

DATA STRUCTURES & ALGORITHMS

Lecture 1: Introduction to Algorithm & Algorithm Analysis

Lecturer: Dr. Nguyen Hai Minh

- Role of Algorithms in Computing
- Algorithm Analysis Framework
- Asymptotic Annotations
- Mathematical Analysis of Algorithm

What is Algorithm?

Algorithm:

well-defined computational procedure that takes some value, or set of values, as *input* and produces some value, or set of values, as output

Computational Problem

Why should we study algorithm?

fit@hcmus

- Computer programs would not exist without algorithms.
- Studying algorithms help developing analytical skill
 - Algorithm can be seen as special kinds of solutions to problems – not just answer but precisely defined procedures for getting answers.
 - Consequently, specific algorithm design techniques can be interpreted as problem-solving strategies that can be useful in other fields, not just in computing.
 - → Algorithmic thinking

Why should we study algorithm?

fit@hcmus

A person well-trained in computer science knows how to deal with algorithms: how to construct them, manipulate them, understand them, analyze them.

- Donald Knuth -

What kind of problems are solved by Algorithm?

- Important Problem Types:
 - Sorting
 - Searching
 - String matching
 - Graph problems
 - Combinatorial problems
 - Geometric problems
 - Numerical problems
- → These problems are introduced in the subsequent lectures to illustrate different algorithm design techniques and methods of algorithm analysis

7

Problems that cannot be solved by Algorithm?

- The precision inherently imposed by algorithmic thinking limits the kinds of problems that can be solved with an algorithm.
- You will not find algorithms for:
 - Living a happy life
 - Becoming a millionaire
 - Living forever
 - ...

Algorithmic Problem Solving

Designing Algorithms

- Brute-force &Exhaustive Search
- Decrease and Conquer
- Divide and Conquer
- Transform and Conquer
- Space and TimeTrade-offs

- DynamicProgramming
- □ Greedy Technique
- Iterative Improvement
- Backtracking
- Branch-and-bound
- Approximation algorithms

Designing Data Structure

- Linear Data Structure:
 - Array
 - Linked List
 - Stack
 - Queue
 - Hash Table
- □ Trees
- Graphs

Measuring an Input's size
Units for Measuring Running Time

Order of Growth

Kinds of Analysis

Nguyen Hai Minh`

Algorithm Analysis

- The theoretical study of computer-program performance and resource usage.
 - Time efficiency
 - Space efficiency
- What is more important than performance?
 - modularity
 - correctness
 - maintainability
 - functionality
 - robustness

- user-friendliness
- o programmer time
- o simplicity
- extensibility
- o reliability

Algorithm Analysis

- Nowadays, the amount of extra space required by an algorithm is typically not of as much concern.
- In most problems, we can achieve much more spectacular progress in **speed** than in space.
- → We primarily concentrate on time efficiency, but analytical framework in this course is applicable to analyzing space efficiency as well.

Performance (efficiency) of Algorithms

- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a language for talking about program behavior.
- Performance is the currency of computing.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!

Measuring an Input's Size

- Almost all algorithms run longer on larger inputs.
- ☐ For example:
 - Sorting arrays: A1 = {12, 1, 3}
 - Sorting arrays: A2 = {88, 12, 3, 19, 32, 9, 1, 3, 45, 17, 89, 12, 34, 52, 61, 41, 24, 98, 19, 38}
- Algorithm's efficiency is investigated as a function of some parameter *n* indicating the algorithm's input size.

Measuring an Input's Size

- □ Straightforward: problems dealing with lists (e.g., sorting, searching, min, max, ...)
 - n is the size of the list
- Not straightforward:
 - Computing the product of two matrix
 - Checking primality of a positive integer n
 - Finding GCD of two numbers
 - Spell-checking a document
 - ...

Units for Measuring Running Time

- Algorithm's running time depends on:
 - Computer speed (hardware, software).
 - Using resource (memory, disk).
 - Implementation of algorithm
- How to analyze running time correctly?
 - Ignore machine-dependent time
 - Using "logic" metrics (ex: numbers of operations: +,-,*,/,<,>,=...) rather than real time metrics (miliseconds, seconds, minutes, hours, ...)

Machine-independent Time

Units for Measuring Running Time

- Count the number of primitive operations or steps executed (the most time-consuming operation in the algorithm's <u>innermost loop</u>)
- □ For example:
 - Most sorting algorithms work by comparing elements (keys) of a list & exchanging elements → basic operation is key comparison (<, >, ==) and assignment (=)
- □ Then, running time of an algorithm can be seen as a cost function that depends on the size of input.

Units for Measuring Running Time

□ Sum of *n* integer:

```
sum = 0;

for (i = 0; i < n; i++)

sum = sum + i;
```

Assignment: 2n+2

```
sum = 0;

for (i = 0; i < n; i++)

sum = sum + i;
```

Comparison: *n*+1

 \square Running time: T(n) = 3n + 3

Order of Growth

- We should focus on the count's order of growth for large input size!
 - For small inputs, the difference in running time is not what really distinguishes efficient algorithms from inefficient ones.
 - Example: powering a number by n
 - Decrease-by-one technique
 - Divide-and-Conquer technique
 - → The efficiency of two algorithms becomes clear and important when n is large.

Order of Growth (Rate of Growth)

- □ For large values of n $(n \to \infty)$, the function's order of growth is important!
 - The growth of T depends on n

n	T(n)	3	n	3		
	Value	Value	%	Value	%	
1	303	300	99.01	3	0.66	
1000	3,003	3,000	99.93	3	0.07	
10,000	30,003	30,000	99.99	3	0.01	
100,000	300,003	300,000	100	3	0.00	

- Ignore very small parts in the cost function.
- T(n) = 3n + 3

Order of Growth (Rate of Growth)

Another example:

n	$T(n)$ n^2		100n		$\log_{10}n$		1000		
	Value	Value	%	Value	%	Value	%	Value	%
1	1,101	1	0.1	100	9.1	0	0.0	1,000	90.82
10	2,101	100	4.76	1,000	47.6	1	0.05	1,000	47.62
100	21,002	10,000	47.6	10,000	47.6	2	0.991	1,000	4.76
1,000	1,101,003	1,000,000	90.8	100,000	9.1	3	0.0003	1,000	0.09
10,000	101,001,004	100,000,000	99.0	1,000,000	0.99	4	0.0	1,000	0.001
100,000	10,010,001,005	10,000,000,000	99.9	10,000,000	0.099	5	0.0	1,000	0.0

$$T(n) = 3n^2 + \log_{10}n + 1000$$

 \rightarrow The growth of T depends on n^2

23

🔬 fit@hcmus

Comparison of functions

12	$\log_2 \mathbb{R}_2$	n	$n \log_2 2 n$	n^2 ?	n^3 ?	2^n	n!
17	02	1?	02	1?	1?	2[1[
17	12	2?	2?	4?	82	4[2[
12	2?	4?	82	162	642	16[24[
12	3?	82	24?	642	5122	256[40,320
12	4?	162	642	2562	40962	65,536[2.092279*1013[
12	52	322	1602	1,0242	32,7682	4,294,967,296	2.6313084*1035[

Kinds of analyses

- ☐ There are many algorithms for which running time depends not only on input size but also on the specifics of a **particular input**.
- ☐ For example: Insertion Sort runs fastest if the array is already sorted, slowest if the array is in decreasing order.

25

Kinds of analyses

- Worst-case: (usually)
 - T(n) = maximum time of algorithm on any input of size n.
- Average-case: (sometimes)
 - T(n) = expected time of algorithm over all inputs of size n.
 - → Need assumption of statistical distribution of inputs.
- Best-case: (bogus)
 - → Cheat with a slow algorithm that works fast on *some* input.

