

🥇 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181211904

FCC REPORT

Applicant: PCD, LLC

Address of Applicant: 1500 Tradeport Drive, Suit A | Orlando, FL32824

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: PL620

FCC ID: 2ALJJPL620

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 25 Dec., 2018

Date of Test: 26 Dec.,2018 to 16 Jan., 2019

Date of report issued: 18 Jan., 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	18 Jan., 2019	Original

Tested by: 18 Jan., 2019

Test Engineer

Reviewed by: Date: 18 Jan., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	48
Q	FUT	CONSTRUCTIONAL DETAILS	49

4 Test Summary

y					
Test Items	Section in CFR 47	Result			
Antenna requirement	15.203 & 15.247 (c)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(3)	Pass			
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass			
Power Spectral Density	15.247 (e)	Pass			
Band Edge	15.247 (d)	Pass			
Spurious Emission	15.205 & 15.209	Pass			

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	PCD, LLC
Address:	1500 Tradeport Drive, Suit A Orlando, FL32824
Manufacturer/ Factory:	SHENZHEN HUAYUESHITONG SOFTWARE TECHNOLOGY CO., LIMITED
Address:	Room 1110, Oriental Science and Technology Building, Keyuan Road 16, Nanshan District, Shenzhen

5.2 General Description of E.U.T.

Product Name:	Smart Phone	
Model No.:	PL620	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))	
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps	
Data speed (IEEE 802.11n): Up to 72.2Mbps		
Antenna Type:	External Antenna	
Antenna gain:	2.3 dBi	
Power supply:	Rechargeable Li-ion Battery DC3.8V-3000mAh	
AC adapter:	Model: PL620 Input: AC100-240V, 50/60Hz, 0.25A Output: DC 5.0V, 1000mA	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3 2422MHz 6 2437MHz 9 2452MHz							
Note: Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.							

Report No: CCISE181211904

5.3 Test environment and test mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	

Test mode:

Transmitting mode	Keep the EUT in continuous transmitting	with modulation
-------------------	---	-----------------

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scap all kind of data rate, the follow list were the worst case.

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b 1Mbps				
802.11g 6Mbps				
802.11n(H20) 6.5Mbps				

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty	
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)	
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)	
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)	
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)	
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)	

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019		
EMI Test Software	AUDIX	E3	Version: 6.110919b		b		
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0				

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019		
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019		
Cable	HP	10503A	N/A	03-07-2018	03-06-2019		
EMI Test Software	AUDIX	E3	Version: 6.110919b				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

6.2 Conducted Emission

Toot Poquiroment:	FCC Part 15 C Section 1	F 207	
Test Requirement:		5.207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz	
Limit:	Frequency range	Limit (dBuV)
	(MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the log		
Test procedure	line impedance stab 50ohm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. light interference. In order positions of equipments	plators are connected to the pilization network (L.I.S.N.), and impedance for the measures are also connected to the season are also connected to the season are selected for the block diagram are checked for maximum enter to find the maximum emit and all of the interface 263.4: 2014 on conducted	which provides a suring equipment. the main power through mpedance with 50ohm of the test setup and sision, the relative cables must be changed
Test setup:		Reference Plane	
	AUX Equipment Test table/Insula Remark E.U.T. Equipment Under LISN: Line Impedence Sta	E.U.T EMI Receiver	ilter — AC power
Test Instruments:	Refer to section 5.8 for d	etails	
Test mode:	Refer to section 5.3 for d		
Test results:	Passed		

Measurement Data:

