Pointed Sets

The Clowder Project Authors

May 3, 2024

0098 This chapter contains some foundational material on pointed sets.

Contents

1	Poir	nted Sets	2
	1.1	Foundations	2
	1.2	Morphisms of Pointed Sets	3
	1.3	The Category of Pointed Sets	3
	1.4	Elementary Properties of Pointed Sets	4
2	Lim	its of Pointed Sets	7
	2.1	The Terminal Pointed Set	7
	2.2	Products of Families of Pointed Sets	8
	2.3	Products	9
	2.4	Pullbacks	12
	2.5	Equalisers	16
3	Coli	mits of Pointed Sets	19
	3.1	The Initial Pointed Set	19
	3.2	Coproducts of Families of Pointed Sets	19
	3.3	Coproducts	21
	3.4	Pushouts	25
	3.5	Coequalisers	30
4	Con	structions With Pointed Sets	32
	4 1	Free Pointed Sets	32

	A Other Chapters	38
0099	1 Pointed Sets	
009A	1.1 Foundations	
009B	Definition 1.1.1.1. A pointed set ¹ is equivalently:	
	· An \mathbb{E}_0 -monoid in (N $_{ullet}$ (Sets), pt).	
	· A pointed object in (Sets, pt).	
009C	Remark 1.1.1.2. In detail, a pointed set is a pair (X, x_0) consisting of:	

- - · The Underlying Set. A set X, called the **underlying set of** (X, x_0) .
 - · The Basepoint. A morphism

$$[x_0]: \mathsf{pt} \to X$$

in Sets, determining an element $x_0 \in X$, called the **basepoint of** X.

- **Example 1.1.1.3.** The 0-sphere² is the pointed set $(S^0, 0)^3$ consisting of:
 - \cdot The Underlying Set. The set S^0 defined by

$$S^0 \stackrel{\text{def}}{=} \{0, 1\}.$$

- The Basepoint. The element 0 of S^0 .
- **Example 1.1.1.4.** The **trivial pointed set** is the pointed set (pt, \star) consisting of:
 - The Underlying Set. The punctual set pt $\stackrel{\text{def}}{=} \{ \star \}$.
 - · The Basepoint. The element ★ of pt.
- **Example 1.1.1.5.** The **underlying pointed set** of a semimodule (M, α_M) is the pointed set $(M, 0_M)$.
- **Example 1.1.1.6.** The **underlying pointed set** of a module (M, α_M) is the pointed $set(M, 0_M).$

 $^{^1}$ Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, pointed sets are viewed as \mathbb{F}_1 -modules.

²Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, the 0sphere is viewed as the underlying pointed set of the field with one element.

³Further Notation: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, S^0 is also

009H 1.2 Morphisms of Pointed Sets

Definition 1.2.1.1. A morphism of pointed sets^{4,5} is equivalently:

- · A morphism of \mathbb{E}_0 -monoids in $(N_{\bullet}(Sets), pt)$.
- · A morphism of pointed objects in (Sets, pt).

Remark 1.2.1.2. In detail, a morphism of pointed sets $f:(X,x_0)\to (Y,y_0)$ is a morphism of sets $f:X\to Y$ such that the diagram

$$\begin{array}{c|c}
pt \\
[x_0] & [y_0] \\
X & \xrightarrow{f} Y
\end{array}$$

commutes, i.e. such that

$$f(x_0) = y_0.$$

009L 1.3 The Category of Pointed Sets

- **Definition 1.3.1.1.** The **category of pointed sets** is the category Sets* defined equivalently as
 - · The homotopy category of the ∞ -category $\mathsf{Mon}_{\mathbb{E}_0}(\mathsf{N}_{\bullet}(\mathsf{Sets}),\mathsf{pt})$ of $\ref{eq:sets}$, $\ref{eq:sets}$;
 - · The category Sets* of ??, ??.
- 009N Remark 1.3.1.2. In detail, the category of pointed sets is the category $Sets_*$ where
 - · Objects. The objects of Sets* are pointed sets;
 - · Morphisms. The morphisms of Sets* are morphisms of pointed sets;
 - · *Identities.* For each $(X, x_0) \in Obj(Sets_*)$, the unit map

$$\mathbb{1}^{\mathsf{Sets}_*}_{(X,x_0)} \colon \mathsf{pt} \to \mathsf{Sets}_*((X,x_0),(X,x_0))$$

denoted (\mathbb{F}_1 , 0).

⁴Further Terminology: Also called a **pointed function**.

⁵ Further Terminology: In the context of monoids with zero as models for \mathbb{F}_1 -algebras, mor-

of Sets_{*} at (X, x_0) is defined by⁶

$$id_{(X,x_0)}^{\mathsf{Sets}_*} \stackrel{\mathsf{def}}{=} id_X;$$

Composition. For each $(X,x_0),(Y,y_0),(Z,z_0)\in {\sf Obj}({\sf Sets}_*)$, the composition map

$$\circ_{\left(X,x_{0}\right),\left(Y,y_{0}\right),\left(Z,z_{0}\right)}^{\mathsf{Sets}_{*}} : \mathsf{Sets}_{*}((Y,y_{0}),(Z,z_{0})) \times \mathsf{Sets}_{*}((X,x_{0}),(Y,y_{0})) \to \mathsf{Sets}_{*}((X,x_{0}),(Z,z_{0}))$$

of Sets_{*} at $((X, x_0), (Y, y_0), (Z, z_0))$ is defined by⁷

$$g \circ_{(X,x_0),(Y,y_0),(Z,z_0)}^{\mathsf{Sets}_*} f \stackrel{\mathsf{def}}{=} g \circ f.$$

009P 1.4 Elementary Properties of Pointed Sets

OUP Proposition 1.4.1.1. Let (X, x_0) be a pointed set.

1. Completeness. The category Sets* of pointed sets and morphisms between them is complete, having in particular:

009S (a) Products, described as in Definition 2.3.1.1;

009T (b) Pullbacks, described as in Definition 2.4.1.1;

009U (c) Equalisers, described as in Definition 2.5.1.1.

2. Cocompleteness. The category Sets* of pointed sets and morphisms between them is cocomplete, having in particular:

phisms of pointed sets are also called **morphism of** \mathbb{F}_1 **-modules**.

⁶Note that id_X is indeed a morphism of pointed sets, as we have id_X(x_0) = x_0 .

 7 Note that the composition of two morphisms of pointed sets is indeed a morphism of pointed sets, as we have

$$g(f(x_0)) = g(y_0)$$
$$= z_0,$$

or

in terms of diagrams.

009W (a) Coproducts, described as in Definition 3.3.1.1;

009X (b) Pushouts, described as in Definition 3.4.1.1;

009Y (c) Coequalisers, described as in Definition 3.5.1.1.

009Z 3. Failure To Be Cartesian Closed. The category Sets_{*} is not Cartesian closed.⁸

00A0 4. Morphisms From the Monoidal Unit. We have a bijection of sets9

$$\mathsf{Sets}_* \Big(S^0, X \Big) \cong X,$$

natural in $(X, x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$, internalising also to an isomorphism of pointed sets

$$\mathbf{Sets}_* \Big(S^0, X \Big) \cong (X, x_0),$$

again natural in $(X, x_0) \in Obj(Sets_*)$.

00A1 5. Relation to Partial Functions. We have an equivalence of categories 10

$$Sets_* \stackrel{eq.}{\cong} Sets^{part.}$$

between the category of pointed sets and pointed functions between them and the category of sets and partial functions between them, where:

(a) From Pointed Sets to Sets With Partial Functions. The equivalence

$$\xi : \mathsf{Sets}_* \xrightarrow{\cong} \mathsf{Sets}^{\mathsf{part}}$$
.

sends:

i. A pointed set (X, x_0) to X.

defined on objects by sending a pointed set to its underlying set is corepresentable by S^0 .

⁸The category Sets* does admit monoidal closed structures however; see Tensor Products of Pointed Sets.

⁹In other words, the forgetful functor

¹⁰ Warning: This is not an isomorphism of categories, only an equivalence.

ii. A pointed function

$$f: (X, x_0) \rightarrow (Y, y_0)$$

to the partial function

$$\xi_f \colon X \to Y$$

defined on $f^{-1}(Y \setminus y_0)$ and given by

$$\xi_f(x) \stackrel{\text{def}}{=} f(x)$$

for each $x \in f^{-1}(Y \setminus y_0)$.

(b) From Sets With Partial Functions to Pointed Sets. The equivalence

$$\xi^{-1} \colon \mathsf{Sets}^{\mathsf{part.}} \xrightarrow{\cong} \mathsf{Sets}_*$$

sends:

- i. A set X is to the pointed set (X, \star) with \star an element that is not in X.
- ii. A partial function

$$f: X \to Y$$

defined on $U \subset X$ to the pointed function

$$\xi_f^{-1} \colon (X, x_0) \to (Y, y_0)$$

defined by

$$\xi_f(x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in U, \\ y_0 & \text{otherwise.} \end{cases}$$

for each $x \in X$.

Proof. Item 1, Completeness: This follows from (the proofs) of Definitions 2.3.1.1, 2.4.1.1 and 2.5.1.1 and ??, ??.

Item 2, Cocompleteness: This follows from (the proofs) of Definitions 3.3.1.1, 3.4.1.1 and 3.5.1.1 and ??, ??.

Item 3, Failure To Be Cartesian Closed: See [MSE 2855868].

Item 4, Morphisms From the Monoidal Unit: Since a morphism from S^0 to a pointed set (X,x_0) sends $0\in S^0$ to x_0 and then can send $1\in S^0$ to any element of X, we obtain a bijection between pointed maps $S^0\to X$ and the elements of X. The isomorphism then

$$\mathsf{Sets}_* \Big(S^0, X \Big) \cong (X, x_0)$$

follows by noting that $\Delta_{x_0}\colon S^0\to X$, the basepoint of $\mathbf{Sets}_*(S^0,X)$, corresponds to the pointed map $S^0\to X$ picking the element x_0 of X, and thus we see that the bijection between pointed maps $S^0\to X$ and elements of X is compatible with basepoints, lifting to an isomorphism of pointed sets.

Item 5, Relation to Partial Functions: See [MSE 884460].

2 Limits of Pointed Sets

00A3 2.1 The Terminal Pointed Set

- **Definition 2.1.1.1.** The **terminal pointed set** is the pair $(pt, \star), \{!_X\}_{(X,x_0) \in Obj(Sets_*)}$ consisting of:
 - · The Limit. The pointed set (pt, \star) .
 - · The Cone. The collection of morphisms of pointed sets

$$\{!_X \colon (X, x_0) \to (\mathsf{pt}, \star)\}_{(X, x_0) \in \mathsf{Obj}(\mathsf{Sets})}$$

defined by

$$!_X(x) \stackrel{\text{def}}{=} \star$$

for each $x \in X$ and each $(X, x_0) \in Obj(Sets)$.

Proof. We claim that (pt, \star) is the terminal object of Sets_{*}. Indeed, suppose we have a diagram of the form

$$(X, x_0)$$
 (pt, \star)

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (X, x_0) \to (\mathsf{pt}, \star)$$

making the diagram

$$(X, x_0) \xrightarrow{-\frac{\phi}{\exists !}} (\mathsf{pt}, \star)$$

commute, namely $!_X$.

00A5 2.2 Products of Families of Pointed Sets

Let $\left\{\left(X_{i},x_{0}^{i}\right)\right\}_{i\in I}$ be a family of pointed sets.

- **Definition 2.2.1.1.** The **product of** $\{(X_i, x_0^i)\}_{i \in I}$ is the pair $(\prod_{i \in I} X_i, (x_0^i)_{i \in I}), \{\operatorname{pr}_i\}_{i \in I})$ consisting of:
 - · The Limit. The pointed set $\left(\prod_{i\in I}X_i,\left(x_0^i\right)_{i\in I}\right)$.
 - · The Cone. The collection

$$\left\{ \operatorname{pr}_i : \left(\prod_{i \in I} X_i, \left(x_0^i \right)_{i \in I} \right) \to \left(X_i, x_0^i \right) \right\}_{i \in I}$$

of maps given by

$$\operatorname{pr}_i\Big(\big(x_j\big)_{j\in I}\Big)\stackrel{\text{def}}{=} x_i$$

for each $(x_j)_{i \in I} \in \prod_{i \in I} X_i$ and each $i \in I$.

Proof. We claim that $\left(\prod_{i\in I}X_i,\left(x_0^i\right)_{i\in I}\right)$ is the categorical product of $\left\{\left(X_i,x_0^i\right)\right\}_{i\in I}$ in Sets_{*}. Indeed, suppose we have, for each $i\in I$, a diagram of the form

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi: (P, *) \to \left(\prod_{i \in I} X_i, \left(x_0^i\right)_{i \in I}\right)$$

making the diagram

$$(P, *)$$

$$\downarrow^{\downarrow}_{\downarrow} \exists !$$

$$\left(\prod_{i \in I} X_i, (x_0^i)_{i \in I}\right) \xrightarrow{\mathsf{pr}_i} (X_i, x_0^i)$$

2.3 Products 9

commute, being uniquely determined by the condition $\operatorname{pr}_i \circ \phi = p_i$ for each $i \in I$ via

$$\phi(x) = (p_i(x))_{i \in I}$$

for each $x \in P$. Note that this is indeed a morphism of pointed sets, as we have

$$\phi(*) = (p_i(*))_{i \in I}$$
$$= (x_0^i)_{i \in I},$$

where we have used that p_i is a morphism of pointed sets for each $i \in I$.

- **Proposition 2.2.1.2.** Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.
- 00A8 1. Functoriality. The assignment $\left\{\left(X_i,x_0^i\right)\right\}_{i\in I}\mapsto \left(\prod_{i\in I}X_i,\left(x_0^i\right)_{i\in I}\right)$ defines a functor

$$\prod_{i \in I} : \mathsf{Fun}(I_{\mathsf{disc}}, \mathsf{Sets}_*) \to \mathsf{Sets}_*.$$

Proof. Item 1, *Functoriality*: This follows from ??, ?? of ??.

00A9 2.3 Products

Let (X, x_0) and (Y, y_0) be pointed sets.

- **Definition 2.3.1.1.** The **product of** (X, x_0) **and** (Y, y_0) is the pair consisting of:
 - · The Limit. The pointed set $(X \times Y, (x_0, y_0))$.
 - · The Cone. The morphisms of pointed sets

$$\operatorname{pr}_1 \colon (X \times Y, (x_0, y_0)) \to (X, x_0),$$

 $\operatorname{pr}_2 \colon (X \times Y, (x_0, y_0)) \to (Y, y_0)$

defined by

$$\operatorname{pr}_{1}(x, y) \stackrel{\text{def}}{=} x,$$

 $\operatorname{pr}_{2}(x, y) \stackrel{\text{def}}{=} y$

for each $(x, y) \in X \times Y$.

2.3 Products 10

Proof. We claim that $(X \times Y, (x_0, y_0))$ is the categorical product of (X, x_0) and (Y, y_0) in Sets_{*}. Indeed, suppose we have a diagram of the form

$$(X,x_0) \xleftarrow[\mathsf{pr}_1]{(P,*)} \xrightarrow[\mathsf{pr}_2]{p_2} (Y,y_0)$$

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (P, *) \to (X \times Y, (x_0, y_0))$$

making the diagram

$$(X, x_0) \xleftarrow{p_1} (X \times Y, (x_0, y_0)) \xrightarrow{p_2} (Y, y_0)$$

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1,$$

 $\operatorname{pr}_2 \circ \phi = p_2$

via

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$. Note that this is indeed a morphism of pointed sets, as we have

$$\phi(*) = (p_1(*), p_2(*))$$

= $(x_0, y_0),$

where we have used that p_1 and p_2 are morphisms of pointed sets.

Proposition 2.3.1.2. Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets.

00AC 1. Functoriality. The assignments

$$(X, x_0), (Y, y_0), ((X, x_0), (Y, y_0)) \mapsto (X \times Y, (x_0, y_0))$$

2.3 Products 11

define functors

$$X \times -: \mathsf{Sets}_* \to \mathsf{Sets}_*,$$
 $- \times Y : \mathsf{Sets}_* \to \mathsf{Sets}_*,$
 $-_1 \times -_2 : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*,$

defined in the same way as the functors of Constructions With Sets, Item 1 of Proposition 1.3.1.2.

2. Associativity. We have an isomorphism of pointed sets

$$((X \times Y) \times Z, ((x_0, y_0), z_0)) \cong (X \times (Y \times Z), (x_0, (y_0, z_0)))$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \mathsf{Obj}(\mathsf{Sets}_*).$

OOAE 3. Unitality. We have isomorphisms of pointed sets

$$(\mathsf{pt}, \star) \times (X, x_0) \cong (X, x_0),$$

 $(X, x_0) \times (\mathsf{pt}, \star) \cong (X, x_0),$

natural in $(X, x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$.

OOAF 4. Commutativity. We have an isomorphism of pointed sets

$$(X \times Y, (x_0, y_0)) \cong (Y \times X, (y_0, x_0)),$$

natural in (X, x_0) , $(Y, y_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$.

00AG 5. Symmetric Monoidality. The triple (Sets_{*}, \times , (pt, \star)) is a symmetric monoidal category.

Proof. Item **1**, *Functoriality*: This is a special case of functoriality of limits, **??**, **??** of **??**.

Item 2, *Associativity*: This follows from Constructions With Sets, Item 3 of Proposition 1.3.1.2.

Item 3, *Unitality*: This follows from Constructions With Sets, Item 4 of Proposition 1.3.1.2.

Item 4, Commutativity: This follows from Constructions With Sets, Item 5 of Proposition 1.3.1.2.

Item 5, *Symmetric Monoidality*: This follows from Constructions With Sets, Item 12 of Proposition 1.3.1.2. □

2.4 Pullbacks 12

00AH 2.4 Pullbacks

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (X, x_0) \to (Z, z_0)$ and $g: (Y, y_0) \to (Z, z_0)$ be morphisms of pointed sets.

OOAJ **Definition 2.4.1.1.** The **pullback of** (X, x_0) **and** (Y, y_0) **over** (Z, z_0) **along** (f, g) is the pair consisting of:

- · The Limit. The pointed set $(X \times_Z Y, (x_0, y_0))$.
- · The Cone. The morphisms of pointed sets

$$\operatorname{pr}_1 \colon (X \times_Z Y, (x_0, y_0)) \to (X, x_0),$$

 $\operatorname{pr}_2 \colon (X \times_Z Y, (x_0, y_0)) \to (Y, y_0)$

defined by

$$\operatorname{pr}_{1}(x, y) \stackrel{\text{def}}{=} x,$$

 $\operatorname{pr}_{2}(x, y) \stackrel{\text{def}}{=} y$

for each $(x, y) \in X \times_Z Y$.

Proof. We claim that $X \times_Z Y$ is the categorical pullback of (X, x_0) and (Y, y_0) over (Z, z_0) with respect to (f, g) in Sets $_*$. First we need to check that the relevant pullback diagram commutes, i.e. that we have

$$\begin{split} f \circ \operatorname{pr}_1 &= g \circ \operatorname{pr}_2, & \xrightarrow{\operatorname{pr}_1} & (Y, y_0) \xrightarrow{\operatorname{pr}_2} & (Y, y_0) \\ & \downarrow g \\ & (X, x_0) \xrightarrow{f} & (Z, z_0). \end{split}$$

Indeed, given $(x, y) \in X \times_Z Y$, we have

$$[f \circ \operatorname{pr}_1](x, y) = f(\operatorname{pr}_1(x, y))$$

$$= f(x)$$

$$= g(y)$$

$$= g(\operatorname{pr}_2(x, y))$$

$$= [g \circ \operatorname{pr}_2](x, y),$$

2.4 Pullbacks 13

where f(x) = g(y) since $(x, y) \in X \times_Z Y$. Next, we prove that $X \times_Z Y$ satisfies the universal property of the pullback. Suppose we have a diagram of the form

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi: (P, *) \rightarrow (X \times_Z Y, (x_0, y_0))$$

making the diagram

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1,$$

 $\operatorname{pr}_2 \circ \phi = p_2$

via

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$, where we note that $(p_1(x), p_2(x)) \in X \times Y$ indeed lies in $X \times_Z Y$ by the condition

$$f \circ p_1 = g \circ p_2$$
,

which gives

$$f(p_1(x)) = g(p_2(x))$$

2.4 Pullbacks 14

for each $x \in P$, so that $(p_1(x), p_2(x)) \in X \times_Z Y$. Lastly, we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(*) = (p_1(*), p_2(*))$$

= $(x_0, y_0),$

where we have used that p_1 and p_2 are morphisms of pointed sets.

OOAK Proposition 2.4.1.2. Let (X, x_0) , (Y, y_0) , (Z, z_0) , and (A, a_0) be pointed sets.

00AL 1. Functoriality. The assignment $(X,Y,Z,f,g)\mapsto X\times_{f,Z,g}Y$ defines a functor

$$-_1 \times_{-_3} -_1 : \mathsf{Fun}(\mathcal{P}, \mathsf{Sets}_*) \to \mathsf{Sets}_*,$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-1 \times_{-3} -1$ is given by sending a morphism

in $Fun(\mathcal{P}, \mathsf{Sets}_*)$ to the morphism of pointed sets

$$\xi \colon (X \times_Z Y, (x_0, y_0)) \xrightarrow{\exists !} (X' \times_{Z'} Y', (x'_0, y'_0))$$

given by

$$\xi(x, y) \stackrel{\text{def}}{=} (\phi(x), \psi(y))$$

Pullbacks 15

for each $(x, y) \in X \times_Z Y$, which is the unique morphism of pointed sets making the diagram

commute.

