

Aquatic Risk AssessmentOrganophosphate insecticide mixtures in Washington surface waters

Chlorpyrifos, diazinon, & malathion: 2018 – 2020 preliminary analysis

Jadey Ryan

Land Resources and Environmental Sciences Master's Student | MSU Natural Resources Assessment Section | WSDA

WSDA Surface Water Monitoring Program

- Natural Resources Assessment Section established in 2003
- Sample agricultural and urban streams
 Mar Nov
 - All streams currently or historically provided habitat for ESA listed salmonids

Monitoring Sites

ESA Status Chinook **Endangered** Chum Protected Coho Protected Sockeye **Endangered** Steelhead **Threatened Trout**

Detection Frequencies

Measured Concentrations

 Concentrations generally higher and more variable in mixtures with C & M

Measured Concentrations

 Concentrations generally higher and more variable in mixtures with C & M

Benchmark Quotient (BQ)

	Invertebrate		Fish	
	Acute (μg/L)	Chronic (µg/L)	Acute (μg/L)	Chronic (μg/L)
Chlorpyrifos	0.05	0.04	0.9	0.57
Diazinon	0.105	0.17	45	0.55
Malathion	0.049	0.06	2.05	8.6

Aquatic Life Benchmarks (EPA 2021)

$$Individual \ BQ = \frac{\text{Measured Concentration}}{\text{Benchmark}}$$

$$Mixture \ BQ = \sum_{i=1}^{n} \frac{\text{Measured Concentration}_i}{\text{Benchmark}_i}$$

BQ>1 Frequencies

Conclusions

- C & M most frequently detected AND most frequently BQ>1
 - Likely primary contributors to overall toxicity of each mixture

 Mixtures after C tolerance revocation?

Conservatism and Uncertainty

 EPA ALBs apply safety factor (LOC) of 0.5 or 1 to lowest toxicity value (EC₅₀, LC₅₀, or NOAEC)

- BQ analysis did not consider:
 - Water quality parameters
 - Pesticide properties
 - Spatial or temporal patterns
- Only assessed OP mixtures
 - In 2018, up to 44 different analytes were detected in a single sample

Conservatism and Uncertainty

 EPA ALBs apply safety factor (LOC) of 0.5 or 1 to lowest toxicity value (EC₅₀, LC₅₀, or NOAEC)

- BQ analysis did not consider:
 - Water quality parameters
 - Pesticide properties
 - Spatial or temporal patterns
- Only assessed OP mixtures
 - In 2018, up to 44 different analytes were detected in a single sample

Future Work

 Refine RA based on more specific scenarios

Assess more
 pesticide groups with
 same mode of action

Acknowledgements

- WSDA NRAS
- Dr. Robert Peterson,
 Montana State
 University
- Dept. of Ecology
 Manchester
 Environmental Lab

Thank you!

Jadey Ryan

Environmental Specialist, Olympia Surface Water Monitoring 360.819.7855

jryan@agr.wa.gov

Katie Noland

Environmental Specialist, Olympia Surface Water Monitoring Lead 360.819.3690

knoland@agr.wa.gov

Abigail Nickelson

Natural Resource Scientist, Yakima Surface Water Monitoring Database Lead 509.895.9338

anickelson@agr.wa.gov

Matt Bischof

Natural Resource Scientist, Yakima Surface Water Monitoring Lead 509.895.9338

mbischof@agr.wa.gov