Introducción a la Geometría Algebraica

Nicholas Mc-Donnell

 $1 er \ semestre \ 2019$

Índice general

1.	\mathbf{Intr}	Introducción				
	1.1.	Motivación	3			
		1.1.1. Resolución de singularidades para una curva	3			
	1.2.	Preliminares Algebraicos	4			
	1.3.	Conjuntos Algebraicos	6			
	1.4.	Base de Hilbert	7			

2 ÍNDICE GENERAL

Info

Libro: "Algebraic Curves" William Fulton

Libro 2: "Introduction to Commutative Algebra" Atiyah, Mac Donald

Notas: Tareas

Capítulo 1

Introducción

1.1. Motivación

Estudio de objetos geométricos derivados de los polinomios (Variedades \rightarrow Esquemas, etc). Los objetos son suaves o singulares.

1.1.1. Resolución de singularidades para una curva

Consideramos el siguiente polinomio:

$$\{(x,y) \in \mathbb{C}^2 : f(x,y) := y^2 - x^2(x+1) = 0\} = C$$

Definición 1.1.1 (Singularidad). Es $p \in \mathbb{C}^2$ tal que $f(p) = 0, f_x(p) = 0$ y $f_y(p) = 0$

En el ejemplo el (0,0) es el único punto singular.

Considerar el morfismo:

$$\mathbb{C}^2 \xrightarrow{\sigma} \mathbb{C}^2$$
$$(u, v) \mapsto (uv, v)$$

Vemos la pre-imagen:

$$\sigma^{-1}(C) = \{v^2 - u^2v^2(uv + 1) = 0\}$$
$$= \{v^2 = 0\}\{1 - u^2(uv + 1) = 0\}$$

Ejemplo: 1.1.1.

$$\mathbb{C}^2 \longrightarrow \mathbb{C}^2$$
$$T(x,y) = (-x, -y)$$

T es automorfismo de \mathbb{C}^2

$$T \circ T = 1$$

Lo que sucede es que el grupo $\{1, T\} = G$ actua en \mathbb{C}^2 .

Mirar \mathbb{C}^2/G =espacio de órbitas de G, lo cuál es una variedad algebraica

Funciones regulares en $\mathbb{C}^2 = \mathbb{C}[x, y]$.

Queremos buscar lo siguiente:

$$\mathbb{C}[x,y]^G = \{f(x,y) \text{polinomio tal que } f(x,y) = f(-x,-y)\} = \mathbb{C}[x^2,y^2,xy]$$

$$\mathbb{C}[x^2,y^2,xy] \simeq \mathbb{C}[a,b,c]/(c^2-ab)$$

$$\therefore \mathbb{C}^2/G := \{(a,b,c) \in \mathbb{C}^3 : c^2-ab=0\}$$

Ejemplo: 1.1.2.

$$\{(x,y) \in k^2 : x^{2n} + y^{2n} = 1\} = V(k)$$

Cómo se ve V(k)? $(V(k) \neq \emptyset)$ n = 1

 $k=\mathbb{Q}$: Circunferencia porosa $(x=\frac{t^2-1}{t^2+1},y=\frac{2t}{t^2+1})(\text{Viene de }\mathbb{Z},$ aritmético)

 $k = \mathbb{R}$: Circunferencia completa (Viene de Análisis/límites)

 $k = \mathbb{C}$: Esfera sin puntos?

$$n \geq 2$$
: $V(\mathbb{Q}) \subset V(\mathbb{R}) \subset V(\mathbb{C})$

 $V(\mathbb{Q})$: Ultimo Teorema de Fermat \implies 4ptos

 $V(\mathbb{R})$: Algo que se acerca a un cuadrado con n "grande"

 $V(\mathbb{C})$: Objeto extraño con g=(n-1)(2n-1) agujeros

Variedades = ceros de polinomios $\in k[x_1,...,x_n]$ donde $k = \overline{k}$

1.2. Preliminares Algebraicos

- Anillos conmutativos con 1, y morfismos de anillos, tal que el $1 \mapsto 1$
- Dominios (sin div. del cero) y cuerpos (todo $u \neq 0$ es unidad)
- R anillo $\to R[x]$, grado, mónico. En general: $R[x_1,...,x_n]$
- \bullet Polinomios homogeneos: $F \in R[x_1,...,x_n]$ ssi $F(\lambda x_1,...,\lambda x_n) = \lambda^{\deg(F)}F(x_1,...,x_n)$
- $a \in R$ es <u>irreducible</u> si a no unidad, no cero y $a = bc \implies b$ o c es unidad

