

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО"

Факультет прикладної математики Кафедра програмного забезпечення комп'ютерних систем

Лабораторна робота № 1

з дисципліни "Чисельні методи" тема "Нелінійні рівняння з одним невідомим"

Виконав(ла)	Перевірив
студент(ка) III курсу	 " 20 p.
групи КП-83	Онай М. В.
Матіюк Дарина Андріївна	
варіант №12	

Мета роботи: опанувати методи наближеного розв'язання нелінійних рівнянь.

Постановка завдання:

- 1. Розробити програму на мові програмування С# у середовищі розробки Visual Studio 2013 (або вище), яка буде працювати у віконному режимі та реалізовувати метод Лобачевського розв'язання алгебраїчних рівнянь і дозволяти уточнювати (точність та проміжок локалізації задаються користувачем з клавіатури) корені будь-яких нелінійних рівнянь методами, що задані за варіантом (табл. 1.1, табл. 1.4). Розроблена програма повинна виводити на екран всі проміжні результати.
- 2. За допомогою розробленої програми з п.1 розв'язати задані за варіантом рівняння (табл. 1.1, табл. 1.2) на заданому проміжку з точністю $\varepsilon < 10^{-7}$.
- 3. При виконанні завдання з п.2 необхідно побудувати графіки залежності наближеного значення кореня рівняння від кількості ітерацій починаючи з початкового наближення. Якщо рівняння має більше двох коренів, то побудувати графіки для двох будь-яких коренів.
- 4. Знайти верхню та нижню границю додатних і від'ємних коренів заданого за варіантом алгебраїчного рівняння (табл. 1.3).
- 5. За допомогою розробленої програми з п.1, знайти корені, заданого за варіантом алгебраїчного рівняння (табл. 1.3), методом Лобачевського та уточнити отримані корені будь-яким методом розв'язання нелінійних рівнянь.
- 6. Задані за варіантом, рівняння розв'язати у MatLab 7.0 (або вище) або у MathCAD 15.0 (або вище), або у Mathematica 7.0 (або вище). Задане за варіантом, алгебраїчного рівняння необхідно розв'язати, як мінімум двома функціями наявними у відповідному математичному пакеті. Наприклад, в математичному пакеті MatLab 7.0 наявна функція solve для розв'язання будь-якого нелінійного рівняння та функція roots для розв'язання алгебраїчного рівняння.

Варіант - 8.

Рівняння 1:

43	$\sqrt{5-x}\cdot\sin x + x\cos(\pi-x) = 0$	[-15.0; 5.0)
----	--	--------------

Метод хорд.

Рівняння 2:

47	$x \cdot \cos(\cosh(x-\pi)) + 0.3x = 0$	[-1.0; 5.0]
----	---	-------------

Метод Стефенсена та метод простих ітерацій.

Рівняння 3:

$$-55x^7 + 119x^6 + 280x^5 - 634x^4 - 209x^3 + 514x^2 + 131x + 3 = 0$$
 Метод Лобачевського.

Математичне підгрунття та основні етапи процесу локалізації коренів

У даному пункті наведене математине підгрунття для виконання лабораторної роботи, формули, що були використані під час розробки програми, а також основні етапи процесу локалізації коренів рівняння.

1. Проміжки локалізації:

Спочатку перевіряємо введений користувачем проміжок локалізації [a; b]. А саме:

- f(a) * f(b) < 0 на заданому проміжку функція обертається в нуль
- f'(x) є монотонною на проміжку [a; b].

При виконаннї обох умов можемо бути впевненими, що функція на заданому проміжку має тільки 1 корінь.

2. Метод хорд:

Вибір нерухомої точки	Якщо $f(a) * f''(a) > 0$ - рухаємо b , інакше - a
Основна ітераційна формула	$c = a - \frac{f(a)(b-a)}{f(b) - f(a)}$
Критерій зупинки	$ a-b <\varepsilon$

3. Метод Ньютона:

Вибір x_0	Якщо $f(a) * f''(a) > 0$ - $x_0 = a$, інакше - $x_0 = b$
Основна ітераційна формула	$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$
Критерій зупинки	$ a-b <\varepsilon$

4. Метод Стефенсена:

The second of th		
Умова запуску метода	$ f(x_k) $ ϵ достатньо мала - $ f(x_k) < 5 * \epsilon$	
Основна ітераційна формула	$x_{k+1} = x_k - \frac{(f(x_k))^2}{f(x_k + f(x_k)) - f(x_k)}$	
Критерій зупинки	$ a-b <\varepsilon$	

5. Метод простих ітерацій:

Обчислення λ та q	Якщо похідна функції монотонна можемо обчислити значення: $\alpha = \min\{f'(a); f'(b)\};$ $\gamma = \max\{f'(a); f'(b)\};$ $\lambda = \frac{2}{\alpha + \gamma};$ $q = \frac{\gamma - \alpha}{\gamma + \alpha}.$
Вибір x_0	За x_0 приймається будь-який з кінців проміжку, оберемо ліву межу - b
Основна ітераційна формула	$x_{k+1} = x_k - \lambda * f(x_k)$
Критерій зупинки	$ x_k - x_{k+1} \le \frac{1-q}{q} * \varepsilon$

6. Метод Лобачевського:

0. Метоо Лооичевського:		
Квадрування коефіцієнтів поліному	$b_k = a_k^2 + 2 * \sum_{j=1}^{n-k} (-1)^j a_{k-j} a_{k+j}, \ k = 0n$	
Після кожного квадрування рівняння ділиться на 50 для того, щоб отримані коефіцієнти не виходили за межі цифрового формату double.		
Критерій зупинки	$a_k^2 - b_k > \varepsilon$	
Знаходження наближених значень коренів за наслідком з т.Вієта	$ x_k = \sqrt[2^p]{\frac{b_{n+k-2}}{b_{n+k-1}}}$	
Уточнення знаку кореня Якщо $ f(x_k) < f(-x_k) $ - корінь додатний, інакше - від'ємний.		
Уточнення коренів на проміжку $[x-0.1; x+0.1]$ за допомогою метода простих ітерацій.		

