INT201 Decision, Computation and Language

Lecture 4 – Regular Language Dr Yushi Li

Definition

Previous: A language is regular if it is recognized by some **DFA** 如果一种语言被OFA识别则是常规的
Now: A language is regular if and only if some **NFA** recognizes it. 当回位当某些MA识别也
Some operations on languages: Union, Concatenation and Kleene s都语言时,很常规的

Closed under operation 套 S 是 封闭的 如果对其便用操作后依然在 S 中

Regular languages are <u>indeed closed</u> under the regular operations (e.g. union, concatenation, star ...)

正则语言在常规操作了是钻风的

Regular Languages Closed Under Union

The set of regular languages is closed under the union operation.

Proof:

A.B都是四個語。 南回南南机 M.和M. 的超级全A和B

- Since A and B are regular languages, there are finite automata $M_1 = (Q_1, \Sigma, \delta_1)$ q_1, F_1) and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ that accept A and B, respectively.
- In order to prove that $A \cup B$ is regular, we have to construct a finite automaton M that accepts $A \cup B$. In other words, M must have the property that for every string $w \in \Sigma^*$:

Regular Languages Closed Under Union

Proof

Given M_1 and M_2 that $A = L(M_1)$ and $B = L(M_2)$, we can define $M = (Q, \Sigma, \delta, q, F)$:

•
$$Q=Q_1 \times Q_2=\{(q_1,q_2): q_1 \in Q_1 \text{ and } q_2 \in Q_2\}$$
 要包含所有的 知气功能

• Σ is same as the alphabet of A and B

$$q = (q_1, q_2)$$
 $M_1 : \longrightarrow \bigcirc$

•
$$\delta: Q \times \Sigma \to Q$$
 POFTATINATION

 $\delta: Q \times X \to Q$ POFTATION

 $\delta: Q \times X \to Q$

6* sequence of transition functions

Regular Languages Closed Under Union

DFA证则过程

Proof

- $\delta^*((q_1, q_2), w) = (\delta^*(q_1, w), \delta^*(q_2, w))$
- $\delta^*((q_{I_1}, q_2), w) \in F \Leftrightarrow \delta^*(q_{I_1}, w) \in F_I \text{ or } \delta^*(q_2, w) \in F_2$
- M accepts $w \Leftrightarrow \delta^*(q_1, w) \in F_1$ or $\delta^*(q_2, w) \in F_2$
- M accepts $w \Leftrightarrow M_1$ accepts w or M_2 accepts w

Proved

Example

Consider the following <u>DFAs</u> and languages over $\Sigma = \{a, b\}$:

DFA M_1 recognizes $A_1 = L(M_1)$

//= ((9,,92), (a,b), 8, 9, F)

DFA M_2 recognizes $A_2 = L(M_2)$

DFA M_1 for A_1

DFA M_2 for A_2

 $\underbrace{\text{DFA } M \text{ for } A_1 \cup A_2?}$

Regular Languages Closed Under Union

如何从NFA创角度来证则 How to prove this from the perspective of NFA?

Proof

Consider the following NFAs:

NFA M_1 = (Q_I , Σ , δ_I , q_I , F_I) recognizes $A_1 = L(M_1)$

NFA M_2 = (Q_2 , Σ , δ_2 , q_2 , F_2) recognizes A_2 = $L(M_2)$

We will construct an NFA M = (Q, Σ , δ , q, F)

Regular Languages Closed Under Union

NIA证明过程

Proof

- $Q = \{q_0\} \cup Q_1 \cup Q_2$
- q_0 is the start state of M
- $F = F_1 \cup F_2$
- $\delta: Q \times \Sigma_{\epsilon} \to P(Q)$ is defined as: For any $r \in Q$ and for any $a \in \Sigma_{\epsilon}$

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1, \\ \delta_2(r,a) & \text{if } r \in Q_2, \\ \{q_1,q_2\} & \text{if } r = q_0 \text{ and } a = \epsilon, \end{cases}$$

Regular Languages Closed Under Concatenation \neg

The concatenation of A_1 and A_2 is defined as:

$$A_1 A_2 = \{ww' : w \in A_1 \text{ and } w' \in A_2\}$$

Proof

Consider the following NFAs:

NFA
$$M_1$$
 = (Q_I , Σ , δ_I , q_I , F_I) recognizes $A_1 = L(M_1)$

NFA
$$M_2$$
 = (Q_2 , Σ , δ_2 , q_2 , F_2) recognizes $A_2 = L(M_2)$

We will construct an NFA M = (Q, Σ , δ , q, F) for $A_1 A_2$

Regular Languages Closed Under Languages Closed Under Languages

Proof

- $Q = Q_1 \cup Q_2$
- M has the same start state as $M_1: q_1$
- Set of accept states of M is same as M_2 : F_2
- $\delta: Q \times \Sigma_{\epsilon} \to P(Q)$ is defined as: For any $r \in Q$ and for any $a \in \Sigma_{\epsilon}$

$$\delta(r,a) = \begin{cases} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \not\in F_1, \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon, \\ \delta_1(r,a) \cup \{q_2\} & \text{if } r \in F_1 \text{ and } a = \epsilon, \\ \delta_2(r,a) & \text{if } r \in Q_2. \end{cases}$$

Regular Languages Closed Under Kleene star

String
The star of A is defined as:

$$A^* = \{u_1 u_2 \dots u_k : k \ge 0 \text{ and } u_i \in A \text{ for all } i = 1, 2, \dots, k\}$$

Proof

Consider the following NFA:

NFA
$$M_1 = (Q_I, \Sigma, \delta_I, q_I, F_I)$$
 recognizes $A = L(M_1)$

We will construct an NFA M = (Q, Σ , δ , q, F) for A^*

Regular Languages Closed Under Union Heene Star

Proof

- $Q = \{q_0\} \cup Q_I$
- q_0 is the start state of M
- $F = \{q_0\} \cup F_I$
- $\delta: Q \times \Sigma_{\epsilon} \to P(Q)$ is defined as: For any $r \in Q$ and for any $a \in \Sigma_{\epsilon}$

$$\delta(r,a) = \left\{ \begin{array}{ll} \delta_1(r,a) & \text{if } r \in Q_1 \text{ and } r \not \in F_1, \\ \delta_1(r,a) & \text{if } r \in F_1 \text{ and } a \neq \epsilon, \\ \delta_1(r,a) \cup \{q_1\} & \text{if } r \in F_1 \text{ and } a = \epsilon, \\ \{q_1\} & \text{if } r = q_0 \text{ and } a = \epsilon, \\ \emptyset & \text{if } r = q_0 \text{ and } a \neq \epsilon. \end{array} \right.$$

a*: iteration

Regular Languages Closed Under Complement and Interaction

正则表达技在 Gimpernent 和 interaction 操作设制讯的 The set of regular languages is closed under the comp<u>lement and interaction</u>

operations: 如果人是基于 S 字母集的正则语言

• If A is a regular language over the alphabet Σ , then the <u>complement</u>:

$$\underline{M} = \{ w \in \Sigma^* : w \notin A \}$$

is also a regular language. 🗸

如果 A、 和 A 是 B — 字 早集 B 上的 正则 语 B interaction:

is also a regular language.

0

Regular Expressions

则表达是超过特定 Regular expressions are means to describe certain languages. 语言的方式

Example

Consider the expression:

 $(0 \cup 1)01^*$

这是临足以下条件的所有二世

The language described by this expression is the set of all binary strings satisfy: 专文

- that start with either 0 or 1 (this is indicated by $(0 \cup 1)$), \mathcal{U}_{0} (\mathcal{H}_{0}
- for which the second symbol is 0 (this is indicated by 0),
- that end with zero or more 1s (this is indicated by 1*). 小纤虾15倍,

Example

米可以有也可以无

正故怎么个 The language $\{w: w \text{ contains exactly two } 0s\}$ is described by the expression:

The language $\{w : w \text{ contains at least two } 0s\}$ is described by the expression:

The language $\{w: 1011 \text{ is a substring of } w\}$ is described by the expression:

rewember all description Formal Definition of regular expressions

Let Σ be a non-empty alphabet. ^{工地空</sub>字段}

- 1. $\widehat{\epsilon}$ s a regular expression.
- 2. \emptyset is a regular expression.
- 3. For each $a \in \Sigma$, a is a regular expression.
- 4. If R_I and R_2 are regular expressions, then $R_I \cup R_2$ is a regular expression.
- 5. If R_1 and R_2 are regular expressions, then R_1 R_2 is a regular expression.
- 6. If R is a regular expression, then R^* is a regular expression.

Example $0 \in \mathbb{Z} \quad (\in \mathbb{Z})$

Given $(0 \cup 1)^*101(0 \cup 1)^*$, prove it is a regular expression (note: $\Sigma = \{0, 1\}$).

- (1) 0,1 are regular expression
- 2 out is regular expression
- 3) (OVI)* is regular expression
- Θ (OUI)* |OI is regular expression (OUI)* |OI (OUI)* is regular expression

Formal Definition of regular expressions

如果是一个问题状态,那么 LU2) 是由尺生成的 (对描述的) 语言 If R is a regular expression, then L(R) is the language generated (or described or defined) by R.

Let Σ be a non-empty alphabet. Σ非空字均表

- 1. The regular expression ϵ describes the language $\{\epsilon\}$.
- 2. The regular expression Ø describes the language Ø.
- 3. For each $a \in \Sigma$, the regular expression a describes the language $\{a\}$.
- 4. Let R_I and R_2 be regular expressions and let L_1 and L_2 be the languages described by them, respectively. The regular expression $R_I \cup R_2$ describes the language $L_1 \cup L_2$.
- 5. Let R_I and R_2 be regular expressions and let L_1 and L_2 be the languages described by them, respectively. The regular expression R_IR_2 describes the language L_1L_2 .
- 6. Let R be a regular expression and let L be the language described by it. The regular expression R^* describes the language L^* .

Example

Given a regular expression $(0 \cup \epsilon) 1^*$, it describes the language:

$$\{0,01,011,0111,\ldots,\epsilon,1,11,111,\ldots\}.$$

Observe that this language is also described by the regular expression $01^* \cup 1^*$.

