CHAPITRE I : TRANSFORMÉES DE LAPLACE

A. FONCTIONS CAUSALES

Définition : Une fonction f, définie sur \mathbb{R} est causale si : Pour tout t < 0, f(t) = 0.

1. Echelon unité

Définition : L'échelon unité \mathcal{U} est la fonction définie sur \mathbb{R} par :

$$U(t) = 0 \text{ si } t < 0$$

$$U(t) = 1 \text{ si } t \ge 0$$

Remarque : \mathcal{U} est constante par morceaux. Elle est discontinue en 0.

2. Utilisation de l'échelon unité

Définition : Pour transformer une fonction g définie sur \mathbb{R} en une fonction causale f prenant les mêmes valeurs sur $[0; +\infty[$, on la multiplie par l'échelon unité : $f(t) = \mathcal{U}(t)g(t)$ pour tout $t \in \mathbb{R}$

Exemples

3. Translation d'une fonction causale

a. Echelon unité

Considérons la fonction translatée de l'échelon unité ayant le saut à l'instant $t = \tau$.

On a : h(t) = 0 si $t < \tau$

 $h(t) = 1 \text{ si } t \ge \tau$

On peut alors écrire : $h(t) = \mathcal{U}(t - \tau)$ pour tout $t \in \mathbb{R}$.

En effet : $\mathcal{U}(t-\tau) = 0$ si $t-\tau < 0$ soit $t < \tau$

 $\mathcal{U}(t-\tau) = 1 \text{ si } t - \tau \ge 0 \text{ soit } t \ge \tau$

Proposition : La translatée de vecteur $\tau \overrightarrow{i}$ de l'échelon unité est la fonction définie sur \mathbb{R} par : $\mathcal{U}(t-\tau)$.

b. Cas usuels

Proposition : La translatée de vecteur τ \overrightarrow{i} de toute fonction causale de la forme f(t)U(t) est définie sur \mathbb{R} par : $f(t-\tau)\mathcal{V}(t-\tau)$.

Remarque:

La fonction définie sur \mathbb{R} par : f(t) $\mathcal{U}(t-\tau)$ n'est **pas** la translatée de la fonction f(t)U(t), c'est une fonction qui prend les mêmes valeurs que f sur l'intervalle $[\tau; +\infty[$.

Exemple:

Exercice: Dans chaque cas tracer les translatées demandées des fonctions causales données.

Fonction causale	Translatée de $\tau = 1$	Translatée de $\tau = 3$
5 - 4 - f(t) = 3 U(t) 3 - 1 - 0 - 1 - 2 - 3 - 4 - 5	5 - 4 - 3 - 2 - 1 - 0 1 2 3 4 5	5- 4- 3- 2- 1- 0 1 2 3 4 5
1 0 1 2 3 4 5	-1 0 1 2 3 4 5	-i 0 i 2 3 4 5
$f(t) = \cos(2t) \ U(t)$ 0 0 $\pi/2$ π $3\pi/2$	1 - 0	1- 0 π/2 π 3π/2

B. INTEGRALES IMPROPRES

1. Généralités

Définition : Soit f une fonction définie sur un intervalle [a ; $+\infty$ [et continue par morceaux. Soit A un nombre réel.

Si : $\lim_{x \to +\infty} \int_{a}^{x} f(t)dt = A$ alors l'intégrale impropre $\int_{a}^{+\infty} f(t)dt$ est convergente et égale au nombre A.

Dans le cas contraire, on dit que l'intégrale impropre est divergente.

Exemples : Etudier la convergence $\int_{1}^{+\infty} \frac{1}{t} dt$ et de $\int_{1}^{+\infty} \frac{1}{t^2} dt$:

$$\int_{1}^{+\infty} \frac{1}{t} dt =$$

$$\int_{1}^{+\infty} \frac{1}{t^2} dt =$$

Remarques : 1. On peut définir de même : $\int_{-\infty}^{a} f(t)dt$.

