CP312 Algorithm Design and Analysis I

LECTURE 3: CHARACTERIZING RUNNING TIME

Simplifying the Running Time Expression

Consider the following running time:

$$T(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3 + \dots + a_d n^d$$

- Too complicated
- Too many terms
- Difficult to compare two expressions of the same form
- Do we really need that many terms?
- Example: $T(n) = 10n^3 + n^2 + 40n + 800$
 - \circ If n=1000, then $T(n)=10{,}001{,}040{,}800$ whereas $10n^3=10{,}000{,}000{,}000$
 - $^{\circ}$ If we approximate and drop all but the n^3 term the error is 0.01%
 - So, it is worth simplifying a complexity expression to get the core factor in that expression

Simplifying the Running Time Expression

- Only the dominant terms of a polynomial matter in the long run
- Lower-order terms fade to insignificance as the problem **input size increases**
- We care more about scalable algorithms than those for specific small-size inputs

Growth Rate of Running Time

- For any given running time function, in order to write it in the best way that represents the general growth rate.
- 1. We consider only the most dominant term
 - Keep the fastest growing term and remove the lower-order terms
- Constant coefficients are removed
 - These constants represent language- or machine-dependent overhead
 - Growth rate not affected by constant coefficients
- Examples:
 - $T(n) = 100n + 10^5$ is considered a linear function
 - $T(n) = 80n^2 + 50n + 10$ is considered a quadratic function

Asymptotic Complexity

For large enough n: $T(n) \approx g(n)$

- Finding the **exact** complexity, T(n) = number of **primitive operations**, of an algorithm is difficult.
- Therefore, we approximate T(n) by a function g(n) in a way that does not substantially change the magnitude of T(n)
 - The function g(n) is sufficiently close to T(n) for sufficiently large values of the input size n.
- This "approximate" measure of efficiency is called asymptotic complexity.
- Thus, the asymptotic complexity measure does not give the exact number of operations of an algorithm, but it shows how that number grows with the size of the input.
 - This gives us a measure that will work for different operating systems, compilers and CPUs.

Asymptotic Complexity

- Three main types of asymptotic complexity expressions:
- 1. Big-*O*
 - Express asymptotic upper bounds
- 2. Big- Ω
 - Express asymptotic lower bounds
- 3. Big- Θ
- Express asymptotic tight bounds

$$T(n) = O(g(n))$$

 \Rightarrow For large enough n , $T(n) \le cg(n)$

$$T(n) = \Omega(g(n))$$

 \Rightarrow For large enough n , $T(n) \ge cg(n)$

$$T(n) = \Theta \big(g(n) \big)$$
 \Rightarrow For large enough $n, \ c_1 g(n) \leq T(n) \leq c_2 g(n)$

• The term asymptotically means "for large enough n"

• Recall: Informally, we said that $f(n) = \Theta(g(n))$ if f(n) = g(n) after removing lower order terms and constant factors.

• **Definition**: For a given function g(n), we denote by $\Theta(g(n))$ the set of functions:

$$\Theta(g(n)) = \begin{cases} f(n) \middle| \exists c_1, c_2, n_0 > 0 \text{ such that } \forall n \ge n_0 \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \end{cases}$$

• Example:
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

$$c_1 n^2 \le \frac{1}{2}n^2 - 3n \le c_2 n^2$$

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

Pick
$$c_1 = \frac{1}{14}$$
, $c_2 = \frac{1}{2}$, $n_0 = 7$

• Example: Is $4n^4 = \Theta(n^2)$? NO

Proof by Contradiction:

- Assume there exists c_2 and n_0 such that $4n^4 \le c_2n^2$ for all $n \ge n_0$
- Then $n^2 \le c_2/4$ for all $n \ge n_0$
- Which is NOT TRUE since c_2 is a constant \rightarrow Contradiction

• **Definition**: For a given function g(n), we denote by O(g(n)) the set of functions:

$$O(g(n)) = \begin{cases} f(n) & \exists c, n_0 > 0 \text{ such that } \forall n \ge n_0 \\ f(n) \le cg(n) \end{cases}$$

• We use *O*-notation to give an **upper bound** on a function.

