(172.52) (71.64) (97.52) (115.38) (760.15) (125.83) (103.35) (74)

Robai Cyton Gamma 1500: 7 Degrees of Freedom Serial Linkage Robotic Arm

DH Table

i	α _{i-1}	a _{i-1}	θ_{i}	d _i
1	0°	0	θ_1	0
2	90°	0	θ ₂ -90°	0
3	90°	-125.83	θ ₃ +180°	0
4	90°	115.83	θ ₄ +180°	0
5	90°	-97.52	θ ₅ +180°	0
6	90°	71.64	θ ₆ +90°	0
7	90°	0	0°	0
EE	0°	0	180°	175.52

Austin Owens Date: 5/7/2016

Forward Kinematics

$${}_{1}^{0}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} s_{2} & c_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -c_{2} & s_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3} = \begin{bmatrix} -c_{3} & s_{3} & 0 & -125.83 \\ 0 & 0 & -1 & 0 \\ -s_{3} & -c_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}T = \begin{bmatrix} -c_{4} & s_{4} & 0 & 115.83 \\ 0 & 0 & -1 & 0 \\ -s_{4} & -c_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{5}T = \begin{bmatrix} -c_{5} & s_{5} & 0 & -97.52 \\ 0 & 0 & -1 & 0 \\ -s_{5} & -c_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}T = \begin{bmatrix} -s_{6} & -c_{6} & 0 & 71.64 \\ 0 & 0 & -1 & 0 \\ c_{6} & -s_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{7}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{7}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{7}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{EE}^{0}T = {}_{1}^{0}T * {}_{2}^{1}T * {}_{3}^{2}T * {}_{4}^{3}T * {}_{5}^{4}T * {}_{7}^{6}T * {}_{7}^{6}T$$