Künstliche Intelligenz Perceptron

Jun.-Prof. Dr.-Ing. Stefan Lüdtke

Universität Rostock

Institut für Visual & Analytic Computing

General schema and dynamics:

General schema and dynamics:

$$y = \begin{cases} 1 & \text{if } \sum_{i} x_i \cdot w_i \ge t \\ 0 & \text{otherwise} \end{cases}$$

$$y = \begin{cases} 0 & \text{otherwise} \end{cases}$$

$$y = \Theta(\vec{x} \cdot \vec{w} - t)$$

A small two-input example:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1 \mid 0 \mid 1$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

General schema and dynamics:

$$y = \begin{cases} 1 & \text{if } \sum_{i} x_{i} \cdot w_{i} \geq t \\ 0 & \text{otherwise} \end{cases}$$

$$y = \begin{cases} 0 & \text{otherwise} \end{cases}$$

$$y = \Theta(\vec{x} \cdot \vec{w} - t)$$

A small two-input example:

General schema and dynamics:

$$y = \begin{cases} 1 & \text{if } \sum_{i} x_i \cdot w_i \ge t \\ 0 & \text{otherwise} \end{cases}$$

$$y = \begin{cases} 0 & \text{otherwise} \end{cases}$$

$$y = \Theta(\vec{x} \cdot \vec{w} - t)$$

► A small two-input example:

	а	b	у	а	b	У
a 1.0	0	0	0	0.2	0.0	0
$0.0 (0.5) \rightarrow y$	0	1	0	0.0	0.2	0
-0.8 (0.5) → y	1	0	1	0.5	0.0	1
Ь	1	1	0	5.0	1.0	1
	<i>y</i> =	= <i>a</i> ∧	$\neg b$?	

General schema and dynamics:

$$y = \begin{cases} 1 & \text{if } \sum_{i} x_{i} \cdot w_{i} \geq t \\ 0 & \text{otherwise} \end{cases}$$

$$y = \begin{cases} 0 & \text{otherwise} \end{cases}$$

$$y = \Theta(\vec{x} \cdot \vec{w} - t)$$

► A small two-input example:

	a	b	у	а	b	у
a 1.0	0	0	0	0.2	0.0	0
0.5 $\rightarrow y$	0	1	0	0.0	0.2	0
-0.8 0.3	1	0	1	0.5	0.0	1
ь	1	1	0	5.0	1.0	1
	<i>y</i> =	1 = <i>a</i> ∧	$\neg b$?	•

Take-away-messages of section: "Structure and Dynamics of Perceptrons"

You should now be able to ...

- explain what a simple perceptron is
- describe the dynamics of a single threshold unit
- name one of the first existing hardware-implementation of a perceptron
- describe the structure, dynamics and adaptation process of the Mark 1 perceptron

Learning objective of section: "Training Perceptrons"

In this section we will ...

- discuss the idea behind training a perceptron based on data
- discuss the error function generated by artificial neural networks in general and for threshold units in particular
- introduce a corresponding adaptation schema the delta rule
- discuss the idea of a hypothesis space
- discuss limitations of single layer perceptrons

Training a Single Layer Perceptron

Training a Perceptron

Result: A trained perceptron

Input: A perceptron *P*, a set of training data *D*

- 1 Let π_P be the set of parameters of P: weights and thresholds
- 2 Initialise all parameters π_P , randomly
- 3 repeat
- Compute error E wrt. D and current parameters π_P
- Modify parameters π_P such that the error decreases
- 6 until E is acceptable
- 7 return The modified perceptron P

$$x \xrightarrow{W} t \longrightarrow y$$

$$y_{w,t}(x) = \begin{cases} 1 & \text{if } x \cdot w \ge t \\ 0 & \text{otherwise} \end{cases}$$

$$y_{w,t}(x) = egin{cases} 1 & ext{if } x \cdot w \geq t \\ 0 & ext{otherwise} \end{cases}$$

