

Schletter, Inc.		20° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-05, Eq. 7-2)	20.62 psf	Sloped Roof Snow Load, P _s =
	1.00	I _s =
	0.91	$C_s =$
	0.90	C_e =
	1.20	$C_t =$

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 15.70 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.050 (Draggura)	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.400	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and nomino carrace.

2.4 Seismic Loads - N/A

S _s =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	930.42	<u>5224.53</u>	k
Compressive Load =	4229.04	<u>4774.48</u>	k
Lateral Load =	<u>14.08</u>	2346.09	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 146073.1 in-lbs Resisting Force Required = 2042.98 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3404.97 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 563.89 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1409.73 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 563.89 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D	+ 1.0S			1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W				
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1493 lbs	1493 lbs	1493 lbs	1493 lbs	1450 lbs	1450 lbs	1450 lbs	1450 lbs	2085 lbs	2085 lbs	2085 lbs	2085 lbs	-441 lbs	-441 lbs	-441 lbs	-441 lbs
F _B	1604 lbs	1604 lbs	1604 lbs	1604 lbs	1772 lbs	1772 lbs	1772 lbs	1772 lbs	2401 lbs	2401 lbs	2401 lbs	2401 lbs	-2506 lbs	-2506 lbs	-2506 lbs	-2506 lbs
F _V	156 lbs	156 lbs	156 lbs	156 lbs	1007 lbs	1007 lbs	1007 lbs	1007 lbs	861 lbs	861 lbs	861 lbs	861 lbs	-1128 lbs	-1128 lbs	-1128 lbs	-1128 lbs
P _{total}	10657 lbs	10873 lbs	11089 lbs	11305 lbs	10781 lbs	10997 lbs	11213 lbs	11429 lbs	12046 lbs	12262 lbs	12478 lbs	12694 lbs	1588 lbs	1718 lbs	1847 lbs	1977 lbs
М	3396 lbs-ft	3396 lbs-ft	3396 lbs-ft	3396 lbs-ft	3944 lbs-ft	3944 lbs-ft	3944 lbs-ft	3944 lbs-ft	5225 lbs-ft	5225 lbs-ft	5225 lbs-ft	5225 lbs-ft	3399 lbs-ft	3399 lbs-ft	3399 lbs-ft	3399 lbs-ft
е	0.32 ft	0.31 ft	0.31 ft	0.30 ft	0.37 ft	0.36 ft	0.35 ft	0.35 ft	0.43 ft	0.43 ft	0.42 ft	0.41 ft	2.14 ft	1.98 ft	1.84 ft	1.72 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft								
f _{min}	257.4 psf	256.3 psf	255.3 psf	254.3 psf	253.1 psf	252.1 psf	251.1 psf	250.3 psf	270.9 psf	269.4 psf	268.0 psf	266.7 psf	0.0 psf	0.2 psf	3.7 psf	7.0 psf

355.8 psf 352.0 psf 348.3 psf 344.9 psf 367.3 psf 363.2 psf 363.2 psf 359.2 psf 422.3 psf 416.6 psf 411.2 psf 406.1 psf 95.1 psf 95.9 psf 96.9 psf 97.7 psf

36 in

35 in

 $P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) = \frac{7560 \text{ lbs}}{7776 \text{ lbs}} = \frac{7992 \text{ lbs}}{7992 \text{ lbs}} = \frac{8208 \text{ lbs}}{7992 \text{ lbs}}$

Ballast Width

<u>37 in</u>

38 in

Maximum Bearing Pressure = 422 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_O = 1271.6 \text{ ft-lbs}$

Resisting Force Required = 871.99 lbs S.F. = 1.67 Weight Required = 1453.31 lbs

Minimum Width = 35 in in Weight Provided = 7559.64 lbs

A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		35 in			35 in			35 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	247 lbs	628 lbs	247 lbs	884 lbs	2540 lbs	884 lbs	72 lbs	184 lbs	72 lbs	
F _V	1 lbs	0 lbs	1 lbs	5 lbs	0 lbs	5 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	9605 lbs	7560 lbs	9605 lbs	9793 lbs	7560 lbs	9793 lbs	2809 lbs	7560 lbs	2809 lbs	
M	5 lbs-ft	0 lbs-ft	5 lbs-ft	18 lbs-ft	0 lbs-ft	18 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	
f _{min}	276.1 psf	217.5 psf	276.1 psf	280.7 psf	217.5 psf	280.7 psf	80.8 psf	217.5 psf	80.8 psf	
f _{max}	276.6 psf	217.5 psf	276.6 psf	282.8 psf	217.5 psf	282.8 psf	80.8 psf	217.5 psf	80.8 psf	

Maximum Bearing Pressure = 283 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 28in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut	
Maximum Axial Load =	3.253 k
M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k
Utilization =	<u>44%</u>
Diagonal Strut	
Marriago and Arrial Land	4 700 L

Maximum Axial Load = 3.594 k

M12 Bolt Capacity = 12.808 k

Strut Bearing Capacity = 7.421 k

Utilization = 48%

Diagonal Strut

Maximum Axial Load = 1.799 k

M12 Bolt Shear Capacity = 12.808 k

Strut Bearing Capacity = 7.421 k

Utilization = 24%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} = 51.89$ in

Allowable Story Drift for All Other
Structures, $\Delta = \{ 0.020h_{sx} \\ 1.038$ in

Max Drift, $\Delta_{MAX} = 0.027$ in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 102 \text{ in}$$
 $J = 0.432$
 282.18

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$C_c = \frac{(C_c)^2}{(C_c)^2}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$$

$$\phi F_1 = 27.9 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 102$$
 $J = 0.432$
 179.449

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.0$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

 $S2 = 46.7$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

2.155 in^4

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12$$

$$k_1 B p$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$x = 45.5 \text{ mm}$$

Sy = 0.599 in³

$$M_{max}Wk = 1.152 \text{ k-ft}$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi c k2^* \sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_{b} = 104.56 \text{ in}$ J = 1.08 179.85 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461 $S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$ S2 = 1701.563.4.14

 $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

 $\phi F_1 = 29.0 \text{ ksi}$

Weak Axis:

$L_{b} = 104.56$ J = 1.08 190.335 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461 $S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$ S2 = 1701.56

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_I &= 28.9 \end{split}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b [Bt-Dt^* \sqrt{(Rb/t)}]$$

16.2

36.9

0.65

77.3

43.2 ksi

33.3 ksi

2.219 in⁴

1.409 in³

3.904 k-ft

40 mm

40

 $\frac{\theta_y}{2}$ 1.3Fcy

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$

33.3 ksi

3.4.10

 $\varphi F_L =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt-Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

Rev. 07.29.2016

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18 h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

h/t = 24.5

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²

28.85 kips

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Ψι

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$Ix = 279836 \text{ mm}^4$ 0.672 in^4 y = 27.5 mm $Sx = 0.621 \text{ in}^3$

$M_{max}St = 1.460 \text{ k-ft}$

3.4.7

Compression

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 61.10 in $L_b =$ 61.1 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\varphi F_L =$ $\phi F_L = 30.2 \text{ ksi}$ 30.2

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi$$
F_LSt= 28.2 ksi
 $x = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$
 M_{max} St = 1.460 k-ft

