演習問題

- 1. 反応 $2N_2O_5(g)$ \rightarrow $4NO_2(g)$ $+O_2(g)$ の N_2O_5 の一次分解反応の速度定数は、25°C で k=3.38×10⁻⁵ s-1 である。 N_2O_5 の半減期はいくらか。
- 2. 反応 $CH_3COOC_2H_5+OH^- \rightarrow CH_3COO^- + CH_3CH_2OH$ の 2 次の速度定数は 0.11 L mol^{-1} s^{-1} である。初濃度が[NaOH] = 0.060 mol L^{-1} で[$CH_3COOC_2H_5$] = 0.110 mol L^{-1} となるように、酢酸エチルを水酸化ナトリウムに添加したとき、(i) 20 s 後、(ii) 15 min 後のエステルの濃度はいくらか。
- 3. 温度が 24℃から 49℃に上昇すると、化学反応の速度が 3 倍となった。活性 化エネルギーを求めよ。
- 4. モノマーの初濃度が 10.0 mmol L^{-1} で $k=1.39 \text{ L mol}^{-1}$ s^{-1} の逐次反応で生成される高分子の t=5 h での重合度と反応度を計算せよ。
- 5. 連鎖過程で生成される高分子を考える。開始剤の初濃度が 2 倍、モノマー濃度が 1/2 倍なら、重合速度はどうなるか。
- **6.** ATP アーゼの濃度が 20 nmol L⁻¹ のとき、20℃での ATP 上の ATP アーゼの働きを次のように得た。

[ATP] (mmol L ⁻¹)	0.60	0.80	1.4	2.0	3.0
$v \pmod{L^{-1} s^{-1}}$	0.81	0.97	1.30	1.47	1.69

酵素のミカエリス定数、反応の最大速度、ターンオーバー数、触媒効率を求めよ。

解答

- 1. 1.03×10^4 s
- $2. \ \ (i) \ 0.098 \ mol \ L^{\text{--}1}, \ (ii) \ 0.050 \ mol \ L^{\text{--}1}$
- 3. $E_a = 35 \text{ kJ mol}^{-1}$
- 4. $\langle N \rangle = 251, p = 0.996$
- 5. 0.71 倍
- 6. $K_{\rm M}$ = 1.10 mmol L-1, $v_{\rm max}$ = 2.31 mmol L⁻¹ s⁻¹, $k_{\rm cat}$ = 115 s⁻¹, h =105 L mmol⁻¹ s⁻¹