

Model Development Phase Template

Date	16th June 2024
Team ID	LTVIP2025TMID33140
Project Title	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques.

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
NAIVE BAYES
                                                                 RIDGE CLASSIFIER
    from sklearn.naive_bayes import GaussianNB
                                                                      from sklearn.linear_model import RidgeClassifier
    nb = GaussianNB()
                                                                      # Ridge Classifier
    nb.fit(X_train, y_train)
                                                                     rg = RidgeClassifier()
                                                                     rg.fit(X_train, y_train)
GaussianNB()
                                                                 RidgeClassifier()
RANDOM FOREST
                                                                 SUPPORT VECTOR CLASSIFIER [ SVC ]
    from sklearn.ensemble import RandomForestClassifier
                                                                      from sklearn.svm import SVC
    rf = RandomForestClassifier()
    rf.fit(X_train, y_train)
                                                                      # Support Vector Classifier (SVC)
                                                                     SVC = SVC()
                                                                      svc.fit(X_train, y_train)
RandomForestClassifier()
                                                             ... SVC()
LOGISTIC REGRESSION CV
                                                                 LOGISTIC REGRESSION
    from sklearn.linear_model import LogisticRegressionCV
    # Logistic Regression CV
                                                                      from sklearn.linear_model import LogisticRegression
    lcv = LogisticRegressionCV(cv=5)
    lcv.fit(X_train, y_train)
                                                                      log = LogisticRegression()
                                                                      logistic = log.fit(X_train, y_train)
LogisticRegressionCV(cv=5)
                                                             [157]
```


KNN

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)

[162]

··· KNeighborsClassifier()

XGBOOST

from xgboost import XGBClassifier
model=XGBClassifier()
model.fit(X,y)

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, random_state=None, ...)

Model Validation and Evaluation Report:

	I						
Model	Clas	ssificat	tion R	leport		Accuracy	Confusion Matrix
Naive Bayes	Classification 0 1 accuracy macro avg weighted avg	Report (Nai precision 0.68 0.84 0.76 0.78	0.72 0.81 0.77 0.81	1: f1-score 0.70 0.82 0.78 0.76 0.78	support 68 122 190 190 190	35.79 %	Confusion Matrix (Naive bayes): [[49 19] [23 99]]
Random Forest	Classification 0 1 accuracy macro avg weighted avg	Report (Raprecision 0.84 0.85 0.85 0.85		est): f1-score 0.77 0.89 0.85 0.83 0.84	support 68 122 190 190 190	73.16 %	Confusion Matrix (Random Forest): [[48 20] [9 113]] Classification Bonant (Bandom Forest

Logistic	Classification	Report (Log precision		ression CV) f1-score): support	73.16 %	Confusion Matrix (Logistic Regression CV):
Regression CV	0 1	0.81 0.82	0.63 0.92	0.71 0.86	68 122		[[43 25] [10 112]]
	accuracy macro avg weighted avg	0.81 0.82	0.78 0.82	0.82 0.79 0.81	190 190 190		

Ridge Classifier	classification 0 1 accuracy macro avg weighted avg	n Report (Rid precision 0.85 0.84 0.85 0.84		fier): f1-score 0.75 0.88 0.84 0.82 0.84	support 68 122 190 190 190	35.79 %	Confusion Matrix (Ridge Classifier): [[46 22] [8 114]]
Support Vector Classifier	Classification 0 1 accuracy macro avg weighted avg	n Report (Supprecision 0.50 0.65 0.58 0.60	0.09 0.95 0.52 0.64	or Classif. f1-score 0.15 0.77 0.64 0.46 0.55	ier): support 68 122 190 190 190	35.79 %	Confusion Matrix (Support Vector Classifier): [[6 62] [6 116]]
Logistic Regression	Classificatio 0 1 accuracy macro avg weighted avg	n Report (Log precision 0.80 0.79 0.80 0.79		(ression): f1-score 0.67 0.85 0.79 0.76 0.79	support 68 122 190 190 190	74.21 %	Confusion Matrix (Logistic Regression): [[39 29] [10 112]]

KNN	[7 115]] Classification	Report (KNN	1):			86.32 %	Confusion Matrix (KNN):
		precision	recall	f1-score	support		the application of the control of th
	Ø	0.88	0.72	0.79	68		[[49 19]
	1	0.86	0.94	0.90	122		[7 115]]
	accuracy			0.86	190		61:f:
	macro avg	0.87	0.83	0.84	190		
	weighted avg	0.86	0.86	0.86	190		
XG Boost	,	precision	recall		support	64.21 %	Confusion Matrix (XGBoost): [[48 20]
	0	0.83	0.71	0.76	68		[10 112]]
	1	0.85	0.92	0.88	122		[10 112]]
	accuracy			0.84	190		
	macro avg	0.84	0.81	0.82	190		
	weighted avg	0.84	0.84	0.84	190		