

Kraftfahrzeug-Bestand

a) In der nachstehenden Tabelle ist der Kraftfahrzeug-Bestand in Österreich für ausgewählte Jahre angegeben.

Ende des Jahres	Kraftfahrzeug-Bestand in Millionen Stück
2008	5,87
2010	6,09
2012	6,30
2014	6,47
2016	6,65
2018	6,90

Datenquelle: https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/verkehr/strasse/kraftfahrzeuge_bestand/index.html [21.10.2020].

Mit den Zahlen aus der obigen Tabelle wird die nachstehende Berechnung durchgeführt.

$$\frac{6,9-6,3}{6,3}\approx 0,095$$

1) Interpretieren Sie das Ergebnis der obigen Berechnung im gegebenen Sachzusammenhang.

[0/1 P.]

Der Kraftfahrzeug-Bestand soll in Abhängigkeit von der Zeit näherungsweise durch die lineare Funktion K beschrieben werden.

t ... Zeit in Jahren mit t = 0 für das Ende des Jahres 2008 K(t) ... Kraftfahrzeug-Bestand zur Zeit t in Millionen Stück

- 2) Stellen Sie mithilfe der Regressionsrechnung eine Gleichung dieser linearen Funktion K auf. Wählen Sie dabei t = 0 für das Ende des Jahres 2008. [0/1 P.]
- 3) Interpretieren Sie den Wert der Steigung von K im gegebenen Sachzusammenhang.

[0/1 P.]

Die Funktionswerte weichen von den Tabellenwerten des Kraftfahrzeug-Bestands ab.

4) Berechnen Sie diese absolute Abweichung für das Jahr 2018.

[0/1 P.]

Bundesministerium Bildung, Wissenschaft und Forschung

b) Die zeitliche Entwicklung des Diesel-PKW-Bestands in Österreich kann modellhaft durch die logistische Funktion *D* beschrieben werden.

$$D(t) = \frac{2,84}{1 + 277 \cdot e^{-0,19 \cdot t}}$$

 $t \dots$ Zeit in Jahren mit t = 0 für das Ende des Jahres 1970

D(t) ... Diesel-PKW-Bestand zur Zeit t in Millionen Stück

1) Ermitteln Sie mithilfe von *D* den prognostizierten Wert für den Diesel-PKW-Bestand am Ende des Jahres 2025.

Millionen	Stück
I V IIIII OI I OI I	Otdon

[0/1 P.]

Für die allgemeine Form einer logistischen Wachstumsfunktion f gilt:

$$f(t) = \frac{a}{b + c \cdot d^t}$$
a, b, c, d ... positive Parameter

0 < d < 1

2) Kreuzen Sie denjenigen Ausdruck an, dem sich die Funktionswerte von f mit wachsendem t in jedem Fall annähern. [1 aus 5] [0/1 P.]

<u>a</u> b	
<u>a</u> c	
$\frac{a}{c \cdot d}$	
$\frac{a}{b+c}$	
$\frac{a}{b+c\cdot d}$	

c) Der Elektro-PKW-Bestand ist in den letzten Jahren stark gestiegen. In der nachstehenden Tabelle sind für ausgewählte Jahre die prozentuellen Änderungen des Elektro-PKW-Bestands jeweils am Ende eines Jahres gegenüber dem Ende des jeweiligen Vorjahres angegeben (Werte gerundet).

Ende des Jahres	2015	2016	2017	2018
Änderung gegenüber dem Ende des Vorjahres	+49 %	+80 %	+61 %	+43 %

1) Berechnen Sie die mittlere jährliche prozentuelle Änderung des Elektro-PKW-Bestands für den Zeitraum vom Anfang des Jahres 2015 bis zum Ende des Jahres 2018. [0/1 P.]

Am Ende des Jahres 2018 betrug der Elektro-PKW-Bestand *E* Stück. Am Ende des Jahres 2017 betrug der Elektro-PKW-Bestand *X* Stück.

2)	Stellen Sie mithilfe w	on <i>E</i> aina Formal zu	r Berechnung von X auf.
~)	Steller Sie Hittille vo	JII E EILIE FOITHEI ZU	i berechilding von A aul.

X =	[0/1 P.]
-----	----------

Bundesministerium Bildung, Wissenschaft und Forschung

SRDP Standardisierte Reife- und Diplomprüfung

Möglicher Lösungsweg

- **a1)** Der Kraftfahrzeug-Bestand ist im Zeitraum vom Ende des Jahres 2012 bis zum Ende des Jahres 2018 um rund 9,5 % gestiegen.
- a2) Ermittlung mittels Technologieeinsatz:

$$K(t) = 0.1 \cdot t + 5.88$$

- a3) Gemäß diesem Modell steigt der Kraftfahrzeug-Bestand um 100000 Stück pro Jahr.
- a4) K(10) = 6.88absolute Abweichung vom Tabellenwert: 6.9 - 6.88 = 0.02

Auch die Angabe von –0,02 ist als richtig zu werten.

- a1) Ein Punkt für das richtige Interpretieren im gegebenen Sachzusammenhang.
- a2) Ein Punkt für das richtige Aufstellen der Gleichung von K.
- a3) Ein Punkt für das richtige Interpretieren im gegebenen Sachzusammenhang.
- a4) Ein Punkt für das richtige Berechnen der absoluten Abweichung.
- b1) 2,817... Millionen Stück
- b2)

- **b1)** Ein Punkt für das richtige Ermitteln des prognostizierten Wertes für den Diesel-PKW-Bestand am Ende des Jahres 2025.
- b2) Ein Punkt für das richtige Ankreuzen.
- **c1)** $\sqrt[4]{1,49 \cdot 1,8 \cdot 1,61 \cdot 1,43} 1 = 0,5763...$

Die mittlere jährliche prozentuelle Änderung beträgt rund 57,6 %.

c2)
$$X = \frac{E}{1,43}$$

- c1) Ein Punkt für das richtige Berechnen der mittleren jährlichen prozentuellen Änderung.
- c2) Ein Punkt für das richtige Aufstellen der Formel.