My Project

Generated by Doxygen 1.8.14

Contents

1	Nam	nespace Index	1
	1.1	Namespace List	1
2	Hier	archical Index	3
	2.1	Class Hierarchy	3
3	Clas	es Index	5
	3.1	Class List	5
4	Nam	nespace Documentation	7
	4.1	HannesOOPProject Namespace Reference	7
		4.1.1 Detailed Description	7
5	Clas	es Documentation	9
	5.1	CCP_Hannes.Analysis Class Reference	9
	5.2	CCP_Hannes.Bead Class Reference	9
		5.2.1 Detailed Description	10
		5.2.2 Member Function Documentation	10
		5.2.2.1 attachGlycans()	10
	5.3	CCP_Hannes.Builder Class Reference	10
	5.4	CCP_Hannes.Cytokine Class Reference	11
		5.4.1 Detailed Description	11
	5.5	CCP_Hannes.DecoderCell Class Reference	12
		5.5.1 Detailed Description	12
		5.5.2 Member Function Documentation	12

ii CONTENTS

	5.5.2.1 expressLectins()	12
5.6	CCP_Hannes.Glycan Class Reference	14
	5.6.1 Detailed Description	14
5.7	CCP_Hannes.Lectin Class Reference	14
	5.7.1 Detailed Description	15
5.8	CCP_Hannes.Simulation Class Reference	15
	5.8.1 Detailed Description	15
5.9	CCP_Hannes.Sphere Class Reference	15
	5.9.1 Detailed Description	16
5.10	CCP_Hannes.Well Class Reference	16
	5.10.1 Detailed Description	16
	5.10.2 Member Function Documentation	17
	5.10.2.1 borderControl()	17
5.11	CCP_Hannes.Well_list Class Reference	17
	5.11.1 Detailed Description	18
	5.11.2 Member Function Documentation	18
	5.11.2.1 addBead()	18
5.12	CCP_Hannes.Well_npArray Class Reference	18

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

HannesOOPProject

 2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

CCP_Hannes.Analysis	9
CCP_Hannes.Builder	10
CCP_Hannes.Cytokine	11
CCP_Hannes.Glycan	14
CCP_Hannes.Lectin	14
CCP_Hannes.Simulation	
CCP_Hannes.Sphere	15
CCP_Hannes.Bead	9
CCP_Hannes.DecoderCell	12
CCP_Hannes.Well	16
CCP Hannes.Well list	17
CCP_Hannes.Well_npArray	18

4 Hierarchical Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CCP_Hannes.Analysis	9
CCP_Hannes.Bead	
Bead is a subclass of Sphere and represents beads (made of PMMA, or acrylic glass) loaded	
with glycan structures	9
CCP_Hannes.Builder	10
CCP_Hannes.Cytokine	
Objects of class Cytokine are produced if objects of the classes Bead and DecoderCell containing the correct pair of objects of the classes Glycan and Lectin, respectively, as described by the cytokine dictionary	11
CCP_Hannes.DecoderCell	
DecoderCell is a subclass of Sphere and represents immune cells (such as THP-1 cells) that express Lectins which bind to Glycan structures and engage in immune response by secreting	
cytokines	12
CCP_Hannes.Glycan	
Objects of the class Glycan are attached to objects of the class Bead	14
CCP_Hannes.Lectin	
Objects of the class Lectin are attached to objects of the class DecoderCell	14
CCP_Hannes.Simulation	
Dictionary is based on Geijtenbeek & Gringhuis C-type lectin receptors in the control of T helper cell differentiation Nature Reviews Immunology volume 16, pages 433–448 (2016)	15
CCP_Hannes.Sphere	
Sphere serves as superclass for the two spherical objects indroduced below	15
CCP_Hannes.Well	
The class Well describes the sample, in which binding events take place	16
CCP_Hannes.Well_list	
Subclass of Well using built-in python lists as containers for objects of the classes Bead and DecoderCell	17
CCP_Hannes.Well_npArray	18

6 Class Index

Namespace Documentation

4.1 HannesOOPProject Namespace Reference

This project aims to simulate the binding of immune cells to artificial beads decorated with molecules that induce a biological response of the cells.

