

RSS Paper Active Preference-Based Learning of Reward Functions

Nikita Jaipuria

Aerospace Controls Laboratory Department of Mechanical Engineering Massachusetts Institute of Technology

August 11, 2017

Overview

- ▶ Objective:
 - model a human's preference for how a dynamical system should act
 - learn

$$R_{H}(\xi) = R_{H}(x^{0}, \mathbf{u}_{R}, \mathbf{u}_{H}) = \sum_{t=0}^{N} r_{H}(x^{t}, u_{R}^{t}, u_{H}^{t}) = \sum_{t=0}^{N} \mathbf{w}^{T} \phi(x^{t}, u_{R}^{t}, u_{H}^{t}) = \mathbf{w}^{T} \Phi(\xi)$$

- ▶ Problem Domain:
 - difficult to provide demonstrations of desired system trajectory (IRL)
 - assign numerical reward to an action/trajectory
- ▶ Main Idea: active preference-based learning
 - system decides on what preference queries to make (active)
 - build on label ranking; learn from preferences/comparisons (preference-based)
- ▶ Challenges/Contribution
 - complexity and continuous nature of queries
 - **active synthesis** of queries satisfying system dynamics: $x^{t+1} = f_{HR}(x^t, u_R^t, u_H^t)$
 - maximize volume removed from continuous hypothesis space by each query

Overview

- ▶ Two main sections of active preference-based learning:
 - **Active query synthesis**: generate query ξ_A vs ξ_B defined over same fixed scenario $\tau = (x^0, \mathbf{u}_R)$ to maximize volume removed from continous hypothesis space of rewards
 - model probability $p(I|\mathbf{w})$ as noisily capturing preference w.r.t. R_H

update function:
$$f_{\varphi}(\mathbf{w}) = p(I_t|\mathbf{w}) = \frac{1}{1 + \exp(-I_t \mathbf{w}^T \varphi)}$$
, where $\varphi = \Phi(\xi_A) - \Phi(\xi_B)$

Algorithm

Aug 11

4 / 1

- ▶ Inputs: $\phi, N, f_{HR}, iter$
- ▶ Output: $p(\mathbf{w})$
- ▶ Step 1: Initialize $p(\mathbf{w}) \sim Uniform(B)$, for a unit ball B
- ➤ Step 2: **synthesize query** to remove as much volume as possible from the space of possible rewards (*constrained optimization*)

Slide Title 3

Slide Title 4

Questions?

Backup Slide 1

Aug 11

8 / 1

▶ Blah blah blah ...

References I

