#### 15ème Forum des Jeunes Mathématicien-ne-s du 26 au 28 novembre 2015

# Estimation par algorithme EM d'un modèle à facteurs et équation structurelle

Myriam Tami sous l'encadrement de C. Lavergne, X. Bry

IMAG, UM



- Cadre et problème : modélisation de lien entre groupes de variables
  - Le modèle
  - La question de l'estimation
- Estimation du modèle par EM
  - Généralités sur l'algorithme EM
  - Méthode d'estimation et algorithme
- 3 Application sur données réelles
  - Application : la qualité de vie relative à la santé en cancérologie
- 4 Conclusion





Figure : Étude de la satisfaction d'une gamme automobile : cas de plusieurs variables latentes explicatives et une dépendante





Figure : Étude de la satisfaction d'une gamme automobile : cas de deux variables latentes explicatives et une dépendante





Figure : Étude de la satisfaction d'une gamme automobile : un modèle de mesure



Figure : Étude de la satisfaction d'une gamme automobile : modèle structurel

# Schéma du modèle structurel à 2 facteurs explicatifs et un dépendant



Figure : Modèle structurel à 2 facteurs explicatifs et un dépendant

#### Écriture du modèle :

$$\left\{\begin{array}{cc} & \dots & \left.\right\} \text{Modèle de mesure} \\ g = f^1c^1 + f^2c^2 + \varepsilon^g \end{array}\right\} \text{Modèle structurel}$$

# Schéma du modèle complet à 2 groupes de variables explicatifs et un dépendant



Figure : Modèle complet à 2 groupes de variables explicatifs et un dépendant

## Schéma du modèle complet avec adjonction de covariables



Figure : Modèle complet avec adjonction de covariables

#### Écriture du modèle :

$$\forall m \in [\![1,2]\!] \left\{ \begin{array}{l} Y = TD + gb' + \varepsilon^Y \\ X^m = T^mD^m + f^ma^{m\prime} + \varepsilon^m \\ g = f^1c^1 + f^2c^2 + \varepsilon^g \end{array} \right\} \text{Modèle structurel}$$

$$\forall \textit{m} \in \llbracket 1, 2 \rrbracket \left\{ \begin{array}{l} \textit{Y} = \textit{TD} + \textit{gb'} + \varepsilon^{\textit{Y}} \\ \textit{X}^{\textit{m}} = \textit{T}^{\textit{m}}\textit{D}^{\textit{m}} + \textit{f}^{\textit{m}}\textit{a}^{\textit{m'}} + \varepsilon^{\textit{m}} \\ \textit{g} = \textit{f}^{1}\textit{c}^{1} + \textit{f}^{2}\textit{c}^{2} + \varepsilon^{\textit{g}} \end{array} \right\} \text{Modèle de mesure}$$

#### Hypothèses

Observations indépendantes  $i \in \{1, ..., n\}$ ,

- Modèle structurel :  $f^m \sim \mathcal{N}(0, Id_n), m \in \{1, 2\}$  nombre de facteurs explicatifs.  $\varepsilon^{g} \sim \mathcal{N}(0, Id_{n})$  $\varepsilon^{g}$ .  $f^{1}$ .  $f^{2}$  mutuellement indépendants.
- Modèle de mesure :  $\varepsilon_i^Y \sim \mathcal{N}(0, \sigma_v^2 Id_{a_v}); \varepsilon_i^m \sim \mathcal{N}(0, \sigma_v^2 Id_{a_m})$

Notation :  $\theta = \{D, D^1, D^2, b, a^1, a^2, c^1, c^2, \sigma_V^2, \sigma_1^2, \sigma_2^2\}$  de dimension  $K = 5 + q_Y(r_T + 1) + \sum_{m=1}^{2} q_m(r_m + 1)$ , les paramètres.



Application sur données réelles

Application sur données réelles

### Objectif

- **①** Estimation des paramètres  $\theta$ .
- 2 Estimation des facteurs g,  $f^m$ .
- → Plusieurs approches possibles

# Différentes approches : PLS (Wold, 73) vs LISREL (Jöreskog, 1970)

Estimation du modèle par EM

| Caractéristiques | LISREL                                                             | PLS                                                                                         |
|------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Objectif         | Validation d'un modèle                                             | Prévision (calcul des<br>Variables Latentes<br>(V.L.))                                      |
| V.L.             | Facteurs non estimés,<br>hypothèse de distribution<br>gaussienne   | Composantes calculées (combinaison linéaire de ses Variables Observées (V.O.)) → contrainte |
| Hypothèses       | Indépendance et<br>distribution normale<br>multivariée des données | Indépendance des<br>données                                                                 |
| Méthodologie     | ASC et Maximum de<br>Vraisemblance (MV)                            | Estimation des moindres carrés et régressions                                               |

→ Idée : Estimation via algorithme EM



## Algorithme EM (Dempster et al., 1977)

Estimation du modèle par EM

 $\theta \in \Theta$ : paramètres

z : les données observées ; h : les données manquantes  $p(\theta)$  fonction de densité de (z, h)

• Estimer  $\theta \to \text{maximiser la log-vraisemblance } \mathcal{L}$  complétée des données manquantes.

$$\mathcal{L}(\theta; z, h) = ln[p(z, h; \theta)]$$

 Algorithme à deux étapes E ("Expectation") et M ("Maximization") qui résout itérativement :

$$\frac{\partial}{\partial \theta} \mathbb{E}_z^h [\mathcal{L}(\theta; z, h)] = 0 \tag{1}$$

### Log vraisemblance du modèle

 $Z = (Y, X^1, X^2)$  (variables observées)  $h = (g, f^1, f^2)$  (facteurs : nos variables latentes)

#### La log vraisemblance complétée à maximiser :

$$\mathcal{L}(\theta; Z, h) = -\frac{1}{2} \sum_{i=1}^{n} \{ \ln|\psi_{Y}| + \ln|\psi_{1}| + \ln|\psi_{2}| + (y_{i} - D't_{i} - g_{i}b)'\psi_{Y}^{-1}(y_{i} - D't_{i} - g_{i}b) + (x_{i}^{1} - D^{1}'t_{i}^{1} - f_{i}^{1}a^{1})'\psi_{1}^{-1}(x_{i}^{1} - D^{1}'t_{i}^{1} - f_{i}^{1}a^{1}) + (x_{i}^{2} - D^{2}'t_{i}^{2} - f_{i}^{2}a^{2})'\psi_{2}^{-1}(x_{i}^{2} - D^{2}'t_{i}^{2} - f_{i}^{2}a^{2}) + (g_{i} - c^{1} f_{i}^{1} - c^{2} f_{i}^{2})^{2} + (f_{i}^{1})^{2} + (f_{i}^{2})^{2} \} + \lambda$$

Où,  $\theta = \{D, D^1, D^2, b, a^1, a^2, c^1, c^2, \sigma_Y^2, \sigma_1^2, \sigma_2^2\}$ . Avec,  $\psi_Y = \sigma_Y^2 I d_{a_Y}$ ,  $\psi_1 = \sigma_1^2 I d_{a_1}$ ,  $\psi_2 = \sigma_2^2 I d_{a_2}$  et  $\lambda$  une constante.



## Résolution : estimation des paramètres

 Par résolution de (1) on obtient  $\hat{\theta} = \{\hat{D}, \hat{D^1}, \hat{D^2}, \hat{b}, \hat{a^1}, \hat{a^2}, \hat{c^1}, \hat{c^2}, \hat{\sigma_V^2}, \hat{\sigma_1^2}, \hat{\sigma_2^2}\}$ 

#### Exemples de formules solutions :

$$\widehat{c^{1}} = \frac{(\sigma_{12} + \overline{\widetilde{f^{1}}} \overline{\widetilde{g}}) \overline{\widetilde{\phi^{2}}} - (\sigma_{13} + \overline{\widetilde{f^{2}}} \overline{\widetilde{g}}) (\sigma_{23} + \overline{\widetilde{f^{1}}} \overline{\widetilde{f^{2}}})}{\widetilde{\phi^{1}} \overline{\widetilde{\phi^{2}}} - (\sigma_{23} + \overline{\widetilde{f^{1}}} \overline{\widetilde{f^{2}}})^{2}}$$

$$\widehat{\sigma_{Y}^{2}} = \frac{1}{nq_{Y}} \sum_{i=1}^{n} \{||y_{i} - \widehat{D'} t_{i}||^{2} + ||\widehat{b}||^{2} \widetilde{\gamma}_{i} - 2(y_{i} - \widehat{D'} t_{i})' \widehat{b} \widetilde{g}_{i}\}$$

