

Master on Foundations of Data Science

Recommender Systems

Collaborative Recommender Systems (II)

Santi Seguí | 2019-2020

Today

- · RecSys Challenge Task
- · How are we gonna survive to COVID-19
- · Factorization Models

How we will survive to COVID-19

- Course Content will be provided by:
 - · Weekly call (20-30 min) + questions
 - · Slides + Papers
 - · Notebooks
- · Evaluation will be based on:
 - · RecSys Challenge + 2 new individual assigments
 - · NO EXAM

- Pairwise similarities are hard to robustly be computed in sparse matrices.
- Dimensionality reduction can be used to improve neighborhood-based methods both in terms of quality and in terms of efficiency
- A reduced representation of the data can be created in terms of either row-wise latent factors or in terms of column-wise latent factors.

- The low-dimensional representation can be computed using PCA or SVD-Like methods.
- · After the d-dimensional representation of each user is estimated, the similarity between users can be computed
- Cosine or dot product on the reduced vectors can be used in order to compute the similarity
- More robust since the feature vector is fully specified
- More efficient

- · How to obtain the d-dimensional representation on the sparse matrix?
- · SVD Method. Steps:
 - · Augment the $m \times n$ incomplete rating matrix R -> R_f
 - · Mean-user rating or mean-item rating for each row/column
 - · Lets define the similarity matrix S as $S = R_f^T R_f$. S is a positive semi-definite of size $n \times n$
 - · Determine the dominat basis vectors of R_f by computing the **diagonalization** of the similarity matrix S.
 - · S = P Λ P T , where P is an $n \times n$ matrix, whose columns contain the orthonormal eigenvectors of S. Λ is a diagonal matrix containing the non-negative eigenvalues of S along its diagonal.
 - · Let denote P_d the $n \times d$ matrix only containing the columns of P with the largest eigenvalues
 - \cdot The low representation of R is obtained by the multiplication of $R_f P_d$

- How to obtain the d-dimensional representation on the sparse matrix?
- PCA Method. Steps:
 - · Augment the $m \times n$ incomplete rating matrix R -> R_f
 - · Mean-user rating or mean-item rating for each row/column
 - · Lets define the similarity matrix S as the Covariance Matrix of Rf
 - · Determine the dominat basis vectors of R_f by computing the diagonalization of the similarity matrix S.
 - · S = P Λ P T , where P is an $n \times n$ matrix, whose columns contain the orthonormal eigenvectors of S. Λ is a diagonal matrix containing the non-negative eigenvalues of S along its diagonal.
 - · Let denote P_d the $n \times d$ matrix only containing the columns of P with the largest eigenvalues
 - · The low representation of R is obtained by the multiplication of Rf Pd

Challenges on Factorization

- · Challenges:
 - Missing Values
 - · Need a way to fill it
 - Several alternatives, including clever averages and predictions
 - Computational Complexity
 - Lack of transparency/explainability

Model-Based methods

Model-Based methods

- Neighborhood-based models are very popular because its simplicity, today, these methods are not necessarily the most accurate ones.
 - based on distance between user/items.
 - · Knn-generalization
- Today, model-based methods and in particular latent factor models are some of the most accurate methods
 - · learn best parameters for the task

$$R = UV^T$$

$$R \approx UV^T$$

$$r_{ij} \approx \bar{u_i} \cdot \bar{v_j}$$

 $= \sum_{s=1}^{\kappa} (\text{Affinity of user I to concept s}) \cdot (\text{Affinity of item j to the concept s})$

Universitat...
BARCELONA

D \ S \

Model-Based methods

- Advantages over neighborhood methods:
 - Space-efficency. Usually, the learned model is much smaller than the original rating matrix
 - Training speed and prediction speed. Neighborhoodbased models takes quadratic complexity in either number of users or number of items
 - Avoiding overfitting. The summarized model use to help in avoiding overfitting. Regularization methods can be used to make these models robust

Matrix factorization models map both users and items to a joint latent factor space of dimensionality, such that user-item interactions are modeled as inner products in that space

Matrix Factorization Methods

- Latent factor models approach tries to explain the ratings by characterizing both items and users to a small number of factors inferred from the rating patterns.
- Singular Value Decomposition (SVD) is a well established technique for identifying latent semantic factors. Done by factorizing the useritem rating matrix.
- PROBLEM: Hard to optimize due to the huge amount of missing values

Singular Value Decomposition (SVD)

- Columns of U and V are constrained to be mutually orthogonal.
- Mutual orthogonality has the advantage that the concepts can be completely independent of one another.
 Can be interpreted in scatterplots

$$\begin{pmatrix} \hat{X} & U & S & V^{\mathsf{T}} \\ x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{m1} & & x_{mn} \end{pmatrix} \approx \begin{pmatrix} u_{11} & \dots & u_{1r} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ u_{m1} & & u_{mr} \end{pmatrix} \begin{pmatrix} s_{11} & 0 & \dots \\ 0 & \ddots & \vdots & \ddots & \vdots \\ \vdots & & s_{rr} \end{pmatrix} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ v_{r1} & & v_{rn} \end{pmatrix}$$

$$R_f = \begin{pmatrix} 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & ? & -1 & -1 & -1 \\ ? & 1 & 1 & -1 & -1 & ? \\ 1 & -1 & -1 & 1 & 1 & 1 \\ 1 & ? & -1 & 1 & 1 & 1 \end{pmatrix}$$

