Univ.Saida	Processus Stochastique
Département de Maths	2020/2021
1 ^{èr} Année Master (A.S.S.P)	$Dr\ R.\ Rouane$

◄ Espérance conditionnelle ▶

Exercice 1 1. Soit \mathcal{D}_1 et \mathcal{D}_2 deux tribus contenues dans \mathcal{A} . On note $\mathcal{D} = \mathcal{D}_1 \vee \mathcal{D}_2$ la tribu engendrée par la classe $\mathcal{D}_0 = \{B_1 \cap B_2/B_1 \in \mathcal{D}_1, B_2 \in \mathcal{D}_2\}$, On considére une v.a.r. Y telle que $E|Y| < \infty$, et on suppose que les les tribus, $\sigma(Y) \vee \mathcal{D}_1$ et \mathcal{D}_2 sont indépendantes.

Montrer $E(Y/\mathcal{D}) = E(Y/\mathcal{D}_1)$ p.s.

2. Soit (X_i) une suite de v.a.r. indépentes, équidistribuées, telles que $E|X_i| < +\infty$, on pose $S_n = X_1 + ... + X_n$. Déterminer $E(X_1/S_n, S_{n+1}, ...)$.

Exercice 2 Soient X, Y deux v.a. telles que E[X] = E[Y] = 0 et telles que $Z = X + \beta Y$ est independante de Y pour un quelque $\beta \in \mathbb{R}$. Montrer que $E[X/Y] = -\beta Y$.

Exercice 3 On suppose que X est de carré intégrable. Soit $\mathcal B$ une sous tribu de $\mathcal A$. On pose

$$Var(X/\mathcal{B}) = E(X^2/\mathcal{B}) - \mathbb{E}(X/\mathcal{B})^2$$

Montrer que $Var(X) = \mathbb{E}(Var(X/\mathcal{B})) + Var(\mathbb{E}(X/\mathcal{B})).$

Exercice 4 Soient $X_1; ...; X_n$ des var indépendantes, intégrables et \mathcal{B} la tribu définie par $\mathcal{B} = \sigma(X_1; ...; X_n)$. Calculer $\mathbb{E}(X_1 + ... + X_n/\mathcal{B})$ et $E(X_1...X_n/\mathcal{B})$.

Exercice 5 Soient X et Y deux var indépendantes de loi exponentielle de paramètre 1. On pose Z = X + Y. Déterminer la loi du couple (X,Z). En déduire la densité conditionnelle de X sachant Z et $\mathbb{E}(X/Z)$.

Exercice 6 Soient X et Y deux var indépendantes, de même loi ayant pour densité $f(z) = \frac{1}{z^2} \mathbf{1}_{]1,+\infty[}(z)$. On pose U = XY et $V = \frac{X}{Y}$. Quelle est la loi de (U, V)? En déduire la densité conditionnelle de V sachant U et E(V/U)

Exercice 7 Soient $X_1; ...; X_n$ des var indépendantes de même densité f(x). On pose $X = max(X_1; ...; X_n)$ et $Y = min(X_1; ...; X_n)$.

1. Déterminer la loi conditionnelle de Y sachant X = x et $\mathbb{E} = (Y/X)$.

2. Application : les X_i sont des v.a uniformes sur [0,1]. Donner les résultade la question précédente et les interpréter

Exercice 8 Soit (X_i) une suite de v.a.r iid, avec $\mathbb{E}(X_i) = \mu$, $Var(X_i) = v$. Soit N une v.a entière, indépendante des X_i avec $\mathbb{E}(N) = \gamma$ et Var(N) = w.

- 1. Montrer que $\mathbb{E}(S_N/N=n)=\mathbb{E}(S_n)$.
- 2. En déduire $\mathbb{E}(S_N)$ et $Var(S_N)$.

Exercice 9 Soit (X, Y) un couple aléatoire de densité jointe :

$$f(x,y) = cx(y-x)e^{-y}\mathbf{1}_{0 < x < y}$$

- 1. Déterminer c pour que f soit effectivement une densité.
- 2. Calculer f(x/y), densité conditionnelle de X sachant Y = y.
- 3. En déduire que E[X/Y] = Y/2.
- 4. Calculer f(y/x), densité conditionnelle de Y sachant X = x.
- 5. En déduire que E[Y/X] = X + 2.
- 6. Déduire des questions 3 et 5 les quantités E[X] et E[Y].

Exercice 10 Soit (X, Y) un couple aléatoire de densité jointe :

$$f(x,y) = \frac{1}{y}e^{-\frac{x}{Y}-y}1_{]0,+\infty[^2}(x,y)$$

- 1. Déterminer la densité marginale f(y) de Y.
- 2. En déduire la densité conditionnelle f(x/y).
- 3. Que vaut E[X/Y = y]. En déduire l'espérance conditionnelle de X sachant Y.