Exploratory Data Analysis Tabular Data Analysis and Smoothing

David B King, Ph.D.

October 18, 2015

Smoothing

- Let $\{(t_i, y_i)\}_{i=1}^n$ denote the *n* ordered pairs of data points
- Want to fit the regression model

$$y_i = \mu(t_i) + \epsilon_i, \quad i = 1, \ldots, n,$$

with ϵ_i zero mean, uncorrelated random variables (the noise) and $\mu(\cdot)$ some **unknown function** of t.

- **1** Want $\mu(\cdot)$ to be a reasonably smooth function of t.
- **2** Want $\mu(\cdot)$ to conform to the local behavior of the data.
- On't necessarily have a shape predefined in advance like a line or parabola.
- Smoothing is a very deep and advanced topic which deserves a semester course.

Smoothing References

- Non=parametric Regression and Spline Smoothing Eubank, Randal L.
- Exploratory Data Analysis Tukey, John W.
- Spline Models for Observational Data Wahba, Grace
- Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators Hsing, Tailen & Eubank, Randall

Two Flavors of Smoothing

Broadly speaking, there are two different flavors of smoothing:

1 Local linear or kernel based estimators of $\mu(\cdot)$ are based upon the estimator

$$\hat{\mu}_h(t) = \sum_{i=1}^n K(t, t_i, h) y_i$$

where $\{K(t, t_i, h)\}_{i=1}^n$ are a collection of kernel weight functions that determine the weights to use when fitting locally around the point t_i .

2 The smoothing spline approach seeks to find a function $\mu_{\lambda}(\cdot)$ which minimizes

$$n^{-1}\sum_{i=1}^{n}(y_i-f(t_i))^2+\lambda\int_0^1[f^{(m)}(t)]^2dt$$

for some $\lambda > 0$. The first term in the expression above is a measure of fidelity to the data and the second is one which penalizes functions which are too "curvy".

Kernel based smoother example

Let λ be some positive integer and partition the interval [0,1] into λ subintervals of the form $P_j = \left[\frac{j-1}{\lambda}, \frac{j}{\lambda}\right]$ for $j = 1, \dots, \lambda$. Then if we use the "Boxcar" kernel we set

$$K(t, t_i, \lambda) = \frac{\sum_{r=1}^{\lambda} I_{P_r}(t) I_{P_r}(t_i)}{\sum_{j=1}^{n} \sum_{r=1}^{\lambda} I_{P_r}(t) I_{P_r}(t_i)}$$

with $I_{P_r}(\cdot)$ the indicator function for the interval P_r . The local linear regression estimator would be given by

$$\mu_{\lambda}(t) = \sum_{i=1}^{n} K(t, t_i, \lambda) y_i = \sum_{i=1}^{n} w_i y_i$$

Risk or MSE

The performance of the estimator $\hat{\mu}_{\lambda}$ is measured by the average Risk or average MSE

$$R(\hat{\mu}) = n^{-1} \sum_{i=1}^{n} \mathbb{E}[\hat{\mu}(t_i) - \mu(t_i)]^2.$$

and if $R(\hat{\mu}) \to 0$ as $n \to \infty$ then $\hat{\mu}$ is MSE consistent with μ . Let λ be some positive integer and partition the interval [0,1] into λ subintervals of the form $P_j = [\frac{j-1}{\lambda}, \frac{j}{\lambda}]$ for $j=1,\dots,\lambda$. Then if we use the "Boxcar" kernel we set Now if we take points evenly distributed on [0,1] with $t_i = (2i-1)/2n$ then for any point $t \in P_j$

$$\operatorname{Var}(\hat{\mu}_{\lambda}(t)) = rac{\sigma^2}{n_j}$$
 and,

$$\mathrm{E}(\hat{\mu}_{\lambda}(t)) = \sum_{t_i \in P_j} \frac{\mu(t_i)}{\mathsf{n}_j}$$

with $n_j = \sum_{i=1}^n I_{P_i}(t_i)$ the number of design points falling in the j^{th} partition.

Risk or MSE

The mean value theorem gives that $\mu(t_i) = \mu(t) + \mu'(\xi_{ij})(t_i - t)$ for some $\xi_{ij} \in P_j$. Thus for $t \in P_j$, $|\mathrm{E}\hat{\mu}_{\lambda}(t) - \mu(t)| \leq \lambda^{-1} \sup_{s \in [0,1]} |\mu'(s)|$ because $|t - t_i| \leq \lambda^{-1}$ for $t, t_i \in P_i$. Consequently the average risk for the regressogram is

$$R(\lambda) = n^{-1} \sum_{i=1}^{n} \mathbb{E}[\hat{\mu}_{\lambda}(t_i) - \mu(t_i)]^2$$

$$= n^{-1} \sum_{j=1}^{\lambda} \sum_{i:t_i \in P_j} [\operatorname{Var}(\hat{\mu}_{\lambda}(t_i)) + (\mathbb{E}\hat{\mu}_{\lambda}(t_i) - \mu(t_i))^2]$$

$$= \frac{\lambda \sigma^2}{n} + \lambda^{-2} (\sup_{s \in [0,1]} |\mu'(s)|)^2$$

which converges to zero provided that $\lambda, n \to \infty$ with $\lambda/n \to 0$. and if $R(\hat{\mu}) \to 0$ as $n \to \infty$ then $\hat{\mu}$ is MSE consistent with μ .

Optimal Interval Size

We can find the optimal interval size by minimizing $R(\lambda)$, hence

$$\frac{dR(\lambda)}{d\lambda} = 0 \Longrightarrow \frac{\sigma^2}{n} - 2\lambda^{-3}(\sup_{s \in [0,1]} |\mu'(s)|)^2 = 0$$

which implies that

$$\lambda \propto \mathit{n}^{1/3}$$
 and $\mathit{R}(\lambda) \propto \mathit{n}^{-2/3}$

Say I think I see some similarities with non-parametric kernel density estimation!!

Example

```
t=seg(0.1.length.out=100)
f=function(t){ t^3-3*t^2+3*t +1}
curve(f(x),0,1)
v=f(t)+rnorm(100.0.0.2)
plot(t,y)
curve(f(x),0,1,add=TRUE,col="red")
# Construct the Kernel Matrix
# Let's say we have 10 intervals where
# [0,0.1], [0.1,0.2], ..., [0.9,1]
lambda = 10
partition = seq(0,1,length.out=lambda)
K = function(s,t) \{ abs(s-t) \le 1/lambda \}
Kmat = outer(t,t,FUN=K)
rsum= apply(Kmat,1,sum)
one=rep(1,100)
dmat=rsum %o% one
Kmat=Kmat/dmat
yhat=Kmat %*% y
plot(t,yhat)
plot(t,vhat,tvpe="1",col="blue")
curve(f(x),0,1,add=TRUE,col="red")
```

Loss

Define the **loss** in estimating μ by

$$L(\lambda) = n^{-1} \sum_{i=1}^{n} (\mu(t_i) - \hat{\mu}_{\lambda}(t_i))^2.$$

Risk

Define the risk as the expected loss

$$R(\lambda) = \mathrm{E}L(\lambda) = n^{-1} \sum_{i=1}^{n} \mathrm{E}(\mu(t_i) - \hat{\mu}_{\lambda}(t_i))^{2}.$$

The prediction for a new observation is $\mathbf{y}^* = \mathbf{y} + \epsilon^*$ hence

Predictive Risk

define the predictive risk as the expected loss for new prediction

$$P(\lambda) = n^{-1} \sum_{i=1}^{n} \mathrm{E}(y_i^* - \hat{\mu}_{\lambda}(t_i))^2 = \sigma^2 + R(\lambda).$$

740

Integrated Loss

Define the integrated loss in estimating $\boldsymbol{\mu}$ by

$$IL(\lambda) = \int_0^1 (\mu(t) - \hat{\mu}_{\lambda}(t))^2 dt.$$

Integrated Risk

Define the integrated risk as the expected integrated loss

$$R(\lambda) = \mathrm{E}IL(\lambda) = \int_0^1 \mathrm{E}(\mu(t) - \hat{\mu}_{\lambda}(t))^2 dt.$$

As we saw in our smoothing example the prediction at (t_1, \ldots, t_n) could be written by

$$\hat{\mathbf{y}} = \mathbf{K}_{\lambda}\mathbf{y}$$

for the weight matrix \mathbf{K} . Hence the residual sum of squares (RSS) is given by

$$RSS(\lambda) = (\mathbf{y} - \hat{\boldsymbol{\mu}})^T (\mathbf{y} - \hat{\boldsymbol{\mu}}) = \mathbf{y}^T (\mathbf{I} - \mathbf{K}_{\lambda})^2 \mathbf{y}.$$

Hence one might estimate the average risk as

$$ERSS(\lambda) = \mu^{T} (\mathbf{I} - \mathbf{K})^{2} \mu + \sigma^{2} \text{tr}[(\mathbf{I} - \mathbf{K}_{\lambda})^{2}]$$
$$= \mu^{T} (\mathbf{I} - \mathbf{K})^{2} \mu + n\sigma^{2} + \sigma^{2} \text{tr}[\mathbf{K}_{\lambda}^{2}] - 2\sigma^{2} \text{tr}[\mathbf{K}_{\lambda}].$$

However, in contrast

$$P(\lambda) = \sigma^{2} + R(\lambda)$$

$$= \sigma^{2} + n^{-1} \sum_{i=1}^{n} \mathrm{E}(mu(t_{i}) - m\hat{u}_{\lambda}(t_{i}))^{2}$$

$$= \sigma^{2} + n^{-1} \mathrm{E}(\mu - \hat{\mu}_{\lambda})^{T} (\mu - \hat{\mu}_{\lambda})$$

$$= \sigma^{2} + n^{-1} \mu^{T} (\mathbf{I} - \mathbf{K}_{\lambda})^{2} \mu + n^{-1} \sigma^{2} \mathrm{tr}[\mathbf{K}_{\lambda}^{2}].$$

Cross Validation Performance Criteria

One measure of performance is to strip away one data point at a time and measure how closely the model which is trained without data point i predicts the value y_i observed at i.

