Distributions

Distribution	Moments	Bernoulli	Binomial	Geometric	Poisson	Exponential	Uniform	Normal
PDF		$\theta^x (1-\theta)^{1-x}$	$\binom{n}{k}\theta^k(1-\theta)^{n-k}$	$(1-\theta)^{x-1}\theta$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$\frac{1}{\lambda} e^{\frac{-x}{\lambda}}$	$\frac{1}{b-a}$	$\frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$
E[X]	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	θ	$n\theta$	$\frac{1}{\theta}$	λ	λ	$\frac{a+b}{2}$	μ
Var[X]	$E[X^2] = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$	$\theta(1-\theta)$	$n\theta(1-\theta)$	$\frac{1-\theta}{\theta^2}$	λ	λ^2	$\frac{(b-a)^2}{12}$	σ^2

Hypothesis Testing

H_0	H_A	Conditions	Test Statistic	Rejection Region	Degrees of freedom
	$\mu_1 < \mu_2$		$(\bar{\mathbf{v}} \bar{\mathbf{v}}) (\dots \dots)$	$Z < -z_{\alpha}$	
$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	Known σ	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{\frac{\sigma_1^2}{1}} + \frac{\sigma_2^2}{\sigma_2^2}}}$	$Z > z_{\alpha}$	
	$\mu_1 \neq \mu_2$		$\sqrt{\frac{1}{n_1} + \frac{2}{n_2}}$	$ \mathbf{Z} > \mathbf{z}_{\alpha/2} $	
	$\mu_1 < \mu_2$	Unknown but equal σ		$t < -t_{df,\alpha}$	
$\mu_1 = \mu_2$	$\mu_1 > \mu_2$	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$	$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 (\frac{1}{n_1} + \frac{1}{n_2})}}$	$t>t_{df,lpha}$	$df = n_1 + n_2 - 2$
	$\mu_1 \neq \mu_2$	$s_p^2 = \frac{\binom{n_1-1}{(n_1-1)+(n_2-1)}}{\binom{n_1-1}{(n_1-1)+(n_2-1)}} s_1^2 + \frac{\binom{n_2-1}{(n_1-1)+(n_2-1)}}{\binom{n_2-1}{(n_1-1)+(n_2-1)}} s_2^2$	v 2	$ \mathbf{t} > \mathbf{t}_{df,\alpha/2} $	
	$\pi_1 < \pi_2$			$Z < -z_{\alpha}$	
$\pi_1 = \pi_2$	$\pi_1 > \pi_2$	Z-test for proportions	$Z = \frac{(\hat{\pi}_1 - \hat{\pi}_2) - (\pi_1 - \pi_2)}{\sqrt{\frac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_2}}}$	$Z > z_{\alpha}$	
			$\sqrt{\frac{x_1(1-x_1)}{n_1} + \frac{x_2(1-x_2)}{n_2}}$		
	$\pi_1 \neq \pi_2$,	$ \mathbf{Z} > \mathbf{z}_{\alpha/2} $	
$\beta_1 = 0$	$\beta_1 \neq 0$	Test for linear relationship	$t = \frac{\beta_1 - \beta_1}{\sqrt{\frac{s^2}{S_{pop}}}}$	$t > t_{df,\alpha/2} $	df = n - 2
			$\bigvee S_{xx}$		

Linear Regression Formulas

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{1}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \tag{2}$$

$$\hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}}$$
(2)
$$S_{xx} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
(3)

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
(4)

$$SS_{RESID} = \sum_{i=1}^{n} (y_i - \hat{y}) \tag{5}$$

$$RegressionVariance: s^2 = \frac{SS_{RESID}}{n-2} \tag{6}$$

NormalEquations:
$$\left\{ \begin{array}{l} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i) = 0\\ \sum_{i=1}^{n} x_i (y_i - \beta_0 - \beta_1 x_i) = 0 \end{array} \right\}$$
 (7)