The original Matrix

$$R_f = \begin{pmatrix} 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & -0.2 & -1 & -1 & -1 \\ 0 & 1 & 1 & -1 & -1 & 0 \\ 1 & -1 & -1 & 1 & 1 & 1 \\ 1 & 0.2 & -1 & 1 & 1 & 1 \end{pmatrix}$$

Step 1: Fill missing values with the mean value of the row

$$R_f = \begin{pmatrix} 1.0592 & -1.1604 & 0.9716 & -0.8515 & 0.8040 & -1.0592 \\ 0.6636 & 0.9039 & 0.5881 & -0.9242 & -1.1244 & -0.6636 \\ 0.4300 & 0.9623 & 0.3746 & -0.6891 & -1.1045 & -0.4300 \\ -0.9425 & -0.8181 & -0.8412 & 1.2010 & 1.1320 & 0.9425 \\ -1.0290 & -0.2095 & -0.9270 & 1.1475 & 0.5535 & 1.0290 \end{pmatrix}$$

Step 2: Apply SVD to the matrix

$$R_f = \begin{pmatrix} 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 0.5881 & -1 & -1 & -1 \\ 0.4300 & 1 & 1 & -1 & -1 & -0.43 \\ 1 & -1 & -1 & 1 & 1 & 1 \\ 1 & -0.2095 & -1 & 1 & 1 & 1 \end{pmatrix}$$

Step 3. Modify the target matrix setting in the missing values the learn values and iterate **until convergence**

Figure 1: A mapping of movies based on two latent factors

Factorization Models

Fill the missing values with some values

- · Hard to do
- Inaccurate filling can distort the data

Modeling directly the observed rating only??

Modeling directly the observed rating only??

- Stochastic gradient descent
 - For each given training set, the system predicts r_{ui}, and computes the associated prediction error

$$e_{ui} = r_{ui} - q_i^T p_u.$$

• Then it modifies the parameters by a magnitude proportional to γ in the opposite direction of the gradient, yielding:

$$q_i \leftarrow q_i + \gamma \cdot (e_{ui} \cdot p_u - \lambda \cdot q_i)$$
$$p_u \leftarrow p_u + \gamma \cdot (e_{ui} \cdot q_i - \lambda \cdot p_u)$$

Regularized SVD

- Direct Matrix Factorization of Incomplete Data
 - Modeling directly the observed rating only
 - · When data is sparse, covariance estimates will be statistically unreliable.
 - Matrix factorization as a cost function

$$\min_{p_*,q_*} \sum_{\text{known } r_{ui}} \left(r_{ui} - p_u^T q_i \right)^2 + \lambda \left(\|p_u\|^2 + \|q_i\|^2 \right)$$

- Optimize by either stochastic gradient-descent or alternating least squares
- · The constant λ controls the extent of regularization

Improved SVD

Adding Bias

$$P'_{ui} = b_u + b_i + (p_u^T q_i)$$

b_u is observed deviation of user u and b_i is observed deviation of item i.

Improving regularized singular value decomposition for collaborative filtering

713

2007

A Paterek
Proceedings of KDD Cup and Workshop 2007, 5-8

SVD++

- Explicit + Implicit information
 - boolean implicit feedback, indicating if the item has been rated by the user or not.

$$\hat{r}_{ui} = b_{ui} + q_i^T \left(p_u + |\mathrm{N}(u)|^{-rac{1}{2}} \sum_{j \in \mathrm{N}(u)} y_j
ight)$$
 , where $b_{ui} = \mu + b_u + b_i$

 N(u) is the set of items for which the user u has implicit information, and q, p and y are latent factors

Factorization meets the neighborhood: a multifaceted collaborative filtering model

2098

2008

Proceedings of the 14th ACM SIGKDD international conference on Knowledge ...

Non-Negative Matrix Factorization

 Can be used for ratings matrices that are non negative

Minimize
$$J = \frac{1}{2} ||R - UV^T||$$

subject to: $U \ge 0, V \ge 0$

 The major advantage of this approach is not the accuracy, but that of the **high level of** interpretability it provides in understanding the user-item interactions.

