Chapter-8

X Chapter-2 and Main goal Itaan soncept of statistics like sample mean and sample varionce that is and to devive the properties of such statistics.

This XI, X2, ..., Xn & Handom Sample from f(X), E(Xi)=4, Var(Xi)=0220

Imp. $D \to E(\bar{X}) = \mathcal{H}$ (expected value of sample mean), $Var(\bar{X}) = \frac{\sigma^{-2}}{n}$ $(T = \bar{X})$ (Novigorce of sample mean)

 $E(S^2) = \sigma^2 \text{ (expected value of Sample Variovee), :} + \\ Var(S^2) = \left(\frac{114 - \frac{10 - 3}{10 - 1}}{10 - 1} \right) / \frac{1}{10}, \quad 1 > 1 + \frac{114 + \frac{114}{100}}{10 + \frac{114}{100}} + \frac{114}{100}$

X Sample mean $(\overline{X}) = \frac{\sum Xi}{n}$, Sample Variance $(s^2) = \frac{1}{n-1} \frac{\sum (Xi - \overline{X})^2}{n}$

*Theorem-2 X1, X2,..., Xn ind N(U, o-2), Then

1) X ~ N(M, 0-2/n) (Sample viean 212) distribute 312nd (35)

2) \(\text{X} \) and \(\text{X}_1 - \text{X}_1, \text{X}_2 - \text{X}_1, \ldots, \text{X}_n - \text{X} \) are indep

3) X and S2 are indep

4>
$$\frac{(n-1)5^2}{5-2}$$
 $\sqrt{(n-1)}$

成

* Two quantity say 1, 2 1/2 mil independent 201303 & 317, we can use either covarionce technique or joint pot technique. Covarionce learnique normal 301 alum ITE but joint pot technique more general of always on ITE 1

* J2 distribution is special case of gamma distribution i.e

$$X \sim \int^{2}(\mathfrak{d}) \iff X \sim \operatorname{gamma}(2, \mathbb{Z}_{2})$$
Lategree of preedom

Scale

*-Properlies
$$0 E(x) = 2 * \frac{1}{2} = 0$$

$$\hat{\otimes} \text{ Var } (X) = 2^2 * \frac{\hat{0}}{2} = 20$$

$$Y = \frac{2X}{\theta}$$
 gamma $(2,K) = \sqrt{2}(2K)$

* Homen यदी Y थरारी distribute शराको ह शके Y गाँठी Chi-squared distribute दिन्द with 2k degree of freedom.

* It Xi ind gamma (O, Ki). Then

 $Y = \sum Xi$ gamma (θ , $\sum Ki$) (this can be shown using mgd technique)

Dx If Xi ind
$$\chi^2(\Im i) \equiv gamma(2, \frac{\Im i}{2})$$

$$Y = \sum Xi - \int \int_{-\infty}^{2} (\sum \partial i) = \operatorname{gamma}(2, \sum \partial i)$$

$$Z \sim N(0,1)$$
. Then
$$X = Z^2 \sim \chi^2(1) \rightarrow 2440005 \text{ aft mgf technique in c, and 1.77 and $1.77$$$

HAMA 2141 normal and random variable mist squire six add six of Hot cut of thi-square distribution theory and its degree of precedom is number of normal random variable added.

$$\times$$
 Note $\frac{X-H}{\sqrt[n]{n}}$ $\sim N(0,1)$ $\neq \frac{(n-1)s^2}{\sigma^2} \sim \int_{0}^{\infty} (n-1)$

$$T = \frac{Z}{\sqrt{3}} \longrightarrow \pm (3) + \sqrt{an} \text{ if degree of breedom}$$

$$\overline{a} \text{ cust } t \text{ and } \overline{a} \text{ is } \overline{a}$$

properties

$$Vor_{1}(T) = \frac{0}{\sqrt{-2}} \qquad J > 2$$

* Theorem :-

* start X-11 N(0,1) normally distribute grean & CLIANT $X - \mu$ $= t(n-1) \cdot (Actually a theorem)$

Theorem:
$$X_1 \sim S^2(O_1)$$
, $X_2 \sim S^2(O_2)$ X_1 indep of X_2

$$Y = \frac{X_1 D_1}{X_2 / O_2} \qquad F(O_1, O_2)$$
Properties *

Lagree of preedom of nemurators

properties *

$$\mathbb{O} \times \mathbb{F}(P,2)$$
, then $Y=\frac{1}{X} \sim \mathbb{F}(2,P)$

@ If X~ t(2), then Y= X2 ~ F(1,2) ie reft X wist & distribute grant & god, X2 wist & distribute 3081

3
$$X \sim F(P,2)$$
 then $Y = \frac{(P/2)X}{1+(P/2)X} \sim beta(\frac{P}{2},\frac{2}{2})$

* Random Variable Hotant sample (452). value change 30 xtrd i.e values can change from sample to sample. Cg sample mean(X) [Capital X]

X-exponential distribution special case of gamma distribution FT1 X ~ (MAM (OIK) = exponential when K=1 scare shape

$$\star$$
 $L(\kappa) = (\kappa-1)L(\kappa-1)$ $+$ $L(\kappa) = (\kappa-1)$

- X Suppose तपाईलाई दुने question आएको ह P(XZIO) where X~GAM(Bir)
 Gamma को CDF त जारो दुन्द , integration sudes and table कि दें । In
 this case the best idea is to transform it to chi-squared distribution.
 - * TRIR 21 Jandom variables 529 Normally distribute GRAN EN

 21 then their sum EX; 41 Normally of distribute For I si

 cuttle of 210 nandom variables 529 210 82 (Chi-squared)

 distribute ARANT EN 210, Ald 52000 sum und \$2 (Chi-squared)

 of distribute For I But Normal distribution on cuse All

 sample mean (X) 410 normally of distribution icc

 not the same case in \$2 (Chi-squared) distribution. icc

 X X2. But we still can use our \$2 table to get

 probability of the things other than just a sum of \$2-dists.
 - * But But But the only time a linear combination of 12-dist.

 -ributed R.V.s is itself joing to be 12-distributed is if the coefficients are all positive I. (X+Y+Z+...). The normal distribution is much more flexible in comparison; coefficients may be >0, <0 etc.
 - * 50 the difference of two. I'- distribution is not one of our known special distribution. We can not say onything about difference of two S'-distribution.
 - \star So Zict question to zict probability zz wala term sime thes six, we can onswer it using Normal distribution or J^2 -distribution. Eg
 - 1) First way: using standard normal table [need to go from =2 to z]
 - 3 second way: using 12(1)

X SIAPMIS S2 and distribution and idea En but SIAP corners stort modify.

JTA XIAE because we know the distribution of (n-1)52 which is distributed 82 with (n-1) dequee of preedom. i.e (n-1)52 - 12(n-1)

* Note: - 52 and distribution on ITT HIZ depend JiE but X and distribution il and one both All depend JE/

* Vimp Note:

$$Z_i \sim \frac{Y_i - \mathcal{U}_2}{\sigma_2^2} \sim N(0,1)$$
 $Z_i' = \frac{\chi_i - \mathcal{U}_1}{\sigma_1} \sim N(0,1)$

$$Z = \frac{1}{Nm} \sum_{i=1}^{m} Z_{i} \sim N(0,1) \qquad \sum_{i=1}^{m} (Z_{i}^{i})^{2} \sim Y^{2}(m)^{2}$$

$$\overline{Z_i^2} = \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2 - \int_{1}^{2} (1)$$

$$\sum_{i=1}^{m} (Z_i^i)^2 - y^2(m)$$