Real Analysis Qualifying Exam Spring 1989

In this exam λ denotes Lebesgue outer measure on \mathbb{R} and (X, \mathcal{A}, μ) denotes a measure space.

- 1. (a) Define Lebesgue outer measure λ on \mathbb{R} .
 - (b) What does it mean to say that a subset E of \mathbb{R} is λ -measurable?
 - (c) Use the fact that the family \mathcal{M}_{λ} of all λ -measurable subsets of \mathbb{R} is a σ -algebra to prove that every Borel subset of \mathbb{R} is λ -measurable.
- 2. Prove the following assertions. You may use the fact that the restriction of λ to \mathcal{M}_{λ} is countably additive if you wish.
 - (a) If a < b in \mathbb{R} , then $\lambda([a, b]) = b a$.
 - (b) There exists a compact set $K \subset [0,1]$ such that $\lambda(K) > \frac{3}{4}$ and K contains no rational number.
- **4.** (a) What does it mean to say that a function $f: X \to [-\infty, \infty]$ is A-measurable?
 - (b) Suppose that $f_n: X \to [-\infty, \infty]$ is A-measurable for $n = 1, 2, \ldots$ and define f on X by

$$f(x) = \underline{\lim}_{n \to \infty} f_n(x)$$

for $x \in X$. Use your definiton in (a) to prove that f is A-measurable.

5. Let $f: X \to [0, \infty[$ be \mathcal{A} -measurable. Define

$$A = \{(x, y) \in X \times \mathbb{R} : 0 \le y < f(x)\}$$

Prove that $A \in \mathcal{A} \times \mathcal{M}_{\lambda}$ and that if μ is σ -finite, then

$$\mu \times \lambda(A) = \int_X f d\mu.$$

6. Let $(f_n)_{n=1}^{\infty}$ be a sequence of real-valued \mathcal{A} -measurable functions on X that converges to some function f at each point of X. Prove that for each $a \in \mathbb{R}$ we have

$$\mu(\{f > a\}) \le \lim_{n \to \infty} \mu(\{f_n > a\}).$$

7. Let $f: X \to [0, \infty[$ be \mathcal{A} -measurable and suppose that μ is σ -finite. Define $m(t) = \mu(\{f > t\})$ for each $t \ge 0$. Prove that if 0 , then

$$\int_X f^p d\mu = p \int_0^\infty t^{p-1} m(t) dt.$$

[Hint:
$$f^p(x) = \int_0^{f(x)} pt^{p-1} dt$$
.]

- **8.** Prove the completeness of $L^p(\mu)$ for $1 \le p < \infty$.
- **9.** Let $2 \leq p < \infty$ and let $f, g \in L^p(\mu)$. Prove that

$$\|\frac{f+g}{2}\|_{p}^{p} + \|\frac{f-g}{2}\|_{p}^{p} \le \frac{1}{2}(\|f\|_{p}^{p} + \|g\|_{p}^{p}).$$

[Hints: First show that if $a, b \ge 0$, then $a^p + b^p \le (a^2 + b^2)^{p/2}$ and $\left(\frac{a^2 + b^2}{2}\right)^{1/2} \le \left(\frac{a^p + b^p}{2}\right)^{1/p}$.]

- 10. Suppose $\mu(X) < \infty$ and let ν be another (positive) measure on (X, \mathcal{A}) with $\nu(X) < \infty$. Let $\nu = \nu_a + \nu_s$ be the Lebesgue decomposition of ν with respect to μ and let $w: X \to [0, \infty[$ be a Radon-Nikodym derivative of ν_a with respect to μ . Define w_0 on X by $w_0(x) = \min\{w(x), 1\}$. Prove the following:
 - (a) For each \mathcal{A} -measurable $f: X \to [0, \infty]$ we have

$$\int f w_0 d\mu \le \min \left\{ \int f d\nu, \int f d\mu \right\}.$$

(b) Suppose that to each $\varepsilon > 0$ corresponds some \mathcal{A} -measurable $f: X \to]0, \infty[$ such that

$$\left(\int f d\nu\right) \left(\int f^{-1} d\mu\right) < \varepsilon$$

where $f^{-1}=1/f$. Then ν and μ are mutually singular. [Hint for (b): Apply the Schwarz Inequality to $f^{1/2}\cdot f^{-1/2}=1$ for the measure $w_0d\mu$.]