Compressão de Dados

Algoritmo de Huffman

Prof. Kennedy Reurison Lopes

August 28, 2024

Considere uma imagem no formato raw^1 . O arquivo desta imagem preserva a qualidade original da foto, sem perder nem um bit de informação.

Uma imagem em 4K desta imagem tem a seguinte quantidade de pixels:

$$P = 3840 \times 2160 = 8.294.400$$
 pixels

Cada Pixel contem uma cor no formato RGB(3 bytes):

$$S = 3840 \times 2160 \times 3 = 24.883.200$$
 bytes

Cada 1.024 bytes corresponde a 1kB e cada 1.024kB corresponde a 1MB. Portanto, uma imagem RAW em formato 4K contém aproximadamente:

 $S \simeq 23.73 \text{ MB}$

¹Um arquivo RAW contém todos os dados de uma imagem não compactados e não processados capturados por um scanner ou pelos sensores de uma câmera digital. As fotos feitas no formato RAW contêm alto nível de detalhes, são grandes e não têm∉perdas de qualidade. ⋄ ० ० ०

Imagine a situação que os dados são transmitidos pixel a pixel no formato 4K. Uma hora deste filme custaria aproximagamente:

²Mídia digital capaz de armazenar até 25GB de dados

Imagine a situação que os dados são transmitidos pixel a pixel no formato 4K. Uma hora deste filme custaria aproximagamente:

$$S = (1h) \times \left(\frac{23.73 \ MB}{frame}\right) \times$$

ロト 4回 ト 4 恵 ト 4 恵 ト 9 9 9 9

Imagine a situação que os dados são transmitidos pixel a pixel no formato 4K. Uma hora deste filme custaria aproximagamente:

$$S = (1h) \times \left(\frac{23.73 \ MB}{\textit{frame}}\right) \times \left(\frac{120 \ \textit{frame}}{\textit{s}}\right) \times$$

ロト 4回 ト 4 恵 ト 4 恵 ト 9 9 9 9

Imagine a situação que os dados são transmitidos pixel a pixel no formato 4K. Uma hora deste filme custaria aproximagamente:

$$S = (1h) imes \left(rac{23.73 \ MB}{\textit{frame}}
ight) imes \left(rac{120 \ \textit{frame}}{\textit{s}}
ight) imes \left(rac{60 \textit{min}}{1 \textit{h}}
ight) imes$$

Imagine a situação que os dados são transmitidos pixel a pixel no formato 4K. Uma hora deste filme custaria aproximagamente:

$$S = (1h) imes \left(rac{23.73 \ MB}{\textit{frame}}
ight) imes \left(rac{120 \ \textit{frame}}{\textit{s}}
ight) imes \left(rac{60\textit{min}}{1\textit{h}}
ight) imes \left(rac{60s}{1\textit{min}}
ight)$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Imagine a situação que os dados são transmitidos pixel a pixel no formato 4K. Uma hora deste filme custaria aproximagamente:

$$S = (1h) imes \left(rac{23.73 \ MB}{frame}
ight) imes \left(rac{120 \ frame}{s}
ight) imes \left(rac{60min}{1h}
ight) imes \left(rac{60s}{1min}
ight)$$

$$S = 23.73 \times 120 \times 60 \times 60 \times \frac{\textit{MB} \times \textit{h} \times \textit{frame} \times \textit{min} \times \textit{s}}{\textit{frame} \times \textit{s} \times \textit{h} \times \textit{min}}$$

Imagine a situação que os dados são transmitidos pixel a pixel no formato 4K. Uma hora deste filme custaria aproximagamente:

$$S = (1h) imes \left(rac{23.73 \ MB}{\mathit{frame}}
ight) imes \left(rac{120 \ \mathit{frame}}{\mathit{s}}
ight) imes \left(rac{60\mathit{min}}{1\mathit{h}}
ight) imes \left(rac{60s}{1\mathit{min}}
ight)$$

$$S = 23.73 \times 120 \times 60 \times 60 \times \frac{\textit{MB} \times \textit{h} \times \textit{frame} \times \textit{min} \times \textit{s}}{\textit{frame} \times \textit{s} \times \textit{h} \times \textit{min}}$$

$$S = 1.025.136.000 \text{ MB} \simeq 1.001.110 \text{ GB} \simeq 977 \text{ TB}$$

Prof. Kennedy Reurison Lopes

Imagine a situação que os dados são transmitidos pixel a pixel no formato 4K. Uma hora deste filme custaria aproximagamente:

$$S = (1h) \times \left(\frac{23.73~\textit{MB}}{\textit{frame}}\right) \times \\ \left(\frac{120~\textit{frame}}{\textit{s}}\right) \times \\ \left(\frac{60\textit{min}}{1\textit{h}}\right) \times \\ \left(\frac{60\textit{s}}{1\textit{min}}\right)$$

$$S = 23.73 \times 120 \times 60 \times 60 \times \frac{\textit{MB} \times \textit{h} \times \textit{frame} \times \textit{min} \times \textit{s}}{\textit{frame} \times \textit{s} \times \textit{h} \times \textit{min}}$$

$$S = 1.025.136.000 \text{ MB} \simeq 1.001.110 \text{ GB} \simeq 977 \text{ TB}$$

Obviamente os filmes não ocupam este espaço no disco. Então como é possível armazenar um filme em um Blue-Ray², ou mesmo transferir o filme em 4K no *streaming*?

