FEED BACK AMPLIFER (CURRENT SERIES)

AIM: To determine the following Bandwidth, Input &Output impedances, voltage gain, current gain and power gain of the Voltage Series Feedback Amplifier.

APPARATUS:

S.No.	Name of the Apparatus	Range	Quantity	
1.	CL100	-	2No.	
2.	Power Supply	0-30V	1No.	
3.	Resistors (Ω)	22K, 12K 8.2K & 1.2K, 1.5K	Each 1No.	
4.	Capacitor	10μF& 4.7μF	Each 1No.	
5.	CRO	-	1No.	

CIRCUIT DIAGRAM:

Connection for With feedback

Connection for Without feedback

PROCEDURE:

- 1. Connect the circuit as shown in figure without feedback network.
- 2. Apply the biasing voltage of 7V.
- 3. Adjust the Signal generator voltage so as to get V_{i} =15mV and measure $V_{s.}$
- 4. Vary the frequency of the signal generator from 100Hz to 1MHz, in steps and note down corresponding output voltage.
- 5. In the mid band range remove R_L and note down the output which is V_{NL} .
- 6. Connect the circuit as shown in figure with feedback network
- 7. Repeat the steps 2 to 5
- 8. Plot the frequency response and determine the bandwidth.
- 9. Calculate the input and output impedance in the mid band region using

WITH FEEDBACK

WITHOUT FEEDBACK

$$R_i = \frac{ViR_S}{V_S - V_I} \quad = \quad$$

$$R_i = \frac{V_i R_S}{V_S - V_I} =$$

$$R_O = \frac{V_{NL} - V_{FL}}{V_{FL}} \times R_L =$$

$$R_O = \frac{V_{NL} - V_{FL}}{V_{FL}} \times R_L =$$

Date:

8. Calculate the current gain $A_{\text{\tiny I}},$ voltage gain $A_{\text{\tiny V}}$ and power gain(A_P) using

WITH FEEDBACK

$$A_I = \frac{I_O}{I_i} =$$

$$A_I = \frac{I_O}{I_i} =$$

$$I_O = \frac{V_O}{R_O} =$$

$$I_O = \frac{V_O}{R_O} =$$

$$A_V = \frac{V_O}{V_i} =$$

$$A_V = \frac{V_O}{V_i} =$$

$$I_i = \frac{V_s - V_i}{R_s} =$$

$$I_i = \frac{V_s - V_i}{R_s} =$$

Power gain(A_P)= A_V . A_I =

Power gain(A_P)= A_V . A_I =

TABULATION:

	WITHOUT FEEDBACK				WITH FEEDBACK				
Frequency (Hz)	V _s =			V _{NL} =		V _s =		V _{NL} =	
	V _i (mV)	V _o (V)	$Av = \frac{V}{V}$	20 log A _V	V _i (mV)	V _o (V)	$Av = \frac{V_o}{V_i}$	20 log A _V	

Exp. No.:

Frequency (Hz)	V _i (mV)	V _o (V)	$Av = \frac{V_o}{V_i}$	20 log A _V	V _i (mV)	V _o (V)	$Av = \frac{V_o}{V_i}$	20 log A _V

MODEL GRAPH:

Bandwidth(Without Feedback)

Bandwidth(Without Feedback)

$$f_2 - f_1 =$$

$$f_2 - f_1 =$$

RESULTS:

WITH FEEDBACK

WITHOUT FEEDBACK