第一章向量

§1-1 有向線段與向量

(甲)向量的引入

- (1)以「位移」爲例:某甲從A點出發,朝西北方前進,走了 10 公里到達B地。 某乙從A點出發,朝北走了 10 公里到達C點,我們考慮從A點到B點 與C點雖然路徑相同,但方向卻不一樣。有向線段AB的始點A其方向 爲西北方,其長度 10 公里。同樣的有向線段AC的始點A其方向爲北方, 長度爲 10 公里。
- (2)以「力」為例:甲、乙兩人拔河,甲用大小 2F的水平力向右邊拉,乙用大小F的水平力向左邊拉,我們亦可用有向線段來表示這兩個力,其始點 為施力點,方向分別是兩力的方向,而長度分別是兩力的大小。

像位移、力、速度、加速度等,這些物理量包含大小與方向雙重觀念,我們引進「**向量**」的觀念,將這些物理觀念(朝西北移動 10 公里、向右 2F的水平拉力)看成有向線段,而引入向量,物理觀念經數學化之後,便於物理觀念的溝通與物理量的計算。

(3)向量的概念:

(a)以A爲始點,B爲終點的有向線段,我們稱之爲向量,符號: \overrightarrow{AB} ,它的方向是由A指向B,大小爲 \overrightarrow{AB} ,記爲 $|\overrightarrow{AB}|$,即 $|\overrightarrow{AB}|$ = $|\overrightarrow{AB}|$ 。當A=B時, $|\overrightarrow{AB}|$ 第一向量,記爲 $|\overrightarrow{AB}|$ 9 ; $|\overrightarrow{AB}|$ 9 ,但方向相反,記爲: $|\overrightarrow{AB}|$ 9 — $|\overrightarrow{AB}|$ 9 。

注意: T的大小為 0,但沒有方向。

(b)兩個向量若大小相等,方向相同,則稱兩個向量相等。 AB=CD ⇔ AB, CD 方向相同且|AB|=|CD| 根據這個結果可知,**向量可以自由的平行移動**。

(c)給定一個向量 \overrightarrow{a} ,則過任一點A都可作一個向量 \overrightarrow{AB} 與 \overrightarrow{a} 同向並等長,

記爲 $\overrightarrow{AB} = \overrightarrow{a}$ 。同樣地,可用另一個向量 \overrightarrow{CD} 來代表 \overrightarrow{a} ,只要 \overrightarrow{AB} 與 \overrightarrow{CD} 代表同一個向量,即兩者的大小相等,方向相同。

(練習1) 正六邊形 ABCDEF 的邊長爲 2,設 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$,由此正六邊形的頂點爲始點或終點,可決定多少不同的向量?(不包含零向量) (A) 6 (B) 12 (C) 18 (D) 36 (E) 30 · Ans: (C)

(乙)向量的加減法

(1)向量的加法:給定二個向量 \vec{a} , \vec{b} 如何定義 \vec{a} + \vec{b} 呢?

(a)三角形法:由向量的意義,可設 $\overrightarrow{a} = \overrightarrow{AB}$, $\overrightarrow{b} = \overrightarrow{BC}$,

則定義 $\vec{a} + \vec{b} = \overrightarrow{AC}$ (可以用位移爲例)

(b)平行四邊形法:由三角形法,如果 $\overrightarrow{a} = \overrightarrow{AB}$, $\overrightarrow{b} = \overrightarrow{AC}$,則 $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{AD}$,ABDC為平行四邊形。(可以用合力為例)

[說明]:因爲AC=BD,所以AB+AC=AB+BD=AD

[討論]: 如右圖, AB+BC+CD+DE =?

(2)向量的減法: 給定兩個向量 \vec{a} , \vec{b} ,如何定義 \vec{a} - \vec{b} 呢?

