Поток Риччи и гипотеза Пуанкаре

Джон В. Морган и Ганг Тянь

Содержание

Введе	ние	6
1	Обзор аргументов Перельмана	7
2	Основы геометрии Римана	8
3	Основы потока Риччи	8
4	Достижения Перельмана	8
5	Стандартное решение и процесс хирургии	8
6	Расширение потоков Риччи с хирургией	8
7	Исчезновение за конечное время	8
8	Благодарности	8
9	Список связанных статей	8
Глава	1. Введение в геометрию Римана	9
1	Метрика Римана и связность Леви-Чивиты	9
2	Кривизна Риманового многообразия	9
3	Геодезические и экспоненциальное отображение	9
4	Вычисления в Гауссовых нормальных координатах	9
5	Основные результаты сравнения кривизны	9
6	Локальный объем и радиус инъективности	9
Глава	2. Многообразия с неотрицательной кривизной	10
1	Функции Буземана	10
2	Результаты сравнения в случае неотрицательной кривизны	10
3	Теорема о душе	10
4	Концы многообразия	10
5	Теорема расщепления	10
6	<i>ϵ</i> -шейки	10
7	Коэффициенты прямой разницы	10
Глава	3. Основы потока Риччи	11
1	Определение потока Риччи	11
2	Некоторые точные решения потока Риччи	11
3	Локальная существуемость и единственность	11
4	Эволюция кривизны	11
5	Эволюция кривизны в развивающейся ортонормальной системе	11
6	Изменение расстояния под действием потока Риччи	11
7	Оценки производных Ши	11
8	Обобщенные потоки Риччи	11
Глава	4. Принцип максимума	12
1	Принцип максимума для скалярной кривизны	12
2	Принцип максимума для тензоров	12
3	Применения принципа максимума	12
4	Сильный принцип максимума для кривизны	12
5	Сужение к положительной кривизне	12

