DETECTING PARKINSONS DISEASE USING MACHINE LEARNING

ASSIGNMENT - 4

Date	4th October 2022
Team ID	PNT2022TMID27836
Student Name	Prabhakaran M (311519104044)
Domain Name	HealthCare
Project Name	Detecting Parkinsons Disease using Machine Learning
Maximum Marks	2 Marks

1.)IMPORT THE REQUIRED LIBRARIES

```
▼ 1.)IMPORT THE REQUIRED LIBRARIES

[1] import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

3.)HANDLE MISSING VALUES AND DEAL WITH THEM

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

. 0	df.info()	df.info()				
D	RangeIndex: 200 Data columns (t # Column 0 Gender 1 Age 2 Annual Inc	score (1-100) 200 non-null s), object(1)				

5.) PERFORM VARIOUS VISUALISATIONS a.) UNIVARIANTE ANALYSIS

b.) MULTI - VARIANTE ANALYSIS

6.) FIND AND REPLACE THE OUTLIERS

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

- 7.)0	CHECK	FOR	CATEGORIC	AL COLUMNS A	PERFORM ENCODING	
00	le = Label	Encoder(rocessing import La) _transform(df.Gend			
[15]	df.head()					
	Gender	Age A	nnual Income (k\$)	Spending Score (1-100)	ý.	
	0 1	19.0	15.0	39.0		
	1 1	21.0	15.0	81.0		
	2 0	20.0	16.0	6.0		
	3 0	23.0	16.0	77.0		
	9					

8.) SCALING THE DATA

9.) PERFORMING ANY OF THE CLUSTERING ALGORITHMS

10.) ADD THE CLUSTER DATA WITH THE PRIMARY DATASET

11.)SPLITTING THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

12.) SPLIT THE DATA INTO TRAINING AND TESTING DATA

→ 11.)SPLITTING THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES	_
Y = df.Category ("Category")) Y = df.Category	

13.) BUILD THE MODEL

14.) TRAIN THE MODEL

15.) TEST THE MODEL

16.) MEASURE THE PERFORMANCE USING METRICS