- $a \in R$ es primeo si $a \mid bc \implies a \mid b \circ a \mid c$
- R es UFD (DFU): Todo elemento se factoriza de forma única salvo orden y unidades. (R UFD $\Longrightarrow R[x]$ UFD)
- Dado R dominio existe $F = \text{cuerpo de fracciones de } R \supset R, F = \{\frac{a}{b} : a, b \in R, b \neq 0\}$
- f morfismo, ker f (ideal) Im f (anillo)
- Ideal ≅ Kernel (Primer teorema de Isomorfismo)
- Para $S \subset R$ anillo, $\langle S \rangle$ = Ideal generado por S

Definición 1.2.1 (Ideal Primo). $p \subset R$ ideal primo ssi $ab \in p \implies a \in p \lor b \in p$

Teorema 1.2.1. $p primo \iff R/p dominio.$

Demostración. p ideal primo

$$ab = 0$$

$$\iff ab \in p$$

$$\iff a \in p \lor b \in p$$

$$\iff a = 0 \lor b = 0$$

Definición 1.2.2 (Ideal Maximal). $p \subset R$ es maximal ssi $p \subset m \subset R$, m ideal $\implies p = m \lor m = R$

Teorema 1.2.2. m maximal $\iff R/m$ es cuerpo

 $Demostración. \implies$

Sea $a \in R \setminus m$, por lo que $a \neq 0$, luego ya que m maximal, < m, a >= R. Dado esto, sabemos que $\exists b \in m, \exists c, d \in R : bc + ad = 1$, y viendo esto en R/m tenemos que ad = 1, o sea, a tiene inverso.

Por contradicción, existe n ideal maximal que contiene a m

Problema 1.2.1. Sea R un dominio.

- 1. Si F,G son formas¹ de grado r,s respectivamente en $R[x_1,...,x_n]$, muestre que FG es una forma de grado r+s
- 2. Muestre que todo factor de una forma en $R[x_1,...,x_n]$ también es una forma

Problema 1.2.2. Sea R un DFU, K el cuerpo cociente de R. Muestre que todo elemento z de K se puede escribir

П

¹Polinomios homogeneos

1.3. Conjuntos Algebraicos

Definición 1.3.1 (Espacio Afín). El Espacio afín de dimensión n es $\mathbb{A}^n_k := k^n$

Definición 1.3.2 (Hipersuperficie). Dado $F \in k[x_1,...,x_n]$, se define la **hipersuperficie**

$$V(F) := \{(a_1, ..., a_n) \in k^n : F(a_1, ..., a_n) = 0\}$$

Ejemplo: 1.3.1. $V(y^2 - x^2(x+1)) \subset \mathbb{A}^2_{\mathbb{R}}$

Ejemplo: 1.3.2. $V(ax^2+by^2+1)\subset \mathbb{A}^2_{\mathbb{R}}=\emptyset$, dado a,b>0, distinto a $V(x^2+y^2+1)\subset \mathbb{A}^2_{\mathbb{C}}$

Ejemplo: 1.3.3. $V(y^2 - x(x^2 - 1)) \subset \mathbb{A}^2_{\mathbb{R}}$

Ejemplo: 1.3.4. $V(z^2 - x^2 - y^2) \subset \mathbb{A}^3_{\mathbb{R}}$

Ejemplo: 1.3.5. $V((x^2-y^2)(x^3-1)(y^3-1)) \subset \mathbb{A}^2_{\mathbb{R}}$

Definición 1.3.3 (Conjunto Algebraico). Sea $S \subset k[x_1,..,x_n]$. Un conjunto algebraico afín

$$V(S) = \{ p \in \mathbb{A}_k^n : F(p) = 0 \forall F \in S \}$$
$$= \bigcap_{F \in S} V(F)$$

$$S = \{F_1, ..., F_m\}, V(S) = V(F_1, ..., F_m)$$

Propiedades 1.3.4 (Conjuntos Algebraicos).

1. Si
$$I = \langle S \rangle \Longrightarrow V(S) = V(I)$$

Demostración. Sea $p \in V(S) \implies F(p) = 0 \forall F \in S$.

