Part 2 [Set Theory & Algebra] Power set P(A) Is set of all possible subset of A.33 - 1P(A)1 = 21A1 - Symmetric difference (XOR): ADB = A(B) = (A-B) U(B-A)

- Stempotent law; AnA = AVA = A - Absorption law: AU(ANB) = A $A \cap P(A) = \emptyset$, $P(A) \cap P(P(A)) = {0}$ Jests are commutative and associative over (U, N, D) but distributive over (V, N) only. -- No et finite relation possible over contesion set = 2 mxn1 - Reflexive ? Comparison among same item of set (x1x). Smallest reflexive IRnI=n, larget reflexive IRnI= n2 No of reflexive relation possible = 2 n2-n No of irreflexive rely possible = 2n2 = 2n2n 38 R. and Rz are reflexive then (RIURZ) 8 (RINRZ) both are reflexive but if R, and Rz are treeflexive then (RIU.Rz), (RINR2) & (RI-RZ) all are trreflexives - Reflexive: all the diagonal claments are necessary. Griefelne: even a style diegonal clement doesn't require. -> There is no relation which is both Reflexive & graylexive. No. of expressive relation = $2^{n^2} - 2^{n^2} - n$, Smallest = 43.0lagest = n2-n -> Symmetric relations and closed under (U, N.-) - Scommetic: of (aRb) then (bRA) Shallast relation = 9 3 longest reln = n2 No of Symmetric relations = 2n. 2 n2-n = 2nentu n(snI) = 212 | Symmetric 1 Reflexive | = 2 n2 = | Sym. 1 Irr n(As) = 2" 3 n2n/2 Antisymmetric (As): 9f (x Ry) and (y Rx) then

1As1 = n+ n2n n(Asns)= 2" n(R n As) = 3n2-n/2 $|A| = n + \frac{n^2n}{n}$ n (4R nAs) = 3 n2n/2 Smallest = h, Largest = |AXA| = N2

Asymmetric: Stricter version of Anti-symmetric. $|A_{\text{SY}}| = 3^{\frac{2n}{2}}$, Smallert = dy, Largert = $\frac{n^2 - n}{2}$ -> Reflexive rela can't be antisymmetric bloz of no diagonal Asymmetore elemento - Frey asymmetric relation is irreflexive and aveil-symmetric. - 91 % Closed under subset, Intersection and set difference operation. banstirty: of (xxy) & (yxx) then (xxz) Jet is closed ander 'n' but not 'U'. Equivalue Rel": Closed andy 'n' but not 'U'. I Reflexive, Symmetric 8 Transitive together Partial Order Relation: Reflexive, transitive, Antisymmetric together Totally Ordered Set: Linear order set or chain of means (relation exist blio every pair of elements -> Representation of poset: Hasse diagramo > Don't need to show reflexive (loop) or transitive relation in Masse diagramo Maximal element -> No relation above elements Minimal element - No relation with below elements Maximum -> Maximum in all the maximal. Minimum - minimum in all the minimal. Upper bound I Lower bound: In a given have digram enthy go only up or only down but not both up-down. GLB or LUB: GLB: (Meet, N), LUB (Join, U, Supremum) Join Semi Lattice: Steoneret LUB for each pour of vertices o Meet Semi Lattice: - GLB -Lattice - of house diagram is both Joinseni Lattice and meet semi Lattices Propeties - follows commutative, associative, but not distributive auchnes = (aub) neaves of of lattice follow there called ancove) = (ano) v cane) a distributed lattices

Sub lattice: It has same LUB and 91B as parent lattre. -> 91 "I'rs Opper bound & "O" is lower bound, then LUB (a and I) = a v I = I , LUB (0,0) = a vo = a QLB(q,T) = QNI = Q, QLB(q,0) = 0- Bounded lattice is a finite lattice because it has both the upper bound and a lower bound. - for Infinite lattice we can't find LB, UB. For any set UB is Universal Set and LB is ϕ . Complement of element in lattice: avac = I anac = 0 Pair of element with same GLB and LVB called as complements In distributive lattice every element have almost I complement In complemented lattice every element have aftered I complement In boolean algebra every element have only I complement Algebric Structure: Each set 9s closed under some operations. Sem Group: 94 algebric structure is associative of (0+,+)} Monoid: Semi-group with identity element. for union operation & works as Identity element. Groups: Monoid with inverse elements [(0+,+) is a group but (0,+) doesn't. Similarly (P(A),0) is also Abelian Group: 9t is also called commutative group. Inverse of 'e' 9s 'e' itself. Unique inverse & identity element. -> 9 dentity element: a*e=a, goverse element: a*a-1=e + -> 9+can be any operation. tor strings Identity element e= E. Finite Group: Group with finite no. of elements → 9n modulo 'm' operations range of number should be (0 → m-1).