Matrix Factorization Methods

Method	Constraints	Objective	Advantatges/Disadvatgaes
Unconstrained	No Constraints	Frobenius + regularizer	Highest quality solution Good for most matrices Regularization prevents overfitting Poor interpretability
SVD	Orthogonal Basis	Frobenius + regularizer	Good Visual Interpretability Out-of-sample recommendations Good for dense matrices Poor semantic interpretability Suboptimal in sapre matrices
Max Margin	No Constraints	Hinge Loss + margin regularizer	Highest quality solution Resists overfitting Similar to unconstrained Poor Interepretability Good for discrete ratings
NMF	Non Negativity	Frobenius + regularizer	Good quality solution High semantic interpretability Loses interpretability with like/dislike ratings Less overfitting in some cases Best for implicit feedback

Sparse Linear Models (SLIM)

- Computes the item-item relations, by estimating an item x item sparse aggregation coefficient matrix S.
- The recommendation score of an unrated item i for a user u is:

$$\hat{r}_{ui} = \mathbf{r}_{u}^{T} \mathbf{s}_{i}.$$
minimize
$$\frac{1}{2} \sum_{u,i} (r_{ui} - \hat{r}_{ui})^{2} + \frac{\beta}{2} ||S||_{F}^{2} + \lambda ||S||_{1},$$
subject to
$$S \geq 0, \text{ and}$$

$$\operatorname{diag}(S) = 0.$$

SLIM: Sparse linear methods for top-n recommender systems

X Ning, G Karypis

Data Mining (ICDM), 2011 IEEE 11th International Conference on, 497-506

UNIVERSITATE BARCELONA

2011

115

Sparse Linear Models (SLIM)

minimize $\frac{1}{2} \sum_{u,i} (r_{ui} - \hat{r}_{ui})^2 + \frac{\beta}{2} ||S||_F^2 + \lambda ||S||_1,$ subject to $S \ge 0, \text{ and }$ $\operatorname{diag}(S) = 0.$

Sparse Linear Models (SLIM)

- Although the SLIM method proposes a prediction model for the rating, the final use of the ratings is for **ranking** the items
- Generally used for data sets with unary ratings (clicks, buy,...) from implicit feedback
- Since, the weights are restricted to be positive, the impact of each weight on the score are highly interpretable

Evaluation

Evaluation

	User	Item	Rating
	U1	T1	4
0	U1	T2	3
Training	U1	T3	3
<u>rai</u>	U2	T2	4
	U2	T3	5
	U2	T4	5
	U3	T4	5
Test	U1	T4	?(3)
	U2	T1	? (2)
	U3	T1	?(3)
	U3	T2	? (3.5)
	U3	T3	? (4)

P(U1, T4) = Avg(T4) =
$$(5+4)/2 = 4.5$$

P(U2, T1) = Avg(T1) = $4/1 = 4$
P(U3, T1) = Avg(T1) = $4/1 = 4$
P(U3, T2) = Avg(T2) = $(3+4)/2 = 3.5$
P(U3, T3) = Avg(T3) = $(3+5)/2 = 4$
3. Evaluation by Metrics
Mean Absolute Error (MAE) = $\frac{1}{n} \sum_{i=1}^{n} |e_i|$
ei = R(U, T) - P(U, T)
MAE = $(|3-4.5| + |2-4| + |3-4| + |3-3.5| + |4-4|)/5 = 1$

Rank Accuracy

 Mean Average Precision (MAP) calculates the precision at the position of every corrected item in the ranked results list

$$AveP = \frac{\sum_{k=1}^{n} (P(k) \times rel(k))}{\text{number of relevant documents}}$$

$$MAP = \frac{\sum_{q=1}^{Q} AveP(q)}{Q}$$

Top-N Evaluation

Task: Top-N Items to a user U3

)

$$P(U3, T1) = Avg(T1) = 4/1 = 4$$

 $P(U3, T2) = Avg(T2) = (3+4)/2 = 3.5$
 $P(U3, T3) = Avg(T3) = (3+5)/2 = 4$

Real rank: 13,12,11

Predicted rank: |3,|1,|2

Precision@N = #of hits/N

Precision@1 = 1/1

Precision@2 = 1/2

Precision@3 = 3/3

Precision/Recall

- We can use the strategy followed by P. Cremonesi et.al.
- In order to measure the precision recall, first the models is trained using the training data, and then, for each item *i* rated with 5 stars in the test data set:
 - A set of 100 random unseen movies for the user of the item *i* are selected. We assume that these
 random movies will not be at the same interest than the 5 star movie
 - We predict the rating of the movie of item i and 100 random unseen movies.
 - We form a rank list by ordering all the 101 item according to the predicted rating. Let denote p the rank of the test item i within the list. The best results corresponds to the case the test item i precedes all the random items (i.e., p=1).
 - A top-N recommendation list by piking the N top ranked items from the list. If p≤N we have a hit.
 Otherwise we have a miss. Chances of hit increases as N is higher.

Rank Accuracy (5)

Figure 2: Movielens: (a) recall-at-N and (b) precision-versus-recall on all items.

There are 100K ratings given by 943 users on 1,682 movies

Task #2 Movie Recommender

Create at least:

1) Item-Based Recommender System

2) Factorization Recommender system

What to deliver:

Write a paper/report (4-8 pages)

Explain: 1) how you see the problem, 2) the used methods, 3) the results and 4) your conclusions in terms of accuracy and complexity

Github repository of the task.

Deadline - May 13th