Geometric Deep Learning Beyond Euclidean Domains

1 Geometric Priors

In this section we want to define the mathematical foundation of deep learning via CNN'S.

Definition 1.1. Our compact euclidean domain Ω $\Omega := \prod_{i \in I} [0, 1]$.

Definition 1.2. Classification

Let $x \in L^2 := L^2(\overline{\Omega})$ then $f:L^2 \to \mathscr{C}$ surjective is said to be a classification of L^2 on the set \mathscr{C} .

Definition 1.3. Training Set

Let f be a classification of L^2 on $\mathscr C$ and $\{x_i\}_{i\in I}\subset L^2$ then the set $\{(x_i,f(x_i))\}_{i\in I}$ is called a training set for f.

Proposition 1.1. $card(\mathscr{C}) < card(L^2(\Omega))$

Let f be a classification of L^2 on $\mathscr C$ then, given the inevitable noise acting on data, there exists a real positive ε such that $\forall (x, x_{\varepsilon}) \in L^2 \times L^2 : \int_{\Omega} |x - x_{\varepsilon}|^2 < \varepsilon$ we have that $f(x) = f(x_{\varepsilon})$.

Given ideal data classification we can define two function f-equivalent if and only if their images via the classification f are equal according to an equivalence on \mathscr{C} .

Theorem 1.2. \simeq is an equivalence relation

Let $x, y, z \in L^2$ we define $x \simeq y \iff f(x) = f(y)$ where f is a classification of L^2 on $\mathscr C$, then: (i) $x \simeq x$ (ii) $x \simeq y \iff y \simeq x$ (iii) $x \simeq y, y \simeq z \implies x \simeq z$

Proof. (i),(ii) and (iii) follow from the equivalence on $\mathscr C$ by which they are defined.