Geoscience / Space Environment

Image credit: NASA

Daoru (Frank) Han, Missouri S&T, handao@mst.edu
Assistant Professor of Aerospace Engineering
Director, Gas and Plasma Dynamics Lab

MISSOURI

DL-GPU 2023

Outline

- > Plasma and Space Environment
- > Lunar Exploration (in the Age of Artemis)
 - Dielectric charging and dust transport
 - In-Situ Resource Utilization (ISRU)
 - High-fidelity modeling and simulation
 - > Dusty Plasma
 - > Electrostatic Sieve Modeling
 - Ground vacuum-plasma chamber testing
- > Other on-going projects
 - Space/plasma propulsion
- > Openings!

Plasma as the fourth state of matter...

- 99% of the matter in the known universe
- A quasi-neutral gas of charged (and neutral) particles exhibiting collective behavior
- **Spatial**: shielding distance (Debye length λ_D) \ll characteristic length of interest L
- Temporal: Oscillation frequency vs. collision frequency (with neutral particles): plasma or gas behavior

The space environment in our solar system

There are rich processes on the Moon

A Dynamically Coupled System

Lunar polar regions are of particular interest

At local scales, surface terrain is complex

https://www.nasa.gov/multimedia/imagegallery/image_feature_25.html, accessed 9/2/2020

NASA's vision for Artemis Base Camp

Figure 7: The lunar South Pole's Shackleton Crater, as captured by the Lunar Reconnaissance Orbiter, with the Capital Beltway overlaid for scale.

Dust... dust... (PROBLEM)

- Charged particles attach to instruments and spacesuits which could generate arcing
 - Risk of instrument failure
 - Threat to astronaut's health
- Critical to resolve surface

charging

Apollo Astronaut Eugene Cernan Covered in Moon Dust

High-fidelity plasma simulation codes to study lunar surface charging

Han et al., Journal of Spacecraft and Rockets, 2018

Lund et al., AIAA 2020-1549

State of the art code: Parallel IFE-PIC (PIFE-PIC)

State of the art code: Parallel IFE-PIC (PIFE-PIC)

# of sub-	Efficiency
domains	E_{II}
1 (serial)	100.00%
64	109.02%
80	111.99%
100	106.57%
125	100.79%
150	94.99%
180	91.12%
216	89.62%
252	83.10%
294	68.35%
343	66.47%
	I

Strong scaling: Han et al., SISC, 2021 Weak scaling: Lund et al., JCPM, 2022

Routine HPC: 2M mesh cells, 1B particles

Ongoing: Grain scale charging, non-spherical shapes

Looking into net charge on each grain (for dust transport models)

Dusty plasma – rich physics unresolved

(a) Single-dust charging and forces/moments

(c) Multi-dust packed near a flat surface

(b) Multi-dust interaction

(d) Dust transport near complex surfaces

Dust... dust... (RESOURCE!)

- Separation of particles by size
- Traditional methods: mechanical sieve not suitable for use on the Moon –
 SWaP constraints
- Electrostatic / Electrodynamic methods: lower power and more compact

Concept of Electrostatic Sieve

- Four-phase rectangular traveling wave and parallel electrodes to generate an electric field and separate dust
- Develop modeling capabilities for these concepts
- Use as an effective design and analysis tool

Ongoing: Ground testing in atmospheric conditions

Outline

- > Plasma and Space Environment
- > Lunar Exploration (in the Age of Artemis)
 - Dielectric charging and dust transport
 - In-Situ Resource Utilization (ISRU)
 - High-fidelity modeling and simulation
 - > Dusty Plasma
 - > Electrostatic Sieve Modeling
 - Ground vacuum-plasma chamber testing
- > Other on-going projects
 - Space/plasma propulsion
- > Openings!

We also simulate the vacuum/plasma environments in a large chamber

The Space Environment Ground Simulator (Video Tour)

Plasma beams in chamber

Diagnostics, and more ongoing

Helpers needed!

Geoscience / Space Environment

THANK YOU!

Daoru (Frank) Han, Missouri S&T, handao@mst.edu
Assistant Professor of Aerospace Engineering
Director, Gas and Plasma Dynamics Lab