Problem Set #1

Intro to Measure Theory Zeshun Zong

Please note that in the following document I use A - B to denote the collection of elements that are in A but not in B, i.e. $A - B = A \cap B^C$.

Exercise 1.3

 \mathcal{G}_1 is not an algebra. \mathcal{G}_1 contains every open set in \mathbb{R} . Since the complement of an open set is a closed set, which is not in \mathcal{G}_1 , hence \mathcal{G}_1 is not an algebra.

 \mathcal{G}_2 is an algebra. $\emptyset \in \mathcal{G}_2$ is trivially true, since the union of zero interval of the form should be in \mathcal{G}_2 . \mathcal{G}_2 is closed under complement, since $(a,b]^C = (-\infty,a] \cup (b,\infty) \in \mathcal{G}_2$, $(-\infty,b]^C = (b,\infty) \in \mathcal{G}_2$, and $(b,\infty)^C = (-\infty,b] \in \mathcal{G}_2$. By construction the finite union of such intervals is also in \mathcal{G}_2 .

 \mathcal{G}_3 is a σ -algebra. It can be verified that the above propertis also hold for \mathcal{G}_3 and can be extended to coutably infinite union.

Exercise 1.7

Since \mathcal{A} is a σ -algebra, by definition $\emptyset \in \mathcal{A}$. Then $\emptyset^C = X \in \mathcal{A}$. It follows that $\{\emptyset, X\} \subset \mathcal{A}$. Since $\mathcal{P}(X)$ contains every subset of X, where \mathcal{A} contains some subsets of X, it is obvious that $\mathcal{A} \subset \mathcal{P}(X)$.

Exercise 1.10

Proof. Since $\forall \alpha, \mathcal{S}_{\alpha}$ is a σ -algebra, $\emptyset \in \mathcal{S}_{\alpha}, \forall \alpha$. It follows that $\emptyset \in \bigcap_{\alpha} \mathcal{S}_{\alpha}$. If $A \in \bigcap_{\alpha} \mathcal{S}_{\alpha}$, then $A \in \mathcal{S}_{\alpha}, \forall \alpha$. This implies $A^{C} \in \mathcal{S}_{\alpha}, \forall \alpha$. It follows that $A^{C} \in \bigcap_{\alpha} \mathcal{S}_{\alpha}$. So it is closed on complement.

Suppose $A_1, A_2, ... \in \bigcap_{\alpha} S_{\alpha}$, then $A_1, A_2, ... \in S_{\alpha}, \forall \alpha$. This implies $\bigcup_{i=1}^{\infty} A_i \in S_{\alpha}, \forall \alpha$. Hence, $\bigcup_{i=1}^{\infty} A_i \in \bigcap_{\alpha} S_{\alpha}, \forall \alpha$. So it is closed on countable union.

Exercise 1.17

Proof. Let $A_1 = A, A_2 = B - A, A_3 = \emptyset, A_4 = \emptyset, \dots$ Then $\bigcup_{i=1}^{\infty} A_i = B$ and $A_i \cap A_j = \emptyset$ when $i \neq j$. Hence,

$$\mu(B) = \mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=0}^{\infty} \mu(A_i) = \mu(A_1) + \mu(A_2) + 0 + 0 + 0 + \dots \ge \mu(A_1) = \mu(A).$$

Let $B_1 = A_1, B_2 = A_2 - A_1, ..., B_n = A_n - A_{n-1}, ...$ Then it follows that $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i$ and when $i \neq j$, $B_i \cap B_j = \emptyset$. Also we have $\mu(B_i) \leq \mu(A_i)$ by the above conclusion. Hence,

$$\mu(\bigcup_{i=0}^{\infty} A_i) = \mu(\bigcup_{i=0}^{\infty} B_i) = \sum_{i=1}^{\infty} \mu(B_i) \le \sum_{i=1}^{\infty} \mu(A_i).$$

Exercise 1.18

Proof. By construction, $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0$. Suppose $A_1, A_2, ... \in \mathcal{A}$ and they are disjoint. Observe that when $i \neq j, A_i \cap B$ and $A_j \cap B$ are disjoint. Hence, by construction,

$$\lambda(\bigcup_{i=0}^{\infty} A_i) = \mu(\bigcup_{i=0}^{\infty} A_i \cap B) = \mu((A_1 \cap B) \cup (A_2 \cap B) \cup ...) = \sum_{i=0}^{\infty} \mu(A_i \cup B) = \sum_{i=0}^{\infty} \lambda(A_i).$$

