Automat push-down

Model intuitiv

Definiție

- Un automat push-down (APD) este un 7-tuplu M = (Q,Σ,Γ,δ,q₀,Z₀,F) unde:
 - Q mulțime finită de stări
 - Σ alfabet (mulțime finită de simboluri de intrare)
 - *I* alfabetul stivei (mulțime finită de simboluri ale stivei)
 - δ : Q x (Σ U { ε }) x $\Gamma \rightarrow \mathcal{P}(Qx \Gamma^*)$ funcție de tranziție
 - $q_0 \subseteq Q$ starea inițială
 - $Z_0 \subseteq \Gamma$ simbolul inițial al stivei
 - F ⊆ Q mulțimea stărilor finale

Automat push-down

Tranziția este determinată de:

- Starea curentă
- Simbolul curentă banda de intrare
- Vârful stivei

Capul de citire -> banda de intrare:

- Citește simbol
- Nu face nimic

Stiva:

- Zero simboluri => pop
- Un simbol => push
- Mai multe simboluri => secvență de push

Configurații și tranziții

• Configurație:

$$(q, x, \alpha) \subseteq Q \times \Sigma^* \times \Gamma^*$$

cu semnificația:

- APD se află în starea q
- banda de intrare conţine x
- Capul stivei este α
- Configurația inițială (q₀, w, Z₀)

Configurații și tranziții (cont.)

• Tranziții între configurații:

p,q
$$\in$$
 Q, a \in Σ , Z \in Γ , w \in Σ^* , α , γ \in Γ^*

 $(\mathsf{q},\mathsf{aw},\mathsf{Z}oldsymbol{lpha}) \vdash (\mathsf{p},\mathsf{w},oldsymbol{\gamma}oldsymbol{lpha}) \; \mathsf{dac}\,\mathsf{\check{a}}\,\mathsf{\check{s}}\,\mathsf{i}\,\,\mathsf{numai}\,\,\mathsf{dac}\,\mathsf{\check{a}}\,\,\boldsymbol{\delta}(\mathsf{q},\mathsf{a},\mathsf{Z}) \, \supseteq \, (\mathsf{p},oldsymbol{\gamma})$

 $(q,aw,Zlpha)\vdash (p,aw,m{\gamma}lpha) \;\; dacă și numai dacă <math>m{\delta}(q,m{\varepsilon},Z) \supseteq (p,m{\gamma}) \;\; (m{\varepsilon} ext{-tranziție})$

Limbaj acceptat de APD

• Principiul stivei vide:

$$L_{\varepsilon}(M) = \{ w \mid w \in \Sigma^*, (q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon), q \in Q \}$$

• Principiul stării finale:

$$L_f(M) = \{w \mid w \in \Sigma^*, (q_0, w, Z_0) \stackrel{*}{\vdash} (q_f, \varepsilon, \gamma), q_f \in F\}$$

Reprezentare

- Enumerare
- Tabelar
- Grafic

Construcție APD

- L = $\{0^n1^n | n \ge 1\}$
- Stări, stivă, tranziții?

1. Stări:

- Stare inițială:q₀ început & procesează simboluri '0'
- La întâlnirea primului simbol '1' mutat în altă stare => q₁
- Final: stare finala q₂

2. Stivă:

- Z0 simbol inițial
- X pentru a număra simboluri:
 - De câte ori citim un simbol '0' push X în stivă
 - De câte ori citim un simbol '1' pop X din stivă

Exemplul 1 (enumerare)

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, Z_0, \{q_2\})$$

$$\delta(q_0,0,Z_0) = (q_0,XZ_0)$$

$$\delta(q_0,0,X) = (q_0,XX)$$

$$\delta(q_0,1,X) = (q_1,\varepsilon)$$

$$\delta(q_1,1,X) = (q_1,\varepsilon)$$

$$\delta(q_1, \varepsilon, Z_0) - (q_2, Z_0)$$

$$\delta(q_1, \varepsilon, Z_0) = (q_1, \varepsilon)$$

Stiva vida

$$\vdash (\mathsf{q}_1,\,\boldsymbol{\varepsilon},\,\boldsymbol{\varepsilon})$$

$$(q_0,0011,Z_0) \vdash (q_0,011,XZ_0) \vdash (q_0,11,XXZ_0) \vdash (q_1,1,XZ_0) \vdash (q_1, \varepsilon, Z_0) \vdash (q_2, \varepsilon, Z_0)$$

