Computer Vision

Lecture Set 04 Image Features

Huei-Yung Lin

lin@ee.ccu.edu.tw

Robot Vision Lab
Department of Computer Science and Information Engineering
National Taipei University of Technology
Taipei 106, Taiwan

October 23, 2022

Announcements - 10/24/22

- Homework 2 will be given later, due in two weeks (11/7).
- Exam I is scheduled on 11/7, covers up to Lecture Set 04.

Image Features?

Image Features?

Image Features

- Image features in computer vision
 - Global feature A global property of an image. e.g. the average grey value, the area in pixel, etc.
 - ► Local feature A part of the image with some special properties. e.g. a circle, a line, a textured regions, etc.
- Image features (a practical definition): local meaningful detectable parts of the image
 - Points
 - ► Edges: step edges, line edges
 - Contours: closed contours are boundaries
 - Regions: similar color, similar feature, etc.

Image Features

- Image features in computer vision
 - Global feature A global property of an image. e.g. the average grey value, the area in pixel, etc.
 - Local feature A part of the image with some special properties.
 e.g. a circle, a line, a textured regions, etc.
- Image features (a practical definition): local meaningful detectable parts of the image
 - Points
 - Edges: step edges, line edges
 - Contours: closed contours are boundaries
 - Regions: similar color, similar feature, etc.

Remarks

- Most vision systems begin by detecting and locating some features in the input images
- In 3-D vision, feature extraction is an intermediate step, not the goal
 - We do not extract lines just to obtain line maps
 - We extract lines to navigate robots in corridors or for camera calibration
- Feature extraction is for certain purpose of the system
- "Perfect" feature extraction is not necessary (and also not possible?)

Remarks

- Most vision systems begin by detecting and locating some features in the input images
- In 3-D vision, feature extraction is an intermediate step, not the goal
 - We do not extract lines just to obtain line maps
 - We extract lines to navigate robots in corridors or for camera calibration
- Feature extraction is for certain purpose of the system
- "Perfect" feature extraction is not necessary (and also not possible?)

Remarks

- Most vision systems begin by detecting and locating some features in the input images
- In 3-D vision, feature extraction is an intermediate step, not the goal
 - We do not extract lines just to obtain line maps
 - We extract lines to navigate robots in corridors or for camera calibration
- Feature extraction is for certain purpose of the system
- "Perfect" feature extraction is not necessary (and also not possible?)

- Edges typically occur on the boundary between two different regions in an image
- Edge detection is frequently the first step in recovering information from images
- An edge is a significant local change in the intensity
 - Usually associated with a discontinuity in either the image intensity or its first derivative
 - ► The discontinuities can be step or line (ideally)
 - In reality, step becomes ramp and line becomes roof due to the smoothing of sharp edges in most images

- Edges typically occur on the boundary between two different regions in an image
- Edge detection is frequently the first step in recovering information from images
- An edge is a significant local change in the intensity
 - Usually associated with a discontinuity in either the image intensity or its first derivative
 - The discontinuities can be step or line (ideally)
 - In reality, step becomes ramp and line becomes roof due to the smoothing of sharp edges in most images

Edge Detection Scheme

 Edges happen at places where the image values exhibit sharp variation

Edge Detection Scheme

- The basic approach to edge detection is to compute "spatial derivatives" of the intensity image
- The act of taking spatial derivatives is usually approximated by convolution

Gradient

- The gradient is a measure of change in a function
- Significant changes in gray values can be detected by using a "discrete approximation" to the gradient
- The gradient is a 2-D equivalent of the first derivate and is defined as a vector

$$\mathbf{G}[f(x,y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \partial f/\partial x \\ \partial f/\partial y \end{bmatrix}$$

- ▶ The vector G[f(x,y)] points in the direction of the maximum rate of increase of the function f(x,y)
- ► The magnitude of the gradient given by $|\mathbf{G}[f(x,y)]| = \sqrt{G_x^2 + G_y^2}$ equals the maximum rate of increase of f(x,y) per unit distance

Gradient

- The gradient is a measure of change in a function
- Significant changes in gray values can be detected by using a "discrete approximation" to the gradient
- The gradient is a 2-D equivalent of the first derivate and is defined as a vector

$$\mathbf{G}[f(x,y)] = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \partial f/\partial x \\ \partial f/\partial y \end{bmatrix}$$

- ► The vector G[f(x,y)] points in the direction of the maximum rate of increase of the function f(x,y)
- ► The magnitude of the gradient given by $|\mathbf{G}[f(x,y)]| = \sqrt{G_x^2 + G_y^2}$ equals the maximum rate of increase of f(x,y) per unit distance

Approximation of Gradient

 The absolute values are commonly used to approximate the gradient magnitude

$$|\mathbf{G}[f(x,y)]| \approx |G_x| + |G_y|$$
 or $|\mathbf{G}[f(x,y)]| \approx \max(|G_x|, |G_y|)$

• The direction of gradient is define as

$$\alpha(x,y) = \tan^{-1}\left(\frac{G_x}{G_y}\right)$$

- The magnitude of the gradient is "independent" of the direction of the edge
- Such operators are called isotropic operators

Digital Approximation

• For digital images, the gradient approximation can be

$$G_x \approx f[i,j+1] - f[i,j]$$
 $G_y \approx f[i,j] - f[i+1,j]$

Digital Approximation

Simple convolution masks:

▶
$$2 \times 2$$
 and 2×2 :

-1	1	
-1	1	

▶ 3 × 1

$$\frac{df(x)}{dx}$$

$$\frac{df(x)}{dx}$$

$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
$$\approx \frac{f(x+1) - f(x-1)}{2}$$

Convolve with:

- 1D Case
- \bullet I(x)
- $\bullet \ \frac{dI(x)}{dx}$
- No orientation

- 2D
- \bullet I(x,y)

•
$$\nabla I(x,y) = \begin{pmatrix} \frac{\partial I(x,y)}{\partial x} \\ \frac{\partial I(x,y)}{\partial y} \end{pmatrix} = \begin{pmatrix} I_x(x,y) \\ I_y(x,y) \end{pmatrix}$$

- $|\nabla I(x,y)| = \sqrt{I_{(x,y)^2} + I_{y}(x,y)^2} >$ threshold
- $\tan \theta = \frac{I_x(x,y)}{I_y(x,y)}$

- 1D Case
- \bullet I(x)

$$\bullet \ \frac{dI(x)}{dx}$$

•
$$\left| \frac{dI(x)}{dx} \right| >$$
threshold

No orientation

- 2D
- \bullet I(x,y)

•
$$\nabla I(x,y) = \begin{pmatrix} \frac{\partial I(x,y)}{\partial x} \\ \frac{\partial I(x,y)}{\partial y} \end{pmatrix} = \begin{pmatrix} I_x(x,y) \\ I_y(x,y) \end{pmatrix}$$

- $|\nabla I(x,y)| = \sqrt{I_{(x,y)^2} + I_{y}(x,y)^2} >$ threshold
- $\tan \theta = \frac{I_x(x,y)}{I_y(x,y)}$

- 1D Case
- \bullet I(x)
- $\bullet \ \frac{dI(x)}{dx}$
- $\left| \frac{dI(x)}{dx} \right| > threshold$
- No orientation

- 2D
- \bullet I(x,y)

•
$$\nabla I(x,y) = \begin{pmatrix} \frac{\partial I(x,y)}{\partial x} \\ \frac{\partial I(x,y)}{\partial y} \end{pmatrix} = \begin{pmatrix} I_x(x,y) \\ I_y(x,y) \end{pmatrix}$$

