Classification of "IRIRS" Datasheet using R-language

Sasanka Medhi

Classification:

Classification is the process of predicting the class of given data points. Classes are sometimes called as targets/ labels or categories. Classification predictive modeling is the task of approximating a mapping function (f) from input variables (X) to discrete output variables (y).

Classification belongs to the category of supervised learning where the targets also provided with the input data. There are many applications in classification in many domains such as in credit approval, medical diagnosis, target marketing etc.

Basically there are two types of classification:

1) Binomial and 2) Multi-class

R-program for classification

```
29(cluste cal.Width St. 1.4 2.0 1.4 3.2 1.3 3.1 1 3.6 9
> #K means clustering> library(cluster)> x=iris[,3:4]> data("iris")> head(iris) Sepal.Length S
epal.Width Petal.Length Petal.Width Species
                                              0.2 setosa
          5.1
          4.9
                                              0.2 setosa
3
          4.7
                                              0.2 setosa
4
          4.6
                                1.5
                                              0.2 setosa
5
          5.0
                                              0.2 setosa
                                 1.7
                                              0.4 setosa> print(iris) Sepal.Length Sepal.Wid
6
          5.4
th Petal.Length
                        3.5
1
            5.1
                                    1.4
2
            4.9
                        3.0
                                    1.4
3
            4.7
                        3.2
                                    1.3
4
            4.6
5
            5.0
                        3.6
                                    1.4
6
            5.4
                        3.9
                                    1.7
7
            4.6
                        3.4
8
            5.0
                        3.4
                                    1.5
9
            4.4
                        2.9
                                    1.4
10
            4.9
                        3.1
                                    1.5
11
            5.4
                        3.7
                                    1.5
12
            4.8
                        3.4
                                    1.6
            4.8
```

4.4	4.3	2.0	
14 15	4.3 5.8	3.0 4.0	1.1 1.2
16	5.7	4.4	1.5
17	5.4	3.9	1.3
18 19	5.1 5.7	3.5 3.8	1.4 1.7
20	5.1	3.8	1.5
21	5.4	3.4	1.7
22	5.1	3.7	1.5
23 24	4.6 5.1	3.6 3.3	1.0 1.7
25	4.8	3.4	1.9
26	5.0	3.0	1.6
27 28	5.0 5.2	3.4 3.5	1.6 1.5
29	5.2	3.4	1.4
30	4.7	3.2	1.6
31 32	4.8 5.4	3.1 3.4	1.6 1.5
33	5.2	4.1	1.5
34	5.5	4.2	1.4
35 36	4.9 5.0	3.1 3.2	1.5 1.2
37	5.5	3.5	1.3
38	4.9	3.6	1.4
39	4.4	3.0	1.3
40 41	5.1 5.0	3.4 3.5	1.5 1.3
42	4.5	2.3	1.3
43	4.4	3.2	1.3
44 45	5.0 5.1	3.5 3.8	1.6 1.9
46	4.8	3.0	1.4
47	5.1	3.8	1.6
48 49	4.6 5.3	3.2 3.7	1.4 1.5
50	5.0	3.3	1.4
51	7.0	3.2	4.7
52 53	6.4 6.9	3.2 3.1	4.5
54	5.5	2.3	4.9 4.0
55	6.5	2.8	4.6
56	5.7	2.8	4.5
57 58	6.3 4.9	3.3 2.4	4.7 3.3
59	6.6	2.9	4.6
60	5.2	2.7	3.9
61 62	5.0 5.9	2.0 3.0	3.5 4.2
63	6.0	2.2	4.0
64	6.1	2.9	4.7
65 66	5.6 6.7	2.9 3.1	3.6 4.4
67	5.6	3.0	4.5
68	5.8	2.7	4.1
69 70	6.2 5.6	2.2 2.5	4.5 3.9
70 71	5.9	3.2	4.8
72	6.1	2.8	4.0
73 74	6.3 6.1	2.5 2.8	4.9 4.7
75 75	6.4	2.9	4.3
76	6.6	3.0	4.4
77 78	6.8 6.7	2.8 3.0	4.8 5.0
78 79	6.0	2.9	4.5
80	5.7	2.6	3.5
81 82	5.5 5.5	2.4 2.4	3.8 3.7
83	5.8	2.4	3.9
84	6.0	2.7	5.1
85 86	5.4 6.0	3.0 3.4	4.5 4.5
87	6.7	3.4	4.7

