Colle 12A : Analyse asymptotique et théorie des groupes

Question de cours :

Montrer que l'image réciproque d'un sous-groupe par un morphisme est un sous-groupe.

Exercice 1:

Déterminer la limite en $+\infty$ de :

$$f(x) = \frac{\ln(x+1) - \ln(x)}{\sqrt{x+1} - \sqrt{x}}$$

Exercice 2:

Soit f la fonction réelle définie par :

$$f(x) = 2x + \sin(x)$$

- 1. Montrer que f est une bijection de classe \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{R} .
- 2. Calculer un développement limité à l'ordre 3 en 0 de f^{-1} .
- 3. Que peut-on en déduire quant au graphe de f?

Exercice 3:

Soit $n \in \mathbb{N}^*$. Soit f_n la fonction réelle définie par :

$$f_n(x) = e^x + x^2 - nx$$

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, f_n admet un minimum μ_n atteint en un point et un seul noté x_n .
- 2. Déterminer des équivalents simples de x_n et μ_n lorsque $n \to +\infty$.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 12B : Analyse asymptotique et théorie des groupes

Question de cours :

- Montrer que la composée de deux morphismes de groupes est un morphisme de groupes.
- Montrer que la bijection réciproque d'un isomorphisme de groupe est un isomorphisme de groupe.

Exercice 1:

Déterminer la limite en 0 de :

$$f(x) = \frac{e^{\sin x} - e^{\tan x}}{x^2 e^{2x}}$$

Exercice 2:

Soit $n \in \mathbb{N}^*$. On pose :

$$I_n = \int_0^1 \frac{x^{2n}}{1+x^n} dx$$
 $J_n = \int_0^1 \frac{x^{2n-1}}{1+x^n} dx$

- 1. Donner la limite de I_n quand $n \to +\infty$.
- 2. Montrer que $\forall n \in \mathbb{N}^*, |I_n J_n| \leqslant \frac{1}{2n(n+1)}$.
- 3. Cacluler J_n pour tout $n \in \mathbb{N}^*$.
- 4. En déduire un équivalent simple de I_n quand $n \to +\infty$.

Exercice 3:

Soit (G, \times) un groupe et H une partie finie de G non vide et stable par \times . Montrer que H est un sous-groupe de G.

Colle 12C : Analyse asymptotique et théorie des groupes

Question de cours :

Définir l'ordre d'un élément. Dans un groupe fini commutatif, montrer que l'ordre d'un élément divise le cardinal du groupe.

Exercice 1:

Déterminer la limite en 0 de :

$$f(x) = \frac{\sqrt[3]{1+x^3} - \sqrt[3]{1-x^3}}{\ln^3(1+x)}$$

Exercice 2:

Soit $n \in \mathbb{N}^*$. On pose :

$$I_n = \int_0^{\pi/4} \tan^n(x) dx$$

1. Calculer $I_n + I_{n+2}$ et en déduire la limite de I_n quand $n \to +\infty$.

2. Montrer que
$$\forall n \in \mathbb{N}^*$$
, $\int_0^{\pi/4} \cos(2x) \tan^n(x) dx = \frac{1}{2} - nI_n$.

3. En déduire un équivalent simple de I_n quand $n \to +\infty$.

Exercice 3:

Soit f la fonction réelle définie par :

$$f(x) = \ln(1+x^2) - x$$

1. Montrer que f est bijective.

2. Calculer un développement limité à l'ordre 4 en 0 de f^{-1} .