

数学与经济管理

课程内容提要

(二)希赛

> 图论应用

- 最小生成树(★★)
- 最短路径(★)
- 网络与最大流量(★)

> 运筹方法

- 关键路径法(★★★)
- 线性规划(★★★)
- 动态规划(★★)
- 预测与决策(★★★)

> 数学建模(★)

图论应用 - 最小生成树

★ 某小区有七栋楼房①~⑦(见下图),各楼房之间可修燃气管道路线的长度(单位:百米)已标记在连线旁。为修建连通各个楼房的燃气管道,该小区内部煤气管道的总长度至少为多少百米?

最小生成树:

- 1、所有顶点接入
- 2、没有回路
- 3、权值之和最小

图论应用 - 最短路径

♠ 有一批货物要从城市s发送到城市t,线条上的数字代表通过这条路的费用 (单位为万元)。那么,运送这批货物,至少需要花费多少元?

图论应用 - 网络与最大流量

▶ 下图标出了某地区的运输网,各节点之间的运输能力如下表所示。那么,从 节点①到节点⑥的最大运输能力(流量)可以达到多少万吨/小时?

	1	2	3	4	(5)	6
1		6	10	10		
2	6				7	
3	10				14	
4	10	4	1			5
(5)		7	14			21
6				5	21	

图论应用 - 网络与最大流量

图论应用 - 网络与最大流量

(二)希赛

在军事演习中,张司令希望将部队尽快从A地通过公路网(见下图)运送到F地:

图中标出了各路段上的最大运量(单位:千人/小时)。根据该图可以算出,从A 地到F地的最大运量是()千人/小时。

A 20

B 21

C 22

D 23

运筹方法 - 线性规划

(二)希赛

某企业需要采用甲、乙、丙三种原材料生产 I、II两种产品。生产两种产品所需原材料数量、单位产品可获得利润以及企业现有原材料数如下表所示,则公司可以获得的最大利润是(1)万元。取得最大利润时,原材料(2)尚有剩余。

(1) A 21

B 34

C 39

D 48

(2) A 甲

BZ

C丙

D乙和丙

		产品	(吨)	型字区4441 (叶)
		1	П	- 现有原材料(吨)
	甲	1	1	4
所需资源	Z	4	3	12
	丙	1	3	6
单位利润(万元/吨)	9	12	

运筹方法 - 线性规划

(二)希赛

- ◆ 设生产 I 与 II 产品的数量分别为: X和Y。则有:
- \diamond (1) X+Y \leq 4
- ♦ (2) 4X+3Y ≤ 12

9X+12Y=?

- (3) X+3Y ≤ 6
- ◆ (1) 与 (2) 求解得: X=0, Y=4。 X+3Y = 12
- ◆ (1) 与 (3) 求解得: X=3, Y=1。 4X+3Y = 15
- ◆ (2) 与 (3) 求解得: X=2, Y=4/3。 X+Y=10/3 9*2+12*(4/3)=34

		产品	(吨)	型字位针的 (呼)	
		1	Ш	现有原材料 (吨)	
200-01-1	甲	1	1	4	2+4/3=
所需资源	Z	4	3	12	2*4+3*
	丙	1	3	6	2+3*(4/
单位利润(万元/吨)	9	12		

2+4/3=10/3 2*4+3*(4/3)=12 2+3*(4/3)=6

运筹方法 - 动态规划

暴力法求解

某公司现有400万元用于投资甲、乙、丙三个项目, 投资额以百万元为单位,已知甲、乙、丙三项投资的 可能方案及相应获得的收益如下表所示,则该公司能 够获得的最大收益值是()百万元。

A 17

B 18

C 20

D 21

投资额 收益 项目	1	2	3	4
甲	4	6	9	10
Z	3	9	10	11
丙	5	8	11	15

项目	甲	Z	丙	收益值
		0	4	15
		1	3	14
	0	2	2	17
		3	0 4 1 3 2 2	15
		4	0	11
		0	3	15
TU >44	1	1	2	15
投资 金额		2	1	18
五五五次		3	0	14
		0	2	14
	2	1	1	14
		2	0	15
	2	0	1	14
	3	1	0	12
	4	0	0	10

运筹方法 - 动态规划

贪心策略分析

某企业准备将四个工人甲、乙、丙、丁分配在A、B、C、D四个岗位。每个工人由于技术水平不同,在不同岗位上每天完成任务所需的工时见下表。适当安排岗位,可使四个工人以最短的总工时()全部完成每天的任务。

	Α	В	С	D
甲	7	5	2	3
Z	9	4	3	7
丙	5	4	7	5
丁	4	6	5	6

A 13 B 14 C 15 D 16

运筹方法 - 预测 - 博弈论

(二)希赛

◆ 囚徒困境 (prisoner's dilemma)

这个例子可以看作是非合作博弈现象的一个抽象概括。它讲的是两个嫌疑犯被隔离审讯。他们面临的处境是:如果两人都坦白,各判刑8年;如果两人都抵赖,各判刑1年(或许证据不足);如果一人坦白另一人抵赖,则坦白的放出去,不坦白的判刑10年("坦白从宽、抗拒从严")。这里,两个囚徒就是两个局中人,每个局中人都有两个策略可供选择:坦白或抵赖。表中每一格的一对数字分别表示局中人不同策略组合的收益,第一个数字是囚徒A的收益,第二个数字是囚徒B的收益。这种有限对策(局中人是有限个,每个局中人的策略数也是有限的)往往用矩阵形式表示。

		囚徒B		
		坦白 抵		
囚徒A	坦白	-8, -8	0, -10	
MIKEN .	抵赖	-10, 0	-1, -1	

运筹方法 - 预测 - 博弈论

甲、乙两个独立的网站主要靠广告收入来支撑发展,目前都采用较高的价格销售广告。这两个网站都想通过降价争夺更多的客户和更丰厚的利润。假设这两个网站在现有策略下各可以获得1000万元的利润。如果一方单独降价,就能扩大市场份额,可以获得1500万元利润,此时,另一方的市场份额就会缩小,利润将下降到200万元。

如果这两个网站同时降价,则他们都将只能得到700万元利润。那么,这两个网站 的主管各自经过独立的理性分析后,决定采取什么策略呢?

	乙网站					
		高价		低价		
甲网站	高价	1000,	1000	200,	1500	
	低价	1500,	200	700,	700	

运筹方法 - 预测 - 状态转移矩阵

(二)希赛

假设市场上某种商品有两种品牌A和B,当前的市场占有率各为50%。 根据历史经验估计,这种商品当月与下月市场占有率的变化可用转移矩 阵P来描述:

$$P = \begin{pmatrix} p(A \to A) & p(A \to B) \\ p(B \to A) & p(B \to B) \end{pmatrix} = \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix}$$

其中,p(A→B)是A的市场占有份额中转移给B的概率,依次类推。这样,2个月后的这种商品的市场占有率变化为()。

A A的份额增加了10%, B的份额减少了10%

B A的份额减少了10%, B的份额增加了10%

CA的份额增加了14%, B的份额减少了14%

DA的份额减少了14%, B的份额增加了14%

运筹方法 - 预测 - 状态转移矩阵

(二)希赛

Am*n **≭** Bn*p=Cm*p

第1个月后:

A 50%*0.8+50%*0.4=60%

B 1-60%=40%

第2个月后:

A 60%*0.8+40%*0.4=64%

B 1-64%=36%

(0.5, 0.5)

$$P = \begin{pmatrix} p(A \to A) & p(A \to B) \\ p(B \to A) & p(B \to B) \end{pmatrix} = \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix}$$

(0.5*0.8+0.5*0.4, 0.5*0.2+0.5*0.6)

 \longrightarrow (0.6,0.4)

$$P = \begin{pmatrix} p(A \to A) & p(A \to B) \\ p(B \to A) & p(B \to B) \end{pmatrix} = \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix}$$

