Feuille d'exercices n. 8 : Séries de Laurent et fonctions méromorphes.

Séries de Laurent.

Soit U un ouvert de \mathbb{C} et soit z_0 un point de U. Si f est holomorphe sur $U \setminus z_0$, elle possède un développement de Laurent en z_0 :

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n.$$

Le coefficient a_{-1} de $(z-z_0)^{-1}$ dans le développement en série de Laurent de f en z_0 s'appelle le résidu de f en z_0 . On le note $res(f, z_0)$.

Exercice 1 Déterminer les séries de Laurent et le résidu à l'origine des fonctions suivantes :

- (a) $f(z) = \frac{1}{z}$;
- (b) $f(z) = \frac{1}{z^2 + 1}$;
- (c) $f(z) = \frac{1}{z(z^2+1)}$.

Exercice 2 Déterminer la série de Laurent à l'origine de la fonction analytique exp(1/z), et son résidu à l'origine. En $z_0 \neq 0$ quel est le résidu de cette fonction?

Exercice 3 Déterminer le résidu, et le terme constant des séries de Laurent à l'origine pour les fonctions:

- (a) $f(z) = \frac{1}{\sin z}$; (b) $f(z) = \frac{1}{\sin z \sinh z}$; (c) $f(z) = \frac{1}{z \sin z \sinh z}$.

Exercice 4 Déterminer les séries de Laurent de $f(z) = \frac{1}{(z-1)(z-2)}$ dans chacune des trois couronnes ouvertes $0 < |z| < 1, \ 1 < |z| < 2, \ 2 < |z| < \infty$, ainsi que les séries de Laurent de f aux points 0, 1, 2 et 3. Quels sont les résidus en z = 0, z = 1, z = 2 et z = 3?

Singularités essentielles.

Exercice 5 (a) Montrer qu'une fonction ayant une singularité essentielle en un point z_0 n'a aucune limite (finie ou infinie) en z_0 .

(b) Montrer qu'une fonction f a un pôle en un point z_0 si et seulement si son inverse 1/f a un zéro en z_0 .

Exercice 6 (Théorème de Casorati-Weierstrass)

Le but est de montrer que si z_0 est une singularité essentielle d'une fonction f holomorphe sur un disque épointé $D_r(z_0) \setminus z_0$, alors pour tout $A \in \mathbb{C}$ il existe une suite $\{z_n\}_{n\geq 1}$ de points de $(D_r(z_0) \setminus z_0)$ qui converge vers le centre z_0 et telle que

$$\lim_{n \to +\infty} f(z_n) = A.$$

En d'autre termes l'énoncé ci-dessus (connu comme Théorème de Casorati-Weierstrass) dit que l'image par une fonction holomorphe d'un disque épointé centré en une singularité essentielle de la fonction est dense dans \mathbb{C} .

- (a) Supposons par l'absurde que la conclusion du théorème de Casorati-Weierstrass est fausse. Montrer qu'il existe $A \in \mathbb{C}$ et $\alpha > 0$ tels que si g(z) := 1/(f(z) A) on a $|g(z)| < 1/\alpha$.
- (b) Montrer grâce à (a) que la fonction g se prolonge en une fonction (encore notée g) holomorphe en z_0 avec $g(z_0)=0$.
- (c) Déduire de ce qui précède que la singularité de f en z_0 n'est pas essentielle.

Exercice 7 (Automorphismes de \mathbb{C})

Le but est de montrer, à l'aide du théorème de Casorati-Weierstrass que les automorphismes de \mathbb{C} sont les fonctions f de la forme f(z) = az + b, pour $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$.

- (a) Soit $f \in \text{Aut}(\mathbb{C})$ avec f(0) = 0. Soit g(z) = f(1/z). Montrer qu'il existe $\epsilon > 0$ et C > 0 tels que si $|z| < \epsilon$, alors |g(z)| > C.
- (b) Déduire de ce qui précède que la singularité de g en 0 n'est pas essentielle.
- (c) Déduire de ce qui précède que f est un polynôme de degré n, et que de plus n=1.
- (d) Déduire de ce qui précède le cas des $f \in Aut(\mathbb{C})$ avec $f(0) \neq 0$.