TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling (arxiv)

Key Highlights

問題

- 這篇論文旨在解決什麼問題 ? 這篇論文解決了缺乏強大、可靠且高效的表格數據深度學習基準的問題。儘管梯度提升決策樹(GBDT)仍然是表格任務的首選方法,但現有的表格深度學習模型要么不能穩定地超越簡單的多層感知器(MLP),要么計算成本高(基於注意力或檢索的模型)。
- 現有的方法有哪些,它們有哪些局限性?
 - ∘ 簡單的MLP:在表格數據上的表現有限
 - 基於注意力的模型(FT-Transformer, SAINT):相對於數據集維度呈現二次複雜度,訓練/推理速度慢
 - 基於檢索的模型(TabR, ModernNCA):不易於大數據集應用,計算成本 高
 - 。傳統的深度集合模型:高計算成本(k倍模型),次優訓練(個別停止標準)

解決方案

- 這篇論文提議了什麼解決方案? TabM 一種參數高效的MLP集合,它為每個對象生成多個預測。其關鍵創新是通過改進的BatchEnsemble方法,使用共享權重同時訓練隱式集合成員,並具有改進的初始化。
- 這個想法受到什麼啟發?是否受其他論文影響? 受到BatchEnsemble(Wen et al., 2020)參數高效集合的啟發,但進行了重大修改,包括更好的初始化策略和權重共享作為表格數據有效正則化的方法。
- 有什麼理論基礎支持這個方法?該方法建立在集合學習理論上,認為多樣的弱學習器結合形成強預測。集合成員之間的權重共享提供了正則化,同時通過非共享的適配器保持了多樣性。

實驗

• 實驗表現如何? TabM在46個數據集上實現了表格DL模型中的最先進性能,在深度學習方法中排名第一。TabM†mini的平均排名為1.7±1.2,而FT-Transformer 為4.6±2.9。在效率方面,TabM遠快於基於注意力/檢索的模型,同時保持實際訓練時間。

• 這個方法有哪些限制或假設?

- 使用相對簡單的MLP骨幹(更先進的骨幹可能需要額外關注)
- 。多個對象嵌入(k個向量)可能會使需要單一嵌入的下游任務變得複雜
- ∘ 性能取決於集合大小k(測試配置中最優約為32)

創新

- 這篇論文做出了什麼重要或新穎的發現?
 - 。 集合中的權重共享作為表格數據強大正則化
 - 集合成員的同時訓練和集合感知停止至關重要
 - 單個子模型較弱且過擬合,但其集體預測表現良好
 - ◦使用高效集合的簡單MLP能超越複雜的注意力/檢索架構
 - 。參數高效集合相比標準MLP減少了無效神經元

評論 / 評論

- 這篇論文有哪些局限性?
 - 。 限於探索更先進的MLP骨幹
 - 。超參數k=32是基於經驗選擇的,沒有進行廣泛調優
 - 。一些效率比較可能由於實現上的優勢而偏向TabM
 - 。 域認識分劃顯示出混合結果,提示可能對隨機分劃過擬合
- 這篇論文是否有效地證實了其主張? 是的,該論文在46個數據集上提供了全面的評估,包含多個指標(性能排名,得分分佈,訓練時間,推理吞吐量)。個別與集體子模型性能的分析提供了強有力的證據支持集合機制。然而,對於超出學術基準之外的實際部署場景的推廣仍可進一步探討。

