Package 'Sim.DiffProc'

June 5, 2012

Type Package

Title Simulation of Diffusion Processes

Version 2.5

Date 2012-06-05

Author Kamal Boukhetala, Arsalane Guidoum

Maintainer Arsalane Guidoum <starsalane@gmail.com>

Depends R (>= 2.14.1), tcltk, stats4, rgl

Description The package Sim.DiffProc is an object created in the R language for simulation and modeling of stochastic differential equations (SDEs), and statistical analysis of diffusion processes solution of SDEs. This package contains many objects (code/function), for example a numerical methods to find the solutions to SDEs (one, two and three dimensional), which simulates a flows trajectories, with good accuracy. Many theoretical problems on the SDEs have become the object of practical research, as statistical analysis and simulation of solution of SDEs, enabled many searchers in different domains to use these equations to modeling and to analyse practical problems, in financial and actuarial modeling and other areas of application, for example modelling and simulate of dispersion in shallow water using the attractive center (Boukhetala K, 1996), and the stochastic calculus are applied to the random oscillators problem in physics.

We hope that the package presented here and the updated survey on the subject might be of help for practitioners, postgraduate and PhD students, and researchers in the field who might want to implement new methods and ideas using R as a statistical environment.

License GPL (>= 2)

Classification/ACM F.0, G.3

URL http://www.r-project.org,http://www.inside-r.org/packages/cran/Sim.DiffProc

Repository CRAN

LazyLoad yes

2 R topics documented:

R topics documented:

Sim.DiffProc-package	
ABM	
ABMF	
Ajdbeta	
Ajdchisq	
Ajdexp	1
Ajdf	
Ajdgamma	
Ajdlognorm	1
Ajdnorm	1
Ajdt	1
Ajdweibull	
AnaSimFPT	1
AnaSimX	
Appdcon	
Asys	
BB	
BBF	
Besselp	
BMcov	
BMinf	
BMIrt	
BMIto1	
BMIto2	
BMItoC	
BMItoP	
BMItoT	
BMN	
BMN2D	
BMN3D	
BMNF	
BMP	
BMRW	
BMRW2D	
BMRW3D	
BMRWF	
BMscal	
BMStra	4
BMStraC	4
BMStraP	4
BMStraT	4
CEV	5
CIR	5
	5
CIRhy	
CKLS	5
DATA 2	5
DATA 2	
DATA3	
diffBridge	
DWP	5

FBD	
fctgeneral	
fctrep_Meth	60
GBM	61
GBMF	62
hist_general	
hist_meth	
HWV	
HWVF	
Hyproc	
Hyprocg	
INFSR	
JDP	
Kern_general	72
Kern_meth	74
MartExp	75
OU	76
OUF	77
PDP	
PEABM	
PEBS	
PEOU	
PEOUExp	
PEOUG	
PredCorr	
PredCorr2D	
PredCorr3D	
RadialP2D_1	
RadialP2D_1PC	93
RadialP2D_2	95
RadialP2D_2PC	96
RadialP3D 1	
RadialP3D 2	
RadialP 1	
RadialP 2	
ROU	
Sharosc	
showData	
SLVM	
snssde	
snssde2D	
snssde3D	
Sosadd	114
Spendu	116
Srayle	117
SRW	
SSCPP	
Stbeta	
Steauchy	
Stehisq	
•	
Stexp	
Stgamma	125

160

Stgamma3
Stgp
Stgumbel
Stlgamma3
Stllogis
Stllogis3
Stlnorm
Stlnorm3
Stlogis
Stst
Stweibull
Stweibull3
Svandp
Telegproc
test_ks_dbeta
test_ks_dchisq
test_ks_dexp
test_ks_df
test_ks_dgamma
test_ks_dlognorm
test_ks_dnorm
test_ks_dt
test_ks_dweibull
tho_02diff
tho_M1
tho_M2
TwoDiffAtra2D
TwoDiffAtra3D
WFD
WNG

Sim.DiffProc-package Simulation of Diffusion Processes.

Description

Index

The package Sim.DiffProc is an object created in the R language for simulation and modeling of stochastic differential equations (SDEs), and statistical analysis of diffusion processes solution of SDEs. This package contains many objects (code/function), for example a numerical methods to find the solutions to SDEs (one, two and three dimensional), which simulates a flows trajectories, with good accuracy. Many theoretical problems on the SDEs have become the object of practical research, as statistical analysis and simulation of solution of SDEs, enabled many searchers in different domains to use these equations to modeling and to analyse practical problems, in financial and actuarial modeling and other areas of application, for example modeling and simulate of dispersion in shallow water using the attractive center (Boukhetala K, 1996), and the stochastic calculus are applied to the random oscillators problem in physics. We hope that the package presented here and the updated survey on the subject might be of help for practitioners, postgraduate and PhD students, and researchers in the field who might want to implement new methods and ideas using R as a statistical environment.

Details

Package: Sim.DiffProc Type: Package Version: 2.5

Date: 2012-06-05 License: GPL (>= 2) LazyLoad: yes

Author(s)

Boukhetala Kamal <kboukhetala@usthb.dz>, Guidoum Arsalane <starsalane@gmail.com>.

Maintainer: Arsalane Guidoum <starsalane@gmail.com>

References

1. A. Greiner, W. Strittmatter, and J. Honerkamp, Numerical Integration of Stochastic Differential Equations, Journal of Statistical Physics, Vol. 51, Nos. 1/2, 1988.

- A. Friedman, Stochastic differential equations and applications, Volume 1, ACADEMIC PRESS, 1975.
- 3. A C. GUIDOUM, Simulation des equations differentielles stochastiques sous R, theorie et applications. editions universitaires europeennes (French Edition). Allemagne, ISBN: 978-613-1-57992-9, 2012.
- 4. A C. GUIDOUM, Conception d un pro logiciel interactif sous R pour la simulation de processus de diffusion. Magister thesis, University of Science and Technology Houari Boumediene, N d ordre: 26/2012-M/MT, 2012.
- D. Henderson, P. Plaschko, Stochastic differential equations in science and engineering, World Scientific, 2006.
- 6. E. Allen. Modeling with Ito stochastic differential equations, Springer, 2007.
- 7. F. Jedrzejewski. Modeles aleatoires et physique probabiliste, Springer, 2009.
- F C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.
- 9. Heinz S. Mathematical Modeling. Stochastic Evolution, pp. 295-334, Springer-Verlag, Berlin Heidelberg. ISBN 978-3-642-20310-7 2011.
- 10. Hui-Hsiung Kuo. Introduction to stochastic integration, Springer, 2006.
- 11. Ito K. Stochastic integral Tokyo. Proc. Jap. Acad, 20, pp. 519-529, 1944.
- K. Boukhetala, Application des Processus de Diffusion, Echantillonnage Optimal. Ph.D. thesis, University of Science and Technology Houari Boumediene, BP 32 El-Alia, U.S.T.H.B, Algeria. 1998
- 13. K. Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 14. K. Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.

6 ABM

15. K. Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.

- 16. K. Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.
- 17. L C. Evans. An introduction to stochastic differential equations (Version 1.2), Department of Mathematics (UC BERKELEY).
- 18. Peter E. Kloeden, Eckhard Platen, Numerical solution of stochastic differential equations, Springer, 1995.
- 19. Racicot F E, Theoret R, Finance computationnelle et gestion des risques, Presses de universite du Quebec, 2006.
- R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
- 21. Risken H. The Fokker Planck Equation: Methods of Solutions and Applications. 2nd edition, Springer Series in Synergetics. ISBN 9783540615309. 2001.
- 22. Saito Y, Mitsui T. Simulation of Stochastic Differential Equations. The Annals of the Institute of Statistical Mathematics, 3, pp. 419-432, 1993
- 23. Stefano M. Simulation and Inference for Stochastic Differential Equations, Example with R. Springer-Verlag, New York. ISBN 978-0-387-75838-1. 2008.
- 24. T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic Processes for Insurance and Finance, John Wiley & Sons, 1998.

ABM

Creating Arithmetic Brownian Motion Model

Description

Simulation of the arithmetic brownian motion model.

Usage

```
ABM(N, t0, T, x0, theta, sigma, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0.
theta	constant (Coefficient of drift).
sigma	constant positive (Coefficient of diffusion).
output	if output = TRUE write a output to an Excel (.csv).

ABMF 7

Details

The function ABM returns a trajectory of the Arithmetic Brownian motion starting at x0 at time t0, than the Discretization dt = (T-t0)/N.

The stochastic differential equation of the Arithmetic Brownian motion is:

$$dX(t) = theta * dt + sigma * dW(t)$$

with theta : drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

ABMF creating flow of the arithmetic brownian motion model.

Examples

```
## Arithmetic Brownian Motion Model
## dX(t) = 3 * dt + 2 * dW(t); x0 = 0 and t0 = 0
ABM(N=1000,t0=0,T=1,x0=0,theta=3,sigma=2)
```

ABMF

Creating Flow of The Arithmetic Brownian Motion Model

Description

Simulation flow of the arithmetic brownian motion model.

Usage

```
ABMF(N, M, t0, T, x0, theta, sigma, output = FALSE)
```

Arguments

N	size of process.
M	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0.
theta	constant (Coefficient of drift).
sigma	constant positive (Coefficient of diffusion).
output	if output $=$ TRUE write a output to an Excel (.csv).

8 Ajdbeta

Details

The function ABMF returns a flow of the Arithmetic Brownian motion starting at x0 at time t0, than the discretization dt = (T-t0)/N.

The stochastic differential equation of the Arithmetic Brownian motion is:

$$dX(t) = theta * dt + sigma * dW(t)$$

With theta : drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

ABM creating the arithmetic brownian motion model.

Examples

```
## Flow of Arithmetic Brownian Motion Model

## dX(t) = 3 * dt + 2 * dW(t); x0 = 0 and t0 = 0

ABMF(N=1000,M=5,t0=0,T=1,x0=0,theta=3,sigma=2)
```

Ajdbeta

Adjustment By Beta Distribution

Description

Adjusted your sample by the beta law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdbeta(X, starts = list(shape1 = 1, shape2 = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.

starts named list. Initial values for optimizer.

leve the confidence level required.

Ajdchisq 9

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]beta functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the beta distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdkeibull Adjustment By Weibull Distribution, Ajdchisq Adjustment By Chi-Squared Distribution.

Examples

```
X \leftarrow \text{rbeta}(1000, \text{shape1} = 1, \text{shape2} = 3)
Ajdbeta(X, starts = list(shape1 = 1, shape2 = 1), leve = 0.95)
```

Ajdchisq

Adjustment By Chi-Squared Distribution

Description

Adjusted your sample by the chi-squared law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k = 2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdchisq(X, starts = list(df = 1), leve = 0.95)
```

10 Ajdexp

Arguments

X a numeric vector of the observed values. starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]chisq functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the chi-squared distribution.

Value

coef Coefficients extracted from the model.

AIC A numeric value with the corresponding AIC.

vcov A matrix of the estimated covariances between the parameter estimates in the

linear or non-linear predictor of the model.

confint A matrix (or vector) with columns giving lower and upper confidence limits for

each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
X \leftarrow rchisq(1000, df = 20)
Ajdchisq(X, starts = list(df = 1), leve = 0.95)
```

Ajdexp

Adjustment By Exponential Distribution

Description

Adjusted your sample by the exponential law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k = 2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Ajdexp 11

Usage

```
Ajdexp(X, starts = list(lambda = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]exp functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the exponential distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

```
X \leftarrow \text{rexp}(100,15)
Ajdexp(X, starts = list(lambda = 1), leve = 0.95)
```

12 Ajdf

Ajdf	Adjustment By F Distribution	

Description

Adjusted your sample by the F law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k = 2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdf(X, starts = list(df1 = 1, df2 = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values. starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]f functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the F distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Ajdgamma 13

Examples

```
X \leftarrow rf(100, df1=5, df2=5)
Ajdf(X, starts = list(df1 = 1, df2 = 1), leve = 0.95)
```

Ajdgamma

Adjustment By Gamma Distribution

Description

Adjusted your sample by the gamma law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdgamma(X, starts = list(shape = 1, rate = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the <code>[dqpr]gamma</code> functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the gamma distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
X <- rgamma(100,shape=1,rate=0.5)
gamma(1,0.5)~~ exp(0.5)~~ weibull(1,2)
Ajdgamma(X, starts = list(shape = 1, rate = 1), leve = 0.95)
Ajdexp(X)
Ajdweibull(X)</pre>
```

Ajdlognorm

Adjustment By Log Normal Distribution

Description

Adjusted your sample by the log normal law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k = 2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdlognorm(X, starts = list(meanlog = 1, sdlog = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values. starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]lnorm functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the log normal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Ajdnorm 15

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
X <- rlnorm(1000,3,1)
Ajdlognorm(X, starts = list(meanlog = 1, sdlog = 1), leve = 0.95)</pre>
```

Ajdnorm

Adjustment By Normal Distribution

Description

Adjusted your sample by the normal law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdnorm(X, starts = list(mean = 1, sd = 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed values. starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the <code>[dqpr]norm</code> functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the normal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

16 Ajdt

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Ajdchisq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
X <- rnorm(1000, 4, 0.5)
Ajdnorm(X, starts = list(mean = 1, sd = 1), leve = 0.95)
```

Ajdt

Adjustment By Student t Distribution

Description

Adjusted your sample by the student t law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k = 2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdt(X, starts = list(df = 1), leve = 0.95)
```

Arguments

Χ a numeric vector of the observed values. named list. Initial values for optimizer. starts

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]t functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the student t distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Ajdweibull 17

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Ajdchi sq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdweibull Adjustment By Weibull Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
X <- rt(1000,df=2)
Ajdt(X, starts = list(df = 1), leve = 0.95)</pre>
```

Ajdweibull

Adjustment By Weibull Distribution

Description

Adjusted your sample by the weibull law, estimated these parameters using the method of maximum likelihood, and calculating the Akaike information criterion for one or several fitted model objects for which a log-likelihood value can be obtained, according to the formula -2*log-likelihood + k*npar, where npar represents the number of parameters in the fitted model, and k=2 for the usual AIC, and computes confidence intervals for one or more parameters in a fitted model (Law).

Usage

```
Ajdweibull(X, starts = list(shape = 1, scale = 1), leve = 0.95)
```

C--ff-:--4---4-1 f---- 41-- --- 4-1

Arguments

X a numeric vector of the observed values. starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The optim optimizer is used to find the minimum of the negative log-likelihood. An approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.

For more detail consulted mle,confint,AIC.

R has the [dqpr]weibull functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the weibull distribution.

Value

соет	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for

each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

18 AnaSimFPT

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Ajdchi sq Adjustment By Chi-Squared Distribution, Ajdexp Adjustment By Exponential Distribution, Ajdf Adjustment By F Distribution, Ajdgamma Adjustment By Gamma Distribution, Ajdlognorm Adjustment By Log Normal Distribution, Ajdnorm Adjustment By Normal Distribution, Ajdt Adjustment By Student t Distribution, Ajdbeta Adjustment By Beta Distribution.

Examples

```
X \leftarrow \text{rweibull}(100,2,1)
Ajdweibull(X, starts = list(shape = 1, scale = 1), leve = 0.95)
```

AnaSimFPT

Simulation The First Passage Time FPT For A Simulated Diffusion Process

Description

Simulation M-samples of the first passage time (FPT) by a simulated diffusion process with a fixed the threshold v.

Usage

Arguments

N	size of the diffusion process.
М	size of the FPT.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process at time t0.
V	threshold (Risk).
drift	drift coefficient: an expression of two variables t and x.
diff	diffusion coefficient: an expression of two variables t and x.
ELRENA	if ELRENA = "No" not eliminate NA (Not Available), and if ELRENA="Yes" eliminate NA (Not Available), or replace NA by : $mean(FPT)$, $median(FPT)$.
Output	if Output = TRUE write a Output to an Excel (.csv).
Methods	method of simulation ,see details snssde.

AnaSimFPT 19

Details

The stochastic differential equation of is:

$$dX(t) = a(t, X(t)) * dt + b(t, X(t)) * dW(t)$$

with a(t,X(t)) : drift coefficient and b(t,X(t)) : diffusion coefficient, W(t) is Wiener process.

We take interest in the random variable tau "first passage time", is defined by:

$$tau = inf(t >= 0 X(t) <= v | X(t) >= v)$$

with v is the threshold.

For more detail consulted References.

Value

Random variable tau "FPT".

Note

Time of Calculating

The Ornstein-Uhlenbeck Process (example) drift <- expression(-5*x) diff <- expression(1)

 $system.time(AnaSimFPT(N=1000,\ M=30,\ t0=0,\ Dt=0.001,\ T=1,\ X0=10,\ v=0.05,drift,\ diff,\ EL-RENA="No",\ Output=FALSE))$

utilisateur systeme ecoule

1.89 0.55 2.62

 $system.time(AnaSimFPT(N=1000,\ M=100,\ t0=0,\ Dt=0.001,\ T=1,\ X0=10,\ v=0.05, drift,\ diff,\ EL-RENA="No",\ Output=FALSE))$

utilisateur systeme ecoule

5.74 1.64 7.78

system.time(AnaSimFPT(N=1000, M=500, t0=0, Dt=0.001, T = 1, X0=10, v=0.05,drift, diff, EL-RENA ="Mean", Output = FALSE))

utilisateur systeme ecoule

26.07 7.78 37.93

 $system.time(AnaSimFPT(N=1000,\,M=500,\,t0=0,\,Dt=0.001,\,T=1,\,X0=10,\,v=0.05,drift,\,diff,\,EL-RENA="Mean",\,Output=FALSE,Methods="RK3"))$

utilisateur systeme ecoule

125.64 8.90 150.85

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

20 AnaSimFPT

References

1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.

- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

AnaSimX Simulation M-Samples of Random Variable X(v[t]) For A Simulated Diffusion Process, tho_M1 Simulation The FPT For Attractive Model(S = 1,Sigma), tho_M1 Simulation The FPT For Attractive Model(S >= 2,Sigma), tho_02diff Simulation FPT For Attractive Model for 2-Diffusion Processes.

```
## Example 1
## tau = inf(t>=0 \ X(t) \le v
## Ornstein-Uhlenbeck Process or Gaussian Diffusion Models
v = 0.05
drift <- expression(5*(-2-x))</pre>
diff <- expression(1)</pre>
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.001, T = 1, X0=10, v=0.05, drift,
           diff,ELRENA ="No", Output = FALSE)
 summary(tau)
hist(tau)
plot(density(tau,kernel ="gaussian"),col="red")
 v = -0.05
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.001, T = 1, X0=10, v=-0.05, drift,
           diff,ELRENA ="No", Output = FALSE)
 summary(tau)
hist(tau)
plot(density(tau,kernel ="gaussian"),col="red")
## Attention
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.001, T = 1, X0=10, v=-3, drift,
           diff,ELRENA ="No", Output = FALSE)
## Example 2
## tau = \inf(t>=0 \setminus X(t) >= v)
v = 1
drift <- expression(2*(3-x))</pre>
diff <- expression(0.1)</pre>
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.001, T = 1, X0=-5, v=1, drift,
           diff,ELRENA ="No", Output = FALSE)
 summary(tau)
hist(tau)
 plot(density(tau,kernel ="gaussian"),col="red")
```

AnaSimX 21

```
v = 3
 AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3, drift,
           diff,ELRENA ="No", Output = FALSE)
 summary(tau)
hist(tau)
plot(density(tau,kernel ="gaussian"),col="red")
v = 3.1
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3.1, drift,
          diff,ELRENA ="No", Output = FALSE)
## Remplaced NA by mean(tau) or median(tau)
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3.1, drift,
          diff,ELRENA ="Yes", Output = FALSE)
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3.1, drift,
          diff,ELRENA ="Mean", Output = FALSE)
AnaSimFPT(N=1000, M=30, t0=0, Dt=0.01, T = 1, X0=-5, v=3.1, drift,
          diff,ELRENA ="Median", Output = FALSE)
```

AnaSimX

Simulation M-Samples of Random Variable X(v[t]) For A Simulated Diffusion Process

Description

Simulation M-samples of the random variable X(v(t)) by a simulated diffusion process with a fixed the time v, v = k * Dt with k integer, $1 \le k \le N$.

Usage

```
\label{eq:continuous} AnaSimX(N, M, t0, Dt, T = 1, X0, v, drift, diff, Output = FALSE, \\ Methods = c("Euler", "Milstein", "MilsteinS", "Ito-Taylor", \\ "Heun", "RK3"), \ldots)
```

Arguments

N	size of the diffusion process.
М	size of the random variable.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process at time t0.
V	moment (time) between t0 and T , v = k * Dt with k integer, 1 <= k <= N .
drift	drift coefficient: an expression of two variables t and x.
diff	diffusion coefficient: an expression of two variables t and x.
Output	if Output = TRUE write a Output to an Excel (.csv).
Methods	method of simulation ,see details snssde.

Details

The stochastic differential equation of is:

$$dX(t) = a(t, X(t)) * dt + b(t, X(t)) * dW(t)$$

with a(t,X(t)) : drift coefficient and b(t,X(t)) : diffusion coefficient, W(t) is Wiener process.

We take interest in the random variable X(v), is defined by :

$$X = (t >= 0 \ X = X(v))$$

with v is the time between t0 and T, v = k * Dt with k integer, $1 \le k \le N$.

Value

Random variable "X(v(t))".

Note

Time of Calculating

The Ornstein-Uhlenbeck Process (example) drift <- expression(-5*x) diff <- expression(1) system.time(AnaSimX(N=1000,M=30,t0=0,Dt=0.001,T=1,X0=0, v=0.5,drift,diff,Output=FALSE)) utilisateur systeme ecoule

1.88 0.56 2.59

 $system.time(AnaSimX(N=1000,M=30,t0=0,Dt=0.001,T=1,X0=0,\ v=0.5,drift,diff,Output=FALSE,Methods="RK3"))$ utilisateur systeme ecoule

8.64 0.72 9.24

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol., 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

AnaSimFPT Simulation The First Passage Time FPT For A Simulated Diffusion Process, tho_M1 Simulation The FPT For Attractive Model(S = 1,Sigma), tho_M1 Simulation The FPT For Attractive Model(S >= 2,Sigma), tho_02diff Simulation FPT For Attractive Model for 2-Diffusion Processes.

Appdcon 23

Examples

```
## Example 1: BM
## v = k * Dt with k integer , 1 <= k <= N .
## k = 500 nombre for discretization
## Dt = 0.001 ===> v = 500 * 0.001 = 0.5
 drift <- expression(0)</pre>
diff <- expression(1)</pre>
 AnaSimX (N=1000, M=30, t0=0, Dt=0.001, T=1, X0=0, v=0.5, drift, diff, Output=FALSE, Methods="Euler") \\
 summary(X)
hist(X)
v=0.5
plot(density(X,kernel ="gaussian"),col="red")
 x <- seq(min(X),max(X),length=1000)</pre>
 curve(dnorm(x,0,v), col = 3, lwd = 2, add = TRUE,
      panel.first=grid(col="gray"))
## Example 2: BMG or BS
## v = k * Dt with k integer , 1 <= k <= N .
## k = 800 nombre for discretization
## Dt = 0.001 ===> v = 800 * 0.001 = 0.8
drift <- expression(2*x)</pre>
diff <- expression(x)</pre>
 AnaSimX(N=1000,M=30,t0=0,Dt=0.001,T=1,X0=1,v=0.8,drift,diff,Output=FALSE,Methods="Euler")
 summary(X)
 hist(X)
 plot(density(X,kernel ="gaussian"),col="red")
```

Appdcon

Approximated Conditional Law a Diffusion Process

Description

Approximated Conditional densities for X(t)|X(t0)=X0 of a diffusion process.

Usage

Arguments

X	vector of quantiles.
t	calcul at time t, or evolution in vector times.
x0	initial value of the process at time t0.
t0	initial time.
drift	drift coefficient: an expression of two variables t and x.
diff	diffusion coefficient: an expression of two variables t and x.

24 Asys

```
Output if Output = TRUE write a Output to an Excel (.csv).

Methods Approximated methods, see details.
...
```

Details

This function returns the value of the conditional density of X(t) | X(t0) = X0 at point x.

Value

data.frame(time,f(x(t)|x0)) at final time, and plot of evolution conditional Law.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

Examples

Asys

Evolution a Telegraphic Process in Time

Description

Simulation the evolution of the telegraphic process (the availability of a system).

Usage

```
Asys(lambda, mu, t, T)
```

Arguments

lambda	the rate so that the system functions.
mu	the rate so that the system is broken down.
t	calculate the matrix of transition p(t) has at the time t.
T	final time of evolution the process [0,T].

BB 25

Details

Calculate the matrix of transition p(t) at time t, the space states of the telegraphic process is (0,1) with 0: the system is broken down and 1: the system functions, the initial distribution at time t = 0 of the process is p(t=0)=(1,0) or p(t=0)=(0,1).

Value

matrix p(t) at time t, and plot of evolution the process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Telegproc simulation a telegraphic process.

Examples

```
## evolution a telegraphic process in time [0 , 5] ## calculate the matrix of transition p(t = 10) Asys(0.5,0.5,10,5)
```

ВВ

Creating Brownian Bridge Model

Description

Simulation of brownian bridge model.

Usage

```
BB(N, t0, T, x0, y, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0.
У	terminal value of the process at time T.
output	if output = TRUE write a output to an Excel (.csv).

