Prep: bring ID, water, glasses, jacket, pen, watch and the handwritten version of this set of notes **You got this!**

Theory

Convexity and Convex Sets

Convexity of a set $C \subset \mathbb{R}^n$:

• $\forall x, y \in C, \lambda x + (1 - \lambda)y \in C \ \forall \lambda \in [0,1]$

Typical convex sets:

- Cone: $x \in C \Rightarrow \alpha x \in C \ \forall \alpha \ge 0$ (all rays)
- Linear hull: $L(\{x_1, \dots, x_n\}) = \{\sum_{i=1}^n \lambda_i x_i\} = \text{Span}(\{x_1, \dots, x_n\})$
- Affine Hull: $aff(\{x_1, ..., x_n\}) = \{\sum_{i=1}^n \lambda_i x_i, \sum_{i=1}^n \lambda_i = 1\}$
 - \circ Smallest affine set containing $\{x_1, ..., x_n\}$
 - Does not necessarily contain 0
 - $\circ \quad \operatorname{aff}(\operatorname{aff}(S)) = \operatorname{aff}(S)$
 - o aff(C) closed if C finite dimensional
 - $\circ \quad \operatorname{aff}(S+T) = \operatorname{aff}(S) + \operatorname{aff}(T)$
 - $0 \in S \Rightarrow aff(S) = Span(S)$
- Convex hull: $Co(\lbrace x_1, ..., x_n \rbrace) = \lbrace \sum_{i=1}^n \lambda_i x_i, \sum_{i=1}^n \lambda_i = 1, \lambda_i \geq 0 \rbrace$
 - o smallest convex set containing $\{x_1, ..., x_n\}$
- Conic hull: $\operatorname{Conic}(\{x_1, \dots, x_n\}) = \{\sum_{i=1}^n \lambda_i x_i, \lambda_i \geq 0\}$. It is the smallest convex cone.

Convexity of function $f: \mathbb{R} \to \mathbb{R} \cup \{-\infty, \infty\}$ with $dom(f) = \{x: |f(x)| < \infty\}$ (equivalence)

- $\forall x, y \in \text{dom}(f), \forall \lambda \in [0,1],$ $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$
- $epi(f) = \{(x, t) \in \mathbb{R}^{n+1} : f(x) \le t\}$ is a convex set in \mathbb{R}^{n+1}
- -f is concave
- If f differentiable, convex if and only if lower bounded by first order Taylor approximation $f(y) \ge f(x) + \nabla f(x)^T (y-x) \ \forall x,y \in \text{dom}(f)$ $\langle \nabla f(x),x \rangle f(x) \ge \langle \nabla f(x),y \rangle f(y)$
- If f twice-differentiable, convex if and only if every local approximation is convex $\nabla^2 f(x) \ge 0 \ \forall x \in \text{dom}(f)$
- Restriction of f to a line is still convex i.e. f(x + tz) convex in t for $x + tz \in dom(f)$

Properties of convex functions:

- All norms are convex
- All dual norms are convex
- [Sublevel sets] If f convex, sublevel sets $S_{\alpha} = \{x | f(x) \le \alpha\}$ are convex $\forall \alpha$

Convex Optimization

 $\min_{x} f_0(x)$

s.t. $f_i(x) \le 0$, $i \in \{1, ..., m\}$; $h_j(x) = 0$ $j = \{1, ..., p\}$ f_i convex and h_i affine

Properties and Theorems:

- Any locally optimal is globally optimal
- Feasible set convex; optimal set convex
- If objective function is strictly convex, then there is at most one optimal point
- [Supporting Hyperplane] If $C \subset \mathbb{R}^n$ convex, non-empty, then $\forall x_0$ on boundary of C, \exists a supporting hyperplane to C at x_0 (i.e. $\exists a \in \mathbb{R}^n$, $a \neq 0$, $a^T(x x_0) \leq 0 \ \forall x \in C$)
- [Projection] For a nonempty, closed convex set C and $x \in \mathbb{R}^n$, $\exists m \in C$ s.t. $||m-x|| \le ||c-x|| \ \forall c \in C$

Optimality Conditions:

- [Unconstrained] $\nabla f_0(x) = 0$
- [Constrained] If and only if $\forall y$ feasible, $\nabla f_0(x)^T(y-x) \ge 0$

Operations that Preserve Convexity

- [Intersection] $(C_{\alpha})_{\alpha \in A} \Rightarrow \bigcap_{\alpha \in A} C_{\alpha}$ convex
 - Half-space convex ⇒ polyhedron convex
 - Convex set is intersection of halfspaces
- [Affine Transformation] f(x) = Ax + b, $C \subset \mathbb{R}^n$ convex, then f(C) convex.
- Projections are affine
- [Supremum of Convex Functions]: $f_1, ..., f_m$ convex, so is $f(x) = \sup_{1 \le i \le m} f_i(x)$
- [Composition with Affine Function]: If f convex, so is g(x) = f(Ax + b)
- [Nonnegative Linear Combination]: If f, g convex, so is $\alpha f(x) + \beta g(x)$ for $\alpha, \beta \ge 0$.

