A generic neural network for multi-modal sensory-motor learning
F. Carenzi*, P. Bendahan*, V.Y. Roschin**, A.A. Frolov**, P. Gorce*, M.A. Maier*
*INSERM U.483, University Pierre et Marie Curie, 9 quai Saint Bernard, Paris, France
**Institute of Higher Nervous Activity of RAS, Moscow, Russia
Phone: +33-1- 44 27 34 21, Fax: +33-1- 44 27 34 38, E-mail: Marc.Maier@snv.jussieu.fr

Abstract:

We have developed a generic neural network module, which learns to combine multi-modal sensory information to produce adequate motor commands. The module learns in a first step to combine multi-modal sensory information, based on which it subsequently learns to control a kinematic arm. The module can learn to combine two sensory inputs whatever their modality. Here we report the architecture and learning strategy of the module and characterize its performance by simulations of reaching by a multi-degrees-of-freedom (DoF) linear arm in two situations: 1. mapping of tactile and arm-related proprioceptive information, and 2. mapping of gaze and arm-related proprioceptive information.

Keywords: Hebbian learning; multi-network architecture; multi-modal sensory information; sensory-motor integration.

1 Introduction.

There has been a resurgence of interest in artificial neural networks for the control of movements over the last few years, as researchers from divers backgrounds have produced firm theoretical foundations and demonstrated numerous applications. In particular, neural networks have been used as controllers for simulated or robotic arms as well as for representing internal models of the kinematic or dynamic properties of the arm (e.g. Kawato, 2000). In addition, some of these neural networks had been inspired from neuroscience, either in terms of architecture or in terms of learning rules: Schweighofer et al (1998) have implemented a neural network model of the cerebellum for the control of a simulated dynamic arm. The acquisition of an internal representation of the motor or the somato-motor system by the use of neural networks has been, recently, further illustrated (e.g. Miyamoto et al (2002), Haruno et al (2002) and others).

During natural movements, the central nervous system (CNS) receives sensory information of various modalities, however, how afferent information is put into register with the motor command and how afferent information is used to control and modify a motor command is not fully understood. Various neural network models have been developed to answer these questions (e.g. Salinas and Abott (1995), Rezzoug and Gorce (2001)). Within this framework, we present the architecture and the learning procedure of a generic neural network module for the treatment and use of multi-modal sensory input, exemplified by two cases: first, a mapping between tactile and proprioceptive information, second a mapping between oculo- and skeleto-motor proprioceptive signals for the learning and control of arm movements. The module is capable of learning the relation between two sensory sources (modalities) of inputs and their respective relation to the motor command. The architecture and learning rule is invariant with respect to the particular combination of modalities. This generic neural network module thus learns to combine multi-modal sensory information to produce adequate kinematic reaching commands.

2 Architecture of the neural network.

The goal is to develop a neural network architecture of a generic module capable of learning multi-modal sensory-motor relations independently of the specific nature of the sensory signals. The generic module consists of two sub-networks: a generic "matching unit" and a generic "motor command unit". The matching unit correlates two sensory signals from different modalities and learns through minimizing the mismatch between those two signals. The motor command unit receives inputs from the matching unit and provides a motor command in the kinematics domain. These two sub-networks use Hebbian learning rules. Learning is performed sequentially, first in the matching unit, then in the motor command unit. Here we present two identical matching units, each of which treats a different combination of sensory signals. The first concerns the learning of the relation between a tactile and a proprioceptive signal, whereas the second learns the relation between two proprioceptive signals (one oculo-motor, the other skeleto-motor). The matching unit learns to map the two signals, each of which codes in its own modality the 3D positional information of the end-point of the arm, into a common space. The motor command unit then learns the transformation from the initial position of the arm to the target position, as defined by the error vector.

We simulated a 4 DoF linear arm (3 DoF for the shoulder, one for the elbow) represented by the Jacobian matrix (J) which transforms an angular configuration of the arm (Q) into a cartesian 3D endpoint (X). The inverse transformation is computed as follows:

$$Q = pinv(\boldsymbol{J}) * X + (\boldsymbol{Id} - pinv(\boldsymbol{J}) * \boldsymbol{J}) * random$$
 (1)

pinv(J)*X represents a particular solution and (Id - pinv(J)*J)*random the homogenous solution, pinv(J) is the pseudoinverse of J, and Id is the identity matrix.

Figure 1 shows the general architecture of the generic neural network module, linked to a simulator of sensory signals (SS) for its inputs and to the linear model of the arm for its output.

FIG. 1 – The general architecture contains a neural network module (NN) linked to a simulator of sensory signals (SS) and to a linear model of the arm. The module is made up of a "matching unit" and a "motor command unit".

2.1 Simulator of sensory signals.

The sensory simulator provides coding of tactile and proprioceptive signals. Input vector1 (VI) represents the angular information of the articular chain. Vector2 (V2) defines the target, given either by tactile or by oculomotor proprioceptive (gaze) information. The size of the proprioceptive vector is defined by the number of DoF of the arm, the size of vector V2 depends on whether it codes tactile or oculomotor information, but is different from V1.

The neural coding of inputs V1 and V2 is performed with the matrices M1 and M2, that provide the neurally coded sensory signals A1 and A2 of identical dimensionality, i.e. the inputs to the generic matching unit (Fig. 1)

$$A1 = M1 .V1 \tag{2}$$

$$A2 = M2.V2 \tag{3}$$

2.2 Simulator of Neural Network.

The generic neural network is divided into two sub-networks : a matching unit and a motor-command unit.

2.2.1 Generic matching unit.

In a first learning step, the matching unit correlates the two sensory signals A1 and A2 (of different modality). The matrices Mr1 and Mr2, initially randomized, map the two inputs into a common representation, i.e. in one case proprioceptive and tactile information, in the other case, oculomotor and skeletomotor proprioceptive information. Thus, the two informations can now be expressed in a common space, independently of their modality:

$$Ar1 = Mr1 . A1 (4)$$

$$Ar2 = Mr2.A2 \tag{5}$$

The learning procedure adapts the matrices in such a way, that the two signals converge. The learning signal is obtained from the difference Ar between these vectors :

$$Ar = Ar1 - Ar2 \tag{6}$$

The learning procedure modifies the scalars (weights) in *Mr1* and *Mr2* in order to minimize the difference Ar. The Hebbian learning rule is given by:

$$Mr1 = Mr1 + k.Lr1.Ar.A1 \tag{7}$$

$$Mr2 = Mr2 - Lr2.Ar.A2 \tag{8}$$

where K and Lr (learning rate) are constants.

After learning, given two independent sensory inputs VI and V2, Ar represents the difference between them in a common space.

The 2^{nd} learning step generates an approximate motor command Amu. This step relates a given command to its sensory consequences. We use an initial and random command Amu to generate the corresponding sensory signal VI, which is injected into the matching unit. Having established the matching matrices during the first learning step, VI now generates the output ArI. Given ArI, Hebbian learning adapts U in such a way, that the new motor command Amu' tends toward Amu.

2.2.2 Motor command unit.

The goal of the motor command unit is to transform, via matrix V (precise motor command), the neural and approximate command Amu into a motor command Amv. In the 3^{rd} learning step, V learns to minimise the number of iterations from the initial to the target state. V is modified by

Hebbian learning. Based on Amv, the matrix Mm computes the angular configuration of the linear simulated arm. The new angular configuration then provides the input to the simulator of the sensory signals and closes the loop.

3 Simulation results.

3.1 Simulation results for the tactile-proprioceptive learning.

In this section, we present the first set of simulations which concern the learning of the relation between tactile and proprioceptive signals. The target position is defined in the tactile domain, whereas the initial arm position is defined in the proprioceptive domain. This corresponds to a situation where the endpoint of the arm should touch a particular part of the body. The tactile map consisted of a spherical surface composed of 20 tactile receptive fields. The tactile target position is defined by a receptive field index and a 2D vector in the plane of the receptive field, coding the tactile target point within the field with respect to its center.

Through learning, a correlation will be established between the angular configuration of the arm in order to contact a target on the sphere, coded in tactile space. The method consists in mapping a tactile-derived target position with the corresponding proprioceptive configuration of the arm, when its endpoint contacts the target point. This is akin to a procedure called motor-babbling. Fig. 2 shows the asymptotic learning curve for Ar which tends to zero, indicating an increasingly better correlation between the two sensory signals.

In the 2^{nd} learning step, an *approximate* motor command is generated through learning in matrix U. The matrix U learns the proprioceptive consequences of a random motor command. The learning curve of U is shown in FIG. 3.

FIG. 2 – Learning curve of |Ar| (300 000 iterations, y-scale in log).

FIG. 3 – Approximate motor command: learning curve (180000 iterations).

In the third learning step, by learning in matrix V, we generate a correct motor command from an initial (randomly chosen) position to a randomly chosen target position on the sphere. Now that the multi-modal sensory signals are correlated in terms of coding a common point in 3D space, we can quantify the error Ar when the joint angles do not coincide with the target position, i.e. in the initial situation for target reaching. This error serves to generate a motor command.

At the end of this learning phase, we obtain a correct angular configuration of the arm in a single time step, after having specified a target position. FIG. 4 presents the asymptotic learning curve of V: its values tend to zero, meaning that learning in V does predict the correct angular configuration to reach the target.

FIG. 4 – Learning in V (Precise motor command, 5500 iterations for each of the 20 receptive fields).

3.2 Simulation results for the visual proprioceptive signals learning.

In this section, we present the second set of simulations, this time using oculomotor proprioception for the definition of the target and, as above, arm proprioception.

The oculomotor coding is based on the 3 angles of gaze (azimuth, elevation, vergence) which determine a 3D point in the working space of the arm. The actual working space is, in this case, restricted to a cube (representing 25 % of the full working space) divided into 10 vertical slices or subspaces (analogue to the way the tactile surface was divided into multiple receptive fields). The aim of the learning is thus to provide a code in a common space of gaze and arm proprioception, and to determine the angular configuration of the arm in order to reach a target coded by the 3 angles of gaze. The method and sequence of learning is identical to the previous case, only the type of signals used for the learning varies.

FIG. 5 shows the learning curves for Ar, the difference between the coding of the twosensory inputs. Compared to the tactile-proprioceptive situation, the learning is slower and the error larger by 2 orders of magnitude. FIG. 6 shows the learning curve for U, the approximate motor command.

FIG. 5 – Learning curve of |Ar| (300000 iterations).

FIG. 6 – Approximate motor command: learning curve (120000 iterations).

Finally, the correct motor command, that leads in a single step from the initial to the target position, is learned in matrix V. At the end of the learning, a correct angular configuration of the arm is obtained in a single time step, after having specified a random target position by gaze and a random initial position of the arm. FIG. 7 shows that the learning in V is less accurate and saturates faster than in the tactile—proprioceptive case.

FIG. 7 – Learning in V (Precise motor command, 6000 iterations for each of the 10 subspaces).

We have thus demonstrated the iterative convergence of the three subsequent learning procedures: i) the correlation between two multi-modal sensory signals, ii) the generation of an approximate and iii) the generation of a correct motor command. This has been simulated for a linear arm in two cases: in the tactile-proprioceptive domain and in the oculo- and skeleto-motor proprioceptive domain.

4 Conclusion.

This paper presents a novel learning architecture based on the association of two generic neural networks. This neural network has been tested in a simulated learning environment of a 4 DoF linear arm. Learning occurs in three distinct and sequential epochs: the first is dedicated to the correlation (match) between multi-modal sensory information by the use of a common coding space, the second is based on motor babbling and associates the sensory consequences of random movements, and the third then learns, based on the previous two, to move from an initial to a target position in terms of kinematics. The mapping between the two sensory spaces is achieved via the division of the workspace into subspaces, either by tactile receptive fields or by oculomotor subspaces in depths. The future development concerns three aspects: first, the introduction of a non-linear arm including multijoint interactions, second, a more realistic coding of sensory signals, and third, the implementation of a neurobiologically inspired architecture based on interactions of multiple matching and motor command units.

Acknowledgements.

This work was in part supported by RFBR grant 01-04-48924a and a European 5th framework programme grant: IST-2001-33073.

References.

Haruno M, Wolpert D, Kawato M Hierarchical MOSAIC for movement generation. In Ono T, Matsumoto G, Llinas RR, Bethoz A, Norgren R, Nishijo H, Tamura R (Eds.) *Excepta Medica International Coungress Series*, 1250, Elsevier Science B.V.

Kawato M (2000) Robotics as a tool for neuroscience: cerebellar internal models for robotics and cognition. Hollerbach MH, Koditschek DE (Eds.) *Robotics Research, The Ninth International Symposium, London, pp.321-328.*

Miyamoto H, Wolpert DM, Kawato M (2002) Computing the optimal trajectory of arm movement: the TOPS (Task Optimization in the Presence of Signal-dependent nose) model. Duro RJ, Santos J, Grana M (Eds.) *Studies in Fuzziness and Soft Computing, pp.395-415.*

Rezzoug N, Gorce P (2001) A neural network architecture to learn hand posture definition, *IEEE/SMC, International Conference on Systems Man and Cybernetics, pp. 3019-3025.*

Salinas E, Abbott LF (1995) Transfer of coded information from sensory to motor networks. *Journal of Neuroscience*, vol 15, pp. 6461-6474.

Schweighofer N, Arbib MA, Kawato M (1998) Role of cerebellum in reaching movement in humans. I. Distributed inverse dynamics control. *European Journal of Neuroscience, pp. 86-94*.