Chapter 9~10 실습

2024.07.19(금) 11:30am~12:30pm

서울대학교 통계대학원 김지수

https://github.com/wcjang/hhi

Day 3 - 실습자료

필요한 데이터는 아래와 같습니다.

- 0. 2024_chapter9.ipynb (한글 주석이 달려있는 파이썬 코드)
- 1. LungDisease.csv
- 2. house_sales.csv

1. 단순선형회귀

```
import pandas as pd
import numpy as np
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
import statsmodels.formula.api as smf

import seaborn as sns
import matplotlib.pyplot as plt
```

```
# 데이터 경로 설정
DATA = '/content/drive/MyDrive/Colab Notebooks/data'

LUNG_CSV = DATA + '/LungDisease.csv'
HOUSE_CSV = DATA + '/house_sales.csv'

# 데이터 불러오기
lung = pd.read_csv(LUNG_CSV)
lung.plot.scatter(x='Exposure', y='PEFR')

plt.tight_layout()
plt.show()
```

1. 단순선형회귀

```
import pandas as pd
import numpy as np
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
import statsmodels.formula.api as smf

import seaborn as sns
import matplotlib.pyplot as plt
```

```
# 데이터 경로 설정
DATA = '/content/drive/MyDrive/Colab Notebooks/data'

LUNG_CSV = DATA + '/LungDisease.csv'
HOUSE_CSV = DATA + '/house_sales.csv'

# 데이터 불러오기
lung = pd.read_csv(LUNG_CSV)
lung.plot.scatter(x='Exposure', y='PEFR')

plt.tight_layout()
plt.show()
```


위 산점도는 노동자들이 면진에 노출(Exposure)된 연수와 폐활량(PEFR)을 표시한 것이다. 둘 간의 관계를 알아보기 위해 회귀직선을 적합시켜보자.

회귀분석

Intercept: 424.583

Coefficient of Exposure: -4.185

```
# 회귀 분석(간단하게 계수만 확인하고 싶은 경우, LinearRegression 함수를 이용한다.)

X = lung[['Exposure']]

y = lung['PEFR']

lung_lm = LinearRegression()

lung_lm.fit(X, y)

# 회귀계수 출력

print(f'Intercept: {lung_lm.intercept_:.3f}')

print(f'Coefficient of Exposure: {lung_lm.coef_[0]:.3f}')
```

회귀분석

```
# 회귀 분석(간단하게 계수만 확인하고 싶은 경우, LinearRegression 함수를 이용한다.)

X = lung[['Exposure']]

y = lung['PEFR']

lung_lm = LinearRegression()

lung_lm.fit(X, y)

# 회귀계수 출력

print(f'Intercept: {lung_lm.intercept_:.3f}')

print(f'Coefficient of Exposure: {lung_lm.coef_[0]:.3f}')
```

Intercept: 424.583 Coefficient of Exposure: -4.185

기울기에 대한 해석 2가지

- Exposure의 회귀계수는 -4.18이다. 즉, Exposure가 한 단위(연수) 증가하면, 폐활량(PEFR)은 약 4.18만큼 줄어든다고 해석할 수 있다. (인과관계 여부가 명확하지 않다.)
- Exposure가 1단위 차이나는 사람들을 두 그룹으로 나누었을경우, 두 그룹의 폐활량 차이가 4.18이다. (Exposure가 큰 그룹이 폐활량이 더 작다.)

```
X = lung[['Exposure']]
y = lung['PEFR']
X = sm_add_constant(X) # 상수항 추가 (절편을 위한 항)
lung_model = sm.OLS(y, X).fit() # 회귀 모델 적합
print(lung_model.summary()) # 회귀 결과 요약 출력
```

OLS Regression Results

	:===========		
Dep. Variable:	PEFR	R-squared:	0.077
Model:	0LS	Adj. R-squared:	0.069
Method:	Least Squares	F-statistic:	9.974
Date:	Thu, 18 Jul 2024	<pre>Prob (F-statistic):</pre>	0.00201
Time:	23:21:40	Log-Likelihood:	-735.68
No. Observations:	122	AIC:	1475.
Df Residuals:	120	BIC:	1481.
Df Model:	1		
Covariance Type:	nonrobust		

covariance Type: HOIH ODUS L

	coef	std err	t	P> t	[0.025	0.975]
const Exposure	424.5828 -4.1846	20.796 1.325	20.417 -3.158	0.000 0.002	383.408 -6.808	465.757 -1.561
Omnibus: Prob(Omnibus) Skew: Kurtosis:	us):	0. -0.	681 Jarque	•	•	1.111 0.891 0.641 35.7

```
X = lung[['Exposure']]
y = lung['PEFR']
X = sm.add_constant(X) # 상수항 추가 (절편을 위한 항)
lung_model = sm.OLS(y, X).fit() # 회귀 모델 적합
print(lung_model.summary()) # 회귀 결과 요약 출력
```

OLS Regression Results

=========			====	======	========		
Dep. Variable: PEFR		EFR	R-squa	red:		0.077	
Model:			0LS	Adj. R	-squared:		0.069 9.974
Method:		Least Squa	res	F-stat	istic:		
Date:		Thu, 18 Jul 2	024	Prob (F-statistic	c):	0.00201
Time:		23:21:40 122		Log-L1	.kelinood:		-/35.68 1475.
No. Observa	ations:			AIC:			
Df Residuals:		120		BIC:	BIC:		
Df Model:			1				
Covariance Type:		nonrob	ust 				
	coef	std err		t	P> t	[0.025	0 . 975]
const	424 . 5828	20.796	2	 0.417	0.000	383 . 408	465.757
Exposure	-4.1846	1.325	-:	3.158	0.002	-6.808	-1.561
Omnibus:		0.	====: 767	Durbin	======= -Watson:		 1.111
Prob(Omnibus): 0.681		Jarque	-Bera (JB):		0.891		

Prob(JB):

Cond. No.

-0.162

2.734

Skew:

Kurtosis:

- Exposure의 p-value가 0.002로 굉장히 작다.
- Exposure의 효과가 없다라는 귀무가설을 적절한 유의수준 하에서 기각할 수 있음을 의미한다.

0.641

35.7

```
X = lung[['Exposure']]
y = lung['PEFR']
X = sm.add_constant(X) # 상수항 추가 (절편을 위한 항)
lung_model = sm.OLS(y, X).fit() # 회귀 모델 적합
print(lung_model.summary()) # 회귀 결과 요약 출력
```

OLS Regression Results

Dep. Variable:	PEFR	R-squared:	0.077
Model:	0LS	Adj. R-squared:	0.069
Method:	Least Squares	F-statistic:	9.974
Date:	Thu, 18 Jul 2024	<pre>Prob (F-statistic):</pre>	0.00201
Time:	23:21:40	Log-Likelihood:	-735.68
No. Observations:	122	AIC:	1475.
Df Residuals:	120	BIC:	1481.
Df Model:	1		

	coef	std err	t	P> t	[0.025	0.975]
const Exposure	424.5828 -4.1846	20.796 1.325	20.417 -3.158	0.000 0.002	383.408 -6.808	465.757 -1.561
Omnibus: Prob(Omnib Skew: Kurtosis:	us):	0.0 -0.3	681 Jarque	-	•	1.111 0.891 0.641 35.7

nonrobust

Covariance Type:

Exposure의 t 통계량은 자유도가 N-2인 t분포를 따른다. 자유도 역시 Ols Results에서 확인할 수 있다.

```
X = lung[['Exposure']]
y = lung['PEFR']
X = sm.add_constant(X) # 상수항 추가 (절편을 위한 항)
lung_model = sm.OLS(y, X).fit() # 회귀 모델 적합
print(lung_model.summary()) # 회귀 결과 요약 출력
```

OLS Regression Results

Dep. Variable:	PEFR	R-squared:	0.077
Model:	0LS	Adj. R-squared:	0.069
Method:	Least Squares	F-statistic:	9.974
Date:	Thu, 18 Jul 2024	[]N 값은 이곳에서 확인할 수 있다.	1
Time:	23:21:40		3
No. Observations:	122	AIN = No.Observations = 122	
Df Residuals:	120	BIDf Residuals = N-2 = 120	
Df Model:	1	D11130144415 - 11 2 - 120	

	coef	std err	t	P> t	[0.025	0.975]
const Exposure	424.5828 -4.1846	20.796 1.325	20.417 -3.158	0.000 0.002	383.408 -6.808	465.757 -1.561
Omnibus: Prob(Omnib Skew: Kurtosis:	us):	0.0 -0.1	681 Jarque	•	•	1.111 0.891 0.641 35.7

nonrobust

covariance Type:

Exposure의 t 통계량은 자유도가 N-2인 t분포를 따른다. 자유도 역시 Ols Results에서 확인할 수 있다.

```
X = lung[['Exposure']]
y = lung['PEFR']
X = sm_add_constant(X) # 상수항 추가 (절편을 위한 항)
lung_model = sm.OLS(y, X).fit() # 회귀 모델 적합
print(lung_model.summary()) # 회귀 결과 요약 출력
                           OLS Regression Results
Dep. Variable:
                                PEFR
                                      R-squared:
                                                                       0.077
Model:
                                0LS
                                      Adj. R-squared:
                                                                       0.069
Method:
                                      F-statistic:
                       Least Squares
                                                                      9.974
```

Date: Thu, 18 Jul 2024
Time: 23:21:40
No. Observations: 122

Thu, 18 Jul 2024 Prob (F-statistic):
23:21:40 Log-Likelihood:
122 AIC:
120 BIC:

Df Residuals:
Df Model:

Covariance Type:

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const Exposure	424.5828 -4.1846	20.796 1.325	20.417 -3.158	0.000 0.002	383.408 -6.808	465.757 -1.561

Omnibus:	0.767	Durbin-Watson:	1.111
Prob(Omnibus):	0.681	Jarque-Bera (JB):	0.891
Skew:	-0.162	Prob(JB):	0.641
Kurtosis:	2.734	Cond. No.	35.7

Exposure은 유의한 변수일까?

귀무가설 : Exposure의 계수 = 0

대립가설: Exposure의 계수는 0이 아니다.

Hint: p-value = 0.002와 유의수준을 비교하자.

0.00201

-735.68

1475.

1481.

X = lung[['Exposure']]

```
y = lung['PEFR']
X = sm_add_constant(X) # 상수항 추가 (절편을 위한 항)
lung_model = sm.OLS(y, X).fit() # 회귀 모델 적합
print(lung_model.summary()) # 회귀 결과 요약 출력
                            OLS Regression Results
Dep. Variable:
                                 PEFR
                                        R-squared:
                                                                          0.077
Model:
                                  0LS
                                        Adj. R-squared:
                                                                          0.069
                                        F-statistic:
Method:
                        Least Squares
                                                                          9.974
                     Thu, 18 Jul 2024
                                        Prob (F-statistic):
                                                                        0.00201
Date:
                             23:21:40
                                        Log-Likelihood:
                                                                       -735.68
Time:
No. Observations:
                                  122
                                        AIC:
                                                                          1475.
Df Residuals:
                                  120
                                        BIC:
                                                                          1481.
Df Model:
Covariance Type:
                            nonrobust
                         std err
                                                                        0.975]
                                                             [0.025
                                                 P>|t|
                 coef
                                                                        465.757
                                                           383.408
             424.5828
                          20.796
                                     20.417
                                                 0.000
const
                                     -3.158
                                                             -6.808
                                                                         -1.561
              -4.1846
                           1.325
                                                 0.002
Exposure
Omnibus:
                                0.767 Durbin-Watson:
Prob(Omnibus):
                                        Jarque-Bera (JB):
                                0.681
                                                                          0.891
                               -0.162
                                        Prob(JB):
                                                                          0.641
Skew:
                                        Cond. No.
Kurtosis:
                                2.734
                                                                           35.7
```

0.002 < 0.05 (유의수준 0.05) 즉 귀무가설을 기각한다. 따라서 Exposure은 유의한 변수라고 결론내릴 수 있다.

```
X = lung[['Exposure']]
y = lung['PEFR']
X = sm.add_constant(X) # 상수항 추가 (절편을 위한 항)
lung_model = sm.OLS(y, X).fit() # 회귀 모델 적합
print(lung_model.summary()) # 회귀 결과 요약 출력
```

OLS Regression Results

Dep. Variable:	PEFR	R-squared:	0.077
Model:	0LS	Adj. R-squared:	0.069
Method:	Least Squares	F-statistic:	9.974
Date:	Thu, 18 Jul 2024	<pre>Prob (F-statistic):</pre>	0.00201
Time:	23:21:40	Log-Likelihood:	-735.68
No. Observations:	122	AIC:	1475.
Df Residuals:	120	BIC:	1481.

Df Model: 1

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const Exposure	424.5828 -4.1846	20.796 1.325	20.417 -3.158	0.000 0.002	383.408 -6.808	465.757 -1.561
Omnibus: Prob(Omnibus) Skew: Kurtosis:	us):	0.0 -0.1	681 Jarque	•		1.111 0.891 0.641 35.7

95% 신뢰구간을 확인할 수 있다.

```
# 회귀직선 시각화
# 앞서 그린 산점도를 다시 그리기
ax = lung.plot.scatter(x='Exposure', y='PEFR')
# 회귀 직선 추가
x_range = np.linspace(lung['Exposure'].min(), lung['Exposure'].max(), 100) # X의 최소값부터 최대값까지의 범위 생성
x_range_const = sm.add_constant(x_range) # 생성한 범위에 상수항 추가
y_range = lung_model.predict(x_range_const) # 회귀 모델을 사용하여 y 값 예측
ax.plot(x_range, y_range, color='red', linewidth=2) # 회귀 직선을 빨간색으로 그리기
plt.tight_layout()
plt.show()
                          600
                          500
                          400
                         PEFR
                          300
                          200
```

10

Exposure

14

15

20

100

잔차

```
회귀직선을 적합시킨 후에는 잔차를 확인해야 한다.
)] # 잔차 계산
  residuals = lung_model.resid
                                    sm.OLS로 적합시킨 lung_model을 통해 확인할 수 있다.
  # R-squared 값 계산
  r_squared = lung_model.rsquared
  # R-squared 값 출력
  print("R-squared 값:", r_squared)
  # 그래프 그리기
  fig, axs = plt.subplots(1,2, figsize=(16,10)) #잔차 plot과 산점도를 동시에 보기
  # 첫 번째 플롯: 잔차 플롯
  axs[0].scatter(X['Exposure'], residuals, color='blue', alpha=0.5)
  axs[0].axhline(y=0, color='red', linestyle='--', linewidth=2)
  axs[0].set_xlabel('Exposure')
  axs[0].set_ylabel('Residuals')
  axs[0].set_title('Residuals Plot')
```


2. 다중선형회귀

- 회귀직선 적합, 회귀계수, 표준오차 등등
- 회귀계수의 해석

	AdjSalePrice	SqFtTotLiving	SqFtLot	Bathrooms	Bedrooms	BldgGrade
1	300805.0	2400	9373	3.00	6	7
2	1076162.0	3764	20156	3.75	4	10
3	761805.0	2060	26036	1.75	4	8
4	442065.0	3200	8618	3.75	5	7
5	297065.0	1720	8620	1.75	4	7

LinearRegression()을 이용해 간단히 계수만 확인해보자.

LinearRegression()을 이용해 간단히 계수만 확인해보자.

```
# 예측변수와 반응변수 지정
predictors = ['SqFtTotLiving', 'SqFtLot', 'Bathrooms',
              'Bedrooms', 'BldgGrade']
outcome = 'AdjSalePrice'
# 다중회귀모형 적합
house_lm = LinearRegression()
house_lm.fit(house[predictors], house[outcome])
# 다중회귀계수와 절편항 출력
print(f'Intercept: {house_lm.intercept_:.3f}')
print('Coefficients:')
for name, coef in zip(predictors, house_lm.coef_):
    print(f' {name}: {coef}')
Intercept: -521871.368
Coefficients:
 SqFtTotLiving: 228.83060360240793
 SqFtLot: -0.06046682065307607
 Bathrooms: -19442.840398321066
 Bedrooms: -47769.95518521438
 BldgGrade: 106106.96307898081
```

LinearRegression()을 이용해 간단히 계수만 확인해보자.

```
# 예측변수와 반응변수 지정
predictors = ['SqFtTotLiving', 'SqFtLot', 'Bathrooms',
              'Bedrooms', 'BldgGrade']
outcome = 'AdjSalePrice'
# 다중회귀모형 적합
house_lm = LinearRegression()
house_lm.fit(house[predictors], house[outcome])
# 다중회귀계수와 절편항 출력
print(f'Intercept: {house_lm.intercept_:.3f}')
print('Coefficients:')
for name, coef in zip(predictors, house_lm.coef_):
    print(f' {name}: {coef}')
Intercept: -521871.368
Coefficients:
 SqFtTotLiving: 228.83060360240793
 SqFtLot: -0.06046682065307607
 Bathrooms: -19442.840398321066
 Bedrooms: -47769.95518521438
 BldgGrade: 106106.96307898081
```

또는 앞선 단순회귀처럼 OLS를 이용해 적합시킬 수도 있다.

sm.OLS 이용한 다중회귀 적합

X = house[predictors]

y = house[outcome]

X = sm.add_constant(X) # 상수항 추가 (절편을 위한 항)

house_model = sm.OLS(y, X).fit() # 회귀 모델 적합 print(house_model.summary()) # 회귀 결과 요약 출력

OLS Regression Results

Date: Thu	AdjSalePrice OLS Least Squares , 18 Jul 2024		uared: ic: tatistic):		0.541 0.540 5338. 0.00
Time: No. Observations: Df Residuals: Df Model: Covariance Type:	23:48:46 22687 22681 5 nonrobust	Log-Likel AIC: BIC:	ihood:	6	1517e+05 .304e+05 .304e+05
coef	std err	t	P> t	[0.025	0.975]
const -5.219e+05 SqFtTotLiving 228.8306 SqFtLot -0.0605 Bathrooms -1.944e+04 Bedrooms -4.777e+04 BldgGrade 1.061e+05	3.899 0.061 3625.388 2489.732	-33.342 58.694 -0.988 -5.363 -19.187 44.277	0.000 0.000 0.323 0.000 0.000	-5.53e+05 221.189 -0.180 -2.65e+04 -5.27e+04 1.01e+05	-4.91e+05 236.472 0.059 -1.23e+04 -4.29e+04 1.11e+05
Omnibus: Prob(Omnibus): Skew: Kurtosis:	29676.557 0.000 6.889 145.559		ra (JB):		1.247 0738.346 0.00 2.86e+05

```
# sm.OLS 이용한 다중회귀 적합
X = house[predictors]
y = house[outcome]
X = sm_add_constant(X) # 상수항 추가 (절편을 위한 항)
house_model = sm.OLS(y, X).fit() # 회귀 모델 적합
print(house_model.summary()) # 회귀 결과 요약 출력
                            OLS Regression Results
                         AdjSalePrice
Dep. Variable:
                                        R-squared:
                                                                          0.541
                                                                          0.540
Model:
                                        Adj. R-squared:
                                  0LS
Method:
                        Least Squares
                                        F-statistic:
                                                                          5338.
                     Thu, 18 Jul 2024
                                         Prob (F-statistic):
                                                                           0.00
Date:
                             23:48:46
Time:
                                                                    -3.1517e+05
                                        Log-Likelihood:
No. Observations:
                                 22687
                                        AIC:
                                                                      6.304e+05
Df Residuals:
                                 22681
                                         BIC:
                                                                      6.304e+05
Df Model:
                            nonrobust
Covariance Type:
                                                                            0.975]
                            std err
                                                     P>|t|
                                                                [0.025
                    coef
              -5.219e+05
                           1.57e+04
                                       -33.342
                                                     0.000
                                                             -5.53e+05
                                                                         -4.91e+05
const
                                                                           236.472
                228.8306
                                         58.694
                                                     0.000
                                                               221.189
SqFtTotLiving
                              3.899
                                                                             0.059
                 -0.0605
                              0.061
                                        -0.988
                                                                -0.180
SqFtLot
                                                     0.323
                                                                         -1.23e+04
Bathrooms
                           3625.388
                                        -5.363
                                                     0.000
                                                             -2.65e+04
              -1.944e+04
Bedrooms
              -4.777e+04
                           2489.732
                                       -19.187
                                                     0.000
                                                             -5.27e+04
                                                                         -4.29e+04
               1.061e+05
                           2396.445
                                         44.277
                                                     0.000
                                                              1.01e+05
                                                                          1.11e+05
BldgGrade
Omnibus:
                                                                          1.247
                            29676.557
                                         Durbin-Watson:
Prob(Omnibus):
                                        Jarque-Bera (JB):
                                                                   19390738.346
                                0.000
                                        Prob(JB):
                                6.889
                                                                           0.00
Skew:
                              145.559
                                        Cond. No.
                                                                       2.86e+05
Kurtosis:
```

```
# sm.OLS 이용한 다중회귀 적합
X = house[predictors]
y = house[outcome]
```

