervised

• We hypothesize that, our trimmed skip-thought model could also benefit from the average+max connection .

- The average+max connection was proposed for **supervised** tasks, and specifically for Stanford Natural Language Inference corpus.
 - (Chen et al., arXiv2017; Bowman et al., EMNLP2015)

supervised — unsupervised

• We hypothesize that, our trimmed skip-thought model could also benefit from the average+max connection .

		Relationship of sentence pair				Classification on single sentence						
		6	SICK							-		
Model	WE	r	ρ	MSE	MSRP (Acc/F1)	MR	CR	SUBJ	MPQA	TREC		
	3 7			Plain	Connection	ell.						
bi-T-skip	25,2112	0.8408	0.7649	0.2994	75.3 / 83.0	76.1	80.3	92.3	87.5	86.6		
uni-T-skip	word2vec	0.8349	0.7629	0.3084	73.7 / 81.9	75.7	82.1	91.3	87.4	86.4		
C-T-skip		0.8518	0.7808	0.2802	75.7 / 83.0	76.8	83.2	92.8	88.4	87.5		
				Average+	Max Connection							
bi-T-skip	1	0.8463	0.7744	0.2894	73.3 / 81.6	74.4	78.6	91.3	86.2	88.8		
uni-T-skip	word2vec	0.8466	0.7705	0.2884	74.0 / 81.7	73.0	78.6	91.3	85.2	88.4		
C-T-skip	2020/2020	0.8598	0.7892	0.2654	75.0 / 82.2	75.1	80.0	92.2	87.2	90.0		

		Relationship of sentence pair				Classification on single sentence						
Model	WE	SICK			Menny A. Test	MD	CD	CUIDI	MOA	TDEC		
Model	WE	r	ρ	MSE	MSRP (Acc/F1)	MR	CR	SUBJ	MPQA	TREC		
	30 70			Plain	Connection	viii.						
bi-T-skip	0.0112	0.8408	0.7649	0.2994	75.3 / 83.0	76.1	80.3	92.3	87.5	86.6		
uni-T-skip	word2vec	0.8349	0.7629	0.3084	73.7 / 81.9	75.7	82.1	91.3	87.4	86.4		
C-T-skip		0.8518	0.7808	0.2802	75.7 / 83.0	76.8	83.2	92.8	88.4	87.5		
				Average	Max Connection							
bi-T-skip		0.8463	0.7744	0.2894	73.3 / 81.6	74.4	78.6	91.3	86.2	88.8		
uni-T-skip	word2vec	0.8466	0.7705	0.2884	74.0 / 81.7	73.0	78.6	91.3	85.2	88.4		
C-T-skip	20000000000	0.8598	0.7892	0.2654	75.0 / 82.2	75.1	80.0	92.2	87.2	90.0		

Trimming and Improving Skip-thought Vectors

- Skip-thought
- Our hypotheses to improve skip-thought
 - Neighborhood hypothesis
 - Average+Max Connection
 - Word Vectors Initialization
- Comparison between our trimmed skip-thought model and the skip-thought model
- Conclusion

- Pretrained word vectors usually help the deep learning models to perform better on **supervised** tasks. (Collobert et al., JMLR2011)
 - word2vec (Mikolov et al., NIPS2013)
 - GloVe (Pennington et al., EMNLP2014)
- We hypothesize that, initializing our model with **pretrained word vectors** could also help the model to learn better sentence representation.

- Pretrained word vectors usually help the deep learning models to perform better on **supervised** tasks. (Collobert et al., JMLR2011)
 - word2vec (Mikolov et al., NIPS2013)
 - GloVe (Pennington et al., EMNLP2014)

 We hypothesize that, initializing our model with pretrained word vectors could also help the model to learn better sentence representation.

• Based on our trimmed skip-thought model with Average+Max connection, we implement models with 3 initializations.

