

WHAT IS CLAIMED IS:

6.

fluorine to the second metal of from about two to about 10.

1

2

1	1. A composition, comprising:		
2	a first salt of a first metal;		
3	a second salt of a second metal;		
4	a third salt of a rare earth metal,		
5	wherein at least one of the first, second and third salts comprises a trifluoroacetate		
6	and the composition has a total free acid concentration of less than about 1x10 ⁻³ molar.		
) 1	2. The composition of claim 1, wherein the composition has a total free acid		
	concentration of less than about 1x10 ⁻⁵ molar.		
1	3. The composition of claim 1, wherein the composition has a total free acid		
1 2 1 2	concentration of about 1x10 ⁻⁷ molar.		
1	4. The composition of claim 1, wherein the composition has a mole ratio of		
2	fluorine to the second metal of at least about two.		
1	5. The composition of claim 1, wherein the composition has a mole ratio of		
2	fluorine to the second metal of from about two to about 18.5.		

The composition of claim 1, wherein the composition has a mole ratio of

35 volume percent.

2

The composition of claim 1, wherein the first metal comprises copper and 1 7. the second metal is selected from the group consisting of barium, strontium and calcium. 2 8. The composition of claim 7, wherein the rare earth metal comprises 1 2 yttrium. 1 9. The composition of claim 1, wherein the first metal comprises copper, the second metal comprises barium and the third metal comprises yttrium. 2 1 2 1 2 The composition of claim 9, wherein a ratio of copper atoms to barium 10. atoms to yttrium atoms contained in the solution is about 3:2:1. 11. The composition of claim 1, wherein the composition is disposed on a surface of a layer. 12. The composition of claim 11, wherein the layer comprises a material 1 selected from the group consisting of a substrate, a buffer layer and a superconductor layer. 2 13. The composition of claim 1, further comprising water, wherein the 1 2 composition has a water content of less than about 50 volume percent. 1 14. The composition of claim 13, wherein the water content is less than about

1	15. The composition of claim 13, wherein the water content is less than about
2	25 volume percent.
1	16. The composition of claim 1, wherein at least two of the first, second and
2	third salts comprises trifluoroacetates.
1	17. The composition of claim 1, wherein each of the first, second and third
2	salts comprise trifluoroacetates.
	18. A composition, comprising:
2	a first salt of a first metal;
1 3	a second salt of a second metal;
1 4	a third salt of a rare earth metal,
5	wherein at least one of the first, second and third salts comprises a trifluoroacetate
6	and the composition has a mole ratio of fluorine to the second metal of from about two to
7	about 18.5.
1	19. The composition of claim 18, wherein the composition has a mole ratio of
2	fluorine to the second metal of from about two to about 10.
1	20. The composition of claim 18, wherein the first metal comprises copper

and the second metal is selected from the group consisting of barium, strontium and calcium.

2

25 volume percent.

1	21.	The composition of claim 20, wherein the rare earth metal comprises
2	yttrium.	
1	22.	The composition of claim 18, wherein the first metal comprises copper,
2	the second meta	l comprises barium and the third metal comprises yttrium.
1	23.	The composition of claim 22, wherein a ratio of copper atoms to barium
2	atoms to yttrium	atoms contained in the solution is about 3:2:1.
1	24.	The composition of claim 18, wherein the composition is disposed on a
2	surface of layer.	
1	25.	The composition of claim 24, wherein the layer comprises a material
2	selected from the	e group consisting of a substrate, a buffer layer and a superconductor layer.
1	26.	The composition of claim 18, further comprising water, wherein the
2	composition has	a water content of less than about 50 volume percent.
1	27.	The composition of claim 26, wherein the water content is less than about
2	35 volume percen	nt.
		•
İ	28.	The composition of claim 26, wherein the water content is less than about

2

1

____2 ____3

1

2

1

2

1

2

3

1	29.	The composition of claim 18, wherein at least two of the first, second and
2	third salts compris	ses trifluoroacetates.

- 30. The composition of claim 18, wherein each of the first, second and third salts comprise trifluoroacetates.
 - 31. A method, comprising:

combining a first solution with a compound containing a trifluoroacetate group to form a second solution, the first solution comprising a first soluble compound of a first metal, a second soluble compound of a second metal and a third soluble compound of a rare earth metal.

- 32. The method of claim 31, wherein the amount of the compound is selected so that the second solution has a total free acid concentration of less than about 1×10^{-3} molar.
- 33. The method of claim 31, wherein the amount of the compound is selected so that the second solution has a total free acid concentration of less than about 1×10^{-5} molar.
- 34. The method of claim 31, wherein the amount of the compound is selected so that the second solution has a total free acid concentration of less than about 1×10^{-7} molar.
- 35. The method of claim 31, wherein the amount of the compound combined with the first solution is selected so that the second solution has a mole ratio of fluorine to the second metal of at least about two.

2

3

1

2

1

2

1

- 1 36. The method of claim 31, wherein the amount of the compound combined 2 with the first solution is selected so that the second solution has a mole ratio of fluorine to the 3 second metal of from about two to about 18.5.
 - 37. The method of claim 31, wherein the amount of the compound combined with the first solution is selected so that the second solution has a mole ratio of fluorine to the second metal of from about two to about 10.
 - 38. The method of claim 31, wherein the first metal comprises copper and the second metal is selected from the group consisting of barium, strontium and calcium.
 - 39. The method of claim 38, wherein the rare earth metal comprises yttrium.
 - 40. The method of claim 31, wherein the method is performed without refluxing the first solution or the second solution.
 - 41. The method of claim 31, wherein the second solution comprises a salt of at least one of the rare earth, first and second metals.
 - 42. The method of claim 31, wherein the second solution comprises a salt of at least two of the rare earth, first and second metals.
 - 43. The method of claim 31, wherein the second solution comprises a salt of each of the rare earth, first and second metals.

than about 1x10⁻⁷ molar.

1	44. The method of claim 31, wherein the compound comprises trifluoroacetic
2	acid.
4	45
1	45. A method, comprising:
2	combining with a solvent a first compound of a first metal, a second compound of
3	a second metal and a third compound of a rare earth metal to form a solution, the first, second
4	and third compounds being soluble in the solvent,
5	wherein at least one of the first, second and third compounds comprises a
6	trifluoroacetate salt.
1	46. The method of claim 45, wherein the amount of the trifluoroacetate salt is
2	selected so that the solution has a total free acid concentration of less than about $1x10^{-3}$
3	molar.
1	47. The method of claim 45, wherein the amount of the trifluoroacetate salt is
2	selected so that the solution has a total free acid concentration of less than about $1x10^{-5}$
3	molar.
1	48. The method of claim 45, wherein the amount of the at least one
2	trifluoroacetate salt is selected so that the solution has a total free acid concentration of less

1

2

- The method of claim 45, wherein the amount of the at least one 1 49. trifluoroacetate salt is selected so that the solution has a mole ratio of fluorine to the second 2 3 metal of at least about two.
- 1 50. The method of claim 45, wherein the amount of the at least one trifluoroacetate salt is selected so that the solution has a mole ratio of fluorine to the second 2 metal of from about two to about 18.5. 3
 - 51. The method of claim 45, wherein the amount of the compound combined with the first solution is selected so that the second solution has a mole ratio of fluorine to the second metal of from about two to about 10.
 - The method of claim 45, wherein the first metal comprises copper and the 52. second metal is selected from the group consisting of barium, strontium and calcium.
 - 53. The method of claim 52, wherein the rare earth metal comprises yttrium.
- 1 54. The method of claim 45, wherein the method is performed without 2 refluxing the solution.
 - 55. The method of claim 45, wherein the solution comprises a trifluoroacetate of at least two of the rare earth, first and second metals.
- 56. The method of claim 45, wherein the solution comprises a trifluoroacetate of each of the rare earth, first and second metals. 2

57.

least about six microns.

	2	a fir	st superconductor material layer having a surface; and	
	3	a sec	cond superconductor material layer disposed on the surface of the first	
	4	superconductor	material layer.	
	1	58.	The multi-layer article of claim 57, wherein the first and second	
	2	superconductor	material layers have a combined thickness of at least about one micron and a	
	3	critical current density of at least about 5x10 ⁵ Amperes per square centimeter.		
	1	59.	The multi-layer article of claim 58, wherein the combined thickness is at	
	2	least about two	microns.	
	1	60.	The multi-layer article of claim 58, wherein the combined thickness is at	
	2	least about three	e microns.	
	1	61.	The multi-layer article of claim 58, wherein the combined thickness is at	
	2	least about four	microns.	
	1	62.	The multi-layer article of claim 58, wherein the combined thickness is at	
	2	least about five	microns.	
	1	63.	The multi-layer article of claim 58, wherein the combined thickness is at	

A multi-layer article, comprising:

2

three microns.

1	64. The multi-layer article of claim 58, wherein the critical current density is
2	at least about 1x10 ⁶ Amperes per square centimeter.
	•
1	70. The multi-layer article of claim 58, wherein the critical current density is
2	at least about $2x10^6$ Amperes per square centimeter.
1	71. A method of making a multi-layer article, comprising:
2	coating a precursor solution of a second superconductor material on a surface of a
3	first superconductor material; and
4	treating the precursor solution of the second superconductor material to form a
5	layer of the second superconductor material disposed on the surface of the first
6	superconductor material.
1	72. The method of claim 71, wherein the first and second superconductor
2	material layers have a combined thickness of at least about one micron and a critical current
3	density of at least about 5x10 ⁵ Amperes per square centimeter.
1	73. The method of claim 71, wherein the combined thickness is at least about
2	two microns.
1	74. The method of claim 71, wherein the combined thickness is at least about

Docket No	o.: 0577	70-0=0

1		75.	The method of claim 71, wherein the combined thickness is at least about
2	four micror	ıs.	
1	five micron	76. ns.	The method of claim 71, wherein the combined thickness is at least about
1	six microns	77. s.	The method of claim 71, wherein the combined thickness is at least about
1		78. ⁶ Amp	The method of claim 72, wherein the critical current density is at least eres per square centimeter.
1 2		79. ⁶ Ampo	The method of claim 72, wherein the critical current density is at least eres per square centimeter.
1	;	80.	An article, comprising:
2	8	a first l	ayer of superconductor material; and
3	8	a secor	nd layer of superconductor material different than the first layer of
4	supercondu	ctor m	aterial.
1		81. of less	• The article of claim 80, wherein first layer of superconductor material has than about 0.5 micron.
1	8	82.	The article of claim 80, wherein first layer of superconductor material has

a thickness of less than about 0.2 micron.

2

2

2

1

2

1

2

Docket No.: 05770-01

- 1 83. The article of claim 80, wherein first layer of superconductor material has 2 a thickness of from about 0.05 micron to about 0.2 micron.
- 1 84. The article of claim 80, wherein second layer of superconductor material

 has a thickness of at least about one micron.
 - 85. The article of claim 84, wherein second layer of superconductor material has a thickness of at less than about 10 microns.
 - 86. The article of claim 80, wherein second layer of superconductor material has a thickness of from about 4 microns to about 10 microns.
 - 87. The article of claim 80, wherein a combined thickness of the first and second layers of superconductor material is at least about one micron.
 - 88. The article of claim 80, wherein a combined thickness of the first and second layers of superconductor material is at least about two microns.
 - 89. The article of claim 80, wherein a combined thickness of the first and second layers of superconductor material is at least about four microns.
 - 90. The article of claim 80, wherein a combined thickness of the first and second layers of superconductor material is from about four microns to about 10 microns.

W.
g
) Parti
Ü
n
5
A
hi
affers fors

1	91. The article of claim 80, wherein the first and second layers of
2	superconductor material have a combined critical current density of at least about 5×10^5
3	Amperes per square centimeter as determined by transport measurement at 77K in self field
4	using a one microVolt per centimeter criterion.

- 92. The article of claim 80, wherein the first and second layers of superconductor material have a combined critical current density of at least about 1x10⁶ Amperes per square centimeter as determined by transport measurement at 77K in self field using a one microVolt per centimeter criterion.
- 93. The article of claim 80, wherein the first and second layers of superconductor material have a combined critical current density of at least about $2x10^6$ Amperes per square centimeter as determined by transport measurement at 77K in self field using a one microVolt per centimeter criterion.
- 94. The article of claim 80, wherein the second layer of superconductor material is disposed on a surface of the first layer of superconductor material.
- 95. The article of claim 80, wherein the first and second layers of superconductor material comprise the same superconductor material.
 - 96. The article of claim 95, wherein the same superconductor material comprise a REBCO superconductor material.

104.

buffer layer.

1

2

1	97.	The article of claim 95, wherein the same superconductor material
2	comprises a YBC	CO superconductor material.
1	98.	The article of claim 97, wherein the YBCO superconductor material
2	comprises YBa ₂ C	Cu ₃ O _{7-x} .
1	99.	The article of claim 80, wherein the first and second layers of
2	superconductor n	naterial comprise different superconductor materials.
1	100.	The article of claim 80, further comprising a third layer of superconductor
2	material different	than the first and second layers of superconductor material.
1	101.	The article of claim 80, further comprising a substrate.
1	102.	The article of claim 101, further comprising a buffer layer stack.
1	103.	The article of claim 102, wherein the buffer layer stack is disposed on a
2	surface of the sub	strate, the first layer of superconductor material is disposed on a surface of
3	the buffer layer st	ack, and the second layer of superconductor material is disposed on a
4	surface of the sur	face of the first layer of superconductor material.

The article of claim 103, wherein the buffer layer stack comprises one

material.

Docket No.: 05770-01

- 1 105. The article of claim 104, wherein the buffer layer stack comprises more 2 than one buffer layer.
- 1 106. The article of claim 80, further comprising a substrate, wherein the first
 2 layer of superconductor material is disposed on a surface of the substrate, and the second
 3 layer of superconductor material is disposed on a surface of the first layer of superconductor