中华人民共和国国家标准

GB 3102.9-93

原子物理学和核物理学的量和单位

代替 GB 3102.9-86

Quantities and units-Atomic and nuclear physics

引言

本标准参照采用国际标准 ISO 31-9:1992《量和单位 第九部分:原子物理学和核物理学》。 本标准是目前已经制定的有关量和单位的一系列国家标准之一,这一系列国家标准是:

- GB 3100 国际单位制及其应用;
- GB 3101 有关量、单位和符号的一般原则;
- GB 3102.1 空间和时间的量和单位;
- GB 3102.2 周期及其有关现象的量和单位;
- GB 3102.3 力学的量和单位;
- GB 3102.4 热学的量和单位;
- GB 3102.5 电学和磁学的量和单位;
- GB 3102.6 光及有关电磁辐射的量和单位;
- GB 3102.7 声学的量和单位;
- GB 3102.8 物理化学和分子物理学的量和单位;
- GB 3102.9 原子物理学和核物理学的量和单位;
- GB 3102.10 核反应和电离辐射的量和单位;
- GB 3102.11 物理科学和技术中使用的数学符号;
- GB 3102.12 特征数;
- GB 3102.13 固体物理学的量和单位。

上述国家标准贯彻了《中华人民共和国计量法》、《中华人民共和国标准化法》、国务院于 1984 年 2 月 27 日公布的《关于在我国统一实行法定计量单位的命令》和《中华人民共和国法定计量单位》。

本标准的主要内容以表格的形式列出。表格中有关量的各栏列于左面各页,而将其单位列于对应的 右面各页并对齐。两条实线间的全部单位都是左面各页相应实线间的量的单位。

量的表格列出了本标准领域中最重要的量及其符号,并在大多数情况下给出了量的定义,但这些定义只用于识别,并非都是完全的。

某些量的矢量特性,特别是当定义需要时,已予指明,但并不企图使其完整或一致。

在大多数情况下,每个量只给出一个名称和一个符号。当一个量给出两个或两个以上的名称或符号,而未加以区别时,则它们处于同等的地位。当有两种斜体字母(例如: θ 、 θ , φ , ϕ ,g、g)存在时,只给出其中之一,但这并不意味另一个不同等适用。一般这种异体字不应给予不同的意义。在括号中的符号为"备用符号",供在特定情况下主符号以不同意义使用时使用。

量的相应单位连同其国际符号和定义一起列出。

单位按下述方式编排:

一般只给出 SI 单位。应使用 SI 单位及其用 SI 词头构成的十进倍数和分数单位。十进倍数和分数

单位未明确地给出。

可与 SI 的单位并用的和属于国家法定计量单位的非 SI 的单位列于 SI 单位之下,并用虚线与相应的 SI 单位隔开。专门领域中使用的非国家法定计量单位列于"换算因数和备注"栏。一些非国家法定计量单位列于附录(参考件)中,这些参考件不是标准的组成部分。

关于量纲一的量的单位说明:

任何量纲一的量的一贯单位都是数字一(1)。在表示这种量的值时,单位 1 一般并不明确写出。词头不应加在数字 1 上构成此单位的十进倍数或分数单位。词头可用 10 的乘方代替。

例:

折射率 $n=1.53\times1=1.53$ 雷诺数 $Re=1.32\times10^3$

考虑到一般是将平面角表示为两长度之比,将立体角表示为面积与长度的平方之比,国际计量委员会(CIPM)在1980年规定,在国际单位制中弧度和球面度为无量纲的导出单位;这就意味着将平面角和立体角作为无量纲的导出量。为了便于识别量纲相同而性质不同的量,在导出单位的表示式中可以使用单位弧度和球面度。

数值表示:

