Algebra I

Spring 2018

Contents

1	Groups			
	1.1	Subgroups	2	
	1.2	Cyclic Groups	2	
	1.3	Symmetric Groups	4	
	1.4		5	
	1.5		5	
	1.6	Direct Products	6	
	1.7	Isometries	6	
2	Quotient Groups			
	2.1	FIT Applications	8	
	2.2		9	
	2.3	Group Action	9	
	2.4	Burnside's Formula	.0	
3	Sylow Theory			
	3.1	Applications	.2	
4	Rin	gs & Fields	.3	
	4.1	Euler's Theorem	4	
	4.2	Field of Quotients	4	
	4.3	Rings of Polynomials	4	
	4.4	Factorization	5	
		4.4.1 Ideals	7	
	4.5	Quotient Rings	8	

1 Groups

Definition. A binary operation on a set X is a function $\star : X \times X \to X$. A set equipped with a binary operation is called a magma and is denoted (X, \star) .

Let $M = (X, \star)$ be a magma. We say \star is associative if $a, b, c \in X$ then $(a \star b) \star c = a \star (b \star c)$. We say \star is commutative if $a, b \in X$ then $a \star b = b \star a$.

Proposition 1.1. In any magma, if a two-sided identity exists, then it is unique.

Definition. A magma (X, \star) is called

- a) a semigroup if \star is associative; or
- b) a monoid if \star is associative and has an identity.

Proposition 1.2. In a semigroup, all meaningful bracketings of $x_1 \star \cdots \star x_n$ are equivalent.

In a magma, (X, \star) , if $\alpha \in X$, then

$$\alpha^{n} = \begin{cases} \overbrace{\alpha \star \dots \star \alpha}^{n}, & n > 0 \text{ (semigroup)} \\ e, & n = 0 \text{ (monoid)} \\ \underbrace{\alpha^{-1} \star \dots \star \alpha^{-1}}_{|n|}, & n < 0 \text{ (group)} \end{cases}$$

In a monoid, we say $\alpha \in X$ has an inverse $\beta \in X$ if $\alpha \star \beta = e = \beta \star \alpha$. If α has an inverse, then it is a unit.

Proposition 1.3. In a monoid (X, \star) , if $\alpha \in X$ has an inverse, then its inverse is unique.

Definition (Group). A group (G, \star) is a magma such that

- a) \star is associative;
- b) there exists an identity $e \in G$; and
- c) every $x \in G$ has an inverse, namely x^{-1} .

Examples. The following are all groups.

- $(\mathbb{Z}, +)$, integers under addition.
- $(\mathbb{R}^{\times}, \cdot)$, nonzero reals under multiplication.
- $GL_n(\mathbb{R}) = \{A \in \operatorname{Mat}_n(\mathbb{R}) : \det A \neq 0\}$, the general linear group.
- $(\Sigma(X) = \{f : X \xrightarrow{\text{bij}} X\}, \circ)$, bijective transformations under function composition.
- $\Sigma_n = (\Sigma(\{1, \dots, n\}), \circ)$, symmetric group on n letters.
- Special linear group: $(SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) : \det A = 1\}, \cdot)$
- Orthogonal group: $(O(n) = \{A \in \operatorname{Mat}_n(\mathbb{R}) : A^t A = I\}, \cdot)$

Proposition 1.4. Given a monoid (M, \star) , the set of units of M, denoted U(M), forms a group under \star .

For a group G, given $a \in G$, we define $L_a : G \to G$ to be the left multiplication map, i.e. $L_a(x) =$ $a \star x$. Define the right multiplication map R_a similarly. Both of these maps are always bijective.

Definition (Homomorphism). Suppose (X, \star_1) and (Y, \star_2) are magmas. A homomorphism is a function $f: X \to Y$ such that

$$f(\alpha \star_1 \beta) = f(\alpha) \star_2 f(\beta),$$

for all $\alpha, \beta \in X$. A bijective homomorphism is called an isomorphism.

1.1 Subgroups

Definition (Subgroup). Given (G,\star) is a group, a subset $H\subset G$ is a subgroup if (H,\star) is a group. This requires (a) H is closed under \star ; (b) $e \in H$; and (c) $x \in H$ implies $x^{-1} \in H$.

- If $f: G_1 \to G_2$ is a homomorphism then a) $f(e_1) = e_2$ where e_j is the identity in G_j , j = 1, 2; b) $\forall x \in G_1$, $f(x^{-1}) = f(x)^{-1}$; c) $\text{Im}(f) \leq G_2$;

Proposition 1.6. If $\{H_{\alpha}\}_{{\alpha}\in\mathcal{J}}$ is a collection of subgroups, then $\cap_{{\alpha}\in\mathcal{J}}H_{\alpha}$ is a subgroup.

Definition (Span). Let $S = \{x_i\}_{i \in \mathcal{J}} \subset G$, then the span of S is

$$\langle S \rangle = \{ x_{j_1}^{\varepsilon_1} x_{j_2}^{\varepsilon_2} \dots x_{j_n}^{\varepsilon_n} : \varepsilon = \pm 1, n \in \mathbb{N} \}.$$

1.2 Cyclic Groups

Definition (Cyclic). A group is cyclic if there exists $\alpha \in G$ such that $G = \langle \alpha \rangle$.

Given a function $f: X \to X$, the forward orbit of $x \in X$ is $\{x, f(x), f(f(x)), \ldots\}$. If f is bijective, the reverse orbit of x is $\{x, f^{-1}(x), f^{-1}(f^{-1}(x)), \ldots\}$. In general, the orbit of x is the union of the forward and reverse orbits.

If f is a bijection, then either $f^{[n]}(x) \neq f^{[m]}(x)$ for any $m, n \in \mathbb{N}$; or for some $m \in \mathbb{N}$, the elements of the sequence $x, f(x), \ldots, f^{[m-1]}(x)$ are distinct, but $f^{[m]}(x) = x$.

We say $\alpha \in G$ has infinite order if the forward order of e under L_{α} is an infinite set, that is $\langle \alpha \rangle =$ $\{e, \alpha, \alpha^2, \ldots\}$ has no duplicate elements. However, if $\{e, \alpha, \ldots, \alpha^{m-1}\}$ are distinct but $\alpha^m = e$, then we say α has finite order m, denoted $|\alpha| = m$.

Theorem 1.7

If $\alpha \in G$ and

- a) α has infinite order, then $\langle \alpha \rangle \cong (\mathbb{Z}, +)$. b) $|\alpha| = m$, then $\langle \alpha \rangle \cong (\mathbb{Z}/m\mathbb{Z}, +)$.

