Clase 5:

Atractores caóticos

Atractores caóticos

- Motivación en el marco de la materia
- Vamos a ver en el Colab
- Atractor de Lorenz
- Atractor de Rossler
- Bibliografía

Motivación en el marco de la materia

• Sistemas dinámicos, autónomos, ODEs, N-dimensionales

$$\frac{d\vec{x}}{dt} = \vec{f}(t, \vec{x})$$
 \longrightarrow campo vector

Resolvemos integrando numéricamente (problema del valor inicial)

$$\vec{x}(t)$$
 \longrightarrow soluciones \longrightarrow trayectorias, diagrama de fases

Vamos a hacer en el Colab

- Encontrar soluciones de atractores caóticos (Lorenz y Rossler)
- Diagramas de fase 3D
 - Animaciones 3D
- Mapas
- Sensibilidad con condiciones iniciales
 - Comparando soluciones

Atractor de Lorenz

Atractor de Rossler

Mapas discretos

Bibliografía recomendada

Mindlin 2018

Strogatz 1994

Lynch 2018

