Tarea 12

Hecho por

DAVID GÓMEZ

UNIVERSIDAD

Estudiante de Matemáticas
Escuela Colombiana de Ingeniería Julio Garavito
Colombia
4 de noviembre de 2022

Tarea 12

UNIVERSIDAD

Índice

Sección 6.5		4
Punto 1	 	4
Punto 2	 	4
a	 	4
b	 	4
с	 	
Punto 3	 	
_		
		6
Punto 4		
_		
Punto 5		_
_		
.		
D 44		
Punto 11	 	
Sección 6.6		
Punto 2		
1		
d	 	
e	 	
Punto 9		
Punto 11		
_		
a	 	
h		11:

David Gómez

UNIVERSIDAD

	\mathbf{c}																 										12
	d																 										12
15																											12
	a																										12
	b																 										12
Pur																											12
	a																 										12
	b																 										12
	\mathbf{c}																										12
Pur	$_{ m tto}$	1	7																								13
	a																										13
	b																										13
	c																										13

Sección 6.5

Punto 1

$$F = \{x_0 \mapsto f(x_2), x_1 \mapsto h(x_0, x_3), x_8 \mapsto x_7\}$$

$$F(t) = F[h(x_0, g(x_1, x_0, x_2))]$$

$$= h(F[x_0], F[g(x_1, x_0, x_2)])$$

$$= h(f(x_2), g(F[x_1], F[x_0], F[x_2]))$$

$$= h(f(x_2, g(h(x_0, x_3), f(x_2), x_2)))$$

Punto 2

a

Árbol de sintaxis de ϕ $B \quad true$ $g \quad f$ $x_0 \quad x_1 \quad x_1$

 \mathbf{b}

 \mathbf{c}

Punto 3

a

 \mathbf{b}

 \mathbf{c}

Árbol de sintaxis de la sustitución

Punto 4

a

$$\phi = \forall x_2(P(x_1, x_2) \to P(x_2, c))$$

$$\forall x_1(P(x_1, x_2) \to P(x_2, c))$$

 \mathbf{b}

$$\phi = \forall x_2 P(x_1, x_2) \to P(x_2, c)$$

$$\forall x_2 P(x_1, x_2) \to P(f(x_1, x_2), c)$$

 \mathbf{c}

$$\phi = Q(x_3) \to \neg \forall x_1 \forall x_2 R(x_1, x_2, c)$$
$$Q(x_3) \to \neg \forall x_1 \forall x_2 R(x_1, x_2, c)$$

 \mathbf{d}

$$\phi = \forall x_1 Q(x_1) \to \forall x_2 P(x_1, x_2)$$

$$\forall x_1 Q(x_1) \to \forall x_2 P(x_1, x_2)$$

 \mathbf{e}

$$\phi = \forall x_2 (P(f(x_1, x_2), x_1) \equiv \forall x_1 S(x_3, g(x_1, x_2)))$$
$$\forall x_2 (P(f(x_1, x_2), x_1) \equiv \forall x_1 S(x_3, g(x_1, x_2)))$$

Punto 5

 \mathbf{a}

tes libre

b

t es libre

 \mathbf{c}

tes libre

 \mathbf{d}

tes libre

 \mathbf{e}

t es acotado

Punto 6

 \mathbf{a}

$$\phi = \forall x_2(P(x_2, f(x_1, x_2)) \lor Q(x_1))$$

$$\forall x_2(P(x_2, f(f(x_1, x_2), x_2)) \lor Q(f(x_1, x_2)))$$
 $t \text{ es acotado}$

b

$$\phi = \forall x_2 P(x_2, f(x_1, x_2)) \lor Q(x_1)$$

$$\forall x_2 P(f(f(x_1, x_2), x_2), x_2) \lor Q(f(x_1, x_2))$$

$$t \text{ es acotada y luego libre}$$

c

$$\phi = \forall x_1 \forall x_3 (Q(x_3) \not\equiv Q(x_1))$$

$$\forall x_1 \forall x_3 (Q(x_3) \not\equiv Q(x_1))$$

$$t \text{ es libre}$$

 \mathbf{d}

$$\phi = \forall x_1 \forall x_3 Q(x_3) \not\equiv Q(x_1)$$

$$\forall x_1 \forall x_3 Q(x_3) \not\equiv Q(f(x_1, x_2))$$

$$t \text{ es libre}$$

Tarea 12

 \mathbf{e}

$$\phi = \forall x_2 R(x_1, g(x_1), x_2) \to \forall x_3 Q(f(x_1, x_3))$$

$$\forall x_2 R(f(x_1, x_2), g(f(x_1, x_2)), x_2) \to \forall x_3 Q(f(f(x_1, x_2), x_3))$$

$$t \text{ es acotada y luego libre}$$

Punto 10

Si x no ocurre libre en ϕ , entonces t es libre de x en x en ϕ

- 0. x no ocurre libre en ϕ
- 1. x es acotada en ϕ

p(0)

