### Introduction to Diffusion Models

Woncheol Shin

KAIST

2022.04.18

#### What are Diffusion Models



Figure: Overview of different types of generative models. (Source: [1])

#### Forward Diffusion Proces

We define a Markov chain of diffusion steps to slowly add small amount of Gaussian noise to a sample  $\mathbf{x}_0$  in T steps, producing a sequence of noisy samples  $\mathbf{x}_1, \dots, \mathbf{x}_T$ .

#### <u>Definition</u>: Forward Diffusion Process

$$q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) = \mathcal{N}\left(\mathbf{x}_{t}; \sqrt{1 - \beta_{t}} \mathbf{x}_{t-1}, \beta_{t} \mathbf{I}\right) \quad q\left(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}\right) = \prod_{t=1}^{T} q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)$$

where  $\mathbf{x}_0$  is a data point sampled from a real data distribution  $q(\mathbf{x}_0)$  and  $\{\beta_t \in (0,1)\}_{t=1}^T$  is a variance schedule.

Usually, we can afford a larger update step when the sample gets noisier, so  $\beta_1 < \beta_2 < \cdots < \beta_T$ .

Ho et al. (2020) set the forward process variances to constants increasing linearly from  $\beta_1 = 10^{-4}$  to  $\beta_T = 0.02$ .

### Forward Diffusion Process

### Property 1

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

where  $\alpha_t = 1 - \beta_t$  and  $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$ .

Proof)

$$\begin{aligned} \mathbf{x}_t &= \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \mathbf{z}_{t-1}; \text{ where } \mathbf{z}_{t-1}, \mathbf{z}_{t-2}, \dots \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ &= \sqrt{\alpha_t \alpha_{t-1}} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_t \alpha_{t-1}} \mathbf{z}_{t-2} \\ &\text{ where } \mathbf{\overline{z}}_{t-2} \text{ merges two Gaussians} \\ &= \dots \\ &= \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_t; \text{ where } \boldsymbol{\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ q\left(\mathbf{x}_t \mid \mathbf{x}_0\right) &= \mathcal{N}\left(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I}\right) \quad \Box \end{aligned}$$

Eventually when  $T \to \infty$ ,  $\mathbf{x}_T$  is equivalent to an isotropic Gaussian distribution.

Idea: "If we can reverse the above process and sample from  $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$ , we will be able to recreate the true sample from a Gaussian noise input,  $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ."

However, we cannot easily estimate  $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$  because it needs to use the entire dataset. Therefore, we need to learn a model  $p_{\theta}$  to approximate these conditional probabilities!

#### Definition: Reverse Diffusion Process

Reverse Diffusion Process is defined as a Markov chain starting at  $p_{\theta}(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$ :

$$\begin{aligned} p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right) &= \mathcal{N}\left(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}\left(\mathbf{x}_{t}, t\right), \boldsymbol{\Sigma}_{\theta}\left(\mathbf{x}_{t}, t\right)\right) \\ p_{\theta}\left(\mathbf{x}_{0:T}\right) &= p_{\theta}\left(\mathbf{x}_{T}\right) \prod_{t=1}^{T} p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right) \end{aligned}$$

\* Note that if  $\beta_t$  is small enough,  $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$  is also Gaussian. Therefore, we define  $p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$  as a Gaussian distribution.



Figure: Forward and reverse diffusion process. (Source: [1] which is based on [2])

The reverse conditional probability  $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$  is tractable when conditioned on  $x_0$ .

### Property 2

$$q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) = \mathcal{N}\left(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}\right), \tilde{\beta}_{t} \mathbf{I}\right)$$

where  $\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\alpha_t} \left(1 - \bar{\alpha}_{t-1}\right)}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}\beta_t}}{1 - \bar{\alpha}_t} \mathbf{x}_0 = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t\right)$  and  $\tilde{\beta}_t = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t$ .

Proof) \*Gaussian pdf: 
$$f(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \det(2\pi\boldsymbol{\Sigma})^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

$$q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) = q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}, \mathbf{x}_{0}\right) \frac{q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{0}\right)}{q\left(\mathbf{x}_{t} \mid \mathbf{x}_{0}\right)} = q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \frac{q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{0}\right)}{q\left(\mathbf{x}_{t} \mid \mathbf{x}_{0}\right)} :: \text{Markov}$$

$$\left(1 \left(\left(\mathbf{x}_{t} - \sqrt{\alpha_{t}}\mathbf{x}_{t-1}\right)^{2} + \left(\mathbf{x}_{t-1} - \sqrt{\alpha_{t-1}}\mathbf{x}_{0}\right)^{2} - \left(\mathbf{x}_{t} - \sqrt{\alpha_{t}}\mathbf{x}_{0}\right)^{2}\right)\right)$$

$$\propto \exp\left(-\frac{1}{2}\left(\frac{\left(\mathbf{x}_{t} - \sqrt{\alpha_{t}}\mathbf{x}_{t-1}\right)^{2}}{\beta_{t}} + \frac{\left(\mathbf{x}_{t-1} - \sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_{0}\right)^{2}}{1 - \bar{\alpha}_{t-1}} - \frac{\left(\mathbf{x}_{t} - \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}\right)^{2}}{1 - \bar{\alpha}_{t}}\right)\right)$$

$$= \exp\left(-\frac{1}{2}\left(\left(\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1 - \bar{\alpha}_{t-1}}\right)\mathbf{x}_{t-1}^{2} - \left(\frac{2\sqrt{\alpha_{t}}}{\beta_{t}}\mathbf{x}_{t} + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}\mathbf{x}_{0}\right)\mathbf{x}_{t-1} + C\left(\mathbf{x}_{t}, \mathbf{x}_{0}\right)\right)\right)$$

where  $C(\mathbf{x}_t, \mathbf{x}_0)$  is a function not involving  $\mathbf{x}_{t-1}$ . (Continued on next slide)



$$\begin{split} \tilde{\beta}_t &= 1 / \left( \frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}} \right) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t \\ \tilde{\mu}_t \left( \mathbf{x}_t, \mathbf{x}_0 \right) &= \left( \frac{\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} \mathbf{x}_0 \right) / \left( \frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}} \right) \\ &= \frac{\sqrt{\alpha_t} \left( 1 - \bar{\alpha}_{t-1} \right)}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 \\ &= \frac{\sqrt{\alpha_t} \left( 1 - \bar{\alpha}_{t-1} \right)}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} \frac{1}{\sqrt{\bar{\alpha}_t}} \left( \mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_t \right) \\ & \qquad \qquad \because \mathbf{x}_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} \left( \mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_t \right) \text{ from Prop.1} \\ &= \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t \right) \quad \Box \end{split}$$

Goal: We want to minimize the negative log-likelihood.

$$\begin{split} & \mathbb{E}_{\mathbf{x}_{0} \sim q(\mathbf{x}_{0})} \left[ -\log p_{\theta}\left(\mathbf{x}_{0}\right) \right] \\ & \leq \mathbb{E}_{\mathbf{x}_{0} \sim q(\mathbf{x}_{0})} \left[ -\log p_{\theta}\left(\mathbf{x}_{0}\right) + D_{\mathrm{KL}}\left(q\left(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}\right) \| p_{\theta}\left(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}\right) \right) \right] \\ & = \mathbb{E}_{\mathbf{x}_{0} \sim q(\mathbf{x}_{0})} \left[ -\log p_{\theta}\left(\mathbf{x}_{0}\right) + \mathbb{E}_{\mathbf{x}_{1:T} \sim q(\mathbf{x}_{1:T} \mid \mathbf{x}_{0})} \left[ \log \frac{q\left(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}\right)}{p_{\theta}\left(\mathbf{x}_{0:T}\right) / p_{\theta}\left(\mathbf{x}_{0}\right)} \right] \right] \\ & = \mathbb{E}_{\mathbf{x}_{0} \sim q(\mathbf{x}_{0})} \left[ -\log p_{\theta}\left(\mathbf{x}_{0}\right) + \mathbb{E}_{\mathbf{x}_{1:T} \sim q(\mathbf{x}_{1:T} \mid \mathbf{x}_{0})} \left[ \log \frac{q\left(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}\right)}{p_{\theta}\left(\mathbf{x}_{0:T}\right)} + \log p_{\theta}\left(\mathbf{x}_{0}\right) \right] \right] \\ & = \mathbb{E}_{\mathbf{x}_{0:T} \sim q(\mathbf{x}_{0:T})} \left[ \log \frac{q\left(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}\right)}{p_{\theta}\left(\mathbf{x}_{0:T}\right)} \right] \coloneqq L_{\mathrm{VLB}} \end{split}$$

In other words, we can achieve the goal by minimizing  $L_{VLB}$ !

We can convert  $L_{VLB}$  to be analytically computable.

