Indice de réfraction

I. Définition

L'indice de réfraction **n** d'un milieu transparent et homogène est le rapport de la vitesse de la lumière de la vide **c** sur la vitesse de la lumière dans le milieu étudié **v**.

$$n = \frac{c}{v}$$

L'indice de réfraction est une grandeur sans unité. Pour un liquide : 1,3 < n < 1,7

L'indice de réfraction **n** dépend de la longueur d'onde de la radiation et de la température :

- La longueur d'onde de référence est la raie D du sodium (λ = 589 nm).
- Les indices de réfraction sont tabulés à 20°C : pour comparer la valeur expérimentale mesurée à la température t (exprimée en °C) avec la valeur tabulée, il convient d'appliquer la formule suivante :

$$n^{20} = n^{t} + 0,00045 (t - 20)$$

La mesure d'un indice de réfraction permet d'identifier un liquide et de contrôler sa pureté. La présence d'impuretés modifie la valeur de l'indice de réfraction.

II. Mesure

L'indice de réfraction d'un liquide est mesuré avec un réfractomètre d'Abbe.

- Etalonner le réfractomètre.
- Déposer la goutte de produit à analyser en prenant garde à ne pas rayer les surfaces du prisme.
- Abaisser le prisme supérieur.
- Tourner le verrier du compensateur afin d'obtenir une image la plus nette possible.
- Amener l'interface clair-obscur au centre du réticule à l'aide du second verrier.
- Lire la valeur de l'indice dans l'oculaire.
- Calculer la valeur de l'indice de réfraction à 20°C afin de le comparer à sa valeur tabulée.

Réfractomètre d'Abbe