

Laboratorio di RETI di TELECOMUNICAZIONE

Andrea Piroddi

Dipartimento di Ingegneria e Scienze Informatiche

Obiettivo della Simulazione: Comunicazione tra PC e Gateway

Nella nostra simulazione:

- Avremo un PC che vuole accedere a Internet tramite un Gateway NAT.
- Mostreremo i passaggi coinvolti nella traduzione dell'indirizzo IP e nel monitoraggio delle connessioni.
- Presentazione del processo di Network Address Translation (NAT)

Introduzione al Network Address Translation (NAT)

Il **Network Address Translation (NAT)** è una tecnica utilizzata nei router per tradurre gli indirizzi IP privati all'interno di una rete locale (LAN) in un indirizzo IP pubblico quando i dati vengono inviati su Internet.

Funzionalità Principali:

- Conservazione degli Indirizzi IP: NAT consente di utilizzare un singolo indirizzo IP pubblico per rappresentare più dispositivi all'interno di una rete, contribuendo a preservare gli indirizzi IPv4, che sono limitati.
- **Sicurezza**: Nasconde gli indirizzi IP interni dalla rete pubblica, rendendo più difficile per gli attaccanti identificare e accedere ai dispositivi della rete locale.
- **Routing**: NAT gestisce le richieste di ritorno, inoltrando le risposte dal server pubblico verso il dispositivo corretto all'interno della rete locale.

Tipi di NAT:

- Static NAT: Mappa un indirizzo IP privato a un indirizzo IP pubblico specifico.
- Dynamic NAT: Mappa un indirizzo IP privato a un indirizzo IP pubblico da un pool di indirizzi disponibili.
- **Port Address Translation (PAT)**: Una forma di NAT dinamico che consente a più dispositivi di condividere un singolo indirizzo IP pubblico utilizzando porte diverse.

Vantaggi:

- Riduce la necessità di indirizzi IP pubblici unici.
- Aumenta la sicurezza della rete locale.
- Facilita la gestione della rete.

Limitazioni:

- Può complicare alcune applicazioni che richiedono connessioni dirette.
- Può introdurre latenza nelle comunicazioni.

In sintesi, il NAT è una componente fondamentale nella gestione delle reti moderne, permettendo una connessione efficace e sicura a Internet per più dispositivi all'interno di una rete locale.

Scenario della Simulazione

Obiettivo:

Simulare il funzionamento del **Network Address Translation (NAT)** tra un computer (PC) e un gateway, illustrando i passaggi per la richiesta di una connessione a un server esterno tramite un indirizzo URL.

Componenti:

PC:

- 1. Dispositivo client che richiede l'accesso a un sito web.
- 2. Inizialmente ha solo un indirizzo MAC e un indirizzo IP privato.
- 3. Effettua una richiesta DNS per risolvere l'indirizzo del sito web.

Gateway NAT:

- 1. Funziona come intermediario tra la rete locale (LAN) e Internet.
- 2. Traducendo l'indirizzo IP privato del PC in un indirizzo IP pubblico.
- 3. Gestisce una tabella NAT per mantenere traccia delle connessioni attive.

Fase 1: Richiesta DNS per risolvere www.example.com

Livello 2: Frame Ethernet

- Tipo di Frame: Ethernet II
- Indirizzo MAC di Destinazione: 00:1A:2B:3C:4D:5F (MAC del Gateway)
- Indirizzo MAC di Origine: 00:1A:2B:3C:4D:5E (MAC del PC)
- Tipo/EtherType: 0x0800 (IPv4)

Contenuto del Frame Ethernet:

Livello 3: Pacchetto IPv4

– Versione: IPv4

– Header Length: 20 byte

– Tipo di Servizio: 0

Lunghezza Totale: (Header + Dati)

– Identificazione: Unico per il pacchetto

– Flags e Frammentazione: Non frammentato

- **TTL**: 64

— Protocollo: UDP (17)

Checksum: Calcolato sul header

– Indirizzo IP di Origine: 192.168.1.2 (IP del PC)

Indirizzo IP di Destinazione: 192.168.1.1 (IP del Gateway)

Pacchetto UDP

- Porta di Origine: 12345 (porta random del PC)
- Porta di Destinazione: 53 (porta DNS)
- Lunghezza: Lunghezza totale del pacchetto UDP (Header + Dati)
- Checksum: Calcolato sul header UDP

Contenuto del Pacchetto UDP:

```
| Porta Origine | Porta Destinazione | Lunghezza | Checksum |
|------|-----|-----|-----|-----|----|
| 12345 | 53 | W | V |
```


Fase 2: Gateway in Attesa di richieste dagli host della rete

Fase 3: Invio della Query DNS dal Gateway verso il DNS server

Fase 4: il Gateway riceve la risoluzione della query DNS con il relativo indirizzo IP

Pacchetto di Risposta dal DNS Server

Livello 2: Frame Ethernet

- Tipo di Frame: Ethernet II
- Indirizzo MAC di Destinazione: 00:1A:2B:3C:4D:5F (MAC del Gateway)
- Indirizzo MAC di Origine: 00:1A:2B:3C:4D:5E (MAC del Server DNS)
- Tipo/EtherType: 0x0800 (IPv4)

Livello 3: Pacchetto IPv4

– Versione: IPv4

Header Length: 20 byte

– Tipo di Servizio: 0

Lunghezza Totale: (Header + Dati)

Identificazione: Unico per il pacchetto

– Flags e Frammentazione: Non frammentato

- **TTL**: 64

– Protocollo: UDP (17)

Checksum: Calcolato sul header

Indirizzo IP di Origine: 8.8.8.8 (IP del Server DNS)

Indirizzo IP di Destinazione: 192.168.1.1 (IP del Gateway)

Pacchetto UDP

- Porta di Origine: 53 (porta DNS)
- Porta di Destinazione: 12345 (porta random del Gateway)
- Lunghezza: Lunghezza totale del pacchetto UDP (Header + Dati)
- Checksum: Calcolato sul header UDP

```
| Porta Origine | Porta Destinazione | Lunghezza | Checksum |
|-----|
| 53 | 12345 | W | V |
```


Dati della Risposta DNS

Il contenuto dei dati DNS include:

- ID della Richiesta: Identificatore univoco della richiesta, che corrisponde all'ID della richiesta inviata dal PC
- Flags: Impostazioni della risposta (indicando che è una risposta positiva)
- Numero di Domini: Numero di domini in risposta
- Numero di Risultati: Numero di risposte (1 in questo caso)
- TTL: Tempo di vita dell'informazione
- Indirizzo IP Risolto: 1.2.3.4 (l'indirizzo IP risolto per www.example.com)

Fase 5: il Gateway restituisce al PC la risoluzione della URL

Fase 6: Il PC riceve la risoluzione della URL

Fase 7: il PC invia la richiesta http verso l'ip address della pagina web

Pacchetto di Richiesta HTTP dal PC al Gateway NAT

Livello 2: Frame Ethernet

- Tipo di Frame: Ethernet II
- Indirizzo MAC di Destinazione: 00:1A:2B:3C:4D:5F (MAC del Gateway)
- Indirizzo MAC di Origine: 00:1A:2B:3C:4D:5E (MAC del PC)
- Tipo/EtherType: 0x0800 (IPv4)

Livello 3: Pacchetto IPv4

– Versione: IPv4

– Header Length: 20 byte

– Tipo di Servizio: 0

Lunghezza Totale: (Header + Dati)

Identificazione: Unico per il pacchetto

– Flags e Frammentazione: Non frammentato

- **TTL**: 64

– Protocollo: TCP (6)

Checksum: Calcolato sul header

Indirizzo IP di Origine: 192.168.1.2 (IP del PC)

Indirizzo IP di Destinazione: 1.2.3.4 (IP del server web)

			Tipo di Servizio									
ı		-	-									
	4	5	0	X	Y	0	0	64	6	Z	192.168.1.2	1.2.3.4

Pacchetto TCP

- Porta di Origine: 12345 (porta random del PC)
- Porta di Destinazione: 80 (porta HTTP del server web)
- Numero di Sequenza: Iniziale o successivo
- Numero di Acknowledgment: Se applicabile
- Data Offset: Dimensione dell'header TCP
- Flags: SYN, ACK, PSH, ecc. (SYN per iniziare una connessione)
- Finestra: Dimensione della finestra TCP
- Checksum: Calcolato sul header TCP

Dati della Richiesta HTTP

La richiesta HTTP vera e propria viene inviata nel payload TCP. Ecco un esempio di come appare:

Esempio di Richiesta HTTP:

Fase 8: il Gateway riceve dal PC la richiesta http verso l'ip address della pagina web. Al momento la Tabella NAT del Gateway è vuota

FASE 9: il Gateway sostituisce l'IP sorgente (quello dell'host) con l'ip pubblico della sua interfaccia WAN e aggiorna la Tabella NAT

Passaggio Attraverso il Gateway NAT

Quando il pacchetto arriva al gateway NAT, esso modifica l'indirizzo IP sorgente prima di inoltrarlo al server web.

Pacchetto IPv4 Dopo il Gateway NAT

- Il gateway sostituisce l'indirizzo IP sorgente 192.168.1.2 con il proprio indirizzo IP pubblico (ad esempio, 203.0.113.1):
- Indirizzo IP di Origine: 203.0.113.1 (IP pubblico del gateway)
- Indirizzo IP di Destinazione: 1.2.3.4 (IP del server web)

Contenuto del Pacchetto IPv4 Modificato dal Gateway:

Versione	IHL	Tipo di Servizio	Lunghezza Totale	Identificazione	Flags	Offset	TTL	Protocollo	Checksum	IP Origine	IP Destinazione
	5	0	X	Y	0	0	64	6	Z	203.0.113.1	1.2.3.4

Quando il PC con IP privato 192.168.1.2 invia una richiesta al server con IP pubblico 1.2.3.4, la voce nella tabella NAT appare così:

IP Privato	Porta Privata	IP Pubblico	Porta Pubblica	Protocollo	Scadenza
192.168.1.2	54321	1.2.3.4	80	TCP	300s

Fase 10: il Gateway inoltra la richiesta http verso l'Ip pubblico

FASE 11: il Gateway riceve la risposta http dall'ip pubblico della pagina web

Pacchetto di Risposta HTTP dal Server Web al Gateway NAT

Livello 2: Frame Ethernet

- Tipo di Frame: Ethernet II
- Indirizzo MAC di Destinazione: 00:1A:2B:3C:4D:5F (MAC del Gateway)
- Indirizzo MAC di Origine: 00:1A:2B:3C:4D:6A (MAC del Server Web)
- Tipo/EtherType: 0x0800 (IPv4)

Contenuto del Frame Ethernet:

Livello 3: Pacchetto IPv4

– Versione: IPv4

Header Length: 20 byte

– Tipo di Servizio: 0

– Lunghezza Totale: (Header + Dati)

Identificazione: Unico per il pacchetto

Flags e Frammentazione: Non frammentato

TTL: 64

– Protocollo: TCP (6)

Checksum: Calcolato sul header

Indirizzo IP di Origine: 1.2.3.4 (IP del server web)

Indirizzo IP di Destinazione: 203.0.113.1 (IP pubblico del gateway)

Contenuto del Pacchetto IPv4:

Pacchetto TCP

- Porta di Origine: 80 (porta HTTP del server web)
- Porta di Destinazione: 12345 (porta random del PC)
- Numero di Sequenza: A (un numero sequenziale)
- Numero di Acknowledgment: B (numero di ack se applicabile)
- Data Offset: Dimensione dell'header TCP
- Flags: ACK, PSH (indica che ci sono dati nel payload)
- Finestra: Dimensione della finestra TCP
- Checksum: Calcolato sul header TCP

Contenuto del Pacchetto TCP:

Porta Origine	Porta Destinazione	Numero Sequenza	Numero Acknowledgment	Data Offset	Flags	Finestra (Checksum
 80	 12345	 A	-	- C		 D	

Dati della Risposta HTTP

Il server web invia una risposta HTTP nel payload TCP.

Esempio di Risposta HTTP:

FASE 12: il Gateway inoltra la risposta al PC sostituendo l'ip di destinazione (al momento ip pubblico) con ip privato del PC usando la tabella NAT

FASE 13: Transazione Completata

Timeout e Rimozione delle Voci:

- Se non ci sono ulteriori comunicazioni attive tra il PC e il server web, dopo un certo periodo di inattività, il gateway rimuoverà automaticamente la voce corrispondente dalla tabella NAT.
- Questo processo aiuta a liberare risorse e mantenere la tabella NAT snella, prevenendo l'accumulo di voci obsolete.

