StepMathAgent

 $x^2 + y^2 = 9$? $\sqrt[3]{x} + y^2 = 1$?

represented by the following equation is a cylindrical surface: $(x-z)^2+(y+z-a)^2=a^2$. **Open-ended Problem**

$y \ge 3$, find the maximum value of x + 3y.

constraints $x, y \leq 2, x +$

Calculation Problem

If x and y satisfy the

Proof Problem Prove that the surface

(5): Incorrect

M lies.

Define points P and Q, and derive the equation of the surface on which point

Based on the constraints, both x and y cannot exceed 2, and x + yy must be greater than or equal to 3. To maximize the value of x +3y, we should increase the value of y because y has a larger coefficient. Since $y \le 2$, we take y = 2. To satisfy the condition $x + y \ge 3$, x must be at least 1. Therefore, the optimal solution is

1. Logical Step Segmentation (1) Based on the constraints, both x and y cannot exceed 2, and x + y = 0

x = 1. Then, x + 3y = 1 + 3(2) = 7. [Final answer]: [7]

y must be greater than or equal to 3. (2) To maximize the value of x + 3y, we should increase the value of y because y has a larger coefficient. Since $y \le 2$, we take y = 2. (3) To satisfy the condition $x + y \ge 3$, x must be at least 1. Therefore, the optimal solution is x = 1.

(4) x + 3y = 1 + 3(2) = 7. (5) Final answer: [7] 2. Step Scoring

Validation (1):Correct; (2): Correct; (3): Incorrect; (4): correct-but-meaningless; 3. Score Aggregation

Difficulty

Calibration

Simplicity

Evaluation

Completeness

G = 6 * (2/4) + 4 * 0 = 34. Error Tree Generation

Tree-of-Error: (3)-(4)-(5)

Format Assessment