Sea
$$G \in I \implies G = r_1F_1 + ... + r_mF_m, F_1, ..., F_m \in S$$
 $r_1, ..., r_m \in k[x_1, ..., x_n]$

$$\therefore G(p) = r_1(p)F_1(p) + \ldots + r_m(p)F_m(p) = 0 \implies p \in V(I)$$

Si $p \in V(I) \implies$ en particular $F(p) = 0 \forall F \in S \subset I \implies p \in V(S)$

$$\therefore V(I) = V(S)$$

- 2. $\{I_{\alpha}\}_{\alpha \in J}$ familia de ideales $\implies V(\bigcup_{\alpha \in J} I_{\alpha}) = \bigcap_{\alpha \in J} V(I_{\alpha})$
- 3. $I \subset J$ ideales $\Longrightarrow V(I) \supset V(J)$
- 4. $V(FG) = V(F) \cup V(G)$ Sea I, J ideales $\implies V(I) \cup V(J) = V(\langle FG : F \in I, G \in J \rangle)$
- 5. $V(\emptyset) = \mathbb{A}_k^n$, $V(1) = \emptyset$

Observación 1.3.1. La unión arbitraria de conjuntos algebraicos no es necesariamente conjunto algebraico:

$$\mathbb{N} = V(I)$$
?

Observación 1.3.2 (Topología de Zariski). Los conjuntos algebraicos definen los conjuntos cerrados para una topología en \mathbb{A}^n_k (\mathbb{A}^n_k \cerrados = abiertos). Los cerrados de esta topología son $\{\emptyset, \mathbb{A}^n_k, \text{conj. finitos}\}$

Definición 1.3.5 (Ideal de un conjunto). Sea $X\subset \mathbb{A}^n_k$. $I(X)=\{f\in k[x_1,...,x_n]: f(p)=0 \forall p\in X\}$

Propiedades 1.3.6 (Ideales de conjuntos).

1. I(X) es ideal:

Demostración.
$$f, g \in I(X) \implies f(p) + g(p) = 0, \forall p \in X \implies f + g \in I(X)$$

 $r \in k[x_1, ..., x_n], f \in I(X) \implies r(p)f(p) = r(p) \cdot 0 = 0 \forall p \in X \implies rf \in I(X)$

- $2. X \subset Y \implies I(X) \supset I(Y)$
- 3. $I(\emptyset) = k[x_1, ..., x_n], I(\mathbb{A}_k^n) = (0)$ si k es un cuerpo infinito. $I(\{a_1, ..., a_n\}) = (x_1 a_1, x_2 a_2, ..., x_n a_n)$ $a_i \in k$
- 4. $I(V(S)) \supset S \ \forall \ \text{conj.} \ S \subset k[x_1,..,x_n], \ V(I(X)) \supset X \forall X \subset \mathbb{A}_h^n$
- 5. $V(I(V(S))) = V(S) \ \forall$ conj. de pol. $S, I(V(I(X))) = I(X) \forall X \subset \mathbb{A}^n_k$
- 6. Si $V = \text{conj. alg.} \implies V = V(I(V))$, si $I = \text{ideal} \implies I = I(V(I))$

Observación 1.3.3. Si I = I(X) y $\exists m \in \mathbb{N} : F^m \in I$, entonces $F \in I$

Definición 1.3.7 (Ideal Radical). Si *I* es ideal de *R*, entonces el ideal Radical es:

$$\operatorname{rad} I = \{ a \in R : \exists m \in \mathbb{N} a^m \in I \}$$

1.4. Base de Hilbert

Teorema 1.4.1 (Base de Hilbert). Todo conjunto algebraico es la intersección de un número finito de hipersuperficies.

Definición 1.4.1 (Anillo Noetheriano). Sea R anillo. R se dice **Noetheriano** ssi todo ideal de R es finitamente generado.

Observación 1.4.1. Notar que k cuerpo es Noetheriano, y que los DIP son Noetherianos.

Teorema 1.4.2 (Hilbert). R Noetheriano $\implies R[x_1,...,x_n]$ Noetheriano

Demostración. $F(x) = a_0 + a_1 x + ... + a_d x^d \in R[x]$ $a_d \neq 0$, a_d se llamará término líder de $F(a_d = l(F))$.

