1.3 Відношення еквівалентності та порядку

1.3.1 Відношення еквівалентності

Бінарне відношення на множині A називається відношенням еквівалентності, якщо це відношення є рефлексивним, симетричним та транзитивним.

Відношення еквівалентності позначається символом "≡" або "~".

Нехай задана множина A, $R \subseteq A \times A$, R = -1 відношення еквівалентності.

Елементи $a, b \in A$, для яких виконується aRb, називаються *еквівалентними*.

Відношення еквівалентності R, визначене на множині A, розбиває множину A на неперетинні підмножини, які називаються класами еквівалентності.

Розбиття множини A на класи еквівалентності

Нехай на множині A задане відношення еквівалентності R.

Виберемо елемент $a_1 \in A$ і утворимо клас C_1 що складається з усіх елементів $y \in A$, для яких виконується відношення a_1Ry .

Якщо $C_1 \neq A$, то виберемо з A елемент a_2 , що не входить до класу C_1 , і утворимо клас C_2 , який складається з елементів $y \in A$, для яких виконується відношення a_2Ry .

Розбиття множини A на класи еквівалентності

Якщо $(C_1 \cup C_2) \neq A$, то виберемо з A елемент a_3 , що не входить до класів C_1 і C_2 , і утворимо клас C_3 .

В результаті буде отримана система класів $C_1, C_2, ..., C_n$.

Система класів $C_1, C_2, ..., C_n$ називається системою класів еквівалентності і має такі властивості:

- а) класи попарно не перетинаються;
- б) будь-які два елементи з одного класу еквівалентні;
- в) будь-які два елементи з різних класів не еквівалентні.

Нехай " \equiv " — відношення еквівалентності на A і $x \in A$. Тоді підмножина елементів множини A, які еквівалентні x, називається класом еквівалентності для x:

$$[x]_{\equiv} = \{ y \mid y \in A, x \equiv y \}.$$

Теорема 3.1. Всяке відношення еквівалентності на множині A визначає єдине розбиття множини A (серед елементів розбиття немає порожніх).

Всяке розбиття множини A, яке не містить порожніх елементів, визначає відношення еквівалентності на множині A.

Приклад. Відношення рівності «=» задане на будь-якій множині чисел є відношенням еквівалентності.

Приклад. Відношення «навчатися в одному класі» задане на множині учнів школи є відношенням еквівалентності і розбиває всю множину учнів школи на окремі класи.

Приклад. Відношення «мати однакове ім'я» на визначеній множині людей є відношенням еквівалентності і розбиває всю множину людей на класи еквівалентності — групи людей з однаковими іменами.

Приклад. Відношення "жити в одному місті" є відношенням еквівалентності.

Дане відношення розбиває множину всіх мешканців України на ряд підмножин, що не перетинаються, таких, що у кожній підмножині всі мешканці еквівалентні за цим відношенням і жодні два мешканці різних підмножин не знаходяться у цьому відношенні, тобто не еквівалентні один одному. Такі підмножини називають класами еквівалентності.

1.3.2 Матриця та граф відношення еквівалентності

Нехай відношення еквівалентності задано на \mathbf{M} множині \mathbf{A} .

Елементи, що належать одному класу еквівалентності, попарно еквівалентні між собою.

Стовпці матриці відношення еквівалентності для елементів одного класу еквівалентності однакові та містять одиниці у всіх рядках, які відповідають цим елементам. Оскільки класи еквівалентності не перетинаються, у стовпцях, які відповідають елементам різних класів, не буде одиниць в одних і тих самих рядках.

Приклад. Hexaй $A = \{a, b, c, d, e, f, g, h\},$

 $R \subseteq A \times A$.

$$R = \{(a,a), (a,e), (a,f), (b,b), (b,h), (c,c), (c,g), (d,d), (e,a), (e,e), (e,f), (f,a), (f,e), (f,f), (g,c), (g,g), (h,b), (h,h)\}.$$

Матриця відношення R:

	a	b	c	d	e	f	g	h
a	1	0	0	0	1	1	0	0
b	0	1	0	0	0	0	0	1
C	0	0	1	0	0	0	1	0
d	0	0	0	1	0	0	0	0
e	1	0	0	0	1	1	0	0
\overline{f}	1	0	0	0	1	1	0	0
g	0	0	1	0	0	0	1	0
h	0	1	0	0	0	0	0	1

