NavayevaAD 23122024-171105

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Частота колебаний опорного генератора (ОГ) 130 МГц. Частота колебаний ГУН 420 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна плюс 2.7 дБн/Гц для ОГ и плюс 61.5 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 20 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=0.17526,\ \tau=181.1053$ мкс.

Крутизна характеристики управления частотой ГУН равна 1.2 МГц/В. Крутизна характеристики фазового детектора 0.6 В/рад.

Рисунок 1 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 151 кГц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза?

- 1) на плюс 5.1 дБ
- 2) на плюс 4.7 дБ
- 3) на плюс 4.3 дБ
- 4) на плюс 3.9 дБ
- на плюс 3.5 дБ
- 6) на плюс 3.1 дБ
- 7) на плюс 2.7 дБ
- 8) на плюс 2.3 дБ
- 9) на плюс 1.9 дБ

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 2). Коэффициент передачи цепи обратной связи частотно независим и равен 10^{-1} , а крутизна характеристики управления частотой ГУН равна 2.4 МГц/В. Частота колебаний опорного генератора (ОГ) 280 МГц. Частота колебаний ГУН 1070 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 3.9 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 20 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 617 кГц на 1.7 дБ меньше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, $\Phi Д$ - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 3.19 В/рад
- 2) 3.72 В/рад
- 3) 4.25 В/рад
- 4) 4.78 В/рад
- 5) 5.31 В/рад
- 6) 5.84 В/рад
- 7) 6.37 В/рад
- 8) 6.90 В/рад
- 9) 7.43 В/рад

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением нижней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 1500 М Γ ц и спектральную плотность мощности фазового шума на отстройке 100 к Γ ц минус 134 дБн/ Γ ц. Спектральная плотность мощности фазового шума на отстройке 100 к Γ ц второго колебания равна минус 132 дБн/ Γ ц, а частота его равна 1890 М Γ ц. Чему равна спектральная плотность мощности фазового шума синтезированного колебания на отстройке 100 к Γ ц при описанном выше когерентном синтезе?

- 1) -148.7 дБн/ Γ ц
- 2)-145.7 дБн/Гц
- 3) 142.7 дБн/Гц
- 4) -139.3 дБн/ Γ ц
- 5) -136.3 дБн/Гц
- 6) -133.3 дБн/Гц
- 7) -132.9 дБн/ Γ ц
- 8) -129.9 дБн/ Γ ц
- 9) -126.9 дБн/ Γ ц

Источник колебаний с доступной мощностью 3.9 дБм и частотой 6410 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 103 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 6410.002 МГц, если спектральная плотность мощности его собственных шумов равна минус 107 дБм/Гц, а полоса пропускания ПЧ установлена в положение 500 Гц?

- 1)-61.3 дБм
- 2)-63 дБм
- 3)-64.7 дБм
- 4)-66.4 дБм
- 5)-68.1 дБм
- 6)-69.8 дБм
- 7) -71.5 дБм
- 8) -73.2 дБм
- 9)-74.9 дБм

Если цепь на рисунке 3 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 5.753 кГц на 3.5 дБ больше, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ на 1.6 дБ больше, чем вклад ГУН. Известно, что C=4 нФ, а $R_1=6188$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 3 – Электрическая схема цепи обратной связи

- 1) 3139 O_M
- 2) 3162 O_M
- 3) 3185 Ом
- $4)3208 \, \mathrm{Om}$
- 5) 3231 Ом
- 6) $3254 \, \text{OM}$
- $7)3277 \, O_{\rm M}$
- 8) 3300 O_M
- $9)3323 \, O_{M}$

Источник колебаний и частотой 6630 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 167 д $\rm Bh/\Gamma$ ц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1339 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 30 $\rm \Gamma$ ц, если с доступная мощность на выходе источника равна 3.1 д $\rm Bm$?

- 1) -163.1 дБн/Гц
- 2)-163.6 дБн/Гц
- 3) -164.1 дБн/Гц
- 4)-164.6 дБн/Гц
- 5)-165.1 дБн/Гц
- 6) -165.6 дБн/Гц
- 7) -166.1 дБн/Гц
- 8) -166.6 дБн/Гц
- 9) -167.1 дБн/Гц