Instruction I Boletín de Bulletin

instrucciones

Directives d'utilisation

02/2003 Raleigh, NC, USA

ALTIVAR® 11

Retain for Future Use. Conservar para uso futuro. À conserver pour usage ultérieur. **Adjustable Speed Drive Controllers** User's Guide

Variadores de velocidad ajustable Guía del usuario

Variateurs de vitesse Guide de l'utilisateur

ALTIVAR® 11 Adjustable Speed Drive Controllers User's Guide

Variadores de velocidad ajustable ALTIVAR® 11 Guía del usuario

Variateurs de vitesse ALTIVAR[®] 11 Guide de l'utilisateur

A DANGER

HAZARDOUS VOLTAGE

- Read and understand this manual before installing or operating the ALTIVAR 11 drive controllers. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.
- The user is responsible for conforming to all applicable code requirements with respect to grounding all equipment.
- Many parts in this drive controller, including printed wiring boards, operate at line voltage. DO NOT TOUCH. Use only electrically insulated tools.
- DO NOT touch unshielded components or terminal strip screw connections with voltage present.
- DO NOT short across terminals PA and PC or across the DC capacitors.
- Install and close all covers before applying power or starting and stopping the drive controller.
- · Before servicing the drive controller:
 - Disconnect all power.
 - Place a "DO NOT TURN ON" label on the drive controller disconnect.
 - Lock the disconnect in the open position.
- Disconnect all power including external control power that may
 be present before servicing the drive controller. WAIT 15
 MINUTES for the DC bus capacitors to discharge. Then follow
 the DC bus voltage measurement procedure beginning on page
 23 to verify that the DC voltage is less than 45 Vdc. The drive
 controller LEDs are not accurate indicators of the absence of DC
 bus voltage.

Failure to follow this instruction will result in death or serious injury.

INI	RODUCTION	. 7
	North American (U) Range (ATV11••••••U)	
	Asian (A) Range (ATV11••••••A)	
STO	DRING AND SHIPPING	. 8
TEC	CHNICAL CHARACTERISTICS	. 9
DIV	IENSIONS	16
МО	UNTING AND TEMPERATURE CONDITIONS	17
МО	UNTING DRIVE CONTROLLERS WITH BASE PLATES	19
МО	UNTING THE EMC PLATE	20
МО	UNTING IN A TYPE 12 OR IP54 METAL ENCLOSURE	20
	Calculating Enclosure Size	
	Ventilation	
	S VOLTAGE MEASUREMENT PROCEDURE	
	ECTRICAL INSTALLATION	
	WER TERMINALS	
	COMMENDED FUSES	
	NTROL TERMINALS	
	RING DIAGRAM	
	ROPEAN COMMUNITY EMC DIRECTIVE	
	GIC INPUT APPLICATION FUNCTIONS	
	2-Wire Control	
	3-Wire Control	
	Operating Direction (Forward / Reverse)	
	Fault Reset	
	Second Ramp	
	OUTPUT APPLICATION FUNCTIONS	
	Current in the Motor (AO)	
	Motor Frequency (AO)	
	Reference Reached (LO)	
	Current Threshold Reached (LO)	34
	DO Output Wiring Diagram	
	Configuration of the Analog Input	
	willing Diagram for the Analog Imput	50

PROGRAMMING	37
Precautions	37
Programming the Drive Controller: E (European) and U (North American)	
Ranges	
Programming the Drive Controller: A (Asian) Range	
ACCESS TO MENUS	40
FIRST LEVEL ADJUSTMENT PARAMETERS	41
drC MOTOR CONTROL MENU	43
FUn APPLICATION FUNCTIONS MENU	45
Incompatible Application Functions	46
tCC Menu	
rrS, PS2, and rSF Menus	48
rP2, StP, and brA Menus	
AdC and SFt Menus	
FLr and dO Menus	
Atr, LSr, and nPL Menus	
bFr, IPL, SCS, and FCS Menus	57
SUP DISPLAY MENU	58
MAINTENANCE AND TROUBLESHOOTING	59
Precautions	59
Routine Maintenance	59
Fault Detection	
Procedure 1: Checking the Supply Voltage	
Procedure 2: Checking the Peripheral Equipment	60
LIST OF FAULTS AND CORRECTIVE ACTION	62
Drive Controller Does Not Start, No Fault Displayed	63
CONFIGURATION AND SETTINGS TABLES	64

INTRODUCTION

The ALTIVAR 11 (ATV11) family of adjustable speed AC drive controllers is used for controlling three-phase asynchronous motors. The controllers range from:

- 0.25 to 3 hp (0.37 to 2.2 kW), 208/230/240 V, single-phase input
- 0.25 to 3 hp (0.37 to 2.2 kW), 208/230/240 V, three-phase input
- 0.25 to 1 hp (0.37 to 0.75 kW), 100/115/120 V, single-phase input

ATV11 controllers have been designed for the global marketplace with three regional adaptations. Each version of the product has the same wiring configuration and functionality. The variations among the regional versions are summarized in the following sections.

North American (U) Range (ATV11 •••••• U)

- · Designed for the North American market.
- Current ratings meet or exceed NEC requirements (see pages 9–11).

European (E) Range (ATV11 ***** E)

- Designed for the European market.
- Available only in 230 V single-phase input line voltage.
- Current ratings have been adapted to meet European standards (see pages 9–11).
- Has an integrated EMC filter to meet European CE requirements.

Asian (A) Range (ATV11 ••••••A)

- Designed for the Asian market.
- Current ratings have been adapted to meet Asian standards (see pages 9–11).
- Speed reference potentiometer and run/stop buttons have been integrated onto the keypad display for local operation (see pages 39, 47, and 56).
- Logic inputs can be configured for negative logic (see page 56).

This instruction bulletin covers the technical characteristics, installation, wiring, programming, and maintenance of all ATV11 drive controllers.

RECEIVING AND PRELIMINARY INSPECTION

Before installing the ATV11 drive controller, read this manual and follow all precautions.

- Before removing the drive controller from its packaging, verify that
 the carton was not damaged in shipping. Carton damage usually
 indicates improper handling and the potential for device damage.
 If any damage is found, notify the carrier and your
 Square D/Schneider Electric representative.
- After removing the drive controller from its packaging, visually inspect the exterior for shipping damage. If any is found, notify the carrier and your sales representative. Do not install a damaged device.
- Verify that the drive controller nameplate and label conform to the packing slip and corresponding purchase order.

CAUTION

DAMAGED EQUIPMENT

Do not operate or install any drive controller that appears damaged.

Failure to follow this instruction can result in injury or equipment damage.

STORING AND SHIPPING

If the drive controller is not being immediately installed, store it in a clean, dry area with an ambient temperature between -25 and +69 $^{\circ}$ C (-13 to +156 $^{\circ}$ F). If the drive controller must be shipped to another location, use the original shipping carton and packing material to protect it.

TECHNICAL CHARACTERISTICS

Table 1: Single-Phase Supply Voltage: 200/240 V -15%, +10%, 50/60 Hz; Three-Phase Output

Motor Mains			Drive Controller					
Motor Power ¹		Input Line Current ²	Short Circuit Rating	Nominal Current	Max. Transient Current ³	Power Dissipated at Nominal Load	Catalog Number ⁴	
kW	hp	Α	kA	Α	Α	w	1	
North American (U) Range								
0.18	0.25	3.3	1	1.6	2.4	14.5	ATV11HU05M2U	
0.37	0.5	6	1	2.4	3.6	23	ATV11•U09M2U	
0.75	1	9.9	1	4.6	6.3	43	ATV11•U18M2U	
1.5	2	17.1	1	7.5	11.2	77	ATV11HU29M2U	
2.2	3	24.1	1	10.6 15 101		101	ATV11HU41M2U	
Asiar	ı (A) Ra	ange						
0.18	0.25	3.3	1	1.4	2.1	14	ATV11HU05M2A	
0.37	0.5	6	1	2.4	3.6	25	ATV11•U09M2A	
0.75	1	9.9	1	4	6	40	ATV11•U18M2A	
1.5	2	17.1	1	7.5	11.2	78	ATV11HU29M2A	
2.2	3	24.1	1	10	15	97	ATV11HU41M2A	
Euro	pean (E	E) Range						
0.18	0.25	2.9	1	1.1	1.6	12	ATV11HU05M2E	
0.37	0.5	5.3	1	2.1	3.1	20.5	ATV11•U09M2E	
0.55	0.75	6.3	1	3	4.5	29	ATV11•U12M2E	
0.75	1	8.6	1	3.6	5.4	37	ATV11•U18M2E	
1.5	2	14.8	1	6.8	10.2	72	ATV11HU29M2E	
2.2	3	20.8	1	9.6	14.4	96	ATV11HU41M2E	

Power ratings are for a switching frequency of 4 kHz in continuous operation. The switching frequency is adjustable from 2 to 16 Hz. Above 4 kHz, the drive controller will reduce the switching frequency if an excessive temperature rise occurs. The temperature rise is sensed by a PTC probe in the power module. Derate the nominal drive current as follows for continuous operation above 4 kHz: 10% for 8 kHz; 20% for 12 kHz; 30% for 16 kHz.

Nominal voltage values: 208 V for the North American (U) Range; 200 V for the Asian (A) Range; 230 V for the European (E) Range.

³ For 60 seconds.

The symbol "•" in a catalog number indicates that the drive controller is available in two versions. For drive controllers with a heatsink, replace the "•" with an "H" (for example, ATV11HU09M2E). For drive controllers with a base plate, replace the "•" with a "P" (for example, ATV11PU09M2E).

Table 2: Three-Phase Supply Voltage: 200/230 V -15%, +15%, 50/60 Hz; Three-Phase Output

Motor Mains		Drive Controller						
Motor Power ¹		Circuit		Nominal Current	Max. Transient Current ³ Power Dissipated at Nomina Load		Catalog Number ⁴	
kW	hp	Α	kA	Α	Α	w	1	
North	Ame	rican (U) Ra	ange	•	•	•		
0.18	0.25	1.8	5	1.6	2.4	13.5	ATV11HU05M3U	
0.37	0.5	3.6	5	2.4	3.6	24	ATV11•U09M3U	
0.75	1	6.3	5	4.6	6.3	38	ATV11•U18M3U	
1.5	2	11	5	7.5	11.2	75	ATV11HU29M3U	
2.2	3	15.2	5	10.6	15	94	ATV11HU41M3U	
Asiar	1 (A) F	lange						
0.18	0.25	1.8	5	1.4	2.1	13.5	ATV11HU05M3A	
0.37	0.5	3.6	5	2.4	3.6	24	ATV11•U09M3A	
0.75	1	6.3	5	4	6	38	ATV11•U18M3A	
1.5	2	11	5	7.5	11.2	75	ATV11HU29M3A	
2.2	3	15.2	5	10	15	94	ATV11HU41M3A	

Power ratings are for a switching frequency of 4 kHz in continuous operation. The switching frequency is adjustable from 2 to 16 Hz. Above 4 kHz, the drive controller will reduce the switching frequency if an excessive temperature rise occurs. The temperature rise is sensed by a PTC probe in the power module. Derate the nominal drive current as follows for continuous operation above 4 kHz: 10% for 8 kHz; 20% for 12 kHz; 30% for 16 kHz.

² Nominal voltage values: 208 V for the North American (U) Range; 200 V for the Asian (A) Range.

³ For 60 seconds.

⁴ The symbol "•" in a catalog number indicates that the drive controller is available in two versions. For drive controllers with a heatsink, replace the "•" with an "H" (for example, ATV11HU09M3A). For drive controllers with a base plate, replace the "•" with a "P" (for example, ATV11PU09M3A).

Table 3: Single-Phase Supply Voltage: 100/120 V -15%, +10%, 50/60 Hz; Three-Phase Output

Motor Mains				Drive Controller				
Motor Power ¹		Input Short Circuit Current Rating			Max. Transient Current ³	Power Dissipated at Nominal Load	Catalog Number ⁴	
		Α	kA	Α	Α	W]	
North	Ameri	can (U) Ra	nge					
0.18	0.25	6	1	1.6	2.4	14.5	ATV11HU05F1U	
0.37	0.5	9	1	2.4	3.6	23	ATV11•U09F1U	
0.75	1	18	1	4.6	6.3	43	ATV11HU18F1U	
Asian	Asian (A) Range							
0.18	0.25	6	1	1.4	2.1	14	ATV11HU05F1A	
0.37	0.5	9	1	2.4	3.6	25	ATV11•U09F1A	
0.75	1	18	1	4 6 40 ATV11H		ATV11HU18F1A		

Power ratings are for a switching frequency of 4 kHz in continuous operation. The switching frequency is adjustable from 2 to 16 Hz. Above 4 kHz, the drive controller will reduce the switching frequency if an excessive temperature rise occurs. The temperature rise is sensed by a PTC probe in the power module. Derate the nominal drive current as follows for continuous operation above 4 kHz: 10% for 8 kHz; 20% for 12 kHz; 30% for 16 kHz.

² Values for 100 V nominal voltage.

³ For 60 seconds.

⁴ The symbol "•" in a catalog number indicates that the drive controller is available in two versions. For drive controllers with a heatsink, replace the "•" with an "H" (for example, ATV11HU09F1A). For drive controllers with a base plate, replace the "•" with a "P" (for example, ATV11PU09F1A).

Table 4: Minimum Dynamic Braking Resistance Values For Use with External Braking Module VW3A11701

230 V Single-Phase Controllers ATV11******	PA/PB Minimum Resistance	230 V Three-Phase Controllers ATV11••••••	PA/PB Minimum Resistance	115 V Single-Phase Controllers ATV11	PA/PB Minimum Resistance
HU05M2U, A, E	75	HU05M3U, A	75	HU05F1U, A	75
HU09M2U, A, E	75	HU09M3U, A	75	HU09F1U, A	75
HU12M2E	75				
HU18M2U, A, E	75	HU18M3U, A	75	HU18F1U, A	75
HU29M2U, A, E	51	HU29M3U, A	51	PU09F1U	75
HU41M2U, A, E	51	HU41M3U, A	51		
PU09M2U	75	PU09M3U	75		
PU18M2U	75	PU18M3U	75		

A WARNING

BRAKING RESISTOR OVERHEATING

- Select the proper braking resistors for the application.
- Provide adequate thermal protection.
- Enclose the braking resistors in an enclosure that is suitable for the environment.

Failure to follow this instruction can result in serious injury or equipment damage.

Table 5: Environmental Specifications

ATV11 drive controllers have been developed in accordance with IEC and EN, the strictest international standards and recommendations regarding electrical equipment for industrial monitoring; specifically, EN 50178 governing electromagnetic compatibility and conducted and radiated emissions.				
 IEC/EN 61000-4-2 level 3 IEC/EN 61000-4-3 level 3 IEC/EN 61000-4-4 level 4 IEC/EN 61000-4-5 level 3 (power access) IEC/EN 61800-3, environments 1 and 2 				
All ATV11 controllers: IEC/EN 61800-3, environments 2 (industrial network) and 1 (public utility network) in limited distribution.				
ATV11+U05M2E–U18M2E : EN 55011, EN 55022 Class B, 2: 12 kHz for motor cables \leq 16 ft. (5 m); and Class A (Group 1), 2: 16 kHz for motor cables \leq 33 ft. (10 m).				
TV11•U29M2E-U41M2E: EN 55011, EN 55022 Class B, 4: 16 kHz for motor ables ≤ 16 ft. (5 m); and Class A (Group 1), 4: 16 kHz for motor cables ≤ 33 ft. 0 m).				
ATV11HU05M2E–HU41M2E : With additional EMC filter: EN 55011, EN 55022 Class B, 2: 16 kHz for motor cables \leq 66 ft. (20 m); and Class A (Group 1), 2: 16 kHz for motor cables \leq 165 ft. (50 m).				
ATV11HU05••U–HU41••U and ATV11HU05••A–HU41••A : With additional EMC filter: EN 55011, EN 55022 Class B, 2: 16 kHz for motor cables \leq 16 ft. (5 m); and Class A (Group 1), 2: 16 kHz for motor cables \leq 66 ft. (20 m).				
The drive controllers are CE marked on the basis of European directives governing low voltage (73/23/EEC and 93/68/EEC) and EMC (89/336/EEC).				
UL, CSA, NOM, C-TICK, and CUL				
IP20				
Per IEC/EN 60068-2-6:				
1.5 mm peak from 3 to 13 Hz1 gn from 13 to 200 Hz				
15 gn for 11 ms per IEC/EN 60068-2-27				
5–93% non-condensing and without dripping, per IEC 60068-2-3				
Storage: -25 to +69 °C (-13 to +156 °F)				
· · · · · · · · · · · · · · · · · · ·				
Operating : -10 to +50 °C (14 to 122 °F) by removing the protective cover from the top of the drive controller (see page 17). Up to +60 °C, derate the current by 2.2% for every °C above 50 °C.				

¹ Drive controller without DIN rail option.

Table 6: Drive Characteristics

Output frequency	0–200 Hz
Switching frequency	2–16 kHz
Speed range	1–20
Transient overtorque	150% of rated motor torque
Braking torque	20% of nominal motor torque without dynamic braking (typical value). Up to 150% with optional dynamic braking module and resistor.
Maximum transient current	150% of rated drive controller current for 60 seconds
Voltage/frequency ratio	Sensorless flux vector control with pulse width modulation (PWM) type motor control signal.
	Factory preset for most constant-torque applications.

Table 7: Electrical Characteristics

	ATV11•U••M2• : 1-phase, 200 -15% to 240 +10%					
Power supply voltage	ATV11•U••M3•: 3-phase, 200 -15% to 230 +15%					
	ATV11•U••F1•: 1-phase, 100 -15% to 120 +10%					
Power supply frequency	50 Hz ±5% or 60 Hz ±5%					
Power supply AIC rating	≤ 1000 for 1-phase power supply					
Fower supply AIC failing	≤ 5000 for 3-phase power supply					
	Maximum 3-phase voltage equal to:					
Output voltage	ATV11•U••M2: the input voltage					
	ATV11•U••F1: twice the input voltage					
Maximum motor cable length	50 m (164 ft.) for shielded cable 100 m (328 ft.) for non-shielded cable Verify that the motor is designed for use with AC drive controllers. Cable runs longer than 12.2 m (40 ft.) may require output filters to reduce voltage spikes at the motor terminals.					
Galvanic isolation	Galvanic isolation between power and control (inputs, outputs, and power supplies)					
	Protected against short circuits and overloads:					
Available internal supplies	 + 5 V ±5% for speed reference potentiometer (2.2 to 10 kΩ), max. 10 mA + 15 V ±15% for control inputs, max. 100 mA 					
Analog input Al1	1 programmable analog input. Maximum sampling time: 20 ms, resolution 0.4%, linearity ±5%:					
Analog Input All	• Voltage: 0–5 V or 0–10 V, impedance 40 k Ω • Current: 0–20 mA or 4–20 mA (without added resistance), impedance 250 Ω					

 Table 7:
 Electrical Characteristics (continued)

	4 programmable logic inputs, impedance: 5 k Ω				
	Power supply: internal 15 V or external 24 V (minimum 11 V, maximum 30 V)				
Logic inputs, LI	With multiple assignments, several functions can be combined on a single input (example: LI1 assigned to forward and preset speed 2, LI3 assigned to reverse and preset speed 3).				
	Positive logic: state = 0 if < 5 V, state = 1 if > 11 V. Maximum sampling time: 20 ms.				
	Negative logic: available by programming only in A-range drive controllers. State = 0 if > 11 V or unwired cable input, state = 1 if < 5 V. Maximum sampling time: 20 ms.				
	Factory setting:				
Output, DO	 Pulse width modulation (PWM) type open collector output at 2 kHz. Can be used on a meter. Maximum current: 10 mA. Impedance: 1 kΩ; linearity: ±1%; maximum sampling time: 20 ms. 				
	Can be configured as a logic output:				
	 Open collector logic output: impedance: 100 Ω, maximum: 50 mA. Internal voltage: see available internal supplies above. External voltage: maximum 30 V, 50 mA. 				
	1 protected relay logic output (contact open if there is a fault). Minimum switching capacity: 10 mA for 24 Vdc. Maximum switching capacity:				
Relay outputs	 On resistive load (power factor = 1 and L/R = 0 ms): 5 A for 250 Vac or 30 Vdc On inductive load (power factor = 0.4 and L/R = 7 ms): 2 A for 250 Vac or 30 Vdc 				
Drive controller protection	 Thermal protection against overheating via a built-in PTC probe in the power module Short circuit protection between output phases Overcurrent protection between output and ground phases at power-up only Overvoltage and undervoltage protection Single-phasing protection, in 3-phase 				
Motor protection	Thermal protection is integrated in the drive controller by I^2 t calculation. Thermal memory is erased at power-up.				
Ground insulation resistance	>500 M Ω (galvanic isolation)				
Frequency resolution	Display 0.1 Hz Analog inputs: 0.1 Hz for maximum 200 Hz				
Time constant upon a change of setpoint	5 ms				

DIMENSIONS

	а	b	С	G	н	Ø	Weight
ATV11H•••••	mm (in.)	mm (in.)	mm (in.)	mm (in.)	mm (in.)	mm (in.)	kg (lb)
U05••U, E U05••A	72 (2.835) 72 (2.835)	142 (5.591) 142 (5.591)	101 (3.976) 108 (4.252)	60 (2.362) 60 (2.362)	131 (5.157) 131 (5.157)	2 x 4 (0.157)	0.70 (1.547)
U09••U U09••E U09••A	72 (2.835) 72 (2.835) 72 (2.835)	142 (5.591) 142 (5.591) 142 (5.591)	125 (4.921) 125 (4.921) 132 (5.197)	60 (2.362) 60 (2.362) 60 (2.362)	131 (5.157) 120 (4.724) 131 (5.157)	2 x 4 (0.157)	0.85 (1.879)
U12••E	72 (2.835)	142 (5.591)	138 (5.433)	60 (2.362)	120 (4.724)	2 x 4 (0.157)	0.92 (2.033)
U18M•U U18M2E U18M•A	72 (2.835) 72 (2.835) 72 (2.835)	147 (5.787) 142 (5.591) 142 (5.591)	138 (5.433) 138 (5.433) 145 (5.709)	60 (2.362) 60 (2.362) 60 (2.362)	131 (5.157) 120 (4.724) 131 (5.157)	2 x 4 (0.157)	0.95 (2.099) 0.92 (2.033) 0.92 (2.033)
U18F1U U18F1A	117 (4.606) 117 (4.606)	142 (5.591) 142 (5.591)	156 (6.142) 163 (6.417)	106 (4.173) 106 (4.173)	131 (5.157) 131 (5.157)	4 x 4 (0.157)	1.6 (3.536)
U29••U, E U29••A	117 (4.606) 117 (4.606)	142 (5.591) 142 (5.591)	156 (6.142) 163 (6.417)	106 (4.173) 106 (4.173)	131 (5.157) 131 (5.157)	4 x 4 (0.157)	1.6 (3.536)
U41••U, E U41••A	117 (4.606) 117 (4.606)	142 (5.591) 142 (5.591)	156 (6.142) 163 (6.417)	106 (4.173) 106 (4.173)	131 (5.157) 131 (5.157)	4 x 4 (0.157)	1.6 (3.536)
ATV11P All ratings: U, E All ratings: A	72 (2.835) 72 (2.835)	142 (5.591) 142 (5.591)	101 (3.976) 108 (4.252)	60 (2.362) 60 (2.362)	131 (5.157) 131 (5.157)	2 x 5 (0.197)	0.67 (1.481)

MOUNTING AND TEMPERATURE CONDITIONS

A DANGER

HAZARDOUS VOLTAGE

Before working on this equipment:

- Disconnect all power.
- Place a "DO NOT TURN ON" label on the drive controller disconnect.
- Lock the disconnect in the open position.

Failure to follow this instruction will result in death or serious injury.

Install the drive controller vertically $\pm 10^{\circ}$ with the output power terminals at the bottom.

Do not place the drive controller close to heating sources.

Leave sufficient free space around the drive controller to ensure that air can circulate from the bottom to the top of the unit.

Leave a minimum of 0.4 in. (10 mm) of free space in front of the drive controller.

14 to 104 °F	•	$d \ge 2$ in. (50 mm): no special precautions.
(-10 to 40 °C):	•	d = 0 (side-by-side controllers): remove the protective cover as shown in the figure below.
104 to 122 °F (40 to 50 °C):	•	$d \geq 2$ in. (50 mm): remove the protective cover as shown below.
122 to 140 °F (50 to 60 °C):	•	d ≥ 2 in. (50 mm): remove the protective cover as shown below and derate the drive nominal current by 2.2% for every °C above 50°C.

NOTE: Monitor the tHd parameter (in the SUP menu) during normal operation to verify the drive controller thermal state.

The following drive controllers include a fan. The fan automatically turns on when the drive controller is powered up.

- ATV11HU18F1A
- ATV11HU18F1U
- ATV11•U18M2U
- ATV11•U18M3U
- ATV11HU29***
- ATV11HU41•••

MOUNTING DRIVE CONTROLLERS WITH BASE PLATES

ATV11P drive controllers can be mounted on a steel or aluminum machined surface, provided that:

- The maximum ambient temperature is 40 °C (104 °F).
- The drive controller is mounted vertically ±10°.
- The drive controller is mounted at the center of a surface exposed to open air, with a minimum thickness of 0.4 in. (10 mm) and with a minimum square cooling area (S) of 1.3 ft² (0.12 m²) for steel and 1 ft² (0.09 m²) for aluminum.
- The surface support area for the drive controller is a minimum of 5.6 x 2.9 in. (142 x 72 mm) with a machined surface smoothness of 100 μm and a roughness of 3.2 μm maximum.
- The tapped holes are milled lightly to remove any burrs.
- The whole support surface of the drive controller is coated with thermal contact grease.

NOTE: Monitor the tHd parameter (in the SUP menu) during normal operation to verify the drive controller thermal state.

MOUNTING THE EMC PLATE

An EMC plate, VW3A11831 (ordered separately), is available for ATV11 drive controllers. To mount the EMC plate, align it with the holes in the drive controller heatsink and secure it with the two screws provided, as shown in the figures below. See pages 30–31 for wiring instructions.

MOUNTING IN A TYPE 12 OR IP54 METAL ENCLOSURE

Calculating Enclosure Size

The equation for calculating the maximum allowable thermal resistance of the enclosure, Rth (°C/W), is as follows:

$$\mathsf{Rth} = \frac{\mathsf{T_i} - \mathsf{T_o}}{\mathsf{P}} \quad \begin{array}{l} \mathsf{T_i} = \mathsf{Max.} \; \mathsf{internal} \; \mathsf{ambient} \; \mathsf{temp.} \; (^\circ\mathsf{C}) \; \mathsf{around} \; \mathsf{the} \; \mathsf{controller} \\ \mathsf{T_o} = \; \mathsf{Max.} \; \mathsf{external} \; \mathsf{ambient} \; \mathsf{temp.} \; (^\circ\mathsf{C}) \; \mathsf{around} \; \mathsf{enclosure} \\ \mathsf{P} = \; \mathsf{Total} \; \mathsf{power} \; \mathsf{dissipated} \; \mathsf{in} \; \mathsf{enclosure} \; (\mathsf{W}) \end{array}$$

For the power dissipated by the drive controllers at rated load, see Tables 1–3 on pages 9–11.

The useful heat exchange surface area, S (in²), of a wall-mounted enclosure generally consists of the sides, top, and front. The minimum surface area required for a drive controller enclosure is calculated as follows:

 $S = \frac{K}{Rth}$ Rth = Thermal resistance of the enclosure (calculated above) K = Thermal resistance per square inch of the enclosure

NOTE: Contact the enclosure manufacturer for K factors.

Consider the following points when sizing the enclosure:

- Use only metallic enclosures, since they have good thermal conduction.
- This procedure does not consider radiant or convected heat load from external sources. Do not install enclosures where external heat sources (such as direct sunlight) can add to the enclosure heat load.
- If additional devices are present inside the enclosure, consider the heat load of the devices in the calculation.
- The actual useful area for convection cooling of the enclosure varies depending upon the mounting method. The mounting method must allow for free air movement over all surfaces considered for convection cooling.

The following sample illustrates calculation of the enclosure size for an ATV11HU18M3U drive controller mounted in a Type 12 or IP54 enclosure.

- Maximum external temperature: $T_0 = 25 \,^{\circ}\text{C} (77 \,^{\circ}\text{F})$
- Power dissipated inside the enclosure: P = 38 W
- Maximum internal temperature: $T_i = 40 \, ^{\circ}\text{C} \, (104 \, ^{\circ}\text{F})$
- Thermal resistance per square inch of the enclosure: K = 186

Calculate the maximum allowable thermal resistance. Rth:

Rth =
$$\frac{40 \, ^{\circ}\text{C} - 25 \, ^{\circ}\text{C}}{38 \, \text{W}}$$
 = 0.395 $^{\circ}\text{C/W}$

Calculate the minimum useful heat exchange surface area, S:

$$S = \frac{186}{0.395} = 470.9 \text{ in}^2$$

Useful heat exchange surface area (S) of the proposed wall-mounted enclosure:

Height: 28 in. (711 mm)Width: 24 in. (610 mm)

Depth: 12 in (305 mm)

front area top area side area
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \\ S = (24 \times 28) + (24 \times 12) + 2(28 \times 12) = 1632 \text{ in}^2$$

If the selected enclosure does not provide the required surface area or does not meet application needs, consider the following:

- Use a larger enclosure.
- Add a passive heat exchanger to the enclosure.
- Add an air conditioning unit to the enclosure.

Ventilation

When mounting the drive controller inside a Type 12 or IP54 enclosure:

- Mount the drive controller with the minimum clearances specified in "Mounting and Temperature Conditions" on page 17.
- Follow the installation precautions on page 23.
- A stirring fan may be necessary to circulate the air inside the enclosure to prevent hot spots in the drive controller and to distribute the heat uniformly to surfaces used for convection cooling.

A CAUTION

CONDENSATION

Where condensation is possible, keep the drive controller powered up when the motor is not running, or install thermostatically controlled strip heaters.

Failure to follow this instruction can result in injury or equipment damage.

BUS VOLTAGE MEASUREMENT PROCEDURE

A DANGER

HAZARDOUS VOLTAGE

Read and understand the precautions on page 4 before performing this procedure.

Failure to follow this instruction will result in death or serious injury.

The bus voltage can exceed 400 Vdc. Use appropriately rated measuring equipment when performing this procedure. To measure the bus capacitor voltage:

- 1. Disconnect all power from the drive controller.
- 2. Wait 15 minutes to allow the DC bus to discharge.
- 3. Measure the DC bus voltage between the PA (+) and PC (-) terminals to verify that the DC voltage is less than 45 Vdc. Refer to "Power Terminals" on page 25 for the location of the terminals.
- If the bus capacitors are not fully discharged, contact your local Square D/Schneider Electric representative—do not operate the drive controller

ELECTRICAL INSTALLATION

Ensure that the electrical installation of this drive controller conforms to the appropriate national and local codes.

 Verify that the voltage and frequency of the input supply line and the voltage, frequency, and current of the motor match the rating on the drive controller nameplate.

A DANGER

HAZARDOUS VOLTAGE

Ground equipment using the provided ground connecting point as shown in the figure below. The drive controller panel must be properly grounded before power is applied.

Failure to follow this instruction will result in death or serious injury.

 Verify that resistance to ground is 1 Ω or less. Ground multiple controllers as shown in the figure. Do not loop the ground cables or connect them in series.

A WARNING

INADEQUATE OVERCURRENT PROTECTION

- Overcurrent protective devices must be properly coordinated.
- The National Electrical Code requires branch circuit protection.
 Use the fuses recommended on the drive controller nameplate to achieve published fault withstand current ratings.
- Do not connect the drive controller to a power feeder whose short circuit capacity exceeds the drive controller withstand fault rating listed on the drive controller nameplate.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

 Provide overcurrent protection. To achieve the fault-withstand current rating listed on the drive controller nameplate, install the line power fuses recommended on the drive controller nameplate.

A WARNING

IMPROPER WIRING CONNECTIONS

- Do not apply input line voltage to the output terminals (U, V, W).
 This will damage the drive controller.
- Check the power connections before energizing the drive controller.
- If replacing another drive controller, verify that all wiring connections to the ATV11 drive controller comply with all wiring instructions in this manual.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

- Do not use mineral-impregnated cables. Select motor cabling with low phase-to-phase and phase-to-ground capacitance.
- Motor cables must be at least 20 in. (0.5 m) long.
- Do not run control, power, or motor wiring in the same conduit. Do not run motor wiring from different drive controllers in the same conduit. Separate metallic conduit carrying power wiring from metallic conduit carrying control wiring by at least 3 in. (8 cm). Separate non-metallic conduits or cable trays used to carry power wiring from metallic conduit carrying control wiring by at least 12 in. (31 cm). Always cross power and control wiring at right angles.
- Do not immerse motor cables in water.
- Do not use lightning arrestors or power factor correction capacitors on the output of the drive controller.
- Equip all inductive circuits near the drive controller (such as relays, contactors, and solenoid valves) with electrical noise suppressors, or connect them to a separate circuit.

POWER TERMINALS

You can access the power terminals without opening the cover. The drive controller has through wiring—the line supply is at the top of the drive controller (R/L1–S/L2 in single-phase 230 V; R/L1–S/L2–T/L3 in three-phase 230 V; R/L1–N in single-phase 120 V) and the motor power supply is at the bottom (U–V–W).

NOTE: Connect the power terminals before connecting the control terminals.

Table 8: Power Terminal Specifications

	Maximum Conn	ection Capacity	Tightening Torque		
ATV11•••••	AWG	mm ²	lb-in	N•m	
U05••• U09••• U18M••	AWG 14	1.5	6.6	0.75	
U18F1• U29••• U41•••	AWG 10	4	8.9	1	

Table 9: Power Terminal Functions

Terminals	Function	For ATV11
Ť	Ground terminal	All ratings
R/L1		ATV11••••M2•
S/L2		AT V T TOOS VIZ
R/L1		
S/L2	Power supply	ATV11••••M3•
T/L3		
R/L1		ATV11••••F1•
N		ATVITOME IS
PA/+	+ Output (DC) to the braking module	All ratings
PC/-	- Output (DC) to the braking module	All ratings
U		
V	Outputs to the motor	All ratings
W		
Ť	Ground terminal	All ratings

RECOMMENDED FUSES

Table 10: Recommended Fuses for 230 V Single-Phase Controllers

Мо	tor	Drive Controller	controller 600 V Fuses	
kW	hp	ATV11H•••••	Class CC	Class J [1]
0.18	0.25	HU05M2U, E, A	4	4
0.37	0.50	HU09M2U, E, A	8	8
0.55	0.75	HU12M2E	8	8
0.75	1	HU18M2U, E, A	12	12
1.50	2	HU29M2U, E, A	22	22
2.20	3	HU41M2U, E, A	30	30
0.37	0.5	PU09M2U, E, A	8	8
0.75	1	PU18M2U, E, A	12	12

Use either fast acting or time delay Class J fuses.

Recommended Fuses for 230 V Three-Phase Controllers Table 11:

Мо	Motor Drive Controller		600 V Fuses		
kW	hp	ATV11H•••••	Class CC	Class J [1]	
0.18	0.25	HU05M3U, A	3	3	
0.37	0.50	HU09M3U, A	5	5	
0.75	1	HU18M3U, A	8	8	
1.50	2	HU29M3U, A	15	15	
2.20	3	HU41M3U, A	20	20	
0.37	0.5	PU09M3U, A	5	5	
0.75	1	PU18M3U, A	8 8		

Use either fast acting or time delay Class J fuses. [1]

Table 12: Recommended Fuses for 115 V Single-Phase Controllers

Motor		Drive Controller	600 V Fuses		
kW	hp	ATV11H•••••	Class CC	Class J [1]	
0.18	0.25	HU05F1U, A	8	8	
0.37	0.50	HU09F1U, A	12	12	
0.75	1	HU18F1U, A	22	22	
0.37	0.5	PU09F1U, A	12	12	
] Use eith	er fast acting o	r time delay Class J fuses.	•		

CONTROL TERMINALS

Open the cover as shown below to access the control terminals.

22	RA	Not used	0 \	Al1	+ 5 V	00	11	LI 2	LI 3	4	+15 V
\in) C	\in	Θ	Θ	Θ	Θ	Θ	\ominus	\ominus	Θ	\ni

Maximum wire gauge: AWG 16 (1.5 mm^2)

Maximum tightening torque: 4.4 lb-in (0.5 N•m).

Terminal	Function	Electrical Characteristics			
RC RA	Fault relay contact (open if there is a fault or the drive controller is off)	Min. switching capacity: 10 mA for 24 Vdc Max. switching capacity: • 2 A for 250 Vac and 30 Vdc on inductive load Time constant = 0.4 – (inductance/resistance) = 7 ms • 5 A for 250 Vac and 30 Vdc on resistive load Time constant = 1 – (inductance/resistance) = 0			
0 V	Common for logic inputs/outputs	0 V			
Al1	Voltage or current analog input	Analog input 0–5 V or 0–10 V (30 V maximum): • Impedance: $40 \text{ k}\Omega$ • Resolution: 0.4% • Precision, linearity: \pm 5% • Sampling time: 20 ms max . Analog input 0–20 mA or 4–20 mA: • Impedance: 20 ms max . • Resolution: 0.4% • Precision, linearity: \pm 5% • Sampling time: 20 ms max .			
+5 V	Power supply for reference potentiometer: 2.2 to 10 k Ω • Precision: 0–5% • Max. current available: 10 mA				
DO	Output (can be configured as analog or logic output)	Analog output • PWM open collector analog output at 2 kHz • Voltage: 30 V max. • Impedance: 1 k Ω , 10 mA max. • Linearity: \pm 1% • Sampling time: 20 ms max. Logic output open collector • Voltage: 30 V max. • Impedance: 100 Ω , 50 mA max. • Sampling time: 20 ms max.			
LI1 LI2 LI3 LI4	Programmable logic inputs	$ \begin{tabular}{ll} \bullet & Power supply + 15 \ V \ (max. \ 30 \ V) \\ \bullet & Impedance 5 \ k\Omega \\ \bullet & Positive logic: state 0 \ if < 5 \ V, \ state 1 \ if > 11 \ V \\ \bullet & Negative logic: state 1 \ if < 5 \ V, \ state 0 \ if > 11 \ V \ or \ switched \ off \ (A \ range \ only) \\ \bullet & Sampling \ time: 20 \ ms \ max. \\ \end{tabular} $			
+15 V	Logic input power supply	+15 V, ±15% (protected against short circuits and overloads) Maximum current available: 100 mA			

WIRING DIAGRAM

Single phase line supply 100-120 V

Single phase line supply 200-230 V

NOTE: The line supply terminals are shown at the top and the motor terminals are shown at the bottom. Connect the power terminals before connecting the control terminals. Install surge suppressors on all inductive circuits located near the drive controller or coupled to the same circuit.

- (1) Fault relay contacts for remote indication of drive controller status.
- (2) Internal + 15 V. If an external source is used (30 V max.), connect the 0 V of the source to the 0 V terminal, and do not use the + 15 V terminal on the drive controller.
- (3) Meter or low level relay.
- (4) Refer to the drive controller nameplate for recommended fuses. Fast acting or time delay Class J fuses can be used.

EUROPEAN COMMUNITY EMC DIRECTIVE

The ATV11 controller is considered to be a component. It is neither a machine nor a piece of equipment ready for use in accordance with the European Community EMC directive (machinery directive or electromagnetic compatibility directive). It is the user's responsibility to ensure that the machine meets these standards.

To meet EN55011 Class A requirements, follow these installation recommendations:

- Ensure that the ground connections of the drive controller, the motor, and the cable shields are at equal potential.
- Use shielded cables with the shields connected to ground at both ends of the motor cable, control cables, and the braking resistor (if used). Conduit can be used for part of the shielding length, provided that there is no break in continuity.
- Ensure maximum separation between the power supply cable (line supply) and the motor cable.

Installation Diagram

The following table describes the parts shown in the installation diagram on page 30.

Item	Description
1	EMC mounting plate, ordered separately (catalog number VW3A11831).
2	ALTIVAR 11 drive controller.
3	Non-shielded power supply wires or cables.
4	Non-shielded wires for the output of the safety relay contacts.
5	The shields for the motor connection and the connection to control devices (items 6 and 7) must be securely attached to the EMC mounting plate with stainless steel clamps (item 5). Strip the cables to expose the shields. Apply appropriately sized clamps around the stripped portion of the cables and fasten them to the EMC plate.
6	Shielded cable for connection to the motor, with shielding connected to ground at both ends. Do not interrupt the shielding. If using intermediate terminal blocks, they must be in EMC-shielded metal boxes.
7	Shielded cable for connection to control/command devices. For applications which require a large number of conductors, use small cross-sections (0.5 mm²). Do not interrupt the shielding. If intermediate terminal blocks are used, they must be in EMC-shielded metal boxes.
8	Ground conductor (cross section 10 mm ²).

NOTE: If using an additional input filter, mount it on the drive controller and connect it directly to the line supply with an unshielded cable. Then connect the power supply wiring (item 3) to the drive controller using the filter output cable. Although there is an HF equipotential ground connection between the drive controller, the motor, and the cable shielding, you must still connect the PE protective conductors (green-yellow) to the appropriate terminals on each of the devices.

NOTE: For very long cable runs, you may need to disconnect the shield at the motor end to alleviate noise generation.

LOGIC INPUT APPLICATION FUNCTIONS

Each of the following functions can be assigned to one of the logic inputs. A single logic input can activate several functions at the same time (reverse and 2nd ramp, for example). You must therefore ensure that these functions are compatible.

2-Wire Control

To select two-wire control, in the FUn menu, set the ACt function of tCC to 2C. The same logic input controls both run (forward or reverse) and stop.

There are three types of 2-wire control:

- 1. tCt = LEL: state 0 or 1 is taken into account for run or stop.
- tCt = trn: a change of state (transition or edge) must occur to initiate operation, in order to prevent accidental restarts after a power supply interruption.
- 3. tCt = PFO: state 0 or 1 is taken into account for run or stop, but the forward input always takes priority over the reverse input.

3-Wire Control

To select three-wire control, in the FUn menu, set the ACt function of tCC to 3C. Run (forward or reverse) and stop are controlled by 2 different logic inputs. LI1 is always assigned to the stop function. A stop on ramp is obtained on opening (state 0). The pulse on the run input is stored until the stop input opens. When the drive controller is powered up, upon a manual fault reset, or after a stop command, the motor can only be supplied with power once the forward and reverse commands have been reset.

Operating Direction (Forward / Reverse)

With 2-wire control, forward operation must be assigned to LI1. It cannot be reassigned to any other logic input. With 3-wire control, forward operation must be assigned to LI2 and cannot be reassigned to any other logic input.

To disable reverse operation for applications with a single direction of motor rotation, do not assign any logic input to reverse operation (in the FUn menu, set rrS to nO).

Preset Speeds

You can assign two or four preset speeds, requiring one or two logic inputs respectively.

Assign LIx to LIA first, then assign LIy to LIb. Consult the following table.

	4 Preset Speeds			
	Assign LIx to LIA, then LIy to LIb			
Llx	Speed Reference	Lly	Llx	Speed Reference
0	Reference (min. = LSP)	0	0	Reference (Min. = LSP)
1	SP2	0	1	SP2
		1	0	SP3
	•	1	1	SP4

The preset speeds take priority over the reference given by the analog input or by the potentiometer (on A range controllers only).

Fault Reset

A change in state from 0 to 1 of the logic input assigned to fault reset clears the stored fault and resets the drive controller if the cause of the fault is removed. The exceptions are the OCF (overcurrent), SCF (motor short circuit), and InF (internal fault) faults, which require removal of power from the drive controller.

Second Ramp

This function allows switching between the primary (ACC, DEC) and the secondary (AC2, DE2) acceleration and deceleration ramps by activating a logic input assigned to the ramp switching function (rP2).

DO OUTPUT APPLICATION FUNCTIONS

The DO output can be used as an analog output or a logic output depending on the function chosen. In either mode, the DO terminal is current sinking (an open collector output).

- When the DO terminal is used as a logic output and is active, it is low with respect to the 0 V terminal.
- When used as an analog output, the DO terminal is switched at a 2 kHz rate using a pulse width modulated signal. Therefore:
 - The load device must be capable of averaging the PWM waveform.
 - The full signal is dependent on the value of the voltage source (Vs) and the sum of the resistance of the external device (Z) and the fixed 1 kQ internal resistance.

Current in the Motor (AO)

The full signal corresponds to 200% of the nominal drive current.

Motor Frequency (AO)

The full signal corresponds to 100% HSP.

Frequency Threshold Reached (LO)

Output active if the motor frequency exceeds an adjustable threshold.

Reference Reached (LO)

Output active if the motor frequency reaches the reference.

Current Threshold Reached (LO)

Output active if the motor current exceeds the adjustable threshold.

DO Output Wiring Diagram

If a logic output is assigned, Z is an external device such as a low-voltage relay. If an analog output is assigned, Z is an external device such as a meter.

For the resistance of a meter (R), the maximum voltage (V_Z) delivered is:

$$Vz = Vs \times \frac{R(\Omega)}{R(\Omega) + 1000(\Omega)}$$

The voltage source (Vs) is the 15 V internal supply or an external source of 30 V maximum.

Configuration of the Analog Input

Configure the analog input as one of the following:

- 0-5 V
- 0-10 V
- 0–20 mA
- 4–20 mA

Wiring Diagram for the Analog Input

PROGRAMMING

Precautions

A DANGER

UNINTENDED EQUIPMENT OPERATION

- Before powering up and configuring the drive controller, ensure that the logic inputs are open (state 0) to prevent an accidental startup. Otherwise, an input assigned to the run command may cause the motor to start immediately on exiting the configuration menus.
- Ensure that changes to the current operating settings do not present any danger. Changes must be made with the drive controller stopped.

Failure to follow these instructions will result in death or serious injury.

CAUTION

RAPID CONTACTOR CYCLING

- With power switching via a line contactor, avoid operating the contactor frequently. Use inputs LI1 to LI4 to control the drive controller.
- These instructions are vital for cycles of less than five minutes to avoid damaging the precharge resistor and capacitors.

Failure to follow these instructions can result in equipment damage.

parameter, or decreases the

displayed value

Programming the Drive Controller: E (European) and U (North American) Ranges

Exits a menu or parameter, or aborts the displayed value and returns to the previous value in the memory

Returns to the previous menu or parameter, or saves the displayed parameter, or increases the displayed value

Goes to the next menu or parameter or value

- To save the displayed choice, press (ENT)
- Pressing (A) or (V) does not save the choice.
- The display flashes when a value is stored.

Programming Example

With no fault present and no run command, the normal display is one of the following:

- rdY: Drive controller ready
- 43.0: Display of the parameter selected in the SUP menu (default selection: reference frequency)
- dcb: DC injection braking in progress
- nSt: Freewheel stop

If there is a fault, the display flashes.

Programming the Drive Controller: A (Asian) Range

- To save the displayed choice, press ENT
- Pressing (A) or (V) does not save the choice.
- The display flashes when a value is stored.

With no fault present and no run command, the normal display is one of the following:

- rdY: Drive controller readv
- 43.0: Display of the parameter selected in the SUP menu (default selection: reference frequency)
- dcb: DC injection braking in progress
- nSt: Freewheel stop

If there is a fault, the display flashes.

ACCESS TO MENUS

(1)The preset speeds appear only if PS2 remains at the factory setting or was reconfigured in the FUn menu.

FIRST LEVEL ADJUSTMENT PARAMETERS

The parameters in unshaded boxes can be modified only when the controller is stopped.

The parameters in shaded boxes can be modified with the controller operating or stopped.

Table 13: First Level Adjustment Parameter Descriptions

Code	Description	Adjustment range	Factory setting			
h.F.c	Motor frequency	50 or 60 Hz	60 Hz: U Range 50 Hz: A and E Ranges			
brr	This parameter is displayed here modify it at any time in the FUn	e only the first time the drive controlle menu.	r is powered up. You can			
ACC	Acceleration ramp time	0.1 s to 99.9 s	3			
пьь	Range: 0 Hz to motor nominal fr	Range: 0 Hz to motor nominal frequency FrS (parameter in drC menu).				
dEC	Deceleration ramp time	0.1 s to 99.9 s	3			
acL	Range: motor nominal frequency	Range: motor nominal frequency FrS (parameter in drC menu) to 0 Hz.				
L S P	5 P Low speed 0 Hz to HSP 0		0			
HSP	High speed	LSP to 200 Hz	= bFr			
пэг	Ensure that this setting is appro	priate for the motor and the application	n.			
	Motor thermal current	0 to 1.5 I _N ¹	According to rating			
I E H		orotection. Set ItH to the nominal curre y is reset to zero when the drive contr				
5 P 2	2 nd preset speed ²	0.0 to 200 Hz	10			
5 P 3	3 rd preset speed ²	0.0 to 200 Hz	25			
5 P 4	4 th preset speed ²	0.0 to 200 Hz	50			

Table 13: First Level Adjustment Parameter Descriptions (continued)

Code	Description	Adjustment range	Factory setting
	Configuration of the analog input	5 V, 10 V, 0 mA, 4 mA	5 V
AIŁ	-5 U: voltage, 0–5 V (internal p - I D U: voltage, 0–10 V (external - D R: current, 0–20 mA - 4 R: current, 4–20 mA		

¹ I_N = nominal drive controller current.

² Appears only if function PS2 remains at the factory setting or was reconfigured in the FUn menu. Settings for preset speeds below LSP and above HSP have no effect, because LSP and HSP take precedence.

drC MOTOR CONTROL MENU

The parameters in unshaded boxes can be modified only when the controller is stopped.

The parameters in shaded boxes can be modified with the controller operating or stopped.

Table 14: drC Motor Control Parameters

Code	Description	Adjustment range	Factory setting
U n 5	Nominal motor voltage marked on the nameplate.	100 to 500 V	According to rating
F r 5	Nominal motor frequency marked on the nameplate.	40 to 200 Hz	50/60 Hz depending on bFr
S F A	Frequency loop stability	0 to 100% stopped 1 to 100% operating	20
36 11	Value too high: extension of response time Value too low: speed exceeded, possible inst	ability.	
FIG	Frequency loop gain	0 to 100% stopped 1 to 100% operating	20
7 2 8	Value too high: speed exceeded, instability. Value too low: extension of response time		
ШFг	IR compensation Used to optimize the torque at very low speed, or to adapt the torque to special applications (for ex., motors connected in parallel require lower UFr).	0 to 200%	50
nΓr	Nominal motor current marked on the nameplate	0.25 to 1.5 I _N	According to rating
EL I	Limiting current	0.5 to 1.5 I _N	1.5 I _N
	Nominal motor slip	0 to 10.0 Hz	According to rating
n 5 L	Calculate using the formula: nSL = paramete Nn = nominal motor speed marked on the na Ns = motor synchronous speed		
SLP	Slip compensation	0 to 150% of nSL	100
	Used to adjust the slip compensation around the value set by the nominal motor slip nSL, or to adapt the slip compensation to special applications (for example, motors connected in parallel require lowe SLP).		
C 0 5	Nominal motor power factor marked on the nameplate	0.50 to 1.00	According to rating

A CAUTION

MOTOR OVERHEATING

- This drive controller does not provide direct thermal protection for the motor.
- Use of a thermal sensor in the motor may be required for protection at all speeds or loading conditions.
- Consult the motor manufacturer for the thermal capability of the motor when operated across the desired speed range.

Failure to follow this instruction can result in injury or equipment damage.

FUN APPLICATION FUNCTIONS MENU

Incompatible Application Functions

The following application functions are inaccessible or deactivated as described below:

- Automatic restart is only possible in 2-wire control (ACt in tCC = 2C and tCt in tCC = LEL or PFO). Changing the type of control deactivates the function.
- Catch on the fly is only possible in 2-wire control. Changing the type of control deactivates the function.
 - Catch on the fly is inaccessible if continuous automatic DC injection is configured (AdC = Ct). Switching to continuous automatic DC injection (ADC = Ct) deactivates the function.
- For A range controllers, the reverse function is inaccessible if local control is active (ACt in tCC = LOC).

NOTE: Multiple functions can be assigned to a single logic input, and function simultaneously. If FWD and REV are assigned to the same logic input, FWD takes precedence.

tCC Menu

Table 15: Parameter tCC

Code	Description	Factory Setting
FCC	Type of control	
RCE	Z = 2-wire control J = 3-wire control L □ C = Local control 2-wire control: The state of the input, open or closed (1 or 0), controls running or stopping. Example of wiring: L11: forward L1x: reverse 3-wire control (pulse control): a forward or reverse pulse is sufficient for a start command; a stop pulse is sufficient for a stop command. Example of wiring: L11: stop L12: forward L1x: reverse Local control: The Run/Stop button is always active to control the stopping of the motor. If tCC is not configured as LOC, the motor will freewheel stop. If tCC is configured as LOC, the motor follows the deceleration ramp to a stop, but if injection braking is in progress, a freewheel stop takes place.	2C
	NOTE: To change the assignment of tCC, press the ENT key for 2 s. This causes the following functions to return to factory setting: rrS, tCt, Atr, PS2 (LIA, LIb).	
FCF	Type of 2-wire control (parameter can only be accessed if tCC = 2C): $L \in L$: If the forward or reverse input is high when the drive controller is powered up, the drive controller will start the motor. If both inputs are high on power up, the controller will run forward. $E \in R$: The drive controller must see a transition from low to high of the forward or reverse input before it will start the motor. Therefore, if the forward or reverse input is high when the drive controller is powered up, the input must be cycled before the drive controller will start the motor. $P \in R$: Same as LEL, except the forward input has priority over the reverse input with this control. If forward is activated while the controller is running in reverse, the controller will run forward.	trn

rrS, PS2, and rSF Menus

The parameters in unshaded boxes can be modified only when the controller is stopped.

The parameters in shaded boxes can be modified with the controller operating or stopped.

Table 16: Parameters rrS, PS2, rSF

Co	de	Description	Factory Setting
rr5		Reverse n D: function inactive L I I to L I Y: selects the input assigned to the reverse command	if ACt in tCC = 2C: LI2 if ACT in tCC = 3C: LI3
P 5 2		Preset speeds ¹	
		If LIA and LIb = 0: speed = reference on Al1 If LIA = 1 and LIb = 0: speed = SP2 If LIA = 0 and LIb = 1: speed = SP3 If LIA = 1 and LIb = 1: speed = SP4	
	LIA	Assignment of input LIA - ¬ □: function inactive - L I I to L I I: selects the input assigned to LIA	if ACt in tCC = 2C: LI3 if ACt in tCC = 3C:
	L 16	Assignment of input Llb - ¬ □: function inactive - L I I to L I Y: selects the input assigned to Llb SP2 is accessible only if LIA is assigned; SP3 and SP4 are accessible only if LIA and Llb are assigned.	LI4 if ACt in tCC = 2C: LI4 if ACT in tCC = 3C: nO
	5 P 3	2^{nd} preset speed, adjustable from 0.0 to 200 Hz 3^{rd} preset speed, adjustable from 0.0 to 200 Hz 4^{th} preset speed, adjustable from 0.0 to 200 Hz	10 25 50
r 5 F		Fault reset - n : function inactive - L I to L Y: selects the input assigned to this function The fault reset occurs when the input changes state on the rising edge (0 to 1). The fault is reset only if the cause of the fault is no longer present.	nO

¹ See page 33.

rP2, StP, and brA Menus

The parameters in unshaded boxes can be modified only when the controller is stopped.

The parameters in shaded boxes can be modified with the controller operating or stopped.

Table 17: rP2, StP, brA Parameters

Code		Description	Factory Setting
r P 2		Ramp Switching	
	LI	Assignment of the 2nd ramp control input - n : function inactive - L I to L I : selects the input assigned to the function. AC2 and dE2 are accessible only if LI is assigned.	nO
		2nd acceleration ramp time, adjustable from 0.1 to 99.9 s 2nd deceleration ramp time, adjustable from 0.1 to 99.9 s	5.0 5.0
SEP		Controlled stop on loss of line supply - ¬ □: function inactive, motor freewheels - F - P: stop according the valid ramp (dEC or dE2) - F 5 £: fast stop, the stopping time depends on the inertia of the load and the braking capability of the drive controller.	nO
ЬгЯ		Deceleration ramp adaptation - nO: function inactive - YES: automatically increases the deceleration time if set too low for the inertia of the load, thus avoiding an overvoltage fault.	YES

AdC and SFt Menus

The parameters in unshaded boxes can be modified only when the controller is stopped.

The parameters in shaded boxes can be modified with the controller operating or stopped.

Table 18: Parameters AdC and SFt

Co	de	Description	Factory Setting
AGC		Automatic DC injection	
	ACE	Operating mode - n D: function inactive - y E 5: DC injection is activated at the end of each stop cycle. The injection time is adjustable via tdC. The injection current is adjustable via SdC L E: Continuous DC injection is activated at the end of each stop cycle. The value of this current can be adjusted via SdC. In 3-wire control, the injection is active only when Ll1 is at 1.	YES
	FGC	Injection time on stopping, adjustable from 0.1 to 30.0 s. Accessible only if ACt =YES.	0.5 s
	5 d C	Injection current, adjustable from 0 to 1.5 I _n . Accessible only if ACt = YES or Ct.	0.7 I _n

Table 18: Parameters AdC and SFt (continued)

Code Description Factory Setti	ing
--------------------------------	-----

A WARNING

NO HOLDING TORQUE

- DC injection braking does not provide holding torque at zero speed.
- DC injection braking does not function during loss of power or during a drive controller fault.
- When required, use a separate brake for holding torque.

EXCESSIVE DC INJECTION BRAKING

- Application of DC injection braking for long periods of time can cause motor overheating and damage.
- Protect the motor from extended periods of DC injection braking.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

5 F Ł	Switching frequency	
ACE	Frequency range - L F r: random frequency around 2 or 4 kHz according to SFr - L F: fixed frequency of 2 or 4 kHz according to SFr - H F: fixed frequency of 8, 12, or 16 kHz according to SFr	LF
SFr	Switching frequency: $-\mathcal{Z}\colon 2 \text{ kHz (if ACt} = \text{LF or LFr})$ $-\mathcal{Y}\colon 4 \text{ kHz (if ACt} = \text{LF or LFr})$ $-\mathcal{B}\colon 8 \text{ kHz (if ACt} = \text{HF})$ $-\mathcal{I}\mathcal{Z}\colon 12 \text{ kHz (if ACt} = \text{HF})$ $-\mathcal{I}\mathcal{D}\colon 16 \text{ kHz (if ACt} = \text{HF})$ When SFr = 2 kHz, the frequency automatically changes to 4 kHz at high speed. When SFt = HF, the selected frequency automatically changes to the lower frequency if the thermal state of the drive controller is too high. It automatically returns to the SFr frequency as soon as the thermal state permits.	4 (if ACt = LF or LFr) 12 (if ACt = HF)

FLr and dO Menus

The parameters in unshaded boxes can be modified only when the controller is stopped.

The parameters in shaded boxes can be modified with the controller operating or stopped.

Table 19: Parameters FLr and dO

Code	Description	Factory Setting
FLr	Catch on the fly Enables a smooth restart if the run command is maintained after the following events: - loss of line supply or removal of power - fault reset or automatic restart - freewheel stop	nO
	The motor resumes from the estimated speed at the time of the restart, then follows the ramp to the reference speed. This function requires 2-wire control (ACt in tCC = 2C) with tCt in tCC = LEL or PFO. D: function inactive 9 E 5: function active	
	This function intervenes at each run command, resulting in a start after a delay of 1 second maximum. If continuous automatic injection braking is configured (Ct) this function is inactive.	

Table 19: Parameters FLr and dO (continued)

C	ode	Description	Factory Setting
d D		Analog/logic output DO	
	ACE	Assignment - ¬ □: not assigned - □ □ ¬: output/motor current (analog output). The full signal corresponds to 200% of the nominal drive controller current ¬ ¬ ¬ ¬: motor frequency (analog output). The full signal corresponds to 100% HSP ¬ ¬ ¬ ¬ □: frequency threshold attained (logic output), closed (state 1) if the motor frequency exceeds the adjustable threshold Ftd ¬ ¬ ¬ ¬ □: reference attained (logic output), closed (state 1) if the motor frequency is equal to the reference ¬ □ ¬ □: T □: Current threshold attained (logic output), closed (state 1) if the motor current exceeds the adjustable threshold Ctd. Ftd is accessible only if ACt = FtA. Ctd is accessible only if ACt = CtA.	rFr
	FEd	frequency threshold, adjustable from 0 to 200 Hz.	= bFr
	ГЕВ	current threshold, adjustable from 0 to 1.5 I _n .	I _n

Atr, LSr, and nPL Menus

Table 20: Parameters Atr, LSr, and nPL

Code	Description	Factory Setting
A E c	Automatic restart - n : function inactive - y E 5: Allows automatic restart after stopping on a fault, if the fault has been cleared and the other operating conditions permit the restart. A series of automatic restart attempts are separated by increasingly long waiting periods: 1 s, 5 s, and 10 s, then 1 min for the remaining periods. If the restart does not occur after 6 min, the procedure is aborted and the drive controller remains in a fault state until the power is cycled. The following faults permit automatic restart: OHF, OLF, ObF, OSF, and PHF. The drive controller fault relay remains activated if this function is active. The speed reference and the operating direction must be maintained. Automatic restart is only accessible in 2-wire control (ACT in tCC = 2C) with tCt in tCC = LEL or PFO.	nO

WARNING

UNINTENDED EQUIPMENT OPERATION

- Automatic restart can only be used for machines or installations that present no danger to personnel or
 equipment in the event of automatic restarting.
- If automatic restart is active, R1 will only indicate a fault after the restart sequence has timed out.
- Equipment operation must conform with national and local safety regulations.

Failure to follow this instruction can result in death, serious injury, or equipment damage.

Table 20: Parameters Atr, LSr, and nPL (continued)

Code	Description	Factory Setting
LSr	Frequency reference mode This parameter is only accessible on A range drive controllers. - L D C: the speed reference is given by the potentiometer on the front of the drive controller. - L E r: the speed reference is given by analog input Al1. For LOC and tEr to be taken into account, the ENT key must be held down for 2 s.	LOC
nPL	Choice of Logic for inputs This parameter is only accessible on A range drive controllers P D 5: the inputs are active (state 1) at a voltage of 11 V or more (for example, +15 V terminal) and inactive (state 0) when the drive controller is disconnected, or at a voltage of less than 5 V n E D: the inputs are active (state 1) at a voltage of less than 5 V (for example, 0 V terminal) and inactive (state 0) at a voltage of 11 V or more, or when the drive is disconnected. For POS and nEG to be taken into account, the ENT key must be held down for 2 s.	POS

bFr, IPL, SCS, and FCS Menus

Table 21: Parameters bFr, IPL, SCS, and FCS

Code	Description	Factory Setting
bFr	Motor frequency (Same as bFr 1st level adjustment parameter) Set to 50 Hz or 60 Hz, depending on the motor nameplate rating.	60
IPL	Line phase loss fault configuration This parameter is only accessible on 3-phase drive controllers. - n D: inhibits the line phase loss fault - y E 5: activates monitoring for a line phase loss	YES
5 C 5	Configuration backup - YE5: saves the current configuration in EEPROM memory as a backup configuration. SCS automatically switches to nO as soon as the save is complete. Drive controllers ship with both the current configuration and the backup configuration set to the factory configuration.	nO
FCS	Reset the configuration - n D: function inactive - r E C: resets the configuration to the backup configuration previously saved using SCS. rEC is only visible if a backup has been performed. FCS automatically switches to nO as soon as the reset is complete In I: resets the configuration to the factory setting. FCS automatically switches to nO as soon as the reset is complete. NOTE: To perform the rEC and InI commands, you must hold down the ENT key for 2 s.	nO

SUP DISPLAY MENU

When the drive controller is running, it displays the value of one of the monitoring parameters. The default display is frequency reference (parameter FrH).

To change the display, scroll to the desired monitoring parameter and press ENT to display its value. While this value is being displayed, press ENT a second time to confirm the change of the parameter and to store it. From now on, the value of this parameter is displayed while the drive controller is running (even after it has been disconnected). If the new selection is not confirmed in this way, the display returns to the previous parameter after the drive controller is disconnected.

MAINTENANCE AND TROUBLESHOOTING

Precautions

Read the following safety statements before proceeding with any maintenance or troubleshooting procedures.

A DANGER

HAZARDOUS VOLTAGE

- Read and understand these procedures and the precautions on page 2 of this manual before servicing ATV11 drive controllers.
- Installation, adjustment, and maintenance of these drive controllers must be performed by qualified personnel.

Failure to follow this instruction will result in death or serious injury.

The maintenance and troubleshooting procedures in this section are intended for use by qualified electrical maintenance personnel and should not be viewed as sufficient instruction for those who are not otherwise qualified to operate, service, or maintain the equipment.

Routine Maintenance

Perform the following steps at regular intervals:

- Check the condition and tightness of the connections.
- Make sure that the ventilation is effective and that the temperature around the drive controller remains at an acceptable level.
- Remove dust and debris from the drive controller, if necessary.

Fault Detection

If a fault is detected, the drive controller trips and the fault relay deenergizes unless Atr is active. See parameter Atr on page 55 for a description of automatic restart. See Table 22 on page 62 for fault descriptions. All faults can be reset by cycling the power to the drive controller.

When taking corrective action, verify that there is no voltage present on the DC bus (see the bus voltage measurement procedure on page 23), then check the supply voltage and peripheral equipment as outlined below.

Procedure 1: Checking the Supply Voltage

To measure the input line voltage:

- 1. Remove all input line voltage.
- Attach meter leads to L1 and L2. Set the voltmeter to the 600 Vac scale.
- 3. Reapply power and check for the correct line voltage, according to the drive controller nameplate rating.
- 4. Remove power. If the controller is wired for three phase, repeat the procedure for L2 and L3, and L1 and L3.
- When all phases have been measured, remove power. Remove leads and reinstall covers.

Procedure 2: Checking the Peripheral Equipment

Check the equipment for the following conditions. Follow the manufacturer's procedures.

- A protective device such as fuses or a circuit breaker may have tripped.
- A switching device such as a contactor may not be closing at the correct time.
- 3. Conductors may require repair or replacement.
- Connection cables to the motor or to ground may be loose. Follow NEMA standard procedure WC-53.
 - NOTE: Bus voltage can exceed 400 Vdc. Use appropriately-rated measuring equipment.
- 5. The motor insulation may be worn. Follow NEMA standard procedure MG-1. Do not apply high voltage to U, V, or W (see Table 9 on page 26). Do not connect high potential dielectric test equipment or an insulation resistance tester to the drive controller, since the test voltages used may damage it. Always disconnect the drive controller from the conductors or motor while performing such tests.

A CAUTION

DIELECTRIC TESTS, WHEN CONNECTED

- Do not perform high potential dielectric tests on circuits while the circuits are connected to the drive controller.
- Any circuit requiring high potential dielectric tests must be disconnected from the drive controller before performing the test.

