ECE 485/585 Computer Organization and Design

Lecture 5: Computer Arithmetic Fall 2022

Won-Jae Yi, Ph.D.

Department of Electrical and Computer Engineering
Illinois Institute of Technology

Arithmetic for Computers

- Operations on Integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

• Example: 7 + 6

- Overflow if result out of range
 - Adding positive and negative operands, no overflow
 - Adding two positive operands
 - Overflow if result sign is 1
 - Adding two negative operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 +7: 0000 0000 ... 0000 0111
 -6: 1111 1111 ... 1111 1010
 +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two positive or two negative operands, no overflow
 - Subtracting positive from negative operand
 - Overflow if result sign is 0
 - Subtracting negative from positive operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - wrap around to a certain value
 - e.g., clipping in audio, saturation in video

Single Instruction Multiple Data

- Supported by instructions sets within the CPU architecture
 - Intel, AMD, ARM processors support SIMD instruction sets
 - Intel MMX (MultiMedia eXtension?)
 - Intel Streaming SIMD Extensions (SSE, SSE2, SSE3, SSE4)
 - Intel Advanced Vector Extensions (AVX, AVX2, AVX-512)
 - AMD 3DNow!
 - AES (Advanced Encryption Standard)
 - FMA (Fused Multiply-Add) ← multiplieraccumulator (a=a+(bxc))
 - ARM NEON/MPE(Media Processing Engine)

Multiplication

Start with long-multiplication approach

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next
 dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Example: 4-bit Division (7/2)

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	①110 0111
	2b: Rem $< 0 \Rightarrow +Div$, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	①111 0111
	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	①111 1111
3	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	1: Rem = Rem - Div	0000	0000 0100	@000 0011
	2a: Rem $\geq 0 \implies$ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	@000 0001
	2a: Rem ≥ 0 ⇒ sII Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers generate multiple quotient bits per step (e.g., SRT division)
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers

not normalized

- Like scientific notation
 -2.34 × 10⁵⁶ normalized
 - $+0.002 \times 10^{-4}$
 - $+987.02 \times 10^9$
- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110 \Rightarrow actual exponent = 254 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx. 2⁻²³
 - Equivalent to $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx. 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

What number is represented by the single-precision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

•
$$x = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

Denormal Numbers

- Exponent = 000...0 and Fraction != 0
- Smaller than normal numbers
 - Allow for gradual underflow, with diminishing precision

Single precision		Double precision		Object represented	
Exponent	Fraction	Exponent	Fraction		
0	0	0	0	· 0	
0	Nonzero	0	Nonzero	± denormalized number	
1–254	Anything	1–2046	Anything	± floating-point number	
255	0	2047	0	± infinity	
255	Nonzero	2047	Nonzero	NaN (Not a Number)	

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $9.999 \times 10^1 + 0.016 \times 10^1$
- 2. Add significands
 - $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow
 - 1.0015×10^2
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
 - 1.0212×10^6
- 4. Round and renormalize if necessary
 - 1.021×10^6
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: positive \times negative \Rightarrow negative
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c. xx.s, c. xx.d (xx is eq, 1t, 1e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

• C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1  $f16, const5($gp)
    lwc1  $f18, const9($gp)
    div.s  $f16, $f16, $f18
    lwc1  $f18, const32($gp)
    sub.s  $f18, $f12, $f18
    mul.s  $f0, $f16, $f18
    jr  $ra
```

FP Example: Array Multiplication

- $\bullet X = X + Y \times Z$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

```
li $t1, 32 # $t1 = 32 (row size/loop end)
   li $s0, 0
                     # i = 0; initialize 1st for loop
L1: li $s1, 0
                     # j = 0; restart 2nd for loop
                    # k = 0; restart 3rd for loop
L2: 1i $s2, 0
   \$11 \$t2, \$s0, \$5 \# \$t2 = i * 32 (size of row of x)
   addu t2, t2, t2, t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   1.d f4, 0(t2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```

FP Example: Array Multiplication

```
\$11 \$t0, \$s0, 5  # \$t0 = i*32 (size of row of y)
addu $t0, $t0, $s2 # $t0 = i*size(row) + k
sll $t0, $t0, 3  # $t0 = byte offset of [i][k]
addu t0, a1, t0 # t0 = byte address of y[i][k]
1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d f4, f4, f16 # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1 # $k k + 1
bne $s2, $t1, L3 # if (k != 32) go to L3
s.d f4, O(t2) # x[i][j] = f4
addiu \$s1, \$s1, 1 # \$j = j + 1
bne $s1, $t1, L2 # if (j != 32) go to L2
addiu $s0, $s0, 1  # $i = i + 1
bne $s0, $t1, L1 # if (i != 32) go to L1
```

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS (Top of Stack)
 - ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

