### L07: Cryptography

 Cryptography is the study of methods for sending and receiving secret messages through insure channels

- Outline:
  - Private Key Cryptography
  - Key Exchange
  - Public Key Cryptography and RSA

Reading: Rosen 4.5, 4.6

## Private Key Cryptography

 In private key cryptography, the sender (Alice) and the receiver (Bob) first agree on a common secret key in advance



# Caesar Cipher (Shift Cypher)



- Encryption
  - The secret key k is a number from  $\mathbf{Z}_{26}$
  - Replace each letter by an integer from  $\mathbf{Z}_{26}$
  - The encryption function is  $f(p) = (p + k) \mod 26$ . It replaces each integer p by f(p).
  - Replace each integer by the corresponding letter
- Decryption
  - Just replace f(p) with  $f^{-1}(p) = (p k) \mod 26$  in the procedure above.

### Caesar Cipher: Example

#### Example

Encrypt the message "MEET YOU IN THE PARK" using k = 3

#### Solution

- Replace letters by numbers:
   12 4 4 19 24 14 20 8 13 19 7 4 15 0 17 10.
- Replace each of these numbers p by f(p):
   15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13.
- Translating the numbers back to letters "PHHW BRX LQ WKH SDUN."

# **Affine Ciphers**

- The shift cipher is easy to break:
  - Just try all 26 possible keys!
- Affine ciphers make it (a little bit) safer by using both additions and multiplications
- Use the function  $f(p) = (ap + b) \mod 26$ 
  - The (a, b) pair is the secret key
  - Now there are  $26^2 = 676$  possible secret keys
- However, suppose a = 13, b = 1
  - f(1) = f(3) = 14
  - If we receive a 14, which number does it decrypt to?
- How to fix?
  - Choose a such that gcd(a, 26) = 1, e.g., a = 7
  - Then  $ax + b \equiv y \pmod{p}$  has a unique solution

# **Block Ciphers**

- Each character is a number between 0 and 255
  - A byte = 8 bits
- Partition the message into blocks of k characters
  - Treat each block as a big number of 8k bits
  - Use arithmetic modulo 2<sup>8k</sup>
- Example
  - Choose k = 10
  - Encryption:  $f(x) = ax + b \mod 2^{80}$
  - Decryption:  $f^{-1}(y) = a^{-1}(y b) \mod 2^{80}$
  - Now there are  $\frac{2^{80}}{2} \times 2^{80} = 2^{159}$  different keys
- There are libraries on arbitrary-precision arithmetic

### Advanced Encryption Standard (AES)

- Used in Transport Layer Security (TLS)
  - Previously known as Secure Sockets Layer (SSL)
  - Provides security for https, email, etc.
- A block cipher
  - Block size 128 bits
  - Key lengths: 128, 192, 256 bits
- Complicated operations that make it very difficult to break



#### Outline

- Private Key Cryptography
- Key Exchange
- Public Key Cryptography and RSA

#### Problems with private-key cryptography

- How to send the secrete key?
  - Keys had to be transmitted in physical form in World War II
- How to distribute different keys to different customers?





New Security Device

## The Key Exchange Puzzle



- Alice wants to send a valuable item to Bob, but the postman cannot be trusted
  - Alice can put an (unbreakable) lock on the box, but Bob cannot open it without the key
- Solution
  - Alice puts her lock on the box, and send its to Bob.
  - Bob, after receiving the box, puts his lock on the box as well, and returns to Alice.
  - Alice, after receiving the box, takes off her lock, and sends it back to Bob.
  - Bob takes off his lock and opens the box.

#### Modular Exponentiation

How to compute

 $a^n \mod m$  efficiently for large n?

- Repeated squaring method
  - Compute  $a^2 \mod m$   $a^{2^2} \mod m = a^4 \mod m = (a^2 \mod m)^2 \mod m$  $a^{2^3} \mod m = a^8 \mod m = (a^4 \mod m)^2 \mod m$
  - Write n in binary  $n = (b_k \dots b_1 b_0)_2$
  - $a^n \equiv a^{b_0 \cdot 1} \cdot a^{b_1 \cdot 2} \cdot a^{b_2 \cdot 2^2} \cdots \pmod{m}$
- Example:  $n = 50 = (110010)_2$ 
  - $a^{50} \equiv a^{2^1} a^{2^4} a^{2^5} \pmod{m}$

## A Hard Problem: Discrete Logarithm

- "Locks" in cryptography correspond to problems that are believed to be computationally difficult
- Yes, if you can solve these problems, you can break current crypto systems
- Discrete logarithm is one such problem
  - Opposite of modular exponentiation
  - Given a prime p (potentially very large) and  $r, a \in \mathbf{Z}_p$ , find  $x \in \mathbf{Z}_p$  such that

$$r^x \equiv a$$

- In 2015, it was reported that for 512-bit primes, the problem can be solved with a few thousands of CPUs in a week
  - Estimated cost to break 1024 bits: US\$100 million.

