

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

SAFETY DATA SHEET

According to Regulation (EC) No. 1907/2006 (REACH) Article 31, Annex II as amended.

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

Product Name: PREMIERWELD® NF-3

Other means of identification

SDS number: 200000015466

UFI: AH0H-Y336-YQJY-S96W

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses: SAW (Submerged Arc Welding)

Uses advised against: Not known. Read this SDS before using this product.

1.3 Details of the supplier of the safety data sheet

Manufacturer/Importer/Supplier/Distributor Information

Company Name: The Shanghai Lincoln Electric Co., Ltd. Address: No. 195, Lane 5008, Hu Tai Road

Shanghai 201907

China

Telephone: +86 21 6673 4530

Contact Person: Safety Data Sheet Questions: www.lincolnelectric.com/sds

Arc Welding Safety Information: www.lincolnelectric.com/safety

Company Name: Lincoln Electric Europe B.V. Address: Nieuwe Dukenburgseweg 20

Nijmegen 6534AD

The Netherlands

Telephone: +31 243 522 911

Contact Person: Safety Data Sheet Questions: www.lincolnelectric.com/sds

Arc Welding Safety Information: www.lincolnelectric.com/safety

1.4 Emergency telephone number:

USA/Canada/Mexico +1 (888) 609-1762 Americas/Europe +1 (216) 383-8962 Asia Pacific +1 (216) 383-8966 Middle East/Africa +1 (216) 383-8969

3E Company Access Code: 333988

SECTION 2: Hazards identification

The product contains less than 0.1% of respirable crystalline silica.

2.1 Classification of the substance or mixture

The product has not been classified as hazardous according to the legislation in force.

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Classification according to Regulation (EC) No 1272/2008 as amended.

Not classified as hazardous according to applicable GHS hazard classification criteria.

Supplemental label information

EUH210: Safety data sheet available on request.

2.3 Other hazards

Electrical Shock can kill. If welding must be performed in damp locations or with wet clothing, on metal structures or when in cramped positions such as sitting, kneeling or lying, or if there is a high risk of unavoidable or accidental contact with work piece, use the following equipment: Semiautomatic DC Welder, DC Manual (Stick) Welder, or AC Welder with Reduced Voltage Control.

Arc rays can injure eyes and burn skin. Welding arc and sparks can ignite combustibles and flammable materials. Overexposure to welding fumes and gases can be hazardous. Read and understand the manufacturer's instructions, Safety Data Sheets and the precautionary labels before using this product. Refer to Section 8.

Substance(s) formed under the conditions of use:

The welding fume produced from this welding electrode may contain the following constituent(s) and/or their complex metallic oxides as well as solid particles or other constituents from the consumables, base metal, or base metal coating not listed below.

Chemical name	CAS-No.
Carbon dioxide	124-38-9
Carbon monoxide	630-08-0
Nitrogen dioxide	10102-44-0
Ozone	10028-15-6

SECTION 3: Composition/information on ingredients

Reportable Hazardous Ingredients 3.2 Mixtures

Chemical name	Concentration	CAS-No.	EC No.	Classification	Notes	REACH Registration No.
Calcium fluoride	10 - <20%	7789-75-5	232-188-7	Not classified	#	No data available.
Manganese oxide (MnO)	5 - <10%	1344-43-0	215-695-8	STOT RE: 2: H373 Aquatic Acute: 3:	#	No data available.
Calcium oxide	1 - <5%	1305-78-8	215-138-9	Skin Corr.: 2: H315 Eye Dam.: 1: H318 STOT SE: 3: H335	#	01-2119475325-36;
Sodium oxide	1 - <5%	1313-59-3	215-208-9	Skin Corr.: 1B: H314 Eye Dam.: 1: H318		01-2120759517-43;
Quartz	1 - <5%	14808-60-7	238-878-4	STOT RE: 1: H372	#	No data available.

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

* All concentrations are percent by weight unless ingredient is a gas. Gas concentrations are in percent by volume. # This substance has workplace exposure limit(s). ## This substance is listed as SVHC

CLP: Regulation No. 1272/2008.

The full text for all H-statements is displayed in section 16.

Composition Comments: The term "Hazardous Ingredients" should be interpreted as a term defined

in Hazard Communication standards and does not necessarily imply the existence of a welding hazard. The product may contain additional non-hazardous ingredients or may form additional compounds under the condition of use. Refer to Sections 2 and 8 for more information.

SECTION 4: First aid measures

4.1 Description of first aid measures

Inhalation: Move to fresh air if breathing is difficult. If breathing has stopped, perform

artificial respiration and obtain medical assistance at once.

Skin Contact: Remove contaminated clothing and wash the skin thoroughly with soap and

water. For reddened or blistered skin, or thermal burns, obtain medical

assistance at once.

Eye contact: Dust or fume from this product should be flushed from the eyes with

copious amounts of clean, tepid water until transported to an emergency medical facility. Do not allow victim to rub or keep eyes tightly closed.

Obtain medical assistance at once.

