Self-interacting dark matter model without dark energy in cosmology

Yixuan Zhu

Department of Astronomy, Beijing Normal University. Beijing 100875. PR China

ABSTRACT

1. Introduction

2. The basic equations in the IDM model

We assume that the total density of the cosmic fluid obeys the collisional Boltzmann equation()

$$\dot{\rho} + 3H\rho + \kappa \rho^2 - 2\Psi = 0,\tag{1}$$

where ρ is the total energy-density of the cosmic fluid, containing dark matter, baryons, and any type of exotic energy, Ψ is the rate of creation of DM particle pairs, and the annihilation parameter $\kappa(\geq 0)$ is given by:

$$\kappa = \frac{\langle \sigma u \rangle}{M_x},\tag{2}$$

where σ is the cross-section for annihilation, u is the mean particle velocity, and M_x is the mass of the DM particle. Compared to the usual fluid equation, the effective pressure term is

$$P = \frac{\kappa \rho^2 - \Psi}{3H}.\tag{3}$$

When $\kappa \rho^2 - \Psi < 0$, what means that the IDM particle creation term is larger than the annihilation item, IDM may serve as a negative pressure source in the global dynamics of the Universe, like the role of Dark Energy in the general cosmolgical models.

Basilakos & Plionis (2009) identified two functional forms for which the previous Boltzmann equation can be solved analytically. Refering to Appendix B in (), only one of these two is of interest because it provides a " $\propto a^{-3}$ " dependence of the scale factor, which is

$$\Psi(a) = aH(a)R(a) = C_1(n+3)a^nH(a) + \kappa C_1^2a^{2m}.$$
 (4)

And the total energy density is

$$\rho(a) = C_1 a^n + \frac{a^{-3} F(a)}{C_2 - \int_1^a x^{-3} f(x) F(x) dx},$$
(5)

where $f(a) = -\kappa/[aH(a)]$, and the kernal function F(a) has the form

$$F(a) = \exp\left[-2\kappa C_1 \int_1^a \frac{x^{n-1}}{H(x)} dx\right]. \tag{6}$$

The first term of Eq.(5) is the density corresponding to the residual matter creation that results from a possible disequilibrium between the particle creation and annihilation processes, while the second term can be viewed as the energy density of the self-IDM particles that are dominated by the annihilation process.

2.1. Model 1: relation to the ΛCDM model

If n = 0, the global density evolution can be transformed as

$$\rho(a) = C_1 + a^{-3} \frac{e^{-2\kappa C_1(t - t_0)}}{C_2 - \kappa Z(t)},\tag{7}$$

where $Z(t) = \int_{t_0}^{t} a^{-3} e^{-2\kappa C_1(t'-t_0)} dt'$ (). Using the usual unit-less Ω -like parameterization, we obtain that

$$\left(\frac{H}{H_0}\right)^2 = \Omega_{1,0} + \frac{\Omega_{1,0}\Omega_{2,0}a^{-3}e^{-2\kappa C_1(t-t_0)}}{\Omega_{1,0} + \kappa C_1\Omega_{2,0}Z(t)},\tag{8}$$

where $\Omega_{1,0} = 8\pi G C_1/3H_0^2$ and $\Omega_{2,0} = 8\pi G/3H_0^2C_2$, which related to Ω_{Λ} and Ω_m in the Λ CDM model, respectively. From Eq.(2), we can also give the mass of the DM particle related to the range of κC_1 (in the unit of Gyr⁻¹)

$$M_x = \frac{3.325 \times 10^{-12}}{\kappa C_1} \frac{\langle \sigma u \rangle}{10^{-23}} h^2 (1 - \Omega_{2,0}) \,\text{GeV},\tag{9}$$

where $h \equiv H_0/[100 \text{km/s/Mpc}]$.

2.2. Model 2: relation to the wCDM model

If $\kappa = 0$, the global density evolution can be written as

$$\rho(a) = \mathcal{D}a^{-3} + C_1 a^n,\tag{10}$$

where $\mathcal{D} = C_2 - C - 1$. The conditions in which the current model acts as a quintessence cosmology are given by $\mathcal{D} > 0$, $C_1 > 0$, and $w_{\text{IDM}} = -1 - n/3$. This solution is mathematically equivalent to that of the gravitational matter creation model of(). The Hubble flow is now given by

(5)
$$\left(\frac{H}{H_0}\right)^2 = \Omega_{2,0}a^{-3} + \Omega_{1,0}a^n,$$
 (11)

where $\Omega_{2,0}=8\pi G\mathcal{D}/3H_0^2$ and $\Omega_{1,0}=8\pi GC_1/3H_0^2$, respectively.()

3. Observational data

4. Constraint results

5. Conclusions