

第1章 命题逻辑

- ❖命题演算L中的推理不需要借助于直观意义,但通过研究L的性质,可以从整体上把握L的形式推理的特性,从而了解L能做什么、不能做什么。
- ◆术语 如果L的一条性质得到了证明(注意,一般不是在L中的形式证明),则该性质称为一条关于L的定理。

- ❖定理1(单调性)
 - 1. 若 Γ ⊆ Γ '且 Γ \vdash p , 则 Γ ' \vdash p ;
 - 2. 若 $\vdash p$,则对任何 Γ : $\Gamma \vdash p$ 。
- 证明 1. 设 $\Gamma \subseteq \Gamma$ '且 $\Gamma \vdash p$,则依定义,存在p的一个从 Γ 的形式推理序列 p_1 , …, $p_n(p_n = p)$,其中任何或者是L公理,或者是 Γ 中前提,或者是由它前面的公式用MP规则推出的。显然,此序列也是p的一个从 Γ '的形式推理序列,故 $\Gamma' \vdash p$ 。
 - 2. 设 $\vdash p$, 即 $\varnothing \vdash p$, 由1得, 对任何 Γ : $\Gamma \vdash p$ 。

- **◇**定理2(紧致性)若 Γ |-p,则存在有穷集 Γ ' \subset Γ 且使 Γ '|-p。 证明 设 Γ |-p,则存在p的一个从 Γ 的形式推理序列 p_1 ,…, p_n (p_n =p)。令 Γ '={ p_1 ,…, p_n }∩ Γ 。显然, Γ '是 Γ 的有穷子集并且 Γ '|-p。
- ◆观察 紧致性是自动推理的一个必要条件。

- ❖定义(一致/相容)若存在公式p使得 Γ ►p且 Γ ►¬p,则称公式集 Γ 是不一致的/不相容的;否则,称 Γ 是一致的/相容的。
- ❖定理3(平凡性)若Γ是不相容的,则对任何p有Γ $\vdash p$ 。 证明 设Γ是不相容的。依定义,存在q使得Γ $\vdash q$ 且Γ $\vdash \neg q$ 。于是,对任何p, p的一个从Γ的形式推理序列如下:

 q_1 , …, q, q_{n+1} , …, $\neg q$, q_{m+1} , …, q_{m+k} , p 其中 q_{m+1} , …, q_{m+k} 是1. 2节例4否定前件律 $\neg q \rightarrow (q \rightarrow p)$ 的一个形式证明序列。因此,对任何p有 $\Gamma \vdash p$ 。

- ◆观察 平凡性定理表明,对任何一个公式集 Γ ,如果 Γ 是不相容的,则作为推理前提, Γ 不仅无用,而且可能有害。
- ◆观察 通常逻辑不对前提集提出任何要求;但明确指出,不相容的前提集在逻辑上是有问题的。

- ❖定理4(演绎定理) Γ ∪{p} $\vdash q$ 当且仅当 Γ $\vdash p \rightarrow q$ 。 证明 自修
- **◇**推论(假设三段论HS){ $p\to q, q\to r$ } $\vdash p\to r$ 。 证明 依演绎定理,只需证明{ $p\to q, q\to r, p$ } $\vdash r$ 。下面是r的一个从{ $p\to q, q\to r, p$ } 的形式推理: $p, p\to q, q, q\to r, r$ 。
- ❖不同于公理模式,假设三段论的作用类似与MP,可视为一条 派生推理规则。

❖ 两种证明方法

- 1. 直接证明 只允许使用(L1)、(L2)、(L3)和(MP),而且必须 写出全部证明根据,每一步只允许有一条证明根据。
- 2. **简化证明** 可以使用(L1)、(L2)、(L3)和(MP),以及所有已经证明的定理、推论等结果,仍然要求给出全部证明根据。
- ◆例如, 演绎定理和假设三段论的证明都是简化证明。

思考题

- 1.4 演绎定理说明了什么?
- 1.5 直接证明 $\vdash \neg p \rightarrow (p \rightarrow q)$ 最少需要多少步?

习题

1.3 用直接证明和简化证明方法证明 p.22: 2(3); 3(1).