 $\phi F_L = 43.2 \text{ ksi}$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 28.2 \text{ ksi} \\ ly &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x &= & 27.5 \text{ mm} \\ Sy &= & 0.621 \text{ in}^3 \\ M_{max} W k &= & 1.460 \text{ k-ft} \end{split}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.41345 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \varphi cc = & 0.77788 \\ & \varphi F_L = & (\varphi cc Fcy)/(\lambda^2) \\ & \varphi F_L = & 13.6277 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \phi \text{F}_{\text{L}} &= & \phi \text{yFcy} \\ \phi \text{F}_{\text{L}} &= & 33.25 \text{ ksi} \\ \phi \text{F}_{\text{L}} &= & 13.63 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 14.03 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1	•			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-63.565	-63.565	0	0
2	M14	Υ	-63.565	-63.565	0	0
3	M15	Υ	-63.565	-63.565	0	0
4	M16	Υ	-63 565	-63 565	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-54.088	-54.088	0	0
2	M14	V	-54.088	-54.088	0	0
3	M15	V	-84.995	-84.995	0	0
4	M16	V	-84.995	-84.995	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	123.63	123.63	0	0
2	M14	V	94.783	94.783	0	0
3	M15	V	51.512	51.512	0	0
4	M16	V	51 512	51 512	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	460.509	2	1143.928	1	.834	1	.004	1	Ö	1	Ó	1
2		min	-592.508	3	-1262.263	3	.035	15	0	15	0	1	0	1
3	N7	max	.029	9	1171.816	1	402	15	0	15	0	1	0	1
4		min	158	2	-205.226	3	-10.83	1	022	1	0	1	0	1
5	N15	max	0	15	3253.109	1	0	2	0	2	0	1	0	1
6		min	-1.747	2	-715.706	3	0	1	0	1	0	1	0	1
7	N16	max	1668.808	2	3672.678	1	0	2	0	1	0	1	0	1
8		min	-1804.684	3	-4018.868	3	0	3	0	12	0	1	0	1
9	N23	max	.029	9	1171.816	1	10.83	1	.022	1	0	1	0	1
10		min	158	2	-205.226	3	.402	15	0	15	0	1	0	1
11	N24	max	460.509	2	1143.928	1	035	15	0	15	0	1	0	1
12		min	-592.508	3	-1262.263	3	834	1	004	1	0	1	0	1
13	Totals:	max	2587.764	2	11557.274	1	0	2						
14		min	-2990.312	3	-7669.552	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	67.52	1	473.442	1	-5.675	15	0	15	.188	1	0	1
2			min	2.435	15	-613.285	3	-158.753	1	014	2	.007	15	0	3
3		2	max	67.52	1	330.23	1	-4.348	15	0	15	.056	1	.494	3
4			min	2.435	15	-432.024	3	-121.502	1	014	2	.002	15	38	1
5		3	max	67.52	1	187.018	1	-3.021	15	0	15	.001	3	.816	3
6			min	2.435	15	-250.763	3	-84.251	1	014	2	041	1	624	1
7		4	max	67.52	1	43.806	1	-1.695	15	0	15	003	12	.967	3
8			min	2.435	15	-69.502	3	-47.001	1	014	2	103	1	733	1
9		5	max	67.52	1	111.759	3	309	10	0	15	004	12	.947	3
10			min	2.435	15	-99.406	1	-9.75	1	014	2	13	1	707	1
11		6	max	67.52	1	293.02	3	27.501	1	0	15	004	15	.756	3
12			min	2.435	15	-242.618	1	14	3	014	2	121	1	545	1
13		7	max	67.52	1	474.281	3	64.751	1	0	15	003	15	.394	3
14			min	2.435	15	-385.83	1	1.321	12	014	2	078	1	248	1
15		8	max	67.52	1	655.542	3	102.002	1	0	15	.003	2	.184	1
16			min	2.435	15	-529.042	1	2.669	12	014	2	004	3	14	3
17		9	max	67.52	1	836.803	3	139.253	1	0	15	.115	1	.751	1
18			min	2.435	15	-672.254	1	4.018	12	014	2	0	3	844	3
19		10	max	67.52	1	1018.064	3	176.504	1	.003	3	.264	1	1.454	1
20			min	2.435	15	-815.466	1	5.367	12	014	2	.005	12	-1.72	3
21		11	max	67.52	1	672.254	1	-4.018	12	.014	2	.115	1	.751	1
22			min	2.435	15	-836.803	3	-139.253	1	0	15	0	3	844	3
23		12	max	67.52	1	529.042	1	-2.669	12	.014	2	.003	2	.184	1
24			min	2.435	15	-655.542	3	-102.002	1	0	15	004	3	14	3
25		13	max	67.52	1	385.83	1	-1.321	12	.014	2	003	15	.394	3
26			min	2.435	15	-474.281	3	-64.751	1	0	15	078	1	248	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome		z-z Mome	
27		14	max	67.52	1	242.618	1	.14	3	.014	2	004	15	.756	3
28			min	2.435	15	-293.02	3	-27.501	1	0	15	121	1	545	1
29		15	max	67.52	1	99.406	1	9.75	1	.014	2	004	12	.947	3
30			min	2.435	15	-111.759	3	.309	10	0	15	13	1	707	1
31		16	max	67.52	1	69.502	3	47.001	1	.014	2	003	12	.967	3
32			min	2.435	15	-43.806	1	1.695	15	0	15	103	1	733	1
33		17	max	67.52	1	250.763	3	84.251	1	.014	2	.001	3	.816	3
34			min	2.435	15	-187.018	1	3.021	15	0	15	041	1	624	1
35		18	max	67.52	1	432.024	3	121.502	1	.014	2	.056	1	.494	3
36			min	2.435	15	-330.23	1	4.348	15	0	15	.002	15	38	1
37		19	max	67.52	1	613.285	3	158.753	1	.014	2	.188	1	0	1
38			min	2.435	15	-473.442	1	5.675	15	0	15	.007	15	0	3
39	M14	1	max	40.603	1	533.011	1	-5.905	15	.011	3	.225	1	0	1
40	IVIT	<u> </u>	min	1.466	15	-495.036	3	-165.196	1	015	1	.008	15	0	3
41		2	max	40.603	1	389.799	1	-4.578	15	.011	3	.086	1	.403	3
42			min	1.466	15	-357.367	3	-127.945		015	1	.003	15	436	1
43		3		40.603	1	246.587	1	-3.252	15	.011	3	.003	3	.675	3
44		3	max	1.466			3	-90.695	1		1	017	1	736	1
		1	min		15	-219.697				015					_
45		4	max	40.603	11	103.375	1	-1.925	15	.011	3	002	12	.818	3
46		_	min	1.466	15	-82.027	3	-53.444	1_	015	1	085	1	902	1
47		5	max	40.603	1	55.643	3	598	15	.011	3	004	12	.83	3
48			min	1.466	15	-39.837	1	-16.193	1	015	1	118	1_	932	1
49		6	max	40.603	1	193.313	3	21.058	1	.011	3	004	15	.712	3
50			min	1.466	15	-183.049	1	51	3	015	1	116	1	826	1
51		7	max	40.603	1_	330.983	3	58.308	1	.011	3	003	15	.465	3
52			min	1.466	15	-326.261	1	1.075	12	015	1	078	1	586	1
53		8	max	40.603	1_	468.653	3	95.559	1	.011	3	.001	10	.087	3
54			min	1.466	15	-469.473	1	2.424	12	015	1	005	1	21	1
55		9	max	40.603	1	606.323	3	132.81	1	.011	3	.102	1	.301	1
56			min	1.466	15	-612.685	1	3.772	12	015	1	0	3	42	3
57		10	max	40.603	1	743.993	3	170.061	1	.011	3	.245	1	.947	1
58			min	1.466	15	-755.897	1	5.121	12	015	1	.004	12	-1.058	3
59		11	max	40.603	1	612.685	1	-3.772	12	.015	1	.102	1	.301	1
60			min	1.466	15	-606.323	3	-132.81	1	011	3	0	3	42	3
61		12	max	40.603	1	469.473	1	-2.424	12	.015	1	.001	10	.087	3
62			min	1.466	15	-468.653	3	-95.559	1	011	3	005	1	21	1
63		13	max	40.603	1	326.261	1	-1.075	12	.015	1	003	15	.465	3
64			min	1.466	15	-330.983	3	-58.308	1	011	3	078	1	586	1
65		14	max	40.603	1	183.049	1	.51	3	.015	1	004	15	.712	3
66			min	1.466	15		3	-21.058	1	011	3	116	1	826	1
67		15			1	39.837	1	16.193	1	.015	1	004	12	.83	3
68			min	1.466	15	-55.643	3	.598	15	011	3	118	1	932	1
69		16	max	40.603	1	82.027	3	53.444	1	.015	1	002	12	.818	3
70		.	min	1.466	15	-103.375	1	1.925	15	011	3	085	1	902	1
71		17	max	40.603	1	219.697	3	90.695	1	.015	1	.003	3	.675	3
72		1 /	min	1.466	15	-246.587	1	3.252	15	011	3	017	1	736	1
73		18	max	40.603	1	357.367	3	127.945	1	.015	1	.086	1	.403	3
74		10	min	1.466	15	-389.799	1	4.578	15	011	3	.003	15	436	1
75		10										.225	1		1
		19	max	40.603	1	495.036	3	165.196	1	.015	1			0	3
76	N/4E	4	min	1.466	15	-533.011	1	5.905	15	011	3	.008	15	0	
77	M15	1	max	-1.558	15	615.677	2	-5.903	15	.016	1	.225	1	0	2
78			min	-43.044	1_	-275.008	3	-165.165		009	3	.008	15	0	3
79		2	max	-1.558	15	446.949	2	-4.576	15	.016	1	.086	1	.226	3
80			min	-43.044	1	-202.726	3	-127.914	1_	009	3	.003	15	502	2
81		3	max	-1.558	15	278.669	1	-3.249	15	.016	1	.003	3	.383	3
82			min	-43.044	1	-130.443		-90.664	1_	009	3	017	1_	844	2
83		4	max	-1.558	15	112.105	1	-1.922	15	.016	1	002	12	.472	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-43.044	1	-58.16	3	-53.413	1	009	3	085	1	-1.027	2
85		5	max	-1.558	15	14.122	3	595	15	.016	1	004	12	.493	3
86			min	-43.044	1	-59.235	2	-16.162	1	009	3	118	1	-1.053	1
87		6	max	-1.558	15	86.405	3	21.088	1	.016	1	004	15	.445	3
88			min	-43.044	1	-227.963	2	371	3	009	3	116	1	923	1
89		7	max	-1.558	15	158.688	3	58.339	1	.016	1	003	15	.33	3
90			min	-43.044	1	-396.691	2	1.162	12	009	3	078	1	635	1
91		8	max	-1.558	15	230.97	3	95.59	1	.016	1	0	10	.146	3
92			min	-43.044	1	-565.419	2	2.511	12	009	3	005	1	191	1
93		9	max	-1.558	15	303.253	3	132.841	1	.016	1	.102	1	.448	2
94		1 3	min	-43.044	1	-734.147	2	3.859	12	009	3	0	3	107	3
95		10	max	-1.558	15	375.535	3	170.091	1	.016	1	.245	1	1.221	2
96		10			1		2	5.208	12		12	.005	12	427	3
		4.4	min	-43.044		-902.875				006					
97		11	max	-1.558	15	734.147	2	-3.859	12	.009	3	.102	1	.448	2
98		4.0	min	-43.044	1_	-303.253	3	-132.841	1	016	1	0	3	107	3
99		12	max	-1.558	15	565.419	2	-2.511	12	.009	3	0	10	.146	3
100			min	-43.044	1_	-230.97	3	-95.59	1	016	1	005	1	191	1
101		13	max	-1.558	15	396.691	2	-1.162	12	.009	3	003	15	.33	3
102			min	-43.044	1	-158.688	3	-58.339	1	016	1	078	1	635	1
103		14	max	-1.558	15	227.963	2	.371	3	.009	3	004	15	.445	3
104			min	-43.044	1	-86.405	3	-21.088	1	016	1	116	1	923	1
105		15	max	-1.558	15	59.235	2	16.162	1	.009	3	004	12	.493	3
106			min	-43.044	1	-14.122	3	.595	15	016	1	118	1	-1.053	1
107		16	max	-1.558	15	58.16	3	53.413	1	.009	3	002	12	.472	3
108		1	min	-43.044	1	-112.105	1	1.922	15	016	1	085	1	-1.027	2
109		17	max	-1.558	15	130.443	3	90.664	1	.009	3	.003	3	.383	3
110		1	min	-43.044	1	-278.669	1	3.249	15	016	1	017	1	844	2
111		18	max	-1.558	15	202.726	3	127.914	1	.009	3	.086	1	.226	3
112		10	min	-43.044	1	-446.949	2	4.576	15	016	1	.003	15	502	2
113		19		-1.558	15	275.008	3	165.165	1	.009	3	.225	1		2
		19	max								1		15	0	3
114	MAC	4	min	-43.044	1_	-615.677	2	5.903	15	016	-	.008		0	
115	M16	1	max	-2.71	15	562.08	2	-5.688	15	.012	1	.191	1_	0	2
116			min	-75.074	1_	-236.051	3	-159.237	1_	011	3	.007	15	0	3
117		2	max	-2.71	15	393.352	2	-4.361	15	.012	1	.058	1_	.189	3
118			min	-75.074	1_	-163.768	3	-121.986	1_	011	3	.002	15	451	2
119		3	max	-2.71	15	224.624	2	-3.034	15	.012	1	0	3	.309	3
120			min	-75.074	1	-91.485	3	-84.735	1	011	3	04	1	743	2
121		4	max	-2.71	15	55.896	2	-1.708	15	.012	1_	003	12	.362	3
122			min	-75.074	1	-19.203	3	-47.485	1	011	3	102	1	875	2
123		5	max	-2.71	15	53.08	3	381	15	.012	1	004	12	.346	3
124			min	-75.074	1	-113.097	1	-10.234	1	011	3	129	1	849	2
125		6	max	-2.71	15	125.363	3	27.017	1	.012	1	004	15	.261	3
126			min	-75.074	1	-281.56	2	.244	12	011	3	121	1	662	2
127		7	max	-2.71	15	197.645	3	64.268	1	.012	1	003	15	.109	3
128			min	-75.074	1	-450.288	2	1.593	12	011	3	078	1	317	2
129		8	max	-2.71	15	269.928	3	101.518	1	.012	1	.002	2	.197	1
130			min	-75.074	1	-619.016	2	2.941	12	011	3	003	3	112	3
131		9	max	-2.71	15	342.21	3	138.769	1	.012	1	.114	1	.855	1
132			min	-75.074	1	-787.744	2	4.29	12	011	3	.002	12	401	3
133		10	max	-73.074 -2.71	15	414.493	3	176.02	1	.012	1	.262	1	1.676	2
134		10			1			5.638	12		3	.006	12	758	3
		4.4	min			<u>-956.472</u>	2			011					
135		11	max	-2.71	15	787.744	2	-4.29	12	.011	3	.114	1	.855	1
136		40	min	-75.074	1_	-342.21	3	-138.769		012	1_	.002	12	401	3
137		12	max	-2.71	15	619.016	2	-2.941	12	.011	3	.002	2	.197	1
138			min	-75.074	1_	-269.928	3	-101.518		012	1_	003	3_	112	3
139		13	max	-2.71	15	450.288	2	-1.593	12	.011	3	003	15	.109	3
140			min	-75.074	1	-197.645	3	-64.268	1	012	1	078	1	317	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	. LC
141		14	max	-2.71	15	281.56	2	244	12	.011	3	004	15	.261	3
142			min	-75.074	1	-125.363	3	-27.017	1	012	1	121	1	662	2
143		15	max		15	113.097	1	10.234	1	.011	3	004	12	.346	3
144			min	-75.074	1	-53.08	3	.381	15	012	1	129	1	849	2
145		16	max	-2.71	15	19.203	3	47.485	1	.011	3	003	12	.362	3
146			min	-75.074	1	-55.896	2	1.708	15	012	1	102	1	875	2
147		17	max		15	91.485	3	84.735	1	.011	3	0	3	.309	3
148			min	-75.074	1	-224.624	2	3.034	15	012	1	04	1	743	2
