본 강의에서 수업자료로 이용되는 저작물은

저작권법 제25조 수업목적 저작물 이용 보상금제도에 의거,

한국복제전송저작권협회와 약정을 체결하고 적법하게 이용하고 있습니다.

약정범위를 초과하는 사용은 저작권법에 저촉될 수 있으므로

수업자료의 재 복제, 대중 공개·공유 및 수업 목적 외의 사용을 금지합니다.

2021. . .

부천대학교·한국복제전송저작권협회

과목 소개

• 프로젝트 진행(기획, 구현 등)에 필요한 다양한 신기술들의 기본 개념과 특징에 대한 학습

- 평가
 - 중간(25), 기말(25), 과제(30), 출석(20)을 종합하여 평가함
- 주교재
 - 윤경배 등, "4차 산업혁명의 이해 [2판]", 일진사, 2021
- 부교재 (신기술동향 부분)
 - 한기준, 김기윤 등, "2020 시나공 정보처리산업기사 실기", 길벗, 2020

교육 과정 계획(1/2)

• 교육 과정 계획

- 01 4차 산업혁명의 개요
- 02 빅데이터 개요
- 03 인공지능 개요
- 04 사물인터넷 개요
- 05 자율주행차 개요
- 06 가상·증강·혼합·확장현실 개요
- 07 드론 개요
- 08 중간고사
- 09 3D프린팅과 헬스케어 개요
- 10 블록체인 개요
- 11 클라우드 컴퓨팅 개요
- 12 신재생에너지와 산업 변화 (또는 산업체직무전문가 특강)
- 13 플랫폼 비즈니스 개요 (또는 산업체직무전문가 특강)
- 14 스마트 생태계 개요
- 15 기말고사

정보처리산업기사 실기 신기술 토픽들

교육 과정 계획(2/2)

4차 산업혁명 10개 주요 기술 개념 이해

(빅데이터, 인공지능, 사물인터넷, 자율주행차, VR, 드론, 3D프린팅, 헬스케어, 블록체인, 클라우드 컴퓨팅)

신기술 지식 축적 -> 개발 능력 향상 실기 시험 대비 -> 자격증 취득

정보처리산업기사 실기 신기술 토픽 개념 이해 (데이터 통신, 인터넷, 모바일 컴퓨팅, 기타)

학습 목표

• 학습 목표

- 4차 산업혁명의 개념 익히기
- 4차 산업혁명 기술 트렌드 살펴보기
- 신기술 용어 익히기

• 목차

- 01 4차 산업혁명의 이해
- 02 4차 산업혁명의 위기와 기회
- 03 4차 산업혁명을 이끄는 기술 트렌드
- 04 신기술 용어

- 4차 산업혁명
 - 혁명
 - 이전 관습이나 제도의 구조를 근본적으로 변화 시킴을 의미
 - 혁명은 수년에 걸쳐 진행됨
 - 산업혁명도 기존의 경제체제와 사회구조를 근본적으로 변화시킴
 - 산업혁명의 물결
 - 4차 산업혁명을 전세계가 일시에 동일한 수준으로 진행하고 있지 않음
 - 2차 산업혁명도 경험하지 못한 사람이 세계 인구의 17%
 - 7000년 전 수렵/채집 생활에서 곡류 재배와 가축 사육의 농경생활로 전환
 - 농업혁명으로 농업기술 발전하여 식량 생산 증가-> 인구 증가-> 도시 증가
 - 18세기 중반 영국에서 산업혁명 발생(인간의 노동력을 기계로 대체)하여 농업중 심사회에서 공업중심사회로 진화함

- 산업혁명 단계별 변화
 - 1차 산업혁명
 - 1760-1840년경에 걸쳐 발생, <mark>증기기관</mark> 기반으로 기계화 -> 산업화 전환
 - 2차 산업혁명
 - 1870-1914년경에 걸쳐 발생, 전기 기반으로 생산라인 자동화 -> 대량생산 가속
 - 3차 산업혁명
 - 1960년대 시작, 컴퓨터와 인터넷 기반으로 정보화 -> 정보화 혁명
 - 4차 산업혁명
 - 2000년대 나타남, 지능과 정보 융합된 새로운 방식의 디지털 혁명

1차 산업혁명

- 증기기관
- 기계화

2차 산업혁명

- 전기
- 대량생산

3차 산업혁명

- 인터넷
- 지식정보

4차 산업혁명

• 현재 진행중

• 산업혁명 단계별 변화[3]

