OSLSR_EL1, OS Lock Status Register

The OSLSR EL1 characteristics are:

Purpose

Provides the status of the OS Lock.

Configuration

AArch64 System register OSLSR_EL1 bits [31:0] are architecturally mapped to AArch32 System register <u>DBGOSLSR[31:0]</u>.

Attributes

OSLSR EL1 is a 64-bit register.

Field descriptions

63626160595857565554535251504948474645444342414039383736	35	34	33	32			
RES0							
RES0	OSLM[1	ւ]nTT	OSLK	OSLM[0]			
31302928272625242322212019181716151413121110 9 8 7 6 5 4	3	2	1	0			

Bits [63:4]

Reserved, res0.

OSLM, bits [3, 0]

OS Lock model implemented. Identifies the form of OS save and restore mechanism implemented.

OSLM	Meaning	
0b00	OS Lock not implemented.	
0b10	OS Lock implemented.	

All other values are reserved. In an Armv8 implementation the value 0b00 is not permitted.

The OSLM field is split as follows:

- OSLM[1] is OSLSR_EL1[3].
- OSLM[0] is OSLSR EL1[0].

nTT, bit [2]

Not 32-bit access. This bit is always RAZ. It indicates that a 32-bit access is needed to write the key to the OS Lock Access Register.

OSLK, bit [1]

OS Lock Status.

OSLK	Meaning
0d0	OS Lock unlocked.
0b1	OS Lock locked.

The OS Lock is locked and unlocked by writing to the OS Lock Access Register.

The reset behavior of this field is:

• On a Cold reset, this field resets to 1.

Accessing OSLSR EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, OSLSR EL1

op0	op1	CRn	CRm	op2
0b10	0b000	0b0001	0b0001	0b100

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDOSA == '1' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HDFGRTR EL2.OSLSR EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> !=
'00' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
```

```
else
        X[t, 64] = OSLSR EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR EL3.TDOSA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = OSLSR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = OSLSR\_EL1;
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions

Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.