A Tight Bound on Approximating Arbitrary Metrics by Tree Metrics

Jittat Fakcheroenphol Satish Rao Kunal Talwar

STOC 2003, JCSS 2004

Presented by Jian XIA

for COMP670P: Topics in Theory: Metric Embeddings and Algorithms Spring 2007, HKUST

May 8, 2007

Random Tree Embedding

Given a metric (V, d). Let S be a family of metrics over V, and let D be a distribution over S. We say that (S, D) α -probabilistically approximates a metric (V, d), if

- every metric in S dominates d; $(d'(u,v) \ge d(u,v)$, for every $u,v \in V$ and every metric $d' \in S$.)
- for every $u, v \in V$,

$$\mathbf{E}_{d' \in (\mathcal{S}, \mathcal{D})}[d'(u, v)] \le \alpha \cdot d(u, v).$$

We call α the distortion.

Question

What is the distortion for probabilistic approximation by dominating trees?

Known Results

- Embedding C_n (unit weight n-cycle) into a spanning tree requires distortion at least n-1.
- Embedding C_n into a tree requires $\Omega(n)$ distortion. [Rabinovich and Raz, 95]
- C_n can be embedded into a distribution of dominating trees with distortion 2(1-1/n). [Karp, 89]
- $2^{O(\sqrt{\log n \log \log n})}$ distortion for graph metrics, using spanning trees. [Alon *et al.*, 95]
- $O(\log^2 n)$ distortion; there exists a graph requiring $\Omega(\log n)$ distortion. [Bartal, 96]
 - ullet Note: Tree metrics can be isometrically embedded into ℓ_1
- $O(\log n \log \log n)$ distortion [Bartal, 98]
- This paper closes the gap!
- $O(\log^2 n \log \log n)$ distortion for graph metrics, using spanning trees. [Elkin *et al.*, 05]

Hierarchical Cut Decomposition

- assumption: the smallest distance in the given n-point metric space (V,d) is strictly more than 1; and the diameter of the metric is $\Delta=2^{\delta}$.
- A hierarchical cut decomposition of (V, d) is a sequence of $\delta + 1$ nested cut decompositions $D_0, D_1, \ldots, D_{\delta}$ such that
 - $D_{\delta} = \{V\},$
 - D_i is a 2^i -cut decomposition, and a refinement of D_{i+1} .(that is, each set in D_{i+1} is a disjoint union of some sets of D_i .)

where, given a parameter r, an r-cut decomposition of (V,d) is a partitioning of V into clusters, each centered around a vertex and having radius at most r.

- Property
 - the diameter of each cluster in D_i (referred as *level* i cluster) is at most 2^{i+1}
 - each cluster in D_0 is a singleton vertex.
 - a hierarchical cut decomposition naturally corresponds to a rooted tree.

Corresponding tree

- The vertices of the tree have the form (S, i), where $S \in D_i$, and $i = 0, 1, ..., \delta$.
- The root is (V, δ)
- The children of a vertex (S,i) are (T,i-1) with $T \in D_{i-1}$ and $T \subseteq S$
- The edge connecting (S, i) to (T, i 1) has length 2^i .

The tree metric d_T is the shortest-path metric induced by this tree on the set of its leaves.

- d_T dominates d
- upper bound on d_T : Let u and v be leaves and w be their LCA. Let l_w be the length of the edges from w to its children. Then, $d_T(u,v) \leq 4l_w$.
- Steiner points don't (really) help. (only introducing 4-distortion.) [Gupta, 01; Konjevod et al., 01]

High-Level Plan

- ullet Construct a random hierarchical cut decomposition, and let T be the associated tree
- An edge (u,v) is at level i if u and v are first separated in the decomposition D_i
 - Thus $d_T(u,v) \le 4 \cdot 2^{i+1} = O(2^i)$
 - Since $d_T(u,v) \ge d(u,v)$, (u,v) cannot be at a level i less than roughly $\log d(u,v)$
 - For i above, we'll show that the probability (u, v) is at level i decreases geometrically with i.
 - $\mathbf{E}[d_T(u,v)] = \sum_i \Pr[(u,v) \text{ is at level } i] \cdot O(2^i)$

Decomposition Algorithm

Algorithm *Partition* (V, d)

- 1. Choose a random permutation π on V.
- 2. Choose R uniformly at random from $[\frac{1}{2}, 1]$.
- 3. Let $D_{\delta} = \{V\}$.
- 4. for $i = \delta 1$ downto 0
- 5. Let $R_i = 2^i R$.
- 6. for l = 1, 2, ..., n
- 7. **for** every cluster $S \in D_{i+1}$
- 8. Create a new cluster consisting of all unassigned vertices v in S satisfying

$$d(\pi(l), v) \le R_i$$

Illustration

Analysis

- We get a hierarchical cut decomposition
- Now we only need to prove that given an arbitrary edge (u,v), the expected value of $d_T(u,v)$ is bounded by $O(\log n) \cdot d(u,v)$
- w settles the edge (u, v) at level i if w is the first center to which at least one of u and v get assigned at level i.
- Note: exactly one center settles any edge (u,v) at any particular level
- w cuts the edge e = (u, v) at level i if it settles e at this level, and exactly one of u and v is assigned to w at level i.
- Define $\mathbf{E}[d_T^w(u,v)] = \sum_i \mathbf{1}(w \text{ cuts } (u,v) \text{ at level } i) \cdot O(2^i)$
- Note:

$$\mathbf{E}[d_T(u,v)] \le \sum_i \Pr[(u,v) \text{ is at level } i] \cdot O(2^i) \le \sum_w \mathbf{E}[d_T^w(u,v)].$$

Analysis cont.

- arrange the points $w_1, w_2, \ldots, w_k, \ldots$ in V in increasing oder of $\min\{d(u, w_k), d(v, w_k)\}$.
- For w_k to cut (u, v),
 - condition A: R_i must fall in $[d(u, w_k), d(v, w_k)]$ for some i. (assume $d(u, w_k) \leq d(v, w_k)$)
 - condition B: w_k settles (u, v) at level i.
- Consider an $x \in [d(u, w_k), d(v, w_k)]$, $\Pr[R_i \text{ falls in } [x, x + dx]] \leq \frac{dx}{2^{i-1}} \leq \frac{2}{x} \cdot dx$
- When A is satisfied, any of w_1, w_2, \ldots, w_k can settle (u, v) at level i. Therefore, $\Pr[B|A] \leq 1/k$
- $\mathbf{E}[d_T^{w_k}(u,v)] \le \int_{d(u,w_k)}^{d(v,w_k)} \frac{2}{x} \cdot O(x) \cdot \frac{1}{k} \cdot dx = O(\frac{d(v,w_k)-d(u,w_k)}{k}) \le O(d(u,v)/k)$
- Using linearity of expectation, we have

$$\mathbf{E}[d_T(u,v)] \le \sum_w \mathbf{E}[d_T^w(u,v)] = \sum_k O(d(u,v)/k) = O(\log n) \cdot d(u,v)$$

Second Analysis

Lemma

Given a vertex u and a radius ρ , the probability that the ball $B(u, \rho)$ is cut at level i is at most $(\rho/2^{i-2}) \cdot \log n$.

- A set S is cut if there are two clusters in the partition such that vertices from S lie in both these components.
- Given an edge e=(u,v), consider the ball of radius d(e) around u. Any partition that cuts the edge e also cuts the ball B(u,d(e)).

Proof of Lemma

Proof:

- arrange the points v_1, v_2, \ldots in V in oder of increasing distance from u.
- v_k intersects the ball $B(u, \rho)$ if $R_i \in [d(u, v_k) \rho, d(u, v_k) + \rho]$
- v_k protects the ball if $R_i > d(u, v_k) + \rho$
- v_k cuts the ball first at level i if,
 - condition A: v_k intersects the ball $\Pr[A] \leq 2\rho/2^{i-1}$
 - condition B: no node prior to v_k in the permutation π intersects or protects the ball $\Pr[B|A] \leq 1/k$

$$\begin{split} \Pr[B(u,\rho) \text{ is cut at level } i] &\leq \sum_k \Pr[v_k \text{ cuts } B(u,\rho) \text{ first at level } i] \\ &\leq \sum_k \frac{2\rho}{2^{i-1}} \cdot \frac{1}{k} \\ &\leq (\rho/2^{i-2}) \cdot \log n \end{split}$$

Improvement

Observation

- Since $R_i \in [2^{i-1}, 2^i]$, a node that is closer to u than $2^{i-1} \rho$ or farther than $2^i + \rho$ cannot cut the ball $B(u, \rho)$ at all.
- we can assume $\rho \leq 2^{i-2}$

$$\begin{split} \Pr[B(u,\rho) \text{ is cut at level } i] &\leq \sum_{k=|B(u,2^{i-1}-2^{i-2})|}^{|B(u,2^{i}+r^{i-2})|} \Pr[v_k \text{ cuts } B(u,\rho) \text{ first...}] \\ &\leq \sum_{k=|B(u,2^{i-1})|}^{|B(u,2^{i+1})|} \Pr[v_k \text{ cuts } B(u,\rho) \text{ first at level } i] \\ &\leq (\rho/2^{i-2}) \cdot O\left(\log\left(\frac{|B(u,2^{i+1})|}{|B(u,2^{i-2})|}\right)\right) \end{split}$$

Final

$$\begin{aligned} \mathbf{E}[d_T(u,v)] &\leq \sum_i \Pr[(u,v) \text{ is at level } i] \cdot O(2^i) \\ &\leq \sum_{i=0}^{\delta-1} O(2^i) \cdot \Pr[(u,v) \text{ is cut at level } i] \\ &\leq \sum_{i=0}^{\delta-1} O(2^i) \cdot \Pr[B(u,d(u,v)) \text{ is cut at level } i] \\ &\leq \sum_{i=0}^{\delta-1} O(2^i) \cdot \frac{d(u,v)}{2^{i-2}} \cdot O\left(\log\left(\frac{|B(u,2^{i+1})|}{|B(u,2^{i-2})|}\right)\right) \\ &= O(\log n) \cdot d(u,v) \end{aligned}$$