Frailty Models: Theory & Practice Shared Frailty Models

Theodor Balan & Hein Putter

Department of Biomedical Data Sciences Leiden University Medical Center

Statistics in Practice session IBC Barcelona, 9 July 2018

Omitted covariates in paired data

Shared frailty models

Estimation

Omitted covariates in paired data

Software and data representation

Omitted covariates in paired data

•0000000

- \triangleright Paired individuals, with life times T_1 and T_2
- Covariate values are shared for individuals from the same pair

Estimation

 $ightharpoonup T_1$ and T_2 have the same distribution with hazard function given by

$$\lambda(t \mid x) = \lambda_0(t) \exp(\beta x)$$

 $ightharpoonup T_1$ and T_2 are assumed independent, given X

- \triangleright Paired individuals, with life times T_1 and T_2
- Covariate values are shared for individuals from the same pair
- $ightharpoonup T_1$ and T_2 have the same distribution with hazard function given by

$$\lambda(t \mid x) = \lambda_0(t) \exp(\beta x)$$

- $ightharpoonup T_1$ and T_2 are assumed independent, given X
- \triangleright x is realization of X with density $f_X(x)$
- ▶ Denote by f(t | x) and S(t | x) the density and survival function of T, given X = x
- Marginal survival function of T is then given by

$$\overline{S}(t) = \int S(t \mid x) f_X(x) dx$$

Positive correlation

Heuristic explanation

- ightharpoonup Consider one pair, with life times T_1 and T_2
- ▶ Marginal survival function of T_1 and T_2 given by $\overline{S}(t)$
- ▶ If t_1 is observed, distribution of T_2 (given t_1) will change
- ▶ If t_1 is large, then it is likely that T_1 has low hazard
- This in turn makes it more likely that value of x in the pair is low if $\beta > 0$
- ightharpoonup Since x is shared, then T_2 likely also has low hazard
- ightharpoonup So we expect a large life time t_2 as well
- ightharpoonup Result: T_1 and T_2 are positively correlated

Illustration

- ► Simulated 10 000 pairs, where
- $lacktriangleq X \sim N(0,\sigma^2)$ (shared between individuals in the same pair)
- Given X=x, T_1 and T_2 generated independently according to exponential distribution with rate $\lambda \exp(\beta x)$, with $\lambda=1$ and $\beta=1$
- Divide t₁ into quintiles, and plotted Kaplan-Meiers for these quintiles
- ▶ Standard deviation of X taken to be $\sigma = 0.25, 1, 4$

Omitted covariates in paired data

Omitted covariates in paired data

Plots

Omitted covariates in paired data

Plots

Conclusion

- ► A shared covariate *X* affecting the hazard of *T*₁ and *T*₂ induces positive correlation
- ▶ The correlation increases when the variance of X increases

Omitted covariates in paired data

Frailty models & correlated data

With maximum one event / individual, the frailty model explained unobserved individual risk.

In the "shared frailty" case, the frailty explaines *unobserved* common risk.

Frailty models & correlated data

With maximum one event / individual, the frailty model explained unobserved individual risk.

In the "shared frailty" case, the frailty explaines *unobserved* common risk.

Suitable for two types of outcome:

- clustered failures, where several individuals belong to the same cluster (eg. in families, patients in centers, etc)
- recurrent events, where an individual may experience several events (e.g. infections, hospital admissions)

Clustered failures

The hazard of individual j in cluster i is:

$$h_{ij}(t|Z_i) = h_0(t)Z_i \exp(\beta^{\top}x_{ij})$$

Here:

- $ightharpoonup \log Z_i$ plays the role of a random intercept (on the linear predictor scale)
- Clusters are a random sample from a population (of clusters)
- Variation between Z_i describes a variation between clusters (and dependence within clusters, as Hein showed)

Recurrent events

Gap-time

- based on a renewal process where the time scale resets after each event
- the "hazard" of the j-th event of individual i is

$$h_{ij}(t|Z_i) = h_0(t)Z_i \exp(\beta^{\top}x_{ij})$$

- ▶ the frailty describes the correlation of the gap times
- close in spirit to the clustered failure case

Recurrent events

Calendar time

- based on a non-homogeneous Poisson process (or "Andersen-Gill" formulation)
- the event history of an individual is described by a counting process N_i
- ightharpoonup the intensity of N_i is specified as:

$$\lambda_i(t|Z_i) = \lambda_0(t)Z_i \exp(\beta^\top x_i)$$

- the frailty describes an overall higher or lower intensity of the Poisson process
- closer in spirit to the univariate survival data

Recurrent events

A few comments

- ▶ Recurrent events are a complex topic of their own (Cook & Lawless, 2007)
- ► The choice of time scale and stochastic model is typically based on mechanistic or biological considerations
- ▶ In general, there is no easy correspondence between the two models except for easy cases (e.g. homogeneous Poisson process and exponentially distributed gap-times)

Distributions

- ► In shared frailty models, different frailty distributions emphasize different types of dependence:
 - the gamma frailty weighs late dependence more
 - the positive stable weighs early dependence more
 - ▶ the inverse Gaussian is somewhere in the middle
 - this dependence is usually only tractable for bivariate survival data

Distributions

- ► In shared frailty models, different frailty distributions emphasize different types of dependence:
 - the gamma frailty weighs late dependence more
 - the positive stable weighs early dependence more
 - ▶ the inverse Gaussian is somewhere in the middle
 - this dependence is usually only tractable for bivariate survival data
- In univariate frailty with covariates, we saw that different frailty distributions "shrink" the covariate effects in different ways
- With shared frailty models, this is not so clear any more
 - as the cluster size grows, the marginal correlation between event times becomes more prominent

Empirical Bayes estimates

Remember that for the gamma distribution, we looked at the frailty of the survivors at time t:

$$f(z|T \ge t) = \frac{P(T \ge t|Z = z)f(z)}{P(T \ge t)}$$

$$\propto S(t|Z = z)f(z)$$

$$= \exp(-zH_i(t))f(z)$$

$$\propto z^{\alpha-1}e^{-(\gamma+H_i(t))z}$$

Empirical Bayes estimates

Remember that for the gamma distribution, we looked at the frailty of the survivors at time *t*:

$$f(z|T \ge t) = \frac{P(T \ge t|Z = z)f(z)}{P(T \ge t)}$$

$$\propto S(t|Z = z)f(z)$$

$$= \exp(-zH_i(t))f(z)$$

$$\propto z^{\alpha-1}e^{-(\gamma+H_i(t))z}$$

Now, instead of $P(T \ge t | Z = z)$, the history of a cluster at time t includes D events and aggregated cumulative hazard $H_{i.}(t) = \sum_i H_{ii}(t)$. We call this information $\operatorname{data}_i(t)$.

Empirical Bayes estimates

The "posterior" distribution of Z_i can be obtained from Bayes' theorem:

$$f(z|T \ge t) = \frac{P(\text{data}_i(t)|Z_i = z_i)f(z_i)}{P(\text{data}_i(t))}$$

$$\propto z^{D_i(t_-)} \exp(-zH_i(t))f(z)$$

$$\propto z^{\alpha + D_i(t_-) - 1} e^{-(\gamma + H_i(t))z}$$

Empirical Bayes estimates

The "posterior" distribution of Z_i can be obtained from Bayes' theorem:

$$f(z|T \ge t) = \frac{P(\text{data}_i(t)|Z_i = z_i)f(z_i)}{P(\text{data}_i(t))}$$

$$\propto z^{D_i(t_-)} \exp(-zH_i.(t))f(z)$$

$$\propto z^{\alpha+D_i(t_-)-1}e^{-(\gamma+H_i.(t))z}$$

This is a gamma distribution where $\alpha \to \alpha + D_i(t)$ and $\gamma \to \gamma + H_{i.}(t)$. The marginal hazard for individual j from cluster i is then given by

$$h_{ij}(t) = \frac{\theta + D_i(t_-)}{\theta + H_i(t_-)} h_0(t) \exp(\beta^\top x_{ij})$$

Empirical Bayes estimates

With D_i and H_i the total number of events and aggregated cumulative hazard in cluster i at the end of follow-up, the **empirical Bayes** estimate of the frailty is given by

Estimation

$$E[Z_i|\mathrm{data}_i] = \frac{\theta + D_i}{\theta + H_i}.$$

Empirical Bayes estimates

With D_i and H_i the total number of events and aggregated cumulative hazard in cluster i at the end of follow-up, the **empirical** Bayes estimate of the frailty is given by

$$E[Z_i|\mathrm{data}_i] = \frac{\theta + D_i}{\theta + H_i}.$$

In the general case, this involves taking successive derivatives of the Laplace transform:

$$E[Z_i|\mathrm{data}_i] = -rac{\mathcal{L}^{(D_i+1)}(\mathcal{H}_i.)}{\mathcal{L}^{(D_i)}(\mathcal{H}_i.)}$$

Marginal hazard - no events

Marginal hazard - one event at t = 1

Marginal hazard - one event at t = 1, one at t = 1.5

Marginal hazard - one event at t = 1, one at t = 1.5

Estimation

00000

Omitted covariates in paired data

Omitted covariates in paired data

Likelihood construction

The goal is to maximize the **observed data** likelihood (the marginal likelihood). The marginal contribution of an individual can be obtained by taking derivatives of the marginal survivor function:

$$egin{aligned} L_i &= (-1)^{D_{i.}} \prod_j h_{ij}(t_{ij})^{D_{ij}} \, \mathcal{L}^{(D_{i.})}(H_{i1}(t_{i1}) + ... H_{in_i}(t_{in_i})) \ &= (-1)^{D_{i.}} \prod_j h_{ij}(t_{ij})^{D_{ij}} \mathcal{L}^{(D_{i.})}(H_{i.}) \end{aligned}$$

This can't be estimated directly because:

- the derivatives of the Laplace transform are usually difficult to calculate (except for the gamma frailty)
- (for semiparametric models) the hazard involves one parameter L U at every event time point in the data

00000

Likelihood

EM Algorithm

Assume that the frailty of the distribution is defined by the parameter θ .

The marginal likelihood can be written as

$$P(\mathrm{data}_i) = \int_{\theta} P(\mathrm{data}_i|Z_i) f_{\theta}(Z_i) dZ_i$$

The "complete data likelihood" is

$$P(\mathrm{data}_i|Z_i)f_{\theta}(Z_i)$$

EM algorithm

- ► The EM algorithm for the gamma frailty was proposed by Nielsen et al. (1992) and Klein (1992)
- ► The E step gets more difficult for distributions except gamma (still somewhat tractable for the PVF distributions)
- An adaptation is implemented in the R package frailtyEM

Penalized likelihood

- mathematically equivalent to the EM algorithm, implemented in the survival::coxph(), SAS, Stata
- works only with gamma and log-normal frailty, and is a bit limited in features (e.g. confidence interval for Var[Z])
- bidea: consider that $\log Z_i$ are unknown parameters, but penalize them in such a way that the frailty distribution corresponds to the gamma or log-normal (Therneau & Grambsch, 2000)

- take a parametric baseline hazard, so that h₀ depends on a small number of parameters (e.g. Weibull, Gompertz, spline-based)
- technically the EM algorithm can be used, but in general the maximization can be carried out directly
- parfm package supports more distributions but has fewer features, frailtypack for gamma and log-normal distributions, but very mature and rich in features

Other

- frailtySurv implements a pseudo-maximum likelihood estimation technique; idea is to avoid the EM algorithm by maximizing the baseline hazard values in the marginal likelihood in a succession instead of simultaneously.
- phmm and h likelihood approach frailtyHL

Software and data representation

Estimation

Omitted covariates in paired data

Software overview (from the frailtyEM documentation)

	frailtyEM	survival	coxme	frailtySurv	frailtyHL	frailtypack	parfm	phmm
Distributions								
Gamma	yes	yes	no	yes	no	yes	yes	no
Log-normal	no	yes	yes	yes	yes	yes	yes	yes
PS	yes	no	no	no	no	no	yes	no
IG	yes	no	no	yes	no	no	yes	no
Compound Poisson	yes	no	no	no	no	no	no	no
PVF	yes	no	no	yes	no	no	no	no
Data	•			-				
Clustered failures	yes	yes	yes	yes	yes	yes	yes	yes
Recurrent events (AG)	yes	yes	yes	no	no	yes	no	no
Left truncation \ (yes	no	no	no	no	yes	yes	no
Correlated structure	no	no	yes	no	no	yes	no	yes
Estimation			,					•
Semiparametric	yes	yes	yes	yes	yes	no	no	yes
Posterior frailties	yes	yes	no	no	no	yes	no	no
Conditional Λ_0 , S_0	yes	limited	no	yes	no	yes	yes	no
Marginal Λ_0 , S_0	yes	no	no	no	no	no	no	no

Omitted covariates in paired data

Cox model for failure time data:

```
coxph(Surv(tstop, status) ~ x1 + x2 + ... )
```

Estimation

with tstop is an event time if status==1 and censoring time otherwise.

