Chapitre 6 : Equations différentielles

Dans tout ce qui suit, on parle de fonctions d'une variable réelle, à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Résoudre une équation différentielle F(y',y,x)=0 sur un intervalle I, c'est trouver les solutions $x\mapsto f(x)$ définies et dérivables sur I, vérifiant $\forall x\in I, F(f'(x),f(x),x)=0$. Les courbes représentatives des fonctions solutions s'appellent les courbes intégrales de l'équation.

I Equations différentielles linéaires du premier ordre

A) Généralités

Définition:

On appelle équation différentielle linéaire du premier ordre une équation du type a(x)y'+b(x)y=c(x), où a, b, c sont des fonctions, a n'étant pas la fonction nulle.

I étant un intervalle sur lequel a, b, c sont définies, une fonction f est solution de cette équation sur I lorsque f est définie et dérivable sur I et : $\forall x \in I, a(x)f'(x) + b(x)f(x) = c(x)$.

Par exemple, la fonction $x \mapsto e^{-\frac{x^2}{2}}$ est solution sur \mathbb{R} de l'équation y' + xy = 0.

Proposition:

L'ensemble des solutions sur un intervalle I de l'équation linéaire du premier ordre homogène : (H): a(x)y'+b(x)y=0 est un sous-espace vectoriel du \mathbb{K} -ev $\mathfrak{F}(I,\mathbb{K})$ (éventuellement réduit à $\{0\}$).

Si l'équation différentielle linéaire du premier ordre complète (E): a(x)y'+b(x)y=c(x) admet une solution f_0 sur I, alors les solutions sur I de (E) sont exactement les fonctions $f=f_0+\varphi$, φ décrivant le \mathbb{K} -ev des solutions sur I de (H)

Démonstration:

- On note H l'ensemble des solutions de (H). soient $f, g \in H, \lambda \in \mathbb{R}$.

On a, pour tout $x \in I$:

$$a(x)f'(x) + b(x)f(x) = 0$$

a(x)g'(x) + b(x)g(x) = 0, soit, en multipliant par $\lambda : a(x)\lambda g'(x) + b(x)\lambda g(x) = 0$

En sommant les deux égalités obtenues, on obtient :

$$\forall x \in I, a(x)(f'(x) + \lambda g'(x)) + b(x)(f(x) + \lambda g(x)) = 0$$

Soit:

$$\forall x \in I, a(x)(f + \lambda g)'(x) + b(x)(f + \lambda g)(x) = 0$$

Donc $f + \lambda g$ est solution de (H), donc $f + \lambda g \in H$.

De plus, la fonction nulle est évidemment solution de (*H*).

Donc *H* est un sous-espace vectoriel de $\mathfrak{F}(I,\mathbb{K})$.

- Supposons que (E) admette une solution f_0 sur I.
- * Soit *f* une solution de (*E*).

On a alors, pour tout $x \in I$:

$$a(x)f'(x) + b(x)f(x) = c(x)$$
 et $a(x)f_0'(x) + b(x)f_0(x) = c(x)$

Donc $\forall x \in I, a(x)(f'-f_0')(x) + b(x)(f-f_0)(x) = c(x) - c(x) = 0$ Donc $f - f_0$ est solution de (H). * Réciproquement, soit φ une solution de (H). On a alors, pour tout $x \in I$: $a(x)\varphi'(x) + b(x)\varphi(x) = 0$ $a(x)f_0'(x) + b(x)f_0(x) = c(x)$ Donc, en sommant: $\forall x \in I, a(x)(f_0 + \varphi)'(x) + b(x)(f_0 + \varphi)(x) = c(x)$ Donc $f_0 + \varphi$ est solution de (E).

B) Résolution d'une équation différentielle linéaire homogène d'ordre 1 sur un intervalle « agréable »

Soit (H): a(x)y'+b(x)y=0, on suppose que I est un intervalle sur lequel a et b sont continues, et a ne s'annule pas sur I; on va résoudre (H) sur I.