### Remark 1: $L_{VLB}$

$$L_{\text{VLB}} = \mathbb{E}_{q(\mathbf{x}_{0})} \underbrace{\left[D_{\text{KL}}\left(q\left(\mathbf{x}_{T} \mid \mathbf{x}_{0}\right) \| p_{\theta}\left(\mathbf{x}_{T}\right)\right)\right]}_{L_{T}} + \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_{0}, \mathbf{x}_{t})} \underbrace{\left[D_{\text{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)\right)\right]}_{L_{t-1}} + \mathbb{E}_{q(\mathbf{x}_{0}, \mathbf{x}_{1})} \underbrace{\left[-\log p_{\theta}\left(\mathbf{x}_{0} \mid \mathbf{x}_{1}\right)\right]}_{L_{0}}$$

Proof)

$$\begin{split} L_{\text{VLB}} &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[ \log \frac{q\left(\mathbf{x}_{1:T} \mid \mathbf{x}_{0}\right)}{p_{\theta}\left(\mathbf{x}_{0:T}\right)} \right] \\ &= \mathbb{E}_{q} \left[ \log \frac{\prod_{t=1}^{T} q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)}{p_{\theta}\left(\mathbf{x}_{T}\right) \prod_{t=1}^{T} p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)} \right] \\ &= \mathbb{E}_{q} \left[ -\log p_{\theta}\left(\mathbf{x}_{T}\right) + \sum_{t=1}^{T} \log \frac{q\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)}{p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)} \right] \end{split}$$

(Continued on next slide)

$$= \mathbb{E}_{q} \left[ -\log p_{\theta} \left( \mathbf{x}_{T} \right) + \sum_{t=2}^{T} \log \frac{q \left( \mathbf{x}_{t} \mid \mathbf{x}_{t-1} \right)}{p_{\theta} \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{t} \right)} + \log \frac{q \left( \mathbf{x}_{1} \mid \mathbf{x}_{0} \right)}{p_{\theta} \left( \mathbf{x}_{0} \mid \mathbf{x}_{1} \right)} \right]$$

$$= \mathbb{E}_{q} \left[ -\log p_{\theta} \left( \mathbf{x}_{T} \right) + \sum_{t=2}^{T} \log \left( \frac{q \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0} \right)}{p_{\theta} \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{0} \right)} \cdot \frac{q \left( \mathbf{x}_{t} \mid \mathbf{x}_{0} \right)}{q \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{0} \right)} \right) + \log \frac{q \left( \mathbf{x}_{1} \mid \mathbf{x}_{0} \right)}{p_{\theta} \left( \mathbf{x}_{0} \mid \mathbf{x}_{1} \right)} \right]$$

 $\because$  Markov property and Bayes' rule

$$\begin{split} &= \mathbb{E}_{q} \left[ -\log p_{\theta} \left( \mathbf{x}_{T} \right) + \sum_{t=2}^{T} \log \frac{q \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0} \right)}{p_{\theta} \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{t} \right)} + \sum_{t=2}^{T} \log \frac{q \left( \mathbf{x}_{t} \mid \mathbf{x}_{0} \right)}{q \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{0} \right)} + \log \frac{q \left( \mathbf{x}_{1} \mid \mathbf{x}_{0} \right)}{p_{\theta} \left( \mathbf{x}_{0} \mid \mathbf{x}_{1} \right)} \right] \\ &= \mathbb{E}_{q} \left[ -\log p_{\theta} \left( \mathbf{x}_{T} \right) + \sum_{t=2}^{T} \log \frac{q \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0} \right)}{p_{\theta} \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{t} \right)} + \log \frac{q \left( \mathbf{x}_{T} \mid \mathbf{x}_{0} \right)}{q \left( \mathbf{x}_{1} \mid \mathbf{x}_{0} \right)} + \log \frac{q \left( \mathbf{x}_{1} \mid \mathbf{x}_{0} \right)}{p_{\theta} \left( \mathbf{x}_{0} \mid \mathbf{x}_{1} \right)} \right] \\ &= \mathbb{E}_{q} \left[ \log \frac{q \left( \mathbf{x}_{T} \mid \mathbf{x}_{0} \right)}{p_{\theta} \left( \mathbf{x}_{T} \right)} + \sum_{t=2}^{T} \log \frac{q \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0} \right)}{p_{\theta} \left( \mathbf{x}_{t-1} \mid \mathbf{x}_{t} \right)} - \log p_{\theta} \left( \mathbf{x}_{0} \mid \mathbf{x}_{1} \right) \right] \\ &= \mathbb{E}_{q} \left[ \sum_{t=2}^{T} \left[ \sum_{t=2}^{T} \mathbb{E}_{q \left( \mathbf{x}_{0}, \mathbf{x}_{t} \right)} \left[ \sum_{t=2}^{T} \mathbb{E}_{q \left( \mathbf{x}_$$

## Definition: $L_T, L_{t-1}, \overline{\text{and } L_0}$

- $(1) L_T = D_{\mathrm{KL}} \left( q \left( \mathbf{x}_T \mid \mathbf{x}_0 \right) \| p_{\theta} \left( \mathbf{x}_T \right) \right)$
- (2)  $L_{t-1} = D_{KL} (q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) || p_{\theta} (\mathbf{x}_{t-1} \mid \mathbf{x}_t)) \text{ for } 2 \le t \le T$
- $(3) L_0 = -\log p_\theta \left( \mathbf{x}_0 \mid \mathbf{x}_1 \right)$

- 1)  $L_T$
- From Prop.1,  $q(\mathbf{x}_T \mid \mathbf{x}_0) \to \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$  when  $T \to \infty$ .
  - We assume that  $p_{\theta}(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$ .
  - $\bullet$   $L_T$  is constant and can be ignored during training.
- 2)  $L_{t-1}$ 
  - This term measures the difference between  $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0)$  and  $p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$ .
  - How do we optimize this term? (Next slide)
- 3)  $L_0$ 
  - This term reconstruct the original image from the slightly noised image.
  - This term is optimized by MSE loss:  $\|\mathbf{x}_0 \boldsymbol{\mu}_{\theta}(\mathbf{x}_1, 1)\|^2$

### Learning Objective: $L_{t-1}$

$$L_{t-1} = D_{\text{KL}}\left(q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) \| p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right)\right)$$

$$q\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0}\right) = \mathcal{N}\left(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_{t}\left(\mathbf{x}_{t}, \mathbf{x}_{0}\right), \tilde{\beta}_{t}\mathbf{I}\right) = \mathcal{N}\left(\mathbf{x}_{t-1}; \frac{1}{\sqrt{\alpha_{t}}}\left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1-\bar{\alpha}_{t}}}\boldsymbol{\epsilon}_{t}\right), \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_{t}}\beta_{t}\mathbf{I}\right)$$

$$p_{\theta}\left(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\right) = \mathcal{N}\left(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}\left(\mathbf{x}_{t}, t\right), \boldsymbol{\Sigma}_{\theta}\left(\mathbf{x}_{t}, t\right)\right)$$
Let us set  $\boldsymbol{\mu}_{\theta}\left(\mathbf{x}_{t}, t\right) = \frac{1}{\sqrt{\alpha_{t}}}\left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1-\bar{\alpha}_{t}}}\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t)\right)$  and  $\boldsymbol{\Sigma}_{\theta}\left(\mathbf{x}_{t}, t\right) = \sigma_{t}^{2}\mathbf{I}$ .

We have two options for  $\sigma_t^2$ :  $\sigma_t^2 = \beta_t$  and  $\sigma_t^2 = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$ .

According to Ho et al. (2020), both had similar results experimentally.

$$*D_{KL}(p||q) = \frac{1}{2} \left[ \log \frac{|\Sigma_q|}{|\Sigma_p|} - k + (\mu_p - \mu_q)^T \Sigma_q^{-1} (\mu_p - \mu_q) + \operatorname{tr} \left\{ \Sigma_q^{-1} \Sigma_p \right\} \right]$$

$$L_{t-1} \propto \frac{1}{2\sigma_t^2} \|\tilde{\mu}_t (\mathbf{x}_t, \mathbf{x}_0) - \mu_\theta (\mathbf{x}_t, t)\|^2$$

$$= \frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right) - \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_\theta (\mathbf{x}_t, t) \right) \right\|^2$$

$$= \frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_\theta (\mathbf{x}_t, t)\|^2$$

$$= \frac{\beta_t^2}{2\sigma^2 \alpha_t (1 - \bar{\alpha}_t)} \|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_\theta (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_t, t) \|^2$$

Empirically, Ho et al. (2020) found that training the diffusion model works better with a simplified objective that ignores the weighting term:

$$L_{t-1}^{\text{simple}} = \left\| \boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_\theta \left( \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_t, t \right) \right\|^2$$

# Training and Sampling Algorithm

| Algorithm 1 Training                                                                                                                                                                                                                                                                                                                   | Algorithm 2 Sampling                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_\theta \left\  \epsilon - \epsilon_\theta(\sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon, t) \right\ ^2$ 6: until converged | 1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$<br>2: for $t = T, \dots, 1$ do<br>3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$ , else $\mathbf{z} = 0$<br>4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \hat{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$<br>5: end for<br>6: return $\mathbf{x}_0$ |

Figure: Training and sampling algorithm. (Source: [2])

# Generated Samples



Figure: Unconditional CIFAR10 progressive generation. (Source:  $\left[ 2\right] )$ 

#### References

- [1] Weng, Lilian. (Jul 2021). What are diffusion models? Lil'Log. https://lilianweng.github.io/posts/2021-07-11-diffusion-models/.
- [2] Jonathan Ho et al. "Denoising diffusion probabilistic models." arxiv Preprint arxiv:2006.11239 (2020).