Upper Confidence Bounds in Basal Ganglia Model

Beren Millidge

September 24, 2022

Exploration-Exploitation Tradeoff with stochastic bandits

- In stochastic choice tasks, there is always uncertainty about the true distribution of rewards.
- This uncertainty prodocues an exploration-exploitation trade-off.
- It is not necessarily the case that the choice that seems the best actually is – you may have just gotten unlucky.
- You also need to explore other options, to reduce your uncertainty about their reward distribution.
- But this exploration has a cost the opportunity cost of not selecting the best option

Upper Confidence Bound Algorithm

- Upper Confidence Bound (UCB) solves this problem extremely well for stochastic bandit tasks.
- Intuition is to give the estimated value of each choice an 'uncertainty bonus', effectively starting out optimistic
- As you sample a specific option more often, its uncertainty bonus decreases relative to the others, making it less attractive.

Upper Confidence Bounds in the Basal Ganglia

Mathematically (under Gaussian assumptions), this is represented as:

$$Q^{UCB}(a) = Q(a) + \frac{c\sigma(a)}{\sqrt{(N(a))}}$$
 (1)

• But we can write both Q(a) and $\sigma(a)$ in terms of Go and No-Go neuron firing

$$Q = G - N \tag{2}$$

$$\sigma = \sqrt{\frac{\pi}{2}}(G + N) \tag{3}$$

Upper Confidence Bounds in the Basal Ganglia

After some algebra, this lets us write,

$$Q^{UCB} = (1 + c\sqrt{\frac{\pi}{2N(a)}})G - (1 - c\sqrt{\frac{\pi}{2N(a)}})N$$
 (4)

- Effectively, we can implement the UCB uncertainty bonuses purely through modulating the weights of the Go and No-Go pathway.
- Increasing Go weights increases uncertainty bonus, and vice versa.
- Only additional information needing to be tracked is the number of actions sampled N(a).

Simulation of Go Neuron Pathway

Simulation of No-Go Neuron Pathway

Simulation of Gaussian Go Neuron Pathway

Simulation of Gaussian No-Go Neuron Pathway