•
$$|\nabla I(x,y)| = \sqrt{I_{(x,y)^2} + I_{y}(x,y)^2} >$$
 threshold

•
$$\tan \theta = \frac{I_x(x,y)}{I_y(x,y)}$$

- Vertical edges:
 - Convolve with

-1 0 1

- Horizontal edges:
 - Convolve with

- Edge position or center
 - The image position at which the edge is located
 - Usually saved in a binary image (1 : edge, 0 : no edge)
- Edge normal
 - ► The direction (unit vector) of the maximum intensity variation at the edge point
 - This identifies the direction perpendicular to the edge
- Edge direction
 - ► The direction perpendicular to the edge normal
 - ► This identifies the direction tangent to the edge
- Edge strength
 - ➤ A measure of the local image contrast; i.e., how marked the intensity variation is across the edge along the normal

- Edge position or center
 - The image position at which the edge is located
 - Usually saved in a binary image (1 : edge, 0 : no edge)
- Edge normal
 - The direction (unit vector) of the maximum intensity variation at the edge point
 - ► This identifies the direction perpendicular to the edge
- Edge direction
 - ► The direction perpendicular to the edge normal
 - ► This identifies the direction tangent to the edge
- Edge strength
 - ➤ A measure of the local image contrast; i.e., how marked the intensity variation is across the edge along the normal

- Edge position or center
 - The image position at which the edge is located
 - Usually saved in a binary image (1 : edge, 0 : no edge)
- Edge normal
 - The direction (unit vector) of the maximum intensity variation at the edge point
 - This identifies the direction perpendicular to the edge
- Edge direction
 - The direction perpendicular to the edge normal
 - ► This identifies the direction tangent to the edge
- Edge strength
 - ► A measure of the local image contrast; i.e., how marked the intensity variation is across the edge along the normal

- Edge position or center
 - The image position at which the edge is located
 - Usually saved in a binary image (1 : edge, 0 : no edge)
- Edge normal
 - The direction (unit vector) of the maximum intensity variation at the edge point
 - ► This identifies the direction perpendicular to the edge
- Edge direction
 - The direction perpendicular to the edge normal
 - ▶ This identifies the direction tangent to the edge
- Edge strength
 - A measure of the local image contrast; i.e., how marked the intensity variation is across the edge along the normal

- Noise smoothing (filtering)
 - Suppress noise without destroying the true edges
- Edge enhancement
 - Design a filter responding to edges
 - Usually performed by computing gradient magnitude
- Edge localization
 - ► Thinning (non-maximum suppression)
 - Thresholding (used to decide whether the output is an edge point or not)
- Some Assumptions
 - The edge enhancement filter is linear
 - The filter must be optimal for noisy step edge
 - ► The image noise is additive, white and Gaussian

- Noise smoothing (filtering)
 - Suppress noise without destroying the true edges
- Edge enhancement
 - Design a filter responding to edges
 - Usually performed by computing gradient magnitude
- Edge localization
 - ► Thinning (non-maximum suppression)
 - Thresholding (used to decide whether the output is an edge point or not)
- Some Assumptions
 - The edge enhancement filter is linear
 - The filter must be optimal for noisy step edge
 - ▶ The image noise is additive, white and Gaussian

- Noise smoothing (filtering)
 - Suppress noise without destroying the true edges
- Edge enhancement
 - Design a filter responding to edges
 - Usually performed by computing gradient magnitude
- Edge localization
 - ► Thinning (non-maximum suppression)
 - Thresholding (used to decide whether the output is an edge point or not)
- Some Assumptions
 - The edge enhancement filter is linear
 - The filter must be optimal for noisy step edge
 - ► The image noise is additive, white and Gaussian

- Noise smoothing (filtering)
 - Suppress noise without destroying the true edges
- Edge enhancement
 - Design a filter responding to edges
 - Usually performed by computing gradient magnitude
- Edge localization
 - Thinning (non-maximum suppression)
 - Thresholding (used to decide whether the output is an edge point or not)
- Some Assumptions
 - The edge enhancement filter is linear
 - The filter must be optimal for noisy step edge
 - ► The image noise is additive, white and Gaussian

- Noise smoothing (filtering)
 - Suppress noise without destroying the true edges
- Edge enhancement
 - Design a filter responding to edges
 - Usually performed by computing gradient magnitude
- Edge localization
 - Thinning (non-maximum suppression)
 - Thresholding (used to decide whether the output is an edge point or not)
- Some Assumptions
 - The edge enhancement filter is linear
 - The filter must be optimal for noisy step edge
 - ▶ The image noise is additive, white and Gaussian

Noise Suppression

- The differential kernels act as "high pass filters" which tend to amplify noise
- This is why edge detection is usually preceded by a noise reduction or filtering operation

Noise Smoothing & Edge Detection

- Prewitt Edge Detector (vertical)
 - Convolve with:

Convoi	ve wit	n:	ing
-1	0	1	Smoothing
-1	0	1	
-1	0	1	Noise
			Z

Vertical Edge Detection

- Prewitt Edge Detector (horizontal)
 - Convolve with:

0	0	0
1	1	1

Noise Smoothing

Horizontal Edge Detection

Roberts Detector

$$\bullet \ G_x: \begin{array}{c|c} +1 & 0 \\ \hline 0 & -1 \end{array}$$

$$G_y$$
: $\begin{bmatrix} 0 & +1 \\ -1 & 0 \end{bmatrix}$

$$\bullet |G| = \sqrt{G_x^2 + G_y^2}$$

Roberts Detector

• The Roberts detector gives an approximation to the continuous gradient at [i + 1/2, j + 1/2]. (not at [i,j], why?)

Sobel Detector

- Sobel detector gives more weight to the 4-neighbors
- Emphasize the pixels closer to the center of the mask (compare with Prewitt!)

	-7	0	7
\bullet G_x :	-2	0	2
	-1	0	1

 $G_y: egin{array}{c|cccc} -1 & -2 & -1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 2 & 1 \\ \hline \end{array}$

$$\bullet \ \theta = \tan^{-1} \frac{G_y}{G_x}$$

Sobel Detector

 Sobel operator is one of the most commonly used edge detector (See handout for how it is derived)

Examples

Examples

The Canny Principle

- Canny derived the form of the "optimal" linear filter for detecting edges in 1-D
 - Noise smoothing
 - Edge enhancement
 - Edge localization
- The edge was modeled as a simple step corrupted by additive Gaussian noise
- Experiments consistently show that it performs very well
- Probably the most used by computer vision practitioners

The Canny Principle

- Canny derived the form of the "optimal" linear filter for detecting edges in 1-D
 - Noise smoothing
 - Edge enhancement
 - Edge localization
- The edge was modeled as a simple step corrupted by additive Gaussian noise
- Experiments consistently show that it performs very well
- Probably the most used by computer vision practitioners

- Detection the important edges should not be missed and there should be no spurious responses
- Localization the distance between the actual and located position of the edge should be minimal
- Single response minimize multiple responses to a single edge
 - This is partly covered by the first criterion (since if there are two responses to a single edge, one of them should be considered as false)
 - ► This criterion solves the problem of an edge corrupted by noise
- Canny Edge Detector
 - Uses a mathematical model of the edge and the noise
 - Formalizes a performance criteria
 - Synthesizes the best filter

- Detection the important edges should not be missed and there should be no spurious responses
- Localization the distance between the actual and located position of the edge should be minimal
- Single response minimize multiple responses to a single edge
 - This is partly covered by the first criterion (since if there are two responses to a single edge, one of them should be considered as false)
 - ► This criterion solves the problem of an edge corrupted by noise
- Canny Edge Detector
 - Uses a mathematical model of the edge and the noise
 - Formalizes a performance criteria
 - Synthesizes the best filter

- Detection the important edges should not be missed and there should be no spurious responses
- Localization the distance between the actual and located position of the edge should be minimal
- Single response minimize multiple responses to a single edge
 - This is partly covered by the first criterion (since if there are two responses to a single edge, one of them should be considered as false)
 - ► This criterion solves the problem of an edge corrupted by noise
- Canny Edge Detector
 - Uses a mathematical model of the edge and the noise
 - Formalizes a performance criteria
 - Synthesizes the best filter

- Detection the important edges should not be missed and there should be no spurious responses
- Localization the distance between the actual and located position of the edge should be minimal
- Single response minimize multiple responses to a single edge
 - This is partly covered by the first criterion (since if there are two responses to a single edge, one of them should be considered as false)
 - ► This criterion solves the problem of an edge corrupted by noise
- Canny Edge Detector
 - Uses a mathematical model of the edge and the noise
 - Formalizes a performance criteria
 - Synthesizes the best filter

- Detection the important edges should not be missed and there should be no spurious responses
- Localization the distance between the actual and located position of the edge should be minimal
- Single response minimize multiple responses to a single edge
 - This is partly covered by the first criterion (since if there are two responses to a single edge, one of them should be considered as false)
 - ▶ This criterion solves the problem of an edge corrupted by noise
- Canny Edge Detector
 - Uses a mathematical model of the edge and the noise
 - Formalizes a performance criteria
 - Synthesizes the best filter

- Good detection
 - The filter must have a stronger response at the edge location (x = 0) than to noise
- Good localization
 - ▶ The filter response must be maximum very close to x = 0
- Low false positives
 - ▶ There should be only one maximum in a reasonable neighborhood of x = 0

- Good detection
 - ► The filter must have a stronger response at the edge location (x = 0) than to noise
- Good localization
 - ▶ The filter response must be maximum very close to x = 0
- Low false positives
 - There should be only one maximum in a reasonable neighborhood of x = 0

- Good detection
 - ► The filter must have a stronger response at the edge location (x = 0) than to noise
- Good localization
 - ► The filter response must be maximum very close to x = 0
- Low false positives
 - There should be only one maximum in a reasonable neighborhood of x = 0

- Good detection
 - The filter must have a stronger response at the edge location (x = 0) than to noise
- Good localization
 - ▶ The filter response must be maximum very close to x = 0
- Low false positives
 - ▶ There should be only one maximum in a reasonable neighborhood of x = 0

- Canny found a linear, continuous filter that maximized the three given criteria
 - There is no close-form solution for the optimal filter
 - However, it looks "very similar" to the first derivative of a Gaussian (DoG)
- Strictly speaking, Canny's filter was derived in the context of 1-D profiles
 - To extend them to 2-D images we can run the filter at several different orientations in the image and detect edge elements at all orientations
- Canny Approximation
 - Smooth image with Gaussian
 - ► Compute the derivatives in *x* and *y* directions
 - Perform non-maximal suppression and sub-pixel interpolation using edge strength and direction values
 - Perform edge linking / hysteresis thresholding

- Canny found a linear, continuous filter that maximized the three given criteria
 - There is no close-form solution for the optimal filter
 - However, it looks "very similar" to the first derivative of a Gaussian (DoG)
- Strictly speaking, Canny's filter was derived in the context of 1-D profiles
 - To extend them to 2-D images we can run the filter at several different orientations in the image and detect edge elements at all orientations
- Canny Approximation
 - Smooth image with Gaussian
 - ► Compute the derivatives in *x* and *y* directions
 - Perform non-maximal suppression and sub-pixel interpolation using edge strength and direction values
 - Perform edge linking / hysteresis thresholding

- Canny found a linear, continuous filter that maximized the three given criteria
 - There is no close-form solution for the optimal filter
 - However, it looks "very similar" to the first derivative of a Gaussian (DoG)
- Strictly speaking, Canny's filter was derived in the context of 1-D profiles
 - To extend them to 2-D images we can run the filter at several different orientations in the image and detect edge elements at all orientations
- Canny Approximation
 - Smooth image with Gaussian
 - Compute the derivatives in x and y directions
 - Perform non-maximal suppression and sub-pixel interpolation using edge strength and direction values
 - Perform edge linking / hysteresis thresholding

1-D Gaussian

1-D Gaussian with zero mean is given by

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

Ignore the scale factor,

$$g(x) = e^{-\frac{x^2}{2\sigma^2}}$$

The first derivative of Gaussian is given by

$$g'(x) = -\frac{1}{2\sigma^2} 2xe^{-\frac{x^2}{2\sigma^2}} = -\frac{x^2}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$$

Another Interpretation

$$E(x) = \frac{d(I(x) * G(x))}{dx} = I(x) * \frac{dG(x)}{dx}$$

- 1-D
- First derivative

•
$$E(x) = \frac{d(I(x) * G(x))}{dx}$$

- Absolute value
- $|E(x)| \geq Th$

- 2-D
- Gradient vector
- $E(x, y) = \nabla(I(x, y) * G(x, y))$
- Magnitude
- \bullet $|E(x)| \ge Th$

CANNY_ENHANCER

- The input is image I; G is a zero mean Gaussian filter with standard derivation σ
 - ▶ J = I * G (smoothing)
 - ► For each pixel (*i*, *j*): (edge enhancement)
 - ★ Compute the image gradient: $\nabla J(i,j) = (J_x(i,j), J_y(i,j))$
 - ***** Estimate edge strength: $e_s(i,j) = \sqrt{J_x^2(i,j) + J_y^2(i,j)}$
 - ★ Estimate edge orientation: $e_o = \tan^{-1} \frac{J_x(i,j)}{J_y(i,j)}$
- The output are images E_s and E_o (edge strength and edge orientation)
- The output image E_s has the magnitudes of the smoothed gradient
- ullet σ determines the amount of smoothing
- \bullet E_s has large values at edges

CANNY_ENHANCER

- The input is image I; G is a zero mean Gaussian filter with standard derivation σ
 - ▶ J = I * G (smoothing)
 - ► For each pixel (*i*, *j*): (edge enhancement)
 - ★ Compute the image gradient: $\nabla J(i,j) = (J_x(i,j), J_y(i,j))$
 - ***** Estimate edge strength: $e_s(i,j) = \sqrt{J_x^2(i,j) + J_y^2(i,j)}$
 - ★ Estimate edge orientation: $e_o = \tan^{-1} \frac{J_x(i,j)}{J_y(i,j)}$
- The output are images E_s and E_o (edge strength and edge orientation)
- The output image E_s has the magnitudes of the smoothed gradient
- ullet σ determines the amount of smoothing
- E_s has large values at edges

Edge Detection

- *E_s* has large values at edges:
 - Find local maxima

 But it also may have wide ridges around the local maxima (large value around the edges)

Non-Maximal Suppression

- One approach to overcoming the problem of edge thickening is to explicitly look for maxima of the response to the edge enhancement filter
- Sub-pixel Localization
 - One can try to further localize the position of the edge within a pixel by analyzing the response to the edge enhancement filter
 - One common approach is to fit a "quadratic polynomial" to the filter response in the region of a maxima and compute the true maximum
 - Let $y(x) = ax^2 + bx + c$ and perform interpolation to find max or min

Non-Maximal Suppression

- One approach to overcoming the problem of edge thickening is to explicitly look for maxima of the response to the edge enhancement filter
- Sub-pixel Localization
 - One can try to further localize the position of the edge within a pixel by analyzing the response to the edge enhancement filter
 - One common approach is to fit a "quadratic polynomial" to the filter response in the region of a maxima and compute the true maximum
 - Let $y(x) = ax^2 + bx + c$ and perform interpolation to find max or min

NONMAX_SUPPRESSION

- The inputs are E_s and E_o (outputs of CANNY_ENHANCER)
- Consider 4 directions $D = \{0, 45, 90, 135 \text{ degrees}\}$ with respect to horizontal axis image reference frame
- For each pixel (i,j) do:
 - ▶ Find the direction $d \in D$ such that $d \approx E_o(i,j)$ (normal to the edge)
 - ▶ If $E_s(i,j)$ smaller than at least one of its neighbors along d
 - ★ $I_N(i,j) = 0$ (suppression)
 - **★** Otherwise, $I_N(i,j) = E_s(i,j)$
- The output is the thinned edge image I_N

Graphical Interpretation

Edge Linking

- The output of the edge enhancement stage is a binary array indicating the locations of edgels (edge elements) in the image
- The edge linking stage attempts to group these discrete elements into chains much like stringing pearls
- Problems in edge linking:
 - Edges can be broken because of low contrast
 - Junctions can cause major problems since the edge enhancement procedure tends to fail in these situations and the linker can become confused

Thresholding

- Edges are found by thresholding the output of NONMAX_SUPRESSION
- If the threshold is too high: Very few (none) edges
 - High misdetections
 - Many gaps
- If the threshold is too low: Too many (all pixels) edges
 - High false positives
 - Many extra edges

Hysteresis Thresholding

- Canny proposed an approach to dealing with broken edge chains in the linking phase
- The idea is to maintain two thresholds on edge strength one for starting a chain and a lower one for use during linking
- In this way the linker will work well even when a chain has some low contrast sections

Solution

- Hysteresis Thresholding
- "Strong edges" reinforce adjacent "weak edges"

HYSTERESIS_THRESH

- Inputs:
 - ► *I*_N (output of NONMAX_SUPRESSION)
 - ▶ E_o (output of CANNY_ENHANCER)
 - ▶ Thresholds L and H
- Scanning all edge points in I_N in a fixed order:
 - ▶ Locate the next unvisited pixel such that $I_N(i,j) > H$
 - Starting from $I_N(i,j)$, follow the chains of connected local maxima, in both directions perpendicular to the edge normal, as long as $I_N > L$; Mark all visited points, and save the location of the contour points
- Output:
 - A set of lists describing the contours

Hysteresis Thresholding

Algorithm: Canny Edge Detector

- ullet Convolve an image f with a Gaussian of scale σ
- Estimate local edge normal directions n for each pixel in the image
- Find the location of the edges (non-maximal suppression)
- Compute the magnitude of the edge
- Threshold edges in the image with hysteresis to eliminate spurious responses
- Repeat steps 1. through 5. for ascending values of the standard deviation σ
- Aggregate the final information about edges at multiple scale using the "feature synthesis" approach

Algorithm: Canny Edge Detector

- ullet Convolve an image f with a Gaussian of scale σ
- ullet Estimate local edge normal directions n for each pixel in the image
- Find the location of the edges (non-maximal suppression)
- Compute the magnitude of the edge
- Threshold edges in the image with hysteresis to eliminate spurious responses
- Repeat steps 1. through 5. for ascending values of the standard deviation σ
- Aggregate the final information about edges at multiple scale using the "feature synthesis" approach

Algorithm: Canny Edge Detector

- ullet Convolve an image f with a Gaussian of scale σ
- Estimate local edge normal directions *n* for each pixel in the image
- Find the location of the edges (non-maximal suppression)
- Compute the magnitude of the edge
- Threshold edges in the image with hysteresis to eliminate spurious responses
- Repeat steps 1. through 5. for ascending values of the standard deviation σ
- Aggregate the final information about edges at multiple scale using the "feature synthesis" approach

- ullet Convolve an image f with a Gaussian of scale σ
- Estimate local edge normal directions *n* for each pixel in the image
- Find the location of the edges (non-maximal suppression)
- Compute the magnitude of the edge
- Threshold edges in the image with hysteresis to eliminate spurious responses
- Repeat steps 1. through 5. for ascending values of the standard deviation σ
- Aggregate the final information about edges at multiple scale using the "feature synthesis" approach

- ullet Convolve an image f with a Gaussian of scale σ
- Estimate local edge normal directions *n* for each pixel in the image
- Find the location of the edges (non-maximal suppression)
- Compute the magnitude of the edge
- Threshold edges in the image with hysteresis to eliminate spurious responses
- Repeat steps 1. through 5. for ascending values of the standard deviation σ
- Aggregate the final information about edges at multiple scale using the "feature synthesis" approach

- ullet Convolve an image f with a Gaussian of scale σ
- Estimate local edge normal directions *n* for each pixel in the image
- Find the location of the edges (non-maximal suppression)
- Compute the magnitude of the edge
- Threshold edges in the image with hysteresis to eliminate spurious responses
- Repeat steps 1. through 5. for ascending values of the standard deviation σ
- Aggregate the final information about edges at multiple scale using the "feature synthesis" approach

- ullet Convolve an image f with a Gaussian of scale σ
- Estimate local edge normal directions *n* for each pixel in the image
- Find the location of the edges (non-maximal suppression)
- Compute the magnitude of the edge
- Threshold edges in the image with hysteresis to eliminate spurious responses
- Repeat steps 1. through 5. for ascending values of the standard deviation σ
- Aggregate the final information about edges at multiple scale using the "feature synthesis" approach

Example

Threshold = 0.1, σ = 1

Threshold = 0.3, σ = 1

Threshold = 0.1, σ = 2.8

Threshold = 0.3, σ = 2.8

Disclaimer

- No edge detection scheme is going to work perfectly in all cases
- This is due to the fact that our notion of what constitutes a salient edge in the image is actually somewhat subtle

Detecting Corners

- We are often interested in detecting point features in an image
- These features are usually defined as regions in the image where there is significant edge strength in two or more directions
- They can be used for
 - Object tracking
 - ▶ 3D triangulation (stereo)
 - Object recognition
- Need two strong edges
- If E_x and E_y denote the gradients of the image in the x and y
 directions, then the behavior of the gradients in a region around a
 point can be obtained by considering the following matrix

$$C = \sum \begin{pmatrix} E_x \\ E_y \end{pmatrix} \begin{pmatrix} E_x & E_y \end{pmatrix} = \sum \begin{pmatrix} E_x^2 & E_x E_y \\ E_x E_y & E_y^2 \end{pmatrix}$$

Detecting Corners

- We are often interested in detecting point features in an image
- These features are usually defined as regions in the image where there is significant edge strength in two or more directions
- They can be used for
 - Object tracking
 - ▶ 3D triangulation (stereo)
 - Object recognition
- Need two strong edges
- If E_x and E_y denote the gradients of the image in the x and y
 directions, then the behavior of the gradients in a region around a
 point can be obtained by considering the following matrix

$$C = \sum \begin{pmatrix} E_x \\ E_y \end{pmatrix} \begin{pmatrix} E_x & E_y \end{pmatrix} = \sum \begin{pmatrix} E_x^2 & E_x E_y \\ E_x E_y & E_y^2 \end{pmatrix}$$

Examining The Matrix

- One way to decide on the presence of a corner is to look at the eigenvalues of the 2 × 2 matrix C
 - If the area is a region of "constant intensity" we would expect both eigenvalues to be small (or zero)
 - If it contains a edge we expect one large eigenvalue and one small one
 - If it contains edges at two or more orientations we expect two large eigenvalues
- If $\min(\lambda_1, \lambda_2) > T$, then there is a corner!

Finding Corner

- One approach to finding corners is to find locations where the smaller eigenvalue is greater than some threshold
- We could also consider the ratio of the two eigenvalues
- Issues:
 - Localization It can be difficult to precisely localize the corner in the intensity image
 - Modeling It can be helpful to have a model of the corners you are trying to find in order to detect and localize them more systematically

Finding Corner

- One approach to finding corners is to find locations where the smaller eigenvalue is greater than some threshold
- We could also consider the ratio of the two eigenvalues
- Issues:
 - Localization It can be difficult to precisely localize the corner in the intensity image
 - Modeling It can be helpful to have a model of the corners you are trying to find in order to detect and localize them more systematically

Corner Detection

- Compute image gradient
- For each $m \times m$ neighborhood, compute matrix C
- If smaller eigenvalue λ_2 is greater than threshold τ , record a corner
- Non-maximum suppression: only keep strongest corner in each m × m window

Corner Detection Results

Checkerboard with noise

Corner Detection Results

Histogram of λ_2 (smaller eigenvalues)

Detecting Lines

- The difference between line detection and edge detection:
 - Edges = local
 - Lines = non-local
- Line detection usually performed on the output of an edge detector
- Several different approaches:
 - For each possible line, check whether the line is present: "brute force"
 - ► Given detected edges, record lines to which they might belong: "Hough transform + voting"
 - Given guess for approximate location of a line, refine that guess: "fitting"
- Second method (Hough transform) is efficient for finding unknown lines, but not always accurate

Detecting Lines

- The difference between line detection and edge detection:
 - Edges = local
 - Lines = non-local
- Line detection usually performed on the output of an edge detector
- Several different approaches:
 - For each possible line, check whether the line is present: "brute force"
 - Given detected edges, record lines to which they might belong: "Hough transform + voting"
 - Given guess for approximate location of a line, refine that guess: "fitting"
- Second method (Hough transform) is efficient for finding unknown lines, but not always accurate

Detecting Lines

- The difference between line detection and edge detection:
 - Edges = local
 - Lines = non-local
- Line detection usually performed on the output of an edge detector
- Several different approaches:
 - For each possible line, check whether the line is present: "brute force"
 - Given detected edges, record lines to which they might belong: "Hough transform + voting"
 - Given guess for approximate location of a line, refine that guess: "fitting"
- Second method (Hough transform) is efficient for finding unknown lines, but not always accurate

Mathematical model of a line:

$$y_1 = mx_1 + n$$

$$y_2 = mx_2 + n$$

$$\vdots$$

$$v_N = mx_N + n$$

Mathematical model of a line:

$$y_1 = mx_1 + n$$

$$y_2 = mx_2 + n$$

$$\vdots$$

$$y_N = mx_N + n$$

Mathematical model of a line:

$$y_1 = mx_1 + n$$

$$y_2 = mx_2 + n$$

-

$$y_N = mx_N + r$$

Mathematical model of a line:

$$y_1 = mx_1 + n$$

$$y_2 = mx_2 + n$$

:

$$y_N = mx_N + r$$

Mathematical model of a line:

$$y_1 = mx_1 + n$$

$$y_2 = mx_2 + n$$

:

$$y_N = mx_N + n$$

$$y_1 = m'x_1$$

$$y_2 = m'x_2$$

$$\vdots$$

$$y_N = m'x_N$$
Image Space

$$y_N = mx_N + n$$

$$y_1 = m'x_1 + n'$$

$$y_2 = m'x_2 + n'$$

$$\vdots$$

$$y_N = m'x_N + n'$$

Image Space

Parameter Space

Line in Image Space \sim Point in Parameter Space

 $y_1 = mx_1 + n$

 $y_2 = mx_2 + n$

$$y_{1} = mx_{1} + n$$

$$y_{2} = mx_{2} + n$$

$$\vdots$$

$$y_{N} = mx_{N} + n$$

$$y_{1} = m'x_{1} + n'$$

$$y_{2} = m'x_{2} + n'$$

$$\vdots$$

$$y_{N} = m'x_{N} + n'$$

Image Space

Parameter Space

Line in Image Space ~ Point in Parameter Space

$$y_{1} = mx_{1} + n$$

$$y_{2} = mx_{2} + n$$

$$\vdots$$

$$y_{N} = mx_{N} + n$$

$$y_{1} = m'x_{1} + n'$$

$$y_{2} = m'x_{2} + n'$$

$$\vdots$$

$$y_{N} = m'x_{N} + n'$$

Image Space

Parameter Space

Line in Image Space ~ Point in Parameter Space

$$y_{1} = mx_{1} + n$$

$$y_{2} = mx_{2} + n$$

$$\vdots$$

$$y_{N} = mx_{N} + n$$

$$y_{1} = m'x_{1} + n'$$

$$y_{2} = m'x_{2} + n'$$

$$\vdots$$

$$y_{N} = m'x_{N} + n'$$

Image Space

Parameter Space

Line in Image Space ∼ Point in Parameter Space

Looking at it Backwards ...

Image Space

Fix
$$(m, n)$$
, vary (x, y) – Line
Fix (x_1, y_1) , vary (m, n) – Lines through a Point

$$y = mx + n$$
$$y_1 = mx_1 + n$$

Looking at it Backwards ...

Parameter Space

The line
$$y_1 = mx_1 + n$$
 can be re-written as:
Fix $(-x_1, y_1)$, vary (m, n) – Line

$$n = -x_1 m + y_1$$
$$n = -x_1 m + y_1$$

Image Space

- Lines
- Points
- Collinear points

Parameter Space

- Points
- Lines
- Intersecting lines

This is called duality!

Hough Transform

- General idea: transform from image coordinates to parameter space of features
 - Map a difficult pattern problem into a simple peak detection problem
 - Need parameterized model of features
 - For each pixel, determine all parameter values that might have given rise to that pixel; vote
 - At end, look for peaks in parameter space
- This approach is a voting scheme based on accumulating evidence in a parameter space

Hough Transform

- General idea: transform from image coordinates to parameter space of features
 - Map a difficult pattern problem into a simple peak detection problem
 - Need parameterized model of features
 - For each pixel, determine all parameter values that might have given rise to that pixel; vote
 - At end, look for peaks in parameter space
- This approach is a voting scheme based on accumulating evidence in a parameter space

Hough Transform for Lines

- Each input measurement indicates its contribution to a globally consistent solution
- Here this problem is under constrained

• Generic line: y = ax + b

▶ Parameters: *a* and *b*

Hough Transform for Lines

- Given an edge point, there is an infinite number of lines passing through it (vary m and n)
- These lines can be represented as a line in parameter space

Image Space

Parameter Space

Hough Transform for Lines

- Given a set of collinear edge points, each of them have associated a line in parameter spaces
- These lines intersect at the point (m, n) corresponding to the parameters of the line in the image space

Image Space

Parameter Space

Hough Transform Technique

- At each point of the (discrete) parameter space, count how many lines pass through it
 - Use an array of counters
 - Can be thought as a "parameter image"
- The higher the count, the more edges are collinear in the image space
 - Find a peak in the counter array
 - ► This is a "bright" point in the parameter image
 - It can be found by thresholding
- Practical Issues
 - ▶ The slope of the line is $-\infty < m < \infty$
 - ★ The parameter space is infinite
 - The representation y = mx + n does not express lines of the form x = k

Hough Transform Technique

- At each point of the (discrete) parameter space, count how many lines pass through it
 - Use an array of counters
 - Can be thought as a "parameter image"
- The higher the count, the more edges are collinear in the image space
 - Find a peak in the counter array
 - ► This is a "bright" point in the parameter image
 - It can be found by thresholding
- Practical Issues
 - ▶ The slope of the line is $-\infty < m < \infty$
 - ★ The parameter space is infinite
 - The representation y = mx + n does not express lines of the form x = k

Solution

• Use the "normal" equation of a line:

$$\rho = x\cos\theta + y\sin\theta$$

 θ is the line orientation ρ is the distance between the origin and the line

New Parameter Space

- Use the parameter space (ρ, θ)
- The new space is finite
 - $0 < \rho < D$, where *D* is the image diagonal
 - ▶ $0 < \theta < 2\pi$
- The new space can represent all lines
 - y = k is represented with $\rho = k, \theta = 90^{\circ}$
 - x = k is represented with $\rho = k, \theta = 0^{\circ}$
- A point in image space is now represented as a sinusoid

New Parameter Space

- Use the parameter space (ρ, θ)
- The new space is finite
 - ▶ $0 < \rho < D$, where D is the image diagonal
 - $ightharpoonup 0 < \theta < 2\pi$
- The new space can represent all lines
 - y = k is represented with $\rho = k, \theta = 90^{\circ}$
 - x = k is represented with $\rho = k, \theta = 0^{\circ}$
- A point in image space is now represented as a sinusoid

Hough Transform Algorithm

- Input is an edge image (E(i,j) = 1 for edgels)
 - ▶ Discretize θ and ρ in increments of θ_d and ρ_d
 - Let A(R,T) be an array of integer accumulators, initialized to 0
 - For each pixel E(i,j) = 1 and h = 1, 2, ..., T do

 - ★ Find closest integer k of the element of ρ_d , corresponding to ρ
 - ★ Increment counter A(h, k) by one
 - ▶ Find all local maxima in A(R,T) > threshold
- Output is a set of pairs (ρ_d, θ_d) describing the lines detected in E in polar form

Hough Transform Speed Up

- If we know the orientation of the edge usually available from the edge detection step
 - We fix θ in the parameter space and increment only one counter!
 - We can allow for orientation uncertainty by incrementing a few counters around the "nominal" counter

Active or Deformable Contours

- How to fit a curve of arbitrary shape to a set of image edge points? (restricted to closed contours only)
- General closed curves can be represented by snake (also called active contour or deformable contour)
- Deformable models represent
 - Class of objects of differing shape (bananas)
 - Objects which change shape (such as lips)
- Deformable models may be
 - ▶ 3D surface, (a balloon squeezed out of shape)
 - ▶ 3D space curves, which we bend to form figures
 - ▶ 2D contours, e.g. the Snake

Active or Deformable Contours

- How to fit a curve of arbitrary shape to a set of image edge points? (restricted to closed contours only)
- General closed curves can be represented by snake (also called active contour or deformable contour)
- Deformable models represent
 - Class of objects of differing shape (bananas)
 - Objects which change shape (such as lips)
- Deformable models may be
 - 3D surface, (a balloon squeezed out of shape)
 - 3D space curves, which we bend to form figures
 - 2D contours, e.g. the Snake

Deformable Contours

Goal

- Start with image and initial closed curve
- Evolve curve to lie along "important" feature: Edges, Corners,
 Detected features, User input
- The concept of a snake applied to computer vision
 - It is an elastic band of arbitrary shape
 - It is sensitive to the image gradient
 - Initially it is located near the image contour of interest
 - ► It can wiggle in the image
 - It is represented as a necklace of points
 - It is then attracted towards the target contour by forces depending on the intensity gradient

Deformable Contours

Goal

- Start with image and initial closed curve
- ► Evolve curve to lie along "important" feature: Edges, Corners, Detected features, User input
- The concept of a snake applied to computer vision
 - It is an elastic band of arbitrary shape
 - It is sensitive to the image gradient
 - Initially it is located near the image contour of interest
 - It can wiggle in the image
 - It is represented as a necklace of points
 - It is then attracted towards the target contour by forces depending on the intensity gradient

- Introduced by Kass, Witkin, and Terzopoulos
- Framework: energy minimization
 - Bending and stretching curve = more energy
 - Good features = less energy
 - Curve evolves to minimize energy
- The key idea of deformable contour
 - To associate an energy functional to each possible contour shape such that the image contour to be detected corresponds to a minimum of functional
 - The snake is applied to the intensity image
 - Other curve fitting algorithms are applied to edge points

Snake

- User-Visible Options
 - Initialization: user-specified, automatic
 - Curve properties: continuity, smoothness
 - Image features: intensity, edges, corners, ...
 - Other forces: hard constraints, springs, attractors, ...
 - Scale: local, multi-resolution, global
- Behind-the-Scenes Options
 - Framework: energy minimization, forces acting on curve
 - Curve representation: ideal curve, sampled, spline, implicit function
 - ► Evolution method: calculus of variations, numerical differential equations, local search

Snake

- User-Visible Options
 - Initialization: user-specified, automatic
 - Curve properties: continuity, smoothness
 - Image features: intensity, edges, corners, ...
 - Other forces: hard constraints, springs, attractors, ...
 - Scale: local, multi-resolution, global
- Behind-the-Scenes Options
 - Framework: energy minimization, forces acting on curve
 - Curve representation: ideal curve, sampled, spline, implicit function
 - Evolution method: calculus of variations, numerical differential equations, local search

Main Idea

- "Drop" a snake
- Let the snake "wiggle" attracted by image gradient, until it glues itself against a contour

Introductory Demo

- Active contour models may be used in image segmentation and understanding, and are also suitable for analysis of dynamic image data or 3D image data
- It is defined as an energy-minimizing spline the snake's energy depends on its shape and location within the image
- Local minima of this energy then correspond to desired image properties
- The snake is active, always minimizing its energy functional, therefore exhibiting dynamic behavior
- The idea behind deformable contours is to find a contour c(s) which best approximates the perimeter of an object
- The approach is to construct an energy functional which measures the appropriateness of a contour and to optimize this functional with respect to the contour parameters

- Active contour models may be used in image segmentation and understanding, and are also suitable for analysis of dynamic image data or 3D image data
- It is defined as an energy-minimizing spline the snake's energy depends on its shape and location within the image
- Local minima of this energy then correspond to desired image properties
- The snake is active, always minimizing its energy functional, therefore exhibiting dynamic behavior
- The idea behind deformable contours is to find a contour c(s) which best approximates the perimeter of an object
- The approach is to construct an energy functional which measures the appropriateness of a contour and to optimize this functional with respect to the contour parameters

- Active contour models may be used in image segmentation and understanding, and are also suitable for analysis of dynamic image data or 3D image data
- It is defined as an energy-minimizing spline the snake's energy depends on its shape and location within the image
- Local minima of this energy then correspond to desired image properties
- The snake is active, always minimizing its energy functional, therefore exhibiting dynamic behavior
- The idea behind deformable contours is to find a contour c(s) which best approximates the perimeter of an object
- The approach is to construct an energy functional which measures the appropriateness of a contour and to optimize this functional with respect to the contour parameters

