Determine whether a Function Satisfies the Wave Equation using MATLAB

Brendan McCracken, PE

Table of Contents

Problem definition	. 1
Show that u(x,t) satisfies the wave equation	. 1
Plot the solution for a given wave speed	

Problem definition

A given reference manual of unknown origin, concerning the vibration of strings, states that a particular function satisfies the wave equation. The function, s(x, t), follows:

$$s = \frac{\cos(x+ct)}{2} + \frac{\cos(x-ct)}{2}$$

Variable	Meaning	Domain
х	space	$-\infty < x < \infty$
t	time	t > 0
С	wave speed	c > 0

We might recall from d'Alembert that the superposition of a left traveling wave and right traveling wave with the same wave speed, c, should be a solution to the wave equation. Let's verify this result to certify that the source is accurate and document the derivation in a Live Script to share with other MATLAB users or export a .pdf report for archival purposes.

Solutions to separable equations, such as the wave equation, are often written in the form: s(x, t) = X(x) T(t). Being able to re-write the function in these terms using the Simplify Live Editor Task will make the function easier to work with and gives a positive indication.

$$u = \cos(c t) \cos(x)$$

Show that u(x, t) satisfies the wave equation

The one dimensional wave equation is given as follows:

$$\frac{\partial^2}{\partial t^2}u = c^2 \frac{\partial^2}{\partial x^2}u$$

The left-hand side, substituting u:

$$1hs = -c^2 \cos(c t) \cos(x)$$

The right-hand side, substituting u:

$$rhs = -c^2 \cos(c t) \cos(x)$$

Does LHS=RHS given the assumptions? If so, s satisfies the wave equation.

1

Plot the solution for a given wave speed

Select a numeric value for c and call it cn.

$$cn = 0.8000$$

Convert u to a MATLAB function for further plotting and numeric analysis

f = function_handle with value:

$$@(t,x)\cos(t.*(4.0./5.0)).*\cos(x)$$