"定义"栏中的所有数值都是准确的。

在"换算因数和备注"栏中的数值如果是准确的,则在数值后用括号加注"准确值"字样。

1 主题内容与适用范围

本标准规定了原子物理学和核物理学的量和单位的名称与符号;在适当时,给出了换算因数。 本标准适用于所有科学技术领域。

2 名称和符号

量:9-1~9-4.2

项 号	量的名称	符号	定义	备注
9-1	质子数 proton number, 原子序数 atomic number	Z	原子核中的质子数目	核素是具有确定质子数和中子数的一类原子或原子核。 具有相同 Z 值不同A 值的核素称为同位素
9-2	中子数 neutron number	N	原子核中的中子数目	具有相同 N 值不同 Z 值的核素称为同中子 素。 N-Z 称为中子过剩数
9-3	核子数 nucleon number, 质量数 mass number	A	原子核中的核子数目	A=Z+N 具有相同 A 值不同 Z 值的核素称为同量异 位素
9-4-1	[核素 X 的]原 子质量 mass of atom(of a nuclide X), 核素质量 nuclidic mass	m_{\star} , $m(X)$, $m(Z,A)$	中性原子处于基态的静止质量	对于氢 'H, m('H)= (1.6735340± 0.0000010)× 10 ⁻²⁷ kg= (1.007825048± 0.000000012) u
9-4.2	原子质量常量 unified atomic mass constant	$m_{ m u}$	一个 ¹² C 中性原子处于基态的 静质量的 1/12	$m_{\rm u}$ =(1.6605402± 0.0000010)× 10^{-27} kg=1 u $\frac{m_{\rm e}}{m_{\rm u}}$ 称为相对原子质量

单位:9-1.a~9-4.b

项 号	单位名称	符号	定 义	换算因数和备注
9-1. a	one	1		参阅引言
9. 2. a	one	1		参阅引言
9. 3. a	one	1		参阅引言
9-4. a	千克 kilogram	kg		
9-4. b	原子质量单位 unified atomic mass unit	u	一个原子质量单位等 于一个处于基态的 ¹² C 中性原子的静质量的 1/12	1 u=(1.660 540 2± 0.000 001 0)×10 ⁻²⁷ kg

量:9-5.1~9-9

项 号	量的名称	符号	定义	备注
9-5.1	电子[静]质量 (rest) mass of electron	$m_{ m c}$		$m_c = (9.109 389 7 \pm 0.000 005 4) \times 10^{-31} \text{ kg} = (5.485 799 03 \pm 0.000 000 13) \times 10^{-4} \text{ u}$
9-5.2	质子[静]质量 (rest) mass of proton	$m_{ m p}$		$m_{\rm p} = (1.672 623 1 \pm 0.000 001 0) \times 10^{-27} \mathrm{kg} = (1.007 276 470 \pm 0.000 000 012) \mathrm{u}$
9-5.3	中子[静]质量 (rest) mass of neutron	77? <u>a</u>		$m_{a} = (1.674 928 6 \pm 0.000 001 0) \times 10^{-27} \text{ kg} = (1.008 664 904 \pm 0.000 000 014) \text{ u}$
9-6	元电荷 elementary charge	e	一个质子的电荷	一个电子的电荷等于-e e=(1.602 177 33± 0.000 000 49)×10 ⁻¹⁹ C
9-7	普朗克常量 Planck constant	h	基本的作用量子	$h = (6.626\ 075\ 5\pm 0.000\ 004\ 0) \times 10^{-34}\ J \cdot s$ $h = h/2\pi = (1.054\ 572\ 66\pm 0.000\ 000\ 63) \times 10^{-34}\ J \cdot s$
9-8	玻尔半径 Bohr radius	a_0	$a_0 = 4\pi\varepsilon_0 h^2/m_e e^2$	$a_0 = (0.529\ 177\ 249 \pm 0.000\ 000\ 024) \times 10^{-10} \text{ m}$
9-9	里德伯常量 Rydberg constant	R_{∞}	$R_{\infty} = rac{e^2}{8\pi \epsilon_0 a_0 hc}$	$R_{\infty} = (1.097\ 373\ 153\ 4\pm 0.000\ 000\ 001\ 3) imes 10^7\ m^{-1}$ 对于氢 1 H, $R_{\rm H} = R_{\infty}/(1 + m_e/m_p)$ 量 $R_{\infty} \cdot hc$ 称为里德伯 (Rydberg)能量(Ry)

单位:9-5.a~9-9.a

项 号	单位名称	符号	定 义	换算因数和备注
9-5. a	千克 kilogram	kg		
9-5. b	原子质量单位 unified atomic mass unit	u		1 u=(1.660 540 2± 0.000 001 0)×10 ⁻²⁷ kg
9-6. a	库[仑] coulomb	С		
9-7. a	焦[耳]秒 joule second	J•s		
9-8. a	米 metre	m		埃(Å), 1 Å=10 ⁻¹⁰ m 10 Å=1 nm
9-9. a	每米 reciprocal metre, 负一次方米 metre to the power minus one	m ⁻¹		