$$CV(\lambda) = n^{-1} \sum_{i=1}^{n} (y_i - \hat{\mu}_{\lambda(i)}(t_i))^2.$$

However it can be shown that

$$\hat{\mu}_{\lambda(i)}(t_i) = \hat{\mu}_{\lambda}(t_i) - k_{ii}(y_i - \hat{\mu}_{\lambda}(t_i))/(1 - k_{ii})$$

where k_{ii} is the i^{th} diagonal element of \mathbf{K}_{λ} . Another computationally nice method is by measuring the **generalized cross validation** given by

$$GCV(\lambda) = n^{-1}RSS(\lambda)/(n^{-1}tr[\mathbf{I} - \mathbf{K}_{\lambda}])^{2}.$$

Some Functional Space Theory

If $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ are two complex vectors the Euclidean (or ℓ^2) inner product is given by

$$\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^* \mathbf{b} = \overline{\mathbf{a}}^T \mathbf{b} = \sum_{i=1}^n \overline{a}_i b_i$$

where \overline{a}_i denotes the complex conjugate of a_i , and \mathbf{a}^* denotes the adjoint or complex conjugate transpose of the vector \mathbf{a} .

If f(t) and g(t) are two square integrable complex functions on [0,1] then the $L^2[0,1]$ inner product between $f(\cdot)$ and $g(\cdot)$ is given by

$$\langle f,g\rangle = \int_0^1 \overline{f}(t)g(t)dt$$

and $L^2[0,1]$ consists of all functions where

$$\langle f, f \rangle = ||f||^2 < \infty.$$

Some Functional Space Theory

Orthogonality

Two functions $\mu_1(\cdot), \mu_2(\cdot) \in L^2[0,1]$ are said to be orthogonal if $\langle \mu_1, \mu_2 \rangle = 0$. We denote this by $\mu_1 \perp \mu_2$.

Orthonormality

A sequence of functions $\{\phi_i\}_{i=1}^{\infty}$ is said to be orthonormal if the ϕ_j are pairwise orthogonal and $\|\phi_i\|=1$ for all i.

Complete Orthonormal Sequence (CONS)

A sequence of functions $\{\phi_i\}_{i=1}^{\infty}$ is said to be a complete orthonormal sequence (CONS) if $f \perp \phi_i$ for all i implies that f=0 almost everywhere (a.e.).

Fourier Basis Functions

There are three ways to construct a CONS for $L^2[0,1]$ using trigonometric functions

$$\phi_1(t)=1$$
 $\phi_{2j}(t)=\sqrt{2}\cos(2j\pi t)$ and, $\phi_{2j+1}(t)=\sqrt{2}\sin(2j\pi t)$

for
$$j = 1, 2 ..., or$$

$$\phi_1(t)=1$$
 $\phi_j(t)=\sqrt{2}\cos((j-1)\pi t)$ for $j=2,3,\ldots$

or

$$\phi_1(t)=1$$
 $\phi_j(t)=\sqrt{2}\sin(j\pi t)$ for $j=2,3,\ldots$

Legendre Polynomials

Another CONS for $L^2[0,1]$ can be derived by applying the Gramm-Schmidt orthonormalization process to the basis of polynomial functions $q_i(t)=t^{j-1}, j=1,2,\ldots$ To construct this CONS one proceeds as follows. First take

$$\phi_i(t) = q_1(t)/||q_1(t)|| \equiv 1.$$

Now define basis functions recursively via the formula

$$\phi_j(t) = \frac{\left[q_j(t) - \sum_{k=1}^{j-1} \langle q_j, \phi_k \rangle \phi_k(t)\right]}{\|q_j - \sum_{k=1}^{j-1} \langle q_j, \phi_k \rangle \phi_k\|}$$

Best Approximate Function

Proposition

Let $\{\phi_j\}_{j=1}^\infty$ be any CONS for $L^2[0,1]$ and for any $\mu\in L^2[0,1]$ define

$$\beta_j = \langle \mu, \phi_j \rangle, j = 1, 2, \dots$$

Then $\sum_{j=1}^{\lambda} \beta_j \phi_j$ is the best approximation to μ in the sense that

$$\|\mu - \sum_{j=1}^{\lambda} \beta_j \phi_j\| \le \|\mu - \sum_{j=1}^{\lambda} b_j \phi_j\|$$

for all $\mathbf{b} = (b_1, \dots, b_{\lambda}) \in \mathbb{R}^{\lambda}$. Moreover as $\lambda \to \infty$

$$\|\mu - \sum_{j=1}^{\lambda} \beta_j \phi_j\|^2 \to 0$$

990

Taylor's Theorem

Taylor's Theorem

If $\mu \in W^m_2[0,1]$, then there exist coefficients $heta_1,\dots, heta_m$ such that

$$\mu(t) = \sum_{j=1}^{m} \theta_j t^{j-1} + \int_0^1 \frac{(t-u)_+^{m-1}}{(m-1)!} u^{(m)}(u) du,$$

where

$$(x)_+^r = \left\{ \begin{array}{ll} x^r, & x \ge 0 \\ 0, & x < 0. \end{array} \right.$$

Proof: Write $\mu(t) = \int_0^1 (t-u)_+^0 \mu'(u) du + \mu(0)$ and integrate by parts.

