Part II Sets, spaces and matrices

Wenxun Xing

Department of Mathematical Sciences Tsinghua University Tel. 62787945 Office hour: 4:00-5:00 pm, Thursday Email: wxing@tsinghua.edu.cn

Sept., 2019

Preliminaries

Content

- Vectors, linear spaces and matrices
- Semi-definite positive matrices
- Convex sets and cones
- Dual sets
- Linear Systems

Sets, spaces and matrices

- Real numbers: \mathbb{R} , \mathbb{R}_+ , \mathbb{R}_{++}
- Euclidean space: \mathbb{R}^n
- First orthant: \mathbb{R}^n_+
- *n*-dimensional (column) vector:

$$x = (x_1, x_2, \dots, x_n)^T$$

- Matrices space: $\mathbb{R}^{m \times n}$
- Matrix: $M \in \mathbb{R}^{m \times n}$, ith row $M_{i \bullet}$, jth column $M_{\bullet j}$, ijth entry M_{ij}
- Symmetric square matrices space (n(n+1)/2-dimensional space):

$$\mathcal{S}^n = \{ M \in \mathbb{R}^{n \times n} \mid M = M^T \}.$$

Vectors, spaces and matrices

Given $M \in \mathbb{R}^{m \times n}$, $N \in \mathbb{R}^{n \times m}$, $S \in \mathbb{R}^{n \times n}$

- Determinant: det(S)
- Trace: $\operatorname{tr}(S) = \sum_{i=1}^{n} s_{ii}$

$$\operatorname{tr}(MN) = \operatorname{tr}(NM)$$

- Null space: $\mathcal{N}(M) = \{x \in \mathbb{R}^n | Mx = 0\}.$
- Range space: $\mathcal{R}(M) = \{ y \in \mathbb{R}^m | y = Mx \text{ for some } x \in \mathbb{R}^n \}.$
- Positive semidefinite matrix:

$$S \succeq 0 \iff z^T S z \ge 0, \ \forall \ z \in \mathbb{R}^n$$

Positive definite matrix:

$$S \succ 0 \iff z^T S z > 0, \ \forall \ z \in \mathbb{R}^n, \ z \neq 0$$

Given $x^1, \dots, x^m \in \mathbb{R}^n$

Linear combination:

$$\sum_{i=1}^{m} \lambda_i x^i,$$

where $\lambda_i \in \mathbb{R}$, $i = 1, \ldots, m$.

Linearly independent

$$\sum_{i=1}^{m} \lambda_i x^i = 0 \Rightarrow \lambda_1 = \dots = \lambda_m = 0$$

Affine combination: a linear combination with

$$\sum_{i=1}^{m} \lambda_i = 1$$

• Affinely independent: if $x^2 - x^1, \dots, x^m - x^1$ are linearly independent.

Convex combination: a linear combination with

$$\sum_{i=1}^m \lambda_i = 1$$
 and $\lambda_i \geq 0, i = 1, \ldots, m$

Hyperplane:

$$\mathcal{X} = \{ x \in \mathbb{R}^n | a^T x = \sum_{i=1}^n a_i x_i = b \}$$

- Affine space: affine combination of any two points in the space is still in the space. (An intersection of finitely many hyperplanes.)
- Linear subspace: an affine space containing the origin.

We can always transform an affine space $\mathcal{Y} \subset \mathbb{R}^n$ into a linear subspace $\mathcal{X} \subset \mathbb{R}^n$ by choosing $x^0 \in \mathcal{Y}$ such that

$$\mathcal{X} = \{x - x^0 | x \in \mathcal{Y}\}$$

Half space:

$$\mathcal{X} = \{ x \in \mathbb{R}^n | a^T x = \sum_{i=1}^n a_i x_i \le b \}$$

- Polyhedron: an intersection of finitely many half spaces.
- Dimension of a linear subspace: the maximum number of linearly independent vectors in the subspace.
- Dimension of an affine space: the dimension of the transformed linear subspace.
- Dimension of a polyhedron: the dimension of the smallest affine space containing it.

Linear equations

$$a^{1} \bullet x = b_{1}$$

$$a^{2} \bullet x = b_{2}$$

$$\dots \dots \dots \dots \Rightarrow Ax = b,$$

$$a^{m} \bullet x = b_{m}$$

where a^1, \dots, a^m and x are all in \mathbb{R}^n .

$$A_{1} \bullet X = b_{1}$$

$$A_{2} \bullet X = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$A_{m} \bullet X = b_{m}$$

where A_1, \dots, A_m and X are all in S^n .

• For convenience, $A^*y = \sum_{i=1}^m y_i A_i$.

Properties of Trace

- $\operatorname{tr}(A) = \operatorname{tr}(A^T)$, where $A \in \mathcal{S}^n$.
- $tr(AB^T) = tr(B^TA)$, where A and B are the same size.
- $\operatorname{tr}(A(\sum_{i=1}^k B_i)^T) = \sum_{i=1}^k \operatorname{tr}(AB_i^T)$, where A and B_i are the same size.
- $\operatorname{tr}(kAB^T) = k \cdot \operatorname{tr}(AB^T)$, where $k \in \mathbb{R}$, A and B are the same size.
- $\operatorname{tr}(A^T A) \geq 0$ and $\operatorname{tr}(A^T A) = 0$ if and only if A = 0.
- $\operatorname{tr}(Dxx^T) = x^TDx$, where $D \in \mathcal{S}^n$ and $x \in \mathbb{R}^n$.

