Signal Processing on Databases

Jeremy Kepner

Lecture 8: Kronecker graphs, data generation, and performance

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Outline

- Introduction
 - Graph500
 - Kronecker Graphs
- B^{⊗K} Graphs
- (B+I)^{⊗K} Graphs
- Performance
- Summary

Graph500 Benchmark Performance

Power Law Modeling of Kronecker Graphs

- Real world data (internet, social networks, ...) has connections on all scales (i.e power law)
- Can be modeled with Kronecker Graphs: $G^{\otimes k} = G^{\otimes k-1} \otimes G$
 - Where "⊗"denotes the Kronecker product of two matrices

Outline

Introduction

- B^{⊗K} Graphs
 - Definitions
 - Bipartite Graphs
 - Degree Distribution
- (B+I)^{⊗K} Graphs
- Performance
- Summary

Kronecker Products and Graph

Kronecker Product

- Let B be a N_BxN_B matrix
- Let C be a N_CxN_C matrix
- Then the Kronecker product of B and C will produce a N_BN_CxN_BN_C matrix A:

$$A = B \otimes C = \begin{pmatrix} b_{1,1}C & b_{1,2}C & \dots & b_{1,M_B}C \\ b_{2,1}C & b_{2,2}C & \dots & b_{2,M_B}C \\ \vdots & \vdots & & \vdots \\ b_{N_B,1}C & b_{N_B,2}C & \dots & b_{N_B,M_B}C \end{pmatrix}$$

Kronecker Graph (Leskovec 2005 & Chakrabati 2004)

- Let G be a NxN adjacency matrix
- Kronecker exponent to the power k is:

$$G^{\otimes k} = G^{\otimes k-1} \otimes G$$

Types of Kronecker Graphs

Explicit

G only 1 and 0s

Stochastic

 G contains probabilities

Instance

 A set of M points (edges) drawn from a stochastic

Kronecker Product of a Bipartite Graph

- $B(5,1) \otimes B(3,1) \stackrel{P}{=} B(15,1) \cup B(3,5)$
- Fundamental result [Weischel 1962] is that the Kronecker product of two complete bipartite graphs is two complete bipartite graphs
- More generally

$$B(n_1, m_1) \otimes B(n_2, m_2) \stackrel{P}{=} B(n_1 n_2, m_1 m_2) \cup B(n_2 m_1, n_1 m_2)$$

Degree Distribution of Bipartite Kronecker Graphs

 Kronecker exponent of a bipartite graph produces many independent bipartite graphs

$$B(n,m)^{\otimes k} \stackrel{P}{=} \bigcup_{r=0}^{k-1} \bigcup_{r=0}^{\binom{k-1}{r}} B(n^{k-r}m^r, n^rm^{k-r})$$

 Only k+1 different kinds of nodes in this graph, with degree distribution

$$Count[Deg = n^r m^{k-r}] = \binom{k}{r} n^{k-r} m^r$$

Explicit Degree Distribution

 Kronecker exponent of bipartite graph naturally produces exponential distribution

Instance Degree Distribution

 An instance graph drawn from a stochastic bipartite graph is just the sum of Poisson distributions taken from the explicit bipartite graph

Outline

- Introduction
- B^{⊗K} Graphs

- (B+I)^{⊗K} Graphs
 - Bipartite + Identity Graphs
 - Permutations and substructure
 - Degree Distribution
 - Iso Parametric Ratio
- Performance
- Summary

Theory

- Bipartite Kronecker graphs highlight the fundamental structures in a Kronecker graph, but
 - Are not connected (i.e. many independent bipartite graphs)
- Adding identity matrix creates connections on all scales
 - Resulting explicit graph has diameter = 2
 - Sub-structures in the graph are given by

$$(B+I)^{\otimes k} \stackrel{P}{=} \sum_{r=1}^{k} {\binom{k}{r}}, {\bigvee^{N^{k-1}}} B^{\otimes k}$$

- Where "" indicates permutations are required to add the matrices
- Sub-structure can be revealed by applying permutation that "groups" vertices by their bipartite sub-graph

Bipartite Permutation

- Left: unpermuted (B+I)^{⊗4} kronecker graph
- Right: permuted (B+I)^{⊗4} kronecker graph

