计算机网络及应用(2022)第九次作业

要求:禁止抄袭。

提示:网络学堂以 pdf 格式提交,命名为: 学号_班级_姓名.pdf

1、 考虑下图所示的网络, 假设每个节点初始时知道到它的每个邻居的开销。使 用距离向量(DV)算法, 计算出节点z的距离表的表项。需要给出计算过程。(20)

 $new_dis[i][j] = min(dis[i][j], dis[i][k]+dis[k][j]$ for all k)

	X	у	Z	u	V
X	0	3	2	inf	2
у	3	0	inf	2	Inf
Z	2	inf	0	inf	5
u	inf	2	inf	0	1
v	2	inf	5	1	0

Step 1

	X	у	Z	u	V
X	0	3	2	3	2
у	3	0	5	2	3
Z	2	5	0	6	4
u	3	2	6	0	1
V	2	3	4	1	0

Step 2

	X	у	Z	u	V
X	0	3	2	3	2
у	3	0	5	2	3
z	2	5	0	5	4
u	3	2	5	0	1
V	2	3	4	1	0

- 2、考虑下图所示的网络。假定所有的AS正在运行OSPF作为其AS内部路由选择协议。假定AS间路由选择协议使用的是eBGP和iBGP。假定最初在AS2和AS4之间不存在物理链路。一旦路由器1d知道了x的情况,它将一个表项(x,I)放入它的转发表中(假设所有连接路由器的链路开销均相同)。(30) ①对这个表项而言,I将等于I₁还是I₂?解释其原因。(10) I₁,只能通过AS3到AS4,到AS3最短路径经过I₁
 - ②现在假定在AS2和AS4之间有一条物理链路,显示为图中的虚线。假定路由器1d知道经AS2以及经A3能够访问到x。I将设置为I₄还是I₂?解释原因。(10)

 I_2 , AS_PATH 相同时,比较最短路径,1d到2a路径最短,且过 I_2 .

③现在假定有另一个AS, 它称为AS5, 其位于路径AS2和AS4之间(没有显示在图中)。假定路由器1d知道经 AS2 AS5 AS4 以及经过 AS3 AS4 能够访问到 x。 I将设置为I₁还是I₂?解释其原因。(10)

经过AS3的AS-PATH最短,到AS3的最短路径过I1

- 3、在下图中,假定有另一个桩网络V,它为ISP A的客户。假设B和C具有对等 关系,并且A是B和C的客户。假设A希望让发向W的流量仅来自B,并且发向V 的流量来自B或C。(20)
 - ①A如何向B和C通告其路由? (10)

A向B通告路由A->W, A-V

A向C通告路由A-V

②C收到什么样的AS路由?(10)

A-V, B-A-W, B-A-V

- 4、 考虑下图中的SDN OpenFlow网络。假定对于到达s2的数据报的期望转发行为如下:
 - a) 任何经输入端口1到达的源主机为h5或h6,发往主机h1或h2的数据报,应 当通过端口2转发输出。
 - b) 任何经输入端口2到达的源主机为h1或h2,发往主机h5或h6的数据报,应 当通过端口1转发输出。
 - c) 任何在端口1或2到达并且发往主机h3或h4的数据报应当传递到特定的主机。
 - d) 主机h3和h4应当能够向彼此发送数据报。 详述实现这种转发行为的s2中的流表项。(30)

Input_port=1 and (src_ip=h5/h6, 10. 3. 0. *) and (dst_ip=h1/h2) -> output_port=2
Input_port=2 and (src_ip=h1/h2) and (dst_ip=h5/h6) -> output_port=1
Input_port=1/2 and (dst_ip=h3) ->output_port=3
Input_port=1/2 and (dst_ip=h4) ->output_port=3
(dst_ip=h4) ->output_port=3
->output_port=4

