(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 March 2002 (21.03.2002)

(10) International Publication Number WO 02/22592 A2

(51) International Patent Classification7:

C07D 295/00

- (21) International Application Number: PCT/US01/28324
- (22) International Filing Date:

12 September 2001 (12.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/232,255 14 September 2000 (14.09.2000)

- (71) Applicant: SCHERING CORPORATION [US/US]; Patent Department - K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (72) Inventors: GREENLEE, William, J.; 115 Herrick Avenue, Teaneck, NJ 07666 (US). HUANG, Ying; 8 Ivy Terrace, East Brunswick, NJ 08816 (US). KELLY, Joseph, M.; 112 Princeton Road, Parlin, NJ 08859 (US). MC COMBIE, Stuart, W.; 28 Hanford Place, Caldwell, NJ 07006 (US). STAMFORD, Andrew, W.; 27 Overlook Road, Chatham Township, NJ 07928 (US). WU, Yusheng; 235 East 40th Street, Apt. #20C, New York, NY 10016

- (74) Agent: LEE, William, Y.; Schering-Plough Corporation, Patent Department - K-6-1 1990, 2000 Galloping Hll Road, Kenilworth, NJ 07033-0530 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ,VN, YU, ZA.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SUBSTITUTED UREA NEUROPEPTIDE Y Y5 RECEPTOR ANTAGONISTS

(57) Abstract: Compounds represented by structural formula (I) including its N-oxides wherein Y is (I') R1 is H or (C1-C6)alkyl: R2 is H, (C1-C6)alkyl, (C3-C9)cycloalkyl or (C3-C7)cycloalkyl(C1-C6)alkyl; R3 is (II'); Z is OR10, -N(R9)(R10) or - NH2; j is 0, 1 or 2; k is 1 or 2; l is 0, 1 or 2; m is 0, 1 or 2; R4 is 1-3 substituents independently selected from the group consisting of H, -OH, halogen, haloalkyl, (C1-C6)alkyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl, (C1-C6)alkyl, -CN, -O(C1-C6)alkyl, -O(C3-C7)cycloalkyl, -O(C1-C6)alkyl(C3-C7)cycloalkyl, -S(C1-C6)alkyl, -S(C1-C6)alkyl(C3-C7)cycloalkyl, -S(C1-C6)alkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)cycloalkyl(C3-C7)c cloalkyl, -NH2, -NR9R10, -NO2, -CONH2, -CONR9R10 and NR2COR10; R5 is 1-3 substituents independently selected from the group consisting of H, halogen, -OH, haloalkyl, haloalkoxy, -CN, -NO2, (C1-C6)alkyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C6)alkyl, -O(C1-C6)alkyl, -O(C3-C7)cycloalkyl, -O(C1-C6)alkyl(C3-C7)cycloalkyl, -CONH2 and -CONR9R10; R6 is -SO2(C1-C6)alkyl, -SO2(C3-C7)cycloalkyl, -SO2(C1-C6)alkyl(C3-C7)cycloalkyl, -SO2(C1-C6)haloalkyl, -SO2(hydroxy(C2-C6)alkyl), -SO2(amino(C2-C6)alkyl), -SO2(alkoxy(C2-C6)alkyl), -SO2(alkylamino(C2-C6)alkyl), -SO2(dialkylamino(C2-C6)alkyl), -SO2(aryl), -SO2(heteroaryl), -SO2(aryl)(C2-C6-alkyl), SO2NH2, -SO2NR9R10, -C(O)C1-C6alkyl, -C(O)C3-C7cycloalkyl, -C(O)aryl, - C(O)heteroaryl, -C(O)NR9R10, -C(O)NH2, -C(S)NR9R10, -C(S)NH2, aryl, heteroaryl, -(CH2)nC(O)NR9R10,-C(=NCN)alkylthio, -(CH2)nC(O)NH2, -C(=NCN)NR9R10, (C1-C6)alkyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C6)alkyl, aryl(C1-C6)alkyl, heteroaryl(C1-C6)alkyl or -C(O)OR9, n= 1 to 6; R7 = H or alkyl; R8 is H, (C1-C6)alkyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl, aryl, heteroaryl, -SO2(C1-C6)alkyl, -SO2(C3-C7)cycloalkyl, (C3-C7)cycloalkyl, (C3-C7)cycloa cloalkyl, -SO2(C1-C6)alkyl(C3-C7)cycloalkyl, -SO2(C1-C6)haloalkyl or -SO2(aryl); R9 is (C1-C6)alkyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C6)alkyl, aryl(C1-C6)alkyl, aryl or heteroaryl; and, R10 is hydrogen, (C1-C6)alkyl, (C3-C7)cycloalkyl, (C3-C7)cycloalkyl(C1-C6)alkyl, aryl(C1-C6)alkyl, aryl or heteroaryl; or a pharmaceutically acceptable addition salt and/or hydrate thereof, or prodrug thereof, or R9 and R10 taken together can form a 4-7 membered ring containing 1 or 2 heteroatoms; or where applicable, a geometric or optical isomer or a racemic mixture thereof, are claimed, as well as additional novel compounds; also claimed are pharmaceutical compositions and methods of using the aforesaid compounds in the treatment of obesity, eating disorders such as hyperphagia and diabetes.

PCT/US01/28324

SUBSTITUTED UREA NEUROPEPTIDE Y Y5 RECEPTOR ANTAGONISTS

5

Field of the Invention

The present invention relates to neuropeptide Y Y5 receptor antagonists useful in the treatment of obesity and eating disorders, pharmaceutical compositions containing the compounds, and methods of treatment using the compounds.

10

15

20

25

30

35

Background of the Invention

Neuropeptide Y (NPY) is a 36 amino acid neuropeptide that is widely distributed in the central and peripheral nervous systems. NPY is a member of the pancreatic polypeptide family that also includes peptide YY and pancreatic polypeptide (Wahlestedt, C., and Reis, D., Ann. Rev. Toxicol., 32, 309, 1993). NPY elicits its physiological effects by activation of at least six receptor subtypes designated Y1, Y2, Y3, Y4, Y5 and Y6 (Gehlert, D., Proc. Soc. Exp. Biol. Med., 218, 7, 1998; Michel, M. et al., Pharmacol. Rev., 50, 143, 1998). Central administration of NPY to animals causes dramatically increased food intake and decreased energy expenditure (Stanley, B. and Leibowitz, S., Proc. Natl. Acad. Sci. USA 82: 3940, 1985; Billington et al., Am J. Physiol., 260, R321, 1991). These effects are believed to be mediated at least in part by activation of the NPY Y5 receptor subtype. The isolation and characterization of the NPY Y5 receptor subtype has been reported (Gerald, C. et al., Nature, 1996, 382, 168; Gerald, C. et al. WO 96/16542). Additionally, it has been reported that activation of the NPY Y5 receptor by administration of the Y5 - selective agonist [D-Trp32]NPY to rats stimulates feeding and decreases energy expenditure (Gerald, C. et al., Nature, 1996, 382, 168; Hwa, J. et al., Am. J. Physiol., 277 (46), R1428, 1999). Hence, compounds that block binding of NPY to the NPY Y5 receptor subtype should have utility in the treatment of obesity, disorders such as, bulimia nervosa, anorexia nervosa, and in the treatment of disorders associated with obesity such as type II diabetes, insulin resistance, hyperlipidemia, and hypertension.

Published PCT patent application WO 00/27845 describes a class of compounds, characterized therein as spiro-indolines, said to be selective neuropeptide Y Y5 receptor antagonists and useful for the treatment of obesity and the complications associated therewith. Known urea derivatives indicated as

possessing therapeutic activity are described in U.S. Patent Nos. 4,623,662 (antiatherosclerotic agents) and 4,405,644 (treatment of lipometabolism). Provisional application, U.S. Serial No. 60/232,255 describes a class of substituted urea neuropeptide Y Y5 receptor antagonists.

5

SUMMARY OF THE INVENTION

The present invention relates to compounds represented by the structural formula I:

10 including its N-oxides, wherein

Y is

R¹ is H or (C₁-C₆)alkyl;

 R^2 is H, (C₁-C₆)alkyl, (C₃-C₉)cycloalkyl or (C₃-C₇)cycloalkyl(C₁-C₆)alkyl;

$$R^3 \text{ is } \begin{array}{c} (\text{CH}_2)_{os} - \text{N}(R^7)(R^8) \text{ , } \\ \text{V2} \end{array} \begin{array}{c} \text{CONH}_2 \\ \text{m} \end{array} .$$

15

 $Z \text{ is } OR^{10}, -N(R^9)(R^{10}) \text{ or } -NH_2;$

j is 0, 1 or 2;

20 k is 1 or 2;

I is 0, 1 or 2;

m is 0, 1 or 2;

R⁴ is 1-3 substituents independently selected from the group consisting of H, -OH, halogen, haloalkyl, (C₁-C₆)alkyl, (C₃-C₇)cycloalkyl, (C₃-C₇)cycloalkyl, (C₃-C₇)cycloalkyl,

-CN, $-O(C_1-C_6)$ alkyl, $-O(C_3-C_7)$ cycloalkyl, $-O(C_1-C_6)$ alkyl (C_3-C_7) cycloalkyl, $-S(C_1-C_6)$ alkyl, $-S(C_3-C_7)$ cycloalkyl, $-S(C_1-C_6)$ alkyl (C_3-C_7) cycloalkyl, $-NH_2$, $-NR^9R^{10}$,

-NO2, - CONH2, -CONR $^9\mathrm{R}^{10}$ and NR $^2\mathrm{COR}^{10}$;

R⁵ is 1-3 substituents independently selected from the group consisting of H,

5 halogen, -OH, haloalkyl, haloalkoxy, -CN, -NO $_2$, (C $_1$ -C $_6$)alkyl, (C $_3$ -C $_7$)cycloalkyl,

 $(C_3\text{-}C_7)\text{cycloalkyl}(C_1\text{-}C_6)\text{alkyl}, \ -\text{O}(C_1\text{-}C_6)\text{alkyl}, \ -\text{O}(C_3\text{-}C_7)\text{cycloalkyl},$

-O(C1-C6)alkyl(C3-C7)cycloalkyl, -CONH2 and -CONR 9 R 10 ;

 $\mathsf{R}^6 \text{ is -SO}_2(\mathsf{C}_1-\mathsf{C}_6) \text{alkyl, -SO}_2(\mathsf{C}_3-\mathsf{C}_7) \text{cycloalkyl, -SO}_2(\mathsf{C}_1-\mathsf{C}_6) \text{alkyl}(\mathsf{C}_3-\mathsf{C}_7) \text{cycloalkyl, -SO}_2(\mathsf{C}_1-\mathsf{C}_6) \text{alkyl, -SO$

 $-SO_2(C_1-C_6) haloalkyl, -SO_2(hydroxy(C_2-C_6)alkyl), -SO_2(amino(C_2-C_6)alkyl), -SO_2(amino(C_2-C_6)alkyl),$

 $-SO_2(alkoxy(C_2-C_6)alkyl), -SO_2(alkylamino(C_2-C_6)alkyl), -SO_2(dialkylamino(C_2-C_6)alkyl), -SO_2(dialkylamino(C_2-C_6)alkyl), -SO_2(alkoxy(C_2-C_6)alkyl), -SO_2(alkylamino(C_2-C_6)alkyl), -SO_2(alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alkylamino(C_2-C_6)alk$

 $-SO_2(aryl), -SO_2(heteroaryl), -SO_2(aryl(C_2-C_6-alkyl), -SO_2NH_2, -SO_2NR^9R^{10},$

 $-C(O)(C_{1\text{-}}C_{6})alkyl, -C(O)(C_{3\text{-}}C_{7})cycloalkyl, -C(O)(C_{3\text{-}}C_{7})cycloalkyl(C_{1\text{-}}C_{6})alkyl, -C(O)(C_{3\text{-}}C_{7})cycloalkyl(C_{1\text{-}}C_{1\text{-$

-C(O)aryl, - C(O)heteroaryl, -C(O)NR 9 R 10 , -C(O)NH $_2$, -C(S)NR 9 R 10 , -C(S)NH $_2$, aryl, heteroaryl, -(CH $_2$) $_n$ C(O)NH $_2$, - (CH $_2$) $_n$ C(O)NR 9 R 10 , -C(=NCN)alkylthio, -

15 $C(=NCN)NR^9R^{10}$, $(C_1-C_6)alkyl$, $(C_3-C_7)cycloalkyl$, $(C_3-C_7)cycloalkyl$, $(C_1-C_6)alkyl$, aryl $(C_1-C_6)alkyl$, heteroaryl $(C_1-C_6)alkyl$ or $-C(O)OR^9$, n= 1 to 6;

 $R^7 = H$ or alkyl;

20

25

30

 $R^8 \text{ is H, } (C_1\text{-}C_6)\text{alkyl, } (C_3\text{-}C_7)\text{cycloalkyl, } (C_3\text{-}C_7)\text{cycloalkyl, } (C_1\text{-}C_6)\text{alkyl, aryl,} \\ \text{heteroaryl, } -SO_2(C_1\text{-}C_6)\text{alkyl, } -SO_2(C_3\text{-}C_7)\text{cycloalkyl, } -SO_2(C_1\text{-}C_6)\text{alkyl}(C_3\text{-}C_7)\text{cycloalkyl,} \\ -SO_2(C_1\text{-}C_6)\text{haloalkyl or } -SO_2(\text{aryl});$

 R^9 is (C_1-C_6) alkyl, (C_3-C_7) cycloalkyl, (C_3-C_7) cycloalkyl, (C_1-C_6) alkyl, aryl or heteroaryl; and,

 R^{10} is hydrogen, (C₁-C₆)alkyl, (C₃-C₇)cycloalkyl, (C₃-C₇)cycloalkyl, (C₁-C₆)alkyl, aryl or heteroaryl;

or R⁹ and R¹⁰ taken together can form a 4-7 membered ring containing 1 or 2 heteroatoms;

or a pharmaceutically acceptable addition salt and/or hydrate thereof, or prodrug thereof, or where applicable, a geometric or optical isomer or a racemic mixture thereof.

The present invention also relates to a method of treating obesity and eating disorders, such as hyperphagia, and diabetes comprising administering to a mammal in need of such treatment an effective amount of a compound of formula I.

15

20

25

30

Another aspect of the invention is a pharmaceutical composition for treating obesity, eating disorders and diabetes which comprises a compound of formula I in combination with a pharmaceutically acceptable carrier.

5 <u>DETAILED DESCRIPTION</u>

Except where stated otherwise, the following definitions apply throughout the present specification and claims. These definitions apply regardless of whether a term is used by itself or in combination with other terms. Hence the definition of "alkyl" applies to "alkyl" as well as to the "alkyl" portions of "alkoxy", etc.

Alkyl represents a straight or branched saturated hydrocarbon chain having the designated number of carbon atoms. Where the number of carbon atoms is not specified, 1 to 6 carbons are intended.

Halo represents fluoro, chloro, bromo or iodo.

Haloalkyl refers to alkyl substituted by halo, wherein the number of halo substituents ranges from one to as many halo substituents required for full substitution of the alkyl substituent.

Aryl refers to a mono- or bicyclic ring system having at least one aromatic ring including, but not limited to, phenyl, naphthyl, tetrahydronaphthyl, indanyl, and the like. The aryl group can be unsubstituted or substituted with one, two, or three substituents independently selected from lower alkyl, halo, cyano, nitro, haloalkyl, hydroxy, alkoxy, carboxy, carboxamide, mercapto, sulfhydryl, amino, alkylamino and dialkylamino.

Heteroaryl refers to 5- to 10-membered single or benzofused aromatic rings consisting of 1 to 3 heteroatoms independently selected from the group consisting of —O-, -S-, and —N=, provided that the rings do not possess adjacent oxygen and sulfur atoms. The heteroaryl group can be unsubstituted or substituted with one, two, or three substituents independently selected from lower alkyl, halo, cyano, nitro, haloalkyl, hydroxy, alkoxy, carboxy, carboxamide, mercapto, sulfhydryl, amino, alkylamino, dialkylamino.

When a variable appears more than once in the structural formula, for example R⁹, the identity to each variable appearing more than once may be independently selected from the definition for that variable.

N-oxides can form on a tertiary nitrogen present in an R substituent, or on =N-in a heteroaryl ring substituent and are included in the compounds of formula I.

10

15

20

For compounds of the invention having at least one asymmetrical carbon atom, all isomers, including diastereomers, enantiomers and rotational isomers are contemplated as being part of this invention. The invention includes d and I isomers in both pure form and in admixture, including racemic mixtures. Isomers can be prepared using conventional techniques, either by separating isomers of a compound of formula I or by synthesizing individual isomers of a compound of formula I.

Compounds of formula I can exist in unsolvated and solvated forms, including hydrated forms. In general, the solvated forms, with pharmaceutically acceptable solvents such as water, ethanol and the like, are equivalent to the unsolvated forms for purposes of this invention.

A compound of formula I may form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those skilled in the art. The salts are prepared by contacting the free base forms with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution, such as dilute aqueous sodium hydroxide, potassium carbonate, ammonia or sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the salts are otherwise equivalent to their respective free base forms for purposes of the invention.

In a preferred group of compounds of formula 1, Y is

$$R^5$$
 and R^3 is $N-R^6$ R^5 R^5 and R^3 is $N-R^6$ R^7 R^8 R^7 R^8 R^7 R^8 R^8 R^7 R^8 R^8

including, in particular, those compounds in which R⁵ is 1-3 substitutents independently selected from the group consisting of H, halogen, haloalkyl and haloalkoxy and the sum of j and k is 1, 2 or 3.

In another preferred group of compounds of formula 1, Y is

and
$$R^3$$
 is $N-R^6$.

including, in particular, those compounds in which R⁵ and R⁶ each independently is 1 to 3 substituents independently selected from the group consisting of H, halogen, haloalkyl and haloalkoxy and the sum of j and k is 1, 2 or 3.

Compounds of formula I may be produced by processes known to those skilled in the art as shown in the following reaction schemes and in the preparations and examples below.

Scheme 1

In Scheme 1, a 4-halophenyl isocyanate is condensed with an amino substituted cyclic amine derivative to give a 4-halophenyl urea derivative. Cleavage of the cyclic amine protecting group by methods known to those skilled in the art affords a cyclic amine derivative that can be derivatized, for example by alkylation (Path 1). Coupling of the product with, for example, an arylboronic acid, under palladium catalysis (Suzuki coupling) yields a biaryl urea derivative. Alternatively, the condensation product can be arylated, for example, by use of a Suzuki coupling 10

10

15

reaction (Path 2). When A is a protecting group, deprotection affords an amine that can be derivatized by, for example, sulfonylation, acylation or alkylation.

In Scheme 2, reaction of an aryl lithium, for example, 5-thienyl lithium, with trimethylborate and coupling of the resultant boronate with a 4-haloaniline under palladium catalysis yields a biaryl amine derivative. Protection of the amine with, for example, trifluoroacetic anhydride gives a trifluoroacetamide derivative that can be halogenated with an appropriate halogenating agent, for example N-chlorosuccinimide. The protecting group can be cleaved and the resultant amine can be reacted with, for example, N,N'-disuccinimidyl carbonate and an amino substituted cyclic amine derivative, for example an amino piperidine derivative, to give a substituted urea. Cleavage of the piperidine nitrogen protecting group gives an amine that can derivatized, for example, by sulfonylation or acylation.

9

In Scheme 3, a 4-haloaniline or 4-halonitrobenzene derivative is arylated by use of, for example, a Suzuki coupling reaction. When X is a nitro group, the nitro group is subsequently reduced to an amine. The biaryl amine derivative can be

10

15

20

25

30

converted to an isocyanate derivative, which can be condensed with an amino substituted cyclic amine derivative (Path 3). Alternatively, condensation with an amino substituted cycloalkyl derivative affords cycloalkyl urea derivatives (Paths 4 and 5). An appropriately functionalized cycloalkyl urea derivative can be further functionalized as shown, for example, in Path 5.

The compounds of formula I exhibit selective neuropeptide Y Y5 receptor antagonizing activity, which has been correlated with pharmaceutical activity for treating obesity, eating disorders, such as hyperphagia, and diabetes.

Another aspect of this invention is a method of treating a mammal (e.g., human) having a disease or condition mediated by the neuropeptide Y Y5 receptor by administering a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug to the mammal.

Another aspect of this invention is directed to a method of treating obesity comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of Formula I or a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

Another aspect of this invention is directed to a method for treating metabolic and eating disorders such as bulimia and anorexia comprising administering to a mammal a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

Another aspect of this invention is directed to a method for treating hyperlipidemia comprising administering to a mammal a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

Another aspect of this invention is directed to a method for treating cellulite and fat accumulation comprising administering to a mammal a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

Another aspect of this invention is directed to a method for treating Type II diabetes comprising administering to a mammal a therapeutically effective amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug.

WO 02/22592 PCT/US01/28324

11

In addition to the "direct" effect of the compounds of this invention on the neuropeptide Y Y5 receptor subtype, there are diseases and conditions that will benefit from the weight loss such as insulin resistance, impaired glucose tolerance, Type II Diabetes, hypertension, hyperlipidemia, cardiovascular disease, gall stones, certain cancers, and sleep apnea.

This invention is also directed to pharmaceutical compositions, which comprise an amount of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier therefor.

This invention is also directed to pharmaceutical compositions for the treatment of obesity which comprise an obesity treating amount of a compound of Formula, I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier therefor.

Compounds of Formula I can be produced by processes known to those skilled in the art using either solution phase or solid phase synthesis as shown in the following reaction schemes, in the preparations and examples below.

The compounds of formula I display pharmacological activity in test procedures designed to demonstrate neuropeptide Y Y5 receptor antagonist activity. The compounds are non-toxic at pharmaceutically therapeutic doses. Following are descriptions of the test procedures.

cAMP Assay

5

10

15

20

25

30

HEK-293 cells expressing the Y5 receptor subtype were maintained in Dulbecco's modified Eagles' media (Gico-BRL) supplemented with 10% FCS (ICN), 1% penicillin-streptomycin and 200 μg/ml Geneticin®(GibcoBRL #11811-031) under a humidified 5% CO₂ atmosphere. Two days prior to assay, cells were released from T-175 tissue culture flasks using cell dissociation solution (1X; non-enzymatic [Sigma #C-5914]) and seeded into 96-well, flat-bottom tissue culture plates at a density of 15,000 to 20,000 cells per well. After approximately 48 hours, the cell monolayers were rinsed with Hank's balanced salt solution (HBSS) then preincubated with approximately 150 μl/well of assay buffer (HBSS supplemented with 4 mM MgCl₂, 10 mM HEPES, 0.2% BSA [HH]) containing 1 mM 3-isobutyl-1-methylxanthine ([IBMX] Sigma #1-587) with or without the antagonist compound of interest at 37°C. After

10

15

25

30

20 minutes the 1 mM IBMX-HH assay buffer (± antagonist compound) was removed and replaced with assay buffer containing 1.5 μM (CHO cells) or 5 μM (HEK-293 cells) forskolin (Sigma #F-6886) and various concentrations of NPY in the presence or absence of one concentration of the antagonist compound of interest. At the end of 10 minutes, the media were removed and the cell monolayers treated with 75 μl ethanol. The tissue culture plates were agitated on a platform shaker for 15 minutes, after which the plates were transferred to a warm bath in order to evaporate the ethanol. Upon bringing all wells to dryness, the cell residues were resolubilized with 250 μl FlashPlate® assay buffer. The amount of cAMP in each well was quantified using the [125]-cAMP FlashPlate® kit (NEN #SMP-001) and according to the protocol provided by the manufacturer. Data were expressed as either pmol cAMP/ml or as percent of control. All data points were determined in triplicate and EC₅₀'s (nM) were calculated using a nonlinear (sigmoidal) regression equation (GraphPad Prism™). The K_B of the antagonist compound was estimated using the following formula:

 $K_B = [B] / (1 - \{[A'] / [A]\})$

where [A] is the EC₅₀ of the agonist (NPY) in the absence of antagonist, [A'] is the EC₅₀ of the agonist (NPY) in the presence of antagonist, and [B] is the concentration of the antagonist.

20 NPY Receptor Binding Assay

Human NPY Y5 receptors were expressed in CHO cells. Binding assays were performed in 50 mM HEPES, pH 7.2, 2.5 mM CaCl₂, 1 mM MgCl₂ and 0.1% BSA containing 5-10 μg of membrane protein and 0.1 nM ¹²⁵L-peptide YY in a total volume of 200 μl. Non-specific binding was determined in the presence of 1 μM NPY. The reaction mixtures were incubated for 90 minutes at room temperature then filtered through Millipore MAFC glass fiber filter plates which had been pre-soaked in 0.5% polyethleneimine. The filters were washed with phosphate-buffered saline, and radioactivity was measured in a Packard TopCount scintillation counter.

For the compounds of this invention, a range of neuropeptide Y5 receptor binding activity from about 0.2 nM to about 500 nM was observed. Compounds of this invention preferably have a binding activity in the range of about 0.2 nM to 250 nM, more preferably about 0.2 to 100 nM, and most preferably about 0.2 to 10 nM.

10

15

20

25

30

Yet another aspect of this invention are combinations of a compound of Formula I, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and other compounds as described below.

Accordingly, another aspect of this invention is a method for treating obesity comprising administering to a mammal (e.g., a female or male human)

- a. an amount of a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug; and
- b. an amount of a second compound, said second compound being an anti-obesity and/or anorectic agent such as a Ω_3 agonist, a thyromimetic agent, an anoretic agent, or an NPY antagonist wherein the amounts of the first and second compounds result in a therapeutic effect.

This invention is also directed to a pharmaceutical combination composition comprising: a therapeutically effective amount of a composition comprising

a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug

a second compound, said second compound being an anti-obesity and/or anorectic agent such as a Ω_3 agonist, a thyromimetic agent, an anoretic, or an NPY antagonist; and/or optionally a pharmaceutical carrier, vehicle or diluent.

Another aspect of this invention is a kit comprising:

- a. an amount of a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier, vehicle or diluent in a first unit dosage form;
- b. an amount of an anti-obesity and/or anorectic agent such as a $\[mathbb{R}_3\]$ agonist, a thyromimetic agent, an anoretic agent, or an NPY antagonist and a pharmaceutically acceptable carrier, vehicle or diluent in a second unit dosage form; and
- c. means for containing said first and second dosage forms wherein the amounts of the first and second compounds result in a therapeutic effect.

Preferred anti-obesity and/or anorectic agents (taken singly or in any combination thereof) in the above combination methods, combination compositions and combination kits are:

10

15

30

phenylpropanolamine, ephedrine, pseudoephedrine, phentermine, a cholecystokinin-A (hereinafter referred to as CCK-A) agonist, a monoamine reuptake inhibitor (such as sibutramine), a sympathomimetic agent, a serotonergic agent (such as dexfenfluramine or fenfluramine), a dopamine agonist (such as bromocriptine), a melanocyte-stimulating hormone receptor agonist or mimetic, a melanocyte-stimulating hormone analog, a cannabinoid receptor antagonist, a melanin concentrating hormone antagonist, the OB protein (hereinafter referred to as "leptin"), a leptin analog, a leptin receptor agonist, a galanin antagonist or a GI lipase inhibitor or decreaser (such as orlistat). Other anorectic agents include bombesin agonists, dehydroepiandrosterone or analogs thereof, glucocorticoid receptor agonists and antagonists, orexin receptor antagonists, urocortin binding protein antagonists, agonists of the glucagon-like peptide-1 receptor such as Exendin and ciliary neurotrophic factors such as Axokine.

Another aspect of this invention is a method treating diabetes comprising administering to a mammal (e.g., a female or male human)

- a. an amount of a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug; and
- b. an amount of a second compound, said second compound being an
 aldose reductase inhibitor, a glycogen phosphorylase inhibitor, a sorbitol dehydrogenase inhibitor, a protein tyrosine phosphatase 1B inhibitor, a dipeptidyl protease inhibitor, insulin (including orally bioavailable insulin preparations), an insulin mimetic, metformin, acarbose, a PPAR-gamma ligand such as troglitazone, rosaglitazone, pioglitazone or GW-1929, a sulfonylurea, glipazide, glyburide, or
 chlorpropamide wherein the amounts of the first and second compounds result in a therapeutic effect.

This invention is also directed to a pharmaceutical combination composition comprising: a therapeutically effective amount of a composition comprising

- a first compound, said first compound being a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug;
- a second compound, said second compound being an aldose reductase inhibitor, a glycogen phosphorylase inhibitor, a sorbitol dehydrogenase inhibitor, a protein tyrosine phosphatase 1B inhibitor, a dipeptidyl protease inhibitor, insulin

WO 02/22592 PCT/US01/28324

(including orally bioavailable insulin preparations), an insulin mimetic, metformin, acarbose, a PPAR-gamma ligand such as troglitazone, rosaglitazone, pioglitazone, or GW-1929, a sulfonylurea, glipazide, glyburide, or chlorpropamide; and optionally

a pharmaceutical carrier, vehicle or diluent.