1. How many parameters has this perceptron?

$$y_{w,t}(x) = \begin{cases} 1 & \text{if } x \cdot w \ge t \\ 0 & \text{otherwise} \end{cases}$$

- 1. How many parameters has this perceptron?
- 2. Let the following dataset be given. How big is the error *E*?

$$y_{w,t}(x) = \begin{cases} 1 & \text{if } x \cdot w \ge t \\ 0 & \text{otherwise} \end{cases}$$

- 1. How many parameters has this perceptron?
- 2. Let the following dataset be given. How big is the error E?

$$y_{w,t}(x) = \begin{cases} 1 & \text{if } x \cdot w \ge t \\ 0 & \text{otherwise} \end{cases}$$

- 1. How many parameters has this perceptron?
- 2. Let the following dataset be given. How big is the error E?

Х	У	Id Error
0	1	$a y_{w,t}(0)-1 $
1	0	$b y_{w,t}(1)-0 $

$$y_{w,t}(x) = \begin{cases} 1 & \text{if } x \cdot w \ge t \\ 0 & \text{otherwise} \end{cases}$$

- 1. How many parameters has this perceptron?
- 2. Let the following dataset be given. How big is the error E?

X	у	Id Error
0	1	$a y_{w,t}(0)-1 $
1	0	$b y_{w,t}(1) - 0 $

Give the mathematical formula for E wrt. w and t (provide the signature and the definition)!

x y ld
0 1 a
1 0 b

▶ Error wrt. datapoint a (x = 0):

$$E_a(w,t)$$

▶ Error wrt. datapoint b (x = 1):

$$E_b(w, t)$$

$$E(w,t) = E_a(w,t) + E_b(w,t)$$

x y Id
0 1 a
1 0 b

▶ Error wrt. datapoint a (x = 0):

$$E_a(w,t) = \begin{cases} 0 & \text{if } w \cdot 0 \ge t \\ 1 & \text{if } w \cdot 0 < t \end{cases}$$

▶ Error wrt. datapoint b (x = 1):

$$E_b(w,t)$$

$$E(w,t) = E_a(w,t) + E_b(w,t)$$

$$x \xrightarrow{W} t y$$

▶ Error wrt. datapoint a (x = 0):

$$E_a(w,t) = \begin{cases} 0 & \text{if } w \cdot 0 \ge t \\ 1 & \text{if } w \cdot 0 < t \end{cases} = \begin{cases} 0 & \text{if } 0 \ge t \\ 1 & \text{if } 0 < t \end{cases}$$

▶ Error wrt. datapoint b (x = 1):

$$E_b(w,t)$$

$$E(w,t) = E_a(w,t) + E_b(w,t)$$

$$x \xrightarrow{W} t y$$

▶ Error wrt. datapoint a (x = 0):

$$E_a(w,t) = \begin{cases} 0 & \text{if } w \cdot 0 \ge t \\ 1 & \text{if } w \cdot 0 < t \end{cases} = \begin{cases} 0 & \text{if } 0 \ge t \\ 1 & \text{if } 0 < t \end{cases}$$

▶ Error wrt. datapoint b (x = 1):

$$E_b(w,t) = egin{cases} 0 & ext{if } w \cdot 1 < t \ 1 & ext{if } w \cdot 1 \geq t \end{cases}$$

$$E(w,t) = E_a(w,t) + E_b(w,t)$$

$$x \xrightarrow{w} t y$$

▶ Error wrt. datapoint a (x = 0):

$$E_a(w,t) = \begin{cases} 0 & \text{if } w \cdot 0 \ge t \\ 1 & \text{if } w \cdot 0 < t \end{cases} = \begin{cases} 0 & \text{if } 0 \ge t \\ 1 & \text{if } 0 < t \end{cases}$$

