Probabilistic Robotics*

Partially Observable Markov Decision Process

Mohan Sridharan

University of Birmingham, UK <u>m.sridharan@bham.ac.uk</u>

^{*}Revised original slides that accompany the book by Thrun, Burgard and Fox.

POMDPs

- State is not observable agent has to make decisions based on belief state which is a posterior distribution over states.
- Let b be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space:

$$V_{T}(b) = \gamma \max_{u} \left\{ r(b,u) + \int V_{T-1}(b') p(b'|u,b) db' \right\}$$

$$\pi_{T}(b) = \arg \max_{u} \left\{ r(b,u) + \int V_{T-1}(b') p(b'|u,b) db' \right\}$$

$$V_{T}(x) = \gamma \max_{u} \left\{ r(x,u) + \int V_{T-1}(x') p(x'|u,x) dx' \right\}$$

Problems

- Belief is a probability distribution each value in a POMDP is a function of an entire probability distribution!
- Probability distributions are continuous.
- Huge complexity of belief spaces.
- For finite worlds with finite state, action, and observation spaces and finite horizons, we can effectively represent the value functions by piecewise linear functions.

An Illustrative Example

The Parameters of the Example

- The actions u_i and u_j are terminal actions.
- The action u_3 is a sensing action that potentially leads to a state transition.
- The horizon is finite and $\gamma = 1$.

$$r(x_1, u_1) = -100, \quad r(x_2, u_1) = 100$$

 $r(x_1, u_2) = 100, \quad r(x_2, u_2) = -50$
 $r(x_1, u_3) = -1, \quad r(x_2, u_3) = -1$
 $p(x_1 | x_1, u_3) = 0.2 \quad p(x_2 | x_1, u_3) = 0.8$
 $p(x_1 | x_2, u_3) = 0.8 \quad p(x_2 | x_2, u_3) = 0.2$
 $p(z_1 | x_1) = 0.7 \quad p(z_2 | x_1) = 0.3$
 $p(z_1 | x_2) = 0.3 \quad p(z_2 | x_2) = 0.7$

$$p_1 = b(x_1), p_2 = b(x_2), p_2 = 1 - p_1$$

Policy $\pi : [0, 1] \rightarrow u$

Payoff in POMDPs

- In MDPs, the payoff (or return) depends on the state of the system.
- In POMDPs, the true state is not known.

Therefore, we compute the expected payoff by integrating over all states:

$$r(b,u) = E_x[r(x,u)]$$

= $\int r(x,u)p(x) dx$
= $p_1 r(x_1,u) + p_2 r(x_2,u)$

Payoffs in Our Example (1)

- If we are certain that we are in state x_I and execute action u_I we receive reward of -100.
- If we definitely know that we are in x_2 and execute u_I the reward is +100.
- In between it is the linear combination of the extreme values weighted by the probabilities:

$$r(b, u_1) = -100 p_1 + 100 p_2$$

$$= -100 p_1 + 100 (1 - p_1)$$

$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$

$$r(b, u_3) = -1$$

Payoffs in Our Example (2)

The Resulting Policy for T=1

• Given we have a finite POMDP with T=1, we would use $V_{j}(b)$ to determine the optimal policy.

In our example, the optimal policy for T=1 is:

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \le \frac{3}{7} \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

This is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

• The resulting value function $V_I(b)$ is the maximum of the three functions at each point:

$$V_1(b) = \max_{u} r(b, u)$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_1 & +100 \ (1 - p_1) \\ 100 \ p_1 & -50 \ (1 - p_1) \\ -1 \end{array} \right\}$$

It is piecewise linear and convex.

Pruning

• Carefully consider $V_l(b)$ – only the first two components contribute.

• The third component can be pruned away from $V_{i}(b)$:

$$V_1(b) = \max \left\{ \begin{array}{rr} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}$$

Increasing the Time Horizon

 Assume the robot can make an observation before deciding on an action.

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z, for which:

$$p(z_1 | x_1) = 0.7$$
 and $p(z_1 | x_2) = 0.3$.

• Given the observation z_I we update the belief using Bayes rule:

$$p'_{1} = p(x_{1} | z) = \frac{p(z_{1} | x_{1})p(x_{1})}{p(z_{1})} = \frac{0.7 p_{1}}{p(z_{1})}$$
$$p'_{2} = \frac{0.3(1 - p_{1})}{p(z_{1})}$$
$$p(z_{1}) = 0.7 p_{1} + 0.3(1 - p_{1}) = 0.4 p_{1} + 0.3$$

Value Function

Increasing the Time Horizon

- Coming back to our assumption that robot can make an observation before deciding on an action.
- If the robot perceives z_1 : $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- We update the belief $V_{l}(b \mid z_{l})$ using Bayes rule to obtain:

$$V_{1}(b \mid z_{1}) = \max \begin{cases} -100 \cdot \frac{0.7 p_{1}}{p(z_{1})} + 100 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \\ 100 \cdot \frac{0.7 p_{1}}{p(z_{1})} - 50 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \end{cases}$$

$$= \frac{1}{p(z_{1})} \max \begin{cases} -70 p_{1} + 30 (1-p_{1}) \\ 70 p_{1} - 15 (1-p_{1}) \end{cases}$$

