TRAINS Project and Google Cloud Platform An Experiment in Big Data Analysis

November 28, 2018

Laila Daniel

Overview of the presentation

- 1 TRAINS project
- 2 Big data
- 3 Apache Spark
- 4 Google Cloud Platform

TRAINS Project

- Aim to predict disruption of rail traffic caused by weather
- Problem restricted to delays due to weather
 - delays of other trains are not considered in prediction

■ Timeline: 01/2018-10/2018

Partners: IL, LiVi, Trafi, VR

Area: Finland

■ Time range: 2 days ahead

Time step: 1 hour

Project leader: Roope Tervo

TRAINS Data

- Train and Weather data from 2010-2018
- 514 train stations
- 5 weather station's data within 100 kms of the train station is retrieved and the best weather station's data based on the least number of null values is taken
- Only passenger trains are considered
- Weather observation fetched for every train station for every hour when train has passed the station
- 27132 093 rows of data about 4.6 GB data
- 19 observation variables

TRAINS Data

TRAINS Data Variables

- time, train station, train_type, train_count, delay,
- weather station, latitude, longitude, pressure,
- max_temperature, min_temperature, mean_temperature, mean_dewpoint,
- mean_humidity, mean_winddirection, mean_windspeedms, max_windgust,
- max_snowdepth, max_n, min_vis, min_clhb, max_precipitation1h,
- max_precipitation3h, max_precipitation6h, flashcount

TRAINS project: What kind of framework we need?

- Weather data including flash data retrieval
- Weather data and Train data to be combined and saved
- Prediction of delay using machine learning algorithms
 - Random Forest Regression
 - LSTM (Long Short Term Memory) Neural networks
- Integrated view of data which allows unified framework for
 - Data Retrieval
 - Data processing
 - Data analysis
 - Data visualization
 - Saving and sharing the data

TRAINS project and Google Cloud Platform

Big data

- Large volume of data
- Structured, semi-structured and unstructured data
- Structured data
 - clearly defined data types resides in relational databases
- Unstructured data
 - data has internal structure but is not structured via pre-defined data models or schema
 - Textual or non-textual
 - Human- or machine-generated
 - Eg: Text, emails, social media data, satellite images, sensor data
- Real-time and non real-time data
- Quality of the data captured varies widely

What are the problems with Big data?

- One machine cannot process large amounts of data
- Traditional analysis techniques
 - Shell scripts (grep, awk, sed), Python pandas or R
 - These tools run on a single machine
 - How to store the big data?
 - How distribute the work?
 - How to deal with failures and slow machines?
 - What kind of analysis tools are needed?

Modern cluster computing environment

- Based on less expensive, consumer grade hardware, desktop like hardware, which makes it easy to grow in capacity.
- Complex software is used to automatically handle
 - distributing the data
 - problems due to node failures and slow machines
 - analyzing the data
- Move computation to data
- Data-centric computation

History of Modern cluster computing environment

MapReduce

- A programming model developed by Google
- A framework for processing parallelizable problems across large datasets using a large number of computers
- Map: map function which transform a small unit data into some number of key/value pairs
- Reduce: reduce function to merge the values (of the same key) into a single result
- Map and Reduce reads from the disk and writes to the disk

Word Count - Hello, World! program of Big Data

Word Count

Word Count

MapReduce

■ https://dzone.com/articles/how-hadoop-mapreduce-works

Apache Hadoop

- Open source software framework for distributed storage and distributed processing of very large data sets in computer clusters built from commodity hardware
- Inexpensive alternative to big data analysis
- Hadoop is written in Java
- Hadoop's HDFS is a distributed file system is designed to handle large files with sequential read/write operation.
- Programming model is MapReduce

MapReduce and Hadoop

- Map initially reads from the disk and writes to the disk
- Reduce reads from the disk and writes to the disk
- Disk I/O is very slow
- MapReduce supports only Batch processing
- So for iterative jobs and online processing MapReduce performs poorly
- Difficulty in creating "map" and "reduce" functions

Nature of Big Data processing

- Big Data applications need to combine different processing types
- MapReduce-like jobs, SQL queries, Interactive machine learning
- Hadoop MapReduce framework created many specialized engines for different processes
- Specialized engines increase complexity and inefficiency
- Some applications cannot be expressed efficiently in any engine

- Distributed computing framework
- Written in Scala, built on JVM
- A unified engine for SQL, Machine learning, Streaming and Graph processing
- Extended MapReduce framework
- Originated from Matei Zaharia's PhD work University of California, Berkeley
- First deployed in 2010, grown to +1000 contributors, thousands of deployments

- Supports batch, interactive and stream processing
- Processing done in memory and reduced Disk I/O
- 100x faster than Hadoop MapReduce
- Integration to many data sources, text, JSON, mySQL, Hadoop, Amazon EC2, Google cloud ...
- Scala, Java, Python and R interfaces
- Has an interactive Spark shell

Why Spark so powerful?

■ Resilient Distributed Dataset (RDD)

Resilient Distributed Dataset (RDD)

- Fundamental data sharing abstraction in Spark.
- RDDs provide data sharing among computations
- An immutable, fault tolerant collections of objects
- Partitioned across clusters and operated in parallel on different nodes
- With RDD, Spark captures a wide range of processing workloads, such as SQL, machine learning, streaming and graph processing

Resilient Distributed Dataset (RDD)

- Creating an RDD
 - parallelizing an existing collection in your driver program
 - referencing a dataset in an external storage system like HDFS or cloud
- Operations on RDD
 - Transformations: map, filter, groupBy, ...
 - Actions: reduce, count, collect, ...

