Transect Report Lone Cabbage

Overview

This report provides summary statistics and figures for ongoing transect sampling. The first section of the report focuses on the current sampling (Winter 2022-2023) and how the collected data compare to last year's sampling (Winter 2021-2022). So far 12 days have been sampled this season. The second half of the report gives summaries of all of the data that have been collected since the beginning of the project (2010-05-27). In total, 156 days have been sampled over this entire project.

Definition of Localities

LOCALITY	LOCATION
$\overline{\mathrm{BT}}$	Big Trout
CK	Cedar Key
CR	Corrigan's Reef
HB	Horseshoe Beach
LC	Lone Cabbage
LT	Little Trout
NN	No Name

Definition of Strata

STRATA	DEFINITION
<u>Y_N</u>	Yes Harvest, No Rock
Y_Y	Yes Harvest, Yes Rock
N_N	No Harvest, No Rock
N_Y	No Harvest, Yes Rock
N_PILOT	No Harvest, Pilot Rocks

Current Sampling

Here, we provide a progress bar showing how much of the sampling has been completed for this season, plus summary tables and plots comparing live counts and density of oysters between this current season and last year. The current sampling period is period 26, and last year's sampling period is period 24.

Field Sites - Strata Progress

Summary Tables for Periods 20, 22, 24, and 26

These summary tables provide summary statistics on live counts and oyster densities for just periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023).

Summary statistics include:

- Locality or Strata or Period Mean
- Median
- Standard Deviation (SD)
- Variance (Var)
- Coefficient of variation (CV)
- Standard Error (SE)
- Lower 95% Confidence Interval assuming normal distribution (L95)
- Upper 95% Confidence Interval assuming normal distribution (U95)
- Bootstrap Mean (Bstrap Mean)
- Lower 95% Confidence Interval from Bootstrap Values (L95 Bstrap)
- Upper 95% Confidence Interval from Bootstrap Values (U95 Bstrap)

Data are aggregated by station and period and then summarized in the tables below. Live counts are the number of live oysters summarized by locality, strata, and period, and density is the number of live oysters per square meter summarized by locality, strata, and period.

Summary of Live Counts for Periods 20, 22, 24, and 26

Live Oyster Counts	by Locality					
Locality Mean Medi	an SD V	ar CV SE	L95 U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
BT 1331 7	66 2188 47894	76 1.64 607	141 2521	1338	563	2606
LC 1918 11	24 2151 46255	07 1.12 190	1546 2291	1912	1569	2280
LT 1097 8	377 582 3388	63 0.53 150	802 1392	1097	846	1417
NN 842 7	14 639 4086	13 0.76 202	446 1238	848	563	1250
Live Oyster Counts	by Strata					
Strata Mean Media	n SD Va	r CV SE	L95 U95 I	Bstrap_Mean L	.95_Bstrap (J95_Bstrap
N_N 1083 76	7 1185 140318	9 1.09 154	781 1385	1080	824	1417
N_PILOT 2180 300	9 1582 250162	4 0.73 913	390 3970	2189	356	3174
N_Y 3650 367	4 2182 475907	2 0.60 412 2	842 4458	3645	2849	4466
Y_N 669 52	6 638 40659	8 0.95 84	505 833	670	518	842
Y_Y 4236 359	0 2753 757866	1 0.65 649 2	964 5508	4251	3159	5516
Live Oyster Counts	•					
Period Mean Median				trap_Mean L95	_Bstrap U9	5_Bstrap
20 1844 1253	2125 4517189	1.2 310 123	6 2451	1836	1295	2484
22 1334 702	1693 2867783	1.3 242 86	0 1808	1341	901	1850
24 1729 942	1845 3403035	1.1 266 120	7 2251	1734	1246	2294
26 2394 730	2677 7164223	1.1 571 127	6 3513	2415	1383	3603
Live Density by Loc	ality					
Locality Mean Medi	an SD Var	CV SE L9	5 U95 Bst	rap_Mean L95_	Bstrap U95	_Bstrap
BT 235 2	205 192 37004	0.82 53.4 13	1 340	238	149	347
LC 162 1	61 106 11281	0.66 9.4 14	3 180	162	145	180
LT 320 3	21 129 16749	0.40 33.4 25	5 386	320	258	386
NN 233 1	74 230 52911	0.99 72.7 9	1 376	231	122	391

Live Density by Strata											
Strata	Mean	${\tt Median}$	SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
N_N	239	192	163	26724	0.69	21	197	280	239	198	283
N_PILOT	143	147	39	1557	0.28	23	98	188	143	102	180
N_Y	172	180	74	5499	0.43	14	145	200	172	145	200
Y_N	150	144	128	16508	0.85	17	117	184	151	120	185
Y_Y	159	162	70	4834	0.44	16	126	191	159	128	191

