## Project2

# Verilog Arithmetic Logic Unit Synopsys

Lin, Shih-Hao

UTD-ID:2021497449

Yang, Wen-Fu

UTD-ID:2021547369

## 1. Waveform Compare



Figure 1 behavioral code waveform



Figure 2 mapped code waveform

```
By firgure 1. When opcode equal to 000, input X + input Y = output Z ,
                                                                         delay 100ns.
                                 001, input X - input Y= output Z ,
                                                                        delay 100ns.
                                 010, input X & input Y = output Z ,
                                                                        delay 100ns.
                                 011, input X | input Y= output Z ,
                                                                        delay 100ns.
                                 100, input_X ^ input_Y= output_Z ,
                                                                        delay 100ns.
                                 101, input_X ^~ input_Y= output_Z ,
                                                                        delay 100ns.
                                 110, input X % input_Y= output_Z ,
                                                                        delay 100ns.
                                 111, input X / input Y= output Z ,
                                                                        delay 100ns.
```

By figure 2. When opcode equal to 000, input\_X + input\_Y = output\_Z.

In Mapped code, the inputs didn't pass through the mux (multiplexer), hence the delay did not occur. Beside delay, two designs would be the same function in generally.

## 2. Design Vision

Schematic View



#### **Total Amount of Cells**

Report : cell

Design : alu\_test\_verilog

Version: L-2016.03-SP3

Date : Tue Sep 8 20:46:05 2020

\*\*\*\*\*\*\*\*\*\*\*\*

#### Attributes:

b - black box (unknown)

h - hierarchical

n - noncombinational

r - removable

output\_Z\_reg[5]

u - contains unmapped logic

| Cell           |        |         | Area Attributes |  |
|----------------|--------|---------|-----------------|--|
| C7             | nand2  |         | 1.000000        |  |
| C10            | nand2  | library | 1.000000        |  |
| C14            | nand2  | library | 1.000000        |  |
| C23            | nand2  | library | 1.000000        |  |
| C33            | nand2  | library | 1.000000        |  |
| C36            | nand2  | library | 1.000000        |  |
| C277           | nand2  | library | 1.000000        |  |
| C278           | nand2  | library | 1.000000        |  |
| C279           | nand2  | library | 1.000000        |  |
| C280           | nand2  | library | 1.000000        |  |
| C281           | nand2  | library | 1.000000        |  |
|                |        |         |                 |  |
|                |        |         |                 |  |
|                |        |         |                 |  |
|                |        |         |                 |  |
|                |        |         |                 |  |
|                |        |         |                 |  |
|                |        |         |                 |  |
| output_Z_reg[0 | O] dff | library | 7.000000 n      |  |
| output_Z_reg[  | 1] dff | library | 7.000000 n      |  |
| output_Z_reg[2 | 2] dff | library | 7.000000 n      |  |
| output_Z_reg[  | 3] dff | library | 7.000000 n      |  |
| output_Z_reg[4 | 4] dff | library | 7.000000 n      |  |

library

7.000000 n

| output_Z_reg[6]  | dff | library | 7.000000 n |
|------------------|-----|---------|------------|
| output_Z_reg[7]  | dff | library | 7.000000 n |
| output_Z_reg[8]  | dff | library | 7.000000 n |
| output_Z_reg[9]  | dff | library | 7.000000 n |
| output_Z_reg[10] | dff | library | 7.000000 r |
| output_Z_reg[11] | dff | library | 7.000000 r |
| output_Z_reg[12] | dff | library | 7.000000 r |
| output_Z_reg[13] | dff | library | 7.000000 r |
| output_Z_reg[14] | dff | library | 7.000000 r |
| output_Z_reg[15] | dff | library | 7.000000 r |
| output_Z_reg[16] | dff | library | 7.000000 r |
| output_Z_reg[17] | dff | library | 7.000000 r |
| output_Z_reg[18] | dff | library | 7.000000 r |
| output_Z_reg[19] | dff | library | 7.000000 r |
| output_Z_reg[20] | dff | library | 7.000000 r |
| output_Z_reg[21] | dff | library | 7.000000 r |
| output_Z_reg[22] | dff | library | 7.000000 r |
| output_Z_reg[23] | dff | library | 7.000000 r |
| output_Z_reg[24] | dff | library | 7.000000 r |
| output_Z_reg[25] | dff | library | 7.000000 r |
| output_Z_reg[26] | dff | library | 7.000000 r |
| output_Z_reg[27] | dff | library | 7.000000 r |
| output_Z_reg[28] | dff | library | 7.000000 r |
| output_Z_reg[29] | dff | library | 7.000000 r |
| output_Z_reg[30] | dff | library | 7.000000 r |
| output_Z_reg[31] | dff | library | 7.000000 r |
| output_Z_reg[32] | dff | library | 7.000000 r |
|                  |     |         |            |
|                  |     |         |            |
|                  |     |         |            |
|                  |     |         |            |
| r76/u_div/l_12   | inv | library | 1.000000   |
| r76/u_div/I_13   | inv | library | 1.000000   |
| r76/u_div/I_14   | inv | library | 1.000000   |
| r76/u_div/I_15   | inv | library | 1.000000   |
| r76/u_div/l_16   | inv | library | 1.000000   |
| r76/u_div/l_17   | inv | library | 1.000000   |
| r76/u_div/I_18   | inv | library | 1.000000   |
| r76/u_div/I_19   | inv | library | 1.000000   |
| r76/u_div/I_20   | inv | library | 1.000000   |
| 76/ 11 /1 04     | •   | 191     | 4 000000   |

