Section 1.3 – Evaluating Trigonometry Functions

$$\sin A = \frac{Opposite \ A}{Hypotenuse} = \frac{opp}{hyp} = \frac{a}{c} = \cos B$$

$$\cos A = \frac{Adjacent A}{Hypotenuse} = \frac{adj}{hyp} = \frac{b}{c} = \sin B$$

$$\tan A = \frac{opp \ A}{adj \ A} = \frac{a}{b} = \cot B$$

$$\cot A = \frac{adj A}{opp A} = \frac{b}{a} = \tan B$$

$$\sec A = \frac{hyp}{adi A} = \frac{c}{b} = \csc B$$

$$\csc A = \frac{hyp}{opp A} = \frac{c}{a} = \sec B$$

Example

Triangle ABC is a right triangle with $C = 90^{\circ}$. If a = 6 and c = 10, find the six trigonometric functions of A.

$$b = \sqrt{c^2 - a^2}$$

$$= \sqrt{10^2 - 6^2}$$

$$= 8$$

$$\sin A = \frac{a}{c} = \frac{6}{10} = \frac{3}{5}$$

$$\cos A = \frac{b}{c} = \frac{8}{10} = \frac{4}{5}$$

$$\tan A = \frac{a}{b} = \frac{6}{8} = \frac{3}{4}$$

$$\cot A = \frac{b}{a} = \frac{8}{6} = \frac{4}{3}$$

$$\sec A = \frac{c}{b} = \frac{10}{8} = \frac{5}{4}$$

$$\csc A = \frac{c}{a} = \frac{10}{6} = \frac{5}{3}$$

$$if A + B = 90^{\circ} \Rightarrow \begin{cases} \sin A = \cos B \\ \sec A = \csc B \\ \tan A = \cot B \end{cases}$$

Cofunction Theorem

A trigonometric function of an angle is always equal to the cofunction of the complement of the angle.

Example

Fill in the blanks

$$a. \sin(----) = \cos 30^\circ$$

Solution

$$\sin 60^{\circ} = \cos 30^{\circ}$$

$$b. \tan y = \cot(----)$$

Solution

$$\tan y = \cot\left(90^\circ - y\right)$$

Example

Write each function in terms of its cofunction

a) $\cos 52^{\circ}$

Solution

$$\cos 52^\circ = \sin \left(90^\circ - 52^\circ\right) = \sin 38^\circ$$

b) tan 71°

Solution

$$\tan 71^{\circ} = \cot (90^{\circ} - 71^{\circ}) = \cot 19^{\circ}$$

c) sec 24°

Solution

$$\sec 24^{\circ} = \csc (90^{\circ} - 24^{\circ}) = \csc 66^{\circ}$$

The 30° - 60° - 90° Triangle

$$t^{2} + h^{2} = (2t)^{2}$$

$$t^{2} + h^{2} = 4t^{2}$$

$$h^{2} = 4t^{2} - t^{2}$$

$$h^{2} = 3t^{2}$$

$$h = t\sqrt{3}$$

$$\Rightarrow \sin 60^\circ = \frac{\sqrt{3}}{2}$$

The 45° - 45° - 90° *Triangle*

$$hypotenuse^2 = t^2 + t^2$$

$$hypotenuse = \sqrt{2t^2}$$

$$hypotenuse = t\sqrt{2}$$

$$\Rightarrow \cos 45^\circ = \frac{1}{\sqrt{2}}$$

θ	$\sin \theta$	$\cos \theta$	an heta
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
45°	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

Example

Show that the following are true

a.
$$\cos^2 30^\circ + \sin^2 30^\circ = 1$$

$$\cos^2 30^\circ + \sin^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1$$

b.
$$\cos^2 45^\circ + \sin^2 45^\circ = 1$$

$$\cos^2 45^\circ + \sin^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$$

Example

Let $x = 30^{\circ}$ and $y = 45^{\circ}$ in each of the expressions that follow, and then simplify each expression as much as possible

a.
$$2\sin x$$

$$2\sin 30^{\circ} = 2\left(\frac{1}{2}\right) = 1$$

$$b. \sin 2y$$

$$\sin 2 \times 45^{\circ} = \sin 90^{\circ} = 1$$

c.
$$4\sin(3x-90^{\circ})$$

$$4\sin(3(30^\circ)-90^\circ) = 4\sin(0^\circ) = 0$$

Reference Angle

Definition

The reference angle or related angle for any angle θ in standard position ifs the positive acute angle between the terminal side of θ and the x-axis, and it is denoted $\hat{\theta}$

$$f \ \theta \in QI \quad \text{then } \hat{\theta} = \theta \quad \leftrightarrow \quad \theta = \hat{\theta}$$

$$f \ \theta \in QII \quad \text{then } \hat{\theta} = 180^{\circ} - \theta \quad \leftrightarrow \quad \theta = 180^{\circ} - \hat{\theta}$$

$$f \ \theta \in QIII \quad \text{then } \hat{\theta} = \theta - 180^{\circ} \quad \leftrightarrow \quad \theta = \hat{\theta} + 180^{\circ}$$

$$f \ \theta \in QIV \quad \text{then } \hat{\theta} = 360^{\circ} - \theta \quad \leftrightarrow \quad \theta = 360^{\circ} - \hat{\theta}$$

Reference Angle Theorem

A trigonometric function of an angle and its reference angle are the same, except difference in sign.

$$\sin 150^\circ = \sin 30^\circ = \frac{1}{2}$$

$$\sin 210^\circ = -\sin 30^\circ = -\frac{1}{2}$$

Example

Find the exact value of sin 240°

Solution

$$\hat{\theta} = 240^{\circ} - 180^{\circ} = 60^{\circ} \qquad \rightarrow 240^{\circ} \in QIII$$

$$\sin 240^{\circ} = -\sin 60^{\circ}$$

$$= -\frac{\sqrt{3}}{2}$$

Example

Find the exact value of tan 315°

Solution

$$\hat{\theta} = 360^{\circ} - 315^{\circ} = 45^{\circ} \qquad \rightarrow 315^{\circ} \in QIV$$

$$\tan 315^{\circ} = -\tan 45^{\circ}$$

$$=-1$$

The trigonometry function of an angle and any coterminal to it are always equals.

$$\sin(\theta + 360^{\circ}k) = \sin\theta$$

$$\cos(\theta + 360^{\circ}k) = \cos\theta$$

Example

Find the exact value of cos 495°

Solution

$$495^{\circ} - 360^{\circ} = 135^{\circ}$$

$$\rightarrow 135^{\circ} \in QII$$

$$\hat{\theta} = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

$$\cos 495^{\circ} = -\cos 45^{\circ} = -\frac{1}{\sqrt{2}}$$

Approximation - Simply using calculator

$$\sin 250^{\circ} \approx -0.9397$$

$$\cos 250^{\circ} \approx -0.3420$$

$$\tan 250^{\circ} \approx 2.7475$$

$$\csc 250^{\circ} = \frac{1}{\sin 250^{\circ}} \approx -1.0642$$

To find the angle by using the inverse trigonometry functions, always enter a **positive** value.

Example

Find θ if $\sin \theta = -0.5592$ and θ terminates in QIII with $0^{\circ} \le \theta < 360^{\circ}$.

Solution

$$\hat{\theta} = \sin^{-1} 0.5592 \approx 34^{\circ}$$

$$\Rightarrow \underline{\theta} = 180^{\circ} + 34^{\circ} = 214^{\circ}$$

Example

Find θ to the nearest degree if $\cot \theta = -1.6003$ and θ terminates in QII with $0^{\circ} \le \theta < 360^{\circ}$.

Solution

$$\cot \theta = -1.6003 = \frac{1}{\tan \theta}$$

$$\tan \theta = \frac{1}{-1.6003}$$

$$\hat{\theta} = \tan^{-1} \frac{1}{1.6003}$$

$$= 32^{\circ}$$

$$\theta \in QII$$

$$\Rightarrow \theta = 180^{\circ} - 32^{\circ} = 148^{\circ}$$

$$= 148^{\circ}$$

Angle θ in <i>degree</i>	$sin \theta$	$cos\theta$	$tan \theta$	cot θ	sec θ	$csc\theta$
0°	0	1	0	∞(undefined)	1	∞(undefined)
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
90°	1	0	±∞	0	$\pm \infty$	1
120°	$\frac{\sqrt{3}}{2}$	- 1 /2	-√3	$-\frac{\sqrt{3}}{3}$	-2	$\frac{2\sqrt{3}}{3}$
135°	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	-1	-√2	$\sqrt{2}$
150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-√3	$-\frac{2\sqrt{3}}{3}$	2
180°	0	-1	0	±∞	-1	$\pm\infty$

Exercise Section 1.3 – Evaluating Trigonometry Functions

- 1. Simplify by using the table. $5\sin^2 30^\circ$
- 2. Simplify by using the table $\sin^2 60^\circ + \cos^2 60^\circ$
- 3. Simplify by using the table $(\tan 45^\circ + \tan 60^\circ)^2$
- **4.** Find the exact value of $csc 300^{\circ}$
- 5. Find θ if $\sin \theta = -\frac{1}{2}$ and θ terminates in QIII with $0^{\circ} \le \theta \le 360^{\circ}$.
- **6.** Find θ to the nearest degree if $\sec \theta = 3.8637$ and θ terminates in QIV with $0^{\circ} \le \theta < 360^{\circ}$.
- 7. Find the exact value of $\cos 225^{\circ}$
- **8.** Find the exact value of $\tan 315^{\circ}$
- 9. Find the exact value of $\cos 420^{\circ}$
- 10. Find the exact value of $\cot 480^{\circ}$
- 11. Use the calculator to find the value of $\csc 166.7^{\circ}$
- 12. Use the calculator to find the value of sec 590.9°
- 13. Use the calculator to find the value of $\tan 195^{\circ} 10'$
- **14.** Use the calculator to find θ to the nearest degree if $\sin \theta = -0.3090$ with $\theta \in \text{QIV}$ with $0^{\circ} \le \theta < 360^{\circ}$
- **15.** Use the calculator to find θ to the nearest degree if $\cos \theta = -0.7660$ with $\theta \in QIII$ with $0^{\circ} \le \theta < 360^{\circ}$
- **16.** Use the calculator to find θ to the nearest degree if $\sec \theta = -3.4159$ with $\theta \in \text{QII}$ with $0^{\circ} \le \theta < 360^{\circ}$
- 17. Find θ to the nearest tenth of a degree if $\tan \theta = -0.8541$ and θ terminates in QIV with $0^{\circ} \le \theta < 360^{\circ}$
- **18.** Use the calculator to find θ to the nearest degree if $\sin \theta = 0.49368329$ with $\theta \in QII$ with $0^{\circ} \le \theta < 360^{\circ}$