Pythonではじめる機械学習

WeekendEngineerコンペティションチーム輪講会 *vol.1*

対応 ページ

1章:機械学習 (Machine Learning: ML)の概要

機械学習 (Machine Learning: ML)とは

広義的な意味

データの集合から、 みえているものからみえていないものを予測する手法

▼ 実例としては・・・

顔認識システム

対応 ページ

なぜ機械学習 (ML)なのか?

「SPAMフィルタ」を例に考えてみる

人がルールを設計する場合

機械学習を使わない場合

単語のブラックリストを作成し、

その単語が 出てきたらSPAM 出てこなかったらSPAMではない

- -・ルールの設計が必要 → 専門家が必要
- タスクが少しでも変わると 問題点 → システム全体を 書き直さなければいけない
 - ・人がルールを 機械に教え続けるには限界がある

対応 ページ

なぜ機械学習 (ML)なのか?

「画像からの顔認識」を例に考えてみる

人がルールを設計する場合

機械学習を使わないとできない!

問題点 計算機がピクセルを「知覚」する方法が、 人間が顔を認識する方法と全く異なる 人がルールを設計出来ない

対応 ページ

分類の仕方はイロイロ・・・

機械学習 (ML)の分類

機械学習 教師あり学習 教師なし学習 ・クラスタリング (clustering) ・クラス分類 (classification) ·異常検知 (anomaly detection) ·回帰 (regression) 強化学習

対応 ページ

教師あり学習 (Supervised Learning)の概要

学習データと教師データ (正解ラベル)を用いて学習する手法

○クラス分類 (classification)

クラスラベルを予測する

○回帰 (regression)

数値を予測する

対応 ページ

教師あり学習 (Supervised Learning)の概要

学習データと教師データ (正解ラベル)を用いて学習する手法

例)・KaggleのTitanicコンペティション →2クラス分類

Titanic号の乗客が事故で 死んだか(0)生きたか(1)を予測

- MNIST (Mixed National Institute of Standards and Technology database)
 - →10クラス分類

手書き数字画像「0」~「9」を予測

・iris (アヤメ)の分類 →3クラス分類

花の画像「setosa」、「versicolor」、「virginica」を予測

- ・売上予測
 - →回帰

対応 ページ

教師なし学習 (Unsupervised Learning)の概要

学習データのみを用いて学習する手法

○クラスタリング (clustering)

グループ分けをする

○異常検知 (anomaly detection)

異常値を見つける

教師なし学習 (Unsupervised Learning)の概要

学習データのみを用いて学習する手法

例)・レコメンド

おすすめの商品などを紹介

・心電図の異常検出

対応ページ

対応 ページ

タスクを知り、データを知る

アルゴリズムには、 それぞれ得意とする データの種類や 問題の設定がある

適当にアルゴリズムを選んでデータを投げればいいわけではない

- ・解決しようとしている問題は何か? 集めたデータでその問題が解決できるのか?
 - ・機械学習が適しているのか?
- ・解決しようとしている問題を解くために十分なデータを集めたか?
- ・どのような特徴量を抽出しただろうか? その特徴量で正しい予測が可能だろうか?
- どのような評価を行えばよいか?

