Reinforcement Learning

Lecture 3: Value Iteration, Policy Iteration, Asynchronized DP

Instructor: Chongjie Zhang

Tsinghua University

Last Week

- Definition of Markov Decision Process (MDP)
 - Mathematical model for reinforcement learning
- Finite-Horizon MDPs
 - Solution: non-stationary policy and value function
 - Policy evaluation: backward dynamic programming
 - Policy optimization: backward value iteration
- Infinite-Horizon MDPs
 - Solution: stationary policy and value function
 - Policy evaluation: linear solver
 - Policy optimization: value iteration

Today's Outline

Value iteration

Policy iteration

Asynchronized Dynamic Programming

Extensions of MDPs

Markov Decision Process (MDP)

- An Finite MDP is defined by:
 - A finite set of states s ∈ S
 - A finite set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'| s, a)
 - Also called the model or the dynamics
 - A reward function R(s) (Sometimes R(s, a) or R(s, a, s'))
 - A start state
 - Maybe a terminal state
- A model for sequential decision making problem under uncertainty

Value Function for Infinite Horizon MDPs

- Discounted expected reward with $0 \le \gamma < 1$
 - future rewards discounted by γ per time step

$$V_{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R^{t} \mid \pi, s\right]$$

- Why?
 - Mathematically convenient to discount rewards
 - Avoids infinite returns in cyclic Markov processes
 - Uncertainty about the future may not be fully represented
 - If the reward is financial, immediate rewards may earn more interest than delayed rewards
 - Animal/human behavior shows preference for immediate reward

Computing the Optimal Policy

• How to compute the optimal policy? (or equivalently, the optimal value function?)

- Approach #1: Value Iteration
 - Initialize an estimate for the value function arbitrarily

$$\hat{V}(s) \leftarrow 0, \ \forall s \in \mathcal{S}$$

Repeatedly update the estimate according to Bellman optimality equation

$$\hat{V}(s) \leftarrow R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \hat{V}(s'), \ \forall s \in \mathcal{S}$$

Theorem: Value iteration converges to optimal value: $\hat{V} \rightarrow V^{\star}$

Theorem: Value iteration converges to optimal value: $\hat{V} \rightarrow V^{\star}$

Theorem: Value iteration converges to optimal value: $\hat{V} \rightarrow V^{\star}$

Proof: For any estimate of the value function V, we define the Bellman backup operator $B: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$

$$B \hat{V}(s) = R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \hat{V}(s')$$

We will show that Bellman operator is a *contraction*, that for any value function estimates V_1 , V_2

$$\max_{s \in \mathcal{S}} |BV_1(s) - BV_2(s)| \le \gamma \max_{s \in \mathcal{S}} |V_1(s) - V_2(s)|$$

Since $BV^* = V^*$ (the contraction property also implies existence and uniqueness of this fixed point), we have:

$$\max_{s \in \mathcal{S}} \left| B \, \hat{V}(s) - V^{\star}(s) \right| \le \gamma \max_{s \in \mathcal{S}} \left| \hat{V}(s) - V^{\star}(s) \right| \implies \hat{V} \to V^{\star}$$

Proof of contraction property:

$$\begin{split} &|BV_{1}(s) - BV_{2}(s)| \\ &= \gamma \left| \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s,a) \, V_{1}(s') - \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s,a) \, V_{2}(s') \right| \\ &\leq \bigvee_{a \in \mathcal{A}} \left| \sum_{s' \in \mathcal{S}} P(s'|s,a) \, V_{1}(s') - \sum_{s' \in \mathcal{S}} P(s'|s,a) \, V_{2}(s') \right| \\ &= \bigvee_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s,a) \, |V_{1}(s') - V_{2}(s')| \quad \leqslant \quad \bigvee_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s,a) \, |V_{1}(s') - V_{2}(s')| \\ &\leq \gamma \max_{s \in \mathcal{S}} |V_{1}(s) - V_{2}(s)| \end{split}$$

where third line follows from property that

$$\left| \max_{x} f(x) - \max_{x} g(x) \right| \le \max_{x} |f(x) - g(x)|$$

and final line because P(s'|s,a) are non-negative and sum to one

Value iteration convergence rate

How many iterations will it take to find optimal policy?

Assume rewards in $[0, R_{\max}]$, then

$$V^{\star}(s) \le \sum_{t=1}^{\infty} \gamma^t R_{\max} = \frac{R_{\max}}{1 - \gamma}$$

Then letting V^k be value after kth iteration

$$\max_{s \in \mathcal{S}} |V^k(s) - V^*(s)| \le \frac{\gamma^k R_{\max}}{1 - \gamma}$$

i.e., we have linear convergence to optimal value function

But, time to find optimal policy depends on separation between value of optimal and second suboptimal policy, difficult to bound

Stopping Condition

- Want to stop when we can guarantee the value function is near optimal.
- Key property:

If
$$||V^k - V^{k-1}|| \le \varepsilon$$
 then $||V^k - V^*|| \le \varepsilon \gamma / (1 - \gamma)$

- Continue iteration until ||Vk Vk-1||≤ ε
 - Select small enough ε for desired error guarantee

How to Act

- Given a V^k that closely approximates V*, what should we use as our policy?
- Use greedy policy: (one step lookahead)

$$greedy[V^k](s) = \underset{a}{\operatorname{arg max}} \sum_{s'} T(s, a, s') \cdot V^k(s')$$

 This selects the action that looks best if we assume that we get value V^k in one step

How good is this policy?

Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$\hat{V}(s) \leftarrow R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \hat{V}(s'), \ \forall s \in \mathcal{S}$$

■ Problem 1: It's slow – O(S²A) per iteration

Problem 2: The "max" at each state rarely changes

Problem 3: The policy often converges long before the values

Approach #2: Policy Iteration

Another approach to computing the optimal policy

• Algorithm:

- 1. Initialize policy π (e.g., randomly)
- 2. Compute the value V^{π} of policy π

Policy Improvement

Policy Evaluation

3. Update policy π to be the greedy policy with respect to V^{π}

$$\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) V^{\pi}(s')$$

4. If policy is changed in the last iteration, goto step 2

Policy Iteration

Policy Evaluation

Value equation for fixed policy

 Equation can be derived from original definition of infinite horizon discounted value

Exact Policy Evaluation via Linear Solver

 V_{π} and R are n-dimensional column vector (one element for each state)

$$T$$
 is an $n \times n$ matrix s.t. $T(i, j) = T(s_i, \pi(s_i), s_j)$
$$V_{\pi} = R + \gamma T V_{\pi}$$

$$\downarrow \downarrow$$

$$(I - \gamma T) V_{\pi} = R$$

$$\downarrow \downarrow$$

$$V_{\pi} = (I - \gamma T)^{-1} R$$

Policy Evaluation via Value Iteration

- Initialize V(s) to anything, e.g., 0
- Do until change in $||V_{k+1} V_k||_{\infty}$ is below desired threshold
 - for every state s, update:

$$V_{\pi}(s) \leftarrow R(s) + \gamma \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}(s')$$

Iterative policy evaluation is guaranteed to converge!

Policy Improvement

- Define $q_{\pi}(s, a) = \mathbb{E}_{\pi}[R(s) + \gamma V_{\pi}(s')] = R(s) + \gamma \sum_{s'} P(s'|s, a) V_{\pi}(s')$
- We can improve the policy by acting greedily

$$\pi'(s) = \operatorname*{argmax} q_{\pi}(s, a)$$

This improve the value from any state s over one step

$$q_{\pi}(s,\pi'(s)) = \max_{a\in A} q_{\pi}(s,a) \geq q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

• It therefore improves the value function, $v_{\pi'}(s) \ge v_{\pi}(s)$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2})) \mid S_{t} = s \right]$$

$$\leq \mathbb{E}_{\pi'} \left[R_{t+1} + \gamma R_{t+2} + \dots \mid S_{t} = s \right] = v_{\pi'}(s)$$

Policy Improvement (2)

• If the improvement stops (it will stop eventually)

$$q_{\pi}(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_{\pi}(s,a) = q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- Therefore $v_{\pi}(s) = v_{*}(s)$ for all state s
- So π is the optimal policy

Running policy iteration with $\gamma=0.9$, initialized with policy $\pi(s)={\rm North}$

О	0	0	1
0		0	-100
0	0	0	0

Original reward function

Running policy iteration with $\gamma=0.9$, initialized with policy $\pi(s)={\rm North}$

0.418	0.884	2.331	6.367
0.367		-8.610	-105.7
-0.168	-4.641	-14.27	-85.05

 V^{π} at one iteration

Running policy iteration with $\gamma=0.9$, initialized with policy $\pi(s)={\rm North}$

5.414	6.248	7.116	8.634
4.753		2.881	-102.7
2.251	1.977	1.849	-8.701

 V^{π} at two iterations

Running policy iteration with $\gamma=0.9$, initialized with policy $\pi(s)={\rm North}$

5.470	6.313	7.190	8.669
4.803		3.347	-96.67
4.161	3.654	3.222	1.526

 V^{π} at three iterations (converged)

Grid-World Results

- Approximation of the value function
 - Policy iteration: exact value function after three iteratons
 - Value iteration: after 100 iteration, ||V V*|| = 7.1 * 10^4

- Calculation of the optimal policy
 - Policy iteration: three iterations
 - Value iteration: 12 iterations
- Note: value iteration converges to the optimal policy long before it converges to the correct value in this MDP

Policy Iteration Complexity

- Each iteration runs in polynomial time in the number of states and actions
- There are at most |A|ⁿ policies and PI never repeats a policy
 - So at most an exponential number of iterations
 - Not a very good complexity bound
- Empirically O(n) iterations are required
 - Challenge: try to generate an MDP that requires more than that n iterations
- Still no polynomial bound on the number of PI iterations (open problem)!

Fast Policy Evaluation

- Complexity of policy evaluation by a linear solver: O(n^2.373)
 - Prohibitive for large problems

 Using Bellman update with repeating k times for policy evaluation (like value iteration)

$$\hat{V}(s) \leftarrow R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \hat{V}(s'), \ \forall s \in \mathcal{S}$$

Called Modified Policy Iteration, which is much faster.

Generalized Policy Iteration

- Generalized Policy Iteration (GPI): any interleaving of policy evaluation and policy improvement
 - independent of their granularity and other details of the two processes

Policy Iteration vs Value Iteration

 PI requires fewer iterations than VI, but each iteration requires solving policy evaluation instead of just applying Bellman operator

- In practice, policy iteration is often faster
 - Especially, the transition function is structure (e.g., sparse)

- Modified policy iteration often perform better than PI and VI
 - Approximately solving policy evaluation using VI

Today's Outline

Value iteration

Policy iteration

Asynchronized Dynamic Programming

Extensions of MDPs

Synchronous vs Asynchronous Dynamic Programming

- Synchronous DP methods described so far require
 - exhaustive sweeps of the entire state set
 - updates to V only after a full sweep
- Asynchronous DP backs up states individually, in any order
 - Repeat until convergence criterion is met:
 - Select a state and apply the appropriate backup
- Still need lots of computation, but does not get locked into hopelessly long sweeps
- Guaranteed to converge if all states continue to be selected
- Can you select states to backup intelligently?
 - YES: an agent's experience can act as a guide.

Asynchronous Dynamic Programming

- Three simple ideas for asynchronous dynamic programming:
 - In-place dynamic programming
 - Prioritized sweeping
 - Real-time dynamic programming

In-Place Dynamic Programming

 Synchronous value iteration stores two copies of value function

$$\hat{V}'(s) = R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \hat{V}(s')$$

and then set $\hat{V}(s) \leftarrow \hat{V}'(s)$

 In-place value iteration or asynchronous value iteration only stores one copy of value function

Alternatively, can loop over states $s=1,\ldots,|\mathcal{S}|$ (or randomize over states), and directly set

$$\hat{V}(s) \leftarrow R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \, \hat{V}(s')$$

Prioritized Sweeping

 Use the magnitude of Bellman errors to guide state selection, e.g.

$$|R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \hat{V}(s') - \hat{V}(s)|$$

- Backup the state with the largest remaining Bellman error
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Real-Time Dynamic Programming

- Idea: only states that are relevant to the agent
- Use the agent's experience to guide the selection of states
- After each time-step S_t, A_t, R_{t+1}
- Backup the state S_t

$$\hat{V}'(s) = R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \hat{V}(s')$$

Full-Width Backups

- DP uses full-width backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality
 - Number of states n = |S| grows exponentially with number of state variables
- Even one backup can be too expensive

Sample Backups

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions <S, A, R, S'>
- Instead of reward function R and transition dynamics P
- Advantages:
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - Cost of backup is constant, independent of n = |S|

Approximate Dynamic Programming

- Approximate the value function
- Using function approximation (e.g., neural net), $\hat{v}(s, \mathbf{w})$
- Apply dynamic programming to $\hat{v}(\cdot, \mathbf{w})$
- e.g. Fitted Value Iteration repeats at each iteration k,
 - Sample states $\tilde{\mathcal{S}} \subseteq \mathcal{S}$
 - For each state $s \in \tilde{S}$, estimate its target value using Bellman optimality equation

$$\hat{V}'(s) = R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \hat{V}(s')$$

■ Train next value function $\hat{v}(\cdot, \mathbf{w_{k+1}})$) using targets $\{\langle s, \tilde{v}_k(s) \rangle\}$

Today's Outline

Value iteration

Policy iteration

Asynchronized Dynamic Programming

Extensions of MDPs

Extensions to MDPs

Infinite and continuous MDPs

Partially observable MDPs

Undiscounted, average reward MDPs

Infinite MDPs

- Countably infinite state and/or action spaces
 - Straightforward
- Continuous state and/or action spaces
 - Closed form for linear quadratic model (LQR)
- Continuous time
 - Requires partial differential equations
 - Hamilton-Jacobi-Bellman (HJB) equation
 - Limiting case of Bellman equation as time-step → 0

Partially observable MDPs

- A Partially Observable MDP is an MDP with hidden states.
 - It is a hidden Markov model with actions.
- An Partially Observable MDP is defined by:
 - A finite set of states s ∈ S
 - A finite set of actions a ∈ A
 - A finite set of observations O
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'| s, a)
 - An observation function Z
 - $Z(o_{t+1}, s_{t+1}, a_t) = P(o_{t+1} | s_{t+1}, a_t)$
 - A reward function R(s)

Belief States

- A history h_t is a sequence of actions, observations and rewards,
 - $h_t = \langle a_0, o_1, R_1, ..., a_{t-1}, o_t, R_t \rangle$

- A belief state b(h) is a probability distribution over states, conditioned on the history h
 - $b(h) = (P[S_t = s_1 | H_t = h), ..., P[S_t = s_n | H_t = h])$

Reductions of POMDPs

- The history h_t satisfies the Markov property
- The belief state b(h_t) satisfies the Markov property

- A POMDP can be reduced to an (infinite) history tree
- A POMDP can be reduced to an continuous MDP with belief states

Ergodic Markov Process

- An ergodic Markov process is
 - Recurrent: each state is visited an infinite number of times
 - Aperiodic: each state is visited without any systematic period

Theorem

An ergodic Markov process has a limiting stationary distribution $d^{\pi}(s)$ with the property

$$d^{\pi}(s) = \sum_{s' \in \mathcal{S}} d^{\pi}(s') \mathcal{P}_{s's}$$

Ergodic MDP

• An MDP is ergodic if the Markov chain induced by any policy is ergodic.

For any policy π , an ergodic MDP has an average reward per time-step ρ^{π} that is independent of start state.

$$ho^{\pi} = \lim_{T o \infty} rac{1}{T} \mathbb{E} \left[\sum_{t=1}^{T} R_t
ight]$$

Average Reward Value Function

- The value function of an undiscounted, ergodic MDP can be expressed in terms of average reward.
- $v_{\pi}(s)$ is the extra reward due to starting from state s,

$$ilde{v}_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=1}^{\infty}\left(R_{t+k} -
ho^{\pi}
ight) \mid S_{t} = s
ight].$$

There is a corresponding average reward Bellman equation

$$egin{aligned} ilde{v}_{\pi}(s) &= \mathbb{E}_{\pi} \left[(R_{t+1} -
ho^{\pi}) + \sum_{k=1}^{\infty} (R_{t+k+1} -
ho^{\pi}) \mid S_{t} = s
ight] \ &= \mathbb{E}_{\pi} \left[(R_{t+1} -
ho^{\pi}) + ilde{v}_{\pi}(S_{t+1}) \mid S_{t} = s
ight] \end{aligned}$$

Recap: things you should know

- What is an MDP?
- What is a policy?
 - Stationary and non-stationary
- What is a value function?
 - Finite-horizon and infinite horizon
- How to evaluate policies?
 - Finite-horizon and infinite horizon
 - Time/space complexity?
- How to optimize policies?
 - Finite-horizon and infinite horizon
 - Time/space complexity?
 - Why they are correct?

A Recommended MDP Book

Next Time: Reinforcement Learning!