

Geodatenanalyse I: Multivariate Statistik

Kathrin Menberg

Stundenplan

	08:30 – 12:30 Uhr	13:30 – 17:30 Uhr
Montag	Tag 1 / Block 1	Tag 1 / Block 2
Dienstag	Tag 2 / Block 1	Tag 2 / Block 2
Mittwoch	Tag 3 / Block 1	Tag 3 / Block 2
Donnerstag	Tag 4 / Block 1	Tag 4 / Block 2
Freitag	Tag 5 / Block 1	Tag 5 / Block 2

- 2.4 Bivariate Statistik
- **▶ 2.5 Multivariate Statistik**
- 2.6 Zeitreihenanalyse

Lernziele Block 2.5

Am Ende der Stunde werden die Teilnehmer:

- mit den statistischen Konzepten der Datentransformation,
 Eigenvektoren und Eigenwerten vertraut sein.
- Methoden zur Reduzierung von Dimensionen auf Geodatensätze anwenden und die Ergebnisse graphisch darstellen können.

n-dimensionale Datensätze

- Beziehungen zwischen allen Parametern
 - Parameterraum (parameter space)
- Gemeinsame graphische Darstellung von vielen Parametern schwierig
- Scatterplots auf drei Dimensionen beschränkt

Multivariate Statistik

 Dimensionen von Datensätzen reduzieren ohne viel Information zu verlieren

- ▶ 2D Visualisierung von komplexen Beziehungen
 - ► Hauptkomponentenanalyse (principal component analysis)

- Faktorenanalyse (factor analysis)
- Unabhängigkeitsanalyse (Independent Component Analysis)
- Datenpunkte mit ähnlichen Eigenschaften identifizieren
 - Clusteranalyse (cluster analysis)

Transformieren von Datensätzen

- ➤ Rohdaten oft nicht normalverteilt, Unterschiede in Varianzen zwischen einzelnen Parametern, usw.
- Standardisieren von Daten
- Standard-Normalverteilung
 - $\searrow X \sim N(0,1)$

$$standardized x_i = \frac{x_i - \bar{x}}{std(x)}$$

Hauptkomponentenanalyse

- Ziel: Reduzieren von Dimensionen
- Prinzip:
 - Bestimmung von linearen Beziehungen zwischen Parameter
 - Ersetzen von Gruppen korrelierender Parameter durch neue nicht korrelierte Variablen

Trauth (2015) Fig. 9.1

Hauptkomponentenanalyse

- Ziel: Reduzieren von Dimensionen
- Prinzip:
 - ▶ Bestimmung von linearen Beziehungen zwischen Parameter
 - Ersetzen von Gruppen korrelierender Parameter durch neue nicht korrelierte Variablen

Hauptkomponentenanalyse

- Identifizieren der Achsen, d.h. der Hauptkomponenten über die
 - Kovarianz der Parameter
 - ightharpoonup Eigenvektoren ($n \times 1$)
 - Eigenwerte (Skalar)

wikipedia.org

- Alle Hauptkomponenten zusammen enthalten die gesamte Varianz des Datensatzes
- Transformieren, bzw. Rotieren der Datenmatrix

Übung 2.5: Multivariate Statistik

Eisen

- Grundwasserdatensatz Karlsruhe
 - Hauptkomponentenanalyse
 - Matrizenrechnung
 - Visualisierung

Aufgaben in Jupyter Notebook: geodatenanalyse_1-2-5

Koch et al. (2020)

 O_2

Aufgabenbesprechung

Hauptkomponentenanalyse

Aufgabenbesprechung

Clusteranalyse: K-Means

Literatur

- Trauth (2015) MATLAB Recipes for Earth Sciences (4th Ed.), Springer
- Koch et al. (2020) Groundwater fauna in an urban area: natural or affected?, Hydrology and Earth System Sciences Discussions
- ► Lever et al. (2017) Principal component analysis, Nature Methods 14(7), 641-642

Nützliche Weblinks:

https://towardsdatascience.com/a-complete-guide-to-principalcomponent-analysis-pca-in-machine-learning-664f34fc3e5a

