Supplementary Material

Environmental DNA complements scientific trawling in surveys of marine fish biodiversity.

Authors: Pierre Veron^{1,8}, Romane Rozanski^{1,2,3}, Virginie Marques^{2,3}, Stéphane Joost⁴, Marie Emilie Deschez¹, Verena M. Trenkel¹, Pascal Lorance¹, Alice Valentini⁵, Andrea Polanco F.⁶, Loïc Pellissier^{2,3}, David Eme^{1,7*} and Camille Albouy^{1,2,3#*}

Methods S1: Calculation of the phylogenetic trees

For Actinopterygii, we used the molecular phylogenetic trees of Rabosky et al. (2018) as a backbone tree including 204 species known to occur in the Bay of Biscay. For taxa detected at the genus level, we arbitrarily selected one representative species if the genus forms a clade (i.e., a monophyletic group) in which all species diverged over the same amount of time from their common ancestor and thus have the same phylogenetic distances, as in Rozanski et al. (2022). We further re-grafted 21 species on the backbone tree that were initially absent, based on their taxonomic affinities and a list of taxonomic constraints, using the phylogenetic classification of bony fishes (Betancur *et al.*, 2017). We randomly sampled the time between two speciation events, defining the branch length for the 21 missing taxa from an exponential distribution based on a Yule model parameter of speciation estimated by maximum likelihood from the molecular tree of the 204 species (Nee *et al.*, 1994). The Yule model accounted for the incomplete and small fraction of species present in our tree in comparison to the known extent of species diversity in Actinopterygii. Here, we used a sampling fraction of 204/36149 = 0.0056, as 36,149 species were officially recognized (Fricke *et al.*, 2022). To account for the phylogenetic uncertainty introduced by re-grafting the species, we generated 100 trees including the 225 Actynopterygii species.

For the Elasmobranchii, we extracted 100 trees from the posterior distribution of the molecular phylogenies published by Stein et al. (2018) and selected the 28 species present in the area. Finally, we built a single set of 100 trees grouping both Actinopterygii and Elasmobranchii taxa, with a total of 253 species, considering an estimated divergence time between the two clades between 421 and 468 Ma (Benton *et al.*, 2015; Stein *et al.*, 2018). To account for the phylogenetic uncertainties in the downstream analyses, we computed the phylogenetic diversity indices for each of the 100 trees and reported averages (and standard deviations). To build this distribution of trees including both Actinopterygii and Elasmobranchii taxa we used the ape (Paradis and Schliep 2019) and phytools (Revell, 2012) R packages.

Table S1: Corrections on taxa detected by both the trawling and the eDNA metabarcoding sampling methods. To perform taxa aggregation and analyses based on fish clades, we retrieved the taxonomic classification from the online databases Barcode of Life Data System (BOLD; Ratnasingham and Herbert 2007) and World Register of Marine Species (WoRMS; Horton *et al.*, 2022).

Taxa detected	Merged into
A., A. fallax	Alosa fallax
Anguilla	Anguilla anguilla
A., A. silus, A. sphyranea	Argentina
A., A. imperialis, A. laterna	Arnoglossus
B., B. capriscus	Balistes capriscus
B. B. belone	Belone
B., B. splendens	Beryx splendens
B. B. boops	Boops boops
C., C. aper	Capros aper
C., C macrophthalma	Cepola
C., C. cuculus, C. cuculus, C. obscurus	Chelidonichthys
C., C. ramada	Chelon
C., C. caelorhincus	Coelorinchus
C., C. conger	Conger conger
C., C. linearis	Crystallogobius linearis
E., E. encrasicolus	Engraulis
E., E. spinax	Etmopterus
E., E. gurnardus	Eutrigla gurnardus
G., G. argenteus	Gadiculus
G., G. melastomus	Galeus
G., G. semisquamatus	Gymnammodytes
H., H. dactylopterus	Helicolenus dactylopterus
L., L. boscii, L. whiffiagonis	Lepidorhombus
L., L. circularis, L. fullonica, L. naevus	Leucoraja
L., L. budegassa, L. piscatorius	Lophius
M., M. muelleri	Maurolicus
M., M. merluccius	Merluccius

