Facultad de Informática	Departamento de Arquitectura de Computadores y Automática			
Examen de Fundament	os de Computadores	6 de Septiembre de 2011		
Apellidos	•••••			
Nombre	D.N.I	•		

- 1) (1,5) Dados los siguientes números: A=+35 (en decimal) y B=-2D (en hexadecimal).
 - a) Exprese los dos números con el mismo número de bits en representación en complemento a dos.
 - b) Efectúe las siguientes operaciones (operando en complemento a 2) indicando el valor decimal que se produce cuando no haya desbordamiento: A+B, A-B.
- 2) (1,5) Un sistema combinacional tiene como entrada un número positivo del 0 al 15. La salida Z vale 1 si el número de la entrada cumple alguno de estos requisitos:
 - Es un número primo
 - o Es menor de 4 y par (considerar el 0 como par)
 - o Es mayor de 8 e impar.

Se pide:

- a) Especifique el sistema mediante la tabla de verdad.
- b) Implemente el sistema con un multiplexor de 4 a 1 e inversores.
- 3) (2) Diseñe un sistema secuencial para controlar el funcionamiento de un túnel de lavado de coches. El sistema tiene 2 entradas, la tecla start/stop (asíncrona) y la tecla DarCera que permite la opción de encerar el coche, y 5 salidas como muestra la figura. En el estado inicial, todas las salidas valen 0. Desde cualquier estado se va inmediatamente al estado inicial siempre que la tecla start/stop vale 0. El túnel de lavado empieza a funcionar cuando start/stop vale 1.

El funcionamiento es el siguiente: durante 1 ciclo rocía el coche con jabón, luego activa los rodillos durante 2 ciclos, después activa el agua para aclarar (1 ciclo) y el aire para secar (1 ciclo). Si la tecla **DarCera** está activada, antes de acabar está 2 ciclos dando cera. En caso contrario vuelve al estado inicial.

Se pide:

- a) Especifique el sistema mediante un diagrama de estados como máquina de Moore.
- b) Diseñe la parte de transición de estados usando un contador y el mínimo número de puertas posible.
- c) Diseñe la función de salida utilizando los módulos combinacionales que considere necesarios.

FC- Septiembra 2011

1/a N=36,0-> 0100011

B=-20K 1-201=20= 600011045D010104c2 May G. cambiarle el signo 1010040 1010011

1B = 1010011

(b) A+13 0100011 1010011 1110110

of dostardamiento 7 acciveo

SES

11-13 = A+(-13) 0100011 0101101 1010000

Who had

I acores I desbostaciento as who regards = Col 7 bits.

X3 × 2 × 1 × 6	2	
00000	0	
0010	1	
0100	0	-
1 0110	0	
0111		
1000	9	
1010	\mathcal{O}_{μ}	
	1	
1100	0	
1101	0,	
1110	1	
(17.		
	7	

[26] como el nox tiene 2 seticles de control
pro la pricio tiene 4 variebles de
entreda has s. selecciono 2 aridoles
entreda s. hasar las recas de
serales de control.

Scheciono XIXO como Señales de Control X3X2 600111 10 fo = X3X2

3×2/	60	01	((10	
	0	0	12	0	
	0	2	1	0	ſ
	0	W	1	0	
İ	0	1	1	0	

10= \(\int_3\)\(\int_2\)	
fi = x2+x3	F2-D2-10
f 2 = x 3 x 2	×2-D-1
f3=1	X375 2
	1-3
	Via 1
	¥1 ×2

como saservos el circuito final q. se dotietre 3 depende de las viriables de entrada que se stlecida como señales de cantrol. vamos a ver q. ocurre si seleccionamos como Stales de control X₂×₂

K2×2 ×(7	6				
00	I	0	Ta	To	7
01	0	4	1	6	
((0	I	1)	0	
10	0	1	1)	0	Ī

$$\begin{cases}
6 = x_1 + x_0 \\
1 = x_0 \\
1 = x_0
\end{cases}$$

$$\begin{cases}
7 = x_0 \\
1 = x_0
\end{cases}$$

los estados del sistema sa codificación estados E28180 Sa-o Jabou 52 - rodillo 1. Tada <u>る</u>イ 9850 8 S Sz - rodillo 2º ado 00 6 su - agua Si - aire (SG - Cera 200 ciclo S7 -> Cera 200 ciclo 1 er ciclo 1 (((Tabla de Salida E2 91 E6 lag ai J 00 10 Χ an ai P2 Pa Po CLd1/1 Λ 1 6 (

