江南大学命题专用纸(首页)

2016-2017 **学年第2 学期 试题名称: <u>大学物理Ⅱ上(B)</u>** 共4页第1页

专业年级: _____ 学号____ 姓名____ 授课教师名 分数___ 一、选择题(每题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 1、截面积比为2:1的两铜线中的电流强度为3:2时,两铜线中电子的漂移速率比为 (A) 4:3 (B) 1:3 (C) 3:1 (D) 3:4 2、一质点作匀速率圆周运动时, (A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变. (D) 它的动量不断改变,对圆心的角动量也不断改变. 3、质量分别为 m 和 4m 的两个质点分别以动能 E 和 4E 沿一直线相向运动,它们的 总动量大小为 (A) $2\sqrt{2mE}$ (B) $\frac{1}{\ge} \le$. (C) $5\sqrt{2mE}$. (D) $(2\sqrt{2} - 1)\sqrt{2mE}$ 4、一物体挂在一弹簧下面,平衡位置在O点,现用手向下拉物体,第一次把物体由O点拉到 M点,第二次由 O点拉到 N点,再由 N点送回 M点.则在这两个过 程中 (A) 弹性力作的功相等, 重力作的功不相等. (B) 弹性力作的功相等, 重力作的功也相等, (C) 弹性力作的功不相等, 重力作的功相等. (D) 弹性力作的功不相等, 重力作的功也不相等 []

更多考试真题请扫码获取

授课教师

命题教师或命题负责人 答 字

院系负责人

签 字

年 月 日

江南大学 命题 专用纸(附页)

- 5、站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦的 定滑轮而处于"平衡"状态.由此,他断定电梯作加速运动,其加速度为
 - (A) 大小为g, 方向向上. (B) 大小为g, 方向向下.
 - (C) 大小为 $\frac{1}{2}$ g,方向向上. (D) 大小为 $\frac{1}{2}$ g,方向向下. []
- 6、如图所示,置于水平光滑桌面上质量分别为 m₁和 m₂的物体 A和B之间夹有一轻弹簧. 首先用双手挤压 A和B使弹簧处于 压缩状态, 然后撤掉外力, 则在A和B被弹开的过程中

- (A) 系统的动量守恒, 机械能不守恒.
- (B) 系统的动量守恒, 机械能守恒,
- (C) 系统的动量不守恒, 机械能守恒,
 - (D) 系统的动量与机械能都不守恒.

7、一半径为R的薄金属球壳,带电荷-Q.设无穷远处电势为零,则球壳 内各点的电势 U可表示为: $(K = \frac{1}{4\pi\varepsilon_0})$

(B)
$$U = -K\frac{Q}{R}$$
.

(C)
$$U > -K\frac{Q}{R}$$

(C)
$$U > -K\frac{Q}{R}$$
 (D) $-K\frac{Q}{R} < U < 0$.

- 8、两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则
 - (A) 空心球电容值大. (B) 实心球电容值大.
 - (C) 两球电容值相等. (D) 大小关系无法确定. []

二、填空题(共27分)