An inner product: $X \bullet Y = traceXY^T$, where $X, Y \in \mathcal{M}(m, n)$.

Let $X, Y_1, Y_2 \in \mathcal{M}(m, n), k_1, k_2 \in \mathbb{R}$.

- Linearity. $X \bullet (k_1Y_1 + k_2Y_2) = k_1X \bullet Y_1 + k_2X \bullet Y_2$.
- Symmetry. $X \bullet Y = Y \bullet X$.
- Nonnegativity. $X \bullet X \geq 0$ and $X \bullet X = 0$ if and only if X = 0.

An Example: QCQP

Quadratically constrained quadratic programming problem

min
$$\frac{1}{2}x^TQ_0x + q_0^Tx + c_0$$

s.t. $\frac{1}{2}x^TQ_ix + q_i^Tx + c_i \le 0, i = 1, 2, \dots, m$
 $x \in \mathbb{R}^n$

where $Q_i \in \mathcal{S}^n$, $q_i \in \mathbb{R}^n$, $c_i \in \mathbb{R}$, i = 0, 1, 2, ..., m are given coefficients, x is a decision variable.

$$\min \quad \frac{1}{2}Q_0 \bullet X + q_0^T x + c_0$$

$$s.t. \quad \frac{1}{2}Q_i \bullet X + q_i^T x + c_i \le 0, i = 1, 2, \dots, m$$

$$X = xx^T$$

$$x \in \mathbb{R}^n$$

An Example: SDP Relaxation

Formulation 1

min
$$\frac{1}{2}Q_0 \bullet X + q_0^T x + c_0$$

s.t. $\frac{1}{2}Q_i \bullet X + q_i^T x + c_i \le 0, i = 1, 2, \dots, m$ 松弛! $x \in \mathbb{R}^n, X \in \mathcal{S}_+^n$.

Formulation 2

$$\min \quad \frac{\frac{1}{2}Q_0 \bullet X + q_0^T x + c_0}{s.t. \quad \frac{1}{2}Q_i \bullet X + q_i^T x + c_i \le 0, i = 1, 2, \dots, m}$$
$$\begin{pmatrix} 1 & x^T \\ x & X \end{pmatrix} \in \mathcal{S}_+^{n+1}.$$

Inner Products and Norms

Inner products:

$$\begin{split} x \bullet y &= x^T y = \sum_i x_i y_i \\ X \bullet Y &= \operatorname{tr}(X^T Y) = \sum_{i,j} X_{ij} Y_{ij} \end{split}$$

- Norms:
 - Euclidean norm: $||x||_2 = \sqrt{x \bullet x}$
 - p-norm: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$.
 - Infinity-norm: $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$
 - Frobenius norm:

$$||X||_F = \sqrt{X \bullet X} = \sqrt{\operatorname{tr}(X^T X)}$$

• Note that: $x^T A x = A \bullet x x^T$

Properties of semi-definite positive matrices

Theorem

(i) Given $A \in \mathcal{S}^n$, there exists an orthogonal matrix Q, i.e., $Q^TQ = QQ^T = I$, such that

$$Q^T A Q = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n),$$

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i, \ \operatorname{det}(A) = \lambda_1 \lambda_2 \cdots \lambda_n,$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are eigenvalues of A.

(ii)
$$A \in \mathcal{S}^n_+$$
 if and only if $\lambda_i \geq 0, i = 1, 2, \dots, n$.

(iii) If
$$A = (a_{ij}) \in \mathcal{S}^n_+$$
, then $a_{ii} \ge 0, i = 1, 2, ..., n$.

Theorem: (Schur complementary theorem)

证明见讲义P32

$$A \succ 0, X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}, S = C - B^T A^{-1} B$$

Then

$$X \succeq (\succ)0 \Leftrightarrow S \succeq (\succ)0$$

Examples: Nonlinear to linear representable equations

$$\sqrt{x_1^2 + x_2^2 + \dots + x_{n-1}^2} \leq x_n \Leftrightarrow \left(\begin{array}{cc} x_n & x_{1:n-1}^T \\ x_{1:n-1} & x_n I_{n-1} \end{array} \right) \in \mathcal{S}_+^n.$$
 LMI
$$X - X^T (I+X)^{-1} X \in \mathcal{S}_+^n, X \in \mathcal{S}_+^n \Leftrightarrow \left(\begin{array}{cc} I+X & X \\ X^T & X \end{array} \right) \in \mathcal{S}_+^{2n}.$$

4 D F 4 DF F 4 E F 4 E F 9 9 9 9

Theorem

(Congruent diagonalization) Given $A \in \mathcal{S}_{++}^n$ and $B \in \mathcal{S}^n$, there exists an insertable matrix P such that P^TAP and P^TBP are diagonal.

Theorem

(Cholesky decomposition) Suppose $A \in \mathcal{S}^n_{++}$, we have a lower triangular matrix with positive diagonal elements L such that $A = LL^T$.

