Notes on Heapsort

Geoffrey Matthews April 26, 2016

Heapsort

- $O(n \lg n)$ worst case like merge sort
- Sorts in place like insertion sort
- Combines best of both algorithms

Heaps

- A nearly complete binary tree.
- **Height:** number of edges on longest path from node to leaf
- \bullet Stored as an array A
 - Root at A[1]
 - Left child at A[2i]
 - Right child at A[2i+1]
 - Parent of A[i] at $A[\lfloor i/2 \rfloor]$
- Computing very fast

Example Max-heap

- For max-heaps: $A[PARENT(i)] \ge A[i]$
- Induction can prove largest element is at root.

MAX-HEAPIFY

- Preconditions:
 - -A[i] may be smaller than its children.
 - Left and right subtrees of i are max-heaps.
- \bullet Postcondition: subtree rooted at i is a max-heap.

```
Max-Heapify(A, i, n)

1 \quad l = \text{Left}(i)

2 \quad r = \text{Right}(i)

3 \quad \text{if } l \leq n \text{ and } A[l] > A[i]

4 \quad largest = l

5 \quad \text{else } largest = i

6 \quad \text{if } r \leq n \text{ and } A[r] > A[largest]

7 \quad largest = r

8 \quad \text{if } largest \neq i

9 \quad \text{exchange } A[i] \text{ with } A[largest]

10 \quad \text{Max-Heapify}(A, largest, n)
```


Time for Max-Heapify

- $O(\lg n)$
- Why?

Build-Max-Heap

 \bullet If A is not a max-heap, this will make it one.

Build-Max-Heap(A, n)

- 1 for $i = \lfloor n/2 \rfloor$ downto 1
- 2 Max-Heapify(A, i, n)

A 4 1 3 2 16 9 10 14 8 7

Loop invariant for Build-Max-Heap

- At start of every iteration of **for** loop, each node $i+1, i+2, \ldots, n$ is root of a max-heap.
 - Initialization?
 - Maintenance?
 - Termination?

Build-Max-Heap(A)

- 1 for $i = \lfloor n/2 \rfloor$ downto 1
- 2 MAX-HEAPIFY(A, i, n)

Running time of Build-Max-Heap

- Loose bound: O(n) calls to MAX-HEAPIFY, which is $O(\lg n)$, gives $O(n \lg n)$.
- We can get a tighter bound.
 - -n element heap has height $\lfloor \lg n \rfloor$
 - -n element heap has at most $\lceil n/2^{h+1} \rceil$ nodes of height h
 - Time for MAX-HEAPIFY on a node of height h is O(h)
 - Total time for Build-Max-Heap:

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$
$$= O(n)$$

Note:

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$

$$\sum_{k=0}^{\infty} k(1/2)^k = \frac{1/2}{(1-1/2)^2} = 2$$
(A.8)

HEAPSORT

- Builds max-heap in the array.
- Swaps the root (the maximum) with the element at the end.
- Heapifies the result, with one less element.
- Repeat until only one element left.

HEAPSORT(A)

- 1 Build-Max-Heap(A)
- 2 for i = n downto 2
- 3 exchange A[1] with A[i]
- 4 Max-Heapify(A, 1, i 1)

HEAPSORT

```
Heapsort(A)
```

- 1 Build-Max-Heap(A)2 **for** i = n **downto** 2 3 exchange A[1] with A[i]4 Max-Heapify(A, 1, i - 1)
 - Analysis: $O(n \lg n)$

Priority queue

- Heaps efficiently implement priority queues.
- \bullet Maintains a dynamic set S of elements.
- Each element has a *key*
- Operations:
 - $-\operatorname{INSERT}(S, x)$
 - $-\operatorname{Maximum}(S)$
 - $-\operatorname{Extract-Max}(S)$
 - Increase-Key(S, x, k)
- Min priority queue similar

HEAP-MAXIMUM

- Trivial
- Should probably check for empty heap

$\operatorname{Heap-Maximum}(A)$

- 1 return A[1]
 - O(1)

HEAP-EXTRACT-MAX

- Make sure heap is not empty.
- Copy the max element (root)
- Make the last node the new root.
- Decrement the size.
- Re-heapify starting at the root.
- Return the max element copy.

HEAP-EXTRACT-Max(A)

- 1 **if** n < 1
- 2 **error** "heap underflow"
- $3 \quad max = A[1]$
- $4 \quad A[1] = A[n]$
- $5 \quad n = n 1$
- 6 Max-Heapify(A, 1, n)
- 7 return max
 - $\bullet O(\lg n)$

HEAP-INCREASE-KEY

- Make sure $k \ge x$'s current key
- Update x's key to k
- Traverse tree upward, swapping keys if necessary.

HEAP-INCREASE-KEY(A, i, key)

```
1 if key < A[i]

2 error "new key is smaller than current key"

3 A[i] = key

4 while i > 1 and A[PARENT(i)] < A[i]

5 exchange A[i] with A[PARENT(i)]

6 i = PARENT(i)
```


Why can't we Heap-Decrease-Key on a max-heap?

MAX-HEAP-INSERT

MAX-HEAP-INSERT(A, key, n)

- $1 \quad n = n + 1$
- $2 \quad A[n] = -\infty$
- 3 Heap-Increase-Key(A, n, key)
 - $\bullet O(\lg n)$