DNS Cache Poisoning

DNS Lookup

DNS Header

							D١	IS							
						В	it Nu	ımbe	r						
										1	1	1	1	1	1
0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
					L	ENG	ГН (Т	CP 0	NLY))					
							ID	٠.							
QR	Opcode				AA	тс	RD	RA		z		RCODE			
							DCO	UNT							
						-	NCO	UNT							
						ı	NSCO	UNT							
						-	ARCO	UNT							
						Oue	stion	Sect	ion						
						_	wer								
							ority								
				A	dditio	onal	Infor	matic	n Se	ectio	n				

DNS Query and Response

DNS Header What is the IP address of www.google.com?

QId = 12345

UDP Header Src Port = 2000

Dst Port = 53

Query

www.google.com is at 1.1.1.1

QId = 12345

Src Port = 53

Dst Port = 2000

Response

No Authentication

- Responses are not authenticated to queries.
- The only checks are:
 - (1) the source IP address and destination port of the response must match, respectively, the destination IP address and source port of the query.
 - (2) the 16-bit Query ID (QId) of the response must match that of the query

No Authentication

- (3) The Question section (which is duplicated in the reply) matches the Question in the pending query
- (4) The Authority and Additional sections represent names that are within the same domain as the question: this is known as "bailiwick checking".

This prevents ns.google.com from replying with not only the IP address of www.google.com, but also fraudulent information about (say) aib.ie.

- First arriving UDP packet which satisfies these conditions is accepted
- On some servers, if another arrives within 1 second, it is accepted

DNS Cache

- When the DNS Response is accepted, it is recorded in the DNS cache for a time specified by the TTL
 - can be a short as a few minutes, or as long as a week or more

Fixed Port

 Prior to patches applied around 2008, most DNS resolvers used a fixed port to send queries.

Attack 1

Sample the Query ID

Perform the Attack

Caveats

- The name can't already be in the cache
 - If so, there is no way to poison it in this manner.
 - The attacker has to wait for it to expire from cache (as determined by the TTL).
- The attacker has to guess the query ID
 - This was made easy because (now-obsolete) nameservers used to increment the Query ID by one each time
- The attacker has to be faster than the real nameserver
 - If the real nameserver wins, the correct DNS mapping will be recorded for the TTL

Solution (around 2004-5)

Randomize the Query ID

Proper randomization

Attack 2

Kaminsky's Attack

- Attacker configures a nameserver that is authoritative for the bank.com zone, including whatever resource records he likes: A records, MX records, etc.
 - There's nothing stopping anybody from configuring his own nameserver to be authoritative for any domain, but it's pointless because the root servers won't point to it
 - it's got answers, but nobody ever asks it a question.

Kaminsky's Attack

- Attacker sends a request for randomXYX.bank.com
- Nameserver starts recursive search
- Eventually NS.bank.com replies with "I don't know"
- But the attacker spoofs that reply with a referrer: "I
 don't know where randomXYX.bank.com is, but
 here is a referral to a nameserver that is
 authoritative for bank.com"

Perform the Attack

Game Over

18

Final Step

Solution (around 2008)

Randomize the Port Number also

Entropy

2¹⁶ * 2¹¹

Even More Entropy

Www.baNK.cOm

Some Recent Approaches

Reply Rate Limiting

- Modern DNS servers (e.g. BIND 9) rate limit how many responses a DNS server will send. If the limit is reached, the DNS server may either not respond at all, or reply with an empty truncated reply.
- If the attacker floods an authoritative DNS server to prevent it from sending responses it will provide more time to send spoofed responses back.
- Researchers have shown that this can lead to DNS Cache Poisoning.
- requires a lot of packets (100 MBit for 8 hours) to be successful, as the Query ID and the source port needs to be brute forced.

EDNS0

- Originally, DNS replies were limited to 512 bytes to avoid fragmentation.
- But, modern DNS tends to use larger replies with IPv6 and DNSSEC records, as well as the use of DNS for load balancing.
- In response, EDNS0 was introduced.
- If enabled, the DNS server may signal a maximum response size that is typically 4096 bytes.
 - As a result, these responses are frequently fragmented.

DNS Cache Poisoning based on Fragmentation

- The server that issued the query uses EDNS0
- The response is fragmented
- Only the first fragment includes the items needed to authenticate the response:
 - the UDP port, the answer and the DNS Query-ID
- The attacker injects a spoofed 2nd fragment
- (s)he needs to get the fragment offset and fragment ID correct

DNS Cache Poisoning based on Fragmentation

- The fragment offset can be guessed assuming that the MTU is 1500 bytes.
- The fragment ID (or IP ID) is frequently incremented from packet to packet, so it can be easily guessed.
 - Even if it is random, it is still only 16 bit long.

Solution

- DNSSEC
- All DNS packets signed.
- Needs trusted authorities

References

http://dankaminsky.com/2008/07/24/details/

https://www.ietf.org/mailarchive/web/dnsop/current/pdf2jgx6rzxN4.pdf

http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

Who am I?

Vincent.ryan@cit.ie

@vincentrya