Dual All-Integer Programming

Kwei-Long Huang

Agenda

- Basic Approach
- The Form of the Cut
- The Derivation
 - The Cut
 - The Pivot Column
 - The λ Selection
- Properties of the Added Cuts
- Algorithm Strategies
- Finiteness

Dual All-Integer Programming

- This cutting plane algorithm for ILP problems was developed by Gomory in 1960.
- This method is a direct extension of the dual simplex method. It starts with an all-integer tableau and maintains the integrality of the tableaus in subsequent iterations.

Basic Procedures

- 1. Start with an all-integer simplex tableau which contains a lexicographic dual feasible solution.
- 2. Select a primal infeasible row (i.e., $a_{v,0} < 0$). If none exists, the current basic solution is optimal integer and terminate.
- 3. Select the pivot column α_k to be the lexicographically smallest column having $a_{vj} < 0$. If none exist, there is no integer feasible solution and terminate.
- 4. Derive an all-integer inequality from row v which is not satisfied at the current primal solution and has a -1 coefficient in column α_p . Append it to the bottom of the current tableau and label it the pivot row.
- 5. Perform a dual simplex pivot iteration to obtain an updated all-integer tableau and go back to step 2.

The Form of the Cut

• Let *v* be the generating row with $a_{v,0} \le 0$,

$$x_{v} = a_{v,0} + \sum_{j=1}^{n} a_{v,j} \left(-x_{J(j)} \right).$$

• Then, the all-integer cut is

$$x' = \left\lfloor \frac{a_{v,0}}{\lambda} \right\rfloor + \sum_{j=1}^{n} \left\lfloor \frac{a_{v,j}}{\lambda} \right\rfloor \left(-x_{J(j)} \right).$$

• Where x' is the Gomory slack variable and λ is a positive number computed as follows:

The Form of the Cut (con't)

- Let α_p be the lexicographically smallest column with $a_{v,j} < 0$, j = 1, ..., n.
- Let $u_p = 1$ and, for $a_{v,j} < 0, j = 1,..., n$ and $j \neq p$, let u_j be the largest integer number such that

$$\alpha_p < (\frac{1}{u_i})\alpha_j$$
. Note that $u_j \ge 1$ and $\alpha_p > 0$.

- For $a_{v,j} < 0, j=1,...,n$, compute $\lambda_j = -\frac{a_{vj}}{u_j}$.
- Let $\lambda = \max\{\lambda_j\}$. Note that $\lambda \geq \lambda_p = -\frac{\dot{a}_{vv}}{u_p} \geq 1$.

Example (1/4)

Maximize
$$-4x_1 - 5x_2 = x_0$$

subject to $-x_1 - 4x_2 \le -5$, (x_3)
 $-3x_1 - 2x_2 \le -7$, (x_4)
and $x_1, x_2 \ge 0$, integer.

Example (2/4)

#1	1	$(-x_1)$	$(-x_2)$
x_0	0	4	5
x_1	0	-1	0
x_2	0	0	-1
x_3	– 5	-1	-4
$\longrightarrow x_4$	- 7	-3	-2

$$(x_1 = x_2 = 0)$$

 $p = 1$
 $u_1 = 1, u_2 = 1$
 $\lambda_1 = 3, \lambda_2 = 2$
 $\lambda = \max(\lambda_1, \lambda_2) = 3$

Example (3/4)

#2	1	$(-x_5)$	$(-x_2)$	
x_0	-12	4	1	
x_1	3	-1	1	
x_2	0	0	-1	
\longrightarrow x_3	-2	-1	-3	
x_4	2	-3	1	
x_5	0	-1	0	
	•			

$$(x_1 = 3, x_2 = 0)$$

 $p = 2$
 $u_1 = 3, u_2 = 1$
 $\lambda_1 = \frac{1}{3}, \lambda_2 = 3$
 $\lambda = \max(\lambda_1, \lambda_2) = 3$

Example (4/4)

#3	1	$(-x_5)$	$(-x_6)$
x_0	-13	3	1
x_1	2	-2	1
x_2	1	1	-1
x_3	1	2	-3
x_4	1	-4	1
x_5	0	-1	0
<i>x</i> ₆	0	0 —1	

Example 2 (1/2)

Maximize
$$-10x_1 - 14x_2 - 21x_3 = x_0$$

subject to $8x_1 + 11x_2 + 9x_3 \ge 12$, (x_4)
 $2x_1 + 2x_2 + 7x_3 \ge 14$, (x_5)
 $9x_1 + 6x_2 + 3x_3 \ge 10$, (x_6)
and $x_1, x_2, x_3 \ge 0$, integer.

