First Order Logic

Mustafa Jarrar

1. Predicates and Quantified Statements I

- 2. Predicates and Quantified Statements II
- 3. Statements with Multiple Quantifiers

Watch this lecture and download the slides

http://jarrar-courses.blogspot.com/2014/03/discrete-mathematics-course.html

More Lectures Courses at: http://www.jarrar.info

Acknowledgement:

This lecture is based on, but not limited to, chapter 3 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".

In this Lecture

We will learn

- ☐ Part1: Negations of Quantified Statements;
- ☐ Part 2: Contrapositive, Converse and inverse Quantified Statements;
- ☐ Part 3: Necessary and Sufficient Conditions, Only If

Keywords: Predicates, FOL, First Order Logic, Universal Quantifier, Existential Quantifier, Negation, Truth of Universal Statements, Necessary and Sufficient Conditions

How to negate a universal statement:

All Palestinians like Zatar

Some Palestinians do not like Zatar

Theorem 3.2.1 Negation of a Universal Statement

The negation of a statement of the form

$$\forall x \text{ in } D, Q(x)$$

is logically equivalent to a statement of the form

$$\exists x \text{ in } D \text{ such that } \sim Q(x).$$

Symbolically,
$$\sim (\forall x \in D, Q(x)) \equiv \exists x \in D \text{ such that } \sim Q(x).$$

How to negate an extensional statement:

Some Palestinians Like Zatar

All Palestinians do not like Zatar

Theorem 3.2.2 Negation of an Existential Statement

The negation of a statement of the form

 $\exists x \text{ in } D \text{ such that } Q(x)$

is logically equivalent to a statement of the form

$$\forall x$$
in D , $\sim Q(x)$.

Symbolically, $\sim (\exists x \in D \text{ such that } Q(x)) \equiv \forall x \in D, \sim Q(x).$

. 5

 $\forall p \in Prime . Odd(p)$

Some computer hackers are over 40

All computer programs are finite

 $\forall p \in Prime . Odd(p)$

 $\exists p \in \text{Prime} . \sim \text{Odd}(p)$

Some computer hackers are over 40

All computer programs are finite

 $\forall p \in Prime . Odd(p)$

 $\exists p \in \text{Prime} . \sim \text{Odd}(p)$

Some computer hackers are over 40

All computer hackers are not over 40

All computer programs are finite

 $\forall p \in Prime . Odd(p)$

 $\exists p \in \text{Prime} . \sim \text{Odd}(p)$

Some computer hackers are over 40

All computer hackers are not over 40

All computer programs are finite

Some computer programs are not finite

No politicians are honest

$$\forall x . P(x) \rightarrow Q(x)$$

 $\forall p \in \mathsf{Person} . \mathsf{Blond}(p) \to \mathsf{BlueEyes}(p)$

If a computer program has more than 10000 lines then it contains a bug

No politicians are honest

Some politicians are honest

$$\forall x . P(x) \rightarrow Q(x)$$

 $\forall p \in \mathsf{Person} . \mathsf{Blond}(p) \to \mathsf{BlueEyes}(p)$

If a computer program has more than 10000 lines then it contains a bug

No politicians are honest

Some politicians are honest

$$\forall x . P(x) \rightarrow Q(x)$$
$$\exists x . P(x) \land \sim Q(x)$$

 $\forall p \in \mathsf{Person} \cdot \mathsf{Blond}(p) \to \mathsf{BlueEyes}(p)$

If a computer program has more than 10000 lines then it contains a bug

No politicians are honest

Some politicians are honest

$$\forall x . P(x) \rightarrow Q(x)$$
$$\exists x . P(x) \land \sim Q(x)$$

$$\forall p \in \text{Person} . \text{Blond}(p) \rightarrow \text{BlueEyes}(p)$$

 $\exists p \in \text{Person} . \text{Blond}(p) \land \sim \text{BlueEyes}(p)$

If a computer program has more than 10000 lines then it contains a bug

No politicians are honest

Some politicians are honest

$$\forall x . P(x) \rightarrow Q(x)$$
$$\exists x . P(x) \land \sim Q(x)$$

$$\forall p \in \text{Person} . Blond(p) \rightarrow BlueEyes(p)$$

 $\exists p \in \text{Person} . Blond(p) \land \sim BlueEyes(p)$

If a computer program has more than 10000 lines then it contains a bug A computer program has more than 10000 and does not contains a bug

In this Lecture

We will learn

- ☐ Part1: Negations of Quantified Statements;
- ☐ Part 2: Contrapositive, Converse and Inverse Quantified Statements;
 - ☐ Part 3: Necessary and Sufficient Conditions, Only If

Keywords: Predicates, FOL, First Order Logic, Universal Quantifier, Existential Quantifier, Negation, Truth of Universal Statements, Necessary and Sufficient Conditions

Variants of Universal Conditional Statements

Definition

Consider a statement of the form: $\forall x \in D$, if P(x) then Q(x).

- 1. Its **contrapositive** is the statement: $\forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$.
- 2. Its **converse** is the statement: $\forall x \in D$, if Q(x) then P(x).
- 3. Its **inverse** is the statement: $\forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.

$$\forall x \in Person$$
. Palestinian(x) $\rightarrow Smart(x)$

Contrapositive: $\forall x \in \text{Person} : \sim \text{Smart}(x) \rightarrow \sim \text{Palestinian}(x)$

Converse: $\forall x \in \text{Person}$. Smart $(x) \rightarrow \text{Palestinian}(x)$

Inverse: $\forall x \in \text{Person}$. $\sim \text{Palestinian}(x) \rightarrow \sim \text{Smart}(x)$

Variants of Universal Conditional Statements

$$\forall x \in \mathbf{R}. \quad x > 2 \rightarrow x^2 > 4.$$

 $\forall x \in \mathbf{R}$. MoreThan(x,2) \rightarrow MoreThan(x²,4)

Contrapostive:
$$\forall x \in \mathbb{R}$$
 . $x^2 \le 4 \rightarrow x \le 2$

Converse:
$$\forall x \in \mathbb{R}$$
 . $x^2 > 4 \rightarrow x > 2$

Inverse:
$$\forall x \in \mathbb{R}$$
 . $x \le 2 \rightarrow x^2 \le 4$

Variants of Universal Conditional Statements

Definition

Logically equivalent

Consider a statement of the form: $\forall x \in D$, if P(x) then Q(x).

- 1. Its **contrapositive** is the statement: $\forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$.
- 2. Its **converse** is the statement: $\forall x \in D$, if Q(x) then P(x).
- 3. Its **inverse** is the statement: $\forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.

$$\forall x \in D$$
, if $P(x)$ then $Q(x) \equiv \forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$

 $\forall x \in D$, if P(x) then $Q(x) \not\equiv \forall x \in D$, if Q(x) then P(x).

 $\forall x \in D$, if P(x) then $Q(x) \not\equiv \forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.

In this Lecture

We will learn

- ☐ Part1: Negations of Quantified Statements;
- ☐ Part 2: Contrapositive, Converse and inverse Quantified Statements;
- ☐ Part 3: Necessary and Sufficient Conditions, Only If

Keywords: Predicates, FOL, First Order Logic, Universal Quantifier, Existential Quantifier, Negation, Truth of Universal Statements, Necessary and Sufficient Conditions

Necessary and Sufficient Conditions

Definition

- " $\forall x, r(x)$ is a sufficient condition for s(x)" means " $\forall x, r(x) \rightarrow s(x)$."
- " $\forall x, r(x)$ is a **necessary condition** for s(x)" means " $\forall x, \sim r(x) \rightarrow \sim s(x)$ " or, equivalently, " $\forall x, s(x) \rightarrow r(x)$."

Example:

Squareness is a sufficient condition for rectangularity.

If something is a square, then it is a rectangle.

$$\forall x . Square(x) \rightarrow Rectangular(x)$$

To get a job it is sufficient to be loyal.

If one is loyal (s)he will get a job

$$\forall x . Loyal(x) \rightarrow GotaJob(x)$$

Necessary and Sufficient Conditions

Definition

- " $\forall x, r(x)$ is a sufficient condition for s(x)" means " $\forall x, r(x) \rightarrow s(x)$."
- " $\forall x, r(x)$ is a **necessary condition** for s(x)" means " $\forall x, \sim r(x) \rightarrow \sim s(x)$ " or, equivalently, " $\forall x, s(x) \rightarrow r(x)$."

Example:

Being smart is necessary to get a job.

If you are not smart you don't get a job

If you got a job then you are smart

 $\forall x . \sim Smart(x) \rightarrow \sim GotaJob(x)$

 $\forall x . \operatorname{GotaJob}(x) \rightarrow \operatorname{Smart}(x)$

Being above 40 years is necessary for being president of Palestine

 $\forall x$. ~Above(x, 40) \rightarrow ~CanBePresidentOfPalestine(x)

 $\forall x$. CanBePresidentOfPalestine(x) \rightarrow Above(x, 40)