4.1.1 Detailed Description

This project aims to simulate the binding of immune cells to artificial beads decorated with molecules that induce a biological response of the cells.

In nature, immene cells express receptors (so-called lectins) binding to carbohydrate structures, or glycans, on the surface of body's own cells or pathogens. Depending on the nature of the glycan ligand, cells express specific cytokines, e. g. the pro-inflammatory IL-6. The idea of the biochemical is to investigate the biological response of a monocytic cell line which recombinantly expresses a defined set of lectin receptors upon binding to glycan ligands that are chemically linked to acrylic glass beads in well-defined amounts.

In the following, the translation of real-world dimensions for this project will be explained.

Cells from a typical monocytic cell line are about 15 um in diameter, while beads typically are few um in size. Therefore, 1 pt in this program corresponds to 10 um in reality. The (round) basis of a well has an area of 0.36 qcm. Here, we consider a quadratic basis, hence $x=y=0.06cm^2=600pt$. Typical volume is 25 ul. Hence, the height of the liquid in a well is

$$h = \frac{25\mu l}{b} = \frac{25 \cdot 10^{-8} m^3}{0.36 cm^2} = 41.67 \cdot 10^{-4} m = 420 pt.$$

The incubation time of the cells with beads amounts to 30 minutes, or 1800 s. In order to determine to many steps that correlates to, the Stokes-Einstein equation was utilized:

$$x^{2} = \frac{k_{B} \cdot T}{6r\pi\eta}t = \frac{1.381 \cdot 10^{-23} J/K \cdot 298K}{6 \cdot 5\mu m \cdot \pi \cdot 0.891 mPa \cdot s} = 9.8 \cdot 10^{-13} \frac{m^{2}}{s} \cdot t$$

At 1 s, a particle of 10 um in aqueous solution would diffuse:

$$\sqrt{x^2} = \sqrt{4.9 \cdot 10^{-13} \frac{m^2}{s} \cdot 1s} = 7 \cdot 10^{-7} m^2.$$

Therefore, a typical experiment of 30 minutes corresponds to $1800s \cdot 0.7 \mu m/s = 1260 \mu m = 126$ steps.

Class Documentation

5.1 CCP_Hannes.Analysis Class Reference

Public Member Functions

- def __init__ (self)
- def countCytokines (self, simulationResults)
- def plotCytokines (self, simulationResults)

Public Attributes

- cytokineAmount
- cytokineNames

The documentation for this class was generated from the following file:

• CCP_Hannes.py

5.2 CCP_Hannes.Bead Class Reference

Bead is a subclass of Sphere and represents beads (made of PMMA, or acrylic glass) loaded with glycan structures.

Inheritance diagram for CCP_Hannes.Bead:

Public Member Functions

```
    def __init__ (self, args)
```

• def attachGlycans (self, glycan_names_list, glycan_types_list, density_percentage)

Method to attach Glycan objects to Bead objects.

Public Attributes

- · glycan_density
- · glycan

5.2.1 Detailed Description

Bead is a subclass of Sphere and represents beads (made of PMMA, or acrylic glass) loaded with glycan structures.

5.2.2 Member Function Documentation

5.2.2.1 attachGlycans()

Method to attach Glycan objects to Bead objects.

Every Bead objects contains one type of Glycan with a given density. Parameters glycan_names_list and glycan
_types_list are handed over to the constructor of Glycan.

Parameters

in	glycan_names_list	List of names of all Glycans to be added to the Bead. List may contain any number of member, including 0
in	see	documentation for class Glycan.
in	see	documentation for class Glycan.

The documentation for this class was generated from the following file:

· CCP_Hannes.py

5.3 CCP_Hannes.Builder Class Reference

Public Member Functions

def __init__ (self, x, y, z)

- def buildWell (self, container_type, n_beads, n_cells)
- def buildBead (self, i, ID, glyan_name_string, glycan_type_string, density_percentage)
- def buildDecoderCell (self, i, ID, lectin_name_string, density_percentage)

Public Attributes

- x
- у
- . .
- well

The documentation for this class was generated from the following file:

· CCP_Hannes.py

5.4 CCP_Hannes.Cytokine Class Reference

Objects of class Cytokine are produced if objects of the classes Bead and DecoderCell containing the correct pair of objects of the classes Glycan and Lectin, respectively, as described by the cytokine dictionary.

Public Member Functions

• def __init__ (self, name, coordinates_list)

Public Attributes

- name
- · coordinates

5.4.1 Detailed Description

Objects of class Cytokine are produced if objects of the classes Bead and DecoderCell containing the correct pair of objects of the classes Glycan and Lectin, respectively, as described by the cytokine dictionary.

Parameters

in	name	Name of the cytokine.
in	coordinates_list	List containing the three values for x, y, and z, where the Cytokine was produced.

The documentation for this class was generated from the following file:

CCP_Hannes.py

5.5 CCP_Hannes.DecoderCell Class Reference

DecoderCell is a subclass of Sphere and represents immune cells (such as THP-1 cells) that express Lectins which bind to Glycan structures and engage in immune response by secreting cytokines.

Inheritance diagram for CCP_Hannes.DecoderCell:

Public Member Functions

- def __init__ (self, args)
- def expressLectins (self, lectin_list, density_percentage)

Method to attach Lectin objects to DecoderCell objects.

Public Attributes

- · lectin_density
- lectin

5.5.1 Detailed Description

DecoderCell is a subclass of Sphere and represents immune cells (such as THP-1 cells) that express Lectins which bind to Glycan structures and engage in immune response by secreting cytokines.

Right	Center	Left
10	10	10
1000	1000	1000

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

5.5.2 Member Function Documentation

5.5.2.1 expressLectins()

Method to attach Lectin objects to DecoderCell objects.

Every DecoderCell objects contains one type of Lectin with a given density. Parameter lectins_list is handed over to the constructor of Lectin.

Parameters

in	lectin_list	see documentation for class Lectin.
----	-------------	-------------------------------------

The documentation for this class was generated from the following file:

CCP_Hannes.py

5.6 CCP_Hannes.Glycan Class Reference

Objects of the class Glycan are attached to objects of the class Bead.

Public Member Functions

• def __init__ (self, glycan_names_list, glycan_types_list)

Public Attributes

- name
- type

5.6.1 Detailed Description

Objects of the class Glycan are attached to objects of the class Bead.

They represent glycan structures which are divided into different types.

Parameters

in	glycan_names_list	List of Strings containing the "real" names of Glycan structures to be added to the Bead. List may contain any number of members, including 0
in	glycan_types_list	List of Strings containing the respective types of Glycan structures. These types determine the outcome of the interaction between Bead and DecoderCell as specified in the cytokine dictionary. If the this list does not contain the same number of member as glycan_names_list, the program terminates.

The documentation for this class was generated from the following file:

· CCP_Hannes.py

5.7 CCP_Hannes.Lectin Class Reference

Objects of the class Lectin are attached to objects of the class DecoderCell.

Public Member Functions

• def __init__ (self, lectin_list)

Public Attributes

name

5.7.1 Detailed Description

Objects of the class Lectin are attached to objects of the class DecoderCell.

They represent lectin receptors which recognize certain sets of glycans on other cells, beads, viruses a.s.o.

Parameters

in	lectin_list	List of Strings containing the names of Lectin receptors to be added to the DecoderCell.	
		These names appear in the dictionary. List may contain any number of members, including 0.	

