Apellido y Nombre:

Carrera:

Álgebra I - Matemática Discreta I Primer Parcial - 29 de Setiembre de 2011

- (1) Sean $a, b \in \mathbb{R}$. Demostrar las siguientes afirmaciones, justificando cada paso.
 - (a) (5 pts.) (-a) = a.
 - (b) (7 pts.) Si $b \neq 0$, $d \neq 0$, entonces $\left(\frac{b}{d}\right)^{-1} = \frac{d}{b}$.
 - (c) (10 pts.) Si 0 < a, 0 < b entonces a < b si y sólo si $a^2 < b^2$.
- (2) Demostrar por inducción
 - (a) (12 pts.) $\sum_{j=1}^{n} 4 \cdot 5^{j} = 5^{n+1} 5$, para todo $n \in \mathbb{N}$.
 - (b) (13 pts.) Dado $q \in \mathbb{R}$, sea a_n la sucesión definida por $a_1 = q$ y $a_{n+1} = 2a_n + q$ para $n \in \mathbb{N}$. Probar que $a_n = q(2^n - 1)$ para todo $n \in \mathbb{N}$.
- (3) De un grupo de 6 abogados, 7 ingenieros y 4 médicos se quiere formar un comité de 5 personas. De cuántas maneras se pueden hacer si
 - (a) (7 pts.) El médico A y el abogado B deben estar incluidos en el comité.
 - (b) (7 pts.) El abogado X y el ingeniero Y no pueden formar parte del mismo comité.
 - (c) (7 pts.) Tiene que haber por lo menos 1 persona de cada especialidad.
 - (d) (7 pts.) Se deben asignar funciones de presidente, vice, secretario, tesorero y vocal.
- (4) (a) (5 pts.) Enunciar los cuatros axiomas de los números reales que corresponden a la relación de orden.
 - (b) (5 pts.) Definir conjunto bien ordenado y enunciar el principio de buena ordenación.
 - (c) (10 pts.) Demostrar de manera combinatoria que $\binom{n}{k}k = n\binom{n-1}{k-1}$. (si da una demostración algebraica tendrá la mitad del puntaje).

1(a)	1(b)	1 (c)	2(a)	2(b)	3 (a)	3(b)	3(c) 3(d)	4(a)	4(b)	4(c)	TOTAL