Arc rays can injure eyes. If exposed to arc rays, move victim to dark room, remove contact lenses as necessary for treatment, cover eyes with a padded dressing and rest. Obtain medical assistance if symptoms persist.

Ingestion: Avoid hand, clothing, food, and drink contact with fluxes, metal fume or

powder which can cause ingestion of particulate during hand to mouth activities such as drinking, eating, smoking, etc. If ingested, do not induce vomiting. Contact a poison control center. Unless the poison control center advises otherwise, wash out mouth thoroughly with water. If symptoms

develop, seek medical attention at once.

4.2 Most important symptoms and effects, both acute and

delayed:

Short-term (acute) overexposure to fumes and gases from welding and allied processes may result in discomfort such as metal fume fever, dizziness, nausea, or dryness or irritation of nose, throat, or eyes. May aggravate pre-existing respiratory problems (e.g. asthma, emphysema). Long-term (chronic) overexposure to fumes and gases from welding and allied processes can lead to siderosis (iron deposits in lung), central nervous system effects, bronchitis and other pulmonary effects. Refer to

Section 11 for more information.

4.3 Indication of any immediate medical attention and special treatment needed

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Hazards: The hazards associated with welding and its allied processes such as

soldering and brazing are complex and may include physical and health hazards such as but not limited to electric shock, physical strains, radiation burns (eye flash), thermal burns due to hot metal or spatter and potential health effects of overexposure to fumes, gases or dusts potentially generated during the use of this product. Refer to Section 11 for more

information.

Treatment: Treat symptomatically.

SECTION 5: Firefighting measures

General Fire Hazards: As shipped, this product is nonflammable. However, welding arc and

sparks as well as open flames and hot surfaces associated with brazing and soldering can ignite combustible and flammable materials. Read and understand American National Standard Z49.1, "Safety in Welding, Cutting and Allied Processes" and National Fire Protection Association NFPA 51B, "Standard for Fire Prevention during Welding, Cutting and Other Hot Work"

before using this product.

5.1 Extinguishing media Suitable extinguishing

media:

As shipped, the product will not burn. In case of fire in the surroundings:

use appropriate extinguishing agent.

Unsuitable extinguishing media:

Do not use water jet as an extinguisher, as this will spread the fire.

5.2 Special hazards arising from the substance or mixture: Welding arc and sparks can ignite combustibles and flammable products.

5.3 Advice for firefighters Special fire fighting procedures:

Use standard firefighting procedures and consider the hazards of other

involved materials.

Special protective equipment for fire-fighters:

Selection of respiratory protection for fire fighting: follow the general fire precautions indicated in the workplace. Self-contained breathing apparatus

and full protective clothing must be worn in case of fire.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures:

If airborne dust and/or fume is present, use adequate engineering controls and, if needed, personal protection to prevent overexposure. Refer to recommendations in Section 8.

6.2 Environmental Precautions:

Avoid release to the environment. Prevent further leakage or spillage if safe to do so. Do not contaminate water sources or sewer. Environmental manager must be informed of all major spillages.

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

6.3 Methods and material for containment and cleaning up:

Absorb with sand or other inert absorbent. Stop the flow of material, if this is without risk. Clean up spills immediately, observing precautions in the personal protective equipment in Section 8. Avoid generating dust. Prevent product from entering any drains, sewers or water sources. Refer to Section 13 for proper disposal.

6.4 Reference to other sections:

For further specification, refer to section 8 of the SDS.

SECTION 7: Handling and storage:

7.1 Precautions for safe handling:

Prevent formation of dust. Provide appropriate exhaust ventilation at places where dust is formed.

Read and understand the manufacturer's instruction and the precautionary label on the product. Refer to Lincoln Safety Publications at www.lincolnelectric.com/safety. See American National Standard Z49.1, "Safety In Welding, Cutting and Allied Processes" published by the American Welding Society, http://pubs.aws.org and OSHA Publication 2206 (29CFR1910), U.S. Government Printing Office, www.gpo.gov.

7.2 Conditions for safe storage, including any incompatibilities:

Store in closed original container in a dry place. Store in accordance with local/regional/national regulations. Store away from incompatible materials.

7.3 Specific end use(s): No data available.

SECTION 8: Exposure controls/personal protection

8.1 Control Parameters

MAC, PEL, TLV and other exposure limit values may vary per element and form - as well as per country. All country-specific values are not listed. If no occupational exposure limit values are listed below, your local authority may still have applicable values. Refer to your local or national exposure limit values.

