K-means and hierarchical clustering with PYTHON

Objective: The objective of today's exercise is to understand how the unsupervised learning methods k-means clustering and hierarchical clustering work. Upon completing the exercise you should also understand how the choice of number of clusters, distance metrics and linkage functions can impact the solutions obtained and further be able to interpret dendrograms and measures of cluster validity.

Material: Lecture notes "Introduction to Machine Learning and Data Mining" as well as the files in the exercise 10 folder available from Campusnet.

Discussion forum: You can get help on our online discussion forum: https://piazza.com/dtu.dk/spring2023/02450

Software installation: Extract the Python toolbox from DTU Inside. Start Spyder and add the toolbox directory (<base-dir>/02450Toolbox_Python/Tools/) to PYTHONPATH (Tools/PYTHONPATH manager in Spyder). Remember the purpose of the exercises is not to re-write the code from scratch but to work with the scripts provided in the directory <base-dir>/02450Toolbox_Python/Scripts/ Representation of data in Python:

	Python var.	Type	Size	Description		
	Х	numpy.array	$N \times M$	Data matrix: The rows correspond to N data objects, each of which contains M attributes.		
	attributeNames	list	$M \times 1$	Attribute names: Name (string) for each of the M attributes.		
	N	integer	Scalar	Number of data objects.		
	M	integer	Scalar	Number of attributes.		
Regression	у	numpy.array	$N \times 1$	Dependent variable (output): For each data object, y contains an output value that we wish to predict.		
Classification	у	numpy.array	$N \times 1$	Class index: For each data object, y contains a class index, $y_n \in \{0, 1,, C-1\}$, where C is the total number of classes.		
	classNames	list	$C \times 1$	Class names: Name (string) for each of the C classes.		
	C	integer	Scalar	Number of classes.		
Cross-validation				All variables mentioned above appended with _train or _test represent the corresponding variable for the training or test set.		
O	$\star_{ extsf{ iny train}}$	_		Training data.		
	$\star_{ extsf{-}}test$	_		Test data.		

In previous exercises we considered supervised learning, i.e., we were given both input data X and output values y. In classification, the outputs were discrete variables, and in regression, the outputs were continuous.

We now move on to unsupervised learning where we are only provided input data X. The aim is here to find common patterns in the data such as groups of observations that are similar in some sense. In this exercise we will consider two clustering approaches for unsupervised learning: k-means clustering and hierarchical clustering.

10.1 k-means clustering

In this part of the exercise we will investigate k-means clustering. In k-means each of the data points are assigned to the cluster in closest proximity according to some measure of distance between cluster centers and data points. When the distance is given by the squared Euclidean distance the centers are also denoted centroids. Once

the data points have been assigned, each cluster center is updated to be placed at the center of the data points that are assigned to the cluster. This continues iteratively, usually until the assignment of data points to centers no longer change or until a maximal number of iterations is reached.

10.1.1 You can load the Data/synth1.mat data set file into Python using the loadmat function. The script $ex10_1_1.py$ clusters the data into K=4 clusters using the k-means algorithm. Notice how the script makes a scatter plot of the data and the clustering using the clusterplot function in the toolbox.

Script details:

- · In Python, you can use the function k_means() from the package sklearn.cluster to compute k-means clustering. Import the function and type help(k_means) to learn how to use the function.
- · The function can be called as centroids, clusters, inertia = $k_means(X,K)$; where K is the number of clusters.
- · Type clusterplot(X,clusters,centroids,y) to plot the data and the clustering.
- · Type help(clusterplot) to learn more about how to use the clustering plot tool in the toolbox.
- To be more robust against different initial conditions, you can run multiple iterations of clustering with different initial centroid seeds, see the 'n_init' parameter of k_means().

Does the clustering coincide with the true classes? Try running your code several times (with n_init set to 1) to show that the algorithm can fail if the initial conditions are poor. Try also the data sets synth2, synth3, and synth4.

For supervised learning we evaluated the model performance in terms of the error rate and accuracy. This however requires that we can match the estimated outcome to the true underlying classes, provided they are known. Even when we know the true underlying classes, we do not in general know which cluster corresponds to which class. Thus, by some means the true classes and the estimated clusters must be related to each other. One way of relating the two is to find out which cluster best matches each class such that each class is assigned one of the clusters and then calculate the error rate based on these clusters.

10.1.2 Is the above definition of the classification error rate for clustering reasonable if we extract the same number of clusters as classes in the data? Does the definition of the classification error make sense when the number of extracted clusters are different from the true underlying classes?

Rather than using the error rate we will consider the supervised measures of cluster validity, in particular Rand Statistic, Jaccard coefficient and normalized mutual information (NMI). Carefully review these measures in the book and make sure you understand how they are calculated.

10.1.3 The script $ex10_1_3.py$ repeats exercise 10.1.1, but this time perform k-means clustering for $K=1,\ldots,10$ clusters. For each value of K the three cluster validity measures mentioned above are computed. Notice how the script plots the cluster validity measures as a function of K.

Script details:

- · It is a good exercise that write your own code for computing the cluster validity measures. You can look at simple example in the toolbox (function clusterval()).
- · You can find many additional cluster validity measures in sklearn.metrics.cluster package. The script ex10_1_3.py shows how to use some of them (completeness score, homogeneity score, v-measure-score and others). You can find more details in sklearn package documentation.

How can the cluster validity measures be used to select the best number of clusters?

What happens when more than four clusters are used to model the data?

10.1.4 For supervised learning we used cross-validation to evaluate performance and estimate the number of parameters in our models, i.e., the number of clusters.

Let us assume that we split the data into a training and a test set, train the k-means model on the training set and evaluate how well the model accounts for the test data. Consider evaluating the clustering by summing the distance of test points to the closest estimated cluster center obtained. What will happen with this training and test error as we increase the number of clusters?

K-means clustering has many different applications, one of which is data compression. A data set can be compressed by performing k-means clustering and then representing

each data object by its cluster center. Thus, the only data that need to be stored is the K cluster centers and the N cluster indices.

10.1.5 We will consider a subset of the wild faces data described in [2]. You can load the wildfaces data set from the Data/wildfaces.mat file with the loadmat function, see the script ex10_1_5.py. Each data object is a $40 \cdot 40 \cdot 3 = 4800$ dimensional vector, corresponding to a 3-color 40×40 pixels image. The script computes a k-means clustering of the data with K=10 clusters. Plot a few random images from the data set as well as their corresponding cluster centroids to see how they are represented.

Script details:

- · You can plot an image by the command imshow(np.reshape(X[k,:],(c,x,y)).T) which reshapes an image vector to a 3-dimensional array and plots it. Similarly, you can plot the cluster centroids.
- Running k-means on a large data set can be slow. If you type k_means(X, K, verbose=True, max_iter=X, n_init=S) it will provide information about the iterations as they run. n_init as before constrains the number of initial repeated centroid seeds. Type help(k_means) to read more about these options.

How well is the data represented by the cluster centroids? Are you able to recognize the faces in the compressed representation? What happens if you increase or decrease the number of clusters?

10.1.6 Modify the script ex10_1_5.py to repeat the previous exercise but with the digits data set. You can load the digits data set from the file Data/digits. Each data object is a $16 \cdot 16 = 256$ dimensional vector, corresponding to a gray scale 16×16 pixels image.

Script details:

· You can change the color map to black-on-white grey-scale by adding paramter cmap=cm.binary to imshow() function.

Why does running k-means with K=10 not give you 10 clusters corresponding to the 10 digits 0–9? How many clusters do you need to visually represent the 10 different digits? Are there any digits that the clustering algorithm seems to confuse more than others?

10.2 Hierarchical clustering

We will in this part of the exercise consider hierarchical clustering based on the functions from the package scipy.cluster.hierarchy. Function linkage() forms a sample to sample distance matrix according to a given distance metric, and creates the linkages between data points forming the hierarchical cluster tree. Function dendrogram creates a plot of the generated tree. Function fcluster extracts the cluster from linkage matrix wrt given criterion. Use help for the three function and see how they are used and inspect what distance metrics and linkage functions are implemented.

10.2.1 Inspect and run the script ex10_2_1.py. The script loads the data set from the file Data/synth1 and partitions dthe data using hierarchical clustering with single linkage using the Euclidean distance measure. Notice how the script is used to cluster the data into 4 clusters by cutting off dendrogram at a threshold and plots a dendrogram and a scatter plot of the clusters.

Script details:

- The function linkage() computes the hierarchical clustering, resulting in a matrix representing the hierarchy of clusterings. Type help(linkage) to learn how to use it.
- The second parameter of linkage() can be used to select the method used in the hierarchical clustering procedure.
- · The third parameter of linkage() can be used to change the distance measure.
- · You can e.g. type Z = linkage(X, method='single', metric='euclidean) to use single linkage with the Euclidean distance measure.
- · To compute a clustering, you can use the function fcluster(). For example, type cls = fcluster(Z, criterion='maxclust', t=4) to get a maximum of 4 clusters. Type help(fcluster) to learn more about what this function does.
- · To plot a dendrogram, you can use the dendrogram() function.
- · Again, you can use the function clusterplot() from the toolbox to plot a scatter plot of the clustering.

Try changing the linkage method and see how it changes the dendrogram. Try running your code several times to see if it generates exactly the same dendrogram each time. Try also the data sets synth2, synth3, and synth4, and choose suitable distance measures for these data sets.

10.3 Old Faithful geyser data

Old Faithful is a famous geyser located in Yellow Stone national park in the US. The Old Faithful geyser dataset described in [1,3] consists of N=272 observations of

two variables, namely the duration of each eruption in minutes (duration) and the waiting time between eruptions also in minutes (waiting).

- 10.3.1 Load the Old Faithful data in the file load Data/faithful.mat. Analyze the data by k-means visually inspect the labeling of the data points.
 - What happens if you increase K beyond the obvious K = 2? Try to run the program a couple of times (resulting in different initial conditions). Do you see the same solution every time? The scaling of the variables can seriously affect the results we get in clustering. Discuss whether it is more reasonable to normalize the Old faithful data set? Try normalizing the data and see whether the results of running k-means change.
- 10.3.2 Run hierarchical clustering of the Old Faithful data using the "single" and "ward" linkage, with and without normalizing the data. Do you find support for a two cluster model from the structure of the dendrograms?

