Homework 4

1 Calculate the derivatives of the functions $f = x^2 + y^2$, $g = e^{-(x^2 + y^2)}$ and $h = q \log |r| = q \log \left(\sqrt{x^2 + y^2}\right)$ (q is a constant) along vector fields $\mathbf{A} = x \partial_x + y \partial_y$ and $\mathbf{B} = x \partial_y - y \partial_x$, i.e. calculate $\partial_{\mathbf{A}} f, \partial_{\mathbf{A}} g, \partial_{\mathbf{A}} h, \partial_{\mathbf{B}} f, \partial_{\mathbf{B}} g, \partial_{\mathbf{B}} h$.

2 Perform the calculations of the previous exercise using polar coordinates.

3 Consider in \mathbf{E}^2 vector fields $\mathbf{A} = x\partial_x + y\partial_y$, $\mathbf{B} = x\partial_y - y\partial_x$, $\mathbf{C} = \partial_x$, $\mathbf{D} = \partial_y$. Calculate the values of 1-forms df, dg on these vector fields if $f = (x^2 + y^2)^n$ and $g = \frac{y}{x}$. For vector fields \mathbf{A} , \mathbf{B} perform calculations also in polar coordinates.

4 Calculate the integrals of the form $\omega = \sin y \, dx$ over the following three curves. Compare answers.

The answers:
$$C_1: \mathbf{r}(t) \begin{cases} x = 2t^2 - 1 \\ y = t \end{cases}, \ 0 < t < 1, \qquad C_2: \mathbf{r}(t) \begin{cases} x = 8t^2 - 1 \\ y = 2t \end{cases}, \ 0 < t < 1/2,$$

$$C_3: \mathbf{r}(t) \begin{cases} x = \cos 2t \\ y = \cos t \end{cases}, \ 0 < t < \frac{\pi}{2}$$

5 Calculate the integral of the form $\omega = e^{-y}dx + \sin xdy$ over the segment of straight line which connects the points A = (1,1), B = (2,3). At what extent an answer depends on a chosen parameterisation?

6 Calculate the integral of the form $\omega = xdy$ over the upper arc of the unit circle starting at the point A = (1,0) and ending at the point (0,1).

7 Solve the previous problem for the arc of the ellipse $x^2 + y^2/9 = 1$ defined by the condition $y \ge 0$.

8 Calculate the integral $\int_C \omega$ where $\omega = xdx + ydy$ and C is

- a) the straight line segment $x = t, y = 1 t, 0 \le t \le 1$
- b) the segment of parabola $x=t,\,y=1-t^n,\,0\leq t\leq 1,\,n=2,3,4,\ldots$
- c) the segment of the sinusoid $x = t, y = \cos \frac{\pi}{2}t, 0 \le t \le 1$
- d) an arbitrary curve starting at the point (0,1) and ending at the point ((1,0).

9 Calculate the integral of the form $\omega = \frac{xdy - ydx}{x^2 + y^2}$ over the curves a), b), c) from the previous exercise.

 ${f 10}^*$ What values can take the integral $\int_C \omega$ if C is an arbitrary curve starting at the point (0,1) and ending at the point ((1,0)) and $\omega = \frac{xdy - ydx}{x^2 + y^2}$.

1