Exercise 1 Obtain the following bounds for the call prices (C) and for the put ones (P) European (E) and American (A):

$$\max(S_n - K, 0) \le C_n(E) \le C_n(A);$$

$$\max(0, (1+r)^{-(N-n)}K - S_n) \le P_n(E) \le (1+r)^{-(N-n)}K$$

Exercise 2 Let $\{C_n^E\}_{n=0}^N$ be the price of a European option with payoff Z_N and let $\{Z_n\}_{n=0}^N$ be the payoffs of an American option. Show that if $C_n^E \geq Z_n, n = 0, 1, ..., N-1$, then $\{C_n^A\}_{n=0}^N$ (the prices of the American option) coincide with $\{C_n^E\}_{n=0}^N$.

Exercise 3 Prove that, with the usual notations,

$$\sup_{\tau \in \mathcal{T}_{0,N}} \mathbb{E}_{\mathbb{Q}} \left(\frac{(S_{\tau} - K)^{+}}{(1+r)^{\tau}} \right) = \mathbb{E}_{\mathbb{Q}} \left(\frac{(S_{N} - K)^{+}}{(1+r)^{N}} \right),$$

where \mathbb{Q} is the risk neutral probability of a complete market.

Exercise 4 Consider a market with N trading periods, a risky asset S and zero interest rate. In such a market we want to price an American option with payoffs $Z_n = d > 0$ if $n \le N - 1$ and $Z_N = S_N$ if n = N. Prove that its price is equal to that of a European call option on S, with strike d and maturity time N-1 plus the fixed amount d.