PROJECT REPORT APPLICATIONS OF GENETIC ALGORITHM

Introduction

This project is based on **GENETIC ALGORITHMS** and their applications. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetics. As such they represent an intelligent exploitation of a random search used to solve optimization problems. Although randomised, GAs are by no means random, instead they exploit historical information to direct the search into the region of better performance within the search space. The basic techniques of the GAs are designed to simulate processes in natural systems necessary for evolution, especially those follow the principles first laid down by Charles Darwin of "survival of the fittest.". Since in nature, competition among individuals for scanty resources results in the fittest individuals dominating over the weaker ones.

The Two Applications of GA

CARGO SHIP LOADING:

Cargo ship load is a real problem when you have huge amount of cargo to be loaded to a ship with a specific load capacity. Solution to this problem is to take maximum worth of load to be shipped with minimal weight i.e minimum weight and maximum capacity. Either a cargo is loaded or not loaded. It can't be loaded partially.

TRAVELLING SALESMAN PROBLEM:

The Travelling Salesman Problem or the TSP is a representative of a large class of problems known as combinatorial optimization problems. In the ordinary form of the TSP, a map of cities is given to the salesman and he has to visit all the cities only once to complete a tour such that the length of the tour is the shortest among all possible tours for this map.

Applications of the Project

CARGO SHIP LOADING:

It can be used in real life where certain amount of cargo are to be shipped having certain worth.

TRAVELLING SALESMAN PROBLEM:

- 1. Arranging school bus routes to pick up the children in a school district.
- 2. A classic example is the scheduling of a machine to drill holes in a circuit board or other object. In this case the holes to be drilled are the cities, and the cost of travel is the time it takes to move the drill head from one hole to the next. The technology for drilling varies from one industry to another, but whenever the travel time of the drilling device is a significant portion of the overall manufacturing process then the TSP can play a role in reducing costs.
- 3. Routing of trucks for parcel post pickup.
- 4. Delivery of meals to homebound people
- 5. Scheduling of stacker cranes in warehouses.

Algorithms used in the project:

CARGO SHIP LOADING & TRAVELLING SALESMAN PROBLEM:

Genetic algorithm is used in this project.

- 1. Initialization of population
- 2. Fitness
- 3. Crossover
- 4. Mutation

Results and Screenshots of the output

CARGO SHIP LOADING:

In result we get a menu driven program which first asks the capacity of the cargo ship and then displays the menu

Pressing 1 creates our initial population. 1 represent the the weight being present in the bag and 0 denotes it's absence.

Initial population	is this:		
Population	0	10111100110101100000101100001111000111000	1111010010
Population	1		0 0 0 0 1 0 0 0 0 1
Population	2	100011101000100111010111111111110110110	
Population	3	01010101111000101000001011111001101101	1111001101
Population	4	0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1	0011000010
Population	5	1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0	1110010000
Population	6	0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0	0001010000
Population	7	0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0	0100000100
Population	8	0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1	0001000100
Population	9	00011110010110111010110110111111001111001	1010001100
Population	10	1001111101011100001001000000000001001011	1 1 0 0 0 1 0 0 0 1
Population	11	01101101100000001001111101110111101111010	0010011110
Population	12	01111100111000111111111111110000110001100	0001000111
Population	13	0001111011100001110110110101010101000101	0110011101
Population	14	010001011111101100101110000111111001001	1110101101
Population	15	100100100110001100010011001100101010010	0010011010
Population	16	0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1	0011100101
Population	17	1111001101000111101110101110100011001100101	1101100111
Population	18	00101001101001000000101100001100101011011	0010111011
Population	19	1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1	0101110101
Population	20	101011110100100000110110101001101101001	0011111110
Population	21	0 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0	0 1 1 1 1 0 1 1 1 1
Population	22	0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1	1001001001
Population	23	0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0	0 1 0 1 1 1 0 0 1 0
Population	24	1100111101110000101010111110111100001111	1011011110
Population	25	0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1	1110010101
Population	26	1110100000101010000011101011110011110111	1001011011
Population	27	1000000110100011011001010110101010101010	0100100111
Population	28	1 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0	1110100111
Population	29	101010011111101111010111110101110000000	1011000100
Population	30	1010100001101101111010101001100111001	0 1 1 1 1 0 0 0 1 1
Population	31	100000110101110011000011001010000010100	0 1 0 1 0 0 0 0 1 0
Population	32	0 1 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 1 0	0011100110
Population	33	0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0	1011010110
Population	34	10111001111000111101010001011011101011100101	
Depulation	25	4 4 4 4 6 6 4 6 6 6 6 4 4 4 4 6 4 6 4 6	1010011001

