Presentation at L3S Research Seminar

DALE: Differential Accumulated Local Effects for efficient and accurate global explanations

Vasilis Gkolemis^{1,2} Theodore Dalamagas¹ Christos Diou²

¹ATHENA Research and Innovation Center

²Harokopio University of Athens

January 2023

Who we are

- Vasilis Gkolemis:
 - Research Assistant at ATHENA Research Center (ATHENA RC)
 - First-year PhD at Harokopio University of Athens (HUA)
 - ▶ Main focus: Explainability under uncertainty
- Supervisors:
 - ► Christos Diou (HUA) → Generalization, Few(Zero)-shot learning
 - ► Eirini Ntoutsi (UniBw-M) → Explainability, Fairness
 - ► Theodore Dalamagas (ATHENA) → Databases, data semantics
- Paper I will present
 - ► DALE: Differential Accumulated Local Effects for efficient and accurate global explanations
 - ► Accepted at Asian Conference Machine Learning (ACML) 2022

eXplainable AI (XAI)

- Black-box model $f(\cdot): \mathcal{X} \to \mathcal{Y}$, trained on \mathcal{D}
- XAI extracts interpretable properties:
 - → Tabular data Which features favor a prediction?
 - → Computer Vision Which image areas confuse the model?
 - → NLP Which words classified the comment as offensive?
- Categories:
 - → Global vs local
 - → Model-agnostic vs Model-specific
 - → Output? number, plot, instance etc.

Feature Effect: global, model-agnostic, outputs plot

Consider the following mapping $x \rightarrow y$

Process unknown \rightarrow we only have samples

Our goal is to model the process using the available samples (regression)

 $\mathsf{Linear} \; \mathsf{model} \to \mathsf{Underfiting!}$

$$y = w_1 \cdot x + w_0$$

 2^{nd} degree polynomial \rightarrow Decent Fit!

$$y = w_2 \cdot x^2 + w_1 \cdot x + w_0$$

 3^{rd} degree polynomial \rightarrow Good Fit!

$$y = w_3 \cdot x^3 + w_2 \cdot x^2 + w_1 \cdot x + w_0$$

 9^{th} degree polynomial \rightarrow Overfitting!

$$y = \sum_{i=0}^{9} w_i \cdot x^i$$

Problem diagnosis

- Model behavior is explained by the shape of the function
- Overfitting, Underfitting are easily diagnosed
- If the input has multiple dimensions *D*?
 - We often have tens or hundreds of features
 - Images and signals: Several thousands of input dimensions

Feature Effect

 $y = f(x_s) \rightarrow \text{plot showing the effect of } x_s \text{ on the output } y$

Figure: Image taken from Interpretable ML book (Molnar, 2022)

Feature Effect Methods

- $x_s \rightarrow$ feature of interest, $x_c \rightarrow$ other features
- Isolating the effect of x_s is a difficult task:
 - features are correlated
 - f has learned complex interactions
- Three well-known methods:
 - Partial Dependence Plots (PDP)
 - M-Plots
 - Accumulated Local Effects (ALE)

Partial Dependence Plots (PDP)

 Proposed by J. Friedman on 2001¹ and is the marginal effect of a feature to the model output:

$$f_s(x_s) = \mathbb{E}_{\mathbf{x_c}}[f(x_s, \mathbf{x_c})] = \int f(x_s, \mathbf{x_c}) p(\mathbf{x_c}) d\mathbf{x_c}$$

where:

- \triangleright x_s is the feature whose effect we wish to compute
- x_c are the rest of the features
- Approximation:

$$\hat{f}_s(x_s) = \frac{1}{n} \sum_{i=1}^n f(x_s, \mathbf{x}_c^{(i)})$$

Gkolemis, Vasilis (ATH-HUA)

¹J. Friedman. "Greedy function approximation: A gradient boosting machine." Annals of statistics (2001): 1189-1232

Issues with PDPs

Figure: C. Molnar, IML book

Issues with PDPs

Correlated features

- ▶ To compute the effect of $x_{age} = 20$ on the output (cancer probability) it will integrate over all $x_{years_contraceptives}$ values, e.g., [0, 50]
- f can have weird behavior when $x_{age} = 20, x_{years_contraceptives} = 20$ (out of distribution)
- As a result, we have a wrong estimation of the feature effect

MPlots

ullet We use the value of x_s as a condition, so we integrate over ${f x}_c|x_s$

$$f(x_s) = \mathbb{E}_{\mathbf{x}_c|x_s}[f(x_s, \mathbf{x}_c)] = \int f(x_s, \mathbf{x}_c) p(\mathbf{x}_c|x_s) d\mathbf{x}_c$$

where:

- \triangleright x_s is the feature whose effect we wish to compute
- x_c the rest of the features
- Approximation:

$$f_s(x_s) = \frac{1}{n} \sum_{i: x_s^{(i)} \approx x_s} f(x_s, \mathbf{x}_c^{(i)})$$

MPlots

In the previous example

Figure: C. Molnar, IML book

Issues with M-Plots

- ullet Aggregated effect symptom o the calculated effects result from the combination of all (correlated) features
- Real effect:
 - ▶ $x_{age} = 50 \rightarrow 10$
 - $x_{\text{years_contraceptives}} = 20 \rightarrow 10$
 - aggregated effect close to 20
- Because x_{age} , $x_{years_contraceptives}$ are correlated, MPlot may assign:
 - $x_{\text{age}} = 50 \rightarrow 17 \approx \text{aggregated effect}$
 - $x_{\mathtt{years_contraceptives}} = 20 \rightarrow 17 \approx \mathtt{aggregated}$ effect

Accumulated Local Effects (ALE)²

 Resolves problems that result from the feature correlation by computing differences over a (small) window

$$f(x_s) = \int_{x_{min}}^{x_s} \mathbb{E}_{\underset{realistic}{\mathbf{x}_c \mid Z}} [\underbrace{\frac{\partial f}{\partial x_s}(z, \mathbf{x}_c)}_{isolates}] \partial z$$

Gkolemis, Vasilis (ATH-HUA)

²D. Apley and J. Zhu. "Visualizing the effects of predictor variables in black box supervised learning models." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82.4 (2020): 1059-1086.

ALE approximation

ALE definition:
$$f(x_s) = \int_{x_{s,min}}^{x_s} \mathbb{E}_{x_c|z} [\frac{\partial f}{\partial x_s}(z, x_c)] \partial z$$

ALE approximation:
$$f(x_s) = \sum_{k}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \underbrace{\left[f(z_k, \mathbf{x}^i_c) - f(z_{k-1}, \mathbf{x}^i_c)\right]}_{\text{point effect}}$$

Figure: Image taken from Interpretable ML book (Molnar, 2022)

ALE approximation - weaknesses

$$f(x_s) = \sum_{k}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: \mathbf{x}^i \in \mathcal{S}_k} \underbrace{[f(z_k, \mathbf{x}^i_c) - f(z_{k-1}, \mathbf{x}^i_c)]}_{\text{point effect}}$$
bin effect

- Point Effect ⇒ evaluation at bin limits
 - ▶ 2 evaluations of f per point → slow
 - ▶ change bin limits, pay again 2 * N evaluations of $f \rightarrow$ restrictive
 - lacktriangleright broad bins may create out of distribution (OOD) samples ightarrow not-robust in wide bins

ALE approximation has some weaknesses

Recap!

- ullet PDP o problems with correlated features o Unrealistic instances
- ullet MPlot o problems with correlated features o Aggregated effects
- ALE → resolves both issues! But:
- ALE approximation (estimation of ALE from the training set)
 - slow when there are many features
 - unrealistic instances when bins become bigger
- Differential ALE (DALE)!

Our proposal: Differential ALE

$$f(x_s) = \Delta x \sum_{k}^{k_x} \frac{1}{|S_k|} \sum_{i: \mathbf{x}^i \in S_k} \underbrace{\left[\frac{\partial f}{\partial x_s}(x_s^i, \mathbf{x}_c^i)\right]}_{\text{point effect}}$$

- Point Effect ⇒ evaluation on instances
 - ightharpoonup Fast ightharpoonup use of auto-differentiation, all derivatives in a single pass
 - ightharpoonup Versatile ightarrow point effects computed once, change bins without cost
 - ▶ Secure → does not create artificial instances

For differentiable models, DALE resolves ALE weaknesses

DALE is faster and versatile - theory

$$f(x_s) = \Delta x \sum_{k}^{k_x} \frac{1}{|S_k|} \sum_{i: x^i \in S_k} \underbrace{\left[\frac{\partial f}{\partial x_s}(x_s^i, x_c^i)\right]}_{\text{point effect}}$$

- Faster
 - gradients wrt all features $\nabla_{\mathbf{x}} f(\mathbf{x}^i)$ in a single pass
 - auto-differentiation must be available (deep learning)
- Versatile
 - Change bin limits, with near zero computational cost