## Diffe-Hellman Key Exchange

- Fix p and a
  - E.g., hardcoded in the TLS library
- The protocol
  - 1) Alice chooses a secret integer  $k_1$  and sends  $a^{k_1} \mod p$  to Bob. Secure to eavesdropping: Even this value is known to attackers, they cannot compute  $k_1$
  - 2) Bob chooses a secret integer  $k_2$  and sends  $a^{k_2} \mod p$  to Alice.
  - 3) Alice computes  $(a^{k_2})^{k_1} \mod p$ .
  - 4) Bob computes  $(a^{k_1})^{k_2} \mod p$ .
- The shared key is  $(a^{k_1})^{k_2} \bmod p = (a^{k_2})^{k_1} \bmod p$

#### Man-in-the-middle Attack





- If attacker intercepts all traffic between two parties
- Diffe-Hellman protocol can be compromised
- Attacker
  - communicates with Alice pretending as Bob
  - communicates with Bob pretending as Alice

#### Outline

- Private Key Cryptography
- Key Exchange
- Public Key Cryptography and RSA

## Public Key Cryptography

- All previous ciphers need a common private key
- Encryption and decryption are symmetric
- The key has to be
  - communicated physically in private
  - using the DH protocol (secure to eavesdropping but not man-in-the-middle)
- Public key cryptography
  - Encryption and decryption are asymmetric
  - Everyone has
    - a public key: shared with everyone else
    - a private key: kept in private

# The RSA Cryptosystem

Ronald Rivest (Born 1948)



Adi Shamir (Born 1952)



Leonard Adelman (Born 1945)





Clifford Cocks (Born 1950)

- RSA was introduced in 1976 by RSA.
- In fact, Clifford Cocks, working secretly for the UK government, discovered it 3 years earlier.
  - Made known to public in late 1990s.

#### Another Difficult Problem: Factoring

- Let n = pq, where p and q are large primes (e.g. 1024 bits or longer)
- The factoring problem: Given n, find p and q
- On the other hand, it is known how to find large primes efficiently
- Public key in RSA: n and e, such that e is relatively prime to (p-1)(q-1)
- Private key in RSA: p and q
- Everyone uses a different set of keys

### **Key Generator**



# This is My Public Key

```
---- BEGIN SSH2 PUBLIC KEY ----

Comment: "rsa-key-20161118"

AAAAB3NzaC1yc2EAAAABJQAAAQEAkrwKeUwwz0jThhh2NSS8EJhED18VDzyCh8Rw
y2NJ6nHymOwyCWicUhjiY7wPOMljt6XFlmnAHACz0JhAg/hAHHYF8bdJJZ4slZrM
kNRQ0ZUDVDvacygKjeXDjneCvFrS+78ancE7gGGkZMaxWf4NsQVCoX3wRMuk6cHs
mrwGINYWGCHshjLAnzYwPvLegvlPszh1zhgzziMGNU08wf/q8WOrZmrtHB4epWhI
aSEjNIZmDlbkyy8SwW4y/7GjVKNLpnObUHh7qqBDnmWd5HnMWAEuHxbAhMXqIWIS
UKe8cwnFBWHpHCXMCyoCI1uJNhfjtj2hq7QKkejH/jCJ5U26pQ==
---- END SSH2 PUBLIC KEY ----
```

### **RSA Encryption**

- Let x < n be the message to be encrypted
- Alice encrypts it as

$$C = x^e \mod n$$

- (n, e) is Bob's public key
- Sends C to Bob
- C may be eavesdropped
- Security
  - Exponentiation can be computed efficiently
    - Proportional to the length of the key
  - Computing x from (n, e) is believed to be difficult
    - Similar to discrete logarithm

