Projekt 2, Zadanie 36

Wiktor Murawski, 333255, grupa 3, środa 12:15

Metoda Adamsa-Bashfortha rzędu 4-go dla liniowych równań różniczkowych pierwszego i drugiego rzędu. Wartości początkowe $y_1,\ y_2,\ y_3$ obliczane metodą Rungego-Kutty rzędu 4-go (wzór Ralstona).

Równanie różniczkowe pierwszego rzędu

Dane jest równanie różniczkowe liniowe pierwszego rzędu oraz warunek początkowy:

$$a_1(x)y' + a_0(x)y = b(x), y(x_0) = y_0$$

Przekształcając równanie otrzymujemy

$$y' = f(x,y) = \frac{b(x) - a_0(x)y}{a_1(x)}$$

Równanie różniczkowe drugiego rzędu

Dane jest równanie różniczkowe liniowe drugiego rzędu oraz warunki początkowe:

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x),$$
 $y(x_0) = y_0$
 $y'(x_0) = y'_0$

Sprowadzamy równanie do układu równań różniczkowych liniowych stopnia pierwszego:

$$Y' = F(x, Y),$$

gdzie

$$Y = \begin{bmatrix} y \\ y' \end{bmatrix} \stackrel{\text{ozn}}{=} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \qquad \qquad Y' = \begin{bmatrix} y_1' \\ y_2' \end{bmatrix}$$

Przekształacając równanie otrzymujemy

$$Y' = F(x, Y) = \begin{bmatrix} y_2 \\ \frac{1}{a_2(x)} (b(x) - a_0 y_1 - a_1 y_2) \end{bmatrix}$$

Jawne metody Rungego-Kutty 4-go rzędu

Mając wartość Y_n , jawne metody Rungego-Kutty rzędu czwartego pozwalają na wyznaczenie wartości Y_{n+1} następująco:

$$K_1 = hF(x_n, Y_n)$$

$$K_2 = hF(x_n + a_2h, Y_n + b_{21}K_1)$$

$$K_3 = hF(x_n + a_3h, Y_n + b_{31}K_1 + b_{32}K_2)$$

$$K_4 = hF(x_n + a_4h, Y_n + b_{41}K_1 + b_{42}K_2 + b_{43}K_3)$$

$$Y_{n+1} - Y_n = c_1K_1 + c_2K_2 + c_3K_3 + c_4K_4$$

Współczynniki a_i, b_{ij}, c_i przedstawione w tablicy Butchera:

0	0	0	0	0
a_2	b_{21}	0	0	0
a_3	b_{31}	b_{32}	0	0
a_4	b_{41}	b_{42}	b_{43}	0
	c_1	c_2	c_3	c_4

Ogólne wzory na współczynniki

Współczynniki a_i,b_{ij},c_i tworzą rodzinę dwuparametrową zależną od parametrów α i β gdzie $\alpha \neq 0, \beta \neq 0, \alpha \neq 1, \beta \neq 1, \alpha \neq \beta.$

0	0	0	0	0
α	α	0	0	0
β	$\beta - \frac{\beta(\beta - \alpha)}{2\alpha(1 - 2\alpha)}$	$\frac{\beta(\beta - \alpha)}{2\alpha(1 - 2\alpha)}$	0	0
1	$1 - \frac{(1-\alpha)(\beta(\alpha+\beta-1-(2\beta-1)^2)+2\alpha(1-2\alpha)(1-\beta))}{2\alpha\beta(\beta-\alpha)(6\alpha\beta-4(\alpha+\beta)+3)}$	$\frac{(1-\alpha)(\alpha+\beta-1-(2\beta-1)^2)}{2\alpha(\beta-\alpha)(6\alpha\beta-4(\alpha+\beta)+3)}$	$\frac{(1-2\alpha)(1-\alpha)(1-\beta)}{\beta(\beta-\alpha)(6\alpha\beta-4(\alpha+\beta)+3)}$	0
	$\frac{1}{2} - \frac{1 - 2(\alpha + \beta)}{12\alpha\beta}$	$\frac{2\beta-1}{12\alpha(\beta-\alpha)(1-\alpha)}$	$\frac{1-2\alpha}{12\beta(\beta-\alpha)(1-\beta)}$	$\frac{1}{2} + \frac{2(\alpha + \beta) - 3}{12(1 - \alpha)(1 - \beta)}$

Dla parametrów $\alpha=\frac{2}{5}$ i $\beta=\frac{7}{8}-\frac{3\sqrt{5}}{16}$ otrzymujemy ograniczenie górne błędu:

$$|E| < 5.46 \cdot 10^{-2} ML^4$$

gdzie, dla pewnego obszaru B(x,y) zawierającego (x_n,y_n) , zachodzi

$$f(x,y) \le M$$

$$\frac{\partial^{i+j} f}{\partial x^i \partial u^j} < \frac{L^{i+j}}{M^{j-1}}$$

Tabela Butchera (wartości dokładne)

0	0	0	0	0
$\frac{2}{5}$	$\frac{2}{5}$	0	0	0
$\frac{14 - 3\sqrt{5}}{16}$	$\frac{-2889 + 1428\sqrt{5}}{1024}$	$\frac{3785 - 1620\sqrt{5}}{1024}$	0	0
1	$\frac{-3365 + 2094\sqrt{5}}{6040}$	$\frac{-975 - 3046\sqrt{5}}{2552}$	$\frac{467040 + 203968\sqrt{5}}{240845}$	0
	$\frac{263 + 24\sqrt{5}}{1812}$	$\frac{125 - 1000\sqrt{5}}{3828}$	$\frac{3426304 + 1661952\sqrt{5}}{5924787}$	$\frac{30 - 4\sqrt{5}}{123}$

Tabela Butchera (wartości przybliżone)

0	0	0	0	0
0.4	0.4	0	0	0
0.45573725	0.29697761	0.15875964	0	0
1	0.21810039	-3.05096515	3.83286476	0
	0.17476028	-0.55148066	1.20553560	0.17118478

Metoda Adamsa-Bashfortha

Testy poprawności

Testy numeryczne

Przetestujemy teraz własności numeryczne zaimplementowanej metody.

Testy numeryczne

Źródła