Théorie des Langages 1

Cours 1: Vocabulaires, mots, langages, induction

L. Rieg (thanks M. Echenim)

Grenoble INP - Ensimag, 1re année

Année 2020-2021

Définitions (Vocabulaire, mot)

- Un vocabulaire est un ensemble fini quelconque. Ses éléments sont appelés des symboles.
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

Définitions (Vocabulaire, mot)

- Un vocabulaire est un ensemble fini quelconque.
 Ses éléments sont appelés des symboles.
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

V	$mot\;sur\;V$	notations abrégées
a, b, \ldots, z	[b, r, o, c, c, c, o, l, i]	brocccoli

Définitions (Vocabulaire, mot)

- Un vocabulaire est un ensemble fini quelconque.
 Ses éléments sont appelés des symboles.
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

V	$mot\;sur\;V$	notations abrégées
$\overline{\{a,b,\ldots,z\}}$	[b, r, o, c, c, c, o, l, i]	$brocccoli$, $broc^3oli$

Définitions (Vocabulaire, mot)

- Un vocabulaire est un ensemble fini quelconque.
 Ses éléments sont appelés des symboles.
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

V	$mot\;sur\;V$	notations abrégées
$\overline{\{a,b,\ldots,z\}}$	[b, r, o, c, c, c, o, l, i]	brocccoli , broc³oli
$\{0,\ldots,9\}$	[2, 0, 2, 0]	2020

Définitions (Vocabulaire, mot)

- Un vocabulaire est un ensemble fini quelconque.
 Ses éléments sont appelés des symboles.
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

V	$mot\;sur\;V$	notations abrégées
$\overline{\{a,b,\ldots,z\}}$	[b, r, o, c, c, c, o, l, i]	brocccoli , broc³oli
$\{0,\ldots,9\}$	[2, 0, 2, 0]	2020 , $(20)^2$

Définitions (Vocabulaire, mot)

- Un vocabulaire est un ensemble fini quelconque.
 Ses éléments sont appelés des symboles.
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

V	$mot\;sur\;V$	notations abrégées
$\overline{\{a,b,\ldots,z\}}$	[b, r, o, c, c, c, o, l, i]	$brocccoli$, $broc^3oli$
$\{0,\ldots,9\}$	[2, 0, 2, 0]	$2020, (20)^2$
$\{a,b,ab\}$	[ab], $[a, b]$	

Définitions (Vocabulaire, mot)

- Un vocabulaire est un ensemble fini quelconque. Ses éléments sont appelés des symboles.
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

V	$mot\;sur\;V$	notations abrégées
$\overline{\{a,b,\ldots,z\}}$	[b, r, o, c, c, c, o, l, i]	$brocccoli$, $broc^3oli$
$\{0,\ldots,9\}$	[2, 0, 2, 0]	$2020, (20)^2$
$\{a, b, ab\}$	[ab], [a, b]	ab

Définitions (Vocabulaire, mot)

- Un vocabulaire est un ensemble fini quelconque.
 Ses éléments sont appelés des symboles.
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

V	$mot\;sur\;V$	notations abrégées
$\overline{\{a,b,\ldots,z\}}$	[b, r, o, c, c, c, o, l, i]	brocccoli , broc³oli
$\{0,\ldots,9\}$	[2, 0, 2, 0]	$2020, (20)^2$
$\{a,b,ab\}$	[ab], [a, b]	ab?

Définitions (Vocabulaire, mot)

- Un vocabulaire est un ensemble fini quelconque.
 Ses éléments sont appelés des symboles.
- ullet Un mot sur un vocabulaire V est une séquence finie de symboles de V.

Exemples

V	$mot\;sur\;V$	notations abrégées
$\{a,b,\ldots,z\}$	[b, r, o, c, c, c, o, l, i]	$brocccoli$, $broc^3oli$
$\{0,\ldots,9\}$	[2, 0, 2, 0]	$2020, (20)^2$
$\{a,b,ab\}$	[ab], [a, b]	ab?

Définition

• On note ε le mot correspondant à la séquence vide (« mot vide »).

Définition (longueur d'un mot)

Soit V un vocabulaire et soit $u = u_1 \cdots u_n$ un mot sur V.

La longueur de u est alors n, et on note |u| = n.

