Trigonometry and a Sequence of Polynomials

Daniel Kim, Sameer Pai, Simon Sun, Jesse Yang

PROMYS

July 2019

• $T_n(x)$ is the unique polynomial satisfying $T_n(\cos(x)) = \cos(nx)$ for all $x \in \mathbb{R}, n \in \mathbb{N}$.

• $T_n(x)$ is the unique polynomial satisfying $T_n(\cos(x)) = \cos(nx)$ for all $x \in \mathbb{R}, n \in \mathbb{N}$.

•
$$sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$

• $T_n(x)$ is the unique polynomial satisfying $T_n(\cos(x)) = \cos(nx)$ for all $x \in \mathbb{R}, n \in \mathbb{N}$.

•
$$sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0. \\ -1 & x < 0 \end{cases}$$

• Let $\alpha(n, k)$ denote the coefficient of x^k in $T_n(x)$.

Closed Form for $\overline{T}_n(x)$

Theorem 1

For $n \in \mathbb{N}$,

$$T_n(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} x^{n-2k} (x^2 - 1)^k$$
$$= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} x^{n-2k} \sum_{j=k}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2j} {j \choose k} (-1)^k.$$

Closed Form for $T_n(x)$

Theorem 1

For $n \in \mathbb{N}$,

$$T_n(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} x^{n-2k} (x^2 - 1)^k$$
$$= \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} x^{n-2k} \sum_{j=k}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2j} {j \choose k} (-1)^k.$$

Sketch of Proof.

Consider
$$\cos(n\theta) = \text{Re}((\cos \theta + i \sin \theta)^n)$$

= $\text{Re}\left(\sum_{k=0}^n \binom{n}{k} \cos^{n-k} \theta (i \sin \theta)^k\right)$.

Table of Coefficients

n	1	Х	x ²	x ³	x ⁴	x ⁵	x ⁶	x ⁷	x ⁸	x ⁹	x ¹⁰	x ¹¹	x ¹²
0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0
2	-1	0	2	0	0	0	0	0	0	0	0	0	0
3	0	-3	0	4	0	0	0	0	0	0	0	0	0
4	1	0	-8	0	8	0	0	0	0	0	0	0	0
5	0	5	0	-20	0	16	0	0	0	0	0	0	0
6	-1	0	18	0	-48	0	32	0	0	0	0	0	0
7	0	-7	0	56	0	-112	0	64	0	0	0	0	0
8	1	0	-32	0	160	0	-256	0	128	0	0	0	0
9	0	9	0	-120	0	432	0	-576	0	256	0	0	0
10	-1	0	50	0	-400	0	1120	0	-1280	0	512	0	0
11	0	-11	0	220	0	-1232	0	2816	0	-2816	0	1024	0
12	1	0	-72	0	840	0	-3584	0	6912	0	-6144	0	2048

First, we compiled a table of numerical data in hopes of finding a pattern, particularly a closed form, for any coefficient.

Patterns in Coefficients

Consider the first few polynomials:

1,
$$x$$
, $2x^2 - 1$, $4x^3 - 3x$, $8x^4 - 8x^2 + 1$, $16x^5 - 20x^3 + 5x$

The coefficients alternate in sign:

Lemma 2

$$\forall k \leq n$$
,

$$\operatorname{sgn}(\alpha(n,k)) = \begin{cases} 0 & k \not\equiv n \pmod{2} \\ -1 & k \equiv n+2 \pmod{4} \\ 1 & k \equiv n \pmod{4} \end{cases}.$$

