

# Paralelização do Algoritmo Kmeans em GPUs NVIDIA Utilizando a Biblioteca Numba

Trabalho de Conclusão de Curso Vinícius Henrique Almeida Praxedes Professor Orientador: Daniel Duarte Abdala

Professora Convidada 1: Júlia Tannús de Souza Professor Convidado 2: Anderson Rodrigues dos Santos

# Motivação

- Curiosidade de como utilizar **GPUs** para solucionar problemas matemáticos
- **GPGPU** → computação de propósito geral em GPUs
- Resolução de problemas lineares → Álgebra Linear
- Exemplo: multiplicação de matrizes

# Motivação — Área Escolhida

- Outras áreas que lidam com problemas lineares:
  - a) Big data
  - b) Treinamento de redes neurais
- Foi escolhida a área de big data

# Motivação — Agrupamento de Dados

- Data Mining
  - Comumente usada no pré-processamento
  - Classificação



- Custo computacional alto para grandes datasets
- Muitas operações são vetoriais e independentes entre si → altamente paralelizáveis

# Motivação — Desenvolvimento para GPUs

- Processadores vetoriais comuns e acessíveis
- Inicialmente, GPGPU era difícil
  - DirectX
  - OpenGL
- Facilitando: plataforma **CUDA** da NVIDIA (C, **C++**, Fortran) → Biblioteca **Numba** (**Python**)



# Motivação — K-Means

- Algoritmo de agrupamento antigo (1957)
- Ainda amplamente utilizado
- Conceito simples
- Já implementado e paralelizado diversas vezes



# Paralelização do Algoritmo K-means em GPUs NVIDIA

Utilizando a Biblioteca Numba

# Sumário

- CPUs vs GPUs
- Paralelização
- Agrupamento de dados: k-means
- Plataforma CUDA
- Biblioteca Numba
- Implementação: k-means serial vs. k-means paralelo
- Experimentos: datasets e resultados
- Conclusão

# CPUs vs GPUs

- CPUs → dezenas de núcleos otimizados para operações escalares
- GPUs → milhares a dezenas de milhares de núcleos otimizados para operações vetoriais





# Problemas paralelizáveis

- Pesquisa de um termo num texto



- Multiplicação de matrizes



# Problemas não paralelizáveis

- Encontrar n-ésimo fibonacci



- Hashing consecutivo



## Limite Teórico — Lei de Amdahl

 Descreve aumento de velocidade máximo de um algoritmo através da paralelização

$$\frac{1}{1 - \frac{Tp}{T}}$$

- Tp = tempo gasto em operações paralelizáveis
- $T={
  m tempo}$  total gasto na execução



## Algoritmos de Agrupamento

- Agrupar elementos de um conjunto de dados
  - Maximizar diferença inter-grupo
  - Minimizar diferença intra-grupo
- Diferença e semelhança → conceitos abstratos
- Utilizado em diversas áreas
  - Data mining
  - Classificação
  - Aprendizado de máquina
  - Processamento de imagem
  - Geração de recomendações



# Algoritmos de Agrupamento



#### Entrada

 $P = \{P1, P2, \dots, Pn\}$ , um conjunto de N objetos de dados (pontos em um espaço  $D\!\!-\!\!$  dimensional);

K, o número de agrupamentos desejado;

 $I_{max}$ , o número de iterações máximas do algoritmo

#### Saída

Um conjunto de K agrupamentos, onde cada um dos N objetos em P está associado a exatamente um conjunto.

$$N = 12; K = 3; D = 1$$



#### Passos

- 1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;
- 2. Repita (até que os critérios de convergência sejam atingidos):
  - 2.1 Atribua cada ponto de P ao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
  - 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

#### Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU . . .



#### Passos

- 1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;
- 2. Repita (até que os critérios de convergência sejam atingidos):
  - ightharpoonup 2.1 Atribua cada ponto de P ao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
  - 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

#### Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU...



#### Passos

- 1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;
- 2. Repita (até que os critérios de convergência sejam atingidos):
  - → 2.1 Atribua cada ponto de P ao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
    - 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

#### Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU...

#### Passos

- 1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;
- 2. Repita (até que os critérios de convergência sejam atingidos):
  - 2.1 Atribua cada ponto de P ao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
  - → 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

#### Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU...