- 2. Les propriétés de l'intégrale restent valables.
- 3. La densité de probabilité de la loi normale centrée réduite N(0,1) est une fonction dont

3

l'intégrale sur IR converge et vaut 1. On a : $\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = 1$

2. Convergence d'intégrales dépendant d'un paramètre

Théorème (admis) : Soit n un nombre entier naturel et soit λ un nombre complexe.

Si $\lambda \in \mathbb{R}$, $\int_{0}^{+\infty} t^{n} e^{\lambda t} dt$ converge si et seulement si $\lambda < 0$.

Si $\lambda \in \hat{E}$, $\int_{0}^{+\infty} t^n e^{\lambda t} dt$ converge si et seulement si $Re(\lambda) < 0$.

Exercice: Etudier la convergence des intégrales suivantes avec $\lambda \in \mathbb{R}$:

$$1. \quad \int_{0}^{+\infty} e^{\lambda t} dt$$

$$2. \int_{0}^{+\infty} te^{\lambda t} dt$$

C. TRANSFORMÉE DE LAPLACE

1. DÉFINITION

Définition : La transformée de Laplace d'une fonction causale f est la fonction F de la variable réelle ou complexe p définie par : $F(p) = (\mathcal{L}f)(p) = \int_{0}^{+\infty} f(t)e^{-pt}dt$

Remarques : 1. La transformée de Laplace F n'existe que si l'intégrale impropre $\int_{0}^{+\infty} f(t)e^{-pt}dt$ converge.

- 2. Les fonctions causales utilisées en électricité (et donc dans ce cours) sont de la forme : $f(t) = U(t)t^ne^{rt}$ avec $n \in \hat{E}$, elles admettent une transformée de Laplace pour Re(r) > 0.
 - 3. Dans la pratique pourtant on ne précisera pas les valeurs de p pour lesquelles F(p) existe.

2. TRANSFORMÉE DE LAPLACE DES FONCTIONS USUELLES

1) Transformée de Laplace de l'échelon Unité : f(t) = U(t)

Propriété:

La transformée de Laplace de la fonction échelon unité est définie pour p > 0 et on a $F(p) = (\mathcal{L}U)(p) = \frac{1}{p}$. On écrit généralement par abus de langage : $\mathcal{L}[U(t)] = \frac{1}{p}$.

Démonstration : Voir le paragraphe B2 : Il faut calculer $\int_{-\infty}^{+\infty} e^{-pt} dt =$

2) Transformée de Laplace de la fonction rampe : f(t) = t U(t)

Propriété :

La transformée de Laplace de la fonction rampe est définie pour tout p > 0 et on a : $F(p) = \mathcal{L}(tU(t))$ $(p) = \frac{1}{p^2}$.

Démonstration : Voir le paragraphe B2 : Il faut calculer $\int_{0}^{+\infty} te^{-pt} dt =$

3) Transformée de Laplace de $f(t) = t^n U(t)$ pour $n \in \mathbb{N}$

Propriété:

La transformée de Laplace de t \longrightarrow t^n U(t) pour $n \in \mathbb{N}$ est définie pour tout p > 0 et on $a : F(p) = \mathcal{L}[t^n U(t)]$ (p) $= \frac{n!}{p^{n+1}}$.

Démonstration admise

4) Transformée de Laplace de $f(t) = e^{-at} U(t)$ avec $a \in \hat{E}$

Propriété:

La transformée de Laplace de t $\longrightarrow e^{-at} U(t)$ est définie pour tout Re(p) > Re(a) et : $F(p) = \mathcal{L}[e^{-at} U(t)](p) = \frac{1}{p+a}$

4

Démonstration : (au dos)

D. PROPRIÉTÉS DE LA TRANSFORMÉE DE LAPLACE

1. LINÉARITÉ

Théorème : Soient f et g deux fonctions dont les transformées de Laplace sont $\mathcal{L}[f]$ et $\mathcal{L}[g]$ et g un réel.

- $\mathcal{L}[f+g] = \mathcal{L}[f] + \mathcal{L}[g].$
- $\mathscr{L}[\mathbf{k}f] = \mathbf{k} \mathscr{L}[f].$

Démonstration:

On utilise la linéarité de l'intégrale.