[說明]:設 $\overrightarrow{a} = \overrightarrow{AB}, \overrightarrow{b} = \overrightarrow{AC}$,我們定義 $\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + (-\overrightarrow{b})$

根據右圖可知 $\overrightarrow{AD} = \overrightarrow{b}$, ADEB爲平行四邊形,

$$\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + (-\overrightarrow{b}) = \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AE} = \overrightarrow{CB}$$

 $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB} \circ$

[結論]:

- (a)任何一個向量 \overrightarrow{BC} ,我們都可以把它拆解爲 \overrightarrow{BA} + \overrightarrow{AC} 兩向量的和,其中 A爲任一點。即 \overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC} 。(可以以位移爲例)
- (b)任何一個向量 \overrightarrow{BC} ,我們都可以把它拆解爲 \overrightarrow{AC} - \overrightarrow{AB} 兩向量的差,其中 \overrightarrow{AB} 岛(可以相對運動爲例)
- (3)向量加法的性質:
- (a)交換性: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- (b)結合性: $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$
- (c)零向量: $\overrightarrow{a}+\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{a}$, $\overrightarrow{0}$ 表示起點與終點重合的向量,稱爲零向量。
- (d)可逆性:對於任一向量 \overrightarrow{a} ,若以 \overrightarrow{AB} 表示 \overrightarrow{a} ,則 \overrightarrow{BA} 所表示的向量以 $-\overrightarrow{a}$ 表示,由於 $\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow{0}$,故 $\overrightarrow{a}+(-\overrightarrow{a})=-\overrightarrow{a}+\overrightarrow{a}=\overrightarrow{0}$
- [**例題**1] 在正六邊形ABCDEF中,令 $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{BC}=\overrightarrow{b}$,試以 \overrightarrow{a} 和 \overrightarrow{b} 表示下列諸向量: (1) \overrightarrow{AC} (2) \overrightarrow{BD} (3) \overrightarrow{CD} 。

Ans:
$$(1)\vec{a} + \vec{b}$$
 $(2) 2\vec{b} - \vec{a}$ $(3) - \vec{a} + \vec{b}$

- (練習3) 如圖所示,設四邊形ABCD、EFGH、DCGH、ABFE、ADHE和BCGF 都是平行四邊形, $\overrightarrow{BA} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{c}$, $\overrightarrow{BF} = \overrightarrow{d}$,試以 \overrightarrow{a} , \overrightarrow{c} , \overrightarrow{d} 表示 \overrightarrow{CE} 和 \overrightarrow{AG}

Ans: \overrightarrow{a} $-\overrightarrow{c}$ $+\overrightarrow{d}$, $-\overrightarrow{a}$ $+\overrightarrow{d}$ $+\overrightarrow{c}$

(乙)向量的係數積

(1)向量的係數積

設 \vec{a} 是一個向量,r是一個實數,則 $r\vec{a}$ 仍是一個向量,定義如下:

長度: $|\overrightarrow{ra}|=|r||\overrightarrow{a}|$

方向: 若r>0, 則 $r\overrightarrow{a}$ 與 \overrightarrow{a} 同向;

若r<0,則 $r\overrightarrow{a}$ 與 \overrightarrow{a} 反向

若r=0 或 $\overrightarrow{a}=\overrightarrow{0}$,則 $r\overrightarrow{a}=\overrightarrow{0}$

注意:

- (a)**0**· \overrightarrow{a} 、 r· $\overrightarrow{0}$ 均爲零向量 $\overrightarrow{0}$,而不是 0 。
- (b)利用係數積可使向量在同向(r>0)或反向(r<0),伸縮向量的長度。
- (2)向量平行與係數積:

當兩向量同向或反向時,稱此兩向量平行。

爲了方便起見,我們規定**零向量與任何向量平行**。

向量 \vec{a} 平行 \vec{b} \Leftrightarrow 可找到實數t, 使得 $\vec{a} = t\vec{b}$ 或 $\vec{b} = s\vec{a}$

例如: ${\rm BA,B,C}$ 為一直線上的三點,且 $\overline{\rm AB}$: $\overline{\rm BC}$ =3:2,

則
$$\overrightarrow{AB} = \frac{3}{5}\overrightarrow{AC}$$
, $\overrightarrow{BC} = \frac{-2}{3}\overrightarrow{BA}$ \circ

(3)係數積的基本性質

設 r,s ∈ R , \overrightarrow{a} 與 \overrightarrow{b} 爲二任意向量 , 則:

(a)分配律一:
$$r(\overrightarrow{a}+\overrightarrow{b})=r\overrightarrow{a}+r\overrightarrow{b}$$

(b)分配律二:
$$(r+s)\overrightarrow{a} = r\overrightarrow{a} + s\overrightarrow{a}$$

(c)結合律:
$$r(s\overrightarrow{a})=(rs)\overrightarrow{a}$$

(4)由方向與長度⇒決定向量的係數積

實例:設相異三點A,B,C共線

若C爲線段
$$\overline{AB}$$
之中點,則 \overline{AC} =_____ \overline{AB} , \overline{CA} =____ \overline{CB}

若C在線段
$$\overline{AB}$$
上,且 \overline{AC} = $\frac{2}{3}\overline{CB}$,則 \overline{BC} =_____ \overline{AC} , \overline{AB} =_____ \overline{AC}

(5)線性組合:

若 \vec{u} 和 \vec{v} 不平行,則在 \vec{u} 及 \vec{v} 所決定的平面上的每一個

向量 \vec{w} 都可以寫成 \vec{r} \vec{u} + \vec{s} \vec{v} 之形式。

(存在性)設 $\overrightarrow{u} = \overrightarrow{OP}$, $\overrightarrow{v} = \overrightarrow{OQ}$, $\overrightarrow{w} = \overrightarrow{OR}$, 如圖所示:因爲O,P,Q,R都在同一平面上,過R點作一直線與 \overrightarrow{v} 平行,則此直線必與直線OP相交,設其交點爲P'。同理,過R點作一直線與 \overrightarrow{u} 平行,則此直線必與直線OQ相交,設其交點爲Q'。又因爲P',Q'分別在直線OP與直線OQ上,所以存在實數r與s,使 $\overrightarrow{OP} = r\overrightarrow{OP}$, \overrightarrow{OQ} = $s\overrightarrow{OQ}$,故得

$$\overrightarrow{w} = \overrightarrow{OR}$$

$$= \overrightarrow{OP}' + \overrightarrow{OQ}'$$

$$= \overrightarrow{rOP} + \overrightarrow{sOQ}$$

$$= \overrightarrow{ru} + \overrightarrow{sv} \circ$$

數學上,稱 $r\overline{u} + s\overline{v}$ 之形式稱爲 $u\overline{u}$ 和 $v\overline{v}$ 的線性組合。 (唯一性):

「設 \vec{u} 和 \vec{v} 不平行,若 $\vec{w} = r_1\vec{u} + s_1\vec{v} = r_2\vec{u} + s_2\vec{v}$,則 $r_1 = r_2 \pm s_1 = s_2$ 。」與「若 $r\vec{u} + s\vec{v} = 0$,則r = s = 0」等價。

設 \vec{u} 和 \vec{v} 不平行,r,s為實數,證明:若 $r\vec{u}+s\vec{v}=\vec{0}$,則r=s=0

證明:用反證法,假設 $r\neq 0$,則 $\overrightarrow{u}=(\frac{-s}{r})\overrightarrow{v}$,

此與 \vec{u} 和 \vec{v} 不平行的前提矛盾,故 $\alpha=0$,再代入 \vec{r} $\vec{u}+s$ $\vec{v}=$ $\vec{0}$,可得s=0。

[例題2] 如右圖,試求:

(1)以a, b表示CD =____。

則數對(x,y)=____。

Ans: $(1)\frac{-7}{4} \stackrel{\frown}{a} + \frac{3}{2} \stackrel{\frown}{b} (2) (\frac{-11}{8}, \frac{17}{16})$

(練習4) 已知
$$3(\vec{x} - \frac{1}{2}\vec{a}) + \frac{1}{4}(2\vec{b} - 5\vec{x} + \vec{c}) + 4\vec{x} = \vec{0}$$
,請用 \vec{a} 、 \vec{b} 、 \vec{c} 表示 \vec{x} 。
Ans: $\vec{x} = \frac{6}{23}\vec{a} - \frac{2}{23}\vec{b} - \frac{1}{23}\vec{c}$

(練習5) 如圖
$$A$$
, B , C , D , E , F 共線,且 $\overline{AB} = \overline{BC} = \overline{CD} = \overline{DE} = \overline{EF}$,則下列敘 並何者正確?

(A)
$$\overrightarrow{AB} = \frac{1}{5} \overrightarrow{AF}$$
 (B) $\overrightarrow{AB} = \frac{1}{3} \overrightarrow{CF}$ (C) $\overrightarrow{BE} = \frac{-3}{2} \overrightarrow{DB}$ (D) $\overrightarrow{AB} + 2 \overrightarrow{DE} = 3 \overrightarrow{BC}$
(E) $\overrightarrow{BD} - \overrightarrow{CB} = \overrightarrow{AF} \circ Ans : (A)(B)(C)(D)$

(練習6) 設正六邊形ABCDEF中,
$$\overrightarrow{AB} = \overrightarrow{a}$$
, $\overrightarrow{CD} = \overrightarrow{D}$, $\overrightarrow{AD} = x\overrightarrow{a} + y\overrightarrow{b}$,求 x,y 之值。Ans: $x=2,y=2$

(丙)向量的內積

物理學告訴我們:一個物體在定力f作用下,若在力f的方向上有一位移d,則該力對物體所作的 $W=f\cdot d$;但當力的方向與位移的方向有一夾角時,所作的功就不再單純的只是力與位移的乘積,而與夾角有關。

例子:如右圖,對一個重物施以與水平方向成θ 角 大小5牛頓的力f使得重物沿水平方向 移動10公尺,試求所作的功=?

[解答]:因爲f的水平分力爲 $5\cos\theta$, 因此所作的功 $W=(5\cos\theta)\cdot 10$ (焦耳)

[數學化]:現在將力f視爲向量f,位移視爲向量d,因爲力與水平方向夾角爲 θ ,則可視爲f與d的夾角爲 θ ,所作的功

W=(5cosθ)·10=(|f|cosθ)·|d|=|f||d|cosθ , 其中θ 爲 f 與 d 的夾角,這樣的概念數學化之後,就稱爲**向量** f 與 d 的內積。

(1)向量的夾角:

 $\frac{1}{a}$ 、 $\frac{1}{b}$ 爲平面上的兩個非零向量,根據向量的意義,我們可以將兩個向量平行移動,使得 $\frac{1}{a}$ 與 $\frac{1}{b}$ 的起點重合(如圖),

即 $\vec{a} = \vec{OA}$, $\vec{b} = \vec{OB}$ 我們定義兩向量的夾角 θ 爲 $\angle AOB$ 。

(2)向量的內積:

定義:設 $\stackrel{\bot}{a}$ 與 $\stackrel{\bot}{b}$ 爲兩向量, $\stackrel{0}{6}$ 爲其夾角,定義 $\stackrel{\bot}{a}$ 與 $\stackrel{\bot}{b}$ 的內積爲 $\stackrel{\bot}{a}$ ॥ $\stackrel{b}{b}$ | $\cos\theta$,符號記爲: $\stackrel{\bot}{a}$. $\stackrel{\bot}{b}$ = $\stackrel{\bot}{a}$ ॥ $\stackrel{\bot}{b}$ | $\cos\theta$,"."念成 \cot 。

請注意: $a \cdot b$ 是一個實數而非向量,就好像功是一個純量,而沒有方向。例:設正三角形ABC之邊長爲 1 ,求(1)AB · AC之值;(2)AB · BC之值。

(4)內積與投影量

令 $\overrightarrow{a} = \overrightarrow{AB}$, $\overrightarrow{b} = \overrightarrow{AC}$, θ 為 \overrightarrow{a} 與 \overrightarrow{b} 的夾角 (a)當 $0 < \theta < \pi$

如圖,
$$|\overrightarrow{b}|\cos\theta = |\overrightarrow{AC}|\cos\theta = |\overrightarrow{AD}|$$

 $\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}|\cos\theta = |\overrightarrow{AD}| > 0$

$$(b)$$
當 $\frac{\pi}{2} < \theta < \pi$

如圖,
$$\overrightarrow{b} |\cos\theta| = |\overrightarrow{AC}| \cos\theta = - |\overrightarrow{AD}|$$

