Задача 3. Дадено е следното квадратно уравнение:

$$ax^2 + bx + c = 0$$

Да се опише с псевдо-код намирането на броя на (реалните) корени на уравнението. Да се конструира модел с граф на данновия поток, от който да се дефинират тестови сценарии за структурно тестване (тестване по метода на бялата кутия). Да се опишат основните стъпки при конструиране на модела.

Решение.

begin Read(a) Read(b) Read(c) $roots \leftarrow 0$ $d \leftarrow b^2 - 4ac$ if d > 0 then $roots \leftarrow 2$ else if d = 0 then $roots \leftarrow 1$ endif print(r)end

При използването на тази техника за тестване се прилагат следните стъпки:

- 1) Създаване и верифициране на граф на данновите зависимости (най-комплексната стъпка);
- 2) Дефиниране и избор на даннови елементи за създаване на тестови сценарии;
- 3) Инициализиране на входните променливи;
- 4) Планиране на проверка на резултата.

Имаме 2 основни подхода за конструиране на граф на данновите зависимости:

forward tracing – започва се с определяне на входните променливи и константи, след това се определят междинните променливи и накрая – изходните променливи;

backward tracing – обратно на първия подход, започваме от определяне на изходните променливи и вървим в обратна посока докато се достигне до входните променливи и константи.

Създава се по 1 подграф за всяко разклонение. В нашия случай селекторният възел определя 3 различни разклонения (d > 0, d = 0, d < 0) и затова на първа страница дефинирахме 3 подграфа.

Всеки подграф определя един тестов сценарий.

Примерни тестови сценарии:

Подграф 1:
$$b=4$$
, $a=4$, $c=4\Rightarrow d<0\Rightarrow r=0$
Подграф 2: $b=4$, $a=4$, $c=1\Rightarrow d=0\Rightarrow r=1$
Подграф 3: $b=4$, $a=1$, $c=1\Rightarrow d>0\Rightarrow r=2$

Допълнение:

Предимството на тази техника за тестване (тестване на данновите зависимости) е, че се фокусира върху проверката на взаимовръзките между данните вместо върху последователността на изчисленията.