Identifying Substructure

Permuting specific terms shows their contributions to the graph

Quantifying Substructure

 Connections between bipartite subgraphs are the Kronecker product of corresponding 2x2 matrices, e.g. B(1,1)^{⊗4}⊗I(2)

Substructure Degree Distribution

- Only k+1 different kinds of nodes in this graph, with same degree distribution, only differing values of vertex degree
- $(B+I)^{\otimes k}$ is steeper than $B^{\otimes k}$

Example Result: Iso-Parametric Ratio

- Iso-parametric ratios measure the "surface" to "volume" of a sub-graph
- Can analytically compute for a Kronecker graph: (B+I)^{⊗k}
- Shows large effect of including "half" or "all" of bipartite sub-graph

Kronecker Graph Theory -Summary of Current Results-

Quantity	Graph: B(n,m) ^{⊗k}	Graph: (B+I) ^{⊗k}
Degree Distribution	$Count[Deg = n^r m^{k-r}] = \binom{k}{r} n^{k-r} m^r$	$Count[Deg = (n+1)^r (m+1)^{k-r}] = \binom{k}{r} n^{k-r} m^r$
Betweenness Centrality	Count[$C_b = (n/m)^{2r-k} (n^{k-r}m^r - 1)$] = $\binom{k}{r} n^k$	$-rm^r$
Diameter	$Diam(B^{\otimes k}) = \infty$	$Diam((B+I)^{\otimes k}) = 2$
Eigenvalues	$eig(B(n,m)^{\otimes k}) = \{\overbrace{(nm)^{k/2},,(nm)^{k/2}}^{2^{k-1}}, \overbrace{-(nm)^{k/2},,-(nm)^{k/2}}^{2^{k-1}}\}$	
	$eig((B+I)^{\otimes k})$	$= \{((nm)^{1/2}+1)^k, ((nm)^{1/2}+1)^{k-1}, ((nm)^{1/2}-1)^2((nm)^{1/2}+1)^{k-2}, \ldots\}$
Iso-parametric Ratio "half"	$IsoPar(n_k(i)) = \infty$	$ IsoPar(n_k(i)) = 2(n+1)^{k-r}(m+1)^r - 2$
Iso-parametric Ratio "all"	$IsoPar(n_k(i) \cup m_k(i)) = 0$ $IsoPar(n_k(i) \cup m_k(i))$	$)) = 2 \frac{n^r m^{k-r} (n+1)^{k-r} (m+1)^r + n^{k-r} m^r (n+1)^r (m+1)^{k-r}}{2n^k m^k + n^r m^{k-r} + n^{k-r} m^r + [\chi \text{ terms}]} - 2 $

Outline

- Introduction
- B^{⊗K} Graphs
- (B+I)^{⊗K} Graphs

- **Performance**
 - Insert
 - Query
 - Matrix multiply
- Summary

Accumulo Data Ingestion Scalability pMATLAB Application Using D4M

Effect of Pre-Split

Effect of Ingestion Block Size

Accumulo with 8 tablet servers

Accumulo Ingestion Scalability Study LLGrid MapReduce With A Python Application

Number of Processes

Accumulo Row Query Time pMATLAB Application Using D4M

Accumulo Column Query Time pMATLAB Application Using D4M

Matrix Multiply Performance

- Sparse correlation (matrix multiply) is at the heart of graph algorithms
- Huge efficiency gap between what COTS processors are designed to do and what we need them to do ⊗

Data Use Cases

Total Data Volume

- Data volume and data request size determine best approach
- Always want to start with the simplest and move to the most complex

Summary

- Power law graphs are the dominant type of data
 - Graph500 relies on Kronecker graphs
- Kronecker graphs have a rich theoretical structure that can be exploited for theory
- Parallel computations are implemented in D4M via pMatlab
- Complex graph algorithms are ultimately limited by hardware sparse matrix multiply performance

Example Code & Assignment

- Example Code
 - D4Muser_share/Examples/3Scaling/1KroneckerGraph
 - D4Muser_share/Examples/3Scaling/2ParallelDatabase
 - D4Muser_share/Examples/3Scaling/3MatrixPerformance

- Assignment
 - None

MIT OpenCourseWare https://ocw.mit.edu

RES.LL-005 Mathematics of Big Data and Machine Learning IAP 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.