 $\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos\theta = - |\overrightarrow{AB}| \cdot |\overrightarrow{AD}| < 0$

$$(c)$$
當 $\theta = \frac{\pi}{2}$ $\Rightarrow a \cdot b = 0$

如圖,
$$\begin{vmatrix} \overrightarrow{b} \\ \cos \theta = 0 \end{vmatrix}$$

 $\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = \begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix} \begin{vmatrix} \overrightarrow{b} \\ \cos \theta = 0 \end{vmatrix}$

根據前面的說明,我們稱 $|\stackrel{\rightarrow}{b}|\cos\theta$ 爲 $\stackrel{\rightarrow}{b}$ 在 $\stackrel{\rightarrow}{a}$ 方向上的<mark>投影量(不一定爲正)</mark>,向量 $\stackrel{\rightarrow}{AD}$ 爲 $\stackrel{\rightarrow}{b}$ 在 $\stackrel{\rightarrow}{a}$ 方向上的 $\stackrel{\rightarrow}{b}$ 8(或正射影)。

因爲 $\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{a} || \frac{1}{b} |\cos\theta| = (|\frac{1}{b}|\cos\theta) \cdot |a|$,故 $\frac{1}{a} \cdot \frac{1}{b} \neq \frac{1}{b}$ 在 $\frac{1}{a}$ 方向上的**投影** 量乘以 $\frac{1}{a}$ 的長度。

[討論]: (a) \overrightarrow{a} · \overrightarrow{b} 可以解釋成 \overrightarrow{a} 在 \overrightarrow{b} 方向上的投影量乘以 \overrightarrow{b} 的長度嗎? (b) \overrightarrow{a} · \overrightarrow{b} 會等於 \overrightarrow{b} · \overrightarrow{a} 嗎?

(4)垂直的向量

 $\overset{-}{a}$ 與 $\overset{-}{b}$ 之夾角爲直角時,我們稱 $\overset{-}{a}$ 與 $\overset{-}{b}$ 垂直,記爲 $\overset{-}{a}$ \bot $\overset{-}{b}$ 。

因爲一向量 \overrightarrow{a} 與 $\overrightarrow{0}$ 之夾角可視爲任意角,爲了方便起見,**我們將任何向量與零向量都視爲垂直**,於是 $\overrightarrow{a} \perp \overrightarrow{b}$ 表示 $\overrightarrow{a} = \overrightarrow{0}$ 或 $\overrightarrow{b} = \overrightarrow{0}$ 或 $\theta = \frac{\pi}{2}$,但不管是那一種情形, $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ 所以規定: $\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0$ 。

(5)向量的性質:

設 \overline{a} , \overline{b} , \overline{c} 爲任意三向量,r爲任意實數,則

$$(a)$$
 \overrightarrow{a} \cdot \overrightarrow{b} $=$ \overrightarrow{b} \cdot \overrightarrow{a} (交換性)

(b)
$$\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$$
 (分配性)

$$(c)r(\overrightarrow{a} \cdot \overrightarrow{b}) = (r\overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (r\overrightarrow{b})$$

 $(d) \overrightarrow{0} \cdot \overrightarrow{a} = 0 \text{ (注意: } \overrightarrow{0} \cdot \overrightarrow{a} = 0 \text{ 而非零向量})$

(e)
$$|a|^2 = a \cdot a \ge 0$$
, $|a|^2 = 0 \Leftrightarrow a = 0$

注意: $|\overrightarrow{a}|^2 = \overrightarrow{a} \cdot \overrightarrow{a}$

這個性質可以讓我們在內積與長度之間轉換,是一個簡單但重要的性質。

(f)
$$|\overrightarrow{a} \pm \overrightarrow{b}|^2 = (\overrightarrow{a} \pm \overrightarrow{b}) \cdot (\overrightarrow{a} \pm \overrightarrow{b}) = |\overrightarrow{a}|^2 \pm 2 \overrightarrow{a} \cdot \overrightarrow{b} + |\overrightarrow{b}|^2$$

[討論]:利用圖解法去說明(b)(f)的性質。

$$(f)$$
 $\stackrel{\triangle}{\cap} a = \overrightarrow{OA}$, $\stackrel{\triangle}{b} = \overrightarrow{OB}$

[例題3] 如右圖,ABCDEF 爲一正六邊形,則下列向量內積中,何者最大?

 $(A) \, \overrightarrow{AB} \, \cdot \, \overrightarrow{AB} \quad (B) \, \overrightarrow{AB} \, \cdot \, \overrightarrow{AC} \quad (C) \, \overrightarrow{AB} \, \cdot \, \overrightarrow{AD}$

(D) $\overrightarrow{AB} \cdot \overrightarrow{AE}$ (E) $\overrightarrow{AB} \cdot \overrightarrow{AF} \circ Ans : (B)$

[**例題**4] ΔABC之三邊長爲AB=4,BC =5,CA =6,

則求(1) $\overrightarrow{AB} \cdot \overrightarrow{AC} = ?$ (2) $\overrightarrow{AB} \cdot \overrightarrow{BC} = ?$ Ans : (1) $\frac{27}{2}$ (2) $\frac{-5}{2}$

[例題5] 二向量 $\stackrel{\longrightarrow}{a}$, $\stackrel{\longrightarrow}{b}$, $\stackrel{\longrightarrow}{a}$ |=3, $\stackrel{\longrightarrow}{b}$ |=4, $\stackrel{\longrightarrow}{a}$ |= $\sqrt{13}$, 則(1) $\stackrel{\longrightarrow}{a}$ 與 $\stackrel{\longrightarrow}{b}$ 之夾角爲何? (2)|3 $\stackrel{\longrightarrow}{a}$ +2 $\stackrel{\longrightarrow}{b}$ |=? Ans: (1) $\frac{2\pi}{3}$ (2) $\sqrt{73}$

[**例題**6] 在四邊形ABCD中, \angle A=120°, \overline{AB} =1、 \overline{AD} =2, \underline{LAC} =3 \overline{AB} +2 \overline{AD} , 則 \overline{AC} 的長度爲何? Ans: $\sqrt{13}$

[**例題7**] 設 $\mid \overrightarrow{a} \mid = 3$, $\mid \overrightarrow{b} \mid = 5$, $\mid \overrightarrow{c} \mid = 7$,且 $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$,試求:

$$(1)\overrightarrow{a}\cdot\overrightarrow{b}+\overrightarrow{b}\cdot\overrightarrow{c}+\overrightarrow{c}\cdot\overrightarrow{a}=\underline{\hspace{1cm}}\circ$$

Ans:
$$(1)^{\frac{-83}{2}}(2)^{\frac{15}{2}}(3)^{\frac{\pi}{3}}$$

(練習7) $\triangle ABC$ 中, $\overline{AB} = 5$, $\overline{BC} = 6$, $\overline{CA} = 7$,試求:

(1)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \underline{} \circ (2) \overrightarrow{AB} \cdot \overrightarrow{BC} = \underline{} \circ Ans : (1)19(2)-6$$

(練習8) 設 $\overline{a} \perp \overline{b}$,且 $|\overline{a}| = 3\sqrt{2}$, $|\overline{b}| = 1$,

若 \vec{a} + $(t^2 + 5)$ b 與 $-\vec{a}$ + t b 互相垂直,則實數 t =____。Ans: t = 2

(練習9) 正三角形ABC的邊長爲 2, $M爲\overline{BC}$ 的中點,試求

$$(1)(\overrightarrow{BC}+\overrightarrow{AM}) \cdot \overrightarrow{AC} = ?$$
 $(2)(\overrightarrow{BC}-\overrightarrow{AM}) \cdot (\overrightarrow{AB}+\overrightarrow{AM}) = ?$ Ans : $(1)5$ $(2)-8$

- (練習10) 一稜長爲a之正四面體ABCD, \overline{CD} 之中點爲M,則 \overline{AB} · \overline{AM} = ? Ans : $\frac{a^2}{2}$
- (練習11) 設 $\overline{OA} = 2$, $\overline{OB} = 3$,OA 與 OB 之夾角爲 60° ,試求:

$$(1) \, \overrightarrow{OA} \, \cdot \, \, \overrightarrow{OB} = \underline{\hspace{1cm}} \, \circ \, (2) \mid 2 \, \overrightarrow{OA} \, + \, \overrightarrow{OB} \, \mid = \underline{\hspace{1cm}} \, \circ \,$$

$$(3) \mid \overrightarrow{OA} - 2 \overrightarrow{OB} \mid = \underline{\hspace{1cm}} \circ$$

$$(4) \mid \overrightarrow{OA} + \overrightarrow{OB} \mid^2 + \mid \overrightarrow{OA} - \overrightarrow{OB} \mid^2 = \underline{\hspace{1cm}} \circ$$

Ans: $(1)3(2)\sqrt{37}(3)2\sqrt{7}(4)26$

(練習12) 設三向量a,b,c,已知a+2b+3c=0,a+b=2,c+a=-3, 則 $|\overrightarrow{a}| = ?$ Ans: $\sqrt{5}$ (考慮 $|\overrightarrow{a}| \cdot (|\overrightarrow{a}| + 2|\overrightarrow{b}| + 3|\overrightarrow{c}|)$)

- (1) 由正五邊形的邊,可決定
- (2) 有一正立方體,其邊長爲1,如果向量a 的起點與終點都是此正立方體的頂 點,且a = 1,則共有多少個不相等的向量 a ? (A)3 (B) 6 (C)12 (D)24 (E)28 。 (86 學科)
- (3) 如右圖,傳說船駛達百慕達三角洲時,

須遵循下列兩個怪異磁場 a , b 的方向;

否則會神奇失蹤。今一艘救援艇已開到此海域 A 處,

準備前往 B 處尋找一艘載滿黃金的船。若欲完成任務,它應遵循圖示a,b的 方向,

(C) x = -2, y = 0 (D) x = -1, y = 1 (E) x = -1, y = -2

(4) 如圖,正四面體ABCD,每邊長爲a,M爲 \overline{BC} 之中點, H爲ΔBCD的重心,則下列敘述何者是正確的?

(A) $\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{a^2}{2}$ (B) $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AD}$ (C) $\overrightarrow{AH} \cdot \overrightarrow{BC} = 0$ (D) $\overrightarrow{AD} \cdot \overrightarrow{AM} = \frac{a^2}{2}$ (E) $\overrightarrow{AH} \cdot \overrightarrow{AC} = \frac{3a^2}{4}$

(5) 如右圖所示,O為正方形ABCD對角線的交點,且E、F、G、H分別為線段OA, OB, OC, OD的中點。試問下列何者爲真?

$$(A)\overline{AB} + \overline{BC} = \overline{AE} + \overline{EF} + \overline{FG} + \overline{GC}$$
 $(B)\overline{AB} = 2\overline{EF}$ $(C)\overline{AB} - \overline{BC} = \overline{DB}$ $(D)\overline{AB} + \overline{BF} + \overline{FE} = \overline{GC}$ $(E)\overline{AE} \cdot \overline{BF} = 0$ $(86$ 社)

(6) 若|
$$\overrightarrow{b}$$
 |=2| \overrightarrow{a} | $\neq 0$,且(\overrightarrow{a} + \overrightarrow{b}) \perp (\overrightarrow{a} - $\frac{2}{5}$ \overrightarrow{b}),則 \overrightarrow{a} 與 \overrightarrow{b} 之夾角爲何?

(7) 設正五邊形ABCDE之每一邊長均爲
$$1$$
 ,則 $(a)\overrightarrow{AB} \cdot \overrightarrow{AE} = ?$ $(b)\overrightarrow{AB} \cdot \overrightarrow{AD} = ?$

(8) 設ABCD是平行四邊形,
$$\overline{AB}=2$$
, $\overline{BC}=3$,則 \overline{AC} · $\overline{BD}=?$

(9) 三向量
$$\overline{a}$$
, \overline{b} , \overline{c} , 若 \overline{a} + \overline{b} + \overline{c} = $\overline{0}$, 且 \overline{a} |=2, \overline{b} |=3, \overline{c} |=4, 則 (a) \overline{a} · \overline{b} + \overline{b} · \overline{c} + \overline{c} · \overline{a} =? (b)求 \overline{a} 與 \overline{b} 之夾角 θ , $\cos\theta$ =?

