Lecture 21: Equilibrium responses to shocks in the NK model

ECON30009/90080 Macroeconomics

Semester 2, 2025

Last class

Wrote down a simple 1 period NK model with sticky wages
Nominal wage was perfectly sticky which implied that wages did not move to clear the labour market.
Because households willing to supply any amounts of labour, firm's labour demand determined equilibrium labour used in production
Firm's labour demand affected by the real wage. Variations in the real wage in turn depend on the price level when the nominal wage is sticky.

Last class

We derived an AS and AD curve from the <i>optimizing</i> behavior of households and firms ("new" in New Keynesian refers to microfounded model as opposed to statistical relationship)
AS curve affected by TFP, ${\cal K}$ and firm's labour demand
AD curve affected by household demand which in turn is affected by demand for money balances and demand shock ϵ
We showed what happens when TFP falls (AS curve shifts inward)
and how expansionary monetary policy can stimulate demand and output via its impact on the price level and the real wage

Last class

- □ Different from the RBC model with money: monetary policy (and thus, money) is not neutral
- □ Notably, a key difference is there exists sticky prices (here sticky nominal wages) in NK model while all prices are perfectly flexible in RBC

Other shocks?

- ☐ A prediction of the RBC model is that variations in TFP are the driver of business cycles
- □ Other shocks in the RBC model cannot get co-movement right
- ☐ Can other shocks in the NK model give us the correct co-movement?

Demand shocks

☐ A simple way to get a demand shock in our model is to increase the household's preference for consumption:

$$\max_{c,m} \frac{\epsilon}{\ln c} \ln c + \gamma \ln m$$

- In particular, a rise in ϵ will raise the marginal utility the household gets from each additional unit of consumption, c
- \Box We can ask how our economy would respond if households observed a positive demand shock, i.e., $\epsilon\uparrow$

Demand shocks

 Increase in demand for c leads to price level increase:

$$P = \frac{1}{z} \left[\frac{\epsilon M}{\gamma} \right]^{\alpha} \left[\frac{\overline{W}}{1 - \alpha} \right]^{1 - \alpha}$$

- $\bullet \ \, \text{Higher} \, P \, \, \text{lowers} \, \, w \\ \Longrightarrow \ \, \text{higher} \, \, L^d. \\$
- Output, consumption and total hours worked increase

Demand shocks

- ☐ In response to a demand shock, output consumption and total hours worked increase in the simple NK model.
- ☐ The demand shock causes the AD curve to move and raise prices
- What would be the stabilization policy the monetary authority can pursue if it wants to maintain price stability?

Stabilization

In equilibrium $M=M^s=\bar{M}$

 \square Reduce money supply to lower P

$$P = \frac{1}{z} \left[\frac{\epsilon M}{\gamma} \right]^{\alpha} \left[\frac{\overline{W}}{1 - \alpha} \right]^{1 - \alpha}$$

 \square Lower transfers to households \implies lower money balances and lower consumption demand

$$c = \frac{\epsilon}{\gamma} m = \frac{\epsilon}{\gamma} \frac{M}{P} = z \left(\frac{\epsilon M}{\gamma}\right)^{1-\alpha} \left[\frac{\overline{W}}{1-\alpha}\right]^{\alpha-1}$$

 \square Fall in P leads to higher real wage, L^d falls and output supplied falls (movement along AS curve).

What about a government spending shock?

Government spending shock

\square Suppose government needs to spend an exogenous G amount of government spending. And suppose the government spending is wasteful	
☐ But now let us assume that the government creates money to fund its spending (G
☐ This is a form of passive monetary policy. Here the monetary authority supplies	

money to accommodate the government's spending.

Government budget constraint

\square Government spends exogenous G
\sqsupset and creates money to finance G
$PG=M^s$
Observe that the exogenous variable is $G.\ M^s$ is now endogenous and dependent on the size of nominal government expenditure.
☐ Since money created used to completely finance government spending, there is n

transfer to households in this case.

