FIG. 1A

Input file ftmzb48h10; Output File ftmzb48h10.pat Sequence length 3637

79	15
TCGACCCACGCGTCCGCACTCAACAATGCCTGCCCCTCTCTGACTGCACCGTCCCGCCGCCGCTGCCGCCGCCGCCGCCGCCGCCGCC	AAGCCAAGTCGAGCGGGGGGCGTTGCCCACCGACGGCACAGCCCTTGGGCCCCGGCGACCAGGAGGTGAGCCGCGCG

ω

233	293	353	413	84
P	S AGC	D	L CTG	GGT
s AGC	ဗ ဥ	E GAG	DGAC	P CCG
CAC	ტ ტ	O CAG	₽ GCG	O CAG
M ATG	8 0 0	C HGC	P CCT	L CIT
CGAG	₩	CAC	V GTG	e Gag
2000	S TCG	င မြင့်	V GTG	T ACG
3000	A GCA	P CCC	S TCA	L CIC
3CAG	C TGC	A GCT	Cic	N AAC
CCCC	L CTG	P CCG	ტ	N AAC
3GTG(V GTG	C TGC	r CiC	M ATG
3CCA(A GCT	₩	e Gag	S AGT
3000	C TGC	P CCC	S	CHC
3AGC(L	R CGT	C TGC	DGAC
GTCT(TGG	ზ	DGAC	L
3000	CIG	P CCG	A GCT	Y TAC
3CTC(A GCG	ဗဗ	S	A GCT
STGC	L	PCCT	L	T ACG
CGCACAGCTCCGTGCGCCCCGTCTGAGCGCCCCGCCAGGTGCCCCGCCGCCGCCGCCGAG	CIC	CAG CAG	I M ATC ATG	r CiG
ACAG	ი მიმ	A CCC	IATC	P CCC
CGC	PCCT	D GAC	ဗဗ္ဗ	D GAC

104 533

CAC

S TCA

CIC

CAC

AAC

ტ ტ

TCA

CIC

CGG

CIG

GAG

GAG

CIG

TIC

ပ္ပဗ္ဗ

CAC

CAC

TIC

ci Ci

r CTG

Н

ы

闰

H

Īщ

24

H

Z

ល

皿

124 593

AAC

s AGC

CAG

r CTG

CIA

I ATT

CIC

s AGC

CAC

CIC

န Tcc

U

Ēμ

299

TTC

A GCA

CAG

GGA GGA

ညည

I ATC

ф

区

AAA

Σ

ATG

Z

FIG.1B

144 653	164 713	184	204 833	224 893	244 953	264 1013	284 1073	304 1133
ය ප	CHC	N AAC	Y TAT	H	N AAT	H L	Q CAG	L CTG
L CTG	S TCC	N AAC	GAC	CA GAG	Y TAT	g GGT	CIG	Y TAC
മ പ്റവ	s TCC	CIC	P CCT	I ATC	N AAC	I TIG	d C	o CAG
O CAG	G F	A GCT	IATC	နှင့် ၁၅၁	L CIG	e gaa	CCT	F TTC
CIG	ტ ტტ	r Aga	CAC	N AAC	DGAC	CA CAG	N AAC	A GCA
s AGC	E	GIC	ထူည	N AAC	L	r CIG	ဗ ဗ္ဗ	S TCA
P CCC	FITT	д ССС	IATC	H CAT	T ACA	R AGG	M ATG	r Agg
r Crg	S AGC	I	H	I CIA	E GAG	ဗ ၁	F	G GGA
E GAG	R AGA	ea Gag	N AAC	H	L	L CTG	4	V GTG
W TGG	e GAG	T ACT	r CIC	r CTG	N AAT	T ACC	K AAA	e Tit
LCTA	PCCT	CHC	A GCT	V GTG	CAC	я С <u>с</u> е	e Gag	Q CAG
A GCA	V GTC	A GCA	L TTG	V GTG	r Cig	IATC	PCCA	I ATC
E	L	N AAT	ACC	L	ტ ტტ	A GCT	I	P CCA
A GCA	S	D GAC	M ATG	S AGT	e Gag	i Tig	A GCT	N AAC
CCA	I ATC	DGAT	A	T ACC	F TTC	P CCC	K AAG	D GAC
IATC	L	L	Q CAG	L CIC	S AGC	F	IATC	Y TAT
ტ ტტტ	N AAT	W	L	N AAC	CAC	E	N AAC	e TTT
r CGT	A GCT	I CIC	₽	O CAG	ACC	CA CAG	N AAC	H CAT
CIC	D GAT	CAC	PCCT	e Tic	ი გენ	L CIG	N	I ATA
O SAG	ı TA	မှ ၁	H	₩	∨ STG	E 3AG	H	r ACA

364 1313 384 1373 424 444 1553 464 1613 484 1673 344 1253 404 1433 1493 324 ATC S AGT L TTG ဗ ညီ I N AAC GAC GE P CCA Д CAG TTA TCC GGA GAC Sec GAC r Cid CAT Ŋ Ω U Н Ŋ Д 四 AAG TAC R CGA A GCT CGA CTG r CfG N AAT CCA н മ്പ M ည္ဟ CAA CIT TCC CAT r CHO 999 TIC AGA ტ Ø Ø ፈ 耳 Ŀı T ACC GCT C TGT L TIG TIC ပ္ပ E GAG I ATC STCT ď <u> [24</u> S r CIG ညည ၁ ညီ o Ky GGC CIG I ATT s TCC ď r သသ od RAS CA GAG GAA E GAG ဗ ပ္ပ F **₽** GCG I ATC Д TAC GAT Cig GAG L CIG A GCT r CFG STCT R CGT Ħ ပ္ပင္ပ CIG CAG E GAG ACA r CfG ACC. I ACT ď TAC ACC. **A** GCC နှင့် CIG R CGA K AAG S AGC PCCT × မှ ည် L CTG L TTG CA GAG FTC H CAC T ACC GG o GGT GTG r Agg ACC CAG CAG N AAC N AAT CIG c TGT I ATC > E GAG GAT **₹** AAC ი მმმ CCT R AGA r Tr I ATC R AAA CIG R GAC TCT E GAG CIG CAC **4** 99 ល I ATC T ACT CIC CIA L CTG CAG CHG a GGT I ATC R AGG K AAG A GCC r CIG s AGC I ATT T ACG o Ky S AGC r Cig L CIG N AAT GAC CAT ာ ဦင် မှ E GAA TACT K AAA V GTG K AAG TGG r CIG CAC r CIG ACC. L TTA Z CCA M ATG K AAG AAA ပ ပို့ ი გვ E GAG I SAGT LCTG F r CIG V GTT P E GAG R AGG K AAA

FIG.1D

524 1793 544 1853 564 1913 584 1973 604 624 2093 644 2153 664 2213 2033 L TTG M ATG r CFG GAA GAC CAG CAG IATC A GCT ပ္ပင္ပ Д A GCC r Cig 909 CAG 909 TAT V GTC Ø ტ Ø D GAC GGT V GTG c TGC CIG CAC S AGT W TGG O V GTG CIG V GTG s AGC CAT CCC ပ္ပမ္မ ACA N AAC H ტ 耳 S TCT V GTG LCTG GAG N AAC GAG ი ი CHC TIT 闰 闰 CCA LCIT A GCC GAC A GCT FTI AAC GGT CIG Ω ტ Н L CTG GAG K AAG C K AAG S AGC o g r CHC r Cig V GTC L CTC S TCA CIC ი წმ**პ** H CAC ည္ဟ E GAG ∨ GTG Ø G GGT GAC EGAG P CCC ₩ TGG CAG A GCT V GTA နှင့် အ O s TCC C TGT e Gag S TGG က္ဆင္လ CIT ၁ ၁၅ **4** TCC CAG T ACA မှ r CHC r CIG ₽ GCC E GAG CHC O ល I ATT P 999 ი მგმ K AAG L CTG S a GGT GGA ტ M ATG s AGC Y TAT TCT r CIG F V GTG ည္ပဗ္ဗ G GGT _ប Q CAG T ACC IATC PP CCC CCC T ACG E GAG မ r CTG P CCC L CTG AAG A GCT R AGG r CHC မ ၁၅၅ **4** GGA SIC C **A** GCC s AGC TIC K AAG E GAG P CCA ₩ TGG F A GCT **4** AAC TIC DGAT V GTT V GTG CAG CAG P CCA CFG A GCC AGC A CC CIG PCCT A GCT F G GGT F ပ္ပင္ပင္ GAG GAC V GTC Y TAT SCC S AGC CIT ဗဗ္ဗ IGI E GAG ၁ ဥမ္မ T ACA T ACC T ACG LCTA မှ ည A GCA ပ

FIG. 1E

68 227	70	72 239	74	76 251	78 257	80 263	82 269	84 275
ဗ ဗ	P CCG	EGAG	TIC	e Gag	CIC	ACC.	CCA	s AGC
CCT	CIG	G P	C TGC	F TTT	ဗဗ	or C	N AAC	P CCA
S TCG	A GCA	CCA	CIC	D GAC	D GAT	CCT	CHC	W TGG
PCCG	A GCA	A GCC	S TCG	G GGT	A GCA	e Tic	ပ ၁၅	r CHC
A GCG	A GCC	Y	NAAAC	ማ የ	e TTT	CHC	₽	ж С <u>6</u> 6
k AAG	r CIG	G CC CC	M ATG	CCA	I ATC	ဗ ၁၅	PCCT	ж С <u>6</u> 6
ტ ტ	ტ ტ	CIG	M ATG	CIG	CHC	r CIG	r CIG	CIT
Y TAC	A GCC	င TGC	V GTG	GAC	¥ TGG	M ATG	PCCT	D GAC
A GCC	L	CHC	L CIG	CTGT	₽	S FCC	L	D GAT
R CGA	A GCG	CC P	₽ GCC	Y	V GTG	A	V GTG	R CGG
V GTC	L	s TCC	V GTA	CHC	H	F TTT	V GTG	F TTC
C TGC	S F G C	A GCC	A GCT	AAG	ი ემე	S AGC	r Cig	H
TACC	GGA	ဗ ဗဗ	FTTC	I ATC	V GTG	CIC	L	P CCT
V GTG	r CIG	Y TAT	ဗ ဗ	Y TAC	M ATG	F	V GTC	N AAC
STCT	A GCA	e Gag	L	₽	₽	₽	STCA	F TIC
IATC	ဗ ဗဗ္ဗ	G GGA	₽	ပ ပ္ပ	င ဦး	V GTG	k AAG	r CHC
S AGC	A GCA	V GTG	A GCC	₽ GCC	D GAC	r CCC	√ GTC	L CTG
င မရင်	გ <u>ე</u> ე	S FCG	P	V GTG	W TGG	C FGC	A GCT	Y TAC
O CAG	V GIC	A GCC	ж С <u>6</u> 6	V GTG	V GTG	Y	e Gag	r CHC
V GTG	S AGC	r Cig	ဗ္ဗဗ္ဗ	L CTG	₽	CIC	A CCC	L CTG

FIG. 1F

864 2813	884 2873	904	924	944 3053	964 3113	968
ပ ညီ	e Gag	R CGA	k Aag	ACT	A GCC	
S	STCT	S	ACC	A GCC	F TTT	
SAGC	A	I	G GGA	GGA	r CIC	
k aag	e gaa	CIC	D GAT	e Gag	S TCT	
e Gag	r CIG	T ACC	STCT	A GCA	ဗ ဗဗ	
CIG	I Att	V GTG	e GAG	K AAG	STCT	
e Gag	L	S TCA	I ATA	r Cig	P CCC	
G GGT	GAT	P CCT	F	L	¥ TGG	
₽ GCC	V GTG	F TIC	H CAT	CIG	L CTC	
A GCA	DGAT	ဗဗ	N AAC	GAA	4	
AGCT	S TCA	Y TAT	ი გმტ	GGA	G GGA	
Y	FITC	ACC	e Gag	k Aag	G GGT	
₽ GCC	A GCT	E GAG	r CiG	M ATG	V GTG	
LCIA	V GTG	L CIA	R AGG	P CCC	S TCC	
CCC	r Cig	ტ ტტე	T ACC	PCCT	S ICI	
9 999	A GCG	PCCT	₽	CAA	ი ი	
P CCA	CAA	PCCT	ზ	P CCA	C IGI	* Taa
S	T ACC	Q CAG	P CCG	N AAC	ဗ ဗဗင	L
R CGG	S	ტტ	Q CAG	ტტტ	A GCA	H
PCCT	D	A 3CT	H	F FTT	L ITG	S

