T0-Theorie: Kosmische Relationen

Die universelle ξ -Konstante als Schlüssel zu Gravitation, CMB und kosmischen Strukturen

Johann Pascher

Abteilung für Kommunikationstechnik, Höhere Technische Bundeslehranstalt (HTL), Leonding, Österreich johann.pascher@gmail.com

September 8, 2025

Contents

Then Einheiten $(\hbar = c = 1)$
ehung
· · · · · · · · · · · · · · · · · · ·
nge :
e
2
4
nge-Funktion
r

1 Einführung in die T0-Theorie

Die T0-Theorie stellt einen neuartigen Rahmen dar, der Quantenphänomene mit kosmologischen Strukturen durch eine universelle dimensionslose Konstante ξ verbindet. Diese Theorie stellt fundamentale Beziehungen zwischen mikroskopischen Quantenskalen und makroskopischen kosmischen Dimensionen her und bietet eine vereinheitlichte Perspektive auf die Physik vom Quantenbereich bis zum kosmologischen Horizont.

2 Mikroskopische Länge L_0 in der T0-Theorie

2.1 Ableitung der mikroskopischen Länge in natürlichen Einheiten $(\hbar = c = 1)$

Größe	Dimension	Relation
Energie E_0	[E] = GeV	$E_0 = 1/\xi$
Masse m_0	[m] = GeV	$m_0 = E_0$
Länge L_0	$[L] = GeV^{-1}$	$L_0 = 1/E_0 = \xi$

Table 1: Charakteristische mikroskopische Größen in natürlichen Einheiten.

$$\xi = \frac{4}{3} \times 10^{-4} \implies E_0 = 1/\xi = 7500 \,\text{GeV} \implies L_0 = \xi$$

2.2 Umrechnung in physikalische Einheiten

$$1 \,\mathrm{GeV}^{-1} = \hbar c = 1.973 \times 10^{-16} \,\mathrm{m}$$

$$L_0 = \xi \cdot \hbar c = \frac{4}{3} \times 10^{-4} \cdot 1.973 \times 10^{-16} \,\mathrm{m} \approx 2.63 \times 10^{-20} \,\mathrm{m}$$

2.3 Physikalische Bedeutung

- L_0 repräsentiert die fundamentale mikroskopische Längenskala in der T0-Theorie
- Sie dient als Basis für alle anderen Längenskalen in der Theorie
- Entsteht aus der geometrischen Struktur des 3D-Raums und der ξ -Feld-Physik

Wichtiger Hinweis

Ja, die T0-Theorie postuliert eine minimale Länge $L_0 \approx 2.63 \times 10^{-20}$ m, die nicht unterschritten werden kann. Diese minimale Länge ergibt sich natürlich aus der Lagrange-Dichte und der maximalen Feldfluktuation, ohne jegliche willkürliche Parameter.

3 Charakteristische Vakuumlänge L_{ξ} und CMB-Zusammenhang

3.1 Fundamentale Beziehung in der T0-Theorie

Die T0-Theorie postuliert eine fundamentale Beziehung zwischen grundlegenden Konstanten:

Schlüsselformel

$$\hbar c = \xi \rho_{\rm CMB} L_{\xi}^4$$

Diese Gleichung verbindet Quantenmechanik ($\hbar c$) mit der kosmischen Mikrowellenhintergrundstrahlung (ρ_{CMB}) durch die dimensionslose Konstante ξ und die charakteristische Vakuumlänge L_{ξ} .

3.2 Ableitung der charakteristischen Vakuumlänge L_{ξ}

Aus der fundamentalen Beziehung folgt:

$$L_{\xi} = \left(\frac{\hbar c}{\xi \rho_{\rm CMB}}\right)^{1/4}$$

3.2.1 CMB-Energiedichte

$$T_{\text{CMB}} \approx 2.725 \,\text{K} \quad \Rightarrow \quad \rho_{\text{CMB}} = \frac{\pi^2}{15} \frac{(k_B T_{\text{CMB}})^4}{(\hbar c)^3} \approx 4.17 \times 10^{-14} \,\text{J/m}^3$$

3.2.2 Numerische Berechnung

Unter Verwendung der Werte:

- $\hbar c = 3.16 \times 10^{-26} \text{ J} \cdot \text{m}$
- $\xi = 4/3 \times 10^{-4}$
- $\rho_{\rm CMB} = 4.17 \times 10^{-14} \; {\rm J/m^3}$

erhalten wir:

$$L_{\xi} = \left(\frac{3.16 \times 10^{-26}}{(4/3) \times 10^{-4} \times 4.17 \times 10^{-14}}\right)^{1/4} \approx 1.0 \times 10^{-4} \,\mathrm{m}$$

3.3 Numerische Verifikation der fundamentalen Beziehung

Rückrechnung zur Verifikation:

$$\xi \rho_{\text{CMB}} L_{\xi}^4 = \frac{4}{3} \times 10^{-4} \times 4.17 \times 10^{-14} \times (10^{-4})^4 = 3.13 \times 10^{-26} \,\text{J} \cdot \text{m}$$

Im Vergleich zu $\hbar c = 3.16 \times 10^{-26} \text{ J} \cdot \text{m}$ zeigt dies eine Abweichung von weniger als 1%.

4 Kosmische Länge R_0 und Skalenhierarchie

4.1 Definition von R_0

Die kosmische Länge R_0 wird theoretisch durch die Hierarchie zwischen L_0 und der Planck-Länge L_P abgeleitet:

$$R_0 \sim \frac{L_P^2}{L_0} \sim 10^{26} \,\mathrm{m}$$

Sie kann numerisch mit der Hubble-Länge verglichen werden:

$$L_H = c/H_0 \sim 10^{26} \,\mathrm{m}$$

4.2 Zusammenhang zwischen L_{ξ} und R_0 via ξ

Die T0-Theorie postuliert eine Hierarchie:

$$\frac{R_0}{L_{\xi}} \sim \xi^{-N} \quad \Rightarrow \quad R_0 \sim L_{\xi} \, \xi^{-N}$$

Mit $N \approx 30$ und $L_{\xi} \sim 10^{-4}$ m erhalten wir:

$$R_0 \sim 10^{-4} \times (10^4)^{30/4} = 10^{-4} \times 10^{30} = 10^{26} \,\mathrm{m}$$

Dies verbindet die charakteristische Vakuumlänge L_{ξ} direkt mit der kosmischen Länge R_0 .

5 Ableitung via Lagrange-Dichte und Planck-Länge

Die mikroskopische Länge L_0 kann aus der T0-Lagrange-Dichte abgeleitet werden. Die T0-Lagrange-Funktion enthält einen Term, der das Vakuumfeld beschreibt:

$$\mathcal{L}_{\xi} \sim \frac{1}{2} (\partial_{\mu} \phi_{\xi})^2 - \frac{1}{2} \frac{\phi_{\xi}^2}{L_0^2}$$

Energieminimierung ergibt:

$$\phi_{\xi} \sim L_0^{-1} \quad \Rightarrow \quad L_0 = \xi \sim 10^{-20} \,\mathrm{m} \text{ (in SI-Einheiten)}$$

Die kosmische Länge ergibt sich aus der Planck-Länge L_P und L_0 :

$$R_0 \sim \frac{L_P^2}{L_0} \sim \frac{(1.616 \times 10^{-35} \,\mathrm{m})^2}{2.6 \times 10^{-20} \,\mathrm{m}} \sim 1.0 \times 10^{25} \,\mathrm{m}$$