Live Density by Period

${\tt Period}$	Mean	${\tt Median}$	SD	Var	CV	SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
20	256	203	187	35057	0.73	27	203	310	255	206	311
22	137	121	93	8638	0.68	13	111	163	137	112	164
24	185	181	92	8385	0.49	13	159	211	185	159	211
26	148	168	94	8809	0.63	20	109	187	147	109	186

Summary of Dead Counts for Periods 20, 22, 24, and 26

Dead Oyster Counts by Locality		
Locality Mean Median SD Var CV SE L95 U95 Bstrap_Mean	L95 Bstrap U	95 Bstrap
BT 163 98 175 30535 1.07 48 68 258 164	94	270
LC 176 128 182 33305 1.04 16 144 207 177	148	208
LT 206 137 151 22760 0.73 39 130 282 205	134	286
NN 102 72 94 8760 0.92 30 44 160 101	58	162
Dead Oyster Counts by Strata		
Strata Mean Median SD Var CV SE L95 U95 Bstrap_Mean L	.95 Bstrap U9	5 Bstrap
N_N 171 115 167 27877 0.97 22 129 214 171	133	214
N_PILOT 136 127 131 17150 0.97 76 -13 284 135	9	270
N_Y 196 166 143 20537 0.73 27 143 249 197	147	249
Y N 113 66 124 15270 1.09 16 82 145 113	84	145
Y_Y 346 269 269 72622 0.78 64 222 471 349	238	472
1_1 010 200 200 12022 0.10 01 222 111 010	200	112
Dead Oyster Counts by Period		
Period Mean Median SD Var CV SE L95 U95 Bstrap_Mean L9	5 Bstrap U95	Bstrap
20 148 107 140 19727 0.95 20 108 188 148	111	192
22 191 128 193 37399 1.01 28 137 245 193	139	248
24 192 130 194 37816 1.01 28 137 247 191	138	246
26 148 93 156 24439 1.06 33 84 211 148	90	216
20 140 93 130 24439 1.00 33 04 211 140	90	210
Dead Oyster Density by Locality		
Locality Mean Median SD Var CV SE L95 U95 Bstrap_Mean L9	5_Bstrap U95	Bstrap
BT 36 28 23 534 0.64 6.4 23 48 36	25	50
LC 21 12 21 447 1.02 1.9 17 24 21	17	24
LT 56 50 30 881 0.53 7.7 41 71 56	42	71
NN 27 21 22 500 0.83 7.1 13 41 27	16	41
	10	
Dead Oyster Density by Strata		
Strata Mean Median SD Var CV SE L95 U95 Bstrap_Mean	L95 Bstrap	U95 Bstrap
N_N 37.9 32.5 26.5 700 0.70 3.44 31.2 45 38.0		45
N_PILOT 7.6 7.6 5.0 25 0.66 2.88 1.9 13 7.6		13
N_Y 9.4 9.6 5.3 28 0.56 0.99 7.5 11 9.4		11
Y_N 25.3 16.1 25.0 624 0.99 3.25 18.9 32 25.5		32
-		15
Y_Y 12.3 13.1 4.8 23 0.39 1.13 10.1 15 12.4	10.2	15
Dead Oyster Density by Period		
Period Mean Median SD Var CV SE L95 U95 Bstrap_Mean L95_	Retran 1195 R	stran
20 28 18 26 682 0.94 3.8 20 35 28	20.9	36
22 28 14 28 807 1.00 4.1 21 36 28	21.4	37
24 26 19 21 438 0.81 3.0 20 32 26	20.2	33
26 13 11 13 166 0.97 2.7 8 19 13	9.1	19

Summary Plots for Periods 20, 22, 24, and 26

Live Oyster Density by Locality for Periods 20, 22, 24, and 26

Figure- Calculated live oyster density by locality for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2023-01-24.

Dead Oyster Density by Locality for Periods 20, 22, 24, and 26

Figure- Calculated dead oyster density by locality for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2023-01-24.

Live Oyster Density by Strata for Periods 20, 22, 24, and 26

Figure- Calculated live oyster density by strata for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2023-01-24.

Dead Oyster Density by Strata for Periods 20, 22, 24, and 26

Figure- Calculated dead oyster density by strata for periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) with the last sample date of period 26 as 2023-01-24.

The following summary plot is calculated in R using the <code>geom_density</code> (https://ggplot2.tidyverse.org/reference/geom_density.html) statistical function in <code>ggplot</code>. The <code>geom_density</code> function computes and draws kernel density estimates, which is then represented as a smoothed version of a histogram.

Figure- Calculated live oyster density by periods 20 (Winter 2019-2020) and 22 (Winter 2020-2021) using a probability density function with the last sample date of period 22 as 2023-01-24.

Oyster density per m^2

600

800

400

200

0.000

Ö

Figure- Calculated dead oyster density by periods 20 (Winter 2019-2020) and 22 (Winter 2020-2021) using a probability density function with the last sample date of period 22 as 2023-01-24.