3204 3283 3362 CCTTCAGCTTCACTTTCACCCTGGGCCTTCTCTGTCCAATCCAATACTTCTGACAGAGGCCTGGGAAATTTGCATAGGA TGGCCAACACCTCTGACTCCATTGTTCTCTCTCCACGACCCCTAACCAATGAGTGCTTCCAAGTCTTGCTTTGTCTTGG

FIG.1G

GAAAGGAGAAAAAGACAAAAGACAGTGAAGGTTATTGGGCCCTGACAGAGCCATGATCAGTAAGTGCAGAGTGATGGGGAG	3441
GTCTCACAGAGCATGACACTGGAAGACAACTACCAAAGACATTGGAGAGTCTCCCCTGTGACATATAGAATATAAAATG	3520
TGTTCTGCGTTCCATTAATCTTGACCTATGCTGNGCCAAAGTGCTTCCTGTTAAAATACACTTTGGAAGACATTGAAAA	3599
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	3637

FIG. 2A

67 LTAYLDLSMNNLTELQPGLFHHLRFLEELRLSGNHLSHIPGQAFSGLH *->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnLk<-* +LdLs N+Lt+| pg++++L+ LeeL Ls+N+L+++p ++f++L+ LRR: domain 1 of 8, from 67 to 114: score 46.0, E = 8.1e-10

->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnLk<- +L+ L L+ N+L+++p++al+ Lp+L++L L+ N ++ +p+++f++L+ LRR: domain 2 of 8, from 115 to 162: score 42.2, E = 1.2e-08

SLKILMLQSNQLRGIPAEALWELPSLQSLRLDANLISLVPERSFEGLS 162

->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnLk<- +L++L+L++N Lt++p al+nLp L+ L N+++++p+++fqnL+ LRR: domain 3 of 8, from 163 to 210: score 49.5, E = 7.7e-11 ftmzb048h1

SLRHLWLDDNALTEIPVRALNNLPALQAMTLALNHIRHIPDYAFQNLT 210

->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnL k<- +L +L+L nN+++++ +++++L+nLe+LdL++N+L+++p + + L+ LRR: domain 4 of 8, from 211 to 257: score 39.5, E = 7.4e-08 ftmzb048h1 SLVVLHLHNNRIQHVGTHSFEGLHNLETLDLNYNELQEFPL-AIRTLG 257

FIG.2B

LRR: domain 5 of 8, from 258 to 305: score 34.1, E = 3.2e-06

->nLeeLdLsnNKLtslppgalsnLpnLeeLdLsnNnLtslppglfqnLk<- +L+eL + nN+++ +p+ a+ + p L+++++ +N ++ + ++fq L+

ftmzb048h1

258 RLQELGFHNNNIKAIPEKAFMGNPLLQTIHFYDNPIQFVGRSAFQYLS 305

LRR: domain 6 of 8, from 306 to 352: score 23.8, E = 0.0041

->nLeeLdLsnNk.LtslppgalsnLpnLeeLdLsnNnLtslppglfqn Lk<-

ftmzb048h1

306 KLHTLSLNGATdIQEFPD--LKGTTSLEILTLTRAGIRLLPPGVCQQLP 352

LRR: domain 7 of 8, from 353 to 398: score 47.6, E = 2.8e-10

->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnLk<-

ftmzb048h1

RLRILELSHNQIEELPS--LHRCQKLEEIGLRHNRIKEIGADTFSQLG 398

LRR: domain 8 of 8, from 399 to 446: score 49.4, E = 7.9e-11

->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnLk<-

+L+ LdLs N ++ ++p+a+s+L++L +LdL +N+Lt+lp + +L

ftmzb048h1

399 SLQALDLSWNAIRAIHPEAFSTLRSLVKLDLTDNQLTTLPLAGLGGLM 446

FIG. 3A-1 Function-Igand

32		
Protein (species)*	Function-lgand	Location
RNase inhibitor (porcine)	RNase inhibitor-RNase	Cytoplasm
Leucine-rich $\alpha 2-GP$ (human)	· · ·	Serum
RNA1 (Saccharomyces cerevisiae)	RNA processing-?	Cytoplasm
	Splicing-U2 snRNP	Nucleus
	ECM binding-laminin,	ECM
	fibronectin, TGF- β	
Decorin (human)	ECM binding-collagen,	ECM
	fibronectin, thrombospondin, $TGF-\beta$	~
Fibromodulin (bovine)	ည	ECM
	fibronectin	
Lumican (chicken)	Corneal transparency-?	ECM
Proteoglycan-Lb (chicken)	ぐーぐ	ECM
Osteoinductive factor (bovine)	Bone morphogenesis-BMP	ECM
Platelet GP ba (human)	Cell adhesion-WF, thrombin	PM (EC)
Platelet GP V (human)	Cell adhesion-GP IX, GP lb	PM (EC)
YopM (Yersinia pestis)	Virulence factor-thrombin	IC + EC
IpaH7.8 (Shigella flexnen)	ر. د.	۰.
IpaH4.5 (Shigella flexnen)	ぐっく	۰٠
	Embryo development-?	PM (EC)
Silt (Drosophilla)	Axon development-?	D E
Connectin (Drosophilla)	Synapse development-?	PM (EC)
Chaoptin (Drosophilla)	Photoreceptor-cell development-?	_
Flightless-1 (Drosophilla)	Embryo development-?	PM (EC)
Oligodendrocyte myelin GP (human)	Myelination-?	PM (EC)

FIG. 3A-2

• •		1.6.0	
Repeats	Length	Consensus sequence	PIR entry
		10	
15		.LE.L.LCLTCLaL	A31857
	თ	.L.EL.LNLGD.GaLLP	
ω		. LL.LNLLLLL.	NBHUA2
ω		.L.LNaaa	BVBYN1
4		.LL.aNa	S03616
ω	24	·	A40757
10	24	. LL.LNIVa	NBHUC8
11	24	.LLNaaa	805390
12		.LLNLA	A41748
9		.La.LNIa	A41781
9		.La.LNaF	A35272
7	24	.LLNLLP.GLL	NBHUIA
14		.LLNLLPLFL	1
12		L.aNLLPLPP	A33950
9		.LL.VNLLPLP.	A35149
ω		.LL.aNLLPLP.	∞
19		L.INLF	A29943
19		L.INI	A36665
7		.LLNLNIaaFL	528464
30		.LL.LNaaFa	A29944
16		.LLS.NLaPaL	1
80	24	.LL.SNNaa	A34210

FIG. 3B-1

Function-1gand

Protein (species)*

Location

CD14 (human) Trk (human)	face receptor-LPS-L protein kinase-NGF	<u>ы</u> <u>ы</u> !
(mouse)	Receptor protein kinase-BDNF, Receptor protein kinase-NT-3	PM (EC) PM (EC)
(Arabidopsis thaliana)		PM (EC)
LH-CG receptor (rat)	Signal transduction-LH, CG	PM (EC)
	Signal transduction-PSH	PM (EC)
receptor (dog)	Signal transduction-TSH	PM (EC)
Adenylate cyclase (Saccharomyces	Signal transduction-RAS	PM
Cerevisiae)		(cytoplasm)
(Tyrpanosoma brucel)	¿-;	٠٠
(Saccharomyces cerevisiae)	DNA repair-RAD10	Nucleus
(Saccharomyces cerevisiae)	DNA repair-?	۰۰
DRT100 (Arabidopsis thallana)	Recombination-?	Chloroplast
(Saccharomyces cerevisiae)	Signal transduction-?	Cytoplasm
(Saccharomyces cerevisiae)	Transcription-?	٠.
sds22 (Schizosaccharomyces	Mitosis-dis2, sds21	Nucleus
romso, 201 vitocomo-birding protein/ret)	RM membranes-ribosome	RM membrane
בסמסוות החוות החוות והמיות והמיות		(cytoplasm)
Carboxypeptidase N (human)	Stabilization-catalytic subunit	Plasma
Intermalin (Listeria monocytogenes)	Invasion-?	Cell wall
InIB (Listeria monocytogenes)	·	٥.

LRR superfamily

FIG. 3B-2

	FIG. 35-Z	
Length	Consensus sequence	PIR entry
27	.aL.LN	TDHUM4
23	.LLS.NL	TVHUTT
23	TT.ST.NITS	S06943
23	.LR.aNLSQNLS	A40026
23	a.LN	JQ1674
25	•	A41343
25		A34548
25	NN.	A40077
23	.LLNaaaL	OYBY
	. L L. LSGC a – a L	A36359
23	.LaDINLPa.	DDBYD1
26	L.aCaa.	A25226
24	LNLNL	A46260
26	•	A41529
23	.LL.aNLTLP.E-a	S31286
22	.LL.aNIaENaL	A38439
24	.LLDLNLLPFL	1
	.LL.LNLLPaFL	90
22	I	A39930
	L.LNL.DIL	993
	5 10	
	* d	

12 13 6

>human DNA seq. TAATACGACTCACTATAGGGAAAGCTGGTACGCCTGCAGGTACCGGTCCGGAA TTCCCGGGTCGACCCACGCGTCCGTGGAGCGAGCCAGGGTCTGAGCCTGCC GGCTCATCCAGCCTCTCTTGCTGCCCTAGCGGCCTCCAACACCAACCGCATCTG GGAAATTGGAGCT:GACACCTTCAGCCAGCTGAGCTCCCTGCAAGCCCTGGATC TTAGCTGGAACGCCATCCGGTCCATCCACCCTGAGGCCTTCTCCACCCTGCAC TCCCTGGTCAAGCTGGACCTGACAGACAACCAGCTGACCACACTGCCCCTGGC TGGACTTGGGGGCTTGATGCATCTGAAGCTCAAAGGGAACCTTGCTCTCCC AGGCCTTCTCCAAGGACAGTTTCCCAAAACTGAGGATCCTGGAGGTGCCTTATG CCTACCAGTGCTGTCCCTATGGGATGTGTGCCAGCTTCTTCAAGGCCTCTGGG CAGTGGGAGGCTGAAGACCTTCACCTTGATGATGAGGAGTCTTCAAAAAGGCC CCTGGGCCTCCTTGCCAGACAAGCAGAGAACCACTATGACCAGGACCTGGATG AGCTCCAGCTGGAGATGGAGGACTCAAAGCCACACCCCAGTGTCCAGTGTAGC CCTACTCCAGGCCCCTTCAAGCCCTGTGAGTACCTCTTTGAAAGCTGGGGCAT CCGCCTGGCCGTGTGGGCCATCGTGTTGCTCTCCGTGCTCTGCAATGGACTGG TGCTGCTGACCGTGTTCGCTGGCGGCCTGCCCCCTGCCCCCGGTCAAGTTT GTGGTAGGTGCGATTGCAGGCGCCAACACCTTGACTGGCATTTCCTGTGGCCT TCTAGCCTCAGTCGATGCCCTGACCTTTGGTCAGTTCTCTGAGTACGGAGCCC GCTGGGAGACGGGCTAGGCTGCCGGGCCACTGGCTTCCTGGCAGTACTTGG GTCGGAGGCATCGGTGCTGCTCACTCTGGCCGCAGTGCAGTGCAGCGTC AGCAGGGGTCCTAGGCTGCCTGGCACTGCCAGGGCTGGCCGCCGCACTGCCC CACCTGAGGGTCAGCCAGCAGCCCTGGGCTTCACCGTGGCCCTGGTGATGAT GAACTCCTTCTGTTTCCTGGTCGTGGCCGGTGCCTACATCAAACTGTACTGTGA CCTGCCGCGGGCGACTTTGAGGCCGTGTGGGACTGCGCCATGGTGAGGCAC GTGGCCTGGCTCATCTTCGCAGACGGGCTCCTCTACTGTCCCGTGGCCTTCCT CAGCTTCGCCTCCATGCTGGGCCTCTTCCCTGTCACGCCCGAGGCCGTCAAGT CTGTCCTGCTGGTGCTGCCCCTGCCTGCCTCAACCCACTGCTGTAC CTGCTCTTCAACCCCCACTTCCGGGATGACCTTCGGCGGGCTTCGGCCCCGCGC AGGGGACTCAGGGCCCCTAGCCTATGCTGCGGCCGGGGAGCTGGAGAAGAGC TCCTGTGATTCTACCCAGGCCCTGGTAGCCTTCTCTGATGTGGATCTCATTCTG GAAGCTTCTGAAGCTGGGCGGCCCCCTGGGCTGGAGACCTATGGCTTCCCCTC AGTGACCCTCATCTCCTGTCAGCAGCCAGGGCCCCCAGGCTGGAGGGCAGC CATTGTGTAGAGCCAGAGGGGAACCACTTTGGGAACCCCCAACCCTCCATGGA TGGAGAACTGCTGAGGGCAGAGGGATCTACGCCAGCAGGTGGAGGCTTG TCAGGGGGTGGCGGCTTTCAGCCCTCTGGCTTGGCCTTTGCTTCACACGTGTA AATATCCCTCCCATTCTTCTCTTCCCCTCTCTCCCTTTCCTCTCCCCCTCG GTGAATGATGGCTGCTTCTAAAACAAATACAACCAAAACTCAGCAGTGTGATCT ATAGCAGGATGCCCAGTACCTGGCTCCACTGATCACCTCTCTCCTGTGACCAT CACCAACGGGTGCCTCTTGGCCTGGCTTTCCCTTGGCCTTCCTCAGCTTCACCT TGATACTGGGCCTCTTCCTTGTCATGTCTGAAGCTGTGGACCAGAGACCTGGAC