- 2. x no es sustituida para ningunF
- 3. t es libre de x puesto que no se realiza la sustitución

Punto 11

Sección 6.6

Punto 2

a

No es

b

 \mathbf{c}

 \mathbf{d}

 $ext{ iny Arbol de sintaxis}$ $ext{ iny read}$ $ext{ iny \lambda}$ $ext{ iny \lambda}$ $ext{ iny \lambda}$

 \mathbf{e}

 $ext{ iny Arbol de sintaxis}$ $ext{ iny read}$ $ext{ iny \lambda}$ $ext{ iny \lambda}$ $ext{ iny \lambda}$

Punto 9

 \mathbf{a}

Página 9

 \mathbf{b}

 \mathbf{c}

 \mathbf{d}

 \mathbf{e}

Punto 11

 \mathbf{a}

El arreglo a es decreciente

$$a:A\wedge (\forall i:I\,|\,0\leq i<\mathtt{len}(a)-1:a[i]>a[i+1])$$

 \mathbf{b}

Los arreglos a y b son distintos

$$a,b:A \wedge (\neg(\mathtt{len}(a) = \mathtt{len}(b)) \vee (\forall i:I \,|\, 0 \leq i < \mathtt{len}(a): \neg(a[i] = b[i])))$$

 \mathbf{c}

El arreglo a no tiene puntos fijos

$$a: A \wedge (\forall i: I \mid 0 \le i < \mathtt{len}(a): \neg(i = a[i]))$$

 \mathbf{d}

El arreglo a no tiene elementos repetidos

$$a: A \wedge (\forall i,j: I \,|\, 0 \leq i < \mathtt{len}(a) \wedge 0 \leq j < \mathtt{len}(a) \wedge \neg (i=j): \neg (a[i]=a[j]))$$

e

El arreglo a es la identidad

$$\begin{split} a:A \wedge (\forall i:I \,|\, 0 \leq i < \mathtt{len}(a):a[i] = 0) \\ a:A \wedge \mathtt{len}(a) = 1 \wedge a[0] = 1 \end{split}$$

UNIVERSIDAD

Tarea 12

Punto 12

 \mathbf{a}

```
\exists x : V(\mathtt{len}(a) = 2 \cdot x + 1)
```

Existe una variable tal que el doble de su valor más 1 es igual al número de elementos en a

b

```
\forall i: I \mid 0 \le i < \text{len}(a): a[i] = a[0]
Todos los valores de a son iguales
```

 \mathbf{c}

```
a[1] = 5 \wedge (\forall i: I \,|\, 0 \leq i < \mathtt{len}(a): a[i] = a[0])
```

El segundo valor de a es 2 y todos los valores de a son iguales

 \mathbf{d}

```
(\exists i: I \,|\, 0 \leq i < \mathtt{len}(a): a[i] = -a[i])
```

Hay un elemento en a que es igual a 0

15

 \mathbf{a}

 \mathbf{a}

El arreglo es creciente no monótono

 \mathbf{b}

a:A

Punto 16

a

Sí

 \mathbf{b}

```
[1, 2, 1]; [0, 1, 0]; [0, 0, 0] son
[1, 2, 3]; [4, 5, 6]; [7, 8, 9] no son
```

 \mathbf{c}

```
\mathtt{pal}(a) \mathtt{pal}(a) := (\forall i: I \,|\, 0 \leq i < \mathtt{len}(a): a[i] = a[\mathtt{len}(a) - 1 - i])
```


UNIVERSIDAD

David Gómez

Punto 17

 \mathbf{a}

Sí

 \mathbf{b}

$$[1, 2, 1, 0, 1, 0]$$
; $[0, 1, 0, 1, 2, 1]$; $[0, 0, 0, 2, 3, 2]$ son $[1, 2, 3]$; $[4, 5, 6]$; $[7, 8, 9]$ no son

 \mathbf{c}

 $\mathtt{al}(a)$

$$\begin{split} \mathtt{al}(a) := & \forall i : I \exists j, k : I(0 \leq i \leq j < k < \mathtt{len}(a) \land b, c \\ : A \land b[i] = a[i] \land c = a[k : \mathtt{len}(a) - 1] \rightarrow a[i] = a[j - i] \rightarrow \mathtt{pal}[b] \land \mathtt{pal}(c)) \end{split}$$