BLG 454E Learning From Data (Spring 2018) Homework I

Safa Keskin

March 6, 2018

1 Question 1

$$P(A/B) = \frac{P(B/A) * P(A)}{P(B)}$$

This is stated in Bayes' Theorem, and this equation means that, probability of observing A given that B is equal to multiplication of probability of observing B given that A and probability of observing B.

For our question, parameters can be expressed as:

P(A): probability of rain on Saturday $(P(A) = \frac{1}{4})$

P(B): probability of rain on Sunday $P(B) = P(B/A) + P(B/notA) = P(B) = \frac{1}{4} * \frac{1}{2} + \frac{3}{4} * \frac{1}{4} = \frac{5}{16}$

P(A / B): probability of rain on Saturday given that it rained on Sunday

P(B / A): probability of rain on Sunday given that it rained on Saturday $(P(B/A) = \frac{1}{2})$

$$P(A/B) = \frac{\frac{1}{2} * \frac{1}{4}}{\frac{5}{16}} = \frac{2}{5} \tag{1}$$

2 Question 2

Let's call the event "reaching destination A in at most 2 steps" as E. E consist of 3 sub-events E_0, E_1, E_2 , these are the events reaching destination A at 0,1,2 steps respectively. Let the S become the event reaching A.

$$P(E) = P(E_0) + P(E_1) + P(E_2)$$

$$P(E_0) = P(S/A)$$

 E_0 is reaching A in 0 moves. $P(E_0)$ is $\frac{1}{7}$, because this case can be observed only if A is the starting point.

 $P(E_1) = P(S/B) + P(S/F) + P(S/G)$

 E_1 is reaching A in 1 moves. $P(E_1)$ can be calculated as sum of the probabilities of reaching A from B,G or F, because these are adjacent points of A. The equation is:

$$P(E_1) = P(S/B) + P(S/F) + P(S/G) = \frac{1}{7} * \frac{1}{3} + \frac{1}{7} * \frac{1}{6} + \frac{1}{7} * \frac{1}{3} = \frac{5}{42}$$

 $P(E_2) = P(S/C) + P(S/E) + P(S/D) + P(S/B) + P(S/F) + P(S/G)$ E_2 is reaching A in 1 moves. $P(E_2)$ can be calculated as sum of the probabilities of reaching A from C,E,D,B,F or G, because A is reachable at 2 moves from these points. The equation is:

$$P(E_2) = P(S/C2) + P(S/E2) + P(S/D2) + P(S/B2) + P(S/F2) + P(S/G2) + P(S/G$$

Then,

$$P(E) = P(E_0) + P(E_1) + P(E_2)$$

$$P(E) = \frac{1}{7} + \frac{5}{42} + \frac{1}{42} + \frac{5}{63} = \frac{23}{63}$$
(2)

3 Question 3

3.1 A-

Likelihood function is: $\prod_{i=1}^{n} P(x_i/\theta)$

Density function: $\frac{1}{\sqrt{2*\pi*\sigma^2}}*e^{\frac{-(x_i-\theta_1)^2}{2*\theta_2}}$

We will apply our likelihood function over density function in order to find value of the parameters μ and σ^2 .

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2*\pi*\sigma^2}} * e^{\frac{-(x_i - \mu)^2}{2*\sigma^2}} = \frac{1}{\sigma^n * (2\pi)^{\frac{n}{2}}} * e^{(\frac{-1}{2\sigma^2} * \sum_{i=1}^n (x_i - \mu)^2)}$$

Then, we take the logarithm of this equation.

$$lnL(\mu, \sigma^2) = ln(\frac{1}{\sigma^n * (2\pi)^{\frac{n}{2}}} * e^{(\frac{-1}{2\sigma^2} * \sum_{i=1}^n (x_i - \mu)^2)})$$

= $-n * ln(\sigma) - \frac{n}{2} * ln(2 * \pi) - \frac{1}{\sigma^2} * \sum_{i=1}^n (x_i - \mu)^2$

If we take partial derivative of this equation respect to μ and σ^2 respectively, we will get the equation we desire.