Sea $I \subset R[x]$ ideal, Sea $J \subset R$ el conjunto de todos los términos líderes de elementos en I

Observación 1.4.2. J es ideal

 \therefore Por hipótesis $J = \langle l(F_1, ..., l(F_r)) \rangle$.

Sea $N > \deg(F_i) \forall i = 1, ..., r$

Para cada $m \leq N$, sea J_m el conjunto de los coeficientes líderes de $F \in I$ con $\deg(F) \leq n$. Notamos que J_m es ideal.

 \therefore Por hipótesis, $J_m = \langle \underbrace{l(F_{m,i})}_{\text{Finitos}} \rangle \text{ con deg}(F_{m,i}) \leq m.$

$$I' = \langle F_1, ..., F_r, \bigcup_{m=1}^N \{F_{m,i}\} \rangle$$

Notar que $I' \subseteq I$. Sea $G \in I \setminus I'$ tal que su grado es lo más pequeño posible.

Caso 1: Si $\deg(G) > N \implies \exists$ polinomios $\{Q_i\}$ tal que G y $\sum_{i=1}^r Q_i \cdot F_i$ tienen el mismo líder: Sea $l(G) = \sum_{i=1}^r \alpha_i \cdot l(F_i)$

$$\therefore Q_i = \alpha_i \cdot x^{\deg(G) - \deg(F_i)}$$

$$\therefore \deg(\underbrace{G - \sum_{i \in I} Q_i \cdot F_i}) < \deg(G)$$

 $Y G - \sum Q_i \cdot F_i \notin I'$ en otro caso $G \in I' \to \leftarrow$

Caso 2: Si $\deg(G) \leq N \implies \deg(G) = m \leq N$

 \therefore hacer lo mismo con J_m

Corolario. $k[x_1,...x_m]$ es Noetheriano.

Definición 1.4.2 (Reducible/Irreducible). $V \subset \mathbb{A}^n$ conjunto algebraico. Si $V = V_1 \cup V_2$ donde V_1, V_2 son conjuntos algebraicos en \mathbb{A}^n y $V \neq V_i, i = 1, 2 \implies$ se dice que V es **reducible**. Si no, es **irreducible**

Ejemplo: 1.4.1. $V(xy) \subset \mathbb{A}^2_k, \ V(xy) = V(x) \cup V(y) \implies V(xy)$ es reducible.

Ejemplo: 1.4.2. $\{p,q\}\subset \mathbb{A}^n_k,\,V=\{p,q\}=\{p\}\cup\{q\}$

Ejemplo: 1.4.3. $V(x^2) \subset \mathbb{A}^2$, $(x^2) = I$ no es primo

Proposición 1.4.3. V irred. $ssi\ I(V)$ es primo

Demostración. Si I(V) no primo $\implies F_1, F_2 \in k[x_1, ..., x_2]$ con $F_1F_2 \in I(V)$, pero $F_i \notin I(V)$ i = 1, 2

$$\implies V = (V \cap V(F_1)) \cup (V \cap V(F_2)), V \cap V(F_i) \not\subset V$$

Si $p \in V \implies F_1(p) \cdot F_2(p) = 0 \implies F_1(p) = 0 \lor F_2(p) = 0.$

Luego $\exists q_i \in V$ tal que $F_i(q_i) \neq 0 \implies q_i \notin V \cap V(F_i)$

 $\therefore V$ es reducible

9

Lema 1.4.4. $\mathcal{J} \neq \emptyset$ conjunto arbitrario de ideales en un anillo Noetheriano R, entonces existe elemento maximal, es decir, $\exists \mathcal{M} \in \mathcal{J}$ tal que \mathcal{M} no está contenido en ningún ideal de \mathcal{J}

Demostración. Tomar $I_1 \in \mathcal{J} \neq \emptyset$ y $\mathcal{J}_1 = \{I \in \mathcal{J} : I \not\supseteq I_1\}$. Si $\mathcal{J}_1 = \emptyset$, tenemos lo pedido, sino $I_2 \in \mathcal{J}_1$. Seguir este proceso:

$$I_1 \nsubseteq I_2 \nsubseteq ...$$

Luego definimos $I = \bigcup_{i=1}^{\infty} I_i$, un ideal de R.

$$\implies I = (f_1, ..., f_m)$$

$$\implies \exists s : f_1, ..., f_m \in I_s$$

$$\implies I = (f_1, ..., f_m) \subseteq I_s$$

Lo que es una contradicción, por lo que tenemos lo pedido.