#### RSA Decryption

- Bob receives C
- Bob decrypts x from C using his private key (p,q)
  - Find d, the inverse of e modulo (p-1)(q-1), i.e.,  $de \equiv 1 \pmod{(p-1)(q-1)}$
  - Compute

$$C^d \mod n$$

- Will show later that  $C^d \equiv (x^e)^d \equiv x^{de} \equiv x \pmod{n}$
- Security:
  - It's hard to find d without knowing (p, q)

#### RSA in Use

- Sending secrete messages
  - Divide message into blocks such that each block is a number < n</li>
  - Alice encodes her message using Bob's public key
  - Bob decodes the message using his private key
- Digital signatures (authentication)
  - Alice encodes her message using her private key
    - Computes  $C = x^d \mod n$
  - Bob (or anyone else) decodes the message using Alice's public key
    - Computes  $C^e \mod n = x^{de} \mod n = x$
  - He will know the message indeed came from Alice

#### RSA in Use

- How to prevent man-in-the-middle attacks?
- How to make sure that Alice's public key indeed belongs Alice?
- Certificate authority (CA)
  - A small number of trusted third parties: Comodo, Symantex, GoDaddy, GlobalSign, ...
- How to make sure that a CA's public key indeed belongs to that CA?
- Built into Internet browsers
- How can I trust my browser and the CAs?
- Well, you have to ...



#### HKUST - Central Authentication

Special authenticati services of a secure

- For Students ple Access Code
- For Faculty/Staff as the Access Cod



To further

#### RSA: Correctness

#### Proof plan

We want to show

$$C^d = x^{de} \equiv x \pmod{n}$$
.

Step 1: Show that

$$x^{de} \equiv x \pmod{p}$$

$$x^{de} \equiv x \pmod{q}$$

Step 2: Show that

$$x^{de} \equiv x \pmod{pq}$$

#### Fermat's Little Theorem



Pierre de Fermat (1601-1665)

#### Theorem

If p is prime and a is an integer not divisible by p, then  $a^{p-1} \equiv 1 \pmod{p}$ 

- Proof omitted
- Useful in computing the remainders of large powers

#### • Example:

Find 7<sup>222</sup> mod 11.

By the theorem, we know that  $7^{10} \equiv 1 \pmod{11}$ , and so  $(7^{10})^k \equiv 1 \pmod{11}$ , for any positive integer k.

Therefore,

$$7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} \cdot 7^2 \equiv 1^{22} \cdot 49 \equiv 5 \pmod{11}$$

## RSA Correctness Step 1

#### Proof

We know d is the inverse of e modulo (p-1)(q-1), so de = 1 + k(p-1)(q-1).

It follows that

$$C^{d} \equiv (x^{e})^{d} \pmod{p}$$

$$\equiv x^{de} \pmod{p}$$

$$\equiv x^{1+k(p-1)(q-1)} \pmod{p}$$

Case 1:  $x^{k(q-1)}$  is not a multiple of p.

Applying Fermat's Little Theorem with  $a = x^{k(q-1)}$ :

$$x^{k(p-1)(q-1)} \equiv 1 \pmod{p},$$

SO

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{p},$$

### RSA Correctness Step 1 (cnt'd)

• Case 2:  $x^{k(q-1)}$  is a multiple of p. Then

$$x^{k(p-1)(q-1)} \equiv 0 \pmod{p}$$
  
 $x^{1+k(p-1)(q-1)} \equiv 0 \pmod{p}$ 

On the other hand, since  $x^{k(q-1)}$  is a multiple of p and p is a prime, then x must be a multiple of p. So

$$x \equiv 0 \pmod{p}$$

Thus in this case, we have

$$x^{1+k(p-1)(q-1)} \equiv x \equiv 0 \pmod{p}.$$

■ The proof for  $x^{de} \equiv x \pmod{q}$  is symmetric.

#### RSA Correctness Step 2

- A simple property of prime numbers
  - If p and q are both primes and  $p \mid z, q \mid z$ , then  $pq \mid z$
- Proof of Step 2:
  - We already have

$$x^{de} \equiv x \pmod{p}$$
$$x^{de} \equiv x \pmod{q}$$

So,

$$p \mid (x^{de} - x)$$
$$q \mid (x^{de} - x)$$

Therefore,

$$pq \mid (x^{de} - x)$$
$$x^{de} \equiv x \pmod{pq}$$