Факультет компьютерных наук

Построение системы музыкальных рекомендаций при помощи методов машинного обучения

Выполнено студентом группы МНОД231 Шкляром Михаилом Игоревичем

Научный руководитель: Доцент департамента Анализа данных и искусственного интеллекта, Николенко Сергей Игоревич

Описание предметной области

Определение: Системы музыкальных рекомендаций — это технологии, которые анализируют предпочтения и поведение пользователей для предложения музыкального контента, который может им понравиться. Эти системы используют различные алгоритмы для анализа музыкальных треков, жанров и поведенческих данных.

машинного обучения

Применение: Эти системы широко применяются в музыкальных стриминговых сервисах, таких как Spotify, Apple Music и Яндекс.Музыка, где они помогают пользователям находить новую музыку в соответствии с их вкусами и предыдущей активностью прослушивания.

Значение: Системы рекомендаций улучшают пользовательский опыт, увеличивают продолжительность прослушивания и способствуют увеличению пользовательской базы и доходов сервисов за счет предоставления персонализированного контента.

машинного обучения

Цели и задачи проекта

Цель работы: Разработка эффективной системы музыкальных рекомендаций, способной предсказывать музыкальные жанры с высокой точностью и предоставлять пользователям персонализированные музыкальные рекомендации в реальном времени.

Задачи:

- **Анализ существующих решений** в области музыкальных рекомендаций для определения недостатков и возможностей улучшения.
- Определение необходимых функций системы, включая методы и модели машинного и глубокого обучения, которые могли бы быть использованы для анализа и классификации музыкальных треков.
- **Создание и обучение различных моделей машинного и глубокого обучения**, включая CatBoost, XGBoost, LightGBM, SVM и нейронные сети, для точного предсказания музыкальных жанров на основе аудио характеристик.
- **Разработка и интеграция веб-приложения и телеграм-бота**, которые позволяют пользователям вводить названия треков или ссылки на Spotify и получать музыкальные рекомендации.

Актуальность работы

- Музыкальная индустрия активно развивается, требуя новых подходов к персонализации контента.
- Повышение интереса к музыкальным рекомендациям среди пользователей.
- Необходимость интеграции современных технологий машинного и глубокого обучения для улучшения качества рекомендаций.
- Глобализация музыкального контента и потребность в универсальных решениях, способных адаптироваться под разные культурные контексты.

Анализ конкурентов

Функция/Характеристика	Яндекс Музыка	Spotify	Разработанная система
Интеграция с видеоплатформами	Нет	Нет	Да
Доступ ко всему мировому репертуару	Нет	Да	Да
Интеграция с Телеграм-ботом	Нет	Нет	Да
Географические и лицензионные ограничения	Нет	Нет	Нет
Начало рекомендаций с выбранной песни	Нет	Нет	Да
Возможность сохранять музыку в свои плейлисты	Да	Да	Нет

Анализ публикаций

Публикация	Основные идеи	Ограничения	Выводы
"Deep Content-based Music Recommendation"	Использование сверточных нейронных сетей (CNN) для анализа спектрограмм музыкальных треков. Высокая точность предсказаний на основе содержания треков.	Не учитывает социальные и контекстные аспекты музыкального восприятия, такие как популярность треков или сезонные предпочтения слушателей.	Комбинирование содержательного анализа и других подходов улучшит точность рекомендаций.
"Collaborative Filtering for Music Recommendation"	Применение методов коллаборативной фильтрации для выявления скрытых паттернов в музыкальных предпочтениях на основе пользовательских оценок.	Проблемы масштабирования, холодного старта и разреженности данных.	Гибридные системы, объединяющие коллаборативную фильтрацию с контенториентированными подходами, улучшают качество рекомендаций.

Функциональные требования

- Минимальная точность 0,66 при предсказании жанра
- Разнообразие моделей (машинное обучение и глубокое обучение)
- Продвинутая инженерия признаков
- Тщательная проверка и тестирование
- Оптимизация гиперпараметров
- Использование различных метрик оценки
- Интеграция с Telegram, Spotify и YouTube
- Разработка API

Стек технологий

- Язык программирования Python: (pandas, matplotlib, seaborn, sklearn, xgboost, catboost, tensorflow)
- **Веб-фреймворк**: Flask
- **Обработка данных**: Pandas
- Сериализация моделей: Joblib
- Тестирование и взаимодействие с API: Postman, cURL
- Разработка и тестирование кода: Jupyter Notebook, Visual Studio Code

Сбор данных

Парсинг данных со Spotify

Выбранные жанры: Hip-hop, K-pop, Metal, Indian, Classical, Blues

Построение системы музыкальных

машинного обучения

рекомендаций при помощи методов

- Использование Python и Spotify API для сбора данных
- Функция collect_tracks для поиска треков по жанрам
- Лимит: 5000 треков для каждого жанра
- Извлечение подробной информации и аудио-характеристик треков
- Объединение данных в единый датасет

		Unnamed: 0	track_id	genre_track	duration_ms	explicit	danceability	energy	key
13220	13219	13236	JrMHTP3FfqksqnIRg0FM	classical	246840.0	False	0.623	0.861	0.0

10

Препроцессинг

Применение StandardScaler:

Стандартизация данных для улучшения работы моделей

машинного обучения

Построение системы музыкальных

рекомендаций при помощи методов

Среднее значение = 0, стандартное отклонение = 1

Попытка логарифмирования:

- Снижение асимметрии распределения признаков
- В данном случае не привело к улучшению

Удаление выбросов:

- Использование метода межквартильного размаха (IQR)
- Удаление значений, выходящих за пределы 1.5 межквартильного диапазона
- Повышение качества данных для анализа

Построение системы музыкальных рекомендаций при помощи методов машинного обучения

Шкляр Михаил

11

Анализ данных

Heatmap:

- Положительная корреляция: громкость и энергия
- Отрицательная корреляция: акустичность и энергия
- Танцевальность и валентность

Violin Plot:

• Высокая танцевальность: К-рор, Нір-Нор

Distribution of danceability Across Different Genres

- Низкая танцевальность: Classical
- Средняя танцевальность: Blues, Metal, Indian

Машинное обучение. XGBoost + feature importance

Настройка и оценка модели:

- Гиперпараметры: n_estimators, learning rate, max depth
- Использование GridSearchCV для выбора лучших параметров
- Точность модели на тестовой выборке: 68%

Важность признаков:

- Duration_ms (длительность трека)
- Danceability (танцевальность)
- Наименьшее влияние: time_signature (музыкальный размер) и explicit (наличие нецензурной лексики)

Машинное обучение. CatBoost + confusion matrix

CatBoost:

- Градиентный бустинг на деревьях решений
- Эффективно работает с категориальными данными
- GridSearchCV для настройки параметров
- Точность на тестовой выборке: 70%

Матрица ошибок:

- Хорошие результаты для жанров k-рор
 (1) и blues (6)
- Сложности с классификацией жанров metal (3) и classical (5)

Построение нейронной сети

Построение системы музыкальных

рекомендаций при помощи методов

машинного обучения

- Использованы CNN, MLP, RNN, LSTM
- Лучшая производительность у MLP
- Архитектура с Keras:
 - Плотный слой на 512 нейронов
 - Dropout и BatchNormalization
 - Завершающий слой с функцией softmax
- Оптимизация и обучение:
 - Оптимизатор Adam
 - Функция потерь categorical crossentropy
 - Метрика accuracy
 - Ранняя остановка и ModelCheckpoint
- Точность на тестовом наборе: 62.7%
- Архитектура MLP и предотвращение переобучения

Выводы по обученным моделям

- Использовано несколько методов машинного обучения для классификации музыкальных жанров.
- Методы: CatBoost, XGBoost, LightGBM,
 SVM, нейронные сети.
- Проведена предварительная обработка данных: стандартизация, удаление нерелевантных признаков и выбросов.
- Лучшие результаты показали модели градиентного бустинга (LightGBM и CatBoost) с точностью 69.03%.
- CatBoost показал высокую способность к выявлению нелинейных зависимостей.
- График сравнения моделей подтверждает превосходство бустинговых моделей над SVM и нейронной сетью

Построение системы музыкальных

рекомендаций при помощи методов

машинного обучения

16

Разработка Телеграм-бота

Основные функции бота:

- Получение ID трека от пользователя.
- Извлечение информации о треке через Spotify API.
- Предсказание жанра.
- Поиск видео на YouTube.
- Рекомендация похожего трека.

Разработка веб-приложения

Web-приложение

- Система музыкальных рекомендаций с использованием методов машинного и глубокого обучения.
- Анализ треков и предоставление рекомендаций на основе музыкальных предпочтений.
- Интерактивный интерфейс для ввода названий треков или ссылок на Spotify.
- Использование современных технологий веб-разработки и интеграция с внешними музыкальными сервисами через API.

