Commutative Algebra

"南淮者,人间之胜境。无饥馑灾荒之属,里巷中常闻笑声,灯火彻夜夏不闭户,唯少年顽皮,是为一害……每春来之际,辄有窃花者、弹雀者、钓鱼者……"

Contents

1	Din	nension and Depth	1
	1.1	Artinian Rings and Length of Modules	2
	1.2	Dedekind Domains	3
	1.3	Krull's Principal Ideal Theorem	3
	1.4	Cohen-Macaulay rings	5
	1.5	Regular rings	6

1 Dimension and Depth

There are three numbers measuring the "size" of a local ring (A, m):

- $\dim A$: the Krull dimension of A.
- depth A: the depth of A.
- $\dim_{\kappa(\mathfrak{m})} T_{A,\mathfrak{m}}$: the dimension of Zariski tangent space $T_{A,\mathfrak{m}} := (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$ as a $\kappa(\mathfrak{m})$ -vector space.

Somehow the Krull dimension is "homological" and the depth is "cohomological".

Definition 1.1. Let A be a noetherian ring. The *height of a prime ideal* \mathfrak{p} in A is defined as the maximum length of chains of prime ideals contained in \mathfrak{p} , that is,

$$\operatorname{ht}(\mathfrak{p}) := \sup\{n \mid \exists \text{ a chain of prime ideals } \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}\}.$$

The Krull dimension of A is defined as

$$\dim A := \max_{\mathfrak{p} \in \operatorname{Spec} A} \operatorname{ht}(\mathfrak{p}).$$

Example 1.2. Let A be a PID. For every two non-zero prime ideals \mathfrak{p}_1 and \mathfrak{p}_2 , if $\mathfrak{p}_1 = t_1 A \subset \mathfrak{p}_2 = t_2 A$, then $t_2 \mid t_1$ and hence $\mathfrak{p}_1 = \mathfrak{p}_2$. It follows that dim A = 1. Consequently, the ring of integers \mathbb{Z} and the polynomial ring k[T] in one variable over a field have Krull dimension 1.

Definition 1.3. Let A be a noetherian ring, $I \subset A$ an ideal and M a finitely generated A-module. A sequence $t_1, \dots, t_n \in I$ is called an M-regular sequence in I if t_i is not a zero divisor on $M/(t_1, \dots, t_{i-1})M$ for all i.

Example 1.4. Let $A = k[x,y]/(x^2,xy)$ and I = (x,y). Then depth_I A = 0.

Definition 1.5. Let A be a noetherian ring. For every $\mathfrak{p} \in \operatorname{Spec} A$, $\mathfrak{p}/\mathfrak{p}^2$ is a vector space over $\kappa(\mathfrak{p})$. The Zariski's tangent space $T_{A,\mathfrak{p}}$ of A at \mathfrak{p} is defined as $(\mathfrak{p}/\mathfrak{p}^2)^{\vee}$, the dual $\kappa(\mathfrak{p})$ -vector space of $\mathfrak{p}/\mathfrak{p}^2$.

Date: August 5, 2025, Author: Tianle Yang, My Homopage

1.1 Artinian Rings and Length of Modules

Definition 1.6. Let A be a ring and M an A module. A simple module filtration of M is a filtration

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_n = 0$$

such that M_i/M_{i-1} is a simple module, i.e. it has no submodule except 0 and itself. If M has a simple module filtration as above, we define the length of M as n and say that M has finite length.

The following proposition guarantees the length is well-defined.

Proposition 1.7. Suppose M has a simple module filtration $M = M_{0,0} \supseteq M_{1,0} \supseteq \cdots \supseteq M_{n,0} = 0$. Then for any other filtration $M = M_{0,0} \supseteq M_{0,1} \supseteq \cdots \supseteq M_{0,m} = 0$ with m > n, there exist k < m such that $M_{0,k} = M_{0,k+1}$.

Proof. We claim that there are at least $0 \le k_1 < \cdots < k_{m-n} < m$ satisfies that $M_{0,k_i} = M_{0,k_{i+1}}$. Let $M_{i,j} := M_{i,0} \cap M_{0,j}$. Inductively on n, we can assume that there exist k_1, \cdots, k_{n-m+1} such that $M_{1,k} = M_{1,k+1}$. Consider the sequence

$$M_{0,0}/M_{1,0} \supset (M_{0,1} + M_{1,0})/M_{1,0} \supset \cdots \supset (M_{0,m} + M_{1,0})/M_{1,0} = 0$$

in $M_{0,0}/M_{1,0}$. Since $M_{0,0}/M_{1,0}$ is simple, there is at most one k_i with $M_{0,k_i}+M_{1,0}\neq M_{0,k_i+1}+M_{1,0}$. And note that if $M_{0,k_i}+M_{1,0}=M_{0,k_i+1}+M_{1,0}$ and $M_{0,k_i}\cap M_{1,0}=M_{0,k_i}\cap M_{1,0}$, then $M_{0,k_i}=M_{0,k_i+1}$ by the Five Lemma.

Example 1.8. Let A be a ring and $\mathfrak{m} \in \mathrm{mSpec}\,A$. Then A/\mathfrak{m} is a simple module. Yang: To be completed.

Proposition 1.9. Let A be a ring and M an A-module. Then M is of finite length iff it satisfies both a.c.c and d.c.c.

Proof. Note that if M has either a strictly ascending chain or a strictly descending chain, M is of infinite length. Conversely, d.c.c guarantee M has a simple submodule and a.c.c guarantee the sequence terminates.

Proposition 1.10. The length l(-) is an additive function for modules of finite length. That is, if we have an exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ with M_i of finite length, then $l(M_2) = l(M_1) + l(M_3)$.

Proof. The simple module filtrations of M_1 and M_3 will give a simple module filtration of M_2 .

Proposition 1.11. Let (A, \mathfrak{m}) be a local ring. Then A is artinian iff $\mathfrak{m}^n = 0$ for some $n \geq 0$.

Proof. Suppose A is artinian. Then the sequence $\mathfrak{m} \supset \mathfrak{m}^2 \supset \mathfrak{m}^3 \supset \cdots$ is stable. It follows that $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ for some n. By the Nakayama's Lemma ??, $\mathfrak{m}^n = 0$.

Conversely, we have

$$\mathfrak{m} \subset \mathfrak{N} \subset \bigcap_{\text{minimal prime ideal}} \mathfrak{p},$$

whence \mathfrak{m} is minimal.

Proposition 1.12. Let A be a ring. Then A is artinian iff A is of finite length.

Proof. First we show that A has only finite maximal ideal. Otherwise, consider the set $\{\mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_k\}$. It has a minimal element $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ and for any maximal ideal $\mathfrak{m}, \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n \subset \mathfrak{m}$. It follows that $\mathfrak{m} = \mathfrak{m}_i$ for some i. Let $\mathfrak{M} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ be the Jacobi radical of A. Consider the sequence $\mathfrak{M} \supset \mathfrak{M}^2 \supset \cdots$ and by Nakayama's Lemma, we have $\mathfrak{M}^k = 0$ for some k. Consider the filtration

$$A \supset \mathfrak{m}_1 \supset \cdots \supset \mathfrak{m}_1^k \supset \mathfrak{m}_1^k \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1^k \cdots \mathfrak{m}_n^k = (0).$$

We have $\mathfrak{m}_1^k \cdots \mathfrak{m}_i^j/\mathfrak{m}_1^k \cdots \mathfrak{m}_i^{j+1}$ is an A/\mathfrak{m}_i -vector space. It is artinian and then of finite length. Hence A is of finite length.

Theorem 1.13. Let A be a ring. Then A is artinian iff A is noetherian and of dimension 0.

Proof. Suppose A is artinian. Then A is noetherian by Proposition 1.12. Let $\mathfrak{p} \in \operatorname{Spec} A$. Then A/\mathfrak{p} is an artinian integral domain. If there is $a \in A/\mathfrak{p}$ is not invertible, consider $(a) \supset (a^2) \supset \cdots$, we see a = 0. Hence \mathfrak{p} is maximal and dim A = 0.

Suppose that A is noetherian and of dimension 0. Then every maximal ideal is minimal. In particular, A has only finite maximal ideal $\mathfrak{p}_1, \dots, \mathfrak{p}_n$. Let \mathfrak{q}_i be the \mathfrak{p}_i -component of (0). Then we have $A \hookrightarrow \bigoplus_i A/\mathfrak{q}_i$. We just need to show that A/\mathfrak{q}_i is of finite length as A-module. If $\mathfrak{q}_i \subset \mathfrak{p}_j$, take radical we get $\mathfrak{p}_i \subset \mathfrak{q}_j$ and hence i = j. So A/\mathfrak{q}_i is a local ring with maximal ideal $\mathfrak{p}_i A/\mathfrak{q}_i$. Then every element in $\mathfrak{p}_i A/\mathfrak{q}_i$ is nilpotent. Since \mathfrak{p}_i is finitely generated, $(\mathfrak{p}_i A/\mathfrak{q}_i)^k = 0$ for some k. Then A/\mathfrak{q}_i is artinian and then of finite length as A/\mathfrak{q}_i -module. Then the conclusion follows.

1.2 Dedekind Domains

Yang: To be completed

1.3 Krull's Principal Ideal Theorem

Theorem 1.14 (Krull's Principal Ideal Theorem). Let A be a noetherian ring. Suppose $f \in A$ is not a unit. Let \mathfrak{p} be a minimal prime ideal among those containing f. Then $\mathrm{ht}(\mathfrak{p}) \leq 1$.

Proof. By replacing A by $A_{\mathfrak{p}}$, we may assume A is local with maximal ideal \mathfrak{p} . Note that A/(f) is artinian since it has only one prime ideal $\mathfrak{p}/(f)$.

Let $\mathfrak{q} \subsetneq \mathfrak{p}$. Consider the sequence $\mathfrak{q}^{(1)} \supset \mathfrak{q}^{(2)} \supset \cdots$, its image in A/(f) is stationary. Then there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\mathfrak{q}^{(n)} + (f) = \mathfrak{q}^{(n+1)} + (f)$. For $x \in \mathfrak{q}^{(n)}$, we may write x = y + af for $y \in \mathfrak{q}^{(n+1)}$. Then $af \in \mathfrak{q}^{(n)}$. Since $\mathfrak{q}^{(n)}$ is \mathfrak{q} -primary and $f \notin \mathfrak{q}$, $a \in \mathfrak{q}^{(n)}$. Then we get

 $\mathfrak{q}^{(n)}=\mathfrak{q}^{(n+1)}+f\mathfrak{q}^{(n)}$. That is, $\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)}=f\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)}$. Note that $f\in\mathfrak{p}$, by Nakayama's Lemma, $\mathfrak{q}^{(n)}=\mathfrak{q}^{(n+1)}$. That is, $\mathfrak{q}^nA_{\mathfrak{q}}=\mathfrak{q}^{n+1}A_{\mathfrak{q}}$. By Nakayama's Lemma again, $\mathfrak{q}^nA_{\mathfrak{q}}=0$. It follows that $\mathfrak{q}A_{\mathfrak{q}}$ is minimal, whence $A_{\mathfrak{q}}$ is artinian. Therefore, \mathfrak{q} is minimal in A.

Corollary 1.15. Let A be a noetherian local ring. Suppose $f \in A$ is not a unit. Then $\dim A/(f) \ge \dim A - 1$. If f is not contained in a minimal prime ideal, the equality holds.

Proof. Let $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ be a sequence of prime ideals. By assumption, $f \in \mathfrak{p}_n$. If $f \in \mathfrak{p}_0$, we get a sequence of prime ideals in A/(f) of length n. Now we suppose $f \notin \mathfrak{p}_0$. Then there exists $k \geq 0$ such that $f \in \mathfrak{p}_{k+1} \setminus \mathfrak{p}_k$.

Choose \mathfrak{q} be a minimal prime ideal among those containing (\mathfrak{p}_{k-1}, f) and contained in \mathfrak{p}_{k+1} . Then by Krull's Principal Ideal Theorem 1.14, $\mathfrak{q}_k \subsetneq \mathfrak{p}_{k+1}$. Replace \mathfrak{p}_k by \mathfrak{q}_k , we have $f \in \mathfrak{q}_k \setminus \mathfrak{p}_{k-1}$ Repeat this process, we get a sequence $\mathfrak{p}'_0 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ such that $f \in \mathfrak{p}'_1$. This gives a sequence $\mathfrak{p}'_1 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ in A/(f). Hence we get $\dim A/(f) \geq \dim A - 1$.

Since f is not contained in minimal prime ideal, preimage of a minimal prime ideal in A/(f) has height 1. Hence a sequence of prime ideals in A/fA can be extended by a minimal prime ideal in A. It follows that $\dim A/(f) + 1 \le \dim A$.

Proposition 1.16. Let (A, \mathfrak{m}) be a local noetherian ring with residue field k. Then the following inequalities hold:

$$\operatorname{depth} A \leq \dim_{\mathbf{k}} T_{A,\mathfrak{m}}.$$

Proof. The first inequality is a direct corollary of Corollary 1.15.

Let t_1, \dots, t_n be a $\kappa(\mathfrak{m})$ -basis of $\mathfrak{m}/\mathfrak{m}^2$. Then we have $\mathfrak{m}/(t_1, \dots, t_n) + \mathfrak{m}^2 = 0$, whence $\mathfrak{m}/(t_1, \dots, t_n) = \mathfrak{m}(\mathfrak{m}/(t_1, \dots, t_n))$. It follows that $\mathfrak{m} = (t_1, \dots, t_n)$ by Nakayama's Lemma. By Corollary 1.15,

$$n+\dim A/(t_1,\cdots,t_n)\geq n-1+\dim A/(t_1,\cdots,t_{n-1})\geq \cdots \geq 1+\dim A/(t_1)\geq \dim A.$$

We conclude the result.

Definition 1.17. Let X be a locally noetherian scheme and $k \in \mathbb{Z}_{\geq 0}$. We say that X verifies property (R_k) or is regular in codimension k if $\forall \xi \in X$ with codim $Z_{\xi} \leq k$,

$$\dim_{\kappa(\xi)} T_{X,\xi} = \dim \sigma_{X,\xi}.$$

We say that X verifies property (S_k) if $\forall \xi \in X$ with depth $\alpha_{X,\xi} < k$,

$$\operatorname{depth} \alpha_{X,\xi} = \dim \alpha_{X,\xi}.$$

Example 1.18. Let A be a noetherian ring. Then A verifies (S_1) iff A has no embedded point.

Suppose A verifies (S_1) . If $\mathfrak{p} \in \operatorname{Ass} A$, every element in \mathfrak{p} is a zero divisor. Then depth $A_{\mathfrak{p}} = 0$. It follows that $\dim A_{\mathfrak{p}} = 0$ and then \mathfrak{p} is minimal.

Suppose A has no embedded point. Let $\mathfrak{p} \in \operatorname{Spec} A$ with depth $A_{\mathfrak{p}} = 0$. This means every

element in $\mathfrak{p}A_{\mathfrak{p}}$ is a zero divisor. Then

$$\mathfrak{p} \subset \{\text{zero divisors in } A\} = \bigcup_{\text{minimal prime ideals}} \mathfrak{q}$$

By Proposition ??, $\mathfrak{p} = \mathfrak{q}$ for some minimal \mathfrak{q} , whence dim $A_{\mathfrak{p}} = 0$.

Example 1.19. Let A be a noetherian ring. Then A is reduced iff it verifies (R_0) and (S_1) .

Suppose A is reduced. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be all minimal prime ideals of A. We have $\bigcap \mathfrak{p}_i = \mathfrak{N} = (0)$, where \mathfrak{N} is the nilradical of A. Hence A has no embedded point. Since $A_{\mathfrak{p}}$ is artinian, local and reduced, $A_{\mathfrak{p}}$ is a field and hence regular.

Conversely, let Ass A be equal to $\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$. Then every \mathfrak{p}_i is minimal by (S_1) . Let f be in \mathfrak{N} . Then the image of f in $A_{\mathfrak{p}_i}$ is 0 since by (R_0) , $A_{\mathfrak{p}_i}$ is a field. It follows that $f \in \mathfrak{q}_i$, where \mathfrak{q}_i is the \mathfrak{p}_i component of (0) in A. Hence $f \in \bigcap \mathfrak{q}_i = (0)$. That is, A is reduced.

1.4 Cohen-Macaulay rings

Definition 1.20 (Cohen-Macaulay). A noetherian local ring (A, \mathfrak{m}) is called *Cohen-Macaulay* if $\dim A = \operatorname{depth} A$. A noetherian ring A is called *Cohen-Macaulay* if for every prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the localization $A_{\mathfrak{p}}$ is Cohen-Macaulay. This is equivalent to that A verifies (S_k) for all $k \geq 0$.

Definition 1.21. Let (A, \mathfrak{m}) be a noetherian local ring of dimension d. A sequence $t_1, \dots, t_d \in \mathfrak{m}$ is called a *system of parameters* if Yang: To be completed.

Example 1.22 (Non Cohen-Macaulay rings). Yang: To be completed.

Corollary 1.23. Let A be a noetherian ring, M a finite A-module and $a \in A$ an M-regular element. Then depth $M = \operatorname{depth} M/aM + 1$.

Corollary 1.24. Let A be a noetherian ring $a \in A$ a nonzero divisor. Then A verifies (S_d) iff A/aA verifies (S_{d-1}) .

Definition 1.25. An ideal *I* of a noetherian ring *A* is called *unmixed* if

$$ht(I) = ht(\mathfrak{p}), \quad \forall \mathfrak{p} \in Ass(A/I).$$

Here ht(I) is defined as

$$ht(I) := \inf\{ht(\mathfrak{p}) : I \subset \mathfrak{p}\}.$$

We say that the unmixedness theorem holds for a noetherian ring A if any ideal $I \subset A$ generated by $\operatorname{ht}(I)$ elements is unmixed. We say that the unmixedness theorem holds for a locally noetherian scheme X if $\sigma_{X,\xi}$ is unmixed for any point $\xi \in X$.

Theorem 1.26. Let X be a locally noetherian scheme. Then the unmixedness theorem holds for X if and only if X is Cohen-Macaulay.

Proof. We can assume that $X = \operatorname{Spec} A$ is affine.

Suppose X is Cohen-Macaulay. Let $I \subset A$ be an ideal generated by a_1, \dots, a_r with $r = \operatorname{ht}(I)$. We claim that a_1, \dots, a_r is an A-regular sequence. If so, we get that the unmixedness theorem holds for A by applying Example 1.18 on A/I. Since $\operatorname{ht}(a_1, \dots, a_{r-1}) \leq r-1$ by Krull's Principal Ideal Theorem 1.14 and $\operatorname{ht}(a_1, \dots, a_r) = r \leq \operatorname{ht}(a_1, \dots, a_{r-1}) + 1$, we have $\operatorname{ht}(a_1, \dots, a_{r-1}) = r-1$. By induction on r, we can assume that a_1, \dots, a_{r-1} is an A-regular sequence. Hence any prime ideal $\mathfrak{p} \in \operatorname{Ass} A/(a_1, \dots, a_{r-1})$ has height r-1. Now suppose a_r is a zero divisor in $A/(a_1, \dots, a_{r-1})$. Then there exists a prime ideal $\mathfrak{p} \in \operatorname{Ass} A/(a_1, \dots, a_{r-1})$ such that $a_r \in \mathfrak{p}$. Then $I \subset \mathfrak{p}$ and $\operatorname{ht}(I) \leq r-1$. This contradicts that $\operatorname{ht}(I) = r$.

Suppose the unmixedness theorem holds for A. Let $\mathfrak{p} \in \operatorname{Spec} A$ be a prime ideal with $\operatorname{ht}(\mathfrak{p}) = r$. Then $\mathfrak{p} \in \operatorname{Ass} A$ if and only if $\operatorname{ht}(\mathfrak{p}) = 0$. If r > 0, there is a nonzero divisor $a \in \mathfrak{p}$. By Krull's Principal Ideal Theorem 1.14, $\operatorname{ht}(\mathfrak{p}A/aA) = r - 1$. Inductively, we can find a regular sequence a_1, \dots, a_r in \mathfrak{p} . Then depth $A_{\mathfrak{p}} = r$.

Theorem 1.27. Let X be a locally noetherian scheme. Suppose that X is Cohen-Macaulay. Let $F \subset X$ be a closed subset of codimension $\geq k$. Then the restriction $H^i(X, \mathcal{O}_X) \to H^i(X \setminus F, \mathcal{O}_X)$ is an isomorphism.

Proof. Yang: To be completed.

1.5 Regular rings

Definition 1.28. A noetherian ring A is said to be regular at $\mathfrak{p} \in \operatorname{Spec} A$ if we have

$$\dim_{\kappa(\mathfrak{p})}T_{A,\mathfrak{p}}=\dim A_{\mathfrak{p}},$$

where $\dim A_{\mathfrak{p}}$ is the Krull dimension of the local ring $A_{\mathfrak{p}}$.

A noetherian ring A is said to be regular if it is regular at every prime ideal $\mathfrak{p} \in \operatorname{Spec} A$. This is equivalent to the condition that A verifies (R_k) for all $k \geq 0$.

Remark 1.29. A noetherian ring A is regular if and only if it is regular at every maximal ideal $\mathfrak{m} \in \mathrm{mSpec}\,A$. The proof uses homological tools; see Theorem ?? and Corollary ??.

Definition 1.30. Let A be a noetherian ring that is regular at $\mathfrak{p} \in \operatorname{Spec} A$. A sequence $t_1, \dots, t_n \in \mathfrak{p}$ is called a *regular system of parameters* at \mathfrak{p} if their images form a basis of the $\kappa(\mathfrak{p})$ -vector space $\mathfrak{p}/\mathfrak{p}^2$.

Proposition 1.31. Let (A, \mathfrak{m}) be a noetherian local ring that is regular at \mathfrak{m} . Let t_1, \dots, t_n be a regular system of parameters at \mathfrak{m} , $\mathfrak{p}_i = (t_1, \dots, t_i)$ and $\mathfrak{p}_0 = (0)$. Then \mathfrak{p}_i is a prime ideal of height

i, and A/\mathfrak{p}_i is a regular local ring for all i. In particular, regular local ring is integral, and the regular system of parameters t_1, \dots, t_n is a regular sequence in A.

Proof. By the Krull's Principal Ideal Theorem 1.14, we have

$$n-1 = \dim A - 1 \leq \dim A/(t_1) \leq \dim_{\kappa(\mathfrak{m}/(t_1))} T_{A/(t_1),\mathfrak{m}/(t_1)} \leq n-1.$$

Hence dim $A/(t_1)=n-1$ and ht $(t_1)=1$. Since t_2,\cdots,t_n generate $\mathfrak{m}/(t_1)$, we have that $A/(t_1)$ is regular at $\mathfrak{m}/(t_1)$ and the images of t_2,\cdots,t_n form a regular system of parameters.

For integrality, we induct on the dimension of A. If $\dim A = 0$, then A is a field and hence integral. Suppose $\dim A > 0$, let \mathfrak{q} be a minimal prime ideal of A. Then $t_1 \notin \mathfrak{q}$. We have

$$n-1 = \dim A - 1 \le \dim A/(\mathfrak{q} + t_1 A) \le \dim_{\kappa(\mathfrak{q}/(t_1))} T_{A/(\mathfrak{q} + t_1 A),\mathfrak{q}/(t_1)} \le n-1.$$

By similar arguments, we have $A/(q+t_1A)$ is regular at $\mathfrak{m}/(q+t_1A)$. By induction hypothesis, both of A/t_1A and $A/(q+t_1A)$ are integral and of dimension n-1. Hence $t_1A=t_1A+\mathfrak{q}$, i.e. $\mathfrak{q}\subset t_1A$. For every $a=bt_1\in\mathfrak{q}$, we have $b\in\mathfrak{q}$ since $t_1\notin\mathfrak{q}$. Then $\mathfrak{q}\subset t_1\mathfrak{q}\subset\mathfrak{m}\mathfrak{q}$. By Nakayama's Lemma, $\mathfrak{q}=0$, whence A is integral.

Corollary 1.32. A regular noetherian ring is Cohen-Macaulay.

Corollary 1.33. A regular noetherian ring is normal.

Remark 1.34. Indeed we can show a stronger result: a noetherian regular local ring is a UFD; see Yang: ref.