#### Passos

- 1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;
- 2. Repita (até que os critérios de convergência sejam atingidos):
  - 2.1 Atribua cada ponto de P ao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
  - 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU...





• Repetindo...



• Parada quando não há mudança nos centroides ou foi atingido o limite de iterações





























## K-means — Partes Paralelizáveis

#### Passos

- 1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;
- 2. Repita (até que os critérios de convergência sejam atingidos):
  - 2.1 Atribua cada ponto de P ao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
  - 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

#### Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU...

#### K-means — Partes Paralelizáveis

### Cálculo das distâncias → O(N \* K \* I)

#### Passos

- 1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;
- 2. Repita (até que os critérios de convergência sejam atingidos):
- 2.1 Atribua cada ponto de P ao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
  - 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

#### Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU...

#### K-means — Partes Paralelizáveis

### Cálculo das médias → O(N \* D \* I)

#### Passos

- 1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;
- 2. Repita (até que os critérios de convergência sejam atingidos):
  - 2.1 Atribua cada ponto de P ao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
  - → 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

#### Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU...

#### K-means — Partes Paralelizáveis

## • Seleção dos centroides iniciais? $\rightarrow$ O(K) $\rightarrow$ K $\ll$ N, ganho irrisório

Passos

- ▶ 1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;
  - 2. Repita (até que os critérios de convergência sejam atingidos):
    - 2.1 Atribua cada ponto de P ao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
    - 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU...

### K-means — Partes Não-paralelizáveis

### Iterações separadas do laço de repetição → O(I)

#### Passos

1. Escolha arbitrariamente K pontos em P para servirem de centroides iniciais dos agrupamentos;

Iter.

- 2. Repita (até que os critérios de convergência sejam atingidos):
  - 2.1 Atribua cada ponto de Pao agrupamento que possui o centroide mais próximo, calculado pela distância euclidiana;
  - 2.2 Calcule novos centroides para cada agrupamento através da média das coordenadas de todos os pontos do grupo.

#### Critérios de convergência

Não há mudança entre os centroides da iteração atual e o da anterior; OU...

## **NVIDIA CUDA**

- Compute Unified Device Architecture (Arquitetura de Dispositivo de Computação Unificada)
- API para C, **C++** e Fortran
- Permite utilização do paralelismo e processamento vetorial de GPUs NVIDIA



### Implementação Serial — Soma de Vetores (C++)

```
#include <iostream>
     #include <math.h>
 3
     // Função que adiciona os elementos de dois vetores
                                                             20
     void add(int n, float *x, float *y){
                                                                    // Rodar na CPU
                                                             21
       for (int i = 0; i < n; i ++)
                                                                    add(N, x, y);
                                                             22
       v[i] += x[i];
                                                             23
 8
                                                             24
                                                                    // Checar se há erros (todos os valores devem ser 7.0)
 9
                                                             25
                                                                    float maxError = 0.0f:
10
     int main(void){
                                                                    for (int i = 0: i < N: i \leftrightarrow i)
                                                             26
       int N = 1<<28; // 268.435.456 elementos</pre>
11
                                                                      maxError = fmax(maxError, fabs(y[i] - 7.0f));
                                                             27
12
                                                                    std::cout << "Max error: " << maxError << "\n";</pre>
                                                             28
13
       float *x = new float[N];
                                                             29
14
       float *v = new float[N];
                                                                    // Liberar memória
                                                             30
15
                                                                    delete [] x;
                                                             31
       // Inicializar vetores no host
16
                                                                    delete [] v;
                                                             32
       for (int i = 0; i < N; i++) {
17
                                                             33
18
         x[i] = 3.77f; y[i] = 3.23f;
                                                             34
                                                                    return 0:
19
                                                             35
```