Household

□ household problem is standard, only difference from Lecture 20 is budget constraint has no transfer

$$\max_{c,m} \epsilon \ln c + \gamma \ln m$$

s.t.

$$c + m = Ra + \frac{\overline{W}}{P}\ell + \pi$$

Optimality conditions:

optimal trade-off between
$$c$$
 and m : $\frac{\epsilon}{c} = \frac{\gamma}{m}$

and household budget constraint

Firm's problem

- ☐ Firm's problem is standard.
- Nominal wage is fixed and households willing to supply any amounts of labour as demanded since no disutility from working.
- ☐ So labour demand determines labour used in equilibrium:

$$L^{d} = \left[\frac{P(1-\alpha)zK^{\alpha}}{\overline{W}} \right]^{1/\alpha}$$

 $\ \square$ Suppose N=1 and K=Na=1

$$\square$$
 Suppose $N=1$ and $K=Na=1$

☐ Goods market clearing implies:

$$c + G = Y = zK^{\alpha}L^{1-\alpha} = zL^{1-\alpha}$$

$$\square$$
 Suppose $N=1$ and $K=Na=1$

☐ Goods market clearing implies:

$$c + G = Y = zK^{\alpha}L^{1-\alpha} = zL^{1-\alpha}$$

 $\hfill \square$ We know $L=L^d$ and $G=\frac{M^s}{P}$, $M^s=NM=M$ and $c=\epsilon m/\gamma$ in equilibrium.

$$\frac{\epsilon G}{\gamma} + G = z \left[\frac{P(1-\alpha)z}{\overline{W}} \right]^{(1-\alpha)/\alpha}$$

$$\square$$
 Suppose $N=1$ and $K=Na=1$

☐ Goods market clearing implies:

$$c + G = Y = zK^{\alpha}L^{1-\alpha} = zL^{1-\alpha}$$

 $\hfill \square$ We know $L=L^d$ and $G=\frac{M^s}{P}$, $M^s=NM=M$ and $c=\epsilon m/\gamma$ in equilibrium.

$$\frac{\epsilon G}{\gamma} + G = z \left[\frac{P(1-\alpha)z}{\overline{W}} \right]^{(1-\alpha)/\alpha}$$

 \square Can solve for P in terms of exogenous variables and parameters of the model

 \square Can solve for P in terms of exogenous variables and parameters of the model

$$P = \frac{1}{z^{1/(1-\alpha)}} \left[\frac{\epsilon + \gamma}{\gamma} G \right]^{\frac{\alpha}{1-\alpha}} \left[\frac{\overline{W}}{1-\alpha} \right]$$

 \square Can solve for P in terms of exogenous variables and parameters of the model

$$P = \frac{1}{z^{1/(1-\alpha)}} \left[\frac{\epsilon + \gamma}{\gamma} G \right]^{\frac{\alpha}{1-\alpha}} \left[\frac{\overline{W}}{1-\alpha} \right]$$

 \square Rise in G raises P, this in turn lowers the real wage.

 \square Can solve for P in terms of exogenous variables and parameters of the model

$$P = \frac{1}{z^{1/(1-\alpha)}} \left[\frac{\epsilon + \gamma}{\gamma} G \right]^{\frac{\alpha}{1-\alpha}} \left[\frac{\overline{W}}{1-\alpha} \right]$$

- \square Rise in G raises P, this in turn lowers the real wage.
- Lower real wages lead to higher labour demand

$$L^{d} = \left[\left(\frac{\epsilon + \gamma}{\gamma} \right) \frac{G}{z} \right]^{\frac{1}{1 - \alpha}}$$

 \square Can solve for P in terms of exogenous variables and parameters of the model

$$P = \frac{1}{z^{1/(1-\alpha)}} \left[\frac{\epsilon + \gamma}{\gamma} G \right]^{\frac{\alpha}{1-\alpha}} \left[\frac{\overline{W}}{1-\alpha} \right]$$

