

电商领域的智能私人助理

--阿里小蜜技术实践与演进

陈海青(海青)

阿里巴巴客户体验事业群-智能创新中心-高级技术专家

[北京站]

促进软件开发领域知识与创新的传播

关注InfoQ官方微信 及时获取ArchSummit 大会演讲视频信息

2017年4月16-18日 北京·国家会议中心 咨询热线: 010-64738142

[深圳站]

2017年7月7-8日 深圳·华侨城洲际酒店

咨询热线: 010-89880682

大纲

第一部分 阿里小蜜平台介绍

第二部分 智能人机交互构建技术实践与演进

第三部分 挑战与未来

大纲

第一部分 阿里小蜜平台介绍

第二部分 智能人机交互构建技术实践与演进

第三部分 挑战与未来

电商领域的私人助理实践-阿里小蜜

- 基于阿里海量消费数据,结合线上、线下的生活场景需求,以智能+人工的模式提供智能导购、服务、助理的业务体验
- 电商领域的平台化开放
 - •商家开放-干牛平台
 - •企业开放-钉钉平台

阿里小蜜及平台输出展示

阿里小蜜

店小蜜

企业钉小蜜

阿里小蜜平台

输出平台 干牛店小蜜 钉钉企业小蜜 阿里小蜜 阿里云 智能路由 其他 服务层 导购 物流 聊天 服务 推荐预测 多模交互 多轮交互 技术层 文本模型 语音识别 图像识别 用户模型 知识图谱 数据层 机器学习训练 数据回流 数据挖掘/离线模型 多维度数据分析

大纲

第一部分 阿里小蜜平台介绍

第二部分 智能人机交互构建技术实践与演进

第三部分 挑战与未来

智能人机交互的基本技术流程

现今四种主流的问答匹配技术

- 1 基于模板式匹配(Rule-Based)
- 2 基于检索的模型(Retrieval model)
- 3 基于统计机器翻译模型(SMT)
- 4 基于深度学习模型(Deep Learning)

技术演进之路

- 一切从搜索出发
- 意图识别与匹配的分离
- 以知识为核心的挖掘与优化
- 深度学习技术的应用

陈海青

一切从搜索出发

I 基于检索模型的问答系统构建

检索模型(Retrieval Model)构建体系

检索模型的构建

- · 基本思路:
- 基于传统的检索作为基础,以TF*IDF做为向量,通过文本距离 计算进行计算,获取Recall@1
- 距离算法举例:余弦相似度算法

$$\cos\theta = \frac{\sum_{i=1}^{n} (A_i \times B_i)}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$
$$= \frac{A \cdot B}{|A| \times |B|}$$

- 优点与缺点:
- 优点:具备问答体系的平台化与统一性,可平台扩展,并且计算特征可不断添加提升
- 缺点:意图和匹配混淆,在复杂问答场景无法细分

意图识别与匹配分离

- Ⅰ分层策略
- Ⅰ意图识别

智能人机交互分层策略

| 语义意图识别:

- •目标和非目标任务的细分
- •意图的明确与推理匹配

面向3类业务划分并建立技术体系:

•问答型: "密码忘记怎么办?"

•任务型:"我想订一张明天从北京到杭

州的机票"

•语聊型:"我心情不好"

语义意图识别的基本技术流程

意图识别构建

- 基本思路:
- 抽象成为分类问题,构建分类模型对意图进行预测
- · 多分类和二分类选型对比
- 多分类模型(有监督的分类算法,依据具体场景进行选型 Bayes\Knn\最大熵\...):适用于相对简单场景且分类数稳定领域
- 二分类模型(按照意图领域做成多个二分类模型 SVM\...):适用于领域分类相对独立,并且经常需要新增修改的场景,能做到相互独立