5

20

25

30

Another aspect of this invention is a kit comprising:

- a. an amount of a Formula I compound, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug and a pharmaceutically acceptable carrier, vehicle or diluent in a first unit dosage form;
- b. an amount of an aldose reductase inhibitor, a glycogen phosphorylase
 inhibitor, a sorbitol dehydrogenase inhibitor, a protein tyrosine phosphatase 1B inhibitor, a dipeptidyl protease inhibitor, insulin (including orally bioavailable insulin preparations), an insulin mimetic, metformin, acarbose, a PPAR-gamma ligand such as troglitazone, rosaglitazone, pioglitazone, or GW-1929, a sulfonylurea, glipazide, glyburide, or chlorpropamide and a pharmaceutically acceptable carrier, vehicle or diluent in a second unit dosage form; and
 - means for containing said first and second dosage forms wherein the amounts
 of the first and second compounds result in a therapeutic effect.

For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 95 percent active ingredient. Suitable solid carriers are known in the art, e.g., magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), *Remington's Pharmaceutical Sciences*, 18th Edition, (1990), Mack Publishing Co., Easton, Pennsylvania.

Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.

10

15

20

25

30

Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas, e.g. nitrogen.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.

The compounds of the invention may also be deliverable transdermally. The transdermal composition can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.

Preferably the compound is administered orally.

Preferably, the pharmaceutical preparation is in a unit dosage form. In such form, the preparation is subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.

The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 0.01 mg to about 1000 mg, preferably from about 0.01 mg to about 750 mg, more preferably from about 0.01 mg to about 500 mg, and most preferably from about 0.01 mg to about 250 mg, according to the particular application.

The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage regimen for a particular situation is within the skill of the art. For convenience, the total dosage may be divided and administered in portions during the day as required.

The amount and frequency of administration of the compounds of the invention and/or the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical recommended daily dosage regimen for oral administration can range from about 0.04 mg/day to about 4000 mg/day, in two to four divided doses.

The invention disclosed herein is exemplified by the following preparations and examples which should not be construed to limit the scope of the disclosure.

10

15

Alternative mechanistic pathways and analogous structures may be apparent to those skilled in the art.

In the preparations and examples, the following abbreviations are used: room temperature (R.T.), phenyl(Ph),-t-butyloxycarbonyl(-Boc), methylamine (MeNH $_2$), sodium triacetoxyborohydride (NaBH(O Ac) $_3$)), ethyl acetate (EtOA $_c$), methanol (MeOH), triethylamine (Et $_3$ N), ether (Et $_2$ O), tetrahydrofuran (THF), diisopropylethylamine (iPr $_2$ NEt), 1,2-dimethoxyethane (DME), ethanol (EtOH) and preparative thin layer chromatography (PTLC).

Preparation 1

HN N O

To a mixture of N-t-butoxycarbonyl-4-piperidone (10.0 g, 50 mmol) and aqueous methylamine (40% w/w, 10 ml) in 1,2-dichloroethane (125 ml) was added NaBH(OAc)₃ (16.0 g, 75 mmol). The reaction mixture was stirred overnight, then 1M NaOH (250 ml) was added and the whole was extracted with ether (700 ml). The organic layer was washed with sat'd NaCl, dried (MgSO₄), filtered, and concentrated to give the product (10.5 g, 97%) as an oil. 1 H NMR (CDCl₃, 400 MHz) δ 4.09 (2H, m), 2.86 (2H, m), 2.55 (1H, m), 2.50 (3H, s), 1.90 (2H, m), 1.51 (9H, s), 1.30 (2H, m).

20 Preparation 2

Step 1

To a mixture of N-benzyloxycarbonyl-4-piperidone (10.70 g, 43.1 mmol) and aq. 40% MeNH₂ (6.67 g, 85.8 mmol) in CH₂Cl₂ (200 ml) at R.T. was added NaBH(OAc)₃ (27.25 g, 128.6 mmol). The reaction mixture was stirred at R.T. for 3 h then poured into sat'd NaHCO₃ and extracted with CH₂Cl₂ (3x200 ml). The combined organic layers were dried (Na₂SO₄), filtered and concentrated to give the product (10.63 g, 100%) that was used without further purification. 1 H NMR (CDCl₃, 400 MHz) 5 7.34 (5H, m), 5.12 (2H, s), 4.19 (2H, b), 2.87 (2H, b), 2.72 (1H, m), 2.49 (3H, s), 1.92 (2H, b), 1.42 (2H, m). MS m/e 249 (M+H).

10 Step 2

15

20

25

To the product of Step 1 (10.63 g, 42.9 mmol) in anhydrous CH_2Cl_2 (200 ml) at R.T. was added di-*tert*-butyl dicarbonate (11.30 g, 51.8 mmol) in portions. The reaction mixture was allowed to stir at R.T. for 5 h then poured into 1N NaOH (50 ml)/CH₃OH (10 ml). The mixture was stirred for 15 min. and extracted with CH_2Cl_2 (3x200 ml). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was subjected to column chromatography (gradient 1:10 to 1:4 EtOAc/hexane) to give the product (13.00 g, 87%). ¹H NMR (CDCl₃, 400 MHz) δ 7.33 (5H, m), 5.10 (2H, s), 4.19 (3H, m), 2.87 (2H, b), 2.68 (3H, s), 1.60 (4H, m), 1.44 (9H, s). MS m/e 349 (M+H).

Step 3

A mixture of the product of Step 2 (12.90 g, 37.0 mmol) and 10% Pd/C (1.29 g) in MeOH (300 ml) was stirred under an H_2 atmosphere. After 16 h the reaction mixture was filtered through celite and the filter pad was washed with MeOH. The combined filtrate and washings were concentrated to afford the product (7.80 g, 98.3%). ¹H NMR (CDCl₃, 400 MHz) δ 4.19 (1H, b), 3.15 (2H, b), 2.74 (3H, s), 2.66 (2H, m), 1.63 (4H, m), 1.46 (9H, s). MS m/e 215 (M+H).

Preparation 3

To a stirred solution of Preparation 1 (21.0 g, 83.7 mmol) and Et_3N (35 ml, 252 mmol) in CH_2Cl_2 (300 ml) was added benzyl chloroformate (18 ml, 126 mmol) dropwise. After 5 h, sat'd NH_4Cl (200 ml) was added, and the organic layer was washed with H_2O (150 ml) and sat'd NaCl (150 ml), dried ($MgSO_4$), filtered and concentrated. To the residue (32 g) was added 4N HCl in 1,4-dioxane (300 ml), and the mixture was stirred for 4 h. The reaction mixture was concentrated, acetone was added, and the reaction mixture was again concentrated. The solid residue was dissolved in MeOH (40 ml) and Et_2O was added. The resultant precipitate was collected, washed with Et_2O , and dried to give the product as a white solid (20.2 g, 85%). MS m/e 249 (M+H, free base).

Example 1

15

5

10

Step 1

20

To a solution of Preparation 1 (7.0 g, 33 mmol) in CH_2Cl_2 (200 ml) was added 4-bromophenyl isocyanate (6.8 g, 35 mmol). The reaction mixture was stirred for 16 h, then H_2O (200 ml) was added, and the organic layer was dried (MgSO₄), filtered and evaporated. The residue was triturated with hexanes to give a white solid (11.0 g, 81%). MS (FAB) m/e 411 (M+H)⁺.

Step 2

To a solution of the product of Step 1 (400 mg, 0.97 mmol) and Pd(dppf)Cl₂•CH₂Cl₂ (200 mg, 0.24 mmol) in toluene (10 ml) was added 2-

fluorophenylboronic acid (250 mg, 1.43 mmol), Cs₂CO₃ (350 mg, 1.1 mmol), and H₂O (0.3 ml). The reaction mixture was heated in a 90 °C oil bath under N₂ for 1 h, then allowed to cool. The reaction mixture was partitioned between EtOAc (100 ml) and H₂O (50 ml). The organic layer was dried (MgSO₄), filtered and evaporated. Flash chromatography (3:7 acetone/hexane) of the residue afforded the product (400 mg, 97%). HRMS calc. for C₂₄H₃₁FN₃O₃ (M+H) 428.2349. Found 428.2343.

Coupling of the product of Step 1 with the appropriate boronic acid by essentially the same procedure gave:

HRMS calc. for $C_{25}H_{31}F_3N_3O_3$ (M+H) 478.2318. Found 478.2313.

HRMS calc. for $C_{25}H_{31}F_3N_3O_3$ (M+H) 478.2318. Found 478.2313.

15

HRMS calc. for $C_{25}H_{31}F_3N_3O_4$ (M+H) 494.2260. Found 494.2267.

HRMS calc. for C₂₄H₃₁FN₃O₃ (M+H) 428.2343. Found 428.2349.

MS (FAB) m/e 478 (M+H)*.

MS (FAB) m/e 446 (M+H)⁺.

Step 3

10

1-3-1

. 20

To a solution of the product of Step 2 (100 mg, 0.23 mmol) in CH_2Cl_2 (5 ml) was added 4 M HCl in 1,4-dioxane (3 ml). After 16 h, the reaction mixture was concentrated. The residue was triturated with ether and the solid was collected, washed with ether, and air-dried to give the product (80 mg, 96%). HRMS calc. for $C_{19}H_{23}FN_3O$ (M+H) 328.1825. Found 328.1823.

Treatment of the other products from Step 2 by essentially the same procedure gave:

10 MS (ES) m/e 378 (M+H)⁺.

1-3-3

MS (FAB) m/e 378 (M+H)⁺.

HRMS calc. for C₂₀H₂₃F₃N₃O₂ (M+H) 394.1742. Found 394.1747.

1-3-5

HRMS calc. for $C_{19}H_{23}FN_3O$ (M+H) 328.1825. Found 328.1823.

MS (ES) m/e 378 (M+H)*.

1-3-7

HRMS calc. for $C_{19}H_{22}F_2N_3O$ (M+H) 346.1731. Found 346.1725.

Step 4

10

To a stirred solution of the product of Step 3 (20 mg, 0.055 mmol) and triethylamine (0.1 ml, 0.7 mmol) in CH₂Cl₂ (10 ml) was added methanesulfonyl chloride (0.1 ml, 0.1 mmol). After 16 h the reaction mixture was concentrated and the residue was subjected to PTLC (1:2 acetone/hexanes) to give a white solid (15 mg, 67%). HRMS calc. for C₂₀H₂₅FN₃O₃S (M+H) 406.1601. Found 406.1599.

The following examples were prepared from the appropriate starting amine and sulfonyl chloride.

$$\text{Polypools} \text{Polypools} \text{P$$

	γ. 🗸	~ K	
Υ	R ⁶	MS (M+H)	Example
ار ال	-SO ₂ CF ₃	460	1A
F 7,	-SO ₂ CH(CH ₃) ₂	434	1B
F ₃ C	-SO₂CH₃	456	1C
ÇF ₃ \	-SO₂CH₃	456	1D
CF ₃ \	-SO ₂ CH(CH ₃) ₂	484	1E
CF ₃ \	-SO₂CF₃	510	1F
F ₃ CO \\	-SO₂CH₃	472	1G
F C	-SO₂CH₃	406	1H

Υ	R ⁶	MS (M+H)	Example
F C	-SO₂CF₃	460	11
F ₃ C \\	-SO₂CH₃	456	1J
F, Y,	-SO₂CH₃	424	1K

Example 2

5 Step 1

10

15

20

2-1-1

A stirred solution of 1M 1-thienyllithium in THF (40 ml, 40 mmol) was cooled in a dry-ice/acetone bath under N₂. Triethylborate (8.5 ml, 50 mmol) was added, and the reaction mixture was allowed to warm to R.T.. After 20 min., 4-iodoaniline (6.6 g, 30 mmol), Na₂CO₃ (4.5 g), H₂O (20 ml), and Pd(dppf)Cl₂•CH₂Cl₂ (750 mg, 0.9 mmol) were added. The reaction mixture was stirred under N2 until the exotherm was complete, then partitioned between Et₂O and H₂O. The Et₂O layer was washed with 1N NaOH, dried (Na₂CO₃), and filtered through a pad of silica gel, eluting with Et₂O. The resultant brown solid was dissolved in CH₂Cl₂ (100 ml) and a solution of trifluoroacetic anhydride (8 ml, 57 mmol) in CH₂Cl₂ (100 ml) was added in portions with stirring. To the resultant suspension was added CH₂Cl₂ (450 ml) and the reaction mixture was stirred for 20 min. Water (200 ml) was added, followed by NaHCO₃ (7 g) in portions until CO₂ evolution ceased. The organic layer was stirred with MgSO₄ and DARCO, then filtered and concentrated to give a solid. The solid was dissolved in CH₂Cl₂ (50 ml) and to the stirred solution was added hexanes (100 ml). The solid was collected, washed with hexanes and dried to give the product (6.12 g, 75%). M.p.

213-216 °C. Calcd for $C_{12}H_8F_3NOS$: C, 53.14; H, 2.58; N, 5.17. Found: C, 53.06; H, 2.85; N, 4.90%.

Step 2

2-2-1

To a solution of the product of Step 1 (19.0 g, 70 mmol) in DMF (150 ml) was added N-chlorosuccinimide (10.1 g, 76 mmol) and trifluoroacetic acid (1.5 ml), and the reaction mixture was stirred under N_2 for 2 days. Water (500 ml) was added and the resultant solid was collected, washed with water and dried to give the product (20.6 g, 96%). M.P. 198 - 200 °C. Calcd for $C_{12}H_7CIF_3NOS$: C, 47.12; H, 2.29; N, 4.58. Found: C, 47.19; H, 2.15; N, 4.47%.

Step 3

10

15

20

25

2-3-1

A mixture of the product of Step 2 (15.0 g, 49.1 mmol) and sodium hydroxide (19.6 g, 490 mmol) in MeOH (400 ml) and water (150 ml) was stirred at R.T. ovemight. The mixture was concentrated *in vacuo* and the residue was partitioned between EtOAc and water. The organic layer was washed with water, brine, dried, and concentrated. The residue was purified by flash column (1:3 acetone/hexanes) to give the product (10.14 g, 98%). 1 H-NMR (CDCl₃, 400 MHz) δ 7.32 (2H, m), 6.90 (1H, d, J=4.8 Hz), 6.83 (1H, d, J=4.8 Hz), 6.67 (2H, m), 3.76 (2H, b).