Remarque

En particulier, on a $|\varepsilon| = 0$.

Définition (longueur d'un mot)

Soit V un vocabulaire et soit $u = u_1 \cdots u_n$ un mot sur V.

La longueur de u est alors n, et on note |u| = n.

Remarque

En particulier, on a $|\varepsilon| = 0$.

Définitions

• Pour $n \in \mathbb{N}$, V^n est l'ensemble des mots sur V de longueur n.

Définition (longueur d'un mot)

Soit V un vocabulaire et soit $u = u_1 \cdots u_n$ un mot sur V.

La longueur de u est alors n, et on note |u| = n.

Remarque

En particulier, on a $|\varepsilon| = 0$.

Définitions

• Pour $n \in \mathbb{N}$, V^n est l'ensemble des mots sur V de longueur n. Par abus de notation, on identifie V et V^1 .

Définition (longueur d'un mot)

Soit V un vocabulaire et soit $u = u_1 \cdots u_n$ un mot sur V.

La longueur de u est alors n, et on note |u| = n.

Remarque

En particulier, on a $|\varepsilon| = 0$.

Définitions

- Pour $n \in \mathbb{N}$, V^n est l'ensemble des mots sur V de longueur n. Par abus de notation, on identifie V et V^1 .
- V^+ est l'ensemble des mots sur V de longueur au moins 1.

Définition (longueur d'un mot)

Soit V un vocabulaire et soit $u = u_1 \cdots u_n$ un mot sur V. La longueur de u est alors n, et on note |u| = n.

Remarque

En particulier, on a $|\varepsilon| = 0$.

Définitions

- Pour $n \in \mathbb{N}$, V^n est l'ensemble des mots sur V de longueur n. Par abus de notation, on identifie V et V^1 .
- V^+ est l'ensemble des mots sur V de longueur au moins 1.
- V^* est l'ensemble des mots sur V.

Définition (longueur d'un mot)

Soit V un vocabulaire et soit $u = u_1 \cdots u_n$ un mot sur V.

La longueur de u est alors n, et on note |u| = n.

Remarque

En particulier, on a $|\varepsilon| = 0$.

Définitions

- Pour $n \in \mathbb{N}$, V^n est l'ensemble des mots sur V de longueur n. Par abus de notation, on identifie V et V^1 .
- V^+ est l'ensemble des mots sur V de longueur au moins 1.
- V^* est l'ensemble des mots sur V.
- $\bullet \ \, \text{Pour}\,\, w \in V^* \,\, \text{et}\,\, a \in V \text{, } |w|_a \,\, \text{est le nombre d'occurrences de}\,\, a \,\, \text{dans}\,\, w.$

Exemples

 $\bullet \ \mathsf{Soient} \ V = \{a,b\} \ \mathsf{et} \ w = ababbb.$

Exemples

• Soient $V = \{a, b\}$ et w = ababbb.

Alors |w| = 6 et $|w|_b = 4$.

- Soient $V = \{a, b\}$ et w = ababbb. Alors |w| = 6 et $|w|_b = 4$.
- Soient $V = \{cd, dc\}$ et w = cdcddc.

- Soient $V = \{a, b\}$ et w = ababbb. Alors |w| = 6 et $|w|_b = 4$.
- $\bullet \ \, {\sf Soient} \,\, V = \{cd,dc\} \,\, {\sf et} \,\, w = cdcddc. \qquad {\sf Alors} \,\, |w| = 3 \,\, {\sf et} \,\, |w|_{dc} = 1.$

Exemples

- Soient $V = \{a, b\}$ et w = ababbb. Alors |w| = 6 et $|w|_b = 4$.
- Soient $V = \{cd, dc\}$ et w = cdcddc. Alors |w| = 3 et $|w|_{dc} = 1$.

Proposition

On a les égalités suivantes :

$$V^* = \bigcup_{n \ge 0} V^n$$
$$V^+ = \bigcup_{n > 0} V^n$$

Définition

Soit V un vocabulaire, $u=u_1\cdots u_n$ et $v=v_1\cdots v_m$ deux mots de V^* . La concaténation de u et v, notée u.v, est le mot de V^* défini par $u.v=u_1\cdots u_nv_1\cdots v_m$

Définition

Soit V un vocabulaire, $u=u_1\cdots u_n$ et $v=v_1\cdots v_m$ deux mots de V^* . La concaténation de u et v, notée u.v, est le mot de V^* défini par $u.v=u_1\cdots u_nv_1\cdots v_m$

Exemple

Soient u = bac et v = aacb.