Maria	WE	SICK			Menn (A/EI)	M	CD	CUDI	MOA	TDEC
Model	WE	r	ρ	MSE	MSRP (Acc/F1)	MR	CR	SUBJ	MPQA	TREC
				Average+	Max Connection					
bi-T-skip	72	0.8336	0.7612	0.3112	73.2 / 81.3	69.7	76.0	89.6	83.5	86.6
uni-T-skip	random	0.8293	0.7555	0.3180	72.5 / 81.0	67.3	74.9	89.0	81.1	83.6
C-T-skip		0.8458	0.7755	0.2902	74.7 / 82.1	70.4	76.7	90.4	83.8	84.8
bi-T-skip		0.8444	0.7739	0.2922	75.1 / 82.4	74.4	79.5	90.9	85.3	87.6
uni-T-skip	GloVe	0.8485	0.7711	0.2854	73.7 / 81.8	74.6	78.8	91.1	86.2	87.0
C-T-skip	10000	0.8596	0.7903	0.2665	75.4 / 82.6	75.6	80.4	91.9	87.0	89.0
bi-T-skip		0.8463	0.7744	0.2894	73.3 / 81.6	74.4	78.6	91.3	86.2	88.8
uni-T-skip	word2vec	0.8466	0.7705	0.2884	74.0 / 81.7	73.0	78.6	91.3	85.2	88.4
C-T-skip	001000000000000000000000000000000000000	0.8598	0.7892	0.2654	75.0 / 82.2	75.1	80.0	92.2	87.2	90.0

		Relationship of sentence pair					Classification on single sentence						
Model	WE		SICK		MSRP (Acc/F1)	MR	CR	SUBJ	MPQA	TREC			
Mouti		r	ρ	MSE	More (Accord)	THE STATE OF	Cit	3007	ini QA	INEC			
				Average+	Max Connection								
bi-T-skip	72	0.8336	0.7612	0.3112	73.2 / 81.3	69.7	76.0	89.6	83.5	86.6			
uni-T-skip	random	0.8293	0.7555	0.3180	72.5 / 81.0	67.3	74.9	89.0	81.1	83.6			
C-T-skip		0.8458	0.7755	0.2902	74.7 / 82.1	70.4	76.7	90.4	83.8	84.8			
bi-T-skip		0.8444	0.7739	0.2922	75.1 / 82.4	74.4	79.5	90.9	85.3	87.6			
uni-T-skip	GloVe	0.8485	0.7711	0.2854	73.7 / 81.8	74.6	78.8	91.1	86.2	87.0			
C-T-skip	2000	0.8596	0.7903	0.2665	75.4 / 82.6	75.6	80.4	91.9	87.0	89.0			
bi-T-skip		0.8463	0.7744	0.2894	73.3 / 81.6	74.4	78.6	91.3	86.2	88.8			
uni-T-skip	word2vec	0.8466	0.7705	0.2884	74.0 / 81.7	73.0	78.6	91.3	85.2	88.4			
C-T-skip	000000000000000000000000000000000000000	0.8598	0.7892	0.2654	75.0 / 82.2	75.1	80.0	92.2	87.2	90.0			

Furthermore...

• We wonder if adding more parameters could improve our model.

Furthermore...

• Double-sized encoder gave us further improvement.