Taxa detected	Merged into
M., M. poutassou	Micromesistius poutassou
M., M. mola	Mola mola
M., M. molva, M. macrophtalma	Molva
M., M. surmuletus	Mullus surmuletus
N., N. elongatus, N. kroyeri	Notoscopelus
P., P. acarne, P. bogaraveo, P. erythrinus	Pagellus
P. P. lascaris	Pegusa
P., P. fluviatilis	Perca
P., P. blennoides	Phycis
P., P. lozanoi, P. minutus, P. norvegicus	Pomatoschistus
R., R. brachyura, R. clavata, R. microocellata, R. montagui, R. undulata	Raja
S. S. sarda	Sarda sarda
S., S. pilchardus	Sardina pilchardus
S., S. colias	Scomber colias
S., S. canicula, S. stellaris	Scyliorhinus
S., S. koefoedi	Searsia koefoedi
S. S. senegalensis, S. solea	Solea
S., S. cantharus	Spondyliosoma cantharus
S., S. boa	Stomias
T., T. thynnus	Thunnus
T., T. draco	Trachinus draco
T., T. mediterraneus, T. picturatus, T. trachurus	Trachurus
T., T. esmarkii, T. minutus	Trisopterus
U., U. canariensis	Umbrina
X., X. copei	Xenodermichthys
Z., Z. faber	Zeus faber
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Table S2: Species traits used to calculate functional diversity. We chose nine traits associated with several functions (habitat, feeding, reproduction and mobility) performed by fish in the ecosystem: maximum length (cm), average depth and depth range (m), trophic level, position in the water column (environment), body shape, reproduction mode (Repro; D: dioecism, A: protandry, G: protogyny, H: hermaphroditism), fertilization mode (Fert; E: external, I: internal, B: brood pouch), and parental care (Y: yes, N: no).

	Max length (cm)	Average depth (m)	Depth range (m)	Trophic level	Environment	Body shape	Repro	Fert	Parental care
Alosa fallax	60	205	390	4	pelagic	fusiform	D	Е	N
Ammodytes marinus	25	80	140	3.3	demersal	elongated	D	Е	N
Anguilla anguilla	122	350	700	3.6	demersal	eel-like	D	Е	N
Aphanopus carbo	151	1250	2100	4.5	bathypelagic	eel-like	D	Е	N
Aphia minuta	7.9	48.5	97	3.1	pelagic	elongated	D	Е	
Argentina silus	70	790	1300	3.3	bathypelagic	elongated	D	Е	N
Argentina sphyraena	35	375	650	3.5	bathydemersal	elongated	D	Е	N
Argyrosomus regius	230	157.5	285	4.3	demersal	fusiform	D	Е	
Arnoglossus imperialis	25	185	330	3.8	demersal	flat	D	Е	N
Arnoglossus laterna	25	105	190	3.6	demersal	flat	D	Е	N
Arnoglossus rueppelii	15	491	812	4	demersal	flat	D	Е	N
Arnoglossus thori	18	157.5	285	3.3	demersal	flat	D	Е	N
Atherina presbyter	20	10	20	3.7	pelagic	elongated	D	Е	N
Balistes capriscus	60	50	100	4.1	reef-associated	short/deep	D	Е	Y
Belone belone	104	10	20	4.2	pelagic	elongated	D	Е	N
Belone svetovidovi	41.8	10	20	4	pelagic	elongated	D	Е	N
Beryx splendens	70	662.5	1275	4.3	demersal	fusiform	D	Е	
Boops boops	40	175	350	2.8	demersal	fusiform	G	Е	N
Borostomias antarcticus	30	1465	2330	3.6	bathydemersal	elongated	D	Е	
Buglossidium luteum	16.4	227.5	445	3.3	demersal	flat	D	Е	N
Callionymus lyra	30.5	217.5	425	3.3	demersal	elongated	D	Е	N
Callionymus maculatus	16.5	347.5	605	3.3	demersal	elongated	D	Е	N
Capros aper	30	370	660	3.1	demersal	short/deep	D	Е	N
Cepola macrophthalma	80	207.5	385	3.1	demersal	elongated	D	Е	N
Ceratoscopelus maderensis	8.1	765.5	1429	3.3	bathypelagic	elongated	D	Е	
Chelidonichthys cuculus	70	207.5	385	3.8	demersal	fusiform	D	Е	N
Chelidonichthys lastoviza	40	80	140	3.5	demersal	fusiform	D	Е	N
Chelidonichthys lucerna	75.1	169	298	4	demersal	elongated	D	Е	N
Chelidonichthys obscurus	50.5	95	150	3.7	demersal	fusiform	D	Е	N
Chelon auratus	59	15	10	2.8	pelagic	fusiform	D	Е	N
Chelon labrosus	75	7.5	15	2.6	demersal	elongated	D	Е	N
Chelon ramada	70	15	10	2.3	pelagic	fusiform	D	Е	N
Chimaera monstrosa	150	720	1360	3.5	bathydemersal	elongated	D	1	N
Coelorinchus caelorhincus	48	787.5	1395	3.5	demersal	elongated			
Coelorinchus caudani	36	1090	640	3.5	bathydemersal	elongated			
Coelorinchus labiatus	50	1340	1760	4	bathydemersal	elongated			
Conger conger	300	585.5	1171	4.3	demersal	eel-like	D	Е	
Crystallogobius linearis	4.7	200.5	399	3.4	demersal	elongated	D	Е	Υ
Cyclothone microdon	7.6	2750.5	5101	3	bathypelagic	elongated	Α		
Dasyatis pastinaca	69.5	102.5	195	4.1	demersal	ray-like	D	I	Υ
Dasyatis tortonesei	80	150	100	4	demersal	ray-like	D	I	
Dicentrarchus labrax	103	55	90	3.5	demersal	fusiform	D	Е	N
Dicentrarchus punctatus	70	55	90	3.9	pelagic	fusiform	D	Е	N
Dicologlossa cuneata	30	235	450	3.3	demersal	short/deep	D	Е	N
Dipturus intermedius	230	750.5	1499	4.1	demersal	ray-like	D	1	N