Step 4

ci' 2-4-1

To a stirred, ice-cold solution of the product of Step 3 (2.0 g, 9.5 mmol) in THF (100 ml) was added pyridine (2.3 ml, 28 mmol) and N,N'-disuccinimidyl carbonate

(2.44 g, 9.5 mmol). The reaction mixture was stirred at ice-bath temp. for 1.5 h, then Preparation 1 (2.04 g, 9.5 mmol) was added, and the reaction mixture was allowed to warm to R.T.. After 16 h, the reaction mixture was concentrated, the residue was dissolved in EtOAc (200 ml) and washed with 2N HCl, sat'd NaHCO₃ and sat'd NaCl. The organic layer was dried (Na₂SO₄), filtered, and evaporated to afford the product (4.21 g, 98%) that was used directly in Step 5. HRMS calc. for C₂₂H₂₉ClN₃O₃S (M+H) 450.1618. Found 450.1623.

Step 5

Reaction of the product of Step 4 (4.11g, 9.13 mmol) with HCl by the procedure of Example 1, Step 3 afforded the product (3.71 g) that was used directly in Step 6. HRMS calc. for $C_{17}H_{21}CIN_3OS$ (M+H) 350.1094. Found 350.1100.

15 Step 6

10

20

25

To a suspension of the product of Step 5 (50 mg, 0.13 mmol) in CH_2Cl_2 (3 ml) was added Et_3N (39 mg, 0.39 mmol) followed by n-propylsulfonyl chloride (20 mg, 0.14 mmol). The reaction mixture was stirred for 16 h. EtOAc (10 ml) was added and the mixture was washed with 2N HCl, sat'd NaHCO₃ and sat'd NaCl, dried (MgSO₄), filtered and concentrated. The residue was subjected to PTLC (3:97 MeOH/CH₂Cl₂) to give the product (37 mg, 62%). HRMS calc. for $C_{20}H_{27}ClN_3O_3S_2$ (M+H) 456.1182. Found 456.1179.

Reaction of the product of Step 5, 2-5-1, with the appropriate sulfonyl chloride in the presence of Et₃N gave the following examples.

R ⁶	MS (M+H)+	Example
-SO₂CH₃	428	2A
-SO ₂ CH ₂ CH ₃	442	2B
-SO ₂ CH(CH ₃) ₂	456	2C
-SO ₂ CF ₃	482	2D
-SO ₂ CH ₂ CF ₃	496	2E

Example 3

5

10

Step 1

Using the procedure of Example 1, Step 1, Preparation 1 (2.3 g, 107 mmol) was reacted with 4-iodophenyl isocyanate (2.6 g, 107 mmol). Purification by flash chromatography (2:98 MeOH/CH₂Cl₂) afforded a white solid.

Step 2

A mixture of the product of Step 1 (3.0 g, 6.7 mmol), 4M HCl in 1,4-dioxane

(15 ml) and THF (15 ml) was stirred at ambient temp. for 5 h. The reaction mixture was concentrated to dryness, and H₂O (100 ml) and 3M NaOH (20 ml) was added to the residue. The whole was extracted with CH₂Cl₂ (3x100 ml). The combined organic extracts were dried (MgSO₄), filtered and evaporated. Flash chromatography (2:98 MeOH/CH₂Cl₂ then 10:90 (2M NH₃ in MeOH)/CH₂Cl₂) gave a white solid (2.4 g, 100%). HRMS calc. for C₁₃H₁₉IN₃O (M+H) 360.0573. Found 360.0576.

10

To a stirred ice-cold mixture of the product of Step 2 (2.4 g, 6.7 mmol) and cyclopropane carboxaldehyde (0.8 ml, 11 mmol) in CH₂Cl₂ (20 ml) was added NaBH(OAc)₃ (1.83 g, 10.8 mmol). The reaction mixture was allowed to warm to room temp. and stirred overnight. The reaction mixture was cooled in ice and 3M NaOH (5 ml) was added. After 0.5 h the mixture was extracted with CH₂Cl₂ (3x100 ml), dried (MgSO₄), filtered and evaporated. The residue was triturated with CH₂Cl₂/hexanes (1:10) to afford a white solid (2.4 g, 87%). HRMS calc. for C₁₇H₂₅IN₃O (M+H) 414.1038. Found 414.1042.

Step 4

A vessel charged with the product of Step 3 (200 mg, 0.48 mmol), 4-trifluoromethoxybenzeneboronic acid (250 mg, 1.21 mmol),

tris(dibenzylideneacetone)dipalladium (0) (50 mg, 0.05 mmol), CsCO₃ (0.8 g, 2.5 mmol) and toluene (10 ml) was refluxed under N₂ for 3 h. The reaction mixture was allowed to cool, then EtOAc (50 ml) and H₂O (25 ml) were added. Solids were removed by filtration and the EtOAc layer was dried (Na₂SO₄), filtered, and evaporated. The residue was subjected to PTLC (3:7 acetone/hexanes then 10:90
 (2M NH₃ in MeOH)/CH₂Cl₂) to give a pale yellow solid (50 mg, 23%). HRMS calc. for C₂₄H₂₉F₃N₃O₂ (M+H) 448.2212. Found 448.2215.

Using appropriate starting materials and essentially the same procedure, the following compounds were prepared:

Y	MS (M+H) ⁺	Example
O'	364.1	3A
Q,	382	3B
S CI	404	3C

Υ	MS (M+H) ⁺	Example
F ₃ C	423	3D
F	400	3E
F	382	3F

Example 4

5

10

20

To an N₂-purged mixture of 4-bromonitrobenzene (20.0 g, 99.0 mmol), 3,5difluorophenylboronic acid (23.4 g, 148 mmol) and Cs₂CO₃ (38.7 g, 119 mmol) in toluene (600 ml) and H₂O (30 ml) was added Pd(dppf)Cl₂•CH₂Cl₂ (4.04 g, 4.95 mmol). The reaction mixture was heated at 90 °C for 2 h, allowed to cool to R.T., then filtered through celite. The whole was extracted with EtOAc (3x500 ml). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated to give a solid. To a vigorously stirred ice-cold mixture of the solid in CH₃OH (1 L) and NiCl₂•6H₂O (61.0 g, 257 mmol) was added NaBH₄ (14 g, 370 mmol) in portions. After the addition was complete, the reaction mixture was poured into H₂O (100 ml), then filtered through 15 . celite and extracted with EtOAc (3x500 ml). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was dissolved in EtOAc, and 1N HCI/Et₂O (300 ml) was added. The precipitate was washed with hexane, air-dried, and dissolved in H₂O. The solution was neutralized by addition of 1N NaOH, then extracted with CH₂Cl₂ (3x1 L). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated to give the product (19.0 g, 94%). ¹H NMR (CDCl₃, 400

10

15

20

MHz) δ 7.38 (2H, m), 7.06 (2H, m), 6.75 (2H, m), 6.72 (1H, m), 3.81 (s, 2H). MS m/e 206 (M+H).

Using the appropriate substituted phenylboronic acid starting material and essentially the same procedure, the following compounds were prepared:

 1 H NMR (CDCl₃, 400 MHz) δ 7.41-7.21 (5H, m), 7.33 (1H, m), 6.76 (2H, m), 3.76 (2H, b).

¹H NMR (CDCl₃, 400 MHz) δ 7.39 (2H, m), 7.24 (3H, m), 6.76 (2H, m), 3.80 (2H, b).

Additional arylamines were prepared from 4-iodoaniline according to the following procedure.

A mixture of 4-iodoaniline (1.00 g, 4.57 mmol), 3-trifluoromethylphenylboronic acid (1.30 g, 6.85 mmol) and Cs_2CO_3 (1.64 g, 5.02 mmol) in toluene (50 ml) and H_2O (3 ml) was purged with N_2 for 5 min. To the reaction mixture was added $Pd(dppf)Cl_2 \cdot CH_2Cl_2$ (746 mg, 0.91 mmol). The reaction mixture was heated at 90 °C for 5 h, then allowed to cool to R.T. and poured into cold water. The whole was extracted with CH_2Cl_2 (3x100 ml). The combined organic layers were dried (Na_2SO_4), filtered and evaporated. Purification of the residue by PTLC (EtOAc/hexane 1:2) gave the product (216 mg, 20%). ¹H NMR (CDCl₃, 400 MHz) δ 7.77 (1H, m), 7.70 (1H, m), 7.51 (2H, m), 7.42 (2H, m), 6.78 (2H, m), 3.65 (2H, b).

Using the appropriate substituted phenylboronic acid starting material and essentially the same procedure, the following compounds were prepared.

 1 H NMR (CDCl₃, 400 MHz) δ 7.54 (1H, m), 7.34 (3H, m), 7.15 (1H, t, J = 8.8 Hz), 6.75 (2H, m), 3.76 (2H, b).

¹H NMR (CDCl₃, 400 MHz) δ 7.48 (2H, m), 7.35 (2H, d, J = 6.4 Hz), 7.08 (2H, t, J = 6.4 Hz), 6.76 (2H, d, J = 6.4 Hz), 3.73 (2H, b). MS m/e 188 (M+H).

4-1-7

 1 H NMR (CDCl₃, 400 MHz) δ 7.51 (1H, m), 7.41 (3H, m), 7.32 (1H, m), 7.23 (1H, m), 6.75 (2H, m), 3.78 (2H, b). MS m/e 204 (M+H).

Step 2

10

15

20

$$\nearrow$$

A stream of N_2 was passed through a mixture of the product of Preparation 2 (2.00 g, 9.33 mmol), 3-bromopyridine (2.95 g, 18.7 mmol) and 2-(di-*tert*-butylphosphino)biphenyl (0.139 g, 0.467 mmol) and NaOtBu (1.80 g, 18.7 mmol) in anhydrous toluene (10 ml). Pd(OAc)₂ (0.105 g, 0.467 mmol) was added and the reaction mixture was stirred at 110 °C for 24 h. The reaction mixture was allowed to cool to R.T. and poured into cold H_2O . The whole was extracted with CH_2Cl_2 (3x50 ml) and the combined organic layers were dried (Na_2SO_4), filtered, and concentrated. Purification of the residue by PTLC (1:20 CH_3OH/CH_2Cl_2) gave the product (1.47 g, 54%). ¹H NMR ($CDCl_3$, 400 MHz) δ 8.29 (1H, s), 8.07 (1H, b), 7.17 (2H, m), 4.2 (1H, b), 3.74 (2H, m), 2.82 (2H, m), 2.74 (3H, s), 1.70 (4H, m), 1.45 (9H, s). MS m/e 292 (M+H).

Step 3

To the product of Step 2 (1.47 g, 5.05 mmol) was added 4M HCl/1,4-dioxane (20 ml). The reaction mixture was stirred at R.T. for 1.5 h and concentrated to afford the product in quantitative yield. 1 H NMR (CD₃OD, 400 MHz) δ 8.46 (1H, s), 8.14 (2H, m), 7.86 (1H, s), 4.13 (2H, m), 3.40 (1H, b), 3.16 (2H, b), 2.75 (3H, s), 2.26 (2H, m), 1.76 (2H, m). MS m/e 192 (M+H).

Step 4

5

10

15

To a mixture of the product of Step 1 (4-1-1) (0.100 g, 0.487 mmol) and iPr_2NEt (0.43 ml, 2.44 mmol) in anhydrous toluene (10 ml) was added triphosgene (0.051 g, 0.171 mmol). The mixture was stirred at 120 °C for 2 h, then allowed to cool to R.T., and the product of Step 3 (4-3-1) (0.133 g, 0.585 mmol) was added. The reaction mixture was stirred at R.T. for 16 h, then poured into cold H_2O and extracted with CH_2Cl_2 (3x20 ml). The combined organic layers were dried (Na_2SO_4), filtered, and concentrated. The residue was purified by PTLC (1:20 CH_3OH/CH_2Cl_2) to give the product (0.114 g, 56 %). ¹H NMR ($CDCl_3$, 400 MHz) δ 8.33 (1H, d, J = 2.4 Hz), 8.09 (1H, m), 7.49 (4H, m), 7.17 (2H, m), 7.06 (2H, m), 6.74 (1H, m), 6.51 (1H, s), 4.49 (1H, m), 3.77 (2H, m), 2.93 (3H, s), 2.91 (2H, m), 1.85 (4H, m). MS m/e 423 (M+H).

20

25

Example 5

Step 1

The product 5-1-1 was prepared in 57% yield from 2-bromopyridine and Preparation 2 by the procedure of Example 4, Step 2, except that 2-(di-tert-

butylphosphino)biphenyl was replaced by 1,3-bis(diphenylphosphino)propane, and a reaction temperature of 80 °C instead of 110 °C was used. MS m/e 292 (M+H).

Step 2

5

10

15

20

Treatment of the product of Step 1 with 4 N HCI/dioxane by the procedure of Example 4, Step 3 gave the product. MS m/e 192 (M+H).

Step 3

To a stirred ice-cold mixture of 4-1-2 (0.063 g, 0.339 mmol) and pyridine (0.14 ml, 1.69 mmol) in anhydrous THF (10 ml) was added N,N'-disuccinimidyl carbonate (0.087 g, 0.339 mmol). The reaction was stirred in an ice-bath for 25 min. then the product of Step 2, 5-2-1(0.100 g, 0.508 mmol), was added. The reaction was allowed to warm to R.T., stirred for 16 h, then poured into cold H_2O (20 ml). The whole was extracted with CH_2Cl_2 (3x20 ml), the combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was subjected to PTLC (1:20 CH_3OH/CH_2Cl_2) to give the product (0.080 g, 58%). ¹H NMR (CDCl₃, 400 MHz) δ 8.19 (1H, m), 7.52 (5H, m), 7.37 (2H, m), 7.27 (1H, m), 6.99 (1H, m), 6.69 (1H, d), 6.62 (1H, m), 6.45 (1H, s), 4.56 (1H, m), 4.42 (2H, m), 2.92 (2H, m), 2.88 (3H, s), 1.78 (4H, m). MS m/e 405 (M+H).

Example 6

Reaction of 4-1-4, N,N'-disuccinimidyl carbonate and 5-2-1 by the procedure of Example 5, Step 3 afforded the product. MS m/e 455 (M+H).

MISSING AT THE TIME OF PUBLICATION

Example 11

Reaction of 4-1-2, triphosgene and 4-3-1 by the procedure of Example 4, Step 4 afforded the product. MS m/e 405 (M+H).

5

Example 12

10

Reaction of 4-1-7, triphosgene and 4-3-1 by the procedure of Example 4, Step 4 afforded the product. MS m/e 421 (M+H).