•
$$f(n) = \Theta(g(n)) \implies f(n) = O(g(n))$$

• Suppose $T_w(n)$ is the **worst-case** running-time of an algorithm (on input w) and $T_y(n)$ is the running-time of an algorithm on **any** input y. Then $T_w(n) = O(g(n)) \Rightarrow T_y(n) = O(g(n))$

- Examples:
- Is $2^{n+1} = O(2^n)$? YES

- Examples:
- Is $2^{2n} = O(2^n)$? NO

- Examples:
- Is $2^{2n} = 2^{O(n)}$? YES

- Examples:
- Is $\log_{10}(n) = O(\log_2(n))$? YES

- Examples:
- Is $n^{2.5} = O(n^{2.8})$? YES

- Examples:
- Is $n^{\log n} = O(n^5)$? NO

Asymptotic Notation Ω

• **Definition**: For a given function g(n), we denote by $\Omega(g(n))$ the set of functions:

$$\Omega(g(n)) = \left\{ f(n) \middle| \begin{array}{l} \exists c, n_0 > 0 \text{ such that } \forall n \ge n_0 \\ 0 \le cg(n) \le f(n) \end{array} \right\}$$

Asymptotic Notation Ω

• We use Ω -notation to give an **lower bound** on a function.

•
$$f(n) = \Theta(g(n)) \implies f(n) = \Omega(g(n))$$

• Suppose $T_b(n)$ is the **best-case** running-time of an algorithm (on input b) and $T_y(n)$ is the running-time of an algorithm on **any** input y. Then $T_b(n) = \Omega(g(n)) \Longrightarrow T_y(n) = \Omega(g(n))$

Asymptotic Notation Ω

The Useful Bounds

Asymptotic Notation o and ω

$$o(g(n)) = \left\{ f(n) \middle| \exists n_0 > 0 \text{ such that } \forall n \ge n_0 \right\} \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
$$f(n) < cg(n)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$\omega(g(n)) = \left\{ f(n) \middle| \exists n_0 > 0 \text{ such that } \forall n \ge n_0 \right\} \qquad \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
$$cg(n) < f(n)$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Asymptotic Notation o and ω

Examples:

• Is
$$10n = o(n)$$
? NO

• Is
$$2n^2 = \omega(n)$$
? YES

Asymptotic Notation Properties

- Transitivity for Θ , O, Ω , o, ω
 - E.g. If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$
- Reflexivity for Θ , O, Ω
 - E.g. $f(n) = \Theta(f(n))$
- Symmetry for Θ
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose Symmetry for O, Ω , o, ω
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$
 - f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$

Asymptotic Notation Properties

Using asymptotic notation in equations:

•
$$8n^2 + 7n + 10 = 8n^2 + O(n)$$

• $8n^2 + 7n + 10 = 8n^2 + f(n)$ for **some** $f(n) = O(n)$

•
$$8n^2 + O(n) = O(n^2)$$

• \Rightarrow For any $g(n) = O(n)$, $8n^2 + g(n) = f(n)$ for **some** $f(n) = O(n^2)$

Exercises

• **EX:** Given that $f(n) = O(n^3) + O(n^2 \lg n)$, simplify f(n) so that only a single big-O is used.

Exercises

• **EX:** List the following functions from slowest to fastest (*c* is an arbitrary constant):

- $\circ O(\log n)$
- $\circ O(n^2)$
- $\circ O(c^n)$
- · 0(1)
- $\circ O((\log n)^c)$
- $\circ O(n^c)$
- \circ O(n)

$O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n)$	$\subseteq O(n^2) \subseteq O(n^3) \subseteq O(2^n)$	(ا
---	--	----

Notation	Name
0(1)	Constant
$O(\log n)$	Logarithmic
$O((\log n)^c)$	Polylogarithmic
O(n)	Linear
$O(n^2)$	Quadratic
$O(n^c)$	Polynomial
$O(c^n)$	Exponential