Extra lab 4 support DD2437

Pawel Herman CST/EECS/KTH

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Restricted Boltzmann machine (RBM)

Visible and hidden units are conditionally independent given one another

$$p(\boldsymbol{h} \mid \boldsymbol{v}) = \prod_{i} p(h_{i} \mid \boldsymbol{v})$$

$$p(\mathbf{v} \mid \mathbf{h}) = \prod_{j} p(v_{j} \mid \mathbf{h})$$

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Restricted Boltzmann machine (RBM)

Visible and hidden units are conditionally independent given one another

$$p(\boldsymbol{h} | \boldsymbol{v}) = \prod_{i} p(h_{i} | \boldsymbol{v})$$

$$p(\mathbf{v} \mid \mathbf{h}) = \prod_{j} p(v_{j} \mid \mathbf{h})$$

Following the same principle of maximising log likelihood by means of gradient ascent, one obtains:

$$\Delta w_{ji} = \varepsilon \frac{\partial L(\mathbf{W})}{\partial w_{ji}} = \varepsilon \left(\left\langle v_j h_i \right\rangle_{\text{data}} - \left\langle v_j h_i \right\rangle_{\text{model}} \right)$$

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Restricted Boltzmann machine (RBM)

$$P(h_i = 1 | \mathbf{v}) = \frac{1}{1 + \exp(-bias_{h_i} - \mathbf{v}^T \mathbf{W}_{:,i})}$$

$$P(v_j = 1 | \mathbf{h}) = \frac{1}{1 + \exp(-bias_{v_j} - \mathbf{W}_{j,:} \mathbf{h})}$$

Visible and hidden units are conditionally independent given one another

Following the same principle of maximising log likelihood by means of gradient ascent, one obtains:

$$\Delta w_{ji} = \varepsilon \frac{\partial L(\mathbf{W})}{\partial w_{ji}} = \varepsilon \left(\left\langle v_j h_i \right\rangle_{\text{data}} - \left\langle v_j h_i \right\rangle_{\text{model}} \right)$$

- RBMs and CD learning
- · DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

RBM learning with Contrastive Divergence (CD)

$$P(h_i = 1 \mid \mathbf{v}) = \frac{1}{1 + \exp(-bias_{h_i} - \mathbf{v}^{\mathrm{T}}\mathbf{W}_{:,i})}$$

$$P(v_j = 1 \mid \boldsymbol{h}) = \frac{1}{1 + \exp(-bias_{v_j} - \mathbf{W}_{j,:} \boldsymbol{h})}$$

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

RBM learning with Contrastive Divergence (CD)

$$P(h_i = 1 \mid \mathbf{v}) = \frac{1}{1 + \exp(-bias_{h_i} - \mathbf{v}^{\mathrm{T}}\mathbf{W}_{:,i})}$$

$$P(v_j = 1 \mid \boldsymbol{h}) = \frac{1}{1 + \exp(-bias_{v_j} - \mathbf{W}_{j,:} \boldsymbol{h})}$$

GOOD TO KNOW:

Contrastive Divergence does not optimise the likelihood but it works effectively!

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

CD_k recipe for training RBM

Gibbs sampling

Objective:

$$\langle v_j h_i \rangle_{\text{data}}$$
 and $\langle v_j h_i \rangle_{\text{model}}$

1) Set (clamp) the visible units with an input vector and update hidden units (binary states).

$$P(h_i = 1 \mid \mathbf{v}) = \left(1 + \exp\left(-bias_{h_i} - \mathbf{v}^{\mathrm{T}}\mathbf{W}_{:,i}\right)\right)^{-1}$$

2) Update all the visible units in parallel to get a reconstruction (probabs can be used).

$$P(v_j = 1 \mid \boldsymbol{h}) = \left(1 + \exp\left(-bias_{v_j} - \mathbf{W}_{j,:} \boldsymbol{h}\right)\right)^{-1}$$

3) Collect the statistics for correlations after *k* steps using mini-batches (*N* samples) and update weights:

k-th step

$$\Delta w_{j,i} = \frac{1}{N} \sum_{n=1}^{N} \left(v_j^{(n)} h_i^{(n)} - \hat{v}_j^{(n)} \hat{h}_i^{(n)} \right)$$

The final update of the hidden units should use the probability.

