Exercise 3.1

$$\lim_{N\to\infty} \frac{f(n)}{g(n)} = 0 \qquad \Rightarrow f > 0$$

$$\Rightarrow f > 0$$

(a)

(1)
$$\frac{1}{5} n^3 \gg \Omega (40n^2) \sqrt{ }$$

$$\lim_{N \to \infty} \frac{\frac{4}{5} \, N^3}{40 \, n^2} = \lim_{N \to \infty} \frac{4}{50} \, N = \infty$$

(2)
$$n^2 + 3n = \Theta(n^2 \log(n)) \times$$

$$\lim_{N \to \infty} \frac{n^2 + 3n}{n^2 \cdot \log(n)} = \lim_{N \to \infty} \frac{1}{\log(n)} + \frac{3}{\ln \log(n)} = 0$$

(3)
$$5n^4 + 3n^2 + n + g = \Theta(n^4) \sqrt{}$$

$$\lim_{n \to \infty} \frac{5n^4 + 3n^2 + n + 8}{n^4} = \lim_{n \to \infty} 5 + \frac{37}{n^2} + \frac{1}{n^2} + \frac{9}{n^4} = 5 \in \mathbb{R}^+$$

$$\lim_{n\to\infty} \frac{3^n}{2^n} = \lim_{n\to\infty} \left(\frac{3}{2}\right)^n = \infty$$

(b)

(1)
$$(\sin(n)+2)n = \Theta(n)$$

$$-1 \leq Sin(3) \leq 1$$

$$n \le (\sin(u) + 2) \cdot n \le 3n$$
 $n \le 0 ((\sin(u) + 2) \cdot n) \le 0(n)$

$$\Rightarrow$$
 (sin(n)+2)·n = θ (n)

(2)
$$\sum_{i=1}^{n} \sum_{j=1}^{i} j = \theta (n^{2})$$

$$\sum_{i=1}^{n} \sum_{j=1}^{i} j^{\frac{n}{N}} \leq \sum_{i=1}^{n} \sum_{j=1}^{i} n = \sum_{i=1}^{n} i \cdot n \leq \sum_{j=1}^{n} n^{2} = n^{2}$$

$$r_{=}$$
 $\sum_{i} \sum_{j} \sum_{i} \leq i O(n^3)$

$$\sum_{i=1}^{n} j = \frac{4}{9} i^{2}$$

$$\sum_{i=1}^{n} i^{2} > \frac{4}{9} n^{3}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{i} j > \sum_{i=1}^{n} \frac{1}{4}; 2 = \frac{1}{4} \sum_{i=1}^{n} i^{2} > \frac{1}{4} \cdot \frac{1}{8} \cdot N^{3} = \frac{1}{32} \cdot N^{3}$$

$$\sum \sum_{n} \sum_{j} C_{n} n^{3} \leq O(\sum \sum_{j})$$

$$=7$$
 $\Sigma\Sigma = \Theta(n^3)$

z.Z. :
$$\log (n^4 + n^3 + n^2) \le O(\log(n^3 + n^2 + n))$$

 $C \cdot \log(n^3 + n^2 + n)$

$$\log (n^{4} + n^{2} + n^{2}) \le \log (3n^{4}) = \log (3) + \frac{1}{4! \log (n)} \le \log (n^{3} + n^{2} + n) + \frac{1}{3! \log (n^{3} + n^{2} + n)}$$

$$=\frac{7}{3}\cdot\log(n^3+n^2+n)$$

$$|y| \log(n) = |y| \frac{1}{3} \log(n^3) \le \frac{4}{3} \log(n^3 + n^2 + n)$$

$$\sum_{i=1}^{n} f_i^* = \Theta(nfn)$$

$$\sum_{i=1}^{n} \neg i \in \sum_{i=1}^{n} \neg i = n \cdot \neg i = \sum_{i=1}^{n} \neg i \in O(n \neg i n)$$

$$\sum_{i=1}^{n} f_{i} \gg \sum_{i=1}^{n} f_{i} = \sum_{i=1}^{n} \sqrt{\frac{n}{2}} \gg \sum_{i=1}^{n} \sqrt{\frac{2}{2}} = \frac{2}{\sqrt{2}} \ln f_{i}$$