Архитектура приложения

- Пользовательский интерфейс: HTML, CSS, jQuery.
- Серверная логика: Flask.
- Интеграция с API: Spotify API, YouTube API, librosa.
- Модель машинного обучения: CatBoost.
- Выбор рекомендаций: на основе предсказанного жанра.
- Интеграция с YouTube и Spotify: получение ссылок на клипы и аудиозаписи.

Построение системы музыкальных рекомендаций при помощи методов машинного обучения

Demonstration tg

Построение системы музыкальных рекомендаций при помощи методов машинного обучения

Шкляр Михаил

Demonstration web-app

Будущие улучшения

Расширение поддержки жанров: Добавление большего количества жанров для более разнообразных рекомендаций.

Улучшение обучения моделей: Использование более крупного и разнообразного набора данных для повышения точности моделей.

Реальные рекомендации: Внедрение обработки данных в реальном времени для актуальных рекомендаций.

Персонализация: Учет истории прослушиваний и предпочтений пользователей для более точных рекомендаций.

Интеграция с другими платформами: Расширение интеграции на другие музыкальные платформы, такие как Apple Music и Amazon Music.

Расширенные функции анализа аудио: Использование продвинутых методов анализа аудио для более точного извлечения характеристик.

Обратная связь от пользователей: Внедрение механизма обратной связи для улучшения алгоритма рекомендаций на основе оценок пользователей.

Список источников

- 1. Tzanetakis, George, et al.: "Music Genre Classification with Machine Learning." Journal of Machine Learning Research http://jmlr.org/papers/volume13/tzanetakis12a/tzanetakis12a.pdf (Дата обращения: 25.08.2023)
- 2. Choi, Keunwoo, et al.: "Automatic Tagging using Deep Convolutional Neural Networks." ISMIR https://ismir.net/archives/2016/Choi_Automatic_Tagging_using.pdf (Дата обращения: 01.09.2023)
- 3. Spotify Technology S.A.: "Developing Spotify's Music Recommendation Engine." https://www.spotify.com/us/about-us/contact/ (Дата обращения: 09.09.2023)
- 4. Baccigalupo, Claudio, and Juan Manuel Pacheco: "Music Recommendation: A Multi-level Perceptual Approach." Artificial Intelligence Review https://link.springer.com/article/10.1007/s10462-008-9101-4 (Дата обращения: 21.10.2023)
- 5. Statista: "Global Music Streaming Market Trends and Forecasts (2024–2029)." https://www.statista.com/statistics/652140/global-music-streaming-revenue/ (Дата обращения: 04.01.2024)
- 6. Dieleman, Sander, et al.: "End-to-end Learning for Music Audio." IEEE International Conference on Acoustics, Speech, and Signal Processing https://ieeexplore.ieee.org/document/7952134 (Дата обращения: 12.02.2024)
- 7. McFee, Brian, et al.: "LibROSA: A Python Package for Music and Audio Analysis." Journal of Open Source Software https://joss.theoj.org/papers/10.21105/joss.00534 (Дата обращения: 29.03.2024)
- 8. Music Machinery: "How Music Recommendation Works Challenges and Solutions." https://musicmachinery.com (Дата обращения: 15.04.2024)
- 9. Pedregosa, Fabian, et al.: "Scikit-learn: Machine Learning in Python." Journal of Machine Learning Research http://jmlr.org/papers/v12/pedregosa11a.html (Дата обращения: 05.05.2024)
- 10. Ronacher, Armin: "Flask Documentation." https://flask.palletsprojects.com/en/2.0.x/ (Дата обращения: 22.05.2024)
- 11. Van den Oord, A., Dieleman, S., & Schrauwen, B.: "Deep content-based music recommendation." Advances in Neural Information Processing Systems, 26 https://proceedings.neurips.cc/paper/2013/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf (Дата обращения: 27.05.2024)
- 12. Chen, S., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://www.semanticscholar.org/reader/26bc9195c6343e4d7f434dd65b4ad67efe2be27a (Дата обращения: 01.06.2024)

Спасибо за внимание!

Построение системы музыкальных

рекомендаций при помощи методов

машинного обучения

Шкляр Михаил Игоревич

Построение системы музыкальных рекомендаций при помощи методов машинного обучения mishklyar@edu.hse.ru