149		18	max	-2.71	15	163.768	3	121.986	1	.011	3	.058	1	.189	3
150		10	min	-75.074	1	-393.352	2	4.361	15	012	1	.002	15	451	2
151		19	max	-2.71	15	236.051	3	159.237	1	.012	3	.191	1	0	2
152		13	min		1	-562.08	2	5.688	15	012	1	.007	15	0	3
153	M2	1		1100.812	1	2.157	4	.796	1	0	3	0	3	0	1
154	IVIZ			-1129.603	3	.507	15	.029	15	0	1	0	1	0	1
155		2		1101.228	<u> </u>	2.148	4		1		3	0	1	0	
156			min	-1129.291	3	.505	15	.796 .029	15	0	1	0	15	0	15
		2									-				_
157		3		1101.644	1	2.139	4	.796	1	0	3	0	1	0	15
158		4		-1128.979	3	.503	15	.029	15	0	1	0	15	001	4
159		4		1102.06	1_	2.13	4	.796	1	0	3	0	1	0	15
160		_	min	-1128.667	3	.501	15	.029	15	0	1	0	15	002	4
161		5		1102.475	_1_	2.122	4	.796	1	0	3	0	1	0	15
162				-1128.355	3_	.499	15	.029	15	0	1	0	15	002	4
163		6		1102.891	_1_	2.113	4	.796	1	0	3	.001	1	0	15
164				-1128.043	3	.497	15	.029	15	0	1	0	15	003	4
165		7		1103.307	_1_	2.104	4_	.796	1	0	3	.001	1	0	15
166			_	-1127.731	3	.495	15	.029	15	0	1	0	15	004	4
167		8		1103.723	_1_	2.096	4	.796	1	0	3	.002	1	0	15
168			min	-1127.419	3	.493	15	.029	15	0	1	0	15	004	4
169		9		1104.139	_1_	2.087	4	.796	1	0	3	.002	1	001	15
170			min	-1127.107	3	.491	15	.029	15	0	1	0	15	005	4
171		10		1104.555	1	2.078	4	.796	1	0	3	.002	1	001	15
172			min	-1126.796	3	.489	15	.029	15	0	1	0	15	005	4
173		11	max	1104.971	1	2.069	4	.796	1	0	3	.002	1	001	15
174			min	-1126.484	3	.487	15	.029	15	0	1	0	15	006	4
175		12	max	1105.387	1	2.061	4	.796	1	0	3	.002	1	002	15
176				-1126.172	3	.485	15	.029	15	0	1	0	15	007	4
177		13	_	1105.802	1	2.052	4	.796	1	0	3	.003	1	002	15
178			-	-1125.86	3	.482	15	.029	15	0	1	0	15	007	4
179		14		1106.218	1	2.043	4	.796	1	0	3	.003	1	002	15
180				-1125.548	3	.48	15	.029	15	0	1	0	15	008	4
181		15		1106.634	1	2.035	4	.796	1	0	3	.003	1	002	15
182		Ŭ		-1125.236	3	.478	15	.029	15	0	1	0	15	008	4
183		16		1107.05	1	2.026	4	.796	1	0	3	.003	1	002	15
184		'		-1124.924	3	.476	15	.029	15	0	1	0	15	009	4
185		17		1107.466		2.017	4	.796	1	0	3	.004	1	003	15
186		' '		-1124.612	3	.474	15	.029	15	0	1	0	15	002	4
187		18		1107.882	1	2.008	4	.796	1	0	3	.004	1	00 <u>9</u> 002	15
188		10		-1124.3	3	.472	15	.029	15	0	1	.004	15	002 01	4
189		19		1108.298	<u> </u>	2	4	.796	1	0	3	.004	1	01 002	15
		19		-1123.988							1				
190	MO	4			3	.47	<u>15</u>	.029	15	0		0	15	01	4
191	M3	1		458.376	2	9.101	4	.188	1	0	3	0	1	.01	4
192		_		-591.214	3	2.139	<u>15</u>	.007	15	0	1	0	15	.002	15
193		2		458.206	2	8.226	4	.188	1	0	3	0	1	.006	4
194				-591.341	3	1.934	15	.007	15	0	1	0	15	.002	15
195		3		458.036	2	7.352	4	.188	1	0	3	0	1	.003	2
196				-591.469	3	1.728	15	.007	15	0	1	0	15	0	3
197		4	max	457.865	2	6.477	4	.188	1	0	3	0	1	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
198			min	-591.597	3	1.523	15	.007	15	0	1	0	15	002	3
199		5	max	457.695	2	5.603	4	.188	1	0	3	0	1	0	15
200			min	-591.725	3	1.317	15	.007	15	0	1	0	15	003	4
201		6	max	457.525	2	4.728	4	.188	1	0	3	0	1	001	15
202			min	-591.852	3	1.112	15	.007	15	0	1	0	15	006	4
203		7	max	457.354	2	3.854	4	.188	1	0	3	0	1	002	15
204			min	-591.98	3	.906	15	.007	15	0	1	0	15	008	4
205		8	max	457.184	2	2.98	4	.188	1	0	3	0	1	002	15
206			min	-592.108	3	.7	15	.007	15	0	1	0	15	01	4
207		9	max	457.014	2	2.105	4	.188	1	0	3	0	1	003	15
208			min	-592.236	3	.495	15	.007	15	0	1	0	15	011	4
209		10	max	456.843	2	1.231	4	.188	1	0	3	0	1	003	15
210			min	-592.363	3	.289	15	.007	15	0	1	0	15	012	4
211		11	max	456.673	2	.418	2	.188	1	0	3	0	1	003	15
212			min	-592.491	3	.014	3	.007	15	0	1	0	15	012	4
213		12	max	456.503	2	122	15	.188	1	0	3	.001	1	003	15
214			min	-592.619	3	518	4	.007	15	0	1	0	15	012	4
215		13	max	456.332	2	327	15	.188	1	0	3	.001	1	003	15
216			min	-592.747	3	-1.393	4	.007	15	0	1	0	15	011	4
217		14	max	456.162	2	533	15	.188	1	0	3	.001	1	002	15
218			min	-592.874	3	-2.267	4	.007	15	0	1	0	15	011	4
219		15	max	455.992	2	738	15	.188	1	0	3	.001	1	002	15
220			min	-593.002	3	-3.142	4	.007	15	0	1	0	15	009	4
221		16	max	455.821	2	944	15	.188	1	0	3	.001	1	002	15
222			min	-593.13	3	-4.016	4	.007	15	0	1	0	15	008	4
223		17	max		2	-1.15	15	.188	1	0	3	.001	1	001	15
224			min	-593.258	3	-4.89	4	.007	15	0	1	0	15	005	4
225		18	max		2	-1.355	15	.188	1	0	3	.002	1	0	15
226			min	-593.385	3	-5.765	4	.007	15	0	1	0	15	003	4
227		19	max	455.31	2	-1.561	15	.188	1	0	3	.002	1	0	1
228			min	-593.513	3	-6.639	4	.007	15	0	1	0	15	0	1
229	M4	1	max	1168.75	1	0	1	402	15	0	1	0	1	0	1
230			min	-207.525	3	0	1	-11.217	1	0	1	0	15	0	1
231		2	max	1168.921	1	0	1	402	15	0	1	0	12	0	1
232			min	-207.398	3	0	1	-11.217	1	0	1	0	1	0	1
233		3	max	1169.091	1	0	1	402	15	0	1	0	15	0	1
234			min	-207.27	3	0	1	-11.217	1	0	1	002	1	0	1
235		4	max	1169.261	1	0	1	402	15	0	1	0	15	0	1
236			min	-207.142	3	0	1	-11.217	1	0	1	003	1	0	1
237		5	max	1169.432	1	0	1	402	15	0	1	0	15	0	1
238			min	-207.014	3	0	1	-11.217	1	0	1	004	1	0	1
239		6	max	1169.602	1	0	1	402	15	0	1	0	15	0	1
240			min	-206.887	3	0	1	-11.217	1	0	1	005	1	0	1
241		7		1169.772	1	0	1	402	15	0	1	0	15	0	1
242				-206.759	3	0	1	-11.217	1	0	1	007	1	0	1
243		8	max	1169.943	1	0	1	402	15	0	1	0	15	0	1
244			min	-206.631	3	0	1	-11.217	1	0	1	008	1	0	1
245		9	max	1170.113	1	0	1	402	15	0	1	0	15	0	1
246			min	-206.503	3	0	1	-11.217	1	0	1	009	1	0	1
247		10	max	1170.283	1	0	1	402	15	0	1	0	15	0	1
248			min		3	0	1	-11.217	1	0	1	011	1	0	1
249		11		1170.454	1	0	1	402	15	0	1	0	15	0	1
250				-206.248	3	0	1	-11.217	1	0	1	012	1	0	1
251		12		1170.624	1	0	1	402	15	0	1	0	15	0	1
252				-206.12	3	0	1	-11.217	1	0	1	013	1	0	1
253		13		1170.794	1	0	1	402	15	0	1	0	15	0	1
254				-205.992	3	0	1	-11.217	1	0	1	014	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255		14		1170.965	1	0	1	402 -11.217	<u>15</u>	0	<u>1</u> 1	0	<u>15</u> 1	0	1
256 257		15	min	-205.865 1171.135	<u>3</u> 1	0	1	402	<u>1</u> 15	0	1	016 0	15	0	1
258		13		-205.737	3	0	1	-11.217	1	0	1	017	1	0	1
259		16		1171.305	_ <u></u>	0	1	402	15	0	1	0	15	0	1
260		10		-205.609	3	0	1	-11.217	1	0	1	018	1	0	1
261		17		1171.476	1	0	1	402	15	0	-	0	15	0	1
262				-205.481	3	0	1	-11.217	1	0	1	02	1	0	1
263		18		1171.646	1	0	1	402	15	0	1	0	15	0	1
264			min	-205.354	3	0	1	-11.217	1	0	1	021	1	0	1
265		19		1171.816	1	0	1	402	15	0	1	0	15	0	1
266			min	-205.226	3	0	1	-11.217	1	0	1	022	1	0	1
267	M6	1		3415.321	1	2.511	2	0	1	0	1	0	1	0	1
268			min	-3593.803	3	.209	12	0	1	0	1	0	1	0	1
269		2	max	3415.737	1	2.504	2	0	1	0	1	0	1	0	12
270			min	-3593.491	3	.205	12	0	1_	0	1	0	1	0	2
271		3		3416.152	_1_	2.497	2	0	_1_	0	1	0	1	0	12
272				-3593.179	3	.202	12	0	1_	0	1	0	1	001	2
273		4		3416.568	_1_	2.49	2	0	_1_	0	1	0	1_	0	12
274			min	-3592.867	3	.199	12	0	1_	0	1	0	1	002	2
275		5		3416.984	_1_	2.484	2	0	1	0	1	0	1	0	12
276			min	-3592.555	3	.195	12	0	1_	0	1	0	1	003	2
277		6	max		_1_	2.477	2	0	1_	0	1	0	1	0	12
278		_	min	-3592.243	3	.192	12	0	1_	0	1	0	1	003	2
279		7		3417.816	1	2.47	2	0	1_	0	1	0	1	0	12
280			min	-3591.931	3_	.188	12	0	1_	0	1_	0	1	004	2
281		8		3418.232	1_	2.463	2	0	1_4	0	1	0	1	0	12
282		_	min	-3591.62	3	.185	12	0	1	0	<u>1</u> 1	0	1	005	2
283		9		3418.648 -3591.308	<u>1</u> 3	2.456	12	0	1	0	1	0	1	0	12
284		10	min	3419.064	<u>ာ</u> 1	.182 2.45	2	0	1	0	1	0	1	006 0	12
286		10	min	-3590.996	3	.178	12	0	1	0	1	0	1	006	2
287		11	max		1	2.443	2	0	1	0	1	0	1	0	12
288			min	-3590.684	3	.175	12	0	1	0	1	0	1	007	2
289		12		3419.895	1	2.436	2	0	1	0	1	0	1	0	12
290		- '-	min	-3590.372	3	.171	12	0	1	0	1	0	1	008	2
291		13	_	3420.311	1	2.429	2	0	1	0	1	0	1	0	12
292			min	-3590.06	3	.168	12	0	1	0	1	0	1	008	2
293		14	max	3420.727	1	2.422	2	0	1	0	1	0	1	0	12
294			min	-3589.748	3	.165	12	0	1	0	1	0	1	009	2
295		15	max	3421.143	1	2.416	2	0	1	0	1	0	1	0	12
296			min	-3589.436	3	.161	12	0	1	0	1	0	1	01	2
297		16		3421.559	_1_	2.409	2	0	_1_	0	1	0	1	0	12
298				-3589.124	3	.158	12	0	1	0	1	0	1	01	2
299		17		3421.975	_1_	2.402	2	0	_1_	0	1	0	1_	0	12
300			min		3_	.154	12	0	1_	0	<u>1</u>	0	1	011	2
301		18		3422.391	_1_	2.395	2	0	_1_	0	<u>1</u>	0	1	0	12
302		4.0		-3588.5	3_	.151	12	0	1_	0	1	0	1	012	2
303		19		3422.807	1_	2.388	2	0	1_	0	1	0	1	0	12
304	N 4-7	4		-3588.189	3	.148	12	0	1_	0	1_	0	1	012	2
305	<u>M7</u>	1		1670.416	2	9.139	4	0	1	0	1	0	1	.012	2
306		2	min	-1796.892	3	2.144	<u>15</u>	0	1	0	1	0	1	0	12
307		2		1670.246	2	8.264	15	0	1	0	1	0	1	.009	3
308		3		-1797.02 1670.076	<u>3</u> 2	1.939 7.39	<u>15</u>	0	<u>1</u> 1	0	<u>1</u> 1	0	1	001 .006	2
310		3		-1797.148	3	1.733	15	0	1	0	1	0	1	003	3
311		4		1669.905	2	6.515	4	0	1	0	1	0	1	.003	2
		_ +	πιαλ	1000.000		0.010		U		U		U	1	.005	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1797.276	3	1.528	15	0	1	0	1	0	1	005	3
313		5	max	1669.735	2	5.641	4	0	1	0	_1_	0	_1_	0	2
314			min	-1797.403	3	1.322	15	0	1	0	1	0	1	006	3
315		6	max	1669.565	2	4.766	4	0	1	0	1	0	1	001	15
316			min	-1797.531	3	1.117	15	0	1	0	1	0	1	007	3
317		7	max		2	3.892	4	0	1	0	_1_	0	1	002	15
318			min	-1797.659	3	.911	15	0	1	0	1	0	1	008	3
319		8		1669.224	2	3.017	4	0	1	0	1	0	1	002	15
320			min	-1797.787	3	.706	15	0	1	0	1	0	1	009	4
321		9		1669.054	2	2.143	4	0	1	0	_1_	0	1	002	15
322			min	-1797.914	3	.446	12	0	1	0	1	0	1	011	4
323		10		1668.883	2	1.451	2	0	1	0	1	0	1	003	15
324			min	-1798.042	3	.106	12	0	1	0	1	0	1	011	4
325		11		1668.713	2	.769	2	0	1	0	1	0	1	003	15
326			min	-1798.17	3	39	3	0	1	0	1	0	1	012	4
327		12	max		2	.088	2	0	1	0	1	0	1	003	15
328			min	-1798.298	3	901	3	0	1	0	1	0	1	012	4
329		13		1668.372	2	322	15	0	1	0	1	0	1	003	15
330			min	-1798.425	3	-1.412	3	0	1	0	1	0	1	011	4
331		14		1668.202	2	528	15	0	1	0	_1_	0	1	002	15
332			min	-1798.553	3	-2.229	4	0	1	0	1	0	1	01	4
333		15		1668.032	2	733	15	0	1	0	1	0	1	002	15
334			min	-1798.681	3	-3.104	4	0	1	0	1	0	1	009	4
335		16	max	1667.861	2	939	15	0	1	0	1	0	1	002	15
336			min	-1798.809	3	-3.978	4	0	1	0	1	0	1	008	4
337		17	max		2	-1.144	15	0	1	0	_1_	0	1	001	15
338			min	-1798.936	3	-4.853	4	0	1	0	1	0	1	005	4
339		18	max	1667.52	2	-1.35	15	0	1	0	1	0	1	0	15
340			min	-1799.064	3	-5.727	4	0	1	0	1	0	1	003	4
341		19	max	1667.35	2	-1.555	15	0	1	0	_1_	0	1	0	1
342			min	-1799.192	3	-6.601	4	0	1	0	1	0	1	0	1
343	<u>M8</u>	1		3250.043	_1_	0	1_	0	1_	0	1	0	1_	0	1
344			min	-718.006	3_	0	1	0	1	0	1	0	1	0	1
345		2		3250.213	_1_	0	1_	0	1	0	1	0	1	0	1
346			min	-717.878	3	0	1	0	1	0	1	0	1	0	1
347		3		3250.383	1	0	1	0	1	0	1	0	1	0	1
348			min	-717.75	3_	0	1	0	1	0	1	0	1	0	1
349		4	max		1_	0	1	0	1	0	1	0	1	0	1
350		<u> </u>	min	-717.623	3	0	1	0	1	0	1	0	1	0	1
351		5		3250.724	1_	0	1	0	1	0	1	0	1	0	1
352				-717.495	3	0	1	0	1	0	1	0	1	0	1
353		6		3250.894	1_	0	1	0	1	0	1	0	1	0	1
354		-	min		3	0	1	0	1	0	1	0	1_	0	1
355		7		3251.065	1_	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		3251.235	1_	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1_	0	1
359		9		3251.405	1_	0	1	0	1	0	1	0	1	0	1
360		40		-716.984	3	0	1	0	1	0	1	0	1	0	1
361		10		3251.576	1	0	1	0	1	0	1	0	1	0	1
362		4.4		-716.856	3	0	1	0	1	0	1	0	1	0	1
363		11		3251.746	1	0	1	0	1	0	1	0	1	0	1
364		10	min		3_	0	1	0	1	0	1	0	1	0	1
365		12		3251.916	1	0	1	0	1	0	1	0	1	0	1
366		40		-716.601	3	0	1	0	1	0	1	0	1	0	1
367		13		3252.087	1_	0	1	0	1	0	1	0	1	0	1
368			min	-716.473	3	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

000	Member	Sec	I	Axial[lb]						Torque[k-ft]	LC	11 1	LC		LC
369		14		3252.257	1	0	1	0	1	0	1	0	1	0	1
370 371		15	min	-716.345 3252.428	<u>3</u>	0	1	0	1	0	<u>1</u> 1	0	1	0	1
372		13		-716.217	3	0	1	0	1	0	1	0	1	0	1
373		16		3252.598	<u> </u>	0	1	0	1	0	1	0	1	0	1
374		10	min		3	0	1	0	1	0	1	0	1	0	1
375		17		3252.768	1	0	1	0	1	0	1	0	1	0	1
376				-715.962	3	0	1	0	1	0	1	0	1	0	1
377		18		3252.939	1	0	1	0	1	0	1	0	1	0	1
378				-715.834	3	0	1	0	1	0	1	0	1	0	1
379		19		3253.109	1	0	1	Ö	1	Ö	1	0	1	0	1
380			min	-715.706	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1100.812	1	2.157	4	029	15	0	1	0	1	0	1
382			min	-1129.603	3	.507	15	796	1	0	3	0	3	0	1
383		2	max	1101.228	1	2.148	4	029	15	0	1	0	15	0	15
384			min	-1129.291	3	.505	15	796	1	0	3	0	1	0	4
385		3	max	1101.644	1_	2.139	4	029	15	0	1	0	15	0	15
386			min	-1128.979	3	.503	15	796	1	0	3	0	1	001	4
387		4		1102.06	1_	2.13	4	029	15	0	_1_	0	15	0	15
388			min	-1128.667	3	.501	15	796	1	0	3	0	1	002	4
389		5		1102.475	_1_	2.122	4	029	15	0	_1_	0	15	0	15
390			min	-1128.355	3	.499	15	796	1	0	3	0	1	002	4
391		6		1102.891	_1_	2.113	4	029	15	0	1	0	15	0	15
392		_	min	-1128.043	3	.497	15	796	1_	0	3	001	1_	003	4
393		7		1103.307	1_	2.104	4	029	15	0	1	0	15	0	15
394			min	-1127.731	3	.495	15	796	1_	0	3	001	1_	004	4
395		8		1103.723	1_	2.096	4	029	15	0	1	0	15	0	15
396			min		3	.493	15	796	1_	0	3	002	1_	004	4
397		9		1104.139	1	2.087	4	029	15	0	1	0	15	001	15
398 399		10	min	1104.555	<u>3</u>	.491 2.078	1 <u>5</u>	796 029	<u>1</u> 15	0	<u>3</u> 1	002 0	1 15	005 001	15
400		10	min	-1126.796	3	.489	15	796	1	0	3	002	1	005	4
401		11		1104.971	1	2.069	4	029	15	0	1	0	15	003	15
402				-1126.484	3	.487	15	796	1	0	3	002	1	006	4
403		12		1105.387	1	2.061	4	029	15	0	1	0	15	002	15
404		12	min	-1126.172	3	.485	15	796	1	0	3	002	1	007	4
405		13		1105.802	1	2.052	4	029	15	0	1	0	15	002	15
406				-1125.86	3	.482	15	796	1	0	3	003	1	007	4
407		14		1106.218	1	2.043	4	029	15	0	1	0	15	002	15
408				-1125.548	3	.48	15	796	1	0	3	003	1	008	4
409		15		1106.634	1	2.035	4	029	15	0	1	0	15	002	15
410			min	-1125.236	3	.478	15	796	1	0	3	003	1	008	4
411		16		1107.05	1	2.026	4	029	15	0	1	0	15	002	15
412				-1124.924	3	.476	15	796	1	0	3	003	1	009	4
413		17		1107.466	1_	2.017	4	029	15	0	1	0	15	002	15
414				-1124.612	3	.474	15	796	1	0	3	004	1	009	4
415		18		1107.882	<u>1</u>	2.008	4	029	15	0	<u>1</u>	0	15	002	15
416				-1124.3	3	.472	15	796	1	0	3	004	1	01	4
417		19		1108.298	_1_	2	4	029	15	0	1	0	15	002	15
418			min	-1123.988	3	.47	15	796	1_	0	3	004	1_	01	4
419	<u>M11</u>	1		458.376	2	9.101	4	007	15	0	1	0	15	.01	4
420			min	-591.214	3	2.139	15	188	1_	0	3	0	1_	.002	15
421		2		458.206	2	8.226	4	007	15	0	1	0	15	.006	4
422				-591.341	3	1.934	15	188	1_	0	3	0	1_	.002	15
423		3		458.036	2	7.352	4	007	15	0	1	0	15	.003	2
424				-591.469	3	1.728	15	188	1_	0	3	0	1 1 5	0	3
425		4	max	457.865	2	6.477	4	007	15	0	_1_	0	15	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
426			min	-591.597	3	1.523	15	188	1	0	3	0	1	002	3
427		5	max	457.695	2	5.603	4	007	15	0	1	0	15	0	15
428			min	-591.725	3	1.317	15	188	1	0	3	0	1	003	4
429		6	max	457.525	2	4.728	4	007	15	0	1	0	15	001	15
430			min	-591.852	3	1.112	15	188	1	0	3	0	1	006	4
431		7	max	457.354	2	3.854	4	007	15	0	1	0	15	002	15
432			min	-591.98	3	.906	15	188	1	0	3	0	1	008	4
433		8	max	457.184	2	2.98	4	007	15	0	1	0	15	002	15
434			min	-592.108	3	.7	15	188	1	0	3	0	1	01	4
435		9	max	457.014	2	2.105	4	007	15	0	1	0	15	003	15
436			min	-592.236	3	.495	15	188	1	0	3	0	1	011	4
437		10	max		2	1.231	4	007	15	0	_1_	0	15	003	15
438			min	-592.363	3	.289	15	188	1	0	3	0	1	012	4
439		11	max	456.673	2	.418	2	007	15	0	1	0	15	003	15
440			min	-592.491	3	.014	3	188	1	0	3	0	1	012	4
441		12	max	456.503	2	122	15	007	15	0	1	0	15	003	15
442			min	-592.619	3	518	4	188	1	0	3	001	1	012	4
443		13	max	456.332	2	327	15	007	15	0	1	0	15	003	15
444			min	-592.747	3	-1.393	4	188	1	0	3	001	1	011	4
445		14	max	456.162	2	533	15	007	15	0	1	0	15	002	15
446			min	-592.874	3	-2.267	4	188	1	0	3	001	1	011	4
447		15	max		2	738	15	007	15	0	_1_	0	15	002	15
448			min	-593.002	3	-3.142	4	188	1	0	3	001	1	009	4
449		16	max	455.821	2	944	15	007	15	0	1	0	15	002	15
450			min	-593.13	3	-4.016	4	188	1	0	3	001	1	008	4
451		17	max	455.651	2	-1.15	15	007	15	0	1	0	15	001	15
452			min	-593.258	3	-4.89	4	188	1	0	3	001	1	005	4
453		18	max	455.481	2	-1.355	15	007	15	0	1	0	15	0	15
454			min	-593.385	3	-5.765	4	188	1	0	3	002	1	003	4
455		19	max	455.31	2	-1.561	15	007	15	0	1	0	15	0	1
456			min	-593.513	3	-6.639	4	188	1	0	3	002	1	0	1
457	M12	1_	max	1168.75	1	0	1	11.217	1	0	1	0	15	0	1
458			min	-207.525	3	0	1	.402	15	0	1	0	1	0	1
459		2		1168.921	1	0	1	11.217	1	0	_1_	0	1_	0	1
460			min	-207.398	3	0	1	.402	15	0	1	0	12	0	1
461		3	max	1169.091	1	0	1	11.217	1	0	1	.002	1	0	1
462			min	-207.27	3	0	1	.402	15	0	1	0	15	0	1
463		4		1169.261	1	0	1	11.217	1	0	1	.003	1	0	1
464			min	-207.142	3	0	1	.402	15	0	1	0	15	0	1
465		5		1169.432	1_	0	1_	11.217	1	0	1	.004	1_	0	1
466				-207.014		0	1	.402	15	0	1	0	15	0	1
467		6		1169.602	1	0	1	11.217	1	0	1	.005	1	0	1
468			min			0	1_	.402	15	0	1	0	15	0	1
469		7		1169.772	1	0	1	11.217	1	0	1	.007	1	0	1
470		_	min	-206.759	3	0	1	.402	15	0	1	0	15	0	1
471		8		1169.943	1	0	1	11.217	1	0	1	.008	1	0	1
472				-206.631		0	1	.402	15	0	1	0	15	0	1
473		9		1170.113	1	0	1	11.217	1	0	1	.009	1	0	1
474			min	-206.503	3	0	1	.402	15	0	1	0	15	0	1
475		10		1170.283	1	0	1	11.217	1	0	1	.011	1	0	1
476			min		3	0	1	.402	15	0	1	0	15	0	1
477		11		1170.454	1	0	1	11.217	1	0	1_	.012	1	0	1
478				-206.248		0	1_	.402	15	0	1	0	15	0	1
479		12		1170.624	1	0	1	11.217	1	0	1	.013	1	0	1
480			min	-206.12	3	0	1	.402	15	0	1	0	15	0	1
481		13		1170.794	1	0	1	11.217	1	0	1	.014	1	0	1
482			min	-205.992	3	0	1	.402	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

100	Member	Sec		Axial[lb]						Torque[k-ft]			l .	_	
483		14		1170.965	1_	0	1_	11.217	1	0	1	.016	1	0	1
484		4.5	min	-205.865	3	0	1_	.402	15	0	1	0	15	0	1
485		15		1171.135	1_	0	1_	11.217	1_1	0	1	.017	1_	0	1
486		40		-205.737	3	0	1_	.402	15	0	1	0	15	0	1
487		16		1171.305	1_	0	1_	11.217	1_1	0	1	.018	1	0	1
488		47		-205.609	3	0	1_	.402	15	0	1	0	15	0	1
489		17		1171.476	1_	0	1_	11.217	1	0	1	.02	1	0	1
490		40	min	-205.481	3	0	1_	.402	15	0	1_	0	15	0	1
491		18		1171.646	_1_	0	_1_	11.217	1_	0	1	.021	1_	0	1
492		4.0	min	-205.354	3	0	1	.402	15	0	1	0	15	0	1
493		19		1171.816	_1_	0	_1_	11.217	1	0	1_	.022	1	0	1
494			min	-205.226	3	0	1_	.402	15	0	1_	0	15	0	1
495	<u>M1</u>	1	max	158.758	_1_	613.246	3	-2.435	15	0	_1_	.188	1_	0	15
496			min	5.675	15	-471.334	1_	-67.419	1	0	3	.007	15	014	2
497		2	max	159.334	_1_	612.058	3_	-2.435	15	0	_1_	.147	1_	.279	1
498			min	5.849	15	-472.917	1_	-67.419	1_	0	3	.005	15	383	3
499		3	max	380.783	3_	561.378	_1_	-2.407	15	0	3	.105	1	.562	1
500			min	-250.684	2	-459.519	3	-66.839	1	0	1	.004	15	751	3
501		4	max	381.215	3	559.795	1	-2.407	15	0	3	.063	1	.214	1
502			min	-250.108	2	-460.707	3	-66.839	1	0	1	.002	15	465	3
503		5	max	381.647	3	558.212	1	-2.407	15	0	3	.022	1	005	15
504			min	-249.532	2	-461.894	3	-66.839	1	0	1	0	15	179	3
505		6	max	382.079	3	556.629	1	-2.407	15	0	3	0	15	.108	3
506			min	-248.955	2	-463.081	3	-66.839	1	0	1	02	1	479	1
507		7	max	382.511	3	555.046	1	-2.407	15	0	3	002	15	.396	3
508			min	-248.379	2	-464.269	3	-66.839	1	0	1	061	1	824	1
509		8	max	382.944	3	553.462	1	-2.407	15	0	3	004	15	.685	3
510			min	-247.803	2	-465.456	3	-66.839	1	0	1	103	1	-1.168	1
511		9	max	393.999	3	39.948	2	-3.873	15	0	9	.066	1	.8	3
512			min	-183.139	2	.482	15	-107.487	1	0	3	.002	15	-1.329	1
513		10	max	394.432	3	38.365	2	-3.873	15	0	9	0	15	.781	3
514			min	-182.563	2	.004	15	-107.487	1	0	3	001	1	-1.343	1
515		11	max	394.864	3	36.782	2	-3.873	15	0	9	002	15	.762	3
516				-181.987	2	-1.93	4	-107.487	1	0	3	068	1	-1.355	1
517		12	max	405.781	3	306.241	3	-2.315	15	0	1	.101	1	.666	3
518		- '-		-117.279	2	-596.854	1	-64.472	1	0	3	.004	15	-1.198	1
519		13	max	406.213	3	305.054	3	-2.315	15	0	1	.061	1	.477	3
520			min	-116.702	2	-598.437	1	-64.472	1	0	3	.002	15	827	1
521		14	max		3	303.867	3	-2.315	15	0	1	.021	1	.288	3
522		17		-116.126	2	-600.02	1	-64.472	1	0	3	0	15	455	1
523		15		407.078	3	302.679	3	-2.315	15	0	1	0	15	.099	3
524		10	min	-115.55	2	-601.604	1	-64.472	1	0	3	019	1	082	1
525		16	max		3	301.492	3	-2.315	15	0	1	002	15	.315	2
526		'		-114.974	2	-603.187	1	-64.472	1	0	3	059	1	088	3
527		17		407.942	3	300.305	3	-2.315	15	0	1	004	15	.679	2
528		'		-114.398	2	-604.77	1	-64.472	1	0	3	099	1	275	3
529		18	max		15	564.365	2	-2.71	15	0	3	005	15	.34	2
530		10		-5.802 -159.809	1	-234.939	3	-2.71 -75.17	1	0	2	144	1	135	3
		10						-2.71	15	0		007	15		
531		19		-5.688 150.222	<u>15</u>	562.781	2		15		3		1	.011 012	3
532	NAE	4		-159.233	1_1	-236.126	3	-75.17	1	0	2	191	_		_
533	<u>M5</u>	1		352.997	1	2036.073	3	0	-	0	1	0	1	.028	2
534		_	min	10.734	12	-1621.451	1	0	1	0	1_	0	1	0	15
535		2	max		1_	2034.885	3	0	1_	0	1	0	1	1.035	1
536				11.022	12	-1623.035	1_	0	1	0	1_	0	1	-1.258	3
537		3		1189.099	3	1568.54	1	0	1_	0	1_	0	1	2.008	1
538				-831.078	2	-1386.765	3	0	1	0	1	0	1	-2.483	3
539		4	max	1189.531	3	1566.956	_1_	0	1	0	1_	0	1	1.035	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