[표 2] 각 산업혁명의 단계별 변화

-	구분	1차 산업혁명	2 차 산업혁명	3 차 산업혁명	4 차 산업혁명
시기		18세기 후반	19~20 세기 초	20 세기 후반	2000 년대 이후
연결성		국가 내부 연결성 강화	기업-국기간 연결성 강화	사람 • 환경 • 기계의 연결성 강화	자동화, 연결성의 극대화
혁신동인		증기기관 (Steam Power)	전기에너지 (Electric Power)	컴퓨터, 인터넷 (Electronics & IT)	loT, 빅데이터, Al 기반 초연결 (Hyper-Connection, CPS ^{주)})
		동력원의 변화(유형자산 기반)		정보처리 방식의 변화(무형자산 기반)	
	원인	기계화	자동화	정보화(디지털화)	융합화, 지능화
특징	결과	산업화 대량생산 (Industrialisation) (Mass Production)	대량생산	자동화 (Automation)	자율화 (Autonomisation)
			기계, SW 가 데이터를 생산	데이터가 기계, SW 를 제어	
현상		영국 섬유공업의 거대 산업화	컨베이어 벨트 활용 기반 대량생산을 달성한 미국으로 패권 이동	인터넷 기반의 디지털 혁명, 미국의 글로벌 IT기업 부상	사람-시물-공간의 초연결, 초지능화를 통한 산업구조 개편

주) 사이버물리시스템(Cyber-Physical Systems: CPS): 건물, 도로, 전력망, 공장 등의 사물에 통신, 컴퓨팅 등 ICT 기술을 융합 하여 사이버 상에서 물리시스템을 이해하고 제어하는 기술을 의미

<자료> 김상훈 외 "4차 산업혁명, 산업자원부 발표 자료(2017.2)", KEIT(2017.5), WEF, ITP 수정 및 재구성

- 4차 산업혁명의 개념 독일 '인더스트리 4.0'
 - 사물인터넷을 기술 제조업에 적용하는 전략
 - 산업현장 센서와 기기들을 연결하고 지능을 부여 -> 제조업 생산성 향상
 - 기존 생산 체계와 정보통신기술을 결합 -> 지능형 공장(smart factory) 진화
 - -> 완전한 자동생산체계 구축 및 생산과정의 최적화

4차산업혁명 = 제조업 + 정보통신기술

자료: 독일 인공지능연구센터 DFKI, 한국BEMS협회

[그림 7] 독일 정부가 제시하는 인더스트리 4.0 진화표 [4]

• 4차 산업혁명의 개념 - 독일 '인더스트리 4.0'

[표 6] 인더스트리 4.0을 위해 요구되는 9개 기술과 요구사항 [4]

기술분야	기술 요구사항
빅데이터와 분석	- 스마트공장에서 만들어지는 데이터를 해석하여 다양한 의사결정에 활용
자율적인 로봇	- 지적 사고능력이 향상된 로봇이 지금의 단순 작업 외에도 다양한 역할을 수행
시뮬레이션	- 빅데이터, 클라우드 등을 활용하여 제조 프로세스에 대한 시뮬레이션 설계
수평·수직 통합형 시스템	- 기업 내외부의 모는 데이터를 수평수직적으로 연계 및 활용
ІоТ	- 탑재형 디바이스, 센서 등을 활용하여 모든 기기가 실시간 통신 및 응답을 제공
사이버 보안	- 통신 네트워크에 의해 움직이는 스마트공장이므로 사이버보안 문제 해결이 필수
클라우드	- 방대한 데이터를 처리하고 다수의 기기를 지원할 수 있는 클라우드
3D Printing	- 주문제작, 특수 제품 등의 소량생산에 활용 가능성이 높을 것으로 전망
가상현실	- 가상현실은 의사결정, 생산력 향상 그리고 교육 훈련 등의 추가 활용 역시 가능

자료: ZDNet, BCG

• 4차 산업혁명의 개념[3] - 초연결과 초지능화

[표 1] 4차 산업혁명의 개념

출처	정의
매일경제 용어사전	기업들이 제조업과 ICT 기술을 융합하여 작업 경쟁력을 제고하는 차세대 산업혁명을 가리키는 말로, '인더스트리 4.0'이라고 표현
다보스 포럼 (2015.3.)	ICT 기술 등에 따른 디지털 혁명에 기반을 두고 물리적 공간, 디지털 공간 및 생물학적 공간의 경계가 희미해지는 기술융합의 시대
니콜라스 데이비스 (다보스포럼, 2016.)	기계가 지능이 필요한 작업을 수행하고, 인간 신체에 컴퓨팅 기술이 직접 적용되고, 기업/정부 및 수요자 간의 소통을 새로운 차원으로 향상시키는 등 "기술이 사회에 자리잡는 방식"이 새로워지는 시대
제이콥 모건 (Forbes, 2016.12.)	실제 세계(real world)와 기술 세계(technological world)의 구분을 모호하게 만드는 컨셉
출처	정의
ETRI(2016.)	초연결·초지능·초실감의 ICT 기술과 다양한 과학기술의 융합에 기반한 차세대 산업혁명으로, 인류의 사회·경제·문화에 걸쳐 새로운 대분기를 초래할 변혁
KIET (2017.5.)	20 세기 후반 이후 정보통신기술을 기반으로 한 인터넷 확산과 정보처리 능력의 획기적 발전을 기초로 하며, IoT, 클라우드, 빅데이터 및 인공지능 등의 디지털화 를 기반으로 물리적·생물학적 영역을 포함한 모든 영역의 경계가 없어지고 연결 성이 극대화되는 한편, 융합이 가속화되어 기존과 완전히 다른 체계의 생산-소비 패러다임의 디지털 경제를 일컫는 것

〈자료〉 각 기관

- 4차 산업혁명의 개념
 - 대통령 직속 4차 산업혁명 위원회
 - 4차 산업혁명 정의 : '인공지능, 빅데이터 등 디지털 기술로 촉발되는 초연결 기반의 지능화 혁명'
 - 모든 기술이 융합하여 상호 교류
 - 세계경제포럼 회장 '클라우스 슈밥': 4차 산업혁명 실현 우려사항 2가지
 - 4차 산업혁명에 대한 리더십과 이해력 수준이 낮음 -> 제도적 체계 부족
 - 긍정적 담론 필요 -> 기회와 도전 기틀 형성

- 새로운 세상의 도래
 - 혁신은 속도뿐만 아니라 규모도 주목할 필요가 있음-> 생산의 디지털화는
 자동화를 의미 ->더 이상 '수확체감의 법칙'이 유효하지 않다는 뜻
 - 수확체감의 법칙 : 자본과 인력 등 생산 요소를 계속 투입해 나갈 때 어느 시점 이 지나면 새롭게 투입되는 요소로 인해 수확의 증가량이 감소함
 - 근로자 1인당 생산성이 비약적으로 발전함
 - 1990년 디트로이트 3대 대기업의 시가총액 약 360억 달러, 매출 2,500억 달러, 근로자 수 약 120만명
 - 2014년 실리콘밸리 큰 기업 3곳의 시가총액 1조900억 달러, 매출 2,470억 달러, 근로자 수 약 13만7,000명
 - 디지털 제품의 경우 한계비용이 제로에 가까워지면서 적은 노동력과 비용으로 더 많은 수익의 창출이 가능하게 됨
 - 한계비용 : 생산물 한 단위를 추가로 생산할 때 필요한 총비용의 증가분
 - 디지털 경제와 정보재는 혁신기업 탄생을 촉진(페이스북 등)

- 새로운 세상의 도래
 - 인공지능 영향
 - : 자율주행차, 드론, 가상비서, 통번역 소프트웨어, 유전자 검사 소프트웨어, 이슈 예측 알고리즘 개발까지 가능함
 - 음성인식 인공지능 비서 서비스
 - : 애플의 시리(Siri), 구글의 어시스턴트(Assistant)
- * 앰비언트 컴퓨팅(ambient computing)
- 사용자는 컴퓨터 사용을 인식할 수 없음
- 컴퓨터가 사용자와 상호작용 없이도 스스로 실행하는 환경으로 사용자의 요구나 의도를 파악하여 스스로 실행하는 기술
- 사용자의 실질적인 조작이나 도움없이 백그라운드 에서 동작

(vs 유비쿼터스: 스마트폰과 같은 기기가 중심)

[이미지출처] Preston Elliott, Ambient Computing — The Next Boxing Ring for Big Tech, https://miro.medium.com/max/700/0*SkXRcXFklxwUueQe

4차 산업혁명의 위기와 기회

- 산업 혁명에 따른 변화
 - 강력한 혁신 기술 -> 기업의 생산성 비약적 향상
 - 소득 수준 증대 -> 삶의 질이 향상될 것
 - 새로운 혁신 기술
 - 모든 산업의 변화를 주도할 것 -> 효율성과 생산성 향상 -> 경제 성장 촉진
 - 사회 불균형 초래 가능 -> 기존 노동 시장 붕괴 가능 -> 로봇 대체, 고용 감소
 - 노동 시장 변화
 - 고기술과 저기술 직업 간 소득 양극화 가능성
 - 정보공유 플랫폼의 역동성 커짐 -> 사회적 이슈도 등장
 - SNS 역동성은 다양한 문화와 세대를 이해하고 공동체 의식 강화 계기
 - 개인이나 집단에 극단적인 철학이나 사상을 유포하거나 강요하는 역할도 있음

[함께 생각해 봅시다] "직업이 사라지는 것은 어쩔 수 없다 vs 기존 직업을 보호해야 한다"

4차 산업혁명의 위기와 기회

- 4차 산업혁명과 우리의 삶
 - 모바일 기기(스마트폰)
 : 연결성, 즉시성, 휴대성 관점에서 누군가와 연결될 수 있어야 심리적 안정 감을 느낌 -> '초연결, 초지능' 환경에 있음
 - 4차 산업혁명으로 증강인간으로 발전할 가능성
 - 증강인간 : 나노기술(NT), 바이오기술(BT), 정보기술(IT) 등 융합한 첨단 장치를 이용해 인간의 신체 및 인지 능력을 향상시키는 것을 의미
 - 혁신적 정보기술은 사생활 보호에도 심각한 문제를 일으킬 수 있음
 - 첨단 기술로 사생활 정보를 추적하고 공유 가능 (예, 위치정보 등)

[함께 생각해 봅시다]
"산업발전을 위해 위치정보산업 규제는 완화해야 한다
vs 사생활 보호를 위해 규제는 강화해야 한다"

- 4차 산업혁명의 미래 모습
 - 새로운 기술이 미치는 영향과 변화에 대해 모색할 필요가 있음
 - 4차 산업혁명의 목표는 궁극적으로 사람의 가치를 고양하는 것
 - 4차 산업혁명은 인간 본성의 핵심인 창의성과 공감을 보완하는 기능 수행
 - 4차 산업혁명의 혁신적 기술로 인간의 본성과 존엄이 로봇화되고 정신과 영혼이 박탈당할 것이라는 위험성도 제기
 - 4차 산업혁명의 혁신과 변화에 적극적으로 대처하는 노력이 필요함
 - 4차 산업혁명의 미래 모습에 대해서는 전문가들 사이에서도 의견이 분분함

4차 산업혁명

4차 산업혁명의 위기와 기회

• 4차 산업혁명의 미래 모습

□ 의료 분야

□ 제조 분야

□ 이동체 분야

□ 금융·물류 분야

□ 농수산업 분야

□ 스마트 시티 분야

4차산업혁명위원회 발표자료

[이미지출처] 문화저널21, 이세훈, [4차 산업혁명 ⑥] 2022년의 변화된 미래모습, http://www.mhj21.com/imgdata/mhj21_com/201902/2019020156031766.jpg18 http://www.mhj21.com/imgdata/mhj21_com/201902/2019020156266843.jpg

4차 산업혁명의 위기와 기회

• 4차 산업혁명의 미래 모습

□ 교통 분야

□ 복지 분야

□ 환경 분야

□ 안전 분야

□ 국방 분야

4차산업혁명위원회 발표자료

[이미지출처] 문화저널21, 이세훈, [4차 산업혁명 ⑥] 2022년의 변화된 미래모습, http://www.mhj21.com/imgdata/mhj21_com/201902/2019020157042831.jpg19 http://www.mhj21.com/imgdata/mhj21_com/201902/201902015726463.jpg

• 4차 산업혁명을 대표하는 기술

• 디지털 기술

- 빅데이터(Big Data)
 - 기존의 관리 및 분석 체계로는 감당할 수 없을 정도의 거대한 데이터 집합
 - 규모가 방대하고 생명주기가 짧으며 비정형 데이터를 포함하는 대규모 형태
 - 스마트 혁명으로 데이터 폭증-> 기존의 데이터 저장 관리 분석 기법의 한계
 - 데이터는 정보사회를 움직이는 핵심 연료 (참고) 빅데이터분석기사 시험 시행(국가기술자격) https://www.dataq.or.kr/
- 인공지능(Artificial Intelligence)
 - 인간의 지능적인 행동을 모방할 수 있도록 컴퓨터 프로그램으로 실현한 기술
 - 인간과 같이 사고하고 학습하고 판단하고 자기 개발을 수행
 - 과학기술의 다른 분야와 직간접적으로 관계를 맺고 있음 (정보기술의 분야에서 인공지능 기술을 도입하여 문제를 해결하려는 시도가 활발하게 진행중)

• 디지털 기술

- 사물인터넷(Internet of Things)
 - 사물인터넷 : 사물들이 서로 연결된 것, 세상에 존재하는 모든 물건에 통신 기능이 장착되어 객체들이 다양한 방식으로 정보를 교환하는 인프라를 뜻함
 - 1999년 케빈 애쉬톤(Kevin Ashton) 사물인터넷 용어 사용
 - 사물인터넷은 상호 연결된 기술과 플랫폼을 기반으로 사물과 사물, 사물과 인간 의 관계를 설명할 수 있음
 - 사물인터넷이 양적 질적으로 급속히 진화되어 가면 결국 loE(Internet of Everything) 시대가 될 것이라고 예측
 - 사물들로부터 정보 수집, 가공 및 분석해 예측하는 일이 중요해지고 정보보안 중 요성도 커짐

참고[5]

- 사물(실제 및 가상) + 사람 + 공간 -> 데이터 생성 -> 새로운 가치
- IoT(데이터 생성) -> Cloud(데이터 저장) -> Big data(데이터 분석) -> 서비스

- 디지털 기술
 - 블록체인(Blockchain)
 - 기술적 측면 : 분산 원장 방식의 데이터베이스
 - 비즈니스 측면: 개인간에 가치, 자산, 소유 등을 상호 이동시킬 수 있는 교환 네트워크
 - 특정인에 의한 시스템 통제 불가능, 모든 참여자에게 검증 받음
 - 주목하는 이유 : 데이터의 위변조 방지와 신뢰성을 보장하는 특성 -> 4차 산업혁명 시대 초연결 시대에서 데이터 신뢰성 등 필요

기존 거래 방식과 블록체인 기반 거래 방식 비교 '자료-금융보안원		
기존 전자금융거래	구분	블록체인 기반 전자금융거래
	구조	
 중앙 집중형 구조 개인과 '제3자 신뢰기관 (은행, 정부 등)' 간 거래 중앙 서버가 거래 공증 및 관리 	개념	 분산형 구조 거래 내역이 모든 네트워크 참여자에게 공유 및 보관 모든 거래 참여자가 거래 내역을 확인하는 공증 및 관리
장점:빠른 거래 속도 단점:해킹에 취약, 중앙시스템 보안 위험 및 관리 비용 높음	특징	장점:거래 정보의 투명성 적은시스템구축 및유지보수 비용 해킹 공격불가능 단점:상대적으로 느린 거래 속도 제어의 복잡성

• 물리학 기술

- 로봇공학
 - 로봇 : 인간과 유사한 모습과 기능을 가진 기계 또는 스스로 보유한 능력을 갖고 주어진 일을 수행하는 기계
 - 활용: 제조산업현장에서 활발하게 활용(생산성과 인건비 측면에서 상대적 우수)
 - 센서 기술 발달로 빠르고 정확한 주변 환경 이해와 클라우드 연계, 로봇들간 연결을 통해 다양한 서비스 가능
 - 로봇의 원가 하락으로 기업이 경비절감을 위해 해외로 업무를 내보내는 오프쇼 어링(off-shoring) 대신 다시 자국으로 되돌아오는 리쇼어링(reshoring)이 등장할 것으로 예상
- 무인운송수단
 - 무인운송수단 : 자율주행차, 트럭, 드론, 보트, 항공기 등
 - 드론 : 조종사 없이 원격조정, 인공지능에 의해 스스로 비행하는 무인비행장치
 - 활용 : 전력 등 유지보수, 전쟁지역 의료용 물품 전달, 농촌 병충해 방지 등

