

We claim:

- 1 1. A method, comprising:
 - 2 providing at least three elements, including a first element and a last element, each
 - 3 element having an associated parameter;
 - 4 providing a first identifier for the first element;
 - 5 for a first sequential execution of the at least three elements, performing a first operation
 - 6 on the first identifier and at least one of the parameters to produce a transform;
 - 7 saving the transform; and
 - 8 for a second sequential execution of the elements, performing a second operation on the
 - 9 transform to produce a last identifier associated with the last element.
- 1 2. The method of claim 1, wherein performing the first operation includes:
 - 2 performing a first logic function on the first identifier and the parameter associated with
 - 3 the first element to produce a next identifier for a next one of the elements;
 - 4 repeating the performing a first logic function on the next identifier and the parameter
 - 5 associated with the next one of the elements, until a last identifier has been
 - 6 produced that is associated with the last element; and
 - 7 performing a second logic function on the first identifier and the last identifier to produce
 - 8 the transform.
- 1 3. The method of claim 2, wherein performing the first logic function includes:
 - 2 shifting the first identifier to produce a shifted identifier; and
 - 3 performing an exclusive OR operation on the shifted identifier and the associated
 - 4 parameter to produce the next identifier.

1 4. The method of claim 3, wherein shifting the first identifier includes shifting the first
2 identifier one bit to the left relative to the associated parameter.

1 5. The method of claim 2, wherein performing the second logic function includes:
2 shifting the first identifier to produce a shifted identifier; and
3 performing an exclusive OR operation on the shifted identifier and the last identifier to
4 produce the transform.

1 6. The method of claim 5, wherein shifting the first identifier includes shifting the first
2 identifier to the left relative to the last identifier by a number of bits equal in value to one less
3 than a quantity of the at least three elements.

1 7. The method of claim 1, wherein performing the second operation includes:
2 shifting the first identifier to produce a shifted identifier; and
3 performing an exclusive OR operation on the shifted identifier and the transform to
4 produce the last identifier.

1 8. The method of claim 7, wherein shifting the first identifier includes shifting the first
2 identifier to the left relative to the transform by a number of bits equal in value to one less than a
3 quantity of the at least three elements.

1 9. The method of claim 1, wherein the at least three elements are branch instructions in an
2 instruction execution pipeline.

1 10. The method of claim 1, further comprising:
2 using the last index to access a location in a prediction array; and
3 using a content of said location to predict a decision status of the last element.

1 11. A circuit, comprising:
2 first and second exclusive OR circuits;
3 a first register having an output coupled to a first input of the first exclusive OR circuit
4 and having an input coupled to an output of the first exclusive OR circuit;
5 a second register having an output coupled to a first input of the second exclusive OR
6 circuit and having an input;
7 a multiplexer having an output coupled to the input of the second register, having a first
8 input coupled to the output of the first exclusive OR circuit, and having a second
9 input coupled to the output of the second register;
10 wherein the output of the first exclusive OR circuit is coupled to a second input of the
11 second exclusive OR circuit.

1 12. The circuit of claim 11, wherein the first input of the first exclusive OR circuit is offset
2 from the output of the first register to perform a bit-shift operation on data received from the first
3 register by the first exclusive OR circuit.

1 13. The circuit of claim 11, wherein the second input of the multiplexer is offset from the
2 output of the second register to perform a bit-shift operation on data received from the second
3 register by the multiplexer.

1 14. The circuit of claim 11, further comprising an array coupled to an output of the second
2 exclusive OR circuit to store transforms generated by the second exclusive OR circuit.

1 15. The circuit of claim 14, further comprising a counter to generate a shift value to store in
2 the array.

1 16. A computer system, comprising:
2 an instruction execution pipeline; and
3 a branch prediction circuit coupled to the instruction execution pipeline and including:
4 first and second exclusive OR circuits;
5 a first register having an output coupled to a first input of the first exclusive OR
6 circuit and having an input coupled to an output of the first exclusive OR
7 circuit;
8 a second register having an output coupled to a first input of the second exclusive
9 OR circuit and having an input; and
10 a multiplexer having an output coupled to the input of the second register, having
11 a first input coupled to the output of the first exclusive OR circuit, and
12 having a second input coupled to the output of the second register;
13 wherein the output of the first exclusive OR circuit is coupled to a second input of
14 the second exclusive OR circuit.

1 17. The computer system of claim 16, wherein the first input of the first exclusive OR circuit
2 is offset from the output of the first register to perform a bit-shift operation on data received from
3 the first register by the first exclusive OR circuit.

1 18. The computer system of claim 16, wherein the second input of the multiplexer is offset
2 from the output of the second register to perform a bit-shift operation on data received from the
3 second register by the multiplexer.

1 19. The computer system of claim 16, further comprising an array coupled to an output of the
2 second exclusive OR circuit to store transforms generated by the second exclusive OR circuit.

1 20. The computer system of claim 19, further comprising a counter to generate a shift value
2 to store in the array.

1 21. A circuit, comprising:
2 a register;
3 a data shifting circuit having an input coupled to an output of the register;
4 an exclusive OR circuit having a first input coupled to an output of the data shifting
5 circuit;
6 an array coupled to a second input of the exclusive OR circuit to transfer transform data
7 to the exclusive OR circuit, and further coupled to the data shifting circuit to
8 transfer data shift information to the data shifting circuit; and
9 a prediction logic circuit coupled to an output of the exclusive OR circuit.

1 22. The circuit of claim 21, further comprising a multiplexer having:
2 an output coupled to an input of the register;
3 a first input to receive initial data; and
4 a second input coupled to the output of the exclusive OR circuit.

1 23. The circuit of claim 21, wherein the data shifting circuit includes a plurality of inputs
2 coupled to the output of the register to shift data from the register by a selected number of bits.

1 24. A computer system comprising:
2 an instruction execution pipeline;
3 a transform generation circuit coupled to the instruction execution pipeline and including:
4 a register;
5 a data shifting circuit having an input coupled to an output of the register;

6 an exclusive OR circuit having a first input coupled to an output of the data
7 shifting circuit;
8 an array coupled to a second input of the exclusive OR circuit to transfer
9 transform data to the exclusive OR circuit, and further coupled to the data
10 shifting circuit to transfer data shift information to the data shifting circuit;
11 and
12 a prediction logic circuit coupled to an output of the exclusive OR circuit.

1 25. The computer system of claim 24, further comprising a multiplexer having:
2 an output coupled to an input of the register;
3 a first input to receive initial data; and
4 a second input coupled to the output of the exclusive OR circuit.

1 26. The computer system of claim 24, wherein the data shifting circuit includes a plurality of
2 inputs coupled to the output of the register to shift data from the register by a selected number of
3 bits.

1 27. A machine-readable medium having stored thereon instructions, which when executed by
2 at least one processor cause said at least one processor to perform:
3 providing at least three elements, including a first element and a last element, each
4 element having an associated parameter;
5 providing a first identifier for the first element;
6 for a first sequential execution of the at least three elements, performing a first operation
7 on the first identifier and at least one of the parameters to produce a transform;
8 saving the transform;
9 for a second sequential execution of the elements, performing a second operation on the
10 transform to produce a last identifier associated with the last element;

11 using the last identifier to access a location in a prediction array; and
12 using a content of said location to predict a decision status of the last element.