First, we will take derivative of equation respect to μ and set it equal to 0.

$$\frac{\partial lnL(\mu, \sigma^2)}{\partial \mu} = 0$$

$$-2 * \frac{\sum (x_i - \mu) * (-1)}{2 * \sigma^2} = 0$$

$$\sum x_i = n - \mu$$

$$\mu = \frac{\sum x_i}{n}$$
(3)

Then, we will take derivative of equation respect to σ^2 and set it equal to 0.

$$\frac{\partial lnL(\mu, \sigma^2)}{\partial \sigma^2} = 0$$

$$-\frac{n}{2 * \sigma^2} + \frac{\sum (x_i - \mu)^2}{2 * \sigma^2} = 0$$

$$n * \sigma^2 = \sum (x_i - \mu)^2$$

$$\sigma^2 = \frac{\sum (x_i - \mu)^2}{n}$$
(4)

3.2 B-

4 Question 4

4.1 A-

$$P(C/X_{1...n}) = \frac{\prod_{i=1}^{n} P(x_i/C) * P(C)}{P(x_{1...n})}$$

$$P(C/X) = \frac{P(X/C)*P(C)}{P(X)}$$

We know that, $P(C=+)=\frac{1}{2}$ and $P(C=-)=\frac{1}{2}$ according to data.

As mentioned in Naive Bayes' Theorem, three different parameters can be considered as separate parameters that affect output class. So, we can construct classes as:

$$P(x_1 = 1/y = +) = \frac{3}{5}$$

$$P(x_1 = 1/y = -) = \frac{2}{5}$$

$$P(x_2 = 1/y = +) = \frac{2}{5}$$

$$P(x_2 = 1/y = -) = \frac{2}{5}$$

$$P(x_3 = 1/y = +) = \frac{4}{5}$$

$$P(x_3 = 1/y = -) = \frac{1}{5}$$

4.2 B-

We know that $P(C/X) \alpha P(X/C) * P(C)$ according to Bayes' Theorem formula. And also because $P(C=+) = P(C=-) = \frac{1}{2}$, there is no effect by term P(C) in this calculation for this specific example. So,

$$P(X_1 = 1, X_2 = 1, X_3 = 1/C = -) = P(X_1 = 1/C = -) * P(X_2 = 1/C = -) * P(X_3 = 1/C = -)$$

$$= \frac{2}{5} * \frac{2}{5} * \frac{1}{5} = 0.032$$

$$P(X_1 = 1, X_2 = 1, X_3 = 1/C = +) = P(X_1 = 1/C = +) * P(X_2 = 1/C = +) * P(X_3 = 1/C = +)$$

$$= \frac{3}{5} * \frac{2}{5} * \frac{4}{5} = 0.192$$

$$P(C = +/X_{1,2,3} = 1) > P(C = -/X_{1,2,3} = 1)$$

 $\implies C = +$ (5)

4.3 C-

If P(A/B) = P(A) and P(B/A) = P(B), then these two events are independent. According to data in the table, $P(A) = \frac{1}{2}$ and $P(B) = \frac{2}{5}$. Now, we should calculate below probabilities in order to prove that these two events are independent.

$$P(A/B) = \frac{P(B/A) * P(A)}{P(B)}$$

$$= \frac{\frac{2}{5} * \frac{1}{2}}{\frac{2}{5}}$$

$$= \frac{1}{2}$$

$$P(B/A) = \frac{P(A/B) * P(B)}{P(A)}$$

$$= \frac{\frac{2}{4} * \frac{2}{5}}{\frac{1}{2}}$$

$$= \frac{2}{5}$$

$$= \frac{2}{5}$$
(6)

As it is seen, P(A/B) = P(A) and P(B/A) = P(B), these two events are independent.