Prediction in Weight Lifting Exercises

Anna Huynh 1/12/2021

Synopsis

This is a project towards scientific research of human activity recognition, which is focused on discriminating between different human activities (sitting/standing/walking etc.). The approach we propose for Weight Lifting Exercises for the sake of investigating how well an activity performed by the device wearer. Therefore, we might predict the manner in which they did exercise rather than only quantify how much of a particular activity they do, i.e. sports training, clinical training and so on.

The goal of our first experiment was to assess whether we could detect mistakes in weight-lifting exercises of 06 participants in the study. In particular, the algorithm we made is eventually to predict which exercise participants took throughout 18 important indicators (let's see how we figured out 18 amongst 160 features of data-set) reported by a sensor device worn by themselves.

The write-up will walk you through the following pinpoints:

- How we build the model to learn the mapping from input to output.
- How we used cross-validation to understand how well the model will perform.
- What we think the expected out of sample error is.
- · Why we made the choices.

Eventually, we use our prediction model to forecast which exercise (class) applied in 20 different test cases, where we don't actually know the outcomes. The links are enclosed.

Training Data: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv Testing Data: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

Data is collected from the study, whereas 06 participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell Biceps Curl in five different fashions: - 1. Exactly according to the specification ($Class\ A$) - 2. Throwing the elbows to the front ($Class\ B$) - 3. Lifting the dumbbell only halfway ($Class\ C$) - 4. Lowering the dumbbell only halfway ($Class\ D$) - 5. Throwing the hips to the front ($Class\ E$)

More information is available from the website here:

http://web.archive.org/web/20161224072740/http:/groupware.les.inf.puc-rio.br/har

This data-set is licensed under the Creative Commons license (CC BY-SA).

1. Getting Data

```
library(readr)
train_pml <- read_csv("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv")</pre>
```

```
## Warning: Missing column names filled in: 'X1' [1]
```

```
## Parsed with column specification:
## cols(
##
    .default = col double(),
   user name = col character(),
##
   cvtd timestamp = col character(),
##
   new window = col character(),
##
    kurtosis roll belt = col character(),
##
    kurtosis picth belt = col character(),
##
    kurtosis yaw belt = col character(),
##
    skewness roll belt = col character(),
##
    skewness roll belt.1 = col character(),
##
    skewness yaw belt = col character(),
##
    max_yaw_belt = col_character(),
##
    min yaw belt = col character(),
##
    amplitude yaw belt = col character(),
##
    kurtosis picth arm = col character(),
##
    kurtosis yaw arm = col character(),
##
    skewness pitch arm = col character(),
##
    skewness yaw arm = col character(),
##
    kurtosis yaw dumbbell = col character(),
##
    skewness yaw dumbbell = col character(),
##
    kurtosis roll forearm = col character(),
##
    kurtosis picth forearm = col character()
##
    # ... with 8 more columns
## )
```

```
## See spec(...) for full column specifications.
```

```
## Warning: 182 parsing failures.
                   col expected actual
## row
             file
## 2231 kurtosis roll arm a double #DIV/0! 'https://d396qusza40orc.cloudfront.net/predmachlear
n/pml-training.csv'
## 2231 skewness roll arm a double #DIV/0! 'https://d396qusza40orc.cloudfront.net/predmachlear
n/pml-training.csv'
## 2255 kurtosis roll arm a double #DIV/0! 'https://d396qusza40orc.cloudfront.net/predmachlear
n/pml-training.csv'
## 2255 skewness roll arm a double #DIV/0! 'https://d396qusza40orc.cloudfront.net/predmachlear
n/pml-training.csv'
## 2282 kurtosis roll arm a double #DIV/0! 'https://d396qusza40orc.cloudfront.net/predmachlear
n/pml-training.csv'
## ....
## See problems(...) for more details.
```

```
\texttt{test\_pml} \ \texttt{<-} \ \texttt{read\_csv} \ (\texttt{"https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"})
```

```
## Warning: Missing column names filled in: 'X1' [1]
```

```
## Parsed with column specification:
## .default = col logical(),
## X1 = col double(),
## user name = col character(),
## raw timestamp part 1 = col double(),
##
   raw timestamp part 2 = col double(),
##
   cvtd timestamp = col character(),
##
   new window = col character(),
##
    num window = col double(),
##
   roll belt = col double(),
##
   pitch belt = col double(),
##
   yaw belt = col double(),
##
   total accel belt = col double(),
##
   gyros belt x = col double(),
##
   gyros belt y = col double(),
##
   gyros belt z = col double(),
##
   accel belt x = col double(),
##
   accel_belt_y = col_double(),
##
   accel belt z = col double(),
##
   magnet belt x = col double(),
##
   magnet belt y = col double(),
##
   magnet belt z = col double()
   # ... with 40 more columns
##
## )
## See spec(...) for full column specifications.
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.3
## -- Attaching packages ------------------------ tidyverse 1.3.0 --
## v ggplot2 3.3.2 v dplyr 1.0.2
## v tibble 3.0.4
                    v stringr 1.4.0
## v tidyr 1.1.2 v forcats 0.5.0
## v purrr 0.3.4
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'tibble' was built under R version 4.0.3
## Warning: package 'stringr' was built under R version 4.0.3
## Warning: package 'forcats' was built under R version 4.0.3
## -- Conflicts ----- tidyverse conflicts() --
```