Corollary

(i) Denote the eigenvalues of $A \in \mathcal{S}^n$ as $\lambda_1, \lambda_2, \dots, \lambda_n$. We have $\operatorname{tr}(A^T A) = \sum_{i=1}^n \lambda_i^2$. When $x \neq 0$,

$$\min_{1 \le i \le n} \{\lambda_i\} \le \frac{x^T A x}{x^T x} \le \max_{1 \le i \le n} \{\lambda_i\}.$$

(ii) Given $A=(a_{ij}), B=(b_{ij})\in \mathcal{S}^n$, we have $\sum_{i=1}^k a_{ii} \geq \sum_{i=1}^k b_{ii}$ for any $1\leq k\leq n$ when $A-B\in \mathcal{S}^n_+$.

Corollary

Given $A \in \mathcal{M}(m,n)$ and $B \in \mathcal{M}(n,p)$, we have(i) $||A||_2 \le ||A||_F$; (ii) for any $x \in \mathbb{R}^n$, and $||Ax||_2 \le ||A||_2 ||x||_2$; (iii) $||AB||_F \le ||A||_2 ||B||_F$.

Theorem

Suppose $A \in \mathcal{S}^n_+$ and $\operatorname{rank}(A) = r$. There exist $p^i \in \mathbb{R}^n$, $i = 1, 2, \dots, r$, such that $A = \sum_{i=1}^r p^i(p^i)^T$.

Theorem

For a given $X \in \mathcal{S}^n_+$ of rank r and any $G \in \mathcal{S}^n$, $G \bullet X \geq 0$ if and only if there exist $p^i \in \mathbb{R}^n$, $i = 1, 2, \cdots, r$ such that

$$X = \sum_{i=1}^{r} p^{i}(p^{i})^{T}$$
 and $(p^{i})^{T}Gp^{i} \geq 0$.

In case of $G \bullet X = 0$, there exist $p^i \in \mathbb{R}^n$, $i = 1, 2, \dots, r$ such that

$$X = \sum_{i=1}^{r} p^{i}(p^{i})^{T}$$
 and $(p^{i})^{T}Gp^{i} = 0$.

THU

Proof of the decomposition theorem

 $' \Leftarrow '$

$$G \bullet X = \operatorname{tr}(GX^T) = \sum_{i=1}^r G \bullet (p^i(p^i)^T) = \sum_{i=1}^r (p^i)^T G p^i \ge 0,$$

 $' \Rightarrow '$

- Input: $X \in \mathcal{S}^n_+$ and G.
- Output: a vector y such that $0 \le y^T G y \le G \bullet X$, $X y y^T \in \mathcal{S}^n_+$ and the rank of $X y y^T$ is r 1.
- Step 0 Calculate p^1, p^2, \dots, p^r such that $X = \sum_{i=1}^r p^i (p^i)^T$.
- Step 1 If $[(p^1)^TGp^1][(p^i)^TGp^i] \ge 0$ for all $i=2,3,\cdots,r$, output $y=p^1$. Otherwise select one j such that $[(p^1)^TGp^1][(p^j)^TGp^j] < 0$.
- Step 2 Calculate the α such that $(p^1+\alpha p^j)^TG(p^1+\alpha p^j)=0$. out put $y=(p^1+\alpha p^j)/\sqrt{1+\alpha^2}$.

Open, Closed, Interior and Boundary Sets

- Neighborhood: $N(x^0; \epsilon) = \{x \in \mathbb{R}^n | ||x x^0|| < \epsilon\}.$
- Open: $\mathcal{X} \subset \mathbb{R}^n$ is open if for any $x \in \mathcal{X}$, there exists $\epsilon > 0$ such that $N(x;\epsilon) \subset \mathcal{X}$.
- Closed: $\mathcal{X} \subset \mathbb{R}^n$ is closed, if $\mathbb{R}^n \setminus \mathcal{X} = \{x \in \mathbb{R}^n | x \notin \mathcal{X}\}$ is open.
- Closed: An equivalent statement: any accumulation point of $\mathcal X$ is in $\mathcal X$.
- Closure of a set $\mathcal{X} \subset \mathbb{R}^n$ is the smallest closed set containing \mathcal{X} and is denoted as $\operatorname{cl}(\mathcal{X})$.

Open, Closed, Interior and Boundary Sets

• Interior: the interior of a given set $\mathcal{X} \subset \mathbb{R}^n$ is

$$\operatorname{int}(\mathcal{X}) = \{x \in \mathcal{X} | \exists \ \epsilon_x > 0 \text{ such that } N(x; \epsilon_x) \subset \mathcal{X} \}$$

• Boundary of a set $\mathcal{X} \subset \mathbb{R}^n$:

$$bdry(\mathcal{X}) = cl(\mathcal{X}) \setminus int(\mathcal{X}) = \{x \in cl(\mathcal{X}) | x \notin int(\mathcal{X})\}$$