Example 13

15

20

Step 1

A mixture of Preparation 3 (2.75 g, 9.7 mmol), 2-bromothiazole (1.98 g, 12.1 mmol), and K₂CO₃ (3.5 g, 25 mmol) in DMF (40 ml) was heated at 160 °C for 20 h. The reaction mixture was concentrated and partitioned between CH₂Cl₂ and H₂O. The organic layer was washed with sat'd NaCl, dried (MgSO₄), filtered and concentrated. Flash chromatography (gradient; CH₂Cl₂ to 2:98 MeOH/CH₂Cl₂) gave the product (2.0 g, 62%). MS m/e 332.1 (M+H).

The product of Step 1 (2.0 g, 6.0 mmol) and 33% HBr in AcOH (40 ml) was stirred at R.T. for 2 h. The reaction mixture was evaporated and the residue was partitioned between 1N NaOH and CH_2Cl_2 . The organic layer was washed with sat'd NaCl, dried (MgSO₄), filtered and evaporated. Flash chromatography (gradient; 2:98 (2M NH₃ in MeOH)/CH₂Cl₂ to 15:85 (2M NH₃ in MeOH)/CH₂Cl₂) gave the product (0.94 g, 79%) as a yellow solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.04 (1H, d, J = 4 Hz), 6.52 (1H, d, J = 4 Hz), 3.96 (2H, m), 3.17 (1H, m), 2.99 (2H, m), 2.59 (3H, s), 2.16 (2H, m), 1.68 (2H, m). MS m/e 198 (M+H).

Step 3

Reaction of 4-1-2, triphosgene and 13-2-1 by the procedure of Example 4, Step 4 afforded the product. MS m/e 411 (M+H).

15

10

5

Example 14

Reaction of 4-1-1, triphosgene and 13-2-1 by the procedure of Example 4, Step 4 afforded the product. MS m/e 429 (M+H).

20

Example 15

Step 1

An N₂-purged mixture of 2-bromopyrimidine (400 mg, 2.52 mmol),
Preparation 3 (510 mg, 1.79 mmol), Pd(OAc)₂ (18 mg, 0.08 mmol),
sodium *tert*-butoxide (516 mg, 5.37 mmol), and (1,3-bis—diphenylphosphino)propane (29 mg, 0.07 mmol) in toluene (6 ml) was stirred at 70 °C in a sealed vessel for 16 h.
The reaction mixture was allowed to cool to R.T., and 1N NaOH (20 ml) was added.
The whole was extracted with CH₂Cl₂ (3x20 ml), and the combined CH₂Cl₂ extracts were dried (MgSO₄), filtered, and evaporated. The residue was subjected to PTLC

(2:98 MeOH/CH₂Cl₂) to give the product (464 mg, 79%). MS m/e 327 (M+H).

Step 2

15

20

25

The product of Step 1 (464 mg, 1.43 mmol) and 10% Pd/C (59 mg) in EtOH (20 ml) was stirred under 1 atm. of H_2 for 16 h. The catalyst was removed by filtration through celite and the filter pad was washed with EtOH. The combined filtrate and washings were evaporated. The residue was subjected to PTLC (5:95 (2M NH₃ in MeOH)/CH₂Cl₂) to give the product (464 mg, 79%). ¹H NMR (CDCl₃, 400 MHz) δ 8.28 (2H, m), 6.44 (1H, m), 4.66 (2H, m), 2.99 (2H, m), 2.65 (1H, m), 2.47 (3H, s), 1.96 (2H, m), 1.33 (2H, m). MS m/e 193 (M+H).

Step 3

Reaction of the product of Step 2 (15-2-1) with 4-1-2 with triphosgene by the procedure of Example 4, Step 4 gave the product. MS (m/e) 406 (M+H).

Example 16

Reaction of the product of Example 15, Step 2 (15-2-1) and 4-1-1 with triphosgene by the procedure of Example 4, Step 4 gave the product. MS (m/e) 424 (M+H).

Example 17

10 Step 1

17-1-1

Reaction of the product of Example 5, Step 2 with 4-bromo-2-fluorophenylisocyanate by the procedure of Example 1, Step 1 gave the product. 1 H NMR (CDCl₃, 400 MHz) δ 8.18 (1H, m), 7.47 (1H, m), 7.38 (2H, m), 7.30 (2H, m), 6.68 (1H, m), 6.61 (1H, m), 4.49 (1H, m), 4.43 (2H, m), 2.91 (2H, m), 2.85 (3H, s), 1.71 (4H,m). MS m/e 391 (M+H).

Step 2

15

Reaction of the product of Step 1 with 3-fluorophenylboronic acid by the 20 procedure of Example 4, Step 1 gave the product. MS m/e 423 (M+H).

Example 18

Step 1

A mixture of 4-biphenyl isocyanate (3.00 g, 15.4 mmol) and Preparation 1 (5.33 g, 25.0 mmol) in CH₂Cl₂ (100 ml) was stirred at R.T. for 16 h. The mixture was washed with water (25 ml), 3N HCl (25 ml), and brine (50 ml). The organic portion was dried (MgSO₄), filtered, concentrated, and purified by column chromatography (gradient; CH₂Cl₂ to 1:99 CH₃OH/CH₂Cl₂) to give the product (6.11 g, 97%). MS (ES) m/e 410 (M+H)[†].

10

15

5

Step 2

18-2-1

A mixture of the product of Step 1 (6.11 g, 14.9 mmol) and 4N HCI/dioxane (100 ml) was stirred at R.T. for 5 h. The volatiles were evaporated and the residue was triturated with ether. The precipitate was collected, dissolved in water (200 ml), basified to pH 14, and extracted with CH₂Cl₂ (300 ml). The organic portion was dried and concentrated to give the product (4.39 g, 92%).

MS (ES) m/e 310 (M+H)⁺.

20 Step 3

25

A solution of the product of Step 2 (80 mg, 0.26 mmol), nicotinoyl chloride hydrochloride (54 mg, 0.30 mmol), and triethylamine (90 μ l, 0.64 mmol) in CH₂Cl₂ (2 ml) was stirred at R.T. for 16 h. The mixture was diluted with CH₂Cl₂ (50 ml) and extracted with 3N NaOH (5 ml). The organic layer was washed with water (15 ml), dried, (MgSO₄), filtered, and concentrated. The residue was subjected to PTLC (4:96 CH₃OH/CH₂Cl₂) to give the product (90 mg, 84%). ¹H NMR (CDCl₃, 400 MHz) δ 8.68 (2H, m), 7.76 (1H, m), 7.2-7.6 (10H, m), 6.48 (1H, s), 4.85 (1H, m),

4.60 (1H, m), 3.80 (1H, m), 3.20 (1H, m), 2.91 (3H, s), 2.86 (1H, m), 1.4-2.0 (4H, m). MS (ES) m/e 415 (M+H)⁺.

Using the appropriate acid chloride and essentially the same procedure the following compounds were prepared.

 \mathbb{R}^6 $(M+H)^+$ Example ' C(O)CH₃ 352 18B 378 18C C(O)-C(O)-420 18D C(O)-414 18E 18F C(O)-415 C(O)-415 18G

Example 19

Reaction of Example 1, 1-3-5, with the appropriate acid chloride afforded the following compounds:

10

5

R ⁶	(M+H) ⁺ .	Example
C(O)-CH₃	370	19A
c(o)—<	396	19B
c(o)—	432	19C
c(o)—(N=)	433	19D
C(O)—	433	19E
C(O)—(N	433	19F

R ⁶	(M+H)⁺	Example
C(O)—N	467	19G
C(O)—CI	501	19H
C(O)—(N	481	191
C(O)—OMe	497	1 9J

Example 20

Reaction of the product of Example 1, 1-3-7, with the appropriate acid chloride afforded the following compounds:

5

R	(M+H) ⁺	Example
C(O)-CH₃	388	20A
c(o)—	414	20B
C(O)-	450	20C
C(0)—N=	451	20D
C(0)—	451	20E
C(0)—(N	451	20F

Example 21

Reaction of the product of Example 2, Step 5, 2-5-1, with the appropriate acid chloride afforded the following compounds

R ⁶	(M+H) ⁺	Example
C(O)-CH₃	392	21A
c(o)—	418	21B
C(O)-	454	21C
C(0)—N=	455	21D
c(o)—	455	21E
C(O)—N	455	21F

Example 22

A mixture of Example 18 (45 mg, 0.11 mmol) and 3-chloroperoxybenzoic acid (40 mg) in CH₂Cl₂ (5 ml) was stirred at R.T. for 16 h. The mixture was diluted with CH₂Cl₂ (50 ml), then washed with 3N NaOH (2x5 ml) and water (10 ml). The organic layer was dried (Na₂SO₄), filtered, and concentrated. The residue was subjected to PTLC (1:9 CH₃OH/CH₂Cl₂) to give the product (34 mg, 73%). ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (2H, m), 7.2-7.6 (11H, m), 6.56 (1H, s), 4.76 (1H, m), 4.59 (1H, m), 3.78 (1H, m), 3.22 (1H, m), 2.7-3.0 (4H, m), 1.4-2.0 (4H, m). MS (ES) m/e 431 (M+H)⁺.

Example 23

Step 1

15

A mixture of 4-piperidone ethylene ketal (0.64 ml, 5.0 mmol) and sulfamide (0.53 g, 5.5 mmol) in DME (20 ml) was refluxed for 16 h. The mixture was concentrated to ca. 3 ml, dissolved in EtOAc (175 ml), washed with sat'd NH₄Cl (2x25 ml), water (2x25 ml), and brine (25 ml). The organic portion was dried, filtered, and evaporated to give the product (0.58 g, 52%). MS (ES) m/e 223 (M+H)*.

Step 2

5

10

20

25

A mixture of the product of Step 1 (560 mg, 2.52 mmol) and pyridinium 4-toluenesulfonate (190 mg, 0.756 mmol) in acetone (25 ml) and water (0.5 ml) was refluxed for 64 h. The mixture was evaporated to dryness and the residue was partitioned between CH₂Cl₂ (75 ml) and aq. NaHCO₃ (2x20 ml). The aqueous layer was extracted with CH2Cl2 and EtOAc sequentially. The EtOAc layer was evaporated to give the product (140 mg). 1 H NMR (CD₃OD, 400 MHz) δ 3.47 (1H, t, J=6.4 Hz), 3.15 (3H, m), 2.54 (1H, t, J=6.4 Hz), 1.81 (3H, m). 15

Step 3

A mixture of the product of Step 2 (135 mg, 0.757 mmol), 40% aqueous methylamine (300 μl, 2.42 mmol), and sodium triacetoxyborohydride (375 mg, 1.77 mmol) in dichloroethane (5 ml) was stirred at R.T. for 19 h. The mixture was partitioned between 3N NaOH (5 ml) and EtOAc (3x50 ml). The organic layer was concentrated to give the crude product (40 mg). The aqueous layer was evaporated in vacuo to dryness and the residue was suspended in EtOAc. The suspension was filtered and the filtrate concentrated to give another batch of the product (70 mg). MS (FAB) m/e 194 (M+H)⁺.

Step 4

5

To an ice-cold solution of 4-1-2 (40 mg, 0.21 mmol) in anhydrous THF (3 ml) was added N,N'-disuccinimidyl carbonate (55 mg, 0.21 mmol) and pyridine (52 μ l, 0.65 mmol). The mixture was stirred at 0 °C for 2 h and the product of Step 3 (70 mg, 0.36 mmol) was added. After stirring at R.T. for 2 h the reaction mixture was taken up in CH₂Cl₂ (50 ml), washed with 1N HCl (10 ml), dried, (Na₂SO₄), filtered and concentrated. The residue was subjected to PTLC (5:95 CH₃OH/CH₂Cl₂) to give the product (62 mg, 71%).

10 ¹H NMR (CD₃OD, 400 MHz) δ 7.56 (2H, m), 7.48 (2H, m), 7.40 (2H, m), 7.32 (1H, m), 7.02 (1H, m), 4.23 (1H, m), 3.75 (2H, m), 2.94 (3H, s), 2.72 (2H, m), 1.7-2.0 (4H, m). MS (ES) m/e 407 (M+H)⁺.

Using the appropriate starting materials and essentially the same procedure afforded the following compounds.

15

20

Υ	(M+H) ⁺	Example
	389	23A
F	425	23B
CKS	429	23C

Example 24

24

A mixture of 1-3-5 (71 mg, 0.20 mmol), 2-bromoacetamide (32 mg, 0.23 mmol), and anhydrous potassium carbonate (170 mg, 1.20 mmol) in CH₃CN (2 ml) in a

sealed tube was heated to 45 °C for 6 h. The mixture was diluted with CH_2Cl_2 (75 ml), washed with water (50 ml), dried, and concentrated. The residue was subjected to PTLC (5:95 CH_3OH/CH_2Cl_2) to give the product (37 mg, 49%). ¹H NMR (CDCl₃, 400 MHz) δ 7.48 (4H, m), 7.35 (2H, m), 7.23 (1H, m), 6.98 (2H, m), 6.56 (1H, s), 5.97 (1H, bs), 4.25 (1H, m), 2.8-3.0 (7H, m), 2.31 (2H, m), 1.6-1.8 (4H, m). MS (ES) m/e 385 (M+H)⁺.

Example 25

10

15

25

5

Step 1

25-1-1

To ethyl 4-oxocyclohexanecarboxylate (10 g, 59 mmol) in MeOH (75 ml) and water (50 ml) was added lithium hydroxide monohydrate (4.2 g, 100 mmol) at 0 °C. The mixture was warmed up to R.T. and stirred for 3 h. The mixture was acidified to pH 2 with 3N HCl. The volatiles were evaporated and the residue was extracted with EtOAc (300 ml). The organic portion was dried and concentrated to give the product (8.01 g, 96%). MS (Cl) m/e 143 (M+H)⁺.

20 Step 2

2M oxalyl chloride in CH_2Cl_2 (20 ml, 40 mmol) was added over 5 min to a solution of the product of Step 1 (3.0 g, 21 mmol) in anhydrous THF (50 ml). The solution was heated to 80 °C for 6 h and then evaporated to dryness. The residue was dissolved in THF (50 ml) at 0 °C and aq. NH_4OH (6.0 ml, 89 mmol) was added. After stirring at R.T. for 16 h, the mixture was concentrated and the residue purified by

column chromatography (gradient CH_2Cl_2 to 2:98 CH_3OH/CH_2Cl_2) to give the product (762 mg, 26%). MS (CI) m/e 142 $(M+H)^+$.

