Main 445 Number Theory

October 00, 2004

We have seen (because there is a primitive root mod p^k for p an odd prime):

Theorem: If p is an odd prime, $k \geq 1$, and (a, p) = 1, then the equation

$$x^n \equiv a \pmod{p^k}$$
 has a solution $\Leftrightarrow a^{\frac{\Phi(p^k)}{(n,\Phi(p^k))}} \equiv 1 \pmod{\Phi p^k}$

But what about p=2? This case is a bit different, since for $k \geq 3$ there is no primitive root mod 2^k . But we can almost manage it:

Proposition: 5 has order $2^{k-2} = \Phi(2^k)/2 \mod 2^k$.

This is because $\operatorname{ord}_{16}(5) = 4 = 2 \cdot \operatorname{ord}_{8}(5)$, and so our earlier result tells us that it will keep rising by a factor of 2 ever afterwards.

This in turn implies that

Proposition: If $k \ge 3$ and $(a, 2^k) = 1$ (i.e., a is odd), then $a \equiv 5^j$ or $a \equiv -5^j \mod 2^k$, for some $1 \le j \le 2^{k-2}$

This is because the integers $5^j:1\leq j\leq 2^{k-2}$ are all distinct mod 2^k , as are the $-(5^j):1\leq j\leq 2^{k-2}$, and they are distinct from one another, because mod $4,5^j\equiv 1^j=1$, and $-(5^j)\equiv -(1^j)\equiv -1\equiv 3$, so the two collections have nothing in common. But together they account for $2^{k-2}+2^{k-2}=2^{k-1}=\Phi(2^k)$ of the elements relatively prime to 2^k , i.e., all of them.

In particular, the representation of such an a is unique. With this in hand, we can show: Theorem: If n is odd and (a,2)=1, then for every $k\geq 1$, $x^n\equiv a\pmod{2^k}$ has a solution. To see this, note that $a\equiv \pm 5^j$ by the above result. If $a\equiv 5^j$, then as in the case of an odd prime, we simply assume that the solution x (since it also must have (x,2)=1) is $x=5^r$ for some r, and solve $5^{nr}\equiv 5^j\pmod{2^k}$ by solving $nr\equiv j\mod \operatorname{ord}_{2^k}(5)=2^{k-2}$ for r, which we can do, since $(n,2^{k-2})=1$. If $a\equiv -(5^j)$, then we just solve $y^n\equiv 5^j$ first; then since n is odd, x=-y will solve our equation; $x^n=(-y)^n=-y^n\equiv -(5^j)\equiv a$.

For even exponents, things are slightly more complicated.

Theorem: If $k \geq 3$, (a,2) = 1 and $n = 2^m \cdot d$ with d odd, $m \geq 1$, then $x^n \equiv a \pmod{2^k}$ has a solution $\Leftrightarrow a \equiv 1 \pmod{2^{m+2}}$.

(\$\Rightarrow\$): If $x^n \equiv a \pmod{2^k}$ has a solution, then (x,2) = 1, so $x \equiv \pm 5^j \mod 2^k$ for some j. We may assume that $m \leq k-2$, otherwise $x^n = (x^{2^{k-2}})^s \equiv 1^s = 1$ for all x, so only $a \equiv 1$ will have a solution. So, since n is even, $a \equiv (\pm 5^j)^n = 5^{jn} = 5^{jd2^m} \equiv (5^{dj})^{2^m} \mod 2^k$, so this is also true mod 2^{m+2} . So $a \equiv x^n \equiv (5^{4dj})^{2^m} = y^{2^m} \equiv 1 \mod 2^{m+2}$, since all (odd) integers have order, mod 2^{m+2} , dividing 2^m .

(\Leftarrow): If $a \equiv 1 \pmod{2^{m+2}}$, then $a = 1 + N2^{m+2}$, so $a^{2^{k-m-2}} = (1 + N2^{m+2})^{2^{k-m-2}} = 1 + N2^k$ higher powers of $2 \equiv 1 \pmod{2^k}$. But $a \equiv \pm 5^j \pmod{2^k}$, and we must have $\pm 1 = 1$, since $a \equiv 1 \pmod{4}$. So $a \equiv 5^j \pmod{2^k}$, so $a^{2^{k-m-2}} = 5^{j \cdot 2^{k-m-2}} \equiv 1 \pmod{2^k}$, so $2^{k-2}|j \cdot 2^{k-m-2}$, so $2^m|j$. So $j = 2^m c$, and so we really wish to solve the equation $x^{2^m d} = (x^{2^m})^d \ equiv(5^{2^m})^c = 5^{2^m c}$. If we instead solve $x^d \equiv 5^c$, which, from the theorem above, we can, since d is odd, then $x^{2^m d} = (x^d)^{2^m} \ equiv(5^c)^{2^m} = 5^{2^m c} \equiv a$, as desired!