Control Parameters

Occupational Exposure Limits: Great Britain

Chemical Identity	Туре	Exposure Limit Values	Source
Silicon dioxide (amorphous) - Inhalable dust.	TWA	6 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Silicon dioxide (amorphous) - Respirable dust.	TWA	2,4 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Silicon dioxide (amorphous) - Inhalable dust.	TWA	10 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (01 2020)
Silicon dioxide (amorphous) - Respirable dust.	TWA	4 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (01 2020)
Aluminum oxide - Inhalable dust.	TWA	10 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Aluminum oxide - Respirable dust.	TWA	4 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Magnesium oxide - Inhalable dust as Mg	TWA	10 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Magnesium oxide -	TWA	4 mg/m3	UK. EH40 Workplace Exposure Limits (WELs)

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Respirable dust and/or fume.			(2007)
- as Mg			
Calcium fluoride - as F	TWA	2,5 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Calcium fluoride	TWA	2,5 mg/m3	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended (2014)
Manganese oxide (MnO) - Respirable fraction as Mn	TWA	0,05 mg/m3	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (02 2017)
Manganese oxide (MnO) - Inhalable fraction as Mn	TWA	0,2 mg/m3	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (02 2017)
Manganese oxide (MnO) - Inhalable fraction.	TWA	0,200 mg/m3	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended (2014)
Manganese oxide (MnO) - Respirable fraction.	TWA	0,050 mg/m3	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended (2014)
Manganese oxide (MnO) - Respirable fraction as Mn	TWA	0,05 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (08 2018)
Calcium oxide	TWA	2 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Calcium oxide - Respirable fraction.	TWA	1 mg/m3	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (02 2017)
	STEL	4 mg/m3	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (02 2017)
Calcium oxide - Respirable dust.	STEL	4 mg/m3	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended (2014)
	TWA	1 mg/m3	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended (2014)
Calcium oxide - Respirable fraction.	TWA	1 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (08 2018)
	STEL	4 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (01 2020)
Quartz - Respirable.	TWA	0,1 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Quartz - Respirable fraction and dust	TWA	0,1 mg/m3	EU. OELs, Directive 2004/37/EC on carcinogen and mutagens from Annex III, Part A (12 2017)
Silicon - Inhalable dust.	TWA	10 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)
Silicon - Respirable dust.	TWA	4 mg/m3	UK. EH40 Workplace Exposure Limits (WELs) (2007)

Biological Limit Values: Great Britain

9		
Chemical Identity	Exposure Limit Values	Source
Calcium fluoride (Fluoride:	8 mg/l (Urine)	EU BLV/BGV (2014)
Sampling time: End of shift.)		

Biological Limit Values: ACGIH

None of the components have assigned exposure limits.

Additional exposure limits under the conditions of use: Great Britain

Chemical Identity	Туре	Exposure Limit Values	Source
Carbon dioxide	TWA	5.000 ppm	UK. EH40 Workplace Exposure Limits (WELs)

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

	TWA	5.000 ppm	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (Indicative)
	STEL	15.000 ppm	UK. EH40 Workplace Exposure Limits (WELs)
Carbon monoxide	STEL	100 ppm	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (Indicative)
	TWA	20 ppm	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (Indicative)
	STEL	100 ppm	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended
	TWA	20 ppm	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended
	STEL	200 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	TWA	30 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	STEL	100 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	TWA	20 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	TWA	30 ppm	UK. EH40 Workplace Exposure Limits (WELs) (The expiration date of this limit: 21 August 2023)
	STEL	200 ppm	UK. ÉH40 Workplace Exposure Limits (WELs) (The expiration date of this limit: 21 August 2023)
Nitrogen dioxide	TWA	0,5 ppm	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (Indicative)
	STEL	1 ppm	EU. Indicative Exposure Limit Values in Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU (Indicative)
	STEL	1 ppm	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended
	TWA	0,5 ppm	EU. Scientific Committee on Occupational Exposure Limit Values (SCOELs), European Commission - SCOEL, as amended
	TWA	0,5 ppm	UK. EH40 Workplace Exposure Limits (WELs)
	STEL	1 ppm	UK. EH40 Workplace Exposure Limits (WELs)
Ozone	STEL	0,2 ppm	UK. EH40 Workplace Exposure Limits (WELs)

Additional exposure limits under the conditions of use: US

Chemical Identity	Туре	Exposure Limit Values		Source
Carbon dioxide	TWA	5.000 ppm		US. ACGIH Threshold Limit Values (12 2010)
	STEL	30.000 ppm		US. ACGIH Threshold Limit Values (12 2010)
	PEL	5.000 ppm	9.000 mg/m3	US. OSHA Table Z-1 Limits for Air
				Contaminants (29 CFR 1910.1000) (02 2006)
Carbon monoxide	TWA	25 ppm		US. ACGIH Threshold Limit Values (12 2010)
	PEL	50 ppm	55 mg/m3	US. OSHA Table Z-1 Limits for Air
				Contaminants (29 CFR 1910.1000) (02 2006)
Nitrogen dioxide	TWA	0,2 ppm		US. ACGIH Threshold Limit Values (02 2012)
	Ceiling	5 ppm	9 mg/m3	US. OSHA Table Z-1 Limits for Air
				Contaminants (29 CFR 1910.1000) (02 2006)
Ozone	PEL	0,1 ppm	0,2 mg/m3	US. OSHA Table Z-1 Limits for Air
				Contaminants (29 CFR 1910.1000) (02 2006)
	TWA	0,05 ppm		US. ACGIH Threshold Limit Values (03 2014)
	TWA	0,10 ppm		US. ACGIH Threshold Limit Values (03 2014)
	TWA	0,08 ppm		US. ACGIH Threshold Limit Values (03 2014)
	TWA	0,20 ppm		US. ACGIH Threshold Limit Values (02 2020)