Error wrt. datapoint b (x = 1):

$$E_b(w,t) = \begin{cases} 0 & \text{if } w \cdot 1 < t \\ 1 & \text{if } w \cdot 1 \ge t \end{cases} = \begin{cases} 0 & \text{if } w < t \\ 1 & \text{if } w \ge t \end{cases}$$

$$E(w,t) = E_a(w,t) + E_b(w,t)$$

$$x \xrightarrow{w} t y$$

▶ Error wrt. datapoint a (x = 0):

$$E_a(w,t) = \begin{cases} 0 & \text{if } w \cdot 0 \ge t \\ 1 & \text{if } w \cdot 0 < t \end{cases} = \begin{cases} 0 & \text{if } 0 \ge t \\ 1 & \text{if } 0 < t \end{cases}$$

Error wrt. datapoint b (x = 1):

$$E_b(w,t) = \begin{cases} 0 & \text{if } w \cdot 1 < t \\ 1 & \text{if } w \cdot 1 \ge t \end{cases} = \begin{cases} 0 & \text{if } w < t \\ 1 & \text{if } w \ge t \end{cases}$$

$$E(w,t) = E_a(w,t) + E_b(w,t) = egin{cases} 0 & ext{if } 0 \geq t ext{ and } w < t \ 2 & ext{if } 0 < t ext{ and } w \geq t \ 1 & ext{otherwise} \end{cases}$$

Х	У	ld
0	1	а
1	0	Ь

▶ Error wrt. datapoint a (x = 0):

$$E_a(w,t) = \begin{cases} 0 & \text{if } 0 \geq t \\ 1 & \text{if } 0 < t \end{cases}$$

x y ld
0 1 a
1 0 b

▶ Error wrt. datapoint a (x = 0):

$$E_a(w,t) = \begin{cases} 0 & \text{if } 0 \geq t \\ 1 & \text{if } 0 < t \end{cases}$$

ightharpoonup Error wrt. datapoint b (x = 1):

$$E_a(w,t) = \begin{cases} 0 & \text{if } w < t \\ 1 & \text{if } w \ge t \end{cases}$$

▶ Error wrt. datapoint a (x = 0):

$$E_a(w,t) = \begin{cases} 0 & \text{if } 0 \geq t \\ 1 & \text{if } 0 < t \end{cases}$$

ightharpoonup Error wrt. datapoint b (x = 1):

$$E_a(w, t) = \begin{cases} 0 & \text{if } w < t \\ 1 & \text{if } w \ge t \end{cases}$$

$$E_{a}(w,t) = \begin{cases} 0 & \text{if } 0 \geq t \text{ and } w < t \\ 2 & \text{if } 0 < t \text{ and } w \geq t \\ 1 & \text{if otherwise} \end{cases}$$

Training a Perceptron

Training a Perceptron

Result: A trained perceptron

Input: A perceptron P, a set of training data D

- 1 Let π_P be the set of parameters of P: weights and thresholds
- ² Initialise all parameters π_P , randomly
- 3 repeat
- Compute error E wrt. D and current parameters π_P
- Modify parameters π_P such that the error decreases
- 6 until E is acceptable
- 7 return The modified perceptron P

Training a Perceptron

Training a Perceptron

Result: A trained perceptron **Input:** A perceptron *P*, a set of training data *D*

- 1 Let π_P be the set of parameters of P: weights and thresholds
- 2 Initialise all parameters π_P , randomly
- 3 repeat
- Compute error E wrt. D and current parameters π_P
- Modify parameters π_P such that the error decreases But, how can we modify the parameters?
- 6 until E is acceptable
- 7 return The modified perceptron P

From plateaus to slopes

► The error function for the step function is not well suited for training

From plateaus to slopes

- The error function for the step function is not well suited for training
- ► Instead of using crisp decisions (step function), we will use a smoother version (ramp function) as activation function:

(The ramp function is called ReLU nowadays)

From plateaus to slopes

- The error function for the step function is not well suited for training
- ► Instead of using crisp decisions (step function), we will use a smoother version (ramp function) as activation function:

(The ramp function is called ReLU nowadays)

▶ I.e., instead of error = 1, we will use the distance from the weighted sum to the threshold

(gnuplot PerceptronRamp.gnuplot)

Training a Perceptron

Training a Perceptron

Result: A trained perceptron **Input:** A perceptron *P*, a set of training data *D*

- 1 Let π_P be the set of parameters of P: weights and thresholds
- 2 Initialise all parameters π_P , randomly
- 3 repeat
- Compute error E wrt. D and current parameters π_P Modify parameters π_P such that the error decreases But, how can we modify the parameters?
- 6 until E is acceptable
- 7 return The modified perceptron P

Training a Perceptron

Training a Perceptron

Result: A trained perceptron **Input:** A perceptron *P*, a set of training data *D*

- 1 Let π_P be the set of parameters of P: weights and thresholds
- ² Initialise all parameters π_P , randomly
- 3 repeat
- Compute error E wrt. D and current parameters π_P Modify parameters π_P such that the error decreases
 But, how can we modify the parameters?
 By going down-hill
- 6 until E is acceptable
- 7 return The modified perceptron P

Training a Perceptron: The Delta Rule

Delta Rule

```
Input: A set P of n-dimensional positive examples and a
             set N of n-dimensional negative examples
   Result: n-dim. weights \vec{w} and a threshold t, such that
              \vec{w} \cdot \vec{p} \ge t for all \vec{p} \in P and \vec{w} \cdot \vec{n} < t for all \vec{n} \in N
 1 Initialise the weight vector \vec{w_0} randomly
 2 repeat
        select a sample \vec{x} \in P \cup N randomly
        if \vec{x} \in P then
             if \vec{w} \cdot \vec{x} < t then set \vec{w} := \vec{w} + \vec{x} and t := t - 1
        else
            if \vec{w} \cdot \vec{x} \ge t then set \vec{w} := \vec{w} - \vec{x} and t := t + 1
        end
 9 until E is acceptable or maximal number of iterations
10 return The modified perceptron, i.e., \vec{w} and t
```

Training a Perceptron: The Delta Rule (visualisation)

t	w_1	<i>W</i> ₂
- 0.35	0.33	0.89

Training a Perceptron: The Delta Rule (visualisation)

t	w_1	<i>W</i> ₂
-0.35	0.33	0.89
0.65	1.33	0.89

t	w_1	W ₂
- 0.35	0.33	0.89
0.65	1.33	0.89
0.65	2.33	0.89

t	w_1	W_2
- 0.35	0.33	0.89
0.65	1.33	0.89
0.65	2.33	0.89
1.65	2.33	0.89

t	w_1	W_2
-0.35	0.33	0.89
0.65	1.33	0.89
0.65	2.33	0.89
1.65	2.33	0.89
1.65	2.33	1.89

t	w_1	W_2
- 0.35	0.33	0.89
0.65	1.33	0.89
0.65	2.33	0.89
1.65	2.33	0.89
1.65	2.33	1.89
2.65	2.33	0.89

Supervised Learning

Based on given data, a *supervised learning algorithm* has to learn a mapping from inputs to correct outputs.

- The training data consists of pairs: (input, desired output)
- Let a set *D* of *n* input-output data-pairs be given:

$$D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}\$$

with y_i being generated by some unknown function f, i.e., $y_i = f(x_i) + noise$.

▶ Then, a supervised learning procedure determines a function h from the set of possible hypotheses $h \in \mathcal{H}$ which performs well on D.

lacktriangle What is the hypothesis space ${\cal H}$ of a perceptron?

- ▶ What is the hypothesis space \mathcal{H} of a perceptron?
- ▶ The perceptron implements a linear decision!