Taylor's Theorem

Taylor's Theorem suggests that if, for some positive integer λ , the remainder term

$$Rem_{\lambda}(t) = [(\lambda - 1)!]^{-1} \int_{0}^{1} (t - u)_{+}^{\lambda - 1} \mu^{(\lambda)}(u) du$$

is uniformly small then we could write

$$y_i = \sum_{j=1}^{\lambda} \theta_j t^{j-1} + \epsilon_i$$
, $i = 1, \dots, n$.

with ϵ_i uniformly small errors.

Polynomial Regression

Let \mathbf{Q}_{λ} denote the $(n\mathbf{y}\lambda)$ Vandermonde matrix

$$\mathbf{Q}_{\lambda} \equiv \{q_{j}(t_{i})\}_{i=1,...,n:j=1,...,\lambda} = \left[egin{array}{cccc} t_{1}^{0} & t_{1}^{1} & \cdots & t_{1}^{\lambda-1} \ t_{2}^{0} & t_{2}^{1} & \cdots & t_{2}^{\lambda-1} \ dots & dots & \cdots & dots \ t_{n}^{0} & t_{n}^{1} & \cdots & t_{n}^{\lambda-1} \end{array}
ight]$$

Then the polynomial regression estimator of $\mu(t)$ is given by

$$\mu_{\lambda}(t) = (1, t, \dots, t^{\lambda-1})(\mathbf{Q}_{\lambda}^{T}\mathbf{Q}_{\lambda})^{-1}\mathbf{Q}_{\lambda}^{T}\mathbf{y}$$

However, $(\mathbf{Q}_{\lambda}^T \mathbf{Q}_{\lambda})$ get's non-singular fast

Polynomial Regression

So better to work with poly() basis functions in R which are defined by

$$x_{jn}(t) = \sum_{k=1}^{\lambda} a_{k\lambda} t^{k-1}$$

with $\mathbf{A}_{\lambda} = \{a_{jr}\}$ a nonsingular satisfying

$$\mathbf{A}_{\lambda}^{T}\mathbf{Q}_{\lambda}^{T}\mathbf{Q}_{\lambda}\mathbf{A}_{\lambda}=n\mathbf{I}$$

so that

$$n^{-1}\sum_{i=1}^n x_{jn}(t_i)x_{jn}(t_i)=\delta_{jk}$$

Kernel Methods

Kernel functions often have the form

$$\mathcal{K}(t,t_i,\lambda) = rac{1}{\lambda}\mathcal{K}\left(rac{t-t_i}{\lambda}
ight)$$

with the following moment conditions

$$\int_{-1}^{1} K(u)du = 1, \int_{-1}^{1} uK(u)du = 0$$
$$\int_{-1}^{1} u^{2}K(u)du = M_{2}, \int_{-1}^{1} K^{2}(u)du = R < \infty.$$

Kernel	К	R	M_2
Uniform	$K(u) = \frac{1}{2}I_{[-1,1]}(u)$	$\frac{1}{2}$	$\frac{1}{3}$
Quadratic	$K(u) = \frac{3}{4}(1 - u^2)I_{[-1,1]}(u)$	<u>3</u> 5	$\frac{1}{5}$
Biweight	$K(u) = \frac{15}{16}(1 - u^2)^2 I_{[-1,1]}(u)$	<u>5</u> 7	1 7

Local Linear Methods

Locally Linear estimator for $\mu(t)$ attempts to estimate through minimization of

$$\sum_{i=1}^{n} K\left(\frac{t-t_i}{\lambda}\right) (y_i - \theta_1 - \theta_2(t_i - t))^2$$

The explicit form of the estimator is given by first defining

$$M_{jn}(t) = (\lambda n)^{-1} \sum_{i=1}^{n} K\left(\frac{t-t_i}{\lambda}\right) (t-t_j)^j, j=0,1,2.$$

Then

$$u_{\lambda}(t) = \sum_{i=1}^{n} y_{i} w(t, t_{i}, \lambda)$$

with

$$w(t,t_i,\lambda) = \frac{1}{n\lambda} K\left(\frac{t-t_i}{\lambda}\right) \frac{M_{2n}(t) - (\frac{t-t_i}{\lambda}) M_{1n}(t)}{M_{2n}(t) M_{0n}(t) - M_{1n}^2(t)}.$$

LOWESS Smoother

Scatter plot smoothing

This function performs the computations for the LOWESS smoother which uses locally-weighted polynomial regression.

