Naval Oceanographic Office

Stennis Space Center Technical Report

Center MS 39522-5001 TR 314 April 1995

TR 314

THE JOINT US/UK 1995 EPOCH WORLD MAGNETIC MODEL

JOHN M. QUINN RACHEL J. COLEMAN DONALD L. SHIEL JOHN M. NIGRO

FLEET PRODUCTS DIVISION

Original contains color plates: All DIIC repreductions will be in black and white

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 5

NOU

Prepared under the authority of Commander Naval Meteorology and Oceanography Command

19950727 000

FOREWORD

The Earth's magnetic field continues to play an essential role in global navigation. All navigational aids or Attitude/Heading Reference Systems (AHRS), regardless of their operating principles, must speak a common language. That common language is in terms of the Earth's directional-field components, magnetic declination and magnetic inclination. Magnetic-related navigational aids are integrated, in the forms of computer hardware and software, into virtually every major weapons system of the Army, Air Force, Navy and Marines, as well as many North Atlantic Treaty Organization (NATO) systems. Most particularly, all Department of Defense sponsored Global Positioning System (GPS) receivers have the World Magnetic Model imbedded into them. In order to maintain optimum performance, these AHRS must be periodically updated with respect to the Earth's magnetic field, which is a dynamic entity that changes slowly but erratically with time.

For well over a century it has been the responsibility of the Naval Oceanographic Office to monitor the Earth's changing magnetic field and periodically report on these changes in the forms of magnetic charts and mathematical models. During the past forty-five years, this task has involved an intensive data collection effort through the Navy's Project MAGNET program and more recently through the Navy's Polar Orbiting Geomagnetic Survey (POGS) satellite program. The Navy's participation in this effort, however, will be discontinued as of 1 October 1995, at which time the World Magnetic Modeling program will be returned to its sponsor, the Defense Mapping Agency, for further disposition, while the rest of the Navy's magnetic data collection and analyses efforts will be discontinued. Extreme gratitude is expressed to all those who have participated in the Navy's magnetics program in general and its Project MAGNET program, which began in 1951, in particular.

This report is a comprehensive summary of the cooperative effort between the Naval Oceanographic Office and the British Geological Survey in producing the 1995 Epoch World Magnetic Model, WMM-95.

DIETER K. RUDOLPH

Captain, U. S. Navy Commanding Officer

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average. I hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway Suite 1204. Artificiation, VA 2202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 250503.

Davis highway, suite 1204, Armington, VA 22202-			
1. AGENCY USE ONLY (Leave blank	k) 2. REPORT DATE April 1995	3. REPORT TYPE AND Technical Re	
4. TITLE AND SUBTITLE	21p111 1995	Technical Re	5. FUNDING NUMBERS
THE JOINT US/UK 1995 E	POCH WORLD MAGNETIC M	ODEL	
6. AUTHOR(S)			
John M. Quinn, Rachel and John M. Nigro		Shiel,	
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
Commanding Officer			
Naval Oceanographic Of 1002 Balch Boulevard	fice		TR 314
Stennis Space Center,	MS 39522-5001		
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
Commander			AGENCY REPORT NOMBER
Naval Meteorology and	Oceanography Command		
1020 Balch Boulevard	wa 20700 F00F		
Stennis Space Center,	MS 39329-3003		
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE
Approved for public re	lease; distribution i	s unlimited.	
and describes its uses the GEOMAG algorithm f	detailed summary of ployed, and results of lodeling effort. This and limitations. Che for both the Main geometrical values of the Main structures of the Main st	btained during to report also con arts derived from agnetic field con ar and polar ster ain geomagnetic	the course of the 1995 atains the GEOMAG algorithm on the WMM-95 model and omponents and their reographic projections. field components and
11			
14. SUBJECT TERMS			15. NUMBER OF PAGES
Geomagnetics, World Ma	_		376
Project MAGNET, 1995 E			16. PRICE CODE
17. SECURITY CLASSIFICATION 1 OF REPORT	8. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	CATION 20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL

ABSTRACT

The 1995 Epoch World Magnetic Model (WMM-95) is the product of a cooperative modeling effort between the United States Naval Oceanographic Office (NAVOCEANO) and the United The model is based on data from Kingdom's British Geological Survey (BGS). NAVOCEANO's Project MAGNET high-level (≥ 15,000 ft.) vector-aeromagnetic surveys flown from 1988 to 1994, scalar total intensity data collected from NAVOCEANO's Polar Orbiting Geomagnetic Survey (POGS) satellite during the period 1991 through 1993, and all available magnetic observatory vector annual-means and repeat station data supplied by countries around the world. The WMM-95 model describes that portion of the geomagnetic field generated within the Earth's liquid core. It is presented in terms of one set of spherical harmonic coefficients which characterize the Earth's Main magnetic field at the fixed epoch 1995.0 and a second set of spherical harmonic coefficients which predict the Secular Variation (i.e., slow temporal change) of the Earth's Main magnetic field between 1995.0 and 2000.0. coefficients (Main and Secular Variation) are collectively called Gauss coefficients in honor of the German scientist Carl Frederick Gauss, who in 1834 created the first spherical-harmonic, geomagnetic field model and used it to show that the bulk of the geomagnetic field originated below the Earth's surface.

This report contains a detailed summary of the data used, analyses performed, modeling techniques employed, and results obtained during the course of the 1995 Epoch World Magnetic Modeling effort. This report also contains the GEOMAG algorithm and describes its uses and limitations. Charts derived from the WMM-95 model and the GEOMAG algorithm for both the Main geomagnetic field components and their Secular Variations are presented on Mercator and polar stereographic projections. Additionally, the numerical values of the Main geomagnetic field components and their Secular Variations are tabulated on a 5-degree worldwide grid.

The Defense Mapping Agency's Hydrographic/Topographic Center (DMA/HTC) publishes wall-sized charts of the Total Intensity, Declination, Inclination, and the Horizontal and Vertical geomagnetic field components and their respective secular variations on Mercator and polar stereographic projections.

Accesio	n For							
NTIS								
DTIC	TAB							
Unanno	ounced							
Justific	ation							
By Distribution /								
A	vailabilit	y Codes						
Dist		and / or ecial						
A-1								

TABLE OF CONTENTS

Section 1. The 1995 Epoch Geomagnetic Model and the GEOMAG Algorithm	1
1.0 Introduction 1.1 The Mathematical Model 1.2 Spherical-Harmonic Normalization 1.3 Coordinate Transformations 1.4 The GEOMAG Algorithm	3 5 8 9 12
Section 2. The 1995 Epoch Geomagnetic Model Derivation	21
2.0 Overview 2.1 Secular-Variation Data Analysis 2.2 Main Field Data Analysis 2.2.1 Observatory Data 2.2.2 Project MAGNET Data 2.2.3 POGS Data 2.3 Weight Factors 2.4 Inverse Modeling Mathematical Details	23 79 105 105 106 124 136 168
Section 3. Modeling Results	175
3.0 The WMM-92.5 (optimum) Model	177 233
Acknowledgements	359
1.1 The Mathematical Model 1.2 Spherical-Harmonic Normalization 1.3 Coordinate Transformations 1.4 The GEOMAG Algorithm 1.4 The GEOMAG Algorithm 1 Section 2. The 1995 Epoch Geomagnetic Model Derivation 2 2.0 Overview 2 2.1 Secular-Variation Data Analysis 7 2.2 Main Field Data Analysis 1 2.2.1 Observatory Data 1 2.2.2.1 Project MAGNET Data 1 2.2.3 POGS Data 1 2.4 Inverse Modeling Mathematical Details 1 Section 3. Modeling Results 1 3.0 The WMM-92.5 (optimum) Model 1 3.1 The WMM-95 Model 2 Acknowledgements 3 Acknowledgements 3 Appendix	361
Appendix	
FORTRAN Listing of Subroutine GEOMAG with Internal WMM-95 Model Coefficients.	363

LIST OF FIGURES

FIGURE

1a.	North X Component at Honolulu (HON)	81
1b.	East V Component at Honolulu (HON)	82
1c.	Vertical Z Component at Honolulu (HON)	83
1d.	Declination D Component at Honolulu (HON)	84
1e.	Inclination I Component at Honolulu (HON)	85
1f.	Total Intensity F Component at Honolulu (HON)	86
2a.	North X Component at Huancayo (HUA)	87
2b.	East Y Component at Huancayo (HUA)	88
2c.	Vertical Z Component at Huancayo (HUA)	89
2d.	Declination D Component at Huancayo (HUA)	90
2e.	Inclination I Component at Huancayo (HUA)	91
2f.	Total Intensity F Component at Huancayo (HUA)	92
3a.	North X Component at Pilar (PIL)	93
3b.	East Y Component at Pilar (PIL)	94
3c.	Vertical Z Component at Pilar (PIL)	95
3d.	Declination D Component at Pilar (PIL)	96
3e.	Inclination I Component at Pilar (PIL)	97
3f.	Total Intensity F Component at Pilar (PIL)	98
4a.	North X Component at Rude Skov (RSV)	99
4b.	East Y Component at Rude Skov (RSV)	100
4c.	Vertical Z Component at Rude Skov (RSV)	101
4d.	Declination D Component at Rude Skov (RSV)	102
4e.	Inclination I Component at Rude Skov (RSV)	103
4f.	Total Intensity F Component at Rude Skov (RSV)	104
5.	POGS Total Intensity Drift Corrections: Magnetometer & Clock	127
6.	POGS Total Intensity Ionospheric-Field Correction: 1991, Days 011 - 020	137
7.	POGS Total Intensity Ionospheric-Field Correction: 1991, Days 031 - 040	138
8.	POGS Total Intensity Ionospheric-Field Correction: 1991, Days 051 - 060	139
9.	POGS Total Intensity Ionospheric-Field Correction: 1991, Days 131 - 140	140
10.	POGS Total Intensity Ionospheric-Field Correction: 1991, Days 211 - 220	141 142
11.	POGS Total Intensity Ionospheric-Field Correction: 1991, Days 261 - 270	
12.	POGS Total Intensity Ionospheric-Field Correction: 1991, Days 331 - 340	143 144
13.	POGS Total Intensity Ionospheric-Field Correction: 1992, Days 121 - 130	144
14.	POGS Total Intensity Ionospheric-Field Correction: 1992, Days 171 - 180	143
15.	POGS Total Intensity Ionospheric-Field Correction: 1992, Days 181 - 190	140
16.	POGS Total Intensity Ionospheric-Field Correction: 1992, Days 241 - 250	148
17.	POGS Total Intensity Ionospheric-Field Correction: 1993, Days 021 - 030	149
18.	POGS Total Intensity Ionospheric-Field Correction: 1993, Days 141 - 150	150
19.	POGS Total Intensity Ionospheric-Field Correction: 1993, Days 191 - 200	187
20.	Geomagnetic Spherical-Harmonic Coefficients g_{nm} versus Time (units: nT)	207
21.	Geomagnetic Spherical-Harmonic Coefficients h_{nm} versus Time (units: nT)	201

LIST OF CHARTS

CHART

1.	POGS Distribution: 1991, Days 011 - 020, F Component Residuals	24
2.	POGS Distribution: 1991, Days 021 - 030, F Component Residuals	25
3.	POGS Distribution: 1991, Days 031 - 040, F Component Residuals	26
4.	POGS Distribution: 1991, Days 041 - 050, F Component Residuals	27
5.	POGS Distribution: 1991, Days 051 - 060, F Component Residuals	28
6.	POGS Distribution: 1991, Days 121 - 130, F Component Residuals	29
7.	POGS Distribution: 1991, Days 131 - 140, F Component Residuals	30
8.	POGS Distribution: 1991, Days 171 - 180, F Component Residuals	31
9.	POGS Distribution: 1991, Days 181 - 190, F Component Residuals	32
10.	POGS Distribution: 1991, Days 201 - 210, F Component Residuals	33
11.	POGS Distribution: 1991, Days 211 - 220, F Component Residuals	34
12.	POGS Distribution: 1991, Days 231 - 240, F Component Residuals	35
13.	POGS Distribution: 1991, Days 241 - 250, F Component Residuals	36
14.	POGS Distribution: 1991, Days 251 - 260, F Component Residuals	37
15.	POGS Distribution: 1991, Days 261 - 270, F Component Residuals	38
16.	POGS Distribution: 1992, Days 001 - 010, F Component Residuals	39
17.	POGS Distribution: 1992, Days 011 - 020, F Component Residuals	40
18.	POGS Distribution: 1992, Days 021 - 030, F Component Residuals	41
19.	POGS Distribution: 1992, Days 041 - 050, F Component Residuals	42
20.	POGS Distribution: 1992, Days 121 - 130, F Component Residuals	43
21.	POGS Distribution: 1992, Days 131 - 140, F Component Residuals	44
22.	POGS Distribution: 1992, Days 141 - 150, F Component Residuals	45
23.	POGS Distribution: 1992, Days 151 - 160, F Component Residuals	46
24.	POGS Distribution: 1992, Days 161 - 170, F Component Residuals	47
25.	POGS Distribution: 1992, Days 171 - 180, F Component Residuals	48
26.	POGS Distribution: 1992, Days 181 - 190, F Component Residuals	49
27.	POGS Distribution: 1992, Days 191 - 200, F Component Residuals	50
28.	POGS Distribution: 1992, Days 201 - 210, F Component Residuals	51
29.	POGS Distribution: 1992, Days 211 - 220, F Component Residuals	52
30.	POGS Distribution: 1992, Days 221 - 230, F Component Residuals	53
31.	POGS Distribution: 1992, Days 231 - 240, F Component Residuals	54
32.	POGS Distribution: 1992, Days 241 - 250, F Component Residuals	55
33.	POGS Distribution: 1993, Days 021 - 030, F Component Residuals	56
34.	POGS Distribution: 1993, Days 031 - 040, F Component Residuals	57
35.	POGS Distribution: 1993, Days 041 - 050, F Component Residuals	58
36.	POGS Distribution: 1993, Days 121 - 130, F Component Residuals	59
37.	POGS Distribution: 1993, Days 131 - 140, F Component Residuals	60
38.	POGS Distribution: 1993, Days 141 - 150, F Component Residuals	61
39.	POGS Distribution: 1993, Days 171 - 180, F Component Residuals	62
40.	POGS Distribution: 1993, Days 181 - 190, F Component Residuals	63
41.	POGS Distribution: 1993, Days 191 - 200, F Component Residuals	64

LIST OF CHARTS (con.)

42.	POGS Distribution: 1993, Days 201 - 210, F Component Residuals	65
43a	C32 Project MAGNET Distribution: X - Component Residuals	67
43b.	C32 Project MAGNET Distribution: Y - Component Residuals	68
43c.	C32 Project MAGNET Distribution: Z - Component Residuals	69
43d.	C32 Project MAGNET Distribution: F - Component Residuals	70
44a.	D32 Project MAGNET Distribution: X - Component Residuals	71
44b.	D32 Project MAGNET Distribution: Y - Component Residuals	72
44c.	D32 Project MAGNET Distribution: Z - Component Residuals	73
44d.	D32 Project MAGNET Distribution: F - Component Residuals	74
45.	BGS 10 ^o X 10 ^o Equal Area Geomagnetic Observatory Distribution	76
46.	NGDC Geomagnetic Observatory Distribution & Reporting History	77
47.	Ionospheric Magnetic Field: 1991, Days 011 - 020	151
48.	Ionospheric Magnetic Field: 1991, Days 031 - 040	152
49.	Ionospheric Magnetic Field: 1991, Days 051 - 060	153
50.	Ionospheric Magnetic Field: 1991, Days 131 - 140	154
51.	Ionospheric Magnetic Field: 1991, Days 211 - 220	155
52.	Ionospheric Magnetic Field: 1991, Days 261 - 270	156
53.	Ionospheric Magnetic Field: 1991, Days 331 - 340	157
54.	Ionospheric Magnetic Field: 1992, Days 121 - 130	158
55.	Ionospheric Magnetic Field: 1992, Days 171 - 180	159 160
56.	Ionospheric Magnetic Field: 1992, Days 181 - 190	161
57.	Ionospheric Magnetic Field: 1992, Days 241 - 250	162
58.	Ionospheric Magnetic Field: 1993, Days 021 - 030	163
59.	Ionospheric Magnetic Field: 1993, Days 141 - 150	164
60.	Ionospheric Magnetic Field: 1993, Days 191 - 200	234
61.	North Magnetic Pole Movement: 1945 - 2000	235
62.	South Magnetic Pole Movement: 1945 - 2000	237
63.	Geomagnetic Coordinate System: 1995.0 Epoch	231
	Main Field World Mercator Charts	
64.	Vertical Component (Z)	325
65.	Horizontal Intensity (H)	326
66.	Total Intensity (F)	327
67.	Declination (D)	328
68.	Inclination (I)	329
00.		
	Secular Variation World Mercator Charts	
60	Vertical Component (Z)	330
69.	vertical Component (2)	331
70.	Horizontal Intensity (H)	551

LIST OF CHARTS (con.)

71.	Total Intensity (F)	332
72.	Declination (D)	333
73.	Inclination (\mathring{I})	334
	Main Field North Polar Stereographic Charts	
74. 75. 76. 77. 78. 79.	Vertical Component (Z) Horizontal Intensity (H) Total Intensity (F) Declination (D) Inclination (I) Grid Variation (GV)	335 336 337 338 339 340
	Secular Variation North Polar Stereographic Charts	
80.	Vertical Component (Z)	341
81.	Horizontal Intensity (H)	342
82.	Total Intensity (<i>F</i>)	343
83.	Declination (D)	344
84.	Inclination $(\overset{\bullet}{I})$	345
85.	Grid Variation (GV)	346
	Main Field South Polar Stereographic Charts	
86. 87. 88. 89. 90.	Vertical Component (Z) Horizontal Intensity (H) Total Intensity (F) Declination (D) Inclination (I) Grid Variation (GV)	347 348 349 350 351 352
	Secular Variation South Polar Stereographic Charts	
92.	Vertical Component $(\overset{\bullet}{Z})$	353
93.	Horizontal Intensity (H)	354
94.	Total Intensity (<i>F</i>)	355

LIST OF CHARTS (con.)

95.	Declination (D)	356
	Inclination (I)	
97.	Grid Variation (GV)	358

LIST OF TABLES

TABLE

1.	Arrangement of Main Field Coefficients in Array C _{nm}	13
2.	Arrangement of Secular Variation Coefficients in Array C_{nm}	14
3.	WMM-95 Model Coefficients	16
4.	BGS Definitive and Predictive SV Model Coefficients	80
5.	C32 Project MAGNET Magnetic Field Flight Statistics	107
6.	D32 Project MAGNET Magnetic Field Flight Statistics	113
7.	WC-85 (updated) Model Coefficients	118
8.	WMM-90 (modified) Model Coefficients	121
9.	POGS 10-day File Statistics WRT the WMM-90 (modified) Model	129
10.	World Magnetic Models Based on POGS Data	134
l 1.	Schmidt Normalized Gauss Coefficients, for g, Modeled at 14 Epochs	178
12.	Schmidt Normalized Gauss Coefficients, for h, Modeled at 14 Epochs	181
13.	Schmidt Normalized External Gauss Coefficients, for q, Modeled at 14 Epochs	184
14.	Schmidt Normalized External Gauss Coefficients, for s, Modeled at 14 Epochs	185
15.	Dst Correction Coefficients, for α, Modeled at 14 Epochs	186
16.	Dst Correction Coefficients, for β, Modeled at 14 Epochs	186
17.	WMM-92.5 (optimum) Schmidt Normalized Gauss Coefficients	225
18.	WMM-90 (revised) Schmidt Normalized Gauss Coefficients	229
19.	North and South Magnetic Pole Positions: 1945 - 2000	236
20.	WMM-95 Main Field and Annual Change Grid Values	239

SECTION 1
THE 1995 EPOCH GEOMAGNETIC MODEL AND THE GEOMAG ALGORITHM

1.0 Introduction

The Earth's magnetic field, as measured by a magnetic sensor on or above the Earth's surface, is actually a composite of several magnetic fields generated by a variety of sources. These fields are superimposed onto each other and, through inductive processes, interact with each other. The most important of these geomagnetic sources are:

- a. the Earth's conducting, fluid outer core;
- b. the Earth's crust/upper mantle;
- c. the ionosphere; and
- d. the magnetosphere.

More than 90 percent of the geomagnetic field is generated by the Earth's outer core. It is this portion of the geomagnetic field that is represented by the 1995 Epoch World Magnetic Model (WMM-95). Those portions of the geomagnetic field not represented by the model are collectively referred to as the *anomalous* geomagnetic field, which varies both spatially and temporally with respect to the model.

The model itself consists of a degree and order 12 spherical-harmonic Main (i.e., core-generated) Field (MF) model comprised of 168 spherical-harmonic Gauss coefficients and a degree and order 12 spherical-harmonic Secular-Variation (SV) (core-generated, slow temporal variation) field model comprised of an additional 168 spherical-harmonic Gauss coefficients. As in previous World Magnetic Models, the 1995.0 *Predictive* SV Gauss coefficients corresponding to degree and order 9, or larger, were set to zero due to a lack of data.

The primary geomagnetic data set for the 1995 Epoch MF model is the Polar Orbiting Geomagnetic Survey (POGS) satellite data set, which provided long-term Total Intensity data from 1991 through 1993. This data set was supplemented by Project MAGNET vector-aeromagnetic data, which spanned the period from 1988 through 1993. These two data sets and the geomagnetic observatory annual means data set also provided sufficient spatial and temporal coverage to permit, for the first time, the computation of the *Definitive* SV Gauss coefficients to the full degree and order 12 for the definitive 1992.5 Epoch SV model, which in turn played a key role in determining the 1995 Epoch MF model coefficients.

The MF Gauss coefficients characterize the geomagnetic field at one instant of time called the base epoch, which for WMM-95 is 1995.0. The predictive SV coefficients characterize the slow rate of change of the geomagnetic field for the 5-year period from the base epoch to the termination epoch, which for WMM-95 is 2000.0, at which time, WMM-95 will be replaced by WMM-2000. The magnetic field components are computed via the magnetic variation algorithm (GEOMAG), which is a FORTRAN (also translated into C, ADA, and other high-level languages) subroutine that uses the WMM Gauss coefficients in conjunction with the spherical-harmonic expansions associated with each field component.

The WMM coefficients are produced jointly by the British Geological Survey (BGS) in Edinburgh, Scotland, and the Naval Oceanographic Office (NAVOCEANO) at Stennis Space Center, Mississippi, on behalf of the British Hydrographic Office in Taunton, England, and the

Defense Mapping Agency (DMA), Washington, D.C. The model, associated software, and documentation are distributed by NAVOCEANO on behalf of DMA in accordance with DMA Instructions 8000.1 and 8000.2. These models are produced at 5-year intervals, as are DMA's Declination/Grid-Variation charts, while charts of the other geomagnetic components are published by DMA every 10 years. The 1995.0 Epoch corresponds to a 10-year interval when all of the geomagnetic components will be published in chart form by DMA. The military specifications for the WMM are contained in MIL-W-89500 (DMA [1993]). Magnetic model requirements that are more stringent than those set forth in this military specification (e.g., those which must include magnetic effects of the Earth's crust, ionosphere, or magnetosphere and/or require greater spatial or temporal resolution on a global, regional, or local basis) should be addressed to:

Director, Defense Mapping Agency 8613 Lee Highway Fairfax, VA 22031-2137 ATTN: PR, ST A-13

It is extremely important to recognize that the WMM series of geomagnetic models and the charts produced from these models characterize only that portion of the Earth's magnetic field which is generated by the Earth's fluid outer core. The portions of the geomagnetic field generated by the Earth's crust, upper mantle, ionosphere, and magnetosphere are not represented in these models. Consequently, a magnetic sensor such as a compass or magnetometer may observe spatial and temporal magnetic anomalies when referenced to the appropriate WMM. In particular, certain local, regional, and temporal magnetic declination anomalies can exceed 10 degrees. Anomalies of this magnitude are not common but they do exist. Declination anomalies on the order of 3 or 4 degrees are not uncommon but are of small, spatial extent and are relatively isolated. On land, spatial anomalies are produced by mountain ranges; ore deposits; ground struck by lightning; geological faults; and cultural features such as trains, planes, tanks, railroad tracks, power lines, etc. In ocean areas these anomalies occur most frequently along continental margins; near seamounts; and near ocean ridges, trenches, and fault zones, particularly those of volcanic origin. Ships and submarines are also sources of magnetic anomalies in the ocean.

Temporal anomalies over either ocean or land areas can last from a few minutes to several days and are produced by ionospheric and magnetospheric processes which are driven by the solar wind. In particular, magnetic storms generated by solar flares and other solar activity can, through modulation of the solar wind, cause severe and persistent magnetic anomalies in the Earth's environment. Even during periods of quiet solar activity, significant spatial and temporal magnetic anomalies are found in the polar and equatorial regions of the Earth, where magnetic fields produced by ionospheric current systems, such as the auroral electrojets and the equatorial electrojet, are always present. Most sources of magnetic anomalies are comparatively isolated in either space or time. Therefore, from a global perspective, the WMM-95 root-mean-square (RMS) Declination (D), Inclination (I), and Grid Variation (GV) errors of the WMM are estimated to be less than 0.5 degrees in ocean areas and less than 1.0 degree over land areas at the Earth's surface over the entire 5-year life of a particular model. Also, the RMS errors at sea level for the full 5-year life of the WMM-95 model for the

Horizontal Intensity (H) and the Vertical component (Z), over the oceans, are estimated to be less than 200 nanoTeslas (nT), while for the Total Intensity (F) the RMS error is estimated to be less than 280 nanoTeslas. Over land areas the H, Z, and F components may be somewhat larger and are more difficult to determine. So, estimates for these are not given.

1.1 The Mathematical Model

The Earth's core-generated magnetic field has associated with it a geomagnetic potential $V(r, \theta, \varphi, t)$, which can be expressed in spherical coordinates in terms of a spherical-harmonic expansion of the following form:

$$V(r,\theta,\varphi,t) = R_E \sum_{n=1}^{N} \left(\frac{R_E}{r}\right)^{n+1} \sum_{m=0}^{n} \left\{ g_{nm}(t) \cos(m\,\varphi) + h_{nm}(t) \sin(m\,\varphi) \right\} P_n^m(\theta) \tag{1}$$

where the spherical coordinates (r, θ, φ) correspond to the radius from the center of the Earth, the colatitude (i.e., 90° - latitude), and the longitude. R_E is the mean radius of the Earth (6371.2 km); $g_{nm}(t)$ and $h_{nm}(t)$ are referred to as the Gauss coefficients at time t, where t is the time in years (e.g., 1997.312). $P_n^m(\theta)$ represents a particular Schmidt-normalized associated Legendre polynomial of spherical-harmonic degree n and order m. These are polynomials in terms of the cosine of the colatitude θ . The Gauss coefficients are slowly varying functions of time and are expressed in the form of a Taylor series expansion, where only terms up to first order in time are retained so that:

$$g_{nm}(t) = g_{nm}(T_{Epoch}) + \mathring{g}_{nm}(t - T_{Epoch}) \qquad T_{Epoch} \le t \le T_{Epoch} + 5$$
 (2a)

$$h_{nm}(t) = h_{nm}(T_{Epoch}) + h_{nm}(t - T_{Epoch}) \qquad T_{Epoch} \le t \le T_{Epoch} + 5$$
 (2b)

where T_{Epoch} is the base epoch of the model, which for WMM-95 is 1995.0. Thus, $g_{nm}(T_{Epoch})$ and $h_{nm}(T_{Epoch})$ are the Schmidt-normalized Gauss coefficients of the WMM at the model's base epoch, while the Schmidt-normalized SV Gauss coefficients, g_{nm} and h_{nm} (pronounced g_{nm} dot and h_{nm} dot, where the dot represents differentiation with respect to time: $\frac{d}{dt}$), are the annual rates of change of the MF Gauss coefficients g_{nm} and h_{nm} and are evaluated at the middle of the model's lifespan (i.e., at $T_{Epoch} + 2.5$). The MF Gauss coefficients and SV field Gauss coefficients are collectively referred to as spherical-harmonic coefficients.

Taking the time derivative of eq. (1) yields the spherical-harmonic expression for the Secular-Variation $V(r, \theta, \varphi, t)$ of the geomagnetic potential:

$$\overset{\bullet}{V}(r,\theta,\varphi,t) = R_E \sum_{n=1}^{N} \left(\frac{R_E}{r}\right)^{n+1} \sum_{m=0}^{n} \left\{ \overset{\bullet}{g}_{nm}(t) \cos(m\,\varphi) + \overset{\bullet}{h}_{nm}(t) \sin(m\,\varphi) \right\} P_n^m(\theta)$$
 (3)

which, due to the assumption that the MF Gauss coefficients vary linearly with time during the course of a 5-year interval, as expressed by eqs. (2a) and (2b), is approximately time independent over this short time span. The maximum degree N of the spherical-harmonic expansions in eqs. (1) and (3) is equal to 12. This value is determined by noting that when the spectral density of the MF Gauss coefficients is plotted as a function of harmonic degree, a distinct break in this density function occurs between degree 12 and degree 15. This is interpreted to mean that the low-degree harmonics corresponding to $N \leq 12$ are dominated by core-generated magnetic fields, while those high-degree harmonics for which $N \ge 15$ are dominated by fields generated within the crust and upper mantle. These fields are primarily associated with permanent and induced magnetization. This magnetization is limited to depths for which the ambient temperature does not exceed the Curie temperature. Spherical-harmonic degrees 13 and 14 correspond to a transition region where neither magnetic fields generated within the Earth's fluid core nor those generated within the Earth's crust dominate. We therefore use N = 12 as the spherical-harmonic cutoff which permits the best description of the core-generated magnetic field and its slow temporal change. This means that the shortest wavelength contained in the model is:

$$\lambda_{\min} = \frac{2\pi R_E}{N} = 3336 \, km \tag{4}$$

Thus, the WMM is a low-resolution model. High-resolution (short wavelength) descriptions of that part of the magnetic field generated by the Earth's upper crust are better characterized via rectangular harmonic modeling of small local areas (Quinn and Shiel [1993]), while intermediate wavelength descriptions of the Earth's magnetic field generated by the lower crust and upper mantle are best characterized via spherical-cap harmonic models of large regional areas (Haines [1985a, 1985b, 1985c, and 1990]). Global geomagnetic data sets currently available do not support high-resolution (i.e., $\lambda \le 500$ km) models and only marginally support intermediate-resolution (i.e., 500 km $< \lambda < 3336$ km) magnetic field modeling. Special local and/or regional magnetic surveys are required to generate intermediate-resolution and high-resolution geomagnetic models. Consequently, there are some applications for which the use of the WMM will be entirely inadequate.

The Earth's magnetic field $B(r,\theta,\varphi,t)$ is a vector quantity having three components which correspond to the projection of the magnetic field vector onto the three coordinate axes. Thus, $B_r(r,\theta,\varphi,t)$ is that portion of the field pointing radially outward from the Earth's center (i.e., perpendicular to the surface of the Earth); $B_{\theta}(r,\theta,\varphi,t)$ is that portion of the field pointing locally due south; and $B_{\varphi}(r,\theta,\varphi,t)$ is that portion of the field pointing locally due east. The magnetic field vector can be computed from the geomagnetic potential by taking its negative gradient, thus:

$$\mathbf{B}(r,\theta,\phi,t) = -\nabla V(r,\theta,\phi,t) \tag{5}$$

Consequently, the magnetic field components are related to the geomagnetic potential as follows:

$$B_r(r,\theta,\varphi,t) = -\frac{\partial V(r,\theta,\varphi,t)}{\partial r}$$
 (6a)

$$B_{\theta}(r,\theta,\varphi,t) = -\frac{1}{r} \frac{\partial V(r,\theta,\varphi,t)}{\partial \theta}$$
 (6b)

$$B_{\varphi}(r,\theta,\varphi,t) = -\frac{1}{r\sin\theta} \frac{\partial V(r,\theta,\varphi,t)}{\partial \varphi}$$
 (6c)

which yield the following spherical-harmonic expansions:

$$B_r(r,\theta,\phi,t) = \sum_{n=1}^{N} (n+1) \left(\frac{R_E}{r}\right)^{n+2} \sum_{m=0}^{n} \left\{ g_{nm}(t) \cos(m\,\phi) + h_{nm}(t) \sin(m\,\phi) \right\} P_n^m(\theta)$$
 (7a)

$$B_{\theta}(r,\theta,\phi,t) = -\sum_{n=1}^{N} \left(\frac{R_{E}}{r}\right)^{n+2} \sum_{m=0}^{n} \left\{ g_{nm}(t) \cos(m\,\phi) + h_{nm}(t) \sin(m\,\phi) \right\} \frac{dP_{n}^{m}(\theta)}{d\,\theta}$$
 (7b)

$$B_{\varphi}(r,\theta,\varphi,t) = \frac{1}{\sin\theta} \sum_{n=1}^{N} \left(\frac{R_{E}}{r}\right)^{n+2} \sum_{m=0}^{n} m \left\{ g_{nm}(t) \sin(m\varphi) - h_{nm}(t) \cos(m\varphi) \right\} P_{n}^{m}(\theta) \quad (7c)$$

These expressions are solutions of the Laplace equation, which in turn is derived from Maxwell's famous electromagnetic field equations under the assumptions that the magnetic field exists in a source-free region (i.e., no charges or currents are present), and that the fields are slowly varying.

Similarly, for the geomagnetic SV field we have:

$$\dot{\mathbf{B}}(r,\theta,\varphi,t) = -\nabla \dot{V}(r,\theta,\varphi,t) \tag{8}$$

so that:

$$\dot{B}_r(r,\theta,\phi,t) = -\frac{\partial V(r,\theta,\phi,t)}{\partial r}$$
 (9a)

$$\overset{\bullet}{B}_{\theta}(r,\theta,\varphi,t) = -\frac{1}{r} \frac{\partial \overset{\bullet}{V}(r,\theta,\varphi,t)}{\partial \theta}$$
 (9b)

$$\dot{B}_{\varphi}(r,\theta,\varphi,t) = -\frac{1}{r\sin\theta} \frac{\partial \dot{V}(r,\theta,\varphi,t)}{\partial \varphi}$$
 (9c)

which yield the following spherical-harmonic expressions:

$$\dot{B}_{r}(r,\theta,\phi,t) = \sum_{n=1}^{N} (n+1) \left(\frac{R_{E}}{r}\right)^{n+2} \sum_{m=0}^{n} \left\{ \dot{g}_{nm}(t) \cos(m\,\phi) + \dot{h}_{nm}(t) \sin(m\,\phi) \right\} P_{n}^{m}(\theta) \quad (10a)$$

$$\overset{\bullet}{B}_{\theta}(r,\theta,\phi,t) = -\sum_{n=1}^{N} \left(\frac{R_{E}}{r}\right)^{n+2} \sum_{m=0}^{n} \left\{ \dot{g}_{nm}(t) \cos(m\,\phi) + \dot{h}_{nm}(t) \sin(m\,\phi) \right\} \frac{dP_{n}^{m}(\theta)}{d\,\theta}$$
(10b)

$$\dot{B}_{\varphi}(r,\theta,\varphi,t) = \frac{1}{\sin\theta} \sum_{n=1}^{N} \left(\frac{R_E}{r} \right)^{n+2} \sum_{m=0}^{n} m \left\{ \dot{g}_{nm}(t) \sin(m\,\varphi) - \dot{h}_{nm}(t) \cos(m\,\varphi) \right\} P_n^m(\theta) \quad (10c)$$

1.2 Spherical-Harmonic Normalization

The Gauss coefficients $g_{nm}(t)$, $h_{nm}(t)$, $g_{nm}(t)$, and $h_{nm}(t)$, as well as the associated Legendre polynomials and their derivatives, are Schmidt normalized by international agreement (circa 1930) of the International Union of Geodesy and Geophysics (IUGG). This particular normalization allows one to determine which spherical-harmonic terms of a particular model are the most significant simply by a cursory inspection of the model coefficients' relative magnitudes. The Schmidt-normalized associated Legendre polynomials $P_n^m(\theta)$ are related to the unnormalized associated Legendre polynomials $P^{nm}(\theta)$ (note position of indices) by the following relation:

$$P_n^m(\theta) = S^{nm} P^{nm}(\theta) \tag{11}$$

The Schmidt normalization factors S^{nm} and the unnormalized associated Legendre polynomials $P^{nm}(\theta)$ are computed via recurrence relations as follows (Cain et al., 1967):

$$P^{00}(\theta) = 1 \tag{12a}$$

$$P^{nm}(\theta) = \sin \theta P^{n-1, m-1}(\theta) \qquad m = n \neq 0 \tag{12b}$$

$$P^{nm}(\theta) = \cos\theta P^{n-1,m}(\theta) - \kappa^{nm} P^{n-2,m}(\theta) \qquad m \neq n, n \ge 1 \qquad (12c)$$

$$\frac{dP^{00}(\theta)}{d\theta} = 0 \tag{12d}$$

$$\frac{dP^{nm}(\theta)}{d\theta} = \sin\theta \frac{dP^{n-1,m-1}(\theta)}{d\theta} + \cos\theta P^{n-1,m-1}(\theta) \qquad m = n \neq 0 \qquad (12e)$$

$$\frac{dP^{nm}(\theta)}{d\theta} = \cos\theta \frac{dP^{n-1,m}(\theta)}{d\theta} - \sin\theta P^{n-1,m}(\theta) - \kappa^{nm} \frac{dP^{n-2,m}(\theta)}{d\theta} \qquad m \neq n, n \geq 1 \quad (12f)$$

where:

$$\kappa^{nm} = \frac{(n-1)^2 - m^2}{(2n-1)(2n-3)} \tag{13}$$

and where it is understood that the undefined polynomial $P^{-l,\theta}(\theta)$ and its derivatives are set equal to zero. Similarly:

$$S^{00} = 1 ag{14a}$$

$$S^{n0} = \left(\frac{2n-1}{n}\right) S^{n-1,0} \qquad n > 0 \tag{14b}$$

$$S^{nm} = \sqrt{\frac{(n-m+1)J}{n+m}} S^{n,m-1}$$

$$\begin{cases} J = 2 & for \ m = 1 \\ J = 1 & for \ m > 1 \end{cases}$$
 (14c)

Also computed via recursion relations are the longitudinally dependent functions $cos(m\varphi)$ and $sin(m\varphi)$. They are computed as follows:

$$\sin(m\,\varphi) = 0 \tag{15a}$$

$$\cos(m\,\varphi) = 1 \qquad m = 0 \tag{15b}$$

$$\sin(m\,\varphi) = \sin(\varphi)\,\cos[(m-1)\,\varphi] + \cos(\varphi)\,\sin[(m-1)\,\varphi] \qquad m > 0 \tag{15c}$$

$$\cos(m\varphi) = \cos(\varphi)\cos[(m-1)\varphi] - \sin(\varphi)\sin[(m-1)\varphi] \qquad m > 0$$
 (15d)

1.3 Coordinate Transformations

Although the magnetic field model is defined in terms of *spherical* coordinates, the intended application is in *geodetic* coordinates. So, a coordinate transformation is necessary (Cain et al., 1967). The 1984 World Geodetic System (WGS-84) (DMA [1991]) and its corresponding ellipsoid are used as the reference datum for this purpose. Computing the magnetic field components at a given location expressed in geodetic coordinates using the WMM-95 model is a three-step procedure:

- a. Convert the geodetic latitude, longitude, and altitude (λ, ϕ, h) to spherical coordinates (r, θ, ϕ) .
 - b. Compute the magnetic field components $B_r(r,\theta,\phi,t)$, $B_{\theta}(r,\theta,\phi,t)$, and $B_{\phi}(r,\theta,\phi,t)$.
- c. Rotate the magnetic field components from spherical coordinates back to geodetic coordinates, thus yielding the magnetic field components $B_X(\lambda,\phi,h,t)$, $B_Y(\lambda,\phi,h,t)$, and $B_Z(\lambda,\phi,h,t)$, which are projections of the magnetic field vector $\mathbf{B}(\lambda,\phi,h,t)$ onto the X-north, Y-east, and Z-vertically down coordinate axes of the local rectangular coordinate system defined by the tangent plane to the ellipsoid, which is concentric about the WGS-84 ellipsoid and which encompasses the point (λ,ϕ,h) .

The transformations corresponding to step a are as follows:

$$\cos \theta = \frac{\sin \lambda}{\sqrt{Q^2 \cos^2 \lambda + \sin^2 \lambda}} \tag{16a}$$

$$\sin\theta = \sqrt{1 - \cos^2\theta} \tag{16b}$$

where, if a and b are respectively the semi-major and semi-minor axes of the WGS-84 ellipsoid, then:

$$Q = \frac{h\sqrt{a^2 - (a^2 - b^2)\sin^2\lambda} + a^2}{h\sqrt{a^2 - (a^2 - b^2)\sin^2\lambda} + b^2}$$
(17)

Furthermore:

$$r^{2} = h^{2} + 2h\sqrt{a^{2} - (a^{2} - b^{2})\sin^{2}\lambda} + \frac{a^{4} - (a^{4} - b^{4})\sin^{2}\lambda}{a^{2} - (a^{2} - b^{2})\sin^{2}\lambda}$$
 (18)

The transformations corresponding to $step\ c$ depend on the angle α through which the magnetic field vector must be rotated while transforming from spherical to geodetic coordinates. This rotation angle is defined by the following transformation equations:

$$\cos \alpha = \frac{h + \sqrt{a^2 \cos^2 \lambda + b^2 \sin^2 \lambda}}{r}$$
 (19a)

$$\sin \alpha = \frac{(a^2 - b^2)\cos \lambda \sin \lambda}{r\sqrt{a^2\cos^2 + b^2\sin^2 \lambda}}$$
 (19b)

$$\alpha = \lambda + \theta - \frac{\pi}{2} \tag{19c}$$

Consequently, the components of the magnetic field vector in geodetic coordinates may be computed as follows:

$$B_X(\lambda, \varphi, h, t) = -\cos \alpha B_{\theta}(r, \theta, \varphi, t) - \sin \alpha B_r(r, \theta, \varphi, t)$$
 (20a)

$$B_{Y}(\lambda, \varphi, h, t) = B_{\varphi}(r, \theta, \varphi, t) \tag{20b}$$

$$B_Z(\lambda, \varphi, h, t) = \sin \alpha B_{\theta}(r, \theta, \varphi, t) - \cos \alpha B_r(r, \theta, \varphi, t)$$
 (20c)

From these three rectangular geomagnetic field components, it is possible to compute all others. In particular, the following magnetic components can be computed:

$$B_H(\lambda, \varphi, h, t) = \sqrt{B_X^2(\lambda, \varphi, h, t) + B_Y^2(\lambda, \varphi, h, t)}$$
 (Horizontal Intensity) (21a)

$$B_F(\lambda, \varphi, h, t) = \sqrt{B_H^2(\lambda, \varphi, h, t) + B_Z^2(\lambda, \varphi, h, t)}$$
 (Total Intensity) (21b)

$$B_D(\lambda, \varphi, h, t) = \tan^{-1} \left\{ \frac{B_Y(\lambda, \varphi, h, t)}{B_X(\lambda, \varphi, h, t)} \right\}$$
 (Declination) (21c)

$$B_I(\lambda, \varphi, h, t) = \tan^{-1} \left\{ \frac{B_Z(\lambda, \varphi, h, t)}{B_H(\lambda, \varphi, h, t)} \right\}$$
 (Inclination) (21d)

$$B_G(\lambda, \varphi, h, t) = \begin{cases} B_D - \varphi & \lambda \ge 0 \\ B_D + \varphi & \lambda < 0 \end{cases}$$
 (Grid Variation) (21e)

Inclination is often referred to as the Dip angle, while the magnetic declination is sometimes referred to as the magnetic variation. Frequently, the magnetic field components in eqs. (21a) through (21e) are simply referred to in terms of their subscripts: X, Y, Z, H, F, D, I, and G. The Total Magnetic Intensity is sometimes referred to as TI, while the Grid Variation is sometimes referred to as GV. Some additional and quite useful relationships among these magnetic field components are:

$$H(\lambda, \varphi, h, t) = F(\lambda, \varphi, h, t) \cos[I(\lambda, \varphi, h, t)]$$
(22a)

$$X(\lambda, \varphi, h, t) = H(\lambda, \varphi, h, t) \cos[D(\lambda, \varphi, h, t)]$$
(22b)

$$Y(\lambda, \varphi, h, t) = H(\lambda, \varphi, h, t) \sin[D(\lambda, \varphi, h, t)]$$
(22c)

$$Z(\lambda, \varphi, h, t) = F(\lambda, \varphi, h, t) \sin[I(\lambda, \varphi, h, t)]$$
(22d)

1.4 The GEOMAG Algorithm

The Main Field Gauss coefficients at the base epoch, T_{Epoch} , are stored in array C of the GEOMAG algorithm (sometimes referred to as the MAGVAR algorithm), which is listed in the appendix, such that the lower half of array C is occupied by those Gauss coefficients $g_{nm}(T_{Epoch})$ corresponding to the *cosine* terms in the potential function of eq. (1), while the upper half of array C is occupied by those Gauss coefficients $h_{nm}(T_{Epoch})$ corresponding to the *sine* terms in eq. (1). Table 1 illustrates the details of this storage scheme, which is equivalent to the following mathematical assignments:

$$C_{n\,m} \,=\, \left\{ \begin{array}{ll} g_{n\,m} & m \leq n \\ h_{m,\,n+1} & m > n \end{array} \right\} \label{eq:cnm}$$

which implies that:

(23)

$$g_{nm} = C_{nm} \qquad m \le n \tag{24a}$$

$$h_{nm} = C_{m-1,n} m \le n, m \ne 0$$
 (24b)

The Secular-Variation Gauss coefficients which describe the Main Field's slow annual change are stored in array CD (which stands for C [pronounced C dot]) such that the lower half of array CD is occupied by the Gauss coefficients g_{nm} , which correspond to the *cosine* terms in eq. (3), while the upper half of the array is occupied by the Gauss coefficients h_{nm} , corresponding to the *sine* terms in eq. (3). Table 2 illustrates the details of this storage scheme for array CD. It takes essentially the same form as table 1 for array C and corresponds to the following mathematical assignments:

$$\dot{\mathbf{C}}_{nm} = \left\{ \begin{array}{ll} \dot{\mathbf{g}}_{nm} & m \leq n \\ \dot{\mathbf{h}}_{m,n+1} & m > n \end{array} \right\}$$
(25)

which implies that:

$$\dot{g}_{nm} = \dot{C}_{nm} \qquad m \le n \tag{26a}$$

$$\overset{\bullet}{\mathbf{h}_{n\,\mathbf{m}}} = \overset{\bullet}{\mathbf{C}_{\mathbf{m}-1,\mathbf{n}}} \qquad \mathbf{m} \le \mathbf{n}, \qquad \mathbf{m} \ne 0$$
(26b)

Table 1. Arrangement of Main Field Coefficients in Array $C_{nm}\,$

n\m	0	1	2	3	4	5	6	7	8	9	10	11	12
0	g 00	h ₁₁	h ₂₁	h ₃₁	h ₄₁	h ₅₁	h ₆₁	h ₇₁	h ₈₁	h_{91}	$h_{10,1}$	$h_{11,1}$	$h_{12,1}$
1	g ₁₀	<i>g</i> ₁₁	h ₂₂	h ₃₂	h ₄₂	h ₅₂	h ₆₂	h ₇₂	h ₈₂	h ₉₂	$h_{10,2}$	$h_{11,2}$	h _{12,2}
2	g ₂₀	g ₂₁	g ₂₂	h ₃₃	h ₄₃	h ₅₃	h ₆₃	h ₇₃	h ₈₃	h ₉₃	$h_{10,3}$	$h_{11,3}$	$h_{12,3}$
3	g ₃₀	g ₃₁	g ₃₂	g ₃₃	h_{44}	h ₅₄	h ₆₄	h_{74}	h_{84}	h ₉₄	$h_{10,4}$	h _{11,4}	h _{12,4}
4	g 40	g ₄₁	g ₄₂	g_{43}	g ₄₄	h ₅₅	h ₆₅	<i>h</i> ₇₅	h ₈₅	h_{95}	$h_{10,5}$	$h_{11,5}$	h _{12,5}
5	g ₅₀	g ₅₁	g ₅₂	g ₅₃	g ₅₄	g ₅₅	h ₆₆	h ₇₆	h ₈₆	h_{96}	$h_{10,6}$	$h_{11,6}$	h _{12,6}
6	g ₆₀	g ₆₁	g ₆₂	g ₆₃	g ₆₄	g 65	g 66	h_{77}	h ₈₇	h_{97}	$h_{10,7}$	$h_{11,7}$	h _{12,7}
7	g ₇₀	g 71	g ₇₂	g 73	g 74	g 75	g 76	g 77	h_{88}	h_{98}	$h_{10,8}$	$h_{11,8}$	h _{12,8}
8	g 80	g 81	g ₈₂	g 83	g 84	g ₈₅	g 86	g 87	g ₈₈	h_{99}	$h_{10,9}$	h _{11,9}	h _{12,9}
9	g 90	g 91	g ₉₂	g 93	g 94	g 95	g 96	g 97	g 98	g 99	$h_{10,10}$	$h_{11,10}$	$h_{12,10}$
10	g _{10,0}	g _{10,1}	g _{10,2}	g _{10,3}	g 10,4	g 10,5	g _{10,6}	g 10,7	g _{10,8}	g 10,9	g 10,10	$h_{11,11}$	$h_{12,11}$
11	g _{11,0}	g _{11,1}	g _{11,2}	g _{11,3}	g _{11,4}	g 11,5	g _{11,6}	g _{11,7}	g _{11,8}	<i>g</i> _{11,9}	g _{11,10}	g _{11,11}	$h_{12,12}$
12	g _{12,0}	g _{12,1}	g _{12,2}	g 12,3	g 12,4	g _{12,5}	g 12,6	g _{12,7}	g _{12,8}	g _{12,9}	g _{12,10}	g _{12,11}	g _{12,12}

Table 2. Arrangement of Secular Variation Coefficients in Array $\overset{\bullet}{C}_{nm}$

n\m	0	1	2	3	4	5	6	7	8	9	10	11	12
0	\dot{g}_{00}	h_{11}	$\overset{\bullet}{h}_{21}$	\dot{h}_{31}	$\overset{\bullet}{h}_{41}$	h_{51}	h ₆₁	$\overset{\bullet}{h}_{71}$	$\overset{ullet}{h}_{81}$	h_{91}	$h_{10,1}$	$\dot{h}_{11,1}$	$h_{12,1}$
1	$\overset{ullet}{g}_{10}$	$\overset{\bullet}{g}_{11}$	$\overset{ullet}{h}_{22}$	\dot{h}_{32}	$\overset{ullet}{h}_{42}$	$\overset{ullet}{h}_{52}$	$\overset{\bullet}{h}_{62}$	h_{72}	h ₈₂	h ₉₂	$h_{10,2}$	$h_{11,2}$	$h_{12,2}$
2	$\overset{ullet}{g}_{20}$	$\overset{ullet}{g}_{21}$	$\overset{\bullet}{g}_{22}$	$\overset{\bullet}{h}_{33}$	$\overset{ullet}{h}_{43}$	\dot{h}_{53}	h_{63}	h_{73}	\dot{h}_{83}	h_{93}	$h_{10,3}$	$h_{11,3}$	$h_{12,3}$
3	$\overset{ullet}{g}_{30}$	$\overset{\bullet}{g}_{31}$	ġ ₃₂	g ₃₃	h_{44}	$\overset{ullet}{h}_{54}$	h ₆₄	$\overset{ullet}{h}_{74}$	$\overset{ullet}{h}_{84}$	$\overset{ullet}{h}_{94}$	$h_{10,4}$	$h_{11,4}$	$h_{12,4}$
4	ġ ₄₀	$\overset{ullet}{g}_{41}$	g ₄₂	g ₄₃	ġ ₄₄	$\overset{\bullet}{h}_{55}$	$\overset{\bullet}{h}_{65}$	$\overset{ullet}{h}_{75}$	$\overset{ullet}{h}_{85}$	$\overset{ullet}{h}_{95}$	$h_{10,5}$	$h_{11,5}$	$h_{12,5}$
5	ġ ₅₀	$\overset{ullet}{g}_{51}$	$\overset{ullet}{g}_{52}$	ġ ₅₃	g ₅₄	ġ ₅₅	h ₆₆	\dot{h}_{76}	$\overset{ullet}{h}_{86}$	$\overset{ullet}{h}_{96}$	$h_{10,6}$	$h_{11,6}$	$h_{12,6}$
6	ġ ₆₀	$\overset{ullet}{g}_{61}$	$\overset{ullet}{g}_{62}$	$\overset{ullet}{g}_{63}$	ġ ₆₄	ġ ₆₅	ġ ₆₆	$\overset{ullet}{h}_{77}$	$\overset{ullet}{h}_{87}$	$\overset{ullet}{h}_{97}$	$h_{10,7}$	$h_{11,7}$	$h_{12,7}$
7	ġ ₇₀	$\overset{ullet}{g}_{71}$	$\overset{ullet}{g}_{72}$	$\overset{ullet}{g}_{73}$	g ₇₄	• g ₇₅	• g ₇₆	$\overset{ullet}{g}_{77}$	h_{88}	$\overset{ullet}{h}_{98}$	$h_{10,8}$	$h_{11,8}$	$h_{12,8}$
8	$\overset{ullet}{g}_{80}$	$\overset{ullet}{g}_{81}$	$\overset{ullet}{g}_{82}$	$\overset{ullet}{g}_{83}$	g ₈₄	• g ₈₅	• g ₈₆	g ₈₇	$\overset{ullet}{g}_{88}$	h ₉₉	$h_{10,9}$	$h_{11,9}$	<i>h</i> _{12,9}
9	ġ ₉₀	g_{91}	$\overset{ullet}{g}_{92}$	$\overset{ullet}{g}_{93}$	g ₉₄	$\overset{ullet}{g}_{95}$	$\overset{ullet}{g}_{96}$	$\overset{ullet}{g}_{97}$	g ₉₈	ġ ₉₉	$h_{10,10}$	$h_{11,10}$	$h_{12,10}$
10	ġ _{10,0}	$g_{10,1}$	$g_{10,2}$	<i>g</i> 10,3	<i>g</i> _{10,4}	<i>g</i> _{10,5}	<i>g</i> _{10,6}	$\overset{\bullet}{g}_{10,7}$	<i>g</i> 10,8	<i>g</i> _{10,9}	$g_{10,10}$	$h_{11,11}$	$\dot{h}_{12,11}$
11	$\dot{g}_{11,0}$	$g_{11,1}$	$\overset{\bullet}{g}_{11,2}$	<i>g</i> 11,3	<i>g</i> 11,4	<i>g</i> 11,5	g _{11,6}	$\dot{g}_{11,7}$	<i>g</i> _{11,8}	<i>g</i> _{11,9}	$g_{11,10}$	$g_{11,11}$	$h_{12,12}$
12	ġ _{12,0}	<i>g</i> _{12,1}	<i>g</i> _{12,2}	<i>g</i> _{12,3}	<i>g</i> 12,4	ġ _{12,5}	<i>g</i> _{12,6}	<i>g</i> _{12,7}	<i>g</i> 12,8	<i>g</i> _{12,9}	$g_{12,10}$	$g_{12,11}$	$g_{12,12}$

The numerical values of the Gauss coefficients at the base epoch and their corresponding predictive annual rates of change for the WMM-95 geomagnetic model are listed in table 3. These numerical values are inserted into arrays C and CD through data statements in the GEOMAG algorithm. Replacing the Gauss coefficients in these data statements and the date of their base epoch are the only changes that need to be made to update the algorithm from an older model to the new model. In all other respects the GEOMAG routine remains unaltered. Other versions of the GEOMAG routine exist for which the coefficients can be read in from an external file. Then, only the external coefficient data file needs to be updated, while the algorithm remains unchanged, except for comment statements that may be revised.

Important parameters in the GEOMAG routine and their mathematical correspondences are:

•		
Α	~	$a = 6378.137 \ km$
В	~	$b = 6356.7523142 \ km$
RE	~	$R_E = 6371.2 \ km$
TIME	~	t
EPOCH	~	T_{Epoch}
DT	~	t-1 Epoch
ALT	~	h
SNORM(N,M)	~	S^{nm}
K(N,M)	~	K ^{n m}
GLAT	~	λ
GLON	~	$oldsymbol{arphi}$
SP(M)	~	$sin(m\varphi)$
CP(M)	~	$cos(m\varphi)$
ST	~	$sin(\theta)$
CT	~	$cos(\theta)$
CA	~	$cos(\alpha)$
SA	~	$sin(\alpha)$
BR	~	B_r
BT	~	B_{θ}
BP	~	$B_{oldsymbol{arphi}}$
BX	~	B_X
BY	~	$B_{_Y}$
BZ	~	$B_{\mathbf{Z}}$
DEC	~	$B_{\scriptscriptstyle D}$
DIP	~	$B_{_I}$
TI	~	B_F
MAXDEG	~	N
MAXORD	~	M = N
P(N,M)	~	$P^{nm}(\theta)$
DP(N,M)	~	$\frac{dP^{n\hat{m}}(\hat{\Theta})}{d\Theta}$
TC	~	$C + (t - T_{Epoch})C$ C
CD	~	C
Q2	~	Q^2

Table 3. WMM-95 Model Coefficients

n	m	g _n ^m	h _n	$g_n^{\bullet m}$	h _n
				- 11	
1	0	-29,682.1	0.0	17.6	0.0
1	1	-1,782.2	5,315.6	13.2	-18.0
2	0	-2,194.7	0.0	-13.7	0.0
2	1	3,078.6	-2,359.1	4.0	-14.6
2	2	1,685.7	-418.6	-0.3	-7.2
3	0	1,318.8	0.0	0.8	0.0
3	1	-2,273.6	-261.1	-6.6	4.0
3	2	1,246.9	301.0	-0.5	2.2
3	3	766.3	-416.5	-8.5	-12.6
4	0	940.0	0.0	1.2	0.0
4	1	782.9	259.4	1.1	1.3
4	2	290.9	-230.9	-6.8	1.0
4	3	-418.9	99.8	0.3	2.5
4	4	113.8	-306.1	-4.5	-1.2
5	0	-209.5	0.0	0.9	0.0
5	1	354.0	43.7	0.5	0.5
5	2	238.2	157.6	-1.4	1.5
5	3	-122.1	-150.1	-1.7	0.6
5	4	-162.8	-59.2	0.0	1.7
5	5	-23.3	104.4	2.1	0.6
6	0	68.5	0.0	0.4	0.0
6	1	65.6	-15.2	-0.3	0.7
6	2	64.1	74.3	0.3	-1.5
6	3	-169.1	69.4	2.1	-0.5
6	4	-0.5	-55.3	0.0	-0.7
6	5	16.5	3.0	-0.4	1.1
6	6	-91.0	33.3	-0.4	2.6
7	0	78.0	0.0	-0.3	0.0
7	1	-68.1	-76.1	-1.1	0.3
7	2	0.1	-24.5	-0.5	0.0

Table 3. WMM-95 Model Coefficients (Con.)

n	m	g _n ^m	h _n ^m	g _n	h _n
			1.0	0.5	0.7
7	3	29.6	1.6	0.5	0.7
7	4	6.0	20.0	1.3	-0.6
7	5	8.7	16.5	0.1	0.1
7	6	9.2	-23.6	0.0	-0.6
7	7	-2.4	-6.8	-0.9	-0.4
8	0	24.7	0.0	0.1	0.0
8	1	3.4	14.9	0.0	0.4
8	2	-1.5	-19.5	0.4	-0.3
8	3	-9.6	6.3	0.3	0.1
8	4	-16.5	-20.4	-1.3	0.8
8	5	2.6	12.2	0.5	-0.1
8	6	3.6	7.0	0.4	-1.3
8	7	-4.9	-19.0	-0.9	-0.9
8	8	-8.5	-8.8	0.1	-1.1
9	0	2.9	0.0	0.0	0.0
9	1	7.5	-19.8	0.0	0.0
9	2	0.4	14.6	0.0	0.0
9	3	-10.3	10.9	0.0	0.0
9	4	9.7	-7.5	0.0	0.0
9	5	-2.3	-6.8	0.0	0.0
9	6	-2.4	9.3	0.0	0.0
9	7	6.8	7.7	0.0	0.0
9	8	-0.5	-8.1	0.0	0.0
9	9	-6.5	2.6	0.0	0.0
10	0	-2.9	0.0	0.0	0.0
10	1	-3.3	3.2	0.0	0.0
10	2	2.8	1.7	0.0	0.0
10	3	-4.3	2.9	0.0	0.0
10	4	-3.1	5.6	0.0	0.0
10	5	2.4	-3.4	0.0	0.0

Table 3. WMM-95 Model Coefficients (Con.)

n	m	g _n ^m	h _n ^m	$\overset{\bullet}{\mathbf{g}}_{\mathbf{n}}^{\mathbf{m}}$	h _n
10	6	2.8	-0.7	0.0	0.0
10	7	0.7	-2.9	0.0	0.0
10	8	4.1	2.3	0.0	0.0
10	9	3.6	-1.6	0.0	0.0
10	10	0.6	-6.6	0.0	0.0
11	0	1.7	0.0	0.0	0.0
11	1	-1.6	0.3	0.0	0.0
11	2	-3.6	1.0	0.0	0.0
11	3	1.2	-3.6	0.0	0.0
11	4	-0.6	-1.4	0.0	0.0
11	5	0.1	1.9	0.0	0.0
11	6	-0.7	0.2	0.0	0.0
11	7	-0.8	-1.3	0.0	0.0
11	8	1.3	-2.4	0.0	0.0
11	9	-0.3	-0.6	0.0	0.0
11	10	2.2	-2.2	0.0	0.0
11	11	4.2	1.3	0.0	0.0
12	0	-1.8	0.0	0.0	0.0
12	1	0.9	0.3	0.0	0.0
12	2	-0.1	1.4	0.0	0.0
12	3	-0.5	0.8	0.0	0.0
12	4	0.8	-3.0	0.0	0.0
12	5	0.2	0.7	0.0	0.0
12	6	0.5	0.5	0.0	0.0
12	7	0.4	-0.8	0.0	0.0
12	8	-0.4	0.6	0.0	0.0
12	9	0.3	0.1	0.0	0.0
12	10	0.2	-1.3	0.0	0.0
12	11	0.4	-0.4	0.0	0.0
12	12	0.6	0.9	0.0	0.0

Note that R_E is not intended to be the mean radius of the WGS-84 ellipsoid. By international convention established by the International Association of Geomagnetism and Aeronomy (IAGA) circa 1968, it is the mean radius of a modified ellipsoid established by the International Astronomical Union (IAU) in 1966. This ellipsoid is referred to as the modified IAU-66 ellipsoid (Zmuda [1971]).

The GEOMAG algorithm is organized into two modules, each with its own entry point. The first is an *Initialization Module*. Its purpose is to compute all constants such as the recursion relation factors for the associated Legendre polynomials κ^{nm} , the Schmidt normalization factors S^{nm} , and any other parameters that do not depend on position or time. The entry point for this module is:

GEOMAG(MAXDEG)

The parameter MAXDEG determines the maximum degree and order of the magnetic model to be used in the computations. Normally, MAXDEG=12, which is the maximum degree and order of the WMM series of geomagnetic models. In order to reduce computation time, MAXDEG may be set to a number less than 12 (e.g., 8 or 10). However, the accuracy of the computed magnetic parameters is correspondingly reduced. MAXDEG must be set in the calling program.

The second module is the Processing Module, which has the following entry point:

GEOMG1(ALT,GLAT,GLON,TIME,DEC,DIP,TI,GV)

The purpose of this module is to compute the magnetic *Declination*, *Inclination*, *Total Intensity*, and the *Grid Variation* at each *geodetic* position and time supplied to it. The units of the parameters in the argument list of the GEOMG1 entry point are as follows:

ALT	~	kilometers	(e.g., 5.314)	(IN)
GLAT	~	degrees	(e.g., 33.716)	(IN)
GLON	~	degrees	(e.g., -163.315)	(IN)
TIME	~	years	(e.g., 1997.427)	(IN)
DEC	~	degrees	(e.g., -121.734)	(OUT)
DIP	~	degrees	(e.g., 48.387)	(OUT)
TI	~	nanoTeslas	(e.g., 35781.7)	(OUT)
GV	~	degrees	(e.g., 51.768)	(OUT)

The computed magnetic field parameters are referenced to the WGS-84 ellipsoid. The last parameter, GV, is the Grid Variation which is computed only for the polar regions (i.e., above +55° latitude or below -55° latitude). Outside of these regions, a default value of -999.0 is dummied in. The Grid Variation is referenced to *Grid North* of a polar stereographic projection. The model is considered to be a valid representation of the Earth's core magnetic field at geodetic altitudes ranging from the *ocean bottom* to +1000 km for all geodetic latitudes and longitudes.

The SV computation of a geomagnetic component at a fixed time $t = \tau$ is accomplished by making two calls to the entry point GEOMG1, one at time $t_1 = \tau - 0.5$ and one at time $t_2 = \tau + 0.5$, where t is expressed in years. This yields the Declination, Inclination, and the Total Intensity at two different times spaced one year apart. Using these three magnetic components, any other magnetic component can be calculated at these same two times via eqs. (21a) through (21e) and eqs. (22a) through (22d). The SV is then determined by differencing the two MF values of a particular component. For example, the Horizontal component's SV is computed by inserting eq. (22a) into the following:

$$\overset{\bullet}{H}(\lambda, \varphi, h, \tau) = [H(\lambda, \varphi, h, t_2) - H(\lambda, \varphi, h, t_1)] / \Delta t \tag{27}$$

where

$$\Delta t = t_2 - t_1 = 1 \text{ year} \tag{28}$$

The FORTRAN code for the *internal version* (i.e., coefficients embedded in the algorithm as data statements) of the GEOMAG algorithm is listed in the appendix.

SECTION 2

THE 1995 EPOCH GEOMAGNETIC MODEL DERIVATION

2.0 Overview

Three major data sets were available for the 1995 epoch modeling effort. These were scalar magnetic data from NAVOCEANO's POGS satellite collected from January 1991 through July 1993; NAVOCEANO's Project MAGNET high-altitude (≥ 15,000 ft., or ≥ 4.57 km) vector-aeromagnetic survey data collected from October 1988 through December 1993; and Geomagnetic Observatory vector annual-magnetic-means data collected between 1985 and 1994 and provided by many cooperating nations throughout the world. Considerable effort was expended toward both the acquisition and the reduction of these data sets in order to make them suitable for modeling purposes. The data acquisition/reduction procedures for POGS data are described by Quinn et al. (1993b), while those for Project MAGNET data are described by Coleman (1992). Those for observatory vector-annual-magnetic-means data are described by Macmillan (1994).

In addition to the usual concern of isolating the core field from the magnetic field measurements, which also contain ionospheric, magnetospheric, and crustal magnetic field contaminations, the quality of the world magnetic model generated from these data are influenced by four major factors:

- a. Data age relative to the model epoch;
- b. Data temporal coherence;
- c. Data spatial uniformity; and
- d. Data spatial density.

None of the three available data sets are ideal in all of these respects. However, the bulk of these data sets do overlap in time and are fairly recent data, being less than 5 years old.

Small POGS data subsets (i.e., having a 20- to 60-day time span) may be considered temporally coherent, uniformly distributed in space, and of sufficient spatial density for degree 12 spherical-harmonic modeling. The POGS satellite data distribution used in the 1995 epoch modeling sequence is illustrated in the Aitoff equal-area charts 1 through 42. The data shown are specially selected for geomagnetically quiet times. The data selection criteria consists of the following:

- a. $Kp \leq 2^+$
- b. $|Dst(\Theta)| \leq 50 \text{ nT}$
- c. Local Time: night-side, 7 PM to 5 AM

The planetary K (Kp) index is a measure of solar activity and ranges from 0 to 9 with 0 being the quietest time. The Disturbance storm-time (Dst) index is, at least classically, a measure of the strength of the magnetospheric Ring current. It is based on geomagnetic measurements made by a select group of geomagnetic observatories located near the geomagnetic equator. The Dst index is referenced to the geomagnetic equator [i.e., Dst(0)]. Its value at higher geomagnetic latitudes, Θ , has been taken to be the equatorial value provided by M. Sugiura through the National Geophysical Data Center (NGDC), multiplied by the cosine of the geomagnetic latitude, and is denoted as Dst(Θ). Note that inadvertently, the POGS data files

Chart 1. POGS Distribution: 1991, Days 011 - 020, F Component Residuals

Chart 2. POGS Distribution: 1991, Days 021 - 030, F Component Residuals

Chart 3. POGS Distribution: 1991, Days 031 - 040, F Component Residuals

-125. <-125.

Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

File = pogs1031040.dst Model = model_02.cof

Kp Max = 2.667 |Dst| ≤ 50.0 nT

-105. -115.

-95

Chart 4. POGS Distribution: 1991, Days 041 - 050, F Component Residuals

Chart 5. POGS Distribution: 1991, Days 051 - 060, F Component Residuals

File = pogs1121130.dst
Model = model_04.cof
Kp Max = 2.667
|Dst| < 50.0 nT
Begin Local Time = 19.0 Hrs
End Local Time = 5.0 Hrs

-105. -115.

Chart 6. POGS Distribution: 1991, Days 121 - 130, F Component Residuals

Chart 7. POGS Distribution: 1991, Days 131 - 140, F Component Residuals

File = pogs1131140.dst Model = model_04.cof

Kp Max = 2.867 |Dst| ≤ 50.0 nT

-125. <-125.

-105. -115.

Chart 8. POGS Distribution: 1991, Days 171 - 180, F Component Residuals

File = pogs1171180.dst Model = model_04.cof

Kp Max = 2.667 | Dst| ≤ 50.0 nT

-105. -115.

Chart 9. POGS Distribution: 1991, Days 181 - 190, F Component Residuals

File = pogs1181190.dst Model = model_05.cof

Kp Max = 2.667|Dst| ≤ 50.0 nT

-125. <-125.

-105. -115.

-85.

45. 35. 25.

15.

105.

95.

85. 75. 65. 55.

Chart 10. POGS Distribution: 1991, Days 201 - 210, F Component Residuals

-125. <-125. -115.

-105.

-95

Chart 11. POGS Distribution: 1991, Days 211 - 220, F Component Residuals

File = pogs1211220.dst Model = model_05.cof

Kp Max = 2.667|Dst| ≤ 50.0 nT

-105. -115.

Chart 12. POGS Distribution: 1991, Days 231 - 240, F Component Residuals

Chart 13. POGS Distribution: 1991, Days 241 - 250, F Component Residuals

Chart 14. POGS Distribution: 1991, Days 251 - 260, F Component Residuals

Chart 15. POGS Distribution: 1991, Days 261 - 270, F Component Residuals

-115. -125. <-125.

> Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

Kp Max = 2.667 |Dst| ≤ 50.0 nT

Chart 16. POGS Distribution: 1992, Days 001 - 010, F Component Residuals

Chart 17. POGS Distribution: 1992, Days 011 - 020, F Component Residuals

Chart 18. POGS Distribution: 1992, Days 021 - 030, F Component Residuals

-115. -125. <-125.

> Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

|Dst| < 50.0 nT

File = pogs2041050.dstModel = $model_07.cof$ Kp Max = 2.667|Dst| ≤ 50.0 nT Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

-105. -115.

Chart 19. POGS Distribution: 1992, Days 041 - 050, F Component Residuals

115.

105.

95.

85. 75. 665. 55. 45. 35.

> File = pogs2121130.dst Model = model_08.cof Kp Max = 2.667 $|Dst| \le 50.0 \text{ nT}$ Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

-115.

-105.

-85. -95.

-75.

-45.

-55. -65.

-15. -25.

15.

Chart 20. POGS Distribution: 1992, Days 121 - 130, F Component Residuals

Chart 21. POGS Distribution: 1992, Days 131 - 140, F Component Residuals

-115.

-105.

-125. <-125.

Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

Kp Max = 2.667 Dst| ≤ 50.0 nT

115. 105. 95.

85.

75. 65.

45.

35.

File = pogs2141150.dst

Model = model_08.cof

Kp Max = 2.667 $|Dst| \le 50.0 \text{ nT}$ Begin Local Time = 19.0 Hrs

End Local Time = 5.0 Hrs

-105. -115.

-85. -95.

-25.

-15.

-35. -45. -55. -65.

Chart 22. POGS Distribution: 1992, Days 141 - 150, F Component Residuals

Chart 23. POGS Distribution: 1992, Days 151 - 160, F Component Residuals

 $|\mathbf{Kp}| \mathbf{Max} = 2.867$ $|\mathbf{Dst}| \le 50.0 \text{ nT}$

File = pogs2151160.dst Model = model_09.cof

-105. -115.

115.

95. 85. 75. 45. 35.

25. 15.

55.

-115. -125. <-125.

-105.

-75. -85.

-65.

-45.

-15. -25.

Chart 24. POGS Distribution: 1992, Days 161 - 170, F Component Residuals

115.

95. 85. 75. 65. 55. 35.

File = pogs2171180.dst

Model = model_09.cof

Kp Max = 2.667 $|Dst| \le 50.0$ nT

Begin Local Time = 19.0 Hrs

End Local Time = 5.0 Hrs

-125. <-125.

-105. -115.

-85. -95.

-15. -25. -35. -45. -55.

15.

Chart 25. POGS Distribution: 1992, Days 171 - 180, F Component Residuals

115. 105.

85.

75. 65. 55. 35. 25.

Chart 26. POGS Distribution: 1992, Days 181 - 190, F Component Residuals

-125. --125.

-105. -115.

-95.

-75. -85.

-65.

-15. -25. -35. -45.

Chart 27. POGS Distribution: 1992, Days 191 - 200, F Component Residuals

Model = model_10.cof

Kp Max = 2.667 |Dst| ≤ 50.0 nT

-125. <-125.

-105. -115.

Chart 28. POGS Distribution: 1992, Days 201 - 210, F Component Residuals

115.

105.

95. 85.

75. 65.

55. 45. 35. 15.

ហុំ ហុ

-15. -25. -35. -45. -55.

Chart 29. POGS Distribution: 1992, Days 211 - 220, F Component Residuals

Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

File = pogs2211220.dst Model = model_11.cof

Kp Max = 2.667 $|Dst| \le 50.0 \text{ nT}$

-115.

-105.

-85.

-75.

Chart 30. POGS Distribution: 1992, Days 221 - 230, F Component Residuals

 $Model = model_11.cof$

Kp Max = 2.667 |Dst| ≤ 50.0 nT

-105. -115.

Chart 31. POGS Distribution: 1992, Days 231 - 240, F Component Residuals

Model = model_11.cof

Kp Max = 2.667 |Dst| ≤ 50.0 nT

-125. <-125.

-105. -115.

Chart 32. POGS Distribution: 1992, Days 241 - 250, F Component Residuals

Model = model_11.cof

Kp Max = 2.667|Dst| < 50.0 nT

-125. <-125.

-105. -115.

Chart 33. POGS Distribution: 1993, Days 021 - 030, F Component Residuals

File = pogs3021030.dst Model = model_12.cof

Kp Max = 2.667 |Dst| ≤ 50.0 nT

-115.

-105.

-95.

-85.

115. 105.

95.

85.

75. 65. 55. 45. 35. 15.

-15. -25.

-35. -45.

Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

Kp Max = 2.667 |Dst| ≤ 50.0 nT

Chart 34. POGS Distribution: 1993, Days 031 - 040, F Component Residuals

-105.

-95.

-65. -75. -85. -115.

-125. <-125.

Chart 35. POGS Distribution: 1993, Days 041 - 050, F Component Residuals

Model = model_12.cof

Kp Max = 2.667 |Dst| ≤ 50.0 nT

-105. -115.

115.

95.

85.

75. 65. 55.

45. 35. 25.

15.

-105. -115.

-75. -85.

-45. -55.

-25. -35.

-15.

Chart 36. POGS Distribution: 1993, Days 121 - 130, F Component Residuals

Chart 37. POGS Distribution: 1993, Days 131 - 140, F Component Residuals

Model = model_13.cof

Kp Max = 2.667|Dst| ≤ 50.0 nT

-125. <-125.

-105. -115.

Chart 38. POGS Distribution: 1993, Days 141 - 150, F Component Residuals

Kp Max = 2.667|Dst| ≤ 50.0 nT

-115.

Chart 39. POGS Distribution: 1993, Days 171 - 180, F Component Residuals

-125. <-125.

Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

|Dst| ≤ 50.0 nT

-115.

Chart 40. POGS Distribution: 1993, Days 181 - 190, F Component Residuals

Chart 41. POGS Distribution: 1993, Days 191 - 200, F Component Residuals

Chart 42. POGS Distribution: 1993, Days 201 - 210, F Component Residuals

contain the value of M. Sugiura's Dst(0) index divided, rather than multiplied, by the cosine of the geomagnetic latitude. This is not a serious problem since Sugiura's original equatorial Dst index can be recovered by multiplying the POGS Dst values by the cosine of the geomagnetic latitude. One simply needs to be aware of how the data has been treated. The geomagnetic coordinates used for this purpose were from the 1990 Epoch. The Dst index has a range of \pm 1000 nT and perhaps higher during extremely active periods.

The WMM-95 modeling effort actually used the POGS Dst values for data selection. Consequently, the data selection criteria became more stringent approaching the geomagnetic poles than originally intended. This was actually beneficial since less geomagnetically active Auroral Zone data were selected, while, as charts 1 through 42 indicate, no noticeable deterioration in the selected POGS data distribution was observed near the magnetic poles. The color scheme on the POGS data distribution charts corresponds to magnetic Total-Intensity residuals, computed with respect to *initial* POGS-based models which, as input data, used the POGS file indicated in the chart legend and other files nearby in time. As indicated in each chart legend, the POGS data are organized into 10-day files. For example, the file: pogs2121130.dst corresponds to the year 1992 and covers days 121 through 130. The extension "dst" indicates that the equatorial value of the Dst index (*divided* by the cosine of the geomagnetic latitude) and the Kp index are both attached to each data record within the 10-day data file.

On the other hand, Project MAGNET data are not considered temporally coherent, and by design, these data are primarily confined to latitude bands that straddle the geomagnetic equator although excursions to the North Magnetic Pole and to the South Magnetic Pole were made, as is In the equatorial band the data indicated in Aitoff equal-area charts 43a-d and 44a-d. distribution is considered reasonably uniform and of sufficient density for degree 12 sphericalharmonic modeling when combined with POGS data. Charts 43a-d display Project MAGNET data coverage for the X, Y, Z, and F magnetic components of the C32 projects indicated in the chart legends. These surveys span the time interval from the fourth quarter of calendar year 1988 through the third quarter of calendar year 1990. Charts 44a-d display Project MAGNET data coverage for the X, Y, Z, and F magnetic field components of the D32 projects indicated in the chart legends. These surveys span the time interval from the first quarter through the fourth quarter of calendar year 1993. An additional set of Project MAGNET data was collected during the first calendar quarter of 1994 but was not processed in time to use in the 1995 Epoch model. The project numbers on these charts correspond to Fiscal Years (FY), which start in October. Thus, Project 352 corresponds to the second quarter of FY93. The "5" is an aircraft designator. It corresponds to the fifth aircraft used in the Project MAGNET program. The color code on these charts corresponds to the magnetic field residuals with respect to a modified 1990 Epoch model generated in May 1994. It will be discussed shortly. Note that the Y-component appears to be biased for many flights. This appears to have been the result of a bias in the inertial attitude device on the aircraft. Consequently, this component received less weight in the modeling process. In contrast to the POGS data, the aeromagnetic data were not selected on the basis of either the Kp or Dst index. Instead, the aircraft is flown at night, and as far as it was possible to do so, data were collected during periods of low solar activity.

Project #: 951,953,954,051-054 Model: wmm-90_rv.may High Level ≥ 4.57 km

Chart 43a. C32 Project MAGNET Distribution: X - Component Residuals

-250.0

-210.0

Chart 43b. C32 Project MAGNET Distribution: Y - Component Residuals

-230.0

High Level ≥ 4.57 km

Chart 43c. C32 Project MAGNET Distribution: Z - Component Residuals

-250.0

Chart 43d. C32 Project MAGNET Distribution: F - Component Residuals

-230.0

-190.0

Project #: 951,953,954,051-054

Model: wmm-90_rv.may

High Level ≥ 4.57 km

Project #: 352,353,451 Model: wmm−90_rv.may High Level ≥ 4.57 km

-230.0 -250.0 <-250.0

-190.0

Chart 44a. D32 Project MAGNET Distribution: X - Component Residuals

Project #: 352,353,451 Model: wmm-90_rv.may High Level ≥ 4.57 km

-210.0 -230.0

-190.0

Chart 44b. D32 Project MAGNET Distribution: Y - Component Residuals

Chart 44c. D32 Project MAGNET Distribution: Z - Component Residuals

-230.0 -250.0 -250.0

Model: wmm-90_rv.may High Level ≥ 4.57 km

-210.0

Chart 44d. D32 Project MAGNET Distribution: F - Component Residuals

-230.0

High Level ≥ 4.57 km

The POGS and Project MAGNET data are available to the general public through the NGDC in Boulder, Colorado. The combined data sets are useful for both MF and SV modeling and are intended to compliment each other in the sense that vector data are required as input to the model along the magnetic equator in order to avoid *Backus effect* modeling errors (Stern and Bredekamp [1975] and Stern et al. [1980]) that would otherwise arise if only scalar Total Intensity data were available, as would be the case if POGS data alone were used.

Observatory annual-means data have been traditionally used to compute the SV portion of the WMM. The primary deficiency of this data set is its poor spatial distribution. Even when supplemented with Project MAGNET intersect data, the resulting SV models are limited to spherical-harmonic degree 8. Observatory data are not directly used for MF modeling due to the unknown crustal biases that exist under each observatory. If the Earth is divided into equal area cells on the order of 10° X 10° at the equator, then as seen in chart 45 from the BGS, roughly half of these cells contain no observatories. In this chart, cells with no observatories contain an asterisk, while those with observatories have no asterisk. A great paucity of observatory data can be seen especially in the southern hemisphere and all ocean areas in general. The status of currently operating geomagnetic observatories, of which there are only approximately 180, is discussed by McLean et al. (1994). As indicated in chart 46 (from McLean et al. [1994]) there is a significant time lag on the order of 1 to 4 years in observatory data reporting. This chart indicates the actual distribution of operating observatories as of March 1994.

The modeling objective is to create two spherical-harmonic models. One, the MF model, characterizes the Earth's core-generated magnetic field at the 1995.0 epoch. The other, the SV model, characterizes the Earth's core-generated slow-temporal-change field for the time span from 1995.0 to 2000.0. The SV model is thus centered at 1997.5 and is referred to as the 1997.5 Epoch SV model. It is a *predictive* model since it is computed prior to 1995.0. The combined 1995.0 MF model and the 1997.5 SV model are referred to collectively as the 1995.0 Epoch World Magnetic Model. This model will expire at the end of December 1999, when another model based on new data will replace it.

Given the objective, and the available data, the following procedure was adopted:

- a. Use the Observatory annual-magnetic-means data and other data as available (e.g., Project MAGNET intersect data and repeat station data) to create two <u>Definitive</u> SV models, the first covering the 5-year interval 1985.0 to 1990.0 and the second covering the 5-year interval 1990.0 to 1995.0. These are then referred to as the BGS <u>Definitive</u> 1987.5 and 1992.5 Epoch SV models, respectively. These were provided by the BGS using annual means data available through May 1994.
- b. Use the BGS Definitive 1987.5 SV model to adjust the WC-85 (revised) model MF coefficients (Quinn et al. [1991]) to the 1990.0 Epoch. The resulting MF model, when merged with the BGS Definitive 1992.5 Epoch SV model is designated as the WMM-90 (modified) model. This model is considered to be the best *a priori* model estimate for the 1990 to 1995 time span.

The 239 10 degree tesserae (out of a maximum of 412) filled with SV values from WMM97P.

Courtesy of British Geological Survey (BGS), September 1994

Chart 45. BGS 10° X 10° Equal Area Geomagnetic Observatory Distribution

Magnetic Observatories in Operation 1994 (based on data received at the WDC-A)

- Observatory Annual Means for 1992 or Later at WDC-A
- Observatory Annual Means for 1990 or 1991 at WDC-A
- Observatory Operation Uncertain or Annual Means for 1989 or Earlier

Chart 46. NGDC Geomagnetic Observatory Distribution & Reporting History

- c. Select POGS data on the basis of the Kp and Dst indices and according to local time in accordance with the criteria stated above for each 10-day file.
- d. Locate consecutive groups of 10-day POGS select files from which the total data selected consisted of approximately 18,000 uniformly distributed records and for which a maximum of six 10-day files was used. A total of 14 time groups satisfying these criteria were identified. Some, corresponding to magnetically very quiet times, contained just two 10-day files, while others, corresponding to less quiet times, contained the maximum of six 10-day files. Some groups overlapped, while other groups were separated significantly in time.
- e. Make preliminary MF models for each of the 14 POGS defined time groups at their respective mean epochs and use these models to isolate the majority of the ionospheric magnetic field and to devise a *Magnetic Latitude dependent Ionospheric Correction* for each 10-day POGS select file.
- f. Select from each ionospherically corrected 10-day file for all 14 time groups, that portion of the data which passes over Europe, where the WMM-90 (modified) model is expected to be the most accurate due to the large concentration of geomagnetic observatories in that region. This *select* European data subset covers the approximate time from 1991 through 1993.7. Then use the POGS scalar magnetic residuals, computed with respect to the WMM-90 (modified) model, to compute the POGS magnetometer Total Intensity *Bias* and *Drift-Rate* via least squares, assuming a linear drift.
- g. Apply the Bias and Drift-Rate corrections and the ionospheric corrections to the 10-day POGS select files in each of the 14 time groups.
- h. Adjust the entire Project MAGNET data set to the mean epoch of each of the 14 POGS-defined time groups, using the WMM-90 (modified) model.
 - i. Make MF models at each of the 14 group epochs.
- j. Perform a least-squares fit over the 14 epochs for each MF Gauss coefficient using 1992.5 as a reference time. A 1992.5 Epoch MF model results, along with a 1992.5 SV model designated as SV 1992.5 (A). Combined, two coefficient sets are referred to as the WMM-92.5 (optimum) model. Both the MF and SV portions of this model are completely defined through degree and order 12. An alternate procedure, independent of the POGS data and involving observatory data and Project MAGNET intersect data, generated another 1992.5 SV model designated as SV 1992.5 (B). It is defined only through degree and order 8 due to the poor distribution of these two data sets.
- k. Use the SV portion of the WMM-92.5 (optimum) model to adjust the MF d portion of the WMM-92.5 (optimum) model backward 2.5 years to 1990.0. Then merge the SV portion of the WMM-92.5 (optimum) model with this new adjusted 1990.0 Epoch MF model to form the WMM-90 (revised) model. Subsequently adjust the WMM-90 (revised) MF model forward to the 1995.0 Epoch using the average of the SV 1992.5 (A) and SV 1992.5 (B) models truncated to degree 8. The result is the WMM-95 MF model.

- 1. Use Magnetic Observatory and Project MAGNET survey-track intersect data, filling in remaining spatial gaps with SV values generated from the WMM-90 (revised) model of step "j" where necessary, to generate a 1997.5 Predictive SV model.
- m. Combine the 1995.0 Epoch MF model generated in step "j" with the 1997.5 Epoch Predictive SV model of step "l" to obtain the WMM-95 model.

The WMM-90 (revised) model is a by-product of the WMM-95 modeling process. When truncated to degree 10, it becomes a candidate model for the 1990.0 Epoch Definitive Geomagnetic Reference Field (DGRF-90) model of the IAGA, while the WMM-95 model, when truncated to degree 10, becomes a candidate model for the International Geomagnetic Reference Field (IGRF-95) model of IAGA.

The four SV models discussed above are listed in table 4. Three of these SV models (i.e., 1987.5, 1992.5(B), and 1997.5) were generated by BGS, using the techniques described by Macmillan (1994). The Gauss coefficients for all of these models are based on Observatory annual means data, Repeat Station data, and Project MAGNET intersect data and so are necessarily truncated to degree and order 8.

2.1 Secular-Variation Data Analysis

Traditionally, the most accurate data available for SV modeling have been Quiet-Day observatory magnetic-annual-means, the first time-derivative of which provides information concerning the slow rates of change (greater than one year) of various components of the Earth's Main magnetic field at various locations (roughly 180) scattered around the world. Due to the sparsity and spatial nonuniformity of this data set, it is possible to generate only a degree and order 8 spherical-harmonic SV model, even when these data are supplemented with other data such as Project MAGNET intersect difference data and Repeat Station data, since these supplementary data are also sparse, nonuniformly distributed and generally less accurate than the annual means data. Furthermore, the Predictive SV model is necessarily based on extrapolations of observatory annual means at each observatory site. The BGS has been primarily responsible for generating the Predictive SV portion of the WMM series of magnetic models as was the case for this 1995.0 Epoch.

Examples of observatory annual means data from a few selected sites (Honolulu, Huancayo, Pilar, and Rude Skov) for the X-north, Y-east, and Z-vertically down components of the Earth's magnetic field, as well as for the D-Declination, I-Inclination, and F-Total Intensity components of the Earth's magnetic field, are given in figures 1a, 1b, 1c, 1d, 1e, and 1f through 4a, 4b, 4c, 4d, 4e, and 4f. The discontinuities in the field components at Honolulu are due to the repositioning of the observatory at two different instances. The geographic location and elevation of these observatories are given in the legend in the upper left-hand corner of these figures. Notice that the rate of change of one or more of the field components at several observatory sites has reversed direction over time intervals as short as 2 or 3 years. This behavior is an illustration of the sudden, unpredictable nature of the Earth's core magnetic field

Table 4. BGS Definitive and Predictive SV Model Coefficients (units: nanoteslas/year)

	1987.5			1992.5 (A)		1992.5 (B)		1997.5	
n	m	• m	h_n	• m	h_n^{m}	g_n^{m}	h_n	g_n^{m}	$\overset{\bullet}{h}_{n}^{m}$
		g_n	n'n	g_n	· · n	5n	· · n	0 n	n
						10.0			0.0
1	0	19.3	0.0	19.1	0.0	18.8	0.0	17.6	0.0
1	1	11.2	-17.9	12.5	-17.9	13.0	-17.8	13.2	-18.0
2	0	-12.6	0.0	-13.4	0.0	-13.4	0.0	-13.7	0.0
2	1	2.9	-16.1	3.6	-14.9	3.7	-15.3	4.0	-14.6
2	2	0.3	-13.8	-0.1	-9.5	-0.5	-8.8	-0.3	-7.2
3	0	3.8	0.0	1.8	0.0	1.8	0.0	0.8	0.0
3	1	-6.7	4.2	-7.0	4.1	-6.8	3.7	-6.6	4.0
3	2	-0.4	1.9	-0.6	1.9	-0.6	2.0	-0.5	2.2
3	3	-5.1	-10.6	-7.9	-12.0	-7.7	-12.2	-8.5	-12.6
4	0	0.4	0.0	0.8	0.0	1.1	0.0	1.2	0.0
4	1	0.3	3.1	0.7	2.0	0.7	2.0	1.1	1.3
4	2	-7.3	2.0	-6.7	1.4	-6.9	1.3	-6.8	1.0
4	3	0.4	3.5	0.6	2.8	0.3	2.9	0.3	2.5
4	4	-5.9	-0.6	-5.5	-1.3	-5.1	-1.2	-4.5	-1.2
5	0	0.1	0.0	0.6	0.0	0.6	0.0	0.9	0.0
5	1	-0.2	0.1	0.0	0.2	0.2	0.3	0.5	0.5
5	2	-1.5	0.8	-1.1	0.9	-1.5	0.9	-1.4	1.5
5	3	-3.5	-0.3	-2.4	0.6	-2.4	0.4	-1.7	0.6
5	4	0.0	1.5	0.3	1.9	-0.1	1.8	0.0	1.7
5	5	1.8	0.8	2.5	1.0	2.1	0.9	2.1	0.6
6	0	2.0	0.0	1.2	0.0	1.0	0.0	0.4	0.0
6	1	0.0	0.0	0.0	0.3	0.0	0.4	-0.3	0.7
6	2	1.6	-1.2	0.9	-1.4	0.7	-1.3	0.3	-1.5
6	3	1.3	0.1	1.8	-0.2	2.1	-0.3	2.1	-0.5
6	4	-0.3	-1.1	-0.3	-0.6	-0.2	-0.8	0.0	-0.7
6	5	0.1	0.5	-0.2	0.8	-0.3	0.8	-0.4	1.1
6	6	1.4	0.9	0.4	2.0	0.1	1.9	-0.4	2.6
7	0	0.6	0.0	0.1	0.0	-0.1 -0.9	0.0	-0.3 -1.1	0.0 0.3
7	1	-0.7	0.6	-0.9	0.5	-0.6	0.5 0.3	-0.5	0.0
7	2	-0.1	0.2 0.7	-0.6 0.6	0.3 0.5	0.6	0.3	0.5	0.0
7	3 4	0.9 1.4	-0.1	0.0	-0.4	1.4	-0.3	1.3	-0.6
I	_	0.6	-0.1	0.5	0.0	0.6	0.0	0.1	0.1
7	5 6	0.0	0.2	0.3	-0.1	0.0	-0.2	0.0	-0.6
7	7	-0.1	-0.3	-0.7	-0.7	-0.7	-0.5	-0.9	-0.4
8	0	0.0	0.0	0.0	0.0	0.3	0.0	0.1	0.0
8	1	-0.4	0.6	-0.4	0.5	-0.3	0.4	0.0	0.4
8	2	-0.3	-0.2	-0.1	0.0	0.0	-0.3	0.4	-0.3
8	3	0.3	0.3	0.2	0.2	0.2	0.2	0.3	0.1
8	4	-0.6	0.4	-0.8	0.5	-1.0	0.7	-1.3	0.8
8	5	-0.1	0.1	0.0	-0.1	0.2	0.0	0.5	-0.1
8	6	-0.2	-0.8	0.0	-1.3	0.2	-1.0	0.4	-1.3
8	7	-0.5	-0.6	-0.7	-0.2	-0.9	-0.6	-0.9	-0.9
8	8	-0.2	0.7	-0.3	0.0	-0.3	-0.7	0.1	-1.1

Figure 1a. North X Component at Honolulu (HON)

Figure 1b. East Y Component at Honolulu (HON)

Figure 1c. Vertical Z Component at Honolulu (HON)

Figure 1d. Declination D Component at Honolulu (HON)

Figure 1e. Inclination I Component at Honolulu (HON)

Figure 1f. Total Intensity F Component at Honolulu (HON)

OBSERVATORY ANNUAL MEANS

Figure 2a. North X Component at Huancayo (HUA)

Figure 2b. East Y Component at Huancayo (HUA)

Figure 2c. Vertical Z Component at Huancayo (HUA)

Figure 2d. Declination D Component at Huancayo (HUA)

Figure 2e. Inclination I Component at Huancayo (HUA)

Figure 2f. Total Intensity F Component at Huancayo (HUA)

Figure 3a. North X Component at Pilar (PIL)

Figure 3b. East Y Component at Pilar (PIL)

OBSERVATORY ANNUAL MEANS

Figure 3c. Vertical Z Component at Pilar (PIL)

Figure 3d. Declination D Component at Pilar (PIL)

Figure 3e. Inclination I Component at Pilar (PIL)

Figure 3f. Total Intensity F Component at Pilar (PIL)

OBSERVATORY ANNUAL MEANS

Figure 4a. North X Component at Rude Skov (RSV)

OBSERVATORY ANNUAL MEANS

Figure 4b. East Y Component at Rude Skov (RSV)

Figure 4c. Vertical Z Component at Rude Skov (RSV)

Figure 4d. Declination D Component at Rude Skov (RSV)

Figure 4e. Inclination I Component at Rude Skov (RSV)

Figure 4f. Total Intensity F Component at Rude Skov (RSV)

changes and explains why it is necessary to make new spherical-harmonic geomagnetic-field models at 5-year intervals.

Quiet-Day annual-means data are used for SV modeling because magnetic fluctuations generated by external current sources, having periods of 1 year or less, tend to average out to zero over the course of 1 year. These fluctuating fields originate from a variety of current systems located external to the Earth's surface in the ionosphere (e.g., the Solar quiet (Sq) current system, Sabaka and Baldwin [1993]) and in the magnetosphere (e.g., the Ring current system). They also originate in current systems which couple the magnetosphere to the ionosphere (e.g., the Field-Aligned current systems). These external current systems are driven by the solar wind. Their associated fluctuating magnetic fields induce currents internal to the Earth's surface in the Earth's crust and mantle. These induced currents in turn generate corresponding induction fields which emanate from Earth's crust and mantle. This inductive process takes place as a consequence of the finite conductivities associated with both the crust and mantle. Magnetic fluctuations, from both external and induced internal origins having periods greater than 1 year, still contaminate the annual-means data. The most significant of these magnetic fluctuations are related to the 11-year and 22-year solar cycles. The long-term magnetic fluctuations in the annual-means data set are considered to be small and are generally ignored because many observatories do not have a sufficiently long history for a detailed analysis of their annual means data and because the external fields are not sufficiently well understood to generate accurate external-field correction models. The penalty for not removing the long-period external and induced fields is an increased uncertainty in the SV Gauss coefficients.

2.2 Main Field Data Analysis

2.2.1 Observatory Data

The Observatory magnetic annual-means data were not directly used in the MF modeling because those data contain, in addition to small external field contributions, some rather large local and regional magnetic biases of crustal origin. A detailed regional survey around each observatory site would be necessary to isolate and remove these biases. Alternatively, these biases could be computed as part of the MF modeling process. However, this approach is somewhat controversial since modeling at different epochs, not far apart in time, will yield substantially different observatory magnetic biases at one site. This bias variability is partly due to the local induction field that exists at each site. This field depends on the local conductivity distribution, which is generally unknown, and on the time-dependent external driving fields from the ionosphere and magnetosphere. The annual-means data were used indirectly in the MF modeling through the two definitive SV models referred to in the previous section. These SV models are derived from the first differences of the annual means data, which are independent of the observatory biases. They were used to adjust the Project MAGNET vector-aeromagnetic data forward and backward in time to match the mean epochs of 14 POGS data subsets which covered the time span from 1991.0 to 1993.7. Or, put another way, the entire Project MAGNET data set was copied 14 times with each copy adjusted to one of the 14 epochs of a particular POGS data subset. These adjustments were accomplished using the WMM-90 (modified) SV model.

2.2.2 Project MAGNET Data

The Project MAGNET vector-aeromagnetic data consists of two data subsets. The first data set consists of 78 high-altitude (≥ 15,000 ft.) survey flights which were flown from October 1988 through September 1990. This data set corresponds to projects with the C32 designation and was collected prior to the structural remodeling of the Project MAGNET aircraft which took place during 1991 and 1992. The second data set consists of 56 high-altitude survey flights which were flown from January through December 1993. This data set corresponds to projects with the D32 designation. The processed data consists of one vector sample every 2 seconds (i.e., 0.5 Hz sample rate) yielding 1,216,686 vector records for the C32 project flights and 1,050,462 vector records for the D32 project flights. Approximately every one-hundredth vector record was selected for modeling purposes, yielding 10,658 vector records for the C32 flights and 9,360 vector records of the D32 flights for a total of 20,018 vector records. All 2,267,148 vector records were employed to determine the statistics for weighting the data selected from each flight.

The Project MAGNET data calibration and data reduction procedures are described by Coleman (1992). The statistics for each magnetic component of each flight for the C32 projects are given in table 5, while statistics for the D32 projects are given in table 6. The statistics for those data collected prior to 1990.0 were computed with respect to the WC-85 (updated) model listed in table 7. It is composed of the WC-85 (revised) model listed in NAVOCEANO Technical Report No. 304 (Quinn et al. [1991]) and the revised BGS definitive 1987.5 SV model listed in table 4 of this report. The statistics for those data collected post 1990.0 were computed using the WMM-90 (modified) model, the coefficients for which are listed in table 8. This model is composed of the WC-85 (revised) MF Gauss coefficients adjusted to the 1990.0 Epoch using the revised BGS definitive 1987.5 SV model and combining the resulting MF coefficients with the BGS definitive 1992.5 SV model listed in table 4. The RMS values thus computed for each flight were used as weight factors in the modeling process. These statistics indicate that the Y-component magnetic data has a strong bias probably associated with a Y-component attitude bias error in the ring-laser gyro. Nevertheless, the Y-component magnetic field data was used in the modeling but was given less weight in accordance with the statistics displayed in table 5 and table 6.

The Project MAGNET aircraft is a Lockheed RP3D Orion. Prior to 1990 its instrument suite consisted of a Honeywell fluxgate vector magnetometer; a Texas Instruments ASQ-81 absolute-scalar, metastable-helium magnetometer; a GPS receiver; a precision barometric altimeter; and an electrostatic gyro for attitude determination. Post 1990 the electrostatic gyro was replaced with a ring-laser gyro, and a radar altimeter was added to the instrument suite. For post-1990 modeling only the radar altimeter data were used for height determinations since the barometric data yielded slightly larger RMS magnetic field statistics with respect to a given field model than did the edited radar altimeter data. The accuracies of the instruments composing this Project MAGNET instrument suite are given by Coleman (1992). Procedures used for both calibrating the vector magnetometer and compensating the vector magnetometer data for the magnetic fields generated by the aircraft itself are also given by Coleman (1992). Data from these instruments was time synced to within 10 milliseconds. Surveys were flown at night (local time) to minimize solar-driven external field effects that contribute to the magnetic Daily

Table 5. Project MAGNET Magnetic Field Flight Statistics wrt. WMM-90 (modified), Year > 1990 wrt. WC-85 (updated), Year < 1990

Inc (Deg.)	-0.026 0.086 0.090	-0.024 0.119 0.121	-0.029 0.099 0.103	-0.102 0.116 0.154	-0.193 0.116 0.225	-0.145 0.160 0.216	-0.110 0.121 0.163	-0.066 0.111 0.129	-0.177 0.153 0.234	0.060 0.117 0.131	-0.023 0.111 0.113	0.031 0.060 0.067
Dec (Deg.)	-0.019 0.115 0.117	-0.094 0.094 0.133	-0.075 0.075 0.106	0.094 0.138 0.167	-0.240 0.151 0.284	-0.075 0.276 0.286	-0.050 0.172 0.179	-0.017 0.155 0.157	0.109	-0.077 0.132 0.153	-0.001 0.130 0.130	0.118 0.238 0.265
Bfs (nT)	14.9 41.1 43.7	-49.6 61.5 79.0	3.5 80.6 80.7	38.0 56.1 67.8	-50.7 101.0 113.1	-13.3 75.3 76.5	3.7 101.6 101.7	29.9 72.2 78.1	22.4 55.2 59.6	8.6 45.7 46.5	-64.4 73.8 97.9	-31.7 82.1 88.0
Bfv (nT)	-0.5 55.9 55.9	-56.7 59.8 82.4	18.8 68.6 71.1	34.1 55.6 65.3	-47.5 101.8 112.4	-18.1 77.1 79.2	7.7 103.5 103.8	28.5 71.5 77.0	17.8 51.4 54.4	3.1 44.5 44.6	-74.5 75.2 105.9	-29.6 81.0 86.3
Bz (nT)	12.1 53.9 55.3	-3.7 78.7 78.8	.31.9 54.7 63.3	-65.2 73.1 98.0	-42.6 124.5 131.6	-44.9 108.4 117.3	-45.1 109.5 118.4	-48.5 78.3 92.1	-88.8 95.3 130.3	35.2 72.3 80.4	43.9 101.9 110.9	38.2 85.1 93.3
Bh (nT)	-16.0 58.8 60.9	-50.3 58.2 77.0	14.1 63.3 64.8	-4.2 41.1 41.3	-122.9 61.1 137.2	-85.0 84.5 119.9	-73.4 95.6 120.5	-28.5 75.0 80.2	-62.8 48.6 79.4	-2.4 35.5 35.6	-45.0 67.5 81.2	20.4 55.4 59.1
By (nT)	-4.5 49.5 49.7	-60.7 54.3 81.5	-32.2 30.9 44.6	37.6 63.3 73.7	-145.0 72.5 162.1	-66.1 135.6 150.8	-54.7 77.0 94.5	-19.5 48.8 52.5	19.0 63.4 66.2	-38.5 64.9 75.5	-15.2 63.3 65.1	42.8 68.2 80.5
BX (nT)	-19.0 58.6 61.6	-39.7 56.6 69.1	20.8 67.3 70.4	-14.4 36.1 38.9	-72.7 50.4 88.5	-62.1 41.0 74.4	-48.7 87.0 99.7	-25.0 80.1 83.9	-75.7 41.8 86.5	6.1 38.5 39.0	-44.1 65.8 79.3	-4.1 65.1 65.2
	Mean Std Rms	Mean Std Rms										
Records	15199	17323	15090	15488	15809	16133	17469	14013	10643	18600	17764	17915
Day End	278	308	281	297	300	284	287	291	295	303	311	314
Day Begin	278	308	281	297	300	284	287	291	295	303	311	314
Year	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988	1988
Flight	1171	3177	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128
Project	C32-951											C32-951

-0.046 0.088 0.099	-0.074 0.096 0.121	-0.044 0.092 0.102	-0.002 0.082 0.082	-0.062 0.112 0.128	0.105	0.005	0.083 0.119 0.145	0.059 0.121 0.134	0.089 0.059 0.107	0.054 0.122 0.133	0.098 0.052 0.133	0.200 0.118 0.232
0.013	-0.271	0.016	-0.084	0.090	-0.003	-0.119	-0.153	-0.085	0.068	0.053	-0.019	0.033
0.139	0.468	0.157	0.110		0.067	0.034	0.217	0.243	0.116	0.073	0.042	0.054
0.139	0.541	0.157	0.139		0.068	0.188	0.265	0.258	0.135	0.090	0.052	0.063
-24.1	19.0	-40.3	-31.1	-33.9	2.2	-29.1	-3.8	-0.8	-26.8	-73.6	-66.6	-67.5
101.2	114.4	89.3	66.7	50.4	35.9	0.1	104.5	118.1	47.0	63.5	42.4	40.2
104.1	115.9	97.9	73.6	60.7	36.0	53.1	104.6	118.1	54.1	97.2	69.9	78.6
-20.2	12.5	-39.0	-45.5	-28.0	18.1	-32.8	-1.6	0.7	-35.1	-77.3	-59.4	-66.7
103.3	116.1	89.4	67.5	51.2	41.4	44.5	102.4	118.3	50.3	63.8	40.2	40.0
105.3	116.8	97.6	81.4	58.4	45.2	56.3	102.4	118.3	61.3	100.3	62.9	77.8
-5.2	-27.9	12.3	33.2	-27.7	68.2	33.1	26.6	21.6	15.5	-6.9	40.9	105.7
108.3	107.5	97.4	75.3	68.9	65.7	46.5	121.2	129.8	51.0	77.4	38.0	77.7
108.4	111.1	98.2	82.3	74.3	94.7	57.0	124.1	131.6	53.4	77.7	73.2	131.1
-45.1	-81.6	-55.6	-32.1	-34.7	-20.6	-7.8	-75.1	-52.2	-82.6	-85.9	-85.3	-107.6
74.3	115.2	77.0	53.6	49.8	30.4	33.6	96.3	102.1	40.7	77.9	39.9	49.9
86.9	141.2	95.0	62.5	60.7	36.7	34.5	122.1	114.7	92.1	116.0	92.3	118.6
-4.4	-90.7	-6.9	-51.7	0.2	-4.8	-39.7	-42.9	-28.8	22.0	36.7	-10.7	23.3
71.1	91.6	83.2	60.8	52.2	37.8	50.6	76.3	88.9	57.6	42.1	28.7	34.8
71.2	128.9	83.5	79.8	52.2	38.1	64.3	87.5	93.4	61.6	55.8	34.3	41.8
45.4	-42.7	-56.4	-20.4	-35.2	-20.0	5.5	-81.7	-53.5	-83.8	-84.4	-85.6	-107.2
70.3	107.5	66.6	50.2	48.8	28.2	29.2	93.1	101.3	38.0	78.3	39.7	49.7
83.7	115.7	87.3	54.1	60.2	34.5	29.7	123.8	114.5	92.0	115.2	92.7	118.1
Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
Std	Std	Std	Std	Std	Std	Std	Std	Std	Std	Std	Std	Std
Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms
17333	18635	17660	16082	18630	18281	13951	2354	8698	4831	11758	2223	13901
318	321	328	331	334	345	324	130	131	181	158	160	162
318	321	328	331	334	345	324	130	131	181	158	160	162
1988	1988	1988	1988	1988	1988	1988	1989	1989	1989	1989	1989	1989
4129	4130	4131	4132	4133	4135	5084	1181	1181	1182	3180	3180	3181
C32-951						C32-951	C32-953					C32-953

C32-953	3182	1989	166	166	16545	Mean Std Rms	-57.8 62.4 85.1	1.4 50.2 50.2	-57.5 62.7 85.1	35.2 106.9 112.5	-26.2 60.8 66.2	-26.5 61.8 67.3	0.012 0.090 0.090	0.079 0.181 0.197
	3183	1989	169	169	16229	Mean Std Rms	-17.7 50.3 53.3	-29.4 50.1 58.1	-21.6 51.0 55.4	19.9 74.1 76.7	-23.6 52.3 57.4	-14.1 53.2 55.1	0.044 0.082 0.093	0.019 0.117 0.119
	4137	1989	175	175	17470	Mean Std Rms	-11.0 53.8 54.9	-37.6 47.6 60.7	-17.1 55.0 57.6	-9.3 80.7 81.3	-18.3 56.2 59.1	-28.9 55.0 62.2	-0.062 0.082 0.103	-0.019 0.134 0.135
C32-953	4138	1989	179	179	18325	Mean Std Rms	8.55 39.0 6.68	10.6 48.8 50.0	10.2 38.9 40.2	88.0 68.3 111.4	17.8 48.6 51.8	-0.9 42.8 42.8	0.0017 0.089 0.090	0.144 0.125 0.190
C32-954	1184	1989	207	207	15871	Mean Std Rms	-27.8 95.3 99.3	95.0 115.8 149.7	-81.8 116.6 142.4	-51.4 95.2 108.2	-68.9 84.7 109.2	-64.5 85.6 107.2	0.362 0.539 0.649	0.067 0.132 0.148
	1186	1989	212	212	12679	Mean Std Rms	-42.6 101.8 110.3	-42.0 168.3 173.5	-29.1 117.3 120.8	-12.7 81.4 82.3	-18.2 74.3 76.5	-20.6 73.3 76.1	-0.211 0.753 0.782	0.025 0.136 0.139
	1188	1989	218	218	18140	Mean Std Rms	1.6 133.2 133.2	-29.4 112.2 116.0	14.0 134.3 135.0	-24.1 83.2 86.7	-20.7 77.2 80.0	-22.1 78.1 81.2	-0.035 0.459 0.460	-0.022 0.155 0.157
	1189	1989	223	223	16469	Mean Std Rms	-15.7 113.8 114.9	-22.3 134.0 135.9	-6.6 110.7 110.9	-15.5 107.6 108.7	-13.3 98.4 99.3	-18.2 97.5 99.2	-0.224 0.593 0.633	-0.003 0.133 0.133
	1190	1989	228	228	16737	Mean Std Rms	-124.0 192.0 228.6	18.1 159.7 160.7	-124.4 195.5 231.7	63.1 125.3 140.3	13.1 106.9 107.6	3.6 106.4 106.5	-0.116 0.632 0.643	0.165 0.234 0.286
	1195	1989	267	267	17301	Mean Std Rms	-32.0 45.3 55.5	68.8 29.7 75.0	-51.2 48.8 70.7	-11.4 65.9 66.9	-48.7 42.8 64.8	-43.1 47.7 64.3	0.116 0.054 0.128	-0.055 0.134 0.145
	1196	1989	270	270	13055	Mean Std Rms	-100.5 34.8 106.4	-75.5 70.4 103.3	-79.4 35.5 87.0	87.0 63.0 107.4	28.6 60.7 67.1	16.0 61.2 63.2	-0.207 0.170 0.268	0.142 0.049 0.150
	1198	1989	234	234	17895	Mean Std Rms	-222.8 67.1 232.7	-70.8 66.6 97.2	-189.0 65.2 200.0	43.4 85.5 95.8	-30.1 78.9 84.4	-33.6 78.0 84.9	-0.404 0.239 0.469	0.215 0.081 0.230
C32-954	1199	1989	244	244	2842	Mean Std Rms	-100.2 31.7 105.1	-66.7 63.2 91.8	-81.2 38.0 89.7	59.2 67.5 89.8	18.9 60.6 63.4	19.8 59.6 62.8	-0.229 0.162 0.281	0.109 0.054 0.122

-0.200 0.120 0.234	-0.272 0.120 0.210	-0.063 0.094	0.184	-0.003 0.147 0.147	-0.159 0.097 0.186	-0.218 0.067	0.234	0.339 0.085 0.350	-0.172 0.146 0.226	-0.009 0.112 0.112	-0.188 0.103 0.215	-0.044 0.110 0.119
0.150 0.129 0.198	0.094	0.015	0.194	0.014	-0.091 0.252 0.268	0.054	0.019 0.093 0.095	0.257 0.151 0.298	0.109	0.054 0.130 0.141	0.079 0.097 0.125	-0.004 0.124 0.124
-23.8 38.7 45.4	-85.7 92.0 125.7	31.6 57.8 65.9	-4.1 59.9 60.0	-80.7 51.6 95.8	-1.5 89.4 89.4	11.6 38.2 39.9	69.9 69.9	-4.2 58.7 59.0	-21.5 51.5 55.8	-69.0 84.2 108.8	-50.7 40.4 64.8	-41.0 72.2 83.0
-28.2 49.0 56.6	-83.8 91.8 124.3	44.2 57.8 72.8	-3.1 58.6 58.7	-70.9 52.4 88.2	.3.9 85.2 85.3	.0.5 36.5 36.5	17.9 72.5 74.7	69.3 69.3	-12.1 59.1 60.3	-58.7 86.5 104.5	-35.3 41.0 54.1	-44.5 72.2 84.9
-89.0 58.1 106.2	3.7 87.1 87.2	-54.8 61.4 82.3	-54.6 80.9 97.6	42.7 69.0 81.1	-56.8 91.6 107.8	-77.5 43.8 89.0	134.7 81.8 157.5	159.2 81.3 178.8	-95.0 79.0 123.6	29.7 94.2 98.8	-94.4 63.1 113.5	7.2 90.9 91.2
-16.1 86.0 87.5	-111.0 61.3 126.8	1.6 51.8 51.9	-51.9 39.0 64.9	-68.4 51.9 85.9	-109.3 76.5 133.4	-111.0 35.1 116.4	-46.8 68.4 82.6	-204.6 51.5 211.0	-46.9 25.4 53.4	-52.1 56.3 76.7	-70.4 39.9 80.9	-56.8 61.0 83.3
76.3 77.0 108.4	67.8 51.8 85.3	-5.8 47.9 48.3	72.1 64.3 96.7	11.1 33.3 35.1	-86.0 106.2 136.6	6.5 34.7 35.3	-17.6 50.4 53.4	70.3 72.8 101.2	45.1 33.5 56.2	16.3 67.1 69.0	29.5 53.6 61.2	-16.5 66.3 68.3
6.3 73.8 74.1	-92.4 65.2 113.1	1.3 52.5 52.5	-30.2 40.7 50.8	-68.1 51.8 85.6	-67.5 68.7 96.3	-111.3 36.8 117.2	-45.8 67.8 81.8	-226.4 45.5 231.0	-55.1 24.3 60.3	-57.2 56.4 80.3	-77.5 40.3 87.3	-54.5 60.7 81.6
Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms
17885	15485	10055	5620	12017	16393	4819	2725	13084	11505	13179	9056	9332
246	247	258	261	263	255	252	348	352	302	303	304	310
246	247	258	261	263	255	252	348	352	302	303	304	310
1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989	1989
1199	2052	2055	2056	2057	4139	7012	3184	3185	4140	4141	4142	4143
C32-954						C32-954	C32-051					C32-051

0.023 0.091 0.093	-0.037 0.058 0.069	0.266 0.076 0.277	-0.030 0.051 0.059	-0.133 0.097 0.164	0.078 0.148 0.167	-0.008 0.196 0.196	-0.014 0.061 0.062	-0.105 0.167 0.196	0.109 0.152	-0.051 0.081 0.096	-0.029 0.122 0.126	0.076 0.092 0.120	-0.004 0.074 0.074
0.239 0.290 0.369	-0.156 0.278 0.319	0.059 0.066 0.088	-0.127 0.203 0.240	-0.124 0.215 0.248	-0.104 0.130 0.166	0.240 0.166 0.292	-0.029 0.103 0.107	0.072 0.206 0.219	0.102 0.073 0.126	0.379 0.166 0.414	0.378 0.177 0.418	0.384 0.150 0.413	0.361 0.105 0.376
-18.9 100.8 102.5	-50.8 48.3 70.1	-63.1 31.3 70.4	-20.8 76.7 79.5	-11.5 101.7 102.4	10.1 78.1 78.7	-10.1 61.5 62.4	43.0 50.0 70.0	54.5 80.3 97.1	-27.6 56.4 62.8	-0.8 103.6 103.6	-26.3 108.4 111.5	12.2 89.5 90.3	-2.7 58.9 58.9
-7.7 100.1 100.4	-35.8 8.8 9.0	-57.6 44.2 72.6	-18.6 78.7 80.9	-19.2 102.3 104.1	6.0- 6.68	-13.6 63.3 64.7	52.1 49.8 72.1	66.8 80.3 104.5	-25.0 66.8 71.3	-4.0 102.9 103.0	-23.3 108.5 111.0	13.4 89.9 90.9	-2.5 55.4 55.5
18.6 103.2 104.9	25.8 49.6 55.9	192.7 48.3 198.7	8.3 78.9 79.3	-32.5 107.3 112.1	44.1 99.3 108.7	-22.0 88.7 91.4	37.5 58.9 69.8	-88.3 100.2 133.6	75.6 61.2 97.3	-20.9 105.7 107.7	3.9 122.1 122.1	32.9 104.0 109.1	0.0 58.6 58.6
17.4 85.1 86.9	.45.3 65.3	-55.7 37.8 67.3	-33.1 51.0 60.8	-112.3 86.5 141.7	12.4 53.4 54.8	-30.0 137.7 141.0	38.2 38.9 54.5	14.6 77.2 78.6	-50.5 41.5 65.4	-43.8 74.6 86.5	-34.1 97.6 103.4	59.2 62.9 86.4	-10.5 64.2 65.0
-45.5 89.8 100.7	-28.0 48.2 55.7	46.2 62.0	-18.4 55.9 58.8	-5.0 75.7 75.9	-54.7 57.3 79.2	114.7 72.5 135.7	-10.4 47.2 48.3	34.0 92.1 98.0	45.5 44.1 63.4	178.5 78.9 195.2	194.2 95.5 216.4	218.5 83.1 233.8	201.7 55.3 209.1
34.3 72.0 79.7	64.4	.55.8 37.8 67.4	-46.2 65.9 80.5	-122.5 88.8 151.3	8.0 53.2 53.8	-30.0 135.5 138.8	40.9 38.0 55.8	4.3 80.7 80.8	-58.9 38.0 70.1	-57.5 76.7 95.9	-62.3 95.1 113.7	43.0 64.5 77.5	-24.5 63.2 67.8
Mean Std Rms	Mean Std	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms	Mean Std Rms
16235	15797	11840	16513	16208	14491	15890	5032	6295	14450	16913	5775	12762	15918
315	318	341	325	330	332	18	92	20	06	37	40	43	45
315	318	341	325	330	332	18	92	20	06	37	40	43	45
1989	1989	1989	1989	1989	1989	1990	1990	1990	1990	1990	1990	1990	1990
4144	5079	5086	5089	2090	5091	1201	1202	4145	4149	5094	5095	5095	5096
C32-051					C32-051	C32-052							C32-052

Table 6. Project MAGNET Magnetic Field Flight Statistics wrt. WMM-90 (modified)

Inc (Deg.)	-0.013 0.088 0.089	0.093 0.078 0.122	-0.086 0.113 0.141	-0.063 0.097 0.116	0.006 0.121 0.120	0.016 0.127 0.128	0.159 0.086 0.181	-0.042 0.136 0.143	-0.072 0.132 0.151	-0.060 0.132 0.145	-0.036 0.113 0.119	-0.076 0.109 0.133
Dec (Deg.)	-0.076 0.097 0.123	-0.303 0.080 0.313	-0.344 0.058 0.349	-0.328 0.096 0.342	-0.305 0.099 0.320	-0.365 0.070 0.372	-0.372 0.056 0.376	-0.365 0.095 0.377	-0.411 0.081 0.419	-0.270 0.096 0.287	-0.264 0.106 0.284	-0.294 0.088 0.306
Bfs (nT)	-21.6 54.5 58.6	25.5 39.0 46.5	-26.5 45.6 52.8	-5.1 64.0 64.2	-22.4 68.9 72.5	20.1 60.9 64.1	-74.8 45.0 87.2	29.7 70.4 76.4	0.1 69.6 69.6	-33.4 69.3 77.0	-42.9 62.5 75.6	-33.4 47.3 57.9
Bfv (nT)	-11.4 58.4 59.5	16.8 39.2 42.7	-23.6 47.1 52.7	0.7 53.7 53.7	-25.2 78.4 82.4	16.7 62.0 64.3	-74.1 44.5 86.4	32.1 69.7 76.8	-0.9 68.4 68.4	-40.2 72.1 82.5	-48.5 66.8 82.6	37.1 54.0 65.5
Bz (nT)	-9.1 65.1 65.8	57.6 48.4 75.2	-52.4 64.0 82.7	-39.9 51.5 65.2	19.7 71.2 73.9	10.6 77.7 78.4	90.3 62.3 109.7	-11.1 86.6 87.3	-36.8 84.0 91.8	-53.5 80.4 96.6	-27.4 73.3 78.2	-31.1 70.1 76.7
Bh (nT)	-9.6 51.2 52.1	-9.2 40.9 41.9	-11.7 39.2 40.9	-3.4 45.8 65.9	-25.6 72.2 76.5	9.0 64.3 64.9	-91.8 43.7 101.7	32.0 66.8 74.1	14.3 61.3 62.9	-13.3 72.2 73.4	-40.2 62.9 74.6	-37.3 53.6 65.3
By (nT)	-37.0 45.1 58.3	-158.8 46.3 165.4	-178.3 32.5 181.2	-154.0 47.6 161.2	-161.1 47.4 167.9	-212.7 45.7 217.6	-242.9 37.7 245.8	-198.3 52.4 205.1	-210.7 44.1 215.2	-138.2 47.4 146.1	-146.1 58.0 157.2	-167.8 53.3 176.0
Bx (nT)	-7.8 48.5 49.1	16.9 38.2 41.7	10.4 42.4 43.6	20.3 53.6 57.3	6.3 72.1 72.3	25.8 68.6 73.3	-93.7 43.5 103.3	57.2 70.0 90.4	49.6 60.7 78.4	10.2 70.6 71.3	-15.9 58.0 60.1	-8.6 48.5 49.3
	Mean Std Rms											
Records	19981	21862	21153	18543	20122	18087	16809	20377	21179	21812	21112	19472
Day End	17	73	22	28	32	20	52	20	28	63	99	34
Day Begin	17	73	21	28	32	49	22	56	28	63	99	34
Year	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993
Flight	1214	1215	2058	2059	2060	3204	3205	3206	3207	3208	3209	4160
Project	D32-352											D32-352

-0.011	0.059	0.054	0.185	-0.017	0.197	0.055	-0.882	-0.061	-0.032	0.056	0.115	-0.079
0.132	0.105	0.099	0.128	0.119	0.115	0.078	0.676	0.116	0.082	0.106	0.119	0.121
0.132	0.121	0.099	0.225	0.120	0.228	0.095	0.111	0.132	0.088	0.120	0.165	0.144
0.00	0.0	000	0.00	-0.017 0.119 0.120	0.00	000	9.0	0.00	0,00	0.0	0.0.0	0.00
-0.387	-0.340	-0.352	-0.325	-0.240	-0.325	0.012	-0.320	-0.268	-0.217	-0.297	-0.109	-0.025
0.096	0.077	0.083	0.091	0.069	0.075	0.168	0.876	0.090	0.091	0.203	0.246	0.088
0.399	0.348	0.361	0.338	0.250	0.334	0.169	0.332	0.282	0.235	0.360	0.269	0.268
-33.6	-40.1	-28.3	-40.6	-30.2	-52.0	2.8	1.9	-23.1	-22.6	-20.1	-9.0	-127.9
58.1	54.6	53.8	58.3	76.5	57.9	69.1	4.13	29.2	40.7	124.0	69.2	59.8
67.1	67.8	60.8	71.0	82.3	77.8	69.2	5.15	37.2	46.6	125.6	8.8	141.2
-46.8	-67.3	-43.5	-47.8	-34.2	-60.7	4.6	5.6	-18.9	-18.3	-20.6	-11.7	-122.7
57.7	62.9	62.4	61.1	86.8	57.5	68.6	52.2	28.5	40.6	123.3	68.8	62.7
74.3	92.1	76.0	77.6	93.3	83.6	68.7	52.5	34.1	44.5	124.6	69.8	137.8
23.0	67.6	23.9	145.3	15.2	140.3	29.5	45.3	-34.6	20.3	4.2	32.1	25.4
82.0	65.2	79.1	84.9	61.1	86.5	74.5	59.8	59.0	43.5	120.0	70.8	92.1
82.1	93.9	82.6	168.3	63.0	164.8	80.2	75.0	68.4	48.0	120.0	77.7	95.5
-46.2	-44.5	-31.0	39.9	-51.4	-39.1	-18.2	-49.3	-18.1	-7.3	-51.5	44.2	-114.0
53.2	63.6	51.5	73.2	85.1	61.3	50.5	41.7	30.2	43.0	94.3	54.4	42.5
70.5	77.7	60.1	83.3	99.4	72.8	53.7	64.6	35.2	43.6	107.4	70.1	121.7
-228.9	-206.0	-218.8	-198.9	-136.9	-216.4	11.5	-144.9	-128.7	-98.7	-96.9	-37.4	-58.9
55.4	43.8	50.4	59.4	41.7	48.1	65.6	43.8	47.0	43.3	75.7	39.4	29.5
235.5	210.6	224.5	207.5	143.1	221.7	66.6	151.4	137.0	107.8	122.9	54.3	65.9
-6.5	-4.1	5.3	62.4	-28.1	-35.7	-15.0	-58.3	-57.6	-26.2	-83.7	32.5	-141.5
53.9	64.3	49.4	67.0	81.3	64.0	50.2	39.5	29.0	43.3	96.5	59.6	46.2
54.3	64.4	49.7	91.5	86.0	73.3	52.4	70.3	64.5	50.6	127.8	67.8	148.8
Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
Std	Std	Std	Std	Std	Std	Std	Std	Std	Std	Std	Std	Std
Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms
14042	15688	13328	19264	20844	19562	17812	13331	20058	18114	13406	5864	17331
36	80	0	42	69	46	146	219	149	152	220	162	155
36	38	40	42	<u>6</u> 9	45	145	218	148	151	220	161	154
1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993
4161	4162	4163	4164	4165	5114	1219	1220	1221	1222	1223	2062	2063
D32-352					D32-352	D32-353						D32-353

-0.039	-0.198	-0.043	0.096	-0.103	-0.062	-0.002	-0.156	-0.167	-0.178	-0.109	0.047	0.018
0.116	0.089	0.127	0.083	0.080	0.098	0.154	0.109	0.009	0.081	0.094	0.071	0.143
0.122	0.217	0.134	0.127	0.130	0.115	0.154	0.191	0.188	0.196	0.144	0.085	0.144
-0.338	-0.316	-0.231	-0.165	-0.147	-0.138	-0.200	-0.341	-0.456	-0.387	-0.409	0.072	-0.173
0.147	0.097	0.074	0.065	0.082	0.119	0.124	0.057	0.160	0.051	0.072	0.189	0.098
0.369	0.331	0.243	0.177	0.168	0.182	0.203	0.346	0.483	0.390	0.415	0.202	0.199
5.1	49.3	69.2	6.4	69.2	27.4	30.1	62.1	65.4	81.2	31.2	38.4	35.2
97.0	50.0	57.5	39.8	45.1	68.2	81.8	61.5	57.2	42.7	51.4	63.0	47.6
97.1	70.2	90.0	40.3	82.5	73.5	87.2	87.4	86.9	91.8	60.2	73.8	59.2
7.3	49.8	71.5	8.4	71.8	28.4	31.1	66.4	64.2	81.4	32.9	37.8	35.9
81.2	50.4	56.6	40.1	45.5	68.5	82.3	59.0	56.7	41.7	54.5	62.5	47.0
81.6	70.9	91.2	41.0	85.0	74.1	88.0	88.8	85.7	91.4	63.6	73.0	59.1
-19.5 80.7 83.0	-138.3 60.4 151.0	-41.2 102.9 110.8	67.3 61.4 91.1	-110.6 67.0 120.8	22.8 84.3 87.3	-19.8 133.5 134.9	-105.9 91.9 140.2	-128.3 70.5 146.4	-130.1 65.3 145.6	-80.5 68.0 105.3	53.7 60.7 81.1	91.0 91.1
-19.5	11.3	48.4	-4.7	9.4	56.9	24.1	52.2	-36.1	48.6	16.3	-18.6	7.6
59.6	54.4	53.0	40.9	58.0	61.1	66.6	49.1	46.5	40.5	44.5	63.9	42.1
62.7	55.6	71.8	41.1	8.8	83.5	70.8	71.7	58.9	63.3	47.3	66.5	42.7
-120.1	-198.4	-158.8	-114.5	-92.6	-85.1	-94.8	-219.2	-208.8	-245.3	-249.0	31.2	-86.5
56.4	55.8	46.4	44.1	54.0	70.0	74.2	35.5	69.0	35.7	44.2	78.2	51.7
132.7	206.1	165.4	122.7	107.2	110.2	120.3	222.3	220.0	247.8	252.9	84.1	100.8
-47.7	-4.1	40.8	-6.2	4.8	58.2	20.3	42.6	-77.5	32.4	4.9	-21.8	22.7
58.1	58.3	55.9	41.4	59.2	61.9	71.3	50.0	49.1	44.1	46.4	61.8	41.9
75.2	58.4	69.3	41.8	59.4	85.0	74.1	65.7	91.8	54.7	46.6	65.6	47.7
Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
Std	Std	Std	Std	Std	Std	Std	Std	Std	Std	Std	Std	Std
Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms	Rms
17467	15481	18748	18890	20168	16733	18071	11853	16694	8671	17245	6179	15351
158	191	196	200	204	208	211	168	165	213	186	283	287
157	190	195	200	204	208	211	168	164	213	185	283	287
1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993
2064	5115	5117	5118	5119	5120	5121	5122	5123	5124	5125	1224	1225
D32-353										D32-353	D32-451	D32-451

717		,												
D32-451	1226	1993	339	340	18094	Mean	12.6	9.8-	13.5	-47.6	-12.3	-2.3		-0.074
						Rms	4 4 6.0 6.0	42.1	51.8	00.0 81.8	32.6		0.076	0.122
	,							į)				2
	1227	1993	342	343	19098	Mean	-73.8	-65.1	-55.8	42.6	6.4	·	-0.188	0.087
						Std	56.3	52.9	57.3	72.9	66.3	66.3	0.125	0.081
						Rms	92.8	83.9	80.0	84.4	66.4		0.226	0.119
	2066	1993	321	321	22306	Mean	.223	7 02-	14.4	101				
						Std	75.8	57.1	72.1	64.1	0.00	•		6,008
						Rms	79.1	60.7	73.5	65.3		79.3	0.157	0.124
													2	7.17
	2067	1993	325	325	15166	Mean	-87.5	-27.1	-73.2	-14.9				-0.064
						Std	57.3	42.9	61.7	57.8	0.09		0.074	0.131
						Rms	104.6	50.7	95.8	59.7		78.8		0.146
	0906	6				:								
	2000	9000	326	37/	168/8	Mean	-85.3	-70.4	-58.2	22.4	-56.6	-46.2 -(-0.307	-0.017
						Std	63.9	78.8	77.0					0.134
						Rms	106.6	105.6	96.5					0.135
	2069	1993	330	331	19281	Mean	38.5	9		6 9 3	77.0			,
						Std	59.63	55.5	י על על	47.5	7.77	1.00	0.090	0.00
						Rms	71.2	55.4						2112
						2	7:1	t o				1.28.1		0.112
	2070	1993	333	334	19702	Mean		-15.1						200
						Std	54.6	95.8					0.359	0.178
						Rms		97.0	71.7	136.6	127.8	127.8		0.185
	1700		c c	į										
	- /07	9 6 6	330	33/	19294	Mean	-136.0		-132.9			-138.6 -(-0.061
						Std	82.1	54.6	83.0	84.1	92.7			0.139
						Kms	158.9	55.2	156.7				0.146	0.152
	3214	1993	307	307	14807	Mean	-15.4	-753	0 777	000	,			
						Std	72.2			0.2.0	77.7			0.122
						Rms	73.8	92.7	72.4	115.2	S. 7.	78.5	0.090	0.109
										!)			20.0
	3215	1993	310	310	18540	Mean	-16.9	-112.2	-30.4	-22.6	-30.2	-31.8	-0.181	-0.043
						Std		53.5	61.2	94.8				0.154
						Rms		124.3	68.3	97.4	67.8	67.8	0.200	0.160
	3716	1002	2.0		, 00		1							
	2	0	2	2	1080	Mean	-28.5	6.68-	-44.1	-44.3	-33.7			-0.094
						Std	87.6	76.3			85.3	84.2	0.133	0.202
						Rms	92.1	117.9			91.7		0.195	0.223
	4166	1993	288	288	18469	N	1 7g.	7 27	0.70					
						240	- 12) i		0 0	78.0	-/3.3		-0.089
						200	0.44 0.00	0.2.0	146.1				0.165	0.122
						K H H	96.0	94.3					0.171	0.151
D32-451	4167	1993	292	292	16833	Mean	-16.9	-29.4						,
						Std	96.6	97.3						0.021
						Rms	98.1	101.7	102.2	214.0	193.8	191.7	0.200	0.226
						!	·)	:						0.227

D32-451	4168	1993	295	295	18565	Mean	-23.3	-18.5	-69.1	10.9	-20.1	-17.4	2.597	-0.064
	ž	Magnetic Pole Flight	Flight			Std	104.9	72.9	86.8	6.66	97.9	6.96	32.200	0.074
)	•			Rms	107.4	75.2	110.9	100.4	6.66	98.5	32.300	0.098
	4169	1993	301	301	10633	Mean	-75.1	87.8	-46.9	16.2	-43.5	-44.3	0.224	-0.031
						Std	78.9	82.5	80.9	93.0	9.68	88.5	0.158	0.097
						Rms	108.9	127.9	93.5	94.4	9.66	0.66	0.274	0.101
	4170	1993	304	304	14948	Mean	-21.9	6.06-	-32.0	33.7	-32.0	-30.5	-0.136	0.023
						Std	73.2	55.4	72.9	86.3	72.5	8.99	0.094	0.136
						Rms	76.4	106.5	79.6	92.6	79.3	73.4	0.166	0.138
	4171	1993	316	316	13671	Mean	-74.6	-103.9	-98.1	-15.6	-69.4	-70.3	-0.166	-0.118
						Std	61.6	71.3	58.0	91.2	81.7	81.2	0.150	0.111
						Rms	96.8	126.0	114.0	92.5	107.2	107.5	0.224	0.162
D32-451	4172	1993	317	318	14505	Mean	-31.9	-19.7	-32.9	-31.4	-10.9	-14.5	-0.046	-0.081
						Std	48.6	61.1	47.8	89.9	78.5	77.5	0.155	0.131
						Rms	58.1	64.2	58.0	95.2	79.2	78.8	0.161	0.154

Table 7. WC-85 (updated) Model Coefficients

n	m	g _n ^m	h _n ^m	$\overset{ullet}{\mathbf{g}}_{\mathrm{n}}^{\mathrm{m}}$	h _n
1	0	-29,874.2	0.0	19.3	0.0
1	1	-1,904.5	5,496.4	11.2	-17.9
2	0	-2,071.6	0.0	-12.6	0.0
2	1	3,045.7	-2,200.6	2.9	-16.1
2	2	1,688.7	-306.1	0.3	-13.8
3	0	1,294.7	0.0	3.8	0.0
3	1	-2,210.1	-306.4	-6.7	4.2
3	2	1,246.8	284.2	-0.4	1.9
3	3	832.4	-300.7	-5.1	-10.6
4	0	933.5	0.0	0.4	0.0
4	1	782.5	232.5	0.3	3.1
4	2	360.5	-247.6	-7.3	2.0
4	3	-424.2	72.2	0.4	3.5
4	4	166.0	-296.5	-5.9	-0.6
5	0	-212.3	0.0	0.1	0.0
5	1	354.0	43.7	-0.2	0.1
5	2	255.2	148.7	-1.5	0.8
5	3	-94.6	-154.6	-3.5	-0.3
5	4	-162.3	-76.2	0.0	1.5
5	5	-47.2	95.0	1.8	0.8
6	0	52.5	0.0	2.0	0.0
6	1	63.7	-14.7	0.0	0.0
6	2	51.0	88.6	1.6	-1.2
6	3	-185.4	70.0	1.3	0.1
6	4	3.8	-47.8	-0.3	-1.1
6	5	15.4	-1.4	0.1	0.5
6	6	-99.3	17.7	1.4	0.9
7	0	72.8	0.0	0.6	0.0
7	1	-59.7	-83.5	-0.7	0.6
7	2	1.3	-26.7	-0.1	0.2
7	3	25.1	-1.9	0.9	0.7
7	4	-4.8	19.9	1.4	-0.1
7	5	4.9	17.9	0.6	-0.3
7	6	10.1	-21.5	0.0	0.2
7	7	-0.8	-6.8	-0.1	-0.3
8	0	21.7	0.0	0.0	0.0
8	1	5.8	7.7	-0.4	0.6

Table 7. WC-85 (updated) Model Coefficients (Con.)

n	m	g _n ^m	h _n ^m	• m g _n	h _n
8	2	0.6	-18.3	-0.3	-0.2
8	3	-11.7	3.7	0.3	0.3
8	4	-11.0	-22.7	-0.6	0.4
8	5	2.2	10.8	-0.1	0.1
8	6	3.6	13.5	-0.2	-0.8
8	7	3.0	-15.4	-0.5	-0.6
8	8	-4.2	-9.1	-0.2	0.7
9	0	3.6	0.0	0.0	0.0
9	1	9.5	-21.9	0.0	0.0
9	2	-0.9	14.3	0.0	0.0
9	3	-10.7	9.5	0.0	0.0
9	4	10.7	-6.7	0.0	0.0
9	5	-3.2	-6.4	0.0	0.0
9	6	-1.4	9.1	0.0	0.0
9	7	6.3	8.9	0.0	0.0
9	8	0.8	-8.0	0.0	0.0
9	9	-5.5	2.1	0.0	0.0
10	0	-3.3	0.0	0.0	0.0
10	1	-2.6	2.6	0.0	0.0
10	2	4.5	1.2	0.0	0.0
10	3	-5.6	2.6	0.0	0.0
10	4	-3.6	5.7	0.0	0.0
10	5	3.9	-4.0	0.0	0.0
10	6	3.2	-0.4	0.0	0.0
10	7	1.7	-1.7	0.0	0.0
10	8	3.0	3.8	0.0	0.0
10	9	3.7	-0.8	0.0	0.0
10	10	0.7	-6.5	0.0	0.0
11	0	1.3	0.0	0.0	0.0
11	1	-1.4	0.0	0.0	0.0
11	2	-2.5	1.0	0.0	0.0
11	3	3.2	-1.6	0.0	0.0
11	4	0.2	-2.2	0.0	0.0
11	5	-1.1	1.1	0.0	0.0
11	6	0.3	-0.7	0.0	0.0
11	7	-0.3	-1.7	0.0	0.0
11	8	0.9	-1.5	0.0	0.0

Table 7. WC-85 (updated) Model Coefficients (Con.)

n	m	g _n ^m	h _n ^m	• m g _n	h _n
					-
11	9	-1.1	-1.3	0.0	0.0
11	10	2.4	-1.1	0.0	0.0
11	11	3.0	0.6	0.0	0.0
12	0	-1.3	0.0	0.0	0.0
12	1	0.1	0.7	0.0	0.0
12	2	0.5	0.7	0.0	0.0
12	3	0.7	1.3	0.0	0.0
12	4	0.4	-1.5	0.0	0.0
12	5	-0.2	0.3	0.0	0.0
12	6	-1.1	0.2	0.0	0.0
12	7	0.9	-1.1	0.0	0.0
12	8	-0.6	1.2	0.0	0.0
12	9	0.8	-0.2	0.0	0.0
12	10	0.2	-1.3	0.0	0.0
12	11	0.4	0.6	0.0	0.0
12	12	0.2	0.6	0.0	0.0

Table 8. WMM-90 (modified) Model Coefficients

n	m	g _n ^m	h _n ^m	• m g _n	h _n
1	0	-29,777.7	0.0	19.1	0.0
1	1	-1,848.5	5,406.9	12.5	-17.9
2	0	-2,134.6	0.0	-13.4	0.0
2	1	3,060.2	-2,281.1	3.6	-14.9
2	2	1,690.2	-375.1	-0.1	-9.5
3	0	1,313.7	0.0	1.8	0.0
3	1	-2,243.6	-285.4	-7.0	4.1
3	2	1,244.8	293.7	-0.6	1.9
3	3	806.9	-353.7	-7.9	-12.0
4	0	935.5	0.0	0.8	0.0
4	1	784.0	248.0	0.7	2.0
4	2	324.0	-237.6	-6.7	1.4
4	3	-422.2	89.7	0.6	2.8
4	4	136.5	-299.5	-5.5	-1.3
5	0	-211.8	0.0	0.6	0.0
5	1	353.0	44.2	0.0	0.2
5	2	247.7	152.7	-1.1	0.9
5	3	-112.1	-156.1	-2.4	0.6
5	4	-162.3	-68.7	0.3	1.9
5	5	-38.2	99.0	2.5	1.0
6	0	62.5	0.0	1.2	0.0
6	1	63.7	-14.7	0.0	0.3
6	2	59.0	82.6	0.9	-1.4
6	3	-178.9	70.5	1.8	-0.2
6	4	2.3	-53.3	-0.3	-0.6
6	5	15.9	1.1	-0.2	0.8
6	6	-92.3	22.2	0.4	2.0
7	, o	75.8	0.0	0.1	0.0
7	1	-63.2	-80.5	-0.9	0.5

Table 8. WMM-90 (modified) Model Coefficients (Con.)

n	m	g _n ^m	h _n ^m	• m g _n	• m h _n
7	2	0.8	-25.7	-0.6	0.3
7	3	29.6	1.6	0.6	0.5
7	4	2.2	19.4	0.9	-0.4
7	5	7.9	16.4	0.5	0.0
7	6	10.1	-20.5	0.1	-0.1
7	7	-1.3	-8.3	-0.7	-0.7
8	0	21.7	0.0	0.0	0.0
8	1	3.8	10.7	-0.4	0.5
8	2	-0.9	-19.3	-0.1	0.0
8	3	-10.2	5.2	0.2	0.2
8	4	-14.0	-20.7	-0.8	0.5
8	5	1.7	11.3	0.0	-0.1
8	6	2.6	9.5	0.0	-1.3
8	7	0.5	-18.4	-0.7	-0.2
8	8	-5.2	-5.6	-0.3	-0.7
9	0	3.6	0.0	0.0	0.0
9	1	9.5	-21.9	0.0	0.0
9	2	-0.9	14.3	0.0	0.0
9	3	-10.7	9.5	0.0	0.0
9	4	10.7	-6.7	0.0	0.0
9	5	-3.2	-6.4	0.0	0.0
9	6	-1.4	9.1	0.0	0.0
9	7	6.3	8.9	0.0	0.0
9	8	0.8	-8.0	0.0	0.0
9	9	-5.5	2.1	0.0	0.0
10	0	-3.3	0.0	0.0	0.0
10	1	-2.6	2.6	0.0	0.0
10	2	4.5	1.2	0.0	0.0
10	3	-5.6	2.6	0.0	0.0
10	4	-3.6	5.7	0.0	0.0
10	5	3.9	-4.0	0.0	0.0
10	6	3.2	-0.4	0.0	0.0
10	7	1.7	-1.7	0.0	0.0
10	8	3.0	3.8	0.0	0.0
10	9	3.7	-0.8	0.0	0.0
10	10	0.7	-6.5	0.0	0.0

Table 8. WMM-90 (modified) Model Coefficients (Con.)

n	m	g ^m	h _n m	g _n	h _n
11	0	1.3	0.0	0.0	0.0
11	1	-1.4	0.0	0.0	0.0
11	2	-2.5	1.0	0.0	0.0
11	3	3.2	-1.6	0.0	0.0
11	4	0.2	-2.2	0.0	0.0
11	5	-1.1	1.1	0.0	0.0
11	6	0.3	-0.7	0.0	0.0
11	7	-0.3	-1.7	0.0	0.0
11	8	0.9	-1.5	0.0	0.0
11	9	-1.1	-1.3	0.0	0.0
11	10	2.4	-1.1	0.0	0.0
11	11	3.0	0.6	0.0	0.0
12	0	-1.3	0.0	0.0	0.0
12	1	0.1	0.7	0.0	0.0
12	2	0.5	0.7	0.0	0.0
12	3	0.7	1.3	0.0	0.0
12	4	0.4	-1.5	0.0	0.0
12	5	-0.2	0.3	0.0	0.0
12	6	-1.1	0.2	0.0	0.0
12	7	0.9	-1.1	0.0	0.0
12	8	-0.6	1.2	0.0	0.0
12	9	0.8	-0.2	0.0	0.0
12	10	0.2	-1.3	0.0	0.0
12	11	0.4	0.6	0.0	0.0
12	12	0.2	0.6	0.0	0.0

Variation (DV). Otherwise no DV corrections were made. The flights are generally of long range over remote ocean areas, which precludes the monitoring of DV. Each flight typically lasts 10 to 12 hours and is flown at an average speed of about 440 km/hr. A low-pass filter with a cutoff wavelength of 7 km is routinely applied to Project MAGNET survey data collected at altitudes greater than 15,000 feet. The Honeywell vector magnetometer is calibrated at least once a year at the National Aeronautics and Space Administration's (NASA's) Coil Room Facility in Greenbelt, Maryland.

These Project MAGNET survey data sets were collected primarily in ocean areas straddling the geomagnetic equator with the intent to provide absolute vector-magnetic measurements in the equatorial region to counter the Backus effect (also known as the Perpendicular Error effect). This effect is a spherical-harmonic modeling error that generates spurious magnetic anomalies along the geomagnetic equator if only scalar Total-Magnetic-Intensity measurements are available for the modeling. Flights were also made to the North and South Magnetic Poles in order to supply data to pin down the geomagnetic pole positions.

2.2.3 POGS Data

The POGS satellite was launched April 11, 1990. The salient design characteristics, processing procedures, and calibrations applied are given by Quinn et al. (1993). The satellite was inserted into a near circular, polar orbit ranging in altitude between 700 km and 750 km. The orbit was not sun-synchronous and so, covered all local times. The fluxgate vector magnetometer was located at the tip of an 8-ft. non-magnetic Copper-Beryllium boom and had a resolution of 2 nT per vector axis. Although the satellite carried a vector magnetometer, there was essentially no attitude determination system on the satellite to orient the magnetometer. We say essentially no attitude determination system because a coarse attitude device was constructed from 9 of the 52 solar panels, which provided some attitude for the satellite (but not the boom-mounted magnetometer relative to the satellite) with respect to the sun-line. However, the accuracy of this system was at best only \pm 3° with degrading accuracy as the satellite approached the dawn-dusk meridian. So, the solar panels were used as a coarse sun-sensor which provided no data on the night side of the Earth. Consequently, the POGS mission was essentially a scalar magnetic survey of the Earth. The attitude data were nevertheless made available, since applications other than world magnetic modeling may find it useful.

The POGS satellite mission carried a fluxgate vector magnetometer. These magnetometers are not absolute instruments and so, have a tendency to drift. Extra thermal mass was added to the magnetometer to minimize this drift. Even so, it was estimated at the time of launch that the magnetometer drift could be as much as 50 nT/yr. Additionally, the quartz clock on the satellite, to which the magnetics data are time tagged prior to being telemetered back to a ground station, also has a tendency to drift. If not properly taken into account, both of these drifts can be misinterpreted as SV.

The POGS quartz clock bias and drift were determined by periodically monitoring the POGS clock via scheduled timing pulses sent from the satellite to the Master Ground station located at NAVOCEANO, which was equipped with a cesium standard clock calibrated at the Naval

Observatory. The pulse was of known duration (20 seconds). The difference between the scheduled end of the pulse, which was known a priori, and the actual end of the pulse, accounting for the time taken to travel the distance between the satellite and the ground station, yielded the POGS quartz-clock timing error, which could be measured to within 10 milliseconds. Repeating this procedure at roughly 10-day intervals during the 1991.0 to 1993.7 time frame yielded the POGS quartz clock bias and drift rates indicated by Quinn et al. (1993). The time-corrected magnetics data could then be properly merged with the ephemeris data supplied by DMA. The ephemeris data were generated from Doppler-tracking data collected from DMA's Tracking Network (TRANET), which monitored the emissions from two beacons of different frequencies, which were located onboard the POGS satellite. The satellite ephemeris was reconstructed using the GEM-10B gravity model. The resulting satellite positioning Spherical Error Probable (SEP) was estimated to be less than 75 meters by DMA. The TRANET stations were dismantled in October 1993. This event effectively ended the POGS mission of magnetic data collection for world magnetic modeling purposes.

The POGS magnetometer bias and drift were determined by selecting the Solar quiet-time POGS Total Intensity data over the European area bounded by 40° N and 60° N and by 5° W and 35° E, correcting for external field effects, subsequently removing the Total Intensity as computed from the WMM-90 (modified) model, and minimizing the residual with respect to the bias and drift coefficients of a linear drift model via least squares. The main assumption in this procedure is that the WMM-90 (modified) model, which is based on the most recent available magnetic observatory annual-means data as of May 1994, is extremely accurate over the European area due to the substantial clustering of Magnetic Observatories in the region. During the course of estimating the magnetometer bias and drift coefficients, it was determined that for a short segment of data between 1991.0 and 1991.4 the timing pulse corrections were incorrectly applied. So, the method used to compute the scalar magnetic bias and drift coefficients for the magnetometer was also used to generate an additional magnetic correction to compensate for the timing-pulse problem. The linear drift corrections thus determined take the following forms:

a. Magnetic Compensation for Clock Drift Errors:

$$\Delta B_c = b_c + b_c (t - \tau_c)$$
 1991.0 \le t \le 1991.4 (29)

where the reference time in years is:

$$\tau_{\rm c} = 1991.175394115 \tag{30}$$

and where the bias and drift rates are:

$$b_c = -18.783 \text{ nT}$$
 (31a)

$$b_c = 144.338 \text{ nT/yr}$$
 (31b)

b. Magnetic Correction for Magnetometer Drift:

$$\Delta B_M = b_M + \dot{b}(t - \tau_M)$$
 1991.0 \le t \le 1993.7 (32)

where the reference time in years is:

$$\tau_{\rm M} = 1992.506748293 \tag{33}$$

and where the bias and drift rates are:

$$b_{\rm M} = 11.620 \, \rm nT$$
 (34a)

$$\dot{\mathbf{b}}_{\mathbf{M}} = -16.167 \, \text{nT/yr}$$
 (34b)

These two corrections are illustrated in figure 5. When these corrections are applied to the POGS data (i.e., subtracted from the POGS Total Intensity data), then the POGS data are considered as having been *Ground Truthed* and are thus considered to be *absolute* measurements. It should be noted here that the POGS data available from NGDC do *not* include these corrections. The POGS 10-day file statistics with these drift corrections applied are given in table 9. They have been computed with respect to the WMM-90 (modified) model.

The ionospheric/magnetospheric field contributions to the POGS data were considerably larger than the magnetometer drift corrections even though the quiet-time selection criteria previously given in the Overview was employed. Given the altitude of the satellite (about 725 km), the ionospheric portion of the magnetic field measured by POGS was *tentatively* attributed to equatorial and mid-latitude *Spread-F effects* (Kelley [1989]). This is a phenomenon occurring in the *F-layer* of the ionosphere. In extremely quiet times, this field was limited to the equatorial region. During these times the phenomenon is referred to as the *equatorial* Spread-F effect. Frequently, the Spread-F effect was prominent both at mid-latitudes and at high-latitudes and exhibits an interesting latitudinal banding effect. The number and magnetic intensity of these bands depends on the amount of energy, as measured by the Kp index, being dumped into the ionosphere as a consequence of solar activity.

Detailed analyses of the POGS data with respect to ionospheric and magnetospheric effects could take years. For the WMM-95 modeling effort it was necessary only to identify and remove fields of external origin. To isolate that portion of the observed field due to this presumed Spread-F effect, magnetic field models were generated from the POGS data at the 14 epochs corresponding to the 14 groups of quiet-time POGS data selected for modeling use. The groups of 10-day POGS files selected for each model are listed in table 10. Vector data from the WMM-90 (modified) model were inserted in an equatorial band straddling $\pm 20^{\circ}$ about the geomagnetic equator to control the Backus effect, while POGS data were used exclusively outside of this band. Except for equal area weighting, no weights were applied. Internal Gauss coefficients up to degree and order 12 and external Gauss coefficients up to degree and order 5 were computed at each of the 14 epochs. That is, 14 models were generated at 14 distinct epochs. Scalar Total Intensity field values computed from these models, using both internal and

POGS MAGNETOMETER AND CLOCK BIAS & DRIFT CORRECTIONS (nT)

Figure 5. POGS Total Intensity Drift Corrections: Magnetometer & Clock

Table 9. POGS 10-DAY FILE STATISTICS wrt. WMM-90 (modified)

Kp < 2+ 7 pm < Local Time < 5 am |Dst| < 50

File	Year	Day Begin	Day End	Records		Bfv (nT)	Used in Model #s
pogs1011020.dst	1991	11	20	10210	Mean Std Rms	15.0 42.6 45.1	1
pogs1021030.dst	1991	21	30	8491	Mean Std Rms	19.2 51.4 54.8	1 & 2
pogs1031040.dst	1991	31	40	4262	Mean Std Rms	14.0 50.1 52.0	2
pogs1041050.dst	1991	41	50	5701	Mean Std Rms	22.0 49.1 53.8	2 & 3
pogs1051060.dst	1991	51	60	11914	Mean Std Rms	20.8 42.5 47.3	3
pogs1061070.dst	1991	61	70	3572	Mean Std Rms	11.3 60.5 61.6	
pogs1071080.dst	1991	71	80	5181	Mean Std Rms	23.2 59.3 63.7	
pogs1081090.dst	1991	81	90	2183	Mean Std Rms	5.9 64.2 64.4	
pogs1091100.dst	1991	91	100	790	Mean Std Rms	20.0 55.8 59.2	
pogs1101110.dst	1991	101	110	56	Mean Std Rms	-7.6 18.5 19.9	
pogs1111120.dst	1991	111	120	17	Mean Std Rms	-2.3 22.4 21.9	
pogs1121130.dst	1991	121	130	3669	Mean Std Rms	37.4 37.6 53.0	4
pogs1131140.dst	1991	131	140	8686	Mean Std Rms	30.5 37.5 48.3	4
pogs1141150.dst	1991	141	150	1634	Mean Std Rms	10.7 41.5 42.9	4
pogs1151160.dst	1991	151	160	365	Mean Std Rms	-27.5 41.9 50.1	4
pogs1161170.dst	1991	161	170	1977	Mean Std Rms	12.1 41.5 43.2	4 & 5

pogs1171180.dst	1991	171	180	3938	Mean	24.5	4 & 5
					Std	43.0	
					Rms	49.5	
pogs1181190.dst	1991	181	190	3157	Mean	28.3	5
pogs 118 1190.dst	1331	101	100	0107	Std	39.4	_
					Rms	48.5	
pogs1191200.dst	1991	191	200	О	Mean	0.0	5
					Std	0.0	
					Rms	0.0	
			24.0	2054	N4	05.7	5
pogs1201210.dst	1991	201	210	3651	Mean	25.7	5
					Std Rms	38.5 46.3	
					HIIIS	40.5	
pogs1211220.dst	1991	211	220	3966	Mean	33.9	5
pogotation					Std	31.0	
					Rms	45.9	
							_
pogs1221230.dst	1991	221	230	1243	Mean	11.6	5
					Std	35.0	
					Rms	36.9	
pogs1231240.dst	1991	231	240	3079	Mean	24.3	6
pogs1231240.ust	1991	201	240	3075	Std	37.0	ū
					Rms	44.2	
pogs1241250.dst	1991	241	250	2773	Mean	19.2	6
					Std	41.5	
					Rms	45.7	
pogs1251260.dst	1991	251	260	3483	Mean	29.6	6
pogs 1231200.ust	1551	231	200	0400	Std	36.7	
					Rms	47.2	
pogs1261270.dst	1991	261	270	8956	Mean	29.7	6
					Std	35.0	
					Rms	45.9	
pogs1271280.dst	1991	271	280	0	Mean	0.0	
pogs 127 1200, dst	1331	2/1	200	Ū	Std	0.0	
					Rms	0.0	
pogs1281290.dst	1991	281	290	5	Mean	60.9	
					Std	6.6	
					Rms	61.2	
pogs1291300.dst	1991	291	300	10	Mean	66.2	
pogs 129 1300.ust	1331	231	300	10	Std	18.9	
					Rms	68.5	
pogs1301310.dst	1991	301	310	296	Mean	8.5	
					Std	39.3	
					Rms	40.1	
pogs1311320.dst	1991	311	320	1208	Mean	39.4	
pogotottozolast	1001	0,1	020	.200	Std	41.6	
					Rms	57.3	
pogs1321330.dst	1991	321	330	1630	Mean	13.6	
					Std	38.3	
					Rms	40.6	
pogs1331340.dst	1991	331	340	6138	Mean	25.4	
pogs 133 1340.ust	1331	331	340	0130	Std	36.7	
					Rms	44.7	
pogs1341350.dst	1991	341	350	2874	Mean	24.4	
					Std	35.7	
					Rms	43.2	

pogs1351360.dst	1991	351	360	985	Mean Std Rms	17.5 37.3 41.2	
pogs1361365.dst	1991	361	365	390	Mean Std Rms	-3.4 47.8 47.9	
pogs2001010.dst	1992	1	10	4805	Mean Std Rms	22.3 40.9 46.6	7
pogs2011020.dst	1992	11	20	4186	Mean Std Rms	18.9 33.6 50.9	7
pogs2021030.dst	1992	21	30	6657	Mean Std Rms	35.6 32.1 48.0	7
pogs2031040.dst	1992	31	40	779	Mean Std Rms	5.5 43.4 43.7	7
pogs2041050.dst	1992	41	50	5698	Mean Std Rms	16.7 33.4 37.4	7
pogs2051060.dst	1992	51	60	0	Mean Std Rms	0.0 0.0 0.0	
pogs2061070.dst	1992	61	70	840	Mean Std Rms	-0.9 49.0 48.9	
pogs2071080.dst	1992	71	80	4528	Mean Std Rms	19.0 41.8 45.9	
pogs2081090.dst	1992	81	90	861	Mean Std Rms	14.8 43.0 45.5	
pogs2091100.dst	1992	91	100	590	Mean Std Rms	16.2 33.3 37.0	
pogs2101110.dst	1992	101	110	45	Mean Std Rms	-14.5 14.6 20.4	
pogs2111120.dst	1992	111	120	0	Mean Std Rms	0.0 0.0 0.0	
pogs2121130.dst	1992	121	130	8962	Mean Std Rms	26.6 36.6 45.2	8
pogs2131140.dst	1992	131	140	4405	Mean Std Rms	13.5 36.9 39.3	8
pogs2141150.dst	1992	141	150	3661	Mean Std Rms	21.5 38.6 44.2	8
pogs2151160.dst	1992	151	160	8948	Mean Std Rms	28.7 35.2 45.5	9

pogs2161170.dst	1992	161	170	3931	Mean Std Rms	26.5 33.0 42.3	9
pogs2171180.dst	1992	171	180	5656	Mean Std Rms	14.9 46.9 49.2	9
pogs2181190.dst	1992	181	190	9641	Mean Std Rms	8.4 33.5 34.5	10
pogs2191200.dst	1992	191	200	7106	Mean Std Rms	16.7 32.4 36.5	10
pogs2201210.dst	1992	201	210	4203	Mean Std Rms	30.3 31.9 44.0	10
pogs2211220.dst	1992	211	220	5146	Mean Std Rms	19.3 37.8 42.4	11
pogs2221230.dst	1992	221	230	3916	Mean Std Rms	6.7 35.2 35.8	11
pogs2231240.dst	1992	231	240	6311	Mean Std Rms	21.6 31.5 38.2	11
pogs2241250.dst	1992	241	250	6626	Mean Std Rms	11.4 33.9 35.8	11
pogs3001010.dst	1993	1	10	2350	Mean Std Rms	20.5 57.8 61.3	
pogs3011020.dst	1993	11	20	2805	Mean Std Rms	11.0 53.1 54.2	
pogs3021030.dst	1993	21	30	7614	Mean Std Rms	21.0 57.5 61.2	12
pogs3031040.dst	1993	31	40	4286	Mean Std Rms	15.8 37.1 40.3	12
pogs3041050.dst	1993	41	50	7273	Mean Std Rms	8.4 33.6 34.7	12
pogs3051060.dst	1993	51	60	3529	Mean Std Rms	12.4 31.9 34.2	
pogs3061070.dst	1993	61	70	290	Mean Std Rms	-1.1 26.6 26.6	
pogs3071080.dst	1993	71	80	1071	Mean Std Rms	14.2 33.2 36.1	
pogs3081090.dst	1993	81	90	748	Mean Std Rms	-5.7 24.4 25.1	

pogs3091100.dst	1993	91	100	0	Mean Std Rms	0.0 0.0 0.0	
pogs3101110.dst	1993	101	110	0	Mean Std Rms	0.0 0.0 0.0	
pogs3111120.dst	1993	111	120	2872	Mean Std Rms	22.6 34.8 41.5	
pogs3121130.dst	1993	121	130	10756	Mean Std Rms	21.2 33.1 39.3	13
pogs3131140.dst	1993	131	140	3326	Mean Std Rms	6.2 38.5 39.0	13
pogs3141150.dst	1993	141	150	11751	Mean Std Rms	20.9 38.1 43.5	13
pogs3151160.dst	1993	151	160	0	Mean Std Rms	0.0 0.0 0.0	
pogs3161170.dst	1993	161	170	431	Mean Std Rms	3.1 38.2 38.2	
pogs3171180.dst	1993	171	180	3474	Mean Std Rms	23.1 42.6 48.4	14
pogs3181190.dst	1993	181	190	2839	Mean Std Rms	14.4 38.0 40.7	14
pogs3191200.dst	1993	191	200	9214	Mean Std Rms	4.8 43.7 44.0	14
pogs3201210.dst	1993	201	210	5315	Mean Std Rms	6.5 40.9 41.4	14
pogs3211220.dst	1993	211	220	906	Mean Std Rms	17.3 40.2 43.8	

Table 10. WORLD MAGNETIC MODELS BASED ON POGS DATA

pogs1021030.dst pogs1021030.dst pogs1021030.dst pogs1031040.dst pogs1041050.dst pogs1041050.dst pogs1051060.dst	Σ
.537230610 .069269918 .069269918 .451370167	000 00 444 4444 00000
1991. 1991. 1992. 1992.	.537230610 .537230610 .537230610 .537230610 .537230610 .364319170

21999	19173	25833	21584
pogs2211250.mrg	pogs3021050.mrg		pogs3171210.mrg
5146 3916 6311 6626	7614 4286 7273	10756 3326 11751	3912 3055 9600 5017
213.942 223.674 235.400 243.773	24.489 39.951 46.170	124.267 134.968 145.649	174.682 188.038 195.762 203.681
pogs2211220.dst pogs2221230.dst pogs2231240.dst pogs2241250.dst	pogs3021030.dst pogs3031040.dst pogs3041050.dst	pogs3121130.dst pogs3131140.dst pogs3141150.dst	pogs3171180.dst pogs3181190.dst pogs3191200.dst pogs3201210.dst
1992.630642692	1993.096644405	1993.370875815	1993.529501624
230.815	35.275	135.370	193.268
1992	1993	1993	1993
-	12	55	4

external parts, were then subtracted from the Total Intensity data of the 10-day POGS files, creating Total Intensity Residual files for each 10-day period. Each 10-day Residual file was averaged over all Geomagnetic Longitudes for each 10 Geomagnetic Latitude band, yielding an estimated external field correction profile for each 10-day file as a function of Geomagnetic Latitude.

Figures 6 through 19 exhibit sample external field correction profiles corresponding to specific 10-day POGS data files. One file has been selected from each of the 14 modeling groups listed in table 10. They span the 1991.0 to 1993.7 time frame. Rotating these profiles through 360° of longitude and transforming back to geodetic coordinates yields charts (47) through (60), which display a global, 10-day average picture of the mainly Ionospheric corrections. This procedure may also remove residual magnetospheric effects as well. These figures and charts exhibit the high degree of temporal variability that is clearly external in origin.

Magnetic fields of crustal origin are not resolved in the POGS data primarily because of the satellite's altitude which is nearly twice that of the 1979-1980 MAGSAT satellite mission. In unusually quite periods, as exemplified by charts 47, 48, 49, 54, 59, and 60, substantial magnetic activity associated with Field-Aligned currents can still be seen in the auroral zones, while pronounced equatorial Spread-F effects are clearly defined along the geomagnetic equator. The POGS satellite's altitude (about 725 km) also precludes the possibility of interpreting the observed external equatorial field as being due to the Equatorial Electrojet (EE). This is in contrast to the MAGSAT mission (about 400 km), which did encounter EE effects (Langel et al., 1993b).

Charts 47 and 54 make an interesting contrast. The external fields are generally quiet for both, but the activity along the equatorial zone has moved from the southern geomagnetic hemisphere to the northern geomagnetic hemisphere. This effect is apparently associated with a change in direction of the *Interplanetary Magnetic Field* (IMF) from its usual southward direction to a northerly one. Some more disturbed 10-day periods exemplified by charts 50 and 51 exhibit substantial magnetic activity at both mid-latitudes and high-latitudes. Charts 52 and 53 and charts 55 through 58 correspond to somewhat less disturbed 10-day periods and prominently illustrate varying degrees of low-latitude and mid-latitude banding.

2.3 Weight Factors

The modeling procedure employed was a modification of that formulated by Cain et al. (1967). The objective was to minimize the chi-square (χ^2) function:

$$\chi^2 = \chi_F^2 + \chi_\theta^2 + \chi_\phi^2 + \chi_F^2 \tag{35}$$

with respect to 168 MF (i.e., internal) Gauss coefficients corresponding to a degree and order 12 spherical-harmonic model, 35 external-field Gauss coefficients corresponding to a degree and order 5 spherical harmonic model and 3 additional External-Gauss coefficients corresponding to a degree and order 1 spherical-harmonic model, which accounts for residual Ring-current

Figure 6. POGS Total Intensity Ionospheric-Field Correction: 1991, Days 011 - 020

Figure 7. POGS Total Intensity Ionospheric-Field Correction: 1991, Days 031 - 040

POGS Total Intensity Ionospheric-Field Correction: 1991, Days 051 - 060 Figure 8.

POGS Total Intensity Ionospheric-Field Correction: 1991, Days 131 - 140

POGS Total Intensity Ionospheric-Field Correction: 1991, Days 211 - 220 Figure 10.

Figure 11. POGS Total Intensity Ionospheric-Field Correction: 1991, Days 261 - 270

POGS Total Intensity Ionospheric-Field Correction: 1991, Days 331 - 340 Figure 12.

Figure 13. POGS Total Intensity Ionospheric-Field Correction: 1992, Days 121 - 130

Figure 14. POGS Total Intensity Ionospheric-Field Correction: 1992, Days 171 - 180

POGS Total Intensity Ionospheric-Field Correction: 1992, Days 181 - 190 Figure 15.

POGS Total Intensity Ionospheric-Field Correction: 1992, Days 241 - 250 Figure 16.

Figure 17. POGS Total Intensity Ionospheric-Field Correction: 1993, Days 021 - 030

Figure 18. POGS Total Intensity Ionospheric-Field Correction: 1993, Days 141 - 150

Figure 19. POGS Total Intensity Ionospheric-Field Correction: 1993, Days 191 - 200

File = cion1011020.cor
Model = c-mdl_01.cof
Kp Max = 2.667
|Dst| < 50.0 nT
Begin Local Time = 19.0 Hrs
End Local Time = 5.0 Hrs
Altitude = 750 km

-45.

-55.

Chart 47. Ionospheric Magnetic Field: 1991, Days 011 - 020

Chart 48. Ionospheric Magnetic Field: 1991, Days 031 - 040

Altitude = 750 km

 $Model = c-mdl_02.cof$

Kp Max = 2.667 |Dst| ≤ 50.0 nT

-55.

-50.

File = cion1051060.cor Model = c-mdl_03.cof Kp Max = 2.667 |Dst| ≤ 50.0 nT Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

-60.

-45.

Chart 49. Ionospheric Magnetic Field: 1991, Days 051 - 060

File = cion1131140.cor

Model = $c-mdl_04.cof$ Kp Max = 2.667|Dst| ≤ 50.0 nT

Begin Local Time = 19.0 Hrs

End Local Time = 5.0 Hrs

Altitude = 750 km

-50. -55.

-60

Chart 50. Ionospheric Magnetic Field: 1991, Days 131 - 140

Chart 51. Ionospheric Magnetic Field: 1991, Days 211 - 220

Altitude = 750 km

File = cion1211220.corModel = $c-mdl_05.cof$

Kp Max = 2.667|Dst| ≤ 50.0 nT

-50. -55.

-45.

Chart 52. Ionospheric Magnetic Field: 1991, Days 261 - 270

Altitude = 750 km

File = cion1261270.corModel = $c-mdl_06.cof$

Kp Max = 2.667|Dst| ≤ 50.0 nT

-45. -50. -55.

Chart 53. Ionospheric Magnetic Field: 1991, Days 331 - 340

Altitude = 750 km

File = cion1331340.corModel = $c-mdl_07.cof$

Kp Max = 2.667 |Dst| ≤ 50.0 nT

-45. -50. -55.

Chart 54. Ionospheric Magnetic Field: 1992, Days 121 - 130

Altitude = 750 km

 $Model = c-mdl_08.cof$

Kp Max = 2.667 |Dst| ≤ 50.0 nT

-60.

File = cion2171180.cor Model = c-mdl_09.cof Kp Max = 2.667|Dst| ≤ 50.0 nT Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

Chart 55. Ionospheric Magnetic Field: 1992, Days 171 - 180

Altitude = 750 km

Model = c - mdl - 10.cof

Kp Max = 2.667 |Dst| ≤ 50.0 nT

Chart 56. Ionospheric Magnetic Field: 1992, Days 181 - 190

-60.

File = cion2241250.cor Model = c−mdl_11.cof Kp Max = 2.667 |Dst| ≤ 50.0 nT Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs Altitude = 750 km

-50.

-55. -60.

-45.

Chart 57. Ionospheric Magnetic Field: 1992, Days 241 - 250

Chart 58. Ionospheric Magnetic Field: 1993, Days 021 - 030

Altitude = 750 km

Model = c-mdl_12.cof

Kp Max = 2.667 |Dst| ≤ 50.0 nT

File = cion3141150.cor Model = c-mdl_13.cof Kp Max = 2.667|Dst| ≤ 50.0 nT Begin Local Time = 19.0 Hrs End Local Time = 5.0 Hrs

-50. -55. -60.

Chart 59. Ionospheric Magnetic Field: 1993, Days 141 - 150

Chart 60. Ionospheric Magnetic Field: 1993, Days 191 - 200

Altitude = 750 km

 $Model = c-mdl_14.cof$

Kp Max = 2.667 |Dst| ≤ 50.0 nT

effects, as monitored by the Dst index, not already removed via the subtraction of the external fields discussed in the previous subsection, where:

$$\chi_r^2 = \sum_{i=1}^{I_r} w_{ri} (B_{ri} - b_{ri})^2 \tag{36a}$$

$$\chi_{\theta}^{2} = \sum_{i=1}^{I_{\theta}} w_{\theta i} (B_{\theta i} - b_{\theta i})^{2}$$
 (36b)

$$\chi_{\varphi}^{2} = \sum_{i=1}^{I_{\varphi}} w_{\varphi i} (B_{\varphi i} - b_{\varphi i})^{2}$$
 (36c)

$$\chi_F^2 = \sum_{i=1}^{I_F} w_{Fi} (B_{Fi} - b_{Fi})^2$$
 (36d)

Uppercase B's refer to the model values of their respective magnetic components, while the lower case b's refer to the observed (measured) values of their respective magnetic components. The subscript i refers to a particular data point. The total number I of data points may be different for each magnetic component. Each data point has a weight w which depends on several factors:

a. Data Type: W_T

$$\mathbf{w}_{\mathrm{T}}(\mathrm{POGS}) = 1 \qquad \qquad \mathbf{m} = 1$$

 $w_T(Project MAGNET) = 1$ m = 2

Project MAGNET observatory airswing calibrations yield RMS errors on the order of 35 nT, while POGS RMS residual errors for each 10-day file with respect to the WMM-90 (modified) model average approximately 45 nT. These two numbers are indicators of the relative quality of the two data sets. The ratio of these two numbers is approximately equal to one. Consequently, the two data sets are assigned unit weight relative to each other.

b. Equal Area Weighting: WA

On a sphere satellite and aircraft magnetic data tend to be more concentrated at the geographic poles than at the equator. Since there is no reason to give one area of the world more weight than any other, a colatitude (θ) dependent weight factor is applied to each data point such that:

$$w_A(\theta) = \sin \theta \tag{37}$$

c. Geomagnetic Latitude Weighting: w_M

If only scalar Total Intensity data are used for modeling purposes, then the resulting model will generate large spurious magnetic anomalies along the geomagnetic equator which can extend to mid-latitudes. On the other hand, it is desirable to use as much scalar Total Intensity data and as little vector-magnetic data as possible in the modeling process because the vector data has additional attitude determination errors associated with it which tend to make vector data generally less accurate than the scalar Total Intensity data computed from it (Lowes and Martin [1987]). Consequently, in order to maximize the accuracy of the resulting model, Project MAGNET vector-aeromagnetic data were used in a band straddling $\pm 20^{\circ}$ about the geomagnetic equator to counter the Backus effect, while outside of this band, both POGS and Project MAGNET scalar Total Intensity data were used. However, by design, Project MAGNET surveys were concentrated in the equatorial band where vector data was critically needed. Therefore, very little Project MAGNET data were collected outside of this band, the exception being occasional excursions to the geomagnetic poles. Taking $\Theta_{\rm M}$ as the geomagnetic latitude, this weight factor takes the following form:

$$|\Theta_{M}| \le 20^{0} \quad \left\{ \begin{array}{ll} w_{M}(\Theta_{M}) = 1 & for \ k = 1, 2, 3(r, \theta, \varphi) \\ w_{M}(\Theta_{M}) = 0 & for \ k = 4(F) \end{array} \right\} ; n \equiv 1$$
 (38a)

$$|\Theta_{M}| > 20^{0}$$
 $\begin{cases} w_{M}(\Theta_{M}) = 0 & for \ k = 1, 2, 3(r, \theta, \varphi) \\ w_{M}(\Theta_{M}) = 1 & for \ k = 4(F) \end{cases}$; $n \equiv 2$ (38b)

d. Relative Weighting Among Project MAGNET Flights and POGS 10-day Files: w_R

RMS statistics were computed for the r, θ , φ , and F magnetic components of Project MAGNET data on a flight by flight basis. Statistics were also computed for the F magnetic component of the POGS data on a 10-day file by 10-day file basis. These statistics were computed relative to the WMM-90 (modified) model. Relative weights were assigned for each magnetic component using the squared ratio of the average RMS error for a given magnetic component for all flights (10-day files) used in a model to that of a particular flight (10-day file) for the same magnetic component. If k is taken as the index for a particular flight (10-day file) and if l is taken as the index representing a particular magnetic component (r, θ, φ, F) , then:

$$w_R = \left(\frac{\bar{\sigma}_l}{\sigma_{kl}}\right)^2 \tag{39}$$

e. Outlier Weighting: w_0

Editing the quiet-time POGS data was not a straightforward matter due to the fact that the Spread-F effect was broadly present at essentially all latitudes and tended to blend in with the Field-Aligned current effects in the auroral regions. Consequently, there were no localized features indicative of solar-induced ionospheric/magnetospheric activity that could be easily removed from the data through interactive computer graphic editing or through statistical winnowing without a substantial loss of data. Consequently, the average Spread-F and Field-Aligned current effects were removed via preliminary modeling of the POGS data as previously indicated. However, some of the external field activity could deviate substantially from the 10-day average. Therefore, these outliers, which would primarily occur in the auroral zones, were down-weighted via the following weight factor:

$$w_O = e^{-\left(\frac{\Delta B}{3\,\sigma}\right)^2} \tag{40}$$

where ΔB is the Total Intensity residual of the data point, and σ is the RMS error of its corresponding 10-day file with respect to the WMM-90 (modified) model.

Project MAGNET vector and scalar data, having been collected much nearer to the Earth's surface, were subject to magnetic contamination from crustal sources as well as from Ionospheric sources such as the Sq currents and the EE currents, both of which are located between 100-km and 200-km altitude. Outliers in Project MAGNET survey data due to these sources were down-weighted in the same manner as POGS, data using eq. (40), with ΔB representing the vector or scalar residuals with respect to the WMM-90 (modified) model and σ representing the RMS statistics for a particular survey flight and magnetic component. This weighting is in lieu of applying along-track, low-pass filters with 750-km wavelength cutoffs to the aeromagnetic data. Such filtering also results in a substantial loss of data.

Since the Project MAGNET data and the POGS data were essentially collected concurrently in time, there was no age-dependent weight factor applied to the data in contrast to the 1990 Epoch modeling procedures. The total weight applied to a specified data point is the product of the foregoing weight factors, so that:

$$w_{iklmn} = w_{Tm} w_{Mn}(\Theta_{Mi}) \left(\frac{\bar{\sigma}_{lm}}{\sigma_{klm}}\right)^2 e^{-\left(\frac{\Delta B_i}{3\sigma_{klm}}\right)^2} \sin \theta_i$$
 (41)

where the indices correspond to the following:

ith - data point

kth - aircraft flight or satellite 10-day file

lth - magnetic component (r, θ, ϕ, F)

mth - data type (Project MAGNET or POGS)

nth - geomagnetic latitude band (equatorial or nonequatorial)

2.4 Inverse Modeling Mathematical Details

Although the modeling objective is to determine the spherical-harmonic Gauss coefficients associated with the magnetic field generated in the Earth's core as indicated in eqs. (7a), (7b), and (7c), the satellite magnetic field measurements consist of magnetic fields of core, ionosphere, and magnetosphere origins. Since, unlike the aircraft data, these data are temporally coherent, it is possible to spherically harmonic model the external fields measured by POGS as well as the internal fields. In so doing, we minimize the possibility of contaminating the internal Gauss coefficients with noise of external origin. Thus, the aircraft data are used to compute only the 168 internal Gauss coefficients to degree and order 12, while the POGS data are used to compute the 168 internal Gauss coefficients to degree and order 12, the 35 external Gauss coefficients to degree and order 5, and (following Langel and Estes [1985], Quinn et al. [1986], and Langel [1993]) the 3 external Gauss coefficients, associated with the so-called Ring current and monitored by the Dst Index, to degree and order 1. The internal Gauss coefficients of degree n and order m at time t are denoted as $g_{nm}(t)$ and $h_{nm}(t)$, while the external Gauss coefficients of degree n and order m at time t are denoted as $q_{nm}(t)$ and $s_{nm}(t)$. The external Gauss coefficients corresponding to the Ring current for degree n and order m at time t are denoted as $\alpha_{nm}(t)$ and $\beta_{nm}(t)$. Using this notation, the potential function that includes all three contributions to the observed field has the following form:

$$V(r,\theta,\phi,t) = a \sum_{n=1}^{N_I} \sum_{m=0}^{n} \left(\frac{a}{r}\right)^{n+1} \left[g_{nn}(t)\cos(m\phi) + h_{nm}(t)\sin(m\phi)\right] P_n^m(\theta)$$

$$+ a \sum_{n=1}^{N_E} \sum_{m=0}^{n} \left(\frac{r}{a}\right)^{n} \left[q_{nm}(t)\cos(m\phi) + s_{nm}(t)\sin(m\phi)\right] P_n^m(\theta)$$

$$+ a Dst(\theta,t) \sum_{n=1}^{N_R} \sum_{m=0}^{n} \left(\frac{r}{a}\right)^{n} \left[\alpha_{nm}(t)\cos(m\phi) + \beta_{nm}\sin(m\phi)\right] P_n^m(\theta)$$
(42)

where $N_I = 12$, $N_E = 5$, and $N_R = 1$.

Now, defining the coefficient set $\{C_l\}$ for l = 1, 2, ..., L such that:

$$C_{l} = \begin{cases} g_{nn}; & for \ n(n+1)/2 + m \leq l(n,m) \leq L_{g} \\ h_{nm}; & for \ n(n-1)/2 + m + L_{g} \leq l(n,m) \leq L_{h} \\ q_{nm}; & for \ n(n+1)/2 + m + L_{h} \leq l(n,m) \leq L_{q} \\ s_{nm}; & for \ n(n-1)/2 + m + L_{q} \leq l(n,m) \leq L_{s} \\ \alpha_{nm}; & for \ n(n+1)/2 + m + L_{s} \leq l(n,m) \leq L_{\alpha} \\ \beta_{nm}; & for \ n(n-1)/2 + m + L_{\alpha} \leq l(n,m) \leq L_{\beta} \end{cases}$$

$$(43)$$

where:

$$L_g = \frac{N_I(N_I + 3)}{2} \tag{44a}$$

$$L_h = L_g + \frac{N_I(N_I + 1)}{2} \tag{44b}$$

$$L_q = L_h + \frac{N_E(N_E + 3)}{2} \tag{44c}$$

$$L_s = L_q + \frac{N_E(N_E + 1)}{2} \tag{44d}$$

$$L_{\alpha} = L_s + \frac{N_R(N_R + 3)}{2} \tag{44e}$$

$$L_{\beta} = L_{\alpha} + \frac{N_R(N_R+1)}{2}$$
 (44f)

it is possible to put eq. (42) into the following form:

$$V(r, \theta, \varphi, t) = \sum_{l=1}^{L} C_l(t) Q_{vl}(r, \theta, \varphi, t)$$
(45)

where $L = L_{\beta} = 206$.

The corresponding geometric functions are:

$$Q_{vl}(r,\theta,\phi,t) = \begin{cases} a\left(\frac{a}{r}\right)^{n+1}\cos(m\,\phi)\,P_{n}^{m}(\theta)\,;\,\,l(n,m) = \frac{n(n+1)}{2} + m \\ a\left(\frac{a}{r}\right)^{n+1}\sin(m\,\phi)\,P_{n}^{m}(\theta)\,;\,\,l(n,m) = \frac{n(n-1)}{2} + m + L_{g} \\ a\left(\frac{r}{a}\right)^{n}\cos(m\,\phi)\,P_{n}^{m}(\theta)\,;\,\,l(n,m) = \frac{n(n+1)}{2} + m + L_{h} \\ a\left(\frac{r}{a}\right)^{n}\sin(m\phi)\,P_{n}^{m}(\theta)\,;\,\,l(n,m) = \frac{n(n-1)}{2} + m + L_{q} \\ aD_{st}(\theta,t)\left(\frac{r}{a}\right)^{n}\cos(m\,\phi)\,P_{n}^{m}(\theta)\,;\,\,l(n,m) = \frac{n(n+1)}{2} + m + L_{s} \\ aD_{st}(\theta,t)\left(\frac{r}{a}\right)^{n}\sin(m\,\phi)\,P_{n}^{m}(\theta)\,;\,\,l(n,m) = \frac{n(n-1)}{2} + m + L_{\alpha} \end{cases}$$

$$(46)$$

Taking the negative gradient of eq. (45) yields the magnetic field vector $B(r, \theta, \phi, t)$, with components:

$$B_r(r,\theta,\varphi,t) = \sum_{l=1}^{L} C_l Q_{rl}(r,\theta,\varphi,t)$$
 (47a)

$$B_{\theta}(r,\theta,\varphi,t) = \sum_{l=1}^{L} C_{l} Q_{\theta l}(r,\theta,\varphi,t)$$
 (47b)

$$B_{\varphi}(r,\theta,\varphi,t) = \sum_{l=1}^{L} C_{l} Q_{\varphi l}(r,\theta,\varphi,t)$$
 (47c)

where:

$$Q_{rl}(r,\theta,\varphi,t) = -\frac{\partial Q_{Vl}(r,\theta,\varphi,t)}{\partial r}$$
(48a)

$$Q_{\theta l}(r, \theta, \varphi, t) = -\frac{1}{r} \frac{\partial Q_{Vl}(r, \theta, \varphi, t)}{\partial \theta}$$
 (48b)

$$Q_{\varphi l}(r, \theta, \varphi, t) = -\frac{1}{r \sin \theta} \frac{\partial Q_{Vl}(r, \theta, \varphi, t)}{\partial \varphi}$$
 (48c)

The Total Intensity, given in terms of these three components, is:

$$B_F(r,\theta,\varphi,t) = \sqrt{B_r(r,\theta,\varphi,t)^2 + B_{\theta}(r,\theta,\varphi,t)^2 + B_{\varphi}(r,\theta,\varphi,t)^2}$$
(49)

It is clearly nonlinear in terms of the Gauss coefficients C_l . Under the assumption that the Gauss coefficients vary slowly in time, eq. (49) may be linearized via Taylor expansion, yielding:

$$\delta B_F(r,\theta,\varphi,t) \cong \sum_{l=1}^L \delta C_l Q_{Fl}(r,\theta,\varphi,t)$$
 (50)

where the δ indicates that a small variation of the indicated quantity is to be taken, and where the functions $Q_F(r,\theta,\varphi,t)$, defined as:

$$Q_{FI}(r,\theta,\varphi,t) = \frac{B_{r}(r,\theta,\varphi,t)Q_{rI}(r,\theta,\varphi,t) + B_{\theta}(r,\theta,\varphi,t)Q_{\theta I}(r,\theta,\varphi,t) + B_{\varphi}(r,\theta,\varphi,t)Q_{\varphi I}(r,\theta,\varphi,t)}{B_{F}(r,\theta,\varphi,t)}$$
(51)

are evaluated at a fixed epoch $t = \tau$. Thus, eq. (50) may be integrated, assuming $Q_{F}(r, \theta, \varphi, t)$ varies minimally with respect to small changes in the Gauss coefficients, to yield:

$$B_F(r,\theta,\varphi,t) \cong \sum_{l=1}^{L} C_l(t) Q_{Fl}(r,\theta,\varphi,t)$$
 (52)

which is a useful form for setting up the least-squares problem to determine the Gauss coefficients.

Minimization of the chi-square function of eq. (35) requires that:

$$\delta \chi^2 = \sum_{j=1}^{206} \frac{\partial \chi^2}{\partial C_j} \, \delta C_j = 0 \tag{53}$$

which is satisfied when:

$$\frac{\partial \chi^2}{\partial C_i} = 0 \qquad \qquad j = 1, 2, \dots, 206$$
 (54)

Therefore, we must have:

$$\frac{\partial \chi_r^2}{\partial C_j} + \frac{\partial \chi_\theta^2}{\partial C_j} + \frac{\partial \chi_\phi^2}{\partial C_j} + \frac{\partial \chi_F^2}{\partial C_j} = 0 j = 1, 2, \dots, 206 (55)$$

which is a nonlinear system of 206 equations for the 206 unknown coefficients in the set $\{C_l\}$. This system of equations is nonlinear because χ^2 depends on B_F , which in turn depends nonlinearly on the Gauss coefficients through eq. (49) which depends on eq. (51). The individual terms in eq. (55) are determined from eqs. (37a) through (37d), eqs. (47a) through eqs. (47c), and eq. (52) and by taking the indicated derivatives with respect to the Gauss coefficients, so that:

$$\frac{\partial \chi_r^2}{\partial C_j} = \sum_{l=1}^L C_l \sum_{i=1}^{I_r} w_{ri} Q_{rl}(r_i, \theta_i, \varphi_i, \tau) Q_{rj}(r_i, \theta_i, \varphi_i, \tau) - \sum_{i=1}^{I_r} w_{ri} b_{ri} Q_{rj}(r_i, \theta_i, \varphi_i, \tau)$$
(56a)

$$\frac{\partial \chi_{\theta}^2}{\partial C_j} = \sum_{l=1}^L C_l \sum_{i=1}^{I_{\theta}} w_{\theta i} Q_{\theta l}(r_i, \theta_i, \varphi_i, \tau) Q_{\theta j}(r_i, \theta_i, \varphi_i, \tau) - \sum_{i=1}^{I_{\theta}} w_{\theta i} b_{\theta i} Q_{\theta j}(r_i, \theta_i, \varphi_i, \tau)$$
 (56b)

$$\frac{\partial \chi_{\varphi}^2}{\partial C_j} = \sum_{l=1}^L C_l \sum_{i=1}^{I_{\varphi}} w_{\varphi i} Q_{\varphi l}(r_i, \theta_i, \varphi_i, \tau) Q_{\varphi j}(r_i, \theta_i, \varphi_i, \tau) - \sum_{i=1}^{I_{\varphi}} w_{\varphi i} b_{\varphi i} Q_{\varphi j}(r_i, \theta_i, \varphi_i, \tau)$$
(56c)

$$\frac{\partial \chi_F^2}{\partial C_j} = \sum_{l=1}^L C_l \sum_{i=1}^{I_F} w_{Fi} \{ Q_{rl}(r_i, \theta_i, \varphi_i, \tau) Q_{rj}(r_i, \theta_i, \varphi_i, \tau) + Q_{\theta l}(r_i, \theta_i, \varphi_i, \tau) Q_{\theta j}(r_i, \theta_i, \varphi_i, \tau) + Q_{\theta l}(r_i, \theta_i, \varphi_i, \tau) Q_{\theta j}(r_i, \theta_i, \varphi_i, \tau) \} - \sum_{i=1}^{I_F} w_{Fi} b_{Fi} Q_{Fi}(r_i, \theta_i, \varphi_i, \tau)$$
(56d)

where eq. (51) has been used to obtain eq. (56d).

Inserting these expressions into eq. (55) yields the following system of equations:

$$\sum_{l=1}^{L} C_l \mathcal{Q}_{lj} = \mathcal{R}_j \qquad j = 1, 2, \dots, 206$$

$$(57)$$

where:

$$\mathcal{Q}_{Ij} = \sum_{i=1}^{I_r} w_{ri} Q_{rl}(r_i, \theta_i, \phi_i, \tau) Q_{rj}(r_i, \theta_i, \phi_i, \tau) + \sum_{i=1}^{I_{\theta}} w_{\theta i} Q_{\theta l}(r_i, \theta_i, \phi_i, \tau) Q_{\theta j}(r_i, \theta_i, \phi_i, \tau)$$

$$+ \sum_{i=1}^{I_{\varphi}} w_{\varphi i} Q_{\varphi l}(r_i, \theta_i, \phi_i, \tau) Q_{\varphi j}(r_i, \theta_i, \phi_i, \tau) + \sum_{i=1}^{I_F} w_{Fi} \{Q_{rl}(r_i, \theta_i, \phi_i, \tau) Q_{rj}(r_i, \theta_i, \phi_i, \tau) (58)\}$$

$$+ Q_{\theta l}(r_i,\theta_i,\varphi_i,\tau)Q_{\theta j}(r_i,\theta_i,\varphi_i,\tau) + Q_{\varphi l}(r_i,\theta_i,\varphi_i,\tau)Q_{\varphi j}(r_i,\theta_i,\varphi_i,\tau) \}$$

and

$$\mathcal{R}_{j} = \sum_{i=1}^{I_{r}} w_{ri} b_{ri} Q_{rj}(r_{i}, \theta_{i}, \varphi_{i}, \tau) + \sum_{i=1}^{I_{\theta}} w_{\theta i} b_{\theta i} Q_{\theta j}(r_{i}, \theta_{i}, \varphi_{i}, \tau) + \sum_{i=1}^{I_{\phi}} w_{\varphi i} b_{\varphi i} Q_{\varphi j}(r_{i}, \theta_{i}, \varphi_{i}, \tau) + \sum_{i=1}^{I_{F}} w_{Fi} b_{Fi} Q_{Fj}(r_{i}, \theta_{i}, \varphi_{i}, \tau)$$
(59)

This system of 206 linear algebraic equations can be written in matrix form as:

$$\mathbf{C}\,\mathbf{\mathcal{Q}}=\mathbf{\mathcal{R}}\tag{60}$$

which may be inverted to yield:

$$\mathbf{C} = \mathbf{\mathcal{Q}}^{-1} \mathbf{\mathcal{R}} \tag{61}$$

which is an estimate of the Gauss coefficients that best fit the observed data in least-squares sense.

