\times	×	5	R				
Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			
Date	1	/	

Session 11	Martix	Inverse

2025.1.8

Inverse of
$$\vec{A}$$
: $AM = I$, $MA = I$
 $M = A^T$ $AX = B$, $X = B \cdot A^{-1}$

Example:
$$A = \begin{bmatrix} 2 & 3 & 3 & 7 \\ 2 & 4 & 5 & 5 \\ 1 & 1 & 2 & 1 \end{bmatrix}$$

以	7		R	
T	1	100	1	

Memo No.			
Date	1	1	

Мо	T	W	e Th	Fr	Sa	Su

(3) Transpose:

switch rows & adumns.

$$\begin{bmatrix} 3 & 1 - 2 \\ -3 & 1 & 1 \\ 3 & -4 & 2 \end{bmatrix} \xrightarrow{\text{transpse}} adj(A) = \begin{bmatrix} 3 - 3 & 3 \\ 1 & 1 - 4 \\ -2 & 1 & 2 \end{bmatrix}$$

14) Divided by determinant of A

$$\begin{vmatrix} 2 & 3 & 3 \\ 2 & 4 & 5 \end{vmatrix} = 3, \quad A^{-1} = \frac{1}{3} \begin{bmatrix} 3 & -3 & 3 \\ 1 & 1 & -4 \end{bmatrix}$$

Reading:

 E_X : $a_{1,1}X_1 + a_{1,2}X_2 = b_1$

az X 1 + az X = bz

$$AR = B$$
, $x = \begin{pmatrix} x_1 \\ b_2 \end{pmatrix}$ $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$

nxn system also can be written as:

$$\vec{A} \cdot \vec{x} = \vec{b}$$
, \vec{A} : (a))

In Verse Matrices:

$$Ax = b$$
, set $MA = I$

$$M \cdot (Ax) = M \cdot b$$

\tilde{\t	Y	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			_
Date	1	1	

Example 21

Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ and $M = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix}$

MA = I $\binom{-3}{2} \binom{2}{1} \binom{2}{2} = \binom{3}{3} = \binom{3}{3}$

find the solution of systems, 121 the yi in terms $(1) x_1 + 2x_2 = -1 \quad (2/3) = y_1 + 2y_2$

 $2x_1 + 3x_2 = 4$ $x_2 = 2y_1 + 3y_2$

17: $\vec{b} = (\vec{4})$

A.x = b

 $X = M.b = \begin{pmatrix} -3 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 11 \\ -6 \end{pmatrix}$

so the solution: X1=11, X2=-6

(2) $\chi = \beta y$ so $y = M_1 \chi \Rightarrow \begin{cases} \gamma_1 = -3\chi_1 + 2\chi_2 \\ \gamma_2 = 2\chi_1 - \chi_2 \end{cases}$

Мо	Tu	We	Th	Fr	Sa	Su	
							,

Memo No. _______/

How we can get of?

first M exist \ IR +0

because MA=I = IMIIAI = II | = | = /A/ +0

M's proper name AT

Pefination:

A : nxn , 18/ +0

the the invorse of B is an nxn mutrix,

written AT, A.AT=In, ATA=In

auxiliary matrix adj A called the adjoint

of A :

 $A^{-1} = \frac{1}{|A|} adj(A) = \frac{1}{|A|} \cdot \begin{pmatrix} A_{11} & A_{12} & B_{13} \\ A_{21} & A_{22} & B_{23} \end{pmatrix}^{T}$ $A_{21} A_{32} A_{34}$

steps:

1, calculate the matrix of minors

2 change the signs of the entires according to

the checkboard rule 4)iti

3. Transpose the resulting, this gives and (A)

10 4. Divided by every entry by 121

The formula of
$$2x2$$
 $adj(0)$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \begin{pmatrix} d & -c \\ -b & \alpha \end{pmatrix} \xrightarrow{T} \begin{pmatrix} d & -b \\ -c & \alpha \end{pmatrix} \rightarrow \begin{pmatrix} d & -b \\ -b & \alpha \end{pmatrix} \rightarrow \begin{pmatrix} d & -b \\ -b & \alpha \end{pmatrix} \rightarrow \begin{pmatrix} d & -b \\ -c & \alpha \end{pmatrix} \rightarrow \begin{pmatrix} d & -c \\ -c & \alpha \end{pmatrix} \rightarrow \begin{pmatrix} d & -c$$

the second row