Linear smoother vs Nonlinear smoothers

Problems with linear smoothers:

- Smooth over sharp features
- Strongly affected by outliers

Nonlinear smoothers:

- cannot be expressed as $\sum w_i y_i$
- flexible (no linear constraints)
- usually involve medians instead of means
- catch depths of troughs, heights of peaks
- reduce influence of outliers
- easy to do by hand


```
smooth(x, kind = c("3RS3R", "3RSS", "3RSR", "3R", "3", "S"),
        twiceit = FALSE, endrule = "Tukey", do.ends = FALSE)
xx \leftarrow rnorm(20): xx
0.98 0.54 -0.75 0.34 0.88 0.48 0.08 -0.43 -0.57 0.68
1.56 -0.58 0.22 0.71 0.71 -0.15 1.29 0.64 1.17 1.85
#Smooth by 3:
xx3 <- smooth(xx, kind="3")
3 Tukey smoother resulting from smooth(x=xx, kind="3")
used 1 iterations
```

0.94 0.54 0.34 0.34 0.48 0.48 0.08 -0.43 -0.43 0.68 0.68 0.22 0.22 0.71 0.71 0.71 0.64 1.17 1.17 1.17

Some specific problems with 3R:

Plateaus (hence "splitting")

An artifact of 3R is the presence of two adjacent smoothed y's with the same value. "Split" between them and apply end-value rule to each one so the values will differ.

Some specific problems with 3R:

- "End value rules": Construct y_0, y_{n+1} , Tukey EDA, p221
 - "the change from the end smoothed value to the next-to-end smoothed value is between 0 and +2 times the change from the next-to-end smoothed-value to the next-to-end-but-one smoothed value."
 - "subject to this being true, the end smoothed-value is as close to the end input-value as possible."

"This means that we can look at two differences:

end input-value MINUS next-to-end smoothed value

and

next-to-end smoothed value MINUS next-but-one-to-end smoothed value

Some specific problems with 3R:

- "End value rules": Construct y_0, y_{n+1} , Tukey EDA, p221
 - and if the first is between 0 and +2 times the second, we can copy on. Otherwise, we can make
 - end smoothed value MINUS next-to-end smoothed value either zero or two times
 - next-to-end smoothed value MINUS next-but-one-to-end smoothed value."

$$\tilde{y_1} = \mathsf{median}\{y_1, \tilde{y_2}, y_0\}$$

where $y_0 = 3\tilde{y_2} - 2\tilde{y_3}$ is a linear extrapolation of y_3 and y_2 to x_0 as if x_0, x_1, x_2, x_3 are equally spaced.

Some specific problems with 3R:

 "Twicing": smooth the residuals and add back to the original smooth

```
3RS3R, 3RSS, 3RSR (3RSSHT)
```

- 3 = smooth by medians of length 3
- R = repeat the previous smooth until no change
- S = split 2-plateaus
- H = hanning (1/4, 1/2, 1/4)
- T = twice (repeat on residuals)

```
smoothEnds(y, k=3): apply end-value rule to ends only
```

runmed: apply end-value rule also:

```
runmed(x, k, endrule = c("median", "keep", "constant"),
algorithm = NULL, print.level = 0)
```


Extensions:

Extending to several variables: Backfitting

$$\tilde{y} = f(x_1) + f(x_2)$$

- **1** Initial smooth: fit y as a linear function of x_1 , x_2
- 2 Iterate: smooth residuals as a function of x_i
- **3** Repeat step (2) for each x_i , in turn, until residuals are "flat"

See Hastie and Tibshirani (1993), Generalized Additive Models.

Example

The classic Box & Jenkins airline data. Monthly totals of international airline passengers, 1949 to 1960.

AirPassengers

Example

Example

Example

Seasoned Trend: Residuals by Month

Summary

R functions for smoothing: help.search("smooth")

- Basic library:
 - ksmooth: Kernel regression smoother
 - lowess: Scatter plot smoothing
 - smooth.spline: Fits a cubic smoothing spline to the supplied data.
 - predict.smooth.spline: predict from spline smooth
 - runmed: running medians
 - scatter.smooth: Plot and add a smooth curve computed by loess to a scatter plot.
 - smooth: Tukey's running median smoothing
 - smoothEnds: end-value smoothing for running medians
 - supsmu: Friedman's SuperSmoother
 - pspline: Smoothing splines using a pspline basis

Summary

R functions for smoothing: help.search("smooth")

- 2. library("graphics"):
 - panel.smooth: Simple Panel Plot
 - smoothScatter: Scatterplots with Smoothed Densities Color Representation
 - smooth: Tukey's running median smoothing
 - smoothEnds: end-value smoothing for running medians
 - runmed: running medians

Introduction to Splines

The origin of splines began as an attempt to solve the interpolation problem by fitting a smooth curve through data.

Lagrange Interpolation

For a given set of data points $\{(t_i, y_i)\}_{i=1}^n$ the **Lagrange** basis functions for the set of polynomials of order n-1, \mathbb{P}_{n-1} , is given by

$$\ell_j(t) = \frac{\prod_{k=1, k \neq j}^n (t - t_k)}{\prod_{k=1, k \neq j}^n (t_j - t_k)} \ \ j = 1, \ldots, n.$$

For the definition, we see that $\ell_j(t_i)$ is a polynomial of degree n-1 and

$$\ell_j(t_i) = \left\{ egin{array}{ll} 1 & ext{if } i=j \ 0 & ext{if } i
eq j \end{array}
ight., i,j=1,\ldots,n.$$