GCATGCGACGTCATAGCTCTTCTATAGTGTCACCTAAATTCAATT

>fahr human

NTTHYRESWYACRYRSGIPGSTHASVERSQGLSLPAHPASLAALAASNTTASGKLE FESWGIRLAVWAIVLLSVLCNGLVLLTVFAGGPAPLPPVKFVVGAIAGANTLTGISCG DEESSKRPLGLLARQAENHYDQDLDELQLEMEDSKPHPSVQCSPTPGPFKPCEYL LLASVDALTFGQFSEYGARWETGLGCRATGFLAVLGSEASVLLLTLAAVQCSVSVS RLRPRAGDSGPLAYAAAGELEKSSCDSTQALVAFSDVDLILEASEAGRPPGLETYG FPSVTLISCQQPGAPRLEGSHCVEPEGNHFGNPQPSMDGELLLRAEGSTPAGGGL CVRAYGKSPSLGSVRAGVLGCLALAGLAAALPLASVGEYGASPLCLPYAPPEGQP KLKGNLALSQAFSKDSFPKLRILEVPYAYQCCPYGMCASFFKASGQWEAEDLHLD DTFSQLSSLQALDLSWNAIRSIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGLMHL GLLYCPVAFLSFASMLGLFPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLR **AALGFTVALVMMNSFCFLVVAGAYIKLYCDLPRGDFEAVWDCAMVRHVAWLIFAD** SGGGFQPSGLAFASHV

*->nLeeLdLsnNkLtslppgalsnLpnLeeLdLsnNnLtslppglfqnL +L+ LdLs N ++s++p+a+s+L++L +LdL +N+Lt+lp + +L 64 SLQALDLSWNAIRSIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGL 110 LRR: domain 1 of 1, from 64 to 111: score 51.0, E = 2.6e-11 fahr

*->**X**

fahr 111 M 111

FIG. 7A

	Ď.
ftmzb048h10	MHSPPGLLALWLCAVLCASARGGSDPQPGPGRPACPAPCHCQEDGIMLSADCSELGLSVVPADLDPLTAYLDLSMNNLTE
Aa of aambb001d112	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
fahr human	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
· ·	81
ftmzb048h10	LOPGLFHHLRFLEELRLSGNHLSHIPGQAFSGLHSLKILMLOSNOLRGIPAEALWELPSLOSLRLDANLISLVPERSFEG
Aa of aambb001d112	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
fahr human	
I	161
ftmzb048h10	LSSLRHLWLDDNALTEIPVRALNNLPALQAMTLALNHIRHIPDYAFQNLTSLVVLHLHNNRIQHVGTHSFEGLHNLETLL
Aa of aambb001d112	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
fahr human	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	32(
ftmzb048h10	LNYNELQEFPLAIRTLGRLQELGFHNNNIKAIPEKAFMGNPLLQTIHFYDNPIQFVGRSAFQYLSKLHTLSLNGATDIQF
Aa of aambb001d112	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
fahr human	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	321 400
ftmzb048h10	FPDLKGTTSLEILTLTRAGIRLLPPGVCQQLPRLRILELSHNQIEELPSLHRCQKLEEIGLRHNRIKEIGADTFSQLGSI
Aa of aambb001d112	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
fahr human	HASVERSQGLSLPAHPASLAALAASNTTASGKLEXRSQGLSLSSI
I	401
ftmzb048h10	QALDLSWNAIRAIHPEAFSTLRSLVKLDLTDNQLTTLPLAGLGGLMHLKLKGNLALSQAFSKDSFPKLRILEVPYAYQCC
Aa of aambb001d112	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Fahr human	QALDLSWNAIRSIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGIMHLKLKGNLALSQAFSKDSFPKLRILEVPYAYQC(
I	481
ftmzb048h10	AYGICASFFKTSGQWQAEDFHPEEEEAPKRPLGLLAGQAENHYDLDLDELQMGTEDSKPNPSVQCSPVPGPFKPCEHLFT
Aa of aambb001d112	AYGICASFEKTSGQWQAEDFHPEEEEAPKRPLGLLAGQAENHYDLDLDELQMGTEDSKPHPSVQCSPVPGPFKPCEHLFT
fahr biman	PYGMCASFFKASGOWEAEDI.HI.DDEESSKRPI.GI.LAROAENHYDODI.DEI.OLEMEDSKPHPSVOCSPTPGPFKPCEYLFI

FIG. 7B

easeagoppgletygfpsvtlisrhopgatrlegnhfiesdgtkfgnpoppmkgelllkaegatlagcgssvggalwpsg easeagoppgletygfpsvylisrhopgatrlegnhfvesdgtkfgnpoppmkgelllkaegatlagcgssvggalwpsg easeagrppgletygfpsvtliscoopgaprlegshcvepegnhfgnpopsmdgelllraegstpaggglsggggfopsg FPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLRRLWPSPRSPGPLAYAAAGELEKSSCDSTQALVAFSDVDLIL SWGIRLAVWAIVLLSVLCNGLVLLTVFASGPSPLSPVKLVVGAMAGANALTGISCGLLASVDALTYGQFAEYGARWESGL APPEGRPAALGEAVALVMMNSLCFLVVAGAYIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL APPEGRPAALGFAVALVMMNSLCFLVVAGAYIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL FPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLRRLWPSPRSPGPLAYAAAGELEKSSCDSTQALVAFSDVDLIL FPVTPEAVKSVLLVVLPLPACINPLLYLLFNPHFRDDLRRLRPRAGDSGPLAYAAAGELEKSSCDSTQALVAFSDVDLIL SWGIRLAVWAIVLLSVLCNGLVLLTVFASGPSPLSPVKLVVGAMAGANALSGISCGLLASVDALTYGQFAEYGARWESGL GCQATGFLAVLGSEASVLLLTLAAVQCSISVTCVRAYGKAPSPGSVRAGALGCLALAGLAAALPLASVGEYGASPLCLPY GCQATGFLAVLGSEASVLLLTLAAVQCSISVTCVRAYGKAPSPGSVRAGALGCLALAGLAAALPLASVGEYGASPLCLPY gcratgflavlgseasvlllttlaavocsvsvscvraygkspslgsvragvlgclalaglaaalplasvgeygasplclpy APPEGOPAALGFTVALVMMNSFCFLVVAGAYIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL SWGIRLAVWAIVLLSVLCNGLVLLTVFAGGPAPLPPVKFVVGA<u>IA</u>GANTLTGISCGLLASVDALTFGQFSEYGARWETGL TM VII SLFASHIN LAFASHVN SLFASHLN Aa_of_aambb001d112 fahr_human Aa_of_aambb001d112 fahr_human Aa_of_aambb001d112 fahr_human Aa_of_aambb001d112 fahr_human Aa_of_aambb001d112 fahr_human As of sambb001d112 ftmzb048h10 ftmzb048h10 ftmzb048h10 ftmzb048h10 ftmzb048h10 ftmzb048h10 fahr_human

FIG.8A

20	40	180	80	100 300	120 360	140 420	160 480	180 540
V GTG	₽ GCC	N AAC	STCT	E	LCTG	H	A GCT	R CGG
PCCT	k AAG	D GAT	CTA	CIG	Q CAG	r CTG	ი წმტ	I ATC
F TIC	I ATC	Y TAT	T ACA	S AGC	CAA	S AGC	I ATT	₽ GCC
e Gag	N AAC	e TTT	H	ACC.	C FGC	GCC CCC	e Gaa	N AAC
CAG	n AAC	H CAC	CHC	ACC ACC	MATG	CHG	W TGG	¥ ₽GG
L	n AAC	I ATA	r Aaa	ဗ ဗ	ტტტ	E GAG	I ATC	S AGC
K AAG	H CAT	T ACG	CCT	K AAA	S TCG	e Gag	CGC	L
N AAC	F	Q CAG	CIG	CIC	PCCA	I ATT	N AAC	DGAT
Y TAT	ტ ტტ	L	Y TAC	D GAT	CIC	CAA	H CAC	L
N AAT	r CTG	Cig	CA CAG	P CCA	L CTG	N AAT	CAA	₽
L CHG	E GAA	PCCT	F	F TTT	ი გე	CAC	r CFC	CAA
DGAC	Q CAG	AAC	GCA	eag Gag	ATC	SHCH	ი ე	L CTG
L	L CTG	ტ ტეტ	s TCG	SAG CAG	ဗ ဗဗ္ဗ	L CTG	I ATC	STCC
T ACA	r Aga	M ATG	R AGA	I ATC	A GCA	e gaa	e Gaa	S AGC
E	ဗ	F	66 .	DGAC	R CGC	L CHG	e Gag	L
L CTG	CTG	A 9000	V GTG	M ATG	ACC	V GTC	l Tig	CAG
N AAT	TACC	k Aag	FIT	A	L	R CGA	K AAA	s AGC
H	7 066	E GAA	CAG	GGT.	TACC	L CTC	CAG CAG	F
L	I ATC	P CCA	I	N AAT	L	r Agg	C TGT	ACC
ი ი	₹ 000	H HC	P C C	I L	I ATC	A CC CC	r Agg	D 3AC