Moreover, any cyclic group is isomorphic to one of \mathbb{Z} or \mathbb{Z}_n .

Proposition 1.8.

- a) Cyclic groups are abelian.
- b) Subgroups of cyclic groups are cyclic.

Corollary. The only subgroups of $(\mathbb{Z}, +)$ are $\langle m \rangle$ for $m \in \mathbb{Z}$.

Theorem 1.9

Given $m, n \in (\mathbb{Z}, +)$, not both zero,

- a) $\langle m, n \rangle = \{ms + nt : s, t \in \mathbb{Z}\} = \langle d \rangle$ for some $d \in \mathbb{Z}^+$. b) $\exists s_0, t_0 \in \mathbb{Z}, \gcd(m, n) = s_0 m + t_0 n$ (Bezout's identity).
- c) if $d = \gcd(m, n)$, then $\gcd(\frac{m}{d}, \frac{n}{d}) = 1$
- d) m, n relatively prime if and only if $\langle m, n \rangle = \mathbb{Z}$.

Corollary. If $\alpha \in \mathbb{Z}/m\mathbb{Z}$, then α has a multiplicative inverse if and only if $gcd(\alpha, m) = 1$.

Lemma. A group homomorphism is injective if and only if its kernel is trivial.

Theorem 1.10

- In $\mathbb{Z}/m\mathbb{Z}$, let $d, m \ge 1$, a) if d|m then $\langle d \rangle$ is cyclic of order $\frac{m}{d}$.
 - b) In general, $\langle \alpha \rangle = \langle \gcd(\alpha, m) \rangle$ is cyclic with order $\frac{m}{\gcd(\alpha, m)}$.

Definition. Given a group G with generating set S, the Cayley graph $\Gamma = \Gamma(G, S)$ is a colored digraph constructed as follows

- Each $g \in G$ is assigned a vertex.
- Each generator $s \in S$ is assigned a color c_s .
- For any $g \in G$, $s \in S$, the edge (g, gs), with color c_s , is in $E(\Gamma)$.

1.3 Symmetric Groups

Let $X = \{1, 2, ..., n\}$. Recall that the symmetric group on n letters, Σ_n , is the set of all bijections $f: X \to X$. For example, in Σ_5 , with array notation we can write

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$$

or equivalently,

$$\tau = (1245).$$

Proposition 1.11. Every permutation σ of a finite set is a product of disjoint cycles.

Proof. Let B_1, \ldots, B_r be the orbits of σ and let μ_i be the cycle defined by

$$\mu_i = \begin{cases} \sigma(x) & \text{for } x \in B_i \\ x & \text{otherwise} \end{cases}$$

Then $\sigma = \mu_1 \dots \mu_r$ and the μ_i are disjoint since the equivalence class orbits B_i are disjoint.

Proposition 1.12. Let $\tau = (a_1 a_2 \dots a_k)$ and $\sigma = (b_1 b_2 \dots b_j)$ be distinct cycles. Then $|\tau| = k$ and $|\sigma\tau| = \text{lcm}(k, j)$.

Definition. A transposition is a cycle composed of two elements.

Any permutation can be written be a product of transpositions. In particular, $(a_1 a_2 \dots a_k) = (a_1 \ a_k)(a_1 \ a_{k-1}) \dots (a_1 \ a_2)$.

Lemma. If $x \in \Sigma_n$ has t orbits in $\{1, \ldots, n\}$ then (ij)x has $t \pm 1$ orbits.

Proof. The proof breaks down into two cases, where i, j are in the same cycle or different cycles. In either case, it suffices to show the number of orbits changes by 1.

Proposition 1.13. If $\sigma \in \Sigma_n$ and

$$\sigma = \tau_1 \tau_2 \dots \tau_r = \tau_1' \tau_2' \dots \tau_{r'}',$$

where τ_i are transpositions, then $r \equiv r' \mod 2$.

Proof. Since any permutation can be expressed as a product of transpositions, we can equivalently generate the permutation by swapping rows in I_n . If C is a matrix obtained by a permutation σ of the rows of I_n , such that C can be obtained by both an odd and an even number of transpositions, then $\det C = 1$ and $\det C = -1$, a contradiction.

Definition. Define A_n to be the set of all $\sigma \in \Sigma_n$ such that σ has even parity. We call A_n the alternating group.

Proposition 1.14. A_n is a subgroup of Σ_n and $|A_n| = \frac{n!}{2}$.

Theorem 1.15: Cayley

If G is a finite group, then G is isomorphic to a subgroup of some Σ_n .

Proof. Suppose $\phi: X \to X$ and $\theta: X \to \{1, \dots, n\}$ are bijective. Define $\Psi: \Sigma(X) \to \Sigma_n$ by $\Psi(\phi) = \theta \phi \theta^{-1}$. It is easily verified that Ψ is a bijective homomorphism. Now, let G be a group with $|G| < \infty$ and define $\lambda: G \to \Sigma(G)$ by $\lambda(g) = L_g$. Again it is easily verified that λ is an injective homomorphism. Therefore, $\Psi \lambda: G \to \operatorname{Im}(\Psi \lambda)$ is an isomorphism. Moreover, $\operatorname{Im}(\Psi \lambda) \leq \Sigma_n$.

1.4 Dihedral Groups

Given a simple graph (V, E), the automorphism group, $\operatorname{Aut}(V, E)$, is the set of all bijective function $f: V \to V$ that preserve adjacency. Note that this is a subgroup of $\Sigma(V) \cong \Sigma_{|V|}$.

Proposition 1.16. The order of D_n is 2n and $D_n = \{e, r, \dots, r^n, s, rs, \dots, r^{n-1}s\}$

Examples.

- For the complete graphs, K_n , we have $\operatorname{Aut}(K_n) = \Sigma_n$.
- For cycle graphs, $\operatorname{Aut}(C_n) = D_n = \{e, r, r^2, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}$, where r is a rotation and s a reflection. Thus $|D_n| = 2n$.

1.5 Cosets & Lagrange

Definition (Coset). Given $H \leq G$, a left coset of H in G is a subset of the form $gH = \{gh : h \in H\}$. A right coset is defined similarly.

Lemma. If $H \leq G$ and $h \in H$, then hH = H.

Theorem 1.17

If $H \leq G$ and $g_1, g_2 \in G$, then

- $Hg_1 = Hg_2$ if and only if $g_1 = hg_2$ for some $h \in H$.
- $g_1H = g_2H$ if and only if $g_1 = g_2h$ for some $h \in H$.

