Course Outline CS163: Data Structures Spring 2015

(The following outline is subject to change; chapters assigned are based on the 6^{th} edition!)

WEEK #1:

Reference: Topic #1 and 2 Videos

<u>Date:</u> <u>Topic:</u> <u>Reading/Projects:</u>

3/31 Topic #1

*** Please read the syllabus ***

- Introduction: Syllabus, Objectives for the Course, Chapters 1 and 2
 Class Introduction, and Review Outline. (Software Engineering &
- Overview of what to expect for: Recursion) assignments, attendance, discussions, online quizzes, and examinations.
- *** Make sure to practice Linear Linked Lists and recursion from CS162 ***
- 4/2 Topic #2
 - Chapter 1 Principles of Programming and Software Engineering
 - Review: Chapter 2 Recursion
 - Review: Data Abstraction through Classes
 - Discuss Abstract data types, Classes in C++, Class scope, and Information hiding

Lab #1 – Getting Started with Abstract Data Types By 4/2 – Get a CS Account

- No Prelab Exercises for the first lab! (prior to your first lab!)
- Practicing Linear Linked Lists

WEEK #2:

Reference: Topic #3 Videos

Date: Topic: Reading/Projects:

4/7 Topic #3 – Data Abstraction

Chapters 3, 4, 5

• Chapter 3 - Data Abstraction -- The Walls

(Data Abstraction, LLL,

Recursion)

- Step through an example of an abstract data type using classes, constructors, member functions.
- Quickly review the concepts of pointers, dereferencing, and allocating/deallocating memory

4/8 7pm Written Homework #1 Due - Submit to the D2L Dropbox

4/9 Topic #3 – Various implementations of List Abstractions

- Chapter 4 Linked Lists
- Chapter 5 Recursion as a problem solving technique
- Algorithms for Simple Linked Lists: list traversal, insertion, deletion
- Discuss array implementations versus linked list implementations of an ordered list

Lab #2 – Building Abstract Data Types

- Bring your Pre-Lab exercise completed!
- Experience variations of linear linked lists

WEEK #3:

Reference: Topic #4 Videos

Date: Topic: Reading/Projects:

4/14 Topic #4 – Stack and Queue Abstract Data Types Chapters 6, 7, 13.1, 13.2, 14

Stacks and Abstract Data Types

(Stacks and Queues)

- Chapter 6 Stacks
- The stack as an example of an Abstract Data Type in Program Development
- ADT Stack Operations
- Implementing Stacks using arrays
- Implementing Stacks using dynamic memory

4/15 7pm - Program #1 is Due - Submit to the D2L Dropbox

4/16 Queues and Abstract Data Types

- Chapter 7 Queues
- The Abstract Data Type Queue
- Implementations of the ADT Queue

Lab #3 - Stacks and LLL of Arrays

- Bring your Pre-Lab exercise completed!
- Implement Stack abstractions
- Implementation of a LLL of arrays

WEEK #4:

Reference: Topic #5 and 6 Videos

<u>Date:</u> <u>Topic:</u> <u>Reading/Projects:</u>

4/21 - Topic #5 Additional Linked List Implementations

- Variations of the Linked List
- Doubly linked lists
- Circular linked lists

4/22 7pm Written Homework #2 Due - Submit to the D2L Dropbox

4/23 – Review Recursion from CS162

Prepare for the Midterm

Lab #4 - Queues and Circular Linked Lists

- Bring your Pre-Lab exercise completed!
- Implement Queue abstractions
- Implementation of a Circular Linked List

WEEK #5:

Reference: Topic #7 Videos

<u>Date:</u> <u>Topic:</u> <u>Reading/Projects:</u>

4/28 Midterm Exam

4/29 7pm Program #2 Due - Submit to the D2L Dropbox

4/30 - Topic #6 Hashing

Chapter 18 (Hashing)