Failure to follow this instruction can result in injury or equipment damage.

FAULT STORAGE

An existing fault is saved and displayed on the keypad display as long as power is maintained. When the drive controller trips, the fault relay deenergizes. To reset the fault:

- Remove power from the drive controller.
- · Identify and correct the cause of the fault.
- Restore power. This resets the fault if it has been corrected.

In certain cases, if automatic restart is enabled, the drive controller automatically restarts after the cause of the fault is removed. Refer to the description of Atr on page 55.

LIST OF FAULTS AND CORRECTIVE ACTION

Faults cannot be reset until the cause is removed. Faults OHF, OLF, OSF, ObF, and PHF can be reset via a logic input (rSF) if configured for this function. Faults OHF, OLF, OSF, ObF, and PHF can be reset via automatic restart (Atr) if configured for this function and if the drive controller is configured for 2-wire control. Fault USF resets as soon as the fault is removed; neither a logic input nor automatic restart is required for the reset. All faults can be reset by cycling the power.

Table 22: List of Faults

Fault	Probable cause	Corrective Action		
- [F F configuration fault		- Restore the factory settings or the backup configuration, if it is valid. See parameter FCS in the FUn menu (see page 57).		
- [r F precharge circuit	- precharge circuit damaged	- Reset the drive controller Replace the drive controller.		
- In F internal fault	- internal fault - internal connection fault	- Remove sources of electromagnetic interference Replace the drive controller.		
- D b F overvoltage during deceleration	- braking too rapidly or overhauling load	Increase the deceleration time. Install a braking resistor if necessary. Activate the brA function if it is compatible with the application.		
- D [F overcurrent	acceleration too rapid drive controller and/or motor undersized for load mechanical blockage	 Increase acceleration time. Ensure that the size of the motor and drive controller is sufficient for the load. Clear mechanical blockage. 		
- DHF drive controller overload	- continuous motor current load too high - ambient temperature too high	Check the motor load, the drive controller ventilation, and the environment. Wait for the controller to cool before restarting. Increase ACC for high inertia loads.		
- ULF motor overload	thermal trip due to prolonged motor overload motor power rating too low for the application	Check the setting of the motor thermal protection (ltH). See page 41. Check the motor load. Wait for the motor to cool before restarting.		
- 0 5 F overvoltage during steady state operation or during acceleration	- line voltage too high - induced voltage on output wiring	- Check the line voltage. Compare with the drive controller nameplate ratings Reset the drive controller Verify that the wiring is correct (see pages 23–29).		
- PHF input phase failure	- input phase loss, blown fuse - input phase imbalance - transient phase fault - 3-phase controller used on a single phase line supply - unbalanced load	- Verify that the input power is correct Check the line fuses Verify input power connections Supply 3-phase power if needed Disable IPL (set to nO).		

Table 22: List of Faults (continued)

Fault Probable cause		Corrective Action		
- 5 E F motor short circuit	- short-circuit or grounding at the drive controller output	- Check the cables connecting the drive controller to the motor, and check the insulation of the motor.		
- 5 0 F overspeed	- instability - overhauling load	- Check the motor, gain, and stability parameters Add a braking module and resistor and verify the drive controller, motor, and load.		
- U 5 F undervoltage	- input voltage too low - transient voltage dip - damaged precharge resistor	- Check that the line voltage matches the nameplate rating Check the setting of parameter UnS Replace the drive controller.		

Drive Controller Does Not Start, No Fault Displayed

On power-up, a manual fault reset, or after a stop command, the motor can be powered only after the forward and reverse commands are reset (unless tCt = LEL or PFO). If they have not been reset, the drive controller displays "rdY" or NST, but does not start. If the automatic restart function is configured (parameter Atr in the drC menu) and the drive controller is in 2-wire control, these commands are taken into account without a reset.

CONFIGURATION AND SETTINGS TABLES

ATV11 controller catalog no	
Customer identification no	

Table 23: First Level Adjustment Parameters

Code	Factory	Setting	Custome	r Setting	Code	Factory	Setting	Customer	Setting
bFr	50 / 60	Hz		Hz	L 5 P	0	Hz		Hz
ACC	3	s		s	H 5 P	50 /60	Hz		Hz
d E C	3	S		s	I E H		Α		Α

Table 24: Motor Control Menu dr [

Code	Factory	Setting	Custome	r Setting	Code	Factory	Setting	Custome	r Setting
U n 5		V		V	nEr		Α		Α
F r 5	50 / 60	Hz		Hz	E L I		Α		Α
5 Ł A	20	%		%	n 5 L		Hz		Hz
FLG	20	%		%	5 L P	100	%		%
UFr	50	%		%	C 0 5				

Table 25: Application Functions Menu F ⊔ ¬

Code	Factory setting		Customer setting		Code	Factory	setting	Custome	r setting
FEE					RdC				
ALF	2C				ACE	YES			
FCF	trn				ŁdΓ	0.5	s		s
r r 5	LI2				5 d C		Α		Α
P 5 2					5 F L				
LIA	LI3				ACF	LF			
L 16	LI4				5 F r	4	kHz		kHz
5 P 2	10	Hz		Hz	FLr	nO			
5 P 3	25	Hz		Hz	d 0				
5 P 4	50	Hz		Hz	ACF	rFr			
r 5 F	nO				FEd	50 / 60	Hz		Hz
r P 2					ГЕd		Α		Α
LI	nO				AIL	5U			
A C 2	5	s		s	Atr	nO			
d E ≥	5	s		s	L5r1	LOC			
SEP	nO				nPL 1	POS			
ЬгЯ	YES				ЬFr	50 / 60	Hz		Hz
					IPL	YES			

¹ A range only.

A	max. line 9-11	storage 61
AC2 50	max. transient 9-11, 14	FCS 57
ACC 41	motor 34	FLG 44
acceleration	motor thermal 41	FLr 53
ramp time 41	nominal 9-11	frequency
second ramp time 50	nominal motor 44	loop gain 44
ACt 47, 51-52, 54	threshold 34, 54	loop stability 44
AdC 51	D	motor 34, 41, 57
agency approvals 13	DB resistance values 12	nominal motor 44
AIC rating	DC injection 51	output 14
power supply 14	current 51	power supply 14
Alt 42	time 51	reference 56
altitude 13	dE2 50	resolution 15
application functions	dEC 41	switching 9—11, 14, 52
DO output 34	deceleration	threshold 34, 54 FrP 50
logic input 32	ramp adaptation 50	FrS 44
Atr 55	ramp time 41	FSt 50
automatic restart 61	second ramp time 50	Ftd 54
В	dielectric tests 61	fuses 24, 27
bFr 41, 57	dimensions 16	G
brA 50	direction	
braking	forward operation 32	galvanic isolation 14
torque 14	reverse operation 32	grounding 23
braking module 26	display 38—39	terminal 26
bus voltage measurement 23	dO 54	Н
С	DO output 15	heater 22
cable 14, 25	E	high speed 41
capacitors 25	electromagnetic compatibility	holding torque 52
catalog number 9-11	13, 30–31	HSP 41
catch on the fly 53	EMC mounting plate 31	humidity 13
CE markings 13	emissions 13	I
CFF 62	enclosure	incompatibility
clearances 17	IP54 20	application functions 46
CLI 44	sizing 20, 22	InF 62
condensation 22	thermal resistance 20	input
configuration	type 12 20	analog 14, 28, 35, 42
backup 57	ventilation 22 ENT button 38–39	logic 15, 28, 32, 56
fault 62	ESC button 38—39	phase failure 62
reset 57	F	inspection 8
control	•	internal fault 62
three-wire 32, 47	fan 18, 22	internal supplies 14
two-wire 32, 47	fault	IPL 57
COS 44	corrective actions 62	IR compensation 44
CrF 62	detection 59	ItH 41
Ctd 54	list of 62	L
current	relay contact 28	LI 50
limiting 44	reset 33, 49, 59, 61	LIA 49

LIb 49	operation 62	shock 13
lightning arrestors 25	P	short circuit 14-15, 33
line	parameters	motor 63
contactor 37	drC motor control 43	slip
phase loss 57	factory settings 64—65	compensation 44
LOC 56	first level adjustment 41	nominal motor 44
low speed 41	FUn application functions	SLP 44
LSP 41	45—57	SOF 63
LSr 56	monitoring 58	SP2 41, 49
М	SUP display 58	SP3 41, 49
maintenance 59	PHF 62	SP4 41, 49
menus	POS 56	speed 14
drC motor control 43	potentiometer 14, 28, 39	StA 44
FUn application functions	power factor 44	stop
45-57	precharge circuit fault 62	controlled 50
overview 40	preset speeds 33, 41, 49	fast 50
SUP display 58	programming 37—39	freewheel 50
motor thermal current 41	precautions 37	on ramp 50
mounting	protection	STOP button 39
in enclosure 20	branch circuit 24	storage 8
precautions 17	controller 15	StP 50
N	degree of 13	switching frequency 9-11, 14
	motor 15	T
nCr 44	overcurrent 24	tCC 47
nEG 56	thermal 44	tCt 47
noise suppressors 25	PS2 49	tdC 51
nPL 56	PTC probe 9—11, 15	temperature
nSL 44	R	mounting 17
0		operating 13
ObF 62	range 7	storage 8, 13
OCF 62	ratings 7, 9–11	tEr 56
OHF 62	receiving 8	terminals
OLF 62	reference reached 34	control 28
OSF 62	restart	power 25-26
output	automatic 55, 61	torque
DO 15, 28, 54	reverse 49	braking 14
relay 15	rP2 50	U
overcurrent 15, 24, 62	rrS 49	_
overheating 15	rSF 49	UFr 44
overload 14	RUN button 39	undervoltage 15, 63
controller 62	S	UnS 44
motor 62	SCF 63	USF 63
overspeed 63	SCS 57	V
overtorque 14	SdC 51	V/F ratio 14
overvoltage 15	second ramp 50	ventilation 22
during acceleration 62	SFr 52	vibration 13
during deceleration 62	SFt 52	voltage
during steady state	shipping damage 8	bus 23

```
nominal 9—11
nominal motor 44
output 14
power supply 14
supply 60
```

W

wiring control 25 diagram 29 power 25 ALTIVAR® 11 Adjustable Speed Drive Controllers User's Guide

Variadores de velocidad ajustable ALTIVAR® 11 Guía del usuario

Variateurs de vitesse ALTIVAR® 11 Guide de l'utilisateur

A PELIGRO

TENSIÓN PELIGROSA

- Asegúrese de leer y comprender todo el contenido de este boletín antes de instalar o hacer funcionar los variadores de velocidad ALTIVAR 11. La instalación, los ajustes, las reparaciones y el servicio de mantenimiento de estos variadores de velocidad deberán ser realizados por personal especializado.
- El usuario es responsable de cumplir con todos los requisitos de códigos correspondientes con respecto a la puesta a tierra del equipo.
- Varias piezas de este variador de velocidad, inclusive las tarjetas de circuito impreso, funcionan bajo tensión de línea. NO LAS TOQUE. Utilice sólo herramientas con aislamiento eléctrico.
- NO toque los componentes sin blindaje ni las conexiones de tornillo de las regletas de conexión cuando haya tensión.
- NO haga un puente sobre las terminales PA y PC o sobre los capacitores de — (cd).
- Instale y cierre todas las cubiertas antes de aplicar corriente eléctrica o de arrancar y parar el variador de velocidad.
- Antes de prestar servicio de mantenimiento al variador de velocidad:
 - Desconecte toda la alimentación.
 - Coloque la etiqueta "NO ENERGIZAR" en el desconectador del variador de velocidad.
 - Bloquee el desconectador en la posición de abierto.
 - Desconecte toda la alimentación incluyendo la alimentación de control externa que pudiese estar presente antes de prestar servicio al variador de velocidad. ESPERE 15 MINUTOS hasta que se descarguen los capacitores de la barra del bus de (cd), luego siga el procedimiento de medición de la tensión delineado en la página 91 para verificar que la tensión de (cd) sea inferior a 45 V. Los diodos emisores de luz (LED) no son indicadores precisos de la ausencia de tensión en la barra de (cd).

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

INTRODUCCIÓN	75
Gama norteamericana (U) (ATV11••••••U)	75
ALMACENAMIENTO Y TRANSPORTE	
CARACTERÍSTICAS TÉCNICAS	
DIMENSIONES	
CONDICIONES DE MONTAJE Y TEMPERATURA	85
INSTALACIÓN DE LOS VARIADORES DE VELOCIDAD CON PLACAS DE MONTAJE	86
MONTAJE DE LA PLATINA CEM	88
MONTAJE EN UN GABINETE METÁLICO TIPO 12 O IP54	88
Cálculo del tamaño de gabinete	
Ventilación	
PROCEDIMIENTO DE MEDICIÓN DE LA TENSIÓN DEL BUS	
INSTALACIÓN ELÉCTRICA	
TERMINALES DE POTENCIA	
FUSIBLES RECOMENDADOS	
TERMINALES DE CONTROL	
DIAGRAMA DE CABLEADO	
DIRECTRIZ CEM DE LA COMUNIDAD EUROPEA	
FUNCIONES DE APLICACIÓN DE LAS ENTRADAS LÓGICAS1	
Control de 2 hilos	
Control de 3 hilos	
Velocidades preseleccionadas	
Restablecimiento de falla	02
Segunda rampa10	
FUNCIONES DE APLICACIÓN DE SALIDAS DO	
Corriente en el motor (AO)	
Frecuencia del motor (AO)	
Referencia alcanzada (LO)	
Umbral de corriente alcanzado (LO)	03
Diagrama de cableado de salida DO	
Configuración de la entrada analógica	
Diagrama de cableado para la entrada analogica	U

PROGRAMACIÓN	106
Precauciones	106
U (norteamericana)	107
Ejemplo de programación	
Programación del variador de velocidad: Gama A (asiática)	
ACCESO A LOS MENÚS	109
PARÁMETROS DE AJUSTE DEL PRIMER NIVEL	110
drC – MENÚ: CONTROL DEL MOTOR	112
FUn - MENÚ: FUNCIONES DE APLICACIÓN	115
Funciones de aplicación incompatibles	116
Menú tCC	
Menús rrS, PS2 y rSF	
Menús rP2, StP y brA	
Menús AdC y SFt	
Menús Atr, LSr, y nPL	
Menús bFr, IPL, SCS y FCS	
MENÚ DE SUPERVISIÓN SUP	128
SERVICIO DE MANTENIMIENTO Y DIAGNÓSTICO DE PROBLEMAS	129
Precauciones	129
Servicio de mantenimiento de rutina	129
Detección de fallas	
Procedimiento 1: Verificación de la tensión de la fuente de alimentación Procedimiento 2: Revisión del equipo periférico	
ALMACENAMIENTO DE FALLAS	131
LISTA DE FALLAS Y ACCIÓN CORRECTORA	132
El variador no arranca ni muestra ninguna falla	133
TABLAS DE CONFIGURACIÓN Y AJUSTES	

INTRODUCCIÓN

ALTIVAR 11 (ATV11) es una familia de variadores de velocidad de ~ (ca) ajustable que se utiliza para controlar motores asíncronos de tres fases. Estos se encuentran disponibles en las siguientes gamas:

- 0,37 a 2,2 kW (0,25 a 3 hp), 208/230/240 V~, entrada monofásica
- 0,37 a 2,2 kW (0,25 a 3 hp), 208/230/240 V~, entrada trifásica
- 0,37 a 0,75 kW (0,25 a 1 hp), 100/115/120 V~, entrada monofásica

Los variadores de velocidad ATV11 han sido diseñados para el mercado global con tres adaptaciones regionales. Cada versión del producto tiene la misma configuración de cableado y funcionalidad. En las siguientes secciones se presenta un resumen de las variaciones entre las versiones regionales.

Gama norteamericana (U) (ATV11 ••••••U)

- Diseñados para el mercado norteamericano.
- Los valores nominales de corriente cumplen con o superan los requisitos de NEC y NOM-001-SEDE (consulte las páginas 77 a 79).

Gama europea (E) (ATV11 ••••••E)

- Diseñados para el mercado europeo.
- Disponibles sólo en tensión de línea de entrada monofásica de 230 V.
- Los valores nominales de corriente han sido adaptados para cumplir con las normas europeas (consulte las páginas 77 a 79).
- Los variadores incluyen un filtro CEM para cumplir con los requisitos de la Comunidad Europea (CE).

Gama asiática (A) (ATV11 ••••••A)

- Diseñados para el mercado asiático.
- Los valores nominales de corriente han sido adaptados para cumplir con las normas asiáticas (consulte las páginas 77 a 79).
- Un potenciómetro de referencia de velocidad y botones de marcha / paro han sido integrados a la terminal de programación y ajustes para obtener un funcionamiento local (consulte las páginas 108, 117 y 126).

 Es posible configurar las entradas lógicas para obtener una lógica negativa (consulte la página 126).

Este boletín de instrucciones proporciona información sobre las características técnicas, la instalación, el cableado, la programación y servicios de mantenimiento de todos los variadores de velocidad ATV11.

RECIBO E INSPECCIÓN PRELIMINAR

Antes de instalar el variador de velocidad ATV11, asegúrese de leer este manual y siga todas las precauciones:

- Antes de retirar el variador de velocidad de la caja de embalaje, cerciórese de que no se haya dañado durante su envío. Por lo general, si la caja está dañada, esto es una indicación de un manejo inadecuado y la posibilidad de daño al equipo. Si encuentra algún daño, notifique a la compañía de transporte y a su representante de Square D/Schneider Electric.
- Después de retirar el variador de velocidad de su caja de embalaje, realice una inspección visual de su exterior para ver si encuentra algún daño. Si encuentra algún daño producido durante el envío, notifique a la compañía de transporte y a su representante de ventas. No instale el equipo dañado.
- Asegúrese de que la placa de datos y etiqueta del variador de velocidad coincidan con la nota de embalaje y el pedido de compra correspondientes.

A PRECAUCIÓN

EQUIPO DAÑADO

No haga funcionar o instale un variador de velocidad que parezca estar dañado.

El incumplimiento de esta instrucción puede causar lesiones o daño al equipo.

ALMACENAMIENTO Y TRANSPORTE

Si no se instala el variador de velocidad de inmediato, almacénelo en un área seca y limpia a una temperatura ambiente de -25 a +69 $^{\circ}$ C (-13 a +156 $^{\circ}$ F). Si se va a enviar el variador de velocidad a otra ubicación, utilice el material de embalaje original y su caja para protegerlo.

CARACTERÍSTICAS TÉCNICAS

Tabla 1: Tensión de alimentación monofásica: 200/240 V~ -15%, +10%, 50/60 Hz, salida trifásica

Motor		Línea	principal	Variador de velocidad					
Potencia del motor ¹		Corriente de línea de entrada ²	Corriente nominal de cortocircuito	Corriente nominal	Corriente transitoria máx. ³	Potencia disipada en una carga nominal	Número de catálogo ⁴		
kW	hp	Α	kA	Α	Α	w			
Gama	nortea	mericana (U)						
0,18	0,25	3,3	1	1,6	2,4	14,5	ATV11HU05M2U		
0,37	0,5	6	1	2,4	3,6	23	ATV11•U09M2U		
0,75	1	9,9	1	4,6	6,3	43	ATV11•U18M2U		
1,5	2	17,1	1	7,5	11,2	77	ATV11HU29M2U		
2,2	3	24,1	1	10,6	15	101	ATV11HU41M2U		
Gama	asiátic	a (A)							
0,18	0,25	3,3	1	1,4	2,1	14	ATV11HU05M2A		
0,37	0,5	6	1	2,4	3,6	25	ATV11•U09M2A		
0,75	1	9,9	1	4	6	40	ATV11•U18M2A		
1,5	2	17,1	1	7,5	11,2	78	ATV11HU29M2A		
2,2	3	24,1	1	10	15	97	ATV11HU41M2A		
Gama	europe	a (E)							
0,18	0,25	2,9	1	1,1	1,6	12	ATV11HU05M2E		
0,37	0,5	5,3	1	2,1	3,1	20,5	ATV11•U09M2E		
0,55	0,75	6,3	1	3	4,5	29	ATV11•U12M2E		
0,75	1	8,6	1	3,6	5,4	37	ATV11•U18M2E		
1,5	2	14,8	1	6,8	10,2	72	ATV11HU29M2E		
2,2	3	20,8	1	9,6	14,4	96	ATV11HU41M2E		

¹ Los valores nominales de potencia mostrados son para una frecuencia de conmutación de 4 kHz, durante un funcionamiento continuo. La frecuencia de conmutación se puede ajustar entre 2 y 16 Hz. Por encima de los 4 kHz, el variador reducirá la frecuencia de conmutación en caso de que aumente excesivamente la temperatura. El aumento de temperatura lo detecta una sonda PTC dentro del módulo de alimentación. Disminuya la corriente nominal del variador durante un funcionamiento continuo por encima de los 4 kHz: 10% para 8 kHz; 20% para 12 kHz; 30% para 16 kHz.

² Valores de tensión nominal: 208 V para la gama norteamericana (U); 200 V para la gama asiática (A); 230 V para la gama europea (E).

³ Durante 60 segundos.

El símbolo "•", en un número de catálogo, indica que el variador está disponible en dos versiones. En los variadores con un disipador térmico, sustituya el símbolo "•" con la letra "H" (por ejemplo, ATV11HU09M2E). En los variadores con una placa de montaje, sustituya el símbolo "•" con la letra "P" (por ejemplo, ATV11PU09M2E).

Tabla 2: Tensión de corriente eléctrica trifásica: 200/230 V~ -15%, +15%, 50/60 Hz; salida trifásica

Motor		Línea	principal	Variador de velocidad					
Potencia del motor ¹		Corriente de línea de entrada ²	Corriente nominal de nominal nominal		Potencia disipada en una carga nominal	Número de catálogo ⁴			
kW hp		Α	kA	Α	Α	w			
Gama	nortea	mericana (U)			•	•		
0,18	0,25	1,8	5	1,6	2,4	13,5	ATV11HU05M3U		
0,37	0,5	3,6	5	2,4	3,6	24	ATV11•U09M3U		
0,75	1	6,3	5	4,6	6,3	38	ATV11•U18M3U		
1,5	2	11	5	7,5	11,2	75	ATV11HU29M3U		
2,2	3	15,2	5	10,6	15	94	ATV11HU41M3U		
Gama	asiática	a (A)							
0,18	0,25	1,8	5	1,4	2,1	13,5	ATV11HU05M3A		
0,37	0,5	3,6	5	2,4	3,6	24	ATV11•U09M3A		
0,75	1	6,3	5	4	6	38	ATV11•U18M3A		
1,5	2	11	5	7,5	11,2	75	ATV11HU29M3A		
2,2	3	15,2	5	10	15	94	ATV11HU41M3A		

Los valores nominales de potencia mostrados son para una frecuencia de conmutación de 4 kHz, durante un funcionamiento continuo. La frecuencia de conmutación se puede ajustar entre 2 y 16 Hz. Por encima de los 4 kHz, el variador reducirá la frecuencia de conmutación en caso de que aumente excesivamente la temperatura. El aumento de temperatura lo detecta una sonda PTC dentro del módulo de alimentación. Disminuya la corriente nominal del variador durante un funcionamiento continuo por encima de los 4 kHz: 10% para 8 kHz; 20% para 12 kHz: 30% para 16 kHz.

² Valores de tensión nominal: 208 V para la gama norteamericana (U); 200 V para la gama asiática (A).

³ Durante 60 segundos.

El símbolo "•", en un número de catálogo, indica que el variador está disponible en dos versiones. En los variadores con un disipador térmico, sustituya el símbolo "•" con la letra "H" (por ejemplo, ATV11HU09M3A). En los variadores con una placa de montaje, sustituya el símbolo "•" con la letra "P" (por ejemplo, ATV11PU09M3A).

Tabla 3: Tensión de alimentación monofásica: 100/120 V~ -15%, +10%, 50/60 Hz, salida trifásica

Мс	tor	Línea principal		Línea principal Variador de velocidad			d	
Potencia del motor ¹		Corriente de línea de entrada ²	nominal de	Corriente nominal	Corriente transitoria máx. ³	Potencia disipada en una carga nominal	Número de catálogo ⁴	
kW	hp	Α	kA	Α	Α	w		
Gama	Gama norteamericana (U)							
0,18	0,25	6	1	1,6	2,4	14,5	ATV11HU05F1U	
0,37	0,5	9	1	2,4	3,6	23	ATV11•U09F1U	
0,75	1	18	1	4,6	6,3	43	ATV11HU18F1U	
Gama	Gama asiática (A)							
0,18	0,25	6	1	1,4	2,1	14	ATV11HU05F1A	
0,37	0,5	9	1	2,4	3,6	25	ATV11•U09F1A	
0,75	1	18	1	4	6	40	ATV11HU18F1A	

Los valores nominales de potencia mostrados son para una frecuencia de conmutación de 4 kHz, durante un funcionamiento continuo. La frecuencia de conmutación se puede ajustar entre 2 y 16 Hz. Por encima de los 4 kHz, el variador reducirá la frecuencia de conmutación en caso de que aumente excesivamente la temperatura. El aumento de temperatura lo detecta una sonda PTC dentro del módulo de alimentación. Disminuya la corriente nominal del variador durante un funcionamiento continuo por encima de los 4 kHz: 10% para 8 kHz; 20% para 12 kHz; 30% para 16 kHz.

² Valores para una tensión nominal de 100 V.

³ Durante 60 segundos.

El símbolo "•", en un número de catálogo, indica que el variador está disponible en dos versiones. En los variadores con un disipador térmico, sustituya el símbolo "•" con la letra "H" (por ejemplo, ATV11HU09M1A). En los variadores con una placa de montaje, sustituya el símbolo "•" con la letra "P" (por ejemplo, ATV11PU09M1A).

Tabla 4: Valores mínimos de resistencia de frenado dinámico para utilizarse con el módulo de frenado externo VW3A11701

230 V Variadores de velocidad ATV11•••••• monofásicos	Resistencia mínima de PA / PB Ω	230 V Variadores de velocidad ATV11•••••• trifásicos	Resistencia mínima de PA / PB Ω	115 V Variadores de velocidad ATV11•••••• monofásicos	Resistencia mínima de PA / PB Ω
HU05M2U, A, E	75	HU05M3U, A	75	HU05F1U, A	75
HU09M2U, A, E	75	HU09M3U, A	75	HU09F1U, A	75
HU12M2E	75				
HU18M2U, A, E	75	HU18M3U, A	75	HU18F1U, A	75
HU29M2U, A, E	51	HU29M3U, A	51	PU09F1U	75
HU41M2U, A, E	51	HU41M3U, A	51		
PU09M2U	75	PU09M3U	75	1	
PU18M2U	75	PU18M3U	75		

A ADVERTENCIA

SOBRECALENTAMIENTO DE LA RESISTENCIA DE FRENADO

- Seleccione las resistencias de frenado apropiadas para la aplicación.
- Proporcione protección térmica adecuada.
- Encierre las resistencias de frenado en un gabinete adecuado para el medio ambiente.

El incumplimiento de estas instrucciones puede causar lesiones serias o daño al equipo.

Tabla 5: Especificaciones ambientales

Emisiones conducidas y radiadas para los variadores de velocidad	(red de la compañía suministradora) en distribución limitada. ATV11•U05M2E–U18M2E: EN 55011, EN 55022 clase B, 2: 12 kHz para longitudes de los cables del motor≤ 5 m (16 pies); y clase A (grupo 1), 2: 16 kHz para longitudes de los cables del motor≤ 10 m (33 pies).					
	ATV11•U29M2E–U41M2E: EN 55011, EN 55022 clase B, 4: 16 kHz para ongitudes de los cables del motor≤ 5 m (16 pies); y clase A (grupo 1), 4: 16 kHz ara longitudes de los cables del motor≤ 10 m (33 pies).					
	ATV11HU05M2E–HU41M2E: Con filtro CEM adicional: EN 55011, EN 55022 clase B, 2: 16 kHz para longitudes de los cables del motor≤ 20 m (66 pies); y clase A (grupo 1), 2: 16 kHz para longitudes de los cables del motor≤ 50 m (165 pies).					
	ATV11HU05••U–HU41••U y ATV11HU05••A–HU41••A: Con filtro CEM adicional: EN 55011, EN 55022 clase B, 2: 16 kHz para longitudes de los cables del motor≤ 5 m (16 pies); y clase A (grupo 1), 2: 16 kHz para longitudes de los cables del motor≤ 20 m (66 pies).					
Marcas de CE	Los variadores de velocidad han sido marcados por CE en base a las directrices europeas que gobiernan la baja tensión (73/23/EEC y 93/68/EEC) y EMC (89/336/EEC).					
Aprobaciones de agencias	UL, CSA, NOM, C-TICK y CUL					
Aprobaciones de agencias Grado de protección	UL, CSA, NOM, C-TICK y CUL IP20					
Grado de protección						
	IP20					
Grado de protección Resistencia a las	IP20 Según la norma 60068-2-6 de IEC/EN: 1,5 mm máximo, de 3 a 13 Hz					
Grado de protección Resistencia a las vibraciones ¹	IP20 Según la norma 60068-2-6 de IEC/EN: 1,5 mm máximo, de 3 a 13 Hz 1 gn de 13 a 200 Hz					
Grado de protección Resistencia a las vibraciones¹ Resistencia a sacudidas	IP20 Según la norma 60068-2-6 de IEC/EN: 1,5 mm máximo, de 3 a 13 Hz 1 gn de 13 a 200 Hz 15 gn para 11 ms según la norma 60068-2-27 de IEC/EN					
Grado de protección Resistencia a las vibraciones¹ Resistencia a sacudidas	IP20 Según la norma 60068-2-6 de IEC/EN: 1,5 mm máximo, de 3 a 13 Hz 1 gn de 13 a 200 Hz 15 gn para 11 ms según la norma 60068-2-27 de IEC/EN 5 a 93% sin condensación y sin goteo, según la norma 60068-2-3 de IEC					

¹ Variador de velocidad sin opción de riel DIN.

Tabla 6: Características del variador

Frecuencia de salida	0 a 200 Hz
Frecuencia de conmutación	2 a 16 kHz
Gama de velocidad	1 a 20
Par excesivo momentáneo	150% del par motor nominal
Par de frenado	20% del par nominal del motor sin frenado dinámico (valor típico). Hasta un máximo del 150% con una resistencia y módulo de frenado dinámico opcional.
Corriente transitoria máxima	150% de la corriente nominal del variador durante 60 segundos
Razón tensión/frecuencia	Control del vector de flujo sin sensor con señal de control del motor tipo modulación de la duración del impulso (PWM)
	Predeterminado en la fábrica para la mayoría de las aplicaciones de par constante.

Tabla 7: Especificaciones eléctricas

	_					
Tensión de la fuente de	ATV11•U••M2•: monofásico, 200 -15% a 240 +10%					
alimentación	ATV11•U••M3•: trifásico, 200 -15% a 230 +15%					
	ATV11•U••F1•: monofásico, 100 -15% a 120 +10%					
Frecuencia de la fuente de alimentación	50 Hz ±5% o 60 Hz ±5%					
Valor nominal de CID de	≤ 1 000 para la fuente de alimentación monofásica					
la fuente de alimentación	≤ 5 000 para la fuente de alimentación trifásica					
	Tensión máxima de 3 fases igual a:					
Tensión de salida	ATV11•U••M2: la tensión de entrada					
	ATV11•U••F1: dos veces la tensión de entrada					
Longitud máxima del cable del motor	50 m (164 pies) para el cable blindado 100 m (328 pies) para el cable no blindado Asegúrese de que el motor haya sido diseñado para usarse con variadores de velocidad de ~ (ca). Los tendidos de cable de más de 12,2 m (40 pies) pueden requerir filtros de salida para reducir picos de tensión en las terminales del motor.					
Aislamiento galvánico	entre la alimentación y el control (entradas, salidas, suministros de alimentación)					
Fuentes de alimentación internas disponibles	Con protección contra cortocircuitos y sobrecargas: • +5 V ±5% para el potenciómetro de referencia de velocidad (2,2 a 10 kΩ), máx. 10 mA • +15 V ±15% para las entradas de control, máx. 100 mA					
Entrada analógica Al1	1 entrada analógica programable. Tiempo máximo de muestreo: 20 ms, resolución 0,4%, linealidad $\pm 5\%$:					
Entrada analogica Arr	• Tensión: 0–5 V o 0–10 V, impedancia de 40 k Ω • Corriente: 0–20 mA o 4–20 mA (sin resistencia adicional), impedancia de 250 Ω					

Tabla 7: Especificaciones eléctricas (continuación)

	4 entradas lógicas programables, impedancia de $$ 5 k Ω
	Fuente de alimentación: interna de 15 V o externa de 24 V (mínimo 11 V, máximo 30 V)
Entradas lógicas, Ll	Con asignaciones múltiples, es posible combinar varias funciones en una sola entrada (por ejemplo: Ll1 puede ser asignada en marcha adelante y velocidad predeterminada 2, Ll3 puede ser asignada en marcha atrás y velocidad predeterminada 3).
	Lógica positiva: estado = 0 si < 5 V, estado = 1 si > 11 V. Tiempo máximo de muestreo: 20 ms.
	Lógica negativa: disponible solamente al programar la gama A de los variadores de velocidad. Estado = 0 si > 11 V o entrada del cable sin hilos, estado = 1 si < 5 V. Tiempo máximo de muestreo: 20 ms.
	Ajuste de fábrica:
Salida DO	 Salida del colector abierto tipo modulación de la duración del impulso (PWM) en 2 kHz. Puede ser utilizada en un medidor. Corriente máxima: 10 mA. Impedancia: 1 kΩ; linealidad: ±1%; tiempo máximo de muestreo: 20 ms.
	Puede ser configurada como una salida lógica:
	 Salida lógica del colector abierto; impedancia: 100 Ω, 50 mA como máximo. Tensión interna: consulte la información anterior sobre las fuentes de alimentación disponibles. Tensión externa: máxima 30 V, 50 mA.
	1 salida lógica de relé protegida (contacto abierto en caso de que suceda una falla). Capacidad de conmutación mínima: 10 mA, para 24 V (cd). Capacidad de conmutación máxima:
Salidas de relé	 En una carga resistiva (factor de potencia = 1 y L/R = 0 ms): 5 A para 250 V~ (ca) o 30 V (cd) En una carga inductiva (factor de potencia = 0,4 y L/R = 7 ms): 2 A para 250 V~ (ca) o 30 V (cd)
Protección del variador de velocidad	 Protección térmica contra sobrecalentamiento a través de una sonda PTC incorporada en el módulo de alimentación Protección contra cortocircuitos entre las fases de salida Protección contra sobrecorrientes entre las fases de salida y tierra, solamente durante la energización Protección contra sobretensiones y tensiones bajas Protección de una fase, en 3 fases
Protección del motor	Protección térmica integrada en el variador de velocidad mediante un cálculo de I^2 t. Se borra la memoria térmica durante la energización.
Resistencia del aislamiento de tierra	>500 MΩ (aislamiento galvánico)
Resolución de frecuencia	 Visualización de 0,1 Hz Entradas analógicas: 0,1 Hz para un máximo de 200 Hz
Constante de tiempo sobre un cambio del punto de referencia	5 ms

DIMENSIONES

	а	b	С	G	н	Ø	Peso
ATV11H*****	mm (pulg)	mm (pulg)	mm (pulg)	mm (pulg)	mm (pulg)	mm (pulg)	kg (lb)
U05••U, E U05••A	72 (2,835) 72 (2,835)	142 (5,591) 142 (5,591)	101 (3,976) 108 (4,252)	60 (2,362) 60 (2,362)	131 (5,157) 131 (5,157)	2 x 4 (0,157)	0,70 (1,547)
U09••U U09••E U09••A	72 (2,835) 72 (2,835) 72 (2,835)	142 (5,591) 142 (5,591) 142 (5,591)	125 (4,921) 125 (4,921) 132 (5,197)	60 (2,362) 60 (2,362) 60 (2,362)	131 (5,157) 120 (4,724) 131 (5,157)	2 x 4 (0,157)	0,85 (1,879)
U12••E	72 (2,835)	142 (5,591)	138 (5,433)	60 (2,362)	120 (4,724)	2 x 4 (0,157)	0,92 (2,033)
U18M•U U18M2E U18M•A	72 (2,835) 72 (2,835) 72 (2,835)	147 (5,787) 142 (5,591) 142 (5,591)	138 (5,433) 138 (5,433) 145 (5,709)	60 (2,362) 60 (2,362) 60 (2,362)	131 (5,157) 120 (4,724) 131 (5,157)	2 x 4 (0,157)	0,95 (2,099) 0,92 (2,033) 0,92 (2,033)
U18F1U U18F1A	117 (4,606) 117 (4,606)	142 (5,591) 142 (5,591)	156 (6,142) 163 (6,417)	106 (4,173) 106 (4,173)	131 (5,157) 131 (5,157)	4 x 4 (0,157)	1,6 (3,536)
U29••U, E U29••A	117 (4,606) 117 (4,606)	142 (5,591) 142 (5,591)	156 (6,142) 163 (6,417)	106 (4,173) 106 (4,173)	131 (5,157) 131 (5,157)	4 x 4 (0,157)	1,6 (3,536)
U41••U, E U41••A	117 (4,606) 117 (4,606)	142 (5,591) 142 (5,591)	156 (6,142) 163 (6,417)	106 (4,173) 106 (4,173)	131 (5,157) 131 (5,157)	4 x 4 (0,157)	1,6 (3,536)
'							
ATV11P Todos los val. nominales: U, E A	72 (2,835) 72 (2.835)	142 (5,591) 142 (5,591)	101 (3,976) 108 (4,252)	60 (2,362) 60 (2,362)	131 (5,157) 131 (5,157)	2 x 5 (0,197)	0,67 (1,481)

CONDICIONES DE MONTAJE Y TEMPERATURA

A PELIGRO

TENSIÓN PELIGROSA

Antes de realizar cualquier trabajo en este equipo:

- Desconecte toda la alimentación.
- Coloque la etiqueta "NO ENERGIZAR" en el desconectador del variador de velocidad.
- Bloquee el desconectador en la posición de abierto.

El incumplimiente de estas instrucciones podrá causar la muerte o lesiones serias.

Instale el variador de velocidad en posición vertical en un ángulo de ± 10°, con las terminales de potencia de salida en la parte inferior.

No coloque el variador cerca de fuentes de calor.

Deje espacio libre suficiente alrededor del variador para garantizar la circulación del aire desde abajo hasta arriba de la unidad.

Deje un espacio libre mínimo de 10 mm (0,4 pulg) en el frente del variador.

-10 a 40 °C (14 a 104 °F):	•	d ≥ 50 mm (2 pulg): no son necesarias precauciones especiales.
	•	d = 0 (variadores de velocidad uno al lado del otro): retire la cubierta protectora como se muestra en la figura a continuación.
-40 a 50 °C (104 a 122 °F):	•	d ≥ 50 mm (2 pulg): retire la cubierta protectora como se muestra a continuación.
50 a 60 °C (122 a 140 °F):	•	d ≥ 50 mm (2 pulg): retire la cubierta protectora (como se muestra a continuación) y disminuya la corriente nominal del variador 2,2% por cada °C por encima de 50°C.

NOTA: Durante el funcionamiento normal del variador, supervise el parámetro tHd (en el menú SUP) para verificar su estado térmico.

Los siguientes variadores de velocidad incluyen un ventilador. El ventilador se enciende automáticamente al energizar el variador.

- ATV11HU18F1A
- ATV11HU18F1U
- ATV11•U18M2U
- ATV11•U18M3U
- ATV11HU29***
- ATV11HU41•••

INSTALACIÓN DE LOS VARIADORES DE VELOCIDAD CON PLACAS DE MONTAJE

Los variadores de velocidad ATV11P pueden ser montados en una superficie de acero o aluminio, siempre y cuando:

- la temperatura ambiente máxima sea de 40°C (104 °F).
- el variador de velocidad esté montado verticalmente ±10°.
- el variador de velocidad esté montado en la parte central de una superficie expuesta al aire libre, con un grosor mínimo de 10 mm (0,4 pulg) y con un área mínima de enfriamento (S) de 0,12 m² (1,3 pie²) para la superficie de acero y 0,09 m² (1 pie²) para la superficie de aluminio.
- el área de soporte del variador en la superficie sea de un mínimo de 142 x 72 mm (5,6 x 2,9 pulg) con una lisura de máquina en la superficie de 100 μm y una aspereza de 3,2 μm como máximo.
- los agujeros roscados estén moleteados ligeramente para retirar la rebaba.

 toda la superficie de soporte del variador esté revestida con grasa de contacto térmica.

NOTA: Durante el funcionamiento normal del variador, supervise el parámetro tHd (en el menú SUP) para verificar su estado térmico.

MONTAJE DE LA PLATINA CEM

Se encuentra disponible una platina CEM, VW3A11831 (la cual deberá solicitarse por separado), para los variadores de velocidad ATV11. Para montar la platina CEM, alinéela con los agujeros en el disipador térmico del variador y sujétela con los dos tornillos provistos, como se muestra en las siguientes figuras. Consulte las páginas 99 y 101 para obtener instrucciones sobre el cableado.

MONTAJE EN UN GABINETE METÁLICO TIPO 12 O IP54

Cálculo del tamaño de gabinete

La ecuación para calcular Rth (°C/W), la resistencia térmica máxima permitida del gabinete, es:

$$Rth = \frac{T_i - T_0}{P} \qquad \qquad T_i = \text{Temp. ambiente interna máx. (°C) alrededor del variador} \\ T_0 = \text{Temp. ambiente externa máx. (°C) alrededor del gabinete} \\ P = \text{Potencia total disipada en el gabinete (W)}$$

Para obtener la potencia disipada por el variador en una carga nominal, consulte las tablas 1 y 3 en las páginas 77 a 79.

El área útil de la superficie de intercambio de calor, S (pulg²), de un gabinete montado en la pared, generalmente consta de los lados, la parte superior y el frente. El área mínima de la superficie necesaria para un gabinete del variador de velocidad se calcula de la siguiente manera:

$$S = \frac{K}{Rth}$$
 Rth = Resistencia térmica del gabinete (calculada con anterioridad)

$$K = Resistencia térmica por pulgada cuadrada del gabinete$$

NOTA: Póngase en contacto con el fabricante del gabinete para obtener los valores de los factores K.

Tenga en cuenta lo siguiente cuando dimensione un gabinete:

- Utilice gabinetes metálicos solamente, puesto que tienen buena conducción térmica.
- Este procedimiento no considera la carga de calor radiante o por convección proveniente de fuentes externas. No instale los gabinetes en lugares donde las fuentes externas de calor (tales como los rayos directos del sol) puedan aumentar la carga de calor del gabinete.
- Si existen dispositivos adicionales dentro del gabinete, considere la carga de calor de los dispositivos en el cálculo.
- El área útil real para enfriamiento por convección del gabinete variará según el método de montaje. Independientemente del método de montaje, todas las áreas que se enfrían por convección deberán tener espacio libre suficiente para permitir la circulación de aire.

El siguiente ejemplo ilustra el cálculo para obtener el tamaño de gabinete para un variador de velocidad ATV11HU18M3U montado en un gabinete tipo 12 o IP54.

- Temperatura externa máxima: T_o = 25 °C
- Potencia disipada dentro del gabinete: P = 38 W
- Temperatura interna máxima: T_i = 40 °C
- Resistencia térmica por pulgada cuadrada del gabinete: K = 186

Calcular la resistencia térmica máxima permitida, Rth:

Rth =
$$\frac{40 \, ^{\circ}\text{C} - 25 \, ^{\circ}\text{C}}{38 \, \text{W}}$$
 = 0,395 $^{\circ}\text{C/W}$

Calcular el área útil mínima de la superficie de intercambio de calor, S:

$$S = \frac{186}{0,395} = 470,9 \text{ pulg}^2$$

Area útil de la superficie de intercambio de calor (S) del gabinete propuesto montado en la pared:

- Altura: 711 mm (28 pulg)
- Anchura: 610 mm (24 pulg)
- Profundidad: 305 mm (12 pulg)

área área área frontal superior lateral
$$S = (24 \times 28) + (24 \times 12) + 2(28 \times 12) = 1 632 \text{ pulg}^2$$

Si el gabinete seleccionado no proporciona el área de superficie requerida o no cumple con las necesidades de la aplicación, considere lo siguiente:

- · Utilice un gabinete más grande.
- Agregue un intercambiador de calor pasivo al gabinete.
- Agregue una unidad de aire acondicionado al gabinete.

Ventilación

Al montar el variador de velocidad dentro de un gabinete tipo 12 o IP54:

- Monte el variador que requiera el mínimo espacio libre especificado en "Condiciones de montaje y temperatura" en la página 85.
- Preste atención a las precauciones de instalación detalladas en la página 91.
- Es posible que necesite instalar un ventilador de agitación para hacer circular el flujo de aire dentro del gabinete y evitar puntos de sobrecalentamiento en el variador, y para distribuir el calor uniformemente a las superficies que se utilizan para el enfriamiento por convección.

A PRECAUCIÓN

CONDENSACIÓN

En las áreas donde se pueda crear condensación, mantenga el variador energizado cuando no esté en marcha el motor, o instale calefactores de cinta controlados por termostato.

El incumplimiento de esta instrucción puede causar lesiones o daño al equipo.

PROCEDIMIENTO DE MEDICIÓN DE LA TENSIÓN DEL BUS

A PELIGRO

TENSIÓN PELIGROSA

Asegúrese de leer y comprender las precauciones descritas en la página 72 antes de realizar este procedimiento.

El incumplimiento de esta instrucción podrá causar la muerte o lesiones serias.

La tensión del bus puede exceder 400 V — (cd). Utilice equipo de medición apropiado al realizar este procedimiento. Para medir la tensión de los capacitores del bus:

- 1. Desenergice el variador de velocidad.
- 2. Espere 15 minutos hasta que se descargue el bus de (cd).
- Mida la tensión del bus de (cd) entre las terminales PA (+) y PC (-); asegúrese que la tensión sea menor que 45 V — (cd). Consulte la sección "Terminales de potencia" en la página 94 para conocer la ubicación de las terminales.
- Si no están completamente descargados los capacitores del bus, póngase en contacto con su representante local de Square D/Schneider Electric. No haga funcionar el variador de velocidad.

INSTALACIÓN ELÉCTRICA

Asegúrese de que la instalación eléctrica del variador de velocidad cumpla con los códigos nacionales y locales correspondientes.

 Asegúrese de que la tensión y frecuencia de la línea de alimentación entrante y que la tensión, frecuencia y corriente del motor correspondan al valor nominal especificado en la placa de datos del variador.

A PELIGRO

TENSIÓN PELIGROSA

Realice la conexión a tierra del equipo utilizando el punto de conexión a tierra provisto, tal como se muestra en la siguiente figura. El panel del variador de velocidad deberá estar correctamente conectado a tierra antes de energizarse.

El incumplimiento de esta instrucción podrá causar la muerte o lesiones serias.

 Asegúrese de que la resistencia a tierra sea de 1 Ω o menor. Conecte a tierra múltiples variadores como se muestra en la figura. No instale los conductores de tierra en bucle ni los conecte en serie.

A ADVERTENCIA

PROTECCIÓN CONTRA SOBRECORRIENTES INADECUADA

- Los dispositivos de protección contra sobrecorrientes deberán estar correctamente coordinados.
- El Código nacional eléctrico de EUA (NEC) o NOM-001-SEDE requiere la protección del circuito derivado. Utilice los fusibles recomendados en la placa de datos del variador para alcanzar las corrientes nominales de aguante a las fallas publicadas.
- No conecte el variador de velocidad a los alimentadores de corriente eléctrica cuya capacidad de cortocircuito exceda la corriente nominal de aguante a las fallas del variador que figura en la placa de datos.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

 Proporcione protección contra sobrecorrientes. Para alcanzar la corriente nominal de aguante a las fallas especificada en la placa de datos del variador de velocidad, instale los fusibles recomendados.

A ADVERTENCIA

CONEXIONES DE CABLEADO INCORRECTAS

- No aplique tensión de línea de entrada a las terminales de salida (U, V, W). Esto causará daños al variador de velocidad.
- Revise las conexiones de la alimentación antes de energizar el variador.
- Si va a sustituir otro variador de velocidad, verifique que todas las conexiones de cableado al variador ATV11 cumplan con las instrucciones de cableado detalladas en esta guía.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

- No utilice cables impregnados con minerales. Seleccione los cables del motor con una capacitancia baja de fase a fase y fase a tierra.
- Los cables del motor deberán ser de por lo menos 0,5 m (20 pulg) de largo.
- No tienda el cableado de control, de la corriente eléctrica, ni el del motor en el mismo tubo conduit. No tienda el cableado del motor de diferentes variadores de velocidad en el mismo tubo conduit. Separe el tubo conduit metálico, que lleva el cableado de corriente eléctrica, del tubo conduit metálico, que lleva el cableado de control, por lo menos 8 cm (3 pulg). Separe los tubos conduit no metálicos o las charolas de cables, que llevan el cableado de corriente eléctrica, del tubo conduit metálico, que lleva el cableado de control, por lo menos 31 cm (12 pulg). Cruce siempre los cables de la alimentación y de control en ángulo recto.
- No sumerja los cables del motor en el agua.
- No utilice apartarrayos ni capacitores para corrección del factor de potencia en la salida del variador de velocidad.
- Instale todos los circuitos inductivos cerca del variador (tales como relés, contactores y válvulas solenoides) con supresores de ruido eléctrico o conéctelos a un circuito separado.

TERMINALES DE POTENCIA

Es posible acceder a las terminales de potencia sin necesidad de abrir la cubierta. El variador de velocidad tiene cableado directo—la fuente de alimentación de red se encuentra en la parte superior del variador (R/L1–S/L2 en monofásicos de 230 V; R/L1–S/L2–T/L3 en trifásicos de 230 V; R/L1–N en monofásicos de 120 V) y la fuente de alimentación del motor se encuentra en la parte inferior (U–V–W).

NOTA: Conecte las terminales de potencia antes de conectar las terminales de control.

Tabla 8: Especificaciones de las terminales de potencia

	Capacidad máx	ima de conexión	Par de apriete	
ATV11•••••	AWG	mm ²	lbs-pulg	N•m
U05•••				
U09•••	AWG 14	1,5	6,6	0,75
U18M••				
U18F1•				
U29•••	AWG 10	4	8,9	1
U41•••				

Tabla 9: Funciones de las terminales de potencia

Terminales	Función	Para los ATV11
Ť	Terminal de tierra	Todos los valores nominales
R/L1		ATV11••••M2•
S/L2		A1 V 1 1 VIZ-
R/L1		
S/L2	Fuente de alimentación	ATV11••••M3•
T/L3		
R/L1		ATV11••••F1•
N		AIVII
PA/+	+ salida (cd) al módulo de frenado	Todos los valores nominales
PC/-	- salida (cd) al módulo de frenado	Todos los valores nominales
U		Tadaalaassalassa
V	Salidas al motor	Todos los valores nominales
W		
Ţ	Terminal de tierra	Todos los valores nominales

FUSIBLES RECOMENDADOS

Tabla 10: Fusibles recomendados para los variadores de velocidad monofásicos de 230 V

Motor		Variador de velocidad	Fusibles de 600 V		
kW	hp	ATV11H•••••	Clase CC	Clase J [1]	
0,18	0,25	HU05M2U, E, A	4	4	
0,37	0,50	HU09M2U, E, A	8	8	
0,55	0,75	HU12M2E	8	8	
0,75	1	HU18M2U, E, A	12	12	
1,50	2	HU29M2U, E, A	22	22	
2,20	3	HU41M2U, E, A	30	30	
0,37	0,5	PU09M2U, E, A	8	8	
0,75	1	PU18M2U, E, A	12	12	

^[1] Utilice fusibles clase J de acción rápida o de retardo

Tabla 11: Fusibles recomendados para los variadores trifásicos de 230 V

Motor		Variador de velocidad	Fusibles de 600 V		
kW	hp	ATV11H•••••	Clase CC	Clase J [1]	
0,18	0,25	HU05M3U, A	3	3	
0,37	0,50	HU09M3U, A	5	5	
0,75	1	HU18M3U, A	8	8	
1,50	2	HU29M3U, A	15	15	
2,20	3	HU41M3U, A	20	20	
0,37	0,5	PU09M3U, A	5	5	
0,75	1	PU18M3U, A	8 8		

^[1] Utilice fusibles clase J de acción rápida o de retardo

Tabla 12: Fusibles recomendados para los variadores monofásicos de 115 V

Motor		Variador de velocidad	Fusibles de 600 V			
kW	hp	ATV11H•••••	Clase CC	Clase J [1]		
0,18	0,25	HU05F1U, A	8	8		
0,37	0,50	HU09F1U, A	12	12		
0,75	1	HU18F1U, A	22	22		
0,37 0,5 P		PU09F1U, A	12	12		
[1] Utilice fusibles clase I de acción rápida o de retardo						

TERMINALES DE CONTROL

Abra la cubierta, como se muestra a continuación, para acceder a las terminales de control.

SC C	RA	No se us	^ 0	AI1	+2 N	DO	1	LI2	LI 3	LI 4	+15 V
\cup	\in	\in	\ominus	Θ	\ominus	Θ	\ominus	\ominus	Θ	Θ	\bigcirc
						l					

ď

Calibre máximo del cable: 1,5 mm² (16 AWG)

Par de apriete máximo: 0,5 N•m (4,4 lbs-pulg).

Terminal	Función	Especificaciones eléctricas				
RC RA	Contacto del relé de falla (se abre si hay una falla o si el variador está apagado)	Capacidad de conmutación mínima: 10 mA para 24 V (cd) Capacidad de conmutación máxima: • 2 A para 250 V~ (ca) y 30 V (cd) en la carga inductiva Constante de tiempo = 0,4 – (inductancia / resistencia) = 7 ms • 5 A para 250 V~ (ca) y 30 V (cd) en la carga resistiva Constante de tiempo = 1 – (inductancia / resistencia) = 0				
0 V	Común para las entradas/salidas lógicas	0 V				
Al1	Entrada analógica de tensión o corriente	Entrada analógica de 0 a 5 V o 0 a 10 V (30 V como máximo): • Impedancia: $40 \text{ k}\Omega$ • Resolución: $0,4\%$ • Precisión, linealidad: \pm 5% • Tiempo de muestreo: 20 ms máx. Entrada analógica de 0 a 20 mA o 4 a 20 mA: • Impedancia: 250Ω (sin resistencia externa) • Resolución: $0,4\%$ • Precisión, linealidad: \pm 5% • Tiempo de muestreo: 20 ms máx.				
+5 V	Fuente de alimentación para el potenciómetro de referencia: 2,2 a 10 $k\Omega$	Precisión: 0–5% Corriente máxima disponible: 10 mA				
DO	Salida (puede configurarse como salida analógica o lógica)	Salida analógica • Salida analógica del colector abierto de PWM en 2 kHz • Tensión: 30 V máx. • Impedancia: 1 kΩ, 10 mA máx. • Linealidad: ± 1% • Tiempo de muestreo: 20 ms máx. Colector abierto para la salida lógica • Tensión: 30 V máx. • Impedancia: 100 Ω, 50 mA máx. • Tiempo de muestreo: 20 ms máx.				

Terminal	Función	Especificaciones eléctricas
LI1 LI2 LI3 LI4	Entradas lógicas programables	Fuente de alimentación de +15 V (máx. 30 V) Impedancia de 5 kΩ Lógica positiva: estado 0 si < 5 V, estado 1 si > 11 V Lógica negativa: estado 1 si < 5 V, estado 0 si > 11 V o desconectada (gama A solamente) Tiempo de muestreo: 20 ms máx.
+15 V	Fuente de alimentación de las entradas lógicas	+15 V, ± 15% (con protección contra cortocircuitos y sobrecargas) Corriente máxima disponible: 100 mA

DIAGRAMA DE CABLEADO

Alimentación de red monofásica de 100-120 V

Alimentación de red trifásica de 200-230 V

NOTA: Las terminales de la fuente de alimentación de red se muestran en la parte superior y las terminales del motor en la parte inferior. Conecte las terminales de potencia antes de conectar las terminales de control. Instale supresores de transitorios en todas los circuitos inductivos situados cerca del variador de velocidad o conectados al mismo circuito.

Alimentación de red trifásica de 200-240 V

- (1) Contactos del relé de falla para indicar a distancia el estado del variador.
- (2) Interna de + 15 V. Si se utiliza una fuente externa (de 30 V como máximo), conecte la terminal de 0 V de la fuente a la terminal de 0 V, y no utilice la terminal de + 15 V del variador.
- (3) Medidor o relé de nivel bajo.
- (4) Consulte la placa de datos del variador para obtener información sobre los fusibles recomendados. Es posible utilizar fusibles de acción rápida o de retardo de tiempo clase J.

DIRECTRIZ CEM DE LA COMUNIDAD EUROPEA

El variador de velocidad ATV11 se considera un componente. No se trata de una máquina ni de una pieza de equipo lista para usarse de acuerdo con la directriz CEM de la Comunidad Europea (directriz de maquinaria o directriz de compatibilidad electromagnética). Es responsabilidad del usuario asegurarse de que la máquina cumpla con estas normas.

Para cumplir con los requisitos de la clase A, EN55011, siga las siguientes recomendaciones de instalación:

- Asegúrese de que las conexiones a tierra del variador de velocidad, el motor y el blindaje de los cables tengan un potencial igual.
- Utilice cables blindados con el blindaje conectado a tierra en ambos extremos del cable del motor, los cables de control y la resistencia de frenado (si se utiliza). Se puede utilizar tubo conduit en la sección de blindaje, siempre y cuando no exista descontinuidad.
- Asegúrese de que exista una separación máxima entre el cable de la fuente de alimentación (alimentación de red) y el cable del motor.

Diagrama de instalación

La siguiente tabla describe las partes mostradas en el diagrama de instalación en la página 99.

Art.	Descripción
1	Platina de montaje CEM, solicítela por separado (número de catalogo VW3A11831).
2	Variador de velocidad ALTIVAR 11.
3	Hilos o cables de alimentación sin blindaje.
4	Hilos sin blindaje para la salida de los contactos del relé de seguridad.
5	Los blindajes para la conexión del motor y la conexión a los dispositivos de control (artículos 6 y 7) deberán estar bien instalados en la platina CEM con pinzas de acero inoxidable (artículo 5). Pele los cables para exponer los blindajes. Coloque pinzas de tamaño adecuado alrededor de la parte desnuda de los cables y sujételos a la platina CEM.
6	Cable blindado para la conexión al motor con el blindaje conectado a tierra en ambos extremos. No interrumpa el blindaje. Si se utilizan bloques de terminales intermedios, éstos deberán estar contenidos en cajas metálicas blindadas para cumplir con los requisitos de CEM.
7	Cable blindado para la conexión a los dispositivos de control/comando. Para aplicaciones que requieren una gran cantidad de conductores, se deberán utilizar secciones cruzadas pequeñas de 0,5 mm². No interrumpa el blindaje. Si se utilizan bloques de terminales intermedios, éstos deberán estar contenidos en cajas metálicas blindadas para cumplir con los requisitos de CEM.
8	Conductor de tierra (sección cruzada de 10 mm²).

NOTA: Cuando utilice un filtro de entrada adicional, éste deberá montarse en el variador de velocidad y conectarse directamente a la red de alimentación con un cable sin blindaje. Luego conecte el cableado de la fuente de alimentación (artículo 3) al variador utilizando el cable de salida del filtro. Aunque existe una conexión equipotencial a alta frecuencia (HF) de conexión a tierra entre el variador, el motor y el blindaje de los cables, deberán conectarse los

conductores de protección PE (verde-amarillo) a las terminales correspondientes de cada uno de los dispositivos.

NOTA: En tendidos de cable muy largos, es posible que tenga que desconectar el blindaje en el extremo del motor para reducir la generación de ruido.

FUNCIONES DE APLICACIÓN DE LAS ENTRADAS LÓGICAS

Es posible asignar una de las entradas lógicas a cada una de las siguientes funciones. Una sola entrada lógica puede activar varias funciones al mismo tiempo (por ejemplo, marcha atrás y 2ª rampa). Sin embargo, deberá asegurarse de que estas funciones sean compatibles.

Control de 2 hilos

Para seleccionar un control de dos hilos, en el menú FUn, ajuste en 2C la función ACt de tCC. La misma entrada lógica controla ambos la marcha (adelante o atrás) y el paro.

Hay tres tipos de control de 2 hilos:

- 1. tCt = LEL: se considera el estado 0 ó 1 para la marcha o el paro.
- tCt = trn: deberá suceder un cambio de estado (de transición o periférico) para iniciar el funcionamiento y así evitar rearranques accidentales después de una interrupción en el suministro de energía.
- tCt = PFO: se considera el estado 0 ó 1 para la marcha o el paro, pero la entrada de marcha adelante siempre lleva prioridad sobre la entrada de marcha atrás.

Control de 3 hilos

Para seleccionar un control de tres hilos, en el menú FUn, ajuste en 3C la función ACt de tCC. La marcha (adelante o atrás) y el paro son controlados por 2 entradas lógicas diferentes. LI1 es siempre asignada a la función de paro. Un paro en una rampa es obtenido durante la apertura (estado 0). Se guarda el impulso en la entrada de marcha hasta que se abre la entrada lógica de paro. Al energizar el variador de velocidad, durante un restablecimiento de falla manual, o después de un comando de paro, el motor solamente podrá recibir alimentación una vez que se hayan restablecido los comandos de marcha adelante y marcha atrás.

Marcha (hacia atrás / hacia adelante)

Con un control de 2 hilos, la marcha hacia adelante deberá ser asignado a LI1 y no deberá ser reasignado a ninguna otra entrada lógica. Con un control de 3 hilos, la marcha hacia adelante deberá ser asignado a LI2 y no puede ser reasignado a ninguna otra entrada lógica.

Para inhabilitar la marcha hacia atrás, en aplicaciones con un solo sentido de rotación del motor, no asigne ninguna entrada lógica a la marcha hacia atrás (en el menú FUn, ajuste rrS en nO).

Velocidades preseleccionadas

Es posible asignar dos o cuatro velocidades preseleccionadas, que requieran una o dos entradas lógicas respectivamente.

Primero, asigne Llx a LlA, luego asigne Lly a Llb. Consulte la siguiente tabla.

2 veloc. pres.			4 veloc. pres.			
Asigne Llx a LIA			Asigne Llx a LIA, luego Lly a Llb			
Llx	Llx Ref. de vel.		Llx	Ref. de vel.		
0	0 Referencia (mín. = LSP)		0	Referencia (mín. = LSP)		
1	1 SP2		1	SP2		
		1	0	SP3		
		1	1	SP4		

Las velocidades preseleccionadas toman prioridad sobre la referencia proporcionada por la entrada analógica o por el potenciómetro (en los variadores de la gama A solamente).

Restablecimiento de falla

El cambio de estado de 0 a 1 de la entrada lógica asignada al restablecimiento de la falla borra la falla almacenada y restablece el variador si la causa de la falla es eliminada. Las excepciones son las fallas por OCF (sobrecorriente), SCF (cortocircuito en el motor) e InF (falla interna), que requiere la desconexión de la alimentación del variador.

Segunda rampa

Esta función permite la conmutación entre la primera (ACC, DEC) y segunda (AC2, DE2) rampas de aceleración y desaceleración al

activar una entrada lógica asignada a la función de conmutación de rampas (rP2).

FUNCIONES DE APLICACIÓN DE SALIDAS DO

La terminal DO es una salida de colector abierto. La salida DO puede ser utilizada como una salida analógica o una salida lógica según la función elegida.

- Cuando la terminal DO es utilizada como una salida lógica que está activa, su valor es bajo con respecto a la terminal de 0 V.
- Cuando es utilizada como una salida analógica, la señal es de tipo modulación de duración de impulsos (MDI) en 2 kHz. Por lo tanto:
 - el dispositivo de carga deberá ser capaz de capturar la media de la forma de onda de MDI.
 - la señal completa depende del valor de la fuente de tensión (Vs) y la suma de la resistencia del dispositivo externo (Z) así como de la resistencia interna fija de 1 kΩ.

Corriente en el motor (AO)

La señal completa corresponde al 200% de la corriente nominal del variador.

Frecuencia del motor (AO)

La señal completa corresponde al 100% de HSP.

Umbral de frecuencia alcanzado (LO)

Salida activa si la frecuencia del motor excede un umbral ajustable.

Referencia alcanzada (LO)

Salida activa si la frecuencia del motor alcanza la referencia.

Umbral de corriente alcanzado (LO)

Salida activa si la corriente del motor excede el umbral aiustable.

Diagrama de cableado de salida DO

Si una salida lógica es asignada, Z es un dispositivo externo tal como un relé de baja tensión. Si una salida analógica es asignada, Z es un dispositivo externo tal como un medidor.

Para la resistencia de un medidor (R), la tensión máxima (V_Z) suministrada es:

$$Vz = Vs \times \frac{R(\Omega)}{R(\Omega) + 1000(\Omega)}$$

La fuente de tensión (Vs) es la fuente interna de 15 V o una fuente externa de 30 V como máximo.

Configuración de la entrada analógica

Configure la entrada analógica de la manera siguiente:

- 0–5 V
- 0–10 V
- 0–20 mA
- 4–20 mA

Diagrama de cableado para la entrada analógica

PROGRAMACIÓN

Precauciones

A PELIGRO

FUNCIONAMIENTO ACCIDENTAL DEL EQUIPO

- Antes de energizar y configurar el variador, asegúrese de que las entradas lógicas estén abiertas (estado 0) para evitar un arranque accidental. De lo contrario, una entrada asignada al comando de marcha puede causar el arranque inmediato del motor al salir de los menús de configuración.
- Asegúrese de que las modificaciones de los ajustes actuales de funcionamiento no presente ningún riesgo. El variador deberá estar parado al realizar cualquier modificación.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

PRECAUCIÓN

CICLO RÁPIDO DEL CONTACTOR

- Con una conmutación de alimentación a través de un contactor de línea, evite el funcionamiento frecuente del contactor. Utilice las entradas LI1 a LI4 para controlar el variador.
- Estas instrucciones son vitales para los ciclos de menos de cinco minutos para evitar que se dañen los capacitores y la resistencia de precarga.

El incumplimiento de esta instrucción puede causar daño al equipo.

Programación del variador de velocidad: Gamas E (europea) y U (norteamericana)

Sale de un menú o parámetro, o cancela el Tres visualizaciones valor mostrado y regresa al valor anterior en la de siete segmentos memoria ENT Ingresa a un menú o parámetro, o quarda el parámetro visualizado o el Regresa al menú o valor mostrado parámetro anterior, o aumenta el valor Lo lleva al siguiente menú o mostrado parámetro, o disminuve el valor mostrado

- Para guardar la selección mostrada, pulse el botón ENT
- Al pulsar o sus selecciones no se almacenan automáticamente.
- La terminal destella cuando almacena un valor.