Маємо наступні класи еквівалентності:

$$A_1 = \{a, e, f\}, A_2 = \{c, g\}, A_3 = \{d\}, A_4 = \{b, h\}.$$

Матриця відношення R після перестановок:

	a	e	\overline{f}	\boldsymbol{c}	g	d	b	h
a	1	1	1	0	0	0	0	0
e	1	1	1	0	0	0	0	0
f	1	1	1	0	0	0	0	0
c	0	0	0	1	1	0	0	0
g	0	0	0	1	1	0	0	0
d	0	0	0	0	0	1	0	0
b	0	0	0	0	0	0	1	1
h	0	0	0	0	0	0	1	1

Граф відношення еквівалентності — це граф, кожна компонента з'єднання якого, що відповідає класу еквівалентності, є повним підграфом із петлями на кожній вершині.

Приклад.

1.3.3 Відношення порядку

Бінарне відношення на множині A називається відношенням **часткового** (**нестрогого**) **порядку** (позначається \leq), якщо воно:

- 1) рефлексивне $(a \le a)$,
- 2) антисиметричне (якщо $a \le b$ і $b \le a$, то a = b);
- 3) транзитивне (якщо $a \le b$ і $b \le c$, то $a \le c$).

Приклад. Відношенням нестрогого порядку на множині \mathbf{Z} або \mathbf{R} є нестрога нерівність.

Приклад. Відношенням нестрогого порядку на множині людей є відношення "бути не старшим" або "бути не молодшим".

Бінарне відношення на множині A називається відношенням **строгого порядку** (позначається <), якщо воно:

- 1) антирефлексивне (якщо a < b, то $a \ne b$);
- 2) асиметричне (якщо a < b, то не правильне b < a);
- 3) транзитивне (якщо a < b i b < c, то a < c).

Приклад. Відношенням строгого порядку є відношення строгої нерівності на множинах цілих або дійсних чисел

Приклад. Відношенням строгого порядку є відношення "бути молодшим" або "бути старшим" на множині людей.

Множина, в якій визначено відношення порядку, називається упорядкованою.

Елементи a і b називаються **порівнянними** за відношенням R, якщо виконується хоча б одне із співвідношень aRb або bRa.

Множина A називається **лінійно впорядкованою**, якщо для будь-яких двох її елементів x та y виконується x < y або y < x ($x \le y$ або $y \le x$).

Лінійно впорядкована множина зі строгим порядком також називається **ланцюгом**.

Приклад. Множина дійсних чисел з відношенням порядку "<" є лінійно впорядкованою.

Може виявитись, що для деяких пар (x, y) жодне зі співвідношень x < y або y < x не виконується. Такі елементи x та y називаються **незрівнянними**. У цьому випадку кажуть, що множина ε **частково впорядкованою**.

Приклад. Нехай дана множина $A = \{1, 2, 3\}$ та її булеан

$$P(A) = {\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}}$$

 $R \subseteq P(A) \times P(A), R = \{(X,Y) : X \subseteq Y\}.$

Таким чином, $(\{2\}, \{1,2\}) \in R$, тому що $\{2\} \subseteq \{1,2\}$, але $(\{1,2\}, \{2\}) \notin R$, тому що $\{1,2\} \not\subseteq \{2\}$.

Побудоване відношення:

- . рефлексивне: $\forall X \in P(A) \mid X \subseteq X$.
- . антисиметричне: $X \subseteq Y$ та $Y \subseteq X \Rightarrow X = Y$.
- . транзитивне: $X \subseteq Y$ та $Y \subseteq Z \Rightarrow X \subseteq Z$.

Отже, відношення R є відношенням нестрогого порядку. Проте очевидно, що знайдуться такі множини X та Y серед P(A), що не виконується ні $X \subseteq Y$, ні $Y \subseteq X$. Отже, множина P(A) з відношенням нестрогого порядку " \subseteq " є частково впорядкованою множиною.

Приклад. Відношення "x — пращур y", яке визначене на множині всіх людей.

Це відношення є відношенням строгого порядку, тому що воно антирефлексивне (жодна людина не є пращуром самої себе).

Множина людей із цим відношенням є частково впорядкованою множиною, бо існують люди, які не знаходяться між собою у родинних зв'язках.

