Question 1:[20pts] Design a combinational circuit with an input of a 3-bit binary number: (xyz)<sub>2</sub>. The output is also a binary number that should be equal to 3 times the input. Design the circuit using NAND gates only. Completed (primed) variables are available.



## **Created with Scanner Pro**

Name'

ID#:

Question 2:[30pts] Given a new flip flop (called XY-FF), with the following operational characteristics,

| Χ | Υ | Q(t+1) |   |  |
|---|---|--------|---|--|
| 0 | 0 | 0      |   |  |
| 0 | 1 | 0      | , |  |
| 1 | 0 | Q'(t)  |   |  |
| 1 | 1 | 1      |   |  |

Using one XY-FF, design a RS-FF, using a minimum number of logic gates, complements of variables are available.

Char. satolle of RS-FF:

Circuit excitation table:



Question 3:[30pts] Design a synchronous sequential circuit using a minimum number of JK flip-flops and logic gates. The circuit has single input and single output. The output is 1 if any of the following bit sequences are encountered in the input:  $\{101, 110, 111, 100\}$  and 0, otherwise. The least significant bit appears first in time. After a 3-bit sequence is processed, the circuit should proceed with the next 3-bits (i.e. nonoverlapping operation). Hint: The characteristic equation of a JK-FF is: Q(t+1) = Q'(t)J + K'Q(t).

| a JK-FF is: Q(t+1) = Q'(t)J + K'Q(t).  State transition 7 aph:  O/c 1/o  O/c 1/o  O/c 1/o | Stote from the following property $\frac{NS}{ABB} = \frac{1}{1000} \times \frac{1}{100$ |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 4 4 2 4 4 4 4 4 5 4 5 5 5 5 5 5 5 5 5                                                   | $\begin{cases} a & a \\ a & a \\ d $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A B B 00<br>B C C 00<br>A A 01<br>94) 8(++1) T k<br>95<br>21                              | PS   NS   QUT   F=C X=1   OO   O   O   O   O   O   O   O   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Question 4:[20pts] Given a function  $f(x,y,z) = \Sigma(m_1,m_2,m_3,m_5,m_6)$ 

- a) Implement f using two AND, one OR and one NOT gates only. Complemented (primed) variables are **not** available, logic constants 0/1 are **not** available.
- b) Implement f using one OR and three INHIBIT gates only. Complemented (primed) variables are **not** available, logic constants 0/1 are **not** available. INHIBIT gate is defined as follows:









