Rⁿ の実線型構造と整合する全順序の特徴付け

箱 (@o_ccah)

2020年3月17日

本稿で考える問題は、高梨悠吾さんから伺った.

定義 V を実線型空間とする. V 上の順序 \leq が V の実線型構造と整合するとは、次の 2 条件を満たすことをいう.

- (i) 任意の $x, y, z \in V$ に対して, $x \le y$ ならば $x + z \le y + z$ である.
- (ii) 任意の $\lambda \in \mathbb{R}$, $x \in V$ に対して, $\lambda \ge 0$ かつ $x \ge 0$ ならば $\lambda x \ge 0$ である.

定義 V を n (有限) 次元実線型空間, $\mathcal{E}=(e_0,\dots,e_{n-1})$ を V の基底とする.各 $i\in\{0,\dots,n-1\}$ に対して,基底 \mathcal{E} に関する i-成分を与える写像を $p_i\colon V\to\mathbb{R}$ と書く.V 上の順序 $\leq_{\mathcal{E}}$ を, $x,y\in V$ に対して $x\leq_{\mathcal{E}} y$ が

x=y または「ある $i\in\{0,\ldots,n-1\}$ が存在して $p_0(x)=p_0(y),\ldots,\ p_{i-1}(x)=p_{i-1}(y)$ かつ $p_i(x)< p_i(y)$ となる」

と同値であるとして定める. この順序 $\leq_{\mathcal{E}}$ を、基底 \mathcal{E} に関する辞書式順序という.

容易にわかるように,有限次元実線型空間 V のある基底に関する辞書式順序は,V の実線型構造と整合する全順序である.

以下,有限次元実線型空間の基底 \mathcal{E} に対して, $\leq_{\mathcal{E}}$ は常に \mathcal{E} に関する辞書式順序を表すとする.また, $x <_{\mathcal{E}} y$ は「 $x \leq_{\mathcal{E}} y$ かつ $x \neq y$ 」を表すとし, $x \geq_{\mathcal{E}} y$, $x >_{\mathcal{E}} y$ はそれぞれ $y \leq_{\mathcal{E}} x$, $y <_{\mathcal{E}} x$ と同義とする.

補題 n を 1 以上の整数とする. n 次元実線型空間 V が互いに交わらない 3 つの部分 P, N, W に分割され,これらは次の 3 条件を満たすとする.

- (i) -P = N である.
- (ii) P, N はともに和および真に正な実数によるスカラー倍に関して閉じている.
- (iii) W は V の真部分線型空間である.

このとき,W を含む n-1 次元部分線型空間 $H\subseteq V$ が存在し,H が定める 2 つの閉半空間のうち,一方は P を,他方は N を含む.

証明 n に関する帰納法で示す。n=1 の場合は明らかである。 $n\geq 2$ とする。 $V=\mathbb{R}^n$ とし, \mathbb{R}^n の標準基底を (e_0,\ldots,e_{n-1}) と書くとき, $W\subseteq \operatorname{span}\{e_1,\ldots,e_n\},\ e_0\in P$ および $-e_0\in N$ が成り立つとしても一般

性を失わない. $\mathbb{R}^{n-1} = \text{span}\{e_1, \dots, e_{n-1}\}$ とみなし,

$$W' = \{x \in \mathbb{R}^{n-1} \mid x + \mathbb{R}e_0 \text{ it } P, N \text{ の両方と交わる}\}$$

と置く. W' は W を含む \mathbb{R}^{n-1} の部分線型空間である.

まず、 $W'=\mathbb{R}^{n-1}$ の場合を考える。各 $x\in\mathbb{R}^{n-1}$ に対して、次の条件を満たすような $f(x)\in\mathbb{R}$ が一意に存在することに注意する: $\lambda>f(x)$ に対しては $x+\lambda e_0\in P$ であり、 $\lambda< f(x)$ に対しては $x+\lambda e_0\in N$ である。これによって $f\colon\mathbb{R}^{n-1}\to\mathbb{R}$ を定めると、f は W 上では値 0 をとる線型写像である。よって、f のグラフを $H\subseteq\mathbb{R}\times\mathbb{R}^{n-1}=\mathbb{R}^n$ とすれば、H は条件を満たす。

次に、W' が \mathbb{R}^{n-1} の真部分線型空間である場合を考える.

$$P' = \{ x \in \mathbb{R}^{n-1} \mid x + \mathbb{R}e_0 \subseteq P \},\$$

$$N' = \{ x \in \mathbb{R}^{n-1} \mid x + \mathbb{R}e_0 \subseteq N \}$$

と置くと, \mathbb{R}^{n-1} は互いに交わらない 3 つの部分 P', N', W' に分割され,これらは 3 条件 (i), (ii), (iii) (において P, N, W をそれぞれ P', N', W' に置き換えたもの)を満たす.したがって,帰納法の仮定より,W' を含む n-2 次元部分線型空間 $H'\subseteq V'$ を,H' が定める 2 つの閉半空間のうち,一方は P' を,他方は N' を含むようにとれる. $H=H'+\mathbb{R}e_0$ と置けば,H は条件を満たす.

定理 V を n(有限)次元実内積空間とし,その内積を (-,-) と書く.V の実線型構造と整合する全順序 \le に対して,V の正規直交基底 $\mathcal{E}=(e_0,\ldots,e_{n-1})$ が一意に存在して, \le は \mathcal{E} に関する辞書式順序 $\le_{\mathcal{E}}$ に一致する.

証明 条件を満たす正規直交基底の存在を,n に関する帰納法で示す。n=0 の場合は明らかである。 $n\geq 1$ とし, $\leq v$ の実線型構造と整合する全順序とする。 $P=\{x\in V\mid x>0\},\ N=\{x\in V\mid x<0\},\ W=\{0\}$ と置くと補題が適用でき,n-1 次元部分線型空間 $H\subseteq V$ を,H が定める 2 つの閉半空間のうち,一方は P を,他方は N を含むようにとれる。H に直交する単位ベクトルのうち P に含まれるものをとって e_0 とする。すると,H のとり方から, $x\in \mathbb{R}^n$ に対して, $(x,e_0)>0$ ならば $x\in P$ であり, $(x,e_0)<0$ ならば $x\in N$ である。さて, $\mathbb{R}e_0$ の直交補空間を V' とし, $\leq v$ を制限して得られる V' 上の順序を $\leq v'$ とすると, $\leq v'$ は n-1 次元内積空間 V' の実線型構造と整合する全順序である。したがって,帰納法の仮定より,V' の正規直交基底 (e_1,\ldots,e_{n-1}) が存在して, $\leq v'$ は基底 (e_1,\ldots,e_{n-1}) に関する辞書式順序に一致する。これで,条件を満たす正規直交基底の存在が示された。

異なる正規直交基底が異なる辞書式順序を定めることを、n に関する帰納法で示す。n=0 の場合は明らかである。 $n\geq 1$ とし、 $\mathcal{E}=(e_0,\dots,e_{n-1})$ と $\mathcal{F}=(f_0,\dots,f_{n-1})$ を V の異なる正規直交基底とする。まず、 $e_0=f_0$ のとき、 $\mathbb{R}e_0=\mathbb{R}f_0$ の直交補空間を V' とすると、 $\mathcal{E}'=(e_1,\dots,e_{n-1})$ と $\mathcal{F}'=(f_1,\dots,f_{n-1})$ は V' の異なる正規直交基底だから、帰納法の仮定より、V' 上の順序 $\leq_{\mathcal{E}'}$ と $\leq_{\mathcal{F}'}$ は異なる。 $\leq_{\mathcal{E}'}$ 、 $\leq_{\mathcal{F}'}$ は それぞれ $\leq_{\mathcal{E}}$ を制限して得られるから、 $\leq_{\mathcal{E}}$ と $\leq_{\mathcal{F}}$ も異なる。次に、 $e_0=-f_0$ のとき、 $e_0>_{\mathcal{E}}0$ かつ $-f_0<_{\mathcal{F}}0$ だから、 $\leq_{\mathcal{E}}$ と $\leq_{\mathcal{F}}$ は異なる。最後に、 $e_0\neq\pm f_0$ のとき、 e_0 と e_0 と e_0 と e_0 かつ から、 e_0 0 かつ e_0 1 のから、 e_0 2 を e_0 3 を e_0 4 がとれる。 e_0 5 に対して e_0 5 のかつ e_0 6 が、内積の連続性より、 e_0 7 を e_0 8 を e_0 9 を e_0