Etude:

Sur *I*, l'équation (*H*) s'écrit aussi (*H*): $y' = \omega(x)y$, où ω est la fonction $-\frac{b}{a}$, définie et continue sur *I*. Soit *G* une primitive de ω sur *I*. On remarque alors que $\varphi_1 : x \mapsto e^{G(x)}$ est solution de (*H*). (et aussi que φ_1 ne s'annule pas sur *I*)

Recherche des autres solutions :

Soit φ une fonction dérivable sur I. On peut introduire ψ , dérivable sur I, telle que $\varphi = \psi \varphi_1$ (on peut prendre $\frac{\varphi}{\varphi_1}$, puisque φ_1 ne s'annule pas et est dérivable sur I).

Alors $\forall x \in I$, $\varphi'(x) = \psi'(x)\varphi_1(x) + \psi(x)\varphi_1'(x)$. Or, φ_1 est solution de (H). Donc $\forall x \in I$, $\varphi_1'(x) = \omega(x)\varphi_1(x)$

Donc $\forall x \in I, \varphi'(x) = \psi'(x)\varphi_1(x) + \psi(x)\omega(x)\varphi_1(x)$.

Donc φ solution de $(H) \Leftrightarrow \forall x \in I, \varphi'(x) = \omega(x)\varphi(x)$

 $\Leftrightarrow \forall x \in I, \psi'(x) \varphi_1(x) + \omega(x) \psi(x) \varphi_1(x) = \omega(x) \varphi_1(x) \psi(x)$

 $\Leftrightarrow \forall x \in I, \psi'(x)\varphi_1(x) = 0$

 $\Leftrightarrow \forall x \in I, \psi'(x) = 0 \quad (\operatorname{car} \varphi_1 \text{ ne s'annule pas sur } I)$

 $\Leftrightarrow \exists k \in \mathbb{R}, \forall x \in I, \psi(x) = k \quad (\text{car } I \text{ est un intervalle})$

D'où le théorème :

Soit (H): a(x)y'+b(x)y=0 une équation linéaire du premier ordre homogène et soit I un intervalle sur lequel a et b sont continues et a ne s'annule pas. Alors :

- En notant G une primitive quelconque sur I de $-\frac{b}{a}$, les solutions sur I de (H) sont les fonctions de la forme $x \mapsto \lambda e^{G(x)}$, λ décrivant $\overline{\mathbb{K}}$.
 - Si une solution de (H) sur I s'annule en un point, elle est nulle
- Le \mathbb{K} -ev des solutions de (H) sur I est de dimension 1, toute solution non nulle de (H) en constitue donc une base.

Démonstration:

Le premier point découle de l'étude, les autres sont conséquences directes de ce premier point.

Cas particulier:

Equation différentielle linéaire d'ordre 1 homogène (H) à coefficients constants :

Il s'agit d'une équation pour laquelle les fonctions a et b sont constantes, avec $a \neq 0$. Les solutions (sur tout intervalle de \mathbb{R} , et en particulier \mathbb{R}) de l'équation différentielle ay'+by=0 sont les $x\mapsto \lambda e^{-\frac{b}{a}x}, \lambda \in \mathbb{K}$.

<u>C)</u> Recherche d'une solution particulière à l'équation différentielle linéaire du premier ordre complète (*E*)

On doit chercher une solution particulière de (E): a(x)y'+b(x)y=c(x)

Considérations diverses :

Déjà, il se peut que le contexte en donne une.

Dans certains cas, on peut voir tout de suite une solution, ou au moins la forme de la solution. Par exemple, l'équation y'+2y=4 admet évidemment la solution particulière y=cte=2. On verra des choses intéressantes à ce propos dans le paragraphe \mathbf{II} (qu'il faudra adapter à ce cas).