Word Count in Spark

Word Count in Scala

Word Count in Python

Lineage Graphs/ Direct Acyclic Graphs (DAG) for RDD

- RDD Lineage or RDD dependency graph is a graph of all the parent RDDs of a RDD
- Built as a result of applying transformations to the RDD and creates a logical execution plan
- A RDD lineage graph is a graph of all transformations need to be executed after an action has been called

Lazy evaluations

- Spark Transformations are lazily evaluated
 - Spark executes all the transformations based on lineage graph/DAG only when an action is called
 - Spark can make many optimization decisions after it had a chance to look at the DAG in entirety
 - No need to materialize intermediate datasets in memory

- Data Sharing among computations
- Scalable
- Fault-tolerant
 - Lineage based recovery
- Optimized evaluation
 - Lazy evaluation
 - Spark SQLs Catalyst Optimizer
- High level libraries
 - SQL and Dataframes, Machine learning, Streaming, Graphicx
- Combining processes using pipelines
- Well documented Apache Spark

Spark Clusters

- Master-Worker architecture
- A central coordinator *Driver* coordinates with many distributed *Workers/Executors*
- Driver and each of the executors have their own Java processes

Spark Clusters

- Driver
 - Process where the main method runs
 - Converts the user program to tasks and schedules the task to executors
- SparkContext
 - Spark context sets up internal services and establishes a connection to a Spark execution environment
 - Driver uses SparkContext to communicate with the Cluster Manager
- Cluster Manager
 - Allocates resources
 - Hadoop YARN, Apache Mesos, Kubernetics

Spark Performance

Figure 6. Comparing Spark's performance with several widely used specialized systems for SQL, streaming, and machine learning. Data is from Zaharia²⁴ (SQL query and streaming word count) and Sparks et al. ³¹ (alternating least squares matrix factorization).

Ref: Apache Spark CACM paper

When to use Scala, Python or R

Scala

- Spark is implemented in Scala
- can understand and modify what Spark does internally
- allows to access the latest features
- Scala is fast
- Python (PySpark)
 - general purpose, easy to understand
 - Data science libraries and Visualization tools
- R (SparkR, Sparklyr)
 - large number of packages on statistical analysis and data visualization.

Databrick's Apache Spark Survey 2016

Databrick's Apache Spark Survey 2016

Google Cloud Platform (GCP)

Components of our data processing engine in TRAINS

- Smartmet Server used as Weather and Flash data repository
- Google Cloud's Dataproc Apache Spark cluster for retrieving data in parallel
- Google BigQuery for saving the data
- Apache Spark to implement Random Forest regression
- TensorFlow and Keras to implement LSTM
- Google Colab notebook and Jupyter notebooks for intermediate code development and testing

Google Cloud Platform An Integrated Framework for Big data applications

- Account in Google cloud
 - \$200 free credit or one year
- Dataproc
 - Apache Spark Cluster
 - Maximum of 8 virtual machines in free credit
- Storage
 - Buckets accessed as gs://...
 - Saving programs, data and notebooks
- BigQuery
 - RESTful web service
 - Interactive analysis of massively large datasets
- Datastudio
 - Visualization of data
 - Can generate reports
- Entry point to GCP

Google Cloud Platform - contd

- Deep learning libraries
 - TensorFlow
 - Keras
- Google Colab
 - Jupyter notebook environment
 - free cloud service that supports free GPU
- Tour to Colab

TRAINS project and Google Cloud Platform

TRAINS project Results

- Data retrieval and preprocessing of data using Apache Spark
 - Weather data and flash data for 514 stations for the years 2009 - 2018
 - Dataproc cluster consists of 8 CPUs with 2 cores each
 - With producer Opendata took about 8 hours
 - With producer fmi took about 3 days
 - With producer fmi we could retrieve one month data in a request
 - With producer flash, we retrieve the flash data for June to August with a single worker

TRAINS project Results - contd

Prediction for delay

- Linear Regression (LR): Did not converge
- Random Forest Regression (RFR): RMSE 13.55 and MAE 4.52
- Long Short Term Memory (LSTM): RMSE 11.38, MAE 7.87
- Results are trade off between MAE and RMSE
- MAE tells about overall accuracy while RMSE gives more weight on large mistakes
- Rail traffic operation center wants to emphasize large delays

Future work

- More Refined model for TRAINS data
 - Dependencies on derived variables
 - Handling of missing data
 - Distributed Keras in Dataproc
 - Use ML engine in GCP
- Spark for other Big data computationally intensive problems
 - Road delays and weather
 - Air traffic and weather
 - Ensemble calibration
 - Nowcasting

Thank You

- To Roope Terve for
 - Introducing me to the TRAINS project
 - Discussions, clarifications
 - Implementation of the TRAINS project
 - Beautiful coding style and programs
- To Jussi Ylhäisi for
 - All ongoing discussions
- To you all for
 - Your Attention
- Questions?

References

- Apache Spark: A Unified Engine for Big Data Processing, Communications of the ACM (CACM), November 2016
- Apache Spark Overview
- Apache Spark databricks
- Coursera, Edx, Udemy, ... courses on Apache Spark
- Google cloud platform, just google
- Coursera and Edx courses on Google cloud platform