Details

The function returns a trajectory of the brownian bridge starting at x0 at time t0 and ending at y at time T.

It is defined as:

$$Xt(t0, x0, T, y) = x0 + W(t - t0) - (t - t0/T - t0) * (W(T - t0) - y + x0)$$

This process is easily simulated using the simulated trajectory of the Wiener process W(t).

26 BBF

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BBF simulation flow of brownian bridge Model, diffBridge Diffusion Bridge Models, BMN simulation brownian motion by the Normal Distribution, BMRW simulation brownian motion by a Random Walk, GBM simulation geometric brownian motion, ABM simulation arithmetic brownian motion, snssde Simulation Numerical Solution of SDE.

Examples

```
##starting at x0 = 0 at time t0=0 and ending at y=3 at time T=1. BB(N=1000,t0=0,T=1,x0=0,y=3)
```

BBF

Creating Flow of Brownian Bridge Model

Description

Simulation flow of brownian bridge model.

Usage

```
BBF(N, M, t0, T, x0, y, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
У	terminal value of the process at time T.
output	if output = TRUE write a output to an Excel (.csv).

Details

The function BBF returns a flow of the brownian bridge starting at x0 at time t0 and ending at y at time T.

It is defined as:

$$Xt(t0, x0, T, y) = x0 + W(t - t0) - (t - t0/T - t0) * (W(T - t0) - y + x0)$$

This process is easily simulated using the simulated trajectory of the Wiener process W(t).

Besselp 27

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BB simulation brownian bridge Model, diffBridge Diffusion Bridge Models, BMN simulation brownian motion by the Normal Distribution, BMRW simulation brownian motion by a Random Walk, GBM simulation geometric brownian motion, ABM simulation arithmetic brownian motion, snssde Simulation Numerical Solution of SDE.

Examples

```
## flow of brownian bridge model

## starting at x0 = 1 at time t0=0 and ending at y = -2 at time T = 1.

BBF(N=1000,M=5,t0=0,T=1,x0=-1,y=2)
```

Besselp

Creating Bessel process (by Milstein Scheme)

Description

Simulation Besselp process by milstein scheme.

Usage

```
Besselp(N, M, t0, T, x0, alpha, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
alpha	constant positive alpha >=2.
output	if output = TRUE write a output to an Excel (.csv).

Details

The stochastic differential equation of Bessel process is:

```
dX(t) = (alpha - 1)/(2 * X(t)) * dt + dW(t)
```

with (alpha-1)/(2*X(t)) : drift coefficient and 1 : diffusion coefficient, W(t) is Wiener process, and the discretization dt = (T-t0)/N.

Constraints: alpha \geq 2 and x0 =! 0.

28 BMcov

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Bessel Process
## alpha = 4
## dX(t) = 3/(2*x) * dt + dW(t)
## One trajectorie
Besselp(N=1000,M=1,t0=0,T=100,x0=1,alpha=4,output=FALSE)
```

BMcov

Empirical Covariance for Brownian Motion

Description

Calculate empirical covariance of the Brownian Motion.

Usage

```
BMcov(N, M, T, C)
```

Arguments

```
    N size of process.
    M number of trajectories.
    T final time.
    C constant positive (if C = 1 it is standard brownian motion).
```

Details

```
The brownian motion is a process with increase independent of function the covariance cov(BM) = C * min(t,s), If t > s than cov(BM) = C * s else cov(BM) = C * t.
```

Value

contour of the empirical covariance for brownian motion.

BMinf 29

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMN simulation brownian motion by the Normal Distribution, BMRW simulation brownian motion by a Random Walk, BMinf brownian motion property(Time tends towards the infinite), BMIrt brownian motion property(invariance by reversal of time), BMscal brownian motion property (invariance by scaling).

Examples

```
## empirical covariance of 200 trajectories brownian standard BMcov(N=100,M=250,T=1,C=1)
```

BMinf

Brownian Motion Property

Description

Calculated the limit of standard brownian motion limit(W(t)/t, 0, T).

Usage

```
BMinf(N,T)
```

Arguments

N size of process.
T final time.

Details

Calculated the limit of standard brownian motion if the time tends towards the infinite, i.e the limit(W(t)/t, 0, T) = 0.

Value

```
plot of limit(W(t)/t).
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMN simulation brownian motion by the Normal Distribution, BMRW simulation brownian motion by a Random Walk, BMIrt brownian motion property(invariance by reversal of time), BMscal brownian motion property (invariance by scaling), BMcov empirical covariance for brownian motion.

```
BMinf(N=1000, T=10^5)
```

30 BMIrt

BMIrt

Brownian Motion Property (Invariance by reversal of time)

Description

Brownian motion is invariance by reversal of time.

Usage

```
BMIrt(N, T)
```

Arguments

N size of process.

T final time.

Details

Brownian motion is invariance by reversal of time, i.e W(t) = W(T-t) - W(T).

Value

```
plot of W(T-t) - W(T).
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMN simulation brownian motion by the Normal Distribution , BMRW simulation brownian motion by a Random Walk, BMinf Brownian Motion Property (time tends towards the infinite), BMscal brownian motion property (invariance by scaling), BMcov empirical covariance for brownian motion.

```
BMIrt(N=1000,T=1)
```

BMIto1 31

BMIto1

Properties of the stochastic integral and Ito Process [1]

Description

Simulation of the Ito integral (W(s)dW(s), 0, t).

Usage

```
BMIto1(N, T, output = FALSE)
```

Arguments

N size of process.

T final time.

output if output = TRUE write a output to an Excel (.csv).

Details

However the Ito integral also has the peculiar property, amongst others, that:

$$integral(W(s)dW(s), 0, t) = 0.5 * (W(t)^{2} - t)$$

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(W(s)dW(s), 0, t) = sum(W(t) * (W(t+1) - W(t)), 0, t)$$

Value

data frame(time, Ito, sum. Ito) and plot of the Ito integral.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMIto2 simulation of the Ito integral[2], BMItoC properties of the stochastic integral and Ito processes[3], BMItoP properties of the stochastic integral and Ito processes[4], BMItoT properties of the stochastic integral and Ito processes[5].

```
BMIto1(N=1000,T=1)
## comparison with BMIto2
system.time(BMIto1(N=10^4,T=1))
system.time(BMIto2(N=10^4,T=1))
```

32 BMIto2

BMIto2

Properties of the stochastic integral and Ito Process [2]

Description

Simulation of the Ito integral (W(s)dW(s), 0, t).

Usage

```
BMIto2(N, T, output = FALSE)
```

Arguments

N size of process.

T final time.

output if output = TRUE write a output to an Excel (.csv).

Details

However the Ito integral also has the peculiar property, amongst others, that:

$$integral(W(s)dW(s), 0, t) = 0.5 * (W(t)^{2} - t)$$

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(W(s)dW(s), 0, t) = sum(W(t) * (W(t+1) - W(t)), 0, t)$$

Value

data frame(time, Ito, sum. Ito) and plot of the Ito integral.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMIto1 simulation of the Ito integral[1], BMItoC properties of the stochastic integral and Ito processes[3], BMItoP properties of the stochastic integral and Ito processes[4], BMItoT properties of the stochastic integral and Ito processes[5].

```
BMIto2(N=1000,T=1)
## comparison with BMIto1
system.time(BMIto2(N=10^4,T=1))
system.time(BMIto1(N=10^4,T=1))
```

BMItoC 33

BMItoC

Properties of the stochastic integral and Ito Process [3]

Description

Simulation of the Ito integral (alpha*dW(s),0,t).

Usage

```
BMItoC(N, T, alpha, output = FALSE)
```

Arguments

N size of process.

T final time.

alpha constant.

output if output = TRUE write a output to an Excel (.csv).

Details

However the Ito integral also has the peculiar property, amongst others, that:

$$integral(alpha*dW(s),0,t) = alpha*W(t)$$

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(alpha*dW(s),0,t) = sum(alpha*(W(t+1)-W(t)),0,t)$$

Value

data frame(time, Ito, sum. Ito) and plot of the Ito integral.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMIto1 simulation of the Ito integral[1], BMIto2 simulation of the Ito integral[2], BMItoP properties of the stochastic integral and Ito processes[4], BMItoT properties of the stochastic integral and Ito processes[5].

```
BMItoC(N=1000,T=1,alpha=2)
```

34 BMItoP

BMItoP

Properties of the stochastic integral and Ito Process [4]

Description

Simulation of the Ito $integral(W(s)^n*dW(s), 0, t)$.

Usage

```
BMItoP(N, T, power, output = FALSE)
```

Arguments

N size of process.

T final time.

power constant.

output if output = TRUE write a output to an Excel (.csv).

Details

However the Ito integral also has the peculiar property, amongst others, that:

```
integral(W(s)^n * dW(s), 0, t) = W(t)^{(n+1)/(n+1)} - (n/2) * integral(W(s)^n - 1 * ds, 0, t)
```

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(W(s)^n * dW(s), 0, t) = sum(W(t)^n * (W(t+1) - W(t)), 0, t)$$

Value

data frame(time, Ito, sum. Ito) and plot of the Ito integral.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMIto1 simulation of the Ito integral[1], BMIto2 simulation of the Ito integral[2], BMItoC properties of the stochastic integral and Ito processes[3], BMItoT properties of the stochastic integral and Ito processes[5].

```
## if power = 1
## integral(W(s) * dW(s),0,t) = W(t)^2/2 - 1/2 * t

BMItoP(N=1000,T=1,power =1)
## if power = 2
## integral(W(s)^2 * dW(s),0,t) = W(t)^3/3 - 2/2 * integral(W(s)*ds,0,t)
BMItoP(N=1000,T=1,power =2)
```

BMItoT 35

BMItoT

Properties of the stochastic integral and Ito Process [5]

Description

Simulation of the Ito integral (s*dW(s), 0, t).

Usage

```
BMItoT(N, T, output = FALSE)
```

Arguments

N size of process.
T final time.

output if output = TRUE write a output to an Excel (.csv).

Details

However the Ito integral also has the peculiar property, amongst others, that:

$$integral(s*dW(s), 0, t) = t*W(t) - integral(W(s)*ds, 0, t)$$

from classical calculus for Ito integral with w(0) = 0.

The follows from the algebraic rearrangement:

$$integral(s*dW(s), 0, t) = sum(t*(W(t+1) - W(t)), 0, t)$$

Value

data frame(time, Ito, sum. Ito) and plot of the Ito integral.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMIto1 simulation of the Ito integral[1], BMIto2 simulation of the Ito integral[2], BMItoC properties of the stochastic integral and Ito processes[3], BMItoP properties of the stochastic integral and Ito processes[4].

```
BMItoT(N=1000,T=1)
```

36 BMN

BMN

Creating Brownian Motion Model (by the Normal Distribution)

Description

Simulation of the brownian motion model by the normal distribution.

Usage

```
BMN(N, t0, T, C, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
С	constant positive (if ${\rm C}=1$ it is standard brownian motion).
output	if output = TRUE write a output to an Excel (.csv).

Details

Given a fixed time increment dt = (T-t0)/N, one can easily simulate a trajectory of the Wiener process in the time interval [t0,T]. Indeed, for W(dt) it holds true that $W(dt) = W(dt) - W(0) \sim N(0,dt) \sim sqrt(N(0,1))$ normal distribution.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMRW simulation brownian motion by a random walk, BMNF simulation flow of brownian motion by the normal distribution, BMRWF simulation flow of brownian motion by a random walk, BB Simulation of brownian bridge model, GBM simulation geometric brownian motion Model.

```
BMN(N=1000,t0=0,T=1,C=1)
BMN(N=1000,t0=0,T=1,C=10)
```

BMN2D 37

BMN2D	Simulation Two-Dimensional Brownian Motion (by the Normal Distri-
	bution)

Description

simulation 2-dimensional brownian otion in plane (O,X,Y).

Usage

```
BMN2D(N, t0, T, x0, y0, Sigma, Step = FALSE, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Т	final time.
x 0	initial value of BM1(t) at time t0.
y0	initial value of BM2(t) at time t0.
Sigma	constant positive.
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel (.csv).

Details

```
see , {\color{red}\mathsf{BMN}}
```

Value

```
data.frame(time,W1(t),W2(t)) and plot of process 2-D.
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMN3D Simulation Three-Dimensional Brownian Motion.

```
BMN2D(N=5000, t0=0, T=1, x0=0, y0=0, Sigma=0.2, \\ Step = FALSE, Output = FALSE)
```

38 BMN3D

BMN3D	Simulation Three-Dimensional Brownian Motion (by the Normal Distribution)

Description

simulation 3-dimensional brownian otion in (O,X,Y,Z).

Usage

```
BMN3D(N, t0, T, X0, Y0, Z0, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
X0	initial value of BM1(t) at time t0.
Y0	initial value of BM2(t) at time t0.
Z0	initial value of BM3(t) at time t0.
Sigma	constant positive.
Output	if output = TRUE write a output to an Excel (.csv).

Details

```
see , {\color{red}\mathsf{BMN}}
```

Value

```
data.frame(time,W1(t),W2(t),W3(t)) and plot of process 3-D.
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMRW3D Simulation Three-Dimensional Brownian Motion.

```
\label{eq:bmn3D} \begin{split} & \text{BMN3D}(\text{N=500, t0=0, T=1, X0=0.5, Y0=0.5, Z0=0.5,} \\ & \text{Sigma=0.3, Output = FALSE)} \end{split}
```

BMNF 39

BMNF

Creating Flow of Brownian Motion (by the Normal Distribution)

Description

Simulation flow of the brownian motion model by the normal distribution.

Usage

```
BMNF(N, M, t0, T, C, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
Т	final time.
С	constant positive (if C = 1 it is standard brownian motion).
output	if output = TRUE write a output to an Excel (.csv).

Details

Given a fixed time increment dt = (T-t0)/N, one can easily simulate a flow of the Wiener process in the time interval [t0,T]. Indeed, for W(dt) it holds true that W(dt) = W(dt) - W(0) $\sim N(0,dt) \sim sqrt(dt) * N(0,1)$ normal distribution.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMRW simulation brownian motion by a random walk, BMN simulation of brownian motion by the normal distribution, BMRWF simulation flow of brownian motion by a random walk, BB Simulation of brownian bridge model, GBM simulation geometric brownian motion Model.

```
BMNF(N=1000, M=5, t0=0, T=1, C=1)
BMNF(N=1000, M=5, t0=0, T=1, C=10)
```

40 BMP

BMP	Brownian Motion Property (trajectories brownian between function $(+/-)2*sqrt(C*t)$)

Description

trajectories Brownian lies between the two curves (+/-)2*sqrt(C*t).

Usage

```
BMP(N, M, T, C)
```

Arguments

N si	ize of process.
------	-----------------

M number of trajectories.

T final time.

C constant positive (if C = 1 it is standard brownian motion).

Details

A flow of brownian motion lies between the two curves (+/-)2*sqrt(C*t), $W(dt) - W(0) \sim N(0,dt)$, N(0,dt) normal distribution.

Value

plot of the flow.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMscal brownian motion property (invariance by scaling), BMinf brownian motion Property (time tends towards the infinite), BMcov empirical covariance for brownian motion, BMIrt brownian motion property(invariance by reversal of time).

```
BMP(N=1000, M=10, T=1, C=1)
```

BMRW 41

BMRW	Creating Brownian Motion Model (by a Random Walk)
------	---

Description

Simulation of the brownian motion model by a Random Walk.

Usage

```
BMRW(N, t0, T, C, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
С	constant positive (if $C = 1$ it is standard brownian motion).
output	if output = TRUE write a output to an Excel (.csv).

Details

One characterization of the Brownian motion says that it can be seen as the limit of a random walk in the following sense.

Given a sequence of independent and identically distributed random variables X1, X2, . . . , Xn, taking only two values +1 and -1 with equal probability and considering the partial sum, Sn = X1+ X2+ . . . + Xn. then, as n \rightarrow 1nf,P(Sn/sqrt(N) < x) = P(W(t) < x).

Where [x] is the integer part of the real number x. Please note that this result is a refinement of the central limit theorem that, in our case, asserts that $Sn/sqrt(n) \sim N(0,1)$.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMN simulation brownian motion by the normal distribution, BMNF simulation flow of brownian motion by the normal distribution, BMRWF simulation flow of brownian motion by a random walk, BB Simulation of brownian bridge model, GBM simulation geometric brownian motion Model.

```
BMRW(N=1000, t0=0, T=1, C=1)
BMRW(N=1000, t0=0, T=1, C=10)
```

42 BMRW2D

BMRW2D

Simulation Two-Dimensional Brownian Motion (by a Random Walk)

Description

simulation 2-dimensional brownian otion in plane (O,X,Y).

Usage

```
BMRW2D(N, t0, T, x0, y0, Sigma, Step = FALSE, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of BM1(t) at time t0.
y0	initial value of BM2(t) at time t0.
Sigma	constant positive.
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel (.csv).

Details

```
see, BMRW
```

Value

```
data.frame(time,W1(t),W2(t)) and plot of process 2-D.
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMRW3D Simulation Three-Dimensional Brownian Motion.

```
\label{eq:bmrw2D} \begin{split} \text{BMRW2D(N=5000, t0=0, T=1, x0=0, y0=0,Sigma=0.2,} \\ \text{Step = FALSE, Output = FALSE)} \end{split}
```

BMRW3D 43

BMRW3D

Simulation Three-Dimensional Brownian Motion (by a Random Walk)

Description

simulation 3-dimensional brownian otion in (O,X,Y,Z).

Usage

```
BMRW3D(N, t0, T, X0, Y0, Z0, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
X0	initial value of BM1(t) at time t0.
Υ0	initial value of BM2(t) at time t0.
Z0	initial value of BM3(t) at time t0.
Sigma	constant positive.
Output	if output = TRUE write a output to an Excel (.csv).

Details

```
see, BMRW
```

Value

```
data.frame(time,W1(t),W2(t),W3(t)) and plot of process 3-D.
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMN3D Simulation Three-Dimensional Brownian Motion.

```
BMRW3D(N=500, t0=0, T=1, X0=0.5, Y0=0.5, Z0=0.5, Sigma=0.3, Output = FALSE)
```

44 BMRWF

BMRWF

Creating Flow of Brownian Motion (by a Random Walk)

Description

Simulation flow of the brownian motion model by a Random Walk.

Usage

```
BMRWF(N, M, t0, T, C, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
С	constant positive (if $C = 1$ it is standard brownian motion).
output	if output = TRUE write a output to an Excel (.csv).

Details

One characterization of the Brownian motion says that it can be seen as the limit of a random walk in the following sense.

Given a sequence of independent and identically distributed random variables X1, X2, . . . , Xn, taking only two values +1 and -1 with equal probability and considering the partial sum, Sn = X1+ X2+ . . . + Xn. then, as n \rightarrow 1nf,P(Sn/sqrt(N) < x) = P(W(t) < x).

Where [x] is the integer part of the real number x. Please note that this result is a refinement of the central limit theorem that, in our case, asserts that $Sn/sqrt(n) \sim N(0,1)$.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMN simulation brownian motion by the normal distribution, BMRW simulation brownian motion by a random walk, BB Simulation of brownian bridge model, GBM simulation geometric brownian motion Model.

```
BMRWF(N=1000, M=5, t0=0, T=1, C=1)
BMRWF(N=1000, M=5, t0=0, T=1, C=10)
```

BMscal 45

	м	_	_	_	1
\mathbf{r}	ı۷ı	٧.	(.	А	- 1

Brownian Motion Property (Invariance by scaling)

Description

Brownian motion with different scales.

Usage

```
BMscal(N, T, S1, S2, S3, output = FALSE)
```

Arguments

N	size of process.
T	final time.
S1	constant (scale 1).
S2	constant (scale 2).
S3	constant (scale 3).
output	if output = TRUE write a output to an Excel (.csv).

Details

Brownian motion is invariance by change the scales, i.e $W(t) = (1/S) * W(S^2 * t)$, S is scale.

Value

data.frame(w1,w2,w3) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMinf brownian motion Property (time tends towards the infinite), BMcov empirical covariance for brownian motion, BMIrt brownian motion property(invariance by reversal of time).

```
BMscal(N=1000, T=10, S1=1, S2=1.1, S3=1.2)
```

46 BMStra

BMStra

Stratonovitch Integral [1]

Description

Simulation of the Stratonovitch integral (W(s) o dW(s), 0, t).

Usage

```
BMStra(N, T, output = FALSE)
```

Arguments

N size of process.

T final time.

output if output = TRUE write a output to an Excel (.csv).

Details

Stratonovitch integral as defined:

```
integral(f(t)odW(s),0,t) = lim(sum(0.5*(f(t[i]) + f(t[i+1]))*(W(t[i+1]) - W(t[i])))) calculus for Stratonovitch integral with w(0) = 0:
```

$$integral(W(s)odW(s), 0, t) = 0.5 * W(t)^2$$

The discretization dt = T/N, and W(t) is Wiener process.

Value

data frame(time,Stra) and plot of the Stratonovitch integral.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMStraC Stratonovitch Integral [2], BMStraP Stratonovitch Integral [3], BMStraT Stratonovitch Integral [4].

```
BMStra(N=1000, T=1, output = FALSE)
```

BMStraC 47

BMStraC

Stratonovitch Integral [2]

Description

Simulation of the Stratonovitch integral (alpha o dW(s), 0, t).

Usage

```
BMStraC(N, T, alpha, output = FALSE)
```

Arguments

N size of process.

T final time.

alpha constant.

output if output = TRUE write a output to an Excel (.csv).

Details

Stratonovitch integral as defined:

```
integral(f(t)odW(s),0,t) = lim(sum(0.5*(f(t[i])+f(t[i+1]))*(W(t[i+1])-W(t[i])))) calculus for Stratonovitch integral with w(0) = 0:
```

integral(alphaodW(s),0,t) = alpha * W(t)

The discretization dt = T/N, and W(t) is Wiener process.

Value

data frame(time,Stra) and plot of the Stratonovitch integral.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMStra Stratonovitch Integral [1], BMStraP Stratonovitch Integral [3], BMStraT Stratonovitch Integral [4].

```
BMStraC(N=1000, T=1, alpha = 2,output = FALSE)
```

48 BMStraP

BMStraP

Stratonovitch Integral [3]

Description

Simulation of the Stratonovitch integral $(W(s)^n \circ dW(s), 0, t)$.

Usage

```
BMStraP(N, T, power, output = FALSE)
```

Arguments

N size of process.

T final time.

power constant.

output if output = TRUE write a output to an Excel (.csv).

Details

Stratonovitch integral as defined:

```
calculus for Stratonovitch integral with w(0) = 0: integral(W(s)^n odW(s), 0, t) = lim(sum(0.5*(W(t[i])^(n-1) + W(t[i+1])^(n-1))*(W(t[i+1])^2 - W(t[i])^2)))
```

integral(f(t)odW(s), 0, t) = lim(sum(0.5 * (f(t[i]) + f(t[i+1])) * (W(t[i+1]) - W(t[i]))))

The discretization dt = T/N, and W(t) is Wiener process.

Value

data frame(time,Stra) and plot of the Stratonovitch integral.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMStra Stratonovitch Integral [1], BMStraC Stratonovitch Integral [2], BMStraT Stratonovitch Integral [4].

```
BMStraP(N=1000, T=1, power = 2,output = FALSE)
```

BMStraT 49

BMStraT

Stratonovitch Integral [4]

Description

Simulation of the Stratonovitch integral (s o dW(s), 0, t).

Usage

```
BMStraT(N, T, output = FALSE)
```

Arguments

N size of process.

T final time.

output if output = TRUE write a output to an Excel (.csv).

Details

Stratonovitch integral as defined:

```
integral(f(t)odW(s),0,t) = lim(sum(0.5*(f(t[i])+f(t[i+1]))*(W(t[i+1])-W(t[i])))) calculus for Stratonovitch integral with w(0) = 0: integral(sodW(s),0,t) = lim(sum(0.5*(t[i]*(W(t[i+1])-W(t[i]))+t[i+1]*(W(t[i+1])-W(t[i])))))
```

The discretization dt = T/N, and W(t) is Wiener process.

Value

data frame(time,Stra) and plot of the Stratonovitch integral.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

BMStra Stratonovitch Integral [1], BMStraC Stratonovitch Integral [2], BMStraC Stratonovitch Integral [3].

