Try again once you are ready

TO PASS 80% or higher

Try again

GRADE 70%

Week 4 - Problem Set

LATEST SUBMISSION GRADE

70%

1. An attacker intercepts the following ciphertext (hex encoded):

1 / 1 point

20814804c1767293b99f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d

He knows that the plaintext is the ASCII encoding of the message "Pay Bob 100\$" (excluding the quotes). He also knows that the cipher used is CBC encryption with a random IV using AES as the underlying block cipher.

Show that the attacker can change the ciphertext so that it will decrypt to "Pay Bob 500\$". What is the resulting ciphertext (hex encoded)?

This shows that CBC provides no integrity.

20814804c1767293bd9f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d

✓ Correct

You got it!

2. Let (E,D) be an encryption system with key space K, message

0 / 1 point

space $\{0,1\}^n$ and ciphertext space $\{0,1\}^s$. Suppose (E,D)

provides authenticated encryption. Which of the following systems

provide authenticated encryption: (as usual, we use || to denote

string concatenation)

$$D'(k,c) = D(k,c \bigoplus 1^s)$$

Correct

(E',D') provides authenticated encryption because an attack on (E',D')

directly gives an attack on (E, D).

 $ightharpoonup E'(k,m)=E(k,m \bigoplus 1^n)$ and

$$D'(k,c) = \begin{cases} D(k,c) \bigoplus 1^n & \text{if } D(k,c) \neq \bot \\ \bot & \text{otherwise} \end{cases}$$

Correct

(E',D') provides authenticated encryption because an attack on (E',D')

directly gives an attack on (E, D).

$$D'(k,\;(c,b)\;)=D(k,c)$$

ightharpoonup E'(k,m) = E(k,m) and

$$D'(k,c) = \begin{cases} D(k,c) & \text{if } D(k,c) \neq \bot \\ 0^n & \text{otherwise} \end{cases}$$

	This should not be selected This system does not provide ciphertext integrity since an attacker can simply output the ciphertext 0^s and win the ciphertext integrity game.	
3.	If you need to build an application that needs to encrypt multiple	1 / 1 point
	messages using a single key, what encryption	
	method should you use? (for now, we ignore the question of key generation	
	and management)	
	implement MAC-then-Encrypt yourself	
	use a standard implementation of one of the authenticated	
	encryption modes GCM, CCM, EAX or OCB.	
	implement Encrypt-and-MAC yourself	
	use a standard implementation of CBC encryption with	
	a random IV.	
	✓ Correct	
4.	Let (E,D) be a symmetric encryption system with message space ${\cal M}$ (think	1/1 point
	of ${\cal M}$ as only consisting for short messages, say 32 bytes).	
	Define the following MAC $\left(S,V\right)$ for messages in M :	
	$S(k,m) := E(k,m) ; V(k,m,t) := \left\{ egin{array}{ll} 1 & ext{if } D(k,t) = m \\ 0 & ext{otherwise} \end{array} ight.$	
	What is the property that the encryption system $\left(E,D\right)$ needs to satisfy	
	for this MAC system to be secure?	
	authenticated encryption	
	semantic security under a chosen plaintext attack	
	semantic security	
	Chosen ciphertext security	
	✓ Correct Indeed, authenticated encryption implies ciphertext	
	integrity which prevents existential	
	forgery under a chosen message attack.	
5.	In <u>Key Derivation</u> we discussed how to derive session keys	0 / 1 point
	from a shared secret. The problem is what to do when the shared	
	secret is non-uniform. In this question we show that using a PRF with	
	a non-uniform key may result in non-uniform values. This shows that	
	session keys cannot be derived by directly using a non-uniform	
	secret as a key in a PRF. Instead, one has to use a key derivation	
	function like HKDF. Suppose k is a <i>non-uniform</i> secret key sampled from the key space $\{0,1\}^{256}$.	
	Suppose N is a non-unitoriti secret key sampled from the key space { U, 1 } ~~~.	

In particular, \boldsymbol{k} is sampled uniformly from the set of all keys whose most significant

128 bits are all 0. In other words, k is chosen uniformly from a small subset of the key space. More precisely,

$$\text{for all } c \in \{0,1\}^{256}: \quad \Pr[k=c] = \begin{cases} 1/2^{128} & \text{if } \mathrm{MSB}_{128}(c) = 0^{128} \\ 0 & \text{otherwise} \end{cases}$$

Let F(k,x) be a secure PRF with input space $\{0,1\}^{256}.$ Which

of the following is a secure PRF when the key \boldsymbol{k} is uniform in the

key space $\{0,1\}^{256}$, but is insecure when the key is sampled from the *non-uniform*

distribution described above?

$$\bigcirc \quad F'(k,x) = \begin{cases} F(k,x) & \text{if } \mathrm{MSB}_{128}(k) \neq 0^{128} \\ 0^{256} & \text{otherwise} \end{cases}$$

$$\bigcirc \quad F'(k,x) = \begin{cases} F(k,x) & \text{if } \mathrm{MSB}_{128}(k) \neq 1^{128} \\ 0^{256} & \text{otherwise} \end{cases}$$

$$F'(k,x) = \begin{cases} F(k,x) & \text{if } MSB_{128}(k) = 0^{128} \\ 1^{256} & \text{otherwise} \end{cases}$$

Incorrect

This F^\prime is trivially insecure as a PRF.

6. In what settings is it acceptable to use deterministic authenticated

1 / 1 point

encryption (DAE) like SIV?

- when the encryption key is used to encrypt only one message.
- when a fixed message is repeatedly encrypted using a single key.
- to individually encrypt many packets in a voice conversation with a single key.
- to encrypt many records in a database with a single key when the same record may repeat multiple times.

Deterministic encryption is safe to use when the message/key pair

is never used more than once.

7. Let E(k,x) be a secure block cipher. Consider the following

0 / 1 point

tweakable block cipher:

$$E'((k_1, k_2), t, x) = E(k_1, x) \bigoplus E(k_2, t).$$

Is this tweakable block cipher secure?

 \bigcirc no because for $t \neq t'$ we have

$$E'((k_1, k_2), t, 0) \bigoplus E'((k_1, k_2), t, 1) = E'((k_1, k_2), t', 0) \bigoplus E'((k_1, k_2), t', 1)$$

 $igoreal{igoreal}$ no because for t
eq t' we have

$$E'((k_1, k_2), t, 0) \bigoplus E'((k_1, k_2), t', 1) = E'((k_1, k_2), t', 1) \bigoplus E'((k_1, k_2), t', 0)$$

 \bigcirc no because for $x \neq x'$ and $t \neq t'$ we have

$$E'((k_1, k_2), t, x) \bigoplus E'((k_1, k_2), t', x) = E'((k_1, k_2), t, x') \bigoplus E'((k_1, k_2), t', x)$$

 \bigcirc no because for x
eq x' we have

$$E'((k_1,k_2),0,x) \bigoplus E'((k_1,k_2),0,x) = E'((k_1,k_2),0,x') \bigoplus E'((k_1,k_2),0,x')$$

 \bigcirc yes, it is secure assuming E is a secure block cipher.

Incorrect

This relation doesn't hold for E^{\prime}

8. In Format Preserving Encryption we discussed format preserving encryption

1 / 1 point

which is a PRP on a domain $\{0,\dots,s-1\}$ for some pre-specified value of s.

Recall that the construction we presented worked in two steps, where the second step worked by iterating the PRP until the output

fell into the set $\{0,\dots,s-1\}$.

Suppose we try to build a format preserving credit card encryption system from AES using *only* the second step. That is, we start with a PRP with domain $\{0,1\}^{128}$ from which we want to build a PRP with domain 10^{16} . If we only used step (2), how many iterations of

AES would be needed in expectation for each evaluation of the PRP

with domain 10^{16} ?

- $\bigcirc \ 2^{128}/10^{16} \approx 3.4 \times 10^{22}$
- $\bigcirc 2^{128}$
- O 4
- $\bigcirc 10^{16}/2^{128}$

✓ Correct

On every iteration we have a probability of $10^{16}/2^{128}$ of falling into the set $\{0,\dots,10^{16}\}$ and therefore in expectation we will need $2^{128}/10^{16}$ iterations. This should explain why step (1) is needed.

9. Let (E,D) be a secure tweakable block cipher.

Define the following MAC (S,V):

$$S(k,m) := E(k,m,0) \quad ; \quad V(k,m, \mathrm{tag}) := \begin{cases} 1 & \text{if } E(k,m,0) = \mathrm{tag} \\ 0 & \text{otherwise} \end{cases}$$

In other words, the message m is used as the tweak and the plaintext given to E is always set to 0.

Is this MAC secure?

- it depends on the tweakable block cipher.
- yes
- O no

. / Correc

A tweakable block cipher is indistinguishable from a

collection of random permutations. The chosen message attack on the

MAC gives the attacker the image of $\boldsymbol{0}$ under a number of the

permutations in the family. But that tells the attacker nothing about

the image of $\boldsymbol{0}$ under some other member of the family.

10. In <u>CBC Padding Attacks</u> we discussed padding oracle attacks. These chosen-ciphertext attacks can break poor implementations of MAC-then-encrypt.

1 / 1 point

remaining 48 bytes are the encrypted payload). How many chosen ciphertext queries would the attacker need *in the worst case* in order to decrypt the entire 48 byte payload? Recall that padding oracle attacks decrypt the payload one byte at a time.

48

1024

256

12288

16384

attack. An attacker intercepts a 64-byte ciphertext \boldsymbol{c} (the first 16 bytes of \boldsymbol{c} are the IV and the

Correct. Padding oracle attacks decrypt the payload one byte at a time. For each byte the attacker needs no more than 256 guesses in the worst case. Since there are 48 bytes total, the number queries needed is $256\times48=12288.$