Exercise 1.20

Proof. Suppose $B_1 = \emptyset$, $B_2 = A_1 - A_2$, $B_3 = A_1 - A_3$, Then $B_1 \subset B_2 \subset B_3$... By the conclusion of Theorem 1.19(1) we have $\lim_{n\to\infty} \mu(B_n) = \mu(\bigcup_{i=1}^{\infty} B_i)$. Observe that $\bigcup_{i=1}^n B_i = A_1 - \bigcap_{i=1}^n A_i = A_1 - A_n$ and $\bigcup_{i=1}^{\infty} B_i = A_1 - \bigcap_{i=1}^{\infty} A_i$. Also notice that if $M \subset N$, then N - M and M are disjoint so $\mu(N) = \mu(N - M) + \mu(M)$, and hence $\mu(N - M) = \mu(N) - \mu(M)$. Thus,

$$\mu(A_1) - \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} (\mu(A_1) - \mu(A_n))$$

$$= \lim_{n \to \infty} \mu(A_1 - A_n)$$

$$= \lim_{n \to \infty} \mu(B_n)$$

$$= \mu(\bigcup_{i=1}^{\infty} B_i)$$

$$= \mu(A_1 - \bigcap_{i=1}^{\infty} A_i)$$

$$= \mu(A_1) - \mu(\bigcap_{i=1}^{\infty} A_i).$$

So we have $\lim_{n\to\infty} \mu(A_n) = \mu(\bigcap_{i=1}^{\infty} A_i)$.

Exercise 2.10

By the definition of outer measure (countable subadditivity), we have $\mu^*(B) \leq \mu^*(B \cap E) + \mu^*(B \cap E^C)$. Combining the two inequalities yields the equality.

Exercise 2.14

Proof. By Caratheodory Extension Theory, we already know that $\sigma(\mathcal{A}) \subset \mathcal{M}$. Hence if we can show that $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{O}) = \sigma(\mathcal{A})$, then we have $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}$. We need the following claim:

Claim 1. If $A \subset B$, then $\sigma(A) \subset \sigma(B)$. Moreover, $\sigma(\sigma(A)) = \sigma(A)$.

The proof of the claim is trivial.

Observe that

$$(a,b] = \bigcap_{n=1}^{\infty} (a,b+\frac{1}{n}),$$

$$(-\infty,a] = (\bigcup_{n=n_0}^{\infty} (-n,a-\epsilon)) \cup (\bigcap_{m=0}^{\infty} (a-2\epsilon,a+\frac{1}{m})), \text{ for sufficiently large } n_0 \text{ and small } \epsilon,$$

$$(b,+\infty) = \bigcup_{n=n_0}^{\infty} (b,n), \text{ for sufficiently large } n_0.$$

Therefore, for every set in \mathcal{A} , it is a finite union of disjoint intervals of the form $(a, b], (-\infty, a]$ and $(b, +\infty)$, each of which can be in turn written as a countable union and/or intersection of open intervals. Hence, every set in \mathcal{A} can be written as a countable union and/or intersection of open intervals and therefore is in $\sigma(\mathcal{O})$. This shows that $\mathcal{A} \subset \sigma(\mathcal{O})$, which implies that $\sigma(\mathcal{A}) \subset \sigma(\sigma(\mathcal{O})) = \sigma(\mathcal{O})$.

For the other direction, pick a set $(a, b) \in \mathcal{O}$. Observe that

$$(a,b) = \bigcup_{n=n_0}^{\infty} (a, b - \frac{1}{n}],$$

when n_0 is large enough. So it can be written as a countable union of sets in \mathcal{A} , and therefore $(a,b) \in \sigma(\mathcal{A})$. This shows that $\mathcal{O} \subset \sigma(\mathcal{A})$, which implies that $\sigma(\mathcal{O}) \subset \sigma(\sigma(\mathcal{A})) = \sigma(\mathcal{A})$.

Combining the two directions above yields the equality.