```
BMStraT(N=1000, T=1,output = FALSE)
```

50 CEV

CEV	Creating Constant Elasticity of Variance (CEV) Models (by Milstein Scheme)

Description

Simulation constant elasticity of variance models by milstein scheme.

Usage

```
CEV(N, M, t0, T, x0, mu, sigma, gamma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
mu	<pre>constant(mu * X(t) :drift coefficient).</pre>
sigma	constant positive (sigma \star X(t)^gamma :diffusion coefficient).
gamma	<pre>constant positive (sigma * X(t)^gamma :diffusion coefficient).</pre>
output	if output = TRUE write a output to an Excel (.csv).

Details

The Constant Elasticity of Variance (CEV) model also derives directly from the linear drift class, the discretization dt = (T-t0)/N.

The stochastic differential equation of CEV is:

$$dX(t) = mu * X(t) * dt + sigma * X(t)^g amma * dW(t)$$

with mu * X(t) :drift coefficient and sigma * X(t)^gamma :diffusion coefficient, W(t) is Wiener process.

This process is quite useful in modeling a skewed implied volatility. In particular, for gamma < 1, the skewness is negative, and for gamma > 1 the skewness is positive. For gamma = 1, the CEV process is a particular version of the geometric Brownian motion.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

CIR 51

See Also

CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Constant Elasticity of Variance Models

## dX(t) = 0.3 *X(t) *dt + 2 * X(t)^1.2 * dW(t)

## One trajectorie

CEV(N=1000,M=1,t0=0,T=1,x0=0.1,mu=0.3,sigma=2,gamma=1.2)
```

CIR

Creating Cox-Ingersoll-Ross (CIR) Square Root Diffusion Models (by Milstein Scheme)

Description

Simulation cox-ingersoll-ross models by milstein scheme.

Usage

```
CIR(N, M, t0, T, x0, theta, r, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0.
theta	constant positive ($(r - theta * X(t)) : drift coefficient)$.
r	constant positive ($(r - theta * X(t)) : drift coefficient)$.
sigma	constant positive ($sigma * sqrt(X(t))$: diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

Details

Another interesting family of parametric models is that of the Cox-Ingersoll-Ross process. This model was introduced by Feller as a model for population growth and became quite popular in finance after Cox, Ingersoll, and Ross proposed it to model short-term interest rates. It was recently adopted to model nitrous oxide emission from soil by Pedersen and to model the evolutionary rate variation across sites in molecular evolution.

The discretization dt = (T-t0)/N, and the stochastic differential equation of CIR is:

```
dX(t) = (r - theta * X(t)) * dt + sigma * sqrt(X(t)) * dW(t)
```

52 CIRhy

```
With (r - theta *X(t)) : drift coefficient and sigma*sqrt(X(t)) : diffusion coefficient, W(t) is Wiener process.
Constraints: 2*r > sigma^2.
```

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Cox-Ingersoll-Ross Models
## dX(t) = (0.1 - 0.2 *X(t)) *dt + 0.05 * sqrt(X(t)) * dW(t)
## One trajectorie
CIR(N=1000,M=1,t0=0,T=1,x0=0.2,theta=0.2,r=0.1,sigma=0.05)
```

CIRhy

Creating The modified CIR and hyperbolic Process (by Milstein Scheme)

Description

Simulation the modified CIR and hyperbolic process by milstein scheme.

Usage

```
CIRhy(N, M, t0, T, x0, r, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0.
r	constant(-r * X(t) : drift coefficient).
sigma	constant positive (sigma * $sqrt(1+X(t)^2)$: diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

CKLS 53

Details

The stochastic differential equation of the modified CIR is:

$$dX(t) = -r * X(t) * dt + sigma * sqrt(1 + X(t)^{2}) * dW(t)$$

With -r*X(t) :drift coefficient and sigma*sqrt(1+X(t)^2) :diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

Constraints: $r + (sigma^2)/2 > 0$ (this is needed to make the process positive recurrent).

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## The modified CIR and hyperbolic Process

## dX(t) = -0.3 *X(t) *dt + 0.9 * sqrt(1+X(t)^2) * dW(t)

## One trajectorie

CIRhy(N=1000,M=1,T=1,t0=0,x0=1,r=0.3,sigma=0.9)
```

CKLS

Creating The Chan-Karolyi-Longstaff-Sanders (CKLS) family of models (by Milstein Scheme)

Description

Simulation the chan-karolyi-longstaff-sanders models by milstein scheme.

Usage

```
CKLS(N, M, t0, T, x0, r, theta, sigma, gamma, output = FALSE)
```

54 CKLS

Arguments

N	size of process.
M	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
r	constant((r + theta *X(t)) : drift coefficient).
theta	constant((r + theta *X(t)) : drift coefficient).
sigma	constant positive (sigma * $X(t)$ ^gamma :diffusion coefficient).
gamma	constant positive (sigma * $X(t)$ ^gamma :diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

Details

The Chan-Karolyi-Longstaff-Sanders (CKLS) family of models is a class of parametric stochastic differential equations widely used in many finance applications, in particular to model interest rates or asset prices.

The CKLS process solves the stochastic differential equation:

```
dX(t) = (r + theta * X(t)) * dt + sigma * X(t)^g amma * dW(t)
```

With (r + theta * X(t)) : drift coefficient and sigma* X(t)^gamma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

This CKLS model is a further extension of the Cox-Ingersoll-Ross model and hence embeds all previous models.

The CKLS model does not admit an explicit transition density unless r = 0 or gamma = 0.5. It takes values in (0, + lnf) if r,theta > 0, and gamma > 0.5. In all cases, sigma is assumed to be positive.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

```
## Chan-Karolyi-Longstaff-Sanders Models
## dX(t) = (0.3 + 0.01 *X(t)) *dt + 0.1 * X(t)^0.2 * dW(t)
## One trajectorie
CKLS(N=1000,M=1,T=1,t0=0,x0=1,r=0.3,theta=0.01,sigma=0.1,gamma= 0.2)
```

DATA1 55

DATA1

Observation of Ornstein-Uhlenbeck Process

Description

Simulation the observation of Ornstein-Uhlenbeck Process by function OU.

Examples

```
data(DATA1)
plot(ts(DATA1,delta=0.001),type="1")
```

DATA2

Observation of Geometric Brownian Motion Model

Description

Simulation the observation of Geometric Brownian Motion Model by function GBM.

Examples

```
data(DATA2)
plot(ts(DATA2,delta=0.001),type="1")
```

DATA3

Observation of Arithmetic Brownian Motion

Description

Simulation the observation of Arithmetic Brownian Motion by function ABM.

```
data(DATA3)
plot(ts(DATA3,delta=0.001),type="1")
```

56 diffBridge

diffBridge	Creating Diffusion Bridge Models (by Euler Scheme)	

Description

Simulation of diffusion bridge models by euler scheme.

Usage

```
diffBridge(N, t0, T, x, y, drift, diffusion, Output = FALSE)
```

Arguments

N	I	size of process.
t	.0	initial time.
Т	•	final time.
Х	(initial value of the process at time t0.
У	,	terminal value of the process at time T.
d	lrift	drift coefficient: an expression of two variables t and x .
d	liffusion	diffusion coefficient: an expression of two variables t and x .
0	Output	if Output = TRUE write a Output to an Excel (.csv).

Details

The function diffBridge returns a trajectory of the diffusion bridge starting at x at time t0 and ending at y at time T, the discretization dt = (T-t0)/N.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CKLS Chan-Karolyi-Longstaff-Sanders Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, snssde Simulation Numerical Solution of SDE.

DWP 57

Examples

```
## example 1 : Ornstein-Uhlenbeck Bridge Model (x0=1,t0=0,y=3,T=1)
drift \leftarrow expression( (3*(2-x)) )
diffusion <- expression( (2) )</pre>
diffBridge(N=1000,t0=0,T=1,x=1,y=1,drift,diffusion)
## example 2 : Brownian Bridge Model (x0=0,t0=0,y=1,T=1)
drift <- expression( 0)</pre>
diffusion <- expression( 1 )</pre>
diffBridge(N=1000,t0=0,T=1,x=0,y=0,drift,diffusion)
## example 3 : Geometric Brownian Bridge Model (x0=1,t0=1,y=3,T=3)
         <- expression( (3*x) )
diffusion <- expression( (2*x) )</pre>
diffBridge(N=1000,t0=0,T=10,x=1,y=1,drift,diffusion)
## example 4 : sde\ dX(t)=(0.03*t*X(t)-X(t)^3)*dt+0.1*dW(t) (x0=0,t0=0,y=2,T=100)
        <- expression( (0.03*t*x-x^3) )</pre>
diffusion <- expression( (0.1) )</pre>
diffBridge(N=1000,t0=0,T=100,x=1,y=1,drift,diffusion)
```

DWP

Creating Double-Well Potential Model (by Milstein Scheme)

Description

Simulation double-well potential model by milstein scheme.

Usage

```
DWP(N, M, t0, T, x0, output = FALSE)
```

size of process

Arguments

11	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
output	if output = TRUE write a output to an Excel (.csv).

Details

This model is interesting because of the fact that its density has a bimodal shape.

The process satisfies the stochastic differential equation:

$$dX(t) = (X(t) - X(t)^3) * dt + dW(t)$$

With $(X(t) - X(t)^3)$: drift coefficient and 1 is diffusion coefficient, W(t) is Wiener process, and the discretization dt = (T-t0)/N.

This model is challenging in the sense that the Milstein approximation.

58 FBD

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller's Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Double-Well Potential Model

## dX(t) = (X(t) - X(t)^3) * dt + dW(t)

## One trajectorie

DWP(N=1000,M=1,T=1,t0=0,x0=1)
```

FBD

Feller Branching Diffusion

Description

Simulation the Feller Branching diffusion.

Usage

```
FBD(N, M, t0, T, x0, mu, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
mu	<pre>constant (mu * X(t) :drift coefficient).</pre>
sigma	constant positive (sigma * $sqrt(X(t))$: diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

fctgeneral 59

Details

The Feller Branching diffusion model also derives directly from the linear drift class, the discretization dt = (T-t0)/N.

A simple branching process is a model in which individuals reproduce independently of each other and of the history of the process. The continuous approximation to branching process is the branching diffusion. It is given by the stochastic differential equation for the population size X(t), 0 < X(t) < +Inf:

$$dX(t) = mu * X(t) * dt + sigma * sqrt(X(t)) * dW(t)$$

with mu * X(t) :drift coefficient and sigma * sqrt(X(t)) :diffusion coefficient, W(t) is Wiener process.

Value

data.frame(time,x) and plot of process.

Author(s)

Guidoum Arsalane.

References

Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

See Also

SLVM Stochastic Lotka-Volterra, WFD Wright-Fisher Diffusion.

Examples

```
FBD(N=1000, M=1, t0=0, T=1, x0=1, mu=2, sigma=0.5, output=FALSE)
```

fctgeneral

Adjustment the Empirical Distribution of Random Variable X

Description

Adjusted your empirical distribution of Random Variable X.

Usage

Arguments

Data a numeric vector of the observed values.

Law distribution function with Adjusted. see details Distributions ($R \ge 2.12.1$)

fctrep_Meth

Details

```
calculating the empirical distribution F[i] = (1/n)*Sum(V[i]) with V[i] = 1 if x[i] \le X else V[i] = 0. And ajusted with the Distribution C(pexp'',pgamma'',pchisq'',pbeta'',pf'',pt'',pweibull'',plnorm'',pnorm'')
```

Value

Plot the empirical distribution with Adjustment and Estimation.

Note

Choose your best distribution with minimum AIC.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

hist_general Histograms Methods, Kern_general Kernel Methods.

Examples

```
X <- rgamma(100,1,4)
par(mfrow=c(2,2))
fctgeneral(Data=X,Law=("exp"))
fctgeneral(Data=X,Law=("GAmma"))
fctgeneral(Data=X,Law=("weibull"))
fctgeneral(Data=X,Law=("Normlog"))</pre>
```

fctrep_Meth

Calculating the Empirical Distribution of Random Variable X

Description

Calculating your empirical distribution of random variable X.

Usage

```
fctrep_Meth(X)
```

Arguments

Χ

a numeric vector of the observed values.

Details

```
calculating the empirical distribution F[i] = (1/n)*Sum(V[i]) with V[i] = 1 if x[i] <= X else V[i] = 0.
```

Value

Plot the empirical distribution.

GBM 61

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

hist_meth Histograms, Kern_meth Kernel Density.

Examples

```
X <- rexp(1000,2)
Y <- rgamma(1000,1,2)
Z <- rweibull(1000,1,1)
G <- rnorm(1000,mean(X),sd(X))
par(mfrow=c(2,2))
fctrep_Meth(X)
fctrep_Meth(Y)
fctrep_Meth(Z)
fctrep_Meth(G)</pre>
```

GBM

Creating Geometric Brownian Motion (GBM) Models

Description

Simulation geometric brownian motion or Black-Scholes models.

Usage

```
GBM(N, t0, T, x0, theta, sigma, output = FALSE)
```

size of process.

Arguments N

t0	initial time.
T	final time.
x 0	initial value of the process at time $t0 (x0 > 0)$.
theta	$constant (theta is the constant interest rate and and theta \star X(t) : drift coefficient$
sigma	$constant\ positive\ (sigma\ is\ volatility\ of\ risky\ activities\ and\ sigma\ *\ X(t): diffusion$

Details

output

This process is sometimes called the Black-Scholes-Merton model after its introduction in the finance context to model asset prices.

if output = TRUE write a output to an Excel (.csv).

The process is the solution to the stochastic differential equation:

```
dX(t) = theta * X(t) * dt + sigma * X(t) * dW(t)
```

With theta \star X(t) : drift coefficient and sigma \star X(t) : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

62 GBMF

sigma > 0, the parameter theta is interpreted as the constant interest rate and sigma as the volatility of risky activities.

The explicit solution is:

$$X(t) = x0 * exp((theta - 0.5 * sigma^2) * t + sigma * W(t))$$

The conditional density function is log-normal.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

GBMF Flow of Geometric Brownian Motion, PEBS Parametric Estimation of Model Black-Scholes, snssde Simulation Numerical Solution of SDE.

Examples

```
## Black-Scholes Models
## dX(t) = 4 * X(t) * dt + 2 * X(t) *dW(t)
GBM(N=1000,T=1,t0=0,x0=1,theta=4,sigma=2)
```

GBMF

Creating Flow of Geometric Brownian Motion Models

Description

Simulation flow of geometric brownian motion or Black-Scholes models.

Usage

```
GBMF(N, M, t0, T, x0, theta, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time $t0 (x0 > 0)$.
theta	$constant(theta\ is\ the\ constant\ interest\ rate and\ and\ theta\ \star\ X(t)\ : drift\ coefficient$
sigma	constant positive (sigma is volatility of risky activities and sigma \star X(t):diffusion
output	if output = TRUE write a output to an Excel (.csv).

hist_general 63

Details

This process is sometimes called the Black-Scholes-Merton model after its introduction in the finance context to model asset prices.

The process is the solution to the stochastic differential equation:

$$dX(t) = theta * X(t) * dt + sigma * X(t) * dW(t)$$

With theta * X(t) : drift coefficient and sigma * X(t) : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

sigma > 0, the parameter theta is interpreted as the constant interest rate and sigma as the volatility of risky activities.

The explicit solution is:

$$X(t) = x0 * exp((theta - 0.5 * sigma^2) * t + sigma * W(t))$$

The conditional density function is log-normal.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

GBM Geometric Brownian Motion, PEBS Parametric Estimation of Model Black-Scholes, snssde Simulation Numerical Solution of SDE.

Examples

```
## Flow of Black-Scholes Models
## dX(t) = 4 * X(t) * dt + 2 * X(t) *dW(t)
GBMF(N=1000,M=5,T=1,t0=0,x0=1,theta=4,sigma=2)
```

hist_general

Adjustment the Density of Random Variable X by Histograms Methods

Description

Adjusted your density of random variable X by histograms methods with Different number of cells.

Usage

64 hist_meth

Arguments

Data a numeric vector of the observed values.

Breaks one of: o a vector giving the breakpoints between histogram cells. o a single

number giving the number of cells for the histogram. o a function to compute

the number of cells. o Breaks = c('scott', 'Sturges', 'FD') or manual.

Law distribution function with Adjusted. see details Distributions ($R \ge 2.12.1$)

Details

Ajusted the density for random variable X by histograms methods with Different number of cells see details nclass.scott, ajusted with the Distribution c("dexp","dgamma", "dchisq", "dbeta", "df", "dt", "dweibull", "dlnorm", "dnorm").

Value

plot.histogram with Adjustment and Estimation.

Note

Choose your best distribution with minimum AIC.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

fctgeneral empirical distribution, Kern_general Kernel Methods.

Examples

```
X <- rexp(1000,2)
par(mfrow=c(2,2))
hist_general(Data=X, Breaks='FD', Law="exp")
hist_general(Data=X, Breaks='scott', Law="exp")
hist_general(Data=X, Breaks='Sturges', Law="exp")
hist_general(Data=X, Breaks=60, Law="exp")</pre>
```

hist_meth

Histograms of Random Variable X

Description

The generic function hist_meth computes a histogram of the given data values.

Usage

```
hist_meth(X, Breaks, Prob = c("TRUE", "FALSE"))
```

HWV 65

Arguments

X a numeric vector of the observed values.

Breaks one of: o a vector giving the breakpoints between histogram cells. o a single

number giving the number of cells for the histogram. o a function to compute

the number of cells. o Breaks = c('scott', 'Sturges', 'FD') or manual.

Prob logical; if TRUE, the histogram graphic is a representation of frequencies, the

counts component of the result; if FALSE, probability densities, component density, are plotted (so that the histogram has a total area of one). Defaults to TRUE

if and only if breaks are equidistant (and probability is not specified).

Details

The definition of histogram differs by source (with country-specific biases). R's default with equispaced breaks (also the default) is to plot the counts in the cells defined by breaks. Thus the height of a rectangle is proportional to the number of points falling into the cell, as is the area provided the breaks are equally-spaced.

Value

plot.histogram for the random variable X.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Kern_meth Kernel Density,fctrep_Meth Empirical Distribution.

Examples

```
X <- rexp(1000,2)
X11()
hist_meth(X, Breaks='scott', Prob ="TRUE")
curve(dexp(x, 2), col = 2, lwd = 2, add = TRUE)
X11()
hist_meth(X, Breaks='FD', Prob ="TRUE")
curve(dgamma(x,1, 2), col = 2, lwd = 2, add = TRUE)
X11()
hist_meth(X, Breaks=100, Prob ="TRUE")
curve(dweibull(x,1, 0.5),col=2, lwd = 2, add = TRUE)</pre>
```

HWV

Creating Hull-White/Vasicek (HWV) Gaussian Diffusion Models

Description

Simulation the Hull-White/Vasicek or gaussian diffusion models.

66 HWV

Usage

```
HWV(N, t0, T, x0, theta, r, sigma, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
theta	constant(theta is the long-run equilibrium value of the process and $r*(theta - X(t))$:drift coefficient).
r	$constant\ positive\ (r\ is\ speed\ of\ reversion\ and\ r*(theta\ -X(t)): drift\ coefficient).$
sigma	constant positive (sigma (volatility) :diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

Details

The Hull-White/Vasicek (HWV) short rate class derives directly from SDE with mean-reverting drift:

$$dX(t) = r * (theta - X(t)) * dt + sigma * dW(t)$$

With r *(theta- X(t)) : drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

The process is also ergodic, and its invariant law is the Gaussian density.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

HWVF Flow of Gaussian Diffusion Models, PEOUG Parametric Estimation of Hull-White/Vasicek Models, snssde Simulation Numerical Solution of SDE.

```
## Hull-White/Vasicek Models
## dX(t) = 4 * (2.5 - X(t)) * dt + 1 *dW(t)
HWV(N=1000,t0=0,T=1,x0=10,theta=2.5,r=4,sigma=1)
## if theta = 0 than "OU" = "HWV"
## dX(t) = 4 * (0 - X(t)) * dt + 1 *dW(t)
system.time(OU(N=10^4,t0=0,T=1,x0=10,r=4,sigma=1))
system.time(HWV(N=10^4,t0=0,T=1,x0=10,theta=0,r=4,sigma=1))
```

HWVF 67

HWVF	Creating Flow of Hull-White/Vasicek (HWV) Gaussian Diffusion Mod-
	Creaming I tow of Itual White, rusteen (II W) Gamssam Diffusion mea
	els

Description

Simulation flow of the Hull-White/Vasicek or gaussian diffusion models.

Usage

```
HWVF(N, M, t0, T, x0, theta, r, sigma, output = FALSE)
```

Arguments

N	size of process.
M	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
theta	constant(theta is the long-run equilibrium value of the process and $r*(theta - X(t))$:drift coefficient).
r	constant positive (r is speed of reversion and r*(theta $-X(t)$):drift coefficient).
sigma	constant positive (sigma (volatility) :diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

Details

The Hull-White/Vasicek (HWV) short rate class derives directly from SDE with mean-reverting drift:

$$dX(t) = r * (theta - X(t)) * dt + sigma * dW(t)$$

With r *(theta- X(t)) : drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

The process is also ergodic, and its invariant law is the Gaussian density.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

HWV Hull-White/Vasicek Models, PEOUG Parametric Estimation of Hull-White/Vasicek Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## flow of Hull-White/Vasicek Models
## dX(t) = 4 * (2.5 - X(t)) * dt + 1 *dW(t)
HWVF(N=1000,M=10,t0=0,T=1,x0=10,theta=2.5,r=4,sigma=1)
## if theta = 0 than "OUF" = "HWVF"
## dX(t) = 4 * (0 - X(t)) * dt + 1 *dW(t)
system.time(HWVF(N=1000,M=10,t0=0,T=1,x0=10,theta=0,r=4,sigma=1))
system.time(OUF(N=1000,M=5,t0=0,T=1,x0=10,r=4,sigma=1))
```

Hyproc

Creating The Hyperbolic Process (by Milstein Scheme)

Description

Simulation hyperbolic process by milstein scheme.

Usage

```
Hyproc(N, M, t0, T, x0, theta, output = FALSE)
```

Arguments

N size of process.

M number of trajectories.

t0 initial time.

T final time.

x0 initial value of the process at time t0.

theta constant positive.

output if output = TRUE write a output to an Excel (.csv).

Details

A process X satisfying:

$$dX(t) = (-theta * X(t)/sqrt(1 + X(t)^2)) * dt + dW(t)$$

With $(-theta*X(t)/sqrt(1+X(t)^2))$: drift coefficient and 1 : diffusion coefficient, W(t) is Wiener process, discretization dt = (T-t0)/N.

Constraints: theta > 0.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

Hyprocg 69

See Also

Hyprocg General Hyperbolic Diffusion, CIRhy modified CIR and hyperbolic Process, snssde Simulation Numerical Solution of SDE.

Examples

```
## Hyperbolic Process
## dX(t) = (-2*X(t)/sqrt(1+X(t)^2)) *dt + dW(t)
## One trajectorie
Hyproc(N=1000,M=1,T=100,t0=0,x0=3,theta=2)
```

Hyprocg

Creating The General Hyperbolic Diffusion (by Milstein Scheme)

Description

Simulation the general hyperbolic diffusion by milstein scheme.

size of process.

Usage

```
Hyprocg(N, M, t0, T, x0, beta, gamma, theta, mu, sigma, output = FALSE)
```

Arguments N

	1
М	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0.
beta	$constant (0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift \ coefficient (a.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift \ coefficient (b.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift \ coefficient (b.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift \ coefficient (b.5*sigma^2): drift \ coefficient $
gamma	$constant\ positive\ (0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift\ constant\ positive\ (0.5*sigma^2+(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift\ constant\ positive\ (0.5*sigma^2+(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift\ constant\ positive\ (0.5*sigma^2+(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift\ positive\ (0.5*sigma^2+(beta-(gamma*X(t))/sqrt(theta^2+(gamma*X($
theta	$constant\ positive\ (0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift\ constant\ positive\ (0.5*sigma^2+(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift\ constant\ positive\ (0.5*sigma^2+(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift\ constant\ positive\ (0.5*sigma^2+(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift\ positive\ (0.5*sigma^2+(beta-(gamma*X(t))/sqrt(theta^2+(gamma*X($
mu	$constant (0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift \ coefficient (a.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift \ coefficient (b.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift \ coefficient (b.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)): drift \ coefficient (b.5*sigma^2): drift \ coefficient $
sigma	constant positive (sigma :diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

Details

A process X satisfying:

```
dX(t) = (0.5*sigma^2*(beta - (gamma*X(t))/sqrt(theta^2 + (X(t) - mu)^2))*dt + dW(t)
```

With $(0.5*sigma^2*(beta-(gamma*X(t))/sqrt(theta^2+(X(t)-mu)^2)):drift coefficient and sigma :diffusion coefficient, W(t) is Wiener process, discretization dt = <math>(T-t0)/N$.

