

Этикетка

КСНЛ.431235.001 ЭТ

Микросхема 1564СП1Т1ЭП

Микросхема интегральная 1564СП1Т1ЭП Функциональное назначение:

4 – х разрядный мажоритарный компаратор

Таблица назначения выводов

№	Обозначение	Обозначение вывода (в соответствии со	Назначение
вывода	вывода	схемой электрической)	вывода
1	В3	В3	Вход В3
2	A <b< td=""><td>ALBin</td><td>Вход А<В – вход каскадирования</td></b<>	ALBin	Вход А<В – вход каскадирования
3	A=B	AEBin	Вход А=В – вход каскадирования
4	A>B	AGBin	Вход А>В – вход каскадирования
5	A>B	AGBout	Выход А>В
6	A=B	AEBout	Выход А=В
7	A <b< td=""><td>ALBout</td><td>Выход А<В</td></b<>	ALBout	Выход А<В
8	0V	0V	Общий
9	В0	В0	Вход В0
10	A0	A0	Вход А0
11	B1	B1	Вход В1
12	A1	A1	Вход А1
13	A2	A2	Вход А2
14	B2	B2	Вход В2
15	A3	A3	Вход А3
16	V_{CC}	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B} I_{O}=20 \text{ MKA}$	$U_{OL\;max}$	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 мкА		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} =4,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-
$U_{CC}=4.5 \text{ B}, U_{IL}=0.9 \text{ B}, U_{IH}=3.15 \text{ B}, I_{O}=20 \text{ MKA}$		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 mKA		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 4,0 MA		3,98	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}$	$I_{ m IL}$	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	7,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 1.0 \text{ M}\Gamma_{II}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{OCC}	-	1,0

7. Время задержки распространения сигнала при включении и			
выключении, нс, при:	t_{PHL1} , t_{PLH1}	-	294
$U_{CC} = 2.0 \text{ B, } C_L = 50 \Pi \Phi$	t_{PHL2} , t_{PLH2}	-	245
	t_{PHL3} , t_{PLH3}	-	245
	$t_{\mathrm{PHL4},}t_{\mathrm{PLH4}}$	-	217
	t_{PHL1} , t_{PLH1}	-	59
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	t _{PHL2} , t _{PLH2}	-	35
	t_{PHL3} , t_{PLH3}	-	49
	t_{PHL4} , t_{PLH4}	-	44
$U_{CC} = 6,0 \text{ B}, C_L = 50 \text{ п}\Phi$	t _{PHL1} , t _{PLH1} t _{PHL2} , t _{PLH2} t _{PHL3} , t _{PLH3} t _{PHL4} , t _{PLH4}	- - -	51 30 42 40
8. Входная емкость, п Φ , при: $U_{CC} = 0$ В	C _I	-	10

Время задержки распространения сигнала при включении и выключении, t_{PHL} , t_{PLH} , нс:

 t_{PHL1}, t_{PLH1} — от входов данных A,B к выходам «>», «<» t_{PHL2}, t_{PLH2} — от входа «=» к выходу «=» t_{PHL3}, t_{PLH3} — от входов данных A,B к выходу «=» t_{PHL4}, t_{PLH4} — от входов «>», «<»к выходам «>», «<»

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г.

серебро г.

в том числе:

золото г/мм

на 16 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-15ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564СП1Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-15ТУ и признаны годными для эксплуатации.

Приняты по от	-
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа «Перепроверка произведена	» (дата)
Приняты по ${}$ (извещение, акт и др.) от ${}$ (дата)	_
Место для штампа ОТК	Место для штампа ПЗ
Цена договорная	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.