Exercise 3.1

Proof. Pick A, a countable subset of \mathbb{R} . Since A is countable, its items can be enumerated: $A = \{a_1, a_2, a_3, ...\}$, where each a_i is a real number. With some small $\epsilon > 0$, we can construct a sequence of open intervals $\{(m_i, n_i)\}_{i=0}^{\infty}$, where $m_i = a_i - \frac{\epsilon}{2^i}$, and $n_i = a_i + \frac{\epsilon}{2^i}$ such that every point is covered by one corresponding interval and these intervals are disjoint. Observe that the length of the first interval is ϵ , the length of the second interval is $\frac{\epsilon}{2}$, and so on. Hence,

$$\mu(A) \le \mu(\{a_1, a_2, a_3, ...\}) = \sum_{i=0}^{\infty} \mu((a_i, b_i))$$

$$= \sum_{i=0}^{\infty} \frac{\epsilon}{2^i} = 2\epsilon.$$

Since we can make ϵ arbitrarily small, we conclude that $\mu(A) = 0$.

Exercise 3.4

Proof. Since $\{x \in X : f(x) < a\} = \{x \in X : f(x) \ge a\}^C$, by the definition of σ -algebra, (*) being in \mathcal{M} implies (3) being in \mathcal{M} , and vice versa. Hence we have shown that (*) and (3) are equivalent. In the same way, we can see that (1) and (2) are equivalent. So it suffices to show that (1) and (*) are equivalent.

Now assume (*), i.e. $\forall a, \{x \in X : f(x) < a\} \in \mathcal{M}$. Fix some $a \in \mathbb{R}$. Let $a_n = a + \frac{1}{n}$, then $\forall n \in \mathbb{N}, P_n = \{x \in X : f(x) < a + \frac{1}{n}\} \in \mathcal{M}$. Moreover, observe that $\bigcap_{n=1}^{\infty} P_n = \{x \in X : f(x) \leq a\}$. Since $\forall n, P_n \in \mathcal{M}$, by the definition of σ -algebra, $\{x \in X : f(x) \leq a\} = \bigcap_{n=1}^{\infty} P_n \in \mathcal{M}$. Hence (*) implies (1).

For the other direction, assume (1), i.e. $\forall a, \{x \in X : f(x) \leq a\} \in \mathcal{M}$. Fix some a, we see that $\forall n \in \mathbb{N}, Q_n = \{x \in X : f(x) \leq a - \frac{1}{n}\} \in \mathcal{M}$. Hence $\{x \in X : f(x) < a\} = \bigcup_{n=1}^{\infty} \{x \in X : f(x) \leq a - \frac{1}{n}\} \in \mathcal{M}$. So (1) implies (*).

Hence (1) and (*) are equivalent, and therefore so are (*), (1), (2), and (3). \Box

Exercise 3.7

Proof. 1. f + gTake F(f, g) = f + g. Result then follows from (4).

- 2. $f \cdot g$ Take F(f, g) = f * g. Result then follows from (4).
- 3. $\max(f, g)$ Observe that

$$\{x \in X : \max(f(x), g(x)) > a\} = \{x \in X : f(x) > a\} \cap \{x \in X : g(x) > a\}.$$

By measurability of f and g, the latter two sets are measurable. Hence so does the first set.

4. $\min(f, g)$ Observe that

$$\{x \in X : \min(f(x), g(x)) < a\} = \{x \in X : f(x) < a\} \cap \{x \in X : g(x) < a\}.$$

The rest is the same.

5. |f| Consider the set $\{x \in X : |f(x)| < a\}$. If $a \le 0$ we get \emptyset , which is in \mathcal{M} . Now fix some a > 0.

$$\{x \in X : |f(x)| < a\} = \{x \in X : 0 \le f(x) < a\} \cup \{x \in X : -a < f(x) \le 0\}$$

$$= (\{x \in X : f(x) < a\} - \{x \in X : f(x) < 0\})$$

$$\cup (\{x \in X : f(x) \le 0\} - \{x \in X : f(x) \le -a\}),$$

where each of the set above is in \mathcal{M} . So $\{x \in X : |f(x)| < a\} \in \mathcal{M}$.

Exercise 3.14

Proof. Here we only consider the case when $f \geq 0$ and f is bounded above by some M > 0. For general f we can apply the same decomposition as is described in the proof of the theorem.