- (10) 圓外切等腰梯形 ABCD, AB = 2, CD = 6, AB // CD , 則 AC · BD = ____。
- (11) 一單位圓之內接 $\triangle ABC$,圓 $\triangle O$,若 $4\overrightarrow{OA}+5\overrightarrow{OB}+6\overrightarrow{OC}=\overrightarrow{0}$, 則(a) $\overrightarrow{OA}\cdot\overrightarrow{OB}=?$ (b) $\overrightarrow{AB}=?$

(12) 空間中有A,B,C,D四點。已知ĀB=1, BC =2, CD =3, ∠ABC=∠BCD=120°而ĀB 與CD之夾角爲 60°,則ĀD之長爲何? (86 自)

進階問題

- (13) $\triangle ABC \Leftrightarrow \overrightarrow{a} = \overrightarrow{OA} , \overrightarrow{b} = \overrightarrow{OB} , \overrightarrow{c} = \overrightarrow{OC} , \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0} ,$ $\overrightarrow{a} \cdot \overrightarrow{b} = -1 , \overrightarrow{b} \cdot \overrightarrow{c} = -2 , \overrightarrow{c} \cdot \overrightarrow{a} = -3 , \parallel :$
 - (a) | 2 a + 3 b + 4 c | =____ · (b) △ ABC 之面積爲____ ·
- (14) 若| \overrightarrow{a} | $|\overrightarrow{b}| \neq 0$, 且| \overrightarrow{a} + \overrightarrow{b} | $|\overrightarrow{a} \overrightarrow{b}| = \sqrt{2}|\overrightarrow{a}|$, 求 \overrightarrow{a} , \overrightarrow{b} 之夾角。

(15) 坐標平面上, $A \times B \times C$ 三點不共線,若 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$, $|\overrightarrow{OA}| = 1$, $|\overrightarrow{OB}| = 2$, $|\overrightarrow{OC}| = \sqrt{2}$,求(a) $|\overrightarrow{OA}| = 0$, 求(b) $|\overrightarrow{OA}| = 0$, 求(c) $|\overrightarrow{OA}| + 2\overrightarrow{OB} - \overrightarrow{OC}| = ?$

綜合練習解答

- (1)10
- (2)(B)
- (3)(E)
- (4)(A)(B)(C)(D)
- (5)(全)
- (6)60°

(7) (a)
$$\frac{1-\sqrt{5}}{4}$$
 (b) $\frac{1}{2}$

(8)5[提示: AC·BD=(AB+BC)·(BC+CD)=(BC+AB)·(BC-AB)]

(9) (a)
$$\frac{-29}{2}$$
 (b) $\frac{1}{4}$

(10)-4

(11)(a)
$$\frac{-1}{8}$$
 (b) $\frac{3}{2}$ [提示: $|\overrightarrow{OA}| = |\overrightarrow{OB}| = |\overrightarrow{OC}| = 1$]

(12) 5 [提示:
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$
,再利用 $|\overrightarrow{AD}|^2 = |\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}|^2$ 求 $|\overrightarrow{AD}|$]

(13) (a)
$$\sqrt{15}$$
 (b) $\frac{3\sqrt{11}}{2}$

[提示: (a) $\overrightarrow{a} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = |\overrightarrow{a}|^2 + \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c} = 0 \Rightarrow |\overrightarrow{a}| = 2$ 同理可以求得 $|\overrightarrow{b}| = \sqrt{3}$, $|\overrightarrow{c}| = \sqrt{5}$,再求 $|\overrightarrow{2}| = 3$ 的 $|\overrightarrow{b}| + 4$ $|\overrightarrow{c}||^2$ 的 $|\overrightarrow{a}| = 2$ 同理可以求得 $|\overrightarrow{b}| = \sqrt{3}$

$$(14)\frac{\pi}{6}[提示:可令 \overline{a}, \overline{b}] 之夾角\theta, 因爲 \overline{a} = \overline{b}, \overline{b}, \overline{m}, \overline{a} + \overline{b} = 2\overline{a} \cos \frac{\theta}{2}.$$

(15) (a)
$$\frac{\sqrt{7}}{4}$$
 (b) $\frac{3\sqrt{7}}{4}$ (c) $\sqrt{22}$