00AM 2. Associativity. Given a diagram

in Sets*, we have isomorphisms of pointed sets

$$(X \times_W Y) \times_V Z \cong (X \times_W Y) \times_Y (Y \times_V Z) \cong X \times_W (Y \times_V Z),$$

where these pullbacks are built as in the diagrams

3. Unitality. We have isomorphisms of pointed sets 00AN

OUAP 4. Commutativity. We have an isomorphism of pointed sets

00AQ 5. Interaction With Products. We have an isomorphism of pointed sets

$$X \times_{\mathsf{pt}} Y \cong X \times Y,$$

$$X \times_{\mathsf{pt}} Y \cong X \times Y,$$

$$X \xrightarrow{!_{X}} \mathsf{pt}.$$

00AR 6. Symmetric Monoidality. The triple (Sets*, \times_X , X) is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ??, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pullback diagram.

Item 2, *Associativity*: This follows from Constructions With Sets, Item 2 of Proposition 1.4.1.3.

Item 3, Unitality: This follows from Constructions With Sets, Item 3 of Proposition 1.4.1.3.

Item 4, *Commutativity*: This follows from Constructions With Sets, Item 4 of Proposition 1.4.1.3.

Item 5, *Interaction With Products*: This follows from Constructions With Sets, Item 6 of Proposition 1.4.1.3.

Item 6, Symmetric Monoidality: This follows from Constructions With Sets, Item 7 of Proposition 1.4.1.3.

00AS 2.5 Equalisers

Let $f, g: (X, x_0) \Rightarrow (Y, y_0)$ be morphisms of pointed sets.

Definition 2.5.1.1. The **equaliser of** (f, g) is the pair consisting of:

2.5 Equalisers

- · The Limit. The pointed set $(Eq(f,g), x_0)$.
- · The Cone. The morphism of pointed sets

$$eq(f,g): (Eq(f,g),x_0) \hookrightarrow (X,x_0)$$

given by the canonical inclusion eq $(f,g) \hookrightarrow \text{Eq}(f,g) \hookrightarrow X$.

Proof. We claim that $(Eq(f,g),x_0)$ is the categorical equaliser of f and g in $Sets_*$. First we need to check that the relevant equaliser diagram commutes, i.e. that we have

$$f \circ eq(f,g) = g \circ eq(f,g),$$

which indeed holds by the definition of the set $\mathrm{Eq}(f,g)$. Next, we prove that $\mathrm{Eq}(f,g)$ satisfies the universal property of the equaliser. Suppose we have a diagram of the form

$$(\mathsf{Eq}(f,g),x_0) \xrightarrow{\mathsf{eq}(f,g)} (X,x_0) \xrightarrow{f} (Y,y_0)$$

$$(E,*)$$

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (E, *) \to (\mathsf{Eq}(f, g), x_0)$$

making the diagram

$$(\mathsf{Eq}(f,g),x_0) \xrightarrow{\mathsf{eq}(f,g)} (X,x_0) \xrightarrow{f} (Y,y_0)$$

$$\downarrow \downarrow \exists ! \qquad e$$

$$(E,*)$$

commute, being uniquely determined by the condition

$$eq(f,g) \circ \phi = e$$

via

$$\phi(x) = e(x)$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in Eq(f,g) by the condition

$$f \circ e = g \circ e$$
,

which gives

$$f(e(x)) = g(e(x))$$

for each $x \in E$, so that $e(x) \in \text{Eq}(f,g)$. Lastly, we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(*) = e(*)$$
$$= x_0,$$

where we have used that e is a morphism of pointed sets.

Proposition 2.5.1.2. Let (X, x_0) and (Y, y_0) be pointed sets and let $f, g, h \colon (X, x_0) \to (Y, y_0)$ be morphisms of pointed sets.

00AV 1. Associativity. We have isomorphisms of pointed sets

$$\underbrace{\mathsf{Eq}(f \circ \mathsf{eq}(g,h), g \circ \mathsf{eq}(g,h))}_{=\mathsf{Eq}(f \circ \mathsf{eq}(g,h), h \circ \mathsf{eq}(g,h))} \cong \mathsf{Eq}(f,g,h) \cong \underbrace{\mathsf{Eq}(f \circ \mathsf{eq}(f,g), h \circ \mathsf{eq}(f,g))}_{=\mathsf{Eq}(g \circ \mathsf{eq}(f,g), h \circ \mathsf{eq}(f,g))}$$

where Eq(f, g, h) is the limit of the diagram

$$(X, x_0) \xrightarrow{f \atop -g \Rightarrow} (Y, y_0)$$

in Sets*, being explicitly given by

$$Eq(f, g, h) \cong \{a \in A \mid f(a) = g(a) = h(a)\}.$$

OOAW 2. Unitality. We have an isomorphism of pointed sets

$$\operatorname{Eq}(f,f)\cong X.$$

OOAX 3. Commutativity. We have an isomorphism of pointed sets

$$\operatorname{Eq}(f,g) \cong \operatorname{Eq}(g,f)$$
.

Proof. Item 1, *Associativity*: This follows from Constructions With Sets, Item 1 of Proposition 1.5.1.2.

Item 2, Unitality: This follows from Constructions With Sets, Item 4 of Proposition 1.5.1.2.

Item 3, *Commutativity*: This follows from Constructions With Sets, Item 5 of Proposition 1.5.1.2.

OOAY 3 Colimits of Pointed Sets

00AZ 3.1 The Initial Pointed Set

- **Definition 3.1.1.1.** The **initial pointed set** is the pair $\left((\mathsf{pt}, \star), \{\iota_X\}_{(X,x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)}\right)$ consisting of:
 - · The Limit. The pointed set (pt, \star) .
 - · The Cone. The collection of morphisms of pointed sets

$$\{\iota_X \colon (\mathsf{pt}, \star) \to (X, x_0)\}_{(X, x_0) \in \mathsf{Obj}(\mathsf{Sets})}$$

defined by

$$\iota_X(\star) \stackrel{\text{def}}{=} x_0.$$

Proof. We claim that (pt, \star) is the initial object of Sets_{*}. Indeed, suppose we have a diagram of the form

$$(pt, \star)$$
 (X, x_0)

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (\mathsf{pt}, \star) \to (X, x_0)$$

making the diagram

$$(\mathsf{pt}, \star) \xrightarrow{-\frac{\phi}{\exists !}} (X, x_0)$$

commute, namely ι_X .

00B1 3.2 Coproducts of Families of Pointed Sets

Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.

- **Definition 3.2.1.1.** The **coproduct of the family** $\{(X_i, x_0^i)\}_{i \in I}$, also called their **wedge sum**, is the pair consisting of:
 - · *The Colimit.* The pointed set $(\bigvee_{i \in I} X_i, p_0)$ consisting of:

- The Underlying Set. The set $\bigvee_{i \in I} X_i$ defined by

$$\bigvee_{i \in I} X_i \stackrel{\text{def}}{=} \left(\coprod_{i \in I} X_i \right) / \sim,$$

where \sim is the equivalence relation on $\coprod_{i \in I} X_i$ given by declaring

$$(i, x_0^i) \sim (j, x_0^j)$$

for each $i, j \in I$.

– *The Basepoint*. The element p_0 of $\bigvee_{i \in I} X_i$ defined by

$$p_0 \stackrel{\text{def}}{=} \left[\left(i, x_0^i \right) \right]$$
$$= \left[\left(j, x_0^j \right) \right]$$

for any $i, j \in I$.

· The Cocone. The collection

$$\left\{ \operatorname{inj}_i : \left(X_i, x_0^i \right) \to \left(\bigvee_{i \in I} X_i, p_0 \right) \right\}_{i \in I}$$

of morphism of pointed sets given by

$$\operatorname{inj}_i(x) \stackrel{\text{def}}{=} (i, x)$$

for each $x \in X_i$ and each $i \in I$.

Proof. We claim that $(\bigvee_{i \in I} X_i, p_0)$ is the categorical coproduct of $\{(X_i, x_0^i)\}_{i \in I}$ in Sets_{*}. Indeed, suppose we have, for each $i \in I$, a diagram of the form

$$(X_i, x_0^i) \xrightarrow[\inf_i]{l_i} \left(\bigvee_{i \in I} X_i, p_0\right)$$

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi: \left(\bigvee_{i\in I} X_i, p_0\right) \to (C, *)$$

making the diagram

$$(C,*)$$

$$\phi \uparrow \exists !$$

$$(X_i, x_0^i) \xrightarrow{\operatorname{inj}_i} \left(\bigvee_{i \in I} X_i, p_0\right)$$

commute, being uniquely determined by the condition $\phi \circ \operatorname{inj}_i = \iota_i$ for each $i \in I$ via

$$\phi([(i,x)]) = \iota_i(x)$$

for each $[(i,x)] \in \bigvee_{i \in I} X_i$, where we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(p_0) = \iota_i \left(\left[\left(i, x_0^i \right) \right] \right)$$

$$= *,$$

as ι_i is a morphism of pointed sets.

OOB3 **Proposition 3.2.1.2.** Let $\{(X_i, x_0^i)\}_{i \in I}$ be a family of pointed sets.

00B4 1. Functoriality. The assignment $\left\{\left(X_{i},x_{0}^{i}\right)\right\}_{i\in I}\mapsto\left(\bigvee_{i\in I}X_{i},p_{0}\right)$ defines a functor $\bigvee_{i\in I}:\operatorname{Fun}(I_{\operatorname{disc}},\operatorname{Sets}_{*})\to\operatorname{Sets}_{*}.$

Proof. Item **1**, *Functoriality*: This follows from **??**, **??** of **??**.

00B5 3.3 Coproducts

Let (X, x_0) and (Y, y_0) be pointed sets.

Definition 3.3.1.1. The **coproduct of** (X, x_0) **and** (Y, y_0) , also called their **wedge sum**, is the pair consisting of:

- · *The Colimit*. The pointed set $(X \vee Y, p_0)$ consisting of:
 - The Underlying Set. The set $X \vee Y$ defined by

$$(X \lor Y, p_0) \stackrel{\text{def}}{=} (X, x_0) \coprod (Y, y_0) \qquad X \lor Y \longleftarrow Y$$

$$\cong (X \coprod_{pt} Y, p_0) \qquad \uparrow \qquad \uparrow \qquad \downarrow [y_0]$$

$$\cong (X \coprod Y/\sim, p_0), \qquad X \longleftarrow_{[x_0]} \text{pt,}$$

where \sim is the equivalence relation on $X \coprod Y$ obtained by declaring $(0, x_0) \sim (1, y_0)$.

- The Basepoint. The element p_0 of $X \vee Y$ defined by

$$p_0 \stackrel{\text{def}}{=} [(0, x_0)]$$

= $[(1, y_0)]$.

· The Cocone. The morphisms of pointed sets

$$\begin{split} & \operatorname{inj}_1 \colon (X, x_0) \to (X \vee Y, p_0), \\ & \operatorname{inj}_2 \colon (Y, y_0) \to (X \vee Y, p_0), \end{split}$$

given by

$$inj_1(x) \stackrel{\text{def}}{=} [(0, x)],
inj_2(y) \stackrel{\text{def}}{=} [(1, y)],$$

for each $x \in X$ and each $y \in Y$.

Proof. We claim that $(X \vee Y, p_0)$ is the categorical coproduct of (X, x_0) and (Y, y_0) in Sets_{*}. Indeed, suppose we have a diagram of the form

$$(X, x_0) \xrightarrow[\text{inj}_X]{(C, *)} \leftarrow (C, *)$$

$$(X, x_0) \xrightarrow[\text{inj}_X]{(X \lor Y, p_0)} \leftarrow (Y, y_0)$$

in Sets. Then there exists a unique morphism of pointed sets

$$\phi \colon (X \vee Y, p_0) \to (C, *)$$

making the diagram

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_X = \iota_X,$$
$$\phi \circ \operatorname{inj}_Y = \iota_Y$$

via

$$\phi(z) = \begin{cases} \iota_X(x) & \text{if } z = [(0, x)] \text{ with } x \in X, \\ \iota_Y(y) & \text{if } z = [(1, y)] \text{ with } y \in Y \end{cases}$$

for each $z \in X \vee Y$, where we note that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(p_0) = \iota_X([(0, x_0)])$$

= \(\ilde{\ell}_Y([(1, y_0)])\)
= *.

as ι_X and ι_Y are morphisms of pointed sets.

OOB7 Proposition 3.3.1.2. Let (X, x_0) and (Y, y_0) be pointed sets.

00B8 1. Functoriality. The assignments

$$(X, x_0), (Y, y_0), ((X, x_0), (Y, y_0)) \mapsto (X \vee Y, p_0)$$

define functors

$$X \lor -: \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

 $- \lor Y : \mathsf{Sets}_* \to \mathsf{Sets}_*,$
 $-_1 \lor -_2 : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*.$

00B9 2. Associativity. We have an isomorphism of pointed sets

$$(X \vee Y) \vee Z \cong X \vee (Y \vee Z),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in Sets_*$.

00BA 3. Unitality. We have isomorphisms of pointed sets

$$(pt,*) \lor (X,x_0) \cong (X,x_0),$$

 $(X,x_0) \lor (pt,*) \cong (X,x_0),$

natural in $(X, x_0) \in \mathsf{Sets}_*$.

00BB 4. Commutativity. We have an isomorphism of pointed sets

$$X \vee Y \cong Y \vee X$$
.

natural in (X, x_0) , $(Y, y_0) \in \mathsf{Sets}_*$.

Symmetric Monoidality. The triple (Sets_{*}, ∨, pt) is a symmetric monoidal category.

6. The Fold Map. We have a natural transformation

$$\nabla\colon \vee\circ\Delta^{\mathsf{Cats}}_{\mathsf{Sets}_*}\Longrightarrow \mathsf{id}_{\mathsf{Sets}_*}, \qquad \begin{array}{c} \mathsf{Sets}_*\times\mathsf{Sets}_*\\ & \Delta^{\mathsf{Cats}}_{\mathsf{Sets}_*} & \bigvee\\ & \nabla\\ \mathsf{Sets}_* & \bigvee\\ & \mathsf{Sets}_* & \mathsf{Sets}_*, \end{array}$$

called the **fold map**, whose component

$$\nabla_X \colon X \vee X \to X$$

at X is given by

$$\nabla_X(p) \stackrel{\text{def}}{=} \begin{cases} x & \text{if } p = [(0, x)], \\ x & \text{if } p = [(1, x)] \end{cases}$$

for each $p \in X \vee X$.

