

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 024 196 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 02.08.2000 Bulletin 2000/31

- (51) Int CI.7: **C12N 15/82**, C12N 5/10, A01H 5/00
- (21) Application number: 99400212.9
- (22) Date of filing: 29.01.1999
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (71) Applicant: KEYGENE N.V. 6700 AE Wageningen (NL)

2024 RL Haarlem (NL)

(72) Inventors:Haring, Michel Albertus

- Cornelissen, Bernardus Johannes Clemens 2361 EB Warmond (NL)
 Mes, Jurriaan Johannes
- 6703 AV Wageningen (NL)
 Simons, Augustinus Franciscus Maria

6715 JL Ede (NL)

- (74) Representative: Desaix, Anne et al Ernest Gutmann - Yves Plasseraud S.A. 3, rue Chauveau-Lagarde 75008 Paris (FR)
- (54) Nucleotide sequence having a tissue specific regulatory activity on the transcription of genes in plants
- (57) The invention relates to a nucleotide sequence having a regulatory activity on the transcription of genes

in plants and relates especially to a gene involved in the resistance mechanism of plants, to fungi, more particularly to soilbome fungi of the Fusarium species.

Description

10

15

20

25

50

55

[0001] The invention relates to nucleotide sequences having a tissue specific regulatory activity on the transcription of genes in plants.

[0002] The invention is also directed to nucleotide sequences and especially DNA sequences including chimeric or recombinant constructs, wherein nucleotide sequences having a regulatory activity are used to regulate especially to initiate the transcription of nucleic acid sequences of interest in determined host cells, especially plant cells. These regulatory sequences are sometimes designated as promoter fragments, a broad meaning being given to the term "promoter".

[0003] In prior international patent application WO 97/06259, the inventors have described the isolation characterization and sequencing of a nucleic acid sequence comprising the I-2 resistance gene, which gene is involved in the resistance mechanism of plants, to plant pathogens especially to fungi and more particularly to soilborne fungi of the Fusarium species.

[0004] Among the pathogens causing serious damages to plants, one finds the group of soilborne cortical rots and vascular wilt inducing fungi, such as *Fusarium* and *Verticillium* (Toussoun, 1981, in: Fusarium Diseases, Biology and Taxonomy, Nelson, Toussoun & Cook edit., Penn. State Univ. Press, 457 pp.). Said wilt inducing fungi infect the plants through the roots via direct penetration or via wounds after which the xylem vascular tissue of the plant is colonized and symptoms of infection with said fungi are wilting, browning and dying of leaves followed by plant death. Entire plants or plant parts above the point of vascular invasion of the pathogen may die within a period of some weeks after infection. The fungi usually spread internally through the xylem vessels as mycelium or conidia until the entire plant is killed. Because of the fact that those fungi are able to survive in the soil saprophytically, they become established forever once they are introduced in the field. They are distributed more or less worldwide causing tremendous losses on most species of vegetables and flowers, field crops, fruit trees, etc. Because those fungi are so widespread and so persistent in soils the only effective way of controlling said wilt inducing fungi is using resistant plant genotypes.

[0005] Most Fusarium species belong to the family of imperfect fungi. This class of fungi is characterized by the fact that only a vegetative stage of the fungus is known. The generative stage of those fungi has not been discovered yet. Due to the overall classification or taxonomy of fungi upon their morphological characteristics of the generative phase, one should bear in mind that fungi belonging to the class of imperfect fungi can be classified into another class once their generative stage is discovered and, subsequently, a change of classification and name can follow (Gerlach, 1981, in: Fusarium, Diseases, Biology and Taxonomy, Nelson, Toussoun & Cook edit., Penn. State Univ. Press, p. 413-426). Moreover, it has been observed that some Fusarium species can "mutate" into another species depending on the plant infected and/or the environment (Bolton & Davidson, 1972, Can. J. Plant Sci, 52, 189-196). Up to now most of the will inducing Fusarium belong to the species Fusarium oxysporum. Different plant species are attacked by different races or isolates of Fusarium (Armstrong & Armstrong, 1981, in: Fusarium, Diseases, Biology and Taxonomy, Nelson, Toussoun & Cook edit., Penn. State Univ. Press, p. 391-399). However, some Fusarium isolates can infect different plant species. Known Fusarium isolates are for example: Fusarium oxysporum f.sp. lycopersici (tomato), including Fusarium oxysporum f.sp. licopersici race 2, F. oxysporum f.sp. melonis (melon), F. oxysporum f.sp. batatas (sweet potato, tobacco), F. oxysporum f.sp. cepae (onion), F. oxysporum f.sp. conglutinans (cabbage, radish), F. oxysporum f.sp. cubense (banana), F. oxysporum f.sp. vasinfectum (cotton, alfalfa, soybean, tobacco) F. oxysporum f.sp. dianthii (carnation), F. oxysporumf.sp. chrysanthemi (chrysanthemum), F. oxysporumf.sp. tuberosi (potato), F. oxysporumf.sp. cyclaminis (cyclamen), F. oxysporum f.sp. nicotianae (tobacco).

[0006] Therefore, the name of the wilt inducing fungi can change in the future.

[0007] The characterization of the I-2 resistance gene according to WO 97/06259 has enabled the inventors to identify the gene product encoded by this I-2 resistance gene, as a polypeptide which is capable of conferring to a plant susceptible to wilt inducing fungi, resistance to infection by said pathogen(s) and/or resistance to the disease induced by said pathogen, after said plant has been transformed with the I-2 gene. The nature of resistance conferred can vary upon different factors and can encompass preventing the infection by the plant pathogen and/or as example using a signal from the invading pathogen for the activation of a defense mechanism by a related gene.

[0008] In prior international patent application, several cosmid clones including cosmid designated under B22 and A55 have been described and it has been observed that the DNA segment containing the I-2 resistance gene would encompass a region of approximately 8 kb in size. The B22 cosmid having a 17 kb size which contains said gene under a functional form, has been deposited on July 14, 1995 as plasmid pKGl2-B22 at Centraal Bureau voor Schimmelcultures at Baarn (The Netherlands) under No. CBS546.95. The A55 cosmid was deposited at the same Collection on August 5, 1996 as plasmid pKGl2-A55 under No. CBS 820.96.

[0009] In addition, in said prior international patent application, the inventors have identified that a 1.3 kb DNA non coding fragment, upstream from the I-2 translation initiation codon (ATG) located at position 1 on SEQ ID NO:4 would be sufficient to drive the transcription of the I-2 resistance gene in plants transformed with said gene. By "sufficient", it is meant that transcripts are obtained when the coding sequence is placed under the control of said 1.3 kb fragment.

[0010] The 1.3 kb fragment is identified as a 1333 pb fragment located upstream from the ATG site of the coding sequence identified SEQ ID NO: 4 and corresponds to a fragment encompassing nucleotide 464 to nucleotide 1797 of the sequence identified under SEQ ID NO: 3.

[0011] Some results have been disclosed in WO 97/06259 showing that plants susceptible to wilt inducing fungi of Fusarium species, especially Fusarium oxysporum f.sp lycopersici race 2, are rendered resistant to said Fusarium when the coding sequence of the I-2 genes is transferred in said plants under the control of the above 1.3 kb fragment.

[0012] In order to examine the conditions and level of transcription of the I-2 resistance gene when placed under the control of a DNA sequence encompassing the above-said 1.3 kb fragment, and especially in view of the experimental results obtained that show a low abundancy of transcripts of the I-2 gene in some plant tissues, for instance in root, stem and leaf tissues of recombinant plants, the inventors have decided to further investigate the functionality of the I-2.5' coding sequences showing a regulatory activity on the transcription of the I-2 gene, and have therefore designed and tested recombinant constructs using a reporter gene placed under the control of nucleotide sequences comprising a regulatory sequence active on regulation of the transcription of the I-2 gene.

10

25

30

35

50

55

[0013] From the results obtained with DNA constructs using the regulatory transcription sequences of the I-2 gene, further compared with results obtained with the same reporter gene placed under the control of a different plant specific promoter, the inventors have characterized specific properties of the sequences disclosed in the present patent application, having a regulatory transcription activity: these properties include ability to enable a tissue specific expression of determined sequences placed under the control of these regulatory sequences.

[0014] Therefore, the invention provides means which can be used for regulation of the tissue specific expression in plant cells or plants, of nucleic acid sequences, especially as a result of regulation of the transcription of said nucleic acid sequences.

[0015] The invention therefore relates to a nucleotide sequence having a regulatory activity on the transcription of the 'I-2 resistance gene in determined plant host cells, which nucleotide sequence comprises a DNA sequence of around 3.8 kb derived from the 5' non coding region of the I-2 gene. Said sequence has preferably a size in the range of 5 to 1 kb.

[0016] According to a preferred embodiment, said regulatory sequence comprises the sequence depicted as SEQ ID NO:1, corresponding to a 3.8 kb fragment that can be obtained or derived from the 5' non coding region located upstream from the translation initiation codon (ATG) of said I-2 resistance gene. The coding sequence of the I-2 gene is represented as SEQ ID NO: 4.

[0017] The invention relates especially to said 3.8 kb fragment which can be obtained from the B22 cosmid and corresponds to an EcoRI/EcoNI fragment of 3.8 kb of the 5' end of the I-2 gene.

[0018] The invention especially relates to a nucleotide sequence according to the above definition, which sequence is SEQ ID NO: 1.

[0019] The above-identified sequence SEQ ID NO: 1 comprises a fragment located 5' from the ATG codon of the I-2 resistance gene which is sufficient for the transcription of said gene.

[0020] The invention also relates to the use of the 1.3 kb fragment derived from the 5' non coding region of the I-2 gene, said sequence being disclosed as SEQ ID NO:2 and containing nucleotide 464 to 1797 of the I-2 gene. It also concerns the use of the sequence designated SEQ ID NO:3 corresponding to nucleotides 1 to 1798 upstream from the ATG codon in the I-2 gene.

[0021] According to a particular embodiment, the invention also relates to DNA sequences retaining a regulatory activity of the sequences described above, especially of SEQ ID NO: 1, SEQ ID NO:2 or SEQ ID NO:3 which sequences are derived from the above by deletion, insertion, substitution of one or several nucleotide residues.

[0022] Despite their ability to regulate transcription of nucleic acid sequences, the choice of a specific sequence among the preceding one can lead to a modification of the level of the transcription.

[0023] Among derived regulatory nucleotide sequences used in accordance with the invention, those hybridizing under stringent conditions with one of the above described sequences are of interest to achieve the invention. Advantageously, said derived sequences have substantially the same size or a shorter size with respect to the sequence from which they are derived.

[0024] Stringent conditions refer to hybridization conditions which allow a nucleic acid sequence to hybridize to a particular sequence. In general, high stringent conditions refer to the hybridization conditions which allow a nucleic acid sequence of at least 50 nucleotides and preferably about 200 or more nucleotides to hybridize to a particular sequence at about 65 °C in a solution comprising about 1 M salt, preferably 6 x SSC or any other solution having a comparable ionic strength, and washing at 65 °C in a solution comprising about 0,1 M salt, or less, preferably 0,2 x SSC or any other solution having a comparable ionic strength. These conditions allow the detection of sequences having about 90 % or more sequence identity. In general, lower stringent conditions refer to the hybridization conditions which allow a nucleic acid sequence of at least 50 nucleotides and preferably about 200 or more nucleotides to hybridize to a particular sequence at about 45 °C in a solution comprising about 1 M salt, preferably 6 x SSC or any other solution having a comparable ionic strength, and washing at room temperature in a solution comprising about 1 M salt, preferably

6 x SSC or any other solution having a comparable ionic strength. These conditions allow the detection of sequences having up to 50 % sequence identity. The person skilled in the art will be able to modify these hybridization conditions in order to identify sequences varying in identity between 50 % and 90 %.

[0025] Alternatively, stringent conditions refer to hybridization conditions which allow a nucleic acid sequence to hybridize selectively to the *I-2* resistance gene in its genomic environment, substantially to the exclusion of hybridization with other DNA sequences of said genomic environment.

[0026] According to a preferred embodiment, the invention concerns regulatory nucleotide sequences according to the above definition or a fragment of said sequences which are capable of driving a tissue specific transcription of a determined nucleic acid sequence placed under their control.

[0027] By the expression "driving a tissue specific transcription", it is encompassed any sequence which would impact on the regulation of said transcription in a host cell and especially in a tissue specific manner, especially those capable of initiating said transcription.

10

15

20

25

30

[0028] The invention also relates to a recombinant nucleotide sequence comprising one of the above defined regulatory nucleotide sequence, which is functionally linked to a determined nucleic acid sequence of interest.

[0029] By the expression "functionally linked", it is meant that when the regulatory nucleotide sequence is used in combination, for instance in a fusion, with the nucleic acid sequence of interest, and when possible additional elements involved in the regulatory activity are present or activated, a regulatory activity enabling the transcription of said nucleic acid interest is obtainable in competent host cells.

[0030] According to a particular embodiment, the invention relates to a recombinant nucleotide sequence, wherein the regulatory nucleotide sequence is functionally linked to the nucleic acid of interest and wherein this construct further comprises 3' from the nucleic acid of interest, a non translated sequence comprising a transcription termination sequence. This transcription termination sequence can especially contain polyadenylation sites.

[0031] The nucleic acid sequence of interest can be of various type or origin especially originating from plants, animals, bacterial, viral organisms. It is especially the sequence encoding the I-2 resistance gene product.

[0032] Alternatively, said nucleic acid sequence of interest can be chosen among sequences having a direct or indirect activity in resistance against pathogens, especially resistance against plant pathogens, particularly those having a targeted tissue specificity. As example, resistance can be mediated through an interaction with the site of penetration of the pathogen, or of the infection capacity of the pathogen or through an effect on the colonization of tissues in infected plants.

[0033] In accordance with the invention, the nucleic acid sequence of interest can be chosen among sequences which are naturally expressed in a tissue specific manner in their natural host, or for which no tissue specific expression exists in the natural host. In this latter case especially, a tissue specific expression would be specifically obtained by the use of the regulatory sequence of the invention when it is combined to the chosen sequence, said chimeric construct being then transferred into a host plant or plant host cell.

[0034] The invention is especially directed to the use of the recombinant nucleotide sequence defined above for a specific expression in a plant vascular tissue. According to the invention, the expression "plant vascular tissue" encompasses tissues having vascular cells whatever their location in the plant. Vascular tissues are especially present in roots, stems or leaves. The expression therefore encompasses cells, or cell layers from vascular origin or having a vascular related function. It comprises cell layer(s) surrounding the lateral root primordia or cell layers at the base of adventitious roots, or cells in the leaf veins, in the plant fruits or vegetable, or in the stigma of the style.

[0035] The inventors have shown that the use of the regulatory sequences of the invention may be of specific interest for the expression of nucleic acid sequences in plant lateral root meristem and tissues deriving from said meristem.

[0036] Among sequences which are regarded as sequences of interest to be expressed in a tissue specific manner within host plants, genes or generally DNA constructs having activity in mediation of resistance to a plant pathogen are preferred.

[0037] Among these plant pathogens, those qualifying as root pathogens and accordingly invading plants through the roots, are of interest. As an example, fungi, nematodes are of interest and especially fungi of Fusarium species are cited.

[0038] The recombinant nucleotide sequences of the invention can be used for transfer in plants or in plant cells, according to any available technique. Particularly recourse may be made to the use of vectors especially plasmids or cosmids, containing said recombinant nucleotide sequence for transforming plant cells or plants.

[0039] The invention therefore is directed to recombinant cells comprising a nucleotide sequence defined above, including recombinant nucleotide sequences according to the invention, or vectors containing the same.

[0040] Among appropriate plant cells which can be chosen as targets for the expression of the nucleic acid of interest placed under the control of the regulatory sequences of the invention, bacterial or eukaryotic cells can be cited.

[0041] Among eukaryotic cells, most preferred cells are plant cells and especially plant cells originating from vascular tissues.

[0042] According to another embodiment of the invention, said plant cells are root cells, stem cells or leaf cells.

[0043] The invention also relates to plants which are recombined with the nucleotide sequences which have been disclosed above.

[0044] According to a specific embodiment of the invention, said recombinant plants are capable of expressing a gene having a mediation activity of resistance to a plant pathogen. Particularly, plant pathogens among those cited above are preferred and especially when they are known to have a tissue specific invading activity.

[0045] Recombinant plants according to the invention can be derived from recombination with the nucleotide sequences of the invention of tomato, egg plants, potato, melon, tobacco or Arabidopsis.

[0046] The invention is also directed to a process for obtaining plants having reduced susceptibility to a plant pathogen, comprising the following steps:

i) inserting into the genome of a plant cell a nucleotide sequence defined above, or a vector defined above,

- ii) obtaining transformed plant cells,
- iii) regenerating from said transformed plant cells genetically transformed plants, and
- iv) optionally, propagating said plants.

[0047] The above defined process is of specific interest to obtain transgenic plants which are further selected for having a reduced susceptibility to a plant pathogen as a result of the expression of the nucleic acid of interest under the control of the regulatory sequences of the invention.

[0048] The invention is also directed to a process for protecting plants in cultivation against plant pathogen infection, which comprises:

- i) providing the genome of plants with a nucleotide sequence defined above, or a vector defined above,
- ii) growing said plants.

[0049] Further details and advantages regarding the invention appear from the following examples and figures.

[0050] Fig. 1. Transcripts of *I-2* and *I-2* homologs detected by RT-PCR. A, Schematical representation of the *I-2* region used for cDNA amplification. Primers are indicated by arrows, gray boxes are the region of variable repeats between *I-2* and *I-2* homologs. B, The by RT-PCR amplified fragments. KG52201 is Fusarium susceptible line; C295 is *I-2* containing Fusarium resistant line; M=marker (kb); D=DNA; r=RNA from root; s=RNA from stem; I=RNA from leaf; arrow indicates expected lenght *I-2* transcript.

[0051] Fig. 2. Comparison of GUS activity in seedlings of transgenic tomato plants of line KG52201 and C295. Each of the 15 squares per line represents the activity of 5 pooled nonselected seedlings of 15 individual transgenic lines. The mean and standard deviation of the 15 samples are presented besides. Arrows points out lines used for further analysis.

[0052] Fig. 3A. Comparison of GUS activity in roots, stems and leaves of transgenic lines. Bars represent the expression of material pooled from 10 selected transgenic plants.
[0053] Fig. 3B.

A. seedlings 4, 5 and 7 days-old

B. tomato fruit (not ripe)

V= vascular bundle

C. seed

H=hypocotyle, C=cotyledons

D. stem

AR=adventitious root (premordia), Fr=fibrious root, Rt=root tip

E. vascular bundle of stem

Co=cortex, E=endodermis, Pi=pericycle, Ca=cambium, Ph=phleom, Xp=xylem parenchyma, X=xylem mature

F. central cylinder of root

Co=cortex, E=endodermis, Ca=cambium, Ph=phleom, Xp=xylem parenchyma, X=xylem mature, Px=premature xylem

G. lateral root formation

Lr=lateral root, V=vascular tissue, Rh=root hairs

H.leaf, I-2 expression upper leaf, under 35SCaMV leaf

Ve=veins

55

10

15

20

25

35

40

45

50

[0054] Fig. 4. Comparison of GUS activity in stem of Fusarium infected and water treated transgenic plants. Bars represent the expression of 20 pooled stems of nonselected transgenic plants.

[0055] Fig. 5. Macroscopical localization of uidA gene expression under control of the 5' flanking region of the 1-2

gene. A, Seed. B, Germinated seed, right I-2 promoter, left 35SCaMV promoter. C, 7-days-old seedling. D, Lateral root primordia, top view. E, Lateral root primordia, side view. F, Base of lateral root, side view. G, Mature tap root. H, Stem.I, Adventitious root formation. J, Leaf, upper I-2 promoter, bottum 35SCaMV promoter. K, Tomato fruit. L, Flower. c = cotyledons, h = hypocotyl, Irp = lateral root primordia, r = root, arp = adventitious root primordia, vb = vascular bundle, st = stigma, s = style, o = ovary.

[0056] Fig. 6. Histochemical localization of uidA gene expression under control of the 5' flanking region of the I-2 gene. A, Young root. B, Vascular tissue of young root. C, Mature tap root. D, Vascular tissue of tap root. E, Stem section. F, Detail of stem. G, Detail of vascular bundle of stem. H, Stem section of three-weeks-old plant. vi = vascular tissue, vi = vascular tissu

[0057] Fig. 7. Histochemical localization of F. oxysporum 1.sp. lycopersici infection by using constitutive expressing uidA transgenic Fusarium isolate, seven days after inoculation. A, Infected root of susceptible plant. B, Infected root of resistant plant. C, Detail of infected root of susceptible plant. D, Detail of infected root of resistant plant. E, Stem section of susceptible plant. F, Stem section of resistant plant. co = cortex, vt = vascular tissue, vt = vascula

[0058] Fig. 8. Constructs

10

15

20

25

30

50

55

A: Steps for the construction of pJM2005

B: pJM2005 containing an I-2 promoter uid A chimeric gene with long I-2 promoter sequence (3.8 kb)

[0059] Fig. 9. Sequence of the 3.8 kb DNA non coding fragment.

Expression of the Fusarium I-2 resistance gene co-localizes with the site of defence response

[0060] The expression of the *Fusarium* resistance gene *I-2* of tomato has been analysed. Although *I-2* transcripts were undetectable by Northern blot analysis, RT-PCR revealed that *I-2* and at least five *I-2* homologs are expressed in roots, stems and leaves of young tomato plants. Plants transformed with chimeric constructs containing a functional *I-2* promoter fused to the β-glucuronidase (GUS) reporter gene were used in detailed expression studies. GUS-activity was found in unchallenged plants; infection with *F. oxysporum* f.sp. *lycopersici* race 2 did not alter promoter activity. Macroscopical analysis showed that the *I-2* promoter drives expression of the reporter gene in a cell layer beneath the lateral root primordia, in mature roots, at the base of adventitious roots and in vascular tissue of stems, leaves and fruits. The vascular specific expression was confirmed by microscopical analysis, which revealed expression in endodermis, cambial zone, phloem, xylem parenchyma cells, premature xylem vessels and rays cells. We show that in resistant plants fungal growth into this region of the vascular tissue is prevented suggesting a direct role of *I-2* in mediation the resistance response of tomato to *F. oxysporum* f.sp. *lycopersici*.

[0061] Tomato may become infected by the soil-borne pathogen Fusarium oxysporum f.sp. Iycopersici. The fungus enters the plant via the roots either by active penetration at the root tip (Bishop and Cooper, 1983) or via natural wounds, for instance via cortex tissue that is disrupted by the formation of lateral roots (Hutson and Smith, 1983). Penetration of vascular elements depends on the presence of cells that are injured, senescent or necrotic, or circumstances providing entry through wounds (Beckman, 1987). In xylem vessels the fungus spread by long distance transport using the transpiration stream (xylem flow). Fungal spores germinate within the vascular elements, grow towards pits and colonize adjacent xylem parenchyma cells. Colonization of secondary xylem parenchyma cells has been shown to be typical for susceptible plants (Beckman et al., 1989). These living xylem-contact-cells are held responsible for defence responses in lateral and longitudinal directions, including callose deposition, production of secondary metabolites, lignification and vascular occlusion by gels, gums or tyloses (Beckman, 1987; Beckman and Roberts, 1995). Defence responses of susceptible and resistant plants are basically the same, only the timing and strength of the response is different (Beckman, 1987).

[0062] The dominant resistance gene *l-2* of tomato confers resistance to F. oxysporum f.sp. lycopersici race 2. An AFLP-based positional cloning strategy was used to clone the *l-2* gene which is located within a cluster of seven homologs (Simons et al., 1998). The *l-2* gene encodes a protein with similarities to a large family of R gene products containing a nucleotide binding site and a leucine-rich repeat (NBS-LRR) (Simons et al., 1998; Hammond-Kosack and Jones, 1997; Ellis and Jones, 1998). The structural domains predict a role in signalling, transducing a signal from the invading pathogen to the activation of defence related genes (Hammond-Kosack and Jones, 1997; Ellis and Jones, 1998).

[0063] The characterization of *1-2* promoter activity could help to localize the actual site of the resistance reaction. How resistance genes function and whether these genes encode other functions in plants apart from mediation of resistance, is not known. Gene expression analysis could lead to a better understanding of the resistance mechanism as well as to suggestions for other functions of *R* genes. For none of the cloned resistance genes such characterisations

have been published until now. To analyse *I-2* promoter activity, tomato plants were transformed with chimeric constructs containing a functional *I-2* promoter region fused to the β-glucuronidase (GUS) reporter gene. Macroscopical and histochemical analysis revealed a specific expression in cells neighbouring the xylem vessels, suggesting a very specifically localized defence reaction against *F. oxysporum* f.sp. *lycopersici*.

MATERIAL AND METHODS

5

20

30

35

55

[0064] Bacterial and fungal strains. E.coli strain DH5a was used for plasmid propagation. Infection test were performed using F. oxysporum f.sp. lycopersici race 2 isolate Fol007.

[0065] Plant material. Tomato line KG52201 was used as susceptible line containing no resistance to any race of *F. oxysporum* f.sp. *lycopersici*. Line OT105 (E22) was used as a control line because the *I-2* resistance gene was cloned form this line (Simons et al., 1998). OT105 is homozygous, and is resistant to *F. oxysporum* f.sp. *lycopersici* race 2 and susceptible to race 1. Moneymaker line C295 is resistant to *F. oxysporum* f.sp. *lycopersici* race 2 and susceptible to race 1. Moneymaker line C295 is resistant to *F. oxysporum* f.sp. *lycopersici* race 1 and race 2. [0066] For RNA isolation plant tissue was grounded in liquid nitrogen. After addition of extraction buffer (100 mM)

Tris-HCl pH 8.5, 100 mM NaCl, 20 mM EDTA and 1% sarkosyl) RNA was extracted with phenol and twice with phenol/chloroform (1:1) before it was precipitated witih 2-propanol. DNA/RNA pellet was dissolved in water and RNA was precipitated by addition of an equal volume of 4M LiCl. The RNA pellet was dissolved in H₂O, precipitated with ethanol and redissolved in 20-100μl H₂O. Ten μg of total RNA was separated on 1.5% denaturating formaldehyde agarose gel electrophoresis and subsequently blotted on Hybond-N membrane (Amersham). The I-2 probe was ³²P-labelled by the Random Primers Labelling System (BRL Life technologies Inc., USA) and hybridization was performed in 0.5M phosphate buffer pH 7.2 containing 7% SDS, 1% BSA and 1mM EDTA. After overnight incubation at 65°C, the blot was washed with 2x and 1x SSC, respectively, for 15 min each.

[0067] For cDNA synthesis 50 ng oligo dT primer was added to 5 μg of RNA in a volume of 6.2 μl. After annealing, 3.8 μl was added containing 0.4 μl dNTP 10 mM, 1 μl DTT 100 mM, 2 μl 5x RT buffer, 0.2 μl RNAse inhibitor (30U/μl) and 0.2 μl Superscript II (200U/μl) (Gibco-BRL). The mixture was incubated at 45°C for one hour. PCR was performed under standard conditions using 2 μl of cDNA. Primers 3449 (5' CCTCCTTTTCTCACCTCACTCGC 3') and PF95 (5' GTACCAGACTTGTCGTACTCGCTC 3') were used to amplify the 3' end of both the active *I-2* gene and other *I-2* homologs.

