

GEOMETRÍA Capítulo 11

Relaciones métricas en el triángulo rectángulo y en la circunferencia

MOTIVATING | STRATEGY

En la actualidad, existen 314 formas de demostraciones del teorema de Pitágoras, lo que confirma que es uno de los teoremas que más han llamado la atención a través de

la historia. www.mathwarehouse.com/gifs

PROYECCIÓN ORTOGONAL

I. De un punto sobre una recta

II. De un segmento sobre una recta

 A_1B_1 : Proyección de \overline{AB} sobre $\overline{L_2}$

 C_1D_1 : Proyección de C_1D_1 sobre L_2

EF₁: Proyección de EF sobre L₂

RELACIONES MÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

* AB y BC son catetos

* AC: hipotenusa

AH: proyección ortogonal AB sobre AC

HC: proyección ortogonal BC sobre AC

$$(AC)^2 = (AB)^2 + (BC)^2$$

Teorema de la Longitud de un cateto al cuadrado

Teorema de la longitud de la altura al cuadrado

$$h^2 = mn$$

Teoremas adicionales

$$a \cdot b = c \cdot h$$

$$x^2 = b.m$$

A, B y C son puntos de tangencia

RELACIONES MÉTRICAS EN LA CIRCUNFERENCIA

T. de Cuerdas

T. de las Secantes

T. de la Tangente

$$a.b = m.n$$

$$x.y=a.b$$

$$x^2 = n \cdot m$$

T: punto de tangencia

1. En un triángulo rectángulo ABC recto en B, se traza la altura \overline{BD} ,

tal que AD = 12 y DC = 4. Halle BC.

Por el teorema del cateto:

$$x^2 = (4)(16)$$

$$x^2 = 64$$

2. En un triángulo rectángulo, las longitudes de las proyecciones de los catetos sobre la hipotenusa son 2 y 8. Calcule el producto entre las longitudes de los catetos.

3. Si ABCD es un cuadrado, BE = 1 y EC = 9, halle EF.

• Prolongamos EF hasta P.

$$h^2 = (1)(9)$$
 $h^2 = 9$
 $h = 3$

En
$$\overline{EP}$$
.
 $x + 3 = 10$

$$x = 7$$

HELICO | PRACTICE

4. En la figura se observa una cometa que tiene forma de un trapezoide simétrico, calcule su perímetro.

Resolución

En el gráfico, ABCD: Trapezoide Simétrico

BC=CD=b

Piden:
$$2P_{ABCD} = 2(a + b) ... (1)$$

Aplicamos el Teorema de Pitágoras

$$a^2 = 15^2 + 36^2$$

$$a^2 = 1521$$

$$a = 39$$

$$a^2 = 1521$$

$$a^2 = 15^2 + 36^2$$
 $b^2 = 15^2 + 20^2$

$$a^2 = 225 + 1296$$
 $b^2 = 225 + 400$

$$b^2 = 625$$

$$\mathbf{b} = 25$$

Reemplazando en (1): $2P_{ABCD} = 2(39 + 25)$

 $2P_{ABCD} = 128 \text{ cm}$

5. En la figura, halle el valor de x.

6. En la figura, BC = 3 y AB = 2. si T y B son puntos de tangencia. Halle PT

HELICO | PRACTICE

01

7. Una persona caminó 3 m hacia el norte, luego 6 m hacia el este, luego 5 m hacia el norte y finalmente 9 m hacia el este. ¿A cuántos metros del punto inicial se encuentra la persona?

