Data Imbalance

Classification F	Report: recision	recall	f1-score	support	Confusion Matrix: [[345 9 6 0]
1	0.96	0.96	0.96	360	[7 343 10 0]
2	0.95	0.95	0.95	360	[8 7 351 17]
3	0.88	0.92	0.90	383	[0 2 32 1]]
4	0.06	0.03	0.04	35	

Dealing with Data Imbalances

Data imbalance is a common problem in machine learning, where one class has a significantly higher number of observations than the other. This can lead to biased models and poor performance on the minority class. There are several techniques for dealing with data imbalance, including:

- 1. Use the right evaluation metrics: Accuracy is not always the best metric to evaluate model performance on imbalanced data. Instead, metrics such as precision, recall, F1score, and AUC-ROC can provide a better understanding of model performance.
- 2. Resample the training set: Resampling techniques involve modifying the training set to balance the class distribution. This can be done by either **undersampling** the majority class or **oversampling** the minority class, **SMOTE** (Synthetic Minority Oversampling Technique), or a mix of these strategies.
- 3. Change the algorithm: Some algorithms are better suited for imbalanced data than others. For example, decision trees and random forests can handle imbalanced data well.
- 4. Use ensemble methods: Ensemble methods such as bagging, boosting, and stacking can be used to combine multiple models and improve the performance on imbalanced data.
- 5. Collect more data: Collecting more data can help to balance the class distribution and improve model performance.

Imbalanud Data -

-> Oversampling of the lessen sample
-> Undersampling of the dominant obs.
-> Combination of the two.
-> Synthetic (simulated) data.
-> Data augmentation (images).

The Python package imblearn (imbalanced**learn)** implements these strategies

https://imbalanced-learn.org/stable/

Data Imbalance

Review the following confusion matrix:

In this case, clearly there is data imbalance since 258 observations belong to Class-0, while only 17 observations belong to Class-1

Observe that even though only 12 out of 17 Class-1 observations were correctly classified (corresponding to = 70.58% accuracy figure for the class, the **overall 'accuracy'** of the classifier is:

$$(12 + 253) / (12 + 253 + 5 + 5) = 265 / 275 = 96.36\%$$

The metrics of the classifier are as follows:

- Accuracy: 96.36%
- Sensitivity (Recall): 70.59%
- Specificity: 98.06%
- Precision: 70.59%
- F1-Score: 70.59%

Metric	Formula	Description
Accuracy	(TP + TN) / (TP + TN + FP + FN)	Overall correctness
Precision	TP / (TP + FP)	Proportion of positive predictions that were correct
Recall	TP / (TP + FN)	Proportion of actual positive instances that were correctly identified
Sensitivity	TP / (TP + FN)	True Positive Rate
Specificity	TN / (TN + FP)	True Negative Rate
F1-score	2 * (Precision * Recall) / (Precision + Recall)	Harmonic mean of precision and recall

IMBALANCED DATA:

"The dominant class will hijack the

Model"

Arcuracy values will be

-> Accuracy values will be (falsely) high.

Handling Class Imbalances

- Over-sampling of minority class
- Under-sampling of majority class
- Combination

The scikit-learn module **imblearn** implements functions to tackle data-imbalance problems.

ENN (Noise Reduction)

ENN is often used as a preprocessing step in combination with other techniques such as over-sampling (e.g., SMOTE) or under-sampling to address the imbalance issue while simultaneously improving the quality of the data.

Cleaning using ENN refers to the use of Edited Nearest Neighbors (ENN) as a method for cleaning or refining imbalanced datasets. ENN is a technique commonly employed in combination with over-sampling or under-sampling methods to improve the quality of the dataset, particularly in the context of classification tasks. ENN works as follows:

- 1. **Selecting a data point**: Iterate through each instance in the dataset.
- 2. **Identifying nearest neighbors**: Determine the k-nearest neighbors of the selected instance using a distance metric (e.g., Euclidean distance).
- Majority voting: Check if the majority class label among the nearest neighbors
 differs from the label of the selected instance. If it does, consider the instance for
 removal.
- 4. **Removing inconsistent instances**: Remove the instances for which the majority class label among its nearest neighbors is different from its own label.

By removing instances that are misclassified by their nearest neighbors, ENN aims to improve the quality of the dataset by eliminating noisy or borderline instances. This can lead to a more robust and reliable training dataset, which in turn can improve the performance of classifiers, especially in scenarios where class imbalance is a concern.

Tomek Links (Undersampling)

Tomek links are pairs of instances in a dataset that belong to different classes and are close to each other, meaning they are nearest neighbors.

Specifically, a Tomek link exists between two instances if there are no other instances closer to each other than these two instances are to each other.

Tomek links are often used as a technique for cleaning or refining the dataset. The idea is to remove the majority class instance of each Tomek link, which can help improve the decision boundary of a classifier, especially in scenarios where there is significant overlap between classes or where the majority class instances dominate the decision-making process.

Removing the majority class instances that form Tomek links can help in addressing the issue of imbalanced classes by potentially reducing the dominance of the majority class and improving the overall performance of the classifier, particularly in terms of metrics like precision, recall, and F1-score.

SMOTE

SMOTE stands for Synthetic Minority Over-sampling Technique. It's a popular method used in the context of handling imbalanced datasets, particularly in machine learning classification tasks.

The SMOTE method works by generating synthetic samples from the minority class to alleviate the class imbalance problem. It does this by interpolating between existing minority class instances. Here's how it typically works:

- 1. **Selecting a minority class instance**: Randomly choose an instance from the minority class.
- 2. **Finding its nearest neighbors**: Find the k-nearest neighbors, **belonging to the same minority class**, for this instance (typically using Euclidean distance or other distance metrics).
- 3. **Creating synthetic samples**: Randomly select one of the nearest neighbors and use it to create a new synthetic instance. This synthetic instance is created by choosing a point along the line segment joining the selected minority class instance and its nearest neighbor.
- 4. **Repeat**: Repeat steps 1-3 until the desired balance between classes is achieved.

By generating synthetic samples, SMOTE effectively increases the representation of the minority class in the dataset without simply duplicating existing instances, thus helping to address the class imbalance problem. This can lead to better generalization and performance of classifiers trained on imbalanced datasets, especially when combined with other techniques like Tomek links or undersampling of the majority class.

EDA / Data Preparation : Features (ie. Columns)

- Number of features and their impact on models: Reduce the number of features to improve model quality
- Identification of interdependent features
 - Feature Correlation : Heat Maps
 - Multicollinearity detection : VIF Variance Inflation
 - Feature encoding : Categorical Features
 - Feature Engineering
 - Feature Reduction
 - PCA: Principal Component Analysis
 - t-SNE: t-distributed Stochastic Neighbour Embedding

Pair-wise Correlation of Features

This method of pair-wise or group-wise plotting of features are convenient to detect feature dependencies if there are only a handful of features.

For a very large feature set, correlation **heat maps** are used. They can be automatically, and exhaustively created, and they provide a consolidated view of **feature correlations**.

Correlation Heat Maps

Multicollinearity Detection Variance Inflation Factor (**VIF**)

The Variance Inflation Factor (VIF) quantifies how much the variance of a regression coefficient is inflated due to multicollinearity in the model. Mathematically, the VIF for a particular feature is calculated by performing a linear regression of that feature on all the other features.

For a given feature X_i , the VIF is defined as:

$$ext{VIF}(X_i) = rac{1}{1-R_i^2}$$

Where:

ullet R_i^2 is the R^2 value obtained by regressing the feature X_i against all other features.

- 1. For each feature X_i in your dataset, run a linear regression using X_i as the dependent variable and all other features as independent variables.
- 2. Obtain the \mathbb{R}^2 value from this regression, denoted as \mathbb{R}^2_i .
- 3. Calculate the VIF for X_i using the formula above.

A VIF of 1 indicates that there's no multicollinearity, whereas a VIF above 1 suggests that the feature is correlated with other features. A common rule of thumb is that a VIF above 10 indicates high multicollinearity, but this threshold can vary depending on the context.

VIF v/s R-square

R-square	VIF
0.05	1.052631579
0.1	1.111111111
0.15	1.176470588
0.2	1.25
0.25	1.333333333
0.3	1.428571429
0.35	1.538461538
0.4	1.66666666
0.45	1.81818181
0.5	2
0.55	2.22222222
0.6	2.5
0.65	2.857142857
0.7	3.333333333
0.75	4
0.8	5
0.85	6.6666666
0.9	10
0.95	20
0.99	100