Définition

Soit V un vocabulaire, $u=u_1\cdots u_n$ et $v=v_1\cdots v_m$ deux mots de V^* . La concaténation de u et v, notée u.v, est le mot de V^* défini par $u.v=u_1\cdots u_nv_1\cdots v_m$

Exemple

Soient u = bac et v = aacb.

Alors u.v = bacaacb.

Définition

Soit V un vocabulaire, $u=u_1\cdots u_n$ et $v=v_1\cdots v_m$ deux mots de V^* . La concaténation de u et v, notée u.v, est le mot de V^* défini par $u.v=u_1\cdots u_nv_1\cdots v_m$

Exemple

Soient u = bac et v = aacb.

Alors u.v = bacaacb.

Théorème

 $(V^*,.,\varepsilon)$ est un monoïde (. associative, ε élément neutre).

Définition

Soit V un vocabulaire, $u=u_1\cdots u_n$ et $v=v_1\cdots v_m$ deux mots de V^* . La concaténation de u et v, notée u.v, est le mot de V^* défini par $u.v=u_1\cdots u_nv_1\cdots v_m$

Exemple

Soient u = bac et v = aacb.

Alors u.v = bacaacb.

Théorème

 $(V^*,.,\varepsilon)$ est un monoïde (. associative, ε élément neutre).

Notation

On pourra noter uv au lieu de u.v.

Proposition

 $\operatorname{Si}|u|=i \ \operatorname{et}|v|=j$, $\operatorname{alors}|uv|=i+j$.

Proposition

$$Si |u| = i \text{ et } |v| = j, \text{ alors } |uv| = i + j.$$

Définitions

Soient $v, z \in V^*$. On dit que v est un :

• sous-mot de z ssi $\exists u, w \in V^*$ tels que z = u.v.w

Proposition

$$Si |u| = i \text{ et } |v| = j, \text{ alors } |uv| = i + j.$$

Définitions

Soient $v, z \in V^*$. On dit que v est un :

- ullet sous-mot de z ssi $\exists u,w\in V^*$ tels que z=u.v.w
- préfixe de z ssi $\exists w \in V^*$ tel que z = v.w

Proposition

$$Si |u| = i \text{ et } |v| = j, \text{ alors } |uv| = i + j.$$

Définitions

Soient $v, z \in V^*$. On dit que v est un :

- ullet sous-mot de z ssi $\exists u,w\in V^*$ tels que z=u.v.w
- préfixe de z ssi $\exists w \in V^*$ tel que z = v.w
- suffixe de z ssi $\exists u \in V^*$ tel que z = u.v

Définition

On appelle langage sur V tout sous-ensemble de V^* .

Définition

On appelle langage sur V tout sous-ensemble de V^* .

Exemples

 $\bullet \ \emptyset \subseteq \{a, \overline{b}\}^*$

Définition

On appelle langage sur V tout sous-ensemble de V^* .

- $\bullet \ \emptyset \subseteq \{a,b\}^*$
- $\bullet \ \{a,b\}^* \subseteq \{a,b\}^*$

Définition

On appelle langage sur V tout sous-ensemble de V^* .

- $\bullet \ \emptyset \subseteq \{a,b\}^*$
- $\bullet \ \{a,b\}^* \subseteq \{a,b\}^*$
- $\bullet \ \{abab, ab, abba\} \subseteq \{a, b\}^*$

Définition

On appelle langage sur V tout sous-ensemble de V^* .

- $\bullet \ \emptyset \subseteq \{a,b\}^*$
- $\bullet \ \{a,b\}^* \subseteq \{a,b\}^*$
- $\{abab, ab, abba\} \subseteq \{a, b\}^*$
- $\bullet \{a^nb^n \mid n \ge 0\} \subseteq \{a,b\}^*$

Définition

On appelle langage sur V tout sous-ensemble de V^* .