8.2 Exposure controls

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Appropriate Engineering Controls

Ventilation: Use enough ventilation and local exhaust at the arc, flame or heat source to keep the fumes and gases from the worker's breathing zone and the general area. Train the operator to keep their head out of the fumes. **Keep exposure as low as possible.**

Individual protection measures, such as personal protective equipment

General information:

Exposure Guidelines: To reduce the potential for overexposure, use controls such as adequate ventilation and personal protective equipment (PPE). Overexposure refers to exceeding applicable local limits, the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) or the Occupational Safety and Health Administration's (OSHA) Permissible Exposure Limits (PELs). Workplace exposure levels should be established by competent industrial hygiene assessments. Unless exposure levels are confirmed to be below the applicable local limit, TLV or PEL, whichever is lower, respirator use is required. Absent these controls, overexposure to one or more compound constituents, including those in the fume or airborne particles, may occur resulting in potential health hazards. According to the ACGIH, TLVs and Biological Exposure Indices (BEIs) "represent conditions under which ACGIH believes that nearly all workers may be repeatedly exposed without adverse health effects." The ACGIH further states that the TLV-TWA should be used as a guide in the control of health hazards and should not be used to indicate a fine line between safe and dangerous exposures. See Section 10 for information on constituents which have some potential to present health hazards. Welding consumables and materials being joined may contain chromium as an unintended trace element. Materials that contain chromium may produce some amount of hexavalent chromium (CrVI) and other chromium compounds as a byproduct in the fume. In 2018, the American Conference of Governmental Industrial Hygienists (ACGIH) lowered the Threshold Limit Value (TLV) for hexavalent chromium from 50 micrograms per cubic meter of air (50 µg/m³) to 0.2 µg/m³. At these new limits, CrVI exposures at or above the TLV may be possible in cases where adequate ventilation is not provided. CrVI compounds are on the IARC and NTP lists as posing a lung cancer and sinus cancer risk. Workplace conditions are unique and welding fume exposures levels vary. Workplace exposure assessments must be conducted by a qualified professional, such as an industrial hygienist, to determine if exposures are below applicable limits and to make recommendations when necessary for preventing overexposures.

Maximum Dust Exposure Guideline™(MDEG)™ for this product (based on content of Manganese oxide (MnO)) is 0,3 mg/m3. This exposure guideline is calculated using the most conservative value of the ACGIH TLV or OSHA PEL for the stated substance.Handle to minimize generation of airborne dust. Use adequate ventilation and dust collection. Use respiratory protection, if required, to keep exposure below limits. If your local applicable exposure limits are lower than the ACGIH TLV or OSHA PEL for any of the substances listed in Section 3 of this SDS, you must take that into consideration before utilizing or applying this guideline.

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Eye/face protection: Wear helmet or use face shield with filter lens shade number 12 or darker

for open arc processes – or follow the recommendations as specified in ANSI Z49.1, Section 4, based on your process and settings. No specific lens shade recommendation for submerged arc or electroslag processes.

Shield others by providing appropriate screens and flash goggles.

Skin protection

Hand Protection: Wear protective gloves. Suitable gloves can be recommended by the glove

supplier.

Other: Protective Clothing: Wear hand, head, and body protection which help to

prevent injury from radiation, open flames, hot surfaces, sparks and electrical shock. See Z49.1. At a minimum, this includes welder's gloves and a protective face shield when welding, and may include arm protectors, aprons, hats, shoulder protection, as well as dark substantial clothing when welding, brazing and soldering. Wear dry gloves free of holes or split seams. Train the operator not to permit electrically live parts or electrodes from contacting the skin . . . or clothing or gloves if they are wet. Insulate yourself from the work piece and ground using dry plywood, rubber mats or

other dry insulation.

Respiratory Protection: Keep your head out of fumes. Use enough ventilation and local exhaust to

keep fumes and gases from your breathing zone and the general area. An approved respirator should be used unless exposure assessments are

below applicable exposure limits.

Hygiene measures: Do not eat, drink or smoke when using the product. Always observe good

personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants. Determine the composition and quantity of fumes and gases to which workers are

exposed by taking an air sample from inside the welder's helmet if worn or in the worker's breathing zone. Improve ventilation if exposures are not below limits. See ANSI/AWS F1.1, F1.2, F1.3 and F1.5, available from the

American Welding Society, www.aws.org.

SECTION 9: Physical and chemical properties

Appearance:Granular welding flux.Physical state:Solid

Form: Granular Color: Brown

9.1 Information on basic physical and chemical properties

Odor: No data available.
Odor Threshold: No data available.

pH: Not applicable

Melting Point: No data available.

Boiling Point: No data available.

Flash Point: No data available.

Evaporation Rate: No data available.

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Flammability (solid, gas):

Flammability Limit - Upper (%):

Flammability Limit - Lower (%):

Vapor pressure:

Relative vapor density:

No data available.