The parameters gamma > 0 and $0 \le abs(beta) \le gamma$ determine the shape of the distribution, and theta >= 0, and mu are, respectively, the scale and location parameters of the distribution.

```
Constraints: gamma > 0, 0 \le abs(beta) \le gamma, theta >= 0, sigma > 0.
```

70 INFSR

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Hyproc Hyperbolic Process, CIRhy modified CIR and hyperbolic Process, snssde Simulation Numerical Solution of SDE.

Examples

```
## Hyperbolic Process

## dX(t) = 0.5 * (2)^2*(0.25-(0.5*X(t))/sqrt(2^2+(X(t)-1)^2)) *dt + 2* dW(t)

## One trajectorie

Hyprocg(N=1000,M=1,T=100,t0=0,x0=-10,beta=0.25,gamma=0.5,theta=2,mu=1,sigma=2)
```

INFSR

Creating Ahn and Gao model or Inverse of Feller Square Root Models (by Milstein Scheme)

Description

Simulation the inverse of feller square root model by milstein scheme.

Usage

```
INFSR(N, M, t0, T, x0, theta, r, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0.
theta	$constant (\ X(t)*(theta-(sigma^3-theta*r)*X(t)) \ : drift \ coefficient).$
r	$constant (\ X(t)*(theta-(sigma^3-theta*r)*X(t)) \ : drift \ coefficient).$
sigma	constant positive (sigma \star X(t) $^{(3/2)}$:diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

JDP 71

Details

A process X satisfying:

```
dX(t) = X(t) * (theta - (sigma^3 - theta * r) * X(t)) * dt + sigma * X(t)(3/2) * dW(t)
```

With $X(t)*(theta-(sigma^3-theta*r)*X(t)): drift coefficient and sigma * <math>X(t)^{(3/2)}: diffusion coefficient and sigma * X(t)^{(3/2)}: diffusion coefficient and sigma * X(t$

The conditional distribution of this process is related to that of the Cox-Ingersoll-Ross (CIR) model.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Inverse of Feller Square Root Models

## dX(t) = X(t)*(0.5-(1^3-0.5*0.5)*X(t)) * dt + 1 * X(t)^(3/2) * dW(t)

## One trajectorie

INFSR(N=1000,M=1,T=50,t0=0,x0=0.5,theta=0.5,r=0.5,sigma=1)
```

JDP

Creating The Jacobi Diffusion Process (by Milstein Scheme)

Description

Simulation the jacobi diffusion process by milstein scheme.

Usage

```
JDP(N, M, t0, T, x0, theta, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
theta	constant positive.
output	if output = TRUE write a output to an Excel (.csv).

72 Kern_general

Details

The Jacobi diffusion process is the solution to the stochastic differential equation:

```
dX(t) = -theta * (X(t) - 0.5) * dt + sqrt(theta * X(t) * (1 - X(t))) * dW(t)
```

With -theta * (X(t) - 0.5) :drift coefficient and sqrt(theta*X(t)*(1-X(t))) :diffusion coefficient W(t) is Wiener process, discretization dt = (T-t0)/N.

For theta > 0. It has an invariant distribution that is uniform on [0,1].

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, PDP Pearson Diffusions Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Jacobi Diffusion Process

## dX(t) = -0.05 * (X(t)-0.5)* dt + sqrt(0.05*X(t)*(1-X(t))) * dW(t),

## One trajectorie

JDP(N=1000,M=1,T=100,t0=0,x0=0,theta=0.05)
```

Kern_general

Adjustment the Density of Random Variable by Kernel Methods

Description

kernel density estimates. Its default method does so with the given kernel and bandwidth for univariate observations, and adjusted your density with distributions.

Usage

Kern_general 73

Arguments

Data	a numeric vector of the observed values.
bw	the smoothing bandwidth to be used. The kernels are scaled such that this is the standard deviation of the smoothing kernel. bw=c('Irt','scott','Ucv','Bcv','SJ') or manual, see details bw.nrd0
k	a character string giving the smoothing kernel to be used. This must be one of "gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" or "optcosine"
Law	distribution function with Adjusted. see details Distributions ($R \ge 2.12.1$)

Details

see details density

Value

plot.density estimated with Adjustment.

Note

- bw='Irt' ===> bw= bw.nrd0(X), implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel density estimator.
- bw='scott' ===> bw= bw.nrd(X) ,is the more common variation given by Scott.
- bw='Ucv' ===> bw= bw.ucv(X), implement unbiased cross-validation.
- bw='Bcv' ===> bw= bw.bcv(X), implement biased cross-validation.
- bw='SJ' ===> bw= bw.SJ(X), implements the methods of Sheather & Jones.
- Choose your best distribution with minimum AIC.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

fctgeneral empirical distribution, hist_general Histograms Methods.

```
X <- rexp(1000,1)
par(mfrow=c(2,2))
Kern_general(Data=X, bw='Irt', k="gaussian", Law = c("exp"))
Kern_general(Data=X, bw='scott', k="gaussian", Law = c("exp"))
Kern_general(Data=X, bw='Ucv', k="gaussian", Law = c("exp"))
Kern_general(Data=X, bw=0.3, k="gaussian", Law = c("exp"))</pre>
```

74 Kern_meth

Kern	meth
Nei II	IIIE LII

Kernel Density of Random Variable X

Description

kernel density estimates. Its default method does so with the given kernel and bandwidth for univariate observations.

Usage

```
Kern_meth(X, bw, k)
```

Arguments

X a numeric vector of the observed values.

bw the smoothing bandwidth to be used. The kernels are scaled such that this is the

standard deviation of the smoothing kernel. bw=c('Irt','scott','Ucv','Bcv','SJ')

or manual, see details bw.nrd0

k a character string giving the smoothing kernel to be used. This must be one of

"gaussian", "rectangular", "triangular", "epanechnikov", "biweight", "cosine" or

"optcosine"

Details

```
see details plot.density
```

Value

plot.density for your data.

Note

- bw='Irt' ===> bw= bw.nrd0(X), implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel density estimator.
- bw='scott' ===> bw= bw.nrd(X) ,is the more common variation given by Scott.
- bw='Ucv' ===> bw= bw.ucv(X), implement unbiased cross-validation.
- bw='Bcv' ===> bw= bw.bcv(X), implement biased cross-validation.
- bw='SJ' ===> bw= bw.SJ(X), implements the methods of Sheather & Jones.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

hist_meth Histograms,fctrep_Meth Empirical Distribution.

MartExp 75

Examples

```
## Example 1
## fixed bw with different kernel
X <- rbeta(1000,1,2)</pre>
par(mfrow=c(2,2))
Kern_meth(X, bw='Ucv', k="rectangular")
Kern_meth(X, bw='Ucv',k="triangular")
Kern_meth(X, bw='Ucv',k="epanechnikov")
Kern_meth(X, bw='Ucv',k="cosine")
## Example 2
## fixed kernel with different bw
Y <- rlnorm(1000)
par(mfrow=c(2,2))
Kern_meth(Y, bw='Irt', k="epanechnikov")
Kern_meth(Y, bw='Ucv',k="epanechnikov")
Kern_meth(Y, bw='scott',k="epanechnikov")
Kern_meth(Y, bw=0.4,k="epanechnikov")
```

MartExp

Creating The Exponential Martingales Process

Description

Simulation the exponential martingales.

Usage

```
MartExp(N, t0, T, sigma, output = FALSE)
```

Arguments

```
N size of process.
t0 initial time.
T final time.
sigma constant positive (sigma is volatility).
output if output = TRUE write a output to an Excel (.csv).
```

Details

That is to say W(t) a Brownian movement the following processes are continuous martingales :

```
1. X(t) = W(t)^2 - t.

2. Y(t) = \exp(\inf(f(s)dW(s), 0, t) - 0.5 * \inf(f(s)^2 ds, 0, t)).
```

Value

data.frame(time,x,y) and plot of process.

76 OU

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

Examples

```
## Exponential Martingales Process
MartExp(N=1000,t0=0,T=1,sigma=2)
```

OU

Creating Ornstein-Uhlenbeck Process

Description

Simulation the ornstein-uhlenbeck or Hull-White/Vasicek model.

Usage

```
OU(N, t0, T, x0, r, sigma, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
r	constant positive (r is speed of reversion and $-r * X(t)$:drift coefficient).
sigma	constant positive (sigma (volatility) : diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

Details

The Ornstein-Uhlenbeck or Vasicek process is the unique solution to the following stochastic differential equation :

$$dX(t) = -r * X(t) * dt + sigma * dW(t)$$

With -r * X(t) : drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

Please note that the process is stationary only if r > 0.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

OUF 77

See Also

OUF Flow of Ornstein-Uhlenbeck Process, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, snssde Simulation Numerical Solution of SDE.

Examples

```
## Ornstein-Uhlenbeck Process
## dX(t) = -2 * X(t) * dt + 1 *dW(t)
OU(N=1000,t0=0,T=10,x0=10,r=2,sigma=1)
```

OUF

Creating Flow of Ornstein-Uhlenbeck Process

Description

Simulation flow of ornstein-uhlenbeck or Hull-White/Vasicek model.

Usage

```
OUF(N, M, t0, T, x0, r, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
r	constant positive (r is speed of reversion and -r * $X(t)$:drift coefficient).
sigma	constant positive (sigma (volatility) :diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

Details

The Ornstein-Uhlenbeck or Vasicek process is the unique solution to the following stochastic differential equation :

```
dX(t) = -r * X(t) * dt + sigma * dW(t)
```

With -r * X(t) : drift coefficient and sigma : diffusion coefficient, W(t) is Wiener process, the discretization dt = (T-t0)/N.

Please note that the process is stationary only if r > 0.

Value

data.frame(time,x) and plot of process.

78 PDP

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

OU Ornstein-Uhlenbeck Process, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, snssde Simulation Numerical Solution of SDE.

Examples

```
## Flow of Ornstein-Uhlenbeck Process
## dX(t) = -2 * X(t) * dt + 1 *dW(t)
OUF(N=1000,M=5,t0=0,T=1,x0=10,r=2,sigma=1)
```

PDP

Creating Pearson Diffusions Process (by Milstein Scheme)

Description

Simulation the pearson diffusions process by milstein scheme.

size of process.

Usage

```
PDP(N, M, t0, T, x0, theta, mu, a, b, c, output = FALSE)
```

Arguments

Ν

М	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0.
theta	constant positive.
mu	constant.
а	constant.
b	constant.
С	constant.
output	if output = TRUE write a output to an Excel (.csv).

Details

A class that further generalizes the Ornstein-Uhlenbeck and Cox-Ingersoll-Ross processes is the class of Pearson diffusion, the pearson diffusions process is the solution to the stochastic differential equation :

$$dX(t) = -theta * (X(t) - mu) * dt + sqrt(2 * theta * (a * X(t)^{2} + b * X(t) + c)) * dW(t)$$

With -theta *(X(t)-mu) : drift coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$) : diffusion coefficient and sqrt($2*theta*(a*X(t)^2 + b *X(t) + c)$

79

With theta > 0 and a, b, and c such that the diffusion coefficient is well-defined i.e., the square root can be extracted for all the values of the state space of X(t).

- 1. When the diffusion coefficient = sqrt(2*theta*c) i.e, (a=0,b=0), we recover the Ornstein-Uhlenbeck process.
- 2. For diffusion coefficient = sqrt(2*theta*X(t)) and 0 < mu <= 1 i.e, (a=0,b=1,c=0), we obtain the Cox-Ingersoll-Ross process, and if mu > 1 the invariant distribution is a Gamma law with scale parameter 1 and shape parameter mu.
- 3. For a > 0 and diffusion coefficient = $sqrt(2*theta*a*(X(t)^2+1))$ i.e, (b=0,c=a), the invariant distribution always exists on the real line, and for mu = 0 the invariant distribution is a scaled t distribution with v=(1+a^(-1)) degrees of freedom and scale parameter v^(-0.5), while for mu =! 0 the distribution is a form of skewed t distribution that is called Pearson type IV distribution.
- 4. For a > 0, mu > 0, and diffusion coefficient = sqrt(2*theta*a*X(t)^2) i.e, (b=0,c=0), the distribution is defined on the positive half line and it is an inverse Gamma distribution with shape parameter 1 + a^-1 and scale parameter a/mu.
- 5. For a > 0, mu >= a, and diffusion coefficient = sqrt(2*theta*a*X(t)*(X(t)+1)) i.e, (b=a,c=0), the invariant distribution is the scaled F distribution with (2*mu)/a and (2/a)+2 degrees of freedom and scale parameter mu / (a+1). For 0 < mu < 1, some reflecting conditions on the boundaries are also needed.
- 6. If a < 0 and mu > 0 are such that min(mu,1-mu) >= -a and diffusion coefficient = sqrt(2*theta*a*X(ti.e, (b=-a,c=0), the invariant distribution exists on the interval [0,1] and is a Beta distribution with parameters -mu/a and (mu-1)/a.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, ROU Radial Ornstein-Uhlenbeck Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

80 PEABM

Examples

```
## example 1
## theta = 5, mu = 10, (a=0,b=0,c=0.5)
## dX(t) = -5 *(X(t)-10)*dt + sqrt( 2*5*0.5)* dW(t)
PDP(N=1000,M=1,T=1,t0=0,x0=1,theta=5,mu=10,a=0,b=0,c=0.5)
## example 2
## theta = 0.1, mu = 0.25, (a=0,b=1,c=0)
## dX(t) = -0.1 *(X(t)-0.25)*dt + sqrt( 2*0.1*X(t))* dW(t)
PDP(N=1000,M=1,T=1,t0=0,x0=1,theta=0.1,mu=0.25,a=0,b=1,c=0)
## example 3
## theta = 0.1, mu = 1, (a=2,b=0,c=2)
## dX(t) = -0.1*(X(t)-1)*dt + sqrt( 2*0.1*(2*X(t)^2+2))* dW(t)
PDP(N=1000, M=1, T=1, t0=0, x0=1, theta=0.1, mu=1, a=2, b=0, c=2)
## example 4
## theta = 0.1, mu = 1, (a=2,b=0,c=0)
## dX(t) = -0.1*(X(t)-1)*dt + sqrt( 2*0.1*2*X(t)^2)* dW(t)
PDP(N=1000, M=1, T=1, t0=0, x0=1, theta=0.1, mu=1, a=2, b=0, c=0)
## example 5
## theta = 0.1, mu = 3, (a=2,b=2,c=0)
## dX(t) = -0.1*(X(t)-3)*dt + sqrt(2*0.1*(2*X(t)^2+2*X(t)))* dW(t)
\label{eq:pdp} \texttt{PDP(N=1000,M=1,T=1,t0=0,x0=0.1,theta=0.1,mu=3,a=2,b=2,c=0)}
## example 6
## theta = 0.1, mu = 0.5, (a=-1,b=1,c=0)
## dX(t) = -0.1*(X(t)-0.5)*dt + sqrt( 2*0.1*(-X(t)^2+X(t)))* dW(t)
PDP(N=1000, M=1, T=1, t0=0, x0=0.1, theta=0.1, mu=0.5, a=-1, b=1, c=0)
```

PEABM

Parametric Estimation of Arithmetic Brownian Motion(Exact likelihood inference)

Description

Parametric estimation of Arithmetic Brownian Motion

Usage

```
PEABM(X, delta, starts = list(theta= 1, sigma= 1), leve = 0.95)
```

Arguments

X	a numeric vector of the observed time-series values.
delta	the fraction of the sampling period between successive observations.
starts	named list. Initial values for optimizer.
leve	the confidence level required.

PEBS 81

Details

This process solves the stochastic differential equation:

```
dX(t) = theta*dt + sigma*dW(t)
```

The conditional density p(t, .|x) is the density of a Gaussian law with mean = x0 + theta * t and variance = $sigma^2 * t$.

R has the <code>[dqpr]norm</code> functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the normal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, PEOUG Parametric Estimation of Hull-White/Vasicek Models, PEBS Parametric Estimation of model Black-Scholes.

Examples

```
## Parametric estimation of Arithmetic Brownian Motion.
## t0 = 0 ,T = 100
data(DATA3)
res <- PEABM(DATA3,delta=0.1,starts=list(theta=1,sigma=1),leve = 0.95)
res
ABMF(N=1000,M=10,t0=0,T=100,x0=DATA3[1],theta=res$coef[1],sigma=res$coef[2])
points(seq(0,100,length=length(DATA3)),DATA3,type="1",lwd=3,col="blue")</pre>
```

PEBS

Parametric Estimation of Model Black-Scholes (Exact likelihood inference)

Description

Parametric estimation of model Black-Scholes.

Usage

```
PEBS(X, delta, starts = list(theta= 1, sigma= 1), leve = 0.95)
```

82 PEBS

Arguments

X a numeric vector of the observed time-series values.

delta the fraction of the sampling period between successive observations.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

The Black and Scholes, or geometric Brownian motion model solves the stochastic differential equation:

$$dX(t) = theta * X(t) * dt + sigma * X(t) * dW(t)$$

The conditional density function p(t, |x) is log-normal with mean = x * exp(theta*t) and variance = $x^2 * exp(2*theta*t)*(exp(sigma^2 *t) -1)$.

R has the [dqpr]lnorm functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the lognormal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

PEABM Parametric Estimation of Arithmetic Brownian Motion, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, PEOUG Parametric Estimation of Hull-White/Vasicek Models.

```
## Parametric estimation of model Black-Scholes.
## t0 = 0 ,T = 1
data(DATA2)
res <- PEBS(DATA2,delta=0.001,starts=list(theta=2,sigma=1))
res
GBMF(N=1000,M=10,T=1,t0=0,x0=DATA2[1],theta=res$coef[1],sigma=res$coef[2])
points(seq(0,1,length=length(DATA2)),DATA2,type="1",lwd=3,col="blue")</pre>
```

PEOU 83

PEOU	Parametric Estimation of Ornstein-Uhlenbeck Model (Exact likeli- hood inference)
	noou injerence)

Description

Parametric estimation of Ornstein-Uhlenbeck Model.

Usage

```
PEOU(X, delta, starts = list(r= 1, sigma= 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed time-series values.

delta the fraction of the sampling period between successive observations.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

This process solves the stochastic differential equation:

$$dX(t) = -r * X(t) * dt + sigma * dW(t)$$

It is ergodic for r > 0. We have also shown its exact conditional and stationary densities. In particular, the conditional density p(t, |x) is the density of a Gaussian law with mean = x0 * exp(-r*t) and variance = $((sigma^2)/(2*r))*(1-exp(-2*r*t))$.

R has the <code>[dqpr]norm</code> functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the normal distribution.

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
VCOV	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

PEABM Parametric Estimation of Arithmetic Brownian Motion, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, PEOUG Parametric Estimation of Hull-White/Vasicek Models, PEBS Parametric Estimation of model Black-Scholes.

Examples

```
## Parametric estimation of Ornstein-Uhlenbeck Model.
## t0 = 0 ,T = 10
data(DATA1)
res <- PEOU(DATA1,delta=0.01,starts=list(r=2,sigma=1),leve = 0.90)
res
OUF(N=1000,M=10,t0=0,T=10,x0=40,r=0.1979284,sigma=3.972637)
points(seq(0,10,length=length(DATA1)),DATA1,type="1",lwd=3,col="blue")</pre>
```

PEOUexp

Parametric Estimation of Ornstein-Uhlenbeck Model (Explicit Estimators)

Description

Explicit estimators of Ornstein-Uhlenbeck Model.

Usage

```
PEOUexp(X, delta)
```

Arguments

X a numeric vector of the observed time-series values.

delta the fraction of the sampling period between successive observations.

Details

This process solves the stochastic differential equation:

$$dX(t) = -r * X(t) * dt + sigma * dW(t)$$

It is ergodic for r > 0.

We have also shown its exact conditional and stationary densities. In particular, the conditional density p(t, .|x) is the density of a Gaussian law with mean = x0 * exp(-r*t) and variance = $((sigma^2)/(2*r))*$ the maximum likelihood estimator of r is available in explicit form and takes the form:

$$r = -(1/dt) * log(sum(X(t) * X(t-1))/sum(X(t-1)^2))$$

which is defined only if sum(X(t)*X(t-1)) > 0, this estimator is consistent and asymptotically Gaussian.

The maximum likelihood estimator of:

$$sigma^2 = (2*r)/(N*(1-exp(-2*dt*r)))*sum(X(t) - X(t-1)*exp(-dt*r))^2$$

Value

r Estimator of speed of reversion.

sigma Estimator of volatility.

PEOUG 85

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

PEABM Parametric Estimation of Arithmetic Brownian Motion, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEOUG Parametric Estimation of Hull-White/Vasicek Models, PEBS Parametric Estimation of model Black-Scholes.

Examples

```
## t0 = 0 ,T = 10
data(DATA1)
res <- PEOUexp(DATA1,delt=0.01)
res
OUF(N=1000,M=10,t0=0,T=10,x0=DATA1[1],r=res$r,sigma=res$sigma)
points(seq(0,10,length=length(DATA1)),DATA1,type="1",lwd=3,col="blue")</pre>
```

PEOUG

Parametric Estimation of Hull-White/Vasicek (HWV) Gaussian Diffusion Models(Exact likelihood inference)

Description

Parametric estimation of Hull-White/Vasicek Model.

Usage

```
PEOUG(X, delta, starts = list(r= 1, theta= 1, sigma= 1), leve = 0.95)
```

Arguments

X a numeric vector of the observed time-series values.

delta the fraction of the sampling period between successive observations.

starts named list. Initial values for optimizer.

leve the confidence level required.

Details

the Vasicek or Ornstein-Uhlenbeck model solves the stochastic differential equation :

$$dX(t) = r * (theta - X(t)) * dt + sigma * dW(t)$$

It is ergodic for r > 0. We have also shown its exact conditional and stationary densities. In particular, the conditional density p(t, .|x) is the density of a Gaussian law with mean = theta+(x0-theta)*exp(-r*t) and variance = (sigma^2/(2*r))*(1-exp(-2*r*t)).

R has the [dqpr]norm functions to evaluate the density, the quantiles, and the cumulative distribution or generate pseudo random numbers from the normal distribution.

86 PredCorr

Value

coef	Coefficients extracted from the model.
AIC	A numeric value with the corresponding AIC.
vcov	A matrix of the estimated covariances between the parameter estimates in the linear or non-linear predictor of the model.
confint	A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1-level)/2 and 1 - (1-level)/2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

PEABM Parametric Estimation of Arithmetic Brownian Motion, PEOUexp Explicit Estimators of Ornstein-Uhlenbeck Model, PEOU Parametric Estimation of Ornstein-Uhlenbeck Model, PEBS Parametric Estimation of model Black-Scholes.

Examples

```
## example 1
## t0 = 0 ,T = 10
data(DATA1)
res <- PEOUG(DATA1,delta=0.01,starts=list(r=2,theta=0,sigma=1))
res
HWVF(N=1000,M=10,t0=0,T=10,x0=40,r=0.9979465,theta=16.49602,sigma=3.963486)
points(seq(0,10,length=length(DATA1)),DATA1,type="1",lwd=3,col="blue")</pre>
```

PredCorr

Predictor-Corrector Method For One-Dimensional SDE

Description

Predictor-Corrector method of simulation numerical solution of one dimensional stochastic differential equation.

Usage

Arguments

N	size of process.
М	number of trajectories.
Т	final time.
t0	initial time.
x0	initial value of the process at time t0.
Dt	time step of the simulation (discretization).

PredCorr 87

alpha	weight alpha of the predictor-corrector scheme.
mu	weight mu of the predictor-corrector scheme.
drift	drift coefficient: an expression of two variables t and x.
diffusion	diffusion coefficient: an expression of two variables t and x.
output	if output = TRUE write a output to an Excel (.csv).

Details

The function returns a trajectory of the process; i.e., x0 and the new N simulated values if M = 1. For M > 1, an mts (multidimensional trajectories) is returned, which means that M independent trajectories are simulated. If Dt is not specified, then Dt = (T-t0)/N. If Dt is specified, then N values of the solution of the sde are generated and the time horizon T is adjusted to be T = N * Dt.

The method we present here just tries to approximate the states of the process first. This method is of weak convergence order 1.

The predictor-corrector algorithm is as follows. First consider the simple approximation (the predictor), Then choose two weighting coefficients alpha and mu in [0,1] and calculate the corrector.

Value

data.frame(time,x) and plot of process.

Note

- Note that the predictor-corrector method falls back to the standard Euler method for alpha = mu = 0.
- The function by default implements the predictor corrector method with alpha = mu = 0.5.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

diffBridge Creating Diffusion Bridge Models.snssde numerical solution of one-dimensional SDE . snssde2D numerical solution of two-dimensional SDE. PredCorr2D predictor-corrector method for two-dimensional SDE.

88 PredCorr2D

PredCorr2D	Predictor-Corrector Method For Two-Dimensional SDE
------------	--

Description

Predictor-Corrector method of simulation numerical solution of Two dimensional stochastic differential equations.

Usage

Arguments

N	size of process.
T	final time.
t0	initial time.
x 0	initial value of the process X(t) at time t0.
у0	initial value of the process Y(t) at time t0.
Dt	time step of the simulation (discretization).
alpha	weight alpha of the predictor-corrector scheme.
mu	weight mu of the predictor-corrector scheme.
driftx	drift coefficient of process $X(t)$: an expression of three variables t , x and y .
drifty	drift coefficient of process Y(t): an expression of three variables t, x and y.
diffx	diffusion coefficient of process $X(t)$: an expression of three variables t , x and y .
diffy	diffusion coefficient of process $Y(t)$: an expression of three variables t , x and y .
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel (.csv).

Details

the system for stochastic differential equation Two dimensional is:

$$dX(t) = ax(t, X(t), Y(t)) * dt + bx(t, X(t), Y(t)) * dWx(t)$$

$$dY(t) = ay(t,X(t),Y(t))*dt + by(t,X(t),Y(t))*dWy(t)$$

 $with \ driftx = ax(t, X(t), Y(t)), \ drifty = ay(t, X(t), Y(t)) \ and \ diffx = bx(t, X(t), Y(t)), \ diffy = by(t, X(t), Y(t)) \ and \ diffx = bx(t, X(t), Y(t)), \ diffy = by(t, X(t), Y(t)) \ and \ diffx = bx(t, X(t), Y(t)), \ diffy = by(t, X(t), Y(t)), \ drifty = by(t, X(t), Y(t)), \$

The method we present here just tries to approximate the states of the process first. This method is of weak convergence order 1. dW1(t) and dW2(t) are brownian motions independent.

The predictor-corrector algorithm is as follows. First consider the simple approximation (the predictor), Then choose two weighting coefficients alpha and mu in [0,1] and calculate the corrector.

PredCorr2D 89

Value

data.frame(time,X(t),Y(t)) and plot of process 2-D.

Note

- Note that the predictor-corrector method falls back to the standard Euler method for alpha = mu = 0.
- The function by default implements the predictor corrector method with alpha = mu = 0.5.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

diffBridge Creating Diffusion Bridge Models. snssde numerical solution of one-dimensional SDE. snssde2D numerical solution of Two-dimensional SDE. PredCorr predictor-corrector method for one-dimensional SDE.