[0068] Constructs. To construct an *I-2* promoter *uidA* chimeric gene, an *NcoI* restriction site was created at the translation start of *I-2*. This resulted in a change of two bases upstream of the translation initiation codon from AA to CC. The *NcoI* site was introduced by PCR using primer FP4 (5' CTGCTAAGCTTATCTCCATGGCTCAAATC 3') together with primer FP3 (5' GTTGTTTGATATCTTATCAG 3') spanning an EcoRV restriction site located 806 bp upstream of the ATG. The fragment was cloned in pBluescript which then was called pJM1001 (see figure) and sequencing confirmed that it was identical to the original sequence of the 5' flanking region of *I-2*. An *EcoRI/NcoI* fragment, containing the 806 bp PCR I-2 promoter sequence of pJM1001 was used to exchange the *EcoRI/NcoI* 35S promoter fragment of pMOG901 (ZENECA-MOGEN, Leiden, the Netherlands). This resulted in plasmid pJM1002 containing the 806bp I-2 promoter fragment fused to the β-glucuronidase gene (*uidA* with modified intron) with the *nos* terminator region. To introduce more cloning sites the 805bp 1-2 promoter-GUS fragment was *EcoRI/HindIII* cloned in pBluescript KS+(pJM1003). An *EcoRI/Eco*NI fragment of 3.7 kb of the 5' flanking region of *I-2* was used, in a two step cloning, to partial exchange the PCR based 806 bp sequence (105 bp PCR fragment remained but which was identical to the original sequence) and extend the promoter sequence. This resulted in pJM1005 containing 3.8 kb 5' flanking region of the *I-2* gene fused to *uidA* gene and the *nos* terminator. This construction enables to make a restriction site at the ATG codon therefore enabling to make constructs which start directly at the ATG codon.

[0069] Using EcoRI and Xhol the 3.8 kb I-2 promoter-GUS fragment was cloned into the binary vector pMOG402 (ZENECA-MOGEN, Leiden, The Netherlands) containing the Left and right border, PPTII regulated by nos 5' and 3' sequences. This plasmid was called pJM2005.

[0070] Using the same strategy, an *Nco*l site was introduced at the ATG of the *I-2* coding region using primers FP70 (5' CAGATTTGAGCCATGGAGATTG 3') and FP71 (5' GCTGACCTTCACCTTAAG 3'). The first primer introduces the *Nco*l site, the second is spanning a *Sall* restriction site for further cloning strategies. The amplified fragment was cloned, sequenced and used to exchange the *I-2* sequence in pKG 6016.

[0071] In a three point ligation the *EcoRI/N*col promoter fragment of pJM1005 and the *Ncol/Xhol* 3801 bp coding region of *I-2* and 1100 bp *I-2* downstream sequence were cloned into the *EcoRI/Xho*l digested pMOG402, resulting in nMH4002

[0072] Plant transformation. The binary T-DNA vectors pJM2005 and pMH4002 were introduced into Agrobacterium tumefaciens strain EHA105 by electroporation. Constructs were checked for recombination events by transformation of E.coli DH5α with plasmid isolated from transformed A. tumefaciens followed by restriction analysis. Tomato
cotyledons were transformed essentially as described by Fillatti et al. (1987). Ploidy level of transformants was checked
by counting the number of chloroplasts in the stomatal guard cells.

[0073] Infection assay. Infection assays were performed as described previously (WO 97/06259).

[0074] Quantitative GUS assay. GUS activity was quantified fluorometrically by using the substrate 4-Methylum-belliferone glucuronide (MUG) as described by Jefferson (1987). Reactions were performed in 50 μ l, containing 1 mM MUG and stopped after 2 hours incubation at 37°C by addition of 0.5 M Na₂CO₃. The fluorescence was related to a calibration curve of 4-methylumbelliferone (MU). Protein determination was carried out using Bradford reagents and BSA as standard.

[0075] Histological observation. GUS assays were performed histochemically with 5-bromo-4-chloro-3-indoyl glucuronide (X-Gluc) according to Jefferson (1987) and modified by Toriyama et al. (1991). Plant tissues were emerged in the GUS staining solution (1 - 0.5 mM X-Gluc, 0.1 M sodium phosphate buffer, pH 7.0, 0.5% Triton X-100, 2 mM ferrocyanide and 2 mM ferrycyanide) and vacuum infiltrated for at least one hour in total. Incubations were at 37°C overnight after which plant material was fixed in FPA (Formalin 2%, Propiono acid 5% in ethyl-Alcohol 63%) and subsequently incubated in 70 % ethanol. Root and stem sections were embedded in paraffin and sectioned at 120 μ m using a sledge microtoom.

RESULTS

15

20

25

30

35

40

45

Expression of the I-2 gene family

[0076] Northern blot analysis on total RNA from roots, stems and leaves of I-2 containing tomato (line C295) did not give any hybridization signal using l-2 DNA as probe. RNA isolated from Fusarium-infected plants did not yield a signal either. These results suggest that the transcription level of I-2 and other members of the I-2 family is very low. Alternatively, I-2 transcripts may be very unstable. In a next attempt to detect I-2 transcripts an RT-PCR approach was followed. Homologs of 1-2 differ from the active gene by the number of a completely conserved 23 amino acid repeat (Simons et al., 1998). Within I-2 three tandemly arranged copies of this repeat are present, whereas in homologs the number of copies vary from two to six. A set of two primers was designed spanning a sequence containing the region with this variable number of repeats and the intron in the 3' UTR (Fig. 1A). Using this primer set fragments amplified on genomic DNA can be distinguished from fragments amplified on cDNA, and the 1-2 transcript can be distinguished from transcripts of I-2 homologs (Fig. 1A). On genomic DNA as template the presence of at least three homologs could be demonstrated in susceptible line KG52201 and at least five homologs in the resistant line C295 (Fig. 1 B, lanes D). As expected, fragments amplified on cDNA are smaller due to the absence of the intron. RNA isolated from roots (r), stems (s) or leaves (I) of young plants yielded at least six transcripts in the I-2 containing line C295 and three I-2-like transcripts in susceptible line KG52201. The expected size of the I-2 fragment is indicated by an arrow. This result shows the presence of I-2 transcripts in root, stem and leaf in the absence of a Fusarium infection. The low abundancy of transcripts and the expression of various homologs with indistinguishable 5' and 3' ends prompted us to use I-2 promoter-GUS fusions to study the expression of I-2.

Functional expression of I-2 in transgenic plants

[0077] To investigate the functionality of the *I-2* promoter fragment to be used in expression studies, a construct was made consisting of a 3.8 kb 5' flanking sequence, the *I-2* coding region and a 1.1 kb 3' flanking sequence. This construct was used to transform the race 1 and 2 susceptible tomato line KG52201. Seventeen individual transformants were selected and selfed. R1 lines were tested for resistance to *F. oxysporum* f.sp. *lycopersici* race 2 in standard root dip inoculation experiments. To this end 20 plants of each line segregating for the transgene were tested. Plants were inoculated and potted separately to enable a reliable quantification of resistance by measuring the weight of plants three weeks after infection (WO 97/06259). Table 1 shows the results of a representative experiment. Control lines show susceptibility (KG52201) or resistance (OT105 and C295) as expected. Two (KG.14 and KG.05) out of seven transgenic lines tested were found to be resistant to *F. oxysporum* f.sp. *lycopersici* race 2: after infection their mean weights are significantly (p=0.001) different from the susceptible control and are almost as high as the water control. KG.14 and KG.05 showed the expected 3:1 (resistant: susceptible) segregation of the resistance trait. The other five lines containing the same construct either did not differ significantly from the susceptible control line (KG.15) or showed such a reduction in plant weight compared to the water control that they all must be considered susceptible (Table 1). In total five lines (29%) of the 17 lines tested were found to be resistant. From this we conclude that for functional expression of the *I-2* resistance gene the 3.8 kb promoter fragment is sufficient.

Table 1.

Tomato line	Water treated weight (g)	Fusarium infected weight (g)		Segregation (R:S
KG52201	15.8±1.5	0.8±1.6	а	0 : 20
KG.15	12.5±2.1	2.4±2.9	ab	0 : 18
KG.13	12.0±1.2	2.6±3.0	ь	1 : 19
KG.16	12.7±1.4	3.4±2.8	ь	0 : 20
KG.18	13.2±1.6	3.5±3.3	ь	2:18
KG.02	11.7±1.6	3.7±3.1	ь	1:19
	±	±		
KG.14	12.7±2.6	9.1±3.7	С	14:5
KG.05	12.0±0.5	10.0±4.1	cd	15:3
OT105	17.1±1.5	11.8±1.5	d	20:0
C295	18.0±1.6	14.3±1.1	ө	19:0

1-2 promoter driven expression of the GUS reporter gene

5

10

15

20

30

40

50

[0078] Transgenic lines containing the 3.8 kb 5' flanking sequence of the *I-2* gene fused to the *uidA* (GUS) reporter gene were analysed for expression. R1 seedlings of 15 individual transgenic lines of both KG52201 and C295 were grown in potting soil. Five plants per line were pooled and tested for expression using the quantitative MUG assay. Between transgenic lines expression levels appeared to be highly variable (Fig. 2). Mean expression levels were higher in C295 transgenic than in KG52201 lines, although the differences were not found to be significant (p=0.065). Of each cultivar four transgenic lines showing different levels of expression were selected for further analysis. Roots, stems en leaves of kanamycine resistant seedlings were pooled and tested separately. Of each transgenic line material of ten plants was pooled. The variation in GUS activity (Fig. 3) between the different transgenic lines correlated with the results obtained before (Fig. 2). In all lines GUS activity was found to be highest in stems and lowest in leaves.

Histochemical analysis of tissue specific expression of the 1-2 promoter in unchallenged plants

[0079] Eight lines transgenic for I-2-gus-nos of both cultivars KG52201 and C295 were selected for detailed histochemical analysis. These transgenic plants all expressed the transgene in an identical patter, although expression levels seem to vary. In most cases a lower intensity of blue staining was found in the transgenic lines of K52201.

[0080] Seeds and seedlings were analysed for GUS activity. The seed embryo showed GUS expression in hypocotyl and cotyledons. The same was found when the seeds had germinated into young seedlings, but no expression was detectable in the roots on microscopical level. In a later stage, young roots showed a very faint staining in some of the scarce xylem parenchyma cells. In these young roots, a very pronounced expression was found at the origin and base of lateral root formation. In an early state of lateral root primordia, GUS staining was visible as a circle. When lateral root primordia futher developed in a lateral root, expression remained visible at the root base where it has escaped from the older root. The signal becomes more diffuse during growth of the root, probably by dilution of the initial expression because of cell elongation. When secondary thickening of the root has occurred resulting from cambial activity, high GUS activity could be detected. Low activity was found in the endodermis, phloem and vascular cambium. A very pronounced activity could be observed in xylem parenchyma cells surrounding the xylem vessels as well as in premature xylem vessels where cytoplasm was still present. In primary meristem of the root tips no expression was found.

[0081] Expression in stem was detected both in young and old plants. The GUS activity was localized in the same tissue as described for the root: endodermis, phloem and cambial tissue xylem parenchyma cells and xylem vessels when still containing cytoplasm.

[0082] Secondary lateral growth of the stem resulted in more cambial tissue and xylem vessels, both showing pronounce GUS staining. Especially, the ray parenchyma cells, the living cells that are located adjacent to the secondary xylem show a pronounced GUS activity. Analogue to the expression of GUS by the I-2 promoter at the base of lateral root formation, expression was abundantly present at the base of adventitious roots which originate from the stem.

[0083] The I-2 promoter also drives GUS expression at the leaf veins, likely with the same tissue specificity as de-

[0083] The I-2 promoter also drives GUS expression at the leaf veins, likely with the same tissue specificity as described for root and stem. That the staining is not due to uncompleted substrate infiltration is shown by the comparison

with a 35SCaMV transgenic leaf which revealed GUS activity in the complete leaf. The vascular specific expression of I-2 is also found in the tomato fruit. Staining can be observed in the whole fruit but is most abundantly present in the vascular veins. Surprisingly, the I-2 promoter is also active in the stigma of the style.

	I-2 promoter	35SCaMV
seed hypocotyl	+	+
young (fibrious) root	-	
tap root and secondary thickened roots	+	+
adventive root primordia base	+	-
adventive root (fibrious root)	-	+
adventitious root base	+	-
young stem	+	_
older stem		Ì
exodermis	<u>.</u>	,
cortex	_	
endodermis	+	+
pericyle	-	+
cambium	+	+
phloem (internal and secondary)	+	+
xylem parenchyma	+	+
xylem (premature)	+	?
ray parenchyma cells (pith rays)	+	+
hairs	-	+
leaf mesophyll		+
leaf vein		<i>T</i>
gladular trichomes	<u> </u>	-
stigma of pistil	<u>.</u>	
tomato fruit	<u> </u>	T

[0084] To examine induction of expression by Fusarium, the same eight lines were used. Of each line 20 R1 seedlings that had not been selected for the presence of the transgene, were infected with F. oxysporum f.sp. lycopersici race 2 by a standard root dip method or were mock inoculated with water. Seven days after infection, when susceptible plants started to show Fusarium wilt symptoms, stems of the seedlings were analysed for GUS activity. No induction nor suppression of GUS activity was found in inoculated plants (Fig. 4). From these results we conclude that I-2 promoter driven expression is not changed by Fusarium infection. However, we cannot yet exclude changes in expression levels in tissue around the site of colonization since such changes can not be detected with this type of experiments.

Macroscopical analysis of GUS expression

[0085] The transgenic lines used before of both cultivar KG52201 and C295 were used for analysis of the tissue specificity of expression. In all cases expression patterns were identical, although levels varied. Since C295 lines showed most pronounced GUS staining, these lines were used in further studies. The seed embryo displayed GUS activity in hypocotyl and cotyledons (Fig. 5A). The same was found when seeds had germinated (Fig. 5B and C). At macroscopical level, no expression was visible in the roots. For comparison CaMV 35S promoter driven GUS expression in roots is shown (Fig. 5B, right-hand seedling). At sites where tap roots developed lateral roots, a very pronounced expression was found in a cell layer beneath the lateral root primordia (Fig. 5D; E and F). In an early stage of lateral root formation, GUS staining was visible as a circle when viewed from above (Fig. 5D). A side view showed the expression in a single layer of cells beneath the lateral root primordia (Fig. 5E). When these primordia further developed into lateral roots, expression remained visible, in particular at the root base where it had emerged from the older root (Fig. 5F). The signal became more diffuse during growth of the root probably because of cell elongation. GUS activity could be detected in mature roots that had grown by secondary thickening (Fig. 5G). In the primary meristem of root

tips no expression was found. Expression in the hypocotyl was visible both in young and old plants. GUS activity was localized in the central part of the stem, most likely in the vascular tissue (Fig. 5H). In analogy with expression of the GUS gene at the base of lateral root primordia, expression was also found at the base of adventitious roots originating from the stem (Fig. 5I). The *I-2* promoter drives GUS expression in leaf veins as well (Fig. 5J, upper leaf), again demonstrating vascular specificity. For comparison 35S promoter driven GUS expression in the leaf is shown as well (Fig. 5J, bottom leaf). Vascular specific expression is also found in tomato fruit where staining is most abundantly in the vascular bundles (Fig. 5K). Finally, the *I-2* promoter is active in the stigma of the style (Fig. 5L).

Histochemical analysis of expression of the GUS reporter gene

[0086] In young roots low GUS activity was found in the few xylem parenchyma cells and premature xylem vessels (Fig. 6A and B). In older roots in which xylem tissue has expanded because of cambial activity, primarily vascular tissue was stained (Fig. 6C and D). Detailed analysis revealed expression in the cambial zone, xylem parenchyma cells and premature xylem vessels where cytoplasm was still present (Fig. 6D). In stems, where the central xylem developed into separate vascular bundles, GUS activity was localized not only in the same tissues as described for the root: cambium, xylem parenchyma cells and premature xylem vessels (Fig. 6E and F). but also in the endodermis, the phloem and inner phloem vessels. Remarkably GUS activity is highest in premature xylem vessels in all tissues analyzed (Fig. 6G). Secondary lateral growth of the stem results in more cambial tissue, xylem parenchyma cells and xylem vessels (Fig. 6H). Especially the cambial zone and the rays, the living cells that are located adjacent to the secondary xylem, show a pronounced GUS activity.

Histochemical localisation of Fusarium in infected tomato.

[0087] Detailed studies of F. oxysporum f.sp. lycopersici colonizing tomato have been published (Beckman 1987; Beckman and Roberts 1995). However, to be able to correlate the I-2 promoter activity in the same experimental design as presented in the previous section, we analyzed the colonization of tomato by a GUS marked Fusarium. Non-transgenic KG52201 (susceptible) and C295 (resistant) plants were inoculated with a transgenic F. oxysporum f.sp. ycopersici race 2 isolate expressing the GUS gene driven by the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (Roberts et al., 1989). Three, five and seven days after inoculation, plants were harvested for detailed histochemical analysis. Roots of both susceptible and resistant plants were colonized by F. oxysporum f.sp. lycopersici within three days. Five days after inoculation, roots and hypocotyl of all susceptible plants were colonized and colonization went on until day seven. Three days after inoculation the colonization was also visible in xylem vessels and expanded to xylem parenchyma cells of the roots, and often even further into the cambial zone at days five and seven (Fig. 7A and C). In resistant plants roots showed a much lower level of GUS activity and in only a few cases (10% of the plants observed) localized GUS staining was found higher up in the tap root or in the stem. Microscopical analysis showed that the fungus was restricted to the xylem vessels and occasionally to a single layer of xylem parenchyma cells (Fig. 7B and D). Around the infected xylem bundle a brownish discoloration was found, probably of phenolic origin (Fig. 7D and F). In the stem of susceptible plants, Fusarium colonization spreaded from out the xylem vessels into xylem parenchyma cells and cambial cells (Fig. 7E), whereas in resistant plants Fusarium was restricted to the xylem vessels and some xylem parenchyma cells (Fig. 7F). These results indicated that there is a co-localization of I-2 expression (Fig. 6) and the site of defence responses in resistant plants, notably the xylem parenchyma cells and the cambial zone.

DISCUSSION

10

25

45

50

[0088] Many plant-pathogen interactions fit the gene-for-gene hypothesis (Flor, 1971) which states that plants are resistant when they contain an *R* gene that matches an avirulence (*Avr*) gene in the invading pathogen. Isolation of plant *R* genes and pathogen *Avr* genes has revealed little about the role their gene products play in the defence response. Structural analysis of *R* genes, that share many common features, suggests that they are active in signalling cascade(s) that coordinate initial plant defence responses to impair pathogen growth (Hammond-Kosack and Jones, 1997; Ellis and Jones, 1998). While avirulence genes probably have a role in fitness or pathogenicity of the pathogen (Leach and White, 1996; Vivian and Gibbon, 1997), R gene products may have a function in plant development, and hence are expressed in healthy, unchallenged plants ready to detect the attack (Hammond-Kosack and Jones, 1997). [0089] Detection of *I-2* transcripts using Northern blot analysis appeared to be difficult. However, RT-PCR analysis revealed that *I-2* and several of its homologs are expressed in roots, stems and leaves (Fig. 1B). Because amplifications were not performed quantitatively, band intensity are not likely to reflect actual expression levels, but are rather the result of differences in efficiency at which fragments are amplified. The fact that the level of *I-2* transcripts is very low, that more than one homologs are transcribed, and that based on the known sequences of *I-2* and its homologs no *I*-

2 specific probes could be designed for *in situ* hybridization, prompted us to use a promoter-*uidA* fusion for *I-2* expression analysis.

[0090] The functionality of the *I-2* promoter fragment used was tested by complementation analysis. A construct containing a 3.8 kb 5' flanking sequence of the *I-2* gene upstream of the *I-2* coding and 1.1 kb 3' downstream region conferred resistance to a susceptible line. This indicated that the 3.8 kb promoter of *I-2* is sufficient for functional expression of the *I-2* resistance gene. Only in 29% of the transgenic lines tested complementation was found. Similar functional transformation frequencies were obtained using cosmids containing the *I-2* gene (Simons et al., 1998). In transgenic lines containing the cosmid with the largest promoter sequence (B22), where external influences will be very small, resistance was found in 73% of the transgenic lines. When cosmids were used with shorter promoter sequences, frequencies at which resistant lines were found dropped. For example, with cosmid A55 that contains a promoter sequence of approximately 3 kb, only in 23% of the transgenic lines resistance was found. This suggests that for functional *I-2* expression flanking sequences of the gene are important.

[0091] Transgenic plants were generated with the 3.8 kb 5' flanking sequence of the I-2 gene fused to the GUS reporter gene. Levels of GUS activity in these transgenic plants showed to be highly variable, supporting the observation that the I-2 promoter activity is sensitive to position effects. The GUS activity found were in agreement with the RT-PCR, namely expression in roots, stems and leaves. RNA gel blot analyses using RPS2, RPM1, RPP5, Mi, Pto, Prf, Xa21 and Cf-9 as probes have revealed the presence of low abundant transcripts in unchallenged plants (Grant et al., 1995; Salemon et al., 1996; Hammond-Kosack and Jones, 1997; Parker et al., 1997; Milligan et al., 1998). This indicates that most R genes, and their homologs, are expressed in the absence of the corresponding avr expressing pathogen. 1-2 shares this common feature of R genes since expression of 1-2 was detected in tomato plants free of Fusarium. For most of the R genes induction of expression by the pathogen has not been observed or is not known because of the localized response. Only for the nematode resistance genes Hs1pm-1 and the bacterial resistance gene Xa1 induction by the pathogen has been shown (Cai et al., 1997; Yoshimura et al., 1998). In F. oxysporum f.sp. lycopersici infected tomato plants no increased I-2 promoter driven GUS activity was found (Fig. 4). The same I-2 promoter-uidA constructs were used to transform cell suspension of tomato cell line MSK8. Transgenic cell lines showed constitutively GUS activity; treatment of the cells with conidia of F. oxysporum t.sp. lycopersici race 1 or race 2, culture filtrates of F. oxysporum f.sp. lycopersici or xylanase (an aspecific elicitor) did not change the GUS activity. Taken together, these results suggest that the I-2 expression is not regulated by pathogen infection.

15

20

35

40

45

55

[0092] Histochemical observations have revealed that GUS activity was primarily found in vascular tissue. Therefore, the relative GUS activity in roots, stems and leaves (Fig. 3) very well could reflect the relative presence of vascular cells in these tissues. The observation that F. oxysporum f.sp. lycopersici colonizes the vascular tissue of the plant, suggests that I-2 is expressed in cells that are responsible for the resistance responses. The fungus enters the root via wounds, including natural wounds caused by lateral root formation. At the site of lateral root formation, pronounced 1-2 expression was found in a ring of cells lining at the base of the lateral root, probably outside the vascular tissue of the main root. The fungus that enters the disrupted cortex has to pass this site of I-2 expression before it invades the vascular tissue. This might create a recognition point for the I-2 based defences. Growing in the xylem vessels of the root F. oxysporum1.sp. lycopersici will try to spread lateral and vertical. Vertical invasion is restricted by the production of gels, gums and tyloses. These are produced by xylem parenchyma cells, which show I-2 expression indicating that the I-2 gene could directly mediate these responses in xylem parenchyma cells. In the lateral direction it has been proposed that cell wall depositions and the production of antifungal compounds are responsible for the resistance response, and that these resistance reactions are orchestrated by secondary xylem parenchyma cells (Beckman et al., 1989). In susceptible plants F. oxysporum f.sp. lycopersici invades the xylem parenchyma and even continues into the cambium zone (Fig. 7C and E). Plants of which the cambium zone is affected will no longer be able to bypass the infection by the creation of new xylem vessels. In resistant tomato plants lateral growth of F. oxysporum f.sp. lycopersici is prevented. This is associated with many defence responses in cells flanking the xylem vessels. Among these responses is a brownish discolourization of phenolic origin (Fig. 7D and F) (Beckman, 1987). GUS activity in xylem parenchyma cells and in cambium cells, as found, overlaps with the location where the crucial resistance mechanism is expected. Expression of I-2 in the lateral root and adventitious root formation suggests that I-2 might also be involved in the formation of new roots to compensate the affected absorptive and transport capacity of the root system impaired by F. oxysporum f.sp. lycopersici infection.

[0093] It is speculated that *R* gene products will activate multiple signalling pathways simultaneously such as was found for numerous mammalian receptor proteins (O'Neill, 1995; Li et al., 1997; Ellis and Jones, 1998). Furthermore, sequence homology has been found between NBS containing *R* genes and genes involved in regulation of apoptotic cell death in animals (Chinnaiyan et al., 1997; Van der Biezen and Jones, 1998). This has led to the hypothesis that *R* genes are the key components in a branched signalling pathway resulting in the induction of a wide range of responses that are directed against a broad range of pathogens. One of these branches might include the mediation of rapid host cell death. The resistance of tomato to *F. oxysporum* f.sp. *lycopersici* is accompanied by many general defence responses like callose deposition, lignification, production of phytoalexins and induction of PR proteins (Beckman, 1987;

Beckman and Roberts, 1995). Since the resistance response is mediated by xylem parenchyma cells, defence mechanisms explored by these cells will probably be close to their normal activity which involves the formation or support of xylem. Tracheary element formation is characterized by secondary wall thickening, which are subsequently lignified, and a novel form of programmed cell death resulting in mature tracheary elements (McCann, 1997; Jones and Groover, 1997). In certain situations like lateral root formation, or vascular obstruction by pathogens, cells that are already differentiated will trans-differentiate to form vascular tissue, thereby establishing continuity of water-transporting tissue (Sachs, 1981; Aloni, 1987). *I-2* expression is found in vascular cambium, xylem parenchyma cells and premature xylem vessels, tissue that can develop into tracheary elements. Furthermore, *I-2* expression was found in lateral and adventitious root formation. This all together let us to hypothesize that the *I-2* gene, or the original function of *I-2* like genes, could be involved in the acceleration of de-differentiation of tissue or in the signal transduction pathway leading to the development of vascular tissue.

