# Predicting Cross-Sold Customers

**Andrew Smith** 

# Goals

 Predict whether an existing health insurance customer will be cross-sold car insurance



# **Cross-Selling = Profitable Growth**



# Payback Distribution



# **Use Case**

- Give special attention to these customers to try to ensure they are cross-sold and ignore customers with a low probability of conversion
  - Dynamic Pricing (discounts to select customers)
  - Pushed Marketing Campaigns
  - More attention by the sales team
- Key Metric of Interest:
  - F2 Score places less weight on precision with more weight on recall
  - Having a wider funnel of cross-sell customers is best

### **Tools**

#### Modelling / Cleaning / Viz



# **Data Sources & Data Description**

- Data sources:
  - Kaggle Dataset, 381,109 rows
- Key variables:
  - Labels:
    - 0 (not cross-sold) / 1 (cross-sold)
  - Features (9):
    - Gender
    - Age
    - Drivers License (Y/N)
    - Region Code
    - Previously Insured (Y/N)
    - Vehicle Age
    - Annual Premium
    - Policy Sales Channel
    - Vintage (Days as customer)

# **Model Workflow**

- 1. Baseline Models
- 2. Sampling Methods on Baseline Models w/ Parameter tuning
- 3. Feature Engineering
- Random Bagging Methods

# **Baseline Models**

| Model                      | F2    | Accuracy | Precision | Recall | Notes                |
|----------------------------|-------|----------|-----------|--------|----------------------|
| Logistic Regression        | 61.0% | 75.4%    | 30.8%     | 80.7%  | Threshold of 0.2     |
| Categorical Naiive Bayes   | 38.0% | 78.3%    | 29.4%     | 53.7%  | Categorical Only     |
| KNN (n_neighbors = 5)      | 16.7% | 85.3%    | 30.2%     | 15.0%  | Various K's tested   |
| Random Forest              | 8.7%  | 87.2%    | 37.8%     | 7.3%   | <del>20</del> 0      |
| XG Boost (Binary Logistic) | 0.7%  | 87.8%    | 53.1%     | 0.6%   | Optimizied for error |
| Gaussian Naiive Bayes      | 0.4%  | 87.7%    | 25.5%     | 0.3%   | Continuous Only      |

<sup>\*</sup> Represent test Scores after a train, test, val split

# **Baseline Models**





# **Model Workflow**

- 1. Baseline Models
- 2. Sampling Methods on Baseline Models w/ Parameter tuning
- Feature Engineering
- Random Bagging Methods

# Baseline Models w/ Imbalance Sampling and Hyperparameter Tuning

| Model                      | F2    | F1    | Accuracy | Precision | Recall | Notes                                        |
|----------------------------|-------|-------|----------|-----------|--------|----------------------------------------------|
| Logistic Regression        | 60.5% | 44.9% | 76.3%    | 31.4%     | 78.9%  | Oversampled, Threshold of 0.65               |
| KNN (n_neighbors = 29)     | 59.3% | 40.4% | 68.8%    | 26.4%     | 86.1%  | Oversampled, K optimized, feature engineered |
| Categorical Naiive Bayes   | 45.7% | 29.7% | 58.8%    | 18.8%     | 71.2%  | Oversampled, Categorical Only                |
| XG Boost (Binary Logistic) | 45.3% | 39.7% | 81.4%    | 33.0%     | 49.9%  | Scale_pos_weight optimized                   |
| Gaussian Naiive Bayes      | 45.7% | 37.7% | 78.6%    | 29.2%     | 53.3%  | Oversampled, Continuous Only                 |
| Random Forest              | 24.1% | 27.5% | 85.6%    | 36.0%     | 22.2%  | Oversampled                                  |

<sup>\*</sup> Represent test Scores after a train, test, val split

# **Model Workflow**

- 1. Baseline Models
- 2. Sampling Methods on Baseline Models w/ Parameter tuning
- 3. Feature Engineering
- Random Bagging Methods

# **Feature Engineering**



200,000

Annual Premium

High

Low

400,000

500,000

#### **Interaction Terms**

Age **X** Vintage
Young **X** Large Premium
Vehicle Damage **X** Vehicle Age
Gender **X** Age

No impact on top model (logistic regression) +5 % increase on Binary Logistic XGBoost (lower than logistic)

# **Model Workflow**

- 1. Baseline Models
- 2. Sampling Methods on Baseline Models w/ Parameter tuning
- 3. Feature Engineering
- 4. Random Bagging Methods

# **Undersampling Bagging Methods**

| Model                       | F2    | F1    | Accuracy | Precision | Recall | Notes                 |
|-----------------------------|-------|-------|----------|-----------|--------|-----------------------|
| Balanced Random Forest      | 60.2% | 42.8% | 73.0%    | 28.9%     | 82.5%  | Undersampling bagging |
| Balanced Bagging Classifier | 56.0% | 42.4% | 76.3%    | 30.2%     | 71.3%  | Undersampling bagging |

<sup>\*</sup> Represent test Scores after a train, test, val split

# **Top Model: Logistic Regression** (threshold = 0.2)

**61%** F2 Score

**81%** 

Recall

**75%** Accuracy

# **Confusion Matrix**

ınaı

No Cross-Sell

#### True Positives

(Predicted no cross-sell and actual is no cross-sell)

498,896

### False Negatives

(Predicted cross-sell and actual is no cross-sell)

16,984

#### **False Positives**

(Predicted no cross-sell and actual is cross-sell)

1,701

No Cross-Sell

## True Negatives

(Predicted cross-sell and actual is cross-sell)

7,641

Cross-Sell

**Predicted** 

# **Top Features**

Vehicle Damage **2.64** 

Policy Sales Channel 26 1.45 Region Code 28

Converted from log odds

# Model Weakness / Next Steps

- Low precision
- Request further features
- Discuss types of anonymous sales channels / regions to posit more features
- Speak with domain experts to brainstorm further features
- Try ensembling

# Questions

# Appendix: Feature Pairplot

