Анализ текстов. Генеративные модели

Лекция 1. Введение.

Эль-Айясс Дани Валид Высшая Школа Экономики 6 сентября 2023

План

• Организационная часть

• Что такое NLP?

• Задачи NLP

• Этапы решения NLP задач

• Признаковые описания документов

Организационная часть

Осебе

Дани Эль-Айясс:

- Магистр по направлению «Прикладная математика и информатика», ВМК МГУ (кафедра ММП)
- Исполнительный директор в SberDevices, разрабатываю GigaChat

Контакты:

- Почта: <u>dayyass@yandex.ru</u>
- Телеграм: @dayyass
- LinkedIn: https://www.linkedin.com/in/dayyass/
- GitHub: https://github.com/dayyass

Окурсе

GitHub: https://github.com/dayyass/hse-nlp-course

Чат: https://t.me/+eSsRe-CWVu85ZTAy

Оценка:

• Домашняя работа * 0.49 + Самостоятельная работа * 0.21 + Экзамен * 0.3

Домашние задания:

• 4 задания в системе Anytask

Полезные материалы:

- Stanford CS224N: https://web.stanford.edu/class/cs224n/index.html
- Yandex NLP Course: https://github.com/yandexdataschool/nlp_course
- Список литературы: https://www.hse.ru/edu/courses/835160340

План курса

- 1. Введение
- 2. Векторные представления
- 3. Классификация текстов
- 4. Классификация последовательностей
- 5. Языковое моделирование
- 6. Машинный перевод и трансформеры

- 7. Предобученные модели
- 8. Большие языковые модели
- 9. Инструктивное дообучение и RLHF
- 10. Суммаризация текстов и вопросно-ответные системы
- 11. Информационный поиск
- 12. Мультимодальная обработка текстов

Что такое NLP?

Текстовые данные

- Большая часть данных в мире представлена в текстовом виде
- Текстовые данные могут быть:
 - структурированными (графы знаний, базы данных)

Текстовые данные

- Большая часть данных в мире представлена в текстовом виде
- Текстовые данные могут быть:
 - структурированными (графы знаний, базы данных)
 - неструктурированными (сырые тексты)

Введение в обработку естественного языка. Под авторством Сидорова Ивана Петровича. Вступление.

Настоящее пособие предназначено для ...

Чек

Магазин канцелярских товаров

- 1. Шариковая ручка (син) 23 руб.
- 2. Тетрадь клет (12 л) 5 руб.

. . .

Текстовые данные

- Большая часть данных в мире представлена в текстовом виде
- Текстовые данные могут быть:
 - структурированными (графы знаний, базы данных)
 - неструктурированными (сырые тексты)
 - частично структурированными (JSON, XML)

```
1 {
2 "type": "учебник",
3 "title": "Введение в обработку естественного языка.",
4 "author": "Сидоров Иван Петрович",
5 "introduction": "Настоящее пособие предназначено для \dots
",
6 \dots
7 }
```

Естественный язык

- Естественный язык способ общения между людьми
- Можем противопоставить его формальным и искусственным языкам:
 - Языки программирования Programming Language Processing (PLP)
- Немного формализма:
 - Язык это множество допустимых цепочек символов из некоторого алфавита
 - Текст это цепочка, построенная по некоторым правилам
 - Алфавит это множество символов, из которых строятся тексты
 - Каждая цепочка должна нести некоторую информацию (на деле не всегда)
- «Глокая куздра штеко будланула бокра и кудрячит бокренка» (Л.В. Щерба, 1930-е)

Правила языка

- Выстраивается некоторая иехрархия:
 - Графематические как разделять слова и предложения между собой
 - Морфологические как строить и изменять слова
 - Синтаксические как согласовывать словоформы друг с другом
 - Семантические как применять все предыдущие правила, чтобы сообщить необходимую информацию
 - Стилистические «уместность» словоупотребления в конкретной ситуации
 - И т.п.

Обработка естественного языка (NLP)

• Положение NLP среди наук по анализу и обработке данных:

Структура NLP

- Внутри NLP условно выделяются два направления:
 - понимание языка (NLU)
 - генерация языка (NLG)
- Текст -> NLU -> смысл -> NLG -> текст
- Смежные области:
 - распознавание (ASR)
 - генерация (TTS) речи

Пирамила NI Р

P.S. В самом низу графематический уровень

Особенности NLP

- Базовая структурная единица языка слово
 - Даже вне контекста оно несет полезную информацию
 - У слов есть различные словоформы в зависимости от контекста
 - Многозначность слова (полисемия, омонимия)
- Текст без дополнительной разметки имеет внутреннюю структуру, определяемую языком на разных уровнях:
 - текст (порядок реплик)
 - предложение (синтаксис)
 - слова и словосочетания (морфология, синтаксис)
- Наличие огромных массивов сырых текстов и структуры в них позволяет обучать большие общеязыковые модели
- Существует много лингвистических ресурсов, которые помогают в различных задачах обработки текстов

Задачи NLP

Задача классификации текстов

• Задачи NLP можно формулировать с технической и продуктовой точек зрения.

- Классификация одна из основных задач в NLP, лежит в основе многих продуктовых задач:
 - Анализ тональности
 - Фильтрация спама
 - Определение намерений
 - Категоризация новостей и статей

Задача разметки последовательностей

- Извлечение информации
 - Распознавание именованных сущностей
- Частеречная разметка
- Разрешение кореференции

Задача машинного перевода

- Одна из фундаментальных задач NLP, двигатель многих исследований и открытий:
 - Attention
 - Transformers
- Машинный перевод:
 - Статистический
 - Нейронный

it is raining cats and dogs

✓ идет дождь из кошек и собак

✓ льет как из ведра

Задача суммаризации текстов

- Для текстового документа нужно сгенерировать краткое изложение
- Важна не только передача смысла, но и сохранение важных фактов

Задача поиска ответов на вопросы

- Вопросно-ответные системы (QA-система) используются для поиска ответов на вопросы, заданные на естественном языке
- QA-системы часто используются в качестве элементов поисковых систем
- Пример: «что такое луна?»

Задача ранжирования

- Ранжирование решает задачу сортировки объектов по заданному критерию полезности:
 - информационный поиск релевантность страницы сайта пользовательскому запросу
 - *рекомендации* близость текстовой статьи к текущим интересам пользователя

Задача ведения диалога

• Диалоговые системы (чатботы) общаются с человеком на естественном языке

• Хороший пример NLU -> NLG

Этапы решения NLP задач

Этапы решения NLP-задачи

- Всё так же, как и при обработке других типов данных:
 - Выбор верной метрики качества
 - Сбор обучающих и тестовых данных
 - Предобработка данных
 - Формирование признакового описания текста
 - Выбор подхода и класса моделей
 - Обучение моделей и настройка решения
- Предположим, что данные есть в некотором подходящем для работы формате

Инструменты для работы с текстами

- В обработке текстов часто полезны библиотеки общего назначения:
 - re/regex модули для работы с регулярными выражениями
 - numpy/pandas/scipy/sklearn базовые библиотеки для анализа данных и ML
 - pytorch одна из основных библиотек для обучений нейросетей
- Специализированные библиотеки:
 - nltk
 - gensim
 - transformers

Регулярные выражения

- Регулярные выражения появились от т.н. регулярных автоматов (классификация грамматик по Хомскому)
- По факту это некоторый строковый шаблон, на соответствие которому можно проверить текст
- С синтаксисом можно ознакомиться на странице выбранного инструмента, но основные правила одинаковы, например:
 - . означает наличие одного любого символа
 - [а-zA-Z0-9] означает множество символов из заданного диапазона
 - +, *, ? показывают, что следующий перед ними символ или последовательность символов должны повториться >= 1 раз (r+), >= 0 раз ((xa-)*) и 0/1 раз (r?)

Предобработка текстов

- Пусть дана коллекция текстовых документов текст представляет собой одну строку и алфавитных и неалфавитных символов
- Обрабатывать его в таком виде неудобно, сперва нужно выделить числовые признаки
- Базовые шаги предобработки:
 - 1. токенизация
 - 2. приведение к нижнему регистру
 - 3. удаление пунктуации
 - 4. удаление стоп-слов
 - 5. фильтрация слов по частоте/длине/регулярному выражению
 - 6. нормализация слов лемматизация или стемминг

Токенизация

- Токенизацию можно производить по словам и/или предложениям
- Используются как подходы, основанные на правилах, так и MLмодели
- В nltk есть много различных токенизаторов, например RegexpTokenizer и sent_tokenize
- Часто слова грубо выделяют разделением по пробелам с помощью метода split

```
text = 'Набор слов, составляющий какое-то предложение.'

print(text.split(' '))

#['Набор', 'слов,', 'составляющий', 'какое-то', 'предложение.']
```

Регистр и пунктуация

- Есть задачи, в которых пунктуация и регистр несут важную информацию
- Это важно для определения границ предложений, для решения задачи выделения именованных сущностей
 - в комнату вошел *лев* и, потянувшись, достал из кармана сигару
 - лев обитает в саванне, в арктике не обитает
- В задаче анализа тональности существенное значение имеют смайлы (текстовые или символы в Unicode):
 - Х Одежда у вас в магазине очень своеобразная:/
 - Одежда у вас в магазине очень своеобразная:)

Нормализация слов

- Слова в тексте могут иметь различную формы, часто такая информация скорее мешает, чем помогает анализу
- Для нормализации применяется один из подходов:
 - *лемматизация* (pymorphy2, pymystem3) приводит слова к нормальной форме
 - *стемминг* (реализации в nltk) стемминг приводит слова к псевдооснове (убирает окончания и формообразующие суффиксы)

```
import pymorphy2
text = 'я хотел бы поговорить с вами'.split(' ')
lemmatizer = pymorphy2.MorphAnalyzer()
print([lemmatizer.parse(t)[0].normal_form for t in text])
# ['я', 'хотемь', 'бы', 'поговорить', 'с', 'вы']
```

Фильтрация словаря

- Часто из текстов нужно удалять лишние слова
- Обычно это стоп-слова очень редкие и очень частые слова
- К стоп-словам относятся союзы, предлоги, модальные глаголы, местоимения, вводные слова
- Большой набор стоп-слов есть в nltk:

```
from nltk.corpus import stopwords
sw = set(stopwords.words('russian'))

for w in ['я', 'хотеть', 'бы', 'поговорить', 'с', 'вы']:
    if w not in sw:
        print(w, end=' ')

# хотемь поговорить
```

Фильтрация словаря

- Слишком частые или редкие слова тоже могут оказаться вредными
- Такие слова могут и мешать обучению модели, и увеличивать затраты ресурсов памяти и времени счета
- При обработке коллекции стоит проверить выполнение закона Ципфа:

Признаковые описания документов

Признаковые описания документов

• Обычно в ML данные представляют собой матрицу «объектыпризнаки»:

Номер автомобиль	Тип топлива	Мощность двигателя	 Масса
1	Бензин	120	 1700
N	Дизель	160	 2100

• Для текстов тоже нужно как-то получить такую матрицу

Модель мешка слов

• Можно проверять наличие всех возможных слов из некоторых словаря:

Номер текста	Содержит «абрикос»	 Содержит «яблоко»
1	0	 1
N	1	 0

• Пусть значением признака будет не наличие слова, а число его вхождений в документ («мешок слов»):

Номер текста	Вхождений «абрикос»	 Вхождений «яблоко»
1	0	 23
N	2	 0

TF-IDF

- Представление «мешка слов» часто используется при обработке текстов, но частота встречаемости слов не самый информативный признак
- Идея: хотим выделить слова, которые часто встречаются в данном тексте, и редко в других текстах используем значения TF-IDF:

$$v_{wd} = tf_{wd} \times \log \frac{N}{df_w}$$

- $ightharpoonup tf_{wd}$ доля слова w в словах документа d
- $ightharpoonup df_w$ число документов, содержащих w
- № N общее число документов

«Мешок слов» и TF-IDF в Python

```
from sklearn.feature_extraction.text import CountVectorizer
  from sklearn.feature_extraction.text import TfidfVectorizer
   c_vectorizer, t_vectorizer = CountVectorizer(), TfidfVectorizer()
   corpus = [
        'This is the first document.',
6
        'This is the second second document.',
        'And the third one.',
8
        'Is this the first document?',
10
   X_c = c_vectorizer.fit_transform(corpus)
11
   X_t = t_vectorizer.fit_transform(corpus)
```

Коллокации

- N-граммы устойчивые последовательности из N слов, идущих подряд («машина опорных векторов»)
- Коллокация устойчивое сочетание слов, не обязательно идущих подряд («Он сломал своему противнику руку»)
- Часто коллокациями бывают именованные сущности (но не всегда)
- Методы получения N-грамм:
 - на основе частот встречаемости (sklearn, nltk)
 - на основе морфологических шаблонов (Томита, YARGY-парсер)
 - с помощью ассоциации и статистических критериев на основе частот совместных встречаемостей (nltk, TopMine)
 - иные подходы (RAKE, TextRank)

Меры ассоциации биграмм

• Поточечная совместная информация (Pointwise Mutual Information, PMI):

$$PMI(w_1, w_2) = log \frac{f(w_1, w_2)}{f(w_1)f(w_2)}$$

• T-Score (по сути — тест Стьюдента):

$$T_{\text{score}}(w_1, w_2) = \frac{f(w_1, w_2) - f(w_1)f(w_2)}{\sqrt{f(w_1, w_2)/N}}$$

- ▶ w_i слово
- $ightharpoonup f(\cdot)$ частота слова или биграммы

Меры ассоциации биграмм

• В обоих случаях проверяется гипотеза независимости появления пары токенов (слов или N-грамм)

• Чем выше значение критерия, тем скорее пара токенов является устойчивым сочетанием

• Можно обобщить на произвольные коллокации

Итоги занятия

- NLP очень востребованная и активно развивающаяся область на стыке машинного обучения, анализа данных и лингвистики
- Существуют разнообразные постановки задач обработки текстов, технические и бизнесовые
- Работа с текстами почти всегда требует тщательного изучения и аккуратной предобработки данных
- Можно использовать разнообразные признаковые описания, базовыми являются представления «мешка слов» и TF-IDF