Comprehensive Analysis

ABSTRACT

- 本論文介紹了**TabM**,一種新穎的深度學習架構,針對表格數據通過高效的集成技術實現了卓越的性能。
- 其關鍵創新在於,TabM 通過在單一模型中模擬多層感知機(MLP)的集成,對每個輸入產生多個預測,同時大部分參數在隱含的集成成員之間共享。
- 主要貢獻:
 - ° **TabM 架構**:以有效的方式模擬 MLP 集成,實現同時訓練與參數共享,比傳統深度集成方法性能更佳且更高效。
 - 。**全面評估**:大規模基準測試顯示,基於 MLP 的模型(尤其是 TabM)在表格 數據上優於更為複雜的注意力機制和檢索增強架構。
 - 性能領先:TabM 在表格深度學習模型中達到最先進的結果。
 - 。**集成分析**:實證研究表明 TabM 的多個預測單獨來看是弱的,但集體效果強大。
- 該研究挑戰了針對表格數據的複雜架構趨勢,證明了設計良好的 MLP 比複雜的替 代方法更有效且更實用,為該領域提供了一個強有力的新基準。

'Namely, our new model TabM relies on efficient ensembling, where one TabM efficiently imitates an ensemble of MLPs and produces multiple predictions per object.'

具體來說,我們的新模型 TabM 依賴於高效的集成,其中一個 TabM 高效地模仿了一個 MLP 的集成,並且對每個物體產生多個預測。

'Compared to a traditional deep ensemble, in TabM, the underlying implicit MLPs are trained simultaneously, and (by default) share most of their parameters, which results in significantly better performance and efficiency.'

與傳統的深層集成相比,在 TabM 中,底層的隱含 MLP 是同時訓練的,並且(默認情況下)共享大部分參數,這導致顯著更好的性能和效率。

'Generally, we show that MLPs, including TabM, form a line of stronger and more practical models compared to attention- and retrieval-based architectures.'

總的來說,我們表明,包括 TabM 在內的 MLPs 形成了一系列比基於注意力和檢索的架構更強大和實用的模型。

1 INTRODUCTION

摘要

- 本介紹部分展示了 **TabM**,一種新的深度學習架構,用於對表格數據進行監督學習。
- 作者指出了當前表格深度學習方法的三個主要問題:
 - 1. **進展不明確**:由於評估方法不一致,很難確定新的方法是否持續優於簡單的MLP。
 - 2. **效率問題**:許多方法未充分考慮訓練時間和推理速度,尤其是面對較大的數據 集時。
 - 3. 學術與實踐的差距:在學術基準上的表現可能無法轉變為現實應用。
- **主要發現**:作者發現參數高效的集成(集成成員分享大部分權重)能將簡單的 MLP 轉化為強大的表格模型。
- 例如,將 MLP 與 BatchEnsemble 結合,比使用注意力機制的模型如 FT-Transformer 更優,同時更簡單且更高效。

• 主要貢獻:

- 1. **TabM 架構**:一種基於 MLP 的模型,使用參數高效的集成,對每個輸入產生多個預測,與 GBDT 競爭並優於其他表格深度學習模型。
- 2. **全面評估**:對表格深度學習模型進行大規模評估,包括性能、效率和實用性考量。
- 3. **機制洞察**:分析表明 TabM 的成功來自隱式 MLP 的集體訓練和權重共享,個別預測較弱但平均預測較強。
- 這項工作將 TabM 當作複雜表格深度學習架構的高效實際替代品,類比於 GBDT 通過集成簡單決策樹來組合。

"However, from the practical perspective, it is unclear if tabular DL offers any obvious go-to baselines beyond simple architectures in the spirit of a multilayer perceptron (MLP)."

然而,從實際角度來看,表格式深度學習是否提供了超越簡單多層感知器(MLP)架構的明顯基準仍不清楚。

"In a nutshell, we find that the parameter-efficient approach to deep ensembling, where most weights are shared between ensemble members, allow one to make simple and strong tabular models out of plain MLPs."

簡而言之,我們發現參數效率高的深度集成方法,其中大部分權重在集成成員之間共享,可以讓人們使用普通的MLP構建簡單而強大的表格模型。

"Drawing an informal parallel with GBDT (an ensemble of decision trees), TabM can also be viewed as a simple base model (MLP) combined with an ensembling-like technique, providing high performance and simple implementation at the same time."

