Transport-Layer Protocols

Unit-I\

Introduction

Oser Datagram Protocol

Transport-Layer Protocols

Unit-IV

Lecture -1

Session Objectives

Transport-Layer Protocols

Unit-I

Introductio

- Introduces the three transport-layer protocols
- Learning about UDP,

Session Outcomes

Transport-Layer Protocols

l Init-I\

Introductio

User Datagran Protocol

At the end of this session, participants will be able to

Discuss the transport-layer protocols and UDP

Agenda

Transport-Layer Protocols

Unit-I

Introduction

User Datagram Protocol

1 Introduction

Presentation Outline

Transport-Layer Protocols

Unit-IV

Introduction

User Datagram Protocol

1 Introduction

Position of transport-layer protocols in the TCP/IP protocol suite

Transport-Layer Protocols

Unit-IV

Introduction

Services

Transport-Layer Protocols

Unit-IV

Introduction

oser Datagran Protocol

- UDP: UDP is an unreliable connectionless transport-layer protocol used for its simplicity and efficiency in applications where error control can be provided by the application-layer process.
- **TCP:** TCP is a reliable connection-oriented protocol that can be used in any application where reliability is important.
- **SCTP:** SCTP is a new transport-layer protocol that combines the features of UDP and TCP.

Port Numbers

Transport-Layer Protocols

Introduction

User Datagrai A transport-layer protocol need to create a process-to-process communication

 Port numbers provide end-to-end addresses at the transport layer and allow multiplexing and demultiplexing at this layer

Port	Protocol	UDP	TCP	Description
7	Echo	√		Echoes back a received datagram
9	Discard	√		Discards any datagram that is received
11	Users	√	√	Active users
13	Daytime	√	√	Returns the date and the time
17	Quote	√	√	Returns a quote of the day
19	Chargen	V	√	Returns a string of characters
20, 21	FTP		√	File Transfer Protocol
23	TELNET		√	Terminal Network
25	SMTP		√	Simple Mail Transfer Protocol
53	DNS	√	√	Domain Name Service
67	DHCP	√	√	Dynamic Host Configuration Protocol
69	TFTP	V		Trivial File Transfer Protocol
80	HTTP		V	Hypertext Transfer Protocol
111	RPC	√	√	Remote Procedure Call
123	NTP	√	√	Network Time Protocol
161, 162	SNMP		√	Simple Network Management Protocol

Presentation Outline

Transport-Layer Protocols

Unit-I

Introduction

User Datagram Protocol

1 Introduction

User Datagram Protocol

Transport-Layer Protocols

User Datagram Protocol A connectionless, unreliable transport protocol.

 UDP packets, called user datagrams, have a fixed-size header of 8 bytes made of four fields, each of 2 bytes (16 bits).

a. UDP user datagram

0	16 31
Source port number	Destination port number
Total length	Checksum

b. Header format

Example

Transport-Layer Protocols

Unit-IV

Introductio

User Datagram Protocol The following is the contents of a UDP header in hexadecimal format

CB84000D001C001C

- What is the source port number?
- What is the destination port number?
- What is the total length of the user datagram?
- What is the length of the data?
- Is the packet directed from a client to a server or vice versa?

- The source port number is the first four hexadecimal digits (CB84)₁₆ or 52100
- The destination port number is the second four hexadecimal digits $(000D)_{16}$ or 13.
- The third four hexadecimal digits $(001C)_{16}$ define the length of the whole UDP packet as 28 bytes.
- The length of the data is the length of the whole packet minus the length of the header, or 28 8= 20 bytes.
- Since the destination port number is 13 (well-known port), the packet is from the client to the server.
- The client process is the Daytime

UDP Services

Transport-Layer Protocols

User Datagram <u>Pr</u>otocol Process-to-Process Communication: using socket addresses, a combination of IP addresses and port numbers.

- Connectionless Services: user datagram sent by UDP is an independent datagram, not numbered
- No Flow Control:, no error control except for the checksum, calculation includes: a pseudoheader, the UDP header, and data from application layer.
- No Congestion Control
- Encapsulation and Decapsulation, Queuing: queues are associated with ports
- Multiplexing and Demultiplexing

Pseudoheader for checksum calculation

Transport-Layer Protocols

Hnit-IV

Industrial continue

UDP Applications

Transport-Layer Protocols

- Suitable for simple request-response communication, not usually used for a process such as FTP that needs to send bulk data
- Suitable for a process with internal flow- and error-control mechanisms. For example, the **Trivial File Transfer** Protocol (TFTP) process includes flow and error control. It can easily use UDP.
- Suitable transport protocol for multicasting.
 Multicasting capability is embedded in the UDP software but not in the TCP software.
- Used for management processes such as SNMP
- Used for some route updating protocols such as Routing Information Protocol (RIP)
- Used for interactive real-time applications that cannot tolerate uneven delay between sections of a received message

Summary

Transport-Layer Protocols

Unit-I\

Introductio

- Discussed three transport-layer protocols
- Learnt about UDP

Test Your Understanding

Transport-Layer Protocols

Unit-I\

Introductio

- In UDP, datagram follows ———— (same or different) path
- Header size of UDP is ——— bytes
- List any two services of UDP