Esame di Ricerca Operativa del 6/2/18

	(Cognome)		(Nome)		•	ero di Matrico	ola)
esercizio 1. Co	ompletare la	_	a considerando il problema $y_1 + 9$ $y_2 + 2$ $y_3 + 9$ $y_4 + 4$ $y_5 + 3$ $y_2 - 2$ $y_3 + 3$ $y_4 - y_5 + 3$ $y_2 + y_3 + y_4 + 2$ $y_5 + 3$ y_6		nmazione line	eare:	
Base	Soluzio	ne di base			Ammissibile (si/no)	Degenere (si/no)	
{1, 2	} x =						
{1, 4	$\} \mid y =$						
Esercizio 2. Ef	fettuare du	e iterazioni dell'a	algoritmo del simplesso dua	ale per il pr	oblema dell'e	esercizio 1.	
	Base	x	y	Indice entrante		apporti	Indicuscen
1° iterazione	{2,3}						
2° iterazione							
sapendo che produttivo migli variabili decision	ore.	. venuna e rispet	tivamente di 400, 600, 1000	o, e 500 eur	ber ogni 1	, determinare	п ріапо
modello:							
C=			COMANDI DI MATLAE	3			
Α=			1-				
			b=				
Aeq=			beq=				

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (2,5)				
(3,7) $(4,6)$ $(6,7)$	(3,5)	x =		
(1,2) $(1,4)$ $(2,5)$				
(3,7) $(4,3)$ $(4,6)$	(3,5)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,5) (3,5) (3,7) (4,6) (6,7)	
Archi di U	(5,7)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 10 \ x_1 + 14 \ x_2 \\ 19 \ x_1 + 8 \ x_2 \le 59 \\ 13 \ x_1 + 14 \ x_2 \le 41 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

,		າ າ	1		1 , .		1 1	1			1 1	• 1	•1		
а) (ാവവ	olare	una	valutazione	superiore	del	valore	ottimo	riso	lvendo	۱ I	rilassame	വ±റ	continuo
œ	, ,	Juit.	O I COI C	and	varauazione	bupcifore	acı	vaiore	OUUIIIO	1100.	rvcnac	, 11	THUSSUITE.	.100	communa.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 7. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo														
visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
insieme Q														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	19	24	67	47
2		18	94	61
3			13	16
4				10

a) Trovare una valutazione inferiore del valore ottimo calcolando l'1-albero di costo minimo.

1-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando l'1-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{34} , x_{24} , x_{45} . Dire se l'algoritmo si è concluso.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + (x_2 - 1)^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 + x_2 + 1 \le 0}.$$

Soluzioni del sister	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(\frac{\sqrt{2}\sqrt{3}}{2}, \frac{1}{2}\right)$							
$\left(-\frac{\sqrt{2}\sqrt{3}}{2},\ \frac{1}{2}\right)$							
(0, -1)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 + 2 x_1 x_2 - 4 x_1 + 4 x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (1,4) , (-0,-4) , (2,-1) e (-5,0). Fare un passo del metodo di Frank-Wolfe.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$\left(\frac{2}{3}, -3\right)$					

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min y_1 + 9 \ y_2 + 2 \ y_3 + 9 \ y_4 + 4 \ y_5 + 13 \ y_6 \\ -y_1 + 3 \ y_2 - 2 \ y_3 + 3 \ y_4 - y_5 + 2 \ y_6 = -2 \\ -y_1 - y_2 + y_3 + y_4 + 2 \ y_5 + 3 \ y_6 = 1 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
{1, 2}	x = (2, -3)	SI	NO
	,		
{1, 4}	$y = \left(-\frac{5}{2}, \ 0, \ 0, \ -\frac{3}{2}, \ 0, \ 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
					1	
1° iterazione	$\{2, 3\}$	(11, 24)	(0, 0, 1, 0, 0, 0)	4	$0, \frac{1}{6}$	2
2° iterazione	{3, 4}	$\left(\frac{7}{5}, \frac{24}{5}\right)$	(0, 0, 1, 0, 0, 0)	5	$\frac{5}{7}$, 0	4

Esercizio 3.