- 물리학 기술
 - 3D 프린팅
 - 3D 프린팅 : 원료를 층층이 쌓아 3차원 물체를 만드는 기술
 - 방식: 적층형(한 층씩 쌓아 올림), 절삭형(덩어리를 깎아감)
 - 적층형: 파아더나 플라스틱 실 사용, 레이어가 얇을수록 정밀한 형상, 채색 동시가능
 - 절삭형: 적층형에 비해 재료 소모 많고 컵처럼 안쪽이 파인 모양 제작 어려움
 - 활용 : 건설, 소형 의료 임플란트, 자동차, 항공우주 등
 - 쉽게 개별화나 맞춤 생산 가능하여 소량 다품종 생산 방식에 적합
 - 크기와 가격, 속도의 제약 사항 있음
 - 4D 프린팅: 3차원에 시간이라는 1개의 차원 추가
 - 환경 조건의 변화에 따른 변화의 모습을 특정 재료 안에 프로그램으로 입력
 - 외부에서 조작없이 열이나 진동 등 변화와 자극으로 스스로 변화 가능

- 물리학 기술
 - 자율주행차(self-driving car, autonomous vehicle)
 - 자율주행 : 교통수단이 운전자의 개입없이 스스로 판단해 이동하고 장애물을 피하여 운행할 수 있은 기능
 - 가상(VR)증강(AR)혼합(MR)확장(XR)현실
 - VR(Virtual Reality) : 마치 실제와 같이 느껴지도록 만들어주는 인간-컴퓨터 사이 인터페이스
 - HMD(Head Mounted Display)를 통해 상호 작용을 하는 시뮬레이션
 - AR(Augmented Reality) : 현실에 기반을 두고 정보를 추가 제공하는 기술,
 - AR = 현실 + VR
 - 현실 세계 실제 모습이 주가 된다는 점이 VR과 차이점
 - MR(Mixed Reality) : 증강현실과 가상현실을 통합하고 사용자와의 상호작용을 더욱 강화한 방식,
 - MR = 현실 + VR + AR
 - XR(Extended Reality) : 초실감형 기술 및 서비스,
 - XR = 현실 + VR + AR + MR + Others

• 생물학 기술

- 생명공학(Biotechnology)
 - 생명(bio)을 다루는 기술(technology), 유전자를 재조합 등으로 목적에 맞게 응용하는 기술 -> 인간의 삶에 필요한 물질과 서비스를 만드는 기술
 - 핵심 기술: 유전자조작기술, 세포융합기술, 세포배양기술, 바이오리액터기술 등
 - 유전자조작기술, 세포융합기술 : 생물의 유전 정보를 바꾸는 육종기술(가지고추 등)
 - 세포배양기술, 바이오리액터기술 : 대량으로 증식하거나 기능을 최대한 발휘시키는 프로세스기술(요구르트 등)
 - 유전자기술 : 생물의 유전자를 조작하여 실생활에 적용하는 기술
 - 유전 : 어버이가 가진 특징을 다음 자손에게 전달하는 현상
 - 줄기세포기술 : 여러 종류의 신체 조직으로 분화할 수 있는 세포를 이용하여 수 명을 연장하는 기술(난치병에 대한 줄기세포 치료 등)
 - 의학적 효용성이 강조되지만 사회 윤리적 문제도 야기함(인간의 존엄성 문제 등)

• 생물학 기술

- 나노기술(Nano Technology)
 - 나노기술: 10억분의 1미터인 나노미터 단위 수준의 정밀도를 요구하는 국미세 가공 과학기술, 물체를 원자 분자 수준에서 합성, 조립, 제어하며 그 성질을 규명 하는 기술
 - 활용 : 의학, 전자공학, 생체재료(생체재료 : 생체 조직 또는 기능 역할을 담당하

는 재료)학 등 다양한 산업분야

- 나노계측기술(Scanning Probe Technology) : 나노기술의 핵심기술로 나노미터 수준의 구조 및 성분을 계측하고 분석하는 기술
- 문제점
 - 나노입자의 독성
 - : 유해성 확인 필요
 - 나노입자도 세포막 투과 가능
 - : 폐 또는 심장 등 여러 기관에 영향 미칠 수 있음

신기술 용어

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기
 - 첨부 파일 참고 (신기술목록.pdf)

학습 정리

• 산업혁명 단계별 변화[3]