- $\bullet \ \emptyset \subseteq \{a,b\}^*$
- $\{a,b\}^* \subseteq \{a,b\}^*$
- $\{abab, ab, abba\} \subseteq \{a, b\}^*$
- $\{a^nb^n \mid n \ge 0\} \subseteq \{a,b\}^*$ $(\{\varepsilon,ab,aabb,aaabb,\dots\})$

Langages

Définition

On appelle langage sur V tout sous-ensemble de V^* .

Exemples

- $\bullet \ \emptyset \subseteq \{a,b\}^*$
- $\{a,b\}^* \subseteq \{a,b\}^*$
- $\bullet \ \{abab, ab, abba\} \subseteq \{a, b\}^*$
- $\bullet \ \{a^nb^n \mid n \geq 0\} \subseteq \{a,b\}^* \qquad (\{\varepsilon,ab,aabb,aaabb,\dots\})$
- « Ensemble des programmes Python » ⊆ Unicode*

Langages

Définition

On appelle langage sur V tout sous-ensemble de V^* .

Exemples

- $\bullet \ \emptyset \subseteq \{a,b\}^*$
- $\bullet \ \{a,b\}^* \subseteq \{a,b\}^*$
- $\bullet \ \{abab, ab, abba\} \subseteq \{a, b\}^*$
- $\bullet \ \{a^nb^n \mid n \ge 0\} \subseteq \{a,b\}^* \qquad (\{\varepsilon,ab,aabb,aaabb,\dots\})$
- « Ensemble des programmes Python » ⊆ Unicode*

Remarque

On s'intéressera en TL à définir et reconnaître des sous-ensembles de V^* .

- Par extension

 - $P = \{0, 2, 4, 6, 8, 10, \ldots\}$

- Par extension

 - $P = \{0, 2, 4, 6, 8, 10, \ldots\}$
- Par compréhension
 - ▶ On décrit les caractéristiques des éléments de l'ensemble
 - $P = \{ n \in \mathbb{N} \mid \exists k \in \mathbb{N}, n = 2k \}$

- Par extension

 - $P = \{0, 2, 4, 6, 8, 10, \ldots\}$
- Par compréhension
 - ▶ On décrit les caractéristiques des éléments de l'ensemble
 - $P = \{ n \in \mathbb{N} \mid \exists k \in \mathbb{N}, n = 2k \}$
- Par induction structurelle
 - ▶ On explique comment construire les éléments de l'ensemble
 - ► Fréquemment utilisé en informatique
 - ▶ P est le **plus petit** ensemble (pour l'inclusion) tel que :
 - ★ $0 \in P$, et
 - \star si $n \in P$ alors $n + 2 \in P$.

Principe général : on définit un ensemble en spécifiant :

- Des cas de base : quels sont les éléments les « plus simples » de l'ensemble?
- Des règles de construction : comment peut-on, en partant d'éléments de l'ensemble, en construire de nouveaux ?

Principe général : on définit un ensemble en spécifiant :

- Des cas de base : quels sont les éléments les « plus simples » de l'ensemble?
- Des règles de construction : comment peut-on, en partant d'éléments de l'ensemble, en construire de nouveaux ?

Exemples

Définitions inductives de V^* et $L\stackrel{\mathrm{def}}{=} \{a^nb^n \mid n\geq 1\}$:

Principe général : on définit un ensemble en spécifiant :

- Des cas de base : quels sont les éléments les « plus simples » de l'ensemble?
- Des règles de construction : comment peut-on, en partant d'éléments de l'ensemble, en construire de nouveaux ?

Exemples

Définitions inductives de V^* et $L \stackrel{\mathrm{def}}{=} \{a^nb^n \mid n \geq 1\}$:

 V^* : Base : $\varepsilon \in V^*$

Induction: pour tout x de V, si $w \in V^*$ alors $xw \in V^*$

Principe général : on définit un ensemble en spécifiant :

- Des cas de base : quels sont les éléments les « plus simples » de l'ensemble?
- Des règles de construction : comment peut-on, en partant d'éléments de l'ensemble, en construire de nouveaux ?