Kinds of analyses

<pre>INSERTION-SORT(A,n)</pre>	(Cost times		
1 for i = 2 to n	<i>C</i> ₁	n		
2 key = A[i]	c ₂	n $n-1$		
3 //Insert A[i] into the sorted subarray A[1:i-1]	0	n-1		
4 j = i - 1	<i>C</i> ₄	n-1		
<pre>5 while j > 0 and A[j] > key</pre>	C ₅	$\sum_{i=2}^{n} t_i$		
A[j+1] = A[j]	c ₆	$\sum_{i=2}^{n} (t_i - 1)$		
7 j = j - 1	C ₇	$\sum_{i=2}^{n} (t_i - 1)$		
8 A[j+1] = key	<i>c</i> ₈	n-1		

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=2}^{n} t_i + c_6 \sum_{i=2}^{n} (t_i - 1) + c_7 \sum_{i=2}^{n} (t_i - 1) + c_8 (n-1)$$

- Best case: the array has been sorted
 - While loop always exists upon the first test in line 5
 - Therefore, $t_i = 1$ for all i = 2, ..., n
 - The best case running time is given by:

$$T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 (n - 1) + c_8 (n - 1)$$
$$= (c_1 + c_2 + c_4 + c_8)n - (c_2 + c_4 + c_5 + c_8) = an + b$$

→ The running time is thus a *linear function* of *n*

- Worst case: the array is in reverted sorted
 - The procedure must compare each element A[i] with each element in the entire sorted subarray
 - Therefore, $t_i = i$ for all i = 2, ..., n
 - The worst case running time is given by:

$$T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 \left(\frac{n(n - 1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n - 1)}{2}\right) + c_6 \left(\frac{n(n - 1)}{2}\right) + c_8 (n - 1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_{4+} \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$-(c_2 + c_4 + c_5 + c_8) = an^2 + bn + c$$

→ The running time is thus a *quadratic function* of *n*

- Average case: the array is in randomly chosen number.
 - On average, half the elements in A[1: i 1] are less than A[i], and half the elements are greater.
 - Therefore, $t_i = i/2$ for i = 2, ..., n
 - The average case running time is thus a quadratic function of n

Asymptotic Analysis

Look at *growth* of f(n) as $n \to \infty$ "Asymptotic Analysis"

Asymptotic Notations

- Efficiency analysis concentrates on the order of growth of an algorithm's basic operation count.
- □ To compare such order of growth, computer scientists use 3 notations:

 $oldsymbol{O}$ Big-Oh

Ω Big Omega

O Big Theta

Asymptotic Notations – Big-Oh

- \square O(g(n)): set of all functions with a **lower** or same order of growth as g(n)
 - E.g., $n \in O(n^2)$, $100n + 5 \in O(n^2)$, $\frac{1}{2}n(n-1) \in O(n^2)$
 - $n^3 \notin O(n^2)$, $0.0001n^3 \notin O(n^2)$, $n^4 + n + 1 \notin O(n^2)$

Asymptotic Notations – Big Omega

- $\square \Omega(g(n))$: set of all functions with a **higher** or **same** order of growth as g(n)
 - E.g., $n^3 \in \Omega(n^2)$, $\frac{1}{2}n(n-1) \in \Omega(n^2)$

Asymptotic Notations – Big-Theta

- \square $\Theta(g(n))$: set of all functions with **same** order of growth as g(n)
 - E.g., $an^2 + bn + c \in \Theta(n^2)$ with a > 0

$$f(n) \in \Theta(g(n))$$

O-Notation

Math:

For a given function g(n), we denote by O(g(n)) (pronounced "big-oh of g of n") the set of functions

 $O(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_o \text{ such that: } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$

Explain: f is big-O of g if there is c so that f is not bigger than c * g when n is large enough

Engineering:

Drop low-order terms, ignore leading constants.

Ex:
$$3n^3 + 90n^2 - 5n + 6046 = O(n^3)$$

O-Notation

- o If n is large enough $(n \ge n_0)$, then g(n) is the upper bound of f(n)
- We write $f(n) \in O(g(n))$ to indicate that a function f(n) is a member of the set O(g(n))

O-Notation

- O-notation is used to classify algorithms by how they respond to changes in input size.
- O-notation characterizes functions according to their growth rates:
 - different functions with the same growth rate may be represented using the same O-notation.

O-Notation – Example

- □ Prove that $f(n) = 2n^2 + 6n + 1 \in O(n^2)$
 - Let $g(n) = n^2$
 - We have: $2n^2 + 6n + 1 \le 2n^2 + 6n^2 + n^2 \le 9n^2$ (for all $n \ge 1$)
 - Thus, as c = 9, $n_0 = 1 \rightarrow f(n) < 9g(n)$
 - By definition of Big-Oh, $f(n) \in O(n^2)$
- \square Note that you can choose other specific values for constants c and n_0 .
 - For example, we can choose c = 3, $n_0 = 7$

O-Notation – Example

- \square Prove that $f(n) = n^3 100n^2 \notin O(n^2)$
 - o If we have $f(n) \in O(n^2)$, then there would be positive constants c and n_0 such that
 - o $n^3 100n^2 \le cn^2$ (for all $n \ge n_0$)
 - We divide both sides by n^2 , giving $n 100 \le c$
 - Regardless of what value we choose for c, this inequality does not hold for any value of n>c+100

Classification of Algorithms

Order of growth	Class name
0(1)	Constants
$O(\log_2 n)$	Logarithms
O(n)	Linears
$O(n\log_2 n)$	$n\log_2 n$
$O(n^a)$	Polynomials
$O(a^n), a > 1$	Exponentials
O(n!)	Fractorials

Non-recursive Algorithms
Recursive Algorithms

ANALYSIS OF NON-RECURSIVE ALGORITHMS

- 1. Decide *n* the input size
- Identify the algorithm's basic operation (as a rule, it is located in the innermost loop)
- 3. Check whether the number of times the basic operation is executed depends only on *n*
 - If it depends on some additional property, specify the worst-case for Big-Oh
- 4. Set up a sum expressing the number of times the algorithm's basic operation is executed.
- 5. Find a closed-form formula for the count and establish its order of growth.

45

ANALYSIS OF NON-RECURSIVE ALGORITHMS

Example: Check whether all the elements in a given array of *n* elements are distinct.

```
UniqueElements(A[0..n - 1])
//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n - 1]
//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise
 for i \leftarrow 0 to n - 2 do
     for j \leftarrow i + 1 to n - 1 do
                                            Basic operation
          if A[i] = A[j]
              return false
 return true
```


ANALYSIS OF NON-RECURSIVE ALGORITHMS

Worst-case:

$$C_{worst}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i)$$

$$= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i = (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2}$$

$$= (n-1)^2 - \frac{(n-2)(n-1)}{2} = \frac{(n-1)n}{2} \approx \frac{1}{2}n^2$$

ANALYSIS OF RECURSIVE ALGORITHMS

- 1. Decide *n* the input size
- 2. Identify the algorithm's basic operation
- 3. Check whether the number of times the basic operation is executed depends only on *n*
 - If it depends on some additional property, specify the worst-case for Big-Oh
- 4. Set up a **recurrence relation**, with an appropriate initial condition, for the number of times the basic operation is executed.
- Solve the recurrence and establish its order of growth.

ANALYSIS OF RECURSIVE ALGORITHMS

Example: Compute the factorial function F(n) = n! for an arbitrary non-negative integer n.

```
Factorial(n)
//Computes n! recursively
//Input: A nonnegative integer n
//Output: The value of n!
    if n = 0 return 1
    else return Factorial(n - 1) * n
Basic operation
* n
```

ANALYSIS OF RECURSIVE ALGORITHMS

Recurrence relation:

$$M(n) = M(n-1) + 1$$
to compute
 $F(n-1)$
to multiply
 $F(n-1)$ by n
for $n > 0$.

- We have: M(0) = 0. Thus:
- M(n) = M(n-1) + 1 = [M(n-2) + 1] + 1 = M(n-2) + 2
- = [M(n-3) + 1] + 2 = M(n-3) + 3.

$$M(n) = M(n-1) + 1 = \cdots = M(n-i) + i = \cdots = M(n-n) + n = n.$$

What's next?

□ After today:

- Read textbook 1 section 1.3 (page 85~)
- Read textbook 3 chapter 1 & 2 (page 1~)
- Do Homework 1 (work in group of 2 students), deadline: 23h55, June 10th, 2023

Next Week:

- Quiz 1 (20 mins, from 7:30~)
- Lecture 2: Sorting Algorithms

#