Mercari – price suggestion challenge

Bojana Derić, Ivan Emanuel Pavlov, Tatjana Ramljak, Lara Rajković

25. lipnja 2019.

Uvodni opis problema

- Mercari japanska aplikacija za prodaju i kupnju proizvoda.
- Natjecanje na Kaggleu
- Cilj: napraviti dobru predikciju cijene proizvoda
- Skup podataka za učenje sadrži 1482535 redova
- Značajke: train_id, name, item_condition_id, category_name, brand_name, shipping, item_description, ciljna varijabla price

Pretprocesiranje i LDA

- item_description smo tokenizirali, izbacili *stop words*, stvorili bigrame i trigrame te lematizirali pomoću paketa *spacy* i *gensim*
- Latent Dirichlet Allocation (LDA) topic model istreniran na 20, potom 5 tema
- dobivene distribucije tema u dokumentima 5 novih značajki

Slika: teme i frekvencije riječi

Slika: frekvencije riječi teme 1

Slika: frekvencije riječi teme 2

Slika: frekvencije riječi teme 3

Slika: frekvencije riječi teme 4

Slika: frekvencije riječi teme 5

Ridge regresija i LightGBM #1

Pretprocesiranje:

- nedostajuće vrijednosti
- item_condition_id i shipping dummy varijable
- category_name podijeljen u tri kategorije i transformiran pomoću
 CountVectorizera
- brand_name pomoću LabelBinarizera
- item_description pomoću TfidfVectorizera
- name pomoću TfidfVectorizera za Ridge i CountVectorizera za LGBM

Dobivena rijetka matrica dimenzije 1482535 × 161875

LightGBM #2 i CatBoost

- kategorijske varijable bez obrade
- dodane distribucije tema, srednje vrijednosti tf-idf težina i duljine stringova od name i item_description
- optimizacija parametara

Slika: feature importance LGBMa

LightGBM #2 i CatBoost

Slika: feature importance CatBoosta

Neuronske mreže - pretprocesiranje

- Nedostajuće vrijednosti
- Obrada kategorijskih varijabli category_name i brand_name → LabelEncoder iz sklearna.
- Obrada tekstualnih varijabli name i item_description → tokenizacija Kerasovim tokenizerom
- Sekvence jednake duljine \rightarrow pad_sequences \rightarrow name ograničavamo na 10, item_description na 75.

Slika: Distribucija broja riječi u

Slika: Distribucija broja riječi u item_description

Neuronske mreže - treniranje

- ullet Korišteni su embedding layeri u Kerasu o variranje dimenzije embeddinga
- Kako su name i item_description tekstualne varijable RNN layeri su dobar kandidat za odabir aritekture.
- GRU tip RNN daje puno bolje rezultate od LSTM 20 ćelija za item_description i 10 za name
- Batch Normalization i Gradient Clipping nije pomoglo
- Isprobane su i CNN, ali nisu imale tako dobre rezultate
- Korišten dropout 0.1 (isprobani i drugi naravno)
- Povećanje broja epoha i smanjenje batch size
- Dodavanje dense layera s aktivacijskom funkcijom RELU (bolji rezultati) - isprobavali s raznim brojem neurona i broja layera
- Izlazni *layer* je jedan *dense layer* s linearnom aktivacijskom funkcijom
 → predviđamo kontinuiranu vrijednost

Ansambl

- $y_p = \sum_{i=1}^5 w_i y_i$ pri čemu su w_i težine takve da je $\sum_{i=1}^5 w_i = 1$, y_i su predikcije pojedinih modela i y_p je konačna predikcija.
- Težine su dobivene tako da greška predikcija bude što manja:
 - $w_1 = 0.021 \ LightGBM$ s kategorijama
 - $w_2 = 0.379 \ LightGBM \ s \ matricom$
 - $w_3 = 0.068$ Ridge regresija
 - $w_4 = 0.016$ CatBoost
 - $w_5 = 0.516$ Neuronska mreža

Rezultati

- Originalni training skup podijeljen na novi training i validacijski skup u omjeru 95 : 5
- Računali smo RMSLE na validacijskom skupu
- $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(log(p_i+1)-log(a_i+1))^2}$ pri čemu su
 - n broj podataka u skupu,
 - p_i predviđene cijene,
 - a; stvarne cijene.

Rezultati

- LightGBM treniran na matrici daje rezultat 0.46105.
- Ridge regresija trenirana na matrici: 0.47196
- CatBoost: 0.52900
- LightGBM s kategorijama: 0.53438
- RNN: 0.44817 i 0.44212
- *CNN*: 0.45740
- ansambl: 0.43254

Što smo naučili?

Hvala na pažnji!