統計的モデリング基礎⑦ ~モデルの選択~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

モデルの選択と評価: 評価指標と性能検証の枠組み

- ■モデルの予測精度を測る指標
- 精度計測の枠組み:交差検証
- 交差検証の応用:モデルスタッキング

モデルの予測精度の検証: 判別(質的従属変数予測)の予測精度をどう測るか?

- ■回帰(量的従属変数)の予測精度は二乗誤差で測る
 - あるいは絶対誤差、あるいはアプリケーション依存の別の指標
- 判別(質的従属変数)の予測精度はどのように測るか
 - 予測の誤り回数でよさそうだが...
 - ロジスティック回帰モデルはY = 1となる確率:

$$P(Y = 1|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^{\mathsf{T}}\mathbf{x})} = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

- 閾値を0.5として $P(Y = 1 | \mathbf{x}, \mathbf{w}) \ge 0.5$ かどうかで決める?
- 殆どのデータがY = 0だとしたら (稀な疾患の診断など)

混同行列:

予測の正解・不正解をまとめた表

- 推定後のモデル(例えばロジスティック回帰)は Y = 1 となりそう な程度 $f(\mathbf{x})$ を与える
- 予測時には $f(\mathbf{x})$ がある閾値 τ より大きければ Y=1と予測する
- 予測が決まると混同行列が決まる:

		予測	
		Y = 1	Y = -1
真の値	Y=1	真陽性予測数☺	偽陰性予測数
	Y = -1	偽陽性予測数	真陰性予測数☺

☺: 予測が正しい

基本的な予測精度の指標: 正解率、適合率、再現率、F値

		予測		
		7.163		
		Y = 1	Y = -1	
真の値	Y = 1	真陽性予測数☺	偽陰性予測数	
	Y = -1	偽陽性予測数	真陰性予測数☺	

- 正解率: 真陽性予測数 + 真陰性予測数 全予測数
- 適合率、再現率、F値:

Precision 適合率 = 真陽性予測数 陽性予測数 「アイツが行く先では必ず事件が起こる」

• 再現率 = 真陽性予測数 = 真陽性予測数 + 偽陰性予測数

「現場にはいつもアイツがいる」

• F値 = 適合率・再現率 適合率 + 再現率: 適合率と再現率の調和平均

■ 注意:これらは閾値を変えると変わる

閾値を変えながら見る: 適合率-再現率 (PR) 曲線

■ 予測の閾値を変えながら適合率-再現率 をプロットしたもの

閾値を変えながら見る: ROC曲線

■受信者操作特性(ROC)曲線:閾値を変えながら真陽性予 測数(=再現率)と偽陽性予測数をプロットしたもの

閾値によらない指標: 曲線の下の面積

- PR曲線の下の面積(PR-AUC)
- ROC曲線の下の面積(ROC-AUC)

単にAUCといったら 通常はこちら

適合率

真陽性予測数

偽陽性予測割合

AUC等の計算量:

PR·ROC曲線、AUCを求める計算量 = データ整列の計算量

■ PR曲線、ROC曲線、これらのAUCを求める計算量は $f(\mathbf{x})$ で整列するコスト($O(n \log n)$)

$$f(\mathbf{x})$$

$$f(\mathbf{x}^{(2)}), y^{(2)} = +1$$

$$f(\mathbf{x}^{(4)}), y^{(4)} = -1$$

$$f(\mathbf{x}^{(1)}), y^{(1)} = +1$$

 $f(\mathbf{x}^{(5)}), y^{(5)} = -1$

$$f(\mathbf{x}^{(3)}), y^{(3)} = -1$$

閾値 τ □〉

真陽性予測数=2/2 (再現率と同じ)

偽陽性予測数=1/3

ROC-AUCの意味: 順序付けの精度を表す

- ROC-AUC: $y^{(i)} = +1, y^{(j)} = -1$ であるすべての(i, j)の組のうち $f(\mathbf{x}^{(i)}) > f(\mathbf{x}^{(j)})$ となっているものの割合
 - 正しい順序で並べられているかをチェックしている (fはY = 1である信念度合い)
- AUC=1:完璧な予測、AUC=0.5:完全にランダムな予測 (AUC=0は予測を反転すれば完璧な予測)

 $f(\mathbf{x}^{(3)}), y^{(3)} = -1$

評価の枠組み:モデル選択と評価

- 予測モデリングにおいて実際に興味があるのは、推定した予測モデルを運用する際の、将来のデータに対する精度
 - モデル推定に用いたデータと将来のデータは異なる (同じメカニズムで発生しているという仮定はあるが)
- ハイパーパラメータを調整して予測精度を向上したい:
 - リッジ回帰:minimize_w $\|\mathbf{y} \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$
 - ハイパーパラメータはモデル推定の過程では推定されない

情報量基準:

モデルの真の性能を見積もる基準

- ■情報量基準:真の性能を見積もる
 - ◆ AIC: −2(対数尤度) + 2(パラメータ数)
 - BIC: -2(対数尤度) + 2(パラメータ数)・ln n
 (ただし、いくつかの仮定のもとで)
- ■以下では、より実験的な性能評価の枠組み(交差検証)を 説明する

モデル評価の大原則: モデル推定に使ったデータを評価に使ってはいけない

- モデルの予測精度を検証する目的で、モデルに推定に使用したデータを用いてはいけない
 - モデル推定にすでに使用したデータに対するそのモデルの精度は そのモデルの真の精度の推定値ではない
- ■解決法:データを推定用データと検証用データに分割して用いる
 - 1. 推定用データを用いてモデルを推定する
 - 2. 推定したモデルの性能を検証用データで評価する
 - 分割はアプリケーションの文脈に合わせて行う必要がある
 - ◆ランダムに分割、時系列順に分割、...

モデル評価の統計的枠組み: 交差検証

- (*K*-分割) 交差検証:将来のモデル運用時の性能を推定するための枠組み
- 全データを、重複しない K 個の集合に等分割する:
 - うち K 1 個の集合をモデル推定に用いる
 - 残りひとつの集合で評価を行う
- ●検証用のデータ集合を変えると、K 通りの評価が行われる (K個 の評価値が得られる)
 - これらの平均をとって性能の推定値とする

ハイパーパラメータの推定: 交差検証によるハイパーパラメータ推定

- 正則化(MAP推定)の際のハイパーパラメータ
 - ハイパーパラメータはモデル推定(の最適化問題)においては自動的に決まらない(0になってしまう)
- (K-分割) 交差検証によるハイパーパラメータ調整:
 - K個に分割されたデータのうち K-1 個を用いて、それぞれのハイパーパラメータ設定においてモデル推定を行う
 - 残りひとつの集合を用いてそれぞれのモデルの精度を測る
 - K個の評価値の平均がもっともよいハイパーパラメータを採用
 - ◆この評価値は、モデル運用時の性能とは<u>異なる</u>ことに注意

二重交差検証: ハイパーパラメータ推定と性能評価を同時に行う

- しばしば、ハイパーパラメータ推定と、最終的に選ばれたモデルの性能の推定の両方を
- ひとつの K-分割交差検定で行ってはいけない (
 - ハイパーパラメータ推定を行った際にみたデータを評価に使ってはいけない
- 二重交差検定:
 - 外側のループでは性能評価を行う
 - 内側のループではハイパーパラメータ調整を行う
 - 計算コストが高い

二重交差検証の(軽量な)代用: "開発用データ"方式

- 二重交差検証は計算コストが高いので、もう少し簡単な方法がほしい
- "開発用データ"方式
 - K分割したデータのうち K 2 個を推定に用いる
 - 残りのうちひとつをハイパーパラメータ調整に用いる
 - 最後のひとつを性能評価に用いる

スタッキング:

複数のモデルを並列・直列に積み上げる方法

- 予測モデルの出力を、次の予測モデルの独立変数として用いる
- モデルを2段・3段と積み上げることで複雑なモデルを実現
 - Kaggle等でも多用される
 - コスト大

スタッキングのモデル: ある層の出力は次の層の入力

- スタッキング:複数のモデルを並列・直列に結合する
 - ディープニューラルネットワークの構造に類似
 - 別種のモデルでも可能
- ℓ 段目の出力が ℓ + 1段目の入力になる
 - 0段目の出力 y_0 = 元々の独立変数ベクトル x
 - ullet段目の出力 \mathbf{y}_ℓ
 - $\ell+1$ 段目の入力 $\mathbf{x}_{\ell+1} = \begin{pmatrix} \mathbf{x}_{\ell} \\ \mathbf{y}_{\ell} \end{pmatrix}$

スタッキングにおける難点: 単純に積んだだけではダメ

- 単純な方法で実現してみる:
 - 1. データ *D*から予測モデル *f* を推定
 - 2. *D* に対する *f* の出力を次のモデルの入力にする
 - これでうまくいきそう? ... が実際にはダメ
- ■「大原則」を思い出す:モデル推定に用いたデータに対する予測 は信用してはいけない
 - モデルは推定に用いるデータを再現するように推定されるので、データに偏っている

スタッキングの正しい実施法: 交差検証の方式を用いる

- 推定用データを K 個に分割して:
 - 1. K-1個をモデル推定に用いる
 - 2. 作ったモデルを残り1個に適用して、次段に渡す
 - 上記のステップ 1&2 を K 通り繰り返せばデータセット全体に対して、推定に用いていないモデルによる予測が得られる
- 上記によって拡張されたデータで次の層(2 層目)のモデル推定 を行う
- 以降、同様の手続きを繰り返して積みたいだけ積む
- 各層の各モデルが K個できてしまうので、最後にもう一度全データでモデルを推定しなおす