Economic History and Innovation A Review of Readings

Ashwin Iyenggar

Corporate Strategy and Policy Indian Institute of Management Bangalore

07 January, 2017

Outline

Overview

Mokyr (2010)

Moser (2013)

Schumpeter (1947)

Stepping Back
Assessing the landscape

Economic History and Innovation

Articles this week

- Temin (1997)
- Epstein (1998)
- Gray (2013)
- Khan and Sokoloff (2001)
- Khan and Sokoloff (1993)
- Khan and Sokoloff (2004)
- Mokyr (2010)
- Schumpeter (1947)
- Moser (2013)

- Industrial revolution changed dynamics of how innovation comes about & the speeds of invention & diffusion
- Technological component of economic modernity caused by a set of intellectual & ideological changes that altered the way Europeans interacted with their physical environment. Not due to growth of foreign trade / Growing use of coal / Emergence of urban bourgeoisie

Technology and economic modernity

- Technology is produced within the system by men
- It is non-rivalrous. Debate on how best to establish optimal incentives in innovative activity
- It is produced under uncertainty Unknown outcomes & Unintended consequences
- Sets the agenda for scientists
- Declining access costs for technology helps economic modernity

Technology in a "Malthusian Economy"

- Traditional societies "Culture of improvement"
- 18th century transition of handling useful knowledge.
 Empirical, unsystematic, tacit set of "understandings" -¿
 Collecting & Analysing in systematic, organised fashion
- Paradox: Productivity growth fails to lead to long term improvements in living standards. "Iron law" of wages rules in the long run
- Most inventions made by artisans. Organised as conservative guilds

A new approach in the first industrial revolution

- Industrial Enlightenment. Bacon's dream that useful knowledge would become a "rich storehouse for the Glory of the Creator and relief of Man's estate"
- Most of 18th century's natural philosophy consisted of 3 Cs: counting, cataloguing & classifying
- Malthusian & epistemic constraints broken because propositional knowledge got better at informing technology; feedback from improved technology into more knowledge
- Push for progress on a wide front in second half of 18th century
- First Industrial Revolution's importance is due to Western economies' ability to sustain technological progress and avoid negative feedbacks & hard constraints

The transition to modern growth, 1830-1880

- Growth in transport technology- most spectacular. Railroad technological history, an eg. of "hybrid" technology
- Special purpose tools used
- Immediate impact of Lavoisier revolution in chemistry on industrial practices
- Useful knowledge in form of "Mechanical science" in early 19th century Britain

The second industrial revolution

- Large scale electricity generation
- French, American adoption of automobile technology
- Ship design changes, Screw propellor
- Development of food preservation & preparation reduced food borne diseases

A suggested interpretation

- Dynamic of innovation began to change in 18th century in the West. Made possible due to a set of institutional developments
- A market for ideas- Efficiency judged by consensus, contestability, cumulativeness
- An open source System of knowledge creation emerged in Europe before Industrial Revolution
- In 18th century, Coercion and Repression were relegated to marginal roles in the market for ideas; Accommodation between religion and the search for useful knowledge; Britain didn't expropriate the profits of innovators & entrepreneurs
- Technological advances, a result of both discrete quantum leaps in knowledge & of small incremental and cumulative microinventions

Patents and Innovation: Evidence from Economic History Summary

- What is the optimal IPR system to encourage innovation?
- Is there one?

Patents and Innovation: Evidence from Economic History

- Innovation outside the patenting system 1851 Crystal Palace
- Alternative: secrecy and lead time
- Contradictory effects of patenting on encouraging economic growth

Patents and Innovation: Evidence from Economic History Plant patents in 1930 and innovation

• Plant Patents with over half between 1930 - 1970 for roses

Patents and Innovation: Evidence from Economic History Secrecy and the direction of technical change

- Secrecy is effective
- Countries without patent laws used secrecy

Patents and Innovation: Evidence from Economic History

- Diffusion effects have been largely ignored
- Patent laws seem to affect direction of technological change and diffusion, but the effect is not causal or necessary

Patents and Innovation: Evidence from Economic History

Patent pools and the mechanism to modify patent laws

- Patent pools expected to weaken the intensity of competition
- Results show that improvements slowed after pooling, only to recover after breaking it down

Patents and Innovation: Evidence from Economic History Compulsory Licensing

- Trading with the enemy act, 20% increase in domestic patenting
- Effect may be delayed
- Problems with uncodified knowledge

Patents and Innovation: Evidence from Economic History

- Many inventors have avoided patents when possible
- Granting strong IP rights to early generations of inventors may discourage innovation

The Creative Response in Economic History Summary

• Adaptive response in the presence of changing conditions

Outline

Overview

Mokyr (2010)

Moser (2013)

Schumpeter (1947)

Stepping Back
Assessing the landscape

Perspectives

 Multiple perspectives on effectiveness of patenting in encouraging innovation, diffusion

- Epstein, S. R. (1998). Craft guilds, apprenticeship, and technological change in preindustrial europe. *The Journal of Economic History*, 58(3):684–713.
- Gray, R. (2013). Taking technology to task: The skill content of technological change in early twentieth century united states. *Explorations in Economic History*, 50(3):351 367.
- Khan, B. Z. and Sokoloff, K. L. (1993). "schemes of practical utility": Entrepreneurship and innovation among "great inventors" in the united states, 1790-1865. *The Journal of Economic History*, 53(2):289–307.
- Khan, B. Z. and Sokoloff, K. L. (2001). History lessons: The early development of intellectual property institutions in the united states. *The Journal of Economic Perspectives*, 15(3):233–246.
- Khan, B. Z. and Sokoloff, K. L. (2004). Institutions and democratic invention in 19th-century america: Evidence from "great inventors," 1790-1930. *The American Economic Review*, 94(2):395–401.

- Mokyr, J. (2010). Chapter 2 the contribution of economic history to the study of innovation and technical change: 1750–1914. In Hall, B. H. and Rosenberg, N., editors, *Handbook of The Economics of Innovation, Vol. 1*, volume 1 of *Handbook of the Economics of Innovation*, pages 11 50. North-Holland.
- Moser, P. (2013). Patents and innovation: Evidence from economic history. *The Journal of Economic Perspectives*, 27(1):23–44.
- Schumpeter, J. A. (1947). The creative response in economic history. *The Journal of Economic History*, 7(2):149–159.
- Temin, P. (1997). Two views of the british industrial revolution. *The Journal of Economic History*, 57(1):63–82.