계산력 연습

[영역] 5.기하

중 3 과정

5-1-1.피타고라스 정리와 이를 이용한 직각삼각형의 한 변의 길이 구하기

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-10-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다. ◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 피타고라스의 정리

직각삼각형에서 직각을 끼고 있는 두 변의 길이를 각각 a, b라 하고, 빗변의 길이를 c라 하면 $\underline{a^2+b^2=c^2}$

2. 직각삼각형의 변의 길이

직각삼각형에서 직각을 끼고 있는 두 변의 길이를 각각 $a,\ b$ 라 하고, 빗변의 길이를 c라 하면

(1) a, b의 길이가 주어졌을 때, $c = \sqrt{a^2 + b^2}$

(2) a, c의 길이가 주어졌을 때, $b = \sqrt{c^2 - a^2}$

(3) b, c의 길이가 주어졌을 때, $a = \sqrt{c^2 - b^2}$

참고

직각삼각형에서는 두 변의 길이를알면 한 변의 길이를 구할 수 있다

직각삼각형의 변의 길이

☑ 다음 그림의 직각삼각형 ABC에서 x의 값을 구하여라.

1.

2.

3.

4.

5.

8.

9.

10.

11.

12.

13.

14.

15.

18.

19.

20.

21.

☑ 다음 직각삼각형에서 x의 값을 구하여라.

22.

23.

24.

25.

26.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

2개 이상의 직각삼각형의 변의 길이

□ 다음 그림에서 x의 값을 구하여라.

40.

41.

42.

43.

44.

45.

46.

47.

48.

51.

52.

ightharpoonup 다음 그림에서 x, y의 값을 각각 구하여라.

53.

54.

55.

56.

57.

58.

59.

62.

63.

64.

65.

66.

67.

- 1) 17
- $\Rightarrow x = \sqrt{8^2 + 15^2} = \sqrt{289} = 17$
- 2) 12
- $\Rightarrow x = \sqrt{13^2 5^2} = \sqrt{144} = 12$
- 3) 7
- $\Rightarrow x = \sqrt{25^2 24^2} = \sqrt{49} = 7$
- 4) $2\sqrt{10}$
- \Rightarrow 직각삼각형 ABC에서 $x = \sqrt{8^2 (\sqrt{24})^2} = 2\sqrt{10}$
- 5) $3\sqrt{3}$
- $\Rightarrow x = \sqrt{6^2 3^2} = 3\sqrt{3}$
- 6) $\sqrt{3}$
- \Rightarrow 직각삼각형 ABC에서 $x = \sqrt{3^2 (\sqrt{6})^2} = \sqrt{3}$
- 7) 2
- $\Rightarrow x = \sqrt{(\sqrt{13})^2 3^2} = \sqrt{4} = 2$
- 8) $\sqrt{11}$
- $\Rightarrow x = \sqrt{5^2 (\sqrt{14})^2} = \sqrt{11}$
- 9) 10
- $\Rightarrow x = \sqrt{8^2 + 6^2} = \sqrt{100} = 10$
- 10) $\sqrt{65}$
- \Rightarrow 직각삼각형 ABC에서 $x = \sqrt{7^2 + 4^2} = \sqrt{65}$
- 11) 10
- $\Rightarrow x = \sqrt{6^2 + 8^2} = 10$
- 12) $2\sqrt{5}$
- $\Rightarrow x = \sqrt{6^2 4^2} = 2\sqrt{5}$
- 13) $\frac{\sqrt{13}}{2}$
- \Rightarrow $(2x)^2 = 2^2 + 3^2$
- $4x^2 = 13$ $\therefore x = \frac{\sqrt{13}}{2}$
- 14) 6
- $\Rightarrow (x+4)^2 = x^2 + 8^2$ 8x = 48 $\therefore x = 6$
- 15) 5

- \Rightarrow $(2x+3)^2 = x^2 + (x+7)^2$, $4x^2 + 12x + 9 = x^2 + x^2 + 14x + 49$ $2x^2-2x-40=0$, $x^2-x-20=0$, (x-5)(x+4)=0x > 0이므로 x = 5가 된다.
- 16) 10
- $\Rightarrow x^2 = (x-2)^2 + 6^2$
- 4x = 40 $\therefore x = 10$
- 17) 8
- \Rightarrow $(x+2)^2 = x^2 + 6^2$, 4x = 32 $\therefore x = 8$
- 18) 10
- 19) 15
- ⇒ 직각삼각형 ABC에서 $x^2 + 8^2 = (x+2)^2$, 4x = 60 $\therefore x = 15$
- 20) $\frac{3}{2}$
- ⇒ 직각삼각형 ABC에서

