

Course Name: EMBEDDED SYSTEMS I / III

Course Number and Section: 14:332:493:03 / 16:332:579:05

Year: Spring 2024

Lab Report #: 1

Lab Instructor: Milton Diaz

Student Name and RUID: Ruben Alias 207005068

Date Submitted: 02/23/2024

GitHub Link:

https://github.com/embedded-systems-1-spring-2024-labs/lab-1-Herxity

<u>Purpose/Objective:</u> The purpose of this lab was to design simple controllable counter, able to take button inputs which were debounced to ensure input stability, all synced up to a stead 2Hz clock

Theory of Operation:

Simulation Waveforms:

Clock Div

Debouncer Simulation

Vivado Schematics:

CLOCK DIV

Elaboration

Synthesis Schematic

Div_top

RTL SCHEMATIC

Div Top Synthesis

Div top utilization table

			Graph Table
Resource	Estimation	Available	Utilization %
LUT	7	17600	0.04
FF	28	35200	0.08
10	2	100	2.00
BUFG	1	32	3.13

Div Top power usage

DEBOUNCER

Debouncer RTL Schematic

Debouncer Synthesis Schematic

Debouncer Utilization Table

Debouncer On-Chip Power Graph

Part 3 Actually Using a Counter to Count

RTL Schematic

Synthesis schematic

Utilization Table

Utilization	Post-Synthesis Post-Implementation			
		Gr	aph Table	
Resource	Estimation	Available	Utilization %	
LUT	10	17600	0.06	
FF	9	35200	0.03	
10	15	100	15.00	
BUFG	1	32	3.13	

Power Graph

Part 4 - Bringing it All Together

RTL Schematic

Synthesis Schematic

Utilization table

lization	Post-Synthesis Post-Implementation		
		Gr	aph Table
Resource	Estimation	Available	Utilization %
LUT	53	17600	0.30
FF	128	35200	0.36
10	13	100	13.00
BUFG	1	32	3.13
	Resource LUT FF IO	Resource Estimation LUT 53 FF 128 IO 13	Gr Resource Estimation Available LUT 53 17600 FF 128 35200 10 13 100

Power Graph

XDC File:

I needed to uncomment the switches and buttons and clock, keeping their names the same. I needed to rename the LEDs array to *cnt* as that was my output variable for counter_top.

Answers to Additional Questions and Extra Credit:

Part I

Question 1.1: How much do we need to divide our input by to get from 125 MHz to 2 Hz?

125Mhz => 125 * 10^6 Oscillations/second

2Hz => 2 Oscillations/second

(125*10^6)/62500000 = 2

Divide by 62500000.

Question 1.2: How many bits are required to store a counter that can count up to the value obtained in Q1.1?

27 Bits are required.

Part II

- **2.1** What is the value of the button when it is pressed for Zybo?
 - The button value is 1
- 2.3: If we want our debounce time to be 20 ms, and our system clock is 125 MHz, how many ticks do we need a steady '1' to be read for it to count as a '1'?)

 2.5 million
- **2.4:** How many bits are required for a counter that can go that high? ceil(log_2 (2.5mil)) = 22 bits

<u>Conclusion:</u> In this Lab I learned the importance of syncing up processes to the clock to prevent any unseen errors in Synthesis and Implementation, as well as practical applications of a clock divider and the importance of debouncing inputs.

<u>Follow Up:</u> I feel like I completely understand structural modeling and the basics of VHDL's basic types and their interactions.