量:9-10~9-14.1

项 号	量的名称	符号	定义	备注
9-10	哈特里能[量] Hartree energy	$E_{ m h}$	$E_{\rm h}\!=\!e^2/4\pi\varepsilon_0 a_0\!=\!2R_\infty \bullet hc$	哈特里(Hartree)能量 E _h =(4.3597482± 0.0000026)×10 ⁻¹⁸ J
9-11.1	粒子或原子核的 磁矩 magnetic moment of particle or nucleus	μ	磁量子数最大时磁矩矢量在磁 场方向分量的期望值	磁矩通常是磁偶极矩 的简称
9-11.2	玻尔磁子 Bohr magneton	$\mu_{ m B}$	$\mu_{\rm B} = e \hbar/2m_{\rm e}$	$\mu_{B} = (9.274\ 015\ 4\pm 0.000\ 003\ 1) \times 10^{-24}\ A \cdot m^{2}$
9-11.3	核磁子 nuclear magneton	μN	$\mu_{\rm N} = e\hbar/2m_{\rm p} = (m_{\rm e}/m_{\rm p})\mu_{\rm B}$	$\mu_{N} = (5.0507866 \pm 0.0000017) \times 10^{-27} \text{ A} \cdot \text{m}^{2}$
9-12	磁旋系数,(磁旋 比) gyromagnetic coefficient, (gyromagnetic ratio)	γ	γ=μ/Jh 式中 J 为粒子或原子核的角动 量量子数	质子的磁旋系数 γ _p =(2.675 221 28± 0.000 000 81)× 10 ⁸ A·m ² /(J·s)
9-13. 1	原子或电子的 g 因数 g-factor of atom or electron	g	$g = \frac{\mu}{J\mu_{ m B}}$	这些量也称为 g 值 或朗德(Lande)因数
9-13. 2	原子核或核子的 g 因数 g-factor of nucleus or nuclear particle	g	$g = \frac{\mu}{J\mu_{ m N}}$	
9-14.1	原子进动角频率 atomic precession angular frequency	$\pmb{\omega}_{ extsf{L}}$	$\omega_{\rm L} = \frac{e}{2m_{\rm e}}B$	ω _ι ,ω _Ν 通称为拉莫尔 角频率

单位:9-10.a~9-14.a

项号	单位名称	符号	定	义	换算因数和备注
9-10. a	焦[耳] joule	J			
9-11. a	安[培]平方米 ampere square metre	A•m²			
9-12. a	安[培]平方米每 焦[耳]秒 ampere square metre per joule second	A •m²/(J •s)			$1 A \cdot m^{2}/(J \cdot s) = 1 A \cdot s/kg = 1 T^{-1} \cdot s^{-1}$
9.13.a	one	1			参阅引言
9-14. a	每秒 reciprocal second, 负一次方秒 second to the power minus one	\mathbf{s}^{-1}			参阅引言

量:9-14.2~9-19

项 号	量的名称	符号	定义	备 注
9-14. 2	核进动角频率 nuclear precession angular frequency	$\omega_{ m N}$	ω _N =γB 式中 B 为磁通密度	ν _L =ω _L /2π,ν _N = ω _N /2π 通称为拉莫尔频率
9-15	回旋角频率 cyclotron angular frequency	$\omega_{ m c}$	$\omega_c = \frac{q}{m}B$ 式中 $\frac{q}{m}$ 为粒子的荷质比, B 为磁通密度	ν _c = ω _c /2π 称为回旋 频率
9-16	核四极矩 nuclear quadrupole moment	Q	$Q = \frac{1}{e} \int (3z^2 - r^2) \times$ $\rho(x,y,z) dx dy dz$ 式中 $\rho(x,y,z) 为核自旋的 z 分$ 量取最大值时核的电荷密度,e 为元电荷	
9-17	核半径 nuclear radius	R		此量无严格定义,通常有下列三种定义:i)核电荷分布半径;ii)核物质分布半径;ii)核物质分布半径。它们均作用范围半径。它们均可近似地表示为 $R=r_0A^{1/3}$ 式中 $r_0\approx(1.1\sim1.5)\times10^{-15}$ m
9-18	轨道角动量量子数 orbital angular momentum quantum number	l_i, L		通常 l, 指粒子 i 的, L 指整个系统的
9-19	自旋角动量量子数 spin angular momentum quantum number	s_i , S		通常 s _i 指粒子 i 的 ,S 指整个系统的

