SVM, Bayesian Networks, and Ensemble Methods

SVM: Support Vector Machines

 Uses a nonlinear mapping to transform the original training data into a higher dimension

• With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")

 With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane

 SVM <u>finds this hyperplane</u> using support vectors ("essential" training tuples) and margins (defined by the support vectors)

Which Hyperplane?

• SVMs maximize the margin around the separating hyperplane

 The decision function is fully specified by a subset of training samples (<u>support vectors</u>)

Quadratic programming problem

SVM: General Philosophy

Maximum Marginal Hyperplane

Why is SVM Effective on *High Dimensional* Data?

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- The support vectors are the essential on critical training examples —they lie <u>closest</u> to the decision boundary (MMH)
- If all other training examples are <u>removed</u> and the training is repeated, the **same** separating hyperplane would be found
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

SVM: When Data is Linearly Separable

• Let data **D** be $(X_1, y_1), ..., (X_{|D|}, y_{|D|})$, where X_i is the set of training tuples associated with the class labels y_i

• There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the <u>best one</u> (the one that minimizes classification error on <u>unseen data</u>)</u>

• SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

SVM: Linearly Separable

A separating hyperplane can be written as

```
• \mathbf{W} \bullet X + b = 0
where \mathbf{W} = \{w_1, w_2, ..., w_n\} is a weight vector and b a scalar (bias)
```

• For 2-D it can be written as

•
$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

where w_0 is the bias

Thus any point lying above the separating hyperplane satisfies:

```
• W_0 + W_1 X_1 + W_2 X_2 > 0
```

• Any point lying below the separating hyperplane satisfies:

```
• W_0 + W_1 X_1 + W_2 X_2 < 0
```

• Thus the hyperplane defining the sides of the margin can be written as:

```
• H1: W_0 + W_1 X_1 + W_2 X_2 \ge 1 for y_i = +1, and
• H2: W_0 + W_1 X_1 + W_2 X_2 \le -1 for y_i = -1
```

- Any training tuples falling on hyperplanes H1 or H2 (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem: Quadratic objective function and linear constraints; Quadratic Programming (QP); Lagrangian multipliers

Linear SVM Mathematically

What we know:

•
$$\mathbf{w} \cdot \mathbf{x}^+ + b = +1$$

•
$$\mathbf{w} \cdot \mathbf{x} + b = -1$$

•
$$\mathbf{w} \cdot (\mathbf{x}^+ - \mathbf{x}^{-1}) = 2$$

$$M = \frac{(x^+ - x^-) \cdot w}{|w|} = \frac{2}{|w|}$$

Linear SVM Mathematically

Goal: 1) Correctly classify all training data

$$wx_{i} + b \ge 1 \quad \text{if } y_{i} = +1$$

$$wx_{i} + b \le 1 \quad \text{if } y_{i} = -1$$

$$y_{i}(wx_{i} + b) \ge 1 \quad \text{for all i}$$
2) Maximize the Margin
$$M = \frac{2}{|w|}$$
same as minimize $w^{t}w$

We can formulate a Quadratic Optimization Problem and solve for w and b

• Minimize
$$\Phi(w) = \frac{1}{2} w^t w$$
$$y_i(wx_i + b) \ge 1 \quad \forall i$$
subject to

Solving the Optimization Problem

```
Find \mathbf{w} and b such that \mathbf{\Phi}(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} is minimized; and for all \{(\mathbf{x}_i, \mathbf{y}_i)\}: \mathbf{y}_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) \ge 1
```

- Need to optimize a <u>quadratic function</u> subject to <u>linear constraints</u>.
- Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.
- The solution involves constructing a dual problem where a Lagrange multiplier α_i is associated with every constraint in the primary problem:

```
Find \alpha_1...\alpha_N such that \mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j \text{ is maximized and}
(1) \quad \sum \alpha_i y_i = 0
(2) \quad \alpha_i \ge 0 \text{ for all } \alpha_i
```

The Optimization Problem Solution

The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$
 $b = y_k - \mathbf{w}^T \mathbf{x_k}$ for any $\mathbf{x_k}$ such that $\alpha_k \neq 0$

- Each non-zero α_i indicates that corresponding x_i is a support vector.
- Then the classifying function will have the form:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an inner product between the test point x and the support vectors x_i .
- Also keep in mind that solving the optimization problem involves computing the inner products $\mathbf{x}_i^T \mathbf{x}_i$ between all pairs of training points.

Dataset with noise

- Hard Margin: So far we require all data points be classified correctly
- No training error
- What if the training set is noisy?
- - Solution 1: use very powerful kernels

OVERFITTING!

Soft Margin Classification

Slack variables ξi can be added to allow misclassification of difficult or noisy examples.

What should our quadratic

optimization criterion be?

Minimize
$$\frac{1}{2}$$
 w.w + $C\sum_{k=1}^{R} \varepsilon_k$

Hard Margin v.s. Soft Margin

The <u>old</u> formulation:

```
Find \mathbf{w} and b such that \mathbf{\Phi}(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} is minimized and for all \{(\mathbf{x}_i, \mathbf{y}_i)\} \mathbf{y}_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) \ge 1
```

• The <u>new</u> formulation incorporating slack variables:

```
Find \mathbf{w} and b such that \mathbf{\Phi}(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \Sigma \xi_i is minimized and for all \{(\mathbf{x}_i, \mathbf{y}_i)\} y_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b) \ge 1 - \xi_i and \xi_i \ge 0 for all i
```

Parameter C can be viewed as a way to control overfitting.

Linear SVMs: Summary

- The classifier is a <u>separating hyperplane</u>.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_i .
- Both in the dual formulation of the problem and in the solution training points appear only inside dot products:

Find $\alpha_1...\alpha_N$ such that

 $Q(\alpha) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_i y_i y_i x_i^T x_i$ is maximized and

 $(1) \ \Sigma \alpha_i y_i = 0$

(2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^\mathsf{T} \mathbf{x} + \mathbf{b}$$

SVM: Linearly Inseparable

- Extend linear SVMs
- Find non-linear decision boundaries (non-linear hypersurfaces).
- Step 1: transform the original input data into high dimensional space
- Step 2: Search for linear separating hyperplane in the new space
- The linear hyperplane in high dimensional space is non-linear in the original space

SVM Linearly Inseparable

SVM: Linearly Inseparable

- Requires a mapping to higher dimensional space
 - e.g. $\varphi([x_i, x_i]) = [x_i, x_i, x_i^2 + x_i^2]$
 - or $\varphi(X_i, X_i) = \varphi(X_i) \cdot \varphi(X_i)$
- Two problems:
 - How to choose a mapping?
 - Higher number of dimensions increases computational cost
 - Computing the dot product for all of the support vectors
 - One multiplication and one addition for each dimension
- Math trick:
 - Apply a <u>kernel function</u> to the original input data
 - Wherever a dot product is used, replace it with a kernel function

SVM: Kernel Function

- Equivalent to the dot product
 - $K(X_i, X_i) = \phi(X_i) \bullet \phi(X_i)$
- We can solve $K(X_i, X_j)$ without having to perform any of the mappings $\phi(X_i)$

 Provide a way to manipulate data as though it were projected into a higher dimensional space by operating on it in its original space

SVM: Kernel Function

- Instead of computing the dot product on the transformed data, it is mathematically equivalent to apply a kernel function $K(X_i, X_j)$ to the original data, i.e., $K(X_i, X_i) = \Phi(X_i) \Phi(X_i)$
- Typical Kernel Functions

Polynomial kernel of degree $h: K(X_i, X_i) = (X_i \cdot X_i + 1)^h$

Gaussian radial basis function kernel: $K(X_i, X_i) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

- After applying the kernel function, finding *maximal margin hyperplane* is similar to linear SVM with an upper bound on the Lagrangian multipliers
- SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

Weakness of SVM

- It is sensitive to noise
 - A relatively small number of mislabeled examples can dramatically decrease the performance
- It only considers two classes
 - how to do multi-class classification with SVM?
 - Answer:
 - 1) with output arity m, learn m SVM's
 - SVM 1 learns "Output == 1" vs "Output != 1"
 - SVM 2 learns "Output == 2" vs "Output != 2"
 - •
 - SVM m learns "Output == m" vs "Output != m"
 - 2)To predict the output for a new input, just predict with each SVM and find out which one puts the prediction the *furthest* into the positive region.

SVM vs. Logistic Regression

- Essentially they have the same objective
 - Binary classification with a linear decision boundary
 - Both are complex optimization problems solved using gradient descent and Lagrangian methods
- Key differences
 - LR uses a <u>logistic (sigmoid) function</u> to classify the data
 - SVM uses the <u>"kernel trick"</u> to find the maximum marginal boundary (defined by support vectors)
 - "Kernel trick" is difficult to implement using LR
 - SVM has been shown to **outperform** LR

SVM Applications

- SVM has been used successfully in many real-world problems
 - text (and hypertext) categorization
 - image classification
 - bioinformatics (protein classification, cancer classification)
 - hand-written character recognition

Application 1: Cancer Classification

- High Dimensional
 - p > 1000; n < 100
- Imbalanced
 - less positive samples

$$K[x,x] = k(x,x) + \lambda \frac{n^+}{N}$$

- Many irrelevant features
- Noisy ______

SVM is sensitive to noisy (mis-labeled) data 9

Genes								
Patients	g-1	g-2	•••••	д-р				
P-1								
p-2								
••••••								
p-n								

FEATURE SELECTION

In the linear case, w_i² gives the ranking of dim i

Application 2: Text Categorization

- Task: The classification of natural text (or hypertext) documents into a fixed number of predefined categories based on their content.
 - email filtering, web searching, sorting documents by topic, etc..

 A document can be assigned to more than one category, so this can be viewed as a series of binary classification problems, one for each category

Representation of Text

IR's vector space model (aka bag-of-words representation)

- A doc is represented by a vector indexed by a pre-fixed set or dictionary of terms
- Values of an entry can be binary or weights

$$\phi_i(x) = \frac{\mathrm{tf}_i \mathrm{log}\,(\mathrm{idf}_i)}{\kappa},$$

- Normalization, stop words, word stems
- Doc $x => \varphi(x)$
- https://www.csee.umbc.edu/~ian/irF02/lectures/07Models-VSM.pdf

Text Categorization using SVM

- The distance between two documents is $\varphi(x) \cdot \varphi(z)$
- $K(x,z) = \varphi(x)\cdot\varphi(z)$ is a valid kernel, SVM can be used with K(x,z) for discrimination.
- Why SVM?
 - -High dimensional input space
 - -Few irrelevant features (dense concept)
 - -Sparse document vectors (sparse instances)
 - -Text categorization problems are linearly separable

Some Issues in SVM

- Choice of kernel
 - Gaussian or polynomial kernel is default
 - If ineffective, more elaborate kernels are needed
 - Domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Bayesian Belief Networks

- Bayesian belief networks (also known as Bayesian networks, probabilistic networks)
 - A simple, graphical notation for *conditional independence assertions* and hence for compact specification of full joint distributions
 - Allow class conditional independencies between subsets of variables
- A (directed acyclic) graphical model of causal relationships
 - Represents <u>dependency</u> among the variables
 - Gives a specification of **joint** probability distribution

- Nodes: random variables
- Links: dependency
- X and Y are the parents of Z, and Y is the parent of P
- No dependency between Z and P
- Has no loops/cycles

Bayesian Belief Network: An Example

 Derivation of the conditional probability of a particular combination of values of X, from conditional probability table (CPT):

$$P(x_1, x_2, ..., x_n) = \prod_i P(x_i | Parents(X_i))$$

$$P(X = pos \land D = T \land C = T \land P = low \land S = F)$$

$$= P(X = pos|D = T, C = T, P = low, S = F)$$

$$\times P(D = T|C = T, P = low, S = F)$$

$$\times P(C = T|P = low, S = F)P(P = low|S = F)P(S = F)$$

$$= P(X = pos|C = T)P(D = T|C = T)P(C = T|P = low, S = F)$$

$$\times P(P = low)P(S = F)$$

F

0.65

0.30

0.90

0.20

F

Bayesian Belief Network: Types of Reasoning

- Bayesian Networks can support any direction of reasoning
- Diagnostic reasoning
 - Reasoning from <u>symptom</u> to <u>cause</u>
- Predictive reasoning
 - Reasoning from <u>new information about</u> <u>causes</u> to <u>new beliefs about effects</u>
- Inter-causal reasoning
 - Reasoning about the <u>mutual causes</u> of a common effect
- Combined reasoning
 - Combining above types of reasoning in any way

Updating Beliefs Given New Information

Node	No	Reasoning Case						
P(S)=0.3	Evidence	Diagnostic	Predictive	Intercausal		Combined		
		D=T	S=T	C=T	C=T	D=T		
					S=T	S=T		
Bel(P=high)	0.100	0.102	0.100	0.249	0.156	0.102		
Bel(S=T)	0.300	0.307	1	0.825	1	1		
Bel(C=T)	0.011	0.025	0.032	1	1	0.067		
Bel(X=pos)	0.208	0.217	0.222	0.900	0.900	0.247		
Bel(D=T)	0.304	1	0.311	0.650	0.650	1		
P(S)=0.5								
Bel(P=high)	0.100	0.102	0.100	0.201	0.156	0.102		
Bel(S=T)	0.500	0.508	1	0.917	1	1		
Bel(C=T)	0.174	0.037	0.032	1	1	0.067		
Bel(X=pos)	0.212	0.226	0.311	0.900	0.900	0.247		
Bel(D=T)	0.306	1	0.222	0.650	0.650	1		

How are Bayesian Networks Constructed?

- Subjective construction: Identification of (direct) causal structure
 - People are quite good at identifying direct causes from a given set of variables & whether the set contains all relevant direct causes
 - Markovian assumption: Each variable becomes independent of its non-effects once its direct causes are known
 - E.g., S ← F → A ← T, path S→A is blocked once we know F→A
 - HMM (Hidden Markov Model): often used to model dynamic systems whose states are not observable, yet their outputs are
- Synthesis from other specifications
 - E.g., from a formal system design: block diagrams & info flow
- Learning from data
 - Learning parameters gives its structure or learning both structure and parameters
 - Maximum likelihood principle: favors Bayesian networks that maximize the probability of observing the given data set

Training Bayesian Networks

- Scenario 1: Given both the network structure and all variables observable: compute only the CPT entries
- Scenario 2: Network structure known, some variables hidden (missing values): **gradient descent** method, i.e., search for a solution along the steepest descent of a criterion function
 - Weights are initialized to random probability values
 - At each iteration, it moves towards what appears to be the best solution at the moment, without backtracking
 - Weights are updated at each iteration & converge to local optimum
- Scenario 3: Network structure unknown, all variables observable: search through the model space to reconstruct network topology
- Scenario 4: Unknown structure, all hidden variables: No good algorithms known for this purpose
- More:
 - D. Heckerman. <u>A Tutorial on Learning with Bayesian Networks</u>. In *Learning in Graphical Models*,
 M. Jordan, ed.. MIT Press, 1999.

Ensemble Methods: Increasing Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M_1 , M_2 , ..., M_k , with the aim of creating an **improved** model M^*
- Popular ensemble methods
 - Bagging: averaging the prediction over a collection of classifiers
 - Boosting: weighted vote with a collection of classifiers
 - Random Forests
 - Ensemble: combining a set of heterogeneous classifiers

Bagging: Bootstrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of d tuples, at each iteration i, a training set D_i of d tuples is sampled with replacement from D (i.e., bootstrap)
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X
- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy
 - Often significantly better than a single classifier derived from D
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1} , to pay more attention to the training tuples that were misclassified by M_i
 - The final classifier M^* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: <u>Boosting tends to have greater accuracy</u>, <u>but it also risks</u> <u>overfitting the model to misclassified data</u>

Random Forest (Breiman 2001)

- Random Forest:
 - Each classifier in the ensemble is a *decision tree* classifier and is generated using a **random selection of attributes at each node** to determine the split
 - During classification, each tree votes and the most popular class is returned
- Two Methods to construct Random Forest:
 - Forest-RI (random input selection): Randomly select, at each node, F attributes as candidates for the split at the node. The CART methodology is used to grow the trees to maximum size
 - Forest-RC (random linear combinations): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to boosting, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than bagging or boosting

General Random Forest Algorithm

- Each tree is constructed using the following algorithm:
 - 1. N: the number of training samples, M: the number of variables in the classifier.
 - 2. *m*: the number of input variables to be used to determine the decision at a node of the tree; *m* should be much less than *M*.
 - 3. Choose a training set for this tree by choosing *n* times <u>with replacement</u> from all *N* available training cases (i.e.: bootstrap). Use the rest of the cases to estimate the error of the tree, by predicting their classes.
 - 4. For each node of the tree, randomly choose *m* variables on which to base the decision at that node. Calculate the best split based on these *m* variables in the training set.
 - 5. Each tree is fully grown and not pruned.
- Prediction: a new sample is assigned the label of the training sample in the terminal node it ends up in. This procedure is iterated over all trees in the ensemble, and <u>the</u> <u>average vote of all trees is reported as random forest prediction</u>.

References

- https://scikit-learn.org/stable/modules/svm.html
- https://towardsdatascience.com/bbn-bayesian-belief-networks-how-to-build-them-effectively-in-python-6b7f93435bba
- https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. RandomForestClassifier.html