Exemples

```
Définitions inductives de V^* et L \stackrel{\text{def}}{=} \{a^n b^n \mid n \geq 1\} :
```

```
V^*: Base : \varepsilon \in V^* Induction : pour tout x de V, si w \in V^* alors xw \in V^*
```

madelion: pour tout a de v, si a e v alors a a e v

L: Base : $ab \in L$ Induction : si $w \in L$ alors $awb \in L$

Définition (Ensemble inductif)

Soit U un ensemble ; définir un ensemble $E\subseteq U$ par induction structurelle consiste à donner :

Définition (Ensemble inductif)

Soit U un ensemble ; définir un ensemble $E\subseteq U$ par induction structurelle consiste à donner :

• un ensemble non vide d'atomes $B = \{b_1, \dots, b_n\} \subseteq U$

Définition (Ensemble inductif)

Soit U un ensemble ; définir un ensemble $E\subseteq U$ par induction structurelle consiste à donner :

- un ensemble non vide d'atomes $B = \{b_1, \ldots, b_n\} \subseteq U$
- un ensemble $K = \{\kappa_1, \dots, \kappa_m\}$ de constructeurs inductifs, où $\kappa_i : U^{a_i} \to U$ et $a_i > 0$ pour tout i (a_i : arité de κ_i)

Définition (Ensemble inductif)

Soit U un ensemble ; définir un ensemble $E\subseteq U$ par induction structurelle consiste à donner :

- un ensemble non vide d'atomes $B = \{b_1, \dots, b_n\} \subseteq U$
- un ensemble $K = \{\kappa_1, \dots, \kappa_m\}$ de constructeurs inductifs, où $\kappa_i : U^{a_i} \to U$ et $a_i > 0$ pour tout i $(a_i : arité de \kappa_i)$

E est alors le plus petit ensemble tel que :

- \bullet $B \subseteq E$
 - $\forall i \in [1,m]$, si $(e_1,\ldots,e_{a_i}) \in E^{a_i}$, alors $\kappa_i(e_1,\ldots,e_{a_i}) \in E$

Définition (Ensemble inductif)

Soit U un ensemble ; définir un ensemble $E\subseteq U$ par induction structurelle consiste à donner :

- un ensemble non vide d'atomes $B = \{b_1, \ldots, b_n\} \subseteq U$
- un ensemble $K = \{\kappa_1, \dots, \kappa_m\}$ de constructeurs inductifs, où $\kappa_i : U^{a_i} \to U$ et $a_i > 0$ pour tout i (a_i : arité de κ_i)

E est alors le plus petit ensemble tel que :

- \bullet $B \subseteq E$
- $\forall i \in [1, m]$, si $(e_1, \dots, e_{a_i}) \in E^{a_i}$, alors $\kappa_i(e_1, \dots, e_{a_i}) \in E$

Exemples

 V^* , listes, arbres, formules logiques, ...

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε ,

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

$$\varepsilon$$
, ab ,

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

$$\varepsilon$$
, ab , ba ,

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

$$\varepsilon$$
, ab , ba , $aabb$,

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab,

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Exercice : construire les trois derniers mots

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $aubv \in L_0 \qquad (\kappa_1(u,v) = aubv)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Exercice : construire les trois derniers mots

• aabb: 1 seule façon de construire :

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Exercice: construire les trois derniers mots

• aabb: 1 seule façon de construire : $a(a \varepsilon b \varepsilon) b \varepsilon$

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Exercice : construire les trois derniers mots

• aabb:1 seule façon de construire : $a\,(a\,\varepsilon\,b\,\varepsilon)\,b\,\varepsilon\,=\,\kappa_1(\kappa_1(b_1,b_1),b_1)$

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Exercice : construire les trois derniers mots

- aabb:1 seule façon de construire : $a\left(a\,\varepsilon\,b\,\varepsilon\right)b\,\varepsilon\ =\ \kappa_{1}(\kappa_{1}(b_{1},b_{1}),b_{1})$
- *abab* : 2 facons :

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Exercice : construire les trois derniers mots

- aabb:1 seule façon de construire : $a\left(a\,\varepsilon\,b\,\varepsilon\right)b\,\varepsilon\ =\ \kappa_{1}(\kappa_{1}(b_{1},b_{1}),b_{1})$
- $abab: 2 \text{ façons}: a(b \varepsilon a \varepsilon) b \varepsilon \text{ et } a \varepsilon b(a \varepsilon b \varepsilon)$