簡單地類比於GBDT(決策樹集成),TabM也可以被視為一種由MLP組成的簡單基礎模型,結合了類似集成的方法,從而提供高性能和簡單的實現。

2 RELATED WORK

摘要

• 這部分相關工作的說明將TabM (一個針對表格數據的參數高效MLP集合) 在機器學習方法的廣泛範疇內定位。作者回顧了四個關鍵領域:

- **1. 基於決策樹的模型:** 建立了GBDT作為表格任務的強大基準,並與其深度學習方 法進行對比。
- 2. 表格深度學習架構:調查現有方法,包括基於注意力、檢索增強和類MLP模型的方法。作者強調TabM的主要差異 使用單一模型模仿MLP的集合,同時比基於注意力的模型(無二次複雜性)更計算效率高,比基於檢索的方法更具擴展性。
- 3. 改進表格MLP: 回顧了通過修改、正則化和訓練技術對MLP架構的最新進展。 作者將TabM定位為通過使用參數高效的集合方法,而不是這些架構改進,採取不 同的方法。
- 4. 深度集合和參數高效的替代方案: 解釋了傳統深度集合(多個獨立訓練的模型) 及其在性能和不確定性估計中的好處,但指出其計算成本。這一部分然後介紹了參 數高效的"集合",這些集合透過共享權重使一個模型生成多個預測來達到類似的好 處,特別強調BatchEnsemble作為其TabM變體的基礎。
- 作者強調TabM代表了一種專門針對表格深度學習的參數高效集合的新穎應用。

'Our model TabM is a deep learning model, specifically, a parameter-efficient ensemble of MLPs... the key difference of our model TabM is its computation flow, where one TabM imitates an ensemble of MLPs by producing multiple independently trained predictions.'

我們的模型 TabM 是一種深度學習模型,具體來說,是一個參數高效的多層感知器 (MLP)集成。TabM 模型的關鍵差異在於其計算流程,其中一個 TabM 模擬多個 MLP 集成,通過生成多個獨立訓練的預測結果來運作。

'It was observed that individual members of deep ensembles can learn to extract diverse information from the input, and the power of deep ensembles depends on this diversity... The main drawback of deep ensembles is the cost and inconvenience of training and using multiple models.'

我們觀察到,深度集成的個體成員可以從輸入中學會提取多樣化的信息,而深度集成的力量取決於這種多樣性。深度集成的主要缺點是訓練和使用多個模型的成本和不便。

'In this paper, we highlight parameter-efficient ensembling as an impactful paradigm for tabular DL. In particular, we describe two simple variations of BatchEnsemble (Wen et al., 2020) that are highly effective for tabular MLPs.'

在本文中,我們強調參數高效集成作為表格深度學習的一個重要範式。我們特別描述了兩種簡單的 BatchEnsemble (Wen 等, 2020) 的變體,它們對於表格 MLP 非常有效。

3 TABM

摘要

本節介紹了**TabM**,一種創建多個MLP(多層感知器)集成的表格深度學習模型,具有高效的權重共享。以下是重點內容:

核心概念: - TabM代表由k=32個MLP組成的集成模型,它們同時並行訓練,共享大部分權重以提高效率和性能。 - 構建於BatchEnsemble技術之上,該技術使用帶有小型"適配器"參數(R, S, B)的共享權重矩陣來創造集成成員之間的多樣性。

模型演進:作者通過幾個迭代步驟開發了TabM: - MLP×k:傳統的獨立集成(基線)。 - TabMpacked:沒有權重共享的並行訓練——改進了集成感知訓練。 - TabMnaive:添加了BatchEnsemble權重共享——提供正則化效益。 - TabMmini:僅保留第一個適配器——以最少的參數實現了出乎意料的好表現。 - TabM:最終版本具備智能初始化(後來的適配器開始時為1,第一個適配器隨機)。

關鍵創新: - **同時訓練**:所有集成成員一起訓練,允許集成感知的早停。 - **權重共享**:對表格數據起到了有效的正則化作用。 - **最小適配器**:僅第一個適配器(將輸入映射到不同的表示空間)是關鍵。 - **智能初始化**:後來的適配器開始處於非活躍狀態,但可以在訓練過程中學習。

表現: - TabM在46個數據集上,與基線MLP相比,達到了約2.15%的相對改進,超越了基於注意力的模型如FT-Transformer。 - 該方法在具有分布偏移的挑戰性領域感知分割上特別有效。

實際效益: - 比傳統集成模型尺寸小很多(每層3d參數 vs d²開銷)。 - 高效的並行執行,運行開銷少於k倍。 - 可以通過特徵嵌入和進一步集成來增強。

"TabM is one model representing an ensemble of k MLPs. Contrary to conventional deep ensembles, in TabM, the k MLPs are trained in parallel and share most of their weights by default, which leads to better performance and efficiency."

TabM是一種代表k個MLP集合的模型。與傳統的深層集合不同,在TabM中,這些k個MLP是並行訓練的,並且在默認情況下共享大多數權重,這導致了更好的性能和效率。

"constraining the ensemble with weight sharing turns out to be a highly effective regularization on tabular tasks"

對集合進行權重共享約束結果證明是對結構化數據任務的一種非常有效的正規化方法。

"The story behind TabM shows that technical details of how to construct and train an ensemble have a major impact on task performance. Most importantly, we highlight simultaneous training of the (implicit) ensemble members and weight sharing between them."

TabM背後的故事表明,如何構建和訓練一個集合的技術細節對任務性能有重大影響。最 重要的是,我們強調(隱含)集合成員的同步訓練以及它們之間的權重共享。

4 EVALUATING TABULAR DEEP LEARNING ARCHITECTURES

摘要

• 本節對各種針對表格式數據的深度學習架構進行實證評估,提出的模型TabM與已 建立的基線進行比較。

評估的基線模型: - 傳統模型:MLP,梯度提升方法(XGBoost,LightGBM,CatBoost) - 基於注意力的模型:FT-Transformer,SAINT,T2G-Former,ExcelFormer - 基於檢索的模型:TabR,ModernNCA - 使用專門特徵嵌入增強版本的模型(標記為†和‡)

主要發現: - TabM在各項評估指標上脫穎而出,成為表現最優秀的深度學習模型。 - 許多複雜的深度學習方法在許多數據集上的表現並不優於簡單的MLP,這使得它們的可靠性受到質疑。 - 模型可靠性至關重要:在困難數據集(較低的百分位數)上的表現尤為關鍵,而MLP+在簡單性和性能之間顯示出良好的實際平衡。 - 基於注意力和檢索的模型不如MLP類架構可靠。

主要結論: - TabM在表格式深度學習模型中展示了卓越且穩定的性能,確立了自身作為可 靠基線的地位。 - 簡單的MLP類架構(包括TabM)比起複雜的注意力或檢索基於表格數 據任務的替代方案更為可靠。

"The performance ranks render TabM as the top-tier DL model."

性能排名使 TabM 成為頂級 DL 模型。

"Meanwhile, many DL methods turn out to be no better or even worse than MLP on a non-negligible number of datasets, which shows them as less reliable solutions, and changes the ranking, especially on the domain-aware splits."

同時,許多 DL 方法在大量數據集上顯示其表現不如或甚至更差於 MLP,這展示了它們 作為解決方案的可靠性較低,並改變了排名,尤其是在領域感知分割上。

"TabM confidently demonstrates the best performance among tabular DL models, and can serve as a reliable go-to DL baseline. This is not the case for attention- and retrieval-based models."