Suppose $0 \le f(x) < M$, $\forall x \in \mathbb{R}$. Let $N_1 \in \mathbb{N}$ and $N_1 > M$, then $f(x) < N_1$, $\forall x \in \mathbb{R}$. Hence $\forall x \in \mathbb{R}, x \notin E_{\infty}^{N_1}$. Moreover, $\forall \epsilon > 0, \exists N_2 \in \mathbb{N}$ and $N_2 > N_1$ such that $\frac{1}{2^{N_2}} < \epsilon$. Now, if $n > N_2$ and $n \in \mathbb{N}$, $\forall x_0 \in \mathbb{R}, \exists i_0 \in \{1, 2, 3, ..., n2^n\}$ such that $x \in E_{i_0}^n$. This means that $f(x) \in \left[\frac{i_0-1}{2^n}, \frac{i_0}{2^n}\right]$, while $s_n(x) = \frac{i_0-1}{2^n}$. So $|f(x) - s_n(x)| < \frac{1}{2^n} < \frac{1}{2^{N_2}} < \epsilon$. Note that since we can arbitrarily choose $x_0 \in \mathbb{R}$, and the value of n does not depend on x_0 , the convergence is hence uniform.

Exercise 4.14

Proof. To show that $f \in \mathcal{L}^1(\mu, E)$, it suffices to show that $\int_E f^+ d\mu < \infty$ and $\int_E f^- d\mu < \infty$.

Since $\forall x \in E, |f(x)| < M$, we know $0 \le f^+(x) < M, \forall x \in E$. By definition,

$$\int_{E} f^{+}d\mu = \sup_{s} \{ \int_{E} sd\mu : 0 \le s(x) \le f(x), \text{s is a simple, measurable function} \}.$$

For each simple function s(x), observe that

$$\int_{E} s d\mu = \sum_{i=1}^{N} c_{i} \mu(E \cap E_{i}) \leq \sum_{i=1}^{N} M \mu(E \cap E_{i}) = M \sum_{i=1}^{N} \mu(E \cap E_{i}) = M \mu(E) < \infty.$$

So $M\mu(E)$ is an upper bound for the set $\{\int_E s d\mu : 0 \le s(x) \le f(x), s \text{ is a simple, measurable function}\}$. Since $\int_E f^+ d\mu$ is the smallest upper bound, it follows that $\int_E f^+ d\mu \le M\mu(E) < \infty$.

Similarly one can show that $\int_E f^- d\mu < \infty$. Combining the two yields the result that $f \in \mathcal{L}^1(\mu, E)$.

Exercise 4.14

Proof. Here we only consider function $f \geq 0$. General functions can be first decomposed as above and then treated in the same way. Since $f \in \mathcal{L}^1(\mu, E)$, we know that $\int_E f d\mu = I < \infty$. Suppose by contradiction that $F = \{x \in E : \forall M > I\}$ $0, f(x) < M \subset E, \text{ and } \mu(F) = m > 0.$ We can construct a simple function $s_0(x) \leq 0$ f(x) as usual on E-F and take 0 on F. Then $s_0 \in \{s(x) : 0 \le s(x) \le f(x) \le s(x) \le s(x$ is a simple, measurable function}. Thus, $\int_E s_0 d\mu \le \sup_s \{ \int_E s d\mu : 0 \le s(x) \le s(x) \}$ f(x), s is a simple, measurable function. Now, let $s_1 = s_0 + \chi_F \mu(F)$, $s_2 = s_0 + \chi_F \mu(F)$ $2\chi_F\mu(F)$, ... and $s_n = s_0 + n\chi_F\mu(F)$. Observe that $\forall x \in E, s_0(x) < s_1(x) < s_2(x)$ $s_2(x) < \dots$ and $\forall n \in \mathbb{N}, s_n(x) \leq f(x)$ when $x \in E$. The latter is because when $x \in E, f(x) > n, \forall n$. Hence, we have a sequence of simple functions $\{s_n\}$. Now, observe that $\forall n \in \mathbb{N}, \int_{E} s_{n+1} d\mu - \int_{E} s_{n} d\mu = (n+1)\mu(F) - n\mu(F) = \mu(F) = m > 0$. So $\{\int_E s_n d\mu\}$ is an increasing sequence and does not converge. Since every term in the sequence is in $\{\int_{E} s d\mu : 0 \le s(x) \le f(x), s \text{ is a simple, measurable function} \}$, we conclude that $\sup_{s} \{ \int_{E} s d\mu : 0 \le s(x) \le f(x), s \text{ is a simple, measurable function} \} = \infty,$ which contradicts the fact that f is integrable. Thus, the set of points where f is not finite must have measure of zero, i.e. f is almost finite everywhere.