• Bounded: a set $\mathcal{X} \subset \mathbb{R}^n$ is bounded if there exists an r > 0 such that

$$||x|| < r, \forall x \in \mathcal{X}$$

An example: open, closed, boundary

(i)
$$\mathcal{S}_{++}^n$$
: open, (ii) \mathcal{S}_{+}^n : closed, (iii) $\operatorname{int}(\mathcal{S}_{+}^n) = \mathcal{S}_{++}^n$, (iv) $\operatorname{cl}(\mathcal{S}_{+}^n) = \operatorname{cl}(\mathcal{S}_{++}^n) = \mathcal{S}_{+}^n$, (v) $\operatorname{bdry}(\mathcal{S}_{+}^n) = \{A \in \mathcal{S}_{+}^n \mid \exists x \in \mathbb{R}^n \text{ and } x \neq 0 \text{ such that } x^T A x = 0\}.$

Proof. (i) Let $\lambda_{max}(A)$ and $\lambda_{min}(A)$ be the maximal and minimal eigenvalue of A. For any $A \in \mathcal{S}^n_{++}$, we have $\lambda_{min}(A) > 0$. Let $\epsilon = \frac{\lambda_{min}(A)}{2}$. For any $B \in N(A; \epsilon) = \{B \in \mathcal{S}^n \mid \|B - A\| < \epsilon\}$, we know the absolute eigenvalue of B - A is less than ϵ . For any $x \neq 0$,

$$x^{T}Bx = x^{T}Ax + x^{T}(B - A)x > (\lambda_{min}(A) - \epsilon)x^{T}x = \frac{\lambda_{min}}{2}x^{T}x > 0,$$

so $B \succ 0$, and then \mathcal{S}^n_{++} is open.

(ii) We prove $\mathcal{S}^n\setminus\mathcal{S}^n_+$ is open. $\forall A\in\mathcal{S}^n\setminus\mathcal{S}^n_+$, we get $\lambda_{min}(A)<0$. Let $\epsilon=\frac{|\lambda_{min}(A)|}{2}$. With almost the same arguments as the above, we get the result.

By the definition of the accumulation point, for any accumulation point B of \mathcal{S}^n_+ , there exist $\{A_i \mid i=1,2,\dots\} \subseteq \mathcal{S}^n_+$ such that $A_i \to B, i \to +\infty$. Then $x \in \mathbb{R}^n$, $x^T A_i x \geq 0, \forall i \geq 1$, which imply

$$\lim_{i \to +\infty} x^T A_i x = x^T B x \ge 0.$$

Hence $B \in \mathcal{S}^n_+$ and \mathcal{S}^n_+ is closed.

(iii) Obviously, $\operatorname{int}(\mathcal{S}^n_+) \supseteq \mathcal{S}^n_{++}$. For $\forall A \in \operatorname{int}(\mathcal{S}^n_+)$, if A is not positive definite, suppose $A = Q \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) Q^T$, and $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$. We have $\lambda_1 = 0$. Then for any $\epsilon > 0$, let

$$B = Q \operatorname{diag}(-\epsilon/2, \lambda_2, \dots, \lambda_n) Q^T.$$

We have $||B - A|| = \epsilon/2 < \epsilon$ but $B \notin \mathcal{S}^n_+$.

THU Linear Conic Optimization

Convex Sets and Properties

- A set $\mathcal{X} \subset \mathbb{R}^n$ is convex if for any $x^1 \in \mathcal{X}$ and $x^2 \in \mathcal{X}$, we have $\lambda x^1 + (1 \lambda)x^2 \in \mathcal{X}$, for all $0 \le \lambda \le 1$.
- Convex hull: the smallest convex set containing a given set

$$\begin{array}{l} \operatorname{conv}(\mathcal{X}) = \{x \in \mathbb{R}^n | x = \sum_{i=1}^m \lambda_i y^i \text{ for some } m \in \mathbb{N}_+, \\ \lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1, \text{ and } y^i \in \mathcal{X}, i = 1, \dots, m\} \end{array}$$

- Dimension of a convex set: the dimension of the smallest affine space containing it.
- Relative interior of a convex set $\mathcal{X} \subset \mathbb{R}^n$: suppose \mathcal{H} is the smallest affine space containing \mathcal{X} ,

$$\mathrm{ri}(\mathcal{X}) = \{x \in \mathbb{R}^n | \exists \text{ open set } \mathcal{Y} \subseteq \mathbb{R}^n \text{ such that } x \in \mathcal{Y} \cap \mathcal{H} \subset \mathcal{X} \}$$

• Supporting hyperplane $\mathcal{H} = \{x \in \mathbb{R}^n | a^T x = b\}$ of a convex set \mathcal{X} :

$$a^T y \ge b, \forall y \in \mathcal{X} \text{ and } \operatorname{cl}(\mathcal{X}) \cap \mathcal{H} \ne \emptyset.$$

Relative Interior—An Example

$$\mathcal{X} = \{x_1 \in \mathbb{R} | 0 \le x_1 \le 2\}.$$

A linear programming standard reformulation

$$\mathcal{Y} = \{(x_1, x_2) \in \mathbb{R}^2_+ | x_1 + x_2 = 2\}.$$

Relative interior

$$ri(\mathcal{X}) = int(\mathcal{X}) = \{x_1 \in \mathbb{R} | 0 < x_1 < 2\}.$$

$$\operatorname{ri}(\mathcal{Y}) = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 + x_2 = 2, x_1 > 0, x_2 > 0\},\$$

where the small affine space is $\mathcal{H} = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 + x_2 = 2\}$, and the open set is defined as in \mathbb{R}^2 .