Oyster density per m^2

Live Oyster Density by Period (22 and 24)

Figure- Calculated live oyster density by periods 22 (Winter 2020-2021) and 24 (Winter 2021-2022) using a probability density function with the last sample date of period 24 as 2023-01-24.

Dead Oyster Density by Period (22 and 24)

Figure- Calculated dead oyster density by periods 22 (Winter 2020-2021) and 24 (Winter 2021-2022) using a probability density function with the last sample date of period 24 as 2023-01-24.

Live Oyster Density by Period (24 and 26)

Figure- Calculated live oyster density by periods 24 (Winter 2021-2022) and 26 (Winter 2022-2023) using a probability density function with the last sample date of period 26 as 2023-01-24.

Figure- Calculated dead oyster density by periods 24 (Winter 2021-2022) and 26 (Winter 2022-2023) using a probability density function with the last sample date of period 26 as 2023-01-24.

Figure- Live and dead oyster count comparison by periods 20 (Winter 2019-2020), 22 (Winter 2020-2021), 24 (Winter 2021-2022), and 26 (Winter 2022-2023) last sample date of period 26 as 2023-01-24.

Live Counts Double Pass Results

Figure- Boxplot of the difference in live counts between pass 1 and pass 2 (pass 1 live counts - pass 2 live counts) for period 18, 20, 22, 24,and 26

locality	period	mean_difference	sd_difference	CV
BT	18	-5.43	60.0	-11.1
LC	18	3.58	30.0	8.4
NN	18	13.17	15.5	1.2
LC	20	4.33	22.4	5.2
LT	20	2.64	39.2	14.9
BT	22	-1.00	18.9	-18.9
LC	22	0.14	9.0	63.6
LT	22	3.38	10.9	3.2
BT	24	9.23	14.0	1.5
LC	24	-0.44	8.7	-19.5
LC	26	-1.87	23.0	-12.3

Dead Counts Double Pass Results

Figure- Boxplot of the difference in dead counts between pass 1 and pass 2 (pass 1 dead counts - pass 2 dead counts) for period 18, 20, 22, 24, and 26

locality	period	CV_1	CV_2
BT	18	0.78	0.82
LC	18	2.35	2.06
NN	18	0.55	0.73
LC	20	1.93	1.62
LT	20	0.76	0.67
BT	22	0.60	0.66
LC	22	1.09	1.07
LT	22	0.69	0.66
BT	24	0.54	0.51
LC	24	1.13	1.11
LC	26	0.88	1.13

Sampling for all Periods

Next, we provide summary tables and plots for all transect sampling. These data were collected between 2010-05-27 and 2023-01-24. The following are only for live oysters.

Definitions of Periods

PERIOD	SEASON	YEAR
1	Summer	2010
2	Winter	2010-2011
3	Summer	2011
4	Winter	2011-2012
5	Summer	2012
6	Winter	2012-2013
7	Summer	2013
8	Winter	2013-2014
9	Summer	2014
10	Winter	2014-2015
11	Summer	2015
12	Winter	2015-2016
13	Summer	2016
14	Winter	2016-2017
15	Summer	2017
16	Winter	2017-2018
17	Summer	2018
18	Winter	2018-2019
19	Summer	2019
20	Winter	2019-2020
21	Summer	2020
22	Winter	2020-2021
23	Summer	2021
24	Winter	2021-2022
25	Summer	2022
26	Winter	2022-2023

Summary of Effort for all Periods

Locality Number of Transects Total Length (m)

Effort by Locality

18

18

18

LC

LT

NN

These effort summaries show the total number of transects and total number of meters walked per locality, strata, locality per period, and strata per period. These tables contain all data collected on the transects.

BT		19	9		640	
CK		26	6	734		
CR		46	6	1375		
HB		4!	5	1129		
LC		25	5	15	5349	
LT		2:	1		542	
NN		14	4		357	
Effort by						
Strata N	umber of Trans	sects	Total L	ength ((m)	
N_N		134		43	379	
N_PILOT		15		10)50	
N_Y		41		48	397	
Y_N		214		61	L44	
Y_Y		22		36	354	
Effort by						
Period Nu	mber of Transe	cts	Total Le	ngth (r	n)	
1		42		108		
2		30		75	53	
3		25		61	19	
6		33		91	19	
7		8		52	28	
10		8		51	12	
11		8		51	l1	
16		8		52	28	
18		61		266	30	
19		35		94	14	
20		47		258	36	
22		49		353	35	
24		48		305	59	
26		24		188	36	
Effort by	Locality and F	Perio	d			
Period Lo	cality Number	of T	ransects	Total	Length	(m)
1	CK		9			242
1	CR		10			300
1	HB		12			293
1	LC		11			250
10	LC		8			512
11	LC		8			511
16	LC		8			528
18	BT		6			238