COMANDI DI MATLAB

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,3) (2,5)				
(3,7) (4,6) (6,7)	(3,5)	x = (-7, 13, 0, 0, -3, 8, 11, 0, -3, 0, -5)	NO	NO
(1,2) (1,4) (2,5)				
(3,7) $(4,3)$ $(4,6)$	(3,5)	$\pi = (0, 5, 13, 6, 10, 15, 23)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (2,5) (3,5) (3,7) (4,6) (6,7)	(1,2) (1,4) (3,5) (3,7) (4,6) (6,7)
Archi di U	(5,7)	(2,5) (5,7)
x	(0, 0, 6, 0, 4, 5, 1, 0, 3, 4, 1)	(1, 0, 5, 0, 5, 4, 2, 0, 2, 4, 0)
π	(0, 13, 8, 6, 18, 15, 18)	(0, 5, 8, 6, 18, 15, 18)
Arco entrante	(1,2)	(1,3)
ϑ^+,ϑ^-	1 , 1	7,0
Arco uscente	(2,5)	(6,7)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	· 2	iter	: 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		3		۷ِ	1	Ę	,)	(j	7	7
nodo 2	5	1	5	1	5	1	5	1	5	1	5	1	5	1
nodo 3	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 4	15	1	15	1	15	1	15	1	15	1	15	1	15	1
nodo 5	$+\infty$	-1	19	2	17	3	17	3	17	3	17	3	17	3
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	21	4	21	4	21	4	21	4
nodo 7	$+\infty$	-1	$+\infty$	-1	27	3	27	3	24	5	24	5	24	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3, 4	, 5	4, 5	, 7	5, 6	5, 7	6,	7	7	7	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	6	(0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0)	6
1 - 2 - 5 - 7	5	(5, 6, 0, 0, 5, 0, 6, 0, 0, 5, 0)	11
1 - 3 - 5 - 7	2	(5, 8, 0, 0, 5, 2, 6, 0, 0, 7, 0)	13
1 - 4 - 6 - 7	6	(5, 8, 6, 0, 5, 2, 6, 0, 6, 7, 6)	19

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 10 \ x_1 + 14 \ x_2 \\ 19 \ x_1 + 8 \ x_2 \le 59 \\ 13 \ x_1 + 14 \ x_2 \le 41 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{41}{14}\right)$$
 $v_S(P) = 41$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(0,2)$$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	19	24	67	47
2		18	94	61
3			13	16
4				10

a) Trovare una valutazione inferiore del valore ottimo calcolando l'1-albero di costo minimo.

1-albero:
$$(1, 2) (1, 3) (2, 3) (3, 4) (4, 5)$$
 $v_I(P) = 84$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo:
$$1 - 2 - 3 - 4 - 5$$
 $v_S(P) = 107$

c) Applicare il metodo del *Branch and Bound*, utilizzando l'1-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{34} , x_{24} , x_{45} . Dire se l'algoritmo é terminato.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + (x_2 - 1)^2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 + x_2 + 1 \le 0}.$$

Soluzioni del sister	Mass	imo	Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
$\left(\frac{\sqrt{2}\sqrt{3}}{2}, \frac{1}{2}\right)$	1		NO	NO	SI	SI	NO
$\left(-\frac{\sqrt{2}\sqrt{3}}{2},\frac{1}{2}\right)$	1		NO	NO	SI	SI	NO
(0, -1)	4		NO	NO	NO	NO	SI

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 + 2 x_1 x_2 - 4 x_1 + 4 x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (1,4) , (0,-4) , (2,-1) e (-5,0). Fare una iterazione del metodo di Frank-Wolfe.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$\left(\frac{2}{3}, -3\right)$	$-22/3x_1+16/3x_2$	(0,-4)	$\left(-\frac{2}{3}, -1\right)$	$\frac{1}{10}$	$\left(\frac{3}{5}, -\frac{31}{10}\right)$