機械学習はあくまで手段であり、 目的は問題を解決すること

P13, 14

対応 ページ

iris (アヤメ)のクラス分類

iris (アヤメ)のSepal (がく片)、Petal (花弁)の幅、長さから「setosa」、「versicolor」、「virginica」の3品種に分類

P14-17

対応 ページ

iris (アヤメ)のクラス分類

①データの読み込み

sklearnのライブラリからインポート

- ②学習データとテストデータの分割
- ③データの検査
- ④学習モデルの構築
- ⑤モデルの評価

詳細は

5章で

対応 ページ

iris (アヤメ)のクラス分類

(1)データの読み込み

データはラベルでソートされているため シャッフルしないと出力ラベルが偏る

- ②学習データとテストデータの分割
- ③データの検査
- ④学習モデルの構築
- ⑤モデルの評価

データセットをシャッフルしてから 学習データ75%、テストデータ25%に分割

P19, 20

対応

iris (アヤメ)のクラス分類

①データの読み込み

データがうまく 分離しているか bok

- ②学習データとテストデータの分割
- ③データの検査
- ④学習モデルの構築
- ⑤モデルの評価

ペアプロットで可視化

全ての特徴量の組み合わせをプロットしたもの

全ての特徴量の相関を同時に見ているわけではないので、 特徴量の数が少ない場合はうまくいく

P20-22

対応 ページ

iris (アヤメ)のクラス分類

①データの読み込み

学習データに近いデータに合わせる手法 (詳細は2章で)

- ②学習データとテストデータの分割
- ③データの検査
- ④学習モデルの構築
- ⑤モデルの評価

k-近傍法 (k-Nearest Neighbors: KNN)を採用

ここではk=1

iris (アヤメ)のクラス分類

- ①データの読み込み
- ②学習データとテストデータの分割
- ③データの検査
- ④学習モデルの構築

⑤モデルの評価

テストデータを用いて評価する

教師あり学習 (Supervised Learning)の概要

学習データと教師データ (正解ラベル)を用いて学習する手法

○クラス分類 (classification)

クラスラベルを予測する

○回帰 (regression)

数値を予測する

P28-31

対応 ページ

汎化性能 (generalization performance)

学習データ以外のデータに対しても正しい予測ができる能力

過学習 (over fitting) (過剰適合) <u>適合不足 (under fitting)</u>

訓練データにすらうまく学習ができないこと

特定の学習データのみに特化した学習をしてしまうこと

精度とモデルの複雑さ

最良の汎化性能を示す スイートスポットが 理想のモデルである

<u>k近傍法(k Nearest Neighbor: kNN)</u>

クラス分類だけではなく、 回帰にも使える

学習データをベクトル空間上にプロットしておき、

未知のデータが得られたら、

そこから距離が近い順に任意のk個を取得し、

多数決でデータが属するクラスを推定する

P36-45

対応 ページ

k近傍法(k Nearest Neighbor: kNN)

利点

- ・モデルが理解しやすいため、モデル構築が容易
- ・パラメータ調整による影響が比較的小さい

欠点

- ・多数の特徴量を持つデータセットでは十分な精度がでない
- ・前処理による影響が比較的大きい
- ・データ個数が多いほど処理速度が遅い(計算時間がかかる)

欠点より、 実際にはほとんど使われていない

P46, 47

対応 ページ

線形モデル (linear model)による回帰

$$y=\sum_{i=1}^n(w_ix_i)+b=w_1x_1+w_2x_2\cdots+w_nx_n+b$$

w:xに対する重み

b:バイアス

y:予測值

低次元空間では、線形モデル を用いるのは制約が強すぎる かもしれない

P48, 49

対応 ページ

<u>線形回帰(最小二乗法(ordinary least squares: OLS))</u>

学習データにおいて、

損失関数 (loss function)

予測値と真値の<u>平均二乗誤差</u> (Mean Squared Error: MSE) を最小にするために**重みwとバイアスb**を求める

誤差関数
$$MSE(y_i, \hat{y_i}) = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y_i})^2$$

 y_i :正解值 $\hat{y_i}$:予測值

P50-53

対応 ページ

リッジ回帰 (Ridge Regression)

基本は線形回帰と同じだが、 損失関数に、L2正則化項を加える 正則化とは?

過学習を防ぐために 明示的にモデルを制約すること

過学習を防ぐ

個々の特徴量が出力に与える影響をなるべく小さくしたい →重みwの大きさが高いものにペナルティを与える

誤差関数
$$\frac{1}{n}\sum_{i=1}^n (y_i - \hat{y_i})^2 + \lambda \sum_{i=1}^n W_i^2$$

 y_i :正解値 $\hat{y_i}$:予測値 $\lambda(ラムダ): ハイパーパラメータ$

P50-53

対応

リッジ回帰 (Ridge Regression)

・線形回帰と比べ、 学習データに対するスコア *テストデータに対するスコア* → 高い

期待通り

汎化性能が 高い

- ・過学習(over fitting)の危険が少ない
- ・学習データに対するスコアとモデルの簡潔さ(Oに近いwの数) はトレードオフの関係

P53-56

対応 ページ

Lasso

基本は線形回帰と同じだが、 損失関数に、L1正則化項を加える

いくつかの重みが完全に0になる→重みが0になった特徴量は無視される

誤差関数
$$\frac{1}{n}\sum_{i=1}^n (y_i - \hat{y_i})^2 + \lambda \sum_{i=1}^n |w_i|$$

 y_i :正解値 $\hat{y_i}$:予測値 $\lambda(ラムダ)$:ハイパーパラメータ

P53-56

対応 ページ

Lasso

- ・ $\lambda = 1$ の場合、ほとんどのwが0になってしまい、 適合不足となった。
- ・ λ を小さくしすぎると線形回帰と同じような結果になる
- ・ λ を適度に小さくすると、学習に使う特徴量を減らすことができ、シンプルなモデルになる
 - →特徴量がたくさんあり、そのうち重要なものは わずかしかないことが予測できる場合に有効

P56-63

対応

クラス分類のための線形モデル (linear model)

2クラス分類

$$y = \sum_{i=1}^{n} (w_i x_i) + b = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b > 0$$

yの値が0より大きければクラスは+1 0より小さければ - 1

- ○ロジスティック回帰 (logistic regression)
 ○線形サポートベクターマシン (Linear Support vector Machine)

P63-67

対応 ページ

<u>クラス分類のための線形モデル (linear model)</u>

多クラス分類

基本的に2クラス問題にしか適用できない

→各クラスに対して、そのクラスと他のすべてのクラスを分類する 2クラス分類を用いる

$$y = \sum_{i=1}^{n} (w_i x_i) + b = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b$$

クラスごとに 重みwとバイアスbがあるからそれを用いて クラススコアを計算 2章: 教師あり学習 (Supervised Learning)

<u>クラス分類のための線形モデル (linear model)</u>

多クラス分類

P63-67

対応 ページ

P46, 47

対応 ページ

ナイーブベイズ

クラス分類にしか適用できない 基本的には線形回帰と同じ

特徴

- ・学習が線形回帰よりも高速
- ・クラス分類でしか使えない
- ・線形回帰より精度が低い

scikit-learnで実装されているナイーブベイズ分類器

- GaussianNB
 - ➡任意の連続値データに適用
- BernoulliNB
 - →2値データに適用 例)0,1のみで構成された特徴量
- MultinomiaNB
 - →カウントデータ(整数値)
 例)文中に出てくる単語の出現数

P124 -126

対応 ページ

ここまでのまとめ

とりあえず最初に試すべ きアルゴリズム

線形モデル

kNN

- ・モデルが理解しやすく、モデル構築が容易
- ・パラメータ調整による影響が 比較的小さい
- ・多数の特徴量を持つ データセットでは十分な精度がでない
- ・データ個数が多いほど処理速度が遅い (計算時間がかかる)
- ・前処理による影響が比較的大きい

データがうまく分離され ていたら試すべき

- ・処理速度が速い(計算時間がかからない)
- ・パラメータ調整によって過学習などの問題を解決できる
- ・大きいデータや高次元のデータに適する
- ・パラメータ調節による影響が 大きい場合があるため パラメータ調節に時間(コスト)がかかる

ナイーブベイズ

- ・線形モデルよりさらに処理速度が速い (計算時間がかからない)
- ・線形モデルよりさらに高次元、大きいデータに適する
- ・線形モデルより精度が劣ることが多い