DALE is faster and allows redefining bin-limits

DALE is faster and versatile - Experiments

Figure: Light setup; small dataset ($N=10^2$ instances), light f. Heavy setup; big dataset ($N=10^5$ instances), heavy f

DALE considerably accelerates the estimation

DALE uses on-distribution samples - Theory

$$f(x_s) = \sum_{k}^{k_x} \frac{1}{|\mathcal{S}_k|} \sum_{i: x^i \in \mathcal{S}_k} \left[\underbrace{\frac{\partial f}{\partial x_s}(x_s^i, x_c^i)}_{\text{point effect}} \right]$$

- point effect independent of bin limits
- bin limits affect only the resolution of the plot
 - lacktriangle wide bins ightarrow low resolution plot, bin estimation from more points
 - lacktriangleright narrow bins ightarrow high resolution plot, bin estimation from less points

DALE enables wide bins without creating out of distribution instances

DALE uses on-distribution samples - Experiments

$$f(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 \pm g(x)$$

 $x_1 \in [0, 10], x_2 \sim x_1 + \epsilon, x_3 \sim \mathcal{N}(0, \sigma^2)$
 $f_{ALE}(x_1) = \frac{x_1^2}{2}$

- point effects affected by (x_1x_3) $(\sigma \text{ is large})$
- bin estimation is noisy (samples are few)

Intuition: we need wider bins (more samples per bin)

DALE vs ALE - 40 Bins

- ullet DALE: on-distribution, noisy bin effect o poor estimation
- ullet ALE: on-distribution, noisy bin effect o poor estimation

DALE vs ALE - 40 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ALE: on-distribution, noisy bin effect → poor estimation

DALE vs ALE - 20 Bins

- DALE: on-distribution, noisy bin effect → poor estimation
- ALE: on-distribution, noisy bin effect → poor estimation

DALE vs ALE - 20 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ullet ALE: on-distribution, noisy bin effect o poor estimation

DALE vs ALE - 10 Bins

- ullet DALE: on-distribution, noisy bin effect o poor estimation
- ullet ALE: starts being OOD, noisy bin effect o poor estimation

DALE vs ALE - 10 Bins

- DALE: on-distribution, noisy bin effect \rightarrow poor estimation
- ullet ALE: starts being OOD, noisy bin effect o poor estimation

DALE vs ALE - 5 Bins

- \bullet DALE: on-distribution, robust bin effect \to good estimation
- ALE: completely OOD, robust bin effect → poor estimation

DALE vs ALE - 5 Bins

- DALE: on-distribution, robust bin effect \rightarrow good estimation
- ullet ALE: completely OOD, robust bin effect o poor estimation

DALE vs ALE - 3 Bins

- ullet DALE: on-distribution, robust bin effect ightarrow good estimation
- ALE: completely OOD, robust bin effect → poor estimation

DALE vs ALE - 3 Bins

- DALE: on-distribution, robust bin effect → good estimation
- ullet ALE: completely OOD, robust bin effect o poor estimation

Real Dataset Experiments - Efficiency

- Bike-sharing dataset(Fanaee-T and Gama, 2013)
- $y \rightarrow$ daily bike rentals
- x : 10 features, most of them characteristics of the weather

Efficiency on Bike-Sharing Dataset (Execution Times in seconds)

	Number of Features										
	1	2	3	4	5	6	7	8	9	10	11
DALE	1.17	1.19	1.22	1.24	1.27	1.30	1.36	1.32	1.33	1.37	1.39
ALE	0.85	1.78	2.69	3.66	4.64	5.64	6.85	7.73	8.86	9.9	10.9

DALE requires almost same time for all features

Real Dataset Experiments - Accuracy

- Difficult to compare in real world datasets
- We do not know the ground-truth effect
- In most features, DALE and ALE agree.
- ullet Only $X_{ ext{hour}}$ is an interesting feature

Figure: (Left) DALE (Left) and ALE (Right) plots for $K = \{25, 50, 100\}$

What next?

- Could we automatically decide the optimal bin sizes?
 - Sometimes narrow bins are ok
 - Sometimes wide bins are needed
- What about variable size bins?
- Model the uncertainty of the estimation?

DALE can be a driver for future work

Thank you

• Questions?

References I

Fanaee-T, Hadi and Joao Gama (2013). "Event labeling combining ensemble detectors and background knowledge". In: Progress in Artificial Intelligence, pp. 1–15. ISSN: 2192-6352. DOI: 10.1007/s13748-013-0040-3. URL: [WebLink].

Molnar, Christoph (2022). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. 2nd ed. URL: https://christophm.github.io/interpretable-ml-book.