$$A = A \frac{9a^{2}}{A} \int_{0}^{1} \int_{0}^{1-Y} X^{\frac{1}{2}} Y^{\frac{1}{2}} dX dY$$

$$= 9a^{2} \int_{0}^{1} \left[\frac{X^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{1-Y} Y^{\frac{1}{2}} dY$$

$$= 6a^{2} \int_{0}^{1} (1-Y)^{\frac{3}{2}} Y^{\frac{1}{2}} dY$$

$$= 6a^{2} \int_{0}^{1} Y^{\frac{1}{2}} (1-Y)^{\frac{3}{2}} dY$$

$$= 6a^{2} \int_{0}^{1} Y^{\frac{1}{2}} (1-Y)^{\frac{3}{2}} dY$$

$$= 6a^{2} \beta \left(\frac{3}{2}, \frac{5}{2} \right)$$

$$=6a^{2}\frac{\Gamma(\frac{3}{2})\Gamma(\frac{5}{2})}{\Gamma(4)}$$

$$= \beta a^2 \frac{\Gamma(\frac{3}{2})\Gamma(\frac{5}{2})}{3!} = \frac{3\pi a^2}{8}.$$

PROBLEMS FOR PRACTICE

1. Evaluate the following:

(i)
$$\int_0^a \int_0^b x^2ydydx$$

Answer:
$$\frac{a^3b^2}{6}$$

(ii)
$$\int_{0}^{2} \int_{0}^{1} (x^{2}+y^{2}) dxdy$$

(iii)
$$\int_{0}^{3} \int_{0}^{2} xy(x+y)dxdy$$

(iv) o o red or do

Answer: 2/9

Answer: $(a-1)^2/2$

(v) s o exty dxdy

(vi) Show that $\int_{0}^{1} \int_{0}^{1-x} xy dx dy$

(vii) Show that $\int_{0}^{2} \int_{0}^{y} \frac{1}{x^{2} + y^{2}} dxdy = (\pi/4)I_{0}$

(viii) Show that $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} \frac{dxdy}{\sqrt{a^2-y^2}}$

II CHEMICA

 $(ix) \int_{0}^{2} \int_{0}^{x^{2}} e^{y/x} dxdy$

Answer: (e²-1)

(x) $\int_{0}^{2\pi} \int_{0}^{2\pi} \frac{1}{xy} dxdy$

Answer: (log2)²

2(i) $\|(x+y)\|$ dydx over the positive quadrant of the Ellipse. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Answer: $\frac{1}{3}$ ab(a+b)

(ii) Evaluate $\iint (x^2+y^2) dxdy$ over the region for which x=0, y=0 and x+y=1.

(iii) Evaluate || xydxdy over region bounded by x=0, y=0, x=a,y=b

Answer: $\frac{1}{4}a^2b^2$

(iv) Evaluate $\iint e^{2x+y} dx dy$ over the triangle bounded by x=0,y=0 and x+y=2.

Answer:
$$\frac{1}{2}(e^2-1)^2$$

(v) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} \sqrt{a^2-x^2-y^2} dx dy$$
. Answer: $(1/6)\pi a^3$

(vi) Show that
$$\int_{0}^{1} \int_{0}^{x^{2}} e^{y/x} dx$$

Change the order of integration and hence evaluate the following:

3.
$$\int_{0}^{\pi/2} \int_{0}^{x} \frac{\cos y}{\sqrt{(\pi/2-x)(x-y)}} dydx$$

4.
$$\int_{0}^{a} \int_{0}^{bx/a} x dy dx$$

5.
$$\int_{0}^{1} \int_{x^{2}}^{2-x} xydydx$$

6.
$$\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$$

7.
$$\int_{0}^{2} \int_{y^{2}/4}^{3-y} (x^{2}+y^{2}) dxdy$$

Answer:
$$\frac{314}{35}$$

8.
$$\int_{0}^{\infty} \int_{0}^{x} x \exp\left(-\frac{x^{2}}{y}\right) dy dx$$

9.
$$\int_0^a \int_{ax}^a \frac{4}{\sqrt{y^4 - a^2 x^2}} dxdy$$

10.
$$\int_{0}^{2} \int_{1}^{\infty} dy dx$$

Answer: e²-3

Answer: 1/24

$$12. \int_{0}^{\sqrt{1-x^2}} y^2 dxdy$$

Answer: π/16

- 13. Find the area of the segment cut off from the parabola $y^2=2x$ by the straight line y=4x-1.
- 14. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ Answer: πab
- 15. Find by double Integration the area of the region enclosed by the curves $x^2+y^2=a^2$, x+y=a (in the first quadrant) Answer: $(1/4)a^2(\pi-2)$
- 16. Find the area bounded by the curves $y^2 = x^3$, $x^2 = y^3$ Answer: 1/5
- 17. Find the area common to the circle $x^2+y^2=4$ and the Ellipse $x^2+4y^2=9$.

Answer:
$$4\pi + 9\sin^{-1}\left(\frac{1}{3}\sqrt{7/3}\right) - 2\sin^{-1}\left(\frac{1}{2}\sqrt{7/3}\right)$$

- 18. Find the area of the portion bounded by the curve $x(x^2+y^2)=a(x^2-y^2)$ and its asymptote.

 Answer: $\frac{1}{2}a^2(4-\pi)$
- 19. Find the area bounded by the curve $xy^2=4a^2(2a-x)$ and its asymptote

Answer: 4πa²

20. Find the area bounded by the curve $y^2(2a-x)=x^3$ and its asymptote.

Answer: 3πa²

21. Find the area bounded by the parabola $y^2=4ax$ and its latusrectum.

Answer: $\frac{8}{3}$

.04	MULITVAKIABLE CALCULUS AND DIFFERENTIA
2.	Find the area bounded by the curves $3y^2=25x$ and $5x^2=9y$
3.	Find the area bounded by the curves $3y^2=25x$ and $5x^2=9y$ Answer: S Answer: S
	Answer: a ² /2
	Find the area enclosed by the curves $y=2-x$, $x^2+y^2=4$
	Find the area of the region bounded by upper half of the circle $x^2+y^2=25$ the
	x-axis and the ordinates $x = -3$, $x = 4$ Answer: 24:43 Find the area enclosed by the curves $y=2-x$, $y^2=2(2-x)$
7 3.	2(2-x) Answer: 2/3
	Find the area enclosed by the lines $x=0, y=0$ $\frac{x}{a} + \frac{y}{b} = 1$ Answer: $ab/2$
	Find the area in the first quadrant bounded by the x-axis and the curves $x^2+y^2=10$, $y^2=9x$
	Find the area outside the circle r=2acosθ and inside the
- 4	Cardioid r=a(1+cosθ) Answer: πa ² /2
I	Find the area of the loop of the curver $r = \frac{3a \sin \theta \cos \theta}{\cos^3 \theta + \sin^3 \theta}$
þ	Hint: Given curve is $x^3+y^3=3axy$) Answer: $(3/2)\pi a^2$
F	ind the area of the curve $r=a(1+\sin\theta)$ Answer: $(3/2)\pi a^2$
F	ind the area bounded by the curve $r=a\cos 5\theta$ Answer: $\pi a^2/4$
F	ind the area of the ellipse $\frac{\dot{\ell}}{r} = 1 + e \cos\theta$ Answer: $\pi l^2 / (1 - e^2)^{3/2}$

Find the area lying inside the circle r=asinθ and outside the

24

25.

26.

27.

28.

29.

31.

32.

33.

34.

cardiod $r = a(1-\cos\theta)$

36

VULTPLEINTEGRALS Find the area common to the circles $r=a\sqrt{2}$ and $r=2a\cos\theta$

Find the area of the curve $r^2=a^2\cos 2\theta$

Calculate the area included between the curve

$$r=a(\sec\theta+\cos\theta)$$
 and its asymptote

Answer:
$$\frac{5}{4}\pi a^2$$

Show that the volume of the solid bounded by the coordinate planes and the

surface is
$$\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} + \sqrt{\frac{z}{c}}$$
 is $\frac{abc}{90}$.

- Evaluate $\iint [xy(1-x-y)]^{1/2} dxdy$, over the area enclosed by the lines x = 0, 39. y = 0 and x+y = 1 in the positive quadrant. Answer: $2\pi/105$
- Find the value of $\iint x^m y^n dxdy$ taken over the area $x \ge 0$, $y \ge 0$, $x+y \le 1$

interms of Gamma functions, if m, n>0. Answer:
$$\frac{\Gamma(m+1)\Gamma(n+1)}{\Gamma(m+n+3)}$$

Evaluate ∬x^{m-1} yⁿ⁻¹ (1-x-y)^{p-1} dxdy, taken over the area in the first quadrant 41. enclosed by the lines x = 0, y = 0, x+y = 1. Answer: $\frac{\Gamma(m)\Gamma(n)\Gamma(p)}{\Gamma(m+n+p)}$.