Application sur données réelles

## Résolution : estimation des paramètres

• Par résolution de (1) on obtient  $\hat{\theta} = \{\hat{D}, \hat{D^1}, \hat{D^2}, \hat{b}, \hat{a^1}, \hat{a^2}, \hat{c^1}, \hat{c^2}, \hat{\sigma_Y^2}, \hat{\sigma_1^2}, \hat{\sigma_2^2}\}$ 

#### Exemples de formules solutions :

$$\widehat{c^{1}} = \frac{(\sigma_{12} + \widetilde{f^{1}}\widetilde{g})\widetilde{\phi^{2}} - (\sigma_{13} + \widetilde{f^{2}}\widetilde{g})(\sigma_{23} + \widetilde{f^{1}}\widetilde{f^{2}})}{\widetilde{\phi^{1}}\widetilde{\phi^{2}} - (\sigma_{23} + \widetilde{f^{1}}\widetilde{f^{2}})^{2}}$$

$$\widehat{\sigma_{Y}^{2}} = \frac{1}{nq_{Y}} \sum_{i=1}^{n} \{||y_{i} - \widehat{D'}t_{i}||^{2} + ||\widehat{b}||^{2}\widetilde{\gamma_{i}} - 2(y_{i} - \widehat{D'}t_{i})'\widehat{b}\widetilde{g_{i}}\}$$

• Les paramètres estimés dépendent des facteurs  $\widetilde{g_i}$ ,  $\widetilde{f_i^1}$ ,  $\widetilde{f_i^2}$  et des carrés des facteurs  $\widetilde{\gamma_i}$ ,  $\widetilde{\phi_i^1}$ ,  $\widetilde{\phi_i^2}$ .

#### Résolution : estimation des facteurs

Estimation du modèle par EM

• On explicite:

$$h_i|z_i \sim \mathcal{N}(M_i(\theta) = \begin{pmatrix} m_{1i} \\ m_{2i} \\ m_{3i} \end{pmatrix}, \Sigma(\theta) = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix})$$

• On estime les facteurs  $\widetilde{g_i}$ ,  $\widetilde{f_i^1}$ ,  $\widetilde{f_i^2}$  et leurs carrés  $\widetilde{\gamma_i}$ ,  $\widetilde{\phi_i^1}$ ,  $\widetilde{\phi_i^2}$  par :

$$\widetilde{g_{i}} = \mathbb{E}_{z_{i}}^{h_{i}}[g_{i}] = m_{1i} \qquad \widetilde{\gamma_{i}} = \mathbb{E}_{z_{i}}^{h_{i}}[g_{i}^{2}] = m_{1i}^{2} + \sigma_{11} 
\widetilde{f_{i}^{1}} = \mathbb{E}_{z_{i}}^{h_{i}}[f_{i}^{1}] = m_{2i} \qquad \widetilde{\phi_{i}^{1}} = \mathbb{E}_{z_{i}}^{h_{i}}[(f_{i}^{1})^{2}] = m_{2i}^{2} + \sigma_{22} 
\widetilde{f_{i}^{2}} = \mathbb{E}_{z_{i}}^{h_{i}}[f_{i}^{2}] = m_{3i} \qquad \widetilde{\phi_{i}^{2}} = \mathbb{E}_{z_{i}}^{h_{i}}[(f_{i}^{2})^{2}] = m_{3i}^{2} + \sigma_{33}$$

# Algorithme

Faire schéma Algo.

## Application : étude de la qualité de vie (QdV)

 Données issues d'un questionnaire dont la structure génère la modélisation proposée.



Figure : Modèle conceptuel de la qualité de vie relative à la santé en cancérologie

Application faite conjointement avec Antoine Barbieri et Caroline Mollevi (ICM) Montpellier).

