Appl. No. 10/653,798 Amendment dated April 18, 2007 Reply to Office Action mailed January 19, 2007

IN THE CLAIMS

Please amend the claims as follows, substituting any amended claim(s) for the corresponding pending claim(s):

1. (Currently Amended) A method for operating a wireless terminal within a Wireless Local Area Network (WLAN), the method comprising:

listening to a plurality of beacons transmitted by a corresponding plurality of Wireless Access Point (WAPs) of the WLAN by sweeping a gain vector of a servicing antenna of the wireless terminal;

for each beacon detected, characterizing the plurality of beacons beacon with regard to signal quality when the gain vector of the servicing antenna is substantially directed toward the beacon;

based upon the characterization, selecting a desired WAP of the plurality of WAPs;

associating with the desired WAP of the plurality of WAPs; and

adjusting a <u>the</u> gain vector of a <u>the</u> servicing antenna of the wireless terminal so that it is substantially directed toward the desired WAP of the plurality of WAPs.

Appl. No. 10/653,798 Amendment dated April 18, 2007 Reply to Office Action mailed January 19, 2007

2. (Original) The method of claim 1, further comprising:

again listening to the plurality of beacons;

again characterizing the plurality of beacons with regard to signal quality;

based upon the characterization, selecting a different WAP of the plurality of WAPs;

based upon the characterization, disassociating with the desired WAP of the plurality of WAPs;

associating with the different WAP of the plurality of WAPs; and adjusting the gain vector of the servicing antenna of the wireless terminal so that it is substantially directed toward the different WAP of the plurality of WAPs.

3. (Canceled)

- 4. (Original) The method of claim 1, wherein characterizing the plurality of beacons with regard to signal quality comprises measuring a signal strength of at least some of the plurality of beacons.
- 5. (Original) The method of claim 1, wherein characterizing the plurality of beacons with regard to signal quality comprises measuring a signal to noise ratio corresponding to at least some of the plurality of beacons.

Appl. No. 10/653,798 Amendment dated April 18, 2007 Reply to Office Action mailed January 19, 2007 Atty. Docket No. BP2488.1

6. (Original) The method of claim 1, wherein characterizing the plurality of beacons with regard to signal quality comprises:

receiving loading data carried by at least some of the plurality of beacons; and processing received loading data to determine the desired WAP of the plurality of WAPs.

7. (Original) The method of claim 1, wherein characterizing the plurality of beacons with regard to signal quality comprises:

receiving capability data carried by at least some of the plurality of beacons, wherein the capability data indicates whether a corresponding access point is capable of directional antenna servicing; and

processing received capability data to determine the desired WAP of the plurality of WAPs.

8. (Original) The method of claim 1, wherein characterizing the plurality of beacons with regard to signal quality comprises:

receiving capability data carried by at least some of the plurality of beacons, wherein the capability data indicates whether a corresponding access point is capable of transmit power control; and

processing received capability data to determine the desired WAP of the plurality of WAPs.

Appl. No. 10/653,798 Amendment dated April 18, 2007 Reply to Office Action mailed January 19, 2007

(Currently Amended) A wireless terminal that operates within a Wireless 9. Local Area Network (WLAN), the wireless terminal comprising:

GHM

a directional antenna;

a radio frequency unit operably coupled to the directional antenna; and

a processor operably coupled to the radio frequency unit, wherein the processor operates to execute:

a plurality of instructions that cause the wireless terminal to listen to a plurality of beacons transmitted by a corresponding plurality of Wireless Access Point (WAPs) of the WLAN Wireless Access Point (WAPs) of the WLAN by sweeping a gain vector of the directional antenna of the wireless terminal;

for each beacon detected, a plurality of instructions that cause the wireless terminal to characterize the plurality of beacons beacon with regard to signal quality when the gain vector of the directional antenna is substantially directed toward the beacon;

a plurality of instructions that cause the wireless terminal to, based upon the characterization, select a desired WAP of the plurality of WAPs;

a plurality of instructions that cause the wireless terminal to associate with the desired WAP of the plurality of WAPs; and

a plurality of instructions that cause the wireless terminal to adjust a the gain vector of the directional antenna of the wireless terminal so that it is substantially directed toward the desired WAP of the plurality of WAPs.

Appl. No. 10/653,798 Amendment dated April 18, 2007 Reply to Office Action mailed January 19, 2007

- 10. (Original) The wireless terminal of claim 9, wherein the processor further operates to execute:
- a plurality of instructions that cause the wireless terminal to again listen to the plurality of beacons;
- a plurality of instructions that cause the wireless terminal to again characterize the plurality of beacons with regard to signal quality;
- a plurality of instructions that cause the wireless terminal to, based upon the characterization, select a different WAP of the plurality of WAPs;
- a plurality of instructions that cause the wireless terminal to, based upon the characterization, disassociate with the desired WAP of the plurality of WAPs;
- a plurality of instructions that cause the wireless terminal to associate with the different WAP of the plurality of WAPs; and
- a plurality of instructions that cause the wireless terminal to adjust the gain vector of the servicing antenna of the wireless terminal so that it is substantially directed toward the different WAP of the plurality of WAPs.

