# ПОДХОДЫ К АВТОМАТИЗАЦИИ ТЕСТИРОВАНИЯ НАСТРОЙКИ ТЕХНОЛОГИЧЕСКИХ АЛГОРИТМОВ ПА, РАБОТАЮЩИХ ПО ПРИНЦИПУ II-ДО

Ландман А.К., Петров А.М., Петров А.Э., Сакаев О.О., Чумаков В.А. ЗАО «Институт автоматизации энергетических систем»

### 1. ОБЩИЕ СВЕДЕНИЯ

В настоящее время в западной и центральной части Сибири эксплуатируется 5 управляющих вычислительных комплексов автоматики дозировки воздействий (АДВ), предназначенных для предотвращения нарушений статической и динамической устойчивости при аварийных ситуациях в сетях 110-220-500 кВ на подстанциях Итатская, Алтай, Таврическая, на Усть-Хантайской и Курейской ГЭС. Проектируются устройства АДВ для установки на подстанциях Камала, Озерная, на Саяно-Шушенской ГЭС, на Харанорской ГРЭС, поставлено оборудование на Богучанскую ГЭС.

В состав всех вышеупомянутых устройств входят алгоритмы выбора управляющих воздействий (УВ), работающие по принципу II-ДО. При этом выбор УВ для конкретных пусковых органов (ПО) производится по таблицам, сформированным на основании заранее проведенных расчетов устойчивости в контролируемых сечениях. Как правило, процесс настройки алгоритма выбора УВ по способу II-ДО заключается в следующем:

- 1. Проводятся расчеты устойчивости либо проектными организациями, либо соответствующими подразделениями Системного Оператора.
- 2. Сформированная на основании этих расчетов настройка алгоритма выбора УВ передается изготовителю устройства АДВ и эксплуатирующей организации (в случае, если необходимо внести изменения в настройку устройства, находящегося в эксплуатации) в форме, удобной для понимания человеком, ответственным за настройку устройства.
- 3. Выданные таблицы уставок анализируются, на основании проведенного анализа вносятся необходимые изменения в настройку устройства, и готовятся тестовые режимы.
- 4. Проводится тестирование устройства на предмет правильности введенных изменений и, по результатам тестирования, устройство вводится в работу.
- В последнее время в подготовке настройки автоматики предотвращения нарушения устойчивости (АПНУ) в ОЭС Сибири, в соответствии с Планом мероприятий по обеспечению минимизации объема балансирующих управляющих воздействий:
- 1. Увеличивается число ступеней УВ одновременно с уменьшением объема ступеней, с целью, с одной стороны, повысить точность выбора управления, с другой минимизировать отключение нагрузки.
- 2. Растет количество контролируемых схемно-режимных условий, в которых осуществляется выбор УВ, тем самым учитывается состояние оборудования (ВЛ, трансформаторы, генераторы), а также дополнительные ограничения по режиму (например, объемы выдачи мощности станциями), и, как следствие, повышается точность управления.

В связи с постоянным вводом мощностей (строительство новых генерирующих объектов, ВЛ, подстанций), поэтапным восстановлением функционирования Саяно-Шушенской ГЭС, процедура изменения настроек устройств АДВ в регионе становится регулярной, при этом сроки, отводимые на внесение изменений, могут быть крайне сжатыми, в зависимости от текущих режимных условий и других факторов.

Таким образом, все более актуальными становятся задача автоматизации формирования конфигурации устройства АДВ и задача проверки правильности внесенных изменений. Обе эти задачи невозможно решить, не имея формального языка описания настройки алгоритма ІІ-ДО. Такой язык в настоящее время отсутствует, в ОЭС Сибири в этом качестве используются определенные договоренности между технологами, ответственными за расчет настройки, и технологами и программистами, ответственными за конфигурирование устройства. При этом форма таблицы уставок (пример приведен в табл. 1) выбрана, исходя из удобства ее заполнения технологом-расчетчиком. Ввод различных дополнительных схемных условий и режимных ограничений в виде отдельных колонок, сносок, примечаний приводит к неоднозначному толкованию настройки на этапе конфигурирования. Кроме того, в последнее время все чаще используются ремонтные схемы, контролирующие одновременный ремонт нескольких ВЛ, в различных сочетаниях, вида «Отключены две ВЛ из...» с дополнениями «Исключается одновременный ремонт ВЛ...». Все эти сочетания также могут быть

неоднозначно истолкованы, и требуют формализации для однозначной работы процедуры автоматизации.

Таблица 1. Пример типичной таблицы уставок устройства АДВ

|   | Наименование                           | Настройки автоматики                                                                                   |                |             |                         |              |               |              |                     |  |
|---|----------------------------------------|--------------------------------------------------------------------------------------------------------|----------------|-------------|-------------------------|--------------|---------------|--------------|---------------------|--|
| № |                                        | Режим сети                                                                                             |                |             | Управляющие воздействия |              |               |              |                     |  |
|   |                                        | Схема сети                                                                                             | КПР            | Уст.<br>МВт | Летний                  | режим        | Зимний        | режим        | Примечание          |  |
| 1 | ПО-1<br>«АРОЛ – 555»                   | Полная                                                                                                 | P 554,<br>555  | 1200        | ОГ-1<br>ГЭС6            |              | ОГ-1<br>ГЭС6  |              | Данные УВ выводятся |  |
|   | Автоматика разгрузки при отключении ВЛ |                                                                                                        | от шин<br>ПС 7 | 1600        | ОГ-2<br>ГЭС6            | ОН-1<br>ПС12 | ОГ-2<br>ГЭС6  | ОН-1<br>ПС12 | при<br>Р 566,567 >  |  |
|   |                                        |                                                                                                        |                | 2000        | ОГ-3<br>ГЭС6            | OH-2<br>ПС12 | ОГ-3<br>ГЭС6  | OH-2<br>ПС12 | 1200 МВт            |  |
|   | 500 кВ ПС 22 -<br>ПС 7                 |                                                                                                        | P 566,<br>567  | 1200        | _                       | ОН-1<br>ПС25 | -             | OH-1<br>ПС25 |                     |  |
|   |                                        |                                                                                                        |                | 1500        | -                       | OH-2<br>ПС25 | -             | OH-2<br>ПС25 |                     |  |
|   |                                        | Отключена<br>ВЛ 500 кВ<br>ПС 7 - ПС 8<br>и ВЛ 500<br>кВ ПС 8 -<br>ПС 24 или<br>ВЛ 500 кВ<br>ГЭС 6 - ПС | P 554,<br>555  | 400         | ОГ-1<br>ГЭС6            |              | ОГ-1<br>ГЭС6  |              |                     |  |
|   |                                        |                                                                                                        | от шин<br>ПС 7 | 800         | ΟΓ-2<br>ΓЭC6            | OH-1<br>ПС12 | ΟΓ-2<br>ΓЭC6  | OH-1<br>ПС12 |                     |  |
|   |                                        |                                                                                                        |                | 1200        | ОГ-3<br>ГЭС6            | OH-2<br>ПС12 | ОГ-3<br>ГЭС6  | OH-2<br>ПС12 |                     |  |
|   |                                        |                                                                                                        | P 566,<br>567  | 600         | ΟΓ-1<br>ΓЭС20           | ОН-2<br>ПС25 | ΟΓ-1<br>ΓЭС20 | ОН-2<br>ПС25 |                     |  |
|   |                                        | 7                                                                                                      |                | 1200        | ΟΓ-2<br>ΓЭС20           | ОН-3<br>ПС25 | ΟΓ-2<br>ΓЭС20 | OH-3<br>ПС25 |                     |  |

# 2. ПОДХОДЫ К РЕШЕНИЮ ЗАДАЧИ АВТОМАТИЗАЦИИ КОНФИГУРИРОВАНИЯ АЛГОРИТМА II-ДО

Для решения задачи автоматизации конфигурирования алгоритма II-ДО в устройствах АДВ необходимо разработать формальный язык задания настройки. Данный язык должен однозначно задавать следующие параметры:

- 1. Идентификатор пускового органа (ПО).
- 2. Схему сети, в которой задается уставка контроля предшествующего режима (КПР) для данного ПО.
  - 3. Контролируемое сечение, для которого задается уставка КПР.
- 4. Дополнительные схемные и режимные условия (состояние оборудования, ограничения по выдаче мощности и т.п.)
- 5. Управляющие воздействия (УВ), которые должны быть выбраны в случае превышения уставки КПР.

Формальный язык должен позволять однозначно описать любой набор уставок для некоторого ПО в любом количестве схемных и режимных условий, не прибегая к дополнительному усложнению в виде примечаний и сносок, и не должен зависеть от конкретной реализации алгоритма.

- В языке должны быть предусмотрены средства описания схемы сети в виде условий, подчиняющихся дискретной логике, с возможностью сочетания по «И», «ИЛИ»:
  - Включена одна ВЛ;
  - Включено N ВЛ;
  - Отключена одна ВЛ;
  - Отключено N ВЛ;
  - Отключено N ВЛ из М.

Отдельно должны быть предусмотрены средства описания ограничений по режиму (например, ограничение выдачи мощности  $\Gamma \ni C$ ) и состояния оборудования (например, количества включенных

генераторов). При этом, описания схемы сети, ограничений по режиму и состоянию оборудования целесообразно объединять по «И».

Формальный язык *должен позволять использовать автоматизированные (машинные) инструменты для разбора настройки.* Результатом разбора настройки должен быть список уставок, в каждой строке *однозначно* описывающий ПО, схему, ограничение по режиму, ограничение по состоянию оборудования, уставку КПР, ожидаемые УВ.

Примерная форма таблицы уставок, заполняемой на предлагаемом формальном языке, приведена в табл. 2.