Ejemplo de programación

Cuando no existe una falla ni un comando de marcha, la visualización normal es una de las siguientes:

- rdY: variador listo
- 43.0: visualización del parámetro seleccionado en el menú SUP (selección por omisión: frecuencia de referencia)
- dcb: frenado por inyección de (cd) en curso
- nSt: parada libre

Si hay una falla, la pantalla destellará.

Programación del variador de velocidad: Gama A (asiática)

- Para guardar la selección mostrada, pulse el botón ENT
- Al pulsar automáticamente.

 Al pulsar automáticamente.
- La terminal destella cuando almacena un valor.

Cuando no existe una falla ni un comando de marcha, la visualización normal es una de las siguientes:

- rdY: variador listo
- 43.0: visualización del parámetro seleccionado en el menú SUP (selección por omisión: frecuencia de referencia)
- dcb: frenado por inyección de (cd) en curso
- nSt: parada libre

Si hay una falla, la pantalla destellará.

ACCESO A LOS MENÚS

Muestra el estado del variador Frecuencia del motor (el ajuste es visible desde esta h F c ubicación sólo cuando se energiza el variador por primera \bigcirc Tiempo de la rampa de aceleración ALL \odot Tiempo de la rampa de desaceleración d E C \bigcirc Velocidad baia LSP \bigcirc Velocidad alta HSP \bigcirc Parámetros Corriente térmica del motor de ajuste del $I \vdash H$ primer nivel **((** 2^a velocidad preseleccionada (1) 5 P 2 (V) 3ª velocidad preseleccionada (1) 5 P 3 \bigcirc 4^a velocidad preseleccionada (1) 5 P 4 **(** Configuración de la entrada analógica AIL \bigcirc Menú: Control del motor Menús Menú: Funciones de aplicación Menú: Supervisión

(1) Las velocidades preseleccionadas aparecen sólo cuando la función PS2 permanece en el ajuste de fábrica o si se volvió a configurar en el menú FUn.

110

PARÁMETROS DE AJUSTE DEL PRIMER NIVEL

Los parámetros en las casillas sin sombrear pueden ser modificados solamente cuando el variador está parado.

Los parámetros en las casillas sombreadas pueden ser modificados con el variador funcionando o parado.

Tabla 13: Descripción de los parámetros de ajuste del primer nivel

Código	Descripción	Gama de ajustes	Ajuste de fábrica		
b F c	Frecuencia del motor	50 ó 60 Hz	60 Hz: gama U 50 Hz: gamas A y E		
<i></i>	·	ente aquí la primera vez que se ene en cualquier momento desde el mo	•		
ACC	Tiempo de la rampa de aceleración	0,1 s a 99,9 s	3		
	Gama: 0 Hz hasta la frecuencia nominal del motor FrS (parámetro en el menú drC).				
d E C	Tiempo de la rampa de desaceleración	0,1 s a 99,9 s	3		
	Gama: frecuencia nominal del motor FrS (parámetro en el menú drC) hasta 0 Hz.				
LSP	Velocidad baja	0 Hz a HSP	0		
H S P	Velocidad alta	LSP a 200 Hz	= bFr		
пэг	Asegúrese de que este ajuste sea apropiado para el motor y la aplicación.				
I E H	Corriente térmica del motor	0 a 1,5 l _N ¹	Según el valor nominal		
		ón térmica del motor. Ajuste ItH en notor. La memoria de estado térmic			

Tabla 13: Descripción de los parámetros de ajuste del primer nivel

Código	Descripción	Gama de ajustes	Ajuste de fábrica
5 P 2	2 ^a velocidad preseleccionada ²	0,0 a 200 Hz	10
5 P 3	3 ^a velocidad preseleccionada ²	0,0 a 200 Hz	25
5 P 4	4 ^a velocidad preseleccionada ²	0,0 a 200 Hz	50
	Configuración de la entrada analógica	5 V, 10 V, 0 mA, 4 mA	5 V
A IE	-5 IJ: tensión de 0–5 V (fuente de alimentación interna) - I □ IJ: tensión de 0–10 V (fuente de alimentación externa) - □ 用: corriente de 0–20 mA - Ч 用: corriente de 4–20 mA		

¹ I_N = corriente nominal del variador.

² Aparece sólo si la función PS2 permanece en el ajuste de fábrica o si se volvió a configurar en el menú FUn. Los ajustes para las velocidades preseleccionadas por debajo de LSP y por encima de HSP no tienen ningún efecto ya que LSP y HSP tienen precendencia.

drC - MENÚ: CONTROL DEL MOTOR

Los parámetros en las casillas sin sombrear pueden ser modificados solamente cuando el variador está parado.

Los parámetros en las casillas sombreadas pueden ser modificados con el variador funcionando o parado.

Tabla 14: Parámetros del menú drC para control del motor

Código	Descripción	Gama de ajustes	Ajuste de fábrica
U n 5	Tensión nominal del motor que se muestra en la placa de datos.	100 a 500 V	Según el valor nominal
Fr5	Frecuencia nominal del motor que se muestra en la placa de datos.	40 a 200 Hz	50/60 Hz según el valor de bFr
SER	Estabilidad del bucle de frecuencia	0 a 100% parado 1 a 100% en marcha	20
3 6 11	Valor muy alto: extensión del tiempo de respu Valor muy bajo: velocidad excedida, inestabil		
FLG	Ganancia del bucle de frecuencia	0 a 100% parado 1 a 100% en marcha	20
rlu	Valor muy alto: velocidad excedida, inestabili Valor muy bajo: extensión del tiempo de resp		
UFr	Compensación de la caída de tensión. Se utiliza para optimizar el par en velocidad muy baja, o para adaptar el par de aplicaciones especiales (por ejemplo, los motores conectados en paralelo requieren un valor de UFr más bajo).	0 a 200%	50
n E r	Corriente nominal del motor que se muestra en la placa de datos.	0,25 a 1,5 I _N	Según el valor nominal
[LI	Corriente limitadora	0,5 a 1,5 l _N	1,5 I _N
	Deslizamiento nominal del motor	0 a 10,0 Hz	Según el valor nominal
n 5 L	Calcular con la fórmula: nSL = parámetro FrS Nn = velocidad nominal del motor que se mu Ns = velocidad sincrónica del motor	` '	
	Compensación de deslizamiento	0 a 150% de nSL	100
SLP	Se utiliza para ajustar la compensación de deslizamiento alrededor del valor definido por el deslizamiento nominal del motor nSL, o para adaptar la compensación de deslizamiento de aplicaciones especiales (por ejemplo, los motores conectados en paralelo requieren un valor de SLP más bajo).		
C 0 5	Factor de potencia nominal del motor que se muestra en la placa de datos	0,50 a 1,00	Según el valor nominal

A PRECAUCIÓN

SOBRECALENTAMIENTO DEL MOTOR

- Este variador de velocidad no proporciona protección térmica directa al motor.
- Tal vez sea necesario instalar un sensor térmico para proteger el motor en cualquier velocidad y bajo cualquier condición de carga.
- Consulte la información del fabricante del motor para conocer la capacidad térmica de éste cuando funciona en la gama de velocidad deseada.

El incumplimiento de esta instrucción puede causar lesiones o daño al equipo.

FUn - MENÚ: FUNCIONES DE APLICACIÓN

Funciones de aplicación incompatibles

Las siguientes funciones de aplicación son inaccesibles o pueden ser desactivadas como se describe a continuación:

- Es posible realizar un rearranque automático sólo en un control de 2 hilos (ACt en tCC = 2C y tCt en tCC = LEL o PFO). Si cambia el tipo de control se desactiva la función.
- Es posible obtener una recuperación automática en un control de 2 hilos. Si cambia el tipo de control se desactiva la función.

 La recuperación automática estará inaccesible si la inyección automática de — (cd) continua es configurada como AdC = Ct.

 El cambio a inyección automática de — (cd) continua (AdC = Ct) desactiva la función.
- Para los variadores de la gama A, la función de marcha atrás está inaccesible si esta activo un control local (ACt en tCC = LOC).

NOTA: Es posible asignar funciones múltiples a una sola entrada lógica y función simultáneamente. Se se asignan los comandos FWD y REV a la misma entrada lógica, FWD tiene precedencia.

Menú tCC

Tabla 15: Parámetro del menú tCC

Cóc	digo	Descripción	Ajuste de fábrica
FCC		Tipo de control	
	ACF	$\mathcal{Z}\mathcal{L} = \text{control de 2 hilos}$ $\mathcal{Z}\mathcal{L} = \text{control de 3 hilos}$ $\mathcal{L}\mathcal{D}\mathcal{L} = \text{control local}$	2C
		Control de 2 hilos: El estado de la entrada, abierto o cerrado (1 ó 0), c paro del variador.	ontrola la marcha o
		Ejemplo de cableado: (+15V LII LIX) LI1: adelante LIx: atrás Control de 3 hilos (control de impulsos): un impulso hacia adelante o h suficiente para un comando de arranque; un impulso de paro es suficie de paro.	
		Ejemplo de cableado: L1: parada L12: adelante L1x: atrás Control local: El botón de marcha (RUN) / paro (STOP) siempre está a el paro del motor. Si tCC no está configurado como LOC, el motor reali: Si tCC está configurado como LOC, el motor sique la rampa de desaci	zará una parada libre.
		pero si hay un frenado por inyección en curso, se realizará una parada	
		NOTA: Para modificar la asignación de tCC, oprima el botón ENT dura lo hará regresar a las siguientes funciones a su ajuste de fábrica: rrS, t	•
	FCF	Tipo de control de 2 hilos (es posible acceder a este parámetro solamente si tCC = 2C):	trn
		LEL: Si el valor de la entrada de marcha adelante o marcha atrás es energizado el variador, éste arrancará el motor. Si las dos entradas tie durante la energización, el variador girará hacia adelante. Lrn: El variador deberá contener una transición de bajo a alto de la adelante o marcha atrás antes de arrancar el motor. Por lo tanto, si el marcha adelante o marcha atrás es alto, cuando está energizado el va deberá pasar por un ciclo antes de que el variador arranque el motor. PFD: Igual que LEL, con la excepción de que con este tipo de contro comando de marcha "adelante" tiene precedencia sobre la entrada de "atrás". Si se activa la marcha adelante mientras el variador está funciatrás, el variador girará hacia adelante.	enen un valor alto entrada de marcha valor de la entrada de ariador, la entrada Il a entrada del I comando marcha

Menús rrS, PS2 y rSF

Los parámetros en las casillas sin sombrear pueden ser modificados solamente cuando el variador está parado.

Los parámetros en las casillas sombreadas pueden ser modificados con el variador funcionando o parado.

Tabla 16: Parámetros de los menús rrS, PS2, rSF

Cód	igo	Descripción	Ajuste de fábrica	
r r 5		Marcha atrás □ : función inactiva □ : I I a L I I : selecciona la entrada asignada al comando de marcha atrás	si ACt en tCC = 2C: LI2 si ACT en tCC = 3C: LI3	
P S 2		Velocidades preseleccionadas ¹ Si LIA y LIb = 0: velocidad = referencia de Al1 Si LIA = 1 y LIb = 0: velocidad = SP2 Si LIA = 0 y LIb = 1: velocidad = SP3 Si LIA = 1 y LIb = 1: velocidad = SP4		
		Asignación de la entrada LIA - n : función inactiva - L I a L I : selecciona la entrada asignada a LIA Asignación de la entrada LIb - n : función inactiva - L I a L I : selecciona la entrada asignada a LIb Es posible acceder a SP2 sólo si LIA es asignada; Es posible acceder a SP3 y SP4 sólo si LIA y LIb son asignadas.	si ACt en tCC = 2C: LI3 si ACt en tCC = 3C: LI4 si ACt en tCC = 2C: LI4 si ACT en tCC = 3C: nO	
		2ª velocidad preseleccionada, ajustable de 0,0 a 200 Hz 3ª velocidad preseleccionada, ajustable de 0,0 a 200 Hz 4ª velocidad preseleccionada, ajustable de 0,0 a 200 Hz	10 25 50	
r 5 F		Restablecimiento de falla - ¬ □: función inactiva - L I I a L I I : selecciona la entrada asignada a esta función. Se activa el restablecimiento de falla cuando la entrada cambia de estado en el flanco ascendente (de 0 a 1). La falla se restablece sólo si ha desaparecido la causa que la produjo.	nO	

¹ Consulte la página 102.

Menús rP2, StP y brA

Los parámetros en las casillas sin sombrear pueden ser modificados solamente cuando el variador está parado.

Los parámetros en las casillas sombreadas pueden ser modificados con el variador funcionando o parado.

Tabla 17: Parámetros de los menús rP2, StP y brA

Cód	ligo	Descripción	Ajuste de fábrica
r P ≥		Conmutación de rampas	
	LI	Asignación de la entrada de control de la 2ª rampa - ¬ □: función inactiva - L I I a L I I : selecciona la entrada asignada a esta función. Es posible acceder a AC2 y dE2 sólo si LI es asignada.	nO
		Tiempo de aceleración de la 2ª rampa, ajustable de 0,1 a 99,9 s Tiempo de desaceleración de la 2ª rampa, ajustable de 0,1 a 99,9 s	5.0 5.0
SEP		Parada controlada al producirse una pérdida en la red de alimentación - ¬ □: función inactiva, parada libre del motor - F - P: parada según el valor aceptable de la rampa (dEC o dE2) - F 5 £: paro rápido, el tiempo de parada depende de la inercia de la carga y la capacidad de frenado del variador.	nO
ЬгЯ		Adaptación de la rampa de desaceleración - nO: función inactiva - YES: aumenta automáticamente el tiempo de desaceleración de la rampa, si se ha ajustado la inercia de la carga en un valor muy bajo, evitando así una falla por sobretensión.	YES

Menús AdC y SFt

Los parámetros en las casillas sin sombrear pueden ser modificados solamente cuando el variador está parado.

Los parámetros en las casillas sombreadas pueden ser modificados con el variador funcionando o parado.

Tabla 18: Parámetros de los menús AdC y SFt

Cód	igo	Descripción	Ajuste de fábrica
AGE		Inyección de (cd) automática	
	ЯCЬ	Modo de funcionamiento - ¬ □: función inactiva - ∃ E 5: la inyección de (cd) es activada al finalizar cada ciclo de paro. El tiempo de inyección se puede ajustar a través del parámetro tdC. La corriente por inyección se puede ajustar a través del parámetro SdC □ L: la inyección de (cd) continua es activada al finalizar cada ciclo de paro. Es posible ajustar el valor de esta corriente a través del parámetro SdC. En el control de 3 hilos, la inyección está activa sólo cuando se ajusta Ll1 en 1.	YES
	ΕdC	Tiempo de inyección durante el paro del motor, ajustable de 0,1 a 30,0 s. Es posible acceder a este valor sólo si ACt =YES.	0,5 s
	5 <i>d</i> C	Corriente por inyección, ajustable de 0 a 1,5 I_N . Es posible acceder a este valor sólo si ACt = YES o Ct.	0,7 I _N

Tabla 18: Parámetros de los menús AdC y SFt (continuación)

Código Descr	ión Ajuste de fábrica
--------------	-----------------------

A ADVERTENCIA

SIN PAR DE RETENCIÓN

- El frenado por inyección de -- (cd) no proporciona par de retención en una velocidad de cero.
- El frenado por inyección de --- (cd) no funciona durante una pérdida de alimentación o durante una falla del variador.
- Si es necesario, utilice un freno independiente para el par de retención.

FRENADO POR INYECCIÓN DE - (CD) EXCESIVO

- La aplicación de frenado por inyección de --- (cd), durante largos períodos de tiempo, puede causar sobrecalentamiento y daño al motor.
- Proteja el motor no lo exponga a períodos prolongados de frenado por inyección de (cd).

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

5 F L		Frecuencia de conmutación	
	ЯСЬ	Gama de frecuencias - L F r: frecuencia aleatoria alrededor de 2 ó 4 kHz según el valor de SFr - L F: frecuencia fija de 2 ó 4 kHz según el valor de SFr - H F: frecuencia fija de 8, 12 ó 16 kHz según el valor de SFr	LF
	SFr	Frecuencia de conmutación: - Z: 2 kHz (si ACt = LF o LFr) - 4': 4 kHz (si ACt = LF o LFr) - B: 8 kHz (si ACt = HF) - I Z: 12 kHz (si ACt = HF) - I B: 16 kHz (si ACt = HF) Cuando SFr = 2 kHz, la frecuencia automáticamente cambia a 4 kHz en alta velocidad. Cuando SFt = HF, la frecuencia seleccionada automáticamente cambia a la frecuencia más baja si el estado térmico del variador es muy alto. Automáticamente regresa a la frecuencia SFr siempre y cuando lo permita el estado térmico.	4 (si ACt = LF o LFr) 12 (si ACt = HF)

Menús FLr y dO

Los parámetros en las casillas sin sombrear pueden ser modificados solamente cuando el variador está parado.

Los parámetros en las casillas sombreadas pueden ser modificados con el variador funcionando o parado.

Tabla 19: Parámetros de los menús FLr y dO

Código	Descripción	Ajuste de fábrica
FLr	Recuperación automática Permite un reinicio suave si el comando de marcha se mantiene después de los siguientes eventos: - una pérdida en la red de alimentación o desenergización - un restablecimiento de falla o rearranque automático - parada libre	nO
	El motor vuelve a arrancar a partir de la velocidad estimada al momento del reinicio, luego sigue la rampa en la velocidad de referencia. Esta función requiere un control de 2 hilos (ACt en tCC = 2C) con tCt en tCC = LEL o PFO. B. El función inactiva	
	Esta función activa Esta función interviene en cada comando de marcha y produce un arranque después de un retardo de 1 segundo como máximo. Si se ha configurado el frenado por inyección automática continua (Ct), no es posible activar esta función.	

Tabla 19: Parámetros de los menús FLr y dO (continuación)

Código	Descripción	Ajuste de fábrica
d 0	Salida analógica / lógica DO	
REE	Asignación - n D: no asignada - D E r: corriente de salida / motor (salida analógica). La señal completa corresponde al 200% de la corriente nominal del variador r F r: frecuencia del motor (salida analógica). La señal completa corresponde al 100% de HSP F L R: umbral de frecuencia alcanzado (salida lógica), cerrado (estado 1) si la frecuencia del motor sobrepasa el umbral ajustable de Ftd 5 r R: referencia obtenida (salida lógica), cerrada (estado 1) si la frecuencia del motor es igual a la referencia E L R: umbral de corriente alcanzado (salida lógica), cerrado (estado 1) si la corriente del motor sobrepasa el umbral ajustable de Ctd. Es posible acceder a Ftd sólo si ACt = FtA. Es posible acceder a Ctd sólo si ACt = CtA.	rFr
FEd	Umbral de frecuencia, ajustable de 0 a 200 Hz	= bFr
ГЕА	Umbral de corriente, ajustable de 0 a 1,5 I _N .	I _N

Menús Atr, LSr, y nPL

Tabla 20: Parámetros de los menús Atr, LSr, y nPL

Código	Descripción	Ajuste de fábrica
AEr	Rearranque automático	nO
	- n II: función inactiva - y E 5: Permite el rearranque automático después de parar el motor durante una falla, siempre que ésta haya desaparecido y las demás condiciones de funcionamiento permitan el rearranque. Una serie de intentos de rearranque automático son separados por tiempos de espera prolongados: 1 s, 5 s, 10 s y luego 1 min. para los períodos restantes. Si el rearranque no se produce a los 6 min., el procedimiento se abandona y el variador permanece en estado de falla hasta que se desenergiza y vuelve a energizar. Las siguientes fallas permiten esta función: OHF, OLF, ObF, OSF y PHF. El relé de falla del variador permanece activado siempre y cuando esta función esté activada. La referencia de velocidad y el sentido de marcha deberán mantenerse. Es posible realizar un rearranque automático sólo en un control de 2 hilos (ACt en tCC) con tCt en tCC = LEL o PFO.	

A ADVERTENCIA

FUNCIONAMIENTO ACCIDENTAL DEL EQUIPO

- El rearranque automático se puede utilizar sólo en máquinas o instalaciones que no presenten un riesgo para el personal o el equipo durante un rearranque automático accidental.
- Si se activa el rearranque automático, R1 sólo indicará una falla después de expirar la secuencia de rearranques.
- El funcionamiento del equipo deberá estar conforme con las normas y códigos de seguridad nacionales y locales.

El incumplimiento de estas instrucciones puede causar la muerte, lesiones serias o daño al equipo.

Tabla 20: Parámetros de los menús Atr, LSr, y nPL (continuación)

Código	Descripción	Ajuste de fábrica
L5r	Modo de referencia de frecuencia Es posible acceder a este parámetro sólo en los variadores de la gama A. - L □ C: la referencia de velocidad la proporciona el potenciómetro situado en el frente del variador. - L E r: la referencia de velocidad la proporciona la entrada analógica Al1. Para que los ajustes de LOC y tEr sean considerados, deberá mantener	LOC
nPL	oprimido el botón ENT durante 2 s. Selección de lógica para las entradas Es posible acceder a este parámetro sólo en los variadores de la gama A P D 5: las entradas están activas (estado 1) en una tensión de 11 V o más (por ejemplo, una terminal de +15 V) e inactivas (estado 0) cuando el variador está desconectado, o en una tensión inferior a 5 V n E D: las entradas están activas (estado 1) en una tensión inferior a 5 V (por ejemplo, una terminal de 0 V) e inactivas (estado 0) cuando el variador está desconectado, o en una tensión de 11 V o más. Para que los ajustes de POS y nEG sean consideradas, deberá mantener oprimido el botón ENT durante 2 s.	POS

Menús bFr, IPL, SCS y FCS

Tabla 21: Parámetros de los menús bFr, IPL, SCS y FCS

Código	Descripción	Ajuste de fábrica
ЬҒг	Frecuencia del motor (igual que el parámetro de ajuste bFr de primer nivel) Ajuste en 50 Hz o 60 Hz, según el valor nominal especificado en la placa de datos del motor.	60
IPL	Configuración de la falla por pérdida de fase en la red Es posible acceder a este parámetro sólo en los variadores de velocidad de 3 fases n D: impide la falla por pérdida de fase en la red - 9 E 5: activa la supervisión de una pérdida por fase en la red	YES
5 C S	Configuración de reserva - 9 E 5: guarda la configuración actual en la memoria EEPROM como reserva. SCS automáticamente cambia a nO una vez que ha guardado la configuración anterior. Los variadores de velocidad salen de la fábrica con la configuración actual y la de reserva definida en la fábrica.	nO
FES	Restablecimiento de la configuración - n □: función inactiva - r E □: restablece la configuración en los valores de reserva anteriormente guardados usando SCS. rEC es visible sólo si se ha realizado una copia de reserva. FCS automáticamente cambia a nO una vez que ha terminado el restablecimiento In I: restablece la configuración en el valor de fábrica. FCS automáticamente cambia a nO una vez que ha terminado el restablecimiento. NOTA: Para realizar los comandos de rEC e InI, deberá mantener sostenido el botón ENT durante 2 segundos.	nO

MENÚ DE SUPERVISIÓN SUP

Cuando el variador está en marcha, éste visualiza el valor de uno de los parámetros de supervisión. La visualización por omisión es la referencia de frecuencia (parámetro FrH).

Para cambiar la visualización, desplácese hacia el parámetro de supervisión deseado y oprima el botón ENT para visualizar su valor. Mientras se visualiza este valor, oprima el botón ENT, por segunda vez, para confirmar el cambio del parámetro y almacenarlo. De ahora en adelante, el valor de este parámetro será visualizado mientras está en marcha el variador (aun después de haber sido desconectado). Si no se confirma la nueva selección de esta manera, la visualización regresa al parámetro anterior después de desconectar el variador.

SERVICIO DE MANTENIMIENTO Y DIAGNÓSTICO DE PROBLEMAS

Precauciones

Lea las precauciones de seguridad a continuación antes de seguir con cualquier procedimiento de mantenimiento o diagnóstico de problemas.

A PELIGRO

TENSIÓN PELIGROSA

- Asegúrese de leer y comprender todos los procedimientos y precauciones descritos en la página 2 de este manual antes de prestar servicio a los variadores de velocidad ATV11.
- La instalación, los ajustes y el servicio de mantenimiento de estos variadores de velocidad deberán ser realizados por personal especializado.

El incumplimiento de estas instrucciones podrá causar la muerte o lesiones serias.

Los procedimientos de servicio de mantenimiento y diagnósticos de problemas en esta sección, están dirigidos al personal eléctrico especializado y no deberán considerarse como instrucciones suficientes por aquellos que no están capacitados para hacer funcionar o prestar servicios de mantenimiento al equipo en cuestión.

Servicio de mantenimiento de rutina

Realice los siguientes pasos en intervalos regulares:

- Revise la condición y el ajuste de las conexiones.
- Asegúrese de que haya ventilación adecuada y que la temperatura alrededor del variador de velocidad sea aceptable.
- Si es necesario, quite el polvo y los materiales extraños del variador de velocidad.

Detección de fallas

Si se detecta una falla, el variador se disparará y el relé de fallas se desenergizará a menos que esté activa la función Atr. Consulte el parámetro Atr en la página 125 para obtener una decripción de arranque automático. Consulte la tabla 22 en la página 132 para

obtener las descripciones de fallas. Todas las fallas pueden ser restablecidas apagando y volviendo a enceder el variador.

Una vez que haya tomado una medida correctora, verifique que no haya tensión en el bus de — (cd) (consulte el procedimiento de medición de la tensión del bus descrito en la página 91), luego revise la tensión de alimentación y el equipo periférico como se describe a continuación.

Procedimiento 1: Verificación de la tensión de la fuente de alimentación

Para medir la tensión de línea entrante:

- Retire toda la tensión de línea entrante.
- Conecte los conductores del medidor a L1 y L2. Ajuste el vóltmetro a una escala de 600 V~ (ca).
- Vuelva a energizar y asegúrese de que la tensión de línea sea la correcta según los valores nominales especificados en la placa de datos del variador de velocidad.
- 4. Desenergice. Si el variador está cableado para tres fases, repita el procedimiento para L2 y L3; y L1 y L3.
- Una vez que se hayan medido todas las fases, desenergice.
 Retire los conductores y vuelva a colocar todas las cubiertas.

Procedimiento 2: Revisión del equipo periférico

Revise el equipo para ver si encuentra alguna de las siguientes condiciones. Siga los procedimientos del fabricante.

- 1. Tal vez se haya disparado un dispositivo de protección, tal como los fusibles o el interruptor automático.
- no cierre al momento preciso uno de los dispositivos de conmutación, tal como un contactor.
- 3. se necesite reparar o reemplazar los conductores.
- Tal vez estén flojos los cables de conexión al motor o a tierra.
 Siga el procedimiento estándar WC-53 de NEMA.
 - NOTA: La tensión del bus puede exceder 400 V --- (cd). Utilice el equipo de medición apropiado.
- 5. Tal vez esté desgastado el aislamiento del motor. Siga el procedimiento MG-1 estándar de NEMA. No aplique alta tensión a U, V o W (consulte la tabla 9 en la página 95). No conecte el equipo de pruebas dieléctricas de alto potencial o un probador de resistencia de aislamiento al variador ya que las tensiones de

pruebas utilizadas pueden dañarlo. Siempre desconecte el variador de velocidad de los conductores o del motor mientras realiza estas pruebas.

A PRECAUCIÓN

PRUEBAS DIELÉCTRICAS, CUANDO ESTÁ CONECTADO

- No realice pruebas de rigidez dieléctricas de alto potencial en los circuitos mientras éstos están conectados al variador de velocidad.
- Se deberán desconectar del variador los circuitos que requieran pruebas dieléctricas de alto potencial antes de realizar la prueba.

El incumplimiento de estas instrucciones puede causar lesiones o daño al equipo.

ALMACENAMIENTO DE FALLAS

Una falla existente se guarda y muestra en la pantalla de la terminal de programación y ajustes siempre y cuando esté energizada la terminal. Cuando el variador se dispara, el relé de falla se desenergiza. Para restablecer la falla:

- Desenergice el variador de velocidad.
- Identifique y corrija la causa de la falla.
- Vuelva a energizar. Esto eliminará la causa de la falla si ha sido corregida.

En ciertos casos, si se ha activado el rearranque automático, se vuelve a arrancar automáticamente el variador después de que ha desaparecido la causa de la falla. Consulte la descripción de Atr en la página 125.

LISTA DE FALLAS Y ACCIÓN CORRECTORA

No es posible restablecer las fallas sino hasta después de haber eliminado sus causas. Es posible restablecer las fallas OHF, OLF, OSF, ObF y PHF a través de una entrada lógica (rSF) si se ha configurado para esta función. Es posible restablecer las fallas OHF, OLF, OSF, ObF y PHF a través de un rearranque automático (Atr) si se ha configurado para esta función y si el variador ha sido configurado para un control de 2 hilos. La falla USF se restablece una vez eliminida su causa; no es necesaria una entrada lógica o rearranque automático para restablecerla. Todas las fallas pueden ser restablecidas apagando y volviendo a enceder el variador.

Tabla 22: Lista de fallas

Falla	Causa probable	Medida correctora
- [F F falla por configuración		- Restablezca los ajustes de fábrica o la configuración de reserva, si es válida. Vea el parámetro FCS en el menú FUn (vaya a la página 127).
- [r F circuito de precarga	- circuito de precarga dañado	- Restablezca el variador de velocidad. - Sustituya el variador de velocidad.
- In F falla interna	- falla interna - falla de conexión interna	- Retire las fuentes de interferencia electromagnética. - Sustituya el variador de velocidad.
- 🛮 b F sobretensión en desaceleración	- frenado demasiado rápido o carga arrastrante	 - Aumente el tiempo de desaceleración. - Instale una resistencia de frenado si es necesario. - Active la función brA si es compatible con la aplicación.
- D [F sobrecorriente	 aceleración demasiado rápida variador y/o motor inadecuado para la carga bloqueo mecánico 	 - Aumente el tiempo de aceleración. - Asegúrese de que el tamaño del motor y variador sea adecuado para la carga. - Retire el bloqueo mecánico.
- DHF sobrecarga del variador	- la carga de la corriente continua del motor es muy alta - la temperatura ambiente es muy alta	Verifique la carga del motor, la ventilación del variador y las condiciones ambientales. Espere a que se enfríe el variador antes de volver a arrancarlo. Aumente ACC en las cargas de alta inercia.
- DL F	- el disparo térmico se debe a una sobrecarga prolongada del motor	Verifique el ajuste de la protección térmica del motor (ItH). Consulte la página 110. Revise la carga del
sobrecarga del motor	- la capacidad de potencia del motor es muy baja para la aplicación	motor. Espere a que se enfríe el motor antes de volver a arrancarlo.

Tabla 22: Lista de fallas (continuación)

Falla	Causa probable	Medida correctora
- 0 5 F sobretensión durante una	- tensión de línea muy alta	Verifique la tensión de línea. Compare con los valores nominales especificados en la placa de datos del variador.
operación de	- tensión inducida en el cableado	- Restablezca el variador de velocidad.
estado estable o en aceleración	de salida	- Revise el cableado y asegúrese de que esté correcto (consulte las páginas 91–98).
- PHF falla de fase de entrada	- pérdida de fase de entrada, fusible quemado - desequilibrio de la fase de entrada - falla de fase transitoria - utilización de un variador trifásico en una red de alimentación monofásica - carga de desequilibrio	- Verifique que la alimentación de entrada sea la correcta Revise los fusibles de línea Revise las conexiones de la alimentación de entrada Suministre una alimentación trifásica, si es necesario Inhabilite IPL (ajuste en nO).
- 5 [F cortocircuito del motor	- cortocircuito o conexión a tierra en la salida del variador	- Revise las conexiones de los cables del variador al motor así como el aislamiento del motor.
- 5 🏿 F velocidad excesiva	- inestabilidad - carga arrastrante	Revise los parámetros del motor, ganancia y estabilidad. Instale un módulo de frenado y resistencia; revise el variador, el motor y la carga.
- U 5 F tensión baja	 tensión de entrada muy baja bajada de tensión transitoria resistencia de precarga dañada 	Asegúrese de que la tensión de línea corresponda con el valor nominal especificado en la placa de datos. Verifique el ajuste del parámetro UnS. Sustituya el variador de velocidad.

El variador no arranca ni muestra ninguna falla

Durante la energización, un restablecimiento de falla manual, o después de un comando de paro, el motor podrá energizarse sólo después de haber reiniciado los comandos de marcha adelante y marcha atrás (a no ser que tCt = LEL o PFO). Si no se han reiniciado estos comandos el variador mostrará el mensaje "rdY" o NST y no arrancará. Si se configura la función de rearranque automático (el parámetro Atr del menú drC) y el control del variador es de 2 hilos, dichos comandos se implementan sin necesidad de reinciar los valores de los parámetros.

