

Theoretical Computer Science

Unit 3: Grammars

Faculty Name: Ms. Namita Pulgam

Index -

Lecture 27 – GNF & Revision	3
Lecture 28- Introduction to PDA	18

Lecture No 36:

Conversion of CFG to GNF (Part-3) & Revision

Example 4:

Q. Convert following grammar to CNF and GNF.

$$E \rightarrow E+E \mid E*E \mid (E) \mid id$$

Consider "id" as a single terminal/symbol.

Solution:

- Step 1: Given CFG is not having any Unit Productions or Null Productions.
 But it is not in CNF so first converting this to CNF.
- Step 2: Lets add new productions as shown:

$$R_1 \rightarrow +$$

$$R_2 \rightarrow *$$

$$R_3 \rightarrow ($$

$$R_{4} \rightarrow)$$

• Step 3: Updated grammar is as follows:

$$E \rightarrow E R_1 E \mid E R_2 E \mid R_3 E R_4 \mid id$$

• Step 4: Identify non CNF productions

$$E \rightarrow E R_1 E \mid E R_2 E \mid R_3 E R_4$$

• Step 5: In productions only two non terminals are allowed so break them as shown:

$$E \rightarrow ER_5$$

$$R_5 \rightarrow R_1E$$

$$E \rightarrow ER_6$$

$$R_6 \rightarrow R_2E$$

$$E \rightarrow R_3R_7$$

$$R_7 \rightarrow ER_4$$

• Step 6: Thus given Grammar is in CNF having following productions:

$$E \rightarrow ER_5 | ER_6 | R_3R_7 | id$$

$$R_4 \rightarrow 1$$

$$R_5 \rightarrow R_1E$$

$$R_2 \rightarrow *$$

$$R_6 \rightarrow R_2E$$

$$R_3 \rightarrow ($$

$$R_7 \rightarrow ER_4$$

- Step 7: Check order of variables present in CNF.
 - E is lowest variable while R_7 is higher variable. Hence the production $R_7 \rightarrow E R_4$ is in **non GNF**.
 - Using substitution convert production into required form :

$$R_7 \rightarrow ER_5 R_4 \mid ER_6 R_4 \mid R_3 R_7 R_4 \mid idR_4$$
 (Replacing E by $ER_5 \mid ER_6 \mid R_3 R_7 \mid id$)

- Step 8: Removal of Left Recursive Production:
 - After conversion we get left recursive production i.e. E \rightarrow ER₅ | ER₆ | R₃R₇ | id

 - From above production we get : $\alpha_1 = R_5$ $\alpha_2 = R_6$ $\beta_1 = R_3 R_7$ $\beta_2 = id$
 - Let B be new variable to be introduced then above productions can be replaced by :

$$E \rightarrow R_3 R_7 \mid id \mid R_3 R_7 B \mid idB$$

B \rightarrow R_5 \left| R_6 \left| R_5 B \left| R_6 B

- Step 9: Perform substitution
 - In production of E, E \rightarrow R₃R₇ | id | R₃R₇B | idB, replace R₃ by (: E \rightarrow (R₇ | id | (R₇B | idB
 - Consider productions of R_5 and R_6 replace R_1 and R_2 by + and * respectively :

$$R_5 \rightarrow +E$$
 (Since $R_5 \rightarrow R_1E$ replace by $R_1 \rightarrow +$)

$$R_6 \rightarrow *E$$
 (Since $R_6 \rightarrow R_2E$ replace by $R_2 \rightarrow *$)

- In production of B, B \rightarrow R₅ | R₆ | R₅B | R₆B replace R₅ and R₆ by its production, : B \rightarrow +E | *E | +E B | *EB
- Production of R_7 is $R_7 \rightarrow ER_5R_4 \mid ER_6R_4 \mid R_3R_7R_4 \mid idR_4$, replace E by its production i.e. E \rightarrow ($R_7 \mid id \mid$ ($R_7B \mid idB$ and R_3 by its production $R_3 \rightarrow$ (and we get,

$$R_{7} \rightarrow (R_{7}R_{5}R_{4} | idR_{5}R_{4} | (R_{7}BR_{5}R_{4} | idBR_{5}R_{4} | (R_{7}R_{6}R_{4} | idR_{6}R_{4} | (R_{7}BR_{6}R_{4} | idR_{6}R_{4} | idR_{4})$$

Step 10 : Final grammar in GNF :

Revision Quiz

1. Given Grammar G:

 $S \rightarrow aA$

 $A \rightarrow a \mid A$

 $B \rightarrow B$

The number of productions to be removed immediately as Unit productions:

- a. 0
- b. 1
- c. 2
- d. 3

Answer: c

2. Identify Unit Production_____

- a. $X \rightarrow YZ$
- b. $X \rightarrow 1$
- $c. X \rightarrow Y$
- d. XY \rightarrow ZM

Revision Quiz continued...

3. Simplify following Grammar

$$S \rightarrow aSb|a|aAB$$

$$A \rightarrow aA|c$$

$$B \rightarrow bB | dB$$

a. S
$$\rightarrow$$
 aSb| a |aAB

$$A \rightarrow aA|c$$

b.
$$S \rightarrow aSb|a|aAB$$

$$A \rightarrow aA|c$$

$$B \rightarrow bB | dB$$

c. S
$$\rightarrow$$
aSb| a

d.
$$S \rightarrow a$$

Revision Quiz continued...

4. How many components in Formal definition of Grammar?

4

5

2

3

Answer: a

5.
$$G = \{ (S, A), (a, b), P, S \}$$

where P: $S \rightarrow aAS \mid a$

 $A \rightarrow SbA \mid SS \mid ba$

It generates which string?

- a. aabaa
- b. ababab
- c. aabbaa
- d. abba

Revision Quiz continued..

6. _____ is Type 0 grammar.

- a. Regular Grammar
- b. Context Sensitive Grammar
- c. Context Free Grammar
- d. Unrestricted Grammar

Answer:d

7. What is the highest type number which can be applied to the following grammar?

 $S \rightarrow Aa, A \rightarrow Ba, B \rightarrow abc$

- a. Type 0
- b. Type 1
- c. Type 2
- d. Type 3

Revision Quiz continued...

8. The geometrical representation of a derivation is called as _____

- a. Parse Tree
- b. Derivation Tree
- c. Syntax Tree
- d. All of the above mentioned

Answer: d

- 9. The format: $A \rightarrow aB$ refers to which of the following?
- a. Chomsky Normal Form
- b. Greibach Normal Form
- c. Backus Naur Form
- d. None of the mentioned

Answer: b

- 10. A grammar that produces more than one parse tree for some sentence is called as_____
- a. Ambiguous
- b. Unambiguous
- c. Regular
- d. All of these

<u> Answer : a</u>

Revision Quiz continued..

11. Every grammar in Chomsky Normal Form is:

- a. regular
- b. context sensitive
- c. context free
- d. all of the mentioned

Answer: c

12. A \rightarrow aA| a| b. The number of steps to form aab:_____

- a. 2
- b. 3
- c. 4
- d. 5

Answer: b

13. Suppose A \rightarrow xBz | y and B \rightarrow y, then the simplified grammar would be:

- a. $A \rightarrow y$
- b. $A \rightarrow xBx \mid xyz$
- c. $A \rightarrow xBz | B | y$
- d. none of the mentioned

Answer: d

Revision Quiz continued..

14. Application of CFG_____

- a. construction of compilers
- b. parsing the program by constructing syntax tree
- c. describing arithmetic expressions
- d. all of the above mentioned

Answer: d

15. $G = \{ (S, X), (a, b), P, S \}$ where $P : S \rightarrow aSX \mid b, X \rightarrow Xb \mid a$. To derive aababa how many parse trees can be drawn?

