Vérification Qualitative – Model-Checking et Logiques Temporelles

Franck Cassez

CNRS/IRCCyN UMR 6597,

1 rue de la Noë,

B.P. 92101, 44321 Nantes Cedex 03

e-mail: Franck.Cassez@irccyn.ec-nantes.fr

9 septembre 2003

Quelques caractéristiques des applications concurrentes

- réactivité (contrôler un environnement)
 systèmes d'exploitation, protocoles de communication
- complexité (activités parallèles, systèmes répartis et communicants) réseaux, BDs réparties
- criticité (enjeux humains ou financiers)
 transports, nucléaire, téléphone, médical, etc
- non-interopérabilité (... embarqués ...)
 robots marsiens, etc

Quelques caractéristiques des applications concurrentes

- réactivité (contrôler un environnement)
 systèmes d'exploitation, protocoles de communication
- complexité (activités parallèles, systèmes répartis et communicants) réseaux, BDs réparties
- criticité (enjeux humains ou financiers)
 transports, nucléaire, téléphone, médical, etc
- non-interopérabilité (... embarqués ...)
 robots marsiens, etc
- méthodes de développement rigoureuses et vérification

Comment et quoi vérifier?

quoi : des spécifications formelles sur un modèle formel du système

- temps logique

 Vérification Qualitative

 Automates + Logiques Temporelles

comment:

démonstration automatique : ... pas automatique – universel (on peut théoriquement tout prouver) – outils : theorems provers

model-cheking: automatique – limitation: taille du système – outils: model-chekers

test : pas exhaustif – possible sur des implémentations de grande taille – outils : générateurs de tests

Développement d'un système critique

Sommaire Général

	Mo	délisation et spécification des systèmes concurrents	6
1		èmes de transitions Systèmes de transitions	7
	1.2	Synchronisation des SdeTs	
		1.2.1 Produit libre de SdeTs	Ę
		1.2.2 Produit synchronisé de SdeTs	6
	1.3	Equité (Fairness)	23
	1.4	Déterminisme – non déterminisme	<u> </u>
	1.5	Equivalence de systèmes de transitions	26
		1.5.1 Equivalence de traces	35
		1.5.2 Equivalence de traces	35
		1.5.3 Bisimulation (forte)	<u>)</u> (
		1.5.4 Bisimulation (forte)	<u>}</u> {
2		Logiques Temporelles – temps discret Logique temporelle linéaire (LTL)	32
		2.1.1 Syntaxe de LTL	36

		212	Cámantique de LTI	27
		2.1.2	Sémantique de LTL	31
		2.1.3	Abbréviations utiles	38
		2.1.4	Equité (Sec. (1.3)) en LTL	40
		2.1.5	Equité (Sec. (1.3)) en LTL	40
		2.1.6	Quelques relation entre formules	41
	2.2	Logiqu	ue temporelle arborescente : CTL	42
		2.2.1	Syntaxe de CTL	42
		2.2.2	Sémantique de CTL	43
		2.2.3	Abbréviations utiles	44
		2.2.4	Equité en CTL	48
		2.2.5	Quelques équivalences de formules	49
	2.3	LTL +	$CTL \subseteq CTL^*$	50
		2.3.1	Syntaxe de CTL*	50
		2.3.2	Sémantique de CTL*	51
	Alg	gorith	mes de model-checking	53
3	Mod	del-che	cking de LTL	55
			nates de Büchi	56
	3.2	Princip	pe du model-checking pour LTL	60

	3.3	Complexité du model-cheking de LTL	61
	3.4	Model-checking de LTL "à la volée"(on-the-fly)	62
	3.5	Construction de B_ϕ	63
4	Mod	lel-checking de CTL	67
	4.1	Principe du Model-checking pour CTL	68
	4.2	Complexité du model-cheking de CTL	70
5		lel-checking symbolique	71
	5.1	Calcul symbolique d'ensemble d'états	74
	5.2	Binary Decision Diagrams (BDD)	78
	5.3	Binary Decision Diagrams (BDD)	78
	5.4	Opérations sur les ROBDDs	83
	5.5	Model-checking à base de ROBDDs	86
Ш	Bi	bliographie	88

Première partie : Modélisation et spécification des systèmes concurrents

Chapitre 1 : Systèmes de transitions

Sommaire

1.1	Systèmes de transitions
1.2	Synchronisation des SdeTs
	1.2.1 Produit libre de SdeTs
	1.2.2 Produit synchronisé de SdeTs
1.3	Equité (Fairness)
1.4	Déterminisme – non déterminisme
1.5	Equivalence de systèmes de transitions
	1.5.1 Equivalence de traces
	1.5.2 Equivalence de traces
	1.5.3 Bisimulation (forte)
	1.5.4 Bisimulation (forte)

1.1– Systèmes de transitions

Définition 1 (Système de transitions (SdeT) [4]) Un SdeTS c'est :

- Q un ensemble (fini) d'états,
- s_0 , un état initial
- A un alphabet (fini) d'actions,
- $\longrightarrow \subseteq Q \times A \times Q$ une relation de transition.

$$\sigma = s_0 \xrightarrow{l_0} s_1 \dots s_n \xrightarrow{l_n} s_{n+1} \dots$$
 est un chemin (exécution) de S si $\forall i \geq 0, (s_i, l_i, s_{i+1}) \in \longrightarrow$

- $\mathit{Tr}(\sigma) = l_0 l_1 \cdots l_n \cdots$ est la trace de σ
- s est accessible $\iff \exists s_0 \overset{w}{\longrightarrow} s, \ w \in A^*$
- ullet Reach(S) est l'ensemble des états accessibles dans S
- ullet Un SdeT ullettiquetullet est un SdeT avec une fonction $L:Q o 2^{AP}$.

Fig. 1.1 – SdeT représentant un interrupteur

Fig. 1.2 – SdeT étiqueté représentant un interrupteur

$$L(0) = \{ \text{On, Init} \} \qquad L(1) = \{ \text{Off} \}$$

$$L^{-1}(\text{On}) = \{ 0 \} \qquad L^{-1}(\text{Off}) = \{ 1 \}$$

Fig. 1.3 – SdeT représentant le fonctionnement d'un GAB

Fig. 1.4 – Un GAB plus perfectionné

• ensemble V de valeurs fini \iff SdeT fini

$$v := k$$

$$v := [i, j], \dots$$

- description concise
- ullet nombre réel d'états $\leq |V| imes |Q|$
- système réel = dépliage du système avec variables
- variantes des modèles : voir [20]

Exemple: introduire une/des variables pour le code.

1.2- Synchronisation des SdeTs

- un SdeT = description d'un composant d'un système
- un système réel = un ensemble de modules interagissants
- but : construire le système global à partir des sous-systèmes
- moyen : décrire l'interaction entre les sous-systèmes

formalisation : produit synchronisé de SdeT à la Arnold-Nivat [4]

1.2.1 – Produit libre de SdeTs

Définition 2 (Produit libre (ou cartésien) [4]) $S_i = (Q_i, s_0^i, A_i, \rightarrow_i)$,

n SdeTs. Le produit libre $S_1 \parallel S_2 \cdots \parallel S_n$ des SdeTs S_i est un SdeT

$$S = (Q, s_0, A, \rightarrow)$$
 défini par :

- $Q = Q_1 \times Q_2 \times \cdots \times Q_n$
- $s_0 = (s_0^1, s_0^2, \dots, s_0^n)$,
- \bullet $A = A_1 \times A_2 \times \cdots \times A_n$,
- $\bullet \longrightarrow \subseteq Q \times A \times Q$:

$$(q_1, \ldots, q_n) \xrightarrow{(a_1, \ldots, a_n)} (q'_1, \ldots, q'_n) \iff \forall i, q_i \xrightarrow{a_i} q'_i$$

1.2.2 – Produit synchronisé de SdeTs

Définition 3 (Produit synchronisé [4]) $S_i = (Q_i, s_0^i, A_i, \rightarrow_i)$, n $SdeTs.f: A_1 \cup \{\bullet\} \times A_2 \cup \{\bullet\} \times \cdots \times A_n \cup \{\bullet\} \longrightarrow A \text{ fonction partielle de synchronisation. Le produit synchronisé } (S_1 \parallel S_2 \cdots \parallel S_n)_f$ $des SdeTs S_i$ est un $SdeT S = (Q, s_0, A, \rightarrow)$ défini par :

- $Q = Q_1 \times Q_2 \times \cdots \times Q_n,$
- $s_0 = (s_0^1, s_0^2, \dots, s_0^n)$,
- A (nouvel alphabet),
- $\bullet \longrightarrow \subseteq Q \times A \times Q$:

- but : décrire envoi/réception de messages : communication synchrone
- principe : étiquettes de transitions envoi =!m, réception =?m implicitement : !m initie la communication
- ullet description de la communication : synchronisation de !m et ?m

Asynchronisme

- nouvelle étiquette : = "ne rien faire"
- ajout à la définition (1) : $\forall q \in S, q \xrightarrow{\bullet} q$
- modélisation de *l'asynchronisme* entre systèmes : produit synchronisé (3) avec des : $(\bullet, \ldots, \bullet, a_k, \bullet, \ldots, \bullet, a_j, \bullet, \ldots, \bullet)$

Fig. 1.5 – GAB avec messages

Exemple: Le GAB et un utilisateur (suite)

Fig. 1.6 – Un bon utilisateur

Contrainte de synchronisation f pour (GAB imes U) :

```
( ?in-card, !in-card )
( ?valide, !valide )
( !out-card, ?out-card )
( !take, ?take )
( code-OK, ● )
( code-not-OK, ● )
( keep-card, ● )
```

Exemple: Le GAB et un utilisateur (suite)

Fig. 1.7 – Un bon utilisateur

Contrainte de synchronisation f pour (GAB imes U) :

```
?in-card,
             !in-card
                             = in
  ?valide,
               !valide
                             =valide
  !out-card, ?out-card
                             =out
    !take,
                 ?take
                             =take
 code-OK,
                             =code-OK
code-not-OK,
                             =code-not-OK
 keep-card,
                             =keep-card
```


Fig. 1.8 – Produit synchronisé GAB imes U – contrainte f

Synchronisation par variable(s) partagée(s)

Fig. 1.10 – Utilisateur avec code PIN

Blocage

deadlock : blocage non souhaité du système

- états sources d'aucune transition
- \neq état final : état *normal* d'arrêt

différence \Longrightarrow utiliser étiquetage (1) : L(s) = terminal

Livelock: *franchissement d'une transition possible* mais on reste dans le même état

- S un SdeT : toute exécution (infinie) de $S\Longrightarrow$ une $\emph{transition}$ de S est $\emph{infiniment souvent tirée}$
- $S = S_1 \parallel S_2$: exécution infinie de $S \not\Longrightarrow$ infiniment souvent une transition de S_1 (S_2) soit tirée

équité forte : toute transition *infiniment souvent tirable* est *infiniment souvent tirée*

équité faible : toute transition *toujours tirable à partir d'un certain moment* est *infiniment souvent tirée*

Exo: Définir formellement les critères d'équité. Relation équités forte et faible.

1.4- Déterminisme - non déterminisme

Définition 4 (SdeT déterministe) Un SdeT $S = (Q, s_0, A, \rightarrow)$ est déterministe ssi

$$\forall s, s', s'' \in S, \forall a \in A, s \xrightarrow{a} s' \land s \xrightarrow{a} s'' \Longrightarrow s' = s''$$

Sinon il est non déterministe.

- SdeT déterministe : traces identiques => exécutions identiques (une exécution possible)
- SdeT non déterministe : choix non déterministe du système (parmi un nombre fini de choix)

Exemple: Abstraction non déterministe du GAB

Fig. 1.11 – GAB non déterministe

1.5- Equivalence de systèmes de transitions

Définition 5 (Langage - Arbre d'exécution) $S = (Q, s_0, A, \rightarrow)$ un SdeT (Def 1)

- $Run^*(S) = ensemble des exécutions finies$
- $Run^{\omega}(S)$ l'ensemble des exécutions infinies.

Langage de S:

$$L^*(S) = \{ \mathit{Tr}(\sigma), \sigma \in \mathit{Run}^*(S) \}$$

$$L^{\omega}(S) = \{ \mathit{Tr}(\sigma), \sigma \in \mathit{Run}^{\omega}(S) \}$$

Arbre d'exécution : $A(S) \ de \ S$

- 1. s_0 est la racine de A(S);
- 2. si s est un nœud de A(S) et $s \stackrel{a}{\rightarrow} s'$ alors s' est un fils de s.

- ullet but : définir des *équivalences* pour 2 SdeTs S et S'
- critères :
 - \square mêmes \emph{traces} (L(S) = L(S'))
 - \square mêmes structures (A(S) = A(S'))
- formalisation de ces critères
- propriétés et relations entre les critères

exemple : équivalence de traces et bisimulation

1.5.1 – Equivalence de traces

- $S=(Q,s_0,A,\rightarrow)$ et $S'=(Q',s_0',A,\rightarrow')$ des SdeTs
- $L(S,q) = \{ \text{traces des chemins commençants en } q \text{ dans } S \}$
- $q \in S, q' \in S', q \stackrel{t}{\approx} q' \iff L(S, q) = L(S', q')$
- $S \stackrel{t}{\approx} S' \iff s_0 \stackrel{t}{\approx} s_0'$

Fig. 1.12 – Automates traces-équivalents

1.5.2 Equivalence de traces

- $S=(Q,s_0,A,\rightarrow)$ et $S'=(Q',s_0',A,\rightarrow')$ des SdeTs
- $L(S,q) = \{ \text{traces des chemins commençants en } q \text{ dans } S \}$

•
$$q \in S, q' \in S', q \stackrel{t}{\approx} q' \iff L(S, q) = L(S', q')$$

• $S \stackrel{t}{\approx} S' \iff s_0 \stackrel{t}{\approx} s_0'$

Fig. 1.13 – Automates traces-équivalents

Extensions: traces acceptantes, refusantes, ...

1.5.3 – Bisimulation (forte)

- $S=(Q,s_0,A,\rightarrow)$ et $S'=(Q',s_0',A,\rightarrow')$ des SdeTs
- S (resp. S') peut *mimer* chaque transition de S' (resp. S)
- vu de *l'extérieur* S et S' sont *indiscernables*

1.5.4— Bisimulation (forte)

- $S=(Q,s_0,A,\rightarrow)$ et $S'=(Q',s_0',A,\rightarrow')$ des SdeTs
- S (resp. S') peut *mimer* chaque transition de S' (resp. S)
- vu de *l'extérieur* S et S' sont *indiscernables*

Fig. 1.15 – Automates non bisimilaires

$$\forall (s \xrightarrow{a} s_1) \Longrightarrow \exists (s' \xrightarrow{a} s_1') \land s_1 \mathcal{R} s_1' \tag{1.1}$$

$$\forall (s' \xrightarrow{a} s_1') \Longrightarrow \exists (s \xrightarrow{a} s_1) \land s_1 \mathcal{R} s_1' \tag{1.2}$$

S et S' sont en bisimulation $S \stackrel{b}{\approx} S'$ ssi il existe une relation de bisimulation \mathcal{R} entre S et S' avec $s_0 \mathcal{R} s_0'$. Si uniquement (1.1) alors \mathcal{R} est une relation de simulation entre S' et S et S' simule S.

Exo : S' simule S et S simule $S' \Longrightarrow S$ et S' sont bisimilaires? Relation entre équivalence de traces et bisimulation?

Equivalences (fin ...)

- $\bullet S \stackrel{b}{\approx} S' \Longrightarrow S \stackrel{t}{\approx} S'$
- si S et S' déterministes $S \stackrel{b}{\approx} S' \iff S \stackrel{t}{\approx} S'$
- ex. extension : bisimulation faible : $\tau^*a\tau^*$ où τ action inobservable

Chapitre 2: Les Logiques Temporelles

Sommaire

2.1	Logique temporelle linéaire (LTL)	6
	2.1.1 Syntaxe de LTL	6
	2.1.2 Sémantique de LTL	57
	2.1.3 Abbréviations utiles	8
	2.1.4 Equité (Sec. (1.3)) en LTL	0
	2.1.5 Equité (Sec. (1.3)) en LTL	гО
	2.1.6 Quelques relation entre formules	₋ 1
2.2	Logique temporelle arborescente : CTL	2
	2.2.1 Syntaxe de CTL	-2
	2.2.2 Sémantique de CTL	. 3
	2.2.3 Abbréviations utiles	.4
	2.2.4 Equité en CTL	-8
	2.2.5 Quelques équivalences de formules	.9
2.3	$LTL + CTL \subseteq CTL^* $	0
	2.3.1 Syntaxe de CTL*	0
	2.3.2 Sémantique de CTL*	51

Logiques temporelles?

- langages de spécification de propriétés d'un système
- but : spécifier des comportements dynamiques
 formules non statiques; la valeur de vérité change dans le temps
 exemple : «toute demande d'argent sera satisfaite on ne reçoit de
 l'argent que si on a entré le bon code» «l'imprimante 1 imprimera» –
 «la porte de l'ascenseur ne peut s'ouvrir que si le la cabine est
 arrêtée»,

Logiques adaptées : logiques temporelles [8, 10, 15, 5, 26, 20]

- logique temporelle linéaire (LTL) : propriétés des exécutions
- logique temporelle arborescente (CTL 2.2, CTL* 2.3): propriétés des arbres d'exécution
- μ -calcul : calcul de points fixes

Types de propriétés

- Propriété = ensemble d'exécutions
- Temps = discret; instants = états successifs des exécutions (1)

sûreté (safety) : "quelque chose de mauvais n'arrive jamais" P propriété de sûreté ssi :

 $\sigma \in P \iff$ tous les préfixes finis de $\sigma \in P$

Types de propriétés

- Propriété = ensemble d'exécutions
- Temps = discret; instants = états successifs des exécutions (1)

sûreté (safety) : "quelque chose de mauvais n'arrive jamais" P propriété de sûreté ssi :

$$\sigma \in P \iff$$
 tous les préfixes finis de $\sigma \in P$

vivacité (liveness) : "quelque chose de bon est toujours possible" P propriété de vivacité ssi :

toute exécution finie σ peut être étendue en $\sigma' \in P$

Types de propriétés

- Propriété = ensemble d'exécutions
- Temps = discret; instants = états successifs des exécutions (1)

sûreté (safety) : "quelque chose de mauvais n'arrive jamais" P propriété de sûreté ssi :

$$\sigma \in P \iff$$
 tous les préfixes finis de $\sigma \in P$

vivacité (liveness) : "quelque chose de bon est toujours possible" P propriété de vivacité ssi :

toute exécution finie σ peut être étendue en $\sigma' \in P$

Théorème [1] : Toute propriété est la conjonction d'une propriété de sûreté et d'une propriété de vivacité.

- modèle : $S=(Q,s_0,A,\rightarrow,L)$ SdeT étiqueté (Def. 1) ensemble de propriétés atomiques sur les états $AP=\{L(q),q\in Q\}\cup\{q,q\in Q\}\cup\{{\rm tt},{\rm ff}\}$
- interprétation (évaluation) des formules ϕ sur une exécution σ du SdeT en LTL

$$\sigma \models \phi$$

- modèle : $S=(Q,s_0,A,\rightarrow,L)$ SdeT étiqueté (Def. 1) ensemble de propriétés atomiques sur les états $AP=\{L(q),q\in Q\}\cup\{q,q\in Q\}\cup\{{\rm tt},{\rm ff}\}$
- interprétation (évaluation) des formules ϕ sur

une exécution σ du SdeT en LTL

$$\forall \sigma \in Exec(S), \quad \sigma \models \phi \iff S \models \phi$$

- modèle : $S=(Q,s_0,A,\rightarrow,L)$ SdeT étiqueté (Def. 1) ensemble de propriétés atomiques sur les états $AP=\{L(q),q\in Q\}\cup\{q,q\in Q\}\cup\{{\rm tt},{\rm ff}\}$
- $\mathit{interpr\'etation}$ (évaluation) des formules ϕ sur

une exécution σ du SdeT en LTL

$$\forall \sigma \in Exec(S), \quad \sigma \models \phi \iff S \models \phi$$

arbre d'exécution ${\cal A}(S)$ du SdeT en CTL

$$A(S) \models \phi$$

- modèle : $S=(Q,s_0,A,\rightarrow,L)$ SdeT étiqueté (Def. 1) ensemble de propriétés atomiques sur les états $AP=\{L(q),q\in Q\}\cup\{q,q\in Q\}\cup\{{\rm tt},{\rm ff}\}$
- ullet interprétation (évaluation) des formules ϕ sur

une exécution σ du SdeT en LTL

$$\forall \sigma \in Exec(S), \quad \sigma \models \phi \iff S \models \phi$$

arbre d'exécution ${\cal A}(S)$ du SdeT en CTL

$$A(S) \models \phi \iff S \models \phi$$

2.1 – Logique temporelle linéaire (LTL) [10, 5, 26]

2.1.1 – Syntaxe de LTL

objet de l'étude : séquences d'états infinies – (déterminisme)

Définition 7 (Formules de LTL) Les formules de LTL sont définies inductivement par :

- $\forall p \in AP, p \in LTL$
- $p, q \in LTL$, alors $p \lor q, \neg p \in LTL$,
- $p, q \in LTL$, alors $Xp, p \mathcal{U} q \in LTL$

Sémantique intuitive :

2.1.2 Sémantique de LTL

- séquence $\sigma = s_0 s_1 \dots s_n \dots$
- \bullet $\sigma_n = s_n \dots$
- $\forall k \geq 0, L(s_k) \subseteq AP$ (propositions atomiques vraies en s_k) et $s_i \in L(s_j) \Longleftrightarrow i = j$ et $\mathsf{tt} \in L(s_i), \mathsf{ff} \not\in L(s_i)$

Définition 8 (Sémantique de LTL) σ une séquence :

- $p \in AP, \sigma \models p \iff p \in L(s_0)$
- $\sigma \models p \lor q \Longleftrightarrow \sigma \models p \text{ ou } \sigma \models q$
- $\sigma \models \neg p \iff \sigma \not\models p$,
- $\sigma \models \mathsf{X} p \Longleftrightarrow \sigma_1 \models p$
- $\sigma \models p \mathcal{U} q \iff \exists j \geq 0, \sigma_j \models q \text{ et } (\forall k < j, \sigma_k \models p)$

2.1.3 – Abbréviations utiles

• fatalement p : $\mathbf{F}p \equiv tt\mathcal{U} p$

• toujours p : $\mathbf{G}p \equiv \neg \mathbf{F} \neg p$ (p est un *invariant*)

• infiniment souvent p : GFp

presque partout p : FGp

Exemple : Propriétés de $GAB \times U$ (Fig. 1.8)

- sûreté : jamais carte rendue et code mauvais $\mathbf{G} \neg (U.3 \land n > 3)$
- réponse : obtenir de l'argent . . . $G(U.2 \Longrightarrow FU.3)$

Exo: Proposer des formules LTL (si possible?) pour les propriétés :

- 1. si l'utilisateur obtient de l'argent, $n \leq 3$
- 2. après une demande l'utilisateur n'obtient de l'argent que si n est resté ≤ 3 depuis sa demande
- 3. si le GAB revient infiniment souvent dans son état initial, l'utilisateur obtient infiniment souvent de l'argent
- 4. si l'utilisateur a de l'argent, avant il y a forcément eu une demande
- 5. il est toujours possible d'obtenir de l'argent
- 6. toutes les 4 unités de temps on est dans l'état 0

Quelles sont les propriétés vraies sur le SdeT de la Fig. (1.8)?

2.1.4- Equité (Sec. (1.3)) en LTL

 $S = (Q, s_0, A, \rightarrow)$ un SdeT avec propriétés sur les *transitions* et les *états* : $L: Q \times A \times Q \rightarrow P$; $L((s, a, s')) \in P$ séquence = (*état. transitions* $)^\omega$ $L(s) = \{ \text{enabled}(t), t = (s, a, s') \in \rightarrow \}$ $L(t) = \{ \text{Exec}(t), t \in \rightarrow \}$ **équité faible : FG** enabled $(t) \Longrightarrow \text{FF} \text{Exec}(t)$ différence avec **FG** enabled $(t) \Longrightarrow \text{FG} \text{Exec}(t)$?

2.1.5- Equité (Sec. (1.3)) en LTL

 $S = (Q, s_0, A, \rightarrow) \text{ un SdeT avec propriétés sur les } transitions \text{ et les } \acute{e}tats : L : Q \times A \times Q \rightarrow P ; L((s, a, s')) \in P$ séquence = $(\acute{e}tat. transitions)^{\omega}$ $L(s) = \{\text{enabled}(t), t = (s, a, s') \in \rightarrow\}$ $L(t) = \{\text{Exec}(t), t \in \rightarrow\}$ équité faible : FG enabled $(t) \Longrightarrow \text{GF Exec}(t)$ différence avec FG enabled $(t) \Longrightarrow \text{F Exec}(t)$?

équité forte : FG enabled $(t) \Longrightarrow$ FG Exec(t)

Equité et équivalence de traces

$$S \stackrel{t}{\approx} S \Longleftrightarrow \forall \phi \in \mathsf{LTL}S \models \phi \Longleftrightarrow S' \models \phi$$

2.1.6- Quelques relation entre formules

$$p \Longrightarrow \mathbf{F}p \qquad \mathbf{X}p \Longrightarrow \mathbf{F}p \qquad \mathbf{G}p \Longrightarrow \mathbf{F}p$$

$$p\mathcal{U}q \Longrightarrow \mathbf{F}q \qquad \mathbf{F}\mathbf{G}p \Longrightarrow \mathbf{G}\mathbf{F}p \qquad \mathbf{F}\mathbf{F}p \equiv \mathbf{F}p$$

$$\mathbf{F}p \equiv p \vee \mathbf{X}\mathbf{F}p \qquad \mathbf{G}p \equiv p \wedge \mathbf{X}\mathbf{G}p$$

$$p\mathcal{U}q \equiv q \vee (p \wedge \mathbf{X}(p\mathcal{U}q))$$

2.2- Logique temporelle arborescente : CTL [8, 15, 10]

objet de l'étude : *arbres d'exécutions* (infinis) – (indéterminisme)

2.2.1 – Syntaxe de CTL

Définition 9 (Formules de Computation Tree Logic) Les formules de CTL sont les formules d'états définies inductivement par :

- $\forall p \in AP, p \in \textit{formules d'état}$
- $p,q\in$ formules d'état CTL, alors $p\vee q, \neg p\in$ formules d'état,
- $p \in \text{formules de chemin de CTL, alors } \mathbf{E}p, \mathbf{A}p \in \text{formules d'états,}$
- $p,q\in$ formules d'états de CTL, alors $Xp,p\mathcal{U}$ $q\in$ formules de chemin

2.2.2 Sémantique de CTL

- ullet arbre d'exécution \equiv *relation binaire* R
- chemin $\sigma = s_0 s_1 \dots s_n \dots \iff \forall i, (s_i, s_{i+1}) \in R$ $\sigma_i = s_i \dots$
- $\forall k \geq 0, L(s_k) \subseteq AP$ (propositions atomiques vraies en s_k)

Définition 10 (Sémantique de CTL) σ une séquence :

- $p \in AP, s_0 \models p \iff p \in L(s_0)$
- $s_0 \models p \lor q \Longleftrightarrow s_0 \models p \text{ ou } s_0 \models q$
- $s_0 \models \neg p \iff s_0 \not\models p$,
- $s_0 \models \mathbf{E}p \Longleftrightarrow \exists \sigma = s_0 \dots, \sigma \models p$ (p formule de chemins)
- $s_0 \models \mathbf{A}p \Longleftrightarrow \forall \sigma = s_0 \dots, \sigma \models p$ (p formule de chemins)
- $\sigma \models \mathsf{X} p \Longleftrightarrow \sigma_1 \models p \ (p \ \text{formule d'état})$
- $\sigma \models p \mathcal{U} q \iff \exists j, \sigma_j \models q \text{ et } (\forall k < j, \sigma_k \models p) \text{ (p et q formules d'états)}$

2.2.3 – Abbréviations utiles

$$\mathbf{AF}p \equiv \mathbf{A}(\mathsf{tt}\mathcal{U}p)$$

$$\mathsf{EF}p \equiv \mathsf{E}(\mathsf{tt}\mathcal{U}p)$$

p

Exemples de propriétés de $GAB \times U$ (1.8)

- ullet sûreté : jamais carte rendue et code mauvais $extsf{AG}
 eg(U.3 \land n > 3)$
- il est possible d'obtenir de l'argent après chaque demande ${\bf EG}(U.2\Longrightarrow {\bf AF}U.3)$
- on obtient toujours de l'argent $AG(U.2 \Longrightarrow AFU.3)$
- de tout état, on peut revenir à l'état initial AG (EFinit)

Exo: Proposer des formules CTL (si possible?) pour les propriétés:

- 1. si l'utilisateur obtient de l'argent, n < 3,
- 2. après une demande il est possible que l'utilisateur obtienne de l'argent
- 3. après une demande l'utilisateur n'obtient de l'argent que si n est resté < 3 depuis sa demande
- 4. si le GAB revient infiniment souvent dans son état initial, l'utilisateur obtient infiniment souvent de l'argent
- 5. il est toujours possible d'obtenir de l'argent

Quelles sont les propriétés vraies sur le SdeT de la Fig. 1.8?

2.2.4 Equité en CTL

en LTL : FG et GF

impossible en CTL!

- Cf. syntaxe de CTL (Def 9) : F et G ne peuvent être emboîtés
- infiniment souvent p sur tous les chemins : **AGAF**p
- il existe un chemin avec infiniment souvent p : **EGEF**p ?
- il existe un chemin avec infiniment souvent p_1 et p_2 ...
- extension de CTL : Fair CTL = CTL avec une sémantique fair permet de définir les chemins équitables (implémenté dans SMV) [21]

2.2.5 – Quelques équivalences de formules

$$AGp \equiv p \land AXAGp$$

$$AFp \equiv p \lor AXAFp$$

$$\mathbf{A}(p\mathcal{U}q) \equiv q \vee (p \wedge \mathbf{AXA}(p\mathcal{U}q))$$

$$\mathbf{EG}p \equiv p \wedge \mathbf{EXEG}p$$

$$\mathbf{EF}p \equiv p \lor \mathbf{EXEF}p$$

$$\mathbf{A}(p\mathcal{U}q) \equiv q \vee (p \wedge \mathbf{AXA}(p\mathcal{U}q)) \quad \mathbf{E}(p\mathcal{U}q) \equiv q \vee (p \wedge \mathbf{EXE}(p\mathcal{U}q))$$

2.3- LTL + CTL
$$\subseteq$$
 CTL*[8, 10]

2.3.1 – Syntaxe de CTL*

Définition 11 (Formules de CTL*) Les formules de CTL* sont définies inductivement par :

- (s₁) $\forall p \in AP, p \in formules d'état$
- (s₂) $p, q \in$ formules d'état, alors $p \lor q, \neg p \in$ formules d'état,
- (s_3) $p \in formules de chemin, alors <math>\mathbf{E}p, \mathbf{A}p \in formules d'état$,
- (p_1) $p \in formules d'état, alors <math>p \in formules de chemin,$
- (p_2) $p,q\in$ formules de chemin, alors $p\vee q, \neg p\in$ formules de chemin
- (p₃) $p,q\in$ formules de chemin, alors $\mathbf{X}p,p\,\mathcal{U}\,q\in$ formules de chemin

