Numerical Analysis MATH50003 (2024–25) Problem Sheet 7

Problem 1 Use Lagrange interpolation to interpolate the function $\cos x$ by a polynomial at the points [0, 2, 3, 4] and evaluate at x = 1.

Problem 2 Compute the LU factorisation of the following transposed Vandermonde matrices:

$$\begin{bmatrix} 1 & 1 \\ x & y \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 & 1 \\ x & y & z & t \\ x^2 & y^2 & z^2 & t^2 \\ x^3 & y^3 & z^3 & t^3 \end{bmatrix}$$

Can you spot a pattern? Test your conjecture with a 5×5 Vandermonde matrix.

Problem 3 Compute the interpolatory quadrature rule

$$\int_{-1}^{1} f(x)w(x)dx \approx \sum_{j=1}^{n} w_j f(x_j)$$

for the points $[x_1, x_2, x_3] = [-1, 1/2, 1]$, for the weights w(x) = 1 and $w(x) = \sqrt{1 - x^2}$.

Problem 4 Derive Backward Euler: use the left-sided divided difference approximation

$$u'(x) \approx \frac{u(x) - u(x - h)}{h}$$

to reduce the first order ODE

$$u(a) = c,$$
 $u'(x) + \omega(x)u(x) = f(x)$

to a lower triangular system by discretising on the grid $x_j = a + jh$ for h = (b - a)/n. Hint: only impose the ODE on the gridpoints x_1, \ldots, x_n so that the divided difference does not depend on behaviour at x_{-1} .

Problem 5 Reduce a Schrödinger equation to a tridiagonal linear system by discretising on the grid $x_j = a + jh$ for h = (b - a)/n:

$$u(a) = c,$$
 $u''(x) + V(x)u(x) = f(x),$ $u(b) = d.$