Билет 7

Определение определённого интеграла.

Определение. Пусть функция f(x) задана в некотором промежутке [a,b]. Разобьем этот промежуток произвольным образом на части, вставив между a и b точки деления (1). Наибольшую из разностей $\Delta x_i = x_{i+1} - x_i$, $(i = 0, 1, \dots, n-1)$ будем впредь обозначать через λ .

Возьмем в каждом из частичных промежутков $[x_i, x_{i+1}]$ по произволу точку $x = \xi_i$. (ранее всегда брали ξ_i как наименьшее значение x_i).

$$x_i \le \xi_i \le x_{i+1}, \ (i = 0, 1, \dots, n-1)$$
 и составим сумму $\sigma = \sum_{i=0}^{n-1} f(\xi_i) \Delta x_i.$

Установим теперь понятие (конечного) предела этой суммы:

$$I = \lim_{\lambda \to 0} \sigma \tag{1}$$

Представим себе, что промежуток [a,b] последовательно разбивается на части, сначала одним способом, затем – вторым, третьим и т. д.

Такую последовательность разбиений промежутка на части мы будем называть *основной*, если соответствующая последовательность значений $\lambda = \lambda_1, \lambda_2, \dots$ сходится к нулю.

Равенство (3) мы понимаем в том смысле, что последовательность значений суммы σ , отвечающая любой *основной* последовательности разбиений промежутка, всегда стремится к пределу I как бы не выбирать при этом ξ_i .

Можно и здесь дать определение предела "на языке ϵ - δ ". Именно, говорят, что сумма σ при $\lambda \to 0$ имеет предел I, если для каждого числа $\epsilon > 0$ найдется такое $\delta > 0$, что, лишь только $\lambda < \delta$ (т. е. основной промежуток разбит на части, с длинами $\Delta x_i < \delta$), неравенство

$$|\sigma - I| < \epsilon$$

выполняется при любом выборе чисел ξ .

Конечный предел I суммы σ при $\lambda \to 0$ называется определённым интегралом функции f(x) в промежутке от a до b и обозначается

$$I = \int_{a}^{b} f(x) dx$$
 (обозначение Фурье). (2)

если такой предел существует, то функция f(x) называется интегрируемой на промежутке [a,b] (где а – нижний, b – верхний предел).

Приведенное определение принадлежит Риману, принято называть σ – римановской суммой, однако её ещё до Римана использовал Коши, поэтому будем называть её интегральной суммой.

Notice: оперделение может быть использовано только для ограниченой функции. В самом деле если бы функция f(x) была бы неограничена на [a,b], то – при любом разбиении промежутка на части она бы сохранила подобное свойство хотя бы в одной из частей. Тогда засчет выбора в этой части точки ξ можно было бы сделать $f(\xi)$, а с ней и сумму σ сколь угодно большой; при этих условиях конечного предела для σ , очевидно, существовать не могло бы. Итак, интегрируемая функция необходимо ограничена.

Поэтому в дальнейшем исследовании мы будем наперед предпологать рассматриваемую функцию f(x) ограниченной: $m \le f(x) \le M$, if $a \le x \le b$.

175. Другой подход к задаче о площади. Вернемся к задаче об определении площади P криволинейной трапеции ABCD (рис. 65), которой мы уже занимались в n° 156. Мы изложим сейчас другой

подход к решению этой задачи *). Разделим основание АВ нашей

фигуры произвольным образом на части и проведем ординаты, соответствующие точкам деления; тогда криволинейная трапеция разобьется на ряд полосок (см. чертеж).

Заменим теперь приближенно каждую полоску некоторым прямо-

угольником, основание которого то же, что и у полоски, а высота совпадает с одной из ординат полоски, скажем, с крайней слева. Таким образом, криволинейная фигура заменится некоторой ступенчатой фигурой, составленной из отдельных прямоугольников.

Обозначим абсциссы точек деления через

Рис. 65.

$$x_0 = a < x_1 < x_2 < \dots < x_i < x_{i+1} < \dots < x_n = b.$$
 (1)

 $x_0 = a < x_1 < x_2 < \dots < x_i < x_{i+1} < \dots < x_n = b.$ (1) Основание *i*-го прямоугольника ($i = 0, 1, 2, \dots, n-1$), очевидно,