OPTIMIZATION METHODS AND ALGORITHMS

PROBLEM FORMALIZATION

NOTATION:	Domain:		
1 q	$\epsilon\{1, S \}$	Student index	
2 <i>j</i>	$\epsilon\{1, E \}$	Exam index	
3 h	$\epsilon \{1, t_{max}\}$	Timeslot index	
4 k	$\epsilon \{1, t_{max}\}$	Auxiliary timeslot index	
5 <i>i</i>	$\epsilon \{1, t_{max}\}$	Difference between timeslots index	
DATA:			
S	Total numb	er of student enrolled in at least 1 exam	
E		Total number of exams	
		1 if student q is enrolled in exam j , 0 o/w	
$a_{q,j}$		Number of available timeslots	
t_{max}	Number of	available timeslots	
VARIABLES:			
1 $x_{j,h} \in \{0,1\}$	$\forall j, h$	1 if exam <i>j</i> is scheduled on timeslot <i>h</i> , 0 o/w	
2 $z_{q,h} \in \{0,1\}$	∀ q, h	1 if student q is occupied during timeslot h , 0 o/w	
3 $u_{a,h,k} \in \{0,1\}$	$\forall q, h$	1 if student q is occupied in both timeslots h and k , 0	
5 "q,h,k" (0,1)	ν η,π,π	o/w	
CONOMP A INMO			
CONSTRAINTS:	U :	End was all have an advalage and the	
$\sum_{h=1}^{1} x_{j,h} = 1$ $2 \sum_{i=1}^{ E } a_{q,i} x_{j,k} \le 1$	∀j	Each exam will have one and only one time slot	
2	$\forall q, k$	Student q cannot be enrolled in more exams which are	
, -		in the same timeslot, hence the sum of all exams in which student q is enrolled and which takes place in timeslot k is 1 or 0.	
3	$\forall q, k$	$z_{q,k}$ is 1 if student q is occupied in timeslot k , 0 o/w.	
$z_{q,k} = \sum_{j=1}^{ E } a_{q,j} x_{j,k}$			
$4 \ u_{q,h,k} \ge z_{q,h} + z_{q,k} - 1$	$\forall q,h,k$	$u_{q,h,k}$ is 1 if student q is occupied in both timeslots h and k , 0 o/w.	
COST FUNCTION:	_	0 5	
c(i,h)	($0, \qquad i > 5$	

OBJECTIVE FUNCTION:
$$\sum_{i=1}^{5} \sum_{h=1}^{t_{max}-i} c(i,h)$$

For each distance *i* between timeslots that generates a penalty (1,2,3,4,5) we sum the cost function generated by each timeslot configuration.

 $i \leq 5$

$$= \sum_{i=1}^{5} \sum_{h=1}^{t_{max}-i} 2^{5-i} * \frac{\sum_{q=1}^{|S|} u_{q,h,h+i}}{|S|}$$

$$= \sum_{i=1}^{5} \sum_{h=1}^{t_{max}-i} \sum_{q=1}^{|S|} 2^{5-i} * \frac{u_{q,h,h+i}}{|S|}$$

i.e. for each distance between timeslots that generates a penalty, we multiply the corrispective $\cos{(2^{5-i})}$ by the number of students which are occupied both in timeslot h and h+i. This number of students is calculated summing over all students the boolean variable $u_{q,h,h+i}$ which is 1 if student q is occupied in timeslots h and h+i and 0 o/w.