Дополнительные задачи к контрольной №1

Торунова Анастасия. 394 группа

25 декабря 2015 г.

Задача 3.

K)

BIPARTITESUBGRAPH = $\{(G,k)|$ в графе G найдется двудольный подграф, содержащий хотя бы k вершин $\}$

Сначала покажем, что данный язык лежит в **NP**. Воспользуемся сертификатным определением. Действительно, тогда сертификатом будут вершины подграфа, разделенные на 2 доли. Тогда верификатор проверяет, что в каждой доле вершин $\geq k/2$ (за O(|V|)), затем то, что вершины в доле не соединены друг с другом ребрами (за $O(|V|^2)$). Он это делает за полином, поэтому BIPARTITESUBGRAPH \in **NP**.

Теперь покажем, что BIPARTITESUBGRAPH NP-трудный. Воспользуемся NP-полнотой задачи INDSET = $\{(G,k)|$ в графе G найдется независимое множество размера $\geq k$ $\}$. Сведем INDSET к BIPARTITESUBGRAPH. Рассмотрим вход для задачи INDSET: (G,k). Скопируем граф G два раза,получим его копии G_1 и G_2 и проведем между ними все ребра. Теперь докажем, что в полученном графе G' есть двудольный подграф размера $> 2k \Leftrightarrow$ в G есть независимое множество размера > k.

Пусть в G' есть двудольный подграф размера $\geq 2k$. Тогда размер какойто из долей $\geq k$, а она является независимым множеством по определению двудольного графа. Покажем, что она обязательно лежит в одной из копий G.Пусть не так, но тогда она содержит одновременно вершину из G_1 и вершину из G_2 , но по построению G' между ними проведено ребро, что противоречит тому, что доля — независимое множество. Итак мы нашли независимое множество размера $\geq k$, которое лежит целиком в одной из копий G, значит мы нашли это множество в G.

Пусть теперь в G есть независимое множество H размера $\geq k$. Тогда получаем, что в G_1 и G_2 есть копии этого множества — H_1 и H_2 соответственно. Рассмотрим граф, образованный вершинами H_1 и H_2 . Понятно, что H_1 и H_2 образуют его доли, а его размер $\geq 2k$. Значит мы нашли нужный подграф в G'.

Таким образом мы построили сведение INDSET к BIPARTITESUBGRAPH. Оно полиномиальное, так как копирование графа происходит за O(|G|), а

проведение дополнительных ребер за $O(|V|^2)$. Получаем, что BIPARTITESUBGRAPH – ${\bf NP}$ -трудный, а значит, по доказанному в начале, NP-полный.