

Modelling & Simulation of a rotary inverted pendulum

Sam Herschmann

sam.herschmann@ukaea.uk

Modelling

Scope

These slides outline the steps required to derive the non-linear equations of motion (aka the dynamic model) of a rotary pendulum with only one actuator.

Challenging topics involved:

- Vector calculus
- Rigid Body Kinematics & Dynamics
 - > Lagrangian Mechanics
- Simulation of Ordinary Differential Equations (ODEs)

Important Kinematics

There are 3 frames of reference: \mathcal{F}_0 , \mathcal{F}_1 and \mathcal{F}_2 .

- Let's define some position vector \vec{r} . We can express this as a numerical (x, y, z) vector, but these values depend on the frame of reference that we choose to express the vector in.
- Let's define: " \vec{r} expressed in frame \mathcal{F}_0 " as $r^{\mathcal{F}_0} \in \mathbb{R}^3$.
- For our pendulum system, it can be shown that:

$$r^{\mathcal{F}_1} = R_{10}(\theta_1)r^{\mathcal{F}_0}$$

$$r^{\mathcal{F}_2} = R_{21}(\theta_2)r^{\mathcal{F}_1}$$

$$r^{\mathcal{F}_2} = R_{21}R_{10}r^{\mathcal{F}_0}$$

Rotation matrices R

$$\mathbf{R}_{10} = \mathbf{R}_z(\theta_1) = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 \\ \sin \theta_1 & \cos \theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{21} = \mathbf{R}_{y}(\theta_2) = \begin{bmatrix} \cos \theta_2 & 0 & \sin \theta_2 \\ 0 & 1 & 0 \\ -\sin \theta_2 & 0 & \cos \theta_2 \end{bmatrix}$$

 $\mathbf{R}_{20}(\theta_1, \theta_2) = \begin{bmatrix} \cos \theta_1 & \cos \theta_2 & -\sin \theta_1 & \sin \theta_2 \cos \theta_1 \\ \sin \theta_1 \cos \theta_2 & \cos \theta_1 & \sin \theta_1 \sin \theta_2 \\ -\sin \theta_2 & 0 & \cos \theta_2 \end{bmatrix}$ This is known as a $z \to y'$ (yaw-pitch) transformation

 \mathbf{R}_{20} describes the orientation of the pendulum body with respect to the inertial frame of reference.

Calculating the energy of the pendulum

Gravitational Potential Energy

Rotational Kinetic energy

Pendulum inertia tensor, calculated in the next slide

$$T_{rot_p} = \frac{1}{2} \boldsymbol{\omega}_p^{\mathsf{T}} \boldsymbol{I}_p \boldsymbol{\omega}_p$$

Angular velocity of pendulum, expressed in the inertial frame. This can be shown to be:

$$\boldsymbol{\omega}_p = \boldsymbol{\omega}_p^{\mathbf{F_0}} = \mathbf{R}_z(\theta_1)^{\mathsf{T}} \begin{bmatrix} 0 \\ \dot{\theta}_2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \dot{\theta}_1 \end{bmatrix}$$

Linear Kinetic energy

$$T_{lin_p} = \frac{1}{2} m_p \dot{r}_c \dot{r}_c$$

Linear velocity of pendulum centre of mass, expressed in the inertial frame. This can be shown to be:

$$\dot{\boldsymbol{r}}_c = \dot{\boldsymbol{r}}_c^{\mathcal{F}_0} = \dot{\boldsymbol{R}}_{20}(\theta_1, \theta_2)^{\mathsf{T}} \boldsymbol{r}_c^{\mathcal{F}_2}$$

We can now define the systems 'Lagrangian': $L = T_{rot_p} + T_{lin_p} - V$

Aside: Approximating the pendulum Inertia Tensor I_n

 I_p can be thought of as the 'rotational mass' of an object. This depends on the axis of rotation, which makes I_p a 3X3 matrix.

$$\boldsymbol{I}_p^{\mathcal{F}_2} = \boldsymbol{I}_1^{\mathcal{F}_2} + \boldsymbol{I}_2^{\mathcal{F}_2}$$

Pendulum inertia tensor resolved in the moving (or 'body') frame \mathcal{F}_2

Section 1
$$I_1^{\mathcal{F}_2} = \begin{bmatrix} \frac{1}{4}m_1r^2 + \frac{1}{3}m_1l_1^2 & 0 & 0\\ 0 & \frac{1}{2}m_1r^2 & 0\\ 0 & 0 & \frac{1}{4}m_1r^2 + \frac{1}{3}ml_1^2 \end{bmatrix}$$

$$I_{2}^{\mathcal{F}_{2}} = \begin{bmatrix} \frac{1}{4}m_{2}r^{2} + \frac{1}{12}m_{2}l_{2}^{2} & 0 & 0 \\ 0 & \frac{1}{4}m_{2}r^{2} + \frac{1}{12}m_{2}l_{2}^{2} & 0 \\ 0 & 0 & \frac{1}{2}m_{2}r^{2} \end{bmatrix} + m_{2}(\begin{bmatrix} 0 \\ l_{1} \\ -l_{2} \\ 2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0 \\ l_{1} \\ -l_{2} \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ l_{1} \\ -l_{2} \\ 2 \end{bmatrix}^{\mathsf{T}})$$
From the parallel axis theorem

Assumption: solid cylinder

Finding the state-space 'Equations of Motion'

Let's define our state coordinates, $q = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$.

