✓ Импортирование необходимых библиотек

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
from google.colab import drive

data = pd.read_csv("/content/house_sales.csv")

data = data.drop('Id', 1)
data.head()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: In a fut """Entry point for launching an IPython kernel.

	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Ut
(60	RL	65.0	8450	Pave	NaN	Reg	Lvl	
1	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	
2	2 60	RL	68.0	11250	Pave	NaN	IR1	Lvl	
3	3 70	RL	60.0	9550	Pave	NaN	IR1	Lvl	
4	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	
5	rows × 80 colum	ns							
4									•

```
data_features = list(zip(
# признаки
[i for i in data.columns],
zip(
    # типы колонок
    [str(i) for i in data.dtypes],
    # проверим есть ли пропущенные значения
    [i for i in data.isnull().sum()]
)))
# Признаки с типом данных и количеством пропусков
data_features
      ('YearRemodAdd', ('int64', 0)),
      ('RoofStyle', ('object', 0)),
      ('RoofMatl', ('object', 0)),
      ('Exterior1st', ('object', 0)),
      ('Exterior2nd', ('object', 0)),
      ('MasVnrType', ('object', 8)),
      ('MasVnrArea', ('float64', 8)),
```

```
('ExterQual', ('object', 0)),
Сохранено
     ('BsmtCond', ('object', 37)),
     ('BsmtExposure', ('object', 38)),
     ('BsmtFinType1', ('object', 37)),
     ('BsmtFinSF1', ('int64', 0)),
     ('BsmtFinType2', ('object', 38)),
     ('BsmtFinSF2', ('int64', 0)),
     ('BsmtUnfSF', ('int64', 0)),
     ('TotalBsmtSF', ('int64', 0)),
     ('Heating', ('object', 0)),
     ('HeatingQC', ('object', 0)),
     ('CentralAir', ('object', 0)),
     ('Electrical', ('object', 1)),
     ('1stFlrSF', ('int64', 0)),
     ('2ndFlrSF', ('int64', 0)),
     ('LowQualFinSF', ('int64', 0)),
     ('GrLivArea', ('int64', 0)),
     ('BsmtFullBath', ('int64', 0)),
     ('BsmtHalfBath', ('int64', 0)),
     ('FullBath', ('int64', 0)),
     ('HalfBath', ('int64', 0)),
     ('BedroomAbvGr', ('int64', 0)),
     ('KitchenAbvGr', ('int64', 0)),
     ('KitchenQual', ('object', 0)),
     ('TotRmsAbvGrd', ('int64', 0)),
     ('Functional', ('object', 0)),
     ('Fireplaces', ('int64', 0)),
     ('FireplaceQu', ('object', 690)),
     ('GarageType', ('object', 81)),
     ('GarageYrBlt', ('float64', 81)),
     ('GarageFinish', ('object', 81)),
     ('GarageCars', ('int64', 0)),
     ('GarageArea', ('int64', 0)),
     ('GarageQual', ('object', 81)),
     ('GarageCond', ('object', 81)),
     ('PavedDrive', ('object', 0)),
     ('WoodDeckSF', ('int64', 0)),
     ('OpenPorchSF', ('int64', 0)),
     ('EnclosedPorch', ('int64', 0)),
     ('3SsnPorch', ('int64', 0)),
     ('ScreenPorch', ('int64', 0)),
     ('PoolArea', ('int64', 0)),
     ('PoolQC', ('object', 1453)),
     ('Fence', ('object', 1179)),
     ('MiscFeature', ('object', 1406)),
     ('MiscVal', ('int64', 0)),
     ('MoSold', ('int64', 0)),
     ('YrSold', ('int64', 0)),
```

Устранение пропусков

```
('RoofStyle', 0.0),
('RoofMatl', 0.0),
('Exterior1st', 0.0),
('Exterior2nd', 0.0),
('MasVnrType', 0.005479452054794521),
('MasVnrArea', 0.005479452054794521),
('ExterQual', 0.0),
('ExterCond', 0.0),
('Foundation', 0.0),
('BsmtQual', 0.025342465753424658),
('BsmtCond', 0.025342465753424658),
('BsmtExposure', 0.026027397260273973),
('BsmtFinType1', 0.025342465753424658),
('BsmtFinSF1', 0.0),
('BsmtFinType2', 0.026027397260273973),
('BsmtFinSF2', 0.0),
('BsmtUnfSF', 0.0),
('TotalBsmtSF', 0.0),
('Heating', 0.0),
('HeatingQC', 0.0),
('CentralAir', 0.0),
('Electrical', 0.0006849315068493151),
('1stFlrSF', 0.0),
('2ndFlrSF', 0.0),
('LowQualFinSF', 0.0),
('GrLivArea', 0.0),
('BsmtFullBath', 0.0),
('BsmtHalfBath', 0.0),
('FullBath', 0.0),
('HalfBath', 0.0),
('BedroomAbvGr', 0.0),
('KitchenAbvGr', 0.0),
('KitchenQual', 0.0),
('TotRmsAbvGrd', 0.0),
('Functional', 0.0),
('Fireplaces', 0.0),
('FireplaceQu', 0.4726027397260274),
('GarageType', 0.05547945205479452),
('GarageYrBlt', 0.05547945205479452),
('GarageFinish', 0.05547945205479452),
('GarageCars', 0.0),
('GarageArea', 0.0),
('GarageQual', 0.05547945205479452),
('GarageCond', 0.05547945205479452),
('PavedDrive', 0.0),
('WoodDeckSF', 0.0),
('OpenPorchSF', 0.0),
('EnclosedPorch', 0.0),
('3SsnPorch', 0.0),
('ScreenPorch', 0.0),
('PoolArea', 0.0),
('PoolQC', 0.9952054794520548),
```

```
('Fence', 0.8075342465753425),

Сохранено

('YrSold', 0.0),
('SaleType', 0.0),
```

Удаление колонок, содержащих пустые значения data.dropna(axis=1, how='any')

	MSSubClass	MSZoning	LotArea	Street	LotShape	LandContour	Utilities	LotConfi
0	60	RL	8450	Pave	Reg	Lvl	AllPub	Insic
1	20	RL	9600	Pave	Reg	Lvl	AllPub	FF
2	60	RL	11250	Pave	IR1	Lvl	AllPub	Insic
3	70	RL	9550	Pave	IR1	Lvl	AllPub	Corn
4	60	RL	14260	Pave	IR1	Lvl	AllPub	FF
• • •			•••	•••				
1455	60	RL	7917	Pave	Reg	Lvl	AllPub	Insic
1456	20	RL	13175	Pave	Reg	Lvl	AllPub	Insic
1457	70	RL	9042	Pave	Reg	Lvl	AllPub	Insic
1458	20	RL	9717	Pave	Reg	Lvl	AllPub	Insic
1459	20	RL	9937	Pave	Reg	Lvl	AllPub	Insic

1460 rows × 61 columns

Удаление колонок с высоким процентом пропусков (более 50%) data.dropna(axis=1, thresh=730)

	MCChClass	MC7anina I	otFrontage	LotArea	Street	LotShape	LandContour	Utilit
Сохранено		×	65.0	8450	Pave	Reg	Lvl	All
1	20	RL	80.0	9600	Pave	Reg	LvI	All
2	60	RL	68.0	11250	Pave	IR1	Lvl	All
3	70	RL	60.0	9550	Pave	IR1	Lvl	All
4	60	RL	84.0	14260	Pave	IR1	Lvl	All
•••				•••	•••			
1455	60	RL	62.0	7917	Pave	Reg	LvI	All

```
# Заполним пропуски возраста средними значениями def impute_na(df, variable, value):
    df[variable].fillna(value, inplace=True)
impute_na(data, 'LotFrontage', data['LotFrontage'].mean())

# Убедимся, что признак LotFrontage не имеет пустых значений data.isnull().sum()
```

```
MSSubClass 0
MSZoning 0
LotFrontage 0
LotArea 0
Street 0
...
MoSold 0
YrSold 0
SaleType 0
SaleCondition 0
SalePrice 0
```

Length: 80, dtype: int64

▼ Кодирование категориальных признаков

```
np.unique(cat enc le)
 Сохранено
le.inverse transform([0, 1, 2, 3, 4, 5])
     array(['Abnorml', 'AdjLand', 'Alloca', 'Family', 'Normal', 'Partial'],
           dtype=object)
data['LotConfig'].unique()
     array(['Inside', 'FR2', 'Corner', 'CulDSac', 'FR3'], dtype=object)
pip install category encoders
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/pub</a>
     Collecting category encoders
       Downloading category_encoders-2.4.1-py2.py3-none-any.whl (80 kB)
                                       80 kB 5.6 MB/s
     Requirement already satisfied: pandas>=0.21.1 in /usr/local/lib/python3.7/dist-packages
     Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.7/dist-pa
     Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.7/dist-packages (
     Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.7/dist-packages
     Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.7/dist-pack
     Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/dist-packages (
     Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-
     Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (
     Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from pats
     Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (
     Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-pa
     Installing collected packages: category-encoders
     Successfully installed category-encoders-2.4.1
#CountEncoder
from category encoders.count import CountEncoder as ce CountEncoder
     /usr/local/lib/python3.7/dist-packages/statsmodels/tools/ testing.py:19: FutureWarning:
       import pandas.util.testing as tm
ce CountEncoder1 = ce CountEncoder()
data_COUNT_ENC = ce_CountEncoder1.fit_transform(data[data.columns.difference(['SaleType'])])
data COUNT ENC.head()
```

	4 ~ T F '	Lace	2-451-65	20000	nch	Alley	BedroomAbvGr	BldgType	BsmtCond	BsmtExposure	
Coxpa	нено			×	0	1369	3	1220	1311	953	
	1 '	1262	0		0	1369	3	1220	1311	134	
	2	920	866		0	1369	3	1220	1311	114	
	3	961	756		0	1369	3	1220	65	953	
	4	1145	1053		0	1369	4	1220	1311	221	
5	rows × 7	9 colu	ımns								
data['	MSZoning	g'].u	nique()								
a	rray(['I	RL',	'RM', 'C (all)',	'FV'	', 'RH'], dtype=object	t)			
4	7 (2		, ,	, ,			., ,, ,	,		•	
_	rray([1:	_	Zoning'].u 218, 10		1	L6])					
<pre>ce_CountEncoder2 = ce_CountEncoder(normalize=True) data_FREQ_ENC = ce_CountEncoder2.fit_transform(data[data.columns.difference(['SaleType'])])</pre>											
data_F	REQ_ENC	['MSZ	oning'].un	ique()							
а	rray([0	.7883	5616, 0.14	931507,	0.0	00684932	2, 0.04452055,	0.0109589	1)		
from c	from category_encoders.helmert import HelmertEncoder as ce_HelmertEncoder										
ce_Hel		oder1	. = ce_Helm HelmertEn				orm(data[data.d	columns.di	fference(['SaleType'])],	

data_HELM_ENC.head()

Нормализация числовых признаков

```
def diagnostic_plots(df, variable):
    plt.figure(figsize=(15,6))
    # гистограмма
    plt.subplot(1, 2, 1)
    df[variable].hist(bins=30)
    ## Q-Q plot
    plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.show()
data.hist(figsize=(20,20))
plt.show()
```


diagnostic_plots(data, '1stFlrSF')

Probability Plot

Сохранено

#ЛОГ арифмическое преооразование
data['1stFlrSF'] = np.log(data['1stFlrSF'])
diagnostic_plots(data, '1stFlrSF')

#Обратное преобразование
data['1stFlrSF_reciprocal'] = 1 / (data['1stFlrSF'])
diagnostic_plots(data, '1stFlrSF_reciprocal')

#Квадратный корень
data['1stFlrSF_sqr'] = data['1stFlrSF']**(1/2)
diagnostic_plots(data, '1stFlrSF_sqr')

#Возведение в степень
data['1stFlrSF_exp1'] = data['1stFlrSF']**(1/1.5)
diagnostic_plots(data, '1stFlrSF_exp1')

Probability Plot

data['1stFlrSF_exp2'] = data['1stFlrSF']**(2)
diagnostic_plots(data, '1stFlrSF_exp2')

data['1stFlrSF_exp3'] = data['1stFlrSF']**(0.333)
diagnostic_plots(data, '1stFlrSF_exp3')

data['1stFlrSF_boxcox'], param = stats.boxcox(data['1stFlrSF']) print('Оптимальное значение λ = {}'.format(param)) diagnostic_plots(data, '1stFlrSF_boxcox')

Оптимальное значение $\lambda = 0.46304765872484194$