FIG.8B

200	220	240 720	260	280	300	320 960	340 1020	360 1080
D GAC	K AAA	CIG	A GCC	P CCC	Q CAG	PCCC	IATC	CCT
T ACA	CIC	I ATC	K AAG	r Agg	GE	မ ၁၅၅	₽ GCC	ტ ტტტ
CIG	k AAG	r Agg	H H H H C	R AAA	ea Gag	P CCA	₩ TGG	ာ ၁၅
DGAC	CIG	CIG	H H H C	S TCA	D GAT	TACT	V GTG	A GCT
L	H CAT	K AAA	S AGC	STCT	L CIG	PCCT	A GCC	F
k AAG	M ATG	CCA	A	e Gag	D	s AGC	r CIG	V GTG
V GTC	I TTG	H H	C TGT	e Gag	CA CAG	C TGT	န ဂ် ၁	ACC
L CTG	ဗဗ	S AGT	M ATG	D GAT	D	Q CAG	I ATC	L CTG
S	ტ ტტტ	GAC	ტ ტტტ	DGAT	Y TAT	V GIC	မ ၁၅၅	L CTG
H	LCIT	k AAG	Y TAT	CIT	H CAC	S AGT	W TGG	V GTG
L	GGA	s TCC	CCC	CAC	N AAC	CCC	S AGC	L CTG
T ACC	A GCT	F	C TGT	CTT	e Gag	H	E GAA	G GGA
S FCC	L CTG	A GCC	ဂ 16C	DGAC	A GCA	P CCA	F	N AAT
F TTC	P CCC	Q CAG	CAG	e gaa	CAA	k AAG	L CIC	c TGC
A GCC	L	S	Y TAC	A GCT	R AGA	S TCA	Y TAC	r CHC
EGAG	T ACA	CIC	A GCC	e Gag	₽	DGAC	e Gag	V GTG
PCCT	ACC	A GCT	Y TAT	¥ TGG	L	e Gag	C TGT	S TCC
H	CIG	L	PCCT	CAG	CHC	M ATG	. 6 00	r CHO
I ATC	CAG CAG	N AAC	V GTG	ტ ტ	ဗဗ	E	k AAG	L TTG
် ကို	N AC	ი ი	E	s [CI	1 F	H G G	F LTC	V STG

FIG. 8C

380 1140	400	420 1260	440 1320	460 1380	480 1440	500 1500	520 1560	540 1620
TACT	E	CIT	v GTC	L	Y TAC	ဗ ဗ္ဗ	Y TAC	MATG
I TTG	S TCT	V GTA	အ ည	V GTC	E GAA	r Ciĝ	₽ GCC	4
T ACC	F	A GCA	V GTC	ტ ტტ	GGA	*	G GGT	ပ မရိုင
n AAC	CAG	r CTG	S AGC	A GCA	√ GTG	A GCA	₽ GCC	D GAC
₽	o GGT	F	င မြင့်င	CGA	STCA	CCA	V GTG	W TGG
ဗဗ္ဗ	F	ဗ ဗ္ဗ	O CAG	V GTT	A GCC	CA G	V GIC	V GTG
A GCA	T ACC	TACT	V GTG	s AGC	CIG	G GGT	L CIG	န
I Att	CIG	ಶ	A GCA	ဗဗ္ဗ	မှ ၁	e Gag	F	e Gag
) ≰ 808	A GCC	R CGG	A	CH CH	CIG	PCCT	C TGT	F
ი ი ი	DGAT	ပည္သ	CHG	s ICC	A GCA	P CCA	F	D GAC
V GTA	√ GTC	ဗ ဗ	T ACT	ထူသည	₽ GCC	A GCG	s TCC	ဗဗ
V GTG	STCA	L	CHC	န မင်င	₽ GCC	Y TAC	n AAC	ጽ ር <u></u>
FITT	₽ GCC	ტ ტტ	L CHG	k Aag	L CIG	GCC PP	MATG	P CCG
k aag	L	T ACG	L CIG	ტ ტტტ	ტ ტტტ	L	M ATG	L
V GTC	CIT	e gag	∨ GTG	Y TAT	A GCA	င TGC	V GTG	D
P CCG	ဗဗ	W TGG	S FCG	A	CIG	CHC	L CIG	C TGT
CCC	C TGT	R CGC	A GCA	გ იცც	A GCA	P CCA	8	Y TAC
CIG	နှင့်	A 9	e Gag	QTC	CIG	S	V GTG	CIG
CCC	IATT	GGA	S TCG	C TGT	ပ ၁၅	₽	T ACC	K AAA
4	ტ ეტტ	Y TAC	ტ ტტტ	S	ტ ეტტ	ზ	FTC	I ATC

FIG. 8D

620 1860 640 1920 660 1980 680 2040 700 720 580 1740 600 260 1680 TCA r CIG R AGG S V GTA N AAC r CTA V GTC ល L CTG P CCC CCC P CCC TIG P CCC ი მმმ GCC TCI TIC Н GGC **A** CCT ဥ္ပဌ CAA GTG 9999 AAG CIC ט O Ø GGA CAG မှ 999 မှ CCC GIC r CfG TCA O r Ö > ഗ CCA GGT CGG AAC T ACC TGI A GCC Y D GAC Д ፈ ŋ z GCA ტტტ s TCT 999 CAG TAC E GAG r CFG GGG Ø **U** Ø Ŋ U CCA CAG CAG GAT A GCT TIL CIC r CIG A GCA P CCC щ Ω ACG ACG CGC TGI GAA TGI CAC CIC P CCA മ്പ ပ ပ 耳 H H 闰 TCT P CCC နှင့် TCC S TCT TCC AAC 999 V GFC N AAC ល ល Z G GGA GAC GCT ATC 999 r CFC CGG AGC CCT ტ **1**4 ø r Ω Ø Н Д GCA GAG AAG r CHC GAG E GAA FTTC င TGC L 国 回 ĸ Ø GCA TIC CGG GAG r CIG ACC CCA CHC **₽** Ø ĸ H щ 闰 14 GAG AGG GTG ATC CCT CGG CTG I ATT မ ၁၅၅ **~** > 回 ρĸ Н CIC TCA CTG GAG r Ci GTA CIG r Cig CIT Н ល > Н 闰 CIG TGG ATG GAC GGG GAT CCC TGT မှ ည ບ Н Σ U Ω щ CIG TIC CAT GAT GTG SCC TCC CIG ညည Ω Ø ഗ Н Ø > ſΞŧ H Н GAA GIG GIG CGG GCG GAT ပ္ပမ္မ AGC ညည **~** Ø Ü 闰 Ø > Д Ŋ GGA ည္ပမ္မ GTG F A GCT TCI TAT CAC TTC ŋ > ß × ŋ Īч GAT AGG TAT TIC ACC GAG CTG CAC AGC А Н H Ħ 回 14 H ល 召 ATG GTG GAG CTG r CfC L P CCC CCC **A ₽** Н 回 Σ

FIG. 8E

G G G F Q P S GGG GGC TTT CAG CCC TCT	ဗဗ္ဗ	FTT	Q CAG	ည		ာ ဗ	THG THG	4	TII	A GCT	S H TCA CAC	H CAC	V GTG	* TAA	737
CTCCC	CATT(CTTC1	CTTC	CCCT	CICI	TCCC	TTTC	CTCT	CICC	CCCI	CGGT	GAAT	GATG	ATATCCCTCCCATTCTTCTCTTCCCTCTCTTCCCTTTCCTCTCCCCCC	2290
AACCAA	AACT(CAGCZ	GTGT	GATC	TATA	GCAG	gatg	သည	AGTA	SCIG	GCTC	CACT	GATC	AATACAACCAAAACTCAGCAGTGTGTGTTATAGCAGGATGGCCCCAGTACCTGGCTCCACTGATCACCTCTCTCT	2369
ACCAAC	3GGT(SCCTC	TTGG	CCIG	GCTT	TCCC	TTGG	CCII	CCIC	AGCT	TCAC	CTIG	ATAC	CCATCACCAACGGGTGCCTCTTGGCCTTTCCCTTGGCCTTCCTCAGCTTCACCTTGATACTGGGCCTCTTCTTG	2448
TCTGAA	3CTG!	IGGAC	CAGA	GACC	TGGA	CTTT	TGTC	TGCT	TAAG	GGAA	ATGA	GGGA	AGTA	TCATGTCTGAAGCTGTGGACCAGAGACCTTTTTGTCTGCTTAAGGGAAATGAGGGAAGTAAAGACAGTGAAGGGG	2527
GGTTGA!	TCAG(3GCAC	AGTG	GACA	GGGA	GACC	TCAC	AGAG	AAAG	GCCI	GGAA	GGTG	ATTT	TGGAGGGTTGATCAGGGCACAGTGGACAGGGAGACCTCACAGAGAAAGGCCTGGAAGGTGATTTCCCGGTGTGACTCATG	2606
GATACA	AAAT(STGT1	CCAT	GTAC	CATT	AATC	TTGA	CATA	TGCC	ATGC	ATAA	AGAC	TTCC	GATAGGATACAAAATGTGTTCCATGTACCATTAATCTTGACATATGCCATGCATAAAGACTTCCTATTAAAATAAGCTT	2685
TGGAAGAGTTAAAAAAAAAAAA	AAAA	AAAA	AAAA	AA											2711

FIG. 9

7tm_1

ta T

LIRRHTURRE BYRO REPORTED PROSE PROSE PROSE PROSE PROSE OF LIRRE LIRE TO THE PROSE PROSE PROSE PROSE PROSE PROSE

PFR

1 41 81 121 161 201 241 281 321 361 401 441 481 521 561 601 641 681 721 761 801 841 881 921 961

FIG. 10A

Searching for complete domains in PFAM hmmpfam - search a single seq against HMM database HMMER 2.1.1 (Dec 1998)
Copyright (C) 1992-1998 Washington University School of Medicine HMMER is freely distributed under the GNU General Public License (GPL).

HMM file: /prod/ddm/s

/prod/ddm/seqanal/PFAM/pfam6.2/Pfam

Sequence file:

/prod/ddm/wspace/orfanal/oa-script.12184.seq

Query: 15088

Scores for sequence family classification (score includes all domains):

Model Description

Score E-value N

LRR Leucine Rich Repeat 241.4 1.3e-68 16

LRRNT Leucine rich repeat N-terminal domain 27.2 0.00038 1 7tm 1 7 transmembrane receptor (rhodopsin family) 7.2 0.14 2

Parsed for domains:

Model Domain seq-f seq-t hmm-f hmm-t score E-value

34 LRRNT 65 .. 31 [] 27.2 0.00038 1/1 1 LRR 1/16 90 .. 1 23 [] 12.4 11 67 **LRR** 2/16 91 114 .. 1 23 [] 24.2 0.0031 138 .. 23 [] 19.9 0.062 LRR 3/16 115 1 16.4 0.7 162 .. 1 23 [] LRR 4/16 139 23 [] 27.5 0.00031 5/16 186 .. 1 LRR 163 23 [] 12.1 13 6/16 187 210 .. 1 LRR 234 .. 23 [] 21.6 0.019 LRR 7/16 211 1 LRR 8/16 235 257 .. 1 23 [] 18.2 0.2 0.11 281 .. 23 [] 19.0 LRR 9/16 258 1 10.2 282 305 ... 23 [] 32 LRR 10/16 1 306 328 .. 23 [] 5.6 1.5e+02 LRR 11/16 1 329 352 ... 23 [] 52 LRR 12/16 1 8.8 0.097 353 374 .. 23 [] 19.2 LRR 13/16 23 [] 375 398 .. 16.9 0.49 LRR 14/16 1 399 422 .. 1 23 [] 0.0042 LRR 15/16 23.7 LRR 16/16 423 446 .. 23 [] 16.4 0.66 2.2 662 ... 51 79 .. 3.4 1/2 635 7tm 1 784 827.. 207 259.] 1.1 11 7tm 1 2/2

