# EEE104 – Digital Electronics (I) Lecture 3

Dr. Ming Xu, Dr. Filbert Juwono

Dept of Electrical & Electronic Engineering

XJTLU

## In This Session

- Binary Arithmetic
- Hexadecimal Numbers.
- Binary Coded Decimal (BCD)

# **Binary Arithmetic**

## 1's Complement

- This is to change all 1s to 0s and all 0s to 1s in a binary number.
- It is important to the representation of negative numbers.

| 1 ( | 1   | 1            | 0 | 0 | 1            | 0 | Binary number  |
|-----|-----|--------------|---|---|--------------|---|----------------|
| 1   | 1   | $\downarrow$ | 1 | 1 | $\downarrow$ | 1 |                |
| 0 1 | . 0 | 0            | 1 | 1 | 0            | 1 | 1's complement |

## Binary Arithmetic

## 2's Complement

- This is to add 1 to the 1's complement.
- It is important to the representation of negative numbers.

| 10110 | 010      | Binary number  |
|-------|----------|----------------|
| 01001 | 1101     | 1's complement |
| +     | 1        | Add 1          |
| 01001 | <br> 110 | 2's complement |

- Long binary numbers are difficult to read and write.
- So hexadecimal number system is introduced as a compact way of writing binary numbers.
- It is widely used in computers and microprocessors.

- The hexadecimal number system has 16 digits: 10 numeric digits (0-9) and 6 alphabetic characters (A-F).
- Each digit represents a 4-bit binary number.
- A hexadecimal number may have a subscript 16 or be followed by an "h".

| Decimal | Binary | Hexadecimal |
|---------|--------|-------------|
| 0       | 0000   | 0           |
| 1       | 0001   | 1           |
| 2       | 0010   | 2           |
| 3       | 0011   | 3           |
| 4       | 0100   | 4           |
| 5       | 0101   | 5           |
| 6       | 0110   | 6           |
| 7       | 0111   | 7           |
| 8       | 1000   | 8           |
| 9       | 1001   | 9           |
| 10      | 1010   | A           |
| 11      | 1011   | В           |
| 12      | 1100   | C           |
| 13      | 1101   | D           |
| 14      | 1110   | E           |
| 15      | 1111   | F           |

### **Counting in Hexadecimal**

Once you get to F, add another digit and continue.

```
0, 1, ....., 9, A, B, C, D, E, F
10, 11, ....., 19, 1A, 1B, 1C, 1D, 1E, 1F
.....
```

F0, F1, ....., F9, FA, FB, FC, FD, FE, FF 100, 101, ......109, 10A, 10B, 10C, 10D, 10E, 10F

## **Binary-to-Hexadecimal Conversion**

- Starting at the right-most bit, break the binary number into 4-bit groups.
- Replace each 4-bit group with the equivalent hexadecimal symbol.



## **Hexadecimal-to-Binary Conversion**

- Replace each hexadecimal symbol with the appropriate 4 bits.
- The leftmost 0's can be removed.





#### **Hexadecimal-to-Decimal Conversion**

 The weights of hexadecimal digits are increasing powers of 16 (from right to left).

$$16^3$$
  $16^2$   $16^1$   $16^0$   $4096$   $256$   $16$   $1$ 

 Multiply the decimal value of each hexadecimal digit by its weight and then take the sum of these products.

$$B2F8_{16} = (B \times 4096) + (2 \times 256) + (F \times 16) + (8 \times 1)$$

$$= (11 \times 4096) + (2 \times 256) + (15 \times 16) + (8 \times 1)$$

$$= 45,056 + 512 + 240 + 8 = 45,816_{10}$$

#### **Decimal-to-Hexadecimal Conversion**

Repeated Division by 16 method

- Divide a decimal number or the previous quotient by 16.
   The remainder is a digit in the hexadecimal number.
- The first remainder is the LSD.
- Repeat this process until the whole number quotient becomes zero.

|                  | quotient | remainder |                  |
|------------------|----------|-----------|------------------|
| $\frac{650}{16}$ | 40       | 10 = A    | $650 = 28A_{16}$ |
| $\frac{40}{16}$  | 2        | 8 = 8     |                  |
| $\frac{2}{16}$   | 0        | 2         |                  |

11

#### **Hexadecimal Addition**

- If the sum of two digits is less than 16, bring down the corresponding hexadecimal digit.
- If the sum of these two digits is greater than or equal to 16, bring down the amount of the sum that exceeds 16 and carry a 1 to the next column.

right column: 
$$8_{16} + 2_{16} = 8_{10} + 2_{10} = 10_{10} = A_{16}$$
  
 $+ 22_{16} \over 7A_{16}$  left column:  $5_{16} + 2_{16} = 5_{10} + 2_{10} = 7_{10} = 7_{16}$   
DF<sub>16</sub> right column:  $F_{16} + C_{16} = 15_{10} + 12_{10} = 27_{10}$   
 $+ AC_{16} \over 18B_{16}$  left column:  $C_{16} + C_{16} = 11_{10} = C_{10} = C_{10}$   
 $C_{16} + C_{16} = C_{10} = C_{10} = C_{10} = C_{10}$   
 $C_{16} + C_{16} = C_{10} = C_$ 

- Binary coded decimal (BCD) is an easy way to express decimal digits with a binary code.
- The BCD system has only 10 code groups.
- It is mainly used in user interface such as keypads and digital displays.
- The **8421 code** is a type of BCD, where the weights of the four bits are 8, 4, 2 and 1.

| Decimal Digit | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|---------------|------|------|------|------|------|------|------|------|------|------|
| BCD           | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 |

#### **Decimal-to-BCD Conversion**

Replace each decimal digit with the appropriate 4-bit.



#### **BCD-to-Decimal Conversion**

- Start at the right-most bit and break the code into groups of four bits.
- Write the decimal digit for each 4-bit group.



#### **BCD** Addition

- Add two BCD numbers using the rules for binary addition.
- If a 4-bit sum is less than 10, it is a valid BCD number.
- If a 4-bit sum is greater than or equal to 10, or if a carry out of the 4-bit group is generated, it is an invalid result. Add 6 (0110) to the 4-bit sum to skip the six invalid states.

#### **BCD** Addition