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Exercice: construire les trois derniers mots

- aabb:1 seule façon de construire : $a\left(a\,\varepsilon\,b\,\varepsilon\right)b\,\varepsilon\ =\ \kappa_{1}(\kappa_{1}(b_{1},b_{1}),b_{1})$
- abab : 2 façons : $a(b \varepsilon a \varepsilon) b \varepsilon$ et $a \varepsilon b (a \varepsilon b \varepsilon)$
- bbaaaabb :

Posons $V=\{a,b\}$, et soit L_0 le langage défini par induction structurelle de la façon suivante :

- Base : $\varepsilon \in L_0$ $(b_1 = \varepsilon)$
- Induction (constructeurs) : si $u, v \in L_0$ alors
 - $a u b v \in L_0 \qquad (\kappa_1(u, v) = a u b v)$
 - $b u a v \in L_0 (\kappa_2(u, v) = b u a v)$

Quelques mots dans L_0 :

 ε , ab, ba, aabb, abab, bbaaaabb

Exercice: construire les trois derniers mots

- aabb:1 seule façon de construire : $a\,(a\,\varepsilon\,b\,\varepsilon)\,b\,\varepsilon\,=\,\kappa_1(\kappa_1(b_1,b_1),b_1)$
- ullet $abab: 2 \text{ façons}: a (b \,arepsilon \, a \,arepsilon) \, b \,arepsilon \ \ \ a \,arepsilon \, b \, (a \,arepsilon \, b \, arepsilon)$
- bbaaaabb: 1 seule façon : $b(b \varepsilon a \varepsilon) a(a(a \varepsilon b \varepsilon) b \varepsilon)$

Fonction définie inductivement

Définition

Soit E un ensemble défini inductivement par l'ensemble d'atomes B et l'ensemble de constructeurs K, et soit U' un ensemble quelconque. Pour définir une fonction $f: E \to U'$, il suffit d'expliciter :

- les images des atomes $f(b_1), \ldots, f(b_n)$;
- la façon dont la fonction « interagit » avec les constructeurs : comment exprimer $f(\kappa_i(e_1,\ldots,e_{a_i}))$ en fonction de $f(e_1),\ldots,f(e_{a_i})$.

Fonction définie inductivement

Définition

Soit E un ensemble défini inductivement par l'ensemble d'atomes B et l'ensemble de constructeurs K, et soit U^\prime un ensemble quelconque.

Pour définir une fonction $f: E \to U'$, il suffit d'expliciter :

- les images des atomes $f(b_1), \ldots, f(b_n)$;
- la façon dont la fonction « interagit » avec les constructeurs : comment exprimer $f(\kappa_i(e_1,\ldots,e_{a_i}))$ en fonction de $f(e_1),\ldots,f(e_{a_i})$.

Exemple (Longueur d'un mot)

$$|_|:V^*\to\mathbb{N}$$

- Cas de base : $|\varepsilon| = 0$
- Constructeurs inductifs : |xw| = 1 + |w|

Soient les fonctions dl et pa : $L_0 \to \mathbb{N}$ telles que $\forall w \in L_0$,

$$dl(w) = |w|_a$$

pa(w) = max {|x| | x préfixe de $w \land x \in \{a\}^*$ }

Exercice : définir les fonctions $\mathrm{d}l$ et $\mathrm{p}a$ par induction structurelle

Soient les fonctions dl et pa : $L_0 \to \mathbb{N}$ telles que $\forall w \in L_0$,

$$dl(w) = |w|_a$$

pa(w) = max {|x| | x préfixe de $w \land x \in \{a\}^*$ }

Exercice : définir les fonctions dl et pa par induction structurelle L_0 est défini par 1 cas de base et 2 constructeurs donc 3 cas à considérer.