- lacktriangle What is the hypothesis space ${\cal H}$ of a perceptron?
- ▶ The perceptron implements a linear decision!
- Therefore, only linearly separable classification tasks can be solved

- lacktriangle What is the hypothesis space ${\cal H}$ of a perceptron?
- ▶ The perceptron implements a linear decision!
- Therefore, only linearly separable classification tasks can be solved
- ▶ I.e., the hypothesis space \mathcal{H} of a perceptron with n inputs, is the set of all linear separable binary classification functions over n inputs

- lacktriangle What is the hypothesis space ${\cal H}$ of a perceptron?
- ▶ The perceptron implements a linear decision!
- Therefore, only linearly separable classification tasks can be solved
- ▶ I.e., the hypothesis space \mathcal{H} of a perceptron with n inputs, is the set of all linear separable binary classification functions over n inputs
- Will the delta-rule always find a solution?

- lacktriangle What is the hypothesis space ${\cal H}$ of a perceptron?
- ▶ The perceptron implements a linear decision!
- Therefore, only linearly separable classification tasks can be solved
- ▶ I.e., the hypothesis space \mathcal{H} of a perceptron with n inputs, is the set of all linear separable binary classification functions over n inputs
- ► Will the delta-rule always find a solution?
- ▶ If yes, will it always find the same solution?

Delta-Rule Convergence Theorem

Theorem (Delta-Rule Convergence Theorem)

If there is a weight vector \vec{w}^* such that $\Theta(\vec{w}^* \cdot \vec{x} - t) = y$ for all (\vec{x}, y) , (i.e., the problem is linearly separable) then for any starting vector \vec{w} , the delta rule will converge to an updated weight vector \vec{w} (not necessarily unique and not necessarily \vec{w}^*) that gives the correct response for all training patterns, and it will do so in a finite number of steps.

www.cs.ubbcluj.ro/~csatol/kozgaz_mestint/4_neuronhalo/PerceptConvProof.pdf

Perceptron: Some linearly (in)separable problems

▶ Linear separable problems in 2d (4 out of 14 in total):

Perceptron: Some linearly (in)separable problems

▶ Linear separable problems in 2d (4 out of 14 in total):

Linear inseparable problems in 2d:

Perceptron: Number of linearly (in)separable problems

► For two inputs, there are only 2 inseparable binary problems, but 14 separable ones, i.e., no problem?

Perceptron: Number of linearly (in)separable problems

- ► For two inputs, there are only 2 inseparable binary problems, but 14 separable ones, i.e., no problem?
- ▶ Unfortunately in higher dimensions there is a problem:

# var	# fns	# Linsep.functions
2	16	14
3	256	104
4	65536	1882
5	4.2910^{10}	$9.45 \cdot 10^5$
6	1.8410^{19}	$1.50 \cdot 10^{8}$
7	3.4010^{38}	$8.37 \cdot 10^{10}$
8	1.1510^{77}	$1.75\cdot 10^{14}$
9	1.3410^{154}	$1.44 \cdot 10^{18}$

N. Gruzling. Linear separability of the vertices of an n-dimensional hypercube (2007)

Summary

- A single perceptron can be trained ...
 - using the delta rule
 - to compute any linearly separable boolean function (because they compute a linear decision)
- Networks of perceptrons ...
 - can compute any boolean function
 - can not be trained using the delta rule!
 It is not applicable for non-output units, because the target mapping of the hidden units is unknown.

explain how to train a single layer perceptron

- explain how to train a single layer perceptron
- describe, compute and draw the error surface of a single threshold unit

- explain how to train a single layer perceptron
- describe, compute and draw the error surface of a single threshold unit
- describe the ideas behind the Delta Rule

- explain how to train a single layer perceptron
- describe, compute and draw the error surface of a single threshold unit
- describe the ideas behind the Delta Rule
- explain the concept of a hypothesis space by example for a perceptron

- explain how to train a single layer perceptron
- describe, compute and draw the error surface of a single threshold unit
- describe the ideas behind the Delta Rule
- explain the concept of a hypothesis space by example for a perceptron
- know what caused the first AI winter