2.3.2 – Sémantique de CTL*

Définition 12 (Sémantique de CTL*) La sémantique des formules de CTL* est définie inductivement par :

$$(s_1) \ p \in AP, \ \text{formule d'état}, \ s_0 \models p \iff p \in L(s_0)$$

$$(s_2) \ s_0 \models p \lor q \iff s_0 \models p \text{ ou } s_0 \models q \qquad s_0 \models \neg p \iff s_0 \not\models p,$$

$$(s_3) \ s_0 \models \textbf{E}p \iff \exists \sigma = s_0 \ldots, \sigma \models p \ \text{(p formule de chemins)}$$

$$(s_3') \ s_0 \models \textbf{A}p \iff \forall \sigma = s_0 \ldots, \sigma \models p \ \text{(p formule de chemins)}$$

$$(p_1) \ p \in \text{formules d'état}, \ s_0 \models p \iff \sigma = s_0 \ldots \models p$$

$$(p_2) \ \sigma \models p \lor q \iff \sigma \models p \text{ ou } \sigma \models q$$

$$(p_3) \ \sigma \models \mathsf{X}p \iff \sigma_1 \models p \ \text{(p for. de chemin)}$$

$$(p_3') \ \sigma \models p \mathcal{U} \ q \iff \exists j, \sigma_j \models q \ \text{et} \ (\forall k < j, \sigma_k \models p) \ \text{(p et q for. de chemin)}$$

LTL, CTL, CTL*?

	nature du temps	équité	outils
LTL	linéaire	oui	SPIN [13, 14]
CTL	arborescent	non	SMV [21]
CTL*	linéaire et arborescent	oui	

Autres logiques

- TLA (Lamport) [16]
- μ -calcul [4] (MEC [3])

Deuxième partie : Algorithmes de model-checking

Vérification sur modèle : Model-checking [8, 7, 22]

- S un SdeT étiqueté
- ullet ϕ une formules de LTL, CTL ou CTL *
- question : S est-il un modèle de ϕ ?

- existe-t-il un algorithme pour LTL, CTL, CTL*?
- si oui : algorithme de model-checking
 algo. répond : oui!! si non => contre exemple

Chapitre 3: Model-checking de LTL

Sommaire

3.1	Automates de Büchi	56
3.2	Principe du model-checking pour LTL	60
3.3	Complexité du model-cheking de LTL	61
3.4	Model-checking de LTL "à la volée" (on-the-fly)	62
3.5	Construction de B_ϕ	63

П

3.1- Automates de Büchi [25]

Définition 13 (Automate de Büchi) Un automate de Büchi A c'est :

- ullet Σ alphabet fini,
- Q ensemble fini d'états
- $\longrightarrow \subseteq Q \times \Sigma \times Q$ relation de transition,
- s_0 : état initial,
- F ensemble d'états accepteurs

 $\begin{array}{l} \textbf{exécution} = \textit{séquence infinie de transitions (de} \longrightarrow) \\ \textbf{exécution admissible} = \textit{exécution passant infiniment souvent par un } \\ \textit{état de } F \\ \end{array}$

w accepté par $A\equiv w$ est la trace d'une exécution admissible de A langage accepté par A, $L(A)=\{w,\ acceptés\ par\ A\}$

Fig. 3.1 – Automate acceptant $(a \cup b)^{\omega}$

Fig. 3.2 – Automate acceptant $\Diamond p$

Fig. 3.3 – Automate acceptant $\Box \Diamond p$

Fig. 3.4 – Automate acceptant $\Box(p \mathcal{U} q)$

Définition 14 (Automate de Büchi Généralisé) Un automate de Büchi généralisé A c'est un automate de Büchi où :

- I est l'ensemble des états initiaux,
- $F = \{F_1, \dots, F_n\}$ est une famille d'ensembles d'états accepteurs exécution admissible = exécution issue d'un état de I et passant infiniment souvent par un état de chaque F_i w accepté par $A \equiv w$ est la trace d'une exécution admissible de A

langage accepté par A, $L(A) = \{w, acceptés par <math>A\}$

Théorème 1 (Expressivité des Büchi généralisés) Tout langage accepté par un automate de Büchi généralisé est accepté par un automate Büchi.

3.2- Principe du model-checking pour LTL [8, 7, 22]

- ϕ une propriété $\longrightarrow B_{\neg \phi}$ l'automate de Büchi acceptant les exécutions satisfaisant $\neg \phi$
- S un système de transitions $\longrightarrow S$ est un automate de Büchi où tous les états sont accepteurs
- synchronisation de $S \times B_{\neg \phi}$:

$$(q,s) \xrightarrow{L(q)} (q',s')$$

- (q,s) accepteur \iff s est accepteur dans $B_{\neg\phi}$
- Algorithme de model-cheking : $L(S \times B_{\neg \phi}) = \emptyset$?
 - 1. chercher cycle sur un état accepteur
 - 2. chemin d'un état initial à cet état accepteur

- $\bullet \ S \ \mathrm{un} \ \mathsf{SdeT} : |S| = |Q| + |T|$
- ullet $|\phi|=$ nombre de sous formules de ϕ
- $|B_{\neg \phi}|$ est en $\mathcal{O}(2^{|\phi|})$
- $|S \times B_{\neg \phi}|$ est en $\mathcal{O}(|S|.|B_{\neg \phi}|)$
- $L(S \times B_{\neg \phi}) = \emptyset$ est en $\mathcal{O}(|S \times B_{\neg \phi}|)$

Le model-checking de LTL est en $\mathcal{O}(|S|.2^{|\phi|})$

3.4— Model-checking de LTL "à la volée" (on-the-fly)

- but : éviter de construire $S imes B_{\neg \phi}$ complétement
- algorithme:
 - 1. générer les états de $S \times B_{\neg \phi}$ en DFS jusqu'à trouver un état accepteur
 - 2. chercher un cycle à partir de cet état accepteur
- en mémoire uniquement le chemin courant
- si $L(S \times B_{\neg \phi}) = \emptyset$ on ne gagne rien ...
- sinon: algorithme utilisable sur des SdeT infinis

- principe : q un état de $B_\phi \longleftrightarrow q \subseteq \{$ sous formules de ϕ $\}$ toute *exécution admissible* à partir de q dans B_ϕ *satisfait* les formules de q
- ullet états initiaux de B_ϕ : q tel que $\phi \in q$
- $Cl(\phi)=$ ensemble des sous-formules de ϕ et leur négation ($\neg\neg\varphi=\varphi$)
- état *cohérent* q de B_ϕ est un *ensemble maximal* vérifiant
 - $\square \varphi \in q$ ou $\neg \varphi \in q$ (mais pas les deux!)
 - $\square \varphi \lor \psi \in q \text{ ssi } \varphi \in q \text{ ou } \psi \in q$
 - \square si $\varphi \mathcal{U} \psi \in q$ alors $\varphi \in q$ ou $\psi \in q$
 - \square si $\varphi \mathcal{U} \psi
 ot\in q$ alors $\psi
 ot\in q$

Exo: construire $Cl(\mathbf{F}p)$, p proposition atomique.

Construction de B_{ϕ} (suite)

- étiquettes des transitions = propositions atomiques
- relation de transition : $q \xrightarrow{a} q'$ ssi
 - \square a =propositions atomiques de q
 - \square si $\mathbf{X}\phi \in q$ (resp. $\not\in q$) alors $\phi \in q'$ (resp. $\not\in q'$)
 - \square si $\phi \mathcal{U} \psi \in q$ et $\psi \not\in q$ alors $\phi \mathcal{U} \psi \in q'$
 - \square si $\phi \mathcal{U} \psi \not\in q$ et $\phi \in q$ alors $\phi \mathcal{U} \psi \not\in q'$
- états accepteurs :
 - $\square \ u_i$ l'ensemble des sous formules de la forme $p_i \mathcal{U} q_i$ de $Cl(\phi)$
 - \square GF $u_i \Longrightarrow$ GF q_i
 - \Box **FG** $\neg u_i$ OK

la famille des états accepteurs est $F_i = \{q, \neg u_i \in q\} \cup \{q, q_i \in q\}$

Exemple :
$$\phi = \mathbf{F}p \equiv \mathbf{t}\mathbf{t}\mathcal{U}p$$

- $Cl(\phi) = \{p, \neg p, \mathsf{tt}\mathcal{U}p, \neg(\mathsf{tt}\mathcal{U}p)\}$
- états cohérents :

	cohérent?	initial?	numéro
p , tt $\mathcal{U}p$	oui	oui	s_1
$p,\neg(tt\mathcal{U}p)$	non	_	_
$ eg p,$ tt $\mathcal{U}p$	oui	oui	s_2
$\neg p, \neg(tt\mathcal{U}p)$	oui	non	s_3