Teorema 1.4.5. Sea $V \subseteq \mathbb{A}^n_k$ conj. alg., entonces $\exists V_1, ..., V_m$ irreducibles univocamente determinados tales que

$$V = V_1 \cup ... \cup V_m, V_i \not\subseteq V_i si \ i \neq j$$

Demostración. Sea $S = \{V \subset \mathbb{A}^n \text{ algebraico tal que no es unión finita}\}$. Sea $V \in S$ elemento minimal (a través de I(V) tenemos colección de ideales \mathcal{J}_s)

- $\therefore V$ es irreducible (sino $V = V_1 \cup V_2$ y $V_i \not\subseteq V \ V_i \neq \emptyset)$
- $\therefore V$ irreducible no por definición
- $\therefore S = \emptyset$

<u>Unicidad</u>: $V_1 \cup ... \cup V_m = W_1 \cup ... \cup W_r$ irreducibles.

$$V_1 = \bigcup_{i=1}^r \underbrace{(W_i \cap V_1)}_{\text{coni. alg.}}$$

Pero V_1 es irreducibles, por lo que $\exists i: V_1 = W_i \cap V_1 \implies V_1 \subseteq W_i$.

$$W_i = \bigcup_{j=1}^m (V_j \cap W_i)$$

 W_i es irreducible, por lo que $V_1 = W_i$

Conj. alg. de \mathbb{A}^2_k

Proposición 1.4.6. $F,G \in k[x,y]$ sin factores en común, entonces $V(F,G) = V(F) \cap V(G)$ es un conjunto finito.

Demostración. F, G sin div. comunes en k[x, y] = k[x][y], entonces tampoco tienen en k(x)[y]. \therefore existen $h, r \in k(x)[y]$ tal que $h \cdot F + r \cdot G = 1$

Limpiamos el denominador (pol. en x)

$$\therefore H(x,y)F(x,y) + R(x,y)G(x,y) = p(x)$$

Si $(a,b) \in \mathbb{A}^2_k$, F(a,b) = 0 y G(a,b) = 0, entonces p(a) = 0

Luego los ceros comunes de F y G tienen finitas posibilidades para x (ya que son los ceros de p(x) son finitos). Análogo para y.

Corolario. F pol. irred. en k[x,y] y $|V(F)| = \infty$, entonces I(V(F)) = (F) y V(F) irreducible.

Demostración. Si $G \in I(V(F))$, entonces $|V(F,G)| = \infty$, luego F,G tienen factores en común, pero F es irred. por lo que $F \mid G$, luego $G = F \cdot H$, con lo que tenemos que I(V(F)) = (F), V(F) es irreducible (F) es primo)

<u>Desafío</u>: Dados finitos puntos en $S \subset \mathbb{A}^2_{\mathbb{R}}$ entonces existe $F(x,y) \in \mathbb{R}[x,y]$ <u>irreducible</u> tal que S = V(F)

Teorema 1.4.7 (Nullstenllensatz). Si $I \nsubseteq k[x_1,...,x_n]$, entonces $V(I) \neq \emptyset$

Demostración. Suponer que I es maximal (ya que sino, $I \subset M \nsubseteq k[x_1, ..., x_n \ V(M) \subseteq V(I))$). Notar que $k \subseteq K$ (ya que $I \nsubseteq k[x_1, ..., n]$)

Luego considerar $k[x_1,...,x_n]/I=K$ un cuerpo. Se considera $k[x_1,...,x_n]\to K$, y lo que queremos mostrar que K=k

Teorema 1.4.8 (Nullstenllensatz Fuerte). Si $k = \overline{k}$ e $I \subset k[x_1, ..., x_n]$ ideal, entonces I(V(I)) = rad(I), es decir, si f es cero en $V(I) \Longrightarrow \exists m : f^m \in I$

Truco de Rabinowitsch. Digamos que $f_1, ..., f_m = I \subset k[x_1, ..., x_n]$

Corolario. $Si\ I = rad(I) \implies I(V(I)) = I$

Corolario. Si I es primo, entonces V(I) es irreducible.