Лабораторная работа 14

Модели обработки заказов

Городянский Фёдор Николаевич

Содержание

Цель работы	4
Задание	5
Выполнение лабораторной работы	6
Модель оформления заказов клиентов одним оператором	6
Построение гистограммы распределения заявок в очереди	14
Модель обслуживания двух типов заказов от клиентов в	
интернет-магазине	19
Модель оформления заказов несколькими операторами	
Выводы	36

Список иллюстраций

0.1	Модель оформления заказов клиентов одним оператором	7
0.2	Отчёт по модели оформления заказов в интернет-магазине	8
0.3	Модель оформления заказов клиентов одним оператором	
	с измененными интервалами заказов и времени оформ-	
	ления клиентов	11
0.4	Отчёт по модели оформления заказов в интернет-	
	магазине с измененными интервалами заказов и времени	
	оформления клиентов	12
0.5	Построение гистограммы распределения заявок в очереди	15
0.6	Отчёт по модели оформления заказов в интернет-	
	магазине при построении гистограммы распределения	
	заявок в очереди	16
0.7	Отчёт по модели оформления заказов в интернет-	
	магазине при построении гистограммы распределения	
	заявок в очереди	17
0.8	Гистограмма распределения заявок в очереди	19
0.9	Модель обслуживания двух типов заказов от клиентов в	
	интернет-магазине	20
	Отчёт по модели оформления заказов двух типов	21
0.11	Модель обслуживания двух типов заказов с условием, что	
	число заказов с дополнительным пакетом услуг составля-	
	ет 30% от общего числа заказов	24
	Отчёт по модели оформления заказов двух типов заказов	25
	Модель оформления заказов несколькими операторами .	28
0.14	Отчет по модели оформления заказов несколькими опе-	
	раторами	29
0.15	Модель оформления заказов несколькими операторами с	
	учетом отказов клиентов	32
0.16	Отчет по модели оформления заказов несколькими опе-	
	раторами с учетом отказов клиентов	33

Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернетмагазине;
- модель оформления заказов несколькими операторами.

Выполнение лабораторной работы

Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем operator_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром operator — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором ТERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. [-@fig:001]).

Рис. 0.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. [-@fig:002]).

	CTADT	TIME		EMP	TIME P	TOCKS	PACTITA	TEC	CTODACEC	
	SIAKI	.000		490	OOO E	LOCKS	racilii	ILS	STORAGES	
	0	.000		400	.000	9	1		U	
	NAM	E			VA	LUE				
	OPERATO	R			10001	.000				
	OPERATO	R_Q			10000	.000				
LABEL		LOC	BLOCK	TYPE	ENT	RY COUN	IT CURRE	NT CO	UNT RETRY	
2.1222			GENER			32			0	
			OUEUE			32		0	0	
		3	SEIZE			32		0	0	
		4	DEPAR?	T		32		0	0	
		5	ADVANO	CE		32		1	0	
		6	RELEA:	SE		31		0	0	
		7	TERMI	NATE		31		0	0	
		8	GENERA	ATE		1		0	0	
		9	TERMI	NATE		1		0	0	
FACTI.TTY		ENTRIES	UTIL	. AV	E. TIME	AVATT	OWNER	PEND	INTER RETR	Y DELAY
									0 0	
OHEHE		MAY C	מי דוור	ש עמדוו	NTDV(0)	AUE CO	NIT ALLE	TTME	AVE.(-0	\ DETDV
									0.67	
0121011		-	Ĭ		-		-	0.022		_ ,
FEC XN							PARAM	METER	VALUE	
	0									
34		496.0	081	34	0	1				
35	0	960.0	000	3.5	0	8				

Рис. 0.2: Отчёт по модели оформления заказов в интернет-магазине

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования:

STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Изменим интервалы поступления заказов и время оформления клиентов (рис. [-@fig:003]).

```
; operator
GENERATE 3.14,1.7
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 0.3: Модель оформления заказов клиентов одним оператором с измененными интервалами заказов и времени оформления клиентов

После запуска симуляции получаем отчёт (рис. [-@fig:004]).

Model 1.3.1	l - REPORT								
			ENI 48						
	NAME OPERATOR OPERATOR_			\ 1000 1000	01.000				
LABEL			BLOCK TYPE						
			GENERATE		152		0		
		_	QUEUE		152		82		
			SEIZE		70 70 70		0	0	
			DEPART		70		0	0	
			ADVANCE		70		1	0	
		-	RELEASE		69		0	0	
			TERMINATE		69		0	0	
		_	GENERATE		1		0	0	
		9	TERMINATE		1		0	0	
FACILITY	EN	ITRIES	UTIL. 2	AVE. TIN	ME AVAIL	. OWNER PE	ND INTE	R RETRY	DELAY
OPERATOR		70	0.991	6.7	796 1	71	0 0	0	82
QUEUE OPERATOR	_0	MAX C	ONT. ENTRY 82 152	ENTRY(0	39.0	ONT. AVE.T 96 123.	IME A	AVE.(-0) 124.279	RETRY 0
	PRI	BDT	ASSE	1 CURRE	ENT NEX	T PARAMET	ER V	/ALUE	
FEC XN			405 71	=	6				
	0	480.	105 /1	-	0				
			330 154						

Рис. 0.4: Отчёт по модели оформления заказов в интернет-магазине с измененными интервалами заказов и времени оформления клиентов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля OWNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=82 в очереди находилось 82 ожидающих заявок от клиента;
- CONT=82 на момент завершения моделирования в очереди было 82 заявки;
- ENTRIES=82 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=39,096 заявок от клиентов в среднем были в очереди;
- AVE.TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=123,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A, B, C, D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. [-@fig:005]).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 0.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции и проанализируем его (рис. [-@fig:006], [-@fig:007]).

	START TI 0.0	ME 000					ACILITIE 1		RAGES 0	
	NAME CUSTNUM FIN OPERATOR OPERATOR_ WAITTIME	Q		1 1 1	VALU .0002.0 10.0 .0003.0 .0001.0	00				
LABEL		1 2 3 4 5 6 7	BLOCK TY GENERATE TEST SAVEVALU ASSIGN QUEUE SEIZE DEPART ADVANCE RELEASE	E JE	1	02 02 55 55		COUNT 0 0 0 0 1 1 0 0		
FIN		10	TERMINAT	ΓE	1	.00		0	0	
FACILITY OPERATOR									ER RETRY 0 0	
QUEUE OPERATOR_		MAX CC							AVE.(-0) 10.824	

Рис. 0.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

TABLE WAITTIME	MEAN 10.709	STD.DEV. 2.702	RAN	IGE	RETRY 0	FREQUENCY	CUM.%
			_	0.000		1	1.89
		0	.000 -	2.000		0	1.89
		2	.000 -	4.000		1	3.77
		4	.000 -	6.000		0	3.77
		6	5.000 -	8.000		4	11.32
		8	.000 -	10.000		12	33.96
			.000 -	12.000		17	66.04
		12	.000 -	14.000		1.4	92.45
		1.4	.000 -	16.000		4	100.00
SAVEVALUE CUSTNUM			VALUE 55.000				
CEC XN PRI	Ml	ASSEM	CURRENT	NEXT PARAM	METER	VALUE	
98 0	341.23	6 98	6	7			
				CUSTN	IUM	54.000	
FEC XN PRI 103 0	BDT 356.55		CURRENT 0	NEXT PARAM	METER	VALUE	

Рис. 0.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102; Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE.TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок(17) обрабатывалось в диапазоне 10-12 минут.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму (рис. [-@fig:008]).

Рис. 0.8: Гистограмма распределения заявок в очереди

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй — заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать

одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. [-@fig:009], [-@fig:010]).

```
Model 3.gps
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 0.9: Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Model 3.1.1 - RE	PORT						
	суббо	га, июня 08,	2024 18:1	2:40			
STA	ART TIME	END	TIME BLOC	KS F	ACILITIES	STORAGES	
	0.000	480	.000 17	7	1	0	
	NAME		VALUE				
	RATOR		10001.00	0			
OPE	RATOR_Q		10000.00	00			
TABET.	T.O.C	BLOCK TYPE	FNTDV	COUNT	CURRENT C	NINT PETRY	
	1	GENERATE	201201		0		
	2	QUEUE	3	_	4	o	
	3	SEIZE	2	8	0	0	
	4	DEPART	2	8	0	0	
	_	ADVANCE	2	8	1	0	
		RELEASE	2		0	0	
		TERMINATE			0	0	
		GENERATE	1		0	0	
		QUEUE	1		3	0	
		SEIZE	1	_	0	•	
	11	DEPART ADVANCE	1	_	0	0	
			1	_	0	0	
		ADVANCE	1		0	0	
	14	RELEASE TERMINATE	1		0		
			1	-	0	-	
		GENERATE		1	0	_	
	17	TERMINATE		1	0	0	
FACILITY	ENTRIES	UTIL. AV	E. TIME AV	AIL.	OWNER PEND	INTER RETRY	DELAY
OPERATOR						0 0	
OHEHE	MAY C	ONT PHTDY P	NTDV(A) NT	TE COM	ד אער דיש	F NUT (0)	DETDV
QUEUE OPERATOR_Q	PIAA C	7 47	2 (U) AV	3 355	1. MVE.III	1 35 794	U
OLDWIOK_O	0	, 1,	2	3.333	34.20	. 35.761	v
FEC XN PRI		ASSEM			PARAMETER	VALUE	
42 0	487.	825 42	5	6			

Рис. 0.10: Отчёт по модели оформления заказов двух типов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=8 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- 'ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE.TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируем модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку noextra Release operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку extra ADVANCE 5,2) и только после этого является обработанным (рис. [-@fig:011]).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,noextra,extra
extra ADVANCE 5,2
noextra RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 0.11: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. [-@fig:012]).

