Prova scritta di Logica Matematica 1 7 settembre 2011

Cognome Nome Matricola

Scrivete **subito** il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

almeno 5 relativi alla prima parte.	
PRIMA PARTE	
Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.	
1. Se $F \to G$ è valida e $\neg G$ è soddisfacibile allora $\neg F$ è soddisfacibile. $\boxed{\mathbf{V} \ \mathbf{F}}$	1pt
2. Se Γ è un insieme di Hintikka cui appartiene $\neg(p \lor q \to r)$	
allora si ha necessariamente $\neg p \notin \Gamma$.	1pt
3. Se $F \triangleright G$ allora $\triangleright F \rightarrow G$.	1pt
4. Quante delle seguenti formule sono in forma prenessa?	
$\exists x r(a, x) \to \neg p(a), \forall x \exists y (r(x, y) \to \neg r(y, x)),$	
$\exists x \big(\neg r(a, x) \lor (r(a, b) \land \neg r(x, b)) \big), \forall x (p(x) \to \exists y r(x, y)). \qquad \boxed{0 \boxed{1 \boxed{2 \boxed{3 \boxed{4}}}}$	1pt
5. Sia <i>I</i> l'interpretazione con $D^I = \{0, 1, 2, 3\}, p^I = \{0, 1, 3\}$ e	
$r^{I} = \{(0,0), (1,0), (1,2), (2,0), (2,3), (3,0), (3,2)\}.$	
Allora $I \models \forall x (p(x) \to \exists y r(y, x) \lor \exists z (r(x, z) \land \neg p(z))).$	1pt
6. $\forall x p(x) \to \exists x q(x) \equiv \exists x (\neg p(x) \lor q(x)).$	1pt
7. Se \sim è una relazione di congruenza sull'interpretazione I	
nel linguaggio \mathcal{L} allora $I \equiv_{\mathcal{L}} I/\sim$.	1pt
8. Se F è una δ -formula e G un'istanza di F allora $F \models G$.	1pt
9. Quando si agisce su una δ -formula in un tableaux predicativo	
essa continua a comparire nelle etichette dei nodi successivi. $V[F]$	1pt
SECONDA PARTE	
10. Sul retro del foglio dimostrate l'insoddisfacibilità di	4pt
$\{\forall x (p(x) \rightarrow r(x, f(x)) \land \neg p(f(x))), \exists x (p(x) \land \neg q(f(x))), \forall x \forall y (r(x, y) \rightarrow q(f(x)) \lor p(y))\}.$	
11. Sul retro del foglio dimostrate che	4pt
$\forall x \big((p(x) \to \neg p(f(x))) \land (\neg p(x) \to p(f(x))) \big) \nvDash_{\equiv} \exists x f(f(x)) = x.$	

- **12.** Sia $\{b, m, p, c, g, a\}$ un linguaggio dove b e m sono simboli di costante, p è un simbolo di funzione unario, c e g sono simboli di relazione unari e a è un simbolo di relazione binario. Interpretando b come "Bobi", m come "Micio", p(x) come "il padrone di x", c(x) come "x è un cane", g(x) come "x è un gatto" e a(x,y) come "x ama y", traducete le seguenti frasi:
 - (i) il padrone di Bobi ama Bobi, ma non il padrone di Micio;

3pt

5pt

- (ii) i cani che amano qualche gatto hanno padroni che amano tutti i gatti. 3pt
- **13.** Mostrate che $F \vee G, G \to H, F \to K \rhd \neg H \to K.$ 3pt

Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)

14. Usando il metodo dei tableaux stabilite che

$$\exists x \, p(x), \forall x (p(x) \to \forall y \, q(x, y, a)) \models \exists x \, \exists y (q(x, x, y) \land q(x, y, y)).$$

(Utilizzate il retro del foglio)

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale disgiuntiva la formula

$$(\neg p \to \neg q \land r) \to \neg (s \to u \land \neg v) \land \neg (w \lor t)$$

Soluzioni

- **1.** V Se v è una interpretazione che soddisfa $\neg G$, dato che $v(F \to G) = \mathbf{V}$ (per la validità di $F \to G$), deve essere $v(F) = \mathbf{F}$ e di conseguenza $v(\neg F) = \mathbf{V}$.
- **2.** F $\{\neg(p \lor q \to r), p \lor q, \neg r, q, \neg p\}$ è un insieme di Hintikka.
- **3.** V ogni deduzione che mostra $F \triangleright G$ diventa una deduzione di $\triangleright F \rightarrow G$ con un'applicazione della regola $(\rightarrow i)$.
- 4. 2 la seconda e la terza formula sono in forma prenessa.
- **5.** V per ogni $d \in p^I$ si ha $I, \sigma[x/d] \models \exists y \, r(y, x) \lor \exists z (r(x, z) \land \neg p(z)).$
- 6. V usare i Lemmi 7.55 e 2.23.3 delle dispense.
- 7. V si veda il Corollario 9.28 delle dispense.
- **8.** F ad esempio $\exists x \, p(x) \nvDash p(a)$ (non farsi confondere dal Lemma 10.7 delle dispense).
- 9. F nella clausola 5 dell'Algoritmo 10.17 delle dispense la δ -formula non compare nell'etichetta del nuovo nodo.
- 10. Dobbiamo mostrare che non esiste un'interpretazione I che soddisfa tutti i tre enunciati, che indichiamo con F, G e H. Supponiamo per assurdo che I abbia questa proprietà. Dato che $I \models G$ esiste $d_0 \in D^I$ tale che $d_0 \in p^I$ e $f^I(d_0) \notin q^I$. Da $I \models F$ segue in particolare che $I, \sigma[x/d_0] \models p(x) \to r(x, f(x)) \land \neg p(f(x))$. Da quest'ultimo fatto e da $d_0 \in p^I$ seguono $(d_0, f^I(d_0)) \in r^I$ e $f^I(d_0) \notin p^I$. Dato che $I \models H$ abbiamo $I, \sigma[x/d_0, y/f^I(d_0)] \models r(x, y) \to q(f(x)) \lor p(y)$. Da quest'ultimo fatto e da $(d_0, f^I(d_0)) \in r^I$ segue che vale almeno uno tra $f^I(d_0) \in q^I$ e $f^I(d_0) \in p^I$. Entrambe le possibilità contraddicono quanto ottenuto in precedenza, ed abbiamo quindi l'assurdo cercato.
- 11. Dobbiamo definire un'interpretazione normale (visto che consideriamo la logica con uguaglianza) che soddisfi il primo enunciato, ma non il secondo. L'interpretazione I definita da

$$D^I = \{0, 1, 2, 3\}, \quad p^I = \{0, 2\}, \quad f^I(0) = 1, f^I(1) = 2, f^I(2) = 3, f^I(3) = 0$$

ha queste caratteristiche. Anche l'interpretazione J definita da

$$D^J = \mathbb{N}, \quad p^J = \{n \in \mathbb{N} : n \text{ è pari}\}, \quad f^J(n) = n+1$$

andrebbe bene.

12. (i) $a(p(b), b) \land \neg a(p(b), p(m));$

(ii)
$$\forall x \Big(c(x) \land \exists y \big(g(y) \land a(x,y) \big) \rightarrow \forall z \big(g(z) \rightarrow a(p(x),z) \big) \Big).$$

13. Ecco una deduzione naturale che mostra quanto richiesto:

14. Per stabilire la conseguenza logica utilizziamo l'Algoritmo 10.48 delle dispense e costruiamo un tableau chiuso con la radice etichettata dalle formule a sinistra del simbolo di conseguenza logica e la negazione della formula a destra. Indichiamo con F, G, H e K le γ -formule $\forall x(p(x) \rightarrow \forall y \ q(x,y,a))$, $\neg \exists x \ \exists y(q(x,x,y) \land q(x,y,y)), \ \forall y \ q(b,y,a) \ e \ \neg \exists y(q(b,b,y) \land q(b,y,y))$. In ogni passaggio sottolineiamo la formula su cui agiamo.

15.

$$\begin{split} & \left[\left\langle \left(\neg p \to \neg q \wedge r \right) \to \neg (s \to u \wedge \neg v) \wedge \neg (w \vee t) \right\rangle \right] \\ & \left[\left\langle \neg (\neg p \to \neg q \wedge r) \right\rangle, \left\langle \neg (s \to u \wedge \neg v) \wedge \neg (w \vee t) \right\rangle \right] \\ & \left[\left\langle \neg p, \neg (\neg q \wedge r) \right\rangle, \left\langle \neg (s \to u \wedge \neg v), \neg (w \vee t) \right\rangle \right] \\ & \left[\left\langle \neg p, q \right\rangle, \left\langle \neg p, \neg r \right\rangle, \left\langle s, \neg (u \wedge \neg v), \neg (w \vee t) \right\rangle \right] \\ & \left[\left\langle \neg p, q \right\rangle, \left\langle \neg p, \neg r \right\rangle, \left\langle s, \neg (u \wedge \neg v), \neg w, \neg t \right\rangle \right] \\ & \left[\left\langle \neg p, q \right\rangle, \left\langle \neg p, \neg r \right\rangle, \left\langle s, \neg u, \neg w, \neg t \right\rangle, \left\langle s, v, \neg w, \neg t \right\rangle \right] \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(\neg p \wedge q) \vee (\neg p \wedge \neg r) \vee (s \wedge \neg u \wedge \neg w \wedge \neg t) \vee (s \wedge v \wedge \neg w \wedge \neg t).$$