Stochastic Search

GA and PSO

Prithwijit Guha Dept. of EEE, IIT Guwahati

Overview

- An Application of Random Sampling
- Stochastic Search
- The Traveling Salesman Problem
- Genetic Algorithm
- Particle Swarm Optimization

How to Find the Area of this Region?

Calculus Approach

Decompose Region into Small Squares

Approximating Area by Random Sampling

Region S

Minimum Bounding Rectangle R_S of **S**

 $m{N}$ Number of Points are Sampled from a Uniform Distribution $m{U}(m{R_S})$ Supported on $m{R_S}$

- N_s Points within S
- $(N N_s)$ Points within $R_s S$

$$\hat{A}(S) = \left(\frac{N_S}{N}\right) A(R_S)$$

$$\lim_{N\to\infty}\hat{A}(S)=A(S)$$

Certain Issues

- Objective Function Computation can be Costly
 - Problems Involving Millions of Variables and Constraints
 - Example: Deep Neural Networks and Big Training Data
- Often Limited Function Evaluations are Allowed
- Estimation of $\nabla f(\mathbf{x})$; $\mathbf{x} \in \mathbb{R}^n$ involves (n+1) Function Evaluations
- Objective Function may not be Differentiable
 - Example: $\min\{\max_{i=1,\dots,m} f_i(\mathbf{x}), g(\mathbf{x})\}$
 - Certain Combinatorial Optimization Problems (e.g. TSP)

Optimization by Random Sampling

- Maximize y = f(x) with Only n Function Evaluations
- Randomly Generate n Solutions x_i ; i = 1, ... n
- Evaluate $y_i = f(x_i)$; i = 1, ... n
- Optimal Solution x_j : $j = argmax_{r=1...n} y_r$

Random Yet Directed Search

Resampling Near More Successful Ones

Stochastic Search (SS)

Maximize y = f(x); $x \in \mathbb{R}^n$

Search Space $\Omega_n \subset \mathbb{R}^n$ specified by User or Constraints

Search Space Ω_n defined by Vectors X_{min} and X_{max}

Solution Population is Initialized and Iteratively Generated in Ω_n

SS: Initialization

$$S_t = \{x_i^t; i = 1, ... m\}$$
: Population (or Solution Set) at Iteration t $Y_t = \{y_i^t = f(x_i^t); i = 1, ... m\}$: Set of Evaluated Solutions $S_0 = \{x_i^0; i = 1, ... m\}$: Initial Population (or Solution Set)

$$\boldsymbol{x}_i^t[j]$$
: Dimension j of \boldsymbol{x}_i^t ; $j=1,...n$

$$\boldsymbol{x}_{i}^{0}[j] = (1 - \alpha_{ij})X_{min}[j] + \alpha_{ij}X_{max}[j]$$

$$\alpha_{ij} \in (0,1)$$
: Sampled from U(0,1)

SS: Initialization (Alternate)

$$S_t = \{x_i^t; i = 1, ... m\}$$
: Population (or Solution Set) at Iteration t $Y_t = \{y_i^t = f(x_i^t); i = 1, ... m\}$: Set of Evaluated Solutions $S_0 = \{x_i^0; i = 1, ... m\}$: Initial Population (or Solution Set)

$$\boldsymbol{x}_i^0 = (1 - \alpha_i) X_{min} + \alpha_i X_{max}$$

 $\alpha_i \in (0,1)$: Sampled from U(0,1)

SS: Objective Functions

SS is designed to Maximize y = f(x); $x \in \mathbb{R}^n$

Optimization Problem: Minimize g(x); $x \in \mathbb{R}^n$ f(x) = -g(x)

Equation Solving:
$$h(x) = 0$$
; $x \in \mathbb{R}^n$

$$f(x) = -\{h(x)\}^2$$

SS: Evaluating Solution Fitness Scores

Recall: $S_t = \{x_i^t; i = 1, ... m\}; Y_t = \{y_i^t = f(x_i^t); i = 1, ... m\}$ Y_t may contain Negative Values as Well

Transform
$$y_i^t$$
 to Non-negative Scores u_i^t $U_t = \{u_i^t : u_i^t = y_i^t - \min(Y_t) ; i = 1, ... m\}$

Transform u_i^t to Relative Solution Scores or Fitness Scores p_i^t

$$P_{t} = \left\{ p_{i}^{t} : p_{i}^{t} = \frac{u_{i}^{t}}{\sum_{j=1}^{m} u_{j}^{t}}; i = 1, \dots m \right\}$$

Generating Random Points within a Circle

Generating Random Points within a Circle

Generate Random $\theta_i \in [0,2\pi)$ Generate Random $r_i \in (0,\rho)$

$$x_i = c_x + r_i \cos(\theta_i)$$

$$y_i = c_y + r_i \sin(\theta_i)$$

SS: Children Generation by Random Walk

$$C_i^{t+1}$$
: Set of Children of x_i^t with Fitness Score p_i^t

$$|C_i^{t+1}| = ROUND(m \times p_i^t)$$

Generation of Child $x_{ij}^{t+1} \in \mathcal{C}_i^{t+1}$

$$\boldsymbol{x}_{ij}^{t+1} = \boldsymbol{x}_i^t + r_{ij}^{t+1}$$

Sample $v_{ij}^{t+1}[d]$ from U(-1,1); d = 1, ... n

Construct
$$r_{ij}^{t+1} = \lambda \frac{v_{ij}^{t+1}}{\left\|v_{ij}^{t+1}\right\|_{2}}; \lambda \in (0, \epsilon)$$

SS: Children From Random Linear Combination

 S_{t+1}^{RLC} : Set of Solutions formed by Random Linear Combination

$$S_{t+1}^{RLC} = \{ \boldsymbol{x}_k^{t+1} \colon \boldsymbol{x}_k^{t+1} = (1 - \alpha_k) \boldsymbol{x}_{ik}^t + \alpha_k \boldsymbol{x}_{jk}^t; \boldsymbol{x}_{ik}^t, \boldsymbol{x}_{jk}^t \in S_t \}$$

Solutions formed by Random Linear Combination Help in Interchange of Information between Solutions

Parent Selection: Roulette Wheel

Choose x_k

$$\sum_{i=1}^{k-1} p_i$$

Parent Selection: Tournaments

SS: Exploitation and Exploration

Exploitation: Local Search by Dense Sampling in Small Region; Makes the Process Slow but Reaches Optimum

Exploration: Moves to Far Away Places in Search Spaces Looking for Near Optimum Regions Suitable for **Exploitation**

A Good Stochastic Search Execution Strikes a Balance between Exploration and Exploitation

SS: From S_t to S_{t+1}

 $S_{t+1}^{RW} = \bigcup_{i=1}^{m} C_i^{t+1}$: Solutions Generated by Random Walk

 S_{t+1}^{RLC} : Solutions Generated by Random Linear Combination

 S_{t+1}^{RRI} : Solutions Generated by Random Re-initialization

$$S_{t+1} = BEST_m \{S_t \cup S_{t+1}^{RW} \cup S_{t+1}^{RLC} \cup S_{t+1}^{RRI} \}$$

SS: Parameters and Execution

 X_{min} and X_{max} : Search Space Bounds

m: Population or Solution Set Size

€: Neighborhood Size for Children Generation

 n_{RLC} : Number of Solutions Generated by Random Linear Combination

 n_{RRI} : Number of Children Generated by Random Re-initialization

 T_{max} : Maximum Number of Iterations $(t = 1, ... T_{max})$

Final Solution: Best Solution of $S_{T_{max}}$

Stochastic Search: Algorithm

- Initialize Population S_0 ($|S_0|=m$) in Search Space (X_{min}, X_{max})
- Evaluate Y_0 for Solution Population S_0
- FOR $t = 0 \rightarrow T_{max}$
 - Generate Non-negative Set U_t from Y_t
 - Evaluate P_t by Sum Normalizing U_t
 - Generate Children Population S_{t+1}^{RW} , S_{t+1}^{RLC} and S_{t+1}^{RRI}
 - Evaluate Y_{t+1}^{RW} , Y_{t+1}^{RLC} and Y_{t+1}^{RRI}
 - Generate $\{S_{t+1}, Y_{t+1}\} = \text{BEST}_{m} \{S_{t} \cup S_{t+1}^{RW} \cup S_{t+1}^{RLC} \cup S_{t+1}^{RRI} \}$
- END FOR
- Best Solution: BEST $\{S_{T_{max}}, Y_{T_{max}}\}$

Travelling Salesman Problem (TSP)

TSP: Stochastic Search Formulation

TSP: Solution Encoding and Objective Function

Corresponding Negated Distance Values

TSP: Children Generation and Iterations

Consider a Population of Size m. A Solution X with Fitness Score p has $k = ROUND(m \times p)$ children.

These k Children will be generated by performing k Swaps on the Parent Solution X.

Genetic Algorithms (GA)

- Nature Inspired Evolutionary Algorithm
- Similar to Stochastic Search in Operation
- Binary Solution Encoding (Bit Strings)
- Uses Genetic Operators for Children Generation
- Advanced Algorithms use other Evolutionary Strategies

GA: Binary Solution Encoding

Real or Integer Valued Solutions are Encoded using Bit Strings

1.35 (Multiply by 100 to obtain the integer 135)

Binary Coded Solution Representation

GA: Binary Crossover

$$X_1 = 1.35 (10000111)_2$$
 and $X_2 = 0.45 (00101101)_2$

Both Parents are Multiplied by 100 for Uniform Binary Encoding

Parents are Chosen by Tournament Selection

 $P_1 + P_2 = C_1 + C_2$

Crossover Point Near LSB: Exploitation

GA: Binary Crossover

$$X_1 = 1.35 (10000111)_2$$
 and $X_2 = 0.45 (00101101)_2$

Both Parents are Multiplied by 100 for Uniform Binary Encoding

Parents are Chosen by Tournament Selection

Crossover Point Near MSB: Exploration

 $P_1 + P_2 = C_1 + C_2$

GA: Mutation

$$X_1 = 1.35 (10000111)_2$$

The Parent is Multiplied by 100 for Binary Encoding

Mutation Point

- Mutation is Flipping a Bit from 1 to 0 or Vice Versa
- Exploitation: Mutation Point Near LSB
- Parent is Selected using Tournament Selection

GA: Mutation

$$X_1 = 1.35 (10000111)_2$$

The Parent is Multiplied by 100 for Binary Encoding

Mutation Point

- Mutation is Flipping a Bit from 1 to 0 or Vice Versa
- Exploration: Mutation Point Near MSB
- Parent is Selected using Tournament Selection

Genetic Algorithm

- Initialize Population S_0 ($|S_0|=m$) in Search Space (X_{min}, X_{max})
- Evaluate Y_0 for Solution Population S_0
- FOR $t = 0 \rightarrow T_{max}$
 - Generate Children Population S_{t+1}^{BC} ($|S_{t+1}^{BC}|=m_{BC}$) using Binary Crossover
 - Generate Children Population S_{t+1}^{BM} ($|S_{t+1}^{BM}|=m_{BM}$) using Binary Mutation
 - Decide m_{BC} and m_{BM} ($m_{BC}+m_{BM}=m$) based on Algorithm Progress
 - Evaluate Y_{t+1}^{BC} and Y_{t+1}^{BM}
 - Generate $\{S_{t+1}, Y_{t+1}\} = \text{BEST}_{m} \{ S_{t} \cup S_{t+1}^{BC} \cup S_{t+1}^{BM} \}$
- END FOR
- Best Solution: BEST $\{S_{T_{max}}, Y_{T_{max}}\}$

Discussions

- SS & GA are both Evolutionary Algorithms
- Solution Breeding from One Generation to Next
- "Survival of the Fittest" & "Selection of Better Parents"
- BC-GA and RLC-SS Interchange Information
- Exploration & Exploitation can be achieved by Changing Parameters
- BM-GA (near LSB) and RW-SS Perform Exploitation
- BM-GA (near MSB) and RRI-SS Perform Exploration
- Start Exploring Search Space when Algorithm Progress gets Stalled
- Solutions Do Not Aggressively ``Seek'' the Maxima

Swarming Behavior

- Try to Follow the Neighbor's Collective Behavior (Motion)
- Try to Remain Close to Neighbors (Proximity)
- Avoid Collisions with Neighbors (Good Neighbor)
- Loosely Following a Leader (Global Goal)

Particle Swarm Optimization (PSO) Algorithm
James Kennedy & Russell Eberhart (1995)

Discussions

- Swarm of particles
- Each particle residing at a position in the search space
- Fitness of each particle = the quality of its position
- Particles fly over the search space with a certain velocity
- **Velocity** (both direction and speed) of each particle is influenced by its own best position found so far and the best solution that was found so far by its **neighbors**.
- Eventually the swarm will converge to **optimal** positions.

Notations

$$\mathbf{S}_t = \left\{ \mathbf{q}_i^{(t)}; i = 1, ... m \right\}$$
: Population or Solution Set at iteration t

$$\boldsymbol{q}_i^{(t)} = \left\langle \boldsymbol{x}_i^{(t)}, \boldsymbol{v}_i^{(t)}, \boldsymbol{p}_i^{(t)}, \boldsymbol{y}_i^{(t)} \right\rangle$$
: The Particle i at iteration t

 $oldsymbol{x}_i^{(t)}$: Position of Particle i at iteration t

 $oldsymbol{v}_i^{(t)}$: Velocity of Particle i at iteration t

 $p_i^{(t)}$: Best Position of Particle i till Iteration t

Notations

 $y_i^{(t)}$: Fitness Score of Particle i at Iteration t

 \boldsymbol{g}_t : Global Best Particle Position at Iteration t

 ϕ_p : Cognitive Component of Particle

 ϕ_g : Social Component of Particle

 ω : Momentum Component for Particle Velocity

 $oldsymbol{X}_{min}$ and $oldsymbol{X}_{max}$: Search Space Bounds

PSO: Initialization

$$k = \underset{i=1,...m}{\operatorname{argmin}} y_i^{(0)}$$
 $g_0 = x_k^{(0)}$

Objective Function: y = f(x); $y \in \mathbb{R}^1$; $x \in \mathbb{R}^n$

PSO: Particle Velocity Update

$$\boldsymbol{v}_i^{(t+1)}[j] = \omega \boldsymbol{v}_i^{(t)}[j] + \phi_p \beta_{ij} \left(\boldsymbol{p}_i^{(t)}[j] - \boldsymbol{x}_i^{(t)}[j] \right) + \phi_g \gamma_{ij} \left(\boldsymbol{g}_t - \boldsymbol{x}_i^{(t)}[j] \right)$$

Cognitive component: The force emerging from the tendency to return to its own best solution found so far.

Social component: The force emerging from the attraction of the best solution found so far

$$\beta_{ij} \sim U(0,1)$$
$$\gamma_{ij} \sim U(0,1)$$
$$j = 1, ... n$$

Momentum: The force pulling the particle to continue its current direction.

PSO: Particle Update

Particle Position Update

$$\mathbf{x}_{i}^{(t+1)} = \mathbf{x}_{i}^{(t)} + \mathbf{v}_{i}^{(t+1)}$$

Particle Fitness Update

$$y_i^{(t+1)} = f\left(\boldsymbol{x}_i^{(t+1)}\right)$$

Particle Best Position Update

$$\boldsymbol{p}_{i}^{(t+1)} = \left(y_{i}^{(t)} < f\left(\boldsymbol{p}_{i}^{(t)}\right)\right) ? \boldsymbol{x}_{i}^{(t+1)} : \boldsymbol{p}_{i}^{(t)}$$

Global Best Position Update

$$k = \underset{i=1...m}{\operatorname{argmin}} f\left(\boldsymbol{p}_{i}^{(t+1)}\right) \longrightarrow \boldsymbol{g}_{t+1} = \boldsymbol{p}_{k}^{(t+1)}$$

PSO: Algorithm

- Search Space: (X_{min}, X_{max})
- Initialize Particle Population S_0 ($|S_0| = m$)
- Evaluate the Global Best Position g_0 for S_0
- FOR $t = 1 \rightarrow T_{max}$
 - Update Particle Velocities $oldsymbol{v}_i^{(t)}$; i=1,...m
 - Update Particle Positions $x_i^{(t)}$; i = 1, ... m
 - Update Particle Fitness Scores $y_i^{(t)}$; i = 1, ... m
 - Update Particle Best Positions $p_i^{(t)}$; i=1,...m
 - Evaluate the Global Best Position g_t for S_t
- END FOR
- Best Solution: $g_{T_{max}}$, $f(g_{T_{max}})$

Breeding Swarms

Summary

- Application of Sampling Strategy in Optimization
- Two Classes of Algorithms
 - Evolutionary Algorithms (Solutions Breed)
 - Swarming Algorithms (Solutions Do Not Breed)
- Stochastic Search
- SS Approach to TSP
- Genetic Algorithm
- Particle Swarm Optimization

Thank You