Anomaly detection example

Aircraft engine features:

 $\rightarrow x_1$ = heat generated

 $\Rightarrow x_2$ = vibration intensity

...

Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

New engine: x_{test}

Density estimation

- \Rightarrow Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- \Rightarrow Is x_{test} anomalous?

Anomaly detection example

- → Fraud detection:
 - $\rightarrow x^{(i)}$ = features of user i's activities
 - \rightarrow Model p(x) from data.
 - ightharpoonup Identify unusual users by checking which have $p(x) < \varepsilon$

 $p(\kappa)$

- → Manufacturing
- Monitoring computers in a data center.
 - $\Rightarrow x^{(i)}$ = features of machine i
 - x_1 = memory use, x_2 = number of disk accesses/sec,
 - x_3 = CPU load, x_4 = CPU load/network traffic.

高斯分布/正态分布(Gaussian Distribution):

Gaussian (Normal) distribution

Say $x \in \mathbb{R}$. If x is a distributed Gaussian with mean μ , variance σ^2 .

Gaussian distribution example

 $\Rightarrow \mu = 0, \sigma = \underline{0.5}$ $e^2 = 0.25$

参数估计问题:给定数据集,从而估计出高斯分布参数mu和sigma。

Parameter estimation

o Dataset: $\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}$

以3为中心

Andrew I

异常检测算法,密度估计

Density estimation

Training set:
$$\{x^{(1)}, \dots, x^{(m)}\}$$

Each example is $\underline{x} \in \mathbb{R}^n$

$$\Rightarrow P(x)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_2; \mu_2, e_2^2) P(x_3; \mu_3, e_2^2) \cdots P(x_n; \mu_n, e_n^2)$$

$$= P(x_1; \mu_1, e_1^2) P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2)$$

$$= P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2)$$

$$= P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2)$$

$$= P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2)$$

$$= P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2) P(x_1; \mu_1, e_2^2)$$

$$= P(x_1; \mu$$

异常检测算法:

Anomaly detection algorithm

Choose features x_i that you think might be indicative of anomalous examples.

 \rightarrow 3. Given new example x, compute $\underline{p}(x)$:

$$\underline{p(x)} = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^n \frac{1}{\sqrt{2\pi}\sigma_j} \exp{(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2})}$$
 Anomaly if $p(x) < \varepsilon$ 就是在计算高斯概率

举个栗子:

开发一个异常检测系统:

The importance of real-number evaluation

When developing a learning algorithm (choosing features, etc.), making decisions is much easier if we have a way of evaluating our learning algorithm.

- -> Assume we have some labeled data, of anomalous and nonanomalous examples. (y = 0 if normal, y = 1 if anomalous).
- \rightarrow Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$ (assume normal examples/not anomalous)

Aircraft engines motivating example

- → 10000 good (normal) engines
- flawed engines (anomalous) 2-50
- J-> M1, 62,, M1, 61. Training set: 6000 good engines (y=0) $p(x)=p(x_1)M_1 e^2$ $p(x_n)M_2 e^2$ CV: 2000 good engines (y=0), 10 anomalous (y=1)

Test: 2000 good engines (y=0), 10 anomalous (y=1)

Algorithm evaluation

- \rightarrow Fit model $\underline{p(x)}$ on training set $\{x^{(1)}, \dots, x^{(m)}\}$ $\{x^{(i)}_{\text{test}}, y^{(i)}_{\text{test}}\}$
- \rightarrow On a cross validation/test example x, predict

$$y = \begin{cases} \frac{1}{0} & \text{if } p(x) < \varepsilon \text{ (anomaly)} \\ \frac{1}{0} & \text{if } p(x) \ge \varepsilon \text{ (normal)} \end{cases}$$

Possible evaluation metrics:

- True positive, false positive, false negative, true negative
- Precision/Recall
- → F₁-score ←

Can also use cross validation set to choose parameter ©

但是如果有了一些带标签的数据,那么为什么不用监督学习的方法来进行异常检测呢?

Anomaly detection

- \rightarrow Very small number of positive examples ($\underline{y} = 1$). (0-20 is common).
- \Rightarrow Large number of negative $(\underline{y=0})$ examples.
- Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what the anomalies look like;
- future anomalies may look nothing like any of the anomalous examples we've seen so far.

vs. Supervised learning

Large number of positive and \leftarrow negative examples.

Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

Andrew Ng

异常检测中的特征选择:

可以对参数进行调整从而让他看起来更像是高斯分布:

异常检测的误差分析:

→ Error analysis for anomaly detection

Want p(x) large for normal examples x.

p(x) small for anomalous examples x.

Most common problem:

p(x) is comparable (say, both large) for normal and anomalous examples

> Monitoring computers in a data center

- Choose features that might take on unusually large or small values in the event of an anomaly.
 - $\rightarrow x_1$ = memory use of computer
 - $\Rightarrow x_2$ = number of disk accesses/sec
 - $\rightarrow x_3 = CPU load <$
 - $\rightarrow x_4$ = network traffic \leftarrow

多元高斯分布 (Multivariate Gaussian Distribution):

Motivating example: Monitoring machines in a data center

Multivariate Gaussian (Normal) distribution

 $\Rightarrow x \in \mathbb{R}^n$. Don't model $p(x_1), p(x_2), \ldots$, etc. separately. Model p(x) all in one go.

Parameters: $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)

$$\frac{1}{(2\pi)^{n/2}} = \exp(-\frac{1}{2}(x-\mu)^{T} \mathcal{E}^{-1}(x-\mu))$$

$$|\mathcal{E}| = \det(x-\mu)^{n/2} \int_{x}^{x} |\mathcal{E}|^{-1} det(Signal)$$

Multivariate Gaussian (Normal) examples

Andrew No

Multivariate Gaussian (Normal) examples

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathcal{L} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \mathcal{L}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Multivariate Gaussian (Normal) examples

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 0.6 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

 \dot{x}_1

Andre

Multivariate Gaussian (Normal) examples

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.5 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1, & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

 \dot{x}_1

多元高斯分布异常检测:

Anomaly detection with the multivariate Gaussian

1. Fit model
$$\underline{p}(x)$$
 by setting
$$\widehat{\mu} = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^T$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^T$$

2. Given a new example x, compute

$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Flag an anomaly if $\frac{m我们就不把它标记为异常点}{p(x) \sim c}$

Relationship to original model

Original model: $p(x) = p(x_1; \mu_1(\sigma_1^2) \times p(x_2; \mu_2, \sigma_2^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$

Corresponds to multivariate Gaussian

$$\Rightarrow \boxed{p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)}$$

where

Andrew No

Original model

$$p(x_1; \mu_1, \sigma_1^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$$

Manually create features to capture anomalies where x_1, x_2 take unusual combinations of values. $x_1 = \frac{x_1}{x_2} = \frac{CRU \log x}{Memory}$

Computationally cheaper (alternatively, scales better to large n) n=10,000, h=100,000

OK even if m (training set size) is small

vs. 🤝 Multivariate Gaussian

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} x - \mu\right)$$

 Automatically captures correlations between features

non-invertible. ___m > lon

Computationally more expensive