Solubility(ies)

Solubility in Water: No data available. Solubility (other): No data available. No data available. Partition coefficient (n-octanol/water): **Autoignition Temperature:** No data available. **Decomposition Temperature:** No data available. SADT: No data available. Viscosity: No data available. **Explosive properties:** No data available. Oxidizing properties: No data available.

9.2 Other information

VOC Content: Not available.

Bulk density:Not available.Dust Explosion Limit, Upper:Not available.Dust Explosion Limit, Lower:Not available.

Dust Explosion Description Number

Kst:

Not available.

Minimum ignition energy:Not available.Minimum ignition temperature:Not available.Metal Corrosion:Not available.

SECTION 10: Stability and reactivity

10.1 Reactivity: The product is non-reactive under normal conditions of use, storage and

transport.

10.2 Chemical Stability: Material is stable under normal conditions.

10.3 Possibility of hazardous

reactions:

None under normal conditions.

10.4 Conditions to avoid: Avoid heat or contamination.

10.5 Incompatible Materials: Strong acids. Strong oxidizing substances. Strong bases.

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

10.6 Hazardous Decomposition Products:

Fumes and gases from welding and its allied processes such as brazing and soldering cannot be classified simply. The composition and quantity of both are dependent upon the metal to which the joining or hot work is applied, the process, procedure - and where applicable - the electrode or consumable used. Other conditions which also influence the composition and quantity of the fumes and gases to which workers may be exposed include: coatings on the metal being welded or worked (such as paint, plating, or galvanizing), the number of operators and the volume of the work area, the quality and amount of ventilation, the position of the operator's head with respect to the fume plume, as well as the presence of contaminants in the atmosphere (such as chlorinated hydrocarbon vapors from cleaning and degreasing activities.)

In cases where an electrode or other applied material is consumed, the fume and gas decomposition products generated are different in percent and form from the ingredients listed in Section 3. Decomposition products of normal operation include those originating from the volatilization, reaction, or oxidation of the materials shown in Section 3, plus those from the base metal and coating, etc., as noted above. Reasonably expected fume constituents produced during arc welding and brazing include the oxides of iron, manganese and other metals present in the welding consumable or base metal. Hexavalent chromium compounds may be in the welding or brazing fume of consumables or base metals which contain chromium. Gaseous and particulate fluoride may be in the fume of consumables or flux materials which contain fluoride. Gaseous reaction products may include carbon monoxide and carbon dioxide. Ozone and nitrogen oxides may be formed by the radiation from the arc associated with welding.

SECTION 11: Toxicological information

General information: The International Agency for Research on Cancer (IARC) has determined

welding fumes and ultraviolet radiation from welding are carcinogenic to humans (Group 1). According to IARC, welding fumes cause cancer of the lung and positive associations have been observed with cancer of the kidney. Also according to IARC, ultraviolet radiation from welding causes ocular melanoma. IARC identifies gouging, brazing, carbon arc or plasma arc cutting, and soldering as processes closely related to welding. Read and understand the manufacturer's instructions, Safety Data Sheets and the precautionary labels before using this product.

Information on likely routes of exposure

Inhalation: Potential chronic health hazards related to the use of welding consumables

are most applicable to the inhalation route of exposure. Refer to Inhalation

statements in Section 11.

Skin Contact: Arc rays can burn skin. Skin cancer has been reported.

Eye contact: Arc rays can injure eyes.

Ingestion: Health injuries from ingestion are not known or expected under normal use.

Symptoms related to the physical, chemical and toxicological characteristics

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Inhalation: Overexposure to respirable crystalline silica, which may be present in dust

created from the processing, handling or use of this product, can cause severe lung damage (silicosis). Respiratory overexposure to airborne crystalline silica is known to cause silicosis, a form of disabling pulmonary fibrosis which can be progressive and may lead to death. Crystalline silica is on the IARC (International Agency for Research on Cancer) and NTP (National Toxicology Program) lists as posing a cancer risk to humans. Note: All regional authorities do not use the same criteria for assigning carcinogenic classifications to chemicals. For example, the European Union (EU) CLP does not require classifying crystalline silica as a carcinogenic compound, or listing it in Section 3 of the SDS when concentrations are less than 1%. Short-term (acute) overexposure to fumes and gases from welding and allied processes may result in discomfort such as metal fume fever, dizziness, nausea, or dryness or irritation of nose, throat, or eyes. May aggravate pre-existing respiratory problems (e.g. asthma, emphysema). Long-term (chronic) overexposure to fumes and gases from welding and allied processes can lead to siderosis (iron deposits in lung),

central nervous system effects, bronchitis and other pulmonary effects.

11.1 Information on toxicological effects

Acute toxicity (list all possible routes of exposure)

Oral

Product: Not classified for acute toxicity based on available data.

Specified substance(s):

Calcium fluoride LD 50 (Rat): 4.250 mg/kg

Dermal

Product: Not classified for acute toxicity based on available data.

Inhalation

Product: Not classified for acute toxicity based on available data.

Repeated dose toxicity

Product: No data available.

Skin Corrosion/Irritation

Product: Not classified

Serious Eye Damage/Eye Irritation

Product: Not classified

Respiratory or Skin Sensitization

Product: Respiratory Sensitization: Not classified

Skin Sensitization: Not classified

Carcinogenicity

Product: Not classified

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans:

Specified substance(s):

Calcium fluoride Overall evaluation: 3. Not classifiable as to carcinogenicity to humans.

Quartz Overall evaluation: 1. Carcinogenic to humans.

Germ Cell Mutagenicity

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

In vitro

Product: Not classified

In vivo

Product: Not classified

Reproductive toxicity

Product: Not classified

Specific Target Organ Toxicity - Single Exposure

Product: Not classified

Specific Target Organ Toxicity - Repeated Exposure

Product: Not classified

Aspiration Hazard

Product: Not applicable

Other effects: Organic polymers may be used in the manufacture of various welding

consumables. Overexposure to their decomposition byproducts may result in a condition known as polymer fume fever. Polymer fume fever usually occurs within 4 to 8 hours of exposure with the presentation of flu like symptoms, including mild pulmonary irritation with or without an increase in body temperature. Signs of exposure can include an increase in white blood cell count. Resolution of symptoms typically occurs quickly, usually

not lasting longer than 48 hours.

Symptoms related to the physical, chemical and toxicological characteristics under the condition of use

Additional toxicological Information under the conditions of use: Acute toxicity

Inhalation

Specified substance(s):

Carbon dioxide LC Lo (Human, 5 min): 90000 ppm

Carbon monoxide LC 50 (Rat, 4 h): 1300 ppm Nitrogen dioxide LC 50 (Rat, 4 h): 88 ppm

Ozone LC Lo (Human, 30 min): 50 ppm

Other effects:

Specified substance(s):

Carbon dioxide Asphyxia

Carbon monoxide Carboxyhemoglobinemia

Nitrogen dioxide Lower respiratory tract irritation

SECTION 12: Ecological information

12.1 Ecotoxicity

Acute hazards to the aquatic environment:

Fish

Product: Not classified

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Specified substance(s):

Calcium fluoride LC 50 (48 h): 299 mg/l LC 50 (96 h): 108 mg/l LC 100 (Tinca vulgaris, 48

h): > 3.000 mg/l LC 50 (96 h): 340 mg/l LC 50 (96 h): 165 mg/l

Aquatic Invertebrates

Product:

Not classified

Specified substance(s):

Calcium fluoride EC 50 (Daphnia magna; Daphnia sp., 120 h): 20 - 39 mg/l EC 50 (Daphnia

magna; Daphnia sp., 24 h): 352 mg/l EC 50 (Daphnia magna; Daphnia sp., 96 h): 26 - 48 mg/l EC 50 (Daphnia magna; Daphnia sp., 48 h): 97 mg/l EC

50 (Daphnia magna; Daphnia sp., 48 h): 153 mg/l

Chronic hazards to the aquatic environment:

Fish

Product: Not classified

Aquatic Invertebrates

Product: Not classified

Toxicity to Aquatic Plants

Product: No data available.

12.2 Persistence and Degradability

Biodegradation

Product: No data available.

12.3 Bioaccumulative potential

Bioconcentration Factor (BCF)

Product: No data available.

12.4 Mobility in soil: No data available.

12.5 Results of PBT and vPvB

assessment:

No data available.

12.6 Other adverse effects: No data available.

12.7 Additional Information: No data available.

SECTION 13: Disposal considerations

13.1 Waste treatment methods

General information: The generation of waste should be avoided or minimized whenever

possible. When practical, recycle in an environmentally acceptable, regulatory compliant manner. Dispose of non-recyclable products in accordance with all applicable Federal, State, Provincial, and Local requirements. Minerals such as Florida Zircon Sand are used as one of the components in the manufacturing of welding fluxes contain trace levels of

Naturally Occurring Radioactive Material (NORM). Based on the radiological status of these materials, the scrap flux and waste slag

generated in welding processes should be acceptable for disposal in RCRA Title D landfills. Flux materials containing sufficiently low concentrations of

NORM are not subject to federal radiation control regulations. The

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

regulation for classifying the flux material (zircon sand) is Title 10, Code of Federal Regulations, Part 40 Section 40.13 (10CRF40.13). Materials which contain less than 0.05% (0,05%) by weight of uranium and/or thorium, are exempt from regulation. The concentrations in the flux and slag are considerably lower than 0.05% (0.05%). Note: Many states are developing regulations pertaining to Naturally Occurring Radioactive Materials (NORM) above background levels. Consult with the applicable

regulations and the authority with jurisdiction.

Disposal instructions: Dispose of this material and its container to hazardous or special waste

collection point.

Contaminated Packaging: Dispose of contents/container to an appropriate treatment and disposal

facility in accordance with applicable laws and regulations, and product

characteristics at time of disposal.

SECTION 14: Transport information

ADR

14.1 UN number or ID number:

14.2 UN Proper Shipping Name: NOT DG REGULATED

14.3 Transport Hazard Class(es)

NR Class: Label(s): Hazard No. (ADR): Tunnel restriction code:

14.4 Packing Group:

Limited quantity Excepted quantity

14.5 Marine Pollutant No

ADN

14.1 UN number or ID number:

14.2 UN Proper Shipping Name: NOT DG REGULATED

14.3 Transport Hazard Class(es)

Class: NR Label(s): Hazard No. (ADR): 14.4 Packing Group: Limited quantity

Excepted quantity

14.5 Marine Pollutant No

RID

14.1 UN number or ID number:

14.2 UN Proper Shipping Name NOT DG REGULATED

14.3 Transport Hazard Class(es)

Class: NR Label(s): 14.4 Packing Group: 14.5 Marine Pollutant No

IMDG

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

14.1 UN number or ID number:

14.2 UN Proper Shipping Name: NOT DG REGULATED

14.3 Transport Hazard Class(es)

Class: NR
Label(s): –
EmS No.:

14.4 Packing Group: -

Limited quantity Excepted quantity

14.5 Marine Pollutant No

IATA

14.1 UN number or ID number:

14.2 Proper Shipping Name: NOT DG REGULATED

14.3 Transport Hazard Class(es):

Class: NR
Label(s):
14.4 Packing Group: -

Cargo aircraft only:

Passenger and cargo aircraft:

Limited quantity: Excepted quantity

14.5 Marine Pollutant No
Cargo aircraft only: Allowed.

14.7 Transport in bulk according to Annex II of MARPOL and the IBC Code: Not applicable

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture:

EU Regulations

Regulation 1005/2009/EC on substances that deplete the ozone layer, Annex I, Controlled Substances: None

Regulation 1005/2009/EC on substances that deplete the ozone layer, Annex II, New Substances: None

EU. REACH Annex XIV, Substances Subject to Authorization: None

EU. Regulation 2019/1021/EU on persistent organic pollutants (POPs) (recast), as amended: None

Regulation (EU) No. 649/2012 concerning the export and import of dangerous chemicals, Annex I, Part 1 as amended: None

Regulation (EU) No. 649/2012 concerning the export and import of dangerous chemicals, Annex I, Part 2 as amended: None

Regulation (EU) No. 649/2012 concerning the export and import of dangerous chemicals, Annex I, Part 3 as amended: None

Regulation (EU) No. 649/2012 concerning the export and import of dangerous chemicals, Annex V as amended: None

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

EU. REACH Candidate List of Substances of Very High Concern for Authorization (SVHC): None

Regulation (EC) No. 1907/2006 Annex XVII Substances subject to restriction on marketing and use: None

Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens and mutagens at work.:

Chemical name	CAS-No.	Concentration
Quartz	14808-60-7	1,0 - 10%

Directive 92/85/EEC: on the safety and health of pregnant workers and workers who have recently given birth or are breast feeding.: None

EU. Directive 2012/18/EU (SEVESO III) on major accident hazards involving dangerous substances, Annex I:

Not applicable

EU. Regulation No. 166/2006 PRTR (Pollutant Release and Transfer Registry), Annex II: Pollutants:

Chemical name	CAS-No.	Concentration
Calcium fluoride	7789-75-5	10 - 20%

Directive 98/24/EC on the protection of workers from the risks related to chemical agents at work: None

National Regulations

Water Hazard Class

WGK 3: severely water-endangering.

(WGK):

TA Luft, Technical Guidance Air:

Manganese oxide (MnO)	Number 5.2.2 Class III, Inorganic dust-forming substance
Calcium fluoride	Number 5.2.2 Class III, Inorganic dust-forming substance

INRS, maladies professionelles, table of work-related illnesses

Listed:

32

44 bis

44

94

15.2 Chemical safety assessment:

No Chemical Safety Assessment has been carried out.

International regulations

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Inventory Status:

Canada DSL Inventory List:

On or in compliance with the inventory

Canada NDSL Inventory: One or more components are not listed or are exempt from listing.

Ontario Inventory:

On or in compliance with the inventory
China Inv. Existing Chemical Substances:

On or in compliance with the inventory

Japan (ENCS) List:

Japan ISHL Listing:

One or more components are not listed or are exempt from listing.

One or more components are not listed or are exempt from listing.

Japan Pharmacopoeia Listing:

One or more components are not listed or are exempt from listing.

Korea Existing Chemicals Inv. (KECI):

Mexico INSQ:

On or in compliance with the inventory
On or in compliance with the inventory
On or in compliance with the inventory
Philippines PICCS:
On or in compliance with the inventory
On or in compliance with the inventory

Taiwan Chemical Substance Inventory:

US TSCA Inventory:

EINECS, ELINCS or NLP:

On or in compliance with the inventory
On or in compliance with the inventory

Australia AICS: One or more components are not listed or are exempt from listing.

