Thermodynamics of Ferroelectrics

Geoffrey Xiao

Universe tends towards lower energy

https://www.pathwayz.org/Tree/Plain/ENERGY+CONSERVATION+%5BCALCULATIONS%5D

Universe tends towards lower energy

http://nobel.scas.bcit.ca/wiki/index.php/Bond_dipole_moment

Landau Free Energy

•
$$F = a_0 + a_1 \Psi^2 + a_2 \Psi^4 + \cdots$$

- Ψ = Order Parameter
 - Characterize the transition
 - Ψ = 0 above the transition temperature
 - Polynomial order depends on symmetry

1962 Nobel Prize in Physics

https://en.wikipedia.org/wiki/Lev Landau

Liquid Crystals

Ferromagnet

- Permanent magnet
- $\Psi = \|\vec{M}\|$
- \overrightarrow{M} = magnetization vector

Ferromagnet

$$\Psi \neq 0$$

$$\Psi = 0$$

Ferroelectric

- Permanent electric dipole
- $\bullet \ \Psi = \| \vec{P} \|$
- \vec{P} = Polarization vector

Ferroelectric

Landau Free Energy

- $F = a_0 + a_1 \Psi^2 + a_2 \Psi^4 + \cdots$
- Energy minimization!
 - Above $T_C \rightarrow \Psi = 0$
 - Below T_C → Symmetry breaking

Symmetry

 Degeneracy of stable states when T < T_C

Symmetry breaking

Liquid Crystals

Absent an external field

Ferroelectric

- Symmetry breaking = system adopts one of the symmetric states
- $F = a_0 + a_1 \Psi^2 + a_2 \Psi^4 + \cdots$
- Symmetry
 Why free energy expansion only has even polynomials

Electrical Energy

Long Range Electrical Energy

- Each dipole produces a field
- What is the total electrical energy?

https://en.wikipedia.org/wiki/Electric_dipole_moment http://energyeducation.ca/encyclopedia/Electric_dipole

Elastic Energy

Elastic Energy

• Inclusion changes shape? What is the lattice mismatch and the elastic energy?

Interfacial Energy

Homogeneity preferred

Putting it all together... Phase Field Modeling

$$F = \int f_l + f_e + f_g + f_{elec} dV, \frac{\partial P_i}{\partial t} = \frac{\delta F}{\delta P_i}$$

$$f_l = \frac{1}{2}a_{ij}P_i^2P_j^2 + \frac{1}{4}a_{ijkl}P_iP_jP_kP_l + \cdots \quad \text{Landau Energy}$$

$$f_e = \frac{1}{2}C_{ijkl}(\varepsilon_{ij} - \varepsilon_{ij}^0)(\varepsilon_{kl} - \varepsilon_{kl}^0)$$

$$f_g = \frac{1}{2} G_{ijkl} \frac{\partial P_i}{\partial x_i} \frac{\partial P_k}{\partial x_l}$$

$$f_{elec} = -\frac{1}{2}E_i^d P_i - E_i^{app} P_i$$

Elastic Energy

Interfacial Energy

Electrical Energy

Equilibrium Conditions

$$\sum_{i} \frac{\partial \sigma_{ij}}{\partial x_j} = 0$$

$$\sum_{i,j} \varepsilon_0 \kappa_{ij} \frac{\partial E_j^d}{\partial x_i} = \sum_i -\frac{\partial P_i}{\partial x_i}$$

- Implemented in C and MATLAB
- 3-dimensional simulation of ferroelectric materials

Thin Film Engineering

• Strain engineered BaTiO₃

Thin Film Engineering

• Strain engineered thin films

Polar Vortices

- Superlattice
- Alternating layers of material

Polar Vortices

- Phase field simulation vs experimental results
- Superlattice periodicity + energy considerations lead to polar vortex formation

Positive Capacitance

Apply A More Negative E Field

Negative Capacitance

Stabilization of Negative Capacitance

Questions!?

Ferroelectric

- Permanent electric dipole
- $\bullet \ \Psi = \| \vec{P} \|$
- \vec{P} = Polarization vector

