Brute Force

$$Grad = |+|+|+|+|$$

$$m = | + | + | + | + |$$
 $= 6$

$$\bigcirc$$
 = \bigcirc + $|+|$

Sum of Values at Indices With K Set Bits

Decode XORed Array

$$A \wedge O = A \qquad \forall A \wedge O = Y \\
A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \qquad \forall A \wedge A = O \\
A \wedge A \wedge A = O \wedge A = O \\
A \wedge A \wedge A = O \wedge A = O \wedge A = O \\
A \wedge A \wedge A = O \wedge A = O \wedge A = O \\
A \wedge A \wedge A = O \wedge A = O \wedge A = O \\
A \wedge A \wedge A = O \wedge A = O \wedge A = O \wedge A = O \\
A \wedge A \wedge A = O \\
A \wedge A \wedge A = O \wedge A$$

Josephus Special

$$\gamma = 10$$

5/y	5 5	5 / G	5,	5/8	Sy	5/1
,	5 5	,	5/1		Sg	
	5 5			/	K g	
		▼ √) =	- 5			

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$\supset ($$
 $\stackrel{-}{_}$ highest possible power of 2 to make n

$$5 = 2^{2} + 1$$
 $7 = 2^{2} + 3$
 $10 = 2^{3} + 2$

$$\gamma = 10 = 2^3 + 2 \qquad \rightarrow a_m = 2 \times 2 + 1$$

Iteration 1

1 st iteration --> even soldiers get killed whose LSB = 0

Soldiers have LSB = 1 get survived

all soldiers have bit = 1 get killed

Counting Bits 2

$$\mathcal{L} = 2$$

Kunighan alya

Single Number

$$\frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}$$