Multivariable Calculus

Day 18

Integration

Spring 2023

Worksheet

Let B be a 2×2 matrix that is invertible (the determinant is non-zero). We can think of B as a function $B: \mathbb{R}^2 \to \mathbb{R}^2$.

Let now $f: \mathbb{R}^2 \to \mathbb{R}$ be a function such that

$$f(x,y)=xy.$$

Let D is the rectangle with vertices (1,1),(1,6),(5,1),(5,6). Find the relationship between

$$\iint_{B(D)} f(y) \, dA$$

and

$$\iint_D f(x) dA.$$

1

Change of coordinates

Let f be a function of (x, y) defined on the domain D. Let

$$\begin{pmatrix} x \\ y \end{pmatrix} = \varphi(u, v)$$

for some coordinate change function $\varphi:D\to S$.

Theorem

If f is continuous, then

$$\int_{S} f \, dA = \int_{D} (f \circ \varphi) \, | \det D\varphi | \, dA \, .$$

Example

Compute the following integral

$$\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-\frac{x^2}{2}\right) \, dx \, .$$

Worksheet