CS 33

Memory Hierarchy II

What's Inside A Disk Drive?

Image courtesy of Seagate Technology

Disk Geometry

- Disks consist of platters, each with two surfaces
- Each surface consists of concentric rings called tracks
- Each track consists of sectors separated by gaps

Disk Geometry (Multiple-Platter View)

Aligned tracks form a cylinder

Disk Capacity

- Capacity: maximum number of bits that can be stored
 - capacity expressed in units of gigabytes (GB), where 1 GB = 2^{30} Bytes ≈ 10^9 Bytes
- Capacity is determined by these technology factors:
 - recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track
 - track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment
 - areal density (bits/in²): product of recording and track density
- Modern disks partition tracks into disjoint subsets called recording zones
 - each track in a zone has the same number of sectors, determined by the circumference of innermost track
 - each zone has a different number of sectors/track

Computing Disk Capacity

```
Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x (# surfaces/platter) x (# platters/disk)
```

Example:

- 512 bytes/sector
- 600 sectors/track (on average)
- 40,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

```
Capacity = 512 x 600 x 40000 x 2 x 5
= 122,280,000,000
= 113.88 GB
```

Disk Operation (Single-Platter View)

Disk Operation (Multi-Platter View)

Disk Structure: Top View of Single Platter

Surface organized into tracks

Tracks divided into sectors

Disk Access

Head in position above a track

Disk Access

Rotation is counter-clockwise

Disk Access – Read

About to read blue sector

Disk Access - Read

After BLUE read

After reading blue sector

Disk Access - Read

Red request scheduled next

Disk Access - Seek

Seek to red's track

Disk Access – Rotational Latency

Wait for red sector to rotate around

Disk Access - Read

Complete read of red

Disk Access – Service Time Components

Disk Access Time

- Average time to access some target sector approximated by :
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - time to position heads over cylinder containing target sector
 - typical Tavg seek is 3–9 ms
- Rotational latency (Tavg rotation)
 - time waiting for first bit of target sector to pass under r/w head
 - typical rotation speed R = 7200 RPM
 - Tavg rotation = $1/2 \times 1/R \times 60 \sec/1 \min$
- Transfer time (Tavg transfer)
 - time to read the bits in the target sector
 - Tavg transfer = 1/R x 1/(avg # sectors/track) x 60 secs/1 min

Disk Access Time Example

Given:

- rotational rate = 7,200 RPM
- average seek time = 9 ms
- avg # sectors/track = 600

Derived:

- Tavg rotation = $1/2 \times (60 \text{ secs}/7200 \text{ RPM}) \times 1000 \text{ ms/sec} = 4 \text{ ms}$
- Tavg transfer = 60/7200 RPM x 1/600 sects/track x 1000 ms/sec = 0.014 ms
- Taccess = 9 ms + 4 ms + 0.014 ms

Important points:

- access time dominated by seek time and rotational latency
- first bit in a sector is the most expensive, the rest are free
- SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - » disk is about 40,000 times slower than SRAM
 - » 2,500 times slower than DRAM

Quiz 1

Assuming a 5-inch diameter disk spinning at 10,000 RPM, what is the approximate speed at which the outermost track is moving?

- a) faster than a speeding bullet (i.e., supersonic)
- b) roughly the speed of a pretty fast car (250 kph/155 mph)
- c) roughly the speed of a pretty slow car (50 mph)
- d) roughly the speed of a world-class marathoner (13.1 mph)

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - the set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - maintained by hardware/firmware device called disk controller
 - converts requests for logical blocks into (surface, track, sector) triples
- Allows controller to set aside spare cylinders for each zone
 - accounts for the difference in "formatted capacity" and "maximum capacity"

I/O Bus

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Solid-State Disks (SSDs)

- Pages: 512KB to 4KB; blocks: 32 to 128 pages
- Data read/written in units of pages
- Page can be written only after its block has been erased
- A block wears out after 100,000 repeated writes

SSD Performance Characteristics

Sequential read tput	250 MB/s	Sequential write tput	170 MB/s
Random read tput	140 MB/s	Random write tput	14 MB/s
Random read access	30 us	Random write access	300 us

- Why are random writes so slow?
 - erasing a block is slow (around 1 ms)
 - modifying a page triggers a copy of all useful pages in the block
 - » find a used block (new block) and erase it
 - » write the page into the new block
 - » copy other pages from old block to the new block

SSD Tradeoffs vs Rotating Disks

Advantages

no moving parts → faster, less power, more rugged

Disadvantages

- have the potential to wear out
 - » mitigated by "wear-leveling logic" in flash translation layer
 - » e.g. Intel X25 guarantees 1 petabyte (10¹⁵ bytes) of random writes before they wear out
- in 2010, about 100 times more expensive per byte
- in 2017, about 6 times more expensive per byte

Applications

- smart phones, laptops
- Apple "Fusion" drives

Reading a File on a Rotating Disk

- Suppose the data of a file are stored on consecutive disk sectors on one track
 - this is the best possible scenario for reading data quickly
 - » single seek required
 - » single rotational delay
 - » all sectors read in a single scan

Quiz 2

We have two files on the same (rotating) disk. The first file's data resides in consecutive sectors on one track, the second in consecutive sectors on another track. It takes a total of *t* seconds to read all of the first file then all of the second file.

Now suppose the files are read concurrently, perhaps a sector of the first, then a sector of the second, then the first, then the second, etc. Compared to reading them sequentially, this will take

- a) less time
- b) about the same amount of time
- c) more time

Quiz 3

You've replaced the rotating disk on your computer with a solid-state disk. The data of the two files are again each in consecutive locations. Suppose it still takes a total of *t* seconds to read the first file then the second. Suppose it took *u* seconds to read the two files concurrently on the rotating disk. It takes *v* seconds to read them concurrently on the SSD.

- a) v < u (faster on the SSD)
- b) $v \approx u$ (about the same)
- c) v > u (slower on the SSD)

Storage Trends

SRAM

Metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB	19,200	2,900	320	256	100	75	60	320
access (ns)	300	150	35	15	3	2	1.5	200

DRAM

Metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB	8,000	880	100	30	1	0.1	0.06	130,000
access (ns)	375	200	100	70	60	50	40	9
typical size (MB)	0.064	0.256	4	16	64	2,000	8,000	125,000

Disk

Metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB access (ms)	500 87	100 75	8 28	0.30 10	0.01 8	0.005 <i>4</i>	0.0003 3	1,600,000 29
typical size (MB)	1	10	160	1,000	20,000	160,000	1,500,000	1,500,000

CPU Clock Rates

Inflection point in computer history when designers hit the "Power Wall"

				<u> </u>			
1980	1990	1995	2000	2003	2005	2010	2010:1980
8080	386	Pentium	P-III	P-4	Core 2	Core i7	
z) 1	20	150	600	3300	2000	2500	2500
1000	50	6	1.6	0.3	0.50	0.4	2500
1	1	1	1	1	2	4	4
1000	50	6	1.6	0.3	0.25	0.1	10,000
	8080 z) 1 1000 1	8080 386 z) 1 20 1000 50 1 1	8080 386 Pentium 2) 1 20 150 1000 50 6 1 1 1	8080 386 Pentium P-III z) 1 20 150 600 1000 50 6 1.6 1 1 1 1	8080 386 Pentium P-III P-4 z) 1 20 150 600 3300 1000 50 6 1.6 0.3 1 1 1 1 1 1	8080 386 Pentium P-III P-4 Core 2 z) 1 20 150 600 3300 2000 1000 50 6 1.6 0.3 0.50 1 1 1 1 1 2	8080 386 Pentium P-III P-4 Core 2 Core i7 z) 1 20 150 600 3300 2000 2500 1000 50 6 1.6 0.3 0.50 0.4 1 1 1 1 1 1 2 4

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds

Memory Hierarchies

- Some fundamental and enduring properties of hardware and software:
 - fast storage technologies cost more per byte, have less capacity, and require more power (heat!)
 - the gap between CPU and main memory speed is widening
 - well written programs tend to exhibit good locality
- These fundamental properties complement each other beautifully
- They suggest an approach for organizing memory and storage systems known as a memory hierarchy

An Example Memory Hierarchy

Putting Things Into Perspective ...

Reading from:

- ... the L1 cache is like grabbing a piece of paper from your desk (3 seconds)
- ... the L2 cache is picking up a book from a nearby shelf (14 seconds)
- main system memory is taking a 4-minute walk down the hall to talk to a friend
- ... a hard drive is like leaving the building to roam the earth for one year and three months