x dplyr::filter() masks stats::filter()

```
## x dplyr::lag() masks stats::lag()
library(lubridate)
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
library(forecast)
## Warning: package 'forecast' was built under R version 4.0.3
## Registered S3 method overwritten by 'quantmod':
## method
   as.zoo.data.frame zoo
library(tseries)
## Warning: package 'tseries' was built under R version 4.0.3
head(train pml)
## # A tibble: 6 x 160
      X1 user name raw timestamp p~ raw timestamp p~ cvtd timestamp new window
   <dbl> <chr>
                              <dbl>
                                              <dbl> <chr>
##
      1 carlitos
## 1
                        1323084231
                                              788290 05/12/2011 11~ no
## 2
       2 carlitos
                         1323084231
                                             808298 05/12/2011 11~ no
## 3
       3 carlitos
                         1323084231
                                              820366 05/12/2011 11~ no
## 4
       4 carlitos
                                              120339 05/12/2011 11~ no
                         1323084232
## 5
       5 carlitos
                         1323084232
                                              196328 05/12/2011 11~ no
## 6
       6 carlitos
                         1323084232
                                              304277 05/12/2011 11~ no
## # ... with 154 more variables: num window <dbl>, roll belt <dbl>,
      pitch belt <dbl>, yaw belt <dbl>, total accel belt <dbl>,
####
      kurtosis roll belt <chr>, kurtosis picth belt <chr>,
## #
## #
      kurtosis yaw belt <chr>, skewness roll belt <chr>,
####
      skewness roll belt.1 <chr>, skewness yaw belt <chr>, max roll belt <dbl>,
####
      max picth belt <dbl>, max yaw belt <chr>, min roll belt <dbl>,
## #
      min pitch belt <dbl>, min yaw belt <chr>, amplitude roll belt <dbl>,
      amplitude pitch belt <dbl>, amplitude yaw belt <chr>,
## #
      var total accel belt <dbl>, avg roll belt <dbl>, stddev roll belt <dbl>,
## #
      var_roll_belt <dbl>, avg_pitch_belt <dbl>, stddev pitch belt <dbl>,
## #
## #
      var pitch belt <dbl>, avg yaw belt <dbl>, stddev yaw belt <dbl>,
## #
     var yaw belt <dbl>, gyros belt x <dbl>, gyros belt y <dbl>,
## #
      gyros belt z <dbl>, accel belt x <dbl>, accel belt y <dbl>,
```

```
accel belt z <dbl>, magnet belt x <dbl>, magnet belt y <dbl>,
       magnet belt z <dbl>, roll arm <dbl>, pitch arm <dbl>, yaw arm <dbl>,
## #
## #
       total accel arm <dbl>, var accel arm <dbl>, avg roll arm <dbl>,
       stddev roll arm <dbl>, var roll arm <dbl>, avg pitch arm <dbl>,
## #
## #
       stddev pitch arm <dbl>, var pitch arm <dbl>, avg yaw arm <dbl>,
## #
       stddev yaw arm <dbl>, var yaw arm <dbl>, gyros arm x <dbl>,
## #
      gyros arm y <dbl>, gyros arm z <dbl>, accel arm x <dbl>, accel arm y <dbl>,
       accel arm z < dbl>, magnet arm x < dbl>, magnet arm y < dbl>,
## #
## #
      magnet arm z <dbl>, kurtosis roll arm <dbl>, kurtosis picth arm <chr>,
####
      kurtosis_yaw_arm <chr>, skewness_roll_arm <dbl>, skewness_pitch_arm <chr>,
       skewness yaw arm <chr>, max roll arm <dbl>, max picth arm <dbl>,
## #
## #
      max yaw arm <dbl>, min roll arm <dbl>, min pitch arm <dbl>,
## #
      min yaw arm <dbl>, amplitude roll arm <dbl>, amplitude pitch arm <dbl>,
       amplitude yaw arm <dbl>, roll_dumbbell <dbl>, pitch_dumbbell <dbl>,
## #
## #
       yaw dumbbell <dbl>, kurtosis roll dumbbell <dbl>,
      kurtosis picth dumbbell <dbl>, kurtosis yaw dumbbell <chr>,
## #
       skewness roll dumbbell <dbl>, skewness pitch dumbbell <dbl>,
## #
## #
      skewness yaw dumbbell <chr>, max roll dumbbell <dbl>,
      max picth dumbbell <dbl>, max yaw dumbbell <dbl>, min roll dumbbell <dbl>,
## #
## #
      min pitch dumbbell <dbl>, min yaw dumbbell <dbl>,
## #
      amplitude roll dumbbell <dbl>, amplitude pitch dumbbell <dbl>,
      amplitude yaw dumbbell <dbl>, total accel dumbbell <dbl>,
## #
## #
      var accel dumbbell <dbl>, avg roll dumbbell <dbl>,
## #
       stddev roll dumbbell <dbl>, var roll dumbbell <dbl>, ...
dim(train pml)
```

```
dim(train_pm1)

## [1] 19622 160

dim(test_pml)

## [1] 20 160
```

2. Exploratory Data Analysis

2.1. Missing Values

```
## [1] 0 0 0 0 0 0 0 0 0 0 0 0 19216 ## [13] 19216 19216 19216 19216 19216 19216
```

```
library(naniar)

## Warning: package 'naniar' was built under R version 4.0.3
```

```
# Plot missing data
train_pml %>%
  slice(1:1000) %>%
  vis_miss()
```


Figure 01: Plot of missing values tells us of an imbalanced data-set

2.2. How have the number of specifications ("classe") changed per type of exercises?

```
## Warning: package 'ggthemes' was built under R version 4.0.3

# Need to make a new transformed data-set for this visualization

(
    classe_table <- train_pml %>%
        count(classe = factor(classe)) %>%
        mutate(pct = prop.table(n)) %>%
        arrange(-pct) %>%
        tibble()
)
```

```
## # A tibble: 5 x 3
```

```
## classe n pct
## <fct> <int> <dbl>
## 1 A 5580 0.284
## 2 B 3797 0.194
## 3 E 3607 0.184
## 4 C 3422 0.174
## 5 D 3216 0.164
```

```
ggplot(
 classe table %>% filter(classe != "NA"),
 mapping = aes(
   x = reorder(classe, n),
   y = pct,
   group = 1,
   label = scales::percent(pct)
) +
 theme fivethirtyeight() +
 geom bar(stat = "identity",
          fill = "#634832") +
 geom text(position = position dodge(width = 0.9),
           # move to center of bars
            hjust = -0.05,
            #Have Text just above bars
            size = 2.5) +
 labs(x = "Classes of Exercise",
      y = "Proportion of Dataset") +
 theme(axis.text.x = element text(
   angle = 90,
   vjust = 0.5,
   hjust = 1
 ggtitle("Classes of Exercise Listed in Weight Lifting Dataset") +
 scale y continuous(labels = scales::percent) +
 coord flip()
```


Figure 02: Class A of exercise (exactly according to the specification) dominated as compared to other classes in the data-set.

2.3. Data Transformation

```
# Drop useless features
train pml mod <- train pml %>%
        select(-c(X1, user name, raw timestamp part 1, raw timestamp part 2,
                  cvtd timestamp, new window, num window) ) %>%
        arrange(classe)
# transform meaningless values
rep1 <- subset(train pml mod, kurtosis picth belt %in%
                 gsub("#DIV/0!", 0, train pml mod$kurtosis picth belt) )
rep2 <- subset(rep1, kurtosis yaw belt %in%
                 gsub("#DIV/0!", 0, train pml mod$kurtosis yaw belt) )
rep3 <- subset(rep2, skewness roll belt.1 %in%</pre>
                 gsub("#DIV/0!", 0, train pml mod$skewness roll belt.1) )
rep4 <- subset(rep3, skewness yaw belt %in%</pre>
                 gsub("#DIV/0!", 0, train_pml_mod$skewness_yaw_belt) )
rep5 <- subset(rep4, kurtosis picth arm %in%
                 gsub("#DIV/0!", 0, train pml mod$kurtosis picth arm) )
rep6 <- subset(rep5, kurtosis yaw arm %in%
                 gsub("#DIV/0!", 0, train pml mod$kurtosis yaw arm) )
rep7 <- subset(rep6, skewness pitch arm %in%</pre>
                 gsub("#DIV/0!", 0, train pml mod$skewness pitch arm) )
```

2.5. Features Selection

After dropping features having over 90% missing values or meaningless values, our final training data owns 19,216 observations and 53 intrinsic features for modeling.

```
# Drop features having 98% missing values
sub train <- train pml com %>%
 select( classe, roll belt, yaw belt, gyros belt x, gyros belt z, accel belt y,
        magnet belt x,
        magnet belt z, pitch arm, total accel arm, gyros arm y, accel arm x,
        accel arm z, magnet arm y, pitch dumbbell, gyros dumbbell x, gyros dumbbell z,
        accel dumbbell y, magnet dumbbell x, magnet dumbbell z, pitch forearm,
        total accel forearm, gyros forearm y, accel forearm x, accel forearm z,
        magnet forearm y,
        pitch belt, total accel belt, gyros belt y, accel belt x, accel belt z,
        magnet belt y, roll arm, yaw arm, gyros arm x, gyros arm z, accel arm y,
        magnet arm x, magnet arm z, roll dumbbell, yaw dumbbell, total accel dumbbell,
        gyros dumbbell y, accel dumbbell x, accel dumbbell z, magnet dumbbell y,
        roll forearm, yaw forearm, gyros forearm x, gyros forearm z, accel forearm y,
        magnet forearm x, magnet forearm z
dim(sub train)
```

```
## [1] 19216 53

which(is.na(sub_train))
```

```
## integer(0)
```