	Α	В	С	D	E	F	G	Н	1
1	c1	c2	c26	c27	c28	c29	c30	c31	c32
2	43344	2	493.7968	104.5539	41.1876	290.9653	14.37955	71.73199	48.67901
3	43345	2	493.6619	104.5132	41.58075	290.6212	14.31532	78.59982	48.05742
4	43346	2	495.6449	104.5025	40.74457	292.1524	14.56618	78.83246	47.32059
5	43347	2	494.354	104.4529	40.28818	292.6762	14.60518	72.73663	47.98046
6	43348	2	492.0514	104.4886	41.26669	289.0175	14.54893	76.62107	48.2173
7	43349	2	491.2304	104.5097	42.63592	286.8439	14.31609	76.83934	48.43282
8	43350	2	493.0255	104.4522	41.96914	289.3589	14.47512	77.22903	48.33145
9	43351	2	492.9835	104.479	42.39755	290.8424	14.18896	73.14102	47.37012
10	43352	2	492.5621	104.531	43.21701	290.1102	14.11881	72.42022	47.36809
11	43353	2	493.8725	104.5807	43.00113	291.9806	14.21165	73.24146	47.38106
12	43354	2	490.2188	104.604	42.60375	287.1388	14.25636	73.24146	48.72817
13	43355	2	489.2321	104.472	42.89505	284.6288	14.26377	74.96662	49.60527
14	43356	2	491.5731	104.4412	44.05164	286.618	14.26902	76.23442	50.06172
15	43357	2	492.4099	104.4934	44.50718	287.3763	14.27284	77.44611	50.30747
16	43358	2	490.4405	104.4737	43.78121	285.1875	14.26373	80.78736	50.59053
17	43359	2	490.9521	104.5132	43.82019	285.7735	14.26143	79.81733	50.24661
18	43360	2	491.9521	104.5001	43.59271	286.4335	14.27795	81.64099	50.50682
19	43361	2	492.0228	104.5208	43.05299	287.2706	14.36223	81.6224	50.40502
20	43362	2	491.425	104.5444	43.69969	285.4068	14.16046	81.08435	50.34545
21	43363	2	491.4424	104.4848	43.57138	285.7367	14.1837	80.95044	50.32148
22	43364	2	492.6671	104.4642	42.89322	287.0949	14.25549	82.38933	50.27493

How to 'drop' features based on VIF analysis?

_		- 1	
Features	VIF	Features	VIF
const	1.031338e+07	c27	1.060532
c26	1.328880e+01	c30 c39	4.330190 4.803262
		c157	6.593328
c28	3.225659e+01	c158	4.129364
c29	1.157359e+01	c160	1.843026
c31	1.785831e+01	c161	3.467590
c32	8.938850e+01	c162	3.160080
		c163	1.878506
c33	9.569349e+01	c7	2.774363
c139	1.186148e+02	c8	5.818705
c142	3.273434e+01	с9	6.480519
c143	2.579679e+01	c10	6.367653
		c11	2.923712
c155	1.036910e+01	c12	3.019417
c16	1.055594e+01	c13	6.077563
c19	1.122551e+02	c15	4.695586
		c17	3.781340
		c20	4.543217
		c21	3.737963
		c22	2.498634
		c23	7.632798
		c34	2.127750
		c35	3.572582
		c36	1.075612

The following strategy can be used to remove features:

- 1. Identify the features with high VIF values: The first step is to identify the features with high VIF values, typically above 5 or 10, which indicate that the feature is highly correlated with other features in the model.
- 2. Evaluate the importance of the features: The next step is to evaluate the importance of the features based on their relevance to the research question, their interpretability, and their contribution to the model's performance.
- 3. Remove the least important features: Based on the evaluation, the least important features can be removed from the model to reduce multicollinearity and improve the model's performance.
- 4. Re-evaluate the model: After removing the features, it is important to re-evaluate the model's performance using appropriate metrics and cross-validation techniques to ensure that the model is still accurate and reliable.

How to 'drop' features based on VIF analysis?

CAVEAT

It is important to note that **removing features can result in loss of information and may affect the interpretability of the model**.

Therefore, it is important to carefully consider the trade-offs between multicollinearity and model performance and to choose the appropriate strategy based on the research question, the data, and the assumptions of the model

Principal Components are components along re-aligned axes such that PC1 'captures' or 'explains' or 'accounts for' the maximum variance, followed by PC2, PC3, and so on.

