

- **AAI 595 Final Project Report-Machine Learning Approaches**
- Machine Learning Afor Celestial ObjectClassification
- Classification

Chris Muro, Rocco Gannon, Marc DiGeronimo

Introduction

Dataset - Stellar Classification Dataset - SDSS17

Star

James Webb Space Telescope

Galaxy

Vera C. Rubin Observatory

Quasar

Sloan Memorial Telescope

Related Work

Australia Telescope National Facility Spectrum Graphs

Star Spectrum Showing Absorption Lines

Galaxy Spectra Showing different Redshifts

Quasar Spectrum Chowing Emission Lines

Related Work Continued

Description of Dataset

Random Forest

Reason: Decision trees are well suited for classification problems, designed to perform inherent

feature selection, ensemble method.

Parameters Tested:

```
parameter_grid = {
    "n_estimators": [10, 50, 100],
    "criterion": ["gini", "entropy"],
    #"max_depth": [None, 10, 25, 50],
    #"min_samples_split": [2, 5, 10],
    #"min_samples_leaf": [1, 2, 4],
    "max_features": ["sqrt", "log2", None]
}
```


Best Parameters: n_estimators = 100, criterion = entropy, max_features = None

Random Forest Results

	precision	recall	f1-score	support
0	0.98	0.99	0.99	2963
1	1.00	1.00	1.00	1105
2	0.96	0.94	0.95	932
accuracy			0.98	5000
macro avg	0.98	0.98	0.98	5000
weighted avg	0.98	0.98	0.98	5000

Classification Report (Best Parameters)

Confusion Matrix (Best Parameters)

Classification Report (PCA)

Gaussian Mixture Model

Reason: Unsupervised learning method, large amount of samples may be represented by gaussian distribution.

```
Parameters Tested:

parameter_grid = {
    "n_components": [1,2,3],
    "covariance_type": ["tied", "diag", "spherical", "full"],
    #"init_params": ["k-means++"]
}
```

Best Parameters: n_components = 3, covariance_type = spherical

Gaussian Mixture Model Results

	precision	recall	f1-score	support
0	0.59	0.34	0.43	2963
1	0.15	0.45	0.22	1105
2	0.00	0.00	0.00	932
accuracy			0.30	5000
macro avg	0.25	0.26	0.22	5000
eighted avg	0.38	0.30	0.31	5000

	precision	recall	f1-score	support	
0	0.60	0.33	0.43	2963	
1	0.16	0.48	0.23	1105	
2	0.00	0.00	0.00	932	
accuracy			0.30	5000	
macro avg	0.25	0.27	0.22	5000	
weighted avg	0.39	0.30	0.30	5000	
0 18961					
1 18961					
2 18961					
Name: class,	dtype: int64				

Classification Report (Best Parameters)

Classification Report (PCA)

Confusion Matrix (PCA)

Classification Report (Balanced Data)

Confusion Matrix (Balanced Data)

Confusion Matrix (Best Parameters)

XGBoost Classifier

Reason: Ensemble method, Builds trees sequentially by using boosting rather than bagging,

prioritizes accuracy metric.

Parameters Tested:

```
parameter_grid = {
    "booster": ["gbtree", "gblinear", "dart"],
    "max_depth": [0, 2, 4],
    "tree_method": ["auto", "exact", "approx"]
}
```

Best Parameters:

```
booster = gbtree
max_depth = 0
tree_method = approx
```


XGBoost Classifier Results

	precision	recall	f1-score	support
0	0.98	0.99	0.99	2963
1	1.00	1.00	1.00	1105
2	0.97	0.95	0.96	932
accuracy			0.98	5000
macro avg	0.98	0.98	0.98	5000
weighted avg	0.98	0.98	0.98	5000

	precision	recall	f1-score	support
0	0.82	0.92	0.87	2963
1	0.78	0.56	0.66	1105
2	0.81	0.76	0.79	932
accuracy			0.81	5000
macro avg	0.80	0.75	0.77	5000
weighted avg	0.81	0.81	0.80	5000

Classification Report (Best Parameters)

Classification Report (PCA)

Confusion Matrix (PCA)

Classification Report (Balanced Data)

Confusion Matrix (Balanced Data)

Confusion Matrix (Best Parameters)

References

- [1] Kaggle "Stellar Classification Dataset SDSS17." Available: https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17
- [2] Australia Telescope National Facility. "Spectra of Stars, Galaxies, and Quasars." Available: https://www.atnf.csiro.au/outreach/education/senior/astrophysics/spectra_astro_types.html.
- [3] Bertin, E. & Arnouts, S. "SExtractor: Software for Source Extraction." Available: http://www.astromatic.net/software/sextractor.
- [4] The Pan-STARRS Project. "How to Separate Stars and Galaxies." Available: https://outerspace.stsci.edu/display/PANSTARRS/How+to+separate+stars+and+galaxies.
- [5] Chen, Tianqi & Guestrin, Carlos. "XGBoost: A Scalable Tree Boosting System" Available: https://arxiv.org/abs/1603.02754
- [6] Rashmi, Korlakai Vinayak & Gilad-Bachrach, Ran. "DART: Dropouts meet Multiple Additive Regression Trees"
- Available: https://proceedings.mlr.press/v38/korlakaivinayak15.pdf

