Class08 Mini Project

Patricia Chen A16138722

Preparing the data

Answer Q1-Q15, Q14 is optional

```
# Save your input data file into your Project directory
fna.data<- "WisconsinCancer.csv"

# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis radiu	s_mean	texture_mean	perimeter_mean	area_mean	
842302	M	17.99	10.38	122.80	1001.0	
842517	M	20.57	17.77	132.90	1326.0	
84300903	M	19.69	21.25	130.00	1203.0	
84348301	M	11.42	20.38	77.58	386.1	
84358402	M	20.29	14.34	135.10	1297.0	
843786	M	12.45	15.70	82.57	477.1	
	${\tt smoothness_mean}$	compa	ctness_mean co	oncavity_mean c	oncave.poi	nts_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean f	ractal_	_dimension_mea	an radius_se te	xture_se pe	erimeter_se
842302	0.2419		0.0787	71 1.0950	0.9053	8.589
842517	0.1812		0.0566	0.5435	0.7339	3.398

```
84300903
                0.2069
                                       0.05999
                                                  0.7456
                                                              0.7869
                                                                            4.585
84348301
                0.2597
                                       0.09744
                                                  0.4956
                                                                            3.445
                                                              1.1560
84358402
                0.1809
                                       0.05883
                                                  0.7572
                                                              0.7813
                                                                            5.438
843786
                0.2087
                                       0.07613
                                                  0.3345
                                                              0.8902
                                                                            2.217
         area se smoothness se compactness se concavity se concave.points se
842302
          153.40
                      0.006399
                                       0.04904
                                                     0.05373
                                                                       0.01587
842517
           74.08
                      0.005225
                                       0.01308
                                                     0.01860
                                                                       0.01340
           94.03
84300903
                      0.006150
                                       0.04006
                                                    0.03832
                                                                       0.02058
84348301
           27.23
                      0.009110
                                       0.07458
                                                    0.05661
                                                                       0.01867
84358402
           94.44
                      0.011490
                                       0.02461
                                                    0.05688
                                                                       0.01885
843786
           27.19
                      0.007510
                                       0.03345
                                                                       0.01137
                                                    0.03672
         symmetry_se fractal_dimension_se radius_worst texture_worst
             0.03003
                                  0.006193
                                                  25.38
                                                                 17.33
842302
842517
             0.01389
                                  0.003532
                                                  24.99
                                                                 23.41
                                                  23.57
                                                                 25.53
84300903
             0.02250
                                  0.004571
84348301
             0.05963
                                  0.009208
                                                  14.91
                                                                 26.50
84358402
             0.01756
                                  0.005115
                                                  22.54
                                                                 16.67
843786
             0.02165
                                  0.005082
                                                  15.47
                                                                 23.75
         perimeter_worst area_worst smoothness_worst compactness_worst
842302
                  184.60
                              2019.0
                                               0.1622
                                                                  0.6656
                                               0.1238
842517
                  158.80
                              1956.0
                                                                  0.1866
84300903
                  152.50
                                               0.1444
                              1709.0
                                                                  0.4245
84348301
                   98.87
                              567.7
                                               0.2098
                                                                  0.8663
84358402
                  152.20
                              1575.0
                                               0.1374
                                                                  0.2050
843786
                  103.40
                               741.6
                                               0.1791
                                                                  0.5249
         concavity_worst concave.points_worst symmetry_worst
842302
                  0.7119
                                        0.2654
                                                       0.4601
                  0.2416
842517
                                        0.1860
                                                        0.2750
84300903
                  0.4504
                                        0.2430
                                                        0.3613
84348301
                  0.6869
                                        0.2575
                                                        0.6638
84358402
                  0.4000
                                        0.1625
                                                        0.2364
843786
                  0.5355
                                        0.1741
                                                        0.3985
         fractal_dimension_worst
842302
                         0.11890
842517
                         0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
```

[#] We can use -1 here to remove the first column wisc.data <- wisc.df[,-1]

Finally, setup a separate new vector called diagnosis that contains the data from the diagnosis column of the original dataset. We will store this as a factor (useful for plotting) and use this later to check our results.

```
# Create diagnosis vector for later
 diagnosis <- as.numeric(wisc.df$diagnosis == "M")</pre>
 diagnosis
[112] 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0
[149] 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 1
[186] 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 0
[334] 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
[445] 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
[482] 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1
[556] 0 0 0 0 0 0 0 1 1 1 1 1 1 0
```

Exploratory data analysis

Q1. How many observations are in this dataset?

```
nrow(wisc.data)
```

[1] 569

Answer: There are 569 observations in this dataset from the number of rows counted.

Q2. How many of the observations have a malignant diagnosis?

```
table(diagnosis) # Os = benigne, 1s = malignant
```

```
diagnosis
0 1
357 212
```

Answer: There are 212 observations that have the malignant diagnosis, and 357 observations with benigne diagnosis.

Q3. How many variables/features in the data are suffixed with _mean?

```
length(grep("_mean", colnames(wisc.data)))
```

[1] 10

Answer: There are 10 features in the data that are suffixed with _mean.

The functions dim(), nrow(), table(), length() and grep() may be useful for answering the first 3 questions above.

2. Principal Component Analysis

Performing PCA

```
# Check column means and standard deviations
colMeans(wisc.data)
```

radius_mean	texture_mean	perimeter_mean
1.412729e+01	1.928965e+01	9.196903e+01
area_mean	smoothness_mean	compactness_mean
6.548891e+02	9.636028e-02	1.043410e-01
concavity_mean	concave.points_mean	symmetry_mean
8.879932e-02	4.891915e-02	1.811619e-01
<pre>fractal_dimension_mean</pre>	radius_se	texture_se
6.279761e-02	4.051721e-01	1.216853e+00
perimeter_se	area_se	smoothness_se
2.866059e+00	4.033708e+01	7.040979e-03
compactness_se	concavity_se	concave.points_se
2.547814e-02	3.189372e-02	1.179614e-02
symmetry_se	fractal_dimension_se	radius_worst
2.054230e-02	3.794904e-03	1.626919e+01

```
texture_worst
                                perimeter_worst
                                                              area_worst
          2.567722e+01
                                   1.072612e+02
                                                            8.805831e+02
      smoothness_worst
                              compactness_worst
                                                         concavity_worst
                                   2.542650e-01
          1.323686e-01
                                                            2.721885e-01
  concave.points_worst
                                 symmetry_worst fractal_dimension_worst
          1.146062e-01
                                   2.900756e-01
                                                            8.394582e-02
 apply(wisc.data, 2, sd)
           radius mean
                                   texture_mean
                                                          perimeter_mean
          3.524049e+00
                                   4.301036e+00
                                                            2.429898e+01
             area mean
                                smoothness mean
                                                        compactness_mean
          3.519141e+02
                                   1.406413e-02
                                                            5.281276e-02
        concavity_mean
                            concave.points_mean
                                                           symmetry_mean
                                                            2.741428e-02
          7.971981e-02
                                   3.880284e-02
fractal_dimension_mean
                                      radius_se
                                                              texture_se
          7.060363e-03
                                   2.773127e-01
                                                            5.516484e-01
          perimeter_se
                                                           smoothness_se
                                        area_se
          2.021855e+00
                                   4.549101e+01
                                                            3.002518e-03
        compactness_se
                                   concavity_se
                                                       concave.points_se
          1.790818e-02
                                   3.018606e-02
                                                            6.170285e-03
                           fractal_dimension_se
                                                            radius_worst
           symmetry_se
          8.266372e-03
                                   2.646071e-03
                                                            4.833242e+00
         texture_worst
                                perimeter_worst
                                                              area_worst
          6.146258e+00
                                   3.360254e+01
                                                            5.693570e+02
      smoothness_worst
                              compactness_worst
                                                         concavity_worst
          2.283243e-02
                                   1.573365e-01
                                                            2.086243e-01
  concave.points_worst
                                 symmetry_worst fractal_dimension_worst
          6.573234e-02
                                   6.186747e-02
                                                            1.806127e-02
 #Execute PCA with the prcomp() function on the wisc.data, scaling if appropriate, and assi
 # Perform PCA on wisc.data by completing the following code
 #Inspect a summary of the results with the summary() function.
 wisc.pr <- prcomp(wisc.data, scale=TRUE)</pre>
 # Look at summary of results
 summary(wisc.pr)
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Standard deviation
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
Cumulative Proportion
                          PC22
                                  PC23
                                         PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Standard deviation
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

Answer: 0.4427 proportion or 44.27% of the original variance is captured by the first principal components (PC1).

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

Answer: From the row cumulative proportion, three principal components (PC3) are required to describe at least 70% of the original variance in the data, yielding a proportion of 0.72636.

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

Answer: From the row cumulative proportion, seven principal components (PC7) are required to describe at least 90% of the original variance in the data, yielding a proportion of 0.91010.

Interpreting PCA results

Create a biplot of the wisc.pr using the biplot() function.

```
biplot(wisc.pr)
```


Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why? HINT: This is a hot mess of a plot and we will need to generate our own plots to make sense of this PCA result.

Answer: The part of the plot that stands out is that it is a biplot that is plotted in two colors, with the column as red and rows as black. The trend of the plot is really difficult to understand and is very confusing, because we cannot clearly observe how the row and column datas compare, and could not identify the particular trend it is trying to demonstrate.

Lets generate a more standard scatter plot of each observation along principal components 1 and 2 and color the points by the diagnosis.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

Answer: I noticed that the PC2 vs PC1 plot point scatters are more spread out compared to the PC3 vs PC1 plot. The PC3 vs PC1 plot data points are more concentrated on the bottom right corner of the graph axis and are more closely packed together.