Lagrange Interpolation

The design matrix **X** for the **Lagrange** polynomial basis functions is:

$$\mathbf{X} = \begin{bmatrix} \ell_1(t_1) & \ell_2(t_1) & \cdots & \ell_n(t_1) \\ \ell_1(t_2) & \ell_2(t_2) & \cdots & \ell_n(t_2) \\ \vdots & \vdots & \ddots & \vdots \\ \ell_1(t_n) & \ell_2(t_n) & \cdots & \ell_n(t_n) \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Hence, the polynomial which interpolates through the points $\{(t_i, y_i)\}_{i=1}^n$ satisfies

$$X\beta = y \Longrightarrow I\beta = y \Longrightarrow \beta = y$$

and so the interpolating polynomial is given by

$$p_{n-1}(t)y_1\ell_1(t) + y_2\ell_2(t) + \cdots + y_n\ell_n(t).$$

Lagrange Interpolation Example

Suppose we know the values of three data points without error $\{(t_1, y_1), (t_2, y_2), (t_3, y_3)\}$. The Lagrange interpolating polynomial will be

$$p_2(t) = y_1 \frac{(t-t_2)(t-t_3)}{(t_1-t_2)(t_1-t_3)} + y_2 \frac{(t-t_1)(t-t_3)}{(t_2-t_1)(t_2-t_3)} + y_3 \frac{(t-t_1)(t-t_2)}{(t_3-t_1)(t_3-t_2)}.$$

- Notice that $p(t_i) = y_i$ so the function is continuous and agrees with data.
- In general, $p_{n-1}(t)$ is the unique $(n-1)^{th}$ order polynomial that agrees with y_i at t_i .
- However we want to construct a basis whose derivatives at the points {t₁, t₂, t₃} will be continuous as well.

The Divided Difference

The Divided Difference

The q^{th} order divided difference of a function g at $[t_i, \ldots, t_{i+q}]$ is

$$[t_i,\ldots,t_{i+q}]g = \frac{[t_{i+1},\ldots t_{i+q}]g - [t_i,\ldots,t_{i+q-1}]g}{t_{i+q}-t_i}$$

with $[t_i]g = g(t_i)$ being used to initiate the recursion.

For example, the divided difference

$$[t_i, t_{i+1}]g = rac{g(t_{i+1}) - g(t_i)}{t_{i+1} - t_i}$$
 or

$$[t_{i-1}, t_{i+1}]g = \frac{g(t_{i+1}) - g(t_{i-1})}{t_{i+1} - t_{i-1}}.$$

can be used to approximate $g'(t_i)$.

Lagrange Interpolation Theorem

Lagrange Interpolation Theorem

Let
$$p_q(t) = \sum_{i=1}^q g(t_i) \ell_i(t)$$
 for

$$\ell_j(t) = \prod_{\stackrel{i=1}{i
eq j}}^q rac{(t-t_i)}{(t_j-t_i)}.$$

Then,

- p_q is the unique $(q-1)^{th}$ order polynomial that agrees with g at t_i for $i=1,\ldots,q$ and
- ② for each q = 1, 2, ... the coefficient t^q corresponding to $g(t_i)$ in p_{q+1} is $[t_i, ..., t_{i+q}]g$.

Lagrange Interpolation Theorem Proof

Proof: The function $\ell_j(t)$ is a polynomial of order q and vanishes at all the t_i except for t_j where it takes the value 1. So property (1) holds.

To verify the second property we proceed by induction. For q=1, the coefficient corresponding to $g(t_i)$ in p_2 is either $\ell_i(t)=\frac{(t-t_1)}{(t_2-t_1)}$ for i=1 or $\ell_2(t)=\frac{(t-t_2)}{(t_1-t_2)}$ for i=2 so the coefficient of t^1 is $[t_i]g=g(t_i)$ for i=1,2. For the induction step, let $p_q(t)$ be the polynomial of order (q-1) that agrees with g at t_i,\ldots,t_{i+q-1} and take $\tilde{p}_q(t)$ to be the polynomial of order (q-1) that agrees with g at t_{i+1},\ldots,t_{i+q} Then,

$$ho(t)=rac{(t-t_i)}{(t_{i+q}-t_i)} ilde{
ho}_q(t)+rac{(t_{i+q}-t)}{(t_{i+q}-t_i)}
ho_q(t)$$

is a polynomial of order q and since $p(t_i) = p_q(t_i)$ and $p(t_{i+q}) = \tilde{p}_q(t_{i+q})$, it agrees with g at $t_i, \ldots t_{i+q}$. By uniqueness of Lagrange interpolating polynomials, we must have $p_{q+1}(t) = p(t)$ and the coefficient of t^q corresponding to $g(t_i)$ is

$$\frac{[t_{i+1},\ldots,t_{i+q}]g-[t_{i},\ldots,t_{i+q-1}]g}{(t_{i+q}-t_{i})}\equiv [t_{i},\ldots,t_{i+q}]g.$$

Lagrange Corollary

Corollary

If g is a polynomial of order q-1 on $[t_i, t_{i+q}]$ then $[t_i, \dots, t_{i+q}]g = 0$.

Proof: Let $p_k(t) = \sum_{i=1}^k g(t_i)\ell_i(t)$ and note that $p_k = g$ for all $k \geq q-1$. Then, as $[t_i, \ldots, t_{i+q}]g$ is the lead coefficient of t^q in p_{q+1} in front of $g(t_i)$, and g has degree one less than q that coefficient must be zero, hence $[t_i, \ldots, t_{i+q}]g = 0$.

