ВВЕДЕНИЕ В ТЕОРИЮ ПРЕДСТАВЛЕНИЙ КОНЕЧНЫХ ГРУПП ШЕВАЛЛЕ

А.Е. ЗАЛЕССКИЙ

(Самара 2015)

Введение

Фундамент теории представлений групп Шевалле был заложен в работе Делиня и Люстига 1976 года, до того времени знания в этой области были фрагментарны. С тех пор эта область стремительно развивалась, и в настоящее время является одним из самых глубоких и сложных разделов теории представлений конечных групп.

Несмотря на важность самой теории, изза ее сложности она остается мало знакомой даже специалистам в теории представлений, кроме занимающихся ее дальнейшей разработкой. Между тем было бы абскурантизмом игнорировать выдающиеся достижения теории, без знания которой едва ли возможно получать ныне крупные результаты в теории представлений конечных групп.

В моих трех лекциях я попытаюсь дать некое введение в эту теорию.

Напомню, что группа Шевалле есть частный случай объекта, сейчас называемото "конечная редуктивная группа". Видимо, надо пояснить, что это такое.

Пусть С - связная редуктивная алгебраическая группа, определенная над конечным полем \mathbb{F}_q из q элементов, $\overline{\mathbb{F}}_q$ алгебраически замкнутое поле, содержащее \mathbb{F}_q . Под алгебраической группой мы будем понимать группу С матриц, скажем $(n \times n)$ -матриц, где n произвольно, но фиксировано, такую, что множество элементов группы является алгебраическим многообразием. Если x_{ij} ($1 \le i, j \le$ n) - множество независимых переменных, то С должна быть множеством решений (т.е. матриц над $\overline{\mathbb{F}}_q$) некоторой системы полиномиальных уравнений от с неизвестными x_{ij} . Например, ортогональная группа задается условием

$$\mathbb{G} = \{ M \in Mat_n(\overline{\mathbb{F}}_q) : M^t M = \mathrm{Id} \},$$

которое легко записать такими уравнениями. (Здесь M^t - транспонированная матрица.)

Если коэффициенты лежат в поле \mathbb{F}_q , то говорят, что группа \mathbb{G} определена над \mathbb{F}_q . Это условие всегда предполагается выполненным.

Группа © называется связной, если она не имеет нетривиальных подгрупп конечного индекса, и это свойство исключительно важно в теории.

На множестве $Mat_n(\overline{\mathbb{F}}_q)$ определим отображение Фробениуса $F:(m_{ij})\to (m_{ij}^q)$. Если $a\in \mathbb{F}_q$, то $a^q=a$. Следовательно, если группа $\mathbb G$ определена над $\mathbb F_q$, то коэффициенты уравнений, определяющих группу $\mathbb G$, не меняются, так что отображение F оставляет множество $\mathbb G$ инвариантным, то есть, $F(g)\in \mathbb G$ при $g\in \mathbb G$.

Общепринято обозначение $\mathbb{G}^F = \{g \in \mathbb{G} : F(g) = g\}$. Нетрудно заметить, что $\mathbb{G}^F \subset Mat_n(\mathbb{F}_q)$ и поэтому \mathbb{G}^F является конечной группой. Если группа \mathbb{G} связна, то \mathbb{G}^F называют конечной редуктивной группой, или группой Шевалле.

Заметим, что конечная редуктивная группа существует не сама по себе, а как пара (\mathbb{G}, F) .

Теория Делиня-Люстига дает гигантский прорыв в понимании неприводимых представлений группы \mathbb{G}^F , в особенности, в случае, когда группа \mathbb{G} проста. Более точно, это вклад в теорию характеров этих групп.

Группы вида \mathbb{G}^F , как абстрактные группы, могут быть построены с помощью теории BN-пар. Однако в рамках теории BN-пар не видно никакого способа получить существенную часть результатов теории Делиня-Люстига. В ней алгебраические группы играют кардинальную роль.

Формально, термин "группа Шевалле" обычно используют для случая, когда группа С совпадает с ее коммутантом, и тогда группу $\mathbb G$ и даже $\mathbb G^F$ можно определить с помощью экспоненциального отображения на матричной алгебре Ли, как это и делал сам Шевалле. Переход к использованию отображения Фробениуса разработан Стейнбергом. Он дал аксиоматическое определение отображения Фробениуса как сюрьективного гомоморфизма алгебраической группы $F:\mathbb{G}
ightarrow$ \mathbb{G} , у которого группа \mathbb{G}^F конечна. Если \mathbb{G} пробегает все простые односвязные алгебраические группы, а F - все их гомоморфизмы Фробениуса, то \mathbb{G}^F , факторизованная по центру, пробегает все простые конечные группы, кроме знакопеременных и спорадических. (Имеется несколько случаев, когда \mathbb{G}^F не проста.)

Параметризация неприводимых представлений

В этих лекциях речь пойдет о представлениях над полем комплексных чисел. Главной задачей считается описание неприводимых представлений. В первую очередь требуется дать их параметризацию, без этого многие важные задачи нельзя даже сформулировать.

Число неприводимых представлений конечной группы равно числу сопряженных классов, но в общем случае никому не удалось найти естественную параметризацию представлений в терминах классов.

Делинь и Люстиг отчасти справились с этой задачей для конечных редуктивных групп, однако ответ у них является искаженной версией желаемого. А именно, для группы $G = \mathbb{G}^F$ вводится так называемая двойственная группа G^* , похожая на исходную, но другая. Например, для для симплектической группы $Sp_{2n}(q)$ двойственной является ортогональная группа $SO_{2n+1}(q)$. Порядки групп G и G^* совпадают, но число сопряженных классов - не всегда.

Множество неприводимых характеров ${\rm Irr}\,G$ группы G разбивается на серии Люстига, везде обозначаемые через \mathcal{E}_s , где s пробегает представители сопряженных классов полупростых элементов в G^* . Это выглядит шагом в нужном направлении, тем более, что во многих случаях группы G и G^* изоморфны.

Каждый элемент $g \in G^*$ имеет вид g =su, где s полупрост, u унипотентен и gu =ug. Это выражение называется разложением Жордана. Ясно, что два элемента g=su и g'=s'u' сопряжены тогда и только тогда, когда пары (s,u) и (s',u')сопряжены. Если s=s', то su и su' сопряжены в G^* тогда и только тогда, когда u, u' сопряжены в $C_{G^*}(s)$. Это наводит на мысль, что параметризация неприводимых представлений внутри серии Люстига \mathcal{E}_s должна быть в терминах классов сопряженных унипотентных элементов в $C_{G^*}(s)$. В некоторых случаях это так, но в общем случае так не получается. Тем не менее, параметризация неприводимых представлений в \mathcal{E}_s дается в терминах так называемых унипотентных характеров группы $C_{G^*}(s)$.

В группе G унипотентные характеры - это в точности элементы множества \mathcal{E}_1 , то есть для s=1. Если группа $C_{\mathbb{G}^*}(s)$ связна, то унипотетные характеры группы $C_{G^*}(s)$ определяются так же, как и для G, то есть это элементы серии Люстига \mathcal{E}_1 для группы $C_{G^*}(s)$, взятой вместо G.

Группа $C_{G^*}(s)$ совпадает с $C_{\mathbb{G}^*}(s)^F$, но $C_{\mathbb{G}^*}(s)$ не всегда связна. Значит, $C_{G^*}(s)$ не всегда является конечной редуктивной группой, и к ней неприменима общая теория. Делинь и Люстиг обходят эту трудность, ограничивая себя группами G для которых $C_{\mathbb{G}^*}(s)$ всегда связна, - такие группы можно определить в общих терминах как группы со связным центром. Другими словами, центр $Z(\mathbb{G})$ группы \mathbb{G} является связной алгебраической группой. При этом условии уже можно утверждать, что число характеров в \mathcal{E}_s попросту равно числу унипотентных характеров группы $C_{G^*}(s)$.

Заметим, что группа из одного элемента считается связной. Поэтому теория применима к случаю, когда $Z(\mathbb{G})=1$, например, к группе $PSL_n(\overline{\mathbb{F}}_q)$. В группе $GL_n(\overline{\mathbb{F}}_q)$ центр также связен.

Для числа унипотетных характеров и их степеней имеются явные формулы, по крайней мере для групп $G=\mathbb{G}^F$, где \mathbb{G} - простая алгебраичекая группа. В случае $G=GL_n(q)$ унипотентные характеры - это в точности неприводимые компоненты индуцированного характера 1_B^G , где 1_B обозначает тривиальный характер подгруппы Бореля B группы G, а верхний индекс G означает индуцирование на G этого характера.

Свойства неприводимых характеров

В этом разделе мы предполагаем, что группа $\mathbb G$ имеет связный центр. Пусть p - характеристика поля определения группы Шевалле G. Характер минимальной степени в $\mathcal E_s$ единственен и называетя полупростым. Его степень взаимно проста с p. Степени остальных характеров в $\mathcal E_s$ кратны степени полупростого характера, отличаясь на множитель, равный степени некоторого унипотентного характера группы $C_{G^*}(s)$.

Степень полупростого характера выражается простой формулой:

$$\frac{|G^*|_{p'}}{|C_{G^*}(s)|_{p'}},$$

где индекс p' означает взятие дополнения к p-части в порядке группы.

(Например, если |G|=36 и p=2, то $|G|_p=4$ и $|G|_{p'}=9$.)

Следовательно, степень произвольного характера в \mathcal{E}_s имеет вид

$$\frac{|G^*|_{p'}}{|C_{G^*}(s)|_{p'}} \cdot \nu,$$

где ν - натуральное число. Сравнительно недавно было доказано, что $\nu \leq |C_{G^*}(s)|_p$, правая часть здесь - это p-часть порядка группы $C_{G^*}(s)$.

Характер наибольшей степени в \mathcal{E}_s - то-же один и называется регулярным, и его степень отличается множителем $|C_{G^*}(s)|_p$. Регулярный характер может совпадать с полупростым, и это имеет место в точности тогда, когда порядок группы $C_{G^*}(s)$ взаимно прост с p.

К сожалению, формула для степени характера не распространяется на значения характера на других элементах групны G. О свойствах индивидуальных характеров известно относительно мало.

Пример. $G = GL_n(q)$. Тогда $G \cong G^*$ и $|G^*| = q^{n(n-1)/2}(q^n-1)(q^{n-1}-1)\cdots(q-1)$. Значит, $|G^*|_{p'} = (q^n-1)(q^{n-1}-1)\cdots(q-1)$. Группа G^* содержит много элементов s с условием $|C_{G^*}(s)| = q^n - 1$. В частности, для таких элементов $|C_{G^*}(s)|_p = 1$ и, значит, серия Люстига \mathcal{E}_s состоит из одного характера χ_s . Его степень $\chi_s(1)$ равна $(q^{n-1}-1)\cdots(q-1)$.

Представление Гельфанда-Граева

Пусть U - силовская p-подгруппа группы G. В 1962 г. Гельфанд и Граев выдвинули гипотезу о том, что существует одномерное представление λ группы U, такое, что индуцированное представление λ^G - без кратностей, то есть все неприводимые компоненты имеют кратность 1. Они доказали это для полной линейной группы, а затем Стейнберг нашел доказательство в общем случае.

Мотивировка этой работы, видимо, была связана с желанием построить представление, компонентами которого были бы все представления группы, притом с кратностью 1. Представление Гельфанда-Граева не давало всех представлений, но казалось шагом в правильном направлении.

Истинно важную роль это представление получило в теории Делиня-Люстига. Оказалось, что его неприводимые компоненты - в точности те, чьи характеры регулярны. В частности, оно дает по одному представителю из каждой серии Люстига, причем из каждой серии выбирает представление максимальной размерности! Более того, представление Гельфанда-Граева играет большую роль в доказательсте целого ряда глубоких результатов теории Делиня-Люстига.

Индуцирование с одномерного представления силовской p-подгруппы не является новым приемом. Я заинтересовался вопросом, насколько часто таким образом можно получить представление без кратностей. Ограничившись простыми конечными группами и используя их классификацию, я получил следующий результат (2013):

Теорема. Пусть G - неабелева конечная простая группа и U - её силовская p-подгруппа для некоторого простого числа p. Пусть λ - одномерное представление группы U. Предположим, что λ^G - представление без кратностей. Тогда либо G изоморфна группе Шевалле в характеристике p, либо $G = PSL_2(q)$, где либо G = q+1, либо G = q+1 или G = q+1

Это говорит об уникальности представления Гельфанда-Граева.