²Mídia digital capaz de armazenar até 25GB de dados

Prof. Kennedy Reurison Lopes

Imagine a situação que os dados são transmitidos pixel a pixel no formato 4K. Uma hora deste filme custaria aproximagamente:

$$S = (1h) \times \left(\frac{23.73 \ \textit{MB}}{\textit{frame}}\right) \times \left(\frac{120 \ \textit{frame}}{\textit{s}}\right) \times \left(\frac{60 \textit{min}}{1 \textit{h}}\right) \times \left(\frac{60 \textit{s}}{1 \textit{min}}\right)$$

$$S = 23.73 \times 120 \times 60 \times 60 \times \frac{\textit{MB} \times \textit{h} \times \textit{frame} \times \textit{min} \times \textit{s}}{\textit{frame} \times \textit{s} \times \textit{h} \times \textit{min}}$$

$$S = 1.025.136.000 \text{ MB} \simeq 1.001.110 \text{ GB} \simeq 977 \text{ TB}$$

Obviamente os filmes não ocupam este espaço no disco. Então como é possível armazenar um filme em um Blue-Ray², ou mesmo transferir o filme em 4K no streaming?

Resposta: Compactação.

4/19

Prof. Kennedy Reurison Lopes Compressão de Dados August 28, 2024

Algumas considerações:

Algumas considerações:

Como é um byte para cada cor, o computador pode gerar até:

$$(2^8)^3 = 2^{24} = 16.777.216$$
 cores

Algumas considerações:

Como é um byte para cada cor, o computador pode gerar até:

$$(2^8)^3 = 2^{24} = 16.777.216$$
 cores

O ser humano consegue enxergar apenas 1 milhão de cores.

Algumas considerações:

Como é um byte para cada cor, o computador pode gerar até:

$$(2^8)^3 = 2^{24} = 16.777.216$$
 cores

O ser humano consegue enxergar apenas 1 milhão de cores.

Em uma imagem, não são utilizadas todas estas cores. Exemplos:

Algumas considerações:

Como é um byte para cada cor, o computador pode gerar até:

$$(2^8)^3 = 2^{24} = 16.777.216$$
 cores

O ser humano consegue enxergar apenas 1 milhão de cores.

Em uma imagem, não são utilizadas todas estas cores. Exemplos:

Uma imagem 800×600 precisa ter no máximo 480.000 cores;

Algumas considerações:

Como é um byte para cada cor, o computador pode gerar até:

$$(2^8)^3 = 2^{24} = 16.777.216$$
 cores

O ser humano consegue enxergar apenas 1 milhão de cores.

Em uma imagem, não são utilizadas todas estas cores. Exemplos:

Uma imagem 800×600 precisa ter no máximo 480.000 cores;

A resolução HD precisa de no máximo $1280 \times 720 = 921.600$ cores.

Algumas considerações:

Como é um byte para cada cor, o computador pode gerar até:

$$(2^8)^3 = 2^{24} = 16.777.216$$
 cores

O ser humano consegue enxergar apenas 1 milhão de cores.

Em uma imagem, não são utilizadas todas estas cores. Exemplos:

Uma imagem 800×600 precisa ter no máximo 480.000 cores;

A resolução HD precisa de no máximo $1280 \times 720 = 921.600$ cores.

A própria resolução 4K precisa apenas de 8.294.400 cores.

Algumas considerações:

Como é um byte para cada cor, o computador pode gerar até:

$$(2^8)^3 = 2^{24} = 16.777.216$$
 cores

O ser humano consegue enxergar apenas 1 milhão de cores.

Em uma imagem, não são utilizadas todas estas cores. Exemplos:

Uma imagem 800×600 precisa ter no máximo 480.000 cores;

A resolução HD precisa de no máximo $1280 \times 720 = 921.600$ cores.

A própria resolução 4K precisa apenas de 8.294.400 cores.

Existem muitos pixels repetidos (cores repetidas).

Um texto é composto por uma sequência de caracteres (imprimíveis e não-imprimíveis) sendo, cada caractere representado por uma sequência de bits. Exemplo:

$$K-E-N-N-E-D-Y$$

Utilizando a codificação ASCII pode ser:

$$75 - 101 - 110 - 110 - 101 - 100 - 121$$

Sendo que cada símbolo deste é representado por uma sequência binária com 8 bits.

