EXPERIMENT - 1

Switching Theory and Logic Design (STLD)

Aim

Realize all gates by verifying their truth tables.

Syeda Reeha Quasar 14114802719 3C7

EXPERIMENT – 1

AIM: Realize all gates by verifying their truth tables.

HARDWARE REQUIRED: Power supply/ Voltage supply, Bread Board, Resistors, LEDs, Connecting Wires, Integrated Chips ICs (7404, 7408, 7432, 7486, 7400, 7402, 74266)

SOFTWARE REQUIRED:

Software stimulator (MULTISIM) - <u>www.multisim.com</u> (free software) Stimulating schematic models of desired circuits

Components used - Source (Clock Voltage), Passive elements (resistor), Digital components (AND, OR, NAND, NOR, XOR, XNOR, Inverter), Probe for Analysis and annotation (Digital), Schematic connectors (Ground)

CIRCUIT:

OR GATE

NAND GATE

NOR GATE

NOT GATE

PIN - DIAGRAM:

AND GATE

NAND GATE

OR GATE

NOR GATE

XOR GATE

XNOR GATE

NOT GATE

TRUTH TABLES

AND Truth Table		
A	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

NAND Truth Table		
A	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

NOR Truth Table		
A	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

NOT Truth Table	
A	Q
0	1
1	0

XOR Truth Table		
A	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR Truth Table		
A	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

Or Truth Table		
A	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

THEORY: Logic gates are electronic circuits which perform logical operations on one or more inputs to produce a signal output. There are 7 logic gates. These include the AND, NAND, OR, NOR, XOR, XNOR and NOT.

PROCEDURE (MULTISIM):

- Make the circuits shown as shown in the figures.
- Select the required components (gates, resistor, voltage sources (Clock Voltage) and ground symbols from the tool bar on the left.
- Ground both the voltage sources (clock Voltages) and then connect them to the input terminal of the gate.
- Connect the output terminal to 1 k ohm resistor and ground it.

Precautions:

- Power supply should not exceed 5V.
- All the connections should be tight.
- Components should be tested before the practical.

NOT GATE

XNOR GATE

XOR GATE

NOR GATE

OR GATE

NAND GATE

AND GATE

Result:

All Gates has been realized.

VIVA VOCE

Q1. Explain what is Boolean Algebra?

Boolean algebra is a mathematic system of logic in which truth functions are expresses as symbols and then these symbols are manipulated to arrive at conclusion.

Q2. Explain what are the basic logic elements?

Basic logic elements are NOT gate, AND gate, OR gate and the flip-flop.

Q3. Explain what is a truth table?

Truth table is a table that gives outputs for all possible combinations of inputs to a logic circuit.

Q4. Define positive logic and negative logic.

If the higher of the two voltages represents a 1 and the lower voltage represents a 0, then the logic is called a positive logic. On the other hand, if the lower voltage represents a 1 and the higher voltage a 0, we have a negative logic.

Q5. Explain what is pulse logic system?

A logic system in which a bit is recognized by the presence or absence of a pulse is called a pulse or dynamic logic system.