REFERENCES

- 15 [0094] Aloni, R (1987) Differentiation of vascular tissue. Annu Rev Plant Physiol 38:179-204.
 - [0095] Beckman CM (1987) The nature of wilt disease of plants. APS Press, St. Paul, Minnesota.
 - [0096] Beckman CH, Roberts EM (1995) On the nature and genetic basis for resistance and tolerance to wilt disease of plants. Adv Bot Res 21:35-77.
 - [0097] Beckman CH, Verdier PA, Mueller WC (1989) A system of defence in depth provided by vascular parenchyma cells of tomato in response to vascular infection with *Fusarium oxysporum* f.sp. *lycopersici*, race 1. Physiol and Mol Plant Pathol 34:227-239.
 - [0098] Bishop CD, Cooper RM (1983) An ultrastructural study of root invasion in three vascular wilt diseases. Physiol Plant Pathol 22:15-27.
 - [0099] Cai D, Klein M, Kifle S, Harloff H-J, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832-834.
 - [0100] Chinnaiyan AM, Chaudhary D, O'Rourke K, Koonin EV, Dixit VM (1997) Role of CED-4 in the activation of CED-3. Nature 338:728-729.
 - [0101] Ellis J, Jones D (1998) Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr Opin Plant Biol 1:288-293.
 - [0102] Fillatti JJ, Kiser J, Rose R, Comai L (1987) Efficient transformation of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/technology 5:726-730.
 - [0103] Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275-296.
 - [0104] Grant MR, Godard L, Straube E, Ashfield T, Leward J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis *RPM1* gene enabling dual specificity disease resistance. Science 269:843-846. Jefferson RE, Kavanagh T, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901-3907.
 - [0105] Jones AL, Groover ATG (1997) Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196:197:211.
- [0106] Hammond-Kosack KE, Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48:575-607.
 - [0107] Hutson RA, Smith IM (1983) The response of tomato seedling roots to infection by *Verticillium albo-atrum* or *Fusarium oxysporm* 1.sp. *lycopersici*. Annu Appl Biol 102:89-97.
 - [0108] Leach JE, White FF (1996) Bacterial avirulence genes. Annu Rev Phytopathol 34:153-179.
- 5 [0109] McCann MC (1997) Tracheary element formation: building up to a dead end. Trends in plant Science 2: 333-338.
 - [0110] Mes JJ, Weststeijn EA, Herlaar F, Lambalk JJM, Wijbrandi J, Haring MA, Comelissen BJC (1999) Biological and molecular characterization of *Fusarium oxysporum* f.sp. *lycopersici* divides race 1 into separate virulence groups. Phytopathology, in press.
- 50 [0111] Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot resistance gene Mi from tomato is a member of the feucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307-1319.
 - [0112] O'Neill LA (1995) Interleukin-1 signal transduction. Int Clin Lab Res 25:169-177.
 - [0113] Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Zamir D, Fluhr R (1997) The *I2C* family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9:521-532.
 - [0114] Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, Van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene *RPP5* shares similarity to the toll interleukine-1

receptors with N and L6. Plant Cell 9:879-894.

15

25

30

35

40

45

50

55

- [0115] Roberts IN, Oliver RP, Punt PJ, Van den Hondel CAMJJ (1989) Expression of the *Escherichia coli* β-glucuronidase gene in industrial and phytopathogenic filamentous fungi. Curr Genet 15:177-180.
- [0116] Sachs T (1981) The controle of patterned differentation of vascular tissue. Adv Bot Res 9:151-262.
- [0117] Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim H-S, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato *Prf* is a member of a leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123-133.
 - [0118] Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, Van der Lee T, Bleeker M, Onstenk J, De Both M, Haring M, Mes J, Cornelissen B, Zabeau M, Vos P (1998) Dissection of the Fusarium *I2* gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055-1068.
 - [0119] Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistence gene, *Xa21*. Science 270: 1804-1806.
- [0120] Toriyama K, Thorsness MK, Nasrallah JB, Nasrallah ME (1991) A Brassica S locus gene promoter directs sporophytic expression in the anther tapetum of transgenic Arabidopsis. Dev Biol 143:427-31.
 - [0121] Van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:226-227.
 - [0122] Vivian A, Gibbon MJ (1997) Avirulence genes in plant-pathogenic bacteria: signals or weapons, Microbiology 143:693-701.
- 20 [0123] Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95:1663-1668.

Annex to the description

[0124]

5

SEQUENCE LISTING

<110> KEYGENE N.V. <120> NUCLEOTIDE SEQUENCE HAVING A TISSUE SPECIFIC REGULATORY 10 ACTIVITY ON THE TRANSCRIPTION OF GENES IN PLANTS <130> B4164 AD/CAL <140> 15 <141> <160> 5 <170> PatentIn Ver. 2.1 20 <210> 1 <211> 3823 <212> DNA <213> Fusarium oxysporum 25 gaattcctgc aggtggaaat atacagccgt tgttagagaa acaacctttg gttatccaag 60 gtgctggagc aggaaatgaa ccttgcaaca ttttgactac tagtacatct caacattcat 120 30 cacaagacaa ttgactgaat cccgtgaaaa cttgctctcc gcctaatgaa tacagaacac 180 caatacttta getttgtttt tatcatttte caaaaaaagt acatcaaaaa cagcatagee 240 35 tracgreatt ttgacttgta ctatacaace tgacageaca ategeaaaag aaaagatgta 300 atcactagta catctcgaca tacaacatat ccaatgtaat ctcacaaatg gtatttcggg 360 aggataggat atacacaaat taaaattata tatatagaga gagagagtgt gtttttagag 420 40 ttgcaccgtt gtgctttgat aaaatacaga attttatgta taaaaaatta caacaggtta 480 tttctttata atttaacatc taataaagca tcttgtctca gttggtgaaa gtttatttcc 540 45 aataaaaata tgtcaattta gtggtatata tgtcagtcct caccgaagac caaactatat 600 ggtggtatgc atctattgat ttattgtaaa taaaaaatat atctgagttt gcttgataat 660 aaattattat gacgtgtttt aatttgcact atcaagaaga ctttattaca attttcaatc 720 50 attaageteg aaaaetetaa tettatgtat aacaaaacaa etacaaggga aaattgeeat 780 agetetttgg tgtaateaaa tteecaaett gttgaegtgt teteaagtat aaataaaaga 840 55 aaaattgtgt gtgagaagaa atgaaaataa aacattatga agacatagtg ttgttgttgg 900

	grgaaaagrg	atacttttga	tttttttta	aaaaggggga	cagtgtttt	ttattgtttt	960
5	ttcttctatg	gctgtcccca	tccctcacct	acccactcaa	aattattcta	tttagataaa	1020
	agactcttct	tgttgtatga	aaagtcatac	tcatggaaaa	gagtaggaaa	aaggataatt	1080
	tttgatatat	ttattttatg	tcctttaact	ttaatattaa	tgagtaaact	tttgaatttg	1140
10	tataaagtta	aataattaga	tatatcaatc	gtaçgtaaca	taaaattaga	tgagggtata	1200
	aaagccctac	atgaggtgca	tgtattgtta	tatacattac	gttataacac	aaacagttga	1260
15	ggattgcaca	acaacttgtg	atcatcggat	gcgagaagct	cgtaaatggc	cgaaataaat	1320
	aacaacatac	caagtataac	ccgacaagtg	ggatgtgtat	atagacctta	tcactatctt	1380
•	gtgggataga	gggttgtttt	cgatagaccc	tcagctcaag	taaacatagg	gaaaaaatac	1440
20	cctagagaaa	aggaaaatgg	aacggatttc	aattctttca	cactgttact	actatgaaaa	1500
	taatggtcaa	aatcgaactc	aattgttaat	tgcccaatat	aggattgact	actgattctt	1560
25	aaggaacgcg	ttttcactac	cttttgaaac	cacaaaaaat	ggacaaattc	ctttccttag	1620
	agacacatac	ataaaacgag	ctgaaatgtg	ttttgtttct	accagagttg	ttcagattgc	1680
	atcaatttca	ctttcacatt	cttgttttt	ttaattattt	aaagttgcca	gagetttgaa	1740
30	tctgatttaa	attttgattt	gttaaacatt	gagtgtttt	ttaattaggt	ttcgtggacc	1800
	tctaataata	ggtcacttgt	cagaaatgat	ttacaaaact	atattctttt	tttgttaaaa	1860
35	aataatgata	tgaatgaatt	atttttaaaa	tatatgtatt	gtggataaat	caaactttta	1920
	tagaaatgac	ataaataaat	cattttaata	aaattgtatc	aaatgcttat	tactattttc	1980
	aaaaaatata	tacactaagg	gcccgtttgg	atgggcttaa	aaaaagcagc	tttaaaaaaa	2040
40	gtactttcga	aaggcgctga	aacttattt	ttgaaataag	cagttatgtg	tttggaataa	2100
	aagtgctgaa	gttgctatgt	caaacatgaa	aagaggaaaa	agggaaaaaa	gagctanngt	2160
45	tagggttatn	gtcgtaattt	ggagattgta	taaaaatatt	aagggcaaaa	aaaataaaaa	2220
	tgtgtcaact	taaaacagct	tataagctaa	aagttaaaag	ctggggtaga	ggtgttttt	2280
	tttttttag	cttataagtt	gttttaagtt	gaccacattt	ttatttttct	tgcccttaat	2340
50						cattttttcc	
						gcttatttta	
55	aaaataagtt	tcagcacttt	caaaagtact	tttttaaagc	tgcttttatt	aagcccatcc	2520

	aaacgggccc	taaaattgct	aatgtttget	ctttctattc	teaaacteeg	taatatttaa	2580
5	gaaaatttgc	taatgatagg	tcacttttaa	cactaaataa	ttataaattg	ggtagaaatt	2640
	tatttațcat	tttaagcttt	tttaattttg	agtettetee	ctaattaaga	cccttcccct	2700
	cttgcttcaa	ttatttaact	gaatagtett	tgtcttattg	ttgggtgaaa	gtctgtcttc	2760
10	ttgttaggta	ctaagtccta	caataatatc	aataatttgc	tatggagaaa	aaaatattat	2820
	aggagaaaaa	taattaattt	taattcatga	atatgtctta	atatgcaact	cattttgctt	2880
15	atatatatca	aattaaactc	tgttccttta	actttttcct	atgaagatac	attttaattt	2940
	atttgatgag	gttagttttg	aaatttatat	tataataatg	aaatgatata	acttaaaaga	3000
	agttgtttga	tatcttatca	gaatcatgca	ggtactcata	atataagaaa	taattatgat	3060
20	gaaatttata	tatgttttat	gcagagattt	attacgcatt	gtttacttgg	gttatgtatt	3120
	acttatttca	tcttttatca	gaatgtaaaa	ttatcattca	ataagaaatc	caattctgtt	3180
25	aaattcaaaa	tacaaacaat	aacattttca	agaacgattt	tttgcccaag	aatatacagt	3240
	aaacatattt	atgatatggt	aggtetettt	agtaattgac	caacaaggat	tgtggtggag	3300
	tgggaaatac	tctttaatac	ttcaccaaga	ggtctccaat	ttgagcccct	gaatacgaaa	3360
30	tcgtctttgt	tagtatatac	cctaacctaa	tacaaaaatt	agtatattag	ccttcacage	3420
	taaaatcttt	gtgacctgta	agtcacgcga	ggacaaattt	accgtaacac	caacttattc	3480
35	atgatataat	tgtccctttt	agcacggtaa	taatgaggtg	ggtagaaatt	tattacttga	3540
	gggccctttc	tacacccacc	cttattctct	tgcttcaatt	attgaattga	agaagtaatg	3600
	aaaaaacaga	ctccattgga	taaaggacag	tttgcaaaca	cagctgtaac	aatttagagc	3660
40	actagcaaaa	tagagagagt	tttgagagaa	atttttgttt	gcaaattact	cttaaccttc	3720
	agcaggtaaa	ataaagttct	taactgagac	tatttgaaga	tatattttgt	taaagaatca	3780
45	ttttgtgtgt	ttccttgttt	tgcttttgca	gatttgagaa	atg		3823
	<210> 2						
	<211> 1334						
50	<212> DNA <213> Fusa	rium oxyspo	rum				
	<400> 2						
	tactttttta	aagctgcttt	tattaagccc	atccaaacgg	gccctaaaat	tgctaatgtt	60

	tgetetttet	atteteaaae	tccgtaatat	ttaagaaaat	ttgctaatga	taggtcactt	120
5	ttaacactaa	ataattataa	attgggtaga	aatttattta	tcattttaag	cttttttaat	180
	tttgagtctt	ctccctaatt	aagacccttc	ccctcttgct	tcaattattt	aactgaatag	240
	tctttgtctt	attgttgggt	gaaagtctgt	cttcttgtta	ggtactaagt	cctacaataa	300
10	tatcaataat	ttgctatgga	gaaaaaaata	ttataggaga	aaaataatta	attttaatto	360
	atgaatatgt	cttaatatgc	aactcatttt	gcttatatat	atcaaattaa	actctgttcc	420
15	tttaactttt	tcctatgaag	atacatttta	atttatttga	tgaggttagt	tttgaaattt	480
	atattataat	aatgaaatga	tataacttaa	aagaagttgt	ttgatatctt	atcagaatca	540
	tgcaggtact	cataatataa	gaaataatta	tgatgaaatt	tatatatgtt	ttatgcagag	600
20	atttattacg	cattgtttac	ttgggttatg	tattacttat	ttcatctttt	atcagaatgt	660
	aaaattatca	ttcaataaga	aatccaattc	tgttaaattc	aaaatacaaa	caataacatt	720
25	ttcaagaccg	attttttgcc	caagaatata	cagtaaacat	atttatgata	tggtaggtct	780
	ctttagtaat	tgaccaacaa	ggattgtggt	ggagtgggaa	atactcttta	atacttcacc	840
	aagaggtctc	caatttgagc	ccctgaatac	gaaatcgtct	ttgttagtat	ataccctaac	900
30	ctaatacaaa	aattagtata	ttagccttna	cagctaaaat	ctttgtgacc	tgtaagtcac	960
	gcgaggacaa	atttaccgta	acaccaactt	attcatgata	taattgtccc	ttttagcacg	1020
35	gtaataatga	ggtgggtaga	aatttattac	ttgagggccc	tttctacacc	cacccttatt	1080
	ctcttgcttc	aattattgaa	ttgaagaagt	aatgaaaaaa	cagactccat	tggataaagg	1140
	acagtttgca	aacacagctg	taacaattta	gagcactagc	aaaatagaga	gagttttgag	1200
10	agaaattttt	gtttgcaaat	tactcttaac	cttcagcagg	taaaataaag	ttcttaactg	1260
	agactatttg	aagatatatt	ttgttaaaga	atcattttgt	gtgtttcctt	gttttgcttt	1320
15	tgcagatttg	agaa					1334
	<210> 3						
	<211> 1797						
_	<212> DNA						
0	<213> Fusar	ium oxyspor	um				
	<400> 3						
	aaaaaagcag	ctttaaaaaa .	agtactttkg	aaagokooto	222666666		