	Max length (cm)	Average depth (m)	Depth range (m)	Trophic level	Environment	Body shape	Repro	Fert	Parental care
Echiichthys vipera	15	75	150	4.4	demersal	elongated	D	Е	N
Enchelyopus cimbrius	41	335	630	3.5	demersal	elongated	D	Е	N
Engraulis encrasicolus	20	200	400	3.1	pelagic	elongated	D	Е	N
Etmopterus princeps	94	1256.5	1913	4.2	bathydemersal	elongated	D	- 1	
Etmopterus pusillus	50	560	1120	4.2	bathydemersal	elongated	D	ı	Y
Etmopterus spinax	60	1280	2420	4.1	bathydemersal	elongated	D	ı	Y
Eutrigla gurnardus	60	175	330	3.9	demersal	elongated	D	Е	N
Gadiculus argenteus	15.3	550	900	3.6	pelagic	fusiform	D	Е	N
Gadiculus thori	15	550	900	3.5	pelagic	fusiform	D	Е	N
Gaidropsarus macrophthalmus	25	340	380	3.5	demersal	elongated	D	Е	N
Galeus atlanticus	45	540	200	4	bathydemersal	elongated	D	ı	
Galeus melastomus	75	964	1818	4.2	demersal	elongated	D	ı	N
Galeus murinus	63		1		bathydemersal	elongated	D	ı	
Gymnammodytes cicerelus	17	60			demersal	eel-like	D	Е	N
Gymnammodytes semisquamatus	30				demersal	elongated	D	E	
Helicolenus dactylopterus	50				bathydemersal	fusiform	D	1	N
Hexanchus griseus	482	1250.5			bathydemersal	elongated	D	i	Y
Hippocampus hippocampus	15				demersal	other	D	В	Y
Lamna nasus	350	680				fusiform	D	I	'
Lampanyctus crocodilus	300					elongated	D	E	N
_ ' '					bathypelagic	 	U		IN
Lampanyctus festivus	13.8	546		3.2	bathypelagic	elongated		1	
Lampanyctus intricarius	20				bathypelagic	elongated			
Lampanyctus macdonaldi	16				bathypelagic	elongated			
Lampanyctus photonotus	8.5				bathypelagic	elongated			
Lampanyctus pusillus	4.3				bathypelagic	elongated		<u> </u>	
Lepidorhombus boscii	40				demersal	flat	D	E	N
Lepidorhombus whiffiagonis	60				bathydemersal	flat	D	E	N
Lepidotrigla dieuzeidei	20			3.7	demersal	fusiform	D	E	N
Lesueurigobius friesii	13	70	120	3.4	demersal	fusiform	D	Е	
Leucoraja circularis	120	405	790	3.5	demersal	ray-like	D	- 1	N
Leucoraja fullonica	120	315	570	3.5	bathydemersal	ray-like	D	- 1	N
Leucoraja naevus	81	456	888	4.2	demersal	ray-like	D	- 1	N
Lithognathus mormyrus	55	75	150	3.4	demersal	fusiform	Α	Е	N
Lophius budegassa	100	541.5	943	4.4	bathydemersal	short/deep	D	Е	N
Lophius piscatorius	200	510	980	4.5	bathydemersal	short/deep	D	Е	N
Macroramphosus scolopax	20	312.5	575	3.5	demersal	short/deep	D	E	N
Malacocephalus laevis	60	600	800	3.8	bathydemersal	elongated			
Maurolicus amethystinopunctatus	5	765	670	3.1	pelagic	fusiform			
Maurolicus muelleri	8	897.5	1253	3	bathypelagic	elongated	D		
Melanostigma atlanticum	15	1126.5	1453	3	bathypelagic	elongated	D	Е	N
Merlangius merlangus	91.5				demersal	fusiform	D	Е	N
Merluccius merluccius	140	552.5	1045	4.4	demersal	elongated	D	Е	N
Merluccius senegalensis	81	407.5	1			elongated	D	E	N
Microchirus variegatus	35					flat	D	E	N
Micromesistius poutassou	55.5		1		bathypelagic	elongated	D	E	N
Microstomus kitt	65				demersal	short/deep	D	E	N
Mola mola	333		1			short/deep	D	E	N
Molva dypterygia	155		1			elongated	D	E	N
Molva macrophthalma	108					elongated	D	E	N N
Molva molva	200					elongated	D	E	N
	+		1				D	E	1
Mora moro	80		1		,, ,	fusiform	_		N
Mullus surmuletus	40		1		demersal	fusiform	D	E	
Mustelus asterias	140					elongated	D		
Myctophum punctatum	11		1		bathypelagic 	fusiform	D	Ε .	
Myliobatis aquila	183					ray-like	D	<u> </u>	
Nezumia aequalis	36					elongated	D	E	N
Notoscopelus bolini	10.2		1		pelagic	fusiform			
Notoscopelus caudispinosus	14				bathypelagic	fusiform		ļ	
Notoscopelus kroeyeri	14.3	500	1000	3.2	pelagic	fusiform			1