```
## Example 1
 driftx <- expression(cos(t*x*y))</pre>
 drifty <- expression(cos(t))</pre>
 diffx <- expression(0.1)</pre>
 diffy <- expression(0.1)</pre>
 PredCorr2D(N=5000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, alpha = 0.5,
            mu = 0.5, driftx, drifty, diffx, diffy, Step = FALSE,
            Output = FALSE)
## ploting Step by Step
PredCorr2D(N=5000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, alpha = 0.5,
           mu = 0.5, driftx, drifty, diffx, diffy, Step = TRUE,
           Output = FALSE)
## Example 2
## BM 2-D
 driftx <- expression(0)</pre>
 drifty <- expression(0)</pre>
 diffx <- expression(1)</pre>
 diffy <- expression(1)</pre>
 PredCorr2D(N=5000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, alpha = 0.5,
            mu = 0.5, driftx, drifty, diffx, diffy, Step = FALSE,
            Output = FALSE)
## ploting Step by Step
PredCorr2D(N=5000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, alpha = 0.5,
           mu = 0.5, driftx, drifty, diffx, diffy, Step = TRUE,
           Output = FALSE)
## Example 3
driftx <- expression(0.03*t*x-x^3)</pre>
 drifty <- expression(0.03*t*y-y^3)</pre>
 diffx <- expression(0.1)</pre>
 diffy <- expression(0.1)</pre>
 PredCorr2D(N=5000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, alpha = 0.5,
```

90 PredCorr3D

PredCorr3D

Predictor-Corrector Method For Three-Dimensional SDE

Description

Predictor-Corrector method of simulation numerical solution of Three dimensional stochastic differential equations.

Usage

```
PredCorr3D(N, T = 1, t0, x0, y0, z0, Dt, alpha = 0.5, mu = 0.5, driftx, drifty, driftz, diffx, c
```

Arguments

N	size of process.
Т	final time.
t0	initial time.
x0	initial value of the process X(t) at time t0.
y0	initial value of the process Y(t) at time t0.
z0	initial value of the process Z(t) at time t0.
Dt	time step of the simulation (discretization).
alpha	weight alpha of the predictor-corrector scheme.
mu	weight mu of the predictor-corrector scheme.
driftx	drift coefficient of process $X(t)$: an expression of three variables t , x and y , z .
drifty	drift coefficient of process $Y(t)$: an expression of three variables t , x and y , z .
driftz	drift coefficient of process $Z(t)$: an expression of three variables t , x and y , z .
diffx	diffusion coefficient of process $X(t)$: an expression of three variables t , x and y , z .
diffy	diffusion coefficient of process $Y(t)$: an expression of three variables t , x and y , z .
diffz	diffusion coefficient of process $Z(t)$: an expression of three variables t , x and y , z .
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel (.csv).

PredCorr3D 91

Details

the system for stochastic differential equation Three dimensional is:

$$dX(t) = ax(t,X(t),Y(t),Z(t))*dt + bx(t,X(t),Y(t),Z(t))*dWx(t)$$

$$dY(t) = ay(t, X(t), Y(t), Z(t)) * dt + by(t, X(t), Y(t), Z(t)) * dWy(t)$$

$$dZ(t) = az(t, X(t), Y(t), Z(t)) * dt + bz(t, X(t), Y(t), Z(t)) * dWz(t)$$

```
with driftx=ax(t,X(t),Y(t),Z(t)), drifty=ay(t,X(t),Y(t),Z(t)), driftz=az(t,X(t),Y(t),Z(t)) and diffx=bx(t,X(t),Y(t),Z(t)), diffy=by(t,X(t),Y(t),Z(t)), diffz=bz(t,X(t),Y(t),Z(t))
```

The method we present here just tries to approximate the states of the process first. This method is of weak convergence order 1. dW1(t) and dW2(t), dW3(t) are brownian motions independent.

The predictor-corrector algorithm is as follows. First consider the simple approximation (the predictor), Then choose two weighting coefficients alpha and mu in [0,1] and calculate the corrector.

Value

data.frame(time,X(t),Y(t),Z(t)) and plot of process 3-D.

Note

- Note that the predictor-corrector method falls back to the standard Euler method for alpha = mu = 0.
- The function by default implements the predictor corrector method with alpha = mu = 0.5.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

snssde numerical solution of one-dimensional SDE. snssde2D numerical solution of Two-dimensional SDE. snssde3D numerical solution of Three-dimensional SDE. PredCorr predictor-corrector method for one-dimensional SDE. PredCorr2D predictor-corrector method for Two-dimensional SDE.

92 RadialP2D_1

RadialP2D_1

Two-Dimensional Attractive Model Model (<math>S = 1, Sigma)

Description

Simulation 2-dimensional attractive model (S = 1).

Usage

```
RadialP2D_1(N, t0, Dt, T = 1, X0, Y0, v, K, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process $X(t)$ at time t0.
Υ0	initial value of the process Y(t) at time t0.
V	threshold. $0 < v < sqrt(X0^2 + Y0^2)$
K	constant K > 0.
Sigma	constant Sigma > 0.
Output	if Output = TRUE write a Output to an Excel (.csv).

Details

The attractive models is defined by the system for stochastic differential equation Two-dimensional .

$$dX(t) = (-K*X(t)/(sqrt(X(t)^2 + Y(t)^2))^(S+1))*dt + Sigma*dW1(t)$$

$$dY(t) = (-K*Y(t)/(sqrt(X(t)^2 + Y(t)^2))^(S+1))*dt + Sigma*dW2(t)$$

dW1(t) and dW2(t) are brownian motions independent.

If S = 1 (ie M(S=1, Sigma)) the system SDE is:

$$dX(t) = (-K * X(t)/(X(t)^{2} + Y(t)^{2})) * dt + Sigma * dW1(t)$$

$$dY(t) = (-K * Y(t)/(X(t)^{2} + Y(t)^{2})) * dt + Sigma * dW2(t)$$

For more detail consulted References.

Value

data.frame(time,X(t),Y(t)) and plot of process 2-D.

Note

• 2*K > Sigma^2.

RadialP2D_1PC 93

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

References

1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.

- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
snssde2D, PredCorr2D, RadialP2D_1PC, RadialP3D_1, tho_M1, fctgeneral, hist_general, Kern_meth.
```

Examples

```
RadialP2D_1(N=1000, t0=0, Dt=0.001, T = 1, X0=2, Y0=1, v=0.3, K=3, Sigma=0.2, Output = FALSE)
```

RadialP2D_1PC

Two-Dimensional Attractive Model in Polar Coordinates Model(S = 1, Sigma)

Description

Simulation 2-dimensional attractive model (S = 1) in polar coordinates.

Usage

```
RadialP2D_1PC(N, R0, t0, T, ThetaMax, K, sigma, output = FALSE)
```

if Output = TRUE write a Output to an Excel (.csv).

Arguments

output

N	size of process.
R0	initial value $R0 > 0$ at time t0.
t0	initial time.
T	final time.
ThetaMax	polar coordinates, example ThetaMax = 2*pi.
K	constant K > 0.
sigma	constant sigma > 0.

94 RadialP2D_1PC

Details

The attractive models is defined by the system for stochastic differential equation Two-dimensional .

$$dX(t) = (-K * X(t)/(sqrt(X(t)^2 + Y(t)^2))(S+1)) * dt + Sigma * dW1(t)$$

$$dY(t) = (-K * Y(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW2(t)$$

dW1(t) and dW2(t) are brownian motions independent.

Using Ito transform, it is shown that the Radial Process R(t) with R(t)=||(X(t),Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5 * Sigma^2 * R(t)(S - 1) - K)/R(t)^S) * dt + Sigma * dW(t)$$

If S = 1 (ie M(S=1, Sigma)) the R(t) is:

$$dR(t) = ((0.5 * Sigma^2 - K)/R(t)) * dt + Sigma * dW(t)$$

Where ||.|| is the Euclidean norm and dW(t) is a determined brownian motions.

 $R(t) = \operatorname{sqrt}(X(t)^2 + Y(t)^2)$ it is distance between X(t) and Y(t), then $X(t) = R(t) \cdot \operatorname{cos}(theta(t))$ and $Y(t) = R(t) \cdot \operatorname{sin}(theta(t))$,

For more detail consulted References.

Value

data.frame(time,R(t),theta(t)) and plot of process 2-D in polar coordinates.

Note

• 2*K > Sigma^2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol., 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

snssde2D, PredCorr2D, RadialP2D_2PC, RadialP3D_1, tho_M1, fctgeneral, hist_general,
Kern_meth.

RadialP2D_2 95

Examples

RadialP2D_2

Two- $Dimensional Attractive Model Model (<math>S \ge 2$, Sigma)

Description

Simulation 2-dimensional attractive model ($S \ge 2$).

Usage

```
RadialP2D_2(N, t0, Dt, T = 1, X0, Y0, v, K, s, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process X(t) at time t0.
Υ0	initial value of the process Y(t) at time t0.
V	threshold. $0 < v < sqrt(X0^2 + Y0^2)$
K	constant $K > 0$.
S	constant $s \ge 2$.
Sigma	constant Sigma > 0.
Output	if Output = TRUE write a Output to an Excel (.csv).

Details

The attractive models is defined by the system for stochastic differential equation Two-dimensional :

$$dX(t) = (-K * X(t)/(sqrt(X(t)^2 + Y(t)^2))(S+1)) * dt + Sigma * dW1(t)$$

$$dY(t) = (-K*Y(t)/(sqrt(X(t)^2 + Y(t)^2))^(S+1))*dt + Sigma*dW2(t)$$

dW1(t) and dW2(t) are brownian motions independent.

For more detail consulted References.

Value

data.frame(time,X(t),Y(t)) and plot of process 2-D.

Note

• 2*K > Sigma^2.

96 RadialP2D_2PC

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
snssde2D, PredCorr2D, RadialP2D_1PC, RadialP3D_1, tho_M1, fctgeneral, hist_general, Kern_meth.
```

Examples

```
RadialP2D_2(N=1000, t0=0, Dt=0.001, T = 1, X0=2, Y0=3, v=0.5, K=16, s=2,Sigma=0.2, Output = FALSE)
```

RadialP2D_2PC

Two-Dimensional Attractive Model in Polar Coordinates $Model(S \ge 2, Sigma)$

Description

Simulation 2-dimensional attractive model ($S \ge 2$) in polar coordinates.

Usage

```
RadialP2D_2PC(N, R0, t0, T, ThetaMax, K, s, sigma, output = FALSE)
```

Arguments

N	size of process.
---	------------------

R0 initial value R0 > 0 at time t0.

t0 initial time.
T final time.

ThetaMax polar coordinates, example ThetaMax = 2*pi.

K constant K > 0. s constant $s \ge 2$. sigma constant sigma > 0.

output if Output = TRUE write a Output to an Excel (.csv).

RadialP3D_1 97

Details

see details RadialP2D_1PC, and for more detail consulted References.

Value

data.frame(time,R(t),theta(t)) and plot of process 2-D in polar coordinates.

Note

```
• 2*K > Sigma^2.
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
snssde2D, PredCorr2D, RadialP2D_1PC, RadialP3D_1, tho_M1, fctgeneral, hist_general, Kern_meth.
```

Examples

```
RadialP2D_2PC(N=1000, R0=3, t0=0, T=1, ThetaMax=2*pi, K=2, s=2, sigma=0.2,output = FALSE)
```

RadialP3D_1

Three-Dimensional Attractive Model Model(S = 1, Sigma)

Description

Simulation 3-dimensional attractive model (S = 1).

Usage

```
RadialP3D_1(N, t0, Dt, T = 1, X0, Y0, Z0, v, K, Sigma, Output = FALSE)
```

98 RadialP3D_1

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process X(t) at time t0.
Y0	initial value of the process Y(t) at time t0.
Z0	initial value of the process Z(t) at time t0.
V	threshold. $0 < v < sqrt(X0^2 + Y0 ^2 + Z0^2)$
K	constant K > 0.
Sigma	constant Sigma > 0.
Output	if Output = TRUE write a Output to an Excel (.csv).

Details

The attractive models is defined by the system for stochastic differential equation three-dimensional :

$$\begin{split} dX(t) &= (-K*X(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))^(S+1))*dt + Sigma*dW1(t) \\ dY(t) &= (-K*Y(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))^(S+1))*dt + Sigma*dW2(t) \\ dZ(t) &= (-K*Z(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))^(S+1))*dt + Sigma*dW3(t) \\ \text{dW1(t), dW2(t) and dW3(t) are brownian motions independent.} \\ \text{If S = 1 (ie M(S=1,Sigma)) the system SDE is :} \\ dX(t) &= (-K*X(t)/(X(t)^2 + Y(t)^2 + Z(t)^2))*dt + Sigma*dW1(t) \\ dY(t) &= (-K*Y(t)/(X(t)^2 + Y(t)^2 + Z(t)^2))*dt + Sigma*dW2(t) \\ dZ(t) &= (-K*Z(t)/(X(t)^2 + Y(t)^2 + Z(t)^2))*dt + Sigma*dW3(t) \end{split}$$

For more detail consulted References.

Value

data.frame(time,X(t),Y(t),Z(t)) and plot of process 3-D.

Note

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

RadialP3D_2

References

1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.

- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
RadialP3D_2.
```

Examples

```
RadialP3D_1(N=1000, t0=0, Dt=0.001, T = 1, X0=1, Y0=0.5, Z0=0.5, v=0.2, K=3, Sigma=0.2, Output = FALSE)
```

RadialP3D_2

Three-Dimensional Attractive Model $Model(S \ge 2, Sigma)$

Description

Simulation 3-dimensional attractive model ($S \ge 2$).

Usage

```
RadialP3D_2(N, t0, Dt, T = 1, X0, Y0, Z0, v, K, s, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X0	initial value of the process X(t) at time t0.
Y0	initial value of the process Y(t) at time t0.
Z0	initial value of the process Z(t) at time t0.
V	threshold. $0 < v < sqrt(X0^2 + Y0^2 + Z0^2)$
K	constant $K > 0$.
S	constant s >= 2.
Sigma	constant Sigma > 0.
Output	if Output = TRUE write a Output to an Excel (.csv).

100 RadialP3D_2

Details

The attractive models is defined by the system for stochastic differential equation three-dimensional:

$$dX(t) = (-K*X(t)/(sqrt(X(t)^2 + Y(t)^2 + Z(t)^2))(S+1))*dt + Sigma*dW1(t)$$

$$dY(t) = (-K * Y(t)/(sqrt(X(t)^{2} + Y(t)^{2} + Z(t)^{2}))(S+1)) * dt + Sigma * dW2(t)$$

$$dZ(t) = (-K * Z(t)/(sqrt(X(t)^{2} + Y(t)^{2} + Z(t)^{2}))(S+1)) * dt + Sigma * dW3(t)$$

dW1(t), dW2(t) and dW3(t) are brownian motions independent.

For more detail consulted References.

Value

data.frame(time,X(t),Y(t),Z(t)) and plot of process 3-D.

Note

• 2*K > Sigma^2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

RadialP3D_1.

```
RadialP3D_2(N=1000, t0=0, Dt=0.001, T = 1, X0=1, Y0=0.5, Z0=0.5, v=0.2,K=3,s=2,Sigma=0.2, Output = FALSE)
```

RadialP_1

 $Radial\ Process\ Model(S=1,Sigma)\ Or\ Attractive\ Model$

Description

Simulation the radial process one-dimensional (S = 1).

Usage

Arguments

Ν size of process. t0 initial time. time step of the simulation (discretization). Dt Τ final time. R0 initial value of the process at time to (R0 > 0). Κ constant K > 0. Sigma constant Sigma > 0. Output if Output = TRUE write a Output to an Excel (.csv). method of simulation, see details snssde. Methods . . .

Details

The attractive models is defined by the system for stochastic differential equation two-dimensional .

$$dX(t) = (-K*X(t)/(sqrt(X(t)^2 + Y(t)^2))(S+1))*dt + Sigma*dW1(t)$$

$$dY(t) = (-K * Y(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW2(t)$$

dW1(t) and dW2(t) are brownian motions independent.

Using Ito transform, it is shown that the Radial Process R(t) with R(t)=||(X(t),Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5 * Sigma^2 * R(t)(S - 1) - K)/R(t)^S) * dt + Sigma * dW(t)$$

If S = 1 (ie M(S=1, Sigma)) the R(t) is:

$$dR(t) = ((0.5 * Sigma^2 - K)/R(t)) * dt + Sigma * dW(t)$$

Where II.II is the Euclidean norm and dW(t) is a determined brownian motions.

For more detail consulted References.

102 RadialP_2

Value

data.frame(time,R(t)) and plot of process R(t).

Note

- If methods is not specified, it is assumed to be the Euler Scheme.
- If T and t0 specified, the best discretization Dt = (T-t0)/N.
- 2*K > Sigma^2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
RadialP2D_1, RadialP2D_1PC, RadialP3D_1, tho_M1, fctgeneral, hist_general, Kern_meth.
```

Examples

RadialP_2

 $Radial\ Process\ Model(S>=2,Sigma)\ Or\ Attractive\ Model$

Description

Simulation the radial process one-dimensional ($S \ge 2$).

Usage

RadialP_2

Arguments

N	size of process.
t0	initial time.
Dt	$time\ step\ of\ the\ simulation\ ({\tt discretization}).$
T	final time.
R0	initial value of the process at time t0 ,($R0 > 0$).
K	constant K > 0.
S	constant s >= 2.
Sigma	constant Sigma > 0.
Output	if Output = TRUE write a Output to an Excel (.csv).
Methods	method of simulation ,see details snssde.

Details

The attractive models is defined by the system for stochastic differential equation two-dimensional .

$$dX(t) = (-K * X(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW1(t)$$

$$dY(t) = (-K * Y(t)/(sqrt(X(t)^{2} + Y(t)^{2}))(S+1)) * dt + Sigma * dW2(t)$$

dW1(t) and dW2(t) are brownian motions independent.

Using Ito transform, it is shown that the Radial Process R(t) with R(t)=||(X(t),Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5 * Sigma^2 * R(t)^{(S-1)} - K)/R(t)^S) * dt + Sigma * dW(t)$$

For more detail consulted References.

Value

data.frame(time,R(t)) and plot of process R(t).

Note

- If methods is not specified, it is assumed to be the Euler Scheme.
- If T and t0 specified, the best discretization Dt = (T-t0)/N.
- 2*K > Sigma^2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

104 ROU

References

1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.

- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol., 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

```
RadialP2D_2, RadialP2D_2PC, RadialP3D_2, tho_M2, fctgeneral, hist_general, Kern_meth.
```

Examples

ROU

Creating Radial Ornstein-Uhlenbeck Process (by Milstein Scheme)

Description

Simulation the radial ornstein-uhlenbeck process by milstein scheme.

Usage

```
ROU(N, M, t0, T, x0, theta, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
T	final time.
x0	initial value of the process at time t0.
theta	constant positive.
output	if output = TRUE write a output to an Excel (.csv).

Sharosc 105

Details

The radial Ornstein-Uhlenbeck process is the solution to the stochastic differential equation :

$$dX(t) = (theta * X(t)^{-}(1) - X(t)) * dt + dW(t)$$

With (theta * X(t)^-1 - X(t)) : drift coefficient and 1 : diffusion coefficient, the discretization dt = (T-t0)/N, W(t) is Wiener process.

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

CEV Constant Elasticity of Variance Models, CIR Cox-Ingersoll-Ross Models, CIRhy modified CIR and hyperbolic Process, CKLS Chan-Karolyi-Longstaff-Sanders Models, DWP Double-Well Potential Model, GBM Model of Black-Scholes, HWV Hull-White/Vasicek Models, INFSR Inverse of Feller s Square Root models, JDP Jacobi Diffusion Process, PDP Pearson Diffusions Process, diffBridge Diffusion Bridge Models, snssde Simulation Numerical Solution of SDE.

Examples

```
## Radial Ornstein-Uhlenbeck
## dX(t) = (0.05*X(t)^(-1) - X(t)) *dt + dW(t)
## One trajectorie
ROU(N=1000,M=1,T=1,t0=0,x0=1,theta=0.05)
```

Sharosc

Stochastic harmonic oscillator

Description

The simulation shows the oscillations of a mass suspended from a spring. The graphs show the time evolution and the phase portrait.

Usage

```
Sharosc(N, T, x0, v0, lambda, omega, sigma, Step = FALSE, Output = FALSE)
```

Arguments

lambda

N	size of process.
T	final time.
x0	Initial conditions, position (mm).
v0	Initial conditions, speed (mm/s).

Amortization (1/s).

106 Sharosc

omega	Angular frequency (rad/s).
sigma	Dark random excitation.
Step	if Step = TRUE ploting step by step.
Output	If Output = yes write a output to an Excel (.csv).

Details

Cursors used to vary the parameters of the oscillator (the damping lambda and natural frequency omega) and the initial conditions (position and velocity). To vary lambda and omega, sigma and observe the different regimes of the oscillator (pseudo-periodic, critical, supercritical).

Stochastic perturbations of the harmonic oscillator equation, and random excitations force of such systems by White noise e(t), with delta-type correlation functions E(e(t)e(t+h))=sigma*deltat(h):

$$x'' + 2 * lambda * x' + omega^2 * x = e(t)$$

where lambda, sigma \geq 0 and omega \geq 0.

Value

data.frame(time,X(t)), plot of process X(t) in the phase portrait (2D) and temporal evolution of stochastic harmonic oscillator.

Note

- If sigma = 0 is a determinist system.
- Time step of the simulation T/N.

Author(s)

Guidoum Arsalane.

References

Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

See Also

Spendu stochastic pendulum, Svandp stochastic Van der Pol oscillator, Srayle stochastic Rayleigh oscillator, SSCPP stochastic system with a cylindric phase plane, Sosadd stochastic oscillator with additive noise.

```
## lambda = 0.1, omega = 1.5, sigma = 2.
Sharosc(N=5000, T=50, x0=100, v0=0, lambda=0.1, omega=1.5, sigma=2)
```

showData 107

S	how	Ŋα	ta

Display a Data Frame in a Tk Text Widget

Description

Show my data frame in Tk Text Widget.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

Examples

```
showData(data.frame(DATA1))
```

SLVM

Stochastic Lotka-Volterra Model

Description

Simulation the stochastic Lotka-Volterra model.

Usage

```
SLVM(N, t0, T, x0, y0, a, b, c, d, sigma, Step = FALSE, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
x0	initial value of the process at time t0 ($x0 > 0$).
y0	initial value of the process at time $t0 (y0 > 0)$.
а	positive parameter.
b	positive parameter.
С	positive parameter.
d	positive parameter.
sigma	positive parameter.
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel (.csv).

108 SLVM

Details

The Lotka-Volterra system of stochastics differential equations, (Lotka (1925), Volterra (1926)):

$$dX(t) = (a * X(t) - b * X(t) * Y(t))dt + sigma * dW1(t)$$

$$dY(t) = (c * X(t) * Y(t) - d * Y(t))dt + sigma * dW2(t)$$

with positive x0, y0 and positive parameters a, b, c, d describes a behaviour of a prey-predator system in terms of the prey and predator (intensities) X(t) and Y(t).

Here, a is the rate of increase of prey in the absence of predator, d is a rate of decrease of predator in the absence of prey while the rate of decrease in prey is proportional to the number of predators $b \times Y(t)$, and similarly the rate of increase in predator is proportional to the number of prey $c \times X(t)$.

The system possesses the first integral which is a closed orbit in the first quadrant of phase plane x, y. It is given by :

$$r(x,y) = c * x - d * log(x) + b * y - a * log(y) + r0$$

Value

data.frame(time,x,y), plot 1D and 2D of the process.

Author(s)

Guidoum Arsalane.

References

Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

See Also

WFD Feller Branching Diffusion, FBD Feller Branching Diffusion.

```
SLVM(N=5000,t0=0,T=100,x0=1,y0=1,a=1,b=2,c=0.5,d=0.25,sigma=0.01)
```

snssde 109

snssde	Numerical Solution of One-Dimensional SDE

Description

Different methods of simulation of solutions to stochastic differential equations one-dimensional.

Usage

Arguments

N	size of process.
М	number of trajectories.
T	final time.
t0	initial time.
x0	initial value of the process at time t0.
Dt	time step of the simulation (discretization).
drift	drift coefficient: an expression of two variables t and x.
diffusion	diffusion coefficient: an expression of two variables t and x .
Output	if Output = TRUE write a Output to an Excel (.csv).
Methods	method of simulation ,see details.

Details

The function snssde returns a trajectory of the process; i.e., x0 and the new N simulated values if M = 1. For M > 1, an mts (multidimensional trajectories) is returned, which means that M independent trajectories are simulated. Dt the best discretization Dt = (T-t0)/N.

Simulation methods are usually based on discrete approximations of the continuous solution to a stochastic differential equation. The methods of approximation are classified according to their different properties. Mainly two criteria of optimality are used in the literature: the strong and the weak (orders of) convergence. The methods of simulation can be one among: Euler Order 0.5, Milstein Order 1, Milstein Second-Order, Ito-Taylor Order 1.5, Heun Order 2, Runge-Kutta Order 3.

Value

data.frame(time,x) and plot of process.

Note

- If methods is not specified, it is assumed to be the Euler Scheme.
- If T and t0 specified, the best discretization Dt = (T-t0)/N.

110 snssde

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

diffBridge Creating Diffusion Bridge Models.PredCorr Predictor-Corrector Method for one-dimensional SDE. snssde2D numerical solution of two-dimensional SDE. PredCorr2D predictor-corrector method for two-dimensional SDE, snssde3D numerical solution of three-dimensional SDE, PredCorr3D Predictor-Corrector Method for three-dimensional SDE.

```
## example 1
## Hull-White/Vasicek Model
## T = 1 , t0 = 0 and N = 1000 ===> Dt = 0.001
drift
          <- expression( (3*(2-x)) )
diffusion <- expression( (2) )</pre>
 snssde(N=1000, M=1, T=1, t0=0, x0=10, Dt=0.001,
 drift,diffusion,Output=FALSE)
Multiple trajectories of the OU process by Euler Scheme
 snssde(N=1000, M=5, T=1, t0=0, x0=10, Dt=0.001,
 drift,diffusion,Output=FALSE)
## example 2
## Black-Scholes models
## T = 1 , t0 = 0 and N = 1000 ===> Dt = 0.001
          <- expression( (3*x) )
diffusion <- expression( (2*x) )</pre>
snssde(N=1000,M=1,T=1,t0=0,x0=10,Dt=0.001,drift,
diffusion,Output=FALSE,Methods="SchMilstein")
## example 3
## Constant Elasticity of Variance (CEV) Models
## T = 1 , t0 = 0 and N = 1000 ===> Dt = 0.001
         <- expression( (0.3*x) )</pre>
diffusion <- expression( (0.2*x^0.75) )
 snssde(N=1000, M=1, T=1, t0=0, x0=1, Dt=0.001, drift,
diffusion,Output=FALSE,Methods="SchMilsteinS")
## example 4
## sde \ dX(t) = (0.03*t*X(t)-X(t)^3)*dt+0.1*dW(t)
## T = 100 , t0 = 0 and N = 1000 ===> Dt = 0.1
          <- expression( (0.03*t*x-x^3) )</pre>
diffusion <- expression( (0.1) )</pre>
 snssde(N=1000, M=1, T=100, t0=0, x0=0, Dt=0.1, drift,
diffusion,Output=FALSE,Methods="SchTaylor")
## example 5
## sde\ dX(t)=cos(t*x)*dt+sin(t*x)*dW(t) by Heun Scheme
drift <- expression( (cos(t*x)) )</pre>
diffusion <- expression( (sin(t*x)) )</pre>
 snssde(N=1000,M=1,T=100,t0=0,x0=0,Dt=0.1,drift,
diffusion,Output=FALSE,Methods="SchHeun")
## example 6
```

snssde2D 111

```
## sde\ dX(t)=exp(t)*dt+tan(t)*dW(t) by Runge-Kutta Scheme
drift <- expression( (exp(t)) )
diffusion <- expression( (tan(t)) )
snssde(N=1000,M=1,T=1,t0=0,x0=1,Dt=0.001,drift,
diffusion,Output=FALSE,Methods="SchRK3")</pre>
```

snssde2D

Numerical Solution of Two-Dimensional SDE

Description

Different methods of simulation of solutions to stochastic differential equations Two-dimensional.

Usage

Arguments

N	size of process.
T	final time.
t0	initial time.
x 0	initial value of the process X(t) at time t0.
y0	initial value of the process Y(t) at time t0.
Dt	time step of the simulation (discretization).
driftx	drift coefficient of process $X(t)$: an expression of three variables t , x and y .
drifty	drift coefficient of process $Y(t)$: an expression of three variables t , x and y .
diffx	diffusion coefficient of process $X(t)$: an expression of three variables t , x and
	y.
diffy	diffusion coefficient of process $Y(t)$: an expression of three variables t , x and
	y.
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel (.csv).
Methods	method of simulation ,see details.

Details

the system for stochastic differential equation Two dimensional is :

$$dX(t) = ax(t,X(t),Y(t))*dt + bx(t,X(t),Y(t))*dW1(t)$$

$$dY(t) = ay(t, X(t), Y(t)) * dt + by(t, X(t), Y(t)) * dW2(t)$$

112 snssde2D

```
with driftx=ax(t,X(t),Y(t)), drifty=ay(t,X(t),Y(t)) and diffx=bx(t,X(t),Y(t)), diffy=by(t,X(t),Y(t)) dW1(t) and dW2(t) are brownian motions independent.
```

Simulation methods are usually based on discrete approximations of the continuous solution to a stochastic differential equation. The methods of approximation are classified according to their different properties. Mainly two criteria of optimality are used in the literature: the strong and the weak (orders of) convergence. The methods of simulation can be one among: Euler Order 0.5, Milstein Order 1, Milstein Second-Order, Ito-Taylor Order 1.5, Heun Order 2, Runge-Kutta Order 3.

Value

data.frame(time,X(t),Y(t)) and plot of process 2-D.

Note

- If methods is not specified, it is assumed to be the Euler Scheme.
- If T and t0 specified, the best discretization Dt = (T-t0)/N.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

diffBridge Creating Diffusion Bridge Models. snssde numerical solution of one-dimensional SDE. PredCorr predictor-corrector method for one-dimensional SDE. PredCorr2D predictor-corrector method for Two-dimensional SDE.

```
## Example 1
 driftx <- expression(cos(t*x))</pre>
 drifty <- expression(cos(t*y))</pre>
diffx <- expression(sin(t*x))</pre>
 diffy <- expression(sin(t*y))</pre>
 snssde2D(N=1000, T = 1, t0=0, x0=0, y0=0, Dt=0.001, driftx,
           drifty, diffx, diffy, Step = FALSE, Output = FALSE,
          Methods="SchTaylor")
## Example 2
driftx <- expression(cos(t*x*y))</pre>
drifty <- expression(sin(t*y*y))</pre>
diffx <- expression(atan2(y, x))</pre>
 diffy <- expression(atan2(y, x))</pre>
 snssde2D(N=5000, T = 1, t0=0, x0=1, y0=1, Dt=0.001, driftx,
           drifty, diffx, diffy, Step = FALSE, Output = FALSE,
          Methods="SchHeun")
```

snssde3D 113

Description

Different methods of simulation of solutions to stochastic differential equations Three-dimensional.

Usage

Arguments

N	size of process.
T	final time.
t0	initial time.
x0	initial value of the process X(t) at time t0.
y0	initial value of the process Y(t) at time t0.
z0	initial value of the process Z(t) at time t0.
Dt	time step of the simulation (discretization).
driftx	drift coefficient of process $X(t)$: an expression of variables t , x and y , z .
drifty	drift coefficient of process $Y(t)$: an expression of variables t , x and y , z .
driftz	drift coefficient of process $Z(t)$: an expression of variables t , x and y , z .
diffx	diffusion coefficient of process $X(t)$: an expression of variables t , x and y , z .
diffy	diffusion coefficient of process $Y(t)$: an expression of variables t , x and y , z .
diffz	diffusion coefficient of process $Z(t)$: an expression of variables t , x and y , z .
Step	if Step = TRUE ploting step by step.
Output	if output = TRUE write a output to an Excel (.csv).
Methods	method of simulation ,see details.

Details

the system for stochastic differential equation Two dimensional is:

$$dX(t) = ax(t, X(t), Y(t), Z(t)) * dt + bx(t, X(t), Y(t), Z(t)) * dW1(t)$$

$$dY(t) = ay(t, X(t), Y(t), Z(t)) * dt + by(t, X(t), Y(t), Z(t)) * dW2(t)$$

$$dZ(t) = az(t, X(t), Y(t), Z(t)) * dt + bz(t, X(t), Y(t), Z(t)) * dW3(t)$$

114 Sosadd

Simulation methods are usually based on discrete approximations of the continuous solution to a stochastic differential equation. The methods of approximation are classified according to their different properties. Mainly two criteria of optimality are used in the literature: the strong and the weak (orders of) convergence. The methods of simulation can be one among: Euler Order 0.5, Milstein Order 1, Milstein Second-Order, Ito-Taylor Order 1.5, Heun Order 2, Runge-Kutta Order 3.

Value

data.frame(time,X(t),Y(t),Z(t)) and plot of process 3-D.

Note

- If methods is not specified, it is assumed to be the Euler Scheme.
- If T and t0 specified, the best discretization Dt = (T-t0)/N.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

snssde numerical solution of one-dimensional SDE. snssde2D numerical solution of Two-dimensional SDE. PredCorr predictor-corrector method for one-dimensional SDE. PredCorr2D predictor-corrector method for Two-dimensional SDE. PredCorr3D predictor-corrector method for Three-dimensional SDE.

Examples

Sosadd

Stochastic oscillator with additive noise

Description

You can see from this simulation the stochastic oscillator with additive noise and the temporal graph and the phase portrait, and 3D plot for Fokker-Planck equation.

Usage

```
Sosadd(N, T, x0, v0, a, omega, sigma, K0 = 1, Step = FALSE, Output = FALSE)
```

Sosadd 115

Arguments

N	size of process.
Т	final time.
x0	Initial conditions, position.
v0	Initial conditions, speed.
a	Constant $(>= 0)$.
omega	Angular frequency ($>= 0$).
sigma	Dark random excitation ($>= 0$).
K0	Constant for Fokker-Planck equation ($K0 > 0$).
Step	if Step = TRUE ploting step by step.
Output	If Output = yes write a output to an Excel (.csv).

Details

Stochastic perturbations of oscillator with additive noise, and random excitations force of such systems by White noise e(t), with delta-type correlation functions E(e(t)e(t+h))=sigma*deltat(h):

$$x'' - a * (1 - x^2 - x'^2) * x' + omega^2 * x = e(t)$$

where a, omega, sigma $\geq = 0$.

The Fokker-Planck equation of this system:

$$P(s, x, t, y) = \exp(-a * (x^{2} + y^{2})^{2} / (2 * pi * K0))$$

Value

data.frame(time,X(t)), plot of process X(t) in the phase portrait (2D) and temporal evolution of stochastic oscillator with additive noise. 3D plot for Fokker-Planck equation.

Note

- If sigma = 0 is a determinist system.
- Time step of the simulation T/N.

Author(s)

Guidoum Arsalane.

References

Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

See Also

Spendu stochastic pendulum, Sharosc stochastic harmonic oscillator, Svandp stochastic Van der Pol oscillator, Srayle stochastic Rayleigh oscillator, SSCPP Stochastic system with a cylindric phase plane.

Spendu Spendu

Examples

```
## a = 0.1, omega= 1, sigma = 0.2, K0 = 0.5.

Sosadd(N=5000, T=50, x0=3, v0=0, a=0.1, omega=1, sigma=0.2, K0 = 0.5)

## a = 3

Sosadd(N=5000, T=50, x0=3, v0=0, a=3, omega=1, sigma=0.2, K0 = 0.5)
```

Spendu

Stochastic pendulum

Description

You can see from this simulation the stochastic pendulum, the temporal graph and the phase portrait.

Usage

```
Spendu(N, T, theta0, theta1, lambda, omega, sigma, Step = FALSE, Output = FALSE)
```

Arguments

N	size of process.
T	final time.
theta0	Initial conditions, position (rad), $-pi < theta0 < pi$.
theta1	Initial conditions, speed (rad/s).
lambda	Amortization (1/s).
omega	Angular frequency (rad/s).
sigma	Dark random excitation.
Step	if Step = TRUE ploting step by step.
Output	If Output = yes write a output to an Excel (.csv).

Details

On this simulation the movement of the stochastic pendulum as well as the temporal graph and the portrait of phase. Cursors make it possible to modify the parameters of the oscillator (lambda: damping and omega: own pulsation), as well as the initial conditions.

Stochastic perturbations of the pendulum equation, and random excitations force of such systems by White noise e(t), with delta-type correlation functions E(e(t)e(t+h))=sigma*deltat(h):

$$x'' + 2 * lambda * x' + omega^2 * sin(x) = e(t)$$

where lambda, sigma \geq = 0 and omega \geq 0.

To observe the evolution of the portrait of phase when the initial conditions are modified:

- When the amplitude is large, one notices the difference in behavior with the harmonic oscillator: lengthening of the period, deformation of the graphs.
- When the pendulum does one (or several) turn, the portrait of phase opens: is it closed again?

Srayle 117

Value

data.frame(time,X(t)), plot of process X(t) in the phase portrait (2D) and temporal evolution of stochastic pendulum.

Note

- If sigma = 0 is a determinist system.
- Time step of the simulation T/N.

Author(s)

Guidoum Arsalane.

References

Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

See Also

Sharosc stochastic harmonic oscillator, Svandp stochastic Van der Pol oscillator, Srayle stochastic Rayleigh oscillator, SSCPP stochastic system with a cylindric phase plane, Sosadd stochastic oscillator with additive noise.

Examples

```
## theta0= 3, theta1 = 0, lambda=0.1, omega=2, sigma=0.1
Spendu(N=5000, T=50, theta0=3, theta1=0, lambda=0.1, omega=2, sigma=0.1)
```

Srayle

Stochastic Rayleigh oscillator

Description

The stochastic Rayleigh oscillator is much like the stochastic van Der Pol oscillator save one key difference: as voltage increases, the van Der Pol oscillator increases in frequency while the Rayleigh oscillator increases in amplitude. You can see from this simulation the stochastic Rayleigh oscillator, the temporal graph and the phase portrait.

Usage

```
Srayle(N, T, x0, v0, a, omega, sigma, Step = FALSE, Output = FALSE)
```

118 Srayle

Arguments

N	size of process.
Т	final time.
x0	Initial conditions, position (mm).
v0	Initial conditions, speed (mm/s).
а	Amortization (1/s).
omega	Angular frequency (rad/s).
sigma	Dark random excitation (≥ 0).
Step	if Step = TRUE ploting step by step.
Output	If Output = yes write a output to an Excel (.csv).

Details

Here is the second order differential equation for the stochastic Rayleigh oscillator:

$$x'' - a * (1 - x'^2) * x' + omega^2 * x = e(t)$$

where a, omega > 0 and sigma >= 0.

Like the stochastic van Der Pol oscillator Svandp, omega controls how much voltage is injected into the system. a controls the way in which voltage flows through the system.

Value

data.frame(time,X(t)), plot of process X(t) in the phase portrait (2D) and temporal evolution of stochastic Rayleigh equation.

Note

- If sigma = 0 is a determinist system.
- Time step of the simulation T/N.

Author(s)

Guidoum Arsalane.

References

Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

See Also

Spendu stochastic pendulum, Sharosc stochastic harmonic oscillator, Svandp stochastic Van der Pol oscillator, SSCPP stochastic system with a cylindric phase plane, Sosadd stochastic oscillator with additive noise.

```
## a= 4 , omega= 1, sigma =0.1 Srayle(N=5000, T=50, \times0=3, \times0=0, a=4, omega=1, sigma=0.1)
```

SRW 119

SRW	Creating	Random	Walk

Description

Simulation random walk.

Usage

```
SRW(N, t0, T, p, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
р	probability of choosing $X = -1$ or $+1$.
output	if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Stgamma Stochastic Process The Gamma Distribution, Stst Stochastic Process The Student Distribution, WNG White Noise Gaussian.

```
## Random Walk

SRW(N=1000,t0=0,T=1,p=0.5)

SRW(N=1000,t0=0,T=1,p=0.25)

SRW(N=1000,t0=0,T=1,p=0.75)
```

120 SSCPP

SSCPP

Stochastic system with a cylindric phase plane

Description

You can see from this simulation the stochastic system with a cylindric phase plane and the temporal graph and the phase portrait, and 3D plot for Fokker-Planck equation.

Usage

```
SSCPP(N, T, theta0, theta1, a, b, omega, sigma, K0 = 1, Prd = 6, Step = FALSE, Output = FALSE)
```

Arguments

size of process. Ν Τ final time. theta0 Initial conditions, position (rad), -pi < theta0 < pi. Initial conditions, speed (rad/s). theta1 Amortization (≥ 0). а b Constant (>= 0). Angular frequency (>= 0). omega sigma Dark random excitation (>= 0). K0 Constant for Fokker-Planck equation (K0 > 0). Period for plot 3D (Prd > 0). Prd

Output If Output = yes write a output to an Excel (.csv).

Step if Step = TRUE ploting step by step.

Details

Stochastic perturbations of the system with a cylindric phase plane equation, and random excitations force of such systems by White noise e(t), with delta-type correlation functions E(e(t)e(t+h))=sigma*deltat(h):

$$x'' + a * x' + b + omega^2 * sin(x) = e(t)$$

where a,b,omega,sigma >= 0.

The Fokker-Planck equation of this system:

$$P(s, x, t, y) = exp(-a * (y^2 + 2 * b * x - 2 * omega^2 * cos(x))/(2 * pi * K0))$$

Value

data.frame(time,X(t)), plot of process X(t) in the phase portrait (2D) and temporal evolution of stochastic Rayleigh equation. 3D plot for Fokker-Planck equation.

Note

- If sigma = 0 is a determinist system.
- Time step of the simulation T/N.

Stbeta 121

Author(s)

Guidoum Arsalane.

References

Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

See Also

Spendu stochastic pendulum, Sharosc stochastic harmonic oscillator, Svandp stochastic Van der Pol oscillator, Srayle stochastic Rayleigh oscillator, Sosadd stochastic oscillator with additive noise

Examples

```
## a = 0.1, b = 0.15, omega= 2, sigma = 0.2, K0 = 3, Prd = 6
SSCPP(N=5000, T=50, theta0=3, theta1=0, a=0.1, b=0.15, omega=2, sigma=0.2, K0 = 3)
```

Stbeta

Creating Stochastic Process The Beta Distribution

Description

Simulation stochastic process by a beta distribution.

Usage

```
Stbeta(N, t0, x0, T, shape1, shape2, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.

x0 initial value at time t0.

T final time.

shape1 positive parameters of the Beta distribution.

shape2 positive parameters of the Beta distribution.

output if output = TRUE write a output to an Excel (.csv).

output - TROE write a output to all Excel (.csv)

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

122 Steauchy

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stexp, Stchisq, Stcauchy, Stlnorm, Stlnorm3, Stgamma3, Stlgamma3, Stweibull3, Stlogis, StllcStgp, SRW, WNG, Stst.

Examples

```
Stbeta(N=1000, t0=0, x0=0, T=1, shape1=0.2, shape2=1)
```

Stcauchy

Creating Stochastic Process The Cauchy Distribution

Description

Simulation stochastic process by a cauchy distribution.

Usage

```
Stcauchy(N, t0, x0, T, location, scale, output = FALSE)
```

Arguments

N size of process. t0 initial time.

x0 initial value at time t0.

T final time.

location location parameters. scale scale parameters.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stexp, Stchisq, Stbeta, Stlnorm, Stlnorm3, Stgamma3, Stlgamma3, Stweibull3, Stlogis, Stllogis, Stllogis,

Stchisq 123

Examples

```
Stcauchy(N=1000,t0=0,x0=0,T=1,location=-5, scale=1)
```

Stchisq	Creating Stochastic Process The (non-central) Chi-Squared Distribu-
	tion

Description

Simulation stochastic process by a Chi-squared distribution.

Usage

```
Stchisq(N, t0, x0, T, df, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
x0	initial value at time t0.
T	final time.
df	degrees of freedom (non-negative, but can be non-integer).
output	if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stexp, Stcauchy, Stbeta, Stlnorm, Stlnorm3, Stgamma3, Stlgamma3, Stweibull3, Stlogis, Stllogis, Stllogis

```
Stchisq(N=1000,t0=0,x0=0,T=1,df=2)
```

124 Stexp

Stexp

Creating Stochastic Process The Exponential Distribution

Description

Simulation stochastic process by a exponential distribution.

Usage

```
Stexp(N, t0, x0, T, rate, output = FALSE)
```

Arguments

N size of process. t0 initial time.

x0 initial value at time t0.

T final time.

rate parameters.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stlnorm, Stlnorm3, Stgamma3, Stlgamma3, Stweibull3, Stlogis, Stll Stgp, SRW, WNG, Stst.

```
Stexp(N=1000, t0=0, x0=0, T=1, rate=2)
```

Stgamma 125

~ .		
St	gamma	

Creating Stochastic Process The Gamma Distribution

Description

Simulation stochastic process by a gamma distribution.

Usage

```
Stgamma(N, t0, T, alpha, beta, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Т	final time.
alpha	constant positive.
beta	an alternative way to specify the scale.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation T/N.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Stbeta, Stweibull, Stexp, Stchisq, Stcauchy, Stlnorm, Stlnorm3, Stgamma3, Stlgamma3, Stweibull3, Stlogis, Stllogis, Stllogis

```
## Stochastic Process The Gamma Distribution
Stgamma(N=1000,t0=0,T=5,alpha=1,beta=1)
```

Stgamma3

Stgamma3	Creating Stochastic Process The Three-Parameter Gamma Distribution
----------	--

Description

Simulation stochastic process by a three-parameter gamma distribution (also known as Pearson type III distribution).

Usage

```
Stgamma3(N, t0, x0, T, shape, rate, thres, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
x0	initial value at time t0.
T	final time.
shape	shape parameter.
rate	rate parameter.
thres	threshold or shift parameter.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stlnorm, Stlnorm3, Stexp, Stlgamma3, Stweibull3, Stlogis, Stllogis, Stllogis,

```
Stgamma3(N=1000,t0=0,x0=0,T=1,shape=0.2,rate=0.1,thres=-5)
```

Stgp 127

Stgp

Creating Stochastic Process The Generalized Pareto Distribution

Description

Simulation stochastic process by a generalized pareto distribution.

Usage

```
Stgp(N, t0, x0, T, shape, scale, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.

x0 initial value at time t0.

T final time.

shape shape parameter. scale scale parameter.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stlnorm, Stlnorm3, Stexp, Stlgamma3, Stweibull3, Stlogis, Stllogis, Stllogis,

```
Stgp(N=1000, t0=0, x0=0, T=1, shape=1, scale=1)
```

128 Stgumbel

Stgumbel Creating Stochastic Process The Gumbel Distribution	
--	--

Description

Simulation stochastic process by a gumbel distribution for maxima.

Usage

```
Stgumbel(N, t0, x0, T, location, scale, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.

x0 initial value at time t0.

T final time.

location location parameter. scale scale parameter.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stlnorm, Stlnorm3, Stexp, Stlgamma3, Stweibull3, Stlogis, Stllogis, Stllogis,

```
Stgumbel(N=1000,t0=0,x0=0,T=1,location=-6, scale=3)
```

Stlgamma3 129

Stlgamma3	Creating Stochastic Process The Log Three-Parameter Gamma Distribution	
	bution	

Description

Simulation stochastic process by a log three-parameter gamma distribution (also known as Log-Pearson type III distribution).

Usage

```
Stlgamma3(N, t0, x0, T, shape, rate, thres, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
x0	initial value at time t0.
Т	final time.
shape	shape parameter.
rate	rate parameter.
thres	threshold or shift parameter.
output	if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stlnorm, Stlnorm3, Stexp, Stgumbel, Stweibull3, Stlogis, Stllogis, Stllogis, Stllogis, Stgp, SRW, WNG, Stst.

```
Stlgamma3(N=1000, t0=0, x0=0, T=1, shape=2, rate=1, thres=-5)
```

Stllogis

	-	
< + I	10	ogis
JUL	Τ,	JEIJ

Creating Stochastic Process The Log Logistic Distribution

Description

Simulation stochastic process by a log logistic distribution.

Usage

```
Stllogis(N, t0, x0, T, location, scale, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.

x0 initial value at time t0.

T final time.

location location parameter. scale scale parameter.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stlnorm, Stlnorm3, Stexp, Stlgamma3, Stweibull3, Stlogis, Stl

```
Stllogis(N=1000,t0=0,x0=0,T=1,location=-5,scale=1)
```

Stllogis3

Stllogis3	Creating Stochastic Process The Three-Parameter Log Logistic Distribution

Description

Simulation stochastic process by a three-parameter log logistic distribution.

Usage

```
Stllogis3(N, t0, x0, T, location, scale, thres, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.

x0 initial value at time t0.

T final time.

location location parameter.
scale scale parameter.
thres thres parameter.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stlnorm, Stlnorm3, Stexp, Stlgamma3, Stweibull3, Stlogis, Stl

```
Stllogis3(N=1000,t0=0,x0=0,T=1,location=-5,scale=1,thres=-1)
```

Stlnorm

Stlnorm	Creating Stochastic Process The Log Normal Distribution
Stinorm	Creating Stochastic Process The Log Normal Distribution

Description

Simulation stochastic process by a log normal distribution.

Usage

```
Stlnorm(N, t0, x0, T, meanlog, sdlog, output = FALSE)
```

Arguments

N	size of process
t0	initial time.

x0 initial value at time t0.

T final time.

mean of the distribution on the log scale.

sdlog standard deviation of the distribution on the log scale.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stllogis 3, Stlnorm 3, Stexp, Stlgamma 3, Stweibull 3, Stlogis, Stlgamma 3, SRW, WNG, Stst.

```
Stlnorm(N=1000, t0=0, x0=0, T=1, meanlog=1, sdlog=1)
```

Stlnorm3

Stlnorm3	Creating Stochastic Process The Three-Parameter Log Normal Distribution

Description

Simulation stochastic process by a three-parameter log normal distribution.

Usage

```
Stlnorm3(N, t0, x0, T, meanlog, sdlog, thres, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
x 0	initial value at time t0.
Т	final time.
meanlog	mean of the distribution on the log scale.
sdlog	standard deviation of the distribution on the log scale.
thres	threshold (or shift) parameter.
output	if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stllogis 3, Stlnorm, Stexp, Stlgamma 3, Stweibull 3, Stlogis, Stlgamma 3, SRW, WNG, Stst.

```
Stlnorm3(N=1000,t0=0,x0=0,T=1,meanlog=1,sdlog=1,thres=-5)
```

134 Stlogis

Stlogis	Creating Stochastic Process The Logistic Distribution

Description

Simulation stochastic process by a logistic distribution.

Usage

```
Stlogis(N, t0, x0, T, location, scale, output = FALSE)
```

Arguments

N size of process. to initial time.

x0 initial value at time t0.

T final time.

location location parameter. scale scale parameter.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stweibull, Stchisq, Stcauchy, Stbeta, Stllogis 3, Stlnorm, Stexp, Stlgamma 3, Stweibull 3, Stlnorm 3, Stlgamma 3, SRW, WNG, Stst.

```
Stlogis(N=1000,t0=0,x0=0,T=1,location=1, scale=2)
```

Stst 135

Stst

Creating Stochastic Process The Student Distribution

Description

Simulation stochastic process by a Student distribution.

Usage

```
Stst(N, t0, T, n, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
T	final time.
n	degrees of freedom (> 0,non-integer).
output	if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

SRW Creating Random Walk, Stgamma Stochastic Process The Gamma Distribution, WNG White Noise Gaussian.

```
## Stochastic Process The Student Distribution Stst(N=1000,t0=0,T=1,n=2)
```

136 Stweibull

Description

Simulation stochastic process by a weibull distribution.

Usage

```
Stweibull(N, t0, x0, T, shape, scale, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.

x0 initial value at time t0.

T final time.

shape shape parameter. scale scale parameter.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stlogis, Stchisq, Stcauchy, Stbeta, Stllogis3, Stlnorm, Stexp, Stlgamma3, Stweibull3, Stlnorm3, Stlgamma3, SRW, WNG, Stst.

```
Stweibull(N=1000,t0=0,x0=0,T=1,shape=1,scale=2)
```

Stweibull3 137

Stweibull3	Creating Stochastic Process The Three-Parameter Weibull Distribu-
	tion

Description

Simulation stochastic process by a three-parameter weibull distribution.

Usage

```
Stweibull3(N, t0, x0, T, shape, scale, thres, output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
x0	initial value at time t0.
T	final time.
shape	shape parameter.
scale	scale parameter.
thres	thres parameter.
output	if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Note

• Time step of the simulation (T-t0)/N.

Author(s)

Guidoum Arsalane.

See Also

Stgamma, Stlogis, Stchisq, Stcauchy, Stbeta, Stllogis3, Stlnorm, Stexp, Stlgamma3, Stweibull, Stlnorm3, Stweibull, Stweibull,

```
Stweibull3(N=1000, t0=0, x0=0, T=1, shape=1, scale=2, thres=-1)\\
```

138 Svandp

Svandp	Stochastic Van der Pol oscillator	

Description

The stochastic Van Der Pol equation is used to model oscillators maintained. It is not linear and has no explicit solution, you can see from this simulation the stochastic Van der Pol equation, the temporal graph and the phase portrait.

Usage

```
Svandp(N, T, x0, v0, a, b, omega, sigma, Step = FALSE, Output = FALSE)
```

Arguments

N	size of process.
Т	final time.
x0	Initial conditions, position (mm).
v0	Initial conditions, speed (mm/s).
a	reaction parameter ($>= 0$).
b	control parameter (> 0).
omega	Angular frequency ($>= 0$).
sigma	Dark random excitation ($>= 0$).
Step	if Step = TRUE ploting step by step.
Output	If Output = yes write a output to an Excel (.csv).

Details

The stochastic equation of Van Der pol, is used to model maintained oscillators. It is not linear and does not have an explicit solution. In this simulation makes it possible to vary these parameters (cursors), as well as the initial conditions x0 and v0 (ringed points).

Stochastic perturbations of the Van Der pol equation, and random excitations force of such systems by White noise e(t), with delta-type correlation functions E(e(t)e(t+h))=sigma*deltat(h):

$$x'' + a * x' * (x^2/b - 1) + omega^2 * x = e(t)$$

where a, omega, sigma ≥ 0 and $b \geq 0$.

- Influence initial conditions: the oscillations occur even with low values, then are stabilized. The portrait of phase shows a limiting cycle, which does not depend on the initial conditions.
- Influence reaction: when a=0 one obtains the stochastic harmonic oscillator Sharosc; the amplitude of the oscillations depends on the initial conditions. By increasing a one notes an increasingly important deformation of the oscillations and portrait of phase.
- Influence control: the coefficient b determines the amplitude of the oscillations: when |x|<b, the reaction is positive and the amplitude increases. When |x|>b it is the reverse which occurs. The amplitude is stabilized around 2b.

Telegproc 139

Value

data.frame(time,X(t)), plot of process X(t) in the phase portrait (2D) and temporal evolution of stochastic van der Pol equation.

Note

- If sigma = 0 is a determinist system.
- Time step of the simulation T/N.

Author(s)

Guidoum Arsalane.

References

Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

See Also

Spendu stochastic pendulum, Sharosc stochastic harmonic oscillator, Srayle stochastic Rayleigh oscillator, SSCPP stochastic system with a cylindric phase plane, Sosadd stochastic oscillator with additive noise.

Examples

```
## a = 0, b = 0.3, omega= 2.5, sigma=0.1
Svandp(N=10000, T=100, x0=1, v0=0, a=0, b=0.3, omega=2.5, sigma=0.1)
## a = 3
Svandp(N=10000, T=100, x0=1, v0=0, a=3, b=0.3, omega=2.5, sigma=0.1)
```

Telegproc

Realization a Telegraphic Process

Description

Simulation a telegraphic process.

Usage

```
Telegproc(t0, x0, T, lambda, output = FALSE)
```

Arguments

```
t0 initial time.

x0 state initial (x0 = -1 or +1).

T final time of the simulation.

lambda exponential distribution with rate lambda.

output if output = TRUE write a output to an Excel (.csv).
```

140 test_ks_dbeta

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

Asys Evolution a Telegraphic Process.

Examples

```
## Simulation a telegraphic process
Telegproc(t0=0,x0=1,T=1,lambda=0.5)
```

test_ks_dbeta

Kolmogorov-Smirnov Tests (Beta Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dbeta(X, shape1, shape2)
```

Arguments

X a numeric vector of data values.

shape1 positive parameters of the Beta distribution. shape2 positive parameters of the Beta distribution.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.
p.value the p-value of the test.

alternative a character string describing the alternative hypothesis. data.name a character string giving the name(s) of the data.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
X <- rbeta(1000,1,1)
test_ks_dbeta(X, shape1=1, shape2=1)
test_ks_dbeta(X, shape1=1, shape2=2)</pre>
```

test_ks_dchisq 141

test_ks_dchisq

Kolmogorov-Smirnov Tests (Chi-Squared Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dchisq(X, df)
```

Arguments

X a numeric vector of data values.

df degrees of freedom (non-negative, but can be non-integer).

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

 $\mbox{ data.name} \qquad \mbox{ a character string giving the name}(s) \mbox{ of the data.}$

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
X <- rchisq(1000,15)
test_ks_dchisq(X, df=5)
test_ks_dchisq(X, df=10)
test_ks_dchisq(X, df=15)
test_ks_dchisq(X, df=20)</pre>
```

test_ks_dexp

test_ks_dexp

Kolmogorov-Smirnov Tests (Exponential Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dexp(X, lambda)
```

Arguments

X a numeric vector of data values.

lambda vector of rates.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

 ${\tt p.value} \qquad \qquad {\tt the} \; p{\tt -value} \; {\tt of} \; {\tt the} \; {\tt test}.$

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
## Example 1
X <- rexp(1000,c(1,2,3))
test_ks_dexp(X, lambda=1)
test_ks_dexp(X, lambda=2)
test_ks_dexp(X, lambda=3)
## Example 2
X <- rexp(1000,3)
test_ks_dexp(X, lambda=3)
test_ks_dweibull(X, shape=1, scale=(1/3))
test_ks_dgamma(X, shape=1, rate=3)</pre>
```

test_ks_df

test_ks_df	Kolmogorov-Smirnov Tests (F Distribution)
tcst_ks_ui	Montogorov Shuritov Icsis (1 Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_df(X, df1, df2)
```

Arguments

Χ	a numeric vector of data values.
df1	degrees of freedom. Inf is allowed.
df2	degrees of freedom. Inf is allowed.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

```
statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
X <- rf(1000,10,20)
test_ks_df(X, df1=10, df2=20)
test_ks_df(X, df1=5, df2=15)
test_ks_df(X, df1=15, df2=25)</pre>
```

144 test_ks_dgamma

tact	100	dgamma
LESL	N.O	uzaiiiiia

Kolmogorov-Smirnov Tests (Gamma Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dgamma(X, shape, rate)
```

Arguments

X a numeric vector of data values.

shape shape parameters. Must be positive, scale strictly.

rate an alternative way to specify the scale.

Details

```
see detail ks. test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

 $p.\, value \qquad \qquad the \ p-value \ of \ the \ test.$

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
X <- rgamma(1000,1,6)
test_ks_dgamma(X, shape=1, rate=6)
test_ks_dexp(X, lambda=6)
test_ks_dweibull(X, shape=1, scale=(1/6))</pre>
```

test_ks_dlognorm 145

test_ks_dlognorm Kolmogorov-Smirnov Tests (Log Normal Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dlognorm(X, meanlog, sdlog)
```

Arguments

X a numeric vector of data values.

meanlog mean of the distribution.

sdlog standard deviation of the distribution.

Details

see detail ks. test.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data. name a character string giving the name(s) of the data.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
X <- rlnorm(1000,1,1)
test_ks_dlognorm(X, meanlog=1, sdlog=1)
test_ks_dnorm(log(X), mean=1, sd=1)</pre>
```

test_ks_dnorm

test_ks_dnorm

Kolmogorov-Smirnov Tests (Normal Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dnorm(X, mean, sd)
```

Arguments

X a numeric vector of data values.

mean of the distribution.

sd standard deviation of the distribution.

Details

```
see detail ks.test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data. name a character string giving the name(s) of the data.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
## Example 1
X <- rnorm(1000,1,1)
test_ks_dnorm(X, mean=1, sd=1)
test_ks_dlognorm(exp(X), meanlog=1, sdlog=1)
## Example 2
X = c(runif(100),rt(200,20),rnorm(200))
X = sample(X)
test_ks_dnorm(X, mean=mean(X), sd=sd(X))</pre>
```

 $test_ks_dt$ 147

test_ks_dt

Kolmogorov-Smirnov Tests (Student t Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dt(X, df)
```

Arguments

X a numeric vector of data values.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

Details

see detail ks.test.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

 $\mbox{ data.name} \qquad \mbox{ a character string giving the name}(s) \mbox{ of the data}.$

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
X <- rt(1000,15)
test_ks_dt(X, df=15)
test_ks_dt(X, df=10)</pre>
```

148 test_ks_dweibull

test_ks_dweibull	
------------------	--

Kolmogorov-Smirnov Tests (Weibull Distribution)

Description

Performs one sample Kolmogorov-Smirnov tests.

Usage

```
test_ks_dweibull(X, shape, scale)
```

Arguments

X a numeric vector of data values.

shape shape and scale parameters, the latter defaulting to 1.

scale shape and scale parameters, the latter defaulting to 1.

Details

```
see detail ks. test.
```

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data.name a character string giving the name(s) of the data.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
X <- rweibull(1000,1,4)
test_ks_dweibull(X, shape=1, scale=4)
test_ks_dexp(X, lambda=0.25)
test_ks_dgamma(X, shape=1, rate=0.25)</pre>
```

tho_02diff 149

tho_02diff	Simulation The First Passage Time FPT For Attractive Model for Two-
	Diffusion Processes $V(1)$ and $V(2)$

Description

simulation M-sample for the first passage time "FPT" for attractive for 2-diffusion processes V(1)=c(X1(t),X2(t)) and V(2)=c(Y1(t),Y2(t)) or V(1)=c(X1(t),X2(t),X3(t)) and V(2)=c(Y1(t),Y2(t),Y3(t)).

Usage

```
tho_02diff(N, M, t0, Dt, T = 1, X1_0, X2_0, Y1_0, Y2_0, v, K, m, Sigma,Output=FALSE)
```

Arguments

N	size of the diffusion process V1(t) and V2(t).
М	size of the FPT.
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X1_0	initial value of the process X1(t) at time t0.
X2_0	initial value of the process X2(t) at time t0.
Y1_0	initial value of the process Y1(t) at time t0.
Y2_0	initial value of the process Y2(t) at time t0.
V	threshold. see detail
K	constant K > 0.
m	constant $m > 0$.
Sigma	constant Sigma > 0.
Output	if Output = TRUE write a Output to an Excel (.csv).

Details

The 2-dimensional attractive models for 2-diffusion processes V(1)=(X1(t),X2(t)) and V(2)=c(Y1(t),Y2(t)) is defined by the Two (02) system for stochastic differential equation Two-dimensional :

$$dV1(t) = dV2(t) + Mu(m+1)(||D(t)||) * D(t) * dt + SigmaI(2*2) * dW1(t)$$

$$dV2(t) = Sigma*I(2*2)*dW2(t)$$

with:

$$D(t) = V1(t) - V2(t)$$

$$Mu(m)(||d||) = -K/||d||^m$$

Where $\parallel . \parallel$ is the Euclidean norm and I(2*2) is identity matrix, dW1(t) and dW2(t) are brownian motions independent.

```
D(t) = \operatorname{sqrt}((X1(t)^2 - Y1(t)^2) + (X2(t)^2 - Y2(t)^2)) \text{ it is distance between V1(t) and V2(t)}
```

And the random variable tau "first passage time FPT", is defined by :

$$tau(V1(t), V2(t)) = inf(t >= 0 ||D(t)|| <= v)$$

with v is the threshold.

Value

Random variable tau "FPT".

Note

```
• 2*K > Sigma^2.
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

TwoDiffAtra3D, TwoDiffAtra2D, fctgeneral, hist_general, Kern_meth,AnaSimFPT Simulation The First Passage Time FPT For A Simulated Diffusion Process.

Examples

tho_M1

Simulation The First Passage Time FPT For Attractive Model(S = 1, Sigma)

Description

simulation M-sample for the first passage time "FPT" for attractive model(S = 1,Sigma).

Usage

Arguments

Ν size of the diffusion process. size of the FPT. М t0 initial time. Τ final time. R0 initial value of the process at time t0, (R0 > 0). threshold.see detail. ν constant K > 0. K constant Sigma > 0. sigma Output if Output = TRUE write a Output to an Excel (.csv). Methods

method of simulation, see details snssde.

. . .

Details

Using Ito transform, it is shown that the Radial Process R(t) with R(t)=||(X(t),Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5 * Sigma^2 - K)/R(t)) * dt + Sigma * dW(t)$$

We take interest in the random variable FPT "first passage time", is defined by:

$$FPT = inf(t >= 0 R(t) <= v)$$

with v is the threshold.

For more detail consulted References.

Value

M-sample for FPT.

Note

• 2*K > Sigma^2.

o system.time(tho_M1(N=1000, M=100, t0=0, T=1, R0=2, v=0.05, K=3, sigma=0.3,Output = FALSE))

utilisateur systeme ecoule

5.64 0.10 6.08

o system.time(tho M1(N=1000, M=100, t0=0, T=1, R0=2, v=0.05, K=3, sigma=0.3,Output = FALSE, Methods="RK3"))

utilisateur systeme ecoule

29.78 0.25 29.93

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

References

1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.

- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien , Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

AnaSimFPT Simulation The First Passage Time FPT For A Simulated Diffusion Process.

Examples

Description

simulation M-sample for the first passage time "FPT" for attractive model(S >= 2,Sigma).

Usage

Arguments

N	size of the diffusion process.
М	size of the FPT.
t0	initial time.
T	final time.
R0	initial value of the process at time to $(R0 > 0)$.
V	threshold. see detail.
K	constant $K > 0$.
S	constant $s \ge 2$.
Sigma	constant Sigma > 0.
Output	if Output = TRUE write a Output to an Excel (.csv).
Methods	method of simulation ,see details snssde.

Details

Using Ito transform, it is shown that the Radial Process R(t) with R(t)=||(X(t),Y(t))|| is a markovian diffusion, solution of the stochastic differential equation one-dimensional:

$$dR(t) = ((0.5 * Sigma^2 * R(t)(S - 1) - K)/R(t)^S) * dt + Sigma * dW(t)$$

We take interest in the random variable FPT "first passage time", is defined by :

$$FPT = inf(t = 0 R(t) = v)$$

with v is the threshold.

For more detail consulted References.

Value

M-sample for FPTT.

Note

• 2*K > Sigma^2.

o system.time(tho_M2(N=1000, M=100, t0=0, T=1, R0=2, v=0.05, K=3, s=2,Sigma=0.3,Output = FALSE,Methods="Euler"))

utilisateur systeme ecoule

9.58 0.14 9.74

o system.time(tho_M2(N=1000, M=100, t0=0, T=1, R0=2, v=0.05, K=3, s=2,Sigma=0.3,Output = FALSE,Methods="RK3"))

utilisateur systeme ecoule

51.29 0.36 52.79

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

References

- 1. K.Boukhetala, Estimation of the first passage time distribution for a simulated diffusion process, Maghreb Math.Rev, Vol.7, No 1, Jun 1998, pp. 1-25.
- 2. K.Boukhetala, Simulation study of a dispersion about an attractive centre. In proceedings of 11th Symposium Computational Statistics, edited by R.Dutter and W.Grossman, Wien, Austria, 1994, pp. 128-130.
- 3. K.Boukhetala, Modelling and simulation of a dispersion pollutant with attractive centre, Edited by Computational Mechanics Publications, Southampton, U.K and Computational Mechanics Inc, Boston, USA, pp. 245-252.
- 4. K.Boukhetala, Kernel density of the exit time in a simulated diffusion, les Annales Maghrebines De L ingenieur, Vol , 12, N Hors Serie. Novembre 1998, Tome II, pp 587-589.

See Also

AnaSimFPT Simulation The First Passage Time FPT For A Simulated Diffusion Process.

TwoDiffAtra2D

Examples

TwoDiffAtra2D

Two-Dimensional Attractive Model for Two-Diffusion Processes V(1) and V(2)

Description

simulation 2-dimensional attractive model for 2-diffusion processes V(1)=(X1(t),X2(t)) and V(2)=c(Y1(t),Y2(t)).

Usage

```
TwoDiffAtra2D(N, t0, Dt, T = 1, X1_0, X2_0, Y1_0, Y2_0, V, K, m, Sigma, Output = FALSE)
```

Arguments

N	size of process.
t0	initial time.
Dt	time step of the simulation (discretization).
Т	final time.
X1_0	initial value of the process X1(t) at time t0.
X2_0	initial value of the process X2(t) at time t0.
Y1_0	initial value of the process Y1(t) at time t0.
Y2_0	initial value of the process Y2(t) at time t0.
V	threshold. see detail
K	constant $K > 0$.
m	constant $m > 0$.
Sigma	constant Sigma > 0.
Output	if Output = TRUE write a Output to an Excel (.csv).

Details

The 2-dimensional attractive models for 2-diffusion processes V(1)=(X1(t),X2(t)) and V(2)=c(Y1(t),Y2(t)) is defined by the Two (02) system for stochastic differential equation Two-dimensional :

$$dV1(t) = dV2(t) + Mu(m+1)(||D(t)||) * D(t) * dt + SigmaI(2*2) * dW1(t)$$

$$dV2(t) = Sigma*I(2*2) * dW2(t)$$

with:

$$D(t) = V1(t) - V2(t)$$

TwoDiffAtra3D 155

$$Mu(m)(||d||) = -K/||d||^m$$

Where $\|.\|$ is the Euclidean norm and I(2*2) is identity matrix, dW1(t) and dW2(t) are brownian motions independent.

$$D(t) = \operatorname{sqrt}((X1(t)^2 - Y1(t)^2) + (X2(t)^2 - Y2(t)^2)) \text{ it is distance between V1}(t) \text{ and V2}(t)$$

And the random variable tau "first passage time", is defined by :

$$tau(V1(t), V2(t)) = inf(t >= 0 ||D(t)|| <= v)$$

with v is the threshold.

Value

data.frame(time,X1(t),X2(t),Y1(t),Y2(t),D(t)) and plot of process 2-D.

Note

• 2*K > Sigma^2.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

TwoDiffAtra3D, tho_02diff.

Examples

```
\label{eq:twoDiffAtra2D(N=2000, t0=0, Dt=0.001, T = 1, X1_0=0.5, X2_0=1, Y1_0=-0.5, Y2_0=-1, v=0.05, K=2, m=0.2, Sigma=0.1, Output = FALSE)
```

TwoDiffAtra3D

Three-Dimensional Attractive Model for Two-Diffusion Processes V(1) and V(2)

Description

simulation 3-dimensional attractive model for 2-diffusion processes V(1)=(X1(t),X2(t),X3(t)) and V(2)=c(Y1(t),Y2(t),Y3(t)).

Usage

```
TwoDiffAtra3D(N, t0, Dt, T = 1, X1_0, X2_0, X3_0, Y1_0, Y2_0, Y3_0, v, K, m, Sigma, Output = FALSE)
```

TwoDiffAtra3D

Arguments N

	1
t0	initial time.
Dt	time step of the simulation (discretization).
T	final time.
X1_0	initial value of the process X1(t) at time t0.
X2_0	initial value of the process X2(t) at time t0.
X3_0	initial value of the process X3(t) at time t0.
Y1_0	initial value of the process Y1(t) at time t0.
Y2_0	initial value of the process Y2(t) at time t0.
Y3_0	initial value of the process Y3(t) at time t0.
V	threshold. see detail
K	constant $K > 0$.
m	constant $m > 0$.
Sigma	constant Sigma > 0.
Output	if Output = TRUE write a Output to an Excel (.csv).

size of process.

Details

The 3-dimensional attractive models for 2-diffusion processes V(1)=(X1(t),X2(t),X3(t)) and V(2)=c(Y1(t),Y2(t),Y3(t)) is defined by the Two (02) system for stochastic differential equation three-dimensional :

$$dV1(t) = dV2(t) + Mu(m+1)(||D(t)||) * D(t) * dt + SigmaI(3*3) * dW1(t)$$

$$dV2(t) = Sigma*I(3*3) * dW2(t)$$

with:

$$D(t) = V1(t) - V2(t)$$

$$Mu(m)(||d||) = -K/||d||^m$$

Where $\|.\|$ is the Euclidean norm and I(3*3) is identity matrix, dW1(t) and dW2(t) are brownian motions independent.

 $D(t) = \operatorname{sqrt}((X1(t)^2 - Y1(t)^2) + (X2(t)^2 - Y2(t)^2) + (X3(t)^2 - Y3(t)^2)) \text{ it is distance between V1(t) and V2(t)}.$

And the random variable tau "first passage time", is defined by :

$$tau(V1(t), V2(t)) = inf(t >= 0 ||D(t)|| <= v)$$

with v is the threshold.

Value

data.frame(time,X1(t),X2(t),X3(t),Y1(t),Y2(t),Y3(t),D(t)) and plot of process 3-D.

WFD 157

Note

```
• 2*K > Sigma^2.
```

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

See Also

```
TwoDiffAtra2D, tho_02diff.
```

Examples

```
TwoDiffAtra3D(N=500, t0=0, Dt=0.001, T = 1, X1_0=0.5, X2_0=0.25, X3_0=0.1,Y1_0=-0.5,Y2_0=-1, Y3_0=0.25, v=0.01, K=5, m=0.2, Sigma=0.1, Output = FALSE)
```

WFD

Wright-Fisher Diffusion

Description

Simulation the Wright-Fisher diffusion.

Usage

```
WFD(N, M, t0, T, x0, gamma1, gamma2, sigma, output = FALSE)
```

Arguments

N	size of process.
М	number of trajectories.
t0	initial time.
Т	final time.
x0	initial value of the process at time t0 (0 $<$ x0 $<$ 1).
gamma1	constant(-gamma1 * $X(t)$ + gamma2 * (1 - $X(t)$) :drift coefficient), (gamma1 >= 0).
gamma2	constant(-gamma1 * $X(t)$ + gamma2 * (1 - $X(t)$) :drift coefficient). (gamma2 >= 0)
sigma	constant positive (sigma * $sqrt(X(t)*(1-X(t)))$: diffusion coefficient).
output	if output = TRUE write a output to an Excel (.csv).

158 WNG

Details

The Wright-Fisher diffusion also derives directly from the linear drift class, the discretization dt = (T-t0)/N.

In population dynamics frequencies of genes or alleles are studied. It is assumed for simplicity that the population size N is fixed and individuals are of two types: A and a. If individuals of type A mutate to type a with the rate gamma1/N and individuals of type a mutate to type A with the rate gamma2/N, then it is possible to approximate the frequency of type A individuals X(t) by the Wright-Fisher diffusion, given by the stochastic equation:

```
dX(t) = (-gamma1*X(t) + gamma2*(1-X(t)))*dt + sigma*sqrt(X(t)*(1-X(t)))*dW(t) with (-gamma1 * X(t) + gamma2 * ( 1 - X(t)) ) : drift coefficient and sigma * sqrt(X(t)*(1-X(t))) W(t) is Wiener process.
```

Value

data.frame(time,x) and plot of process.

Author(s)

Guidoum Arsalane.

References

Fima C Klebaner. Introduction to stochastic calculus with application (Second Edition), Imperial College Press (ICP), 2005.

See Also

SLVM Stochastic Lotka-Volterra, FBD Feller Branching Diffusion.

Examples

```
WFD(N=1000, M=1, t0=0, T=1, x0=0.5, gamma1=0, gamma2=0.5, sigma=0.2)
```

WNG

Creating White Noise Gaussian

Description

Simulation white noise gaussian.

Usage

```
WNG(N, t0, T, m, sigma2, output = FALSE)
```

WNG 159

Arguments

N size of process.
t0 initial time.
T final time.
m mean.
sigma2 variance.

output if output = TRUE write a output to an Excel (.csv).

Value

data.frame(time,x) and plot of process.

Author(s)

Boukhetala Kamal, Guidoum Arsalane.

```
## White Noise Gaussian
WNG(N=1000,t0=0,T=1,m=0,sigma2=4)
```

Index

*Topic Actuarial Modeling	snssde2D, 111
ABM, 6	snssde3D, 113
ABMF, 7	TwoDiffAtra2D, 154
Sim.DiffProc-package, 4	TwoDiffAtra3D, 155
*Topic Attractive Model	*Topic Diffusion Process
RadialP2D_1, 92	ABM, 6
RadialP2D_1PC, 93	ABMF, 7
RadialP2D_2, 95	Appdcon, 23
RadialP2D_2PC, 96	BB, 25
RadialP3D_1,97	BBF, 26
RadialP3D_2,99	Besselp, 27
RadialP_1, 101	BMN, 36
RadialP_2, 102	BMN2D, 37
Sim.DiffProc-package,4	BMN3D, 38
TwoDiffAtra2D, 154	BMNF, 39
TwoDiffAtra3D, 155	BMRW, 41
*Topic Attractive models	BMRW2D, 42
tho_02diff, 149	BMRW3D, 43
tho_M1, 150	BMRWF, 44
tho_M2, 152	CEV, 50
*Topic Biology modeling	CIR, 51
FBD, 58	CIRhy, <u>52</u>
SLVM, 107	CKLS, 53
WFD, 157	diffBridge, 56
*Topic Conditional Law	DWP, 57
Appdcon, 23	FBD, 58
*Topic Diffusion Process	GBM, 61
Multidimensional	GBMF, 62
BMN2D, 37	HWV, 65
BMN3D, 38	HWVF, 67
BMRW2D, 42	Hyproc, 68
BMRW3D, 43	Hyprocg, 69
PredCorr2D, 88	INFSR, 70
PredCorr3D, 90	JDP, 7 1
RadialP2D_1,92	ou, 76
RadialP2D_1PC, 93	OUF, 77
RadialP2D_2,95	PDP, 78
RadialP2D_2PC, 96	PEABM, 80
RadialP3D_1,97	PEBS, 81
RadialP3D_2, 99	PEOU, 83
RadialP_1, <u>101</u>	PEOUexp, 84
RadialP_2, 102	PEOUG, 85
Sim.DiffProc-package,4	PredCorr, 86

ROU, 104	fctrep_Meth, 60
Sim.DiffProc-package, 4	GBM, 61
SLVM, 107	GBMF, 62
snssde, 109	hist_general,63
WFD, 157	hist_meth,64
*Topic Environment R	HWV, 65
ABM, 6	HWVF, 67
ABMF, 7	Hyproc, 68
Ajdbeta, 8	Hyprocg, 69
Ajdchisq,9	INFSR, 70
Ajdexp, 10	JDP, 71
Ajdf, 12	Kern_general, 72
Ajdgamma, 13	Kern_meth, 74
Ajdlognorm, 14	MartExp, 75
Ajdnorm, 15	ou, 76
Ajdt, 16	OUF, 77
Ajdweibull, 17	PDP, 78
AnaSimFPT, 18	PEABM, 80
AnaSimX, 21	PEBS, 81
Appdcon, 23	PEOU, 83
BB, 25	PEOUexp, 84
BBF, 26	PEOUG, 85
Besselp, 27	PredCorr, 86
BMcov, 28	PredCorr2D, 88
BMinf, 29	PredCorr3D, 90
BMIrt, 30	RadialP2D_1, 92
BMIto1, 31	RadialP2D_1PC, 93
BMIto2, 32	RadialP2D_2, 95
BMItoC, 33	RadialP2D_2PC, 96
BMItoP, 34	RadialP3D_1, 97
BMItoT, 35	RadialP3D_2, 99
BMN, 36	RadialP_1, 101
BMN2D, 37	RadialP_2, 102
BMN3D, 38	ROU, 104
BMNF, 39	Sim.DiffProc-package,4
BMP, 40	snssde, 109
BMRW, 41	snssde2D, 111
BMRW2D, 42	snssde3D, 113
BMRW3D, 43	SRW, 119
BMRWF, 44	Stbeta, 121
BMscal, 45	Stcauchy, 122
BMStra, 46	Stchisq, 123
BMStraC, 47	Stexp, 124
BMStraP,48	Stgamma, 125
BMStraT, 49	Stgamma3, 126
CEV, 50	Stgp, 127
CIR, 51	Stgumbel, 128
CIRhy, 52	Stlgamma3, 129
CKLS, 53	Stllogis, 130
diffBridge, 56	Stllogis3, 131
DWP, 57	Stlnorm, 132
fctgeneral, 59	Stlnorm3, 133

Stlogis, 134	One-Dimensional
Stst, 135	Sim.DiffProc-package,4
Stweibull, 136	*Topic Numerical methods of SDE
Stweibull3, 137	Three-Dimensional
Telegproc, 139	Sim.DiffProc-package, 4
test_ks_dbeta, 140	*Topic Numerical methods of SDE
test_ks_dchisq, 141	Two-Dimensional
test_ks_dexp, 142	Sim.DiffProc-package, 4
test_ks_df, 143	*Topic Parametric Estimation
test_ks_dgamma, 144	Ajdbeta, 8
test_ks_dlognorm, 145	Ajdchisq, 9
test_ks_dnorm, 146	Ajdexp, 10
test_ks_dt, 147	Ajdf, 12
test_ks_dweibull, 148	Ajdgamma, 13
tho_02diff, 149	Ajdlognorm, 14
tho_M1, 150	Ajdnorm, 15
tho_M2, 152	Ajdt, 16
TwoDiffAtra2D, 154	Ajdweibull, 17
TwoDiffAtra3D, 155	fctgeneral, 59
WNG, 158	fctrep_Meth, 60
*Topic Financial Models	hist_general, 63
Sim.DiffProc-package, 4	hist_meth, 64
*Topic Financial models	Kern_general, 72
ABM, 6	Kern_meth, 74
*Topic Fokker-Planck equation	PEABM, 80
Sosadd, 114	PEBS, 81
SSCPP, 120	PEOU, 83
*Topic Numerical Solution of	PEOUexp, 84
Stochastic Differential	PEOUG, 85
Equation Multidimensional	test_ks_dbeta, 140
PredCorr2D, 88	test_ks_dchisq, 141
PredCorr3D, 90	test_ks_dexp, 142
snssde2D, 111	test_ks_df, 143
snssde2b, 111 snssde3b, 113	test_ks_dgamma, 144
*Topic Numerical Solution of	test_ks_dlognorm, 145
Stochastic Differential	test_ks_dnorm, 146
Equation Stochastic Differential	test_ks_dt, 147
CEV, 50	test_ks_dweibull, 148
CIR, 51	*Topic Simulation
CIRhy, 52	ABM, 6
CKLS, 53	ABMF, 7
diffBridge, 56	AnaSimFPT, 18
DWP, 57	AnaSimX, 21
Hyproc, 68	Appdcon, 23
	Asys, 24
Hyprocg, 69	•
INFSR, 70	BB, 25
JDP, 71	BBF, 26
PDP, 78	Besselp, 27
PredCorr, 86	BMcov, 28
ROU, 104	BMinf, 29
snssde, 109	BMIrt, 30
*Topic Numerical methods of SDE	BMIto1, 31

BMIto2, 32	SRW, 119
BMItoC, 33	Stbeta, 121
BMItoP, 34	Stcauchy, 122
BMItoT, 35	Stchisq, 123
BMN, 36	Stexp, 124
BMN2D, 37	Stgamma, 125
BMN3D, 38	Stgamma3, 126
BMNF, 39	Stgp, 127
BMP, 40	Stgumbel, 128
BMRW, 41	Stlgamma3, 129
BMRW2D, 42	Stllogis, 130
BMRW3D, 43	Stllogis3, 131
BMRWF, 44	Stlnorm, 132
BMscal, 45	Stlnorm3, 133
BMStra, 46	Stlogis, 134
BMStraC, 47	Stst, 135
BMStraP, 48	Stweibull, 136
BMStraT, 49	Stweibull3, 137
CEV, 50	Telegproc, 139
CIR, 51	tho_02diff, 149
CIRhy, 52	tho_M1, 150
CKLS, 53	tho_M2, 152
diffBridge, 56	TwoDiffAtra2D, 154
DWP, 57	TwoDiffAtra3D, 155
GBM, 61	WNG, 158
GBMF, 62	*Topic Statistical Analysis
HWV, 65	Ajdbeta, 8
HWVF, 67	Ajdchisq,9
Hyproc, 68	Ajdexp, 10
Hyprocg, 69	Ajdf, 12
INFSR, 70	Ajdgamma, 13
JDP, 71	Ajdlognorm, 14
MartExp, 75	Ajdnorm, 15
ou, 76	Ajdt, 16
OUF, 77	Ajdweibull, 17
PDP, 78	AnaSimFPT, 18
PredCorr, 86	AnaSimX, 21
PredCorr2D, 88	fctgeneral, 59
PredCorr3D, 90	fctrep_Meth, 60
RadialP2D_1,92	hist_general,63
RadialP2D_1PC, 93	hist_meth,64
Radia1P2D_2, 95	Kern_general, 72
RadialP2D_2PC, 96	Kern_meth, 74
RadialP3D_1, 97	Sim.DiffProc-package, 4
RadialP3D_2, 99	test_ks_dbeta, 140
RadialP_1, 101	test_ks_dchisq, 141
RadialP_2, 102	test_ks_dexp, 142
ROU, 104	test_ks_df, 143
Sim.DiffProc-package, 4	test_ks_dgamma, 144
snssde, 109	<u>.</u>
	test_ks_dlognorm, 145
snssde2D, 111 snssde3D, 113	test_ks_dlognorm, 145 test_ks_dnorm, 146 test_ks_dt, 147

test_ks_dweibull, 148	BMIto1, 31
tho_02diff, 149	BMIto2, 32
tho_M1, 150	BMItoC, 33
tho_M2, 152	BMItoP, 34
*Topic Stochastic Differential	BMItoT, 35
Equation Multidimensional	BMStra, 46
PredCorr2D, 88	BMStraC, 47
PredCorr3D, 90	BMStraP,48
RadialP2D_1,92	BMStraT,49
RadialP2D_1PC, 93	*Topic Stochastic processes
RadialP2D_2,95	Stbeta, 121
RadialP2D_2PC, 96	Stcauchy, 122
RadialP3D_1,97	Stchisq, 123
RadialP3D_2,99	Stexp, 124
RadialP_1, 101	Stgamma, 125
RadialP_2, 102	Stgamma3, 126
snssde2D, 111	Stgp, 127
snssde3D, 113	Stgumbel, 128
TwoDiffAtra2D, 154	Stlgamma3, 129
TwoDiffAtra3D, 155	Stllogis, 130
*Topic Stochastic Differential	Stllogis3, 131
Equation	Stlnorm, 132
AnaSimFPT, 18	Stlnorm3, 133
AnaSimX, 21	Stlogis, 134
BB, 25	Stweibull, 136
BBF, 26	Stweibull3, 137
22.,20	
Besselp, 27	*Topic Stochastics Oscillators
•	*Topic Stochastics Oscillators Sharosc, 105
Besselp, 27	
Besselp, 27 CEV, 50	Sharosc, 105
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53	Sharosc, 105 Sim.DiffProc-package, 4
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76 OUF, 77	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41 BMRWF, 44
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76 OUF, 77 PDP, 78	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41 BMRWF, 44 CEV, 50
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76 OUF, 77 PDP, 78 PredCorr, 86	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41 BMRWF, 44 CEV, 50 CIR, 51
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76 OUF, 77 PDP, 78 PredCorr, 86 ROU, 104	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41 BMRWF, 44 CEV, 50 CIR, 51 CIRhy, 52
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76 OUF, 77 PDP, 78 PredCorr, 86 ROU, 104 Sim.DiffProc-package, 4	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41 BMRWF, 44 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76 OUF, 77 PDP, 78 PredCorr, 86 ROU, 104 Sim.DiffProc-package, 4 snssde, 109	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41 BMRWF, 44 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76 OUF, 77 PDP, 78 PredCorr, 86 ROU, 104 Sim.DiffProc-package, 4 snssde, 109 tho_02diff, 149	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41 BMRWF, 44 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76 OUF, 77 PDP, 78 PredCorr, 86 ROU, 104 Sim.DiffProc-package, 4 snssde, 109 tho_02diff, 149 tho_M1, 150	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41 BMRWF, 44 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61
Besselp, 27 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57 GBM, 61 GBMF, 62 HWV, 65 HWVF, 67 Hyproc, 68 Hyprocg, 69 INFSR, 70 JDP, 71 OU, 76 OUF, 77 PDP, 78 PredCorr, 86 ROU, 104 Sim.DiffProc-package, 4 snssde, 109 tho_02diff, 149	Sharosc, 105 Sim.DiffProc-package, 4 Sosadd, 114 Spendu, 116 Srayle, 117 SSCPP, 120 Svandp, 138 *Topic financial models ABMF, 7 BB, 25 BBF, 26 Besselp, 27 BMN, 36 BMNF, 39 BMRW, 41 BMRWF, 44 CEV, 50 CIR, 51 CIRhy, 52 CKLS, 53 diffBridge, 56 DWP, 57

INATE 67	CEV 28 50 52 54 56 58 71 72 70 105
HWVF, 67	CEV, 28, 50, 52–54, 56, 58, 71, 72, 79, 105
Hyproc, 68	CIR, 28, 51, 51, 53, 54, 56, 58, 71, 72, 79, 105
Hyprocg, 69	CIRhy, 28, 51, 52, 52, 54, 56, 58, 69–72, 79,
INFSR, 70	105
JDP, 71	CKLS, 28, 51–53, 53, 56, 58, 71, 72, 79, 105
ou, 76	DIT14 55
OUF, 77	DATA1, 55
PDP, 78	DATA2, 55
PredCorr, 86	DATA3, 55
ROU, 104	diffBridge, 26–28, 51–54, 56, 58, 71, 72, 79,
snssde, 109	87, 89, 105, 110, 112
,	DWP, 28, 51–54, 56, 57, 71, 72, 79, 105
ABM, 6, 8, 26, 27	
ABMF, 7, 7	FBD, 58, 108, 158
Ajdbeta, 8, 10–12, 14–18	fctgeneral, 59, 64, 73, 93, 94, 96, 97, 102,
Ajdchisq, 9, 9, 11, 12, 14–18	104, 150
Ajdexp, 9, 10, 10, 12, 14–18	fctrep_Meth, 60, 65, 74
Ajdf, 9–11, 12, 14–18	
Ajdgamma, 9–12, 13, 15–18	GBM, 26–28, 36, 39, 41, 44, 51–54, 56, 58, 61,
Ajdlognorm, 9–12, 14, 14, 16–18	63, 71, 72, 79, 105
	GBMF, 62, 62
Ajdnorm, 9–12, 14, 15, 15, 17, 18	
Ajdt, 9–12, 14–16, 16, 18	hist_general, 60, 63, 73, 93, 94, 96, 97, 102,
Ajdweibull, 9–12, 14–17, 17	104, 150
AnaSimFPT, 18, 22, 150, 152, 153	hist_meth, <i>61</i> , 64, <i>74</i>
AnaSimX, 20, 21	HWV, 28, 51–54, 56, 58, 65, 67, 71, 72, 79, 105
Appdcon, 23	HWVF, 66, 67
Asys, 24, <i>140</i>	Hyproc, 68, 70
	Hyprocg, 69, 69
BB, 25, 27, 36, 39, 41, 44	
BBF, 26, 26	INFSR, 28, 51–54, 56, 58, 70, 72, 79, 105
Besselp, 27	ItovsStra (BMIto1), 31
BMcov, 28, 29, 30, 40, 45	ItovsStraP(BMItoP),34
BMinf, 29, 29, 30, 40, 45	ItovsStraT (BMItoT), 35
BMIrt, 29, 30, 40, 45	
BMIto1, 31, 32–35	JDP, 28, 51–54, 56, 58, 71, 71, 79, 105
BMIto2, <i>31</i> , 32, <i>33–35</i>	
BMItoC, 31, 32, 33, 34, 35	Kern_general, 60, 64, 72
BMItoP, <i>31–33</i> , 34, <i>35</i>	Kern_meth, 61, 65, 74, 93, 94, 96, 97, 102,
BMItoT, <i>31–34</i> , 35	104, 150
BMN, 26, 27, 29, 30, 36, 37–39, 41, 44	W 15 75
BMN2D, 37	MartExp, 75
BMN3D, <i>37</i> , 38, <i>43</i>	011 76 79
BMNF, 36, 39, 41	0U, 76, 78
BMP, 40	OUF, 77, 77
BMRW, 26, 27, 29, 30, 36, 39, 41, 42–44	PDP, 28, 51–54, 56, 58, 71, 72, 78, 105
BMRW2D, 42	PEABM, 80, 82, 83, 85, 86
BMRW3D, 38, 42, 43	PEBS, 62, 63, 81, 81, 83, 85, 86
BMRWF, 36, 39, 41, 44	PEOU, 77, 78, 81, 82, 83, 85, 86
BMscal, 29, 30, 40, 45	PEOUexp, 77, 78, 81, 82, 83, 83, 80 PEOUexp, 77, 78, 81–83, 84, 86
BMStra, 46, 47–49	· · · · · · · · · · · · · · · · · · ·
	PEOUG, 66, 67, 81–83, 85, 85 ProdCorr 86, 80, 01, 110, 112, 114
BMStraC, 46, 47, 48, 49	PredCorr, 86, 89, 91, 110, 112, 114
BMStraP, 46, 47, 48	PredCorr2D, 87, 88, 91, 93, 94, 96, 97, 110,
BMStraT, 46-48, 49	112, 114

PredCorr3D, 90, 110, 114
RadialP2D_1, 92, 102 RadialP2D_1PC, 93, 93, 96, 97, 102 RadialP2D_2, 95, 104 RadialP2D_2PC, 94, 96, 104 RadialP3D_1, 93, 94, 96, 97, 97, 100, 102 RadialP3D_2, 99, 99, 104 RadialP_1, 101 RadialP_2, 102 ROU, 28, 51–54, 56, 58, 71, 72, 79, 104
Sharosc, 105, 115, 117, 118, 121, 138, 139 showData, 107 Sim.DiffProc (Sim.DiffProc-package), 4 Sim.DiffProc-package, 4 SLVM, 59, 107, 158 snssde, 18, 21, 26–28, 51–54, 56, 58, 62, 63, 66, 67, 69–72, 77–79, 87, 89, 91, 101, 103, 105, 109, 112, 114, 151,
$\begin{array}{c} 152 \\ \text{snssde2D}, 87, 89, 91, 93, 94, 96, 97, 110, 111, \end{array}$
snssde3D, 91, 110, 113 Sosadd, 106, 114, 117, 118, 121, 139 Spendu, 106, 115, 116, 118, 121, 139 Srayle, 106, 115, 117, 117, 121, 139 SRW, 119, 122–137 SSCPP, 106, 115, 117, 118, 120, 139 Stbeta, 121, 122–134, 136, 137 Stcauchy, 122, 122, 123–134, 136, 137 Stcauchy, 122, 123, 124–134, 136, 137 Stexp, 122, 123, 124, 125–134, 136, 137 Stgamma, 119, 122–124, 125, 126–137 Stgamma3, 122–125, 126, 127, 128, 130–134, 136, 137
Stgp, 122-126, 127, 128-134, 136, 137 Stgumbel, 122-127, 128, 129 Stlgamma3, 122-128, 129, 130-134, 136, 137 Stllogis, 122-129, 130, 131-134, 136, 137 Stllogis3, 122-130, 131, 132-134, 136, 137 Stlnorm, 122-131, 132, 133, 134, 136, 137 Stlnorm3, 122-132, 133, 134, 136, 137 Stlogis, 122-133, 134, 136, 137 Stst, 119, 122-134, 135, 136, 137 Stweibull, 122-134, 136, 137 Stweibull3, 122-134, 136, 137 Stweibull3, 122-134, 136, 137 Svandp, 106, 115, 117, 118, 121, 138
Telegproc, 25, 139 test_ks_dbeta, 140 test_ks_dchisq, 141 test_ks_dexp, 142

test_ks_df, 143
test_ks_dgamma, 144
test_ks_dlognorm, 145
test_ks_dnorm, 146
test_ks_dt, 147
test_ks_dweibull, 148
tho_02diff, 20, 22, 149, 155, 157
tho_M1, 20, 22, 93, 94, 96, 97, 102, 150
tho_M2, 104, 152
TwoDiffAtra2D, 150, 154, 157
TwoDiffAtra3D, 150, 155, 155
WFD, 59, 108, 157
WNG, 119, 122-137, 158