11. (Canceled)

12. (Original) The wireless terminal of claim 9, wherein in executing the plurality of instructions to characterize the plurality of beacons with regard to signal quality, the wireless terminal measures a signal strength of at least some of the plurality of beacons.

Appl. No. 10/653,798
Amendment dated April 18, 2007
Reply to Office Action mailed January 19, 2007

some of the plurality of beacons.

Atty. Docket No. BP2488.1

13. (Original) The wireless terminal of claim 9, wherein in executing the plurality of instructions to characterize the plurality of beacons with regard to signal quality, the wireless terminal measures a signal to noise ratio corresponding to at least

14. (Original) The wireless terminal of claim 9, wherein in executing the plurality of instructions to characterize the plurality of beacons with regard to signal quality, the wireless terminal:

receives loading data carried by at least some of the plurality of beacons; and processes received loading data to determine the desired WAP of the plurality of WAPs.

15. (Original) The wireless terminal of claim 9, wherein in executing the plurality of instructions to characterize the plurality of beacons with regard to signal quality, the wireless terminal:

receives capability data carried by at least some of the plurality of beacons, wherein the capability data indicates whether a corresponding access point is capable of directional antenna servicing; and

processes received capability data to determine the desired WAP of the plurality of WAPs.

Appl. No. 10/653,798 Amendment dated April 18, 2007 Reply to Office Action mailed January 19, 2007

16. (Original) The wireless terminal of claim 9, wherein in executing the plurality of instructions to characterize the plurality of beacons with regard to signal quality, the wireless terminal:

receives capability data carried by at least some of the plurality of beacons, wherein the capability data indicates whether a corresponding access point is capable of transmit power control; and

processes received capability data to determine the desired WAP of the plurality of WAPs.

- 17. (Original) The wireless terminal of claim 9, wherein the directional antenna comprises:
 - a single antenna having a plurality of antenna elements; and
- a directional antenna controller operably coupled to the single antenna and to the radio frequency unit.
- 18. (Original) The wireless terminal of claim 9, wherein the directional antenna comprises:
 - a plurality of antennas; and
- a directional antenna controller operably coupled to the plurality of antennas and to the radio frequency unit.

Appl. No. 10/653,798 Amendment dated April 18, 2007 Reply to Office Action mailed January 19, 2007

19. (Currently Amended) A wireless terminal comprising:

means for listening to a plurality of beacons transmitted by a corresponding plurality of Wireless Access Point (WAPs) of the WLAN by sweeping a gain vector of a servicing antenna of the wireless terminal;

for each beacon detected, means for characterizing the plurality of beacons beacon with regard to signal quality when the gain vector of the servicing antenna is substantially directed toward the beacon;

means for based upon the characterization, selecting a desired WAP of the plurality of WAPs;

means for associating with the desired WAP of the plurality of WAPs; and means for adjusting a gain vector of a servicing antenna of the wireless terminal so that it is substantially directed toward the desired WAP of the plurality of WAPs.

20. (Original) The wireless terminal of claim 19, further comprising: means for again listening to the plurality of beacons;

means for again characterizing the plurality of beacons with regard to signal quality;

means for based upon the characterization, selecting a different WAP of the plurality of WAPs;

means for based upon the characterization, disassociating with the desired WAP of the plurality of WAPs;

Appl. No. 10/653,798 Amendment dated April 18, 2007

Reply to Office Action mailed January 19, 2007

Atty. Docket No. BP2488.1

means for associating with the different WAP of the plurality of WAPs; and

means for adjusting the gain vector of the servicing antenna of the wireless

terminal so that it is substantially directed toward the different WAP of the plurality of

WAPs.

21. (Canceled)

22. (Original) The wireless terminal of claim 19, wherein means for

characterizing the plurality of beacons with regard to signal quality comprise means for

measuring a signal strength of at least some of the plurality of beacons.

23. (Original) The wireless terminal of claim 19, wherein means for

characterizing the plurality of beacons with regard to signal quality comprises means for

measuring a signal to noise ratio corresponding to at least some of the plurality of

beacons.

24. (Original) The wireless terminal of claim 19, wherein means for

characterizing the plurality of beacons with regard to signal quality comprises:

means for receiving loading data carried by at least some of the plurality of

beacons; and

means for processing received loading data to determine the desired WAP of the

plurality of WAPs.

10

PAGE 12/16

Appl. No. 10/653,798 Amendment dated April 18, 2007 Réply to Office Action mailed January 19, 2007

25. (Original) The wireless terminal of claim 19, wherein means for characterizing the plurality of beacons with regard to signal quality comprises:

means for receiving capability data carried by at least some of the plurality of beacons, wherein the capability data indicates whether a corresponding access point is capable of directional antenna servicing; and

means for processing received capability data to determine the desired WAP of the plurality of WAPs.

26. (Original) The wireless terminal of claim 19, wherein means for characterizing the plurality of beacons with regard to signal quality comprises:

means for receiving capability data carried by at least some of the plurality of beacons, wherein the capability data indicates whether a corresponding access point is capable of transmit power control; and

means for processing received capability data to determine the desired WAP of the plurality of WAPs.