

Física

Licenciatura em Engenharia Informática

Susana Sério

Aula 11

Sumário

Movimento ondulatório

- ✓ Ondas estacionárias
- ✓ Cordas vibrantes
- √ Som

Ondas estacionárias

- ✓ Sempre que uma onda progressiva é reflectida invertendo a fase do movimento podemos criar ondas estacionárias
- ✓ A onda incidente e reflectida sobrepõem-se
- ✓ A frequência da onda estacionária é igual à da onda incidente

Ondas estacionárias

- ✓ Numa onda estacionária existem pontos que não vibram. Estão parados ao longo do tempo. São os nodos.
- ✓ Nodos ocorrem quando as duas ondas, incidente e reflectida, têm a mesma amplitude e estão em oposição de fase.
- ✓ Os nodos estão parados.
- ✓ A distância entre nodos sucessivos é de $\lambda/2$
- ✓ Os pontos que vibram sempre com amplitude igual à amplitude máxima da onda incidente são os antinodos

Movimento da corda

- ✓ A setas indicam a direcção do movimento das partículas da corda.
- ✓ Todos os pontos da corda, excepto os nodos, oscilam verticalmente com a mesma frequência mas amplitudes distintas, sempre a mesma para cada ponto.
- ✓ As ondas que se propagam na corda são transversais.

© 2006 Brooks/Cole - Thomson

Ondas estacionárias numa corda presa nas duas extremidades

- ✓ O modo de vibração de menor comprimento de onda corresponde ao comprimento da corda igual a meio comprimento de onda (as extremidades são nodos)
- ✓ Os comprimentos de onda possíveis que satisfazem esta condição são:

$$L = \frac{\lambda}{2}$$
 $L = \lambda$ $L = \frac{3}{2}\lambda$ $L = \frac{4}{2}\lambda$

© 2006 Brooks/Cole - Thomso

$$\lambda = \frac{2L}{n}$$

Equação da frequência para cordas vibrantes presas nas duas extremidades

$$\lambda = \frac{2L}{n} \quad \frac{v}{f} = \frac{2L}{n}$$

 $\lambda = \frac{2L}{n}$ $\frac{v}{f} = \frac{2L}{n}$ Logo a equação para a frequência de uma corda vibrante é: $\frac{nv}{f} = \frac{nv}{n}$

$$f = \frac{nv}{2L}$$

Como a velocidade numa corda vibrante é dada por: v =

Então:
$$f = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$$

T é a tensão na corda μ é a densidade linear (massa da corda por comprimento da corda)

- ✓ As frequências possíveis são múltiplas da frequência fundamental.
- ✓ As outras frequências chamam-se harmónicas (2ª, 3ª, etc)

Frequências produzidas numa corda presa nas duas extremidades $f_n = \frac{nv}{2I} = nf_1$

- ✓ n =1 frequência fundamental, 1ª harmónica $f_1 = \frac{v}{2L}$
- ✓ As outras frequências correspondentes a n= 2, 3,... são a 2ª, 3ª harmónica, etc.
- ✓ Outras frequências que não sejam múltiplas da fundamental não produzem ondas estacionárias
- ✓ Uma corda vibrante, presa nas duas extremidades pode gerar a frequência fundamental e todas as harmónicas múltiplas da frequência fundamental.

$$f_2 = 2f_1$$
; $f_3 = 3f_1$; ...

Ondas estacionárias numa corda

Ondas estacionárias em colunas de ar: Tubos abertos nas duas extremidades

(a) Open at both ends

$$f_n = \frac{nv}{2L} = nf_1$$

Nos tubos v é a velocidade do som no ar = 331 m/s

Frequências num tubo aberto nas duas extremidades

- ✓ Como o tubo é aberto nas extremidades apresenta máximos (antinodos) em cada extremidade
- ✓ A reflexão dá-se sem inversão da fase.

