20 概率论 (回忆版)

2024年11月22日

- 1. (a) 已知 $\mathbb{P}(AB) = \mathbb{P}(\bar{A}\bar{B})$, 证明 $\mathbb{P}(A) + \mathbb{P}(B) = 1$
 - (b) 若 $\mathbb{P}(A) = 0$,则 $\mathbb{P}(AB) = 0$
 - (c) 若 $\mathbb{P}(A) = 1$,则 $\mathbb{P}(AB) = \mathbb{P}(B)$
- 2. 扔硬币排队,正面选中餐,反面选西餐,中餐现有 9 人排队,每人时间为 $N(1,\frac{1}{9})$,西餐不需要排队,但需现做,参数为 0.1 的指数分布已知 $\Phi(1)$ 和 e^{-1} 的值。
 - (a) 求等待时间 >10min 的概率
 - (b) 若等待时长 >10min, 求选西餐的概率
 - (c) 求 E(等待时间)
- 3. ξ 分布函数为 F(x), $\eta = \min\{1, |\xi|\}$
 - (a) 求 η 的分布函数 F_{η}
 - (b) 若 $\xi \sim U(-2,2)$, 问 η 是否为连续型? 若否,是否能分成连续型与离散型的线性组合?
- 4. 在 $\{(x,y) | |x| \le |y| \le 1\}$ 上投点,坐标为 (ξ,η)
 - (a) 求联合密度,边缘密度
 - (b) 求 $|\xi \eta|$ 密度
 - (c) $\Re \mathbb{E}(\xi|\eta)$, $\mathbb{E}(\xi^2 + \eta^2|\eta)$
- 5. N 个球,a 红,b 黑,一些其它;从中取 n 个,红黑分别 ξ , η 个,证明:放回与不放回, ξ 和 η 的相关系数相同;证明顺序:

- (a) 放回, 求 $D(\xi)$, $D(\eta)$, $cov(\xi, \eta)$
- (b) 不放回, 求 $D(\xi)$, $D(\eta)$, $cov(\xi, \eta)$
- (c) 求 r_1, r_2 , 并证明 $r_1 = r_2$
- 6. (a) 若 $(\xi_n \xi)^2 \stackrel{\mathbb{P}}{\to} 0$, 求证 $\xi_n^2 \stackrel{\mathbb{P}}{\to} \xi^2$
 - (b) 若 ξ_n 同分布,且 $\mathbb{E}|\xi_n| < \infty$,求证 $\frac{\xi_n}{n} \stackrel{\mathbb{P}}{\to} 0$
- 7. (a) 叙述强/弱大数定律
 - (b) 下列是否满足强/弱大数定律

i.
$$\mathbb{P}(\xi_n = \pm \sqrt{n}) = \frac{1}{n}, \ \mathbb{P}(\xi_n = 0) = 1 - \frac{2}{n}$$

ii.
$$\mathbb{P}(\xi_n = \pm n) = \frac{1}{2n \ln n}, \ \mathbb{P}(\xi_n = 0) = 1 - \frac{1}{n \ln n}$$