Now, printing it's fitness table. Here the total benefit associated with each bag denote it's fitness.

Initial	fitness of no	pulation is as follows>
Inteta	. I celless of po	putation is as follows>
Index	Weights	Benefits
Θ	909	1502
1	703	1507
2	842	1631
3	610	942
4	564	849
5	909	1502
6	892	2041
7	909	1502
8	770	1378
9	610	942
10	770	1378
11	610	942
12	877	1402
13	610	942
14	888	1724
15	958	1454
16	703	1507
17	842	1631
18	610	942
19	842	1631
20	888	1724
21	610	942
22	610	942
23	901	1900
24	610	942
25	773	1237
26	610	942
27	904	1759
28	904	1759
29	820	1562

Pressing 2 applies the crossover and mutation operator on the already created population.

Improving	Generation	 1
Improving	Generation	 2
Improving	Generation	 3
Improving	Generation	 4
Improving	Generation	 5
Improving	Generation	 6
Improving	Generation	 7
Improving	Generation	 8
Improving	Generation	 9
Improving	Generation	 10
Improving	Generation	 11
Improving	Generation	 12
Improving	Generation	 13
Improving	Generation	 14
Improving	Generation	 15
Improving	Generation	 16
Improving	Generation	 17
Improving	Generation	 18
Improving	Generation	 19

After 100 generatio	ons, data se	ems to be as following	
1992			
Final population is	this>		
Population	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010
Population	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
Population	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
Population	3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011000000000010000
Population	4	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010
Population	5	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
Population	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011000000000010000
Population	7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010
Population	8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011000000000010000
Population	9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011000000000010000
Population	10	000000000000000000000000000000000000000	000000100000100010
Population	11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010
Population	12	000000000000000000000000000000000000000	000000100000100010
Population	13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011000000000010000
Population	14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
Population	15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010
Population	16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010
Population	17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010
Population	18	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011000000000010000
Population	19	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
Population	20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010
Population	21	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011000000000010000
Population	22	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011000000000010000
Population	23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
Population	24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	011000000000010000
Population	25	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Population	26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Population	27	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010
Population	28	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
Population	29	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000100000100010

Final	fitness of popu	lation is as follows>
Index	Weights	Benefits
0	940	2150
1	940	2150
2	940	2150
3	892	2041
4	978	2049
5	978	2049
6	892	2041
7	940	2150
8	892	2041
9	892	2041
10	940	2150
11	940	2150
12	940	2150
13	892	2041
14	940	2150
15	940	2150
16	940	2150
17	940	2150
18	892	2041
19	978	2049
20	940	2150
21	892	2041
22	892	2041
23	940	2150
24	892	2041
25	892	2041
26	892	2041
27	940	2150
28	739	1834
29	901	1900
30	901	1900
31	901	1900
32	901	1900
33	969	2190

Pressing 3 gives us our final result where 1 shows the weights to be included from our input and also prints our total weight and total benefit.

TRAVELLING SALESMAN PROBLEM:

In result we get a menu driven program which has a menu like this

Pressing 1 creates our initial population. And outputs the population as the Index number of the city along with it's fitness and a serial number.

466													
5->	11->	12->	13->	1->	6->	3->	2->	7->	10->	4->	8->	9->	59.4233 0
6->	10->	5->	9->	2->	11->	1->	12->	4->	7->	3->	13->	8->	48.0661 1
4->	12->	7->	3->	8->	13->	6->	11->	10->	9->	2->	1->	5->	49.9876 2
5->	7->	1->	13->	9->	11->	12->	3->	8->	6->	2->	10->	4->	62.9663 3
8->	12->	6->	7->	10->	2->	11->	13->	1->	5->	4->	3->	9->	55.0644 4
3->	4->	9->	5->	8->	11->	13->	10->	6->	1->	12->	7->	2->	48.6773 5
7->	12->	2->	10->	5->	6->	9->	1->	8->	4->	3->	13->	11->	51.8275 6
2->	9->	6->	10->	1->	11->	4->	13->	3->	8->	5->	7->	12->	46.4389 7
4->	3->	13->	11->	1->	7->	6->	5->	12->	10->	8->	9->	2->	59.6464 8
11->	12->	6->	13->	9->	10->	5->	4->	7->	1->	2->	3->	8->	62.9681 9
6->	4->	7->	3->	5->	8->	12->	11->	2->	1->	9->	10->	13->	65.7194 10
5->	12->	2->	13->	8->	9->	4->	6->	10->	3->	7->	1->	11->	52.6081 11
5->	12->	1->	10->	7->	2->	3->	9->	11->	8->	6->	13->	4->	52.6687 12
7->	13->	12->	4->	9->	11->	10->	6->	2->	3->	1->	8->	5->	54.055 13
2->	10->	1->	8->	9->	11->	12->	3->	4->	6->	5->	13->	7->	75.4534 14
10->	8->	3->	9->	7->	13->	1->	4->	6->	12->	2->	11->	5->	43.1396 15
6->	3->	9->	1->	8->	7->	12->	5->	4->	13->	10->	2->	11->	47.5142 16
10->	11->	12->	9->	7->	2->	1->	8->	5->	13->	4->	6->	3->	60.8103 17
12->	10->	5->	7->	13->	6->	4->	11->	2->	8->	3->	9->	1->	47.8234 18
6->	7->	3->	1->	12->	8->	4->	10->	9->	11->	13->	5->	2->	60.2922 19
3->	11->	7->	2->	9->	1->	6->	8->	13->	5->	10->	4->	12->	46.6357 20
1->	12->	10->	13->	8->	9->	3->	7->	4->	2->	5->	6->	11->	64.3886 21
7->	1->	2->	6->	10->	13->	8->	5->	12->	3->	9->	11->	4->	51.0013 22
3->	8->	12->	13->	9->	5->	4->	11->	2->	1->	6->	7->	10->	48.5563 23
3->	5->	4->	9->	13->	12->	6->	10->	7->	11->	1->	8->	2->	44.6004 24
12->	2->	13->	5->	4->	10->	7->	9->	6->	11->	3->	8->	1->	45.4587 25
2->	8->	7->	5->	4->	6->	11->	10->	3->	9->	12->	13->	1->	52.4687 26
9->	12->	11->	1->	4->	13->	8->	3->	6->	2->	7->	5->	10->	63.4808 27
13->	12->	11->	8->	9->	6->	5->	10->	7->	3->	1->	2->	4->	66.1442 28
4->	6->	2->	11->	8->	13->	10->	7->	12->	1->	9->	5->	3->	49.3517 29
3->	12->	5->	7->	9->	13->	11->	6->	4->	2->	10->	1->	8->	49.1226 30
13->	1->	11->	12->	4->	3->	10->	8->	6->	2->	5->	9->	7->	58.8318 31
12->	7->	1->	4->	2->	10->	6->	11->	5->	13->	9->	8->	3->	49.3124 32
8->	3->	6->	2->	12->	7->	5->	10->	13->	9->	4->	11->	1->	44.8409 33
8->	7->	1->	4->	5->	3->	13->	9->	11->	6->	12->	2->	10->	51.9163 34
4	0	12	6	11	2	7	10 -	12	1	E .	2	0 >	10 E1 2E

Pressing 2 works the crossover and mutation operators on our initial population giving us the 2 selected parents and the offspring as output. It then calculates the fitness of the offspring and replaces it with the lowest fitness person of our initial population.

```
Parent 1 Index: 14 with fitness score: 75.4534
2-> 10-> 1-> 8-> 9-> 11-> 12-> 3-> 4-> 6-> 5-> 13-> 7->
Parent 2 Index: 67 with fitness score: 72.7687
10-> 3-> 11-> 13-> 6-> 2-> 8-> 5-> 1-> 9-> 4-> 7-> 12->
Their Offspring:
10-> 3-> 11-> 13-> 6-> 2-> 8-> 5-> 1-> 9-> 4-> 7-> 12->
Now element with lowest fitness function will be removed i.e: 94 which was with fitness score 39.9967
Afer mutation the Offspring becomes:
10-> 11-> 3-> 13-> 6-> 2-> 8-> 5-> 1-> 9-> 4-> 7-> 12->
and replaced with new fitness score 50.2884
Parent 1 Index: 14 with fitness score: 75.4534
2-> 10-> 1-> 8-> 9-> 11-> 12-> 3-> 4-> 6-> 5-> 13-> 7->
Parent 2 Index: 67 with fitness score: 72.7687
10-> 3-> 11-> 13-> 6-> 2-> 8-> 5-> 1-> 9-> 4-> 7-> 12->
Their Offspring:
10-> 3-> 11-> 13-> 6-> 2-> 8-> 5-> 1-> 9-> 4-> 7-> 12->
Now element with lowest fitness function will be removed i.e: 59 which was with fitness score 41.2472
Afer mutation the Offspring becomes:
10-> 3-> 11-> 6-> 13-> 2-> 8-> 5-> 1-> 9-> 4-> 7-> 12->
and replaced with new fitness score 46.5922
Parent 1 Index: 14 with fitness score: 75.4534
2-> 10-> 1-> 8-> 9-> 11-> 12-> 3-> 4-> 6-> 5-> 13-> 7->
Parent 2 Index: 67 with fitness score: 72.7687
10-> 3-> 11-> 13-> 6-> 2-> 8-> 5-> 1-> 9-> 4-> 7-> 12->
Their Offspring :
10-> 3-> 11-> 13-> 6-> 2-> 8-> 5-> 1-> 9-> 4-> 7-> 12->
Now element with lowest fitness function will be removed i.e: 79 which was with fitness score 41.5667
Afer mutation the Offspring becomes:
10-> 3-> 11-> 6-> 13-> 2-> 8-> 5-> 1-> 9-> 4-> 7-> 12->
and replaced with new fitness score 46.5922
```

Pressing 3 gives us our calculated output i.e. the best fitness path along with the distance.

```
RESULT:
Best path is at the Index: 14 with fitness score: 75.4534

THE PATH IS
2-> 10-> 1-> 8-> 9-> 11-> 12-> 3-> 4-> 6-> 5-> 13-> 7->

REPRESENTING IN TERMS OF CITIES:

Goa -> Chennai-> Delhi -> Ghaziabad-> Meerut-> Pune-> Kerala-> Mumbai -> Bhopal -> Lavasa -> Kolkata -> ECR-> Noida->

The distance of this path is 132.532 units
```

Comparison with other techniques

Genetic Algorithm is a good alternative to other algorithms to solve NP problems. Well, huge dataset may take few year or may be infinite amount of time to be solved and GA do it within few minutes.

References

CARGO SHIP LOADING:

- 1. The Coding Train (Youtube Channel)
- 2. www.tutorialspoint.com
- 3. www.geeksforgeeks.org

TRAVELLING SALESMAN PROBLEM:

- 1. www.tutorialspoint.com
- 2. <u>www.geeksforgeeks.org</u>
- 3. https://pdfs.semanticscholar.org/c31b/fd16935da83e419d631245272d7838262308.pdf
- 4. http://www.ppgia.pucpr.br/~alceu/mestrado/aula3/IJBB-41.pdf

Division of work among group members

Everyone was equally interested, determined and has contributed to the project.