Step 3

5

10

A mixture of the product of Step 2 (800 mg, 5.71 mmol), 40% aq. methylamine (4.0 ml, 52 mmol), and sodium triacetoxyborohydride (1.7 g, 8.0 mmol) in dichloroethane (20 ml) was stirred at R.T. for 16 h. The reaction was quenched with 3N NaOH and partitioned between brine and 1:1 CH₃CN/CH₂Cl₂. The organic portion was concentrated and the residue purified by column chromatography (gradient CH₂Cl₂ to 1:4 2M NH₃ in CH₃OH/CH₂Cl₂) to give the product (450 mg, 51%). MS (CI) m/e 157 (M+H)⁺.

Step 4

A mixture of the aniline 4-1-2 (100 mg, 0.534 mmol), N,N'-disuccinimidyl carbonate (137 mg, 0.535 mmol), and pyridine (0.13 ml, 1.6 mmol) in THF (3 ml) was stirred at 0 °C for 2 h. To this mixture was added the product of Step 3 (125 mg, 0.811 mmol) and the reaction was stirred at R.T. for 2 h. The mixture was diluted with CH₂Cl₂ (100 ml), washed with 1N HCl (2x25 ml), water (2x25 ml), brine (25 ml), dried, and concentrated. The residue was subjected to PTLC (3:97 CH₃OH/CH₂Cl₂) to give the *cis*-product (14 mg) and the *trans*-product (15 mg).

cis-product 25A:

¹H NMR (CD₃OD, 400 MHz): δ 7.4-7.6 (4H, m), 7.33 (2H, m), 7.22 (1H, m), 6.95 (1H, m), 4.13 (1H, m), 2.86 (3H, s), 2.53 (1H, m), 2.13 (2H, m), 1.82 (2H, m), 1.5-1.75 (4H, m). MS (ES) m/e 370 (M+H)⁺.

trans-product 25B:

¹H NMR (CD₃OD, 400 MHz): δ 7.4-7.5 (4H, m), 7.34 (2H, m), 7.23 (1H, m), 6.96 (1H, m), 4.07 (1H, m), 2.88 (3H, s), 2.14 (1H, m), 1.98 (2H, m), 1.81 (2H, m), 1.5-1.7 (4H, m). MS (ES) m/e 370 (M+H)⁺.

5 Reaction of the product of Step 3, 25-3-1 with aniline 4-1-1 by essentially the same procedure gave 25C and 25D:

10

Example 26

Step 1

15

20

To a stirred mixture of 1,4-cyclohexanedione monoethylene ketal (4.68 g, 30 mmol) and 40% w/w aq. methylamine (6.0 mL) in 1,2-dichloroethane (75 mL), was added Na(OAc)₃BH (9.6 g, 45 mmol) in portions. The reaction mixture was vigorously stirred for 16 h, then 1N NaOH (75 mL) was added. The organic layer was washed with sat'd NaCl, dried (MgSO₄), filtered, and evaporated to give an oil (4.60 g, 90%)

that was used without further purification. ^{1}H NMR (CDCl₃, 400 MHz) δ 3.97 (4H, s), 2.47 (1H, m), 2.46 (3H, s), 1.91 (2H, m), 1.80 (2H, m), 1.59 (2H, m), 1.45 (2H, m).

Step 2

5

15

To a stirred, ice-cold mixture of aniline 4-1-1 (1.00 g, 4.87 mmol) and pyridine (1.97 ml, 24.3 mmol) in anhydrous THF (50 ml) was added disuccinimidyl carbonate (1.25 g, 4.87 mmol). The reaction mixture was stirred at 0 °C for 1 h and the product of Step 1 (1.25 g, 7.31 mmol) was added. The reaction mixture was allowed to warm to R.T., stirred for 16 h, then poured into cold H_2O (100 ml). The whole was extracted with CH_2CI_2 (3x100 ml). The combined organic layers were dried (Na_2SO_4), filtered, and evaporated. Purification of the residue by column chromatography (1:20 CH_3OH/CH_2CI_2) afforded the product (1.40 g, 71%). ¹H NMR (CDCI₃, 400 MHz) δ 7.49 (4H, m), 7.10 (2H, m), 6.70 (1H, m), 6.60 (1H, s), 4.30 (1H, m), 3.90 (4H, s), 2.90 (3H, s), 1.75 (8H, m). MS m/e 403 (M+H).

Step 3

To the product of Step 2 (1.30 g, 3.23 mmol) in THF (30 ml) was added 5N HCl (20 ml). The reaction mixture was stirred at R.T. for 4.5 h, then extracted with CH₂Cl₂ (3x100 ml). The combined organic extracts were washed with sat'd NaHCO₃, dried (Na₂SO₄), filtered and evaporated. The residue was purified by PTLC (1:20 CH₃OH/CH₂Cl₂) to give the product (0.80 g, 69%). ¹H NMR (CDCl₃, 400 MHz) δ 7.50

(4H, m), 7.10 (2H, m), 6.80 (1H, m), 6.50 (1H, s), 4.80 (1H, m), 2.90 (3H, s), 2.48 (4H, m), 2.10 (2H, m), 1.90 (2H, m). MS m/e 359 (M+H).

Step 4

5

10

15

25

To a mixture of the product of Step 3 (0.43 g, 1.20 mmol) and benzylamine (0.257 g, 2.40 mmol) in 1,2-dichloroethane (10 ml) was added NaBH(OAc)₃ (0.762 g, 3.60 mmol) in portions. The reaction mixture was stirred at R.T. for 4.5 h, then poured into sat'd NaHCO₃ (20 ml) and extracted with CH₂Cl₂ (3x20 ml). The combined organic layers were dried (Na₂SO₄), filtered and evaporated. The residue was purified by PTLC (1:20 (2M NH₃/CH₃OH):CH₂Cl₂) to produce the *cis*-isomer 26-4-1 (0.240 g, 44.5%) and the *trans*-isomer 26-4-2 (0.200 g, 37.0%). *Cis* isomer: ¹H NMR (CDCl₃, 400 MHz) δ 7.48 (4H, m), 7.30 (5H, m), 7.05 (2H, m), 6.70 (1H, m), 6.40 (1H, s), 4.20 (1H, m), 3.78 (2H, s), 2.90 (4H, m), 1.90 (4H, m), 1.55 (4H, m). MS m/e 450 (M+H). *Trans*-isomer: ¹H NMR (CDCl₃, 400 MHz) δ 7.48 (4H, m), 7.33 (5H, m), 7.05 (2H, m), 6.70 (1H, m), 6.37 (1H s), 4.20 (1H, m), 3.82 (2H, s), 2.88 (3H, m), 2.50 (1H, m), 2.10 (2H, m), 1.80 (2H, m), 1.20-1.70 (4H, m). MS m/e 450 (M+H).

20 Step 5

26-5-1

To the cis isomer 26-4-1 (0.600 g, 1.33 mmol) in 4.4% HCOOH/CH₃OH (50 ml) was added 10% Pd/C (0.600 g). The reaction mixture was stirred at R.T. under argon for 16 h, then filtered through celite and concentrated. The residue was purified by PTLC (1:10 (2M NH₃/CH₃OH)/CH₂Cl₂) to afford the product (0.230 g, 85%). 1 H NMR (CDCl₃, 400 MHz) δ 7.50 (4H, s), 7.06 (2H, m), 6.70 (1H, m), 6.40 (1H, s), 4.20 (1H, m), 3.30(1H), 3.00 (3H, s), 1.50-2.30 (10H, m). MS m/e 360 (M+H).

Step 6

To a mixture of the product of Step 5 (0.140 g, 0.390 mmol) and 1M K_2CO_3 (1.2 ml, 1.2 mmol) in THF (5 ml) was added MeSO₂Cl (0.178 g, 1.55 mmol). The reaction mixture was stirred at R.T. for 16 h then subjected to PTLC (1:10 CH₃OH/CH₂Cl₂) to give the product (0.135 g, 79%). ¹H NMR (CDCl₃, 400 MHz) δ 7.53 (4H, m), 7.20 (2H, m), 6.90 (1H, m), 4.10 (1H, m), 3.60 (1H, m), 2.90 (6H, s), 1.50-2.10 (8H, m). MS m/e 438 (M+H).

Example 27

10

15

20

A mixture of 26-3-1 (0.21 g, 0.59 mmol), hydroxylamine hydrochloride (0.82 g, 12 mmol), and sodium acetate (0.97 g, 12 mmol) in absolute EtOH (10 ml) was stirred at R.T. for 64 h. The mixture was partitioned between CH_2Cl_2 (100 ml) and water (75 ml). The aqueous layer was extracted again with CH_2Cl_2 (50 ml). The combined organic layers were dried (Na_2SO_4), filtered and concentrated. The residue was subjected to PTLC (1:19 CH_3OH/CH_2Cl_2) to give the product (210 mg, 95%). ¹H NMR (CD_3OD , 400 MHz) δ 7.4-7.6 (4H, m), 7.20 (2H, m), 6.85 (1H, m), 4.39 (1H, m), 3.45 (1H, m), 2.90 (3H, s), 2.45 (1H, m), 2.28 (1H, m), 1.6-2.0 (5H, m). MS (ES) m/e 374 (M+H).

Use of the appropriate starting material and essentially the same procedure afforded the following compound.

MS (ES) m/e 388 (M+H).

25

Example 28

WO 02/22592 PCT/US01/28324

Step 1

To a mixture of 1-3-5 (100 mg, 0.31 mmol), 1 M NaOH (0.5 ml), and 1 M Na_2CO_3 (0.5 ml) in CH_2Cl_2 (5 ml) was added 2-chloroethylsulfonyl chloride (100 mg, 0.61 mmol), and the reaction mixture was stirred for 16 hr. The reaction mixture was partitioned between water (25 ml) and CH_2Cl_2 (25 ml). The organic layer was dried (MgSO₄), filtered, and concentrated. Subjection of the residue to PTLC (1:4 acetone/ CH_2Cl_2) gave the product (40 mg, 31%). MS (ES) m/e 418 (M+H).

Step 2

5

10

15

To a stirred solution of the product of Step 1 (28-1-1) (50 mg, 0.12 mmol) in THF (10 ml) was added tetrabutylammonium hydroxide (0.5 g) in water (2 ml). After 16 hr, the reaction mixture was partitioned between water (25 ml) and CH_2Cl_2 (100 ml). The organic layer was dried (MgSO₄), filtered, and concentrated. Subjection of the residue to PTLC (5:95 MeOH/CH₂Cl₂) gave the product (24 mg, 46%). HRMS calc. for $C_{21}H_{27}FN_3O_4S$ (M+H) 436.1706. Found 436.1711.

Example 29

20

25

To a solution of 1-3-1 (400 mg, 1.22 mmol) in DMF (5 ml) was added EDCI (25 mg, 1.30 mmol) and 1-cyano-3-methylisothiourea sodium salt (175 mg, 1.27 mmol). The reaction mixture was stirred for 16 h, then diluted with EtOAc (50 ml). The mixture was washed with water (10 ml), sat'd NaHCO₃ (20 ml) and water (10 ml). The organic layer was dried (MgSO₄), filtered and concentrated. Subjection of the residue

to flash chromatography (gradient; 3:97 - 7:93 MeOH/CH₂Cl₂) gave the product (250 mg, 50%). HRMS calc. For C₂₂H₂₆N₆OF (M+H) 409.2152. Found 409.2155.

Example 30

5

To a solution of 1-3-1 (500 mg, 1.53 mmol) in acetonitrile (10 ml) was added dimethyl-N-cyanodithioiminocarbonate (0.8 g, 5.5 mmol) and the reaction mixture was refluxed for 16 h. The reaction mixture was poured into water (50 ml) and extracted with EtOAc (50 ml). The organic layer was dried (MgSO₄), filtered and concentrated. Subjection of the residue to flash chromatography (1:2 acetone/hexanes) gave the product (150 mg, 24%). MS m/e 426.1 (M+H).

Method for Screening Compound 14 of Example 14 for Y5 Antagonist Activity In Vivo

15

20

10

Adult male Long-Evans or Sprague-Dawley rats (200-250 g, Charles River, MA) were maintained in individual cages at 22°C on a 12 hr light/12 hr dark cycle with lights on at 0400. Rats had free access to food (Teklad Lab Rodent Chow, Bartonville, IL) and water. All studies were conducted in an AAALAC accredited facility following protocols approved by the Animal Care and Use Committee of the Schering-Plough Research Institute. The procedures were performed in accordance with the principles and guidelines established by the NIH for the care and use of laboratory animals.

25

30

Rats were anesthetized by intramuscular injection of a mixture of ketamine and xylazine (100 and 10 mg/kg, respectively). A 22 gauge stainless steel cannula was stereotaxically implanted into the lateral ventricle using the following coordinates: 1 mm posterior to bregma, 1.5 mm lateral to midline, 3.6 mm ventral to dura. After a three week recovery period, all animals were tested for correct cannula placement by intracerebroventricular (icv) infusion of human NPY (0.3 nmol). Only animals demonstrating a profound feeding effect (>2 g) within 60 min of the infusion were retained for the study. Four groups of twelve animals were used in each study. Each group was balanced such that the average baseline and NPY-induced food intake

WO 02/22592 PCT/US01/28324

values were similar for each group. One group received an oral dose of vehicle while the other three groups received oral doses of the Y5 antagonist 14 one hour before icv administration of D-Trp34-NPY. D-Trp34-NPY was dissolved in 0.9% sterile saline (Sigma, St. Louis, MO) and were infused icv with a Hamilton infusion pump and syringe (Hamilton, Reno, NV) at a rate of 5 µl/min. The guide cannula remained inserted for an additional minute to prevent diffusion up the needle track. The chow-filled feeder was weighed during the infusion period and then returned to the home cage with the animal immediately following treatment. Food consumption was monitored at 60, 120 and 240 min after icv infusion of peptides. Differences in food intake between groups were determined by analysis of variance followed by Dunnett's multiple comparison test. Compound 14 (0.1, 0.3, 1, and 3 mg/kg) dose responsively inhibited D-Trp34-NPY stimulated food intake with an ID50 of 0.5 mg/kg.