If the first few PCs cumulatively explain more than, say, 90% of the data variance, they may be sufficient for creating effective ML models. PCA thus serves the purpose of 'feature reduction'.

variance 6 Y = f'(PC1, PC2, PC3, ...-PCK "NO EXPLAINABILITY Downaide -> PC = linear Courbination of Xi PC, = 9, x, + b, x, + C, x, 3+ C(, x, 4+ -

This data has more than 40 columns (features)

	А	В	С	D	Е	F	G	Н	1
1	c1	c2	c26	c27	c28	c29	c30	c31	c32
2	43344	2	493.7968	104.5539	41.1876	290.9653	14.37955	71.73199	48.67901
3	43345	2	493.6619	104.5132	41.58075	290.6212	14.31532	78.59982	48.05742
4	43346	2	495.6449	104.5025	40.74457	292.1524	14.56618	78.83246	47.32059
5	43347	2	494.354	104.4529	40.28818	292.6762	14.60518	72.73663	47.98046
6	43348	2	492.0514	104.4886	41.26669	289.0175	14.54893	76.62107	48.2173
7	43349	2	491.2304	104.5097	42.63592	286.8439	14.31609	76.83934	48.43282
8	43350	2	493.0255	104.4522	41.96914	289.3589	14.47512	77.22903	48.33145
9	43351	2	492.9835	104.479	42.39755	290.8424	14.18896	73.14102	47.37012
10	43352	2	492.5621	104.531	43.21701	290.1102	14.11881	72.42022	47.36809
11	43353	2	493.8725	104.5807	43.00113	291.9806	14.21165	73.24146	47.38106
12	43354	2	490.2188	104.604	42.60375	287.1388	14.25636	73.24146	48.72817
13	43355	2	489.2321	104.472	42.89505	284.6288	14.26377	74.96662	49.60527
14	43356	2	491.5731	104.4412	44.05164	286.618	14.26902	76.23442	50.06172
15	43357	2	492.4099	104.4934	44.50718	287.3763	14.27284	77.44611	50.30747
16	43358	2	490.4405	104.4737	43.78121	285.1875	14.26373	80.78736	50.59053
17	43359	2	490.9521	104.5132	43.82019	285.7735	14.26143	79.81733	50.24661
18	43360	2	491.9521	104.5001	43.59271	286.4335	14.27795	81.64099	50.50682
19	43361	2	492.0228	104.5208	43.05299	287.2706	14.36223	81.6224	50.40502
20	43362	2	491.425	104.5444	43.69969	285.4068	14.16046	81.08435	50.34545
21	43363	2	491.4424	104.4848	43.57138	285.7367	14.1837	80.95044	50.32148
22	43364	2	492.6671	104.4642	42.89322	287.0949	14.25549	82.38933	50.27493

[7.54261365e-01 9.87869904e-02 7.12964455e-02 5.03510215e-02 7.98749378e-03 6.55441064e-03 3.36504308e-03 2.09332441e-03 1.18752903e-03 1.01662107e-03 7.74969179e-04 5.43124838e-04 4.13982528e-04 3.22268906e-04 1.99904846e-04 1.82358764e-04 1.22357384e-04 9.84701179e-05 8.87915581e-05 8.02456161e-05 7.55522105e-05 6.24074825e-05 5.04485632e-05 3.08481492e-05 1.86827712e-05 1.49416419e-05 1.33783774e-05 2.66135642e-06 2.02403308e-06 9.51393151e-07 7.49623526e-07 2.39654410e-07 1.99355029e-07 8.26718788e-08 7.06173620e-08 4.41103905e-08 2.33592435e-11]

PCA reveals that only about 6 PCs explain more than 90% variance in the data, and only the first 6 PCs need be used to create ML models

0.2

However, there is a problem with these results ... see next slide.