Example 2 (2/2)

• If set $\lambda = 2 = > LDS$ not satisfied.

#1	1	$(-x_1)$	$(-x_2)$	$(-x_3)$	
x_0	0	10	14	21	p = 1
x_1	0	-1	0	0	$u_1 = 1$ $u_2 = 1$, $u_3 = 2$
x_2	0	0	-1	0	$\lambda_1 = \left(\frac{2}{u_1}\right) = 2$
x_3	0	0	0	-1	$\lambda_2 = \left(\frac{2}{u_2}\right) = 2$
x_4	-12	-8	-11	- 9	$\lambda_3 = (7/u_3) = 7/2$
$\rightarrow x_5$	-14	-2	-2	-7	$\lambda = \frac{7}{2}$
x_6	-10	- 9	-6	-3	

Agenda

- Basic Approach
- The Form of the Cut
- The Derivation
 - The Cut
 - The Pivot Column
 - The λ Selection
- Properties of the Added Cuts
- Algorithm Strategies
- Finiteness

The Derivation of the Cut (1/6)

• First we need to show that the pivot element is always -1.

Consider a source row

$$x = a_0 + \sum_{j=1}^{n} a_j \left(-x_{J(j)} \right),$$

with $a_0 < 0$.

The Derivation of the Cut (2/6)

Let λ be a positive number. Then,

$$f = \frac{a}{\lambda} - \left| \frac{a}{\lambda} \right| ;$$

then $0 \le f < 1$. Defining $r = \lambda f$ yields

$$\frac{r}{\lambda} = \frac{a}{\lambda} - \left| \frac{a}{\lambda} \right|$$
, or $a = \left| \frac{a}{\lambda} \right| \lambda + r$

where $0 \le r < \lambda$

The Derivation of the Cut (3/6)

• Rewrite the coefficients in source row

$$a_{j} = \left[\frac{a_{j}}{\lambda}\right] \lambda + r_{j}, j = 1,...,n,$$

and 1 =

where $\lambda > 0$, $0 \le r_i < \lambda$, and $0 \le r_0 < \lambda$.

The Derivation of the Cut (4/6)

• Rewrite the source row

$$\left(\left\lfloor \frac{1}{\lambda}\right\rfloor \lambda + r\right) x = \left(\left\lfloor \frac{a_0}{\lambda}\right\rfloor \lambda + r_0\right) + \sum_{j=1}^n \left(\left\lfloor \frac{a_j}{\lambda}\right\rfloor \lambda + r_j\right) (-x_{J(j)})$$

$$\Rightarrow \sum_{j=1}^{n} r_j x_{J(j)} + rx = r_0 + \lambda \left\{ \left[\frac{a_0}{\lambda} \right] + \right\}$$

$$x' = \left\lfloor \frac{a_0}{\lambda} \right\rfloor + \sum_{j=1}^n \left\lfloor \frac{a_j}{\lambda} \right\rfloor \left(-x_{J(j)} \right) + \left\lfloor \frac{1}{\lambda} \right\rfloor (-x).$$

The Derivation of the Cut (5/6)

We need to show x' is non-negative

$$\sum_{j=1}^{n} r_j x_{J(j)} + rx \text{ is non-negative and } 0 \le r_0 < \lambda.$$

$$r_0 + \lambda x' \ge 0$$

In addition, x' is integer. Thus, x' is non-negative.

