Table of Contents

Métodos de muestreo	1
Muestreo simple	
Estimación basada en el muestreo	
Muestreo hacia adelante para consultas	
Resumen	
Cadena de markov monte carlo	4
Cadena de Markov	4
Distribución estacionaria (Probabilidad de estado estable)	4
Cadenas de Markov regulares	5
Usando una cadena de markov	5
Mezcla	5
Algoritmo P1	6
Algoritmo P2	7
Resumen	7
Muestreo de gibbs	7
Cadena de gibbs	7
Costo computacional	8
Gibbs cadena y regularidad	9
Resumen	9
Algoritmo de Hastings Metropolis	10
Cadena de Hastings Metropolis	10
Probabilidad de aceptación	11
Elección de Q	11
MCMC para emparejamiento	11
Resumen	13
Inferencia en modelos de plantilla	13
Seguimiento del estado de creencias	14
Resumen	14
Decrees total	4 4

Semana 4

Métodos de muestreo

Muestreo simple

Estimación basada en el muestreo

 $D = \{x[1], \dots, x[M]\} \text{ muestras identicamente distribuidas de P}$ si P(X=1) = p, la estipación para p es

$$T_{\mathcal{D}} = \frac{1}{M} \sum_{m=1}^{M} x[m]$$

Más generalmente, para cualquier distribución P, función F:

$$\mathbf{E}_P[f] \approx \frac{1}{M} \sum_{m=1}^{M} f(x[m])$$

Muestreo de distribución discreta.

es transformada inverza para distribuciónes discetas

En teoría de la probabilidad, la **desigualdad de Hoeffding** proporciona una cota superior a la probabilidad de que la suma de variables aleatorias se desvíe una cierta cantidad de su valor esperado

En la teoría de probabilidad, las **Cotas de Chernoff** fueron nombradas luego de su presentación por Herman Chernoff y, gracias a Herman Rubin,1 se dieron cotas exponencialmente decrecientes para las distribuciones de sumas de variables aleatorias independientes.

Hoeffding Bound

Para un limte aditivo ε en un error con probabilidad $> 1 - \delta$

$$M \ge \frac{\ln(2/\delta)}{2\epsilon^2}$$

Chernoff Bound:

Para un limte multiplicativo ε en un error con probabilidad $> 1 - \delta$

$$M \ge 3 \frac{\ln(2/\delta)}{p\epsilon^2}$$

Forward sampling from a BN

Muestreo hacia adelante para consultas

- Meta: Estimar P (y = y)
- Generar muestras de BN
- Compute fracción donde Y = y

Consultas con evidencia

- Meta: Estime P $(Y = y \mid E = e)$
- Algoritmo de muestreo de rechazo
- Generar muestras de BN
- tirar todos los que E ≠ e
- Compute fracción donde Y = y

Fracción esperada de muestras mantenidas ~ P (e)

muestras necesarias filas exponencialmente con # de variables observadas

Resumen

- · Generar muestras de un BN es fácil
- (ϵ, δ) existen, pero la utilidad es limitada:
- límites aditivos: inútiles para eventos de baja probabilidad
- límites multiplicativos: # de muestras crecen como $\frac{1}{p(y)}$
- Con evidencia, # de muestras requeridas crece exponencialmente con # de variables observadas
- Muestreo hacia adelante generalmente inviable para MNS

Cadena de markov monte carlo

Cadena de Markov

Una cadena de Markov define un modelo de transición probabilístico $T(x \to x')$ sobre todo los estados x

• para todo x
$$\sum_{x'} T(x \rightarrow x') = 1$$

	-2	-1	0	+1	+2
P (0)	0	0	1	0	0
P ⁽¹⁾	0	25	.5	25_	0
P(2)	25 ² = .0625	2×(.5×.25) = .25	5 ² +2×.25 ² = .375	2×(.5×.25) = .25	.25 ² = .0625