	Max length (cm)	Average depth (m)	Depth range (m)	Trophic level	Environment	Body shape	Repro	Fert	Parental care
Pagellus acarne	36	270	460	3.8	demersal	fusiform	Α	Е	N
Pagellus bogaraveo	70	425	550	4.2	demersal	fusiform	Α	Е	N
Pagellus erythrinus	60	160	280	3.5	demersal	fusiform	G	Е	N
Parablennius pilicornis	12.7	12.5	25	3.2	demersal	fusiform	D	Е	
Pegusa lascaris	40	177.5	345	3.3	demersal	short/deep	D	Е	N
Phycis blennoides	110	605	1190	3.7	demersal	fusiform	D	Е	N
Polymetme thaeocoryla	21.6	806	1187	3.6	demersal	fusiform			
Pomatoschistus lozanoi	8	75	10	3.1	demersal	fusiform	D	Е	
Pomatoschistus marmoratus	8	45	50	3.4	demersal	fusiform	D	Е	
Pomatoschistus microps	9	6	12	3.3	demersal	elongated	D	Е	
Pomatoschistus minutus	11	102	196	3.2	demersal	elongated	D	Е	Υ
Pomatoschistus norvegicus	8	171.5	307	3.3	demersal	fusiform	D	Е	
Pomatoschistus pictus	6	28	54	3.1	demersal	fusiform	D	Е	
Prionace glauca	400	500.5	999	4.4	pelagic	fusiform	D	I	
Raja asterias	75	172.5	341	3.8	demersal	ray-like	D	I	N
Raja brachyura	120	195	370	3.8	demersal	ray-like	D	I	N
Raja clavata	105	512.5	1015	3.8	demersal	ray-like	D	I	N
Raja microocellata	87	60	80	3.9	demersal	ray-like	D	I	N
Raja miraletus	63	239.5	445	3.7	demersal	other	D	I	N
Raja montagui	83.5	269	522	3.9	demersal	ray-like	D	ı	N
Raja undulata	100	125	150	3.5	demersal	ray-like	D	ı	N
Rhynchoconger flavus	150	104.5	157	4.2	demersal	eel-like	D	Е	
Sarda sarda	91.4	140	120	4.5	pelagic	fusiform	D	Е	N
Sardina pilchardus	27.5	55	1		pelagic	fusiform	D	Е	N
Sarpa salpa	51	37.5	-		demersal	fusiform	Α	Е	N
Scomber colias	55		-		pelagic	fusiform	D	E	N
Scomber scombrus	60				pelagic	fusiform	D	E	N
Scomberesox saurus	50		-		pelagic	elongated	D	E	1
Scophthalmus maximus	100		-		demersal	short/deep	D	E	1
Scophthalmus rhombus	75	27.5	-		demersal	short/deep	D	E	N
Scorpaena scrofa	50		-		demersal	fusiform	D	E	N
Scyliorhinus canicula	100	395	-		demersal	elongated	D	ī	N
Scyliorhinus stellaris	170	200.5	-		reef-associated	elongated	D	i	N
Searsia koefoedi	15		-		bathypelagic	elongated			.,
Serranus cabrilla	40				demersal	fusiform	Н	Е	
Solea senegalensis	60				demersal	short/deep	D	E	N
Solea solea	70		-		demersal	flat	D	E	N
Spondyliosoma cantharus	60				demersal	fusiform	G	E	- 11
Sprattus sprattus	16		-			fusiform	D	E	N
Squalus acanthias	160				demersal	elongated	D	Ī	Y
Syngnathus acus	50				demersal	eel-like	D	В	Y
Thunnus alalunga	140				pelagic	fusiform	D	E	N
Thunnus albacares	239		1		pelagic	fusiform	D	E	N
Thunnus obesus	259				pelagic	fusiform	D	E	N
Thunnus obesus Thunnus thynnus	458		1		_	fusiform	D	E	N N
Torpedo marmorata	100				reef-associated	ray-like	D	<u>-</u>	IN
	53		1			· ·	D	E	N
Trachinus draco	_		1		demersal	elongated	D	+	+
Trachurus mediterraneus	60		1		pelagic	fusiform	+	E	N
Trachurus picturatus	60		1		demersal	fusiform	D	E	N
Trachurus trachurus	70		1		pelagic	fusiform	D	E	N
Trachyscorpia cristulata	50		1		demersal	fusiform	D	E	N
Trigla lyra	60		1		bathydemersal	fusiform	D	E	N N
Trisopterus esmarkii	35		1		demersal	fusiform	D	E	N N
Trisopterus luscus	46				demersal	fusiform	D	E	N
Trisopterus minutus	40		1		demersal	fusiform	D	E	N
Umbrina cirrosa	73		1		demersal	fusiform	D	E	N
Umbrina ronchus	100				demersal	fusiform	D	Е	N
Xenodermichthys copei	31	1375			bathypelagic	elongated	D	Е	
Zeus faber	90	202.5	395	4.5	demersal	short/deep	D	E	N

Table S3: Summary of the statistical tests comparing the average SES values of the different alpha diversity metric obtained with eDNA metabarcoding and trawling for the 15 sites in the Bay of Biscay. We reported the values of the non-parametric Wilcoxon's test and the parametric Student's test that were considered using paired data. Bold p.values highlight significant differences in average for the corresponding biodiversity indices.