	gcagttatgt	gtttggaawa	aaagtgctga	agttgctatg	tcaaacatga	aaagggraaa	120
5	aatggaagaa	agagwtgtta	gggttatgtc	gtaatttgga	gattgtataa	aaatattaag	180
	ggcaaaaaaa	ataaaaatgt	gtcaacttaa	aacagcttat	aagctaaaag	ttaaaagctg	240
	gggtagaggt	gtttttttt	tttttagctt	ataagttgtt	ttaagttgac	cacatttta	300
10	tttttkttgc	ccttaatatt	tttatacaat	ctcaaaatta	cgacataacc	ctaacatctt	360
	tttctcccat	tttttccttt	tcacgtttga	catagcaact	tcagcacttt	tatccaaaca	420
15	cataactgct	tattttaaaa	ataagtttca	gcactttcaa	aagtactttt	ttaaagctgc	480
	ttttattaag	cccatccaaa	cgggccctaa	aattgctaat	gtttgctctt	tctattctca	540
	aactccgtaa	tatttaagaa	aatttgctaa	tgataggtca	cttttaacac	taaataatta	600
20	taaattgggt	agaaatttat	ttatcatttt	aagcttttt	aattttgagt	cttctcccta	660
	attaagaccc	ttcccctctt	gcttcaatta	tttaactgaa	tagtctttgt	cttattgttg	720
25	ggtgaaagtc	tgtcttcttg	ttaggtacta	agtcctacaa	taatatcaat	aatttgctat	780
	⁻ ggagaaaaaa	atattatagg	agaaaaataa	ttaattttaa	ttcatgaata	tgtcttaata	840
30	tgcaactcat	tttgcttata	tatatcaaat	taaactctgt	tcctttaact	ttttcctatg	900
	aagatacatt	ttaatttatt	tgatgaggtt	agttttgaaa	tttatattat	aataatgaaa	960
	tgatataact	taaaagaagt	tgtttgatat	cttatcagaa	tcatgcaggt	actcataata	1020
35	taagaaataa	ttatgatgaa	atttatatat	gttttatgca	gagatttatt	acgcattgtt	1080
	tacttgggtt	atgtattact	tatttcatct	tttatcagaa	tgtaaaatta	tcattcaata	1140
40	agaaatccaa	ttctgttaaa	ttcaaaatac	aaacaataac	attttcaaga	ccgattttt	1200
		atacagtaaa					
	caaggattgt	ggtggagtgg	gaaatactct	ttaatacttc	accaagaggt	ctccaatttg	1320
45		tacgaaatcg					
		tnacagetaa					
50		cttattcatg					
•		tacttgaggg					
55	gaattgaaga	agtaatgaaa	aaacagactc	cattggataa	aggacagttt	gcaaacacag	1620

	ctgtaac	aat t	ttaga	agca	ct a	gcaa	aata	g ag	agag	ttt	gag	agaa	att	tttg	tttgca	1680
_	aattact	ctt a	aacct	tcag	gc a	ggta	aaata	a aa	gttc	ttaa	ctg	agac	tat	ttga	agatat	1740
5	attttgt	taa a	agaat	catt	t t	gtgt	gttt	ct	gtt	ttgc	ttt	tgca	gat	ttga	gaa	1797
10	<210> 4 <211> 3 <212> D <213> F	801 NA	ium c	xysp	poru	n										
15	<220> <221> C <222> (<223> n	1)			quen	ce of	f the	e I-:	? re	sista	ance	gen	e			
20	<400> 4 atg gag Met Glu 1	att Ile	Gly	tta Leu 5	gca Ala	gtt Val	ggt Gly	ggt Gly	gca Ala 10	ttt Phe	ctc Leu	tcc Ser	tca Ser	gct Ala 15	ttg Leu	48
25	aat gtt Asn Val	ctg Leu	ttt Phe 20	gat Asp	agg Arg	ctt Leu	gct Ala	cct Pro 25	aac Asn	ggt Gly	gat Asp	ctg Leu	ctc Leu 30	aac Asn	atg Met	96
30	ttt cgg Phe Arg	aag Lys 35	cat His	aag Lys	gat Asp	cat His	gtt Val 40	aag Lys	ctc Leu	tta Leu	aag Lys	aag Lys 45	ctg Leu	aaa Lys	atg Met	144
	act ttg Thr Leu 50	cgt Arg	ggt Gly	att Ile	cag Gln	att Ile 55	gtg Val	cta Leu	agt Ser	gat Asp	gca Ala 60	gag Glu	aat Asn	aag Lys	caa Gln	192
35	gca tca Ala Ser 65	Asn	Pro	Ser	Val 70	Arg	Asp	Trp	Leu	Asn 75	Glu	Leu	Arg	Asp	Ala 80	240
40	gtc gac Val Asp	tct Ser	gct Ala	gaa Glu 85	aat Asn	tta Leu	ata Ile	gaa Glu	gaa Glu 90	gtc Val	aat Asn	tat Tyr	gaa Glu	gct Ala 95	ttg Leu	288
45	agg ctt Arg Leu	aag Lys	gtg Val 100	gaa Glu	Gly	Gln	cat His	Gln	Asn	ttt Phe	Ser	gaa Glu	Thr	Ser	aac Asn	336
50	cag caa Gln Gln	gta Val 115	agt Ser	gat Asp	gat Asp	ttt Phe	ttc Phe 120	ctt Leu	aac Asn	ata Ile	aag Lys	gac Asp 125	aag Lys	ctg Leu	gaa Glu	384
	gac act Asp Thr 130	att Ile	gaa Glu	aca Thr	tta Leu	aag Lys 135	gat Asp	ttg Leu	caa Gln	gag Glu	caa Gln 140	att Ile	ggt Gly	ctc Leu	ctt Leu	432

5															aga Arg		480
10															agc Ser 175		528
															999 Gly		576
15	_	_		_	-								_		aag Lys		624
20			Ala		_	-			_				_		cat His		672
25	_														ttg Leu		720
30															aag Lys 255		768
															agt Ser		816
35	-		-	_					-	-					gaa Glu		864
40						_	_	_				_			gat Asp		912
45		-	-				_		_		_	_		-	ttg Leu	_	960
50	_						_	_			_			-	gcc Ala 335		1008
						_		-		_		_	_		atg Met		1056

5	cat His	ccg Pro	gaa Glu 355	ctt Leu	gaa Glu	gag Glu	gtc Val	gga Gly 360	aga Arg	caa Gln	att Ile	gca Ala	gcc Ala 365	Lys	tgc Cys	aaa Lys	1104
10	gga Glý	ctg Leu 370	ccc Pro	tta Leu	gct Ala	ctg Leu	aag Lys 375	Thr	ctc Leu	gct Ala	ggc Gly	atg Met 380	tta Leu	cgc Arg	tcc Ser	aaa Lys	1152
	tca Ser 385	gag Glu	gtt Val	gaa Glu	gag Glu	tgg Trp 390	aaa Lys	cgt Arg	att Ile	ttg Leu	aga Arg 395	agt Ser	gaa Glu	ata Ile	tgg Trp	gag Glu 400	1200
15	ctg Leu	cca Pro	cac His	aat Asn	gac Asp 405	ata Ile	tta Leu	cca Pro	gcg Ala	ttg Leu 410	atg Met	ttg Leu	agc Ser	tac Tyr	aat Asn 415	gat Asp	1248
20	ctt L'eu	ccc Pro	gca Ala	cat His 420	tta Leu	aag Lys	cga Arg	tgc Cys	ttt Phe 425	tct Ser	ttt Phe	tgt Cys	gca Ala	ata Ile 430	ttt Phe	cct Pro	1296
25	aaa Lys	gat Asp	tat Tyr 435	cca Pro	ttt Phe	agg Arg	aaa Lys	gaa Glu 440	caa Gln	gtt Val	att Ile	cat His	cta Leu 445	tgg Trp	att Ile	gcc Ala	1344
30	aat Asn	ggt Gly 450	ctc Leu	gta Val	cca Pro	gtg Val	aaa Lys 455	gat Asp	gaa Glu	ata Ile	aat Asn	caa Gln 460	gat Asp	tta Leu	ggc Gly	aac Asn	1392
	caa Gln 465	tac Tyr	ttt Phe	cta Leu	gag Glu	ttg Leu 470	aga Arg	tca Ser	aga Arg	tca Ser	tta Leu 475	ttt Phe	gaa Glu	aag Lys	gtc Val	CCa Pro 480	1440
35	aat Asn	cct Pro	tct Ser	aaa Lys	agg Arg 485	aac Asn	ata Ile	gag Glu	gaa Glu	tta Leu 490	ttc Phe	ctt Leu	atg Met	cat His	gac Asp 495	ctt Leu	1488
40	gtc Val	aat Asn	gat Asp	tta Leu 500	gcc Ala	caa Gln	ctt Leu	gca Ala	tct Ser 505	tca Ser	aaa Lys	ctt Leu	tgt Cys	atc Ile 510	agg Arg	tta Leu	1536
45	gaa Glu	gag Glu	agc Ser 515	caa Gln	gga Gly	tct Ser	cat His	atg Met 520	ttg Leu	gaa Glu	caa Gln	tgt Cys	cgg Arg 525	cac His	tta Leu	tct Ser	1584
50	tat Tyr	tca Ser 530	ata Ile	gga Gly	ttt Phe	aat Asn	ggt Gly 535	gag Glu	ttt Phe	aag Lys	aaa Lys	ttg Leu 540	aca Thr	ccc Pro	ctc Leu	tac Tyr	1632
	aaa Lys 545	ttg Leu	gag Glu	cag Gln	ttg Leu	agg Arg 550	aca Thr	ttg Leu	ctt Leu	ccg Pro	ata Ile 555	cgt Arg	att Ile	gaa Glu	ttc Phe	aga Arg 560	1680
55																	

5	ttg Leu	cac His	aat Asn	cta Leu	agc Ser 565	aag Lys	agg Arg	gtg Val	ttg Leu	cat His 570	aac Asn	ata Ile	ctg Leu	cct Pro	aca Thr 575	cta Leu	1728
10	aga Arg	tcc Ser	ttg Leu	agg Arg 580	gcc Ala	cta Leu	tca Ser	ttc Phe	tct Ser 585	caa Gln	tac Tyr	aag Lys	att Ile	aag Lys 590	gag Glu	ttg Leu	1776
,0		aat Asn															1824
15		cgg Arg 610					_	_		-							1872
20		ttg Leu															1920
25	_	ctg Leu	_	-		_	_										1968
		act Thr		_	_	_	_				_	_		-		_	2016
30		caa Gln						_			_	_			_	_	2064
35		gat Asp 690															2112
40	_	ttg Leu	_			-	-	_		_	-		_	_	_	_	2160
45		gag Glu															2208
	_	att Ile	-	_					_	_	_			_			2256
50	-	cca Pro							-	_		-			_		2304

5				ccc Pro			_	_	_		_			_	_		2352
		_		cta Leu	_		_	_	_	_			-		_		2400
10				cct Pro							_			-			2448
15		_		gtg Val 820		_	_				_	-				_	2496
20 .				tct Ser													2544
25				cac His													2592
				aaa Lys		_				_	_						2640
30				tta Leu													2688
35	gat Asp	gat Asp	gcc Ala	caa Gln 900	ctg Leu	ttt Phe	aga Arg	tcc Ser	caa Gln 905	ctt Leu	gag Glu	gca Ala	atg Met	aag Lys 910	cag Gln	att Ile	2736
40				gat Asp													2784
	agc Ser	ata Ile 930	ctg Leu	cca Pro	act Thr	acc Thr	ttg Leu 935	aag Lys	aga Arg	ata Ile	cag Gln	ata Ile 940	tct Ser	cgt Arg	tgc Cys	cca Pro	2832
45				ttg Leu					_	_	-		-			_	2880
50	aga Arg	gtg Val	aat Asn	gat Asp	tgt Cys 965	ggt Gly	tgt Cys	gta Val	gat Asp	gat Asp 970	ata Ile	tca Ser	cct Pro	gag Glu	ttt Phe 975	ctc Leu	2928

5	cca aca Pro Thr														2976
	ttt ttg Phe Leu	att Ile 995	cct a Pro 1	ct gcc hr Ala	Thr	gaa Glu 1000	act Thr	ctc Leu	cgt Arg	Ile	tcg Ser 1005	aat Asn	tgt Cys	gag Glu	3024
10	aat gtt Asn Val 1010	gaa Glu	aaa c Lys L	eu Ser	gtg Val 1015	gca Ala	tgt Cys	gga Gly	Gly	gcg Ala 1020	gcc Ala	cag Gln	atg Met	acg Thr	3072
15	tca ctg Ser Leu 1025							Leu					Glu		3120
20	ctt cca Leu Pro	tct Ser	ctc a Leu L 10	ys Glu	ctg Leu	cgt Arg	Leu	tct Ser	gat Asp	tgt Cys	cca Pro	Glu	ata Ile	gaa Glu	3168
25	gga gaa Gly Glu	Leu	ccc t Pro P 060	tc aat he Asn	tta Leu	Glu	ata Ile 1065	ctc Leu	cgt Arg	atc Ile	Ile	tat Tyr .070	tgc Cys	aag Lys	3216
	aaa ctg Lys Leu l	gtg Val 1075	aat g Asn G	gc cga ly Arg	Lys	gag Glu .080	tgg Trp	cat His	tta Leu	Gln	aga Arg .085	ctc Leu	aca Thr	gag Glu	3264
30	tta tgg Leu Trp 1090	atc o	gat c Asp H	is Asp	095 Gly ggg	agt Ser	gac Asp	gaa Glu	Asp	att Ile 100	gaa Glu	cat His	tgg Trp	gag Glu	3312
· 35	ttg cct Leu Pro 1105	tgt (Cys (tct a Ser I	tt cag le Gln 1110	aga Arg	ctt Leu	acc Thr	Ile	aag Lys 115	aat Asn	ctt Leu	aaa Lys	Thr	tta Leu 120	3360
40	agc agc Ser Ser	caa (Gln I	cat c His L	eu Lys	agc Ser	ctc Leu	Thr	tct Ser 130	ctt Leu	caa Gln	tat Tyr	Leu	tgt Cys 135	att Ile	3408
45	gag ggt Glu Gly	Tyr I	tta to Leu So 140	ct cag er Gln	att Ile	Gln	tca Ser 145	caa Gln	ggc Gly	cag Gln	Leu	tcc Ser 150	tcc Ser	ttt Phe	3456
	tct cac Ser His 1	ctc a Leu 1	act to Thr Se	cg ctt er Leu	Gln	act Thr 160	cta Leu	caa Gln	atc Ile	Trp	aat Asn 165	ttc Phe	ctt Leu	aat Asn	3504
50	ctc caa Leu Gln 1170	tca (Ser I	ctt go Leu Al	la Glu	tca Ser 175	gca Ala	ctg Leu	ccc Pro	Ser	tcc Ser 180	ctc Leu	tct Ser	cac His	ctg Leu	3552

5	gag ata gat gat tgc cct aat Glu Ile Asp Asp Cys Pro Asn 1185 1190	ctc caa tca Leu Gln Ser	a ctc ttc gaa tca : Leu Phe Glu Sei 1195	a gca ctg 3600 c Ala Leu 1200
	ccc tcc tcc ctc tct cag ctg Pro Ser Ser Leu Ser Gln Leu 1205	ttc atc cag Phe Ile Gln 1210	Asp Cys Pro Asr	ctc caa 3648 Leu Gln 1215
10	tcc ctt cca ttt aaa ggg atg Ser Leu Pro Phe Lys Gly Met 1220	ccc tct tcc Pro Ser Ser 1225	ctc tct aaa cta Leu Ser Lys Leu 1230	Ser Ile
15	ttc aat tgc cca ttg ctc aca Phe Asn Cys Pro Leu Leu Thr 1235 1	cca cta cta Pro Leu Leu 240	gaa ttt gac aag Glu Phe Asp Lys 1245	ggg gaa 3744 Gly Glu
20	tac tgg cca caa att gct cat : Tyr Trp Pro Gln Ile Ala His : 1250 1255	att ccc atc Ile Pro Ile	ata aat atc gat Ile Asn Ile Asp 1260	tgg aaa 3792 Trp Lys
25	tat att taa Tyr Ile 1265			3801
30	<210> 5 <211> 1267 <212> PRT <213> Fusarium oxysporum			
	<400> 5 Met Glu Ile Gly Leu Ala Val G		Phe Leu Ser Ser	Ala Leu
35	1 5 Asn Val Leu Phe Asp Arg Leu A 20	10 Ala Pro Asn 25	Gly Asp Leu Leu 30	15 Asn Met
40	Phe Arg Lys His Lys Asp His V 35	Jal Lys Leu 40		Lys Met
	Thr Leu Arg Gly Ile Gln Ile V 50 55	/al Leu Ser	Asp Ala Glu Asn 60	Lys Gln
45	Ala Ser Asn Pro Ser Val Arg A 65 70		75	80
50	Val Asp Ser Ala Glu Asn Leu I 85	90		95
	Arg Leu Lys Val Glu Gly Gln н 100	is Gln Asn 105	Phe Ser Glu Thr 110	Ser Asn

	Gln	Gln	Val 115		Asp	Asp	Phe	Phe 120		Asn	Ile	Lys	125		Leu	Glu
5	Asp	Thr 130	Ile	Glu	Thr	Leu	Lys 135		Leu	Gln	Glu	Gln 140		Gly	Leu	Leu
10	Gly 145	Leu	Lys	Glu	Tyr	Phe 150		Ser	Thr	Lys	Leu 155		Thr	Arg	Arg	Pro 160
	Ser	Thr	Ser	Val	Asp 165	Asp	Glu	Ser	Asp	Ile 170		Gly	Arg	Gln	Ser 175	Glu
15	Ile	Glu	Asp	Leu 180	Ile	Asp	Arg	Leu	Leu 185	Ser	Glu	Gly	Ala	Ser 190	Gly	Lys
20	Lys	Leu	Thr 195	Val	Val	Pro	lle	Val 200	Gly	Met	Gly	Gly	Gln 205	Gly	Lys	Thr
	Thr	Leu 210	Ala	Lys	Ala	Val	Tyr 215	Asn	Asp	Glu	Arg	Val 220	Lys	Asn	His	Phe
25	Asp 225	Leu	Lys	Ala	Trp	Tyr 230	Cys	Val	Ser	Glu	Gly 235	Phé	Asp	Ala	Leu	Arg 240
	Ile	Thr	Lys	Glu	Leu 245	Leu	Gln	Glu	Ile	Gly 250	Lys	Phe	Asp	Ser	Lys 255	Asp
30	Val	His	Asn	Asn 260	Leu	Asn	Gln	Leu	Gln 265	Val	Lys	Leu	Lys	Glu 270	Ser	Leu
35	Lys	Gly	Lys 275	Lys	Phe	Leu	Ile	Val 280	Leu	Asp	Asp	Val	Trp 285	Asn	Glu	Asn
	Tyr	Asn 290	Glu	Trp	Asn	Asp	Leu 295	Arg	Asn	Ile	Phe	Ala 300	Gln	Gly	Asp	Ile
40	Gly 305	Ser	Lys	Ile	Ile	Val 310	Thr	Thr	Arg	Lys	Asp 315	Ser	Val	Ala	Leu	Met 320
	Met	Gly	Asn	Glu	Gln 325	Ile	Arg	Met	Gly	Asn 330	Leu	Ser	Thr	Glu	Ala 335	Ser
45	Trp	Ser	Leu	Phe 340	Gln	Arg	His	Ala	Phe 345	Glu	Asn	Met	Asp	Pro 350	Met	Gly
50	His	Pro	Glu 355	Leu	Glu	Glu	Val	Gly 360	Arg	Gln	Ile	Ala	Ala 365	Lys	Cys	Lys
	Gly	Leu 370	Pro	Leu	Ala	Leu	Lys 375	Thr	Leu	Ala		Met 380	Leu	Arg	Ser	Lys

5	Ser 385	Glu	Val	Glu	Glu	Trp 390	Lys	Arg	Ile	Leu	Arg 395	Ser	Glu	Ile	Trp	Glu 400
	Leu	Pro	His	Asn	Asp 405	Ile	Leu	Pro	Ala	Leu 410	Met	Leu	Ser	Tyr	Asn 415	Asp
10	Leu	Pro	Ala	His 420	Leu	Lys	Arg	Cys	Phe 425		Phe	Cys	Ala	Ile 430	Phe	Pro
	Lys	Asp	Tyr 435	Pro	Phe	Arg	Lys	Glu 440	Gln	Val	Ile	His	Leu 445	Trp	Ile	Ala
15	Asn	Gly 450	Leu	Val	Pro	Val	Lys 455	Asp	Glu	Ile	Asn	Gln 460	Asp	Leu	Gly	Asn
20	Gln 465	Tyr	Phe	Leu	Glu	Leu 470	Arg	Ser	Arg	Ser	Leu 475	Phe	Glu	Lys	Val	Pro 480
	Asn	Pro	Ser	Lys	Arg 485	Asn	Ile	Glu	Glu	Leu 490	Phe	Leu	Met	His	Asp 495	Leu
25	Val	Asn	Asp	Leu 500	Ala	Gln	Leu	Ala	Ser 505	Ser	Lys	Leu	Cys	Ile 510	Arg	Leu
30	Glu	Glu	Ser 515	Gln	Gly	Ser	His	Met 520	Leu	Glu	Gln	Cys	Arg 525	His	Leu	Ser
30	Tyr	Ser 530	Ile	Gly	Phe	Asn	Gly 535	Glu	Phe	Lys	Lys	Leu 540	Thr	Pro	Leu	Tyr
35	Lys 545	Leu	Glu	Gln	Leu	Arg 550	Thr	Leu	Leu	Pro	Ile 555	Arg	Ile	Glu	Phe	Arg 560
	Leu	His	Asn	Leu	Ser 565	Lys	Arg	Val	Leu	His 570	Asn	Ile	Leu	Pro	Thr 575	Leu
40	Arg	Ser	Leu	Arg 580	Ala	Leu	Ser	Phe	Ser 585	Gln	Tyr	Lys	Ile	Lys 590	Glu	Leu
45	Pro	Asn	Asp 595	Leu	Phe	Thr	Lys	Leu 600	Lys	Leu	Leu	Arg	Phe 605	Leu	Asp	Ile
	Ser	Arg 610	Thr	Trp	Ile	Thr	Lys 615	Leu	Pro	Asp	Ser	Ile 620	Cys	Gly	Leu	Tyr
50	A sn 625		Glu	Thr	Leu	Leu 630	Leu	Ser	Ser	Cys	Ala 635	Asp	Leu	Glu	Glu	Leu 640
	Pro	Leu	Gln	Met	Glu 645	Lys	Leu	Ile	Asn	Leu 650	Arg	His	Leu	Asp	Val 655	Ser

	Asn	Thr	Arg	Arg 660	Leu	Lys	Met	Pro	Leu 665	His	Leu	Ser	Arg	Leu 670	Lys	Ser
5	Leu	Gln	Val 675	Leu	Val	Gly	Pro	Lys 680	Phe	Phe	Val	Asp	Gly 685	Trp	Arg	Met
10	Glu	Asp 690	Leu	Gly	Glu	Ala	Gln 695	Asn	Leu	His	Gly	Ser 700	Leu	Ser	Val	Val
	Lys 705	Leu	Glu	Asn	Val	Val 710	Asp	Arg	Arg	Glu	Ala 715	Val	Lys	Ala	Lys	Met 720
15	Arg	Glu	Lys	Asn	His 725	Val	Glu	Gln	Leu	Ser 730	Leu	Glu	Trp	Ser	Glu 735	Ser
20	Ser	Ile	Ala	Asp 740	Asn	Ser	Gln	Thr	Glu 745	Ser	Asp	Ile	Leu	Asp 750	Glu	Leu
	Cys	Pro	His 755	Lys	Asn	Ile	Lys	Lys 760	Val	Glu	Ile	Ser	Gly 765	Tyr	Arg	Gly
25	Thr	Asn 770	Phe	Pro	Asn	Trp	Val 775	Ala	Asp	Pro	Leu	Phe 780	Leu	Lys	Leu	Val
	Asn 785	Leu	Ser	Leu	Arg	Asn 790	Cys	Lys	Asp	Cys	Tyr 795	Ser	Leu	Pro	Ala	Leu 800
30	Gly	Gln	Leu	Pro	Cys 805	Leu	Lys	Phe	Leu	Ser 810	Val	Lys	Gly	Met	His 815	Gly
35	Ile	Arg	Val	Val 820	Thr	Glu	Glu	Phe	Tyr 825		Arg	Leu	Ser	Ser 830	Lys	Lys
	Pro	Phe	Asn 835	Ser	Leu	Glu	Lys	Leu 840	Glu	Phe	Glu	Asp	Met 845	Thr	Glu	Trp
40		Gln 850	Trp	His	Ala	Leu	Gly 855	Ile	Gly	Glu	Phe	Pro 860	Thr	Leu	Glu	Asn
45	Leu 865		Ile	Lys	Asn	Cys 870		Glu	Leu	Ser	Leu 875	Glu	Ile	Pro	Ile	Gln 880
45	Phe	Ser	Ser	Leu	Lys 885		Leu	Glu	Val	Ser 890		Cys	Pro	Val	Val 895	Phe
50	Asp	Asp	Ala	Gln 900		Phe	Arg	Ser	Gln 905		Glu	Ala	Met	Lys 910		Ile
	Glu	Glu	Ile 915		Ile	Cys	Asp	920		Ser	· Val	Thr	Ser 925		Pro	Phe

5	Ser	Ile 930	Leu	Pro	Thr	Thr	Leu 935		Arg	Ile	Gln	Ile 940		Arg	Cys	Pro
3	Lys 945	Leu	Lys	Leu	Glu	Ala 950	Pro	Val	Gly	Glu	Met 955	Phe	Va l	Glu	Tyr	Leu 960
10	Arg	Val	Asn	Asp	Cys 965	Gly	Cys	Val	Asp	Asp 970	Ile	Ser	Pro	Glu	Phe 975	Leu
				980					985					Val 990		
15			995					1000				:	1005	Asn		
20	. 1	010				1	1015				:	1020		Gln		
	025]	1030				1	1035			Pro	1	1040
25]	045				1	1050					055	
				1060					1065				1	Tyr 1070		
30		3	.075				1	1080				1	085	Leu		
35	1	090				1	095				1	100		His		
	Leu 105	Pro	Cys	Ser	lle 1	Gln 110	Arg	Leu	Thr		Lys .115	Asn	Leu	Lys		Leu 120
40	Ser	Ser	Gln	His 1	Leu 125	Lys	Ser	Leu		Ser 130	Leu	Gln	туr		Cys 135	Ile
	Glu	Gly	Tyr 1	Leu .140	Ser	Gln	Ile		Ser 145	Gln	Gly	Gln		Ser 150	Ser	Phe
45	Ser :	His 1	Leu 155	Thr	Ser	Leu	Gln 1	Thr 160	Leu	Gln	Ile		Asn 165	Phe	Leu	Asn
50	Leu 1	Gln 170	Ser	Leu	Ala	Glu 1	Ser 175	Ala	Leu	Pro		Ser 180	Leu	Ser :	His	Leu
	Glu : 185	Ile	Asp	Asp	Cys 1	Pro . 190	Asn	Leu	Gln		Leu 195	Phe	Glu	Ser /		Leu 200

	Pro	Ser	Ser	Leu	Ser	Gln	Leu	Phe	Ile	Gln	Asp	Cys	Pro	Asn	Leu	Gln	
				:	1205				1	1210	1215						
5	Ser	Leu	Pro	Phe	Lys	Gly	Met			Ser	Leu	Ser			Ser	Ile	
		1225						1230									
	Phe	Asn	Cys	Pro	Leu	Leu	Thr	Pro	Leu	Leu	Glu	Phe	Asp	Lys	Gly	Glu	
10			1235				-	1240					1245				
	туг	Trp	Pro	Gln	Ile	Ala	His	Ile	Pro	Ile	Ile	Asn	Ile	Asp	Trp	Lys	
		1250					1255					1260					
15	Туr	Ile															
	126	5			-												

Claims

20 Ciai

- 1. Nucleotide sequence having a regulatory activity on the transcription of the 1-2 resistance gene in determined plant host cells, which nucleotide sequence comprises SEQUENCE ID NO:1.
- 2. Nucleotide sequence according to claim 1 which is SEQUENCE ID NO:1.

25

- 3. Regulatory nucleotide sequence according to claim 1 or 2 or a fragment thereof capable of driving a tissue specific transcription of a determined nucleic acid sequence placed under its control.
- 4. Recombinant nucleotide sequence comprising a nucleotide sequence according to claim 1 or 2 functionally linked to a determined nucleic acid sequence.
 - 5. Recombinant nucleotide sequence according to claim 4, wherein the nucleic acid sequence functionally linked is a sequence encoding the I-2 resistance polypeptide.
- 35 6. Recombinant nucleotide sequence according to claim 4 or 5, which is transcribed in a tissue specific manner in plant host cells.
 - Recombinant nucleotide sequence according to anyone of claims 4 to 6, wherein the nucleic acid sequence functionally linked to the regulatory sequence is chosen among sequences expressed in a tissue specific manner in their natural hosts.
 - 8. Recombinant nucleotide sequence according to anyone of claims 4 to 7, which is expressed in a tissue specific manner when it is transferred into a plant.
- Recombinant nucleotide sequence according to anyone of claims 4 to 8, which is capable of being expressed in plant vascular tissue.
 - 10. Recombinant nucleotide sequence according to anyone of claims 4 to 8, which is capable of being expressed in plant lateral root meristem.

50

40

11. Recombinant nucleotide sequence according to anyone of claims 4 to 10 which further comprises a 3' non translated sequence comprising a transcription termination codon.

- 12. Recombinant nucleotide sequence according to anyone of claims 4 to 11, wherein the nucleic acid sequence functionally linked is a sequence of a gene having activity in mediation of resistance to a plant pathogen when the recombinant nucleotide sequence is operatively transferred to a host plant susceptible to said plant pathogen.
- 13. Recombinant nucleotide sequence according to claim 12, wherein the plant pathogen is a root pathogen.

- 14. Recombinant nucleotide sequence according to anyone of claims 12 to 13 wherein the plant pathogen is a fungus, especially of Fusarium species.
- 15. Recombinant vector comprising a nucleotide sequence according to anyone of claims 1 to 3 or recombinant nucleotide sequence according to anyone of claims 4 to 14.
- 16. Recombinant vector according to claim 15, which is suitable for transforming plant cells or plants.
- 17. Recombinant cell comprising a nucleotide sequence according to anyone of claims 1 to 3 or recombinant nucleotide sequence according to anyone of claims 4 to 14 or a recombinant vector according to claim 15 or 16.
 - 18. Recombinant cell according to claim 17, which is a plant cell.

5

15

30

35

50

- 19. Recombinant cell according to claim 18, which is a plant root cell or a stem cell or a leaf cell.
- 20. Plant which is recombined with a nucleotide sequence according to anyone of claims 1 to 3 or a recombinant nucleotide sequence according to anyone of claims 4 to 14 or a vector according to claims 15 or 16.
- 21. Recombinant plant according to claim 20 which is capable of expressing a gene mediating resistance to a plant pathogen chosen among fungi, in a tissue specific manner.
 - 22. Recombinant plant according to claim 20, which is capable of preventing the infection by a plant pathogen chosen among fungi.
- 25 23. Recombinant plant according to anyone of claims 20 to 22, which is a tomato, egg plant, potato, melon, tobacco, Arabidopsis.
 - 24. Use of a nucleotide sequence according to anyone of claims 1 to 14 or of a vector according to anyone of claims 15 or 16 or use of a part of said nucleotide sequence for the tissue specific regulation of the transcription of the determined nucleic acid sequence placed under its control.
 - 25. Use according to claim 24 wherein the nucleotide sequence having a transcription regulatory activity is SEQUENCE ID NO: 2 or a fragment thereof sufficient to drive the transcription of a determined nucleic acid sequence placed under its control.
 - 26. Use according to claim 24 wherein the nucleotide sequence having a transcription regulatory activity is all or part of SEQUENCE ID NO: 3.
- 27. Use according to anyone of claims 24 to 26, wherein the transcription regulatory activity is obtained in vascular tissue.
 - 28. Use according to anyone of claims 24 to 26, wherein the transcription regulatory activity is obtained in the lateral root meristem tissue.
- 29. Process for obtaining plants having reduced susceptibility to a plant pathogen, comprising the following steps:
 - i) inserting into the genome of a plant cell a nucleotide sequence according to anyone of claims 1 to 14, or a vector according to any of claims 15 or 16,
 - ii) obtaining transformed plant cells,
 - iii) regenerating from said transformed plant cells genetically transformed plants, and
 - iv) optionally, propagating said plants.
 - **30.** Process according to claim 24 further comprising selecting transformed plants having reduced susceptibility to said plant pathogen.
 - 31. Process for protecting plants in cultivation against plant pathogen infection, which comprises:
 - i) providing the genome of plants with a nucleotide sequence according to anyone of claims 1 to 14, or a vector

according to any of claims 15 or 16, and ii) growing said plants.

FIGURE 1

FIGURE 2

FIGURE 3A

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 88

EP 1 024 196 A1

GAATTCCTGCAGGTGGAAATATACAGCCGTTGTTAGAGAAACAACCTTTGGTTATCCAAGGTGCTGGAGCAGGAAATGAA CCTTGCAACATTTTGACTACTAGTACATCTCAACATTCATCACAAGACAATTGACTGAATCCCGTGAAAACTTGCTCTCC GCCTAATGAATACAGAACACCAATACTTTAGCTTTGTTTTTATCATTTTCCAAAAAAAGTACATCAAAAAACAGCATAGCC TCACGCCATTTTGACTTGTACTATACAACCTGACAGCACAATCGCAAAAGAAAAGATGTAATCACTAGTACATCTCGACA GAGAGAGTGTGTTTTTAGAGTTGCACCGTTGTGCTTTGATAAAATACAGAATTTTATGTATAAAAAATTACAACAGGTTA TTTCTTTATAATTTAACATCTAATAAAGCATĆTTGTCTCAGTTGGTGAAAGTTTATTTCCAATAAAAATATGTCAATTTA ATCTGAGTTTGCTTGATAATAAATTATTATGACGTGTTTTAATTTGCACTATCAAGAAGACTTTATTACAATTTTCAATC ATTAAGCTCGAAAACTCTAATCTTATGTATAACAAAACAACTACAAGGGAAAATTGCCATAGCTCTTTGGTGTAATCAAA AAAGTCATACTCATGGAAAAGAGTAGGAAAAAGGATAATTTTTGATATTTTATTTTATGTCCTTTAACTTTAATATTAA AAAGCCCTACATGAGGTGCATGTATTGTTATATACATTACGTTATAACACAAACAGTTGAGGATTGCACAACAACTTGTG ATAGACCTTATCACTATCTTGTGGGATAGAGGGTTGTTTTCGATAGACCCTCAGCTCAAGTAAACATAGGGAAAAAATAC CCTAGAGAAAAGGAAAATGGAACGGATTTCAATTCTTTCACACTGTTACTACTATGAAAATAATGGTCAAAATCGAACTC AATTGTTAATTGCCCAATATAGGATTGACTACTGATTCTTAAGGAACGCGTTTTCACTACCTTTTGAAACCACAAAAAAT GGACAAATTCCTTTCCTTAGAGACACATACATAAAACGAGCTGAAATGTGTTTTGTTTCTACCAGAGTTGTTCAGATTGC ATCAATTTCACTTTCACATTCTTGTTTTTTTTAATTATTTAAAGTTGCCAGAGCTTTGAATCTGATTTAAATTTTGATTT GTTAAACATTGAGTGTTTTTTTTAATTAGGTTTCGTGGACCTCTAATAATAGGTCACTTGTCAGAAATGATTTACAAAACT ATATTCTTTTTTTGTTAAAAATAATGATATGAATGAATTATTTTTAAAATATATGTATTGTGGATAAATCAAACTTTTA TAGAPATGACATAAATAAATCATTTTAATAAAATTGTATCAAATGCTTATTACTATTTTCAAAAAAATATATACACTAAGG GCCCGTTTGGATGGGCTTAAAAAAGCAGCTTTAAAAAAGTACTTTCGAAAGGCGCTGAAACTTATTTTTTGAAATAAG CAGTTATGTGTTTGGAATAAAAGTGCTGAAGTTGCTATGTCAAACATGAAAAGAGGAAAAAAGGGAAAAAAGAGCTANNGT TTATTTTTCTTGCCCTTAATATTTTTATACAATCTCAAAATTACGACATAACCCTAACATCTTTTTCTCCCATTTTTTCC TTTTCACGTTTGACATAGCAACTTCAGCACTTTTATCCAAACACATAACTGCTTATTTTAAAAATAAGTTTCAGCACTTT CAAAAGTACTTTTTTAAAGCTGCTTTTATTAAGCCCATCCAAACGGGCCCTAAAATTGCTAATGTTTGCTCTTTCTATTC TCAAACTCCGTAATATTTAAGAAAATTTGCTAATGATAGGTCACTTTTAACACTAAATAATTATAAATTGGGTAGAAATT GAATAGTCTTTGTCTTATTGTTGGGTGAAAGTCTGTCTTCTTGTTAGGTACTAAGTCCTACAATAATATCAATAATTTGC TATGGAGAAAAAATATTATAGGAGAAAATAATTAATTTAATTCATGAATATGTCTTAATATGCAACTCATTTTGCTT AAATTTATATTATAATAATGAAATGATATAACTTAAAAGAAGTTGTTTGATATCTTATCAGAATCATGCAGGTACTCATA ATATAAGAAATAATTATGATGAAATTTATATATGTTTTATGCAGAGATTTATTACGCATTGTTTACTTGGGTTATGTATT AACATTTTCAAGAACGATTTTTTGCCCAAGAATATACAGTAAACATATTTAYGATATGGTAGGTCTCTTTAGTAATTGAC CAACAAGGATTGTGGTGGGAGTGGGAAATACTCTTTAATACTTCACCAAGAGGTCTCCAATTTGAGCCCCTGAATACGAAA TCGTCTTGTTAGTATATACCCTAACCTAACAAAAATTAGTATATTAGCCTTCACAGCTAAAATCTTTGTGACCTGTA AGTCACGCGAGGACAAATTTACCGTAACACCAACTTATTCATGATATAATTGTCCCTTTTAGCACGGTAATAATGAGGTG TTTGAGAGAAATTTTTGTTTGCAAATTACTCTTAACCTTCAGCAGGTAAAATTAAGTTCTTAACTGAGACAAATTTGAAGA TATATTTTGTTAAAGAATCATTTTGTGTGTTTTCCTTGTTTTGCTTTTTGCAGATTTGAGAAATG

FIGURE 9

EUROPEAN SEARCH REPORT

Application Number

EP 99 40 0212

Category		DERED TO BE RELEVANT indication, where appropriate,	Relevant	01.00/5/01.00
- Lite gory	of relevant pa	ssages	to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.6)
D,X	(BE); VOS PIETER (20 February 1997 abstract; page 11.	GENE NV ;ZABEAU MARC NL); SIMONS GUUS (NL)) line 5-8; page 19, line ne 6-8; Fig. 6; example	1,3-8, 11-24, 26,29-31	C12N15/82 C12N5/10 A01H5/00
A	WO 96 32007 A (YED DEV CO (IL); FLUHR 17 October 1996 * example 7 *	A RES & DEV ;YISSUM RES ROBERT (IL); ESHED Y)	1-31	
A	Fusarium I2 gene c		1-31	
.	WO 97 20057 A (NICI ;ATKINSON HOWARD JO CATHERINE) 5 June : * page 25 *	1-31	TECHNICAL FIELDS SEARCHED (Int.CI.6) C12N	
	٠			
	The present search report has			
_		Date of completion of the search		Examiner
	THE HAGUE	30 June 1999	Holt	orf, S
X : partice Y : partice docum A : techno O : non-w	TEGORY OF CITED DOCUMENTS utarly relevant if taken alone utarly relevant if combined with anot pent of the same category ological background riften disclosure lediate document	T: theory or principle u E: earlier patient document earlier to the filting date her D: document cited in t L: document cited for o a: member of the sam document	ment, but publish he application other reasons	ed on, or

EPO FORM 1503 03.82 (POLC01)

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 40 0212

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

30-06-1999

	Patent document ed in search repo	n ·	Publication date		Patent family member(s)		Publication date
WO	9706259	Α	20-02-1997	AU EP	6871096 0843727	A A	05-03-1997 27-05-1998
WO	9632007	Α	17-10-1996	CA EP JP	2215141 0820220 11503612	Α	17-10-1996 28-01-1998 30-03-1999
WO	9720057	Α	05-06-1997	AU CA EP	7702496 2238943 0871752	Α	19-06-1997 05-06-1997 21-10-1998
			er faren Sirie		·		
					,		

THIS PAGE BLANK (USPTO)