

Definition A.4.1. For a sequence of sets A_n , $n \in \mathbb{N}$, we define

$$\begin{split} \inf_{k\geq n}A_k &= \bigcap_{k=n}^\infty A_k \\ \sup_{k\geq n}A_k &= \bigcup_{k=n}^\infty A_k \\ \liminf_{n\to\infty}A_n &= \bigcup_{n\in\mathbb{N}} \inf_{k\geq n}A_k = \bigcup_{n\in\mathbb{N}} \bigcap_{k=n}^\infty A_k \\ \limsup_{n\to\infty}A_n &= \bigcap_{n\in\mathbb{N}} \sup_{k\geq n}A_k = \bigcap_{n\in\mathbb{N}} \bigcup_{k=n}^\infty A_k. \end{split}$$

Applying De-Morgan's law (Proposition A.1.1) we have

$$\left(\liminf_{n o\infty}A_n
ight)^c=\limsup_{n o\infty}A_n^c.$$

Definition A.4.2. If for a sequence of sets A_n , $n \in \mathbb{N}$, we have $\liminf_{n \to \infty} A_n = \limsup_{n \to \infty} A_n$, we define the limit of A_n , $n \in \mathbb{N}$ to be

$$\lim_{n o\infty}A_n=\liminf_{n o\infty}A_n=\limsup_{n o\infty}A_n,$$

The notation $A_n o A$ is equivalent to the notation $\lim_{n o \infty} A_n = A$

Example A.4.1. For the sequence of sets $A_k = [0, k/(k+1))$ from Example A.1.6 we have

$$egin{aligned} \inf_{k\geq n}A_k&=[0,n/(n+1))\ \sup_{k\geq n}A_k&=[0,1)\ \limsup_{n o\infty}A_n&=[0,1)\ \liminf_{n o\infty}A_n&=[0,1)\ \dim\inf_{n o\infty}A_n&=[0,1). \end{aligned}$$

We have the following interpretation for the lim inf and lim sup limits.

Proposition A.4.1. Let $A_n, n \in \mathbb{N}$ be a sequence of subsets of Ω . Then

$$egin{aligned} \limsup_{n o \infty} A_n &= \left\{ \omega \in \Omega \, : \, \sum_{n \in \mathbb{N}} I_{A_n}(\omega) = \infty
ight\} \ \lim\inf_{n o \infty} A_n &= \left\{ \omega \in \Omega \, : \, \sum_{n \in \mathbb{N}} I_{A_n^c}(\omega) < \infty
ight\}. \end{aligned}$$

In other words, $\limsup_{n\to\infty}A_n$ is the set of $\omega\in\Omega$ that appear infinitely often (abbreviated i.o.) in the sequence A_n , and $\liminf_{n\to\infty}A_n$ is the set of $\omega\in\Omega$ that always appear in the sequence A_n except for a finite number of times.

Proof. We prove the first part. The proof of the second part is similar. If $\omega \in \limsup_{n \to \infty} A_n$ then by definition for all n there exists a k_n such that $\omega \in A_{k_n}$. For that ω we have $\sum_{n \in \mathbb{N}} I_{A_n}(\omega) = \infty$. Conversely, if $\sum_{n \in \mathbb{N}} I_{A_n}(\omega) = \infty$, there exists a sequence k_1, k_2, \ldots such that $\omega \in A_{k_n}$, implying that for all $n \in \mathbb{N}$, $\omega \in \bigcup_{i > n} A_i$.

Corollary A.4.1.

$$\liminf_{n o \infty} A_n \subset \limsup_{n o \infty} A_n.$$

Definition A.4.3. A sequence of sets $A_n, n \in \mathbb{N}$ is monotonic non-decreasing if $A_1 \subset A_2 \subset A_3 \subset \cdots$ and monotonic non-increasing if $\cdots \subset A_3 \subset A_2 \subset A_1$. We denote this as $A_n \nearrow$ and $A_n \searrow$ respectively. If $\lim A_n = A$, we denote this as $A_n \nearrow A$ and $A_n \searrow A$, respectively.

Proposition A.4.2. If $A_n \nearrow$ then $\lim_{n\to\infty} A_n = \bigcup_{n\in\mathbb{N}} A_n$ and if $A_n \searrow$ then $\lim_{n\to\infty} A_n = \bigcap_{n\in\mathbb{N}} A_n$.

Proof. We prove the first statement. The proof of the second statement is similar. We need to show that if A_n is monotonic non-decreasing, then $\limsup A_n = \liminf A_n = \bigcup_n A_n$. Since $A_i \subset A_{i+1}$, we have $\bigcap_{k \geq n} A_k = A_n$, and

$$egin{aligned} \liminf_{n o\infty}A_n &= igcup_{n\in\mathbb{N}}igcap_{k\geq n}A_k = igcup_{n\in\mathbb{N}}A_n \ \limsup_{n o\infty}A_n &= igcap_{n\in\mathbb{N}}igcup_{k\geq n}A_k \subset igcup_{k\in\mathbb{N}}A_k = \liminf_{n o\infty}A_n \subset \limsup_{n o\infty}A_n. \end{aligned}$$

The following corollary of the above proposition motivates the notations lim inf and lim sup.

Corollary A.4.2. Since $B_n = \cup_{k \geq n} A_k$ and $C_n = \cap_{k \geq n} A_k$ are monotonic sequences

$$egin{aligned} \liminf_{n o \infty} A_n &= \lim_{n o \infty} \inf_{k \geq n} A_n \ \limsup_{n o \infty} A_n &= \lim_{n o \infty} \sup_{k \geq n} A_n. \end{aligned}$$