ARM Neon Instructions for Subword Parallelism

Data transfer	Arithmetic	Logical/Compare
VLDR.F32	VADD.F32, VADD{L,W}{S8,U8,S16,U16,S32,U32}	VAND.64, VAND.128
VSTR.F32	VSUB.F32, VSUB{L,W}{S8,U8,S16,U16,S32,U32}	VORR.64, VORR.128
VLD{1,2,3.4}.{I8,I16,I32}	VMUL.F32, VMULL{\$8,U8,\$16,U16,\$32,U32}	VEOR.64, VEOR.128
VST{1,2,3.4}.{I8,I16,I32}	VMLA.F32, VMLAL{S8,U8,S16,U16,S32,U32}	VBIC.64, VBIC.128
VMOV.{I8,I16,I32,F32}, #imm	VMLS.F32, VMLSL{S8,U8,S16,U16,S32,U32}	VORN.64, VORN.128
VMVN.{I8,I16,I32,F32}, #imm	VMAX.{S8,U8,S16,U16,S32,U32,F32}	VCEQ.{I8,I16,I32,F32}
VMOV.{I64,I128}	VMIN.{S8,U8,S16,U16,S32,U32,F32}	VCGE.{S8,U8,S16,U16,S32,U32,F32}
VMVN.{I64,I128}	VABS.{S8,S16,S32,F32}	VCGT.{S8,U8,S16,U16,S32,U32,F32}
	VNEG.{S8,S16,S32,F32}	VCLE.{S8,U8,S16,U16,S32,U32,F32}
	VSHL.{S8,U8,S16,U16,S32,S64,U64}	VCLT.{S8,U8,S16,U16,S32,U32,F32}
	VSHR.{S8,U8,S16,U16,S32,S64,U64}	VTST.{I8,I16,I32}

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Data transfer	Arithmetic	Compare	
MOV(A/U)(SS/PS/SD/ PD) xmm, mem/xmm	ADD(SS/PS/SD/PD) xmm,mem/xmm	CMP(SS/PS/SD/PD)	
	SUB(SS/PS/SD/PD) xmm,mem/xmm	//	
MOV {H/L} (PS/PD) xmm, mem/xmm	MUL(SS/PS/SD/PD) xmm,mem/xmm	0,	
	DIV(SS/PS/SD/PD) xmm,mem/xmm	YX.	
	SQRT(SS/PS/SD/PD) mem/xmm		
	MAX [SS/PS/SD/PD] mem/xmm	V A	
	MIN(SS/PS/SD/PD) mem/xmm		

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
      for (int j = 0; j < n; ++j)
4.
5.
6.
     double cij = C[i+j*n]; /* cij = C[i][j] */
7.
      for (int k = 0; k < n; k++)
      cij += A[i+k*n] * B[k+j*n]; /* cij <math>+= A[i][k]*B[k][j] */
8.
9.
     C[i+j*n] = cij; /* C[i][j] = cij */
10.
11. }
```

x86 assembly code:

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi,%rcx
                        # register %rcx = %rsi
3. xor %eax, %eax
                        # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
                        # register %rcx = %rcx + %r9
5. add %r9,%rcx
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
                    # register %rax = %rax + 1
7. add $0x1,%rax
8. cmp %eax, %edi
                 # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 \langle dgemm + 0x30 \rangle # jump if eax > edi
11. add \$0x1,\$r11d # register \$r11 = \$r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```

Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5.
     for ( int j = 0; j < n; j++ ) {
6.
      m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
7.
   for ( int k = 0; k < n; k++ )
8.
     c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd(mm256 load pd(A+i+k*n),
                mm256 broadcast sd(B+k+j*n)));
10.
     mm256 \text{ store pd}(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```

Optimized x86 assembly code:

```
1. vmovapd (%r11), %ymm0  # Load 4 elements of C into %ymm0
2. mov %rbx, %rcx
                            # register %rcx = %rbx
3. xor %eax, %eax
                            # register %eax = 0
4. vbroadcastsd (%rax,%r8,1),%ymm1 # Make 4 copies of B element
                            # register %rax = %rax + 8
5. add $0x8, %rax
6. vmulpd (%rcx), %ymm1, %ymm1 # Parallel mul %ymm1, 4 A elements
                          # register %rcx = %rcx + %r9
7. add %r9,%rcx
8. cmp %r10, %rax
                      # compare %r10 to %rax
9. vaddpd %ymm1, %ymm0, %ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 <dgemm+0x50> # jump if not %r10 != %rax
11. add $0x1, %esi
                            # register % esi = % esi + 1
12. vmovapd %ymm0, (%r11) # Store %ymm0 into 4 C elements
```

Right Shift and Division

- Left shift by i places multiplies an integer by
 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - $11111011_2 >> 2 = 111111110_2 = -2$
 - Rounds toward –∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Who Cares about FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ☺
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs