Linear Algebra I: Problem Set II

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains the solutions to the problem set II of Linear Algebra I 2015 at Courant Institute of Mathematical Sciences.

Question 1.

Solution. By the definition of the map O, and the fact that 0x = 0 for all $x \in X$, as X is a linear space, we have

$$\begin{array}{rcl} O(ax) & = & 0 \\ & = & a0 \\ & = & aO(x), \end{array}$$

for all $x \in X$. Furthermore, again by the definition of the map O, it follows that

$$O(x + y) = 0$$

= 0 + 0
= $O(x) + O(y)$,

for all $x, y \in X$. Therefore, we have shown that O is linear.

Let A be another map such that $A \circ A = O$. Note that this implicitly gives that the linear space X under consideration is a non-trivial one, as otherwise the only map available is O. Suppose for sake of contradiction that there exists an inverse map of A, denoted by A^{-1} . Note that by the existence of an inverse map, A and A^{-1} are bijective maps, and thus the domain and range of these maps are all X. Observe that $O \circ A^{-1} = O$. By using the associativity of map composition, $O = A \circ A$ and $O = O \circ A^{-1}$, we have

$$I = A \circ A^{-1}$$

$$= A \circ I \circ A^{-1}$$

$$= (A \circ A) \circ A^{-1} \circ A^{-1}$$

$$= (O \circ A^{-1}) \circ A^{-1}$$

$$= O \circ A^{-1}$$

$$= O.$$

We have reached a conclusion that I=O. As discussed before, the linear space X is nontrivial. Hence, I=O is a contradiction. Consequently, A does not have an inverse map.

Question 2.

Solution. Let $x \in X$. Consider [A, [B, C]] + [C, [A, B]] + B, [C, A]](x). Given the definition of the commutator, it follows that

$$[A, [B, C]](x) = [A, B \circ C - C \circ B](x)$$

$$= (A \circ (B \circ C - C \circ B) - (B \circ C - C \circ B) \circ A)(x)$$

$$= (A \circ B \circ C - A \circ C \circ B - B \circ C \circ A + C \circ B \circ A)(x).$$

By the associativity of map composition and the linearity of the maps, which is called "Composition is distributive with respect to the addition of linear maps" in Lax, it follows that

$$[A[B,C]](x) = (A \circ B \circ C)(x) - (A \circ C \circ B)(x) - (B \circ C \circ A)(x) + (C \circ B \circ A)(x)$$

= $A(B(C(x))) - A(C(B(x))) - B(C(A(x))) + C(B(A(x))).$

By symmetry, it follows that

$$[C, [A, B]](x) = C(A(B(x))) - C(B(A(x))) - A(B(C(x))) + B(A(C(x))),$$

and

$$[B, [C, A]](x) = B(C(A(x))) - B(A(C(x))) - C(A(B(x))) + A(C(B(x)))$$

It follows that

$$[A, [B, C]] + [C, [A, B]] + [B, [C, A]](x) = 0.$$

As x was arbitrary, we have shown that [A, [B, C]] + [C, [A, B]] + [B, [C, A]] = O.

Question 3.

Solution. Let T be a linear map, and $T^{'}$ be a transpose map of T. Assume that T and $T^{'}$ are both invertible. The statement that we want to show asserts that

$$(T^{-1})^{'} = (T^{'})^{-1},$$

which states that $(T^{-1})'$ is the inverse of T'. By the definition of inverse, it suffices to show that

$$T^{'}(T^{-1})^{'} = I^{'},$$

 $(T^{-1})^{'}T^{'} = I^{'}.$

We have previously shown in class that for any linear map $(ST)^{'}=T^{'}S^{'}$. It follows that

$$T'(T^{-1})' = (T^{-1}T)'$$

= I' ,
 $(T^{-1})'T' = (TT^{-1})'$
= I' .

Question 4.

Solution. We have that the dimension of the range space of T is 1. Let r be the vector that spans the range space. Extend the set $\{r\}$ with linearly independent vectors to obtain the basis set that spans X entire space. Denote this set as $\{r, v_1, ..., v_{n-1}\}$. Observe that $T(v_i) = 0$ for all i as they belong to the null-space. Let $x \in X$. Then, there exists a set of scalars such that

$$x = a_1r + a_2v_1... + a_nv_{n-1}.$$

Consider T(x). As $\{r\}$ spans the range space, there exists a scalar c such that T(x)=cr. It follows that

$$tr = T(a_1r + a_2v_1... + a_nv_{n-1}),$$

which by linearity of T and the property of null-space mentioned above, can be simplified as,

$$cr = rT(a_1) + a_2T(v_1)... + a_nT(v_{n-1}),$$

= $rT(a_1).$

Hence, we have $c = T(a_1)$. It follows that

$$T^{2}(x) = T(T(x))$$

$$= T(cr)$$

$$= cT(r)$$

$$= cT(x).$$

We have shown that $T^2 = cT$. Now, assume that $c \neq 1$. Consider the linear map $I + \frac{1}{1-c}T$. By the linearity of maps, which allows the compositions to distribute, it follows that

$$(I-T) \circ (I + \frac{1}{1-c}T) = I \circ I + I \circ \frac{1}{1-c}T - T \circ I - T \circ \frac{1}{1-c}T$$

$$= I + \frac{1}{1-c}T - T - \frac{1}{1-c}T^{2}$$

$$= I + \frac{1}{1-c}T - T - \frac{c}{1-c}T$$

$$= I.$$

Hence, we have shown that if $c \neq 1$, I - T is invertible.

Question 5.

Solution. Let A and B be a 2×2 matrix such that

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}.$$

Observe that both A and B are nonzero matrices and

$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$