### Implementação Paralela — Soma de Vetores (C++ e CUDA)

```
for (int i = 0; i < N; i + +) {
    #include <iostream>
                                                             19
                                                                     x[i] = 3.77f; v[i] = 3.23f;
                                                             20
     #include <math.h>
                                                             21
                                                             22
     global
     void add(int n, float *x, float *y){
                                                             23
                                                                    int blockSize = 1024:
                                                            24
                                                                    int numBlocks = ceil(N / blockSize);
      int index = blockIdx.x * blockDim.x + threadIdx.x:
                                                             25
      int stride = blockDim.x * gridDim.x;
                                                             26
                                                                    add <<< numBlocks, blockSize >>> (N, x, y);
      for (int i = index; i < n; i += stride)</pre>
                                                             27
                                                                    cudaDeviceSynchronize();
        v[i] += x[i]:
                                                             28
10
                                                             29
                                                                    float maxError = 0.0f:
11
                                                             30
                                                                    for (int i = 0: i < N: i ++)
12
     int main(void){
                                                                      maxError = fmax(maxError, fabs(v[i] - 7.0f));
                                                             31
13
       int N = 1<<28; // 268.435.456 elementos
                                                                    std::cout << "Max error: " << maxError << "\n";</pre>
                                                             32
14
                                                             33
15
       float *x, *y;
                                                                    cudaFree(x);
                                                             34
16
       cudaMallocManaged(&x, N*sizeof(float));
                                                             35
                                                                    cudaFree(y);
17
       cudaMallocManaged(&y, N*sizeof(float));
                                                             36
18
                                                             37
                                                                   return 0;
                                                             38
```

- blockIdx.x = ID do bloco na GPU
- threadIdx.x = ID da thread no bloco
- gridDim.x = quantidade de blocos na GPU
- blockDim.x = quantidade de threads por bloco

## CUDA — Speed-up da Soma de Vetores

- Tempo médio em 100 execuções
- Versão serial C++: 308 ms
- Versão paralela CUDA: 11 ms
- Speed-up: **28x**
- Erro máximo: 0.0



#### CUDA — Dificuldades

- Manipulação direta de memória da GPU
- Aritmética complexa para que cada thread se "localize"
- Limitado às linguagens C, C++ e Fortran



# Biblioteca Numba

- Compilador e biblioteca para **Python**
- Tradução de código Python para código de máquina otimizado
- Velocidades se aproximam de C e
   Fortran
- Suporte ao CUDA para rodar algoritmos em GPU



### Implementação Serial — Soma de Vetores 2D (Python e Numpy)

```
import time; import numpy as np
 2
    def addArrayCPU(a, b):
         return a + b
 5
    def checkMaxErr(c):
 6
         # Checando erro máximo (todos elementos devem ser 42.0):
        minRow = c.min(axis=0)
 8
        maxRow = c.max(axis=0)
 9
        maxErr = 0.0
10
11
        for dIdx in range(D):
             maxErr = max(maxErr, abs(42.0 - minRow[dIdx]))
12
             maxErr = max(maxErr, abs(42.0 - maxRow[dIdx]))
13
14
         print(f'Max error: {maxErr}')
15
16
    D = 2**2
    N = int(2**28 * 1.5) // D # N * D = 402.653.184 elementos
17
18
    # Inicializando vetores
19
    a = np.full((N, D), 27.2, np.float32)
    b = np.full((N, D), 14.8, np.float32)
21
22
23
    # Realizando adicão
    c = addArrayCPU(a, b)
24
25
    checkMaxErr(c)
26
27
```

#### Implementação Paralela — Soma de Vetores 2D (Python, Numpy e Numba)

```
import time: import numpy as np: import numba
 2
    anumba.guvectorize(
         ['void(float32[:],float32[:])'],
         '(d).(d)→(d)', nopython=True, target='cuda'
 6
    def addArrayGPU(a, b, c):
 8
        d = len(a)
        for dIdx in range(d):
             c[dIdx] = a[dIdx] + b[dIdx]
10
11
   > def checkMaxErr(c): ...
21
22
    D = 2**2
    N = int(2**28 * 1.5) // D # N * D = 268.435.456 elementos
23
24
25
    # Inicializando vetores
    a = np.full((N, D), 27.2, np.float32)
26
    b = np.full((N, D), 14.8, np.float32)
27
28
29
    # Inicializando vetor de retorno
    c = np.zeros((N, D), np.float32)
30
31
32
    # Realizando adição
    addArrayGPU(a, b, c)
33
34
35
    checkMaxErr(c)
36
```

