

2nd presentation: Theory of games

22/10/2012 Benamara Neila 1

I/Introduction

II/Two persons zero sum games

1)Description

2)Special methods

3)Linear programming

III/Games against Nature

Assist decision making

• GAME

- •There are a finite number of participants
- •Each participant has a finite number of possible courses of action
- •The participant wishing to apply the theory must know all the possible actions
- •After all have chosen a course of action their respective gains are finite
- •The gain of the participant depends upon the actions of the others as well as himself
- •All possible outcomes are calculable

Two person zero sum games

Principle

«Two interested parties each of which trying to gain as much as possible at the expense of the other »

Vocabulary

- •Players, A and B
- •Play
- •Strategy(mixed and pure)
- •V, value of the game
- •Gain matrix

A(x,y,z)B(t,u,v,w)

		B's courses of action							
		T	U	V	W				
A's courses	X	а	ь	c	d				
of action	Y	e	f	g	h				
	Z	k	1	m	n				

Gain Matrix of a 3 × 4 game.

➤ Value of the game (=average amount per play A will win in the long run if A and B each uses his best strategy)

The strategy to be used by A(r. B) to ensure that his average gain per play is at least equal(r. no more) to V

5

Saddle points

- •When the solution involves each player using only one course of action throughout the game is said to have a saddle point
- •It is the point of intersection of the two courses of action and the gain at this point is V
- •If there is none the players have to use a mixed strategy

		1	В		
	1	2	3	4	min
1	1	7	3	4	1
A 2	5	6	4	5	(4)
3	7	2	0	3	0
max	7	7	(4)	5	

Dominance

- •When a strategy is obvisouly less profitable than the others
- •Enables to reduce the game

			В			1	В
1	2	2	1	4	\rightarrow	2	3
2	4	3	2	2	A	3	2

- •Oddments=frequencies with which the players must use their courses of action in their best strategies
- •We consider first that the sum of the oddments vertically and horizontally are equal ${f V}$

A plays A_1 ;

B plays B_1 ;	$V = \frac{a_1 b_1 - b_2 + b_1 a_1 - a_2 }{ b_1 - b_2 + a_1 - a_2 }$
B plays B_2 ;	$V = \frac{a_2 b_1 - b_2 + b_2 a_1 - a_2 }{ b_1 - b_2 + a_1 - a_2 }$
or using B's oddmen	its.

 $V = \frac{a_1|a_2 - b_2| + a_2|a_1 - b_1|}{|a_2 - b_2| + |a_1 - b_1|}$

Example

В

1

2

Attack the Atsmaller store lar

Attack the larger store

Defend the smaller store

Defend the larger store 0 -2
The larger one destroyed

-1 The smaller one destroyed

Both survive

•Two by N games

•The solution involves picking out a 2x2 sub-game which fits the 2xN game (because here the sum of the oddments are supposed equal)

-6	1			В	
7	2	A	3	2	1
			-1	4	-6
1					
-6	1		-2	-5	7
7	2	A			

-5

-2

Graphical treatment

- •Indicates the sub-game which has the same solution as the 2xN game
- •The two lines whixh intersect at the highest point of the bound show the two courses of action B should use in his best strategy
- •This method falls down if there is more than one solution

Three by three games

- •Solving it the same way as previously would be tedious
- •Method that only works if both players use all their plays in their best strategy

			В	
		1	2	3
	1	6	0	6
A	2	8	-2	0
	3	4	6	5

•Summary

- •Look for saddle points. If one is found the game is solved
- •Look for dominance, to reduce the size of the game
- •Substract each row from the one above it and write the result below the matrix (B's oddments)
- •If the A's and B's oddments sum is equal, the reduced game is solved
- •If not, all the matrices of order one less than the one must be considered
- → apply the process again

II/Two person zero sum games 3) Linear Programming

- •If the gain matrix is 4x4 or higher order and the game needs to be reduced
- •When player B is « Nature »

Example

1	2	3
6	0	3
8	-2	3
4	6	5

II/Two person zero sum games 3) Linear Programming

		В				
	1	2	3	_		
1	6	0	3	6	-3	0
2	8	-2	3	10	-5	0
3	4	6	5	-2	1	0
	-2	2	0			
	4	-8	-2			
1 •	4	4	8			

Linear solving

16

- •Consider the game from B's point of view
- ullet B is trying to minimise V
- $\bullet B(y_1,y_2,y_3)$ is his optmimum strategy
- •p,q,r slack variables
- •*V*=*V*1-*V*2
- •s, artificial variable with very high value M (see allocation chapter)

II/Two person zero sum games 3) Linear Programming

•Minimise V1-V2+Ms

	y1	y2	у3	р	q	r	s	V1	V2	P
р	6	0	3	1				-1	1	0
q	8	-2	3		1			-1	1	0
r	4	6	5			1		-1	1	0
s	1	1	1				1			1
w	0	0	0				-M	-1	1	

- •Same iterations that in chapter 2
- •Two solutions

$$A(0,1,5)$$
 and $B(1,0,2)$

$$A(0,1,5)$$
 and $B(2,1,0)$

$$V=14/3$$

•Nature cannot be considered as an interested party, Nature is not trying to do her best

Applying some restrictions

•Calculate the best strategy for A against the worst Nature is able to do

•Solved by linear programming

•Example

Nature

N(x1,x2,x3,x4)

1

2

Firm

-8 7

-9

6 -4

3

7

-8

-5

-5 -5 -5

•Constraints:

$$\frac{x_4}{x_1 + x_4} \ge 0.7$$

$$\frac{x_2}{x_2 + x_3} \ge 0.8$$

II/Games against Nature

	x1	x2	ж3	x4	p	q	r	s	t	u	у	V1	V2	P
р	-8	7	7	-8	1							-1	1	0
q	-9	6	-4	-4		1						-1	1	0
r	-5	-5	-5	-5			1					-1	1	0
s	1	1	1	1				1						1
t	1			1					1					0,9
u	0,7			-0,3						1				0
у		-0,2	0,8								1			0
w									-M			-1	1	0

II/Games against Nature

	x1	x2	ж3	x4	р	q	r	s	t	u	у	V1	V2	P
x1	1								0,03	0,1				0,27
x2		1						0,8	-0,08		-0,2			0,08
х3			1					0,2	-0,02		0,2			0,02
x4				1					0,07	-0,1				0,63
р					1	-1		-3	0,55	-0,5	-0,2			1,95
r						-1	1	9	-0,95	-0,5	-2			0,45
V2						1		-4	0,95	0,5	2	-1	1	4,55
-\\T(0.0	7. 0	00.	0.00	2.0	(-1 ₀)		4	-0,95	-0,5	-2			-4,55

-N(0,27;0,08;0,02;0,63)

•Firm (0,1,0)

•V=-4,55

Thank you for your attention!

