Л. р. 2 Математические операции в Python

Цель работы: познакомиться с основными математическими операциями в Python.

Если в качестве операндов некоторого арифметического выражения используются только целые числа, то результат тоже будет целое число. Исключением является операция деления, результатом которой является вещественное число. При совместном использовании целочисленных и вещественных переменных, результат будет вещественным.

Язык Python, благодаря наличию огромного количества библиотек для решения разного рода вычислительных задач, сегодня является конкурентом таким пакетам как Matlab и Octave. Запущенный в интерактивном режиме, он, фактически, превращается в мощный калькулятор. В этом уроке речь пойдет об арифметических операциях, доступных в данном языке Арифметические операции изучим применительно к числам.

Целые числа (int)

Числа в Python поддерживают набор самых обычных математических операций:

x + y	Сложение
x - y	Вычитание
x * y	Умножение
x / y	Деление
x // y	Получение целой части от деления
x % y	Остаток от деления
-x	Смена знака числа
abs(x)	Модуль числа
divmod(x, y)	Пара (х // у, х % у)
x ** y	Возведение в степень
pow(x, y[, z])	Функция возведения в степень:
	х : Число, которое требуется возвести в степень.
	у : Число, являющееся степенью, в которую нужно возвести первый аргумент. Если
	число отрицательное или одно из чисел "x" или "y" не целые, то аргумент "z" не
	принимается.
	z : Число, на которое требуется произвести деление по модулю. Если число указано,
	ожидается, что "x" и "y" положительны и имеют тип int.

Пример применения вышеописанных операций над целыми числами:

```
x = 5
y = 2
z = 3
x+y = 7
x-y = 3
x*y = 10
x/y = 2.5
x//y = 2
x*y = 1
-x= -5
abs(-x) = 5
divmod(x,y) = (2, 1)
x**y = 25
pow(x,y,z) = 1
```

Вещественные числа (float)

Вещественные числа поддерживают те же операции, что и целые. Однако (из-за представления чисел в компьютере) вещественные числа неточны, и это может привести к ошибкам.

Пример применения вышеописанных операций над вещественными числами

Библиотека (модуль) math

В стандартную поставку Python входит библиотека math, в которой содержится большое количество часто используемых математических функций.

Для работы с данным модулем его предварительно нужно импортировать.

Рассмотрим наиболее часто используемые функции модуля math

math.ceil(x)	Возвращает ближайшее целое число большее, чем х
math.fabs(x)	Возвращает абсолютное значение числа х
math.factorial(x)	Вычисляет факториал х
math.floor(x)	Возвращает ближайшее целое число меньшее, чем х
math.exp(x)	Вычисляет е**х
math.log2(x)	Логарифм по основанию 2
math.log10(x)	Логарифм по основанию 10
math.log(x[, base])	По умолчанию вычисляет логарифм по основанию е, дополнительно можно указать основание логарифма
math.pow(x, y)	Вычисляет значение х в степени у
math.sqrt(x)	Корень квадратный от х

Пример применения вышеописанных функций над числами

В программе определены 4 переменные - a, b, c, d, каждая из которых является либо целым числом, либо вещественным, либо отрицательным.

Командой print() выводится значение каждой переменной на экран при выполнении программы.

В переменную z помещается результат выполнения функции модуля math.

Затем командой print() выводится сообщение в виде используемой функции и её аргумента и результат её выполнения.

```
Python 3.4.1: puthon.py - C:\Documents and Settings\Student\Paбочий стол\puthon.py
File Edit Format Run Options Windows Help
import math
a=10
b=-5
c=4.3
d=3
print('a ='.a)
print('b =',b)
print('c =',c)
print('d =',d)
z=math.ceil(a)
print('math.ceil(',c,') =',z)
z=math.fabs(b)
print('math.fabs(',b,') =',z)
z=math.factorial(a)
print('math.factorial(',a,') = ',z)
z=math.floor(c)
print('math.floor(',c,') =',z)
z=math.exp(b)
print('math.exp(',b,') =',z)
z=math.log2(a)
print('math.log2(',a,') =',z)
z=math.log10(a)
print('math.log10(',a,') =',z)
z=math.log(d,a)
print('math.log(',d,',',a,') =',z)
z=math.pow(a,d)
print('math.pow(',a,',',d,') =',z)
z=math.sqrt(a)
 ☐ Q : qrt(',a,') =',z)
                                                                                                Ln: 21 Col: 29
```

Пример программы на Python

```
Python 3.4.1 Shell
File Edit Shell Debug Options Windows Help
Python 3.4.1 (v3.4.1:c0e311e010fc, May 18 2014, 10:38:22) [MSC v.1600 32 bit
(Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
           ====== RESTART ======
>>>
a = 10
b = -5
c = 4.3
d = 3
math.ceil( 4.3 ) = 10
math.fabs(-5) = 5.0
math.factorial( 10 ) = 3628800
math.floor(4.3) = 4
math.exp(-5) = 0.006737946999085467
math.log2(10) = 3.321928094887362
math.log10(10) = 1.0
math.log(3, 10) = 0.47712125471966244
math.pow(10, 3) = 1000.0
math.sqrt( 10 ) = 3.1622776601683795
```

Результат выполнения программы с применением функций модуля math.