6 Prozentuale Abweichung von der Hubble-Länge

Die berechnete kosmische Länge R_0 weicht von der Hubble-Länge L_H wie folgt ab:

$$\Delta_\% = \frac{L_H - R_0}{L_H} \times 100\% \approx 4\%$$

7 Bemerkenswerter Zusammenhang mit ξ

- Die dimensionslose Konstante $\xi \sim 4/3 \times 10^{-4}$ erscheint in mehreren physikalischen Kontexten
- $L_{\xi} \sim 10^{-4}$ m wird konsistent aus $\rho_{\rm CMB}$ und der fundamentalen Beziehung abgeleitet
- Casimir-Effekte bestätigen die charakteristische Vakuumlänge L_{ξ}
- Kleine Potenzen von ξ bestimmen Durchschnittswerte beobachteter kosmischer Parameter und erzeugen ein hierarchisches, selbstähnliches Muster
- Die Hierarchie $R_0/L_\xi \sim \xi^{-30}$ verbindet Vakuum- und Kosmos-Skalen

8 Zusammenfassung

- Die mikroskopische Länge $L_0=\xi\approx 2.63\times 10^{-20}\,\mathrm{m}$ ist fundamental in der T0-Theorie
- Die charakteristische Vakuumlänge $L_{\xi} \sim 10^{-4}\,\mathrm{m}$ ergibt sich konsistent aus der CMB-Energiedichte via der fundamentalen Beziehung $\hbar c = \xi \rho_{\mathrm{CMB}} L_{\xi}^4$
- Die kosmische Länge $R_0 \sim 10^{26}\,\mathrm{m}$ resultiert aus Potenzen von ξ und stimmt innerhalb von ca. 4% mit der Hubble-Länge überein
- $\bullet~\xi$ verbindet mikroskopische und kosmologische Skalen und erscheint wiederholt als "Fingerabdruck" in physikalischen Größen
- Casimir-Experimente und CMB-Temperatur bestätigen die Konsistenz der charakteristischen Vakuumlänge L_ξ
- Ableitung via Lagrange-Dichte und Planck-Länge zeigt theoretische Konsistenz der Skalenhierarchie

9 Ableitung der minimalen Länge aus der Lagrange-Funktion

Ausgehend von der T0-Theorie-Lagrange-Funktion:

$$\mathcal{L} = \varepsilon (\partial \delta m)^2, \quad \delta m(x, t) = m(x, t) - m_0$$
 (9.1)

wobei δm die Fluktuation des Massenfeldes um eine Referenzmasse m_0 ist und ε eine Skalierungskonstante.

9.1 Euler-Lagrange-Gleichung

Die Euler-Lagrange-Gleichung für die Massenfluktuation δm ist

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \delta m)} - \frac{\partial \mathcal{L}}{\partial \delta m} = 0 \tag{9.2}$$

Da $\mathcal{L} \sim (\partial \delta m)^2$, haben wir $\frac{\partial \mathcal{L}}{\partial \delta m} = 0$ und

$$\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\delta m)} = 2\varepsilon \partial_{\mu}\delta m \tag{9.3}$$

was zur klassischen Wellengleichung führt:

$$\partial_{\mu}\partial^{\mu}\delta m = 0 \tag{9.4}$$

9.2 Diskrete Struktur und minimale Länge

Betrachtung von ebenen Wellen als Lösungen

$$\delta m(x) \sim e^{ik \cdot x}, \quad k = |k|$$
 (9.5)

Die Feldenergie skaliert als

$$E_k \sim \varepsilon k^2 |\delta m_k|^2 \tag{9.6}$$

sodass hohe Frequenzen (kurze Wellenlängen) energetisch unterdrückt werden.

Die Auferlegung einer maximal erlaubten Feldfluktuation $\delta m_{\rm max}$ definiert natürlich eine charakteristische maximale Masse

$$m_{\text{max}} \sim m_0 + \delta m_{\text{max}} \tag{9.7}$$

9.3 Minimale Zeit und Länge via Dualität

Unter Verwendung der fundamentalen T0-Theorie-Dualität

$$T \cdot m = 1 \quad \Rightarrow \quad T_{\min} = \frac{1}{m_{\max}}$$
 (9.8)

und in natürlichen Einheiten (c=1) übersetzt sich dies direkt in eine minimale Länge

$$r_0 \sim T_{\min} \sim \frac{1}{m_{\max}} \sim \frac{1}{m_0 + \delta m_{\max}}$$
 (9.9)