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

CD₁ case

Gibbs sampling

$$\Delta w_{j,i} \propto \left\langle v_j^{(0)} \, h_i^{(0)} \right\rangle - \left\langle v_j^{(1)} \, h_i^{(1)} \right\rangle = \frac{1}{N} \sum_{n=1}^N \left(v_j^{(0,n)} \, h_i^{(0,n)} - \hat{v}_j^{(1,n)} \, \hat{h}_i^{(1,n)} \right)$$
 probabilities binary samples
$$\Delta bias_j^{(v)} \propto \left\langle v_j^{(0)} \right\rangle - \left\langle v_j^{(1)} \right\rangle$$

$$\Delta bias_i^{(h)} \propto \left\langle h_i^{(0)} \right\rangle - \left\langle h_i^{(1)} \right\rangle$$

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Greedy layer-wise training approach with the use of RBMs

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Greedy layer-wise training approach with the use of RBMs

Salakhutdinov, 2015

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Greedy layer-wise training approach with the use of RBMs

Salakhutdinov, 2015

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Approach 1

- 1: Fit the parameters $W^{(1)}$ of the first-layer RBM to data.
- 2: Fix the parameter vector $W^{(1)}$, and use samples $\mathbf{h}^{(1)}$ from $Q(\mathbf{h}^{(1)}|\mathbf{v}) = P(\mathbf{h}^{(1)}|\mathbf{v}, W^{(1)})$ as the data for training the next layer of binary features with an RBM.
- 3: Fix the parameters $W^{(2)}$ that define the second layer of features, and use the samples $\mathbf{h}^{(2)}$ from $Q(\mathbf{h}^{(2)}|\mathbf{h}^{(1)}) = P(\mathbf{h}^{(2)}|\mathbf{h}^{(1)}, W^{(2)})$ as the data for training the third layer of binary features.

DD2437

4: Proceed recursively for the next layers.

Bottom-up pass by

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Building the stack of RBMs

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Building the stack of RBMs

The visible layer of RBM_2 is treated as probabilities (just like $v^{(0)}$ in CD)

- · RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

Building the stack of RBMs

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model

The network used to model joint distribution of digit images and labels.

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: pretraining

<u>Pretraining with labels</u> once the stack of RBMs has been built

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: pretraining

<u>Pretraining with labels</u> once the stack of RBMs has been built

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: pretraining

<u>Pretraining with labels</u> once the stack of RBMs has been built

- RBMs and CD learning
- DBNs (stacking RBMs)

KTH

• Hinton et al.'s (2006) model: generative mode

Approximate sampling from DBN

Gibbs sampling chain in the RBM part

RBM part (undirected part of the graph)

single-run sampling (through the directed graph)

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: generative mode

Generating samples

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: generative mode

Generating samples

500 units: binary samples.

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: generative mode

Generating samples

- 2. Run Gibbs sampling for 200 iterations in the top RBM (500+10 <-> 2000) to converge.
 - 2000 units: binary states
 - 10 label units: clamped in all iterations
 - 500 units: binary samples.

500-unit layer can be initialized with either a random sample (binomial distribution) or a sample from biases or as a sample drawn from the distribution obtained by propagating random image all the way form the input.

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: generative mode

Generating samples

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: fine-tuning

Fine-tuning with a contrastive wake-sleep algorithm

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: fine-tuning

Fine-tuning with a contrastive wake-sleep algorithm

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: fine-tuning

Fine-tuning with a contrastive wake-sleep algorithm

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: fine-tuning

Approximate sampling from DBN

Gibbs sampling chain in the RBM part

RBM part (undirected part of the graph)

single-run sampling (through the directed graph)

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: fine-tuning

Fine-tuning with a contrastive wake-sleep algorithm

Learning that results from the wake phase

(based on network activities sampled during wake phase)

$$\Delta w_{ji} \propto x_i \left(y_j - \tilde{y}_j \right)$$

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: fine-tuning

Fine-tuning with a contrastive wake-sleep algorithm

CD_k learning of the top RBM

- RBMs and CD learning
- DBNs (stacking RBMs)
- Hinton et al.'s (2006) model: fine-tuning

Fine-tuning with a contrastive wake-sleep algorithm

Learning that results from the sleep phase

(based on network activities sampled during sleep phase)

$$\Delta w_{ij} \propto x_j \left(y_i - \tilde{y}_i \right)$$