Torder of an element 'a' is 'n' if an = e for smaller
vaule of 11.
- Order of identity clement is always to
Toder of identity element is always 1. Soder of a, ortan same and order of element always divides order of group.
Subgroup: e and G are trivial subgroups All other are proper subgroups
- of 'H'is a subgroup of '4' then O(a)/O(N=K
If it divides then only we will check for subgroup further,
After applying allvisor rule verify subgroup should be
closed andly group's operation.
Subgroups are closed andy 'n' but not cender 'V'.
Every subgroup of abelian group is also abelian groups
Cyclic group: If every element of group can be written in form of (an) then a - generating element.
Noember of generator = $\phi(n)$ means no of elements < n which are relatively prime to no
Properties: of n=pq then $\phi(n) = \phi(p)$. $\phi(q)$ where, p,q are distinct & prime.
② \$(p)= p-1 for p → primeo
Ty (G,*) is a cyclic group with generator a then, The cit is also a generator
et at is also 9 generator
@ O(a)=' O(G)
Je cyclico soup is abelian, every group of prime order
- 9y IXI=m, IYI=n then no. of for possible = n mo
-> One-one-fn: 1/1 > 1×1: no. of-fn= nPm
of fris bijective XI=1XI and it is one-one and onto then,
no-gone-one = no. of onto = n!

9 1×17 11 then only onto possible. So (35) noisy onto the nm ng (n-1)m + nc2(n-2)m (-1)n nc (n-1)m Two Irrational no. X by can give (2144) as rational. J f(AVB)=f(A)Uf(B), f(ANB) & f(A) nf(B) (ANB) C f (A) M f (B) courals when both are one-one. not bestorize ->f-1(SNT) = f-(S)nf-1(T), Ø E P(A), Ø E P(A) Jef h=fog then if h=sonto then f=sonto. -> N's is countable but KN is not countable - complemented lattice is proper subset of bounded lattices -> Set of all rational no. is cocutables -> A finite lattice is always bounded because It has both LUB and GLB (due to lattice). -> 27 a relation is defined on power set of some set then, $a \wedge a = \phi$ for $[a = \phi]$ > Empty relation over finite set is not reflexive but Symmetre & boursitive. Empty relation over empty set is an equivalue rel's -> Every finite lattice has a least clements and maxielements -> Every poset doesn't have a least or greatest clement (Ex: Bipartik Graph). There is just a single relation which is both equiveline and partial order relations - (Identity relation) No. of Integer between (1 > n) divisible by 'k' is given by [k] -> floor the

Combinactories Generalized Pigeonhole: 9f n-objects are placed into K-boky then atteast one box contains [N/k] objects. Incr = ncn-r, ncr + ncr = n+cr In(14 -> (x+y)n= ncoxn + ncoxn+y+--++ ncny" (1) Secon General term: [ncr xn-ryr] -> = nCx = 2n, = (-1) x nCx = 0 Solo of linear homogeneous recurrence relation. 1) If ear has some roots as a' then, -- Ge an= 2, an + 2 nan + 23 n2 on+ If can has different noots then, an = 0,00 + 02 bn + 03 cn+of G(x) = 90 + 9, x + 92x2+ - - + 9xxk = & 9xxk Useful generating of " $(1+x)^n = n(0x^0 + nqx' + - - + nchx^h = \frac{2}{k=0} \frac{nc_k x^k}{a_k}$ (1+ax)n-nco aoxo + ncy ax + -- +ncy anxn = = nckaxxk $\frac{1 - x^{n+1}}{1 - x} = 1 + x + x^2 + \dots + x^n = \frac{2}{k - \delta} x^k$ 1-x = 1+x+x2+-== \(\frac{2}{k} \times \times \) $\int_{1-ax}^{1} = 1 + ax + a^2x^2 + \dots = \sum_{k=0}^{\infty} ak_{xk}$ 1-2xx = 1+xx+x2x+--= & xxxx $\frac{1}{(1-\alpha)^2} = 1 + 2\alpha + 3\alpha^2 + \dots = \frac{2}{k=0} (k+1)\alpha^k$ (1+x)n = 1-ngx+no(2x2+-= & n+k-1Ck (+)x xk

