Unit 1

Sets

Albert Sung

The Barber Paradox

☐ The barber is a man in town who shaves those and only those men who do not shave themselves.

Q: Who shaves the barber?

The Barber Paradox

□ (1-min video) https://www.youtube.com/watch?v=qQs2ZHV_WBk

The Halting Problem

```
i = 1
while i != 10:
    i += 2
print('Hello world!')
```

Can you write a program to check whether any given program will halt or not?

Outline of Unit 1

- □ 1.1 Basic Concepts
- 1.2 Proofs Involving Sets
- 1.3 Functions
- 1.4 Russell's Paradox
- □ 1.5 The Halting Problem

Unit 1.1

Basic Concepts

<u>Sets</u>

- A set is a collection of objects.
- □ *A* is a subset of *B*, written as $A \subseteq B$, if every member of *A* is also a member of *B*.
 - It is a proper subset of B if B contains some elements that are not in A.
 - i.e., *A* is not the same as *B*.
- *B* is then said to be a superset of *A*.

- □ The cardinality of a set A is defined as the number of elements in the set.
- \square It is denoted by |A|.
 - If |*A*| is finite, *A* is called a finite set.
 - Otherwise, A is called an infinite set.

Some Common Sets in Math

Set	Symbols
Natural Numbers*	$\mathbb{N} = \{1, 2, 3, \dots\}$
Whole Numbers	$\mathbb{N} \cup \{0\} \text{ or } \mathbb{Z}_{\geq 0}$
Integers	$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
Binary Numbers	$\mathbb{B} = \{0, 1\}$
Rational Numbers	\mathbb{Q}
Real Numbers	\mathbb{R}
Complex Numbers	\mathbb{C}

^{*}In some convention, 0 is included in the set of natural numbers.

Relationship between Sets

- □ A universal set *U* is a set containing everything that we are considering.
- Venn diagram
 - *U* is represented by a rectangular box.
 - Subsets of *U* (e. g. *A* and *B*) are represented by circles (more precisely, regions inside closed curves).
- *A* and *B* are disjoint if they have no elements in common.

B is a subset of *A*.

A and B are disjoint.

Fundamental Operations

Union: $A \cup B$

Complement: A^c or \bar{A}

Intersection: $A \cap B$

Difference: $B \setminus A$

Inclusion-Exclusion Principle

 \square For finite sets *A* and *B*,

$$|A \cup B| = |A| + |B| - |A \cap B|$$

When adding |A| and |B|, $A \cap B$ has been counted twice. That's why we need to subtract it.

Classwork

Consider the numbers 1, 2, ..., 100. How many of them are divisible by 2 or by 3?

Solution:	

Cartesian Product

□ The Cartesian product $A \times B$ of the sets A and B is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

$$A \times B \triangleq \{(a,b) | a \in A \land b \in B\}.$$

Example:

Ordered pair:

• The order is important: $(a, b) \neq (b, a)$

What is $|A \times B|$?

Cartesian Product

- □ The Cartesian product can be generalized to more than two sets, e.g., $A \times B \times C$.
- ☐ If the same set is involved, we write

$$\underbrace{A \times A \times \cdots \times A}_{n} = A^{n}$$

 \square For example, the x-y plane is \mathbb{R}^2 .

Power Set

 \square Given a set A, the set of all its subsets, denoted by $\mathcal{P}(A)$, is called the power set of A.

■ Example:

- Suppose $A = \{1, 2, 3\}$.
- List all subsets of *A*:

$$\emptyset$$
, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}.

Hence,

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Cardinality of Power Set

- \square Suppose |A| = n.
- \square What is $|\mathcal{P}(A)|$?

Partition

- \square A collection of non-empty sets $\{A_1, A_2, \dots, A_n\}$ is a partition of a set A iff
- i. $A = A_1 \cup A_2 \cup \cdots \cup A_n$, and
- ii. $A_1, A_2, ..., A_n$ are mutually disjoint, i.e., $A_i \cap A_i = \emptyset$ for all i, j = 1, 2, ..., n and $i \neq j$.

Note: Partition itself is a set.

Bell Numbers

- \square Consider the set $S_n = \{1, 2, ..., n\}$.
- The number of different ways to partition S_n is called the Bell number, denoted by B_n .
 - \circ S_1 : {{1}} is the only partition, so $B_1 = 1$.
 - \circ S_2 : {{1}, {2}} and {{1, 2}} are the partitions, so $B_2 = 2$.
 - S_3 : {{1}, {2}, {3}}, {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}}, {{1, 2}}, and {{1, 2, 3}} are the partitions, so $B_3 = 5$.
- \square How about S_0 ?
 - \circ S_0 is the empty set \emptyset . Its only partition is \emptyset , *not* $\{\emptyset\}$.
 - \circ Hence, $B_0 = 1$.

Unit 1.2

Proofs Involving Sets

Subset Relationship

- ☐ To prove a subset relationship, the element argument is usually used.
- \square To prove $A \subseteq B$,
 - 1) Suppose *x* is an arbitrarily chosen element of *A*.
 - 2) Show that x is also an element of B.
 - 3) Therefore, $A \subseteq B$.

Example

 \square Prove that $A \subseteq B$, where

$$A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z}\}$$

 $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}.$

Z denotes the set of integers.

Proof:

 Let x be an element of A, so there is an integer r such that

$$x = 6r + 12 = 3(2r + 4)$$
.

- Since 2r + 4 is an integer, by definition of B, x is an element of B.
- Therefore, $A \subseteq B$.

Q.E.D.

Example

 \square Prove $A \cap B \subseteq A$.

- □ Proof:
 - \bigcirc Let x be an arbitrary element in $A \cap B$.
 - \bigcirc By definition of intersection, $x \in A$ and $x \in B$.
 - \bigcirc Therefore, $x \in A$ (by simplification rule in propositional logic).

Q.E.D.

Set Equality

- □ Two sets are the same (or equal) if and only if
 - they contain the same elements, or equivalently,
 - each is a subset of the other.

$$A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A.$$

☐ Exercise:

You need to prove both directions: (i) $A \subseteq B$ (ii) $B \subseteq A$

Suppose

$$A = \{m \in \mathbf{Z} \mid m = 2a \text{ for some integer } a\}$$

 $B = \{n \in \mathbf{Z} \mid n = 2b - 2 \text{ for some integer } b\}$

Are they equal?

Example: De Morgan's Law for Sets

 \square Prove that $(A \cup B)^c = A^c \cap B^c$.

Idea: The proof should consists of two parts:

- 1) $(A \cup B)^c \subseteq A^c \cap B^c$
 - Let x be an arbitrary element in $(A \cup B)^c$.
 - Show that $x \in A^c \cap B^c$.
- 2) $A^c \cap B^c \subseteq (A \cup B)^c$
 - Let x be an arbitrary element in $A^c \cap B^c$.
 - Show that $x \in (A \cup B)^c$.

Example: (Part 1)

1) Prove $(A \cup B)^c \subseteq A^c \cap B^c$.

 \square Let x be an arbitrary element in $(A \cup B)^c$.

Classwork: (Part 2)

- 2) Prove $A^c \cap B^c \subseteq (A \cup B)^c$.
- \square Let x be an arbitrary element in $A^c \cap B^c$.

DIY

Unit 1.3

Functions

Functions

- □ A function f from X to Y, denoted by $f: X \rightarrow Y$, (or f maps X to Y) is an assignment of each element of X to exactly one element of Y.
 - *X* and *Y* are nonempty sets.

Example

- □ Consider the Grade Assignment Function *f* which maps a set of students to a set of grades.
 - of assigns each student exactly one grade.

No student is assigned more than one grade.

No student has no grade assigned.

Arrow Diagrams

- □ A function $f: X \to Y$ can be represented by an arrow diagram.
- □ An arrow is drawn from each element in X to its corresponding unique element in Y under f.
 - Every element in X
 points to a unique
 element in Y.
 - No element of X has two arrows coming out of it.

Are They Functions?

Terminologies

Consider a function $f: X \to Y$.

- *X* is called the domain of *f* while *Y* is called the co-domain of *f*.
- □ Given $x \in X$ and $f(x) = y \in Y$, y is called the image of x under f.
- \Box The range of f is the set of images of all elements in X.
 - \bigcirc Note: range \subseteq co-domain.
- □ Given $y \in Y$, the inverse image of y is the set of all elements $x \in X$ such that f(x) = y.

Classwork

a) What are the domain, co-domain and range of f?

- b) What is the image of a under f?
- c) What is the inverse image of 2 under f?
- d) What is the inverse image of 3 under f?

Function as Subset of Cartesian Product

□ A function $f: X \to Y$ is a subset of the Cartesian product between X and Y.

$$\Box f = \{(a, 2), (b, 4), (c, 2)\}$$

Unit 1.4

Russell's Paradox

Naïve Set Theory

- ☐ In naïve set theory, a set is simply a *collection of objects*.
- ☐ Given any *property*, there is a set which contains all objects that have the property.
 - For example, students enrolled in EE2302 this semester form a set.
 - The set is empty if no object has the property.
- Russell found that a paradox arises!

Bertrand Russell (1872-1970), a British philosopher, logician, and writer.

<u>Can *X*</u> ∈ *X*?

■ Russell's paradox is based on this construction:

$$S = \{X \mid X \notin X\}$$

- Can a set be a member of itself?
- \circ Or equivalently, can $X \in X$?

Suppose I create a catalog of all books in my office.

This is the catalog.

Sets

The Catalog of All Catalogs that List Themselves

The Catalog of All Catalogs that Doesn't List Themselves

Catalogs

Doesn't List

Themselves

that

Russell's Paradox

■ Let *S* be the set of all sets that are not members of themselves:

$$S = \{X \mid X \notin X\}.$$
 Note: X is a set.

- Q: Is S an element of itself?
 - \circ i.e., is $S \in S$?
- □ A: Neither yes nor no, because either way leads to a contradiction:
 - Suppose $S \in S$. By the defining property of $S, S \notin S$.
 - Suppose $S \notin S$. By the defining property of $S, S \in S$.

Remarks

- ☐ The barber's paradox is a popular version of Russell's paradox.
 - Russell uses it to explain the paradox to layman.
- To resolve Russell's paradox, a set has to be properly defined.
- Russell's paradox facilitates the development of axiomatic set theory.
 - There are different ways to do it... (details omitted)

Unit 1.5

Halting Problem

The Halting Problem

(8 min): https://www.youtube.com/watch?v=92WHN-pAFCs

The Halting Theorem

Theorem: There is no computer algorithm that

- accepts any algorithm M and data set D as input, and then
- ii. correctly outputs "stuck" or "not stuck" to indicate whether or not *M* terminates in a finite number of steps when *M* is run with data set *D*.

Proof by Contradiction

■ Assume there is a halting machine:

☐ Try to show that the existence of *H* leads to a contradiction.

Contradiction Arises...

□ Construct machine *X* as follows:

Recommended Reading

□ Chapter 6 and Section 7.1, S. S. Epp, *Discrete Mathematics with Applications*, 4th ed., Brooks Cole,
2010.

□ Sections 2.1 and 2.2, K. H. Rosen, *Discrete Mathematics and its Applications*, 7th ed., McGraw-Hill

Education, 2011.