Smoothing Splines

Splines

A spline of order $q \geq 1$, with knots at $0 < t_1 < t_2 < \cdots t_J < 1$ is any function of the form

$$g(t) = \sum_{i=0}^{q-1} \theta_i t^i + \sum_{j=0}^{J} \delta_j (t - t_j)_+^{q-1}$$

for constants $\theta_0, \dots \theta_{q-1}, \delta_1, \dots, \delta_J \in \mathbb{R}$.

What is Special About the Function $(t-s)_{+}^{p}$?

Consider the inverse to the p^{th} derivative operator

$$\frac{\partial^{p+1}}{\partial t^{p+1}}f(t)=(Lf)(t)=g(t).$$

subject to boundary conditions $f^{(p)}(0) = f^{(p-1)}(0) = \cdots f^{(1)}(0) = f(0) = 0$. What to find inverse operator L^{-1} such that

$$f(t) = (L^{-1}g)(t).$$

Consider the equation

$$\int_0^1 (t-s)_+^p f^{(p+1)}(s) ds = \int_0^t (t-s)^p f^{(p+1)}(s) ds$$

What is Special About the Function $(t - s)_{+}^{p}$?

If we integrate by parts tabularly we find that

in the integrate by parts tabarary the initial		
Derivative	Integral	Sign
$(t-s)^p$	$f^{(p+1)}(s)$	
$(-1)^1 p(t-s)^{p-1}$	$f^{(p)}(s)$	+
$(-1)^2 p(p-1)(t-s)^{p-2}$	$f^{(p-1)}(s)$	_
:	:	:
$(-1)^{p-1}[p(p-1)\cdots(2)](t-s)^1$	$f^{(2)}(s)$	$(-1)^{p-2}$
$(-1)^{p}p!$	$f^{(1)}(s)$	$(-1)^{p-1}$
0	f(s)	$(-1)^{p}$

$$\int_0^1 (t-s)_+^p f^{(p+1)}(s) ds = \int_0^t (t-s)^p f^{(p+1)}(s) ds$$

$$= (t-s)^p f^{(p)}(s)|_0^t + p(t-s)^{p-1} f^{(p-1)}(s)|_0^t + \dots + p! f(s)|_0^t$$

$$= 0 + 0 + \dots + p! f(t).$$

Hence,

$$\frac{\partial^{p+1}}{\partial t^{p+1}}f(t)=(Lf)(t)=g(t)\Longrightarrow f(t)=(L^{-1}g)(t)=\frac{1}{p!}\int_0^1(t-s)_+^pg(s)ds.$$

Splines

$$s(t) = \sum_{i=0}^{q-1} \theta_i t^i + \sum_{j=0}^{J} \delta_j (t - t_j)_+^{q-1}$$

- \bigcirc s(t) is a piecewise polynomial of order q-1 on any subinterval $[t_i,t_{i+1}]$
- 2 s(t) has q-2 continuous derivatives and
- 3 $s(\cdot)$ has a discontinuous $(r-1)^{st}$ derivative with jumps at t_1, t_2, \ldots, t_J .

Splines

$$s(t) = \sum_{i=0}^{q-1} \theta_i t^i + \sum_{j=0}^{J} \delta_j (t - t_j)_+^{q-1}$$

- \bigcirc s(t) is a piecewise polynomial of order q-1 on any subinterval $[t_i,t_{i+1}]$
- 2 s(t) has q-2 continuous derivatives and
- 3 $s(\cdot)$ has a discontinuous $(r-1)^{st}$ derivative with jumps at t_1, t_2, \ldots, t_J .

Spline Subspace

Let ζ_1, \ldots, ζ_k denote the interior knots inside the interval [0,1] and let $S^q(\zeta_1, \ldots, \zeta_k)$ denote the set of functions of the form

$$s(t) = \sum_{i=0}^{q-1} \theta_i t^i + \sum_{j=1}^k \eta_j (t - \zeta_j)_+^{q-1}$$

Then $S^q(\zeta_1,\ldots,\zeta_k)$ is a vector space in the sense that the functions

$$1, t, \ldots, t^{q-1}, (t-\zeta_1)_+^{q-1}, \ldots, (t-\zeta_k)_+^{q-1}$$

are linearly independent and linear combinations of these functions remain in this set. It follows that $S^q(\zeta_1,\ldots\zeta_k)$ has dimension k+r.

