07.03.2017 ML2_1

```
In [11]:
```

```
import pydotplus
import pandas as pd
from IPython.display import Image
from sklearn import tree
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import numpy as np
from sklearn.model_selection import train_test_split, cross_val_score
#Считываем данные
file_data = open('german.data-numeric.txt').read()
data, target = [], []
for line in file_data.splitlines():
    recs = line.split()
    data.append(recs[:-1])
    target.append(recs[-1])
```

In [12]:

```
#cmpoum дерево с помощью sklearn
model = tree.DecisionTreeClassifier(max_depth = 5)
model.fit(data, target)
```

Out[12]:

In [13]:

In [14]:

```
#визуализируем
graph = pydotplus.graphviz.graph_from_dot_file("tree.out")
Image(graph.create_png())
```

Out[14]:

07.03.2017 ML2_1

In [15]:

#Постройте графики зависимости качества на кросс-валидации и на обучающей выборке от глубин train_data, test_data, train_target, test_target = train_test_split(data, target, test_size

In [16]:

```
accuracies = []
for i in range(1, 20, 1):
    model = tree.DecisionTreeClassifier(max_depth = i)
    model.fit(train_data, train_target)
    train_predictions = model.predict(train_data)
    accuracies.append(accuracy_score(train_target, train_predictions))
```

In [17]:

```
from matplotlib import pyplot
pyplot.plot(range(1, 20, 1), accuracies)
pyplot.show()
#График для обучающей выборки
```


In [18]:

07.03.2017 ML2_1

pyplot.plot(range(1, 20, 1), cv_scories) pyplot.show() #График для кросс-валидации

In [20]:

#большая глубина ведет к снижению качества; влияет переобучение

-	г	_
l n		

In []:

In []: