

East West University Department of Computer Science and Engineering

Course: CSE345 Digital Logic Design

Expt No.: 5

Title: Decoder and Its Use in Combinational Logic Implementation

Objectives:

1. To implement and test a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input using random gates.

1. To implement and test combinational logic functions using IC 74138 (3-to-8-lines decoder with active-LOW outputs).

Theory:

Design of decoders using random gates is discussed in Section 8.3 of textbook 1. The IC 74138 (3-to-8-line decoder with active-LOW outputs) is introduced in Section 8.3 of textbook 1. Combinational logic implementation using decoders is also discussed in Section 8.3 of textbook 1.

Pre-Lab Report Questions:

Implementing and testing a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input using random gates:

- 1. Draw the logic diagram for a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input.
- 2. Write the truth table of the above decoder.

Implementing and testing combinational logic functions using the IC 74138 (3-to-8-lines decoder with active-LOW outputs):

3. Draw the schematic diagram for implementing the following two combinational logic functions using the IC 74138 (3-to-8-lines decoder with active-LOW outputs).

$$F_1(A, B, C) = \sum (1,2,4,7)$$

 $F_2(A, B, C) = \sum (0,5,6,7)$

ICs Required:

7404 Hex Inverters (NOT gates)
7410 Triple 3-input NAND gates
7420 Dual 4-input NAND gates
74138 3-to-8-line decoder with active-LOW outputs

Pin Diagram of the Required ICs:

1 1A	V_{CC} 14	1 1A	V_{CC} 14	1 1A	V_{CC} 14	
2 1 Y	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 <i>B</i>	1C 13	1 <i>B</i>	2D 13	
3 $2A$	6Y 12	3 $2A$	1 <i>Y</i> 12	3 NC	2C 12	
4 2Y	5A 11	4 2B	3C 11	4 1 <i>C</i>	NC 11	
3A	5Y 10	5 $2C$	$3B \boxed{10}$	_5 1D	2B 10	
$\frac{6}{3}$	44 9	_6 2 <i>Y</i>	3A = 9	_61 <i>Y</i>	2A = 9	
	47 8		3Y 8		2Y <u>8</u>	
7404 (6 NOT)		7410 (3 3-In NAND)		7420 (2 4-In NAND)		

16	15	14	13	12	11	10	9			
V_{cc}	O_0	O_1	O_2	O_3	O_4	O_5	O_6			
74138										
A_0	$A_{\rm l}$	A_2	$E_{\scriptscriptstyle 1}$	E_2	E_3	O_7 G	ND			
1	2	3	4	5	6	7	8			

Lab Procedure:

Implementing and testing a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input using random gates:

- 1. Construct the logic diagram for a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input from your pre-lab report using random gates. Connect the three inputs $(A_1, A_0, \text{ and } E)$ of the circuit to three data switches and four outputs to four LED indicators.
- 2. Apply binary 00 to 11 to A_1A_0 address inputs and observe the outputs by changing E enable input. Verify the operation.

Implementing and testing combinational logic functions using the IC 74138 (3-to-8-lines decoder with active-LOW outputs):

- 3. Construct the circuits for implementing the given combinational logic functions from your pre-lab report. Connect enable inputs E_1 and E_2 to fixed 0s and E_3 to a data switch. Use E_3 as active-HIGH enable input. Connect the input lines ABC ($A_2A_1A_0$) to three data switches. Connect the two function outputs to two LED indicators.
- 4. Prepare the truth tables of the circuit and verify that it implements the two given combinational logic functions.

Post-Lab Report Questions:

- 1. Verify that all experimental outputs agree with your pre-lab report.
- 2. Write structural Verilog code for the logic diagram for a 2-to-4-lines decoder with active-LOW outputs and active-LOW enable input from your pre-lab report and simulate it using Quartus II software.
- 3. Write behavioral Verilog code for 3-to-8-lines decoder with active-LOW outputs and simulate it using Quartus II software.