5

10

It will be recognized that the following examples can be prepared by adapting
appropriate procedures described in Examples 1 – 30, or by applying methods known to those skilled in the art:

Example	Structure	MSm/e (M+H)
31	Lairb	483
32		449
33	4001°C	483
. 34	MOLOLO	467
35		440
36	Jorio	483
37		483
38	ACLOA!	457
39		457
40		449
41	jortojo	449
42		440

43		483
44	tototo.	483
45	Jorgo O	422
46		410
47	TOTOL.	424
48	TOTOH.	438
49	HOLOH	438
50	Aarro	436
51	AOLOIO	472
52		374
53		388

54		,	
55	54 ·	N,ć	402
56	55	I STYDE	402
57		TOTOS	400
59	57	TO TO TO	442
59	58	TOTO	414
61	59	TONGO.	428
61	60	Ange	396
62 () () () () () () () () () (61	TO LOT	403
63 414	62		431
64 423	63	7070-O	414
	64	Achol	423
	65	, Angla	

66		374
67	F C C C C C C C C C C C C C C C C C C C	388
68		388
69	TO THE	410
70	TO THE	424
71	TOTA	422
72	TO SE	424
73		386
74	00000	404
75		356
76	Confirmed as	370
77		392

78	406
79	420
. 80	418
81	420
82	384
83	384
B4	382

85	AOLO.	388
86	portor"	466
87		531
88	portop	452
89	Antoit	467
90	Lorgo	452
91	Laid	428
92	Aorion.	402
93	Agricol.	416
94	A STORE	416
95	Antole.	430
96	do jod	456

		·
97	porto	456
98		430
99	portop	442
100	Actions	480
101	TOTO IL	444
102	portop	467
103	porto,a.	465
104	مثنام	465
105	Anjoh	428
106	, portog	465
107	TOTO	422
108		410

109		424
110		438
111		438
112	ACLO!	436
113	HOTOPO	472
114	TONG.	374
115	TOTO	400
116	- Chiliphon	388
117		402
118		402
119	TOTO.	442
120	TOTO	414

121	TON	428
122	porta	408

123	OOLLOO.	431
124		338
125	C C C C C C C C C C C C C C C C C C C	352
126		428
127		396
128		368
129		395
130		435
131	OOTTOIO	437
132		407
· 133	oorioi	443
134	oortor	449

		·
135		381
136		450
137		388
138		402
139	OUNT	416
140		417
141	0000	450
142	cara	464
143		416
144		389
145	00%	442
146		356

147	Callow or	370
148		403
149		371
150	POLC.	389
151	Loroto	449
152	TOTO	385
153	portojo.	449
154	dariota.	449
155	borroid	511
156	Loroió	449
157	Action to	519
158	Action	465

159	Join,	467
160	portati	501
161	portoja.	511
162	Actor	466
163	porto, or	467
164	borçóo	466
165	Coiroid	449
166	dariota.	449
167	onjoin,	447
168	porta.	531
169	do.joto	448
170	portaio	448

171	LOLO!	452
172	TOLL	466
173		467
174	Action.	468
175	HOLLOR	440
176	Aorioio	452
177	COLLO CO.	450
178	baide	422
179	oricio	434
180	Loico	434
181	Joseph .	448
182	COLOIC CO	449

183	TOTION.	403
184	porto	487

CH ₃ N N N N N N N N N N N N N	459
CH3 CH3 H,C-N, CH3	487
CH'S HICK	409
GIG GHG	420
TO T	436
Cot,	401
P N N N N N N N N N N N N N N N N N N N	435
	485
	CH3

193		449
194	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	523
195		463
196	7-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	450
197		442
198		420
199	F CHOOLS	438
200	F CH'S	427

		,
201		387.1
202		388.1
203	0070	387.1
204		386.1
205		393.1
206		323.1
207		465.1, 467.1
208		378.1
209		378.1
210	OOTO	387.1
211		455.1
212	oortop	455.1
		

213		416.1
214		403.1
215		401.1
216	00100	405.1
217	portog.	441.1
218		423.1
219		457.1
220		439.1
221	TOTO.	437.1
222	orton.	448.1
223	porto:	450.1
224	portor	432.1

225	"FOTTO	436.1
226	JOTO,	422.1
227	porton.	439.1
228	thotox	436.1
229	- Portox	422.1
230	adarox	512.1
231	tolor	422.1
232	Joseph Land	462.1
233	JOTOL.	385
234	JOY CY.	440.1
235	Joseph Line	462.1
236	philips.	440.1

237	454.1
238	468.1
239	468.1

240		441
241		473
242		405
243	TOLOO	437
244	porto	491
245	YOY	491
246	a crio	405
247		423
248	DOLLO	423
249	portai	439

250		416
251	00,00	405
252	çoroi	421
253	LOLO	453
254	yorrop,	491
255	Jorioa.	501
256	portoi.	517
257	POTO:	430
258		458
259	TOTO TO	492

260	YOTOTO.	599
261	Yora	424
262		487
263	porot	442
264		442
265	portop	424 ·
266	STIPLE.	436
267		422
268	of the same	424
269	onto.	424

270		436
271	Achi	466
272	POTOX.	422
273	Charles of the contract of the	424
274	TO THE SOL	424
275	toriox	424
276		424
277	YOTOQ.	458
278	YOUTO	424
279		446

280		388
281		418
282		402
283		466
284	opijolo.	466
285	Aorro Ort.	529
286	A CALO	507
287		471
288	COLOGE TO THE STATE OF THE STAT	422
289		456 :

290	456
1	
291	413
292	451
293	ss, 413
294	416
295	416
296	456
297	442
298	414
299	454

300		414
301		414
302	TONO.	360
303	TON, O'X"	438
304	YOTTOX.	452
305	TOLO.	466
306	yora.	452
307	TOLO X	466
308	TOLOI.	402
309	· Corrola	416
310	TOTIO!	428
311	Para	465

312		465
314		465
315	TOTOL	403
316	POPO	437
317	POTO	437
318	portop	458
319		424
320	POTO,	374
321		374
322	ortoop.	529
323	TOLOT.	416
324	POTON	490

325	YO'TOO"	439
326	TO LONG	452
327	CHARLE CONTRACTOR OF THE CONTR	424
328	· porfot	439
329	The state of the s	424
330	oprioi	451
331	portap	451
332		446
. 333	qorio,	402
334	datato	451
335	Chick of the control	388
336		446

337	do jour	446
338	toriot	388
339	porto	402
340		388
341	price	402
342		464

10

15

20

What is Claimed:

1. A compound having the structural formula I:

including its N-oxides, wherein

R¹ is H or (C₁-C₆)alkyl;

 R^2 is H, (C_1-C_6) alkyl, (C_3-C_9) cycloalkyl or (C_3-C_7) cycloalkyl (C_1-C_6) alkyl;

$$R^{3} \text{ is } (CH_{2})_{0.6} - N(R^{7})(R^{8}) , CONH_{2} .$$

$$CONH_{2} \cdot (CH_{2})_{0.6} - N(R^{7})(R^{8}) \cdot (R^{7})(R^{8}) \cdot (R^{7})(R^{8})$$

$$CONH_{2} \cdot (R^{7})(R^{8}) \cdot (R^$$

Z is

 OR^{10} , $-N(R^9)(R^{10})$ or $-NH_2$;

j is 0, 1 or 2;

k is 1 or 2;

1 is 0, 1 or 2;

m is 0, 1 or 2;

 R^4 is 1- 3 substituents independently selected from the group consisting of H, -OH, halogen, haloalkyl, (C_1-C_6) alkyl, (C_3-C_7) cycloalkyl, (C_3-C_7) cycloalkyl, (C_3-C_7) cycloalkyl, -O(C_1-C_6)alkyl, -O(C_1-C_6)alkyl, -O(C_3-C_7)cycloalkyl, -O(C_1-C_6)alkyl, -S(C_3-C_7)cycloalkyl, -S(C_3-C_7)cycloalkyl, -S(C_3-C_7)cycloalkyl, -NH₂, -NR⁹R¹⁰, -NO₂, -CONH₂, -CONR⁹R¹⁰ and NR²COR¹⁰;

 R^5 is 1-3 substituents independently selected from the group consisting of H, halogen, -OH, haloalkyl, haloalkoxy, -CN, -NO₂, (C₁-C₆)alkyl, (C₃-C₇)cycloalkyl,

 (C_3-C_7) cycloalkyl (C_1-C_6) alkyl $, -O(C_1-C_6)$ alkyl $, -O(C_3-C_7)$ cycloalkyl $, -O(C_3-C_7)$

-O(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -CONH₂ and -CONR⁹R¹⁰; R⁶ is -SO₂(C₁-C₆)alkyl, -SO₂(C₃-C₇)cycloalkyl,

- $-SO_2(C_1-C_6)$ alkyl (C_3-C_7) cycloalkyl, $-SO_2(C_1-C_6)$ haloalkyl, $-SO_2(hydroxy(C_2-C_6)alkyl)$,
- 5 $-SO_2(amino(C_2-C_6)alkyl)$, $-SO_2(alkoxy(C_2-C_6)alkyl)$, $-SO_2(alkylamino(C_2-C_6)alkyl)$,
 - -SO₂(dialkylamino(C₂-C₆)alkyl), -SO₂(aryl), -SO₂(heteroaryl), -SO₂(aryl(C₂-C₆-alkyl),
 - $-SO_2NH_2$, $-SO_2NR^9R^{10}$, $-C(O)(C_1-C_6)$ alkyl, $-C(O)(C_3-C_7)$ cycloalkyl,
 - -C(O)(C₃-C₇)cycloalkyl(C₁-C₆)alkyl, -C(O)aryl, C(O)heteroaryl, -C(O)NR⁹R¹⁰,
 - -C(O)NH₂, -C(S)NR⁹R¹⁰, -C(S)NH₂, aryl, heteroaryl, -(CH₂)_nC(O)NH₂,
- 10 $(CH_2)_nC(O)NR^9R^{10}$, -C(=NCN)alkylthio, - $C(=NCN)NR^9R^{10}$, $(C_1-C_6)alkyl$, $(C_3-C_7)cycloalkyl$, $(C_3-C_7)cycloalkyl$, $(C_1-C_6)alkyl$,

 $R^7 = H$ or alkyl;

20

25

R⁸ is H, (C₁-C₆)alkyl, (C₃-C₇)cycloalkyl, (C₃-C₇)cycloalkyl(C₁-C₆)alkyl, aryl, 15 heteroaryl, -SO₂(C₁-C₆)alkyl, -SO₂(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)alkyl(C₃-C₇)cycloalkyl, -SO₂(C₁-C₆)haloalkyl or -SO₂(aryl);

 R^9 is (C_1-C_6) alkyl, (C_3-C_7) cycloalkyl, (C_3-C_7) cycloalkyl, (C_1-C_6) alkyl, aryl or heteroaryl; and,

 R^{10} is hydrogen, (C₁-C₆)alkyl, (C₃-C₇)cycloalkyl, (C₃-C₇)cycloalkyl, (C₁-C₆)alkyl, aryl or heteroaryl;

or R⁹ and R¹⁰ taken together can form a 4-7 membered ring containing 1 or 2 heteroatoms;

or its pharmaceutically acceptable addition salt and/or hydrate thereof, or prodrug thereof, or where applicable, a geometric or optical isomer or a racemic mixture thereof.

2. A compound of claim 1 wherein

Y is
$$\mathbb{R}^5$$
 and \mathbb{R}^3 is \mathbb{R}^6 . \mathbb{R}^6 . \mathbb{R}^6 . \mathbb{R}^7 is \mathbb{R}^5 and \mathbb{R}^3 is \mathbb{R}^5 and \mathbb{R}^3 is \mathbb{R}^5 . \mathbb{R}^6 .

- 5 3. A compound of claim 2 wherein R⁵ is 1-3 substituents independently selected from the group consisting of H, halogen, haloalkyl, alkoxy and haloalkoxy and the sum of j and k is 1, 2 or 3.
- 4. A compound of claim 2 wherein R⁶ is SO₂(C₁-C₆)alkyl, SO₂hydroxy(C₂-C₆)alkyl,
 10 SO₂(C₃-C₇)cycloalkyl, SO₂NR⁹R¹⁰ or SO₂NH₂.
 - 5. A compound of claim 1 selected from the group consisting of

15

10

pharmaceutically acceptable addition salts and/or hydrates thereof, or prodrugs thereof, or where applicable, geometric or optical isomers or a racemic mixtures thereof.

6. A compound of claim 1, wherein the compound is

5

or its pharmaceutically acceptable addition salt and/or hydrate thereof, or prodrug thereof, or where applicable, a geometric or optical isomer or a racemic mixture thereof.

- 7. A compound of claim 2 wherein R^6 is C(O)heteroraryl, $C(O)(C_1-C_6)$ alkyl or $C(O)(C_3-C_7)$ cycloalkyl.
 - 8. A compound of claim 1 selected from the group consisting of

15

F N N N C

- and their pharmaceutically acceptable addition salts and/or hydrates thereof, or
 prodrugs thereof, or where applicable, geometric or optical isomers or a racemic mixtures thereof.
 - 9. A compound of claim 2 wherein R⁶ is heteroaryl.
- 15 10. A compound of claim 1 selected from the group consisting of

10

and their pharmaceutically acceptable addition salts and/or hydrates thereof, or prodrugs thereof, or where applicable, geometric or optical isomers or a racemic mixtures thereof.

11. A compound of claim 1 wherein

- 12. A compound of claim 11 wherein R⁵ is 1 to 3 substituents independently selected from the group consisting of H, halogen, haloalkyl and haloalkoxy and the sum of j and k is 1, 2 or 3.
- 15 13. A compound of claim 11 wherein R^6 is $SO_2(C_1-C_6)$ alkyl, $SO_2(C_3-C_7)$ cycloalkyl, $SO_2NR^9R^{10}$ or SO_2NH_2 .

14. A compound of the formula

or its pharmaceutically acceptable addition salt and/or hydrate thereof, or prodrug thereof, or where applicable, a geometric or optical isomer or a racemic mixture thereof.

- 15. A compound of claim 11 wherein R^6 is C(O)heteroaryl, $C(O)(C_1-C_6)$ alkyl or $C(O)(C_3-C_7)$ cycloalkyl.
- 16. A compound of claim 1 selected from the group consisting of

and their pharmaceutically acceptable addition salts and/or hydrates thereof, or prodrugs thereof, or where applicable, geometric or optical isomers or a racemic mixtures thereof.

