

我们会学些什么?

- 一些主流网络
 - 浅层网络
 - CNN、RNN、Auto Encoder、GAN
 - Attention、Transformer、BERT、GPT
- 掌握原理、回避数学
- 关键性的思想方法、欣赏智慧
- 在金融中的应用,但还是要靠想象力
- 编程?

简单神经网络

- 从感知机到神经网络
- 如何训练
- 应用: Word2Vec

感知机:一个老朋友

- 人工神经网络最初在1943年提出,1949年赫布型学习
- Frank Rosenblatt(1957)发明的一种简单线性分类器

我们可以假定,反射活动的持续与重复会导致神经元稳定性的持久性提升……当神经元A的轴突与神经元B很近并参与了对B的重复持续的兴奋时,这两个神经元或其中一个便会发生某些生长过程或代谢变化,致使A作为能使B兴奋的细胞之一,它的效能增强了。

$$d = f(\sum_{i=1}^n w_i x_i + b) = f(\mathbf{w}^T \mathbf{x})^T$$

$$: f(n) = egin{cases} +1 & ext{if } n \geq 0 \ -1 & ext{otherwise} \end{cases}$$

$$f(x) = \frac{1}{1 + e^{-x}}$$
sigmoid

感知机: 分割平面

$$a_1^1 = sigmoid(\mathbf{w}_{11}^1 \ x_1 + \mathbf{w}_{12}^1 \ x_2 + b_1^1)$$

 $a_1^1 = sigmoid(\mathbf{w}_1^1 \ x)$

1.1 单层网络够了么?

- 异或问题, 线性不可分
- 将红色和蓝色的结果, 组合判断

$$a_1^1 = sigmoid(w_1^1 x)$$

$$a_2^1 = sigmoid(w_2^1 x)$$

$$a_1^2 = sigmoid(w_1^2 a^1)$$

集成学习+感知机 =?

- 并联多个感知机, 切分原本难以切分的
- 而且, 似乎多多益善?

$$a_1^1 = sigmoid(w_1^1 x)$$

$$a_2^1 = sigmoid(w_2^1 x)$$

$$a_3^1 = sigmoid(w_3^1 x)$$

$$a_4^1 = sigmoid(w_4^1x)$$

$$a_5^1 = sigmoid(w_5^1 x)$$

$$a_1^2 = sigmoid(w_1^2 a^1)$$

1.1 更广、更深、更强

Figure 12.2 Deep network architecture with multiple layers.

"If the human brain were so simple that we could understand it, we would be so simple that we couldn't."

— Emerson M. Pugh

建网一时爽, 推导火葬场

Figure 12.2 Deep network architecture with multiple layers.

• 在构想中,我们可以由前向后构建一个网络,计算权重,但是现实呢?

• 类似之前,我们可以根据最终预测结果的误差,回头来进行

优化

• 需要计算的:

- w 权重
- $s^n = \mathbf{w}^n \mathbf{a}^n$ 输入信号
- $a^n = sigmoid(s^n)$ 输出信号
- 为什么要加一个sigmoid函数?
- $sigmoid(x) = \frac{1}{1+e^{-x}}$
- Relu(x) = max(0, x)

神经网络: 手写体识别

3B1B https://www.bilibili.com/video/BV16x411 V7Qg

反向传播(Back Propagation)算法

- Rumelhart, Hinton & Williams (1986)
- 算法流程
- 初始化权重w (整张网络)
- 训练过程分为 t = 0, 1, 2, ··· T 期
 - 1.随机挑选:随机挑选一组数据 $x_{(n)}, y_{(n)}$
 - 2.前向传播: 挑选数据 $x_{(n)}$ 作为输入,并向前传播直至算出网络总输出
 - 3.反向传播:将输出与真实值 $\mathbf{y}_{(n)}$ 进行比较,并根据链式法则将残差对某一个 \mathbf{w}_{ij}^l 求导
 - 4.梯度下降:按照减少残差的方向(残差求导的负方向)更新 w_{i}^{l}
- 迭代多次后,将最终的 \mathbf{w}_{ij}^l 作为权重进行构建网络
- 多数情况下,1-3步会(并行)一起做多次mini-batch
- 优化w的过程道阻且长,充满不确定性
- work but hard, 做了许多许多年的机器学习"守门员"

神经网络的正则

- 限制权重
 - 网络的能力来自于权重w, 对于|w|的限制我们做了很多次
 - $\min(L(w)) \rightarrow \min(L(w) + \frac{1}{2}|w|^2)$
- 加入白噪音
 - 白噪音*N*(0,1), 如果*L*(w)是*MSE*?
- 在更多位置加入噪音?
 - 输入层可以看做是一种特殊的隐藏层
 - 在隐藏层上加噪音?
 - Dropout 将一些隐藏层手动归零(丢失)
- 对于梯度下降的优化
 - Mini batch
 - Early stopping (epoch not iteration)
 - Learning rate

神经网络训练

- 网络中的边, 权重
- 网络连在一起, 矩阵计算
- 矩阵很大, 计算量很大, 计算/存储需求
- 怎样计算呢?

图 5.1 半空视角观察草坪

在目前的漫游程序中,仅有草地的绘制使用了实例化算法。这一方面是因

图 5.3 实例化技术性能比较

13 文本编码

Encoding的局限: 没有额外的信息表达

只是一个编号,有没有办法让这些信息有更多的意义?

My	name is Li Hua . I'i	m thirteen. I'm a mid	dle school student. I	am_1_ Class Five, Grade One. My
English	teacher 2 Mr L	in. He is _3_ old	teacher I 4 a	a pen, a ruler and two 5 in my
pencil-bo	x. I have a bike 6	_		
Liu	Ping is in my class	She is a girl. We	7_ good friends . S	he is not 8 today. I think she is at
home, Lo	ook!Hereisa 9	But it is not my boo	ok, I think it is <u>10</u>	_book.
()1_A_ in	B. at	C. do	D. not
()2_A_ are	B. am	C. is	D.×
()3.A. a	B. an	C. this	D. very
()4_A_ am	B. think	C. know	D. have
()5.A. boxes	B. pencils	C. buses	D. desk
()6.A. too	B. or	C. much	D. very
()7.A. have	B. am	C. are	D. all
()8_A_right	B. where	C. at home	D. at school
()9.A. licence	B. book	C. picture	D. map
()10.A. Liu Ping	B. Liu Pings	C. Liu Ping's	D. Liu Pings'

将上下文信息用于词语理解

- My English teacher _____ Mr. Lin. He is
- 输入一个单词的one-hot编码, x_{ik} 为一个V维向量
- 输出为C个V维向量,表示**该单词的**上下文C个单词
- 中间隐藏层为人为确定的N维
- 训练完成之后,输入某个单词的one-hot,此时隐藏层的N维向量就是词向量
- 我们可以认为词向量是该单词的一个好的Embedding
- Embedding (嵌入) 比Encoding (编码) 保留更多信息
- 直觉解释: 从隐藏层恢复上下文

一个现实的制约

• My English teacher is Mr. Lin. He is

Now word	Next word	score
Teacher	Is	1
Teacher	Mr.	0
Teacher	Lin	0

- 输入一个词, 输出它的下一个词
- 词使用one hot编码 size=V
- 但是V可能很大
- 改为两个输入,计算匹配分数
- 那么训练样本怎么来?
- 负采样 Negative Sampling
- 负采样多少个? 5
- 为什么?
- 古圣先贤, 习惯就好

词向量的应用

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." *arXiv preprint arXiv:1301.3781* (2013).

- 把词表示成向量, 一系列优秀的性质:
- 表示复杂度首先(从V到N)
- 向量维度: 50--300
- 计算相似度?
 - 找近义词、反义词、几个词组合
- 计算加减法
 - 国王-男人+女人 = 女王
 - "庞氏骗局"

10 rank 自融 旁氏 拆标 骗局 圏钱 拆东墙补西墙 传销 击鼓传花 阴谋 word 0.564 0.536 0.524 0.500 0.472 similarity 0.509 0.494 0.482 0.480 0.478 Selfrob Peter to pay Loan Multi-level Money pass the Pond's translation cheating conspiracy financing Paul dividing marketing parcel collecting

王靖一,黄益平.金融科技媒体情绪的刻画与对网贷市场的影响[J].经济学(季刊),2018,17(04):1623-1650.DOI:10.13821/j.cnki.ceq.2018.03.15. 《北京大学互联网金融情绪指数》 2016.9

P2P网贷术语

俗语

错别字

北京大学互联网金融发展指数

北京大学数字普惠金融指数

北京大学互联网金融情绪指数

