

Department of Mathematics

MA202: Probability and Statistics 2nd Semester of Academic Year 2024-25

Tutorial Sheet 10: Convergence of Random Variables and Parameter Estimation

1. Let X be a random variable and $X_n = X + Y_n$, where

$$E(Y_n) = \frac{1}{n}$$
 and $Var(Y_n) = \frac{\sigma^2}{n}$,

for some constant $\sigma > 0$. Show that X_n converges to X in probability.

2. Let *X* be a discrete random variable with PMF given by

$$f_X(x) = \begin{cases} 1/3 & \text{if } x = 1, \\ 2/3 & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Consider a sequence of random variable $X_n := (1 + \frac{1}{n})X$. Prove or disprove that X_n converges in probability to X.

3. Consider X_2, X_3, X_4, \dots be a sequence of random variables such that

$$F_{X_n}(x) = \begin{cases} 1 - \left(1 - \frac{1}{n}\right)^{nx} & \text{for } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Show that X_n converges in distribution to Exponential(1).

- 4. Let X_1, X_2, \dots, X_n be a random sample from $U(0, \theta), \theta > 0$. Find the probability distribution functions of $\min(X_1, X_2, \dots, X_n)$ and $\max(X_1, X_2, \dots, X_n)$.
- 5. Let X_1, X_2, \cdots be a sequence of iid Uniform [0, 1] random variables. Let $Y_n = \max\{1 + X_1, 1 + X_2, \cdots, 1 + X_n\}$. Show that Y_n converges in probability.
- 6. Consider the sequence of rvs $X_1, X_2, ...$ where the PDF of X_n is given by

$$f_{X_n}(x) = \begin{cases} (n-1)/2 & \text{for } -1/n < x < 1/n, \\ 1/n & \text{for } n < x < 1/n + 1, \\ 0 & \text{otherwise.} \end{cases}$$

Check if the sequence X_n , $n \ge 1$ converges in probability to 0.

7. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables following uniform distribution, U(0, 1). Find

$$\lim_{n \to \infty} P\bigg(- \sum_{i=1}^{n} \ln(X_i) \le n + \sqrt{n} \bigg).$$

- 8. Let X_1, X_2, \dots, X_n be a random sample from $N(\theta, \theta)$. Find MLE of θ .
- 9. Let X_n be a random variable that follows Poisson distribution with mean n. Find

(a)

$$\lim_{N \to \infty} P\Big(\sum_{i=1}^{N} X_i \le N + \sqrt{N}\Big).$$

(b)

$$\lim_{N\to\infty} P\Big(\sum_{i=1}^N X_i \le N\Big).$$

10. Let X_1, X_2, \ldots , be a sequence of iid uniform random variables over unit interval. Then,

$$\lim_{n \to \infty} P(\frac{-1}{n} \sum_{i=1}^{n} \ln(X_i) \le 1 + \frac{1}{\sqrt{n}})$$

equals

- 11. (a) Let $X_1, X_2, ..., X_n$ be a random sample from uniform distribution, U(a, b). Find the method of moments estimator (MME) of a and b.
 - (b) Let $X_1, X_2, ..., X_n$ be a random sample from uniform distribution $U(-\theta, \theta)$, $\theta > 0$. Find the method of moments estimator (MME) and maximum likelihood estimator (MLE) of θ .
- 12. (a) Let X_1, X_2, \dots, X_n be a random sample from a distribution with pdf

$$f(x|\beta) = \frac{1}{2\beta} \exp\left(\frac{-|x|}{\beta}\right), \quad -\infty < x < \infty, \quad \beta > 0$$

Find the method of moments estimator (MME) and maximum likelihood estimator (MLE) of β .

- (b) Let $\{0, 0, 1, 1, 0\}$ be a random sample from Bernoulli(θ), where $\theta \in \{2/10, 5/10, 7/10\}$. Find the maximum likelihood estimate of θ .
- 13. Let $X_1, X_2, ..., X_n$ be a random sample from $Binomial(m, \theta)$ where m is known. Find the maximum likelihood estimator of θ .
- 14. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown. Find the maximum likelihood estimators of μ and σ^2 .

Best Wishes