2156

182

84

45

6

4

19	CK	9	221
19	CR	9	249
19	HB	9	247
19	LC	8	226
2	CR	9	283
2	HB	11	271
2	LC	10	199
20	BT	2	96
20	LC	34	2188
20	LT	7	176
20	NN	4	126
22	BT	5	132
22	LC	37	3228
22	LT	4	96
22	NN	3	78
24	BT	5	122
24	LC	36	2780
24	LT	4	87
24	NN	3	69
26	BT	1	52
26	LC	23	1834
3	CR	9	269
3	HB	7	184
3	LC	9	167
6	CK	8	271
6	CR	9	272
6	HB	6	134
6	LC	10	242
7	LC	8	528

Effort by Strata and Period

Period	Strata	Number	of	Transects	Total	Length	(m)
1	N_N			8		Ü	149
1	Y_N			34			937
10	N_N			4			256
10	N_PILOT			4			256
11	N_N			4			255
11	N_PILOT			4			256
16	N_N			4			264
16	N_PILOT			4			264
18	N_N			18			571
18	N_Y			13			977
18	Y_N			26			728
18	Y_Y			4			384
19	N_N			5			93
19	Y_N			30			851
2	N_N			8			148
2	Y_N			22			605
20	N_N			18			595
20	N_PILOT			1			23
20	N_Y			6			903
20	Y_N			17			602
20	Y_Y			5			464
22	N_N			20			546

22	N_Y	9	1324
22	Y_N	15	526
22	Y_Y	5	1138
24	N_N	19	521
24	N_PILOT	2	251
24	N_Y	9	1174
24	Y_N	15	412
24	Y_Y	3	700
26	N_N	2	128
26	N_Y	4	520
26	Y_N	13	270
26	Y_Y	5	968
3	N_N	8	147
3	Y_N	17	472
6	N_N	8	178
6	Y_N	25	740
7	N N	8	528

Effort Plot Summaries for all Periods

Total Transect Length Sampled by Locality

Figure – Bar plot of total transect length in meters sampled by locality for all periods.

Total Transect Length Sampled by Strata

Figure – Bar plot of total transect length in meters sampled by strata for all periods.

Total Transect Length Sampled by Period

Figure – Bar plot of total transect length in meters sampled by period for all periods.

Summary Tables for all Periods

These summaries display summary statistics of live oysters by locality, strata, and period. These contain all data collected on the oyster transects.

The summary statistics include:

- Locality or Strata or Period Mean
- Median
- Standard Deviation (SD)
- Variance (Var)
- Coefficient of variation (CV)
- Standard Error (SE)
- Lower 95% Confidence Interval assuming normal distribution (L95)
- Upper 95% Confidence Interval assuming normal distribution (U95)
- Bootstrap Mean (Bstrap Mean)
- Lower 95% Confidence Interval from Bootstrap Values (L95 Bstrap)
- Upper 95% Confidence Interval from Bootstrap Values (U95 Bstrap)

Live Count Statistics for all Periods

Live Oyster Counts by Locality											
Locality Mean Median SD	Var CV SE I	95 U95 Bstrap_Mean	L95_Bstrap U95_Bstrap								
BT 1372 872 1908	3638919 1.39 438 5	14 2230 1393	727 2380								
CK 857 444 1091	1190933 1.27 214 4	38 1277 848	462 1304								
CR 1026 716 1035	1072162 1.01 153 7	27 1325 1030	757 1326								
HB 902 364 1047	1095622 1.16 158 5	92 1211 900	609 1223								
LC 1348 701 1737	3016086 1.29 110 11	33 1563 1344	1144 1559								
LT 1026 877 551	303721 0.54 120 7	90 1262 1023	823 1281								
NN 735 674 584	341295 0.79 156 4	29 1041 734	485 1050								
Live Oyster Counts by Stra Strata Mean Median SD		E HOE Patron Moon I	195_Bstrap U95_Bstrap								
		7 1161 990	827 1177								
- · · · · · · · · · · · · · · · · · · ·		0 1787 1318	904 1777								
-	4892643 0.76 345 223		2233 3574								
Y N 743 428 877	769929 1.18 61 62		632 871								
-	8356742 0.81 616 234		2362 4725								
1_1 0001 27 10 2001	0000712 0.01 010 201	.0 1700 0000	2002 1120								
Live Oyster Counts by Perio	od										
Period Mean Median SD		U95 Bstrap Mean L9	95_Bstrap U95_Bstrap								
	657932 0.92 199 1014	=	1012 1784								
2 890 476 945	893727 1.06 176 546	1234 897	598 1242								
3 738 296 817 (668064 1.11 167 411	1065 739	416 1067								
6 433 176 534	284791 1.23 96 245	621 432	253 629								
7 50 29 56	3186 1.12 20 11	90 50	17 89								
10 1207 1074 671	449607 0.56 237 743	1672 1213	817 1651								
11 886 776 678	459708 0.77 240 416	1356 891	511 1347								
16 494 366 467	217855 0.95 165 170	817 502	224 849								
18 982 695 935	874733 0.95 120 748	1217 984	755 1238								
19 555 329 573	328431 1.03 97 365	745 555	376 749								
20 1844 1253 2125 4	517189 1.15 310 1236	2451 1857	1277 2539								
22 1334 702 1693 28	867783 1.27 242 860	1808 1332	890 1812								
	867783 1.27 242 860 403035 1.07 266 1207		890 1812 1262 2278								

Live Density Statistics for all Periods

Live Density by Locality											
Locality	Mean	Median	ı SD	Var	CV	SI	E L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
ВТ	238	218	168	28363	0.71	38.6	6 162	313	238	172	318
CK	241	112	321	102927	1.33	62.9	9 118	364	240	129	376
CR	283	178	294	86605	1.04	43.4	4 198	368	280	200	369
HB	257	101	303	92052	1.18	45.	7 168	347	256	173	349
LC	154	133	3 137	18876	0.89	8.	7 137	171	154	136	172
LT	279	261	132	17460	0.47	28.8	8 222	335	279	224	335
NN				40919					216		331
1111	210		. 202	10010	0.01	01.	1 100	021	210	120	001
Live Dens	Live Density by Strata										
Strata		•		Var	CV SI	E L9!	5 U95	Bstr	ap_Mean L95	Bstrap U95	Bstrap
N_N	253			56963 0					253	213	292
N PILOT	118	121	59	3467 0			3 148		118	89	150
N_IILOI N Y	164	159	91	8351 0					164	137	190
_	179			43104 1						150	209
Y_N									179		
Y_Y	135	145	80	6438 0	.59 1	102	2 169		135	104	168
Live Dens	Live Density by Period										
Period M	•	•	SD	Var	CV	SE	L95	IIQ	5 Retran Me	an IQ5 Betre	ap U95_Bstrap
				131444					_		
_											
				81348						.7 155	
	234			72523							
6	121	72.2 1	50.9	22767	1.25	27	68.1	174.	3 121	.6 72	. 1 177

Dead Count Statistics for all Periods

Dead Oyster Counts by Locality											
Locality	Mean	Median	n SD	Va	r C	V SE	L95	U95	Bstrap_Mean	L95_Bstrap	U95_Bstrap
BT	249	160	278	7723	1 1.1	2 64	123.6	374	249	143	390
CK	78	32	2 106	11170	1.3	6 37	4.3	3 151	77	18	154
CR	60	47	38	1444	4 0.6	3 13	35.2	2 85	60	40	85
HB	44	21	. 45	2000	1.0	2 15	14.8	3 73	44	18	74
LC	134	73	159	25199	9 1.1	9 11	112.3	3 155	133	113	154
LT	218	141	180	32543	3 0.8	3 39	140.5	295	217	150	300
NN	98	72	2 87	7493	3 0.8	8 23	52.5	143	98	61	145
Dead Oyster Counts by Strata Strata Mean Median SD Var CV SE L95 U95 Bstrap_Mean L95_Bstrap U95_Bstrap											
									_	_	=
N_N	157						120 19		156	120	193
N_PILOT	98						65 13		98	70	136
N_Y	145						102 18		145	104	191
Y_N	98			12129			77 11		97	78	117
Y_Y	286	204	276	75913	0.96	59	171 40)1	289	183	409
Dead Oyst	er Coi	ınts by	Per	iod							
Period M		•		Var	CV	SE	L95	U95	Bstrap_Mean	L95 Bstrap	U95 Bstrap
7	29		30	898	1.03	10.6			_	12	51
10	80	88	65	4245 (0.82	23.0	34.5	125	80	41	126
11	50	40	25	620 (0.49	8.8	33.2	2 68	51	35	67
16	44	28	41	1708 (0.93	14.6	15.6	73	45	20	71
18	133	55 1		6903				182	133	91	182
19	63	44	67	4548	1.08	11.6	40.0	85	62	43	86
20	148	107 1	40 19	9727 (0.95	20.5	107.6	188	148	111	189
22	191	128 1	.93 3'	7399	1.01	27.6	137.2	2 245	191	141	248
24	192	130 1	.94 3	7816	1.01	28.1	136.8	3 247	192	137	253
26	148	93 1	56 24	4439	1.06	32.6	83.6	3 211	146	91	215

Dead Density Statistics for all Periods

Dead Oyster Density by Locality													
Localit	y Mean	Media	n SD	Var	CV	SE	L95	U95	Bst	rap_Mean	L95_Bstrap	U95_	Bstrap
В	T 46	3	4 33	1076	0.72	7.5	30.9	60	1	46	32.8	3	61
C	K 21	1	1 28	757	1.29	9.7	2.3	40	1	21	6.5	<u>, </u>	41
C	R 18	1	1 16	247	0.87	5.2	7.8	28	}	18	9.6	5	28
Н	IB 13		8 14	201	1.12	4.7	3.4	22	!	13	4.7	•	22
L	.C 18	1	1 20	402	1.14	1.4	14.9	20	1	18	14.8	3	20
L	T 54	4	7 35	1232	0.64	7.7	39.5	70	1	54	40.2	2	71
N	N 28	2	1 22	463	0.78	5.7	16.4	39	1	28	17.7	•	40
Dead Oyster Density by Strata													
	Mean I) Var	CV						an L95_Bstr	-	
_	33.1			5 928						33		7.6	39.0
N_PILOT												5.7	11.0
_	8.0				0.71							5.4	9.9
_	22.3									22		3.5	26.9
Y_Y	10.3	10.6	6.2	2 38	0.60	1.32	2 7.7	7 12	.9	10	.4 7	.9	12.9
Dead Oys	ter De	nsitv	hv Pe	rind									
Period		-	SD	Vai	c CV	, ,	SE I	.95	1195	Bstrap 1	Mean L95_Bs	tran 1	U95 Bstran
	2.9			8.9					4.9	Doorap_	2.9	1.1	4.8
10	8.2	8.9		44.0							8.2	4.3	12.7
11	5.2	4.1	2.6		0.49			.41	7.0		5.2	3.6	6.9
	4.4	2.8	4.1		0.93			. 55	7.2		4.3	1.8	7.0
	26.4	15.7							–		26.3	19.2	34.2
	17.5	10.5									17.5	11.5	24.1
	27.7	18.4									27.6	20.7	35.4
	28.5	14.2									28.4	20.6	36.5
	25.7	19.1									25.7	20.3	31.6
	13.3	10.6									13.3	9.0	19.5
20	10.0	10.0	12.0	100.0	, 0.5	۷. ۱		. 02	10.0	•	10.0	5.0	10.0

Summary Density Plots for all Periods

Figure – Calculated live oyster density by locality for all periods including period 22 (current period).

Figure – Calculated dead oyster density by locality for all periods including period 22 (current period).

Figure – Calculated live oyster density by strata for all periods including period 22 (current period).

Figure – Calculated dead oyster density by strata for all periods including period 22 (current period).

Figure – Calculated live oyster density for all periods including period 24 (current period) using a probability densit

Figure- Calculated Dead oyster density for all periods including period 22 (current period) using a probability densit

Live Oyster Density by Locality

Figure – Box plot depicting live oyster density by locality for all periods including period 22 (current period).

Dead Oyster Density by Locality NN LT LC CR CK ВТ 50 100 Oyster density per m^2

Figure – Box plot depicting dead oyster density by locality for all periods including period 22 (current period).

Figure – Box plot depicting live oyster density by strata for all periods including period 22 (current period).

Figure – Box plot depicting dead oyster density by strata for all periods including period 22 (current period).

Live Oyster Density by Period

Figure – Box plot depicting live oyster density by period for all periods including period 22 (current period).

Dead Oyster Density by Period Period Oyster density per m^2

Figure – Box plot depicting dead oyster density by period for all periods including period 22 (current period).

Live Oyster Density by Locality and Period

Figure – Live oyster density by locality and period for all periods including period 22 (current period).

Figure – Dead oyster density by locality and period for all periods including period 22 (current period).

Live Oyster Density by Strata and Period

Figure – Live oyster density by strata and period for all periods including period 22 (current period).

Figure – Dead oyster density by strata and period for all periods including period 22 (current period).

Live and Dead Count Comparison For All Periods

Figure- Live and dead oyster comparison for all periods, last sample date of period 26 is 2023-01-24.

Summary Plots for Pilot Study Sites

A subset of the oyster transect locations were sampled over time for a pilot study. Here we provide plots of live oyster counts and density for these pilot stations with Lone Cabbage (LCO10B, LCO11A, LCO8B, LCO9A).

Average Density by Station and Period

Figure - Average live oyster density comparison by station and period for all stations that were sampled during the pilc

Figure – Average live oyster density comparison by station and strata for all stations that were sampled during the

Latest Data Entered

Displayed are the entries for the last date of sampling (2023-01-24).

date	station	tran_length	count live	count dead	treatment	strata
2023-01-24	LC022	2.5	41	6	rocks	Y_Y
2023-01-24	LC022	5.0	54	7	rocks	Y_Y
2023-01-24	LC022	7.5	99	10	rocks	Y_Y
2023-01-24	LC022	10.0	60	8	rocks	Y_Y
2023-01-24	LC022	12.5	91	4	rocks	Y_Y
2023-01-24	LC022	15.0	21	5	rocks	Y_Y
2023-01-24	LC022	17.5	14	1	rocks	Y_Y
2023-01-24	LC022	20.0	62	10	rocks	Y_Y
2023-01-24	LC022	22.0	46	7	rocks	Y_Y
2023-01-24	LC022	22.1	2	0	rocks	Y_Y
2023-01-24	LC022	2.5	102	2	rocks	Y_Y
2023-01-24	LC022	5.0	40	1	rocks	Y_Y
2023-01-24	LC022	7.5	11	1	rocks	Y_Y
2023-01-24	LC022	10.0	73	0	rocks	Y_Y
2023-01-24	LC022	12.5	124	11	rocks	Y_Y
2023-01-24	LC022	15.0	132	13	rocks	Y_Y
2023-01-24	LC022	17.5	158	18	rocks	Y_Y
2023-01-24	LC022	20.0	104	4	rocks	Y_Y
2023-01-24	LC022	22.0	81	3	rocks	Y_Y
2023-01-24	LC022	22.8	33	1	rocks	Y_Y
2023-01-24	LC022	2.5	201	5	rocks	Y_Y
2023-01-24	LC022	5.0	172	3	rocks	Y_Y
2023-01-24	LC022	7.5	117	8	rocks	Y_Y
2023-01-24	LC022	10.0	83	4	rocks	Y_Y
2023-01-24	LC022	12.5	81	8	rocks	Y_Y
2023-01-24	LC022	15.0	95	10	rocks	Y_Y
2023-01-24	LC022	17.5	86	9	rocks	Y_Y
2023-01-24	LC022	20.0	80	6	rocks	Y_Y
2023-01-24	LC022	21.4	78	2	rocks	Y_Y
2023-01-24	LC021	2.5	0	1	rocks	Y_Y
2023-01-24	LC021	5.0	5	0	rocks	Y_Y
2023-01-24	LC021	7.5	3	0	rocks	Y_Y
2023-01-24	LC021	10.0	14	0	rocks	Y_Y
2023-01-24	LC021	12.5	32	4	rocks	Y_Y
2023-01-24	LC021	15.0	23	3	rocks	Y_Y
2023-01-24	LC021	17.5	50	4	rocks	Y_Y
2023-01-24	LC021	20.0	5	3	rocks	Y_Y
2023-01-24	LC021	22.0	36	8	rocks	Y_Y
2023-01-24	LC021	25.0	4	0	rocks	Y_Y
2023-01-24	LC021	2.5	168	10	rocks	Y_Y
2023-01-24	LC021	5.0	135	7	rocks	Y_Y
2023-01-24	LC021	7.5	42	1	rocks	Y_Y
2023-01-24	LC021	10.0	138	11	rocks	Y_Y
2023-01-24	LC021	12.5	198	7	rocks	Y_Y
2023-01-24	LC021	15.0	158	7	rocks	Y_Y
2023-01-24	LC021	17.5	146	8	rocks	Y_Y
2023-01-24	LC021	20.0	152	9	rocks	Y_Y
2023-01-24	LC021	22.0	38	1	rocks	Y_Y
2023-01-24	LC021	22.5	9	1	rocks	Y_Y
						_