9、(5分) 一船以速度 \vec{v}_0 在静水湖中匀速直线航行,一乘客以初 速·在船中竖直向

上抛出一石子,则站在岸上的观察者看石子运动的轨迹是。

	115-44-11-1-1-11-11-11-11-11-11-11-11-11-11
-	取抛出点为原
	点, x 轴沿 $ar{oldsymbol{v}}_{0}$ 方向, y 轴沿竖直向上方向,石子的轨迹方程是
	10 、 $(3 分)$ 如果一个箱子与货车底板之间的静摩擦系数为 μ ,当这货车爬一与水平方向成 θ 角
$-\mathbf{L}$	的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度 $a_{max} = $
11.	、(5分)质量 m 的小球,以水平速度 v_0 与光滑桌面上质量为 M 的静止斜劈作完全弹性碰撞
后!	竖直弹起,则碰后斜劈的运动速度值
v =	$ar{oldsymbol{v}_0}$; 小球上升的高度 $ar{oldsymbol{v}_0}$ $ar{oldsymbol{v}_0}$ $ar{oldsymbol{v}_0}$ $ar{oldsymbol{w}_0}$ $ar{oldsymbol{w}_0}$ $ar{oldsymbol{w}_0}$
h=	
γ-	
12	
	(1) 若气体的体积不变,则热量用于
	(2) 若气体的温度不变,则热量用于 .
((3) 若气体的压强不变,则热量用于
	J BATTA
13	、(4分)三个平行的"无限大"均匀带电平面,其电荷面密度都是
+ 4	σ ,如图所示,则 A 、 B 、 C 、 D 三个区域的电场强
度	分别为: $E_A=$
	(1 B) (1 C) (1)
E_C	=
14	(1) X Y 1
设ī 	两筒上单位长度带有的电荷分别为 $+\lambda$ 和 $-\lambda$,则介质中离轴线的距离为 r
处	的电位移矢量的大小 $D=$,电场强度的大小 $E=$
	、计算题(共 34 分) 、 (12 分) —根放在水平光滑桌面上的匀质棒,可绕通过其
	、(12 分)一根放在水平光滑桌面上的匀质棒,可绕通过其 $m, l = m, l$
	端的竖直固定光滑轴 O 转动、棒的质量为 $m=1.5$ kg、长度
j	端的竖直固定光滑轴 O 转动. 棒的质量为 $m=1.5$ kg,长度 $l=1.0$ m,对轴的转动惯量为 $J=\frac{1}{3}ml^2$.初始时棒静止. $l=1.0$ m,对轴的转动惯量为 $J=\frac{1}{3}ml^2$.初始时棒静止.

今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示. 子弹的质量为 m'= 0.020 kg, 速率为 **v**=400 m·s⁻¹. 试问:

- (1) 棒开始和子弹一起转动时角速度ω有多大?
- (2) 若棒转动时受到大小为 M_r =4.0 N·m 的恒定阻力矩作用,棒能转过多大的角度 Θ ?

江南大学 命题 专用纸(附页)

2016-2017 学年第2 学期 试题名称: 大学物理Ⅱ上 (B) 共4页 第4页

微信公众号。江小南珠和道

- 16、(10 分)1 mol 理想气体在 T_1 = 400 K 的高温热源与 T_2 = 300 K 的低温热源间作卡诺循环(可逆的),在 400 K 的等温线上起始体积为 V_1 = 0.001 m³,终止体积为 V_2 = 0.005 m³,试求此气体在每一循环中
 - (1) 从高温热源吸收的热量 Q_1
 - (2) 气体所作的净功 W
 - (3) 气体传给低温热源的热量 Q₂
- 17、(12 分)电荷以相同的面密度 σ 分布在半径为 r_1 =10 cm 和 r_2 =20 cm 的两个同心球面上. 设无限远处电势为零,球心处的电势为 U_0 =300 V.
 - (1) 求电荷面密度 σ .
 - (2) 若要使球心处的电势也为零,外球面上应放掉多少电荷? $[\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)]$

四、简答题(每题5分,共15分)

18、将平行板电容器接上电源后,用相对介电常量为 ε 。的各向同性均匀电介质充满其内.下列说法是否正确?如有错误请改正.

- (1) 极板上电荷增加为原来的 ε_r 倍.
- (2) 介质内场强为原来的 $1/\varepsilon_r$ 倍.
- (3) 电场能量减少为原来的 $1/\varepsilon_r^2$ 倍.

19、已知 $f(\mathbf{v})$ 为麦克斯韦速率分布函数,N为总分子数, \mathbf{v}_p 为分子的最概然速率.下列各式表示什么物理意义?

(1) $\int_{\mathcal{P}} \boldsymbol{v} f(\boldsymbol{v}) d\boldsymbol{v}$; (2) $\int_{\mathcal{P}} f(\boldsymbol{v}) d\boldsymbol{v}$; (3) $\int_{\mathcal{P}} N f(\boldsymbol{v}) d\boldsymbol{v}$

20、甲说: "系统经过一个正的卡诺循环后,系统本身没有任何变化." 乙说: "系统经过一个正的卡诺循环后,不但系统本身没有任何变化,

而且外界也没有任何变化."

甲和乙谁的说法正确? 为什么?