Volatility Modelisation with R

Marouane Arab

March 22, 2016

Abstract

This is some personal research on existing financial modelisation. The aim is to cover :

- ARMA model
- GARCH model
- Multifractal Volatility

Contents

		2
1.1	Stationary process	2
1.2	AR(1)	2
1.5	$\mathrm{MA}(\mathbf{q})$	8
1.6	$\widehat{ARMA}(p,q)$	10
		12 13
	1.1 1.2 1.3 1.4 1.5 1.6	ARMA Model 1.1 Stationary process 1.2 AR(1) 1.3 AR(p) 1.4 MA(1) 1.5 MA(q) 1.6 ARMA(p,q) Analyse 2.1 FCHI

1 ARMA Model

1.1 Stationary process

Be X_t a time series.

 X_t is strictly stationary process or strongly stationary process if :

$$\forall h, \forall n, X_{t_1}...X_{t_n}$$
 has the same law than $X_{t_1+h}...X_{t_n+h}$

 X_t is a weak or wide-sense stationarity if :

- $\forall t, \mathbb{E}[X_t^2] < \infty$
- $\forall t, \mathbb{E}[X_t] = m$
- $\forall t, \operatorname{cov}(X_t, X_{t+h}) = \gamma(h)$

1.2 AR(1)

Definition Be $\beta \in \mathbb{R}$, X_t is an AR(1) process if

$$X_t = c + \beta X_{t-1} + \epsilon_t$$
$$= c + \beta^t X_0 + \sum_{i=0}^t \beta^i \epsilon_{t-i}$$

Stationary condition X_t is stationary if $|\beta| < 1$:

$$Var(X_t) = Var(\sum_{i=0}^{t} \beta^i \epsilon_{t-i})$$
$$= \sum_{i=0}^{t} \beta^{2i} \sigma^2$$
$$= \frac{1 - \beta^{2t}}{1 - \beta} \sigma^2$$

When $|\beta| > 1$, $\operatorname{Var}(X_t) \xrightarrow[t \to \infty]{} \infty$. When $|\beta| < 1$, $\operatorname{Var}(X_t) \xrightarrow[t \to \infty]{} \frac{1}{1-\beta}\sigma^2$

Examples See below.

Figure 1 shows an AR(1) model, with AR(0.8), MA().

Figure 1: Example of AR(1) process, coefficient AR(0.8), MA()

Figure 2 shows an AR(1) model, with AR(0.3), MA().

Figure 2: Example of AR(1) process, coefficient AR(0.3), MA()

Figure 3 shows an AR(1) model, with AR(-0.8), MA().

Figure 3: Example of AR(1) process, coefficient AR(-0.8), MA()

Figure 4 shows an AR(1) model, with AR(-0.1), MA().

Figure 4: Example of AR(1) process, coefficient AR(-0.1), MA()

Figure 5 shows an AR(1) model, with AR(0.01), MA().

Figure 5: Example of AR(1) process, coefficient AR(0.01), MA()

1.3 AR(p)

Definition X_t is an AR(p) process if

$$X_t = c + \sum_{i=1}^{p} \beta_i X_{t-i} + \epsilon_t$$
$$= c + \sum_{i=1}^{p} \beta_i$$

Stationary condition To be stationary, roots of the polynom $z^p - \sum_{i=1}^p \beta_i z^{p-i}$ must be within the unit circle, $|z_i| < 1$

Examples See below.

Figure 6: ARMA(2,0) process with coefficient AR(0.6,0.3), MA()

Figure 7: ARMA(2,0) process with coefficient AR(0.6,0.3), MA()

Figure 8: ARMA(6,0) process with coefficient AR(-0.2,0.2,0.1,0.3,0.2,0.1), MA()

Figure 9: ARMA(2,0) process with coefficient AR(-0.1,-0.2), MA()

Figure 10: ARMA(2,0) process with coefficient AR(0.01,0.02), MA()

1.4 MA(1)

Definition Be $\theta \in \mathbb{R}$, X_t is an MA(1) process if

$$X_t = c + \theta \epsilon_t$$

$$= c + \beta^t X_0 + \sum_{i=0}^t \beta^i \epsilon_{t-i}$$

Stationary condition X_t has a finite variance : $Var(X_t) = \theta^2 \sigma^2$

Examples See below.

Figure 11: ARMA(0,1) process with coefficient AR(), MA(3)

Figure 12: ARMA(0,1) process with coefficient AR(), MA(3)

Figure 13: ARMA(0,1) process with coefficient AR(), MA(-4)

Figure 14: ARMA(0,1) process with coefficient AR(), MA(10)

Figure 15: ARMA(0,1) process with coefficient AR(), MA(0.01)

1.5 MA(q)

Definition Be $\theta \in \mathbb{R}$, X_t is an MA(q) process if

$$X_t = c + \sum_{i=0}^q \theta_i \epsilon_{t-i}$$

Stationary condition X_t has a finite variance : $Var(X_t) = \sum_{i=0}^q \theta_i^2 \sigma^2$

Examples See below.

Figure 16: ARMA(0,2) process with coefficient AR(), MA(3,6)

Figure 17: ARMA(0,2) process with coefficient AR(), MA(3,6)

Figure 18: ARMA(0,2) process with coefficient AR(), MA(-4,10)

Figure 19: ARMA(0,4) process with coefficient AR(), MA(10,4,-7,9)

Figure 20: ARMA(0,4) process with coefficient AR(), MA(10,0,0,9)

$1.6 \quad ARMA(p,q)$

Definition Be $\theta \in \mathbb{R}$, X_t is an MA(q) process if

$$X_t = c + \sum_{i=0}^q \theta_i \epsilon_{t-i} + \sum_{i=1}^p \beta_i X_{t-i}$$

stationary To see if X_t is station nary we look at its variance.

$$Var(X_t) = \sum_{i=0}^{q} \theta_i^2 \sigma^2$$

Examples See below various example of ARMA(p,q)

Figure 21: ARMA(1,2) process with coefficient AR(0.8), MA(3,6)

Figure 22: ARMA(1,2) process with coefficient AR(0.8), MA(3,6)

Figure 23: ARMA(3,2) process with coefficient AR(-0.1,0.2,0.1), MA(-4,10)

Figure 24: ARMA(2,4) process with coefficient AR(0,0.9), MA(10,4,-7,9)

Figure 25: ARMA(2,4) process with coefficient AR(0,0.3), MA(10,0,0,9)

2 Analyse

In this section, there are analysis of some stocks.

2.1 FCHI

Figure 26: Data set for FCHI

Looking at ACF and PACF

Figure 27: ACF for FCHI

Figure 28: PACF for FCHI