内容截取自: https://community.sw.siemens.com/s/article/introduction-to-filters-fir-versus-iir

内容截取自: https://community.sw.siemens.com/s/article/introduction-to-filters-fir-versus-iir

内容截取自: https://community.sw.siemens.com/s/article/introduction-to-filters-fir-versus-iir

FIR Filter Equation:  $y(n) = \sum_{k=0}^{N} \frac{a(k)x(n-k)}{n}$ 

IIR Filter Equation: 
$$y(n) = \sum_{k=0}^{N} \frac{a(k)x(n-k)}{a(k)x(n-k)} + \sum_{j=0}^{p} \frac{b(j)y(n-j)}{b(j)}$$

Output used recursively



## IIR Versus FIR Filters Comparison with same order



## IIR Versus FIR Filters Comparison with different order







The FIR methods use different spectral windows when transforming from the frequency to time domain. Some of the window methods include:

- Chebyshev Has the lowest amount of ripple in stop band, but widest transition band.
- Hamming Narrow transition zone, smaller ripple than Hanning. Developed by Richard Hamming, who was a member of the Manhattan Project.

- Kaiser Developed by James Kaiser at Bell Laboratories, the Kaiser window has small amplitude ripple in stop zone, only the wide transition width Chebyshev has lower amplitude ripple.
- Hanning Narrowest transition band, but large ripple in stop band.
- Rectangular Largest amount of ripple/lobes, even affects pass band.

## Comparison of IIR Filters

| Method         | Pass Band | Transition Width | Stop Band |
|----------------|-----------|------------------|-----------|
| Butterworth    | Flat      | Wide             | Monotonic |
| Inv. Chebyshev | Flat      | Narrow           | Ripple    |
| Chebyshev      | Ripple    | Narrow           | Monotonic |
| Cauer          | Ripple    | Narrowest        | Ripple    |
| Bessel         | Sloping   | Very Wide        | Sloping   |



## Attributes of the different IIR filter methods:

- Butterworth Flat response in both the pass and stop band, but has a wide transition zone. First described by British physicist Stephen Butterworth in 1930.
- Inverse Chebyshev Flat in the pass band, with a narrower transition width than the Butterworth filter, but has ripple in the stop band. If ripple in the stop band is not a problem, might be preferred for a given application over the Butterworth filter.
- Chebyshev Can have ripple in pass band, but has steeper rolloff than Inverse Chebyshev.
- Cauer Narrowest transition zone. Ripple in both stop and pass bands. Sometimes called an Elliptic filter.
- Bessel Sloping amplitude in both the pass and stop band, with a very wide transition zone. The delay versus frequency in the filter is the flattest in this list. The Bessel filter was named for Freidrich Bessel (1784-1846), a German mathematician.