AI1110 - Assignment 1

Kushagra Gupta

March 31, 2022

Problem Statement

The angle of elevation from a point P of the top of a tower QR, 50m high is 60° and that of the tower PT from a point Q is 30°. Find the height of the tower PT, correct to the nearest metre.

Solution

In ΔPQR ,

 $\angle RPQ = 60^{\circ}$ and QR= 50m, using basic trigonometric equation in a right-angled triangle, we know that,

$$\tan(\theta) = \frac{perpendicular}{base}$$

Hence,

$$\tan(\angle RPQ) = \frac{QR}{PQ}$$

$$\Rightarrow PQ = \frac{QR}{\tan(\angle RPQ)}$$

$$\Rightarrow PQ = \frac{50}{\tan(60^{\circ})} m \ [\because \angle RPQ = 60^{\circ} \& QR = 50m]$$

$$\Rightarrow PQ = \frac{50}{\sqrt{3}} m - (1)$$

Now in $\triangle PQT$, $\angle PQT = 30^{\circ}$.

$$Q \quad \therefore \tan(\angle PQT) = \frac{PT}{PQ}$$

$$\Rightarrow PT = PQ \times \tan(\angle PQT)$$

$$\Rightarrow PT = PQ \times \tan(30^{\circ})$$

$$\Rightarrow PT = \frac{50}{\sqrt{3}} \times \tan(30^{\circ}) m \qquad [using(1)]$$

$$\Rightarrow PT = \frac{50}{3} m$$

 \therefore PT ≈ 17 metres after rounding off. This can be verified by plotting QR , $\angle RPQ$ and $\angle PQT$ and approximating the length of PT.

Output

The Output of the program used to verify the answer is given below:

Figure 1: Plot of the figure and calculated length