Product name:	Smart Phone	Product model:	PL620
Test by:	Caffrey	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
Test voltage: 80 Level (dBuV) 70 60 50 40 40 30 20 10 0.15 .2 Trace: 17 Freq MHz	AC 120 V/60 Hz S Read LISN Level Factor dBuV dB 42.29 0.18		
2 0.174 3 0.178 4 0.214 5 0.282 6 0.567 7 0.567 8 0.775 9 0.989 10 2.077 11 2.110 12 3.241	39.65 0.16 26.09 0.15 24.00 0.13 36.17 0.12 24.63 0.12 29.22 0.13 18.27 0.13 17.53 0.14 31.20 0.14	10.77 50.58 10.76 37.00 10.74 34.87 10.76 47.05 10.76 35.51 10.80 40.15 10.87 29.27 10.96 28.63 10.95 42.29 10.91 40.51	64.59 -14.01 QP 53.05 -16.05 Average 50.76 -15.89 Average 56.00 -8.95 QP 46.00 -10.49 Average 56.00 -15.85 QP 46.00 -16.73 Average 46.00 -17.37 Average 56.00 -13.71 QP 56.00 -15.49 QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	S	Smart Phone	Э	Prod	duct model:		PL620	
Test by:	C	Caffrey		Test	mode:		Wi-Fi Tx mod	de
Test frequency:	1	50 kHz ~ 30	MHz	Pha	se:		Neutral	
Test voltage:	А	C 120 V/60 I	Hz	Envi	ironment:		Temp: 22.5°	Huni: 55%
80 Level (dBu 70 60 50 40 30 20	W W W W W W W W W W W W W W W W W W W	\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			12	hily felt hily free free		PART 15.247 QP
10								
0.15 .2		.5	1	2 Frequenc	y (MHz)	5	10	20 30
0.15 .2 Trace: 19	Freq	Read	1 LISN Factor	Frequenc Cable		5 Limit Line	Over	20 30 Remark
0.15 .2 Trace: 19	Freq	Read	LISN	Frequenc Cable		Limit	Over Limit	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Toot CU	Maximum Co	onducted Output Pov	wer (dBm)	Limit(dBm	Dogult
Test CH	802.11b	802.11g	802.11n(H20))	Result
Lowest	14.07	13.13	14.12		
Middle	13.32	12.64	11.74	30.00	Pass
Highest	14.77	15.42	14.48		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	6dB	Emission Bandwidth (M	lHz)	Limit/IdLIm	Result	
Test CH	802.11b	802.11g	802.11n(H20)	Limit(kHz)		
Lowest	8.96	15.92	16.48			
Middle	9.28	16.48	17.76	>500	Pass	
Highest	8.80	16.48	17.12			
Test CH	99%	6 Occupy Bandwidth (M	Limit(kHz)	Result		
Test CH	802.11b	802.11g	802.11n(H20)	LIIIII(KHZ)	Kesuit	
Lowest	11.52	16.64	17.68			
Middle	11.92	16.72	17.76	N/A	N/A	
Highest	11.52	16.56	17.60			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Toot CU	Po	wer Spectral Density (dE	Bm)	Limit(dPm)	Popult
Test CH	802.11b	802.11g	802.11n(H20)	Limit(dBm)	Result
Lowest	5.32	2.36	1.78		
Middle	2.44	0.02	-1.16	8.00	Pass
Highest	4.11	2.36	1.32		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Oonducted Emission					
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission Me	z tnoa							
	Test Requirement:	FCC Part	15 C	Section 1	15.20	9 and 15.205			
	Test Method:	ANSI C63	.10: 2	2013 and	KDE	3 558074			
	Test Frequency Range:	2.3GHz to	2.5G	Hz					
	Test Distance:	3m							
	Receiver setup:	Frequen	су	Detec	tor	RBW		'BW	Remark
		Above 1G	Hz	Peal		1MHz		MHz	Peak Value
	Limit:	Fro	quenc	RMS		1MHz nit (dBuV/m @		MHz T	Average Value Remark
	Limit:		•		LIII	54.00	3111)	A۱	verage Value
		Abov	e 1G	Hz		74.00			Peak Value
	Test Procedure:	the growder to defer to defer to defer to defer to defer to defer the growder to find the defer to defer to defer the defer to defer the defer to defer to defer the defer th	round termir EUT vana, wanteniround horizon the rach sand the est-resified E emisternit specified E emisternit specified E 10dB or av	at a 3 mm he the powas set 3 which was a height to determental and measurer uspected hen the addither otal maximum eceiver sy Bandwidth sion levelecified, the would be margin was set 3 margin was a margin was set 3 margin was s	eter of sition meters motor is varine vertinent. I emistanten table of the meter is to find t	camber. The to of the highest ers away from the result of the to aried from one the maximum cal polarization assion, the EUT na was turned from the was turned from the example of the EUT in peakesting could be orted. Otherwisers away from the EUT in peakesting could be orted. Otherwisers away from the EUT in peakesting could be orted. Otherwisers away from the EUT in peakesting could be orted.	able value interpretation of the community of the communi	vas rota tion. erference variable to four of the fi he antel arrange ghts fror degrees etect Funde e was 1 ped ance e emission	meters above seld strength. Inna are set to d to its worst in 1 meter to 4 is to 360 degrees inction and ddB lower than if the peak values ons that did not sing peak, quasi-
	Test setup:			AE E	., 1/	Hot 3m Ground Reference Plane	rn Antenna Pre- Pre- Pr	Antenna Tox	wer
	Test Instruments:	Refer to se	ection	5.8 for c	detail	s			
	Test mode:	Refer to se	ectior	5.3 for c	detail	S			
	Test results:	Passed							