Theorem 1.18

If $H \leq G$, then for any two left cosets g_1H and g_2H , either

- a) $q_1H \cap q_2H = \emptyset$; or
- b) $g_1H = g_2H$.

An analogous theorem applies for right cosets as well.

Corollary. If $H \leq G$, then the distinct left (right) cosets partition G.

Definition. Given $H \leq G$, define (G : H) to be the index of H in G, that is the number of distinct left (right) cosets of H in G.

Lemma. If $H \leq G$ and $|G| < \infty$, then |gH| = |H|.

Theorem 1.19: Lagrange

If G is a finite group and $H \leq G$, then |G| = |G:H||H|. Thus |H| divides |G|.

Warning. The converse of Lagrange's theorem, that for any divisor d of |G| there exists a subgroup of order d, is not necessarily true.

Corollary. If $x \in G$ and $|G| < \infty$, then |x| divides |G|.

1.6 Direct Products

Definition. Given $(G_1, \star_1), \ldots, (G_n, \star_n)$, the direct product $G_1 \times \ldots \times G_n$ under \star is given by $(x_1, \ldots, x_n) \star (y_1, \ldots, y_n) = (x_1 \star_1 y_1, \ldots, x_n \star_n y_n)$. This product is also a group.

Theorem 1.20

If (m,n)=1, then $(1,1)\in\mathbb{Z}_m\times\mathbb{Z}_n$ has order mn, thus $\mathbb{Z}_m\times\mathbb{Z}_n\cong\mathbb{Z}_{mn}$. Moreover, if $m=p_1^{\alpha_1}\ldots,p_t^{\alpha_t}$, for prime $p_1<\ldots< p_t$, then $\mathbb{Z}_m\cong\mathbb{Z}_{p_1^{\alpha_1}}\times\ldots\times\mathbb{Z}_{p_t^{\alpha_t}}$.

We say a finite group G is a p-group if $|G| = p^i$ for some prime p and some $i \in \mathbb{N}$.

Theorem 1.21: Structure Theorem 1

If A is any finite abelian group, then A is isomorphic to a finite product of cyclic p-groups. Furthermore, two finite abelian groups A, B are isomorphic if and only if the number of cyclic groups of type \mathbb{Z}_{p^i} is the same for each p and $i \geq 1$.

1.7 Isometries

An (Euclidean) isometry is a function $f: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$||f(x) - f(y)|| = ||x - y||,$$

for all $x, y \in \mathbb{R}^n$. Note that compositions of isometries are also isometries and that all isometries are injective.

Examples.

- The translation group: $\{T_b : b \in \mathbb{R}^n, T_b(x) = x + b\}$
- Orthogonal group: $\{L_A : A \in O(n)\}$
- Euclidean group: $E(n) = \{\Psi : \Psi(x) = Ax + b, A \in O(n), b \in \mathbb{R}^n\}$

2 Quotient Groups Algebra I

Lemmas. Given orthonormal basis u_1, \ldots, u_n of \mathbb{R}^n , there exists $A \in O(n)$ such that $Au_i = e_i$ for all $1 \leq i \leq n$, where e_i are the standard basis vectors.

A point $\vec{x} \in \mathbb{R}^n$ is uniquely determined by $||\vec{x}||$ and $||\vec{x} - e_i||$ for $1 \le i \le n$.

If $\Psi: \mathbb{R}^n \to \mathbb{R}^n$ is an isometry such that $\Psi(0) = 0$ and $\Psi(e_i) = e_i$ for $1 \le i \le n$, then $\Psi = \mathrm{id}$.

Theorem 1.22

The isometries of \mathbb{R}^n are exactly E(n). Moreover, the isometries of \mathbb{R}^2 are generated by translations, rotations, and reflections.

Every isometry of \mathbb{R}^2 is either a translation, reflection, rotation, or glide reflection (reflection + translation). Rotation about a point: $R_{c,\theta}(p) = c + R_{0,\theta}(p-c)$.

2 Quotient Groups

Definition (Normal). A subgroup N of a group G is normal if one of the following equivalent conditions hold.

- a) $\forall g \in G, gN = Ng$.
- b) $\forall g \in G, g^{-1}Ng = N.$
- c) $\forall g \in G, g^{-1}Ng \subset N$.
- d) $\forall n \in N, \forall q \in G, q^{-1}nq \in N.$

We write $N \subseteq G$.

Proposition 2.1. Let $H \leq G$. Then left coset multiplication is well-defined by (aH)(bH) = (ab)H if and only if H is a normal.

Proof. Given xH = x'H and yH = y'H, we know that $x = x'h_1$ and $y = y'h_2$ for some $h_1, h_2 \in H$. Thus, $\forall x', y' \in G$, we have $xy = (x'h_1)(y'h_2) = (x'y')h$ if and only if

$$h_1 y' h_2 = y' h$$

$$\leftrightarrow h_1 y' = y' h h_2^{-1} = y' h'$$

$$\leftrightarrow \forall y' \in G, Hy' \subseteq y' H.$$

Corollary. Let $H \subseteq G$. Then the cosets of H forms a group G/H under the binary operation (aH)(bH) = (ab)H. This group is called the quotient group of G by H.

Proposition 2.2. Let $f: G \to G'$ be a homomorphism. Then there exists a homomorphism $\overline{f}: G/N \to G'$ such that $\overline{f}(\overline{x}) = f(x)$ for all $x \in G$ if and only if $N \subseteq \ker(f)$.

Proof. Suppose \overline{f} exists. Then, for any $n \in N$, $f(n) = \overline{f}(\overline{n}) = \overline{f}(nN) = \overline{f}(eN) = \overline{f}(\overline{e}) = e$. Thus, $n \in \ker(f)$. Conversely, suppose $N \subseteq \ker(f)$. Then xN = x'N if and only if x = x'n for some $n \in N$. Thus f(x) = f(x'n) = f(x')f(n) = f(x'). Therefore, \overline{f} is well-defined and for any $\overline{x}, \overline{y} \in G/N$, $\overline{f}(\overline{x}\overline{y}) = \overline{f}(\overline{xy}) = f(xy) = f(x)f(y) = \overline{f}(\overline{x})\overline{f}(\overline{y})$.

Quotient Groups Algebra I

Figure 1: Commutative diagram for theorem 2.3.

