Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт
з лабораторної роботи № 3 з дисципліни
«Алгоритми та структури даних-1.
Основи алгоритмізації»
«Дослідження ітераційних циклічних алгоритмів»

Варіант__16__

Виконав студен	гП1-15,_Куманецька_Ірина_Вікторівна	
Перевірив _		

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 16

Постановка задачі

Для заданого $\varepsilon>0,$ $y_0=0,$ розраховуються $y_k=\frac{y_{k-1}+1}{y_{k-1}+2}.$ Знайти перше $y_n,$ для якого $|y_n-y_{n-1}|<\varepsilon.$

Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Точність	Дійсне	ε	Вхідні дані
Значення y_{n-1}	Дійсне	y0	Вхідні дані, проміжні дані
Значення y_n	Дійсне	У	Проміжні дані, кінцеві
			дані

Спочатку користувач вводить точність ε . y0 задається за умовою, тому відразу вираховується перший y. Після цього розраховуємо $y_k = \frac{y_{k-1}+1}{y_{k-1}+2}$ за даною формулою, поки $|y_k - y_{k-1}| \ge \varepsilon$. При виконанні лабораторної будемо використовувати функцію abs() для розкриття модуля.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

```
Крок 2. Створення та присвоєння значення у0.
Крок 3. Деталізація обчислення початкового значення у.
Крок 3. Деталізація обчислення значення у з заданою точністю.
Псевдокод
Крок 1
початок
      введення є
      створення та присвоєння значення у0
      обчислення початкового значення у
      обчислення значення у з заданою точністю
      виведення у
кінець
Крок 2
початок
      введення ε
      y0 := 0
      обчислення початкового значення у
      обчислення значення у з заданою точністю
      виведення у
кінець
Крок 3
початок
      введення є
```

$$y \coloneqq \frac{y0+1}{y0+2}$$

обчислення значення у з заданою точністю

виведення у

кінець

Крок 4

початок

введення ε

$$y \coloneqq \frac{y0+1}{y0+2}$$

повторити

$$y0 \coloneqq y$$

$$y \coloneqq \frac{y0+1}{y0+2}$$

поки $abs(y-y0) >= \epsilon$

все повторити

виведення у

кінець

Блок-схема

Випробування

Блок	Дія
	Початок
1	Введення є:=0,00001
2	y0:=0
3	y:=0,5
4 (цикл 1)	y0:=0,5, y:=0,6
	true
5 (цикл 2)	y0:=0,6, y:=0,61538
	true
6 (цикл 3)	y0:=0,61538, y:=0,617647
	true
7 (цикл 4)	y0:=0,617647, y:=0,6179775
	true
8 (цикл 5)	y0:=0,6179775, y:=0,61802575
	true
9 (цикл 6)	y0:=0,61802575, y:=0,618032787
	false
10	Виведення у
	Кінець

Висновок

Було досліджено подання операторів повторення дій та набуто практичних навичок їх використання під час складання циклічних програмних специфікацій. В результаті виконання лабораторної роботи ми отримали $y := \frac{y_0+1}{y_0+2}$ з точністю є, розділивши задачу на 4 кроки: визначення основних дій, створення та присвоєння значення y_0 , деталізація обчислення початкового значення y_0 , деталізація обчислення значення y_0 з заданою точністю. Алгоритм

було побудовано з використанням ітераційного циклу постумови. В процесі випробування було розглянуто значення $\varepsilon=10^{-5}$ і вирахувано y=0,618032787.