§ 20-7 夫琅禾费单缝衍射

一、光的衍射现象

光在传播过程中能绕过障 碍物的边缘而偏离直线传 播的现象叫光的衍射。

不但光线拐弯,而 且在屏上出现明暗 相间的条纹。

这是光具有波动性的重要表现。

、光的衍射现象

泊松斑

一、光的衍射现象

衍射屏 ル' S

缝的衍射

Light Diffraction by a Razor Blade

刀片边缘的衍射

衍射现象的分类

- (1) 菲涅耳衍射 ——近场衍射 L 和 D中至少有一个是有限值。
- (2) 夫琅禾费衍射 ——远场衍射

 L 和 D皆为无限大(也可用透镜实现)。

夫琅禾费衍射:

观察单缝的夫琅 禾费衍射的实验 装置示意图:

二、惠更斯-菲涅耳原理 (Huygens—Fresnel principle)

对惠更斯原理的修改

惠更斯——菲涅耳原理:从同一波阵面上各点发出的次波,在传播过程中相遇时,也能相互叠加而产生干涉现象,空间各点波的强度,由各子波在该点的相干叠加所决定。

二、惠更斯-菲涅耳原理

(Huygens—Fresnel principle)

\vec{A} :合振动所对应之旋转振幅矢量

$$\vec{A} = d\vec{A}_1 + d\vec{A}_2 + \cdots$$

$$\vec{A} = \int d\vec{A}$$

$$A = \left| \vec{A} \right| = \left| \int d\vec{A} \right|$$

特例:

$$\rightarrow A = 0 \rightarrow$$
 暗点

$$\frac{d\vec{A}_1 d\vec{A}_2 d\vec{A}_3 d\vec{A}_4}{\longrightarrow \longrightarrow}$$

$$\vec{A}$$

$$\rightarrow A = A_{\text{max}}$$
 → 亮点

三、单缝衍射 振幅矢量法 🏲

 θ : 衍射角

A,B到P点之光程差 $=a\sin\theta$

 $\Delta S_i, \Delta S_{i+1}$ 到P点之光程差 $\Delta \delta = a \sin \theta / N$

$$\vec{A}_{i}$$
, \vec{A}_{i+1} 间周相差 $\varphi = \frac{2\pi}{\lambda} \Delta \delta = \frac{2\pi a \sin \theta}{N\lambda}$

透镜不会产生附加光程差

透镜成像,<u>像点是亮点</u>,说明光线是<u>同位</u>相叠加,即物点到像点各光线之间的光程 差为零(<u>等光程原理</u>)

平行光入射汇聚到透镜焦点或焦平面上

说明:透镜不会产生附加光程差!!!

讨论: 1.中央明纹

$$\theta = 0 \rightarrow I_{\text{max}} = I_0$$

2.暗纹

$$\beta = \pm K\pi \quad \frac{\pi}{\lambda} a \sin \theta = \pm K\pi$$

$$a\sin\theta = \pm K\lambda$$
 $K = 1,2,3\cdots$

$$x = f \cdot \tan \theta$$

$$I = I_0 \left(\frac{\sin \beta}{\beta} \right)^2$$

$$\beta = \frac{\pi}{\lambda} a \sin \theta$$

3.次级明纹

$$\frac{d}{d\beta} \left(\frac{\sin \beta}{\beta} \right)^2 = 0 \qquad I = I_0 \left(\frac{\sin \beta}{\beta} \right)^2$$

$$2\left(\frac{\sin\beta}{\beta}\right)\frac{d}{d\beta}\left(\frac{\sin\beta}{\beta}\right) = 0 \qquad \beta = \frac{\pi}{\lambda}a\sin\theta$$

$$2\left(\frac{\sin\beta}{\beta}\right)\left(\frac{\beta\cos\beta-\sin\beta}{\beta^2}\right)=0$$

$$\beta \cos \beta - \sin \beta = 0$$

$$\tan \beta = \beta$$
 (超越方程)

解得: $\beta = \pm 1.43\pi$, $\pm 2.46\pi$, $\pm 3.47\pi$, \cdots $\beta = \frac{\pi}{\lambda} a \sin \theta$ 相应: $a \sin \theta = \pm 1.43\lambda$, $\pm 2.46\lambda$, $\pm 3.47\lambda$, \cdots