Méthode de « variation de la constante » :

On se place sur un intervalle I où a, b, c sont continues et où a ne s'annule pas.

On connaît une solution φ , non nulle (et qui ne s'annule donc pas sur I), à l'équation (H): a(x)y'+b(x)y=0

On cherche alors une solution f de (E) sous la forme $f = \lambda \varphi$, où λ est une fonction dérivable. On a les équivalences :

$$f = \lambda \varphi \text{ v\'erifie } (E) \Leftrightarrow \forall x \in I, a(x)(\lambda'(x)\varphi(x) + \lambda(x)\varphi'(x)) + b(x)\lambda(x)\varphi(x) = c(x)$$

$$\Leftrightarrow \forall x \in I, a(x)\lambda'(x)\varphi(x) + \lambda(x)(\underbrace{a(x)\varphi'(x) + b(x)\varphi(x)}_{=0}) = c(x)$$

$$\Leftrightarrow \forall x \in I, a(x)\lambda'(x)\varphi(x) = c(x)$$

$$\Leftrightarrow \lambda \text{ est une primitive de } \frac{c}{a\varphi} \text{ sur } I$$

D) Conclusion

On peut énoncer le théorème suivant, à propos de l'équation différentielle linéaire du premier ordre complète (E): a(x)y'+b(x)y=c(x) sur un intervalle « agréable » :

Théorème:

Soit (E): a(x)y'+b(x)y=c(x) une équation différentielle linéaire du premier ordre, et soit I un intervalle sur lequel a, b, c sont continues, et a ne s'annule pas. Alors :

- (E) admet une infinité de solutions sur I.
- Si φ_1 désigne une solution non nulle (donc ne s'annulant pas) de l'équation homogène associée (H), et si f_0 désigne une des solutions de (E), que l'on peut obtenir par la méthode de variation de la constante, alors l'ensemble des solutions de (E) sur I est l'ensemble des $f_0 + \lambda \varphi_1$, λ décrivant \mathbb{K} .
- Pour tout couple (x_0, y_0) de $I \times \mathbb{K}$, il existe une et une seule solution de (E) sur I qui prend la valeur y_0 en x_0 .

Démonstration du dernier tiret, avec les notations des tirets précédents :

Soit $(x_0, y_0) \in I \times \mathbb{K}$.

Existence:

Une solution de (E) qui prend la valeur y_0 en x_0 est $f = f_0 + \lambda \varphi_1$, en posant

$$\lambda = \frac{y_0 - f_0(x_0)}{\varphi_1(x_0)}.$$

Unicité:

Si f_1, f_2 sont deux solutions de (E) telles que $f_1(x_0) = y_0$ et $f_2(x_0) = y_0$.

Déjà, il existe $\lambda_1, \lambda_2 \in \mathbb{K}$ tels que $f_1 = f_0 + \lambda_1 \varphi_1$ et $f_2 = f_0 + \lambda_2 \varphi_1$.

Alors
$$f_1(x_0) = f_0(x_0) + \lambda_1 \varphi_1(x_0) = y_0$$
, $f_2(x_0) = f_0(x_0) + \lambda_2 \varphi_1(x_0) = y_0$.

Donc $(\lambda_1 - \lambda_2)\varphi_1(x_0) = 0$. Comme $\varphi_1(x_0) \neq 0$, on a alors $\lambda_1 - \lambda_2 = 0$, soit $\lambda_1 = \lambda_2$, d'où $f_1 = f_2$, d'où l'unicité.

II Equations différentielles du second ordre

A) Généralités

Définition:

On appelle équation différentielle linéaire du second ordre une équation du type a(x)y''+b(x)y'+c(x)y=d(x), où la fonction a n'est pas nulle.

Une fonction deux fois dérivable sur un intervalle I est solution de cette équation sur I si et seulement si $\forall x \in I$, a(x)f''(x) + b(x)f'(x) + c(x)f(x) = d(x).

