

Model Development Phase Template

Date	15 July 2024
Team ID	740054
Project Title	Doctors Annual Salary Prediction
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

1.1	disporting and building the DecisionTreeRegressor from sklearn.tree import DecisionTreeRegressor
1.1	dtr = DecisionTreeRegressor(random_state=13)
1.1	dtr.fit(x_train,y_train)
₽	- DecisionTreeRegressor DecisionTreeRegressor(random_state=43)
1.1	<pre>y_train_pred = dtr.predict(x_train) y_test_pred = dtr.predict(x_test)</pre>
-	mporting and building the XGBRegressor port xgboost as xgb
[] ×g	reg = xgb.XGBRegressor()
O ×g	_reg.fit(x_train, y_train)
Ŧ.	XGBRegressor
1000 500	train_pred = xg_reg.predict(x_train) test_pred = xg_reg.predict(x_test)

Model Validation and Evaluation Report:

Model	Classification Report	Confusion Matrix
Linear Regression	<pre> [38] y_train_pred = reg.predict(x_train) y_test_pred = reg.predict(a_test) Y_train_pred[it] y_test_pred[it] </pre>	### array([[2889-93731399],

		To array([]278.5664967], [367.527(926), [367.6744727], [368.18455981, []267.38801541[])
Random Forest Regressor	123 mean square error for testing data mean_squared_error(y_test_y_test_gred)	₹ 17159ac,5e62(a4)981
Decision Tree Regressor	<pre> [32] y trein pred(:5] [32] y tret pred(:5]</pre>	## #**********************************
XGB Regressor	• men_squared_error(y_train_y_train_pred)	₹ 1,6090)39587NE55536-EF