Expected Value after Measuring

Since we do not know what the next measurement will be, we have to compute the expected belief:

$$\overline{V_1}(b) = E_z[V_1(b \mid z)] = \sum_{i=1}^{2} p(z_i)V_1(b \mid z_i)$$

$$= \sum_{i=1}^{2} p(z_i)V_1\left(\frac{p(z_i \mid x_1)p_1}{p(z_i)}\right)$$

$$= \sum_{i=1}^{2} V_1(p(z_i \mid x_1)p_1)$$

Expected Value after Measuring

Since we do not know what the next measurement will be, we have to compute the expected belief:

$$\bar{V}_{1}(b) = E_{z}[V_{1}(b \mid z)]$$

$$= \sum_{i=1}^{2} p(z_{i}) V_{1}(b \mid z_{i})$$

$$= \max \left\{ \begin{array}{ccc}
-70 p_{1} & +30 (1 - p_{1}) \\
70 p_{1} & -15 (1 - p_{1})
\end{array} \right\}$$

$$+ \max \left\{ \begin{array}{ccc}
-30 p_{1} & +70 (1 - p_{1}) \\
30 p_{1} & -35 (1 - p_{1})
\end{array} \right\}$$

Resulting Value Function

The four possible combinations yield the following function which then can be simplified and pruned:

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} + 30 \ (1-p_{1}) - 30 \ p_{1} + 70 \ (1-p_{1}) \\ -70 \ p_{1} + 30 \ (1-p_{1}) + 30 \ p_{1} - 35 \ (1-p_{1}) \\ +70 \ p_{1} - 15 \ (1-p_{1}) - 30 \ p_{1} + 70 \ (1-p_{1}) \\ +70 \ p_{1} - 15 \ (1-p_{1}) + 30 \ p_{1} - 35 \ (1-p_{1}) \end{cases}$$

$$= \max \left\{ \begin{array}{ccc} -100 \ p_{1} & +100 \ (1-p_{1}) \\ +40 \ p_{1} & +55 \ (1-p_{1}) \\ +100 \ p_{1} & -50 \ (1-p_{1}) \end{array} \right\}$$

Value Function

Value Function

State Transitions (Prediction)

- When the agent selects u_3 its state potentially changes.
- When computing the value function, we have to take these potential state changes into account.

$$p'_{1} = E_{x} [p(x'_{1} | x, u_{3})]$$

$$= \sum_{i=1}^{2} p(x'_{1} | x_{i}, u_{3}) p_{i}$$

$$= 0.2 p_{1} + 0.8(1 - p_{1})$$

$$= 0.8 - 0.6 p_{1}$$

State Transitions (Prediction)

Value Function after executing u_{3}

Taking the state transitions into account:

$$\bar{V}_1(b) = \max \left\{ \begin{array}{l} -70 \ p_1 \ +30 \ (1-p_1) \ -30 \ p_1 \ +70 \ (1-p_1) \\ -70 \ p_1 \ +30 \ (1-p_1) \ +30 \ p_1 \ -35 \ (1-p_1) \\ +70 \ p_1 \ -15 \ (1-p_1) \ -30 \ p_1 \ +70 \ (1-p_1) \\ +70 \ p_1 \ -15 \ (1-p_1) \ +30 \ p_1 \ -35 \ (1-p_1) \end{array} \right\}$$

$$= \max \left\{ \begin{array}{l} -100 \ p_1 \ +100 \ (1-p_1) \\ +40 \ p_1 \ +55 \ (1-p_1) \\ +100 \ p_1 \ -50 \ (1-p_1) \end{array} \right\}$$

$$\bar{V}_1(b \mid u_3) = \max \left\{ \begin{array}{l} 60 \ p_1 \ -60 \ (1-p_1) \\ 52 \ p_1 \ +43 \ (1-p_1) \\ -20 \ p_1 \ +70 \ (1-p_1) \end{array} \right\}$$

Value Function after executing u_3

-100[∟]

0.2

0.4

0.6

0.8

Value Function for T=2

Taking into account that the agent can either directly perform u_1 or u_2 or first u_3 and then u_1 or u_2 , we obtain (after pruning).

$$ar{V}_2(b) = \max \left\{ egin{array}{ll} -100 \ p_1 & +100 \ (1-p_1) \ 100 \ p_1 & -50 \ (1-p_1) \ 51 \ p_1 & +42 \ (1-p_1) \end{array}
ight\}$$

Graphical Representation of $V_2(b)$

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for T=10 and T=20:

Deep Horizons and Pruning

Why Pruning is Essential

- Each update adds additional linear components to V.
- Each measurement squares number of linear components.
- Unpruned value function for T=20 has more than 10^{547,864} linear functions.
- At T=30 we have $10^{561,012,337}$ linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function is the major reason why POMDPs are impractical for most applications.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.

POMDP Approximations

Point-based value iteration.

QMDPs.

AMDPs.

MC-POMDP.

Point-based Value Iteration

- Maintains a set of example beliefs.
- Only considers constraints that maximize value function for at least one of the examples.

Point-based Value Iteration

Value functions for T=30

Exact value function

QMDPs

- QMDPs only consider state uncertainty in the first step.
- After that, the world becomes fully observable!
- Planning only marginally less efficient than MDPs, but performance significantly better!

Monte Carlo POMDPs

Represent beliefs by samples.

Estimate value function on sample sets.

 Simulate control and observation transitions between beliefs.

Summary

- POMDPs ideal for modeling systems with partially observable state and non-deterministic actions.
- Exponential state space explosion is a problem!
- Methods exist to make the problem more tractable not good enough for real-world robot problems.
- Possible solutions:
 - Impose hierarchy by exploiting inherent structure.
 - Speed up POMDP solution techniques.