 $r76/u\_div/I\_21 \qquad inv \qquad library \qquad 1.000000$ 

```
r76/u_div/I_22
                            library
                   inv
                                       1.000000
r76/u_div/I_23
                             library
                                       1.000000
r76/u_div/I_24
                            library
                                       1.000000
r76/u_div/I_25
                  inv
                             library
                                       1.000000
r76/u_div/I_26
                             library
                                       1.000000
r76/u_div/I_27
                 inv
                             library
                                       1.000000
r76/u_div/I_28
                  inv
                            library
                                       1.000000
r76/u_div/I_29
                                       1.000000
                  inv
                             library
r76/u_div/I_30
                                       1.000000
                   inv
                            library
```

Total 4048 cells

7146.000000

## 3.Design Code

```
1)ALU
module alu_test_verilog( input_X, input_Y, opcode, clock, reset, output_Z);
       parameter Data_width=32;//building system as 32bits;
       input [Data width-1:0] input X,input Y; // define two input;
                clock; //define clock;
       input
       input
                                          //define reset;
                reset;
       input [2:0] opcode;
                                          //define operation code;
```

output reg [Data\_width:0] output\_Z;

```
reg [Data width:0] mux; //multiplexer;
//designing ALU
       always@(input_X, input_Y, opcode, clock, reset)
       begin
       case (opcode)
              3'b000 : mux <= input_X + input_Y; //plus;
              3'b001 : mux <= input_X - input_Y; //minus;
              3'b010 : mux <= input X & input Y; //and;
              3'b011 : mux <= input X | input Y; //or;
              3'b100 : mux <= input X ^ input Y; //XOR;
              3'b101 : mux <= input_X ^~ input_Y; //XNOR;
              3'b110 : mux <= input_X % input_Y; //modules;
              3'b111: mux <= input X / input Y; //divide;
              endcase
       end
       always@(posedge clock)
              if (reset) begin
```

```
output_Z=0;
                            end
                     else begin
                      output_Z =mux;
                            end
endmodule
2) testbench
module alu_test_verilog_tb;
       reg [31:0] input_X;//desiding inputs as 32 bits;
       reg [31:0] input_Y;
       reg [2:0] opcode;
       reg clock;
       reg reset;
      wire [31:0] output_Z;
      wire [31:0] mux;
```

```
alu_test_verilog object(
      .input_X (input_X),
      .input_Y (input_Y),
      .opcode (opcode),
      .clock (clock),
      .reset (reset),
      .output_Z (output_Z)
      );
      initial begin
input_X = 32'b11110101001101101000111111001010;//Input data;
      input Y = 32'b11110101101001011000010110101101;//Input data;
         reset = 1;
      #100 reset = 0;
     #100 opcode = 3'b000; //plus;
     #100 opcode = 3'b001; //minus;
     #100 opcode = 3'b010; //bit-wise AND
      #100 opcode = 3'b011; //bit-wise OR
```

```
#100 opcode = 3'b100; //bit-wise XOR;
      #100 opcode = 3'b101; //bit-wise XNOR;
      #100 opcode = 3'b110; //remainder
      #100 opcode = 3'b111; //divide;
       end
//set the cclock
initial begin
#50 clock = 0;
end
always begin
#50 clock = 0;
#50 clock = 1;
end
endmodule
```

### 3) Synopsys code

```
// Created by: Synopsys DC Expert(TM) in wire load mode
// Version : L-2016.03-SP3
// Date
        : Tue Sep 8 21:46:26 2020
module alu_test_verilog ( input_X, input_Y, opcode, clock, reset, output_Z );
input [31:0] input X;
input [31:0] input Y;
input [2:0] opcode;
 output [32:0] output Z;
input clock, reset;
 wire N76, N77, N79, N80, N81, N82, N84, N85, N86, N87, N88, N89, N90, N91,
    N92, N93, N94, N95, N130, N131, N132, N133, N134, N135, N136, N137,
    N138, N139, N140, N141, N142, N143, N144, N145, N146, N147, N148,
    N149, N150, N151, N152, N153, N154, N155, N156, N157, N158, N159,
    N160, N161, N162, N163, N164, N165, N166, N167, N168, N169, N170,
    N171, N172, N173, N174, N175, N176, N177, N178, N179, N180, N181,
inv U3846 (.in(n3711), .out(N294));
inv U3847 (.in(n3712), .out(N293));
```

```
inv U3848 ( .in(n3713), .out(N292) );
inv U3849 ( .in(n3714), .out(N291) );
endmodule
```