$$(x+2)^2 = (x+1)^2 + (2\sqrt{x})^2$$

$$x^2 + 4x + 4 = x^2 + 2x + 1 + 4x$$

$$2x = 3 \qquad \therefore x = \frac{3}{2}$$

- 21) 5
- 22) 2
- $\Rightarrow x^2 = 1^2 + (\sqrt{3})^2 = 4 \qquad \therefore x = 2$
- 23) $\sqrt{13}$
- \Rightarrow 피타고라스 정리에 의해 $x = \sqrt{3^2 + 2^2} = \sqrt{13}$
- 24) 5
- \Rightarrow 피타고라스 정리에 의해 $x = \sqrt{4^2 + 3^2} = 5$
- 25) $\sqrt{10}$
- \Rightarrow 직각삼각형에서 $x^2 = (\sqrt{6})^2 + 2^2$

$$x^2 = 10$$
 $\therefore x = \sqrt{10}$

- 26) 12
- $\Rightarrow 13^2 = x^2 + 5^2, \ x^2 = 144 \qquad \therefore x = 12$
- 27) 15
- $\Rightarrow 12^2 + 9^2 = x^2$: x = 15(x > 0)
- 28) 8
- $\Rightarrow 15^2 + x^2 = 17^2$ $\therefore x = 8(x > 0)$
- 29) 6
- $\Rightarrow (6\sqrt{2})^2 = x^2 + 6^2, \ x^2 = 36 \qquad \therefore x = 6$
- 30) $4\sqrt{2}$

- ⇒ 직각삼각형에서 피타고라스 정리에 의해 $x = \sqrt{9^2 - 7^2} = 4\sqrt{2}$
- 31) $\sqrt{17}$
- $\Rightarrow 1^2 + 4^2 = x^2 : x = \sqrt{17} (x > 0)$
- 32) $\sqrt{7}$
- $\Rightarrow x^2 + (\sqrt{5})^2 = (2\sqrt{3})^2 : x = \sqrt{7}(x > 0)$
- 33) 5
- ⇒ 피타고라스의 정리에 의하여 $3^2 + 4^2 = x^2$ $\therefore x = 5 \ (x > 0)$
- 34) $\sqrt{7}$
- $\Rightarrow x^2 + 2^2 = (\sqrt{11})^2 \qquad \therefore x = \sqrt{7}(x > 0)$
- 35) $4\sqrt{5}$
- $\Rightarrow x = \sqrt{12^2 8^2} = 4\sqrt{5}$
- 36) $3\sqrt{13}$
- $\Rightarrow 6^2 + 9^2 = x^2$ $\therefore x = 3\sqrt{13}(x > 0)$
- $\Rightarrow (\sqrt{3})^2 + x^2 = 2^2$: x = 1(x > 0)
- 38) $\sqrt{65}$
- $\Rightarrow x = \sqrt{7^2 + 4^2} = \sqrt{49 + 16} = \sqrt{65}$
- 39) 3
- $\Rightarrow x^2 + (2\sqrt{10})^2 = (x+4)^2$ 8x + 16 = 40, 8x = 24 $\therefore x = 3$
- 40) $\sqrt{14}$
- \Rightarrow \triangle ABC에서 $\overline{AC} = \sqrt{1^2 + 2^2} = \sqrt{5}$ \triangle ACD에서 $x = \sqrt{3^2 + (\sqrt{5})^2} = \sqrt{14}$
- 41) $4\sqrt{3}$
- $\Rightarrow \overline{AC} = \sqrt{x^2 + 5^2} = \sqrt{8^2 + 3^2}$ $x^2 + 25 = 73$, $x^2 = 48$ $\therefore x = 4\sqrt{3}$
- 42) $\sqrt{6}$

- 43) $\sqrt{13}$
- \Rightarrow \triangle ABD에서 $\overline{BD} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$

- $\triangle BCDOMM \ x = \sqrt{5^2 (2\sqrt{3})^2} = \sqrt{13}$
- 44) $x = \sqrt{7}$
- $\Rightarrow x^2 + (3\sqrt{3})^2 = 5^2 + 3^2, \ x^2 = 7 \qquad \therefore x = \sqrt{7}$
- 45) $5\sqrt{3}$
- $\Rightarrow \triangle BCDOMM | \overline{BD} = \sqrt{6^2 + 8^2} = \sqrt{100} = 10$ $\triangle ABDOMM \ x = \sqrt{10^2 - 5^2} = \sqrt{75} = 5\sqrt{3}$
- 46) 6

- $\therefore x = \sqrt{(3\sqrt{3})^2 + 3^2} = 6$
- 47) 2
- \Rightarrow $\triangle ABDMM \overline{AD} = \sqrt{(\sqrt{21})^2 3^2} = \sqrt{12} = 2\sqrt{3}$ $\triangle ACDOMM \ x = \sqrt{4^2 - (2\sqrt{3})^2} = \sqrt{4} = 2$
- $\Rightarrow \triangle ABDOMM \overline{AD} = \sqrt{6^2 (2\sqrt{5})^2} = \sqrt{16} = 4$ \triangle ACD에서 $x = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$
- 49) $2\sqrt{34}$