 $\rightarrow q$ completely describes the position of our pendulum

Euler-Lagrange Equations

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\boldsymbol{q}}}\right) - \frac{\partial L}{\partial \boldsymbol{q}} = \boldsymbol{F}$$
The 'external force' vector. If we ignore friction damping, then $\boldsymbol{F} = \begin{bmatrix} u \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$, where u is the torque applied by the motor.

This equation basically creates the "F=ma" of the system: the equation that describes the behaviour of the pendulum. Also known as a "Dynamic Model".

By substituting L into this and expanding / rearranging, the result ends up looking something like this: $\frac{M(q)\ddot{q} + N(q,\dot{q})}{M(q)\ddot{q} + N(q,\dot{q})} = F$

Often it is nice to express this in the <u>equivalent</u> 'first order ODE form', by defining a new set of variables

$$x = \begin{bmatrix} \boldsymbol{q} \\ \dot{\boldsymbol{q}} \end{bmatrix} = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

Vector describing gravity & Coriolis effects

$$\dot{x} = \begin{bmatrix} \dot{q} \\ M^{-1}(F - N) \end{bmatrix} = \underbrace{\begin{bmatrix} \dot{q} \\ -M^{-1}N) \end{bmatrix}}_{f(x)} + \underbrace{\begin{bmatrix} \mathbf{0} \\ M^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix}}_{g(x)} u$$

$$\dot{x} = f(x) + g(x)u$$

Simulating the free-response system (u=0)

Given a starting state $x(t = 0) = x_0$, the model equations $\dot{x} = f(x)$ can be 'solved' (aka 'simulated') using a variety of techniques (aka 'ODE solvers').

- This can be done in Python, Matlab, C++, Julia and more.
 - I use ODE solvers in Julia's DifferentialEquations.jl toolbox, this is just my personal preference.

You can then create an animation of the model simulation.

Example 1:
$$x_0 = \begin{bmatrix} \theta_{1_0} \\ \theta_{2_0} \\ \dot{\theta}_{1_0} \\ \dot{\theta}_{2_0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0.1 \\ 0 \\ 0 \end{bmatrix}, \quad u = 0$$

Time = 0.0 s

Very chaotic! (no damping is modelled)

Adding damping to the model

In reality, there will be viscous damping at the joints.

➤ This is a friction torque proportional to the joint velocity:

Time = 0.0 s

Stepper motor stabilization control

What if our control input is $u = \ddot{\theta}_1$, instead of the motor torque?

Let's assume we can precisely control the acceleration of the stepper motor θ_1 . Physically, this means the motor imparts a torque on the system that ensures θ_1 follows a desired acceleration, u(t). We can consider this as a *constraint!*

rearrange
$$\ddot{q} = M^{-1}(-N - A^{T}\tau_{1}) = 0$$

Constraint equations

Sub into
$$A\ddot{q} - u(t) = 0$$

$$AM^{-1}(-N - A^{\mathsf{T}}\tau_1) - u(t) = 0$$

rearrange

$$\tau_1 = -(AM^{-1}A^{\mathsf{T}})^{-1}(AM^{-1}N + u)$$

Sub into (1)

$$M\ddot{q} + N - A^{T}(AM^{-1}A^{T})^{-1}(AM^{-1}N + u) = 0$$

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{N}_{a} = \mathbf{B}_{a}u = \begin{bmatrix} \mathbf{N}_{a} = \mathbf{N} - \mathbf{A}^{\mathsf{T}} (\mathbf{A}\mathbf{M}^{-1}\mathbf{A}^{\mathsf{T}})^{-1} \mathbf{A}\mathbf{M}^{-1}\mathbf{N} \\ \mathbf{B}_{a} = \mathbf{A}^{\mathsf{T}} (\mathbf{A}\mathbf{M}^{-1}\mathbf{A}^{\mathsf{T}})^{-1} \end{bmatrix}$$

What if our control input is $u = \ddot{\theta}_1$, instead of the motor torque?

LQR

What should u(t) be if we want to stabilise the pendulum?

$$\dot{x} = f(x) + Bu$$

$$\Delta \dot{x} = \begin{bmatrix} \dot{\theta}_1 \\ \theta_2 \\ \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix} \approx \frac{\partial f(x)}{\partial x} \Big|_{x_{equil}} \Delta x + Bu$$

$$m{x}_{equil} = egin{bmatrix} heta_1 \ heta_2 \ heta_1 \ heta_2 \end{bmatrix}_{equil} = egin{bmatrix} heta_1 \ heta_0 \ heta \end{bmatrix}$$
, where $k=$ any integer

Swing-up

Trajectory Optimisation

We want to 'swing up' the pendulum.

How can we do this intelligently? Can we consider:

- Motor Torque / Velocity / acceleration limits
- Spatial constraints

One approach is trajectory optimisation

Time =
$$0.0 s$$

UK Atomic Energy Authority

System Identification

Why System Identification?

Our analytical model may be poor due to making bad estimates of:

$$m_1, m_2, d_{fr_2}, \boldsymbol{r}_c^{\mathcal{F}_2}$$

Can we improve our model parameters using observed data? YES

$$oldsymbol{p} = m_1, \ m_2, d_{fr_2}, oldsymbol{r}_c^{\mathcal{F}_2}$$

Next steps

UK Atomic Energy Authority

- > Improve model parameters & verify
- > Implement on real set-up