Theorem 2.3: First Isomorphism Theorem

- Let $\varphi:G\to G'$ be a homomorphism. Then a) $K=\ker(\varphi)$ is a normal subgroup of G. b) there exists a homomorphism $\overline{\varphi}:G/K\to G'$ where $\overline{\varphi}(\overline{x})=\varphi(x)$ for all $x\in G$.
 - c) $\operatorname{Im}(\varphi) = \operatorname{Im}(\overline{\varphi})$ is a subgroup of G'.
 - d) $G/ker(\varphi) \cong Im(\varphi)$.

Proof. (a) Let $K = \ker(\varphi)$. Then, for any $g \in G$, $k \in K$, $\varphi(gkg^{-1}) = e$. Thus, $gkg^{-1} \in K$.

(d) It suffices to check that $\overline{\varphi}$ is one-to-one, but $\ker(\overline{\varphi}) = \overline{\ker(\varphi)} = {\overline{e}}$.

2.1 **FIT Applications**

- a) $\mathbb{R}/\mathbb{Z} \cong (S^1, \cdot)$ via $t \mapsto e^{2\pi it}$.
- b) $G/\{e\} \cong G$ by the identity homomorphism.
- c) $G/G \cong \{e\}$ by the trivial homomorphism.
- d) $G_1 \times G_2/G_1 \times \{e\} \cong G_2$, via the projective homomorphism π_2 .
- e) $\operatorname{sgn}: \Sigma_n \to (\{\pm 1\}, \cdot)$, defined by

$$\operatorname{sgn}(\sigma) = \begin{cases} 1 & \text{if } \sigma \in A_n \\ -1 & \text{otherwise} \end{cases}$$

is a homomorphism. Thus, $\ker(\operatorname{sgn}) = A_n$ is normal and $\sigma_n/A_n \cong (\{\pm 1\}, \cdot)$.

- f) For any group $G, Z(G) \subseteq G$. Note $PGL_n(\mathbb{R}) = GL_n(\mathbb{R})/Z(GL_n(\mathbb{R}))$ is called the projective linear group.
- g) A group commutator is an element $[x,y] = xyx^{-1}y^{-1}$. Note that $[x,y] = e \leftrightarrow xy = yx$, $[x,y]^{-1}=[y,x]$, and for any homomorphism ϕ , $\phi([x,y])=[\phi(x),\phi(y)]$. Define the **commutator subgroup** of a group G to be $[G, G] = \langle \{[x, y] : x, y \in G\} \rangle$.

Proposition 2.4. Then, we have that $[G,G] \subseteq G$ and G/[G,G] is abelian. We say G/[G,G] is the **abelianization** of G, denoted G_{ab} .

Proposition 2.5. If $H \leq G$ and |G:H| = 2, then $H \leq G$.

A simple group G is a group with no normal proper subgroups besides the trivial subgroup.

Quotient Groups Algebra I

2.2 Classification of Finite Simple Groups

Every finite simple group is isomorphic to one of the following:

- Cyclic groups of prime order
- $A_n, n \geq 5$
- One of 16 families of Lie type
- One of 26 "sporadic" groups.

A composition series is a subnormal series $\{e\} = H_n \subseteq H_{n-1} \subseteq \ldots \subseteq G = H_0$, such that each factor group H_i/H_{i-1} is simple. The factor groups are called **composition factors**. The Jordan-Hölder theorem states that any two composition series for a group G have isomorphic factors.

2.3 **Group Action**

A group action of a group G on a set X is given by $\rho: G \times X \to X$ subject to

- a) $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$ for all $g_1, g_2 \in G, x \in X$;
- b) $e \cdot x = x$ for all $x \in X$

where $g \cdot x$ denotes $\rho(g, x)$.

Given $x_0 \in X$ and an action of G on X, we denote $\mathcal{O}_{x_0} = \{g \cdot x_0 : g \in G\}$ as the **orbit of** x_0 under the group action. The set of all $g \in G$ that fix $x_0, G_{x_0} = \{g \in G : g \cdot x = x\}$ is the **stabilizer** (isotropy) subgroup of x_0 . A group action is transitive if X is non-empty and if for each pair $x, y \in X$ there exists a $g \in G$ such that $g \cdot x = y$.

Proposition 2.6. Given $x_0, x_1 \in X$ either $\mathcal{O}_{x_0} \cap \mathcal{O}_{x_1} = \emptyset$ or $\mathcal{O}_{x_0} = \mathcal{O}_{x_1}$.

Examples.

- (g,xH) → gxH is a group action G × G/H → G/H.
 (g₁,g₂) → g₁g₂ defines a group action G × G → G.
 (g,x) → gxg⁻¹ defines a group action G × X → X. The orbit O_{x0} is called the conjugacy class of x_0 . The isotropy subgroup G_{x_0} is the centralizer of x_0 .

Proposition 2.7. (Orbit Stabilizer Theorem) Given G acting on X and $x_0 \in X$, there exists a bijection $\phi: G/G_{x_0} \to \mathcal{O}_{x_0}$. Thus $|\mathcal{O}_{x_0}| = |G:G_{x_0}| = |G|/|G_{x_0}|$, when G is finite.

Proof. Let $H = G_{x_0}$. Define ϕ by $\phi(gH) = g \cdot x_0$. Show ϕ is a well-defined bijection.

Define X^G to be the set of all $x \in X$ that are fixed by every element of G, or equivalently, the set of $x \in X$ with orbit size one. Similarly, define X^g to be the set of all $x \in X$ fixed by $g \in G$. Note that $X^G = \bigcap_{g \in G} X^g = \bigcap_{x \in X} \mathsf{Stab}(x)$.

A corollary to proposition 2.7 is that

$$|X| = \sum_{\text{distinct } \mathcal{O}_x} |\mathcal{O}_x| = |G| \sum_{\substack{\text{distinct stabilizers}}} \frac{1}{|G_x|}$$

2 Quotient Groups Algebra I

Thus

$$|X| = |X^G| + |G| \sum_{\substack{\text{distinct } G_x \\ |\mathcal{O}_x| > 1}} \frac{1}{|G_x|}.$$

In the particular case where G is a p-group we have

$$|X| \equiv |X^G| \pmod{p}.$$

Corollary. If $|G| = p^2$ then G is abelian and $G \cong \mathbb{Z}_{p^2}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Corollary. If G is a p-group then $|G| \cong |Z(G)| \mod p$. Thus, if G is non-trivial, then p||Z(G)|, so Z(G) is non-trivial.

Theorem 2.8: Cauchy

If p is prime and G is a finite group such that p|G|, then G contains an element of order p.

Proof. Let $X = \{(g_1, \ldots, g_p) : g_i \in G, g_1 \ldots g_p = e\}$. Then $|X| = |G|^{p-1} \equiv 0 \mod p$. Define $T: X \to X$ by

$$T(g_1,\ldots,g_p)=(g_2,g_3,\ldots,g_p,g_1).$$

(Verify T indeed maps onto X). Then $\langle T \rangle$ is a cyclic p-group. Let $\langle T \rangle$ act on X, then $|X| \equiv |X^{\langle T \rangle}| \equiv 0 \mod p$. However, $X^{\langle T \rangle}$ is precisely the set of all p-tuples (x, \ldots, x) satisfying $x^p = e$. Since $e^p = e$ and $p \geq 2$, we have existence.

2.4 Burnside's Formula

Given G acting on X with $|X|, |G| < \infty$. Let r be the number of orbits in X under G, then

$$r = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

Proof. Consider the set of all pairs $(g, x) \in G \times X$ such that gx = x and let N be the number of such pairs. Then for some $g \in G$, $|X^g|$ is the number of x fixed by g, so

$$N = \sum_{g \in G} |X^g| \tag{2.1}$$

On the other hand, for some $x \in X$, $|G_x|$ is the number of $g \in G$ that fix x, so

$$N = \sum_{x \in X} |G_x|.$$

Recall that $|xG| = |G:G_x| = |G|/|G_x|$. Substituting we have

$$N = \sum_{x \in X} \frac{|G|}{|xG|},\tag{2.2}$$

but since 1/|xG| is fixed for all x in the same orbit, for any orbit, $\sum_{x\in\mathcal{O}}\frac{1}{|xG|}=1$. In other words, $\sum_{x\in X}\frac{1}{|xG|}=r$. By equating (2.1) with (2.2), we obtain the desired result.

3 Sylow Theory Algebra I

Example. Suppose we color the edges of a 3-gon from a set of 4 colors. Let S be the set of all possible colors (we assume that the vertices of the 3-gon are labeled). Thus $|S| = 4^3$. The number of distinguishable colorings is the number of orbits of S under D_3 . There are 16 colorings which are fixed for each nontrivial reflection. There a 4 colorings which are fixed for each nontrivial rotation. Thus

orbits =
$$\frac{1}{6}(64 + 16 + 16 + 16 + 4 + 4) = 20$$
.

3 Sylow Theory

Let G be a group and S the set of subgroups of G. Suppose G acts on S via conjugation. We denote the isotropy subgroup of H under this action by $N_G(H)$, the **normalizer** of H in G. Note that $H \leq N_G(H) \leq G$, since by any element of H will fix H under conjugation, so H is a normal subgroup of its normalizer. Therefore $N_G(H)$ is well-defined and

$$|G:H| = |G:N_G(H)||N_G(H):H|.$$

Thus $|G:N_G(H)|$ divides |G:H|.

Lemma. If P is a p-subgroup of a finite group G, then

$$|G:P| = |N_G(P):P| \bmod p.$$

Proof. Consider P acting on G/P via p(xP) = (px)P. Then $p(xP) = xP \leftrightarrow x^{-1}px \in P$. Therefore, $xP \in (G/P)^P \leftrightarrow x \in N_G(P)$. Hence $(G/P)^P = N_G(P)/P$. Therefore since $|(G/P)^P| \equiv |G/P|$ mod p, we're done.

Theorem 3.1: Sylow I

Let G be a finite group with $|G| = p^{\alpha}m$ such that gcd(m, p) = 1 for some prime p. Then there exists

$$e \triangleleft P_1 \triangleleft \ldots \triangleleft P_{\alpha} \triangleleft G$$

such that $|P_i| = p^i$ for all $1 \le i \le \alpha$.

Proof. We proceed by induction on i. For i = 0, it's trivial. Assume we have

$$e \unlhd P_1 \unlhd \ldots \unlhd P_i \subseteq G$$
,

such that $|P_i| = p^i$ for all $1 \le i \le j < \alpha$. Then $|G:P_j| = p^{\alpha-j}m \equiv 0 \mod p$. Thus $|N_G(P_j)/P_j| \equiv |N_G(P_j):P_j| \equiv 0 \mod p$, which implies $|N_G(P_j)/P_j|$ is a nonzero multiple of p.

Definition. A Sylow p-subgroup P of a group G is a maximal p-subgroup of G. Define $Syl_p(G)$ to be the set of all Sylow p-subgroups of G and $n_p(G)$ the number of Sylow p-subgroups of G.

Theorem 3.2: Sylow II

Given G as in 3.1, any two Sylow p-subgroups of G are conjugate and thus isomorphic.

3 Sylow Theory Algebra I

Theorem 3.3: Sylow III

Given G as in 3.1, $n_p(G) = |G: N_G(P)| \equiv 1 \mod p$.

Theorem 3.4: Sylow IV

Given G as in 3.1, any p-subgroup of G is a subgroup of a Sylow p-subgroup of G.

3.1 Applications

Proposition 3.5. Let |G| = pq for distinct primes p > q. Then there exists a normal subgroup $N \leq G$ such that |N| = p. Thus G isn't simple.

Proof. We have $n_p(G) \mid q$ and $n_p(G) \equiv 1 \mod p$. Thus $n_p(G) = 1$, so there is only one Sylow p-subgroup, say P. By Sylow II, P is normal.

Lemma. Given $N_1, N_2 \subseteq G$ with $N_1N_2 = G$ and $N_1 \cap N_2 = \{e\}$, then $G \cong N_1 \times N_2$.

Proof. We'll show that for any $x \in N_1, y \in N_2$ we have xy = yx. Consider $(xyx^{-1})y^{-1} = x(yx^{-1}y^{-1})$ which is clearly in the intersection of N_1 and N_2 . Thus, $xyx^{-1}y^{-1} = e$, i.e. xy = yx. Now define $\theta: N_1 \times N_2 \to G$ such that $\theta(x,y) = xy$. Then θ is the desired isomorphism.

Proposition 3.6. If |G| = pq for distinct primes p > q and $p \not\equiv 1 \mod q$, then $G \cong \mathbb{Z}_p \times \mathbb{Z}_q$.

Proof. As in prop. 3.5. $n_p(G) = 1$ and by the hypothesis that $p \not\equiv 1 \mod q$ we have $n_q(G) = 1$. Denote the Sylow p and q-subgroups by P and Q, respectively. By Lagrange, $x \in P \cap Q$ then |x| divides p and q. Thus x = e. Recall that $|PQ| = |P||Q|/|P \cap Q| = |G|$, so PQ = G. By the lemma, we're done.

Proposition 3.7. Let $|G| = p^a q$ for distinct primes p > q. Then G has a normal Sylow p-subgroup so G is not simple.

Proposition 3.8. Let G = pqr for distinct primes p < q < r. Then either G has a normal Sylow r-subgroup of G has a normal Sylow q-subgroup. Thus G isn't simple.

Proof. $n_r(G) \mid pq$ and $n_r(G) \equiv 1 \pmod{r}$, thus either $n_r(G) = 1$, in which case we're done, or $n_r(G) = pq$. WLOG we have $n_r(G) = pq$. If $R \in \operatorname{Syl}_r(G)$ then R is cyclic. Thus R has r-1 elements of order r. If $R' \neq R$ is some other Sylow r-subgroup, then $R \cap R' = \{e\}$. Thus the number of elements of order r in G is pq(r-1). In particular, the number of elements of order not equal to r is pq. Then $n_q(G) = 1$, r, or pr. So WLOG $n_q(G) \geq r$. Thus the number of elements of order q is at least r(q-1). Therefore, r(q-1) < pq, a contradiction.

It is a well-known result that if G is a non-abelian simple group then $|G| \ge 60$. In particular A_5 is the smallest such group.

4 Rings & Fields

Definition. A ring $(R, +, \cdot)$ is a set R equipped with two binary operations, "addition" (+) and "multiplication" (\cdot) such that:

- (1) (R, +) is an abelian group with identity 0;
- (2) (R, \cdot) is a monoid with identity 1; and
- (3) for any $a, b, c \in R$ we have $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.

We denote the additive inverse of $x \in R$ by -x and the multiplicative inverse x^{-1} (if it exists). We say a ring is commutative if and only if \cdot is commutative. The set of units of the ring R is the set of units of the monoid (R, \cdot) .

Proposition 4.1. For any $x, y \in R$

- a) $0 \cdot x = 0 = x \cdot 0$
- b) $x \cdot (-y) = -(x \cdot y) = (-x) \cdot y$
- c) $(-x) \cdot (-y) = x \cdot y$.

It follows that for any nontrivial ring R we have $0 \neq 1$.

A ring R such that Units $(R) = R \setminus \{0\}$ is a **division ring**. A commutative division ring is called a **field**. A subset S of a ring R is a **subring** if $(S, +, \cdot)$ is also a ring (S must be closed under the binary operations). A subset <math>S of a field F is a **subfield** if S is a subring of F such that for any $x \neq 0$ in S, then $x^{-1} \in S$, that is S is also a field.

Definition. Given rings R_1, R_2 , a ring homomorphism is a function $f: R_1 \to R_2$ such that for all $x, y \in R_1$,

- a) f(x+y) = f(x) + f(y)
- b) f(xy) = f(x)f(y)
- c) f(1) = 1.

In particular, if f is bijective, then f is a ring isomorphism.

The **kernel** of the ring homomorphism $f: R_1 \to R_2$ is $\ker(f) = \{x \in R : f(x) = 0\}$. Thus, by group theory, f is injective if and only if the kernel of f is trivial.

A pair of zero divisors in a ring is a pair of nonzero elements $x, y \in R$ such that xy = 0. We say x and y are individually zero divisors. An **integral domain** is a commutative ring with no zero divisors.

Proposition 4.2. If R is an integral domain and $a, x, y \in R$, then ax = ay implies x = y when $a \neq 0$.

Proof. Assume $a \neq 0$. We have ax = ay, so a(x - y) = 0. Since R is an ID, it has no zero divisors, hence x - y = 0.

Proposition 4.3. If R is an ID, then R[X] is an ID.

Proposition 4.4. If R is a finite ID, then R is a field.

Given a ring $(R, +, \cdot)$, if the order of 1 in (R, +) is infinite, we say R has **characteristic 0**. Otherwise, if the order of 1 is m, then we say R has **characteristic** m.

Note that if R is an ID, either R has characteristic 0 or R has prime characteristic.

4.1 Euler's Theorem

The Euler phi function $\phi(n)$ is the number of positive integers less than n that are relatively prime to n. Note $\phi(p^a) = (p-1)p^{a-1}$ for prime p.

Proposition 4.5. If (m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.

Proof. This follows from the fact that $\rho: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ given by $\rho(\alpha) = (\alpha, \alpha)$ is a ring homomorphism and the number of units of $R \times S$ is the number of units of R times that of S.

Corollary. If $n = p_1^{a_1} \dots p_k^{a_k}$, then $\phi(n) = \phi(p_1^{a_1}) \dots \phi(p_k^{a_k})$.

Euler's Theorem. For any $a \in \mathbb{Z}$, we have $a^{\phi(m)} \equiv 1 \mod m$. Note that FLT is a special case of Euler's theorem, where m is prime.

4.2 Field of Quotients

Theorem 4.6

If R is a subring of a field, then R is an ID. Moreover, if R is an ID, then there exists a field F such that R is a subring of F.

Proof. The first way is obvious. So let R be an ID. We'll construct the 'field of fractions' as follows. Define $pre(F) = \{(r,s) \in R \times S \setminus \{0\}\}$. Define \sim on pre(F) by $(r,s) \sim (r',s')$ if and only if rs' = sr'. Then \sim is an equivalence relation. It follows that $F = pre(F) / \sim$ is a field. Furthermore, the injection $\theta : R \to F$ by $\theta(r) = (r,1)$ is a ring homomorphism, so 'R is in F'.

4.3 Rings of Polynomials

Let R be a commutative ring and R[x] the ring of polynomials with coefficients in R. Given $p \in R$ define the evaluation map $ev_p : R[X] \to R$ by $ev_p(f(x)) = f(p)$. Note ev_p is a ring homomorphism.

Definition. Given $f(x) \in R[x]$ and $p \in R$, p is a root of f(x) if and only if f(p) = 0. Equivalently, $ev_p(f(x)) = 0$ or $f(x) \in \ker ev_p$.

Proposition 4.7. Let F be a field. Given $p(x) \in F[x]$ and $q(x) \in F[x] \setminus \{0\}$ there exists polynomials s(x) and r(x) such that

$$p(x) = s(x)q(x) + r(x) \text{ in } F[x],$$

where r(x) has degree 0 or degree less than p(x).

Proof. The claim is trivial when p(x) = 0. So WLOG $p(x) \neq 0$. If $\deg(p) < \deg(q)$, there is nothing to prove. So WLOG assume $\deg(p) \geq \deg(q)$. Say $p(x) = a_0 + \dots + a_k x^k$ and $q(x) = b_0 + \dots + b_l x^l$

where $k \geq l$, $a_k \neq 0$, and $b_l \neq 0$. We'll induct on k. The base case is when k < l. Consider $n(x) = p(x) - \frac{a_k}{b_l} x^{k-1} q(x)$. We have $\deg(n) < k$. By the inductive hypothesis, we have $n(x) = \hat{s}(x)q(x) + r(x)$ for suitable r(x). Hence p(x) = s(x)q(x) + r(x), for $s(x) = \hat{s}(x) + \frac{a_k}{b_l} x^{k-l} q(x)$

4.4 Factorization

Proposition 4.8. If F is a field and $p(x) \neq 0 \in F[x]$, then $\alpha \in F$ is a root of p if and only if $p(x) = (x - \alpha)q(x)$ for $q(x) \in F[x]$.

Corollary. If F is a field and $p(x) \neq 0 \in F[x]$ with $\deg(p(x)) = d$, then p has at most d distinct roots in F. Similarly, if R is an ID and $p(x) \neq 0 \in R[x]$ has $\deg(p(x)) = d$, then p has at most d distinct roots in R.

Proposition 4.9. Let F be a field and let F^{\times} denote the multiplicative group of units of F. If G is a subgroup of F^{\times} then G is cyclic.

Corollary. In the field \mathbb{Z}_p , there exists at least one primitive generator α such that $\{1, \alpha, \dots, \alpha^{p-2}\} = \{1, \dots, p-1\}$.

Corollary. Let R be an ID and R^{\times} the multiplicative group of units of R. If G is a finite subgroup of R^{\times} , then G is cyclic.

Let R be an ID and let $x \neq 0$ be in R. A factorization x = ab can be **proper** or **improper**. The later being the case where either a or b is a unit, the former where neither is a unit. If x is a non-unit, then x is **reducible** if it has a proper factorization. Otherwise, we say x is **irreducible**. If $x, y \in R$ such that x = uy for a unit $u \in R$, then we say x and y are **associates**. Note the associate relation is an equivalence relation, which partitions R into **associate classes**.

- Over any field, all linear polynomials are irreducible.
- A quadratic and cubic polynomial is irreducible in F[x] if and only if it doesn't have a root in F.
- Let F be a field of $\operatorname{char}(F) \neq 2$. Then $ax^2 + bx + c$, $a \neq 0$, has a root α in F if and only if $\Delta = b^2 4ac$ is a square in F. That is, there exists $\beta \in F$, such that $\beta^2 = \Delta$. When this happens

$$\alpha = \frac{-b \pm \beta}{2a}.$$

Lemma (Gauss). Let p(x) be a non-constant polynomial with integer coefficients. If p(x) is irreducible over $\mathbb{Z}[x]$, then p(x) is irreducible over $\mathbb{Q}[x]$.

Eisenstein's Criterion. Let $n \ge 1$ and $q(x) = a_0 + \ldots + a_n x^n$ with $a_i \in \mathbb{Z}$ and $a_n \ne 0$. If p is a prime such that $p \mid a_j$ for $0 \le j < n$, $p \nmid a_n$ and $p^2 \nmid a_0$, then q is irreducible over the rationals.

Proof. Suppose Q(x) satisfies the above criterion but is reducible over $\mathbb{Q}[x]$. By Gauss' lemma, Q is reducible in $\mathbb{Z}[x]$, so it can be written Q = GH for two non-constant polynomials G and H. Reducing Q = GH modulo p, all but the leading term of Q vanishes, by hypothesis. But then, necessarily, all but the leading terms of G and H vanish. In particular, the constant terms of G and G vanish, so they are divisible by G. Hence G divides the constant term of G, a contradiction.

Example. (Cyclotomic polynomials) Consider $\Phi_p(x) = \frac{x^p-1}{x-1} = 1 + x + \ldots + x^{p-1}$. By Eisenstein, $\Phi_p(x+1)$ is irreducible over $\mathbb{Q}[x]$, thus $\Phi(x)$ is irreducible over $\mathbb{Q}[x]$.

The p-adic valuation of an integer n, denoted $\nu_p(n)$, is the largest power of p that divides n. For example, Legendre's formula is $\nu_p(n!) = \sum_{k>1} \lfloor \frac{n!}{p^k} \rfloor$.

Definition (UFD). A ring R is a unique factorization domain (UFD) if

- a) R is an ID;
- b) for any nonzero $x \in R$, $\exists u, p_1, \dots, p_j$ where u is a unit, p_i are irreducibles, and $p_i \not\sim p_j$ whenever $i \neq j$, such that $x = up_1^{\ell_1} \dots p_k^{\ell_k}$ for $\ell_1, \dots, \ell_k \in \mathbb{Z}_{\geq 0}$;
- c) if $up_1^{\ell_1}\dots p_k^{\ell_k}$ and $vq_1^{m_1}\dots q_s^{m_s}$ are two factorizations of x (as in (b)), then k=s and $\exists \sigma \in \Sigma_S$ such that $p_i \sim q_{\sigma(i)}$ and $\ell_i = m_{\sigma(i)}$ for all $1 \leq i \leq s$.

Definition (ED). A ring R is a Euclidean Domain (ED) if

- a) R is an ID;
- b) $\exists f: R \setminus \{0\} \to \mathbb{Z}_{>0}$ called the Euclidean function satisfying $f(a) \leq f(ab)$ for all $a, b \in R \setminus \{0\}$;
- c) (Euclidean algorithm) if nonzero $\alpha, \beta \in R$ then $\alpha = q\beta + r$ where r = 0 or $f(r) \leq f(\beta)$.

Examples.

- \mathbb{Z} with f(n) = |n| is a ED.
- For a field F, F[x] with $f(p(x)) = \deg(p(x))$ is a ED.
- (Gaussian integers) $\mathbb{Z}[i]$ with $f(a+bi)=a^2+b^2$ is a ED. Note for $a+bi, c+di \in \mathbb{Z}[i]$, we have

$$a + bi = (c + di)(\lambda + \mu i) + \underbrace{(c + di)((\gamma + \delta i) - (\lambda + \mu i))}_{r}$$

where $\gamma + \delta i = \frac{a+bi}{c+di}$ and $\lambda + \mu i \in \mathbb{Z}[i]$ minimizes $\Delta = \|(\lambda + \mu i) - (\gamma + \delta i)\|^2$. We have $\Delta \leq \frac{1}{2}$ so $\|r\|^2 \leq \frac{1}{2} \|c + di\|^2$.

