安徽大学 20_20_-20_21_学年第_2_学期

《大学物理 A(上)》期中考试试卷 (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	 yearsh .	三(16)	三(17)	三(18)	四	总分
得 分				2		
阅卷人			8	0		

-1-	' 1		/									
平			得 分									
			阅卷人				7					
	***************************************		、 选择题 平面内一				* 古程为	$\vec{x}(t) = D$	cosoti L	Psinoti	得分((日制)	则在
年名	戮		Imp. 17. 14. 5. 15. 5. 11. 11. 11. 12. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14) 2 p
7	A. ωR , $m\omega^2 R$ B. ωR , $m\omega^2 R/2$ C. $\omega R/2$, $m\omega^2 R/2$ D.									$\omega R/2$, η	$n\omega R$	
	罴	2.	运动会上-	一跳水运	动员自 10	m高的跳	16台自由	下落(设	g = 9.8 r	m/s^2), λ	水后因受	水的
	製	阻	力而减速.	自水面向]下取坐标	轴 Oy,源	则得其加i	速度为-k	v_y^2 , $k=0$).4m ⁻¹ ,则	运动员在	水面
	2	: 以	下y处的速	度v _v =							()
争业	数		. 14e ^{0.4y²}			^{4y} (SI制)	С.	14e ^{-0.4y} ((SI制)	D. 14e ⁻	0.4y ² (SI i	制)
	,,	3.	一质点做名	习速率圆	周运动,贝	1]	*				()
		A	动量变化,	对圆心角	动量也不同	断变化	I	3. 速度大	小、方向:	始终不变,	动量守恒	
ent		C.	C. 速度大小始终不变,动量守恒 D. 动量不断变化,但对圆心的角动量不变								变	
年级		4.	一船浮于青	净止的水	面中,船长	长为L,质	量为 m,	一个质量	为 m/2 的	了人从船局	是走到船头	;. 不
,	執	ų it	水和空气阻	且力,则在	此过程中	船相对于	地面	•			()
		A	. 后退 L/3		B. 后	退 L/2	C.	后退 L		D.	不动	
		5.	一质量为	m 的质点	做曲线运	动. 某时	刻测得该	质点的速	度大小为	可v, 对应	的曲率半	径为
		r.	此时,该原	点受到的	的						(.)
院/系		А	. 合力大小	不可知,	但切向力	为 mv²/r	B.	合力大	小为 mv2/	r,但切向	力不可知	1
- C			. 合力大小									
	ì										1 R	
	6. 一质量为 m 的滑块,由静止开始沿 $1/4$ 圆弧光滑的木槽滑下.木槽的											
		质量也为 m ,槽圆弧半径为 R ,放在光滑的水平地面上,如图所示. 设 m										
		Ī	力加速度为	Ig,则滑	·块离开木	槽时相对	于地面的	」速度大小	\为	·	innanani ()
		A	$(gR)^{1/2}$		B. (2 <i>gR</i>)1/2	C.	$(3gR)^{1/2}$		D. 2(g	$(R)^{1/2}$	