Test	Index	Statistic	p.value	Av.ses.eDNA	Sd.ses.eDNA	Av.ses.Trawl	Sd.ses.Trawl
Wilcoxon	SR	120	7e-04	42.2	6.5049	18.4667	3.9255
Wilcoxon	PD.ses	113	0.0012	0.9586	0.8045	-0.3311	1.0915
Wilcoxon	VPD.ses	67	0.7197	-0.0733	0.8221	-0.0844	1.1666
Wilcoxon	MPD.ses	83	0.2078	0.1039	0.8018	-0.1958	0.9373
Wilcoxon	FD.ses	89	0.107	-1.6985	0.8805	-2.3093	0.9097
Wilcoxon	FEve.ses	102	0.0151	0.3816	0.9979	-0.8636	1.655
Wilcoxon	FDiv.ses	87	0.1354	0.4207	0.9307	-0.1561	0.9461
T.test	SR	12.8628	0	42.2	6.5049	18.4667	3.9255
T.test	PD.ses	4.1793	9e-04	0.9586	0.8045	-0.3311	1.0915
T.test	VPD.ses	0.0261	0.9796	-0.0733	0.8221	-0.0844	1.1666
T.test	MPD.ses	0.8921	0.3874	0.1039	0.8018	-0.1958	0.9373
T.test	FD.ses	1.718	0.1078	-1.6985	0.8805	-2.3093	0.9097
T.test	FEve.ses	2.8602	0.0126	0.3816	0.9979	-0.8636	1.655
T.test	FDiv.ses	1.6548	0.1202	0.4207	0.9307	-0.1561	0.9461

Table S4: Results of the model selection (based on the Akaike information criterion, AIC) performed to select the optimized interspecific allometric scaled abundance coefficient (b) maximizing the fit of the generalized linear model (GLM) between the number of eDNA reads and the allometric scaled abundance per species for each sample replicate (filter). GLM was fitted using a negative binomial distribution error with a log link function. A second series of models was run to maximize the fit of a linear model (LM) between the relative number of eDNA reads per taxa per filter and the allometric scaled abundance per species for each sample replicate (filter). Response.var: indicates the response variable, "Nb. reads" indicates that the response variable is the number of eDNA reads, "Relat nb. reads" indicates that the response variables was the relative number of reads that were modelled with a LM. best.b: the best inter-specific allometric scaling coefficient retained when optimizing the fit of the model. nb.taxa: the number of taxa used to fit the relationship. Res

Response.var	Station	Filter	AIC	\mathbb{R}^2	Intercept	Slope	P.value	nb.taxa	best.b
Nb. reads	1	1	198.958	0.043	8.556	0.012	0.554	10	1
Nb. reads	1	2	149.595	0.172	8.352	-0.014	0.105	8	0.6
Nb. reads	2	1	345.652	0.132	10.953	-0.014	0.027	15	1
Nb. reads	2	2	315.085	0.097	10.549	-0.01	0.114	14	1
Nb. reads	3	1	278.336	0.563	9.171	0.001	0.002	13	0
Nb. reads	3	2	283.53	0.228	9.546	0.001	0.131	13	0
Nb. reads	4	1	273.383	0.366	11.116	-0.147	0	12	0.88
Nb. reads	4	2	296.78	0.265	10.876	-0.119	0.01	13	1
Nb. reads	5	1	226.299	0.191	9.487	-0.027	0.013	11	0.47
Nb. reads	5	2	216.723	0.124	10.095	-0.014	0.08	10	0
Nb. reads	6	1	295.604	0.031	9.699	-0.01	0.328	14	1
Nb. reads	6	2	348.91	0.078	9.004	0.001	0.278	17	0
Nb. reads	7	1	339.614	0.009	11.298	-0.021	0.666	14	0.96
Nb. reads	7	2	311.82	0.032	9.818	0.002	0.469	14	0
Nb. reads	8	1	158.213	0.061	9.728	0.038	0.53	7	1
Nb. reads	8	2	170.818	0.006	9.261	0.001	0.834	8	0
Nb. reads	9	1	372.126	0.347	8.743	0.09	0.001	18	1
Nb. reads	9	2	330.302	0.495	9.217	0.069	0.001	15	1
Nb. reads	10	1	334.615	0.002	9.415	-0.007	0.845	16	1
Nb. reads	10	2	397.664	0.029	9.966	-0.021	0.412	18	1
Nb. reads	11	1	228.914	0.019	10.719	-0.034	0.596	10	1
Nb. reads	11	2	266.825	0.016	10.658	-0.04	0.562	12	1
Nb. reads	12	1	178.061	0.07	10.289	-0.091	0.352	8	1
Nb. reads	12	2	175.759	0.015	9.795	-0.033	0.706	8	1
Nb. reads	13	1	301.95	0.089	10.463	0	0.304	13	0