Proposition 4.10. Any ED is a UFD.

Lemma. Let R be an ED with Euclidean function $f: R\setminus\{0\} \to \mathbb{Z}_{\geq 0}$. Then (a) $f(1) = \min_{x\in R\setminus\{0\}} f(x)$ (b) x is a unit if and only if f(x) = f(1) (c) f(a) = f(ab) for some $a \neq 0$ if and only if b is a unit and (d) if α, β are associate, then $f(\alpha) = f(\beta)$.

Proof. (a) Set a = 1 if $f(a) \le f(ab)$.

- (b) $f(x) \le f(xx^{-1}) = f(1)$, so f(x) = f(x) by a. Conversely, if f(x) = f(1), then 1 = qx + r where r = 0 or f(r) < f(x) = f(1). Thus r = 0 and qx = 1.
- (c) For the reverse direction, $f(a) \le f(ab) \le f((ab)b^{-1}) = f(a)$. Conversely, we have a = (ab)c + r for r = 0 or f(r) < f(ab) = f(a). If $r \ne 0$, then r = a(1 bc) so $f(a) \le f(a(1 bc)) = f(r)$, contradiction. (d) is a special case of (c).

Proposition 4.11. Let R is an ED and $\alpha \neq 0$ in R. If $\alpha = x_1 \dots x_n$ where $n > f(\alpha)$ then at least one x_j is a unit.

Proof. Suppose $\alpha = x_1 \dots x_n$ where x_j is not a unit. Then $f(\alpha) = f(x_1(x_2 \dots x_n)) > f(x_2 \dots x_n) > \dots f(x_n) > f(1) \geq 0$, i.e. $f(\alpha) \geq n$.

Corollary. (Existence of factorizations in EDs) If R is a ED and $x \neq 0$ in R, then x has a factorization as in the definition of UFD.

Definition (Prime). Let R be an ID, a nonzero, non-unit $p \in R$ is prime if $p \mid ab$ implies $p \mid a$ or $p \mid b$.

Proposition 4.12. Primes are irreducible.

Proposition 4.13. In any ID, if $up_1^{\ell_1} \dots p_k^{\ell_k} = vq_1^{m_1} \dots q_s^{m_s}$, where the p_j, q_i are primes, $p_i \not\sim p_j$ and $q_i \not\sim q_j$. Then k = s and $\exists \sigma \in \Sigma_S$ such that $p_i \sim q_{\sigma(i)}$ and $\ell_i = m_{\sigma(i)}$ for all $1 \le i \le s$.

Proof. Induction on $n = \min(k, s)$.

4.4.1 Ideals

Definition (Ideal). A subset I of a ring R is a left ideal if I is an additive subgroup of (R, +) and $ra \in I$ for any $a \in I$ and $r \in R$. Right ideals and two-sided ideals are defined similarly. For simplicity, we'll refer to a two-sided ideal as simply an ideal.

Examples.

- Any ring R is an ideal of itself (called the *improper ideal*). The trivial ideal {0} is always an ideal of R.
- There are left ideals that are not two-sided, e.g. the set of all matrices in $\operatorname{Mat}_n \mathbb{C}$ with a 0 first column is a left sided ideal only.
- Let $R = \operatorname{Mat}_n(\mathbb{C})$. Then R is a *simple ring*: that is, it has no proper nontrivial ideals. Pf. Let J be an ideal. If nonzero $A \in J$ with $a_{ij} \neq 0$, then $(\frac{1}{a_{ij}}E_{ij})A(E_{jk}) = E_{lk} \in J$. Since J is additive, we have J = R.
- If R is commutative and $a \in R$, then $(a) = \{ra : r \in R\}$ is the principal ideal generated by a. More generally, $(a_1, \ldots, a_n) = \{a_1r_1 + \ldots + a_nr_n : r_1, \ldots, r_n \in R\}$.
- If J contains a unit of R, then J = R. Hence proper ideals do not contain units.
- If R is commutative, then R is simple if and only if R is a field.
- (Artin-Wedderburn). If R is a finite ring, then R is simple if and only if it is isomorphic to $\operatorname{Mat}_n(\mathbb{F})$.
- In a commutative ring, there can be non-principal ideals, e.g. the subset $J \subset R[x,y]$ consisting of polynomial with constant term 0.

Proposition 4.14. Let R be an ID and $\alpha, \beta \in R$. Then $(\alpha) = (0)$ if and only if $\alpha = 0$, $(\alpha) \subset (\beta)$ if and only if $\beta \mid \alpha$, $(\alpha) = (\beta)$ if and only if $\alpha \sim \beta$, $(\alpha) = R$ if and only if α is a unit, and α is irreducible if and only if (α) is a maximal proper principal ideal.

Definition (PID). A principal ideal domain R is an integral domain, all of whose ideals are principal.

Proposition 4.15. Any ED is a PID.

Proof. Consider $\alpha = \arg\min_{\beta \in J \setminus \{0\}} f(\beta)$. For any $y \in J$, if $y = q\alpha + r$, then r = 0 or $f(r) < f(\alpha)$.

Corollary. In a ED, $(\alpha, \beta) = (d)$ where d is called the greatest common divisor of α and β .

4.5 Quotient Rings

Given a ring R and a proper ideal I, the quotient ring (R/I, +) is well-defined with $(r_1+I)(r_2+I) = (r_1r_2) + I$.

Definition. An ideal M of R is called a **maximal ideal** if $M \neq R$ and for any ideal I in R, if $M \subset I$ then either I = M or I = R.

For example, in a PID, α is an irreducible element if and only if (α) is a maximal ideal.

Definition. An ideal P of R is called a **prime ideal** of R is $I \neq R$ and $ab \in P$ if and only if either $a \in P$ or $b \in P$.

For example, in any commutative ring R, the ideal generated by 0 is prime if and only if R is an integral domain. Furthermore, if R is an integral domain, then $\alpha \in R$ is prime if and only if (α) is a nonzero prime ideal.

Theorem 4.16

Let R be a commutative ring and I a proper ideal.

- a) R/I is a field if and only if I is a maximal ideal.
- b) R/I is an integral domain if and only if I is a prime ideal.

As a corollary to theorem 4.16, we see that if an ideal I of a commutative ring R is a maximal ideal, then I is prime, since every field is an integral domain. Moreover, in a PID, irreducibility implies primality.