Heart Disease Prediction By Random Forest

IMPORT DATASET

Out[2]:

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oidpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	, 2	0	2	1

Age: Age of the patient

Sex: Sex of the patient

exang: exercise induced angina (1 = yes; 0 = no)

ca: number of major vessels (0-3)

cp : Chest Pain type chest pain type

Value 1: typical angina Value 2: atypical angina Value 3: non-anginal pain Value 4: asymptomatic trtbps : resting blood pressure (in mm Hg)

chol : cholestoral in mg/dl fetched via BMI sensor

fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false) rest_ecg: resting electrocardiographic results

Value 0: normal Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV) Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria thalach : maximum heart rate achieved

target: 0= less chance of heart attack 1= more chance of heart attack

DATA INFO

```
In [3]: df.isnull().sum()
                     0
Out[3]: age
        sex
                     0
        cp
        trtbps
                     0
         chol
         fbs
         restecg
         thalachh
         exng
         oldpeak
                     0
         slp
                     0
         caa
         thall
                     0
         output
         dtype: int64
```

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

			, .
#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trtbps	303 non-null	int64
4	chol	303 non-null	int64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalachh	303 non-null	int64
8	exng	303 non-null	int64
9	oldpeak	303 non-null	float64
10	slp	303 non-null	int64
11	caa	303 non-null	int64
12	thall	303 non-null	int64
13		303 non-null	int64
	C7+	(1/1) int64(13)	

dtypes: float64(1), int64(13)
memory usage: 33.3 KB

DATA SPLITING

```
In [6]: x.head()
```

Out[6]:

	age	sex	cp	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1
1	37	1	2	130	250	0	Ť	187	0	3.5	0	0	2
2	41	0	4	130	204	0	0	172	0	1.4	2	0	2
3	56	. 1	1	120	236	0	1	178	0	0.8	2	0	2
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2

```
In [7]: y.head()
```

```
Out[7]: 0 1
1 1
2 1
3 1
```

Name: output, dtype: int64

```
In [8]: print("Shape of X : ",x.shape)
    print("Shape of Y : ",y.shape)
```

1

Shape of X: (303, 13) Shape of Y: (303,)

```
In [9]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=51)
```

Shape of X_train : (242, 13) Shape of Y_train : (242,) Shape of X_test : (61, 13) Shape of Y_test : (61,)

In [11]: x_train,x_test,y_train,y_test=x_train.values,x_test.values,y_train.values,y_test.values

CREATING LINEAR RANDOM FOREST MODEL

Out[12]: RandomForestClassifier(criterion='entropy' n_estimators=10)

PREDICTION

[13]: classifier.score(x_test,y_test)

[13]: 0.8360655737704918

Let check for data prediction fram a datapoint in x_test

[14]: x_test[6]

[14]: array([44., 1., 1., 120., 220., 0., 1., 170., 0., 0., 2., 2.]) 0.,

Actual output of data point

15]: if y_test[6]==0:

print("Person predicted to have LOW chance of heart disease!")

else:

print("Person predicted to have HIGHER chance of heart disease!")

Person predicted to have HIGHER chance of heart disease!

Prediction from Random Forest Classifier

16]: result=classifier.predict([x_test[6]])

if result==0:

print("Person predicted to have LOW chance of heart disease!")

else:

print("Person predicted to have HIGHER chance of heart disease!")

Person predicted to have HIGHER chance of heart disease!