Nb. reads	13	2	230.931	0.158	10.236	0	0.215	10	0
Nb. reads	14	1	207.24	0.249	9.932	-0.051	0.002	10	0.71
Nb. reads	14	2	247.334	0.046	10.372	-0.031	0.378	11	1
Nb. reads	15	1	167.499	0.317	8.877	0.105	0.083	8	1
Nb. reads	15	2	164.88	0.176	8.6	0.108	0.194	8	1
Relat nb. reads	1	1	-45.692	0.081	0.015	0	0.426	10	111
Relat nb. reads	1	2	-51.274	0.075	0.006	0	0.51	8	56
Relat nb. reads	2	1	-33.748	0.055	0.059	0	0.383	16	111
Relat nb. reads	2	2	-19.163	0.033	0.067	0	0.516	15	111
Relat nb. reads	3	1	-59.238	0.903	0.013	0	0	14	11
Relat nb. reads	3	2	-51.028	0.717	0.016	0	0	14	11
Relat nb. reads	4	1	-53.874	0.856	0.026	0	0	13	11
Relat nb. reads	4	2	-32.981	0.11	0.046	0	0.247	14	11
Relat nb. reads	5	1	-26.746	0.069	0.049	0	0.434	11	11
Relat nb. reads	5	2	-22.521	0.065	0.052	0	0.477	10	11
Relat nb. reads	6	1	-43.075	0.547	0.028	0	0.002	15	11
Relat nb. reads	6	2	-67.856	0.889	0.011	0	0	18	11
Relat nb. reads	7	1	-25.615	0.005	0.065	-0.001	0.798	15	111
Relat nb. reads	7	2	-42.267	0.396	0.028	0	0.012	15	11
Relat nb. reads	8	1	-33.45	0.954	0.027	0	0	8	111
Relat nb. reads	8	2	-47.989	0.972	0.014	0	0	9	11
Relat nb. reads	9	1	-59.026	0.627	0.012	0.003	0	19	111
Relat nb. reads	9	2	-53.882	0.737	0.006	0.003	0	16	111
Relat nb. reads	10	1	-57.984	0.204	0.017	0	0.069	17	24
Relat nb. reads	10	2	-63.287	0.104	0.025	0	0.178	19	19
Relat nb. reads	11	1	-16.489	0.151	0.043	0	0.237	11	11
Relat nb. reads	11	2	-21.005	0.02	0.044	0	0.641	13	11
Relat nb. reads	12	1	-16.488	0.03	0.043	0	0.656	9	111
Relat nb. reads	12	2	-26.187	0.331	0.031	0.001	0.105	9	97
Relat nb. reads	13	1	-35.415	0.278	0.04	0	0.053	14	11
Relat nb. reads	13	2	-31.125	0.623	0.04	0	0.004	11	11
Relat nb. reads	14	1	-12.576	0.042	0.069	-0.002	0.546	11	111
Relat nb. reads	14	2	-19.351	0.013	0.06	-0.001	0.725	12	111
Relat nb. reads	15	1	-22.203	0.015	0.031	0.002	0.753	9	111
Relat nb. reads	15	2	-17.59	0.01	0.045	0	0.799	9	11

Table S5: Summary of the statistical tests comparing the average SES values of the different alpha diversity metric obtained with eDNA metabarcoding and trawl for the 15 sites in the Bay of Biscay, after removing 10 abundant (and ubiquitous) species showing multiple successive occurrences. We reported the values of the non-parametric Wilcoxon's test and the parametric Student's test that were considered using paired data. Bold p.values highlight significant differences in average for the corresponding biodiversity indices.

Test	Index	Statistic	p.value	Mean.ses.eD	Sd.ses.eDNA	Mean.ses.Tr	Sd.ses.Trawl
				NA		awl	
Wilcoxon	SR	120	7e-04	30.4	6.3336	12.6667	3.5389
Wilcoxon	PD.ses	94	0.0554	0.5671	2.4176	-1.152	2.228
Wilcoxon	VPD.ses	76	0.3894	0.8084	0.9837	0.5283	1.6217
Wilcoxon	MPD.ses	86	0.1514	0.9215	1.9693	-0.0218	1.5719
Wilcoxon	FD.ses	78	0.3303	-2.6589	1.708	-4.1184	3.7229
Wilcoxon	FEve.ses	70	0.5995	-1.678	3.8221	-1.9781	2.1225
Wilcoxon	FDiv.ses	101	0.0181	0.2993	1.1759	-1.0055	1.2715
T.test	SR	10.011	0	30.4	6.3336	12.6667	3.5389
T.test	PD.ses	2.2856	0.0384	0.5671	2.4176	-1.152	2.228
T.test	VPD.ses	0.5144	0.615	0.8084	0.9837	0.5283	1.6217
T.test	MPD.ses	1.625	0.1265	0.9215	1.9693	-0.0218	1.5719
T.test	FD.ses	1.2968	0.2157	-2.6589	1.708	-4.1184	3.7229
T.test	FEve.ses	0.3337	0.7435	-1.678	3.8221	-1.9781	2.1225
T.test	FDiv.ses	2.848	0.0129	0.2993	1.1759	-1.0055	1.2715

Figure S1: Detection frequencies of the fishes by order and by sampling method. One occurrence corresponds to one taxon of each order detected in one site.

