

Structured Adaptive and Random Spinners for Fast Machine Learning Computations

Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Francois Fagan, Cedric Gouy-Pailler, Anne Morvan, Nourhan Sakr, Tamas Sarlos, Jamal Atif

Why structured projections?

- > Replace unstructured matrices in various algorithms
 - o Kernel methods via random feature maps
 - o Neural networks and dimensionality reduction techniques
 - Cross-polytope LSH methods and convex optimization
 - o Random projection trees
 - o Quasi-Monte Carlo techniques
 - o Advantages: Speed-ups. Storage compression. Almost no loss of accuracy.
- > Provide tradeoff between required accuracy level and computational time/storage complexity

Structured Spinners

- Balanceness: \mathbf{M}_1 and $\mathbf{M}_2\mathbf{M}_1$ are $(\delta(n), p(n))$ balanced isometries.
- Decorrelation: $\mathbf{M}_2 = \mathbf{V}(\mathbf{W}^1, ..., \mathbf{W}^n) \mathbf{D}_{\rho_1, ..., \rho_n}$.
- Budget: $\mathbf{M}_3 = \mathbf{C}(\mathbf{r}, n)$ for $\mathbf{r} \in \mathbb{R}^k$, where \mathbf{r} is random Rademacher/Gaussian in the random setting and is learned in the adaptive setting.

> Budget or randomness/ learnable parameters

- Defines the capacity of the model
- From quadratic with no computational and storage gains to linear with O(nlog(n)) time complexity

Smooth Sets of Matrices

Definition 1. $((\Delta_F, \Delta_2)$ -smooth sets): A deterministic set of matrices $\mathbf{W}^1, ..., \mathbf{W}^n \in \mathbb{R}^{k \times n}$ is (Δ_F, Δ_2) -smooth if:

- $\| \mathbf{W}_{1}^{i} \|_{2} = ... = \| \mathbf{W}_{n}^{i} \|_{2}$ for i = 1, ..., n, where \mathbf{W}_{j}^{i} is the j^{th} column of \mathbf{W}^{i} ,
- for $i \neq j$ and l = 1, ..., n we have: $(\mathbf{W}_l^i)^T \cdot \mathbf{W}_l^j = 0$,
- $\max_{i,j} \| (\mathbf{W}^j)^T \mathbf{W}^i \|_F \leq \Delta_F \text{ and } \max_{i,j} \| (\mathbf{W}^j)^T \mathbf{W}^i \|_2 \leq \Delta_2.$

Theoretical results

Theorem 1 Consider a matrix $M \in \mathbb{R}^{m \times n}$ encoding the weights of connections between a layer l_0 of size n and a layer l_1 of size m in some learned unstructured neural network model. Assume that the input to layer l_0 is taken from the d-dimensional space \mathcal{L} (although potentially embedded in a much higher dimensional space). Then with probability at least

$$1 - 2p(n)d - 2\binom{md}{2}e^{-\Omega(\min(\frac{t^2n^2}{K^4\Lambda_F^2\delta^4(n)}, \frac{tn}{K^2\Lambda_2\delta^2(n)}))}$$

for $t = \frac{1}{md}$ and with respect to random choices of M_1 and M_2 , there exists a vector \mathbf{r} defining \mathbf{M}_3 such that the structured spinner $\mathbf{M}^{struct} = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1$ equals to M on \mathcal{L} .

Distance

Lemma 1 (structured random setting theorem) Let A be a randomized algorithm using unstructured Gaussian matrices G and let A^{TS} be its structured version obtained by replacing the unstructured matrix **G** by TripleSpinner with blocks of m rows each. Denote by d the dimensionality of the space on which Aacts. Then for n large enough and $\epsilon = o_{md}(1)$ with probability p_{succ} at least:

$$1 - 2p(n)d - 2\binom{md}{2}e^{-\Omega(\min(\frac{\epsilon^2n^2}{K^4\Lambda_F^2\delta^4(n)}, \frac{\epsilon n}{K^2\Lambda_2\delta^2(n)}))}$$

with respect to the random choices of M_1 and M_2 the following holds for any Ssuch that $\mathcal{A}^{-1}(\mathcal{S})$ is measurable and b-convex: Cross - polytope LSH

$$|\mathbb{P}[\mathcal{A}(q) \in \mathcal{S}] - \mathbb{P}[\mathcal{A}^{TS}(q) \in \mathcal{S}]| \le b\eta,$$

where the the probabilities in the last formula are with respect to the random choice of M_3 and $\eta = \frac{\delta^3(n)}{2}$.

Experiments

