Preconditioning for Scalable Gaussian Process Hyperparameter Optimization

Jacob Gardner⁴ Philipp Hennig^{1,2} John Cunningham³ Jonathan Wenger^{1,2,3} Geoff Pleiss³

- ^l University of Tübingen
- ² Max Planck Institute for Intelligent Systems, Tübingen

⁴ University of Pennsylvania

³ Columbia University

Goal: Scalable GP Hyperparam. Optim.

Need to: Evaluate log-marginal likelihood \mathcal{L} and its derivative $\frac{\partial}{\partial \theta} \mathcal{L}$ repeatedly.

Challenge: Costly $\mathcal{O}(n^3)$ operations with the kernel matrix.

- \triangleright linear solves $\hat{K}^{-1}(\cdot)$
- ho matrix traces $\log \det(\hat{\boldsymbol{K}}) = \operatorname{tr}(\log(\hat{\boldsymbol{K}}))$ and $\operatorname{tr}(\hat{\boldsymbol{K}}^{-1} \frac{\partial \boldsymbol{K}}{\partial \theta})$

Known: Reducable to Matrix-Vector Mult.

Linear Solves: Preconditioned CG **Matrix Traces**: Stochastic trace estimator

Great because ...

- \triangleright matrix-vector multiplies cost at most $\mathcal{O}(n^2)$
- > no need to store kernel matrix in memory
- □ can exploit parallelization and modern hardware (GPUs)

lower time and space complexity

Problem: Stochastic Trace Estimators

$$ext{tr}(f(\hat{m{K}})) = n\mathbb{E}[m{z}_i^\intercal f(\hat{m{K}})m{z}_i]$$

$$\approx au_\ell^{ ext{STE}}(f(\hat{m{K}})) = \frac{n}{\ell} \sum_{i=1}^\ell m{z}_i^\intercal f(\hat{m{K}})m{z}_i$$

$$\approx au_{\ell,m}^{ ext{SLQ}}(f(\hat{m{K}}))$$

Bad because...

 \triangleright slow $\mathcal{O}(\ell^{-\frac{1}{2}})$ convergence in number of random vectors slows down training > adds noise into hyperparameter optimization

Our work: Precondition Trace Estimators

Insight

Can precondition not only linear solves but also stochastic trace estimators!

Contributions

- > Preconditioning reduces variance of the STE, i.e. accelerates convergence.
- > Theoretical guarantees.
- > Preconditioner choices for given kernels.
- □ Up to twelvefold training speedup.

Background: Preconditioning

such that $\kappa(\hat{P}^{-1}\hat{K}) \ll \kappa(\hat{K})$ and \hat{P} is tractable.

- \triangleright Computing and storing \hat{P} is cheap.
- \triangleright Linear solves $\boldsymbol{v}\mapsto \hat{\boldsymbol{P}}^{-1}\boldsymbol{v}$ are efficient.
- Derived properties (determinant, spectrum, ...) known

Asymptotic approx. error $g(\ell) \to 0$ of precond. seq. $\hat{P}_{\ell} \to \hat{K}$:

$$\kappa(\hat{\boldsymbol{P}}_{\ell}^{-1}\hat{\boldsymbol{K}}) \leq (1 + \mathcal{O}(g(\ell)) \|\hat{\boldsymbol{K}}\|_F)^2$$

Known Use: Accelerate and stabilize linear solves via $CG \Rightarrow$ bias reduction

Precond. Log-Determinant Estimation

Idea: Decompose log-determinant into deterministic and stochastic approximation.

$$\log \det(\hat{\boldsymbol{K}}) = \log \det(\hat{\boldsymbol{P}}_{\ell}\hat{\boldsymbol{P}}_{\ell}^{-1}\hat{\boldsymbol{K}}) = \underbrace{\log \det(\hat{\boldsymbol{P}}_{\ell})}_{\text{known}} + \underbrace{\operatorname{tr}(\log(\hat{\boldsymbol{K}}) - \log(\hat{\boldsymbol{P}}_{\ell}))}_{\approx \text{ stochastic trace estimate (ST)}}$$

Better preconditioner ⇒ smaller stochastic approximation ⇒ variance reduction

- ▶ Backward pass analogously via automatic differentiation.
- ▶ If we compute a preconditioner for CG, we can simply reuse it at negligible overhead.

If $\hat{P}_{\ell} \to \hat{K}$ at rate $g(\ell)$, then the STE only requires $\mathcal{O}(\ell^{-\frac{1}{2}}g(\ell))$ random vectors.

Theoretical Results

Probabilistic Error Bounds

Preconditioning not only reduces bias, but crucially also reduces variance.

