Chapitre 06: Modélisation d'une action sur une système - Corrigé

1 A et B.

2 A.

3 C.

4 B.

5 B.

6 B et C.

7 A, B et C.

8 C.

9 B.

10 A, B et C.

11 A et C.

12 A et C.

- **15 1.** La voiture subit l'action à distance de la Terre et l'action de contact de la route.
- **2.** La voiture étant immobile, les forces se compensent (voir chapitre 8).

Représentation des forces modélisant les actions mécaniques :

- 16 La force modélisant l'action exercée par la main sur la corde doit être représentée au point C par un vecteur $\vec{F}_{\text{main de l'archer/corde}}$ dont les caractéristiques sont :
- la direction : l'horizontale ;
- le sens : de la corde vers la main de l'archer ;
- la valeur : 225 N;
- la longueur $\ell = \frac{225 \times 1,0}{100} = 2,3$ cm (2 chiffres significatifs).

main de l'archer
$$\leftarrow$$
 C $\overrightarrow{F}_{\text{main de l'archer/corde}}$ C

- **21 1.** L'interaction modélisée par la force représentée sur le schéma est l'action de Jupiter sur son satellite Io.
- **2.** L'expression vectorielle de cette force d'interaction $\vec{F}_{\rm J/I}$ est :

$$\vec{F}_{J/I} = G \cdot \frac{M_J \cdot M_I}{d^2} \cdot \vec{u}_{IJ}$$

1. L'expression vectorielle de la force d'interaction $\vec{F}_{1/1}$ est :

$$\vec{F}_{I/J} = -G \cdot \frac{M_I \cdot M_J}{d^2} \cdot \vec{u}_{IJ} \text{ ou } \vec{F}_{I/J} = G \cdot \frac{M_I \cdot M_J}{d^2} \cdot \vec{u}_{JI}$$

2. En convertissant la distance d en mètre, on a : $d = 4.22 \times 10^5 \times 10^3 = 4.22 \times 10^8$ m La valeur de cette force est :

$$F_{\rm I/J} = 6,67 \times 10^{-11} \times \frac{8,93 \times 10^{22} \times 1,90 \times 10^{27}}{(4,22 \times 10^8)^2}$$

$$F_{\rm I/J} = 6.35 \times 10^{22} \text{ N}$$

3. Les données indiquent une échelle de 1,0 cm pour une valeur de force de $3,00 \times 10^{22}$ N. Ainsi, la longueur ℓ du vecteur est :

$$\ell = \frac{6,35 \times 10^{22} \times 1,0}{3,00 \times 10^{22}}$$
 soit $\ell = 2,1$ cm.

Schéma

- **1.** D'après le tableau, l'intensité de pesanteur semble dépendre de la masse de la planète et, d'après l'énoncé (texte), de l'altitude à laquelle on se trouve.
- 2. D'après les expressions de ces forces :

$$\vec{P} = m \cdot \vec{g}$$

$$\vec{F}_{\text{astre/système}} = m \cdot \left(\frac{G \cdot m_{\text{A}}}{(R+h)^2}\right) \cdot \vec{u}_{\text{SA}}$$

on en déduit :

$$\vec{g} = \frac{G \cdot m_{A}}{(R+h)^2} \cdot \vec{u}_{SA}$$

L'intensité de pesanteur dépend bien de la masse de l'astre $m_{\rm A}$ et de l'altitude h (ainsi que du rayon de l'astre R).

- **1.** Pour déterminer la valeur du poids, on a utilisé un dynamomètre.
- **2.** La longueur du vecteur représentant le poids est de 3,5 cm et l'échelle indique que 1,0 cm représente 5,0 N, donc :

 $P = 3.5 \times 5.0 = 17.5 \text{ N}$

P = 18 N (2 chiffres significatifs)

3. Comme $P = m \cdot g$ alors $m = \frac{P}{g}$. $m = \frac{18}{9.81} = 1.8 \text{ kg}$

17 On lit l'échelle : 0,4 cm représente 2 N.

Les vecteurs rouges mesurent 0,9 cm, donc $F_1 = 0.9 \times \frac{2}{0.4} = 4.5 \text{ N}$; $F_1 \approx 5 \text{ N}$.

Les vecteurs verts mesurent 1,8 cm, donc $F_2 = 1,8 \times \frac{2}{0,4} = 9$ N.

Tableau des caractéristiques des forces :

Cas A	Cas B	Cas C
$ \begin{array}{c} 2N \\ \hline \vec{F}_1 \end{array} $	\vec{F}_1 \vec{F}_2	$ \stackrel{\text{2 N}}{\longrightarrow} \vec{F}_1 $
 Les caractéristiques de la force F sont: la direction: l'horizontale; le sens: de la gauche vers la droite; la valeur: ≈ 5 N. 	 Les caractéristiques de la force F₁ sont : la direction : la verticale ; le sens : de bas en haut ; la valeur : ≈ 5 N. 	 Les caractéristiques de la force F sont : - la direction : l'horizontale ; - le sens : de la droite vers la gauche ; - la valeur : ≈ 5 N.
 Les caractéristiques de la force F₂ sont : la direction : l'horizontale ; le sens : de la gauche vers la droite ; la valeur : 9 N. 	• Les caractéristiques de la force \vec{F}_2 sont : - la direction : l'horizontale ; - le sens : de la gauche vers la droite ; - la valeur : 9 N.	• Les caractéristiques de la force \vec{F}_2 sont : - la direction : l'horizontale ; - le sens : de la gauche vers la droite ; - la valeur : 9 N.

30 La Station spatiale internationale ISS

1. a. Schéma ci-contre:

b. L'expression de la force $\vec{F}_{T/S}$ est :

$$\vec{F}_{T/S} = G \cdot \frac{M_T \cdot m}{d^2} \cdot \vec{u}$$

Or la distance entre le centre de la Terre et l'ISS est $d = R_T + h$. Donc :

$$\vec{F}_{T/S} = G \cdot \frac{M_T \cdot m}{(R_T + h)^2} \cdot \vec{u}$$

2. On sait que $M_T = 5.97 \times 10^{24}$ kg et m = 435 t = 435×10^3 kg, alors : $R_T = 6371$ km = 6371×10^3 m et h = 400 km = 400×10^3 m.

$$F_{\text{T/S}} = 6.67 \times 10^{-11} \times \frac{5.97 \times 10^{24} \times 435 \times 10^3}{(6.371 \times 10^3 + 400 \times 10^3)^2} \text{, donc } F_{\text{T/S}} = 3.78 \times 10^6 \text{ N}.$$

QUELQUES CONSEILS

- 1. Il faut considérer la distance entre l'ISS (le point S) et le centre de la Terre (le point T), donc tenir compte à la fois du rayon de la Terre R_T et de l'altitude de l'ISS h.
- 2. Convertir les distances en mètre et les masses en kilogramme.

DS (35 minutes) Équilibre

- 1. Le système étudié {acrobate} est soumis :
- à l'action de la Terre (action à distance);
- à l'action du sol (action de contact);
- à l'action de l'air (action de contact).

2.
$$P = m_{\text{acrobate}} \times g$$
, soit $P = 72 \text{ kg} \times 9.8 \text{ N} \cdot \text{kg}^{-1} = 7.0 \times 10^2 \text{ N}$.

On a
$$\frac{7.0 \times 10^2 \text{ N}}{200 \text{ N} \cdot \text{cm}^{-1}} = 3.5 \text{ cm}.$$

On modélise le poids \vec{P} par un segment fléché de longueur 3,5 cm, vertical et vers le bas représenté en un point matériel modélisant l'acrobate.

3. a. Le vecteur unitaire $\vec{u}_{_{T\to a}}$ est dirigé vers le haut. La force est donc opposée à ce vecteur unitaire. L'expression vectorielle de cette force doit comporter un signe négatif.

$$\vec{F}_{\text{Terre/acrobate}} = -G \frac{m_{\text{T}} \times m_{\text{acrobate}}}{R_{\text{T}}^2} \vec{u}_{\text{T} \rightarrow \text{a}}.$$

b.
$$F_{Terre/acrobate} = 6,67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \times \frac{6,0 \times 10^{24} \text{ kg} \times 72 \text{ kg}}{(6,4 \times 10^6 \text{ m})^2}$$

$$F_{\text{Terre/acrobate}} = 7.0 \times 10^2 \text{ N}.$$

c. Ces deux forces ont la même valeur.

4. D'après le principe des actions réciproques, $\vec{F}_{\text{acrobate/Terre}} = -\vec{F}_{\text{Terre/acrobate}}$. Ces deux forces ont donc la même droite d'action, des sens opposés et la même valeur.

$$F_{\text{acrobate/Terre}} = 7.0 \times 10^2 \text{ N}.$$

5. a. Comme le système étudié n'est soumis qu'à son poids et à l'action du sol, et qu'il est immobile dans le référentiel lié au sol, alors les deux forces ont même droite d'action et sont telles que : $\vec{R} = -\vec{F}_{\text{Terre/acrobate}}$ et donc $R = 7.0 \times 10^2 \text{ N}$.

b. On modélise la réaction du sol \vec{R} par un segment fléché de longueur 3,5 cm, vertical et vers le haut, représenté en un point matériel modélisant l'acrobate.

