PURDUE PETE'S HAMMER FACTORY

IE 484 - Team 6

Emily Dolny, Allison Hanlon, Magdalena Haas, Thomas Jarratt, Claire Konz, Grace Kraus, Hamza Tanzeem

Introduction

What is a Smart Factory?

Big Data uses information from sensors and location data to understand the state of the system at all times. This data can be used to help inform on-the-fly decision making when it comes to product flow.

Automation allows the system to make decisions about product flow on its own, thus taking out the human-based "guesswork." Automated systems utilize big data to determine optimal paths.

Flexibility means the system can easily adapt to changes and will therefore be more easily able to process

orders efficiently

Factory model overview

Objective function

minimize total cost represented by:

(2 * avg customer waiting time) + avg parts in system

by modifying

Inventory Control

Machine Layout

Job Selection

Machine Selection

Baseline Performance

Understanding the model - job types

The probability of each job's occurrence combined with the its operation sequence is used to determine average flow between departments

Job type	Probability of occurrence	Operation sequence
1	10%	1-2-3-0-0
2	20%	3-1-4-2-5
3	5%	2-5-4-1-0
4	10%	4-3-1-2-5
5	20%	1-3-5-0-0

Job type	Probability of occurrence	Operation sequence
6	5%	3-2-1-5-0
7	10%	5-1-2-4-3
8	15%	4-2-1-0-0
9	5%	1-3-5-0-0
10	0%	3-1-5-2-4

Understanding the model - product flow

To department

From-to chart	1	2	3	4	5	Total to	End product
1		0.3	0.35	0.2	0.05	0.9	0.2
2	0.2		0.1	0.1	0.35	0.75	0
3	0.3	0.05		0	0.25	0.6	0.2
4	0.05	0.35	0.2		0	0.6	0
5	0.1	0	0	0.05		0.15	0.6
Total from	0.65	0.7	0.65	0.35	0.65	Bolded values indicate critical flows	
Raw parts	0.35	0.05	0.25	0.25	0.1		

Total flow between departments

Flow	f_ij
f_12	0.50
f_13	0.65
f_14	0.25
f_15	0.15
f_23	0.15
f_24	0.45
f_25	0.35
f_34	0.20
f_35	0.25
f_45	0.05

From department

Initial Factory Settings

Inventory Control Machine Layout

Job Selection

Machine Selection

Reorder pt: 100

Reorder qty: 200

First-in-First-out (FIFO)

Shortest queue (NINQ)

Baseline Performance

Model Baseline	Avg time in system* 259.8	Avg parts in system 143.0	Total cost 662.6
Dascillic	233.0	170.0	002.0

* measured in minutes

Model Improvement

Improvement overview

Inventory Control

Change
reorder_point and
reorder_qty
variables to identify
the optimal value for
each

Machine Layout

Rearrange machines, (usually with the operation as the department) by modifying the *map* variable

Job Selection

Select the order in which machines process jobs by modifying the queuing rules in the *Rankings* element

Machine Selection

Determine which machine will process a job by modifying the *FindJ* block formula

Inventory Control

The process analyzer was used to vary the reorder point and reorder quantity to find the optimal value for each

FINAL OPTIMAL VALUES

Reorder point

121

Reorder quantity

141

Machine Layout - PEM

Horizontal PEM

Starting with layout H12345 exchange rows until a local minimum total cost is reached

Vertical PEM

Starting with layout V12345 exchange columns until a local minimum total cost is reached

Machine Layout - Creative Layouts

Machine Layout - Overall comparison

Model	Avg time in system	Avg parts in system	Total cost
Baseline	259.8	143.0	662.6
H42135	252.9	141.4	647.3
V13245	253.9	141.6	649.5
Creative - T	251.4	140.9	643.7

Machine Selection

Model	Avg time in system	Avg parts in system	Total cost
NINQ	259.8	143	662.6
LINQ	244.1	139.1	627.3
LINQ + STT	221.1	133.5	575.7
PTIME + STT + MST	213.4	136.5	563.3

Job Selection

Model	Avg time in system	Avg parts in system	Total cost
Baseline (FIFO, LIFO, AT)	259.8	143	662.6
SPT	247.6	140	635.1
MSetT	243.2	138.8	625.2
SPT + MSetT	233.7	136.4	603.9
MRO	261.6	143.2	666.4
LRO	262.4	144.5	669.2
LRPT	257.5	141.8	656.9
SRPT	248.7	140.9	638.3

Developing the final model

STEP 1

Set map variable to layout with lowest total cost

STEP 2

Find best combination of job selection and machine selection rules since they are dependent on each other

STEP 3

Run trials in the process analyzer to optimize reorder point and reorder quantity

Final Model

Final Model Settings

Inventory Control Machine Layout

Job Selection

Machine Selection

Reorder pt: 121

Reorder qty:

141

First-in-First-out (FIFO)

min(PTIME + STT + MST)

Final Model Performance

Model	Avg time in system*	Avg parts in system	Total cost
Baseline	259.8	143.0	662.6
Final Model	153.8	110.8	418.5
	-41%	-23%	-37%

Limitations & Discussion

Limitations

Changes were linked

 Some machine selection rules were based on the queuing model used

No demand in model

- Could not use inventory control equations
- Job selection based on due date was irrelevant

Time constraints

- Unable to test all possible layouts
- Limited testing of change combinations