Из того, что сказано ранее о полупростых и регулярных характерах, вытекает следующее.

Если ρ - неприводимая компонента представления Гельфанда-Граева и d - его степень, то запишем $d=p^kd'$, где d' не делится на p. Тогда d' - степень некоторого неприводимого представления группы G.

Представление Стейнберга

Еще одно уникальное представление, играющее громадную роль в теории Делиня-Люстига - это представление Стейнберга. Оно было введено и исследовано Стейнбергом в серии работ 1951 - 1968 гг В то время не было и намека, что оно может стать мощным инструментом в общей теории характеров групп Шевалле.

Обозначим его характер через St или St_G . Этот характер обладает следующими важными свойствами:

он неприводим, обращается в нуль на неполупростых элементах, для полупростого $g \in G$ определяется формулой

$$St(g) = \pm |C_G(g)|_p.$$

В частности, его степень равна $|G|_p = |U|$.

Отчасти его роль связана со следующим фактом: если $|C_{G^*}(s)|_p=1$ и группа $C_{\mathbb{G}^*}(s)$ связна, то \mathcal{E}_s состоит из одного характера, который на полупростых элементах совпадает с θ^G/St , где θ - характер некоторого максимального тора в G, и θ^G - индуцированный характер.

Здесь уместно остановиться на понятии максимального тора в конечных редуктивных группах. В алгебраической группе максимальные торы сопряжены. Однако при рассмотрении эндоморфизма Фробениуса $F: \mathbb{G} \to \mathbb{G}$ приходится выделять F-инвариантные максимальные торы \mathbb{T} , то есть с условием $F(\mathbb{T}) = \mathbb{T}$.

Максимальным тором в G называют подгруппу вида $\mathbb{T} \cap G$, где \mathbb{T} есть F-инвариантный максимальный тор в \mathbb{G} . Максимальные торы в G уже не сопряжены.

Как правило, каждый максимальный тор T^* в G^* содержит элементы s такие, что $C_{G^*}(s) = T^*$. Поэтому группа G имеет много характеров степени $|G^*|/|T^*|$ для каждого максимального тора T^* группы G^* .

Серии Хариш-Чандры

Каждая конечная редуктивная группа является группой с BN-парой (или системой Титса). (В общем случае BN-пара G состоит из трех подгрупп, одна из которых - p-подгруппа Силова U, другая - ее дополнение T в $N_G(U)$, (т.е. $N_G(U)$ = NU), и третья - группа Вейля W - как правило, изоморфна $N_G(T)/T$. Эти три подгруппы удовлетворяют некоторым условиям, одно из которых состоит в том, что T абелева. Термин BN-пара введен Титсом и им же разработана общая теория таких групп. Теория представлений конечных групп с BN-парой разработана в основном Кэртисом.

Таким образом, конечные редуктивные группы можно определить в терминах групп с ВN-парой. Однако на языке групп с ВN-парой не удается получить многие важные результаты теории Делиня-Люстига. Тем не менее, существенная часть общей теории представлений конечных редуктивных групп получена в рамках теории групп с ВN-парой. Одной из них является двойственность Кэртиса (или Кэртиса-Алвиса), а другая - так называемая философия Хариш-Чандры, разработанная им для представлений групп Ли.

Дело в том, что в терминах групп с BNпарой можно определить параболические подгруппы, один из ключевых объектов структурной теории конечных редуктивных групп и их теории представлений. Необходимые определения хорошо известны специалистам по теории алгебр Ли, и имеются в главе IV книги Бурбаки "Групны и алгебры Ли".

Ключевой прием в теории представлений - индуцирование с представления подгруппы, но в теории редуктивных группосновную роль играет частный случай, называемый индукцией Хариш-Чандры.