Глава	5. Результаты сходимости для потока Риччи	13
1	Геометрическая сходимость Римановых многообразий	13
2	Геометрическая сходимость потоков Риччи	13
3	Сходимость Громова-Хаусдорфа	13
4	Пределы при увеличении масштаба	13
5	Расщепление пределов на бесконечности	13
Глава	6. Геометрический подход к потоку Риччи через срав-	
	нения	14
1	\mathcal{L} -длина и \mathcal{L} -геодезические	14
2	L-экспоненциальное отображение и его свойства первого по-	
	рядка	14
3	Минимизирующие \mathcal{L} -геодезические и область инъективности	14
4	Дифференциальные неравенства второго порядка для $ ilde{L}^{\overline{ au}}$ и $L_x^{\overline{ au}}$	14
5	Сокращённая длина	14
6	Локальные оценки Липшица для l_x	14
7	Сокращённый объём	14
Глава	7. Полные потоки Риччи с ограниченной кривизной	15
1	Φ ункции L_x и l_x	15
2	Оценка для $\min l_x^ au$	15
3	Сокращённый объём	15
Глава	8. Результаты о несхлопывающихся многообразиях	16
4		
1	Результат о несхлопывании для обобщённых потоков Риччи	16
$\frac{1}{2}$	Результат о несхлопывании для обобщённых потоков Риччи Применение к компактным потокам Риччи	16 16
2		
2	Применение к компактным потокам Риччи	16
2 Глава	Применение к компактным потокам Риччи 9. к-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для к-	16 17 17
2 Глава 1 2	Применение к компактным потокам Риччи 9. κ -несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для κ -решений	16 17 17 17
2 Глава 1 2 3	Применение к компактным потокам Риччи 9. к-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для к-решений Расщепление пределов на бесконечности	16 17 17
2 Глава 1 2	Применение к компактным потокам Риччи 9. к-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для крешений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в раз-	16 17 17 17 17
2 Глава 1 2 3 4	Применение к компактным потокам Риччи 9. к-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для к-решений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3	16 17 17 17 17 17
2 Глава 1 2 3 4	Применение к компактным потокам Риччи 9. κ -несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для κ -решений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный κ	16 17 17 17 17 17
2 Глава 1 2 3 4 5 6	Применение к компактным потокам Риччи 9. к-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для к-решений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный к Асимптотический объём	16 17 17 17 17 17 17
2 Глава 1 2 3 4 5 6 7	Применение к компактным потокам Риччи 9. к-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для крешений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный к Асимптотический объём Компактность пространства 3-мерных к-решений	16 17 17 17 17 17 17 17
2 Глава 1 2 3 4 5 6	Применение к компактным потокам Риччи 9. к-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для к-решений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный к Асимптотический объём	16 17 17 17 17 17 17
2 Глава 1 2 3 4 5 6 7 8	 Применение к компактным потокам Риччи 9. κ-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для к-решений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный к Асимптотический объём Компактность пространства 3-мерных к-решений Качественное описание к-решений 10. Ограниченная кривизна на ограниченном расстоянии 	16 17 17 17 17 17 17 17 17 17
2 Глава 1 2 3 4 5 6 7 8 Глава 1	 Применение к компактным потокам Риччи 9. κ-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для крешений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный к Асимптотический объём Компактность пространства 3-мерных к-решений Качественное описание к-решений 10. Ограниченная кривизна на ограниченном расстоянии Сужение к положительному: определения 	16 17 17 17 17 17 17 17 17 17 18 18
2 Глава 1 2 3 4 5 6 7 8 Глава 1 2	 Применение к компактным потокам Риччи 9. κ-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для к-решений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный к Асимптотический объём Компактность пространства 3-мерных к-решений Качественное описание к-решений 10. Ограниченная кривизна на ограниченном расстоянии Сужение к положительному: определения Формулировка теоремы 	16 17 17 17 17 17 17 17 17 18 18 18
2 Глава 1 2 3 4 5 6 7 8 Глава 1 2 3	 Применение к компактным потокам Риччи 9. κ-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для κ-решений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный к Асимптотический объём Компактность пространства 3-мерных κ-решений Качественное описание к-решений 10. Ограниченная кривизна на ограниченном расстоянии Сужение к положительному: определения Формулировка теоремы Неполный геометрический предел 	16 17 17 17 17 17 17 17 17 17 18 18 18
2 Глава 1 2 3 4 5 6 7 8 Глава 1 2 3 4	Применение к компактным потокам Риччи 9. κ -несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для κ -решений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный κ Асимптотический объём Компактность пространства 3-мерных κ -решений Качественное описание κ -решений 10. Ограниченная кривизна на ограниченном расстоянии Сужение к положительному: определения Формулировка теоремы Неполный геометрический предел Пределы конуса возле конца \mathcal{E} для рескейлингов U_{∞}	16 17 17 17 17 17 17 17 17 17 18 18 18 18
2 Глава 1 2 3 4 5 6 7 8 Глава 1 2 3	 Применение к компактным потокам Риччи 9. κ-несхлопывающиеся древние решения Предварительные замечания Асимптотический градиентный сокращающий солитон для κ-решений Расщепление пределов на бесконечности Классификация градиентных сокращающих солитонов в размерностях 2 и 3 Универсальный к Асимптотический объём Компактность пространства 3-мерных κ-решений Качественное описание к-решений 10. Ограниченная кривизна на ограниченном расстоянии Сужение к положительному: определения Формулировка теоремы Неполный геометрический предел 	16 17 17 17 17 17 17 17 17 17 18 18 18

Глава	11. Основы потока Риччи	19
1	Гладкий предел при увеличении масштаба, определённый для	
	малого времени	19
2	Пределы при долгом времени увеличения масштаба	19
3	Неполные гладкие пределы в сингулярные моменты	19
4	Существование сильных δ -шеек, достаточно глубоких в 2ϵ -горне	19
Глава	12. Стандартное решение	20
1	Существование стандартного потока	20
$\overset{-}{2}$	Полнота, положительная кривизна и асимптотическое пове-	
_	дение	20
3	Стандартные решения являются вращательно симметричными	20
4	Единственность	20
5	Решение потока гармонических отображений	20
6	Завершение доказательства единственности	20
7	Некоторые следствия	20
Глово	12 Vuryanna na 8 mašva	21
	13. Хирургия на δ -шейке	21
1	Нотация и формулировка результата	
$\frac{2}{2}$	Предварительные вычисления	21 21
3	Доказательство теоремы 13.2	
4	Другие свойства результата хирургии	21
Глава	14. Поток Риччи с хирургией: определение	22
1	Пространство-время хирургии	22
2	Обобщённое уравнение потока Риччи	22
Глава	15. Контролируемые потоки Риччи с хирургией	23
1	Сшивание развивающихся шеек	23
2	Топологические следствия предположений (1) – (7)	23
3	Дополнительные условия для хирургии	23
4	Процесс хирургии	23
5	Утверждения о существовании потока Риччи с хирургией	23
6	Контуры доказательства теоремы 15.9	23
Глава	16. Доказательство несхлопывания	24
1	Формулировка результата о несхлопывании	$\overline{24}$
$\overset{-}{2}$	Доказательство несхлопывания при $R(x)=r^{-2}$ с $r\leq r_{i+1}$	24
3	Минимизирующие \mathcal{L} -геодезические существуют, когда $R(x) =$	
· ·	r_{i+1}^{-2} : формулировка	24
4	Эволюция окрестностей хирургических кап	$\frac{24}{24}$
5	Оценка длины	24
$\frac{5}{6}$		$\frac{24}{24}$
U	Завершение доказательства пропозиции 16.1	4 4
Глава	17. Завершение доказательства теоремы 15.9	25
1	Доказательство сильного предположения о канонических окрест-	
	ностях	25

2	Время хирургии не накапливается	25
Глава :	18. Истечение до конечного времени	26
1	Результат	26
2	Исчезновение компонентов с нетривиальной π_2	26
3	Истечение	26
4	Поток сжимающихся кривых	26
5	Доказательство пропозиции 18.24	26
6	Доказательство леммы 18.59: кольца с маленькой площадью	26
7	Доказательство первой неравенства в лемме 18.52	26
Глава	19. Приложение: Канонические окрестности	27
1	Укорочение кривых	27
2	Геометрия є-шеек	27
3	Перекрывающиеся є-шейки	27
4	Области, покрытые ϵ -шейками и (C,ϵ) -капами	27
5	Подмножества объединения ядер (C,ϵ) -кап и ϵ -шеек	27
Списо	к литературы	28

Введение

В этой книге представлено полное и детализированное доказательство

гипотезы Пуанкаре: всякое замкнутое, гладкое односвязное 3-многообразие диффеоморфно 1 S^3 Эта гипотеза была сформулирована Анри Пуанкаре [58] в 1904 году и оставалась открытой до недавней работы Перельмана. Аргументы, представленные здесь, являются детализированной версией тех, которые встречаются в трех препринтах Перельмана [53, 55, 54]. Аргументы Перельмана опираются на фундамент, созданный Ричардом Гамильтоном, с его исследованием уравнения потока Риччи для Римановых метрик. На самом деле, Гамильтон считал, что потоки Риччи можно использовать для установления гипотезы Пуанкаре и более общих результатов топологической классификации в размерности 3, и разработал программу для достижения этой цели. Трудность заключалась в том, чтобы справиться с особенностями в потоках Риччи. Прорыв Перельмана заключался в том, чтобы понять качественную природу особенностей достаточно хорошо, чтобы позволить ему доказать гипотезу Пуанкаре (и теорему 0.1 ниже, которая подразумевает гипотезу Пуанкаре). Для подробной истории гипотезы