Figure S2: Detection frequencies of the fishes with the eDNA metabarcoding and trawling sampling methods, for different (a) trophic levels, (b) environments (PEL: pelagic; Bathypel: bathypelagic; Dem: demersal; Bathydem: bathydemersal) and (c) body shapes (Fusi: fusiforme; Elong: elongated). Error bars indicate the standard deviation, as uncertainty in the traits could exist for taxa detected at the genus level.

Figure S3: Venn diagrams of the number of detected taxa at each site, between eDNA metabarcoding (after pooling the species list of the two filter replicates per site) and trawling sampling methods. The red circles represent the number of taxa detected by eDNA, whereas the blue circles represent the number of taxa detected by trawling. The intersection between circles shows the taxa detected by both sampling methods.

Figure S4: (a) Taxonomic composition, (b) phylogenetic tree and (c) functional space of four selected sampling sites, presented to illustrate the identified diversity patterns. We chose to represent site 2 (offshore, high phylogenetic richness), site 5 (offshore, high functional richness detected with trawling, some rare species detected), site 8 (closer to the coast, high taxonomic diversity, with all the taxa detected by trawling nested in the list of taxa detected by eDNA metabarcoding) and site 15 (coastal, low functional diversity).

Additional text associated with Figure S4

The focus on site-specific phylogenetic trees and functional space made it possible to categorize the sites. Sites 2 and 15 displayed the same patterns for the three diversity components. They were characterized by relatively high species richness for both sampling methods. Considering phylogenetic diversity, the detected taxa were dispersed on the phylogenetic tree for both methods. In terms of functional diversity, the eDNA metabarcoding functional space included almost the whole functional space of trawling, which was also the case for most other sites (except sites 5 and 10; see Supp. Mat. Fig. S4). These sites were characterized by a high richness for all diversity

components with eDNA metabarcoding (Table 1). Moreover, all taxa detected by trawling were also detected by eDNA metabarcoding for both sites 8 and 9 (Supp. Mat. Fig. S4). This was probably due to the low species richness (SR) in trawling, leading to a very restricted functional space (3.23) and a low phylogenetic richness (PD = 1710 Ma). Finally, site 5 was dominated by trawling in terms of functional space (the bluntnose sixgill shark *Hexanchus griseus*, only detected in this site by trawling, enlarged the space), but the relatively low SES.PD indicated a high level of phylogenetic clustering of species detected by trawling. Even with a larger functional space, we measured a slightly lower FD with trawling (5.44) than with eDNA (5.61).

Figure S5: Community matrix of the detected taxa in the individual sampling sites. Taxa are indicated with their class and order. Colours indicate if taxa were not detected (white) or were detected by eDNA metabarcoding (red), trawling (blue), or both (black).

Figure S6: Functional space (first two axes of a principal coordinates analysis, PCoA) calculated for each sampling site and each sampling method (eDNA metabarcoding and trawling). The associated functional measures of richness (FD), regularity (FEve) and divergence (FDiv) are shown.

Figure S7: Principal coordinates analysis (PCoA) of the species composition detected with eDNA metabarcoding (circles) and trawl hauls (squares). The ellipses of dispersion of the points are based on a water depth criterion. The colours of the symbols correspond to their positions in the PCoA space, where points with similar colours have a similar species composition. (a) Relationship between axes 1 and 3; (b) relationship between axes 2 and 3.

Figure S8: Relationship between the average relative number of eDNA reads between the two filter replicates per site and the \log_{10} number of individuals sampled by trawling, inferred from a linear model (LM, intercept 0.0114, slope 0.0101, p = 2.10-8, $R^2 = 0.14$) and a generalized least square model (GLS) accounting for the heterogeneity in the model residuals using an exponential variance structure (intercept 0.021, slope 0.006, p = 0.002, R^2 Cox Snell = 0.23, exponential residuals variance parameter = 0.11). A lower Akaike information criterion (AIC) value of the GLS model (GLS AIC = -603.5, LM AIC = -571.3) indicates that accounting for the increase in variance of the residuals significantly improves the model fit compared with the LM model. Each point corresponds to a single site and fish. Error bars represent the difference between the two filter replicates at a given site. Solid lines correspond to the fit of the LM (blue) and the GLS model (orange), while dashed lines correspond to the standard error of the fitted models.

