#### 0.1 Perfect Information

### 0.2 Two Player Games: Env Assumptions

## 0.3 Defining Zero Sum Game Problem

- Defining a set of possible states: State Space
- Specify how will you track Whose Move / Turn it is
- Specify Initial State
- Specify Goal State(s) (there can by multiple)
- Define a FINITE set of possible Actions (legal moves) for EACH state in the State Space
- Come up with a Transition Model which describes what each action does
- Come up with a Terminal Test that verifies if the game is over
- Specify the Utility (Payoff/Object) Function: a function that defines the final numerical value to player p when the game ends in the terminal state s4

# 0.4 MinMax Algorithm: The Idea

I don't know what move my opponent will choose, but I am going to ASSUME that it is going to be the best/optimal option for them.

 $\alpha$  the value of the best (highest value)

β

### 0.5 Constraint Satisfaction Problem

The goal is to find an assignment (variable = value):

$$X_1 = v_1, \ldots, X_n = v_n$$

- If NO constraints violated: consistent assignment
- If ALL variables have a value: complete assignment
- If SOME variables have NO value: partial assignment
- SOLUTION: consistent and complete assignment
- PARTIAL SOLUTION: consistent and partial assignment