802.11b mode:

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduci	t Name:	Smart Pl	hone		F	Product mo	del:	PL620		
est By	est By:		Caffrey			Test mode:		802.11b 7	802.11b Tx mode	
est Ch	nannel:	Lowest ch	Lowest channel			Polarization:		Horizonta	Horizontal	
est Vo	oltage:	AC 120/6	0Hz		Е	nvironme	nt:	Temp: 24	℃ Huni: 57%	
l e	vel (dBuV/m)									
110	voi (abaviii)									
100									0.0	
									(")	
80								FC	PART 15 (PK)	
60		Α	a diama	\	. 0 .000		more	FCC	PART 15 (AV)	
	men more	- w-~w	0.1.0	May have	morning	Marine Marine	and the			
40										
20									-1	
20									-1	
0	10 2320		23:						242	
0		Parado	-	Fred	quency (MF		Tinit	0	242	
0		ReadA Level	-	Fred		łz) Level	Limit Line	Over Limit		
0		ReadA Level	-	Fred	Preamp Factor			Limit		
0	Freq		intenna Factor —dB/m	Fred Cable Loss	Preamp Factor dB	Level dBuV/m 51.24	dBuV/m	Limit dB -22.76	Remark	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduc	t Name:	Smart P	hone		Pi	roduct mod	del:	PL620	
est By	/ :	Caffrey			Т	est mode:		802.11b Tx	c mode
est Ch	nannel:	Highest of	channel		P	olarization	:	Vertical	
est Vo	oltage:	AC 120/6	60Hz		E	nvironmen	t:	Temp: 24°	Huni: 57%
110 L	evel (dBuV/m)								
100		Phys.		-					
80			1					FCC	PART 15 (PK)
- 53			1					100	ART TO (TIV)
60				-				FCC	PART 15 (AV)
					-	7			AKT (S (AV)
40									
20									
ا									
2	452			Freq	uency (MH	z)			2500
			Antenna	Cable	Preamp		Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	<u>d</u> B/m	<u>ab</u>	<u>d</u> B	dBuV/m	dBu√/m	<u>d</u> B	
1	2483.500	19.23	27.57	4.81	0.00			-20.69	
2	2483.500	11.32	27.57	4.81	0.00				Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Ph	one		Pr	oduct mod	el:	PL620	
est By:	Caffrey			Те	st mode:		802.11b Tx	mode
est Channel:	Highest ch	annel		Po	larization:		Horizontal	
est Voltage:	AC 120/60	Hz		En	vironment	:	Temp: 24℃	Huni: 57%
110 Level (dBuV/m)								
80	~~~						FCC	PART 15 (PK)
60				~	~-	~~~	FCC	PART 15 (AV)
40					4			<u> </u>
20								-
02452			Frequ	iency (MHz)			250
Freq	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2483.500 2 2483.500	23.08 10.76	27.57 27.57	4.81 4.81	0.00 0.00			-16.84 -9.16	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct	Name:	Smart P	hone		Pr	oduct mod	lel:	PL620	
est By:		Caffrey			Те	st mode:		802.11g Tx r	node
est Cha	annel:	Lowest cl	hannel		Po	olarization:		Horizontal	
est Vol	Itage:	AC 120/6	0Hz		Er	nvironment	t:	Temp: 24℃	Huni: 57%
Lo	wol /dPu\//m\								
110	vel (dBuV/m)			n					
100									
									many
80								FCC P	ART 15 (PK)
								لر	
60				70.000			- 1 0	FCC P	ART 15 (AV)
-	mound	mound	The Court	a comme	more	more	and a		
40									
20									
023	10 2320		235	50			100		2422
23	2320		25.		uency (MH	z)			2422
	Fre	Read q Level	Antenna Factor				Limit Line		Remark
	ME	z dBu∀	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m		
1	2390.00							-20.48 I	
2	2390.00	0 9.51	27.37	4.69	0.00	43, 25	54.00	-10.75 I	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phone		Pro	oduct mod	el:	PL620	
est By:	Caffrey		Te	st mode:		802.11g Tx	mode
est Channel:	Highest channel		Ро	larization:		Vertical	
est Voltage:	AC 120/60Hz		En	vironment	:	Temp: 24℃	Huni: 57%
110 Level (dBuV/m)							
100							
100		_					
80						FCC P	ART 15 (PK)
			Line in T				
60		101	~~			FCC P	ART 15 (AV)
40				2	•		
20							-
0							
2452		Freque	ency (MHz))			2500
Freq	ReadAntenna Level Factor						Remark
MHz	dBuVdB/m	<u>ab</u>	āB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2483.500 2 2483.500		4.81 4.81				-16.75 -9.17	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Na	me:	Smart Ph	one		Pr	roduct mod	del:	PL620		
est By:		Caffrey			Te	est mode:		802.11g Tx	k mode	
est Chanr	nel:	Highest ch	nannel		Po	olarization:	:	Horizontal		
est Voltag	je:	AC 120/60)Hz		Er	nvironmen	t:	Temp: 24°0	Huni: 57%	
110 Level	(dBuV/m)			177						
100		~ ~								
1			- X-35	1						
80										
				1	_			FCC	PART 15 (PK)	
					~	1				
60							~~~	- FCC	PART 15 (AV)	
						2				
40	4-14-14-1									
20										
2452									2500	
			A. (2.002)	-	uency (MH:					
	Freq	KeadA Level	ntenna Factor	Cable	Preamp	Lerrel	Limit	Over Limit	Remark	
100	rreq			LUSS					Kemark	
	MHz	dBu∀	dB/m	dB	₫B	dBuV/m	dBu∜/m	₫B		
1 :	2483.500	25.50	27.57	4.81	0.00	59.58	74.00	-14.42	Peak	
	2483.500	11.83	27.57	4.81	0.00	45 01	E4 00	0.00	Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

Juuc	t Name:	Smart Ph	none		Pr	oduct Mod	lel:	PL620	
st By	<i>y</i> :	Caffrey			Te	est mode:		802.11n(HT	20) Tx mode
st Ch	nannel:	Lowest ch	annel		Polarization: Vertical				
st Vo	oltage:	AC 120/60)Hz		Er	nvironment	t:	Temp: 24℃	Huni: 57%
110	evel (dBuV/m)								1
100									
									mound
80								FCCF	DART 45 (DIC)
-								FLLF	PART 15 (PK)
60								m	
-	man man and and	an man		-m-m-	Mary Mark	humor	my 1	FCC F	PART 15 (AV)
							4		
40		- 1							
40									
20									
20	310 2320		235	50					242
20	310 2320		235		uency (MH	z)			242
20			nt enna	Freq Cable	Preamp		Limit Line	Over Limit	
20			nt enna	Freq Cable	Preamp Factor		Line	Limit	
20	Freq	Level	ntenna Factor ——dB/m	Freq Cable Loss	Preamp Factor dB	Level dBuV/m 52.99	Line dBuV/π 74.00	Limit	Remark

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Name:	Smart Ph	none		P	roduct Mo	del:	PL620	
Test By:		Caffrey			To	est mode:		802.11n(H	T20) Tx mode
Test Cha	annel:	Lowest ch	nannel		P	olarization	:	Horizontal	
Test Vol	tage:	AC 120/6	0Hz		E	nvironmen	it:	Temp: 24°	C Huni: 57%
Le	vel (dBuV/m)								
110	ror(abarm)								
100								-	
80								1	1
80								FCC	PART 15 (PK)
60									
	month of the	and the same	<u> </u>	Amount	~~~	~~~~	Majaran	FCC	PART 15 (AV)
40							- 4		
20									
023	10 2320		23	50					2422
				Fred	quency (MF	Hz)			
	Freq	ReadA Level	ntenna Factor				Limit Line		Remark
	MHz	dBu₹	dB/m	₫B	dB	$\overline{dBuV/m}$	dBuV/m	dB	
34	2390.000	20.86 9.62						-19.40	
1 2	2390.000		27.37	4.69					Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product N	Name:	Smart Ph	none		P	roduct Mo	del:	PL620	
est By:		Caffrey			Т	est mode:		802.11n(l	HT20) Tx mode
est Cha	nnel:	Highest cl	nannel		Р	olarization	1:	Vertical	
est Volta	age:	AC 120/60	OHz		Е	nvironmer	nt:	Temp: 24	°C Huni: 57%
Lov	el (dBuV/m)								
No.	Cr (ubuviiii)								
100									
1				1					
80								FCC	C PART 15 (PK)
				1	0				
60					~~~	-	~	FCC	PART 15 (AV)
V						2			
40									
20									
245	2			Feer		1-1			2500
		D JA			juency (MH		7 3 - 3 -	0	
	Freq	Level	ntenna Factor	Loss	Preamp Factor	Level	Limit Line		Remark
	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dB} \overline{u} \overline{V} / \overline{m}$	dB	
1	2483.500			4.81		55.23			
2	2483.500	10.57	27.57	4.81	0.00	44.65	54.00	-9.35	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phone		Pi	roduct Mod	del:	PL620	
Гest By:	Caffrey		Т	est mode:		802.11n(H	IT20) Tx mode
Test Channel:	Highest channel		P	olarization	:	Horizontal	
Гest Voltage:	AC 120/60Hz		E	nvironmen	t:	Temp: 24°	C Huni: 57%
110 Level (dBuV/m)							
