22 1.5. Ejercicios

1.5. **Ejercicios**

Ejercicio 1.1. Clasificar las siquientes cuádricas y dibujar su intersección con los planos coordenados:

a)
$$3x^2 + y^2 + 4z^2 = 1$$
.

$$g) x^2 + 2y^2 - z^2 = 0.$$

b)
$$x^2 - 3y^2 + z^2 = 1$$
.

$$h) \ x^2 - 2y^2 = 0.$$

c)
$$-x^2 + y^2 - z^2 = 1$$
.

i)
$$x^2 + 2y^2 = z$$
.

d)
$$x^2 + 2y^2 = 1$$
.

i)
$$x^2 + 2y^2 = z$$
.

e)
$$x^2 - y^2 = 1$$
.

$$j) \ 4x^2 - 2y^2 = -z.$$

$$f) 4x^2 = 1.$$

$$k) \ 2x^2 = z.$$

Ejercicio 1.2. Clasificar la cuádrica $x^2 + 3y^2 + 2z^2 = 5y - z + \lambda$ según los valores del parámetro λ .

Ejercicio 1.3. Clasificar las siguientes cuádricas:

a)
$$x^2 + y^2 + 3y - 2z = 0$$
.

e)
$$2x^2 + 4x + 2y^2 - 2z^2 - 4z = 0$$
.

b)
$$2x^2 + y^2 - 2y = 0$$
.

f)
$$x + y^2 + z^2 - \sqrt{3}z = 2$$

c)
$$3x^2 = 1$$
.

$$(x^2 - 2z^2) = -3.$$

d)
$$2x^2 - 2x - z^2 - y = 0$$
.

Ejercicio 1.4. Si consideramos el espacio \mathbb{R}^3 con la norma euclídea, ¿cuáles de las siguientes propiedades son ciertas y por qué?

a)
$$\|\vec{v} + \vec{w}\| = \|\vec{v}\| + \|\vec{w}\|$$
.

$$b) |\langle \vec{v}, \vec{w} \rangle| = ||\vec{v}|| \cdot ||\vec{w}||.$$

c)
$$Si \|\vec{v}\| \cdot \|\vec{w}\| = \langle \vec{v}, \vec{w} \rangle$$
, entonces $\vec{v} \perp \vec{w}$.

d)
$$\langle \vec{v}, \vec{v} \times \vec{w} \rangle = 0$$
.

e)
$$Si \|\vec{v}\| \cdot \|\vec{w}\| = \|\vec{v} \times \vec{w}\|, \text{ entonces } \vec{v} \perp \vec{w}.$$

f)
$$Si \ \vec{v}, \vec{w} \in \mathbb{R}^3$$
, entonces $\|\vec{v}\|^2 \cdot \|\vec{w}\|^2 = (\langle \vec{v}, \vec{w} \rangle)^2 + \|\vec{v} \times \vec{w}\|^2$.

$$q) \langle \vec{a}, \vec{b} \rangle = \langle \vec{a}, \vec{c} \rangle \Longrightarrow \vec{b} = \vec{c}.$$

$$h) \ \vec{a} \bot \vec{b} \Longleftrightarrow \|\vec{a} + \vec{b}\| = \|\vec{a} - \vec{b}\|.$$

- i) $Si [\vec{a}, \vec{b}, \vec{c}] = 0$, entonces $\vec{a} = \vec{b}$ ó $\vec{a} = \vec{c}$ ó $\vec{b} = \vec{c}$.
- $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}).$
- k) Si $\vec{a} \neq 0, \vec{b} \neq \vec{0}$, la ecuación $\vec{a} \times \vec{x} = \vec{b}$ tiene solución única.
- l) Tres vectores $\vec{a}, \vec{b}, \vec{c}$ están en el mismo plano que pasa por el origen si y sólo si existen α, β, γ no todos nulos tales que $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0}$.
- m) El vector $\vec{v} = \|\vec{a}\|\vec{b} + \|\vec{b}\|\vec{a}$ biseca el ángulo entre \vec{a} y \vec{b} .

Ejercicio 1.5. Dados dos vectores \vec{u} , \vec{v} en \mathbb{R}^3 , describir:

- a) El conjunto de puntos en el interior del paralelogramo definido por \vec{u} y \vec{v} .
- b) Los puntos del interior del triángulo de vértices el origen y los extremos de \vec{u} y \vec{v} .
- c) Los puntos en el interior del ángulo definido por \vec{u} y \vec{v} .

Ejercicio 1.6. a) Probar que $|\langle \vec{x}, \vec{y} \rangle| = ||\vec{x}|| \cdot ||\vec{y}||$ si y sólo si existe $\lambda \in \mathbb{R}$ tal que $\vec{x} = \lambda \vec{y}$.

b) Probar que $\|\vec{x} + \vec{y}\| = \|\vec{x}\| + \|\vec{y}\|$ si y sólo si existe $\lambda > 0$ tal que $\vec{x} = \lambda \vec{y}$.

Ejercicio 1.7. Hallar el área del triángulo de vértices A(0,1,0), B(-1,1,2) y C(2,1,-1).

Ejercicio 1.8. Se consideran los vectores $\vec{u} = 3\vec{i} - \vec{j} - 2\vec{k}$, $\vec{v} = \vec{i} + 2\vec{j} - 3\vec{k}$.

- a) Hallar el ángulo entre ellos.
- b) Calcular la proyección de \vec{u} sobre \vec{v} .
- c) Si se definen los cosenos directores de un vector como los cosenos de los ángulos que el vector forma con los vectores coordenados \vec{i} , \vec{j} , \vec{k} , calcular los cosenos directores de \vec{u} y \vec{v} .

Ejercicio 1.9. ¿Cuáles de las siguientes aplicaciones $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ son distancias?

a)
$$d(x,y) = |x - y|^2$$
.

d)
$$d(x,y) = |\arctan x - \arctan y|$$
.

b)
$$d(x,y) = x^3 - y^3$$
.

e)
$$d(x,y) = |x^3 - y^3|$$
.

c)
$$d(x,y) = |x^2 - y^3|$$
.

$$f) d(x,y) = |e^x - e^y|.$$

Ejercicio 1.10. Probar que las siguientes aplicaciones son normas en \mathbb{R}^n :

24 1.5. Ejercicios

- a) $||(x_1,\ldots,x_n)||_1 = |x_1| + \cdots + |x_n|$.
- b) $||(x_1, \dots, x_n)||_{\infty} = \max\{|x_i| : 1 \le i \le n\}.$

Representar gráficamente sus respectivas bolas unitarias.

Ejercicio 1.11. Sea $d: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ una aplicación que verifica

- I) $d(x,y) = 0 \iff x = y$,
- II) $d(x,y) \le d(x,z) + d(y,z), \ \forall x,y,z \in \mathbb{R}^m.$

Probar que

- a) $d(x,y) = d(y,x), \ \forall x, y \in \mathbb{R}^m$.
- b) $d(x,y) \ge 0, \ \forall x,y \in \mathbb{R}^m$.

Ejercicio 1.12. En \mathbb{R}^3 se define la función n(x, y, z) = |x| + 2|y| + 3|y - z|.

- a) Demostrar que n es una norma.
- b) Averiguar si dicha norma es equivalente a la norma euclídea.
- c) ¿Es completo el espacio (\mathbb{R}^3, n) ?
- d) Estudiar si el conjunto $A = \{(x, y, z) \in \mathbb{R}^3 : n((x, y, z) (1, -1, 0)) \le 1\}$ es compacto en (\mathbb{R}^3, n) .

Ejercicio 1.13. Dibujar las regiones siguientes e indicar si son conjuntos abiertos o cerrados:

- a) $A = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, |y| \le 1\}.$
- b) $B = \{(x, y) \in \mathbb{R}^2 : y > x^2, |x| < 2\}.$
- c) $C = \{(x, y) \in \mathbb{R}^2 : xy < 1\}.$
- d) $D = \{(x, y) \in \mathbb{R}^2 : x \neq 0, y \neq 0\}.$
- e) $E = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x + y < 1\}.$

Ejercicio 1.14. Se consideran los siguientes conjuntos:

- a) $A = \{(x, y) \in \mathbb{R}^2 : x \neq 0, y \neq 0\}.$
- b) $B = \{(x, y) \in \mathbb{R}^2 : y = 2x + 5\}.$

- c) $C = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, y = x\}.$
- d) $D = \{(x, y) \in \mathbb{R}^2 : x > 1, y \ge 2\}.$
 - I) Determinar si son abiertos y conexos.
 - II) Calcular el interior, frontera y exterior de cada conjunto, así como su clausura y su conjunto derivado.
 - III) Determinar si son acotados y compactos.

Ejercicio 1.15. Sea M la unión de cilindros de base las circunferencias $x^2 + y^2 = 1/n$, z = 0 y altura 1/n, con $n \in \mathbb{N}$. Calcular su diámetro y decir si M es abierto, cerrado, compacto, acotado, conexo.

Ejercicio 1.16. Dado el conjunto $A = \{(x, y) \in \mathbb{R}^2 : y = x^2\}$, calcular su interior, clausura y frontera. ¿Es A acotado? ¿Es A compacto? ¿Es A conexo?

Ejercicio 1.17. Dado el conjunto $A = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1, y \in \mathbb{Q}\}$, calcular \overline{A} . ¿Es A contado? ¿Es A compacto? ¿Es A conexo?

Ejercicio 1.18. Dado el conjunto $A = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], y = mx, m \in \mathbb{Z}\}$, probar que A no es acotado, no es cerrado pero sí es conexo.

Ejercicio 1.19. Dados los conjuntos $A = \{(x,y) \in \mathbb{R}^2 : x = 1/n, n \in \mathbb{N}, y \in [0,1]\}$ $y \in B = A \cup \{(x,y) \in \mathbb{R}^2 : x \in [0,1], y = 0\}$, probar que A no es conexo pero B sí lo es.

Ejercicio 1.20. Sea $M=A\cup B$, donde $A=\left\{\left(\frac{n+1}{n},\frac{2n-1}{n}\right)\in\mathbb{R}^2:n\in\mathbb{N}\right\}$ y $B=\left\{(x,y)\in\mathbb{R}^2:xy\geq 1\right\}$. ¿Cuáles de las siguientes afirmaciones son ciertas?

- a) $\overline{M} = M'$.
- b) $\overline{M} = M$.
- c) int M = B.
- d) fr $M = A \cup B$.
- e) int $M = A \cup B$.
- f) $M' = A \cap B$.
- q) adh(int M) = adh B.

26 1.5. Ejercicios

Ejercicio 1.21. Sea $D = \{(x, y, z \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 1, x + y + z = 0\}$. ¿Cuáles de las siguientes afirmaciones son ciertas?

- a) D es abierto.
- b) D es cerrado.
- c) fr D es una circunferencia.
- d) $D \subset \operatorname{fr} D$.
- e) fr $D \subset D$.

Ejercicio 1.22. Sean $A, B \subset \mathbb{R}^2$, con $A \subset B$. ¿Cuáles de las siguientes proposiciones son ciertas?

- a) Si A es acotado, entonces adh A es compacto.
- b) Si B es compacto, entonces A es compacto.
- c) Si B es acotado, entonces adh A es compacto.
- d) Si B es compacto, entonces A es acotado.
- e) fr $A \subset \operatorname{fr} B$.

Ejercicio 1.23. Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}^2$, tal que lím $a_n=(0,0)$ y sea $A=\{a_n\}\cup\{(0,0)\}$. ¿Cuáles de las siguientes afirmaciones son ciertas?

- a) int $A = \emptyset$.
- b) $A' = \{(0,0)\}.$
- c) Todos los puntos de A, excepto $\{(0,0)\}$, son aislados.
- d) A es cerrado.
- e) A es acotado.
- f) A es compacto.

Ejercicio 1.24. Sea $A = \left\{ \left(\frac{n}{m}, \frac{1}{m} \right) \in \mathbb{R}^2 : n, m \in \mathbb{N} \right\}$. Calcular A'.

Ejercicio 1.25. Dado $A = \{(x, y) \in \mathbb{R}^2 : x \neq 0, y = \text{sen } 1/x\}, \text{ calcular } \overline{A}.$

Ejercicio 1.26. Sea $A = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le y = \frac{n}{n+1}, \ n \in \mathbb{N}\}$. Calcular fr A.

Ejercicio 1.27. Sea $A = \{(i/n, 1/n) : n \in \mathbb{N}, 0 \le i \le n\}$. Calcular A'.

Ejercicio 1.28. Sea
$$A = \bigcup_{n=1}^{\infty} \{(x,y) : \frac{n-1}{n} \le x \le \frac{n+1}{n}, y = 1/n\}$$
. Calcular \overline{A} .

Ejercicio 1.29. Sea $A = \bigcap_{r>1} \{(x,y) : (x-1)^2 + y^2 < r\}$. Averiguar si A es abierto o cerrado y calcular \overline{A} , A' y fr A.

Ejercicio 1.30. Si $A \subset \mathbb{R}^n$ es abierto y $B \subset \mathbb{R}^n$ es cerrado, probar que $A \setminus B$ es abierto y $B \setminus A$ es cerrado.

Ejercicio 1.31. Probar que toda bola abierta es un conjunto abierto y que toda bola cerrada es un conjunto cerrado.

Ejercicio 1.32. Sean $\vec{x}, \vec{y} \in \mathbb{R}^n$ dos puntos distintos. Probar que existen $V(\vec{x}), V(\vec{y})$ entornos de \vec{x} e \vec{y} , respectivamente, tales que $V(\vec{x}) \cap V(\vec{y}) = \emptyset$.

Ejercicio 1.33. Probar que A es cerrado si y sólo si $A' \subset A$.

Ejercicio 1.34. Sea $(\vec{x_k})_{k\in\mathbb{N}}$ una sucesión en \mathbb{R}^n con la siguiente propiedad:

Existe
$$\alpha \in (0,1)$$
 tal que $\|\vec{x}_{k+2} - \vec{x}_{k+1}\| \le \alpha \|\vec{x}_{k+1} - \vec{x}_k\|, \ \forall k \in \mathbb{N}$.

Probar que $(\vec{x_k})_{k\in\mathbb{N}}$ es convergente.

Ejercicio 1.35. Sean $C \subset \mathbb{R}^2$ y $(a_n)_{n \in \mathbb{N}} \subset C$. ¿Cuáles de las siguientes proposiciones son ciertas?

- a) $(a_n)_{n\in\mathbb{N}}$ tiene alguna subsucesión convergente.
- b) Si C es cerrado y $(a_n)_{n\in\mathbb{N}}$ converge, entonces lím $a_n\in C$.
- c) Si $(a_n)_{n\in\mathbb{N}}$ converge, todas sus subsucesiones convergen.
- d) Si $(a_n)_{n\in\mathbb{N}}$ tiene una subsucesión convergente, entonces $(a_n)_{n\in\mathbb{N}}$ es convergente.
- e) $Si(a_n)_{n\in\mathbb{N}}$ está acotada, entonces $(a_n)_{n\in\mathbb{N}}$ converge.
- f) Si $(a_n)_{n\in\mathbb{N}}$ está acotada, entonces tiene alguna subsucesión convergente.
- g) Si C está acotado y $(a_n)_{n\in\mathbb{N}}$ converge, entonces $\lim a_n\in C$.
- h) Si $(a_n)_{n\in\mathbb{N}}$ converge, entonces está acotada.