MAXimal

home

algo

bookz

forum

about

Построение графа с указанными величинами вершинной и рёберной

добавлено: 10 Jun 2008 23:10 редактировано: 31 Aug 2011 23:05

Содержание [скрыть]

- Построение графа с указанными величинами вершинной и рёберной связностей и наименьшей из степеней вершин
 - О Соотношение Уитни
 - О Решение

связностей и наименьшей из степеней вершин

Даны величины κ , λ , δ — это, соответственно, вершинная связность, рёберная связность и наименьшая из степеней вершин графа. Требуется построить граф, который бы обладал указанными значениями, или сказать, что такого графа не существует.

Соотношение Уитни

Соотношение Уитни (Whitney) (1932 г.) между рёберной связностью λ , вершинной связностью κ и наименьшей из степеней вершин δ :

$$\kappa \le \lambda \le \delta$$
.

Докажем это утверждение.

Докажем сначала первое неравенство: $\kappa \leq \lambda$. Рассмотрим этот набор из λ рёбер, делающих граф несвязным. Если мы возьмём от каждого из этих ребёр по одному концу (любому из двух) и удалим из графа, то тем самым с помощью $\leq \lambda$ удалённых вершин (поскольку одна и та же вершина могла встретиться дважды) мы сделаем граф несвязным. Таким образом, $\kappa \leq \lambda$.

Докажем второе неравенство: $\lambda \leq \delta$. Рассмотрим вершину минимальной степени, тогда мы можем удалить все δ смежных с ней рёбер и тем самым отделить эту вершину от всего остального графа. Следовательно, $\lambda \leq \delta$.

Интересно, что неравенство Уитни **нельзя улучшить**: т.е. для любых троек чисел, удовлетворяющих этому неравенству, существует хотя бы один соответствующий граф. Это мы докажем конструктивно, показав, как строятся соответствующие графы.

Решение

Проверим, удовлетворяют ли данные числа κ , λ и δ соотношению Уитни. Если нет, то ответа не существует.

В противном случае, построим сам граф. Он будет состоять из $2(\delta+1)$ вершин, причём первые $\delta+1$ вершины образуют полносвязный подграф, и вторые $\delta+1$ вершины также образуют полносвязный подграф. Кроме того, соединим эти две части λ рёбрами так, чтобы в первой части эти рёбра были смежны λ вершинам, а в другой части — κ вершинам. Легко убедиться в том, что полученный граф будет обладать необходимыми характеристиками.