Depression Patient Outcome Study

Lingge Li 11/21/2016

Patient outcome

Most patients are moderately or severely depressed before treatment (BDI>30) and mildly depressed after (BDI<20).

```
load('Depression.RData')
Depression <- Depression[Depression$GROUP_ID==2,]</pre>
summary(Depression$Pre_BDI)
                                Mean 3rd Qu.
##
      Min. 1st Qu.
                     Median
                                                  Max.
##
        20
                 24
                          30
                                  31
                                           36
                                                    60
summary(Depression$POST_BDI)
                     Median
##
      Min. 1st Qu.
                                Mean 3rd Qu.
                                                  Max.
```

60.0

22.0

Changes in BDI are mostly positive.

6.0

0.0

##

```
qplot(Depression$Pre_BDI-Depression$POST_BDI, bins=20)
```

15.9

14.0

In the original data, all patients who have low BDI to start with are considered non-responders, which is inconsistent with our discussion.

ggplot(data=Depression,aes(x=Pre_BDI,y=Pre_BDI-POST_BDI,colour=Treatment_Response_Depression)) + geom_p

We consider patients who improve BDI by more than 50% as responders.

```
outcome <- (Depression$Pre_BDI-Depression$POST_BDI)>0.5*Depression$Pre_BDI
temp <- data.frame(Pre_BDI=Depression$Pre_BDI,POST_BDI=Depression$POST_BDI,outcome)
ggplot(data=temp,aes(x=Pre_BDI,y=Pre_BDI-POST_BDI,colour=outcome)) + geom_point()</pre>
```


Brain regions

Here we first look at brain region scores of baseline SPECT scan. Most patients have 1 or 2 missing values but about 90 patients have more than 100 missing values. We will remove those patients and do simple mean imputation for the rest.

```
NAs <- apply(Depression[,125:252], 1, function(x) sum(is.na(x)))
qplot(NAs)
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
Depression <- Depression[NAs<100,]
Depression[,'T_Baseline_Cerebellum_10_L'][is.na(Depression[,'T_Baseline_Cerebellum_10_L'])] <- mean(Depression[,'T_Baseline_Cerebellum_10_R'][is.na(Depression[,'T_Baseline_Cerebellum_10_R'])] <- mean(Depression[,'T_Baseline_Cerebellum_3_L'][is.na(Depression[,'T_Baseline_Cerebellum_3_L'])] <- mean(Depression[,'T_Baseline_Vermis_1_2'][is.na(Depression[,'T_Baseline_Vermis_1_2'])] <- mean(Depression[,'T_Baseline_Vermis_10'])] <- mean(Depression[,'T_Baseline_Vermis_10']) <- mean(Depression[,'T_Baseline_Vermis_10'])] <- mean(Depression[,'T_Baseline_Vermis_10']) <- mean(Depression[,'T_Baseline_
```

Let's plot the brain region scores of one patient as a curve. There is quite a bit of fluctuation across regions.

```
baseline <- Depression[,125:252]
b <- as.numeric(baseline[47,])
x <- seq(1,128,1)
qplot(x,b,geom='line',xlab='Brain Region',ylab='T Score',main=paste('Patient 47'))</pre>
```


Side by side boxplots show almost no difference between responders and non-responders, which is bad.

```
stackregion <- function(regions, outcome) {
  n <- length(outcome)
  score <- rep(NA, n*8)
  name <- rep(NA, n*8)
  responder <- rep(NA, n*8)
  patient <- rep(NA, n*8)
  for (i in 1:8) {</pre>
```

```
score[((i-1)*n+1):((i-1)*n+n)] <- as.numeric(regions[,i])
  name[((i-1)*n+1):((i-1)*n+n)] <- colnames(regions)[i]
  responder[((i-1)*n+1):((i-1)*n+n)] <- outcome
  patient[((i-1)*n+1):((i-1)*n+n)] <- seq(1, n, 1)
}
stacked <- data.frame(score,name,responder,patient)
  return(stacked)
}
outcome <- (Depression$Pre_BDI-Depression$POST_BDI)>0.5*Depression$Pre_BDI
i <- 1
regions <- stackregion(Depression[,(125+(i-1)*8):(132+(i-1)*8)],outcome)
ggplot(data=regions,aes(x=responder,y=score,fill=responder)) +
  geom_boxplot() + coord_flip() +
  facet_wrap(~name, ncol=4) +
  theme(aspect.ratio=3/4) +
  ggtitle(label='T scores in different brain regions')</pre>
```

T scores in different brain regions

Dimensionality reduction

Since there are 128 brain regions, it would be helpful to identify the important ones. The first two principal components account for most of the variance.

```
fit <- princomp(baseline, cor=FALSE)
plot(fit,type="lines")</pre>
```

fit

However, the data do not look separable, which is expected.

```
pca1 <- fit$scores[,1]
pca2 <- fit$scores[,2]
pca <- data.frame(pca1, pca2, outcome)
ggplot(data=pca, aes(x=pca1, y=pca2, colour=outcome)) + geom_point()</pre>
```


Classification models

We will go ahead to build classification models regardless. First, penalized logistic regression. Shrinkage does not improve prediction accuracy.

```
library(glmnet)
```

```
## Warning: package 'glmnet' was built under R version 3.2.4
## Loading required package: Matrix
## Loading required package: foreach
## Loaded glmnet 2.0-5
```

```
X <- as.matrix(cbind(baseline, Pre_BDI=Depression$Pre_BDI))
indices <- sample(1:828,828)
Xtest <- X[indices[1:160],]
ytest <- outcome[indices[1:160]]
Xtrain <- X[indices[161:828],]
ytrain <- outcome[indices[161:828]]
fit <- glmnet(Xtrain, as.factor(ytrain), family='binomial', standardize=FALSE)
plot(fit, xvar ='lambda', label=TRUE)</pre>
```


Then support vector machine and gradient boosted decision trees with 5-fold cross-validation. None of them does well.

```
library(e1071)
library(xgboost)
```

 $\mbox{\tt \#\#}$ Warning: package 'xgboost' was built under R version 3.2.5

```
dat <- cbind(outcome,baseline,Depression$Pre_BDI)</pre>
indices <- sample(1:828,800)
dat <- dat[indices,]</pre>
accuracy1 <- 0
accuracy2 <- 0
for (i in 1:5) {
  current <- seq(1+(i-1)*160,160+(i-1)*160,1)
  train <- dat[-current,]</pre>
  test <- dat[current,]</pre>
  fit1 <- svm(as.factor(outcome)~.,data=train)</pre>
  pred1 <- predict(fit1,test[,-1],type='class')</pre>
  accuracy1 <- accuracy1+sum(test$outcome==pred1)</pre>
  fit2 <- xgboost(data=as.matrix(train[,-1]),label=train$outcome,nrounds=10,max.depth=5,</pre>
                  objective='binary:logistic',verbose=0)
  pred2 <- predict(fit2, as.matrix(test[,-1]))</pre>
  accuracy2 <- accuracy2+sum(test$outcome==(pred2>0.5))
accuracy1/800
```

[1] 0.49375

```
accuracy2/800
```

[1] 0.48375

Of course all this is just the beginning and fairly standard. One could do more detailed exploratory analysis to generate new features, use other models with fine-tuned hyperparameters and ensemble the results. Also, note that I did most of data manipulation with base R functions because the data size is small.