Приклад. Відношенням лінійного порядку є відношення старшинства на множині офіцерських звань: лейтенант, старший лейтенант, капітан, майор, підполковник, полковник, генерал.

На заданій множині виконується відношення "бути молодшим за званням".

Отже, оскільки побудоване відношення є транзитивним і асиметричним, це відношення строгого порядку.

Крім того, воно виконується для будь-яких елементів множини, які розглядається. Отже, цей порядок є лінійним.

Відношення R на множині A, що задовольняє властивості рефлексивності та симетричності, називається відношенням **толерантності**.

Приклад. Відношення "відстань між двома точками на площині не перевищує деякого заданого числа a" є відношенням толерантності.

1.3.4 Структура впорядкованих множин

Теорема 3.2 (принцип подвійності)

Відношення, обернене до відношення часткового порядку, теж буде відношенням часткового порядку.

Теорема 3.3

Всяка підмножина частково упорядкованої множини теж буде частково упорядкованою множиною.

Мінімальним (максимальним) елементом множини A, на якій задано відношення порядку \leq , називається такий елемент $x \in A$, що для всякого елемента $y \in A$, що порівнюється з x, має місце $x \leq y$ (або $y \leq x$).

Приклад. Відношенням строгого порядку є відношення "x та y — діти однієї родини та x молодше y" задане на множині людей.

В кожній родині, яка має дітей, такому відношенню відповідає лише один мінімальний елемент, але взагалі у множині людей таких елементів буде декілька.

Елемент $x \in A$ називається **найменшим** (**найбільшим**), якщо для кожного елемента $y \in A$ виконується

 $x \le y$ (a for $y \le x$).

Теорема 3.4. В кожній частково упорядкованій множині існує не більше одного найменшого (найбільшого) елементу.

Теорема 3.5. Будь-яка скінченна непорожня впорядкована множина має мінімальні та максимальні елементи.

Теорема 3.6. Будь-який частковий порядок на кінцевій множині може бути доповненим до лінійного.

1.3.5 Діаграми впорядкованих множин

Для відношення порядку будується діаграма Гассе, яка відображає відношення домінування.

Нехай A — частково впорядкована множина з відношенням порядку \leq та $x, y \in A$.

Елемент у **домінує** над елементом x, якщо y>x і ні для якого елементу $z \in A$ невірно, що y>z>x.

Приклад

Впорядковану множину множна зобразити у вигляді графу, який називається діаграмою Гассе: граф будується знизу-вгору: якщо елемент у домінує над x, то він розташовується вище елемента x і з'єднується з ним прямою; незрівнянні елементи розташовуються на одному рівні.

Приклад. Нехай дана множина $A = \{1, 2, 3\}$ та її булеан

$$P(A) = {\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}}$$

 $R \subseteq P(A) \times P(A), R = \{(X,Y) : X \subseteq Y\}.$

Нехай A — множина на якій визначено порядок < або \leq .

Верхньою межею або **гранню** підмножини $B \subseteq A$ називають такий елемент $m \in A$, що для будь-якого елемента $x \in B$ справджується відношення x < m або $x \le m$.

Нижньою межею або **гранню** підмножини $B \subseteq A$ називають такий елемент $n \in A$, що для будь-якого елемента $x \in B$ справджується відношення n < x або $n \le x$.

Якщо існує найбільша нижня межа множини B, то вона називається **точною нижньою межею** і позначається inf(B) (infinum).

Якщо існує найменша верхня межа множини B, то вона називається **точною верхньою межею** і позначається sup(B) (supremum).

Приклад

1.3.6 Повністю впорядкована множина

Лінійно впорядкована множина A називається повністю впорядкованою, якщо всяка її непорожня підмножина B має найменший елемент.

Приклад. Множина натуральних чисел зі звичайним відношенням порядку є повністю впорядкованою.

Приклад. Множина раціональних чисел Q зі звичайним відношенням порядку не є повністю впорядкованою, так як множина $A = \{x \in Q \mid x^2 > 2\}$ не має мінімального елемента.

Теорема 3.7 (теорема Цермелло)

Будь-яку частково впорядковану множину можна зробити цілком упорядкованою.

Для цього відношення часткового порядку доповнюється до лінійного (будується лінійне замикання).