Lower Semi-Continuous Functions Theory

Definition: $f: \chi \to \mathbb{R} \cup \{+\infty\}$ is <u>lower semi-continuous</u> if for any convergent sequence $(x_n)_n$ s.t. $\lim_{n \to \infty} x_n = x$ in χ , $\lim_{n \to \infty} \inf f(x_n) \ge f(x)$

Theorems and Claims:

- $f: \chi \to \mathbb{R} \cup \{+\infty\}$ is lower semi-continuous if and only if epi(f) is a closed set
- [Convexity \Rightarrow Max-affine] If $f: \chi \to \mathbb{R} \cup \{+\infty\}$ is lower semi-continuous and convex,

• [Jensen] $f: \mathbb{R}^n \to \mathbb{R}$ convex, $x_1, ..., x_k \in \text{dom}(f)$, $\theta_1, ..., \theta_k \ge 0$ with $\sum_{i=1}^k \theta_i = 1$: $f(\theta_1 x_1 + \cdots + \theta_k x_k)$ $\le \theta_1 f(x_1) + \cdots + \theta_k f(x_k)$

Operations preserving convexity:

- [Composition] f ∘ g is convex if f is convex, nondecreasing and g convex
- [Composition with affine] f convex \Rightarrow g(x) = f(Ax + b) convex, $A \in \mathbb{R}^{m \times n}$
- [Pointwise supremum] $f(x) = \max_{\alpha \in A} f_{\alpha}(x)$
- [Nonnegative linear combination] $f_1, ..., f_n$ convex $\Rightarrow \lambda_1 f_1 + \cdots + \lambda_n f_n$ convex, $\lambda_i \geq 0$
- [Partial minimum] f convex in $x = (y, z) \Rightarrow g(y) = \min_{z} f(y, z)$ convex

then f equals supremum of all affine minorants i.e. $f(x) = \sup_{a \le f, a: \chi \to \mathbb{R}} a(x) \ \forall x \in \chi$

Support Function Theory

<u>Definition</u>: For a set C, $h_C(x^*) = \sup_{x \in C} \langle x^*, x \rangle$

Properties:

- $h_C(x^*) \equiv I_C^*(x)$, where $I_C = \begin{cases} 0, & x \in C \\ \infty, & x \notin C \end{cases}$
- Always convex regardless of C

Theorem:

Every closed convex set $C \subset X$ is an intersection of (possibly uncountably infinite) halfspaces defined by support functions

$$C = \bigcap_{x^* \in \chi^*} \{x : \langle x^*, x \rangle \le h_c(x^*) \}$$

Conjugate (Fenchel) Duality

For $f: \chi \to \mathbb{R} \cup \{+\infty\}$ with $\operatorname{dom} f \neq \phi$, define convex conjugate $f^*: \chi^* \to \mathbb{R} \cup \{+\infty\}$

$$f^*(x^*) = \sup_{x \in \chi} \{ \langle x^*, x \rangle - f(x) \}$$

Properties of f^*

- Pointwise maximum of affine function in x^*
- Convex and lower semi-continuous

Properties:

• [Fenchel's inequality]

$$\langle x^*, x \rangle \le f(x) + f^*(x^*) \ \forall x \in \chi, x^* \in \chi^*$$

[Order reversal]

$$f \le g \Rightarrow g^* \le f^* \Rightarrow f^{**} \le g^{**}$$

• [Biconjugation]

$$f^{**}(x) = (f^*)^*(x) \coloneqq \sup_{x^* \in \mathcal{X}^*} \{\langle x^*, x \rangle - f^*(x^*)\}$$

- [Weak Duality for Biconjugates] $f^{**} \le f$
- [Fenchel-Moreau] Let $f: \chi \to \mathbb{R} \cup \{+\infty\}$, then f is convex and lower-semicontinuous $\Leftrightarrow f^{**} = f$
- [Convex lower-envelope] f^{**} is the pointwise largest convex lower semi-continuous function that lies below f

Applications on convex, differentiable functions:

Conjugate Table

	-1.4		
f(x)	$f^*(x^*)$		
$I_K(x)$	$I_K^*(x^*) = h_K(x^*)$		
$\int_{-\infty}^{\infty} 0$, $x \in K$			
$= \begin{cases} 0, & x \in K \\ \infty, & x \notin K \end{cases}$			
$a(x) = \langle x_a^*, x \rangle + b$	$a^*(x^*) = h_{\chi}(x^* - x_a^*) - b$		
	$= \begin{cases} \infty, & x^* \neq x_a^* \\ -b, & x^* = x_a^* \end{cases}$ $a^{**}(x) = a(x) = \langle x_{a}^*, x \rangle + b$		
	$-(-b, x^* = x_a^*)$		
$a^*(x^*)$	$a^{**}(x) = a(x) = \langle x_a^*, x \rangle + b$		
$= \begin{cases} \infty, & x^* \neq x_a^* \\ -b, & x^* = x_a^* \end{cases}$ $f(x) = \ x\ _2$			
$-(-b, x^* = x_a^*)$			
$f(x) = \ x\ _2$	$f^{*}(x^{*}) = \begin{cases} 0, & x^{*} \le 1 \\ \infty, & x^{*} > 1 \end{cases}$ $f^{*}(x^{*}) = \frac{ x^{*} ^{q}}{q}$ $f^{*}(x^{*}) = \begin{cases} 0, & x \le 1 \\ \infty, & x > 1 \end{cases}$ $f^{*}(x^{*}) = \begin{cases} 0, & x^{*} \le 1 \\ \infty, & \text{otherwise} \end{cases}$		
_Y ^p			
$f(x) = \frac{ x ^p}{p}$ $f(x) = x $	$f^*(x^*) = \frac{ x }{q}$		
f(x) = x	$f^*(x^*) = \{0, x \le 1$		
	$\int (x)^{-1} (\infty, x > 1$		
f(x) = x	$\int_{f^*(x^*)} \int_{-1}^{1} 0, x^* _{*} \leq 1$		
	$\int (x) - \infty$, otherwise		
$\sum_{i=1}^{n}$	$\sum_{k=1}^{n}$		
$f(x) = \sum x_i \log x_i$	$f^*(x^*) = \sum e^{x_i^* - 1}$		
$\overline{i=1}$			
$f(X) = \log \det X^{-1}$	$f^*(X^*) = \log \det(-X^*)^{-1} - n$		
$dom f = S_{++}^n$	$dom f = -S_{++}^n$		
f(x)	$f^{*}(X^{*}) = \log \det(-X^{*})^{-1} - n$ $\dim f = -S_{++}^{n}$ $f^{*}(x^{*})$ $= \left\{ \sum_{i=1}^{m} x_{i}^{*} \log x_{i}^{*}, x^{*} \ge 0 \right.$ $1^{T}x^{*} = 1$		
$=\log\left(\sum_{i=1}^{m}e^{x_i}\right)$	$\left \sum_{x_{i}^{*} \log x_{i}^{*}}^{m} \frac{x^{*} \geq 0}{x_{i}^{*}} \right $		
$=\log\left(\sum_{i=1}^{c} i^{-i} \right)$	$= \{ \angle L_{i=1}^{x_i \log x_i}, 1^T x^* = 1$		
	(∞, otherwise		

- $f^*(\nabla f(x)) + f(x) = \langle \nabla f(x), x \rangle$
- If f strictly convex, twice differentiable, then $\nabla f^*(\nabla f(x)) = x$ i.e. $\nabla f^*: X^* \to X$ is the inverse of $\nabla f: X \to X^*$

$f(x) = \frac{1}{2} x ^2$	$f^*(x^*) = \frac{1}{2} \ x^*\ _*^2$

General Duality Theory

Primal problem (P):

$$f: \chi \to \mathbb{R} \cup \{+\infty\} \quad \inf_{x \in \chi} f(x)$$

Define perturbation function $F: \chi \times \mathcal{Y} \to \mathbb{R} \cup \{\infty\}$ which satisfies F(x, 0) = f(x), and F^*

$$F^*: (\chi \times \mathcal{Y})^* = \chi^* \times \mathcal{Y}^* \to \mathbb{R} \cup \{+\infty\}$$

$$F^*(x^*, y^*) = \sup_{x \in \chi, y \in \mathcal{Y}} \{\langle x^*, x \rangle + \langle y^*, y \rangle - F(x, y)\}$$

Define value function as $V: \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ s.t. $V(y) = \inf_{x \in \mathcal{X}} F(x, y)$ (i.e. most optimal value of (P) given perturbation by y)

Properties of V:

- $V(0) = \inf_{x \in \gamma} F(x, 0) = \inf_{x \in \gamma} f(x) = p^*$
- $V^*(y^*) = F^*(0, y^*) = \sup_{x \in \chi, y \in \mathcal{Y}} \{ \langle y^*, y \rangle F(x, y) \}$
- $V^{**}(y) = \sup_{y^* \in \mathcal{Y}^*} \{ \langle y^*, y \rangle F^*(0, y^*) \}$
- [Weak Duality]

$$p^* = \inf_{x \in \chi} f(x) = V(0) \ge V^{**}(0) = \sup_{y^* \in \mathcal{Y}^*} \{ -F^*(0, y^*) \} = d^*$$

- [Dual Problem (D)] Always concave in y^* $d^* = \sup_{y^* \in \mathcal{U}^*} \{ -F^*(0, y^*) \}$
- [Dual Variable] y*
- [Certificate] x_0, y_0^* s.t. $f(x_0) = -F^*(0, y_0^*)$, then they are optimal for (P) and (D)

Theorem:

• If $\exists x_0 \in \chi$ s.t. $f(x_0) < \infty$ and F convex lower semicontinuous, then strong duality holds by Fenchel-Moreau, i.e. $p^* = d^*$

Examples of F(x, y) (perturbation function):

$f_0(x)$	F(x,y)
$f_0(x) = \ x - x_0\ _2 + I_C(x)$	$F(x,y) = \ x - x_0\ _2 + I_C(x+y)$ $F^*(0,y) + \infty, \ y^*\ > 1$ $= \begin{cases} +\infty, & \ y^*\ > 1 \\ -\langle y^*, x_0 \rangle + h_C(y^*), & \ y^*\ \le 1 \end{cases}$

Geometrical Duality

[Basic Duality Theorem] Let $\mathcal{C} \subset \chi$ be closed convex and $x_0 \in \chi \backslash \mathcal{C}$. Then, \exists nonzero $x^* \in \chi^*$ and $\delta > 0$ s.t. $\langle x^*, x_0 \rangle + \delta < \langle x^*, x \rangle \ \forall x \in \mathcal{C}$ i.e. the hyperplane $\{x: \langle x^*, x \rangle + \delta = 0\}$ separates x from the convex set \mathcal{C} .

- Equivalently, \exists nonzero $x^* \in \chi^*$ and $\delta > 0$ s.t. $\langle x^*, x_0 \rangle + \delta < \inf_{x \in C} \langle x^*, x \rangle$
- Equivalently, $\exists \delta > 0$ and $x^* \in \chi^*$ s.t. $\sup_{x \in C} \langle x^*, x \rangle + \delta < \langle x^*, x_0 \rangle$

[Corollary] Let \mathcal{C}, D be closed convex sets and \mathcal{C} compact. Then $\exists x^* \in \chi^*$ and $\delta > 0$ s.t. $\langle x^*, c \rangle \geq \langle x^*, d \rangle + \delta \ \forall c \in \mathcal{C}, \ \forall d \in \mathcal{D}.$

[Geometric Duality] Convex set C and $x_0 \in \mathbb{R}^m$, $\min_{x \in C} ||x - x_0||_2 = \max_{H: H \text{ separates } x_0 \text{ from } C} d(x_0, H)$

[Farkas' Lemma] Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then, **exactly** one of the following is true

- $\exists x \in \mathbb{R}^n \ge 0$ satisfying Ax = b
- $\exists y \in \mathbb{R}^m \text{ s.t. } A^T y \ge 0 \text{ and } b^T y < 0.$
- [Certificate] If $\exists y \text{ s.t. } A^T y \ge 0 \text{ and } b^T y < 0$, then $\nexists x > 0 \text{ s.t. } Ax = b$.

[Separation theorem] If $C, D \subset \mathbb{R}^n$ convex, $C \cap D = \phi$, then \exists hyperplane separating them, i.e. $\exists a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R}$ s.t. $a^Tx \leq b$ for every $x \in C$ and $a^Tx \geq b$ for every $x \in D$.

[Depth]: \mathcal{C} closed convex, depth convex in x_0 depth $(x_0, \mathcal{C}) = \sup_{x^* \in X^*: ||x^*||_2 = 1} \{\langle x^*, x_0 \rangle - h_{\mathcal{C}}(x^*)\}$

Lagrangian Duality

Primal (P):

$$\min_{x} f_0(x) \text{ s.t. } f_i(x) \le 0 \text{ for } i = 1, ..., m$$

Lagrange Dual (D): $\lambda \in \mathbb{R}^m$ is the dual variable:

$$\mathcal{L}(x,\lambda) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

$$g(\lambda) = \inf_{x \in X} \mathcal{L}(x,\lambda) \qquad d^* = \sup_{\lambda \ge 0} g(\lambda)$$

- Symmetric form of Primal $\min_{x} \max_{\lambda \geq 0} \mathcal{L}(x, \lambda)$
- $\max f_0(x) \text{ s.t. } f_i(x) \le 0 \text{ for } i = 1, ..., m$ $d^* = \inf_{\lambda \le 0} \sup_{x \in X} \mathcal{L}(x, \lambda)$

Properties:

- No longer any constraints on x
- g concave, upper-semi-continuous
- [Lower bound property] $q(\lambda) \leq p^* \ \forall \lambda \geq 0$

Theorem:

[Weak Duality]

$$p^* = \inf_{x \in \chi: f_i(x) \le 0 \,\forall i} f_0(x) \ge \sup_{\lambda \ge 0} \inf_{x \in \chi} \mathcal{L}(x, \lambda) = d^*$$

Karush-Kuhn-Tucker (KKT) Conditions

[Necessity] If all functions are differentiable, $x^*, (\lambda^*, \mu^*)$ primal, dual optimal and strong duality holds, then KKT conditions are satisfied:

[Stationarity]
$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \sum_j \mu_j^* \nabla f_j(x^*) = 0$$

- [Feasibility] x^* primal feasible; (λ^*, μ^*) dual feasible
- [Complementary Slackness] $\lambda_i^* f_i(x_i^*) = 0$
 - o If $\lambda_i^* > 0$, then $f_i(x_i^*) = 0$
 - o If $f_i(x_i^*) < 0$, then $\lambda_i^* = 0$
 - o $\lambda_i^* = 0$ unless f_i active at optimum

[Sufficiency] If f_i convex and differentiable and x, (λ, μ) satisfy KKT conditions, then:

- x^* , $(\lambda^*, \mu^*) = x$, (λ, μ) primal, dual optimal
- Strong duality holds

Perturbation and Sensitivity Analysis

[Projection Theorem]: Let $C \subset \gamma$ convex, closed. $\forall x_0 \in \chi$, \exists unique $\Pi_{\mathcal{C}}(x_0) \in \mathcal{C}$ i.e. $||x_0 - \Pi_C(x_0)||_2 \le ||x - x_0||_2 \ \forall x \in C.$

• $\langle \Pi_C(x_0) - x_0, \Pi_C(x_0) - x \rangle \le 0 \ \forall x \in C$

Constraint Qualification

- [Convex LSC, Primal Feasibility] If f_i convex, lower semi-continuous and $\exists x$ feasible
- [Slater's Condition] Let $D = \bigcap_{i=0}^{m} \text{dom } f_i$ i.e. $x \in D \Rightarrow f_i(x) < \infty$. If f_i convex and \exists a **strictly** feasible $x_0 \in D$
- [Slater's Condition Weakened]
 - o h_i affine: if \exists strictly feasible point \in relint(D) i.e. $h_i(x) = 0$, $f_i(x) < 0$
 - Affine inequality constraints need not hold with strict inequality
- [KKT Sufficiency] f_i convex, differentiable and KKT conditions hold for some $(x, (\lambda, \mu))$

Lagrangian Duality Linear Programming (LP)

Primal (P)	Dual (D)
$\inf_{x \in \mathbb{R}^n} c^T x$ s.t. $Ax \le b$	$\sup_{\substack{\lambda \ge 0 \\ \text{s.t. } A^T \lambda = -c}}$

Theorems:

- [Strong Duality for LP] If either (P) or (D) feasible, then strong duality holds.
- [HW9] If primal feasible and dual is not, then strong duality holds $p^* = d^* = -\infty$

Sion's Minimax Theorem

X compact, convex, Y convex. If $f: X \times Y \to \mathbb{R}$ with $f(x,\cdot)$ USC, concave on Y and $f(\cdot,y)$ LSC, convex on X, then:

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y)$$

[Lagrangian Min-Max]

$$p^* = \min_{x} \max_{\lambda \ge 0} L(x, \lambda)$$

$$p^* = \min_{x} \max_{\lambda \ge 0} L(x, \lambda) \ge \max_{\lambda \ge 0} \min_{x} L(x, \lambda) = d^*$$

All constraints get shifted along with the interchanging of max and min

Fenchel-Rockafellar Duality Theorem

Perturbed problem: $\min f_0(x)$

subject to
$$f_i(x) \le u_i$$
, $h_j(x) = v_j$.

If strong duality holds and dual optimum (λ^*, μ^*) is achieved, then:

$$p^*(u, v) \ge p^*(0,0) - \lambda^{*T} u - \mu^{*T} v$$

- $\lambda_i^* \gg 1, u_i < 0 \Rightarrow p^*(u, v)$ increases greatly
- $|\mu_i^*| \gg 1$, sign $(v_i) \neq \text{sign}(\mu_i^*) \Rightarrow p^*(u, v)$ increases greatly
- $\lambda_i^* \ll 1, u_i > 0 \Rightarrow p^*(u, v)$ will not decrease too much
- $|\mu_i^*| \ll 1$, sign $(v_i) = \text{sign}(\mu_i^*) \Rightarrow p^*(u, v)$ will not decrease too much

 λ^* gives a measure of sensitivity of (P) w.r.t. constraints. λ_i can be interpreted as how much you are willing to pay to relax f_i

Local Sensitivity Analysis:

Assume $p^*(u, v)$ differentiable at u = 0, v = 0. If strong duality holds, symmetric relation:

$$\lambda_i^* = -\frac{\partial p^*(0,0)}{\partial u_i}, \, \mu_i^* = -\frac{\partial p^*(0,0)}{\partial v_i}$$

- $f_i(x^*) < 0 \Rightarrow$ constraint inactive i.e. can be tightened or loosened with no effect on $p^* \Rightarrow \lambda_i^* = 0$
- $f_i(x^*) = 0 \Rightarrow$ constraint active i.e. sensitive to perturbation (no slackness)

Toolkit

- [Young] $ab \le \frac{a^p}{p} + \frac{b^q}{q}$ where p,qare Holder's conjugate
- [Jensen] $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$
- [Hölder] $\sum_{i=1}^{n} |a_i b_i| \le (\sum_{i=1}^{n} |a_i|^p)^{\frac{1}{p}} (\sum_{i=1}^{n} |b_i|^q)^{\frac{1}{q}}$ [Hölder] Equality when $|b_i| = c|a_i|^{p-1}$
- [Hölder] $\sum_{i=1}^{n} |x_i|^{\theta} |y_i|^{1-\theta} \le (\sum_{i=1}^{n} x_i)^{\theta} (\sum_{i=1}^{n} y_i)^{1-\theta}$
- [Taylor] $f(x + \delta) = f(x) + (\nabla f(x))^T \delta$
- **Taylor** $f(x + \delta) = f(x) + (\nabla f(x))^T \delta + \frac{1}{2} \delta^T (\nabla^2 f(x)) \delta$

	2 (3)	
$\nabla_X(-\log \det X)$	$\nabla_X(a^TXb) = ab^T$	
$= -(X^{-1})^T$		
$\nabla_X \big(\operatorname{tr}(AX) \big) = A^T$	$\nabla_X \left(\operatorname{tr}(AX^T) \right) = A$	
$\nabla_X (\operatorname{tr}(B^T X^T A^T A X B)) = A^T A X B B^T$		
$\nabla_X \log \det X = X^{-1}$	- log det X convex	
f(x)	$f^*(x^*)$	
$= -\log \det x + I_{S^n_{++}}(x)$	$= \{-n - \log \det(-x^*), x^* \in S_{}^n$	
	(∞. else	

- [Dual Norm] $||z||_* = \sup_{x:||x|| \le 1} z^T x = \sup_{x:||x|| \le 1} |z^T x|$
- [Dual Norm] $\langle z, x \rangle \leq ||x|| ||z||_*$
- $\lambda_{\max}(X) \leq t$ is equivalent to $tI X \in S^n_+$

Perturbation:
$$F(x, y) = f(x) + g(Ax - y)$$

Theorem: Let $f: X \to \mathbb{R} \cup \{+\infty\}$ and $g: Y \to \mathbb{R} \cup \{+\infty\}$ $\{+\infty\}$ and $A: X \to Y$ be a linear map. Then: $\inf_{x \in X} \{ f(x) + g(Ax) \}$

$$\geq \sup_{y^* \in Y^*} \{ -f^*(A^T y^*) - g^*(-y^*) \}$$

If f, g convex and $\exists x_0 \in \text{dom } f \cap \text{dom}(g \circ A)$ s.t. g continuous at Ax_0 , then equality holds and the supremum is attained by some $y^* \in Y^*$

Last Resorts and Final Checks

- Instinct (i.e. just set derivative to 0)
- Write down the Lagrangian in proper form
- Conjugate method if inequalities affine
- Component-wise analysis: isolate terms
- Get ALL KKT conditions for structure
- Case by case consideration
- Matrix Form

Remember:

- KKT conditions need * (i.e. x^*, λ^*, μ^*)
- Don't be scared of taking derivatives of matrices
- Focus: which variable can vary?
- Did you forget any constraints like $x \ge 0$?
- Did you forget to leave in standard form?
- Try Sion's minimax form; leave $w \ge 0$ in the conditions of minimax.

Problem Solving Techniques:

- Introduce slack variables
- 2. Introduce new variables and equality constraints (if affine, use conjugate)
- 3. Transforming the objective
- 4. Implicit constraints

Mind Game:

- Clean piece of paper, calm down...
- Slowly, trust the process. At every step, check for correctness. Derive analytic solution if need be.
- Declutter your variables, group similar terms, introduce \tilde{x} if need be.
- Where there is a will, there is a way
- Focus!

Algorithms

Phase I: Finding Feasible Point

$\min_{x,s} s$	$x_0 \in \bigcap_{i=1}^m \operatorname{dom} f_i$
subject to $f_i(x) \leq s$	$s_0 = 1 + \max_i f_i(x_0)$

- (x_0, s_0) strictly feasible
- With (x_0, s_0) as star point, obtain (x^*, s^*) .
- If initial problem strictly feasible, $s^* < 0 \Rightarrow$ x^* strictly feasible for initial problem

Interior Point Method

Assumptions: f_0 , f_i convex and strict feasibility

Heuristic: Unconstrained convex optimization problem P(t), t > 0 with log-barrier $\phi(z)$

$$\min_{x} f_0(x) + t \sum_{i=1}^{m} \phi(-f_i(x))$$
$$\phi(z) = \begin{cases} +\infty, & z \le 0\\ \log \frac{1}{z}, & z > 0 \end{cases}$$

- Let x_t^* be the solution to P(t).
- Strong duality holds by Slater's Condition
- First order KKT conditions give:

$$\nabla f_0(x_t^*) + \sum_{i=1}^m \frac{t}{-f_i(x_t^*)} \nabla f_i(x_t^*) = 0$$

- $\lambda(t)_i := \frac{t}{-f_i(x_t^*)} > 0$; hence λ dual feasible $p^* = d^* = \sup_{\lambda \geq 0} g(\lambda) \geq g(\lambda(t)) = L(x_t^*, \lambda(t)) = f_0(x_t^*) - mt$ $f_0(x_t^*) \le p^* + mt$; duality gap $\le f_0(x_t^*) - g(\lambda(t)) = mt$
- Pick t s.t. $mt < \epsilon$ (m = # of conditions)
- Returns feasible solution to initial problem within tolerance mt: $f_0(x_t^*)$ mt suboptimal

Upshot: Given initial feasible point, can get arbitrarily close to optimal point by controlling t

Pseudocode:

Given strictly feasible \underline{x}_0 , $t = \underline{t}_0$, $\alpha < 1$

Phase II: Unconstrained Optimization

Problem #1: Step Size s

- 1. Constant step size $s = s_0$
- 2. <u>Bisection</u> $O(\log \frac{1}{\epsilon})$ i.e. exploit monotone f'
 - Assume $x^* \in [L, U]$. Else, double size of interval till f'(L) < 0, f'(U) > 0
 - Set $x = \frac{1}{2}(L + U)$
 - If f'(x) > 0, $U \leftarrow x$. Else, $L \leftarrow x$.
 - Repeat until $|f'(x)|(U-L) \le \epsilon$

$$p^* = f(x^*) \ge f(x) + f'(x)(x - x^*) \ge f(x) - \epsilon$$

- 3. Bisection in \mathbb{R}^n (common subroutine)
 - Start at x_0 . Choose v.
 - Reduces to 1D optimization on slice

$$\alpha^* = \underset{\alpha \ge 0}{\arg \min} f_0(x_0 + \alpha v_0)$$
$$x_{k+1} = x_k + \alpha^* v_k$$

4. Backtracking Line Search

- Key idea: No need to go to exact minimum along each 1D slice; only move if there is enough decrease, else lower expectation
- Parameters $\alpha, \beta \in (0,1), x_k, v_k, s_0 = 1$ s.t. $\delta = \nabla f_0(x_k)^T v_k \leq 0$ (i.e. direction of \downarrow)
- If $f_0(x_k + sv_k) \leq f_0(x_k) + s\alpha \nabla f_0(x_k)^T v_k$, then $x_{k+1} \leftarrow x_k + sv_k$, $s \leftarrow s_{\text{init}}$
- Else, decrease $s \leftarrow \beta s$. Repeat

Problem #2: Direction v

- 5. Gradient Descent $v_k = -\nabla f_0(x_k)$ $x_{k+1} = x_k - \alpha^* \nabla f_0(x_k)$
- 6. Stochastic Gradient Descent
 - Key idea: high cost of evaluating entire

gradient; take a sample
$$|S| < m$$
 instead
$$\min_{w} \frac{1}{m} \sum_{i=1}^{m} L(x_i^T w) \qquad \nabla f_0(w) \approx \frac{1}{|S|} \sum_{i \in S} L'(x_i^T w) x_i$$

- Solve P(t) to get $(x_t^*, \lambda(t))$
- Update $x_0 \leftarrow x_t^*$, $t \leftarrow \alpha t$
- Repeat until $mt < \epsilon$ (intended accuracy)

Remark: Interior point still works without convex assumption, but not guaranteed 0 duality gap Simplex Algorithm (Specific to LP)

- Starts at a vertex v
- Greedily chooses a feasible neighboring vertex with more optimal value
- If unable to choose, terminate and declare solved.

$$v_k = -\frac{1}{|S|} \sum_{i \in S} L'(x_i^T w) x_i \approx \nabla f_0(w)$$

- 7. Coordinate Descent
- 8. Newton's Method $O\left(\log\log\frac{1}{\epsilon}\right)$
 - Key idea: approximate convex function as a quadratic function locally; travel to the minimizer of quadratic function

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)} \begin{bmatrix} \left(\nabla^2 f_0(x_k)\right)^{-1} \nabla f(x_k) \\ \text{Newton step} \end{bmatrix}$$
$$x_{k+1} = x_k - \left(\nabla^2 f_0(x_k)\right)^{-1} \nabla f(x_k)$$

9. Damped Newton's Method $O\left(\log\log\frac{1}{\epsilon}\right)$

$$x_{k+1} = x_k - s_k (\nabla^2 f_0(x_k))^{-1} \nabla f_0(x_k)$$
 where s_k is chosen by another method like backtracking line search

Applications

Entropy Maximization

Goal: Maximize entropy $\mathbb{H}[p] = \sum_{i=1}^{n} p_i \log \frac{1}{p_i}$ subject to constraints

$$\min_{x} \sum_{i=1}^{n} x_i \log x_i$$

subject to $\mathbb{1}^T x = 1$, $Ax \le b$ Note: $x \ge 0$ included in $Ax \le b$

Dual Problem (using conjugate method):

$$\max_{\lambda \ge 0, \mu} g(\lambda, \mu) = \max_{\lambda \ge 0, \mu} = -b^T \lambda - \mu - e^{-\mu - 1} \sum_{i=1}^n e^{-a_i^T \lambda}$$

$$\mu = \log \left(\sum_{i=1}^n e^{-a_i^T \lambda} \right) - 1$$

$$\max_{\lambda \ge 0} -b^T \lambda - \log \left(\sum_{i=1}^n e^{-a_i^T \lambda} \right)$$

Risk Parity Portfolio

Goal: Find $x \in \mathbb{R}^n_+$, where x_i is amount of money invested in asset i, s.t. risk is distributed equally among all assets $x_i(Cx)_i = \frac{1}{n}x^TCx$. Note: $C = C^T > 0$ is covariance of the assets, measures risk.

• $x_i(Cx)_i$ is the contribution to risk by holding asset *i*.

Consider the following different convex optimization problem:

$$\min_{x} f_0(x) + \frac{1}{2} x^T C x \qquad f_0(x) = \begin{cases} -\sum_{i=1}^{n} \log x_i, & x_i > 0 \ \forall i \\ +\infty, & \text{otherwise} \end{cases}$$

Solutions (KKT)

$$\frac{1}{x_i^*} + (Cx^*)_i - \lambda_i^* = 0
\lambda_i^*(-x_i^*) = 0
x_i^* > 0, \lambda_i^* \ge 0$$

$$Cx^* = \left[\frac{1}{x_1^*} \cdots \frac{1}{x_n^*}\right]^T$$

Since $x_i^*(Cx^*)_i = 1$, solution is the risk parity portfolio that we are looking for.

Support Vector Machine (SVM)

Given data points $x_1, ..., x_m \in \mathbb{R}^n$ and labels $y = (y_1, ..., y_m) \in \{0,1\}$

Goal: Find hyperplane of maximum margin

Maximum Margin SVM (Linearly Separable) Note: Quadratic Program

 $\min_{w,b} ||\overline{w}||_2^2$

subject to $y_i(\langle w_i, x_i \rangle + b) \ge 1$

Non-linearly Separable: Key idea is to introduce slack variables e_i

$$\min_{e,w,b} ||w||_2^2 + \lambda \sum_{i=1}^m e_1$$

subject to
$$y_i(\langle w_i, x_i \rangle + b) \ge 1 - e_i$$

 $e \ge 0$

Analysis:

- 1. $\lambda \gg 1$: can almost ignore w
 - o Will find hyperplane that separates the greatest number of data points perfectly
 - o Similar to L_1 norm; encourages sparsity among e_i
- 2. $0 < \lambda \ll 1$: increases the importance of margin compared to errors
- 3. λ is a tradeoff between margin (robustness) and classification error.

Variants:

1. Worst Case Loss

$\min_{e,w,b}\max_i e_i$	subject to $e_i \ge \max(0.1 - y_i(\langle w_i, x_i \rangle + b_i))$
$\min_{e,w,b} \max_{i} (0,1 - y_i(\langle w_i, x_i \rangle + b_i))$	Hinge Loss

- Does not care about margin w at all; just wants a hyperplane that minimizes worst case
- 2. Robust SVM (SOCP)

• Know $x_i \in B_{r_i}(\hat{x}_i)$ i.e. $\|\hat{x}_i - x_i\|_2 \le r_i$

$\min_{w,b} w _2$	subject to $y_i(\langle w, x_i \rangle + b) \ge 1 \ \forall x_i \in B_{r_i}(\hat{x}_i)$
$\min_{w,b} w _2$	subject to $r_i w _2 + 1 \le w^T \hat{x}_i + b \ (y = +1)$ subject to $r_i w _2 + 1 \le -w^T \hat{x}_i - b \ (y = -1)$

- 3. Nonlinear Data
 - Reparametrize in terms of new parameters like $x_1^2, x_1 x_2, x_2^2$ (can model circular data)

շսլ	<u>Jei vis</u>	seu L	.eamii	ng	
	$\min_{w \in \mathbb{D}^n}$	$L(X^T)$	(w,y)	+ λ·	p(w)

- X: data matrix $X = [x_1 \cdots x_m] \in \mathbb{R}^{n \times m}$
- $y = (y_1, ..., y_m) \in \mathbb{R}^m$ labels
- w: weights; gives prediction rule for new data
- L: loss function; **convex** in first argument
- $\lambda \ge 0$: parameter for regularization
- p: convex penalty function; independent of data; reflects prior knowledge

Loss Function	Paradigm	
$L(z,y) = \ z - y\ _2$	Linear least-squares regression	
	Assume Gaussian noise	
$L(z,y) = z - y _1$	Disregard outliers	
$L(z,y) = \ z - y\ _{\infty}$	Robust regression	
$L(z,y) = \sum_{i=1}^{m} \max(0,1-y_i z_i)$ Hinge loss; useful in SVM		
$\overline{i=1}$ m	Logistical logs	
$L(z,y) = -\sum_{i=1}^{\infty} \log(1 + e^{-y_i z_i})$	Logistical loss	
$L(z, y) = z - y _2$	LASSO	
$p(w) = w _1$	Encourages sparsity	
$p(w) = \ w - x_0\ _2$	Regularization: believes w to be	
	close to x_0	
λ	Parameter tuning	

Network Economics Problem

	R	Set of routes (not edges!)			
	J	Set of resources/edges			
Ī	S	Set of source/sink pairs			
Ī	U_{s}	Utility function of $s \in S$, increasing, strictly concave			
	J	increasing, strictly concave			
		differentiable (LDMR)			

System Problem

$\max \sum U_s(x_s)$	Hy = x	Valid flow pattern
$\max_{x,y} \sum U_s(x_s)$	$Ay \leq c$	Capacity constraints
	$x, y \ge 0$	Nonnegative flow

Strong duality holds; primal, dual optimal both attained.

_	1200 127				
	C_i	Capacity of $j \in J$			
	A_{ir}	$f(1, r \in R \text{ uses } j \in J)$			
	,,	− (0, otherwise			
	H_{ir}	$(1, r \in R \text{ serves})$			
	γ,	$= $ $s \in S$			
		(0, otherwise			
	у	Assignment of flow in a			
	-	network along the routes			
	х	Amount of flow from source			
		to sink s			

User Problem (maximize utility)

$User_s(\lambda) = \max_{x_s \ge 0} U_s(x_s) - \lambda_s x_s$	λ_s : cost per flow

Network Problem (maximize profit)

· · · · · · · · · · · · · · · · · · ·	-7
$Network = \max_{x_s \ge 0} \lambda_s x_s$	Hy = x
$x_s \ge 0$	$Ay \leq c$
	$x, y \ge 0$

<u>Theorem</u>: There is an equilibrium price vector λ s.t. x^* in both problems are the same and optimal for the system.

$$L(x,y,z) = \sum_{s \in S} U_s(x_s) - \lambda_s x_s + \sum_{r \in R} y_r \left(\lambda_s(r) - \sum_{j \in J} \mu_j \left(c_j - z_j \right) \right)$$

 λ^* is precisely this magical price vector, justified by KKT.

Network Optimization Problem

- At advertised prices λ, users signal willingness to pay m
- Network solves Network(*m*)
- Network updates prices $\lambda_s = \frac{m_s}{x_s}$
- Repeating this algorithm converges to equilibrium λ^*

User Problem (maximize utility)

$$\operatorname{User}_{\scriptscriptstyle S}(\lambda) = \max_{m_{\scriptscriptstyle S} \geq 0} U_{\scriptscriptstyle S}\left(\frac{m_{\scriptscriptstyle S}}{\lambda_{\scriptscriptstyle S}}\right) - m_{\scriptscriptstyle S} \quad \begin{array}{c} m_{\scriptscriptstyle S} \text{: willingness to pay or} \\ \text{budget} \end{array}$$

Network Problem (maximize profit)

Network
$$(m) = \max_{x,y} \sum_{s} m_s \log x_s$$
 $Hy = x$ $Ay \le c$ m : budget of users; can't control $x, y \ge 0$

Portfolio Optimization

$$p^* = \max_{w \ge 0; \mathbb{1}^T w = 1} \hat{r}^T w - \frac{1}{2} w^T D w$$

subject to $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, $\mu > 0$

$$p^* = \max_{w \ge 0} \min_{\mu} \hat{r}^T w - \frac{1}{2} w^T D w + \mu (\mathbb{1}^T w - 1) = \min_{\mu} \max_{w \ge 0} \hat{r}^T w - \frac{1}{2} w^T D w + \mu (\mathbb{1}^T w - 1)$$

Optimization of Norms (Example of Sion's Minimax Application)

$$\min_{x} ||Ax - y||_1 + \mu ||x||_2$$

subject to $A \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, $\mu > 0$

Key idea:
$$\|z\|_2 = \max_{u:\|u\|_2 \le 1} u^T z$$
, $\|z\|_1 = \max_{u:\|u\|_{\infty} \le 1} u^T z$

$$p^* = \min_{x} \max_{\|u\|_{\infty} \le 1} u^T (Ax - y) + \mu v^T x = \max_{\|u\|_{\infty} \le 1} \min_{x} u^T (Ax - y) + \mu v^T x = \max_{\|u\|_{\infty} \le 1} -u^T y = d^*$$

$$\|v\|_2 \le 1$$

$$\|v\|_2 \le 1$$

$$\|v\|_2 \le 1$$

Distributed Systems

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^n f_i(x_i)$$

subject to $a^T x = b$

 f_i : utilities of different users, subject to a resource constraint

 $p^* = \max_{\mu \in \mathbb{R}} g(\mu) = \max_{\mu \in \mathbb{R}} \inf_{x \in \mathbb{R}^n} \sum_{i=1}^n f_i(x_i) - \mu(a^T x - b) = \max_{\mu \in \mathbb{R}} \mu b - \sum_{i=1}^n \max_{x_i} \mu a_i x_i - f_i(x_i)$ $= \max_{\mu \in \mathbb{R}} \mu b - \sum_{i=1}^n f_i^*(\mu a_i)$

Remark: reduces to 1D problem in the dual

Dual of SOCP

$$p^* = \min_{x \in \mathbb{R}^n} c^T x$$

subject to $||Ax + b||_2 \le c^T x + d$

$$\max_{u,\lambda: \|u\|_{2} \le \lambda} u^{T} y - t\lambda = \max_{\lambda \ge 0} \lambda(\|y\|_{2} - t)$$

Minimum Volume Covering Ellipsoid

EECS 127	Final Sheet	Wang Jianzhi		
$\min_{y} \log \det X^{-1}$	Min volume of ellipse centered at origin con	taining a_1, \dots, a_m		
s.t. $a_i^T X a_i \le 1$ for $i = 1,, m$ $\epsilon_X = \{z z^T X z \le 1\}, X \in S_{++}^n$	$g(\lambda) = \begin{cases} \log \det \left(\sum_{i=1}^{m} \lambda_i a_i a_i^T \right) - \mathbb{1}^T \lambda + n, \end{cases}$	$\sum_{i=1}^m \lambda_i a_i a_i^T \succ 0$		
	_∞,	otnerwise		
	(by conjugate method) Strong duality alway	s obtained		
Introducing New Variables and Equality Constraints Technique				
$\min_{x} f_0(Ax+b)$	$g(\mu) = b^T \mu + \inf_{y} \{f_0(y) - \mu^T y\} = b^T$	$T\mu - f_0^*(\mu)$		
$\min_{x,y} f_0(y)$	$\max_{\mu} b^T \mu - f_0^*(\mu)$			
subject to $Ax + b = y$	subject to $A^T \mu = 0$			
Unconstrained Geometric Program				
$\min_{x} \log \left(\sum_{i=1}^{m} e^{a_i^T x + b_i} \right)$	$\max_{\mu} b^T \mu - \sum_{i=1}^m \mu_i \log \mu_i$			
$\min_{x,y} \log \left(\sum_{i=1}^m e^{y_i} \right)$	subject to $1^T \mu = 1$			
$\lim_{x,y} \log \left(\sum_{i=1}^{y} e^{x_i} \right)$	$A^T \mu = 0$			
\i=1 /	$\mu \geq 0$			
subject to $Ax + b = y$	(Entropy Maximization Problems)	em)		
Norm Approximation Problem				
$\min_{x} \ Ax - b\ $	$\max_{\mu} b^T \mu$			
$\min_{x} y $	subject to $\ \mu\ _* \le 1$, $A^T \mu =$	0		
subject to $Ax - b = y$				