FIG. 10B

Alignments of top-scoring domains:
LRRNT: domain 1 of 1, from 34 to 65: score 27.2, E = 0.00038
->aCpreCtCspfglvVdCsgrgLtlevPrdlP<-
aCp++C+C+++ l+ dCs++gL +vP dl
15088 34 ACPAPCHCQEdgIMLSADCSELGLS-AVPGDLD 65
LRR: domain 1 of 16, from 67 to 90: score 12.4, E = 11
->nLeeLdLsnN.LtslppglfsnLp<-
+LdLs N+Lt+l pglf++L+
15088 67 LTAYLDLSMNnLTELQPGLFHHLR 90
LRR: domain 2 of 16, from 91 to 114: score 24.2, E = 0.0031
->nLeeLdLsnN.LtslppglfsnLp<-
LeeL+Ls+N+L+++p+fs+L
15088 91 FLEELRLSGNhLSHIPGQAFSGLY 114
LRR: domain 3 of 16, from 115 to 138: score 19.9, $E = 0.062$
->nLeeLdLsnN.LtslppglfsnLp<-
+L+LL+nN+L++p+++Lp
15088 115 SLKILMLQNNqLGGIPAEALWELP 138
LRR: domain 4 of 16, from 139 to 162: score 16.4, $E = 0.7$
->nLeeLdLsnN.LtslppglfsnLp<-
+L++L+L+ N ++ +p+ +f++L+
15088 139 SLQSLRLDANIISLVPERSFEGLS 162
LRR: domain 5 of 16, from 163 to 186: score 27.5, $E = 0.00031$
->nLeeLdLsnN.LtslppglfsnLp<-
+L++L+L++N Lt++p +++nLp
15088 163 SLRHLWLDDNaLTEIPVRALNNLP 186
LRR: domain 6 of 16, from 187 to 210: score 12.1, E = 13
->nLeeLdLsnN.LtslppglfsnLp<-
L+LN++++p++f+nL+
15088 187 ALQAMTLALNrISHIPDYAFQNLT 210
LRR: domain 7 of 16, from 211 to 234: score 21.6, E = 0.019
->nLeeLdLsnN.LtslppglfsnLp<-
+L +L+L+nN++++1 ++f++L
15088 211 SLVVLHLHNNrIQHLGTHSFEGLH 234

FIG. 10C

	$\sin 8$ of 16, from 235 to 257: score 18.2, $E = 0.2$ *->nLeeLdLsnN.LtslppglfsnLp<-*	
	nLe+LdL++N+L+++p +++ L	
15088	235 NLETLDLNYNKLQEFPV-AIRTLG 257	
	$\sin 9$ of 16, from 258 to 281: score 19.0, E = 0.11	
	->nLeeLdLsnN.LtslppglfsnLp<- +L+eL ++nN+++ +p+++f + p	
15088	258 RLQELGFHNNnIKAIPEKAFMGNP 281	ı
13000	256 REQUEST III WILLIAM MOIN 201	L
	in 10 of 16, from 282 to 305: score 10.2, E = 32 *->nLeeLdLsnN.LtslppglfsnLp<-*	
	L+++++ +N+++ + ++f+ Lp	
15088	282 LLQTIHFYDNpIQFVGRSAFQYLP 305	
LPR: doma	ain 11 of 16, from 306 to 328: score 5.6, E = 1.5e+0	12
	->nLeeLdLsnNLtslppglfsnLp<-	
	+L++L+L++ +++++p+ ++++	
15088	306 KLHTLSLNGAmdIQEFPDLKGTT 328	3
	ain 12 of 16, from 329 to 352: score 8.8, $E = 52$	
	->nLeeLdLsnN.LtslppglfsnLp<-	
	+Le L L + +++ lp+g +++Lp	
15088	329 SLEILTLTRAGIRLLPSGMCQQLP 352	
LRR: doma	ain 13 of 16, from 353 to 374: score 19.2, E = 0.093	7
	->nLeeLdLsnN.LtslppglfsnLp<-	
	+L++L Ls+N++++1p+ +++++	
15088	353 RLRVLELSHNqIEELPSLHRCQ 374	
LRR: doma	ain 14 of 16, from 375 to 398: score 16.9, E = 0.49	
	->nLeeLdLsnN.LtslppglfsnLp<-	
	+Lee+ L++N++ ++ ++fs+L+	
15088	375 KLEEIGLQHNrIWEIGADTFSQLS 398	
I DD. dome	$\frac{1}{2}$ of 16 from 200 to 422; score 23.7 E = 0.00	12
LKK: GOIII	ain 15 of 16, from 399 to 422: score 23.7, $E = 0.004$ *->nLeeLdLsnN.LtslppglfsnLp<-*	T
	+L+ LdLs N ++s++p++fs L	
15088	399 SLQALDLSWNaIRSIHPEAFSTLH 422	

FIG. 10D

LRR: domain 16 of 16, from 423 to 446: score 16.4, E = 0.66

->nLeeLdLsnN.LtslppglfsnLp<-

+L +LdL +N+Lt+lp + +L

15088 423 SLVKLDLTDNqLTTLPLAGLGGLM 446

7tm_1: domain 1 of 2, from 635 to 662: score 3.4, E = 2.2

->dWpfGsalCklvtaldvvnmyaSillLta<-

+W G ++C+ +++| v+ + aS+||Lt+

15088 635 RWETG-LGCRATGFLAVLGSEASVLLLTL 662

clNPiIY<-* clNP++Y 15088 821 CLNPLLY 827

FIG. 11A

Searching for complete domains in SMART hmmpfam - search a single seq against HMM database HMMER 2.1.1 (Dec 1998)

Copyright (C) 1992-1998 Washington University School of Medicine HMMER is freely distributed under the GNU General Public License (GPL).

/ddm/robison/smart/smart.all.hmms HMM file:

/prod/ddm/wspace/orfanal/oa-script.12184.seq Sequence file:

Query: 15088

Scores for sequence family classification (score includes all domains):

Model	Description	Score	E-value	z
1 1 1 1 1 1 1 1		1 1 1		
LRR_typ_2		247.2	2.3e-70	14
LRR PS 2		φ.	1.8e-19	
LRR sd22 2		\sim	4.9e-06	വ
lrrnt1		•	0.0011	⊣
LRR bac 2		$\vec{\vdash}$	m	7
LRR RI 2		5.4	7.7	4

Parsed for domains:

E-value	1 1 1 1	0.0011	1.2e+02	2.1
score	† † †	25.7	1.9	12.6
hmm-t		38 []	24 []	24 []
hmm-f }	!!!!!!!!!!		-	н
seg-t		70.	87.	• 88
sed-f	 	34	64	64
eg-f	 	1/1 34	1/13 64	1/14 64

FIG. 11B

80		0			1.5e+02	0	0			0	\sim			$^{\prime\prime}$		7				4.		. 4	0+	85	
•	7	2	т Ж	-	7	5	0	7	S	-	7	5.	5.	7	g.	ж Ж	· ω		ж Э	0	9	7	0	$^{\circ}$	4.
0	4	4 [3] 0	24 []	4	0	4	4	4 [4 [2 [] 8	4 [4	4 [] [7	8	2] 0	4 [4] 0	4	<u>4</u>
\vdash	H	Н	; —∣	ᆏ	 1	Н	\vdash	\vdash	1	\leftarrow	 	 1	ᆏ	⊣	\vdash	⊣	 1	, 1	\vdash	 1	 1	, 	←	, -	Н
:	:	:	•	•	•	:	•	•		•	•	•	:	:	:	:	:	:	:	•	•	•	:	•	•
0	\vdash	\vdash		3	136	$^{\circ}$	Ŋ	Ŋ	9	∞	∞	∞	\circ	0	0	\sim	\sim	\sim	\sim	Ŋ	Ŋ	\mathcal{S}	7	1	7
8 8	80 00	8 0	8 0	7-4	113	\leftarrow	$^{\circ}$	$^{\circ}$	\sim	9	9	9	9	∞	∞	0	0	0	0	\sim	\sim	\sim	5	\mathcal{S}	2
_	7	1	74	_	3/13	_	17	/1	/1	/1	1	/5	14	/1	/1	/1	/1	/4	_	\	/1	1	17	_	/1
LRR bac 2	Ś	Ω.	; H	Jac	LRR PS 2	1 2	LRR bac 2	LRR PS 2	LRR typ 2	LRR PS 2	LRR typ 2	LRR sd22 2	LRR_RI 2	LRR PS 2	LRR typ 2	LRR PS 2	LRR typ 2	LRR RI 2	LRR $sd\overline{2}2$ 2	LRR bac 2	LRR_typ_2	LRR PS 2	LRR bac 2	PS 2	_typ

FIG. 11C

10/14	\sim 1	20	⊣		3.1	29
35		70	\leftarrow	0		1.3
35		72	⊣	4		∞
35		72	 1	7		16
35		73		4		0.13
35		78	Н	ω		19
37		96	⊣	4		1e+02
37		96	\leftarrow	4		10
5 397		418	-	22 []	7.0	19
39		19		4		3.4
39		20		4		4.3e-05
42		40	\vdash	0		18
42		41		7		49
42		4		4	•	30
42		4	ᆏ	4	21.6	0.018

Alignments of top-scoring domains:

70 *->qCPapCtCsp.dfgtaVdCsgrgLttlevPldlPadttl<-*
+CPapC+C ++ ++ dCs++gL +vP dl + t +</pre> ACPAPCHCQEdGIMLSADCSELGLS--AVPGDLDPLTAY **lrrnt1:** domain 1 of 1, from 34 to 70: score 25.7, E = 0.001134 15088

LRR PS_2: domain 1 of 13, from 64 to 87: score 1.9, E = 1.2e+02

->LtsL.qvLdLsnNnLsGeIPsslgn<- L L+ +LdLs NnL+ e+ + 1+

64 LDPLtAYLDLSMNNLT-ELQPGLFH

15088

H 87

FIG. 11D

```
2.1
      11
   [1]
LRR_typ_2: domain 1 of 14, from 64 to 88: score 12.6,
                                                             α
                       *->LpnL.reLdLsnNqLtsLPpgaFqg<-*
                                                              LDPLtayldlsmnnltelQPGLFHH
                                          L L+ LdLs N+Lt+L pg+F++
                                                                64
                                                                15088
```

08 II LRR bac 2: domain 1 of 7, from 89 to 108: score 0.9, E 108 *->PpsLkeLnvsnNrLteLPeL<-* LRFLEELRLSGNHLSHIPGQ +T+eT+ s+N+T+ დ დ 15088

H 口 LRR_PS_2: domain 2 of 13, from 89 to 111: score 17.2, 111 *->LtsLqvLdLsnNnLsGeIPsslgn<-* LRFLEELRLSGNHLS-HIPGQAFS L+ L+L+LS+N+LS +IP + ++ 8 0 15088

E = 1.3e - 05LRR_typ_2: domain 2 of 14, from 89 to 112: score 32.1, 112 *->LpnLreLdLsnNqLtsLPpgaFgg<-* LRFLEELRLSGNHLSHIPGQAFSG L+ L+eL+Ls+N+L+++P +aF+g

89

15088

LRR_RI_2: domain 1 of 4, from 89 to 115: score 3.6, E = *->npsLreLdLsnNkl.gdeGaraLaeaLks<-* LRFLEELRLSGNHLSHIPG--QAFSGLYS ++ L+eL+Ls+N+l+++ G 80 15088

FIG. 11E

99 II LRR_bac_2: domain 2 of 7, from 113 to 132: score 1.6, 132 *->PpsLkeLnvsnNrLteLPeL<-* LYSLKILMLQNNQLGGIPAE SLK+L +nN+L 113 15088

1.5e+02 11 LRR_PS_2: domain 3 of 13, from 113 to 136: score 1.1, E 136 *->LtsLqvLdLsnNnLsGeIPsslgn<-* LYSLKILMLQNNQLGGIPAEALWE I SI++I I+nN+I G 113 15088

li ſ±] LRR_typ_2: domain 3 of 14, from 113 to 136: score 19.2, *->LpnLreLdLsnNqLtsLPpgaFqg<-* L +L+ L L+nNqL +P++a++

136

LYSLKILMLQNNQLGGIPAEALWE

113

15088

1e+02 II ſτ] LRR_bac_2: domain 3 of 7, from 137 to 156: score 0.1, 156 *->PpslkeInvsnNrLtelPel<-* LPSLQSLRLDANLISLVPER psL++L+ + N ++ Pe 137 15088

LRR PS 2: domain 4 of 13, from 137 to 159: score 7.1, E *->LtsLqvLdLsnNnLsGeIPsslgn<-* L+sLq+L+L N +s +P+