Comme dans le cas des équations différentielles linéaires d'ordre 1, on établit aisément :

Proposition:

L'ensemble des solutions sur un intervalle I de l'équation différentielle linéaire d'ordre 2 et homogène (H): a(x)y''+b(x)y'+c(x)y=0 est un sous-espace vectoriel du \mathbb{K} -ev $\mathfrak{F}(I,\mathbb{K})$ (éventuellement réduit à $\{0\}$)

Si l'équation linéaire du second ordre complète (E): a(x)y''+b(x)y'+c(x)y=d(x) admet une solution sur I, alors les solutions sur I de (E) sont exactement les fonctions $f = f_0 + \varphi$, φ décrivant l'espace vectoriel des solutions sur I de (H).

On va s'intéresser maintenant aux équations à coefficients constants, c'est-à-dire aux équations pour lesquelles les fonctions a,b,c sont constantes (avec $a\neq 0$). On aura donc à étudier une équation du type : ay''+by'+cy=d(x), avec $(a,b,c)\in \mathbb{K}$ * $\times\mathbb{K}\times\mathbb{K}$. (le second membre n'est pas nécessairement constant).

B) Résolution d'une équation linéaire homogène d'ordre 2 à coefficients constants

Soit l'équation (H): ay''+by'+cy=0, avec $a,b,c\in\mathbb{K}$ et $a\neq 0$. On fait la résolution sur un intervalle I quelconque (mais infini), étant entendu qu'on cherche les solutions à valeurs dans \mathbb{K} .

Par analogie avec ce qu'on a eu pour les équations du premier ordre, cherchons les solutions du type $x \mapsto e^{rx}$, où $r \in \mathbb{K}$.

Lorsqu'on remplace dans l'équation, on a, après simplification, l'équivalence :

 $x \mapsto e^{rx}$ est solution de $(H) \Leftrightarrow r$ est solution de l'équation $ax^2 + bx + c = 0$.

Cette équation s'appelle l'équation caractéristique associée à l'équation différentielle (H). Supposons qu'elle admette dans $\mathbb K$ des solutions α, β (éventuellement confondues). Cherchons alors les autres solutions de (H).

Soit f deux fois dérivable sur I, et soit $h: x \mapsto f(x)e^{-\alpha x}$.

On note $s = \alpha + \beta$, $p = \beta \alpha$.

On a les équivalences :

f est solution de
$$(H) \Leftrightarrow a(f''-sf'+pf) = 0 \iff f''-sf'+pf = 0$$

 $\Leftrightarrow (h''+2\alpha h'+\alpha^2 h) - s(h'+\alpha h) + ph = 0$
 $\Leftrightarrow h''+2\alpha h'-sh'=0 \pmod{\alpha^2-s\alpha+p=0}$
 $\Leftrightarrow h''=(\beta-\alpha)h'$
 $\Leftrightarrow \exists k \in \mathbb{K}, \forall x \in I, h'(x) = ke^{(\beta-\alpha)x}$

Ainsi, si $\alpha = \beta$, on a donc:

$$f$$
 est solution de $(H) \Leftrightarrow \exists k \in \mathbb{K}, \exists \mu \in \mathbb{K}, \forall x \in I, h(x) = kx + \mu$
 $\Leftrightarrow \exists k \in \mathbb{K}, \exists \mu \in \mathbb{K}, \forall x \in I, f(x) = (kx + \mu)e^{\alpha x}$

Et si $\alpha \neq \beta$, on a :

$$f$$
 est solution de $(H) \Leftrightarrow \exists k \in \mathbb{K}, \exists \mu \in \mathbb{K}, \forall x \in I, h(x) = \frac{k}{\beta - \alpha} e^{(\beta - \alpha)x} + \mu$
 $\Leftrightarrow \exists \lambda \in \mathbb{K}, \exists \mu \in \mathbb{K}, \forall x \in I, f(x) = \lambda e^{\beta \cdot x} + \mu e^{\alpha \cdot x}$

En prenant $\mathbb{K} = \mathbb{C}$, on a la proposition suivante :

Proposition:

Soit (H): ay''+by'+cy=0 une équation différentielle linéaire d'ordre 2 à coefficients (complexes) constants. Alors les solutions complexes de (H) sur I forment un \mathbb{C} -ev de dimension 2.

Plus précisément, si on note (C) l'équation $ax^2 + bx + c = 0$, on a :

- (1) si (C) admet deux racines distinctes α, β , alors cet espace est engendré par les fonctions $x \mapsto e^{\alpha,x}$ et $x \mapsto e^{\beta,x}$.
- (2) si (C) admet une racine double α , alors cet espace est engendré par les fonctions $x \mapsto e^{\alpha \cdot x}$ et $x \mapsto x \cdot e^{\alpha \cdot x}$.

Démonstration:

Il reste simplement à montrer que les deux familles sont libres (puisqu'on a déjà montré qu'elles étaient génératrices dans l'étude précédente).

On note
$$f_{\alpha}: x \mapsto e^{\alpha . x}, \ f_{\beta}: x \mapsto e^{\beta . x}, \ f_{x\alpha}: x \mapsto x.e^{\alpha . x}$$

Soient $\lambda_1, \lambda_2 \in \mathbb{C}$.

Si α, β sont distincts:

Supposons que $\lambda_1 f_{\alpha} + \lambda_2 f_{\beta} = 0$.

Alors $\forall x \in I, \lambda_1 f_{\alpha}(x) + \lambda_2 f_{\beta}(x) = 0$.

Si
$$\lambda_1 \neq 0$$
, alors $\forall x \in I, e^{\alpha x} = \frac{\lambda_2}{\lambda_1} e^{\beta x}$.

Soit $\forall x \in I, e^{(\alpha - \beta).x} = \frac{\lambda_2}{\lambda_1}$, ce qui est impossible (car $\alpha \neq \beta$ et I est infini).

Donc $\lambda_1 = 0$, d'où $\lambda_2 = 0$ (car sinon $\forall x \in I, e^{\beta . x} = 0$)

Si (C) admet une racine double α :

Supposons que $\lambda_1 f_{\alpha} + \lambda_2 f_{x\alpha} = 0$

Alors $\forall x \in I, \lambda_1 e^{\alpha . x} + \lambda_2 x e^{\alpha . x} = 0$

Donc $\forall x \in I, \lambda_1 + \lambda_2 x = 0$

Donc $\lambda_2 = 0$ (car sinon $\forall x \in I, x = -\frac{\lambda_1}{\lambda_2}$, ce qui est faux car I est infini)

D'où $\lambda_1 = 0$.

Donc les deux familles sont libres.

L'une d'elles forme donc selon le cas une base de l'ensemble des solutions de (H).

Avec $\mathbb{K} = \mathbb{R}$ maintenant:

Proposition:

Soit (H): ay''+by'+cy=0 une équation linéaire du second ordre à coefficients (réels) constants. Alors les solutions réelles de (H) forment un \mathbb{R} -ev de dimension 2.

Plus précisément, si on note (C) l'équation $ax^2 + bx + c = 0$, on a :

- (1) si (C) admet deux racines réelles distinctes α, β , alors cet espace est engendré par les fonctions $x \mapsto e^{\alpha x}$ et $x \mapsto e^{\beta x}$.
- (2) si (C) admet une racine (réelle) double α , alors cet espace est engendré par les fonctions $x \mapsto e^{\alpha x}$ et $x \mapsto x \cdot e^{\alpha x}$.
- (3) si (C) admet deux racines complexes non réelles conjuguées $u + i\omega$ et $u i\omega$, alors cet espace est engendré par les fonctions $x \mapsto e^{u \cdot x} \cos(\omega x)$ et $x \mapsto e^{u \cdot x} \sin(\omega x)$.

Démonstration:

Les points (1) et (2) résultent de la proposition précédente. Pour (3) :

Déjà, le \mathbb{C} -ev $S_H(I,\mathbb{C})$ des solutions complexes de (H) est de dimension 2, de base \mathfrak{B} constitué des fonctions $f_\alpha: x \mapsto e^{\alpha . x}$ et $f_\beta: x \mapsto e^{\beta . x}$. La famille des fonctions

$$f = \frac{1}{2}(f_{\alpha} + f_{\beta})$$
 et $g = \frac{1}{2i}(f_{\alpha} - f_{\beta})$ est donc aussi une base de $S_H(I, \mathbb{C})$ (puisqu'elle est libre...) donc $S_H(I, \mathbb{C})$ est aussi l'ensemble des $\lambda f + \mu g$, λ et μ décrivant \mathbb{C} . Or, f est, par construction, la fonction $x \mapsto e^{u.x} \cos(\omega x)$ et g la fonction $x \mapsto e^{u.x} \sin(\omega x)$.

Comme ces deux fonctions sont à valeurs réelles, une solution $\lambda f + \mu g$ de (H) est à valeurs réelles si et seulement si λ et μ sont réels. (la partie imaginaire de $\lambda f + \mu g$ est $\text{Im}(\lambda) f + \text{Im}(\mu) g$, qui n'est nulle que si $\text{Im}(\lambda) = \text{Im}(\mu) = 0$, puisque (f,g) est libre).

Ainsi, l'ensemble $S_H(I,\mathbb{R})$ des solutions réelles de (H) sur I est l'ensemble des $\lambda f + \mu g$, λ et μ décrivant \mathbb{R} .

Donc $S_H(I,\mathbb{R})$ est un sous-espace vectoriel de dimension 2 du \mathbb{R} -ev $\mathfrak{F}(I,\mathbb{K})$ (la famille (f,g) est évidemment toujours libre dans le \mathbb{R} -ev $\mathfrak{F}(I,\mathbb{K})$)

Remarques:

- Dans le cas (3), l'ensemble des solution réelles de (*H*) sur *I* est ainsi l'ensemble des fonctions $x \mapsto e^{u.x} (\lambda \cos(\omega.x) + \mu \sin(\omega.x)), \lambda, \mu \in \mathbb{R}$, mais aussi celui des fonctions $x \mapsto r.e^{u.x} \cos(\omega.x + \varphi), (r, \varphi) \in \mathbb{R}^+ \times [0, 2\pi]$
- Dans les deux cas (réels et complexes), les solutions sur I se prolongent toutes en des solutions de \mathbb{R} .

C) Recherche d'une solution particulière d'une équation linéaire d'ordre 2 à coefficients constants

Dans ce qui suit, a, b, c sont des éléments de \mathbb{K} , avec $a \neq 0$.

1) Considérations générales

- Si f_1 est solution de $ay''+by'+cy=d_1(x)$, et si f_2 est solution de $ay''+by'+cy=d_2(x)$ alors, pour tous scalaires $\lambda, \mu, \lambda f_1 + \mu f_2$ est solution de $ay''+by'+cy=\lambda d_1(x)+\mu d_2(x)$.
- Si a, b, c sont réels, et si f est une solution complexe de ay''+by'+cy=d(x), alors \bar{f} est une solution de $ay''+by'+cy=\bar{d}(x)$, Re f une solution de $ay''+by'+cy=\mathrm{Re}(d(x))$ et $\mathrm{Im}\,f$ une solution de $ay''+by'+cy=\mathrm{Im}(d(x))$.

2) Second membre polynomial

Si Q est un polynôme de degré n, alors l'équation ay''+by'+cy=Q(x) admet, sur \mathbb{R} , une solution polynomiale de degré n si $c \neq 0$, n+1 si c=0 et $b \neq 0$, n+2 si b=c=0.

En effet:

L'application $\phi: P \mapsto aP'' + bP' + cP$ de $\mathbb{K}[X]$ dans lui-même est linéaire...

- Si c≠0, il est clair que φ conserve les degrés, donc ker φ = {0} et φ(K_n[X]) est inclus dans K_n[X]. Donc φ constitue une bijection de K_n[X] dans lui-même, d'où l'existence de P de degré n tel que φ(P) = Q, c'est-à-dire tel que x → P(x) soit solution de l'équation.
- Si c≠0 et b≠0, il est clair que φ abaisse « d'un cran » les degrés, donc ker φ = K₀[X] et φ(K_{n+1}[X]) est inclus dans K_n[X], donc, d'après le théorème noyau image, φ(K_{n+1}[X]) = K_n[X]. Il existe donc P de degré n+1 tel que φ(P) = Q. (mais non unique, contrairement au cas précédent ; à une « constante additive » près en fait)
- Si b = c = 0: l'existence de P est évidente.

3) Second membre polynôme fois exponentielle

Si Q est un polynôme de degré n, alors l'équation $ay''+by'+cy=Q(x)e^{\lambda x}$ admet une solution du type $f: x \mapsto P(x)e^{\lambda x}$, où P est un polynôme de degré n si λ n'est pas solution de l'équation caractéristique, sinon de degré n+1, ou même n+2 lorsque λ est racine simple/double de l'équation caractéristique.

En effet, on a les équivalences (en notant (E) l'équation différentielle) : f est sol. de $(E) \Leftrightarrow \forall x \in \mathbb{R}, a(P''(x)e^{\lambda.x} + 2\lambda P'(x)e^{\lambda.x} + \lambda^2 P(x)e^{\lambda.x}) +$

$$b(P'(x)e^{\lambda x} + \lambda P(x)e^{\lambda x}) + cP(x)e^{\lambda x} = Q(x)e^{\lambda x}$$

$$\Leftrightarrow \forall x \in \mathbb{R}, aP''(x) + (2\lambda a + b)P'(x) + (a\lambda^2 + b\lambda + c)P(x) = Q(x)$$

donc f est solution de $(E) \Leftrightarrow x \mapsto P(x)$ est solution de $ay'' + \beta y' + \gamma \cdot y = Q(x)$ où $\beta = 2a\lambda + b$, $\gamma = a\lambda^2 + b\lambda + c$.

On est donc ramené au cas du 2) avec comme équation caractéristique $ax^2 + \beta x + \gamma = 0$, et γ n'est nul que si λ est racine au moins simple de l'équation $ax^2 + bx + c = 0$, et β n'est nul que si λ est racine double de cette même équation (alors $\lambda = -\frac{b}{2a}$)

4) Cas réel, second membre polynôme fois exponentielle fois sin ou cos

Pour les équations :

 $ay''+by'+cy=Q(x)e^{\lambda x}\cos(\omega x)$ ou $ay''+by'+cy=Q(x)e^{\lambda x}\sin(\omega x)$, où tout le monde est réel, il suffit de prendre une solution réelle ou imaginaire d'une solution de $ay''+by'+cy=Q(x)e^{(\lambda+i\omega).x}$

Remarque:

Toutes ces considérations valent aussi, après adaptation, pour les équations différentielles linéaires d'ordre 1 à coefficients constants.

III Autres équations différentielles

En général, on ne sait pas faire, ou plutôt on ne peut pas faire la résolution d'une équation différentielle avec des fonctions usuelles.

Equations différentielles à variables séparables :

Une équation différentielle du type y'f(y) = g(x) « se résout » en F(y) = G(x) + cte, où F et G sont une primitive respectivement de f et g.

Reste alors à « inverser » F pour obtenir pour obtenir y en fonction de x...