Data Handling

A practical approach

Lecture 5 ANOVA I Dr Yu Mo, Zoology

@tcd.ie https://github.com/github-moyu/Teaching

Summary of lecture 4

- The importance of <u>plotting</u> data prior to analysis
- The need for <u>summary statistics</u>
- The central importance of erecting a null and alternate hypothesis
- Comparison of two groups using a t-test
- Generation of t and p value, df

Outlet	Fat		
1	64		
1	72		
1	68		
1	77		
1	56		
1	95		

Outlet	Fat
2	78
2	91
2	97
2	82
2	85
2	77

Mean ± SD

$$\bar{X} = \frac{\sum X}{n}$$

$$SD = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

Independent t-test

$$t = -2.0624$$

 $df = 10$
 $p = 0.06612$

If alpha 0.05

Fail to reject H₀

Analysis of variance (ANOVA)

- Extension of the independent t-test
- Comparison of more than two means
- Can extend to much more complex analyses
 - Assumptions
 - Normality
 - Equality of variances
 - Transformation may help to fulfill these requirements

Null and Alternate hypotheses

Simply

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

H₁: not all the μ_s are equal

Model approach

$$H_0$$
: each obs. $Y_i = \mu + E_i$

$$H_1$$
: each obs. $Y_{ij} = \mu + \alpha_j + E_{ij}$

$$\mu$$
 = overall mean α_j = group/treatment effect

$$E_i$$
 = a random error term

ANOVA

- Between group variability: a measure of the difference between the means for each group and that of the grand mean
- Within group variability: a measure of the difference between each individual value and that of the individual's group mean
- F value: Var_{between} / Var_{within}

ANOVA

Sum of Squares BETWEEN

$$SS_B = \sum n_j (\overline{X}_{,j} - \overline{\bar{X}})^2$$

Mean of Squares BETWEEN

$$MS_B = \frac{SS_B}{j-1}$$

Sum of Squares WITHIN

$$SS_w = \sum_{j=1}^k \sum_{i=1}^n (X_{i,j} - \overline{X}_{j})^2$$

Mean of Squares WITHIN

$$MS_w = \frac{SS_w}{n - j}$$

$$F = \frac{MS_B}{MS_W}$$

The data set: Doughnuts and fats 4 groups: 6 observations per group

Obs	Outlet 1	Outlet 2	Outlet 3	Outlet 4
1	64	78	75	55
2	72	91	93	66
3	68	97	78	49
4	77	82	71	64
5	56	85	63	70
6	95	77	76	68
Mean	72	85	76	62
S.D.	13.34	7.77	9.88	8.22

Balanced, fully replicated, one factor design with X levels of factor

Analyse by ONE-WAY ANOVA

Balanced designs have equal numbers of obs. in each factor combination. Statistics are simpler and more powerful

Within group variance example

$$SS_{w} = \sum_{j=1}^{k} \sum_{i=1}^{n} (X_{i,j} - \overline{X}_{,j})^{2}$$

Obs	Outlet 1	$\overline{X}_{,1}$	$X_{i,1}$ - $\overline{X}_{i,1}$	$X_{i,1}$ - $\overline{X}_{i,1}^2$
1	64	72	-8	64
2	72	72	0	0
3	68	72	-4	16
4	77	72	5	25
5	56	72	-16	256
6	95	72	23	529
Sum	_	_	_	890

Calculation of Mean Square Within

Sum of square within group

$$SS_w = SS_{,1} + SS_{,2} + SS_{,3} + SS_{,4}$$

= $890 + 302 + 488 + 338$
= 2018

$$SS_{w} = \sum_{j=1}^{k} \sum_{i=1}^{n} (X_{i,j} - \overline{X}_{j})^{2}$$

Man of square within group

$$MS_w = 2018 / (24-4)$$

= 100.9

$$MS_w = \frac{SS_w}{n-j}$$

Calculation of Mean Square Between

Sum of square between group

$$SS_B = 6*(72-73.75)^2 + 6*(85-73.75)^2 + 6*(76-73.75)^2 + 6*(62-73.75)^2$$

=1636

$$SS_B = \sum n_j (\overline{X}_{,j} - \overline{\bar{X}})^2$$

Mean of square between group

$$MS_B = 1636 / (4-1)$$

= 545.3

$$MS_B = \frac{SS_B}{j-1}$$

Calculation of F ratio

 $F = MS_B/MS_W$

With j-1 and n-j degrees of freedom

j-1 = numerator (j number of groups)

n-j = denominator (n number of obs)

df Denominator n-j: 24-4 = 20

	Alpha	1	2	3	4	5	V1	
V2								
16								
17								
18								
19								
	0.75							
	0.5							
	0.25							
	0.1							
20	0.05	4.35	3.49	3.1	2.87	2.71		
	0.025			3.86				
	0.01			4.94				
	0.005			5.82				
	0.001			8.10				

Critical values of the F distribution

df Numerator j-14-1=3

Expressed in terms of Null and alternate hypothesis

F < 3.10 accept Ho

F > 3.10 reject Ho

$$H_0 = MS_B \leq MS_W$$

$$H_1 = MS_B > MS_W$$

Two important values

Sum of Squares WITHIN

$$SS_w = 2018$$

$$MS_w = 100.9$$

Sum of Squares BETWEEN

$$SS_B = 1636$$

$$MS_B = 545.3$$

$$F = \frac{MS_B}{MS_W} = 545.3/100.9 = 5.40$$

F table at $3,20 \, df(j-1),(n-j)$

F < 3.1 accept H0

F > 3.1 reject H0

```
۶.
      #ANOVA
      oneway.test(Fat~Outlet, data=data,var.equal = TRUE )
        One-way analysis of means
data: Fat and Outlet
F = 5.4063, num df = 3, denom df = 20, p-value = 0.006876
      data$Outlet2 <- as.factor(data$Outlet)</pre>
      aov <- aov(Fat~Outlet2, data=data)</pre>
    summary(aov)
            Df Sum Sq Mean Sq F value Pr(>F)
Outlet2 3 1636 545.5 5.406 0.00688 **
Residuals 20 2018 100.9
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Why can't we do a series of t-tests?

t-test

ANOVA

$$\mu_1 = \mu_2$$

$$\mu_1 = \mu_3$$

$$\mu_1 = \mu_4$$

$$\mu_2 = \mu_3$$

$$\mu_2 = \mu_4$$

$$\mu_3 = \mu_4$$

$$\mu_1 = \mu_2 = \mu_3 = \mu_4$$

$$1-(.95)^6 = .26$$

26% chance of suggesting an effect when there isn't one!