L3 S1 Logique Séances 3 et 4 : Théorie des ensembles

Matteo Manighetti

20 octobre 2023

Exercices

- 1. Cet exercice est pris des notes du cours
 - (a) Trouver des formules équivalentes à $\forall x \ x \notin \emptyset$ et à $\forall x \ \emptyset \subseteq x$ dans lesquelles ne figurent que des signes primitifs du langage L_{\in} .

Solution : Dans le premier cas, on rapelle que la definition de \emptyset est $\forall x (\emptyset = x \leftrightarrow \forall y \ y \notin x)$. Si on remplace le symbole par une variable existentiellement quantifiée, on obtient $\exists y \ y \forall x (y = x \leftrightarrow \forall y \ y \notin x)$. On voudrait rajouter ensuite la proprieté $\forall x \ x \notin y$, mais en effet elle est déjà présente dans la formule.

Dans le deuxième cas, on doit aussi réecrire la definition de \subseteq . On obtient donc $\exists x \ (\forall z \ z \not\in x \land \forall y \forall z (z \in x \to z \in y)).$

- (b) Transcrire dans le langage L∈ les énoncés suivants :
 - i. Si deux ensembles sont vides, alors ils sont identiques.

Solution : $\forall x \forall y ((x = \emptyset \land y = \emptyset) \rightarrow x = y)$

ii. Un ensemble est vide seulement s'il n'a aucun élément.

Solution : $\forall x (x = \emptyset \rightarrow \neg \exists y \ y \in x)$

2. Prouver assiociativité et transitivité de l'union d'ensembles :

(a)
$$\forall x \forall y \forall z \ x \subseteq y \to y \subseteq z \to x \subseteq z$$

(b)
$$A \cup (B \cup C) = (A \cup B) \cup C$$

Solution:

- (a) Soient x, y, z tels que $x \subseteq y$ et $y \subseteq z$. Soit a un élément de x. Par définition, $a \in x$ et $x \subseteq y$, et donc $a \in y$. De même, $a \in y$ et $y \subseteq z$, d'où $a \in z$. Donc $a \in x$ et $a \in z$. Comme a est arbitraire, on a montré que tout élément de x est un élément de z, c'est à dire $x \subseteq z$.
- (b) Soient x,y,z des ensembles. On veut montrer que $x \in A \cup (B \cup C)$ si et seulement si $x \in (A \cup B) \cup C$. On montre les deux implications : $x \in A \cup (B \cup C)$ si et seulement si $x \in A$ ou $x \in B \cup C$, si et seulement si $x \in A$ ou $x \in B$ ou $x \in C$, si et seulement si $x \in A \cup B$ ou $x \in C$ ou
- 3. Construir l'ensemble des parties de l'ensemble suivant : $\{1, 2, \{3, 4, \{5\}\}\}\$.

Solution:

$$\{\emptyset, \{1, 2, \{3, 4, \{5\}\}\}, \{1\}, \{1, 2\}, \{1, \{3, 4, \{5\}\}\}, \{2\}, \{2, \{3, 4, \{5\}\}\}\}, \{\{3, 4, \{5\}\}\}\}\}$$

4. Prouver que $\mathcal{P}(E) \cap \mathcal{P}(F) = \mathcal{P}(E \cap F)$

Solution : Soit x un ensemble. En utilisant l'axiome d'extensionalité, on peut obtenir l'énoncé si on montre que $x \in \mathcal{P}(E) \cap \mathcal{P}(F)$ si et seulement si $x \in \mathcal{P}(E \cap F)$. On montre les deux implication : $x \in \mathcal{P}(E) \cap \mathcal{P}(F)$ si et seulement si $x \subseteq E$ et $x \subseteq F$, si et seulement si $x \subseteq E$ et $x \subseteq F$

- 5. Soient A, B des ensembles tels que $A \subseteq E$ et $B \subseteq E$.
 - (a) Donner une propriété \mathcal{P} telle que $\{x \in E \mid \mathcal{P}(x)\} = A \cup B$.

Solution :
$$x \in A \lor x \in B$$

(b) De même pour $A \cap \overline{B}^E$.

Solution :
$$x \in A \land x \notin B$$

(c) De même pour $\overline{A}^E \cup \overline{B}^E$.

Solution:
$$x \notin A \lor x \notin B$$

(d) De même pour $\overline{A}^E \cup B$

Solution : $x \notin A \lor x \in B$. Equiv. $x \in A \to x \in B$

- 6. Soit E un ensemble et X,Y,Z des sous-ensembles de E. Vérifier que
 - (a) $X \setminus (X \cap Y) = X \setminus Y$
 - (b) $(X \cup Y) \setminus Z = (X \setminus Z) \cup (Y \setminus Z)$
 - (c) $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$
 - (d) $(X \setminus Y) \cap Z = (X \cap Z) \setminus Y$

Solution:

- (a) En utilisant l'axiome d'extensionalité, on veut montrer que tout element de $X\setminus (X\cap Y)$ est un element de $X\setminus Y$ et vice versa. Soit donc x un élément de $X\setminus (X\cap Y)$. Par définition, $x\in X$ et $x\not\in X\cap Y$, c'est à dire $x\in X$ et en même temps $x\not\in X$ ou $x\in Y$. Cela est équivalent à $x\in X$ et $x\not\in Y$, c'est à dire $x\in X\setminus Y$. Comme chaque passage est une équivalence logique, on a montré en même temps l'enoncé initial et le vice versa.
- (b) On fait le même raisonnement que pour la question précédente. Soit x un élément de $(X \cup Y) \setminus Z$. Par définition, $x \in X \cup Y$ et $x \notin Z$, c'est à dire $x \in X$ ou $x \in Y$ et $x \notin Z$. Cela est équivalent à $x \in X$ et $x \notin Z$ ou $x \in Y$ et $x \notin Z$, c'est à dire $x \in X \setminus Z$ ou $x \in Y \setminus Z$. Donc $x \in (X \setminus Z) \cup (Y \setminus Z)$.