单位:9-14.b~9-19.a

					平位:5-14.0·-5-19.a
项 号	单位名称	符号	定	义	换算因数和备注
9-14. b	弧度每秒 radian per second	rad/s			
9-15. a	每秒 reciprocal second, 负一次方秒 second to the power minus one	!			参阅引言
9-15. b	弧度每秒 radian per second	rad/s			
9-16. a	二次方米 metre squared	m²			
9-17. a	米 metre	m			量 9-17 常用 fm 表示。 1 fm=10 ⁻¹⁵ m
9-18. a	one	1			参阅引言
9-19. a	one	1			参阅引言

量:9-20~9-27

项 号	量的名称	符号	定义	备注
9-20	总角动量量子数 total angular momentum quantum number	j_i,J		通常 j; 指粒子 i 的 ,J 指整个系统的
9-21	核自旋量子数 nuclear spin quantum number	I		也常用J表示
9-22	核的宇称 nuclear parity	π		在粒子物理中常用 P 表示粒子的字称
9-23	超精细结构量子 数 hyperfine structure quantum number	F	F=J+I 式中 J 为原子电子的总角动量, I 为核自旋	
9-24	主量子数 principal quantum number	n		
9-25	磁量子数 magnetic quantum number	m_i , M		通常 m, 指粒子 i 的, M 指整个系数的,加下标 L,S,J 等则指相应角动量的磁量子数
9-26	精细结构常数 fine-structure constant	α	$a=e^2/4\pi\epsilon_0$ hc	$\alpha = (7.297 353 08 \pm 0.000 000 33) \times 10^{-3}$ $\frac{1}{\alpha} = 137.036 989 5 \pm 0.000 006 1$
9-27	[经典]电子半径 (classical) electron radius	r _e	$r_{ m e}\!=\!e^2/4\pi \epsilon_0 m_{ m e} c^2$	$r_e = (2.817 940 92 \pm 0.000 000 38) \times 10^{-15} \text{ m}$

单位:9-20.a~9-27.a

项 号	单位名称	符号	定 义	换算因数和备注
9-20. a	one	1		参阅引言
9-21. a	one	1		参阅引言
9-22. a	one	1		参阅引言
9-23. a	one	1		参阅引言
9-24. a	one	1		参阅引言
9-25. a	one	1		参阅引言
9-26. a	one	1		参阅引言
9-27.a	米 metre	m		

量:9-28~9-31

项号	量的名称	符号	定义	备 注
9-28	康普顿波长 Compton wavelength	λc	λc=2πh/mc=h/mc 式中 m 为粒子的静止质量	对于质子, $\lambda_{\text{C,p}} = (1.32141002\pm 0.00000012) \times 10^{-15} \text{ m}$ 对于中子, $\lambda_{\text{C,a}} = (1.31959110\pm 0.00000012) \times 10^{-15} \text{ m}$
9-29.1	质量过剩 mass excess	Δ	$\Delta = m_s - Am_u$	
9-29.2	质量亏损 mass defect	В	$B=Zm(^{1}H)+Nm_{n}-m_{a}$	
9-30	核的结合能 nuclear binding energy	$E_{ t B}$	$E_{\rm B} = \left[Zm^{(1}H) + Nm_{\rm m} - m_{\rm a}\right]c^2$	忽略了原子中电子的 结合能
9-31	比结合能 specific binding energy	ε	$arepsilon\!=\!E_{ exttt{B}}/A$	也称为[每个核子的] 平均结合能

单位:9-28.a~9-31.b

项 号	单位名称	符号	定义	换算因数和备注
9-28. a	米 metre	m	·	
9-29.a	千克 kilogram	kg		
9-29. b	原子质量单位 unified atomic mass unit	u		1 u=(1.660 540 2± 0.000 001 0)×10 ⁻²⁷ kg 量 9-29 通常用单位 u 或相应 的质量能电子伏表示
9-30. a	焦[耳] joule	J		
9-30. b	电子伏 electronvolt	eV		1 eV=(1.602 177 33± 0.000 000 49)×10 ⁻¹⁹ J 量 9-30 通常用电子伏表示
9-31. a	焦[耳] joule	J		
9-31. b	电子伏 electronvolt	eV		1 eV=(1.602 177 33± 0.000 000 49)×10 ⁻¹⁹ J 量 9-31 通常用电子伏表示

量:9-32~9-35

项 号	量的名称	符号	定义	备 注
9-32	中子分离能 neutron separation energy	${\mathcal S}_{\mathtt{n}}$	$S_{n}(Z,A) = [m(Z,A-1) + m_{n}-m(Z,A)]c^{2}$	忽略了原子中电子的结合能。 5、也称为最后一个中子结合能
9-33	质子分离能 proton separation energy	$S_{ extsf{p}}$	$S_{p}(Z,A) = [m(Z-1,A-1) + m(^{1}H) - m(Z,A)]c^{2}$	忽略了原子中电子的结合能。 S,也称为最后一个质子结合能
9-34	平均寿命 mean life	τ	处于特定能态的一定量放射性 核素平均生存的时间,即放射性 原子核的数目减少到原来数目的 1 所需时间的期望值	
9-35	能级宽度 level width	Γ	$arGamma = rac{h}{ar{v}}$	

单位:9-32.a~9-35.b

项 号	单位名称	符号	定	义	换算因数和备注
9-32. a	焦[耳] joule	J			
9-32. b	电子伏 electronvolt	eV			1 eV=(1.602 177 33± 0.000 000 49)×10 ⁻¹⁹ J 量 9-32 通常用电子伏表示
9-33. a	焦[耳] joule	J	-		
9-33. b	电子伏 electronvolt	eV			1 eV=(1.602 177 33± 0.000 000 49)×10 ⁻¹⁹ J 量 9-33 通常用电子伏表示
9-34. a	秒 second	s			
9-34. b	分 minute	min			1 min=60 s
9-34. c	[小]时 hour	h			1 h=3 600 s
9-34. d	日,(天) day	d			1 d=86 400 s 也可用年(符号 a)
9-35. a	焦[耳] joule	J			
9-35. b	电子伏 electronvolt	eV			1 eV=(1.602 177 33± 0.000 000 49)×10 ⁻¹⁹ J 量 9-35 通常用电子伏表示

量:9-36~9-39

项 号	量的名称	符号	定义	备 注
9-36	[放射性]活度 activity	A	在给定时刻,处于特定能态的一定量放射性核素在 dt 时间内 发生自发核跃迁数的期望值除以 dt	
9-37	质量活度 massic activity, 比活度 specific activity	а	样品的放射性活度除以该样品 的总质量	
9-38	衰变常量 decay constant	λ	特定能态的放射性核素在 dt 时间内发生自发核跃迁的概率除 以 dt	$\lambda = 1/ au$
9-39	半衰期 half-life	$T_{1/2}$	特定能态的放射性核素的核数目衰减一半所需时间的期望值	$T_{1/2} = (\ln 2)/\lambda = \tau \ln 2$

单位:9-36.a~9-39.d

项 号	单位名称	符号	定 义	换算因数和备注
9-36. a	贝可[勒尔] becquerel	Bq	1 Bq=1 s ⁻¹	居里(Ci), 1 Ci=3.7×10 ¹⁰ Bq(准确值)
9-37. a	贝可[勒尔]每千 克 becquerel per kilogram	Bq/kg		
9-38. a	每秒 reciprocal second, 负一次方秒 second to the power minus one	s ⁻¹		
9-39. a	秒 second	S		
9-39. b	分 minute	min		1 min=60 s
9-39. с	[小]时 hour	h		1 h=3 600 s
9-39. d	日,(天) day	d		1 d=86 400 s 也可用年(符号 a)

量:9-40~9-43

项 号	量的名称	符号	定义	备注
9-40	α 衰变能 alpha disintegration energy	Q.	α 衰变过程所放出的能量,即 质心系中α粒子的动能与子核反 冲能之和	
9-41	β最大能量 maximum beta particle energy	$E_{\mathfrak{z}}$	β能谱的最大能量	它近似等于β衰变能
9-42	β衰变能 beta disintegration energy	Q_{eta}	β衰变过程所放出的能量,即 质心系中β粒子、中微子与子核 的动能之和	Q ₈ 有时定义为母核原子与子核原子的基态能量之差
9-43	内转换因数 internal conversion factor	α	核在给定跃迁中发射内转换电子的概率与发射 7 光子的概率之比	对于不同电子壳层 K,L,…的部分转换因 数表示为 α_K , α_L ,… α_K/α_L 称为 K 对 L 的 内转换比