- Active contour models may be used in image segmentation and understanding, and are also suitable for analysis of dynamic image data or 3D image data
- It is defined as an energy-minimizing spline the snake's energy depends on its shape and location within the image
- Local minima of this energy then correspond to desired image properties
- The snake is active, always minimizing its energy functional, therefore exhibiting dynamic behavior
- The idea behind deformable contours is to find a contour c(s) which best approximates the perimeter of an object
- The approach is to construct an energy functional which measures the appropriateness of a contour and to optimize this functional with respect to the contour parameters

- Active contour models may be used in image segmentation and understanding, and are also suitable for analysis of dynamic image data or 3D image data
- It is defined as an energy-minimizing spline the snake's energy depends on its shape and location within the image
- Local minima of this energy then correspond to desired image properties
- The snake is active, always minimizing its energy functional, therefore exhibiting dynamic behavior
- The idea behind deformable contours is to find a contour c(s) which best approximates the perimeter of an object
- The approach is to construct an energy functional which measures the appropriateness of a contour and to optimize this functional with respect to the contour parameters

- Active contour models may be used in image segmentation and understanding, and are also suitable for analysis of dynamic image data or 3D image data
- It is defined as an energy-minimizing spline the snake's energy depends on its shape and location within the image
- Local minima of this energy then correspond to desired image properties
- The snake is active, always minimizing its energy functional, therefore exhibiting dynamic behavior
- The idea behind deformable contours is to find a contour c(s) which best approximates the perimeter of an object
- The approach is to construct an energy functional which measures the appropriateness of a contour and to optimize this functional with respect to the contour parameters

Energy Functional

- Associate to each possible shape and location of the snake a value E
 - Values should be such that the image contour to be detected has the minimum value
 - ▶ E is called the energy of the snake
- Keep wiggling the snake towards smaller value
- We need a function that given a snake state, associates to it an energy value
- The function should be designed so that the snake moves towards the contour that we are seeking!

Energy Functional

- Associate to each possible shape and location of the snake a value E
 - Values should be such that the image contour to be detected has the minimum value
 - E is called the energy of the snake
- Keep wiggling the snake towards smaller value
- We need a function that given a snake state, associates to it an energy value
- The function should be designed so that the snake moves towards the contour that we are seeking!

What Moves The Snake

- Forces moving the snake (External)
 - It needs to be attracted to contours:
 - ★ Edge pixels "pull" the snake points
 - ★ The stronger the edge, the stronger the pull
 - ★ The force is proportional to $|\nabla|$
- Forces preserving the snake (Internal)
 - ► The snake should not break apart!
 - ★ Points on the snake must stay close to each other
 - ★ Each point on the snake pulls its neighbors
 - ★ The farther the neighbor, the stronger the force
 - ★ The force is proportional to the distance $|\mathbf{P}_i \mathbf{P}_{i-1}|$
 - The snake should avoid "oscillations"
 - ★ Penalize high curvature
 - ★ Force proportional to snake curvature

What Moves The Snake

- Forces moving the snake (External)
 - It needs to be attracted to contours:
 - ★ Edge pixels "pull" the snake points
 - ★ The stronger the edge, the stronger the pull
 - ★ The force is proportional to $|\nabla|$
- Forces preserving the snake (Internal)
 - The snake should not break apart!
 - ★ Points on the snake must stay close to each other
 - ★ Each point on the snake pulls its neighbors
 - ★ The farther the neighbor, the stronger the force
 - ★ The force is proportional to the distance $|\mathbf{P}_i \mathbf{P}_{i-1}|$
 - The snake should avoid "oscillations"
 - Penalize high curvature
 - ★ Force proportional to snake curvature

Energy Functional

- The minimized energy functional is a weighted combination of internal and external forces
 - Internal forces emanate from the shape of the snake
 - External forces come from the image and/or from high-level image understanding processes
- The snake is defined parametrically as v(s) = (x(s), y(s)), where x(s), y(s) are x, y coordinates along the contour and $s \in [0, 1]$
- The energy functional to be minimized may be written as

$$E_{snake}^* = \int_0^1 E_{snake}(\mathbf{v}(s))ds = \int_0^1 \{ [E_{int}(\mathbf{v}(s))] + [E_{image}(\mathbf{v}(s))] + [E_{con}(\mathbf{v}(s))] \}$$

- $ightharpoonup E_{int}$ the internal energy of the spline due to bending
- $ightharpoonup E_{image}$ image forces
- \triangleright E_{con} external constraint

Energy Functional

- The minimized energy functional is a weighted combination of internal and external forces
 - Internal forces emanate from the shape of the snake
 - External forces come from the image and/or from high-level image understanding processes
- The snake is defined parametrically as v(s) = (x(s), y(s)), where x(s), y(s) are x, y coordinates along the contour and $s \in [0, 1]$
- The energy functional to be minimized may be written as

$$E_{snake}^* = \int_0^1 E_{snake}(\mathbf{v}(s))ds = \int_0^1 \{ [E_{int}(\mathbf{v}(s))] + [E_{image}(\mathbf{v}(s))] + [E_{con}(\mathbf{v}(s))] \}$$

- $ightharpoonup E_{int}$ the internal energy of the spline due to bending
- E_{image} image forces
- $ightharpoonup E_{con}$ external constraint

Internal Energy

The internal spline energy can be written as

$$E_{int} = \alpha(s) \left| \frac{d\mathbf{v}}{ds} \right|^2 + \beta(s) \left| \frac{d^2\mathbf{v}}{ds^2} \right|^2$$

where $\alpha(s)$, $\beta(s)$ specify the elasticity and stiffness of the snake

- First term is "membrane" term minimum energy when curve minimizes length ("soap bubble")
- Second term is "thin plate" term minimum energy when curve is smooth
- Control α and β to vary between extremes
- Set β to 0 at a point to allow corner (2nd-order discontinuous)

Image Energy

- The second term of the energy integral is derived from the image data over which the snake lies
- · Variety of terms gives different effects
- For example, a weighted combination of three different functionals is presented which attracts the snake to lines, edges and terminations:

$$E_{image} = w_{int}E_{line} + w_{edge}E_{edge} + w_{term}E_{term}$$

- The line-based functional $E_{line} = f(x, y)$
- The edge-based functional $E_{edge} = -|\nabla f(x,y)|^2$ attracts the snake to contours with large image gradients (location of strong edges)
- Line terminations and corners may influence the snake using a weighted energy functional $E_{term} = \frac{\partial \phi}{\partial \mathbf{n}_R}$ where $\phi(x,y)$ denotes the gradient direction along the spline, etc.

Constraint Forces

- The third term of the integral comes from external constraints imposed either by a user or some other high-level process which may force the snake toward or away from particular features
- If the snake is near to some desired feature, the energy minimization will pull the snake the rest of the way
- If the snake settles in a local energy minimum that a high-level process determines as incorrect, an area of energy peak may be made at this location to force the snake away to a different local minimum
- Spring: $E_{con} = k |\mathbf{v} \mathbf{x}|^2$ Repulsion: $E_{con} = \frac{k}{|\mathbf{v} \mathbf{x}|^2}$

Minimization

- A contour is defined to lie in the position in which the snake reaches a local energy minimum
- The functional to be minimized is

$$E_{snake}^* = \int_0^1 E_{snake}[\mathbf{v}(s)] ds$$

• From the calculus of variations, the Euler-Lagrange condition states that the spline v(s) which minimizes E^*_{snake} must satisfy

$$-\frac{d^2}{ds^2} \left(\frac{\partial E}{\partial \left(\frac{d^2 x}{ds^2} \right)} + \frac{\partial E}{\partial \left(\frac{d^2 y}{ds^2} \right)} \right) + \frac{d}{ds} E_{\mathbf{v}_s} - E_{\mathbf{v}} = 0$$

