# NOMBRES COMPLEXES

## 1. ENSEMBLE DES NOMBRES COMPLEXES

#### THÉORÈME ET DÉFINITION

On admet qu'il existe un ensemble de nombres (appelés **nombres complexes**), noté  $\mathbb C$  tel que :

- $\mathbb{C}$  contient  $\mathbb{R}$
- $\mathbb C$  est muni d'une addition et d'une multiplication qui suivent des règles de calcul analogues à celles de  $\mathbb R$
- $\mathbb{C}$  contient un nombre noté i tel que  $i^2 = -1$
- Chaque élément z de  $\mathbb C$  s'écrit **de manière unique** sous la forme z=a+ib où a et b sont deux réels.

## **EXEMPLE**

 $\sqrt{5} + \frac{1}{2}i$ , 3i et  $\sqrt{2}$  sont des nombres complexes ( $\sqrt{2}$  est un nombre réel mais comme  $\mathbb{R} \subset \mathbb{C}$  c'est aussi un nombre complexe!)

#### **REMARQUE**

**Attention :** On définit une addition et une multiplication sur  $\mathbb C$  mais on ne définit **pas** de relation d'ordre (comme  $\leq$ ). En effet il n'est pas possible de définir une telle relation qui soit compatible avec celle définie sur  $\mathbb R$  et possède les même propriétés que dans  $\mathbb R$ .

Dans les exercices, attention donc à ne pas écrire de choses comme z < z', si z et z' sont des nombres complexes non réels!

#### **DÉFINITIONS**

- L'écriture z = a + ib est appelée la **forme algébrique** du nombre complexe z.
- Le nombre réel a s'appelle la **partie réelle** du nombre complexe z.
- Le nombre réel *b* s'appelle la **partie imaginaire** du nombre complexe *z*.
- Si la partie réelle de z est nulle (c'est à dire a=0 et z=bi), on dit que z est un **imaginaire pur** .

## **PROPRIÉTÉ**

Deux nombres complexes sont égaux si et seulement si ils ont la même partie réelle et la même partie imaginaire.

## **REMARQUES**

• Cela résulte immédiatement du fait que chaque élément de  $\mathbb C$  s'écrit **de manière unique** sous la forme z = a + ib.

• En particulier, un nombre complexe est nul si et seulement si ses parties réelles et imaginaires sont nulles.

# 2. CONJUGUÉ

#### **DÉFINITION**

Soit z le nombre complexe z = a + ib.On appelle **conjugué** de z, le nombre complexe

$$\overline{z} = a - ib$$
.

## **EXEMPLE**

Soit z = 3 + 4i

Le conjugué de z est  $\overline{z} = 3 - 4i$ .

## PROPRIÉTÉS DES CONJUGUÉS

Pour tous nombres complexes z et z' et tout entier naturel n:

- $\overline{z+z'} = \overline{z} + \overline{z}'$
- $\overline{zz'} = \overline{z} \times \overline{z}'$
- $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}} \text{ pour } z' \neq 0$
- $\overline{(z^n)} = (\overline{z})^n$ .

## **REMARQUES**

- Par contre, en général, |z+z'| n'est pas égal à |z|+|z'|. On peut juste montrer que  $|z+z'| \le |z|+|z'|$  (inégalité triangulaire);
- **ROC:** La démonstration de certaines de ces propriétés a été demandée au Bac 2014 & .

# 3. ÉQUATION DU SECOND DEGRÉ À COEFFICIENTS RÉELS

#### **PROPRIÉTÉ**

Soient a, b, c trois réels avec  $a \neq 0$ .

Dans  $\mathbb{C}$ , l'équation  $az^2 + bz + c = 0$  admet toujours au moins une solution.

Plus précisément, si on note  $\Delta$  son discriminant ( $\Delta = b^2 - 4ac$ ):

• Si  $\Delta > 0$ , l'équation possède **deux solutions réelles** :

$$z_1=rac{-b-\sqrt{\Delta}}{2a}$$
 et  $z_2=rac{-b+\sqrt{\Delta}}{2a}$   
• Si  $\Delta=0$ , l'équation possède **une solution réelle** :

$$z = \frac{-b}{2a}$$

- Si  $\Delta$  < 0, l'équation possède deux solutions complexes conjuguées l'une de l'autre :

$$z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$$
 et  $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$ .

#### **EXEMPLE**

Soit à résoudre l'équation  $z^2 + 2z + 2 = 0$  dans  $\mathbb{C}$ 

$$\Delta = 4 - 8 = -4$$

 $\Delta$  < 0 donc l'équation admet 2 racines complexes conjuguées :

$$z_1 = \frac{-2 - i\sqrt{4}}{2} = -1 - i$$
 et  $z_2 = \frac{-2 + i\sqrt{4}}{2} = -1 + i$ .

# 4. REPRÉSENTATION GÉOMÉTRIQUE

Le plan (P) est muni d'un repère orthonormé ( $O; \vec{u}, \vec{v}$ )

## **DÉFINITIONS**

A tout nombre complexe z = a + ib, on associe le point M de coordonnées (a;b)

On dit que M est l'**image** de z et que z est l'**affixe** du point M.

A tout vecteur  $\vec{k}$  de coordonnées (a;b) on associe le nombre complexe z = a + ib.

On dit que z est l'**affixe** du vecteur  $\vec{k}$ .



## **PROPRIÉTÉS**

- M appartient à l'axe des abscisses si et seulement si son affixe z est un nombre réel
- M appartient à l'axe des ordonnées si et seulement si son affixe z est un nombre imaginaire pur
- Deux nombres complexes conjugués ont des affixes symétriques par rapport à l'axe des abscisses

 $<\!\!img\,src="/wp-content/uploads/mc-0120.png"\ alt=""\ class="aligncenter\ size-full\ img-pc"\ />$ 



## **PROPRIÉTÉS**

Soient A et B deux points d'affixes respectives  $z_A$  et  $z_B$ .

• l'affixe du vecteur  $\overrightarrow{AB}$  est égale à :

$$z_{\overrightarrow{AB}} = z_B - z_A$$

• l'affixe du milieu *M* du segment [*AB*] est égale à :

$$z_M = \frac{z_A + z_B}{2}$$

#### **PROPRIÉTÉS**

Soient  $\vec{w}(z)$  et  $\overrightarrow{w'}(z')$  deux vecteurs du plan et k un nombre réel.

- Le vecteur  $\vec{w} + \overrightarrow{w'}$  a pour affixe z + z';
- Le vecteur  $k\vec{w}$  a pour affixe kz.

# 5. FORME TRIGONOMÉTRIQUE

# DÉFINITION

Soit z un nombre complexe **non nul** d'image M dans le repère  $(O; \vec{u}, \vec{v})$ .

On appelle module de z, et on note |z| le nombre **réel** positif ou nul  $|z| = \sqrt{a^2 + b^2}$ .

On appelle argument de z et on note  $\arg(z)$  une mesure, exprimée en radians, de l'angle  $\left(\vec{u};\overrightarrow{OM}\right)$ .



## PROPRIÉTÉS DES MODULES

Pour tous nombres complexes z et z':

• 
$$|z|^2 = z \times \overline{z}$$

• 
$$|zz'| = |z| \times |z'|$$

• 
$$\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|} \text{ pour } z' \neq 0$$

## PROPRIÉTÉS DES ARGUMENTS

Pour tous nombres complexes z et z' **non nuls** et tout entier  $n \in \mathbb{Z}$ :

• 
$$arg(\overline{z}) = -arg(z)$$

• 
$$arg(zz') = arg(z) + arg(z')$$

• 
$$arg(z^n) = n \times arg(z)$$

• 
$$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')$$

## **REMARQUE**

En particulier:

• 
$$arg(-z) = arg(z) + arg(-1) = arg(z) + \pi$$

• 
$$\operatorname{arg}\left(\frac{1}{z}\right) = \operatorname{arg}(1) - \operatorname{arg}(z) = -\operatorname{arg}(z).$$

## THÉORÈME ET DÉFINITION

Soit z un nombre complexe non nul de module r et d'argument  $\theta$ :

$$z = r(\cos\theta + i\sin\theta)$$

Cette écriture s'appelle forme trigonométrique du nombre z.

## PASSAGE DE LA FORME ALGÉBRIQUE À LA FORME TRIGONOMÉTRIQUE

Soit z = a + ib un nombre complexe non nul.

• 
$$r = |z| = \sqrt{a^2 + b^2}$$

•  $\theta = \arg(z)$  est défini par :

$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}} \operatorname{et} \sin \theta = \frac{b}{\sqrt{a^2 + b^2}}.$$

# EXEMPLE

Soit 
$$z = \sqrt{3} + i$$
.

$$|z| = \sqrt{3+1} = 2$$

Si  $\theta$  est un argument de z:

$$\cos \theta = \frac{\sqrt{3}}{2} \operatorname{et} \sin \theta = \frac{1}{2} \operatorname{donc} \theta = \frac{\pi}{6} (\operatorname{mod.} 2\pi)$$

La forme trigonométrique de z est donc :

$$z = 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right).$$



## ANGLE DE VECTEURS ET ARGUMENTS

Soit A, B et C trois points du plan d'afixes respectives  $z_A, z_B, z_C$  avec  $A \neq B$  et  $A \neq C$ :

$$(\overrightarrow{AB}; \overrightarrow{AC}) = \arg\left(\frac{z_C - z_A}{z_B - z_A}\right).$$



## **REMARQUES**

- Notez bien l'**ordre des affixes** (inverse de l'ordre des points dans l'écriture de l'angle).
- Premier cas particulier important :

$$A, B \text{ et } C \text{ sont align\'es}$$
  
 $\Leftrightarrow \arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = 0 \text{ ou } \pi \text{ [mod. } 2\pi\text{]}$   
 $\Leftrightarrow \frac{z_C - z_A}{z_B - z_A} \in \mathbb{R}.$ 

• Second cas particulier important:

$$\widehat{BAC}$$
 est un angle droit

$$\Rightarrow \arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \pm \frac{\pi}{2} \text{ [mod. } 2\pi\text{]}$$
$$\Rightarrow \frac{z_C - z_A}{z_B - z_A} \text{ est un imaginaire pur.}$$

# 6. FORME EXPONENTIELLE

Si z est un nombre complexe de module r et d'argument  $\theta$ , la notation exponentielle du nombre z est:

$$z=re^{i\theta}$$

#### **REMARQUE**

Ce sont les propriétés des arguments :

• 
$$arg(zz') = arg(z) + arg(z')$$

• 
$$\arg(z^n) = n \times \arg(z)$$

• 
$$\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')$$

similaires aux propriétés de l'exponentielle qui justifient cette notation.

## **EXEMPLE**

Le nombre -1 a pour module 1 et pour argument  $\pi$  (mod.  $2\pi$ ). On peut donc écrire :

$$-1 = e^{i\pi}$$
 ou encore  $e^{i\pi} + 1 = 0$ .

C'est la célèbre identité d'Euler  $\alpha$  qui relie 0, 1, e, i et  $\pi$ .

Les propriétés des arguments vues précédemment s'écrivent alors :

# **PROPRIÉTÉS**

Pour tous réels  $\theta$  et  $\theta'$ :

$$e^{i\theta} \times e^{i\theta'} = e^{i(\theta + \theta')}$$

$$(e^{i\theta})^n = e^{in\theta}$$

$$(e^{i\theta}) = e^{in\theta}$$

$$e^{i\theta} \times e^{i\theta} = e^{in\theta}$$

$$e^{i\theta} = e^{i(\theta - \theta')}.$$