MSA Project Week 2024

Team Analytical Midtowners

Divij Mishra Manikant Thatipalli Shiven Barbare

Contents

- Problem Statement
- Challenges and Solutions
- Model Design
- Vocabulary Generation
- Clustering Approach
- New Labels
- Metrics
- Limitations and Further Scope

Problem statement

Your challenge: train a text classifier to mimic the output of a zero-shot classification from a foundation model

1. Heavy imbalance in dataset

Top 5 labels (all > 10k):

product details inquiry	42698
product availability and stock	37972
schedule repair	35386
change or update order	24297
defective product	19269

Bottom 5 labels (all < 100):

payment failed	601
account cancellation	520
reschedule order pickup	478
performance issues	473
network or connectivity issues	409

- 1. Heavy imbalance in dataset
- 2. Lots of similar labels

```
('product details inquiry', 'product compatibility')
('defective product', 'damaged product')
('schedule order pickup', 'reschedule order pickup')
('schedule delivery', 'reschedule delivery')
('schedule repair', 'reschedule repair')
('lost or forgot items', 'delivery of parts of delivery items missing')
('account security', 'login issues', 'forgot my password')
```

- 1. Heavy imbalance in dataset
- 2. Lots of similar labels
- 3. Dirty data

```
aaaa ??
            jdi ??
                       press
ab ??
            jealous
                       pressed
aback ??
            jean
                       presser
                       pressio ??
abaco 22
            jeanette
abandon
                       pressort ??
            jeanie??
abata ??
                        presssssss ?????
            jeannette
abbey ??
            jeannie
                       pressure
abbishnew
            jeans
                       pressway
            jeben ??
abbot
                       preston
abbreviate
                       prestron ??
            jeep
```

- 1. Heavy imbalance in dataset
- 2. Lots of similar labels
- 3. Dirty data
- 4. Need to limit model complexity

Solutions

- 1. Heavy imbalance in dataset label clusters + cascading models
- 2. Lots of similar labels label clusters + cascading models
- 3. Dirty data
- 4. Need to limit model complexity

Solutions

- 1. Heavy imbalance in dataset label clusters + cascading models
- 2. Lots of similar labels label clusters + cascading models
- 3. Dirty data custom vocabulary
- 4. Need to limit model complexity

Solutions

- 1. Heavy imbalance in dataset label clusters + cascading models
- 2. Lots of similar labels label clusters + cascading models
- 3. Dirty data custom vocabulary
- 4. Need to limit model complexity **TF-IDF** + **XGBoost**

Model design 1: DMSClassifier block

Model design 2: Cascade pipeline

Every transcript goes through a cascade of 2 DMSClassifiers:

- The first one predicts the cluster
- The second one predicts the label

Vocabulary generation

 Still have 25k words after stop-word removal, lemmatization + TF-IDF (many of these are either not words, or not useful words)

```
aaaa ??
            jdi ??
                        press
ab ??
            jealous
                        pressed
aback ??
             iean
                        presser
                        pressio ??
abaco 22
             jeanette
abandon
            jeanie??
                        pressort ??
abata ??
                        presssssss ?????
             jeannette
abbey ??
             jeannie
                        pressure
abbishnew
             jeans
                        pressway
            jeben ??
abbot
                        preston
abbreviate
                        prestron ??
            jeep
```

Vocabulary generation

- Still have 25k words after stop-word removal, lemmatization + TF-IDF (many of these are either not words, or not useful words)
- 2. Solution: Use ChatGPT to generate lists of relevant words! E.g.

Vocabulary generation

- Still have 25k words after stop-word removal, lemmatization + TF-IDF (many of these are either not words, or not useful words)
- 2. Solution: Use ChatGPT to generate lists of relevant words!
- 3. We got 5k words from ChatGPT reduced this to roughly 400

1) Basic model for finding clusters

- 1) Basic model for finding clusters
- Used the table as a heuristic to manually engineer meaningful clusters

Actual(right) Predicted (below)	payment method	change payment method	login issues
payment method	29	10	2
change payment method	12	20	1
login issues	1	3	28

```
A='change payment method'
                              B='payment method'
                                                              C='login issues'
top10 words list A
                              top10 words list B
                                                              top10_words_list_C
                                                                        'account': 24,
         'card': 31.
                                        payment': 25,
                                                                        'email': 21,
          payment': 22,
                                       'credit': 25,
                                                                        'password': 18,
         'order': 18,
                                                                        'phone': 15,
                                        credit card': 23
         'credit': 16,
                                                                        'number': 14,
         'credit card': 15
                                        good': 14,
                                                                        'try': 14,
         'update': 11,
                                       'order': 11,
                                                                        'log': 13,
         'good': 11.
                                        date: 9,
                                                                        'time': 9,
         'number': 9,
                                       'number': 9,
                                                                        'code': 8,
         'go': 9,
                                       'renew': 7,
                                                                        'reset': 6,
         'change': 8,
```

Similar Labels

Different Label

Final clusters:

cluster_label	
order related and payments	126932
warranty	124098
product queries	104195
queries regarding website	15504
authorization	8599

New label - "other"

Still have heavy imbalance within clusters - introduced a label "other" for these

Cluster: Warranty

schedule repair	35386	
defective product	19269	
schedule installation	14616	
troubleshooting	14242	
damaged product	9065	
software error	7502	
software installation	6156	
reschedule repair	3759	
warranty claim	3006	
screen issues	2706	
device damaged	2230	
check warranty coverage	2166	Clubbed togethe
lost or forgot items	2028	
reschedule installation	1494	ווונט ומטכו טנווכו
performance issues	473	
screen issues device damaged check warranty coverage lost or forgot items reschedule installation	2706 2230 2166 2028 1494	Clubbed togeth

New label - "wrong cluster"

 Errors due to incorrect cluster mapping result in noisy inputs for the cluster level classifier

New label - "wrong cluster"

 Errors due to incorrect cluster mapping result in noisy inputs for the cluster level classifier

New label - "wrong cluster"

- Errors due to incorrect cluster mapping result in noisy inputs for the cluster level classifier
- To train this, each cluster level classifier got 10% data from other clusters

Metrics

1. Classification metrics

Classifier	F1-score
Fine-tuned T5 small	0.72
Our pipeline	0.50
Clustering	0.76
"Authorization"	0.38
"Order"	0.53
"Product"	0.54
"Queries regarding website"	0.36
"Warranty"	0.46

Metrics

1. Classification metrics

2. Things needed for inference:

- a. spaCy en_core_web_lg
- b. TF-IDF vectorizer trained on 350k
- c. Custom vocabularies
- d. 6 XGBoost models (each inference only requires 2)

Lightweight model (relative to big LLMs)!

Classifier	F1-score
Fine-tuned T5 small	0.72
Our pipeline	0.50
Clustering	0.76
"Authorization"	0.38
"Order"	0.53
"Product"	0.54
"Queries regarding website"	0.36
"Warranty"	0.46

Limitations and further scope

- Limited time and compute resources -> better hyperparameter tuning could improve performance
- 2. Limited experimentation in choosing clusters and vocabulary
- 3. Decided to do 2 cascade layers because of time constraints -> could create further classifiers for minority classes in "other" category
- 4. Could use SHAP for better explainability

