Insper

APS 3 – Modelos de Redes Lineares Professor Fabiano Daher Adegas

> Matheus Amaral Ricardo Thiago Maitan Pegorer

> > São Paulo 10/2021

Sumário

1.	Exercício 1	3
2.	Exercício 2	3
	a)	3
	b)	3
	c)	3
	d)	3
	e)	
3.	Exercício 3	4
	Parte A	4
	Resultados	5
	Parte B	6
	Resultados	7

1. Exercício 1

6 Mb/s é o máximo que "a" pode enviar a "e".

2. Exercício 2

a)

b)

Sendo P o conjunto de plantas das usinas, C o conjunto de cidades, " $c_{i,j}$ " o custo, " $a_{i,j}$ " a capacidade, S a oferta e D a demanda:

$$c_{i,j} \leq a_{i,j}, \forall i \in P, \forall j \in C$$

$$\sum_{j} x_{i,j} \le S_i, \forall i \in P$$

$$\sum_{i} x_{i,j} = D_i, \forall j \in C$$

c)

O custo total mínimo aumentou, já que inserimos uma restrição a mais, consequentemente diminuindo o número de soluções possíveis. Além disto, as fontes ficaram mais diversificadas, visto que antes apenas a cidade 5 recebia energia de 2 fontes e, após a adição da nova restrição, apenas a cidade 1 possui só uma usina como fonte (devido à tabela 13.1 do problema que define o custo de transmissão elétrica das usinas para cidades, e nesta tabela a cidade 1 só tem a usina 2 como fonte de energia).

d)

Sendo F a fração que define a porcentagem máxima em que a demanda de uma cidade pode ser atendida por uma usina:

$$\frac{x_{i,j}}{D_i} \cdot 100 \le F, \forall i \in P, \forall j \in C - \{1\}$$

$$\sum_{j} x_{i,j} \le S_i, \forall i \in P$$

$$\sum_{i} x_{i,j} = D_i, \forall j \in C$$

$$\sum_{i} x_{i,j} = D_i, \forall j \in C$$

e)

O custo total mínimo também aumentou em relação ao problema original, porém aumentou em relação ao item d), pois adicionou uma nova restrição ao problema original, mas esta tornou-se uma otimização dos itens anteriores, já que, da mesma forma, diversificou as fontes de energia para as cidades (menos a cidade 1 pelo mesmo motivo citado anteriormente), entretanto não possui dados fixos e "artificiais" que dificultam o processo de otimização, logo os valores dos custos são os mais baixos possíveis dentro das restrições.

3. Exercício 3

Parte A

A figura 1 abaixo ilustra o mapa em questão com os nós definidos para cada interseção entre as ruas.

Figura 1: Mapa de nós do problema

Figura 2: Rede Linear do problema

A figura 2 acima ilustra a Rede Linear construída, conectando entre as ruas que se conectam e os respectivos tempos para ir para cada ponto.

A Tabela 1 abaixo, refere-se a Matriz construída a partir da Rede Linear:

	0	1	2	3	4	5	6	7	8	9
0	0	20	0	12	0	0	0	0	0	0
1	20	0	18	0	0	0	0	18	0	0
2	0	18	0	32	0	28	0	0	25	0
3	12	0	32	0	18	0	0	0	0	0
4	0	0	0	18	0	30	13	0	0	0
5	0	0	28	0	30	0	0	0	21	49
6	0	0	0	0	13	0	0	0	0	38
7	0	18	0	0	0	0	0	0	36	28
8	0	0	25	0	0	21	0	36	0	40
9	0	0	0	0	0	49	38	28	40	0

Tabela 1: Matriz de tempo entre os nós

Resultados

Pontos	0	1	7	9
Tempo	0	20	18	28
Tempo Acumulado	0	20	38	66

Tabela 2: Resultados do problema

Analisando a tabela 2 contendo os resultados do problema, conclui-se que o menor tempo possível para ir do ponto de partida para o destino é de 66 segundos.

Figura 3: Mapa de nós do problema

A figura 3 acima ilustra o mapa em questão com os nós definidos para cada interseção entre as ruas.

Figura 4: Rede Linear do problema

A figura 4 acima ilustra a Rede Linear construída, conectando as ruas que se conectam e os respectivos tempos para ir para cada ponto.

A tabela 2, abaixo, ilustra a Matriz de Tempo, obtida a partir da analise da Rede Linear construída (figura 4).

	0	1	2	3	4	5	6	7	8	9
0	0	0	12	0	0	0	0	0	0	0
1	20	0	0	18	0	0	0	0	0	0
2	0	0	0	32	18	0	0	0	0	0
3	0	18	32	0	0	28	0	0	25	0
4	0	0	0	0	0	30	13	0	0	0
5	0	0	0	28	30	0	0	0	21	49
6	0	0	0	0	0	0	0	0	0	38
7	0	18	0	0	0	0	0	0	36	0
8	0	0	0	25	0	21	0	36	0	40
9	0	0	0	0	0	49	0	28	40	0

Tabela 3: Matriz de Tempos

Resultados

Pontos	0	2	4	6	9
Tempo	0	12	18	13	38
Tempo Acumulado	0	12	30	43	81

Tabela 4: Resultados do problema

Analisando a Tabela 4, a qual contêm os resultados obtidos pelo programa desenvolvido, conclui-se que adicionando tais restrições de sentido o tempo total para se realizar o trajeto será de 81 segundos, tendo um aumento de 15 segundos em relação a resolução anterior, a qual não possuía restrições de sentido da via.