• famille d'états accepteurs : $F = \{s_1, s_3\}$

Fig. 3.5 – Automate de Büchi acceptant $\mathbf{F}p$

Chapitre 4: Model-checking de CTL

Sommaire

4.1	Principe du Model-checking pour CTL	68
4.2	Complexité du model-cheking de CTL	70

4.1- Principe du Model-checking pour CTL [8, 7, 15]

Principe : étiquetage des états $s \in S$ par les sous-formules vraies en s

- ullet $p\in AP$, $p\in L(s)$ ou $p\not\in L(s)$
- $p \wedge q$, $\neg p$ ajout de $p \wedge q$ à L(S) si $p,q \in L(s)$, de $\neg p$ si $p \not\in L(s)$,
- $p = \mathbf{EX}q$, si $\exists (s,t) \in R, q \in L(t)$, ajout de q à L(s)
- $p = \mathbf{AX}q$, si $\forall (s,t) \in R, q \in L(t)$, ajout de q à L(s)
- $p = \mathbf{E}(q \mathcal{U} r)$: faire Card(S) fois (arrêt!)
 - 1. si $r \in L(s)$ ajout de $\mathbf{E}(q \mathcal{U} r)$ à L(s)
 - 2. $\forall s, q \in L(s) \text{ et } \exists (s, t) \in R, \mathbf{E}(q \mathcal{U} r) \in L(t) L(s) + \mathbf{E}(q \mathcal{U} r),$
- $p = \mathbf{A}(q \, \mathcal{U} \, r)$: faire Card(S) fois (arrêt!)
 - 1. si $r \in L(s)$ ajout de $\mathbf{A}(q \mathcal{U} r)$ à L(s)
 - 2. $\forall s, q \in L(s) \text{ et } \forall (s,t) \in R, \mathbf{A}(q \mathcal{U} r) \in L(t) L(s) + \mathbf{A}(q \mathcal{U} r),$

- $\mathbf{A}(q \mathcal{U} r) = r \vee \mathbf{AXA}(q \mathcal{U} r)$ ($\mathbf{XA}(q \mathcal{U} r)$ est une formule de chemin)
- $\mathbf{E}(q \mathcal{U} r) = r \vee \mathbf{EXE}(q \mathcal{U} r)$
- réduction à accessibilité **bornée** : $[\mathbf{A}_0(q\mathcal{U}\,r)](s) \equiv s \models r$ et

$$s \models [\mathbf{A}_{i+1}(q \mathcal{U} r)] \equiv s \models r \lor (q \land \mathbf{AX}[\mathbf{A}_i(q \mathcal{U} r)])$$

Propriété : $s \models \mathbf{A}(q \mathcal{U} r) \iff s \models \mathbf{A}_{Card(S)}(q \mathcal{U} r)$

= : évident!

⇒ : contraposée

$$s \not\models \mathbf{A}_{\leq Card(S)}(q \,\mathcal{U} \, r) \Longrightarrow \exists \sigma = s_0 \dots \text{ tel que } \sigma \not\models p \text{ et } |\sigma| = Card(S)$$

$$\Rightarrow \exists s, \sigma(i) = \sigma(j) = s$$
 ("lemme du gonflement") et $\sigma' = \sigma(0..i)\sigma(i..j)^{\omega} \not\models \mathbf{A}(q\,\mathcal{U}\,r)$

- pour une (sous) formule φ de S : maximum $\mathcal{O}(|Q| + |T|)$
- étiquetage pour toutes les sous formules : $\mathcal{O}((|Q|+|T|).|\phi|)$

Le model-checking de CTL est en $\mathcal{O}($

Chapitre 5 : Model-checking symbolique

Sommaire

5.1	Calcul symbolique d'ensemble d'états	74
5.2	Binary Decision Diagrams (BDD)	78
5.3	Binary Decision Diagrams (BDD)	78
5.4	Opérations sur les ROBDDs	83
5.5	Model-checking à base de ROBDDs	86

Explosion combinatoire

- S un SdeT : n états,m variables booléennes, k variables entières $\in [0..9]$
- nombre d'états possibles : $n.2^m.10^k$
- ex : $n=10, m=10, k=10 pprox 10^5.10^{10}$ états
- espace mémoire : 1 octet/état!! \Longrightarrow 10^5 Go temps : 10^8 transitions/seconde ... $\approx 10^7.10^8$ transitions ... ≈ 115 jours

Problème de l'Explosion Combinatoire

- produit synchronisé d'automates $A_1, A_2, \cdots A_n$: taille de la description $|A_1| + |A_2| + \cdots + |A_n|$ taille de $A_1 \times A_2 \times \cdots \times A_n$ en $e^{\sum log(|A_i|)}$
- nécessité regrouper les états
 représentation symbolique de l'espace des états

П

Principe du model-checking symbolique

- représenter des ensembles d'états de manière concise regroupement des états en classes d'équivalence
- faire des opérations (ou calculs) sur des ensembles d'états une opération ≡ exploration de plusieurs transitions simultanément
- principe :
 - 1. écrire les algos de model-checking sur des ensembles d'états
 - 2. utiliser un *codage* pour les *ensembles d'états* tel que
 - 3. opérations de l'algo de model-checking efficaces sur le codage
- application au model-checking de systèmes infinis ... Cf. François

П

5.1 – Calcul symbolique d'ensemble d'états

- logique CTL; $S = (Q, s_0, A, \rightarrow, L)$ un SdeT étiqueté
- $Sat(\varphi)$: états de S satisfaisant φ

$$arphi \in AP, Sat(arphi) = \{q \in Q, arphi \in L(s)\}$$

$$Sat(\neg arphi) = Q \setminus Sat(arphi)$$

$$Sat(arphi \lor \psi) = Sat(arphi) \cup Sat(\psi)$$

$$Sat(\mathbf{EX} \varphi) = Pre(Sat(arphi))$$

• $X\subseteq Q$, $Pre(X)=\{q\in Q,\exists q'\in X,(q,q')\in\rightarrow\}$ (états permettant d'atteindre X en *une* transition) $Post(X)=\{q'\in Q,\exists q\in X,(q,q')\in\rightarrow\}$

• $Pre^*(X) = \bigcup_{i=0}^{\infty} Pre^i(X)$, avec $Pre^0 = Id$ et $Pre^{i+1} = Pre \circ Pre^i$

(états permettant d'atteindre X en un *nombre fini* de transitions)

II

Calcul symbolique (suite)

$$Sat(\mathbf{AX}\varphi) = Q \setminus Pre(Q \setminus Sat(\varphi))$$

• opérateurs $\mathbf{E}\varphi_1\mathcal{U}\varphi_2$ et $\mathbf{A}\varphi_1\mathcal{U}\varphi_2$ (Cf. page 49) :

$$\mathbf{E} \varphi_1 \mathcal{U} \varphi_2 \equiv \varphi_2 \vee (\varphi_1 \wedge \mathbf{EX} (\mathbf{E} \varphi_1 \mathcal{U} \varphi_2))$$

$$\mathbf{A}\varphi_1\mathcal{U}\varphi_2 \ \equiv \ \varphi_2 \lor \big(\varphi_1 \land \mathbf{AX}(\mathbf{A}\varphi_1\mathcal{U}\varphi_2)\big)$$

Calcul symbolique (suite)

$$Sat(\mathbf{AX}\varphi) = Q \setminus Pre(Q \setminus Sat(\varphi))$$

• opérateurs $\mathbf{E}\varphi_1\mathcal{U}\varphi_2$ et $\mathbf{A}\varphi_1\mathcal{U}\varphi_2$ (Cf. page 49) :

$$\mathbf{E}\varphi_1\mathcal{U}\varphi_2 \equiv \varphi_2 \vee (\varphi_1 \wedge \mathbf{EX}(\mathbf{E}\varphi_1\mathcal{U}\varphi_2))$$

$$\mathbf{A}\varphi_1\mathcal{U}\varphi_2 \equiv \varphi_2 \vee (\varphi_1 \wedge \mathbf{AX}(\mathbf{A}\varphi_1\mathcal{U}\varphi_2))$$