Spline Subspace

The terms $\sum_{j=0}^{J} \delta_j(t-\zeta_j)_+^{q-1}$ are important because they enable us to put continuity constraints on the $\{(1),(2),\ldots,(q-2)\}$ derivatives at the knots $t=\zeta_1,\zeta_2,\ldots,\zeta_k$ and ensure that

$$\lim_{t \to \zeta_{i}^{+}} g^{(q-2)}(t) = g^{(q-2)}(\zeta_{i}^{+}) = g^{(q-2)}(\zeta_{i}^{-}) = \lim_{t \to \zeta_{i}^{+}} g^{(q-2)}(t)$$

$$\lim_{t \to \zeta_{i}^{+}} g^{(q-3)}(t) = g^{(q-3)}(\zeta_{i}^{+}) = g^{(q-3)}(\zeta_{i}^{-}) = \lim_{t \to \zeta_{i}^{+}} g^{(q-3)}(t)$$

$$\vdots = \vdots = \vdots = \vdots$$

$$\lim_{t \to \zeta_{i}^{+}} g^{(1)}(t) = g^{(1)}(\zeta_{i}^{+}) = g^{(1)}(\zeta_{i}^{-}) = \lim_{t \to \zeta_{i}^{+}} g^{(1)}(t)$$

$$\lim_{t \to \zeta_{i}^{+}} g(t) = g(\zeta_{i}^{+}) = g(\zeta_{i}^{-}) = \lim_{t \to \zeta_{i}^{+}} g(t)$$

Natural Smoothing Spline Subspace

Of particular importance is the set of natural splines of order r=2m with k=n knots at the design points.

Natural Splines

A spline function is a *natural spline* of order 2m with knots at ζ_1, \ldots, ζ_k if in addition to properties (1-3) above it satisfies

- 4 s(t) is a polynomial of order m outside of the interior knots $[\zeta_1,\zeta_n]$
- Let $NS^{2m}(\zeta_1,\ldots,\zeta_n)$ denote the collection of all natural splines or order 2m with knots at ζ_1,\ldots,ζ_n .
- $NS^{2m}(\zeta_1,\ldots,\zeta_n)$ is a subspace of $S^{2m}(\zeta_1,\ldots,\zeta_n)$ obtained by placing 2m restrictions on the coefficients.
- One can show that $\theta_m = \cdots \theta_{2m-1} = 0$ and $NS^{2m}(\zeta_1, \dots, \zeta_n)$ has dimension m.
- The argument is that $S^{2m}(\zeta_1,\ldots,\zeta_n)$ has dimension 2m+n and since we have 2m constraints $NS^{2m}(\zeta_1,\ldots,\zeta_n)$ has dimension 2m+n-2m=n.

B-Splines

Let $0<\zeta_1<\zeta_2<\cdots<\zeta_k<1$ be a sequence of interior knots. We define the B-spline basis functions iteratively by first letting the 1^{st} order (or 0^{th} degree) B-spline basis to be

$$B_{i1}(t) \equiv \left\{ egin{array}{ll} 1 & ext{if } \zeta_i < t < \zeta_{i+1} \ 0 & ext{otherwise} \end{array}
ight.$$

Next, for k > 1 we let

$$B_{ik}(t) \equiv \frac{(t-\zeta_i)}{(\zeta_{i+k-1}-\zeta_i)} B_{i,k-1}(t) + \frac{(\zeta_{i+k}-t)}{(\zeta_{i+k}-\zeta_{i+1})} B_{i+1,k-1}(t).$$

B-Splines

```
library("splines")
library("fda")
?bs
?smooth.splines
?ns
k = 100
x=(c(1:k)-0.5)/k
print(x)
knots=c(1:9)/10
print(knots)
B=bs(x,knots=knots,degree=1)
plotfun = function(x,B){
p = ncol(B)
par(mfrow=c(2,ceiling(p/2)))
for(i in 1:p){
plot(x,B[,i],type="l",lwd=3,col="blue",main=expression(B[i,1](t)) )
# Plot the Order degree=1 B-spline basis
plotfun(x,B)
```

Linear B-Spline Basis

Quadratic B-Spline Basis

Cubic B-Spline Basis

B-Spline Basis Theorem

- The knots $0 < \zeta_1 < \cdots < \zeta_k < 1$ are called the *interior knots*.
- When we construct the B-spline basis functions it is often useful to take boundary knots $\zeta_0 = 0$ and $\zeta_{k+1} = 1$.
- According to the Ansolone–Laurent–Reinsch procedure we then define an additional 2(q-1) phantom knots

$$\zeta_{-(q-1)} < \zeta_{-(q-1)} < \dots < t_{-1} \le 0$$
 and, $1 \le \zeta_{k+2} < \zeta_{k+3} < \dots < \zeta_{k+q}$.

B-Spline Basis Theorem

The collection of functions $\{B_{iq}(\cdot)\}_{i=-(q-1)}^{k+q}$ satisfy

- **1** $B_{iq}(\cdot)$ is a polynomial of order q on each interval $(\zeta_i, \zeta_i + 1)$.
- 2 $B_{iq}(\cdot) = 0$ for $t \notin [\zeta_i, \zeta_{i+q}]$ and,
- **3** $B_{iq}(t) = (\zeta_{i+q} \zeta_i)[\zeta_i, \dots, \zeta_{i+q}](\cdot t)_+^{q-1} = \sum_{r=0}^q \alpha_{rq}^{[i]}(t_{i+r} t)_+^{q-1}$ with $\alpha_{rq}^{[i]}$ such that

$$(\zeta_{i+q}-\zeta_i)[\zeta_i,\ldots,\zeta_{i+q}]g=\sum_{r=0}^q\alpha_{rq}^{[i]}g(t_{i+r})$$

