Mathematical Economics

Convex Analysis (II)

Kui Ou-Yang

School of Economics & Management Northwest University

Concave and Convex Functions

For any nonempty convex set $X \subseteq \mathbb{R}^n$, a function $f: X \to \mathbb{R}$ is

• *concave* if $\forall x, y \in X, \forall \lambda \in [0, 1]$,

$$f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y).$$

• *convex* if $\forall x, y \in X, \forall \lambda \in [0, 1]$,

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y).$$

• *strictly concave* if $\forall x, y \in X$ with $x \neq y, \forall \lambda \in (0, 1)$,

$$f(\lambda x + (1-\lambda)y) > \lambda f(x) + (1-\lambda)f(y).$$

• *strictly convex* if $\forall x, y \in X$ with $x \neq y, \forall \lambda \in (0, 1)$,

$$f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y).$$

• Obviously, f is concave iff -f is convex, and f is strictly concave iff -f is strictly convex.

Quasi-concave and Quasi-convex Functions

For any nonempty convex set $X \subseteq \mathbb{R}^n$, a function $f: X \to \mathbb{R}$ is

• quasi-concave if $\forall x, y \in X, \forall \lambda \in [0, 1],$

$$f(\lambda x + (1-\lambda)y) \ge \min\{f(x), f(y)\};$$

• quasi-convex if $\forall x, y \in X, \forall \lambda \in [0, 1],$

$$f(\lambda x + (1-\lambda)y) \le \max\{f(x), f(y)\};$$

Quasi-concave and Quasi-convex Functions

For any nonempty convex set $X \subseteq \mathbb{R}^n$, a function $f: X \to \mathbb{R}$ is

• quasi-concave if $\forall x, y \in X, \forall \lambda \in [0, 1]$,

$$f(\lambda x + (1-\lambda)y) \ge \min\{f(x), f(y)\};$$

• *quasi-convex* if $\forall x, y \in X, \forall \lambda \in [0, 1]$,

$$f(\lambda x + (1-\lambda)y) \le \max\{f(x), f(y)\};$$

• *strictly quasi-concave* if $\forall x, y \in X$ with $x \neq y, \forall \lambda \in (0, 1)$,

$$f(\lambda x + (1-\lambda)y) > \min\{f(x), f(y)\};$$

• *strictly quasi-convex* if $\forall x, y \in X$ with $x \neq y, \forall \lambda \in (0, 1)$,

$$f(\lambda x + (1-\lambda)y) < \max\{f(x), f(y)\}.$$

Quasi-concave and Quasi-convex Functions

For any nonempty convex set $X \subseteq \mathbb{R}^n$, a function $f: X \to \mathbb{R}$ is

• quasi-concave if $\forall x, y \in X, \forall \lambda \in [0, 1]$,

$$f(\lambda x + (1-\lambda)y) \ge \min\{f(x), f(y)\};$$

• *quasi-convex* if $\forall x, y \in X, \forall \lambda \in [0, 1]$,

$$f(\lambda x + (1-\lambda)y) \le \max\{f(x), f(y)\};$$

- *strictly quasi-concave* if $\forall x, y \in X$ with $x \neq y, \forall \lambda \in (0, 1)$, $f(\lambda x + (1-\lambda)y) > \min\{f(x), f(y)\};$
- *strictly quasi-convex* if $\forall x, y \in X$ with $x \neq y, \forall \lambda \in (0, 1)$, $f(\lambda x + (1-\lambda)y) < \max\{f(x), f(y)\}.$

Obviously, f is quasi-concave iff -f is quasi-convex, and f is strictly quasi-concave iff -f is strictly quasi-convex.

Note that a (strictly) concave (convex) function must be (strictly) quasi-concave (quasi-convex), but not vice versa.

For any set $X \subseteq \mathbb{R}^n$ and function $f: X \to \mathbb{R}$,

• the *upper-contour set* of f for $c \in \mathbb{R}$ is defined to be

$$U_c(f) = \{x \in X \mid f(x) \ge c\};$$

• the *lower-contour set* of f for $c \in \mathbb{R}$ is defined to be

$$L_c(f) = \{ x \in X \mid f(x) \le c \}.$$

- quasi-concave iff $\forall c \in \mathbb{R}$, the upper-contour set $U_c(f)$ is convex;
- quasi-convex iff $\forall c \in \mathbb{R}$, the lower-contour set $L_c(f)$ is convex.

- quasi-concave iff $\forall c \in \mathbb{R}$, the upper-contour set $U_c(f)$ is convex;
- quasi-convex iff $\forall c \in \mathbb{R}$, the lower-contour set $L_c(f)$ is convex.
- If $f: X \to \mathbb{R}$ is quasi-concave, then $\forall x, y \in X$ with $f(x) \ge c$ and $f(y) \ge c$, $\forall \lambda \in [0, 1]$, $f(\lambda x + (1-\lambda)y) \ge \min\{f(x), f(y)\} \ge c$.
- On the other hand, suppose that $\forall c \in \mathbb{R}$, $\{x \in X \mid f(x) \geq c\}$ is convex. Note that $\forall x, y \in X, f(x) \geq \min\{f(x), f(y)\}$ and $f(y) \geq \min\{f(x), f(y)\}$, and hence $\forall \lambda \in [0, 1], f(\lambda x + (1-\lambda)y) \geq \min\{f(x), f(y)\}$.

- quasi-concave iff $\forall c \in \mathbb{R}$, the upper-contour set $U_c(f)$ is convex;
- quasi-convex iff $\forall c \in \mathbb{R}$, the lower-contour set $L_c(f)$ is convex.

- quasi-concave iff $\forall c \in \mathbb{R}$, the upper-contour set $U_c(f)$ is convex;
- quasi-convex iff $\forall c \in \mathbb{R}$, the lower-contour set $L_c(f)$ is convex.

- quasi-concave iff $\forall c \in \mathbb{R}$, the upper-contour set $U_c(f)$ is convex;
- quasi-convex iff $\forall c \in \mathbb{R}$, the lower-contour set $L_c(f)$ is convex.

- quasi-concave iff $\forall c \in \mathbb{R}$, the upper-contour set $U_c(f)$ is convex;
- quasi-convex iff $\forall c \in \mathbb{R}$, the lower-contour set $L_c(f)$ is convex.

Theorem 8: Let $X \subseteq \mathbb{R}^n$ be open and convex and $f: X \to \mathbb{R}$ continuously differentiable. Then f is

- quasi-concave iff $Df(x) \cdot (y x) \ge 0$ whenever $f(y) \ge f(x)$ for all $x, y \in X$;
- quasi-convex iff $Df(x) \cdot (y x) \le 0$ whenever $f(y) \le f(x)$ for all $x, y \in X$;
- strictly quasi-concave if $Df(x) \cdot (y x) > 0$ whenever $f(y) \ge f(x)$ for all $x, y \in X$ with $x \ne y$;
- strictly quasi-convex if $Df(x) \cdot (y x) < 0$ whenever $f(y) \le f(x)$ for all $x, y \in X$ with $x \ne y$.

Theorem 8: Let $X \subseteq \mathbb{R}^n$ be open and convex and $f: X \to \mathbb{R}$ continuously differentiable. Then f is

- quasi-concave iff $Df(x) \cdot (y x) \ge 0$ whenever $f(y) \ge f(x)$ for all $x, y \in X$;
- quasi-convex iff $Df(x) \cdot (y x) \le 0$ whenever $f(y) \le f(x)$ for all $x, y \in X$;
- strictly quasi-concave if $Df(x) \cdot (y x) > 0$ whenever $f(y) \ge f(x)$ for all $x, y \in X$ with $x \ne y$;
- strictly quasi-convex if $Df(x) \cdot (y x) < 0$ whenever $f(y) \le f(x)$ for all $x, y \in X$ with $x \ne y$.

Example: f(x, y) = xy, x > 0, y > 0.

• Let $f(x, y) \ge f(a, b)$, i.e., $xy \ge ab$. Then $Df(a, b) \cdot ((x, y) - (a, b)) = (b, a) \cdot ((x, y) - (a, b))$ $= (b, a) \cdot (x - a, y - b)$ = b(x - a) + a(y - b) = bx + ay - 2ab $\ge 2\sqrt{xyab} - 2ab$ $\ge 2\sqrt{abab} - 2ab$ = 0

Theorem 9: Let $X \subseteq \mathbb{R}^n$ be open and convex, and f: $X \to \mathbb{R}$ twice continuously differentiable.

- (i) If f is quasi-concave, then $(-1)^k |\overline{H}_k(x)| \ge 0 \ \forall x \in X \ \forall k \in \{1, 2, \dots, n\};$
- (ii) If f is quasi-convex, then $|\overline{H}_k(x)| \le 0 \ \forall x \in X \ \forall k \in \{1, 2, \dots, n\};$
- (iii) If $(-1)^k |\overline{H}_k(x)| > 0 \ \forall x \in X \ \forall k \in \{1, 2, \dots, n\}$, then f is strictly quasi-concave;
- (iv) If $|\overline{H}_k(x)| < 0 \ \forall x \in X \ \forall k \in \{1, 2, \dots, n\}$, then f is strictly quasi-convex.

$$\overline{H}_{k}(x) = \begin{pmatrix}
0 & \frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{k}} \\
\frac{\partial f}{\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f}{\partial x_{k}} & \frac{\partial^{2} f}{\partial x_{k} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{k}^{2}}
\end{pmatrix}$$
and $\overline{H}(x) = \overline{H}_{n}(x)$.

Theorem 9: Let $X \subseteq \mathbb{R}^n$ be open and convex, and f: $X \to \mathbb{R}$ twice continuously differentiable.

- (i) If f is quasi-concave, then $(-1)^k |\overline{H}_k(x)| \ge 0 \ \forall x \in$ $X \ \forall k \in \{1, 2, \dots, n\};$
- (ii) If f is quasi-convex, then $|\overline{H}_k(x)| \le 0 \ \forall x \in X \ \forall k$ $\in \{1, 2, \dots, n\};$
- (iii) If $(-1)^k |\overline{H}_k(x)| > 0 \ \forall x \in X \ \forall k \in \{1, 2, \dots, n\},\$ then f is strictly quasi-concave;
- (iv) If $|\overline{H}_k(x)| < 0 \ \forall x \in X \ \forall k \in \{1, 2, \dots, n\}$, then fis strictly quasi-convex.

Example: f(x, y) = xy, x > 0, y > 0.

•
$$\overline{H}(x,y) = \begin{pmatrix} 0 & y & x \\ y & 0 & 1 \\ x & 1 & 0 \end{pmatrix}$$

•
$$\overline{H}(x,y) = \begin{pmatrix} 0 & y & x \\ y & 0 & 1 \\ x & 1 & 0 \end{pmatrix}$$
.
• $|\overline{H}_1(x,y)| = \begin{vmatrix} 0 & y \\ y & 0 \end{vmatrix} = -y^2 < 0, |\overline{H}_2(x,y)| = 2xy > 0.$

$$\overline{H}_{k}(x) = \begin{pmatrix}
0 & \frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{k}} \\
\frac{\partial f}{\partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f}{\partial x_{k}} & \frac{\partial^{2} f}{\partial x_{k} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{k}^{2}}
\end{pmatrix}$$
and $\overline{H}(x) = \overline{H}_{n}(x)$.

Theorem 10: Let $X \subseteq \mathbb{R}^n$ and $A \subseteq \mathbb{R}$ be convex.

- (i) If $f: X \to \mathbb{R}$ is quasi-concave and $g: A \to \mathbb{R}$ increasing with $f(X) \subseteq A$, then $g \circ f$ is quasi-concave; if f is quasi-concave and g decreasing, then $g \circ f$ is quasi-convex;
- (ii) If $f: X \to \mathbb{R}$ is quasi-convex and $g: A \to \mathbb{R}$ increasing with $f(X) \subseteq A$, then $g \circ f$ is quasi-convex; if f is quasi-convex and g decreasing, then $g \circ f$ is quasi-concave;
- (iii) If $f: X \to \mathbb{R}$ is strictly quasi-concave and $g: A \to \mathbb{R}$ strictly increasing with $f(X) \subseteq A$, then $g \circ f$ is strictly quasi-concave;
- (iv) If $f: X \to \mathbb{R}$ is strictly quasi-convex and $g: A \to \mathbb{R}$ strictly increasing with $f(X) \subseteq A$, then $g \circ f$ is strictly quasi-convex;
- (v) If $f: X \to \mathbb{R}$ is concave and $g: A \to \mathbb{R}$ increasing and concave with $f(X) \subseteq A$, then $g \circ f$ is concave;
- (vi) If $f: X \to \mathbb{R}$ is convex and $g: A \to \mathbb{R}$ increasing and convex with $f(X) \subseteq A$, then $g \circ f$ is convex.

See Exercises 1 and 3.

Theorem 11: Let $X \subseteq \mathbb{R}^n$ be convex.

- (i) Nonnegative linear combination of concave functions must be concave, i.e., for any concave functions f_1, f_2, \dots, f_n defined on X, $\forall a_1, a_2, \dots a_n \in \mathbb{R}_+$, $\sum_{k=1}^n a_k f_k$ is concave.
- (ii) Nonnegative linear combination of convex functions must be convex, i.e., for any convex functions f_1, f_2, \dots, f_n defined on $X, \forall a_1, a_2, \dots a_n \in \mathbb{R}_+, \sum_{k=1}^n a_k f_k$ is convex.

• See Exercise 1.

Theorem 12: Let $X \subseteq \mathbb{R}^n$ be nonempty and convex.

- A strictly concave function cannot be convex, and a strictly convex function cannot be concave (unless |X| = 1).
- Let n = 1. If $f: X \to \mathbb{R}$ is increasing or decreasing, then f is both quasi-concave and quasi-convex; if f is strictly increasing or strictly decreasing, then f is both strictly quasi-concave and strictly quasi-convex.

• See Exercise 1.

(1)
$$f(x) = x$$
, $g(x) = -x$, $h(x) = x^3$.

(2)
$$u(x, y) = x^a y^b, x > 0, y > 0, a > 0, b > 0.$$

(3)
$$f(x, y) = (x - 1)^2(y - 1)^2$$
.

- (1) f(x) = x, g(x) = -x, $h(x) = x^3$.
- (2) $u(x, y) = x^a y^b, x > 0, y > 0, a > 0, b > 0.$
- (3) $f(x, y) = (x 1)^2(y 1)^2$.
- (1) f and g are concave, convex, strictly quasi-concave, and strictly quasi-convex, but neither strictly concave nor strictly convex; h is strictly quasi-convex and strictly quasi-convex, but neither concave nor convex.

- (1) f(x) = x, g(x) = -x, $h(x) = x^3$.
- (2) $u(x, y) = x^a y^b, x > 0, y > 0, a > 0, b > 0.$
- (3) $f(x, y) = (x 1)^2(y 1)^2$.
- (2) u(x, y) is strictly quasi-concave since $\overline{H}(x, y) = \begin{pmatrix} 0 & ax^{a-1}y^b & bx^ay^{b-1} \\ ax^{a-1}y^b & a(a-1)x^{a-2}y^b & abx^{a-1}y^{b-1} \\ bx^ay^{b-1} & abx^{a-1}y^{b-1} & b(b-1)x^ay^{b-2} \end{pmatrix},$ $|\overline{H}_1(x, y)| = -a^2x^{2a-2}y^{2b} < 0,$ $|\overline{H}_2(x, y)| = (a+b)abx^{3a-2}y^{3b-2} > 0.$

(1)
$$f(x) = x$$
, $g(x) = -x$, $h(x) = x^3$.

(2)
$$u(x, y) = x^a y^b, x > 0, y > 0, a > 0, b > 0.$$

(3)
$$f(x, y) = (x - 1)^2(y - 1)^2$$
.

$$(3) \overline{H}(x,y) = \begin{cases} 0 & 2(x-1)(y-1)^2 & 2(x-1)^2(y-1) \\ 2(x-1)(y-1)^2 & 2(y-1)^2 & 4(x-1)(y-1) \\ 2(x-1)^2(y-1) & 4(x-1)(y-1) & 2(x-1)^2 \end{cases},$$

$$|\overline{H}_1(x,y)| = -4(x-1)^2(y-1)^4 \le 0,$$

$$|\overline{H}_2(x,y)| = 16(x-1)^4(y-1)^4 \ge 0.$$

However, f(x, y) is not quasi-concave since

$$f(0.5(0,0) + 0.5(2,2)) = f(1,1) = 0 < 1 = \min\{f(0,0), f(2,2)\}.$$

• Even if the domain is restricted to \mathbb{R}^2_{++} , we have

$$f(0.5(0.2, 0.2) + 0.5(1.8, 1.8)) = f(1, 1) = 0$$

 $< 0.64^2 = \min\{f(0.2, 0.2), f(1.8, 1.8)\}.$

Convex Preference Relations

Let $X \subseteq \mathbb{R}^n$ be a set of alternatives and \gtrsim a rational preference relation on X. We say that \gtrsim is

- *convex* if $\forall x \in X$, $\{y \in X \mid y \gtrsim x\}$ is convex; i.e., $\forall x, y, z \in X$, if $y \gtrsim x$ and $z \gtrsim x$, then $\forall t \in [0, 1]$, $ty + (1-t)z \gtrsim x$;
- *strictly convex* if $\forall x, y, z \in X$ such that $y \gtrsim x, z \gtrsim x$, and $y \neq z$, we have $ty + (1-t)z > x \ \forall t \in (0, 1)$.
- *weakly convex* if $\forall x, y \in X$ with x > y, we have $tx + (1-t)y > y \ \forall t \in (0, 1)$.
- *explicitly convex* if it is both convex and weakly convex.
- *weakly monotone* if $\forall x, y \in X, x > y$ implies $x \gtrsim y$;
- *monotone* if $\forall x, y \in X, x \ge y$ implies $x \ge y$;
- *strictly monotone* if $\forall x, y \in X, x > y$ implies x > y;
- *strongly monotone* if $\forall x, y \in X, x \ge y$ and $x \ne y$ imply x > y.

Theorem 13: Let $X \subseteq \mathbb{R}^n$ be convex. If \gtrsim is represented by a utility function $u: X \to \mathbb{R}$, then

- \geq is convex iff *u* is quasi-concave,
- \geq is strictly convex iff *u* is strictly quasi-concave.

See Exercise 1.

Homogenous and Homothetic Functions:

Let $X \subseteq \mathbb{R}^n$ be a cone. For any $k \in \mathbb{R}$, we say that

- $f: X \to \mathbb{R}$ is **homogeneous** of degree k if for any $x \in X$ and r > 0, $f(rx) = r^k f(x)$;
- $h: X \to \mathbb{R}$ is *homothetic* if h is a strictly increasing transformation of a homogeneous function; that is, $h = g \circ f$, where $g: f(X) \to \mathbb{R}$ is strictly increasing and $f: X \to \mathbb{R}$ homogeneous of degree k.
- **Example:** The utility function $v(x, y) = x^3y^3 + e^{xy} + 10$ is homothetic, since the utility function u(x, y) = xy is homogeneous of degree 2 and $g(z) = z^3 + e^z + 10$ is an increasing transformation. Note that u and v represent the same preference.

• A set $X \subseteq \mathbb{R}^n$ is a *cone* if $\forall x \in X$, $\forall r > 0, rx \in X$.

Theorem 14: Let $X \subseteq \mathbb{R}^n$ be a convex cone. If $f: X \to \mathbb{R}$ is quasi-concave and homogenous of degree $k \in (0, 1]$ such that f(0) = 0 (if $0 \in X$) and $f(x) > 0 \ \forall x \in X \setminus \{0\}$, then f is concave.

• See Exercise 1.

(1) The Cobb-Douglas Utility Function:

$$u(x_1, \dots, x_n) = a \prod_{i=1}^n x_i^{b_i},$$

where $x_1, \dots, x_n, a, b_1, \dots, b_n > 0$.

(2) The Generalized CES (Constant Elasticity of Substitution) Utility Function:

$$u(x_1, \dots, x_n) = a(\sum_{i=1}^n b_i x_i^{-\rho})^{-\frac{c}{\rho}},$$

where $x_1, \dots, x_n, a, b_1, \dots, b_n, c > 0$, and $\rho \neq 0$.

$$u(x_1, \dots, x_n) = a \prod_{i=1}^n x_i^{b_i},$$

$$H(x) = u(x) \begin{pmatrix} \frac{b_1(b_1-1)}{x_1^2} & \frac{b_1b_2}{x_1x_2} & \cdots & \frac{b_1b_n}{x_1x_n} \\ \frac{b_1b_2}{x_1x_2} & \frac{b_2(b_2-1)}{x_2^2} & \cdots & \frac{b_2b_n}{x_2x_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{b_1b_n}{x_1x_n} & \frac{b_2b_n}{x_2x_n} & \cdots & \frac{b_n(b_n-1)}{x_n^2} \end{pmatrix}$$

Example 4:
(1) The Cobb-Douglas Utility Function:
$$u(x_{1}, \dots, x_{n}) = a \prod_{i=1}^{n} x_{i}^{b_{i}},$$
where $x_{1}, \dots, x_{n}, a, b_{1}, \dots, b_{n} > 0$.
$$(u(x))^{k} \frac{b_{1}b_{2} \dots b_{k}}{(x_{1}x_{2} \dots x_{k})^{2}} \begin{vmatrix} s_{k} - 1 & s_{k} - 1 & \cdots & s_{k} - 1 \\ b_{2} & b_{2} - 1 & \cdots & b_{2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ b_{k} & b_{k} & \cdots & b_{k} - 1 \end{vmatrix} = H(x) = u(x) \begin{vmatrix} \frac{b_{1}(b_{1}-1)}{x_{1}^{2}} & \frac{b_{1}b_{2}}{x_{1}x_{2}} & \cdots & \frac{b_{1}b_{n}}{x_{1}x_{n}} \\ \frac{b_{1}b_{2}}{x_{1}x_{2}} & \frac{b_{2}(b_{2}-1)}{x_{2}^{2}} & \cdots & \frac{b_{n}(b_{n}-1)}{x_{n}^{2}} \end{vmatrix}.$$

$$\forall k = 1, 2, \dots, n, \text{ let } s_{k} = \sum_{i=1}^{k} b_{i}, \text{ and then } |H_{k}(x)| = u(x)^{k} \frac{b_{1}b_{2} \dots b_{k}}{(x_{1}x_{2} \dots x_{k})^{2}} \begin{vmatrix} s_{k} - 1 & s_{k} - 1 & \cdots & s_{k} - 1 \\ b_{2} & b_{2} - 1 & \cdots & b_{2} \\ \cdots & \cdots & \cdots & \cdots \\ b_{k} & b_{k} & \cdots & b_{k} - 1 \end{vmatrix} = u(x)^{k} \frac{b_{1}b_{2} \dots b_{k}}{(x_{1}x_{2} \dots x_{k})^{2}} \begin{vmatrix} s_{k} - 1 & s_{k} - 1 & s_{k} - 1 \\ b_{k} & b_{k} & \cdots & b_{k} - 1 \end{vmatrix} = u(x)^{k} \frac{b_{1}b_{2} \dots b_{k}}{(x_{1}x_{2} \dots x_{k})^{2}} \begin{vmatrix} s_{k} - 1 & s_{k} - 1 & s_{k} - 1 \\ b_{k} & b_{k} & \cdots & b_{k} - 1 \end{vmatrix} = u(x)^{k} \frac{b_{1}b_{2} \dots b_{k}}{(x_{1}x_{2} \dots x_{k})^{2}} \begin{vmatrix} s_{k} - 1 & s_{k} - 1 & s_{k} - 1 \\ b_{k} & b_{k} & \cdots & b_{k} - 1 \end{vmatrix} = u(x)^{k} \frac{b_{1}b_{2} \dots b_{k}}{(x_{1}x_{2} \dots x_{k})^{2}} \begin{vmatrix} s_{k} - 1 & s_{k} - 1 & s_{k} - 1 \\ b_{k} & b_{k} & \cdots & b_{k} - 1 \end{vmatrix} = u(x)^{k} \frac{b_{1}b_{2} \dots b_{k}}{(x_{1}x_{2} \dots x_{k})^{2}} \begin{vmatrix} s_{k} - 1 & s_{k} - 1 & s_{k} - 1 \\ b_{k} & b_{k} & \cdots & b_{k} - 1 \\ b_{k} & b_{k} & \cdots & b_{k} - 1 \end{vmatrix} = u(x)^{k} \frac{b_{1}b_{2} \dots b_{k}}{(x_{1}x_{2} \dots x_{k})^{2}} \begin{vmatrix} s_{k} - 1 & s_{k} - 1 & s_{k} - 1 \\ s_{k} & s_{k} - 1 & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_{k} - 1 \\ s_{k} & s_{k} & \cdots & s_$$

$$\forall k = 1, 2, \dots, n, \text{ let } s_k = \sum_{i=1}^k b_i, \text{ and then } /H_k(x)| = \\ (u(x))^k \frac{b_1 b_2 \cdots b_k}{(x_1 x_2 \cdots x_k)^2} \begin{vmatrix} b_1 - 1 & b_1 & \cdots & b_1 \\ b_2 & b_2 - 1 & \cdots & b_2 \\ \cdots & \cdots & \cdots & \cdots \\ b_k & b_k & \cdots & b_k - 1 \end{vmatrix} = \\ \frac{b_1 - 1}{b_1 \cdots b_2 \cdots b_k} \begin{vmatrix} b_1 - 1 & b_1 & \cdots & b_1 \\ b_2 & b_2 - 1 & \cdots & b_2 \\ \cdots & \cdots & \cdots & \cdots \\ b_k & \cdots & b_k - 1 \end{vmatrix} = \\ \frac{b_1 - 1}{b_1 \cdots b_k} \begin{vmatrix} b_1 - 1 & b_1 & \cdots & b_1 \\ b_2 & b_2 - 1 & \cdots & b_k \\ \cdots & \cdots & \cdots & \cdots \\ b_k & \cdots & b_k - 1 \end{vmatrix}$$

(1) The Cobb-Douglas Utility Function:

$$u(x_1, \dots, x_n) = a \prod_{i=1}^n x_i^{b_i},$$

where $x_1, \dots, x_n, a, b_1, \dots, b_n > 0$.

$$H(x) = u(x) \begin{pmatrix} \frac{b_1(b_1-1)}{x_1^2} & \frac{b_1b_2}{x_1x_2} & \cdots & \frac{b_1b_n}{x_1x_n} \\ \frac{b_1b_2}{x_1x_2} & \frac{b_2(b_2-1)}{x_2^2} & \cdots & \frac{b_2b_n}{x_2x_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{b_1b_n}{x_1x_n} & \frac{b_2b_n}{x_2x_n} & \cdots & \frac{b_n(b_n-1)}{x_n^2} \end{pmatrix}.$$
 having the same sign as $(-1)^k$ if $\sum_{i=1}^n b_i < 1$. Hence u is strictly concave if $\sum_{i=1}^n b_i < 1$.

$$(u(x))^{k} \frac{b_{1}b_{2}\cdots b_{k}(s_{k}-1)}{(x_{1}x_{2}\cdots x_{k})^{2}} \begin{vmatrix} 1 & 0 & \cdots & 0 \\ b_{2} & -1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ b_{k} & 0 & \cdots & -1 \end{vmatrix} =$$

$$(-1)^{k-1}(s_{k}-1)(u(x))^{k} \frac{b_{1}b_{2}\cdots b_{k}}{(x_{1}x_{2}\cdots x_{k})^{2}},$$

having the same sign as $(-1)^k$ if $\sum_{i=1}^n b_i < 1$.

$$\forall k = 1, 2, \dots, n, \text{ let } s_k = \sum_{i=1}^k b_i, \text{ and then } |H_k(x)| =$$

$$(u(x))^k \frac{b_1 b_2 \cdots b_k}{(x_1 x_2 \cdots x_k)^2} \begin{vmatrix} b_1 - 1 & b_1 & \cdots & b_1 \\ b_2 & b_2 - 1 & \cdots & b_2 \\ \cdots & \cdots & \cdots & \cdots \\ b_k & b_k & \cdots & b_k - 1 \end{vmatrix} =$$

(1) The Cobb-Douglas Utility Function:

$$u(x_1, \dots, x_n) = a \prod_{i=1}^n x_i^{b_i},$$

where $x_1, \dots, x_n, a, b_1, \dots, b_n > 0$.

- u is strictly concave if $\sum_{i=1}^{n} b_i < 1$, and not concave if $\sum_{i=1}^{n} b_i > 1$.
- Note that $\ln u(x) = \ln a + \sum_{i=1}^{n} b_i \ln x_i$, which is strictly concave since

$$D^{2}(\ln u(x)) = \begin{pmatrix} -\frac{b_{1}}{x_{1}^{2}} & 0 & \cdots & 0\\ 0 & -\frac{b_{2}}{x_{2}^{2}} & \cdots & 0\\ \cdots & \cdots & \cdots & \cdots\\ 0 & 0 & \cdots & -\frac{b_{n}}{x_{n}^{2}} \end{pmatrix}$$

is negative definite. Hence $u(x) = e^{\ln u(x)}$ is strictly quasi-concave.

(1) The Cobb-Douglas Utility Function:

$$u(x_1, \dots, x_n) = a \prod_{i=1}^n x_i^{b_i},$$

where $x_1, \dots, x_n, a, b_1, \dots, b_n > 0$.

- u is strictly concave if $\sum_{i=1}^{n} b_i < 1$, and not concave if $\sum_{i=1}^{n} b_i > 1$.
- *u* is strictly quasi-concave.
- When $\sum_{i=1}^{n} b_i = 1$, note that u is quasi-concave and homogeneous with degree 1 s.t. u(x) > 0 for all $x \in \mathbb{R}^n_{++}$, implying that u is concave.

(2) The Generalized CES (Constant Elasticity of Substitution) Utility Function:

$$u(x_1, \dots, x_n) = a(\sum_{i=1}^n b_i x_i^{-\rho})^{-\frac{c}{\rho}},$$

where $x_1, \dots, x_n, a, b_1, \dots, b_n, c > 0$, and $\rho \neq 0$.

• If
$$\rho = -1$$
, then ν is linear.

• Note that
$$D^2(v(x)) =$$

$$\begin{pmatrix}
\frac{b_1\rho(\rho+1)}{x_1^{\rho+2}} & 0 & \cdots & 0 \\
0 & \frac{b_2\rho(\rho+1)}{x_2^{\rho+2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{b_n\rho(\rho+1)}{x_n^{\rho+2}}
\end{pmatrix}.$$

- Let $v = \sum_{i=1}^{n} b_i x_i^{-\rho}$, then $u = av^{-\frac{c}{\rho}}$.
- If $\rho \le -1$, then v is quasi-convex (Indeed, v is convex) and u increasing in v. Thus u is quasi-convex.
- If $-1 \le \rho < 0$, then v is quasi-concave (Indeed, v is concave) and u increasing in v. Thus u is quasi-concave.
- If $\rho > 0$, then ν is quasi-convex (Indeed, ν is convex) and ν decreasing in ν . Thus ν is quasi-concave.

Theorem 15: Let $X \subseteq \mathbb{R}^n$ be a cone. If $f: X \to \mathbb{R}$ is differentiable and homogeneous of degree k, then $\forall i \in \{1, 2, \dots, n\}$, the partial derivative function $\partial f/\partial x_i$ is homogeneous of degree k-1.

Theorem 15: Let $X \subseteq \mathbb{R}^n$ be a cone. If $f: X \to \mathbb{R}$ is differentiable and homogeneous of degree k, then $\forall i \in \{1, 2, \dots, n\}$, the partial derivative function $\partial f/\partial x_i$ is homogeneous of degree k-1.

• Differentiating $f(rx^*) = r^k f(x^*)$ with respect to x_i^* , we have $r \frac{\partial f(rx^*)}{\partial x_i} = r^k \frac{\partial f(x^*)}{\partial x_i},$ i.e., $\frac{\partial f(rx^*)}{\partial x_i} = r^{k-1} \frac{\partial f(x^*)}{\partial x_i}.$

Theorem 16 (Euler's Formula): Let $X \subseteq \mathbb{R}^n$ be a cone. If $f: X \to \mathbb{R}$ is differentiable and homogeneous of degree k, then $\forall x^* \in X$,

$$kf(x^*) = \sum_{i=1}^n \frac{\partial f(x^*)}{\partial x_i} x_i^*.$$

Theorem 16 (Euler's Formula): Let $X \subseteq \mathbb{R}^n$ be a cone. If $f: X \to \mathbb{R}$ is differentiable and homogeneous of degree k, then $\forall x^* \in X$,

$$kf(x^*) = \sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} x_i^*.$$

• Differentiating $f(rx^*) = r^k f(x^*)$ with respect to r, we have

$$\sum_{i=1}^{n} \frac{\partial f(rx^*)}{\partial x_i} x_i^* = kr^{k-1} f(x^*),$$

and let r = 1.

Theorem 16 (Euler's Formula): Let $X \subseteq \mathbb{R}^n$ be a cone. If $f: X \to \mathbb{R}$ is differentiable and homogeneous of degree k, then $\forall x^* \in X$,

$$kf(x^*) = \sum_{i=1}^n \frac{\partial f(x^*)}{\partial x_i} x_i^*.$$

• Differentiating $f(rx^*) = r^k f(x^*)$ with respect to r, we have

$$\sum_{i=1}^{n} \frac{\partial f(rx^*)}{\partial x_i} x_i^* = k r^{k-1} f(x^*),$$

and let r = 1.

• Example: Let the production function F(K, L) be differentiable and homogeneous of degree 1, then

$$F(K, L) = \frac{\partial F(K, L)}{\partial K} K + \frac{\partial F(K, L)}{\partial L} L.$$

- The set $H(p, c) = \{x \in \mathbb{R}^n | p \cdot x = c\}$ is a *hyperplane* in \mathbb{R}^n determined by (p, c), where p is called the *normal vector* to the hyperplane H(p, c).
- **Example:** Let p = (1, 1) and c = 2. Then $H(p, c) = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 + x_2 = 2\}.$

- The set $H(p, c) = \{x \in \mathbb{R}^n \mid p \cdot x = c\}$ is a *hyperplane* in \mathbb{R}^n determined by (p, c), where p is called the *normal vector* to the hyperplane H(p, c).
- **Example:** Let p = (1, 1) and c = 2. Then $H(p, c) = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 + x_2 = 2\}.$
- A *closed half-space* determined by H(p, c) is either the set $\{x \in \mathbb{R}^n \mid p \cdot x \le c\}$ or the set $\{x \in \mathbb{R}^n \mid p \cdot x \ge c\}$.
- An *open half-space* determined by H(p, c) is either the set $\{x \in \mathbb{R}^n \mid p \cdot x < c\}$ or the set $\{x \in \mathbb{R}^n \mid p \cdot x > c\}$.

- The set $H(p, c) = \{x \in \mathbb{R}^n | p \cdot x = c\}$ is a *hyperplane* in \mathbb{R}^n determined by (p, c), where p is called the *normal vector* to the hyperplane H(p, c).
- **Example:** Let p = (1, 1) and c = 2. Then $H(p, c) = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 + x_2 = 2\}.$
- A *closed half-space* determined by H(p, c) is either the set $\{x \in \mathbb{R}^n \mid p \cdot x \le c\}$ or the set $\{x \in \mathbb{R}^n \mid p \cdot x \ge c\}$.
- An *open half-space* determined by H(p, c) is either the set $\{x \in \mathbb{R}^n \mid p \cdot x < c\}$ or the set $\{x \in \mathbb{R}^n \mid p \cdot x > c\}$.
- A *bounding hyperplane* H(p, c) to a set $S \subseteq \mathbb{R}^n$ is a hyperplane such that $S \subseteq \{x \in \mathbb{R}^n \mid p \cdot x \le c\}$ or $S \subseteq \{x \in \mathbb{R}^n \mid p \cdot x \ge c\}$, i.e., S lies entirely on one side of H(p, c).
- A supporting hyperplane H(p, c) for a set $S \subseteq \mathbb{R}^n$ is a bounding hyperplane to S that shares a point in common with the boundary of S.

- The set $H(p, c) = \{x \in \mathbb{R}^n \mid p \cdot x = c\}$ is a *hyperplane* in \mathbb{R}^n determined by (p, c), where p is called the *normal vector* to the hyperplane H(p, c).
- A *closed half-space* determined by H(p, c) is either the set $\{x \in \mathbb{R}^n \mid p \cdot x \le c\}$ or the set $\{x \in \mathbb{R}^n \mid p \cdot x \ge c\}$.
- An *open half-space* determined by H(p, c) is either the set $\{x \in \mathbb{R}^n \mid p \cdot x < c\}$ or the set $\{x \in \mathbb{R}^n \mid p \cdot x > c\}$.
- A *bounding hyperplane* H(p, c) to a set $S \subseteq \mathbb{R}^n$ is a hyperplane such that $S \subseteq \{x \in \mathbb{R}^n \mid p \cdot x \le c\}$ or $S \subseteq \{x \in \mathbb{R}^n \mid p \cdot x \ge c\}$, i.e., S lies entirely on one side of H(p, c).
- A supporting hyperplane H(p, c) for a set $S \subseteq \mathbb{R}^n$ is a bounding hyperplane to S that shares a point in common with the boundary of S.
- A hyperplane H(p, c) separates two sets $S, T \subseteq \mathbb{R}^n$ if $p \cdot s \le c$ for all $s \in S$ and $p \cdot t \ge c$ for all $t \in T$, i.e., S and T lie on opposite sides of H(p, c).

The Supporting Hyperplane Theorem: If $S \subseteq \mathbb{R}^n$ is convex and $y \in \partial S$, then there exists a supporting hyperplane for S that passes through y.

H(p, c)

The Supporting Hyperplane Theorem: If $S \subseteq \mathbb{R}^n$ is convex and $y \in \partial S$, then there exists a supporting hyperplane for S that passes through y.

Minkowski's Separating Hyperplane Theorem: For any two convex sets $S, T \subseteq \mathbb{R}^n$, if $Int(S) \cap Int(T) = \emptyset$, then there exists a hyperplane separating S and T.

Exercise 1

- (1) Prove Theorem 10.
- (2) Prove Theorem 11.
- (3) Prove Theorem 12.
- (4) Prove Theorem 13.
- (5) (Optional) Prove Theorem 14.
- (6) Determine if the following functions are quasi-concave:

(a)
$$f(x) = -\frac{x^2}{1+x^2}$$
;

(b)
$$f(x, y) = ye^x, y > 0;$$

(c)
$$f(x_1, \dots, x_n) = \sum_{k=1}^n a_k x_k^b$$
, where $x_1, \dots, x_n, a_1, \dots, a_n, b > 0$;

(d)
$$f(x) = 1 + x^2 + x^3$$
 if $x < 0$, $f(x) = 1$ if $x \ge 0$.

(7) Show that the sum of two quasi-concave functions is not necessarily quasi-concave.

Exercise 2 (Jensen's Inequality)

- (1) For any nonempty convex set $X \subseteq \mathbb{R}^n$, show that a function $f: X \to \mathbb{R}$ is
- concave iff $f(\sum_{k=1}^{m} \lambda_k x_k) \ge \sum_{k=1}^{m} \lambda_k f(x_k)$ for all $x_1, \dots, x_m \in X$ and $\lambda_1, \dots, \lambda_m \in [0, 1]$ with $\sum_{k=1}^{m} \lambda_k = 1$;
- convex iff $f(\sum_{k=1}^m \lambda_k x_k) \le \sum_{k=1}^m \lambda_k f(x_k)$ for all $x_1, \dots, x_m \in X$ and $\lambda_1, \dots, \lambda_m \in [0, 1]$ with $\sum_{k=1}^m \lambda_k = 1$.
- (2) (**Optional**) Let $\phi: [a, b] \to \mathbb{R}$ and $\lambda: [a, b] \to \mathbb{R}_+$ be continuous and $\int_a^b \lambda(t) dt = 1$. Show that if f is a concave function defined on the range of ϕ , then

$$f(\int_a^b \lambda(t)\phi(t)dt) \ge \int_a^b \lambda(t)f(\phi(t))dt.$$

Exercise 3

- (1) Let $X \subseteq \mathbb{R}^n$ and $A \subseteq \mathbb{R}$ be convex. Show that:
- (i) If $f: X \to \mathbb{R}$ is concave and $g: A \to \mathbb{R}$ decreasing and convex with $f(X) \subseteq A$, then $g \circ f$ is convex;
- (ii) If $f: X \to \mathbb{R}$ is convex and $g: A \to \mathbb{R}$ decreasing and concave with $f(X) \subseteq A$, then $g \circ f$ is concave;
- (iii) If $f: X \to \mathbb{R}$ is strictly concave and $g: A \to \mathbb{R}$ strictly increasing and concave with $f(X) \subseteq A$, then $g \circ f$ is strictly concave;
- (iv) If $f: X \to \mathbb{R}$ is strictly convex and $g: A \to \mathbb{R}$ strictly increasing and convex with $f(X) \subseteq A$, then $g \circ f$ is strictly convex;
- (v) If $f: X \to \mathbb{R}$ is strictly quasi-concave and $g: A \to \mathbb{R}$ strictly decreasing with $f(X) \subseteq A$, then $g \circ f$ is strictly quasi-convex;
- (vi) If $f: X \to \mathbb{R}$ is strictly quasi-convex and $g: A \to \mathbb{R}$ strictly decreasing with $f(X) \subseteq A$, then $g \circ f$ is strictly quasi-concave.
- (2) Can a strictly concave function be strictly quasi-convex? Can a strictly convex function be strictly quasi-concave?

Exercise 4

Let $X \subseteq \mathbb{R}^n_{++}$ be open and $f: X \to \mathbb{R}$ differentiable at $x \in X$ with $f(x) \neq 0$.

The *partial elasticity* of f with respect to x_i is defined by

$$\operatorname{El}_{x_i}(f(x)) = \frac{x_i}{f(x)} \frac{\partial f(x)}{\partial x_i} = \frac{\partial \ln|f(x)|}{\partial \ln x_i}.$$

The *marginal rate of substitution* of x_i for x_i is defined by

$$MRS_{x_j,x_i} = \frac{\frac{\partial f(x)}{\partial x_i}}{\frac{\partial f(x)}{\partial x_j}}.$$

The *elasticity of substitution* of x_j for x_i $(i \neq j)$ is defined by

$$\sigma_{x_j,x_i} = \mathrm{El}_{\mathrm{MRS}_{x_j,x_i}} \left(\frac{x_j}{x_i} \right) = \frac{\partial \ln \frac{x_j}{x_i}}{\partial \ln |\mathrm{MRS}_{x_j,x_i}|}.$$

• Let $f(x) = a(\sum_{i=1}^{n} b_i x_i^{-\rho})^{-\frac{c}{\rho}}$, $a, b_1, \dots, b_n, c > 0, \rho > -1$, and $\rho \neq 0$. Find MRS_{x_i, x_i} and σ_{x_i, x_i} for each $i \neq j \in \{1, 2, \dots, n\}$.

Exercise 5 (L'Hospital's Rule)

- (1) (Optional) Let $X \subseteq \mathbb{R}$ and $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be differentiable in some $(a, b) \subseteq X, -\infty \le a < b \le \infty$, and $g'(x) \ne 0 \ \forall x \in (a, b)$.
- Suppose that $\lim_{x\to a} \frac{f'(x)}{g'(x)} = c \in \overline{\mathbb{R}}$. Show that if $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$, or if $\lim_{x\to a} |g(x)| = \infty$, then $\lim_{x\to a} \frac{f(x)}{g(x)} = c$.
- Suppose that $\lim_{x\to b} \frac{f'(x)}{g'(x)} = d \in \overline{\mathbb{R}}$. Show that if $\lim_{x\to b} f(x) = \lim_{x\to b} g(x) = 0$, or if $\lim_{x\to b} |g(x)| = \infty$, then $\lim_{x\to b} \frac{f(x)}{g(x)} = d$.
- (2) Let $f(x) = x + \cos(x)\sin(x)$ and $g(x) = e^{\sin(x)}(x + \cos(x)\sin(x))$. Show that $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = 0$ but $\lim_{x\to\infty} \frac{f(x)}{g(x)}$ does not exist.
- (3) Let $X \subseteq \mathbb{R}^n_{++}$ and $f: X \to \mathbb{R}$ be defined by $f(x) = a(\sum_{i=1}^n b_i x_i^{-\rho})^{-\frac{c}{\rho}}$, where $a, b_1, \dots, b_n, c > 0$, and $\rho \neq 0$. Find
- $\lim_{\rho \to 0} a \left(\sum_{i=1}^n b_i x_i^{-\rho} \right)^{-\frac{c}{\rho}}$ when $\sum_{i=1}^n b_i = 1$;
- $\lim_{\rho\to\infty} a\left(\sum_{i=1}^n b_i x_i^{-\rho}\right)^{-\frac{c}{\rho}}$.

Thank you!