9.4 Skalierung mit der universellen Konstante ξ

Einbeziehung der universellen Skalierungskonstante $\xi \ll 1$ der T0-Theorie, die minimale Länge wird zu

$$r_0 \sim \xi \ell_P \ll \ell_P \tag{9.10}$$

So ergibt sich die minimale Länge r_0 natürlich aus der Lagrange-Funktion, der maximalen Feldfluktuation und der intrinsischen Masse-Zeit-Dualität, ohne jegliche willkürliche Parameter.

Erkenntnis

Die T0-Theorie sagt eine minimale Länge von $r_0 \sim \xi \ell_P \approx 2.63 \times 10^{-20}$ m voraus, die nicht überschritten werden kann. Dies ergibt sich natürlich aus der Lagrange-Dichte und der fundamentalen Masse-Zeit-Dualität der Theorie.

Verifikation der Skala der charakteristischen Vakuumlänge $L_{\boldsymbol{\xi}}$

Wichtiger Hinweis

Die charakteristische Vakuumlänge L_{ξ} beträgt tatsächlich ungefähr 0,1 mm:

$$L_{\xi} \approx 1.0 \times 10^{-4} \,\mathrm{m} = 0.1 \,\mathrm{mm}$$

Diese Längenskala wird konsistent aus der fundamentalen Beziehung der T0-Theorie abgeleitet:

$$\hbar c = \xi \rho_{\rm CMB} L_{\xi}^4$$

mit $\xi = \frac{4}{3} \times 10^{-4}$ und der CMB-Energiedichte $\rho_{\rm CMB} \approx 4.17 \times 10^{-14}\,{\rm J/m}^3$.

Numerische Verifikation

$$L_{\xi} = \left(\frac{\hbar c}{\xi \rho_{\text{CMB}}}\right)^{1/4}$$

$$= \left(\frac{3.16 \times 10^{-26} \,\text{J} \cdot \text{m}}{\frac{4}{3} \times 10^{-4} \times 4.17 \times 10^{-14} \,\text{J/m}^3}\right)^{1/4}$$

$$\approx \left(\frac{3.16 \times 10^{-26}}{5.56 \times 10^{-18}}\right)^{1/4}$$

$$\approx \left(5.68 \times 10^{-9}\right)^{1/4}$$

$$\approx 1.0 \times 10^{-4} \,\text{m} = 0.1 \,\text{mm}$$

Physikalische Bedeutung

Die Längenskala von 0,1 mm ist besonders signifikant, weil sie:

- Im beobachtbaren Bereich von Casimir-Effekten liegt
- Eine natürliche Grenze zwischen mikroskopischen und makroskopischen Phänomenen darstellt
- Direkt mit der CMB-Strahlung verknüpft ist
- Die Hierarchie zwischen Quanten- und Kosmos-Skalen vermittelt

Anhang: Notation und Symbolerklärungen

Symbole und Notation in der T0-Theorie

Symbol	Beschreibung
ξ	Universelle dimensions lose Konstante, fundamentaler Parameter der T0-Theorie: $\xi=\frac{4}{3}\times 10^{-4}$

Symbol	Beschreibung
L_0	Minimale Längenskala, fundamentale mikroskopische Länge: $L_0 \approx$
	$2.63 \times 10^{-20} \text{ m}$
E_0	Charakteristische Energieskala: $E_0 = 1/\xi = 7500 \text{ GeV}$
m_0	Referenzmassenskala: $m_0 = E_0$ (in natürlichen Einheiten)
L_{ξ}	Charakteristische Vakuumlängenskala: $L_{\xi} \approx 1.0 \times 10^{-4} \text{ m}$
$ ho_{ m CMB}$	Energiedichte der kosmischen Mikrowellenhintergrundstrahlung
$T_{ m CMB}$	Temperatur der kosmischen Mikrowellenhintergrundstrahlung:
	$T_{\rm CMB} \approx 2.725 \; {\rm K}$
R_0	Kosmische Längenskala: $R_0 \sim 10^{26} \text{ m}$
L_P	Planck-Länge: $L_P \approx 1.616 \times 10^{-35} \text{ m}$
L_H	Hubble-Länge: $L_H = c/H_0 \sim 10^{26} \text{ m}$
\hbar	Reduzierte Planck-Konstante: $\hbar = h/2\pi$
c	Lichtgeschwindigkeit im Vakuum
k_B	Boltzmann-Konstante
${\cal L}$	Lagrange-Dichte
\mathcal{L}_{ξ}	ξ -Feld-Komponente der Lagrange-Dichte
$\phi_{m{\xi}}$	ξ -Feld Skalarfeld
δm	Massenfluktuationsfeld: $\delta m(x,t) = m(x,t) - m_0$
ε	Die Skalierungskonstante entspricht der Feinstrukturkonstante α :
∂_{μ}	Partielle Ableitung (4-Gradient in der Raumzeit)
ℓ_P	Alternative Notation für Planck-Länge
r_0	Alternative Notation für minimale Längenskala
$T_{ m min}$	Minimale Zeitskala abgeleitet aus Masse-Zeit-Dualität
$m_{ m max}$	Maximale Massenskala aus Feldfluktuationen
N	Skalierungsexponent in der Hierarchierelation: $N \approx 30$
$\Delta_\%$	Prozentuale Abweichung zwischen theoretischen und beobachteten
	Werten

Mathematische Notation

Notation	Bedeutung
\sim	Proportional zu oder ungefähr gleich
\approx	Ungefähr gleich
≡	Definiert als
:=	Definitionsgleichheit
$\partial_{\mu} \ \partial^{\mu}$	Partielle Ableitung nach der Koordinate x^{μ}
$\dot{\partial^{\mu}}$	Kontravariante partielle Ableitung
$\partial_{\mu}\partial^{\mu}$	d'Alembert-Operator (Wellenoperator)
$\dot{\mathrm{[E]}}$	Dimension der Energie (natürliche Einheiten)
[L]	Dimension der Länge (natürliche Einheiten)
[m]	Dimension der Masse (natürliche Einheiten)
${ m GeV}$	Giga-Elektronenvolt, Einheit der Energie: $1 \text{ GeV} = 10^9 \text{ eV}$
GeV^{-1}	Inverse GeV, Einheit der Länge in natürlichen Einheiten
$\mathrm{J/m}^3$	Joule pro Kubikmeter, Einheit der Energiedichte
K	Kelvin, Einheit der Temperatur

Spezielle Konstanten und Werte

Konstante/Wert	Beschreibung
$\xi = \frac{4}{3} \times 10^{-4}$	Fundamentale dimensionslose Konstante der T0-Theorie
$L_0 \approx 2.63 \times 10^{-20} \text{ m}$	Minimale Längenskala abgeleitet aus ξ
$E_0 = 7500 \text{ GeV}$	Charakteristische Energieskala
$L_{\xi} \approx 0.1 \text{ mm}$	Charakteristische Vakuumlängenskala
$R_0 \sim 10^{26} \; { m m}$	Kosmische Skala vergleichbar mit der Hubble-Länge
4% Abweichung	Unterschied zwischen R_0 und Hubble-Länge L_H
$\hbar c = 3.16 \times 10^{-26} \mathrm{J \cdot m}$	Produkt aus reduzierter Planck-Konstante und Lichtgeschwindigkeit
$ \rho_{\rm CMB} \approx 4.17 \times 10^{-14} $	CMB-Energiedichte
$ m J/m^3$	
$T_{\rm CMB} = 2.725 \; {\rm K}$	Gemessene CMB-Temperatur
$1 \text{ GeV}^{-1} = 1.973 \times$	Umrechnungsfaktor zwischen natürlichen und SI-
10^{-16} m	Einheiten