TABLAS DE CONFIGURACIÓN Y AJUSTES

Tabla 23: Parámetros de ajuste del primer nivel

Código	Ajuste d	e fábrica	Ajuste de	el cliente	Código	Ajuste d	e fábrica	Ajuste de	el cliente
bFr	50 / 60	Hz		Hz	L S P	0	Hz		Hz
ACC	3	s		s	H 5 P	50 /60	Hz		Hz
d E C	3	S		s	I E H		Α		Α

Tabla 24: Menú d r □ - Control del motor

Código	Ajuste de fábrica		Ajuste de	el cliente Código		Ajuste de fábrica		Ajuste del cliente	
U n 5		V		V	n E r		Α		Α
FrS	50 / 60	Hz		Hz	EL I		Α		Α
S Ł A	20	%		%	n 5 L		Hz		Hz
FLG	20	%		%	SLP	100	%		%
UFг	50	%		%	C 0 5				

Tabla 25: Menú F U n-Funciones de aplicación

Código	Ajuste de fábrica		Ajuste de	l cliente	Código	Ajuste de fábrica		Ajuste de	el cliente
FCC					AGE				
ALF	2C				ACF	YES			
FEF	trn				ŁdΓ	0.5	S		S
r r 5	LI2				5 d C		Α		Α
P 5 2					SFŁ				
LIA	LI3				ACF	LF			
L 16	LI4				5 F r	4	kHz		kHz
5 P 2	10	Hz		Hz	FLr	nO			
5 P 3	25	Hz		Hz	d 0				
5 P 4	50	Hz		Hz	ACF	rFr			
r 5 F	nO				FŁd	50 / 60	Hz		Hz
r P 2					ГŁ d		Α		Α
LI	nO				AIL	5U			
A C 2	5	s		s	Atr	nO			
d E ≥	5	s		s	L5r1	LOC			
SEP	nO				nPL 1	POS			
ЬгЯ	YES				bFr	50 / 60	Hz		Hz
					IPL	YES			

¹ Gama A solamente.

A AC2 120	de tres hilos 101, 117 corriente	falla del circuito de precarga 132
ACC 110	limitadora 113	falla interno 132
aceleración	línea máx. 77–79	FCS 127
tiempo de rampa 110	motor 103	FLG 113
tiempo de rampa 110 tiempo segunda rampa 120	nominal 77–79	FLr 123
ACt 117, 121–122, 124	nominal del motor 113	frecuencia
AdC 121	térmica del motor 110	conmutación 77-79, 82, 122
aislamiento galvánico 82	transitoria máx. 77-79, 82	estabilidad del bucle 113
Alt 111	umbral 103, 124	fuente de alimentación 82
almacenamiento 76	cortocircuito 82-83, 102	ganancia de bucle 113
altitud 81	motor 133	motor 103, 110, 127
apartarrayos 93	COS 113	nominal del motor 113
aprobaciones de agencias 81	CrF 132	referencia 126
Atr 125	Ctd 124	resolución 83
atrás 119	D	salida 82
_	- Tarana	umbral 103, 124
В	daño durante el envío 76	FrP 120
bFr 110, 127	dE2 120	FrS 113
botón ENT 107-108	dEC 110	FSt 120
botón ESC 107-108	desaceleración	Ftd 124
botón RUN 108	adaptación de rampa 120	fuente de alimentación interna
botón STOP 108	tiempo de rampa 110	82
brA 120	tiempo segunda rampa 120 deslizamiento	funciones de aplicación
С	compensación 113	entrada lógica 101
cable 82, 93	nominal del motor 113	salida DO 103
cableado	dimensiones 84	fusibles 92–93, 96
de control 93	dO 124	G
de potencia 93		gabinete
diagrama 98	E	IP54 88
calefactor 91	emisiones 81	resistencia térmica 88
capacitores 93	entrada	tamaño 88, 90
CFF 132	analógica 82, 97, 104, 111	tipo 12 88
CLI 113	falla de fase 133	ventilación 90
compatibilidad electromagnéti-	lógica 83, 98, 101, 126	
ca 81, 99–101	espacio libre 85	Н
compensación de la caída de	F	HSP 110
tensión 113	•	humedad 81
condensación 91	factor de potencia 113 falla	I
conexión a tierra 92	acciones correctoras 132	-
terminal 95	almacenamiento 131	incompatibilidad funciones de aplicación 116
configuración	contacto de relé 97	InF 132
de reserva 127	detección 129	inspección 76
falla 132	lista de 132	inyección de cd 121
restablecimiento 127		
	restablecimiento 102 119	corriente 121
control de dos hilos 101, 117	restablecimiento 102, 119, 130–131	corriente 121 tiempo 121

IPL 127	controlada 120	adelante 102
ItH 110	en rampa 120	atrás 102
L	libre 120 rápida 120	servicio de mantenimiento 129 SFr 122
LI 120	parámetros	SFt 122
LIA 119	ajuste del primer nivel 110	SLP 113
Llb 119	ajuste del primer rilver 110 ajustes de fábrica 134–135	sobrecalentamiento 83
línea	drC, control del motor 112	sobrecarga 82
contactor 106	FUn, funciones de aplicación	motor 132
pérdida de fase 127	115–127	variador 132
LOC 126	supervisión 128	sobrecorriente 83, 93, 132
LSP 110	PHF 133	sobretensión 83
LSr 126	platina de montaje CEM 100	durante una operación de
	POS 126	estado estable 133
M	potenciómetro 82, 97, 108	en aceleración 133
marcas de CE 81	programación 106–108	en desaceleración 132
medición de la tensión del bus	precauciones 106	SOF 133
91	protección	sonda PTC 77–79, 83
menús	circuito derivado 92	SP2 111, 119
descripción general 109	grado de 81	SP3 111, 119
drC, control del motor 112	motor 83	SP4 111, 119
FUn, funciones de aplicación	sobrecorriente 93	StA 113
115–127	térmica 114	StP 120
supervisión SUP 128	variador 83	supresores de ruido 93
módulo de frenado 95	pruebas dieléctricas 131	·
montaje	PS2 119	Т
en el gabinete 88	_	tCC 117
precauciones 85	R	tCt 117
N	razón T/F 82	tdC 121
	rearranque	temperatura
nCr 113 nEG 126	automático 125, 131	almacenamiento 76, 81
nPL 126	recibo 76	funcionamiento 81
nSL 113	recuperación automática 123	montaje 85
número de catálogo 77–79	referencia alcanzada 103	tensión
numero de catalogo 77-79	rP2 120	bus 91
0	rrS 119	fuente de alimentación 82,
ObF 132	rSF 119	130
OCF 132	S	nominal 77–79
OHF 132	sacudida 81	nominal del motor 113
OLF 132		salida 82
OSF 133	salida	tensión baja 83, 133
_	DO 83, 97, 124 relé 83	tEr 126
P	SCF 133	terminales
par	SCS 127	de control 97
frenado 82	SCS 127 SdC 121	de potencia 94–95
par de retención 122	segunda rampa 120	U
par excesivo 82	segunda rampa 120 sentido de marcha	UFr 113
parada	semiluo de marcha	011 113

UnS 113 USF 133

ν

valor nominal de CIA fuente de alimentación 82 valores de resistencia de frenado dinámico 80 valores nominales 75, 77–79 velocidad 82 velocidad alta 110 velocidad excesiva 133 velocidad mínima 110 velocidades preseleccionadas 102, 111, 119 ventilación 90 ventilador 86, 90 vibración 81 visualización 107–108

ALTIVAR® 11 Adjustable Speed Drive Controllers User's Guide

Variadores de velocidad ajustable ALTIVAR® 11 Guía del usuario

Variateurs de vitesse ALTIVAR® 11 Guide de l'utilisateur

A DANGER

TENSION DANGERFUSE

- Lisez et comprenez ce manuel dans son intégralité avant d'installer et de faire fonctionner les variateurs de vitesse ALTIVAR 11. L'installation, le réglage, les réparations et l'entretien doivent être effectués exclusivement par du personnel qualifié.
- L'utilisateur est responsable de la conformité avec tous les codes électriques en vigueur concernant la mise à la terre de tous les appareils.
- De nombreuses pièces de ce variateur de vitesse, y compris les cartes de circuits imprimés, fonctionnent à la tension du réseau. NE TOUCHEZ PAS. N'utilisez que des outils dotés d'une isolation électrique.
- NE touchez PAS les composants non blindés ou les vis des borniers si l'appareil est sous tension.
- NE court-circuitez PAS les bornes PA et PC ou les condensateurs cc.
- Installez et fermez tous les couvercles avant de mettre le variateur de vitesse sous tension, de le mettre en marche ou de l'arrêter.
- Avant tout entretien ou réparation sur le variateur de vitesse :
 - Coupez toutes les alimentations.
 - Placez une étiquette « NE METTEZ PAS SOUS TENSION » sur le sectionneur du variateur de vitesse.
 - Verrouillez le sectionneur en position ouverte.
- Coupez toute l'alimentation y compris l'alimentation de commande externe pouvant être présente avant de travailler sur le variateur de vitesse. ATTENDEZ 15 MINUTES pour permettre aux condensateurs du bus cc de se décharger. Suivez ensuite la procédure de mesure de tension du bus cc commençant à la page 161 pour vérifier si la tension cc est inférieure à 45 Vcc. Les voyants DÉL du variateur de vitesse ne sont pas des indicateurs précis de l'absence de tension du bus cc.

Si ces précautions ne sont pas respectées, cela entraînera la mort ou des blessures graves.

INTRODUCTION	. 145
Gamme Amérique du Nord (U) (ATV11••••••U) Gamme Europe (E) (ATV11•••••E) Gamme Asie (A) (ATV11••••••A)	. 145
ENTREPOSAGE ET EXPÉDITION	
CARACTÉRISTIQUES TECHNIQUES	
DIMENSIONS	. 154
CONDITIONS DE MONTAGE ET DE TEMPÉRATURES	. 155
MONTAGE DES VARIATEURS DE VITESSE SUR SEMELLE	. 156
MONTAGE DE LA PLATINE CÉM	. 158
MONTAGE EN ARMOIRE MÉTALLIQUE DE TYPE 12 OU IP54	. 158
Calcul de la taille de l'armoire	
PROCÉDURE DE MESURE DE LA TENSION DU BUS	. 161
INSTALLATION ÉLECTRIQUE	
BORNES DE PUISSANCE	
FUSIBLES RECOMMANDÉS	. 166
BORNES DE CONTRÔLE	. 167
SCHÉMA DE CÂBLAGE	. 168
DIRECTIVE CÉM DE LA COMMUNAUTÉ EUROPÉENNE	. 169
FONCTIONS DES APPLICATIONS DES ENTRÉES LOGIQUES	. 171
Commande à 2 fils	
Commande à 3 fils	
Sens de marche (avant / arrière)	172
Réarmement de défauts (Raz défauts)	
Deuxième rampe	
FONCTIONS DES APPLICATIONS DU SORTIE DO	. 173
Courant dans le moteur (AO)	
Fréquence moteur (AO)	
Référence atteinte (LO)	
Seuil de courant atteint (LO)	
Schéma de câblage du sortie DO	. 174
Configuration de l'entrée analogique	
Schéma de câblage de l'entrée analogique	. 1/5

PROGRAMMATION	176
Précautions	
Nord)	
Programmation du variateur de vitesse : Gamme A (Asie)	
ACCÈS AUX MENUS	
PARAMÈTRES DE RÉGLAGE DE PREMIER NIVEAU	
MENU COMMANDE MOTEUR, drC	182
MENU FONCTIONS DES APPLICATIONS, FUn	185
Fonctions incompatibles des applications	186
Menu tCC	186
Menus rrS, PS2 et rSF	
Menus rP2, StP et brA	
Menus FLr et dO	
Menus Atr, LSr et nPL	
Menus bFr, IPL, SCS et FCS	
MENU SURVEILLANCE SUP	198
ENTRETIEN ET DÉPANNAGE	199
Précautions	199
Entretien routinière	
Détection de défauts	
Procédure 1 : Vérification de la tension d'alimentation	
ENREGISTREMENT DE DÉFAUTS	
LISTE DES DÉFAUTS ET ACTION CORRECTIVE	
Non démarrage du variateur sans affichage de défauts	
TABLEAUX DE CONFIGURATION ET RÉGLAGES	204

INTRODUCTION

La famille ALTIVAR 11 (ATV11) de variateurs de vitesse ca est utilisée pour la commande des moteurs asynchrones triphasés. Leur puissance varie de :

- 0,25 à 3 HP, 208/230/240 V, entrée monophasée
- 0,25 à 3 HP, 208/230/240 V, entrée triphasée
- 0,25 à 1 HP, 100/115/120 V, entrée monophasée

Les variateurs ATV11 ont été conçus pour le marché mondial avec trois adaptations régionales. Chaque version du produit a la même configuration et fonctionnalité de câblage. Les variantes parmi les versions régionales sont résumées dans les sections suivantes.

Gamme Amérique du Nord (U) (ATV11 •••••• U)

- Conçue pour le marché nord-américain.
- Les valeurs nominales de courant sont conformes ou dépassent les exigences du NEC (É.-U.) (voir les pages 147 à 149).

Gamme Europe (E) (ATV11 ***** E)

- Conçue pour le marché européen.
- Uniquement disponible en tension réseau monophasée de 230 V.
- Les valeurs nominales de courant ont été adaptées aux normes européennes (voir les pages 147 à 149).
- Possède un filtre CÉM pour satisfaire les exigences européennes CE.

Gamme Asie (A) (ATV11 •••••• A)

- · Conçue pour le marché asiatique.
- Les valeurs nominales de courant ont été adaptées aux normes asiatiques (voir les pages 147 à 149).
- Un potentiomètre de référence de vitesse et des boutons marche/arrêt ont été intégrés au terminal d'exploitation pour le fonctionnement locale (voir les pages 178, 187 et 196).
- Les entrées logiques peuvent être configurées pour la logique négative (voir la page 196).

Ces directives couvrent les caractéristiques techniques, l'installation, le câblage, la programmation et l'entretien de tous les variateurs de vitesse ATV11.

RÉCEPTION ET INSPECTION PRÉLIMINAIRE

Lire ce manuel et suivre toutes les précautions avant d'installer le variateur de vitesse ATV11.

- Avant de retirer le variateur de vitesse de son emballage, vérifier si le carton n'a pas été endommagé pendant l'expédition. Un carton endommagé indique une manipulation inappropriée et la possibilité d'un endommagement de l'appareil. En cas de dommages lors du transport, aviser le transporteur et le représentant local de Square D/Schneider Electric.
- Retirer le variateur de vitesse de son emballage et examiner visuellement l'extérieur. En cas de dommages, aviser le transporteur et votre représentant des ventes. Ne pas installer un dispositif endommagé.
- Vérifier si la plaque signalétique du variateur de vitesse et l'étiquette sont conformes au bordereau d'expédition et au numéro de commande.

A ATTENTION

APPAREIL ENDOMMAGÉ

N'installez pas et ne faites pas fonctionner le variateur de vitesse s'il semble être endommagé.

Si cette précaution n'est pas respectée, cela peut entraîner des blessures ou des dommages matériels.

ENTREPOSAGE ET EXPÉDITION

Si le variateur de vitesse n'est pas installé immédiatement, l'entreposer dans un endroit propre et sec à une température ambiante entre -25 et +65 °C (-13 à +156 °F). Si le variateur de vitesse doit être envoyé à un autre endroit, utiliser l'emballage et le carton d'origine pour le protéger.

CARACTÉRISTIQUES TECHNIQUES

Tableau 1 : Tension d'alimentation monophasée : 200/240 V -15 %, +10 %, 50/60 Hz; sortie triphasée

Мо	teur	Se	ecteur		Variateur de vitesse			
Puissance du moteur ¹		Courant de réseau ²	Courant de court-circuit nominal	Courant nominal	Courant transitoire max. ³	Puissance dissipée à la charge nominale	N ^o de catalogue ⁴	
kW HP		Α	kA	Α	Α	w		
Gamı	ne Am	érique du N	Nord (U)	•	•			
0,18	0,25	3,3	1	1,6	2,4	14,5	ATV11HU05M2U	
0,37	0,5	6	1	2,4	3,6	23	ATV11•U09M2U	
0,75	1	9,9	1	4,6	6,3	43	ATV11•U18M2U	
1,5	2	17,1	1	7,5	11,2	77	ATV11HU29M2U	
2,2	3	24,1	1	10,6	15	101	ATV11HU41M2U	
Gamı	ne Asi	e (A)						
0,18	0,25	3,3	1	1,4	2,1	14	ATV11HU05M2A	
0,37	0,5	6	1	2,4	3,6	25	ATV11•U09M2A	
0,75	1	9,9	1	4	6	40	ATV11•U18M2A	
1,5	2	17,1	1	7,5	11,2	78	ATV11HU29M2A	
2,2	3	24,1	1	10	15	97	ATV11HU41M2A	
Gamı	ne Eur	ope (E)						
0,18	0,25	2,9	1	1,1	1,6	12	ATV11HU05M2E	
0,37	0,5	5,3	1	2,1	3,1	20,5	ATV11•U09M2E	
0,55	0,75	6,3	1	3	4,5	29	ATV11•U12M2E	
0,75	1	8,6	1	3,6	5,4	37	ATV11•U18M2E	
1,5	2	14,8	1	6,8	10,2	72	ATV11HU29M2E	
2,2	3	20,8	1	9,6	14,4	96	ATV11HU41M2E	

Ces valeurs nominales de puissance correspondent à une fréquence de découpage de 4 kHz, en fonctionnement continu. La fréquence de découpage est réglable de 2 à 16 kHz. Au-dessus de 4 kHz, le variateur de vitesse réduira la fréquence de découpage. L'échauffement ex contrôlé par une sonde de contrôle thermique passif (CTP) placée dans le module d'alimentation. Réduire le courant nominal du variateur pour un fonctionnement continu au-dessus de 4 kHz: 10 % pour 8 kHz; 20 % pour 12 kHz; 30 % pour 16 kHz.

² Valeurs de la tension nominale : 208 V pour la gamme Amérique du Nord (U); 200 V pour la gamme Asie (A); 230 V pour la gamme Europe (E).

³ Pendant 60 secondes.

Le symbole « • » dans le numéro de catalogue indique que le variateur de vitesse est disponible en deux versions. Pour les variateurs de vitesse avec un dissipateur de chaleur, remplacer le « • » avec un « H » (par exemple, ATV11HU09M2E). Pour les variateurs de vitesse sur semelle, remplacer le « • » avec un « P » (par exemple, ATV11PU09M2E).

Tableau 2 : Tension d'alimentation triphasée : 200/230 V -15 %, +15 %, 50/60 Hz; sortie triphasée

Moteur		Se	Secteur		Variateur de vitesse				
Puissance du moteur ¹		Courant de réseau ²	Courant de court-circuit nominal	Courant nominal	Courant transitoire max. ³	Puissance dissipée à la charge nominale	Nº de catalogue ⁴		
kW	HP	Α	kA	Α	Α	w			
Gam	Gamme Amérique du Nord (U)								
0,18	0,25	1,8	5	1,6	2,4	13,5	ATV11HU05M3U		
0,37	0,5	3,6	5	2,4	3,6	24	ATV11•U09M3U		
0,75	1	6,3	5	4,6	6,3	38	ATV11•U18M3U		
1,5	2	11	5	7,5	11,2	75	ATV11HU29M3U		
2,2	3	15,2	5	10,6	15	94	ATV11HU41M3U		
Gam	me As	ie (A)							
0,18	0,25	1,8	5	1,4	2,1	13,5	ATV11HU05M3A		
0,37	0,5	3,6	5	2,4	3,6	24	ATV11•U09M3A		
0,75	1	6,3	5	4	6	38	ATV11•U18M3A		
1,5	2	11	5	7,5	11,2	75	ATV11HU29M3A		
22	3	15.2	5	10	15	94	ATV11HU41M3A		

¹ Ces valeurs nominales de puissance correspondent à une fréquence de découpage de 4 kHz, en fonctionnement continu. La fréquence de découpage est réglable de 2 à 16 kHz. Au-dessus de 4 kHz, le variateur de vitesse réduira la fréquence de découpage. L'échauffement est contrôlé par une sonde de contrôle thermique passif (CTP) placée dans le module d'alimentation. Réduire le courant nominal du variateur pour un fonctionnement continu au-dessus de 4 kHz: 10 % pour 8 kHz; 20 % pour 12 kHz; 30 % pour 16 kHz.

² Valeurs de la tension nominale : 208 V pour la gamme Amérique du Nord (U); 200 V pour la gamme Asie (A).

³ Pendant 60 secondes.

Le symbole « • » dans le numéro de catalogue indique que le variateur de vitesse est disponible en deux versions. Pour les variateurs de vitesse avec un dissipateur de chaleur, remplacer le « • » avec un « H » (par exemple, ATV11HU09M3A). Pour les variateurs de vitesse sur semelle, remplacer le « • » avec un « P » (par exemple, ATV11PU09M3A).

Tableau 3 : Tension d'alimentation monophasée : 100/120 V -15 %, +10 %, 50/60 Hz; sortie triphasée

Moteur		Secteur		Variateur de vitesse				
Puissance du moteur ¹		Courant de court-circuit nominal		Courant nominal	Courant transitoire max. ³	Puissance dissipée à la charge nominale	N ^o de catalogue ⁴	
kW	HP	Α	kA	Α	Α	W		
Gamn	ne Ame	érique du N	ord (U)					
0,18	0,25	6	1	1,6	2,4	14,5	ATV11HU05F1U	
0,37	0,5	9	1	2,4	3,6	23	ATV11•U09F1U	
0,75	1	18	1	4,6	6,3	43	ATV11HU18F1U	
Gamn	Gamme Asie (A)							
0,18	0,25	6	1	1,4	2,1	14	ATV11HU05F1A	
0,37	0,5	9	1	2,4	3,6	25	ATV11•U09F1A	
0,75	1	18	1	4	6	40	ATV11HU18F1A	

¹ Ces valeurs nominales de puissance correspondent à une fréquence de découpage de 4 kHz, en fonctionnement continu. La fréquence de découpage est réglable de 2 à 16 kHz. Au-dessus de 4 kHz, le variateur de vitesse réduira la fréquence de découpage. L'échauffement est contrôlé par une sonde de contrôle thermique passif (CTP) placée dans le module d'alimentation. Réduire le courant nominal du variateur pour un fonctionnement continu au-dessus de 4 kHz; 210 % pour 8 kHz; 20 % pour 12 kHz; 30 % pour 16 kHz.

² Valeurs pour une tension nominale de 100 V .

³ Pendant 60 secondes.

Le symbole « • » dans le numéro de catalogue indique que le variateur de vitesse est disponible en deux versions. Pour les variateurs de vitesse avec un dissipateur de chaleur, remplacer le « • » avec un « H » (par exemple, ATV11HU09F1A). Pour les variateurs de vitesse sur semelle, remplacer le « • » avec un « P » (par exemple, ATV11PU09F1A).

150

Tableau 4 : Valeurs minimales des résistances de freinage dynamique pour une utilisation avec un module de freinage externe VW3A11701

230 V Variateurs monophasés ATV11••••••	Résistance minimale PA / PB Ω	230 V Variateurs triphasés ATV11••••••	Résistance minimale PA / PB Ω	115 V Variateurs monophasés ATV11•••••••	Résistance minimale PA / PB Ω
HU05M2U, A, E	75	HU05M3U, A	75	HU05F1U, A	75
HU09M2U, A, E	75	HU09M3U, A	75	HU09F1U, A	75
HU12M2E	75				
HU18M2U, A, E	75	HU18M3U, A	75	HU18F1U, A	75
HU29M2U, A, E	51	HU29M3U, A	51	PU09F1U	75
HU41M2U, A, E	51	HU41M3U, A	51		
PU09M2U	75	PU09M3U	75		
PU18M2U	75	PU18M3U	75		

A ADVERTISSEMENT

SURCHAUFFE DE LA RÉSISTANCE DE FREINAGE

- Sélectionnez les résistances de freinage appropriées pour l'application.
- Fournissez une protection thermique adéquat.
- Enfermez les résistances de freinage dans un boîtier ou une armoire qui convient à l'environnement.

Si ces précautions ne sont pas respectées, cela peut entraîner des blessures ou des dommages matériels.

Tableau 5 : Spécifications d'environnement

¹ Variateur de vitesse sans option de profilé Omega

Tableau 6 : Caractéristiques d'entraînement

Fréquence de sortie	0 à 200 Hz
Fréquence de découpage	2 à 16 kHz
Gamme de vitesses	1 à 20
Surcouple transitoire	150 % du couple nominal du moteur
Couple de freinage	20 % du couple nominal du moteur sans freinage dynamique (valeur typique). Jusqu'à 150 % avec le module et la resistance de freinage dynamique en option.
Courant transitoire maximal	150 % du courant nominal du variateur de vitesse pendant 60 secondes
Loi tension/fréquence	Contrôle vectoriel du flux sans capteur avec signal de commande moteur de type modulation de largeur d'impulsions (PWM).
	Préréglée à l'usine pour la plupart des applications à couple constant.

Tableau 7: Caractéristiques électriques

	ATV11•U••M2• : monophasée, de 200 -15 % à 240 +10%				
Tension d'alimentation	ATV11•U••M3• : triphasée, de 200 -15 % à 230 +15%				
	ATV11•U••F1•: monophasée, de 100 -15 % à 120 +10%				
Fréquence d'alimentation 50 Hz ±5 % ou 60 Hz ±5 %					
Courant d'interruption	≤ 1 000 pour alimentation monophasée				
disponible de l'alimentation	≤ 5 000 pour alimentation triphasée				
	Tension triphasée maximale égale :				
Tension de sortie	ATV11•U••M2• : à la tension du réseau d'alimentation ATV11•U••F1 : au double de la tension du réseau d'alimentation				
Longueur maximale du câble moteur	50 m (164 pi) pour câble blindé 100 m (328 pi) pour câble non blindé Vérifier si le moteur est conçu pour une utilisation avec des variateurs de vitesse ca. Les cheminements de câbles de plus de 12,2 m (40 pi) peuvent exiger des filtres de sortie pour réduire les pointes de tension aux bornes du moteur.				
Isolement galvanique	Isolement galvanique entre l'alimentation et le contrôle (entrées, sorties et alimentations)				
	Protégées contre les courts-circuits et les surcharges :				
Sources internes disponibles	 + 5 V ±5 % pour un potentiomètre de référence de vitesse (2,2 à 10 kΩ), max. 10 mA + 15 V ±15 % pour les entrées de commande, max. 100 mA 				
Entrée analogique Ald	1 entrée analogique programmable. Temps maximum d'échantillonnage : 20 ms, résolution 0,4 %, linéarité ± 5 % :				
Entrée analogique Al1	• Tension : 0 à 5 V ou 0 à 10 V, impédance 40 k Ω • Courant : 0 à 20 mA ou 4 à 20 mA (sans ajout de résistance), impédance 250 Ω				

Tableau 7 : Caractéristiques électriques (suite)

	4 entrées logiques programmables, impédance : 5 k Ω			
	Alimentation : interne 15 V ou externe 24 V (min. 11 V, max. 30 V)			
Entrées logiques LI	Avec des affectations multiples, plusieurs fonctions peuvent être combinées sur une simple entrée (exemple : LI1 affectée à sens avant et vitesse préselectionnée 2, LI3 affectée à sens arrière et vitesse préselectionnée 3).			
	Logique positive : État = 0 si < 5 V, état = 1 si > 11 V. Temps d'échantillonnage max. : 20 ms.			
	Logique négative : Disponible par programmation uniquement sur la gamme Asie. État = 0 si > 11 V ou une entrée de câble non câblée, état = 1 si < 5 V. Temps d'échantillonnage max. : 20 ms.			
	Réglage d'usine :			
Sortie DO	 Sortie à collecteur ouvert de type modulation de largeur d'impulsions (PWM) à 2 kHz. Utilisable sur un appareil de mesure. Courant max. : 10 mA. Impédance : 1 kΩ; linéarité : ±1 %; temps maximum d'échantillonnage : 20 ms. 			
	Peut être configuré comme sortie logique :			
	 Sortie logique à collecteur ouvert : impédance : 100 Ω, maximum : 50 mA. Tension interne : voir sources internes disponibles ci-dessus. Tension externe : max. 30 V, 50 mA. 			
	1 sortie à relais protégée (contact ouvert en défaut). Capacité min. de commutation : 10 mA pour 24 Vcc			
	Capacité max. de commutation :			
Sorties à relais	sur charge résistive (facteur de puissance = 1 et L/R = 0 ms) : 5 A pour 250 Vca ou 30 Vcc sur charge inductive (facteur de puissance = 0,4 et L/R = 7 ms) : 2 A pour 250 Vca ou 30 Vcc			
-	Protection thermique contre la surchauffe au moyen d'une sonde CTP			
	incorporée au module d'alimentation • Protection contre les courts-circuits entre les phases de sortie			
Protection du variateur de	Protection contre les courts-circuits entre les phases de sortie Protection contre les surintensités entre les phases de sortie et la terre, à la			
vitesse	mise sous tension uniquement			
	 Protection de surtension et sous-tension Protection d'asence de phase, en triphasé 			
	Protection d'aserice de priase, en impriase Protection thermique intégrée dans le variateur de vitesse par calcul du l ² t			
Protection du moteur	Effacement de la mémoire thermique à la mise sous tension.			
Résistance d'isolation à la terre	> 500 MΩ (isolement galvanique)			
Résolution de fréquence	Afficheurs : 0,1 Hz Entrées analogiques : 0,1 Hz pour 200 Hz maximum			
Constante de temps lors d'un changement de consigne	5 ms.			

DIMENSIONS

	а	b	С	G	н	Ø	Poids
ATV11H•••••	mm (po)	mm (po)	mm (po)	mm (po)	mm (po)	mm (po)	kg (lb)
U05••U, E U05••A	72 (2,835) 72 (2,835)	142 (5,591) 142 (5,591)	101 (3,976) 108 (4,252)	60 (2,362) 60 (2,362)	131 (5,157) 131 (5,157)	2 x 4 (0,157)	0,70 (1,547)
U09••U U09••E U09••A	72 (2,835) 72 (2,835) 72 (2,835)	142 (5,591) 142 (5,591) 142 (5,591)	125 (4,921) 125 (4,921) 132 (5,197)	60 (2,362) 60 (2,362) 60 (2,362)	131 (5,157) 120 (4,724) 131 (5,157)	2 x 4 (0,157)	0,85 (1,879)
U12••E	72 (2,835)	142 (5,591)	138 (5,433)	60 (2,362)	120 (4,724)	2 x 4 (0,157)	0,92 (2,033)
U18M•U U18M2E U18M•A	72 (2,835) 72 (2,835) 72 (2,835)	147 (5,787) 142 (5,591) 142 (5,591)	138 (5,433) 138 (5,433) 145 (5,709)	60 (2,362) 60 (2,362) 60 (2,362)	131 (5,157) 120 (4,724) 131 (5,157)	2 x 4 (0,157)	0,95 (2,099) 0,92 (2,033) 0,92 (2,033)
U18F1U U18F1A	117 (4,606) 117 (4,606)	142 (5,591) 142 (5,591)	156 (6,142) 163 (6,417)	106 (4,173) 106 (4,173)	131 (5,157) 131 (5,157)	4 x 4 (0,157)	1,6 (3,536)
U29••U, E U29••A	117 (4,606) 117 (4,606)	142 (5,591) 142 (5,591)	156 (6,142) 163 (6,417)	106 (4,173) 106 (4,173)	131 (5,157) 131 (5,157)	4 x 4 (0,157)	1,6 (3,536)
U41••U, E U41••A	117 (4,606) 117 (4,606)	142 (5,591) 142 (5,591)	156 (6,142) 163 (6,417)	106 (4,173) 106 (4,173)	131 (5,157) 131 (5,157)	4 x 4 (0,157)	1,6 (3,536)
ATV11P Tous calibres:							
U, E Tous calibres: A	72 (2,835) 72 (2,835)	142 (5,591) 142 (5,591)	101 (3,976) 108 (4,252)	60 (2,362) 60 (2,362)	131 (5,157) 131 (5,157)	2 x 5 (0,197)	0,67 (1,481)

CONDITIONS DE MONTAGE ET DE TEMPÉRATURES

A DANGER

TENSION DANGERFUSE

Avant de travailler sur cet appareil :

- · Coupez toutes les alimentations.
- Placez une étiquette «NE METTEZ PAS SOUS TENSION » sur le sectionneur du variateur de vitesse.
- Verrouillez le sectionneur en position ouverte.

Si ces précautions ne sont pas respectées, cela entraînera la mort ou des blessures graves.

Installer le variateur de vitesse verticalement, \pm 10°, avec les bornes de puissance de sortie en bas.

Ne pas placer le variateur de vitesse près d'une source de chaleur.

Laisser un dégagement suffisant autour du variateur pour assurer que l'air puisse circuler de bas en haut dans l'appareil.

Laisser un espace libre minimal de 10 mm (0,4 po) à l'avant du variateur.

-10 à 40 °C (14 à 104 °F) :	•	$d \ge 50$ mm (2 po) : aucune précaution spéciale. d = 0 (variateurs montés côté à côté) : retirer le couvercle de protection comme indiqué sur la figure ci-dessous.
40 à 50 °C (104 à 122 °F) :	•	d Š 50 mm (2 po) : retirer le couvercle de protection comme indiqué sur la figure ci-dessous.
50 à 60 °C (122 à 140 °F) :	•	d ≥ 50 mm (2 po) : retirer le couvercle de protection comme indiqué sur la figure cidessous et déclasser le courant nominal du variateur de 2,2 % par °C au dessus de 50 °C.

REMARQUE : Surveiller le paramètre tHd (dans le menu SUP) pendant le fonctionnement normal afin de vérifier l'état thermique du variateur de vitesse.

Les variateurs de vitesse suivants comportent une ventilation forcée. Le ventilateur se met en marche automatiquement lorsque le variateur de vitesse est mis sous tension.