15088 137 LPSLQSLRLDANLIS-LVPERSFE

FIG. 11F

- = 0.00095回 LRR typ_2: domain 4 of 14, from 137 to 160: score 25.9, 160 *->LpnLreLdLsnNqLtsLPpgaFqg<-* LPSLQSLRLDANLISLVPERSFEG Lp+L+L+L+N+P++F+g137 15088
- 9.9 11 [1] LRR_PS_2: domain 5 of 13, from 161 to 183: score 11.4, 183 *->LtsLqvLdLsnNnLsGeIPsslgn<-* LSSIRHLWLDDNALT-EIPVRALN L+SL++L L +N L+ eIP 161 15088
- = 0.00031ſτ] 27.5, 184 LRR_typ_2: domain 5 of 14, from 161 to 184: score *->LpnLreLdLsnNqLtsLPpgaFqg<-* **LSSIRHLWLDDNALTEIPVRALNN** L++Lr+L L++N+Lt++P +a+++ 161
- 37 11 ഥ 187 LRR_sd22_2: domain 1 of 5, from 161 to 187: score 5.3, *->LtnLeeLdLsqNkI....kkiENLde<-* LSSLRHLWLDDNALteipvRALNNLPA L+ L+L+L +N +++ + + NL 161
- 190 ∞ ĿÏ *->npsLreLdLsnNklgdeGaraL..aeaLks<-* LRR_RI_2: domain 2 of 4, from 161 to 190: score 5.3, **LSSLRHLWLDDNALTEIPVRALnnLPALQA** ++SLr L+L +N l++ +raL++ aL++ 161

FIG. 11G

```
LRR_PS_2: domain 6 of 13, from 185 to 207: score 7.0, E = 25
                                                                       207
                         *->LtsLqvLdLsnNnLsGeIPsslgn<-*
                                                                        LPALQAMTLALNRIS-HIPDYAFQ
                                               L+ Lq L+ N++S +IP+ ++
                                                                          185
                                                                           15088
```

E = 0.0062LRR_typ_2: domain 6 of 14, from 185 to 208: score 23.2, 208 *->LpnLreLdLsnNqLtsLPpgaFqg<-* Lp+L+ L N++++P+ aFq+ LPALQAMTLALNRISHIPDYAFQN 185 15088

179 口 LRR PS 2: domain 7 of 13, from 209 to 232: score 3.1, 232 *->LtsLqvLdLsnNnLsGeIPsslgn<-* LTSLVVLHLHNNRIQHLGTHSFEG LtsL+vL+L+nN++ 209 15088

= 0.0002ы LRR_typ_2: domain 7 of 14, from 209 to 232: score 28.1, 232 *->LpnLreLdLsnNqLtsLPpgaFqg<-* LTSLVVLHLHNNRIQHLGTHSFEG $\Gamma++\Gamma$ + $\Gamma+\Gamma+$

209

->npsLreLdLsnNklgdeGaraLaeaLks<- LRR RI 2: domain 3 of 4, from 209 to 235: score 1.2, LTSLVVLHLHNNRIQHLGTHSF-EGLHN ++sL+L+LnN+G+e+L+209

FIG. 11H

```
\sim
   ll
 ы
                                                            235
LRR_sd22_2: domain 2 of 5, from 209 to 235: score 13.5,
                   *->LtnLeeLdLsqNkI....kkiENLde<-*
                                                             LTSLVVLHLHNNRIGhlgtHSFEGLHN
                                      Lt L++L L +N+I++ +++++E+L++
                                                               209
                                                                15088
```

LRR_bac_2: domain 4 of 7, from 233 to 252: score 10.7, E = 252 *->PpsLkeInvsnNrLteLPeL<-* LHNLETLDLNYNKLQEFPVA ++I++L+ ++N+L e+P 233 .15088

0.76 II ы LRR typ_2: domain 8 of 14, from 233 to 255: score 16.1, 255 *->LpnLreLdLsnNqLtsLPpgaFqg<-* LHNLETLDLNYNKLQEFPVAI-RT L+nI++LdI++N+I++ P + + 233 15088

= 0.43LRR PS 2: domain 8 of 13, from 233 to 255: score 17.1, E 255 *->LtsLqvLdLsnNnLsGeIPsslgn<-* LHNLETLDLNYNKLQ-EFPVAIRT L++L+LdL++N+L e+P + 233 15088

= 1e+02ഥ LRR_bac_2: domain 5 of 7, from 256 to 275: score 0.2, *->PpslkeInvsnNrLteLPeL<-* LGRLQELGFHNNNIKAIPEK +L+eL+ nN+++ Pe 256

FIG. 111

```
8
Ы
 口
LRR_PS_2: domain 9 of 13, from 256 to 278: score 2.9,
                                                        278
                    *->LtslqvLdLsnNnLsGeIPsslgn<-*
                                                        LGRLQELGFHNNNIK-AIPEKAFM
                                      L +Lq+L ++nNn+ IP+
                                                            256
                                                            15088
```

LRR_typ_2: domain 9 of 14, from 256 to 279: score 24.4, E = 0.0026279 *->LpnLreLdLsnNqLtsLPpgaFqg<-* LGRLQELGFHNNNIKAIPEKAFMG L+ L+eL +nN+++++P+ aF 256 15088

LRR_typ_2: domain 10 of 14, from 327 to 350: score 3.1, E = 29350 *->LpnLreLdLsnNqLtsLPpgaFqg<-* TISLEILTLTRAGIRLLPSGMCQQ ++I+ I I + ++ IP+d++d 327 LRR_bac_2: domain 6 of 7, from 351 to 370: score 14.6, E = 1.3 *->PpslkeLnvsnNrLteLPeL<-* LPRLRVLELSHNQIEELPSL D+T+ I S+N+++eIP I 351 15088

ω 11 [1] LRR PS_2: domain 10 of 13, from 351 to 372: score 10.8, *->LtsLqvLdLsnNnLsGeIPsslgn<-* LPRLRVLELSHNQIE-ELPS-LHR L++L+VL+LS+N++ e+Ps 1 + 351 15088

FIG. 11J

```
LRR_sd22_2: domain 3 of 5, from 351 to 372: score 7.6, E = 16
```

->LtnLeeLdLsqNkIkkiENLde<- I + I + I + I + I + I + I + I + I + I LPRLRVLELSHNQIEELPSLHR 351 15088

372

LRR_typ_2: domain 11 of 14, from 351 to 373: score 18.8, E = 0.13

->LpnLreLdLsnNqLtsLPpgaFqg<-

Lp Lr+L Ls+Nq+++LP + ++

19 LRR_RI_2: domain 4 of 4, from 351 to 378: score 2.6, E

->npsLreLdLsnNklgdeGaraLaeaLks<-

+b+Lr+L Ls+N + + + + L++

LPRLRVLELSHNQIEELPSLHRCQKLEE 351 15088 LRR_PS_2: domain 11 of 13, from 373 to 396: score 2.3, E = 1e+02 *->LtsLqvLdLsnNnLsGeIPsslgn<-*

+++\T++\T++\++

LRR_typ_2: domain 12 of 14, from 374 to 396: score 6.8, E = 10

->LpnLreLdLsnNqLtsLPpgaFqg<- +L+e L++N++ ++ +++F+

-QKLEEIGLQHNRIWEIGADTFSQ 374

FIG. 11K

```
79
      II
   口
LRR sd22_2: domain 4 of 5, from 397 to 418: score 7.0,
                                                            418
                     *->LtnLeeLdLsqNkIkkiENLde<-*
                                                            LSSLQALDLSWNAIRSIHPEAF
                                        L+ L+ LdLs+N I++i
                                                          397
                                                          15088
```

H ഥ LRR PS_2: domain 12 of 13, from 397 to 419: score 13.6, 419 *->LtsLqvLdLsnNnLsGeIPsslqn<-* LSSLQALDLSWNAIR-SIHPEAFS L+SIG LdLS+N + +I ++ ++ 397 15088

4.3e-05 II 屲 LRR_typ_2: domain 13 of 14, from 397 to 420: score 30.4, 420 *->LpnLreLdLsnNqLtsLPpgaFqg<-* LSSLQALDLSWNAIRSIHPEAFST L++L+ LdLs+N+++s++p+aF+ 397 15088

₩ ₩ ഥ LRR_bac_2: domain 7 of 7, from 421 to 440: score 5.8, 440 *->PpsLkeInvsnNrLteLPeL<-* LHSLVKLDLTDNQLTTLPLA +SL +L+ +N+Lt+LP 421 15088

49 口 LRR_sd22_2: domain 5 of 5, from 421 to 441: score 3.7, 441 *->LtnLeeLdLsqNkIkkiENLde<-* LHSLVKLDLTDNQLTTL-PLAG L+ L+ LdL +N+++ + L + 421 15088

FIG. 11L

= 39 LRR_PS_2: domain 13 of 13, from 421 to 442: score 5.5, *->LtslqvLdLsnNnLsGeIPsslgn<-*

I+SI+ IdI +N+I+ ++P

LRR_typ_2: domain 14 of 14, from 421 to 444: score 21.6, E = 0.018

->LpnLreLdLsnNqLtsLPpgaFqg<- L++L +LdL +NqLt+LP ++g

444

LHSLVKLDLTDNQLTTLPLAGLGG 421 15088

FIG.12A

to: 3637 from: 1 GAP of: FrGcgManager_101_HTAUB3ha_ check: 2817

mLGR6 - 1 (analysis only) - Import - complete

to: 2711 to: FrGcgManager_101_ITA0fLsO_ check: 3059 from: 1

corrected human LGR6 (analysis o - Import - complete

Symbol comparison table:

/ddm_local/gcg/gcg_9.1/gcgcore/data/rundata/nwsgapdna.cmp CompCheck: 8760

Average Match: 10.000 12 Gap Weight:

Average Mismatch: 0.000 Length Weight: 3688 Length: 21826 Quality:

Percent Identity: 84.211 8.051 Ratio:

Percent Similarity: 84.248

Match display thresholds for the alignment(s):

= IDENTITY

FIG. 12B

FrGcgManager_101_HTAUB3ha_ x FrGcgManager_101_ITA0flsO_

236	187 CAGTTTGTGGGAAGATCGGCATTCCAGTACCTGCCTAAACTCCACACACT 236	00
115		101
186	1 TCATGGGGAACCCTCTGCTACAGACGATACACTTTTATGATAACCCAATC	137
110	. TCATGGGCAACCCTCTGCAGACAATACATTTTTATGACAACCCAATC 1100	1051
136	GGAACTGGGGTTCCATAACAACATCAAGGCCATCCCAGAAAAGGCCT	87
105(AGAATTGGGTTTCCATAACACATCAAGGCTATCCCAGAGAAAGCCT	1001
98	AACA	37
))
1000	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
36		H
950	901 CCCACAGCTTCGAGGGGCTGCACAATCTGGAGACACTAGACCTGAACTAT 950	901

FIG. 12C

586		537
1500	CCGTGCCATCCTCAGGCTTTCTCAACCCTTCGATC	1451
536	- Ei	487
1450	1 TTCAGCCAGCTGGGCTCCTTGCAAGCTTTAGACCTGAGTTGGAATGCCAT	1401
486	AGGAAA	437
1400	AGGAAATTGGCCTCCGACATAACAGGATCAAGGAAATTGGTGCAGATACC	1351
436		387
1350	TCATAATCAGATCGAGGAGTTACCCAGCCTGCACAGATGTCAGAAGCTGG	1301
386		337
1300	O	1251
336		287
1250	CCACTAGCCTGGAGATCCTGACCCTGACCCGTGCGGGCATCAGACTGCTC	1201
286		237
1200	ATCTTTGAATGGTGCCACTGATATCCAAGAGTTCCCAGACCTCAAAGGCA	1151