3. Build Model

3.1. Split the data into training and validation sets

```
library(tidymodels)
## Warning: package 'tidymodels' was built under R version 4.0.3
## -- Attaching packages ------------------ tidymodels 0.1.2 --
## v broom 0.7.3 v recipes 0.1.15
## v dials
           0.0.9
                     v rsample 0.0.8
## v diais 0.0.9
                    v tune 0.1.2
## v modeldata 0.1.0
                    v workflows 0.2.1
## v parsnip 0.1.4
                     v yardstick 0.0.7
## Warning: package 'broom' was built under R version 4.0.3
## Warning: package 'dials' was built under R version 4.0.3
## Warning: package 'infer' was built under R version 4.0.3
## Warning: package 'modeldata' was built under R version 4.0.3
## Warning: package 'parsnip' was built under R version 4.0.3
## Warning: package 'recipes' was built under R version 4.0.3
## Warning: package 'rsample' was built under R version 4.0.3
## Warning: package 'tune' was built under R version 4.0.3
## Warning: package 'workflows' was built under R version 4.0.3
## Warning: package 'yardstick' was built under R version 4.0.3
## -- Conflicts ------ tidymodels conflicts() --
## x yardstick::accuracy() masks forecast::accuracy()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag()
                     masks stats::lag()
# Split the data into training and validation sets
set.seed(2021)
```

```
pml split <- initial split(sub train, strata = classe, prop = 3/4)
pml train <- training(pml split) # training set</pre>
pml test <- testing(pml split) # validation set</pre>
library(randomForest)
## Warning: package 'randomForest' was built under R version 4.0.3
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(caret)
## Warning: package 'caret' was built under R version 4.0.3
## Loading required package: lattice
## Attaching package: 'caret'
## The following objects are masked from 'package:yardstick':
##
       precision, recall, sensitivity, specificity
##
## The following object is masked from 'package:purrr':
##
       lift
##
# Important variables
mod rf <- randomForest(classe ~., data = pml_train)</pre>
order(varImp(mod rf), decreasing=TRUE)
```

```
1 2 20 19 26 45 46 18 17 30 39 7 31 23 44 32 4 52 37 41 43 33 6 40 24
## [26] 42 11 27 13 25 51 14 38  8 47 36 10 50 12 34 22  5 15 29 21 28  9  3 16 49
## [51] 48 35
# Calculate the number of principle components needed to capture 90% of the variance
preProc sub <- preProcess(pml train, method="pca", thresh=0.9)</pre>
preProc sub
## Created from 14414 samples and 53 variables
##
## Pre-processing:
   - centered (52)
   - ignored (1)
   - principal component signal extraction (52)
##
   - scaled (52)
##
## PCA needed 18 components to capture 90 percent of the variance
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.0.3
## corrplot 0.84 loaded
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.0.3
## Loading required package: survival
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
      cluster
## Loading required package: Formula
## Warning: package 'Formula' was built under R version 4.0.3
## Attaching package: 'Hmisc'
```

```
## The following object is masked from 'package:parsnip':
##
##
     translate
## The following objects are masked from 'package:dplyr':
##
    src, summarize
## The following objects are masked from 'package:base':
##
##
     format.pval, units
library (ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.0.3
# Plot correlation matrix of the most 18 important features
train pml cor <- sub train %>%
 select(roll belt, yaw belt, magnet dumbbell x, magnet dumbbell z,
       magnet forearm y, accel dumbbell x, accel dumbbell z, magnet dumbbell x,
       magnet arm z, accel belt x,
       magnet belt z, accel dumbbell y, accel belt z, accel forearm z,
       accel dumbbell x,
       gyros belt z, magnet belt y, magnet forearm x)
pmlData <- cor(train pml cor)</pre>
head(round(pmlData, 2))
                  roll belt yaw belt magnet dumbbell x magnet dumbbell z
## roll belt
                     1.00 0.82
                                            0.31
## yaw_belt
                     0.82
                             1.00
                                            -0.03
                                                            -0.22
## magnet dumbbell x
                     0.31 -0.03
                                            1.00
                                                            -0.17
## magnet dumbbell z
                     -0.50 -0.22
                                            -0.17
                                                             1.00
## magnet forearm y
                     0.03
                             0.04
                                            -0.04
                                                            -0.04
                    0.22 0.05
## accel dumbbell x
                                            0.43
                                                            0.05
                 magnet_forearm_y accel_dumbbell_x accel_dumbbell_z
##
                                   0.22
                           0.03
## roll belt
                                                         0.10
                           0.04
                                          0.05
## yaw belt
                                                        -0.23
## magnet dumbbell x
                          -0.04
                                          0.43
                                                         0.53
## magnet dumbbell z
                           -0.04
                                          0.05
                                                         0.03
## magnet forearm y
                           1.00
                                         -0.17
                                                        -0.09
                     -0.17
                                          1.00
## accel dumbbell x
                                                         0.68
      magnet arm z accel_belt_x magnet_belt_z accel_dumbbell_y
##
                       0.02 0.26 -0.07
## roll belt
                                                             -0.26
## yaw_belt
                        0.02
                                   0.71
                                               0.09
                                                              0.06
                      -0.04
## magnet dumbbell x
                                  -0.48
                                              -0.29
                                                             -0.27
## magnet_dumbbell_z
                                   0.25
                       -0.09
                                              -0.31
                                                              0.23
## magnet forearm y
                       0.12
                                   0.04
                                               0.04
                                                              0.04
                  -0.09 -0.14
                                         -0.24
## accel dumbbell x
                                                              -0.41
##
                 accel belt z accel forearm z gyros belt z magnet belt y
```

```
## roll belt
                        -0.99
                                        0.08
                                                   -0.46
                                                                -0.21
## yaw belt
                        -0.78
                                        0.17
                                                   -0.27
                                                                -0.06
## magnet dumbbell x
                       -0.35
                                                   -0.50
                                                                -0.24
                                       -0.19
## magnet dumbbell z
                                                               -0.19
                        0.50
                                       0.61
                                                   0.26
## magnet forearm y
                        -0.03
                                       0.03
                                                   0.01
                                                                0.00
## accel dumbbell x
                       -0.27
                                        0.27
                                                   -0.23
                                                                -0.37
##
                 magnet forearm x
## roll belt
                            -0.19
                            -0.09
## yaw belt
## magnet dumbbell x
                            -0.10
## magnet dumbbell z
                            0.24
## magnet forearm y
                            -0.30
## accel dumbbell x
                            -0.03
```

```
cormat <- pmlData
ggcorrplot::ggcorrplot(cormat, title = "Correlation of Extracted Variables")</pre>
```


