Question 1 (8pts):

Mathématiques 16 septembre 2019

$$\begin{cases} 5+x+3z & = -2y \\ 2(x-3)+2y-\frac{1}{2}(12-2x+6z) & = 5 \\ \frac{3x}{2}-\frac{z+y}{4}-\frac{4+3x}{3} & = \frac{1}{6} \end{cases} \iff \begin{cases} x+2y+3z & = -5 \\ 2x-6+2y-6+x-3z & = 5 \\ 18x-3z-3y-16-12x & = 2 \end{cases}$$

$$\iff \begin{cases} x+2y+3z & = -5 \quad (E1) \\ 3x+2y-3z & = 17 \quad (E2)|3(E1)-(E2) \\ 2x-y-z & = 6 \quad (E3)|2(E1)-(E3) \end{cases}$$

$$\iff \begin{cases} x+2y+3z & = -5 \quad (E1) \\ 4y+12z & = -32 \quad (E2) \\ 5y+7z & = -16 \quad (E3)|5(E2)-4(E3) \end{cases}$$

$$\iff \begin{cases} x+2y+3z & = -5 \quad (E1) \\ 4y+12z & = -32 \quad (E2) \\ 32z & = -96 \quad (E3) \end{cases}$$

$$\iff \begin{cases} x+2y+3z & = -5 \quad (E1) \\ 4y+12z & = -32 \quad (E2) \\ 32z & = -96 \quad (E3) \end{cases}$$

$$\iff \begin{cases} (E3): 32z = -96 \iff z = -3 \\ (E2): 4y-36 = -32 \iff y = 1 \\ (E3): x+2-9 = -5 \iff x = 2 \end{cases}$$

Question 2 (12pts):

Inconnues :

x: nombre d'heures hebdomadaires de Martine y: nombre d'heures hebdomadaires de Thomas $Mise\ en\ inéquations$:

$$\left\{ \begin{array}{l} 0\leqslant x\leqslant 40\\ 0\leqslant y\leqslant 40\\ x\geqslant 2y\\ 45\leqslant x+y\leqslant 60 \end{array} \right.$$

Posons:

 $d_1: x = 0$

$$d_2 \colon x = 40$$

 $d_3 \colon y = 0$
 $d_4 \colon y = 40$
 $d_5 \colon y = \frac{1}{2}x$
 $d_6 \colon x + y = 45 \iff d_6 \colon y = -x + 45$
 $d_7 \colon x + y = 60 \iff d_7 \colon y = -x + 60$

Représentons le polygone des contraintes :

La fonction « salaire hebdomadaire » est donnée par : f(x; y) = 20x + 16y

Posons:

$$\Delta \colon 20 \, x + 16 \, y = 0 \iff \Delta \colon y = -\frac{5}{4} x$$

 Δ' est la droite parallèle à Δ qui passe par le point A(30;15) . Vérification algébrique de ces coordonnées :

$$A(x,y) \in d_5 \cap d_6 \iff \begin{cases} y = \frac{1}{2}x \\ y = -x + 45 \end{cases}$$

$$\iff \frac{1}{2}x = -x + 45$$

$$\iff 3x = 90$$

$$\iff x = 30$$

$$\text{et } y = -30 + 45 = 15$$

Conclusion:

Le salaire hebdomadaire est donc minimal si Martine travaille pendant 30 heures et Thomas travaille pendant 15 heures.

$$f(30;15) = 20 \cdot 30 + 16 \cdot 15 = 840 \in$$

Question 3 (5+3+3+3=14pts) :
$$f(x) = -\frac{1}{9}x^3 + \frac{1}{6}x^2 + 2x + 1$$

a)
$$f'(x) = -\frac{1}{3}x^2 + \frac{1}{3}x + 2$$

Racines de f' :
 $f'(x) = 0 \iff -\frac{1}{3}x^2 + \frac{1}{3}x + 2 = 0$
 $\Delta = 1$ $x_1 = -2$ $x_2 = 3$
 $f(-2) = -\frac{13}{9}$ et $f(3) = \frac{11}{2}$

\boldsymbol{x}	$-\infty$		-2		3		+∞
f'(x)		-	0	+	Ó	-	
	/	\			$\max_{\frac{11}{2}}$		
f		1	$\min_{-\frac{13}{9}}$	/	2	\	

La fonction f admet un minimum en le point $\left(-2; -\frac{13}{9}\right)$ et un maximum en le point $\left(3; \frac{11}{2}\right)$.

b)
$$f''(x) = -\frac{2}{3}x + \frac{1}{3}$$

Racine de f'' :
 $f''(x) = 0 \iff -\frac{2}{3}x + \frac{1}{3} = 0 \iff x = \frac{1}{2}$

x	$-\infty$		$\frac{1}{2}$	+∞
f''(x)		+	0	
\mathscr{C}_f			/P.I_	/

La fonction f admet un point d'inflexion de coordonnées $\left(\frac{1}{2}; \frac{73}{36}\right)$.

c) L'équation réduite de la tangente au point d'abscisse a est donnée par :

$$T \equiv y = f'(-3)(x - (-3)) + f(-3)$$
$$y = -2(x+3) - \frac{1}{2}$$
$$y = -2x - \frac{13}{2}$$

d) Representation graphique

Question 4 (4pts):

$$\frac{f(a+h) - f(a)}{h} = \frac{f(-2+h) - f(-2)}{h}$$

$$= \frac{\frac{3}{1+4-2h} - \frac{3}{1+4}}{h}$$

$$= \frac{\frac{3}{5-2h} - \frac{3}{5}}{h}$$

$$= \frac{\frac{3 \cdot 5 - 3 \cdot (5 - 2h)}{5(5 - 2h)}}{h}$$

$$= \frac{15 - 15 + 6h}{5h(5 - 2h)}$$

$$= \frac{6h}{5h(5 - 2h)}$$

$$= \frac{6}{5(5 - 2h)}$$

Remplaçons h par $0: f'(-2) = \frac{6}{5(5-2\cdot 0)} = \frac{6}{25}$

Question 5 (3+3=6pts):

a)
$$8 - 5 \cdot 2^{5x+1} = -3 \cdot 2^{5x+1}$$

$$\Leftrightarrow 2 \cdot 2^{5x+1} = 8$$

$$\Leftrightarrow 2^{5x+1} = 4$$

$$\Leftrightarrow 5x + 1 = \log_2 4$$

$$\Leftrightarrow 5x + 1 = 2$$

$$\Leftrightarrow x = \frac{1}{5}$$

$$S = \left\{\frac{1}{5}\right\}$$

b) C.E:
$$1 - x > 0 \iff x < 1$$

$$D =] - \infty; 1[$$

$$2 \log_3(1 - x) - 5 = 10 - \log_3(1 - x)$$

$$\iff 3 \log_3(1 - x) = 15$$

$$\iff \log_3(1 - x) = 5$$

$$\iff 1 - x = 3^5$$

$$\iff 1 - x = 243$$

$$\iff x = -242$$

$$S = \{-242\}$$

Question 6 (2+3+3=8pts):

nombre de cas possible : $C_{52}^5 = 2598960$

a) p(uniquement des piques)
$$= \frac{C_{13}^5 \cdot C_{39}^0}{C_{52}^5} = \frac{1287 \cdot 1}{2598960} = \frac{33}{66640} \approx 4,95 \cdot 10^{-4}$$

- b) p(une dame et un coeur) Il faut distinguer les cas:
 - dame de coeur, aucune autre dame, aucun autre coeur et 4 autres cartes $C_1^1 \cdot C_3^0 \cdot C_{12}^0 \cdot C_{36}^4$
 - $\begin{array}{l} \bullet \ \ \text{dame non coeur, 1 autre dame, 1 coeur et 3 autres cartes} \ C_1^0 \cdot C_3^1 \cdot C_{12}^1 \cdot C_{36}^3 \\ = \frac{C_1^1 \cdot C_3^0 \cdot C_{12}^0 \cdot C_{36}^4}{C_{52}^5} + \frac{C_1^0 \cdot C_3^1 \cdot C_{12}^1 \cdot C_{36}^3}{C_{52}^5} = \frac{1 \cdot 1 \cdot 1 \cdot 58\,905 + 1 \cdot 3 \cdot 12 \cdot 7\,140}{2\,598\,960} \\ = \frac{315\,945}{2\,598\,960} = \frac{177}{1456} \approx 0,12 \end{array}$

c) p(au moins un trèfle) =
$$1 - p(\text{aucun trèfle}) = 1 - \frac{C_{13}^0 \cdot C_{39}^5}{C_{52}^5} = 1 - \frac{575\,757}{2\,598\,960} = \frac{7411}{9520} \approx 0,78$$

Question 7 (2+3+3=8pts):

- a) $A_{10}^6 = 151\,200$ On a 151.200 cas possibles.
- b) $1 \cdot 10^4 \cdot 1 = 10000$ On a 10.000 cas possibles.
- c) 4 (chiffres pairs différents de 0) ·
 - 5 (chiffres impairs) ·
 - 7 (chiffres différents des deux premiers chiffres et différent de 0) \cdot
 - 6 (chiffres différents des trois premiers chiffres et différent de 0) .
 - 5 (chiffres différents des quatre premiers chiffres et différent de 0) ·
 - 1 (chiffre 0)
 - = 4200

On a 4200 cas possibles.