The documentation for this class was generated from the following file:

· CCP_Hannes.py

5.8 CCP_Hannes.Simulation Class Reference

Dictionary is based on Geijtenbeek & Gringhuis C-type lectin receptors in the control of T helper cell differentiation Nature Reviews Immunology volume 16, pages 433–448 (2016)

5.8.1 Detailed Description

Dictionary is based on Geijtenbeek & Gringhuis C-type lectin receptors in the control of T helper cell differentiation Nature Reviews Immunology volume 16, pages 433–448 (2016)

The documentation for this class was generated from the following file:

· CCP_Hannes.py

5.9 CCP_Hannes.Sphere Class Reference

Sphere serves as superclass for the two spherical objects indroduced below.

Inheritance diagram for CCP_Hannes.Sphere:

Public Member Functions

• def __init__ (self, ID_string)

Public Attributes

- ID
- · coordinates

5.9.1 Detailed Description

Sphere serves as superclass for the two spherical objects indroduced below.

Parameters

in	ID	Identifier	
	coordinates	Empty. Will be filled when added to Well.	

The documentation for this class was generated from the following file:

· CCP_Hannes.py

5.10 CCP Hannes. Well Class Reference

The class Well describes the sample, in which binding events take place.

Inheritance diagram for CCP_Hannes.Well:

Public Member Functions

- def __init__ (self, x, y, z)
- def borderControl (self, coordinates, dx, dy, dz)

The method borderControl ensures that objects' coordinates don't exceed the well's size.

5.10.1 Detailed Description

The class Well describes the sample, in which binding events take place.

It serves a a superclass for two subclasses of which one uses NumPy Arrays as a container for onjects of the classes Bead and DecoderCell while the other one uses built-in Python lists for this purpose.

Parameters

in	x,y,z	Size of the well.
----	-------	-------------------

5.10.2 Member Function Documentation

5.10.2.1 borderControl()

The method borderControl ensures that objects' coordinates don't exceed the well's size.

If a step in randomWalk would lead to a forbidden value, the respective step value will be set to 0 and the object won't move this turn as if repelled from the well's borders.

Parameters

in	coordinates	The object's coordinates before the move.
in	dx,dy,dz	The randomly chosen next steps.
out	dx,dy,dz	The revised next steps

The documentation for this class was generated from the following file:

· CCP_Hannes.py

5.11 CCP_Hannes.Well_list Class Reference

Subclass of Well using built-in python lists as containers for objects of the classes Bead and DecoderCell.

Inheritance diagram for CCP_Hannes.Well_list:

Public Member Functions

- def __init__ (self, x, y, z, n_beads, n_cells)
- def addBead (self, i, bead, glyan_name_string, glycan_type_string, density_percentage)
 Method to add objects of class Bead to the bead list.
- def addDecoderCell (self, i, decoderCell, lectin_name_string, lectin_type_string)

Public Attributes

- size
- beads
- · decoderCells

5.11.1 Detailed Description

Subclass of Well using built-in python lists as containers for objects of the classes Bead and DecoderCell.

5.11.2 Member Function Documentation

5.11.2.1 addBead()

Method to add objects of class Bead to the bead list.

Coordinates of the Bead are randomly chosen between 0 and size of the Well in the respective dimension.

Parameters

in	i	Not used here, but neccessary for convenient switching between container types.
in	bead	Object of class Bead to be added.
in		

The documentation for this class was generated from the following file:

· CCP_Hannes.py

5.12 CCP_Hannes.Well_npArray Class Reference

Inheritance diagram for CCP_Hannes.Well_npArray:

Public Member Functions

- def __init__ (self, x, y, z, n_beads, n_cells)
- def addBead (self, i, bead, glyan_name_string, glycan_type_string, density_percentage)
- def addDecoderCell (self, i, decoderCell, lectin_name_string, lectin_type_string)

Public Attributes

- size
- beads
- · decoderCells

The documentation for this class was generated from the following file:

• CCP_Hannes.py