- ✓ Tal como nas cordas, um tubo aberto nas duas extremidades. gera a onda fundamental e todos os harmónicos.
- ✓ O som produzido resulta da sobreposição de todos os harmónicos, aos quais correspondem intensidades diferentes

Ondas estacionárias em colunas de ar: Tubo fechado numa extremidade

First harmonic

$$\lambda_3 = \frac{4}{3} L$$

$$f_3 = \frac{3v}{4L} = 3f_1$$

$$\lambda_5 = \frac{4}{5} L$$

$$\lambda_5 = \frac{4}{5} L$$

$$f_5 = \frac{5v}{4L} = 5f_1$$

Fifth harmonic

(b) Closed at one end, open at the other

$$f_n = \frac{nv}{4L} = nf_1$$
 n = 1, 3, 5, ...

Frequências num tubo fechado numa extremidade

$$f_n = \frac{nv}{4L} = nf_1$$
 n = 1, 3, 5, ...

- ✓ Um tubo fechado numa extremidade pode gerar a frequência fundamental e todos os seus harmónicos ímpares
- ✓ A extremidade fechada é um nodo

Velocidade das ondas sonoras

- ✓ O som resulta da vibração das partículas do ar, que vibram com a frequência desse som.
- ✓ Verifica-se o princípio da sobreposição, o que nos permite ouvir vários sons ao mesmo tempo (conversas, instrumentos, música, etc.).
- ✓ O som não se propaga no vazio. Precisa de um suporte elástico para se propagar.
- ✓ A velocidade do som depende do meio onde se propaga. É mais elevada nos sólidos que no ar.

Velocidade das ondas sonoras

✓ Para um dado material, a velocidade de propagação depende da temperatura. Por isso é necessário afinação do instrumento ao longo do concerto

Velocidade do som no ar

$$v = (331 \, ms^{-1}) \sqrt{\frac{T}{273 \, K}}$$

T- temperatura em Kelvin

Intensidade das ondas sonoras

✓ A intensidade média das ondas sonoras é a taxa a que a energia flui através de uma área unitária perpendicular à direcção de propagação da onda (i.e. potência P por unidade de área A)

$$I = \frac{1}{A} \frac{\Delta E}{\Delta t} = \frac{P}{A}$$
 (W/m²)

Limiares de audição

- ✓ Limiar da audição 10⁻¹² W/m²
- ✓ Limiar da dor: Som mais elevado que é tolerado
 1 W/m²
- \checkmark $_{\text{O ouvido \'e um detector sens\'ivel de ondas sonoras}}.$ Pode detectar flutuações de 3 partes em 10^{10}
- ✓ O ouvido não ouve igualmente para todas as frequências

Nível de intensidade sonora

A resposta do ouvido aos estímulos auditivos é logarítmica define-se o nível de intensidade β ou o nível de decibéis para um som

$$\beta = 10 \log \frac{I}{I_0}$$

- ✓ I_0 é a intensidade correspondente ao limiar de audição, 10^{-12} W/m²
- ✓ O nível de intensidade sonora exprime-se em decibel (dB)
- ✓ Limiar audição 0 dB
- ✓ Limiar da dor 120 dB
- ✓ Avião a jacto aprox. 150 dB

Sons-ouvido humano

- ✓ Conseguimos ouvir sons com amplitudes compreendidas entre 0 dB e 120 dB.
- ✓ Contudo, a exposição a sons de elevada intensidade não é saudável, podendo causar graves danos irreversíveis. A exposição diária a sons com intensidade superior a 70 dB é prejudicial.
- ✓ Outro factor que determina a sensibilidade do ouvido a um som é a sua frequência.
- ✓ O Homem apenas consegue ouvir sons com frequências entre os 20 Hz e os 20 kHz, aproximadamente.
- ✓ A sensibilidade às diversas frequências varia.

Ouvido: audiograma

Figure 14.28 The structure of the human ear. The three tiny bones (ossicles) that connect the eardrum to the window of the cochlea act as a double-lever system to decrease the amplitude of vibration and hence increase the pressure on the fluid in the cochlea.

Figure 14.29 Curves of intensity level versus frequency for sounds that are perceived to be of equal loudness. Note that the ear is most sensitive at a frequency of about 3 300 Hz. The lowest curve corresponds to the threshold of hearing for only about 1% of the population.