Danhne Kal

Distribución estacionaria (Probabilidad de estado estable)

$$P^{(t)}(x') \approx P^{(t+1)}(x') = \sum_{x} P^{(t)}(x)T(x \to x')$$

$$\pi(x') = \sum_{x} \pi(x)T(x \to x')$$
0.75
$$\pi(x^1) = 0.25\pi(x^1) + 0.5\pi(x^3) \qquad \pi(x^1) = 0.2$$

$$\pi(x^2) = 0.7\pi(x^2) + 0.5\pi(x^3) \qquad \pi(x^2) = 0.5$$

$$\pi(x^3) = 0.75\pi(x^1) + 0.3\pi(x^2) \qquad \pi(x^3) = 0.3$$

$$\pi(x^1) + \pi(x^2) + \pi(x^3) = 1$$

Daphne Koller

Cadenas de Markov regulares

Una cadena de Markov es regular si existe k de tal manera que, para cada x, x ', la probabilidad de pasar de x a x' en exactamente k pasos es> 0

Teorema: una cadena regular de Markov converge a una distribución estacionaria única, independientemente del estado inicial

Condiciones suficientes para la regularidad:

- · Cada dos estados están conectados.
- · Para cada estado, hay una auto-transición.

Usando una cadena de markov

meta: calcular $P(x \in S)$

• pero P es demasiado difícil de muestrear directamente

Construir una cadena de Markov T cuya distribución estacionaria única es P

Muestrear $X^{(0)}$ de algun $P^{(0)}$

Para T = 0, 1, 2, ...

• Generar $x^{(x+1)}$ de $T(x^t \rightarrow x')$

Solo queremos usar muestras que se muestrean de una distribución similar a P original

En iteraciones tempranas, $P^{(t)}$ suele estar lejos de P

Comience a recolectar muestras solo después de que la cadena se haya ejecutado lo suficiente para "mezclar"

Mezcla

¿Cómo sabes si una cadena ha mezclado o no?

- En general, nunca puedes "probar" 2ue una cadena ha mezclado
- Pero en muchos casos pueden mostrar que no ha mezclado

¿Cómo sabes que una cadena no ha mezclado?

- Compare estadísticas de cadena en diferentes ventanas dentro de una sola corrida de la cadena
- y a través de diferentes corridas que se inicializaron de manera diferente

Cada punto es una estadística (por ejemplo, p ($x \in s$))

- La posición X es su valor estimado de la cadena 1
- La posición Y es su valor estimado de la cadena 2

Usando las muestras

Una vez que la cadena se mezcla, todas las muestras $P^{(t)}$ son de la distribución estacionaria π

• asi que podemos (y deberíamos) usar todos los x (t) para $t > t_{mix}$

Sin embargo, las muestras cercanas están correlacionadas!

• - Entonces, no debemos sobreestimar la calidad de nuestra estimación simplemente contando muestras

Cuanto más rápido se mezcla una cadena, menos correlacionada (más útiles) son las muestras

Algoritmo P1

Para c=1,...,C

• Muestrea $x^{(c,0)}$ de $P^{(0)}$

Repite hasta el muestreo

• Para c=1,...,C

• • • Generar $x^{(c,t+1)}$ de $T(x^{(c,t)} \rightarrow x')$

• • • Compare estadísticas de la ventana en diferentes cadenas para determinar la mezcla.

• • • t := t + 1

Algoritmo P2

Repita hasta tener suficientes muestras

• $D := \emptyset$

• Para c=1,...,C

• • • Generar $x^{(c,t+1)}$ de $T(x^{(c,t)} \rightarrow x')$

• • • $D := D \cup \{x^{(c,t+1)}\}$

• • t := t + 1

Sea $D = \{x[1], \dots, x[M]\}$, estimar

$$\mathbf{E}_P[f] \approx \frac{1}{M} \sum_{m=1}^{M} f(x[m])$$

Resumen

Pros:

· propósito muy general

• a menudo fácil de implementar

• buenas garantías teóricas como t $\rightarrow \infty$

Contras:

Muchos parámetros sintonizables / opciones de diseño.

• Puede ser bastante lento para converger

· Difícil decir si está funcionando.