	А	В	С	D	Е	F	G	Н	1
1	c1	c2	c26	c27	c28	c29	c30	c31	c32
2	43344	2	493.7968	104.5539	41.1876	290.9653	14.37955	71.73199	48.67901
3	43345	2	493.6619	104.5132	41.58075	290.6212	14.31532	78.59982	48.05742
4	43346	2	-,25,6449	104.5025	40.74457	292.1524	14.56618	78.83246	47.32059
5	43347	2	494.534	104.4529	40.28818	292.6762	14.60518	72.73663	47.98046
6	43348	2	492.0514	161 4886	41.26669	289.0175	14.54893	76.62107	48.2173
7	43349	2	491.2304	104.509.	42.63592	286.8439	14.31609	76.83934	48.43282
8	43350	2	493.0255	104.4522	41.5914	289.3589	14.47512	77.22903	48.33145
9	43351	2	492.9835	104.479	42.39755	290.8424	14.18896	73.14102	47.37012
10	43352	2	492.5621	104.531	43.21701	290.1102	14.11881	72.42022	47.36809
11	43353	2	493.8725	104.5807	43.00113	291.9806	11 21165	73.24146	47.38106
12	43354	2	490.2188	104.604	42.60375	287.1388	14.25036	73.24146	48.72817
13	43355	2	489.2321	104.472	42.89505	284.6288	14.26377	7-, 26662	49.60527
14	43356	2	491.5731	104.4412	44.05164	286.618	14.26902	76.23442	50.06172
15	43357	2	492.4099	104.4934	44.50718	287.3763	14.27284	77.44611	50.52747
16	43358	2	490.4405	104.4737	43.78121	285.1875	14.26373	80.78736	50.59053
17	43359	2	490.9521	104.5132	43.82019	285.7735	14.26143	79.81733	50.24661
18	43360	2	491.9521	104.5001	43.59271	286.4335	14.27795	81.64099	50.50682
19	43361	2	492.0228	104.5208	43.05299	287.2706	14.36223	81.6224	50.40502
20	43362	2	491.425	104.5444	43.69969	285.4068	14.16046	81.08435	50.34545
21	43363	2	491.4424	104.4848	43.57138	285.7367	14.1837	80.95044	50.32148
22	43364	2	492.6671	104.4642	42.89322	287.0949	14.25549	82.38933	50.27

[7.54261365e-01 9.87869904e-02 7.12964455e-02 5.03510215e-02 7.98749378e-03 6.55441064e-03 3.36504368e-03 2.09332441e-03 1.18752903e-03 1.01662107e-03 7.7469179e-04 5.43124838e-04 4.13982528e-04 3.22268906e-04 1.99904846e-04 1.82358764e-04 1.22357384e-04 9.84701170e-05 8.87915581e-05 8.02456161e-05 7.55522105e-05 6.24034825e-05 5.04485632e-05 3.08481492e-05 1.86827712e-05 1.49416419e-05 1.33783774e-05 2.66135642e-06 2.02403308c 06 9.51393151e-07 7.49623526e-07 2.39654410e-07 1.99355029e-07 8.26718788e-08 7.06173620e-08 4.41103905e-08 2.33592435e-11]

Problem: One feature seems to be very 'dominant'. This is happening because of incompatible scales of the features

Importance of NORMALIZATION

Note: Data needs to be normalized before performing PCA

```
[7.54261365e-01 9.87869904e-02 7.12964455e-02 5.03510215e-02 7.98749378e-03 6.55441064e-03 3.36504308e-03 2.09332441e-03 1.18752903e-03 1.01662107e-03 7.74969179e-04 5.43124838e-04 4.13982528e-04 3.22268906e-04 1.99904846e-04 1.82358764e-04 1.22357384e-04 9.84701179e-05 8.87915581e-05 8.02456161e-05 7.55522105e-05 6.24074825e-05 5.04485632e-05 3.08481492e-05 1.86827712e-05 1.49416419e-05 1.33783774e-05 2.66135642e-06 2.02403308e-06 9.51393151e-07 7.49623526e-07 2.39654410e-07 1.99355029e-07 8.26718788e-08 7.06173620e-08 4.41103905e-08 2.33592435e-11]
```


Uses of PCA

Data understanding:

- PCA can be used to identify the most important variables in a dataset and to understand the relationships between them.
- PCA can be used to detect outliers and anomalies in the data by identifying data points that are far from the rest of the data.

Data visualization:

- PCA can be used to visualize high-dimensional data in a low-dimensional space, typically 2D or 3D, by reducing the dimensionality of the data while preserving the most important information.
- PCA can be used to identify clusters and patterns in the data that are not visible in the high-dimensional space.

Data simplification:

- PCA can be used to simplify the data by reducing the number of variables or features in the dataset while preserving the most important information.
- PCA can be used to remove noise and redundancy from the data by identifying the most important components and ignoring the rest.

Dimensionality reduction:

- PCA can be used to reduce the dimensionality of the data by finding a new set of variables that are smaller than the original set but still contain most of the information in the original set.
- PCA can be used to transform a large set of variables into a smaller one that still contains most of the information in the large set.

Machine learning:

- PCA can be used as a preprocessing step in machine learning to reduce the dimensionality of the data and to improve the performance of the model.
- PCA can be used to remove multicollinearity and to improve the interpretability of the model by identifying the most important variables.