Тригонометрические функции модуля math

math.cos(x)	Возвращает сов числа Х
math.sin(x)	Возвращает sin числа X
math.tan(x)	Возвращает tan числа Х
math.acos(x)	Возвращает асоѕ числа Х
math.asin(x)	Возвращает asin числа X
math.atan(x)	Возвращает atan числа X

Пример применения вышеописанных функций над числами с модулем math

В программе определена переменная х, содержащая целое число.

Значение переменной выводится командой print() на экран.

В переменную z помещается результат выполнения тригонометрической функции модуля math. Затем командой print() выводится сообщение в виде используемой функции и её аргумента и результат её выполнения.

Пример программы с использованием тригонометрических функций модуля math Результат выполнения программы с применением тригонометрических функций модуля math

Константы:

- math.pi число Pi.
- math.e число е (экспонента).

Контрольные вопросы

- Какие типы данных используются в Python.
- Как обозначаются константы в Python.
- Как в Python вводятся и выводятся данные.
- Объясните понятие интерпретируемый язык.
- Объясните понятие компилируемый язык.
- Что такое IDE. Что в себя включает IDE.

Пример (Вариант 0)

Напишите программу, которая бы вычисляла заданное арифметическое выражение при заданных переменных.

Ввод переменных осуществляется с клавиатуры.

Вывести результат с 2-мя знаками после запятой.

$$Z = \frac{9\pi t + 10\cos(x)}{\sqrt{t} - |\sin(t)|} * e^x$$

x=10 t=1

Решение

Сначала импортируем модуль math. Для этого воспользуемся командой import math.

Затем следует ввести значения двух переменных целого типа x и t.

Для ввода данных используется команда input, но так как в условии даны целые числа, то нужно сначала определить тип переменных: x=int(), t=int().

Определив тип переменных, следует их ввести, для этого в скобках команды int() нужно написать команду input().

Для переменной х это выглядит так: x=int(input("сообщение при вводе значения")).

Для переменной t аналогично: t=int(input("сообщение при вводе значения")).

Следующий шаг - это составление арифметического выражения, результат которого поместим в переменную z.

Сначала составим числитель. Выглядеть он будет так: 9*math.pi*t+10*math.cos(x).

Затем нужно составить знаменатель, при этом обратим внимание на то, что числитель делится на знаменатель, поэтому и числитель и знаменатель нужно поместить в скобки (), а между ними написать знак деления /.

Выглядеть это будет так: (9*math.pi*t+10*math.cos(x))/(math.sqrt(t)-math.fabs(math.sin(t))).

Последним шагом является умножение дроби на экспоненту в степени х.

Так как умножается вся дробь, то следует составленное выражение поместить в скобки (), а уже потом написать функцию math.pow(math.e,x).

В результате выражение будет иметь вид:

z=((9*math.pi*t+10*math.cos(x))/(math.sqrt(t)-math.fabs(math.sin(t))))*math.pow(math.e,x).

При составлении данного выражения следует обратить внимание на количество открывающихся и закрывающихся скобок.

Командой print() выведем значение переменной, отформатировав его командой format.

Сам формат записывается в апострофах в фигурных скобках {}.

В задаче требуется вывести число с двумя знаками после запятой, значит вид формата будет выглядеть следующим образом: {0:.2f}, где 2 - это количество знаков после запятой, а f указывает на то, что форматируется вещественное число. При этом перед 2 нужно поставить точку, указав тем самым на то, что форматируем именно дробную часть числа.

```
example_math_var0.py-C/Users/maxim/Desktop/Python/example_math_var0.py (3.7.1)

Ele [dit Fgrmat Bun Options Window Help
import math
x=int(input("Введите переменную х:"))
t=int(input("Введите переменную t:"))
z=((9*math.pi*t+10*math.cos(x))/(math.sqrt(t)-math.fabs(math.sin(t))))*math.pow(math.e,x)
print("z = [[0:.2f]".format(z))
```

Результат

```
Elle Edit Shell Debug Options Window Help

Python 3.7.1 (v3.7.1:260ec2c36a,
1)] on win32

Type "help", "copyright", "credit
>>>
======= RESTART: C:/Users/maxim/
Введите переменную x:10
Введите переменную t:1
z = 2762685.71
>>> |
```

Задания для самостоятельной работы (по вариантам)

ВАРИАНТЫ ЗАДАНИЙ

- (Nº варианта -	Ralli	номер	в списке	группы)
- 1	тч- вариапта -	ваш	помср	B CHINCKE	i pyiiiibi)

N₂	Уравнение	Значения
1.	$z = \left(\frac{\sqrt{x} + 5 * y}{\pi} + 0,55^{3} * \cos x\right)^{3};$	x=-0,9; y=0,3
2.	$t = \left(\frac{\ln a^2 - b^a - c }{\sin a} + \frac{16.9^3}{\pi}\right)^2$	a=9,9; b=1; c=0,1
3.	$x = \frac{\sin^2(y) + \cos^2(z)}{\pi * z*3y } + arctgz;$	y=-10,1; z=0,4
4.	$z = \frac{\left(\sqrt{ x } + \sqrt{ 3y ^2}\right)}{\pi^3 * 0.75} - e^8;$	x=-8,6; y=0,45
5.	$d = \pi^2 * \sqrt{a^3 - b^3} - \frac{e^{0.5} + \ln ab }{0.5^8};$	a=8,78 b=-0,49
6.	$S = \sqrt{x^{y} + y^{z} + z^{x} + \frac{e^{x} + \ln \sin(y) }{z^{4} * 0.87}};$	x=-1 y=8,8 z=3,4
7.	$A = \frac{\left \sin^2(2x)\right - \left \cos^4(3y)\right }{\pi^4 + 3,97} + \frac{e^{-xy} + 10xy}{1,34y^4};$	x=4,74 y=-1,98
8.	$t = \frac{a^{-1} + b^{-2} + c^{-3}}{\pi ab - c} + \frac{e^{c} + \cos(b)}{\cos(c)};$	a=-7,25 b=1,7 c=0,57
9.	$f = \frac{m * v^{2+m}}{3 * \pi^{3-m}} + \left(\frac{e^{m+0.5} + v-10 }{\cos(m) - 25,8}\right);$	m=-0,3 v=7,2
10.	$y = arctg(\frac{x+y}{\pi * \sin(y)}) + \frac{e^{4x}}{xz};$	x=4,7 z=-5,45 y=1,7
11.	$f = \frac{x^5 + \cos^3 x^2}{\pi * 3,57 * \sin(y)} + \sqrt{x^7 - y^3};$	x=0,5 y=-4,7
12.	$z = \frac{\cos(x + y^{12})}{\sqrt{y^3 + \pi - x}} + \ln x;$	x=0,25 y=7,7
13.	$z = \frac{\cos(y) - \sqrt{xy^2}}{\ln y + 0.5^6 + \cos^2 y};$	x=0,54 y=0,11
14.	$A = \frac{\left \cos^{3} x\right }{3\pi^{2}} + \frac{e^{xy} + \left x - y\right }{y^{4}};$	x=-1 $y=-2,34$

15.	$B = \frac{\sin x^3 + \cos^3 x^2}{\pi * 2xy }$	x=1,45 y= 4,78
16.	$t = \left(\frac{\ln\left a^2 - b^a - c\right }{\sin a} + \frac{16.9^3}{\pi}\right)^2$	a=8,5; b=1; c=0,2
17.	$x = \frac{\sin^2(z) + \cos^2(y)}{\pi * y*3z } + arctgz;$	y=-10,1; z=0,4
18.	$z = \frac{\left(\sqrt{ x } + \sqrt{ 3y }^3\right)}{\pi^3 * 0.05} - e^8;$	x=-8,6; y=0,45
19.	$d = \pi^{2} * \sqrt{a^{3} - b^{3}} - \frac{e^{0.5} + \ln ab }{0.5^{8}};$	a=7,5 b=-1
20.	$S = \sqrt{x^{y} + y^{z} + z^{x} + \frac{e^{x} + \ln \sin(y) }{z^{4} * 0.87}};$	x=-1 y=8,8 z=3,4
21.	$t = \frac{a^{-1} + b^{-2} + c^{-3}}{\pi ab - c} + \frac{e^{c} + \cos(b)}{\cos(c)};$	a=-3,13 b=2,2 c=0,5
22.	$y = arctg(\frac{x+y}{\pi * \sin(y)}) + \frac{e^{4x}}{xz};$	x=2,7 z=-1,45 y=-3,3
23.	$S = \sqrt{x^{x} + y^{z} + z^{y} + \frac{e^{x} + \ln \sin(y) }{z^{4} * 0.78}};$	x=-1 y=8,8 z=3,4
24.	$f = \frac{m * v^{2+m}}{3 * \pi^{3-m}} + \left(\frac{e^{m+0.5} + v-10 }{\cos(m) - 25, 8}\right) ;$	m=-1 v=2,2
25.	$t = \frac{a^{-1} + b^{-2} + c^{-3}}{\pi ab - c} + \frac{e^{c} + \cos(b)}{\cos(c)};$	a=-4,25 b=2,7 c=2,17
26.	$S = \sqrt{x^{x} + y^{z} + z^{y} + \frac{e^{x} + \ln \sin(y) }{z^{4} * 0,78}};$	x=-1 y=6,3 z=1,3
27.	$z = \frac{\cos(x + y^{12})}{\sqrt{y^3 + \pi - x}} + \ln x;$	x=0,45 y=3,7
28.	$z = \frac{\cos(y) - \sqrt{xy^2}}{\ln y + 0.5^6 + \cos^2 y};$	x=0,45 y=0,11
	$A = \frac{\left \cos^{3} x\right }{3\pi^{2}} + \frac{e^{xy} + \left x - y\right }{y^{4}};$	x = -2 $y = -3,14$
30.	$A = \frac{\left \cos^{3} x\right }{3\pi^{2}} + \frac{e^{xy} + \left x - y\right }{y^{4}};$	x=-2 $y=-1,45$