Interactions between cell populations in heterogeneous tumour spheroids

Vascular Tumour Journal Club

Marcin Paczkowski

2 December 2016

Supervisors:
Prof Helen Byrne
Dr Mike Partridge
Dr Pavitra Kannan

Motivation/Questions

- When radiotherapy is prescribed in the clinic it is usually assumed that tumours are homogeneous
- They are not... Tumours are composed of a number of different populations of cells with different radiosensitivities
- Could we exploit intratumour heterogeneity to obtain more accurate predictions of radiotherapy treatment?
 - Do subpopulations interact?
 - Are these interactions altered by radiation?
 - Is the spatial distribution of subpopulations altered by radiation?

Materials and Methods

- Prostate cancer cell lines: PC3 and DU145
- These were repeatedly irradiated at low doses (50x2Gy) yielding stable resistant phenotypes
- Co-cultured control and resistant cell populations at different ratios: 1:0, 3:1, 1:1, 1:3 and 0:1
- Irradiated with a single dose of 6Gy
- Monitored their growth

Questions

- Do co-cultured control and resistant cell populations interact?
- What type of interactions occur between them?
- Are these interactions altered by radiation?

Intrinsic radiosensitivity – clonogenic assays

Growth of heterogeneous populations in 2d

- Problem: confluence reached before any effect could be observed
- Solution: generate tumour spheroid by co-culturing cell populations and measure their volume

Heterogeneous tumour spheroids

- Problem: looks like something is going on but cannot really say what
- Solution: use mathematical modelling

Lotka-Volterra interactions model

$$\frac{dV_C}{dt} = V_C \left[r_C \left(1 - \frac{V_C}{K_C} \right) - \lambda_R V_R \right]$$

$$\frac{dV_R}{dt} = V_R \left[r_R \left(1 - \frac{V_R}{K_R} \right) - \lambda_C V_C \right]$$

Effect Ctrl cells	Effect Res cells	Sign of	Sign of	Type of	
have on Res cells	have on Ctrl cells	λ_{c}	λ_{R}	interaction	
Detrimental	Detrimental	+	+	Competition	
Detrimental	No effect	+	0	Amensalism	
Detrimental	Beneficial	+	-	Antagonism	
No effect	No effect	0	0	Neutralism	
No effect	Beneficial	0	-	Commensalism	
Beneficial	Beneficial	-	-	Mutualism	

- Problem: not possible to accurately estimate λ_{C} and λ_{R} using total volume measurements data alone
- Solution: Measure the proportions of the control and resistant cells populations.
- But when? It is an expensive and time-consuming experiment
- Perform experimental design study with synthetic data

Proportions of control and resistant cells

Estimated parameter values

	r _c	K _c	V(0) _c	r _R	K _R	V(0) _R	λ_{c}	λ_{R}
PC3 0Gy	0.236 (0.201,0.271)	0.473 (0.342,0.604)	0.031 (0.026,0.036)	0.401 (0.366,0.436)	0.773 (0.673,0.873)	0.015 (0.012,0.018)	0.655 (0.434,0.875)	0.480 (0.363,0.597)
PC3 6Gy	0.112 (0.054,0.169)	0.117 (0.087,0.146)	0.051 (0.043,0.059)	0.217 (0.169,0.265)	0.393 (0.261,0.526)	0.031 (0.026,0.037)	0.516 (0.026,1.006)	0.586 (0.199,0.974)
DU145 0Gy	0.356 (0.343,0.370)	0.605 (0.590,0.621)	0.010 (0.009,0.011)	0.251 (0.236,0.265)	0.802 (0.756,0.849)	0.027 (0.025,0.030)	0.536 (0.504,0.567)	-0.102 (-0.159,-0.044)
DU145 6Gy	0.253 (0.242,0.265)	0.496 (0.480,0.513)	0.015 (0.013,0.016)	0.195 (0.183,0.207)	0.924 (0.838,1.009)	0.032 (0.029,0.035)	0.594 (0.555,0.632)	-0.329 (-0.388,-0.269)

PC3 spheroids: best fits

DU145 spheroids: best fits

Summary

- Do co-cultured control and resistant cell populations interact?
 - Yes, they do
- What type of interactions occur between them?
 - PC3– competition
 - DU145 antagonism (predation?)
- Are these interactions altered by radiation?
 - The types of interactions do not change but their magnitudes do