

FIGURE 4.13 Second-order underdamped responses for damping ratio values

We have defined two parameters associated with second-order systems, ζ and ω_n . Other parameters associated with the underdamped response are rise time, peak time, percent overshoot, and settling time. These specifications are defined as follows (see also Figure 4.14):

- 1. Rise time, T_r . The time required for the waveform to go from 0.1 of the final value to 0.9 of the final value.
- 2. Peak time, T_P . The time required to reach the first, or maximum, peak.
- 3. Percent overshoot, %OS. The amount that the waveform overshoots the steady-state, or final, value at the peak time, expressed as a percentage of the steady-state value.
- 4. Settling time, T_s . The time required for the transient's damped oscillations to reach and stay within $\pm 2\%$ of the steady-state value.

FIGURE 4.14 Second-order underdamped response specifications

Notice that the definitions for settling time and rise time are basically the same as the definitions for the first-order response. All definitions are also valid for systems of order higher than 2, although analytical expressions for these parameters cannot be found unless the response of the higher-order system can be approximated as a second-order system, which we do in Sections 4.7 and 4.8.

Rise time, peak time, and settling time yield information about the speed of the transient response. This information can help a designer determine if the speed and the nature of the response do or do not degrade the performance of the system. For example, the speed of an entire computer system depends on the time it takes for a hard drive head to reach steady state and read data; passenger comfort depends in part on the suspension system of a car and the number of oscillations it goes through after hitting a bump.

We now evaluate T_p , %OS, and T_s as functions of ζ and ω_n . Later in this chapter we relate these specifications to the location of the system poles. A precise analytical expression for rise time cannot be obtained; thus, we present a plot and a table showing the relationship between ζ and rise time.

Evaluation of I_p

 T_p is found by differentiating c(t) in Eq. (4.28) and finding the first zero crossing after t = 0. This task is simplified by "differentiating" in the frequency domain by using Item 7 of Table 2.2. Assuming zero initial conditions and using Eq. (4.26), we get

$$\mathcal{L}[\dot{c}(t)] = sC(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
(4.29)

Completing squares in the denominator, we have

$$\mathcal{L}[\dot{c}(t)] = \frac{\omega_n^2}{(s + \zeta \omega_n)^2 + \omega_n^2 (1 - \zeta^2)} = \frac{\frac{\omega_n}{\sqrt{1 - \zeta^2}} \omega_n \sqrt{1 - \zeta^2}}{(s + \zeta \omega_n)^2 + \omega_n^2 (1 - \zeta^2)}$$
(4.30)

Therefore,

$$\dot{c}(t) = \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin \omega_n \sqrt{1 - \zeta^2} t \tag{4.31}$$

Setting the derivative equal to zero yields

$$\omega_n \sqrt{1 - \zeta^2} t = n\pi \tag{4.32}$$

Ωr

$$t = \frac{n\pi}{\omega_n \sqrt{1 - \zeta^2}} \tag{4.33}$$

Each value of n yields the time for local maxima or minima. Letting n = 0 yields t = 0, the first point on the curve in Figure 4.14 that has zero slope. The first peak, which occurs at the peak time, T_p , is found by letting n = 1 in Eq. (4.33):

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} \tag{4.34}$$

Evaluation of %05

From Figure 4.14 the percent overshoot, %OS, is given by

$$\%OS = \frac{c_{\text{max}} - c_{\text{final}}}{c_{\text{final}}} \times 100 \tag{4.35}$$

The term c_{max} is found by evaluating c(t) at the peak time, $c(T_p)$. Using Eq. (4.34) for T_p and substituting into Eq. (4.28) yields

$$c_{\text{max}} = c(T_p) = 1 - e^{-(\xi \pi / \sqrt{1 - \xi^2})} \left(\cos \pi + \frac{\xi}{\sqrt{1 - \xi^2}} \sin \pi \right)$$

$$= 1 + e^{-(\xi \pi / \sqrt{1 - \xi^2})}$$
(4.36)

For the unit step used for Eq. (4.28),

$$c_{\text{final}} = 1 \tag{4.37}$$

Substituting Eqs. (4.36) and (4.37) into Eq. (4.35), we finally obtain

$$\% OS = e^{-(\zeta \pi / \sqrt{1 - \zeta^2})} \times 100$$
 (4.38)

Notice that the percent overshoot is a function only of the damping ratio, ζ . Whereas Eq. (4.38) allows one to find %OS given ζ , the inverse of the equation allows one to solve for ζ given %OS. The inverse is given by

$$\zeta = \frac{-\ln(\%OS/100)}{\sqrt{\pi^2 + \ln^2(\%OS/100)}} \tag{4.39}$$

The derivation of Eq. (4.39) is left as an exercise for the student. Equation (4.38) (or, equivalently, (4.39)) is plotted in Figure 4.15.

FIGURE 4.15 Percent overshoot versus damping ratio

Evaluation of T_s

In order to find the settling time, we must find the time for which c(t) in Eq. (4.28) reaches and stays within $\pm 2\%$ of the steady-state value, c_{final} . Using our definition, the settling time is the time it takes for the amplitude of the decaying sinusoid in Eq. (4.28) to reach 0.02, or

$$e^{-\zeta \omega_n t} \frac{1}{\sqrt{1-\zeta^2}} = 0.02 \tag{4.40}$$

This equation is a conservative estimate, since we are assuming that $\cos(\omega_n\sqrt{1-\zeta^2}t-\phi)=1$ at the settling time. Solving Eq. (4.40) for t, the settling time is

$$T_s = \frac{-\ln(0.02\sqrt{1-\zeta^2})}{\zeta\omega_n}$$
 (4.41)

You can verify that the numerator of Eq. (4.41) varies from 3.91 to 4.74 as ζ varies from 0 to 0.9. Let us agree on an approximation for the settling time that will be used for all values of ζ ; let it be

$$T_s = \frac{4}{\zeta \omega_n} \, , \tag{4.42}$$

Evaluation of T_r

A precise analytical relationship between rise time and damping ratio, ζ , cannot be found. However, using a computer and Eq. (4.28), the rise time can be found. We first designate $\omega_n t$ as the normalized time variable and select a value for ζ . Using the computer, we solve for the values of $\omega_n t$ that yield c(t) = 0.9 and c(t) = 0.1. Subtracting the two values of $\omega_n t$ yields the normalized rise time, $\omega_n T_r$, for that value of ζ . Continuing in like fashion with other values of ζ , we obtain the results plotted in Figure 4.16. Let us look at an example.

FIGURE 4.16 Normalized rise time versus damping ratio for a second-order underdamped response

⁵Figure 4.16 can be approximated by the following polynomials: $\omega_n T_r = 1.76\zeta^3 - 0.417\zeta^2 + 1.039\zeta + 1$ (maximum error less than $\frac{1}{2}$ % for $0 < \zeta < 0.9$), and $\zeta = 0.115(\omega_n T_r)^3 - 0.883(\omega_n T_r)^2 + 2.504(\omega_n T_r) - 1.738$ (maximum error less than 5% for $0.1 < \zeta < 0.9$). The polynomials were obtained using MATLAB's **Polyfit** function.