## Numba — Speed-up da Soma de Vetores

- Tempo médio em 100 execuções
- Versão serial Python: 2.501,24 ms
- Versão paralela Numba: **397,50 ms**
- Speed-up: **6,29x**
- Erro máximo: 0.0



## Paralelizando o K-means

Cálculo de distâncias — versão serial em Python (Numpy e Pandas)

```
while iteration ≤ maxIter and not centroids_OLD.equals(centroids):
    distances = centroids.apply(lambda x: np.sqrt(((dataset - x)
    ** 2).sum(axis=1)))
```

- Aplica-se à todos os centroides uma função lambda que calcula a distância euclidiana de todos os pontos do dataset para este centroide
- dataset  $\rightarrow$  (N, D); centroids  $\rightarrow$  (K, D); .sum()  $\rightarrow$  (N); distances = (N, K)

## Paralelizando o K-means

Cálculo de distâncias — versão paralela em Python (Numpy e Numba)

```
while iteration ≤ maxIter and not np.array_equal
(centroids_OLD__np ,centroids__np):
distances = np.zeros((n, k))
calcDistances(centroids__np, dataset__np, distances)
```

• centroids\_\_np  $\rightarrow$  (K, D); dataset\_\_np  $\rightarrow$  (N, D); distances = (N, K)

## Paralelizando o K-means

Função calcDistances()

```
@numba.guvectorize(
         ['void(float64[:,:], float64[:], float64[:])'],
         (k,d),(d)\rightarrow(k)', nopython=True, target='cuda'
13
14
     def calcDistances(centroids, rowDataset, rowResults):
15
         d = len(rowDataset)
16
17
         for centroidIndex, centroid in enumerate(centroids):
             distance = 0.0
18
             for dim in range(d): distance += (rowDataset[dim] - centroid[dim]) ** 2
19
             distance = distance ** (1/2)
20
             rowResults[centroidIndex] = distance
21
```

# Experimentos — Datasets

- Experimentos realizados em cinco datasets reais
- Repositório de Machine Learning da Universidade da Califórnia em Irving (UCI)

| Dataset   | N          | D  | K | N*D*K       | Modificação?        |
|-----------|------------|----|---|-------------|---------------------|
| Rice      | 3.810      | 7  | 2 | 53.340      | Não                 |
| HTRU2     | 17.898     | 8  | 2 | 286.368     | Não                 |
| MiniBooNE | 129.596    | 50 | 2 | 12.959.600  | Remoção de outliers |
| WESAD     | 4.588.552  | 8  | 3 | 110.125.248 | Sub-conjunto        |
| HHAR      | 13.932.632 | 3  | 7 | 292.585.272 | Sub-conjunto        |

# Experimentos — Speed-up



# Experimentos — Speed-up

| Dataset   | Execuções | Tempo Médio CPU (S) | Tempo Médio GPU (S) |
|-----------|-----------|---------------------|---------------------|
| Rice      | 100       | 0.0800              | 0.0087              |
| HTRU2     | 100       | 0.3327              | 0.0192              |
| MiniBooNE | 100       | 9.6021              | 0.6988              |
| WESAD     | 20        | 141.7909            | 3.3438              |
| HHAR      | 10        | 1500.6155           | 36.8901             |

# Experimentos — Speed-up



# Experimentos — Precisão

| Dataset   | Execuções | P. Média (CPU) | P. Média (GPU) | Melhora   |
|-----------|-----------|----------------|----------------|-----------|
| Rice      | 100       | 91.0433%       | 91.3821%       | +0.372180 |
| HTRU2     | 100       | 91.7588%       | 91.7589%       | +0.000061 |
| MiniBooNE | 50        | 50.8039%       | 50.8288%       | +0.048967 |
| WESAD     | 5         | 63.5576%       | 65.0151%       | +2.293257 |
| HHAR      | 2         | 28.3104%       | 28.3097%       | -0.002485 |

# Conclusões

- Ganhos de velocidade obtidos dentro da ordem de magnitude esperada de 3x à 80x
- Utilizando ferramentas de alto-nível de abstração: Python e Numba
- Acesso facilitado à área de GPGPU → grande ferramenta para Data Science
- Ganhos não afetam a precisão do algoritmo



Monografia, códigos e mais material complementar disponíveis no GitHub:

https://github.com/vinivosh/ufu-tcc2/