Chapter Extra 科學簡史

古典力學

年份	科學家	英文名	簡介
1542	哥白尼	Copernicus	日心說
十六世紀	伽利略	Galileo	慣性實驗、自由落體實驗
1618	克卜勒	Kepler	克卜勒三大定律
1678	虎克	Hooke	虎克定律
1687	牛頓	Newton	牛頓運動定律,說明克卜勒三大定律

基本作用力

年份	科學家	英文名	簡介
1687	牛頓	Newton	萬有引力定律
1785	庫侖	Coulomb	庫侖定律
1798	卡文迪西	Cavendish	以實驗測出萬有引力
1935	湯川秀樹	Yukawa	提出強力
1937	費米	Fermi	提出弱力

光與波

年份	科學家	英文名	簡介
1690	惠更斯	Huygens	光的波動說
1704	牛頓	Newton	光的色散,光是微粒
1801	楊氏	Young	雙狹縫干涉實驗
1818	菲涅耳	Fresnel	建立繞射理論
1842	都卜勒	Doppler	都卜勒效應
1873	馬克士威	Maxwell	光是電磁波的一種,預測非可見光的存在,算出光速
1888	赫茲	Hertz	驗證非可見光的電磁波存在

電磁學

年份	科學家	英文名	簡介
1820	厄斯特	Oersted	發現電流磁效應,電與磁首次被發現關聯
1820	安培	Ampere	右手定則
1831	法拉第	Faraday	發現電磁感應
1833	冷次	Lenz	提出冷次定律
1861	馬克士威	Maxwell	整理出馬克士威方程式,電磁學之集大成

熱學

年份	科學家	英文名	簡介
1845	焦耳	Joule	熱也是一種能量
1848	克爾文	Kelvin	發明絕對溫標
1905	愛因斯坦	Einstein	$E = mc^2$

原子與近代物理

年份	科學家	英文名	簡介
1803	道耳頓	Dalton	原子論,物質由原子組成
1827	布朗	Brownian	布朗運動
1897	湯姆森	Thomson	陰極射線管發現電子,測電子荷質比
1900	普朗克	Planck	量子論
1905	愛因斯坦	Einstein	光子,解釋光電效應,解釋布朗運動證明原子存在,狹義相對
			論說明時間與空間的關係,十年後提出廣義相對論說明重力的
			作用方式
1911	拉賽福	Rutherford	α粒子散射實驗發現原子核,行星原子模型,八年後發現質子
1913	波耳	Bohr	波耳氫原子模型,原子能階
1924	德布羅意	de Broglie	波粒二象性
1929	哈伯	Hubble	指出宇宙膨脹、哈伯定律
1932	查兌克	Chadwich	發現中子
1964	蓋爾曼	Gell-Mann	提出夸克存在

著名的理論物理學家 (補充)

年份	科學家	英文名	簡介
十七世紀末	牛頓	Newton	著作「自然哲學的數學原理」,提出運動定律,萬有引力,發 明微積分
十八世紀	拉格朗日	Lagrange	發展數學分析理論:「拉格朗日差值多項式」,「拉格朗日乘子法」,創立古典力學分支「拉格朗日力學」
十九世紀 後半	馬克士威	Maxwell	整理出「馬克士威方程式」,電磁學之集大成,光是電磁波的一種,預測非可見光的存在,算出光速,提出氣體的「馬克士威分佈」
十九世紀 後半	波茲曼	Boltzmann	創立「統計力學」,提出波茲曼分佈,並解釋熱力學第二定律的微觀定義
1900	普朗克	Planck	研究黑體輻射,提出能量量子 $(E = hv)$
1905	愛因斯坦	Einstein	光子,解釋光電效應,解釋布朗運動證明原子存在,狹義相 對論說明時間與空間的關係,十年後提出廣義相對論說明重 力的作用方式
1913	波耳	Bohr	以原子能階方式創立波耳氫原子模型,領導哥本哈根學派
1925	海森堡	Heisenberg	創立「矩陣力學」,兩年後發表海森堡不確定性原理,領導納 粹德國的核武計畫
1925	費米	Fermi	描述遵守「包立不相容定理」的粒子的性質,使該種粒子被 命名為「費米子」,並於 1937 年發表β衰變中費米子間的作用 方式,為弱力理論的開創者
1926	薛丁格	Schrödinger	創立「薛丁格方程式」為主的量子力學,被稱為「波動力學」, 於 1935 年提出「薛丁格的貓」思想實驗
1930	狄拉克	Dirac	以「狄拉克方程式」整合量子力學,著作「量子力學原理」, 並開創「量子電動力學」學科
1935	湯川秀樹	Yukawa	研究原子核內的作用力,被稱為「強力」,並預測參與作用力的「介子」存在
二十世紀 後半	費曼	Feynman	1949 年創立量子力學的路徑積分形式,發明「費曼圖」描述 基本粒子的反應,1960 年代的物理課程被編成「費曼物理學 講義」發行,著作包含「量子電動力學」在內的多本物理教 科書以及科普書
二十世紀末	霍金	Hawking	漸凍症科學家,解釋了廣義相對論中奇點的問題,預測黑洞 會放出「霍金輻射」造成質量損失,著作包含「時間簡史」 在內的多本科普書

