

Diagrama de Radiação e Reposta em Frequência

Laboratório de Antenas e Propagação

Curso: Engenharia de Telecomunicações **Disciplina:** ANT029006 - Antenas e Propagação

Professor: Saul Silva Caetano

Aluna Luiza Kuze Gomes

Sumário

1	Objetivos	2
2	Introdução	2
3	Dados Coletados3.1 Diagrama de Radiação	
4	Análise 4.1 Diagrama de Radiação 4.2 Variação da Potência em Função da Frequência 4.3 Comparação com Antena Parabólica Comercial	6

1 Objetivos

- Obter e avaliar o diagrama de radiação de uma antena parabólica de translação.
- Observar o comportamento da recepção da antena em função da variação da frequência do sinal.

2 Introdução

O experimento foi realizado utilizando duas antenas parabólicas montadas em seus respectivos suportes na quadra do IFSC. Uma das antenas foi destinada à transmissão do sinal, enquanto a outra foi utilizada para a recepção.

Na primeira parte do experimento, foram obtidos dados para o levantamento do diagrama de radiação. Para isso, um gerador foi conectado à antena transmissora, configurado para fornecer uma tensão de 3 V e uma frequência de 1,9 GHz. Na antena receptora, utilizou-se um analisador de espectro com frequência central de 1,9 GHz e um *span* de 20 MHz. O procedimento consistiu em girar a antena transmissora de 20° em 20°, registrando em uma tabela a potência recebida em dBm. Inicialmente, as medições foram realizadas para um intervalo de 0° a 340° de rotação, com a presença de toda a turma próxima à antena receptora. Posteriormente, as medições foram repetidas com apenas dois alunos próximos à antena, no intervalo de 180° a 340°.

Na segunda parte do experimento, foram coletados dados para a análise da resposta em frequência da antena. Com as antenas parabólicas já posicionadas uma direcionada à outra, o gerador foi conectado à antena transmissora e ajustado para fornecer uma tensão de 3 V e uma frequência inicial de 1000 MHz. As medições de potência recebida foram realizadas para diferentes frequências, variando em um intervalo de 1000 MHz a 2800 MHz.

3 Dados Coletados

3.1 Diagrama de Radiação

A Tabela 1 apresenta os dados da primeira medição, realizada com todos os alunos próximos à antena receptora, criando uma condição com maiores obstáculos à propagação do sinal. Originalmente, a tabela fornecida na atividade incluía apenas os ângulos e as potências em dBm, sendo posteriormente expandida. Ressalta-se que os valores foram arredondados, o que pode introduzir pequenas margens de imprecisão.

O gráfico correspondente (Figura 1) é apresentado em coordenadas polares e ilustra a relação entre o ângulo e Po/P_{max} em dB.

Tabela 1: Dados de Potência Recebida na Primeira Medição (Presença da Turma Próxima à Antena)

Ângulo (°)	Potência (dBm)	Potência (nW)	Po/Pmax (W)	Po/Pmax (dB)
0	-38,5	141,254	1,000	0,00
20	-44,8	33,113	0,230	-6,38
40	-51,0	7,943	0,060	-12,21
60	-58,0	1,585	0,010	-20,00
80	-53,5	4,467	0,030	-15,23
100	-63,0	0,501	0,003	-25,22
120	-45,7	26,915	0,190	-7,21
140	-56,0	2,512	0,020	-17,00
160	-54,0	3,981	0,030	-15,23
180	-62,0	0,630	0,004	-23,98
200	-58,0	1,585	0,010	-20,00
220	-50,5	8,913	0,060	-12,21
240	-54,0	3,981	0,030	-15,22
260	-50,0	10,000	0,070	-11,55
280	-48,8	13,183	0,090	-10,46
300	-50,0	10,000	0,070	-11,55
320	-46,8	20,893	0,150	-8,24
340	-49,0	12,589	0,090	-10,46

Fonte: Elaborado pelos próprios autores

Figura 1: Diagrama de Radiação da Primeira Medição (Turma Próxima)

Fonte: Elaborado pelos próprios autores

Em seguida, foi realizada uma nova medição no intervalo de ângulos entre 180° e 340°, com apenas dois alunos próximos à antena receptora. Os dados coletados nessa configuração, juntamente com os registros dos ângulos anteriores, estão apresentados na Tabela 2. O gráfico correspondente aos dados da Tabela 2 está representado na Figura 2. Ele é apresentado em coordenadas polares e

ilustra a relação entre o ângulo e o valor de Po/P_{max} em dB.

Tabela 2: Dados de Potência Recebida na Segunda Medição (Apenas 2 Alunos Próximos à Antena)

Ângulo (°)	Potência (dBm)	Potência (nW)	Po/Pmax (W)	Po/Pmax (dB)
0	-38,5	141,254	1,000	0,0
20	-44,8	33,113	0,234	-6,38
40	-51,0	7,943	0,056	-12,21
60	-58,0	1,585	0,011	-20,00
80	-53,5	4,467	0,032	-15,23
100	-63,0	0,501	0,003	-25,22
120	-45,7	26,915	0,191	-7,21
140	-56,0	2,512	0,018	-17,00
160	-54,0	3,981	0,028	-15,23
180	-46,5	22,387	0,158	-8,01
200	-52,8	5,248	0,037	-14,32
220	-60,0	1,000	0,007	-21,55
240	-66,0	0,251	0,002	-26,99
260	-53,3	4,677	0,033	-14,81
280	-51,5	7,079	0,050	-13,01
300	-50,0	10,000	0,071	-11,49
320	-49,5	11,220	0,079	-11,02
340	-43,0	50,119	0,355	-4,50

Fonte: Elaborado pelos próprios autores

Figura 2: Diagrama de Radiação da Segunda Medição (Turma Distante)

Fonte: Elaborado pelos próprios autores

3.2 Variação da Potência em Função da Frequência

Os dados relacionados à análise de potência em função da frequência estão apresentados na Tabela 3. Com base nesses dados, foi elaborado um gráfico cartesiano, conforme apresentado na Figura 3.

Tabela 3: Dados de frequência e Potência

f (MHz)	Potência (dBm)
1000	-63,5
1100	-53,0
1300	-45,0
1500	-45,5
1600	-32,0
1700	-28,3
1750	-24,2
1800	-24,0
1825	-24,7
1850	-25,5
1875	-26,4
1900	-26,0
1925	-25,8
1950	-27,3
1975	-27,9
2000	-31,2
2050	-33,8
2100	-24,7
2200	-36,0
2300	-32,0
2500	-29,0
2700	-27,8
2800	-30,5

Fonte: Elaborado pelos próprios autores

Gráfico de Potência Recebida em Função da Frequência -25 -30-35Potência (dBm -40 -45 -55Potência Recebida -60 Frequência de Ressonância Frequência de Corte -651000 1500 2000 2250 1750 Frequência (MHz)

Figura 3: Gráfico de Potência e Frequência

Fonte: Elaborado pelos próprios autores

4 Análise

4.1 Diagrama de Radiação

Como as medições foram realizadas em um ambiente fechado, com diversos materiais e equipamentos que poderiam impactar os resultados, observamos grandes variações nos dados coletados.

Conforme a primeira medição (Tabela 1) e a segunda medição (Tabela 2), podemos verificar que a potência recebida foi significativamente maior quando as antenas estavam alinhadas frontalmente (0°) em comparação com quando estavam opostas (180°). Esse comportamento está bem evidenciado em ambos os diagramas de radiação (Figura 1 e Figura 2).

Além disso, é importante destacar a diferença entre a primeira e a segunda medição (Tabela 2). Na segunda medição, com apenas dois alunos próximos à antena receptora, a influência de obstáculos foi reduzida. Por exemplo, para o ângulo de 180°, a relação Po/P_{max} foi de aproximadamente $-23,98\,dB$ na primeira medição e $-8,01\,dB$ na segunda medição, evidenciando uma melhora significativa na transmissão do sinal.

No entanto, algumas discrepâncias foram observadas, provavelmente causadas pelas características do ambiente de medição. Por exemplo, no ângulo de 240°, a relação Po/P_{max} na primeira medição foi de $-15,22\,dB$, enquanto na segunda medição foi de $-26,99\,dB$, indicando piora na transmissão mesmo com menos pessoas próximas à antena. Porém, a ideia anterior prevalece de que na segunda medição, temos condições melhores.

4.2 Variação da Potência em Função da Frequência

A análise da resposta em frequência (Tabela 3 e Figura 3) mostrou que a potência recebida varia conforme a frequência do sinal. Observa-se um pico de potência em torno da frequência de 1750 MHz, que corresponde à frequência de ressonância da antena, onde a eficiência de transmissão e recepção é máxima.

À medida que a frequência se afasta do ponto central, seja para valores menores ou maiores, a potência recebida tende a diminuir. Entretanto, os picos e vales observados no gráfico para determinadas frequências podem ser explicados pela influência do ambiente de medição, como reflexões e interferências de sinais, que geram flutuações na potência recebida. Um exemplo disso é

a potência de -24, 7 dBm registrada na frequência de 2100 MHz. Esse resultado específico pode estar associado a um erro durante a medição da frequência também, pois se distancia significativamente dos demais valores apresentados no gráfico.

Além disso, foi realizada uma pesquisa para identificar o que opera na faixa de 1750 MHz a 1800 MHz, visando investigar as frequências mais altas registradas durante o experimento. Conforme o diagrama de Atribuição de Faixas de Frequências no Brasil, da Anatel [2], essa faixa é atribuída majoritariamente aos serviços de comunicação móvel.

4.3 Comparação com Antena Parabólica Comercial

Foi realizada uma pesquisa para identificar uma antena comercial que opere em uma frequência próxima à utilizada nos testes experimentais. A antena RD-2G24, conforme descrito no datasheet [1], opera na faixa de 2.3 GHz a 2.7 GHz e foi selecionada para a comparação. Seu diagrama de radiação está ilustrado na Figura 4.

Figura 4: Diagrama de Radiação RD-2G24

Fonte: Datasheet RD-2G24 [1]

O diagrama de radiação da antena parabólica comercial RD-2G24 apresenta um feixe principal estreito e bem definido, com lobos laterais significativamente controlados. Por outro lado, o diagrama de radiação obtido durante os testes experimentais apresentou maior variabilidade.

Adicionalmente, enquanto a RD-2G24 foi projetada para maximizar a diretividade e a eficiência em uma faixa de frequências específica, as condições experimentais não ofereceram o mesmo controle: alinhamento manual das antenas e interferências no ambiente, há de se considerar também a distância das antenas no momento da simulação, que estavam relativamente próximas. Isso resultou em flutuações mais perceptíveis no diagrama de radiação obtido durante os testes, especialmente nos lobos laterais e na definição do feixe principal.

Referências

- [1] RocketDish RD-2G24 Datasheet. Acesso em: 23 nov. 2024. Ubiquiti Networks. 2016. URL: https://dl.ubnt.com/datasheets/rocketdish/rd_ds_web.pdf.
- [2] Agência Nacional de Telecomunicações (Anatel). Regulamento sobre Canalização e Condições de Uso de Radiofrequências na Faixa de 1800 MHz. Acesso em: 23 nov. 2024. 2024. URL: https://www.anatel.gov.br/Portal/verificaDocumentos/documento.asp?numeroPublicacao=325100&pub=principal&filtro=1&documentoPath=325100.pdf.