Use ggplot2 package to make a fancy figure of the results

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col= df$diagnosis) + geom_point()</pre>
```


Variance explained

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Communicating PCA results

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

wisc.pr\$rotation[,1]

radius_mean	texture_mean	perimeter_mean
radrus_mean	cexture_mean	berimerer mean
-0.21890244	-0.10372458	-0.22753729
area_mean	smoothness_mean	compactness_mean
-0.22099499	-0.14258969	-0.23928535
concavity_mean	concave.points_mean	${\tt symmetry_mean}$
-0.25840048	-0.26085376	-0.13816696
<pre>fractal_dimension_mean</pre>	radius_se	texture_se
-0.06436335	-0.20597878	-0.01742803
perimeter_se	area_se	${\tt smoothness_se}$
-0.21132592	-0.20286964	-0.01453145
${\tt compactness_se}$	concavity_se	concave.points_se
-0.17039345	-0.15358979	-0.18341740
symmetry_se	fractal_dimension_se	radius_worst
-0.04249842	-0.10256832	-0.22799663

texture_worst perimeter_worst area_worst -0.10446933 -0.23663968 -0.22487053 smoothness_worst compactness_worst concavity_worst -0.12795256 -0.21009588 -0.22876753 concave.points worst symmetry worst fractal dimension worst -0.25088597 -0.12290456 -0.13178394

Answer: The component of the loading vector for the feature concave.points_mean of the first principal component is -0.26085376.

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

summary(wisc.pr)

Importance of components:

```
PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                          PC1
                                 PC2
                                                                           PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                   PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                          PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                   PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                           PC21
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Standard deviation
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                          PC24
                          PC22
                                   PC23
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                           PC28
Standard deviation
                       0.16565 \ 0.15602 \ 0.1344 \ 0.12442 \ 0.09043 \ 0.08307 \ 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                   PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Answer: By looking at the cumulative proportion, a minimum of five principal components (PC5) required to explain 80% of the variance of the data, which yields a proportion of 0.84734 of the variance.

3. Hierarchical clustering

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)

# Calculate the (Euclidean) distances between all pairs of observations in the new scaled
data.dist <- dist(data.scaled)

#Create a hierarchical clustering model using complete linkage. Manually specify the method
wisc.hclust <- hclust(data.dist, method="complete")</pre>
```

Results of hierarchical clustering

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

Answer: The height that the clustering model have four clusters is estimated to be around a height of 19 or close to 20.

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Selecting number of clusters

#Use cutree() to cut the tree so that it has 4 clusters. Assign the output to the variable
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
wisc.hclust.clusters</pre>

0.4.0.0.0	040545	0.4000000	0.4.0.4.0.0.4	04050400	0.40700	044050	04450000
842302	842517	84300903	84348301	84358402	843786	844359	84458202
1	1	1	2	1	1	1	1
844981	84501001	845636	84610002	846226	846381	84667401	84799002
1	2	3	1	1	3	1	1
848406	84862001	849014	8510426	8510653	8510824	8511133	851509
3	1	1	3	3	3	1	1
852552	852631	852763	852781	852973	853201	853401	853612
1	1	1	1	1	3	1	1
85382601	854002	854039	854253	854268	854941	855133	855138
1	1	1	1	1	3	3	1
855167	855563	855625	856106	85638502	857010	85713702	85715
3	1	1	1	1	1	3	1
857155	857156	857343	857373	857374	857392	857438	85759902
3	3	3	3	3	1	3	3

857637	857793	857810	858477	858970	858981	858986	859196
1	1		3	3			3
85922302	859283						
1	1			2			
859717	859983		8610404				
1	1		3	3			
861103		8611555				_	_
3	1			3			1
861597			861799				_
3	1			3			1
86211	862261		862548				
3	3		3	3	3		3
862989	863030		863270				86408
3	1	1	3	1			
86409	864292	864496	864685	864726	864729	864877	865128
3	3	3	3	3	1	1	3
865137	86517	865423	865432	865468	86561	866083	866203
3	1	2	3	3	3	1	3
866458	866674	866714	8670	86730502	867387	867739	868202
1	1	3	1	1	3	1	3
868223	868682	868826	868871	868999	869104	869218	869224
3	3	1	3	3	3	3	3
869254	869476	869691	86973701	86973702	869931	871001501	871001502
3	3	1	3	3	3	3	3
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
2	3	3	3	1	3	3	3
8711561	8711803	871201		8712289	8712291	87127	8712729
3	1	_		1			3
8712766	8712853	87139402		87164	871641	871642	872113
1	3		3	1			
872608	87281702	873357			873593		
3	1		3	1		_	3
873885	874158	874217		874662		874858	
1	3		3				3
		87556202					
3		1					1
		878796					
3		1					
		881046502					
1		1					
		8811842					
3		1					
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202

3	3	3	3	3	1	1	3
88203002	88206102	882488	88249602	88299702	883263	883270	88330202
3	1	3	3	1	1	3	1
88350402	883539	883852	88411702	884180	884437	884448	884626
3	3	3	3	1	3	3	3
88466802	884689	884948	88518501	885429	8860702	886226	886452
3	3	1	3	1	3	1	3
88649001	886776	887181	88725602	887549	888264	888570	889403
1	1	1		1		1	3
889719	88995002			8910506		8910721	
1	1	3	3	3	3	3	3
8910988	8910996	8911163	8911164	8911230	8911670	8911800	8911834
1	3		3		3		3
8912049	8912055	89122		8912284	8912521	8912909	
1	3	1	1	3		3	
8913049	89143601				891703		
3	3	3		3			3
891936		892214				89263202	
3	3	3	3	1		1	
89296	893061	89344				893783	89382601
3	3	3	3				
89382602		894047					
3	3	3	3	3			
894604	894618				89511502		
3	3	3	1		3		3
8953902	895633				897137		89742801
1	1	1	1	3	3	3	_
897604	897630				898143		
3	1	3	1			_	1
89864002							899667
3	3	3	3	3		3	_
899987		901011					
_	1	· ·	•	•	•	•	· ·
							9011495
3	3						
							901303
1							3
901315							90251
3	3				3		
							903483
3	3				1		
							904357
1	1	3	3	3	3	3	3

00420701	904647	004690	0047	004060	00/1071	005190	005100
	304047				304371		
_	905501						
30024101		300002			300007	303000	
	90602302						
300910		300024	300290				
-	907367						
307143		307403					
	908445						
					309220		
	909445						
309411					9110720		
	911157302						
911150					911201		
	9112367						
		3112594			911290202		311320501
3 911320502							
					911366 1		
3							
911384		911391			911673 3		
3							
912193					913063		
3					3 914101		
913512							
3		3	3				
914366					91504		
1					1		
915186					915460		
3		3					3
915691	_						
1					1		
	91762702						
3				3			3
918192	918465				91930402		
3		3		3			
	919812						
3		3					
					923465		
3					3		
	924342						
3		3				3	
	925311						
3		1	1	1	1	3	1
92751							