Определение можно ввести для любой конечной группы G. Пусть U - подгруппа и $L = N_G(U)/U$. Каждое представление λ группы L можно рассматривать как представление группы $N_G(U)$, просто объявив, что U лежит в ядре представления. Это представление удобно обозначить через $\overline{\lambda}$, а обычное индуцированное представление обозначим через $\overline{\lambda}^G$.

Сопоставление представления $\overline{\lambda}^G$ представлению λ и называется индукцией Хариш-Чандры.

Это применяется к случаю, когда $N_G(U)$ - параболическая подгруппа конечной редуктивной группы G, и U - унипотентный радикал группы $N_G(U)$. Фактор $L=N_G(U)/U$ называют подгруппой Леви, в этом случае L отщепляется, то есть, $N_G(U)=UL$.

Самый простой и естественный случай - когда U - максимальная унипотентная подгруппа; тогда $N_G(U)$ совпадает с подгруппой Бореля B, а T - с максимальный тором (часто называемым расщепимым). Поскольку T - абелева группа, представления λ одномерны, и значит $\dim \overline{\lambda}^G = |G|/|B|$.

Множество неприводимых компонент представлений $\overline{\lambda}^G$, когда λ пробегает ${\rm Irr}\,T$ образует главную (или основную) серию неприводимых представлений группы G. Их можно описать как ${\rm Irr}\, 1_U^G$, - множество неприводимых компонент представления 1_U^G , индуцированного с тривиального представления группы U.

Представление $\overline{\lambda}^G$, вообще говоря, приводимо, и имеется довольно полная информация о его строении. Она дается в терминах группы Вейля W соответствующей ВN-пары. Группа W нормализует T и, тем самым, действует естественным образом на группе характеров Irr T группы T. Значит, можно определить подгруппу $W_{\lambda} = C_W(\lambda)$ элементов, фиксирующих λ .

Теорема. Число неприводимых компонент в $\overline{\lambda}^G$ равно числу классов сопряженных элементов в W_λ . Более того, существует биекция множеств $\beta: \operatorname{Irr} \overline{\lambda}^G \to \operatorname{Irr} W_\lambda$, такая, что кратность, с которой неприводимое представление ρ группы G появляется в $\overline{\lambda}^G$, совпадает с $\dim \beta(\rho)$.

Общая теория "философии Хариш-Чандры" в основном построена. Дело обстоит следующим образом. Для каждой подгруппы Леви L (каждой параболической подгруппы) вводится множество неприводимых представлений K(L), называемых каспидальными. А именно, $\lambda \in Irr L$ называется каспидальным, если оно не принадлежит ни одной серии Хариш-Чандры, построенной для L с любой параболической подгруппы группы L.

Пример. Если $G = GL_n(q)$, то каспидальные представления - это в точности те, чья степень равна $(q^{n-1}-1)\cdots(q-1)$.

Один из ключевых фактов теории Хариш-Чандры заключается в следующем: Теорема. Пусть L,L' - параболические подгруппы группы G и пусть $\lambda \in K(L)$ и $\lambda' \in K(L')$. Тогда представления $\overline{\lambda}^G,$ $\overline{\lambda'}^G$ либо эквивалентны, либо не имеют общих неприводимых компонент.

Неприводимые компоненты представлений $\overline{\lambda}^G$ (когда L - подгруппа Леви и $\lambda \in K(L)$) образуют серии Хариш-Чандры.

Теорема. Каждая серия Хариш-Чандры полностью содержится в единственной серии Люстига, и каждая серия Люстига содержит серию Хариш-Чандры (но не всегда одну).

Если $G = GL_n(q)$, то серии Люстига совпадают с сериями Хариш-Чандры. В большинстве случаев, но далеко не всегда, это верно и для других конечных редуктивных групп. Имеется аналог теоремы о разложении для общего случая (Hewlett-Lehrer, 1980 и др.). Можно построить вариант группы W_{λ} для общего случая, и биекцию β с теми же свойствами, что и выше. Технически это - трудный результат.

Теория Хариш-Чандры сводит в известой степени изучение представлени к построению каспидальных представлений для группы G и подгрупп Леви ее параболических подгрупп. Проблема построения каспидальных представлений выходит за рамки теории Хариш-Чандры и в ней не рассматривается.

Двойственность Кэртиса

Каждому комплексному представлению конечной группы можно сопоставить двойственное ему представление, характер которого комплексно сопряжен исходному. Этот факт тривиален, хотя и важен для теории предтавлений.

Двойственность Кэртиса - в высшей степени нетривиальна, и имеет место только для групп с BN-парой. Упрощая, можно сказать, что это - инволюция τ на множестве $\operatorname{Irr} G$, такая, что степени представлений $\rho \in \operatorname{Irr} G$ и $\tau(\rho)$ отличаются по умножению на некоторую степень простого числа p (где p - характеристика основного поля). Кроме того, если ρ - полупростое представление (в смысле теории Делиня-Люстига), то $\tau(\rho)$ - регулярное и наоборот.

В действительности, двойственность Кэртиса вводится на языке характеров следующим образом.

Пусть P - конечная группа и U - нормальная подгруппа. Если V - пространство представления группы P, то можно рассмотреть подпространство U-неподвижных элементов в V. Ясно, оно инвариантно относительно P. Значит, его можно рассматривать как пространство нового, меньшего представления группы P.

Это новое представление называют усечением первоначального. Если χ - его характер, то характер усечения обозначим через χ_U . (Заметим, что усеченный характер может быть нулевым.)

Пусть теперь P - параболическая подгруппа конечной редуктивной группы G, и U=U(P) — ее унипотеный радикал. Если χ - характер группы G, то его можно рассматривать и как характер подгруппы P, поэтому χ_U имеет смысл. Затем индуцируем его на G, обозначим результат через χ_U^G . Еще понадобится величина r(P), называемая рангом параболики P. Составим выражение

$$\kappa(\chi) = \sum (-1)^{r(P)} \chi_{U(P)}^G,$$

где суммирование идет по множеству параболических подгрупп P, содержащих фиксированную подгруппу Бореля, включая P=G. Поскольку коэффициенты здесь равны ± 1 , нет никаких причин ожидать, что это выражение даст характер группы G, даже если принять $\chi=1_G$ (тривиальный характер).

В последнем случае это так, и сумма дает в точности характер Стейнберга. В общем случае, если χ - неприводимый характер, то либо $\kappa(\chi)$, либо $-\kappa(\chi)$ - неприводимый характер. Кроме того, $\kappa(\kappa(\chi)) = \chi$. Если χ - каспидальный характер, то $\kappa(\chi) = \pm \chi$. Более того, каждая серия Хариш-Чандры и каждая серия Люстига инвариантна относительно κ .

В действительности, не τ , а κ называется двойственностью Кэртиса. Ясно, что по линейности оба отображения можно распространить на линейные комбинации характеров. Двойственность Кэртиса играет значительную техническую роль в теории Делиня-Люстига.

Представления Вейля

Представления, о которых идет речь, первоначально были введены Андре Вейлем для комплексных представлений классических групп над полями p-адичеких чисел, а затем Howe перенес конструкцию Вейля на представления классических групп над конечными полями. Особенность этих представлений в том, что их степени меньше степеней всех других неодномерных представлений. Этим объясняется их роль в работах по распознаванию представлений с определеннми заданными свойствами. Однако для общей теории представлений они интересны предложенной Howe идеей, напоминающей рассмотренную выше "философию" Хариш-Чандры. Иногда это называют философией Howe.

Базовое представление, из которого получаются все остальные - это представление Вейля симплектической группы $H = Sp_{2n}(p)$, где p - нечетное простое число. (Я опущу случай p = 2, тем более, что сам Вейль не рассматривал этот случай.)

Иденцифицировать это представление можно следующим образом. Рассмотрим параболическую подгруппу P группы $Sp_{2(n+1)}(p)$, подгруппа Леви которой изоморфна $Sp_{2n}(p) \times F_p^*$, - второй множитель - это мультипликативная группа поля F_p . Следуя Вейлю, Ноwe заметил, что P имеет неприводимое комплексное представление ω_n размерности p^n . Тогда представление Вейля группы $Sp_{2n}(p)$ - не что иное, как ограничение на эту группу представления ω_n группы P.

Таким образом, размерность представления Вейля группы $Sp_{2n}(p)$ равна p^n . Мы сохраним за ним обозначение ω_n .