The Derivation of the Cut (6/6)

• It was shown in the introduction of the cut that $\lambda \ge 1$. If λ turns out to be 1, the source row is the pivot row and a new inequality is not added.

$$x' = \left\lfloor \frac{a_0}{\lambda} \right\rfloor + \sum_{j=1}^n \left\lfloor \frac{a_j}{\lambda} \right\rfloor \left(-x_{J(j)} \right) \ge 0.$$

Since $a_0 < 0$ and $\left| \frac{a_0}{\lambda} \right| < 0$, thus it may be appended to the bottom of the tableau and used as pivot row. Furthermore, for λ sufficiently large the pivot element will be -1.

The Pivot Column (1/2)

• The pivot column for the LDS method satisfies

$$\frac{\alpha_p}{-b_p} \prec \frac{\alpha_j}{-b_j}$$

• Where b_j , j=1,...,n are the nonbasic coefficients in the pivot row for the all-integer algorithm. Thus,

$$b_{p} = -1$$

$$b_{j} = \left| \frac{a_{j}}{\lambda} \right| \implies \alpha_{p} \prec \frac{\alpha_{j}}{-\left\lfloor \frac{a_{j}}{\lambda} \right\rfloor}, j = 1, ..., n, j \neq p, \frac{a_{j}}{\lambda} < 0.$$

The Pivot Column (2/2)

$$\alpha_p \prec \frac{\alpha_j}{-\left|\frac{a_j}{\lambda}\right|} \prec \alpha_j, j = 1, ..., n, j \neq p, \frac{a_j}{\lambda} < 0.$$

=> The pivot column is the lexicographically smallest column with a negative element in the pivot row.

The λ Selection (1/2)

- The objective is to choose λ so that
 - The pivot element is -1.
 - It produces the greatest lexicographic decrease is column 0 (α_0). The updated column 0 becomes

$$\alpha_0' = \alpha_0 + \left\lfloor \frac{\alpha_0}{\lambda} \right\rfloor \alpha_p'.$$

Since $\left\lfloor \frac{\alpha_0}{\lambda} \right\rfloor$ is a negative integer, $\left\lfloor \frac{\alpha_0}{\lambda} \right\rfloor$ decreases as λ decreases.

Then, we must choose the smallest possible λ .

$$\alpha_p \prec \frac{\alpha_j}{-\left|\frac{\alpha_j}{\lambda}\right|}$$

The λ Selection (2/2)

• Let $u_p = 1$ and let u_j , $j \neq p$ be the largest integer such that

$$\alpha_p \prec \frac{\alpha_j}{u_j}$$

$$\Rightarrow -\left|\frac{\alpha_j}{\lambda}\right| \leq u_j.$$

• Then, the smallest satisfying the above inequality is

$$\lambda = \max\{\lambda_j\}, \text{ where } \lambda_j = -\frac{a_j}{u_j}.$$

Agenda

- Basic Approach
- The Form of the Cut
- The Derivation
 - The Cut
 - The Pivot Column
 - The λ Selection
- Properties of the Added Cuts
- Algorithm Strategies
- Finiteness

Stronger Cut

Source row

$$x = -4 - 3(-x_1) - 5(-x_2) \ge 0$$

• $\lambda = 2$

$$x' = -2 - 2(-x_1) - 3(-x_2) \ge 0$$

• $\lambda = 3$

$$x' = -2 - 1(-x_1) - 2(-x_2) \ge 0$$

• $\lambda = 4$ $x' = -1 - 1(-x_1) - 2(-x_2) \ge 0$

Strength of the Inequalities

Derive a Stronger Cut

- If increase λ so that $\left\lfloor \frac{a_0}{\lambda} \right\rfloor$ and $\left\lfloor \frac{a_j}{\lambda} \right\rfloor$, for $a_j > 0$, remain the same, a stronger inequality can be obtained when some or all $\left\lfloor \frac{a_j}{\lambda} \right\rfloor$ ($a_j < 0$) change.
- Since $x_{J(j)} = \left\lfloor \frac{a_0}{\lambda} \right\rfloor / \left\lfloor \frac{a_j}{\lambda} \right\rfloor$ increases as λ increases. (the numerator remains the same.)
- Also, the zero column has _____ amount of change.

Example

• Consider a partial tableau where *x* is the source row.

