山海 Mas 战队 2023 硬件组培训——第二周(5.29-6.4)

一、目标及任务

1. 目标

- 1. 能较为熟练的掌握原理图的绘制以及 PCB 绘制的知识
- 2. 能熟练的使用网站 ultralibrarian 导入封装及其原理图
- 3. 能够熟练的修改原理图库
- 4. 明白 Altium 中 PCB 各个规则约束的意义
- 5. 明白 PCB layout 中各个关键信号的最好布局

2. 任务

- 1. 必做任务一: 跟着下文阿里云盘的视频完成资料准备、工程建立、原理图和封装库准备、原理图绘制、PCB 板绘制, DR 规则设置, DRC 检查。并且学会使用 ultralibrarian 进行封装导入,或者其他渠道(立创商场)的封装导入。
- 2. 必做任务二:独立完成降压模块的 PCB 绘制,使用 LDO 芯片(你可以选择其他型号的 LDO 芯片),并解决 DRC 报告中的所有报错(warning 和 error)。
 - 3. 必做任务三:将学习过程中的问题记录下来,每人至少记录 2 个
 - 4. 提升任务一: 清楚 LDO 的原理
- 5. 提升任务二: 清楚 buck 电路的原理,并选择一款 buck 芯片(建议 TPS5430)进行电路原理图绘制和 PCB 绘制,如果你选则这一项,你可以不完成前两项基础部分。

二、基于 AltiumDesigner 的 PCB 设计开发基础

视频资料:

【阿里云盘】https://www.aliyundrive.com/s/R6ThMApSRnZ(必看)

提取码: 22qq

【Altium Designer 20 19 (入门到精通全 38 集) 四层板智能车 PCB 设计视频教程 AD19 AD20 凡亿】 https://www.bilibili.com/video/BV16t411N7RD (如果没有时间,稍后看)

1. 原理图绘制

以电源电路为例,来展示原理图及 PCB 设计的基本流程。

a) 基本流程

- 1) 资料准备:包括主要芯片的datasheet,参考电路原理图等。
- 2) 原图库及 PCB 封装库准备
- 3) 原理图绘制

b) 举例: LDO

1) 资料准备

a) 参考电路原理图

以下是一个 5V 转 3. 3V 电压的低压差线性稳压器 (LDO) 电路原理图,输入是 VCC5V,输出时 VCC3V3。电路主要有控制芯片 RT9013-33,输入滤波电容 C13 和 C14,输出滤波电容 C15 和 C16,以及一个电阻和一个绿色 LED 灯组成。

C13 和 C14 构成了输入电路, C15 和 C16 构成了输出电路, 电阻和 LED 灯构成了负载电路的一部分, 主要起到指示该电源模块是否正常工作的作用。输入电路和输出电路构成了整个降压电源模块的外围电路, 而其中 LDO 指的就是RT9013-33 这个控制芯片。

b) Datasheet 准备

该电路需要准备 datasheet 的芯片只有 RT9013-33。我们主要可以从两个渠道找到这个芯片的 datasheet。第一种方式是从立创商城寻找,以下图片展示了过程。

第二种方式是去到这款芯片的开发商的官网去下载资料,这种方式下载的资料比较全、比较新,但比较麻烦。对于新手可以直接考虑前一种方式,一般来说完全够用,等熟悉后再选择去官网下载自己需要的资料。

2) 库准备

在给大家准备的原理图库和封装库中基本包含基本元器件,例如电阻、电容、电感、三极管和 mos 管等,以及一些常用 IC 芯片的原理图和封装库,大家在使用时直接进行调用即可。如果有需要使用一些其中没有的芯片,第 3 点会教大家使用 ultralibrarian 导入原理图和封装。

这里举例使用的 RT9013 的原理图并没有在给到大家的库中,大家可以先看第 3 点,再继续看这个例子。

3) 原理图绘制

按照参考电路或者 RR9013-33 的 datasheet 中的推荐电路绘制我们的原理图。

Typical Application Circuit

具体绘制可以看下文阿里云盘的视频。

2. PCB 设计

a)基本流程

- 1) PCB设计: 布局, 布线/铺铜
- 2) 检查和优化

b) 举例: LDO

1) PCB 设计

将原理图的封装导入 PCB 中,我们将得到以下图片所示的一堆元器件封装,我们的目的便是将他们合理摆放,并建立起电气连接。

完成布局后的 PCB 如图所示。

完成布线和铺铜之后的 PCB 如图所示。

2) 检查和优化

由于这个模块的布线和铺铜都比较简单,因此也没有什么好优化的。接下来只进行了丝印的优化。

使用 DRC 检查 PCB 绘制是否有误, DRC 的规则设置在第 4 点, 可以先行观看。

具体绘制可以看下文阿里云盘的视频。

3. 原理图库绘制与封装导入(使用 ultralibrarian)

a) 原理图库绘制

- 一般我们可以建立一个自己的原理图库和封装库,在其中放入自己绘制的原理图和封装。
- 一般自己建立的原理图库中,原理图自己绘制比较多,而封装使用导入比较多。

绘制原理图库的依据就是我们之前准备的 datasheet 手册,其中有关于 IC 芯片的 Pin Configurations,选择对应我们选择封装的原理图,这里我们使用的是 SOT-23-5 这个封装,这个封装对应的原题图如图所示。

Pin Configurations

接下来,我们在原理图库中新建一个原理图,绘制出RT9013-33的原理图,如图所示。

具体绘制过程可以下文阿里云盘的视频。

b) 原理图和封装导入

进入ultralibrarian 这个网站,搜索 RT9013-33,下载原理图和封装图库,下载后使用自带的脚本进行导入,具体可以看我准备的视频。

RT9013 的封装(SOT-23)是在给到大家的封装库中,我只需要完成自己绘制的原理图和封装的匹配,即可正常调用该 IC 芯片的原理图了。当然我们也可以使用 ultralibrarian 这个网站完成原理图和封装一并导入,不过需要注意的是,有可能我们需要的芯片在这个网站上没有,这个时候就需要需求其他导入渠道或者自己绘制了,例如 RT9013-33 就没有。

具体的操作可以看下文阿里云盘的视频,视频中还将为大家简答介绍如何修改原理图库和封装库。

4. DRC与DR规则

a) DR 规则

DR 规则是一些约条件,它们能够帮助我们顺利的完成 PCB 的绘制。我们绘制的 PCB 要想拿去打板,就得符合 PCB 板厂的大板规则,而我们可以使用 DR 规则来完成对我们自己绘制的 PCB 的约束。

电气约束,保持默认即可。

线路约束,一般我们会区分信号线和电源线的宽度

过孔约束,一般按照 PCB 板厂的要求进行设置,下图是符合嘉立创的要求的一种过孔约束(但其他板厂可能打板不了)。

连接约束,个人习惯使用全连接,如图所示,当然也可以选择默认模式。

丝印约束, 对丝印与其他元素的距离进行约束, 设置时根据自己的需求来设置就行。

b) DRC 检测

DRC检测就是对绘制的PCB进行上述设置好的约束进行检查的过程,它会输出一个报告,以便用户进行修改。

具体可以看下文阿里云盘的视频进行学习,另外在视频中也将教给大家如何使用他人已 经设置好 的规则,可以节省大量时间。