Локалізація коренів рівнянь, що розв'язуються

Основні етапи локалізації:

- 1. Розділяємо рівняння на дві частини і будуємо графік для кожної з частин.
- 2. У точках, де графіки перетинаються маємо корінь.
- 3. Обираємо кінці проміжка локалізації. Обов'язково функція має бути монотонною на обраному проміжку.

Puc. 1 ma 2. Локалізація коренів для рівняння 1 - м.хорд (відповідно проміжки *[3.5; 4.8]* та *[-5; -3]*).

Puc. 3 ma 4. Локалізація коренів для рівняння 2 - м.Стефенсена (відповідно проміжки [4; 4.5] та [0.8; 1.2]).

Рис. 5. Локалізація коренів для рівняння 2 - МПІ (відповідно проміжки [1.5; 1.95]). Локалізування першого кореня наведено вище - puc.3.

Значення коренів заданих за варіантом рівнянь та побудова графіків залежності наближеного значення кореня рівняння від кількості ітерацій починаючи з початкового наближення

Рівняння 1:

43	$\sqrt{5-x}\cdot\sin x + x\cos(\pi-x) = 0$	[-15.0; 5.0)
----	--	--------------

Метод	C#	WolframAlpha
Vand	4,569842333564864	4,56984232186295
хорд	-4,075878540674942	-4,07587854320397

Рис. 1. Залежність наближеного значення кореня рівняння від кількості ітерацій (метод хорд, заданий проміжок - [3.5; 4.8]).

Рис. 2. Залежність наближеного значення кореня рівняння від кількості ітерацій (метод хорд, заданий проміжок - [-5; -3]).

Рівняння 2:

47	$x \cdot \cos(\cosh(x-\pi)) + 0.3x = 0$	[-1.0; 5.0]
----	---	-------------

Метод	C#	WolframAlpha
Стафанаана	4,383479317424577	4,383479
Стефенсена	0,9782171982409649	0,978217

Рис. 3. Залежність наближеного значення кореня рівняння від кількості ітерацій (метод Стефенсена, заданий проміжок - [4; 4.5]).

Рис. 4. Залежність наближеного значення кореня рівняння від кількості ітерацій (метод Стефенсена, заданий проміжок - [0.8; 1.2]).

Метод	C#	WolframAlpha
простих ітерацій	4,383479209170048	4,383479
	1,8997059763050754	1,899706

Рис. 5. Залежність наближеного значення кореня рівняння від кількості ітерацій (метод простих ітерацій, заданий проміжок - [4; 4.5]).

Рис. 6. Залежність наближеного значення кореня рівняння від кількості ітерацій (метод простих ітерацій, заданий проміжок - [1.5; 1.95]).

Процес знаходження верхньої та нижньої границі додатних і від'ємних воренів алгебраїчного рівняння

$$-55x^7 + 119x^6 + 280x^5 - 634x^4 - 209x^3 + 514x^2 + 131x + 3 = 0$$

$$A = \max\{|a_{n-1}|, |a_{n-2}|, ..., |a_1|, |a_0|\} = 634$$

$$B = \max\{|a_n|, |a_{n-1}|, ..., |a_2|, |a_1|\} = 634$$

Знайдемо R та r за формулами:

$$R = 1 + \frac{A}{|a_7|} = 1 + \frac{634}{-55} = -10,527$$

$$r = \frac{1}{1 + \frac{B}{|a_0|}} = \frac{1}{1 + \frac{634}{3}} = 0,0047$$

Отже, маємо $x \in (-10, 527; -0, 0047) \cup (0, 0047; 10, 527).$

Значення коренів заданого алгебраїчного рівняння

Рівняння 3:

$$-55x^7 + 119x^6 + 280x^5 - 634x^4 - 209x^3 + 514x^2 + 131x + 3 = 0$$

Метод	C#	WolframAlpha
Лобачевського	2,12165306730377	-2,08219
	-0,8479086338720461	-0,847909
	-0,2234133931698197	-0,223413
	-0,0254705368697803	-0,0254705
	1,424251873362556	1.42425
	1,7959801499744903	1,79672
	2,121652799574613	2,12165

В силу недостатньої точності методу Лобачевського, нам не вдається коректно визначити знаки першого і останнього кореня, за рахунок цього обидва знак коренів може бути визначений некоректно.

Висновки

У ході виконання лабораторної роботи було запрограмовано деякі методи наближеного розв'язання нелінійних рівнянь, а саме такі методи:

- хорд
- Ньютона
- Стефенсена
- простих ітерацій
- Лобачевського

Було створено консольний додаток на С#. Для обчислення заданих варіантом рівнянь, потрібно обрати певні методи, ввести точність та початок і кінець проміжка локалізації кореня. Після обрахунків у консоль виводяться проміжні результати та остаточна відповідь - певний корінь/корені рівняння.

Останнім кроком виконання роботи було порівняння отриманих результатів власного додатка із результатами математичного пакета WolframAlpha. Після чого можемо бути впевненими у коректній роботі консольного додатка.