Ex1.科學家的貢獻

下列關於科學家貢獻,何者正確?

- (A) 伽利略發表「自然哲學的數學原理」,為力學研究先驅
- (B) 哥白尼提出地心說,受到教會支持
- (C) 法拉第透過實驗發現通有電流的導線可以影響附近的磁針
- (D) 庫倫透過庫侖定律建立了電磁學的理論體系
- (E) 波茲曼發明了絕對溫標,成為熱學之集大成者
- (F) 赫茲藉由實驗驗證了電磁波的存在
- (G) 牛頓發現了虎克定律,內容是彈簧受到的力與形變量的關係
- (H) 愛因斯坦因為相對論獲得諾貝爾獎
- (I) 湯川秀樹提出了強力的理論,費曼研究 Beta 衰變中的交互作用成為弱力研究的先驅
- (J) 牛頓認為光是波動,並且透過楊氏的雙狹縫干涉實驗更加確立光的波動性質

Ex2.科學發展歷史

下列科學家的貢獻,請依照時間排序:

- (A) 愛因斯坦提出相對論
- (B) 赫茲於實驗中發現了光電效應
- (C) 牛頓發表萬有引力理論,解釋了行星的運動規律
- (D) 霍金在廣義相對論的基礎下,發表了許多與黑洞相關的研究
- (E) 布朗透過觀測水中微粒的不規則運動,推測水分子的存在
- (F) 哥白尼提出日心說,遭到教會的反對與懲罰
- (G) 卡文迪西以實驗測量萬有引力的常數 G

Ex3.物理學的分野

下列關於物理學的分野,何者是正確的?

- (A) 牛頓力學於微觀和巨觀上都能獲得良好的應用
- (B) 愛因斯坦被稱為二十世紀最偉大的實驗物理學家
- (C) 近代物理學包含了量子力學以及相對論兩大部門
- (D) 近代物理學多是探討微觀的物理現象,因為古典物理對於巨觀現象的詮釋已經大致齊全
- (E) 測不準原理主要成因是儀器測量的極限,人類的科技目前仍無法突破

Ex4.物理學的分野

下列關於物理學發展的敘述,何者是正確的?

- (A) 二十世紀初因為無線電的發展,人類的交流得以縮短,這是因為電磁學的發展
- (B) 現代人可以用原子力顯微鏡看見物體表面的原子分佈,主要應用了光學的原理
- (C) 牛頓被尊為科學的巨人,他在力學、光學、數學、熱學、電磁學都有理論研究成果
- (D) 為了表彰科學家的貢獻,被視為至上榮譽的諾貝爾獎於 17 世紀初開始頒發

答案

- 1.(F)
- 2.(F)(C)(G)(E)(B)(A)(D)
- 3.(C)
- 4.(A)
- (C) 熱學:牛頓冷卻定律 光學:折射理論、光的粒子說 數學:微積分、幾何學 沒有電磁學
- (D) 諾貝爾(1833-1896), 諾貝爾獎於 1905 年開始頒發