88	6.3	2.3	4.4
89	5.6	3.0	4.1
90	5.5	2.5	4.0
91	5.5	2.6	4.4
92	6.1	3.0	4.6
93	5.8	2.6	4.0
94	5.0	2.3	3.3
95	5.6	2.7	4.2
96	5.7	3.0	4.2
97	5.7	2.9	4.2
98	6.2	2.9	4.3
99	5.1	2.5	3.0
100	5.7	2.8	4.1
101	6.3	3.3	6.0
102	5.8	2.7	5.1
103	7.1	3.0	5.9
104	6.3	2.9	5.6
105	6.5	3.0	5.8
106	7.6	3.0	6.6
107	4.9	2.5	4.5
	7.3	2.9	6.3
108			
109	6.7	2.5	5.8
110	7.2	3.6	6.1
111	6.5	3.2	5.1
112	6.4	2.7	5.3
113	6.8	3.0	5.5
114	5.7	2.5	5.0
115	5.8	2.8	5.1
116	6.4	3.2	5.3
117	6.5	3.0	5.5
118	7.7	3.8	6.7
119	7.7	2.6	6.9
120	6.0	2.2	5.0
121	6.9	3.2	5.7
122	5.6	2.8	4.9
123	7.7	2.8	6.7
124	6.3	2.7	4.9
125	6.7	3.3	5.7
126	7.2	3.2	6.0
127	6.2	2.8	4.8
128	6.1	3.0	4.9
129	6.4	2.8	5.6
130	7.2	3.0	5.8
131	7.4	2.8	6.1
132	7.9	3.8	6.4
133	6.4	2.8	5.6
134	6.3	2.8	5.1
135	6.1	2.6	5.6
136	7.7	3.0	6.1
137	6.3	3.4	5.6
138	6.4	3.1	5.5
139	6.0	3.0	4.8
140	6.9	3.1	5.4
141	6.7	3.1	5.6
142	6.9	3.1	5.1
143	5.8	2.7	5.1
144	6.8	3.2	5.9
145	6.7	3.3	5.7
146	6.7	3.0	5.2
147	6.3	2.5	5.0
148	6.5	3.0	5.2
149	6.2	3.4	5.4
150	5.9	3.0	5.1
Petal	.Width	Species	
1	0.2	setosa	
2	0.2	setosa	
3	0.2	setosa	
4	0.2	setosa	
5	0.2	setosa	
6	0.4	setosa	
7	0.3	setosa	
8	0.2	setosa	
9	0.2	setosa	
10	0.1	setosa	
		-	

11	0.2	setosa
12	0.2	setosa
13	0.1	setosa
14	0.1	setosa
15	0.2	setosa
16	0.4	setosa
17	0.4	setosa
18	0.3	setosa
	0.3	
19		setosa
20	0.3	setosa
21	0.2	setosa
22	0.4	setosa
23	0.2	setosa
24	0.5	setosa
25	0.2	setosa
26	0.2	setosa
27	0.4	setosa
28	0.2	setosa
29	0.2	setosa
30	0.2	setosa
31	0.2	setosa
32		setosa
	0.4	
33	0.1	setosa
34	0.2	setosa
35	0.2	setosa
36	0.2	setosa
37	0.2	setosa
38	0.1	setosa
	0.2	setosa
39		
40	0.2	setosa
41	0.3	setosa
42	0.3	setosa
43	0.2	setosa
44	0.6	setosa
45	0.4	setosa
-		
46	0.3	setosa
47	0.2	setosa
48	0.2	setosa
49	0.2	setosa
50	0.2	setosa
51	1.4	versicolor
52	1.5	versicolor
53	1.5	versicolor
54	1.3	versicolor
55	1.5	versicolor
56		
	1.3	
57	1.6	versicolor
58	1.0	versicolor
59	1.3	versicolor
60	1.4	versicolor
61	1.0	versicolor
62	1.5	versicolor
	1.0	
63		versicolor
64	1.4	versicolor
65	1.3	versicolor
66	1.4	versicolor
67	1.5	versicolor
68	1.0	versicolor
69	1.5	versicolor
70	1.1	versicolor
71	1.8	versicolor
72	1.3	versicolor
73	1.5	versicolor
74	1.2	versicolor
75	1.3	versicolor
76	1.4	versicolor
	1.4	versicolor
77		
78	1.7	versicolor
79	1.5	versicolor
80	1.0	versicolor
81	1.1	versicolor
82	1.0	versicolor
83	1.2	versicolor
84	1.6	versicolor
J- 1	1.0	ACI STORIOL.

```
86
                         1.6 versicolor
87
                         1.5 versicolor
88
                         1.3 versicolor
89
                         1.3 versicolor
90
                         1.3 versicolor
91
                         1.2 versicolor
92
                         1.4 versicolor
93
                         1.2 versicolor
94
                         1.0 versicolor
95
                         1.3 versicolor
96
                         1.2 versicolor
97
                         1.3 versicolor
98
                         1.3 versicolor
99
                         1.1 versicolor
100
                         1.3 versicolor
101
                         2.5 virginica
102
                         1.9 virginica
                         2.1 virginica
103
104
                         1.8 virginica
105
                          2.2 virginica
                          2.1 virginica
106
107
                          1.7 virginica
108
                         1.8 virginica
109
                         1.8 virginica
110
                         2.5 virginica
                          2.0 virginica
111
                         1.9 virginica
112
113
                          2.1 virginica
114
                         2.0 virginica
                         2.4 virginica
115
116
                         2.3 virginica
117
                         1.8 virginica
                         2.2 virginica
118
119
                         2.3 virginica
                         1.5 virginica
120
                         2.3 virginica
121
122
                         2.0 virginica
                         2.0 virginica
123
124
                         1.8 virginica
125
                         2.1 virginica
126
                         1.8 virginica
127
                         1.8 virginica
128
                         1.8 virginica
129
                         2.1 virginica
130
                         1.6 virginica
131
                         1.9 virginica
132
                         2.0 virginica
133
                         2.2 virginica
134
                         1.5 virginica
135
                         1.4 virginica
                         2.3 virginica
136
137
                          2.4 virginica
138
                         1.8 virginica
139
                         1.8 virginica
140
                         2.1 virginica
141
                          2.4 virginica
                         2.3 virginica
142
143
                         1.9 virginica
144
                         2.3 virginica
145
                         2.5 virginica
146
                         2.3 virginica
147
                         1.9 virginica
                          2.0 virginica
148
149
                          2.3 virginica
150
                          1.8 virginica
 >#for 5 clusters> model=kmeans(x,5)
> clusplot(x,model$cluster,color=T,shade=T)> #for 5 clusters> model=kmeans(x,3)> clusplot(x,mo
\label{lem:color} $$ del\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x, model\cluster, color=T, shade=T) > $$ for 1 cluster > model=kmeans(x,1) > clusplot(x,1) > clusplot(x,1) > clusplot(x,1) > clusplot(x,
r=T, shade=T)
```

1.5 versicolor

85

CLUSPLOT(x)

These two components explain 100 % of the point variability.

Conclusion:

Here we did the classification by using R-language and plotted graphs for different number of clusters.