A Second Course in Linear Algebra

Raymond Bian

January 9, 2024

Contents

1 Vectors and Matrices

Lecture 1: Review

1 Vectors and Matrices

For the time being, everything indicated in this course is in $\ensuremath{\mathbb{R}}.$

Definition 1. A **vector** will be defined as a column vector, e.g.

$$u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3.$$

Notation. Sometimes, they will be written as a column vector lying down, e.g. $(x_1, x_2, x_3) \in \mathbb{R}^3$

Definition 2. Let *a* be a scalar. Then multiplication between vector and scalar is defined as

$$au = \begin{bmatrix} a \cdot X_1 \\ a \cdot X_2 \\ a \cdot X_3 \end{bmatrix}.$$

Definition 3. Let
$$u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and $v = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$.

Then addition between vectors is defined as

$$u + v = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}.$$

Definition 4. If u, v are vectors and a, b are scalars, then any au + bv is a **linear combination** of u and v.

Remark. A **vector space** V is a set of objects u, v such that $au + bv \in V$.

Example. Polynomials of degree ≤ 2 in one variable can form a vector space.

Proof. Let
$$p(x) = a_0 + a_1x + a_2x^2$$
, and $q(x) = b_0 + b_1x + b_2x^2$. Multiplying by scalars and adding are defined. Note that $p(x) \rightarrow \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$.

Example. Let $f(x):[0,1]\to\mathbb{R}$ be a continuous function. We can multiply such functions by scalars and add together such functions, so they form a vector space as well.

Suppose we have two vectors $u, v \in \mathbb{R}^3$. Looking at the set of all linear combinations of u, v,

- if both u and v are the zero vectoor, then $W = \{0\}$.
- if $u = \lambda v$, $v \neq 0$, then W is the line of all multiples of v.
- if u and v are **linearly independent**, then W is a plane in \mathbb{R}^3 .

Definition 5. Vectors u_1 , u_2 , u_3 are **linearly independent** if and only if

$$a_1u_1 + a_2u_2 + a_3u_3 = 0 \Rightarrow a_1 = a_2 = a_3 = 0.$$

Definition 6. Let V, W be a vector spaces such that $W \subseteq V$. Then, W is called a **subspace** of V.

Example. Let
$$W=\{\begin{bmatrix}x_1\\x_2\\0\end{bmatrix}:x_1,x_2\in\mathbb{R}\}.$$
 Then, W is a subspace of \mathbb{R}^3 .

Theorem 1. If $u, v \in V$, then the set of linear combinations of u and v is a subspace.

Proof. Let $W = \text{span}\{u, v\}$. We must show that $w_1, w_2 \in W \Rightarrow c_1w_1 + c_2w_2 \in W$. By assumption, $w_1 = a_1u + b_1v$, and $w_2 = a_2u + b_2v$, such that $w = (c_1a_1 + c_2a_2)u + (c_1b_1 + c_2b_2)v$. Therefore, w is a linear combination of u, v.

Example. Let
$$u=\begin{bmatrix}1\\2\\3\end{bmatrix}$$
, and $v=\begin{bmatrix}0\\2\\0\end{bmatrix}$. Then, span $\{u,v\}$ is a proper subspace of \mathbb{R}^3 .

Definition 7.
$$u \cdot v = x_1 y_1 + x_2 y_2 + x_3 y_3$$
 is the dot product of the vectors $u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $v = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$

Definition 8. We say that $u \perp v$ if $u \cdot v = 0$.

Definition 9. The length or **norm** of a vector u is $\sqrt{u \cdot u} = ||u||$

Theorem 2. The Cauchy–Schwarz inequality states that $|u \cdot v| \le ||u|| ||v||$.

Proof.

$$(u + \lambda v) \cdot (u + \lambda v) \ge 0$$

$$u \cdot u + \lambda^2 v \cdot v + 2\lambda u \cdot v \ge 0.$$

The minimum lambda is $\frac{-b}{2a} = \frac{-u \cdot v}{v \cdot v}$, which results in this inequality being true. Therefore, all greater values for lambda will result in this inequality being true.

Theorem 3. The **triangle inequality theorem** states that $||u + v|| \le ||u|| + ||v||$.

Definition 10. The **unit vector** of a vector u, \hat{u} is given by $\frac{u}{\|u\|}$.

Theorem 4. If u and v are vectors such that ||u|| = ||v|| = 1, then $u \cdot v = \cos(\theta)$ where θ is the angle between u and v.

Corollary. If u and v are vectors, then $u \cdot v = \|u\| \|v\| \cos(\theta)$. Note that $u \cdot v = 0$ when $\theta = \frac{\pi}{2}$ or $\frac{3\pi}{2}$.