(0.6*0.8+0.4*0.4, 0.6*0.2+0.4*0.6)

 \longrightarrow (0.64,0.36)

运筹方法 - 决策

- ◆ 决策者
- ◆ 可供选择的方案
- ◆ 衡量选择方案的准则
- ◆ 事件
- ◆ 每一事件的发生将会产生的某种结果
- ◆ 决策者的价值观
- 确定型决策
- 风险决策
- 不确定型决策

决策准则	说明
乐观主义准则	maxmax准则,其决策的原则是"大中取大",总抱有乐观和冒险的态度, 决不放弃任何获得最好结果的机会。在决策表中各个方案对各个状态的结 果中选出最大者,记在表的最右列,再从该列中选出最大者
悲观主义准则	maxmin准则,其决策的原则是"小中取大"。抱有悲观和保守的态度,在各种最坏的可能结果中选择最好的。决策时从决策表中各方案对各个状态的结果选出最小者,记在表的最右列,再从该列中选出最大者
折中主义准则	Harwicz准则,既不乐观冒险,也不悲观保守,而是从中折中平衡,用一个系数 α (称为折中系数)来表示,并规定 $0 \le \alpha \le 1$, $cv_i = \alpha^* max\{a_{ij}\} + (1-\alpha)^* min\{a_{ij}\}$,然后比较 cv_i ,从中选择最大者
等可能准则	Laplace准则,当决策者无法事先确定每个自然状态出现的概率时,可以 将每个状态出现的概率定为1/n,然后按照EMV决策
后悔值准则	Savage准则,每个自然状态的最大收益值(损失矩阵取为最小值)作为 该状态的理想目标,并将该状态的其它值与最大值的差作为未达到理想目 标的后悔值。决策的原则是最大后悔值达到最小(minmax,大中取小, 最小最大后悔值)

乐观: 大中取大

决策矩阵:

预计收益(单位:万元人民币)		经济趋势预测			
		不景气	不变	景气	
	积极	50	150	500	
投资策略	稳健	100	200	300	
	保守	300	250	200	

积极

悲观: 小中取大

决策矩阵:

预计收益(单位:万元人民币)		经济趋势预测				
沙口 收益(早位	开收益(单位,万元人民中)		不变	景气		
	积极	50	150	500		
投资策略	稳健	100	200	300		
	保守	300	250	200		

保守

等可能

决策矩阵:

预计收益(单位:万元人民币)		经济趋势预测			
		不景气	不变	景气	
	积极	50	150	500	
投资策略	稳健	100	200	300	
	保守	300	250	200	

50*1/3+150*1/3+500*1/3=700/3 100*1/3+200*1/3+300*1/3=600/3 300*1/3+250*1/3+200*1/3=750/3

后悔值准则: 最大后悔值最小

决策矩阵:

预计收益(单位:万元人民币)		经济趋势预测		
		不景气	不变	景气
投资策略	积极	50	150	500
	稳健	100	200	300
	保守	300	250	200

后悔值: 当趋势确定后,哪种策略最合适则其后悔值为0, 其他策略据此计算相应亏损即后悔值 后悔值矩阵:

预计收益(单位:万元人民币)		经济趋势预测		
预灯收盖 (羊位: 刀九八氏巾)	不景气	不变	景气	
投资策略	积极	250	100	0
	稳健	200	50	200
	保守	0	0	300

稳健

运筹方法 - 决策树

某电子商务公司要从A地向B地的用户发送一批价值为90000元的货物。从A地到B地有水、陆两条路线。走陆路时比较安全,其运输成本为10000元;走水路时一般情况下的运输成本只要7000元,不过一旦遇到暴风雨天气,则会造成相当于这批货物总价值的10%的损失。根据历年情况,这期间出现暴风雨天气的概率为1/4,那么该电子商务公司该如何选择呢?

水路: 7000*0.75+ (7000+90000*10%) *0.25=9250

陆路: 10000*0.75+10000*0.25=10000

运筹方法 - 决策表

评估和选择最佳系统设计方案时,甲认为可以采用点值评估方法,即根据每一个价值因素的重要性,综合打分来选择最佳的方案。乙根据甲的提议,对如表所示的系统 A 和 B 进行评估,那么乙认为()。

A 最佳方案是 A

B 最佳方案是 B

C 条件不足,不能得出结论

D 只能用成本/效益分析方法做出判断

		系统A	系统B
评估因素的重要性		评估值	评估值
硬件	35%	95	75
软件	40%	70	95
供应商支持	25%	85	90

A系统: 95*35%+70*40%+85*25%=82.5

B系统: 75*35%+95*40%+90*25%=86.75

运筹方法 - 决策树

某企业拟进行电子商务系统的建设,有四种方式可以选择:①企业自行从头开发;②复用已有的构件来构造;③购买现成的软件产品;④承包给专业公司开发。针对这几种方式,项目经理提供了如图所示的决策树,根据此图,管理者选择建设方式的最佳决策是()。

A 企业自行从头开发

B复用已有的构件来构造

C购买现成的软件产品

D 承包给专业公司开发

自行从头开发: 0.3*38+0.7*45=11.4+31.5=42.9

复用: 0.4*27.5+ (0.6*0.2*31+0.6*0.8*49)

=11+ (3.72+23.52) =38.24

购买: 0.7*21+0.3*30=14.7+9=23.7

承包: 0.6*35+0.4*50=21+20=41

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象和简化,建立能近似刻画并解决实际问题的模型的一种强有力的数学手段。

- 模型准备: 了解问题的实际背景,明确其实际意义,掌握对象的各种信息。 用数学语言来描述问题。
- 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化, 并用精确的语言提出一些恰当的假设。
- 模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。只要能够把问题描述清楚,尽量使用简单的数学工具。
- ▶ 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
- ▶ 模型分析:对所得的结果进行数学上的分析。
- 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
- 模型应用:应用方式因问题的性质和建模的目的而异。

数学建模-模型分析

- ▶ 模型的合理性分析 (最佳、适中、满意等)
- ▶ 模型的误差分析 (模型误差、观测误差、截断误差、舍入误差、过失误差、绝对误差、相对误差等)
- 参数的灵敏性分析(变量数据是否敏感,在最优方案不变的条件下这些变量允许变化的范围)

数学建模-模型检验

- 利用实际案例数据对模型进行检验是很常见的。将模型作为一个 黑盒,通过案例数据的输入,检查其输出是否合理。这是应用人 员常用的方法。
- 可以请专家来分析模型是否合理。经验丰富的专家一般会根据模型自身的逻辑,再结合实际情况,分析是否会出现矛盾或问题。
- 利用计算机来模拟实际问题,再在计算机上检验该数学模型。有时很难用实际案例或聘请专家来检验模型,例如,试验或实验的代价太大,难以取得实际案例,有的项目技术比较新,缺乏有经验的专家。例如,对某种核辐射防护建立的数学模型,采用计算机模拟方法来检验就十分有效。

(二)希赛

数学建模方法

直接分析法: 认识原理,直接构造出模型。

类比法: 根据类似问题模型构造新模型。

数据分析法: 大量数据统计分析之后建模。

构想法: 对将来可能发生的情况给出设想从而建模。

对实际应用问题建立数学模型并求得结果后,还需要根据建模的目的和要求,利用相关知识,结合研究对象的特点,进行模型分析。模型分析工作一般不包括()。

- A 模型的合理性分析
- B 模型的误差分析
- C模型的先进性分析
- D 参数的灵敏性分析

对实际应用问题建立了数学模型后,一般还需要对该模型进行检验。通过检验尽可能找出模型中的问题,以利于改进模型,有时还可能会否定该模型。检验模型的做法有多种,但一般不会()。

- A 利用实际案例数据对模型进行检验
- B 进行逻辑检验,分析该模型是否会出现矛盾
- C用计算机模拟实际问题来检验模型
- D 检验该模型所采用的技术能否被企业负责人理解