$$O\left(\sum_{i=1}^{n} f_{i}\right) > n \cdot f_{n}$$

$$= 7 \sum_{i=1}^{N} f_i = O(nf_n)$$

Exercise 3.2

$$\begin{cases} \text{Cov} & i \neq 0, \dots, n-1 \\ \text{for} & j \neq 1, \dots, n-1 \\ \text{for} & j \neq 1, \dots, n-1 \\ \text{x} \neq 0 \\ \text{for} & i \in S[G] \neq 1 \\ \text{L} & L & x+1 \\ \text{if} & \{x = k\} \\ \text{C+t} \end{cases}$$

$$\begin{cases} \text{Color} & T \in S \\ \text{Color} & T \in S \\ \text{Color} & \text{Color} \\ \text{Color} \\ \text{Color} & \text{Color} \\ \text{Color} & \text{Color} \\ \text{Color} \\ \text{Color} & \text{Color} \\ \text{Color} \\ \text{Color} & \text{Color} \\ \text{Colo$$

Substring count (5,4, i=0, j=n-1)

jf j=j

if k=1 and S[i]=1 then

else if 4=0 and S(i)=0

else

 $m \leftarrow \lfloor (i+j)/2 \rfloor$

reburn Substring count (SIL, 1, m) + Substring count (5,4, m+1,j) + SPANNING (m, 4,5)

 $A(n) = 2A(n) + D(n) \leq O(n \cdot \log(n))$

n=2, $f_2=1>0.75=\frac{4}{3}\cdot 1.5^2$

1.14.

fun > 1/3 -1,54 gilt für ein k ≥1

K / K+1-> K+2

= 13.1,5 k (1,5 +1)

 $= \frac{1}{3} \cdot 1.5^4 \cdot 2.5$ $= \frac{1}{3} \cdot 1.5^4 \cdot 1.5^2$

= 13.1,5 h+2

Suchalgorithmen

Lineare Suche

```
int linearSearch(int[] A, int key) {
  for(int i=0; i<A.length; i++) {
    if(key == A[i]) return i;
  }
  return -1; // key not found
}</pre>
```

Binare Suche

Iterativ

```
1 int search(int[] A, int key) {
2    int l = 0;
3    int r = A.length-1;
4    int m;
5    while(l<=r) {
6         m = (l+r)/2;
7         if(key == A[m]) return m;
8         if(key < A[m]) r = m-1;
9         else l = m+1;
10    }
11    return -1; // key not found
12 }</pre>
```

Rehursiv

```
1 int search(int[] A, int key, int l, int r) {
2    int m = (l+r)/2;
3    if(l==r) return -1; // key not found
4    if(key == A[m]) return m;
5    if(key > A[m]) {
       return search(A, key, m+1, r);
7    } else {
8       return search(A, key, l, m-1);
9    }
10 }
```

```
T(1) = C

T(n) = T(n/2) + d
```

$$n = 2^k$$
 <=> $\log_2(n) = k$

$$T(2^k) = T(2^{k-1}) + d = T(2^{k-2}) + 2d = T(2^{k-3}) + 3d = ... = T(1) + k \cdot d$$