Propagação das ondas sonoras: ondas esféricas

- ✓ A partir de uma fonte esférica oscilante propaga-se uma onda esférica.
- ✓ A intensidade em função da distância do observador à fonte é inversamente proporcional ao quadrado da distância à fonte r. P_{av} é a potência média emitida pela fonte.

$$I = \frac{P_{AV}}{A} = \frac{P_{AV}}{4\pi r^2}$$

Figure 14.4 A spherical wave propagating radially outward from an oscillating sphere. The intensity of the wave varies as $1/r^2$.

Variação da intensidade com a distância

 ✓ Relação entre as intensidades medidas a duas distancias r₁ e r₂ da fonte

$$I_1 = \frac{P_{AV}}{4\pi r_1^2}$$

$$I_2 = \frac{P_{AV}}{4\pi r_2^2}$$

$$\frac{I_1}{I_2} = \frac{r_2^2}{r_1^2}$$

Figure 14.5 Spherical waves emitted by a point source. The circular arcs represent the spherical wave fronts concentric with the source. The rays are radial lines pointing outward from the source, perpendicular to the wavefronts.

Ondas planas

- ✓ A grandes distâncias da fonte as frentes de onda são praticamente paralelas umas às outras
- ✓ Os raios são também quase paralelos
- ✓ Nestas condições uma pequena porção da frente de onda pode ser aproximada por uma onda plana

Figure 14.6 Far away from a point source, the wave fronts are nearly parallel planes and the rays are nearly parallel lines perpendicular to the planes. Hence, a small segment of a spherical wavefront is approximately a plane wave.

Timbre

- ✓ O timbre resulta da sobreposição das diferentes harmónicas produzidas pelos vários instrumentos musicais, com a mesma frequência
- ✓ A intensidade das várias harmónicas é diferente para cada um e daí resulta um som diferente

2006 Brooks/Cole - Thomson

Sons graves e agudos

- ✓ Um som emitido a uma baixa frequência é apercebido como um som grave.
- ✓ Já um som com altas frequências é apercebido como um som agudo.
- ✓ Sons de frequência superior a 20 kHz são os ultra-sons
- ✓ Sons de frequência inferior a 20 Hz são os infra-sons
- ✓ A sensibilidade à frequência não é igual em todos os animais

✓ Sabemos por exemplo que a voz de um homem é mais grave do que a voz de uma mulher. Isto porque a tonalidade (frequência fundamental) de uma fala masculina é inferior à de uma feminina.

✓ Como é produzida a voz?

- ✓ As cordas vocais são um tecido musculoso, situadas no interior da laringe.
 O ar ao ser expulso faz vibrar as cordas produzindo o som.
- ✓ As cordas são fibras elásticas que se distendem ou se relaxam pela acção dos músculos da laringe com isso modulando e modificando o som e permitindo todos os sons que produzimos enquanto falamos ou cantamos.
- ✓ Todo o ar inspirado e expirado passa pela laringe e as cordas, estando relaxadas, não produzem qualquer som, pois o ar passa entre elas sem as fazer vibrar. Quando falamos ou cantamos, há uma aproximação das cordas. Quando o diafragma e os músculos do tórax empurram o ar para fora dos pulmões, isso produz a vibração das cordas vocais e consequentemente o som. O controle da altura do som faz-se aumentando ou diminuindo a tensão das cordas vocais.

- ✓ A frequência natural da voz humana é determinada pelo comprimento das cordas vocais. Assim, as mulheres têm as cordas mais curtas possuem voz mais aguda que os homens com cordas mais longas. É por esse mesmo motivo que as vozes das crianças são mais agudas do que as dos adultos. A mudança de voz é provocada pela modificação das cordas que de mais finas mudam para uma espessura mais grossa. O comprimento e a espessura das cordas vocais determinam, tanto para o sexo masculino, como para o feminino, a extensão vocal- i.e. o registro de alcance das notas produzidas vocalmente.
- ✓ A laringe e as pregas vocais não são os únicos órgãos responsáveis pela fonação. Os lábios, a língua, os dentes, o véu palatino e a boca concorrem também para a formação dos sons . Todo o aparelho vocal funciona como uma caixa de ressonância, tal como a caixa da guitarra.

✓ A sensibilidade à frequência não é igual em todos os animais

✓ O ar é um meio isotrópico. Se não fosse imagine o que seria um concerto???