Figure S9: Relative abundance of eDNA reads per taxa per filter replicate compared with the \log_{10} number of individuals per taxa sampled by trawling for the 15 sites. Blue and orange points correspond to the two eDNA filter replicates processed at each site. Each point corresponds to a fish detected by both methods. Solid lines indicate a significant fit of the linear model (LM), while dashed lines indicate a non-significant trend only of the LM. Asterisks indicate the degree of significance of the slope of the LM, with *** (p < 0.001), ** (0.001 , * <math>(0.01 , and ns <math>(p > 0.05).

Figure S10: Relationships between the number of eDNA reads per species per filter replicate and the best allometric scaled abundance coefficient (b) estimated from the species abundance and mass from the closest trawl. The relationships come from a generalized linear model (GLM) with a negative binomial distribution error and a log link function. Continuous lines indicate a significant fit of the GLM model, while dashed lines indicate a non-significant trend only of the GLM. Asterisks indicate the degree of significance of the slope of the GLM, with *** (p < 0.001), ** (0.001 < p < 0.01), * (0.01 < p < 0.05), and ns (p > 0.05).

Figure S11: Relationships between the relative number/abundance of eDNA reads per species per filter replicate and the best allometric scaled abundance coefficient (b) estimated from the species abundance and mass from the closest trawl. The relationships come from a linear model (LM) with a Gaussian distribution error. Continuous lines indicate a significant fit of the LM model, while dashed lines indicate a non-significant trend only of the LM. Asterisks indicate the degree of significance of the slope of the LM, with *** (p < 0.001), ** (0.001), * (0.01 <math>), and ns (<math>p > 0.05).

Figure S12: Sensitivity analysis results (removal of species which could have suffered from contamination, see list below). Comparison of average standard effect sizes (SES) for phylogenetic and functional indices including richness, divergence and regularity facets (a) associated with the two sampling methods (eDNA vs trawling). Colour bars show the average value over the 15 sites and error bars represent the standard error. The dashed horizontal line indicates a threshold of significant clustering (-1.96) for the SES of the indices. Spatial distribution of the αdiversity indices of (b) richness, (c) divergence and (d) regularity separated by site and by sampling method for the three biodiversity components, recalculated for the sensitivity analysis. The radius of each circle slice is proportional to the value of the index. For functional and phylogenetic diversity, indices significantly different from the null model (based on the standardized effect size, SES) are indicated with – for overdispersion and + for clustering. Panel (e) represents the first two axes of a principal coordinates analysis of the species composition sampled by eDNA metabarcoding

(circles) and by bottom trawl hauls (squares), based on the Jaccard dissimilarity distance. Ellipses display the dispersion of the sampling sites according to depth and sampling method. Panel (f) shows geographical positions of the corresponding sites, with 7 shallow sites (< 100m) and 8 deep sites (> 100m). The colour of each point corresponds to its position in the PCoA space: points with similar colours share a similar species composition. List of removed species: Capros aper, Conger conger, Trachurus sp., Engraulis sp., Argentina sp., Dicentrarchus sp., Sardina pilchardus., Lophius sp., Pagellus bogaraveo, Micromesistius poutassou, Lepidorhombus sp.

References for the Supplementary Material

Benton, M., Donoghue, P., Vinther, J., Asher, R., Friedman, M. & Near, T. (2015). Constraints on the timescale of animal evolutionary history. *Palaeontologia Electronica*, 18.1.1FC; 1-106.

Betancur-R, R., Wiley, E.O., Arratia, G., Acero, A., Bailly, N., Miya, M., et al. (2017). Phylogenetic classification of bony fishes. *BMC Evolutionary Biology*, 17, 162.

Fricke, R., Eschmeyer, W.N. & der Laan, R.V. (2022). Eschmeyer's catalog of fishes: genera, species, references. Available at: https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

Horton, T., Kroh, A., Ahyong, S., Bailly, N., Bieler, R., Boyko, C.B., et al. (2022). World Register of Marine Species (WoRMS).

Nee, S., May, R.M. & Harvey, P.H. (1994). The reconstructed evolutionary process. Philosophical Transactions of the Royal Society of London. *Series B: Biological Sciences*, 344, 305–311.

Paradis E. & Schliep K. (2019). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics* 35, 526-528.

Rabosky, D.L., Chang, J., Title, P.O., Cowman, P.F., Sallan, L., Friedman, M., et al. (2018). An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559, 392–395.

Ratnasingham, S. & Herbert, P.D.N. (2007). bold: The Barcode of Life Data System. Molecular Ecology Notes, 7, 355–364.

Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). *Methods in Ecology and Evolution*, 3, 217-223.

Rozanski, R., Trenkel, V.M., Lorance, P., Valentini, A., Dejean, T., Pellissier, L., et al. (2022). Disentangling the components of coastal fish biodiversity in southern Brittany by applying an environmental DNA approach. *Environmental DNA*, 4, 920–939.

Stein, R.W., Mull, C.G., Kuhn, T.S., Aschliman, N.C., Davidson, L.N.K., Joy, J.B., et al. (2018). Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. *Nature Ecology & Evolution*, 2, 288–298.