# Identifying Personal Attacks in Wikipedia Comments

Danielle Mallare-Dani

December 9th, 2021

#### **Data Visualization**

- To get a feel for the data and to understand how the features in the dataset impacted a comment's classification, I did an in-depth exploration of each feature in the dataset.
- The pie charts show that most comments that get classified as an attack are on a user.
- ▶ The bar charts illustrate the differences in comment distributions among users who are logged in or not.
- ▶ The year charts show that the distribution of all comments and attack labeled comments are very similar.







## Comment Cleaning & Feature Extraction

- ▶ The attack information from different annotators was examined (see the bar chart).
- The final decision was to label a comment as an attack if the comment had an average number of ratings greater than 0.6. That is, at least 7 of the 10 annotators rated it as a personal attack.
- To determine how to clean the comment text, I did an initial simple clean of the text, generated a bag-of-words representation, and analyzed the representation. This led to a final clean that included:
  - Removal of all numbers
  - Removal of all punctuation
  - Removal of some of the HTML style elements. For example, "cellpadding"
- The following features were considered for use:
  - ▶ Login status, was used to train the models
  - Namespace, was used to train the models
  - Various combinations of character and word n-gram tf-idf vectorizers were experimented with
  - Year was also considered, but not utilized to train the models



## Modeling the Data

- Evaluating model performance:
  - Average macro precision, recall, and f1-score
    - ▶ Precision: Proportion of comments classified as attacks that were correct
    - ▶ Recall: Proportion of offensive comments that were identified correctly
  - Confusion matrix converted to percentages and displayed as a heat map
    - Understand how well the model does with labeling both types of comments
- K-Fold cross-validation was used with k = 4.
  - ▶ Generally led to an approximately one percent increase in recall
  - ► Generally led to a half percent increase in precision
- Best results obtained from each model (without hyperparameter tuning)

| Model               | Precision | Recall | F1-Score |
|---------------------|-----------|--------|----------|
| Linear SVC          | 0.9130    | 0.8293 | 0.8650   |
| Logistic Regression | 0.9157    | 0.7937 | 0.8414   |
| Random Forest       | 0.9223    | 0.6465 | 0.7015   |



### Hyperparameter Tuning

- The following hyperparameter tuning was conducted for each model. The best parameters are highlighted in bold.
- ► Tuning yielded between a 0.5-0.75% increase in average macro f1-score.

| Model               | Parameter 1                        | Parameter 2                           | Parameter 3                   |
|---------------------|------------------------------------|---------------------------------------|-------------------------------|
| Linear SVC          | C<br>[0.1, <b>1</b> , 10,100]      | Class Weight<br>['balanced', None]    | N/A                           |
| Logistic Regression | C<br>[0.1, <b>1</b> , 10, 100]     | Class Weight<br>['balanced', None]    | N/A                           |
| Random Forest       | Number of Estimators [10, 50, 100] | Max Depth<br>[2, 5, 10, <b>None</b> ] | Criterion ['entropy', 'gini'] |

- I also examined the following parameters associated with the word n-gram tf-idf vectorizer:
  - max\_df
  - max\_features
  - Usage of stop words

#### Conclusion

- Best overall model: Linear SVC
  - ► Features: Login status, namespace, and tf-idf unigram and bigram word and character vectorizers

Performance of the best overall model versus strawman:

| Model           | Precision | Recall | F1-Score |
|-----------------|-----------|--------|----------|
| Best Linear SVC | 0.88      | 0.87   | 0.87     |
| Strawman        | 0.80      | 0.79   | 0.80     |

- Optimizations to my code included:
  - Creation of custom functions to allow me to systematically train, test, and conduct hyperparameter tuning and generate results in a consistent format.
  - Use of RandomizedSearchCV instead of exhaustive GridSearchCV with large search spaces