SBML Model Report

Model name: "Markevich2004 - MAPK double phosphorylation, ordered Michaelis-Menton"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Nicolas Le Novre¹ at May 23rd 2005 at 1:41 p.m. and last time modified at May 15th 2012 at 9:42 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	5
events	0	constraints	0
reactions	4	function definitions	0
global parameters	9	unit definitions	1
rules	0	initial assignments	0

Model Notes

Markevich2004 - MAPK double phosphorylation, ordered Michaelis-MentonThe model corresponds to the schemas 1 and 2 of Markevich et al 2004, as described in the figure 1 and modelled using Michaelis-Menten like kinetics. Phosphorylations and dephosphorylations follow distributive ordered kinetics. Itreproduces figure 3 of the main article.

¹EMBL-EBI, lenov@ebi.ac.uk

This model is described in the article: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. Markevich NI, Hoek JB, Kholodenko BN.J. Cell Biol. 2004 Feb; 164(3): 353-359

Abstract:

Mitogen-activated protein kinase (MAPK) cascades can operate as bistable switches residing in either of two different stable states. MAPK cascades are often embedded in positive feedback loops, which are considered to be a prerequisite for bistable behavior. Here we demonstrate that in the absence of any imposed feedback regulation, bistability and hysteresis can arise solely from a distributive kinetic mechanism of the two-site MAPK phosphorylation and dephosphorylation. Importantly, the reported kinetic properties of the kinase (MEK) and phosphatase (MKP3) of extracellular signal-regulated kinase (ERK) fulfill the essential requirements for generating a bistable switch at a single MAPK cascade level. Likewise, a cycle where multisite phosphorylations are performed by different kinases, but dephosphorylation reactions are catalyzed by the same phosphatase, can also exhibit bistability and hysteresis. Hence, bistability induced by multisite covalent modification may be a widespread mechanism of the control of protein activity.

This model is hosted on BioModels Database and identified by: BIOMD0000000027.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nanomole (default)

Definition nmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
uVol			3	1	litre	Ø	

3.1 Compartment uVol

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains five species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
M		uVol	$nmol \cdot l^{-1}$		
Мр		uVol	$nmol \cdot l^{-1}$	\Box	
Mpp		uVol	$nmol \cdot l^{-1}$	\Box	
MAPKK		uVol	$nmol \cdot l^{-1}$		
MKP3		uVol	$nmol \cdot l^{-1}$	\square	

5 Parameters

This model contains nine global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO V	Value	Unit	Constant
k1cat			0.010		<u>✓</u>
Km1		5	50.000		$\overline{\mathbf{Z}}$
k2cat		1	15.000		$\overline{\mathbf{Z}}$
Km2		50	00.000		
k3cat			0.084		
Km3		2	22.000		
k4cat			0.060		
Km4		1	18.000		$ \overline{\mathscr{A}} $
Km5		7	78.000		\checkmark

6

6 Reactions

This model contains four reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº Id	Name	Reaction Equation	SBO
1 v1	phosphorylation of MAPK	$M \xrightarrow{MAPKK} Mp$	
2 v2	phosphorylation of P-MAPK	$\operatorname{Mp} \overset{\operatorname{MAPKK}, \operatorname{M}}{\longrightarrow} \operatorname{Mpp}$	
3 v3	dephosphorylation of PP-MAPK	$\operatorname{Mpp} \xrightarrow{\operatorname{MKP3}, \operatorname{M}} \operatorname{Mp}$	
4 v4	dephosphorylation of P-MAPK	$Mp \xrightarrow{MKP3, Mpp} M$	

6.1 Reaction v1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name phosphorylation of MAPK

Reaction equation

$$M \xrightarrow{MAPKK} Mp \tag{1}$$

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
M		

Modifier

Table 7: Properties of each modifier.

Id	Name	SBO
MAPKK		

Product

Table 8: Properties of each product.

Id	Name	SBO
Мр		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{uVol}\right) \cdot \frac{\frac{\text{k1cat} \cdot [\text{MAPKK}] \cdot [\text{M}]}{\text{Km1}}}{1 + \frac{[\text{M}]}{\text{Km1}} + \frac{[\text{Mp}]}{\text{Km2}}}$$
(2)

6.2 Reaction v2

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name phosphorylation of P-MAPK

Reaction equation

$$Mp \xrightarrow{MAPKK, M} Mpp$$
 (3)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
Мр		

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
MAPKK		
М		

Product

Table 11: Properties of each product.

Id	Name	SBO
Мрр		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(u\text{Vol}) \cdot \frac{\frac{\text{k2cat} \cdot [\text{MAPKK}] \cdot [\text{Mp}]}{\text{Km2}}}{1 + \frac{[\text{M}]}{\text{Km1}} + \frac{[\text{Mp}]}{\text{Km2}}}$$
 (4)

6.3 Reaction v3

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name dephosphorylation of PP-MAPK

Reaction equation

$$Mpp \xrightarrow{MKP3, M} Mp \tag{5}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
Мрр		

Modifiers

Table 13: Properties of each modifier.

Id	Name	SBO
МКРЗ		
М		

Product

Table 14: Properties of each product.

Id	Name	SBO
Мр		

Kinetic Law

Derived unit contains undeclared units

$$v_{3} = \text{vol}(\text{uVol}) \cdot \frac{\frac{\text{k3cat} \cdot [\text{MKP3}] \cdot [\text{Mpp}]}{\text{Km3}}}{1 + \frac{[\text{Mpp}]}{\text{Km3}} + \frac{[\text{Mp}]}{\text{Km4}} + \frac{[\text{M}]}{\text{Km5}}}$$
(6)

6.4 Reaction v4

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name dephosphorylation of P-MAPK

Reaction equation

$$Mp \xrightarrow{MKP3, Mpp} M \tag{7}$$

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
Мр		

Modifiers

Table 16: Properties of each modifier.

Id	Name	SBO
МКРЗ		
${\tt Mpp}$		

Product

Table 17: Properties of each product.

Id	Name	SBO
М		

Kinetic Law

Derived unit contains undeclared units

$$v_{4} = \text{vol}(\text{uVol}) \cdot \frac{\frac{\text{k4cat} \cdot [\text{MKP3}] \cdot [\text{Mp}]}{\text{Km4}}}{1 + \frac{[\text{Mpp}]}{\text{Km3}} + \frac{[\text{Mp}]}{\text{Km4}} + \frac{[\text{M}]}{\text{Km5}}}$$
(8)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species M

Initial amount 500 nmol

This species takes part in four reactions (as a reactant in v1 and as a product in v4 and as a modifier in v2, v3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M} = |v_4| - |v_1| \tag{9}$$

7.2 Species Mp

Initial amount 0 nmol

This species takes part in four reactions (as a reactant in v2, v4 and as a product in v1, v3).

$$\frac{d}{dt}Mp = |v_1| + |v_3| - |v_2| - |v_4| \tag{10}$$

7.3 Species Mpp

Initial amount 0 nmol

This species takes part in three reactions (as a reactant in v3 and as a product in v2 and as a modifier in v4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mpp} = |v_2| - |v_3| \tag{11}$$

7.4 Species MAPKK

Initial amount 50 nmol

This species takes part in two reactions (as a modifier in v1, v2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{M}\mathbf{A}\mathbf{P}\mathbf{K}\mathbf{K} = 0 \tag{12}$$

7.5 Species MKP3

Initial amount 100 nmol

This species takes part in two reactions (as a modifier in v3, v4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MKP3} = 0\tag{13}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany