

DFS (Recursively)

SYC : 0

dst=6

Connected Component

-> Undiverted Greger

(1) (3) (4) (5) (6)

A subgraph of a directed graph is called as see if and only if for every pair of vertices A and B there exist a path from A to B and path from B to A.

STC RST: 0 -> 123456

GRAPH: dfc, bfs, aft, bft, istree, is (yeller, get CC, islamented 2 its applicationi.

→ Directed Acyclic Grapes (DAG)

u->V

TS: u should come before v.

DFT? 523104 3 but not TS

Undirected Graph?

1→0 10 0→1 01

1

inserting

deleting

frd

(10 20 30 40 80 15 20)

fina (10) ? o(n)

final (15) ? o(n)

hach for! 1/5

Hash fox?

- keys %. no g briekets

- (key * constant) % no & buckets

Reyc: 10 11 12 20 20

·/· 5

10:/·5:0 11:/·5:1 12:/·5:2 30:/·5:6 80:/·5:0

30 search?
20-15=0: search for 30 m oth bucket only.

Collision Reduction ?

2. Open Addressing - Linear Probing: Enpty State Server Sequetally

Duad ratic Probing

fashion

2. Obsel Addressing / Chaining,

linear Prosbring:

10	12	20	
10	570		
11	5=1		
12	5=2		
20	5=0		
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20
10	11	12	20

9,5