П

Calcul symbolique (suite)

$$Sat(\mathbf{AX}\varphi) = Q \setminus Pre(Q \setminus Sat(\varphi))$$

• opérateurs $\mathbf{E}\varphi_1\mathcal{U}\varphi_2$ et $\mathbf{A}\varphi_1\mathcal{U}\varphi_2$ (Cf. page 49) :

$$egin{array}{lll} \mathbf{E} arphi_1 \mathcal{U} arphi_2 &\equiv & arphi_2 ee \left(arphi_1 \wedge \mathbf{E} \mathbf{X} (\mathbf{E} arphi_1 \mathcal{U} arphi_2)
ight) \ \mathbf{A} arphi_1 \mathcal{U} arphi_2 &\equiv & arphi_2 ee \left(arphi_1 \wedge \mathbf{A} \mathbf{X} (\mathbf{A} arphi_1 \mathcal{U} arphi_2)
ight) \end{array}$$

- ensemble 2^Q ordonné par $\subseteq : (2^Q, \subseteq)$,
- $Sat(\mathbf{E}\varphi_1\mathcal{U}\varphi_2)$ est le *plus petit point fixe* de la fonction f :

$$f(Y) = Sat(\varphi_2) \cup \left(Sat(\varphi_1) \cap Sat(\mathbf{EX}Y)\right)$$

Points fixes de fonctions monotones

Théorème 2 (Knaster-Tarski [19]) Q un ordre partiel complet avec \bot élement minimal, $f:Q\to Q$ monotone, alors f admet un plus petit point fixe $\mu(f)$ et $\mu(f)=\bigcup_{i=0}^{\infty}f^i(\bot)=f^*(\bot)$. Si Q est fini, ordonné par l'inclusion, $f:Q\to Q$ monotone, alors $\exists k\leq |Q|, \quad \mu(f)=f^k(\emptyset)$.

- $Sat(\mathbf{E}\varphi_1\mathcal{U}\varphi_2)$ est un point fixe de $f(Y) = Sat(\varphi_2) \cup \left(Sat(\varphi_1) \cap Sat(\mathbf{EX}Y)\right)$
- $Sat(\mathbf{E}\varphi_1\mathcal{U}\varphi_2)$ est le plus petit point fixe :
 - 1. $q \in f^n(\emptyset) \equiv \exists k \leq n, q = s_0, \sigma = s_0 s_1 s_2 \cdots s_k, \sigma \in Exec(S), \forall i < k \ s_i \models \varphi_1, s_k \models \varphi_2$
 - 2. $q \in Sat(\mathbf{E}\varphi_1 \mathcal{U}\varphi_2) \Longrightarrow \exists k \in \mathbb{N}, q \in f^k(\emptyset)$
 - 3. $Sat(\mathbf{E}\varphi_1\mathcal{U}\varphi_2)\subseteq \cup_{i=0}^{\infty}f^i(\emptyset)$

Représentation symbolique des ensembles d'états

- représenter Sat(p), $\forall p \in AP$
- définir Pre sur représentation symbolique
- opérations ∪, ∩, \ sur représentation symbolique
- ullet calcul de plus petit point fixe : calcul *itératif* de Pre

$$Sat(\mathbf{E}\varphi_1\mathcal{U}\varphi_2) = \mu X.Sat(\varphi_2) \cup \left(Sat(\varphi_1) \cap Pre(Sat(X))\right)$$

• arrêt du calcul de point fixe : test d'égalité entre deux représentations

Binary Decisions Diagrams (BDD) [15]

II A

5.2- Binary Decision Diagrams (BDD)

- but : représenter de façon compacte les expressions booléennes
- $b_1 \Longrightarrow (b_2 \lor b_3)$; arbre de *choix* : n variables $\Longrightarrow 2^{n+1}-1$ nœuds

5.3 – Binary Decision Diagrams (BDD)

- but : représenter de façon *compacte* les *expressions booléennes*
- $b_1 \Longrightarrow (b_2 \lor b_3)$; arbre de *choix* : n variables $\Longrightarrow 2^{n+1}-1$ nœuds

Réduction de l'arbre de choix

1. regrouper les sous arbres identiques

1. regrouper les sous arbres identiques

Réduction de l'arbre de choix

1. regrouper les sous arbres identiques

2. enlever les faux choix

II

Réduction de l'arbre de choix

1. regrouper les sous arbres identiques

2. enlever les faux choix

П

Réduction de l'arbre de choix

1. regrouper les sous arbres identiques

2. enlever les faux choix

- réduction OBDD = itérer 1) et 2) au maximum
- on obtient un *Reduced* OBDD (*DAG*, Direct Acyclic Graph, \neq arbre)

Fig. 5.3 – Réduction de l'OBDD de $b_1 \Longrightarrow (b_2 \lor b_3)$

Intérêts des ROBDDs

- diminution de la taille de l'arbre de choix
- représentation canonique :

Théorème 3 (Canonicité des ROBDDs) n variables booléennes ordonnées $b_1 < b_2 < \cdots < b_n$. F une expression booléenne sur les b_i . Alors il existe un unique ROBDD bdd(f) représentant f.

- conséquences :
 - \square $\mathit{bdd}(f) = \mathit{bdd}(\mathsf{ff}) \Longleftrightarrow f = \mathsf{ff}$
 - \square $bdd(\neg f) = \text{\'echanger tt et ff dans } bdd(f)$

$$\mathit{bdd}(f_1) \equiv \mathit{bdd}(f_2) \Longleftrightarrow adr(\mathit{bdd}(f_1)) = adr(\mathit{bdd}(f_2))$$

□ test *d'égalité* en *temps constant* par comparaison des *adresses*

Influence de l'ordre des variables

- taille des ROBDDs sensible à l'ordre des variables
- ex : construire les BDDs de $(b_1 \wedge b_2) \vee (b_3 \wedge b_4) \vee (b_5 \wedge b_6)$ avec les ordres :
 - 1. $b_1 > b_2 > b_3 > b_4 > b_5 > b_6$
 - **2.** $b_1 > b_3 > b_5 > b_2 > b_4 > b_6$
- trouver un ordre optimal? ... trop couteux en temps
- il existe des stratégies (heuristiques) pour trouver des bons ordres

П

5.4 – Opérations sur les ROBDDs

- un ROBDD $\beta \equiv$ nœud racine de β
- $\beta \equiv \text{nil} \iff \beta = \text{ff}$; $\beta_1 \equiv \beta_2 \iff adr(\beta_1) = adr(\beta_2)$ (temps constant)
- β : échanger les nœuds tt et ff (reste un ROBDD)
- opérations binaires : β_1 op β_2 ordres compatibles sur β_1 et β_2 (même ordre sur les variables communes)

Théorème 4 (Shannon) f,g des formules booléennes ; x une variable ; alors $f\equiv (x\wedge f[x:=\mathit{tt}])\vee (\neg x\wedge f[x:=\mathit{ff}])$ et

$$f op g = (x \land (f[x := tt] op g[x := tt]))$$

$$\lor (\neg x \land (f[x := ft] op g[x := ft]))$$

- application aux (R)OBDDs : β_1 , β_2 deux ROBDDs ; $p(\beta) = \text{partie fille } tt \text{ issue } de \beta \text{ ; } n(\beta) = \text{partie fille } tt \text{ issue } de \beta \text{ } x \text{ variable } de \beta \text{ : } \beta = (x \land p(\beta)) \lor (\neg x \land n(\beta))$ x_i la variable de β_i :
 - 1. $x_1 = x_2$: $\beta_1 \circ p \beta_2 = (x_1 \land (p(\beta_1) \circ p p(\beta_2))) \lor (\neg x_1 \land (n(\beta_1) \circ p n(\beta_2)))$
 - 2. $x_1 < x_2$: $\beta_1 \circ p \beta_2 = (x_1 \land (p(\beta_1) \circ p \beta_2)) \lor (\neg x_1 \land (n(\beta_1) \circ p \beta_2))$
- $\operatorname{tt} \cap n = n$, $\operatorname{ff} \cap n = \operatorname{ff}$, $\operatorname{tt} \cup n = \operatorname{tt}$, $\operatorname{ff} \cup n = n$
- appliquer la réduction après op (nouveau BDD pas forcément réduit)
- exemple: $(b_1 \Longrightarrow b_2) \land (b_2 \lor b_3)$

Opérations sur les ROBDDs (suite)

• projection (ou restriction) : ROBDD représentant $f[x:=\mathrm{tt}]$ ou $f[x:=\mathrm{ff}]$ à partir du ROBDD de f

Opérations sur les ROBDDs (suite)

• projection (ou restriction) : ROBDD représentant $f[x:=\mathrm{tt}]$ ou $f[x:=\mathrm{ff}]$ à partir du ROBDD de f

Opérations sur les ROBDDs (suite)

• projection (ou restriction) : ROBDD représentant $f[x:=\mathrm{tt}]$ ou $f[x:=\mathrm{ff}]$ à partir du ROBDD de f

• abstraction : $\exists x.f \equiv f[x := \text{tt}] \lor f[x := \text{ff}]$ faire uniquement \lor sur les sous arbres issus de x Remarque : $\forall x.f \equiv f[x := \text{tt}] \land f[x := \text{ff}]$

5.5- Model-checking à base de ROBDDs

- codage des *états* de Q: *vecteur de* n *bits* $b_1 \cdots b_n$ tel que $|Q| \leq 2^n$ exemple : 5 états \longrightarrow 4 bits variables entières idem
- $s \in Q$ codé en \overline{b} et $\mathit{bdd}(Q) = \cup_{s \in Q} \mathit{bdd}(s)$
- codage des *transitions*: *vecteur de longueur double* $b_1 \cdots b_n b_1' \cdots b_n'$ $(s,s') \in \to \Longrightarrow b_1 \cdots b_n b_1' \cdots b_n'$ dans $bdd(\to)$
- $bdd(\rightarrow) = \bigcup_{(s,s') \in \rightarrow} bdd((s,s'))$
- calcul de ∩, ∪, \ : OK
- ullet calcul de Pre(S) :
 - 1. primer le bdd(S) en bdd(S)' avec variables b_i devient b_i'
 - 2. calculer $\alpha = bdd(S)' \cap bdd(\rightarrow)$
 - 3. calculer $\exists \bar{b}'.\alpha$

Application du model checking à base de BDDs

- model checking de CTL : SMV [21]
- problèmes et améliorations :
 - \square $bdd(\rightarrow)$... grand! Garder les BDDs de chaque transition t_i $Pre(S) = \bigcup_{t_i} Pre_{t_i}(S)$
 - ordre des variables : heuristiques !
- autres applications des BDDs : conception de circuits

Troisième partie : Bibliographie

- [1] Bowen Alpern and Fred B. Schneider. Defining liveness. *Information Processing Letters*, 21:181–185, October 1985. 34-a, 34
- [2] Rajeev Alur and David Dill. A theory of timed automata. *Theoretical Computer Science*, 2(126):183–236, 94.
- [3] A. Arnold. MEC: A system for constructing and analysing transition systems. In J. Sifakis, editor, *Proceedings of the International Workshop on Automatic Verification Methods for Finite State Systems*, volume 407 of *LNCS*, pages 117–132, Berlin, June 1990. Springer. 52

- [4] André Arnold. Systèmes de transitions et sémantique des processus communicants. Masson, 1992. 1, 1.2, 2, 3, 1.3, 52
- [5] Éric Audureau, Patrice Enjalbert, and Luis Fariñas Del Cerro.

 Logique temporelle Sémantique et validation de programmes parallèles. E.R.I. Masson, 1990. 33, 2.1
- [6] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable? In *Proc. 12th Int. Conf. Computer Aided Verification (CAV'2000), Chicago, IL, USA, July 2000*, volume 1855 of *Lecture Notes in Computer Science*, pages 464–479. Springer, 2000.
- [7] Edmund M. Clarke, Orna Grumberg, and Dooron A. Peled. *Model-cheking*. MIT PRESS, 1999. 54, 3.2, 4.1
- [8] Ouvrage collectif Coordination Philippe Schnoebelen. *Vérification de logiciles Techniques et outils du model-checking*. Vuibert, Paris, 1999. 1.3, 33, 2.2, 2.3, 54, 3.2, 4.1

- [9] D. Dill. Timing assumptions and verification of finite-state concurrent systems. *Lecture Notes in Computer Science*, 407, 1989. In Proc. of Automatic Verification Methods for Finite State Systems.
- [10] E. Allen Emerson. Temporal and modal logic. In J. van Leeuwen, editor, *Handbook of Theoretical Computer Science*, volume B Formal Models and Semantics, chapter 16, pages 994–1072. Elsevier Science B.V., 1990. 1.3, 33, 2.1, 2.2, 2.3
- [11] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time systems. *Information and Computation*, 111(2):193–244, 1994.
- [12] Thomas A. Henzinger. The theory of hybrid automata. In *Proceedings, 11*th *Annual IEEE Symposium on Logic in Computer Science*, pages 278–292, New Brunswick, New Jersey, 27–30 July 1996. IEEE Computer Society Press.

- [13] Gerald J. Holzmann. *Design and Validation of Computer Protocols*. Prentice Hall, Englewood Cliffs, NJ, 1991. 52
- [14] Gerard J. Holzmann. The model checker SPIN. *IEEE Transactions* on Software Engineering, 23(5):279–295, May 1997. Special Issue: Formal Methods in Software Practice. 52
- [15] Michael R. A. Huth and Mark D. Ryan. *Logic in Computer Science : Modelling and Reasoning about Systems*. Cambridge University Press, Cambridge, England, 2000. 33, 2.2, 4.1, 77
- [16] Leslie Lamport. The temporal logic of actions. ACM Transactions On Programming Languages and Systems, 16(3):872–923, May 1994.
- [17] F. Laroussinie and K. G. Larsen. CMC: A tool for compositional model-checking of real-time systems. In *Proc. IFIP Joint Int. Conf.* Formal Description Techniques & Protocol Specification, Testing, and Verification (FORTE-PSTV'98), pages 439–456. Kluwer Academic Publishers, 1998.

- [18] K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems. In Horst Reichel (Ed.), editor, *Proceedings of the 10th International Conference on Fundamentals of Computation Theory*, pages 62–88, Dresden, Germany, August 1995. LNCS 965.
- [19] Jacques Loeckx and Kurt Sieber. *The Foundations of Program Verification (Second edition)*. John Wiley and Sons, New York, NY, 1987.
- [20] Zohar Manna and Amir Pnueli. *The Temporal Logic of Reactive and Concurrent Systems, Specification*. Springer, 1991. 13, 33
- [21] Ken L. Mc Millan. *Symbolic Model Checking*. Kluwer Academic Publishers, 1993. 2.2.4, 52, 87
- [22] Stephan Merz. Model checking. In F. Cassez, C. Jard, M. Ryan, and B. Rozoy, editors, *Modeling and Verification of Parallel Processes* (MOVEP'00) – Summer School, pages 51–70. CNRS/IRCCyN, Ecole Centrale de Nantes, 2000. 54, 3.2

- [23] J.-F. Monin. Comprendre les méthodes formelles. Panorama et outils logiques. Collection technique et scientifique des télécommunications. Masson, Paris, 1996.
- [24] Paul Pettersson and Kim G. Larsen. Uppaal2k. *Bulletin of the European Association for Theoretical Computer Science*, 70:40–44, February 2000.
- [25] Wolfgang Thomas. *Handbook of theoretical computer science*, chapter 4, Automata on infinite objects. Elsevier Science, 1990. 3.1
- [26] Pierre Wolper. *Approche logique de l'intelligence artificielle Logique Temporelle*, volume 2 De la logique modale à la logique des bases de données, chapter 4, Logique Temporelle, pages 179–. DUNOD, 1990. 33, 2.1