– 11 –

Do **not** write solutions on this page.

Section B

Answer all questions in the answer booklet provided. Please start each question on a new page.

10. [Maximum mark: 16]

A biased four-sided die, A, is rolled. Let X be the score obtained when die A is rolled. The probability distribution for X is given in the following table.

x	1	2	3	4
P(X=x)	p	p	p	$\frac{1}{2}p$

(a) Find the value of p.

[2]

(b) Hence, find the value of E(X).

[2]

A second biased four-sided die, B, is rolled. Let Y be the score obtained when die B is rolled. The probability distribution for Y is given in the following table.

у	1	2	3	4
P(Y=y)	q	q	q	r

- (c) (i) State the range of possible values of r.
 - (ii) Hence, find the range of possible values of q.

[3]

(d) Hence, find the range of possible values for E(Y).

[3]

Agnes and Barbara play a game using these dice. Agnes rolls die A once and Barbara rolls die B once. The probability that Agnes' score is less than Barbara's score is $\frac{1}{2}$.

(e) Find the value of E(Y).

[6]

Do not write solutions on this page.

11. [Maximum mark: 19]

Consider the line L_1 defined by the Cartesian equation $\frac{x+1}{2} = y = 3-z$.

- (a) (i) Show that the point (-1, 0, 3) lies on L_1 .
 - (ii) Find a vector equation of L_1 .

[4]

Consider a second line L_2 defined by the vector equation $\mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} a \\ 1 \\ -1 \end{pmatrix}$,

where $t \in \mathbb{R}$ and $a \in \mathbb{R}$.

- (b) Find the possible values of a when the acute angle between L_1 and L_2 is 45°. [8] It is given that the lines L_1 and L_2 have a unique point of intersection, A, when $a \neq k$.
- (c) Find the value of k, and find the coordinates of the point A in terms of a. [7]

12. [Maximum mark: 20]

Let $f(x) = \sqrt{1+x}$ for x > -1.

(a) Show that
$$f''(x) = -\frac{1}{4\sqrt{(1+x)^3}}$$
. [3]

(b) Use mathematical induction to prove that $f^{(n)}(x) = \left(-\frac{1}{4}\right)^{n-1} \frac{\left(2n-3\right)!}{(n-2)!} (1+x)^{\frac{1}{2}-n}$ for $n \in \mathbb{Z}$, $n \ge 2$. [9]

Let $g(x) = e^{mx}, m \in \mathbb{Q}$.

Consider the function h defined by $h(x) = f(x) \times g(x)$ for x > -1.

It is given that the x^2 term in the Maclaurin series for h(x) has a coefficient of $\frac{7}{4}$.

(c) Find the possible values of m.

[8]

References:

© International Baccalaureate Organization 2021

