Лабораторная работа №4

Лукьянова Ирина Владимировна, НФИбд-02-19

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	8
4	Выполнение лабораторной работы	9
5	Выводы	13
6	Список литературы	14

List of Figures

2.1	Рис.1	6
	Рис.2	
2.3	Рис.3	7
3.1	Рис.4	8
4.1	Система и параметры	9
4.2	Модель гармонических калебаний №1	10
4.3	Система и парметры №2	10
4.4	Модель гармонических калебаний №2	11
4.5	Система и параметры №3	11
4.6	Модель гармонических калебаний №3	12

List of Tables

1 Цель работы

Цель работы - познакомится с моделями гармонических калебаний, построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для трех случаев в OpenModelica.

2 Задание

Вариант 40

1. Колебания гармонического осциллятора без затуханий и без действий внешней силы.(рис.2.1)

$$\ddot{x} + 7.5\dot{x} = 0$$

Figure 2.1: Рис.1

2. Колебания гармонического осциллятора с затуханием и без действий внешней силы.(рис.2.2)

$$\ddot{x} + 2\dot{x} + 5.5x = 0$$

Figure 2.2: Рис.2

3. Колебания гармонического осциллятора с затуханием и под действием внешней силы.(puc.2.3) 1

¹Кулябов, Д.С. Модель гармонических колебаний.

$$\ddot{x} + 2.4\dot{x} + 5x = 5.2\sin(2t)$$

Figure 2.3: Рис.3

3 Теоретическое введение

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором.

Уравнение свободных колебаний гармонического осциллятора имеет следующий вид: (рис.3.1)

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$$

Figure 3.1: Рис.4

x – переменная, описывающая состояние системы (смещение грузика, заряд конденсатора и т.д.), γ – параметр, характеризующий потери энергии (трение в механической системе, сопротивление в контуре), ω_0 – собственная частота колебаний, t – время.

Нам нужно рассмотреть 3 фазовых портрета гармонического осциллятора, а после построить симуляции.

У нас есть начальные условия: $x_0=1.2$, $y_0=1$

Также дан интервал, где $t \in [0, 42]$, а шаг равен 0.05.

Благодаря этим данным, мы можем приступить к выполнению лабораторной работы.

4 Выполнение лабораторной работы

- 1. Рассмотрим колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+7.5x=0$
- 2. Рассмотрим колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x}+2\dot{x}+5.5x=0$
- 3. Рассмотрим колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x} + 2.4\dot{x} + 5x = 5.2sin(2t)$
- 4. Посмотрим симуляции моделей и сравним их.

Начнем с первого пункта, который описывает колебания гармонического осциллятора без затуханий и без действий внешней силы:

- 1. Записываем начальные условия: $x_0=1.2$, $y_0=1$
- 2. Далее прописываем параметры осциллятора ω и g
- 3. Записсываем систему дифференциальных уравнений:(рис. 4.1)

```
1  model lab04
2  parameter Real x0 = 1.2;
3  parameter Real y0 = 1;
4
5  parameter Real w = 7.5;
6  parameter Real g = 0;
7
8  Real x(start = x0);
9  Real y(start = y0);
10
11  equation
12  der(x)= y;
13  der(y)= -w*x;
14  end lab04;
```

Figure 4.1: Система и параметры

4. Далее строим график решений, задавая время и число интервалов:(рис. 4.2)

Figure 4.2: Модель гармонических калебаний №1

Рассмотрим второй случай, который описывает колебания гармонического осциллятора с затуханием и без действий внешней силы:

Единственное, что нам надо изменить в нашей программе - это параметры осциллятора ω и g:

Далее аналогично проделываем работу для второй системы:(рис. 4.3)

```
1  model lab04
2  parameter Real x0 = 1.2;
3  parameter Real y0 = 1;|
4  parameter Real w = 5.5;
5  parameter Real g = 2;
6
7  Real x(start = x0);
8  Real y(start = y0);
9
10  equation
11  der(x)= y;
12  der(y)= -w*der(x) - g*x;
13  end lab04;
```

Figure 4.3: Система и парметры №2

Строим график решений:(рис. 4.4)

Figure 4.4: Модель гармонических калебаний №2

Рассмотрим третий случай, который описывает колебания гармонического осциллятора с затуханием и под действием внешней силы:

Снова меняем параметры осциллятора ω и g:

Далее записываем третью систему:(рис. 4.5)

```
model lab04
    parameter Real x0 = 1.2;
    parameter Real y0 = 1;
    parameter Real w = 5;
    parameter Real g = 2.4;
 6
    Real x(start = x0);
8
    Real y(start = y0);
10
    equation
11
    der(x) = y;
    der(y) = -w*der(x) - g*x - 5.2*sin(2*time);
12
13
    end lab04;
```

Figure 4.5: Система и параметры №3

Строим график решений:(рис. 4.6)

Figure 4.6: Модель гармонических калебаний №3

5 Выводы

В ходе выполнения данной лабораторной работы я подробно ознакомилась с моделями гармонических калебаний, построила фазовый портрет и решила уравнения гармонического осциллятора для трех случаев.

6 Список литературы

- 1. Кулябов, Д.С. Модель гармонических колебаний / Д.С.Кулябов. Москва: $4\,\mathrm{c}$.
- 2. Руководство по оформлению Markdown.