- ATV11HU18F1A
- ATV11HU18F1U
- ATV11•U18M2U
- ATV11•U18M3U
- ATV11HU29•••
- ATV11HU41•••

MONTAGE DES VARIATEURS DE VITESSE SUR SEMELLE

Les variateurs de vitesse ATV11P peuvent être montés sur une surface usinée en acier ou aluminium, à condition que :

- La température ambiante maximale soit de 40 °C (104 °F).
- Le variateur de vitesse soit monté verticalement, ±10°.
- Le variateur de vitesse soit monté au centre d'une surface exposée à l'air ouvert, d'une épaisseur minimale de 10 mm (0,4 po) et d'une superficie minimale de refroidissement (S) de 0,12 m² (1,3 pied²) pour l'acier et de 0,09 m² (1 pied²) pour l'aluminium.
- Les dimensions de la surface de support du variateur de vitesse soient au minimum de 142 x 72 mm (5,6 x 2,9 po) avec un poli de surface usiné de 100 μm et rugosité de 3,2 μm maximum.
- Les trous taraudés soient légèrement évasés pour supprimer toutes les bavures.

 La surface entière de support du variateur de vitesse soit revêtue d'une graisse de contact thermique.

REMARQUE: Surveiller le paramètre tHd (dans le menu SUP) pendant le fonctionnement normal afin de vérifier l'état thermique du variateur de vitesse.

MONTAGE DE LA PLATINE CÉM

Une platine CÉM, VW3A11831 (commandée séparément), est disponible pour les variateurs de vitesse ATV11. Pour monter la platine CÉM, l'aligner avec les trous sur le dissipateur de chaleur du variateur et la fixer à l'aide des deux vis fournies, comme indiqués aux figures ci-dessous. Consulter les pages 169 à 170 pour obtenir les directives de câblage.

MONTAGE EN ARMOIRE MÉTALLIQUE DE TYPE 12 OU IP54

Calcul de la taille de l'armoire

L'équation pour calculer la résistance thermique maximale de l'armoire permise, Rth (°C/W), est comme suit :

$$Rth = \frac{T_i - T_o}{P} \qquad \begin{array}{l} T_i = \text{Temp. ambiante interne max. (°C) autour du variateur} \\ T_o = \text{Temp. amb. extérieure max. (°C) autour de l'armoire} \\ P = \text{Puissance totale dissipée dans l'armoire (W)} \end{array}$$

Pour la puissance dissipée par les variateurs de vitesse à la charge nominale, voir les tableaux 1 à 3, pages 147 à 149.

La surface d'échange de chaleur utile, S (po²), d'une armoire murale, comprend généralement les côtés, le dessus et l'avant. La surface minimale requise pour l'armoire d'un variateur de vitesse est calculée comme suit :

 $S = \frac{K}{Rth} \quad \text{Rth = Résistance thermique de l'armoire (calculée précédemment)} \\ K = Résistance thermique par pouce carré de l'armoire}$

REMARQUE : s'adresser au fabricant de l'armoire pour les facteurs K.

Considérer les points suivants pour estimer la taille de l'armoire :

- N'utiliser que des armoires métalliques parce qu'elles ont une bonne conduction thermique.
- Cette procédure ne tient pas compte de la charge de chaleur rayonnante ou par convection provenant de sources extérieures.
 Ne pas installer les armoires dans des endroits où des sources de chaleur extérieures (comme le soleil) peuvent ajouter une charge de chaleur à l'armoire.
- S'il y a d'autres dispositifs à l'intérieur de l'armoire, tenir compte de la charge de chaleur de ces dispositifs pour les calculs.
- La surface utile réelle de refroidissement par convection de l'armoire varie selon la méthode de montage. La méthode de montage doit permettre à l'air de circuler librement sur toutes les surfaces utilisées pour le refroidissement par convection.

L'exemple suivant illustre comment calculer les dimensions d'une d'armoire pour un variateur de vitesse ATV11HU18M3U monté en armoire de type 12 ou IP54.

- Température extérieure maximale : T₀ = 25 °C
- Puissance dissipée à l'intérieur de l'armoire : P = 38 W
- Température intérieure maximale : T_i = 40 °C
- Résistance thermique par pouce carré de l'armoire : K = 186

Calcul de la résistance thermique maximale permise, Rth:

Rth =
$$\frac{40 \, ^{\circ}\text{C} - 25 \, ^{\circ}\text{C}}{38 \, \text{W}}$$
 = 0,395 $^{\circ}\text{C/W}$

Calcul de la surface d'échange de chaleur utile minimale, S:

$$S = \frac{186}{0.395} = 470.9 \text{ po}^2$$

Surface d'échange de chaleur utile (S) de l'armoire murale :

Hauteur : 711 mm (28 po)

Largeur : 610 mm (24 po)

• Profondeur: 305 mm (12 po)

Si l'armoire choisie ne fournit pas la surface nécessaire ou ne satisfait pas aux besoins de l'application, penser aux solutions suivantes:

- Utiliser une armoire plus grande.
- Ajouter un échangeur de chaleur passif à l'armoire.
- Ajouter un appareil de climatisation à l'armoire.

Aération

En cas de montage du variateur de vitesse dans une armoire de type 12 ou IP54 :

- Monter le variateur de vitesse avec les dégagements minimaux spécifiés dans « Conditions de montage et de températures » à la page 155.
- Respecter les précautions d'installation indiquées à la page 161.
- Installer au besoin un ventilateur pour brasser l'air à l'intérieur de l'armoire et pour répartir la chaleur uniformément.

A ATTENTION

CONDENSATION

S'il y a possibilité de condensation, gardez l'alimentation en fonction lorsque le moteur ne fonctionne pas ou installez des éléments de chauffage réglés par thermostat.

Si cette précaution n'est pas respectée, cela peut entraîner des blessures ou des dommages matériels.

PROCÉDURE DE MESURE DE LA TENSION DU BUS

A DANGER

TENSION DANGERFUSE

Lisez et comprenez les précautions à la page 142 avant d'exécuter cette procédure.

Si cette précaution n'est pas respectée, cela entraînera la mort ou des blessures graves.

La tension du bus peut dépasser 400 Vcc. Employer un appareil de mesure de la valeur nominale approximative lors de l'exécution de cette procédure. Pour mesurer la tension du condensateur du bus :

- 1. Couper l'alimentation du variateur de vitesse.
- 2. Attendre 15 minutes pour permettre le bus cc de se décharger.
- Mesurer la tension du bus cc entre les bornes PA (+) et PC (-)
 pour vérifier si la tension cc est inférieure à 45 Vcc. Se reporter à
 « Bornes de puissance » à la page 164 pour les emplacements
 des bornes.
- Si les condensateurs du bus ne sont pas complètement déchargés, s'adresser à votre représentant local de Square D/Schneider Electric —ne pas faire fonctionner le variateur de vitesse.

INSTALLATION ÉLECTRIQUE

S'assurer que l'installation électrique de ce variateur de vitesse est conforme aux codes nationaux et locaux en vigueur.

 Vérifier si la tension et la fréquence du réseau d'alimentation et la tension, la fréquence et le courant du moteur correspondent aux valeurs nominales de la plaque signalétique du variateur de vitesse.

A DANGER

TENSION DANGEREUSE

Mettez l'appareil à la terre en utilisant le point de raccordement de m.à.l.t. fourni, comme indiqué sur la figure ci-dessous. Le panneau du variateur de vitesse doit être mis à la terre avant de le mettre sous tension.

Si cette précaution n'est pas respectée, cela entraînera la mort ou des blessures graves.

 Vérifier si la résistance à la terre est de 1 Ω ou moins. Mettre plusieurs variateurs à la terre comme indiqué sur la figure. Ne pas mettre les câbles de mise à la terre en boucle ni en série.

A ADVERTISSEMENT

PROTECTION CONTRE LES SURINTENSITÉS INADÉQUATE

- Les dispositifs de protection contre les surintensités doivent être correctement coordonnés.
- Le Code Canadien de l'Électricité exige la protection des circuits de dérivation. Utilisez les fusibles recommandés sur la plaque signalétique du variateur pour obtenir les valeurs nominales de courant de tenue aux défauts publiées.
- Ne raccordez pas le variateur de vitesse à un câble d'alimentation dont la capacité de court-circuit dépasse la résistance nominale aux courants de court-circuit indiquée sur la plaque signalétique du variateur de vitesse.

Si ces précautions ne sont pas respectées, cela peut entraîner la mort, des blessures graves ou des dommages matériels.

 Fournir une protection contre les surintensités. Pour obtenir le courant nominal de tenue aux défauts indiqué sur la plaque signalétique du moteur, installer les fusibles recommandés sur la plaque signalétique du variateur de vitesse.

A ADVERTISSEMENT

CONNEXIONS DE CÂBLAGE INAPPROPRIÉES

- N'appliquez pas la tension du réseau aux bornes de sortie (U, V, W). Cela endommagera le variateur de vitesse.
- Vérifiez les raccords électriques avant de mettre le variateur de vitesse sous tension.
- Si vous remplacez un autre variateur de vitesse, vérifiez si tous les raccordements des câbles au variateur de vitesse ATV11 sont conformes à toutes les directives de câblage dans ce manuel.

Si ces précautions ne sont pas respectées, cela peut entraîner la mort, des blessures graves ou des dommages matériels.

- Ne pas utiliser de câbles imprégnés de minéraux. Sélectionner les câbles moteur avec une faible capacitance entre phases et de phase à terre.
- Les cables moteur doivent être d'une longueur minimale de 0,5 m (20 po).
- Ne pas acheminer le câblage de contrôle, d'alimentation et du moteur dans le même conduit. Ne pas acheminer le câblage de moteur provenant de variateurs de vitesse différents dans le même conduit. Séparer d'au moins 8 cm (3 po) le conduit métallique qui contient le câblage d'alimentation du conduit métallique qui contient le câblage de contrôle. Séparer d'au moins 31 cm (12 po) les conduits non métalliques ou les caniveaux qui contiennent le câblage d'alimentation des conduits métalliques qui contiennent le câblage de contrôle. Le câblage d'alimentation et de contrôle doivent toujours se croisser en angle droit.
- Ne pas immerger les cables moteur dans l'eau.
- Ne pas utiliser de parafoudres ou de condensateurs de correction du facteur de puissance sur la sortie du variateur de vitesse.
- Munir tous les circuits inductifs près du variateur de vitesse (comme relais, contacteurs et solénoïdes) de suppresseurs de bruit électrique ou les raccorder à un circuit séparé.

BORNES DE PUISSANCE

Il est possible d'accéder aux bornes de puissance sans ouvrir le couvercle. Le variateur de vitesse est muni d'un câblage de passage—l'alimentation de réseau se trouve au haut du variateur de vitesse (R/L1–S/L2 en 230 V monophasée; R/L1–S/L2–T/L3 en 230 V triphasée; R/L1–N en 120 V monophasée) et l'alimentation du moteur est au bas (U–V–W).

REMARQUE : Raccorder les bornes de puissance avant de raccorder les bornes de contrôle.

Tableau 8 : Spécifications des bornes de puissance

	Capacité maximale de connexion		Couple de serrage	
ATV11•••••	AWG	mm ²	lb-po	N•m
U05•••				
U09•••	AWG 14	1,5	6,6	0,75
U18M••				
U18F1•				
U29•••	AWG 10	4	8,9	1
U41•••				

Tableau 9: Fonctions des bornes de puissance

Bornes	Fonction	Pour ATV11
Ť	Borne de m.à.l.t.	Tous calibres
R/L1		ATV11••••M2•
S/L2		AT V T TooselVIZe
R/L1		
S/L2	Alimentation	ATV11••••M3•
T/L3		
R/L1		ATV11••••F1•
N		ATV HOSSE IS
PA/+	+ Sortie (cc) vers le module de freinage	Tous calibres
PC/-	- Sortie (cc) vers le module de freinage	Tous calibres
U		
V	Sorties vers le moteur	Tous calibres
W		
Ť	Borne de m.à.l.t.	Tous calibres

FUSIBLES RECOMMANDÉS

Tableau 10 : Fusibles recommandés pour variateurs de vitesse monophasés de 230 V

Moteur		Variateur de vitesse	Fusibles de 600 V		
kW	HP	ATV11H•••••	Classe CC	Classe J [1]	
0,18	0,25	HU05M2U, E, A	4	4	
0,37	0,50	HU09M2U, E, A	8	8	
0,55	0,75	HU12M2E	8	8	
0,75	1	HU18M2U, E, A	12	12	
1,50	2	HU29M2U, E, A	22	22	
2,20	3	HU41M2U, E, A	30	30	
0,37	0,5	PU09M2U, E, A	8	8	
0,75	1	PU18M2U, E, A	12 12		

^[1] Des fusibles à action rapide ou temporisés de classe J peuvent être utilisés.

Tableau 11 : Fusibles recommandés pour variateurs de vitesse triphasés de 230 V

Moteur		Variateur de vitesse	Fusibles de 600 V	
kW	HP	ATV11H•••••	Classe CC	Classe J [1]
0,18	0,25	HU05M3U, A	3	3
0,37	0,50	HU09M3U, A	5	5
0,75	1	HU18M3U, A	8	8
1,50	2	HU29M3U, A	15	15
2,20	3	HU41M3U, A	20	20
0,37	0,5	PU09M3U, A	5	5
0,75	1	PU18M3U, A	8 8	

^[1] Des fusibles à action rapide ou temporisés de classe J peuvent être utilisés.

Tableau 12 : Fusibles recommandés pour variateurs de vitesse monophasés de 115 V

Moteur		Variateur de vitesse	Fusibles de 600 V	
kW	HP	ATV11H*****	Classe CC	Classe J [1]
0,18	0,25	HU05F1U, A	8	8
0,37	0,50	HU09F1U, A	12	12
0,75	1	HU18F1U, A	22	22
0,37	0,5	PU09F1U, A	12 12	

BORNES DE CONTRÔLE

Ouvrir le couvercle comme indiqué ci-dessous pour accéder aux bornes de contrôle.

Calibre maximal du fil: 1,5 mm² (AWG 16)
Couple maximum de serrage: 0,5 N•m (4,4 lb-po).

Borne	Fonction	Caractéristiques électriques			
RC RA	Contact du relais de défaut (ouvert en présence d'un défaut ou si le variateur est à l'arrêt)	Capacité min. de commutation : 10 mA pour 24 Vcc Capacité max. de commutation : • 2 A pour 250 Vca et 30 Vcc sur une charge inductive Constante de temps = 0,4 – (inductance/résistance) = 7 ms • 5 A pour 250 Vca et 30 Vcc sur une charge résistive Constante de temps = 1 – (inductance/résistance) = 0			
0 V	Commun des entrées/sorties logiques	o v			
Al1	Entrée analogique de tension ou courant	Entrée analogique 0 à 5 V ou 0 à 10 V (30 V max.) : • Impédance : $40 \text{ k}\Omega$ • Résolution : 0.4% • Précision, linéarité : \pm 5% • Temps d'échantillonnage : 20 ms. max. Entrée analogique 0 à 20 mA ou 4 à 20 mA : • Impédance : 250Ω (sans ajout de résistance) • Résolution : 0.4% • Précision, linéarité : \pm 5% • Temps d'échantillonnage : 20 ms. max.			
+5 V	Alimentation pour potentiomèter de référence : 2,2 à 10 k Ω	Précision : 0 à 5% Courant max. disponible : 10 mA			
DO	Sortie (peut être configuré comme sortie analogique ou logique)	Sortie analogique • sortie analogique à collecteur ouvert de type modulation de largeur d'impulsions à 2 kHZ • Tension : 30 V max. • Impédance : 1 k Ω , 10 mA max. • Linéarité : \pm 1% • Temps d'échantillonnage : 20 ms. max. Sortie logique à collecteur ouvert • Tension : 30 V max. • Impédance : 100 Ω , 50 mA max. • Temps d'échantillonnage : 20 ms. max.			

Borne	Fonction	Caractéristiques électriques		
LI1 LI2 LI3 LI4	Entrées logiques programmables	 Alimentation +15 V (max. 30 V) Impédance 5 kΩ Logique positive : état = 0 si < 5 V, état = 1 si > 11 V Logique négative : état = 1 si < 5 V, état = 0 si > 11 V ou hors tension (gamme A uniquement) Temps d'échantillonnage : 20 ms. max. 		
+15 V	Alimentation des entrées logiques	+15 V ± 15 % (protégée contre les court-circuits et les surcharges) Courant max. disponible : 100 mA		

SCHÉMA DE CÂBLAGE

Alimentation de réseau monophasée, 100 à 120 V

Alimentation de réseau monophasée, 200 à 230 V

REMARQUE: Les bornes de l'alimentation de réseau sont représentées en haut et les bornes du moteur sont représentées en bas. Raccorder les bornes de puissance avant de raccorder les bornes de contrôle. Installer des suppresseurs de surtensions sur tous les circuits inductifs situés à proximité du variateur de vitesse ou couplés au même circuit.

- Contacts du relais de défaut pour signaler à distance l'état du variateur de vitesse.
- (2) Interne + 15 V. En cas d'utilisation d'une source externe (30 V, max.), relier le 0 V de la source à la borne 0 V, et ne pas utiliser la borne + 15 V du variateur.
- (3) Compteur ou relais de bas niveau.
- (4) Se reporter à la plaque signalétique du variateur de vitesse pour connaître les fusibles recommandés. Des fusibles à action rapide ou temporisés de classe J peuvent être utilisés.

DIRECTIVE CÉM DE LA COMMUNAUTÉ EUROPÉENNE

Le variateur ATV11 est considéré un composant : il n'est ni une machine, ni un appareil prêt à être utilisé selon la directive de CÉM de la Communauté européenne (directive de machinerie ou directive de compatibilité électromagnétique). Il incombe à l'utilisateur d'assurer la conformité de la machine à ces normes.

Pour répondre aux exigences EN55011 classe A, suivre les recommandations d'installation suivantes :

- Assurer l'équipotentialité des connexions de terre du variateur de vitesse, du moteur et du blindage des câbles.
- Utiliser des câbles blindés, les blindages étant reliés à la terre aux deux extrémités du câble moteur, des câbles de contrôle et de la résistance de freinage (le cas échéant). Un conduit peut être utilisé comme partie de la longueur de blindage, à condition qu'il n'existe aucune rupture dans la continuité.
- Assurer le maximum d'espace entre le câble d'alimentation (alimentation de réseau) et le câble moteur.

Schéma d'installation

Le tableau ci-après décrit les pièces représentées dans le schéma d'installation à la page 169.

Art.	Description
1	Platine CÉM, commandée séparément (numéro de catalogue VW3A11831).
2	Variateur de vitesse ALTIVAR 11
3	Fils ou câbles d'alimentation non blindés.
4	Fils non blindés pour la sortie des contacts du relais de sécurité.
5	Les blindages du raccordement du moteur et du raccordement des dispositifs de commande (articles 6 et 7) doivent être solidement fixés à la platine CÉM à l'aide des colliers (article 5). Dénuder les câbles pour exposer les blindages. Placer des colliers de taille appropriée autour de la partie dénudée des câbles et les attacher à la platine CÉM.
6	Câble blindé pour raccordement du moteur, avec blindage raccordé à la terre aux deux extrémités. Ne pas interrompre le blindage. Lorsque des borniers intermédiaires sont utilisés, ceux-ci doivent être en boitier métallique blindé CÉM.
7	Câble blindé pour raccordement des dispositifs de contrôle/commande. Pour les applications nécessitant de nombreux conducteurs, il faudra utiliser des sections faibles (0,5 mm²). Ne pas interrompre le blindage. Lorsque des borniers intermédiaires sont utilisés, ceux-ci doivent être en boitier métallique blindé CÉM.
8	Conducteur de m.à.l.t. (section : 10 mm ²).

REMARQUE: En cas d'utilisation d'un filtre d'entrée supplémentaire, celui ci est monté sous le variateur, et directement raccordé au réseau par câble non blindé. Raccorder ensuite le câblage d'alimentation (article 3) au variateur de vitesse à l'aide du câble de sortie du filtre. Bien qu'il existe un raccordement à la terre HF équipotentiel entre le variateur de vitesse, le moteur et le blindage des câbles, il est cependant nécessaire de raccorder les conducteurs de protection PE (vert-jaune) aux bornes appropriées de chacun des dispositifs.

REMARQUE : Il peut être nécessaire de déconnecter le blindage à l'extrémité moteur pour les câbles de très grande longueur afin de réduire la génération de parasites.

FONCTIONS DES APPLICATIONS DES ENTRÉES LOGIQUES

Chacune des fonctions suivantes peut être affectée à l'une des entrées logiques. Une même entrée logique peut activer plusieurs fonctions en même temps (sens inverse et 2ème rampe par exemple). Il faut donc s'assurer que ces fonctions sont compatibles.

Commande à 2 fils

Pour sélectionner une commande à deux fils, dans le menu FUn, régler la fonction ACt de tCC à 2C. La même entrée logique commande la marche (avant ou arrière) et l'arrêt.

Il y a trois types de commande à 2 fils :

- 1. tCt = LEL : état 0 ou 1 pris en compte pour la marche ou l'arrêt.
- tCt = trn : un changement d'état (transition ou front) est nécessaire pour enclencher la marche afin d'éviter un redémarrage intempestif après une interruption de l'alimentation.
- tCt = PFO: état 0 ou 1 pris en compte pour la marche ou l'arrêt, mais l'entrée de sens avant est toujours prioritaire sur l'entrée de sens arrière.

Commande à 3 fils

Pour sélectionner une commande à trois fils, dans le menu FUn, régler la fonction ACt de tCC à 3C. La marche (avant ou arrière) et l'arrêt sont commandés par 2 entrées logiques différentes. LI1 est toujours affectée à la fonction arrêt. Un arrêt sur rampe est obtenu en ouverture (état 0). Une impulsion de l'entrée marche est sauvegardée jusqu'à l'ouverture de l'entrée d'arrêt. Lors d'une mise sous tension ou d'un réarmement de défaut manuel ou après une commande d'arrêt, le moteur ne peut être alimenté qu'après la réinitialisation des commandes sens avant et sens arrière.

Sens de marche (avant / arrière)

Avec une commande à 2 fils, la marche avant doit être affectée à LI1 et ne peut être réaffectée à aucune autre entrée logique. Avec une commande à 3 fils, la marche avant doit être affectée à LI2 et ne peut être réaffectée à aucune autre entrée logique.

Pour désactiver la marche arrière dans les applications n'ayant qu'une seul sens de rotation de moteur, n'affecter aucune entrée logique à la marche arrière (dans le menu FUn, régler rrS à nO).

Vitesses présélectionnées

Il est possible d'affecter deux ou quatre vitesses présélectionnées, exigeant une ou deux entrées logiques respectivement.

Affecter LIx à LIA en premier, puis affecter LIy à LIb. Se reporter au tableau ci-dessous.

2 vitesses présélectionnées		4 vitesses présélectionnées		
Affecter Llx à LIA		Affecter LIx à LIA, puis LIy à LIb		
Llx	Référence de vitesse	Lly Llx Référence de vitesse		
0	Référence (min. = LSP)	0	0	Référence (min. = LSP)
1	1 SP2		1	SP2
		1	0	SP3
		1	1	SP4

Les vitesses présélectionnées sont prioritaires sur la référence donnée par l'entrée analogique ou le potientomètre (sur les variateurs de la gamme A seulement).

Réarmement de défauts (Raz défauts)

Un changement d'état de 0 à 1 de l'entrée logique affectée à le réarmement de défauts efface le défaut mémorisé et réinitialise le variateur si la cause du défaut est supprimée. Les exceptions sont la surintensité (OCF), le court-circuit moteur (SCF), et le défaut interne (InF), qui nécessitent la mise hors tension du variateur de vitesse.

Deuxième rampe

Cette fonction permet la commutation entre les rampes d'accélération et de décélération primaires (ACC, DEC) et secondaires (AC2, DE2) en activant une entrée logique affectée à la fonction de commutation des rampes (rP2).

FONCTIONS DES APPLICATIONS DU SORTIE DO

La borne DO est une sortie à collecteur ouverte. Elle est utilisable en sortie analogique ou en sortie logique selon la fonction choisie.

- Lorsque la borne DO est activée et utilisée comme sortie logique, sa valeur est faible par rapport à la borne de 0 V.
- Lorsqu'elle est utilisée comme sortie analogique, le signal est de type modulateur de largeur d'impulsions (MLI) à 2 kHz. En conséquence :
 - Le dispositif de charge doit être capable d'établir la moyenne de la forme d'onde MLI.
 - Le signal total dépend de la valeur de la source de tension
 (Vs) et de la somme de la résistance du dispositif externe (Z)
 et de la résistance interne fixe de 1 kΩ.

Courant dans le moteur (AO)

Le signal intégral correspond à 200 % du courant nominal du variateur.

Fréquence moteur (AO)

Le signal intégral correspond à 100 % de la grande vitesse (HSP).

Seuil de fréquence atteint (LO)

Sortie activée si la fréquence moteur dépasse un seuil réglable.

Référence atteinte (LO)

Sortie activée si la fréquence moteur atteint la référence.

Seuil de courant atteint (LO)

Sortie activée si le courant du moteur dépasse le seuil réglable.

Schéma de câblage du sortie DO

Variateur ATV11 Alimentation interne 0 V DO Variateur ATV11 DO +15 V COM Alimentation

Si une sortie logique est affectée, Z est un dispositif externe tel qu'un relais de basse tension. Si une sortie analogique est affectée, Z et un dispositif externe tel qu'un galvanomètre.

Z

Alimentation externe

Pour la résistance (R) du galvanomètre, la tension maximale (V₇) délivrée est :

$$Vz = Vs \times \frac{R(\Omega)}{R(\Omega) + 1000(\Omega)}$$

La source de tension (Vs) est l'alimentation interne 15 V ou une source extérieure de 30 V maximum.

Configuration de l'entrée analogique

Configurer l'entrée analogique de l'une des façons suivantes :

- 0 à 5 V
- 0 à 10 V
- 0 à 20 mA
- 4 à 20 mA

Schéma de câblage de l'entrée analogique

PROGRAMMATION

Précautions

A DANGER

FONCTIONNEMENT INATTENDU DE L'APPAREIL

- Avant de mettre sous tension et de configurer le variateur de vitesse, assurez-vous que les entrées logiques sont ouvertes (état 0) afin d'éviter un démarrage accidentel. A défaut, à la sortie des menus de configuration, une entrée affectée à une commande de marche entraînerait immédiatement le démarrage du moteur.
- Assurez-vous que les modifications des réglages en cours de fonctionnement ne présentent aucun danger. Les modifications doivent être faites avec le variateur de vitesse à l'arrêt.

Si ces précautions ne sont pas respectées, cela entraînera la mort ou des blessures graves.

ATTENTION

MISE HORS ET SOUS TENSION RAPIDE DU CONTACTEUR

- En cas de commutation de l'alimentation via un contacteur de ligne, évitez de manœuvrer fréquemment le contacteur. Utilisez les entrées LI1 à LI4 pour commander le variateur.
- Ces directives sont vitales pour des cycles inférieurs à cinq minutes pour éviter d'endommager la résistance de précharge et les condensateurs.

Si ces précautions ne sont pas respectées, cela peut entraîner des dommages matériels.

Programmation du variateur de vitesse : Gammes E (Europe) et U (Amérique du Nord)

- Pour enregistrer le choix affiché, appuyer sur ENT.
- L'action sur ♠ou ♥ n'enregistre pas le choix.
- · L'affichage clignote lorsqu'une valeur est enregistrée.

Exemple de programmation

En l'absence de défaut et de commande de marche, l'affichage normal est l'un des suivants :

- rdY: Variateur prêt
- 43.0 : Affichage du paramètre sélectionné dan le menu SUP (sélection par défaut : référence de fréquence)
- dcb : Freinage par injection de courant continu en cours
- nSt : Arrêt roue libre

En présence d'un défaut, l'affichage clignote.

Programmation du variateur de vitesse : Gamme A (Asie)

- Pour enregistrer le choix affiché, appuyer sur ENT
- L'action sur ou n'enregistre pas le choix.
- L'affichage clignote lorsqu'une valeur est enregistrée.

En l'absence de défaut et de commande de marche, l'affichage normal est l'un des suivants :

- rdY : Variateur prêt
- 43.0 : Affichage du paramètre sélectionné dan le menu SUP (sélection par défaut : référence de fréquence)
- dcb : Freinage par injection de courant continu en cours
- nSt : Arrêt roue libre

En présence d'un défaut, l'affichage clignote.

ACCÈS AUX MENUS

(1) Les vitesses présélectionnées apparaissent seulement si PS2 reste au réglage de l'usine ou a été reconfiguré dans le menu FUn.

180

PARAMÈTRES DE RÉGLAGE DE PREMIER NIVEAU

Les paramètres dans les cases non ombrées ne peuvent être modifiés que lorsque le variateur est arrêté.

Les paramètres dans les cases ombrées peuvent être modifiés alors que le variateur fonctionne ou est à l'arrêt.

Tableau 13 : Descriptions des paramètres de réglage de premier niveau

Code	Description	Gamme de réglage	Réglage d'usine			
b F c	Fréquence moteur	50 ou 60 Hz	60 Hz: Gamme U 50 Hz: Gammes A et E			
	Ce paramètre n'est affiché ici que lors de la première mise sous tension du variateur de vitesse. Il peut etrê modifié à tout moment dans le menu FUn.					
ACC	Temps de rampe d'accélération	0,1 à 99,9/s	3			
пьь	Gamme : 0 Hz à la fréquence nominale du moteur FrS (paramètre du menu drC).					
d E C	Temps de rampe de décélération	0,1 à 99,9/s	3			
O C L	Gamme : fréquence nominale du moteur FrS (paramètre du menu drC) à 0 Hz.					
L 5 P	Petite vitesse	0 Hz à HSP	0			
H S P	Grande vitesse	LSP à 200 Hz	= bFr			
пэг	S'assurer que ce réglage convient au moteur et à l'application.					
	Courant thermique du moteur	0 à 1,5 I _N ¹	Selon le calibre variateur			
I E H	Courant utilisé pour la protection th la plaque signalétique du moteur. L mise hors tension du variateur.		•			
5 P 2	2 ^{ème} vitesse présélectionnée ²	0,0 à 200 Hz 10				
5 P 3	3 ^{ème} vitesse présélectionnée ²	0,0 à 200 Hz	25			

Tableau 13 : Descriptions des paramètres de réglage de premier niveau (suite)

Code	Description	Gamme de réglage	Réglage d'usine
5 P 4	4 ^{ème} vitesse présélectionnée ²	0,0 à 200 Hz	50
A I E	Configuration de l'entrée analogique	5 V, 10 V, 0 mA, 4 mA	5 V
	-5 U: tension, 0 à 5 V (alimenta - I II U: tension, 0 à 10 V (alimenta - II R: courant, 0 à 20 mA - 4 R: courant, 4 à 20 mA	,	

¹ I_N = courant nominal du variateur de vitesse.

² Apparaît seulement si la fonction PS2 reste au réglage d'usine ou a été reconfigurée dans le menu FUn. Les réglages de vitesses présélectionnées inférieures à LSP (petite vitesse) et supérieures à HSP (grande vitesse) sont sans effet, car LSP et HSP ont priorité.

MENU COMMANDE MOTEUR, drC

Les paramètres dans les cases non ombrées ne peuvent être modifiés que lorsque le variateur est arrêté.

Les paramètres dans les cases ombrées peuvent être modifiés alors que le variateur fonctionne ou est à l'arrêt.

Tableau 14 : Paramètres du menu Commande moteur, drC

Code	Description	Gamme de réglage	Réglage d'usine	
U n 5	Tension nominale du moteur indiquée sur la plaque signalétique.	100 à 500 V	Selon le calibre	
F r 5	Fréquence nominale du moteur indiquée sur la plaque signalétique.	40 à 200 Hz	50/60 Hz selon bFr	
5 <i>E F</i> l	Stabilité de la boucle fréquence	0 à 100 % à l'arrêt 1 à 100 % en marche	20	
3611	Valeur trop haute : extension du temps de rép Valeur trop basse : vitesse dépassée, instabil			
FLG	Gain de la boucle fréquence	0 à 100 % à l'arrêt 1 à 100 % en marche	20	
r L U	Valeur trop haute : vitesse dépassée, instabilité. Valeur trop basse : extension du temps de réponse			
UFr	Compensation RI Utilisé pour optimiser le couple à trés petite vitesse ou pour adapter le couple à des applications spéciales (par. ex., les moteurs raccordés en parallèle demandent moins de UFr).	0 à 200 %	50	
nΓr	Courant nominal du moteur indiqué sur la plaque signalétique.	0,25 à 1,5 I _N	Selon le calibre	
EL I	Courant de limitation	0,5 à 1,5 l _N	1,5 I _N	
	Glissement nominal du moteur	0 à 10,0 Hz	Selon le calibre	
n 5 L	Calculer en utilisant le formule : nSL = paramètre FrS x (1 - Nn/Ns) Nn = vitesse nominale du moteur indiquée sur la plaque signalétique Ns = vitesse synchrone du moteur			
SLP	Compensation de glissement	0 à 150 % de nSL	100	
	Utilisé pour régler la compensation de glissement autour de la valeur établie par le glissement nominal du moteur nSL ou pour adapter la compensation de glissement à des applications spéciales (par. ex., les moteurs raccordés en parallèle demandent moins de SLP).			
E D 5	Facteur de puissance nominal du moteur indiqué sur la plaque signalétique	0,50 à 1,00	Selon le calibre	

A ATTENTION

SURCHAUFFE MOTEUR

- Ce variateur de vitesse n'offre pas de protection thermique directe pour le moteur.
- L'emploi d'une sonde thermique dans le moteur peut être nécessaire pour le protéger dans toutes conditions de vitesse ou de charge.
- Consultez le fabricant du moteur pour connaître les possibilités thermiques du moteur lorsqu'il est utilisé au-dessus de la limite de vitesse désirable.

Si ces précautions ne sont pas respectées, cela peut entraîner des blessures ou des dommages matériels.