# Proposition d'une approches en deux étapes : protocole et outils

 Objectif: Modéliser le statut global de santé (QL2) par un facteur fonctionnel et un facteur symptomatique à plusieurs temps de visite.

|         | Protocole                                 | Outils                                       |
|---------|-------------------------------------------|----------------------------------------------|
| Étape 1 | Étude transversale                        | SEM, facteurs                                |
|         | À chaque visite fixée :                   | $ ightarrow$ 2 facteurs $f^1$ (resp. $f^2$ ) |
|         | reconstruction de deux facteurs           | résumant les dimensions fonctionnelles       |
|         | expliquant le QL2.                        | (resp. symptomatiques).                      |
| Étape 2 | Étude longitudinale                       | LMM                                          |
|         | Expliquer QL2 à partir des $f^1$ et $f^2$ | fondé sur les facteurs $f^1$ , $f^2$         |
|         | reconstruits à chaque visite.             | plus covariables.                            |

 Avantage: L'étude longitudinale n'est plus faite dimension par dimension (variable par variable).



## Étape 1 : résultats

- Influence du traitement par visite :
  - Corrélation entre  $\widehat{f_R^m}$  avec la covariable R traitement (abscisse) et  $\widehat{f^p}$  sans la covariable (ordonnée) (m=1,2) aux 8 visites.



Figure : Corrélations entre  $\widetilde{f}_R^1$  et  $\widetilde{f}^1$  pour 73 patientes traitées par "radiothérapie-létrozole concomitant" et 70 par "radiothérapie suivie par létrozole".

## Étude longitudinale (LMM,facteurs)

- Outils : Modèle linéaire mixte (LMM)
- Avantage :
  - Prendre en compte la variabilité induite par les données répétées dans le temps pour un même patient.
  - Quantifier la part d'information apportée par les variables explicatives.

$$y_{iv} = \alpha + \underbrace{\mathbf{x}'_{iv}\boldsymbol{\beta}}_{partie\ fixe(\widetilde{f}_{iv}^m + covariables)} + \underbrace{\mathbf{u}'_{i}\boldsymbol{\xi}_{j}}_{partie\ aleatoire(individu,intercept,visite)} + \varepsilon_{iv}$$

#### Hypothèses

- $\varepsilon_{iv} \sim \mathcal{N}(0, \sigma^2)$ , indépendants des facteurs;
- $\boldsymbol{\xi}_i \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$



# <u>Etape 2 : analyse longitudinale et choix de modèle (BIC)</u>

$$y_{iv} = \alpha + \beta_1 \widetilde{f}_{iv}^1 + \beta_2 \widetilde{f}_{iv}^2 + \xi_i + \varepsilon_{iv}$$

 Part d'information portée par les différents éléments du modèle:

|            | Complet | Sans $\widetilde{f_{iv}^2}$ | Sans $\widetilde{f}_{iv}^{1}$ | Sans $\xi_i$ | Sans $(\widetilde{f}_{iv}^1, \widetilde{f}_{iv}^2)$ |
|------------|---------|-----------------------------|-------------------------------|--------------|-----------------------------------------------------|
| BIC        | 6440.4  | 6481.6                      | 6516.2                        | 6568.2       | 6823.0                                              |
| Différence |         | 41.2                        | 75.8                          | 127.8        | 382.7                                               |

- Le facteur fonctionnel  $(f_{iv}^1)$  apporte environ deux fois plus d'information que le facteur symptomatique  $(f_{ii}^2)$ .
- La part individuelle du modèle  $(\xi_i)$  apporte de l'information pour expliquer la variable réponse (QL2).
- Les facteurs sont fortement corrélés (-0.8) ⇒ leur présence dans le modèle a du sens.