TabM 自信地展示了表格型 DL 模型中的最佳性能,可以作為可靠的 DL 基線方法。這不適用於基於注意力和檢索的模型。

5 ANALYSIS

這一部分通過四個關鍵研究分析了 TabM 模型的集成行為: - **5.1 個體與集體表現**: - 作者展示了 TabM 的優勢來自於平均多個弱且多樣的子模型。 - 雖然個別子模型看起來過度擬合且表現不比簡單的多層感知機(MLP)更好,但它們的集體預測展示了更好的泛化能力。 - 子模型之間的多樣性對集成的有效性至關重要。 - **5.2 訓練後子模型選擇**: - 在訓練之後,TabM 可以通過移除預測頭和適配器矩陣行來修剪子模型。 - 基於驗證表現的貪婪選擇(TabM[G])的性能稍低於完整模型,但平均將集成大小從 32 個減少到約 9 個子模型,因此能夠加快推理速度。 - **5.3 子模型數量(k)的影響**: - 最佳子模型數量取決於模型容量——較大的模型(多層/更寬)能夠有效容納更多子模型。 - 然而,過多的子模型會因共享權重的限制而損害性能,過少子模型或模型容量不足則導致次優結果。 - **5.4 減少失活神經元**: - TabM 的設計通過減少失活神經元(從未激活的神經元)來提高參數利用率。 - 由於共享神經元在子模型中每次前向傳播都被使用 k 次,它們有更多的激活機會。 - 實驗表明,失活神經元率從 29%(k=1)降至 14%(k=32)。 - 關鍵洞察是 TabM 通過參數高效的權重共享,同時保持子模型多樣性,實現了有效的集成。

"In the upper row of Figure 5, the collective mean prediction of the submodels is superior to their individual predictions in terms of both training and test losses... Compared to the baseline MLP, the submodels look overfitted individually, while their collective prediction exhibits substantially better generalization."

在圖 5 的上排中,子模型的集體平均預測在訓練和測試損失方面均優於它們的單獨預測……與基線 MLP 相比,子模型單獨看上去過擬合,而它們的集體預測則表現出更好的泛化能力。

"This result is strict evidence of a non-trivial diversity of the submodels: without that, their collective test performance would be similar to their individual test performance... TabM draws its power from the collective prediction of weak, but diverse submodels."

這一結果嚴格證明了子模型之間存在非平凡的多樣性:若沒有這種多樣性,它們的集體測 試性能將類似於各自的個體測試性能……TabM 的力量來自於弱但多樣的子模型的集體預 測。

"By design, each of the shared neurons of TabMmini is used k times per forward pass... On average across 46 datasets, for k=1 and k=32, we get 0.29 ± 0.17 and 0.14 ± 0.09 portion of dead neurons, respectively, which is in line with the described intuition."

根據設計,TabMmini 的每個共享神經元在每次前向傳遞中被使用 k 次……在 46 個數據集上的平均值,當 k=1 和 k=32 時,分別得到 0.29 ± 0.17 和 0.14 ± 0.09 比例的死亡神經元,這與所描述的直覺一致。

6 CONCLUSION & FUTURE WORK

總結

- 此結論部分總結了一篇介紹**TabM**的新表格式深度學習模型的文章中的主要貢獻。
- 主要發現如下:

主要貢獻:

- 。展示了使用參數高效的集成技術時,表格式多層感知器(MLP)顯著改進。
- 開發了TabM,一個基於簡單MLP的模型,在表格數據上達到最新的性能。
- 。進行了廣泛的比較,顯示TabM可以作為表格式深度學習的一個新而強大的基準。
- 提供了關於TabM的架構的技術見解並分析了它的隱含子模型。

未來研究方向:

- 。**領域擴展**:將參數高效的集成方法應用於非表格領域,尤其是優化挑戰和輕量 級基礎模型的領域。
- 。**不確定性與魯棒性**:評估TabM在表格數據集上的不確定性估計和分佈外檢測 的能力。
- 這項工作將TabM定位為表格式深度學習中的一項實用進展,並為更廣泛的集成學習研究奠定基礎。

References

No references found.