Magnetismo

Los chinos ya usaban la brújula sobre el 1200, aunque se cree que pueda haberse originado en Arabia o India

Magnetismo

Los chinos ya usaban la brújula sobre el 1200, aunque se cree que pueda haberse originado en Arabia o India

Campo Magnético Terrestre

- En el siglo XVI, Gilbert describe que el comportamiento de la tierra es el de un imán en sí
- El campo magnético terrestre no se encuentra alineado con los polos geográficos
- La orientación del campo magnético terrestre se revirtió unas 183 veces... La última vez fue hace 780000 años.
- Los polos magnéticos terrestres se están desplazando... 50 a 60 kms/año
- El origen del campo magnético terrestre podría deberse a corrientes convectivas de iones y electrones en el núcleo terrestre... la rotación podría influir...

Fuerza Magnética

Experimento: Una corriente I en presencia de un campo magnético

Fuerza Magnética

La fuerza magnética $\vec{\mathbf{F}}_B$ sobre una partícula cargada q moviéndose a velocidad $\vec{\mathbf{v}}$ sumergida en un campo magnético $\vec{\mathbf{B}}$

Regla de la mano derecha

El producto vectorial de dos vectores $\vec{a} \times \vec{b}$ resulta un vector perpendicular (normal) al plano que contiene a ambos

Movimiento de una partícula cargada en $\vec{\bf B}$ uniforme

$$\sum \vec{\mathbf{F}} = m \, \vec{\mathbf{a}}$$

$$\vec{F}_B = q \vec{v} \times \vec{B}$$

$$\operatorname{con} \vec{v} \perp \vec{B} \Rightarrow |F_B| = q |v| |B|$$

Si tengo un movimiento circular:

$$F_B = m \ a_n$$

$$q \ v \ B = m \ \frac{v^2}{r}$$

$$r = \frac{m \, v}{q \, B}$$

Frecuencia angular de ciclotrón:

$$\omega = \frac{v}{r} = \frac{q B}{m}$$

OJO que ω es vectorial!

Movimiento de una partícula cargada en $\vec{\mathbf{B}}$ uniforme

Si \vec{v} NO ES estrictamente $\perp \vec{B}$

tendremos una trayectoria helicoidal...

Qué pasa con $W = \Delta T$ de \vec{F}_B ??

$$W = \int_{A}^{B} \vec{\mathbf{F}}_{B} \cdot d\vec{\mathbf{l}}$$

con:

$$\vec{\mathbf{F}}_B = q \; \vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

$$d\vec{\mathbf{l}} = \vec{\mathbf{v}} \ dt$$

$$W = \int_{A}^{B} (q \, \vec{\mathbf{v}} \times \vec{\mathbf{B}}) \cdot \vec{\mathbf{v}} \, dt$$

$$W = \int \vec{\mathbf{F}}_B \cdot d\vec{\mathbf{l}} = 0$$

Cinturón de Van Allen

Selector de velocidad

Fuerza de Lorentz

$$\vec{\mathbf{F}} = q \, \vec{\mathbf{E}} + q \, \vec{\mathbf{v}} \times \vec{\mathbf{B}}$$

$$v = \frac{E}{B}$$

Espectrómetro de masas

Espectrómetro de masas Bainbridge

$$r = \frac{m \, v}{q \, B_o} \qquad \Rightarrow \qquad \frac{m}{q} = \frac{r \, B_o}{v}$$

$$\frac{m}{q} = \frac{r \, B_o \, B}{E}$$

Ciclotrón

Acelerador de partículas (iones)

$$v_f = \frac{q B R}{m}$$

$$\frac{1}{2}m v^2 = \frac{q^2 B^2 R^2}{2 m}$$

Lawrence y Livingston (1934)

◆□▶◆□▶◆□▶◆□▶ ■ 900