Montreal protocol

Not applicable

Stockholm convention

Not applicable

Rotterdam convention

Not applicable

Kyoto protocol

Not applicable

SECTION 16: Other information

Definitions:

The Maximum Dust Exposure Guideline™ (MDEG)™ is provided to assist with the management of workplace exposures where granular solid welding products or other materials are being utilized. It is derived from relevant compositional data and estimates the lowest level of total airborne dust exposure, for a given product, at which some specific constituent might potentially exceed its individual exposure limit. The specific exposure limits referenced are the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV®) and the U. S. OSHA Permissible Exposure Limit (PEL), which ever value is the lowest. If local applicable limits for any of the substances listed in Section 3 of this SDS are lower than the TLV or PEL this must be taken into consideration before utilizing or applying this guideline. The MDEG™ is never greater than 10 mg/m³ as this is the airborne exposure guideline for total particulate (total dust). The MDEG™ is intended to serve as a general guideline to assist in the management of workplace exposure and does not replace the regular measurement and analysis of worker exposure to individual airborne dust constituents in accordance with recommended industrial hygiene practice.

Combustible Dust Hazard Rating:

This material will not burn and has the Lincoln Electric Combustible Dust Hazard Rating: 0-CS. For additional information contact the Lincoln Electric EHS Department (216) 383-2669.

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Combustible Dust Hazard Rating Information:

Lincoln Electric's Combustible Dust Rating System is as follows:

- 3: Fine solid powders or dusts which can ignite with contact with air, or have a Kst value ≥300, and/or would have an ignition flame front faster than the speed of sound.
- 2: Fine solid powders or dusts which can ignite with contact with air, have an MIE <3 mJ, or have a Kst value >200 & ≤299, and/or would have an ignition flame front faster than the speed of sound.
- 1.3: Fine solid powders or dusts which have an MIE >3 mJ <500mJ, and a Kst \geq 25<200 mJ.
- 1.2: Fine solid powders or dusts which have an MIE >3 mJ <500mJ, and a Kst <25, or MIE >500mJ and Kst ≥25 but <200 mJ.
- 1.1: Fine solid powders or dusts which have an MIE >10 J and a positive Kst value <25

0-CS: Materials that will not burn.

References

PBT PBT: persistent, bioaccumulative and toxic substance. vPvB vPvB: very persistent and very bioaccumulative substance.

Key literature references and sources for data:

According to Regulation (EC) No. 1907/2006 (REACH) Article 31, Annex II as amended.

Wording of the H-statements in section 2 and 3

H314 Causes severe skin burns and eye damage.

H315 Causes skin irritation.

H318 Causes serious eye damage. H335 May cause respiratory irritation.

H372 Causes damage to organs through prolonged or repeated exposure.
H373 May cause damage to organs through prolonged or repeated

exposure.

Other information: Additional information is available by request.

Issue Date: 10.08.2021

Disclaimer: The Lincoln Electric Company urges each end user and recipient of this SDS

to study it carefully. See also www.lincolnelectric.com/safety. If necessary, consult an industrial hygienist or other expert to understand this information and safeguard the environment and protect workers from potential hazards associated with the handling or use of this product. This information is believed to be accurate as of the revision date shown above. However, no warranty, expressed or implied, is given. Because the conditions or methods of use are beyond Lincoln Electric's control, we assume no liability resulting from the use of this product. Regulatory requirements are subject to change and may differ between various locations. Compliance with all applicable Federal, State, Provincial, and local laws and regulations remain the

responsibility of the user.

© 2021 Lincoln Global, Inc. All Rights Reserved.

Last revised date: 10.08.2021 Supersedes Date: 10.08.2021

Annex to the extended Safety Data Sheet (eSDS) Exposure Scenario:

Read and understand the "Recommendations for Exposure Scenarios, Risk Management Measures and to identify Operational Conditions under which metals, alloys and metallic articles may be safely welded", which is available from your supplier and at http://european-welding.org/health-safety.

Welding/Brazing produces fumes which can affect human health and the environment. Fumes are a varying mixture of airborne gases and fine particles which, if inhaled or swallowed, constitute a health hazard. The degree of risk will depend on the composition of the fume, concentration of the fume and duration of exposure. The fume composition is dependent upon the material being worked, the process and consumables being used, coatings on the work such as paint, galvanizing or plating, oil or contaminants from cleaning and degreasing activities. A systematic approach to the assessment of exposure is necessary, taking into account the particular circumstances for the operator and ancillary worker that can be exposed.

Considering the emission of fumes when welding, brazing or cutting of metals, it is recommended to (1) arrange risk management measures through applying general information and guidelines provided by this exposure scenario and (2) using the information provided by the Safety Data Sheet, issued in accordance with REACH, by the welding consumable manufacturer.

The employer shall ensure that the risk from welding fumes to the safety and health of workers is eliminated or reduced to a minimum. The following principle shall be applied:

- 1- Select the applicable process/material combinations with the lowest class, whenever possible.
- 2- Set welding process with the lowest emission parameter.
- 3- Apply the relevant collective protective measure in accordance with class number. In general, the use of PPE is taken into account after all other measures is applied.
- 4- Wear the relevant personal protective equipment in accordance with the duty cycle.

In addition, compliance with the National Regulations regarding the exposure to welding fumes of welders and related personnel shall be verified.