-	7. 已知一匀质细棒 A 可绕其一端 O 点在竖直平面内自由转动. 现将一球 B 固定在细棒上,并保持二者中心重合. 已知细棒长度为 l , 质量为 m_1 , 球 B 质量为 m_2 , 球 B 对其直径为转
	轴的转动惯量为 J,则二者对转轴 O 的总转动惯量为 ()
	A. $J + m_2 l^2 / 2$ B. $J + m_2 l^2 / 4$ C. $m_1 l^2 / 3 + J$ D. $m_1 l^2 / 3 + J + m_2 l^2 / 4$
5	8. 一质量为 m 的质点绕 O 点做匀速率圆周运动,角速度大小为 ω ,对 O 点角动量为 L ,则
	圆周运动的半径为()
,	A. $L/m\omega^2$ B. $(L/m\omega)^{1/2}$ C. $(L/m)^{1/2}$ D. $(L/\omega)^{1/2}$
	9. 如图所示,一质量为 m 的小球从高为 H 处沿轨道由静止开始滑入环形
	轨道,轨道光滑.设H足够高,则小球在环最低点时环对它的作用力与在
	环最高点时环对它的作用力之差恰为小球重量的倍. ()
	A. 8 B. 6 C. 4 D. 2
	10. 如图所示,水流冲击在静止的涡轮叶片上,水流冲击叶片前后的
	速率均为 v, 但方向相反. 每单位时间内冲向叶片的水的质量保持不
	变且等于 u,则水作用于叶片的力为()
	A. uv B. 4uv C. 3uv D. 2uv
	二、填空题 (每小题 4 分, 共 20 分)
	11. 一质点沿 x 轴运动,坐标与时间的变化关系为 $x(t) = 9t-2t^3$ (SI 制). 则其在 1s 末的速度
	=m/s, 3s 末的加速度 =m/s ² .
	12. 汽车在半径为 200 m 的圆弧形公路上刹车,刹车开始阶段的运动学方程为 $s(t) = 20t-2t^3$ (SI 制). 则汽车在 $t = 1$ s 时的切向加速度 =m/s², 法向加速度 =m/s².
	13. 如图所示,一绳跨过一定滑轮,其两端分别拴有质量为 m ₁ 和 m ₂ 的物
	体 $(m_1>m_2)$, m_1 静止在桌面上. 抬高 m_2 , 使绳处于松弛状态. 当 m_2 自由落
	下 h 后,绳子才被拉紧.则此时两物体的速度大小 $v=$
	m_1 能够上升的最大高度 $H=$
	14. 一刚体对某轴的转动惯量为 J ,转动角速度为 ω ,则对该轴的角动量 $L=$
	转动动能 $E_{\mathbf{k}} =$
	15. 单个质点的平衡条件为
	和

三、计算题(共45分)

16. (本题 10分)

得分

一根特殊的弹簧,在伸长x时,其弹性力之间的关系为 $F(x)=8x+0.6x^2$ (SI 制),求当将弹簧从x=0.5m 拉长至x=1.0m 时,外力需要克服弹性力所做的功.

17. (本题 10 分)

江

勿超裁

年级

院/然

得分

一质量为m的质点拴在细绳的一端,绳的另一端固定. 让该质点在粗糙的水平面上作半径为R的圆周运动. 设质点初速率为 ν_0 ,当它运行 2 周后,其速率变为原来的一半. 求滑动摩擦系数 μ . (取重力加速度为g)

18. (本题 25 分)

得分

如图所示,质量为M,倾角为 θ 的光滑斜面放置在光滑地面上,质量为m的滑块沿斜面自由下滑,其下落高度为h时,斜面后退速度为u,设水平向左为x轴为正方向,竖直向下为y轴正方向。

(1) 假设滑块相对斜面下滑的速度为 $\nu_{\rm H}$,根据绝对速度、相对速度和牵连速度之间的关系,将滑块相对地面的水平速度 $\nu_{\rm x}$ 和竖直速度 $\nu_{\rm y}$ 用 θ 、u 和 $\nu_{\rm H}$ 表达出来. (6 分)

(2) 根据动量守恒将滑块相对地面的水平速度 v_x 和竖直速度 v_y 用 m、M、 θ 和 u 表达出来. (10 分)

(3) 根据机械能守恒求出 u 随 h 的关系. (9分)

四、证明题 (本题 15 分)

得分

19. 当圆柱形容器内部盛上流体后,让流体绕其轴线旋转,可以看到液面由平面变为一抛物面. 在液面上取一个质元为 Δm ,分析其受力情况,选用如图所示的坐标系,通过牛顿力学证明: 盛在圆柱形容器内以角速度 ω 绕中心轴作匀速率旋转的流体,其表面为一旋转抛物面,即 $y=\frac{\omega}{2g}x^2$. (设重力加速度为g)

第4页 共4页

安徽大学 20 20 - 20 21 学年第 2 学期

《 大学物理 A (上) 》期中考试参考答案及评分标准

- 一、选择题(每小题2分,共20分)
- 1-10 ACDAC ADBBD
- 二、填空题(每小题 4 分, 共 20 分)
- 11. 3 , -36 . (每空2分)
- 12. -12, _0.98. (每空2分)