[표 2] 각 산업혁명의 단계별 변화

-	구분	1차 산업혁명	2 차 산업혁명	3 차 산업혁명	4 차 산업혁명
시기		18세기 후반	19~20 세기 초	20 세기 후반	2000 년대 이후
연결성		국가 내부 연결성 강화	기업-국기간 연결성 강화	사람 • 환경 • 기계의 연결성 강화	자동화, 연결성의 극대화
혁신동인		증기기관 (Steam Power)	전기에너지 (Electric Power)	컴퓨터, 인터넷 (Electronics & IT)	loT, 빅데이터, Al 기반 초연결 (Hyper-Connection, CPS ^{주)})
		동력원의 변화(유형자산 기반)		정보처리 방식의 변화(무형자산 기반)	
	원인	기계화	자동화	정보화(디지털화)	융합화, 지능화
특징	결과	산업화 대량생산 (Industrialisation) (Mass Production)	대량생산	자동화 (Automation)	자율화 (Autonomisation)
			기계, SW 가 데이터를 생산	데이터가 기계, SW 를 제어	
현상		영국 섬유공업의 거대 산업화	컨베이어 벨트 활용 기반 대량생산을 달성한 미국으로 패권 이동	인터넷 기반의 디지털 혁명, 미국의 글로벌 IT기업 부상	사람-시물-공간의 초연결, 초지능화를 통한 산업구조 개편

주) 사이버물리시스템(Cyber-Physical Systems: CPS): 건물, 도로, 전력망, 공장 등의 사물에 통신, 컴퓨팅 등 ICT 기술을 융합 하여 사이버 상에서 물리시스템을 이해하고 제어하는 기술을 의미

<자료> 김상훈 외 "4차 산업혁명, 산업자원부 발표 자료(2017.2)", KEIT(2017.5), WEF, ITP 수정 및 재구성

학습 정리

• 4차 산업혁명의 개념[3] - 초연결과 초지능화

[표 1] 4차 산업혁명의 개념

출처	정의
매일경제 용어사전	기업들이 제조업과 ICT 기술을 융합하여 작업 경쟁력을 제고하는 차세대 산업혁명을 가리키는 말로, '인더스트리 4.0'이라고 표현
다보스 포럼 (2015.3.)	ICT 기술 등에 따른 디지털 혁명에 기반을 두고 물리적 공간, 디지털 공간 및 생물학적 공간의 경계가 희미해지는 기술융합의 시대
니콜라스 데이비스 (다보스포럼, 2016.)	기계가 지능이 필요한 작업을 수행하고, 인간 신체에 컴퓨팅 기술이 직접 적용되고, 기업/정부 및 수요자 간의 소통을 새로운 차원으로 향상시키는 등 "기술이 사회에 자리잡는 방식"이 새로워지는 시대
제이콥 모건 (Forbes, 2016.12.)	실제 세계(real world)와 기술 세계(technological world)의 구분을 모호하게 만드는 컨셉
출처	정의
ETRI(2016.)	초연결·초지능·초실감의 ICT 기술과 다양한 과학기술의 융합에 기반한 차세대 산업혁명으로, 인류의 사회·경제·문화에 걸쳐 새로운 대분기를 초래할 변혁
KIET (2017.5.)	20 세기 후반 이후 정보통신기술을 기반으로 한 인터넷 확산과 정보처리 능력의 획기적 발전을 기초로 하며, loT, 클라우드, 빅데이터 및 인공지능 등의 디지털화 를 기반으로 물리적·생물학적 영역을 포함한 모든 영역의 경계가 없어지고 연결 성이 극대화되는 한편, 융합이 가속화되어 기존과 완전히 다른 체계의 생산-소비 패러다임의 디지털 경제를 일컫는 것

〈자료〉 각 기관

학습 정리

• 4차 산업혁명을 대표하는 기술

참고 및 자료 출처

- [1] 윤경배 등, "4차 산업혁명의 이해 [2판]", 일진사, 2021
- [2] 한기준, 김기윤 등, "2020 시나공 정보처리산업기사 실기", 길벗, 2020
- [3] 4차 산업혁명과 ICT 기술, 정보통신기획평가원 주간기술동향 1801호(2017.6.21) https://itfind.or.kr/WZIN/jugidong/1801/file776384057110360809-180103.pdf
- [4] 주요 선진국의 제4차 산업혁명 정책동향, 정보통신기획평가원 해외 ICT R&D 정책동향 (2016-04호) http://www.itfind.or.kr/admin/getFile.htm?identifier=02-001-160411-000001
- [5] 한국지능형사물인터넷협회, IoT지식능력검정 강의자료PPT https://cp.kiot.or.kr/lib/filecustom?c=10