

DATA SCIENCE & MACHINE LEARNING COURSE

https://www.facebook.com/diceanalytics/ https://pk.linkedin.com/company/diceanalytics

Model Evaluation

DIAGNOSIS

	Diagnosed Diagnosed Sick Healthy	
Sick	1000 True Positives	200 False Negatives
Healthy	800 False Positives	8000 True Negatives

1000 EMAILS

SPAM

	Spam Inbox Folder	
Spam	100 True Positives	170 False Negatives
Not Spam	30 False Positives	700 True Negatives

In this image, the blue points are labelled positive, and the red points are labelled negative.

Furthermore, the points on top of the line are predicted (guessed) to be positive, and the points below the line are predicted to be negative.

Accuracy

Out of total patients, how many identified correctly

	Diagnosed Diagnose Sick Healthy		
Sick	1000 True Positives	200 False Negatives	
Healthy	800 False Positives	8000 True Negatives	

Out of total emails, how many identified correctly

	Spam Folder	Inbox
Spam	100 True Positives	170 False Negatives
Not Spam	30 False Positives	700 True Negatives

CREDIT CARD FRAUD

MODEL: ALL TRANSACTIONS ARE FRAUDULENT.

GREAT! NOW I'M CATCHING ALL OF THE FRAUDULENT TRANSACTIONS!

PROBLEM: I'M ACCIDENTALLY CATCHING ALL OF THE GOOD ONES!

WHICH ONE IS WORST?

HOW WE EVALUATE?

HIGH RECALL

HIGH PRECISION

Precision

Out of all patients diagnosed as sick, how many diagnosed sick correctly

	Diagnosed Sick	Diagnosed Healthy	
Sick	1000 True Positives	200 False Negatives	
Healthy	800 False Positives	8000 True Negatives	

Out of <u>all emails sent to Spam folder</u>, how many <u>emails sent correctly</u>

	Spam Folder	Inbox
Spam	100 True Positives	170 False Negatives
Not Spam	30 False Positives	700 True Negatives

$$\frac{100}{100+30} = 76.9\%$$

QUIZ

OUT OF THE POINTS WE HAVE PREDICTED TO BE POSITIVE, HOW MANY ARE CORRECT?

Recall

Out of <u>all sick patients</u>, how many were <u>correctly diagnosed as sick</u>

	Diagnosed Sick	Diagnosed Healthy
Sick	1000 True Positives	200 False Negatives
Healthy	800 False Positives	8000 True Negatives

Out of <u>all spam emails</u>, how many <u>were correctly sent to spam folder</u>

	Spam Folder	Inbox
Spam	100 True Positives	170 False Negatives
Not Spam	30 False Positives	700 True Negatives

$$\frac{100}{100+170} = 37\%$$

QUIZ

OUT OF THE POINTS LABELLED "POSTIIVE," HOW MANY DID WE CORRECTLY PREDICT?

Precision vs Recall

ONE SCORE?

MEDICAL MODEL

PRECISION: 55.7%

RECALL: 83.3%

SPAM DETECTOR

PRECISION: 76.9%

RECALL: 37%

ONE SCORE?

MEDICAL MODEL

PRECISION: 55.7%

RECALL: 83.3%

SPAM DETECTOR

PRECISION: 76.9%

RECALL: 37%

AVERAGE: 69.5% AVERAGE: 56.95%

MODEL: ALL TRANSACTIONS ARE GOOD.

PRECISION = 100%

AVERAGE = 50%

RECALL = 0%

284,335

MODEL: ALL TRANSACTIONS ARE FRAUDULENT.

PRECISION = 472/284,807 = 0.16%

RECALL = 472/472 = 100%

AVERAGE = 50.08%

Y

ARITHMETIC MEAN=
(X+Y)/2

HARMONIC MEAN=2*(XY)/(X+Y)

PRECISION = 1 PREC

RECALL = 0

AVERAGE = 0.5

HARMONIC MEAN = 0

PRECISION = 0.2

RECALL = 0.8

AVERAGE = 0.5

HARMONIC MEAN = 0.32

ARITHMETIC MEAN (PRECISION, RECALL)

F1 SCORE= HARMONIC MEAN(PRECISION, RECALL)

MODEL: ALL TRANSACTIONS ARE GOOD.

PRECISION = 100%

$$F_1$$
 SCORE = 0

RECALL = 0%

n=165	Predicted: NO	Predicted: YES	
Actual:			
NO	50	10	
Actual:			
YES	5	100	

	Predicted: NO	Predicted: YES
Actual: NO	TN	FP
Actual: YES	FN	TP

- > true positives (TP): These are cases in which we predicted yes (they have the disease), and they do have the disease.
- > true negatives (TN): We predicted no, and they don't have the disease.
- ➤ false positives (FP): We predicted yes, but they don't actually have the disease. (Also known as a "Type I error.")
- False negatives (FN): We predicted no, but they actually do have the disease. (Also known as a "Type II error.")

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Accuracy: Overall, how often is the classifier correct? (TP+TN)/total = (100+50)/165 = 0.91

Precision: When it predicts yes, how often is it correct? TP/predicted yes = 100/110 = 0.91

True Positive Rate: When it's actually yes, how often does it predict yes? TP/actual yes = 100/105 = 0.95 also known as "Sensitivity" or "Recall"

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

False Positive Rate: When it's actually no, how often does it predict yes? FP/actual no = 10/60 = 0.17

Specificity: When it's actually no, how often does it predict no? TN/actual no = 50/60 = 0.83 equivalent to 1 minus False Positive Rate

F1 Score: This is a weighted average of the true positive rate (recall) and precision. 2 * (precision * recall)/(precision + recall)

Receiver Operating Characteristic

True Positive Rate =
$$\frac{\text{TRUE POSITIVES}}{\text{ALL POSITIVES}} = \frac{6}{7}$$
False Positive Rate =
$$\frac{\text{FALSE POSITIVES}}{\text{ALL NEGATIVES}} = \frac{2}{7}$$

True Positive Rate =
$$\frac{\text{TRUE POSITIVES}}{\text{ALL POSITIVES}} = \frac{7}{7} = \frac{7}{7}$$
False Positive Rate =
$$\frac{\text{FALSE POSITIVES}}{\text{ALL NEGATIVES}} = \frac{7}{7} = \frac{7}{7}$$

True Positive Rate =
$$\frac{\text{TRUE POSITIVES}}{\text{ALL POSITIVES}} = \frac{0}{7} = \frac{7}{1}$$
False Positive Rate =
$$\frac{\text{FALSE POSITIVES}}{\text{ALL NEGATIVES}} = \frac{0}{7} = \frac{7}{1}$$

AREA UNDER ROC Curve

ROC AUC Curve

Classifier Decision Threshold

Classifier Decision Threshold

The goal is to outline how to move the decision threshold to in Figure A, reducing false negatives or reducing false positives as per domain knowledge

Let's Practice