13.
$$\frac{m_2}{m_1+m_2}\sqrt{2gh}$$
 , $\frac{m_2^2h}{m_1^2-m_2^2}$. (每空 2 分)

- 14. $J\omega$, $J\omega^2/2$. (每空 2 分)
- 15. <u>合力为零</u>, <u>合力为零</u>, <u>合外力矩为零</u>. (第一空 2 分, 余下每空 1 分. 写成合理的公式也对)

三、计算题(共45分)

16. (本题 10 分)

解: A =
$$\int_{0.5}^{1.0} F(x) dx = \int_{0.5}^{1.0} (8x + 0.6x^2) dx = (4x^2 + 0.2x^3)|_{0.5}^{1} = 3.175$$
 (10分)

列出式子6分,解出结果4分.

17. (本题 10 分)

解: 根据动能定理,
$$\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = -\int_0^{4\pi R} f ds$$
 (6分)

将
$$v = v_0/2$$
 和 $f = \mu mg$ 代入上式,可解出 $\mu = \frac{3v_0^2}{32\pi Rg}$ (4分)

18. (本题 25 分)

(1) **解:** 设 m 相对于地面的速度为 v,则根据绝对速度、相对速度和牵连速度的关系有 $\vec{v} = \vec{v}_H + \vec{u}$,设水平向左为 x 轴为正方向,竖直向下为 y 轴正方向,对则有

$$v_{x} = v_{H} cos\theta - u \tag{3 }$$

$$v_{y} = v_{H} \sin\theta$$
 (3 $\%$)

(2) **解**:将m和M视为质点系,在水平方向上不受外力作用,该方向上动量守恒,

$$Mu = mv_x$$
 (4 $\%$)

因此,
$$v_x = \frac{M}{m}u$$
 (2分)

再根据(1)可得, $v_{H} = \frac{v_{x}+u}{\cos\theta}$,于是

$$v_y = v_{\text{H}} \sin\theta = \frac{v_x + u}{\cos\theta} \sin\theta = (v_x + u) \tan\theta = \left(\frac{M}{m} + 1\right) u \tan\theta$$
 (4 \(\frac{\partial}{p}\))

(3) 解:根据机械能守恒有,

$$\frac{1}{2}mv^{2} + \frac{1}{2}Mu^{2} = mgh \quad \text{或} \quad \frac{1}{2}m(v_{x}^{2} + v_{y}^{2}) + \frac{1}{2}Mu^{2} = mgh$$
即,
$$\frac{1}{2}m\left\{\left(\frac{M}{m}u\right)^{2} + \left[\left(\frac{M}{m} + 1\right)utan\theta\right]^{2}\right\} + \frac{1}{2}Mu^{2} = mgh, 于是$$

$$(m+M)\left[M + (m+M)tan^{2}\theta\right]u^{2} = 2m^{2}gh$$

$$u = \frac{m\cos\theta}{m+M} \sqrt{\frac{2(m+M)gh}{M+m\sin^2\theta}}$$

$$(4 \%)$$

四、证明题(本题15分)

 \mathbf{M} : 在液面附近取一质元 Δm , 对其进行受力分析,

一个是支持力N,另一是重力 Δmg . 二者合力充当向心力.

N的方向与过 Δm 所处点的切线方向垂直. 于是有

$$N\cos\theta = \Delta mg$$
 (2 β)

$$N\sin\theta = \Delta m\omega^2 x \tag{2 \%}$$

上述两式相比有

$$tan\theta = \frac{\omega^2 x}{a} \tag{3 \%}$$

而
$$tan\theta = \frac{dy}{dx} \tag{3 分}$$

于是有
$$\frac{dy}{dx} = \frac{\omega^2 x}{g} \tag{3分}$$

可解出
$$y = \frac{\omega^2}{2g}x^2 + C$$
. 当 $x = 0$ 时, $y = 0$.得出 $C = 0$. (2分)

$$\mathbb{P} y = \frac{\omega^2}{2g} x^2$$