- $(1) = \sqrt{9^2 3^2} = 6\sqrt{2}$ $\therefore x = \sqrt{(6\sqrt{2})^2 + 8^2} = 2\sqrt{34}$
- 50) $5\sqrt{2}$
- $\Rightarrow \overline{BC} = 7 + 5 = 12$ 이므로 \triangle ABC에서 $\overline{AC} = \sqrt{13^2 - 12^2} = \sqrt{25} = 5$ \triangle ACD에서 $x = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$
- 51) $2\sqrt{41}$

52)
$$\sqrt{57}$$

$$Arr$$
 Arr Arr

53)
$$x = 13$$
, $y = \sqrt{46}$

$$\Rightarrow x = \sqrt{5^2 + 12^2} = 13, \ y = \sqrt{12^2 - (7\sqrt{2})^2} = \sqrt{46}$$

54)
$$x = 2\sqrt{7}$$
, $y = 6$

$$\Rightarrow$$
 \triangle ADB에서 $y = \sqrt{10^2 - 8^2} = 6$
 \triangle ADC에서 $x = \sqrt{8^2 - 6^2} = 2\sqrt{7}$

55)
$$x = 12, y = 20$$

$$\Rightarrow x = \sqrt{13^2 - 5^2} = \sqrt{144} = 12$$
$$y = \sqrt{12^2 + 16^2} = \sqrt{400} = 20$$

56)
$$x = 8$$
, $y = 5\sqrt{10}$

$$\Rightarrow x = \sqrt{17^2 - 15^2} = \sqrt{64} = 8$$
$$y = \sqrt{(13 - 8)^2 + 15^2} = \sqrt{250} = 5\sqrt{10}$$

57)
$$x = 3$$
, $y = 3\sqrt{10}$

$$\Rightarrow x = \sqrt{5^2 - 4^2} = \sqrt{9} = 3$$
$$y = \sqrt{(4+5)^2 + 3^2} = 3\sqrt{10}$$

58)
$$x = 2\sqrt{29}$$
, $y = 2\sqrt{34}$

$$\Rightarrow x = \sqrt{10^2 + 4^2} = 2\sqrt{29}, y = \sqrt{10^2 + (4+2)^2} = 2\sqrt{34}$$

59)
$$x = 1, y = 2$$

$$\Rightarrow x = \sqrt{(\sqrt{2})^2 - 1^2} = 1$$

$$y = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$$

60)
$$x = 2\sqrt{6}$$
, $y = 2\sqrt{7}$

$$\ \ \, \Rightarrow$$
 직각삼각형 ABC에서 $x=\sqrt{7^2-5^2}=2\sqrt{6}$ 직각삼각형 ABD에서 $y=\sqrt{2^2+(2\sqrt{6})^2}=2\sqrt{7}$

61)
$$x = 5$$
, $y = 5$

$$\Rightarrow x^2 + x^2 = (5\sqrt{2})^2, \ x^2 = 25 \qquad \therefore \ x = 5(x > 0)$$
$$(5+y)^2 + 5^2 = (5\sqrt{5})^2, (5+y)^2 = 100,$$
$$5+y = 10 \qquad \therefore \ y = 5 \ (y > 0)$$

62)
$$x = 8$$
, $y = 25$

$$\Rightarrow x = \sqrt{17^2 - 15^2} = \sqrt{64} = 8$$
$$y = \sqrt{(12 + 8)^2 + 15^2} = \sqrt{625} = 25$$

63)
$$x = \sqrt{11}$$
, $y = \sqrt{39}$

$$\Rightarrow x = \sqrt{6^2 - 5^2} = \sqrt{11}, \ y = \sqrt{8^2 - 5^2} = \sqrt{39}$$

64)
$$x = 2\sqrt{5}$$
, $y = 6$

$$\Rightarrow x = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$$
$$y = \sqrt{4^2 + (2\sqrt{5})^2} = \sqrt{36} = 6$$

65)
$$x = \sqrt{6}, y = \sqrt{7}$$

$$\Rightarrow x = \sqrt{(\sqrt{2})^2 + 2^2} = \sqrt{6}$$

$$y = \sqrt{1^2 + (\sqrt{6})^2} = \sqrt{7}$$

66)
$$x = 3\sqrt{5}$$
, $y = 3\sqrt{6}$

$$\Rightarrow x = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}$$
$$y = \sqrt{(3\sqrt{5})^2 + 3^2} = \sqrt{54} = 3\sqrt{6}$$

67)
$$x = \sqrt{13}$$
, $y = 4$

$$\Rightarrow x = \sqrt{3^2 + 2^2} = \sqrt{13}, y = \sqrt{(\sqrt{13})^2 + (\sqrt{3})^2} = 4$$

68)
$$x = 12$$
, $y = 4\sqrt{11}$

$$\Rightarrow x = \sqrt{13^2 - 5^2} = 12, y = \sqrt{12^2 + (4\sqrt{2})^2} = 4\sqrt{11}$$