Propriété: Pour tout $\omega \in IR$, on a $\mathcal{L}\left[cos(\omega t)\ U(t)\right](p) = \frac{p}{p^2 + \omega^2}$ et $\mathcal{L}\left[sin(\omega t)\ U(t)\right](p) = \frac{\omega}{p^2 + \omega^2}$.

Démonstration:

On utilise les formules d'Euler et la linéarité de l'intégrale :

 $\cos(\omega t) =$

2. THÉORÈME DU RETARD

On regarde ce qui se passe si le signal, au lieu de commencer à l'instant t = 0, commence à l'instant $t = \tau$ avec $\tau > 0$.

5

Théorème du retard: Soit $\tau \in IR$. Si $F(p) = \mathcal{L}[f(t)](p)$, alors $\mathcal{L}[f(t-\tau)U(t-\tau)](p) = e^{-\tau p} F(p)$.

Démonstration:

On calcule $\mathcal{L}[f(t-\tau)U(t-\tau)](p) = \int_{0}^{+\infty} f(t-\tau)e^{-pt}dt$. Posons $I(x) = \int_{0}^{x} f(t-\tau)e^{-pt}dt$ pour tout $x \in \mathbb{R}^{+*}$.

Application : Transformée de Laplace d'un signal créneau

On considère le signal : $f(t) = \begin{cases} 1 \text{ si } t \in]0; 1[\\ 0 & \text{sinon} \end{cases}$

• Exprimer la fonction f à l'aide de l'échelon unité :

f(t) =

En déduire la transformée de Laplace du signal créneau :

 $\mathcal{L}[f]$ (p) =

3. EFFET D'UN CHANGEMENT D'ÉCHELLE SUR LA VARIABLE

Théorème: Soit $\alpha \in]0$; $+\infty[$,

Si $F(p) = \mathcal{L}[f(t)U(t)](p)$, alors $\mathcal{L}[f(\alpha t)U(t)](p) = \frac{1}{\alpha}F(\frac{p}{\alpha})$.

Démonstration:

 $F(p) = \mathcal{L}[f(t)U(t)](p) = \int_0^{+\infty} f(\alpha t)U(t) e^{-pt} dt.$

On pose, pour tout x > 0, $I(x) = \int_0^x f(\alpha t) e^{-pt} dt$.

On effectue le changement de variable $y = \alpha t$, d'où d $y = \alpha dt$.

Ainsi I(x) =

4. EFFET DE LA MULTIPLICATION PAR e^{-at} avec $a \in \mathbb{R}$

Théorème : Soit $a \in \mathbb{R}$.

Si $F(p) = \mathcal{L}[f(t)U(t)](p)$, alors $\mathcal{L}[f(t)e^{-at}U(t)](p) = F(p+a)$.

Démonstration:

 $\mathscr{L}[f(t)e^{-at}U(t)](p) = \int_0^{+\infty} f(t) e^{-at} e^{-pt} dt.$

=

Exemple: Calculer: $\mathcal{L}[te^{-3t}U(t)]$ (p)

5. TRANSFORMÉE D'UNE DÉRIVÉE

Théorème : Soit f une fonction continue sur]0; $+\infty[$, dérivable par morceaux sur]0; $+\infty[$ et dont la dérivée est continue par morceau sur]0; $+\infty[$.

Si $F(p) = \mathcal{L}[f(t)U(t)](p)$, alors $\mathcal{L}[f'(t)U(t)](p) = pF(p) - f(0^+)$.

Remarque:

On note $f(0^+)$ la limite à droite en 0 de f.

Démonstration:

On suppose que f est de classe C^1 (continue, dérivable et de dérivée continue) sur]0; $+\infty[$: $\mathcal{L}[f'(t)U(t)](p) = \int_0^{+\infty} f'(t) e^{-pt} dt$.

On pose pour tout x > 0, $I(x) = \int_0^x f'(t) e^{-pt} dt$.

On procède à l'aide d'une intégration par parties :

Exercice: Retrouver la transformée de Laplace de $\cos(\omega t)$ en partant de celle de $\sin(\omega t)$.