MENU FONCTIONS DES APPLICATIONS, FUN

Fonctions incompatibles des applications

Les fonctions d'application suivantes sont inaccessibles ou désactivées comme décrit ci-dessous :

- Le redémarrage automatique n'est possible qu'en commande à 2 fils (ACt dans tCC = 2C et tCt dans tCC = LEL ou PFO). Le changement de type de commande désactive la fonction.
- La reprise à la volée n'est possible qu'en commande à 2 fils. Le changement de type de commande désactive la fonction.
 La reprise à la volée est inaccessible si l'injection DC automatique continue est configurée (AdC = Ct). La commutation à l'injection DC automatique continue (AdC = Ct) désactive la fonction.
- Pour les variateurs de la gamme A, la fonction de marche arrière est inaccessible si une commande locale est active (ACt dans tCC = LOC).

REMARQUE: Plusieurs fonctions peuvent être affectées à une même entrée logique et fonctionner simultanément. Si FWD (marche avant) et REV (marche arrière) sont affectées à la même entrée logique, FWD a la priorité.

Menu tCC

Type de commande

Tableau 15 : Paramètre du menu tCC

Code	Description	Réglage d'usine
FEE	Type de commande	
ЯСЬ	₹ = commande à 2 fils ₹ = commande à 3 fils ₹ = commande à 2 fils : L'état de l'entrée, ouvert ou fermé (1 ou 0), commande à 2 fils : L'état de l'entrée, ouvert ou fermé (1 ou 0), commande la marche ou l'arrêt. Exemple de câblage :	2C
FCF	Type de commande à 2 fils (le paramètre ne peut etrê saisi que si tCC = 2C): LEL: si l'entrée marche avant ou arrière est activée lorsque le variateur est mis sous tension, celui-ci mettra le moteur en marche. Si les deux entrées sont activées à la mise sous tension, le variateur fonctionnera en marche avant. Lrn: un changement d'état (transition ou front) sur la commande de marche est nécessaire pour démarrer le moteur. Par conséquent, si la commande de marche avant ou arrière est activée lorsque le variateur est mis sous tension, la commande de marche doit être re-validée afin de démarrer le moteur. PFD: comme pour LEL, mais la commande de marche avant est toujours prioritaire sur la commande de marche arrière. Si la commande de marche avant est activée lorsque le variateur fonctionne en marche arrière, le variateur fonctionnera en marche avant.	trn

Menus rrS, PS2 et rSF

Les paramètres dans les cases non ombrées ne peuvent être modifiés que lorsque le variateur est arrêté.

Les paramètres dans les cases ombrées peuvent être modifiés alors que le variateur fonctionne ou est à l'arrêt.

Tableau 16: Paramètres des menus rrS, PS2 et rSF

Code		Description	Réglage d'usine	
rr5		Marche arrière □ □: fonction inactive L I à L I : sélectionne l'entrée affectée à la commande de marche arrière	si ACt dans tCC = 2C : LI2 si ACT dans tCC = 3C : LI3	
P 5 2		Vitesses présélectionnées ¹		
		Si LIA et LIb = 0 : vitesse = référence sur Al1 si LIA = 1 et LIb = 0 : vitesse = SP2 si LIA = 0 et LIb = 1 : vitesse = SP3 si LIA = 1 et LIb = 1 : vitesse = SP4		
		Affectation d'entrée LIA - ¬ □ : fonction inactive - L I I à L I Y : sélectionne l'entrée affectée à LIA	si ACt dans tCC = 2C : LI3 si ACt dans tCC = 3C : LI4	
	L 16	Affectation d'entrée Llb - ¬ □ : fonction inactive - L I I à L I I : sélectionne l'entrée affectée à Llb SP2 n'est accessible que si LIA est affectée; SP3 et SP4 ne sont accessibles que si LIA et Llb sont affectées.	si ACt dans tCC = 2C : LI4 si ACT dans tCC = 3C : nO	
	5 P 3	2 ^{ème} vitesse présélectionnée, réglable de 0,0 à 200 Hz 3 ^{ème} vitesse présélectionnée, réglable de 0,0 à 200 Hz 4 ^{ème} vitesse présélectionnée, réglable de 0,0 à 200 Hz	10 25 50	
r 5 F		Réarmement de défauts - n 0 : fonction inactive - L à L 4 : sélectionne l'entrée affectée à cette fonction. Le réarmement de défauts se produit quand l'entrée change d'état sur le front montant (0 à 1). Le défaut n'est réarmé que si la cause du défaut n'est plus présente.	nO	

¹ Voir la page 172.

Menus rP2, StP et brA

Les paramètres dans les cases non ombrées ne peuvent être modifiés que lorsque le variateur est arrêté.

Les paramètres dans les cases ombrées peuvent être modifiés alors que le variateur fonctionne ou est à l'arrêt.

Tableau 17 : Paramètres des menus rP2, StP et brA

Code		Description	Réglage d'usine
r P ∂		Commutation des rampes	
	LI	Affectation de l'entrée de commande de la 2ème rampe - ¬ □ : fonction inactive - L I I à L I I : sélectionne l'entrée affectée à cette fonction AC2 et dE2 sont accessibles que si LI est affectée.	nO
	AC 2	Temps de la 2ème rampe d'accélération, réglable de 0,1 à 99,9 s	5.0
	4 E 2	Temps de la 2ème rampe de décélération, réglable de 0,1 à 99,9 s	5.0
5 <i>E P</i>		Arrêt contrôlé sur coupure réseau - ¬ □ : fonction inactive, moteur en roue libre - F ¬ P : arrêt en fonction de la rampe valide (dEC ou dE2) - F 5 L : arrêt rapide, le temps d'arrêt depend de l'inertie de la charge et de la capacité de freinage du variateur de vitesse.	nO
ЬгЯ		Adaptation de la rampe de décélération - nO : fonction inactive - YES : augmente automatiquement le temps de décélération, si celuici a été réglé à une valeur trop faible compte tenu de l'inertie de la charge, évitant ainsi un défaut de surtension (ObF).	YES

Menus AdC et SFt

Les paramètres dans les cases non ombrées ne peuvent être modifiés que lorsque le variateur est arrêté.

Les paramètres dans les cases ombrées peuvent être modifiés alors que le variateur fonctionne ou est à l'arrêt.

Tableau 18 : Paramètres des menus AdC et SFt

Code		Description	Réglage d'usine
AGC		Injection DC automatique	
	ACE	Mode de fonctionnement - ¬ □ : fonction inactive - ¬ □ : fonction inactive - ¬ □ : injection de courant continu est activé à la fin de chaque cycle d'arrêt. Le temps d'injection est réglable via tdC. Le courant d'injection est réglable via SdC □ □ : injection de courant continu continue est activé à la fin de chaque cycle d'arrêt. La valeur de ce courant peut être reglée via SdC. Dans une commande à 3 fils, l'injection n'est active que lorsque LI1 est à 1.	YES
	FGE	Temps d'injection sur arrêt, réglable de 0,1 à 30,0 s. Accessible seulement si ACt =YES (OUI).	0,5 s
	5 d C	Courant d'injection, réglable de 0 à 1,5 I _N . Accessible seulement si ACt = YES ou Ct.	0,7 I _N

Tableau 18 : Paramètres des menus AdC et SFt (suite)

Code Description Réglage d'usine

A ADVERTISSEMENT

PAS DE COUPLE DE MAINTIEN

- Le freinage par injection de courant continu ne fournit pas de couple de maintien à la vitesse zéro.
- Le freinage par injection de courant continu ne fonctionne pas pendant une perte d'alimentation ou pendant un défaut du variateur.
- Utilisez un frein séparé pour le couple de maintien, le cas échéant.

FREINAGE PAR INJECTION DE COURANT CONTINU EXCESSIF

- L'application de freinage par injection de courant continu pendant de longues périodes peut entraîner une surchauffe et un endommagement du moteur.
- Protégez le moteur de périodes prolongées de freinage par injection de courant continu.

Si ces précautions ne sont pas respectées, cela peut entraîner la mort, des blessures ou des dommages matériels.

5 F E		Fréquence de découpage	
•	ЯCĿ	Gamme de fréquence - L F r : fréquence aléatoire autour de 2 ou 4 kHz selon SFr - L F : fréquence fixe de 2 ou 4 kHz selon SFr - H F : fréquence fixe de 8, 12 ou 16 kHz selon SFr	LF
	5 F c	Fréquence de découpage : - 2 : 2 kHz (si ACt = LF ou LFr) - 4 : 4 kHz (si ACt = LF ou LFr) - 8 : 8 kHz (si ACt = HF) - 12 : 12 kHz (si ACt = HF) - 15 : 16 kHz (si ACt = HF) Quand SFr = 2 kHz, la fréquence passe automatiquement à 4 kHz à grande vitesse. Quand SFt = HF, la fréquence sélectionnée passe automatiquement à la fréquence inférieure si l'état thermique du variateur de vitesse est trop élevé. Elle retourne automatiquement à la fréquence SFr dès que l'état thermique le permet.	4 (si ACt = LF ou LFr) 12 (si ACt = HF)

Menus FLr et dO

Les paramètres dans les cases non ombrées ne peuvent être modifiés que lorsque le variateur est arrêté.

Les paramètres dans les cases ombrées peuvent être modifiés alors que le variateur fonctionne ou est à l'arrêt.

Tableau 19 : Paramètres des menus FLr et dO

Code	Description	Réglage d'usine
FLr	Reprise à la volée Permet un redémarrage en souplesse si la commande de marche est maintenue après les évènements suivants : - coupure réseau ou mise hors tension - réarrmement de défauts ou redémarrage automatique - arrêt roue libre	nO
	Le moteur se remet en marche à la vitesse estimée au moment du redémarrage, puis suit la rampe jusqu'à la vitesse de référence. Cette fonction exige une commande à 2 fils (ACt dans tCC = 2C) avec tCt dans tCC = LEL ou PFO. ¬□: fonction inactive 9 E 5: fonction active Cette fonction intervient à chaque commande de marche, résultant en un démarrage après un délai de 1 seconde maximum. Si un freinage par injection automatique continu (Ct) est configuré, cette fonction est inactive.	

Tableau 19 : Paramètres des menus FLr et dO (suite)

Code	Description	Réglage d'usine
d D	Sortie analogique/logique DO	
ACE	Affectation - ¬ □ : non affectée - □ □ ¬ : sortie/courant du moteur (sortie analogique). Le signal intégral correspond à 200 % du courant nominal du variateur de vitesse ¬ ¬ ¬ ¬ : fréquence moteur (sortie analogique). Le signal intégral correspond à 100 % de HSP ¬ ¬ ¬ ¬ : fréquence moteur (sortie logique). Le signal intégral correspond à 100 % de HSP ¬ ¬ ¬ ¬ : seuil de fréquence atteint (sortie logique), fermé (état 1) si la fréquence moteur est supérieure au seuil Ftd réglable ¬ ¬ ¬ ¬ : référence atteinte (sortie logique), fermé (état 1) si la fréquence moteur est égale à la référence ¬ □ ¬ ¬ ¬ · · · · · · · · · · · · · · ·	rFr
FEC	seuil de fréquence, réglable de 0 à 200 Hz	= bFr
C E c	seuil de courant, réglable de 0 à 1,5 l _N	I _N

Menus Atr, LSr et nPL

Tableau 20 : Paramètres des menus Atr, LSr et nPL

Code	Description	Réglage d'usine
AEr	Redémarrage automatique	nO
	- n 🛮 : fonction inactive - y E 5 : permet le redémarrage automatique après l'arrêt sur un défaut, si le défaut a été corrigé et si les autres conditions de fonctionnement permettent le redémarrage. Les tentatives de redémarrage automatique en série sont séparées par des périodes d'attente de plus en plus longues : 1 s, 5 s et 10 s, puis 1 min. pour les périodes subsistantes. Si le démarrage ne s'est pas effectué au bout de 6 min, la procédure est abandonnée et le variateur reste en état de défaut jusqu'à la mise hors puis sous tension. Les défauts qui autorisent le redémarrage automatique sont : OHF, OLF, ObF, OSF et PHF. Le relais de défaut du variateur reste alors enclenché si la fonction est active. La référence de vitesse et le sens de marche doivent rester maintenus. Le redémarrage automatique est accessible seulement en commande à 2 fils (ACt dans tCC = 2C) avec tCt dans tCC = LEL ou PFO.	

A ADVERTISSEMENT

FONCTIONNEMENT INATTENDU DE L'APPAREIL

- Le redémarrage automatique ne peut être utilisé que pour des machines ou installations qui ne présentent aucun danger en cas de redémarrage automatique, pour le personnel ou pour l'appareil.
- Si le redémarrage automatique est actif, R1 n'indiquera un défaut qu'une fois la séquence de redémarrage terminée
- · Le fonctionnement de l'appareil doit se conformer aux règlements de sécurité nationaux et locaux.

Si ces précautions ne sont pas respectées, cela peut entraîner la mort, des blessures ou des dommages matériels.

196

Tableau 20 : Paramètres des menus Atr, LSr et nPL (suite)

Code	Description	Réglage d'usine
L5r	Mode référence de fréquence Ce paramètre n'est accessible que sur les variateurs de vitesse de la gamme A L □ C : la référence de vitesse est donnée par le potentiomètre à l'avant du variateur de vitesse L E r : la référence de vitesse est donnée par l'entrée analogique Al1. Pour la prise en compte de LOC et tEr, la touche ENT doit être maintenue enfoncée pendant 2 s.	LOC
nPL	Choix de logique pour les entrées Ce paramètre n'est accessible que sur les variateurs de vitesse de la gamme A P 🛽 5 : les entrées sont actives (état 1) à une tension de 11 V ou supérieure (par exemple, borne +15 V) et inactives (état 0) quand le variateur de vitesse est déconnecté, ou à une tension inférieure à 5 V n E 🖸 : les entrées sont actives (état 1) à une tension inférieure à 5 V (par exemple, borne 0 V) et inactives (état 0) à une tension de 11 V ou supérieure, ou quand le variateur de vitesse est déconnecté. Pour la prise en compte de POS et nEG, la touche ENT doit être maintenue enfoncée pendant 2 s.	POS

Menus bFr, IPL, SCS et FCS

Tableau 21: Paramètres des menus bFr, IPL, SCS et FCS

Code	Description	Réglage d'usine
b F r	Fréquence moteur (Comme pour le paramètre de réglage 1er niveau bFr) Régler à 50 Hz ou 60 Hz, selon la valeur nominale de la plaque signalétique du moteur.	60
IPL	Configuration de défaut de perte de phase de réseau Ce paramètre n'est accessible que sur les variateurs de vitesse triphasés. - ¬ □ : inhibe le défaut de perte de phase de réseau - Ӌ E 5 : active la surveillance d'une perte de phase de réseau	YES
5 C S	Sauvergarde de la configuration - Y E 5 : sauvegarde la configuration actuelle dans la mémoire EEPROM comme configuration de secours. SCS passe automatiquement à nO dès que la sauvegarde est terminée. Les variateurs de vitesse sont livrés avec la configuration actuelle et la configuration de secours toutes les deux configurées à la configuration d'usine.	nO
FCS	Rappel de la configuration - n 0 : fonction inactive - r E C : réinitialise la configuration à la configuration de secours précédemment sauvegardée à l'aide de SCS. rEC n'est visible que si une sauvegarde de secours a été exécutée. FCS passe automatiquement à nO dès que la réinitialisation est terminée l n l : réinitialise la configuration au réglage d'usine. FCS passe automatiquement à nO dès que la réinitialisation est terminée. REMARQUE : pour exécuter les commandes rEC et InI, il faut maintenir la touche ENT enfoncée pendant 2 s.	nO

MENU SURVEILLANCE SUP

La valeur de l'un des paramètres de surveillance est affichée sur le variateur de vitesse pendant qu'il fonctionne. L'affichage par défaut est la référence de fréquence (paramètre FrH).

Pour modifier l'affichage, défiler jusqu'au paramètre de surveillance désiré et appuyer sur ENT pour afficher sa valeur. Pendant l'affichage de cette valeur, appuyer sur ENT une deuxième fois pour confirmer le changement de paramètre et le mettre en mémoire. À partir de ce moment, la valeur de ce paramètre est affichée pendant que le variateur fonctionne (même après l'avoir déconnecté). Si la nouvelle sélection n'est pas confirmée de cette façon, l'affichage retourne au paramètre précédent après la déconnexion du variateur de vitesse.

ENTRETIEN ET DÉPANNAGE

Précautions

Lire les directives de sécurité suivantes avant toute intervention dans le variateur.

A DANGER

TENSION DANGEREUSE

- Lisez et comprenez ces procédures et les précautions à la page 2 de ce manuel avant toute intervention dans les variateurs ATV11.
- L'installation, le réglage et l'entretien de ces variateurs de vitesse doivent être effectués exclusivement par du personnel qualifié.

Si ces précautions ne sont pas respectées, cela entraînera la mort ou des blessures graves.

Les procédures de dépannage et entretien dans cette section sont indiquées à l'intention du personnel d'entretien électrique qualifié et ne constituent pas des directives suffisantes pour les personnes qui ne sont pas qualifiées pour exploiter, réparer ou entretenir l'appareil.

Entretien routinière

Exécuter les étapes suivantes à intervalles réguliers :

- vérifier la condition et le serrage des connexions.
- s'assurer que l'aération est efficace et que la température autour du variateur de vitesse reste à un niveau acceptable.
- si nécessaire, enlever la poussière et les débris du variateur.

Détection de défauts

En cas de détection d'un défaut, le variateur de vitesse se déclenchera et le relais de défaut se mettra hors tension sauf si Atr est actif. Voir le paramètre Atr à la page 195 pour une description du redémarrage automatique. Voir le tableau 22 à la page 202 pour descriptions des défauts. Tous les défauts peuvent être réarmés en procédant à une mise hors et sous tension du variateur.

Lors de l'entreprise d'une action corrective, s'assurer qu'aucune tension n'est présente sur le bus cc (voir la procédure de mesure de la tension de bus à la page 161), puis vérifier la tension d'alimentation et les appareils périphériques comme indiqué ci-après.

Procédure 1 : Vérification de la tension d'alimentation

Pour mesurer la tension du réseau :

- 1. Annuler toute tension du réseau.
- Attacher les conducteurs d'un compteur à L1 et L2. Régler le voltmètre à l'échelle 600 Vca.
- Remettre sous tension et vérifier si la tension est correcte selon la plaque signalétique du variateur de vitesse.
- 4. Couper l'alimentation. Si le variateur est câblé en triphasé, répéter la procédure pour L2 et L3 et pour L1 et L3.
- Lorsque toutes les phases ont été mesurées, couper l'alimentation. Retirer les conducteurs et replacer les couvercles.

Procédure 2 : Vérification des appareils périphériques

Vérifier l'appareil concernant les conditions suivantes selon les procédures du fabricant.

- 1. Un dispositif de protection tel que des fusibles ou un disjoncteur pourrait être déclenché.
- 2. Un dispositif de commutation tel qu'un contacteur ne pourrait pas se fermer en temps voulu.
- Les conducteurs devraient être réparés ou remplacés, s'il est nécessaire.
- Les câbles de raccordement au moteur ou de mise à la terre peuvent être desserrés. Suivre la norme NEMA procédure WC-53.
 - REMARQUE : La tension du bus peut dépasser 400 Vcc. Employer un appareil de mesure de la valeur nominale appropriée.
- 5. L'isolation du moteur peut être usée. Suivre la norme NEMA, procédure MG-1. Ne pas appliquer de haute tension à U, V ou W (voir le tableau 9 à la page 165). Ne pas raccorder les appareils d'essai de rupture diélectrique ni l'appareil de mesure de résistance d'isolation au variateur parce que les tensions d'essai utilisées risquent d'endommager le variateur. Toujours débrancher le variateur de vitesse des conducteurs ou du moteur pour effectuer de tels essais.

A ATTENTION

ESSAIS DIÉLECTRIQUES, AVEC RACCORDEMENTS

- N'effectuez pas d'essais de rupture diélectrique sur les circuits lorsque ceux-ci sont raccordés au variateur de vitesse.
- Tout circuit nécessitant des essais de rupture diélectrique doit être déconnecté du variateur de vitesse avant d'effectuer l'essai.

Si ces précautions ne sont pas repectées, cela peut entraîner des blessures ou des dommages matériels.

ENREGISTREMENT DE DÉFAUTS

Un défaut existant est enregistré et affiché sur le terminal d'exploitation tant que l'alimentation est maintenue. Lorsque le variateur de vitesse se déclenche, le relais de défaut se met hors tension. Pour remettre le défaut à zéro :

- Mettre le variateur de vitesse hors tension.
- Rechercher et corriger la cause du défaut.
- Remettre sous tension. Ceci effacera le défaut s'il a été corrigé.

Dans certains cas, si le redémarrage automatique est activé, le variateur redémarrer automatiquement après l'élimination de la cause du défaut. Se reporter à la description de Atr à la page 195.

LISTE DES DÉFAUTS ET ACTION CORRECTIVE

Les défauts ne peuvent pas être réarmés tant que la cause n'est pas corrigée. Les défauts OHF, OLF, OSF, ObF et PHF peuvent être réarmés via une entrée logique (rSF) si elle est configurée pour cette fonction. Les défauts OHF, OLF, OSF, ObF et PHF peuvent être réarmé au moyen d'un redémarrage automatique (Atr) s'il est configuré pour cette fonction et si le variateur de vitesse est configuré pour une commande à 2 fils. Le défaut USF se réarme dès que le défaut est corrigé; une entrée logique ou un redémarrage automatique n'est pas requis pour le réarmement. Tous les défauts peuvent être réarmés en procédant à une mise hors et sous tension.

Tableau 22 : Liste des défauts

Défauts	Causes probables	Action corrective
- [F F défaut de configuration		- Restaurer les réglages d'usine ou la configuration de secours, si elle est valide. Voir le paramètre FCS dans le menu FUn (voir la page 197).
- [r F circuit de précharge	- circuit de précharge endommagé	Réinitialiser le variateur de vitesse.Remplacer le variateur de vitesse.
- In F défaut interne	- défaut interne - défaut de raccordement interne	 Supprimer les sources d'interférences électromagnétiques. Remplacer le variateur de vitesse.
- 0 b F surtension en décélération	- freinage trop rapide ou charge entraînante	 Augmenter le temps de décélération. Installer une résistance de freinage si nécessaire. Activer la fonction brA si compatible avec l'application.
- D [F surintensité	 accélération trop rapide variateur ou moteur sous- dimensionné pour la charge blocage mécanique 	 Augmenter le temps d'accélération. -S'assurer que la taille du moteur et du variateur est suffisante pour la charge. - Supprimer le blocage mécanique.
- DHF surcharge du variateur	charge continue de courant du moteur trop haute température ambiante trop élevée	 Vérifier la charge du moteur, la ventilation du variateur et l'environnement. Attendre le refroidissement pour redémarrer. Augmenter ACC pour des charges d'inertie élevées.
- 0 L F surcharge du moteur	 déclenchement thermique dû à une surcharge prolongée du moteur puissance nominale du moteur trop faible pour l'application 	- Vérifier le réglage de la protection thermique moteur (ItH). Voir la page 180. Vérifier la charge du moteur. Attendre le refroidissement pour redémarrer.
- 05F surtension en	- tension de réseau trop élevée	- Vérifier la tension de réseau. Comparer avec les valeurs nominales de la plaque signalétique du variateur.
régime établi ou en accélération	- tension induite sur le câblage de sortie	 Réinitialiser le variateur de vitesse. Vérifier si le câblage est correct (voir les pages 161 à 168).

Tableau 22 : Liste des défauts (suite)

Défauts	Causes probables	Action corrective
- PHF coupure phase réseau	 perte de phase réseau, fusible fondu déséquilibre phase réseau défaut de phase transitoire variateur triphasé utilisé sur un réseau monophasé charge déséquilibrée 	 Vérifier si l'alimentation de réseau est correcte. Vérifier les fusibles de ligne. Vérifier les raccordements de l'alimentation de réseau. Fournir une alimentation triphasée si nécessaire. Désactiver IPL (régler à nO).
- 5 [F court-circuit moteur	- court-circuit ou mise à la terre en sortie du variateur	- Vérifier les câbles de liaison du variateur au moteur, et l'isolement du moteur.
- 5 D F survitesse	- instabilité - charge entraînante	 Vérifier les paramètres du moteur, de gain et de stabilité. Ajouter un module de freinage et une résistance et vérifier le variateur, le moteur et la charge.
- U 5 F sous-tension	- tension d'entrée trop basse - chute de tension transitoire - résistance de précharge endommagée	 - Vérifier si la tension du réseau correspond à la valeur nominale de la plaque signalétique. - Vérifier le réglage du paramètre UnS. - Remplacer le variateur de vitesse.

Non démarrage du variateur sans affichage de défauts

Lors d'une mise sous tension, d'un réarmement de défaut manuel ou après une commande d'arrêt, le moteur ne peut être alimenté qu'après un réarmement préalable des commandes « avant », « arrière » (sauf si tCt = LEL ou PFO). A défaut le variateur affiche « rdY » ou NST, mais ne démarre pas. Si la fonction de redémarrage automatique est configurée (paramètre Atr du menu drC) et le variateur est en commande à 2 fils, ces commandes sont prises en compte sans réarmement.

TABLEAUX DE CONFIGURATION ET RÉGLAGES

Tableau 23 : Paramètres de réglage de premier niveau

Code	Réglage d'usine		Réglage	client	Code	Réglage d'usine		Réglage client	
b F r	50 / 60	Hz		Hz	L 5 P	0	Hz		Hz
ACC	3	s		s	H 5 P	50 /60	Hz		Hz
d E C	3	S		S	I E H		Α		Α

Tableau 24 : Menu Commande moteur d r [

Code	Réglage d'usine		Réglage	client	Code	Réglage d'usine		Réglage client	
U n 5		V		V	пEг		Α		Α
F r 5	50 / 60	Hz		Hz	E L I		Α		Α
5 <i>E A</i>	20	%		%	n 5 L		Hz		Hz
FLG	20	%		%	5 L P	100	%		%
UFг	50	%		%	C D S				

Tableau 25 : Menu Fonctions des applications $F \sqcup \neg$

Code	Réglage d'usine		Réglage d	client	Code	Réglage	d'usine	Réglage	client
FCC					RdC				
ALF	2C				ALF	YES			
ŁΓŁ	trn				ŁdΓ	0.5	S		s
rr5	LI2				5 d C		Α		Α
P 5 2					5 F L				
LIA	LI3				ACE	LF			
L Ib	LI4				5 F r	4	kHz		kHz
5 P 2	10	Hz		Hz	FLr	nO			
5 P 3	25	Hz		Hz	d 0				
5 P 4	50	Hz		Hz	ACE	rFr			
r 5 F	nO				FEd	50 / 60	Hz		Hz
r P Z					ГЕd		Α		Α
LI	nO				AIL	5U			
A C 2	5	S		S	ALr	nO			
d E ∂	5	s		S	L5r1	LOC			
5 <i>L P</i>	nO				nPL 1	POS			
ЬгЯ	YES				ЬЕг	50 / 60	Hz		Hz
					IPL	YES			

¹ Gamme A uniquement.

A	Compensation RI 183	défaut du circuit de précharge
AC2 190	condensateurs 163	202
ACC 180	condensation 160	défaut interne 202
accélération	configuration	dégagements 155
temps de la deuxième rampe	défaut 202	deuxième rampe 190
190	rappel 197	dimensions 154
temps de rampe 180	sauvergarde 197	dO 194
ACt 187, 191-192, 194	COS 183	dommages lors du transport
AdC 191	couple	146
aération 160	freinage 152	E
Alt 181	couple de maintien 192	_
altitude 151	courant	émissions 151
armoire	de limitation 183	entrée
aération 160	moteur 173	analogique 152, 167, 174,
IP54 158	nominal 149	181
résistance thermique 158	nominal du moteur 183	logique 153, 168, 171, 196
taille 158–160	nominale 147–148	entreposage 146
type 12 158	réseau max. 147–149	entretien 199
arrêt	seuil 173, 194	essais diélectrique 201
contrôlé 190	thermique du moteur 180	F
coupure réseau 190	transitoire max. 147–149,	facteur de puissance 183
rapide 190	152	FCS 197
roue libre 190	courant d'interruption dis-	FLG 183
arrière 189	ponible	FLr 193
Atr 195	alimentation 152	fonctions des applications
	courant thermique du moteur	entrée logique 171
В	180	sortie DO 173
bFr 180, 197	court-circuit 152-153, 172	fréquence
bornes	moteur 203	alimentation 152
contrôle 167	CrF 202	de découpage 147–149,
puissance 164–165	Ctd 194	152, 192
brA 190	D	gain de la boucle 183
С	_	moteur 173, 180, 197
-	dE2 190	nominale du moteur 183
câblage	dEC 180	référence 196
alimentation 163	décélération	résolution 153
commande 163	adaptation de la rampe 190	seuil 173, 194
schéma 168	temps de la deuxième rampe	sortie 152
câble 152, 163	190	stabilité de la boucle 183
certification des produits 151	temps de rampe 180	fréquence de découpage 147–
CFF 202	défaut	149, 152
chauffeur 160	actions correctives 202	FrP 190
chocs 151	contact du relais 167	FrS 183
CLI 183	détection 199	FSt 190
commande	enregistrement 201	Ftd 194
à 2 fils 171, 187	liste de 202	fusibles 162, 166
à 3 fils 171, 187	réarmement 172, 189, 199,	
compatibilité électromagné- tique 151, 169–170	201	

G gamme 145 glissement	en armoire 158 précautions 155	redémarrage automatique 195, 201 redémarrage automatique 201
compensation 183	N nCr 183	référence atteinte 173 reprise à la volée 193
nominal du moteur 183 grande vitesse 180	nEG 196	réseau
H	no de catalogue 148–149 nPL 196	coupure phase 203
HSP 180	nSL 183	perte de phase 197 rP2 190
humidité 151	numéro de catalogue 147	rrS 189
1	0	rSF 189
incompatibilité	ObF 202	S
fonctions des applications	OCF 202	SCF 203
186	OHF 202	SCS 197
InF 202	OLF 202	SdC 191
injection DC 191	OSF 202	sens de marche
courant 191	P	arrière 171
temps 191	parafoudres 163	avant 171
inspection 146	paramètres	SFr 192
IPL 197	drC, commande du moteur	SFt 192
isolement galvanique 152	182	SLP 183
ItH 180	fonctions des applications,	SOF 203
L	FUn 185–197	Sonde CTP 147–149
LI 190	réglage de premier niveau	sonde CTP 153 sortie
LIA 189	180	
LIb 189	réglages d'usine 204–205	DO 153, 167, 194 relais 153
ligne	surveillance 198	sortie DO 153
contacteur 176	surveillance SUP 198	sources internes 152
LOC 196	petite vitesse 180	sous-tension 153, 203
LSP 180	PHF 203	SP2 180, 189
LSr 196	platine CEM 170	SP3 180, 189
M	POS 196	SP4 181, 189
marquage CE 151	potentiomètre 152, 167, 178 programmation 176–178	StA 183
menus	précautions 176	StP 190
drC, commande du moteur	protection	suppresseurs de bruit 163
182	circuit de dérivation 162	surcharge 152
fonctions des applications,	degré 151	moteur 202
FUn 185–197	moteur 153	variateur 202
surveillance SUP 198	surintensité 162	surchauffe 153
synthèse 179	thermique 184	surcouple 152
mesure de la tension du bus	variateur 153	surintensité 153, 162, 202 surtension 153
161	PS2 189	en accélération 202
mise à la terre 162	R	en décélération 202
bornes 165	rapport tension/fréquence 152	en régime établi 202
module de freinage 165	réception 146	surveillance 177–178
montage	reception 140	55.15aii00 177 170

survitesse 203

т

tCC 187

tCt 187

tdC 191

température

entreposage 146, 151

fonctionnement 151

montage 155

tension

alimentation 152, 200

bus 161

nominale 147-149

nominale du moteur 183

sortie 152

tEr 196

touche ENT 177-178

touche ESC 177-178

touche RUN 178

touche STOP 178

U

UFr 183

UnS 183

USF 203

ν

valeurs des résistances de fre-

inage dynamique 150

valeurs nominales 145, 147-

149

ventilateur 156, 160

vibration 151

vitesse 152

vitesses présélectionnées 172,

180, 189

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

Square D Company 8001 Hwy 64 East Knightdale, NC 27545 1-888-SquareD (1-888-778-2733) www.SquareD.com

VVDED302026USR2/03 02/2003 Replaces VVDED302026US dated 10/02 © 2003 Schneider Electric All Rights Reserved Solamente el personal especializado deberá instalar, hacer functionar y prestar servicios de mantenimiento al equipo eléctrico. Schneider Electric no asume responsabilidad alguna por las consecuencias emergentes de la utilización de este material.

Importado en México por: Schneider Electric México, S.A. de C.V. Calz. J. Rojo Gómez 1121-A Col. Gpe. del Moral 09300 México, D.F. Tel. 55-5804-5000 www.schneider-electric.com.mx

VVDED302026USR2/03 02/2003 Reemplaza VVDED302026US de 10/02 © 2003 Schneider Electric Reservados todos los derechos Seul un personnel qualifié doit effectuer l'installation, l'utilisation, l'entretien et la maintenance du matériel électrique. Schneider Electric n'assume aucune responsabilité des conséquences éventuelles découlant de l'utilisation de cette documentation.

Schneider Canada Inc. 19 Waterman Avenue, M4B 1 Y2 Toronto, Ontario 1-800-565-6699 www.schneider-electric.ca

VVDED302026USR2/03 02/2003 Remplace VVDED302026US en date de 10/02 © 2003 Schneider Electric Tous droits reserves