Proof. Item 1, *Functoriality*: This follows from ??, ?? of ??.

Item 2, Associativity: Clear.

Item 3, Unitality: Clear.

Item 4, Commutativity: Clear.

Item 5, Symmetric Monoidality: Omitted.

Item 6, *The Fold Map*: Naturality for the transformation ∇ is the statement that, given a morphism of pointed sets $f:(X,x_0)\to (Y,y_0)$, we have

$$\nabla_{Y} \circ (f \vee f) = f \circ \nabla_{X}, \qquad \begin{cases} X \vee X & \xrightarrow{\nabla_{X}} X \\ \downarrow^{f} & & \downarrow^{f} \\ Y \vee Y & \xrightarrow{\nabla_{Y}} Y. \end{cases}$$

Indeed, we have

$$[\nabla_Y \circ (f \vee f)]([(i, x)]) = \nabla_Y([(i, f(x))])$$

$$= f(x)$$

$$= f(\nabla_X([(i, x)]))$$

$$= [f \circ \nabla_X]([(i, x)])$$

for each $[(i, x)] \in X \vee X$, and thus ∇ is indeed a natural transformation. \square

00BE 3.4 Pushouts

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (Z, z_0) \to (X, x_0)$ and $g: (Z, z_0) \to (Y, y_0)$ be morphisms of pointed sets.

OOBF Definition 3.4.1.1. The pushout of (X, x_0) and (Y, y_0) over (Z, z_0) along (f, g) is the pair consisting of:

- · The Colimit. The pointed set $(X \coprod_{f,Z,g} Y, p_0)$, where:
 - The set $X \coprod_{f,Z,g} Y$ is the pushout (of unpointed sets) of X and Y over Z with respect to f and g;
 - We have $p_0 = [x_0] = [y_0]$.
- · The Cocone. The morphisms of pointed sets

$$\begin{aligned} & \operatorname{inj}_1 \colon (X, x_0) \to (X \coprod_Z Y, p_0), \\ & \operatorname{inj}_2 \colon (Y, y_0) \to (X \coprod_Z Y, p_0) \end{aligned}$$

given by

$$\operatorname{inj}_{1}(x) \stackrel{\text{def}}{=} [(0, x)]$$

 $\operatorname{inj}_{2}(y) \stackrel{\text{def}}{=} [(1, y)]$

for each $x \in X$ and each $y \in Y$.

Proof. Firstly, we note that indeed $[x_0] = [y_0]$, as we have

$$x_0 = f(z_0),$$

$$y_0 = g(z_0)$$

since f and g are morphisms of pointed sets, with the relation \sim on $X \coprod_Z Y$ then identifying $x_0 = f(z_0) \sim g(z_0) = y_0$.

We now claim that $(X \coprod_Z Y, p_0)$ is the categorical pushout of (X, x_0) and (Y, y_0) over (Z, z_0) with respect to (f, g) in Sets_{*}. First we need to check that the relevant pushout diagram commutes, i.e. that we have

$$(X \coprod_{Z} Y, p_{0}) \xleftarrow{\inf_{2}} (Y, y_{0})$$

$$\inf_{1} \circ f = \inf_{2} \circ g, \qquad \inf_{1} \qquad \qquad \uparrow_{g}$$

$$(X, x_{0}) \xleftarrow{f} (Z, z_{0})$$

Indeed, given $z \in Z$, we have

$$\begin{aligned} [\inf_1 \circ f](z) &= \inf_1(f(z)) \\ &= [(0, f(z))] \\ &= [(1, g(z))] \\ &= \inf_2(g(z)) \\ &= [\inf_2 \circ g](z), \end{aligned}$$

where [(0,f(z))] = [(1,g(z))] by the definition of the relation \sim on $X \coprod Y$ (the coproduct of unpointed sets of X and Y). Next, we prove that $X \coprod_Z Y$ satisfies the universal property of the pushout. Suppose we have a diagram of the form

in Sets*. Then there exists a unique morphism of pointed sets

$$\phi \colon (X \coprod_Z Y, p_0) \to (P, *)$$

making the diagram

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_1 = \iota_1,$$

$$\phi \circ \operatorname{inj}_2 = \iota_2$$

via

$$\phi(p) = \begin{cases} \iota_1(x) & \text{if } x = [(0, x)], \\ \iota_2(y) & \text{if } x = [(1, y)] \end{cases}$$

for each $p \in X \coprod_Z Y$, where the well-definedness of ϕ is proven in the same way as in the proof of Constructions With Sets, Definition 2.4.1.1. Finally, we show that ϕ is indeed a morphism of pointed sets, as we have

$$\phi(p_0) = \phi([(0, x_0)])$$

= $\iota_1(x_0)$
= *,

or alternatively

$$\phi(p_0) = \phi([(1, y_0)])$$

= $\iota_2(y_0)$
= *,

where we use that ι_1 (resp. ι_2) is a morphism of pointed sets.

OOBG Proposition 3.4.1.2. Let (X, x_0) , (Y, y_0) , (Z, z_0) , and (A, a_0) be pointed sets.

00BH 1. Functoriality. The assignment $(X,Y,Z,f,g)\mapsto X\coprod_{f,Z,g}Y$ defines a functor

$$-_1 \coprod_{-_3} -_1 : \mathsf{Fun}(\mathcal{P},\mathsf{Sets}) \to \mathsf{Sets}_*,$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-_1\coprod_{-_3}-_1$ is given by sending a morphism

in $Fun(\mathcal{P}, \mathsf{Sets}_*)$ to the morphism of pointed sets

$$\xi \colon (X \coprod_Z Y, p_0) \xrightarrow{\exists !} (X' \coprod_{Z'} Y', p'_0)$$

given by

$$\xi(p) \stackrel{\text{def}}{=} \begin{cases} \phi(x) & \text{if } p = [(0, x)], \\ \psi(y) & \text{if } p = [(1, y)] \end{cases}$$

for each $p \in X \coprod_Z Y$, which is the unique morphism of pointed sets

Pushouts 29

making the diagram

commute.

00BJ 2. Associativity. Given a diagram

in Sets, we have isomorphisms of pointed sets

$$(X \coprod_W Y) \coprod_V Z \cong (X \coprod_W Y) \coprod_Y (Y \coprod_V Z) \cong X \coprod_W (Y \coprod_V Z),$$

where these pullbacks are built as in the diagrams

3. Unitality. We have isomorphisms of sets 00BK

00BL 4. *Commutativity.* We have an isomorphism of sets

00BM 5. Interaction With Coproducts. We have

$$X \coprod_{\mathsf{pt}} Y \cong X \vee Y, \qquad \bigwedge^{\mathsf{r}} \bigvee^{\mathsf{r}} \bigvee_{[y_0]} [y_0]$$

$$X \longleftarrow_{[x_0]} \mathsf{pt}.$$

6. Symmetric Monoidality. The triple (Sets_{*}, \coprod_X , (X, x_0)) is a symmetric monoidal category.

Proof. Item 1, Functoriality: This is a special case of functoriality of co/limits, ??, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pushout diagram.

Item 2, *Associativity*: This follows from Constructions With Sets, Item 2 of Proposition 2.4.1.4.

Item 3, *Unitality*: This follows from Constructions With Sets, Item 3 of Proposition 2.4.1.4.

Item 4, *Commutativity*: This follows from Constructions With Sets, Item 4 of Proposition 2.4.1.4.

Item 5, Interaction With Coproducts: Clear.

Item 6, Symmetric Monoidality: Omitted.

00BP 3.5 Coequalisers

Let $f, g: (X, x_0) \Rightarrow (Y, y_0)$ be morphisms of pointed sets.

Definition 3.5.1.1. The **coequaliser of** (f, g) is the pointed set $(CoEq(f, g), [y_0])$.

Proof. We claim that $(CoEq(f, g), [y_0])$ is the categorical coequaliser of f and g

in Sets_* . First we need to check that the relevant coequaliser diagram commutes, i.e. that we have

$$coeq(f, g) \circ f = coeq(f, g) \circ g$$
.

Indeed, we have

$$[\operatorname{coeq}(f,g) \circ f](x) \stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](f(x))$$

$$\stackrel{\text{def}}{=} [f(x)]$$

$$= [g(x)]$$

$$\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](g(x))$$

$$\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g) \circ g](x)$$

for each $x \in X$. Next, we prove that CoEq(f,g) satisfies the universal property of the coequaliser. Suppose we have a diagram of the form

$$(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{\operatorname{coeq}(f,g)} (\operatorname{CoEq}(f,g), [y_0])$$

$$(C, *)$$

in Sets. Then, since c(f(a)) = c(g(a)) for each $a \in A$, it follows from Equivalence Relations and Apartness Relations, Items 4 and 5 of Proposition 5.2.1.3 that there exists a unique map $\phi \colon \mathsf{CoEq}(f,g) \xrightarrow{\exists !} C$ making the diagram

commute, where we note that ϕ is indeed a morphism of pointed sets since

$$\phi([y_0]) = [\phi \circ \operatorname{coeq}(f, g)]([y_0])$$
$$= c([y_0])$$
$$= *,$$

where we have used that c is a morphism of pointed sets.

Proposition 3.5.1.2. Let (X, x_0) and (Y, y_0) be pointed sets and let $f, g, h: (X, x_0) \rightarrow (Y, y_0)$ be morphisms of pointed sets.

00BS 1. Associativity. We have isomorphisms of pointed sets

$$\underbrace{\mathsf{CoEq}(\mathsf{coeq}(f,g) \circ f, \mathsf{coeq}(f,g) \circ h)}_{=\mathsf{CoEq}(\mathsf{coeq}(f,g) \circ g, \mathsf{coeq}(f,g) \circ h)} \cong \underbrace{\mathsf{CoEq}(f,g,h) \cong \underbrace{\mathsf{CoEq}(\mathsf{coeq}(g,h) \circ f, \mathsf{coeq}(g,h) \circ g, \mathsf{coeq}(g,h) \circ h)}_{=\mathsf{CoEq}(\mathsf{coeq}(g,h) \circ f, \mathsf{coeq}(g,h) \circ h)}$$

where CoEq(f, g, h) is the colimit of the diagram

$$(X, x_0) \xrightarrow{f \atop h} (Y, y_0)$$

in Sets_{*}.

00BT 2. Unitality. We have an isomorphism of pointed sets

$$CoEq(f,f) \cong B$$
.

00BU 3. *Commutativity.* We have an isomorphism of pointed sets

$$CoEq(f,g) \cong CoEq(g,f)$$
.

Proof. Item 1, Associativity: This follows from Constructions With Sets, Item 1 of Proposition 2.5.1.4.

Item 2, *Unitality*: This follows from Constructions With Sets, Item 4 of Proposition 2.5.1.4.

Item 3, Commutativity: This follows from Constructions With Sets, Item 5 of Proposition 2.5.1.4.

OOBY 4 Constructions With Pointed Sets

00BW 4.1 Free Pointed Sets

Let *X* be a set.

Definition 4.1.1.1. The **free pointed set on** X is the pointed set X^+ consisting of:

• The Underlying Set. The set X^+ defined by 11

$$X^+ \stackrel{\text{def}}{=} X \coprod \text{pt}$$

 $\stackrel{\text{def}}{=} X \coprod \{ \star \}.$

· The Basepoint. The element \star of X^+ .

OOBY Proposition 4.1.1.2. Let X be a set.

00BZ 1. Functoriality. The assignment $X \mapsto X^+$ defines a functor

$$(-)^+$$
: Sets \rightarrow Sets_{*},

where

· Action on Objects. For each $X \in \mathsf{Obj}(\mathsf{Sets})$, we have

$$[(-)^+](X) \stackrel{\text{def}}{=} X^+,$$

where X^+ is the pointed set of Definition 4.1.1.1;

· Action on Morphisms. For each morphism $f: X \to Y$ of Sets, the image

$$f^+\colon X^+\to Y^+$$

of f by $(-)^+$ is the map of pointed sets defined by

$$f^+(x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in X, \\ \star_Y & \text{if } x = \star_X. \end{cases}$$

2. Adjointness. We have an adjunction

$$((-)^+ \dashv \overline{\approx}): \quad \operatorname{Sets} \underbrace{\overset{(-)^+}{\stackrel{}{\rightleftarrows}}}_{\overline{\approx}} \operatorname{Sets}_*,$$

witnessed by a bijection of sets

$$\operatorname{\mathsf{Sets}}_*((X^+, \star_X), (Y, \nu_0)) \cong \operatorname{\mathsf{Sets}}(X, Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, y_0) \in \text{Obj}(\mathsf{Sets}_*)$.

¹¹ Further Notation: We sometimes write \star_X for the basepoint of X^+ for clarity when there are

3. Symmetric Strong Monoidality With Respect to Wedge Sums. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)^+,(-)^{+,\coprod},(-)^{+,\coprod}_{1}\right)\colon (\mathsf{Sets}, \coprod,\emptyset) \to (\mathsf{Sets}_*,\vee,\mathsf{pt}),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\coprod}: X^{+} \vee Y^{+} \xrightarrow{\cong} (X \coprod Y)^{+},$$
$$(-)_{1}^{+,\coprod}: \operatorname{pt} \xrightarrow{\cong} \emptyset^{+},$$

natural in $X, Y \in Obj(Sets)$.

4. Symmetric Strong Monoidality With Respect to Smash Products. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)^+,(-)^{+,\times},(-)^{+,\times}_{\mathbb{1}}\right)\colon (\mathsf{Sets},\times,\mathsf{pt})\to \left(\mathsf{Sets}_*,\wedge,S^0\right)\!,$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\times} \colon X^{+} \wedge Y^{+} \xrightarrow{\cong} (X \times Y)^{+},$$
$$(-)_{1}^{+,\times} \colon S^{0} \xrightarrow{\cong} \mathsf{pt}^{+},$$

natural in $X, Y \in Obj(Sets)$.

Proof. Item 1, Functoriality: Clear.

Item 2, Adjointness: We claim there's an adjunction $(-)^+$ \dashv 忘, witnessed by a bijection of sets

$$\mathsf{Sets}_*((X^+, \star_X), (Y, y_0)) \cong \mathsf{Sets}(X, Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, y_0) \in \text{Obj}(\mathsf{Sets}_*)$.

· Map I. We define a map

$$\Phi_{X,Y} \colon \mathsf{Sets}_* ((X^+, \star_X), (Y, y_0)) \to \mathsf{Sets}(X, Y)$$

by sending a pointed function

$$\xi : (X^+, \star_X) \to (Y, y_0)$$

to the function

$$\xi^{\dagger} \colon X \to Y$$

given by

$$\xi^{\dagger}(x) \stackrel{\text{def}}{=} \xi(x)$$

for each $x \in X$.

· Map II. We define a map

$$\Psi_{X,Y} \colon \mathsf{Sets}(X,Y) \to \mathsf{Sets}_* ((X^+, \star_X), (Y, y_0))$$

given by sending a function $\xi \colon X \to Y$ to the pointed function

$$\xi^{\dagger} \colon (X^+, \star_X) \to (Y, y_0)$$

defined by

$$\xi^{\dagger}(x) \stackrel{\text{def}}{=} \begin{cases} \xi(x) & \text{if } x \in X, \\ y_0 & \text{if } x = \star_X \end{cases}$$

for each $x \in X^+$.

· Invertibility I. We claim that

$$\Psi_{X,Y} \circ \Phi_{X,Y} = \mathsf{id}_{\mathsf{Sets}_*((X^+, \star_X), (Y, y_0))},$$

which is clear.

· Invertibility II. We claim that

$$\Phi_{X,Y} \circ \Psi_{X,Y} = \mathrm{id}_{\mathsf{Sets}(X,Y)},$$

which is clear.

· Naturality for Φ , Part I. We need to show that, given a pointed function $g: (Y, y_0) \to (Y', y_0')$, the diagram

$$\begin{split} \mathsf{Sets}_*((X^+, \bigstar_X), (Y, y_0)) & \xrightarrow{\Phi_{X,Y}} \mathsf{Sets}(X, Y) \\ & g_* \bigg| & \bigg| g_* \\ \mathsf{Sets}_* \big((X^+, \bigstar_X), \big(Y', y_0' \big) \big), \xrightarrow{\Phi_{X,Y'}} \mathsf{Sets}(X, Y') \end{split}$$

commutes. Indeed, given a pointed function

$$\xi^{\dagger} \colon (X^+, \star_X) \to (Y, y_0)$$

we have

$$\begin{split} \left[\Phi_{X,Y'} \circ g_* \right] (\xi) &= \Phi_{X,Y'} (g_*(\xi)) \\ &= \Phi_{X,Y'} (g \circ \xi) \\ &= g \circ \xi \\ &= g \circ \Phi_{X,Y'} (\xi) \\ &= g_* \left(\Phi_{X,Y'} (\xi) \right) \\ &= \left[g_* \circ \Phi_{X,Y'} \right] (\xi). \end{split}$$

· Naturality for Φ , Part II. We need to show that, given a pointed function $f:(X,x_0)\to (X',x_0')$, the diagram

$$\mathsf{Sets}_*\Big(\Big(X^{',+}, \bigstar_X\Big), (Y, y_0)\Big) \xrightarrow{\Phi_{X',Y}} \mathsf{Sets}(X', Y)$$

$$f^* \downarrow \qquad \qquad \downarrow f^*$$

$$\mathsf{Sets}_*((X^+, \bigstar_X), (Y, y_0)) \xrightarrow{\Phi_{X,Y}} \mathsf{Sets}(X, Y)$$

commutes. Indeed, given a function

$$\xi \colon X' \to Y$$

we have

$$[\Phi_{X,Y} \circ f^*](\xi) = \Phi_{X,Y}(f^*(\xi))$$

$$= \Phi_{X,Y}(\xi \circ f)$$

$$= \xi \circ f$$

$$= \Phi_{X',Y}(\xi) \circ f$$

$$= f^*(\Phi_{X',Y}(\xi))$$

$$= f^*(\Phi_{X',Y}(\xi))$$

$$= [f^* \circ \Phi_{X',Y}(\xi)](\xi).$$

• Naturality for Ψ . Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Categories, Item 2 of Proposition 8.6.1.2 that Ψ is also natural in each argument.

Item 3, Symmetric Strong Monoidality With Respect to Wedge Sums: The isomorphism

$$\phi \colon X^+ \vee Y^+ \xrightarrow{\cong} (X \coprod Y)^+$$

is given by

$$\phi(z) = \begin{cases} x & \text{if } z = [(0, x)] \text{ with } x \in X, \\ y & \text{if } z = [(1, y)] \text{ with } y \in Y, \\ \star_{X \coprod Y} & \text{if } z = [(0, \star_X)], \\ \star_{X \coprod Y} & \text{if } z = [(1, \star_Y)] \end{cases}$$

for each $z \in X^+ \vee Y^+$, with inverse

$$\phi^{-1} \colon (X \coprod Y)^+ \xrightarrow{\cong} X^+ \lor Y^+$$

given by

$$\phi^{-1}(z) \stackrel{\text{def}}{=} \begin{cases} [(0, x)] & \text{if } z = [(0, x)], \\ [(0, y)] & \text{if } z = [(1, y)], \\ p_0 & \text{if } z = \star_{XIIY} \end{cases}$$

for each $z \in (X \coprod Y)^+$.

Meanwhile, the isomorphism pt $\cong \emptyset^+$ is given by sending \star_X to \star_{\emptyset} .

That these isomorphisms satisfy the coherence conditions making the functor $(-)^+$ symmetric strong monoidal can be directly checked element by element. Item 4, Symmetric Strong Monoidality With Respect to Smash Products: The isomorphism

$$\phi \colon X^+ \wedge Y^+ \xrightarrow{\cong} (X \times Y)^+$$

is given by

$$\phi(x \land y) = \begin{cases} (x, y) & \text{if } x \neq \star_X \text{ and } y \neq \star_Y \\ \star_{X \times Y} & \text{otherwise} \end{cases}$$

for each $x \wedge y \in X^+ \wedge Y^+$, with inverse

$$\phi^{-1} \colon (X \times Y)^+ \xrightarrow{\cong} X^+ \wedge Y^+$$

given by

$$\phi^{-1}(z) \stackrel{\text{def}}{=} \begin{cases} x \wedge y & \text{if } z = (x, y) \text{ with } (x, y) \in X \times Y, \\ \star_X \wedge \star_Y & \text{if } z = \star_{X \times Y}, \end{cases}$$

for each $z \in (X \coprod Y)^+$.

Meanwhile, the isomorphism $S^0 \cong \mathsf{pt^+}$ is given by sending \bigstar to $1 \in S^0 = \{0,1\}$ and \bigstar_{pt} to $0 \in S^0$.

That these isomorphisms satisfy the coherence conditions making the functor $(-)^+$ symmetric strong monoidal can be directly checked element by element.

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

6. Constructions With Relations

Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

9. Types of Morphisms in Bicategories

Relations

5. Relations

References

[MSE 2855868] Qiaochu Yuan. Is the category of pointed sets Cartesian closed?

Mathematics Stack Exchange. URL: https://math.stackexchange.

com/q/2855868 (cit. on p. 6).

multiple free pointed sets involved in the current discussion.

References 39

[MSE 884460]

Martin Brandenburg. Why are the category of pointed sets and the category of sets and partial functions "essentially the same"? Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/884460 (cit. on p. 7).