2023-01-24	LC021	2.5	61	3	rocks	Y_Y
2023-01-24	LC021	5.0	33	1	rocks	Y_Y
2023-01-24	LC021	7.5	10	0	rocks	Y_Y
2023-01-24	LC021	10.0	10	0	rocks	Y_Y
2023-01-24	LC021	12.5	6	1	rocks	Y_Y
2023-01-24	LC021	15.0	6	1	rocks	Y_Y
2023-01-24	LC021	17.5	4	0	rocks	Y_Y
2023-01-24	LC021	20.0	9	0	rocks	Y_Y
2023-01-24	LC021	22.0	4	0	rocks	Y_Y
2023-01-24	LC021	2.5	101	3	rocks	Y_Y
2023-01-24	LC021	5.0	108	4	rocks	Y_Y
2023-01-24	LC021	7.5	106	4	rocks	Y_Y
2023-01-24	LC021	10.0	143	6	rocks	Y_Y
2023-01-24	LC021	12.5	112	3	rocks	Y _ Y
2023-01-24	LC021	15.0	67	7	rocks	Y_Y
2023-01-24	LC021	17.5	52	3	rocks	Y_Y
2023-01-24	LC021	20.0	104	9	rocks	Y_Y
2023-01-24	LC021	22.0	87	3	rocks	y
2023-01-24	LC021	2.5	4	3	rocks	Y_Y
2023-01-24	LC021	5.0	16	5	rocks	Y_Y
2023-01-24	LC021	7.5	1	0	rocks	Y_Y
2023-01-24	LC021	10.0	10	2	rocks	Y_Y
2023-01-24	LC021	12.5	3	1	rocks	Y_Y
2023-01-24	LC021	15.0	3	0	rocks	Y_Y
2023-01-24	LC021	17.5	6	0	rocks	Y_Y
2023-01-24	LC021	20.0	3	1	rocks	Y_Y
2023-01-24	LC021	22.0	0	0	rocks	Y_Y
2023-01-24	LC021	22.7	1	0	rocks	Y_Y
2023-01-24	LC021	2.5	87	6	rocks	Y_Y
2023-01-24	LC021	5.0	102	14	rocks	Y_Y
2023-01-24	LC021	7.5	49	6	rocks	Y_Y
2023-01-24	LC021	10.0	16	3	rocks	Y_Y
2023-01-24	LC021	12.5	53	8	rocks	Y_Y
2023-01-24	LC021	15.0	67	4		Y_Y
2023-01-24				7	rocks rocks	_
2023-01-24	LC021 LC021	17.5 20.0	65 47	4	rocks	Y_Y Y_Y
		20.0		4		
2023-01-24	LC021		57		rocks	Y_Y V_V
2023-01-24	LC021	25.0	1	0	rocks	Y_Y
2023-01-24	LC021	2.5	152	13	rocks	Y_Y
2023-01-24	LC021	5.0	133	13	rocks	Y_Y
2023-01-24	LC021	7.5	63	7	rocks	Y_Y
2023-01-24	LC021	10.0	149	21	rocks	Y_Y
2023-01-24	LC021	12.5	123	26	rocks	Y_Y
2023-01-24	LC021	15.0	179	9	rocks	Y_Y
2023-01-24	LC021	17.5	46	8	rocks	Y_Y
2023-01-24	LC021	20.0	244	11	rocks	Y_Y
2023-01-24	LC021	22.0	101	7	rocks	Y_Y
2023-01-24	LC021	23.2	84	2	rocks	Y_Y
2023-01-24	LC021	2.5	81	9	rocks	Y_Y
2023-01-24	LC021	5.0	80	6	rocks	Y_Y
2023-01-24	LC021	7.5	147	17	rocks	Y_Y
2023-01-24	LC021	10.0	141	7	rocks	Y_Y
2023-01-24	LC021	12.5	140	6	rocks	Y_Y
2023-01-24	LC021	15.0	113	4	rocks	Y_Y

2023-01-24	LC021	17.5	18	1	rocks	Y_Y
2023-01-24	LC021	20.0	60	2	rocks	Y_Y
2023-01-24	LC021	22.0	57	3	rocks	Y_Y
2023-01-24	LC021	22.8	3	1	rocks	Y_Y
2023-01-24	LC021	2.5	92	10	rocks	Y_Y
2023-01-24	LC021	5.0	101	8	rocks	Y_Y
2023-01-24	LC021	7.5	23	3	rocks	Y_Y
2023-01-24	LC021	10.0	21	0	rocks	Y_Y
2023-01-24	LC021	12.5	25	4	rocks	Y_Y
2023-01-24	LC021	15.0	11	2	rocks	Y_Y
2023-01-24	LC021	17.5	22	4	rocks	Y_Y
2023-01-24	LC021	20.0	16	10	rocks	Y_Y
2023-01-24	LC021	22.0	52	7	rocks	Y_Y
2023-01-24	LC021	23.2	59	8	rocks	Y_Y
2023-01-24	LC021	2.5	114	9	rocks	Y_Y
2023-01-24	LC021	5.0	135	11	rocks	Y_Y
2023-01-24	LC021	7.5	125	9	rocks	Y_Y
2023-01-24	LC021	10.0	144	10	rocks	Y_Y
2023-01-24	LC021	12.5	126	8	rocks	Y_Y
2023-01-24	LC021	15.0	108	13	rocks	Y_Y
2023-01-24	LC021	17.5	108	3	rocks	Y_Y
2023-01-24	LC021	20.0	83	3	rocks	Y_Y
2023-01-24	LC021	22.0	93	7	rocks	Y_Y
2023-01-24	LC021	23.1	73	14	rocks	Y_Y
2023-01-24	LCI42	2.5	3	1	control	<na></na>
2023-01-24	LCI42	5.0	9	1	control	<na></na>
2023-01-24	LCI42	7.5	88	10	control	<na></na>
2023-01-24	LCI42	10.0	59	8	control	<na></na>
2023-01-24	LCI42	12.5	34	1	control	<na></na>
2023-01-24	LCI42	15.0	67	3	control	<na></na>
2023-01-24	LCI42	17.5	0	0	control	<na></na>
2023-01-24	LCI42	20.0	0	0	control	<na></na>
2023-01-24	LCI42	22.5	2	0	control	<na></na>
2023-01-24	LCI42	25.0	114	22	control	<na></na>
2023-01-24	LCI42	27.5	47	5	control	<na></na>
2023-01-24	LCI42	30.0	62	8	control	<na></na>
2023-01-24	LCI42	31.2	8	1	control	<na></na>