FIG. 12D

1501	TGGACCTGACTGACCAGCTGACCACACTGCCCCTGGCTGG	1550
587		636
1551	GGCCTGATGCACCTGAAGCTCAAAGGGAACTTGGCCCTGTCTCAGGCCTT	1600
637	GGCTTGATGCATCTGAAGCTCAAAGGGAACCTTGCTCTCTCCCAGGCCTT	989
1601	0 -	1650
687	CICCAAGGACAGTITCCCAAAACIGAGGAICCIGGAGGTGCTI	736
1651	A.	1700
737	ACCAGTGCTGTCCCTATGGGATGTGTGCCAGCTTCTTCAAGGCCTCTGGG	786
1701	CAGTGGCAGGCCGAGGACTTTCATCCAGAAGAAGAGGGGGGCACCAAAGAG	1750
787	CAGTGGGAGGCTGAAGACCTTCACCTTGATGATGAGAGTCTT	836
1751		1800
837	GCCCCTGGGCCTCCTTGCCAGACAGCAGAACCACTATGACCAGGACC	988
1801	•	1850
887		936

FIG. 12E

1851	CAGTGCAGCCCTGTTCAAGCCCTTGCAGCACCTCTTTGA	1900
937	CAGTGTAGCCCTACTCCAGGCCCCTTCAAGCCCTGTGAGTACCTCTTTGA	986
1901	GAGCTGGGGCATCCGCCTTGCTGTGGGCCATCGTGCTGCTCTCCGTAC	1950
987	AAGCIGGGGCATCCGCCIGGCCGTGTGGGGCCATCGIGTTGCTCTCCGTGC	1036
1951	TCTGTAACGGGCTGGTGCTGTGACAGTCTTTGCCAGCGGACCCAGCCCG	2000
1037	TCTGCAATGGACTGGTGCTGACCGTGTTCGCTGGCGGGCCTGCCCC	1086
2001	CTGTCCCCCGTCAAGCTTGTGGTGGGTGCGATGGCAGGCGCCCAACGCCCT	2050
1087	CTGCCCCCGGTCAAGTTTGTGGTAGGTGCGATTGCAGGCGCCAACACTT	1136
2051	GACGGGCATTCCTGTGGTCTCCTGGCCTCTGTGGACGCCTTGACCTATG	2100
1137	GACTGGCATTCCTGTGGCCTTCTAGCCTCAGTCGATGCCCTGACCTTTG	1186
2101	. AG -	2150
1187	GTCAGTTCTCTGAGTACGGAGCCCGCTGGGAGACGGGGCTAGGCTGCCGG	1236
2151	GCTACGGGCTTCCTGGCTTCTGGGTTCAGAGGCGTCGGTGCTGCTGCT	2200
1237		1286

FIG. 12F

2201	CACACTGGCGGCCGTGCAGTGCAGCATCTCTGTGACCTGCGTCCGAGCCT	2250
1287		1336
2251	ACGGGAAGGCGCCGTCGCCAGCGTCCGCGCACGCGCACTGGGATGC	2300
1337		1386
2301	CTGGCGCTGGCCTGGCCGCAGCACTGCCGCTGGCTCGGTGGGAGA	2350
1387	CIGGCACIGGCAGGGCIGGCCGCCGCACIGCCCCCTGGCCTCAGIGGGAGA	1436
2351	ម	2400
1437	ATACGGGGCCTCCCCACTCTGCCTGCCCTACGCGCCACCTGAGGGTCAGC	1486
2401	CGGCCGCCCTGGGCTTCGCTGTAGCCCCTGGTGATGAACTCGC	2450
1487	CAGCAGCCCTGGGCTTCACCGTGGCCCTGGTGATGATGAACTCCTTGTGT	1536
2451	TICCIGGIGGIGGCCGCCCTACAICAAGCICTACIGIGACCIGCCACG	2500
1537	TICCTGGTCGTGGCCGGTGCCTACATCAAACTGTACTGTGACCTGCGCGCG	1586
2501	GGGTGACTI	2550
1587	GGGCGACTTTGAGGCCGTGTGGGACTGCGCCATGGTGAGGCACGTGGCCT	1636

FIG. 12G

2551	GGCTCATCTTTGCAGATGGCCTCCTCTACTGCCCCGTGGCCTTCCTCAGC	2600
1637	GGCTCATCTTCGCAGACGGGCTCCTCTACTGTCCCGTGGCCTTCCTCAGC	1686
2601	TTTGCCTCCATGCTGGGCCTCTTCCCTGTCACCCCGAGGCTGTCAAGTC	2650
1687	TICGCCTCCATGCTGGGCCTCTTCCCTGTCACGCCCGAGGCCGTCAAGTC	1736
2651	AGTCCTTCTGGTGGTGCTGCCTCTGCCTGCCTCAACCCACTGCTCT	2700
1737	TGTCCTGCTGGTGGTGCTGCCCTGCCTGCCTGCCTCAACCCACTGCTGT	1786
2701	ACCTGCTCTTCAACCCTCACTTCCGGGATGACCTTCGGCGGCTCTGGCCA	2750
1787	ACCTGCTCTTCAACCCCCACTTCCGGGATGACCTTCGGCGGCTTCGGCCCC	1836
2751	AGCCCTCGGTCCCCAGGGCCCCTAGCCTACGCTGCAGCCGGTGAGCTGGA	2800
1837	CGCGCAGGGGACTCAGGGCCCCTAGCCTATGCTGCGGCCGGGGAGCTGGA	1886
2801	GAAGAGCTCCTGCGACTCCACCCAAGCGCTGGTGGCTTTCTCAGATGTGG	2850
1887	GAAGAGCTCCTGTGATTCTACCCAGGCCCTGGTAGCCTTCTCTGATGTGG	1936
2851	ATCTTATTCTGGAAGCTTCTGAGGCTGGGCAGCCTCCTGGGCTAGAGACC	2900
1937		1986

The first officer of the first of the first officer of the first officer

FIG. 12H

2901	TATGGCTTCCCTTCAGTGACCCTCATCTCCCGACATCAGCCGGGGGGCCAC 2950	20
1987	TATGGCTTCCCCTCAGTGACCCTCATCTCCTGTCAGCAGCCAGGGGCCCC 2036	36
2951	_	00
2037		98
3001	• •	50
2087		36
3051	ACTTTG	00
2137		98
3101	CTCTCT	33
2187		36
3134	CTCTGTTTGTCCTCTCCCCATCC	74
2237		98
3175	AAGAAAGACAACTCCAACT	12
2287		36

FIG. 121

3259	2385	3306	2435	3353	2485	3400	2527	3449	2568	3499	2603	3549	2651
ACCTCTGACTCCATTGTTCTCTCTCCACGACCCCTAACCAATGAGTG	TAC.CTGGCTCCACTGATCACCTCTCTCTGTGACCATCACCAACGGGTG	CTTCCAAGTCTTGCTTTGTCTTGGCCTTCAGCTTCACTTTCACCTG	CCTCTTGGCCTGGCTTTCCCTTGGCCTTCTCTCAGCTTCACCTTGATACTG	GGCCTTCTCTGTCCAATCCAATACTTCTGA.CAGAGGCCTGGGAAATT		TGCATAGGAGAAAAGCAAAAGACAGTGAAGGTTATTGGGC	GICTGCTTAAGGGAAATGAGGGAAG.TAAAGACAGTGAAGGGG.	CCTGACAGAGCCATGATCAGTAAGTGCAGAGT.GATGGGGAGGTCTCACA		GAGCATGACACTGGAAGACAACTACCAAAGACATTGGAGAGTCTCCCCTG	GAGAAAGGC.CIGGAAGGIGATITCCCGIGIGACIC	TGACATATAGAATATAAATGTGTTCTGCGTTCCATTAATCTTGACCTAT	
3213	2337	3260	2386	3307	2436	3354	2486	3401	2528	3450	2569	3500	2604

FIG. 12J

3550	3550 GCTGNGCCAAAGTGCTTCCTGTTAAAATACACTTTGGAAGACATTGAAAA 3599	3599
2652	:	2701
3600	3600 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
2702		

FIG. 13A

to: 968 from: 1 GAP of: FrGcgManager_102_MTA0uXMaE check: 8470

mLGR6.aa (analysis only) - Import - complete

to: 737 from: 1 to: FrGcgManager_102_NTAf7nC1_ check: 5092

corrected hLGR6.aa (analysis onl - Import - complete

Symbol comparison table: /prod/ddm/seqanal/BLAST/matrix/aa/BLOSUM62

CompCheck: 1102

Matrix made by matblas from blosum62.iij

Gap Weight: 12 Average Match: 2.7

Length Weight: 4 Average Mismatch: -2.248

 Quality:
 3424
 Length:
 968

 Ratio:
 4.646
 Gaps:
 0

Percent Identity: 89.281 Percent Similarity: 90.773

....

FIG. 13B

FrGcgManager 102 MTA0uXMaE x FrGcgManager 102 NTAf7nCl May 5, 19100 15:04

gmai	gmanager_102_minoundar & figogmanager_102_mint/mot_1mg)
	• •	
201	_	250
₽	GIHILLILLILLILLILLILLILLILLILLILLILLILLIL	19
251		300
20	VAIRTLGRLQELGFHNNNIKAIPEKAFMGNPLLQTIHFYDNPIQFVGRSA	69
301	FOYLSKLHTLSINGATDIQEFPDLKGTTSLEILTLTRAGIRLLPPGVCQQ	350
70	_,	119
351	_	400
120	:	169
401	QALDLSWNAIRAIHPEAFSTLRSLVKLDLTDNQLTTLPLAGLGGLMHLKL	450
170		219

FIG. 13C

151	·	500
220		269
501	HPEEEEAPKRPLGLLAGQAENHYDLDLDELQMGTEDSKPNPSVQCSPVPG	550
270	:: .	319
551	PEKPCEHLFESWGIRLAVWAIVLLSVLCNGLVLLTVFASGPSPLSPVKLV	009
320	:	369
601	VGAMAGANALIGISCGLLASVDALTYGQFAEYGARWESGLGCQATGFLAV	650
370	.	419
651	LGSEASVLLITLAAVQCSISVTCVRAYGKAPSPGSVRAGALGCLALAGLA	700
420		469
701	AALPLASVGEYGASPLCLPYAPPEGRPAALGFAVALVMMNSLCFLVVAGA	750
470	AALPLASVGEYGASPLCLPYAPPEGQPAALGFTVALVMMNSFCFLVVAGA	519
751	YIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL	800
520		569

FIG. 13D

801	FPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLRRLWPSPRSPGP	820
570		619
851		006
620		699
901	LISRHQPGATRLEGNHFIESDGTKFGNPQPPMKGELLLKAEGATLAGCGS	950
670	670 LISCQQPGAPRLEGSHCVEPEGNHFGNPQPSMDGELLLRAEGSTPAGGGL	719
951	951 SVGGALWPSGSLFASHL* 968	
720	720 SGGGGFQPSGLAFASHV* 737	