Conclusion .

| CONCIUSION:                         |                                            |                                                     |                            |
|-------------------------------------|--------------------------------------------|-----------------------------------------------------|----------------------------|
| Caractéristiques                    | LISREL                                     | PLS                                                 | Estimation par<br>EM       |
| Objectif                            | Validation d'un<br>modèle                  | Prévision (calcul<br>des V.L.)                      | Validation et<br>Prévision |
| VL                                  | facteurs non composantes estimés calculées |                                                     | facteurs estimés           |
| Méthodologie                        | ASC et max. de vrais.                      | estimation des<br>moindres carrés<br>et régressions | Max de vrais et<br>EM      |
| Convergence                         | Matrices non définies positives observée   |                                                     | les deux                   |
| Complexité<br>du modèle<br>possible | modérée ( < 100 VO)                        | grande (100 VL,<br>1000 VO)                         | modulable                  |
| Taille min. de<br>l'échantillon     | grande $(n \in \{200,, 800\})$             | faible $(n \in \{30,, 100\})$                       | moyenne $n > 100$          |
| Temps de calcul                     | quelques<br>minutes                        | non testé                                           | quelques<br>secondes       |

#### MERCI À TOUS POUR VOTRE ATTENTION

## Bibliographie

- [1] Kenneth A. Bollen (1989), Structural Equations With Latent Variables
- [2] Rivera, P. et Satorra, A. (2002), Latent Variable and Latent Structure Models, Marcoulides, G. et Moustaki, I., New Jersey, 85–102.
- [3] Jakobowicz, E. (2007), Contributions aux modèles d'équations structurelles à variables latentes, Thèse, Paris, 81–99.
- [4] Bacher, F. (1987), Les modèles structuraux en psychologie présentation d'un modèle : LISREL, Le travail humain, 347–370.
- [5] Jöreskog, K. (1970), A general method for analysis of covariance structure, Biometrika.
- [6] Fox, J. (2002), Structural Equation Models,
- http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-sems.pdf.
- [7] Esposito Vinzi, V. et Trinchera, L. (2008), Modèles à équations structurelles, approches basée sur les composantes, URL: http://www.academia.edu/390381/Modeles\_a\_equations\_structurelles\_approches\_basees\_sur\_les\_composantes, Naples.
- [8] Stan, V. et Saporta, G. (2006), Une comparaison expérimentale entre les approches PLS et LISREL, Paris.
- [9] Saidane, M. (2006), Modèles à facteurs conditionnellement hétéroscédastiques et à structure markoviene cachée pour les séries financières, Thèse, Montpellier.
- [10] Foulley, J-L. (2002), Algorithme EM: Theorie et application au modèle mixte, Journal de la Société Française de Statistique, Jouyen-Josas.
- [11] Jourdain, B. (2008), Probabilités et statistique, URL :
- $\verb|http://cermics.enpc.fr/~jourdain/probastat/poly.pdf, Paris.|$

# Résultats moyens sur 100 jeux de données simulés

- Critère d'arrêt : choix de  $\varepsilon = 10^{-2}$
- Convergences obtenues ≤ 5 itérations



Figure: Boxplot 1

Figure : Boxplot 2

**Boxplot 1**: Corrélations entre  $(\tilde{g}, \tilde{f^1}, \tilde{f^2})$  simulés et leurs estimations.

**Boxplot 2** : Écarts relatifs en valeur absolue moyens pour chacun des éléments de  $\theta$ , entre sa valeur simulée et son estimation.

## Analyse de sensibilité pour différentes valeurs de q,



Figure : Moyennes des estimations pour plusieurs valeurs de q des paramètres scalaires  $c^1$ ,  $c^2$ ,  $\sigma_Y^2$  avec  $IC_{95\%}$ 

- $q = q_Y = q_1 = q_2 =$  {50, 10, 20, 40} pour n = 400.
- 100 jeux de données simulés pour chaque cas.
- Mêmes résultats pour  $\sigma_1^2$  et  $\sigma_2^2$ .

## Analyse de sensibilité pour différentes valeurs de q

Estimation du modèle par EM



Figure : Boxplot des corrélations entre les facteurs simulés et leur estimations pour différentes valeurs de q

• A partir de q=10, pour un nombre d'observations de n=400on a une bonne qualité d'estimation des facteurs et des paramètres.

## Analyse de sensibilité pour différentes valeurs de n,



Figure : Moyennes des estimations pour plusieurs valeurs de n des paramètres scalaires  $c^1$ ,  $c^2$ ,  $\sigma_Y^2$  avec  $IC_{95\%}$ 

- $n = \{50, 100, 200, 400\}$ pour q = 40.
- 100 jeux de données simulés pour chaque cas.
- Mêmes résultats pour  $\sigma_1^2$  et  $\sigma_2^2$ .

## Analyse de sensibilité pour différentes valeurs de n



Figure : Boxplot des corrélations entre les facteurs simulés et leur estimations pour différentes valeurs de n

• A partir de n = 100, pour un nombre de variables de q = 40par bloc on a une bonne qualité d'estimation des facteurs et des paramètres.

Estimation par algorithme EM d'un SEM à facteurs

$$\left\{ \begin{array}{l} Y = TD + gb' + \varepsilon^Y \\ X^1 = T^1D^1 + f^1a^{1'} + \varepsilon^{X^1} \\ X^2 = T^2D^2 + f^2a^{2'} + \varepsilon^{X^2} \\ g = f^1c^1 + f^2c^2 + \varepsilon^g \end{array} \right\} \text{Modèle structurel}$$

**1** Choix des dimensions : n=400,  $q_Y = q_1 = q_2 = 40$ ,  $r_T = r_1 = r_2 = 2$ 

Estimation par algorithme EM d'un SEM à facteurs

$$\left\{ \begin{array}{l} Y = TD + gb' + \varepsilon^Y \\ X^1 = T^1D^1 + f^1a^{1'} + \varepsilon^{X^1} \\ X^2 = T^2D^2 + f^2a^{2'} + \varepsilon^{X^2} \\ g = f^1c^1 + f^2c^2 + \varepsilon^g \end{array} \right\} \text{Modèle structurel}$$

- **1** Choix des dimensions : n=400,  $q_Y=q_1=q_2=40$ ,  $r_T=r_1=r_2=2$
- ② Définition des paramètres :

#### Modèle de mesure

$$D = D^{1} = D^{2} = (1, 2, ..., 80)$$
  

$$b = a^{1} = a^{2} = (1, 2, ..., 40)$$
  

$$\sigma_{X^{1}}^{2} = \sigma_{X^{2}}^{2} = \sigma_{Y}^{2} = 1$$

Cadre et problème

$$\left\{ \begin{array}{l} Y = TD + gb' + \varepsilon^Y \\ X^1 = T^1D^1 + f^1a^{1'} + \varepsilon^{X^1} \\ X^2 = T^2D^2 + f^2a^{2'} + \varepsilon^{X^2} \\ g = f^1c^1 + f^2c^2 + \varepsilon^g \end{array} \right\} \text{Modèle structurel}$$

- **1** Choix des dimensions : n=400,  $q_Y=q_1=q_2=40$ ,  $r_T=r_1=r_2=2$
- ② Définition des paramètres :

#### Modèle de mesure

$$D = D^{1} = D^{2} = (1, 2, ..., 80)$$
  

$$b = a^{1} = a^{2} = (1, 2, ..., 40)$$
  

$$\sigma_{X1}^{2} = \sigma_{X2}^{2} = \sigma_{Y}^{2} = 1$$

#### Modèle structurel

$$c^1 = c^2 = 1$$

$$\left\{ \begin{array}{l} Y = TD + gb' + \varepsilon^Y \\ X^1 = T^1D^1 + f^1a^{1'} + \varepsilon^{X^1} \\ X^2 = T^2D^2 + f^2a^{2'} + \varepsilon^{X^2} \\ g = f^1c^1 + f^2c^2 + \varepsilon^g \end{array} \right\} \text{Modèle structurel}$$

- **1** Choix des dimensions : n=400,  $q_Y = q_1 = q_2 = 40$ ,  $r_T = r_1 = r_2 = 2$
- ② Définition des paramètres :

#### Modèle de mesure

$$D = D^{1} = D^{2} = (1, 2, ..., 80)$$
  

$$b = a^{1} = a^{2} = (1, 2, ..., 40)$$
  

$$\sigma_{V1}^{2} = \sigma_{V2}^{2} = \sigma_{V}^{2} = 1$$

### Modèle structurel

$$c^1 = c^2 = 1$$

**3** Création des données  $Y, X^1, X^2$ : Simulation de  $f^1, f^2, \varepsilon^g \Rightarrow$  création de g. Simulation de  $\varepsilon^Y, \varepsilon^1, \varepsilon^2, T, T^1, T^2 \Rightarrow$  création de  $Y, X^1, X^2$ .