80	~~~	1				FCC	PART 15 (PK)
60				~~~	~~~	FCC	PART 15 (AV)
40				2			
20							
02452		Freq	uency (MH	z)			2500
Freq	ReadAntenna Level Factor				Limit Line		Remark
MHz	dBuV dB/m	dB	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	22.36 27.57	4.81	0.00	56 44	74 00	-17.56	Peak

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

0.7.1 Conducted Linission	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
	Spectrum Analyzer
	E.U.T
	Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.7.2 Radiated Emission Method

6.7.2 Radiated Emission N	lethod				
Test Requirement:	FCC Part 15 C S	ection 15.209	and 15.205		
Test Method:	ANSI C63.10:20	13			
Test Frequency Range:	9kHz to 25GHz				
Test Distance:	3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
Limit:	Frequency	RMS	1MHz nit (dBuV/m @3	3MHz	Average Value Remark
Littiit.	30MHz-88MH	1	40.0		Quasi-peak Value
	88MHz-216MH		43.5		Quasi-peak Value
	216MHz-960M		46.0		Quasi-peak Value
	960MHz-1GH	lz	54.0	(Quasi-peak Value
	Above 1GHz	,	54.0		Average Value
Test Procedure:			74.0 he top of a rot	-ti	Peak Value
	The table was highest radia. 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizor make the med. 4. For each succase and the meters and to find the med. 5. The test-reconspecified Base. 6. If the emissing the limit spends of the EUT we have 10dB reconstructions.	as rotated 360 ation. as set 3 meter ich was mour a height is var o determine to tall and vertice asurement. Spected emissen the antennathe rota table laximum read eiver system and width with on level of the cified, then te would be reponargin would	s away from the top ited on the top ited from one remaximum val polarization as turned from the top ited. Otherwis be re-tested of the same to the sting could be re-tested of the same to the sting could be re-tested of the same to the same could be re-tested of the same to the same could be re-tested of the s	the interfered of a varial meter to four value of the sof the and was arranged heights from 0 degree at Detect Flow Mode. The mode was a stopped are the emissione by one	Is meter chamber. The position of the ence-receiving oble-height antenna are set to ence to define the encerose field strength. The position are set to encerose field strength. The encerose field strength encerose to degree to its worst om 1 meter to 4 es to 360 degrees. The encerose function and encerose field strength encerose field strength. The encerose field strength encerose to degree
Test setup:	Below 1GHz EUT Turn Table Ground F			RFTRece	

Measurement Data (worst case):

Below 1GHz:

est By: est Fre est Vol					PIC	oduct mode	91:	PL620	
		Caffrey			Tes	st mode:		Wi-Fi Tx mo	ode
est Vol	quency:	30 MHz ~	1 GHz		Pol	larization:		Vertical	
	tage:	AC 120/60	OHz		Env	vironment:		Temp: 24℃	Huni: 57%
Leve	el (dBuV/m)								
80									
70									
60									
								FCC	PART 15.247
50									
40									
1									
30~	James .		2 3	4	5	6 I			Anna contrategal
20	m/n	port of	Mus	- 1	W	CHARAL .	المراسية المراسية	who had be had been been a	Mooth
		ran ho	M	mille 1	hayum	January .	idestrations forms	No. See Spinster below the spinster.	appear of the second of the second
10		Marin Comment	M	miles!	haylum	January V	ideath the artists of the second	ne take hadd he was	New York
10	50		100	mula /	200	And the second	industrial and a second	500	1000
	50		100	Frequ	200 ency (MHz)		500	
10	50 Freq			Frequ Cable	200 ency (MHz Preamp)	Limit	500 Over	
10			100 Antenna Factor	Frequ Cable	200 ency (MHz Preamp Factor)	Limit Line	500 Over Limit	1000
030	Freq	Level	100 Antenna Factor	Frequ Cable Loss	200 ency (MHz Preamp Factor	Level	Limit Line	500 Over Limit	1000 Remark
030	Freq MHz 33.328 81.783	dBuV 47.63 43.26	100 Antenna Factor dB/m 11.35 8.46	Frequence Cable Loss dB 0.98 1.72	200 ency (MHz Preamp Factor ————————————————————————————————————	Level dBuV/m 30.00 23.81	Limit Line dBuV/m 40.00	Over Limit ———————————————————————————————————	RemarkQP
030	Freq MHz 33.328 81.783 87.725	Level dBuV 47.63 43.26 41.26	100 Antenna Factor dB/m 11.35 8.46 9.59	Frequence Cable Loss dB 0.98 1.72 1.96	200 ency (MHz Preamp Factor ————————————————————————————————————	Level dBuV/m 30.00 23.81 23.23	Limit Line dBuV/m 40.00 40.00	Over Limit ———————————————————————————————————	Remark QP QP QP QP
10	Freq MHz 33.328 81.783	dBuV 47.63 43.26	100 Antenna Factor ————————————————————————————————————	Frequence Cable Loss dB 0.98 1.72	200 ency (MHz Preamp Factor ————————————————————————————————————	Devel dBuV/m 30.00 23.81 23.23 25.56	Limit Line dBuV/m 40.00 40.00 40.00	Over Limit ———————————————————————————————————	Remark QP QP QP QP QP
10	50			mula d	hay have	part of the same o	is described to the second		and the same

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct	Name:	Smart P	hone		Pr	oduct mod	el:	PL620	
st By:		Caffrey	Caffrey			st mode:		Wi-Fi Tx m	ode
st Fre	quency:	30 MHz ~ 1 GHz			Po	larization:		Horizontal	
st Vol	tage:	AC 120/6	60Hz		En	vironment	:	Temp: 24°0	Huni: 57%
Lev	vel (dBuV/m)								
80	ver (dbd viiii)								
70									
, ,									
60								500	DADT 45 047
50								FCC	PART 15.247
50									
40									
						5			
30	1 1 1 1				4	MA	6		And the State of the Lot
20	1	2			3//	/			didwarf
	Jan Janes	Frank	MALL MALL	lea .	/ Lew	√	My way		
10 4	Aust		Hr Chr wa	a graphy printer					
0									
030	50		100	Free	200 uency (MH			500	1000
		Read	Antenna		Preamp	7.7	Limit	Over	
	Freq		Factor		Factor		Line		Remark
	MHz	dBu∀	<u>dB</u> /m	dB	dB	dBu√/m	dBuV/m	dB	
			.600000						
1 2 3 4	42.600 55.609	36.40 32.45	13.28 13.11	1.25 1.36	29.88 29.80	21.05 17.12		-18.95	QP QP
3	160.346	37.08	9.11	2.59	29. 80	19.65		-22.88 -23.85	QP QP
		43.17	9.75	2.72	28.98	26.66	43.50	-16.84	QP
4	178.758						40 00	14 45	AD.
4 5 6	262.896 365.539	43.85 36.86	13.38 14.89	2.84 3.09	28.52 28.63	31.55 26.21		-14.45 -19.79	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Above Toriz				000 441							
802.11b											
Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	50.20	30.94	6.81	41.82	46.13	74.00	-27.87	Vertical			
4824.00	55.53	30.94	6.81	41.82	51.46	74.00	-22.54	Horizontal			
			Dete	ctor: Averag	je Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	41.87	30.94	6.81	41.82	37.80	54.00	-16.20	Vertical			
4824.00	46.38	30.94	6.81	41.82	42.31	54.00	-11.69	Horizontal			
			Test ch	annel: Midd	le channel						