		Relationship of sentence pair				Classification on single sentence						
						[
Model	WE		SICK		MSRP (Acc/F1)	MR	CP	SURI	MPQA	TREC		
WIOUCI	WL	r	ho	MSE	WISKI (ACCITI)	IVIIC	CK	ЗОВ		TREC		
Doubled Encoder's Dimension vs. Results reported by [6]												
bi-T-skip		0.8503	0.7796	0.2823	74.4 / 82.2	74.8	80.3	91.8	87.0	88.2		
uni-T-skip	word2vec	0.8486	0.7784	0.2857	74.3 / 82.4	72.9	78.0	90.7	85.7	86.4		
C-T-skip		0.8611	0.7946	0.2634	74.5 / 82.2	75.4	80.3	92.2	87.4	88.4		
bi-skip [6]		0.8405	0.7696	0.2995	71.2 / 81.2	73.9	77.9	92.5	83.3	89.4		
uni-skip [6]	random	0.8477	0.7780	0.2872	73.0 / 81.9	75.5	79.3	92.1	86.9	91.4		
C-skip [6]		0.8584	0.7916	0.2687	73.0 / 82.0	76.5	80.1	93.6	87.1	92.2		
1	uni-T-skip C-T-skip bi-skip [6] ıni-skip [6]	bi-T-skip uni-T-skip word2vec C-T-skip bi-skip [6] uni-skip [6] random	Model WE Double of the property of the	Model WE SICK Doubled Encode bi-T-skip 0.8503 0.7796 uni-T-skip word2vec 0.8486 0.7784 C-T-skip 0.8611 0.7946 bi-skip [6] 0.8405 0.7696 uni-skip [6] random 0.8477 0.7780	Model WE SICK Doubled Encoder's Dimental Di-T-skip bi-T-skip 0.8503 0.7796 0.2823 uni-T-skip word2vec 0.8486 0.7784 0.2857 C-T-skip 0.8611 0.7946 0.2634 bi-skip [6] 0.8405 0.7696 0.2995 uni-skip [6] random 0.8477 0.7780 0.2872	Model WE SICK r MSRP (Acc/F1) Doubled Encoder's Dimension vs. Results repulsion bi-T-skip uni-T-skip uni-T-skip word2vec 0.8503 0.7796 0.2823 74.4 / 82.2 74.3 / 82.4 74.3 / 82.4 74.3 / 82.4 74.5 / 82.2 74.3 / 82.4 74.5 / 82.2 74.3 / 82.2 74.5 / 82.2 74.5 / 82.2 74.3 / 82	Model WE SICK r MSRP (Acc/F1) MR Doubled Encoder's Dimension vs. Results reported bi-T-skip uni-T-skip uni-T-skip word2vec 0.8503 0.7796 0.2823 74.4 / 82.2 74.8 0.2857 74.3 / 82.4 72.9 0.8486 0.7784 0.2857 74.3 / 82.4 72.9 0.8611 0.7946 0.2634 74.5 / 82.2 75.4 0.8405 0.7696 0.2995 71.2 / 81.2 75.4 0.8405 0.7696 0.2995 71.2 / 81.2 73.9 0.8405 0.7696 0.2995 71.2 / 81.2 73.9 0.8477 0.7780 0.2872 73.0 / 81.9 75.5	Model WE SICK r MSRP (Acc/F1) MR CR Doubled Encoder's Dimension vs. Results reported by [6] bi-T-skip uni-T-skip uni-T-skip 0.8503 0.7796 0.2823 74.4 / 82.2 74.8 80.3 C-T-skip word2vec 0.8486 0.7784 0.2857 74.3 / 82.4 72.9 78.0 C-T-skip 0.8611 0.7946 0.2634 74.5 / 82.2 75.4 80.3 bi-skip [6] uni-skip [6] 0.8405 0.7696 0.2995 71.2 / 81.2 73.9 77.9 uni-skip [6] random 0.8477 0.7780 0.2872 73.0 / 81.9 75.5 79.3	Model WE SICK r MSE MSRP (Acc/F1) MR CR SUBJ Doubled Encoder's Dimension vs. Results reported by [6] bi-T-skip uni-T-skip uni-T-skip 0.8503 0.7796 0.2823 74.4 / 82.2 74.8 80.3 91.8 C-T-skip word2vec 0.8486 0.7784 0.2857 74.3 / 82.4 72.9 78.0 90.7 C-T-skip 0.8611 0.7946 0.2634 74.5 / 82.2 75.4 80.3 92.2 bi-skip [6] mi-skip [6] 0.8405 0.7696 0.2995 71.2 / 81.2 73.9 77.9 92.5 mi-skip [6] random 0.8477 0.7780 0.2872 73.0 / 81.9 75.5 79.3 92.1	Model WE SICK r MSRP (Acc/F1) MR CR SUBJ MPQA Doubled Encoder's Dimension vs. Results reported by [6] bi-T-skip uni-T-skip uni-T-skip 0.8503 0.7796 0.2823 74.4 / 82.2 74.8 80.3 91.8 87.0 C-T-skip 0.8486 0.7784 0.2857 74.3 / 82.4 72.9 78.0 90.7 85.7 C-T-skip 0.8611 0.7946 0.2634 74.5 / 82.2 75.4 80.3 92.2 87.4 bi-skip [6] uni-skip [6] random 0.8405 0.7696 0.2995 71.2 / 81.2 73.9 77.9 92.5 83.3 uni-skip [6] random 0.8477 0.7780 0.2872 73.0 / 81.9 75.5 79.3 92.1 86.9		

Furthermore...

• Double-sized encoder gave us further improvement.

			Relationship of sentence pair				Classification on single sentence						
							1						
	Model	WE		SICK		MSRP (Acc/F1)	MR	CR	SUBJ	MPQA	TREC		
	Wiodei	WE	r	ρ	MSE		MIK	CK	зові	MIQA	TREC		
			Doub	led Encod	er's Dimer	sion vs. Results rep	ported b	oy [6]					
	bi-T-skip		0.8503	0.7796	0.2823	74.4 / 82.2	74.8	80.3	91.8	87.0	88.2		
Ours	uni-T-skip	word2vec	0.8486	0.7784	0.2857	74.3 / 82.4	72.9	78.0	90.7	85.7	86.4		
Ours	C-T-skip		0.8611	0.7946	0.2634	74.5 / 82.2	75.4	80.3	92.2	87.4	88.4		
Kiros et al.	bi-skip [6]	random	0.8405	0.7696	0.2995	71.2 / 81.2	73.9	77.9	92.5	83.3	89.4		
	uni-skip [6]		0.8477	0.7780	0.2872	73.0 / 81.9	75.5	79.3	92.1	86.9	91.4		
	C-skip [6]		0.8584	0.7916	0.2687	73.0 / 82.0	76.5	80.1	93.6	87.1	92.2		

Trimming and Improving Skip-thought Vectors

- Skip-thought
- Our hypotheses to improve skip-thought
- Comparison between our trimmed skip-thought model and the skip-thought model
 - Number of Parameters
 - Training Time
- Conclusion

Our Trimmed Skip-thought

Our Trimmed Skip-thought

Skip-thought (Kiros et al., NIPS2016)	620*20000
Our Trimmed and Improved Skip-thought	300*20000

Our Trimmed Skip-thought

Our Trimmed Skip-thought

Our Trimmed Skip-thought

Our Trimmed Skip-thought

Number of Parameters

Model	RNNs	Word Vectors	Linear Prediction
uni-T-skip (ours)	4.32M	6M	12M
bi-T-skip (ours)	3.24M		
uni-T-skip-double (ours)	10.80M		
bi-T-skip-double (ours)	6.48M		
uni-skip (Kiros et al., NIPS2015)	69.12M	12.4M	48M
bi-skip (Kiros et al., NIPS2015)	51.84M		

[&]quot;RNNs" refers to recurrent networks in the encoder and the decoder.

[&]quot;Word Embedding" refers to all word vectors in unsupervised training.

^{``}Linear Prediction'' refers to the linear prediction layer in the decoder.

Training Time

Model		Training Time
Skip-thought	(Kiros et al., NIPS2015)	2 weeks

Training Time

Model		Training Time
Skip-thought	(Kiros et al., NIPS2015)	2 weeks
Skip-thought	(our implementation)	4 days

Training Time

Model		Training Time
Skip-thought	(Kiros et al., NIPS2015)	2 weeks
Skip-thought	(our implementation)	4 days
Our Trimmed and Improved Skip-thought		1 day

Trimming and Improving Skip-thought Vectors

- Skip-thought
- Our hypotheses to improve skip-thought
- Comparison between our trimmed skip-thought model and the skip-thought model
- Conclusion

• by dropping one decoder

$$Sentence_i \xrightarrow{encode} Representation_i \xrightarrow{decode} Sentence_{i+1}$$

 by applying the average+max connection between the encoder and the decoder

 by initializing the model with pretrained word vectors instead of random values

• by **accelerating** the training procedure, because we cut out 80% parameters in the skip-thought model.

Model		Training Time
Skip-thought	(Kiros et al., NIPS2015)	2 weeks
Skip-thought	(our implementation)	4 days
Our Trimmed and Improved Skip-thought		1 day

Committee & Collaborators

- Committee members
 - Virginia R. de Sa, CogSci
 - Benjamin K. Bergen, CogSci
 - Jeffrey L. Elman, CogSci
 - Julian J. McAuley, CSE

- Collaborators
 - Hailin Jin, Chen Fang, Zhaowen Wang
 - Researchers at Adobe research lab

Acknowledgements

 Many thanks to Adobe Research Lab for GPUs support, also to NVIDIA for DGX-1 trial.

Acknowledgements

• Many thanks to cohort, and Marta.

Q & A