Таблица 2. Предлагаемый формат таблицы задания уставок

| Наименование ПО |             | Сеть  |               |                           |         | 1 1     | УВ              |          |          |     |
|-----------------|-------------|-------|---------------|---------------------------|---------|---------|-----------------|----------|----------|-----|
| Полное          | Оперативное | Схема | Режим<br>сети | Состояние<br>оборудования | Сечение | Уставка | <b>УВ</b><br>ОГ | ув<br>ОН | УВ<br>др | ••• |
|                 |             |       |               |                           |         |         |                 |          |          |     |

# 3. АВТОМАТИЗАЦИЯ ТЕСТИРОВАНИЯ НАСТРОЙКИ АЛГОРИТМА II-ДО, РЕАЛИЗОВАННОГО В УСТРОЙСТВАХ АДВ НА БАЗЕ КПА-М

Для выявления ошибок, которые могут возникнуть при вводе конфигурации, разработана процедуру автоматизированного тестирования. Результатом работы данной процедуры является перечень уставок или схемно-режимных условий, для которых выявлены ошибки в конфигурации. Необходимым условием для реализации процедуры автоматизированного тестирования является задание настройки с помощью формального языка, описанного выше.

Процедура должна состоять из следующих шагов:

- 1. Генерация контрольного примера по формально заданной настройке.
- 2. Запуск программного обеспечения устройства АДВ с передачей на вход устройства информации контрольного примера и имитацией срабатываний ПО.
  - 3. Обработка результатов и сравнение их с эталонными.
  - В соответствии с этим, технологу должны быть предоставлены:
  - 1. Средства генерации контрольного примера.
  - 2. Средства эмуляции тестовых режимов и имитации срабатывания ПО.
  - 3. Средства обработки результатов.

Рассмотрим реализацию данной процедуры на примере устройств АДВ на базе КПА-М [1].

Средство генерации контрольного примера реализовано на базе редактора таблиц Microsoft Excel. Ввод настройки осуществляется по разработанному шаблону в форме табл. 2, в соответствии с правилами формального языка, описанными выше. При разборе настройки контролируются ошибки ввода данных, при отсутствии ошибок формируются файлы задания для средства эмуляции. Файлы задания однозначно описывают в каждой строке ПО, схему, ограничение по режиму, ограничение по состоянию оборудования, уставку КПР, ожидаемые УВ. Каждая схема при этом разворачивается во все возможные сочетания ремонтов ВЛ, соответствующие схемному условию, в результате развертывания, в зависимости от объемов настройки, могут быть получены тысячи и десятки тысяч строк.

Средство эмуляции представляет собой программный модуль, запускаемый совместно со штатным программным обеспечением устройства АДВ и подменяющий собой модули ввода доаварийной информации от устройств телемеханики и модули дискретного ввода-ввода (рис. 1).

Подсистема обработки текущего режима



Подсистема детерминированного времени выполнения

Рис 1. Цикл работы устройства АДВ в режиме тестирования настройки алгоритма II-ДО

Согласно файлам задания контрольного примера, с заданными интервалами времени, во входные таблицы технологических алгоритмов подаются аналоговые и дискретные параметры текущего режима, а также ожидаемая дозировка (в специальную таблицу), затем имитируются срабатывания ПО. При этом устройство формирует протокол срабатываний, где фиксирует текущую выставленную дозировку для каждого сработавшего ПО, а также ожидаемую дозировку.

Необходимо отметить, что при больших объемах настройки, время работы устройства на контрольном примере, с учетом перебора всех сочетаний ремонтных схем и других ограничений, с соблюдением всех выдержек времени при формировании ПО, может составлять до нескольких суток, что необходимо учитывать при планировании работ по внесению изменений в настройку алгоритма II-ДО.

Средство обработки результатов представляет собой программный модуль, который выделяет строки выставленной дозировки УВ в протоколе срабатываний и сравнивает их с соответствующими строками ожидаемой дозировки, отображая в файл протокола испытаний только случаи несовпадения выставленной дозировки с эталонной. Таким образом, объем результатов испытаний, подлежащих анализу, резко уменьшается по сравнению с традиционным подходом к тестированию.

## 4. РЕЗУЛЬТАТЫ

В настоящее время предлагаемая методика тестирования настройки алгоритма II-ДО проходит находится в опытной эксплуатации в ЗАО «ИАЭС». В частности, проведена проверка по данной методике проектной настройки УВК АДВ ПС 1150 кВ Итатская, что позволило значительно сократить объем тестирования при последующем внесении изменений в период опытной эксплуатации УВК АДВ. Также прорабатывается синтаксис формального языка описания настройки, с целью его внедрения в качестве основного средства задания настройки алгоритма II-ДО в ОЭС Сибири. Проводятся работы по созданию средств автоматического заполнения таблиц настройки устройств АДВ.

### ЛИТЕРАТУРА

[1] А.К. Ландман, А.М. Петров, А.Э. Петров, О.О. Сакаев. Разработка интегрированной системы ПА ОЭС Сибири. // Релейная защита и автоматика энергосистем: Сборник докладов XX конференции (Москва, 1-4 июня 2010). – М: «Научно-инженерное информационное агентство», 2010. - С. 52-59.