Risk-based assessment of treatment effect heterogeneity

From subgroups to individuals

Alexandros Rekkas

Subgroup analyses

- ▶ Generalizing overall treatment effects is often problematic
- Subgroup analyses rarely adequately powered

Power for the detection of interaction effect

Subgroup analyses

Subgroup analyses can be divided into 4 categories (*Varadhan et al, 2013*):

- Confirmatory heterogeneity of treatment effect analysis
- Exploratory heterogeneity of treatment effect analysis
- Descriptive heterogeneity of treatment effect analysis
- Predictive heterogeneity of treatment effect analysis

Risk modeling

- A multivariate regression model f that predicts the risk of an outcome y based on the predictors $x_1 \dots x_p$ is identified or developed.
- The expected outcome of a patient receiving treatment T (where T=1, when patient is treated and 0 otherwise) based on the linear predictor

$$lp(x_1,\ldots x_p)=a+\beta_1x_1+\ldots\beta_px_p$$

from a previously derived risk model can be described as

$$E\{y|x_1,\ldots,x_p\}=f(Ip+\gamma_0T+\gamma T\times Ip)$$

Risk modeling (continued)

▶ When the assumption of constant relative treatment effect across the entire risk distribution is made (risk magnification), the previous equation takes the form:

$$E\{y|x_1,\ldots,x_p\}=f(Ip+\gamma_0T)$$

Treatment effect modeling

The expected outcome of a patient with measured predictors x_1, \ldots, x_p receiving treatment T can be derived from a model containing predictor main effects and potential treatment interaction terms:

$$E\{y|x_1,\ldots,x_p\}=f(\alpha+\beta_1x_1+\cdots+\beta_px_p+\gamma_1Tx_1+\cdots+\gamma_pTx_p)$$

Optimal treatment regimes

A treatment regime $T(x_1, \ldots, x_p)$ is a binary treatment assignment rule based on measured predictors. The optimal treatment regime maximizes the overall expected outcome across the entire target population:

$$T_{optimal} = argmax_T E\{E\{y|x_1, \dots, x_p, T(x_1, \dots, x_p)\}\}$$

Risk-based HTE

Reasoning

- When risk is described through a combination of factors the control event rate will typically vary considerably across the trial population.
- ► The absolute risk difference will generally vary across risk strata even if the relative risk is the same
- When a trial population has substantial variation in outcome risk, important differences often exist in harm-benefit tradeoffs

Risk-based HTE in observational data

Framework

Applications *Hypertension*

Applications

Osteoporosis

Applications

Osteoporosis