单位:9-40.a~9-43.a

项 号	单位名称	符号	定	义	换算因数和备注
9-40. a	焦[耳] joule	J			
9-40. b	电子伏 electronvolt	eV			1 eV=(1.602 177 33± 0.000 000 49)×10 ⁻¹⁹ J 量 9-40 通常用电子伏表示
9-41. a	焦[耳] joule	J			
9-41. b	电子伏 electronvolt	eV			1 eV=(1.60217733± 0.000000049)×10 ⁻¹⁹ J 量 9-41 通常用电子伏表示
9-42. a	焦[耳] joule	1	· · ·		
9-42. b	电子伏 electronvolt	eV			1 eV=(1.602 177 33± 0.000 000 49)×10 ⁻¹⁹ J 量 9-42 通常用电子伏表示
9-43. a	one	1			参阅引言

附 录 A 化**学元素的名称和符号**¹⁾ (补充件)

原子序数	名 称	符号	原子序数	名 称	符号
1	氢 hydrogen	Н	26	铁 iron,ferrum	Fe
2	氦 helium	He	27	钻 cobalt	Co
		!	28	镰 nickel	Ni
3	鲤 lithium	Li	29	铜 copper.(cuprum)	Cu
4	敏 beryllium	Ве	30	锌 zinc	Zn
5	硼 boron	В	31	镓 gallium	Ga
6	碳 carbon	С	32	锗 germanium	Ge
7	氮 nitrogen	N	33	砷 arsenic	As
8	氧 oxygen	О	34	硒 selenium	Se
9	氟 fluorine	F	35	溴 bromine	Br
10	無 neon	Ne	36	氪 krypton	Kr
11	纳 sodium, (natrium)	Na	37	御 rubidium	RЬ
12	镁 magnesium	Mg	38	恕 strontium	Sr
13	铝 aluminium	Al	39	钇 yttrium	Y
14	硅 silicon	Si	40	锆 zirconium	Zr
15	群 phosphorus	P	41	铌 niobium	Nb
16	硫 sulfur	s	42	钼 molybdenum	Мо
17	氯 chlorine	Cl	43	锝 technetium	Tc
18	argon	Ar	44	钉 ruthenium	Ru
			45	铑 rhodium	Rh
19	钾 potassium, (kalium)	к	46	钯 palladium	Pd
20	钙 calcium	Ca	47	银 silver,(argentum)	Ag
21	铣 scandium	Sc	48	偏 cadmium	Cd
22	钛 titanium	Ti	49	铟 indium	In
23	钒 vanadium	v	50	锡 tin,stannum	Sn
24	格 chromium	Cr	51	锑 antimony,(stibium)	Sb
25	锰 manganese	Mn	52	碲 tellurium	Te

¹⁾ 引自:IUPAC, Physical Chemistry Division: Quantities, Units and Symbols in Physical Chemistry (1988)。括号中附加的名称作为资料用。