- a. 2
- b. 3
- c. .
- d. 0

Thank You

Theoretical Computer Science

Unit 4: Pushdown Automata

Faculty Name: Ms. Namita Pulgam

Pushdown Automata

Introduction

- Finite automata (FA) cannot remember information.
- A string of the form a^mb^m can't be handled by finite automata, as it is required to remember number of a's to check equal b's.
- Just as a DFA is a way to implement a regular expression, a Pushdown Automata (PDA) is a way to implement a **context free grammar**
 - PDA equivalent in power to a CFG
- Essentially identical to a regular automata except for the addition of a stack
 - Stack is of infinite size
 - Stack allows us to recognize some of the non-regular languages

Introduction (Cont..)

Formal Definition of PDA

$$P = (Q, \sum, \Gamma, \delta, q_0, z_0, F)$$

Q = finite set of **states**, like the finite automaton

 \sum = finite set of **input symbols**, the alphabet

 Γ = finite **stack alphabet**, components we are allowed to push on the stack

 δ = finite set of **transitions**

 $q_0 = \text{start state}$

 $z_0 = \text{start symbol}$.

-Initially, the PDA's stack consists of one instance of this start symbol and nothing else. We can use it to indicate the bottom of the stack.

F = Set of final accepting states.

Implementation of PDA

In one transition the PDA may do the following:

- Consume the input symbol. If **\mathbb{E}** is the input symbol, then no input is consumed.
- Go to a new state, which may be the same as the previous state.
- Replace the symbol at the top of the stack by any string as:
 - Replace with a new string (push operation)
 - Replace with multiple symbols (multiple pushes)
 - Replace with **E** symbol (pop operation)
 - The string might be the same as the current stack top (does nothing)

Operations in PDA

- 1. Push: This operation pushes a input symbol on stack and modifies a stack top.
- 2. Pop: This operation pops symbol on stack top and modifies a stack top. (E is pushed on stack)
- **3.** No-operation: This operation does not modify stack.

Initial Stack

At Initial State (Appears at time 0):

Push Operation

If input 'a' is given to state ' \mathbf{q}_1 ' and current stack symbol is 'b' then state changes to ' \mathbf{q}_2 ' and \mathbf{x} is pushed on stack.

Pop Operation

If input 'a' is given to state ' $\mathbf{q_1}$ ' and current stack symbol is 'b' then state changes to ' $\mathbf{q_2}$ ' and b is popped from the stack.

No Operation

If input 'a' is given to state ' $\mathbf{q_1}$ ' and current stack symbol is 'b' then state changes to ' $\mathbf{q_2}$ ' and no change in top of stack.

Representation

Transition Diagram:

Representation

Transition Rule:

Example 1:

Q. Design PDA $\{a^n b^n, n \ge 1\}$.

Language: { ab, aabb, aaabbb,}

Logic: For each input 'a', push 'a' into stack.

For each input 'b', pop one 'a' from stack

$$\sum = \{ a, b \}$$

$$\Gamma = \{ a, z_0 \}$$

States:

q_s: initial state

q₀: read 'a' (push)

q₁: read 'b' (pop)

q₂: input is over and stack is empty (accept)

Initial state: q_s

Finals state: q₂

Example Processing

Transition Rules

q_s: initial state

q₀: read 'a' (push)

q₁:read 'b' (pop)

*q*₂: input is over and stack is empty (accept)

Initial Stack

$$(q_s, a, z_0) = \{ (q_0, a z_0) \}$$

a

a

 $\mathbf{Z}_{\mathbf{0}}$

Push 'a'

$$(q_0, a, a) = \{ (q_0, aa) \}$$

Pop 'a'

 $\mathbf{z}_{\mathbf{0}}$ Pop 'a'

Stack is empty and input is over

$$(q_1, \mathcal{E}, z_0) = \{ (q_2, z_0) \}$$

so accept string

$$(q_0, b, a) = \{ (q_1, E) \}$$
 $(q_1, b, a) = \{ (q_1, E) \}$

Final Transition Rules

$$(q_s, a, z_0) = \{ (q_0, az_0) \}$$

$$(q_0, a, a) = \{ (q_0, aa) \}$$

$$\triangleright$$
 (q₀, b, a) = { (q₁, E) }

$$(q_1, b, a) = \{(q_1, E)\}$$

$$\triangleright (q_1, \mathcal{E}, z_0) = \{ (q_2, z_0) \}$$

Transition Diagram

$$(q_s, a, z_0) = \{ (q_0, a z_0) \}$$

Transition Diagram (Cont..)

