(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 2 December 2004 (02.12.2004)

(10) International Publication Number WO 2004/104908 A1

(51) International Patent Classification7:

G06K 9/62

(21) International Application Number:

PCT/IB2004/001647

(22) International Filing Date:

6 May 2004 (06.05.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 03300017.5

21 May 2003 (21.05.2003)

- (71) Applicant (for all designated States except US): KONIN-KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]: Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BAGGEN, Constant, Paul, Marie, Jozef [NL/FR]; Société Civile SPID, 156 Boulevard Haussmann, F-75008 Paris (FR). GOSELING, Jasper [NL/FR]; Société Civile SPID, 156 Bouldevard Haussmann, F-75008 Paris (FR). AKKER-MANS, Antonius, Hermanus, Maria [NL/FR]; Société Civile SPID, 156, boulevard Haussmann, F-75008 Paris (FR).
- (74) Agent: GATEPIN, Philippe; Société Civile SPID, 156 Boulevard Haussmann, F-75008 Paris (FR).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS. JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND DEVICE FOR VERIFYING THE IDENTITY OF AN OBJECT

(57) Abstract: The invention applies to the verification of the identity of an object based on measurements of a physical characteristic of said object. In an enrollment phase, an object with known identity is measured. The resulting enrollment measurement is stored for future reference. Then in the verification phase, an object presented for verification is measured, and the verification measurement is compared with the enrollment measurement to decide whether or not the two measurements originate from the same object. According to the invention, the enrollment and the verification measurements are modeled as two realizations of a first random variable affected by an enrollment noise and a verification, noise respectively, said enrollment and verification noises being a realization of a second and a third random variable, respectively, said first, second and third random variables having known distributions.

WO 2004/104908 A1