Coefficients

Let $T_n(x) = \sum_{i=0}^n a_i x^i$. We made the following observation:

n	$T_n(x)$	$\sum a_i $
0	1	1
1	X	1
_	$2x^2 - 1$	$3 = 2 \cdot 1 + 1$
-	$4x^3 - 3x$	$7 = 2 \cdot 3 + 1$
4	$8x^4 - 8x^2 + 1$	$17 = 2 \cdot 7 + 3$
5	$16x^5 - 20x^3 + 5x$	$41 = 2 \cdot 17 + 7$
6	$32x^6 - 48x^4 + 18x^2 - 1$	$99 = 2 \cdot 41 + 17$
7	$64x^7 - 112x^5 + 56x^3 - 7x$	$239 = 2 \cdot 99 + 41$
8	$128x^8 - 256x^6 + 160x^4 - 32x^2 + 1$	$577 = 2 \cdot 239 + 99$

The sum of the absolute value of the coefficients follow a recursive pattern.

ㅁㅏ ◀♬ㅏ ◀불ㅏ ◀불ㅏ _ 불 _ 쒸٩♡

Coefficients

Lemma 3

$$|\alpha(n,k)| = 2 |\alpha(n-1,k-1)| + |\alpha(n-2,k)|.$$

This follows from the recursion $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$.

Coefficients

Lemma 3

$$|\alpha(n,k)| = 2 |\alpha(n-1,k-1)| + |\alpha(n-2,k)|.$$

This follows from the recursion $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$.

Proposition 4

Let
$$s(n) = \sum_{i=0}^{n} |a_i|$$
 where $T_n(x) = \sum_{i=0}^{n} a_i x^i$. Then $s(n) = 2s(n-1) + s(n-2) \ \forall \ n \ge 2$, and $s(0) = s(1) = 1$.

Daniel Kim, Sameer Pai, Simon Sun, Jesse Yang (PROMYS)

8 / 28

Table of Coefficients

n	1	X	x ²	x ³	x ⁴	x ⁵	x ⁶	x'	x ⁸	x ⁹	x ¹⁰	x^{11}	x ¹²
0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0
2	-1	0	2	0	0	0	0	0	0	0	0	0	0
3	0	-3	0	4	0	0	0	0	0	0	0	0	0
4	1	0	-8	0	8	0	0	0	0	0	0	0	0
5	0	5	0	-20	0	16	0	0	0	0	0	0	0
6	-1	0	18	0	-48	0	32	0	0	0	0	0	0
7	0	-7	0	56	0	-112	0	64	0	0	0	0	0
8	1	0	-32	0	160	0	-256	0	128	0	0	0	0
9	0	9	0	-120	0	432	0	-576	0	256	0	0	0
10	-1	0	50	0	-400	0	1120	0	-1280	0	512	0	0
11	0	-11	0	220	0	-1232	0	2816	0	-2816	0	1024	0
12	1	0	-72	0	840	0	-3584	0	6912	0	-6144	0	2048

Recall our table of coefficients. We seek a closed formula to calculate the coefficient of any power of x in any polynomial $T_n(x)$.

Table of Coefficients

n	1	X	x ²	<i>x</i> ³	x ⁴	x ⁵	
0	1	0	0	0	0	0	
1	0	1	0	0	0	0	
2	-1	0	2	0	0	0	
3	0	_3	0	4	0	0	
4	1	0	-8	0	8	0	
5	0	5	0	-20	0	16	
6	_1	0	18	0	-48	0	
7	0	_7	0	56	0	-112	
8	1	0	-32	0	160	0	
9	0	9	0	-120	0	432	
10	_1	0	50	0	-400	0	
11	0	-11	0	220	0	-1232	
12	1	0	-72	0	840	0	٦.

```
m = 0:
m = 1:
                        1
m = 2:
                        5
m = 3:
m = 4:
                             18
                                      20
                                                8
m = 5:
                9
                       32
                                 56
                                           48
                                                   16
```

Figure: Triangle A

For every nonzero value a in the Table of Coefficients, which corresponds to some value of n and some x power, x^k , place |a| in row m of Triangle A where n+k=2m. Let a be ordered as the k^{th} index in row m (where indices are ordered left to right from 0 to m).

$$m = 0$$
: 1

 $m = 1$: 1 1

 $m = 2$: 1 3 2

 $m = 3$: 1 5 8 4

 $m = 4$: 1 7 18 20 8

 $m = 5$: 1 9 32 56 48 16

Definition 5

Let $\beta(m,k)$ denote the k^{th} index in row m of Triangle A. Then, by our construction, $\beta(m,k) = |\alpha(2m-k,k)|$.