35	0 4	187.726	35	U	-				
34			2.5	0	1				
2.4	0 4	182.925	34	7	8				
	PRI					PARAMETE	ER V	VALUE	
OPERATO	R_Q	1 0	33	25	0.054	0.7	781	3.220	0
QUEUE	M2 R Q	AX CONT. I	ENTRY EN	TRY(0) A	VE.CON	r. AVE.TI	IME A	AVE.(-0)	RETRY
OFERAIO		33 0.	700	11.140	1	31	0 (U
	ENTI R								
	11	I TERM	INATE		1		0	U	
	10	TERM: GENE	RATE		1		0	0 0	
		TERM:	LNATE		32		0	0	
NOEXTRA		RELE	ASE		32		0	0	
EXTRA		7 ADVAI	NCE		8		1	0	
	•	5 TRAN	SFER		33		0	0	
		5 ADVAI							
		DEPA							
		SEIZI							
	2	QUEU!	Ξ		33		0	0	
	1	GENEI QUEUI	RATE		33		0	0	
LABEL	1	LOC BLOCE	K TYPE	ENTRY	COUNT	CURRENT	COUNT	RETRY	
	OPERATOR_Q			10000.0	00				
	OPERATOR			10001.0					
	NOEXTRA			8.0					
	EXTRA			7.0					
	NAME			VALU					
			200.	000 1	1	_		U	
	START TIME)	480	000 1	1	1		1	

Рис. 0.12: Отчёт по модели оформления заказов двух типов заказов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

С помощью строки operator STORAGE 4 указываем, что у нас 4 оператора, затем к обычной процедуре генерации и обработки заявки добавляется, что заявку обрабатывает один оператор operator, 1, сегмент моделирования времени остается без изменений (рис. [-@fig:013]).

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 0.13: Модель оформления заказов несколькими операторами

Далее получим и проанализируем отчет (рис. [-@fig:014]).

s	TART TIME			FACILITIES S	
	0.000	400.000	,	Ü	1
	NAME		VALUE		
OP	ERATOR	100	000.000		
OP	ERATOR_Q	100	001.000		
LABEL	LOC BLOCK	TYPE E	NTRY COUN	T CURRENT COU	NT RETRY
	1 GENER	ATE	93	0	0
	2 QUEUE			0	0
	3 ENTER		93	0	0
	4 DEPAR	T	93	0	0
	5 ADVAN	CE	93	2	0
	6 LEAVE		91	0	0
	7 TERMI	NATE		0	0
	8 GENER.	ATE	1	0	0
	9 TERMI	NATE	1	0	0
OUEUE	MAX CONT. E	NTRY ENTRY	(0) AVE.CO	NT. AVE.TIME	AVE.(-0) RETRY
OPERATOR Q	1 0				0.000 0
-					
	CAP. REM. M				
OPERATOR	4 2	0 4	93 1	1.926 0.	482 0 0
	BDT			PARAMETER	VALUE
95 0	480.457				
93 0	482.805	93 5	6		

Рис. 0.14: Отчет по модели оформления заказов несколькими операторами

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=1 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE.TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE.(-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q, 2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30 ± 2 мин., чтобы проверить результаты изменений модели (рис. [-@fig:015]).

```
operator STORAGE 4
GENERATE 5,2
TEST LE Q$operator_q,2
QUEUE operator_q
ENTER operator_1
DEPART operator_q
ADVANCE 30,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 0.15: Модель оформления заказов несколькими операторами с учетом отказов клиентов

Проанализируем полученный отчет (рис. [~@fig:016]).

Model 4.3.1 - REPOR	т				
START	TIME	END TIME	BLOCKS	FACILITIES	STORAGES
(0.000	480.000	10	0	1
NA	ME		VALUE		
OPERATO	OR	100	000.000		
OPERATO	OR_Q	100	001.000		
LABEL	T.OC BT.O	CK TYPE - F	ENTRY COUN	T CURRENT CO	UNT RETRY
	1 GENI		94	27	0
	2 TEST	Ī	67	0	0
	3 QUE	JE	67	3	0
	4 ENT		64	0	0
	5 DEP		64	0	•
	6 ADV		64	4	
	7 LEA		60	-	0
	8 TERI		60	0	-
	9 GENI		1	0	0
	10 TERI	MINATE	1	U	0
QUEUE	MAX CONT.	ENTRY ENTRY	(0) AVE.CO	NT. AVE.TIME	AVE.(-0) RETE 20.576 27
OPERATOR_Q	3 3	67	2.70	1 19.347	20.576 27
STORAGE	CAP. REM.	MIN. MAX. H	ENTRIES AV	L. AVE.C. U	TIL. RETRY DELAY
OPERATOR	4 0	0 4	64 1	3.885 0	.971 0 3
EC XN PRI	BDT	ASSEM CURE	RENT NEXT	PARAMETER	VALUE
96 0	480.736		1		
62 0		62	5 7		
63 0	491.929		5 7		
64 0	495.070	02 (,		
65 0	499.648	65 6	5 7		

Рис. 0.16: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 94; обработано 60 заказа; 27 человек отказались оставлять заявки, поскольку очередь была более 2ух заявок.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- MAX=3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT=3 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=67 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=2,701 заявок от клиентов в среднем были в очереди;
- AVE.TIME=19,347 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=20,576 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4,

максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

Выводы

В результате была реализована с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернетмагазине;
- модель оформления заказов несколькими операторами.