Corpus Callosum

Corpus Callosum

Evolving Curve

- Computing forces on v that locally minimize energy gives differential equation for v
- Discretize v: samples (x_i, y_i)
- Approximate derivatives using finite differences
- Numerical solver iteratively converges to minimum
- Write equations directly in terms of forces, not energy
- Implicit equation solver
- Search neighborhood of each (x_i, y_i) for pixel that minimizes energy
- Exact solution: calculus of variations

Some Comments

Advantage of Snakes

- Easy to manipulate (intuitive)
- Sensitive to image scale by Gaussian smoothing in the image energy function
- Insensitive to noise and other ambiguities in the images
- They can be used to track dynamic objects in temporal as well as the spatial dimensions
- Disadvantage of Snakes
 - Often get stuck in local minima states
 - Overcome by simulated annealing techniques at the expense of longer computation times
 - Often overlook minute features in the process of minimizing the energy over the entire path of their contours
 - ► Their accuracy is governed by the convergence criteria used in the energy minimization technique Higher accuracy requires tighter convergence criteria and longer computation

Some Comments

Advantage of Snakes

- Easy to manipulate (intuitive)
- Sensitive to image scale by Gaussian smoothing in the image energy function
- Insensitive to noise and other ambiguities in the images
- They can be used to track dynamic objects in temporal as well as the spatial dimensions

Disadvantage of Snakes

- Often get stuck in local minima states
 - Overcome by simulated annealing techniques at the expense of longer computation times
- Often overlook minute features in the process of minimizing the energy over the entire path of their contours
- Their accuracy is governed by the convergence criteria used in the energy minimization technique – Higher accuracy requires tighter convergence criteria and longer computation

Brain Cortex Segmentation

Add energy term for constant-color regions of a single color

Scale

- In the simplest snakes algorithm, image features only attract locally
- Greater region of attraction: smooth image
 - Curve might not follow high-frequency detail
- Multi-resolution processing
- Looking for global minimum vs. local minima
 - Start with smoothed image to attract curve
 - Finish with unsmoothed image to get details

Scale

- In the simplest snakes algorithm, image features only attract locally
- Greater region of attraction: smooth image
 - Curve might not follow high-frequency detail
- Multi-resolution processing
- Looking for global minimum vs. local minima
 - Start with smoothed image to attract curve
 - Finish with unsmoothed image to get details

Scale

- In the simplest snakes algorithm, image features only attract locally
- Greater region of attraction: smooth image
 - Curve might not follow high-frequency detail
- Multi-resolution processing
- Looking for global minimum vs. local minima
 - Start with smoothed image to attract curve
 - Finish with unsmoothed image to get details

A Greedy Algorithm

- A greedy algorithm for deformable model
 - Makes locally optimal choices and hopes to lead to a globally optimal solution
 - Simplicity:
 - * Knowledge of the calculus of variations is not required
 - Low computational complexity:
 - The number of iterations to converge proportional to the number of movement in each iteration times the number of contour points
- The energy functional is given by

$$\epsilon = \int (\alpha(s)E_{cont} + \beta(s)E_{curv} + \gamma(s)E_{image})ds$$

A Greedy Algorithm

- A greedy algorithm for deformable model
 - Makes locally optimal choices and hopes to lead to a globally optimal solution
 - Simplicity:
 - * Knowledge of the calculus of variations is not required
 - Low computational complexity:
 - The number of iterations to converge proportional to the number of movement in each iteration times the number of contour points
- The energy functional is given by

$$\epsilon = \int (\alpha(s)E_{cont} + \beta(s)E_{curv} + \gamma(s)E_{image})ds$$

The Energy Functional

- The three energy terms:
 - ▶ Internal energy: E_{cont} and E_{curv} are for continuity and smoothness of the snake
 - ightharpoonup External energy: E_{image} is for edge attraction
- α, β, γ control the relative influence of the energy term (can vary along the curve)

$$\epsilon = \int (\alpha(s)E_{cont} + \beta(s)E_{curv} + \gamma(s)E_{image})ds$$

The Energy Functional

- The three energy terms:
 - ▶ Internal energy: E_{cont} and E_{curv} are for continuity and smoothness of the snake
 - ightharpoonup External energy: E_{image} is for edge attraction
- α, β, γ control the relative influence of the energy term (can vary along the curve)

$$\epsilon = \int (\alpha(s)E_{cont} + \beta(s)E_{curv} + \gamma(s)E_{image})ds$$

The Energy Terms

- Continuity term: $E_{cont} = \|\mathbf{p}_i \mathbf{p}_{i-1}\|^2$
 - To make equal space between points
- Smoothness term: $E_{curv} = \|\mathbf{p}_{i-1} 2\mathbf{p}_i + \mathbf{p}_{i+1}\|^2$
 - To avoid oscillation, penalize high contour curvature
- Edge attraction term: $E_{image} = -\|\nabla I\|$
 - Computed at each snake point, becomes very small (negative) near image edges (large gradient)

Snake Problem

• Given N initial points $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N$, representing the initial position of the snake, fit the target image contour by minimizing the energy functional

$$\sum_{i=1}^{N} (\alpha_i E_{cont} + \beta_i E_{curv} + \gamma_i E_{image})$$

- Greedy minimization
 - ► The neighborhood over which the energy functional is locally minimized is typically small (3 × 3 or 5 × 5 window)
 - ► The local minimization is done by direct comparison of the energy functional values at each location
- Corner elimination
 - If a curvature maximum is found at point \mathbf{p}_i , then set β_i to zero to make the deformable contour piecewise smooth

Snake Problem

• Given N initial points $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N$, representing the initial position of the snake, fit the target image contour by minimizing the energy functional

$$\sum_{i=1}^{N} (\alpha_i E_{cont} + \beta_i E_{curv} + \gamma_i E_{image})$$

- Greedy minimization
 - ► The neighborhood over which the energy functional is locally minimized is typically small (3 × 3 or 5 × 5 window)
 - The local minimization is done by direct comparison of the energy functional values at each location
- Corner elimination
 - ▶ If a curvature maximum is found at point \mathbf{p}_i , then set β_i to zero to make the deformable contour piecewise smooth

Snake Problem

• Given N initial points $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N$, representing the initial position of the snake, fit the target image contour by minimizing the energy functional

$$\sum_{i=1}^{N} (\alpha_i E_{cont} + \beta_i E_{curv} + \gamma_i E_{image})$$

- Greedy minimization
 - ► The neighborhood over which the energy functional is locally minimized is typically small (3 × 3 or 5 × 5 window)
 - The local minimization is done by direct comparison of the energy functional values at each location
- Corner elimination
 - If a curvature maximum is found at point \mathbf{p}_i , then set β_i to zero to make the deformable contour piecewise smooth

Remarks

- The values of the parameters α_i , β_i and γ_i can be all set to 1, or $\alpha_i = \beta_i = 1, \gamma_i = 1.2$ (more weight on edge attraction)
- To prevent noisy corner:
 - A point is a corner if and only if the curvature is locally maximum at that point, and
 - ▶ The norm of the intensity gradient at that point is sufficiently large

Diffusion-Based Methods

- Another way to attract curve to localized features: vector flow or diffusion methods
- Example:
 - Find edges using Canny
 - For each point, compute distance to nearest edge
 - Push curve along gradient of distance field

Gradient Vector Fields

Check http://iacl.ece.jhu.edu/projects/gvf/ for more details.

Gradient Vector Fields

Simple Snake

With Gradient Vector Field

Gradient Vector Fields