Théorème : Soit f une fonction de classe C^2 sur]0; $+\infty[$, admettant une transformée de Laplace. Si $F(p) = \mathcal{L}[f(t)U(t)](p)$, alors $\mathcal{L}[f''(t)U(t)](p) = p^2F(p) - pf(0^+) - f'(0^+)$.

Démonstration:

On sait que f'' = (f')'

Posons g = f'. Donc g est de classe C1 sur]0; $+\infty[$. On peut donc lui appliquer le théorème précédent.

6. TRANSFORMÉE DE LAPLACE D'UNE PRIMITIVE

Théorème : Soit f une fonction causale et soit $\phi(t) = \int_0^t f(u)U(u) du$ la primitive de f qui s'annule en 0.

Si F(p) =
$$\mathcal{L}[f(t)U(t)](p)$$
, alors $\mathcal{L}[\phi(t)](p) = \frac{1}{p}F(p)$ pour $p \neq 0$.

Démonstration : admise

Exercice: Retrouver la transformée de Laplace $(1 - e^{-t})U(t)$ en partant de celle de $e^{-t}U(t)$.

7. DÉRIVÉE D'UNE TRANSFORMÉE DE LAPLACE

Théorème : Si $F(p) = \mathcal{L}[f(t)U(t)](p)$, alors $F'(p) = \mathcal{L}[-tf(t)U(t)](p)$

Démonstration : admise

Exemple: Déterminer la transformée de Laplace de la fonction : $g(t) = t \sin t \ U(t)$.

8. THÉORÈMES DE LA VALEUR INITIALE ET FINALE

Théorème: Si $F(p) = \mathcal{L}[f(t)U(t)](p)$ et si les limites des fonctions considérées existent, on a :

- Théorème de la valeur initiale : $\lim_{p \to +\infty} pF(p) = \lim_{t \to 0^+} f(t)$.
- Théorème de la valeur finale : $\lim_{p \to 0^+} pF(p) = \lim_{t \to +\infty} f(t)$.

Démonstration : admise

E. CALCUL D'UN ORIGINAL

Définition: Si $F(p) = \mathcal{L}[f(t)U(t)](p)$, on dit que f est l'original de F. On note $f(t) = \mathcal{L}^{-1}[F(p)]$

Exemple 1: Calculer l'original de $F(p) = \frac{3}{p^2}$

Exemple 2: Calculer l'original de $F(p) = \frac{1}{(p+4)^3}$

Exemple 3: Calculer l'original de $F(p) = \frac{1}{p^2+9}$

Exemple 4: Calculer l'original de $F(p) = \frac{e^{-2p}}{p + \frac{1}{2}}$

Exemple 5: Calculer l'original de $F(p) = \frac{p e^{-2p}}{p^2+5}$

Remarque:

On utilise souvent la décomposition en éléments simples.

Exemple 6 : Calculer l'original de $F(p) = \frac{1 + 3 e^{-2p}}{p^2 + 2p + 2}$.

1. Montrer que : $F(p) = \frac{1}{(p+1)^2 + 1} + 3 \frac{e^{-2p}}{(p+1)^2 + 1}$.

2. Déterminer l'original de $\frac{1}{(p+1)^2+1}$ (penser à sin t)

3. En déduire l'original de F(p)

Exemple 7:

Calculer l'original de $F(p) = \frac{p^3 + 2p + 1}{p^2(p^2+2)}$.

1. Montrer que : $F(p) = \frac{1}{p} + \frac{1}{2p^2} - \frac{1}{2(p^2+2)}$

2. Déterminer l'original de : $\frac{1}{p}$ et $\frac{1}{2p^2}$

3. Déterminer l'original de : $\frac{1}{2(p^2+2)}$ [on utilisera $\sin(\sqrt{2}t)$ U(t)]

4. Conclure.

Exemple 8:

Calculer l'original de F(p) = $\frac{1}{4p^2 + 16p + 17} = \frac{1}{4} \times \frac{1}{(p+2)^2 + \frac{1}{4}}$.