AIFA Resolution

29/01/2024

Clause: A special form

- Literal A single proposition or its negation
 - P, ~P
- A clause is a disjunction of literals
 - $P \lor Q \lor \sim R$
- Can we convert any proposition to a clausal form?

Converting compound proposition to clausal form

- Consider the sentence (wff)
 - $\sim (A \rightarrow B) \lor (C \rightarrow A)$
- Eliminate the implication sign
 - $\sim (\sim A \lor B) \lor (\sim C \lor A)$
- Eliminate double negation and reduce scope of "not" signs (De-Morgan Law)
 - $(A \land \sim B) \lor (\sim C \lor A)$
- Convert to conjunctive normal form by using distributive and associative laws
 - (AV~CVA)\(\times\)(~B V~CVA)
 - $(AV \sim C) \land (\sim B \lor \sim C\lor A)$
- Two clauses
 - (AV~C)
 - (~B V~CVA)

Why are we so interested in clausal form?

Helps us in applying interesting inference mechanism:

Resolution

Resolution: Inference Mechanism

- Objective:
 - Learn to prove new facts given a set of facts
 - Given a set of facts proving a fact means proving the <u>logical entailment</u>
- A sound inference mechanism

Entailment

If a sentence s1 has a value True for all interpretations

that make all sentences in a set S True then

- S |- s1
- s1 logically follows from S
- s1 is a logical consequence of S
- S logically entails s1

Inference Mechanism

Resolution

- Suppose x is a literal
- S1 and S2 are two sets of propositional sentences represented in clausal form
- If we have $(xVS1)\wedge(\sim xVS2)$
 - Then we get S1VS2
 - Here S1VS2 is the resolvent
 - x is resolved upon

Problem 3

- If a triangle is equilateral then it is isosceles
- If a triangle is isosceles then two sides AB and AC are equal
- If AB and AC are equal then angle B and C are equal
- ABC is an equilateral triangle
- Prove angle B is equal to angle C

Problem 3: Proposition Form

- If a triangle is equilateral then it is isosceles
 - Equilateral(ABC) \rightarrow Isosceles(ABC)
- If a triangle is isosceles then two sides AB and AC are equal
 - Isosceles(ABC) \rightarrow Equal(AB,AC)
- If AB and AC are equal then angle B and C are equal
 - Equal(AB,AC) \rightarrow Equal(B,C)
- ABC is an equilateral triangle
 - Equilateral(ABC)

Problem 3: Clausal Form

- Equilateral(ABC) \rightarrow Isosceles(ABC)
 - ~ Equilateral(ABC)VIsosceles(ABC)
- Isosceles(ABC) \rightarrow Equal(AB,AC)
 - ~Isosceles(ABC)VEqual(AB,AC)
- Equal(AB,AC) \rightarrow Equal(B,C)
 - ~ Equal(AB,AC)VEqual(B,C)
- Equilateral(ABC)

Proof by Refutation

• To Prove: Angle B is equal to Angle C: Equal(B,C)

• Let us disprove: NotEqual(B,C) = \sim Equal(B,C)

• $\varphi : F1 \land F2 \land ... \land Fn \rightarrow G$

• φ : ~ $(F1 \land F2 \land ... \land Fn) \lor G$

• $\sim \varphi$: F1 \land F2 \land ... \land Fn $\land \sim$ G

We have arrived in contradictory situation that is not supported by given set of facts

AIFA First Order Logic

29/01/2024

Koustav Rudra

Objective

• Formulate more types of sentences in logic?

• Write correct predicate logic formulae

Limitations of propositional logic

- All dogs are faithful
- Tommy is a dog
- Therefore, Tommy is faithful

• P: All dogs are faithful

- Q: Tommy is a dog
- Can we claim? $P \land Q \rightarrow$ Tommy is faithful

• Machine does not know what does "all dogs" mean?

How to represent and infer this in propositional logic?

Limitations of propositional logic

- Anil is a hardworking student
 - Hardworking_Anil
- Anil is an intelligent student
 - Intelligent_Anil
- Anil scores high marks
 - Score_High_Mark_Anil
- If Anil is hardworking and Anil is intelligent, then Anil scores high marks
 - Hardworking_Anil ∧ Intelligent_Anil → Score_High_Mark_Anil
- What about Akash and Asish?

Limitations of propositional logic

- Anil is a hardworking student
- Anil is an intelligent student
- All students who are hardworking and intelligent scores high marks
- For all x such that x is a student and x is intelligent and x is hardworking then x scores high marks
 - x is a variable
 - Need power to write such sentences

The problem of Infinite Model

- Propositional logic, we have to restrict ourselves to constants
- In general, propositional logic can deal with only a finite number of propositions
- If there are only three students Anil Akash Asish, then
 - P: Anil is intelligent
 - Q: Akash is intelligent
 - R: Asish is intelligent
- All students are intelligent: $P \wedge Q \wedge R$
- If a new student joins the class?
- How long should we go on?
- Limitation: Finiteness of statements

First Order Logic

- Generalization of propositional logic that allows us to express and infer arguments in infinite models like
 - All men are mortal
 - Some birds cannot fly
 - At least one planet has life on it

Syntax of FOL

- The syntax of First-Order Logic can be defined in terms of
 - Terms
 - Predicates
 - Quantifiers

Term

• A term denotes some object other than **true** or **false**

- Terms can be constants as well as variables
- In proposition logic, we only have constants

Term: Constants & Variables

- A constant of type W is a name that denotes a particular object in a set W
 - Example: 5, Anil
- A variable of type W is a name that can denote any element in the set W
 - Examples: x∈N denotes a Natural number
 - s denotes the name of a student

Functions

• A functional term of arity n takes n objects of type W_1 to W_n as inputs and returns an object of type W

- $f(W_1, W_2, ..., W_n)$
- plus(3,4) = 7
 - Two objects of type constant from the set of Natural numbers

Functional Term

Constants

Functions: Example

• Let plus be a function that takes two arguments of type Natural number and returns a Natural number

- Valid Functional Terms:
 - plus(2,3)
 - plus(5,plus(7,3))
- Invalid Functional Terms:
 - plus(0,-1)
 - Plus(1.2,3.3)

Predicates

• Predicates are like functions except that their return type is **true** or **false**

• Example:

- gt(x,y) is true iff x>y
- Here gt is a predicate symbol that takes two arguments of type natural number
- gt(3,4) is a valid predicate but gt(3,-4) is not

Types of Predicates

- A predicate with no variable is a proposition
 - Anil is a student
- A predicate with one variable is called a property
 - student(x) is true iff x is student
 - mortal(y) is true iff y is mortal

Formulation of Predicates

• Let P(x,y,...) and Q(x,y,...) are two predicates

- Then so are
 - P\(\O \Q\)
 - PVQ
 - ~P
 - $P \rightarrow Q$

Predicate Examples

- If x is a man then x is mortal
 - $man(x) \rightarrow mortal(x)$
 - ~man(x)Vmortal(x)
- If n is a natural number then n is either even or odd
 - $natural(n) \rightarrow even(n) Vodd(n)$

Thank You