4.1 Time evolution of superpositions

Slides: Video 4.1.6 The coherent state

Text reference: Quantum Mechanics for Scientists and Engineers

Section 3.6 ("Coherent state")

The coherent state

The coherent state for a harmonic oscillator of frequency ω is

$$\Psi_{N}(\xi,t) = \sum_{n=0}^{\infty} c_{Nn} \exp\left[-i\left(n + \frac{1}{2}\right)\omega t\right] \psi_{n}(\xi)$$
where
$$c_{Nn} = \sqrt{\frac{N^{n} \exp(-N)}{n!}}$$

and the $\psi_n(\xi)$ are the harmonic oscillator eigenstates

The coherent state

Incidentally, note that for the expansion coefficients c_{Nn}

$$\left|c_{Nn}\right|^2 = \frac{N^n \exp(-N)}{n!}$$

This is the Poisson distribution from statistics with mean N and standard deviation \sqrt{N} We will make no direct use of this here but in the end it explains, e.g., the Poissonian distribution of photons in a laser beam

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

$$\Psi_N(\xi,t) =$$

$$\sum_{n=0}^{\infty} c_{Nn} \exp \left[-i \left(n + \frac{1}{2} \right) \omega t \right] \psi_n(\xi)$$

$$c_{Nn} = \sqrt{\frac{N^n \exp(-N)}{n!}}$$

Finite well superposition

Make an equal superposition of the first three states of a finite potential well as in our previous example Because the energies are not rationally related the superposition never repeats

Finite well superposition

Make an equal superposition of the first three states of a finite potential well as in our previous example Because the energies are not rationally related the superposition never repeats e.g., in the probability density in time