Класс примеров, тесно связанных с 3-сферой, составляют 3-мерные сферические пространственные формы, т.е. отношения S^3 по свободным линейным действиям конечных подгрупп ортогональной группы O(4). Существует обобщение гипотезы Пуанкаре, называемое **гипотезой** 3-мерных сферических пространственных форм, которое утверждает, что любое замкнутое 3-мерное многообразие с конечной фундаментальной группой диффеоморфно 3-мерной сферической пространственной форме. Очевидно, что частным случаем гипотезы 3-мерных сферических пространственных форм является гипотеза Пуанкаре.

Пуанкаре см. обзорную статью Мильнора [50].

Как указано в замечании 1.4 в [54], аргументы, представленные здесь, не только доказывают гипотезу Пуанкаре, но и дока-

¹ Каждое топологическое 3-мерное многообразие обладает дифференцируемой структурой, и каждый гомеоморфизм между гладкими 3-мерными многообразиями может быть сведён к диффеоморфизму. Таким образом, результаты классификации топологических 3-мерных многообразий до гомеоморфизма и гладких 3-мерных многообразий до диффеоморфизма эквивалентны. В этой книге под «многообразием» подразумевается «гладкое многообразие».

зывают гипотезу 3-мерных пространственных форм. На самом деле, цель этой книги — доказать следующую более общую теорему.

Теорема 0.1. Пусть M — замкнутое, связное 3-мерное многообразие, и пусть фундаментальная группа M является свободным произведением конечных групп и бесконечных циклических групп. Тогда M диффеоморфно связной сумме сферических пространственных форм, копий $S^2 \times S^1$ и копий уникального (до диффеоморфизма) неориентируемого 2-сферического расслоения над S^1 .

Это немедленно означает положительное разрешение гипотезы Пуанкаре и гипотезы 3-мерных сферических пространственных форм.

Следствие 0.2. (a) Замкнутое, просто связное 3-мерное многообразие диффеоморфно $S^3.$ (b) Замкнутое 3-мерное многообразие с конечной фундаментальной группой диффеоморфно 3-мерной сферической пространственной форме.

Прежде чем перейти к более подробному описанию содержания этой книги, стоит сделать одно замечание относительно стиля изложения. Из-за важности и заметности обсуждаемых результатов, а также из-за множества неверных утверждений о доказательствах этих результатов в прошлом, мы посчитали необходимым представить аргументы с большой детализацией. Наша цель состояла в том, чтобы сделать эти аргументы ясными и убедительными, а также более доступными для широкой аудитории. В результате эксперты могут посчитать некоторые моменты излишне подробно изложенными.

1 Обзор аргументов Перельмана

В размерностях, меньших или равных трём, любая риманова метрика с постоянной кривизной Риччи имеет постоянную секционную кривизну. Классические результаты в римановой геометрии показывают, что универсальное покрытие замкнутого многообразия с постоянной положительной кривизной диффеоморфно сфере, а фундаментальная группа идентифицируется с конечной подгруппой ортогональной группы, которая действует линейно и свободно на универсальном покрытии. Таким обра-

зом, можно подойти к гипотезе Пуанкаре и более общей проблеме 3-мерных сферических пространственных форм, задав следующий вопрос. С учетом соответствующих предположений о фундаментальной группе 3-мерного многообразия M, как установить существование метрики с постоянной кривизной Риччи на M? Основным элементом для создания такой метрики является уравнение потока Риччи, введённое Ричардом Гамильтоном в [29]:

$$\frac{\partial g(t)}{\partial t} = -2Ric(g(t))$$

2 Основы геометрии Римана

и ещё текст

3 Основы потока Риччи

текст

4 Достижения Перельмана

текст

5 Стандартное решение и процесс хирургии

текст

6 Расширение потоков Риччи с хирургией

текст

7 Исчезновение за конечное время

текст

8 Благодарности

текст

9 Список связанных статей

Глава 1. Введение в геометрию Римана

- Метрика Римана и связность Леви-Чивиты текст
- 2 Кривизна Риманового многообразия текст
- 3 Геодезические и экспоненциальное отображение текст
- 4 Вычисления в Гауссовых нормальных координатах текст
- 5 Основные результаты сравнения кривизны текст
- 6 Локальный объем и радиус инъективности текст

Глава 2. Многообразия с неотрицательной кривизной

1 Функции Буземана

текст

2 Результаты сравнения в случае неотрицательной кривизны

текст

3 Теорема о душе

текст

4 Концы многообразия

текст

5 Теорема расщепления

текст

6 ϵ -шейки

Текст о ϵ -шейках.

7 Коэффициенты прямой разницы

Глава 3. Основы потока Риччи

1 Определение потока Риччи

текст

2 Некоторые точные решения потока Риччи

текст

3 Локальная существуемость и единственность

текст

4 Эволюция кривизны

текст

5 Эволюция кривизны в развивающейся ортонормальной системе

текст

6 Изменение расстояния под действием потока Риччи

текст

7 Оценки производных Ши

текст

8 Обобщенные потоки Риччи

Глава 4. Принцип максимума

 Принцип максимума для скалярной кривизны текст

2 Принцип максимума для тензоров

текст

3 Применения принципа максимума текст

4 Сильный принцип максимума для кривизны текст

5 Сужение к положительной кривизне текст

Глава 5. Результаты сходимости для потока Риччи

1 Геометрическая сходимость Римановых многообразий

текст

2 Геометрическая сходимость потоков Риччи

текст

3 Сходимость Громова-Хаусдорфа

текст

4 Пределы при увеличении масштаба

текст

5 Расщепление пределов на бесконечности

Глава 6. Геометрический подход к потоку Риччи через сравнения

1 \mathcal{L} -длина и \mathcal{L} -геодезические

Текст о \mathcal{L} -длинах и \mathcal{L} -геодезических

Текст о \mathcal{L} -экспоненциальном отображении и его свойствах первого порядка

3 Минимизирующие \mathcal{L} -геодезические и область инъективности

Текст о минимизирующих \mathcal{L} -геодезических и области инъективности

4 Дифференциальные неравенства второго порядка для $\tilde{L}^{\overline{\tau}}$ и $L_{r}^{\overline{\tau}}$

Текст о дифференциальных неравенствах второго порядка для $\tilde{L}^{\overline{\tau}}$ и $L_{x}^{\overline{\tau}}$

5 Сокращённая длина

текст

6 Локальные оценки Липшица для l_x

Текст о локальных оценках Липшица для l_x

7 Сокращённый объём

Глава 7. Полные потоки Риччи с ограниченной кривизной

1 Функции L_x и l_x

Текст о функциях L_x и l_x

2 Оценка для $\min \ l_x^{ au}$

Текст о оценке для min $l_x^{ au}$

3 Сокращённый объём

Глава 8. Результаты о несхлопывающихся многообразиях

1 Результат о несхлопывании для обобщённых потоков Риччи

текст

2 Применение к компактным потокам Риччи

Глава 9. κ -несхлопывающиеся древние решения

1 Предварительные замечания

текст

2 Асимптотический градиентный сокращающий солитон для κ -решений

Асимптотический градиентный сокращающий солитон для κ -решений

3 Расщепление пределов на бесконечности

текст

4 Классификация градиентных сокращающих солитонов в размерностях 2 и 3

текст

5 Универсальный κ

Универсальный κ

6 Асимптотический объём

текст

7 Компактность пространства 3-мерных κ -решений

Компактность пространства 3-мерных κ -решений

8 Качественное описание к-решений

Качественное описание κ -решений

Глава 10. Ограниченная кривизна на ограниченном расстоянии

1 Сужение к положительному: определения

текст

2 Формулировка теоремы

текст

3 Неполный геометрический предел

текст

4 Пределы конуса возле конца $\mathcal E$ для рескейлингов U_∞ Пределы конуса возле конца $\mathcal E$ для рескейлингов U_∞

5 Сравнение предела Громова-Хаусдорфа и гладкого предела

текст

6 Финальное противоречие

Глава 11. Основы потока Риччи

1 Гладкий предел при увеличении масштаба, определённый для малого времени

текст

- 2 Пределы при долгом времени увеличения масштаба текст
- 3 Неполные гладкие пределы в сингулярные моменты текст
- 4 Существование сильных δ -шеек, достаточно глубоких в 2ϵ -горне

Существование сильных δ -шеек, достаточно глубоких в 2ϵ -горне

Глава 12. Стандартное решение

1 Существование стандартного потока

текст

2 Полнота, положительная кривизна и асимптотическое поведение

текст

3 Стандартные решения являются вращательно симметричными

текст

4 Единственность

текст

5 Решение потока гармонических отображений

текст

6 Завершение доказательства единственности

текст

7 Некоторые следствия

Глава 13. Хирургия на δ -шейке

Нотация и формулировка результата
 текст

2 Предварительные вычисления

текст

3 Доказательство теоремы 13.2

текст

4 Другие свойства результата хирургии

Глава 14. Поток Риччи с хирургией: определение

1 Пространство-время хирургии

текст

2 Обобщённое уравнение потока Риччи

Глава 15. Контролируемые потоки Риччи с хирургией

1 Сшивание развивающихся шеек

текст

2 Топологические следствия предположений (1) – (7) текст

3 Дополнительные условия для хирургии

текст

4 Процесс хирургии

текст

 Утверждения о существовании потока Риччи с хирургией

текст

6 Контуры доказательства теоремы 15.9

Глава 16. Доказательство несхлопывания

1 Формулировка результата о несхлопывании

текст

2 Доказательство несхлопывания при $R(x) = r^{-2}$ с $r \leq r_{i+1}$

Доказательство несхлопывания при $R(x) = r^{-2}$ с $r \le r_{i+1}$

3 Минимизирующие \mathcal{L} -геодезические существуют, когда $R(x) = r_{i+1}^{-2}$: формулировка

Минимизирующие \mathcal{L} -геодезические существуют, когда $R(x)=r_{i+1}^{-2}$: формулировка

4 Эволюция окрестностей хирургических кап

текст

5 Оценка длины

текст

6 Завершение доказательства пропозиции 16.1

Глава 17. Завершение доказательства теоремы 15.9

1 Доказательство сильного предположения о канонических окрестностях

текст

2 Время хирургии не накапливается

Глава 18. Истечение до конечного времени

1 Результат

текст

 ${f 2}$ Исчезновение компонентов с нетривиальной π_2

Исчезновение компонентов с нетривиальной π_2

3 Истечение

текст

4 Поток сжимающихся кривых

текст

5 Доказательство пропозиции 18.24

текст

6 Доказательство леммы 18.59: кольца с маленькой площадью

текст

7 Доказательство первой неравенства в лемме 18.52

Глава 19. Приложение: Канонические окрестности

1 Укорочение кривых

текст

$\mathbf{2}$ Геометрия ϵ -шеек

Геометрия ϵ -шеек

3 Перекрывающиеся ϵ -шейки

Перекрывающиеся ϵ -шейки

4 Области, покрытые ϵ -шейками и (C,ϵ) -капами

Области, покрытые ϵ -шейками и (C,ϵ) -капами

5 Подмножества объединения ядер (C,ϵ) -кап и ϵ -шеек

Подмножества объединения ядер (C,ϵ) -капов и ϵ -шеек

Список литературы

Основной текст списка литературы