(1-x)n= 1+nqx + n+(2x2+ -- = 28n+k-1 Ckxx 36) ex= 1+x+x2+--== & xk $\ln(1+\alpha) = \chi - \frac{\chi^2}{2} + \frac{\chi^3}{3} - \frac{\alpha^4}{4} + \dots = \frac{8}{\kappa} = 1$ () G(x) for of 13 = 1/1-x () G(x) for n = 1/(1-x)2 Josephing an Dn = 2 (-1) n! be placed in right box. - Generating of for fibonacci series = 1 1-x-x2 -> No. of substrigs formed from a length of string in is - $\frac{n(n+1)}{2}+1$ -> 16. of ways to clevide 'K', things among 'M', bersons things ai = [n+k-1 CK] -> No. of moves required on travelling (i,i) to (d,m) = (Total no. of blocks to bowel) & (Total UP)! (Total Right)! Items occurs with some frequency then, No. of ways of arranged them = n1 (fi!fz!--fx!)x(Kb) of are all dyfa there of fitt2+ -+ fx = h $-- + N \cdot N \cdot C_N = \sum_{k=1}^{\infty} K \cdot N \cdot C_k = N \cdot 2^{N-1}$ nG+ 2.N(2+ 3.N(3

(Ounding Principles

(D) Prodeut Rale: of there are n tark that can be done in ninz,

I's nixnzx....xnno

② Sum Rule: If tank can be done either in n, ways or nz ways then total no of ways = n, + nz.

3) No offn: 91 Idomain = 1m1 and Icodamount = 1m1 then no offn
bossible = nm

-

9

for one-one functions:- $n \ge m$ and No. of fn='k', k = n(n-1)(n-2)...(n-k+1)

So > A password is 6-8 characters long where each character is an appeare letter or a digit. Each password must contain at least one digit. No. of password is --

Sol: No. of paramond = 16+17+18

P6 = 366-266, P7 = 367-267, P8 = 368-268.

Subtaction Rule: 9 a task can be done in either nor noways then total no. of ways possible is nother Chinner.

Ex-> Now many bit strings of length 8 either stend with bit I or end with 00.

Ans -> 27 + 26 - 25

Division Rule & (Not important)

Tree Dragoeme : Bit string of length 4 don't have consecutive

Pigeonhole: To keep K+1 objects in K boxes, there is atlean I box with two or more objects. Collary: A function if from a set with (k+1) or more clamed to a set with 'K'elements is not one to one. Yeneralized Pigeonrole: of Nobjects are placed into k-objects boxes then attractione box fontains M/k objects. Permutations -> No. of ordered anangements 80-3 Let S = \$1,2,33 then 3,1,2 is permutation of S and 3,21s a 2-permentation of So -> If n, r are positive integer such that relling then, there are P(n,r) = n(n-1)(n-2).... (n-r+1), r-permentations of a set with n-distinct elements. -> No. of permedation of letters ABCDEFGH conterns the string ABC equals to 6%. (Hint: Pour ABC as a single element) Combinations: No. of s-combinations of a set with n-distinct clements is denoted by ((n,r) or (n) and called as binomial-coefficients ncx= ncn-x, ncx + ncx-1 = n+1 cx Binomial Theorem: Costyle= ncosen + na sent 9 +. (25C13 (uchocurade) (2x-3y)25 = 25 (13 x 212 (-3)13 - of noes a non-negative onteger than, $\underset{k=0}{\overset{\sim}{\succeq}} \binom{n}{k} = 2^n$ (-DX (n)=0 ¿ 2 × (2) = 3"

0

Vandermon de's 9dentity $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} {n \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_{k=0}^{\infty} {m \choose r-k} - 1)$ $\frac{n+m}{r} (r = \sum_$

-

C

-

5

6

5

Combination with repetition: There are C(n+r-1, r)
r-combinations from a set with n-elements when
repitton of elements is allowed.

Permutation with Sodistinguishable Object &

Ex: How many Strings can be made by reordering the cletters of word SUCCESS?

Solu: 31511111

Distributing Objects into boxes:

Ex: Now many ways are there to distribute hands of 5 cards to each of four players from the steindard deck of 52 cards.

 $\frac{560\%}{47!5!} = \frac{52\%}{4215!} = \frac{52\%}{3715!} = \frac{52\%}{5151515!321}$

Recurrence Relation and Generating Function The recurrence relation Pn = (1.11) Pn-1 in a linear homogeneous recurrence relation of degree 1 and fn = fn+ +fn-z 9s linear and having degree 2. > an = any +an-z i not a linear. Hn = 2 Hny + 1 : not Homogeneous Bn= nBnu: no constant coefficiento Solving Linear Homogeneous Recentrence Relation with Constant coefficients Ex-1 an = an + 2an-2 with a = 2 and a = 7. find the Solm. Soln: 82-8+2=0 => 8=-1,2 Son sol" = an = 0,2" + 0,2" Tofind of and of use as and a, an = 6 am - 9an-z colth a = 1, 91 = 6? Sol 82_68+9=0=) 8=3,3 $a_n = \alpha_1 3^n + \alpha_2 (n3^n)$ of equation have Usame roots than an= 437+02 n37+03 n230+04 n337 The generating function for the sequence Gordinalk of real nots in infinite sever, gen) = a. +aix + azx2+ -- +axx = & axxx Er = The generating femetion for dan's with ax = 3 and ax = 2k are \$ 3xk and \$ 2kxk.

$$\frac{\text{Ex} \, \left(\begin{array}{c} \left(-\frac{2}{3} \right) = \right)}{\left(\frac{1}{2} \right)} = \frac{4}{3!}$$

$$\left(\frac{1}{2} \right) = \frac{\left(\frac{1}{2} \right) \left(\frac{1}{2} - 1 \right)}{3!} \left(\frac{1}{2} - 2 \right) = \frac{1}{16}$$
Useful Generating femotions

 $= \frac{2}{k=0} \frac{C(n_0 k) x^k}{q_k}$ (1+x)n = 1+ ((n,1)x+ ((n,2)x2+--+xn

$$(1+x_k)_{\mu} = 1 + C(u^{1})x_k + C(u^{1})x_{sk} + Ax_{sk} = \sum_{k=0}^{\infty} \frac{C(u^{1}k)x_k}{a^k}$$

$$\frac{1-x^{n+1}}{1-x} = 1+x+x^2 + -+x^n = \frac{2}{k=0}x^k$$

$$\frac{1-x^{n+1}}{1-x} = 1+x+x^2 + -- = \frac{2}{k=0}x^k$$

$$\frac{1-x^n}{1-x} = 1+x+x^2 + -- = \frac{2}{k=0}x^k$$

$$\frac{1-x_{x}}{1-ax} = 1+x_{x}+x_{5x}+\dots = \sum_{k=0}^{k=0} x_{k}x_{k}$$

$$\frac{1-ax}{1-ax} = 1+4x_{x}+x_{5x}+\dots = \sum_{k=0}^{k=0} x_{k}x_{k}$$

$$\frac{1}{(1-x)^{2}} = 1+2x+3x^{2} + \cdots = \frac{1}{2}(k+1)x^{k}$$

$$\frac{1}{(1+2)^{n}} = 1-c(n,1)x+c(n+1,2)x^{2} + \cdots = \frac{2}{2}c(n+k-1,k)$$

$$\frac{1}{(1-x)^{n}} = 1+c(n,1)x+c(n+1,2)x^{2} + \cdots = \frac{2}{k-0}c(n+k-1,k)x^{k}$$

$$\frac{1}{(1-x)^{n}} = 1+c(n,1)x+c(n+1,2)x^{2} + \cdots = \frac{2}{k-0}c(n+k-1,k)x^{k}$$

$$\frac{1}{(1-x)^{n}} = 1+c(n,1)x+c(n+1,2)x^{2} + \cdots = \frac{2}{k-0}c(n+k-1,k)x^{k}$$

$$\frac{1}{(1-x)^{n}} = \frac{1}{2}+\frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1+x)} = \frac{1}{2}+\frac{x^{2}}{3!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1+x)} = \frac{1}{2}+\frac{x^{2}}{3!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k-0}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots = \frac{2}{k}\frac{x^{k}}{k!}$$

$$\frac{1}{(1-x)^{n}} = \frac{x^{2}}{2$$

-> No. of dearrangement Dn= 2 (4) n1

3