	1	-x ₁	-x ₂	- x ₃	$-\mathbf{x}_4$
\mathbf{x}_0	20	1	3	4	4
X	-20	-7	-8	-15	18

The Gomory cut

$$x' = -3 - 1(-x_1) - 2(-x_2) - 3(-x_3) + 2(-x_4) \ge 0$$
 ($\lambda = 7$)

- What is the possible increment of λ ?
- The stronger cut

$$x' =$$

Gomory Fractional Cut

• Note that when $\lambda=1$

$$x' = \left\lfloor \frac{a_0}{\lambda} \right\rfloor + \sum_{j=1}^n \left\lfloor \frac{a_j}{\lambda} \right\rfloor \left(-x_{J(j)} \right) + \left\lfloor \frac{1}{\lambda} \right\rfloor \left(-x \right),$$

where the source row is

$$x = a_0 + \sum_{j=1}^{n} a_j \left(-x_{J(j)} \right);$$

Agenda

- Basic Approach
- The Form of the Cut
- The Derivation
 - The Cut
 - The Pivot Column
 - The λ Selection
- Properties of the Added Cuts
- Algorithm Strategies
- Finiteness

Choose and Drop

- Selection rule for finite convergence: if the constant term of a row is negative and remains negative, the row will eventually be selected.
- Examples of rules that satisfy the above condition:
 - Select the first row with a negative constant term.
 - Select a row with a negative constant term.
 - Randomly select a row with a negative constant term.
- Drop derived cuts when their slack variable becomes basic. This rule limits the size of the tableau.

Agenda

- Basic Approach
- The Form of the Cut
- The Derivation
 - The Cut
 - The Pivot Column
 - The λ Selection
- Properties of the Added Cuts
- Algorithm Strategies
- Finiteness

Finiteness Proof (1/3)

- To show finiteness x_0 must be bounded from below.
- The proof is similar to that of the dual fractional ILP algorithm. That is, we assume the algorithm is not finite. Then, using rule 1 for row selection, there must exist an infinite sequence of tableaus such that $\alpha_0^k > \alpha_0^{k+1} > \alpha_0^{k+2} > ...$
- Since each component of α_0 is integer, its first component $a_{0,0}$ must decrease by integer amounts until it remains fixed.
- Then, the second component of α_0 , $a_{1,0}$, must also decrease by integer amounts until it remains fixed to a nonnegative integer. Eventually, all components of α_0 must remain fixed.

Finiteness Proof (2/3)

- Using contradiction, it can be shown that, if $a_{0,0}$, $a_{1,0}$,..., $a_{v-1,0}$ remain fixed above their lower bounds, then $a_{v,0}$ cannot become negative.
- Suppose $a_{v,0}$ falls below 0; then row v becomes an eligible source row. Using rule 1, row v is selected to generate the cut and the pivot row becomes

$$x' = \left\lfloor \frac{a_{v,0}}{\lambda} \right\rfloor + \sum_{j=1}^{n} \left\lfloor \frac{a_{v,j}}{\lambda} \right\rfloor \left(-x_{J(j)} \right) > 0,$$
where $\left\lfloor \frac{a_{v,0}}{\lambda} \right\rfloor < 0.$

Finiteness Proof (3/3)

- If the problem is feasible, there exists an index p such that $a_{v,p} < 0$.
- Then ,choose λ so that the pivot $\left[\frac{a_{v,p}}{\lambda}\right]$ =
- In this case, $a_{0,0}$ will to

$$a'_{0,0} = a_{0,0} + a_{0,p} \left[\frac{a_{v,0}}{\lambda} \right]$$
, where $a_{0,p} > 0$ and $\left[\frac{a_{v,0}}{\lambda} \right] < 0$,

which is a contradiction.

• Thus, $a_{\rm v,0}$ must eventually remains fixed at a nonnegative integer.

Reminder

- Midterm: 9:20~11:50 on 4/20
- One page cheat sheet in A4-size
- No laptops or smart phones. (Calculator is allowed.)
- Final project
 - Form a group with 5~6 students.
 - Submit one page to describe your project on May 4.
 - The project can be a literature review for an application area or methodology, a research problem, or a computational study.