光强: 从中央往外各次级明纹的光强依次为:

 $0.0472I_0$, $0.0165I_0$, $0.0083I_0$, ...

$$I_{\text{次级明纹}} << I_{\text{中央明纹}}$$

相对光强随 $\sin\theta$ 的变化如下图:

4. 条纹宽度

中央明纹宽度为两侧一级暗纹中心距离

(1). 线宽度

 θ_1 : 半角宽度

角度较小

$$\Delta x_0 = 2f \cdot \tan \theta_1 \approx 2f \sin \theta_1 = 2f \frac{\lambda}{a} \propto \frac{\lambda}{a}$$

——衍射反比定律

$$\Delta x \approx \frac{f\lambda}{a} = \frac{1}{2} \Delta x_0$$

$$\Delta x \propto \lambda$$
 波长越长,条纹宽度越宽

(4). 缝宽变化对条纹的影响

 $\frac{a}{\lambda} \rightarrow 0$ 时,

缝宽变化对条纹的影响

当
$$\frac{\lambda}{a} \to 0$$
 时, $\Delta x \to 0$

只显出单一的明条纹 ——单缝的几何光学像

 \therefore 几何光学是波动光学在 $\lambda/a \rightarrow 0$ 时的极限情形

5. 半波带法一计算观察屏上的强度分布

(1) 当 $a\sin\theta = \lambda$ 时,可将缝分为两个"半波带"

两个半波带发的光,在p点干涉相消形成暗纹。

(2) 当 $a\sin\theta = \frac{3}{2}\lambda$ 时,可将缝分成三个半波带,

其中两相邻半波带的衍射光相消, 余下一个半波带的衍射光不被抵消

一 在 p 点形成明纹 (中心)

(3) 当 $a \sin \theta = 2\lambda$ 时,可将 缝分成四个半波带, 两相邻半波带的衍射光 相消, p点形成暗纹。

半波带法得到的一般结果:

$$\delta = a \sin \theta = 0$$
 — 中央明纹中心(准确)

$$a \sin\theta = \pm k\lambda$$
, $k = 1,2,3\cdots$ — 暗纹(准确)

$$a \sin \theta = \pm (2k'+1)\frac{\lambda}{2}$$
, $k'=1,2,3$ … — 明纹中心(近似)

中央明纹中心和暗纹位置是准确的,其余明纹中心的位置是近似的,与准确值稍有偏离。

6.干涉和衍射的联系与区别

干涉和衍射都是波的相干叠加,但干涉是有限多个分立光束的相干叠加,衍射是波阵面上无限多个子波的相干叠加。二者又常出现在同一现象中。

例:已知:一雷达位于路边 d = 15m 处,射束与公路成 15^0 角,天线宽度 a = 0.20m,射束波长 $\lambda = 30mm$ 。

求:该雷达监视范围内公路的长度 l=?

解:将雷达波束看成集中在单缝衍射的0级明纹上,

$$\theta_1 \approx 8.63^{\circ}$$

$$d \qquad \beta$$

$$15^{0}$$

如图
$$\alpha = 15^{\circ} + \theta_1 = 23.63^{\circ}$$

$$\beta = 15^{\circ} - \theta_1 = 6.37^{\circ}$$

$$\therefore l = d(\cot\beta - \cot\alpha)$$

$$= 15(\cot6.37^{\circ} - \cot23.63^{\circ}) \approx 100 \text{m}$$

四、双缝衍射 b

不考虑衍射时,的光强分布图:

双干
$$I(\theta) = 4I_0 \cos^2(\frac{\pi}{\lambda} d \sin \theta)$$

衍射的影响:

双缝干涉条纹各级 主极大的强度不再 相等,位置不变.

