CS2010: ALGORITHMS AND DATA STRUCTURES

Lecture 14: Binary Search Trees (2)

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

3.2 BINARY SEARCH TREES

- **▶** BSTs
- ordered operations
- deletion

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- · Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node's key is:

- · Larger than all keys in its left subtree.
- · Smaller than all keys in its right subtree.

Q: Which of the following are Binary Search Trees? Why?

ST implementations: summary

implementation	guarantee		averag	je case	operations			
	search	insert	search hit	insert	on keys			
sequential search (unordered list)	N	N	½ N	N	equals()			
binary search (ordered array)	lg N	N	lg N	½ N	compareTo()			
BST	N	N 1	1.39 lg <i>N</i>	1.39 lg <i>N</i>	compareTo()			

Why not shuffle to ensure a (probabilistic) guarantee of 4.311 ln N?

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

BSTs

- ordered operations
- deletion

Minimum and maximum

Minimum. Smallest key in table.

Maximum. Largest key in table.

Q. How to find the min / max?

Floor and ceiling

Floor. Largest key \leq a given key.

Ceiling. Smallest key \geq a given key.

Q. How to find the floor / ceiling?

Computing the floor

Case 1. [k equals the key in the node] The floor of k is k.

Case 2. [k is less than the key in the node] The floor of k is in the left subtree.

Case 3. [k is greater than the key in the node] The floor of k is in the right subtree (if there is any key $\leq k$ in right subtree); otherwise it is the key in the node.

Computing the floor

```
public Key floor(Key key)
   Node x = floor(root, key);
   if (x == null) return null:
   return x.key;
private Node floor(Node x, Key key)
   if (x == null) return null:
   int cmp = key.compareTo(x.key);
   if (cmp == 0) return x;
   if (cmp < 0) return floor(x.left, key);</pre>
   Node t = floor(x.right, key);
   if (t != null) return t;
   else
                  return x;
```


- \rightarrow rank(Key k): how many keys less than k?
- → select(int n): what key has rank n?

 \rightarrow **Q**: what is the rank of 'S'?

- \rightarrow rank(Key k): how many keys less than k?
- → select(int n): what key has rank n?

 \rightarrow Q: what is the rank of 'S'? 5 (5 keys less than 'S' in the tree)

- \rightarrow rank(Key k): how many keys less than k?
- → select(int n): what key has rank n?

- \rightarrow Q: what is the rank of 'S'? 5 (5 keys less than 'S' in the tree)
- ightarrow Q: what key has rank 4?

- \rightarrow rank(Key k): how many keys less than k?
- → select(int n): what key has rank n?

- \rightarrow **Q**: what is the rank of 'S'?
- 5 (5 keys less than 'S' in the tree)
- → Q: what key has rank 4?
- 'R' (4 keys less than 'R' in the tree)

- \rightarrow rank(Key k): how many keys less than k?
- → select(int n): what key has rank n?

- → Q: what is the rank of 'S'?
 5 (5 keys less than 'S' in the tree)
- ightarrow Q: what key has rank 4? 'R' (4 keys less than 'R' in the tree)
- → Q: what is the rank of 'Q' ('Q' is not in the tree)?

- \rightarrow rank(Key k): how many keys less than k?
- → select(int n): what key has rank n?

- → Q: what is the rank of 'S'?
 5 (5 keys less than 'S' in the tree)
- \rightarrow Q: what key has rank 4? 'R' (4 keys less than 'R' in the tree)
- → Q: what is the rank of 'Q' ('Q' is not in the tree)?
 4 (4 keys in the tree are less than 'Q')

- \rightarrow rank(Key k): how many keys less than k?
- → select(int n): what key has rank n?

- → Q: what is the rank of 'S'?
 5 (5 keys less than 'S' in the tree)
- \rightarrow Q: what key has rank 4? 'R' (4 keys less than 'R' in the tree)
- → Q: what is the rank of 'Q' ('Q' is not in the tree)?
 4 (4 keys in the tree are less than 'Q')
- \rightarrow **Q**: what key has rank 7?

- \rightarrow rank(Key k): how many keys less than k?
- → select(int n): what key has rank n?

- → Q: what is the rank of 'S'?
 5 (5 keys less than 'S' in the tree)
- \rightarrow Q: what key has rank 4? 'R' (4 keys less than 'R' in the tree)
- → Q: what is the rank of 'Q' ('Q' is not in the tree)?
 4 (4 keys in the tree are less than 'Q')
- → Q: what key has rank 7? no key in the tree has this rank (no key has 7 keys smaller than it in the tree)

Rank and select

Q. How to implement rank() and select() efficiently?

A. In each node, we store the number of nodes in the subtree rooted at that node; to implement size(), return the count at the root.

BST implementation: subtree counts

```
private class Node
{
   private Key key;
   private Value val;
   private Node left;
   private Node right;
   private int count;
}
```

```
public int size()
{  return size(root); }

private int size(Node x)
{
  if (x == null) return 0;
  return x.count;  ok to call
  when x is null
}
```

number of nodes in subtree

```
private Node put(Node x, Key key, Value val)
{
   if (x == null) return new Node(key, val, 1);
   int cmp = key.compareTo(x.key);
   if (cmp < 0) x.left = put(x.left, key, val);
   else if (cmp > 0) x.right = put(x.right, key, val);
   else if (cmp == 0) x.val = val;
   x.count = 1 + size(x.left) + size(x.right);
   return x;
}
```

Rank. How many keys < k?

Easy recursive algorithm (3 cases!)


```
public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{
  if (x == null) return 0;
  int cmp = key.compareTo(x.key);
  if (cmp < 0) return rank(key, x.left);
  else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
  else if (cmp == 0) return size(x.left);
}
```

Select. Find the key with rank n.

TREE TRAVERSALS

Task: Process all nodes of the tree.

Purpose: To print all nodes, to add all nodes in a datastructure (e.g. queue), etc.

Three kinds of traversals:

- → inorder: for each node:
 - 1. traverse the left subtree
 - 2. process the node
 - 3. traverse the right subtree
- → preorder: for each node:
 - 1. process the node
 - 2. traverse the left subtree
 - 3. traverse the right subtree
- → postorder: for each node:
 - 1. traverse the left subtree
 - 2. traverse the right subtree
 - 3. process the node

Inorder traversal

- · Traverse left subtree.
- · Enqueue key.
- · Traverse right subtree.

```
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}

private void inorder(Node x, Queue<Key> q)
{
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```


Property. Inorder traversal of a BST yields keys in ascending order.

BST: ordered symbol table operations summary

	sequential search	binary search	BST	
search	N	lg N	h	
insert	N	N	h	h = height of BST
min / max	N	1	h	(proportional to log N if keys inserted in random order)
floor / ceiling	N	lg N	h	Worst case: h = O(N)
rank	N	lg N	h	
select	N	1	h	
ordered iteration	N log N	N	N	

order of growth of running time of ordered symbol table operations

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

3.2 BINARY SEARCH TREES

BSTs

- ordered operations
- deletion

ST implementations: summary

implementation	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	ops?	on keys
sequential search (linked list)	N	N	N	½ N	N	½ N		equals()
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	~	compareTo()
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	???	V	compareTo()

Next. Deletion in BSTs.

BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide search (but don't consider it equal in search).

Cost. $\sim 2 \ln N'$ per insert, search, and delete (if keys in random order), where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

Deleting the minimum

To delete the minimum key:

- · Go left until finding a node with a null left link.
- · Replace that node by its right link.
- · Update subtree counts.

```
public void deleteMin()
{    root = deleteMin(root); }

private Node deleteMin(Node x)
{
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```


Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

- Find successor x of t.
- · Delete the minimum in t's right subtree.
- Put x in t's spot.

x has no left child

— but don't garbage collect x

← still a BST

Hibbard deletion: Java implementation

```
public void delete(Key key)
{ root = delete(root, kev): }
private Node delete(Node x, Key key) {
   if (x == null) return null;
   int cmp = key.compareTo(x.key);
   if (cmp < 0) x.left = delete(x.left, key);
                                                                     search for key
   else if (cmp > 0) x.right = delete(x.right, key);
   else {
      if (x.right == null) return x.left;
                                                                     no right child
      if (x.left == null) return x.right;
                                                                     no left child
      Node t = x;
      x = min(t.right);
                                                                     replace with
                                                                     successor
      x.right = deleteMin(t.right);
      x.left = t.left:
                                                                    update subtree
   x.count = size(x.left) + size(x.right) + 1; \leftarrow
                                                                      counts
   return x;
```

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) $\Rightarrow \sqrt{N}$ per op. Longstanding open problem. Simple and efficient delete for BSTs.

ST implementations: summary

implementation	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	ops?	on keys
sequential search (linked list)	N	N	N	½ N	N	½ N		equals()
binary search (ordered array)	lg N	N	N	lg N	½ N	½ N	V	compareTo()
BST	N	N	N	1.39 lg <i>N</i>	1.39 lg <i>N</i>	\sqrt{N}	V	compareTo()
other operations also become √N								

if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.