

From: Tim UMT

Subject: Kalkulus Diferensial untuk Optimisasi

Date: 23 Juni 2025

Eksplorasi Teori

Dokumen ini menyajikan pembahasan mendalam tentang bagaimana kalkulus diferensial digunakan untuk optimisasi. Fokus utama adalah pada **pemahaman konsep**: mengapa turunan digunakan untuk mencari maksimum/minimum, apa makna geometrisnya, dan bagaimana mengaitkan hasil dengan konteks masalah nyata.

Mengapa Optimisasi Penting?

Dalam kehidupan nyata, kita sering dihadapkan pada pertanyaan seperti:

- Bagaimana memaksimalkan keuntungan?
- Bagaimana meminimalkan biaya?
- Bagaimana mendesain bentuk yang efisien?

Semua ini adalah pertanyaan **optimisasi**. Dan kalkulus, khususnya turunan, memberi kita alat untuk menjawabnya secara sistematis.

Dasar Konsep: Titik Stasioner dan Turunan

2.1 Apa itu titik stasioner?

Titik stasioner adalah titik di mana kemiringan grafik fungsi adalah nol:

$$\frac{df}{dx} = 0$$

Mengapa ini penting? Karena di titik ini, grafik bisa mencapai titik maksimum, minimum, atau datar (infleksi).

2.2 Turunan sebagai Kemiringan

Turunan f'(x) menyatakan laju perubahan fungsi. Secara geometris, ia menggambarkan kemiringan garis singgung. Ketika kemiringan nol, garis singgung datar \Rightarrow kemungkinanekstrem.

Langkah Umum Menyelesaikan Masalah Optimisasi

- 1. Identifikasi fungsi tujuan (yang akan dimaksimalkan/diminimalkan).
- 2. Jika perlu, gunakan syarat tambahan (constraint) untuk menyusun fungsi tunggal.
- 3. Hitung turunannya dan cari titik stasioner (f'(x) = 0).
- 4. Gunakan turunan kedua (atau uji nilai) untuk menentukan apakah itu maksimum atau minimum.
- 5. Interpretasikan hasilnya dalam konteks masalah.

Pertanyaan Pemahaman: Mengapa kita harus mencari turunan dan menyamakan ke nol? Karena kita mencari titik di mana fungsi "berhenti naik/turun", yaitu titik puncak/lembah.

Contoh: Memaksimalkan Luas Persegi Panjang

Masalah: Sebuah pagar sepanjang 40 meter akan digunakan untuk membuat kandang persegi panjang yang satu sisinya menempel pada dinding. Berapa ukuran maksimum luasnya?

Langkah 1: Misalkan panjang sisi sejajar dinding = x, maka sisi tegak lurus = y

Karena tiga sisi dipagar:

$$2y + x = 40 \Rightarrow y = \frac{40 - x}{2}$$

Langkah 2: Luas $A = x \cdot y = x \cdot \frac{40-x}{2}$

$$A(x) = \frac{40x - x^2}{2}$$

Langkah 3: Turunkan dan cari titik stasioner:

$$A'(x) = \frac{40 - 2x}{2} = 0 \Rightarrow x = 20$$

Langkah 4: Uji turunan kedua:

$$A''(x) = -1 < 0 \Rightarrow Maksimum lokal$$

Interpretasi: Luas maksimum terjadi saat x = 20, maka y = 10. Luas maksimum: 200 meter persegi.

Figure 1: Visualisasi: perubahan luas terhadap nilai x

Mengapa Uji Turunan Kedua?

Pertanyaan: Bukankah cukup dengan f'(x) = 0?

Jawaban: Tidak! Titik stasioner bisa jadi:

- Titik maksimum $\Rightarrow f''(x) < 0$
- Titik minimum $\Rightarrow f''(x) > 0$
- Titik infleksi $\Rightarrow f''(x) = 0$

Tanpa turunan kedua, kita tidak bisa memastikan jenis ekstremumnya.

Optimisasi dengan Batasan (Constraint)

Ketika masalah melibatkan batasan (misalnya keliling tetap), kita bisa menggunakan **substitusi** seperti pada contoh sebelumnya.

Untuk kasus lebih kompleks (misalnya lebih dari satu variabel), bisa digunakan Lagrange Multipliers. Itu akan dibahas dalam dokumen lanjutan.

Refleksi UMT: Dari Rumus ke Pemahaman

"Optimisasi bukan soal menghafal langkah, tapi memahami: Mengapa cara ini berhasil? Apa makna matematisnya?"

Poin Inti UMT:

- Hubungkan setiap langkah dengan makna geometri atau konteks nyata.
- Tanyakan "mengapa?" di setiap proses.
- Gunakan visualisasi untuk menguatkan intuisi.

Penutup

Kalkulus diferensial membuka pintu untuk memahami perubahan dan pencapaian nilai ekstrem. Melalui pendekatan berbasis pemahaman, kita tidak hanya belajar teknik, tetapi juga **mengapa teknik itu bermakna**. Inilah landasan berpikir matematis yang dalam, sesuai dengan semangat komunitas UMT.

References

- [1] Stewart, J. (2016). Calculus: Early Transcendentals. Cengage Learning.
- [2] UMT Lab. (2025). Optimisasi dan Pemahaman Kontekstual. Komunitas UMT.