

Systems Security COMSM1500

Anonymous communication

The problem?

- An attacker could observe network traffic
- Even without access to message data can learn a lot
- Service accessed, usage pattern, etc...

- Internet Service Provider
- Know the domain and IP address you want to visit
- Port (i.e. can infer service), timestamps etc...
- Packet size can leak information about what you do

- Internet Service Provider
- Know the domain and IP address you want to visit
- Port (i.e. can infer service), timestamps etc...
- Packet size can leak information about what you do
- Should I care?

- Internet Service Provider
- Know the domain and IP address you want to visit
- Port (i.e. can infer service), timestamps etc...
- Packet size can leak information about what you do

- Internet Service Provider
- Know the domain and IP address you want to visit
- Port (i.e. can infer service), timestamps etc...
- Packet size can leak information about what you do

- Internet Service Provider
- Know the domain and IP address you want to visit
- Port (i.e. can infer service), timestamps etc...
- Packet size can leak information about what you do

Observation is problematic

Being observed affect your behavior

Observation is problematic Some irony...

Being observed affect your behavior

Many reason for anonymity

- Means to communicate anonymously in some circumstances
 - Law enforcement to not tip their targets
 - Minority groups
 - Journalists
 - Political militants
 - Lawyers
- There is a few technology to achieve anonymity
- Some usages are less acceptable (more on that later...)

Many reason for anonymity

Homework/exam question:
Discuss why anonymity is important
even in a democratic society

- Means to communicate anonymously in some circumstances
 - Law enforcement to not tip their targets
 - Minority groups
 - Journalists
 - Political militants
 - Lawyers
- There is a few technology to achieve anonymity
- Some usages are less acceptable (more on that later...)

Plan

- Anonymity
- Unlinkability
- Unobservability
- VPN
- TOR
- TOR Circuit
- TOR Directory Authority
- TOR vulnerabilities

Anonymity

Preventing an observer on a network to link a participant to an action

Anonymity

Preventing an observer on a network to link a participant to an action

- We saw "private browsing" in previous lecture
 - Goal: do not leave trace on your local machine
 - This is not the same
 - You may want both

Anonymity

Preventing an observer on a network to link a participant to an action

- Observer can now Alice is doing something
- Observer can now someone is buying a t-shirt
- Observer cannot say Alice in particular is buying a t-shirt
 - Absolutely or probabilistically

Other important concepts

- Unlinkability
 - Cannot link Alice to some online identity/profile
- Unobservability
 - Cannot tell Alice is on Internet
 - More realistic cannot tell Alice is using some anonymity tool
- Confidentiality != Anonymity

TOR

The Onion Router

Harder to know what Alice is doing

- Observe size

- Observe timing

"Mixminion" fix-size request + answer

Batch a number of request together

- Send all at once

- Problem?

Need to trust the relay

- Harder to know what Alice is doing
 - Observe size
 - Observe timing
- books.com "Mixminion" fix-size request + answer
- twitter.com

tshirt.com

- Batch a number of request together
- Send all at once
- Problem?
 - > Not going to be great to surf online
- Need to trust the relay

 Harder to know what Alice is doing

Need to trust the relay

Single relay is obviously a problem

If it is compromised no guarantees

- Harder to know what Alice is doing
- tshirt.com Need to trust the relay
 - Single relay is obviously a problem
 - If it is compromised no guarantees
- twitter.com Trusted VPN are fine

books.com

 e.g. universities run one, if you need to access some info from country that bans some content

Homework/potential exam question: Discuss: Why VPN do not provide good anonymity.

- Harder to know what Alice is doing
- tshirt.com Need to trust the relay
 - Single relay is obviously a problem
 - If it is compromised no guarantees
- twitter.com Trusted VPN are fine

books.com

 e.g. universities run one, if you need to access some info from country that bans some content

- Harder to know what Alice is doing
- Need to trust the relay
 - Relay 1 now Alice is doing something
 - Relay 3 now some is talking to t-shirt.com
 - Attacker need to control 1 and 3 to be really harmful
 - Hard/Costly to achieve
 - Discussed further later...

TCP to A

Careful

Messages between end relays and destination is unencrypted!

- Carry TCP packets
- Alice can establish an encrypted connection with David over TOR relays
 - e.g. HTTPS/TLS
- None of the relay can see content exchanged between Alice and David
- Relay 1 knows Alice send Data
- Relay 2 knows someone talk to David
- Things we need to be careful about?

- Alice can establish an encrypted connection with David over TOR relays
 - e.g. HTTPS/TLS
- None of the relay can see content exchanged between Alice and David
- Relay 1 knows Alice send Data
- Relay 2 knows someone talk to David
- Things we need to be careful about?
 - DNS
 - Certificate verification
 - Need to make sure it goes through TOR

Remember end-service can track you!

- End-servers can track you!
 - Cookies
 - Browser/Machine ID etc...
 - Browser used is important!
- That also include advertisements etc...
- ... or leaving information about oneself online

Remember end-service can track you!

- End-servers can track you!
 - Cookies
 - Browser/Machine ID etc...
 - Browser used is important!
- That also include advertisements etc...
- ... or leaving information about oneself online

Directory Authorities

- A few of them
- Used to download a list of known relays
- Consensus protocol to decide trusted relays

Directory Authorities

- A few of them
- Used to download a list of known relays
- Consensus protocol to decide trusted relays
- A majority of authorities needs to be trustworthy
 - Classic consensus problem

- It is very hard to deanonymize everyone all the time
- however, definitely possible to deanonymize some person sometimes

Passive attacks

- Size, timing (the more you can observe the easier)
 - > Possible if observe in relay and out relay
 - > Either own a lot of relay so you have high change to be picked
 - > ... or be able to observe the network
- Service fingerprint
 - Build pattern of size/timing of a service response (e.g. Facebook)
 - > Observe entry node and try to match
 - > You can learn which users is accessing service you care about

Homework/cool project: Look at fingerprinting as a min to deanonymization.

Passive attacks

- Size, timing (the more you can observe the easier)
 - > Possible if observe in relay and out relay
 - > Either own a lot of relay so you have high change to be picked
 - > ... or be able to observe the network
- Service fingerprint
 - > Build pattern of size/timing of a service response (e.g. Facebook)
 - > Observe entry node and try to match
 - > You can learn which users is accessing service you care about

Homework/potential exam question: Discuss: why it is a bad idea to have entry and exit nodes in the same country or owned by the same entity?

Passive attacks

- Size, timing (the more you can observe the easier)
 - > Possible if observe in relay and out relay
 - > Either own a lot of relay so you have high change to be picked
 - > ... or be able to observe the network
- Service fingerprint
 - Build pattern of size/timing of a service response (e.g. Facebook)
 - > Observe entry node and try to match
 - > You can learn which users is accessing service you care about

- Active attacks
 - Steal key for TLS encryption between relay
 - ➤ High cost attack
 - > Rotate keys regularly
 - Iterated compromise
 - > i.e. identifying relays one after the other and compromising/coercing them
 - > Change circuit regularly
 - Cross border (make coercion harder)
 - Run Relay
 - > If attackers control a large number of relays it is likely he could have both ends
 - Need to own a significant portions of relays
 - Cost barrier?

- Active attacks
 - Smear attacks
 - > Purpose is to force end-nodes to shutdown (e.g. to increase portion of end-nodes controlled by an attacker)
 - Make request to legally questionable service
 - > End-nodes need to either have policy to filter this...
 - > ... or be able to take the heat
 - > Running other type of relay is ok
 - DOS on directory authority
 - Could stop the network
 - Run/Compromise directory authority
 - List attacker-controlled relays
 - Consensus is used to decide which relays are used
 - Would need large number of directory servers controlled by the attacker
 - > ... but see above?

Homework/potential exam question: Discuss: what is the danger of running a TOR exit relay.

- Active attacks
 - Smear attacks
 - > Purpose is to force end-nodes to shutdown (e.g. to increase portion of end-nodes controlled by an attacker)
 - Make request to legally questionable service
 - > End-nodes need to either have policy to filter this...
 - > ... or be able to take the heat
 - > Running other type of relay is ok
 - DOS on directory authority
 - Could stop the network
 - Run/Compromise directory authority
 - List attacker-controlled relays
 - Consensus is used to decide which relays are used
 - > Would need large number of directory servers controlled by the attacker
 - > ... but see above?

- Active attacks
 - Block Relay
 - > Everyone can access directory authorities
 - > Filter relays IP in traffic
 - > China does this
 - Countermeasure: TOR bridge (not advertised)
 - Block bridge
 - > Look at SSL traffic
 - Connection to TOR bridge had some recognizable artefact
 - > Try to connect to it and see if it is a TOR bridge
 - > China did it again
 - > Countermeasure: some shared secret between TOR client and Bridge

Homework/potential exam question: Discuss: arm race to prevent access to TOR network.

- Active attacks
 - Block Relay
 - > Everyone can access directory authorities
 - > Filter relays IP in traffic
 - > China does this
 - Countermeasure: TOR bridge (not advertised)
 - Block bridge
 - > Look at SSL traffic
 - Connection to TOR bridge had some recognizable artefact
 - > Try to connect to it and see if it is a TOR bridge
 - > China did it again
 - > Countermeasure: some shared secret between TOR client and Bridge

Plan

- Anonymity
- Unlikability
- Unobservability
- VPN
- TOR
- TOR Circuit
- TOR Directory Authority
- TOR vulnerabilities

Conclusion

- Internet anonymity is hard
- Possible to hide from network observation
- Can identify some people sometimes
 - Everyone, all the time is much harder
- Active area of research
 - Check the papers on the github repo
- There is obviously a dark side to TOR-like software
 - Check work by Brian Neil Levine at UMass

Thank you, questions?

Office MVB 3.26

