

NAME DES DOZENTEN: BJÖRN-HELGE BUSCH

KLAUSUR 1140 AUTOMATENTHEORIE UND FORMALE SPRACHEN

QUARTAL: (Q4/2013)

Name des Prüflings:	Mat	trikelnummer:	Zenturie:	
Dauer : 90 Min.	Seiten ohne	Deckblatt: 8	Datum: 2013-11-25	
	Formelsammlung Bitte kontrollieren Sie Ihr Klausurheft zu Beginn der Prüfung auf Vollständigkeit.			
	nd 90 Punkte erreichbar! Bestehen der Klausur sind	d 45 Punkte ausreichend!		
	Punkte für Aufgaben		10	
	Aufgabe 1	VC	von 10 von 18	
	Aufgabe 2 Aufgabe 3	VC		
	Aufgabe 4	VC	on 32	
	Insgesamt	VC	on 90	
Datum:	Note:	Ergänzungsprüfu	ng:	
Unterschrift:				
Termin für Klausurei	nsicht:	Ort:		

Aufgabe 1 Wortmengen und Wortfunktionen (jeweils 2 Punkte)

a) Gegeben sind die Sprachen L_1 und L_2 . Welche Bedingung muss erfüllt sein, damit $L_1 \subseteq L_1 \circ L_2$ gilt? Begründen Sie Ihre Antwort.

b) Erläutern Sie den Begriff Kleene-Abschluss in 1-2 Sätzen.

c) Gegeben ist das Alphabet $\Sigma = \{a, b, c, d\}$. Handelt es sich bei dem Kleene-Abschluss von Σ um eine abzählbar unendliche oder überabzählbar unendliche Menge? Gibt es eine Sprache $L_4 \subseteq \Sigma^*$, für die folgendes Kriterium gilt: $|L_4| = \infty$? Begründen Sie Ihre Antworten ggf. anhand von Skizzen.

d) Worin besteht formal betrachtet der Unterschied zwischen Σ^1 und Σ ? Welcher Potenz von Σ ist das leere Wort ε zuzuordnen? (Antworten mit Begründung)

e) Nennen Sie <u>zwei Operationen</u> zur Modifikation oder Erzeugung von Wörtern *w* und erläutern Sie diese jeweils anhand eines Beispiels.

Aufgabe 2 Deterministische Endliche Automaten

a) Erläutern Sie den Begriff totaler/vollständiger Automat in 1-2 Sätzen in Verbindung mit einer Skizze (2 Punkte).

b) Gegeben sind die Sprachen

$$\begin{split} L_1 &= \{ w \in \Sigma^* | w = uvk, u \in \{00,11\}^+, v \in \{a,c\}^+, k = b^i d^j \}, \\ &i,j \geq 0, i \; modulo \; 2 = 0, j \; modulo \; 2 = 0 \end{split}$$

$$L_2 &= \{ w \in \Sigma^* | w = uv, u \in \{aca\}^+, v \in \{b\}^* \}$$

Konstruieren Sie einen <u>nicht verallgemeinerten</u> DEA A_3 , der ausschließlich die Sprache $L_3 = L_1 \cup L_2$ akzeptiert. Geben Sie die graphische Repräsentation mit markierten akzeptierenden Zuständen und die formale Beschreibung von A_3 inklusive der Aufschlüsselung der enthaltenen Mengen an. Auf eine Darstellung von δ_3 kann verzichtet werden (14 Punkte).

c) Erläutern Sie den Begriff Transduktor in 1-2 Sätzen. Benutzen Sie ggf. eine Skizze für Ihre Erläuterungen (2 Punkte).

Aufgabe 3 Nichtdeterministische Endliche Automaten

a) Gegeben ist die Sprache

$$L_4 = \{ w \in \Sigma^* | w = uvkl, u \in \{22,10,01\}, v \in \{a,b\}^*, k \in \{aa,bbb\}, l = c^i d^j\}, i,j \ge 0 \}$$

Konstruieren Sie einen <u>nicht verallgemeinerten</u> NEA A_4 , der ausschließlich diese Sprache akzeptiert. Die graphische Repräsentation genügt; auf eine formale Beschreibung kann verzichtet werden. (6 Punkte)

b) Gegeben ist folgender graphisch dargestellter NEA A_5 .

Transformieren Sie A_5 in einen äquivalenten DEA. Benutzen Sie für die Transformation den tabellarischen Ansatz (Hinweis: Auf eine mengenwertige Darstellung kann in der Tabelle verzichtet werden). Geben Sie ferner die Sprache an, die der Automat akzeptiert. (16 Punkte)

c)	Gegeben ist das Wort $w_1=baa11b1aa$. Erläutern Sie die Verarbeitung des Wortes durch den ursprünglichen NEA A_5 mithilfe des Trellis-Schemas und markieren Sie akzeptierende Zustände und Sackgassen. (6 Punkte)
d)	Erläutern Sie den Begriff Epsilon-Automat in 1-2 Sätzen ggf. anhand einer Skizze (2 Punkte).
Αι	ufgabe 4 Grammatiken
a)	Welche drei Konzepte zur Definition von Typ-3 Sprachen sind Ihnen bekannt? (2 Punkte)

d) Gegeben ist folgende Grammatik $G_1 = \{\Sigma_1, N_1, P_1, S\}$ mit $\Sigma_1 = \{a, b, c, d\}$,

$$N_{1} = \{S, A, B, C\} \text{ und } P = \begin{cases} S \rightarrow aA, S \rightarrow bB, S \rightarrow cS \\ A \rightarrow aA, A \rightarrow bB, A \rightarrow cC, A \rightarrow dD, A \rightarrow aS, A \rightarrow a, \\ B \rightarrow bB, B \rightarrow b, \\ C \rightarrow cC, C \rightarrow dD, \\ D \rightarrow dD, D \rightarrow d \end{cases}$$

Vereinfachen Sie die Grammatik G_1 und konstruieren Sie den zu G_1 äquivalenten Automaten (wahlweise DEA oder NEA). Geben Sie dabei die umgeformte Grammatik an. Auf eine formale Repräsentation des Automaten kann verzichtet werden. (10 Punkte)

e) Gegeben sind die Sprachen

a.
$$L_5 = \{w \in \Sigma^* | w = uvk, u \in \{c, d\}^*, v \in \{ab\}^+, k \in \{a, b, c\}^*\}$$

b. $L_6 = \{w \in \Sigma^* | w = \{a\}^* b^i c^i \{a\}^*\}, i \ge 1$

Ordnen Sie die Sprachen gemäß der Chomsky-Hierarchie. Benutzen Sie für die Zuordnung das Pumping-Lemma, Automatenskizzen oder beispielhafte Regelmengen P. (6 Punkte)