Cada caractere possui exatamente 1byte de representação. Desta forma, o meu nome ocupa:

56 bits

Vamos considerar um texto maior: Um prato de trigo para tres tigres tristes:

$$U$$
 m $_{-}$ p r a t o $85-109-95-112-114-97-116-111$

$$t$$
 i g r e s $_{-}$ t r i s t e s

$$116 - 105 - 103 - 114 - 101 - 115 - 95 - 116 - 114 - 105 - 115 - 116 - 101 - 115$$

Vamos considerar um texto maior: **Um prato de trigo para tres tigres tristes**: Este texto contem:

Vamos considerar um texto maior: **Um prato de trigo para tres tigres tristes**: Este texto contem:

42 caracteres.

Vamos considerar um texto maior: **Um prato de trigo para tres tigres tristes**: Este texto contem:

42 caracteres.

13 caracteres distintos.

Vamos considerar um texto maior: **Um prato de trigo para tres tigres tristes**: Este texto contem:

42 caracteres.

13 caracteres distintos.

O texto ocupa 336 bits.

Vamos considerar um texto maior: **Um prato de trigo para tres tigres tristes**: Este texto contem:

42 caracteres.

13 caracteres distintos.

O texto ocupa 336 bits.

É possível ocupar menos espaço?

Vamos considerar um texto maior: **Um prato de trigo para tres tigres tristes**: Este texto contem:

42 caracteres.

13 caracteres distintos.

O texto ocupa 336 bits.

È possível ocupar menos espaço?

Vamos analisar a frequência dos caracteres:

Frequência dos caracteres:

Frequência dos caracteres:

	m											
1	1	7	2	6	3	6	2	1	4	3	2	4

Ordenando as frequências:

Frequência dos caracteres:

Ordenando as frequências:

Agrupando as menores frequências:

Frequência dos caracteres:

Ordenando as frequências:

Agrupando as menores frequências:

O algoritmo continua (agrupando os menores) até não for mais possível continuar:

Agrupando(U e $\{d, m\}$):

O algoritmo continua (agrupando os menores) até não for mais possível continuar:

Agrupando(U e $\{d, m\}$):

Ordenando:

O algoritmo continua (agrupando os menores) até não for mais possível continuar:

Agrupando(U e $\{d, m\}$):

Ordenando:

g	$\{p,o\}$	$ \{U,d,m\}$	a	i	e	S	r	t	-
2	4	3	3	3	4	4	6	6	7

$\{g,a,p,o\}$	$\{U,d,m,i\}$	$\{e,s\}$	r	t	-
9	6	8	6	6	7

$\{g,a,p,o,e,s\}$	$ \{U,d,m,i,-,r,t\} $
17	25

$$\begin{array}{c|c} \{g, a, p, o, e, s\} & \{U, d, m, i, -, r, t\} \\ \hline 17 & 25 \\ \hline \{g, a, p, o, e, s, U, d, m, i, -, r, t\} \\ \hline 42 \\ \end{array}$$

 $\begin{array}{l} \mathsf{U} \ \rightarrow 10000 \\ \mathsf{m} \ \rightarrow 1000011 \\ \mathsf{d} \ \rightarrow 1000010 \end{array}$

 $\begin{array}{l} \text{U} & \rightarrow 10000 \\ \text{m} & \rightarrow 1000011 \\ \text{d} & \rightarrow 1000010 \\ \text{p} & \rightarrow 0010 \end{array}$

 $\begin{array}{l} \text{U} & \to 10000 \\ \text{m} & \to 1000011 \\ \text{d} & \to 1000010 \\ \text{p} & \to 0010 \\ \text{o} & \to 0011 \end{array}$

 $\begin{array}{l} \text{U} & \to 10000 \\ \text{m} & \to 1000011 \\ \text{d} & \to 1000010 \\ \text{p} & \to 0010 \\ \text{o} & \to 0011 \\ \text{g} & \to 0000 \end{array}$

Análise do armazenamento

char bin bits freq total

Análise do armazenamento

char	bin	bits	freq	total
U	10000	5	1	5

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8
a	0001	4	3	12

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8
a	0001	4	3	12
i	1001	4	3	12

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8
а	0001	4	3	12
i	1001	4	3	12
е	100010	6	4	24

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8
a	0001	4	3	12
i	1001	4	3	12
е	100010	6	4	24
S	011	3	4	12

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8
а	0001	4	3	12
i	1001	4	3	12
е	100010	6	4	24
S	011	3	4	12
r	100	3	6	18

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8
a	0001	4	3	12
i	1001	4	3	12
е	100010	6	4	24
S	011	3	4	12
r	100	3	6	18
t	111	3	6	18

