Algorithme de minimisation de Brzozowski

Informatique Théorique 2 - Unité J1INPW11 Licence 3 - Université de Bordeaux

1 Introduction

Le but de cette partie théorique est de prouver l'algorithme de Brzozowski. Cet algorithme est un algorithme de minimisation alternatif à celui de Moore. Étant donné un automate \mathcal{A} , l'algorithme de Brzozowski effectue séquentiellement les quatre opérations suivantes :

- 1. Faire le miroir de A.
- 2. Déterminiser l'automate obtenu.
- 3. Faire le miroir de l'automate obtenu.
- 4. Déterminiser l'automate obtenu.

On va montrer que quel que soit l'automate \mathcal{A} , l'automate obtenu en appliquant ces quatre opérations est toujours l'automate minimal du langage de \mathcal{A} .

2 Preuve

Pour toute cette preuve on considère fixé l'alphabet A utilisé par nos automates. On ne considère que des automates (potentiellement non-déterministes) sans ε -transitions. Si A est un automate, on note L(A) le langage des mots acceptés par A.

DÉFINITION: Pour tout automate $\mathcal{A} = (A, Q, I, F, \delta)$ on note MIR(\mathcal{A}) l'automate miroir de \mathcal{A} . Plus précisément, on a MIR(\mathcal{A}) = (A, Q, F, I, δ') avec $\delta' = \{(q, a, r) \mid (r, a, q) \in \delta\}$ (c'est-à-dire que MIR(\mathcal{A}) est l'automate obtenu en renversant les flèches et en échangeant I et F dans \mathcal{A}). Pour tout mot $w \in A^*$, on note \tilde{w} le miroir de w. C'est-à-dire que si $w = a_1 a_2 a_3 \cdots a_n$, $\tilde{w} = a_n \cdots a_3 a_2 a_1$.

Question 1. Soit \mathcal{A} un automate, montrer que $L(MIR(\mathcal{A})) = \{\tilde{w} \mid w \in L(\mathcal{A})\}.$

DÉFINITION : Pour tout automate $\mathcal{A}=(A,Q,I,F,\delta)$ et tout état $q\in Q$ de \mathcal{A} , on note $L_g^{\mathcal{A}}(q)$ accepté par l'automate $(A,Q,I,\{q\},\delta)$, qu'on appelle le langage à gauche de q. De la même façon, le langage à droite $L_d^{\mathcal{A}}(q)$ de l'état q est le langage accepté par l'automate $(A,Q,\{q\},F,\delta)$.

Question 2. Soit $\mathcal{A} = (A, Q, I, F, \delta)$ un automate. On rappelle que \mathcal{A} et MIR (\mathcal{A}) on le même ensemble d'états Q. Montrer que pour tout état $q \in Q$:

- a) $L_g^{\text{MIR}(\mathcal{A})}(q) = \{ \tilde{w} \mid w \in L_d^{\mathcal{A}}(q) \}.$
- b) $L_d^{\text{MIR}(\mathcal{A})}(q) = \{\tilde{w} \mid w \in L_g^{\mathcal{A}}(q)\}.$

DÉFINITION : Pour tout automate $\mathcal{A}=(A,Q,I,F,\delta)$, on note $\text{DET}(\mathcal{A})$ l'automate déterminisé de \mathcal{A} . C'est-à-dire l'automate des parties associé à \mathcal{A} obtenu en ne gardant que les états accessibles. On rappelle que chaque état de $\text{DET}(\mathcal{A})$ est un sous-ensemble $R\subseteq Q$ de l'ensemble Q des états de \mathcal{A} .

Question 3. Soit $\mathcal{A} = (A, Q, I, F, \delta)$ un automate et $R \subseteq Q$ un état de DET (\mathcal{A}) . Montrer que le langage à droite $L_d^{\text{DET}(\mathcal{A})}(R)$ est l'union des langages à droite $L_d^{\mathcal{A}}(r)$ pour $r \in R$. C'est-à-dire

$$L_d^{\text{det}(\mathcal{A})}(R) = \bigcup_{r \in R} L_d^{\mathcal{A}}(r)$$

Question 4. Soit $\mathcal{A} = (A, Q, I, F, \delta)$ automate. Montrer que \mathcal{A} est déterministe si et seulement si |I| = 1 et les langages à gauche associés à ses états sont deux à deux disjoints :

pour tout
$$q, r \in Q$$
 tels que $q \neq r$: $L_g^{\mathcal{A}}(q) \cap L_g^{\mathcal{A}}(r) = \emptyset$

Question 5. Soit $\mathcal{A} = (A, Q, I, F, \delta)$ un automate déterministe dont tous les états sont accessibles. Donner une condition nécessaire et suffisante sur les états de \mathcal{A} pour que \mathcal{A} soit minimal.

Indice: On pourra utiliser les langages à droite des états de A.

Question 6. Soit \mathcal{A} un automate. Combiner les questions précédentes pour montrer que l'automate $\text{DET}(\text{MIR}(\text{DET}(\text{MIR}(\mathcal{A}))))$ est l'automate minimal de \mathcal{A} .

Question 7. Quelle est la complexité de la construction de l'automate $DET(MIR(DET(MIR(\mathcal{A}))))$, dans le cas le pire (justifier la réponse)?