

Year 11 Mathematics Specialist Test 4 2019

Calculator Free **Trigonometry**

STUDENT'S NAME

SOLUTIONS

DATE: Monday 1 July

TIME: 35 minutes

MARKS: 34

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser, scientific calculator

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (1 mark)

Simplify: $\cos^2\left(\frac{5\pi}{23}\right) + \sin^2\left(\frac{5\pi}{23}\right) = 1$

2. (3 marks)

If $\sin \theta = -\frac{3}{5}$ and $\pi \le \theta \le \frac{3\pi}{2}$, find an expression (using fractions) for $\cos 2\theta$

$$(0520 = 1 - 2\sin^2{\theta})^2$$

$$= 1 - 2\left(\frac{-3}{5}\right)^2$$

$$= 1 - 2\left(\frac{9}{25}\right)$$

$$= \frac{7}{35}$$

3. (10 marks)

Solve the following trigonometric equations exactly over the given domains:

(a)
$$\sqrt{2}\sin(3x) = 1$$

$$Sin(3x) = \frac{1}{\sqrt{2}}$$

$$0 \le x \le \pi$$

$$0 \le x \le \pi \tag{3}$$

reg:
$$x = \frac{\pi}{4}$$

$$\chi = \frac{1}{12}, \frac{3\pi}{12}, \frac{9\pi}{12}, \frac{11\pi}{12}$$
(b) $3\csc^2 x - 4 = 0$ $-\pi \le x \le \pi$

$$\frac{1}{\sin^2 x} = \frac{4}{3}$$

$$\sin x = \pm \frac{3}{2}$$

$$x = \pm \frac{\pi}{3}, \frac{\pi r}{3}$$

$$\leq \pi$$
 [3]

$$(c) 5\sin x - 2\cos^2 x = 1$$

$$-2\pi \le x \le 2\pi$$

$$5\sin x - 2(1-\sin^2 x) - 1 = 0$$

$$2\sin^2x + 5\sin x - 3 = 0$$

 $Sinx = \frac{1}{2}$ no solution

$$\chi = \frac{17}{6}, \frac{57}{6}, -\frac{777}{6}, -\frac{1177}{6}$$

4. (3 marks)

Prove:
$$\sin^2\theta \cot^2\theta + 2\sin^2\theta + \cos^2\theta = 2$$

LHS = $\sin^2\theta \cot^2\theta + 2\sin^2\theta + \cos^2\theta$

= $\cos^2\theta \cot^2\theta + \cos^2\theta + \cos^2\theta$

= $\cos^2\theta \cot^2\theta + \cos^2\theta \cot^2\theta + \cos^2\theta \cot^2\theta + \cos^2\theta$

= $\cos^2\theta \cot^2\theta + \cos^2\theta + \cos^2\theta + \cos^2\theta + \cos^2\theta \cot^2\theta + \cos^2\theta + \cos^2\theta$

QED

5. (4 marks)

Prove the triple angle identity $\sin 3x = 3\sin x - 4\sin^3 x$.

LHS =
$$\sin(3x)$$

= $\sin(2x + 2x)$
= $\sin(2x + 2x)$
= $\sin(2x + 2x)$
= $\sin(2x + 2x)$
= $2\sin(2x)$
= $2\sin(2x)$

6. (4 marks)

Prove:
$$(\csc^2\theta - 2)(\tan^2\theta + 1) = \csc^2\theta - \sec^2\theta$$

LHS = $(\csc^2\theta - 2)(\tan^2\theta + 1)$
= $(\cot^2\theta + 1 - 2)(\tan^2\theta + 1)$
= $(\cot^2\theta - 1)(\tan^2\theta + 1)$
= $(\cot^2\theta + \tan^2\theta - \tan^2\theta + \cot^2\theta - 1)$
= $(\cot^2\theta - \tan^2\theta - \tan^2\theta + \cot^2\theta - 1)$
= $(\csc^2\theta - 1) - (\sec^2\theta - 1)$
= $(\csc^2\theta - \sec^2\theta - \csc^2\theta - \sec^2\theta - \csc^2\theta - \csc$

7. (5 marks)

Prove the following identity.

$$1 + 2\cos 2\theta + \cos 4\theta = 8\cos^4\theta - 4\cos^2\theta$$

$$LHS = 1 + 2\cos 2\theta + \cos^4\theta - 4\cos^2\theta$$

$$= 1 + 2\cos 2\theta + \cos^2\theta + \cos^2\theta$$

$$= 1 + 2\cos 2\theta + \cos^2\theta$$

$$= 1 + 2\cos^2\theta + \cos^2\theta$$

$$= 1 + 2\cos^2\theta + \cos^2\theta + \cos^2\theta$$

$$= 1 + \cos^2\theta + \cos^2\theta + \cos^2\theta$$

$$= 1 + \cos^2\theta + \cos^2\theta + \cos^2\theta + \cos^2\theta$$

$$= 1 + \cos^2\theta + \cos^2\theta + \cos^2\theta + \cos^2\theta$$

$$= 1 + \cos^2\theta +$$

8. (4 marks)

(a) Write the expression $4\sin\theta + 5\cos\theta$ in the form $R\sin(\theta + \alpha)$, where R is a constant and α is an acute angle in radians.

$$RSin(0+a) = 4Sin0 + 5cos0$$
 $cos\alpha = 4$
 $cos\alpha = 4/541$
 $\alpha = 0.896$

(b) Use your expression above to solve algebraically the equation $4\sin\theta + 5\cos\theta = 4$ for $-\frac{\pi}{2} \le \theta \frac{3\pi}{2}$. [2]

$$Sin(0+0.896) = 4/541$$

 $ref: 0+0.896 = 0.675, 2.467$
 $0 = -0.221, 1.571$