640		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
542								3		1		1	0	1		-
644			5	max				_	_							_
544																
546			6													
See																_
S48			7					-	_			_				
FASE												-				_
559			8													
550										-		-	-			
551			9						The state of the s							
552																_
553			10						_							
555																
555			11									1		1_		
556				min		2		_	0	1	0	1	0	1		_
557			12	max				3	_			1	0	1_		
558												-		1	-2.954	
S59			13	max		3										
560						2			0	1	0	1	0	1		
The color of the			14					3	0	1	0	1	0	1_		
562						2		1	0	1	0	1	0	1		_
563 16 max 1225.321 3 885.427 3 0 1 0 1 0.1 1.326 2 564 min -552.094 2 -1709.768 1 0 1 0 1 -482 3 565 17 max 1225.754 3 884.24 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2.366 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <td< td=""><td></td><td></td><td>15</td><td>max</td><td>1224.889</td><td>3</td><td></td><td>3</td><td>0</td><td>1_</td><td>0</td><td>1</td><td>0</td><td>1</td><td>.293</td><td></td></td<>			15	max	1224.889	3		3	0	1_	0	1	0	1	.293	
564 min -552.094 2 -1709.768 1 0 1 0 1 -0 1 -482 3 565 17 main 1-252.754 3 884.24 3 0 1 0 1 0 1 2.366 2 566 min -551.518 2 -1711.351 1 0 1 0 1 0.1 1 1.031 3 567 18 max -11.565 12 1917.506 2 0 1 0 1 0.1 1.203 1 0 1 0 1 1.203 1 0 1 0 1 0 1 0.0 1 0.01 0 1 0.02 1 0.0 1 0.0 1 0.02 1 0 1 0.0 1 0.22 3 1 6.149 1 0 3 0.007 15 0 1						2		•	0	1	0	1	0	1	_	
566 17 max 1225.754 3 884.24 3 0 1 0 1 0 1 2.36 2 567 18 max -11.565 12 1917.506 2 0 1 0 1 0 1 0.0 1	563		16	max	1225.321	3	885.427	3	0	1	0	1	0	1	1.326	2
566	564			min		2	-1709.768	1	0	1	0	1	0	1	482	3
Table Tabl	565		17	max	1225.754	3	884.24	3	0	1	0	1	0	1	2.36	2
See	566			min	-551.518	2	-1711.351	1	0	1	0	1	0	1	-1.031	3
19	567		18	max	-11.565	12	1917.506	2	0	1	0	1	0	1	1.208	2
570 min -352.048 1 -829.3 3 0 1 0 1 022 3 571 M9 1 max 158.758 1 613.246 3 67.419 1 0 3 007 15 0 15 573 2 max 159.334 1 612.058 3 67.419 1 0 3 005 15 .279 1 574 min 5.849 15 -472.917 1 2.435 15 0 1 147 1 383 3 575 3 min -250.684 2 -459.519 3 2.407 15 0 3 105 1 751 3 576 min -250.108 2 -460.707 3 2.407 15 0 3 105 1 751 3 577 4 max 381.215 3 55	568			min	-352.624	1	-828.112	3	0	1	0	1	0	1	536	3
571 M9 1 max 158.758 1 613.246 3 67.419 1 0 3 007 15 0 15 572 min 5.675 15 -471.334 1 2.435 15 0 1 188 1 014 2 573 2 max 159.334 1 612.058 3 67.419 1 0 3 005 15 .279 1 574 min 5.849 15 -472.917 1 2.435 15 0 1 147 1 383 3 575 3 max 380.783 3 561.378 1 66.839 1 0 1 004 15 .562 1 576 min -250.088 2 -469.707 3 2.407 15 0 3 063 1 465 3 577 4 max 3	569		19	max	-11.276	12	1915.923	2	0	1	0	1	0	1	.023	1
572 min 5.675 15 -471.334 1 2.435 15 0 1 188 1 014 2 573 2 max 159.334 1 612.058 3 67.419 1 0 3 005 15 .279 1 574 min 5.849 15 -472.917 1 2.435 15 0 1 147 1 383 3 575 3 max 380.783 3 561.378 1 66.839 1 0 1 147 1 383 3 576 min -250.684 2 -459.519 3 2.407 15 0 3 105 1 751 3 577 4 max 381.215 3 559.795 1 66.839 1 0 1 -0.02 15 .214 1 578 min -249.532 2	570			min	-352.048	1	-829.3	3	0	1	0	1	0	1	022	3
573 2 max 159.334 1 612.058 3 67.419 1 0 3 005 15 .279 1 574 min 5.849 15 -472.917 1 2.435 15 0 1 147 1 383 3 575 3 max 380.783 3 561.378 1 66.839 1 0 1 004 15 .562 1 576 min -250.684 2 -459.519 3 2.407 15 0 3 -105 1 751 3 577 4 max 381.215 3 559.795 1 66.839 1 0 1 002 15 .214 1 578 5 max 381.647 3 558.212 1 66.839 1 0 1 0 15 005 15 580 min -249.532	571	M9	1	max	158.758	1	613.246	3	67.419	1	0	3	007	15	0	15
574 min 5.849 15 -472.917 1 2.435 15 0 1 147 1 383 3 575 3 max 380.783 3 561.378 1 66.839 1 0 1 004 15 .562 1 576 min -250.684 2 -459.519 3 2.407 15 0 3 105 1 751 3 577 4 max 381.215 3 559.795 1 66.839 1 0 1 002 15 .214 1 578 min -250.108 2 -460.707 3 2.407 15 0 3 063 1 465 3 579 5 max 381.647 3 558.212 1 66.839 1 0 1 0 15 005 15 580 min -249.532 2	572			min	5.675	15	-471.334	1	2.435	15	0	1	188	1	014	2
575 3 max 380.783 3 561.378 1 66.839 1 0 1 004 15 .562 1 576 min -250.684 2 -459.519 3 2.407 15 0 3 105 1 751 3 577 4 max 381.215 3 559.795 1 66.839 1 0 1 002 15 .214 1 578 min -250.108 2 -460.707 3 2.407 15 0 3 063 1 465 3 579 5 max 381.647 3 558.212 1 66.839 1 0 1 0 15 005 15 580 min -249.532 2 -461.894 3 2.407 15 0 3 022 1 179 3 581 6 max 382.079	573		2	max		1	612.058	3	67.419	1	0	3	005	15	.279	1
576 min -250.684 2 -459.519 3 2.407 15 0 3 105 1 751 3 577 4 max 381.215 3 559.795 1 66.839 1 0 1 002 15 .214 1 578 min -250.108 2 -460.707 3 2.407 15 0 3 063 1 465 3 579 5 max 381.647 3 558.212 1 66.839 1 0 1 0 15 005 15 580 min -249.532 2 -461.894 3 2.407 15 0 3 -022 1 179 3 581 6 max 382.079 3 556.629 1 66.839 1 0 1 .02 1 .108 3 582 min -248.955 2	574			min	5.849	15	-472.917	1	2.435	15	0	1	147	1	383	3
577 4 max 381.215 3 559.795 1 66.839 1 0 1 002 15 .214 1 578 min -250.108 2 -460.707 3 2.407 15 0 3 063 1 465 3 579 5 max 381.647 3 558.212 1 66.839 1 0 1 0 15 005 15 580 min -249.532 2 -461.894 3 2.407 15 0 3 022 1 179 3 581 6 max 382.079 3 556.629 1 66.839 1 0 1 .02 1 .108 3 582 min -248.955 2 -463.081 3 2.407 15 0 3 0 15 -479 1 583 7 max 382.511 <th< td=""><td>575</td><td></td><td>3</td><td>max</td><td>380.783</td><td>3</td><td>561.378</td><td>1</td><td>66.839</td><td>1</td><td>0</td><td>1</td><td>004</td><td>15</td><td>.562</td><td>1</td></th<>	575		3	max	380.783	3	561.378	1	66.839	1	0	1	004	15	.562	1
578 min -250.108 2 -460.707 3 2.407 15 0 3 063 1 465 3 579 5 max 381.647 3 558.212 1 66.839 1 0 1 0 15 005 15 580 min -249.532 2 -461.894 3 2.407 15 0 3 022 1 179 3 581 6 max 382.079 3 556.629 1 66.839 1 0 1 .02 1 .108 3 582 min -248.955 2 -463.081 3 2.407 15 0 3 0 15 479 1 583 7 max 382.511 3 555.046 1 66.839 1 0 1 .061 1 .396 3 584 min -247.803 2 <td< td=""><td>576</td><td></td><td></td><td>min</td><td>-250.684</td><td>2</td><td>-459.519</td><td>3</td><td>2.407</td><td>15</td><td>0</td><td>3</td><td>105</td><td>1</td><td>751</td><td>3</td></td<>	576			min	-250.684	2	-459.519	3	2.407	15	0	3	105	1	751	3
579 5 max 381.647 3 558.212 1 66.839 1 0 1 0 15 005 15 580 min -249.532 2 -461.894 3 2.407 15 0 3 022 1 179 3 581 6 max 382.079 3 556.629 1 66.839 1 0 1 .02 1 .108 3 582 min -248.955 2 -463.081 3 2.407 15 0 3 0 15 -479 1 583 7 max 382.511 3 555.046 1 66.839 1 0 1 .061 1 .396 3 584 min -248.379 2 -464.269 3 2.407 15 0 3 .002 15 -824 1 585 8 max 382.944 3<	577		4	max	381.215	3	559.795	1	66.839	1	0	1	002	15	.214	1
580 min -249.532 2 -461.894 3 2.407 15 0 3 022 1 179 3 581 6 max 382.079 3 556.629 1 66.839 1 0 1 .02 1 .108 3 582 min -248.955 2 -463.081 3 2.407 15 0 3 0 15 479 1 583 7 max 382.511 3 555.046 1 66.839 1 0 1 .061 1 .396 3 584 min -248.379 2 -464.269 3 2.407 15 0 3 .002 15 -824 1 585 8 max 382.944 3 553.462 1 66.839 1 0 1 .103 1 .685 3 586 min -247.803 2	578			min	-250.108	2	-460.707	3	2.407	15	0	3	063	1	465	3
581 6 max 382.079 3 556.629 1 66.839 1 0 1 .02 1 .108 3 582 min -248.955 2 -463.081 3 2.407 15 0 3 0 15 479 1 583 7 max 382.511 3 555.046 1 66.839 1 0 1 .061 1 .396 3 584 min -248.379 2 -464.269 3 2.407 15 0 3 .002 15 824 1 585 8 max 382.944 3 553.462 1 66.839 1 0 1 .103 1 .685 3 586 min -247.803 2 -465.456 3 2.407 15 0 3 .004 15 -1.168 1 587 9 max 393.999 <th< td=""><td>579</td><td></td><td>5</td><td>max</td><td>381.647</td><td>3</td><td>558.212</td><td>1</td><td>66.839</td><td>1</td><td>0</td><td>1</td><td>0</td><td>15</td><td>005</td><td>15</td></th<>	579		5	max	381.647	3	558.212	1	66.839	1	0	1	0	15	005	15
582 min -248.955 2 -463.081 3 2.407 15 0 3 0 15 479 1 583 7 max 382.511 3 555.046 1 66.839 1 0 1 .061 1 .396 3 584 min -248.379 2 -464.269 3 2.407 15 0 3 .002 15 824 1 585 8 max 382.944 3 553.462 1 66.839 1 0 1 .103 1 .685 3 586 min -247.803 2 -465.456 3 2.407 15 0 3 .004 15 -1.168 1 587 9 max 393.999 3 39.948 2 107.487 1 0 3 .004 15 .168 1 588 min -183.139 2	580			min	-249.532	2	-461.894	3	2.407	15	0	3	022	1	179	3
583 7 max 382.511 3 555.046 1 66.839 1 0 1 .061 1 .396 3 584 min -248.379 2 -464.269 3 2.407 15 0 3 .002 15 824 1 585 8 max 382.944 3 553.462 1 66.839 1 0 1 .103 1 .685 3 586 min -247.803 2 -465.456 3 2.407 15 0 3 .004 15 -1.168 1 587 9 max 393.999 3 39.948 2 107.487 1 0 3 002 15 .8 3 588 min -183.139 2 .482 15 3.873 15 0 9 066 1 -1.329 1 589 10 max 394.432	581		6	max	382.079	3	556.629	1	66.839	1	0	1	.02	1	.108	3
583 7 max 382.511 3 555.046 1 66.839 1 0 1 .061 1 .396 3 584 min -248.379 2 -464.269 3 2.407 15 0 3 .002 15 824 1 585 8 max 382.944 3 553.462 1 66.839 1 0 1 .103 1 .685 3 586 min -247.803 2 -465.456 3 2.407 15 0 3 .004 15 -1.168 1 587 9 max 393.999 3 39.948 2 107.487 1 0 3 002 15 .8 3 588 min -183.139 2 .482 15 3.873 15 0 9 066 1 -1.329 1 589 10 max 394.432				min		2	-463.081	3	2.407	15	0	3	0	15	479	1
584 min -248.379 2 -464.269 3 2.407 15 0 3 .002 15 824 1 585 8 max 382.944 3 553.462 1 66.839 1 0 1 .103 1 .685 3 586 min -247.803 2 -465.456 3 2.407 15 0 3 .004 15 -1.168 1 587 9 max 393.999 3 39.948 2 107.487 1 0 3 002 15 .8 3 588 min -183.139 2 .482 15 3.873 15 0 9 066 1 -1.329 1 589 10 max 394.432 3 38.365 2 107.487 1 0 3 .001 1 .781 3 590 min -182.563 2	583		7	max	382.511	3	555.046	1	66.839	1	0	1	.061	1	.396	3
585 8 max 382.944 3 553.462 1 66.839 1 0 1 .103 1 .685 3 586 min -247.803 2 -465.456 3 2.407 15 0 3 .004 15 -1.168 1 587 9 max 393.999 3 39.948 2 107.487 1 0 3 002 15 .8 3 588 min -183.139 2 .482 15 3.873 15 0 9 066 1 -1.329 1 589 10 max 394.432 3 38.365 2 107.487 1 0 3 .001 1 .781 3 590 min -182.563 2 .004 15 3.873 15 0 9 0 15 -1.343 1 591 11 max 394.864 3 36.782 2 107.48								3		15	0	3		15		
587 9 max 393.999 3 39.948 2 107.487 1 0 3002 15 .8 3 588 min -183.139 2 .482 15 3.873 15 0 9066 1 -1.329 1 589 10 max 394.432 3 38.365 2 107.487 1 0 3 .001 1 .781 3 590 min -182.563 2 .004 15 3.873 15 0 9 0 15 -1.343 1 591 11 max 394.864 3 36.782 2 107.487 1 0 3 .068 1 .762 3 592 min -181.987 2 -1.93 4 3.873 15 0 9 .002 9 .002 15 -1.355 1 593 12 max 405.781 3 306.241 3 64.472 1 0 3004 15 .666 3 594 min -117.279 2 -596.854 1 2.315 15 0 1101 1101 1 -1.198 1 595 13 max 406.213 3 305.054 3 64.472 1 0 3002 15 .477 3	585		8	max	382.944	3		1	66.839	1	0	1	.103	1	.685	3
587 9 max 393.999 3 39.948 2 107.487 1 0 3002 15 .8 3 588 min -183.139 2 .482 15 3.873 15 0 9066 1 -1.329 1 589 10 max 394.432 3 38.365 2 107.487 1 0 3 .001 1 .781 3 590 min -182.563 2 .004 15 3.873 15 0 9 0 15 -1.343 1 591 11 max 394.864 3 36.782 2 107.487 1 0 3 .068 1 .762 3 592 min -181.987 2 -1.93 4 3.873 15 0 9 .002 9 .002 15 -1.355 1 593 12 max 405.781 3 306.241 3 64.472 1 0 3004 15 .666 3 594 min -117.279 2 -596.854 1 2.315 15 0 1101 1101 1 -1.198 1 595 13 max 406.213 3 305.054 3 64.472 1 0 3002 15 .477 3	586			min	-247.803	2	-465.456	3	2.407	15	0	3	.004	15	-1.168	1
588 min -183.139 2 .482 15 3.873 15 0 9 066 1 -1.329 1 589 10 max 394.432 3 38.365 2 107.487 1 0 3 .001 1 .781 3 590 min -182.563 2 .004 15 3.873 15 0 9 0 15 -1.343 1 591 11 max 394.864 3 36.782 2 107.487 1 0 3 .068 1 .762 3 592 min -181.987 2 -1.93 4 3.873 15 0 9 .002 15 -1.355 1 593 12 max 405.781 3 306.241 3 64.472 1 0 3 004 15 .666 3 594 min -117.279 2 <td< td=""><td></td><td></td><td>9</td><td>max</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td></td<>			9	max												3
589 10 max 394.432 3 38.365 2 107.487 1 0 3 .001 1 .781 3 590 min -182.563 2 .004 15 3.873 15 0 9 0 15 -1.343 1 591 11 max 394.864 3 36.782 2 107.487 1 0 3 .068 1 .762 3 592 min -181.987 2 -1.93 4 3.873 15 0 9 .002 15 -1.355 1 593 12 max 405.781 3 306.241 3 64.472 1 0 3 004 15 .666 3 594 min -117.279 2 -596.854 1 2.315 15 0 1 101 1 -1.198 1 595 13 max 406.213																
590 min -182.563 2 .004 15 3.873 15 0 9 0 15 -1.343 1 591 11 max 394.864 3 36.782 2 107.487 1 0 3 .068 1 .762 3 592 min -181.987 2 -1.93 4 3.873 15 0 9 .002 15 -1.355 1 593 12 max 405.781 3 306.241 3 64.472 1 0 3 004 15 .666 3 594 min -117.279 2 -596.854 1 2.315 15 0 1 101 1 -1.198 1 595 13 max 406.213 3 305.054 3 64.472 1 0 3 002 15 .477 3			10											1		3
591 11 max 394.864 3 36.782 2 107.487 1 0 3 .068 1 .762 3 592 min -181.987 2 -1.93 4 3.873 15 0 9 .002 15 -1.355 1 593 12 max 405.781 3 306.241 3 64.472 1 0 3 004 15 .666 3 594 min -117.279 2 -596.854 1 2.315 15 0 1 101 1 -1.198 1 595 13 max 406.213 3 305.054 3 64.472 1 0 3 002 15 .477 3														15		
592 min -181.987 2 -1.93 4 3.873 15 0 9 .002 15 -1.355 1 593 12 max 405.781 3 306.241 3 64.472 1 0 3 004 15 .666 3 594 min -117.279 2 -596.854 1 2.315 15 0 1 101 1 -1.198 1 595 13 max 406.213 3 305.054 3 64.472 1 0 3 002 15 .477 3			11													3
593 12 max 405.781 3 306.241 3 64.472 1 0 3 004 15 .666 3 594 min -117.279 2 -596.854 1 2.315 15 0 1 101 1 -1.198 1 595 13 max 406.213 3 305.054 3 64.472 1 0 3 002 15 .477 3																
594 min -117.279 2 -596.854 1 2.315 15 0 1 101 1 -1.198 1 595 13 max 406.213 3 305.054 3 64.472 1 0 3 002 15 .477 3			12													_
595 13 max 406.213 3 305.054 3 64.472 1 0 3002 15 .477 3																
			13					_						_		_
										_						

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	406.646	3	303.867	3	64.472	1	0	3	0	15	.288	3
598			min	-116.126	2	-600.02	1	2.315	15	0	1	021	1	455	1
599		15	max	407.078	3	302.679	3	64.472	1	0	3	.019	1	.099	3
600			min	-115.55	2	-601.604	1	2.315	15	0	1	0	15	082	1
601		16	max	407.51	3	301.492	3	64.472	1	0	3	.059	1	.315	2
602			min	-114.974	2	-603.187	1	2.315	15	0	1	.002	15	088	3
603		17	max	407.942	3	300.305	3	64.472	1	0	3	.099	1	.679	2
604			min	-114.398	2	-604.77	1	2.315	15	0	1	.004	15	275	3
605		18	max	-5.862	15	564.365	2	75.17	1	0	2	.144	1	.34	2
606			min	-159.809	1	-234.939	3	2.71	15	0	3	.005	15	135	3
607		19	max	-5.688	15	562.781	2	75.17	1	0	2	.191	1	.011	3
608			min	-159.233	1	-236.126	3	2.71	15	0	3	.007	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.199	1	.008	3 1.332e-2	1_	NC	1_	NC	1
2			min	0	15	042	3	004	2 -2.664e-3	3	NC	1	NC	1
3		2	max	0	1	.139	3	.025	1 1.449e-2	1	NC	5	NC	2
4			min	0	15	.003	15	0	10 -2.451e-3	3	1124.87	3	8327.414	1
5		3	max	0	1	.286	3	.058	1 1.567e-2	1	NC	5	NC	3
6			min	0	15	01	9	.002	10 -2.238e-3	3	620.477	3	3554.487	1
7		4	max	0	1	.377	3	.085	1 1.684e-2	1	NC	5	NC	3
8			min	0	15	046	1	.003	15 -2.024e-3	3	486.347	3	2403.796	1
9		5	max	0	1	.4	3	.099	1 1.801e-2	1	NC	5	NC	3
10			min	0	15	039	1	.004	15 -1.811e-3	3	460.839	3	2079.451	1
11		6	max	0	1	.358	3	.094	1 1.919e-2	1	NC	5	NC	3
12			min	0	15	004	9	.002	10 -1.598e-3	3	510.198	3	2186.684	1
13		7	max	0	1	.262	3	.072	1 2.036e-2	1	NC	4	NC	3
14			min	0	15	.003	15	0	10 -1.385e-3	3	669.941	3	2848.156	1
15		8	max	0	1	.231	2	.04	1 2.153e-2	1	NC	4	NC	2
16			min	0	15	.006	15	005	10 -1.172e-3	3	1119.05	3	5191.012	1
17		9	max	0	1	.32	1	.023	3 2.271e-2	1	NC	4	NC	1
18			min	0	15	.009	15	009	2 -9.592e-4	3	1623.507	2	NC	1
19		10	max	0	1	.363	1	.023	3 2.388e-2	1	NC	5	NC	1
20			min	0	1	022	3	016	2 -7.461e-4	3	1240.186	1	NC	1
21		11	max	0	15	.32	1	.023	3 2.271e-2	1	NC	4	NC	1
22			min	0	1	.009	15	009	2 -9.592e-4	3	1623.507	2	NC	1
23		12	max	0	15	.231	2	.04	1 2.153e-2	1	NC	4	NC	2
24			min	0	1	.006	15	005	10 -1.172e-3	3	1119.05	3	5191.012	1
25		13	max	0	15	.262	3	.072	1 2.036e-2	1	NC	4	NC	3
26			min	0	1	.003	15	0	10 -1.385e-3	3	669.941	3	2848.156	1
27		14	max	0	15	.358	3	.094	1 1.919e-2	1	NC	5	NC	3
28			min	0	1	004	9	.002	10 -1.598e-3	3	510.198	3	2186.684	1
29		15	max	0	15	.4	3	.099	1 1.801e-2	1	NC	5	NC	3
30			min	0	1	039	1	.004	15 -1.811e-3	3	460.839	3	2079.451	1
31		16	max	0	15	.377	3	.085	1 1.684e-2	1	NC	5	NC	3
32			min	0	1	046	1	.003	15 -2.024e-3	3	486.347	3	2403.796	1
33		17	max	0	15	.286	3	.058	1 1.567e-2	1	NC	5	NC	3
34			min	0	1	01	9	.002	10 -2.238e-3	3	620.477	3	3554.487	1
35		18	max	0	15	.139	3	.025	1 1.449e-2	1	NC	5	NC	2
36			min	0	1	.003	15	0	10 -2.451e-3	3	1124.87	3	8327.414	1
37		19	max	0	15	.199	1	.008	3 1.332e-2	1	NC	1	NC	1
38			min	0	1	042	3	004	2 -2.664e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.329	3	.007	3 7.886e-3	1	NC	1	NC	1
40			min	0	15	605	1	004	2 -5.039e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC	` '	LC
41		2	max	0	1	.546	3	.016	1 9.144e-3	1_	NC	5	NC	1
42			min	0	15	879	1	001	10 -5.945e-3	3	744.328	1	NC	1
43		3	max	0	1	.735	3	.044	1 1.04e-2	1	NC	5	NC	2
44			min	0	15	-1.123	1	0	10 -6.852e-3	3	393.748	1	4674.178	1
45		4	max	0	1	.877	3	.071	1 1.166e-2	1	NC	15	NC	3
46			min	0	15	-1.316	1	.003		3	286.998	1	2921.151	1
47		5	max	0	1	.961	3	.085	1 1.292e-2	1	9871.161	15	NC	3
48		Ť	min	0	15	-1.446	1	.003		3	242.713	1	2418.078	
49		6	max	0	1	.988	3	.083	1 1.418e-2	1	9204.39	15	NC	3
50			min	0	15	-1.51	1	.002		3	225.402	1	2471.102	1
51		7		0	1	.965	3	.065	1 1.544e-2	1	9182.585	15	NC	2
		-	max									-		
52		_	min	0	15	<u>-1.517</u>	1	0	10 -1.048e-2	3	223.706	1_	3151.485	
53		8	max	0	1	.91	3	.037	1 1.67e-2	1	9594.443	<u>15</u>	NC	2
54			min	0	15	-1.484	1	004	10 -1.138e-2	3	232.317	1_	5631.273	1
55		9	max	0	1	.85	3	.021	3 1.795e-2	_1_	NC	15	NC	1_
56			min	0	15	-1.436	1	008	2 -1.229e-2	3	245.713	1_	NC	1
57		10	max	0	1	.82	3	.02	3 1.921e-2	1_	NC	15	NC	1
58			min	0	1	-1.41	1	014	2 -1.32e-2	3	253.583	1_	NC	1
59		11	max	0	15	.85	3	.021	3 1.795e-2	1	NC	15	NC	1
60			min	0	1	-1.436	1	008	2 -1.229e-2	3	245.713	1	NC	1
61		12	max	0	15	.91	3	.037	1 1.67e-2	1		15	NC	2
62		<u> </u>	min	0	1	-1.484	1	004	10 -1.138e-2	3	232.317	1	5631.273	1
63		13	max	0	15	.965	3	.065	1 1.544e-2	1	9182.585	15	NC	2
64		10	min	0	1	-1.517	1	0	10 -1.048e-2	3	223.706	1	3151.485	
		1.1			-							•		
65		14	max	0	15	.988	3	.083	1 1.418e-2	1	9204.39	<u>15</u>	NC	3
66		4.5	min	0	1	<u>-1.51</u>	1	.002		3	225.402	1_	2471.102	1
67		15	max	0	15	<u>.961</u>	3	.085	1 1.292e-2	1	9871.161	<u>15</u>	NC NC	3
68			min	0	1	-1.446	1	.003	15 -8.664e-3	3	242.713	<u>1</u>	2418.078	
69		16	max	0	15	.877	3	.071	1 1.166e-2	1_	NC	15	NC	3
70			min	0	1	-1.316	1	.003	15 -7.758e-3	3	286.998	1_	2921.151	1
71		17	max	0	15	.735	3	.044	1 1.04e-2	1_	NC	5	NC	2
72			min	0	1	-1.123	1	0	10 -6.852e-3	3	393.748	1_	4674.178	1
73		18	max	0	15	.546	3	.016	1 9.144e-3	1	NC	5	NC	1
74			min	0	1	879	1	001	10 -5.945e-3	3	744.328	1	NC	1
75		19	max	0	15	.329	3	.007	3 7.886e-3	1	NC	1	NC	1
76			min	0	1	605	1	004	2 -5.039e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.337	3	.006	3 4.227e-3	3	NC	1	NC	1
78	14110		min	0	1	605	1	003	2 -8.04e-3	1	NC	1	NC	1
79		2	max	0	15	.492	3	.016	1 4.979e-3	3	NC	5	NC	1
80			min	0	1	901	1	001		1	687.26	1	NC	1
81		3		0	15		3	.045	1 5.731e-3	3	NC	5	NC NC	2
		3	max	_		.631								
82			min	0	1	<u>-1.164</u>	1	.001		1_	364.769		4646.573	
83		4	max	0	15	.743	3	.071	1 6.484e-3	3	NC	<u>15</u>	NC 2000 004	3
84			min	0	1	-1.368	1	.003	15 -1.191e-2	1_	267.335	1_	2906.831	1
85		5	max	0	15	.822	3	.086	1 7.236e-3	3		<u>15</u>	NC T 13	3
86			min	0	1	-1.5	1	.003	15 -1.321e-2	1_	227.868	1_	2406.543	
87		6	max	0	15	.867	3	.084	1 7.989e-3	3	9221.875	15	NC	3
88			min	0	1	-1.558	1	.003	10 -1.45e-2	1	213.874	1_	2457.87	1
89		7	max	0	15	.88	3	.066	1 8.741e-3	3	9202.42	15	NC	2
90			min	0	1	-1.553	1	0	10 -1.579e-2	1	215.183	1	3128.845	1
91		8	max	0	15	.871	3	.037	1 9.494e-3	3	9618.129	15	NC	2
92			min	0	1	-1.503	1	004	10 -1.708e-2	1	227.122	1	5557.585	
93		9	max	0	15	.852	3	.019	3 1.025e-2	3	NC	15	NC	1
94			min	0	1	-1.44	1	007	2 -1.837e-2	1	244.078	1	NC	1
95		10	max	0	1	.841	3	.019	3 1.1e-2	3	NC	15	NC	1
96		10		0	1	-1.408	1	013	2 -1.967e-2	1	253.904	15 1	NC NC	1
		44	min											
97		11	max	0	1	.852	3	.019	3 1.025e-2	3	NC	<u> 15</u>	NC	_1_