Muestreo de gibbs

Cadena de gibbs

Objetivo de distribución $P_{\Phi}(X_1, \dots, X_n)$

Espacio de estado de la cadena de Markov: asignaciones completas x a $X = \{X_1, ..., X_n\}$

7

Modelo de transición dado el estado inicial x:

Para i=1,...,n

• muestrear $x_i \sim P_{\Phi}(X_i|x_{-i})$

Establecer x'=x

Costo computacional

Para i=1,...,n

• muestrear $x_i \sim P_{\Phi}(X_i|x_{-i})$

$$P_{\Phi}(X_i \mid \boldsymbol{x}_{-i}) = \frac{P_{\Phi}(X_i, \boldsymbol{x}_{-i})}{P_{\Phi}(\boldsymbol{x}_{-i})} = \frac{\tilde{P}_{\Phi}(X_i, \boldsymbol{x}_{-i})}{\tilde{P}_{\Phi}(\boldsymbol{x}_{-i})}$$

tomamos la regla de bayes

$$P(A_i|B) = \frac{P(B \cap A_i)}{P(B)} = \frac{P(B \cap A_i)}{\displaystyle\sum_{k=1}^{n} P(B|A_k)P(A_k)}$$

$$\sum_{i:X_i \in Scone[C]} \sum_{i:X_i \in Scone[C]} \sum_{i:X_$$

$$\propto \prod_{j:X_i \in Scope[C_j]} \phi_j(X_i, x_{j,-i})$$

Gibbs cadena y regularidad

- Si todos los factores son positivos, la cadena Gibbs es regular
- Sin embargo, la mezcla puede ser muy lenta.

Resumen

Convierte el problema difícil de la inferencia a una secuencia de pasos de muestreo "fáciles"

- Pros:
 - Probablemente la cadena de Markov más simple para PGMS.
 - Computacionalmente eficiente para probar.
- · Contras:

- a menudo lento para mezclar, especialmente Cuando las probabilidades están alcanzadas en su punto máximo
- Solo se aplica si podemos probar el producto de los factores.

Algoritmo de Hastings Metropolis

Cadenas reversibles

Una cadena es reversible si $\pi(x)T(x \to x') = \pi(x')T(x' \to x)$ (balance detallado)

Teorema: si el balance detallado se mantiene, y T es regular, entonces T tiene una distribución estacionaria única π

$$\sum_{x} \pi(x)T(x \to x') = \sum_{x} \pi(x')T(x' \to x)$$
$$\sum_{x} \pi(x)T(x \to x') = \pi(x')$$

y esto es la definicion de la distribución estacionaria

Cadena de Hastings Metropolis

distribución propuesta $Q(x \rightarrow x')$

Probabilidad de aceptación $A(x \rightarrow x')$

- En cada estado x, muestrear x' de $Q(x \rightarrow x')$
- Aceptar la propuesta con probabilidad $A(x \to x')$
 - Si se aceptan propuestas, muévete a x'
 - De lo contrario, quédate en x

Entonces tenemos lo siguiente

$$T(x \to x') = Q(x \to x')A(x \to x') \text{ si } x \neq x'$$

$$T(x \to x') = Q(x \to x') + \sum_{x' \neq x} Q(x \to x')(1 - A(x \to x')) \text{ si } x = x'$$

Probabilidad de aceptación

$$\pi(x)T(x \to x') = \pi(x')T(x' \to x)$$

$$\pi(x)Q(x \to x')A(x \to x') = \pi(x')Q(x' \to x)A(x' \to x)$$

$$\frac{A(x \to x')}{A(x' \to x)} = \frac{\pi(x')Q(x' \to x)}{\pi(x)Q(x \to x')} = p < 1$$

$$A(x \to x') = \min \left[1, \frac{\pi(x')Q(x' \to x)}{\pi(x)Q(x \to x')} \right]$$

Elección de Q

$$A(x \to x') = \min \left[1, \frac{\pi(x')Q(x' \to x)}{\pi(x)Q(x \to x')} \right]$$

Q debe ser reversible:

•
$$Q(x \rightarrow x') > 0 \Rightarrow Q(x' \rightarrow x) > 0$$

Fuerzas opositoras

- Q debería intentar extenderse, para mejorar la mezcla
- · Pero entonces la probabilidad de aceptación a menudo baja

MCMC para emparejamiento

 $X_i = i$ si i coincide con i

$$P(X_1 = \nu_1, \dots, X_4 = \nu_4) \propto \begin{cases} \exp\left(-\sum \operatorname{dist}(i, \nu_i)\right) & \text{Si cada } X_i \text{ tiene un valor diferente} \\ 0 & \text{cuualquier otro caso} \end{cases}$$

Ruta de aumento

- 1) Elige aleatoriamente una variable X_i
- 2) muestrea X_i , fingiendo que todos los valores están disponibles
- 3) Elija la variable cuya asignación fue tomada (conflicto) y volver al paso 2
- Cuando el paso 2 no crea ningún conflicto, modifique la asignación a la ruta de aumento de flip

Resumen

MH es un marco general para construir cadenas de Markov con una distribución estacionaria particular

- Requiere una distribución de propuestas.
- Aceptación calculada a través de balance detallado.
- Flexibilidad tremenda en el diseño de distribuciones de propuestas que exploran el espacio rápidamente.
 - Pero la distribución de la propuesta hace una gran diferencia.
 - y encontrar uno bueno no siempre es fácil

Inferencia en modelos de plantilla

Puede "desenrollar" DBN para una trayectoria dada y ejecutar inferencia sobre la red de "tierra"

Lo mismo aplica para los modelos placa

Seguimiento del estado de creencias

$$\sigma^{(t)}(S^{(t)}) = P(S^{(t)}|o^{(1:t)})$$

$$\begin{split} \sigma^{(t+1)}(S^{(t+1)}) &= P(S^{(t+1)} \big| o^{(1:t)}) \\ &= \sum_{S^{(t)}} P\big(S^{(t+1)} \big| S^{(t)}, o^{^{(1:t)}} \big) P(S^{(t)} \big| o^{(1:t)}) \\ &= \sum_{S^{(t)}} P\big(S^{(t+1)} \big| S^{(t)}, o^{^{(1:t)}} \big) \sigma^{(t)}(S^{(t)}) \end{split}$$

$$\begin{split} \sigma^{(t+1)}(S^{(t+1)}) &= P(S^{(t+1)} \big| o^{(1:t)}, o^{(t+1)}) \\ &= \frac{P(o^{(t+1)} \big| S^{(t+1)}, o^{(1:t)}) P(S^{(t+1)} \big| o^{(1:t)})}{P(o^{(t+1)} \big|, o^{(1:t)})} \\ &= \frac{P(o^{(t+1)} \big| S^{(t+1)}) \sigma^{(t+1)}(S^{(t+1)})}{P(o^{(t+1)} \big|, o^{(1:t)})} \end{split}$$

Resumen

- La inferencia en la plantilla y los modelos temporales se pueden realizar desenrollando la red de tierra y utilizando métodos estándar.
- Los modelos temporales también plantean nuevas tareas de inferencia, como seguimiento en tiempo real, que requieren que adaptemos nuestros métodos.
- Además, la red de tierra a menudo es grande y densamente conectada, lo que requiere un diseño y uso cuidadoso del algoritmo de métodos aproximados

Resumen total

Map vs marginals

marginals:

- · menos frágil
- · confianza en las respuestas
- · apoya la toma de decisiones

• los errores a menudo son atenuados (disminuidos), obtienes respuestas más solidas en inferencia aproximada

Map:

- si tratamos de calcular una asignacion conjunta coherente
- Tiene una gama de modelos más manejables (más eficientes)
- · Proporciona algunas garantias teoricas
- capacidad para medir si el algorimo esta trabajando

Algoritmos para marginales

- inferencia exacta (para problema pequeño)
- Algorimo de propagacion de creencias
- · metodo de muestreo

algoritmos para Map

- · inferencia exacta
- metodos de optimizacion
- --- aproximados o exactos
- Métodos basados en la búsqueda(incluidos meustreo)

Factores en la inferencia aproximada.

- Estructura de conectividad (muestroes tienen este problema)
- Fuerza de influencia(complican tanto los algoritmos de paso de mensaje como los de muestreo)
- · Influencias opuestas
- Múltiples picos en funcion de verosimilitud (paso de mensaje son malos aqui)

¿Y ahora que?

- . Identificar "regiones problemáticas" en la red
- . Tratar de hacer la inferencia en estas regiones más exactas
 - · Clusters más grandes en gráfico de clústeres
 - La propuesta se mueve sobre múltiples variables.
 - más grande "esclavo" en dual descomposición