Universidade Federal do Amazonas - UFAM

Instituto de Ciências Exatas e Tecnologia - ICET

Sistemas Embarcados - 2020/2 (2021)

SmartRoom

Equipe: ART-Development

Responsável: Vandermi João da Silva

Ficha Técnica

Equipe Responsável pela Elaboração Adriano dos Santos Gomes

Adriano dos Santos Gomes Rafael Guedes da Silva Taynara Silva da Costa

Público Alvo

A todos os colaboradores que estejam inseridos na execução do projeto bem como o cliente que receberá o produto final.

Versão 1.3 - Itacoatiara, Novembro de 2021

REGISTRO DE ALTERAÇÕES

Versão	Responsável	Data	Alterações
1.0	Adriano Gomes Rafael Guedes Taynara Silva	24/08/2021	Definição do escopo e tópicos que o compõem, definição dos requisitos funcionais e regras de negócio, criação da arquitetura, diagrama de blocos da aplicação, tecnologias e materiais.
1.1	Adriano Gomes Taynara Silva	25/09/2021	Atualização de RFs, RNs e dos materiais utilizados pelo projeto.
1.2	Adriano Gomes Rafael Guedes	26/10/2021	Revisão da arquitetura e do diagrama de blocos.
1.3	Rafael Guedes	04/11/2021	Adição do protótipo TinkerCad

Sumário

I. Escopo

Descrição do Problema

Objetivos do Projeto

Abreviações

Descrição Geral do Sistema

II. Requisitos Gerais do Sistema

Prioridades dos Requisitos

Requisitos Funcionais

Regras de Negócio

- III. Arquitetura
- IV. Diagrama de Blocos da Aplicação
- V. Tecnologias
- VI. Materiais
- VII. Protótipo (Simulador)

Visão do circuito do protótipo

Acesso ao protótipo online

Escopo

Descrição do Problema

A crise sanitária mundial que se iniciou no ano de 2020, motivou diversas medidas para impedir a transmissão da Covid-19, e umas das restrições obrigatórias ocasionou um grande efeito no consumo de energia elétrica: o isolamento.

A população precisou se adaptar com a nova rotina e a maioria das atividades passaram a ser realizadas em ambiente domiciliar e com consequência dessa permanência, o aumento do consumo de energia elétrica causou um impacto significativo nesse período.

Além disso, o verão também tem sido um grande colaborador com o crescimento do consumo dos eletrodomésticos, como ar condicionado, umidificador de ar, ventiladores e entre outros.

Com o aumento das tarifas de energia elétrica, tem-se observado a necessidade da adoção de alternativas práticas e acessíveis que colaborem com o consumo consciente, que beneficiem tanto o meio ambiente como também proporcionar economia financeira.

Objetivos do Projeto

Desenvolver um sistema automatizado que realizará o controle e verificação do estado de dois dispositivos presentes em um cômodo (quarto) de uma residência, sendo eles um ventilador e uma lâmpada.

Tendo como finalidade aliar-se com conceitos ecologicamente sustentáveis, visto que o propósito do projeto é focar na economia de energia elétrica, reduzindo o consumo e desperdício, além de garantir acessibilidade e segurança a idosos e pessoas com deficiência.

Abreviações

RF	Requisito Funcional
RNF	Requisito Não-Funcional
RN	Regra de Negócio

Descrição Geral do Sistema

O sistema SmartRoom entregará dois dispositivos sendo eles o SmartFan e a SmartLed. O SmartFan e a SmartLed tratam-se respectivamente de um ventilador inteligente e de uma lâmpada LED inteligente, inicialmente substituídos por um cooler e por um mini LED para fins de manuseio fácil no seu desenvolvimento. O ventilador deverá controlar a velocidade e sentido em que o ar circula no ambiente, possibilitando que o usuário ligue ou desligue o aparelho à distância, dentro ou fora da residência. Já a lâmpada irá promover uma praticidade ao usuário quando este desejar ligar ou desligá-las, permitindo o controle da iluminação da residência. O ventilador será

controlado por um sensor de movimento e a lâmpada será controlada por um sensor de luminosidade.