单衍
$$I_1 = I_2 = I_0 \left(\frac{\sin \beta}{\beta}\right)^2$$
 $\beta = \frac{\pi}{\lambda} a \sin \theta$

双衍
$$I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\varphi_1 - \varphi_2)$$
 $\varphi_1 - \varphi_2 = \frac{2\pi}{\lambda}d\sin\theta$

$$I(\theta) = 4I_0 \left(\frac{\sin \beta}{\beta}\right)^2 \cos^2\left(\frac{\pi}{\lambda} d \sin \theta\right)$$

$$-\frac{2\lambda}{a} - \frac{3\lambda}{d} - \frac{\lambda}{a} - \frac{\lambda}{d} = 0 \quad \frac{\lambda}{d} \quad \frac{\lambda}{a} \quad \frac{3\lambda}{d} \quad \frac{2\lambda}{a} \quad \sin \theta$$

a.两因子之一为零,合光强为零

$$I(\theta) = 4I_0 \left(\frac{\sin \beta}{\beta}\right)^2 \cos^2\left(\frac{\pi}{\lambda} d \sin \theta\right)$$

b.干涉因子干涉条纹位置决定于 λ/d 衍射因子决定于λ/a

c. 缺级现象

干涉明纹位置:

 $d\sin\theta = \pm k\lambda$, $k = 0,1,2,\cdots$

衍射暗纹位置:

$$a\sin\theta'=\pm n\lambda$$
, $n=1,2,3,\cdots$

$$\frac{d}{d} = \frac{k}{n}$$
 时, $\theta = \theta$ ',此时在应该干涉加强

的位置上没有衍射光到达,从而出现缺级。

干涉明纹缺级级次:

$$k = \pm \frac{d}{a}n \quad , n = 1, 2, 3, \cdots$$

§ 20-8 多光束干涉 光栅衍射

一.多光束干涉

1. 主极大

$$\vec{A} = \sum_{i=1}^{N} \vec{A}_i$$

$$\delta = d \sin \theta = \pm k \lambda \ k = 0,1,\cdots$$

$$\frac{\vec{A}_1 \quad \vec{A}_2}{\vec{A}} \quad \bullet \quad \bullet \quad \frac{\vec{A}_N}{\vec{A}}$$

$$A = NA_1$$
$$I = N^2 A_1^2$$

多光束干涉主极大的位置与缝的个数无关

2.暗纹

$$\vec{A} = 0$$
 →暗纹 $\varphi: \vec{A}_i, \vec{A}_{i+1}$ 之交角

$$\varphi = \frac{2\pi}{\lambda} \delta = \frac{2\pi}{\lambda} d \sin \theta$$

条件? $N\varphi = \pm 2k'\pi$

$$\Rightarrow d \sin \theta = \pm \frac{k'}{N} \lambda$$
 $k' = 1, 2 \cdots$

k' = kN 回到主极大明纹情况

暗纹 $k'=1, 2, \cdots N-1, N+1, \cdots$ 明纹 k=0, 1,…

> N-1条暗纹 N-2条次级明纹

相邻主极大间有N-1个暗纹,有N-2条明纹(次极大)。

计算表明,次极大的光强仅为主极大的4%

当N很大时:

当N很大时,次极大的强度很弱,通常无法观察到。

3. 多缝干涉光强公式

相邻缝在 p 点的相位差

$$\varphi = \frac{2\pi}{\lambda} \cdot d \cdot \sin \theta$$

$$p$$
点合振幅为 $A_p = 2R\sin\frac{N\varphi}{2}$, $Z A_1 = 2R\sin\frac{\varphi}{2}$

$$\therefore A_p = A_1 \frac{\sin N \frac{\varphi}{2}}{\sin \frac{\varphi}{2}} = A_1 \frac{\sin N\alpha}{\sin \alpha}$$

$$\varphi = \frac{2\pi}{\lambda} d \sin \theta$$

$$\alpha = \frac{\varphi}{2} = \frac{\pi}{\lambda} d \sin \theta$$

多缝干涉的光强:

$$I_p = I_1 \left(\frac{\sin N\alpha}{\sin \alpha} \right)^2$$

I_1 — 单缝在p点的光强

$$N\alpha = \pm k'\pi$$

$$N\alpha = \pm k'\pi$$
 $d\sin\theta = \pm \frac{k'}{N}\lambda$ $k' \neq kN$

$$k' \neq kN$$

主极大明纹
$$k' = kN(\alpha = \pm k\pi)$$
 $I_n = N^2I_1$

$$I_p = N^2 I_1$$

二. 光栅衍射

1. 光栅 (grating)

光栅是现代科技中常用的重要光学元件。 光通过光栅衍射可以产生明亮尖锐的亮纹, 复色光入射可产生光谱,用以进行光谱分析。

2. 光栅的概念

光栅是由大量的等宽等间距的平行狭缝 (或反射面)构成的光学元件。

从广义上理解,任何具有空间周期性的衍射屏,都可叫作光栅。

3. 光栅的种类:

4. 光栅常数 (空间周期性的表示)

$$d = a+b$$

a — 透光(或反光)部分的宽度

b — 不透光(或不反光)部分的宽度 普通光栅刻线为数十条/mm — 数千条/mm, 用电子束刻制可达数万条/mm($d \sim 10^{-1} \mu m$)。

5. 光栅衍射

(1) 主极大
$$d\sin\theta = \pm k\lambda$$

$$k = 0,1,2,...$$

正入射光栅方程

(2) 暗纹
$$d \sin \theta = \pm \frac{k'}{N} \lambda$$

$$k' \neq kN$$

或 $a\sin\theta = \pm n\lambda$

$$n = 1, 2, \dots$$

缺级
$$k = \frac{d}{a}n$$

优点:a+b小,条纹拉的开. N大,光强大明亮.

6. 光栅衍射的光强公式

每个单缝在p点(对应衍射角 θ)均有 $I = I_0 \left(\frac{\sin \beta}{\beta}\right)^2$

$$A_1 = A_0 \frac{\sin \beta}{\beta}$$

$$\beta = \frac{\pi}{2} a \sin \theta$$

多缝干涉
$$A_p = A_1 \frac{\sin N\alpha}{\sin \alpha}$$
 $\alpha = \frac{\pi}{\lambda} d \sin \theta$

$$\alpha = \frac{\pi}{\lambda} d \sin \theta$$

光栅衍射的光强:

$$I_p = I_0 \left(\frac{\sin \beta}{\beta}\right)^2 \cdot \left(\frac{\sin N\alpha}{\sin \alpha}\right)^2$$
多缝干涉因子

 I_0 — 单缝衍射中央明纹中心处光强

单缝衍射和多缝衍射干涉的对比 (d=10a)

19个明条纹

【演示】单、双、三、多缝的衍射

[例] 用每毫米500条栅纹的光栅,观察钠光谱线 (λ=5900Å)问: (1)光线垂直入射; (2)光线以入射角30°入射时,最多能看到几级条纹?

解: (1)
$$(a+b)\sin \varphi = k\lambda$$

$$a+b = \frac{1 \times 10^{-3}}{500} = 2 \times 10^{-6} \,\mathrm{m}$$

$$k = \frac{a+b}{\lambda} = \frac{2 \times 10^{-6}}{5900 \times 10^{-10}} \approx 3.39 \qquad \mathbf{R} \ k = 3$$

最多能看到k=3,2,1,0,-1,-2,-3级条纹.

$$k = \frac{(a+b)(\sin\theta + \sin\varphi)}{\lambda}$$

$$\sin \varphi = 1 \quad (\varphi = 90^{\circ}) \quad k$$
最大

$$k = \frac{2 \times 10^{-6} \times (\sin 30^{\circ} + 1)}{5900 \times 10^{-10}} \approx 5$$

上侧最大: $k = 5$
 $k = \frac{(a+b)(\sin \theta - \sin \varphi)}{\lambda} = -1.69$
下侧最大: $k = -1$

最多能看到k=5,4,3,2,1,0,-1级条纹.

三. 光栅光谱

$$d\sin\theta = \pm k\lambda$$

$$k = 0 \rightarrow \theta = 0, 与\lambda \mathbb{E},$$

$$k \neq 0, \lambda \downarrow \rightarrow \theta \downarrow, \lambda \uparrow \rightarrow \theta \uparrow (同 - \mathcal{G})$$

复色光照射光栅时会将不同波长光衍射条纹分 开——光栅光谱

棱镜光谱

四. 光栅的分辨本领

 $\lambda + \Delta \lambda$ 的k级主极大刚好 与λ的最近邻极小相重合 称为能分辨(瑞利准则)

$$R = \frac{\lambda}{\Delta \lambda} = kN, \quad k \neq 0$$

$$\therefore \quad \uparrow \atop \uparrow \atop k$$
 $\rightarrow \uparrow \atop R$

条纹角宽度

$$d\sin\theta = \frac{k'}{N}\lambda$$

$$d\cos\theta\Delta\theta = \frac{\Delta k'}{N}\lambda$$

$$\Delta k' = 2$$

$$\Rightarrow \Delta \theta_k = \frac{2\lambda}{Nd\cos\theta}$$

光栅的分辨本领: $R = \frac{\lambda}{\Delta \lambda} = kN, k \neq 0$

例如,对波长靠得很近的Na双线:

$$\lambda_1 = \lambda = 589 \text{ nm}$$

$$\lambda_2 = \lambda + \Delta \lambda = 589.6 \text{nm}$$

$$R = \frac{\lambda}{\Delta \lambda} = \frac{589}{0.6} \approx 982 = Nk$$

若
$$k=2$$
,则 $N=491$ } 都可分辨出Na双线 若 $k=3$,则 $N=327$

[例]设计一光栅,要求(1)600nm波长的第二级谱线衍射角不大于30°;(2)色散尽可能大;(3)第三级谱线缺级;

(4) 在600nm波长的第二级谱线上能分辨0.02nm的波长差。 又: 当选定光栅参数后,在透镜焦平面上能看到600nm波长的几条谱线?

解:
$$(a+b)\sin\theta = k\lambda$$
 以 $k=2$ $\theta = 30^{\circ}$ 代入 由条件 (1) $a+b \ge \frac{2\lambda}{\sin 30^{\circ}} = 24 \times 10^{-4} \,\mathrm{mm}$

由条件(2),色散大即 Δx_k 大,或 $\Delta \theta_k$ 大

$$\theta_k = \frac{k\lambda}{a+b} \qquad \therefore \Delta\theta_k = \frac{k}{a+b} (\lambda_2 - \lambda_1)$$

 $\Delta\theta_k$ 尽可能大即a+b 尽可能小

$$\therefore a + b = 24 \times 10^{-4} \,\mathrm{mm}$$

[例]设计一光栅,要求(1)600nm波长的第二级谱线衍射角不大于30°;(2)色散尽可能大;(3)第三级谱线缺级;(4)在600nm波长的第二级谱线上能分辨0.02nm的波长差。又:当选定光栅参数后,在透镜焦平面上能看到600nm波长的几条谱线?

由条件 (3)
$$\begin{cases} (a+b)\sin\theta = 3\lambda & \xrightarrow{a+b} = 3 \\ a\sin\theta = \lambda & b = 16 \times 10^{-4} \text{ mm} \end{cases} = 3$$

由条件 (4)
$$R = \frac{\lambda}{\Delta\lambda} = Nk \quad \therefore N = 15000$$

$$\therefore a + b = 24 \times 10^{-4} \,\mathrm{mm}$$

[例]设计一光栅,要求(1)600nm波长的第二级谱线衍射角不大于30°;(2)色散尽可能大;(3)第三级谱线缺级;(4)在600nm波长的第二级谱线上能分辨0.02nm的波长差。又: 当选定光栅参数后,在透镜焦平面上能看到600nm波长的几条谱线?

由条件 (3)
$$\begin{cases} (a+b)\sin\theta = 3\lambda \longrightarrow \frac{a+b}{a} = 3 \\ \therefore a = 8 \times 10^{-4} \text{ mm} \qquad b = 16 \times 10^{-4} \text{ mm} \end{cases} = 3$$

由条件 (4)
$$R = \frac{\lambda}{\Delta \lambda} = Nk \quad \therefore N = 15000$$

可以看到0, ±1, ±2级共5条谱线。(±3缺级)

§ 20-9 夫琅和费圆孔衍射

$$D \cdot \sin \theta_1 \approx 1.22\lambda$$
 $\lambda \downarrow$ 爱里斑变小

$D \cdot \sin \theta_1 \approx 1.22\lambda$

(不要求推导)

(对比单缝,有 $a \cdot \sin \theta_1 = \lambda$)

光学仪器的分辨本领

(经透镜)

物点 ⇒ 像点

几何光学: 物(物点集合) ⇒ 像(像点集合)

(经透镜)

波动光学:

物点 ⇒ 像斑 物(物点集合) ⇒像(像斑集合)

由于衍射的存在,一个物点的像不再是一个点,而是一个衍射斑(主要是爱里斑)。

衍射限制了透镜的分辨能力。

一个实例 你有过这样的经验吗?

