Treino com os dados do Titanic

Um dos naufrágios mais infames da história é o do Titanic, que afundou após colidir com um iceberg. Infelizmente, não havia botes salva-vidas suficientes para todos a bordo, resultando na morte de 1502 dos 2224 passageiros e tripulantes.

Embora houvesse algum elemento de sorte envolvido na sobrevivência, parece que alguns grupos de pessoas eram mais propensos a sobreviver do que outros. O desafio aqui é construir um modelo preditivo que discrimine os grupos de pessoas com maiores chances de sobreviver.

Principais objetivos:

- Me familiarizar com a plataforma Kaggle e suas competições.
- Desenvolver e colocar em prática técnicas de EDA
- Resolver o problema e buscar melhorar a pontuação baseando-se em metodos e ideias que vi em notebooks compartilhados por cientistas de dados da comunidade mais experientes.

Importando dados e bibliotecas necessárias

```
# análise e transformação dos dados
In [2]:
        import pandas as pd
        import numpy as np
        import random as rnd
        # visualização
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        # machine learning
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.linear_model import LogisticRegression
        from sklearn.svm import SVC
        from sklearn.model selection import cross val score
        from sklearn.base import clone
        # importando os datasets
In [3]:
        train df = pd.read csv(r'C:\Users\Pichau\Desktop\Jupyter programs\TitanicChallange\train.csv')
        test_df = pd.read_csv(r'C:\Users\Pichau\Desktop\Jupyter programs\TitanicChallange\test.csv')
        all data = train df.append(test df, sort=True);
In [4]: train_df.head(8)
```

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S

Análise exploratória

In [5]: train_df.describe()

Out[5]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [6]: train_df.describe(include=['0'])

Out[6]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	O'Brien, Mr. Thomas	male	1601	G6	S
freq	1	577	7	4	644

```
In [7]: # Número de "NaN"s em cada feature
print(all_data.shape)
all_data.isnull().sum().drop('Survived')
```

(1309, 12)

Out[7]: Age

Age 263
Cabin 1014
Embarked 2
Fare 1
Name 0
Parch 0
PassengerId 0
Pclass 0
Sex 0
SibSp 0
Ticket 0
dtype: int64

Observações:

- Cinco features são nominais, das quais apenas "Sex" e "Embarked" possuem poucos valores únicos e podem ser facilmente -convertidas em variáveis numéricas ordinais/discretas.
- Proporção de "Missing values" encontrados: "Cabin" 77% >>> "Age" 20% >> "Embarked" apenas 2 > "Fare" apenas 1.
- A chance de sobrevivência média do conjunto de dados é de 38% e está próxima da taxa real de 32% (1-1502/2224). Também pode ser usado como parâmetro de comparação para o impacto de determinadas features.

Especulações:

- Passangerld, Ticket e Name provavelmente não contribuem para a sobrevivência, descartá-los logo no início é
 conveniente pois reduz o volume de dados, acelera o processamento do código e simplifica a análise, mas vale
 ressaltar que o nome também possui informações sobre o título do passageiro, extrair isso em uma nova feature pode
 beneficiar a acurácia do modelo.
- Uma possibilidade para haver tantos valores nulos para a cabine é que isso pode representar uma luxúria de alguns poucos passageiros, possivelmente um indicador de sua influência. Transformá-la em uma variável binária pode beneficiar o modelo.
- É importante saber quais features se correlacionam com a sobrevivência e entre sí logo no início do projeto, pois isso
 guia a tomada de decisão sobre quais delas manter e transformar; alguns dados como o valor da tarifa (Fare) e classe

(Pclass) podem acabar dizendo a mesma coisa ficando redundantes

- Se queremos fazer correlações logo de início, é importante converter features potencialmente relevantes como "Sex" e "Embarked" para variáveis ordinais/discretas antes.
- Por fim, se a análise apontar que features incompletas como "Age" e "Embarked" impactam na sobrevivência, devem ser completadas ao invés de descartadas.

```
# Extraindo os títulos de "Name"
In [8]:
         all_data['Title'] = all_data.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
         pd.crosstab(all_data['Title'], all_data['Sex']).T
Out[8]:
            Title Capt Col Countess Don Dona Dr Jonkheer Lady Major Master Miss Mlle Mme
                                                                                            Mr Mrs Ms Rev Sir
            Sex
          female
                   0
                                                       0
                                                                   0
                                                                          0
                                                                             260
                                                                                    2
                                                                                             0
                                                                                                197
                                                                                                      2
                                                                                                          0
                                                                                                              0
            male
                        4
                                 0
                                           0
                                              7
                                                       1
                                                             0
                                                                   2
                                                                         61
                                                                               0
                                                                                    0
                                                                                         0 757
                                                                                                  0
                                                                                                      0
                                                                                                          8
                                                                                                              1
In [9]: # Transformando a feature "Cabin" em binária
         all_data['Cabin'].fillna(0, inplace=True)
         all_data.loc[all_data['Cabin'] != 0, 'Cabin'] = 1
         # Descartando dados irrelevantes
In [10]:
         Id_test = test_df['PassengerId'] # necessário para submissão do projeto.
         all_data = all_data.drop(['PassengerId', 'Ticket', 'Name'], axis=1)
In [11]: # Criando uma variável randômica para testar algumas hipóteses
         np.random.seed(2020)
         all_data['random'] = np.random.randint(0,2,len(all_data))
         #Split
         train df = all data[:len(train df)]
         test_df = all_data[len(train_df):]
```

Checando correlações com a sobrevivência

ind Survived

Sex		
female	314	0.742
male	577	0 189

ind Survived

Embarked							
С	168	0.554					
Q	77	0.390					
s	644	0.337					

ind Survived

Pclass									
1	216	0.630							
2	184	0.473							
3	491	0.242							

ind Survived

Cabin		
0	687	0.300
1	204	0.667

Todas estas features aparentam impactar nas chances de sobrevivência; devem ser preenchidas e convertidas para variáveis numéricas.

```
In [14]: # Convertendo a feature "sex" de nominal para binária
    all_data['Sex'].replace(['female','male'], [0, 1],inplace=True)

# Preenchendo 2 valores nulos com o porto de embarque mais comum
    all_data['Embarked'].fillna('S', inplace=True)

# Convertendo a feature "Embarked" de nominal para discreta
    all_data['Embarked'].replace(['S', 'Q', 'C'], [0, 1, 2],inplace=True)
In [15]:

display(pivota_feature_com_sobrev('Title').T,
    pivota_feature_com_sobrev('Parch').T,
    pivota_feature_com_sobrev('SibSp').T)
```

	Title	Capt	Col	Countess	Don	Dr	Jonkheer	Lady	Major	Master	Miss	MIIe	Mme	Mr	Mrs	Ms	Re
	# ind	1.0	2.0	1.0	1.0	7.000	1.0	1.0	2.0	40.000	182.000	2.0	1.0	517.000	125.000	1.0	6.
:	Survived	0.0	0.5	1.0	0.0	0.429	0.0	1.0	0.5	0.575	0.698	1.0	1.0	0.157	0.792	1.0	0.
4																	•

Parch	0	1	2	3	4	5	6	6	
# ind	678.000	118.000	80.0	5.0	4.0	5.0	1.0)	
Survived	0.344	0.551	0.5 0.6 0.0		0.2	0.0	0.0		
SibSp	0	1		2	3		4	5	8
# ind	608.000	209.000	28.00	0 1	16.00 18.		00	5.0	7.0
Survived	0.345	0.536	0.46	4	0.25	0.1	67	0.0	0.0

Nota-se que grande parte dos indivíduos que tiveram companhia para a viagem ou Títulos raros tiveram mais de 50% de chance de sobreviver. Entretanto muitos desses elementos não possuem um número de indivíduos alto o suficiente para serem representativos do todo, transformar esta feature em uma variável ordinal pode incorrer em problemas de amostragem para determinados valores, fazendo mais sentido criar as seguintes variáveis binárias:

- "Family": 0 para indivíduos sozinhos e 1 para acompanhados.
- "Title": 1 para indivíduos com títulos raros e 0 para títulos comuns

```
In [16]: # Transformando a feature "Title"
    all_data["Title"] = all_data['Title'].replace(['Mrs', 'Miss', 'Mr'], 0)
    all_data.loc[all_data['Title'] != 0, 'Title'] = 1

# Criando a feature "Family"
    all_data['Family'] = all_data["Parch"] + all_data["SibSp"]
    all_data.loc[all_data['Family'] > 0, 'Family'] = 1

# Descartando
    all_data.drop(['SibSp', 'Parch'], axis=1, inplace=True)

#Split
    train_df = all_data[:len(train_df)]
    test_df = all_data[len(train_df):]
```

In [17]: display(pivota_feature_com_sobrev('Title'), pivota_feature_com_sobrev('Family'))

ind Survived

THE		
0	824	0.373
1	67	0.522

Title

ind Survived

Family								
0	537	0.304						
1	354	0.506						

```
In [18]: # Checando a feature randômica
pivota_feature_com_sobrev('random')
```

Out[18]:

random 0 443 0.384

448

1

ind Survived

0.384

Como esperado, esta feature não ajuda a discriminar quem tem as melhores chances de sobrevivência, mas a manteremos para futuras comparações

Matriz de correlações

```
In [19]: # Split
    train_df = all_data[:len(train_df)]
    test_df = all_data[len(train_df):]
    train_df.corr().style.background_gradient(cmap='Blues').set_precision(2)
```

Out[19]:

	Age	Cabin	Embarked	Fare	Pclass	Sex	Survived	Title	random	Family
Age	1	0.25	0.03	0.096	-0.37	0.093	-0.077	-0.2	0.0084	-0.2
Cabin	0.25	1	0.16	0.48	-0.73	-0.14	0.32	0.047	-0.0084	0.16
Embarked	0.03	0.16	1	0.22	-0.16	-0.11	0.17	0.016	0.066	0.064
Fare	0.096	0.48	0.22	1	-0.55	-0.18	0.26	0.025	-0.016	0.27
Pclass	-0.37	-0.73	-0.16	-0.55	1	0.13	-0.34	-0.07	0.0073	-0.14
Sex	0.093	-0.14	-0.11	-0.18	0.13	1	-0.54	0.15	-0.015	-0.3
Survived	-0.077	0.32	0.17	0.26	-0.34	-0.54	1	0.081	0.00019	0.2
Title	-0.2	0.047	0.016	0.025	-0.07	0.15	0.081	1	0.011	0.18
random	0.0084	-0.0084	0.066	-0.016	0.0073	-0.015	0.00019	0.011	1	-0.05
Family	-0.2	0.16	0.064	0.27	-0.14	-0.3	0.2	0.18	-0.05	1

A correlação entre a idade e a sobrevivência é baixa (-0,07), entretanto, se analisarmos as curvas de kde encontramos faixas etárias mais propensas a sobreviverem. Isso sugere que a feature é relevante para o modelo e deve ser completada.

Uma possibilidade para completar as informações de idade é preenchê-las com a mediana das idades, mas este valor pode variar em função de diferentes grupos de pessoas. Vale checar as features "Family" e "Pclass", que são bem correlacionadas com "Age":

```
In [21]: plt.figure(figsize = (10, 7))
    plt.title('Idade em função da classe e se o passageiro viajou com a familia')
    sns.violinplot(x = 'Pclass', y = 'Age', hue = 'Family', data = all_data, split = True, inner="quartil plt.show()
```


Preenchendo missing values

Assim como esperado, diferentes grupos possuem diferentes distribuições de idades, e uma vez que possuímos estas informações, é melhor fazer o preenchimento de forma condicionada:

Out[22]:

```
        Pclass
        1
        2
        3

        Family
        39.0
        30.0
        25.0

        1
        38.0
        27.0
        18.0
```

```
In [23]:
         # O mesmo é realizado para preencher o único valor nulo da feature "Fare":
         all_data.loc[np.isnan(all_data['Fare'])]
Out[23]:
               Age Cabin Embarked Fare Pclass Sex Survived Title random Family
          # Preenchendo o valor nulo com a mediana das tarifas deste grupo de indivíduos
In [24]:
         all_data.loc[np.isnan(all_data['Fare'])] = all_data.loc[(all_data['Pclass'] == 3)
                                                                   & (all_data['Sex'] == 1)
                                                                   & (all_data['Family'] == 0)]['Fare'].median()
         # Nossos dados estão finalmente organizados, limpos e transformados:
In [25]:
         all_data.head()
Out[25]:
                                   Fare Pclass Sex Survived Title random Family
             Age Cabin Embarked
          0 22.0
                    0.0
                                  7.2500
                                            3.0
                                                1.0
                                                         0.0
             38.0
                    1.0
                             2.0 71.2833
                                            1.0
                                                0.0
                                                         1.0
                                                              0.0
                                                                     0.0
                                                                            1.0
            26.0
                    0.0
                             0.0
                                  7.9250
                                           3.0
                                                0.0
                                                             0.0
                                                                     1.0
                                                                            0.0
                                                         1.0
          3 35.0
                    1.0
                             0.0 53.1000
                                           1.0
                                                0.0
                                                         1.0
                                                             0.0
                                                                     0.0
                                                                            1.0
                                                         0.0 0.0
          4 35.0
                    0.0
                             0.0
                                 8.0500
                                           3.0 1.0
                                                                     1.0
                                                                            0.0
         Modelagem e predição
         # SpLit
In [26]:
         train_df = all_data[:len(train_df)]
         test_df = all_data[len(train_df):]
         train_data = train_df.drop("Survived", axis=1)
         train_target = train_df["Survived"]
         X_test = test_df.drop("Survived", axis=1)
         train_data.shape, train_target.shape, X_test.shape
Out[26]: ((891, 9), (891,), (418, 9))
         def treina_e_testa_modelo(modelo, dados_de_treino, rotulo, cross_validation_folders):
In [27]:
             modelo.fit(dados_de_treino,rotulo)
              score = cross_val_score(modelo,
                                      dados_de_treino,
                                      rotulo,
                                      cv=cross_validation_folders).mean()
              model_name = str(modelo).split('(')[0]
              print(model_name + ' accuracy: '+str(round(score.mean() * 100, 2))+'%')
              return score
In [28]:
         knn = KNeighborsClassifier(n_neighbors = 3)
         knn_score = treina_e_testa_modelo(knn, train_data, train_target, 5)
         KNeighborsClassifier accuracy: 70.83%
In [29]:
         random_forest = RandomForestClassifier(n_estimators=100, random_state=2020)
         random_forest_score = treina_e_testa_modelo(random_forest, train_data, train_target, 5)
         RandomForestClassifier accuracy: 80.93%
In [30]:
         logreg = LogisticRegression(solver='newton-cg', random_state=2020)
         logreg_score = treina_e_testa_modelo(logreg, train_data, train_target, 5)
         LogisticRegression accuracy: 79.91%
```

```
In [31]: svc = SVC(gamma='scale', random_state=2020)
svc_score = treina_e_testa_modelo(svc, train_data, train_target, 5)
```

SVC accuracy: 70.27%

Compreendendo os resultados

Random forest e logistic regression foram os modelos mais assertivos, com aproximadamente 80% de acurácia, o próximo passo é utilizar alguns métodos para tentar compreender quais são as features mais importantes para cada um e entender seu funcionamento.

```
In [32]: def importance_plot(x_name,y_name, dados, graph_title):
    sns.barplot(x = x_name, y = y_name, data = dados, orient = 'h', color = 'royalblue').set_title(gr
    plt.show()
```


Observações:

- Para o algoritmo de regressão logística a feature 'random' foi apontada como mais correlacionada com a sobrevivência do que a idade e a tarifa, sabemos que isso não faz sentido, mas já era esperado pelo fato de que este modelo não lida com variáveis contínuas como estas.
- Já para o random forest, notamos que 'random' é apontada como mais importante que a família e o título, o que também não faz muito sentido. Frente a isso existem duas possibilidade; estas três features não contribuem muito para o modelo e devem ser descartadas, ou o método ".featureimportances" não é muito acurado. Este último ponto é confirmado pela literatura, que o aponta como enviesado, pois infla o impacto de features contínuas e de alta cardinalidade.

 Uma possibilidade é testar métodos recursivos, que são muito mais assertivos e computacionalmente caros, o que não representa um problema para um conjunto de dados pequeno como este.

- Métodos recursivos são mais acurados e permitem analisar com mais clareza se determinadas features são relevantes para o modelo.
- Para o random forest, fare e age parecem menos relevantes do que o antigo método sugeria e as features "Title",
 "random" e "Family" contribuem muito pouco ou até o atrapalham, removê-las pode beneficiar o modelo deixando-o mais rápido e evitando overfiting.
- O mesmo vale para a regressão logística, mas em relação as features "Cabin", "random" e "Fare".

Eliminando features e submetendo predições

```
random forest score = treina e testa modelo(random forest, train data.drop(['Title', 'random', 'Famil
In [36]:
          RandomForestClassifier accuracy: 81.61%
         logreg_forest_score = treina_e_testa_modelo(logreg, train_data.drop(['Cabin', 'random', 'Fare'], axis
In [37]:
          LogisticRegression accuracy: 81.03%
         predict = logreg.predict(X_test.drop(['Cabin', 'random', 'Fare'], axis=1)).astype(int)
In [38]:
          submission = pd.DataFrame()
          submission['PassengerId'] = Id_test
          #get predictions
          submission['Survived'] = predict
          submission.head(15).T
Out[38]:
                        0
                                     3
                                          4
                                              5
                                                   6
                                                       7
                                                            8
                                                                9
                                                                    10
                                                                        11
                                                                             12
                                                                                 13
                                                                                      14
                          893
                               894
                                   895
                                        896
                                            897
                                                 898
                                                     899
                                                          900
                                                              901
                                                                   902
                                                                       903
                                                                                905
                                                                                     906
          Passengerld
                      892
                                                                            904
             Survived
                        0
                            0
                                 0
                                     0
                                          1
                                              0
                                                   1
                                                       0
                                                            1
                                                                0
                                                                     0
                                                                         0
                                                                                  0
                                                                                       1
```

Boa parte dos insights mais relevantes para a resolução do problema não partiram de mim. Tenho muito a agradecer pelo trabalho de vários DSs mais experientes da comunidade que compartilharam suas ideias, principalmente através destes notebooks e links:

https://www.kaggle.com/alexisbcook/titanic-tutorial (https://www.kaggle.com/alexisbcook/titanic-tutorial)

https://www.kaggle.com/startupsci/titanic-data-science-solutions (https://www.kaggle.com/startupsci/titanic-data-science-solutions)

https://www.kaggle.com/omarelgabry/a-journey-through-titanic (https://www.kaggle.com/omarelgabry/a-journey-through-titanic)

https://www.kaggle.com/tuckerarrants/titanic-ml-top-10 (https://www.kaggle.com/tuckerarrants/titanic-ml-top-10)

https://towardsdatascience.com/explaining-feature-importance-by-example-of-a-random-forest-d9166011959e (https://towardsdatascience.com/explaining-feature-importance-by-example-of-a-random-forest-d9166011959e)

In []: