Math 1064 Review

Useful Website

- Logic calculator: https://www.erpelstolz.at/gateway/formular-uk-zentral.html
- Mathway: https://www.mathway.com/Algebra
- Base calculator: https://www.rapidtables.com/calc/math/base-calculator.html
- Recurrences relation calculator: https://www.wolframalpha.com/examples/mathematics/discrete-mathematics/recurrences/
- Matrices calculator: https://matrixcalc.org/en/
- Sequence generator: http://oeis.org/

Week 1

The pigeonhole principle

If you have n pigeons sitting in k pigeonholes, and if k < n, then at least one of the pigeonholes contains at least two pigeons.

Proposition (Definition)

A proposition is a sentence that is true or false but not both

Negation, Conjunction, Disjunction

Negation: ¬ p

Conjunction: p ∧ q

Disjunction: p ∨ q

p v q is the "inclusive or", p ⊕ q is the "exclusive or"

Logical equivalence (Definition)

Two compound propositions P and Q are logically equivalent

$$P \equiv Q$$

if they <mark>have identical truth values</mark> for every possible combination of truth values for their proposition variables

Contradiction (Definition)

Always false

$$p \land (contradiction) \equiv (contradiction)$$

 $p \lor (contradiction) \equiv p$

Tautology (Definition)

Always true

$$p \land (tautology) \equiv p$$
 $p \lor (tautology) \equiv (tautology)$

The conditional

the conditional from p to q:

p is the **hypothesis** and q is the **conclusion**

 $\mathbf{p}
ightarrow \mathbf{q}$ is false if and only if the <code>hypothesis</code> is true but the conclusion is false

$$p o q \equiv \lnot p \lor q$$

Logical equivalences

Commutative laws

$$p \wedge q \equiv q \wedge p$$

 $p \vee q \equiv q \vee p$

Associative laws

$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r) \ (p \vee q) \vee r \equiv p \vee (q \vee r)$$

• Distributive laws

$$(p \wedge q) \vee r \equiv (p \wedge q) \vee (p \wedge r) \ (p \vee q) \wedge r \equiv (p \vee q) \wedge (p \vee r)$$

Identity laws

$$p \wedge (tautology) \equiv p \ p \lor (contradiction) \equiv p$$

Universal bound laws

$$p \lor (tautology) \equiv (tautology) \ p \land (contradiction) \equiv (contradiction)$$

Negation laws

$$p \lor \lnot p \equiv (tautology) \ p \land \lnot p \equiv (contradiction)$$

• Double negative laws

$$\neg(\neg p) \equiv p$$

Idempotent laws

$$p \wedge p \equiv p$$

 $p \vee p \equiv p$

De Morgan's laws

$$\neg(p \land q) \equiv (\neg p) \lor (\neg q)$$
$$\neg(p \lor q) \equiv (\neg p) \land (\neg q)$$

Absorption laws

$$pee (p\wedge q)\equiv p \ p\wedge (pee q)\equiv p$$

Negations

 \neg (tautology) is a contradiction \neg (contradiction) is a tautology

More constructions in additional

$$(p \wedge q)
ightarrow r \equiv (p
ightarrow q) ee (q
ightarrow r)$$

Contrapositive

The contrapositive of $p \to q$ is $\neg q \to \neg p$

$$p o q \equiv \neg q o \neg p$$

Converse

The converse of $p \rightarrow q$ is $q \rightarrow p$

Inverse

The inverse of $p \to q$ is $\neg p \to \neg q$

The biconditional

The biconditional from p to q is $q \leftrightarrow p$

$$p \leftrightarrow q \equiv (p
ightarrow q) \wedge (q
ightarrow p)$$

Satisfiability

A compound proposition is satisfiable if it isn't a contradiction

• Consistent: If the conjunction is a contradiction, it is not cont consistent

Predicates (Definition)

A sentence that contains finitely many variables, if the variables are given specific values it will becomes a proposition

Domain (Definition)

The set of all possible values that may be assigned to a predicate

Truth set (Definition)

The set of all values in the domain that when assigned to x, make predicate P(x) a true statement

Common domains

$$The \ natural \ numbers: \ N=\{0,1,2,3,\dots\}$$

$$The \ integers: \ Z=\{\dots,-3,-2,-1,0,1,2,3,\dots\}$$

$$The \ rationals: \ Q=all \ fractions=\{\frac{a}{b}|a,b\in Z\wedge b\neq 0\}$$

$$The \ real \ number: \ R=the \ entire \ number \ line$$

Week 2

The universal quantifier

For all: ∀ is the universal quantifier

The existential quantifier

There exists: $\frac{1}{2}$ is the existential quantifier

: is such that

Negation of quantified statements

Universal statement

$$\forall x \in D, Q(x)$$

$$\downarrow$$

$$\exists x \in D, \neg Q(x)$$

Existential statement

$$\exists x \in D : R(x)$$

$$\downarrow$$

$$\forall x \in D, \neg R(x)$$

Valid and invalid arguments

An argument form is valid if, whenever all of the premises are true, then the conclusion is true also

• Modus ponens (valid)

$$\begin{array}{c} p \rightarrow q \\ p \\ \therefore q \end{array}$$

Converse error (invalid)

$$egin{array}{c} p
ightarrow q \ dots p \end{array}$$

• Inverse error (invalid)

$$\begin{array}{c} p \rightarrow q \\ \neg p \\ \therefore \neg q \end{array}$$

Conjunction of the premises must be satisfy

Valid arguments

• Modus ponens

$$egin{array}{c} p
ightarrow q \ dots \cdot \cdot \cdot q \end{array}$$

Modus tollens

$$\begin{matrix} \neg q \\ p \rightarrow q \\ \therefore \neg p \end{matrix}$$

• Hypothetical syllogism

$$egin{array}{c} p
ightarrow q \ q
ightarrow r \ dots . . \ p
ightarrow r \end{array}$$

Disjunctive syllogism

$$\begin{array}{c} p \lor q \\ \neg p \\ \therefore q \end{array}$$

Addition

$$p \\ \therefore p \lor q$$

• Simplification

$$p \wedge q$$

 $\therefore p$

Conjunction

$$egin{array}{c} p \ q \ dots p \wedge q \end{array}$$

Resolution

$$\begin{array}{c} p \lor q \\ \neg p \lor r \\ \therefore p \lor r \end{array}$$

Vacuous truth

For conditional, the **hypothesis** is **always false**, hence the conditional is a **tautology**

Methods of proof

• Direct proof

To show that $P(x) \to Q(x)$, choose an **arbitrary x** from the domain for which P(x) is true and use logical inference to show that Q(x) is true also

• Proof by contradiction

Assume that p is false and use logical inference to prove a **contradiction**

• Proof by contraposition

based on
$$p o q \equiv \neg q o \neg p$$

Choose some arbitrary x for which Q(x) is false, and argue by logical inference that P(x) must be false also

Disproof by counterexample

Without loss of generality (WLOG)

Use symmetry in the statement to reduce the number of cases to consider

Week 3

Set theory

A set S is a collection of object, which are called the elements of S

- If x is in S, $x \in S$, else, $x \notin S$
- $S = \{1, 2, 3\}$ is a finite set
- $S = \{0, 1, 2, 3, ...\}$ is an infinite set
- Two set are equal if they contain the same elements

$$S = T \ means \ \forall x, \ x \in S \leftrightarrow x \in T$$

Order doesn't matter, repetition is ignored

- The empty set $\emptyset = \{\}$
- $x \neq \{x\}$

Union

For sets S and T, their **union** is written $S \cup T$, contains all elements that belong to S or T

$$igcup_{i=1}^{5}\{i,2i\}=\{0\}\cup\{1,2\}\cup\{2,4\}\cup\{\dots\}$$

Intersection

For set S and T, their **intersection** is written $S \cap T$, contains all elements that belong to both S and T

$$igcap_{i=1}^{5}\{i,2i\}=\{0\}\cap\{1,2\}\cap\{2,4\}\cap\{\dots\}$$

Subsets

For sets S and T, S is a subset of T if every element of S belongs to T also

$$S \subseteq T \ means \ \forall x, \ x \in S \rightarrow x \in T$$

Proper subset

If $S\subseteq T$ and S
eq T

Cardinality

If S is a <mark>finite set</mark>, then the cardinality of S is the number of <mark>distinct elements</mark> that S contains

For **infinite set**, $|S|=\infty$, but two infinite sets might not have the same cardinality, $|R|\neq |Z|$

Difference

For set S and T, their difference is written $S \setminus T$ or S - T, contains all elements that belong to S but not T

$$Sackslash T=\{x|x\in S\wedge x
ot\in T\}$$

Complement

Let U be some universal set, for any set $S \subseteq U$, the **complement** of S is written \overline{S}

$$ar{S} = \{x \in U | x
otin S\}$$

Venn Diagrams

Set identities

Same as logic equivalences

Interval notation

- $[a,b] = \{x \in R | a \le x \le b\}$, a **square** bracket means **include** the endpoint
- ullet $(a,b)=\{x\in R|a< x< b\}$, a **round** bracket means **exclude** the endpoint
- Never allowed to include ∞ or $-\infty$

Power sets

For any set S, the power set of S is the set of all subsets of S

$$P(S) = \{X | X \subseteq S\}$$
* $include \emptyset$

If |S|=n, $|P\{S\}|=2^n$

Cartesian product

The Cartesian product of A x B is $A \times B = \{(a,b) | a \in A, b \in B\}$

If |A|=n, |B|=m, |AxB|=n*m

Function

Let X and Y be sets, if f assigns to each $x \in X$ a **unique** element $y \in Y$, then f is called a function from X to Y, written $f: X \to Y$, $x \mapsto y$ or y = f(x)

unique means one and only one

function is a **subset** of a Cartesian product

If $f: X \to Y$, then

- X is called the **domain** of f
- Y is called the **co-domain** of f
- If $x \in X$, then f(x) is called the **image** of x
- If $A \subseteq X$, then f(A) is called the **image** of A, the entire f(X) is called the **range** of f
- If $y \in Y$, then $f^{-1}(y)=\{x \in X \mid f(x)=y\}\subseteq X$ is called the **preimage** of y
- If B \subseteq Y, then $f^{-1}(B)=\{x\in X\mid f(x)\in B\}\subseteq X$ is called the **preimage** of B

Week 4

Equality of functions

Function f, g: $X \rightarrow Y$ are equal, written f = g, if and only if

$$f(x) = g(x)$$
 for all $x \in X$

* f denotes a **function**, f(x) denotes an **element** of Y

Floor and ceiling

Floor (Definition)

Let $x \in R$ be a real number. The floor of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \le x < n+1$

Ceiling (Definition)

Let $x \in R$ be a real number. The ceiling of x, denoted $\lceil x \rceil$, is the unique integer n such that $n-1 < x \le n$

- $\forall x \in R : \lfloor x 1 \rfloor = \lfloor x \rfloor 1$
- For all $x \in R$ and all $n \in Z$, we have $\lfloor x + n \rfloor = \lfloor x \rfloor + n$

Properties of function

Let $f: X \rightarrow Y$, then

1. f is onto, surjective, surjection if:

$$\forall y \in Y, \exists x \in X \ such \ that \ f(x) = y$$

Every y is the image of something

$$\circ$$
 $|X| \geq |Y|$

2. f is one-to-one, injective, injection if:

$$\forall x_1, x_2 \in X, f(x_1) = f(x_2) \to x1 = x2$$

Different elements of X have different images

- $\circ |X| \leq |Y|$
- 3. f is a **one-to-one correspondence**, **bijective**, **bijection** if f is **both one-to-one and onto**
 - \circ |X|=|Y|

Composition of function

If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$, then the composition

$$g \circ f: X \to Z = g(f(x)) \ for \ all \ x \in X$$

The Tower of Hanoi

- ullet Recursive definition: $T_0=0~and~T_n=2 imes T_{n-1}+1$
- Explicit formula, closed formula: $T_n = 2^n 1$

Types of sequences

finite, infinite, index (subscript), alternating

To define a sequence recursively:

- Initial conditions
- A recurrence relation

Notation of sums

$$\sum_{m}^{n}a_{i}=a_{m}+a_{m-1}+a_{m+2}+\ldots+a_{n-1}+a_{n}$$

- If m > n, $\sum_{m=0}^{n} a_i = 0$

- $\sum_{m}^{n} a_{i} \pm \sum_{m}^{n} b_{i} = \sum_{m}^{n} (a_{i} + b_{i})$ $\sum_{m}^{n} c a_{i} = c \sum_{m}^{n} a_{i}$ $\sum_{i=p}^{q} a_{i} + \sum_{i=p+1}^{r} a_{i} = \sum_{i=p}^{r} a_{i}$
- ullet $\sum_{i=p}^{q} a_i = \sum_{i=m+p}^{n+p} a_{i-p} = \sum_{i=m-q}^{n-q} a_{i+q}$
- $ullet \sum_{i=n}^q (a_i-a_{i+1}) = a_m-a_{n+1}$ if $\mathsf{m} \leq \mathsf{n}$

Divisibility

If n, $d \in Z$, then n is divisible by d if and only if there exists some $k \in Z$ such that n = Xkd, written d|n

- $\forall a, b, m \in \mathbb{Z}, (m|a) \wedge (m|b) \rightarrow m|(a+b)$
- Let n, d \in Z. If $|n| \ge 1$ and d | n, then $0 < |d| \le |n|$, bounds on divisors
- The Quotient-Remainder Theorem

Given any integer n and positive integer d, there exist **unique** integers q and r such that

$$n = qd + r$$
 and $0 \le r < d$

q is the **quotient**, r is the **remainder**

- If n = qd + r, then $n \equiv r \pmod{d}$
- $n \equiv m \pmod{d}$ if and only if $d \mid (n-m)$
- $n \equiv 0 \pmod{d}$ if and only if $d \mid n$

$$If \ a \equiv b \pmod{d} \ and \ n \equiv m \pmod{d}$$

 $1.an \equiv bm \pmod{d}$

$$2.a \pm n \equiv b \pm m (mod \ d)$$

Week 5

Prime factorization (Definition)

A product of primes is the product of prime numbers $p_1, p_2, p_3, \ldots, p_m$

$$n = p_1 * p_2 * \dots * p_m = \prod_{k=1}^m p_k$$

• Every natural number n>1 can be written as a product of primes

GCD and LCM

- The greatest common divisor of the integers a and b, is the largest $d \in N$ for which d|a and d|b
- The least common divisor of the positive integers a and b, is the **smallest** $n \in N$ **for which** a|n and b|n

If a and b are integers that are not both equal to zero, then gcd(a, b) exists

Two Integers $a,b\in Z$ are called **coprime** if gcd(a, b) =1

• If $a,b\in Z$ are coprime and $ab=c^3$ for some $c\in Z$, then $a=d^3$ and $b=e^3$ for some $d,e\in Z$

For all $a,b\in Z$

1.
$$gcd(a,b) = gcd(b,a-b)$$

2. If a = bq + r

$$gcd(a,b) = gcd(b,r)$$

Base b expansion (Definition)

Let b be an integer greater than 1, every positive integer n can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

Running time

number of steps required for it to finish, running time is a function:

$$f: N \rightarrow N; Input \ size \mapsto Number \ of \ steps \ required$$

O-notation (Definition)

Let f and g be functions from a subset of R to R. Then f(x) is in O(g(x)) if there exist constants C and k such that for all $x \in A, x \ge k$

$$|f(x)| \leq C|g(x)|$$

C and k are the **witnesses** of the statement "f(x) is in O(g(x))"

- $f(x) \in O(g(x))$ or $g(x) \in O(f(x))$ or f(x) = O(g(x))
- $f(n) \in O(f(n))$
- O(c * f(n)) = O(f(n))
- O(f(n) + f(n)) = O(f(n))
- $\bullet \ \ O(f(n)g(n)) = f(n) * O(g(n))$

Ω -notation (Definition)

Let f and g be functions from a subset of R to R. Then f(x) is in $\Omega(g(x))$ if there are positive constants C and k such that for all x > k

$$|f(x)| \ge C|g(x)|$$

⊖-notation (Definition)

Let f and g be functions from a subset of R to R. Then f(x) is in $\Theta(\mathbf{g(x)})$ if $f(x) \in O(g(x))$ and $f(x) \in \Omega(g(x))$

Week 6

P vs NP

A decision problem is a yes/no question, for which we wish to find an algorithm

P: solve quickly

NP: inherently difficult

An algorithm is considered **fast** if its running time is bounded by a polynomial

- Fast: $O(n), O(n \log n), O(n^c)$
- Slow: $O(C^n)$ when $C > 1, O(n!), O(e^{e^n})$

The principle of mathematical induction

Let P(n) be a predicate that is defined for all integers $n \geq a, a \in N$ Suppose:

- 1. Basis step: P(a) is true
- 2. Inductive step: For all integers $n \geq a, P(n) \rightarrow P(n+1)$

Bernoulli's inequality

For all real x>0 and all integers $n \ge 2, (1+x)^n > 1+nx$

Week 7

Counting and probability

- Sample space S
- Event E
- Probability

$$P(E) = \frac{number\ of\ outcomes\ in\ E}{number\ of\ outcomes\ in\ S}$$

Order matters, repetition allowed

$$|S_1 imes S_2 imes S_3 imes \ldots imes S_k| = \prod |Si|$$

Example: telephone number

Order matters, repetition not allowed

choose k elements from a set S with n elements

$$P(n,k) = n*(n-1)*(n-2)*...*(n-k+1) = \frac{n!}{(n-k)!}$$

Example: ranking

Order does not matters, repetition not allowed

n choose k

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n*(n-1)*(n-2)*...*(n-k+1)}{k!}$$

For all $n, k \in Z$ with $0 \le k \le n$

$$\binom{n}{k} = \binom{n}{n-k}$$

Example: n people shake hands at a party. What is the total number of handshakes?

Order does not matter, repetition allowed

$$\frac{(k+n-1)!}{k!(n-1)!} = \binom{n+k-1}{n-1}$$

Example: How many ways are there to put 2 balls (not distinguished) into 3 boxes (distinguished)?

Monty Hall problem

Binomial coefficients

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

The Binomial Theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

For any finite set S, the number of subsets of S with an even number of elements is equal to the number of subsets of S with an odd number of elements

with even number:
$$\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

with odd number:
$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots$$

Another equation

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

The inclusion-exclusion principle

For any sets A and B

$$|A \cup B| = |A| + |B| - |A \cap B|$$

For sets A_1, A_2, \ldots, A_n

$$|A_1 \cup \ldots \cup A_n| = \sum_i |A_i| - \sum_{i < j} |A_i \cap A_j|$$
$$+ \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \ldots \pm |A_1 \cap A_2 \cap \ldots \cap A_n|$$

The generalized pigeonhole principle

If n pigeons sitting in k pigeonholes, and if n > k*m, then at least one of the pigeonholes contains at least m+1 pigeons

Ramsey theory

Every graph on six vertices has at least a triangle or has an independent set of size three

Catalan number

$$b_n = p_n = t_n = rac{1}{n+1}inom{2n}{n} = rac{(2n)!}{(n+1)!n!} < 4^n \; for \; n \geq 1$$

Recurrences revisited

$$a_n=lpha a_{n-1}+eta a_{n-2} \ 1.Factor\ x^2-lpha x-eta=(x-\lambda_1)(x-\lambda_2) \ 2a.\ If\ \lambda_1
eq \lambda_2, then\ a_n=A\lambda_1^n+B\lambda_2^n\ for\ some\ constants\ A\ and\ B \ 2b.\ If\ \lambda_1=\lambda_2, then\ a_n=C\lambda^n+Dn\lambda^n,\ where\ \lambda=\lambda_1=\lambda_2\ and\ C\ and\ D\ are\ some\ constants \ a_n=lpha a_{n-1}+eta a_{n-2}+f(n)$$

1. Find one particular solution $a_n^{(p)}$ by assume $a_n = Af(n)$ and calculate the A

• 2.Determine the general solution $a_n^{(h)}$ to the homogeneous equation $a_n = \alpha a_{n-1} + \beta a_{n-2}$ $3a.\ LHS: a_n = A\lambda_1^n + B\lambda_2^n + A'f(n)$

$$3b. \, LHS: a_n = C\lambda^n + Dn\lambda^n + A'f(n)$$

Week 9

Random variable (Definition)

A random variable is a function X: S o R defined on the outcomes of a sample space

- Sample space S, $|S| < \infty$
- $x \in S$ is called an outcome, $\{x\}$ is called an elementary event
- $E \subseteq S$ is called an event

Conditional probability

Let E and F be events with p(F) > 0, The conditional probability of E given F is

$$p(E|F) = \frac{p(E \cap F)}{p(F)}$$

Independence

1.
$$p(E|F) = p(E)$$

2. $p(E \cap F) = p(E)p(F)$

If any of the above hold, E and F are called independent

Bayes' theorem

Suppose E and F are events from a a sample space S with p(E) > 0 and p(F) > 0

$$p(F|E) = \frac{p(F)}{p(E|F) * p(F) + p(E|\bar{F}) * p(\bar{F})} * p(E|F)$$

$$p(E) = p(E|F) * p(F) + p(E|\bar{F}) * p(\bar{F})$$

Expected value

The expected value, also called the expectation or mean

$$E(X) = \sum_{s \in S} p(s) X(s)$$

• E(aX + b) = aE(X) + b

•
$$E(XY) = E(X) * E(Y)$$

Variance

$$V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s)$$

- $V(X) = E(X^2) E(X)^2$
- V(X + Y) = V(X) + (Y)

Week 10

Relation (Definition)

Let X and Y be sets, a relation R from X to Y is a subset of $X \times Y$

Written $(x,y) \in R, xRy, x \sim y$

The complementary relation to R is $\bar{R} = (X \times Y) \backslash R$

If X=Y we say that R is a relation on X

Compose relations

$$S \circ R = \{(a,c) | \exists b \in Y : aRb \land bSc\} \subseteq X \times Z$$

Reflexive, Symmetric, Transitive

- **Reflexive** provided that $(x, x) \in R$ for all $x \in X$
- **Symmetric** provided that if $(x,y) \in R$ then $(y,x) \in R$
- **Transitive** provided that if $(x,y) \in R$ and $(y,z) \in R$, then $(x,z) \in R$

Equivalence relation and Partition

Equivalence relation

If set X is reflexive, symmetric and transitive

• If R is an equivalence relation on X and $x \in X$, then the set

$$[x] = \{y \in X | (x,y) \in R\}$$

is the equivalence class of x

$$\circ$$
 $[x] \neq \emptyset$ for all $x \in X$

$$\circ X = \bigcup_{x \in X} [x]$$

$$egin{aligned} egin{aligned} igl(x] \cap [y] = egin{cases} \emptyset & ext{if} \quad (x,y)
otin R \ [x] = [y] & ext{if} \quad (x,y)
otin R \end{cases} \end{aligned}$$

Example:

$$(m,n) \in R \ if \ and \ only \ if \ 3 | (m-n) \ [0] = \{\ldots, -6, -3, 0, 3, 6, \ldots \} \ [1] = \{\ldots, -5, -2, 1, 4, 7, \ldots \} \ [2] = \{\ldots, -4, -1, 2, 5, 8, \ldots \}$$

Partitions

If $A \cap B = \emptyset$, then A and B are disjoint

A set $\{S_1, S_2, \dots\}$ is a partition of S if

$$1.S_i
eq \emptyset ext{ for all } i$$
 $2.S = S_1 \cup S_2 \cup \dots$ $3.S_i \cap S_j = \emptyset ext{ whenever } i
eq j$

- An equivalence relation on X gives a partition of X
- A partition of X gives an equivalence relation on X

Anti-symmetric

• Symmetric

$$orall a,b\in X, (a,b)\in R\ implies\ (b,a)\in R$$

• Anti-Symmetric

$$\forall a,b \in X, (a,b) \in R \ and \ (b,a) \in R \ implies \ a=b$$

Partial order

A relation on a set X which is reflexive, transitive, and anti-symmetric

Total order

$$\forall a, b \in X, aRb \ or \ bRa$$

Closure

Reflexive closure

$$ref(S) = R \cup \Delta = R \cup \{(x,x)|x \in X\}$$

Symmetric closure

$$sym(R) = R \cup R^{-1} = R \cup \{(y,x) | (x,y) \in R\}$$

Transitive closure

$$tra(R) = R \cup R^\star = igcup_{k=1}^\infty R^k$$

Week 11

Graph theory

A graph G consists of two finite sets:

- 1. a non-empty set V(G) of **vertices**
- 2. a (possibly empty) set E(G) of edges
- **Loop**: An edge may have endpoints {v, v} = {v}
- Parallel edges: Two edges may have the same end points {v, w}

- Simple graph: A graph with no loops or parallel edges
- Incident: v is an endpoint of e
- Adjacent: There is an edge with endpoints {u, v}
- Degree: The number of edges incident with v, loop will be counted twice

The handshake theorem

Let G be a graph with n vertices $V(G) = v_1, \dots, v_n$

$$\sum_{i=1}^n deg(v_i) = deg(v_1) + \ldots + deg(v_n) = 2*|E(G)|$$

In any graph, the number of vertices of odd degree is even

Directed graphs

- The **in-degree** $deg^-(v)$ is the number of edges terminating in v
- The out-degree $deg^+(v)$ is the number of edges starting in v

$$\sum_{i=1}^n deg^-(v_i) = \sum_{i=1}^n deg^+(v_i) = |E(G)|$$

Graph types

- Complete graphs: simple graph with exactly one edge between any pair of verties
- Cycles
- Wheels
- Cubes
- Trees
- Cactus graphs

Path

- Connected: $\forall x,y \in V(G)$, there is a path from x to y
- Disconnected

Eulerian circuit

Starts and ends at the same vertex, and uses every edge exactly once

Connected graph and if and only if every vertex degree is even

Eulerian trail

Using each edge exactly once, but whose start and end vertices can be different

Except two vertices can have odd degree, every vertex degree is even

Hamiltonian circuits

Using every vertex exactly one (except for start = end vertex)

Graph isomorphism

Two graphs $G_1=(V_1,E_1)$ and $G_1=(V_2,V_2)$ are said to be isomorphic, written $G_2\cong G_2$ if there exists a bijective function such that

$$\phi(E_1) = \{\{\phi(v_1), \phi(v_2)\} | \{v_1, v_2\} \in E_1\} = E_2$$

Matrices

The product AB is an $n \times n$ matrix with entries

$$m_{i,j} = \sum_{k=1}^n a_{i,k} b_{k,j} = a_{i,1} b_{1,j} + a_{i,2} b_{2,j} {+} \ldots {+} a_{i,n} b_{n,j}$$

Representing graphs using matrices

$$A = egin{bmatrix} 0 & 1 & 1 & 2 & 0 & 0 \ 1 & 0 & 0 & 0 & 3 & 0 \ 1 & 0 & 0 & 0 & 1 & 1 \ 2 & 0 & 0 & 0 & 0 & 1 \ 0 & 3 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 & 2 \end{bmatrix}$$

The adjacency matrix of G is the $n \times n$ matrix $A = (a_{i,j})$, where each entry $a_{i,j}$ is the number of edges with endpoints {i,j}

Let G be a graph, the number of paths of length k from vertex i to vertex j is the entry in row i, column j of the k^th power $A^k=A*A*...*A$, a single path with k loop edges is counted 2^k times

Week 12

Bipartite graphs

- 1. The set of vertices V(G) has a partition $\{V_1,V_2\}$ such that every edge is of the form $\{v_1,v_2\}$ where $v_k\in V_k$
- 2. The vertices can be colored with two color such that no two adjacent vertices have the same color
- 3. Every circuit in G has even length

Hall's marriage theorem

Complete matching from V_1 to V_2 if every vertex in V_1 is incident with an edge in M

Let G be a bipartite graph with partition $\{V_1,V_2\}$ of the vertices. There is a complete matching from V_1 to V_2 if and only if $|A| \leq |N(A)|$ for all $A \subseteq V_1$

Hall violater: |N(A)| < |A|

Finite state machine

A finite state machine $M = (S, I, O, f, g, s_0)$ consists of

- a finite set S of **states**
- a finite input alphabet I
- a finite output alphabet O
- a transition function $f: S \times I \to S$
- an **output function** $g: S \times I \rightarrow O$
- an initial state s_0

Formal languages

- A formal language L is a set of strings with symbols in A
- The empty string is denoted λ

Grammars

A phase-structure grammar G = (V, T, S, P) consists of

- a vocabulary V
- $\bullet \ \ \text{a subset} \ T \subseteq V \ \text{of terminal symbols}$
- ullet a start symbol $S \in V$
- a finite set of productions P