TXC – Taller # 1 ISO/OSI, Protocol HDLC i medis de transmissió

Qüestió 1.2 del Quadern

What kinf of frames shall we use to do "poll" in HDLC and what frame is the answer if there is not information to send?

- a) NRM
- b) ABM

L'opció correcta és la a) (NRM) ja que s'utilitza en sistemes 'unbalanced' on és necessari l'ús del poll. Si l'estació secundària ha d'enviar dades, les envia mantenint el bit F a zero. Un cop finalitzada la transferència (o si no hi ha més dades) s'envia una trama amb el bit F activat.

For what kind of reasons would it be necessary sending a FRMR frame in HDLC? El receptor envia aquest frame quan un paquet li ha arribat en mal estat.

Qüestió 1.1 del Quadern

Consider a communication session among a primary station A and three secondary stations B, C and D, which is initiated via the HDLC-NRM protocol. Also consider that all the variables are zero. Show the sequence of frames that are generated in the following situations:

- a) -Station A invites B to transmit, and B sends two information frames (I) to A
- b) -Station A sends an I frame to station C and invite C to transmit
- c) -Station C send two frames to A
- d) -Station A invites D to transmit, but d has no information to send

Note: For each frame indicate the address, the frame type, the "poll/select", and the sequence numbers.

Qüestió 1.7 del Quadern

Considereu una xarxa formada per una estació primària (A) i dues de secundàries (B i C), en la que s'hi està executant un protocol de nivell d'enllaç del tipus HDLC-NRM. En un moment determinat, l'estació primària A té tres trames I per enviar a l'estació B i dues per enviar a l'estació C. Per la seva banda, la C en té una per enviar a la A, però la B no en té cap. Suposant que el protocol està en l'estat de transferència de dades, la finestra de transmissió és 7 i que a totes les estacions en el moment en qüestió (valor de partida) K = V(R) = V(S) = 0, ompliu la taula següent indicant les trames i els valors dels paràmetres N(S) i N(R). El format de la trama serà l'indicat a la documentació de l'assignatura [exemple: B,I (1)-P (0)]. Considereu que el procés es tanca un cop transferides totes les trames pendents esmentades.

Trama estació A	Sentit	Trama estació B o C	Breu descripció
I (0) P (0)	В		A envía una trama a B i pregunta si té
			alguna cosa a enviar.
	Α	RR - F (1)	B diu que no té res a enviar.
I(1) - (0)	В		A envía les dues trames restants a B.
I(2) - (0)	В		
	Α	RR (3)	B envía l'Ack
I (0) P (0)	С		A escolleix a C i li envía la primera trama
			pregntant també si ha d'enviar algo.
	Α	I(0) - (1)	C envía una trama a A junt amb l'ack.
I(1) - (1)	С		A envía una segona trama a C.
	Α	RR - F (2)	C diu que ho ha rebut i no vol enviar res
			més.

^{...} afagiu-hi tantes files com creieu oportú

Qüestió 1.34 del Quadern

A la vista del model d'arquitectura de comunicacions de la figura:

- a) Calculeu el nombre de bits que físicament rebrà el Router J si un cop establerts tots els procediments de connexió dels diferents nivells una aplicació X del Host A envia 100 octets. Per fer això indica tots els encapçalaments necessaris des de les dades d'usuari fins als bits que físicament arribaran al Router (xarxa) suposant que les capçaleres TCP/IP tenen 20 octets cada una, el NAP1 és HDLC-ABM i la "network 1" és un circuit punt a punt.
 - 8 bits de Flag.
 - + 8 bits d' Address.
 - + 8 bits de Control. (No en necessitem més ja que només enviarem una trama)
 - + 1120 bits d'Informació. (100 octets de dades + 20 octets TCP + 20 octets IP)
 - + 16 bits de CRC.
 - + 8 bits de Flag.

En total són 1168 bits.

- b) Un model de comunicacions com l'indicat involucra a tres agents: aplicacions, computadors i xarxes. Identifiqueu cada un d'ells amb els nivells corresponents.
 - Aplicacions: App X, App Y.
 - Computadors (terminals dels extrems): Host A, host B.
 - Xarxes. Network 1, network 2.
- c) Comenteu de forma breu i clara el significat de l'adreça en cada nivell.
 - TCP El protocol TCP filtra les dades de les diferents aplicacions i les posa al port que pertany a l'aplicació corresponent. Fa control d'errors i de flux.
 - IP Direcció virtual única que identifica la màquina origen i destí. Et permet enviar un paquet tant dins de la xarxa com a Internet.
 - NAP Direcció física única que identifica la màquina origen i destí de la mateixa xarxa.

Medis de transmissió:

En aquesta part del taller es tracta de explicar/comentar (breument i clara) els temes que s'adjunten com si fossin opinions per tal de que puguin ser rebatudes o confirmades pels companys de grup en l'intercanvi del taller. Per tant el que compte són les opinions personals que provenen de l'estudi i de l'enteniment dels temes.

1. Fibres òptiques

- Avantatges i desavantatges de les fibres òptiques.
 Les fibres òptiques tenen un baix temps de propagació i de transmissió, fet que provoca una alta velocitat. Tanmateix ens trobem amb la problemàtica de que és una tecnologia molt cara i fràgil.
- Raons de la existència de finestres
 Les finestres es poden aprofitar per a transmetre dades sense perdre-les per culpa de l'atenuació.
- c. Comparació de la seva capacitat amb el cable coaxial i el parell trenat El parell trenat accepta freqüències de l'ordre de MHz, el coaxial de GHz i la fibra òptica de THz.

2. Antenes

- a. Funcionament d'una antena des de el punt de vista físic Una antena transmet ones dins d'un espectre radioelèctric.
- b. Característiques d'una antena parabòlica Una antena parabòlica consta d'una peça amb forma de paràbola on si incideixen ones des del satèl·lit o des del receptor. Quan hi incideixen les ones, aquestes es poden dirigir o al satèl·lit, en forma recta, o al focus receptor (gràcies a la curvatura de la paràbola).
- Visió directa
 És quan dues antenes tenen contacte entre elles.