10

- 17. A compound of claim 11 wherein R⁸ is heteroaryl.
- 18. A compound of claim 1 selected from the group consisting of those having the structural formulas set forth in the following table, and the pharmaceutically
 15 acceptable addition salts and/or hydrates thereof, or prodrugs thereof, or where applicable, geometric or optical isomers or a racemic mixtures thereof:

Y	R ¹	R ²	R³	R ⁴
F	-H	-CH₃	N-SO ₂ CH ₃	-Н
<u></u>	-H	-CH₃	بر N _{`SO₂CF3}	4
F Z	-H	-CH₃	, С	-H
F3G \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-H	-CH₃	r ² √N _{'SO₂CH₃}	-H

Y	R ¹	R ²	R ³	R ⁴
CF ₃	-H	-CH₃	N-SO ₂ CH ₃	-H
CF3	-H	-CH₃	N-SO ₂ CH(CH ₃) ₂	-H
CF ₃	-H	-CH₃	SC2CF3	-H
F ₃ 00 - Z,	-H	-CH₃	رچ N- _{SO₂CH3}	-H
F	-Н	-CH₃	N-SO ₂ CF ₃	-H :
F ₃ C	-н	-CH₃	N.SO ₂ CH ₃	-H
cr s	-H	-CH₃	SO ₂ CH ₂ CH ₃	-Н
Cr S	-H	-CH₃	SO ₂ (CH ₂) ₂ CH ₃	-H
CY S	-14	-CH₃	N-SO ₂ CH(CH ₃) ₂	-H
CI S	-H	-CH₃	ςς N _{SO₂CF3}	-H
CI S	-H	-CH ₃	N-SO ₂ CH ₂ CF ₃	-H
F ₃ CO	-Н	-CH₃	£ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-H

Υ	R ¹	R ²	R³	R⁴
O's	-H	-CH₃		-Н
F	-H	-CH₃	ref N	-Н
CY S	Н	-CH₃	ref N	-Н
F ₃ C	-H	-CH₃	r F	-Н
F Z,	-н	-CH₃	£ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-H
F	-H	-CH₃		-H
F	-H	-CH₃		-Н
F	-H	-CH₃	Let N	-H
F3C 24,	-H	-CH₃	La Contraction of the Contractio	-H
CI Z	-н	-CH₃	rt On Ora	-Н

Y	R ¹	R ²	R ³	R ⁴
F Z	-Н	-CH₃	''zz	-H
CI CI	-Н	-CH ₃	rst NNN	-Н
F	-Н	-CH₃	'sz	-Н
CI	-Н	-CH₃		-H
F	-Н	-CH₃	rsE N S	-H
F	-H	-CH₃		- H
F	-H	-CH₃	Cot NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	-H
F	-H	-CH₃	's _E	2-F
المراجع المراج	-Н	-CH₃	S N	-H
O's	-Н	-CH ₃		-H

Y	R ¹	R ²	R ³	R ⁴
2	-H	-CH₃		-H
O Y	-H	-CH₃		-H
2	-H	-CH₃		-H
	-H	-CH₃		-H
2	-H	-CH₃		-H
F	-H	-CH₃	550	-H
F	-H	-CH₃	zz N	-H
F	-H	-CH₃	55 N	-H
F	-H	-CH ₃	ST NO NO	-H
F	-Н	-CH ₃	ST N CN	-H
F	-H	-CH₃	School Color	- H

Υ	R ¹	R ²	R ³	R ⁴
F	-H	-CH₃	, se N N C I	-H
F	-H	-CH₃	SE N OCH3	-H
F ,	-H	-CH₃		-H
F Z	-H	-CH₃	ST N N	-H
a کے کی	-Н	-CH₃	r. F. C. N. J. C.	-Н
a	-H	-CH₃	" CAO	-Н
CI—S	-H	-CH₃		-H
O's	-H	-CH ₃	SE Not No.	-H
P ²	-H	-CH₃	-CH₂CONH₂	-Н
- Zz	-H	-CH₃	r N-so₂NH₂	-H
O'N	-H	-CH₃	rsO ₂ NH ₂	-H

Y	R ¹	R ²	R ³	R⁴
F	-H	-CH₃	SO ₂ NH ₂	-H
CI—S	-H	-CH₃	N-SO ₂ NH ₂	-H
→ ² 5	-H	-CH₃	SS NH2	-H
₩	-H	-CH₃	Section NH2	-H
F	-H	-CH₃	NH ₂	H
F	-H	-CH₃	SZZ NH2	-H
F ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-H	-CH₃	NSO ₂ CH ₃	
F	-Н	-CH₃	F. Z	-H
F Z	-H	-CH ₃	N OCH3	-H

19. The compound of claim 1 selected from the compounds of Examples: 29–59, 61-90, 95-216, 218-219, 221-262, 265, 267, 269-294, 296-297, 299-326, 328-337, 340-342 and their pharmaceutically acceptable addition salts and/or hydrates thereof,

15

or prodrugs thereof, or where applicable, geometric or optical isomers or a racemic mixtures thereof.

- 20. A pharmaceutical composition comprising a compound of formula I as defined
 in claim 1 in combination with a pharmaceutically acceptable carrier.
 - 21. A method of treating obesity, an eating disorder or diabetes comprising administering an effective amount of a compound of formula 1 as defined in Claim 1 to a mammal in need of such treatment. A pharmaceutical composition, which comprises an effective amount of a compound as, defined in claim 1 and a pharmaceutically acceptable carrier thereof.
 - 22. A method of treating metabolic or eating disorders comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of claim 1 or a prodrug thereof or a pharmaceutically acceptable salt of said compound or of said prodrug.
 - 23. The method of claim 22 wherein said metabolic disorder is obesity.
 - 24. The method of claim 22 wherein said eating disorder is hyperphagia.
- 25. A method of treating disorders associated with obesity comprising administering to a mammal in need of such treatment a therapeutically effective amount of a compound of claim 1 or a prodrug thereof or a pharmaceutically acceptable salt of said compound or of said prodrug.
- 25 26. The method of claim 25 wherein said disorders associated with obesity are Type II Diabetes, insulin resistance, hyperlipidemia and hypertension.
 - 27. A pharmaceutical composition which comprises a therapeutically effective amount of a composition comprising:
- a first compound, said first compound being a compound of claim 1, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug;

a second compound, said second compound being an anti-obesity and/or anorectic agent such as a β_3 agonist, a thryomimetic agent, an anorectic agent or an NPY antagonist; and

a pharmaceutically acceptable carrier thereof.

5

10

15

20

25

28. A method of treating a metabolic or eating disorder which comprises administering to a mammal in need of such treatment

an amount of a first compound, said first compound being a compound of claim 1, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug;

a second compound, said second compound being an antiobesity and/or anorectic agent such as a β_3 agonist, a thryomimetic agent, an anorectic agent or an NPY antagonist;

wherein the amounts of the first and second compounds result in a therapeutic effect.

- 29. A pharmaceutical composition which comprises a therapeutically effective amount of a composition comprising:
- a first compound, said first compound being a compound of claim 1, a prodrug thereof, or a pharmaceutically acceptable salt of said compound or of said prodrug;
- a second compound, said second compound being an aldose reductase inhibitor, a glycogen phosphorylase inhibitor, a sorbitol dehydrogenase inhibitor, a protein tyrosine phosphatase 1B inhibitor, a dipeptidyl protease inhibitor, insulin (including orally bioavailable insulin preparations), an insulin mimetic, metformin, acarbose, a PPAR-gamma ligand such as troglitazone, rosaglitazone, pioglitazone, or GW-1929, a sulfonylurea, glipazide, glyburide, or chlorpropamide; and
 - a pharmaceutically acceptable carrier therefor.
- 30. A pharmaceutical composition made by combining the compound of claim 1 and a pharmaceutically acceptable carrier therefor.
- 30 31. A process for making a pharmaceutical composition comprising combining a compound of claim 1 and a pharmaceutically acceptable carrier.

BLANK PAGE

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 March 2002 (21.03.2002)

(10) International Publication Number WO 02/22592 A3

- (51) International Patent Classification7: C07D 211/58. A61K 31/4465, 31/4525, 31/4535, 31/4545, A61P 3/04. C07D 211/96, 401/04, 401/06, 409/12, 409/14, 417/04. C07C 275/30, 311/07
- (21) International Application Number: PCT/US01/28324
- (22) International Filing Date:

12 September 2001 (12.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 14 September 2000 (14.09.2000) 60/232.255

- (71) Applicant: SCHERING CORPORATION [US/US]: Patent Department - K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (72) Inventors: GREENLEE, William, J.; 115 Herrick Avenue, Teaneck, NJ 07666 (US). IIUANG, Ying: 8

Ivy Terrace, East Brunswick, NJ 08816 (US). KELLY, Joseph, M.; 112 Princeton Road, Parlin, NJ 08859 (US). MC COMBIE, Stuart, W.: 28 Hanford Place, Caldwell, NJ 07006 (US). STAMFORD, Andrew, W.; 27 Overlook Road, Chatham Township, NJ 07928 (US). WU, Yusheng: 235 East 40th Street, Apt. #20C, New York, NY 10016 (US).

- (74) Agent: LEE, William, Y.; Schering-Plough Corporation, Patent Department - K-6-1 1990, 2000 Galloping Hil Road, Kenilworth, NJ 07033-0530 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA. MD, MG, MK, MN, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

(54) Title: SUBSTITUTED UREA NEUROPEPTIDE Y Y5 RECEPTOR ANTAGONISTS

(57) Abstract: Compounds represented by structural formula (1) including its N-oxides wherein Y is (a) or (b); R¹ is H or (C₁- C_6) alkyl; R^2 is $H_1(C_1-C_6)$ alkyl, (C_3-C_9) cycloalkyl or (C_3-C_7) cycloalkyl (C_1-C_6) alkyl; R^3 is (c), (d), (e), (f), (g), (h) or (i); R^4 is 1-3 substituents independently selected from the group consisting of H, -OH, halogen, haloalkyl, (C₁-C₂) alkyl, (C₃-C₇) cycloalkyl, (C₃-C₇) cycloalkyl (C_1-C_6) alkyl, -CN, $-O(C_1-C_6)$ alkyl, $-O(C_3-C_7)$ cycloalkyl, $-O(C_1-C_6)$ alkyl, $-O(C_1$ cycloalkyl. -S(C₁-C₆) alkyl(C₃-C₇) cycloalkyl, -NH₂. -NR⁹R¹⁰, -NO₂, -CONH₂, -CONR⁹R¹⁰ and NR²COR¹⁰; or where applicable, a geometric or optical isomer or a racemic mixture thereof, are claimed, as well as additional novel compounds; also claimed are pharmaceutical compositions and methods of using the aforesaid compounds in the treatment of obesity, eating disorders such as hyperphagia and diabetes.

CG. CI. CM. GA. GN. GQ, GW, ML, MR, NE, SN, TD,

Published:

 with international search report before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

IT. LU. MC, NL. PT. SE, TR). OAPI patent (BF, BJ. CF, (88) Date of publication of the international search report: 27 June 2002

> For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

I' TERNATIONAL SEARCH REPORT

Int :ional Application No PCT/US 01/28324

				PCI/	US 01/28324
IPC 7	IFICATION OF SUBJECT C07D211/58 A61P3/04 C07D409/14 to International Patent Class	A61K31/4465 C07D211/96 C07D417/04	C07D401/04 C07C275/30	C07C311/07	
	SEARCHED	Silvation (17 0) 01 10 00111	national classification at	00	
Minimum di IPC 7	ocumentation searched (cl CO7D CO7C	assitication system tollow A61K	ed by classification symi	pols)	
Documenta	ition searched other than m	inimum documentation to	the extent that such doo	currents are included in th	ne fields searched
	data base consulted during			•	erms used)
C. DOCUM	ENTS CONSIDERED TO E	BE RELEVANT			
Category *	Citation of document, wit	h indication, where appro	opriate, of the relevant pa	assages	Relevant to claim No.
Y	SUNDEEP (US 16 December page 53 -pa page 8, lin	A (STAMFORD); SCHERING CO 1999 (1999-1 ge 63; claims e 16 - line 1 ge 48; example	ORP (US); WU 2-16)	YUSH)	1-31
Y	(US); PING 5 June 1997 page 131 -p page 6, lin	A (FINN JOHN DU (US); DHAN (1997-06-05) age 138; claim e 2 - line 12 ge 77; example	OA DALJIT S (1-31
A	20 August 1 page 53 –pa	A (BAYER AG) 998 (1998-08-1 ge 55; claims ble 2, compour	1-7		1-31
X Funti	ner documents are listed in	the continuation of box C		Patent family members	are tisted in annex.
• Special ca	tegories of cited documents	3:		 ·	
A docume consid	ent defining the general stat lered to be of particular rele document but published on	e of the art which is not vance	cit	phorny date and not in cored to understand the principle vention	r the international filing date nflict with the application but iple or theory underlying the
filing d "L" docume which		on priority claim(s) or lication date of another	ca inv "Y" doo	nnor de considered novel rolve an inventive step who ument of particular relevai	nce; the claimed invention or cannot be considered to en the document is taken alone nce; the claimed invention
O docume other n *P* docume	ent referring to an oral disclene means ent published prior to the int	osure, use, exhibition or emational filing date but	ca do mo in	nnot be considered to invo cument is combined with o ents, such combination bei the art.	when the step when the one or more other such docu- ing obvious to a person skilled
	nan the priority date claimed	· · · · · · · · · · · · · · · · · · ·		ument member of the sam	
	1 March 2002	Source!		le of mailing of the interna 18/04/2002	их на зеагси героп
Name and n		e. P.B. 5818 Patentiaan 2		horized officer	
	NL - 2280 HV Rijswij) Tel (+31-70) 340-204 Fax: (+31-70) 340-30	10, Tx. 31 651 epo nl.		Fink, D	

PERNATIONAL SEARCH REPORT

In tional Application No PCT/US 01/28324

(Cambinus	ition) DOCUMENTS CONSIDERED TO BE RELEVANT	L
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	MCNALLY J J ET AL: "N-Acylated alpha-(3-pyridylmethyl)-beta-aminotetralin antagonists of the human neuropeptide Y Y5 receptor" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 10, no. 15, 7 August 2000 (2000-08-07), pages 1641-1643, XP004213213 ISSN: 0960-894X the whole document	1-31

I' "ERNATIONAL SEARCH REPORT

information on patent family members

In tional Application No PCT/US 01/28324

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9964394	Α	16-12-1999	AU	4317899 A	30-12-1999
			CN	1311773 T	05-09-2001
•			EP	1086078 A1	28-03-2001
			WO	9964394 A1	16-12-1999
WO 9719682	Α	05-06-1997	AU	1328197 A	19-06-1997
			US	6211241 B1	03-04-2001
			WO	9719682 A1	05-06-1997
WO 9835957	Α	20-08-1998	AU	6144098 A	08-09-1998
			CA	2251368 A1	20-08-1998
			EP	0910565 A1	28-04-1999
		•	JP	2000510164 T	08-08-2000
			US	5939462 A	17-08-1999
			WO	9835957 A1	20-08-1998

BLANK PAGE