◆望远镜:

$$R \equiv \frac{1}{\theta_1} = \frac{D}{1.22\lambda}$$

波长不可选择 但可增大**D**

(射电望远镜的大天线)

2016年9月25日,有着"超级天眼"之称的500米口径球面射电望远镜在贵州平塘的喀斯特洼坑中落成启用,吸引着世界目光。

原世界上最大的射电望远镜

建在美国波多黎各岛的 Arecibo

直径305m,能探测射到整个地球表面仅10⁻¹²W的功率,也可探测引力波。

最激动人心的观测成果是1974年泰勒和赫尔斯 发现第一个射电脉冲双星系统PSR191316。这是 一个双中子星系统,轨道周期为7.75小时。根据 广义相对论理论推算,这个双星系统的引力辐 射十分强。引力辐射将导致双星系统轨道周期 的明显变化。泰勒教授利用Arecibo射电望远镜 进行上千次的观测,获得这颗脉冲星20年的轨 道周期值, 观测结果与广义相对论计算结果符 合得很好,终于证实了引力波的存在。泰勒和 赫尔斯一起荣获1993年诺贝尔物理学奖,这也 成为Arecibo射电望远镜的骄傲。

10/01日 新星四星 机线的增生器

◆显微镜:

$$R \equiv \frac{1}{\theta_1} = \frac{D}{1.22\lambda}$$

D不会很大,可 $\downarrow \lambda \rightarrow \uparrow R$

(紫光显微镜)

(电子显微镜)

电子的波长很小: 0.1 Å~ 1Å, ... 分辨本领 R 很大。

例题、在通常亮度下,人眼的瞳孔直径为3mm,问:人眼最小分辨角为多大?(λ=5500Å)如果窗纱上两根细丝之间的距离为2.0mm,问:人在多远恰能分辨。

解:

$$\delta\theta = 1.22 \frac{\lambda}{d}$$

$$= 1.22 \times \frac{5500 \times 10^{-10}}{3 \times 10^{-3}} = 2.2 \times 10^{-4} \text{ rad}(1')$$

$$\delta\theta = \frac{s}{l}$$

$$s = 2.0 \times 10^{-3}$$

$$l = \frac{s}{\delta\theta} = \frac{2.0 \times 10^{-3}}{2.2 \times 10^{-4}} = 9.1$$
m

§ 20-10 X射线的衍射

伦琴 (W. K. Rontgen, 1845-1923)

- ·德国实验物理学家,1895年发现了X射线,并将其公布于世。历史上第一张X射线照片,就是伦琴拍摄他夫人的手的照片。
- •由于X射线的发现具有重大的理论意义和实用价值,伦琴于1901年获得首届诺贝尔物理学奖金。

-. X 射线的产生

 $d\sin\theta = k\lambda$

X射线λ: 0.001-0.01nm

 λ 太小 $\to \theta$ 太小 \to 主极大太密

劳厄 (Laue) 实验 (1912)

考 厄 M. von Laue (1879~1960)

1914年获诺贝尔物理 学奖

劳厄 (Laue) 实验 (1912)

晶体结构中的三维空间点阵

证实了/射线的波动性!

二. X射线在晶体上的衍射(布喇格公式)

1912年, 英国物理学 家布喇格父 子提出 X射 线在晶体上 衍射的一种 简明的理论 解释

亨·布 喇 格 W.H. Bragg (1862~1942)

劳・布 喇 格 W. L. Bragg (1890~1971)

1915年布喇格父子获诺贝尔物理学奖,小布喇格当年25岁,是历届诺贝尔奖最年轻的得主。

二. X射线在晶体上的衍射(布喇格公式)

d: 晶面间距

Φ: 掠射角

- 1. 衍射中心 每个原子都是散射子波的子波源
- 2. 点间散射光的干涉

3. 面间散射光的干涉 $\delta = \overline{AC} + \overline{CB} = 2d \cdot \sin \Phi$

散射光干涉加强条件:

$$2d \cdot \sin \Phi = k\lambda \quad (k = 1, 2, \cdots)$$
 一 布 喇格公式

三. 应用

・ 已知 Φ 、 λ 可测d — λ 射线晶体结构分析。

DNA晶体的X射线衍射图

三. 应用

· 已知Φ、d可测λ — X射线光谱分析。

掠射式X射线望远镜

· 不同波段的旋涡星系M81

四、X射线衍射与普通光栅衍射的区别

AX 射线衍射有一系列的布喇格条件。 晶体内有许多晶面族,入射方向和 λ 一定时, 对第i个晶面族有: $2d_i \cdot \sin \Phi_i = k_i \lambda$, $i = 1,2,3 \ldots$ 一维光栅只有一个干涉加强条件:

 $d\sin\theta = \pm k\lambda$ —光栅方程。

- ▲晶体在 d_i 、 Φ_i 、 λ 都确定时,不一定能满足布喇格公式 $2d_i \cdot \sin \Phi_i = k_i \lambda$ 的关系。
- 一维光栅在 λ 和入射方向角i确定后,总能有衍射角 θ 满足光栅方程。

例:图中所示的入射X射线束不是单色的,而是含有由0.095 $\sim 0.130 \text{ nm} (1 \text{ nm} = 10^{-9} \text{ m})$ 这一波段中的各种波长,晶面间距 d = 0.275 nm。问对图示的晶面,波段中哪些波长能产生强反射?

解: 布喇格衍射公式 $2d \sin \theta = k\lambda$ $\lambda = \frac{2d \sin \theta}{l} = \frac{0.476}{l}$ nm

所以只有当k = 5和4,即波长等于0.095 nm 和1.19 nm的X射线能产生强反射

衍射小结

- 1、一个原理 惠更斯——菲涅耳原理
- 2、两种方法 半波带法 振幅矢量法
- 3、三类问题 单缝、圆孔衍射——单纯衍射 光栅——衍射和干涉的综合 X光衍射——空间光栅

4、四点结论

(1) 无论孔、缝,衍射都出现光的扩展

$$a >> \lambda$$
, $D >> \lambda$ → 几何光学

(2) 任何光学仪器都存在分辨本领的问题

透镜:
$$R = \frac{1}{\delta \theta} = \frac{D}{1.22\lambda}$$
 (角)

光栅:
$$R = \frac{\lambda}{\delta \lambda} = Nk$$
 (色)

(3) 光栅方程

$$d(\sin\theta - \sin i) = \pm k\lambda \quad k = 0, 1, 2, \cdots$$

i: 入射角 θ : 衍射角

(4) 布喇格公式

$$2d \cdot \sin \Phi = k\lambda$$
 $k = 1, 2, \cdots$

$$k=1, 2, \cdots$$

 Φ : 掠射角

[例]波长400 nm到 750 nm的白光垂直照射到某光栅上,在 离光栅 0.50 m 处的光屏上测得第一级彩带离中央明条纹中心最近的距离为 4.0 cm,求:

- (1) 第一级彩带的宽度;
- (2) 第三级光谱中哪些波长的光与第二级光谱的光重合。

解: (1) 波长短的在里面 (4)

$$(a+b)\sin\theta_1 = 4000 \text{ A}$$

$$D = 0.5$$

$$5 \times 10^{-6} \text{ (m)}$$

$$(a+b) = 4000 \frac{D}{x} = 4 \times 10^{-7} \frac{0.5}{4 \times 10^{-2}} = 5 \times 10^{-6} \text{ (m)}$$

$$(a+b)\sin\theta_2 = 7500 \text{ A} \Longrightarrow (a+b)\frac{x'}{D} = 7500 \text{ A}$$

$$x' = \frac{7500D}{(a+b)} = \frac{7.5 \times 10^{-7} \times 0.5}{5 \times 10^{-6}} = 7.5(\text{cm})$$

解: (1) 波长短的在里面
$$(a+b)\sin\theta_1 = 4000 \text{ A}$$

 θ_1 $(a+b) = 4000 \frac{D}{x} = 4 \times 10^{-7} \frac{0.5}{4 \times 10^{-2}} = 5 \times 10^{-6} \text{ (m)}$

4000Å 5000Å

(2)
$$(a+b)\sin\theta = 2\lambda_2$$
 $\Rightarrow 2\lambda_2 = 3\lambda_3$
 $(a+b)\sin\theta = 3\lambda_3$ $\Rightarrow \lambda_2 = 6000 \text{ Å}$
 $\lambda_3 = 4000 \text{ Å}$ $\Rightarrow \lambda_2 = 6000 \text{ Å}$
 $\lambda_2' = 7500 \text{ Å}$ $\Rightarrow \lambda_3' = 5000 \text{ Å}$

第三级 4000Å~5000Å与第二级的6000Å~7500Å重合