	Test channel: Middle channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	48.65	31.20	6.85	41.84	44.86	74.00	-29.14	Vertical					
4874.00	50.72	31.20	6.85	41.84	46.93	74.00	-27.07	Horizontal					
			Dete	ctor: Averag	je Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	39.40	31.20	6.85	41.84	35.61	54.00	-18.39	Vertical					
4874.00	41.35	31.20	6.85	41.84	37.56	54.00	-16.44	Horizontal					

	Test channel: Highest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	48.01	31.46	6.89	41.86	44.50	74.00	-29.50	Vertical					
4924.00	51.11	31.46	6.89	41.86	47.60	74.00	-26.40	Horizontal					
			Dete	ctor: Averag	je Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	39.85	31.46	6.89	41.86	36.34	54.00	-17.66	Vertical					
4924.00	42.59	31.46	6.89	41.86	39.08	54.00	-14.92	Horizontal					

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11g											
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	49.36	30.94	6.81	41.82	45.29	74.00	-28.71	Vertical				
4824.00	51.28	30.94	6.81	41.82	47.21	74.00	-26.79	Horizontal				
			Dete	ctor: Averag	ge Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	39.51	30.94	6.81	41.82	35.44	54.00	-18.56	Vertical				
4824.00	42.46	30.94	6.81	41.82	38.39	54.00	-15.61	Horizontal				

Test channel: Middle channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	48.20	31.20	6.85	41.84	44.41	74.00	-29.59	Vertical				
4874.00	50.11	31.20	6.85	41.84	46.32	74.00	-27.68	Horizontal				
			Dete	ctor: Averag	je Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4874.00	39.62	31.20	6.85	41.84	35.83	54.00	-18.17	Vertical				
4874.00	41.29	31.20	6.85	41.84	37.50	54.00	-16.50	Horizontal				

	Test channel: Highest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	47.72	31.46	6.89	41.86	44.21	74.00	-29.79	Vertical					
4924.00	50.63	31.46	6.89	41.86	47.12	74.00	-26.88	Horizontal					
			Dete	ctor: Averag	ge Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	38.71	31.46	6.89	41.86	35.20	54.00	-18.80	Vertical					
4924.00	41.82	31.46	6.89	41.86	38.31	54.00	-15.69	Horizontal					

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n(HT20)											
Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	47.82	36.06	6.81	41.82	48.87	74.00	-25.13	Vertical				
4824.00	49.20	36.06	6.81	41.82	50.25	74.00	-23.75	Horizontal				
			Dete	ctor: Averag	je Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4824.00	37.64	36.06	6.81	41.82	38.69	54.00	-15.31	Vertical				
4824.00	39.50	36.06	6.81	41.82	40.55	54.00	-13.45	Horizontal				

	Test channel: Middle channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	46.92	36.32	6.85	41.84	48.25	74.00	-25.75	Vertical					
4874.00	48.46	36.32	6.85	41.84	49.79	74.00	-24.21	Horizontal					
			Dete	ctor: Averag	je Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4874.00	37.06	36.32	6.85	41.84	38.39	54.00	-15.61	Vertical					
4874.00	38.23	36.32	6.85	41.84	39.56	54.00	-14.44	Horizontal					

	Test channel: Highest channel												
Detector: Peak Value													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	47.21	36.58	6.89	41.86	48.82	74.00	-25.18	Vertical					
4924.00	48.37	36.58	6.89	41.86	49.98	74.00	-24.02	Horizontal					
			Dete	ctor: Averag	je Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4924.00	36.84	36.58	6.89	41.86	38.45	54.00	-15.55	Vertical					
4924.00	37.56	36.58	6.89	41.86	39.17	54.00	-14.83	Horizontal					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.