Requisitos Gerais do Sistema

Prioridades dos Requisitos

Para estabelecer a prioridade dos requisitos foram adotadas as denominações "essencial", "importante" e "desejável".

- Essencial é o requisito sem o qual o sistema não entra em funcionamento. Requisitos essenciais são requisitos imprescindíveis, que têm que ser implementados impreterivelmente.
- Importante é o requisito sem o qual o sistema entra em funcionamento, mas de forma não satisfatória. Requisitos importantes devem ser implementados, mas, se não forem, o sistema poderá ser implantado e usado mesmo assim.
- Desejável é o requisito que não compromete as funcionalidades básicas do sistema, isto é, o sistema pode funcionar de forma satisfatória sem ele. Requisitos desejáveis são requisitos que podem ser deixados para versões posteriores do sistema, caso não haja tempo hábil para implementá-los na versão que está sendo especificada.

Requisitos Funcionais

Tomando por base o contexto do sistema, foram identificados os seguintes requisitos de usuário:

ID	Nome	Descrição	Prioridade
RF01	Ativar ventilador (Movimento)	Esta funcionalidade deverá permitir que o sistema ligue o ventilador com a presença de uma pessoa.	Essencial
RF02	Desativar ventilador (Movimento)	Esta funcionalidade deverá permitir que o sistema desligue o ventilador sem a presença de uma pessoa.	Essencial
RF03	Ativar ventilador (Temperatura)	Esta funcionalidade deverá ser capaz de permitir que o sistema ative o ventilador caso o ambiente chegue a uma certa temperatura (RN03).	Essencial
RF04	Desativar ventilador (Temperatura)	Esta funcionalidade deverá ser capaz de permitir que o sistema desligue o ventilador caso o ambiente chegue a uma certa temperatura (RN04).	Essencial
RF05	Controle da Lâmpada (Movimento)	Esta funcionalidade deverá ser capaz de permitir que a lâmpada seja ligada ou desligada conforme detecção do sensor de presença (PIR).	Essencial

Regras de Negócio

Tomando por base o contexto do sistema, foram identificadas as seguintes regras de negócio:

ID	Descrição	Prioridade
RN01	A lâmpada ficará desligada enquanto estiver claro.	Importante
RN02	O ventilador deve ser ativado caso a temperatura detectada pelo sensor TMP36 seja acima de 25°.	Importante
RN03	O ventilador deve ser desativado caso a temperatura detectada pelo sensor TMP36 seja abaixo de 22°.	Essencial
RN04	O ventilador pode ser ativado pelo sensor PIR a qualquer momento, mas só será desativado caso o ambiente atinja temperatura 22°.	Importante
RN05	A lâmpada deve ser ativada pelo sensor PIR, somente se o sensor LDR detectar que está escuro.	Essencial

Tabela 2 - Regras de Negócio

Arquitetura

Figura 1 – Arquitetura

Diagrama de Blocos da Aplicação

Figura 2 - Diagrama de Blocos

Tecnologias

Tecnologias que serão utilizadas para o desenvolvimento do projeto

- a. Placas e Sensores Arduino;
- b. TinkerCad.

Materiais

Lista de materiais que serão usados para a construção do sistema SmartRoom:

- 1 Arduino Uno;
- 1 Sensor PIR;
- 1 Sensor LDR (Fotoresistor);
- 1 Sensor TMP36;
- 2 Resistores (220 Ω);
- 1 Resistor (10 k Ω);
- 1 Diodo;
- 1 Transistor NPN (BJT);
- Motor CC (Representação do ventilador);
- Led (Representação da lâmpada).

Protótipo (Simulador)

Visão do circuito do protótipo

Essa é uma imagem do protótipo do projeto SmartRoom, construído no simulador TinkerCad para demonstrar o funcionamento do sistema pensado e desenvolvido neste projeto.

Figura 3 – Protótipo (TinkerCad)

Acesso ao protótipo online

O acesso a prototipação pode ser realizado por meio do <u>link</u>.