Figure 03: Correlation Matrix of the most 18 important features

3.2. Cross-validation

```
# Create cross-validation bootstraps.
pml_train %>%
  count(classe)
```

```
## classe n
## 1 A 4104
## 2 B 2789
## 3 C 2514
## 4 D 2361
## 5 E 2646
```

```
set.seed(123)
pml_folds <- pml_train %>%
  mutate(classe = factor(classe)) %>%
  bootstraps(5)

pml_folds
```

Let's create a random forest model and set up a model workflow with the model and a formula pre-processor.

```
rf_spec <- rand_forest(trees = 250) %>%
  set_mode("classification") %>%
  set_engine("ranger")

pml_wf <- workflow() %>%
  add_formula(classe ~.) %>%
  add_model(rf_spec)

pml_wf
```

Let's fit the random forest model to the bootstrap re-samples.

```
library(ranger)

## Warning: package 'ranger' was built under R version 4.0.3

## ## Attaching package: 'ranger'

## The following object is masked from 'package:randomForest':
## importance

doParallel::registerDoParallel()
pml_rs <- fit_resamples(
    pml_wf,
    resamples = pml_folds,
    control = control_resamples(save_pred = TRUE)
)
pml_rs</pre>
```

```
## # Resampling results
## # Bootstrap sampling
## # A tibble: 5 x 5
    splits
                                 id
                                                .metrics
                                                                                           .predictions
                                                                 .notes
## <list>
                                 <chr> <list>
                                                                    <list>
## 1 <split [14.4K/5.3~ Bootstrap1 <tibble [2 x ~ <tibble [0 x ~ <tibble [5,317 x ~
## 2 <split [14.4 \text{K}/5.3 \text{^{\circ}}] Bootstrap2 <tibble [2 \times \text{^{\circ}}] <tibble [0 \times \text{^{\circ}}] <tibble [5,322 \times \text{^{\circ}}]
## 3 < split [14.4K/5.3 \sim Bootstrap3 < tibble [2 x <math>\sim < tibble [0 x \sim < tibble [5,255 x \sim ]]
## 4 <split [14.4 \text{K}/5.3 \text{^{\circ}}] Bootstrap4 <tibble [2 \times \text{^{\circ}}] <tibble [0 \times \text{^{\circ}}] <tibble [5,339 \times \text{^{\circ}}]
## 5 <split [14.4 \text{K}/5.3 \text{^{\sim}} Bootstrap5} \text{ <tibble } [2 x \times \text{<tibble } [0 x \times \text{<tibble } [5,309 x \times \text{<}]
```

3.3. Model Evaluation

Let's now fit to the entire training set and evaluate on the testing set.

```
pml_fit <- last_fit(pml_wf, pml_split)
collect_metrics(pml_fit)</pre>
```

```
pml_rs %>%
  collect_predictions() %>%
  group_by(id) %>%
  ppv(classe, .pred_class)
```

Compute ROC curves for each class.

```
pml_rs %>%
  collect_predictions() %>%
  group_by(id) %>%
  roc_curve(classe, .pred_A:.pred_E ) %>%
  ggplot(aes(1 - specificity, sensitivity, color = id)) +
  geom_abline(lty = 2, color = "gray80", size = 1.5) +
  geom_path(show.legend = FALSE, alpha = 0.6, size = 1.2) +
  facet_wrap(~.level, ncol = 5) +
  coord_equal()
```


Figure 04: Plots describe ROC curve from each class of exercise

Observation: We have an ROC curve for each class and each re-sample in this plot. Notice that the points of class were easy for the model to identify.

```
pml_rs %>%
  collect_predictions() %>%
  filter(.pred_class != classe) %>%
  conf_mat(classe, .pred_class) %>%
  autoplot(type = "heatmap")
```


Figure 05: Confusion Matrix of prediction and truth observations

Observation: The classes in weight lifting data-set was confused with many of the other classes, whereas class C was often confused with class D.

4. Trained model applied to validation data-set & expected out-of-sample error

4.1. Cross-validation on validation dataset

```
# Save model
pml_wf_model <- pml_fit$.workflow[[1]]

# predict on testing set
predict(pml_wf_model, pml_test[70, ])</pre>
```

```
## # A tibble: 1 x 1
## .pred_class
## <fct>
## 1 A
```

4.2. Out-of-sample-error

```
control_rf <- trainControl(method = "cv", 5)
model_rf <- train(classe ~ ., data = pml_train, method="rf",</pre>
```

```
trControl=control_rf, ntree=250)
model_rf
```

```
## Random Forest
##
## 14414 samples
     52 predictor
     5 classes: 'A', 'B', 'C', 'D', 'E'
##
## No pre-processing
## Resampling: Cross-Validated (5 fold)
## Summary of sample sizes: 11530, 11531, 11531, 11531, 11533
## Resampling results across tuning parameters:
##
##
   mtry Accuracy Kappa
    2
        0.9911197 0.9887646
   27 0.9907728 0.9883267
##
##
   52
         0.9856388 0.9818320
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
```

```
predict_rf <- predict(model_rf, pml_test)
confusionMatrix(pml_test$classe, predict_rf)</pre>
```

```
## Confusion Matrix and Statistics
##
##
          Reference
## Prediction A B
                      С
                           D
         A 1366 1 0
##
                           0
##
          В 2 927 0
                           0
                          0
          C 0
                 5 833
##
##
          D 0 0 6 779
##
                       0
##
## Overall Statistics
##
##
                Accuracy: 0.9965
##
                 95% CI: (0.9943, 0.9979)
##
    No Information Rate: 0.2849
     P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                  Kappa: 0.9955
##
##
  Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                     Class: A Class: B Class: C Class: D Class: E
                      0.9985 0.9936 0.9928 0.9974
## Sensitivity
                                                       0.9989
## Specificity
                      0.9997 0.9995 0.9987 0.9983
                                                       0.9995
```

```
## Pos Pred Value 0.9993 0.9978 0.9940 0.9911 0.9977
## Neg Pred Value 0.9994 0.9985 0.9985 0.9995 0.9997
## Prevalence 0.2849 0.1943 0.1747 0.1626 0.1835
## Detection Rate 0.2845 0.1930 0.1735 0.1622 0.1833
## Detection Prevalence 0.2847 0.1935 0.1745 0.1637 0.1837
## Balanced Accuracy 0.9991 0.9965 0.9958 0.9978 0.9992
```

```
# Out-of-sample-error in validation set
OOSE <- 1 - as.numeric(confusionMatrix(pml_test$classe, predict_rf)$overall[1])
OOSE</pre>
```

```
## [1] 0.003540192
```

Observation: Expected out-of-sample-error is 0.3% when model demonstrated 99.71% in accuracy.

5. Predict class of exercise in 20 test cases

```
predict(pml_wf_model, test_pml)
```

```
## # A tibble: 20 x 1
    .pred class
   <fct>
##
## 1 B
## 2 A
## 3 B
## 4 A
## 5 A
## 6 E
## 7 D
## 8 B
## 9 A
## 10 A
## 11 B
## 12 C
## 13 B
## 14 A
## 15 E
## 16 E
## 17 A
## 18 B
## 19 B
## 20 B
```