X = sm.add_constant(X) # 상수항 추가 (절편을 위한 항)

house_model = sm.OLS(y, X).fit() # 회귀 모델 적합 print(house_model.summary()) # 회귀 결과 요약 출력

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Thu,	AdjSalePrice OLS east Squares 18 Jul 2024 23:48:46 22687 22681 5 nonrobust	R-squared Adj. R-so F-statist Prob (F-s Log-Likel AIC: BIC:	quared: ic: statistic):	6	0.541 0.540 5338. 0.00 1517e+05 .304e+05
==========	coef	std err	t	P> t	[0.025	0.975]
const SqFtTotLiving SqFtLot Bathrooms Bedrooms BldgGrade	-5.219e+05 228.8306 -0.0605 -1.944e+04 -4.777e+04 1.061e+05	1.57e+04 3.899 0.061 3625.388 2489.732 2396.445	-33.342 58.694 -0.988 -5.363 -19.187 44.277	0.000 0.000 0.323 0.000 0.000	-5.53e+05 221.189 -0.180 -2.65e+04 -5.27e+04 1.01e+05	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	:	0.000	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	era (JB):		1.247 0738.346 0.00 2.86e+05

큰 P값은 해당변수가 유의하지 않음을 의미한다.

OLS Regression Results

Dep. Variable Model: Method:	L	AdjSalePrice OLS east Squares	Adj. R-squared: F-statistic:		========	0.541 0.540 6672.
Date: Time: No. Observation Df Residuals: Df Model:		18 Jul 2024 23:59:11 22687 22682 4	Prob (F-s Log-Likel AIC: BIC:	tatistic): ihood:	6	0.00 1517e+05 .303e+05 .304e+05
Covariance Typ	oe:	nonrobust 				
	coef	std err	t	P> t	[0.025	0.975]
const SqFtTotLiving Bathrooms Bedrooms BldgGrade	-5.224e+05 228.2288 -1.925e+04 -4.764e+04 1.061e+05	1.56e+04 3.851 3619.871 2486.224 2396.348	-33.391 59.267 -5.317 -19.161 44.287	0.000 0.000 0.000 0.000 0.000	-5.53e+05 220.681 -2.63e+04 -5.25e+04 1.01e+05	-4.92e+05 235.777 -1.22e+04 -4.28e+04 1.11e+05
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	29681.423 0.000 6.892 145.582	Jarque-Be Prob(JB): Cond. No.	ra (JB):		1.246 7030.121 0.00 2.07e+04

```
# SqFtLot 빼고 다시 적합
predictors = ['SqFtTotLiving', 'SqFtLot', 'Bathrooms',
             'Bedrooms', 'BldgGrade'] #기존의 predictors
predictors.remove('SqFtLot')
X = house[predictors]
X = sm.add_constant(X) # 상수항 추가 (절편을 위한 항)
house_model = sm.OLS(y, X).fit() # 회귀 모델 적합
print(house_model.summary()) # 회귀 결과 요약 출력
```

OLS Regression Results

Dep. Variable Model: Method: Date:	Le	AdjSalePrice OLS east Squares 18 Jul 2024	R-squared Adj. R-squ F-statist: Prob (F-s	uared: ic:		0.541 0.540 6672. 0.00
Time: No. Observation Df Residuals: Df Model: Covariance Type		23:59:11 22687 22682 4 nonrobust	Log-Likel: AIC: BIC:	ihood:	6	1517e+05 .303e+05 .304e+05
	coef	std err	t	P> t	[0.025	0.975]
const SqFtTotLiving Bathrooms Bedrooms BldgGrade	-5.224e+05 228.2288 -1.925e+04 -4.764e+04 1.061e+05	1.56e+04 3.851 3619.871 2486.224 2396.348	-33.391 59.267 -5.317 -19.161 44.287	0.000 0.000 0.000 0.000	-5.53e+05 220.681 -2.63e+04 -5.25e+04 1.01e+05	-4.92e+05 235.777 -1.22e+04 -4.28e+04 1.11e+05
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	29681.423 0.000 6.892 145.582	Jarque-Bera (JB): 19397030.12 Prob(JB): 0.0		1.246 7030.121 0.00 2.07e+04	

- 모두 유의한 변수만 남았다.

28

- \$R^2\$ = 0.541로, 위 4개의 변수들이 집값의 54.1%를 설명함을 의미한다.

OLS Regression Results

Dep. Variable:	AdjSalePrice	R-squared:	0.541
Model:	0LS	Adj. R-squared:	0.540
Method:	Least Squares	F-statistic:	6672.
Date:	Thu, 18 Jul 2024	<pre>Prob (F-statistic):</pre>	0.00
Time:	23:59:11	Log-Likelihood:	-3.1517e+05
No. Observations:	22687	AIC:	6.303e+05
Df Residuals:	22682	BIC:	6.304e+05
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-5.224e+05	1.56e+04	-33.391	0.000	-5.53e+05	-4.92e+05
SqFtTotLiving	228.2288	3.851	59.267	0.000	220.681	235.777
Bathrooms	-1.925e+04	3619.871	-5.317	0.000	-2.63e+04	-1.22e+04
Bedrooms	-4.764e+04	2486.224	-19.161	0.000	-5.25e+04	-4.28e+04
BldgGrade	1.061e+05	2396.348	44.287	0.000	1.01e+05	1.11e+05

Omnibus:	29681.423	<pre>Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.</pre>	1.246
Prob(Omnibus):	0.000		19397030.121
Skew:	6.892		0.00
Kurtosis:	145.582		2.07e+04

- 계수에 대한 해석은 다음과 같다.

다른 변수들이 모두 고정되었다는 가정 하에, SqFtTotLiving (집 면적) 이 1단위 증가하면, AdjSalePrice(주택 가격)이 228불 증가한다.

(다중회귀에서의 해석이 단순회귀와 다름에 주의)

~ 3. 분산분석과 회귀모형

분산분석(ANOVA)

- 여러 집단 간의 평균을 비교할 때 사용하는 통계적 기법
- 앞선 킹 카운티 주택가격 데이터를 이용해 분산분석을 진행해 보고자 한다.
- 이 데이터에는 다음과 같이 주거 형태에 관한 요인변수가 주어져있다.

[64] print(house.PropertyType.value_counts())

PropertyType Single Family 20720 Townhouse 1710 Multiplex 257 Name: count, dtype: int64

분산분석 (ANOVA)

• scipy 라이브러리의 f_oneway 함수를 사용한다.

```
] # ANOVA 수행
  from scipy.stats import f_oneway
 f_stat, p_value = f_oneway(
     house[house['PropertyType'] == 'Multiplex']['AdjSalePrice'],
     house[house['PropertyType'] == 'Single Family']['AdjSalePrice'],
     house[house['PropertyType'] == 'Townhouse']['AdjSalePrice']
  ) #여러 집단의 평균을 비교
  print(f'F-statistic: {f_stat:.2f}')
  print(f'P-value: {p_value:.4f}')
 # 결과 해석
  alpha = 0.05
 if p_value < alpha:</pre>
     print("주택 유형에 따른 가격 차이가 유의미합니다.")
  else:
     print("주택 유형에 따른 가격 차이가 유의미하지 않습니다.")
F-statistic: 92.09
 P-value: 0.0000
 주택 유형에 따른 가격 차이가 유의미합니다.
```

분산분석 (ANOVA)

• scipy 라이브러리의 f_oneway 함수를 사용한다.

```
] # ANOVA 수행
 from scipy.stats import f_oneway
 f_stat, p_value = f_oneway(
     house[house['PropertyType'] == 'Multiplex']['AdjSalePrice'],
     house[house['PropertyType'] == 'Single Family']['AdjSalePrice'],
     house[house['PropertyType'] == 'Townhouse']['AdjSalePrice']
  ) #여러 집단의 평균을 비교
 print(f'F-statistic: {f_stat:.2f}')
 print(f'P-value: {p_value:.4f}')
 # 결과 해석
 alpha = 0.05
 if p_value < alpha:</pre>
     print("주택 유형에 따른 가격 차이가 유의미합니다.")
 else:
     print("주택 유형에 따른 가격 차이가 유의미하지 않습니다.")
```

F-statistic: 92.09
 P-value: 0.0000
 주택 유형에 따른 가격 차이가 유의미합니다.

여러 집단 간의 평균을 비교하고 싶은 경우, 이와 같이 분산분석을 이용해 간단히 결과를 출력할 수 있다.

또는, 앞서 배운 다중회귀를 이용해 여러 집단을 비교할 수도 있다. 이 방법에 대하여 알아보자.

회귀모형 (가변수 사용)

```
#get_dummies를 이용해 가변수를 만든다. 총 3개의 범주를 확인할 수 있다. (K=3)
print(pd.get_dummies(house['PropertyType'], dtype=int).head())

Multiplex Single Family Townhouse
1 1 0 0
2 0 1 0
```

회귀모형 (가변수 사용)

```
#get_dummies를 이용해 가변수를 만든다. 총 3개의 범주를 확인할 수 있다. (K=3)
print(pd.get_dummies(house['PropertyType'], dtype=int).head())
  Multiplex Single Family Townhouse
# drop_first=True를 이용해 가변수의 개수가 K-1이 되도록 만든다.
# K가 아니라 K-1인 이유는?
# 나머지 두 가변수의 값을 안다면, house PropertyType을 바로 알 수 있기 때문이다.
## (1,0) : Single Family
## (0,1) : Townhouse
## (0,0) : Multiplex
print(pd.get_dummies(house['PropertyType'], drop_first=True, dtype=int).head())
  Single Family Townhouse
```

앞서 사용한 LinearRegression() 이용

```
predictors = ['SqFtTotLiving', 'SqFtLot', 'Bathrooms', 'Bedrooms', 'BldgGrade', 'PropertyType']

# 이 중 PropertyType이 범주형 변수이고,
# 이 Type에 따른 주택 가격 차이가 얼마나 나는지 알고싶다.

X = pd.get_dummies(house[predictors], drop_first=True, dtype=int) #가변수를 이용한다.
y = house['AdjSalePrice']

house_lm_factor = LinearRegression()
house_lm_factor.fit(X, y)

print(f'Intercept: {house_lm_factor.intercept_:.3f}')
print('Coefficients:')
for name, coef in zip(X.columns, house_lm_factor.coef_):
    print(f' {name}: {coef}')
```

```
# LinearRegression 이용한 다중회귀 적합
predictors = ['SqFtTotLiving', 'SqFtLot', 'Bathrooms', 'Bedrooms',
             'BldgGrade', 'PropertyType']
             # 이 중 PropertyType이 범주형 변수이고,
             # 이 Type에 따른 주택 가격 차이가 얼마나 나는지 알고싶다.
X = pd.get_dummies(house[predictors], drop_first=True, dtype=int) #가변수를 이용한다.
y = house['AdjSalePrice']
house_lm_factor = LinearRegression()
house_lm_factor.fit(X, y)
print(f'Intercept: {house_lm_factor.intercept_:.3f}')
print('Coefficients:')
for name, coef in zip(X.columns, house_lm_factor.coef_):
    print(f' {name}: {coef}')
Intercept: -446841.366
Coefficients:
SqFtTotLiving: 223.37362892503828
SqFtLot: -0.07036798136813083
 Bathrooms: -15979.013473415205
 Bedrooms: -50889.73218483025
BldgGrade: 109416.30516146179
 PropertyType_Single Family: -84678.21629549257
 PropertyType_Townhouse: -115121.97921609184
```

Intercept: -446841.366

Coefficients:

SqFtTotLiving: 223.37362892503828 SqFtLot: -0.07036798136813083 Bathrooms: -15979.013473415205 Bedrooms: -50889.73218483025 BldgGrade: 109416.30516146179

PropertyType_Single Family: -84678.21629549257 PropertyType_Townhouse: -115121.97921609184

해석은 다음과 같다.

- PropertyType_Single Family = 0,
 PropertyType_Townhouse = 0일 때,
 -> Multiplex는 암묵적으로 정의된다.
- Single Family인 주택은 Multiplex보다 약 85,000불정도 주택가치가 낮다.
- Townhouse인 주택은 Multiplex보다 약 150,000불 정도 주택가치가 낮다.

추가적으로, 모든 회귀계수 = 0인지에 대한 F-검정통계량의 분포는 이전처럼 sm.OLS를 이용해 쉽게 구할 수 있다.

```
X = sm.add_constant(X) # 상수항 추가 (절편을 위한 항)

# OLS 모델 적합
model = sm.OLS(y, X).fit()

# 회귀 모델 요약 출력
print(model.summary())
```

OLS Regression Results

	:===========		
Dep. Variable:	AdjSalePrice	R-squared:	0.541
Model:	0LS	Adj. R-squared:	0.541
Method:	Least Squares	F-statistic:	3826.
Date:	Thu, 18 Jul 2024	<pre>Prob (F-statistic):</pre>	0.00
Time:	23:48:47	Log-Likelihood:	-3.1515e+05
No. Observations:	22687	AIC:	6.303e+05
Df Residuals:	22679	BIC:	6.304e+05
Df Model:	7		
Covariance Type:	nonrohust		

=======================================					
coef	std err	 t	P> t	[0.025	0.975
-4.468e+05	2.24e+04	-19 . 983	0.000	-4.91e+05	-4.03e+05
223.3736	4.130	54.086	0.000	215.279	231.469
-0.0704	0.061	-1.149	0.250	-0.190	0.050
-1.598e+04	3809.880	-4.194	0.000	-2.34e+04	-8511.388
-5.089e+04	2538.018	-20.051	0.000	-5.59e+04	-4.59e+04
1.094e+05	2457.532	44.523	0.000	1.05e+05	1.14e+0
-8.468e+04	1.66e+04	-5.086	0.000	-1.17e+05	-5.2e+04
-1.151e+05	1.82e+04	-6.339	0.000	-1.51e+05	-7 . 95e+04
29765 . 071	 Durbin-Wat	 son:		1.249	
0.000	Jarque-Ber	a (JB):	196905	586.557	
6.926	Prob(JB):			0.00	
146.660	Cond. No.		5	.45e+05	
	223.3736 -0.0704 -1.598e+04 -5.089e+04 1.094e+05 -8.468e+04 -1.151e+05 ====================================	223.3736	223.3736	223.3736	223.3736

추가적으로, 모든 회귀계수 = 0인지에 대한 F-검정통계량의 분포는 이전처럼 sm.OLS를 이용해 쉽게 구할 수 있다.

```
X = sm.add_constant(X) # 상수항 추가 (절편을 위한 항)
# OLS 모델 적합
model = sm.OLS(y, X).fit()
# 회귀 모델 요약 출력
print(model.summary())
```

OLS Regression Results

Dep. Variable: Model: Method:	AdjSalePrice OLS Least Squares	R-squared: Adj. R-squared: F-statistic:	0.541 0.541 3826.
Date: Time: No. Observations: Df Residuals:	Thu, 18 Jul 2024 23:48:47 22687 22679	Prob (F-statistic): Log-Likelinood: AIC: BIC:	0.00 -3.1515e+05 6.303e+05 6.304e+05
<pre>Df Model: Covariance Type:</pre>	7 nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const SqFtTotLiving SqFtLot Bathrooms Bedrooms BldgGrade PropertyType_Single Family		2.24e+04 4.130 0.061 3809.880 2538.018 2457.532 1.66e+04	-19.983 54.086 -1.149 -4.194 -20.051 44.523 -5.086	0.000 0.000 0.250 0.000 0.000 0.000	-4.91e+05 215.279 -0.190 -2.34e+04 -5.59e+04 1.05e+05 -1.17e+05	-4.03e+05 231.469 0.050 -8511.388 -4.59e+04 1.14e+05 -5.2e+04
PropertyType_Townhouse	-1.151e+05	1.82e+04	-6.339	0.000	-1.51e+05	-7 . 95e+04
Omnibus: Prob(Omnibus): Skew: Kurtosis:	29765.071 0.000 6.926 146.660	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.	Bera (JB): 19690586.557 0.00			

p가 거의 0에 가까우므로, 모든 계수가 0은 아니다. 즉, 모든 계수가 0이다 라는 귀무가설을 기각한다. (앞선 분산분석의 결과와 같다.)

교호작용

- 킹 카운티 주택가격 데이터를 다시 살펴보자.
- 부동산의 경우 위치가 매우 중요하다. 즉, **주택 크기와 매매 가격 사이 관계가 위치에 달려있다**고 가정해볼 수 있다.
- 임대료가 싼 지역 + 큰 집 = 임대료가 비싼 지역 + 큰 집
- 위 둘의 가치는 같지 않다.
- 따라서, SqFtTotLiving (집 면적)와 ZipCode(우편번호) 간의 교호작용을 고려하여 모델을 적합시켜야한다.
- 먼저, 집의 위치를 나타내는 ZipCode 변수에 대해 살펴보자.

- 80개의 우편번호 하나하나에 대해 가변수를 만들거나 그룹화하는것은 너무 복잡하다.
- 우편번호 당 집이 1개인 곳들도 있다.
- 따라서, 우편번호들 중 집값이 비슷한 구간들을 하나로 묶어 그룹화하고자 한다.

- 80개의 우편번호 하나하나에 대해 가변수를 만들거나 그룹화하는것은 너무 복잡하다.
- 우편번호 당 집이 1개인 곳들도 있다.
- 따라서, 우편번호들 중 집값이 비슷한 구간들을 하나로 묶어 그룹화하고자 한다.

```
house.ZipCode.value_counts() #총 80개의 우편번호가 있다.
```

```
ZipCode
98038
         788
98103
         671
98042
         641
98115
         620
98117
         619
        . . .
98288
98224
98068
98113
98043
Name: count, Length: 80, dtype: int64
```

- 80개의 우편번호 하나하나에 대해 가변수를 만들거나 그룹화하는것은 너무 복잡하다.
- 우편번호 당 집이 1개인 곳들도 있다.
- 따라서, 우편번호들 중 집값이 비슷한 구간들을 하나로 묶어 그룹화하고자 한다.

```
house.ZipCode.value_counts() #총 80개의 우편번호가 있다.
```

```
ZipCode
98038
         788
98103
         671
98042
         641
98115
         620
98117
         619
        . . .
98288
98224
98068
98113
98043
Name: count, Length: 80, dtype: int64
```

```
# 집값을 예측하는 다중회귀모델 적합

predictors = ['SqFtTotLiving', 'SqFtLot', 'Bathrooms', 'Bedrooms', 'BldgGrade']

outcome = 'AdjSalePrice'

house_lm = LinearRegression()
house_lm.fit(house[predictors], house[outcome])
```

	ZipCode	count	median_residual
36	98057	4	-537321.644462
27	98043	1	-307661.343614
46	98092	289	-193569.183599
23	98038	788	-150066.477035
31	98051	32	-142352.869593
60	98119	260	174462.549290
54	98112	357	232788.487256
25	98040	244	254004.002463
3	98004	293	383596.028729
24	98039	47	740960.478872

80 rows × 3 columns

```
#해당 ZipCode보다 더 '잔차가 작은' ZipCode를 갖는 집들의 개수를 반환한다.
zip_groups['cum_count'] = np.cumsum(zip_groups['count'])

#이를 총 5개의 구간으로 쪼갠다.
zip_groups['ZipGroup'] = pd.qcut(zip_groups['cum_count'], 5, labels=False, retbins=False)
zip_groups.head()
```

	ZipCode	count	median_residual	cum_count	ZipGroup	圖
36	98057	4	-537321.644462	4	0	11.
27	98043	1	-307661.343614	5	0	
46	98092	289	-193569.183599	294	0	
23	98038	788	-150066.477035	1082	0	
31	98051	32	-142352.869593	1114	0	

집값을 고려해 그룹별로 나눈 변수. 집값이 비슷한 그룹들끼리는 같은 **ZipGroup** 값을 가진다.

```
print(zip_groups.ZipGroup.value_counts().sort_index())

to_join = zip_groups[['ZipCode', 'ZipGroup']].set_index('ZipCode')
house = house.join(to_join, on='ZipCode')
house['ZipGroup'] = house['ZipGroup'].astype('category')

ZipGroup
0    16
1    16
2    16
3    16
4    16
Name: count, dtype: int64
```

```
print(zip_groups.ZipGroup.value_counts().sort_index())

to_join = zip_groups[['ZipCode', 'ZipGroup']].set_index('ZipCode')
house = house.join(to_join, on='ZipCode')
house['ZipGroup'] = house['ZipGroup'].astype('category')
```

ZipGroup

- 0 16
- 1 16
- 2 16
- 3 16
- 4 16

Name: count, dtype: int64

• 이제 교호작용을 고려한 모델을 적합시킬 수 있다.

만약 위 과정이 없다면?

- 80개의 우편번호 각각에 대한 교호작용을 고려하게 된다.
- 따라서 모델이 매우 복잡해진다.
- 또한, 우편번호는 숫자로 되어있긴 하지만 사실상 명목형 변수이다.
- 우편번호의 크고 작음이 위치의 가깝고 멈을 의미하지 않기 때문이다.
- 따라서 모델의 해석도 어렵다.

교호작용을 고려한 다중회귀분석 모델 적합

OLS Regression Results

D	A 1 ' C - 1 - D - '	B	0.603
le:	AdjSalePrice	R-squared:	0.682
결과 le:	0LS	Adj. R-squared:	0.682
Method:	Least Squares	F-statistic:	3247.
Date:	Thu, 18 Jul 2024	<pre>Prob (F-statistic):</pre>	0.00
Time:	23:56:43	Log-Likelihood:	-3.1098e+05
No. Observations:	22687	AIC:	6.220e+05
Df Residuals:	22671	BIC:	6.221e+05
Df Madal.	15		

Df Model: 15 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-4.853e+05	2.05e+04	-23 . 701	0.000	-5.25e+05	-4.45e+05
ZipGroup[T.1]	-1.113e+04	1.34e+04	-0.830	0.407	-3.74e+04	1.52e+04
ZipGroup[T.2]	2.032e+04	1.18e+04	1.717	0.086	-2877.441	4.35e+04
ZipGroup[T.3]	2.05e+04	1.21e+04	1.697	0.090	-3180.870	4.42e+04
ZipGroup[T.4]	-1.499e+05	1.13e+04	-13.285	0.000	-1.72e+05	-1.28e+05
<pre>PropertyType[T.Single Family]</pre>	1.357e+04	1.39e+04	0.975	0.330	-1.37e+04	4.09e+04
<pre>PropertyType[T.Townhouse]</pre>	-5.884e+04	1.51e+04	-3.888	0.000	-8.85e+04	-2 . 92e+04
SqFtTotLiving	114.7650	4.863	23.600	0.000	105.233	124.297
<pre>SqFtTotLiving:ZipGroup[T.1]</pre>	32.6043	5.712	5.708	0.000	21.409	43.799
<pre>SqFtTotLiving:ZipGroup[T.2]</pre>	41.7822	5.187	8.056	0.000	31.616	51.948
<pre>SqFtTotLiving:ZipGroup[T.3]</pre>	69.3415	5.619	12.341	0.000	58.329	80.354
<pre>SqFtTotLiving:ZipGroup[T.4]</pre>	226.6836	4.820	47.032	0.000	217.237	236.131
SqFtLot	0.6869	0.052	13.296	0.000	0.586	0.788
Bathrooms	-3619.4533	3202.296	-1.130	0.258	-9896.174	2657.267
Bedrooms	-4.18e+04	2120.279	-19.715	0.000	-4.6e+04	-3.76e+04
BldgGrade	1.047e+05	2069.472	50.592	0.000	1.01e+05	1.09e+05

Omnibus: Durbin-Watson: 30927.394 1.581 Jarque-Bera (JB): Prob(Omnibus): 0.000 34361794.502 Prob(JB): Skew: 7.279 0.00 193.101 Cond. No. Kurtosis: 5.80e+05

OLS Regression Results

Dep. Variable: 0.682 AdjSalePrice R-squared: Model: 0LS Adj. R-squared: 0.682 F-statistic: Method: Least Squares 3247. Thu, 18 Jul 2024 Prob (F-statistic): Date: 0.00 Time: 23:56:43 Log-Liketihood. CALDOCATIC

No. Observations: 22687 AIC: 6.220e+05 Df Residuals: 22671 BIC: 6.221e+05

Df Model: 15

Covariance Type: nonrobust

	coef	std err	======== t	P> t	[0.025	0.975]
Intercept	-4.853e+05	2.05e+04	-23.701	0.000	-5.25e+05	-4.45e+05
ZipGroup[T.1]	-1.113e+04	1.34e+04	-0.830	0.407	-3.74e+04	1.52e+04
ZipGroup[T.2]	2.032e+04	1.18e+04	1.717	0.086	-2877.441	4.35e+04
ZipGroup[T.3]	2.05e+04	1.21e+04	1.697	0.090	-3180.870	4.42e+04
ZipGroup[T.4]	-1.499e+05	1.13e+04	-13.285	0.000	-1.72e+05	-1.28e+05
<pre>PropertyType[T.Single Family]</pre>	1.357e+04	1.39e+04	0.975	0.330	-1.37e+04	4.09e+04
<pre>PropertyType[T.Townhouse]</pre>	-5.884e+04	1.51e+04	-3.888	0.000	-8.85e+04	-2.92e+04
SqFtTotLiving	114.7650	4.863	23.600	0.000	105.233	124.297
SqFtTotLiving:ZipGroup[T.1]	32.6043	5.712	5.708	0.000	21.409	43.799
SqFtTotLiving:ZipGroup[T.2]	41.7822	5.187	8.056	0.000	31.616	51.948
SqFtTotLiving:ZipGroup[T.3]	69.3415	5.619	12.341	0.000	58.329	80.354
SqFtTotLiving:ZipGroup[T.4]	226.6836	4.820	47.032	0.000	217.237	236.131
SqFtLot	0.6869	0.052	13.296	0.000	0.586	0.788
Bathrooms	-3619.4533	3202.296	-1.130	0.258	-9896.174	2657.267
Bedrooms	-4.18e+04	2120.279	-19.715	0.000	-4.6e+04	-3.76e+04
BldgGrade	1.047e+05	2069.472	50.592	0.000	1.01e+05	1.09e+05

Omnibus: Durbin-Watson: 30927.394 1.581 Prob(Omnibus): 0.000 Jarque-Bera (JB): 34361794.502 7.279 Prob(JB): Skew: 0.00 193.101 Cond. No. Kurtosis: 5.80e+05

모델의 설명력을 나타내는 R squared 값을 확인할 수 있다.

OLS Regression Results Dep. Variable: AdjSalePrice 0.682 R-squared: Model: 0LS Adj. R-squared: 0.682 Method: F-statistic: 3247. Least Squares Thu, 18 Jul 2024 Prob (F-statistic): 0.00 Date: Time: Log-Likelihood: -3.1098e+05 23:56:43 No. Observations: 22687 6.220e+05 AIC: Df Residuals: 22671 BIC: 6.221e+05 Df Model: 15 Covariance Type: nonrobust [0.025 0.975] coef std err P>|t| -23.701-4.853e+05 2.05e+04 -5.25e+05 -4.45e+05 Intercept 0.000 -0.830 -3.74e+04 ZipGroup[T.1] -1.113e+04 1.34e+04 0.407 1.52e+04 4.35e+04 ZipGroup[T.2] 2.032e+04 1.18e+04 1.717 0.086 -2877.441 2.05e+04 1.21e+04 1.697 -3180.870 4.42e+04 ZipGroup[T.3] 0.090 ZipGroup[T.4] -1.499e+05 1.13e+04 -13.2850.000 -1.72e+05 -1.28e+05 PropertyType[T.Single Family] 1.357e+04 -1.37e+04 1.39e+04 0.975 0.330 4.09e+04 PropertyType[T.Townhouse] 0.000 -8.85e+04-5-884e+04 1.51e+04 -3.888 -2.92e+04SqFtTotLiving 114.7650 4.863 23.600 0.000 105.233 124.297 SqFtTotLiving:ZipGroup[T.1] 43.799 32.6043 5.712 5.708 0.000 21.409 SqFtTotLiving:ZipGroup[T.2] 41.7822 5.187 8.056 31.616 51.948 0.000 SqFtTotLiving:ZipGroup[T.3] 69.3415 5.619 12.341 0.000 58.329 80.354 SqFtTotLiving:ZipGroup[T.4] 4.820 47.032 0.000 217.237 226.6836 236.131 SqrtLot **60000** 13.290 סמכיש Ø./88 ∠כש⊾ש טטט . ט Bathrooms -3619.4533 3202.296 0.258 -9896.174 2657.267 -1.130Bedrooms -4.18e+04 2120.279 -19.7150.000 -4.6e+04 -3.76e+04 2069.472 1.047e+05 50.592 0.000 1.01e+05 1.09e+05 BldgGrade Omnibus: 30927.394 Durbin-Watson: 1.581 Prob(Omnibus): 0.000 Jarque-Bera (JB): 34361794.502

7.279

193.101

Prob(JB):

Cond. No.

Skew:

Kurtosis:

교호작용에 해당되는 계수만 확인하자.

0.00

5.80e+05

- 주택 크기와 위치 사이에는 강한 상호작용이 있다.
- 가격대가 가장 낮은ZipGroup에서 주택 크기에 대한 기울기는, SqFtTotLiving의 계수인 114.76이다.
- 그 다음으로 가격대가 낮은 ZipGroup에서 주택 크기에 대한 기울기는 114.76+32.60 = 147.36이다.
- 가장 가격대가 높은 ZipGroup에서 주택 크기에 대한 기울기는 114.76+226.68 = 341.44이다.

			0.000	0.000	0.000.	
SqFtTotLiving	114.7650	4.863	23.600	0.000	105.233	124.297
SqFtTotLiving:ZipGroup[T.1]	32.6043	5.712	5.708	0.000	21.409	43.799
SqFtTotLiving:ZipGroup[T.2]	41.7822	5.187	8.056	0.000	31.616	51.948
SqFtTotLiving:ZipGroup[T.3]	69.3415	5.619	12.341	0.000	58.329	80.354
SqFtTotLiving:ZipGroup[T.4]	226.6836	4.820	47.032	0.000	217.237	236.131
	10 EVET	0 050	12 206	0 000	0 E0C	A 700

감사합니다.