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8
а	0001	4	3	12
i	1001	4	3	12
е	100010	6	4	24
S	011	3	4	12
r	100	3	6	18
t	111	3	6	18
_	100	3	7	21

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8
a	0001	4	3	12
i	1001	4	3	12
е	100010	6	4	24
S	011	3	4	12
r	100	3	6	18
t	111	3	6	18
-	100	3	7	21
Comprimido				160

char	bin	bits	freq	total
U	10000	5	1	5
d	1000010	7	1	7
m	1000011	7	1	7
р	0010	4	2	8
0	0011	4	2	8
g	0000	4	2	8
а	0001	4	3	12
i	1001	4	3	12
е	100010	6	4	24
S	011	3	4	12
r	100	3	6	18
t	111	3	6	18
-	100	3	7	21
Comprimido				160
Comp. médio			3.81	

Antes do armazenamento:

$$S = 42 \times 8 = 336$$
 bits

Antes do armazenamento:

$$S = 42 \times 8 = 336$$
 bits

Depois do armazenamento:

$$s = 5 + 7 + 7 + 8 + 8 + 8 + 12 + 12 + 24 + 12 + 18 + 21 = 160$$
 bits

Antes do armazenamento:

$$S = 42 \times 8 = 336$$
 bits

Depois do armazenamento:

$$s = 5 + 7 + 7 + 8 + 8 + 8 + 12 + 12 + 12 + 12 + 18 + 21 = 160$$
 bits

Tabela de Símbolos:

$$t = 13 \times 8 = 104 \text{ bits}$$

Antes do armazenamento:

$$S = 42 \times 8 = 336 \text{ bits}$$

Depois do armazenamento:

$$s = 5 + 7 + 7 + 8 + 8 + 8 + 12 + 12 + 12 + 12 + 18 + 21 = 160$$
 bits

Tabela de Símbolos:

$$t = 13 \times 8 = 104 \text{ bits}$$

Compactado:

$$c = S - (s + t) = 336 - (160 + 104) = 72$$
 bits

Antes do armazenamento:

$$S = 42 \times 8 = 336 \text{ bits}$$

Depois do armazenamento:

$$s = 5 + 7 + 7 + 8 + 8 + 8 + 12 + 12 + 12 + 12 + 18 + 21 = 160$$
 bits

Tabela de Símbolos:

$$t = 13 \times 8 = 104 \text{ bits}$$

Compactado:

$$c = S - (s + t) = 336 - (160 + 104) = 72$$
 bits

Taxa de compressão:

$$Tx = \frac{c}{T} = \frac{72}{336} = 21.42\%$$

Resultados

Antes da compressão(em binário):

Após a compressão:

1) Calcule a taxa de compressão de: "ABABABACBABABABA".

- ① Calcule a taxa de compressão de: "ABABABACBABABA".
- ② Utilize o resultado da compressão dos dados para representar: "ACCCCCCCC".

- ① Calcule a taxa de compressão de: "ABABABACBABABA".
- ② Utilize o resultado da compressão dos dados para representar: "ACCCCCCCC".
- 3 Dado um texto qualquer, a compressão é única? Explique o porquê.

- (1) Calcule a taxa de compressão de: "ABABABACBABABABA".
- ② Utilize o resultado da compressão dos dados para representar: "ACCCCCCCC".
- 3 Dado um texto qualquer, a compressão é única? Explique o porquê.
- 4 Construa a árvore de Huffman a partir da frequência relativa das letras da lingua portuguesa.

\$	f (%)	\$	f (%)	\$	f (%)	\$	f (%)	\$	f (%)
Α	14.31	N	5.86	L	2.78	F		W	0.01
Ε	12.46	М	4.99	Р	2.52	Н	0.74	Υ	0.01
O	10.73	U	4.86	V	1.52	Z	0.55		
- 1	8.99	Т	4.36	G	1.25	J	0.53		
S	7.07	D	3.53	Q	1.20	X	0.48		
R	6.54	С	3.13	В	1.04	K	0.02		

(5) De acordo com a arvore construída na questão anterior, determine a codificação de: 'ABABABACBABABABA'. Apresente a tabela de símbolos.

- ⑤ De acordo com a arvore construída na questão anterior, determine a codificação de: 'ABABABACBABABABA'. Apresente a tabela de símbolos.
- 6 Uma palavra foi codificada usando o código de Huffman, tendo-se obtido a sequência binária: 101110110111100111000

Caractere	Probabilidade
P(A)	0,26
P(B)	0,09
P(C)	0,08
P(D)	0,01
P(E)	0,07
P(I)	0,22
P(L)	0,01
P(R)	0,23
P(T)	0,03

Sabe-se que o / é codificado como sendo 00. Qual é a palavra?