Real World Algorithms: A Beginners Guide Errata to the Second Printing

Last updated 07 August 2018

This document lists the changes that should be made to *Real World Algorithms* to correct mistakes that made their way to printing, to improve infelicities that the author spotted too late, or update the material with something that the author did not know at the time of writing the book.

There are three different kinds of changes noted here. In all of them the date that they became known to the author is given at the first line of each item. The name of the person who suggested the change is also given at the end of each change.

Page 1, line 1	Jan 1
These are technical or typographical errors.	
Page 1, line 11	Jan 1
These as changes that improve the book, even if they do not correct an e They include small rewordings, or material that became known to the au after the book was published.	
Page 1, line 1 1 These are minor fixes that although they do not make a big difference they do hurt the a	Jan 1 uthoi
Some of them might strain the reader's eye to see where the improvement is eyectly	

(K. Marinakos)

➤ Page 49, line 4	17 Feb 2018
the same as algorithm 2.4 $\five \wedge$ the same as algorithm 2.3	(K. Marinakos)
▶ Page 55, figure 2.28a	17 Feb 2018
rename nodes 7 and 8 to 6 and 7 respectively	(K. Marinakos)
▶ Page 61, line 7	26 Feb 2018
with number in different number systems $ \searrow $ with numbers in ber systems	different num- (K. Marinakos)
▶ Page 61, lines 17–18	26 Feb 2018
The binary number 1010 has value 14 $\uparrow \rightarrow$ The binary nu value 14	mber 1110 has (K. Marinakos)
▶ Page 65, line 10	26 May 2018
in 32 bits \rightsquigarrow in 33 bits	(M. Chatzidavid)
▶ Page 69, line −13	26 Feb 2018
Each element of the priority tree \bigwedge Each element of the (K. Marinakos)	priority queue
▶ Page 72, line −2	26 Feb 2018
larger than its parent	(K. Marinakos)
▶ Page 73, line −1	26 Feb 2018
larger than its children $ \searrow $ smaller than its children	(K. Marinakos)
Page 91, line -6 to -5	31 May 2018
verify that with such an input, the Huffman encoder will not than a fixed-length encoding $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	perform better
investigate how the Huffman encoder will perform with such a parison to a fixed-length encoding	n input in com- (I. Lazaridou)
▶ Page 94, line 15	24 Jun 2018
is encoded as the plaintext $ \searrow $ is encoded as the ciphertext	(K. Marinakos)
▶ Page 126, line 2	24 Jun 2018
to keep a message $\wedge \!$	(K. Marinakos)
► Page 161, line 14	26 Mar 2018
Beceause	(K. Marinakos)

▶ Page 161, line 15	24 Jun 2018
each time we find a longest path \rightsquigarrow each time we find a longer nakos)	path (K. Mari-
▶ Page 173, figure 7.4	19 Mar 2018
	close by
	close by by the
▶ Page 180, line −17 to −16	19 Mar 2018
then the number of nodes cannot be more than the number of ed the number of nodes minus the source cannot be more than th edges	•
▶ Page 192, figure 8.3 (c)–(h)	26 May 2018
$1/R_1 \rightsquigarrow 1/D$	(I. Lazaridou)
▶ Page 192, figure 8.3 (h)	21 Mar 2018
$5/R_2 \longrightarrow 5/R_3$ (M.1)	E. Kostopoulou)
▶ Page 194 line -4	26 Mar 2018
exactly one ∕√→ exactly once	(K. Marinakos)
▶ Page 196 line -7	26 Mar 2018
$(2,1) \rightsquigarrow (2,2)$	(K. Marinakos)
▶ Page 196 line −1	26 Mar 2018
eighth \ → seventh	(K. Marinakos)
▶ Page 198 line 12	26 Mar 2018
they story short	(K. Marinakos)
▶ Page 212, line −14 to −13	24 Jun 2018
the importance of the page $ P_j \searrow$ the importance of the page P_j	(K. Marinakos)
▶ Page 231 lines 8–9	18 Apr 2018
A beats B by 60 to 40, B beats C by 60 to 40, and C beats A by 60 beats B by 60 to 30, B beats C by 60 to 30, and C beats A by 60 to 30	

▶ Page 232 line 1	18 Apr 2018
$i=1,2,\ldots n \rightsquigarrow i=1,2,\ldots,n$	
▶ Page 232 line −11	18 Apr 2018
This requires $\Theta(B ^2)$ time. $\wedge \rightarrow$ This requires $\Theta(C ^2)$ time.	(K. Marinakos)
▶ Page 233 line 2	18 Apr 2018
runs in $O(C ^2 + B ^2)$ time. $\wedge \rightarrow$ runs in $O(C ^2 + B C ^2)$ time	(K. Marinakos)
► Page 241, algorithm 10.3, Input	18 Apr 2018
<i>S</i> , an array of size $n \times n$ with the strongest paths between node strongest path between nodes i and j $\uparrow \downarrow \uparrow$	es; $s[i, j]$ is the
S , an array of size $n \times n$ with the strengths of the strongest prodes; $s[i,j]$ is the strength of the strongest path between node	
► Page 241, algorithm 10.3, Output	18 Apr 2018
wins, a list of size n ; item i of wins is a list containing m j_1, j_2, \ldots, j_m for which $S[i, j_k] > S[j_k, i]$	integer items
wins, an array of size n ; item i of wins is a list containing m j_1, j_2, \ldots, j_m for which $S[i, j_k] > S[j_k, i]$	integer items
▶ Page 241, algorithm 10.3, line 1	18 Apr 2018
$wins \leftarrow CreateList()$	
√ →	
$wins \leftarrow CreateArray(n)$	
▶ Page 241, algorithm 10.3, line 4	18 Apr 2018
InsertInList(wins, NULL, list)	
▶ Page 241, lines 3-4	18 Apr 2018
a list wins such that item i of the list wins $\wedge \rightarrow$ an array wins su	
of the array wins	(K. Marinakos)
▶ Page 241 line -7	18 Apr 2018
$O(C ^2 + B ^2)$ time $\bigwedge O(C ^2 + B C ^2)$ time	(K. Marinakos)
▶ Page 248, line 2	24 Jun 2018
An fundamental distinction $\bigwedge \rightarrow$ A fundamental distinction	(K. Marinakos)

▶ Page 260, line 2	24 Jun 2018
take it from its place it and move it	
√→ take it from its place and move it	(K. Marinakos)
▶ Page 263, line -3 to -2	24 Jun 2018
pick up the last one in the pile	
then indicate failure somehow	(K. Marinakos)
▶ Page 265, lines 19–20	24 Jun 2018
O(m/2 + (n+1)/2 = O(n/2e + (n-1)/2) = O(n)	
O(m/2 + (n+1)/2) = O(n/2e + (n+1)/2) = O(n)	(K. Marinakos)
▶ Page 291, line -10	24 Jun 2018
as long as $A[j]$ is higher than the $A[j-1]$ \longrightarrow	
as long as $A[j-1]$ is higher than $A[j]$ (K. Marinakos)	
Page 305, lines 2–5	06 Aug 2018
If one pile runs out before the other, it means that all the remarkat pile have larger face values than the cards in the third pile	-
When one pile runs out of cards, it means that all the remainir other pile have larger face values than the cards in the third pi	-
Page 306, line 1	24 Jun 2018
If one of the sorted arrays runs out of elements	e of the sorted (K. Marinakos)
Page 311, line -2	06 Aug 2018
a midpoint	
▶ Page 311, line -1	24 Jun 2018
$MergeSort(A,m,h) \! \bigwedge \!$	(K. Marinakos)
► Page 319, algorithm 12.10, Result	24 Jun 2018
A is partitioned so that $A[0], \dots, A[p-1] < A[p]$ and $A[p+1],$ $A[p],$ for $n = A $	$\ldots, A[n-1] \ge$

► Page 366, line -7 to -6	24 Jun 2018
The words in our example take up 41 bytes, equal to 328 bin our example take up 33 bytes, equal to 264 bits	its ∕ → The words (K. Marinakos)
► Page 366, line -5	24 Jun 2018
$328/16 \approx 20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(K. Marinakos)
► Page 367, figure 13.17, caption	
► Page 424, line −11	24 Jun 2018
and the text	(K. Marinakos)
▶ Page 426, line 3	24 Jun 2018
gives as ∕√→ gives us	(K. Marinakos)
▶ Page 427, line 7	24 Jun 2018
we actually wasting √→ we are actually wasting	(K. Marinakos)
▶ Page 428, line 4	24 Jun 2018
BABABAABABC \ → BABABABCABC	(K. Marinakos)
Page 443, algorithm 15.4, line 6	20 May 2018
$rt[Ord(p[i])] \leftarrow m-i-1$	
Page 443, line -4	20 May 2018
The function $Ord(c) \longrightarrow The function Ordinal(c)$	
Page 445, algorithm 15.5, line 13	20 May 2018
$i \leftarrow i + rt[Ord(c)]$	
► Page 446, line -4 to -3	20 May 2018
The time to create table rt is $O(m) \longrightarrow$ The time to create r	t is $O(m+s)$
► Page 446, line -2	20 May 2018
longer than $m \rightsquigarrow$ longer than $m + s$	

Page 456, line 10	20 May 2018
But a whole lot more of them. $ \searrow $ But a whole lot more of the starts repeating itself.	nem before it
▶ Page 463, line −4,	20 May 2018
from a $scr \searrow$ from a source src	
► Page 463, lines -3, -1	20 May 2018
scr √→ src	
▶ Page 464, algorithm 16.5 signature, input, output, lines 1, 3, 5 _	20 May 2018
$scr \longrightarrow src$	
▶ Page 464, line 1	20 May 2018
creating $s \rightsquigarrow creating S$	
▶ Page 464, lines 2, 4, −6	20 May 2018
$scr \longrightarrow src$	
▶ Page 464, line −6	20 May 2018
we return $s \rightsquigarrow$ we return S	
▶ Page 478, figure 16.7, line 2	23 May 2018
F F T T T T T T T T T T T F F T T T T T	тттттт
F F T T T T T T T T T T T T T T T T T T	T T T T T T
▶ Page 484, algorithm 16.10, output	23 May 2018
with probability $(1/4)^t \rightsquigarrow$ with error probability $(1/4)^t$	
Page 491, reference 64 08 1989	07 Aug 2018
Page 491, reference 677	07 Aug 2018