2º curso / 2º cuatr. Grado en Ing. Informática

Arquitectura de Computadores Tema 3

Arquitecturas con paralelismo a nivel de thread (TLP)

Material elaborado por los profesores responsables de la asignatura: Mancia Anguita – Julio Ortega

Licencia Creative Commons © ① © ②

Lecciones

AC MATC

- Lección 7. Arquitecturas TLP
 - Clasificación y estructura de arquitecturas con TLP explícito y una instancia del SO
 - Multiprocesadores
 - > Multicores
 - Cores Multithread
 - > Hardware y arquitecturas TLP en un chip
- Lección 8. Coherencia del sistema de memoria
- Lección 9. Consistencia del sistema de memoria
- Lección 10. Sincronización

Objetivos Lección 7

AC A PIC

- Distinguir entre cores multhread, multicores y multiprocesadores.
- Comparar entre cores multithread de grano fino, cores multithread de grano grueso y cores con multithread simultánea.

Bibliografía Lección 7

AC N PTC

> Fundamental

- ➤ T. Rauber, G. Ründer. *Parallel Programming: for Multicore and Cluster Systems*. Springer 2010. Disponible en línea (biblioteca UGR): http://dx.doi.org/10.1007/978-3-642-04818-0
- ➤ Theo Ungerer, Borut Robic, Jurij Silc, "A survey of Processors with Explicit Multithreading", ACM Computing Surveys, vol. 35, no. 1, pp. 29-63, March 2003. Disponible en línea (biblioteca UGR): http://dl.acm.org/citation.cfm?id=641867

Contenido Lección 7

AC A PIC

- Clasificación y estructura de arquitecturas con TLP explícito y una instancia del SO
- Multiprocesadores
- Multicores
- Cores Multithread
- > Hardware y arquitecturas TLP en un chip

Clasificación de arquitecturas con TLP explícito y una instancia de SO

AC NATC

- Multiprocesador
 - Ejecutan varios threads en <u>paralelo</u> en un **computador** con varios cores/procesadores (cada thread en un core/procesador distinto).
 - Diversos niveles de empaquetamiento: dado, encapsulado, placa, chasis y sistema.
- Multicore o multiprocesador en un chip o CMP (Chip MultiProcessor)
 - > Ejecutan varios threads en <u>paralelo</u> en un **chip de procesamiento** multicore (cada thread en un core distinto)
- Core multithread
 - Core que modifican su arquitectura ILP para ejecutar threads <u>concurrentemente</u> o en <u>paralelo</u>

Contenido Lección 7

AC A PIC

- Clasificación y estructura de arquitecturas con TLP explícito y una instancia del SO
- > Multiprocesadores
 - Ejecutan varios threads en <u>paralelo</u> en un **computador** con varios cores/procesadores (cada thread en un core/procesador distinto).
- Multicores
- Cores Multithread
- Hardware y arquitecturas TLP en un chip

Multiprocesadores. Criterio clasificación: sistema de memoria (Lección 1)

Multiprocesador con memoria centralizada (UMA)

Mayor <u>latencia</u> - Poco escalable

Multiprocesador con memoria distribuida (NUMA)

 Menor <u>latencia</u> - <u>escalable</u> pero requiere para ello distribución de datos/código

Multiprocesadores. Criterio de clasificación: nivel de empaquet./conexión

AC N PTC

Sistema

Armario (cabinet)

Placa (board)

chip

SGI Altix 4700

http://www.sgi.com/products/remarketed/servers/altix4700.html

Multicore

Multiprocesador en una placa: evolución de UMA a NUMA

- Controlador de memoria en chipset (Northbrigde chip)
- Red: bus (medio compartido)
- Controlador de memoria en chipset (Northbrigde 🌣 Controlador de memoria en chip del procesador
 - Red: enlaces (conexiones punto a punto) y conmutadores (en el chip del procesador)
 - Ejemplos en servidores:
 - AMD Opteron (2003): enlaces HyperTransport (2001)
 - Intel (Nehalem) Xeon 7500 (2010): enlaces QPI (Quick Path Interconnect, 2008)

http://www.intel.com/content/www/us/en/performance/performance-quickpath-architecture-demo.html

Multiprocesador en una placa: UMA con bus (Intel Xeon 7300)

Multiprocesador en una placa: CC-NUMA con red estática (Intel Xeon 7500)

nttp://ark.intel.com/products/46490/Intel-Xeon-Processor

Contenido Lección 7

AC A PIC

- Clasificación y estructura de arquitecturas con TLP explícito y una instancia del SO
- Multiprocesadores
- Multicores
 - Ejecutan varios threads en paralelo en un chip de procesamiento multicore (cada thread en un core distinto)
- Cores Multithread
- Hardware y arquitecturas TLP en un chip

Multiprocesador en un chip o Multicore o CMP (*Chip MultiProcessor*)

Multicore: otras posibles estructuras

Contenido Lección 7

AC A PITC

- Clasificación y estructura de arquitecturas con TLP explícito y una instancia del SO
- Multiprocesadores
- Multicores
- Cores Multithread
 - Modifican su arquitectura ILP (segmentada, escalar o VLIW) para ejecutar threads concurrentemente o en paralelo
- Hardware y arquitecturas TLP en un chip

Arquitecturas ILP

- Etapa de captación de instrucciones (Instruction Fetch)
- Etapa de decodificación de instrucciones y emisión a unidades funcionales (Instruction Decode/Instruction Issue)
- Etapas de ejecución (*Execution*). Etapa de acceso a memoria (*Memory*)
- Etapa de almacenamiento de resultados (Write-Back)

Arquitecturas ILP

AC MATC

- Procesadores/cores segmentados:
 - > Ejecutan instrucciones **concurrentemente** segmentando el uso de sus componentes
- Procesadores/cores VLIW (Very Large Instruction Word) y superescalares:
 - Ejecutan instrucciones concurrentemente (segmentación) y en paralelo (tienen múltiples unidades funcionales y emiten múltiples instrucciones en paralelo a unidades funcionales)
 - VLIW:
 - Las instrucciones que se ejecutan en paralelo se captan juntas de memoria.
 - Este conjunto de instrucciones conforman la palabra de instrucción muy larga a la que hace referencia la denominación VLIW
 - El hardware presupone que las instrucciones de una palabra son independientes: no tiene que encontrar instrucciones que pueden emitirse y ejecutarse en paralelo
 - Superescalares:
 - Tiene que encontrar instrucciones que puedan emitirse y ejecutarse en paralelo (tiene hardware para extraer paralelismo a nivel de instrucción)

Modificación de la arquitectura ILP en Core Multithread (ej. SMT)

AC A PTC

- > Almacenamiento: se multiplexa, se reparte o comparte entre threads, o se replica
 - Con SMT: repartir, compartir o replicar
- Hardware dentro de etapas: se multiplexa, o se reparte o comparte entre threads
 - Con SMT: unidades funcionales (etapa Ex) compartidas, resto etapas repartidas o compartidas; multiplexación es posible (p. ej. predicción de saltos y decodificación)

Clasificación de cores multithread

AC A PTC

- Ejecutan varios threads concurrentemente en el mismo core
- La conmutación entre threads la decide y controla el hardware
- > Emite instrucciones de un único thread en un ciclo
- Simultaneous MultiThreading (SMT) o multihilo simultáneo o horizontal multithread
 - Ejecutan, en un core superescalar, varios threads en paralelo
 - Pueden emitir (para su ejecución) instrucciones de varios threads en un ciclo

20

Clasificación de cores con TMT

AC SO PTO

- ABCD SODID
 - Fine-grain multithreading (FGMT) o interleaved multithreading
 - La conmutación entre threads la decide el hardware cada ciclo (coste 0)
 - por turno rotatorio (round-robin) o
 - por eventos de cierta latencia combinado con alguna técnica de planificación (ej. thread menos recientemente ejecutado)
 - Eventos: dependencia funcional, acceso a datos a cache L1, salto no predecible, una operación de cierta latencia (ej. div), ...
 - Coarse-grain multithreading (CGMT) o blocked multithreading
 - La conmutación entre threads la decide el hardware (coste de 0 a varios ciclos)
 - tras intervalos de tiempo prefijados (timeslice multithreading) o
 - por eventos de cierta latencia (switch-on-event multithreading).

В

Clasificación de cores con CGMT con conmutación por eventos

AC NATC

Estática:

- > Conmutación
 - Explícita: instrucciones explícitas para conmutación (instrucciones añadidas al repertorio)
 - Implícita: instrucciones de carga, almacenamiento, salto
- Ventaja/Inconveniente:
 - coste cambio contexto bajo (0 o 1 ciclo) / cambios de contextos innecesarios

Dinámica:

- Conmutación típicamente por:
 - fallo en la última cache dentro del chip de procesamiento (conmutación por fallo de cache), interrupción (conmutación por señal), ...
- > Ventaja/Inconveniente:
 - reduce cambios de contexto innecesarios / mayor sobrecarga al cambiar de contexto

Alternativas en un core escalar segmentado

AC MATC

En un core escalar se emite una instrucción cada ciclo de reloj

Alternativas en un core con emisión múltiple de instrucciones de un thread

AC A PTC

En un core superescalar o VLIW se emiten más de una instrucción cada ciclo de reloj; en las alternativas de abajo, de un único thread Un thread Multithread Multithread grano fino (no TLP) grano grueso ABCD **ABCD** pérdida horizontal Conmutación de contexto B B Ciclos pérdida vertical B B D D D D A B A A A B B B B ancho emisión

Core multithread simultánea y multicores

AC SO PIC

En un multicore y en un core superescalar con SMT (Simultaneous MultiThread) se pueden emitir instrucciones de distintos threads cada ciclo de reloj

Core con multithread simultánea (4 thread por core)

Multicore con 2 cores con multithread simultánea (2 threads por core)

A	A
В	В
В	A
A	В
В	В
A	

С	D
D	
D	D
С	С
D	С
С	D

Contenido Lección 7

AC A PIC

- Clasificación y estructura de arquitecturas con TLP explícito y una instancia del SO
- Multiprocesadores
- Multicores
- Cores Multithread
- > Hardware y arquitecturas TLP en un chip

Hardware y arquitecturas TLP en un chip

Hardware	CGMT	FGMT	SMT	СМР
Registros	replicado (al menos PC)	replicado	replicado	replicado
Almacenamiento	multiplexado	multiplexado, compartido, repartido o replicado	compartido, repartido o replicado	replicado
Otro hardware de las etapas del cauce	multiplexado	Captación: repartida o compartida; Resto: multiplexadas	<u>UF</u> : compartidas; <u>Resto</u> : repartidas o compartidas	replicado
Etiquetas para distinguir el thread de una instr.	Sí	Sí	Sí	No
Hardware para conmutar entre threads	Sí	Sí	No	No

Para ampliar ...

AC A PIC

Webs

- An Introduction to the Intel® QuickPath Interconnect, http://www.intel.com/content/www/us/en/io/quickpathtechnology/quick-path-interconnect-introduction-paper.html
- Intel® QuickPath Technology Animated Demo [119 K] http://www.intel.com/content/www/us/en/performance/perfor mance-quickpath-architecture-demo.html

Artículos en revistas

Kongetira, P.; Aingaran, K.; Olukotun, K.; , "Niagara: a 32-way multithreaded Sparc processor," *Micro, IEEE* , vol.25, no.2, pp. 21-29, March-April 2005. Disponible en línea (biblioteca UGR): http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1453485&isnumber=31213