Engrenages à denture droite

#transformation_de_mouvement

Engrenage

Un engrenage est l'association d'une roue dentée et d'un pignon (rue plus petite) roulants sans glisser.

Diamètre primitif

Diamètres des roues lisses de friction.

•
$$d = m \cdot Z$$

Diamètre de tête

Cylindre passant par le sommet des dents.

Diamètre de pied

Cylindre passant par la basse

Pas de denture

Distance entre chaque dent sur le diamètre primitive

•
$$p = \pi \cdot m$$

Module

•
$$m=rac{p}{\pi}=rac{d_1}{Z_1}$$

Largeur de denture

•
$$b = km \ k = 10$$

Train simples

Succession d'engrenages en série dont les roues tournent autour d'axes fixes.

Rapport de transmission

$$rac{\omega_s}{\omega_e} = (-1)^n rac{\prod Z_{menantes}}{\prod Z_{mencute{e}s}}$$

• *n* : nombre d'engrènements extérieurs (rue avec rue).

Train épicycloïdal

Au moins une rue tourne autour d'un axe qui n'est pas fixe.

Rapport de transmission

On commence par poser un rapport intermédiaire qu'on appelle $\lambda=rac{\omega_{p/ps}}{\omega_{c/ps}}$

Depuis cette expression on cherche exprimer le rapport de transmission désiré $r(\lambda)$.