USTHB

Faculté de Mathématiques Master 1 SPA Séries chronologiques 1

Série d'exercices N°3

Exercice 1

Considérons le processus ARMA(1,1) satisfaisant les équations

$$X_t = 0.5X_{t-1} + \epsilon_t + 0.4\epsilon_{t-1}, \ \{\epsilon_t\} \sim WN(0, \sigma_{\epsilon}^2)$$

- 1) Donner les propriétés de ce processus (Est-il stationnaire ? Est-il inversible ?)
 - 2) Donner la représentation $MA(\infty)$ de ce processus.
 - 3) Donner la représentation $AR(\infty)$ de ce processus.

(Pour 2) et 3), on déterminera les coefficients de façon précise).

Exercice 2

Considérons le processus AR(2) satisfaisant les équations

$$X_t = 0.7X_{t-1} - 0.1X_{t-2} + \epsilon_t, \ \{\epsilon_t\} \sim WN(0, \sigma_{\epsilon}^2)$$

- 1) Donner les propriétés de ce processus (Est-il stationnaire ? Est-il inversible ?)
 - 2) Donner la représentation $MA(\infty)$ de ce processus.
 - 3) Donner la représentation $AR(\infty)$ de ce processus.

(Pour 2) et 3), on déterminera les coefficients de façon précise).

Exercice 3

Considérons le processus ARMA(2,1) satisfaisant les équations

$$X_t = 0.75X_{t-1} - 0.5625X_{t-2} + \epsilon_t + 1.25\epsilon_{t-1}, \ \{\epsilon_t\} \sim WN(0, \sigma_{\epsilon}^2)$$

- 1) Donner les propriétés de ce processus (Est-il stationnaire ? Est-il inversible ?)
 - 2) Donner la représentation $MA(\infty)$ de ce processus.
 - 3) Donner la représentation $AR(\infty)$ de ce processus.

(Pour 2) et 3), on déterminera les coefficients de façon précise).

Exercice 4

- 1) Soit le processus AR(1): $X_t = 0.8X_{t-1} + \varepsilon_t$, $\{\varepsilon_t\} \sim WN(0, \sigma^2)$. Calculer la variance de $(X_1 + X_2 + X_3 + X_4)/4$.
- 2) Considérons le modèle suivant : $X_t=X_{t-1}-0.25X_{t-2}+\varepsilon_t-0.25\varepsilon_{t-1}$ où $\{\varepsilon_t\}$ est un bruit blanc.
 - a) Ce modèle est-il causal? Pourquoi?
 - b) Calculer les coefficients $\psi_i, i=0,1,\dots$ de la représentation causale.

(Indication : On montrera que $(1-\varphi_1B-\varphi_2B^2)^{-1}=\sum_{i=0}^\infty\psi_iB^i$ où $\psi_i=\varphi_1\psi_{i-1}+\varphi_2\psi_{i-2}).$

- c) Ce modèle est-il inversible? Pourquoi?
- d) Calculer les coefficients π_i , i = 0, 1, ... de la représentation $AR(\infty)$.
- 3) Donner la représentation causale par rapport à $\{\varepsilon_t\} \sim WN(0, \sigma^2)$ des processus ARMA suivant:

$$\begin{array}{rcl} X_t & = & 1.3X_{t-1} - 0.4X_{t-2} + \varepsilon_t \\ X_t & = & 1.3X_{t-1} - 0.4X_{t-2} + \varepsilon_t - 0.2\varepsilon_{t-1} \\ X_t & = & \varphi X_{t-1} + \varepsilon_t + \theta \varepsilon_{t-1}, |\varphi| < 1 \end{array}$$

4) Calculer la fonction d'autocovariance des processus ARMA suivant: $X_t=0.5X_{t-1}+0.36X_{t-2}+\varepsilon_t, X_t=0.5X_{t-1}+0.36X_{t-2}+\varepsilon_t+0.5\varepsilon_{t-1}$

Exercice 5

Soit le modèle

$$X_t = -2t + \varepsilon_t + 0.5\varepsilon_{t-1}$$

- où $\{\varepsilon_t\}$ est un bruit blanc de variance σ_{ε}^2 .
- 1) Quelle est la fonction moyenne et la fonction d'autocovariance de ce processus ? Est-il stationnaire ? Justifiez votre réponse.
- 2) On considère le processus différencié $\nabla X_t = (1-B)X_t$ où B est l'opérateur retard $(BZ_t = Z_{t-1})$. Quelle est la fonction moyenne et la fonction d'autocovariance de ce processus ? Est-il stationnaire ? Justifiez votre réponse.

Exercice 6

On suppose que l'on dispose de 1500 observations d'une série chronologique. Les autocovariances empiriques calculées sont :

$$\widehat{\gamma}_0=5.0, \widehat{\gamma}_1=3.5, \widehat{\gamma}_2=2.5, \widehat{\gamma}_3=1.8, \widehat{\gamma}_4=1.0.$$

1) Calculer les 3 premières autocorrélations et autocorrélations partielles. L'algorithme de Durbin est :

$$\begin{split} \widehat{\varphi}_{11} &= \widehat{\rho}_1, \widehat{\varphi}_{hh} = (\widehat{\rho}_h - \sum_{j=1}^{h-1} \widehat{\varphi}_{h-1,j} \widehat{\rho}_{h-j})/(1 - \sum_{j=1}^{h-1} \widehat{\varphi}_{h-1,j} \widehat{\rho}_j), \widehat{\varphi}_{h,j} = \widehat{\varphi}_{h-1,j} - \\ \widehat{\varphi}_{hh} \widehat{\varphi}_{h-1,h-j}, j &= 1, 2, ..., h-1 \text{ et } h = 2, 3, ... \end{split}$$

2) Quel modèle suggèreriez-vous?

Exercice 7

La fonction d'autocorrélation d'une série temporelle est donnée par

h	1	2	3	4	5	6
$\widehat{ ho}_h$	-0.36457	xxxxx	xxxxx	xxxxx	xxxxx	-0.13273
$\widehat{\sigma}_{\widehat{\rho}_h}$	0.089443	0.100631	0.114326	0.116154	0.116156	0.116514
h	7	8	9	10	11	12
$\widehat{ ho}_h$	0.12924	-0.16093	0.22162	-0.22858	0.15280	-0.16012
$\widehat{\sigma}_{\widehat{\rho}_h}$	0.117717	0.118847	0.120578	0.123794	0.127125	0.128586

- 1) Déterminez un intervalle de confiance à 95% pour $\rho_h, h=2,3,4,5.$
- 2) Il s'agit d'un processus MA(2). Quelles sont les autocorrélations manquantes qui devraient se situer hors de l'intervalle de confiance? Justifiez votre réponse.

Exercice 8

Quatre représentations ARMA(p,q) possibles ont été sélectionnées pour représenter les rendements logarithmiques de la production industrielle:

d	p = 1, q = 0 0.011	p = 2, q = 0	p = 1, q = 1 0.012	p = 1, q = 2 0.012
ϕ_0	(4.14)	(3.31)	(2.63)	(2.62)
ϕ_1	$0.618 \ (8.54)$	$0.456 \atop (5.11)$	0.887 (14.9)	0.887 (13.2)
ϕ_2		$\underset{(2.89)}{0.258}$		
$ heta_1$			-0.484	-0.483
			(-4.22)	(-4.19)
$ heta_2$				-0.002
~ ~ -				(-0.019)
SCR	0.0156	0.0145	0.0141	0.0141
AIC	-503.3	-506.1	-513.1	-511.1
SBC = BIC	-497.7	-497.7	-504.7	-499.9
Q(12)	$\underset{(0.008)}{23.6}$	$\underset{(0.302)}{11.7}$	$\underset{(0.301)}{11.7}$	$\underset{(0.301)}{11.7}$
Q(24)	$28.6 \atop (0.157)$	15.6 (0.833)	15.4 (0.842)	15.3 (0.841)
Q(30)	40.1 (0.082)	$22.8 \ (0.742)$	$22.7 \ (0.749)$	$22.6 \ (0.749)$

- (.) est la t-stat pour la nullité des coefficients.
- Q(.) est la statistique de Box-Ljung pour l'analyse des autocorrélations dans la série des résidus.
- (.) est la p-value correspondant à la valeur calculée de la statistique de Box-Ljung.

Quel modèle choisiriez-vous? Ecrire le modèle.

Exercice 9 Soit
$$X_t = 1.1X_{t-1} - 0.3X_{t-2} + \varepsilon_t - 0.2\varepsilon_{t-1} - 0.15\varepsilon_{t-2}$$

- 1) Le processus est-il stationnaire? Inversible? Justifiez.
- 2) Calculer les coefficients d'autocorrélation ρ_1 et ρ_2 et le coefficient d'autocorrélation partielle φ_{22} .
 - 3) Calculer les prévisions $X_t(l)$, l = 1, 2, 3, 4.