High-Level Programming for Microfluidics

Max Willsey and Jared Roesch January 12, 2018 Off the Beaten Track at POPL

Warning!

Unfinished (or even started!) work ahead

Fluidics?

Abstraction Gap

Experiment

Molecular Computing

Experiment

Medical Diagnostics

Synthetic DNA

Chemistry

Medicine

Extensible Fluidic Semantics

Hardware Abstraction

Outline

Extensible Fluidic Semantics

Hardware Abstraction

Electrowetting

General Purpose Fluidics

Low Level Programming

```
activate(3,0)
activate(3,1)
activate(3,2)
activate(3,3)
activate(3,4)
```

move_droplet((3,0), (3,4))

Error prone

Programming microfluidic devices is hard!

precision

error handling

location tracking

resource management

hardware specific

parallelism

concurrency

domain specific

probabilistic results

Users are novice programmers!

Outline

Extensible Fluidic Semantics

Hardware Abstraction

What we want

```
Automatic error handling!
No locations!
            a = input(substance_A)
            b = input(substance_B)
            # mix in 2:1 ratio
            ab = mix(a, b, 2)
            while get_pH(ab) > 7:
                heat(ab)
                acidify(ab)
            Control flow!
```

No locations

```
a = input(substance_A)
b = input(substance_B)
# mix in 2:1 ratio
ab = mix(a, b, 2)

get_pH(ab)
```



```
a = input(substance_A)
b = input(substance_B)
# mix in 2:1 ratio
ab = mix(a, b, 2)
while get_pH(ab) > 7:
    heat(ab)
    acidify(ab)
```

```
a = input(substance_A)
b = input(substance_B)
# mix in 2:1 ratio
ab = mix(a, b, 2)
```

data dependent control flow

```
while get_pH(ab) > 7:
   heat(ab)
   acidify(ab)
```

On-the-fly error correction

Dynamic error correction

High level programming constructs

No static reasoning about resource usage

Where we are now

```
a = input(substance_A)
b = input(substance_B)
# mix in 2:1 ratio
ab = mix(a, b, 2)
while get_pH(ab) > 7:
    heat(ab)
    acidify(ab)
```

Outline

Extensible Fluidic Semantics

Hardware Abstraction

Linearity

```
a = input(substance_A)
b = input(substance_B)
# mix in 2:1 ratio
ab = mix(a, b, 2)
while get_pH(ab) > 7:
    heat(ab)
                             long running
    acidify(ab)
c = input(substance_C)
                                Already consumed!
ac = mix(a, c)
```

Linearity

```
a = input(substance A)
b = input(substance_B)
# mix in 2:1 ratio
ab = mix(a, b, 2)
while get_pH(ab) > 7:
                           state = Set Droplet
    heat(ab)
    acidify(ab)
c = input(substance_C)
ac = mix(a, c)
```

Termination?

```
a = input(substance A)
b = input(substance_B)
# mix in 2:1 ratio
ab = mix(a, b, 2)
while get_pH(ab) > 7:
    heat(ab)
    acidify(ab)
c = input(substance_C)
ac = mix(a, c)
```

Termination?

```
a = input(substance A)
b = input(substance_B)
# mix in 2:1 ratio
ab = mix(a, b, 2)
                         state = Map Droplet {
while get_pH(ab) > 7:
                          ph: Real
    heat(ab)
    acidify(ab)
c = input(substance_C)
ac = mix(a, c)
```

Other Stuff?

```
a = input(substance A)
b = input(substance_B)
# mix in 2:1 ratio
ab = mix(a, b, 2)
                         state = Map Droplet {
                          ph: Real
while get_pH(ab) > 7:
                          temp: Real
    heat(ab)
    acidify(ab)
c = input(substance_C)
ac = mix(a, c)
```

Other Stuff?

```
a = input(substance A)
b = input(substance_B)
# mix in 2:1 ratio
                         state = Map Droplet {
ab = mix(a, b, 2)
                          ph: Real
while get_pH(ab) > 7:
                          temp: Real
    heat(ab)
                          volume: Real
    acidify(ab)
c = input(substance_C)
ac = mix(a, c)
```

Termination?

```
a = input(substance_A)
b = input(substance B)
# mix in 2:1 ratio
ab = mix(a, b, 2)
while get_pH(ab) > 7:
    heat(ab)
    acidify(ab)
c = input(substance_C)
ac = mix(a, c)
```

many intrinsic chemical properties of a sample

procedures, not primitives

Termination?

```
while get_pH(ab) > 7:
           heat(ab)
           acidify(ab)
@ensures( abs(x.pH - retval) < 0.1 )
def get pH(x):
@ensures(x.pH - old_x.pH > 0.5)
def acidify(x):
```


Molecular Computing

Experiment

Medical Diagnostics

Synthetic DNA

Chemistry

Medicine

Extensible Fluidic Semantics

Hardware Abstraction

Thanks!

misl.cs.washington.edu

Bonus Slides!

BioCoder

```
for(int i = initial; i <= Threshold; ++i) {</pre>
   bioCoder.next_step();
   bioCoder.store_for(tube,94,Time(SECS,45));
   bioCoder.next_step();
   bioCoder.store_for(tube,65,Time(SECS,45));
   bioCoder.next_step();
   bioCoder.measure_fluorescence(tube,Time(SECS,5),"DNASensor");
   bioCoder.IF("DNASensor", GREATER_THAN, .85);
   for(int j = i; j < Total+(Threshold-i); ++j) {</pre>
       bioCoder.next_step();
       bioCoder.store_for(tube,94,Time(SECS,45));
       bioCoder.next_step();
       bioCoder.store_for(tube,65,Time(SECS,45));
   bioCoder.next_step();
   bioCoder.drain(tube,"Amplified PCR");
   bioCoder.END_IF();
```

Silicon / Molecular Systems

[1]