

Precipitation characteristics in tropical Africa using satellite and in situ observations

**Amin Dezfuli, Charles Ichoku, George Huffman, Karen Mohr
and TAHMO team**

African rainfall: global & regional implications

Atmospheric bridges

(Dezfuli, 2017)

ZAP

Annual cycle of precipitation

Precipitation data sets

- **TMPA: TRMM Multi-Satellite Precipitation Analysis, 3B42 v7**

- **IMERG: Integrated Multi-satellitE Retrievals for GPM, V04A**

- **TAHMO: Trans-African Hydro-Meteorological Observatory**

- **GPCC: Global Precipitation Climatology Centre, 1st Guess Daily**

- **CHIRPS: Climate Hazards Group InfraRed Precipitation with Station**

Number of stations/grid used in GPCC

Classifying rainfall events based on duration & intensity

Three rainfall classes:

- **Weak Convective Rainfall (WCR)**
- **Strong Convective Rainfall (SCR)**
- **Mesoscale Convective System (MCS)**

Characteristics of three rainfall types

Rainfall rate & duration of all rainy events

Rainfall rate (mm/hr)

Duration (min)

- West vs. East Africa: Comparable means, but different percentiles
- IMERG offers advantages over TMPA in capturing the PDF of rainfall intensity for both regions

- Relatively longer duration in East Africa

Surface conditions for different rainfall types

West Africa

East Africa

IMERG-Final Run

Westward propagating MCS in West Africa

Location of stations & rainfall climatology

Number of GPCC stations used in 2015

TAHMO stations

TMPA long-term mean rainfall (1998-2015)

Station 1: Lela Primary School, Kenya

Station 2: Navrongo, Ghana

Station 3: Kumasi, Ghana

Diurnal cycle for additional stations

Evaluation measures: IMERG vs TMPA

- A: hit
- B: false alarm
- C: miss
- D: correct rejection

Prob. of Detection:

$$\frac{A}{A+C}$$

False Alarm Ratio:

$$\frac{B}{A+B}$$

Fractions Brier Score:

$$\frac{A+B}{A+C}$$

Critical Success Index:

$$\frac{A}{A+B+C}$$

Heidke Skill Score:

$$\frac{2(AD-BC)}{(A+C)(C+D)+(A+B)(B+D)}$$

Perfect value: **1** or **0**

Conclusions

- Three classes of rainfall identified using in-situ observations:
 - WCR: Duration < 40 minutes and Intensity < 10 mm/hr
 - SCR: Duration < 80 minutes and Intensity > 10 mm/hr
 - MCS: Duration > 80 minutes and Intensity < 10 mm hr
- SCR + MCS: 75% of total rainfall from 8% of rain events
- Which data to use: depends on region/season/objective
- IMERG-V04 has some advantages due to its half-hourly resolution, but not a clear victory over TMPA!

Articles:

- Dezfuli, A.K., Ichoku, C.M., Mohr, K. and Huffman, G.J., 2017. Precipitation characteristics in West and East Africa, from satellite and in-situ observations. *Journal of Hydrometeorology*, (2017).
- Dezfuli, A.K., et al., 2017. Validation of IMERG Precipitation in Africa. *Journal of Hydrometeorology*, 18(10), pp.2817-2825.