Modelling in Public Health

SE Scientific Communication Summer 2019

Lukas Richter

28. June 2019

Content

- Background
- Statistical models
- 3 Dynamic models
- 4 Conclusion

Background

Infectious diseases are a serious burden for human health

Results in loss of QUALYs and also money

WHO: 50,000 deaths per day due to infectious diseases

Outbreaks vs endemic infection

Different chains of transmission:

Outbreaks

Influenza pandemic "swine flu"

Global, 2009-2010, 100,000-400,000 deaths

Ebola

West Africa, 2014-2016, 11,000 deaths DRC, since 2018, 1,900 deaths

Zika Virus

Brazil, 2015-2016, estimated 1 Mio cases in Brazil only and 2,000 confirmed severe complications in newborns

Measles

Europe, 2019, ca. 6,300 cases from Jan–Apr Austria, 2019, more than 130 cases up to this week

How can modellers help?

Outbreak situations:

Exploit all available data

Inform response team in real time

Prioritise interventions

Non outbreak situations:

Evaluate health programmes (vaccination, WHO elimination targets)

Find high impact and cost-effective interventions

Allow evidence based decisions

Benefits of modelling:

Low cost! Clinical trials are expensive and seldom large enough

Often little or no data to analyse (new emerging diseases)

Types of models

Statistical

Descriptive

Regression

Bayesian statistics

Spatial models

Mathematical

Dynamic, compartmental (SIR)

Stochastic - Markov chain

Deterministic

Agent-based

Intervention effect - Invasive Pneumococcal Disease (IPD)

Caused by *Streptococcus pneumoniae*90 distinct pneumococcal serotypes
Highest burden: **infants** and **elderly**Pneumococcal conjugate **vaccine introduced** in 2012 in AT for children

Intervention effect - Invasive Pneumococcal Disease (IPD)

Caused by *Streptococcus pneumoniae*90 distinct pneumococcal serotypes
Highest burden: **infants** and **elderly**Pneumococcal conjugate **vaccine introduced** in 2012 in AT for children

Vaccine effect? Direct? Indirect (elderly)?

Segmented Regression - The Model

Serfling-like Model

$$\begin{split} \log \left(Y_t \right) &= \beta_0 + \beta_1 \, t + \beta_2 \, \sin \left(\frac{2\pi t}{12} \right) + \beta_3 \, \cos \left(\frac{2\pi t}{12} \right) \\ &+ \beta_5 \left(t - t_0 \right)^+ + \mathbbm{1}_{t - t_0 > 0} \left[\beta_4 + \beta_6 \, \sin \left(\frac{2\pi t}{12} \right) + \beta_7 \, \cos \left(\frac{2\pi t}{12} \right) \right] \\ &+ \log \left(pop_t \right) \end{split}$$

with

$$(x)^+ = \begin{cases} x, & \text{if } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Richter et al., 2019

IPD - Results

Figure: Monthly incidence of (A) vaccine type IPD (B) non vaccine type IPD, among the \geq 50 years old, observed and modelled, Austria

Richter et al., 2019

Mathematical modelling - Zika Virus

Humans are infected by **mosquitos** daytime-active *Aedes* family

Latin American Zika epidemic in 2016

Summer Olympics in Rio

Global transmission to about 75 countries

e.g. A. albopictus found in AT in 2012

Mostly **flu-like** or **no** symptoms

Dangerous for foetuses and neonates

Brain malformations

Microcephaly (small head)

Transmission model of Zika Virus

Vars	Description
S_h	Susceptible Humans
I _h	Infected/Infectious
	humans
R_h	Humans recovered from
	infection (with lifelong
	immunity)
S_{v}	Susceptible vectors
E_{v}	Exposed vectors

adapted from https://www.reconlearn.org/ and Ferguson et al., 2016

Transmission model of Zika Virus

Humans/Host

$$\begin{aligned} \frac{dS_h}{dt} &= \mu_h N_h - \frac{\beta_h b}{N_h} S_h I_v - \mu_h S_h \\ \frac{dI_h}{dt} &= \frac{\beta_h b}{N_h} S_h I_v - (\gamma_h + \mu_h) I_h \\ \frac{dR_h}{dt} &= \gamma_h I_h - \mu_h I_h \end{aligned}$$

Vectors

$$\frac{dS_{v}}{dt} = \mu_{v}N_{v} - \frac{\beta_{v}b}{N_{h}}I_{h}S_{v} - \mu_{v}S_{v}$$
$$\frac{dI_{v}}{dt} = \frac{\beta_{v}b}{N_{h}}I_{h}S_{v} - \mu_{v}I_{v}$$

adapted from https://www.reconlearn.org/ and Ferguson et al., 2016

Zika Virus - Modelling Outcome

Herd immunity after first epidemic Epidemic will **re-occur** every 15-20 yrs

An epidemic will last about 3-5 yrs Shorter on local scale: 6 months

Develop **new interventions** before new large-scale outbreaks occur

Ferguson et al., 2016

Other Applications

Influenza mortality Sexually transmitted infections (STI) Foodborne outbreaks Ebola **Tuberculosis** Malaria Hepatitis C elimination

Conclusion

We presented two examples of applied modelling

Modelling plays an **increasingly important** role in helping to guide the most high **impact** and **cost-effective** prevention of disease

Models can be critical tools in guiding public health action.

Always comes with limitations

Decision makers **benefit** - so does the affected population

Still a number of **challenges** in achieving a successful interface between modelling and public health actors

Any questions?

References

- Lukas Richter et al. "Invasive Pneumococcal Diseases in Children and Adults before and after Introduction of the 10-Valent Pneumococcal Conjugate Vaccine into the Austrian National Immunization Program". In: PloS One 14.1 (2019), e0210081. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0210081. pmid: 30629620.
- [2] Neil M. Ferguson et al. "Countering the Zika Epidemic in Latin America". In: Science 353.6297 (July 22, 2016), pp. 353-354. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science.aag0219. pmid: 27417493. URL: https://science.sciencemag.org/content/353/6297/353 (visited on 06/19/2019).
- [3] J. Nielsen et al. "European All-Cause Excess and Influenza-Attributable Mortality in the 2017/18 Season: Should the Burden of Influenza B Be Reconsidered?" In: Clinical Microbiology and Infection (Feb. 18, 2019). ISSN: 1198-743X. DOI: 10.1016/j.cmi.2019.02.011. URL: http://www.sciencedirect.com/science/article/pii/S1198743X19300588 (visited on 04/08/2019).
- [4] Polonsky Jonathan A. et al. "Outbreak Analytics: A Developing Data Science for Informing the Response to Emerging Pathogens". In: Philosophical Transactions of the Royal Society B: Biological Sciences 374.1776 (July 8, 2019), p. 20180276. DOI: 10.1098/rstb.2018.0276. URL: https://royalsocietypublishing.org/doi/10.1098/rstb.2018.0276 (visited on 06/18/2019).
- [5] R. E. Serfling, I. L. Sherman, and W. J. Houseworth. "Excess Pneumonia-Influenza Mortality by Age and Sex in Three Major Influenza A2 Epidemics, United States, 1957-58, 1960 and 1963". In: American Journal of Epidemiology 86.2 (Sept. 1967), pp. 433-441. ISSN: 0002-9262. DOI: 10.1093/oxfordjournals.aje.a120753. pmid: 6058395.
- [6] C. J. E. Metcalf, W. J. Edmunds, and J. Lessler. "Six Challenges in Modelling for Public Health Policy". In: Epidemics. Challenges in Modelling Infectious Disease Dynamics 10 (Mar. 1, 2015), pp. 93-96. ISSN: 1755-4365. DOI: 10.1016/j.epidem.2014.08.008. URL: http://www.sciencedirect.com/science/article/pii/S1755436514000620 (visited on 06/23/2019).