- Searching: Introduction and Notation
- Hash Functions, Collisions, Table traversal
- Discussion of what constitutes a good hash function

Lab #5 - Practice Recursion

- Bring your Pre-Lab exercise completed!
- Practice recursive solutions and doubly linked lists

*** PROFICIENCY DEMOS are scheduled by Appointment ***

WEEK #6:

Reference: Topic #8 Videos

<u>Date:</u> <u>Topic:</u> <u>Reading/Projects:</u>

5/5 – Topic #7 Algorithm Efficiency

Chapter 10 (Measuring Efficiency)

- Chapter 9 Algorithm Efficiency
- Measuring efficiency of algorithms: order of magnitude analysis, Big O notation
- Evaluating the efficiency of algorithms

Review Hash Tables

5/6 7pm Written Homework #3 Due - Submit to the D2L Dropbox

5/7 – Topic #8 Tree Structures

Chapter 15 (Trees)

• Definitions, Introduction to Trees, Tree search

Lab #6 – Hash Tables and Other Linked Lists

- Bring your Pre-Lab exercise completed!
- Implement Array of Linked Lists
- Experience variations of linear linked lists

WEEK #7:

Reference: Topic #9 Videos

<u>Date:</u> <u>Topic:</u> <u>Reading/Projects:</u>

5/12 – Topic #9 Tree Structures

Applying Recursion

Chapter 16 (ADT Table)

- Insert Algorithm
- Overview of the removal algorithm

5/13 7pm Program #3 Due - Submit to the D2L Dropbox

5/14 - Topic #9 *Tree Structures*

• Removal Algorithm of a Binary Search Tree

Lab 7 – Binary Search Trees

- Bring your Pre-Lab exercise completed!
- Practice BST solutions

WEEK #8:

Reference: Topic #10 Videos

Date: Topic: Reading/Projects:

5/19 - Topic #10 Advanced Trees

Chapter 19 (Balanced Trees)

- Height balance, contiguous representation of binary trees:
- 2-3 Trees

5/20 7pm Written Homework #4 Due - Submit to the D2L Dropbox

5/21 - Topic #10 Advanced Trees

Chapter 19 (Balanced Trees)

- Other balanced tree algorithms
- 2-3-4 Trees
- Red-black trees

Lab 8 - Balanced Trees

- Bring your Pre-Lab exercise completed!
- Practice 2-3 Tree Solutions

WEEK #9:

Reference: Topic #11 Videos

Date: Topic: Reading/Projects:

5/26 – Topic #10 Continued on Advanced Trees

Chapter 21.3.3 (B-Trees)
Chapter 17 (Heaps)

Chapter 20 (Graphs)

• AVL Trees

• B-Trees

Heaps

• Deletion Algorithms

5/27 7pm Program #4 Due - Submit to the D2L Dropbox

5/28 - Topic #11 Graphs

Lab 9 – Advanced Algorithms – Graphs

• Bring your Pre-Lab exercise completed! Experience setup of a graph

WEEK #10:

Reference: Topic #11 and 12 Videos

Date: Topic: Reading/Projects:

6/2 Sorting Algorithms

Chapter 11 (Sorting)

•

- Chapter 9: Sorting: Introduction and notation, insertion sort, selection sort, bubble sort
- Shell sort
- Mergesort
- Quicksort for contiguous lists
- Efficiency of Sorting Algorithms

6/4 Prepare for the Final Exam

LAB #10 - Practice Recursion and Advanced Trees

- Bring your Pre-Lab exercise completed!
- Practice binary search trees with recursion and 2-3-4 trees

6/10 7pm Program #5 Due Submit to the D2L Dropbox ***NO LATE Program #5's

Final Exam Time

THURSDAY June 11th 10:15-12:05

***NO FINALS MAY BE TAKEN AFTER June 11th ***

Final Proficiency Demonstrations take place by appointment. All Proficiency Demos must be completed by June 11th