E-M algoritmus pro odhad parametrů Gaussovské směsi

Předmět zadání

Proveďte odhad parametrů Gaussovské směsi $p(\vec{x}|\vec{\lambda}) = \sum_{m=1}^{M} c_m N(\vec{x}|\vec{\mu}_m, C_m)$ o neznámém počtu složek M, kde $\vec{\mu}_m$ je vektor středních hodnot m-té složky, C_m je kovarianční matice m-té složky, $\vec{\lambda}$ je vektor všech parametrů směsi a \vec{x} je posloupnost pozorování (2 rozměrných vektorů). Odhad proveďte algoritmem očekávání - maximalizace.

- ullet Posloupnost pozorování $ec{x}$ načtěte ze souboru $\mathtt{sp4_data.mat}$, případně ze souboru $\mathtt{sp4_data.csv}$, pokud vám MATLAB nevyhovuje (každý řádek obsahuje obě čárkou oddělené složky pozorování).
- Implementujte E-M algoritmus. **Zdůvodněte případné použití zjednodušujících předpokladů** (počet složek směsi, tvar kovarianční matice, atd.).
- Proveďte implementovaný algoritmus nad poskytnutými daty. Uvažujte zastavovací podmínku euklidovské vzdálenosti předcházejících a nově odhadnutých parametrů $||\vec{\lambda}_i \vec{\lambda}_{i-1}|| < 10^{-3}$, kde i je číslo iterace algoritmu.
- Tabelujte **všechny** hodnoty $i, \vec{\lambda}_i, ||\vec{\lambda}_i \vec{\lambda}_{i-1}||$.
- Do grafu vyneste závislost $||\vec{\lambda}_i \vec{\lambda}_{i-1}||$ na počtu iterací.

Použité nástroje

Simulaci proveď te v prostředí MATLAB, příp. naprogramujte ve vybraném programovacím jazvce.

Co se odevzdá

V referátu ve formátu PDF slovně komentujte vaše řešení, vč. zdůvodnění použitých předpokladů. Součástí referátu bude právě jedna tabulka a jeden graf dle zadání. Spolu s referátem odevzdejte pro posouzení komentovaný programový kód, který byl k řešení použit. Dbejte na splnění všech bodů zadání.