Exercice * * *

Soit \mathbb{K} un corps infini, E un \mathbb{K} -espace vectoriel, $n \in \mathbb{N}^*$, $(F_i)_{1 \le i \le n}$ une famille finie de sous-espaces vectoriels de E.

Démontrer que $\bigcup_{i=1}^n F_i$ est un sous-espace vectoriel de E si et seulement s'il existe $k \in [1, n]$ tel que pour tout $i \in [1, n]$, $F_i \subseteq F_k$.

Supposons par l'absurde que $\bigcup_{i=1}^{n} F_i$ est un sous-espace vectoriel de E et que pour tout $k \in [[1, n]]$,

il existe $i_k \in \llbracket 1, n \rrbracket$ tel qu'il existe $x_k \in F_{i_k} \setminus F_k \subset \bigcup_{i=1}^n F_i$.

Pour tout $l \in \mathbb{K}$, on pose : $y_l = \sum_{k=1}^n l^{k-1} x_k$.

Ainsi, pour tout $l \in \mathbb{K}$, $y_l \in \bigcup_{i=1}^n F_i$.

Or, \mathbb{K} est un corps infini, il possède donc plus de n^2-n+1 éléments et $\{F \in P(E), \exists i \in [1, n], F = F_i\}$ est de cardinal n.

Alors, avec le principe des tiroirs, il existe un $j \in [\![1,n]\!]$ et $(l_i)_{1 \le i \le n} \in \mathbb{K}^{[\![1,n]\!]}$ suite de n éléments distincts de \mathbb{K} tel que pour tout $i \in [\![1,n]\!]$, $y_{l_i} \in F_j$.

Soit $(M, X, Y) \in M_n(\mathbb{K}) \times M_{n,1}(\mathbb{K}) \times M_{n,1}(\mathbb{K})$ tel que pour tout $(i, j) \in [[1, n]]^2$, $[M]_{i,j} = l_i^{j-1}$, $[X]_{i,1} = x_i$ et $[Y]_{i,1} = y_{l_i} \in F_j$. On a alors :

$$M \times X = Y$$
.

Or, puisque M est une matrice de Vandermonde et que $(l_i)_{1 \le i \le n}$ est une suite de n éléments distincts de \mathbb{K} , M est inversible. Alors : $X = M^{-1} \times Y$. Ainsi, x_j est égal à une combinaison linéaire d'éléments de F_j . Donc $x_j \in F_j$. Ceci est incohérent avec nos hypothèses. Donc, si $\bigcup_{i=1}^n F_i$ est un sous-espace vectoriel de E, alors il existe $k \in [\![1,n]\!]$ tel que pour tout $i \in [\![1,n]\!]$, $F_i \subseteq F_k$.

Supposons qu'il existe $k \in \llbracket 1, n \rrbracket$ tel que pour tout $i \in \llbracket 1, n \rrbracket$, $F_i \subseteq F_k$. Alors $\bigcup_{i=1}^n F_i = F_k$ est un sous-espace vectoriel de E.

Donc $\bigcup_{i=1}^{n} F_i$ est un sous-espace vectoriel de E si et seulement s'il existe $k \in [[1, n]]$ tel que pour tout $i \in [[1, n]], F_i \subseteq F_k$.

Remarque

Si \mathbb{K} est un corps fini, la proposition ci-dessus n'est plus valable. Pour $\mathbb{K} = \mathbb{Z}/2\mathbb{Z}$ et $E = \mathbb{K}^2$, on considère les sous-espaces vectoriels $F_1 = \{(0,0),(0,1)\}$, $F_2 = \{(0,0),(1,0)\}$, $F_3 = \{(0,0),(1,1)\}$. Alors $E = F_1 \cap F_2 \cap F_3$ et $F_1 \nsubseteq F_2$, $F_1 \nsubseteq F_3$ et $F_2 \nsubseteq F_1$.