Reading FITS files from the LSS receiver

file = name of FITS file

The file has 2 levels of header plus 1 level of data.

Reading the level 0 header (PRIMARY):

header0 = headfits(file, exten=0)

The routine **sxpar** allows then to access each parameter, e.g.:

number of elementary accumulations

per spectrum = sxpar(header,'ACC') [long]
spectrum duration (msec) = sxpar(header,'DT') [float]
start time = sxpar(header,'TIME-OBS') [string]
end time = sxpar(header,'TIME-END') [string]

receiver name = strcompress(strupcase(sxpar(header,'INSTRUME')),/remove_all)

To list all parameters, type: print, header0

Reading the level 1 header and data (SETUP):

header1 = headfits(file, exten=1)

To list all parameters, type: print, header1

a = mrdfits(file, 1)

Content of structure a : help,/struct,a

number of frequencies = a.nf [int]

list of frequencies = a.frq [float array of dimension (a.nf)]

number of input channels = a.nbchan [int]

list of correlations computed = a.chan [int array of dimension (a.nbchan, 2)]

Data of channel k consists of the correlation of antennas a.chan[k,0] and a.chan[k,1]

a.chan		MR 1		MR 2		MR 3	
		NW	NE	NW	NE	NW	NE
MR 1	north-west	[0,0]	[1,0]	[2,0]	[3,0]	[4,0]	[5,0]
	north-east	[0,1]	[1,1]	[2,1]	[3,1]	[4,1]	[5,1]
MR 2	north-west	[0,2]	[1,2]	[2,2]	[3,2]	[4,2]	[5,2]
	north-east	[0,3]	[1,3]	[2,3]	[3,3]	[4,3]	[5,3]
MR 3	north-west	[0,4]	[1,4]	[2,4]	[3,4]	[4,4]	[5,4]
	north-east	[0,5]	[1,5]	[2,5]	[3,5]	[4,5]	[5,5]

Real part of a cross-correlation

Imaginary part of a cross-correlation

Auto-correlation

Reading the level 2 header and data (DATA CUBE):

```
header2 = headfits(file, exten=2)
```

To list all parameters, type : **print, header2**

Total number of spectra in file is given by: ns=sxpar(header2,'NAXIS2')

Reading data cube from spectrum ns begin to spectrum ns end (included):

```
cube=mrdfits(file, 2, range=[ns begin,ns end])
```

Size of structure cube : help,cube

Content of structure cube[i]: help,/struct,cube

julian date (0.1 msec accuracy) cube[i].jd [double] millisecond (within current sec) cube[i].msec [double]

data cube[i].data [float array of dimension (a.nf, a.nbchan)]

To decode time, use the routine **CALDAT**:

CALDAT, cube[i].jd, month, day, year, hour, minute, second

cube[i].msec is included in the decimal part of second