Расчёт магнитного поля дипольного источника, заключённого внутри магнитопаузы заданной формы.

Выполнил Лапин Ярослав. 1 июня 2011.

Постановка задачи

В данной работе ищется численное решение задача Неймана методом Нелдера-Мида

Задача формулируется следующим образом:

- Внутреннее магнитное поле ограниченно дипольными источниками, которые считаются с помощью утилиты DIP 08
- Магнитопауза симметрична относительно оси X и задана в виде уравнения $r=R(\theta)$, где $r=\sqrt{X^2+Y^2+Z^2}$, а угол $\theta=\arccos X/R$ (угол от положитель-ного направления оси X)
- Так как поле диполя не должно проникать вне магнитосферы, то на границе должно выполняться условие $\vec{B} \cdot \vec{n} = 0$, где В это суммарное поле диполя и токов экранировки (CF-токи, Chapman-Ferraro), текущих по магнитопаузе, а n это вектор нормали.
- ullet Из условия $ec{B}_{CF} \cdot ec{n} = ec{B}_d \cdot ec{n}$ на границе нужно найти $ec{B}_{CF}$

Поле $ec{B}_{CF}$

- Внутри магнитосферы поле \vec{B}_{CF} потенциально, то есть можно представить его в виде $\vec{B}_{CF} = -\nabla U$.
- ullet Из уравнения Максвелла $abla \cdot \vec{B}_{CF} = 0$ следует, что $abla^2 U = 0$
- ullet Так же из $abla U\cdot ec{n}=-ec{B}_d\cdot ec{n}$ получаем $rac{\partial U}{\partial n}=ec{B}_d\cdot ec{n}$
- Таким образом система уравнений $\nabla^2 U = 0$ и $\frac{\partial U}{\partial n} = \vec{B}_d \cdot \vec{n}$ образует задачу Неймана для скалярного потенциала U.
- Решение будем искать в виде суммы гармонических функций:

$$U = \sum_{i=1}^{N} a_i f_i(\vec{r}, b_1, b_2, ..., b_K)$$

• Коэффициенты a_i, b_i получаются из условия минимизации среднеквадратичного отклонения $\nabla U \cdot \vec{n} - \vec{B}_d \cdot \vec{n}$ по ансамблю М точек на поверхности магнитопаузы:

$$\sigma = \sqrt{\frac{\sum_{i=j}^{M} [\vec{B}_d(\vec{r}_j) \cdot \vec{n}_j - \nabla U(\vec{r}_j) \cdot \vec{n}_j]^2}{M}}$$

Потенциал U

• В качестве базисных функций f_i использовались "коробчатые" гармоники, являющиеся решением уравнения Лапласа

$$f_i = \exp(\sqrt{2}b_iX)\cos(b_iY)\sin(b_iZ)$$

ullet b_i имеет смысл обратной величины пространственного масштаба i-ой гармоники.

Генерация набора

- Первое, что необходимо сделать, это создать набор M точек на магнитопаузе равномерно распределённый от "лобовой" точки $X=R_0$ до области удалённого хвоста $X=-100R_E$.
- Форма магнитопаузы по модели Shue et al. [JGR, 1998]

$$R(\theta) = R_0 \left(\frac{2}{1 + \cos \theta}\right)^{\alpha}$$

• R_0 , α зависят от условий ММП: B_z , P_{dyn} , в данной работе было взято $B_z=0$, $P_{dyn}=2nPa$, $R_0=10.252$, $\alpha=0.5896$

Форма магнитопаузы по модели Shue

Точки были выбраны на сетке по X от R_0 до $100R_E$ с шагом по углам в плоскости YZ 5 градусов (60 линий).

Эти же точки в проекции на плоскость XZ.

Поиск коэффициентов

• Рассмотрим для примера N = 3. Тогда потенциал U будет вида:

$$U = a_1 \exp(\sqrt{2}b_1 X) \cos(b_1 Y) \sin(b_1 Z)$$
$$+a_2 \exp(\sqrt{2}b_2 X) \cos(b_2 Y) \sin(b_2 Z)$$
$$+a_3 \exp(\sqrt{2}b_3 X) \cos(b_3 Y) \sin(b_3 Z)$$

- Получаем 3 нелинейных коэффициента и 3 линейных.
- Задав некоторый начальный набор нелинейных коэффициентов, линейные можно посчитать методом наименьших квадратов:
 - Допустим мы имеем М уравнений вида:

$$a_1x_1 + a_2y_1 + \dots = n_1$$

 $a_1x_2 + a_2y_2 + \dots = n_2$
 $a_1x_m + a_2y_m + \dots = n_m$

- Где х,у,..—значения функций, посчитанные при заданных нелинейных параметрах в каждой точке, а a_i неизвестные линейные параметры которые нужно найти.
- Дальше методом наименьших квадратов¹ (Singular Value Decomposition) решается задача поиска параметров a_i .
- Поиск нелинейных коэффициентов происходит методом Нелдера—Мида:
 - Это метод по поиску оптимального направления движения в n-мерном пространстве нелинейных параметров, в котором значение функции от этих параметров будет уменьшаться. В нашем случае функцией выступает значение среднеквадратичного отклонения, полученное на предыдущем этапе.
- Тогда наша задача может быть переформулирована в терминах поиска минимума функции $\sigma(\{r\},\{a\},\{b\})$, при условии, что для каждого набора b_i методом наименьших квадратов ищутся соответствующие a_i .

 $^{^{1}} http://en.wikipedia.org/wiki/Total_least_squares$

Результаты

В результате поиска коэффициентов в разложении до 8 членов (8 линейных коэффициентов a_i и 8 нелинейных b_i) была построена модель с средним квадратическим отлонением порядка 2.3% величины.

a_i	b_i
-0.230740	0.360697
1.17955	0.329291
1.96982	0.262955
-7.07680	0.274865
-12.5596	0.200351
13.9235	0.232801
-134.273	0.0576564
-138.127	0.0596382

Используя полученную модель была построена карта силовых линий суммарного поля (дипольная составляющая и поле экранизации) в плоскости XZ (Y=0).

В целом данная картина вполне соответствует ожидаемому результату, хотя заметно, что если бы удалось выполнить поиск коэффициентов с большей точностью, то мы бы не видели таких проблем, как линии поля пересекающие магнитопаузу.