10.4 Extra Challenge

10.4.1 Try clustering some of the data sets you have analyzed in the previous exercises such as the Iris data and the wine data using k-means and hierarchical clustering.

1 Homework problems for this week

Problems

Question 1. Fall 2013 question 8: In Table 1 is given the pairwise distances between the four smallest and four largest islands in the Galápagos data. A hierarchical clustering is used to cluster these eight observations using single (i.e., minimum) linkage. Which one of the dendrograms given in Figure 1 corresponds to the clustering?

Figure 1: Hierarchical clustering of the eight observations considered in Table 1.

	O1	O2	O3	O4	O_5	O6	O7
O1	0	2.39	1.73	0.96	3.46	4.07	4.27
O2	2.39	0	1.15	1.76	2.66	5.36	3.54
O3	1.73	1.15	0	1.52	3.01	4.66	3.77
O4	0.96	1.76	1.52	0	2.84	4.25	3.80
O_5	3.46	2.66	3.01	2.84	0	4.88	1.41
O6	4.07	5.36	4.66	4.25	4.88	0	5.47
O7	4.27	3.54	3.77	3.80	1.41	5.47	0
O8	5.11	4.79	4.90	4.74	2.96	5.16	2.88

Table 1: Pairwise Euclidean distance, i.e $d(Oa, Ob) = ||\mathbf{x}_a - \mathbf{x}_b||_2 = \sqrt{\sum_m (x_{am} - x_{bm})^2}$, between eight observations of the Galápagos data. Red observations (i.e., O1, O2, O3, and O4) correspond to the four smallest islands whereas blue observations (i.e., O5, O6, O7, and O8) correspond to the four largest islands.

- A Dendrogram 1.
- B Dendrogram 2.
- C Dendrogram 3.
- Dendrogram 4.
 - E Don't know.

Question 2. Fall 2014 question 20: Consider the simple 1-dimensional data set comprised of N=7 observations as shown in table 2. Suppose we wish to apply K-means clustering to the dataset and the K=3 one-dimensional cluster centers are initialized in $\mu_1=4, \mu_2=7$ and $\mu_3=14$. After terminating of the K-means clustering algorithm, what are the final (rounded) cluster centers μ_1, μ_2, μ_3 ?

X	3	6	7	9	10	11	14
		0	•	0			

Table 2: Simple 1-dimensional dataset comprised of N=7 observations.

A
$$\mu_1 = 3.00, \mu_2 = 8.00, \mu_3 = 12.50$$

$$\begin{array}{|c|c|c|c|c|}\hline 08 & B & \mu_1 = 3.00, \mu_2 = 7.33, \mu_3 = 11.67\\ \hline 5.11 & & & \\ 4.79 & C & \mu_1 = 4.50, \mu_2 = 9.25, \mu_3 = 14.00\\ 4.90 & & & \\ 4.74 & D & \mu_1 = 5.33, \mu_2 = 10.00, \mu_3 = 14.00\\ \hline 5.16 & & & \\ 2.88 & E & Don't know. \end{array}$$

Question 3. Fall 2014 question 11: In table 3 is given the pairwise cityblock distances between 8 observations. A hierarchical clustering is used to cluster these nine observations using group average linkage. Which of the dendrograms shown in fig. 2 corresponds to the clustering?

0

Figure 2: Hierarchical clustering of the 8 observations considereded in table 3

	o_1	o_2	03	o_4	o_5	o_6	07	o_8
o_1	0	4	7	9	5	5	5	6
o_2	4	0	7	7	7	3	7	8
o_3	7	7	0	10	6	6	4	9
o_4	9	7	10	0	8	6	10	9
o_5	5	7	6	8	0	8	6	7
o_6	5	3	6	6	8	0	8	11
O_7	5	7	4	10	6	8	0	7
08	6	8	9	9	7	11	7	0

Table 3: Pairwise Cityblock distance, i.e $d(o_i, o_i) = \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_1 = \sum_{k=1}^M |x_{ik} - x_{jk}|,$ between 8 observations. Each observation o_i corresponds to a M = 15 dimensional binary vector, $x_{ik} \in \{0, 1\}$. The blue observations $\{o_1, o_2, o_3, o_4\}$ belong to class C_1 and the black observations $\{o_5, o_6, o_7, o_8\}$ belong to class C_2 .

- A Dendrogram 1.
- B Dendrogram 2.
- C Dendrogram 3.
- D Dendrogram 4.
- E Don't know.

References

- [1] A Azzalini and AW Bowman. A look at some data on the old faithful geyser. *Applied Statistics*, pages 357–365, 1990.
- [2] Tamara L Berg, Alexander C Berg, Jaety Edwards, and DA Forsyth. Who's in the picture. Advances in neural information processing systems, 17:137–144, 2005.
- [3] Wolfgang Härdle. Smoothing techniques: with implementation in S. Springer, 1991.