Exploring the benefits of a general abstract formalization

Thaynara Arielly de Lima

Universidade Federal de Goiás

Funded by CNPq Universal grant No. 313290/2021-0,

FAPEG Research grant No. 202310267000223

EuroProofNet Workshop 2024

2nd Workshop on the development, maintenance, refactoring and search of

large libraries of proofs

September 13, 2024

Joint Work With

Bruno Berto de Oliveira Ribeiro

Andréia Borges Avelar

André Luiz Galdino

Mauricio Ayala-Rincón

- Ring theory An Overview
- 2 Euclidean Domains and Algorithms
 - Correctness of the Abstract Euclidean Algorithm
 - Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.
- Quaternions
 - Hamilton's Quaternions
 - Lagrange's four-square Theorem

Motivation

- Ring theory has a wide range of applications in several fields of knowledge:
 - combinatorics, algebraic cryptography and coding theory apply finite (commutative) rings [1];
 - ring theory forms the basis for algebraic geometry, which has applications in engineering, statistics, biological modeling, and computer algebra [7].

A complete formalization of ring theory would make possible the formal verification of elaborated theories involving rings in their scope.

• Formalizing rings will enrich the mathematical libraries of PVS:

https://github.com/nasa/pvslib/tree/master/algebra

Formalization approach

Figure: Hierarchy of the sub-theories for the three isomorphism theorems for rings (Taken from [2])

Figure: Hierarchy of the sub-theories related with principal, prime and maximal ideals (Taken from [2])

[2] de Lima, Galdino, Avelar, Ayala-Rincón Formalization of Ring Theory in PVS: Isomorphism Theorems, Principal, Prime and Maximal Ideals, Chinese Remainder Theorem Journal of Automated Reasoning, 2021

https://doi.org/10.1007/s10817-021-09593-0

- Formalization of the general algebraic-theoretical version of the Chinese remainder theorem (CRT) for the theory of rings, proved as a consequence of the first isomorphism theorem.
- The number-theoretical version of CRT for the structure of integers is obtained as a consequence.

Formalization approach

CRT for integers

Consider m a positive integer such that $m=m_1\cdot m_2\ldots m_r$, where $gcd(m_i,m_j)=1, i\neq j$. Then

$$Z_m \cong Z_{m_1} \times Z_{m_2} \times \ldots \times Z_{m_r}$$

CRT for (non-necessarily commutative) rings

Let R be a ring and $A_1, A_2, \dots A_r$ comaximal ideals of R ($A_i + A_j = R, i \neq j$). Then

$$R/A_1 \cap A_2 \dots \cap A_r \cong R/A_1 \times R/A_2 \times \dots \times R/A_r$$

- Ring theory An Overview
- 2 Euclidean Domains and Algorithms
 - Correctness of the Abstract Euclidean Algorithm
 - ullet Correctness of Euclidean Algorithms on $\mathbb Z$ and $\mathbb Z[i]$.
- Quaternions
 - Hamilton's Quaternions
 - Lagrange's four-square Theorem

$$a = b * q + r$$
 $0 \le r < b$
 $19 = 5 * 3 + 4$ $gcd(a,b) =$
 $5 = 4 * 1 + 1$ $gcd(b,r)$
 $4 = 1 * 4 + 0$

Figure: Euclidean Domains and Algorithms (Taken from [3])

A Euclidean ring is a commutative ring R equipped with a norm φ over $R \setminus \{zero\}$, where an abstract version of the well-known Euclid's division lemma holds. Euclidean rings and domains are specified in the subtheories euclidean_ring_def \Box and euclidean_domain_def \Box .

```
Euclidean_pair?(R : (Euclidean_ring?), phi: [(R - {zero}) -> nat]) : bool =
    FORALL(a,b: (R)): ((a*b /= zero IMPLIES phi(a) <= phi(a*b)) AND
                        (b /= zero IMPLIES
                          EXISTS(q,r:(R)): (a = q*b+r AND
                              (r = zero OR (r /= zero AND phi(r) < phi(b)))))
Euclidean_f_phi?(R : (Euclidean_ring?),
                 phi : [(R - {zero}) -> nat] | Euclidean_pair?(R,phi))
                 (f_{phi} : [(R), (R - \{zero\}) \rightarrow [(R), (R)]]) : bool =
                  FORALL (a : (R), b : (R - {zero})):
                  IF a = zero THEN f_phi(a,b) = (zero, zero)
                   ELSE LET div = f_{phi}(a,b)^1, rem = f_{phi}(a,b)^2 IN
                      a = div * b + rem AND
                     (rem = zero OR (rem /= zero AND phi(rem) < phi(b)))</pre>
                   ENDIF
```

Using the previous two relations, a general abstract recursive Euclidean gcd algorithm is specified in the sub-theory ring_euclidean_algorithm 🕜 as the definition Euclidean_gcd_algorithm .

```
Euclidean_gcd_algorithm(
        R : (Euclidean_domain?[T,+,*,zero.one]).
        (phi: [(R - {zero}) -> nat] | Euclidean_pair?(R,phi)),
        (f_{phi}: [(R), (R - \{zero\}) \rightarrow [(R), (R)]] |
                                         Euclidean_f_phi?(R,phi)(f_phi)))
        (a: (R), b: (R - \{zero\})) : RECURSIVE (R - \{zero\}) =
      a = zero THEN b
  IF
  ELSIF phi(a) >= phi(b) THEN
      LET rem = (f_phi(a,b))^2 IN
        IF rem = zero THEN b
        ELSE Euclidean_gcd_algorithm(R,phi,f_phi)(b,rem)
        ENDIF
  ELSE
        Euclidean_gcd_algorithm(R,phi,f_phi)(b,a)
  ENDIF
MEASURE lex2(phi(b), IF a = zero THEN 0 ELSE phi(a) ENDIF)
```

The termination of the algorithm is guaranteed proving that proof obligations (termination Type Correctness Conditions - TCCs) generated by PVS hold. For instance:

It uses the lexicographical MEASURE provided in the specification. The measure decreases after each possible recursive call.

The Euclid_theorem \checkmark establishes the correctness of each recursive step regarding the abstract definition of $\gcd \checkmark$. It states that given adequate ϕ and f_{ϕ} , the \gcd of a pair (a,b) is equal to the \gcd of the pair (rem,b), where rem is computed by f_{ϕ} . Notice that since Euclidean rings allow a variety of Euclidean norms and associated functions (e.g., [6], [4]), \gcd is specified as a relation.

Finally, the theorem <code>Euclidean_gcd_alg_correctness</code> of the abstract <code>Euclidean</code> algorithm. The proof is by induction. For an input pair (a,b), in the inductive step of the proof, when $\phi(b)>\phi(a)$ and the recursive call swaps the arguments the lexicographic measure decreases.

Otherwise, when the recursive call is

Euclidean_gcd_algorithm $(R,\phi,f_\phi)(b,rem)$ the measure decreases and by application of Euclid_theorem, one concludes.

- Ring theory An Overview
- 2 Euclidean Domains and Algorithms
 - Correctness of the Abstract Euclidean Algorithm
 - ullet Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.
- Quaternions
 - Hamilton's Quaternions
 - Lagrange's four-square Theorem

Corollary Euclidean_gcd_alg_correctness_in_Z gives the Euclidean algorithm correctness for the Euclidean ring of integers, Z. It states that the parameterized abstract algorithm, Euclidean_gcd_algorithm[int,+,*,0,1] satisfies the relation gcd? [int,+,*,0], for any $i, j \in \mathbb{Z}, j \neq 0$.

It follows from the correctness of the abstract Euclidean algorithm and requires proving that $\phi_{\mathbb{Z}}$ and $f_{\phi_{\mathbb{Z}}}$ fulfill the definition of Euclidean rings. The latter is formalized as lemma phi_Z_and_f_phi_Z_ok 🖸 .

```
phi_Z(i : int | i /= 0) : posnat = abs(i)
f_{phi}Z(i : int, (j : int | j /= 0)) : [int, below[abs(j)]] =
 ((IF j > 0 THEN ndiv(i,j) ELSE -ndiv(i,-j) ENDIF), rem(abs(j))(i))
phi_Z_and_f_phi_Z_ok : LEMMA Euclidean_f_phi?[int,+,*,0](Z,phi_Z)(f_phi_Z)
Euclidean_gcd_alg_correctness_in_Z : COROLLARY
  FORALL(i: int, (j: int | j /= 0) ):
    gcd?[int,+,*,0](Z)({x : (Z) | x = i OR x = j},
            Euclidean_gcd_algorithm[int,+,*,0,1](Z, phi_Z,f_phi_Z)(i,j))
```

EuroProofNet 2024

Correctness of the Euclidean algorithm for the Euclidean ring $\mathbb{Z}[i]$ of Gaussian integers.

The Euclidean norm of a Gaussian integer $x=(\operatorname{Re}(x)+i\operatorname{Im}(x))\in\mathbb{Z}[i]$, $\phi_{\mathbb{Z}[i]}(x)$, is selected as the natural given by the multiplication of x by its conjugate $(\bar{x}=\operatorname{conjugate}(x)=\operatorname{Re}(x)-i\operatorname{Im}(x))$: $\operatorname{Re}(x)^2+\operatorname{Im}(x)^2$.

Step 1:

- Consider $a, b \in \mathbb{Z}$, $b \neq 0$.
- ullet Computes the pair of integers (q,r) such that $a=q\,b+r$, and $|r|\leq |b|/2$

```
div_rem_appx(a: int, (b: int | b /= 0)) : [int, int] =
 LET r = rem(abs(b))(a),
      q = IF b > 0 THEN ndiv(a,b) ELSE -ndiv(a,-b) ENDIF IN
  IF r \le abs(b)/2 THEN (q,r)
  ELSE IF b > 0 THEN (q+1, r - abs(b))
        ELSE (q-1, r - abs(b))
        ENDIF
   ENDIF
div_rev_appx_correctness : LEMMA
   FORALL (a: int, (b: int | b /= 0)) :
      abs(div_rem_appx(a,b)^2) \le abs(b)/2 AND
      a = b * div_rem_appx(a,b)^1 + div_rem_appx(a,b)^2
```

Step 2:

- Consider $y \in \mathbb{Z}[i]$ and $x \in \mathbb{Z}_+^*$;
- $Re(y) = q_1x + r_1$, where $|r_1| \le |x/2|$;
- $Im(y) = q_2x + r_2$, where $|r_2| \le |x/2|$;
- Let $q=q_1+iq_2$ and $r=r_1+ir_2$, then y=q(x+0i)+r and $r_1^2+r_2^2<|x|^2=\phi(x+0i).$

Step 3:

- Consider $y, x \in \mathbb{Z}[i]$, $x \neq 0 + 0i$;
- ? $y = qx + r, \ \phi(r) < \phi(x);$
- $y \bar{x} = q(x \bar{x}) + r \bar{x};$
- Take r = y q x.

4 D > 4 A > 4 B > 4 B >

```
phi_Zi_and_f_phi_Zi_ok: LEMMA
    Euclidean_f_phi?[complex,+,*,0](Zi,phi_Zi)(f_phi_Zi)

Euclidean_gcd_alg_in_Zi: COROLLARY

FORALL(x: (Zi), (y: (Zi) | y /= 0) ):
    gcd?[complex,+,*,0](Zi)({z:(Zi) | z = x OR z = y},
    Euclidean_gcd_algorithm[complex,+,*,0,1](Zi, phi_Zi,f_phi_Zi)(x,y))
```


Formalization approach

- Ring theory An Overview
- 2 Euclidean Domains and Algorithms
 - Correctness of the Abstract Euclidean Algorithm
 - Correctness of Euclidean Algorithms on \mathbb{Z} and $\mathbb{Z}[i]$.
- Quaternions
 - Hamilton's Quaternions
 - Lagrange's four-square Theorem

The theory quaternions_def[T:Type+,+,*:[T,T->T],zero,one,a,b:T]
uses an abstract type T, and assumes group[T,+,zero], and axioms:

```
i = (zero, one, zero, zero)
j = (zero, zero, one, zero)
k = (zero, zero, zero, one)
a_q = (a, zero, zero, zero)
b_q = (b, zero, zero, zero)
```

```
conjugate(v) = (v`x, inv(v`y),inv(v`z),inv(v`t))
red_norm(v) = v*conjugate(v)
+(u,v):quat=(u`x+v`x, u`y+v`y, u`z+v`z, u`t+v`t);
*(c,v):quat=(c * v`x, c * v`y, c * v`z, c * v`t);
*: [quat,quat -> quat]; %quat multiplication
sqr_i
             :AXIOM i * i = a_q
sqr_j
              :AXIOM j * j = b_q
ij_is_k
              :AXIOM i * i = k
ji_prod
              :AXIOM i * i = inv(k)
sc_quat_assoc : AXIOM c*(u*v) = (c*u)*v
              :AXIOM (c*u)*v = u*(c*v)
sc_comm
              :AXIOM c*(d*u) = (c*d)*u
sc_assoc
q_distr
              :AXIOM distributive?[quat](*, +)
a distrl
              : AXIOM (u + v) * w = u * w + v * w
q_assoc
             :AXIOM associative?[quat](*)
one_q_times
              :AXIOM one_q * u = u
times_one_q
              :AXIOM u * one_q = u
```

The PVS theory quaternions \Box assumes field[T,+,*,zero,one] and formalizes several basic properties.

```
quat_is_ring_w_one: LEMMA
ring_with_one?[quat,+,*,zero_q,one_q](fullset[quat])
```

```
red_norm_charac: LEMMA FORALL (q: quat):
    red_norm(q) = (q`x * q`x + inv(a) * (q`y * q`y) +
        inv(b) * (q`z * q`z) + (a * b) * (q`t * q`t),
        zero, zero)
```

```
quat_div_ring_char: LEMMA
charac(fullset[T]) /= 2 IMPLIES
((FORALL (x,y:T): a*(x*x) + b*(y*y) /= one) IFF
division_ring?[quat,+,*,zero_q,one_q](fullset[quat]))
```

- Ring theory An Overview
- 2 Euclidean Domains and Algorithms
 - Correctness of the Abstract Euclidean Algorithm
 - ullet Correctness of Euclidean Algorithms on $\mathbb Z$ and $\mathbb Z[i]$.
- Quaternions
 - Hamilton's Quaternions
 - Lagrange's four-square Theorem

Formalization of Hamilton's Quaternion

Hamilton's quaternions are obtained by importing the theory of quaternions using the field of reals as a parameter, and the real -1 for the parameters a and b:

The formalization approach follows the principle:

Formalization approach

Rotation by Hamilton's Quaternions

```
Quaternions_Rotation: THEOREM
FORALL (a:(pure_quat), b:(pure_quat) |
  norm(Vector_part(a)) = norm(Vector_part(b)) AND
  linearly_independent?(Vector_part(a), Vector_part(b))):
  LET q = rot_quat(a,b) IN
  b = T_q(q)(a)
```


Fifteenth Conference on Interactive Theorem Proving

Tbilisi, Georgia, 2024

de Lima, Galdino, de Oliveira Ribeiro, Ayala-Rincón

A Formalization of the General Theory of Quaternions

In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs).

https://doi.org/10.4230/LIPIcs.ITP.2024.11

- Ring theory An Overview
- 2 Euclidean Domains and Algorithms
 - Correctness of the Abstract Euclidean Algorithm
 - ullet Correctness of Euclidean Algorithms on $\mathbb Z$ and $\mathbb Z[i]$.
- Quaternions
 - Hamilton's Quaternions
 - Lagrange's four-square Theorem

Work in progress

Lagrange's four-square theorem

Given a positive integer number x there are four non-negative integers a,b,c,d such that $x=a^2+b^2+c^2+d^2$.


```
Lagrange_identity: LEMMA FORALL (a0, a1, a2, a3, b0, b1, b2, b3: real):

(a0*a0 + a1*a1 + a2*a2+ a3*a3) * (b0*b0 + b1*b1 + b2*b2 + b3*b3) =

(a0*b0 - a1*b1 - a2*b2 - a3*b3) * (a0*b0 - a1*b1 - a2*b2 - a3*b3)+

(a0*b1 + a1*b0 + a2*b3 - a3*b2) * (a0*b1 + a1*b0 + a2*b3 - a3*b2)+

(a0*b2 - a1*b3 + a2*b0 + a3*b1) * (a0*b2 - a1*b3 + a2*b0 + a3*b1)+

(a0*b3 + a1*b2 - a2*b1 + a3*b0) * (a0*b3 + a1*b2 - a2*b1 + a3*b0)
```

Consider the Hamilton's Quaternions $x = (a_0, a_1, a_2, a_3)$ and $y = (b_0, b_1, b_2, b_3)$.

Then

$$N(x) \cdot N(y) = N(x \star y)$$


```
IMPORTING algebra@quaternions[rational,+,*,0,1,-1,-1]
Hurwitz_ring: set[quat] = {q: quat | EXISTS (x, y, z, t: int):
    (q'x = x/2 AND q'y = x/2 + y AND q'z = x/2 + z AND q't = x/2 + t)}
Hurwitz_ring_is_ring_w_one: THEOREM
    ring_with_one?[quat,+,*,zero_q, one_q](Hurwitz_ring)
Hurwitz_red_norm_charac: LEMMA FORALL (q: Hurwitz_ring):
    red_norm(q) = (q'x * q'x + q'y * q'y + q'z * q'z + q't * q't, 0, 0, 0)
Hurwitz_red_norm_is_posint: LEMMA FORALL (q: Hurwitz_ring):
    integer?((red_norm(q))'x) AND (red_norm(q))'x >= 0
```


- For every ideal I of a Hurwitz ring H, if x in I then there exists $u \in I$ and $r \in H$ such that x = r * u.
- $lue{}$ There exists L ideal of H such that L
 eq H, L
 eq V and $V \subset L$.
 - \longrightarrow $W(p) = \{(a_0, a_1, a_2, a_3) | a_i \in Z_p\}$ is not a division ring;
 - \blacksquare $H/V \cong W(p)$.

- If L is ideal of H such that $L \neq H$, $L \neq V$ and $V \subset L$, there exists $r \in H$ and $u \in L$ such that $p = r \star u$, and N(r) > 1 and N(u) > 1.
- $N(p,0,0,0) = p^2 = N(r) \cdot N(u).$
- There exists $x, y, z, t \in \mathbb{Z}$ such that $x^2 + y^2 + z^2 + t^2 = p$.

◆□▶◆□▶◆壹▶◆壹▶ 壹 めQで

Work in progress

Lagrange's four-square theorem

Given a positive integer number x there are four non-negative integers a,b,c,d such that $x=a^2+b^2+c^2+d^2$.

By induction on x.

Conclusion

Our formalizations follow the principles: first, formalize abstract theories with their generic properties; second, obtain particular structures as instantiations of the general theory and proceed with the formalization of their specialized properties.

Formalization approach

- Completing the theory of rings.
- Enriching automation of PVS strategies for abstract structures.

References I

- de Lima, T.A., Avelar, A.B., Galdino, A.L., Ayala-Rincón, M., Formalization of Ring Theory in PVS: Isomorphism Theorems, Principal, Prime and Maximal Ideals, Chinese Remainder Theorem. Journal of Automated Reasoning, vol. 65. p. 1231–1263 (2021)
- de Lima, T.A., Avelar, A.B., Galdino, A.L., Ayala-Rincón, M., Formalizing Factorization on Euclidean Domains and Abstract Euclidean Algorithms. In Proceedings LSFA 2023. EPTCS 402, 2024, pp. 18-33
- Fraleigh, John B., A First Course in Abstract Algebra, Pearson, 2003 (1967).
- Galdino, André Luiz: Quatérnions e Rotações. Lecture Notes (in Portuguese). (2022)
- Hungerford, Thomas W., Algebra, Graduate Texts in Mathematics, vol. 73, 1980 (1974).
- Putinar, M. and Sullivant, S., Emerging Applications of Algebraic Geometry. Springer New York (2008)

References II

Voight, John: Quaternion Algebras, ed.1. Springer Cham (2021)

Zeitlhöfler, Julian.:Nominal and observation-based attitude realization for precise orbit determination of the Jason satellites. PhD thesis. (2019)

Don't Get Lost in Deep Space: Understanding Quaternions. All about circuits, 2017.

Available in https://www.allaboutcircuits.com/technical-articles/
dont-get-lost-in-deep-space-understanding-quaternions/. Accessed on Feb.,13th, 2023.

 $\label{eq:file:inscription} File: Inscription on Broom Bridge (Dublin) regarding the discovery of Quaternions multiplication by Sir William Rowan Hamilton.jpg, 2017. Available in <math display="block">\frac{https:}{commons.wikimedia.org/wiki/File:}$

Inscription_on_Broom_Bridge_%28Dublin%29_regarding_the_discovery_of_Quaternions_multiplication_by_Sir_William_Rowan_Hamilton.jpg. Accessed on Feb.,13th, 2023.