Stare finala

Exemplul 1 (tabel)

		0	1	ε
	Z_0	q_0,XZ_0		
q_0	X	q_0,XZ_0 q_0,XX	$q_1, \boldsymbol{\varepsilon}$	
	Z_0			q_2,Z_0
q_1	X		$q_1, \boldsymbol{\varepsilon}$	
	Z_0			
q_2	X			

Exemplul 1 (grafic)

Proprietăți

Teorema 1: Pentru orice APD M, există un APD M' cu proprietatea

$$L_{\varepsilon}(M) = L_{f}(M)$$

Teorema 2: Pentru orice APD M, există o gramatică independentă de context astfel încât

$$L_{\varepsilon}(M) = L(G)$$

Teorema 3: Pentru orice gramatică independentă de context există un APD M astfel încât

$$L(G) = L_{\varepsilon}(M)$$

Temă

- Analizor sintactic:
 - Descendent cu reveniri
 - LL(1)
 - LR(0), SLR, LR(1)

APD corespunzător

Analiză semantică – gramatici de atribute

• Analiza sintactică – rezultat: arborele de analiză sintactică (AS)

Simplificare: arbore sintactic abstract (ASA)

- Arbore sintactic abstract adnotat (ASAA)
 - Atașare de informație semantică în nodurile arborelui

Gramatici de atribute

• Construcții sintactice (neterminale) – atribute

$$\forall X \in N \cup \Sigma : A(X)$$

Producții – reguli de calcul al atributelor

$$\forall p \in P: R(p)$$

Definiție

GA = (G,A,R) se numește gramatică de atribute unde:

- G = (N, Σ, P, S) gramatică independentă de context
- A = $\{A(X) \mid X \subseteq N \cup \Sigma\}$ mulțime finită de atribute
- R = {R(p) | p ∈ P} mulțime finită de reguli de calcul / evaluare a atributelor

Exemplul 1

```
• G = (\{N,B\},\{0,1\}, P, N\}
```

P: N -> NB

 $N \rightarrow B$

B -> 0

B -> 1

$$N_1.v = 2* N_2.v + B.v$$

 $N.v = B.v$
 $B.v = 0$
 $B.v = 1$

Atribut – valoarea numărului = **v**

- Atribut sintetizat: A(psp) în fcţ. de pdp
- Atribut moștenit: A(pdp în fcț. de psp

Evaluare atribute

• Parcurgere arbore: poate determina ciclu infinit

- Clase speciale de GA:
 - Gramatici L-atributate
 - Gramatici S-atributate

Exemplul 2 (gram L-atrib)

Decl -> DeclTip ListId

ListId -> Id

ListId -> ListId, Id

```
ListId.tip = DeclTip.tip
Id.tip = ListId.tip
ListId<sub>2</sub>.tip = ListId<sub>1</sub>.tip;
Id.tip = ListId<sub>1</sub>.tip
```

Atribut – tip

int i,j

Exemplul 3 (gram S-atrib)

```
ListDecl -> ListDecl; Decl
```

ListDecl -> Decl

Decl -> Tip ListId

Tip -> int

Tip -> long

ListId -> Id

ListId -> ListId, Id

```
ListDecl1.dim = ListDecl2.dim + Decl.dim
ListDecl.dim = Decl.dim
Decl.dim = Tip.dim * ListId.nr
Tip.dim = 4
Tip.dim = 8
ListId.nr = 1
ListId<sub>1</sub>.nr = ListId<sub>2</sub>.nr + 1
```

Atribut – dim + nr – pentru ce simboluri