Transition Diagram (Cont..)

$$(q_1, \mathcal{E}, z_0) = \{ (q_2, z_0) \}$$

Simulation

Input: aabb

- \geq $(q_s, aabb, z_0)$
- \geq (q₀, abb, a z₀)
- \triangleright (q₀, bb, aa z₀)
- $\triangleright (q_1, b, a z_0)$
- $\triangleright (q_1, \mathcal{E}, z_0)$
- \triangleright (q_2, z_0) accept

Example 2:

```
Q. Design PDA \{a^n b^{n+1}, n \geq 1\}.
L = \{abb, aabbb, aaabbbb, \dots \}
          For each input 'a', push 'a' into stack.
Logic:
           For first 'b' perform no-operation
           For remaining 'b', pop one 'a' from stack
           If input is over and stack is empty then accept
\sum = \{ a, b \}
\Gamma = \{ a, z_0 \}
States:
           q_s: initial state
           q_0: read 'a' (push)
           q<sub>1</sub>: read 'b' (pop) (except first 'b')
           q<sub>2</sub>: input is over and stack is empty (accept)
Initial state: q_s
Finals state: q,
```


Example Processing

Transition Rules

 q_s : initial state

q₀: read 'a' (push)

q₁:read 'b' (pop) (except first 'b')

 q_2 : input is over and stack is empty (accept)

Initial Stack

Push 'a' Push 'a'
$$(q_s, a, z_0) = \{ (q_0, az_0) \} (q_0, a, a) = \{ (q_0, aa) \}$$

а

a

 $\mathbf{z}_{\mathbf{0}}$

Pop $(q_1, b, a) = \{ (q_1, \epsilon) \}$

 $\mathbf{z}_{\mathbf{0}}$

Pop $(q_1, b, a) = \{ (q_1, \epsilon) \}$

 $(q_1, \epsilon, z_0) = \{ (q_2, z_0) \}$

40

Final Transition Rules

$$(q_s, a, z_0) = \{ (q_0, az_0) \}$$

$$(q_0, a, a) = \{ (q_0, aa) \}$$

$$(q_0, b, a) = \{ (q_1, a) \}$$

$$(q_1, b, a) = \{(q_1, \mathcal{E})\}$$

$$\geq$$
 $(q_1, \varepsilon, z_0) = \{ (q_2, z_0) \}$

Transition Diagram

$$(q_s, a, z_0) = \{ (q_0, az_0) \}$$

Transition Diagram (Cont..)

$$(q_0, b, a) = \{(q_1, a)\}$$

$$a, a \mid aa$$

$$d_0$$

$$b, a \mid a$$

$$q_1$$

$$a, a \mid aa$$

$$b, a \mid a$$

$$q_1$$

$$d_1$$

$$d_1$$

$$d_2$$

$$d_3$$

$$a, z_0 \mid az_0$$

$$d_0$$

$$d_1$$

$$d_1$$

$$d_1$$

$$d_1$$

$$d_2$$

$$d_1$$

$$d_1$$

$$d_2$$

$$d_1$$

$$d_2$$

$$d_1$$

$$d_2$$

$$d_1$$

$$d_1$$

$$d_2$$

$$d_3$$

$$d_4$$

$$d_1$$

$$d_1$$

$$d_2$$

$$d_3$$

$$d_4$$

Transition Diagram (Cont..)

$$\triangleright (q_1, \mathcal{E}, z_0) = \{ (q_2, z_0) \}$$

Simulation

Input: aabbb

- \geq $(q_s, aabbb, z_0)$
- \geq $(q_0, abbb, a z_0)$
- \triangleright (q₀, bbb, aa z₀)
- \triangleright (q₁, bb, aa z₀)
- $\triangleright (q_1, b, a z_0)$
- $\triangleright (\mathbf{q}_1, \mathbf{E}, \mathbf{z}_0)$
- $\triangleright (q_2, z_0)$ accept

Thank You