Оно приводимо и распадается на две неприводимые компоненты размерностей $(p^n-1)/2$ и $(p^n+1)/2$. Однако для дальнейшего это несущественно.

Предположим теперь что $q=p^l$. Тогда существует вложение $h: Sp_{2k}(q) \to Sp_{2kl}(p)$. Пусть n=kl. Ограничение представления ω_n на подгруппу $h(Sp_{2k}(q))$ называют представлением Вейля группы $Sp_{2k}(q)$; его размерность снова равна $p^n=q^k$.

Пусть $U_k(q)$ - унитарная группа. Существует вложение $e:U_k(q)\to Sp_{2k}(q)\to Sp_{2k}(q)$ ограничение представления ω_n на подгруппу $e(U_k(q))$ называют представлением Вейля группы $U_k(q)$.

Полученное с помощью этой конструкции представление группы $U_k(q)$ единственно с точностью до эквивалентности. Для группы $Sp_{2k}(q)$ получаются два представления, однако разница между ними невелика и для нас несущественна.

Философия Howe основана на следующих трех фактах:

- (A) Существует вложение прямого произведения $Sp_{2k}(q) \times O_m(q)$ в $Sp_{2km}(q)$.
- (В) Существует вложение прямого произведения $U_k(q) \times U_m(q)$ в $U_{km}(q)$.
- (C) Ограничение представления Вейля большой группы $Sp_{2km}(q)$ или $U_{km}(q)$ на прямое произведение, как правило, без кратностей. То есть кратности неприводимых компонент равны 1.

Более того, как правило, верно следующее уточнение для (C);

(С') Имеется биекция между множествами неприводимых компонент ограничения представления Вейля на первый и второй множители. Эта биекция позволяет изучать неприводимые представления $Sp_{2k}(q)$ с помощью неприводимых представлений группы $O_m(q)$, и наоборот. Это особенно эффективно, когда одно из чисел k или m мало.

Надежды Howe, что на этом пути будут получены крупные результаты, пока не оправдались. Одна из причин залючается в том, что утверждения (C) и C' верны не всегда, и пока нет точных гипотез, когда они верно.

Недавно обнаружена любопытная связь представления Вейля унитарной группы с представлением Стейнберга. Пусть St_n обозначает представление Вейля группы $U_n(q)$. Тогда $\omega_n \otimes St_n$ эквивалентно ограничению представления St_{n+1} на $U_n(q)$. Однако для симплектической группы это неверно.

Основные нерешенные проблемы

- 1. Распространить теорию на некоторые несвязные алгебраические группы, например, на полную ортогональную группу $O_n(q)$.
- 2. Улучшить знания об унипотентных характерах.
- 3. Разработать теорию для получения ограничений произвольного неприводимого представления классических групп на естественную меньшую подгруппу, например, получить информацию об ограничениях представлений унитарной группы $U_{n+1}(q)$ на подгруппу $U_n(q)$.

По проблемам 1,2 ведется активная работа и многое сделано. По проблеме 3 пока имеются лишь фрагментарные результаты.

Здесь, отчасти в качестве иллюстрации, я упомяну о том, что в работах Хисса и моей 2009 г и в моей работе 2014 г построены разложения ограничения представления Стейнберга группы $U_{n+1}(q)$ на подгруппу $U_n(q)$ и группы $SO_{n+1}(q)$ на подгруппу $SO_n(q)$.

4. Построение неприводимых представлений.

Библиография

- 1. Р. Картер, О теории представлений конечных групп типа Ли над алгебоаически замкнутым полем характеристики нуль, В книге: "Итоги науки и техники. Современные проблемы математики. Фундаментальные направления. Т. 77, ВИНИТИ, Москва, 1992," с. 5 143.
- 2. R. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley, Chichester, 1985.
- 3. Ch.W. Curtis and I. Reiner, *Methods of representation theory. With applications to finite groups and orders*, Vol. 2, John Wiley & Sons, New York, 1987.
- 4. F. Digne and J. Michel, *Representations* of finite groups of Lie type, London Math. Soc. Student Texts no.21, Cambridge Univ. Press, 1991.