以知识为核心的挖掘与优化

- I 知识构建的两种形式:图与本体
- I 知识的挖掘与构建

知识图谱的构建

基于实体、核心语义、动作和知识点的关系知识图谱构建的图计算模型

优点

图状结构支持实体间的上下文与推理

把核心知识的维护带给业务的成本降低到最小,不需要

维护复杂相似问法,通过技术挖掘生成可扩展图结构 银行卡

缺点

模型构建初期会损失一定的覆盖率

知识图谱的构建

本体知识的构建

知识构建与挖掘

通过多数据源完成实体和结构化短句的挖掘与积累,并最终生成知识图谱或可用语料

语义挖掘

- 同义语义挖掘、相似词挖掘、构 造模式(pattern)
- 相似词挖掘主要是选取标签中的 业务词作为种子,例如:通过 Word2Vec扩展相近词汇,用于 词语的归一化
- 同义语义挖掘旨在挖掘同义问法

同义语义挖掘方法

| 文本相似度:

通过相似度算法,结合了同义词替换和同音词替换 等预处理

潜在语义空间构造流程

- 1 分析文档集合,建立Term-Document矩阵
- 2 对Term-Document矩阵进行奇异值分解(SVD)
- 3 对SVD分解后的矩阵进行降维,低阶近似
- 4 构建潜在语义空间,用相似度或者聚类

潜在语义分析

│ **潜在语义分析(LSA):**文本从稀疏的高维词汇空间映射到一个低维的向量空间,相比 传统向量空间,维度更小,语义关系更明确

潜在语义空间的构造方法:SVD奇异值分解

•核心在于降维。将原始的Term-Document矩阵,转换为三个矩阵乘积,其中∑即为潜在语义空间(假设有L维),词(Term)和文档(Document)可映射为L维的向量(下图中:ti,tj,di,dj),再做后续基于向量的计算。

深度学习技术的应用

- I 结合用户行为特征的深度意图识别
- I 检索模型与深度学习模型相结合的语聊模型构建

结合用户行为特征的深度意图识别

- · 基本思路:
- 由于文本缺失、不明确或者不完整的情况下,增加用户行为特征进行意图分类预测
- 深度学习分类模型(CNN\DNN\LSTM\...):大数据量下的提升

深度学习模型意图数据积累

保证相关性

初步建模 - 保证相关性

- •用户问句和知识点标题的相似度
- •用户问句和历史问句的相似度

保证多样性

预留位置展示 - 保证多样性

- •随机展示 (均匀采样)
- •按历史的知识点使用频次来推荐

结合用户行为特征的深度学习意图预测模型

深度学习模型意图识别方案

- DNN 2-channel inputs
- DNN 2-channel inputs + multiple labels

检索模型与深度学习模型相结合的语聊模型构建

检索模型与生成模型:

- 检索模型:具有平台化扩展和答案语法合理性的优势,但是对结构化数据依赖大受限于语料库的完备性,在语义递进等聊天领域效果不好
- 生成模型:不受语料库范围,具有语义层面递进与识别优势,但是难以保证语法一致性与答案合理性

基本思路:

• 结合检索模型和深度学习生成模型的优势进行混合模型构建

检索模型与深度学习生成模型相结合的方案

Information Retrieval

基于Seq2Seq的Rerank和Generation融合方案

Seq2Seq Rerank Module

Answer reranking

- Score functions
 - Q for encoder, A for decoder
 - Cross-ent, Averaged prob. > Geometric average

Rerank and Generation

I Generation:

• 不受语料库限制,难以保证一致性和合理回答

I Reranking:

• 虽有固定语料库的局限性,但 是能rank出更合理的答案

Accuracy at different confidence scores

- 500 queries, each has 10 answers (IR results)
- · each query has a confidence score
- 10 bins, bin #1 with highest confidence scores

Rerank Generation离线数据结果

Rerank和Generation的融合结果 (Top 1 Acc)

大纲

第一部分 阿里小蜜平台介绍

第二部分 智能人机交互构建技术实践与演进

第三部分 挑战与未来

挑战与未来

挑战

- 目前智能人机交互机器人的智能程度还比较低,还有很长一段路要走
- 在工业领域由于涉及的领域以及复杂度情况很多,需要进行不断的细分并通过不同的方案来解决

挑战与未来

未来

. . . .

- 随着计算机计算能力的大幅度提升,数据将发挥更加重要的作用,通过增强学习的模式构建智能数据闭环,循环不断提升智能程度
- 技术的不断突破,特别是Deep Learning、Transfer Learning在NLP领域的不断突破与应用将成为未来需要 大家一同探索的方向

Thanks

[北京站]

