Dokumentacja projektu

Krzysztof Wasielewski

Czerwiec 2021

1 Idea

Celem projektu jest umożliwienie przeprowadzania symulacji $Gry\ w\ \dot{Z}ycie$ oraz modyfikowanie jej parametrów.

2 Kompilacja

Na systemach z rodziny Linux kompilacji można dokonać za pomocą polecenia make projekt

co rozwija się do

g++ -o projekt projekt.cpp Spawn.cpp Rules.cpp Wall.cpp Region.cpp
-lX11 -lGL -lpthread -lpng -lstdc++fs -std=c++17

3 Obsługa

Program można uruchomić w dwóch trybach: odczytu symulacji z pliku oraz wiersza poleceń.

3.1 Odczyt z pliku

Żeby uruchomić program w tym trybie, należy użyć polecenia

./projekt nazwa_pliku.txt

Wówczas otworzy się okno z symulacją zapisaną w zadanym pliku tekstowym.

3.2 Obsługa symulacji z wiersza poleceń

Program można uruchomić bez żadnych argumentów. Wtedy w wierszu poleceń należy wyspecyfikować symulację przez odpowiadanie na kolejne pytania, które pojawiają się na terminalu.

3.3 Modyfikowalne parametry

 Początkowy rozkład żywych komórek Może być losowy, zadany przez prawdopodobieństwo pojawiania się komórek, albo ustalony, zadany przez liczbę żywych komórek i ich koordynaty

• Zasady pojawiania się komórek

Wariant zliczający charakteryzowany przez 5 liczb oznaczających: odległość od sprawdzanych sąsiadów, minimalna i maksymalna liczba żywych sąsiadów, dla których komórka pozostaje żywa, minimalna i maksymalna liczba żywych sąsiadów, dla których komórka staje się żywa. Dla takiego opisu klasyczne zasady są reprezentowane przez ciąg 1 2 2 3 3.

Wariant rozpoznający wzór układu najbliższych sąsiadów reprezentowany przez osiem liczb, które oznaczają kolejnych sąsiadów danej komórki. Żeby komórka była żywa w kolejnej iteracji symulacji muszą zachodzić następujące warunki: komórka w poprzedniej iteracji musiała być żywa lub mieć jednego żywego sąsiada, sąsiedzi oznaczeni przez 0 nie mogli być żywi, zaś sąsiedzi oznaczeni przez 2 musieli być żywi

• Ściany

Na tych polach nigdy nie będzie żywych komórek. Opisane są przez liczę pól ścian i ich koordynaty

• Regiony

Na tych polach losowo pojawiają się lub znikają komórki w zależności od typu regionu. Regiony opisane są przez ich liczbę i pary: typ z prawdopodobieństwem zadziałania efektu.

3.4 Sterowanie symulacja

W czasie trwania symulacji obsługiwane są następujące sygnały z klawiatury

- spacja symulacja zostaje zatrzymana lub wznowiona
- klawisz r symulacja zostaje zrestartowana jeśli rozkład początkowy komórek był losowy następuje ponowne losowanie
- strzałka w prawo jeśli symulacja jest zatrzymana to zostaje wykonany jeden krok symulacji

4 Implementacja

Wyliczanie kolejnych kroków symulacji polega na cykliczny stosowaniu trzech kroków: aplikacji reguł pojawiania się komórek, aktywowaniu efektów regionów, a na końcu wykluczenie tych komórek, które pojawiły się na ścianach.

Projekt korzysta z PixelGameEngine autorstwa Davida Barra do wizualizacji svmulacii.

Obsługa zapisu symulacji opiera się na wykorzystaniu plików tekstowych.

4.1 Struktura programu

4.2 Szczegółowy opis klas

Simulation Główna klasa obsługująca symulację. Zawiera referencje do składowych obiektów typu: Spawn, Rules, Wall, Region. Stan symulacji przechowywany jest w podwójnej tablicy *board*, która w i-tej iteracji ustala wpisuje nowy stan do $board[i+1 \mod 2]$ na podstawie $board[i \mod 2]$.

Klasa ta dziedziczy po PixelGameEngine

SetColor - metoda ustawiająca kolor żywych komórek calculateNextStep - wylicza nowy stan symulacji i zapisuje go w board OnUserUpdate - metoda służąca do wizualizacji symulacji w oknie

Spawn Klasa opisująca stan początkowy populacji komórek SaveToFile - metoda do zapisu

Restart - metoda, która dla losowego rozkładu początkowe losuje nowy Get - metoda zwracająca informację czy dana komórka jest żywa w początkowym rozkładzie

Rules Klasa opisująca zasady propagacji komórek Obie podklasy implementują dwie metody:

SaveToFile - metoda do zapisu

Check - zwraca informację czy dana komórka będzie żywa w kolejnej iteracji

Wall Klasa opisująca ściany w symulacji SaveToFile - metoda do zapisu Get - zwraca informację czy na danym polu jest ściana GetColor i SetColor - metody pobierające i ustawiające kolor ścian

Region Klasa opisująca regiony

SaveToFile - metoda do zapisu

Activate - metoda aktywująca losowe zmiany na polach i zwracająca stan żywotności komórki po aplikacji losowej zmiany

GetType - zwraca typ regionu

SetCreatorColor, SetDestructorColor, SetCreatorColor, SetDestructorColor - metody pobierające i ustawiające kolor regionów.

FileManager Klasa zarządzająca zapisem do pliku SaveToFile - zapisuje stan początkowy symulacji do pliku ReadFromFile - wczytuje stan początkowy symulacji z pliku

InputReader Klasa obsługująca wejście z wiersza poleceń ReadInput - wczytuje stan początkowy symulacji z wiersza poleceń