Model Name

Schletter, Inc. HCV

.
: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
98			min	0	15	-1.44	1	007	2 -1.837e-2	1	244.078	1_	NC	1
99		12	max	0	1	.871	3	.037	1 9.494e-3	3	9618.129	15	NC	2
100			min	0	15	-1.503	1	004	10 -1.708e-2	1	227.122	1	5557.585	1
101		13	max	0	1	.88	3	.066	1 8.741e-3	3	9202.42	15	NC	2
102			min	0	15	-1.553	1	0	10 -1.579e-2	1	215.183	1	3128.845	1
103		14	max	0	1	.867	3	.084	1 7.989e-3	3	9221.875	15	NC	3
104			min	0	15	-1.558	1	.003	10 -1.45e-2	1	213.874	1	2457.87	1
105		15	max	0	1	.822	3	.086	1 7.236e-3	3	9887.908	15	NC	3
106		1	min	0	15	-1.5	1	.003	15 -1.321e-2	1	227.868	1	2406.543	1
107		16	max	0	1	.743	3	.071	1 6.484e-3	3	NC	15	NC	3
108		10	min	0	15	-1.368	1	.003	15 -1.191e-2	1	267.335	1	2906.831	1
109		17	max	0	1	.631	3	.045	1 5.731e-3	3	NC	5	NC	2
110		111	min	0	15	-1.164	1	.001	10 -1.062e-2	1	364.769	1	4646.573	1
111		18	max	0	1	.492	3	.016	1 4.979e-3	3	NC	5	NC	1
112		10	min	0	15	901	1	001	10 -9.331e-3	1	687.26	1	NC	1
113		19	max	0	1	.337	3	.006	3 4.227e-3	3	NC	1	NC	1
114		19		0	15	605	1	003	2 -8.04e-3	1	NC	1	NC	1
115	M16	1	min	0	15	<u>605</u> .191	1	.005	3 7.876e-3	3	NC NC	1	NC NC	1
	IVI I O		max	-	15	118	3	003	2 -1.242e-2	1	NC NC	1	NC NC	1
116		2	min	0								_		
117		2	max	0	15	.053	1	.025	1 8.792e-3	3	NC	5	NC	2
118			min	0	1	069	3	0	10 -1.339e-2	1	1406.245	2	8412.541	1
119		3	max	0	15	.004	13	.058	1 9.709e-3	3	NC	5_	NC	3
120			min	0	1	089	2	.002	15 -1.436e-2	1	787.221	2	3568.36	1
121		4	max	0	15	0	15	.085	1 1.063e-2	3	NC	5	NC Too	3
122		-	min	0	1	<u>151</u>	2	.003	15 -1.532e-2	1	634.406	2	2403.532	1
123		5	max	0	15	0	13	.099	1 1.154e-2	3	NC	5_	NC	3
124			min	0	1	153	2	.004	15 -1.629e-2	1	631.668	2	2071.333	1
125		6	max	0	15	.006	4	.095	1 1.246e-2	3	NC	5_	NC	3
126			min	0	1	095	2	.004	15 -1.726e-2	1	769.16	2	2167.232	1
127		7	max	0	15	.055	1	.074	1 1.337e-2	3	NC	3_	NC	3
128			min	0	1	114	3	.001	10 -1.823e-2	1	1262.749	2	2797.271	1
129		8	max	0	15	.181	1	.042	1 1.429e-2	3	NC	_1_	NC	2
130			min	0	1	174	3	002	10 -1.92e-2	1	3626.767	3	4973.793	
131		9	max	0	15	.292	1	.017	3 1.521e-2	3	NC	5	NC	1
132			min	0	1	226	3	006	10 -2.016e-2	1	1894.589	3	NC	1
133		10	max	0	1	.342	1	.016	3 1.612e-2	3	NC	5	NC	1
134			min	0	1	248	3	012	2 -2.113e-2	1	1356.764	1_	NC	1
135		11	max	0	1	.292	1	.017	3 1.521e-2	3	NC	5	NC	1
136			min	0	15	226	3	006	10 -2.016e-2	1	1894.589	3	NC	1
137		12	max	0	1	.181	1	.042	1 1.429e-2	3	NC	1	NC	2
138			min	0	15	174	3	002	10 -1.92e-2	1	3626.767	3	4973.793	1
139		13	max	0	1	.055	1	.074	1 1.337e-2	3	NC	3	NC	3
140			min	0	15	114	3	.001	10 -1.823e-2	1	1262.749	2	2797.271	1
141		14	max	0	1	.006	4	.095	1 1.246e-2	3	NC	5	NC	3
142			min	0	15	095	2	.004	15 -1.726e-2	1	769.16	2	2167.232	1
143		15	max	0	1	0	13	.099	1 1.154e-2	3	NC	5	NC	3
144			min	0	15	153	2	.004	15 -1.629e-2	1	631.668	2	2071.333	
145		16	max	0	1	0	15	.085	1 1.063e-2	3	NC	5	NC	3
146			min	0	15	151	2	.003	15 -1.532e-2	1	634.406	2	2403.532	
147		17	max	0	1	.004	13	.058	1 9.709e-3	3	NC	5	NC	3
148			min	0	15	089	2	.002	15 -1.436e-2	1	787.221	2	3568.36	1
149		18	max	0	1	.053	1	.025	1 8.792e-3	3	NC	5	NC	2
150		10	min	0	15	069	3	0	10 -1.339e-2	1	1406.245	2	8412.541	1
151		19	max	0	1	<u>009</u> .191	1	.005	3 7.876e-3	3	NC	1	NC	1
152		13	min	0	15	118	3	003	2 -1.242e-2	1	NC NC	1	NC	1
153	M2	1	max	.006	1	.006	2	.009	1 -7.038e-6	_	NC	1	NC	2
154	IVIZ		min	007	3	01	3	0	15 -1.955e-4		9741.88	2	6903.495	
104			1111111	007	J	01	J	U	10 -1.3006-4		3171.00		0303.433	

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
155		2	max	.006	1	.005	2	.008	1	-6.593e-6	<u>15</u>	NC	_1_	NC	2
156			min	006	3	01	3	0		-1.832e-4	_1_	NC	1_	7527.133	1
157		3	max	.006	1	.004	2	.007	1	-6.149e-6		NC	1_	NC	2
158			min	006	3	01	3	0		-1.708e-4	1_	NC	1_	8269.814	1
159		4	max	.005	1	.004	2	.007	1	-5.705e-6	<u>15</u>	NC	1_	NC	2
160		_	min	005	3	009	3	0	15	-1.584e-4	1_	NC NC	1_	9162.952	1
161		5	max	.005	1	.003	2	.006	1	-5.261e-6	<u>15</u>	NC	1	NC NC	1
162			min	005	3	009	3	0	15	-1.461e-4	1_	NC NC	1_	NC NC	1
163		6	max	.005	1	.002	2	.005	1	-4.817e-6	<u>15</u>	NC	1_	NC NC	1
164		7	min	005	3	009	3	0	15	-1.337e-4	1_	NC NC	1_	NC NC	1
165		7	max	.004	1	.001	2	.005	1	-4.372e-6	<u>15</u>	NC NC	1	NC NC	1
166		0	min	004	3	008	3	0	15	-1.213e-4	1_	NC NC	1_	NC NC	1
167		8	max	.004	1	0	2	.004	1	-3.928e-6	<u>15</u>	NC NC	1	NC NC	1
168			min	004	3	008	3	0	15	-1.09e-4	1_	NC NC		NC NC	1
169 170		9	max	.004	3	0 007	3	.003	15	-3.484e-6	<u>15</u>	NC NC	1	NC NC	1
171		10	min	004				0		-9.662e-5	1_		_		1
171		10	max	.003	3	0 007	3	.003	1	-3.04e-6	<u>15</u>	NC NC	1	NC NC	1
		11	min	003				<u> </u>	15	-8.426e-5	1_	NC NC	1		1
173		11	max	.003	3	001	15		1	-2.595e-6	<u>15</u>	NC NC	1	NC NC	1
174 175		12	min	003 .003	1	006 001	15	<u> </u>	1 <u>5</u>	-7.189e-5 -2.151e-6	<u>1</u> 15	NC NC	1	NC NC	1
176		12	max	003	3	001	3	<u>.002</u>	15	-5.953e-5	1	NC NC	1	NC NC	1
177		13	min max	.003	1	006 001	15	.001	1	-5.953e-5 -1.707e-6	15	NC NC	1	NC NC	1
178		13	min	002	3	001 005	3	001 0	15	-4.717e-5	1	NC NC	1	NC NC	1
179		14		.002	1	005 0	15	0	1	-4.717e-5 -1.263e-6	15	NC NC	1	NC NC	1
180		14	max min	002	3	005	3	0	15	-3.481e-5	1	NC NC	1	NC	1
181		15	max	.002	1	003	15	0	1	-8.186e-7	15	NC	1	NC	1
182		15	min	001	3	004	3	0	15	-2.244e-5	1	NC NC	1	NC	1
183		16	max	.001	1	004	15	0	1	-3.744e-7	15	NC	1	NC	1
184		10	min	001	3	003	4	0	15	-1.008e-5	1	NC	1	NC	1
185		17	max	0	1	<u>.003</u>	15	0	1	2.283e-6	1	NC	1	NC	1
186		- ' '	min	0	3	002	4	0	15	-5.059e-7	3	NC	1	NC	1
187		18	max	0	1	0	15	0	1	1.465e-5	1	NC	1	NC	1
188		-10	min	0	3	001	4	0	15	4.196e-7	12	NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.701e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	9.583e-7	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-2.946e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-8.279e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	1.692e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	15	6.083e-7	15	NC	1	NC	1
195		3	max	0	3	001	15	0		4.212e-5		NC	1	NC	1
196			min	0	2	005	4	0	15		15	NC	1	NC	1
197		4	max	0	3	002	15	0	1	6.733e-5	1	NC	1	NC	1
198			min	0	2	008	4	0	15	2.414e-6	15	NC	1	NC	1
199		5	max	.001	3	003	15	0	1	9.253e-5	1	NC	1	NC	1
200			min	0	2	011	4	0	15	3.317e-6	15	9254.207	4	NC	1
201		6	max	.002	3	003	15	0	1	1.177e-4	1	NC	1	NC	1
202			min	001	2	014	4	0	15	4.22e-6	15	7429.027	4	NC	1
203		7	max	.002	3	004	15	.001	1	1.429e-4	1	NC	5	NC	1
204			min	001	2	016	4	0	15	5.123e-6	15	6333.795	4	NC	1
205		8	max	.002	3	004	15	.001	1	1.681e-4	1	NC	5	NC	1
206			min	002	2	018	4	0	15	6.026e-6	15	5657.705	4	NC	1
207		9	max	.003	3	005	15	.002	1	1.933e-4	1	NC	5	NC	1
208			min	002	2	02	4	0	15	6.929e-6	15	5254.798	4	NC	1
209		10	max	.003	3	005	15	.002	1	2.185e-4	1	NC	5	NC	1
210			min	002	2	021	4	0	15	7.832e-6	15	5053.925	4	NC	1
211		11	max	.003	3	005	15	.003	1	2.437e-4	1_	NC	5	NC	1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

212	Member	Sec	min	x [in] 002	LC 2	y [in] 021	LC 4	z [in]	LC 15	x Rotate [r 8.735e-6		(n) L/y Ratio 5025.143	LC 4	(n) L/z Ratio	LC 1
213		12	max	.004	3	021 005	15	.003	1	2.689e-4	1	NC	5	NC	1
214		12	min	003	2	003 02	4	0	15	9.638e-6		5168.175	4	NC	1
215		13	max	.004	3	004	15	.003	1	2.941e-4	1	NC	5	NC	1
216		13	min	003	2	019	4	0	15	1.054e-5		5513.736	4	NC	1
217		14	max	.004	3	004	15	.004	1	3.193e-4	1	NC	5	NC	1
218		17	min	003	2	017	4	0	15	1.144e-5		6139.772	4	NC	1
219		15	max	.005	3	003	15	.005	1	3.445e-4	1	NC	3	NC	1
220		10	min	003	2	015	4	0	15	1.235e-5	15	7220.29	4	NC	1
221		16	max	.005	3	003	15	.005	1	3.697e-4	1	NC	1	NC	1
222		10	min	004	2	012	4	0	15	1.325e-5	15	9177.667	4	NC	1
223		17	max	.005	3	002	15	.006	1	3.949e-4	1	NC	1	NC	1
224			min	004	2	008	4	0	15	1.415e-5	15	NC	1	NC	1
225		18	max	.006	3	001	15	.007	1	4.201e-4	1	NC	1	NC	1
226			min	004	2	005	1	0	15	1.506e-5	15	NC	1	NC	1
227		19	max	.006	3	0	15	.008	1	4.453e-4	1	NC	1	NC	1
228			min	004	2	003	1	0	15	1.596e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.004	2	0	15	6.996e-5	1	NC	1	NC	3
230			min	0	3	006	3	008	1	2.529e-6	15	NC	1	3020.228	1
231		2	max	.003	1	.004	2	0	15	6.996e-5	1	NC	1	NC	3
232			min	0	3	006	3	008	1	2.529e-6	15	NC	1	3284.843	1
233		3	max	.002	1	.004	2	0	15	6.996e-5	1	NC	1	NC	3
234			min	0	3	005	3	007	1	2.529e-6	15	NC	1	3599.743	
235		4	max	.002	1	.003	2	0	15	6.996e-5	1	NC	1	NC	2
236			min	0	3	005	3	006	1	2.529e-6	15	NC	1	3977.997	1
237		5	max	.002	1	.003	2	0	15	6.996e-5	1	NC	1	NC	2
238			min	0	3	005	3	006	1	2.529e-6	15	NC	1	4437.364	1
239		6	max	.002	1	.003	2	0	15	6.996e-5	1	NC	1	NC	2
240			min	0	3	004	3	005	1	2.529e-6	15	NC	1	5002.474	1
241		7	max	.002	1	.003	2	0	15	6.996e-5	1	NC	1	NC	2
242			min	0	3	004	3	004	1	2.529e-6	15	NC	1	5708.289	1
243		8	max	.002	1	.002	2	0	15	6.996e-5	1_	NC	1_	NC	2
244			min	0	3	004	3	004	1	2.529e-6	15	NC	1_	6605.796	1
245		9	max	.002	1	.002	2	0	15	6.996e-5	_1_	NC	_1_	NC	2
246			min	0	3	003	3	003	1	2.529e-6	15	NC	1_	7771.76	1
247		10	max	.001	1	.002	2	0	15	6.996e-5	_1_	NC	_1_	NC	2
248			min	0	3	003	3	003	1	2.529e-6	15	NC	1_	9326.18	1
249		11	max	.001	1	.002	2	0	15	6.996e-5	_1_	NC	_1_	NC	1
250			min	0	3	003	3	002	1	2.529e-6	15	NC	_1_	NC	1
251		12	max	.001	1	.002	2	0	15	6.996e-5	_1_	NC	_1_	NC	1
252		4.0	min	0	3	002	3	002	1	2.529e-6		NC	1_	NC	1
253		13	max	0	1	.001	2	0	15	6.996e-5	1_	NC	1	NC	1
254			min	0	3	002	3	001	1	2.529e-6	15	NC	1_	NC	1
255		14	max	0	1	.001	2	0	15	6.996e-5	1_	NC	1	NC NC	1
256		4.5	min	0	3	002	3	0	1	2.529e-6	<u>15</u>	NC NC	1_	NC NC	1
257		15	max	0	1	0	2	0	15	6.996e-5	1_	NC	1	NC	1
258		4.0	min	0	3	<u>001</u>	3	0	1_1	2.529e-6	<u>15</u>	NC NC	1_	NC NC	1
259		16	max	0	1	0	2	0	15		1_	NC NC	1_	NC NC	1
260		47	min	0	3	0	3	0	1 1 1 5	2.529e-6	<u>15</u>	NC NC	1_1	NC NC	1
261		17	max	0	3	<u> </u>	3	<u> </u>	15		15	NC NC	1	NC NC	1
262		10	min						15	2.529e-6	<u>15</u>	NC NC	_	NC NC	
263		18	max	0	3	0	2	<u> </u>	15	6.996e-5	1_		<u>1</u> 1		1
264		10	min	0			3		1	2.529e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
265		19	max	0	1	0	1	0	1	6.996e-5	1_		1	NC NC	1
266 267	M6	1	min	.02	1	.023	2	0	1	2.529e-6	<u>15</u> 1	NC NC	3	NC NC	1
268	IVIO		max	021	3	023 031	3	<u> </u>	1	0	1	2665.567	2	NC NC	1
200			1111111	021	J	031	J	U		U		2005.507		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	1		(n) L/y Ratio L			
269		2	max	.019	1	.021	2	0	1	0	_1_		3	NC_	1
270			min	02	3	03	3	0	1	0	<u>1</u>		2	NC NC	1
271		3	max	.018	1	.019	2	0	1	0	_1_		3	NC_	1
272			min	019	3	028	3	0	1	0	1_		2	NC	1
273		4	max	.017	1	.017	2	0	1	0	_1_		3	NC_	1
274		_	min	017	3	026	3	0	1	0	1_		2	NC NC	1
275		5	max	.015	1	.015	2	0	1	0	1		3	NC_	1
276			min	016	3	025	3	0	1	0	1_		2	NC	1
277		6	max	.014	1	.013	2	0	1	0	1		3	NC_	1
278		_	min	015	3	023	3	0	1	0	1_		2	NC	1
279		7	max	.013	1	.011	2	0	1	0	<u>1</u>		3	NC_	1
280			min	014	3	021	3	0	1	0	<u>1</u>		2	NC NC	1
281		8	max	.012	1	.009	2	0	1	0	_1_		1	NC_	1
282		_	min	013	3	02	3	0	1	0	1_		2	NC	1
283		9	max	.011	1	.008	2	0	1	0	_1_		1	NC_	1
284			min	012	3	018	3	0	1	0	1_		2	NC NC	1
285		10	max	.01	1	.006	2	0	1	0	1		1	NC_	1
286			min	01	3	016	3	0	1	0	1		2	NC NC	1
287		11	max	.009	1	.005	2	0	1	0	1		1	NC_	1
288		1.0	min	009	3	<u>014</u>	3	0	1	0	1		1	NC NC	1
289		12	max	.008	1	.004	2	0	1	0	<u>1</u>		1	NC_	1
290			min	008	3	013	3	0	1	0	<u>1</u>		1	NC NC	1
291		13	max	.007	1	.003	2	0	1	0	1		1	NC	1
292			min	007	3	011	3	0	1	0	1_		1	NC	1
293		14	max	.006	1	.002	2	0	1	0	_1_		1	NC_	1
294			min	006	3	009	3	0	1	0	1_	110	1	NC	1
295		15	max	.004	1	0	2	00	1	0	_1_		1	NC	1
296			min	005	3	007	3	0	1	0	1_		1	NC	1
297		16	max	.003	1	0	2	0	1	0	_1_		1	NC	1
298			min	003	3	006	3	0	1	0	1_		1	NC NC	1
299		17	max	.002	1	0	2	0	1	0	1		1	NC	1
300			min	002	3	004	3	0	1	0	1_		1	NC	1
301		18	max	.001	1	0	2	0	1	0	_1_		1	NC	1
302			min	001	3	002	3	0	1	0	1		1	NC	1
303		19	max	0	1	0	1	0	1	0	1		1	NC_	1
304			min	0	1	0	1	0	1	0	1_	110	1	NC	1
305	<u>M7</u>	1_	max	00	1	0	1	00	1	0	_1_		1	NC	1
306			min	0	1	0	1	0	1	0	1_		1	NC	1
307		2	max	0	3	0	15	0	1	0	_1_		1	NC	1
308			min	0	2	003	3	0	1	0	1_	110	1	NC	1
309		3	max	.002	3	001	15	0	1	0	_1_	NC	1	NC_	1
310			min	002	2	006	3	0	1	0	<u>1</u>		1	NC NC	1
311		4	max	.003	3	002	15	0	1	0	1_		1	NC_	1
312			min	003	2	009	3	0	1	0	1_		1	NC NC	1
313		5	max	.004	3	003	15	0	1	0	_1_		1	NC	1
314			min	004	2	012	3	0	1	0	<u>1</u>		3	NC NC	1
315		6	max	.005	3	003	15	0	1	0	_1_		1	NC_	1
316			min	005	2	014	3	0	1	0	1_		3	NC	1
317		7	max	.006	3	004	15	0	1	0	1_		1	NC	1
318			min	005	2	016	4	0	1	0	1_		4	NC	1
319		8	max	.007	3	004	15	0	1	0	1		2	NC	1
320			min	006	2	018	4	0	1	0	1_		4	NC	1
321		9	max	.008	3	005	15	0	1	0	1		2	NC	1
322			min	007	2	02	4	0	1	0	1		4	NC	1
323		10	max	.009	3	005	15	00	1	0	_1_		5	NC	1
324			min	008	2	021	4	0	1	0	1_		4	NC	1
325		11	max	.01	3	005	15	0	1	0	1_	NC :	5	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					LC
326			min	009	2	021	4	0	1	0	1	5114.485	4	NC	1
327		12	max	.011	3	005	15	0	1	0	1_	NC	5	NC	1
328			min	01	2	02	4	0	1	0	1	5255.558	4	NC	1
329		13	max	.012	3	004	15	0	1	0	1	NC	5	NC	1
330			min	011	2	019	4	0	1	0	1	5602.953	4	NC	1
331		14	max	.013	3	004	15	0	1	0	1	NC	2	NC	1
332			min	012	2	017	4	0	1	0	1	6235.426	4	NC	1
333		15	max	.014	3	003	15	0	1	0	1	NC	1	NC	1
334			min	013	2	015	4	0	1	0	1	7329.25	4	NC	1
335		16	max	.015	3	003	15	0	1	0	1	NC	1	NC	1
336			min	014	2	012	4	0	1	0	1	9312.65	4	NC	1
337		17	max	.016	3	002	15	0	1	0	1	NC	1	NC	1
338			min	015	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.017	3	001	15	0	1	0	1	NC	1	NC	1
340			min	016	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.018	3	0	15	0	1	0	1	NC	1	NC	1
342			min	016	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.015	2	0	1	0	1	NC	1	NC	1
344			min	002	3	018	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.014	2	0	1	0	1	NC	1	NC	1
346			min	002	3	017	3	0	1	0	1	NC	1	NC	1
347		3	max	.007	1	.014	2	0	1	0	1	NC	1	NC	1
348			min	002	3	016	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.013	2	0	1	0	1	NC	1	NC	1
350			min	001	3	015	3	0	1	0	1	NC	1	NC	1
351		5	max	.006	1	.012	2	0	1	Ö	1	NC	1	NC	1
352			min	001	3	014	3	0	1	0	1	NC	1	NC	1
353		6	max	.006	1	.011	2	0	1	0	1	NC	1	NC	1
354			min	001	3	013	3	0	1	0	1	NC	1	NC	1
355		7	max	.005	1	.01	2	0	1	0	1	NC	1	NC	1
356		-	min	001	3	012	3	0	1	0	1	NC	1	NC	1
357		8	max	.005	1	.009	2	0	1	0	1	NC	1	NC	1
358			min	001	3	011	3	0	1	0	1	NC	1	NC	1
359		9	max	.004	1	.008	2	0	1	0	1	NC	1	NC	1
360		_ J	min	0	3	01	3	0	1	0	1	NC	1	NC	1
361		10	max	.004	1	.008	2	0	1	0	1	NC	1	NC	1
362		10	min	0	3	009	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
364			min	0	3	008	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	007	3	0	1	0	1	NC	1	NC	1
367		13	max	.003	1	.005	2	0	1	0	1	NC	1	NC	1
368		13	min	0	3	006	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.004	2	0	1	0	1	NC	+	NC	1
370		14	min	.002	3	00 5	3	0	1	0	1	NC NC	1	NC NC	1
371		15	max	.002	1	.003	2	0	1	0	1	NC NC	+	NC	1
372		10	min	.002	3	004	3	0	1	0	1	NC NC	1	NC	1
373		16		.001	1	.003	2	0	1	0	1	NC NC	+	NC	1
374		10	max	0	3	003	3	0	1	0	1	NC NC	1	NC NC	1
		17					2		1		1		1		1
375		17	max	0	3	.002	3	0	1	0	1	NC NC	1	NC NC	1
376		10	min			002		0		0				NC NC	•
377		18	max	0	1	0	2	0	1	0	1	NC NC	1	NC NC	1
378		40	min	0	3	0	3	0	1	0	1_	NC NC	1_	NC NC	1
379		19	max	0	1	0	1	0	1	0	1	NC NC	1_	NC NC	1
380	Mac	4	min	0	1	0	1	0	1_45	0	1_	NC NC	1_	NC NC	1
381	M10	1	max	.006	1	.006	2	0	15	1.955e-4	1_45	NC 0744 00	1_	NC	2
382			min	007	3	01	3	009	1	7.038e-6	15	9741.88	2	6903.495	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.006	1	.005	2	00	15	1.832e-4	_1_	NC	_1_	NC	2
384			min	006	3	01	3	008	1	6.593e-6	15	NC	1_	7527.133	1
385		3	max	.006	1	.004	2	0	15	1.708e-4	_1_	NC	_1_	NC	2
386			min	006	3	01	3	007	1	6.149e-6	15	NC	1	8269.814	1
387		4	max	.005	1	.004	2	0	15	1.584e-4	_1_	NC	_1_	NC	2
388			min	005	3	009	3	007	1	5.705e-6	15	NC	1_	9162.952	1
389		5	max	.005	1	.003	2	0	15	1.461e-4	_1_	NC	_1_	NC	1_
390			min	005	3	009	3	006	1	5.261e-6	15	NC	1_	NC	1
391		6	max	.005	1	.002	2	0	15	1.337e-4	1_	NC	1_	NC	1
392			min	005	3	009	3	005	1	4.817e-6	15	NC	1_	NC	1
393		7	max	.004	1	.001	2	0	15	1.213e-4	_1_	NC	_1_	NC	1_
394			min	004	3	008	3	005	1	4.372e-6	15	NC	1	NC	1
395		8	max	.004	1	00	2	0	15	1.09e-4	_1_	NC	_1_	NC	1_
396			min	004	3	008	3	004	1	3.928e-6	15	NC	1	NC	1
397		9	max	.004	1	0	2	0	15	9.662e-5	1_	NC	_1_	NC	1_
398			min	004	3	007	3	003	1	3.484e-6	15	NC	1	NC	1
399		10	max	.003	1	0	2	0	15	8.426e-5	1_	NC	_1_	NC	1_
400			min	003	3	007	3	003	1	3.04e-6	15	NC	1	NC	1
401		11	max	.003	1	001	15	0	15	7.189e-5	1_	NC	1_	NC	1
402			min	003	3	006	3	002	1	2.595e-6	15	NC	1	NC	1
403		12	max	.003	1	001	15	0	15	5.953e-5	_1_	NC	_1_	NC	1_
404			min	003	3	006	3	002	1	2.151e-6	15	NC	1_	NC	1
405		13	max	.002	1	001	15	0	15	4.717e-5	1_	NC	1_	NC	1
406			min	002	3	005	3	001	1	1.707e-6	15	NC	1	NC	1
407		14	max	.002	1	0	15	0	15	3.481e-5	1	NC	1_	NC	1
408			min	002	3	005	3	0	1	1.263e-6	15	NC	1	NC	1
409		15	max	.001	1	0	15	0	15	2.244e-5	1_	NC	1	NC	1
410			min	001	3	004	3	0	1	8.186e-7	15	NC	1	NC	1
411		16	max	.001	1	0	15	0	15	1.008e-5	1	NC	1	NC	1
412			min	001	3	003	4	0	1	3.744e-7	15	NC	1	NC	1
413		17	max	0	1	0	15	0	15	5.059e-7	3	NC	1	NC	1
414			min	0	3	002	4	0	1	-2.283e-6	1	NC	1	NC	1
415		18	max	0	1	0	15	0	15	-4.196e-7	12	NC	1	NC	1
416			min	0	3	001	4	0	1	-1.465e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-9.583e-7	15	NC	1	NC	1
418			min	0	1	0	1	0	1	-2.701e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	8.279e-6	1	NC	1	NC	1
420			min	0	1	0	1	0	1	2.946e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-6.083e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.692e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	0	15	-1.511e-6	15	NC	1	NC	1
424			min	0	2	005	4	0	1	-4.212e-5	1	NC	1	NC	1
425		4	max	0	3	002	15	0	15	-2.414e-6	15	NC	1	NC	1
426			min	0	2	008	4	0	1	-6.733e-5	1	NC	1	NC	1
427		5	max	.001	3	003	15	0	15		15	NC	1	NC	1
428			min	0	2	011	4	0	1	-9.253e-5	1	9254.207	4	NC	1
429		6	max	.002	3	003	15	0	15	-4.22e-6	15	NC	1	NC	1
430			min	001	2	014	4	0	1	-1.177e-4	1	7429.027	4	NC	1
431		7	max	.002	3	004	15	0	15		15	NC	5	NC	1
432			min	001	2	016	4	001	1	-1.429e-4	1	6333.795	4	NC	1
433		8	max	.002	3	004	15	0	15	-6.026e-6	15	NC	5	NC	1
434			min	002	2	018	4	001	1	-1.681e-4	1	5657.705	4	NC	1
435		9	max	.003	3	005	15	0	15		15	NC	5	NC	1
436			min	002	2	02	4	002	1	-1.933e-4	1	5254.798	4	NC	1
437		10	max	.003	3	005	15	0	15	-7.832e-6	15	NC	5	NC	1
438			min	002	2	021	4	002	1	-2.185e-4	1	5053.925	4	NC	1
439		11	max	.003	3	005	15	0	15	-8.735e-6	15	NC	5	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
440			min	002	2	021	4	003	1	-2.437e-4	1_	5025.143	4	NC	1
441		12	max	.004	3	005	15	0	15	-9.638e-6	<u>15</u>	NC	5_	NC	1
442			min	003	2	02	4	003	1	-2.689e-4	1_	5168.175	4	NC	1
443		13	max	.004	3	004	15	0	15	-1.054e-5	15	NC	5	NC	1
444			min	003	2	019	4	003	1	-2.941e-4	1	5513.736	4	NC	1
445		14	max	.004	3	004	15	0	15	-1.144e-5	15	NC	5	NC	1
446			min	003	2	017	4	004	1	-3.193e-4	1	6139.772	4	NC	1
447		15	max	.005	3	003	15	0	15	-1.235e-5	15	NC	3	NC	1
448			min	003	2	015	4	005	1	-3.445e-4	1	7220.29	4	NC	1
449		16	max	.005	3	003	15	0	15	-1.325e-5	15	NC	1	NC	1
450			min	004	2	012	4	005	1	-3.697e-4	1	9177.667	4	NC	1
451		17	max	.005	3	002	15	0	15	-1.415e-5	15	NC	1	NC	1
452			min	004	2	008	4	006	1	-3.949e-4	1	NC	1	NC	1
453		18	max	.006	3	001	15	0	15	-1.506e-5	15	NC	1	NC	1
454			min	004	2	005	1	007	1	-4.201e-4	1	NC	1	NC	1
455		19	max	.006	3	0	15	0	15	-1.596e-5	15	NC	1	NC	1
456			min	004	2	003	1	008	1	-4.453e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.004	2	.008	1	-2.529e-6	15	NC	1	NC	3
458	····-		min	0	3	006	3	0	15	-6.996e-5	1	NC	1	3020,228	1
459		2	max	.003	1	.004	2	.008	1	-2.529e-6	15	NC	1	NC	3
460		_	min	0	3	006	3	0	15	-6.996e-5	1	NC	1	3284.843	1
461		3	max	.002	1	.004	2	.007	1	-2.529e-6	15	NC	1	NC	3
462			min	0	3	005	3	0	15	-6.996e-5	1	NC	1	3599.743	1
463		4	max	.002	1	.003	2	.006	1	-2.529e-6	15	NC	1	NC	2
464			min	0	3	005	3	0	15	-6.996e-5	1	NC	1	3977.997	1
465		5	max	.002	1	.003	2	.006	1	-2.529e-6	15	NC	1	NC	2
466		-	min	0	3	005	3	0	15	-6.996e-5	1	NC	1	4437.364	1
467		6	max	.002	1	.003	2	.005	1	-2.529e-6	15	NC	1	NC	2
468			min	0	3	004	3	0	15	-6.996e-5	1	NC	1	5002.474	1
469		7	max	.002	1	.003	2	.004	1	-2.529e-6	15	NC	1	NC	2
470		-	min	0	3	004	3	0	15	-6.996e-5	1	NC	1	5708.289	1
471		8	max	.002	1	.002	2	.004	1	-2.529e-6	15	NC	1	NC	2
472		0	min	0	3	004	3	<u>.004</u>	15	-6.996e-5	1	NC NC	1	6605.796	1
473		9		.002	1	.002	2	.003	1	-0.990e-3 -2.529e-6	15	NC NC	1	NC	2
		9	max		3		3	003	15	-6.996e-5	1	NC NC	1		1
474 475		10	min	.001	1	003 .002	2	.003	1	-0.996e-5 -2.529e-6	15	NC NC	1	7771.76 NC	2
		10	max		3		3						1	9326.18	1
476		44	min	0		003		0	15	-6.996e-5	1_	NC NC			
477		11	max	.001	3	.002	2	.002	1	-2.529e-6	<u>15</u>	NC NC	1	NC NC	1
478		40	min	0		003	3	0	15	-6.996e-5	1_	NC NC		NC NC	
479		12	max	.001	1	.002	2	.002	1	-2.529e-6	<u>15</u>	NC NC	1	NC NC	1
480		10	min	0	3	002	3	0		-6.996e-5	1.5	NC NC	4	NC NC	4
481		13	max	0	1	.001	2	.001	1	-2.529e-6		NC NC	1	NC NC	1
482		4.4	min	0	3	002	3	0	15	-6.996e-5	1_	NC NC	1_	NC NC	1
483		14	max	0	1	.001	2	0	1	-2.529e-6		NC	1_	NC NC	1
484		4-	min	0	3	002	3	0	15	-6.996e-5	1_	NC NC	1_	NC NC	1
485		15	max	0	1	0	2	0	1	-2.529e-6	<u>15</u>	NC	1	NC NC	1
486			min	0	3	001	3	0	15	-6.996e-5	1_	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-2.529e-6		NC	1_	NC	1
488			min	0	3	0	3	0		-6.996e-5	1_	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-2.529e-6	15	NC	1	NC	1
490			min	0	3	0	3	0	15		1	NC	1_	NC	1
491		18	max	0	1	0	2	0	1	-2.529e-6	15	NC	_1_	NC	1
492			min	0	3	0	3	0	15	-6.996e-5	1_	NC	1_	NC	1
493		19	max	0	1	00	1	00	1	-2.529e-6	15	NC	1	NC	1
494			min	0	1	0	1	0	1	-6.996e-5	1	NC	1	NC	1
495	M1	1	max	.008	3	.199	1	0	1	1.046e-2	1_	NC	1	NC	1
496			min	004	2	042	3	0	15	-1.66e-2	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio LC		
497		2	max	.008	3	.099	1	0	15	5.051e-3	1	NC 5	NC	1
498			min	004	2	021	3	006	1	-8.24e-3	3	1348.126 1	NC	1
499		3	max	.008	3	.01	3	0	15	1.448e-5	<u>10</u>	NC 5	NC NC	1
500			min	004	2	009	2	009	1	-1.868e-4	1	648.837 1	NC NC	1
501		4	max	.007	3	.061	3	0 008	15	4.42e-3	1	NC 15		1
502		5	min	004	2	13 .124	1		1 1 5	-3.7e-3	3	409.282 1	NC NC	1
503 504		5	max	.007 004	2	257	3	0 006	15	9.027e-3 -7.312e-3	<u>1</u> 3	9816.902 15 295.033 1	NC NC	1
505		6		.007	3	.192	3	<u>006</u> 0	15	1.363e-2	1			1
506		0	max min	00 <i>1</i>	2	381	1	003	1	-1.092e-2	3	7771.344 15 232.117 1	NC NC	1
507		7	max	004 .007	3	.258	3	<u>003</u> 0	1	1.824e-2	1	6562.284 15		1
508		<u> </u>	min	00 <i>1</i>	2	491	1	0	3	-1.454e-2	3	195.005 1	NC NC	1
509		8	max	.007	3	.312	3	0	1	2.285e-2	1	5846.242 15		1
510			min	004	2	579	1	0	15	-1.815e-2	3	173.066 1	NC	1
511		9	max	.007	3	.348	3	0	15	2.509e-2	1	5471.367 15		1
512		<u> </u>	min	003	2	634	1	0	1	-1.853e-2	3	161.631 1	NC	1
513		10	max	.006	3	.361	3	0	1	2.574e-2	1	5356.735 15		1
514			min	003	2	652	1	0	15	-1.674e-2	3	158.204 1	NC	1
515		11	max	.006	3	.352	3	0	1	2.639e-2	1	5471.147 15		1
516			min	003	2	634	1	0	15	-1.496e-2	3	161.858 1	NC	1
517		12	max	.006	3	.323	3	0	15	2.483e-2	1	5845.772 15		1
518			min	003	2	577	1	0	1	-1.286e-2	3	173.749 1	NC	1
519		13	max	.006	3	.275	3	0	15	1.998e-2	1	6561.458 15	NC	1
520			min	003	2	488	1	0	1	-1.029e-2	3	196.649 1	NC	1
521		14	max	.006	3	.214	3	.002	1	1.512e-2	1	7769.943 15	NC	1
522			min	003	2	376	1	0	15	-7.722e-3	3	235.593 1	NC	1
523		15	max	.006	3	.145	3	.005	1	1.027e-2	1	9814.484 15	NC NC	1
524			min	003	2	251	1	0	15	-5.151e-3	3	302.096 1	NC	1
525		16	max	.006	3	.073	3	.008	1	5.413e-3	1	NC 15		1
526			min	003	2	124	1	0	15	-2.58e-3	3	423.92 1	NC	1
527		17	max	.005	3	.004	3	.008	1	5.573e-4	1	NC 5	NC NC	1
528		10	min	003	2	005	2	0	15	-8.838e-6	3	681.266 1	NC NC	1
529		18	max	.005	3	.098	1	.006	1	6.707e-3	2	NC 5	NC NC	1
530		40	min	003	2	059	3	0	15	-2.255e-3	3	1429.674 1	NC NC	1
531		19	max	.005	3	.191	1	0	15	1.335e-2	2	NC 1	NC NC	1
532	NAC.	4	min	003	2	118	3	0	1	-4.587e-3	3	NC 1	NC NC	1
533	<u>M5</u>	1	max	.023	3	.363	3	0	1	0	1	NC 1 NC 1	NC NC	1
534		2	min	016		022	1	0	1	0	<u>1</u> 1	NC 5	NC NC	1
535 536			max min	.023 016	2	.182 013	3	0 0	1	0	1	744.901 1	NC NC	1
537		3	max	.023	3	.031	3	0	1	0	+	NC 15		1
538		-	min	016	2	028	2	0	1	0	1	344.966 1	NC NC	1
539		4	max	.022	3	.138	3	0	1	0	1	7697.116 15		1
540		_	min	015	2	288	1	0	1	0	1	207.096 1	NC	1
541		5	max	.022	3	.29	3	0	1	0	1	5353.745 15		1
542			min	015	2	576	1	0	1	0	1	143.432 1	NC	1
543		6	max	.021	3	.463	3	0	1	0	1	4103.22 15		1
544			min	015	2	866	1	0	1	0	1	109.551 1	NC	1
545		7	max	.021	3	.632	3	0	1	0	1	3384.316 15		1
546			min	014	2	-1.132	1	0	1	0	1	90.113 1	NC	1
547		8	max	.02	3	.776	3	0	1	0	1	2967.87 15		1
548			min	014	2	-1.345	1	0	1	0	1	78.87 1	NC	1
549		9	max	.02	3	.868	3	0	1	0	1	2754.634 15	NC	1
550			min	014	2	-1.48	1	0	1	0	1	73.124 1	NC	1
551		10	max	.02	3	.902	3	0	1	0	1	2690.377 15		1
552			min	014	2	-1.525	1	0	1	0	1	71.417 1	NC	1
553		11	max	.019	3	.88	3	0	1	0	1	2754.746 15	NC_	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
554			min	013	2	-1.479	1	0	1	0	1	73.24	1	NC	1
555		12	max	.019	3	.803	3	0	1	0	1_	2968.135	15	NC	1
556			min	013	2	-1.341	1	0	1	0	1	79.259	1	NC	1
557		13	max	.018	3	.679	3	0	1	0	1_	3384.85	15	NC	1
558			min	013	2	-1.122	1	0	1	0	1	91.136	1	NC	1
559		14	max	.018	3	.522	3	0	1	0	_1_		15	NC	1
560			min	013	2	851	1	0	1	0	1	111.888	1	NC	1
561		15	max	.017	3	.348	3	0	1	0	<u>1</u>		15	NC	1
562			min	012	2	556	1	0	1	0	1_	148.591	1	NC	1
563		16	max	.017	3	.173	3	0	1	0	1_		15	NC	1
564			min	012	2	267	1	0	1	0	1_		1	NC	1
565		17	max	.016	3	.01	3	0	1	0	<u>1</u>		15	NC	1
566			min	012	2	015	2	0	1	0	1	374.424	1	NC	1
567		18	max	.016	3	.18	1	0	1	0	1_	NC	5	NC	1
568			min	012	2	126	3	0	1	0	1	825.729	1	NC	1
569		19	max	.016	3	.342	1	0	1	0	1	NC	1	NC	1
570			min	012	2	248	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.008	3	.199	1	0	15	1.66e-2	3	NC	1	NC	1
572			min	004	2	042	3	0	1	-1.046e-2	1	NC	1	NC	1
573		2	max	.008	3	.099	1	.006	1	8.24e-3	3	NC	5	NC	1
574			min	004	2	021	3	0	15	-5.051e-3	1	1348.126	1	NC	1
575		3	max	.008	3	.01	3	.009	1	1.868e-4	1	NC	5	NC	1
576			min	004	2	009	2	0	15	-1.448e-5	10	648.837	1	NC	1
577		4	max	.007	3	.061	3	.008	1	3.7e-3	3	NC	15	NC	1
578			min	004	2	13	1	0	15	-4.42e-3	1	409.282	1	NC	1
579		5	max	.007	3	.124	3	.006	1	7.312e-3	3	9816.902	15	NC	1
580			min	004	2	257	1	0	15	-9.027e-3	1	295.033	1	NC	1
581		6	max	.007	3	.192	3	.003	1	1.092e-2	3	7771.344	15	NC	1
582			min	004	2	381	1	0	15	-1.363e-2	1	232.117	1	NC	1
583		7	max	.007	3	.258	3	0	3	1.454e-2	3	6562.284	15	NC	1
584			min	004	2	491	1	0	1	-1.824e-2	1	195.005	1	NC	1
585		8	max	.007	3	.312	3	0	15	1.815e-2	3	5846.242	15	NC	1
586			min	004	2	579	1	0	1	-2.285e-2	1	173.066	1	NC	1
587		9	max	.007	3	.348	3	0	1	1.853e-2	3		15	NC	1
588			min	003	2	634	1	0	15	-2.509e-2	1	161.631	1	NC	1
589		10	max	.006	3	.361	3	0	15	1.674e-2	3		15	NC	1
590			min	003	2	652	1	0	1	-2.574e-2	1	158.204	1	NC	1
591		11	max	.006	3	.352	3	0	15	1.496e-2	3	5471.147	15	NC	1
592			min	003	2	634	1	0	1	-2.639e-2	1	161.858	1	NC	1
593		12	max	.006	3	.323	3	0	1	1.286e-2	3		15	NC	1
594			min		2	577	1	0	15	-2.483e-2			1	NC	1
595		13	max	.006	3	.275	3	0	1	1.029e-2	3		15	NC	1
596			min	003	2	488	1	0	15	-1.998e-2	1	196.649	1	NC	1
597		14	max	.006	3	.214	3	0		7.722e-3	3		15	NC	1
598			min	003	2	376	1	002	1	-1.512e-2	1		1	NC	1
599		15	max	.006	3	.145	3	0	15	5.151e-3	3		15	NC	1
600			min	003	2	251	1	005	1	-1.027e-2	1	302.096	1	NC	1
601		16	max	.006	3	.073	3	0	15	2.58e-3	3		15	NC	1
602		T.	min	003	2	124	1	008	1	-5.413e-3	1	423.92	1	NC	1
603		17	max	.005	3	.004	3	0	15	8.838e-6	3	NC	5	NC	1
604			min	003	2	005	2	008	1	-5.573e-4	1	681.266	1	NC	1
605		18	max	.005	3	.098	1	0	15	2.255e-3	3	NC	5	NC	1
606			min	003	2	059	3	006	1	-6.707e-3	2	1429.674	1	NC	1
607		19	max	.005	3	.191	1	0	1	4.587e-3	3	NC NC	1	NC	1
608		T.,	min	003	2	118	3	0		-1.335e-2	2	NC	1	NC	1
		-			_					Z	_		_		

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.