续表

原子序数	名 称	符号	原子序数	名称	符号
53	碘 iodine	I	81	铊 thallium	T1
54	領, xenon	Xe	82	船 lead, (plumbum)	Pb
			83	🙀 bismuth	Bi
55	色 caesium	Cs	84	外 polonium	Po
56	钡 barium	Ba	85	砹 astatine	At
57	镧 lanthanum	La	86	🗱 radon	Rn
58	铈 cerium	Ce			
59	错 praseodymium	Pr	87	钫 francium	Fr
60	钕 neodymium	Nd	88	籍 radium	Ra
61	钷 promethium	Pm	89	啊 actinium	Ac
62	钐 samarium	Sm	90	钍 thorium	Th
63	铕 europium	Eu	91	僕 protactinium	Pa
64	钆 gadolinium	Gb	92	铀 uranium	U
65	铽 terbium	ТЪ	93	镎 neptunium	Np
66	镝 dysprosium	Dy	94	坏 plutonium	Pu
67	钬 holmium	Но	95	镅 americium	Am
68	铒 erbium	Er	96	锔 curium	Cm
			97	普 berkelium	Bk
69	铥 thulium	Tm	98	铜 californium	Cf
70	镱 ytterbium	Yb	99	戫 einsteinium	Es
71	镥 lutetium	Lu	100	₩ fermium	Fm
72	铪 hafnium	Hf	101	们 mendelevium	Md
73	钽 tantalum	Та	102	鳍 nobelium	No
74	钨 tungsten,(wolfram)	w	103	铹 lawrencium	Lr
75	铼 rhenium	Re	104	unnilquadium	Unq
76	锇 osmium	Os	105	unnilpentium	Unp
77	铱 iridium	Ir	106	unnilhexium	Unh
78	铂 platinum	Pt	107	unnilseptium	Uns
79	金 gold,(aurum)	Au	108	unniloctium	Uno
80	汞 mercury,(hydrargyrum)	Hg	109	unnilennium	Une

附 录 B 化学元素和核素的符号

(补充件)

化学元素符号应当用罗马(正)体书写,在符号后不得附加圆点(句子结尾的正常标点除外)。例:

H He C Ca

说明核素或分子的附加下标或上标,应具有下列意义及位置:

核素的核子数(质量数)表示在左上标位置,例如

 ^{14}N

分子中核素的原子数表示在右下标位置,例如

 $^{14}N_2$

质子数(原子序数)可在左下标位置指出,例如

 $_{64}$ Gd

如有必要,离子态或激发态可在右上标位置指出。

例:

离子态: Na+, PO; 或(PO4)3-

电子激发态: He*, NO*

核激发态:

110 Ag * , 110 Ag m

附 录 C 天然放射系核素的名称和符号

(参考件)

(4n+2)-系(铀系)

4n-系(钍系)

(4n+3)-系(锕铀系)

名 称	老符号	核素符号	名 称	老符号	核素符号	名称	老符号	核素符号
铀Ⅰ	UΙ	²³⁸ U	钍	Th	²⁹² Th	锕铀	AcU	²³⁵ U
铀 X ₁	U X ₁	²³⁴ Th	新钍 1	MsTh ₁	²²⁸ Ra	铀Y	UY	²³¹ Th
铀 Z,铀 X ₂	UZ,UX2	²³¹ Pa	新钍 2	$MsTh_2$	²²⁸ Ac	镤	Pa	²³¹ Pa
铀Ⅱ	UI	²³⁴ U	射钍	RdTh	²²⁸ Th	锕	Ac	²²⁷ Ac
锾	Io	²³⁰ Th	钍X	Th X	²²⁴ Ra	射锕	RdAc	²²⁷ Th
镭	Ra	²²⁶ Ra	钍射气	Tn	²²⁰ Rn	锕K	Ac K	²²³ Fr
氡	Rn	²²² Rn	Ł Α	Th A	²¹⁶ Po	锕X	Ac X	²²³ Ra
a A	Ra A	²¹⁸ Po	钍 B	Th B	²¹² Pb	锕射气	An	²¹⁹ Rn
镭B	Ra B	²¹⁴ Pb	钍 C	Th C	²¹² Bi	锕A	Ac A	²¹⁵ Po
镭 C	Ra C	²¹⁴ Bi	牡 C'	Th C'	²¹² Po	锕 B	Ac B	²¹¹ Pb
镭 C'	Ra C'	²¹⁴ Po	钍 C"	Th C"	²⁰⁸ Tl	锕C	Ac C	²¹¹ Bi
镭 C"	Ra C"	²¹⁰ Tl	钍 D	Th D	²⁰⁸ Pb	锕 C'	Ac C'	²¹¹ Po
舗 D	Ra D	²¹⁰ Pb				锕 C"	Ac C"	²⁰⁷ Tl
镭E	Ra E	²¹⁰ Bi				锕 D	Ac D	²⁰⁷ Pb
镭 F(钋)	Ra F	²¹⁰ Po						
舖 G	Ra G	²⁰⁵ Pb						

附加说明:

本标准由全国量和单位标准化技术委员会提出并归口。

本标准由全国量和单位标准化技术委员会第六分委员会负责起草。

本标准主要起草人卢希庭。