Theorem (Log-marg. likelihood)

.] Then with probability $1 - \delta$, the error in the estimate η of the log-marginal *likelihood* \mathcal{L} *satisfies*

 $|\eta - \mathcal{L}| \le \varepsilon_{\text{CG}} + \frac{1}{2}(\varepsilon_{\text{Lanczos}} + \varepsilon_{\text{STE}}) ||\log(\hat{\mathbf{K}})||_F,$ where the errors are bounded by

$$\varepsilon_{\text{CG}}(\kappa, m) \le K_3 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^m$$

$$\varepsilon_{\text{Lanczos}}(\kappa, m) \le K_1 \left(\frac{\sqrt{2\kappa + 1} - 1}{\sqrt{2\kappa + 1} + 1}\right)^{2m}$$
(6)

$$\varepsilon_{\text{STE}}(\delta, \ell) \le C_1 \sqrt{\log(\delta^{-1})} \ell^{-\frac{1}{2}} g(\ell)$$
 (

Theorem (Derivative)

[...] Then with probability $1 - \delta$, the error in the estimate ϕ of the derivative of the \log -marginal likelihood $\frac{\partial}{\partial \theta}\mathcal{L}$ satisfies

 $|\phi - \frac{\partial}{\partial \theta} \mathcal{L}| \le \varepsilon_{\text{CG}} + \frac{1}{2} (\varepsilon_{\text{CG}'} + \varepsilon_{\text{STE}}) ||\hat{\mathbf{K}}^{-1} \frac{\partial \mathbf{K}}{\partial \theta}||_{F}$ where the errors are bounded by

 $\varepsilon_{\rm CG}(\kappa, m) \leq K_4 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{\tau}$ (4)

 $\varepsilon_{\text{CG'}}(\kappa, m) \leq K_2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^n$

 $\left| \varepsilon_{\text{STE}}(\delta, \ell) \le C_1 \sqrt{\log(\delta^{-1})} \ell^{-\frac{1}{2}} g(\ell) \right|$

Convergence rates for combinations of kernels and preconditioners

Kernel	d	Preconditioner	$g(\ell)$	Condition
any	\mathbb{N}	none	1	
• • •				
any	\mathbb{N}	RFF	$\ell^{-\frac{1}{2}}$	w/ high probability
RBF	1	partial Cholesky	$\exp(-c\ell)$	for some $c > 0$
RBF	\mathbb{N}	QFF	$\exp(-b\ell^{\frac{1}{d}})$	for some $b>0$ if $\ell^{rac{1}{d}}>2\gamma^{-2}$
$Matérn(\nu)$	\mathbb{N}	partial Cholesky	$\ell^{-\left(\frac{2\nu}{d}+1\right)}$	$2\nu \in \mathbb{N}$ and maximin ordering
$Matérn(\nu)$	1	QFF	$\ell^{-(s(\nu)+1)}$	where $s(\nu) \in \mathbb{N}$
mod. Matérn(ν)	\mathbb{N}	QFF	$\ell^{-\frac{s(\nu)+1}{d}}$	where $s(u) \in \mathbb{N}$
additive	\mathbb{N}	any	$dg(\ell)$	all summands have rate $g(\ell)$
any	\mathbb{N}	any kernel approx.	$g(\ell)$	∃ uniform convergence bound

Experiments

Preconditioning reduces bias and variance in \mathcal{L} and $\frac{\partial}{\partial \theta} \mathcal{L}$

Preconditioning reduces noise \Rightarrow accelerates hyperparam. optim.

Dalasci	16	α	$-\boldsymbol{\iota}_{\mathrm{train}}$		$-\boldsymbol{\sim}_{\mathrm{test}}$		I HVIOL \downarrow			
			Standard	Precond.	Standard	Precond.	Standard	Precond.	Standard	Precond.
Elevators	12 449	18	0.4647	0.4377	0.4021	0.4022	0.3484	0.3482	53	39
Bike	13 034	17	-0.9976	-0.9985	-0.9934	-0.9877	0.0446	0.0454	31	37
Kin40k	30 000	8	-0.3339	-0.4332	-0.3141	-0.3135	0.0929	0.0949	187	45
Protein	34 297	9	0.9963	0.9273	0.8869	0.8835	0.5722	0.5577	893	43
KEGGdir	36 620	20	-0.9501	-1.0043	-0.9459	-0.9490	0.0861	0.0864	1450	174
3DRoad	326 155	3	0.7733	0.1284	1.4360	1.1690	0.2982	0.1265	82 200	7306

Paper on

ARXIV

(6)

Implementation as part of **GPYTORCH**