$$= C + k \cdot d$$

= C + log z (n) · d

 $\leq O(\log(u))$

Aufgabe Sortievalgorithmen (F520 †1 e)			٠					,
Maragare SoutheraidPartenmen) (1250 111 5)			٠					
<u> </u>								,
Insertion Sort, Selection Sort, Mergesort, Bubbl	e Sort .							
		 4 1	²L 1 ⁷ √ °L	•	3 8 5 4	1 2 7 6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 8 5 3 8 4 3 4 5	5 1 1	2 6 7		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 7 8		,
4 2 5 1 3 6 7 8 1 2 4 6 5 8 3 7			2 0 16		3 2 0 1	10 7 8		,
Algorithm: Algorithm:			ort			Sort		
	3 8 5	4 1 2	$\frac{7}{6}$		3 8 5 4 1	2 7 6		
$ \begin{bmatrix} 8 & 6 & 2 & 5 & 1 & 3 & 7 \\ 2 & 4 & 8 & 1 & 3 & 5 & 7 \end{bmatrix} $	3 4 1	1 2 7 2 5 6	$\frac{8}{7}$		3 4 5 8 1	2 7 6		
		So	rt			Sort		,
Algorithm: Algorithm:								
			٠					
Aufgabe Invarianten (F521 T1 b)			٠	•	lnvario	· ·		
Aufgabe Invarianten (1521 T1 b)			۰					
Let $A[0,\ldots,n-1]$ be an integer array of size n . Consider the following i			*		i) . ² i	ige INV (1)		,
Let $A[0,, n-1]$ be an integer array of size n . Consider the following insertion sort:	implementation of							
Algorithm 1 InsertionSort(A)					li) zel	ge WV(i)-	> INV(it	1)
for $i = 1 \dots n - 1$ do $B \leftarrow A[i]$			٠	• •				
$B \leftarrow A[i]$ Find the smallest index $j \in \{0, \dots, i\}$ such that $A[i] \leq A[j]$.						ge INV(n) -	 3 14	
Shift the subarray $A[j,\ldots,i-1]$ by one to the right, and move the element	B to position j .		٠		. in) gei	de inniu) _	Novvent	heit
Consider the following invariant $INV(i)$: After the <i>i</i> th iteration, $A[0, \ldots, i]$	•							
For each of the following claims, state whether it is true or false. You get 1P for a correct answer, -1P for a wrong answer and 0P for a missing answer. In total, you get at least 0								
points.			٠					
			٠					,
Claim	true false			Mehr	zu Invarian	ten:		
INV(i) holds after the <i>i</i> th iteration of the for-loop.								

· Aufgaben Woche 4

F. 520

HS21 / HS22

Master theorem. The following theorem is very useful for running-time analysis of divide-andconquer algorithms.

Theorem 1 (master theorem). Let a, C>0 and $b\geq 0$ be constants and $T:\mathbb{N}\to\mathbb{R}^+$ a function such that for all even $n\in\mathbb{N}$,

 $T(n) \le aT(n/2) + Cn^{b}$.

Then for all $n = 2^k$, $k \in \mathbb{N}$,

- If $b > \log_2 a$, $T(n) \le O(n^b)$.
- If $b = \log_2 a$, $T(n) \le O(n^{\log_2 a} \cdot \log n)$.
- If $b < \log_2 a$, $T(n) \le O(n^{\log_2 a})$.

If the function T is increasing, then the condition $n=2^k$ can be dropped. If (1) holds with "=", then we may replace 0 with 0 in the conclusion.

This generalizes some results that you have already seen in this course. For example, the (worst-case) running time of Karatsuba algorithm satisfies $T(n) \leq 3T(n/2) + 100n$, so a = 3 and $b = 1 < \log_2 3$, hence $T(n) \leq 0(n^{\log_2 3})$. Another example is binary search is running time satisfies $T(n) \leq T(n/2) + 100$, so a = 1 and $b = 0 = \log_2 1$, hence $T(n) \leq O(\log n)$.

1)
$$T(n) \leq \frac{4}{a} \cdot T(\frac{n}{2}) + \frac{100}{c} n^{b-1}$$
 $T(n) \leq O(n^2)$

2)
$$T(n) = T(n/2) + \frac{3}{2}n$$
 $T(n) \le O(n)$

10929=0

3)
$$T(n) = 4 \cdot \tilde{I}(\frac{\pi}{2}) + \frac{7}{2}n^2$$
 $T(n) \leq O(n^2 \cdot \log n)$
 $a = 4$ $b = 2$ $c = \frac{7}{2}$
 $(\log_2 2) = 2$

```
1 func g(N):

2 if(N)1) {

3 for(i=0 to 2) {

4 g(N/2)

5 g(N/2)

6 for(j=0 to N) {

7 f()

8 }

9 }

10 } else {

11 f()

12 }
```

Peer Grading Ex. 3.1

(in alsen Gruppen)