- \square Rise in G raises P, this in turn lowers the real wage.
- ☐ Lower real wages lead to higher labour demand

$$L^{d} = \left[\left(\frac{\epsilon + \gamma}{\gamma} \right) \frac{G}{z} \right]^{\frac{1}{1 - \alpha}}$$

More labour used in production leads to output supplied increasing

☐ Despite fall in real wage rate, consumption increases as firm employs higher amounts of labour

- □ Despite fall in real wage rate, consumption increases as firm employs higher amounts of labour
- □ Income overall higher as more labour used in production $(\ell \uparrow)$ and real return to capital, R, higher (complements)

$$c = \frac{\epsilon M}{\gamma P} = \frac{\epsilon}{\gamma} G$$

Government spending shock

- Positive government spending shock shifts out AD curve
- Passive monetary policy to support rise in government spending

In response to positive G shock

- ☐ The static NK model with perfectly sticky nominal wages predicts:
 - Output increases and price level rises
 - Total labour used in production increases

- ☐ Start of this course: looked at history of macro
- ☐ Out of Great Depression, macro started as a separate field of inquiry in economics
- □ Idea that govt should intervene to manage fluctuations in economic activity

- ☐ But how to manage fluctuations not straightforward
- ☐ Are coefficients estimated from statistic relationships "structural parameters"? Do these estimated parameters not change even when policy changes?
- ☐ Push towards micro-founding macro

- ☐ 1st half of the course: a micro-founded model of the economy in the long-run
- Could look at how households and firms respond to changes in policy in the long run and whether market economy outcomes were pareto optimal
- □ No one size fits all: in OLG model, type of fiscal policy and how its financed

mattered for outcomes!

2nd half of the course: using our micro-founded model to explain business cycle and responses to policy
Adapt the model that looked at drivers of long run growth to examine fluctuation in the short run
RBC model finds that indeed variations in TFP can explain fluctuations in economic activity over the short-run
but only variations in TFP

- ☐ From lens of RBC model: just because something fluctuates doesn't mean should intervene to prevent its fluctuation (plain vanilla RBC model says market economy is pareto efficient)
- .. which suggests we should think carefully about what friction exists in the economy that we want to address

- ☐ In class, we looked at two types of frictions:
 - search frictions \implies search model of unemployment
 - o sticky prices (in particular sticky nominal wages) ⇒ inflation
- ☐ Both models suggest there is a role for stabilization policy

So where do we go from here?
Model assumptions mattered a lot for the predictions and implications of the model
How do we use micro-foundations to study the macro-economy?

Model-centric vs. problem-centric
Writing down a highly realistic model with every single feature of the economy incorporated makes it a very complicated model
Problem is that in equilibrium, things can interact to amplify, mitigate or cancel out (e.g., think about government spending and how in some cases it can crowd out consumption)
With too many features in a model, very hard to identify what's driving the outcome
Other end of spectrum: writing too a simple a model ends up not being useful or policy-relevant

Problem-centric approach: requires us to think carefully about the trade-offs we want to examine
Careful modeling of the question we want answered. Simplifying assumptions on everything else.
But that also means recognizing that a model written to answer a particular type of question, is not always appropriate to answer a question it wasn't designed to address

Final takeaways

- ☐ Even if you don't go down the path of writing down your own models
- ☐ You should be able to apply a critical lens to models introduced to you
- $oxedsymbol{\square}$ And to understand why a model gave a particular prediction

Final exam

Final is cumulative (you need to know how to solve the household problem, the firm's problem, government budget constraints and for equilibrium)
Emphasis on material from social security onwards (Lecture 10 onwards)
Format:
o ECON30009: 5 short answer questions (30%), 2 long answer questions (70%)
o ECON90080: 7 short answer questions (28%), 3 long answer questions (72%)
Practice final online: we will go over short answer and 1 long answer on Thursday
Tutorial: go over 2nd long answer question

Otherwise, thanks! You've been a great class!