## Exemple: l'approche LISREL

Formulation du modèle dans la littérature :

$$\begin{cases} y = \Lambda_y \eta + \epsilon \\ x = \Lambda_x \xi + \delta \text{ (Modele de mesure)} \\ \eta = B \eta + \Gamma \xi + \zeta \text{ (Modele structurel)} \end{cases}$$

où,  $\Lambda_y$ ,  $\Lambda_x$ , B,  $\Gamma$  matrices des coefficients;  $\epsilon$ ,  $\delta$ ,  $\zeta$  les erreurs de mesure.

Hypothèses:

▷ les variables observées sont normales multivariées.

 $\triangleright \zeta$  et  $\xi$  non corrélées.  $\triangleright \epsilon$  et

 $\triangleright I - B$  non singulière.

 $\triangleright E(\zeta)=E(\xi)=E(\eta)=0.$ 

 $\triangleright V(\xi) = \Phi, V(\zeta) = \Psi.$ 

 $ho \ \epsilon \ {\rm et} \ \eta \ {\rm non} \ {\rm corr\'el\'ees}.$ 

 $\triangleright \delta$  et  $\xi$  non corrélées.

 $hd \epsilon, \, \delta$  et  $\zeta$  mutuellement non corrélées.

 $\triangleright E(\epsilon)=E(\delta)=0.$ 

 $\triangleright V(\epsilon) = \Theta_{\epsilon}, V(\delta) = \Theta_{\delta}.$ 

4 D > 4 B > 4 E > 4 E > 9 Q C

## Exemple: l'approche LISREL

Soit,  $\Theta = \{ \Lambda_y, \Lambda_x, B, \Gamma, \Phi, \Psi, \Theta_\epsilon, \Theta_\delta \}$  l'ensemble des paramètres,  $\Sigma$  la matrice des covariances entre y et x, supposée définie positive.

• Méthode d'estimation : hypothèse fondamentale :

$$\Sigma = \Sigma(\Theta)$$

 $\Leftrightarrow$ 

$$\begin{pmatrix} V(y) & COV(y,x) \\ COV(x,y) & V(x) \end{pmatrix} = \begin{pmatrix} \Lambda_{\boldsymbol{y}}(I-B)^{-1}(\Gamma\Phi\Gamma' + \Psi)[(I-B)^{-1}]'\Lambda'_{\boldsymbol{y}} + \Theta_{\varepsilon} & \Lambda_{\boldsymbol{y}}(I-B)^{-1}\Gamma\Phi\Lambda'_{\boldsymbol{x}} \\ & \Lambda_{\boldsymbol{x}}\Phi\Gamma'[(I-B)^{-1}]'\Lambda'_{\boldsymbol{y}} & \Lambda_{\boldsymbol{x}}\Phi\Lambda'_{\boldsymbol{x}} + \Theta_{\delta} \end{pmatrix}$$

• À l'aide de S la matrice des covariances observées ( supposée définie positive), on explicite  $\hat{\Sigma}(\Theta)$  en minimisant la fonction basée sur le maximum de vraisemblance (ML),

$$F_{ML}(S, \Sigma(\Theta)) = log|\Sigma(\Theta)| + tr(S\Sigma(\Theta)^{-1}) - log|S| - cste$$



$$F_{ULS}(S, \Sigma(\Theta)) = (\frac{1}{2})tr((S - \Sigma(\Theta))^2)$$

$$F_{GLS}(S, \Sigma(\Theta)) = (\frac{1}{2})tr(S^{-1}(S - \Sigma(\Theta))^2)$$

$$F_{ADF}(S, \Sigma(\Theta)) = (S - \Sigma(\Theta))'W^{-1}(S - \Sigma(\Theta))$$

W une matrice de poids.

Cadre et problème

Application sur données réelles

Application sur données réelles

L'identité de Fisher (1925) :

$$\frac{\partial}{\partial \theta} ln[p(z;\theta)] = \mathbb{E}_z^h [\frac{\partial}{\partial \theta} ln[p(z,h;\theta)]]$$

• EM revient à résoudre itérativement :

$$\mathbb{E}_{z}^{h}\left[\frac{\partial}{\partial \theta}\ln[p(z,h;\theta)]\right]=0$$

• Une vision classique de EM d'un point de vu algorithmique :

$$E_z^h[\frac{\partial}{\partial \theta} ln[p(z, h; \theta = \theta^{[t]})]] = \frac{\partial}{\partial \theta} \{\mathbb{E}_y^f[ln[p(z, h; \theta = \theta^{[t]})]]\}$$

 $\hookrightarrow$  Comme  $p(h|z;\theta=\theta^{[t]})$  ne dépend pas de  $\theta$ , on peut sortir l'opérateur de dérivation de l'espérance conditionnelle à l'itération [t].



$$\frac{\partial}{\partial \theta} ln[p(y;\theta)] = 0 \iff \frac{1}{p(y;\theta)} \frac{\partial}{\partial \theta} ln[p(y;\theta)] = 0$$

$$\iff \frac{1}{p(y;\theta)} \frac{\partial}{\partial \theta} \int_{f} ln[p(y,f;\theta)] df = 0$$

$$\iff \frac{1}{p(y;\theta)} \int_{f} \frac{\partial}{\partial \theta} ln[p(y,f;\theta)] df = 0$$

$$\iff \int_{f} \frac{\frac{\partial}{\partial \theta} ln[p(y,f;\theta)]}{p(y,f;\theta)} \frac{p(y,f;\theta)}{p(y;\theta)} df = 0$$

$$\iff \int_{f} \frac{\partial}{\partial \theta} ln[p(y,f;\theta)] p(f|y;\theta) df = 0$$

$$\iff \mathbb{E}_{y}^{f} [\frac{\partial}{\partial \theta} ln[p(y,f;\theta)]] = 0$$

Où  $\mathbb{E}^f_{\nu}[.]$  l'espérance par rapport à la distribution conditionnelle des données f sachant y.

#### Écart relatif à la solution attendue :

 $\frac{| heta_{\sf estim} - heta_{\sf simul}|}{ heta_{\sf simul}}$ 

Cadre et problème

$$\widehat{c^2} = \frac{(\sigma_{13} + \overline{\widetilde{f^2}\widetilde{g}})\overline{\widetilde{\phi}^1} - (\sigma_{12} + \overline{\widetilde{f^1}\widetilde{g}})(\sigma_{23} + \overline{\widetilde{f^1}\widetilde{f^2}})}{\overline{\widetilde{\phi}^1}\widetilde{\phi}^2 - (\sigma_{23} + \overline{\widetilde{f^1}\widetilde{f^2}})^2}$$

$$\widehat{\sigma_{xrj}^2} = \frac{1}{nq_r} \sum_{i=1}^n \{ ||x_i^r - \widehat{\mu^{Xr}}||^2 + ||\widehat{a^r}||^2 \widetilde{\phi_i^r} - 2(x_i^r - \widehat{\mu^{Xr}}) \widehat{a^r} \widetilde{f_i^r} \}$$



Application sur données réelles

# Généralisation du modèle à R groupes de variables explicatifs et 1 groupe dépendant

Soit,  $\mu^Y$ ,  $\mu^{X^r}$  les vecteurs moyennes, A, B matrices des coefficients et  $\varepsilon^Y$ ,  $\varepsilon^{X^r}$ ,  $\varepsilon^G$  les matrices des erreurs.

#### Écriture générale du modèle :

$$\begin{cases} Y = \mathbb{1}_n \mu^{Y'} + GB + \varepsilon^Y \\ X^r = \mathbb{1}_n \mu^{X^{r'}} + F^r A^r + \varepsilon^{X^r} \ \forall r = 1, ..., R \ (\textit{Modele de mesure}) \end{cases}$$
$$G = \sum_{r=1}^R \{F^r C^r\} + \varepsilon^G \ (\textit{Modele structurel})$$

#### Sous contraintes d'identifiabilité, les hypothèses sont :

Soit i une observation,  $\triangleright \varepsilon_i^{\mathbf{G}}$ , mutuellement indépendants des  $F^{\mathbf{r}}$  pour tout observation i.