Exercise 4.14

Proof. Write $f = f^+ - f^-$ and $g = g^+ - g^-$, which are defined as in Definition 4.3. Now, by definition,

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu = \sup_{s} \{ \int_{E} s d\mu, 0 \leq s \leq f^{+} \} - \sup_{s} \{ \int_{E} s d\mu, 0 \leq s \leq f^{-} \}$$

$$\int_{E} g d\mu = \int_{E} g^{+} d\mu - \int_{E} g^{-} d\mu = \sup_{s} \{ \int_{E} s d\mu, 0 \leq s \leq g^{+} \} - \sup_{s} \{ \int_{E} s d\mu, 0 \leq s \leq g^{-} \}$$

where s is a simple, measurable function.

Observe that since $f \leq g$ on E, $f^+ \leq g^+$ and $g^- \leq f^-$ on E. For any simple function s such that $0 \leq s \leq f^+$, it follows that $0 \leq s \leq f^+ \leq g^+$, and similarly $0 \leq s \leq g^-$ implies $0 \leq s \leq f^-$. Thus,

$$\left\{ \int_E s d\mu, 0 \le s \le f^+ \right\} \subset \left\{ \int_E s d\mu, 0 \le s \le g^+ \right\}$$

and

$$\{\int_E s d\mu, 0 \leq s \leq g^-\} \subset \{\int_E s d\mu, 0 \leq s \leq f^-\}.$$

Take sup on both sides,

$$\sup_s \{ \int_E s d\mu, 0 \le s \le f^+ \} \le \sup_s \{ \int_E s d\mu, 0 \le s \le g^+ \}$$

$$\sup_s \{ \int_E s d\mu, 0 \le s \le g^- \} \le \sup_s \{ \int_E s d\mu, 0 \le s \le f^- \}.$$

Hence, $\sup_s \{ \int_E s d\mu, 0 \le s \le f^+ \} - \sup_s \{ \int_E s d\mu, 0 \le s \le f^- \} \le \sup_s \{ \int_E s d\mu, 0 \le s \le g^+ \} - \sup_s \{ \int_E s d\mu, 0 \le s \le g^- \}$. It then follows immediately that $\int_E f d\mu \le \int_E g d\mu$.

Exercise 4.15

Proof. Since $A \subset E$, for any measurable set X, $(X \cap A \subset (X \cap E))$, and therefore $\mu(X \cap A) \leq \mu(X \cap E)$. Pick any simple, measurable function s. Observe that $\int_A s d\mu = \sum_{i=0}^N c_i \mu(E_i \cap A) \leq \sum_{i=1}^N c_i \mu(E_i \cap E) = \int_E s d\mu$.

By definition,

$$\int_{E} f d\mu = \sup_{s} \{ \int_{E} s d\mu, 0 \le s \le f^{+} \} - \sup_{s} \{ \int_{E} s d\mu, 0 \le s \le f^{-} \},$$

$$\int_{A} f d\mu = \sup_{s} \{ \int_{A} s d\mu, 0 \le s \le f^{+} \} - \sup_{s} \{ \int_{A} s d\mu, 0 \le s \le f^{-} \},$$

where s is a simple, measurable function. Now, pick any $\int_A s d\mu \in \{\int_A s d\mu, 0 \le s \le f^+\}$. Fix this simple function s. Then $\int_E s d\mu$ must be in $\{\int_E s d\mu, 0 \le s \le f^+\}$, and

 $\int_A s d\mu \le \int_E s d\mu.$ That is to say, $\forall x \in \{\int_A s d\mu, 0 \le s \le f^+\}, \exists y \in \{\int_E s d\mu, 0 \le s \le f^+\},$ such that $x \le y$. This implies that

$$\sup_s \{ \int_A s d\mu, 0 \le s \le f^+ \} \le \sup_s \{ \int_E s d\mu, 0 \le s \le f^+ \},$$

and similarly one can show that

$$\sup_s \{ \int_A s d\mu, 0 \le s \le f^- \} \le \sup_s \{ \int_E s d\mu, 0 \le s \le f^- \}.$$

It immediately follows that $\int_A f d\mu \leq \int_E f d\mu < \infty$. So $f \in \mathcal{L}^1(\mu, A)$.

Exercise 4.21

It is obvious that since $\mu(A - B) = 0$,

$$\int_{A-B} f d\mu = 0.$$

By the above theorem we know that Lesbegue integral satisfies countable additivity. Hence

$$\int_B f d\mu = \int_B f d\mu + 0 = \int_B f d\mu + \int_{A-B} f d\mu = \int_A f d\mu \geq \int_A f d\mu.$$