Syntax - survival package

Cox model for failure time data:

```
coxph(Surv(tstop, status) ~ x1 + x2 + ...)
```

with tstop is an event time if status==1 and censoring time otherwise.

- ► If the individuals are clustered, this will give wrong standard errors.
- ▶ We could use a **marginal** proportional hazards model with:

```
coxph(Surv(tstop, status) ~ cluster(id) + x1 + x2 + ... )
```

where id is a column that identifies the cluster.

Estimation

Syntax - survival package

Marginal proportional hazards model:

```
coxph(Surv(tstop, status) ~
    cluster(id) + x1 + x2 + ... )
```

A gamma and a log-normal frailty model:

```
coxph(Surv(tstop, status) ~
    frailty(id) + x1 + x2 + ...)
coxph(Surv(tstop, status) ~
    frailty(id, "gaussian") + x1 + x2 + ...)
```


cluster() vs frailty()

cluster:

- fits a proportional hazards model without frailty
- uses a sandwich estimator for standard errors (conceptually similar to a GEE approach)
- does not estimate within-cluster correlation structures
- covariate estimates have a population-averaged interpretation

frailty:

- proportional hazards conditional on the frailty
- the frailty model is not compatible with the marginal proportional hazards model (unless the frailty follows a positive stable distribution)
- extra information with between-cluster independence

Recurrent events representation

Estimation

Rats data set

Omitted covariates in paired data

head(rats)

```
##
      litter rx time status sex
                   101
                                  f
## 1
##
               0
                    49
                                  f
                  104
                                  f
##
               0
##
               1
                   91
                             0
                                  m
##
                  104
                                  m
##
               0
                   102
                             0
                                  m
```


Rats data set


```
Call:
coxph(formula = Surv(time. status) ~ rx + sex + frailtv(litter).
   data = rats)
 n= 300, number of events= 42
               coef se(coef) se2 Chisq DF
rx
                0.7947 0.3138 0.3104 6.41 1.00 0.01100
               -3.1437 0.7374 0.7264 18.18 1.00 0.00002
sexm
frailty(litter)
                                       17.59 14.62 0.26000
     exp(coef) exp(-coef) lower .95 upper .95
       2,21370
                  0.4517
                           1,19674
rx
                                       4.095
       0.04312
                 23.1892
                           0.01016
                                       0.183
sexm
Iterations: 6 outer, 29 Newton-Raphson
     Variance of random effect= 0.4664846  I-likelihood = -199.5
Degrees of freedom for terms= 1.0 1.0 14.6
Concordance= 0.873 (se = 0.046)
Likelihood ratio test= 79.72 on 16.56 df.
                                            p=3e-10
```


cluster()


```
Call:
coxph(formula = Surv(time, status) ~ rx + sex + cluster(litter),
   data = rats)
  n= 300. number of events= 42
        coef exp(coef) se(coef) robust se
                                              z Pr(>|z|)
     0.79100
               2.20559 0.30936
                                  0.29271
                                          2.702 0.00689 **
rx
sexm -3.06769
               0.04653 0.72480
                                  0.72066 -4.257 2.07e-05 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
    exp(coef) exp(-coef) lower .95 upper .95
      2.20559
                  0.4534
                           1.24271
                                       3.915
rх
      0.04653
                 21.4923
                           0.01133
                                       0.191
sexm
Concordance= 0.764 (se = 0.044)
Rsquare= 0.154 (max possible= 0.777)
Likelihood ratio test= 50.04 on 2 df.
                                        p=1e-11
Wald test
                    = 21.23
                             on 2 df.
                                        p=2e-05
                                                  Robust = 25.74 p=3e-06
Score (logrank) test = 42.68 on 2 df,
                                        p=5e-10.
```


Results from frailtyEM

Estimation

```
Call:
emfrail(formula = Surv(time, status) ~ rx + sex + cluster(litter),
   data = rats)
Regression coefficients:
       coef exp(coef) se(coef) adj. se
     0.7873
               2.1974
                        0.3135 0.3135 2.5112 0.01
rx
sexm -3.1341
               0.0435
                        0.7385 0.7409 -4.2298 0.00
Estimated distribution: gamma / left truncation: FALSE
Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.201
no-frailty Log-likelihood: -200.426
Log-likelihood: -199.73
LRT: 1/2 * pchisq(1.39), p-val 0.119
Frailty summary:
                  estimate lower 95% upper 95%
Var[Z]
                     0.445
                               0.000
                                         1.678
Kendall's tau
                     0.182
                               0.000
                                         0.456
Median concordance
                     0.179
                               0.000
                                         0.464
E[logZ]
                    -0.239
                              -1.038
                                         0.000
Var[logZ]
                     0.559
                               0.000
                                         3.678
theta
                     2.245
                               0.596
                                           Inf
```

Confidence intervals based on the likelihood function

frailtyEM, positive stable distribution


```
Call:
emfrail(formula = Surv(time. status) ~ rx + sex + cluster(litter).
   data = rats. distribution = emfrail_dist("stable"))
Regression coefficients:
       coef exp(coef) se(coef) adj. se
               2.2325
                       0.3138 0.3147 2.5522 0.01
     0.8031
rx
sexm -3.1821
               0.0415
                       0.7647 0.8088 -3.9343 0.00
Estimated distribution: stable / left truncation: FALSE
Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.201
no-frailty Log-likelihood: -200.426
Log-likelihood: -200.229
LRT: 1/2 * pchisq(0.394), p-val 0.265
Frailty summary:
                  estimate lower 95% upper 95%
Kendall's tau
                     0.050
                              0.000
                                        0.251
Median concordance
                     0.049
                              0.000
                                        0.248
E[logZ]
                     0.031
                              0.000 0.194
Var[logZ]
                     0.179
                              0.000
                                        1.288
Attenuation
                    0.950
                              0.749
                                        1.000
                              2.983
                                          Inf
theta
                    18.847
```

Confidence intervals based on the likelihood function

frailtypack


```
Be patient. The program is computing ...
The program took 0.05 seconds
Call:
frailtyPenal(formula = Surv(time, status) ~ rx + sex + cluster(litter),
    data = rats. n.knots = 12. kappa = 10000)
  Shared Gamma Frailty model parameter estimates
  using a Penalized Likelihood on the hazard function
         coef exp(coef) SE coef (H) SE coef (HIH)
     0.817562 2.2649721
                           0.313388
                                         0.313388 2.60879 9.0863e-03
rx
sexm -3.134454 0.0435235
                           0.741004
                                         0.741004 -4.23001 2.3368e-05
    Frailty parameter, Theta: 0.467426 (SE (H): 0.456666 ) p = 0.15302
     penalized marginal log-likelihood = -255.5
     Convergence criteria:
     parameters = 8.89e-05 likelihood = 2.61e-05 gradient = 1.03e-07
     LCV = the approximate likelihood cross-validation criterion
           in the semi parametrical case = 0.907644
     n = 300
     n events= 42 n groups= 100
```


number of iterations: 11

About the R packages

- each offers slightly different functionality and was built with a certain purpose in mind
- ► frailtyEM aims to be quite complete for shared frailty models, for example
- frailtypack aims to fit a lot of extended frailty models, such as nested frailty models and joint frailty models

Some resources:

- CRAN Task View: Survival Analysis at https://cran.r-project.org/view=Survival
- ► Therneau & Grambsch, Modeling Survival Data: Extending the Cox Model (2000) for general survival analysis in R
- ► For example, the vignette & documentation of frailtyEM has several examples and describes the theory behind estimation and inference with the EM algorithm

Conclusion

- ► The PVF family of distributions is great, but in practice it is rarely used
- ► The standard are the gamma frailty and the log-normal frailty models (the latter is *not* in the PVF family)
 - gamma frailty is mostly for mathematical convenience, but there are also some theoretical arguments (Abbring & van den Berg 2007)
 - log-normal allows for negatively correlated frailty models (more about this, later)
- ➤ The positive stable distribution is advocated by Hougaard, but in practice it is rarely used

References

- ▶ Balan, T. A., & Putter, H. frailtyEM: an R Package for Estimating Semiparametric Shared Frailty Models.
- Cook, R. J., & Lawless, J. (2007). The statistical analysis of recurrent events. Springer Science & Business Media.
- ► Hougaard, P. (2000). Analysis of multivariate survival data. Springer Science & Business Media.
- ▶ Kalbfleisch, J. D., & Prentice, R. L. (2011). *The statistical analysis of failure time data*. John Wiley & Sons.