FIG. 14A

>15088

GGGAGGAATCCCCCGCAGAGGCGCTGTGGGAGCTGCCGAGCCTGCAGTCGCTGCGCCTAGA CTGGGAAATTGGAGCTGACCTTCAGCCAGCTGAGCTCCCTGCAAGCCCTGGATCTTAG CCAGAATCTCACCAGCCTTGTGGTGCTGCATTTGCATAACAACCGCATCCAGCATCTGGG GCAGGAGTTCCCTGTGGCCATCCGGACCCTGGGCAGACTGCAGGAACTGGGGGTTCCATAA **ACACTITITATGATAACCCAATCCAGTITGTGGGAAGATCGGCATTCCAGTACCTGCCTAA ACTCCACACACTATCTCTGAATGGTGCCATGGACATCCAGGAGTTTCCAGATCTCAAAGG** CACCACCAGCCTGGAGATCCTGACCCTGACCCGCGCAGGCATCCGGCTGCTCCCATCGGG GATGTGCCAACAGCTGCCCAGGCTCCGAGTCCTGGAACTGTCTCACAATCAAATTGAGGA CTGGAACGCCATCCGGTCCACCCTGAGGCCTTCTCCACCCTGCACTCCTGGTCAA GCATCTGAAGCTCAAAGGGAACCTTGCTCTCCCAGGCCTTCTCCAAGGACAGTTTCCC CCGCCSGCGGTGCAGCCCGCGGGACCGGGAGGCGGCAGCTGCGGCCACCGCGCCGTGCG CCTCTGGCTGGACGACAATGCACTCACGGAGATCCCTGTCAGGGCCCTCAACAACCTCCC GACCCACAGGTTCGAGGGGCTGCACAATCTGGAGACACTAGACCTGAATTATAACAAGCT CAACAACATCAAGGCCATCCCAGAAAAGGCCTTCATGGGGAACCCTCTGCTACAGACGAT TCCGCGCCCGGCCAGGTGCCCCAGTAGCCCGACCGCCGAGATGCCCAGCCCGCGGG GCTCCGGGCGCTATGGCCTTTGCGCCGCTGTGCGCTTCCCGGAGGGCCCGGCGGCGCCCCC CCAGCCCGGCCCCGCCCACCGCCTGCCCGGCCCCTGCCACTGCCAGGAGGACGGCAT CATGCTGTCTGCCGACTGCTCTGAGCTCGGGCTGTCCGCCGTTCCGGGGGGACCTGGACCC CCTGACGGCTTACCTGGACCTCAGCATGAACAACTCACAGAGCTTCAGCCTGGCCTCTT CCACCACCTGCGCTTCTTGGAGGAGCTGCGTCTCTGGGAACCATCTCTCACACATCCC **AGGACAAGCATTCTCTGGTCTCTACAGCCTGAAAATCCTGATGCTGCAGAACAATCAGCT** TGCCCTGCAGGCCATGACCCTGGCCCTCAACCGCATCAGCCACATCCCCGGACTACGCGTT > Fbh150881 - Import - vector trimmed

FIG. 14B

AAAACTGAGGATCCTGGAGGTGCCTTATGCCTACCAGTGCTGTCCCTATGGGATGTGTGC CAGCTTCTTCAAGGCCTCTGGGCAGTGGGAGGCTGAAGACCTTCACCTTGATGATGAGGA GTCTTCAAAAAGGCCCCCTGGGCCTCCTTGCCAGACAAGCAGAACCACTATGACCAGGA CCTGGATGAGCTCCAGCTGGAGATGGAGGACTCAAAGCCACACCCCCAGTGTCCAGTGTAG GTTCGCTGGCGGCCTGCCCCCCCCCGGTCAAGTTTGTGGTAGGTGCGATTGCAGG TGGTCAGTTCTCTGAGTACGGAGCCCGCTGGGAGACGGGGCTAGGCTGCCGGGCCACTGG CCCTACTCCAGGCCCCTTCAAGCCCTGTGAGTACCTCTTTGAAAGCTGGGGCATCCGCCT CTTCCTGGCAGTACTTGGGTCGGAGGCATCGGTGCTGCTGCTCACTCTGGCCGCAGTGCA GGCCGTGTGGGCCATCGTGTTGCTCTCCGTGCTCTGCAATGGACTGGTGCTGCTGACCGT CGCCAACACCTTGACTGGCATTTCCTGTGGCCTTCTAGCCTCAGTCGATGCCCTGACCTT TCGAGCAGGGGTCCTAGGCTGCCTGGCACTGGCAGGGCTGGCCGCCGCACTGCCCCTGGC CTCAGTGGGAGAATACGGGGCCTCCCCACTCTGCCTGCCCTACGCGCCACCTGAGGGTCA GTGGGACTGCGCCATGGTGAGGCACGTGGCCTGGCTCATCTTCGCAGACGGGCTCCTCTA GCCAGCAGCCCTGGGCTTCACCGTGGCCCTGGTGATGATGAACTCCTTCTGTTTCCTGGT CGTGGCCGGTGCCTACALCTGTACTGTGACCTGCCGCGGGGGGGCGACTTTGAGGCCGT CTGTCCCGTGGCCTTCCTCAGCTTCGCCTCCATGCTGGGCCTCTTCCCTGTCACGCCCGA GTACCTGCTCTTCAACCCCCCACTTCCGGGATGACCTTCGGCGGCTTCGGCCCCCGCGCAGG TACCCAGGCCCTGGTAGCCTTCTCTGATGTGGATCTCATTCTGGAAGCTTCTGAAGCTGG GCGGCCCCCTGGGCTGGAGACCTATGGCTTCCCCTCAGTGACCCTCATCTCCTGTCAGCA GCCAGGGGCCCCCAGGCTGGAGGGCAGCCATTGTGTAGAGCCAGAGGGGAACCACTTTGG GAACCCCCAACCCTCCATGGATGGAGAACTGCTGCTGAGGGCAGAGGGATCTACGCCAGC AGGTGGAGGCTTGTCAGGGGGTGGCGGCTTTCAGCCCTCTGGCTTGGCCTTTGCTTCACA CGTGTAAATATCCCTCCCCATTCTTCTTCTCCCCTCTTCCCCTTTCCTCTCTCTCCCCTC GGTGAATGATGGCTGCTTCTAAAACAAATACAACCAAAACTCAGCAGTGTGATCTATAGC

FIG. 14C

GGGAAGTAAAGACAGTGAAGGGGTGGAGGGTTGATCAGGGCACAGTGGACAGGGGAGACCT CACARAAAAAGGCCTGGAAGGKGATTTCCCGTGTGACTCATGGRTAGGAWACAAAATGTG GCCTCTTGGCCTTGGCCTTGGCCTTCCTCAGCTTCACCTTGATACTGGGCCTCTTC CTTGTCATGTCTGAAGCTGTGGACCARAGACCTGGACTTTTGTCTGCTTAAGGGAAATGA TTCCATGTACCATTAATCTTGACATATGCCATGCATAAARACTTCCTATTAAAATAAGCT TTGGRAGAGATT

FIG. 15

ELOPGLFHHLRFLEELRLSGNHLSHIPGOAFSGLYSLKIIMLONNOLGGIPAEALWELPSLOSLRLDANLISLVPERSF tldinynkioefpvairtigrioelgfhnnnikaipekafmgnpliotihfydnpiofvgrsafoylpklhtisingam <u>OLSSLOALDLSWNAIRSIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGLMHLKLKGNLALSQAFSKDSFPKLRILEVP</u> GASPLCLPYAPPEGOPALGFTVALVMMSFCFLVVAGAYIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVA FLSFASMLGLFPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLRRLRPRAGDSGPLAYAAAGELEKSSCDSTQA LVAFSDVDLILEASEAGRPPGLETYGFPSVTLISCQQPGAPRLEGSHCVEPEGNHFGNPQPSMDGELLLRAEGSTPAGG MPSPPGLRALWLCAALCASRRAGGAPQPGPGPTACPAPCHCQEDGIMLSADCSELGLSAVPGDLDPLTAYLDLSMNNLT EGLSSLRHIWLDDNALTEI PVRALNNL PALQAMTLALNRI SHI PDYAFQNLTSLVVLHLHNNRI QHLGTHSFEGLHNLE DIQEFPDLKGTTSLEILTLTRAGIRLLPSGMCQQLPRLRVLELSHNQIEELPSLHRCQKLEEIGLQHNRIWEIGADTFS yayoccpygmcasffkasgoweaedlhilddeesskrpigilaroaenhydodideloiemedskphpsvocsptpgpfk **GARWETGLGCRATGFLAVLGSEASVLLLTLAAVQCSVSVSCVRAYGKSPSLGSVRAGVLGCLALAGLAAALPLASVGEY** PCEYLFESWGIRLAVWAIVLLSVLCNGLVLLTVFAGGPAPLPPVKFVVGAIAGANTLTGISCGLLASVDALTFGQFSEY SLSGGGFOPSGLAFASHV*

FIG. 16A

protein alignment between mouse and human > LGR6.

15088m(analysis only) - Import - complete

from: 1 to: FrGcgManager_9_QBAsD4iW_ check: 8637

15088h (analysis only) - Import - complete

Symbol comparison table: /prod/ddm/seqanal/BLAST/matrix/aa/BLOSUM62

CompCheck: 1102

Matrix made by matblas from blosum62.iij

Gap Weight: 12 Average Match: 2

Length Weight: 4 Average Mismatch: -2.248

Quality: 4495 Length:

896

Ratio: 4.653 Gaps:

Percent Identity: 89.855 Percent Similarity: 91.097

Match display thresholds for the alignment(s):

| = IDENTITY

.. ||

11

FrGcgManager_9_PBA0KgkFJ x FrGcgManager_9_QBAsD4iW_March 15, 19101 15:24

The fault dim. Be fault tink a mind fault fault tink the mind the mind that the fault tink that

FIG. 16B

ᆏ	MHSPPGLLALWLCAVLCASARGGSDPQPGPGRPACPAPCHCQEDGIMLSA	20	Mouse
H		20	Human
51	DCSELGLSVVPADLDPLTAYLDLSMNNLTELQPGLFHHLRFLEELRLSGN	100	
51	DCSELGLSAVPGDLDPLTAYLDLSMNNLTELQPGLFHHLRFLEELRLSGN	100	
101	- 14	150	
101	HISHIPGQAFSGLYSLKILMLQNNQLGGIPAEALWELPSLQSLRLDANLI	150	
151	SLVPERSFEGLSSLRHLWLDDNALTEIPVRALNNLPALQAMTLALNHIRH	200	
151	- 01	200	
201	. IPDYAFQNLTSLVVLHLHNNRIQHVGTHSFEGLHNLETLDLNYNELQEFP	250	
201		250	
251	• •	300	
251	.	300	
301	124	350	
301		350	

FIG. 16C

351	LPRIRILELSHNQIEELPSLHRCQKLEEIGLRHNRIKEIGADTFSQLGSL	400
351	:	400
401	OALDLSWNAIRAIHPEAFSTLRSLVKLDLTDNQLTTLPLAGLGGLMHLKL	450
401	QALDLSWNAIRSIHPEAFSTLHSLVKLDLTDNQLTTLPLAGLGGLMHLKL	450
451	KGNLALSQAFSKDSFPKLRILEVPYAYQCCAYGICASFFKTSGQWQAEDF	200
451	KGNLALSQAFSKDSFPKLRILEVPYAYQCCPYGMCASFFKASGQWEAEDL	200
501	HPEEEEAPKRPLGLLAGQAENHYDLDLDELQMGTEDSKPNPSVQCSPVPG	550
501	:: .	550
551	PEKPCEHLFESWGIRLAVWAIVLLSVLCNG. VLLTVFASGPSPLSP. KLV	298
551	PEKECEYLFESWGIRLAVWAIVLLSVLCNGLVLLTVFAGGPAPLPPVKFV	009
599	VGAMAGANALTGISCGLLASVDALTYGQFAEYGARWESGLGCQATGFLAV	648
601	VGAIAGANTLTGISCGLLASVDALTFGQFSEYGARWETGLGCRATGFLAV	650
649	LGSEASVLLLTLAAVQCSISVTCVRAYGKAPSPGSVRAGALGCLALAGLA	869
7. 1.		700

FIG. 16D

669		748
701		750
749	YIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL	798
751	YIKLYCDLPRGDFEAVWDCAMVRHVAWLIFADGLLYCPVAFLSFASMLGL	800
799	SPRSPGP	848
801	FPVTPEAVKSVLLVVLPLPACLNPLLYLLFNPHFRDDLRRLRPRAGDSGP	850
849	IAYAAAGELEKSSCDSTQALVAFSDVDLILEASEAGQPPGLETYGFPSVT	868
851	LAYAAAGELEKSSCDSTQALVAFSDVDLILEASEAGRPPGLETYGFPSVT	006
899	LISRHQPGATRLEGNHFIESDGTKFGNPQPPMKGELLLKAEGATLAGCGS	948
901	— H	950
949	949 SVGGALWPSGSLFASHL* 966	
951		