Viewing Comparisons of Radar and Lidar on Particle scatterers

Victoria Pinnegar, Callum Dewsnap

Indigenous Forecasting

- Chugachmiut Traditional Weather Forecasting:
 - Weatherman- time observation for speed, direction, shape of clouds
 - (Traditional Ecological Knowledge (TEK)) Low atmosphere winds-> Current days weather,
 High atmosphere winds -> Large storm systems
 - Cloud halo around sun and moon indicate weather is going to turn for the worse
 - "Cloud streaks high in the sky means it is going to be windy." Mary Malchoff, Port Graham
 - "Dark clouds means there will be rain, snow, or wind." Tom Yeaton Sr., Port Graham
- Plains People:
 - Damp, foggy weather precedes cold and storms
 - Omaha People Curlew Call in the morning foretells cloudless day

Decolonizing Research and use of Indigenous Knowledge

- Utilizing and publishing indigenous knowledge follows a trend of disrespect, lack of documentation, lack of care, and follow up on research for communities
- Proposed Research system from : Yuca-Cassava growth System:
 - Built around Yuca growth system from Caribbean Indigenous population the
 - Community based, reciprocal learning, and knowledge cocreation
 - Nurture growth for Praxis -> Transformative Action-Reflection
 - Community members are considered Participant researchers, and are allowed to participate as co-authors
 - Inclusion of Storywork

Cloud Formation Parameters -Forecasting

- Relative Humidity
 - More easily formed in lower temperatures due to Saturation Vapour Pressure
 - Water acts as an Ideal gas, so if the cloud formation occurs more efficiently at lower temperature, what change in parameters allows better cloud formation?
 - If $nk \sim 100$:
 - T increases, harder to condense into clouds
 - If $nk \sim 10$:
 - T decreases, easier condensation
 - If P decreases:
 - T decreases, easier condensation

Cloud Formation Parameters -Forecasting

- Tracking of High- Low pressure zones through the atmosphere
- Clouds form more easily in lower pressure zones alongside upward circulation and convergence of ai
- Low-pressure and High-pressure systems follow large scale atmospheric circulation:
 - Hadley Cells- Closed Circulation loop near the Equator, low pressure zone near equator → rises up → travels to 30th parallel to a high- pressure zone → sinks → circulates back to equator
 - Polar Cell- Air rises → moves towards pole and eastward → descends → moves towards equator and west
 - Ferrell Cell- Transition between 60° to poles, Eddy created by Polar and Hadley

In a low pressure system, air is dragged in and forced upwards where it cools and forms clouds. In a high pressure system, dense air is forced downwards and spreads out over the surface of the Earth.

Backscatter in Remote Observation

- Scattering of radiation through the atmosphere
- Radiation interacts (Absorbs or Scatters) with a particle
 - Absorption removes photon and converts to Energy
 - Scattering shoots radiation into a new direction
 - Depends on Wavelength, Size, Shape and Composition

The Size Parameter:
$$x = \frac{2\pi r}{\lambda}$$

Backscatter in Remote Observation

- Geometric optics
 - x > 2000
 - Traditional optical principles
- Rayleigh

•
$$x = 0.002 - 0.2$$

•
$$\beta = N\sigma = N\left(\frac{2\pi}{\lambda}\right)^4 \frac{1}{|K|^2} \langle r^6 \rangle$$

$$\beta - Backscatter$$

$$N - Number Density$$

$$\lambda - Wavlength$$

$$K = \frac{n^2 - 1}{n^2 + 2}$$

$$n - Refractive index$$

$$r - Particle radius$$

$$Q_{back} = \frac{1}{n^2} \sum_{n=1}^{\infty} |(2n+1)(-1)^{-n}(a_n + b_n)|^2$$

•
$$x = 0.2 - 2000$$

•
$$\beta = N\sigma = N\pi r^2 Q_{back}$$

Lidar Observation

Lidar- Light Detection and Ranging

$$P(R,\lambda) = P_0 \frac{c\tau}{2} A \eta \frac{O(R)}{R^2} \beta(R,\lambda) \exp\left(-2 \int_0^R \alpha(r,\lambda) dr\right)$$

$$eta(R,\lambda)$$
 — Backscatter P_0 — Average power of a single laser pulse A — Area of Primary Reciever $\frac{c\tau}{2}$ — Effective spacial pulse length η — Efficiency $O(R)$ — Overlap function: geometric arrangment of the transmitting and recieving optics

- Rayleigh scattering for small particles (Molecular Scattering)
- Mie scattering for large particles (Particulate Scattering)

Radar Observation

Radar- Radio Detection and Ranging

$$P(R,\lambda) = \frac{P_t G^2 \lambda^2}{(4\pi)^3 R^4 l} \sigma = \frac{P_t G^2 \lambda^2}{(4\pi)^3 R^4 l} \frac{\pi^5 |K|^2}{\lambda^4} Z$$

$$Z(R,\lambda)-Reflectivity$$

$$P_t-Average\ power\ of\ a\ single\ laser\ pulse$$

$$G-Gain$$

$$l-loss$$

$$\beta=Z_e\ \frac{(m^2-1)}{m^2+2}\frac{\pi^4}{4\lambda^4}$$

- Radar wavelengths are so long, the particles are all small by comparison
- All particulates used are in Rayleigh range (Cloud, Aerosol)
- Molecular backscatter is negligible

Colour Ratio

• The Colour Ratio- larger wavelength over smaller wavelength

$$\frac{\beta_{rad}}{\beta_{lid}} = \frac{\sigma_{radar}}{\sigma_{lidar}}$$

Effective radius – ratio of radar to lidar of the time averaged radius

$$R'_{eff} = \left(\frac{\langle r^6 \rangle}{\langle r^2 \rangle}\right)^{\frac{1}{4}}$$

Particle	δ _{lin} (%)	colour ratio	$r_{\rm eff}$ (μ m)	z (km)
Aerosols	<20			<3 km
M-P Cloud WD	<3	$10^{-9} - 10^{-6}$	5-40	0.5 - 3.5
M-P Cloud IC	20-50	$10^{-6} - 10^{-3}$	40 - 220	0–3
Ice Cloud IC	20-50	$10^{-7} - 10^{-4}$	25 - 120	>3.5
		$10^{-6} - 10^{-3}$	40 - 220	< 3.5
B-L IC	>20	$10^{-8} - 10^{-5}$	15 - 70	< 0.7

- Water acts as an ideal gas in the atmosphere and thus we can model the water clouds in the atmosphere by modelling $\frac{P}{T}=nk$
- Model $\frac{P}{T}$ with a Gaussian, shift the mean height, standard deviation, and scaling factor by a random (Gaussian) amount every hour
- Gaussian model based on observed values of cloud formation
- Linear interpolation between each hour segment to achieve a temporal resolution of 1 minute

Modelling the Atmosphere