4 D > 4 D > 4 E > 4 E > E 9000

Lemma 6

When both quantities are defined,

$$\beta(m,k) = 2\beta(m-1,k-1) + \beta(m-1,k).$$

Lemma 6

When both quantities are defined,

$$\beta(m,k) = 2\beta(m-1,k-1) + \beta(m-1,k).$$

Proposition 7

For
$$m \geq 0$$
, $\sum_{i=0}^{m+1} \beta(m+1,i) = 3 \cdot \sum_{i=0}^m \beta(m,i)$. Hence,

$$\sum_{i=0}^{m+1} \beta(m+1,i) = 2 \cdot 3^m.$$

$$m = 0$$
:
 1

 $m = 1$:
 $\frac{1}{2}$
 $\frac{1}{2}$
 $m = 2$:
 $\frac{1}{6}$
 $\frac{1}{2}$
 $\frac{1}{3}$
 $m = 3$:
 $\frac{1}{18}$
 $\frac{5}{18}$
 $\frac{4}{9}$
 $\frac{2}{9}$
 $m = 4$:
 $\frac{1}{54}$
 $\frac{7}{54}$
 $\frac{1}{3}$
 $\frac{10}{27}$
 $\frac{4}{27}$
 $m = 5$:
 $\frac{1}{162}$
 $\frac{1}{18}$
 $\frac{16}{81}$
 $\frac{28}{81}$
 $\frac{8}{27}$
 $\frac{8}{81}$

Now consider the bijection of Triangle A to Triangle B; namely, Triangle B represents each element as a probabilistic value.

Figure: Triangle B

Definition 8

Let $\gamma(m, k)$ represent the probability associated with the k^{th} index in row m:

$$\gamma(m,k) = \frac{\beta(m,k)}{\sum_{i=0}^{m} \beta(m,i)}.$$

Lemma 9

$$\gamma(m,k) = \frac{2}{3}\gamma(m-1,k+1) + \frac{1}{3}\gamma(m-1,k).$$

Theorem 10

We start a random walk down Triangle B. The following rules govern the walk:

• We start at m = 1, with k = 0 or k = 1 with equal probability.

Theorem 10

We start a random walk down Triangle B. The following rules govern the walk:

- We start at m = 1, with k = 0 or k = 1 with equal probability.
- At each state, we step one row down and either left or right, moving left with probability $\frac{1}{3}$ and right with probability $\frac{2}{3}$. (Formally, we move from (m,k) to (m+1,k) one-thirds of the time and to (m+1,k+1) two-thirds of the time.)

Theorem 10

We start a random walk down Triangle B. The following rules govern the walk:

- We start at m = 1, with k = 0 or k = 1 with equal probability.
- At each state, we step one row down and either left or right, moving left with probability $\frac{1}{3}$ and right with probability $\frac{2}{3}$. (Formally, we move from (m,k) to (m+1,k) one-thirds of the time and to (m+1,k+1) two-thirds of the time.)
- Then $\gamma(m, k)$ is the probability that we reach (m, k) on this walk.

Proof By Picture.

$$\gamma(n,k) = \frac{2}{3}\gamma(n-1,k-1) + \frac{1}{3}\gamma(n-1,k)$$

Closed Form

Proposition 11

For all
$$m > 0$$
, $\gamma(m, k) = \frac{1}{3^{m-1}} \left(\binom{m-1}{k} \cdot 2^{k-1} + \binom{m-1}{k-1} \cdot 2^{k-2} \right)$.

Closed Form

Proposition 11

For all
$$m > 0$$
, $\gamma(m, k) = \frac{1}{3^{m-1}} \left(\binom{m-1}{k} \cdot 2^{k-1} + \binom{m-1}{k-1} \cdot 2^{k-2} \right)$.

We finally have our closed form:

Closed Form

Proposition 11

For all
$$m > 0$$
, $\gamma(m, k) = \frac{1}{3^{m-1}} \left(\binom{m-1}{k} \cdot 2^{k-1} + \binom{m-1}{k-1} \cdot 2^{k-2} \right)$.

We finally have our closed form:

Theorem 12

For
$$n \neq k$$
, $\alpha(n, k) = \operatorname{sgn}(\alpha(n, k)) \left[2^k \cdot {n+k \choose 2} - 1 \choose k \cdot n-k \right]$. Otherwise, $n = k$ and $\alpha(n, n) = 2^{n-1}$.

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めのぐ

The closed formula enables us to prove a powerful result regarding modulo p for prime p.

The closed formula enables us to prove a powerful result regarding modulo p for prime p.

Lemma 13

For any $a, b \in \mathbb{N}$, $T_a(T_b(x)) = T_{ab}(x)$.

The closed formula enables us to prove a powerful result regarding modulo p for prime p.

Lemma 13

For any $a, b \in \mathbb{N}$, $T_a(T_b(x)) = T_{ab}(x)$.

Theorem 14

For odd prime p and $a \in \mathbb{N}$, $T_{ap}(x) = T_a(x^p)$ in $\mathbb{Z}_p[x]$.

Proof.

• By above, $T_{ap}(x) = T_a(T_p(x))$. Therefore, if we show that $T_p(x) \equiv x^p$ in $\mathbb{Z}_p[x]$, then we are done.

Proof.

- By above, $T_{ap}(x) = T_a(T_p(x))$. Therefore, if we show that $T_p(x) \equiv x^p$ in $\mathbb{Z}_p[x]$, then we are done.
- First, we will verify that the coefficient of x^k is zero for $0 \le k < p$. By our closed formula derived earlier, we know that

$$|\alpha(p,k)| = 2^k {p+k \choose 2} - 1 \choose k} \cdot \frac{p}{p-k}.$$

Proof.

- By above, $T_{ap}(x) = T_a(T_p(x))$. Therefore, if we show that $T_p(x) \equiv x^p$ in $\mathbb{Z}_p[x]$, then we are done.
- First, we will verify that the coefficient of x^k is zero for $0 \le k < p$. By our closed formula derived earlier, we know that

$$|\alpha(p,k)| = 2^k {p+k \choose 2} - 1 \choose k} \cdot \frac{p}{p-k}.$$

• Then taking modulo p, the $\frac{p}{p-k}$ term means that, since everything in the denominator (i.e. p-k and k!) do not have any factors of p, $\alpha(p,k)$ is a multiple of p as desired. So, every coefficient of x^k with k < p disappears in $\mathbb{Z}_p[x]$.

Proof.

- By above, $T_{ap}(x) = T_a(T_p(x))$. Therefore, if we show that $T_p(x) \equiv x^p$ in $\mathbb{Z}_p[x]$, then we are done.
- First, we will verify that the coefficient of x^k is zero for $0 \le k < p$. By our closed formula derived earlier, we know that

$$|\alpha(p,k)| = 2^k {p+k \choose 2} - 1 \choose k} \cdot \frac{p}{p-k}.$$

- Then taking modulo p, the $\frac{p}{p-k}$ term means that, since everything in the denominator (i.e. p-k and k!) do not have any factors of p, $\alpha(p,k)$ is a multiple of p as desired. So, every coefficient of x^k with k < p disappears in $\mathbb{Z}_p[x]$.
- Now, the coefficient of x^p in $T_p(x)$ is 2^{p-1} , which is 1 in \mathbb{Z}_p by Euler's Theorem. Thus, all coefficients less than x^p are 0, and the x^p coefficient is 1, so $T_p(x) = x^p$ in $\mathbb{Z}_p[x]$.

Lemma 15

The roots of $T_m(x)$ are of form $\cos\left(\frac{\pi+2\pi k}{2m}\right)$.

Lemma 15

The roots of $T_m(x)$ are of form $\cos\left(\frac{\pi+2\pi k}{2m}\right)$.

Theorem 16

 $\forall k, m \in \mathbb{N}, \ T_m(x) \mid T_{m(2k+1)}(x).$

Proof.

• The roots of $T_m(x)$ are of form $\cos\left(\frac{\pi+2\pi a}{2m}\right)$ and the roots of $T_{m(2k+1)}(x)$ are of form $\cos\left(\frac{\pi+2\pi b}{2m(2k+1)}\right)$ for all natural numbers k, where a and b are integers.

Proof.

- The roots of $T_m(x)$ are of form $\cos\left(\frac{\pi+2\pi a}{2m}\right)$ and the roots of $T_{m(2k+1)}(x)$ are of form $\cos\left(\frac{\pi+2\pi b}{2m(2k+1)}\right)$ for all natural numbers k, where a and b are integers.
- For any a, we show that there exists b such that $\frac{\pi+2\pi b}{2m(2k+1)}=\frac{\pi+2\pi a}{2m}$. Indeed.

$$\frac{\pi+2\pi b}{2m(2k+1)} = \frac{\pi+2\pi a}{2m}$$

which simplifies to

$$b=2ka+k+a.$$

Proof.

- The roots of $T_m(x)$ are of form $\cos\left(\frac{\pi+2\pi a}{2m}\right)$ and the roots of $T_{m(2k+1)}(x)$ are of form $\cos\left(\frac{\pi+2\pi b}{2m(2k+1)}\right)$ for all natural numbers k, where a and b are integers.
- For any a, we show that there exists b such that $\frac{\pi+2\pi b}{2m(2k+1)}=\frac{\pi+2\pi a}{2m}$. Indeed.

$$\frac{\pi+2\pi b}{2m(2k+1)}=\frac{\pi+2\pi a}{2m}$$

which simplifies to

$$b = 2ka + k + a.$$

• Therefore, there exists an integer b such that $\frac{\pi+2\pi b}{2m(2k+1)}=\frac{\pi+2\pi a}{2m}$ for every a. This means that every root of $T_m(x)$ is a root of $T_{m(2k+1)}(x)$, which means that $T_m(x) \mid T_{m(2k+1)}(x)$.

Proposition 17

As $n \to \infty$, for any even $k \in \mathbb{N}$, $\alpha(n, k)$ approaches the coefficient of x^k in the Taylor series for $\cos(nx)$.

Proposition 17

As $n \to \infty$, for any even $k \in \mathbb{N}$, $\alpha(n, k)$ approaches the coefficient of x^k in the Taylor series for $\cos(nx)$.

Proof.

It is well known that the coefficient of x^{2k} in the Taylor series for $\cos x$ is $\frac{(-1)^k}{(2k)!}$. So the coefficient in $\cos nx$ is $\frac{(-1)^k \cdot n^{2k}}{(2k)!}$. Now, the closed form for $|\alpha(n,k)|$ is

$$\left[2^k \cdot \binom{\frac{n+k}{2}-1}{k} \cdot \frac{n}{n-k}\right].$$

Proof.

Using Stirling's approximation for binomial coefficients, we see that this approaches

$$2^{2k} \cdot \frac{\left(\frac{n+2k}{2}\right)^{2k}}{(2k)!} \cdot \frac{n}{n-k} = \frac{(n+2k)^{2k}}{(2k)!} \cdot \frac{n}{n-k}.$$

As $n \to \infty$, both n-k and n+2k approach n, so this simplifies to $\frac{n^{2k}}{(2k)!}$ as desired.

