Distributed Computing and Introduction to High Performance Computing

Imad Kissami¹

¹Mohammed VI Polytechnic University, Benguerir, Morocco

AL-KHWARIZMI

Outline of this lecture

- Distributed Memory Architectures
- The MPI Library
- My first example using MPI

I. Kissami AL-KHWARIZMI 2/116

Distributed Memory Multiprocessors

- Each processor has a local memory
 - Physically separated memory address space
- Processors must communicate to access non-local data
 - Message communication (message passing)
 - Message passing architecture
 - Processor interconnection network
- Parallel applications must be partitioned across
 - Processors: execution units
 - Memory: data partitioning
- Scalable architecture
 - Small incremental cost to add hardware (cost of node)

I. Kissami AL-KHWARIZMI 3/

The Message-Passing Model

- Nodes are complete computer systems
 - Including I/O
- Nodes communicate via interconnection network
 - Standard networks
 - Specialized networks
- Network interfaces
 - Communication integration
- Easier to build

I. Kissami AL-KHWARIZMI 4/116

Performance Metrics: Latency and Bandwidth

Bandwidth

- Need high bandwidth in communication
- Match limits in network, memory, and processor
- Network interface speed vs. network bisection bandwidth

Latency

- Performance affected since processor may have to wait
- Harder to overlap communication and computation
- Overhead to communicate is a problem in many machines

Latency hiding

- Increases programming system burden
- Examples: communication/computation overlaps, prefetch

I. Kissami AL-KHWARIZMI 5/116

Advantages of Distributed Memory Architectures

- The hardware can be simpler (especially versus NUMA) and is more scalable
- Communication is explicit and simpler to understand
- Explicit communication focuses attention on costly aspect of parallel computation
- Synchronization is naturally associated with sending messages, reducing the possibility for errors introduced by incorrect synchronization
- Easier to use sender-initiated communication, which may have some advantages in performance

I. Kissami AL-KHWARIZMI 6/116

MPI (Message Passing Interface)

- A standard message passing specification for the vendors to implement
- Context: distributed memory parallel computers
 - Each processor has its own memory and cannot access the memory of other processors
 - Any data to be shared must be explicitly transmitted from one to another
- Most message passing programs use the single program multiple data (SPMD) model
 - Each processor executes the same set of instructions
 - Parallelization is achieved by letting each processor operation a different piece of data MIMD (Multiple Instructions Multiple Data)

I. Kissami AL-KHWARIZMI 7/116

The MPI library

Rank and size

- One can access to the number of processes managed by a given communicator using the MPI_COMM_SIZE() function
- You can get the rank of a process, within a communicator, by calling MPI_COMM_RANK() function

```
from mpi4py import MPI

#Communicator, Rank and size

COMM = MPI.COMM_WORLD

SIZE = COMM.Get_size()

RANK = COMM.Get_rank()

print("I am the proccess {RANK} among {SIZE}".format(RANK = RANK, SIZE = SIZE))
```

```
$ mpirun -n 4 python ranksize.py
I am the process 0 among 4
I am the process 1 among 4
I am the process 2 among 4
I am the process 3 among 4
```

I. Kissami AL-KHWARIZMI 8/116