Project - Phase 8 Report

Group 14
Tiago Carvalho fc51034
Diogo Lopes fc51058
Miguel Saldanha fc51072
João Roque fc51080
João Afonso fc51111

16/05/2021

1 Motivation

For our project we were thinking about an API that could help us decide which shows to watch next, by marking shows as viewed and/or liked.

Because we can watch more than just movies, like anime, we wanted to use more than one dataset. Both animes and movies can have a lot in common not only with each other but also with books, so we also decided to use a book dataset.

So we have three datasets, and we can effortlessly search through any of them, mark them as seen or liked, and get suggestions. Having very similar categories in every single one of them.

For the suggestions our idea was making a recommendation list having in mind the item's rating and user's likes and views, which would indicate to us which categories the user prefers.

So it makes sense to call our API "Seen".

2 Dataset characterization

2.1 Dataset 1 — IMDB

This data set provides a lot of information about movies and shows that can be seen in IMDB.

We downloaded the dataset from the Kaggle website, updated one year ago.

From the whole data this where the columns that were important to us:

Columns	Example
id	606e2683b3fff1da8a207ae9
name	The Arrival of a Train
category	[Action,Documentary,Short]
rating	7.4
type	short

Table 1: Movie example in our database

2.2 Dataset 2 — MyAnimeList

For the second data set we got it from Kaggle, about the MyAnimeList website. This data not only has a lot of anime content but also user information, but because we want to connect with the other datasets doesn't make sense to use that data. Meaning we used these columns:

Columns	Example
id	606e252aebddc73ebfb15507
name	Shakugan no Shana: Season II
category	[Action,Drama,Fantasy,Romance,School,Supernatural]
rating	7.72
imageUrl	https://myanimelist.cdn-dena.com/images/anime/10/18669.jpg

Table 2: Anime example in our database

2.3 Dataset 3 — GoodReads

At last, this data set represents books from the GoodReads website, also downloaded from Kaggle.

The helpful data from this data set, to be able to use with animes and movies, is its categories and rating:

Columns	Example
id	606e25ad5e927a606f534284
name	Of Mice and Men
description	The compelling story of two outsiders []
category	[Classics,Fiction,Academic,School,Literature,Historical]
rating	7.7
imageUrl	https://images.gr-assets.com/books/1511302904l/890.jpg

Table 3: Book example in our database

3 Use cases

We have 3 types of Users: an Admin, which is a logged-in user with special permissions, a Regular user, which is a logged-in user, and a not logged-in user that we call Any.

Services	User	Functionalities		
	Any	Sign in		
	1 Tilly	See Book, Show and Movie Library		
		User Log in		
		Set Book/Show/Movie as seen		
Normal		Set Book/Show/Movie as liked		
	Regular	Ask for suggestions to read and/or watch		
		Count how many views a specific Item has		
		Count how many likes a specific Item has		
		Top 10 Items with more likes		
	Admin	Add Book/Show/Movie to Library		
	Admin	Remove Book/Show/Movie from Library		
Crossle	A	See best Director and his movies with cast		
Spark	Any	See which Actor has the most connections		

4 API

User		Path			get	post	put	del	description
Regular	/lib	/{page}			X				Returns a page from the database
neguiar	/suggest					×			List of suggestions to watch
Admin	/item					×			Creates an item to add to the database
Any	/item	/{type}	/{id}		X			X	Gets/Deletes item with specific id and $type$
Regular	/item	/{type}	/{id}	/seen			×		Marks item as seen
Regulai	/item	$/\{type\}$	$/\{id\}$	/like			×		Marks item as liked
Any	/item	/{type}	/{id}	/views	X				Returns Item's number of views
	/item	$/\{type\}$	$/\{id\}$	/likes	×				Returns Item's number of likes
	/getTopTen	$/\{type\}$			×				Returns top ten most liked Items with $type$
	/user					×			Creates User
	/user	/login			×				Logs in
Regular	/user	/logout			X				Logs out
negular	/user	/search	/{user	name}	×			X	Searches/Deletes User by username
Any	/{director}				X				Returns list with the best Director's movies and his cast
	/actor				×				Returns the Actor's name with movies with the biggest cast in total

5 Architecture (application and technical)

5.1 Diagram

Figure 1: Project's architecture.

5.2 Application

5.2.1 Client

The Client should be able to access our API on his browser:

https://recommendations.sytes.net

The Swagger provides a user interface to use and test our calls by adding "/ui" to the end of the url above.

5.2.2 Server

In total there are 7 different microservices working at the same time. Every single one runs on the Google Cloud, inside the same cluster but different dockers.

Our reasoning was having an entrance microservice, which would redirect the request to the microservice responsible for that type of request, for example when sending a request for a page in our library, the API Gateway receives that request and sends it to the Library Service, where he has the responsibility of ask for Item to the Book, IMDB and Anime Service, and them put them together in just one response, that response then is sent to the API Gateway, to be show to the Client.

This API Gateway service also has the responsibility of transforming the REST requests from the Client to gRPC request that is used internally, between Services.

We also have 5 services which are responsible for the database connection, meaning they are responsible to translate the request they receive to inserts, updates, removes or queries to the database.

5.2.3 Databases

Every database has a service that has the responsibility to access and manage it. While 3 of them are hosted by MongoDB a NoSQL database, the last one is an SQL database hosted by Google Cloud.

For the Items' databases (Books, Movies and Animes) we used a NoSQL database since we might change the format of our documents, meaning if we had an SQL database we would need to always drop the entire database and

repopulate again, and it also helps that the MongoDB provides a very easy and python implementation to work with.

Instead, for the Users' database we used an SQL one, and because we already knew what we wanted from the User, we knew we would use structured data for it.

5.2.4 Spark

For a posterior addition like it was with Spark we created a new microservice, this microservice would be responsible for both the Spark request we provide, this service receives the gRPC requests from the API Gateway and then processes them, creating job to send to the Google Cloud where we have a Cluster with the sole purpose of running these types of jobs.

6 Implementation

- 7 Evaluation and validation
- 7.1 Evaluation
- 7.2 Validation
- 8 Cost analysis
- 9 Discussion
- 9.1 Results
- 9.2 Analysis
- 10 Conclusions
- 10.1 Contributions
- 10.2 Future alterations