Soient les fonctions dl et pa : $L_0 \to \mathbb{N}$ telles que $\forall w \in L_0$,

$$dl(w) = |w|_a$$

pa(w) = max {|x| | x préfixe de $w \land x \in \{a\}^*$ }

Exercice : définir les fonctions dl et pa par induction structurelle L_0 est défini par 1 cas de base et 2 constructeurs donc 3 cas à considérer.

$$dl \quad \bullet \ dl(\varepsilon) = 0$$

•
$$\forall u, v \in L_0$$
, $dl(a u b v) = 1 + dl(u) + dl(v)$

•
$$\forall u, v \in L_0$$
, $dl(b u a v) = 1 + dl(u) + dl(v)$

Exemples

Soient les fonctions dl et pa : $L_0 \to \mathbb{N}$ telles que $\forall w \in L_0$,

$$dl(w) = |w|_a$$

pa(w) = max {|x| | x préfixe de $w \land x \in \{a\}^*$ }

Exercice : définir les fonctions dl et pa par induction structurelle L_0 est défini par 1 cas de base et 2 constructeurs donc 3 cas à considérer.

$$dl \quad \bullet \ dl(\varepsilon) = 0$$

•
$$\forall u, v \in L_0$$
, $dl(a \, u \, b \, v) = 1 + dl(u) + dl(v)$

•
$$\forall u, v \in L_0$$
, $dl(b u a v) = 1 + dl(u) + dl(v)$

$$\mathbf{pa} \quad \bullet \quad \mathbf{pa}(\varepsilon) = 0$$

•
$$\forall u, v \in L_0$$
, $pa(a \, u \, b \, v) = 1 + pa(u)$

•
$$\forall u, v \in L_0$$
, $\operatorname{pa}(b u a v) = 0$

Preuve par induction structurelle

Définition

Soit E un ensemble défini inductivement par l'ensemble d'atomes B et l'ensemble de constructeurs K, et soit P une propriété sur E. Pour montrer que P(e) est vraie pour tout $e \in E$, on peut :

- montrer que $P(b_1), \ldots, P(b_n)$ sont vrais;
- pour $i \in [1, m]$, montrer que si $P(e_1), \ldots, P(e_{a_i})$ sont tous vrais, alors $P(\kappa_i(e_1, \ldots, e_{a_i}))$ l'est également.

Preuve par induction structurelle

Définition

Soit E un ensemble défini inductivement par l'ensemble d'atomes B et l'ensemble de constructeurs K, et soit P une propriété sur E. Pour montrer que P(e) est vraie pour tout $e \in E$, on peut :

- montrer que $P(b_1), \ldots, P(b_n)$ sont vrais;
- pour $i \in [1, m]$, montrer que si $P(e_1), \ldots, P(e_{a_i})$ sont tous vrais, alors $P(\kappa_i(e_1, \ldots, e_{a_i}))$ l'est également.

Remarque

La preuve par induction structurelle est une généralisation de la preuve par récurrence :

- Base : 0
- Constructeur : la fonction successeur $s: n \mapsto n+1$

Preuve par induction structurelle

Définition

Soit E un ensemble défini inductivement par l'ensemble d'atomes B et l'ensemble de constructeurs K, et soit P une propriété sur E. Pour montrer que P(e) est vraie pour tout $e \in E$, on peut :

- montrer que $P(b_1), \ldots, P(b_n)$ sont vrais;
- pour $i \in [1, m]$, montrer que si $P(e_1), \ldots, P(e_{a_i})$ sont tous vrais, alors $P(\kappa_i(e_1, \ldots, e_{a_i}))$ l'est également.

Remarque

La preuve par induction structurelle est une généralisation de la preuve par récurrence :

- Base : 0
- Constructeur : la fonction successeur $s: n \mapsto n+1$

Mini-démo : Coq

Soit $M_0 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$. Montrer que $L_0 \subseteq M_0$.

Soit $M_0 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$. Montrer que $L_0 \subseteq M_0$.

Propriété P(w) sur $L_0: w \in M_0$.

Par induction structurelle:

Soit
$$M_0 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$$
. Montrer que $L_0 \subseteq M_0$.

Propriété P(w) sur $L_0: w \in M_0$.

Par induction structurelle:

• Base : $|\varepsilon|_a = |\varepsilon|_b$. Ok

Soit
$$M_0 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$$
. Montrer que $L_0 \subseteq M_0$.

Propriété P(w) sur $L_0: w \in M_0$.

Par induction structurelle:

- Base : $|\varepsilon|_a = |\varepsilon|_b$. Ok
- Induction :

2 constructeurs κ_1 et κ_2

Soit
$$M_0 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$$
. Montrer que $L_0 \subseteq M_0$.

Propriété P(w) sur $L_0: w \in M_0$.

Par induction structurelle:

- Base : $|\varepsilon|_a = |\varepsilon|_b$. Ok
- Induction :

2 constructeurs κ_1 et κ_2

 $\begin{array}{l} \kappa_1(_,_): \\ \text{Soient } u \text{ et } v \text{ deux mots de } L_0. \text{ Supposons } P(u) \text{ et } P(v), \text{ c.-à-d.} \\ |u|_a = |u|_b \text{ et } |v|_a = |v|_b. \\ \text{Alors } : |a \ u \ b \ v|_a = 1 + |u|_a + |v|_a = 1 + |u|_b + |v|_b = |a \ u \ b \ v|_b \\ \end{array}$

Soit $M_0 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$. Montrer que $L_0 \subseteq M_0$.

Propriété P(w) sur $L_0: w \in M_0$.

Par induction structurelle:

- Base : $|\varepsilon|_a = |\varepsilon|_b$. Ok
- Induction :

2 constructeurs κ_1 et κ_2

- $\begin{array}{lll} & \kappa_1(_,_): \\ & \text{Soient } u \text{ et } v \text{ deux mots de } L_0. \text{ Supposons } P(u) \text{ et } P(v), \text{ c.-à-d.} \\ & |u|_a = |u|_b \text{ et } |v|_a = |v|_b. \\ & \text{Alors}: |a\,u\,b\,v|_a = 1 + |u|_a + |v|_a = 1 + |u|_b + |v|_b = |a\,u\,b\,v|_b \end{array}$
- $\begin{array}{l} \blacktriangleright \ \kappa_2(_,_): \\ \hbox{ De la même façon}: \\ |b\,u\,a\,v|_a \ = \ 1 + |u|_a + |v|_a \ = \ 1 + |u|_b + |v|_b \ = \ |b\,u\,a\,v|_b \end{array}$

Soit $M_0 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$. Montrer que $L_0 \subseteq M_0$.

Propriété P(w) sur $L_0: w \in M_0$.

Par induction structurelle:

- Base : $|\varepsilon|_a = |\varepsilon|_b$. Ok
- Induction :

2 constructeurs κ_1 et κ_2

- $\begin{array}{lll} & \kappa_1(_,_): \\ & \text{Soient } u \text{ et } v \text{ deux mots de } L_0. \text{ Supposons } P(u) \text{ et } P(v), \text{ c.-à-d.} \\ & |u|_a = |u|_b \text{ et } |v|_a = |v|_b. \\ & \text{Alors}: |a\,u\,b\,v|_a = 1 + |u|_a + |v|_a = 1 + |u|_b + |v|_b = |a\,u\,b\,v|_b \end{array}$
- $\begin{array}{l} \blacktriangleright \ \kappa_2(_,_): \\ \hbox{ De la même façon}: \\ |b\,u\,a\,v|_a \ = \ 1 + |u|_a + |v|_a \ = \ 1 + |u|_b + |v|_b \ = \ |b\,u\,a\,v|_b \end{array}$

Soit $M_0 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}$. Montrer que $L_0 \subseteq M_0$.

Propriété P(w) sur $L_0: w \in M_0$.

Par induction structurelle:

- Base : $|\varepsilon|_a = |\varepsilon|_b$. Ok
- Induction :

2 constructeurs κ_1 et κ_2

- $\begin{array}{lll} & \kappa_1(_,_): \\ & \text{Soient } u \text{ et } v \text{ deux mots de } L_0. \text{ Supposons } P(u) \text{ et } P(v), \text{ c.-à-d.} \\ & |u|_a = |u|_b \text{ et } |v|_a = |v|_b. \\ & \text{Alors}: |a\,u\,b\,v|_a = 1 + |u|_a + |v|_a = 1 + |u|_b + |v|_b = |a\,u\,b\,v|_b \end{array}$
- $\begin{array}{lll} \blacktriangleright & \kappa_2(_,_): \\ & \text{De la même façon}: \\ & |b\,u\,a\,v|_a &= 1+|u|_a+|v|_a &= 1+|u|_b+|v|_b &= |b\,u\,a\,v|_b \end{array}$

Exercice(\star) Montrer que $M_0 \subseteq L_0$.