- 1. Длина волны излучения $\lambda = 400$ нм; посчитать:
- волновой вектор k [см $^{-1}$],
- частоту ν [см⁻¹].
- 2. Ширина аппаратной функции спектрографа в области $\lambda = 500$ нм составляет $\Delta v = 1.6$ см⁻¹; какова эта ширина в длинах волн $\Delta \lambda$ [нм].
- 3. Возбужденное состояние молекулы кислорода расположено на 1.62 э-В над основным; каковы
- частота v излучения при переходе в основное состояние [см $^{-1}$],
- длина волны этого излучения [нм].
- 4. Для спектра излучения абсолютно черного тела записать выражения для: среднего число фотонов в моде с частотой ν излучения, объемной плотности числа мод с частотой ν в интервале dv, объемной плотности энергии излучения на частоте ν в интервале dλ при температуре T.
- 5. Посчитать объемную плотность числа мод излучения в максимуме спектра AЧT с температурой 5000 K, имеющих длины волн в пределах полосы шириной $d\lambda = 10$ нм.
- 6. Записать соотношение между спектральными плотностями энергии излучения ρ_{ν} и ρ_{λ} ($\rho_{\lambda}d\lambda$ объемная плотность энергии излучения с длинами волн от λ до λ + $d\lambda$).
- 7. Записать соотношение между интенсивностью I_{ν} и соответствующей объемной плотностью энергии ρ_{ν} для плоской электромагнитной волны; привести численный пример для плотности энергии ρ_{ν} в пучке одночастотного He-Ne лазера с шириной линии излучения $0.001~\text{cm}^{-1}$.
- 8. Оценить диаметр пятна излучения и длину перетяжки в фокусе линзы при фокусировке коллимированного пучка лазерного излучения TEM_{00} -моды; привести численный пример.
- 9. Для гауссова пучка TEM_{00} -моды записать выражение для изменения радиуса поперечного сечения пучка и радиуса кривизны волнового фронта с расстоянием от перетяжки, пояснить обозначения; описать расходимость пучка на больших расстояниях от перетяжки; найти, на каком расстоянии от перетяжки радиус кривизны волнового фронта минимален.
- 10. Записать выражение для интенсивности лазерного излучения в центре гауссова пучка при заданной мощности; привести численный пример для He-Ne лазера.