Lemma

Suppose $\mathcal{X} \subseteq \mathbb{R}^n$ has an interior point. Then for any hyperplane $\mathcal{H} = \left\{ x \in \mathbb{R}^n \mid a^T x = b \right\}$, there exists an $\bar{x} \in \mathcal{X}$ such that $a^T \bar{x} \neq b$.

Lemma

Suppose $\mathcal{X} \subseteq \mathbb{R}^n$ be nonempty, \mathcal{A} is the minimal affine space containing \mathcal{X} , and $\mathrm{ri}(\mathcal{X}) \neq \emptyset$. For any hyperplane $\mathcal{H} = \left\{x \in \mathbb{R}^n \mid a^Tx = b\right\}$ such that $\dim(\mathcal{H} \cap \mathcal{A}) \leq \dim(\mathcal{A}) - 1$, there exists an $\bar{x} \in \mathcal{X}$ such that $a^T\bar{x} \neq b$.

Lemma

Suppose $\mathcal{X}_1, \mathcal{X}_2$ be convex. Then $\mathcal{X}_1 + \mathcal{X}_2$ and $\mathcal{X}_1 \times \mathcal{X}_2$ are convex. Suppose \mathcal{X}_i be convex for $i=1,2,\cdots$. Then $\bigcap_{i=1}^{\infty} \mathcal{X}_i$ is convex. Suppose \mathcal{X}_i be closed for $i=1,2,\cdots$. Then $\bigcap_{i=1}^{\infty} \mathcal{X}_i$ is closed. Suppose \mathcal{X}_i be open for $i=1,2,\cdots$. Then $\bigcup_{i=1}^{\infty} \mathcal{X}_i$ is open.

Lemma

Suppose $\mathcal{X} \subseteq \mathbb{R}^n$ be nonempty, convex and closed. For any $z \in \mathbb{R}^n$, there exists an unique $\bar{x} \in \mathcal{X}$ such that

$$dist(z, \mathcal{X}) = ||z - \bar{x}|| = min\{||z - x|| \mid x \in \mathcal{X}\},\$$

and

$$(z - \bar{x})^T (x - \bar{x}) \le 0, \ \forall x \in \mathcal{X}.$$

Lemma

Suppose $\mathcal{X} \subseteq \mathbb{R}^n$ be nonempty and convex. For any $z \notin \mathrm{cl}(\mathcal{X})$, there exist $a \neq 0, a \in \mathbb{R}^n, b \in \mathbb{R}$ such that

$$a^T x \ge b > a^T z$$
 for any $x \in \mathcal{X}$.

Theorem

Suppose $\mathcal{X} \subseteq \mathbb{R}^n$ be a nonempty convex set. For any $y \in \text{bdry}(\mathcal{X})$, there exist $a \in \mathbb{R}^n$, $b \in \mathbb{R}$ such that $a^Ty = b$ and $a^Tx \geq b$ for any $x \in \mathcal{X}$.

Theorem

Suppose two nonempty convex sets $\mathcal{X}_1 \cap \mathcal{X}_2 = \emptyset$. There exist $a \in \mathbb{R}^n, b \in \mathbb{R}$ such that the hyperplane $\{x \in \mathbb{R}^n \mid a^Tx = b\}$ separate \mathcal{X}_1 and \mathcal{X}_2 .

Theorem

Two nonempty sets $\mathcal{X}_1 \subseteq \mathbb{R}^n$ and $\mathcal{X}_2 \subseteq \mathbb{R}^n$ is properly separated by a hyperplane if and only if there exist an $a \in \mathbb{R}^n$ such that

- (i) $\inf_{x \in \mathcal{X}_1} a^T x \ge \sup_{x \in \mathcal{X}_2} a^T x$,
- (ii) $\sup_{x \in \mathcal{X}_1} a^T x > \inf_{x \in \mathcal{X}_2} a^T x$.

Lemma

Suppose \mathcal{X} be convex, $r=\dim(\mathcal{X})\geq 1$, and $\{x^1,x^2\ldots,x^{r+1}\}\subseteq \mathcal{X}$ be r+1 linearly independent affine points. For any $\lambda_i>0, i=1,2,\ldots,r+1$ and $\sum_{i=1}^{r+1}\lambda_i=1$, $y=\sum_{i=1}^{r+1}\lambda_ix^i$ is a relatively interior point of \mathcal{X} . Conversely, for any $y\in \mathrm{ri}(\mathcal{X})$, there exists r+1 linearly independent points $\{x^1,x^2\ldots,x^{r+1}\}\subseteq \mathcal{X}$, $\lambda_i>0, i=1,2,\ldots,r+1$ with $\sum_{i=1}^{r+1}\lambda_i=1$, such that $y=\sum_{i=1}^{r+1}\lambda_ix^i$.

Corollary

Suppose $\mathcal{X} \subseteq \mathbb{R}^n$ be a nonempty convex set. Then $ri(\mathcal{X}) \neq \emptyset$.

Lemma

Suppose \mathcal{X} be a nonempty convex set. For $y \in \operatorname{cl}(\mathcal{X})$ and $z \in \operatorname{ri}(\mathcal{X})$, the point $x = \alpha y + (1 - \alpha)z \in \operatorname{ri}(\mathcal{X}), \forall 0 \leq \alpha < 1$.

Theorem

Suppose $\mathcal X$ be nonempty and convex. We have $\operatorname{cl}(\operatorname{ri}(\mathcal X))=\operatorname{cl}(\mathcal X)$ and $\operatorname{ri}(\operatorname{cl}(\mathcal X))=\operatorname{ri}(\mathcal X)$.

Theorem

Suppose $\mathcal{X} \subseteq \mathbb{R}^n$ be nonempty and convex, A be given $m \times n$ matrix. We have $\operatorname{ri}(A\mathcal{X}) = A(\operatorname{ri}(\mathcal{X}))$.

Theorem

Suppose \mathcal{X}_1 and \mathcal{X}_2 be nonempty and convex. We have $\operatorname{ri}(\mathcal{X}_1 \times \mathcal{X}_2) = \operatorname{ri}(\mathcal{X}_1) \times \operatorname{ri}(\mathcal{X}_2)$ and $\operatorname{ri}(\mathcal{X}_1 + \mathcal{X}_2) = \operatorname{ri}(\mathcal{X}_1) + \operatorname{ri}(\mathcal{X}_2)$.

Theorem

Given a nonempty convex set \mathcal{X} , for any $x^0 \notin \mathrm{ri}(\mathcal{X})$, there exists a hyperplane such that $a^Tx \geq b, \forall x \in \mathcal{X}$, $a^Tx^0 = b$ and $a^Tx > b, \forall x \in \mathrm{ri}(\mathcal{X})$.

Theorem

Given two nonempty convex sets \mathcal{X}_1 and \mathcal{X}_2 , they are properly separated if and only if $\operatorname{ri}(\mathcal{X}_1) \cap \operatorname{ri}(\mathcal{X}_2) = \emptyset$.

Theorem

Suppose C and D be polytopes in \mathbb{R}^n . The following sets are polytopes

- (i) $\mathcal{C} \cap \mathcal{D}$,
- (ii) $\mathcal{C} \times \mathcal{D} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2n} \mid x \in \mathcal{C}, y \in \mathcal{D} \right\}$,
- (iii) C + D.

THU

Cones and Properties

• A set $K \subset \mathbb{R}^n$ is a cone if

$$\forall x \in K \text{ and } \lambda > 0 \Rightarrow \lambda x \in K;$$

• A cone $K \subset \mathbb{R}^n$ is pointed if

$$K \cap -K = \{0\};$$

• A cone $K \subset \mathbb{R}^n$ is solid if

$$int K \neq \emptyset$$
;

• A cone $K \subset \mathbb{R}^n$ is proper if it is pointed, solid, closed and convex.

Dual Cones

- Conic combination: a linear combination $\sum_{i=1}^{m} \lambda_i x^i$ with $\lambda_i \geq 0$, $x^i \in \mathbb{R}^n$ for all $i = 1, \dots, m$.
- The conic hull of a set $\mathcal{X} \subset \mathbb{R}^n$ is

$$\begin{aligned} \operatorname{cone}(\mathcal{X}) &= \{x \in \mathbb{R}^n | x = \sum_{i=1}^m \lambda_i x^i, \text{ for some } m \in \mathbb{N}_+ \\ &\quad \text{and } x^i \in \mathcal{X}, \lambda_i \geq 0, i = 1, \dots, m. \} \end{aligned}$$

• The dual cone $K^* \subset \mathbb{R}^n$ of a cone $K \subset \mathbb{R}^n$ is

$$K^* = \{ y \in \mathbb{R}^n | y \bullet x \ge 0, \forall \ x \in K \}$$

 K^* is a *closed, convex* cone.

• If $K^* = K$, then K is a self-dual cone.

Properties

Theorem

If $\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_m$ are simultaneously pointed (solid, closed or convex) cones, then their Cartesian product is a cone and keeps the same property of pointed (solid, closed or convex). Their intersection is a cone and keeps the property of pointed (closed or convex).

Theorem

Given \mathcal{X}_1 and \mathcal{X}_2 in \mathbb{R}^n , (i) If $\mathcal{X}_1 \subseteq \mathcal{X}_2$, then $\mathcal{X}_1^* \supseteq \mathcal{X}_2^*$; (ii) If $0 \in \mathcal{X}_1 \cap \mathcal{X}_2$, then $(\mathcal{X}_1 + \mathcal{X}_2)^* = \mathcal{X}_1^* \cap \mathcal{X}_2^*$.

Theorem

Suppose $\mathcal X$ be a closed, pointed and convex cone containing at least one nonzero point, and $\operatorname{int}(\mathcal X^*) \neq \emptyset$. Then $y \in \operatorname{int}(\mathcal X^*)$ if and only if $y^Tx > 0$ for any $x \in \mathcal X$ and $x \neq 0$.

Theorem

- (i) Given K_1 and K_2 are two convex cones, then $K_1 \cap K_2$ and $K_1 + K_2$ are convex cones.
- (ii) Given K_1 and K_2 are solid cones, then $K_1 + K_2$ is a solid cone.

Theorem

Given a nonempty set $\mathcal{X} \subseteq \mathbb{R}^n$, we have the follows.

- (i) \mathcal{X}^* is a closed convex cone,
- (ii) $\mathcal{X} \subseteq (\mathcal{X}^*)^*$,
- (iii) $(\mathcal{X}^*)^* = \mathcal{X}$ if \mathcal{X} is a closed convex cone,
- (iv) \mathcal{X}^* is a pointed cone if $int(\mathcal{X}) \neq \emptyset$,
- (v) $int(\mathcal{X}^*) \neq \emptyset$ if \mathcal{X} is a closed, convex and pointed cone.

Partial Order and Ordered Vector Space

- A relation "≥" is a partial order on a set X if it has:
 - 1. *reflexivity*: $a \ge a$ for all $a \in \mathcal{X}$;
 - 2. antisymmetry: $a \ge b$ and $b \ge a$ imply a = b;
 - 3. *transitivity*: $a \ge b$ and $b \ge c$ imply $a \ge c$.

- An ordered vector space X is equipped with a partial order "≥" which also satisfies:
 - homogeneity: $a \ge b$ and $\lambda \in \mathbb{R}_+$ imply $\lambda a \ge \lambda b$;
 - additivity: $a \ge b$ and $c \ge d$ imply $a + c \ge b + d$.

Partial Order and Ordered Vector Space

• A proper cone K in a vector space can induce a partial order " \geq_K "

$$a \ge_K b \Leftrightarrow a - b \in K$$

which leads to an ordered vector space.

• Similarly, we can define " \leq_K "

$$a \leq_K b \Leftrightarrow b \geq_K a$$
,

• Closeness of K allows passing limits in \geq_K :

$$a^i \ge_K b^i, \ a^i \to a, \ b^i \to b \text{ as } i \to \infty \ \Rightarrow \ a \ge_K b.$$

Solidness of K allows us to define a strict inequality:

$$a >_K b \Leftrightarrow a - b \in \text{int}K$$
,

and

$$a <_K b \Leftrightarrow b >_K a$$
.

Examples: \mathbb{R}^n_+

- \mathbb{R}^n_+ is a proper cone;
- Inner product: $x \bullet y = x^T y$;
- $(\mathbb{R}^n_+)^* = \mathbb{R}^n_+$ (self-dual);
- Partial order: " $\geq_{\mathbb{R}^n_+}$ "

Examples: \mathcal{L}^n

 • Lⁿ / SOC(n − 1)Lorentz cone (second order cone)

$$\mathcal{L}^{n} = \{ x \in \mathbb{R}^{n} | x_{n} \ge \sqrt{x_{1}^{2} + \dots + x_{n-1}^{2}} \}$$

- \mathcal{L}^n is a proper cone;
- Inner product: $x \bullet y = x^T y$;
- $(\mathcal{L}^n)^* = \mathcal{L}^n$ (self-dual);
- Partial order: " $\geq_{\mathcal{L}^n}$ "

Examples: S_+^n

- $S^n_+ \subset S^n$: the set of symmetric positive semidefinite matrices
- S₊ⁿ is a proper cone;
- Inner product:

$$X \bullet Y = \operatorname{tr}(X^T Y)$$

Another view:

$$\operatorname{vec}(X) = [X_{11}, \sqrt{2}X_{12}, X_{22}, \sqrt{2}X_{13}, \sqrt{2}X_{23}, X_{33}, \cdots, X_{nn}]^T \in \mathbb{R}^{\frac{n(n+1)}{2}}$$

Then

$$X \bullet Y = \text{vec}(X) \bullet \text{vec}(Y) = \sum_{i,j} X_{ij} Y_{ij}$$

• Partial order: " $\geq_{\mathcal{S}^n_+}$ " or " \succeq "

Examples: S_+^n

Lemma

$$(\mathcal{S}^n_+)^* = \mathcal{S}^n_+$$
 (self-dual)

Proof.

" \subseteq ": If $X \in (\mathcal{S}^n_+)^*$, then $z^T X z = X \bullet z z^T \ge 0$, for all $z \in \mathbb{R}^n$. Therefore, $X \in \mathcal{S}^n_+$.

"\[\]": For any $Y \in \mathcal{S}^n_+$,

$$Y = \sum_{i=1}^{n} \lambda_i z^i (z^i)^T,$$

with $\lambda_i \geq 0$.

If $X \in \mathcal{S}_{+}^{n}$, then

$$X \bullet Y = \sum_{i=1}^{n} \lambda_i X \bullet z^i (z^i)^T = \sum_{i=1}^{n} \lambda_i (z^i)^T X z^i \ge 0.$$

Therefore, $X \in (\mathcal{S}^n_{\perp})^*$.

Examples: C_n and C_n^*

Copositive cone:

$$C_n = \{ X \in \mathcal{S}^n | z^T X z \ge 0, \forall z \ge_{\mathbb{R}^n_+} 0 \}$$

Completely positive(nonnegative) cone:

$$\mathcal{C}_n^* = \left\{ X \in \mathcal{S}^n \middle| \begin{array}{l} X = \sum_{i=1}^m z^i (z^i)^T, \text{ for some } m \in \mathbb{N}_+ \\ \text{and } z^i \geq_{\mathbb{R}_+^n} 0, i = 1, \dots, m \end{array} \right\}$$

- $(\mathcal{C}_n)^* = \mathcal{C}_n^*$ and $\mathcal{C}_n = (\mathcal{C}_n^*)^*$
- $\mathcal{C}_n^* \subset \mathcal{S}_+^n \subset \mathcal{C}_n$

Examples: Cones of Nonnegative Quadratic Functions — Homogeneous

- $\mathcal{F} \subset \mathbb{R}^n$
- Nonnegative homogeneous quadratic functions over ${\cal F}$

$$f(x) = x^T A x \ge 0, \forall x \in \mathcal{F}$$
$$f \Leftrightarrow A$$

• $\mathcal{HD}_{\mathcal{F}}=\{A\in\mathcal{S}^n|x^TAx\geq 0, \forall x\in\mathcal{F}\}$ is a closed, convex cone. (i) Closeness:

$$x^T A_i x \ge 0$$
 and $A_i \to A \Rightarrow x^T A x \ge 0$

(ii) Convexity:

$$x^{T} A_{i} X \geq 0, i = 1, 2 \Rightarrow x^{T} (\lambda A_{1} + (1 - \lambda) A_{2}) x \geq 0, \forall 0 \leq \lambda \leq 1$$

Examples: Cones of Nonnegative Quadratic Functions — Homogeneous

- $\mathcal{HD}_{\mathcal{F}}^* = \text{cl}(\text{cone}\{xx^T|x \in \mathcal{F}\})$
- $\bullet \ (\mathcal{H}\mathcal{D}_{\mathcal{F}})^* = \mathcal{H}\mathcal{D}_{\mathcal{F}}^* \ \text{and} \ (\mathcal{H}\mathcal{D}_{\mathcal{F}}^*)^* = \mathcal{H}\mathcal{D}_{\mathcal{F}}$
- Examples:
 - $\mathcal{F} = \mathbb{R}^n$ $\mathcal{H}\mathcal{D}_{\mathcal{F}} = \mathcal{H}\mathcal{D}_{\mathcal{F}}^* = \mathcal{S}_+^n$
 - $\mathcal{F} = \mathbb{R}^n_+$ $\mathcal{H}\mathcal{D}_{\mathcal{F}} = \mathcal{C}_n$ and $\mathcal{H}\mathcal{D}_{\mathcal{F}}^* = \mathcal{C}_n^*$
 - $\mathcal{F} = \{x | e^T x = 1, x \in \mathbb{R}^n_+\}$ $\mathcal{HD}_{\mathcal{F}} = \mathcal{C}_n \text{ and } \mathcal{HD}_{\mathcal{F}}^* = \mathcal{C}_n^*$

Examples: Cones of Nonnegative Quadratic Functions — Nonhomogeneous

• Nonnegative quadratic functions over $\mathcal{F} \subset \mathbb{R}^n$

$$f(x) = x^{T} A x + 2b^{T} x + c \ge 0, \forall x \in \mathcal{F}$$
$$f \Leftrightarrow \begin{bmatrix} c & b^{T} \\ b & A \end{bmatrix}$$

- $\mathcal{D}_{\mathcal{F}} = \{ \begin{bmatrix} c & b^T \\ b & A \end{bmatrix} \in \mathcal{S}^{n+1} | \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} c & b^T \\ b & A \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} \ge 0, \forall x \in \mathcal{F} \}$ is a closed, convex cone.
- $\mathcal{D}_{\mathcal{F}}^* = \operatorname{cl}(\operatorname{cone}\left\{\begin{bmatrix} 1 & x^T \\ x & xx^T \end{bmatrix} | x \in \mathcal{F}\right\})$
- $(\mathcal{D}_{\mathcal{F}}^*)^* = \mathcal{D}_{\mathcal{F}}$ and $(\mathcal{D}_{\mathcal{F}})^* = \mathcal{D}_{\mathcal{F}}^*$

Examples: Cones of Nonnegative Quadratic Functions — Nonhomogeneous

Examples:

•
$$\mathcal{F} = \mathbb{R}^n$$
, $\mathcal{D}_{\mathcal{F}} = \mathcal{D}_{\mathcal{F}}^* = \mathcal{S}_{\perp}^{n+1}$

•
$$\mathcal{F}=\mathbb{R}^n_+,\,\mathcal{D}_{\mathcal{F}}=\mathcal{C}_{n+1}$$
 and $\mathcal{D}_{\mathcal{F}}^*=\mathcal{C}_{n+1}^*$

Not a self-dual cone.

$$\mathcal{D}_{\mathcal{F}} = \left\{ U \in S^{n+1} \mid \begin{pmatrix} 1 \\ x \end{pmatrix}^T U \begin{pmatrix} 1 \\ x \end{pmatrix} \ge 0 \text{ for any } x \in [0,1]^n. \right\}$$

Obviously, $\mathcal{S}_+^{n+1}\subseteq\mathcal{D}_{\mathcal{F}}.$ Then $\mathcal{S}_+^{n+1}\supseteq\mathcal{D}_{\mathcal{F}}^*.$ Any matrix $U\in S^{n+1}$ with each element nonnegative is in $\mathcal{D}_{\mathcal{F}}$ which may not be in $S_+^{n+1}.$ For example, $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)\in\mathcal{D}_{\mathcal{F}}$ when n=1, but $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)\notin\mathcal{D}_{\mathcal{F}}^*.$