```
# Use the table() function to compare the cluster membership to the actual diagnoses
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters 0 1
1 12 165
2 2 5
3 343 40
4 0 2
```

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=6)
table(wisc.hclust.clusters,diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters
                        0
                            1
                      12 165
                    2
                        0
                    3 331
                           39
                    4
                        2
                            0
                    5
                      12
                            1
                        0
                            2
```

Answer: A better number for cluster vs diagnoses match could be six clusters, where clusters 3, 4, and 5 demonstrates benign diagnosis, while clusters 1, 2, and 6 demonstrate malignant diagnosis.

Using different methods

There are number of different "methods" we can use to combine points during the hierarchical clustering procedure. These include "single", "complete", "average" and (my favorite) "ward.D2".

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

```
wisc.hclust1 <- hclust(data.dist, method="ward.D2")
wisc.hclust1.clusters <- cutree(wisc.hclust1, k=2)
table(wisc.hclust1.clusters, diagnosis)</pre>
```

```
diagnosis wisc.hclust1.clusters 0 1 1 20 164 2 337 48
```

Answer: My favorate method to use is the ward.D2 method, because this method produces two clear clusters of the diagnosis types, by cutting them into two groups. This allows for easier identification of which clusters is the benign and which is malignant diagnosis.

Q14. Optional K-means clustering (Skipped)

5. Combining methods

Clustering on PCA results

```
wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:7]), method="ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

dist(wisc.pr\$x[, 1:7]) hclust (*, "ward.D2")

plot(wisc.pr\$x[,1:2], col=diagnosis+1)


```
g <- as.factor(grps)
levels(g)</pre>
```

[1] "1" "2"

#To match things up we can turn our groups into a factor and reorder the levels so cluster $g \leftarrow \text{relevel}(g,2)$ levels(g)

[1] "2" "1"

Plot using our re-ordered factor
plot(wisc.pr\$x[,1:2], col=g)

Use the distance along the first 7 PCs for clustering i.e. wisc.prx[, 1:7] wisc.pr.hclust <- hclust(dist(wisc.prx[,1:7]), method="ward.D2")

```
#Cut this hierarchical clustering model into 2 clusters and assign the results to wisc.pr.
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
# Compare to actual diagnosis
table(wisc.pr.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.pr.hclust.clusters 0 1
1 28 188
2 329 24
```

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

Answer: According to the table comparing actual diagnosis, the new model work very well in separating out the two diagnoses.