EFFICENCY RECOMMENDATIONS (Formula based)

1. Optimize Return Temperature (RT)

Action: Continuously monitor and adjust the return temperature to maintain optimal levels. A lower return temperature can alleviate the load on the chiller system.

Rationale: Elevated return temperatures can result in increased total kilowatt consumption (kW_Tot), negatively impacting system efficiency. It is essential to establish a target return temperature that maximizes operational efficiency and minimizes energy expenditure.

2. Adjust Chiller Load (CH Load)

Action: Ensure that the chiller operates in close alignment with its design load. If the chiller load consistently remains low, consider reducing the number of operating chillers.

Methodology: To optimize flow rates (GPM), it is crucial to select the appropriate chiller type and accurately match the chiller capacity to the cooling load requirements.

Formula:

CH Load =GPMxDelta T x 500

This formula allows for precise calculations to ensure optimal chiller performance and efficiency.

3. Monitor Power Consumption (kW Tot)

Action: Conduct a thorough analysis of total power consumption (kW_Tot) in relation to the chiller load (CH Load). If kW_Tot is disproportionately high compared to the load, investigate potential inefficiencies within the system.

Investigation: In cases where discrepancies are identified, determine which specific component is responsible for the excess power consumption.

Formula:

```
kW Tot=kW RT+kW CHH+kW CHP+kW CHS+kW CDS+kW CT
```

Utilizing this formula will facilitate a comprehensive assessment of power consumption across the system, enabling targeted improvements in energy efficiency.

4. Optimize Flow Rate (GPM)

 Action: Ensure that the flow rate is optimized for the system. Too high or too low flow rates can lead to inefficiencies. $_{\odot}$ How: Adjust GPM to achieve the desired ΔT. For example, if ΔT is low, consider increasing GPM to improve heat transfer.

5. Improve Temperature Differentials (DeltaCHW)

Action: Strive to achieve a higher temperature differential (ΔT) across the chiller by optimizing flow rates and ensuring optimal performance of the heat exchangers.

Rationale: An increased ΔT can result in reduced energy consumption, thereby enhancing overall system efficiency and performance.

6. Analyze Component Percentages

- Action: Review the percentages of each component's power consumption (e.g., Percent_CH, Percent_CHP). If one component is consuming a disproportionate amount of energy, investigate its operation.
- Reason: Higher the percentage for each of these components, more power is used, hence reducing the efficiency.

Formula: Percentages of Chiller Components:

Percent_CH=kW_CHHkW_Tot×100*Precent_CH=kW_TotkW_CHH*×100 Percent_CHP=kW_CHPkW_Tot×100*Precent_CHP=kW_TotkW_CHP* ×100

Percent_CDS=kW_CDSkW_Tot×100*Precent_CDS=kW_TotkW_CDS* ×100