blockDAGs

Jörn

October 6, 2021

Contents

1	$\mathbf{D}\mathbf{A}$	DAG														
	1.1	Functions and Definitions														
	1.2	Lemmas														
		1.2.1 Tips														
		1.2.2 Anticone														
		1.2.3 Future Nodes														
		1.2.4 Past Nodes														
		1.2.5 Reduce Past														
		1.2.6 Reduce Past Reflexiv														
		1.2.7 Reachability cases														
		1.2.8 Soundness of the topological sort algorithm 15														
2	Dig	raph Utilities 23														
3	blo	ckDAGs 24														
	3.1	Functions and Definitions														
	3.2	Lemmas														
		3.2.1 Genesis														
		3.2.2 Tips														
	3.3	Future Nodes														
		3.3.1 Reduce Past														
		3.3.2 Reduce Past Reflexiv														
		3.3.3 Genesis Graph														
4	Spectre 4															
	4.1	Definitions														
	4.2	Lemmas														
5	GHOSTDAG 5															
•	5.1	Funcitions and Definitions														
	5.2	Soundness														
	٠	5.2.1 Soundness of the $add-set-list$ function 56														

		5.2.2	S	Sou	ndr	ies	s c	of t	the	e ad	dd -	-i	f -	- <i>l</i>	lue	e fi	ıno	cti	on								56
		5.2.3			ndr								-														57
		5.2.4	S	Sou	ndr	ies	S C	of t	the	ch	100	se_i	$_na$	x_b	lue	set	fu	m	cti	on							57
		5.2.5	P	Aux	cilia	ıry	le	mı	ma	s fo	or (Or	dei	D.	AG												57
		5.2.6	()rd	lerI)A(\mathbf{G}	soı	uno	dne	ess																62
6	Ext	end bl	loc	кГ)A	$\mathbf{G}\mathbf{s}$	5																				67
_	6.1	Defini																									67
	6.2	Apper																									68
	6.3	Hones	st-1	Арј	pen	d-(On	ie l	Lei	mm	as																74
	6.4	Apper	nd	Mo	ore																						76
	6.5	Hones	st-I	Dis	hor	ıest	t-A	Apj	pei	nd-	Or	ne l	Le	mn	nas												81
7	SPI	ECTRI	\mathbf{E}	pro	οpe	erti	ies	S																			85
	7.1			_	_				esei	rvir	ng	•													•		85
8	GHOSTDAG properties 1															103											
	8.1	GHOS	ST	DA	^{1}G	Ōr	de	r I	Pre	eser	vir	ng															103
	8.2	GHOS	ST	DA	\mathbf{G}	Lin	nea	ar	Or	\det	•																106
	8.3	GHOS	ST	DA	ιG	On	ie.	Ap	ppe	endi	ing	g N	Ior	ot	on	е.								•	•		106
9	Coc	le Gen	ıer	at	ion	Ĺ																				1	107
	9.1	Show	th	at	SP	EC	TI	RE	E is	s no	ot l	line	ear														109
	9.2	Exten	nd (Gra	aph	L .																					110
	9.3	GHOS	ST	DA	ιG	No	ot (On	ie A	App	per	ndi	ng	R	obı	ıst											110
i	eory mpor egin	Utils •ts Main	n																								
		$\begin{array}{c} \text{lowing } \\ a = b \end{array}$												to	a	rel	ati	or	с	on	ta	in	ing	g	a	tu	ıple
fu	n list-	to-rel::	'a	list	\Rightarrow	'a	rel	l																			
		e list-to-r o-rel (x#					×	$(s\epsilon$	et ((x#	:xs)	ı) L	J li	st-	to-1	rel	xs										
		list-to- re					list	t-to	o-re	el~L	=	{}	=	⇒ .	L =	= []											
		$list$ -to- re $nduct \ L,$) ∈	€ (list	t-to-	-re	l[L]) =	\Rightarrow	a	$\in s$	et	L	^	$b \in$	$\in s$	et	L				
		list-to- re					a	\in	set	t L	-	→ (a, a	:)	∈ (lis	t-te	9-Y	el	L)							

Show soundness of list-to-rel

```
lemma list-to-rel-equal:
 (a,b) \in list\text{-to-rel } L \longleftrightarrow (\exists k::nat. \ hd \ (drop \ k \ L) = a \land b \in set \ (drop \ k \ L))
\mathbf{proof}(safe)
 assume (a, b) \in list\text{-}to\text{-}rel\ L
 then show \exists k. hd (drop \ k \ L) = a \land b \in set (drop \ k \ L)
 \mathbf{proof}(induct\ L)
   {\bf case}\ Nil
   then show ?case by auto
 next
   case (Cons a2 L)
   then consider (a, b) \in \{a2\} \times set (a2 \# L) \mid (a,b) \in list-to-rel L by auto
   then show ?case unfolding list-to-rel.simps(2)
   proof(cases)
     case 1
     then have a = hd (a2 \# L) by auto
     moreover have b \in set (a2 \# L) using 1 by auto
     ultimately show ?thesis using drop\theta
       by metis
   next
     case 2
     then obtain k where k-in : hd (drop k (L)) = a \land b \in set (drop k (L))
       using Cons(1) by auto
     show ?thesis proof
       let ?k = Suc \ k
       show hd (drop ?k (a2 \# L)) = a \land b \in set (drop ?k (a2 \# L))
         unfolding drop-Suc using k-in by auto
     qed
   qed
 qed
next
 \mathbf{fix} \ k
 assume b \in set (drop \ k \ L)
   and a = hd (drop \ k \ L)
 then show (hd (drop \ k \ L), \ b) \in list\text{-}to\text{-}rel \ L
 \mathbf{proof}(induct\ L\ arbitrary:\ k)
   case Nil
   then show ?case by auto
   case (Cons a L)
   consider (zero) k = 0 \mid (more) \mid k > 0 by auto
   then show ?case
   proof(cases)
     case zero
     then show ?thesis using Cons drop-0 by auto
   next
     case more
     then obtain k2 where k2-in: k = Suc \ k2
       using gr0-implies-Suc by auto
```

```
show ?thesis using Cons unfolding k2-in drop-Suc list-to-rel.simps(2) by
auto
   qed
 qed
qed
lemma list-to-rel-append:
  assumes a \in set L
 shows (a,b) \in list\text{-}to\text{-}rel\ (L @ [b])
 using assms
proof(induct L, simp, auto) qed
For every distinct L, list-to-rel L return a linear order on set L
lemma list-order-linear:
  assumes distinct L
 shows linear-order-on (set L) (list-to-rel L)
  unfolding linear-order-on-def total-on-def partial-order-on-def preorder-on-def
refl-on-def
    trans-def antisym-def
proof(safe)
 \mathbf{fix} \ a \ b
 assume (a, b) \in list\text{-}to\text{-}rel\ L
 then show a \in set L
 proof(induct L, auto) qed
\mathbf{next}
  \mathbf{fix} \ a \ b
 assume (a, b) \in list\text{-}to\text{-}rel\ L
  then show b \in set L
  \mathbf{proof}(induct\ L,\ auto)\ \mathbf{qed}
\mathbf{next}
  \mathbf{fix} \ x
 assume x \in set L
  then show (x, x) \in list\text{-}to\text{-}rel\ L
  proof(induct L, auto) qed
next
  \mathbf{fix} \ x \ y \ z
  assume as1: (x,y) \in list\text{-}to\text{-}rel\ L
    and as2: (y, z) \in list\text{-}to\text{-}rel\ L
  then show (x, z) \in list\text{-}to\text{-}rel\ L
    using assms
  proof(induct L)
    case Nil
    then show ?case by auto
  next
    case (Cons\ a\ L)
   then consider (nor) (x, y) \in \{a\} \times set (a \# L) \land (y, z) \in \{a\} \times set (a \# L)
      |(xy)(x,y) \in list\text{-}to\text{-}rel\ L \land (y,z) \in \{a\} \times set\ (a \# L)
       (yz) (y,z) \in list\text{-}to\text{-}rel\ L \land (x,\ y) \in \{a\} \times set\ (a\ \#\ L)
      |(both)(y,z) \in list\text{-}to\text{-}rel\ L \land (x,y) \in list\text{-}to\text{-}rel\ L\ \mathbf{by}\ auto
```

```
then show ?case proof(cases)
     case nor
     then show ?thesis by auto
   next
     case xy
     then have y \in set L using list-to-rel-in by metis
     also have y = a using xy by auto
     ultimately have \neg distinct (a \# L)
       by simp
     then show ?thesis using Cons by auto
   next
     then show ?thesis using list-to-rel.simps(2)
       by (metis Cons.prems(2) SigmaD1 SigmaI UnI1 list-to-rel-in)
   \mathbf{next}
     then show ?thesis unfolding list-to-rel.simps(2) using Cons by auto
   qed
 qed
\mathbf{next}
 \mathbf{fix} \ x \ y
 assume (x, y) \in list\text{-}to\text{-}rel\ L
   and (y, x) \in list\text{-}to\text{-}rel\ L
  then show x = y
   using assms
  proof(induct\ L,\ simp)
   case (Cons\ a\ L)
   then consider (nor) (x, y) \in \{a\} \times set (a \# L) \land (y, x) \in \{a\} \times set (a \# L)
      (xy) (x,y) \in list\text{-to-rel } L \land (y, x) \in \{a\} \times set \ (a \# L)
      (yz) (y,x) \in list-to-rel\ L \land (x,\ y) \in \{a\} \times set\ (a\ \#\ L)
      |(both)(y,x) \in list\text{-}to\text{-}rel\ L \land (x,y) \in list\text{-}to\text{-}rel\ L\ \mathbf{by}\ auto
   then show ?case unfolding list-to-rel.simps
   proof(cases)
     case nor
     then show ?thesis by auto
   next
     case xy
     then show ?thesis
     by (metis Cons.prems(3) SigmaD1 distinct.simps(2) list-to-rel-in singletonD)
   next
     case yz
     then show ?thesis
     by (metis Cons.prems(3) SigmaD1 distinct.simps(2) list-to-rel-in singletonD)
   next
     case both
     then show ?thesis using Cons by auto
   qed
```

```
qed
\mathbf{next}
  \mathbf{fix} \ x \ y
 assume x \in set L
    and y \in set L
   and x \neq y
    and (y, x) \notin list\text{-}to\text{-}rel\ L
  then show (x, y) \in list\text{-}to\text{-}rel\ L
  proof(induct L, auto) qed
qed
lemma list-to-rel-mono:
 assumes (a,b) \in list\text{-}to\text{-}rel\ (L)
 shows (a,b) \in list\text{-}to\text{-}rel (L @ L2)
  using assms
proof(induct L2 arbitrary: L, simp)
  case (Cons a L2)
  then show ?case
 \mathbf{proof}(induct\ L,\ auto)
 qed
qed
lemma list-to-rel-mono3:
  assumes (a,b) \in list\text{-}to\text{-}rel\ (L)
 shows (a,b) \in list\text{-}to\text{-}rel\ (c \# L)
  using assms unfolding list-to-rel.simps by auto
lemma list-to-rel-mono4:
  assumes (a,b) \in list\text{-}to\text{-}rel\ (L)
 and set L2 = set L
shows (a,b) \in list\text{-}to\text{-}rel\ (a \# L2)
proof -
 have b \in set (a \# L2)
    by (metis assms(1) assms(2) list.set-intros(2) list-to-rel-in)
 then show ?thesis by auto
qed
lemma list-to-rel-cases:
  assumes (a,b) \in list\text{-}to\text{-}rel\ (c \# L)
 shows (a,b) \in list\text{-}to\text{-}rel\ (L) \lor a = c
  using assms unfolding list-to-rel.simps by auto
\mathbf{lemma}\ \mathit{list-to-rel-elim}:
  assumes (a,b) \in list\text{-}to\text{-}rel\ (c \# L)
 and a \neq c
 shows (a,b) \in list\text{-}to\text{-}rel\ (L)
 using assms unfolding list-to-rel.simps by auto
```

```
lemma list-to-rel-elim2:
 assumes (a,b) \notin list\text{-}to\text{-}rel\ (L)
 and a \neq c
 shows (a,b) \notin list\text{-}to\text{-}rel\ (c \# L)
 using assms unfolding list-to-rel.simps by auto
lemma list-to-rel-equiv:
  assumes a \in set L
 and b \in set L
obtains (a,b) \in list\text{-}to\text{-}rel\ (L) \mid (b,a) \in list\text{-}to\text{-}rel\ (L)
 using assms
proof(induct L, auto) qed
lemma list-to-rel-mono2:
 assumes (a,b) \in list\text{-}to\text{-}rel\ (L2)
 shows (a,b) \in list\text{-}to\text{-}rel (L @ L2)
 using assms
proof(induct L2 arbitrary: L, simp)
  case (Cons a L2)
  then show ?case
 proof(induct\ L,\ auto)
  qed
\mathbf{qed}
lemma map-snd-map: \bigwedge L. (map snd (map (\lambda i. (P i , i)) L)) = L
proof -
 \mathbf{fix} L
 show map snd (map (\lambda i. (P i, i)) L) = L
 \mathbf{proof}(induct\ L)
   case Nil
   then show ?case by auto
  next
   case (Cons a L)
   then show ?case by auto
 qed
qed
end
theory DAGs
 imports Main Graph-Theory. Graph-Theory
begin
     DAG
1
```

locale DAG = digraph +

```
assumes cycle-free: \neg(v \to^+ G v)
```

1.1 Functions and Definitions

```
fun direct-past:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where direct-past G a = \{b \in verts \ G. \ (a,b) \in arcs-ends \ G\}
fun future-nodes:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where future-nodes G a = \{b \in verts \ G. \ b \rightarrow^+_G a\}
fun past-nodes:: ('a,'b) pre-digraph \Rightarrow 'a set
  where past-nodes G a = \{b \in verts G. a \rightarrow^+_G b\}
fun past-nodes-refl :: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where past-nodes-refl G a = \{b \in verts \ G. \ a \rightarrow^*_G b\}
fun anticone:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where anticone G a = \{b \in verts \ G. \ \neg(a \rightarrow^+ G \ b \lor b \rightarrow^+ G \ a \lor a = b)\}
fun cone:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a set
  where cone G a = \{b \in verts G. (a \rightarrow^+_G b \lor b \rightarrow^+_G a \lor a = b)\}
fun reduce-past:: ('a,'b) pre-digraph <math>\Rightarrow 'a \Rightarrow ('a,'b) pre-digraph
  where
    reduce-past G a = induce-subgraph G (past-nodes G a)
fun reduce-past-refl:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow ('a,'b) pre-digraph
  where
    reduce-past-refl G a = induce-subgraph G (past-nodes-refl G a)
fun is-tip:: ('a,'b) pre-digraph \Rightarrow 'a \Rightarrow bool
  where is-tip G a = ((a \in verts G) \land (\forall x \in verts G. \neg x \rightarrow^+_G a))
definition tips:: ('a,'b) pre-digraph \Rightarrow 'a set
  where tips G = \{v \in verts \ G. \ is\text{-tip} \ G \ v\}
1.2
        Lemmas
lemma (in DAG) unidirectional:
  u \to^+ G v \longrightarrow \neg (v \to^* G u)
  using cycle-free reachable1-reachable-trans by auto
```

1.2.1 Tips

```
lemma (in wf-digraph) tips-alt:

tips \ G = \{v. \ is-tip G \ v\}

unfolding tips-def is-tip.simps by auto

lemma (in wf-digraph) tips-not-referenced:

assumes is-tip G \ t
```

```
shows \forall x. \neg x \rightarrow^+ t
 using is-tip.simps assms reachable1-in-verts(1)
 by metis
lemma (in DAG) del-tips-dag:
 assumes is-tip G t
 shows DAG (del\text{-}vert t)
 unfolding DAG-def DAG-axioms-def
proof safe
 show digraph (del-vert t) using del-vert-simps DAG-axioms
     digraph-def
   using digraph-subgraph subgraph-del-vert
   by auto
\mathbf{next}
 \mathbf{fix} \ v
 assume v \rightarrow^+ del\text{-}vert\ t\ v then have v \rightarrow^+ v using subgraph\text{-}del\text{-}vert
   by (meson arcs-ends-mono trancl-mono)
 then show False
   by (simp add: cycle-free)
qed
lemma (in digraph) tips-finite:
 shows finite (tips G)
 \textbf{using } \textit{tips-def fin-digraph. finite-verts } \textit{digraph. axioms} (1) \textit{ digraph-axioms } \textit{Collect-mono}
is-tip.simps
 by (simp add: tips-def)
lemma (in digraph) tips-in-verts:
 shows tips G \subseteq verts G unfolding tips-def
 using Collect-subset by auto
lemma tips-tips:
 assumes x \in tips G
 shows is-tip G x using tips-def CollectD assms(1) by metis
lemma tip-in-verts:
 assumes x \in tips G
 shows x \in verts \ G  using tips-def \ CollectD \ assms(1) by metis
1.2.2 Anticone
lemma (in DAG) tips-anticone:
 assumes a \in tips G
   and b \in tips G
   and a \neq b
 \mathbf{shows}\ a \in \mathit{anticone}\ G\ b
\mathbf{proof}(rule\ ccontr)
 assume a \notin anticone \ G \ b
```

```
then have k: (a \rightarrow^+ b \lor b \rightarrow^+ a \lor a = b) using anticone.simps assms tips-def
   by fastforce
  then have \neg (\forall x \in verts \ G. \ x \rightarrow^+ a) \lor \neg (\forall x \in verts \ G. \ x \rightarrow^+ b) using
reachable 1-in-verts
     assms(3) cycle-free
   by (metis)
 then have \neg is-tip G a \lor \neg is-tip G b using assms(3) is-tip.simps k
   by (metis)
 then have \neg a \in tips \ G \lor \neg b \in tips \ G  using tips-def \ CollectD by metis
 then show False using assms by auto
qed
lemma (in DAG) anticone-in-verts:
 shows anticone G a \subseteq verts G using anticone.simps by auto
lemma (in DAG) anticon-finite:
 shows finite (anticone G a) using anticone-in-verts by auto
lemma (in DAG) anticon-not-refl:
 shows a \notin (anticone \ G \ a) by auto
1.2.3 Future Nodes
lemma (in DAG) future-nodes-not-reft:
 assumes a \in verts G
 shows a \notin future-nodes G a
 using cycle-free future-nodes.simps reachable-def by auto
1.2.4 Past Nodes
lemma (in DAG) past-nodes-not-refl:
 assumes a \in verts G
 shows a \notin past-nodes G a
 using cycle-free past-nodes.simps reachable-def by auto
lemma (in DAG) past-nodes-verts:
 shows past-nodes G a \subseteq verts G
 using past-nodes.simps reachable1-in-verts by auto
lemma (in DAG) past-nodes-refl-ex:
 assumes a \in verts G
 shows a \in past-nodes-refl G a
 using past-nodes-refl.simps reachable-refl assms
 by simp
lemma (in DAG) past-nodes-refl-verts:
 shows past-nodes-refl G a \subseteq verts G
 using past-nodes.simps reachable-in-verts by auto
lemma (in DAG) finite-past: finite (past-nodes G a)
```

```
by (metis finite-verts rev-finite-subset past-nodes-verts)
lemma (in DAG) future-nodes-verts:
 shows future-nodes G a \subseteq verts G
 using future-nodes.simps reachable1-in-verts by auto
lemma (in DAG) finite-future: finite (future-nodes G a)
 by (metis finite-verts rev-finite-subset future-nodes-verts)
lemma (in DAG) past-future-dis[simp]: past-nodes G a \cap future-nodes G a = \{\}
proof (rule ccontr)
 assume \neg past-nodes G a \cap future-nodes G a = \{\}
 then show False
    {\bf using} \ past-nodes. simps \ unidirectional \ reachable {\it 1-reachable}
by auto
qed
1.2.5
        Reduce Past
lemma (in DAG) reduce-past-arcs:
 shows arcs (reduce\text{-}past\ G\ a) \subseteq arcs\ G
 using induce-subgraph-arcs past-nodes.simps by auto
lemma (in DAG) reduce-past-arcs2:
 e \in arcs \ (reduce\text{-}past \ G \ a) \Longrightarrow e \in arcs \ G
 using reduce-past-arcs by auto
lemma (in DAG) reduce-past-induced-subgraph:
 shows induced-subgraph (reduce-past G a) G
 using induced-induce past-nodes-verts by auto
lemma (in DAG) reduce-past-path:
 assumes u \to^+ reduce-past\ G\ a\ v
 shows u \to^+_G v
 using assms
proof induct
 case base then show ?case
   using dominates-induce-subgraphD r-into-trancl' reduce-past.simps
   by metis
\mathbf{next} case (step\ u\ v) show ?case
   \mathbf{using}\ dominates-induce-subgraph D\ reachable 1-reachable-trans\ reachable-adj I
     reduce-past.simps\ step.hyps(2)\ step.hyps(3)\ \mathbf{by}\ metis
qed
lemma (in DAG) reduce-past-path2:
 assumes u \to^+ G v
   and u \in past-nodes G a
   and v \in past-nodes G a
```

```
shows u \to^+ reduce\text{-past } G \ a \ v
  using assms
proof(induct\ u\ v)
  case (r\text{-}into\text{-}trancl\ u\ v\ )
 then obtain e where e-in: arc e(u,v) using arc-def DAG-axioms wf-digraph-def
  then have e-in2: e \in arcs (reduce-past G a) unfolding reduce-past.simps in-
duce-subgraph-arcs
   using arcE r-into-trancl.prems(1) r-into-trancl.prems(2) by blast
 then have arc-to-ends (reduce-past G a) e = (u,v) unfolding reduce-past.simps
using e-in
     arcE\ arc-to-ends-def induce-subgraph-head induce-subgraph-tail
   by metis
 then have u \rightarrow_{reduce-past\ G\ a} v using e-in2 wf-digraph.dominatesI DAG-axioms
   \mathbf{by}\ (\textit{metis reduce-past.simps wellformed-induce-subgraph})
  then show ?case by auto
next
  case (trancl-into-trancl\ a2\ b\ c)
  then have b-in: b \in past-nodes \ G \ a \ unfolding \ past-nodes.simps
   \mathbf{by}\ (\mathit{metis}\ (\mathit{mono-tags},\ \mathit{lifting})\ \mathit{adj-in-verts}(\mathit{1})\ \mathit{mem-Collect-eq}
       reachable1-reachable reachable1-reachable-trans)
  then have a2-re-b: a2 \rightarrow^+_{reduce-past\ G\ a} b using trancl-into-trancl by auto
  then obtain e where e-in: arc \ e \ (b,c) using trancl-into-trancl
     arc-def DAG-axioms wf-digraph-def by auto
  then have e-in2: e \in arcs (reduce-past G a) unfolding reduce-past.simps in-
duce-subgraph-arcs
   using arcE trancl-into-trancl
     b-in by blast
 then have arc-to-ends (reduce-past G a) e = (b,c) unfolding reduce-past.simps
using e-in
     arcE\ arc-to-ends-def induce-subgraph-head induce-subgraph-tail
   by metis
 then have b \rightarrow_{reduce-past~G~a} c using e-in2 wf-digraph.dominatesI DAG-axioms
   by (metis reduce-past.simps wellformed-induce-subgraph)
  then show ?case using a2-re-b
   by (metis trancl.trancl-into-trancl)
qed
lemma (in DAG) reduce-past-pathr:
 assumes u \to^*_{reduce\text{-}past} G a v
 shows u \to^*_G v
 by (meson assms induced-subgraph-altdef reachable-mono reduce-past-induced-subgraph)
```

1.2.6 Reduce Past Reflexiv

lemma (in DAG) reduce-past-refl-induced-subgraph:

```
shows induced-subgraph (reduce-past-refl G a) G
 using induced-induce past-nodes-refl-verts by auto
lemma (in DAG) reduce-past-refl-arcs2:
  e \in arcs (reduce-past-refl \ G \ a) \Longrightarrow e \in arcs \ G
 using reduce-past-arcs by auto
lemma (in DAG) reduce-past-refl-digraph:
 assumes a \in verts G
 shows digraph (reduce-past-refl G a)
 using digraphI-induced reduce-past-refl-induced-subgraph reachable-mono by simp
1.2.7 Reachability cases
lemma (in DAG) reachable1-cases:
 obtains (nR) \neg a \rightarrow^+ b \land \neg b \rightarrow^+ a \land a \neq b
  | (one) a \rightarrow^+ b
   (two) b \rightarrow^+ a
  |(eq)|a = b
 {\bf using} \ reachable-neq-reachable 1 \ DAG-axioms
 by metis
lemma (in DAG) verts-comp:
 assumes x \in tips G
 shows verts G = \{x\} \cup (anticone \ G \ x) \cup (verts \ (reduce-past \ G \ x))
 show verts G \subseteq \{x\} \cup anticone G \times x \cup verts (reduce-past G \times x)
 proof(rule subsetI)
   \mathbf{fix} \ xa
   assume in-V: xa \in verts G
   then show xa \in \{x\} \cup anticone \ G \ x \cup verts \ (reduce-past \ G \ x)
   proof( cases x xa rule: reachable1-cases)
     then show ?thesis using anticone.simps in-V by auto
   next
     \mathbf{case} one
   then show ?thesis using reduce-past.simps induce-subgraph-verts past-nodes.simps
in-V
      by auto
   \mathbf{next}
     case two
     have is-tip G x using tips-tips assms(1) by simp
     then have False using tips-not-referenced two by auto
     then show ?thesis by simp
   \mathbf{next}
     then show ?thesis by auto
   qed
  qed
```

```
next
  show \{x\} \cup anticone \ G \ x \cup verts \ (reduce-past \ G \ x) \subseteq verts \ G \ using \ di-
graph.tips-in-verts
   digraph-axioms anticone-in-verts reduce-past-induced-subgraph induced-subgraph-def
     subgraph-def assms by auto
qed
lemma (in DAG) verts-comp2:
 assumes x \in tips G
   and a \in verts G
 obtains a = x
  \mid a \in anticone \ G \ x
 \mid a \in past\text{-}nodes \ G \ x
 using assms
proof(cases a x rule:reachable1-cases)
 case one
 then show ?thesis
   by (metis assms(1) tips-not-referenced tips-tips)
\mathbf{next}
 case two
 then show ?thesis using past-nodes.simps wf-digraph.reachable1-in-verts(2) wf-digraph-axioms
     mem-Collect-eq that(3)
   by (metis (no-types, lifting))
\mathbf{next}
 case nR
 then show ?thesis using that(2) anticone.simps assms by auto
lemma (in DAG) verts-comp-dis:
 shows \{x\} \cap (anticone\ G\ x) = \{\}
   and \{x\} \cap (verts \ (reduce\text{-past} \ G \ x)) = \{\}
   and anticone G x \cap (verts \ (reduce\text{-past} \ G \ x)) = \{\}
proof(simp-all, simp add: cycle-free, safe) qed
lemma (in DAG) verts-size-comp:
 assumes x \in tips G
 shows card (verts G) = 1 + card (anticone G x) + card (verts (reduce-past G x) + card)
x))
proof -
 have f1: finite (verts G) using finite-verts by simp
 have f2: finite \{x\} by auto
 have f3: finite (anticone G x) using anticone.simps by auto
 have f_4: finite (verts (reduce-past G(x)) by auto
 have c1: card \{x\} + card (anticone G(x)) = card (\{x\}) (anticone G(x)) using
card-Un-disjoint
     verts-comp-dis by auto
 have (\{x\} \cup (anticone\ G\ x)) \cap verts\ (reduce-past\ G\ x) = \{\}\ using\ verts-comp-dis
```

```
by auto
 then have card (\{x\} \cup (anticone \ G \ x) \cup verts (reduce-past \ G \ x))
     = card \{x\} + card (anticone \ G \ x) + card (verts (reduce-past \ G \ x))
       using card-Un-disjoint
   by (metis c1 f2 f3 f4 finite-UnI)
 moreover have card (verts G) = card (\{x\} \cup (anticone G x) \cup verts (reduce-past))
G(x)
   using assms verts-comp by auto
 moreover have card \{x\} = 1 by simp
 ultimately show ?thesis using assms verts-comp
   by presburger
qed
end
{\bf theory}\ {\it TopSort}
 imports DAGs Utils HOL-Library.Comparator
begin
Function to sort a list L under a graph G such if a references b, b precedes
a in the list
fun top-insert:: ('a::linorder,'b) pre-digraph \Rightarrow'a list \Rightarrow 'a \Rightarrow 'a list
 where top-insert G [] a = [a]
  | top-insert G (b \# L) a = (if (b \rightarrow^+_G a) then (a \# (b \# L)) else (b \#
top-insert G(L(a))
fun top-sort:: ('a::linorder,'b) pre-digraph \Rightarrow 'a list \Rightarrow 'a list
 where top-sort G = [
 \mid top\text{-}sort \ G \ (a \# L) = top\text{-}insert \ G \ (top\text{-}sort \ G \ L) \ a
1.2.8 Soundness of the topological sort algorithm
lemma top-insert-set: set (top-insert G L a) = set L \cup \{a\}
proof(induct L, simp-all, auto) qed
lemma top-sort-con: set (top\text{-sort } G L) = set L
\mathbf{proof}(induct\ L)
 case Nil
 then show ?case by auto
next
 case (Cons\ a\ L)
 then show ?case using top-sort.simps(2) top-insert-set insert-is-Un list.simps(15)
sup\text{-}commute
   by (metis)
qed
lemma top-insert-len: length (top-insert G L a) = Suc (length L)
\mathbf{proof}(induct\ L)
```

```
case Nil
 then show ?case by auto
\mathbf{next}
 case (Cons\ a\ L)
 then show ?case using top-insert.simps(2) by auto
qed
lemma top-insert-not-nil: top-insert G L a \neq []
proof(induct L, auto) qed
lemma top-sort-len: length (top-sort G L) = length L
proof(induct L, simp)
 case (Cons a L)
 then have length (a\#L) = Suc (length L) by auto
 then show ?case using
     top\text{-}insert\text{-}len\ top\text{-}sort.simps(2)\ Cons
   by (simp add: top-insert-len)
qed
lemma top-sort-nil: top-sort G L = [] \longleftrightarrow L = []
proof(auto, induct L, auto simp: top-insert-not-nil) qed
lemma top-sort-distinct-mono:
 assumes distinct L
 shows distinct (top-sort G L)
proof -
 have cdd: card (set L) = length L using assms
   by (simp add: distinct-card)
 then have card (set (top-sort GL)) = length (top-sort GL)
   unfolding top-sort-len top-sort-con by simp
 then show ?thesis using card-distinct by auto
qed
lemma top-insert-mono:
 assumes (y, x) \in list\text{-}to\text{-}rel\ ls
 shows (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}insert \ G \ ls \ l)
 using assms
proof(induct ls, simp)
 case (Cons a ls)
 consider (rec) a \rightarrow^+_G l \mid (nrec) \neg a \rightarrow^+_G l by auto
 then show ?case
 proof(cases)
   case rec
   then have sinse: (top\text{-insert }G\ (a\ \#\ ls)\ l)\ =\ l\ \#\ a\ \#\ ls
```

```
unfolding top-insert.simps by simp
   show ?thesis unfolding sinse list-to-rel.simps using Cons
     by auto
  next
   case nrec
   then have sinse: (top\text{-insert }G\ (a\ \#\ ls)\ l)=a\ \#\ top\text{-insert }G\ ls\ l
     unfolding top-insert.simps by simp
   consider (ya) y = a \mid (yan) \mid (y, x) \in list\text{-to-rel } ls \text{ using } Cons \text{ by } auto
   then show ?thesis proof(cases)
     case ya
     then show ?thesis unfolding sinse list-to-rel.simps
     by (metis Cons.prems SigmaI UnI1 top-insert-set insertCI list-to-rel-in sinse)
   next
     case yan
     then show ?thesis using Cons unfolding sinse list-to-rel.simps by auto
   qed
 qed
qed
lemma top-insert-cases:
 assumes (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}insert \ G \ ls \ l)
 shows (y, x) \in list\text{-}to\text{-}rel\ ls \lor x = l \lor y = l
  using assms
proof(induct (top-insert G ls l) arbitrary: ls l, simp)
  case (Cons\ a\ ls2)
  consider a \# ls2 = l \# ls \mid a \# ls2 = (hd ls) \# top-insert G (tl ls) l
   using Cons(2) top-insert.simps
   by (metis\ list.sel(1)\ list.sel(3)\ top-insert.elims)
  then show ?case proof(cases)
   then show ?thesis unfolding Cons(2) using Cons(3) list-to-rel-cases
     by auto
  next
   case 2
   then consider (ay) a = y \mid (bb) (y, x) \in list\text{-}to\text{-}rel \ ls2
     using list-to-rel-elim Cons(2,3)
     by metis
   then show ?thesis proof(cases)
     case ay
     then have y = hd ls using 2 by auto
     moreover have x \in set (a \# ls2) using list-to-rel-in Cons
       by metis
     then show ?thesis using Cons
       by (metis (no-types, lifting) 2 Sigmal UnI1 Un-iff ay calculation
   empty-iff empty-set list.inject\ list.sel(1)\ list.sel(2)\ list.set-intros(1)
   list.simps(15) list-to-rel.elims not-Cons-self2 set-ConsD top-insert-set)
   next
     case bb
```

```
then have (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}insert \ G \ (tl \ ls) \ l)
        using 2 by auto
      then have (y, x) \in \mathit{list-to-rel}\ (\mathit{tl}\ \mathit{ls}) \lor x = \mathit{l} \lor y = \mathit{l}
        using Cons 2
        by blast
      then show ?thesis using list-to-rel-mono3 hd-Cons-tl list.sel(2)
       by (metis)
    qed
 \mathbf{qed}
qed
lemma top-insert-elims:
  assumes (y, x) \notin list\text{-}to\text{-}rel \ ls
 and x \neq l
 and y \neq l
 shows (y, x) \notin list\text{-}to\text{-}rel \ (top\text{-}insert \ G \ ls \ l)
 using assms top-insert-cases by metis
lemma top-sort-mono:
  assumes (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ ls)
  shows (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ (l \# ls))
  using assms
  by (simp add: top-insert-mono)
lemma top-sort-mono2:
 list-to-rel (top-sort G ls) \subseteq list-to-rel (top-sort G (l \# ls))
 using top-sort-mono
 by (metis subrelI)
lemma top-sort-one:
  assumes top-sort G L = [l]
  shows L = [l]
proof -
  have l-in: l \in set\ L\ using\ assms(1)\ top\text{-}sort\text{-}con
    by (metis\ list.set-intros(1))
  have ll: length L = length (top-sort GL) using top-sort-len by metis
  have length L = 1 unfolding ll using assms by auto
  then show L = [l] using l-in
    by (metis append-butlast-last-id diff-is-0-eq'
        le-numeral-extra(4) length-0-conv length-butlast
        length-pos-if-in-set less-numeral-extra(3) self-append-conv2 set-ConsD)
qed
lemma top-sort-cases:
 assumes (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ (l \# ls))
 shows (y, x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ ls) \lor y = l \lor x = l
```

```
using assms
proof(induct ls arbitrary: l, simp)
 case (Cons a ls)
 then show ?case
   unfolding top-sort.simps using top-insert-cases
   by metis
\mathbf{qed}
fun (in DAG) top-sorted :: 'a list \Rightarrow bool where
  top\text{-}sorted [] = True |
  top-sorted (x \# ys) = ((\forall y \in set \ ys. \ \neg x \rightarrow^+_G y) \land top\text{-sorted } ys)
lemma (in DAG) top-sorted-sub:
 assumes S = drop \ k \ L
   and top-sorted L
 shows top-sorted S
 using assms
proof(induct \ k \ arbitrary: L \ S)
 case \theta
 then show ?case by auto
next
  case (Suc \ k)
 then show ?case unfolding drop-Suc using top-sorted.simps
   by (metis Suc.prems(1) drop-Nil list.sel(3) top-sorted.elims(2))
\mathbf{qed}
lemma top-insert-part-ord:
 assumes DAGG
   and DAG.top-sorted GL
 shows DAG.top-sorted G (top-insert G L a)
 using assms
proof(induct L)
 case Nil
 then show ?case
   by (simp add: DAG.top-sorted.simps)
\mathbf{next}
  case (Cons b list)
 consider (re) b \xrightarrow{f}_{G} a \mid (nre) \neg b \xrightarrow{f}_{G} a by auto
  then show ?case proof(cases)
   case re
   have (\forall y \in set (b \# list). \neg a \rightarrow^+_G y)
   \mathbf{proof}(rule\ ccontr)
     assume \neg (\forall y \in set (b \# list). \neg a \rightarrow^+_G y)
     then obtain wit where wit-in: wit \in set (b \# list) \land a \rightarrow^+_G wit by auto
     then have b \rightarrow^+ G wit using re
     then have \neg DAG.top\text{-}sorted \ G \ (b \# list)
       using wit-in using DAG.top-sorted.simps(2) Cons(2)
```

```
by (metis DAG.cycle-free set-ConsD)
               then show False using Cons by auto
          qed
          then show ?thesis using assms(1) DAG.top-sorted.simps Cons
               by (simp\ add:\ DAG.top\text{-}sorted.simps(2)\ re)
      next
           case nre
          have DAG.top-sorted G list using Cons(2,3)
               by (metis\ DAG.top\text{-}sorted.simps(2))
          then have DAG.top-sorted G (top-insert G list a)
               using Cons(1,2) by auto
        moreover have (\forall y \in set \ (top\text{-}insert \ G \ list \ a). \ \neg \ b \rightarrow^+_{G} y \ ) using top-insert-set
                      Cons DAG.top-sorted.simps(2) nre
               by (metis Un-iff empty-iff empty-set list.simps(15) set-ConsD)
          ultimately show ?thesis using Cons(2)
               by (simp\ add:\ DAG.top\text{-}sorted.simps(2)\ nre)
     qed
qed
lemma top-sort-sorted:
     assumes DAG G
    shows DAG.top-sorted G (top-sort G L)
     using assms
proof(induct L)
     case Nil
     then show ?case
          by (simp\ add:\ DAG.top\text{-}sorted.simps(1))
     case (Cons\ a\ L)
     then show ?case unfolding top-sort.simps using top-insert-part-ord by auto
lemma top-sorted-rel:
    assumes DAG G
          and y \to^+_G x
          and x \in set L
          and y \in set L
          and DAG.top-sorted G L
     shows (x,y) \in list\text{-}to\text{-}rel\ L
     using assms
\mathbf{proof}(induct\ L,\ simp)
     have une: x \neq y using assms
         by (metis DAG.cycle-free)
     case (Cons\ a\ L)
     then consider x = a \land y \in set \ (a \# L) \mid y = a \land x \in set \ L \mid x \in set \ L \land y \in se
          using une by auto
     then show ?case proof(cases)
```

```
then show ?thesis unfolding list-to-rel.simps by auto
 next
   case 2
   then have \neg DAG.top\text{-}sorted\ G\ (a\ \#\ L)
     using assms\ DAG.top\text{-}sorted.simps(2)
     by fastforce
   then show ?thesis using Cons by auto
 next
   case 3
  then show ?thesis unfolding list-to-rel.simps using Cons\ DAG.top-sorted.simps(2)
Un-iff
     by metis
 qed
qed
lemma top-sort-rel:
 assumes DAG G
   and y \to^+ G x
   and x \in set L
   and y \in set L
 shows (x,y) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ L)
 using assms top-sort-sorted top-sorted-rel top-sort-con
 by metis
\mathbf{lemma}\ top\text{-}sorted\text{-}rel2\text{:}
 assumes DAG G
   and (x,y) \in list\text{-}to\text{-}rel\ L
   and x \in set L
   and y \in set L
   and DAG.top-sorted G L
 shows \neg x \to^+ G y
proof(rule ccontr)
 assume \neg (x, y) \notin (arcs\text{-}ends \ G)^+
 then show False
   using assms(2,3,4,5)
 proof(induct\ L,\ simp)
  interpret D: DAG G using assms(1) by auto
  case (Cons\ a\ L)
  then consider x = a \land y = a
    |x = a \land y \in set L \mid y = a \land x \in set L \mid x \in set L \land y \in set L
   using Cons by auto
   then show ?case proof(cases)
     case 1
     then show ?thesis using Cons
       using D.cycle-free by blast
     case 2
     then show ?thesis
```

```
using Cons.prems(1) Cons.prems(5) D.top-sorted.simps(2) by blast
   next
     case \beta
     then show ?thesis
      by (metis Cons.hyps Cons.prems(1) Cons.prems(2)
          Cons.prems(5) \ D.top-sorted.simps(2) \ list-to-rel-elim \ list-to-rel-in)
   next
     case 4
     then show ?thesis
      using Cons.hyps Cons.prems(1) Cons.prems(2) Cons.prems(5) by auto
 qed
\mathbf{qed}
lemma top-sort-rel2:
 assumes DAG G
   and (x,y) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ L)
   and x \in set L
   and y \in set L
 shows \neg x \to^+_G y
 using assms top-sort-sorted top-sorted-rel2 top-sort-con by metis
lemma top-insert-remove:
 assumes distinct L
 and a \notin set L
shows L = remove1 \ a \ (top\text{-}insert \ G \ L \ a)
 using assms
proof(induct\ L,\ simp)
 case (Cons\ a\ L)
 then show ?case
   by auto
\mathbf{qed}
lemma top-insert-remove2:
 assumes distinct L
 and a \notin set L
shows L = remove1 \ a \ (top\text{-}insert \ G \ L \ a)
 using assms
proof(induct\ L,\ simp)
 case (Cons \ a \ L)
 then show ?case
   by auto
qed
end
```

```
theory DigraphUtils
imports Main Graph-Theory.Graph-Theory
begin
```

2 Digraph Utilities

```
lemma graph-equality:
 assumes digraph \ G \wedge digraph \ C
 assumes verts G = verts \ C \land arcs \ G = arcs \ C \land head \ G = head \ C \land tail \ G =
 shows G = C
 by (simp \ add: \ assms(2))
lemma (in digraph) del-vert-not-in-graph:
 assumes b \notin verts G
 shows (pre-digraph.del-vert G b) = G
proof -
 have v: verts (pre\text{-}digraph.del\text{-}vert\ G\ b) = verts\ G
   using assms(1)
   by (simp add: pre-digraph.verts-del-vert)
 have \forall e \in arcs \ G. \ tail \ G \ e \neq b \land head \ G \ e \neq b  using digraph-axioms
     assms\ digraph.axioms(2)\ loopfree-digraph.axioms(1)
  then have arcs G \subseteq arcs (pre-digraph.del-vert G b)
   using assms
   by (simp add: pre-digraph.arcs-del-vert subsetI)
  then have e: arcs \ G = arcs \ (pre-digraph.del-vert \ G \ b)
   by (simp add: pre-digraph.arcs-del-vert subset-antisym)
  then show ?thesis using v by (simp add: pre-digraph.del-vert-simps)
qed
lemma del-arc-subgraph:
 assumes subgraph H G
 assumes digraph \ G \wedge digraph \ H
 shows subgraph (pre-digraph.del-arc H e2) (pre-digraph.del-arc G e2)
 using subgraph-def pre-digraph.del-arc-simps Diff-iff
proof -
 have f1: \forall p \ pa. \ subgraph \ pa = ((verts \ p::'a \ set) \subseteq verts \ pa \land (arcs \ p::'b \ set) \subseteq
arcs pa \land
  wf-digraph pa \wedge wf-digraph p \wedge compatible pa p)
   using subgraph-def by blast
 have arcs\ H - \{e2\} \subseteq arcs\ G - \{e2\}\ using\ assms(1)
   by auto
  then show ?thesis
   unfolding subgraph-def
     using f1 assms(1) by (simp add: compatible-def pre-digraph.del-arc-simps
```

```
wf-digraph.wf-digraph-del-arc)
qed
lemma graph-nat-induct[consumes 0, case-names base step]:
  assumes
cases: \bigwedge V. (digraph V \Longrightarrow card (verts V) = 0 \Longrightarrow P(V)
\bigwedge W \ c. \ (\bigwedge V. \ (digraph \ V \Longrightarrow card \ (verts \ V) = c \Longrightarrow P \ V))
  \implies (digraph \ W \implies card \ (verts \ W) = (Suc \ c) \implies P \ W)
shows \bigwedge Z. digraph Z \Longrightarrow P Z
proof -
  fix Z:: ('a,'b) pre-digraph
  assume major: digraph Z
  then show P Z
  proof (induction card (verts Z) arbitrary: Z)
    case \theta
    then show ?case
      by (simp add: local.cases(1) major)
    case su: (Suc x)
    assume (\bigwedge Z. \ x = card \ (verts \ Z) \Longrightarrow digraph \ Z \Longrightarrow P \ Z)
    show ?case
      by (metis\ local.cases(2)\ su.hyps(1)\ su.hyps(2)\ su.prems)
  qed
\mathbf{qed}
end
theory blockDAG
 imports DAGs DigraphUtils
begin
3
      blockDAGs
locale blockDAG = DAG +
  assumes genesis: \exists p \in verts \ G. \ \forall r. \ r \in verts \ G \ \longrightarrow (r \rightarrow^+_G p \lor r = p)
   and only-new: \forall e \ u \ v. \ arc \ e \ (u,v) \longrightarrow \neg \ (u \to^+_{(del-arc \ e)} \ v)
begin
lemma bD: blockDAG G using blockDAG-axioms by simp
end
        Functions and Definitions
3.1
fun (in blockDAG) is-genesis-node :: 'a \Rightarrow bool where
  is-genesis-node v = ((v \in verts \ G) \land (\forall x. \ (x \in verts \ G) \longrightarrow x \rightarrow^*_G v))
definition (in blockDAG) genesis-node:: 'a
```

```
where genesis-node = (THE x. is-genesis-node x)
```

3.2 Lemmas

```
lemma subs:
  assumes blockDAG G
  shows DAG G and digraph G and fin-digraph G and wf-digraph G
  using assms blockDAG-def DAG-def digraph-def fin-digraph-def by auto
lemma only-new-alt:
(\forall e \ u \ v. \ arc \ e \ (u,v) \longrightarrow \neg \ (u \to^+_{(del-arc \ e)} \ v))
\longleftrightarrow (\forall e \ u \ v. \ (u \to^+_{(del-arc \ e)} \ v) \longrightarrow \neg \ arc \ e \ (u,v))
proof(standard, auto) ged
3.2.1 Genesis
lemma (in blockDAG) genesisAlt :
  (is-genesis-node a) \longleftrightarrow ((a \in verts \ G) \land (\forall r. \ (r \in verts \ G) \longrightarrow r \rightarrow^* a))
  by simp
lemma (in blockDAG) genesisAlt2:
  (is-genesis-node a) \longleftrightarrow ((a \in verts \ G) \land (\forall r. \ (r \in verts \ G) \longrightarrow r \rightarrow^+ a \lor r =
a))
  \mathbf{by}\ (\mathit{metis}\ \mathit{genesis}\ \mathit{is-genesis-node}. \mathit{simps}\ \mathit{reachable1-reachable}\ \mathit{reachable-refl}\ \mathit{unidi-leady})
rectional)
lemma (in blockDAG) genesis-existAlt:
  \exists a. is-genesis-node a
  using genesis genesisAlt
  by (metis reachable1-reachable reachable-refl)
lemma (in blockDAG) unique-genesis: is-genesis-node a \land is-genesis-node b \longrightarrow a
= b
  using genesisAlt reachable-trans cycle-free
    reachable-refl reachable-reachable1-trans reachable-neg-reachable1
  by (metis (full-types))
lemma (in blockDAG) genesis-unique-exists:
  \exists !a. is-genesis-node a
  using genesis-existAlt unique-genesis by auto
lemma (in blockDAG) genesis-in-verts:
  genesis-node \in verts G
 \textbf{using} \textit{ is-genesis-node.simps genesis-node-def genesis-exist} \textit{Alt the 1I2 genesis-unique-exists}
  by metis
\mathbf{lemma} (in \mathit{blockDAG}) \mathit{genesis-reaches-nothing}:
  assumes a \rightarrow^+ b
```

shows \neg *is-genesis-node* a

```
using is-genesis-node.simps genesis-node-def genesis-existAlt cycle-free
    reachable 1-reachable -trans assms reachable 1-in-verts(2)
  by (metis)
lemma (in blockDAG) genesis-reaches-elim:
  assumes \neg is-genesis-node a
 and a \in verts G
 shows \exists b \in (verts \ G). dominates G \ a \ b
  using assms genesisAlt2 adj-in-verts(2) converse-tranclE genesis-unique-exists
 by metis
3.2.2 Tips
lemma (in blockDAG) tips-exist:
  \exists x. is-tip G x
 unfolding is-tip.simps
proof (rule ccontr)
  assume \nexists x. \ x \in verts \ G \land (\forall xa \in verts \ G. \ (xa, x) \notin (arcs\text{-}ends \ G)^+)
  then have contr: \forall x. \ x \in verts \ G \longrightarrow (\exists y. \ y \rightarrow^+ x)
    by auto
  have \forall x y. y \rightarrow^+ x \longrightarrow \{z. x \rightarrow^+ z\} \subseteq \{z. y \rightarrow^+ z\}
    using Collect-mono trancl-trans
  then have sub: \forall x y. y \rightarrow^+ x \longrightarrow \{z. x \rightarrow^+ z\} \subset \{z. y \rightarrow^+ z\}
    using cycle-free by auto
  have part: \forall x. \{z. x \rightarrow^+ z\} \subseteq verts G
    using reachable1-in-verts by auto
  then have fin: \forall x. finite \{z. x \rightarrow^+ z\}
    using finite-verts finite-subset
    by metis
  then have trans: \forall x y. y \rightarrow^+ x \longrightarrow card \{z. x \rightarrow^+ z\} < card \{z. y \rightarrow^+ z\}
    using sub psubset-card-mono by metis
  then have inf: \forall y \in verts \ G. \ \exists x. \ card \ \{z. \ x \to^+ z\} > card \ \{z. \ y \to^+ z\}
    using fin contr genesis
      reachable 1-in-verts(1)
    by (metis (mono-tags, lifting))
  have all: \forall k. \exists x \in verts \ G. \ card \ \{z. \ x \to^+ z\} > k
  proof
    \mathbf{fix} \ k
    show \exists x \in verts \ G. \ k < card \ \{z. \ x \to^+ z\}
    proof(induct \ k)
      case \theta
      then show ?case
        using inf neq\theta-conv
        by (metis contr genesis-in-verts local.trans reachable1-in-verts(1))
    next
      case (Suc \ k)
      then show ?case
        using Suc-lessI inf
```

```
by (metis contr local.trans reachable1-in-verts(1))
    qed
  qed
  then have less: \exists x \in verts \ G. card (verts G) < card \{z. \ x \to^+ z\} by simp
  have \forall x. \ card \ \{z. \ x \rightarrow^+ z\} \leq card \ (verts \ G)
    using fin part finite-verts not-le
    by (simp add: card-mono)
  then show False
    using less not-le by auto
qed
lemma (in blockDAG) tips-not-empty:
 shows tips G \neq \{\}
proof(rule ccontr)
  assume as1: \neg tips G \neq \{\}
  obtain t where t-in: is-tip G t using tips-exist by auto
 then have t-inV: t \in verts G by auto
  then have t \in tips \ G using tips-def CollectI t-in by metis
  then show False using as1 by auto
qed
lemma (in blockDAG) reached-by:
  assumes v \notin tips G
    and v \in verts G
  shows \exists t \in verts \ G. \ t \rightarrow^+ v
  using assms
  {f unfolding}\ tips-def\ is-tip.simps
  by auto
lemma (in blockDAG) reached-by-tip:
 assumes v \notin tips G
   and v \in verts G
  shows \exists t \in tips G. t \rightarrow^+ v
proof(rule ccontr)
  assume as1: \neg (\exists t \in tips G. t \rightarrow^+ v)
  then have \forall w. \ w \rightarrow^+ v \longrightarrow \neg \text{ is-tip } G w
    unfolding tips-def using reachable1-in-verts(1) CollectI
  then have contr: \forall w. \ w \to^+ v \longrightarrow (\exists y. \ y \to^+ w \land \ y \to^+ v)
    using as1 reachable1-in-verts(1) reached-by trancl-trans
  have \forall x y. y \rightarrow^+ x \longrightarrow \{z. x \rightarrow^+ z\} \subseteq \{z. y \rightarrow^+ z\}
    {\bf using} \ \ {\it Collect-mono} \ trancl-trans
   by metis
  then have sub: \forall x y. y \rightarrow^+ x \longrightarrow \{z. x \rightarrow^+ z\} \subset \{z. y \rightarrow^+ z\}
    using cycle-free by auto
  have part: \forall x. \{z. x \rightarrow^+ z\} \subseteq verts G
```

```
using reachable1-in-verts by auto
     then have fin: \forall x. finite \{z. x \rightarrow^+ z\}
         \mathbf{using}\ \mathit{finite-verts}\ \mathit{finite-subset}
         by metis
     then have trans: \forall x y. y \rightarrow^+ x \longrightarrow card \{z. x \rightarrow^+ z\} < card \{z. y \rightarrow^+ z\}
         using sub psubset-card-mono by metis
    then have inf: \forall w. \ w \to^+ v \longrightarrow (\exists x. \ x \to^+ v \land card \ \{z. \ x \to^+ z\} > ca
w \to^+ z\})
         using fin contr genesis
             reachable 1-in-verts(1)
         by metis
    have all: \forall k. \exists w \in verts \ G. \ w \rightarrow^+ v \land \ card \ \{z. \ w \rightarrow^+ z\} > k
    proof
         \mathbf{fix} \ k
         show \exists w \in verts \ G. \ w \rightarrow^+ v \land card \ \{z. \ w \rightarrow^+ z\} > k
         proof(induct k)
             case \theta
             then show ?case
                  using inf neq0-conv assms(1) assms(2) local.trans reached-by contr
                 by (metis less-nat-zero-code)
         next
             case (Suc \ k)
             then show ?case
                  using Suc-lessI inf reachable1-in-verts(1)
                  by (metis)
         qed
     then have less: \exists x \in verts \ G. \ card (verts \ G) < card \{z. \ x \to^+ z\}
         by blast
    also
    have \forall x. \ card \ \{z. \ x \to^+ z\} \leq card \ (verts \ G)
         using fin part finite-verts not-le
         by (simp add: card-mono)
    then show False
         using less not-le by auto
qed
lemma (in blockDAG) tips-unequal-gen:
    assumes card(verts G) > 1
         and is-tip G p
    shows \neg is-genesis-node p
proof (rule ccontr)
    assume as: \neg \neg is-genesis-node p
    have b1: 1 < card (verts G) using assms by linarith
     then have 0 < card ((verts \ G) - \{p\}) using card-Suc-Diff1 as finite-verts b1
by auto
    then have ((verts\ G) - \{p\}) \neq \{\} using card-gt-0-iff by blast
    then obtain y where y-def:y \in (verts \ G) - \{p\} by auto
    then have uneq: y \neq p by auto
```

```
then have reachable 1 G y p using is-genesis-node.simps as
     reachable-neq-reachable1 Diff-iff y-def
   by metis
 then have \neg is-tip G p
   by (meson is-tip.elims(2) reachable1-in-verts(1))
 then show False using assms by simp
qed
lemma (in blockDAG) tips-unequal-gen-exist:
 assumes card(verts G) > 1
 shows \exists p. p \in verts \ G \land is\text{-}tip \ G \ p \land \neg is\text{-}genesis\text{-}node \ p
proof -
 have b1: 1 < card (verts G) using assms by linarith
 obtain x where x-in: x \in (verts \ G) \land is-genesis-node x
   using genesis genesisAlt genesis-node-def by blast
 then have 0 < card ((verts G) - \{x\}) using card-Suc-Diff1 x-in finite-verts b1
by auto
 then have ((verts\ G) - \{x\}) \neq \{\} using card-gt-0-iff by blast
 then obtain y where y-def:y \in (verts \ G) - \{x\} by auto
 then have uneq: y \neq x by auto
 have y-in: y \in (verts \ G) using y-def by simp
 then have reachable1 G y x using is-genesis-node.simps x-in
     reachable-neg-reachable1 uneq by simp
 then have \neg is-tip G x
   by (meson is-tip.elims(2) y-in)
 then obtain z where z-def: z \in (verts\ G) - \{x\} \land is-tip G\ z using tips-exist
     is-tip.simps by auto
 then have uneq: z \neq x by auto
 have z-in: z \in verts \ G  using z-def by simp
 have \neg is-genesis-node z
 proof (rule ccontr, safe)
   assume is-genesis-node z
   then have x = z using unique-genesis x-in by auto
   then show False using uneq by simp
 qed
 then show ?thesis using z-def by auto
qed
lemma (in blockDAG) del-tips-bDAG:
 assumes is-tip G t
   and \neg is-genesis-node t
 shows blockDAG (del-vert t)
 \mathbf{unfolding}\ blockDAG	ext{-}def\ blockDAG	ext{-}axioms	ext{-}def
proof safe
 show DAG(del\text{-}vert\ t)
   using del-tips-dag assms by simp
next
```

```
\mathbf{fix} \ u \ v \ e
 assume wf-digraph.arc (del-vert t) e(u, v)
  then have arc: arc e(u,v) using del-vert-simps wf-digraph.arc-def arc-def
   by (metis (no-types, lifting) mem-Collect-eq wf-digraph-del-vert)
 assume u \rightarrow^+ pre-digraph.del-arc\ (del-vert\ t)\ e\ ^v
  then have path: u \rightarrow^+ del\text{-}arc\ e\ v
   {\bf using} \quad del\textit{-}arc\textit{-}subgraph \ subgraph\textit{-}del\textit{-}vert \ digraph\textit{-}axioms
     digraph-subgraph
   by (metis arcs-ends-mono trancl-mono)
 show False using arc path only-new by simp
next
  obtain g where gen: is-genesis-node g using genesisAlt genesis by auto
  then have genp: g \in verts (del\text{-}vert \ t)
   using assms(2) genesis del-vert-simps by auto
  have (\forall r. \ r \in verts \ (del\text{-}vert \ t) \longrightarrow r \rightarrow^*_{del\text{-}vert \ t} \ g)
 proof safe
   \mathbf{fix} \ r
   assume in-del: r \in verts (del-vert t)
   then obtain p where path: awalk r p g
     using reachable-awalk is-genesis-node.simps del-vert-simps gen by auto
   have no-head: t \notin (set (map (\lambda s. (head G s)) p))
   proof (rule ccontr)
     assume \neg t \notin (set (map (\lambda s. (head G s)) p))
     then have as: t \in (set (map (\lambda s. (head G s)) p))
       by auto
     then obtain e where tl: t = (head \ G \ e) \land e \in arcs \ G
       using wf-digraph-def awalk-def path by auto
     then obtain u where hd: u = (tail \ G \ e) \land u \in verts \ G
       using wf-digraph-def tl by auto
     have t \in verts G
       using assms(1) is-tip.simps by auto
     then have arc-to-ends G e = (u, t) using tl
       by (simp add: arc-to-ends-def hd)
     then have reachable 1 G u t
       using dominates I tl by blast
     then show False
       using is-tip.simps assms(1)
         hd by auto
   qed
   have neither: r \neq t \land g \neq t
     using del-vert-def assms(2) gen in-del by auto
   have no-tail: t \notin (set (map (tail G) p))
   proof(rule ccontr)
     assume as2: \neg t \notin set (map (tail G) p)
     then have tl2: t \in set \ (map \ (tail \ G) \ p) by auto
     then have t \in set \ (map \ (head \ G) \ p)
     proof (induct rule: cas.induct)
       case (1 \ u \ v)
       then have v \notin set (map (tail G) \parallel) by auto
```

```
then show v \in set \ (map \ (tail \ G) \ []) \Longrightarrow v \in set \ (map \ (head \ G) \ [])
       by auto
   next
     case (2 u e es v)
     then show ?case
       using set-awalk-verts-not-Nil-cas neither awalk-def cas.simps(2) path
       by (metis UnCI tl2 awalk-verts-conv'
           cas-simp\ list.simps(8)\ no-head\ set-ConsD)
   qed
   then show False using no-head by auto
 qed
 have pre-digraph.awalk (del-vert t) r p g
   {\bf unfolding} \ \textit{pre-digraph.awalk-def}
 proof safe
   show r \in verts (del\text{-}vert \ t) using in-del by simp
 next
   \mathbf{fix} \ x
   assume as3: x \in set p
   then have ht: head G x \neq t \land tail G x \neq t
     using no-head no-tail by auto
   have x \in arcs G
     using awalk-def path subsetD as3 by auto
   then show x \in arcs (del\text{-}vert \ t) using del\text{-}vert\text{-}simps(2) ht by auto
 next
   have pre-digraph.cas G r p g using path by auto
   then show pre-digraph.cas (del-vert t) r p g
   proof(induct p arbitrary:r)
     case Nil
     then have r = g using awalk-def cas.simps by auto
     then show ?case using pre-digraph.cas.simps(1)
       by (metis)
   next
     case (Cons \ a \ p)
     assume pre: \bigwedge r. (cas r \ p \ g \Longrightarrow pre-digraph.cas (del-vert t) r \ p \ g)
       and one: cas \ r \ (a \# p) \ g
     then have two: cas (head G a) p g
       using awalk-def by auto
     then have t: tail (del-vert t) a = r
       using one cas.simps awalk-def del-vert-simps(3) by auto
     then show ?case
       unfolding pre-digraph. cas.simps(2) t
       using pre two del-vert-simps(4) by auto
   qed
 qed
 then show r \rightarrow^*_{del\text{-}vert\ t} g by (meson wf-digraph.reachable-awalkI
       del-tips-dag assms(1) DAG-def digraph-def fin-digraph-def)
ged
then show \exists p \in verts (del-vert t).
     (\forall r. \ r \in verts \ (del\text{-}vert \ t) \longrightarrow (r \rightarrow^+_{del\text{-}vert \ t} \ p \lor r = p))
```

```
using gen genp
   by (metis reachable-rtranclI rtranclD)
qed
lemma (in blockDAG) tips-cases [consumes 2, case-names ma past nma]:
 assumes p \in tips G
   and x \in verts G
 obtains (ma) x = p
 | (past) x \in past-nodes G p
 | (nma) x \in anticone G p
proof -
 consider (eq)x = p \mid (neq) \neg x = p by auto
 then show ?thesis
 proof(cases)
   case eq
   then show thesis using eq ma by simp
 next
   case neg
   consider (in-p)x \in past-nodes \ G \ p \mid (nin-p)x \notin past-nodes \ G \ p \ by \ auto
   then show ?thesis
   proof(cases)
     case in-p
     then show ?thesis using past by auto
   next
    case nin-p
    then have nn: \neg p \rightarrow^+_G x using nin-p past-nodes.simps assms(2) by auto
    have \neg x \rightarrow^+_G p using is-tip.simps assms tips-def CollectD by metis
    then have x \in anticone \ G \ p \ using \ anticone.simps \ neq \ nn \ assms(2) by auto
    then show ?thesis using nma by auto
   qed
 qed
\mathbf{qed}
      Future Nodes
3.3
lemma (in blockDAG) future-nodes-ex:
 assumes a \in verts G
 shows a \notin future-nodes G a
 using cycle-free future-nodes.simps reachable-def by auto
3.3.1 Reduce Past
lemma (in blockDAG) reduce-past-not-empty:
 assumes a \in verts G
   and \neg is-genesis-node a
 shows (verts (reduce-past G a)) \neq {}
proof -
 obtain g
   where gen: is-genesis-node g using genesis-existAlt by auto
```

```
have ex: g \in verts (reduce-past G a) using reduce-past.simps past-nodes.simps
      genesisAlt reachable-neq-reachable1 reachable-reachable1-trans gen assms(1)
assms(2) by auto
 then show (verts (reduce-past Ga)) \neq {} using ex by auto
qed
lemma (in blockDAG) reduce-less:
 assumes a \in verts G
 shows card (verts (reduce-past G a)) < card (verts G)
proof -
 have past-nodes G a \subset verts G
   using assms(1) past-nodes-not-reft past-nodes-verts by blast
 then show ?thesis
   by (simp add: psubset-card-mono)
qed
lemma (in blockDAG) reduce-past-dagbased:
 assumes a \in verts G
   and \neg is-genesis-node a
 shows blockDAG (reduce-past G a)
 unfolding blockDAG-def DAG-def blockDAG-def
proof safe
 show digraph (reduce\text{-}past\ G\ a)
   using digraphI-induced reduce-past-induced-subgraph by auto
 show DAG-axioms (reduce-past G a)
   unfolding DAG-axioms-def
   using cycle-free reduce-past-path by metis
 show blockDAG-axioms (reduce-past G a)
   unfolding blockDAG-axioms-def
 proof safe
   \mathbf{fix} \ u \ v \ e
   assume arc: wf-digraph.arc (reduce-past G a) e (u, v)
   then show u \to^+ pre-digraph.del-arc\ (reduce-past\ G\ a)\ e\ v \Longrightarrow False
   proof -
     assume e-in: (wf-digraph.arc (reduce-past G a) e (u, v))
     then have (wf-digraph.arc G e (u, v))
      using assms reduce-past-arcs2 induced-subgraph-def arc-def
     proof -
      have wf-digraph (reduce-past G a)
     \textbf{using } \textit{reduce-past.simps subgraph-def subgraph-refl wf-digraph.well formed-induce-subgraph}
        by metis
```

```
then have e \in arcs (reduce-past G a) \wedge tail (reduce-past G a) e = u
                     \land head (reduce-past G a) e = v
          using arc wf-digraph.arcE
          by metis
        then show ?thesis
          using arc-def reduce-past.simps by auto
      qed
     then have \neg u \rightarrow^+_{del-arc\ e} v
        using only-new by auto
     then show u \to^+ pre\text{-}digraph.del\text{-}arc\ (reduce\text{-}past\ G\ a)\ e\ v \Longrightarrow False
        using DAG.past-nodes-verts reduce-past.simps blockDAG-axioms subs(1)
          del-arc-subgraph\ digraph-digraph-subgraph\ digraph-axioms
          subgraph-induce-subgraphI
        by (metis arcs-ends-mono trancl-mono)
    qed
  next
    obtain p where gen: is-genesis-node p using genesis-existAlt by auto
    have pe: p \in verts (reduce-past G a) \land (\forall r. r \in verts (reduce-past G a) \longrightarrow r
\rightarrow^*_{reduce\text{-}past\ G\ a} p)
proof
    show p \in verts (reduce-past G a) using genesisAlt induce-reachable-preserves-paths
      reduce-past. simps\ past-nodes. simps\ reachable 1-reachable\ induce-subgraph-verts
assms(1)
          assms(2) gen mem-Collect-eq reachable-neq-reachable1
        by (metis (no-types, lifting))
      show \forall r. \ r \in verts \ (reduce\text{-past} \ G \ a) \longrightarrow r \rightarrow^*_{reduce\text{-past} \ G \ a} \ p
      proof safe
        \mathbf{fix} \ r \ a
        assume in-past: r \in verts (reduce-past G a)
        then have con: r \to^* p using gen genesisAlt past-nodes-verts by auto
        then show r \rightarrow^*_{reduce\text{-}past} G \ a \ p
        proof -
          have f1: r \in verts \ G \land a \rightarrow^+ r
            using in-past past-nodes-verts by force
          obtain aaa :: 'a \ set \Rightarrow 'a \ set \Rightarrow 'a \ where
           f2: \forall x0 \ x1. \ (\exists v2. \ v2 \in x1 \land v2 \notin x0) = (aaa \ x0 \ x1 \in x1 \land aaa \ x0 \ x1 \notin x1)
x\theta)
           by moura
          have r \rightarrow^* aaa \ (past\text{-}nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
                   \longrightarrow a \rightarrow^+ aaa \ (past-nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
            \mathbf{using}\ \mathit{f1}\ \mathbf{by}\ (\mathit{meson}\ \mathit{reachable1-reachable-trans})
             then have an (past-nodes G a) (Collect (reachable G r)) \notin Collect
(reachable G r)
                        \vee aaa (past-nodes G a) (Collect (reachable G r)) \in past-nodes
G a
            by (simp add: reachable-in-verts(2))
          then have Collect (reachable G r) \subseteq past-nodes G a
```

```
using f2 by (metis subsetI)
          then show ?thesis
                using con induce-reachable-preserves-paths reachable-induce-ss re-
duce-past.simps
           by (metis (no-types))
       qed
      qed
   qed
   show
      \exists p \in verts \ (reduce\text{-past} \ G \ a). \ (\forall r. \ r \in verts \ (reduce\text{-past} \ G \ a)
         \longrightarrow (r \rightarrow^+_{reduce\text{-}past\ G\ a}\ p \lor r = p))
      by (metis reachable-rtranclI rtranclD)
 qed
qed
lemma (in blockDAG) reduce-past-gen:
 assumes \neg is-genesis-node a
   and a \in verts G
 shows blockDAG.is-genesis-node G b \Longrightarrow blockDAG.is-genesis-node (reduce-past
G(a) b
proof -
  assume gen: blockDAG.is-genesis-node G b
  have une: b \neq a using gen assms(1) genesis-unique-exists by auto
  have a \to^* b using gen assms(2) by simp
  then have a \rightarrow^+ b
   using reachable-neq-reachable1 is-genesis-node.simps assms(2) une by auto
  then have b \in (past-nodes\ G\ a) using past-nodes.simps gen by auto
 then have inv: b \in verts (reduce-past G a) using reduce-past.simps induce-subgraph-verts
  \mathbf{have} \forall \, r. \, r \in \, verts \, (reduce\text{-}past \, G \, a) \longrightarrow r \rightarrow^*_{reduce\text{-}past \, G \, a} \, b
  proof safe
   assume in-past: r \in verts (reduce-past G a)
   then have con: r \rightarrow^* b using gen genesisAlt past-nodes-verts by auto
   then show r \rightarrow^*_{reduce\text{-}past\ G\ a}\ b
   proof -
     have f1: r \in verts \ G \land a \rightarrow^+ r
       using in-past past-nodes-verts by force
      obtain aaa :: 'a \ set \Rightarrow 'a \ set \Rightarrow 'a \ where
       f2: \forall x0 \ x1. \ (\exists \ v2. \ v2 \in x1 \land v2 \notin x0) = (aaa \ x0 \ x1 \in x1 \land aaa \ x0 \ x1 \notin x0)
       by moura
      have r \rightarrow^* aaa \ (past\text{-}nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
              \rightarrow a \rightarrow^+ aaa \ (past-nodes \ G \ a) \ (Collect \ (reachable \ G \ r))
       using f1 by (meson reachable1-reachable-trans)
     then have an (past-nodes G a) (Collect (reachable G r)) \notin Collect (reachable
```

```
G(r)
               \vee aaa (past-nodes G a) (Collect (reachable G r)) \in past-nodes G a
      by (simp\ add:\ reachable-in-verts(2))
    then have Collect (reachable G r) \subseteq past-nodes G a
      using f2 by (meson subsetI)
    then show ?thesis
    {\bf using} \ con \ induce-reachable-preserves-paths \ reachable-induce-ss \ reduce-past. simps
      by (metis (no-types))
   qed
 qed
 then show blockDAG.is-genesis-node (reduce-past G a) b using inv is-genesis-node.simps
   by (metis\ assms(1)\ assms(2)\ blockDAG.is-genesis-node.elims(3)
      reduce-past-dagbased)
qed
lemma (in blockDAG) reduce-past-gen-rev:
 assumes \neg is-genesis-node a
   and a \in verts G
 shows blockDAG.is-genesis-node (reduce-past G a) b \Longrightarrow blockDAG.is-genesis-node
G b
proof -
 assume as1: blockDAG.is-genesis-node (reduce-past G a) b
 have bD: blockDAG (reduce-past G a) using assms reduce-past-daybased blockDAG-axioms
by simp
  obtain gen where is-gen: is-genesis-node gen using genesis-unique-exists by
auto
 then have blockDAG.is-genesis-node (reduce-past G a) gen using reduce-past-gen
assms by auto
 then have gen = b using as 1 blockDAG.unique-genesis bD by metis
 then show blockDAG.is-genesis-node (reduce-past G a) b \Longrightarrow blockDAG.is-genesis-node
G b
   using is-gen by auto
qed
lemma (in blockDAG) reduce-past-gen-eq:
 assumes \neg is-genesis-node a
   and a \in verts G
 shows blockDAG.is-genesis-node (reduce-past G a) b = blockDAG.is-genesis-node
G b
 using reduce-past-gen reduce-past-gen-rev assms assms by metis
3.3.2 Reduce Past Reflexiv
lemma (in blockDAG) reduce-past-refl-induced-subgraph:
 shows induced-subgraph (reduce-past-refl G a) G
 using induced-induce past-nodes-refl-verts by auto
```

```
lemma (in blockDAG) reduce-past-refl-arcs2:
  e \in arcs (reduce-past-refl \ G \ a) \Longrightarrow e \in arcs \ G
 using reduce-past-arcs by auto
lemma (in blockDAG) reduce-past-refl-digraph:
 assumes a \in verts G
 shows digraph (reduce-past-refl G a)
 using digraph I-induced reduce-past-refl-induced-subgraph reachable-mono by simp
lemma (in blockDAG) reduce-past-refl-dagbased:
  assumes a \in verts G
 shows blockDAG (reduce-past-refl G a)
 unfolding blockDAG-def DAG-def
proof safe
 show digraph (reduce-past-refl G a)
   using reduce-past-refl-digraph assms(1) by simp
next
 show DAG-axioms (reduce-past-refl G a)
   unfolding DAG-axioms-def
   using cycle-free reduce-past-refl-induced-subgraph reachable-mono
   by (meson arcs-ends-mono induced-subgraph-altdef trancl-mono)
next
  show blockDAG-axioms (reduce-past-refl G a)
   unfolding blockDAG-axioms-def only-new-alt
 proof safe
   \mathbf{fix} \ e \ u \ v
     assume a: wf-digraph.arc (reduce-past-reft G a) e (u, v)
       and b: u \rightarrow^+ pre-digraph.del-arc (reduce-past-refl G a) e v
     have edge: wf-digraph.arc G e (u, v)
       using assms reduce-past-arcs2 induced-subgraph-def arc-def
     proof -
       have wf-digraph (reduce-past-refl G a)
         using reduce-past-refl-digraph digraph-def by auto
      then have e \in arcs (reduce-past-refl G a) \wedge tail (reduce-past-refl G a) e = u
                   \land head (reduce-past-refl G a) e = v
         using wf-digraph.arcE arc-def a
         by (metis (no-types))
       then show arc e(u, v)
         using arc-def reduce-past-refl.simps by auto
     \begin{array}{l} \mathbf{have}\ u \to^+ pre\text{-}digraph.del\text{-}arc\ G\ e\ v \\ \mathbf{using}\ a\ b\ reduce\text{-}past\text{-}refl\text{-}digraph\ del\text{-}arc\text{-}subgraph\ digraph\text{-}axioms } \end{array}
         digraph I-induced past-nodes-refl-verts reduce-past-refl. simps
       reduce-past-refl-induced-subgraph subgraph-induce-subgraphI arcs-ends-mono
trancl-mono
       by metis
     then show False
       using edge only-new by simp
 next
```

```
obtain p where gen: is-genesis-node p using genesis-existAlt by auto
   have pe: p \in verts (reduce-past-refl G a)
     {\bf using} \ genesis Alt \ induce-reachable-preserves-paths
      reduce-past.simps past-nodes.simps reachable 1-reachable induce-subgraph-verts
       gen mem-Collect-eq reachable-neq-reachable1
       assms by force
   have reaches: (\forall r. \ r \in verts \ (reduce\text{-past-refl} \ G \ a) \longrightarrow
            (r \rightarrow^+_{reduce\text{-}past\text{-}refl\ G\ a}\ p \lor r = p))
   proof safe
     \mathbf{fix} \ r
     assume in-past: r \in verts (reduce-past-refl G a)
     assume une: r \neq p
     then have con: r \rightarrow^* p using gen genesisAlt reachable-in-verts
         reachable 1-reachable
       by (metis in-past induce-subgraph-verts
           past-nodes-refl-verts reduce-past-refl.simps subsetD)
     have a \rightarrow^* r using in-past by auto
     then have reach: r \to^*_{G \upharpoonright \{w.\ a \to^* w\}} p
     proof(induction)
       case base
       then show ?case
         using con induce-reachable-preserves-paths
         by (metis)
     next
       case (step \ x \ y)
       then show ?case
       proof -
         have Collect (reachable G y) \subseteq Collect (reachable G x)
           using adj-reachable-trans step.hyps(1) by force
         then show ?thesis
           using reachable-induce-ss step.IH reachable-neq-reachable1
           by metis
       qed
     qed
     then show r \to^+ reduce-past-refl G a p unfolding reduce-past-refl.simps past-nodes-refl.simps using reachable-in-verts une wf-digraph.reachable-neq-reachable1
       by (metis (mono-tags, lifting) Collect-cong wellformed-induce-subgraph)
   qed
    then show \exists p \in verts \ (reduce\text{-}past\text{-}refl \ G \ a). \ (\forall r. \ r \in verts \ (reduce\text{-}past\text{-}refl \ a)

ightarrow (r 
ightarrow^{+}_{reduce-past-refl\ G\ a}\ p \lor r = p)) unfolding blockDAG-axioms-def
     using pe reaches by auto
  qed
qed
3.3.3
         Genesis Graph
definition (in blockDAG) gen-graph::('a,'b) pre-digraph where
  gen-graph = induce-subgraph \ G \ \{blockDAG.genesis-node \ G\}
```

```
lemma (in blockDAG) gen-gen : verts (gen-graph) = \{genesis-node\}
 unfolding genesis-node-def gen-graph-def by simp
lemma (in blockDAG) gen-graph-one: card (verts gen-graph) = 1 using gen-gen
by simp
lemma (in blockDAG) gen-graph-digraph:
  digraph gen-graph
  using digraphI-induced induced-induce gen-graph-def
   genesis-in-verts by simp
\mathbf{lemma} (\mathbf{in} \mathit{blockDAG}) \mathit{gen-graph-empty-arcs}:
  arcs \ gen-graph = \{\}
proof(rule ccontr)
 assume \neg arcs qen-qraph = \{\}
 then have ex: \exists a. a \in (arcs \ gen-graph)
   by blast
 also have \forall a. a \in (arcs \ gen\text{-}graph) \longrightarrow tail \ G \ a = head \ G \ a
 proof safe
   \mathbf{fix} \ a
   assume a \in arcs gen-graph
   then show tail G a = head G a
     using digraph-def induced-subgraph-def induce-subgraph-verts
       induced-induce gen-graph-def by simp
 qed
 then show False
   using digraph-def ex gen-graph-def gen-graph-digraph induce-subgraph-head in-
duce-subgraph-tail
     loop free-digraph. no-loops
   by metis
\mathbf{qed}
lemma (in blockDAG) gen-graph-sound:
  blockDAG (qen-graph)
 unfolding blockDAG-def DAG-def blockDAG-axioms-def
proof safe
 show digraph gen-graph using gen-graph-digraph by simp
next
 have (arcs\text{-}ends\ gen\text{-}graph)^+ = \{\}
   using trancl-empty gen-graph-empty-arcs by (simp add: arcs-ends-def)
 then show DAG-axioms gen-graph
   by (simp add: DAG-axioms.intro)
\mathbf{next}
 \mathbf{fix} \ u \ v \ e
 have wf-digraph.arc gen-graph e(u, v) \equiv False
   using wf-digraph.arc-def gen-graph-empty-arcs
   by (simp add: wf-digraph.arc-def wf-digraph-def)
```

```
then show wf-digraph.arc gen-graph e(u, v) \Longrightarrow
       u \rightarrow^+ pre-digraph.del-arc\ gen-graph\ e\ v \Longrightarrow False
    by simp
\mathbf{next}
  \begin{array}{c} \mathbf{have} \ \mathit{reft:} \ \mathit{genesis-node} \rightarrow^*_{\mathit{gen-graph}} \ \mathit{genesis-node} \\ \mathbf{using} \ \mathit{gen-gen} \ \mathit{rtrancl-on-reft} \end{array}
    by (simp add: reachable-def)
  have \forall r. \ r \in verts \ gen\text{-}graph \longrightarrow r \rightarrow^*_{qen\text{-}graph} \ genesis\text{-}node
  proof safe
    \mathbf{fix} \ r
    assume r \in verts gen-graph
    then have r = genesis-node
      using gen-gen by auto
    then show r \rightarrow^*_{gen\text{-}graph} genesis\text{-}node
      by (simp add: local.refl)
  \mathbf{qed}
  then show \exists p \in verts \ gen-graph.
        (\forall r. \ r \in verts \ gen\text{-}graph \longrightarrow r \rightarrow^+_{gen\text{-}graph} p \lor r = p)
    by (simp add: gen-gen)
qed
lemma (in blockDAG) no-empty-blockDAG:
  shows card (verts G) > 0
proof -
  have \exists p. p \in verts G
    using genesis-in-verts by auto
  then show card (verts G) > \theta
    using card-gt-0-iff finite-verts by blast
\mathbf{qed}
lemma (in blockDAG) gen-graph-all-one:
  card\ (verts\ (G)) = 1 \longleftrightarrow G = gen\text{-}graph
  \mathbf{using}\ card	ext{-}1	ext{-}singletonE\ gen	ext{-}graph	ext{-}def\ genesis	ext{-}in	ext{-}verts
  induce-eq-iff-induced induced-subgraph-refl singletonD gen-graph-def genesis-node-def
 by (metis gen-gen genesis-existAlt is-genesis-node.simps less-one linorder-neqE-nat
      neg0-conv no-empty-blockDAG tips-unequal-gen-exist)
lemma blockDAG-nat-induct[consumes 1, case-names base step]:
  assumes
    bD: blockDAG Z
    and
    cases: \bigwedge V. (blockDAG V \Longrightarrow card (verts V) = 1 \Longrightarrow P(V)
    \bigwedge W \ c. \ (\bigwedge V. \ (blockDAG \ V \Longrightarrow card \ (verts \ V) = c \Longrightarrow P \ V))
  \implies (blockDAG W \implies card (verts W) = Suc c \implies P W)
  shows P Z
proof -
  have bG: card (verts Z) > 0 using bD blockDAG.no-empty-blockDAG by auto
  show ?thesis
    using bG bD
```

```
proof (induction card (verts Z) arbitrary: Z rule: Nat.nat-induct-non-zero)
   case 1
   then show ?case using cases(1) by auto
  next
   case su: (Suc n)
   show ?case
     \mathbf{by}\ (metis\ local.cases(2)\ su.hyps(2)\ su.hyps(3)\ su.prems)
qed
lemma blockDAG-nat-less-induct[consumes 1, case-names base step]:
 assumes
   bD: blockDAG Z
   and
   cases: \bigwedge V. (blockDAG V \Longrightarrow card (verts V) = 1 \Longrightarrow P(V)
   \bigwedge W \ c. \ (\bigwedge V. \ (blockDAG \ V \Longrightarrow card \ (verts \ V) < c \Longrightarrow P \ V))
  \implies (blockDAG W \implies card (verts W) = c \implies P(W)
 shows P Z
proof -
 have bG: card\ (verts\ Z) > 0 using blockDAG.no-empty-blockDAG\ assms(1) by
auto
 show P Z
   using bD bG
 proof (induction card (verts Z) arbitrary: Z rule: less-induct)
   fix Z::('a, 'b) pre-digraph
   assume a:
    (\bigwedge Za.\ card\ (verts\ Za) < card\ (verts\ Z) \Longrightarrow blockDAG\ Za \Longrightarrow 0 < card\ (verts\ Za)
Za) \Longrightarrow P Za
   assume blockDAG\ Z
   then show P Z using a cases
     by (metis\ blockDAG.no-empty-blockDAG)
 qed
qed
lemma (in blockDAG) blockDAG-size-cases:
 obtains (one) card (verts G) = 1
  | (more) \ card \ (verts \ G) > 1
  using no-empty-blockDAG
 by linarith
lemma (in blockDAG) blockDAG-cases-one:
 shows card (verts G) = 1 \longrightarrow (G = gen-graph)
proof (safe)
 assume one: card (verts G) = 1
  then have blockDAG.genesis-node G \in verts G
   by (simp add: genesis-in-verts)
  then have only: verts G = \{blockDAG.genesis-node G\}
   by (metis one card-1-singletonE insert-absorb singleton-insert-inj-eq')
```

```
then have verts-equal: verts G = verts (blockDAG.gen-graph G)
   \mathbf{using} \quad blockDAG\text{-}axioms \ one \ blockDAG.gen\text{-}graph\text{-}def \ induce\text{-}subgraph\text{-}def
     induced	ext{-}induce\ blockDAG.genesis-in-verts
   by (simp add: blockDAG.gen-graph-def)
 have arcs G = \{\}
 proof (rule ccontr)
   assume not-empty: arcs G \neq \{\}
   then obtain z where part-of: z \in arcs G
     by auto
   then have tail: tail G z \in verts G
     using wf-digraph-def blockDAG-def DAG-def
      digraph-def\ blockDAG-axioms\ nomulti-digraph.axioms(1)
     by metis
   also have head: head G z \in verts G
     by (metis (no-types) DAG-def blockDAG-axioms blockDAG-def digraph-def
        nomulti-digraph.axioms(1) part-of wf-digraph-def)
   then have tail G z = head G z
     using tail only by simp
   then have \neg loopfree-digraph-axioms G
     unfolding loopfree-digraph-axioms-def
     using part-of only DAG-def digraph-def
     by auto
   then show False
     using DAG-def digraph-def blockDAG-axioms blockDAG-def
      loopfree-digraph-def by metis
 qed
 then have arcs G = arcs (blockDAG.gen-graph G)
   by (simp add: blockDAG-axioms blockDAG.gen-graph-empty-arcs)
 then show G = gen-graph
   unfolding blockDAG.gen-graph-def
   using verts-equal blockDAG-axioms induce-subgraph-def
     blockDAG.gen-graph-def by fastforce
qed
lemma (in blockDAG) blockDAG-cases-more:
 shows card (verts G) > 1 \longleftrightarrow (\exists b \ H. (blockDAG H \land b \in verts \ G \land del-vert \ b
= H)
proof safe
 assume card (verts G) > 1
 then have b1: 1 < card (verts G) using no-empty-blockDAG by linarith
 obtain x where x-in: x \in (verts \ G) \land is-genesis-node x
   using genesis genesisAlt genesis-node-def by blast
 then have 0 < card ((verts G) - \{x\}) using card-Suc-Diff1 x-in finite-verts b1
by auto
 then have ((verts\ G) - \{x\}) \neq \{\} using card-gt-0-iff by blast
 then obtain y where y-def:y \in (verts \ G) - \{x\} by auto
 then have uneq: y \neq x by auto
 have y-in: y \in (verts \ G) using y-def by simp
 then have reachable 1 G y x using is-genesis-node.simps x-in
```

```
reachable-neq-reachable1 uneq by simp
 then have \neg is-tip G x
   using y-in by force
 then obtain z where z-def: z \in (verts\ G) - \{x\} \land is\text{-tip}\ G\ z\ using\ tips\text{-}exist
     is-tip.simps by auto
 then have uneq: z \neq x by auto
 have z-in: z \in verts \ G  using z-def by simp
 have \neg is-genesis-node z
 proof (rule ccontr, safe)
   assume is-genesis-node z
   then have x = z using unique-genesis x-in by auto
   then show False using uneq by simp
 qed
 then have blockDAG (del-vert z) using del-tips-bDAG z-def by simp
 then show (\exists b \ H. \ blockDAG \ H \land b \in verts \ G \land del-vert \ b = H) using z-def
by auto
next
 fix b and H::('a,'b) pre-digraph
 assume bD: blockDAG (del-vert b)
 assume b-in: b \in verts G
 show card (verts G) > 1
 proof (rule ccontr)
   assume \neg 1 < card (verts G)
   then have 1 = card (verts G) using no-empty-blockDAG by linarith
   then have card ( verts ( del-vert b)) = 0 using b-in del-vert-def by auto
   then have \neg blockDAG (del-vert b) using bD blockDAG.no-empty-blockDAG
     by (metis less-nat-zero-code)
   then show False using bD by simp
 qed
qed
lemma (in blockDAG) blockDAG-cases:
 obtains (base) (G = gen\text{-}graph)
 | (more) (\exists b \ H. (blockDAG \ H \land b \in verts \ G \land del\text{-}vert \ b = H))
 using blockDAG-cases-one blockDAG-cases-more
   blockDAG-size-cases by auto
lemma (in blockDAG) blockDAG-cases-more2:
 assumes card (verts G) > 1
 shows (\exists b \ H. \ (blockDAG \ H \land b \in verts \ G \land del-vert \ b = H \land (\forall c \in verts \ G.)
\lnot\ c \to^+_G b)))
proof -
 obtain tip where tip-tip: is-tip G tip using tips-exist by auto
 then have tip-neq-gen: \neg is-genesis-node tip
   using assms tips-unequal-gen by auto
 have tip-in: tip \in verts \ G  using tip-tip is-tip.simps by metis
 have nre: (\forall c. \neg c \rightarrow^+_G tip) using tips-not-referenced tip-tip by auto
 let ?H = del\text{-}vert tip
 have blockDAG ?H using del-tips-bDAG tip-tip tip-neq-gen by auto
```

```
then show ?thesis using nre tip-in
    by blast
qed
lemma (in blockDAG) blockDAG-cases2:
  obtains (base) (G = gen\text{-}graph)
 \mid (more) \ (\exists b \ H. \ (blockDAG \ H \land b \in verts \ G \land del\text{-}vert \ b = H \land (\forall c \in verts \ G.
\neg c \rightarrow^+ G b)))
  \mathbf{using}\ blockDAG\text{-}cases\text{-}one\ blockDAG\text{-}cases\text{-}more2
    blockDAG-size-cases by auto
lemma blockDAG-induct[consumes 1, case-names base step]:
  assumes fund: blockDAG G
 assumes cases: \bigwedge V::('a,'b) pre-digraph. blockDAG V \Longrightarrow P (blockDAG.gen-graph
    \bigwedge H::('a,'b) pre-digraph.
  (\land b::'a.\ blockDAG\ (pre-digraph.del-vert\ H\ b) \Longrightarrow b \in verts\ H \Longrightarrow P(pre-digraph.del-vert\ H\ b)
  \implies (blockDAG \ H \implies P \ H)
  shows P G
proof(induct-tac G rule:blockDAG-nat-induct)
  show blockDAG G using assms(1) by simp
next
  \mathbf{fix} \ V{::}(\,{}'a,{}'b) \ \mathit{pre-digraph}
 assume bD: blockDAG\ V
    and card (verts V) = 1
  then have V = blockDAG.gen-graph V
    using blockDAG.blockDAG-cases-one equal-refl by auto
  then show P V using bD cases(1)
    by metis
next
  fix c and W::('a,'b) pre-digraph
 show (\bigwedge V. blockDAG \ V \Longrightarrow card \ (verts \ V) = c \Longrightarrow P \ V) \Longrightarrow
           blockDAG \ W \Longrightarrow card \ (verts \ W) = Suc \ c \Longrightarrow P \ W
  proof -
    assume ind: \bigwedge V. (blockDAG V \Longrightarrow card (verts V) = c \Longrightarrow P(V)
      and bD: blockDAG W
      and size: card (verts W) = Suc c
    have assm2: \land b. \ blockDAG \ (pre-digraph.del-vert \ W \ b)
            \implies b \in verts \ W \implies P(pre\text{-}digraph.del\text{-}vert \ W \ b)
    proof -
      \mathbf{fix} \ b
     \mathbf{assume}\ bD2:\ blockDAG\ (pre\mbox{-}digraph.del\mbox{-}vert\ W\ b)
      assume in-verts: b \in verts W
      have verts (pre-digraph.del-vert\ W\ b) = verts\ W - \{b\}
       by (simp add: pre-digraph.verts-del-vert)
      then have card (verts (pre-digraph.del-vert W b)) = c
       \mathbf{using}\ in\text{-}verts\ fin\text{-}digraph.finite\text{-}verts\ bD\ subs\ fin\text{-}digraph.fin-digraph-del\text{-}vert
```

```
size
      by (simp add: fin-digraph.finite-verts subs
          DAG.axioms \ assms(1) \ digraph.axioms)
     then show P (pre-digraph.del-vert W b) using ind bD2 by auto
   qed
   show ?thesis using cases(2)
     by (metis \ assm2 \ bD)
 qed
qed
function genesis-nodeAlt:: ('a::linorder,'b) pre-digraph \Rightarrow 'a
 where genesis-nodeAlt G = (if (\neg blockDAG G) then undefined else
 if (card\ (verts\ G\ )=1) then (hd\ (sorted-list-of-set\ (verts\ G)))
 else genesis-nodeAlt (reduce-past G ((hd (sorted-list-of-set (tips G))))))
 by auto
termination proof
 let ?R = measure (\lambda G. (card (verts G)))
 show wf ?R by auto
\mathbf{next}
 \mathbf{fix} \ G :: ('a::linorder, 'b) \ pre-digraph
 \mathbf{assume} \neg \neg \mathit{blockDAG} \ \mathit{G}
 then have bD: blockDAG G by simp
 assume card (verts G) \neq 1
 then have bG: card (verts G) > 1 using bD blockDAG.blockDAG-size-cases by
auto
 have set (sorted-list-of-set (tips G)) = tips G
   by (simp add: bD subs tips-def fin-digraph.finite-verts)
 then have hd (sorted-list-of-set (tips G)) \in tips G
   using hd-in-set bD tips-def bG blockDAG.tips-unequal-gen-exist
     empty-iff empty-set mem-Collect-eq
   by (metis (mono-tags, lifting))
 then show (reduce-past G (hd (sorted-list-of-set (tips G))), G) \in measure (\lambda G.
card (verts G)
   using blockDAG.reduce-less bD
   using tips-def by fastforce
qed
lemma genesis-nodeAlt-one-sound:
 assumes bD: blockDAG G
   and one: card (verts G) = 1
 shows blockDAG.is-genesis-node G (genesis-nodeAlt G)
proof
 interpret B: blockDAG G using assms(1) by simp
 have exone: \exists ! x. x \in (verts \ G)
   {f using} one B. genesis-in-verts B. genesis-unique-exists B. reduce-less
   B.reduce-past-dagbased less-nat-zero-code less-one B.gen-gen B.gen-graph-all-one
singleton-iff
   by (metis)
```

```
then have sorted-list-of-set (verts G) \neq []
   by (metis card.infinite card-0-eq finite.emptyI one
       sorted-list-of-set-empty sorted-list-of-set-inject zero-neq-one)
 then have genesis-nodeAlt G \in verts \ G using hd-in-set genesis-nodeAlt.simps
bD exone
   by (metis one set-sorted-list-of-set sorted-list-of-set.infinite)
 then show one-sound: B.is-genesis-node (genesis-nodeAlt G)
   using one B.blockDAG-size-cases B.reduce-less
    B.reduce-past-dagbased\ less-one\ B.qenesis-unique-exists\ B.is-qenesis-node.elims(2)
exone
   by (metis)
qed
\mathbf{lemma}\ \mathit{genesis}\text{-}\mathit{nodeAlt}\text{-}\mathit{sound}:
 assumes blockDAG G
 shows blockDAG.is-genesis-node\ G\ (genesis-node\ Alt\ G)
proof(induct-tac G rule:blockDAG-nat-less-induct)
 show blockDAG G using assms by simp
\mathbf{next}
 fix V::('a,'b) pre-digraph
 assume bD: blockDAG\ V
 assume one: card (verts V) = 1
 then show blockDAG.is-genesis-node V (genesis-nodeAlt V)
   using genesis-nodeAlt-one-sound bD
   by blast
\mathbf{next}
 fix W::('a,'b) pre-digraph
 \mathbf{fix} c::nat
 assume basis:
   (\bigwedge V::('a,'b) \text{ pre-digraph. blockDAG } V \Longrightarrow card \text{ (verts } V) < c \Longrightarrow
 blockDAG.is-genesis-node V (genesis-nodeAlt V))
 assume bD: blockDAG W
 interpret B: blockDAG W using bD by simp
 assume cd: card (verts W) = c
 consider (one) card (verts W) = 1 | (more) card (verts W) > 1
   using bD blockDAG.blockDAG-size-cases by blast
 then show blockDAG.is-genesis-node W (genesis-nodeAlt W)
 proof(cases)
   case one
   then show ?thesis using genesis-nodeAlt-one-sound bD
     by blast
 \mathbf{next}
   case more
   then have not-one: 1 \neq card (verts W) by auto
   have se: set (sorted-list-of-set (tips W)) = tips W
     by (simp add: tips-def)
   obtain a where a-def: a = hd (sorted-list-of-set (tips W))
     by simp
   have tip: a \in tips W
```

```
using se a-def hd-in-set bD tips-def more blockDAG.tips-unequal-gen-exist
      empty-iff empty-set mem-Collect-eq
    by (metis (mono-tags, lifting))
   then have ver: a \in verts W
    by (simp add: tips-def a-def)
   then have card ( verts (reduce-past W a)) < card (verts W)
    using more cd blockDAG.reduce-less bD
    by metis
   then have cd2: card ( verts (reduce-past W a)) < c
    using cd by simp
   have is-tip W a using tip CollectD unfolding tips-def by simp
   then have n-gen: \neg B.is-genesis-node a
    using B.tips-unequal-gen more by simp
   then have bD2: blockDAG (reduce-past W a)
    using B.reduce-past-dagbased ver bD by auto
   have ff: blockDAG.is-genesis-node (reduce-past W a)
    (genesis-nodeAlt (reduce-past W a)) using cd2 basis bD2 more
    by blast
   have rec:
     genesis-nodeAlt W = genesis-nodeAlt (reduce-past W (hd (sorted-list-of-set)))
(tips \ W))))
    using genesis-nodeAlt.simps not-one bD
    by metis
   show ?thesis using rec ff bD n-gen ver blockDAG.reduce-past-gen-eq a-def by
metis
 qed
qed
\mathbf{lemma}\ \mathit{genesis}\text{-}\mathit{nodeAlt}\text{-}\mathit{vert}:
 assumes blockDAG G
 shows (genesis-nodeAlt\ G) \in verts\ G
 using assms genesis-nodeAlt-sound blockDAG.is-genesis-node.simps by metis
end
theory Spectre
 imports Main Graph-Theory. Graph-Theory blockDAG
begin
```

Based on the SPECTRE paper by Sompolinsky, Lewenberg and Zohar 2016

4 Spectre

4.1 Definitions

Function to check and break occuring ties

```
fun tie-break-int:: 'a::linorder \Rightarrow 'a \Rightarrow int \Rightarrow int
  where tie-break-int a b i =
 (if i=0 then (if (b < a) then -1 else 1) else i)
Sign function with 0
fun signum :: int \Rightarrow int
  where signum a = (if \ a > 0 \ then \ 1 \ else \ if \ a < 0 \ then \ -1 \ else \ 0)
Spectre core algorithm, vote - SpectreVabc returns 1 if a votes in favour of
b (or b = c), -1 if a votes in favour of c, 0 otherwise
function vote-Spectre :: ('a::linorder,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a \Rightarrow int
  where
    vote-Spectre G a b c = (
  if (\neg blockDAG \ G \lor a \notin verts \ G \lor b \notin verts \ G \lor c \notin verts \ G) then 0 else
  if (b=c) then 1 else
  if (((a \rightarrow^+_G b) \lor a = b) \land \neg(a \rightarrow^+_G c)) then 1 else
  if (((a \rightarrow +_G^+ C) \lor a = c) \land \neg (a \rightarrow +_G^+ C)) then -1 else if ((a \rightarrow +_G^+ b) \land (a \rightarrow +_G^+ c)) then
  (tie-break-int b c (signum (sum-list (map (\lambda i).
 (vote-Spectre (reduce-past G a) i b c)) (sorted-list-of-set (past-nodes G a))))))
   signum (sum-list (map (\lambda i.
   (vote\text{-}Spectre\ G\ i\ b\ c))\ (sorted\text{-}list\text{-}of\text{-}set\ (future\text{-}nodes\ G\ a)))))
  by auto
termination
proof
  e \to^*_G a\})]
 show wf ?R
   by simp
next
  fix G::('a::linorder, 'b) pre-digraph
  \mathbf{fix} \ x \ a \ b \ c
  assume bD: \neg (\neg blockDAG \ G \lor a \notin verts \ G \lor b \notin verts \ G \lor c \notin verts \ G)
  then have a \in verts \ G by simp
  then have card (verts (reduce-past G a)) < card (verts G)
   \mathbf{using}\ bD\ blockDAG.reduce\text{-}less
   by metis
  then show ((reduce-past G a, x, b, c), G, a, b, c)
       \in measures
           [\lambda(G, a, b, c)]. card (verts G),
            \lambda(G, a, b, c). card \{e. e \rightarrow^*_G a\}
   by simp
next
  fix G::('a::linorder, 'b) pre-digraph
 \mathbf{fix} \ x \ a \ b \ c
  assume cc: \neg (\neg blockDAG \ G \lor a \notin verts \ G \lor b \notin verts \ G \lor c \notin verts \ G)
  then have a-in: a \in verts \ G by simp
  interpret bD: blockDAG G using cc by auto
```

```
assume x \in set (sorted-list-of-set (future-nodes G a))
  then have x \in future-nodes G a using bD.finite-future
     set\text{-}sorted\text{-}list\text{-}of\text{-}set\ cc
   by metis
  then have rr: x \to^+_G a using future-nodes.simps mem-Collect-eq
   by simp
  then have a-not: \neg a \rightarrow^*_G x using bD.unidirectional by metis
  have \forall x. \{e. \ e \rightarrow^*_G x\} \subseteq verts \ G \ using \ subsetI
      bD.reachable-in-verts(1) mem-Collect-eq
  then have fin: \forall x. finite \{e.\ e \rightarrow^*_G x\} using bD.finite-verts
     finite-subset
   by metis
  have x \to^*_G a using rr bD.reachable1-reachable by metis
  then have \{e. e \rightarrow^*_G x\} \subseteq \{e. e \rightarrow^*_G a\} using rr
     bD.reachable-trans Collect-mono by metis
  then have \{e. e \rightarrow^*_G x\} \subset \{e. e \rightarrow^*_G a\} using a-not
     a-in mem-Collect-eq psubsetI bD.reachable-refl
   by metis
  then have card \{e. e \rightarrow^*_G x\} < card \{e. e \rightarrow^*_G a\} using fin
   by (simp add: psubset-card-mono)
  then show ((G, x, b, c), G, a, b, c)
      \in measures
          [\lambda(G, a, b, c). \ card \ (verts \ G), \ \lambda(G, a, b, c). \ card \ \{e. \ e \rightarrow^*_G \ a\}]
   by simp
qed
Given vote-Spectre calculate if a < b for arbitrary nodes
definition Spectre-Order :: ('a::linorder,'b) pre-digraph \Rightarrow 'a \Rightarrow 'a \Rightarrow bool
  where Spectre-Order G a b = (tie-break-int \ a \ b \ (signum \ (sum-list \ (map \ (\lambda i.
  (vote\text{-}Spectre\ G\ i\ a\ b))\ (sorted\text{-}list\text{-}of\text{-}set\ (verts\ G)))))=1)
Given Spectre-Order calculate the corresponding relation over the nodes of
definition SPECTRE :: ('a::linorder,'b) pre-digraph \Rightarrow ('a \times 'a) set
  where SPECTRE G \equiv \{(a,b) \in (verts \ G \times verts \ G). \ Spectre-Order \ G \ a \ b\}
4.2
       Lemmas
lemma sumlist-one-mono:
  assumes \forall x \in set L. x \geq 0
   and \exists x \in set L. x > 0
  shows signum (sum-list L) = 1
  using assms
proof(induct\ L,\ simp)
  case (Cons \ a2 \ L)
  consider (bg) a2 > 0 \mid a2 = 0 using Cons
   by (metis le-less list.set-intros(1))
  then show ?case
```

```
proof(cases)
         case bq
         then have sum-list L \geq 0 using Cons
              by (simp add: sum-list-nonneg)
         then have sum-list (a2 # L) > 0 using bg sum-list-def
              by auto
         then show ?thesis using tie-break-int.simps
              by auto
     next
         case 2
         then have be: \exists a \in set L. \ 0 < a \text{ using } Cons
              by (metis\ less-int-code(1)\ set-ConsD)
         then have L \neq [] by auto
         then show ?thesis using sum-list-def 2
              using Cons.hyps Cons.prems(1) be by auto
    qed
qed
lemma domain-signum: signum i \in \{-1,0,1\} by simp
lemma signum-mono:
     assumes i \leq j
    shows signum \ i \leq signum \ j using assms by simp
lemma tie-break-mono:
     assumes i \leq j
    shows tie-break-int b c i \le tie-break-int b c j using assms by simp
lemma domain-tie-break:
     shows tie-break-int a b (signum i) \in \{-1, 1\}
     using tie-break-int.simps
     by auto
\mathbf{lemma} Spectre\text{-}casesAlt:
     fixes G:: ('a::linorder,'b) pre-digraph
         and a :: 'a::linorder and b :: 'a::linorder and c :: 'a::linorder
     obtains (no-bD) (\neg blockDAG G \lor a \notin verts G \lor b \notin verts G \lor c \notin verts G)
        (equal) (blockDAG G \land a \in verts \ G \land b \in verts \ G \land c \in verts \ G) \land b = c
     | (one) (blockDAG G \land a \in verts G \land b \in verts G \land c \in verts G) \land a \in verts G \land b \in verts G \land c \in verts G) \land b \in verts G \land b \in verts G \land c \in 
                      b \neq c \land (((a \rightarrow^+_G b) \lor a = b) \land \neg(a \rightarrow^+_G c))
     | (two) (blockDAG \ G \land a \in verts \ G \land b \in verts \ G \land c \in verts \ G) \land b \neq c
     (three) (blockDAG\ G \land a \in verts\ G \land b \in verts\ G \land c \in verts\ G) \land b \neq c
       \wedge \neg (((a \to^+_G b) \lor a = b) \land \neg (a \to^+_G c)) \land 
       \neg(((a \to^+_G c) \lor a = c) \land \neg(a \to^+_G b)) \land
     ((a \rightarrow^+ G b) \land (a \rightarrow^+ G c))
```

```
| (four) (blockDAG \ G \land a \in verts \ G \land b \in verts \ G \land c \in verts \ G) \land b \neq c \land c 
  \neg(((a \to^+_G b) \lor a = b) \land \neg(a \to^+_G c)) \land 
  \neg(((a \to^+_G c) \lor a = c) \land \neg(a \to^+_G b)) \land
  \neg((a \rightarrow^+_G b) \land (a \rightarrow^+_G c))
 by auto
lemma domain-Spectre:
 shows vote-Spectre G a b c \in \{-1, 0, 1\}
proof(rule vote-Spectre.cases, auto) qed
lemma antisymmetric-tie-break:
 shows b \neq c \implies tie-break-int b c i = -tie-break-int c b (-i)
 unfolding tie-break-int.simps using less-not-sym by auto
{f lemma} antisymmetric-sumlist:
 shows sum-list (l::int list) = - sum-list (map (\lambda x. -x) l)
proof(induct \ l, \ auto) \ qed
lemma antisymmetric-signum:
 shows signum\ i = -(signum\ (-i))
 by auto
lemma append-diff-sorted-set:
 assumes a \in A
 and finite A
shows sum-list ((map\ (P::('a::linorder \Rightarrow int)))
  (sorted-list-of-set (A - \{a\})))
  = sum\text{-}list\ ((map\ P)(sorted\text{-}list\text{-}of\text{-}set\ (A)))\ -\ (P\ a)
proof -
 let ?L1 = (sorted-list-of-set (A))
  have d-1: distinct ?L1 using sum-list-distinct-conv-sum-set sorted-list-of-set(2)
by auto
  then have s-1: sum-list ((map P) ?L1)
 = sum \ P \ (set \ ?L1) \ using \ sum-list-distinct-conv-sum-set \ by \ metis
 let ?L2 = (sorted-list-of-set (A - \{a\}))
  have d-2: distinct ?L2 using sum-list-distinct-conv-sum-set sorted-list-of-set(2)
by auto
 then have s-2: sum-list ((map\ P)\ ?L2)
  = sum \ P \ (set \ ?L2) \ using \ sum-list-distinct-conv-sum-set \ by \ metis
 have s-3: sum\ P\ (set\ ?L2) = sum\ P\ (set\ ?L1) - (P\ a)
   using assms sorted-list-of-set(1)
   by (simp add: sum-diff1)
```

```
show ?thesis
   unfolding s-1 s-2 s-3 by simp
qed
lemma append-diff-sorted-set2:
 assumes a \in A
 and b \in A
 and a \neq b
 and finite A
shows sum-list ((map\ (P::('a::linorder \Rightarrow int)))
  (sorted-list-of-set (A - \{a\} - \{b\})))
  = sum\text{-}list ((map P)(sorted\text{-}list\text{-}of\text{-}set (A))) - (P a) - (P b)
 using assms append-diff-sorted-set
 by (metis finite-Diff insert-Diff insert-iff)
lemma append-diff-sorted-set3:
 assumes B \subseteq A
 and finite A
shows sum-list ((map\ (P::('a::linorder \Rightarrow int)))
  (sorted-list-of-set (A - B)))
 = sum\text{-}list ((map P)(sorted\text{-}list\text{-}of\text{-}set (A))) - sum\text{-}list ((map P)(sorted\text{-}list\text{-}of\text{-}set (A))))
(B)))
proof -
   have finite B using assms
     using rev-finite-subset by auto
 have finite (A - B)
   by (simp\ add:\ assms(2))
 then show ?thesis
   using assms
proof(induct A - B arbitrary: A rule: finite-induct)
 case empty
 then have ee: A - B = \{\} by simp
 have AB: B = A using empty
 show ?case unfolding ee unfolding AB sorted-list-of-set-empty by force
next
  case (insert x F)
 then have xA: x \in A by auto
 have x \notin B using insert by auto
 then have xAB: x \in (A - B) using xA by auto
 then have B \subseteq A - \{x\} using insert by auto
 moreover have F = (A - \{x\}) - B using insert by auto
 moreover have f: finite (A - \{x\}) using insert by auto
 ultimately have ind:
  sum-list (map\ P\ (sorted-list-of-set ((A - \{x\}) - B))) =
  sum-list (map\ P\ (sorted-list-of-set (A - \{x\}))) - sum-list (map\ P\ (sorted-list-of-set
B))
   using insert(3)
```

```
by simp
      then have sum-list (map P (sorted-list-of-set ((A - \{x\}) - B))) =
       sum-list (map\ P\ (sorted-list-of-set\ (A))) - P\ x - sum-list (map\ P\ (sorted-list-of-set\ (A)))
           using xA ff
           by (simp add: append-diff-sorted-set)
      then have sum-list (map P (sorted-list-of-set ((A - B) - \{x\}))) =
       sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}list\text{-}of\text{-}set\ (A))) - P\ x - sum\text{-}list\ (map\ P\ (sorted\text{-}l
B))
           by (metis Diff-insert Diff-insert2)
     then have sum-list (map P (sorted-list-of-set ((A - B)))) - P x =
       sum-list (map\ P\ (sorted-list-of-set (A))) - P\ x - sum-list (map\ P\ (sorted-list-of-set
B))
           using xAB append-diff-sorted-set finite-Diff insert.prems(2)
           by metis
     then show ?case
           by auto
     \mathbf{qed}
qed
lemma vote-Spectre-one-exists:
     assumes blockDAG G
           and a \in verts G
           and b \in verts G
     shows \exists i \in verts \ G. \ vote\text{-}Spectre \ G \ i \ a \ b \neq 0
proof
     show a \in verts \ G \ using \ assms(2) by simp
     show vote-Spectre G a a b \neq 0
           using assms
     proof(cases a b a G rule: Spectre-casesAlt, simp+)
     qed
qed
end
theory Ghostdag
     imports TopSort blockDAG
begin
```

5 GHOSTDAG

Based on the GHOSTDAG blockDAG consensus algorithmus by Sompolinsky and Zohar 2018

5.1 Funcitions and Definitions

```
fun kCluster:: ('a,'b) pre-digraph <math>\Rightarrow nat \Rightarrow 'a set \Rightarrow bool
```

```
where kCluster\ G\ k\ C = (if\ (C \subseteq (verts\ G))
  then (\forall a \in C. \ card \ ((anticone \ G \ a) \cap C) \leq k) else False)
fun max-kCluster:: ('a,'b) pre-digraph <math>\Rightarrow nat \Rightarrow 'a set
  where max-kCluster\ G\ k = arg-max-on card\ \{C \in (Pow\ (verts\ G)),\ kCluster\ G
k \ C
lemma sub-kCluster:
 assumes kCluster \ G \ k \ C
 and finite C
 and C' \subseteq C
shows kCluster G k C'
proof-
 have C \subseteq verts \ G using assms(1) unfolding kCluster.simps by metis
 then have C'-sub: C' \subseteq verts \ G using assms(3) by auto
 have \bigwedge a. (anticone G a \cap C') \subseteq (anticone G a \cap C) using assms(3)
   by auto
  then have \bigwedge a. card (anticone G \ a \cap C') \leq card (anticone G \ a \cap C)
   using card-mono assms(2) finite-Int
  then show ?thesis using assms(1) C'-sub assms(3) order.trans subset-iff
   unfolding kCluster.simps
   by metis
qed
Function to compare the size of set and break ties. Used for the GHOSTDAG
maximum blue cluster selection
fun larger-blue-tuple ::
 (('a::linorder\ set\times 'a\ list)\times 'a)\Rightarrow (('a\ set\times 'a\ list)\times 'a)\Rightarrow (('a\ set\times 'a\ list))
\times 'a)
 where larger-blue-tuple A B =
  (if (card (fst (fst A))) > (card (fst (fst B))) \vee
 (card\ (fst\ (fst\ A)) \geq card\ (fst\ (fst\ B)) \land snd\ A \leq snd\ B)\ then\ A\ else\ B)
Function to add node a to a tuple of a set S and List L
fun add-set-list-tuple :: (('a::linorder set \times 'a list) \times 'a) \Rightarrow ('a::linorder set \times 'a
list)
 where add-set-list-tuple ((S,L),a) = (S \cup \{a\}, L @ [a])
Function that adds a node a to a kCluster S, if S + a remains a kCluster.
Also adds a to the end of list L
fun app-if-blue-else-add-end ::
 ('a::linorder,'b) pre-digraph \Rightarrow nat \Rightarrow 'a \Rightarrow ('a::linorder set \times 'a list)
\Rightarrow ('a::linorder set \times 'a list)
 where app-if-blue-else-add-end G k a (S,L) = (if (kCluster <math>G k (S \cup \{a\}))
then add-set-list-tuple ((S,L),a) else (S,L @ [a])
Function to select the largest ((S, L), a) according to larger - blue - tuple
```

```
fun choose-max-blue-set :: (('a::linorder\ set\ \times\ 'a\ list)\ \times\ 'a)\ list \Rightarrow (('a\ set\ \times\ 'a\ list)\ x)
list) \times 'a)
 where choose-max-blue-set\ L=fold\ (larger-blue-tuple)\ L\ (hd\ L)
GHOSTDAG ordering algorithm
function OrderDAG :: ('a::linorder,'b) pre-digraph <math>\Rightarrow nat \Rightarrow ('a \ set \times 'a \ list)
  where
    OrderDAG \ G \ k =
  (if (\neg blockDAG\ G) then (\{\},[]) else
  if (card\ (verts\ G) = 1) then (\{genesis-nodeAlt\ G\}, [genesis-nodeAlt\ G]) else
let M = choose-max-blue-set
 ((map\ (\lambda i.(((OrderDAG\ (reduce-past\ G\ i)\ k))\ ,\ i))\ (sorted-list-of-set\ (tips\ G))))
 in fold (app-if-blue-else-add-end G k) (top-sort G (sorted-list-of-set (anticone G
(snd\ M))))
(add\text{-}set\text{-}list\text{-}tuple\ M))
 by auto
termination proof
 let ?R = measure (\lambda(G, k), (card (verts G)))
 show wf ?R by auto
\mathbf{next}
 fix G::('a::linorder,'b) pre-digraph
 \mathbf{fix} \ k :: nat
 \mathbf{fix} \ x
 assume bD: \neg \neg blockDAG G
 assume card (verts G) \neq 1
 then have card\ (verts\ G) > 1 using bD\ blockDAG.blockDAG-size-cases by auto
  then have nT: \forall x \in tips \ G. \ \neg \ blockDAG.is-genesis-node Gx
   using blockDAG.tips-unequal-gen bD tips-def mem-Collect-eq
   by metis
  assume x \in set (sorted-list-of-set (tips G))
  then have in-t: x \in tips \ G  using bD
  by (metis card-qt-0-iff length-pos-if-in-set length-sorted-list-of-set set-sorted-list-of-set)
 then show ((reduce-past G(x, k), G(x) \in measure(\lambda(G(x), k), card(verts G)))
   using blockDAG.reduce-less bD tips-def is-tip.simps
   by fastforce
\mathbf{qed}
Creating a relation on verts G based on the GHOSTDAG OrderDAG algo-
rithm
fun GHOSTDAG :: nat \Rightarrow ('a::linorder,'b) pre-digraph \Rightarrow 'a rel
 where GHOSTDAG \ k \ G = list\text{-}to\text{-}rel \ (snd \ (OrderDAG \ G \ k))
       Soundness
5.2
```

lemma OrderDAG-casesAlt: obtains $(ntB) \neg blockDAG G$

```
| (more) blockDAG G \land card (verts G) > 1
 using blockDAG.blockDAG-size-cases by auto
        Soundness of the add - set - list function
5.2.1
lemma add-set-list-tuple-mono:
 shows set L \subseteq set (snd (add-set-list-tuple ((S,L),a)))
 using add-set-list-tuple.simps by auto
lemma add-set-list-tuple-mono2:
 shows set (snd (add\text{-}set\text{-}list\text{-}tuple ((S,L),a))) \subseteq set L \cup \{a\}
 using add-set-list-tuple.simps by auto
lemma add-set-list-tuple-mono3:
 shows (fst (add-set-list-tuple ((S,L),a))) \subseteq S \cup \{a\}
 using add-set-list-tuple.simps by auto
lemma add-set-list-tuple-length:
 shows length (snd (add-set-list-tuple ((S,L),a))) = Suc (length L)
proof(induct L, auto) qed
5.2.2 Soundness of the add - if - blue function
lemma app-if-blue-mono:
 shows (fst (S,L)) \subseteq (fst (app-if-blue-else-add-end G k a (S,L)))
 {\bf unfolding} \ app-if-blue-else-add-end.simps \ add-set-list-tuple.simps
 by (simp add: card-mono subset-insertI)
lemma app-if-blue-mono2:
 shows set (snd (S,L)) \subseteq set (snd (app-if-blue-else-add-end G k a (S,L)))
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by (simp add: subsetI)
lemma app-if-blue-append:
 shows a \in set (snd (app-if-blue-else-add-end G k a (S,L)))
 {\bf unfolding} \ app-if-blue-else-add-end. simps \ add-set-list-tuple. simps
 by simp
lemma app-if-blue-mono3:
 shows set (snd (app-if-blue-else-add-end G k a <math>(S,L))) \subseteq set L \cup \{a\}
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by (simp \ add: \ subset I)
lemma app-if-blue-mono4:
 assumes set L1 \subseteq set L2
 shows set (snd (app-if-blue-else-add-end G k a (S,L1)))
  \subseteq set (snd (app-if-blue-else-add-end G k a (S2,L2)))
```

(one) blockDAG $G \land card$ (verts G) = 1

unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps

```
lemma app-if-blue-card-mono:
 assumes finite S
 shows card (fst (S,L)) \le card (fst (app-if-blue-else-add-end G k a (S,L)))
 unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
 by (simp add: assms card-mono subset-insertI)
lemma app-if-blue-else-add-end-length:
 shows length (snd (app-if-blue-else-add-end G k a (S,L))) = Suc (length L)
proof(induction L, auto) qed
        Soundness of the larger - blue - tuple comparison
lemma larger-blue-tuple-mono:
 assumes finite (fst V)
 shows larger-blue-tuple ((app-if-blue-else-add-end G \ k \ a \ V),b) (V,b)
     = ((app-if-blue-else-add-end \ G \ k \ a \ V),b)
 using assms app-if-blue-card-mono larger-blue-tuple.simps eq-refl
 by (metis fst-conv prod.collapse snd-conv)
lemma larger-blue-tuple-subs:
 shows larger-blue-tuple A B \in \{A,B\} by auto
        Soundness of the choose_max_blue_set function
lemma choose-max-blue-avoid-empty:
 assumes L \neq []
 shows choose-max-blue-set L \in set L
 unfolding choose-max-blue-set.simps
proof (rule fold-invariant)
 show \bigwedge x. \ x \in set \ L \Longrightarrow x \in set \ L \ using \ assms \ by \ auto
 show hd L \in set L using assms by auto
\mathbf{next}
 fix x s
 assume x \in set L
   and s \in set L
 then show larger-blue-tuple x \in set L using larger-blue-tuple.simps by auto
qed
5.2.5
        Auxiliary lemmas for OrderDAG
lemma fold-app-length:
 shows length (snd (fold (app-if-blue-else-add-end G k)
 L1 PL2) = length L1 + length (snd PL2)
```

```
proof(induct L1 arbitrary: PL2)
 case Nil
 then show ?case by auto
next
 case (Cons a L1)
 then show ?case unfolding fold-Cons comp-apply using app-if-blue-else-add-end-length
   by (metis add-Suc add-Suc-right length-Cons old.prod.exhaust snd-conv)
qed
lemma fold-app-mono:
 shows snd (fold (app-if-blue-else-add-end G k) L2 (S,L1) = L1 @ L2
proof(induct L2 arbitrary: S L1, simp)
 case (Cons a L2)
 then show ?case unfolding fold-simps(2) using app-if-blue-else-add-end.simps
   by simp
qed
lemma fold-app-mono1:
 assumes x \in set (snd (S,L1))
 shows x \in set (snd (fold (app-if-blue-else-add-end G k) L2 (S2,L1)))
 using fold-app-mono
 by (metis Cons-eq-appendI append.assoc assms in-set-conv-decomp sndI)
lemma fold-app-mono2:
 assumes x \in set L2
 shows x \in set (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
 using assms unfolding fold-app-mono by auto
lemma fold-app-mono3:
 assumes set L1 \subseteq set L2
 shows set (snd (fold (app-if-blue-else-add-end G k) L (S1, L1)))
  \subseteq set (snd (fold (app-if-blue-else-add-end G k) L (S2, L2)))
 using assms unfolding fold-app-mono
 by auto
lemma fold-app-mono-ex:
 shows set (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)) = (set L2 \cup set
L1)
 unfolding fold-app-mono by auto
lemma fold-app-mono-fst-sub:
 shows S \subseteq (fst (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
proof(induct L2 arbitrary: S L1, simp)
 case (Cons a L2)
 then consider (app-if-blue-else-add-end\ G\ k\ a\ (S,\ L1))=(S\cup\{a\},\ L1\ @\ [a])
    (app-if-blue-else-add-end\ G\ k\ a\ (S,\ L1))=(S,\ L1\ @\ [a])
   unfolding app-if-blue-else-add-end.simps add-set-list-tuple.simps
```

```
by metis
 then show ?case
  by (metis Cons.hyps Un-empty-right Un-insert-right fold-simps(2) insert-subset)
qed
lemma fold-app-mono-fst-sub':
 shows (fst (fold (app-if-blue-else-add-end G k) L2 (S,L1))) \subseteq set L2 \cup S
\mathbf{proof}(induct\ L2\ arbitrary:\ S\ L1,\ simp)
 case (Cons\ a\ L2)
 then consider (app-if-blue-else-add-end\ G\ k\ a\ (S,\ L1))=(S\cup\{a\},\ L1\ @\ [a])
     (app-if-blue-else-add-end\ G\ k\ a\ (S,\ L1))=(S,\ L1\ @\ [a])
 {\bf unfolding} \ app-if-blue-else-add-end. simps \ add-set-list-tuple. simps
 by metis
 then show ?case using Cons
   by (metis Un-empty-right Un-insert-left Un-insert-right fold-simps(2) le-supI1
list.simps(15)
qed
lemma fold-app-mono-fst-kCluster:
 assumes kCluster \ G \ k \ S
 shows kCluster\ G\ k\ (fst\ (fold\ (app-if-blue-else-add-end\ G\ k)\ L2\ (S,L1)))
 using assms
proof(induct L2 arbitrary: S L1, simp)
 case (Cons\ a\ L2)
 then consider (app-if-blue-else-add-end\ G\ k\ a\ (S,\ L1))=(S\cup\{a\},\ L1\ @\ [a])
     (app-if-blue-else-add-end\ G\ k\ a\ (S,\ L1))=(S,\ L1\ @\ [a])
 {\bf unfolding} \ app-if-blue-else-add-end. simps \ add-set-list-tuple. simps
 by metis
 then show ?case
   by (metis Cons.hyps Cons.prems app-if-blue-else-add-end.simps fold-simps(2))
qed
lemma fold-app-mono-rel:
 assumes (x,y) \in list\text{-}to\text{-}rel\ L1
 shows (x,y) \in list-to-rel (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
 using assms
proof(induct L2 arbitrary: S L1, simp)
 case (Cons a L2)
 then show ?case
   unfolding fold.simps(2) comp-apply
   using list-to-rel-mono app-if-blue-else-add-end.simps
   by (metis add-set-list-tuple.simps prod.collapse snd-conv)
qed
lemma fold-app-mono-rel2:
 assumes (x,y) \in list\text{-}to\text{-}rel\ L2
 shows (x,y) \in list-to-rel (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
```

```
using assms
 by (simp add: fold-app-mono list-to-rel-mono2)
lemma fold-app-app-rel:
 assumes x \in set L1
   and y \in set L2
 shows (x,y) \in list-to-rel (snd (fold (app-if-blue-else-add-end G k) L2 (S,L1)))
 using assms
proof(induct L2 arbitrary: S L1, simp)
 case (Cons a L2)
 then show ?case
   unfolding fold.simps(2) comp-apply
   using list-to-rel-append app-if-blue-else-add-end.simps
  by (metis Un-iff add-set-list-tuple.simps fold-app-mono-rel set-ConsD set-append)
qed
lemma chosen-max-tip:
 assumes blockDAG G
 assumes x = snd ( choose-max-blue-set (map (\lambda i. (OrderDAG (reduce-past G i)
      (sorted-list-of-set\ (tips\ G))))
 shows x \in set (sorted-list-of-set (tips G)) and x \in tips G
proof -
 interpret bD: blockDAG using assms by auto
 obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
  (sorted-list-of-set (tips G))) using blockDAG.tips-exist by auto
 have mm: choose-max-blue-set pp \in set \ pp \ using \ pp-in choose-max-blue-avoid-empty
     bD.tips-finite
     list.map-disc-iff sorted-list-of-set-eq-Nil-iff bD.tips-not-empty
   by (metis (mono-tags, lifting))
 then have kk: snd (choose-max-blue-set pp) \in set (map snd pp)
 have mm2: \bigwedge L. (map \ snd \ (map \ (\lambda i. \ ((OrderDAG \ (reduce-past \ G \ i) \ k) \ , \ i)) \ L))
= L
 proof -
   \mathbf{fix} L
   show map snd (map (\lambda i. (OrderDAG (reduce-past G i) k, i)) L) = L
   \mathbf{proof}(induct\ L)
     case Nil
     then show ?case by auto
   next
     case (Cons\ a\ L)
     then show ?case by auto
   qed
 qed
 have set (map \ snd \ pp) = set (sorted-list-of-set (tips G))
   using mm2 pp-in by auto
 then show x \in set (sorted-list-of-set (tips G)) using pp-in assms(2) kk by blast
```

```
then show x \in tips G
   using bD.tips-finite sorted-list-of-set(1) kk assms pp-in by auto
lemma chosen-map-simps1:
  assumes x \in set \ (map \ (\lambda i. \ (P \ i, \ i)) \ L)
 shows fst x = P (snd x)
 using assms
\mathbf{proof}(induct\ L,\ auto)\ \mathbf{qed}
lemma chosen-map-simps:
 assumes blockDAG G
 assumes x = map \ (\lambda i. \ (OrderDAG \ (reduce-past \ G \ i) \ k, \ i))
      (sorted-list-of-set\ (tips\ G))
 shows snd (choose-max-blue-set x) \in set (sorted-list-of-set (tips G))
   and snd (choose-max-blue-set x) \in tips G
   and set (map \ snd \ x) = set \ (sorted-list-of-set \ (tips \ G))
   and choose\text{-}max\text{-}blue\text{-}set\ x\in set\ x
   and \neg blockDAG.is-genesis-node G (snd (choose-max-blue-set x)) \Longrightarrow
  blockDAG (reduce-past G (snd (choose-max-blue-set x)))
  and OrderDAG (reduce-past G (snd (choose-max-blue-set x))) k = fst (choose-max-blue-set
x)
proof -
 interpret bD: blockDAG using assms(1) by auto
 obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i))
  (sorted-list-of-set (tips G))) using blockDAG.tips-exist by auto
 have mm: choose-max-blue-set pp \in set \ pp \ using \ pp-in \ choose-max-blue-avoid-empty
     bD.tips-finite
     list.map-disc-iff sorted-list-of-set-eq-Nil-iff bD.tips-not-empty
   by (metis (mono-tags, lifting))
  then have kk: snd (choose-max-blue-set pp) \in set (map snd pp)
   by auto
  have seteq: set (map \ snd \ pp) = set \ (sorted-list-of-set \ (tips \ G))
   using map-snd-map pp-in by auto
 then show snd (choose-max-blue-set x) \in set (sorted-list-of-set (tips G))
   using pp-in assms(2) kk by blast
  then show tip: snd (choose\text{-}max\text{-}blue\text{-}set x) \in tips G
   using bD.tips-finite sorted-list-of-set(1) kk pp-in by auto
 show set (map \ snd \ x) = set \ (sorted-list-of-set \ (tips \ G))
   using map-snd-map assms(2)
   by simp
  then show choose-max-blue-set x \in set \ x \ using \ seteq \ pp-in \ assms(2)
     mm by blast
 show OrderDAG (reduce-past\ G\ (snd\ (choose-max-blue-set\ x)))\ k = fst\ (choose-max-blue-set\ x)
   by (metis (no-types) assms(2) chosen-map-simps1 mm pp-in)
 assume \neg blockDAG.is-genesis-node G (snd (choose-max-blue-set x))
```

```
then show blockDAG (reduce-past G (snd (choose-max-blue-set x))) using tip\ bD.reduce-past-dagbased bD.tips-in-verts subsetD by metis qed
```

5.2.6 OrderDAG soundness

```
lemma Verts-in-OrderDAG:
 assumes blockDAG G
   and x \in verts G
 shows x \in set (snd (OrderDAG G k))
 using assms
\mathbf{proof}(induct\ G\ k\ arbitrary:\ x\ rule:\ OrderDAG.induct)
 case (1 G k x)
 then have bD: blockDAG G by auto
 assume x-in: x \in verts G
 then consider (cD1) card (verts G) = 1 (cDm) card (verts G) \neq 1 by auto
 then show x \in set (snd (OrderDAG G k))
 proof(cases)
   case (cD1)
   then have set (snd (OrderDAG G k)) = \{genesis-nodeAlt G\}
     using 1 OrderDAG.simps by auto
   then show ?thesis using x-in bD cD1
      genesis-nodeAlt-sound blockDAG.is-genesis-node.simps
     using 1
     by (metis\ card-1-singletonE\ singletonD)
 next
   case (cDm)
   then show ?thesis
   proof -
    obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
     (sorted-list-of-set (tips G))) using blockDAG.tips-exist by auto
     then have tt2: snd (choose-max-blue-set pp) \in tips G
      using chosen-map-simps bD
      by blast
     show ?thesis
     proof(rule blockDAG.tips-cases)
      show blockDAG G using bD by auto
      show snd (choose-max-blue-set pp) \in tips G using tt2 by auto
      show x \in verts \ G  using x-in by auto
     next
      assume as1: x = snd (choose-max-blue-set pp)
      obtain fCur where fcur-in: fCur = add-set-list-tuple (choose-max-blue-set
pp
        by auto
      have x \in set (snd(fCur))
        {\bf unfolding} \ as 1 \ {\bf using} \ \ add\text{-}set\text{-}list\text{-}tuple.simps \ fcur\text{-}in
          add\text{-}set\text{-}list\text{-}tuple.cases\ snd\text{-}conv\ insertI1\ snd\text{-}conv
         by (metis (mono-tags, hide-lams) Un-insert-right fst-conv list.simps(15)
```

```
set-append)
       then have x \in set (snd (fold (app-if-blue-else-add-end G k)
                (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set
(pp)))))) (fCur))
         using fold-app-mono1 surj-pair
         \mathbf{by} (metis)
       then show ?thesis unfolding pp-in fcur-in using 1 OrderDAG.simps cDm
         by (metis (mono-tags, lifting))
     next
       assume anti: x \in anticone \ G \ (snd \ (choose-max-blue-set \ pp))
      obtain ttt where ttt-in: ttt = add-set-list-tuple (choose-max-blue-set pp) by
auto
       have x \in set (snd (fold (app-if-blue-else-add-end G k)
               (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set
pp)))))
         using pp-in sorted-list-of-set(1) anti bD subs(1)
           DAG.anticon-finite fold-app-mono2 surj-pair top-sort-con by metis
       then show x \in set (snd (OrderDAG G k)) using OrderDAG.simps pp-in
bD cDm ttt-in 1
         by (metis (no-types, lifting) map-eq-conv)
     next
       assume as2: x \in past-nodes G (snd (choose-max-blue-set pp))
       then have pas: x \in verts (reduce-past G (snd (choose-max-blue-set pp)))
         using reduce-past.simps induce-subgraph-verts by auto
       have cd1: card (verts G) > 1 using cDm \ bD
         using blockDAG.blockDAG-size-cases by blast
      have (snd\ (choose-max-blue-set\ pp)) \in set\ (sorted-list-of-set\ (tips\ G)) using
tt2
           digraph.tips-finite bD subs sorted-list-of-set(1)
         by blast
       moreover
       have blockDAG (reduce-past G (snd (choose-max-blue-set pp))) using
           blockDAG.reduce-past-dagbased bD tt2 blockDAG.tips-unequal-gen
           cd1 tips-def CollectD by metis
       ultimately have bass:
         x \in set ((snd (OrderDAG (reduce-past G (snd (choose-max-blue-set pp))))))
k)))
         using pp-in 1 cDm tt2 pas by metis
       then have in-F: x \in set (snd (fst ((choose-max-blue-set pp))))
         using x-in chosen-map-simps(6) pp-in
         using bD by fastforce
       then have x \in set (snd (fold (app-if-blue-else-add-end G k)
       (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone}\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set\ pp)))))
        (fst((choose-max-blue-set\ pp)))))
         by (metis fold-app-mono1 in-F prod.collapse)
       moreover have OrderDAG \ G \ k = (fold \ (app-if-blue-else-add-end \ G \ k)
       (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone}\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set\ pp)))))
       (add\text{-}set\text{-}list\text{-}tuple\ (choose\text{-}max\text{-}blue\text{-}set\ pp))) using cDm\ 1\ OrderDAG.simps
```

```
pp-in
         by (metis (no-types, lifting) map-eq-conv)
       then show x \in set (snd (OrderDAG G k))
         by (metis (no-types, lifting) add-set-list-tuple-mono fold-app-mono1
            in-F prod.collapse subset-code(1))
     qed
   qed
 qed
qed
lemma OrderDAG-in-verts:
 assumes x \in set (snd (OrderDAG G k))
 shows x \in verts G
 using assms
\mathbf{proof}(induction\ G\ k\ arbitrary:\ x\ rule:\ OrderDAG.induct)
  case (1 G k x)
 consider (inval) \neg blockDAG \ G | (one) \ blockDAG \ G \land
  card\ (verts\ G) = 1\ |\ (val)\ blockDAG\ G\ \land
  card (verts G) \neq 1  by auto
  then show ?case
 proof(cases)
   case inval
   then show ?thesis using 1 by auto
  \mathbf{next}
   case one
  then show ?thesis using OrderDAG.simps 1 genesis-nodeAlt-one-sound blockDAG.is-genesis-node.simps
     using empty-set list.simps(15) singleton-iff sndI by fastforce
 next
   case val
   then show ?thesis
   proof
     have bD: blockDAG G using val by auto
       obtain M where M-in:M = choose-max-blue-set (map (\lambda i. (OrderDAG)
(reduce-past\ G\ i)\ k,\ i))
      (sorted-list-of-set\ (tips\ G))) by auto
    obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i)))
      (sorted-list-of-set\ (tips\ G))) using blockDAG.tips-exist by auto
     have set (snd (OrderDAG G k)) =
       set (snd (fold (app-if-blue-else-add-end G k) (top-sort G (sorted-list-of-set
(anticone \ G \ (snd \ M))))
     (add-set-list-tuple M))) unfolding M-in val using OrderDAG.simps val
       by (metis (mono-tags, lifting))
     then have set (snd (OrderDAG G k))
  = set \ (top\text{-}sort \ G \ (sorted\text{-}list\text{-}of\text{-}set \ (anticone} \ G \ (snd \ M)))) \cup set \ (snd \ (add\text{-}set\text{-}list\text{-}tuple)) \cup set \ (snd \ (add\text{-}set\text{-}list\text{-}tuple))
M))
       using fold-app-mono-ex
       by (metis eq-snd-iff)
      then consider (ac) x \in set (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd
```

```
M))))
      |(co)| x \in set (snd (add-set-list-tuple M))
      using 1 by auto
    then show x \in verts \ G \ proof(cases)
      case ac
      then show ?thesis using top-sort-con DAG.anticone-in-verts val
         sorted-list-of-set(1) subs(1)
        by (metis\ DAG.anticon-finite\ subset D)
    next
      case co
      then consider (ma) x = snd M \mid (nma) x \in set (snd(fst(M)))
        using add-set-list-tuple.simps
        by (metis (no-types, lifting) Un-insert-right append-Nil2 insertE
           list.simps(15) prod.collapse set-append sndI)
      then show ?thesis proof(cases)
        case ma
        then show ?thesis unfolding M-in using bD
           chosen-map-simps(2) digraph.tips-in-verts subs
         by blast
      next
         have mm: choose-max-blue-set pp \in set pp unfolding pp-in using bD
chosen-map-simps(4)
      by (metis (mono-tags, lifting) Nil-is-map-conv choose-max-blue-avoid-empty)
        case nma
        then have x \in set (snd (OrderDAG (reduce-past G (snd M)) k))
          unfolding M-in choose-max-blue-avoid-empty blockDAG.tips-not-empty
bD
         by (metis (no-types, lifting) ex-map-conv fst-conv mm pp-in snd-conv)
      then have x \in verts (reduce-past G (snd M)) using 1 val chosen-map-simps
M-in pp-in
           sorted-list-of-set(1) digraph.tips-finite subs\ bD
         by blast
         then show x \in verts \ G using reduce-past.simps induce-subgraph-verts
past-nodes.simps
         by auto
      qed
    qed
   qed
 qed
qed
lemma OrderDAG-length:
 shows blockDAG G \Longrightarrow length (snd (OrderDAG G k)) = card (verts G)
\mathbf{proof}(induct\ G\ k\ rule:\ OrderDAG.induct)
 case (1 G k)
 then show ?case proof (cases G rule: OrderDAG-casesAlt)
   case ntB
```

```
then show ?thesis using 1 by auto
 \mathbf{next}
   case one
   then show ?thesis using OrderDAG.simps by auto
 next
   case more
   show ?thesis using 1
   proof -
     have bD: blockDAG G using 1 by auto
     obtain ma where pp-in: ma = (choose-max-blue-set (map (\lambda i. (OrderDAG
(reduce-past\ G\ i)\ k,\ i))
     (sorted-list-of-set\ (tips\ G))))
      by (metis)
     then have backw: OrderDAG G k = fold (app-if-blue-else-add-end G k)
           (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ ma))))
           (add-set-list-tuple ma) using OrderDAG.simps pp-in more
      by (metis (mono-tags, lifting) less-numeral-extra(4))
    have tt: snd \ ma \in set \ (sorted-list-of-set \ (tips \ G)) \ using \ pp-in \ chosen-max-tip
        more by auto
     have ttt: snd ma \in tips G  using chosen-max-tip(2)  pp-in
        more by auto
   then have bD2: blockDAG (reduce-past G (snd ma)) using blockDAG.tips-unequal-gen
bD more
        blockDAG.reduce-past-dagbased bD tips-def
      by fastforce
     then have length (snd (OrderDAG (reduce-past G (snd ma)) k))
               = card (verts (reduce-past G (snd ma)))
      using 1 tt bD2 more by auto
     then have length (snd (fst ma))
               = card (verts (reduce-past G (snd ma)))
      using bD chosen-map-simps(6) pp-in
      by fastforce
    then have length (snd (add-set-list-tuple ma)) = 1 + card (verts (reduce-past))
G (snd ma)))
      by (metis add-set-list-tuple-length plus-1-eq-Suc prod.collapse)
     then show ?thesis unfolding backw
      using subs(1) DAG.verts-size-comp ttt
     add.assoc\ add.commute\ bD\ fold-app-length\ length-sorted-list-of-set\ top-sort-len
      by (metis (full-types))
   qed
 qed
qed
\mathbf{lemma} OrderDAG-total:
 assumes blockDAG G
 shows set (snd (OrderDAG G k)) = verts G
 using Verts-in-OrderDAG OrderDAG-in-verts assms(1)
 by blast
```

```
lemma OrderDAG-distinct:
 assumes blockDAG G
 shows distinct (snd (OrderDAG G k))
 using OrderDAG-length OrderDAG-total
   card	ext{-}distinct\ assms
 by metis
end
theory Extend-blockDAG
 imports blockDAG
begin
     Extend blockDAGs
6.1 Definitions
locale \ Append-One = blockDAG +
 fixes G-A::('a,'b) pre-digraph (structure)
   and app::'a
 assumes bD-A: blockDAG G-A
   and app-in: app \in verts G-A
   and app-notin: app \notin verts G
   and \mathit{GG-A}: \mathit{G} = \mathit{pre-digraph.del-vert} \; \mathit{G-A} \; \mathit{app}
   and new-node: \forall b \in verts \ G\text{-}A. \ \neg \ b \rightarrow_{G\text{-}A} \ app
locale Append = blockDAG +
 \mathbf{fixes} \ \textit{G-A}{::}('a,'b) \ \textit{pre-digraph} \ (\mathbf{structure})
   and A::'a set
 assumes bD-A: blockDAG G-A
   and A-union: verts G-A = verts G \cup A
   and A-inter: A \cap verts \ G = \{\}
   and GG-A: G = G-A \upharpoonright (verts G-A - A)
   and new-nodes: \forall a \in A. \ \forall b \in verts \ G. \ \neg \ b \rightarrow_{G-A} a
locale Honest-Append-One = Append-One +
 assumes ref-tips: \forall t \in tips \ G. \ app \rightarrow_{G-A} t
locale Honest-Append = Append +
```

assumes ref-tips: $\forall a \in A. \ \forall t \in tips \ G. \ a \rightarrow^+_{G-A} t$

fixes G-AB :: ('a, 'b) pre-digraph (structure)

 ${\bf assumes}\ app\text{-}two\text{:}Append\text{-}One\ G\text{-}A\ G\text{-}AB\ dis$

and dis-n-app: $\neg dis \rightarrow_{G-AB} app$

and dis::'a

 ${f locale}\ Append-One-Honest-Dishonest = Honest-Append-One +$

```
locale Append-Honest-Dishonest = Honest-Append +
fixes G-AB :: ('a, 'b) pre-digraph (structure)
and B::'a set
assumes app-two:Append G-A G-AB B
and card B ≤ card A
```

6.2 Append-One Lemmas

```
lemma (in Append-One) new-node-alt:
 (\forall \, b. \, \neg \, b \rightarrow_{G\text{-}A} \, app)
proof(auto)
 \mathbf{fix} \ b
 assume a2: b \rightarrow_{G\text{-}A} app
 then have b \in verts \ G\text{-}A \ using \ wf\text{-}digraph.adj\text{-}in\text{-}verts(1) \ bD\text{-}A \ subs(4) by metis
 then show False using new-node a2 by auto
qed
\mathbf{lemma} \ (\mathbf{in} \ \mathit{Append-One}) \ \mathit{append-subverts-leq} :
  verts \ G \subseteq verts \ G-A
 unfolding GG-A pre-digraph.verts-del-vert by auto
lemma (in Append-One) append-subverts:
  verts \ G \subset verts \ G-A
 unfolding GG-A pre-digraph.verts-del-vert using app-in app-notin by auto
lemma (in Append-One) append-verts:
  verts \ G-A = verts \ G \cup \{app\}
 unfolding GG-A pre-digraph.verts-del-vert using app-in app-notin by auto
lemma (in Append-One) append-verts-in:
 assumes a \in verts G
 shows a \in verts G-A
 unfolding append-verts
 by (simp add: assms)
lemma (in Append-One) append-verts-diff:
 shows verts G = verts G - A - \{app\}
 using append-verts app-in app-notin by auto
lemma (in Append-One) append-verts-cases:
 assumes a \in verts G-A
 obtains (a\text{-}in\text{-}G) a \in verts G \mid (a\text{-}eq\text{-}app) a = app
 using append-verts assms by auto
lemma (in Append-One) append-subarcs-leq:
  arcs \ G \subseteq arcs \ G-A
 unfolding GG-A pre-digraph.arcs-del-vert using app-in app-notin
  using wf-digraph-def subs Append-One-axioms by blast
```

```
lemma (in Append-One) append-subarcs:
 arcs \ G \subset arcs \ G-A
proof
 show arcs G \subseteq arcs G-A using append-subarcs-leq by simp
  obtain gen where gen-rec: app \rightarrow^+_{G-A} gen using bD-A blockDAG.genesis
app-in
     app-notin append-subverts
     genesis-in-verts new-node psubsetD tranclE new-node-alt
   by (metis (mono-tags, lifting))
 then obtain walk where walk-in: pre-digraph.awalk G-A app walk gen \land walk
   using wf-digraph.reachable1-awalk bD-A subs(4)
   by metis
 then obtain e where \exists es. \ walk = e \# es
   by (metis list.exhaust)
 then have e-in: e \in arcs G-A \wedge tail G-A e = app
   using wf-digraph.awalk-simps(2)
     bD-A subs(4) walk-in
   by metis
 then have e \notin arcs \ G  using wf-digraph-def app-notin
     blockDAG-axioms subs(4) GG-A pre-digraph.tail-del-vert
 then show arcs G \neq arcs G-A using e-in by auto
qed
lemma (in Append-One) append-head:
 head G-A = head G
 using GG-A
 by (simp add: pre-digraph.head-del-vert)
lemma (in Append-One) append-tail:
 tail G-A = tail G
 using GG-A
 by (simp add: pre-digraph.tail-del-vert)
lemma (in Append-One) append-subgraph:
 subgraph G G-A
 using GG-A blockDAG-axioms subs bD-A
 by (simp add: subs wf-digraph.subgraph-del-vert)
lemma (in Append-One) append-induce-subgraph:
 G-A \upharpoonright (verts \ G) = G
proof -
 have aaa: arcs G = \{e \in arcs \ G - A. \ tail \ G - A \ e \in verts \ G \land head \ G - A \ e \in verts \}
   unfolding GG-A pre-digraph.arcs-del-vert pre-digraph.verts-del-vert
   using append-verts bD-A subs(4) wf-digraph-def
```

```
by (metis (no-types, lifting) Diff-insert-absorb Un-empty-right
       Un-insert-right app-notin insertE)
 show G-A \upharpoonright verts G = G
   unfolding induce-subgraph-def
   using and app-notin append-head append-tail
     arcs-del-vert del-vert-def del-vert-not-in-graph verts-del-vert
   by (metis (no-types, lifting))
qed
lemma (in Append-One) append-induced-subgraph:
  induced\text{-}subgraph\ G\ G\text{-}A
proof -
 interpret W: blockDAG G-A using bD-A by auto
 show ?thesis
   using W.induced-induce append-induce-subgraph append-subverts psubsetE
   by (metis)
qed
lemma (in Append-One) append-not-reached:
 \forall b \in verts \ G-A. \ \neg \ b \rightarrow^+_{G-A} \ app
 using tranclE wf-digraph.reachable1-in-verts(2) bD-A subs(4) new-node
 by metis
lemma (in Append-One) append-not-reached-all:
 \forall b. \neg b \rightarrow^+_{G-A} app
 using tranclE\ bD\text{-}A\ new\text{-}node\text{-}alt
 by metis
lemma (in Append-One) append-not-headed:
 \forall b \in arcs \ G-A. \ \neg \ head \ G-A \ b = app
proof(rule ccontr, safe)
 \mathbf{fix} \ b
 assume b \in arcs G-A
   and app = head G-A b
 then have tail G-A b \rightarrow_{G-A} app
   unfolding arcs-ends-def arc-to-ends-def
   by auto
 then show False
   by (simp add: new-node-alt)
lemma (in Append-One) dominates-preserve:
 assumes b \in verts G
 shows b \rightarrow_{G-A} c \longleftrightarrow b \rightarrow_{G} c
proof
 assume b \to_G c
```

```
then show b \rightarrow_{G-A} c
   {\bf using} \ append-subgraph \ pre-digraph.adj-mono
   by metis
\mathbf{next}
  have b-napp: b \neq app using assms(1) append-verts-diff by auto
 assume bc: b \rightarrow_{G-A} c
 then have c-napp: c \neq app using new-node-alt by auto
 show b \rightarrow_G c unfolding arcs-ends-def arc-to-ends-def
   using GG-A pre-digraph.arcs-del-vert bc b-napp c-napp
   using append-head append-tail by fastforce
qed
lemma (in Append-One) reachable1-preserve:
 assumes b \in verts G
 \mathbf{shows}\ (b \to^+_{G\text{-}A} c) \longleftrightarrow b \to^+ c
proof(standard)
 assume b \rightarrow^+ c
 then show b \rightarrow^+_{G-A} c
   using trancl-mono append-subgraph arcs-ends-mono
   by (metis)
\mathbf{next}
 interpret B2: blockDAG G-A using bD-A by simp
 assume c-re: b \rightarrow^+_{G-A} c
 show b \rightarrow^+ c
   using c-re
 proof(cases rule: trancl-induct)
   case (base\ y)
   then have b \rightarrow_G y using dominates-preserve assms(1) by auto
   then show b \rightarrow^+ y by auto
 next
   fix y z
   assume b-y: b \rightarrow^+ y
   then have y-in: y \in verts \ G \ using \ reachable 1-in-verts(2)
     by (metis)
   assume y \rightarrow_{G\text{-}A} z
   then have y \to_G z using dominates-preserve y-in by auto then show b \to^+ z using b-y by auto
 qed
qed
lemma (in Append-One) append-past-nodes:
 assumes a \in verts G
 shows past-nodes G a = past-nodes G-A a
 unfolding past-nodes.simps append-verts using
   assms reachable1-preserve append-not-reached-all by auto
lemma (in Append-One) append-is-tip:
  is-tip G-A app
```

```
unfolding is-tip.simps
  using app-in new-node append-not-reached
 by metis
lemma (in Append-One) append-in-tips:
  app \in tips G-A
 unfolding tips-def
  using app-in new-node append-is-tip CollectI
 by metis
context Append-One
begin
interpretation B2: blockDAG G-A using bD-A by simp
lemma append-tips:
  tips G-A = tips <math>G - \{v. (app \rightarrow^+_{G-A} v)\} \cup \{app\}
 unfolding B2.tips-alt tips-alt append-verts is-tip.simps
 using append-in-tips
proof(safe, auto simp: append-not-reached-all reachable1-preserve) qed
end
lemma (in Append-One) append-tips-subset:
  tips G-A \subseteq tips G \cup \{app\}
  using append-tips
 by auto
lemma (in Append-One) append-future:
 assumes a \in verts G
 shows future-nodes G a = future-nodes G-A a - \{app\}
 unfolding future-nodes.simps append-verts
proof(auto simp: assms reachable1-preserve app-notin) qed
lemma (in Append-One) append-greater-1:
  card (verts G-A) > 1
 unfolding append-verts
 using app-notin no-empty-blockDAG by auto
lemma (in Append-One) append-reduce-some:
 assumes a \in verts G
 shows reduce-past G-A a = reduce-past G a
 unfolding reduce-past.simps past-nodes.simps append-head append-tail
   induce-subgraph-def append-verts
\mathbf{proof}(standard, simp, standard)
 \mathbf{have}\ a \neq \mathit{app}\ \mathbf{using}\ \mathit{assms}(\mathit{1})\ \mathit{append-verts-diff}\ \mathbf{by}\ \mathit{auto}
 then show vv: \{b. (b = app \lor b \in verts G) \land a \rightarrow^+_{G-A} b\} = \{b \in verts G. a\}
   using reachable1-preserve assms reachable1-in-verts(2) by blast
 show \{e \in arcs \ G - A.
```

```
(tail\ G\ e = app \lor tail\ G\ e \in verts\ G) \land
          a \rightarrow^+_{G-A} tail \ G \ e \land (head \ G \ e = app \lor head \ G \ e \in verts \ G) \land a \rightarrow^+_{G-A}
head G e \} =
        \{e \in arcs \ G. \ tail \ G \ e \in verts \ G \land a \rightarrow^+ tail \ G \ e \land head \ G \ e \in verts \ G \land a \}
\rightarrow+ head G e}
       {\bf unfolding} \ vv \ GG-A \ pre-digraph.arcs-del-vert \ {\bf using} \ append-not-reached-all
       using GG-A append-head append-tail assms reachable 1-preserve by fastforce
qed
lemma blockDAG-induct-append[consumes 1, case-names base step]:
   assumes fund: blockDAG G
  assumes cases: \bigwedge V::('a,'b) pre-digraph. blockDAG V \Longrightarrow P (blockDAG.gen-graph
       \bigwedge G G-A::('a,'b) pre-digraph. \bigwedge app::'a.
     Append-One G G-A app
    \implies (P G)
   \implies P G-A
   shows P G
    using assms
proof(induct G rule: blockDAG-induct)
    case (base\ V)
    then show ?case by auto
\mathbf{next}
    case (step H)
   show ?case proof(cases H rule: blockDAG.blockDAG-cases2, simp add: step)
     then have blockDAG (blockDAG.gen-graph H) using step(2) blockDAG.gen-graph-sound
       then show ?thesis using step(3) 2 by metis
   next
       case 3
       then obtain Ha and b where bD-Ha: blockDAG Ha and b-in: b \in verts H
             and del-v: Ha = pre-digraph.del-vert H b and nre: (\forall c \in verts \ H. \ (c, b) \notin vert \ del-vert \ del
(arcs-ends\ H)^+)
           by auto
       then have b \notin verts Ha unfolding del-v pre-digraph.verts-del-vert by auto
     then have Append-One Ha H b unfolding Append-One-def Append-One-axioms-def
           using bD-Ha b-in del-v nre step.hyps(2) by auto
       then show ?thesis using step
           using bD-Ha b-in del-v by auto
   qed
qed
lemma (in blockDAG) blockDAG-Append-exists:
   shows card (verts G) = 1 \vee (\exists G2 \ v. \ Append-One \ G2 \ G \ v)
proof(cases rule: blockDAG-cases2)
   case base
```

```
then show ?thesis using gen-graph-all-one by auto
next
 case more
 then obtain G2 and b where bD-G2: blockDAG G2 and b-in: b \in verts G
      and del-v: G2 = pre-digraph.del-vert G b and nre: (\forall c \in verts G. (c, b) \notin verts G. (c, b))
(arcs-ends G)^+)
     by auto
   then have b \notin verts \ G2 unfolding del-v \ pre-digraph.verts-del-vert by auto
  then have Append-One G2 G b unfolding Append-One-def Append-One-axioms-def
     using bD-G2 b-in del-v nre blockDAG-axioms by auto
 then show ?thesis by auto
qed
sublocale Append-One \subseteq Append \ G \ G-A \ \{app\}
 using Append-One-axioms
 unfolding Append-One-def Append-One-axioms-def
 Append-def Append-axioms-def
 using append-induce-subgraph append-verts by auto
lemma A1-sub:
 assumes Append-One G G-A app
 shows Append \ G \ G-A \ \{app\}
proof -
 interpret A1: Append-One G G-A app using assms by simp
 show ?thesis using A1.Append-axioms by simp
qed
6.3
      Honest-Append-One Lemmas
\mathbf{lemma} \ (\mathbf{in} \ \mathit{Honest-Append-One}) \ \mathit{reaches-all} :
 \forall v \in verts \ G. \ app \rightarrow^+_{G-A} v
proof
 \mathbf{fix} \ v
 assume v-in: v \in verts G
 consider is-tip G v \mid \neg is-tip G v by auto
 then show app \rightarrow^+_{G-A} v
 proof(cases)
   case 1
   then show ?thesis using ref-tips v-in is-tip.simps r-into-trancl' reached-by
     by (metis)
 next
   case 2
   then have v \notin tips \ G unfolding tips-def by simp
   then obtain t where t-in: t \in tips \ G \land t \rightarrow^+_G v
     using reached-by-tip v-in by auto
  then have t \to^+_{G-A} v using v-in append-subgraph arcs-ends-mono transl-mono
     by (metis)
```

```
moreover have app \rightarrow^+_{G-A} t
     using ref-tips v-in r-into-trancl' t-in
     by (metis)
   ultimately show ?thesis using trancl-trans by auto
 ged
\mathbf{qed}
lemma (in Honest-Append-One) append-past-all:
  past-nodes G-A app = verts G
 unfolding past-nodes.simps append-verts
 using reaches-all DAG.cycle-free bD-A subs
 by fastforce
lemma (in Honest-Append-One) append-in-future:
 assumes a \in verts G
 shows app \in future\text{-}nodes G\text{-}A \ a
 unfolding future-nodes.simps append-verts
  using assms
proof(auto simp: reaches-all reachable1-preserve) qed
lemma (in Honest-Append-One) append-is-only-tip:
  tips \ G-A = \{app\}
proof safe
 show app \in tips G-A using append-in-tips by simp
 assume as1: x \in tips G-A
 then have x-in: x \in verts \ G-A \ using \ digraph.tips-in-verts \ bD-A \ subs \ by \ auto
 show x = app
  \mathbf{proof}(rule\ ccontr)
   assume x \neq app
   then have x \in verts \ G  using append-verts x-in by auto
   then have app \rightarrow^+_{G-A} x using reaches-all by auto
   then have \neg is-tip G-A x unfolding is-tip.simps using app-in by auto
   then show False using as1 CollectD unfolding tips-def by auto
 qed
qed
lemma (in Honest-Append-One) reduce-append:
  reduce-past G-A app = G
  unfolding reduce-past.simps past-nodes.simps
proof -
 have \{b \in verts \ G. \ app \rightarrow^+_{G-A} b\} = verts \ G
   using reaches-all by auto
 moreover have \{b \in verts \ G. \ app \rightarrow^+_{G-A} b\} = \{b \in verts \ G-A. \ app \rightarrow^+_{G-A} b\}
   {\bf unfolding} \ {\it append-verts} \ {\bf using} \ {\it append-is-tip} \ {\bf by} \ {\it fastforce}
  ultimately have \{b \in verts \ G\text{-}A. \ app \rightarrow^+_{G\text{-}A} \ b\} = verts \ G \ by \ simp
```

```
then show G-A \upharpoonright \{b \in verts \ G-A. \ app \rightarrow^+_{G-A} b\} = G
   unfolding induce-subgraph-def
   using append-induced-subgraph induced-subgraph-def
    append-head append-tail
   by (metis (no-types, lifting) Collect-cong app-notin arcs-del-vert
      del-vert-def del-vert-not-in-graph verts-del-vert)
qed
lemma (in Honest-Append-One) append-no-anticone:
 anticone \ G-A \ app = \{\}
 unfolding anticone.simps
proof safe
 \mathbf{fix} \ x
 assume x \in verts G-A
   and app \neq x
   and as: (app, x) \notin (arcs\text{-}ends \ G\text{-}A)^+
 then have x \in verts G
   using append-verts by auto
 then have app \rightarrow^+_{G-A} x
   using reaches-all by auto
 then show x \to^+_{G-A} app
   using as by auto
qed
sublocale Honest-Append-One \subseteq Honest-Append G G-A \{app\}
 using Honest-Append-One-axioms Append-axioms
 unfolding Honest-Append-One-def Honest-Append-One-axioms-def
 Honest-Append-def Honest-Append-axioms-def
 by blast
lemma HA1-sub:
 assumes Honest-Append-One G G-A app
 shows Honest-Append G G-A \{app\}
proof -
 interpret HA1: Honest-Append-One G G-A app using assms by simp
 show ?thesis using HA1.Honest-Append-axioms by simp
qed
6.4
      Append More
lemma (in Append) A-finite:
 finite A
 using fin-digraph.finite-verts bD-A subs(3) A-union
 by fastforce
lemma (in Append) append-subverts-leg:
```

```
verts \ G \subseteq verts \ G-A
 using A-union by auto
lemma (in Append) append-verts-in:
 assumes a \in verts G
 shows a \in verts G-A
 unfolding A-union
 by (simp add: assms)
lemma (in Append) append-verts-diff:
 shows verts G-A – A = verts G
 using A-union A-inter by auto
lemma (in Append) append-verts-diff':
 shows verts G = verts G - A - A
 using append-verts-diff by auto
lemma (in Append) GG-A':
 shows G = G - A \upharpoonright (verts \ G)
 unfolding append-verts-diff' using GG-A
 \mathbf{by} \ simp
lemma (in Append) append-verts-cases:
 assumes a \in verts G-A
 obtains (a\text{-}in\text{-}G) a \in verts G \mid (a\text{-}eq\text{-}app) a \in A
 using A-union assms by auto
lemma (in Append) append-verts-elims:
 assumes a \in verts G
 shows a \notin A
 using A-inter assms by auto
lemma (in Append) append-verts-elims':
 assumes a \in A
 shows a \notin verts G
 using A-inter assms by auto
lemma (in Append) append-subarcs-leq:
 arcs \ G \subseteq arcs \ G-A
 using GG-A
 \mathbf{by} \ simp
lemma (in Append) append-arcs-mono:
 assumes x \in arcs G
 shows x \in arcs G-A
 using assms append-subarcs-leq
 by auto
```

```
lemma (in Append) append-head:
 head\ G-A=head\ G
 using GG-A
 by simp
lemma (in Append) append-tail:
  tail G-A = tail G
 using GG-A
 by simp
lemma (in Append) append-head':
 head\ G=head\ G\text{-}A
 using GG-A
 by simp
lemma (in Append) append-tail':
 tail\ G=\ tail\ G\text{-}A
 using GG-A
 by simp
lemma (in Append) append-induced-subgraph:
 induced\text{-}subgraph\ G\ G\text{-}A
proof -
 interpret bD2: blockDAG G-A using bD-A by simp
 show ?thesis
 unfolding GG-A
 \mathbf{using}\ bD2.induced\text{-}induce
 by simp
\mathbf{qed}
lemma (in Append) append-subgraph:
 subgraph \ G \ G-A
 using append-induced-subgraph by auto
lemma (in Append) append-not-reached:
 \forall a \in A. \ \forall b \in verts \ G. \ \neg \ b \rightarrow^+_{G-A} a
 using new-nodes
\mathbf{proof}(safe, simp)
 \mathbf{fix} \ a \ b
 assume a-in: a \in A
 and b-in: b \in verts G
 and ba: b \rightarrow^+_{G-A} a
 show False using ba a-in b-in
 \mathbf{proof}(induct\ rule:\ trancl-induct)
```

```
case (base\ y)
   then show ?thesis using new-nodes by auto
  next
   case (step \ c \ y)
  have c \in verts\ G-A\ using\ step(1)\ bD-A\ subs(4)\ wf-digraph.reachable1-in-verts(2)
     by metis
   then consider c \in A \mid c \in verts \ G  using append-verts-cases by auto
   then show ?thesis proof(cases)
     case 1
     then show ?thesis using step by simp
     next
     case 2
      then show ?thesis using new-nodes step by simp
     qed
 qed
qed
lemma (in Append) dominates-preserve:
 assumes b \in verts G
 \mathbf{shows}\ b \to_{G\text{-}A} c \longleftrightarrow b \to_G c
proof
  assume b \to_G c
 then show b \rightarrow_{G-A} c
   \mathbf{using}\ append-subgraph GG-A dominates-induce-subgraph D
   by metis
\mathbf{next}
 interpret B2: blockDAG G-A using bD-A by simp
 have b-napp: b \in verts \ G \ using \ assms(1) \ append-verts-diff \ by \ auto
 assume bc: b \rightarrow_{G-A} c
 then have c-na: c \notin A using new-nodes b-napp by auto
 have c \in verts G-A
   using B2.reachable1-in-verts(2) bc by auto
 then have c \in verts \ G using c-na unfolding append-verts-diff' by simp
  then show b \rightarrow_G c unfolding arcs-ends-def arc-to-ends-def
   using GG-A bc b-napp append-subarcs-leq
   unfolding append-verts-diff
   using append-head' append-tail' arcs-ends-conv image-cong
     in-arcs-imp-in-arcs-ends\ induce-subgraph-arcs\ mem-Collect-eq\ reachable E
   by (metis (no-types, lifting))
qed
lemma (in Append) reachable1-preserve:
 assumes b \in verts G
 shows (b \rightarrow^+_{G-A} c) \longleftrightarrow b \rightarrow^+ c
proof(standard)
 assume b \rightarrow^+ c
 then show b \to^+_{G-A} c
   using trancl-mono append-subgraph arcs-ends-mono
```

```
by metis
next
 interpret B2: blockDAG G-A using bD-A by simp
 assume c-re: b \rightarrow^+_{G-A} c
 show b \to^+ c
   using c-re
  proof(cases rule: trancl-induct)
   case (base\ y)
   then have b \rightarrow_G y using dominates-preserve assms(1) by auto
   then show b \to^+ y by auto
 next
   fix y z
   assume b-y: b \rightarrow^+ y
   then have y-in: y \in verts \ G \ using \ reachable 1-in-verts (2)
     by (metis)
   assume y \to_{G\text{-}A} z
   then have y \to_G z using dominates-preserve y-in by auto then show b \to^+ z using b-y by auto
 qed
qed
lemma (in Append) append-past-nodes:
 assumes a \in verts G
 shows past-nodes G a = past-nodes G-A a
 unfolding past-nodes.simps A-union using
   assms\ reachable 1-preserve
  using append-not-reached by auto
context Append
begin
interpretation B2: blockDAG G-A using bD-A by simp
lemma (in Append) append-future:
 assumes a \in verts G
 shows future-nodes G a = future-nodes G-A a - A
 unfolding future-nodes.simps A-union
proof(auto simp: assms reachable1-preserve append-verts-elims) qed
lemma (in Append) append-reduce-some:
 assumes a \in verts G
 shows reduce-past G-A a = reduce-past G a
  have rr: \bigwedge c. (a \rightarrow^+_{G-A} c) = (a \rightarrow^+ c) using reachable 1-preserve assms by
 have bb: \{b \in verts \ G\text{-}A.\ a \rightarrow^+_{G\text{-}A}\ b\} = \{b \in verts \ G.\ a \rightarrow^+\ b\} using assms
     reachable1-preserve rr
   using append-not-reached
   using append-verts-diff' by blast
```

```
have G-A \upharpoonright \{b \in verts \ G. \ a \to^+ b\}
= (G-A \upharpoonright verts \ G) \upharpoonright \{b \in verts \ G. \ a \to^+ b\}
unfolding induce-subgraph-def append-head append-tail
proof(standard, simp, safe) qed
then show ?thesis using GG-A unfolding reduce-past.simps past-nodes.simps
bb by auto
qed
end
```

6.5 Honest-Dishonest-Append-One Lemmas

```
lemma (in Append-One-Honest-Dishonest) app-dis-not-reached:
 shows \neg dis \rightarrow^+_{G-AB} app
proof(rule ccontr, cases dis app (arcs-ends G-AB) rule: converse-trancl-induct,
auto)
 \mathbf{fix} \ y
 assume y-d: y \rightarrow_{G-AB} app
 interpret D1: Append-One G-A G-AB dis using app-two by simp
 interpret B3: blockDAG G-AB using D1.bD-A by auto
 have y \in verts \ G\text{-}AB \ using \ y\text{-}d \ B3.wellformed \ by \ auto
 then consider y = dis \mid y \in verts \ G-A \ using \ D1.append-verts \ by \ auto
 then show False
 proof(cases)
   case 1
   then have dis \rightarrow_{G-AB} app using y-d by auto
   then show ?thesis using dis-n-app by auto
 next
   case 2
   then have y \rightarrow^+_{G-A} app using D1.reachable1-preserve y-d by blast
   then show ?thesis using append-not-reached-all by auto
 qed
qed
lemma (in Append-One-Honest-Dishonest) app-dis-only-tips:
 tips \ G-AB = \{app, dis\}
proof safe
 interpret A2: Append-One G-A G-AB dis using app-two by auto
 show dis \in tips \ G-AB using A2.append-in-tips by simp
 show app \in tips G-AB unfolding tips-def is-tip.simps A2.append-verts
   using app-dis-not-reached reachable1-preserve append-not-reached
     A2.reachable1-preserve app-in
   by simp
 \mathbf{fix} \ x
 assume as1: x \in tips G-AB
   and app-x: x \neq app
 have x \notin verts G
 proof
   assume x-vG: x \in verts G
```

```
then have x \in verts G-A using append-verts by auto
    then have app \rightarrow^+_{G-AB} x using A2.reachable1-preserve reaches-all x-vG
app-in
    by simp
   then have x \notin tips G-AB
     by (metis A2.append-verts-in app-in is-tip.elims(2) tips-tips)
   then show False using as1 by simp
 qed
 then show x = dis unfolding
     append-verts-diff A2.append-verts-diff using app-x as1 tip-in-verts by force
qed
\mathbf{lemma} \ (\mathbf{in} \ \mathit{Append-One-Honest-Dishonest}) \ \mathit{app-not-dis} :
 app \neq dis
 using app-in Append-One.app-notin app-two by metis
lemma (in Append-One-Honest-Dishonest) app-in2:
 app \in verts G-AB
 using app-in Append-One.append-verts-in app-two by metis
context Append-One-Honest-Dishonest
begin
interpretation A2: Append-One G-A G-AB dis using local.app-two by auto
lemma app2-head:
 head G-AB = head G  using append-head A2.append-head by simp
lemma app2-tail:
 tail\ G-AB=tail\ G\ using\ append-tail\ A2.append-tail\ by\ simp
lemma app-in-future 2:
 assumes a \in verts G
 shows app \in future\text{-}nodes G\text{-}AB a
 unfolding future-nodes.simps A2.append-verts
 using app-in A2.reachable1-preserve app-in2 assms reaches-all
 by simp
lemma append-past-nodes2:
 past-nodes G-AB app = verts G
 using app-in A2.append-past-nodes append-past-all
 by auto
lemma reachable1-preserve2:
 assumes b \in verts G
 shows (b \rightarrow^+_{G-AB} c) \longleftrightarrow b \rightarrow^+ c
```

using A2.reachable1-preserve append-verts-in reachable1-preserve assms by auto **lemma** reaches-all-in-G: assumes $b \in verts G$ shows $app \rightarrow^+_{G-AB} b$ using assms(1) reaches-all A2.reachable1-preserve app-in by simplemma append-induce-subgraph 2: G- $AB \upharpoonright (verts \ G) = G$ using append-induce-subgraph A2.append-induce-subgraph unfolding append-verts by (metis A2.append-past-nodes Append-One.append-reduce-some app-in app-two append-past-all reduce-past.elims) **lemma** append-induced-subgraph2: induced-subgraph G G-AB using wf-digraph.induced-induce A2.bD-A subs(4) append-induce-subgraph2 append-subverts-leg A2.append-subverts-leg subset-trans by metis lemma reduce-append2: reduce-past G-AB app = Gunfolding reduce-past.simps past-nodes.simps proof - $\begin{array}{l} \textbf{have} \ \{b \in \textit{verts} \ \textit{G.} \ \textit{app} \rightarrow^+_{\textit{G-AB}} b\} = \textit{verts} \ \textit{G} \\ \textbf{using} \ \textit{reaches-all-in-G} \ \textbf{by} \ \textit{auto} \end{array}$ $\mathbf{moreover\ have}\ \{b\in\mathit{verts}\ G.\ \mathit{app}\to^+_{G\text{-}AB}\ b\}=\{b\in\mathit{verts}\ G\text{-}AB.\ \mathit{app}\to^+_{G\text{-}AB}\ b\}$ unfolding A2.append-verts append-verts using append-is-tip app-dis-not-reached app-dis-only-tipsA2.append-not-reached-all A2.reachable1-preserve by fastforce ultimately have $\{b \in verts \ G\text{-}AB. \ app \rightarrow^+_{G\text{-}AB} b\} = verts \ G \ \text{by } simp$ then show $G-AB \upharpoonright \{b \in verts \ G-AB. \ app \rightarrow^+_{G-AB} b\} = G$ using append-induced-subgraph2

```
pre-digraph.select-convs(2) \ verts-del-vert)
```

qed end

 $\mathbf{sublocale}\ Append-One-Honest-Dishonest\subseteq Append-Honest-Dishonest\ G\ G-A\ \{app\}\ G-AB\ \{dis\}$

unfolding induce-subgraph-def induced-subgraph-def app2-head app2-tail

by (metis (no-types, lifting) Collect-cong app-notin del-vert-def del-vert-not-in-graph

 ${\bf using}\ Append-One-Honest-Dishonest-axioms\ Honest-Append-axioms$

```
unfolding Append-One-Honest-Dishonest-def Append-One-Honest-Dishonest-axioms-def
  Append-Honest-Dishonest-def Append-Honest-Dishonest-axioms-def
  by (simp \ add: A1-sub)
end
theory Properties
  imports blockDAG Extend-blockDAG
begin
definition Linear-Order:: (('a,'b) pre-digraph \Rightarrow 'a rel) \Rightarrow bool
  where Linear-Order A \equiv (\forall G. \ blockDAG \ G \longrightarrow linear-order-on \ (verts \ G) \ (A
G))
definition Order-Preserving:: (('a,'b) pre-digraph \Rightarrow 'a rel) \Rightarrow bool
  where Order-Preserving A \equiv (\forall G \ a \ b. \ blockDAG \ G \longrightarrow a \rightarrow^+_G b \longrightarrow (b,a) \in
(A G)
definition Honest-One-Appending-Monotone:: (('a,'b) pre-digraph \Rightarrow 'a rel) \Rightarrow
  where Honest-One-Appending-Monotone A \equiv
        (\forall G \ G\text{-}A \ a \ b \ c. \ Honest\text{-}Append\text{-}One \ G \ G\text{-}A \ a \longrightarrow ((b,c) \in (A \ G) \longrightarrow (b,c)
\in (A G-A))
definition One-Appending-Monotone:: (('a,'b) pre-digraph \Rightarrow 'a rel) \Rightarrow bool
  where One-Appending-Monotone A \equiv
         (\forall G G-A \ a \ b \ c. \ (Append-One \ G \ G-A \ a
        \land ((b \in past\text{-}nodes G\text{-}A \ a \land c \in past\text{-}nodes G\text{-}A \ a)
        \lor (b \notin past\text{-}nodes \ G\text{-}A \ a \land c \notin past\text{-}nodes \ G\text{-}A \ a)))
        \longrightarrow ((b,c) \in (A \ G) \longrightarrow (b,c) \in (A \ G-A)))
definition One-Appending-Robust:: (('a,'b) pre-digraph \Rightarrow 'a rel) \Rightarrow bool
  where One-Appending-Robust A \equiv
         (\forall \ G \ G\text{-}A \ G\text{-}AB \ a \ b \ c \ d. \ Append-One-Honest-Dishonest \ G \ G\text{-}A \ a \ G\text{-}AB \ b
          \longrightarrow ((c,d) \in (A \ G) \longrightarrow (c,d) \in (A \ G-AB)))
end
theory Spectre-Properties
  imports Spectre Extend-blockDAG Properties
```

begin

7 SPECTRE properties

7.1 SPECTRE Order Preserving

```
lemma vote-Spectre-Preserving:
 assumes c \to^+_G b
 shows vote-Spectre G a b c \in \{0,1\}
 using assms
proof(induction G a b c rule: vote-Spectre.induct)
  case (1 G a b c)
  then show ?case
 proof(cases a b c G rule:Spectre-casesAlt)
   case no-bD
   then show ?thesis by auto
  \mathbf{next}
   case equal
   then show ?thesis by simp
 next
   case one
   then show ?thesis by auto
 next
   case two
   then show ?thesis
     by (metis local.1.prems trancl-trans)
   case three
   then have a-not-gen: \neg blockDAG.is-genesis-node G a
     using blockDAG. genesis-reaches-nothing
  then have bD: blockDAG (reduce-past G a) using blockDAG.reduce-past-dagbased
       three by auto
   have b-in2: b \in past-nodes G a using three by auto
   also have c-in2: c \in past-nodes G a using three by auto
   ultimately have c \rightarrow^+_{reduce-past\ G\ a} b using DAG.reduce-past-path2 three 1
     by (metis\ blockDAG.axioms(1))
   then have all sorted 01: \forall x. \ x \in set \ (sorted-list-of-set \ (past-nodes \ G \ a)) \longrightarrow
        vote-Spectre (reduce-past G a) x b c \in \{0, 1\} using 1 three by auto
   then have all 01: \forall x. \ x \in (past\text{-}nodes \ G \ a) \longrightarrow
        vote-Spectre (reduce-past G a) x b c \in \{0, 1\}
     using subs(1) three sorted-list-of-set(1) DAG.finite-past
   obtain wit where wit-in: wit \in past-nodes G a
     and wit-vote: vote-Spectre (reduce-past G a) wit b c \neq 0
   using vote-Spectre-one-exists b-in2 c-in2 bD induce-subgraph-verts reduce-past.simps
     by metis
   then have wit-vote1: vote-Spectre (reduce-past G a) wit b c = 1 using all 01
     by blast
   obtain the-map where the-map-in:
     the-map = (map \ (\lambda i. \ vote-Spectre \ (reduce-past \ G \ a) \ i \ b \ c)
```

```
(sorted-list-of-set\ (past-nodes\ G\ a)))
     by auto
   have all 01-1: \forall x \in set the\text{-}map. \ x \in \{0,1\}
     unfolding the-map-in set-map
     using allsorted01 by blast
   have \exists x \in set the\text{-}map. \ x = 1
     unfolding the-map-in set-map
     using wit-in wit-vote1
       sorted-list-of-set(1) DAG.finite-past bD subs(1)
     by (metis (no-types, lifting) image-iff three)
   then have \exists x \in set the\text{-}map. \ x > 0
     using zero-less-one by blast
   moreover have \forall x \in set the\text{-}map. \ x \geq 0 \text{ using } all 01\text{-}1
     by (metis empty-iff insert-iff less-int-code(1) not-le-imp-less zero-le-one)
   ultimately have signum (sum-list the-map) = 1 using sumlist-one-mono by
simp
  then have tie-break-int b c (signum (sum-list the-map)) = 1 using tie-break-int.simps
     by simp
    then have vote-Spectre G a b c = 1 unfolding the-map-in using three
vote-Spectre.simps
     by simp
   then show ?thesis by simp
  next
   case four
   then have all 01: \forall a2. a2 \in set (sorted-list-of-set (future-nodes G a)) \longrightarrow
                           vote-Spectre G a2 b c \in \{0,1\}
     using 1
     by metis
   have \forall a2. \ a2 \in set \ (sorted-list-of-set \ (future-nodes \ G \ a))
              \longrightarrow vote-Spectre G a2 b c \ge 0
   proof safe
     fix a2
     assume a2 \in set (sorted-list-of-set (future-nodes G a))
     then have vote-Spectre G a2 b c \in \{0, 1\} using all01 by auto
     then show vote-Spectre G a2 b c \geq 0
       by fastforce
   qed
   then have (sum-list (map (\lambda i. vote-Spectre G i b c)
     (sorted-list-of-set\ (future-nodes\ G\ a)))) \geq 0\ using\ sum-list-mono\ sum-list-0
   then have signum (sum-list (map (\lambda i. vote-Spectre G i b c)
     (sorted-list-of-set\ (future-nodes\ G\ a)))) \in \{0,1\}\ \mathbf{unfolding}\ signum.simps
   then show ?thesis using four by simp
 qed
qed
```

```
lemma Spectre-Order-Preserving:
 assumes blockDAG G
   and b \rightarrow^+_G a
 shows Spectre-Order G a b
proof -
  interpret B: blockDAG G using assms(1) by auto
 have set-ordered: set (sorted-list-of-set (verts G)) = verts G
   using assms(1) subs fin-digraph.finite-verts
     sorted-list-of-set by auto
 have a-in: a \in verts \ G \ using \ B.reachable1-in-verts(2) \ assms(2)
   by metis
 have b-in: b \in verts \ G \ using \ B.reachable1-in-verts(1) \ assms(2)
   by metis
 obtain the-map where the-map-in:
   the-map = (map \ (\lambda i. \ vote-Spectre \ G \ i \ a \ b) \ (sorted-list-of-set \ (verts \ G))) by auto
 obtain wit where wit-in: wit \in verts G and wit-vote: vote-Spectre G wit a b \neq
   using vote-Spectre-one-exists a-in b-in assms(1)
   by blast
 have (vote\text{-}Spectre\ G\ wit\ a\ b) \in set\ the\text{-}map
   unfolding the-map-in set-map
   {f using} \ B.blockDAG-axioms \ fin-digraph. finite-verts
     subs(3) sorted-list-of-set(1) wit-in image-iff
   by metis
  then have exune: \exists x \in set the\text{-}map. \ x \neq 0
   using wit-vote by blast
 have all 01: \forall x \in set the\text{-map}. x \in \{0,1\}
  unfolding set-ordered the-map-in set-map using vote-Spectre-Preserving assms(2)
image-iff
   by (metis (no-types, lifting))
  then have \exists x \in set the\text{-}map. \ x = 1 \text{ using } exune
   by blast
  then have \exists x \in set the\text{-}map. \ x > 0
   using zero-less-one by blast
 moreover have \forall x \in set the\text{-}map. \ x \geq 0 \text{ using } all 01
   by (metis empty-iff insert-iff less-int-code(1) not-le-imp-less zero-le-one)
  ultimately have signum (sum-list the-map) = 1 using sumlist-one-mono by
simp
 then have tie-break-int a b (signum (sum-list the-map)) = 1 using tie-break-int.simps
  then show ?thesis unfolding the-map-in Spectre-Order-def by simp
qed
lemma SPECTRE-Preserving:
 assumes blockDAG G
   and b \rightarrow^+ G a
 shows (a,b) \in (SPECTRE\ G)
 unfolding SPECTRE-def
```

```
using assms wf-digraph.reachable1-in-verts subs
   Spectre-Order-Preserving
   SigmaI case-prodI mem-Collect-eq by fastforce
lemma Order-Preserving SPECTRE
 unfolding Order-Preserving-def
 using SPECTRE-Preserving by auto
lemma vote-Spectre-antisymmetric:
 shows b \neq c \Longrightarrow vote\text{-}Spectre\ G\ a\ b\ c = -\ (vote\text{-}Spectre\ G\ a\ c\ b)
proof(induction G a b c rule: vote-Spectre.induct)
 case (1 G a b c)
 show vote-Spectre G a b c = - vote-Spectre G a c b
 proof(cases a b c G rule:Spectre-casesAlt)
   case no-bD
   then show ?thesis by fastforce
 next
   case equal
   then show ?thesis using 1 by simp
 next
   case one
   then show ?thesis by auto
 next
   case two
   then show ?thesis by fastforce
 next
   then have ff: vote-Spectre G a b c = tie-break-int b c (signum (sum-list (map
(\lambda i.
 (vote-Spectre (reduce-past G a) i b c)) (sorted-list-of-set (past-nodes G a)))))
     using vote-Spectre.simps
     by (metis (mono-tags, lifting))
   have ff1: vote-Spectre G a c b = tie-break-int c b (signum (sum-list (map (\lambda i).
     (vote-Spectre (reduce-past G a) i c b)) (sorted-list-of-set (past-nodes G a)))))
     using vote-Spectre.simps three by fastforce
   then have ff2: vote-Spectre G a c b = tie-break-int c b (signum (sum-list (map
(\lambda i.
   (- vote-Spectre (reduce-past G a) i b c)) (sorted-list-of-set (past-nodes G a)))))
     using three 1 map-eq-conv ff
     by (smt\ (verit,\ best))
     have (map (\lambda i. - vote-Spectre (reduce-past G a) i b c) (sorted-list-of-set
(past-nodes G a)))
    = (map\ uminus\ (map\ (\lambda i.\ vote-Spectre\ (reduce-past\ G\ a)\ i\ b\ c)
     (sorted-list-of-set\ (past-nodes\ G\ a))))
     using map-map by auto
   then have vote-Spectre G a c b = - (tie-break-int b c (signum (sum-list (map
   (vote-Spectre (reduce-past G a) i b c)) (sorted-list-of-set (past-nodes G a))))))
   {\bf using} \ \ antisymmetric\mbox{-}sum list\ 1\ ff 2\ antisymmetric\mbox{-}signum\ antisymmetric\mbox{-}tie\mbox{-}break
```

```
by (metis\ verit\text{-}minus\text{-}simplify(4))
   then show ?thesis using ff
     by presburger
  next
   case four
   then have ff: vote-Spectre G a b c = signum (sum-list (map (\lambda i.
   (vote\text{-}Spectre\ G\ i\ b\ c))\ (sorted\text{-}list\text{-}of\text{-}set\ (future\text{-}nodes\ G\ a))))
     using vote-Spectre.simps
     by (metis (mono-tags, lifting))
   then have ff2: vote-Spectre G a c b = signum (sum-list (map (\lambda i.
   (-vote\text{-}Spectre\ G\ i\ b\ c))\ (sorted\text{-}list\text{-}of\text{-}set\ (future\text{-}nodes\ G\ a))))
     using four 1 vote-Spectre.simps map-eq-conv
     by (smt (z3))
   have (map (\lambda i. - vote-Spectre \ G \ i \ b \ c) \ (sorted-list-of-set \ (future-nodes \ G \ a)))
    = (map\ uminus\ (map\ (\lambda i.\ vote-Spectre\ G\ i\ b\ c)\ (sorted-list-of-set\ (future-nodes
(G(a)))
     using map-map by auto
   then have vote-Spectre G a c b = - ( signum (sum-list (map (\lambda i).
   (vote-Spectre G i b c)) (sorted-list-of-set (future-nodes G a)))))
     using antisymmetric-sumlist 1 ff2 antisymmetric-signum
     by (metis\ verit\text{-}minus\text{-}simplify(4))
   then show ?thesis using ff
     \mathbf{by} linarith
 qed
qed
lemma vote-Spectre-reflexive:
 assumes blockDAG G
   and a \in verts G
 shows \forall b \in verts \ G. \ vote-Spectre \ G \ b \ a \ a = 1 \ using \ vote-Spectre.simps \ assms
lemma Spectre-Order-reflexive:
 assumes blockDAG G
   and a \in verts G
 shows Spectre-Order G a a
 unfolding Spectre-Order-def
 obtain l where l-def: l = (map (\lambda i. vote-Spectre G i a a) (sorted-list-of-set (verts
G)))
   by auto
 have only-one: l = (map \ (\lambda i.1) \ (sorted-list-of-set \ (verts \ G)))
   using l-def vote-Spectre-reflexive assms sorted-list-of-set(1)
   by (simp add: fin-digraph.finite-verts subs)
 have ne: l \neq []
   using blockDAG.no-empty-blockDAG length-map
    by (metis assms(1) length-sorted-list-of-set less-numeral-extra(3) list.size(3)
l-def)
```

```
have sum-list l = card (verts G) using ne only-one sum-list-map-eq-sum-count
   by (simp add: sum-list-triv)
 then have sum-list l > 0 using blockDAG.no-empty-blockDAG assms(1) by simp
 then show tie-break-int a a
  (signum\ (sum\ -list\ (map\ (\lambda i.\ vote\ -Spectre\ G\ i\ a\ a)\ (sorted\ -list\ -of\ -set\ (verts\ G)))))
   using l-def ne tie-break-int.simps
     list.exhaust verit-comp-simplify1(1) by auto
qed
lemma Spectre-Order-antisym:
 assumes blockDAG G
   and a \in verts G
   and b \in verts G
   and a \neq b
 shows Spectre-Order G a b = (\neg (Spectre-Order G \ b \ a))
proof -
 obtain wit where wit-in: vote-Spectre G wit a b \neq 0 \land wit \in verts G
   using vote-Spectre-one-exists assms
 obtain l where l-def: l = (map (\lambda i. vote-Spectre G i a b) (sorted-list-of-set (verts))
G)))
   by auto
 have wit \in set (sorted-list-of-set (verts G))
   using wit-in sorted-list-of-set(1)
    fin-digraph.finite-verts subs
   by (simp add: fin-digraph.finite-verts subs assms(1))
 then have vote-Spectre G wit a b \in set l unfolding l-def
   by (metis (mono-tags, lifting) image-eqI list.set-map)
 then have dm: tie-break-int a b (signum (sum-list l)) \in \{-1,1\}
   by auto
 obtain l2 where l2-def: l2 = (map (\lambda i. vote-Spectre G i b a) (sorted-list-of-set
(verts G))
   by auto
 have minus: l2 = map \ uminus \ l
   unfolding l-def l2-def map-map
   using vote-Spectre-antisymmetric assms(4)
   by (metis comp-apply)
 have anti: tie-break-int a b (signum\ (sum-list\ l)) =
                - tie-break-int b a (signum (sum-list l2)) unfolding minus
     {f using} antisymmetric-sumlist antisymmetric-tie-break antisymmetric-signum
assms(4) by metis
 then show ?thesis unfolding Spectre-Order-def using anti l-def dm l2-def
     add.inverse-inverse empty-iff equal-neg-zero insert-iff zero-neq-one
   by (metis)
qed
lemma Spectre-Order-total:
```

```
assumes blockDAG G
   and a \in verts \ G \land b \in verts \ G
 shows Spectre-Order G a b \vee Spectre-Order G b a
proof safe
 assume notB: \neg Spectre-Order G b a
 consider (eq) a = b| (neq) a \neq b by auto
 then show Spectre-Order G a b
 proof (cases)
   case eq
   then show ?thesis using Spectre-Order-reflexive assms by metis
 next
   then show ?thesis using Spectre-Order-antisym notB assms
    by blast
 qed
qed
\mathbf{lemma} SPECTRE-total:
 assumes blockDAG G
 shows total-on (verts \ G) (SPECTRE \ G)
 unfolding total-on-def SPECTRE-def
 using Spectre-Order-total assms
 by fastforce
{f lemma} SPECTRE-reflexive:
 assumes blockDAG G
 shows refl-on (verts G) (SPECTRE G)
 unfolding refl-on-def SPECTRE-def
 using Spectre-Order-reflexive assms by fastforce
lemma SPECTRE-antisym:
 assumes blockDAG G
 shows antisym (SPECTRE G)
 unfolding antisym-def SPECTRE-def
 using Spectre-Order-antisym assms by fastforce
{f lemma} Spectre-equals-vote-Spectre-honest:
 assumes Honest-Append-One G G-A a
   and b \in verts G
   and c \in verts G
 shows Spectre-Order G b c \longleftrightarrow vote-Spectre G-A a b c = 1
 interpret H: Append-One G G-A a using assms(1) Honest-Append-One-def by
metis
 have b-in: b \in verts \ G-A \ using \ H.append-verts-in \ assms(2) by metis
 have c-in: c \in verts \ G-A using H.append-verts-in assms(3) by metis
  have re-all: \forall v \in verts \ G. \ a \rightarrow^+_{G-A} v \ using \ Honest-Append-One.reaches-all
assms(1) by metis
```

```
then have r-ab: a \to^+_{G-A} b using assms(2) by simp
 have r-ac: a \rightarrow^+_{G-A} c using re-all assms(3) by simp
 consider (b\text{-}c\text{-}eq) b = c \mid (not\text{-}b\text{-}c\text{-}eq) \neg b = c by auto
 then show ?thesis
 proof(cases)
   case b-c-eq
   then have Spectre-Order G b c using Spectre-Order-reflexive Append-One-def
      H.Append-One-axioms assms
    by metis
   moreover have vote-Spectre G-A a b c = 1 using vote-Spectre-reflexive
    using H.bD-A H.app-in b-in b-c-eq by metis
   ultimately show ?thesis by simp
 next
   case not-b-c-eq
   then have vote-Spectre G-A a b c = (tie-break-int\ b\ c\ (signum\ (sum-list\ (map
 (vote-Spectre (reduce-past G-A a) i b c)) (sorted-list-of-set (past-nodes G-A a))))))
      using vote-Spectre.simps Append-One.bD-A Honest-Append-One-def assms
r-ab r-ac
      Append-One.app-in b-in c-in
      map-eq-conv by fastforce
  then have the-eq: vote-Spectre G-A a b c = (tie-break-int\ b\ c\ (signum\ (sum-list
  (vote-Spectre G i b c)) (sorted-list-of-set (verts G))))))
    using Honest-Append-One.reduce-append Honest-Append-One.append-past-all
      assms(1) by metis
   show ?thesis
    unfolding the-eq Spectre-Order-def by simp
 qed
qed
lemma Spectre-Order-Appending-Mono:
 assumes Honest-Append-One G G-A app
   and a \in verts G
   and b \in verts G
   and c \in verts G
   and Spectre-Order G b c
 shows vote-Spectre G a b c \leq vote-Spectre G-A a b c
 using assms
proof(induction G a b c rule: vote-Spectre.induct)
 case (1 G a b c)
 interpret HB1: Honest-Append-One G using 1(3)
   by metis
 interpret B2: blockDAG G-A using HB1.bD-A
   by metis
 have a-in-G-A: a \in verts G-A using 1(4) HB1.append-verts-in by simp
 have b-in-G-A: b \in verts G-A using 1(5) HB1.append-verts-in by simp
 have c-in-G-A: c \in verts G-A using 1(6) HB1.append-verts-in by simp
```

```
show vote-Spectre G a b c \leq vote-Spectre G-A a b c
 proof(cases a b c G rule:Spectre-casesAlt)
   case no-bD
   then show ?thesis using HB1.bD \ 1(4,5,6) by auto
  next
   case equal
   then show vote-Spectre G a b c \leq vote-Spectre G-A a b c
     using B2.blockDAG-axioms a-in-G-A b-in-G-A c-in-G-A by auto
  next
   case one
  then have (a \rightarrow^+_{G-A} b \lor a = b) \land (\neg a \rightarrow^+_{G-A} c) using HB1.reachable1-preserve
  then show ?thesis using one B2.blockDAG-axioms a-in-G-A b-in-G-A c-in-G-A
by auto
 next
  then have \neg((a \rightarrow^+_{G-A} b \lor a = b) \land (\neg a \rightarrow^+_{G-A} c)) using HB1.reachable1-preserve
by auto
   moreover have (a \rightarrow^+_{G-A} c \lor a = c) \land (\neg a \rightarrow^+_{G-A} b)
     using two HB1.reachable1-preserve by auto
   ultimately show ?thesis using two by auto
 next
  have ppp: past-nodes G-A \ a = past-nodes G \ a  using 1(4) HB1.append-past-nodes
  have rrp: reduce-past G-A a = reduce-past G a using 1(4) HB1.append-reduce-some
by auto
   case three
    then have ins: vote-Spectre G a b c = (tie-break-int b c (signum (sum-list)))
(map (\lambda i.
(vote-Spectre (reduce-past G a) i b c)) (sorted-list-of-set (past-nodes G a))))))
     by auto
  have \neg((a \rightarrow^+_{G-A} b \lor a = b) \land (\neg a \rightarrow^+_{G-A} c)) using HB1.reachable1-preserve
three by auto
   moreover have \neg ((a \rightarrow^+_{G-A} c \lor a = c) \land (\neg a \rightarrow^+_{G-A} b))
     using three HB1.reachable1-preserve by auto
  moreover have a \rightarrow^+_{G-A} b \wedge a \rightarrow^+_{G-A} c using three HB1.reachable1-preserve
by auto
   ultimately have vote-Spectre G-A a b c = (tie\text{-break-int b } c \text{ (signum (sum-list)}))
(map (\lambda i.
(vote-Spectre (reduce-past G-A a) i b c)) (sorted-list-of-set (past-nodes G-A a))))))
     using three a-in-G-A b-in-G-A c-in-G-A B2.blockDAG-axioms by auto
   then have ins-2: vote-Spectre G-A a b c = (tie-break-int\ b\ c\ (signum\ (sum-list
(map (\lambda i.
(vote-Spectre (reduce-past G a) i b c)) (sorted-list-of-set (past-nodes G a))))))
     unfolding ppp rrp by auto
   show ?thesis unfolding ins ins-2 by simp
   case four
   then have ins: vote-Spectre G a b c = signum (sum-list (map (\lambda i.
```

```
(vote-Spectre G i b c)) (sorted-list-of-set (future-nodes G a))))
     by auto
  have \neg((a \rightarrow^+_{G-A} b \lor a = b) \land (\neg a \rightarrow^+_{G-A} c)) using HB1.reachable1-preserve
four by auto
   \mathbf{moreover\ have}\ \neg\ ((a \to^+_{G\text{-}A}\ c \lor\ a = c) \land (\neg\ a \to^+_{G\text{-}A}\ b))
     using four HB1.reachable1-preserve by auto
  moreover have \neg (a \rightarrow^+_{G-A} b \land a \rightarrow^+_{G-A} c) using four HB1.reachable1-preserve
by auto
   ultimately have ins2:
     vote-Spectre G-A a b c = signum (sum-list (map (\lambda i.
   (vote-Spectre\ G-A\ i\ b\ c))\ (sorted-list-of-set\ (future-nodes\ G-A\ a))))
      using B2.blockDAG-axioms a-in-G-A b-in-G-A c-in-G-A vote-Spectre.simps
four by auto
   have \bigwedge x . x \in set (sorted-list-of-set (future-nodes G a)) \Longrightarrow x \in verts G
     \Rightarrow vote-Spectre G x b c \leq vote-Spectre G-A x b c
     using 1(2,3) four
        1.prems(5) by blast
   then have fut: \forall x \in set (sorted-list-of-set (future-nodes G a)).
    (vote\text{-}Spectre\ G\ x\ b\ c) \leq (vote\text{-}Spectre\ G\text{-}A\ x\ b\ c)
     using HB1.finite-past HB1.past-nodes-verts
     by simp
  have futN: future-nodes G a = future-nodes G-A a - \{app\} using HB1. append-future
1(4) by auto
    have appfut: app \in future-nodes G-A a using HB1.append-in-future 1(4) by
auto
   have bbb: sum-list (map (\lambda i).
   (vote\text{-}Spectre\ G\text{-}A\ i\ b\ c))\ (sorted\text{-}list\text{-}of\text{-}set\ (future\text{-}nodes\ G\ a)))
  = sum-list (map (\lambda i.
  (vote-Spectre G-A i b c)) (sorted-list-of-set (future-nodes G-A a)))
  - (vote-Spectre G-A app b c)
     unfolding futN
     using append-diff-sorted-set B2.finite-future appfut
     by blast
   have vote-Spectre G-A app b c = 1
     using 1. prems Spectre-equals-vote-Spectre-honest
     by blast
   then have sp1: sum-list (map (\lambda i).
   (vote-Spectre\ G-A\ i\ b\ c))\ (sorted-list-of-set\ (future-nodes\ G-A\ a))) =
    sum-list (map (\lambda i.
   (vote\text{-}Spectre\ G\text{-}A\ i\ b\ c))\ (sorted\text{-}list\text{-}of\text{-}set\ (future\text{-}nodes\ G\ a)))\ +\ 1
     using bbb by auto
   have sp2: sum-list (map (\lambda i.(vote-Spectre G i b c)))
                (sorted-list-of-set\ (future-nodes\ G\ a)))
                 \leq sum-list (map (\lambda i.
                 (vote-Spectre G-A i b c)) (sorted-list-of-set (future-nodes G a)))
     by (metis fut sum-list-mono)
   show ?thesis unfolding ins ins2
   proof (rule signum-mono)
```

```
show (\sum i \leftarrow sorted-list-of-set (future-nodes G a). vote-Spectre G i b c)
    \leq (\sum i \leftarrow sorted\text{-}list\text{-}of\text{-}set (future\text{-}nodes G-A a). vote\text{-}Spectre G-A i b c)
       unfolding sp1 using sp2
       by linarith
   ged
 qed
\mathbf{qed}
lemma Honest-One-Appending-Monotone SPECTRE
  unfolding Honest-One-Appending-Monotone-def
proof safe
 fix G G-A::('a::linorder,'b) pre-digraph and app b c::'a
 assume Honest-Append-One G G-A app
   and bcS: (b, c) \in SPECTRE\ G
  then interpret H1: Honest-Append-One G G-A app by auto
 interpret B1: blockDAG G-A using H1.bD-A by auto
 have b-in: b \in verts G
   and c-in: c \in verts \ G using bcS unfolding SPECTRE-def by auto
  then have b-in2: b \in verts G-A
   and c-in2: c \in verts \ G-A \ using \ H1.append-verts-in \ by \ auto
  then show (b, c) \in SPECTRE G-A
   unfolding SPECTRE-def
  proof(simp)
   have so: Spectre-Order G b c using bcS unfolding SPECTRE-def by auto
   then have vv: vote-Spectre G-A app b c = 1
   using Spectre-equals-vote-Spectre-honest b-in c-in H1. Honest-Append-One-axioms
   have bbb: (\sum i \leftarrow sorted-list-of-set\ (verts\ G).\ vote-Spectre\ G-A\ i\ b\ c) =
     (\sum i \leftarrow sorted\text{-}list\text{-}of\text{-}set \ (verts \ G\text{-}A). \ vote\text{-}Spectre \ G\text{-}A \ i \ b \ c) - vote\text{-}Spectre
G-A app b c
     unfolding H1.append-verts-diff
     using append-diff-sorted-set B1.finite-verts H1.app-in
     by blast
   have sp1: sum-list (map (\lambda i.
   (vote-Spectre\ G-A\ i\ b\ c))\ (sorted-list-of-set\ (verts\ G-A))) =
   sum-list (map (\lambda i.
   (vote-Spectre\ G-A\ i\ b\ c))\ (sorted-list-of-set\ (verts\ G)))\ +\ 1
     unfolding bbb vv by auto
   have leee: (\sum i \leftarrow sorted\text{-}list\text{-}of\text{-}set \ (verts \ G). \ vote\text{-}Spectre \ G \ i \ b \ c) \le
         (\sum i \leftarrow sorted\mbox{-}list\mbox{-}of\mbox{-}set\ (verts\ G).\ vote\mbox{-}Spectre\ G\mbox{-}A\ i\ b\ c)
   proof(rule sum-list-mono)
     \mathbf{fix} \ a
     assume a \in set (sorted-list-of-set (verts G))
     then have a \in verts \ G \ using \ sorted-list-of-set(1) \ H1.finite-verts \ by \ auto
     then show vote-Spectre G a b c \leq vote-Spectre G-A a b c
        using Spectre-Order-Appending-Mono H1. Honest-Append-One-axioms b-in
c-in so by blast
   qed
   have (\sum i \leftarrow sorted-list-of-set \ (verts \ G). \ vote-Spectre \ G \ i \ b \ c) \le
```

```
(\sum i \leftarrow sorted\mbox{-}list\mbox{-}of\mbox{-}set \ (verts\ G\mbox{-}A).\ vote\mbox{-}Spectre\ G\mbox{-}A\ i\ b\ c)
      unfolding sp1 using leee by linarith
   then have signum\ (\sum i \leftarrow sorted\text{-}list\text{-}of\text{-}set\ (verts\ G).} vote\text{-}Spectre\ G\ i\ b\ c) \leq signum\ (\sum i \leftarrow sorted\text{-}list\text{-}of\text{-}set\ (verts\ G\text{-}A).}
       vote-Spectre G-A i b c)
      \mathbf{by}(rule\ signum-mono)
   then have tie-break-int b c (signum (\sum i \leftarrow sorted-list-of-set (verts G).
       vote-Spectre G i b c)
       \leq tie-break-int b c (signum (\sum i \leftarrow sorted-list-of-set (verts G-A).
       vote-Spectre G-A i b c))
      \mathbf{by}(rule\ tie-break-mono)
   then have 1 \le tie-break-int b c (signum (\sum i \leftarrow sorted-list-of-set (verts G-A).
       vote-Spectre G-A i b c))
      using so
      unfolding Spectre-Order-def by simp
   then show Spectre-Order G-A b c
      unfolding Spectre-Order-def using domain-tie-break by auto
  qed
qed
{f lemma} Spectre-equals-vote-Spectre-honest-dishonest:
  assumes Append-One-Honest-Dishonest G G-A a G-AB dis
   and b \in verts G
   and c \in verts G
  shows Spectre-Order G b c \longleftrightarrow vote-Spectre G-AB a b c = 1
proof -
  interpret AOHD: Append-One-Honest-Dishonest G G-A a G-AB dis using
assms(1) by simp
 interpret H2: Append-One G-A G-AB dis using AOHD.app-two by metis
  have b-in: b \in verts G-A
   and c-in: c \in verts \ G-A using AOHD.append-verts-in assms(2,3) by auto
  then have b-inB: b \in verts G-AB
   and c\text{-}inB: c \in verts G\text{-}AB using H2.append\text{-}verts\text{-}in by auto
  have re-all: \forall v \in verts \ G. \ a \rightarrow^+_{G-AB} v
   \mathbf{using}\ AOHD.reachable 1-preserve 2\ assms(2)\ AOHD.reaches-all\ AOHD.app-in
      H2.reachable 1-preserve
   by simp
  then have r-ab: a \rightarrow^+_{G-AB} b using assms(2) by simp
  have r-ac: a \rightarrow^+_{G\text{-}AB} c using re-all assms(3) by simp
  consider (b\text{-}c\text{-}eq) \stackrel{\frown}{b} = c \mid (not\text{-}b\text{-}c\text{-}eq) \neg b = c \text{ by } auto
  then show ?thesis
  \mathbf{proof}(cases)
   case b-c-eq
   then have Spectre-Order G b c using Spectre-Order-reflexive
        AOHD.bD assms by metis
   moreover have vote-Spectre G-AB a b c = 1
      unfolding b-c-eq using vote-Spectre-reflexive
      using H2.bD-A AOHD.app-in2 c-inB by metis
```

```
ultimately show ?thesis by simp
 next
   case not-b-c-eq
   then have ee1: vote-Spectre G-AB a b c = (tie-break-int\ b\ c\ (signum\ (sum-list
(map (\lambda i.
   (vote-Spectre (reduce-past G-AB a) i b c)) (sorted-list-of-set (past-nodes G-AB
a))))))))
     using vote-Spectre.simps r-ab r-ac
      b-inB c-inB AOHD.app-in2 H2.bD-A
      map	eq	eq	eq	ext{conv}
     by simp
    have the-eq: vote-Spectre G-AB a b c = (tie-break-int\ b\ c\ (signum\ (sum-list
(map (\lambda i.
  (vote-Spectre\ G\ i\ b\ c))\ (sorted-list-of-set\ (verts\ G))))))
     \mathbf{unfolding}\ \mathit{AOHD}.\mathit{append-past-nodes2}\ \mathit{ee1}\ \mathit{AOHD}.\mathit{reduce-append2}
     by simp
   show ?thesis
     unfolding the-eq Spectre-Order-def by simp
 qed
qed
{f lemma} Spectre-Order-Appending-Robust:
 assumes \ Append-One-Honest-Dishonest \ G \ G-A \ app \ G-AB \ dis
   \mathbf{and}\ a\in\mathit{verts}\ G
   and b \in verts G
   and c \in verts G
   and Spectre-Order G b c
 shows vote-Spectre G a b c \le vote-Spectre G-AB a b c
 using assms
proof(induction G a b c rule: vote-Spectre.induct)
 case (1 \ G \ a \ b \ c)
 interpret AOHD: Append-One-Honest-Dishonest G G-A app G-AB dis using 1
by auto
 interpret HB2: Append-One G-A G-AB dis using AOHD.app-two
   by metis
 interpret B2: blockDAG G-A using AOHD.bD-A
   by metis
 interpret B3: blockDAG G-AB using HB2.bD-A
   by metis
 have a-in-G-A: a \in verts G-A
   and b-in-G-A: b \in verts G-A
   and c-in-G-A: c \in verts G-A using 1(4,5,6) AOHD.append-verts-in by auto
 then have a-in-G-AB: a \in verts G-AB
```

```
and b-in-G-AB: b \in verts G-AB
   and c-in-G-AB: c \in verts G-AB using 1(4,5,6) HB2.append-verts-in by auto
 show vote-Spectre G a b c \leq vote-Spectre G-AB a b c
 proof(cases a b c G rule:Spectre-casesAlt)
   case no-bD
   then show ?thesis using AOHD.bD 1(4,5,6) by auto
 \mathbf{next}
   case equal
   then show vote-Spectre G a b c \leq vote-Spectre G-AB a b c
     using B3.blockDAG-axioms a-in-G-AB b-in-G-AB c-in-G-AB by auto
 next
   {f case} one
  then have (a \rightarrow^+_{G-AB} b \lor a = b) \land (\neg a \rightarrow^+_{G-AB} c) using AOHD.reachable1-preserve
       HB2.reachable1-preserve a-in-G-A b-in-G-A c-in-G-A by auto
    then show ?thesis using one B3.blockDAG-axioms a-in-G-AB b-in-G-AB
c-in-G-AB by auto
 next
   case two
   then have \neg((a \rightarrow^+_{G\text{-}AB} b \lor a = b) \land (\neg a \rightarrow^+_{G\text{-}AB} c))
     using AOHD.reachable1-preserve
       HB2.reachable1-preserve a-in-G-A b-in-G-A c-in-G-A by auto
   moreover have (a \rightarrow^+_{G-AB} c \lor a = c) \land (\neg a \rightarrow^+_{G-AB} b)
     using two AOHD.reachable1-preserve
       HB2.reachable1-preserve a-in-G-A b-in-G-A c-in-G-A by auto
   ultimately show ?thesis using two by auto
 next
  have past-nodes G-AB a = past-nodes G-A a using a-in-G-A HB2. append-past-nodes
by auto
  then have ppp: past-nodes G-AB \ a=past-nodes \ G \ a \ using \ 1(4) \ AOHD. append-past-nodes
by auto
  have reduce-past G-AB a = reduce-past G-A a using a-in-G-A HB2. append-reduce-some
by auto
  then have rrp: reduce-past G-AB a = reduce-past G a using 1(4) AOHD. append-reduce-some
by auto
   case three
   then have ins: vote-Spectre G a b c = (tie-break-int b c (signum (sum-list)))
 (vote-Spectre (reduce-past G a) i b c)) (sorted-list-of-set (past-nodes G a))))))
     by auto
   have bneqc: b \neq c using three by simp
   have \neg((a \rightarrow^+_{G-AB} b \lor a = b) \land (\neg a \rightarrow^+_{G-AB} c))
       using three AOHD.reachable1-preserve HB2.reachable1-preserve a-in-G-A
b-in-G-A c-in-G-A by auto
   moreover have \neg ((a \rightarrow^+_{G-AB} c \lor a = c) \land (\neg a \rightarrow^+_{G-AB} b))
       using three AOHD.reachable1-preserve HB2.reachable1-preserve a-in-G-A
b-in-G-A c-in-G-A by auto
   moreover have a \rightarrow^+_{G-AB} b \wedge a \rightarrow^+_{G-AB} c
       using three AOHD.reachable1-preserve HB2.reachable1-preserve a-in-G-A
b-in-G-A c-in-G-A by auto
```

```
vote-Spectre G-AB a b c = (tie-break-int b c (signum
    ultimately have
(sum-list (map (\lambda i.
 (vote-Spectre (reduce-past G-AB a) i b c)) (sorted-list-of-set (past-nodes G-AB
   using a-in-G-AB b-in-G-AB c-in-G-AB B3.blockDAG-axioms vote-Spectre.simps
bneqc by auto
   then have ins-2: vote-Spectre G-AB a b c = (tie-break-int b c (signum (sum-list
 (vote-Spectre (reduce-past G a) i b c)) (sorted-list-of-set (past-nodes G a))))))
     unfolding ppp rrp by auto
   show ?thesis unfolding ins ins-2 by simp
 next
   case four
   then have ins: vote-Spectre G a b c = signum (sum-list (map (\lambda i.
   (vote-Spectre\ G\ i\ b\ c))\ (sorted-list-of-set\ (future-nodes\ G\ a))))
   have bneqc: b \neq c using four by simp
   moreover have \neg((a \rightarrow^+_{G-AB} b \lor a = b) \land (\neg a \rightarrow^+_{G-AB} c))
        using four AOHD.reachable1-preserve HB2.reachable1-preserve a-in-G-A
b-in-G-A c-in-G-A by auto
   moreover have \neg ((a \rightarrow^+_{G-AB} c \lor a = c) \land (\neg a \rightarrow^+_{G-AB} b))
        using four AOHD.reachable1-preserve HB2.reachable1-preserve a-in-G-A
b-in-G-A c-in-G-A by auto
  moreover have \neg (a \rightarrow^+_{G-AB} b \land a \rightarrow^+_{G-AB} c) using four AOHD.reachable1-preserve
        using four AOHD.reachable1-preserve HB2.reachable1-preserve a-in-G-A
b-in-G-A c-in-G-A by auto
   ultimately have ins2:
     vote	ext{-}Spectre\ G	ext{-}AB\ a\ b\ c=signum\ (sum	ext{-}list\ (map\ (\lambda i.
   (vote-Spectre G-AB i b c)) (sorted-list-of-set (future-nodes G-AB a))))
   using B3.blockDAG-axioms a-in-G-AB b-in-G-AB c-in-G-AB vote-Spectre.simps
four by auto
   have \bigwedge x. x \in set (sorted-list-of-set (future-nodes G a)) \Longrightarrow x \in verts G
   \implies vote\text{-}Spectre\ G\ x\ b\ c \leq vote\text{-}Spectre\ G\text{-}AB\ x\ b\ c
     using 1(2,3) four
       1.prems(5) by blast
   then have fut: \forall x \in set \ (sorted\text{-}list\text{-}of\text{-}set \ (future\text{-}nodes \ G \ a)).
    (vote\text{-}Spectre\ G\ x\ b\ c) < (vote\text{-}Spectre\ G\text{-}AB\ x\ b\ c)
     using AOHD.finite-past AOHD.past-nodes-verts
     by simp
   consider (disnin) dis \notin future-nodes G-AB a \mid (disin) dis \in future-nodes G-AB
a by auto
   then show vote-Spectre G a b c \leq vote-Spectre G-AB a b c
     using 1(4)
   \mathbf{proof}(\mathit{cases})
     case disnin
     then have futN: future-nodes G-AB a - \{app\} = future-nodes G a
       using AOHD.append-future 1(4) HB2.append-future a-in-G-A
       by (metis Diff-idemp Diff-insert-absorb)
```

```
then have appfut: app \in future-nodes G-AB a using AOHD. app-in-future2
      1(4) by auto
  then have bbb: sum-list (map (\lambda i.
 (vote-Spectre G-AB i b c)) (sorted-list-of-set (future-nodes G a)))
= sum-list (map (\lambda i.
 (vote-Spectre G-AB i b c)) (sorted-list-of-set (future-nodes G-AB a)))
- (vote-Spectre G-AB app b c)
    using futN append-diff-sorted-set B3.finite-future by metis
  have vote-Spectre G-AB app b c = 1
    using 1.prems Spectre-equals-vote-Spectre-honest-dishonest
   by blast
  then have sp1: sum-list (map (\lambda i).
 (vote\text{-}Spectre\ G\text{-}AB\ i\ b\ c))\ (sorted\text{-}list\text{-}of\text{-}set\ (future\text{-}nodes\ G\text{-}AB\ a))) =
  sum-list (map (\lambda i.
 (vote\text{-}Spectre\ G\text{-}AB\ i\ b\ c))\ (sorted\text{-}list\text{-}of\text{-}set\ (future\text{-}nodes\ G\ a)))\ +\ 1
    using bbb by auto
  have sp2: sum-list (map (\lambda i.(vote-Spectre\ G\ i\ b\ c))
              (sorted-list-of-set\ (future-nodes\ G\ a)))
                < sum-list (map (\lambda i.
                (vote-Spectre G-AB i b c)) (sorted-list-of-set (future-nodes G a)))
   by (metis fut sum-list-mono)
  show ?thesis unfolding ins ins2
  proof (rule signum-mono)
   show (\sum i \leftarrow sorted\mbox{-}list\mbox{-}of\mbox{-}set (future\mbox{-}nodes\mbox{}G\mbox{}a).\ vote\mbox{-}Spectre\mbox{}G\mbox{}i\mbox{}b)
  \leq (\sum i \leftarrow sorted\mbox{-}list\mbox{-}of\mbox{-}set (future\mbox{-}nodes G\mbox{-}AB a). vote\mbox{-}Spectre G\mbox{-}AB i b c)
      unfolding sp1 using sp2
      by linarith
 qed
next
  case disin
  have futN: future-nodes G-AB a - \{app\} - \{dis\} = future-nodes G a
   using AOHD.append-future 1(4) HB2.append-future a-in-G-A
   by auto
 then have appfut: app \in future-nodes G-AB a using AOHD. app-in-future2
      1(4) by auto
  then have bbb: sum-list (map (\lambda i.
 (vote-Spectre G-AB i b c)) (sorted-list-of-set (future-nodes G a)))
= sum-list (map (\lambda i.
 (vote-Spectre G-AB i b c)) (sorted-list-of-set (future-nodes G-AB a)))
- (vote\text{-}Spectre\ G\text{-}AB\ app\ b\ c) - (vote\text{-}Spectre\ G\text{-}AB\ dis\ b\ c)
   using futN disin append-diff-sorted-set B3.finite-future
   \mathbf{by}\ (\mathit{metis}\ (\mathit{no-types},\ \mathit{lifting})\ \mathit{AOHD.app-not-dis}\ \mathit{finite-Diff}\ \mathit{insert-Diff-single}
        insert-absorb2 insert-iff mk-disjoint-insert)
  have v1: vote-Spectre G-AB app b c = 1
    \mathbf{using}\ \textit{1.prems Spectre-equals-vote-Spectre-honest-dishonest}
   by blast
  have sp1: sum-list (map (\lambda i).
 (vote-Spectre\ G-AB\ i\ b\ c))\ (sorted-list-of-set\ (future-nodes\ G-AB\ a))) =
  sum-list (map (\lambda i.
```

```
(vote\text{-}Spectre\ G\text{-}AB\ i\ b\ c))\ (sorted\text{-}list\text{-}of\text{-}set\ (future\text{-}nodes\ G\ a)))\ +\ 1
     + (vote-Spectre G-AB dis b c)
       unfolding bbb v1 by auto
     have sp2: sum-list (map (\lambda i.(vote-Spectre G i b c))
                 (sorted-list-of-set\ (future-nodes\ G\ a)))
                  \leq sum-list (map (\lambda i.
                  (vote-Spectre G-AB i b c)) (sorted-list-of-set (future-nodes G a)))
       by (metis fut sum-list-mono)
     show ?thesis unfolding ins ins2
     proof (rule signum-mono)
       consider vote-Spectre G-AB dis b c = 1 \mid vote-Spectre G-AB dis b c = 0
         | vote-Spectre G-AB dis b c = -1 using domain-Spectre
         by blast
      then show (\sum i \leftarrow sorted-list-of-set (future-nodes G a). vote-Spectre G i b c)
     \leq (\sum i \leftarrow sorted\mbox{-}list\mbox{-}of\mbox{-}set (future\mbox{-}nodes G\mbox{-}AB a). vote\mbox{-}Spectre G\mbox{-}AB i b c)
         unfolding sp1 using sp2 proof(cases, auto)
       qed
     qed
   qed
 qed
\mathbf{qed}
lemma One-Appending-Robust SPECTRE
  unfolding One-Appending-Robust-def
proof safe
  fix G G-A G-AB::('a::linorder,'b) pre-digraph and app b c dis::'a
  assume Append-One-Honest-Dishonest G G-A app G-AB dis
   and bcS: (b, c) \in SPECTRE\ G
  then interpret H1: Append-One-Honest-Dishonest G G-A app G-AB dis by
auto
 interpret H2: Append-One G-A G-AB dis using H1.app-two by auto
 have b-in: b \in verts G
   and c-in: c \in verts \ G \ using \ bcS \ unfolding \ SPECTRE-def \ by \ auto
  then have b-in2: b \in verts G-A
   and c-in2: c \in verts \ G-A using H1.append-verts-in by auto
  then have b-in3: b \in verts G-AB
   and c-in3: c \in verts G-AB using H2.append-verts-in by auto
  then show (b, c) \in SPECTRE G-AB
   unfolding SPECTRE-def
  proof(simp)
   have so: Spectre-Order G b c using bcS unfolding SPECTRE-def by auto
   then have vv: vote\text{-}Spectre \ G\text{-}AB \ app \ b \ c = 1
     using Spectre-equals-vote-Spectre-honest-dishonest b-in c-in
       H1. Append-One-Honest-Dishonest-axioms
     by blast
    have fff: finite (verts G-AB) using H2.bD-A fin-digraph.finite-verts subs by
   then have bbb: (\sum i \leftarrow sorted-list-of-set (verts G). vote-Spectre G-AB i b c) =
    (\sum i \leftarrow sorted\mbox{-}list\mbox{-}of\mbox{-}set \ (verts \ G\mbox{-}AB). \ vote\mbox{-}Spectre \ G\mbox{-}AB \ i \ b \ c) - vote\mbox{-}Spectre
```

```
G-AB dis b c
       - vote-Spectre G-AB app b c
      unfolding H1.append-verts-diff H2.append-verts-diff
      using H1.app-not-dis H1.app-in2 H2.app-in append-diff-sorted-set2
      by blast
   have sp1: sum-list (map (\lambda i.
   (vote-Spectre\ G-AB\ i\ b\ c))\ (sorted-list-of-set\ (verts\ G-AB))) =
    sum-list (map (\lambda i.
    (vote-Spectre\ G-AB\ i\ b\ c))\ (sorted-list-of-set\ (verts\ G)))\ +\ 1\ +\ vote-Spectre
G-AB dis b c
      unfolding bbb vv by auto
   have leee: (\sum i \leftarrow sorted-list-of-set \ (verts \ G). \ vote-Spectre \ G \ i \ b \ c) \le 1
          (\sum i \leftarrow sorted\text{-}list\text{-}of\text{-}set \ (verts \ G). \ vote\text{-}Spectre \ G\text{-}AB \ i \ b \ c)
   proof(rule sum-list-mono)
      \mathbf{fix} \ a
      assume a \in set (sorted-list-of-set (verts G))
      then have a \in verts \ G \ using \ sorted-list-of-set(1) \ H1.finite-verts \ by \ auto
      then show vote-Spectre G a b c \leq vote-Spectre G-AB a b c
     {\bf using}\ Spectre-Order-Appending-Robust\ H1. Append-One-Honest-Dishonest-axioms
b-in c-in so
       by blast
   qed
   consider vote-Spectre G-AB dis b c = 1 \mid vote-Spectre G-AB dis b c = 0
       vote-Spectre G-AB dis b c = -1 using domain-Spectre
      by blast
   then have (\sum i \leftarrow sorted-list-of-set (verts G). vote-Spectre G i b c) \le
          (\sum i \leftarrow sorted-list-of-set \ (verts \ G-AB). \ vote-Spectre \ G-AB \ i \ b \ c)
      unfolding sp1 using leee proof(cases, auto) qed
   then have signum\ (\sum i \leftarrow sorted\text{-}list\text{-}of\text{-}set\ (verts\ G).} vote\text{-}Spectre\ G\ i\ b\ c) \leq signum\ (\sum i \leftarrow sorted\text{-}list\text{-}of\text{-}set\ (verts\ G\text{-}AB).}
       vote-Spectre G-AB i b c)
      \mathbf{by}(rule\ signum-mono)
   then have tie-break-int b c (signum (\sum i \leftarrow sorted-list-of-set (verts G).
       vote-Spectre G i b c)
       \leq tie-break-int b c (signum (\sum i \leftarrow sorted-list-of-set (verts G-AB).
       vote-Spectre\ G-AB\ i\ b\ c))
      \mathbf{by}(rule\ tie-break-mono)
   then have 1 \le tie-break-int b c (signum (\sum i \leftarrow sorted-list-of-set (verts G-AB).
       vote-Spectre G-AB i b c))
      using so
      unfolding Spectre-Order-def by simp
   then show Spectre-Order G-AB b c
      unfolding Spectre-Order-def using domain-tie-break by auto
 qed
qed
end
theory Ghostdag-Properties
```

8 GHOSTDAG properties

8.1 GHOSTDAG Order Preserving

```
lemma GhostDAG-preserving:
 assumes blockDAG G
   and x \to^+ G y
 shows (y,x) \in GHOSTDAG \ k \ G
  unfolding GHOSTDAG.simps using assms
proof(induct G k arbitrary: x y rule: OrderDAG.induct )
  case (1 G k)
  then show ?case proof (cases G rule: OrderDAG-casesAlt)
   case ntB
   then show ?thesis using 1 by auto
  \mathbf{next}
   case one
   then have \neg x \rightarrow^+ G y
   using subs(1,4) wf-digraph.reachable1-in-verts 1 DAG.cycle-free OrderDAG-casesAlt
    block DAG. reduce-less\ block DAG. reduce-past-dag based\ block DAG. unique-genes is
less-one
       not-one-less-zero
     by metis
   then show ?thesis using 1 by simp
 next
   case more
   obtain pp where pp-in: pp = (map (\lambda i. (OrderDAG (reduce-past G i) k, i))
      (sorted-list-of-set\ (tips\ G))) using blockDAG.tips-exist by auto
   have backw: list-to-rel (snd (OrderDAG G(k)) =
                   list\text{-}to\text{-}rel\ (snd\ (fold\ (app\text{-}if\text{-}blue\text{-}else\text{-}add\text{-}end\ }G\ k)
                (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set
pp))))))
                 (add-set-list-tuple (choose-max-blue-set pp))))
     using OrderDAG.simps less-irrefl-nat more pp-in
     by (metis (mono-tags, lifting))
   obtain S where s-in:
      (top\text{-}sort\ G\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone\ G\ (snd\ (choose\text{-}max\text{-}blue\text{-}set\ pp))))))
= S by simp
   obtain t where t-in: (add-set-list-tuple (choose-max-blue-set pp)) = t by simp
   obtain ma where ma-def: ma = (snd (choose-max-blue-set pp)) by simp
   have ma-vert: ma \in verts \ G \ unfolding \ ma-def \ using \ chosen-map-simps(2)
digraph.tips\hbox{-}in\hbox{-}verts
       more(1) subs subsetD pp-in by blast
   have ma-tip: is-tip G ma unfolding ma-def
     using chosen-map-simps(2) more pp-in tips-tips
     by (metis (no-types))
   then have no-gen: \neg blockDAG.is-genesis-node G ma unfolding ma-def using
```

```
pp-in
       blockDAG.tips-unequal-gen more
     by metis
   then have red-bd: blockDAG (reduce-past G ma)
     using blockDAG.reduce-past-dagbased more ma-vert unfolding ma-def
   consider (ind) x \in past-nodes G ma \land y \in past-nodes G ma
     |(x-in)| x \notin past-nodes G ma \land y \in past-nodes G ma
     |(y-in)| x \in past-nodes G ma \land y \notin past-nodes G ma
     |(both-nin)| x \notin past-nodes G ma \land y \notin past-nodes G ma by auto
   then show ?thesis proof(cases)
     case ind
     then have x \rightarrow^+_{reduce\text{-}past\ G\ ma} y using DAG.reduce-past-path2 more
         1 \ subs(1)
      by (metis)
     moreover have ma-tips: ma \in set (sorted-list-of-set (tips G))
       using chosen-map-simps(1) pp-in more(1)
       unfolding ma-def by auto
     ultimately have (y,x) \in list\text{-}to\text{-}rel \ (snd \ (OrderDAG \ (reduce\text{-}past \ G \ ma) \ k))
       unfolding ma-def
      using more 1 ind less-numeral-extra(4) ma-def red-bd
      by (metis)
     then have (y,x) \in list\text{-}to\text{-}rel \ (snd \ (fst \ (choose\text{-}max\text{-}blue\text{-}set \ pp)))
       using chosen-map-simps(6) pp-in 1 unfolding ma-def by fastforce
   then have rel-base: (y,x) \in list-to-rel (snd (add-set-list-tuple (choose-max-blue-set
pp)))
      using add-set-list-tuple.simps list-to-rel-mono prod.collapse snd-conv
      by metis
     show ?thesis
      unfolding ma-def backw s-in
      using rel-base unfolding t-in
      \mathbf{using}\ fold\text{-}app\text{-}mono\text{-}rel\ prod.collapse
      by metis
   next
     case x-in
     then have y \in set (snd (OrderDAG (reduce-past G ma) k))
     unfolding reduce-past.simps using induce-subgraph-verts Verts-in-OrderDAG
        more red-bd reduce-past.elims
      by (metis)
     then have y-in-base: y \in set (snd (fst (choose-max-blue-set pp)))
      unfolding ma-def using chosen-map-simps(6) more pp-in
      by fastforce
    consider (x-t) x = ma \mid (x-ant) x \in anticone G ma using DAG.verts-comp2
        subs(1,4) 1 ma-tip ma-vert
        mem-Collect-eq tips-def wf-digraph.reachable1-in-verts(1) x-in
      by (metis (no-types, lifting))
     then show ?thesis proof(cases)
```

```
then have (y,x) \in list-to-rel (snd (add-set-list-tuple (choose-max-blue-set
pp)))
        unfolding x-t ma-def
       using y-in-base add-set-list-tuple.simps list-to-rel-append prod.collapse sndI
        by metis
      then show ?thesis unfolding ma-def backw s-in
        unfolding t-in
        using fold-app-mono-rel prod.collapse
        by metis
     next
      case x-ant
      then have x \in set (sorted-list-of-set (anticone G ma))
        using sorted-list-of-set(1) more subs(1)
        by (metis DAG.anticon-finite)
      moreover have y \in set (snd (add-set-list-tuple (choose-max-blue-set pp)))
        using add-set-list-tuple-mono in-mono prod.collapse y-in-base
        by (metis (mono-tags, lifting))
      ultimately show ?thesis unfolding backw
        by (metis fold-app-app-rel ma-def prod.collapse top-sort-con)
     qed
   next
     then have y \in past\text{-}nodes\ G\ ma\ unfolding\ past\text{-}nodes.simps\ using\ 1(2,3)
        wf-digraph.reachable1-in-verts(2) subs(4) mem-Collect-eq trancl-trans
      by (metis (mono-tags, lifting))
     then show ?thesis using y-in by simp
   next
     case both-nin
    consider (x-t) x = ma \mid (x-ant) x \in anticone G ma using DAG.verts-comp2
        subs(1,4) 1 ma-tip ma-vert
        mem-Collect-eq tips-def wf-digraph.reachable1-in-verts(1) both-nin
      by (metis (no-types, lifting))
     then show ?thesis proof(cases)
      case x-t
      have y \in past\text{-}nodes\ G\ ma\ using\ 1(3)\ more
          past-nodes.simps unfolding x-t
        by (simp add: subs wf-digraph.reachable1-in-verts(2))
      then show ?thesis using both-nin by simp
     next
      have y-ina: y \in anticone \ G \ ma
      proof(rule ccontr)
        assume \neg y \in anticone \ G \ ma
        then have y = ma
          unfolding anticone.simps using subs wf-digraph.reachable1-in-verts(2)
1(2,3)
           ma-tip both-nin
         by fastforce
        then have x \to^+ G ma using 1(3) by auto
```

case x-t

```
then show False using subs(4) 1(2)
         by (metis wf-digraph.tips-not-referenced ma-tip)
      qed
      case x-ant
     then have (y,x) \in list\text{-}to\text{-}rel \ (top\text{-}sort \ G \ (sorted\text{-}list\text{-}of\text{-}set \ (anticone \ G \ ma)))
     using y-ina DAG.anticon-finite subs(1) 1(2,3) sorted-list-of-set(1) top-sort-rel
        by metis
      then show ?thesis unfolding backw ma-def using
         fold-app-mono list-to-rel-mono2
        by (metis old.prod.exhaust)
    qed
   qed
 qed
qed
lemma \forall k. Order-Preserving (GHOSTDAG k)
 unfolding Order-Preserving-def
 using GhostDAG-preserving
 by blast
      GHOSTDAG Linear Order
8.2
{f lemma} {\it GhostDAG-linear}:
 assumes blockDAG G
 shows linear-order-on (verts G) (GHOSTDAG k G)
 unfolding GHOSTDAG.simps
 using list-order-linear OrderDAG-distinct OrderDAG-total assms by metis
lemma \forall k. Linear-Order (GHOSTDAG k)
 unfolding Linear-Order-def
 using GhostDAG-linear by blast
      GHOSTDAG One Appending Monotone
lemma OrderDAG-append-one:
 assumes Honest-Append-One G G-A a
 shows snd (OrderDAG G-A k) = snd (OrderDAG G k) @ [a]
proof -
 have bD-A: blockDAG G-A using assms Append-One.bD-A Honest-Append-One-def
   by metis
 have g1: card (verts G-A) \neq 1
  using assms Append-One.append-greater-1 Honest-Append-One-def less-not-refl
 have (tips \ G-A) = \{a\} using Honest-Append-One.append-is-only-tip assms by
 then have tips-app: (sorted-list-of-set\ (tips\ G-A)) = [a] by auto
 obtain the-map where the-map-in:
 the\text{-}map = ((map (\lambda i.(((OrderDAG (reduce\text{-}past G-A i) k)), i)) (sorted\text{-}list\text{-}of\text{-}set))
(tips G-A)))
```

```
by auto
  then have m-l: the-map = [((OrderDAG (reduce-past G-A a) k), a)]
   unfolding the-map-in using tips-app by auto
  then have c-l: choose-max-blue-set the-map
  = ((OrderDAG (reduce-past G-A a) k), a)
  by (metis (no-types, lifting) choose-max-blue-avoid-empty list.discI list.set-cases
set-ConsD)
  then have bb: choose-max-blue-set the-map
  =((\mathit{OrderDAG}\ G\ k),\ a)\ \mathbf{using}\ \mathit{Honest-Append-One.reduce-append}\ \mathit{assms}
 let ?M = choose-max-blue-set the-map
 have anticone G-A (snd ?M)= {}
   unfolding c-l
   \mathbf{using}\ assms\ Honest-Append-One.append-no-anticone\ sndI
   by metis
 then have eml: (top\text{-}sort\ G\text{-}A\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone}\ G\text{-}A\ (snd\ ?M)))) = []
   by (metis sorted-list-of-set-empty top-sort.simps(1))
 then have (fold\ (app-if-blue-else-add-end\ G\ k)
  (top\text{-}sort\ G\text{-}A\ (sorted\text{-}list\text{-}of\text{-}set\ (anticone}\ G\text{-}A\ (snd\ ?M))))
 (add\text{-}set\text{-}list\text{-}tuple\ ?M)) = (add\text{-}set\text{-}list\text{-}tuple\ ?M)
   using bb by simp
  moreover have snd (add\text{-}set\text{-}list\text{-}tuple ?M) = snd (OrderDAG G k) @ [a]
   unfolding bb
   using add-set-list-tuple.simps Pair-inject add-set-list-tuple.elims snd-conv
   by (metis (mono-tags, lifting))
  ultimately show ?thesis
   unfolding the-map-in
   using OrderDAG.simps bD-A g1 eml fold-simps(1) list.simps(8) list.simps(9)
the-map-in tips-app
   by (metis (no-types, lifting))
qed
lemma \forall k. Honest-One-Appending-Monotone (GHOSTDAG k)
 unfolding Honest-One-Appending-Monotone-def GHOSTDAG.simps
 using list-to-rel-mono OrderDAG-append-one
 by metis
end
theory Codegen
 imports blockDAG Spectre Ghostdag Extend-blockDAG
begin
     Code Generation
9
```

where $arcAlt\ G\ e\ uv = (e \in arcs\ G\ \land\ tail\ G\ e = fst\ uv\ \land\ head\ G\ e = snd\ uv)$

fun arcAlt:: ('a,'b) $pre-digraph \Rightarrow 'b \Rightarrow 'a \times 'a \Rightarrow bool$

```
fun iterate:: ('a \Rightarrow bool) \Rightarrow 'a \ set \Rightarrow bool
  where iterate SP = Finite\text{-Set.fold} (\lambda \ r \ A. \ S \ r \land A) False P
lemma (in DAG) arcAlt-eq:
  shows arcAlt G e uv = wf-digraph.arc G e uv
  unfolding arc-def arcAlt.simps by simp
lemma [code]: blockDAG\ G = (DAG\ G \land ((\exists\ p \in verts\ G.\ ((\forall\ r \in verts\ G.\ (r))))))
\rightarrow^+ G p \vee r = p)))) \wedge
 (\forall e \in (arcs \ G). \ \forall \ u \in verts \ G. \ \forall \ v \in verts \ G.
(u \rightarrow^+(pre-digraph.del-arc\ G\ e)\ v) \longrightarrow \neg\ arcAlt\ G\ e\ (u,v))))
  using DAG.arcAlt-eq wf-digraph-def DAG.axioms(1)
    digraph.axioms(1) fin-digraph.axioms(1) wf-digraph.arcE blockDAG-axioms-def
blockDAG-def
 by metis
lemma [code]: DAG G = (digraph \ G \land (\forall v \in verts \ G. \ \neg(v \rightarrow^+_G v)))
  unfolding DAG-axioms-def DAG-def
 by (metis\ digraph.axioms(1)\ fin-digraph.axioms(1)\ wf-digraph.reachable 1-in-verts(1))
lemma [code]: digraph G = (fin\text{-digraph } G \land loopfree\text{-digraph } G \land nomulti\text{-digraph})
 unfolding digraph-def by auto
lemma [code]: wf-digraph G = (
 (\forall e \in arcs \ G. \ tail \ G \ e \in verts \ G) \ \land
 (\forall e \in arcs \ G. \ head \ G \ e \in verts \ G))
 using wf-digraph-def by auto
lemma [code]: nomulti-digraph G = (wf-digraph G \wedge
  (\forall e1 \in arcs \ G. \ \forall \ e2 \in arcs \ G.
    arc-to-ends G e1 = arc-to-ends G e2 \longrightarrow e1 = e2))
  unfolding nomulti-digraph-def nomulti-digraph-axioms-def by auto
lemma [code]: loopfree-digraph G=(wf-digraph G \wedge (\forall e \in arcs \ G. \ tail \ G \ e \neq
head G e)
  {\bf unfolding}\ loop free-digraph-def\ loop free-digraph-axioms-def\ {\bf by}\ auto
lemma [code]: pre-digraph.del-arc G a =
 (|verts = verts \ G, \ arcs = arcs \ G - \{a\}, \ tail = tail \ G, \ head = head \ G)
 by (simp add: pre-digraph.del-arc-def)
lemma [code]: fin-digraph G = (wf-digraph G \land (card (verts G) > 0 \lor verts G =
   \land ((card (arcs G) > 0 \lor arcs G = \{\})))
  using card-ge-0-finite fin-digraph-def fin-digraph-axioms-def
```

```
by (metis\ card-gt-0-iff\ finite.emptyI)
fun vote-Spectre-Int:: (integer, integer\timesinteger) pre-digraph \Rightarrow
  integer \Rightarrow integer \Rightarrow integer \Rightarrow integer
   where vote-Spectre-Int V a b c = integer-of-int (vote-Spectre V a b c)
fun SpectreOrder-Int:: (integer, integer \times integer) pre-digraph \Rightarrow integer \Rightarrow integer
\Rightarrow bool
    where SpectreOrder-Int G = Spectre-Order G
fun OrderDAG-Int:: (integer, integer \times integer) pre-digraph \Rightarrow
  integer \Rightarrow (integer \ set \times \ integer \ list)
  where OrderDAG-Int V a = (OrderDAG \ V \ (nat\text{-}of\text{-}integer \ a))
export-code top-sort anticone set blockDAG pre-digraph-ext snd fst vote-Spectre-Int
  Spectre Order-IntOrder DAG-Int
  in Haskell module-name DAGS file code/
9.1 Show that SPECTRE is not linear
Example that SPECTRE is not linear without tie-breaks
notepad begin
   let ?G = \{verts = \{1::int,2,3,4,5,6,7,8,9,10\}, arcs = \{(2,1),(3,1),(4,1), arcs = (2,1),(3,1),(4,1), arcs = (2,1),(3,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(
    (5,2),(6,3),(7,4),(8,5),(8,3),(9,6),(9,4),(10,7),(10,2)\},\ tail=fst,\ head=snd)
    let ?a = 2
   let ?b = 3
   let ?c = 4
    value blockDAG ?G
 True
    value Spectre-Order ?G ?a ?b \land Spectre-Order ?G ?b ?c \land \neg Spectre-Order ?G
 ?a ?c
True
end
Example that SPECTRE is not linear with tie-breaks
notepad begin
    let ?G = \{verts = \{1::int, 2, 3, 4, 5\}, arcs = \{(4,1), (3,4), (5,1), arcs \}
    (2,5), tail = fst, head = snd
    let ?a = 4
   let ?b = 5
   let ?c = 2
    value blockDAG ?G
```

True

```
value Spectre-Order ?G ?a ?b \land Spectre-Order ?G ?b ?c \land \neg Spectre-Order ?G ?a ?c
```

True

end

begin

9.2 Extend Graph

```
declare pre-digraph.del-vert-def [code]
declare Append-One-axioms-def [code]
declare Honest-Append-One-axioms-def[code]
declare Append-One-def [code]
declare Honest-Append-One-def [code]
declare Append-One-Honest-Dishonest-axioms-def [code]
declare Append-One-Honest-Dishonest-def [code]
```

9.3 GHOSTDAG Not One Appending Robust

We first introduce a simple finite block datatype to use derived code for blockDAG extensions

```
datatype FV = V1 \mid V2 \mid V3 \mid V4 \mid V5 \mid V6 \mid V7 \mid V8 \mid V9 \mid V10
```

```
fun FV-Suc :: FV \Rightarrow FV set
  where
  FV-Suc V1 = \{V1, V2, V3, V4, V5, V6, V7, V8, V9, V10\}
  FV-Suc V2 = \{ V2, V3, V4, V5, V6, V7, V8, V9, V10 \} |
  FV-Suc V3 = \{V3, V4, V5, V6, V7, V8, V9, V10\}
  FV-Suc V4 = \{ V4, V5, V6, V7, V8, V9, V10 \} |
  FV-Suc V5 = \{V5, V6, V7, V8, V9, V10\}
  FV\text{-}Suc\ V6 = \{V6, V7, V8, V9, V10\}\ |
  FV\text{-}Suc\ V7 = \{V7, V8, V9, V10\}
  FV\text{-}Suc\ V8 = \{V8, V9, V10\}\ |
  FV\text{-}Suc\ V9 = \{V9, V10\}\ |
  FV\text{-}Suc\ V10 = \{V10\}
fun less-eq-FV:: FV \Rightarrow FV \Rightarrow bool
  where less-eq-FV a b = (b \in FV\text{-}Suc\ a)
fun less-FV :: FV \Rightarrow FV \Rightarrow bool
  where less-FV a b = (a \neq b \land less-eq-FV a b)
lemma FV-cases:
 fixes x::FV
 obtains x = V1 \mid x = V2 \mid x = V3 \mid x = V4 \mid x = V5 \mid x = V6 \mid x = V7 \mid x
 | x = V9 | x = V10
proof(cases x, auto) qed
instantiation FV :: linorder
```

```
definition less-eq \equiv less-eq-FV
definition less \equiv less-FV
instance
proof(standard)
 fix x y z :: FV
 show x \leq x unfolding less-eq-FV-def less-eq-FV.simps
 proof(cases x, auto) qed
 show x \leq y \vee y \leq x
   unfolding less-eq-FV-def less-eq-FV.simps
   by(cases x rule: FV-cases) (cases y rule: FV-cases, auto)+
 \mathbf{show} \ (x < y) = (x \le y \land \neg \ y \le x)
 unfolding less-FV-def less-FV.simps less-eq-FV-def less-eq-FV.simps
 by(cases x rule: FV-cases) (cases y rule: FV-cases, auto)
 show x \le y \Longrightarrow y \le x \Longrightarrow x = y
 unfolding less-FV-def less-FV.simps less-eq-FV-def less-eq-FV.simps
 by (cases x rule: FV-cases)(cases y rule: FV-cases, auto)+
 show x \le y \Longrightarrow y \le z \Longrightarrow x \le z
 unfolding less-FV-def less-FV.simps less-eq-FV-def less-eq-FV.simps
 by (cases x rule: FV-cases)(cases y rule: FV-cases, auto)+
qed
end
instantiation FV :: enum
begin
definition enum-FV \equiv [V1, V2, V3, V4, V5, V6, V7, V8, V9, V10]
fun enum-all-FV:: (FV \Rightarrow bool) \Rightarrow bool
where enum-all-FV P = Ball \{ V1, V2, V3, V4, V5, V6, V7, V8, V9, V10 \} P
fun enum-ex-FV:: (FV \Rightarrow bool) \Rightarrow bool
where enum-ex-FV P = Bex \{ V1, V2, V3, V4, V5, V6, V7, V8, V9, V10 \} P
instance
 apply(standard)
    apply(simp-all)
 unfolding enum-FV-def UNIV-def
proof -
 show \{x. True\} = set [V1, V2, V3, V4, V5, V6, V7, V8, V9, V10]
 \mathbf{proof} \ safe
   \mathbf{fix} \ x :: FV
   show x \in set [V1, V2, V3, V4, V5, V6, V7, V8, V9, V10]
     using FV-cases by auto
 qed
 show distinct [V1, V2, V3, V4, V5, V6, V7, V8, V9, V10] by auto
 show A: (P\ V1 \land P\ V2 \land P\ V3 \land P\ V4 \land P\ V5 \land P\ V6 \land P\ V7 \land P\ V8 \land P
V9 \wedge P \ V10) = All \ P
```

```
\mathbf{proof}(standard, auto, standard)
        \mathbf{fix} \ x
        show P V1 \Longrightarrow
                   P V2 \Longrightarrow P V3 \Longrightarrow P V4 \Longrightarrow P V5 \Longrightarrow P V6 \Longrightarrow P V7 \Longrightarrow
        P V8 \Longrightarrow P V9 \Longrightarrow P V10 \Longrightarrow P x = True
        proof(cases x rule: FV-cases, auto) qed
    show (P V1 \vee P V2 \vee P V3 \vee P V4 \vee P V5 \vee P V6 \vee P V7 \vee P V8 \vee P V9
\vee P V10 = Ex P
    proof(safe, auto)
        \mathbf{fix} \ x :: FV
        show P x \Longrightarrow
                   \neg P V1 \Longrightarrow
                    \neg P \ V2 \Longrightarrow \neg P \ V3 \Longrightarrow \neg P \ V4 \Longrightarrow \neg P \ V5 \Longrightarrow \neg P \ V6 \Longrightarrow \neg P \ V7
\implies \neg P \ V8 \implies
                     \neg P V10 \Longrightarrow P V9
        proof(cases x rule: FV-cases, auto) qed
   qed
qed
end
Finally, we implement an counterexample and show that it violates OneAp-
pendingRobustness
notepad
begin
  let ?G = \{V1, V2, V3, V4, V5, V6, V7, V8\}, arcs = \{(V2, V1), (V3, V2), (V4, V2), (V5, V2), (V5, V2), (V6, V7, V8), arcs = \{(V6, V1), (V6, V2), (V6, V7, V8), arcs = \{(V6, V1), (V6, V2), (V6, V7, V8), arcs = \{(V6, V1), (V6, V2), (V6, V7, V8), arcs = \{(V6, V1), (V6, V2), (V6, V2), (V6, V2), (V6, V7, V8), arcs = \{(V6, V1), (V6, V2), (V6
   (V6, V1), (V7, V6), (V8, V7), tail = fst, head = snd
   value blockDAG ?G
    value OrderDAG ?G 2
  let ?G2 = \{verts = \{V1, V2, V3, V4, V5, V6, V7, V8, V9\}, arcs = \{(V2, V1), (V3, V2), (V4, V2), (V5, V2), (V5, V2), (V6, V7, V8, V9)\}
   (V6, V1), (V7, V6), (V8, V7), (V9, V3), (V9, V4), (V9, V5), (V9, V8), tail = fst, head
= snd
    value blockDAG ?G2
    value OrderDAG ?G2 2
   value Append-One ?G ?G2 V9
    value Honest-Append-One ?G ?G2 V9
   let ?G3 = \{verts = \{V1, V2, V3, V4, V5, V6, V7, V8, V9, V10\}, arcs = \{(V2, V1), (V3, V2), (V4, V2), (V5, V3, V4, V5, V6, V7, V8, V9, V10)\}
   (V6, V1), (V7, V6), (V8, V7), (V9, V3), (V9, V4), (V9, V5), (V9, V8), (V10, V3), (V10, V4), (V10, V5)
      tail = fst, head = snd
    value blockDAG ?G3
 True
    value Append-One ?G2 ?G3 V10
 True
    value Append-One-Honest-Dishonest ?G ?G2 V9 ?G3 V10
```

unfolding All-def