Generative Adversarial Networks for Time-Based Data

<u>In collaboration with Dow Chemical</u>

DowGAN team: Arty T., Daniel K., Emily N., & Emily M.-S.

What can a GAN model do for its users?

USE CASE 1

Using GAN model to generate augmented data

User input: Time series data (ex: experimentally derived data-points)

User receives: Generated time series data set (based on patterns from experimentally derived data-point)

Purpose: Generate data for processes that are very costly to collect experimentally. Generate artificial data for cross-company collaboration.

USE CASE 2

Using GAN model with new multi-featured data

User input: Time series dataset with multiple features (ex: data from various chemical processes, pressures, temperatures)

User receives: Generated multi-feature time series data set via a model learning each feature trend and their correlations

Purpose: Expanding the model to encompass data with multiple features

USE CASE 3

Using GAN model to extrapolate data beyond given time range

User input: Time series data until t = x seconds

User receives: Time series data past the point of experimentally derived data

Purpose: Generate time series data for costly or time intensive experiments to leverage in decision making.

Data we are currently working with: testing & training

Data has two operating conditions

Manual operating conditions for some features

Condition is based on column pressure

How do GANs work?

Conditional GANs vs. GANs

Typical GANs — "unsupervised"

No control on modes of the data being generated

Conditional GAN (CGAN) — "semi-supervised"

 Generator learns to generate a fake sample with a specific condition or characteristics (such as a label associated with an image or more detailed tag)

Initial CGAN model architecture: basic convolutions

Number of datapoints: 10.000

Number of samples: 59

Number of features per sample: 45

Number of datapoints per sample: 168

Process Condition: 1 or 2

DATA PRE-PROCESSING

- Target = samples of time-series data, condition/label = process condition
- Min-max scaling of the target
- Batching the targets and conditions for input

DISCRIMINATOR

- Concatenate time-series matrix + conditions for each time-series point
- Passes through a series of convolutional/max pool layers
- Activation function: Sigmoid
- Output size: [10, 1]

GENERATOR

- Concatenate time-series matrix + conditions for each time-series point
- Pass through convolutional/batch norm layers
- Activation function: Tanh
- Output size: [10, 168, 45]

Results

Models are not learning

Data preprocessing: Dropping NaN values MinMaxScaler (0,1) D. parameters / G. parameters:

Epochs: 1000

Activation function: Sigmoid()

Learning rate: 0.0005

Optimizer: Adam

G. Loss function: MSE Loss D. Loss function: BCE Loss

Vanishing gradient problem - discriminator is not providing enough information for generator to make progress, weights are not updated

Example Optimization

D. parameters / G. parameters:

Epochs: 200

Activation function: Sigmoid()

Learning rate: 0.0002

Optimizer: Adam

G. Loss function: MSE Loss D. Loss function: BCE Loss

Encoder CGAN Model

Embedding and Recovery Model Architecture

Total params: 765 Trainable params: 765 Non-trainable params: 0

Embedder

Total params: 2,295 Trainable params: 2,295 Non-trainable params: 0

ion-trainable params. 0

Recovery

Summary by torchsummary Visual by Netron.app

Embedder Recovery Loss

Recovery of Process Data

CGAN Architecture

Generator:

 Generates synthetic data by combining noise and condition using a GRU unit and linear layers.

Discriminator:

 Rates the "realness" of data based on condition using convolutional and linear layers.

Generator

Discriminator

CGAN Loss

Data Generation Visualization

Data Augmentation Visualization

Primary Component Analysis

Generated with recurrent condition feed

Generated with single condition feed

t-Distributed Stochastic Neighbor Embedding

Generated with recurrent condition feed

Generated with single condition feed

Future Efforts

- Incorporate reconstruction loss into Embedder/ Recovery Model training
- Increase Model Complexity with more layers
- Data preprocessing for steady state condition