Since the fourth term on the right-hand side of eq. (59) depends on the Gauss coefficients, it is necessary to solve eq. (60) iteratively. If ρ is the iteration index, then we may write the $\rho'th$ iterative solution for the Gauss coefficients as:

$$\mathbf{C}^{(\rho)} \cong \mathcal{Q}^{-1} \mathcal{R}^{(\rho-1)} \qquad \qquad \rho = 1, 2, \ldots, \rho_{\text{max}}$$
(62)

where ρ_{max} is the maximum number of iterations, and where the WMM-90 (modified) model was used as the *initial guess*. Note that the 2 matrix in eq. (58) is independent of the Gauss coefficients and so must be computed only once. One set of Gauss coefficients was computed via the above technique for each of the 14 model epochs specified in table 10.

SECTION 3 MODELING RESULTS

3.0 The WMM-92.5 (optimum) Model

As table 10 indicates, 14 World Magnetic Models were computed at distinct epochs covering the time frame from 1991.0 to about 1993.7. These models are given the designations WMD-01, WMD-02 . . . WMD-14. The internal coefficients are derived from both Project MAGNET and POGS data, while the external coefficients refer only to the POGS data. The internal Gauss coefficients g_{nm} corresponding to these models are listed in table 11 and are plotted as functions of time in figure 20. The internal Gauss coefficients h_{nm} corresponding to these models are given in table 12 and are plotted as a functions of time in figure 21. Also, the external Gauss coefficients q_{nm} and s_{nm} corresponding to these models are given in tables 13 and 14, respectively, while the external Gauss coefficients α_{nm} and β_{nm} , which were intended to extract any residual Ring-current effects not already accounted for by the direct removal of the 10-day mean ionospheric correction field, a procedure that was primarily intended to eliminate Spread-F effects and Field-Aligned current effects, are listed in tables 15 and 16, respectively. These indicating that most of the magnetospheric latter sets of coefficients are quite small, Ring-current contribution was eliminated as part of the mean ionospheric correction. The set of external Gauss coefficients q_{nm} and s_{nm} is asymmetric in the sense that the former set of coefficients is considerably larger than the latter. It is not clear why this is so, although it is possible that the portion of the external field that normally contributes to the s_{nm} set of coefficients may also have been removed by the 10-day mean ionospheric correction. In addition, the q_{nm} coefficient seem to exhibit a quasi-annual variation as one would expect.

The internal Gauss coefficients, as seen in figures 20 and 21, clearly exhibit essentially linear secular behavior. A few coefficients exhibit some small but noticeable external field contamination which also displays a quasi-annual variation. This contamination is perhaps most noticeable in the g_{30} coefficient, although in general the contamination is quite minimal. This quasi-annual external field contamination is detectable primarily as a consequence of the POGS data set longevity of nearly 3 years. The effects of this contamination can be eliminated via a weighted, linear least-squares fit of each internal Gauss coefficient. The weights come from the RMS statistics of each model with respect to all POGS and Project MAGNET data used to produce that model. Thus, we fit the 14 values of a single Gauss coefficient to a linear model of the form:

$$C_1(t) = C_1(T) + \dot{C}_1(t - T)$$
 (63)

where the reference time T is chosen to be 1992.5. The coefficients $C_l(T)$ are then the MF values at 1992.5, while the coefficients C_l represent the SV coefficients at 1992.5. Performing this least squares fit on all of the internal Gauss coefficients yields the WMM-92.5 (optimum) model, the coefficients of which are listed in table 17. Using the SV portion of the WMM-92.5 model to adjust the MF coefficients of the same model backward 2.5 years yields a set of MF coefficients at the 1990.0 epoch, which, when merged with the WMM-92.5 (optimum) SV coefficients, yields the WMM-90 (revised) model listed in table 18.

Table 11. Schmidt Normalized Gauss Coefficients, for g, Modeled at 14 Epochs

		WMD													
		-	2	3	4	2	9	_	∞	6	10	11	12	13	14
		1991.053	1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992.631	1993.097	1993.371	1993.530
=	E														
-	0	-29758.5	-29756.2	-29754.5	-29746.2	-29745.8	-29743.1	-29737.5	-29729.3	-29729.4	-29727.3	-29726.0	-29717.3	-29714.9	-29710.1
_	_	-1834.2	-1833.6	-1832.3	-1827.2	-1824.8	-1823.5	-1819.3	-1815.8	-1814.5	-1814.8	-1813.9	-1808.1	-1803.7	-1802.3
7	0	-2141.2	-2142.4	-2142.3	-2145.5	-2148.5	-2150.8	-2156.8	-2160.0	-2160.5	-2161.5	-2162.3	-2169.7	-2173.5	-2174.4
7	_	3064.4	3064.8	3064.5	3065.3	3066.0	3066.7	3067.4	3068.3	3068.9	3069.9	3069.8	3071.1	3071.7	3071.9
7	7	1687.3	1687.2	1687.1	1687.2	1687.5	1687.2	1687.6	1686.8	1686.8	1686.8	1686.8	1686.7	1686.5	1686.7
3	0	1309.3	1310.1	1310.6	1313.9	1313.3	1312.6	1313.1	1315.7	1314.0	1315.2	1316.0	1315.7	1315.6	1315.7
6	-	-2247.2	-2247.6	-2248.1	-2249.6	-2249.7	-2250.6	-2253.6	-2255.4	-2256.1	-2257.5	-2258.3	-2261.0	-2261.8	-2263.7
т	7	1248.7	1249.1	1249.3	1249.3	1248.8	1249.1	1248.0	1248.7	1248.5	1248.3	1248.1	1247.7	1247.6	1247.4
es.	က	797.1	9.962	796.1	794.1	792.9	791.8	788.5	786.3	785.5	785.2	784.3	780.8	778.2	4.777
4	0	935.8	935.8	936.3	939.0	939.2	937.3	936.7	936.7	937.6	938.1	938.6	936.0	937.5	937.3
4	_	779.8	780.1	779.9	781.3	782.2	781.8	781.5	781.3	781.1	781.9	781.7	781.8	781.5	780.7
4	7	318.5	318.2	317.5	314.9	314.4	313.7	311.8	309,3	308.5	307.7	307.2	304.6	302.7	302.2
4	ю.	-420.9	-420.7	-420.7	-420.6	-420.6	-420.3	-420.5	-420.0	-420.1	-419.9	-419.8	-419.7	-419.4	-419.3
4	4	134.5	134.1	134.0	132.6	131.8	131.1	128.8	127.4	126.7	126.4	125.8	123.4	121.6	120.9
S.	0	-213.7	-213.6	-213.8	-212.0	-211.2	-211.9	-211.3	-211.1	-212.0	-211.2	-210.4	-211.3	-210.3	-211.2
'n	_	354.5	354.8	354.0	352.3	352.9	353.8	353.4	353.2	353.6	353.1	353.0	353.8	354.4	354.2
v.	7	243.3	243.5	243.5	243.4	243.0	243.1	241.8	242.7	242.1	242.2	241.9	241.2	241.0	240.9
2	e	-112.3	-112.6	-113.0	-113.5	-113.8	-114.2	-115.6	-116.0	-116.1	-116.3	-116.7	-117.5	-118.3	-118.4
r.	4	-162.6	-162.6	-162.7	-162.7	-162.7	-162.5	-162.5	-162.6	-162.4	-162.3	-162.2	-162.4	-162.4	-162.4
'n	S	-32.1	-32.0	-31.9	-31.4		-30.5	-29.8	-29.0	-28.7	-28.4	-28.2	-27.1	-26.3	-26.0
9	0	63.9	64.1	64.2	66.1		0.99	0.99	65.7	1.99	0.79	67.1	65.8	67.3	1.99
9	_	64.7	64.8		0.99		7.99	999	0.99	65.4	65.3	65.3	65.7	65.4	65.0
9	7	61.9	62.2		60.4		9.19	62.2	62.3	62.7	62.0	62.1	63.4	63.4	64.3
9	د	-177.1	-177.0	-177.0	-176.4	Ť	-175.9	-175.3	-174.8	-174.7	-174.3	-173.8	-173.3	-172.7	-172.5
9	4	0.1	0.1	4.0	6.0		8.0	0.7	9.0	0.7	0.1	0.3	0.1	-0.3	-0.5
9	v.	17.7	17.7	17.9	17.7		17.7	17.5	17.5	17.7	17.5	17.5	17.4	17.2	17.4
9	9	-92.0	-92.0	-92.0	-91.9	•	-91.8	-91.7	-91.5	-91.5	-91.3	-91.3	-91.0	-91.0	-91.0
7	0	78.1	78.5	78.2	78.6		79.2	78.8	79.0	78.5	78.8	78.7	78.6	78.3	78.5
7	-	-63.9	-63.6	-64.1	0.99-	-66.1	-65.2	-65.7	-66.7	-66.2	9.99-	-67.0	-66.5	-66.4	-66.4

Table 11. Schmidt Normalized Gauss Coefficients, for g, Modeled at 14 Epochs (Con.)

		3		>			MINIO	A IVI	MINIT	WIVID	WINT	TATA	ATAT A	
	1	2	6	4	S	9	7	œ	6	10	11	12	13	14
-	1991.053	1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992.631	1993.097	1993.371	1993.530
	B											•	,	-
	2 2.5			2.2	2.0	2.1	1.7	2.0	1.7	I.6	1:1	1.1	1.0	1.0
				27.4		27.5	27.8	28.0	28.4	28.3	~	28.8	1.67	1.67
				1.7		2.1	2.7	2.4	2.9	2.9		3.1	3.5	3.6
	29			6.4	6.7	6.9	6.9	6.9	7.2	7.0	7.0	7.1	7.5	7.5
	9			0.6		8.9	8.9	9.1	9.1	9.3	9.3	9.4	9.2	6
	0 1			0.2		0.0	-0.2	-0.4	-0.5	-0.5	9.0-	-0.9	-1.1	-1.1
			74.2	24.0		24.0	23.4	23.7	23.9	24.2	23.8	23.7	23.6	24.0
	7.4.7					4.2	4.4	4.4	4.0	3.6	3.6	3.8	3.3	3.4
	1 2						-1.2	-1.7	-1.1	-1.8	-1.9	-1.1	-1.7	-1.1
	7.0-				10.01		-10.1	-10.3	-10.3	-10.0	8.6-	-10.1	-10.1	-10.2
	-10.						-13.5	-14.0	_,	-14.3	-14.1	-14.8	-14.8	-15.2
	15.					2.0	2.4	2.1			2.2	2.1	2.4	2.3
							3.2		3.2		3.2			
_	0 1						-2.3				1 -2.4	-2.8		-3.1
•					-7.5	-7.5	-7.5	7.7-			7.8	-7.8	6.7-	
	2,0						2.7				2.8			
	0						7.5			7.6	7.4	7.9		
	-						0.4				5 0.3		5 0.6	0.7
	9.7	10.4	-10.1	-10.2	7	· ·	7		· T	7	10.0	7	10.3	-10.3
									4.6	7.6	7 9.7		3.6	9.5
	* •					-2.5		-2.5	-2.4	1-2.7	7 -2.8		6 -2.4	-2.5
	i c									1 -2.2	2 -2.3		3 -2.1	-2.3
_	9 1								6.7	6.9		8.9	8.9	
								4.0-	4.0-	-0.4	4 -0.5	5 -0.4	4-0-4	
_									5 -6.5	5 -6.5		-6.4	4.9-	
, 1	-2						-3.4	-2.9	-2.8	-3.1	1 -3.3	3.0	0 -3.0	
2 1	i "						-3.2	-3.4	4-3.4	-3.7	7 -3.5	5 -3.4		_
2 2	3.6						2.9	2.6	5 2.9	2.7	7 2.7	3.3	3 2.9	
2 9	4.5				_	·	-4.3	1 -4.3	3 -4.4	4.1	1 -3.9			
	5						-3.1	-3.1	1 -3.1	1 -2.8	8 -2.8	-3.0	0 -2.9	9 -2.9

Table 11. Schmidt Normalized Gauss Coefficients, for g, Modeled at 14 Epochs (Con.)

		WMD	WMD	WMD	WMD	WMB	WMD								
		-	2	3	4	S	9	7	00	6	10	11	12	13	14
		1991.053	1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992,631	1993 097	1003 371	1903 530
п	ш												1/0:0//	1100000	1773,330
10	'n	2.6		2.7	2.5	2.5	2.3	2.9	2.6	2.7	2.6	2.7	2.7	2.9	7.6
10	9	2.6		2.7	3.0	3.2	3.0	3.1	2.9	2.9	2.9	2.9	2.9	3.1	2.7
10	7	6.0		8.0	1.0	1.0	6.0	1.0	1.1	6.0	1.0	1.2	-	1.1	1.7
10	∞	4.1		4.0	4.0	3.9	4.0	4.0	3.9	4.1	4.0	000	4.0	3.0	3.0
10	6	3.6		3.5	3.6	3.7	3.6	3.7	3.6	3.6	3.6	3.5	3.5	3.5	3.5
10	10	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	0.5	9.0	0.5	9.0	2.0
11	0	1.8		1.9	1.8	1.5	1.8	1.6	1.7	1.7	1.7	1.7		1.0	1.0
11	-	-1.4		-1.5	-1.6	-1.5	-1.4	-1.3	-1.5	-1.5	-1.5	-1.5	-1.4	17	41-
=	~	-3.3		-3.4	-3.4	-3.5	-3.6	-3.6	-3.3	-3.3	-3.4	-3.4	-3.3	-3.2	-3.2
11	60	1.3		1.3	1.3	1.2	1.1	1.2	1.3	1.3	1.4	1.5	1.3	1.2	1.2
11	4	-0.7		-0.7	9.0-	-0.5	-0.5	-0.7	-0.8	-0.8	9.0-	9.0-	8.0-	-0.7	9.0-
=	v.	0.0		0.0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.3	-0.4	-0.1	-0.5	-0.2
11	9	-0.7		-0.7	8.0-	-0.7	8.0-	-0.7	6.0-	8.0-	9.0-	-0.7	-0.7	-0.7	8-0-
=	7	-0.8		-0.8	-0.7	8.0-	8.0-	-0.7	-0.7	6.0-	-0.8	9.0-	-0.8	-0.7	-0.6
11	∞	1.3		1.3	1.3	1.4	1.3	1.4	1.4	1.4	1.3	1.3	1.3	1.4	1.5
=======================================	6	-0.3		-0.3	-0.3	-0.2	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	4-0-
Ξ	10	2.1		2.1	2.2	2.3	2.2	2.2	2.1	2.2	2.1	2.1	2.2	2.1	2.1
=	==	4.1		4.1	4.1	4.2	4.1	4.1	4.1	4.1	4.1	4.1	4.0	4.0	4.0
12	•	-1.9		-1.8	-1.7	-1.7	-1.8	-2.0	-1.6	-1.7	-1.8	-1.9	-1.8	8.	-1.7
12	_	0.4		9.0	0.7	8.0	0.8	8.0	6.5	9.0	0.4	0.4	0.4	0.1	0.0
12	7	0.1		0.2	-0.3	-0.3	-0.1	0.0	-0.2	-0.1	-0.1	-0.2	0.1	0.0	0.2
12	m .	9.0-		-0.5	-0.3	-0.3	-0.5	4.0-	-0.3	-0.4	-0.4	-0.2	-0.5	-0.3	-0.4
12	4 1	8.0		0.8	0.7	0.7	6.0	9.0	9.0	0.7	8.0	0.7	0.7	0.8	0.8
71	o.	4.0		0.4	0.5	0.1	0.7	6.3	0.3	0.3	0.3	0.3	0.5	0.5	0.5
12	9	0.4		0.4	0.5	9.0	0.5	6.0	6.5	0.5	9.0	0.4	0.5	0.4	0.4
12	7	0.5		0.4	0.5	0.5	0.5	9.5	9.0	0.5	0.5	9.0	0.5	9.0	9.0
12	>	-0.3	}	4.0-	-0.5	9.0-	-0.5	-0.5	9.0-	-0.4	-0.5	9.0-	-0.5	-0.5	-0.5
12	6	0.5	0.4	0.4	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5
12	9 ;	0.5		0.2	0.5	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.7	0.3	0.1
12	Ξ	0.5		0.4	0.4	9.0	0.4	0.5	0.4	0.4	4.0	0.5	0.4	0.5	0.5
12	12	0.4		0.5	0.5	9.0	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3

Table 12. Schmidt Normalized Gauss Coefficients, for h, Modeled at 14 Epochs

		WMD													
		-	7	3	4	\$	9	7	8	6	10	11	12	13	14
		1991.053	1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992.631	1993.097	1993.371	1993.530
=	E														
_	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
-	1	5384.6	5384.5	5384.6	5380.6	5377.5	5374.9	5369.2	5363.1	5361.5	5359.4	5357.5	5349.5	5344.3	5340.5
7	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	-	-2297.7	-2298.6	-2299.8	-2304.6	-2307.1	-2309.4	-2314.0	-2318.2	-2319.7	-2320.8	-2323.1	-2329.9	-2333.9	-2336.1
7	7	-382.8	-382.9	-383.4	-386.2	-387.3	-389.0	-392.3	-395.4	-395.8	-397.0	-398.2	-402.8	-404.8	-406.2
3	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	1	-277.5	-276.9	-275.5	-272.9	-274.0	-273.0	-271.1	-270.0	-269.6	-269.9	-269.8	-267.5	-267.2	-266.9
8	7	293.3	293.1	293.3	294.1	294.3	294.4	295.2	296.1	295.9	296.6	296.7	297.6	297.9	298.4
ю	ĸ	-368.7	-369.0	-369.7	-372.4	-373.8	-376.1	-380.4	-384.3	-385.2	-386.4	-387.4	-393.4	-396.4	-398.7
4	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	_	252.7	252.3	252.0	251.3	251.0	251.9	253.3	254.9	254.5	254.7	254.7	256.4	256.6	257.3
4	7	-235.7	-235.4	-235.6	-236.2	-236.0	-235.5	-235.3	-234.8	-234.2	-234.2	-234.4	-234.0	-233.2	-232.2
4	6	88.5	88.5	9.88	89.3	89.9	90.2	91.1	92.0	92.1	97.8	92.8	94.1	95.3	92.6
4	4	-300.9	-300.8	-300.9	-301.2	-301.4	-301.8	-302.4	-302.8	-302.8	-303.0	-303.1	-303.9	-304.4	-304.5
ĸ	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S	_	42.2	42.3	42.7	44.0	43.4	43.0	43.0	43.0	43.4	43.0	42.7	43.1	43.2	43.1
ĸ	7	153.9	153.5	153.8	154.7	154.5	154.3	154.4	155.7	155.2	156.0	156.0	156.4	156.0	156.5
ĸ	6	-152.2	-152.1	-152.1	-151.3	-151.2	-151.2	-151.0	-151.1	-150.8	-151.1	-150.5	-150.7	-150.0	-150.6
S	4	-66.4	-66.3	-66.1	-65.3	-65.0	-64.7	-64.1	-63.6	-63.6	-63.6	-63.4	-62.3	-61.7	-61.5
S	v	100.7	100.8	100.9	101.4	101.5	101.6	101.7	102.2	102.3	102.2	102.2	102.7	102.9	103.2
9	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	-	-16.7	-16.7	-17.0	-17.4	-16.8	-16.7	-16.4	-15.9	-16.4	-16.5	-16.3	-15.6	-15.4	-15.4
9	7	80.3	80.4	80.1	79.1	79.0	78.9	78.0	77.4	77.6	77.5	77.4	76.4	76.0	76.5
9	3	71.0	70.7	7.0.7	70.5	7.07	70.8	70.0	70.4	70.2	70.9	70.5	70.5	70.3	70.4
9	4	-51.8	-51.8	-52.0	-52.4	-52.8	-52.6	-52.9	-53.2	-53.1	-53.1	-53.1	-53.3	-53.7	-53.6
9	v	-0.1	-0.2	-0.1	0.0	0.2	0.4	9.0	0.8	0.8	1.0	1.0	1.3	1.6	1.9
9	9	25.8	25.8	26.0	26.6	26.8	27.2	27.8	28.4	28.6	28.7	28.9	29.9	30.3	30.6
7	•	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
7	-	-78.2	-78.1	-78.2	-77.6	-77.1	-77.5	-77.4	7.77-	-77.3	-77.2	-77.4	-77.2	-76.2	-76.7

Table 12. Schmidt Normalized Gauss Coefficients, for h, Modeled at 14 Epochs (Con.)

		THE PARTY OF THE P												
_	1	2	3	4	5	9	7	8	6	10	11	12	13	14
	1991.053	53 1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992.631	1993.097	1993.371	1993.530
ı ı	u.													
	2 -2				-25.4	-25.8	-25.5	-25.2	-25.4	-25.3	-25.4	-25.3	-25.2	-25.5
7		9.0-	9.0- 9	-0.5	-0.3	-0.1	-0.3	-0.1	0.2	0.1	9.0	9.0	0.0	8.0
, ,	- 2				21.3	21.3	20.8	21.2	20.7	20.7	20.7	20.8	20.5	20.3
7	5 1				16.7	17.0	16.5	17.1	17.2	16.7	16.6	16.8	16.6	17.1
, ,	6 -2				-22.9	-22.8	-23.0	-23.1	-23.0	-23.0	-23.2	-23.2	-23.3	-23.3
, ,					-5.1	-5.1	-5.4	-5.5	-5.6	-5.6	-5.7	-5.9	-6.3	-6.2
∞	0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
∞	1 1				13.2	13.6	13.8	13.9	13.5	13.7	13.8	14.3	14.2	14.4
∞ ∞	2 -1				-18.1	-18.2	-18.2	-18.9	-18.6	-18.7	-18.6	-19.2	-18.6	-18.7
00	3				6.2	6.4	0.9	6.1	6.1	6.2	6.2	6.2	6.2	6.4
∞	4 -2				-22.5	-22.3	-22.2	-22.3	-21.9	-22.0	-21.9	-21.6	-21.7	-21.7
œ	5 1				12.6	12.6	12.6	12.7	12.4	12.5	12.4	12.3	12.3	12.5
œ	6 1				10.5	10.4	6.6	6.6	9.4	9.2	9.1	8.4		7.5
∞	7 -1				-17.4	-17.3	-17.5	-17.5	-17.6	-17.5	-17.6	-17.6	-17.7	-17.8
o	· •				-7.0	6.9-	-7.2	-7.3	4.7-	-7.3	-7.4	9.7-		-7.9
6	0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	12				-19.9	-19.9	-20.0	-20.6	-20.2	-20.1	-20.4	-20.3	-20.4	-20.6
6	2 1				14.4	14.2	14.5	14.2	14.2	14.2	14.0	14.1	13.7	13.6
6	3				10.7	11.1	11.3	11.0	11.2	11.0	11.4	11.6		11.6
6	4				-7.2	-7.1	-7.3	-7.0	-7.3	-7.4	-7.2	-7.1	-7.1	-7.2
6	'n				-7.3	-7.1	-7.5	-7.1	6.9-	-7.3	-7.4	-7.3		-7.1
6	9				9.4	9.3	9.4	9.1	9.3	9.3	0.6	9.1		0.6
6	7				9.7	9.2	7.4	9.7	7.6	7.5	2.6	7.4		7.6
6	· ••				-8.1	-8.1	-8.1	-8.0	-8.1	-8.0	-8.0	-8.0	-8.2	-8.1
6	6				2.5	2.7	2.6	2.7	2.7	2.8	2.7	2.8	2.8	2.8
10	0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10					2.7	3.3	3.3	3.2	3.0	3.0	3.0	3.3	3.0	3.2
10	2				1.3	1.4	1.3	1.0	1.3	1.3	1.2	0.0		1.5
10	3			3.2	3.1	3.0	2.8	3.0	2.9	3.1	3.2	2.8	2.8	2.8

Table 12. Schmidt Normalized Gauss Coefficients, for h, Modeled at 14 Epochs (Con.)

2 3 4 5 1991.092 1991.143 1991.404 1991.537 4 5.5 5.6 5.7 5.7 4 -3.4 -3.5 -3.5 -3.5 9 -0.8 -0.7 -0.7 -0.5 9 -0.8 -0.7 -0.7 -0.5 9 -0.8 -0.7 -0.7 -0.5 9 -0.8 -0.7 -0.7 -0.5 9 -0.8 -0.7 -0.7 -0.5 10 0.0 0.0 0.0 0.0 11 -1.6 -1.6 -1.6 -1.4 11 -1.3 -1.3 -1.4 -1.4 11 -1.1 -1.1 -1.4 -1.3 12 -1.2 -2.4 -2.3 -2.3 13 -1.3 -1.4 -1.3 -1.3 14 -2.4 -2.3 -2.3 -2.3 15 -0.6			WMD	WMD	WMD	WMD	WMD	WMD	WMD	WMD	WMD	WMD	WMD	WMD	WMD	WMD
4 554			-	2	3	4	v	9	7	∞	6	10	11	12	13	14
m 5.4 5.5 5.6 5.7 5.9 5.9 5.9 5.8			1991.053	1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992.631	1993.097	1993.371	1993.530
4 3.5 5.5 3.7 3.4 3.5	п	E	and the same of th													1
5 3.4 3.4 3.4 3.5 3.4	10	4	5.4					5.9		5.6						c.c
6 6.0	10	w	-3.4					-3.5		-3.3						-3.3
7 2.8 -2.8 -2.8 -2.9 -2.	10	9	6.0-					-0.5		-0.7						-1.0
8 2.4	10	7	-2.8					-2.7	•	-2.7						-2.6
9 -1.7 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.7 -1	2	- 00	2.4					2.3		2.5						2.5
10 -6.6 -6.9 -	9	6	-1.7					-1.6		-1.6						-1.6
0 0.0	10	10	9.9-					9.9-								9.9-
1 -0.2 0.0	=	•	0.0					0.0								0.0
2 1.0 0.9 1.0 1.1	=	_	-0.2					0.2								-0.3
3 3.1 3.2 3.2 3.3 3.3 3.3 3.3 3.4 3.5 3.3 3.4 3.5 3.3 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5	=	7	1.0					1.1								1.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1	6	-3.1													-3.0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	=	4	-1.6													-1.8
6 0.12 0.13 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.	=	v	1.7													1.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	=======================================	9	0.2													0.0
8 -2.4	Ξ	_	-1.3													-1.4
9 -0.7 -0.6 -0.6 -0.7 -0.8 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.9 10 -2.2 -2.2 -2.1 <th>=</th> <td>- 00</td> <td>-2.4</td> <td></td> <td>-2.2</td>	=	- 00	-2.4													-2.2
10 -2.2 -2.2 -2.2 -2.1 -2.2 -2.2 -	11	6	-0.7													9.0-
11 1.3 1.3 1.3 1.3 1.4 <th>=</th> <td>10</td> <td>-2.2</td> <td></td> <td>-2.2</td>	=	10	-2.2													-2.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ξ	11	1.3													1.4
1 0.7 0.6 0.5 0.0 -0.1 0.3 0.3 0.2 0.3 0.2 0.2 0.3 0.2 0.4 0.4 0.4 2 1.5 1.6 1.5 1.0 1.0 1.1	12	0	0.0													0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	-	0.7													4.0
3 0.9 0.9 0.8 1.1 1.1 0.9 1.0 1.1 1.1 1.0 1.2 1.1 1.0 1.3 1.0 1.3 1.0 4 -3.0 -3.0 -3.0 -2.9 -2.	12	7	1.5													1.3
4 -3.0 -3.0 -2.9 -2	12	ю	0.0													1.1
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	12	4	-3.0													-2.9
6 0.3 0.3 0.4 0.6 0.6 0.4 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.7 0.6 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7 0.7 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.7	17	v	0.4													0.3
7 -0.9 -0.8 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.7 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.8 -0.9 -0.9 -0.8 -0.9 -0.9 -0.6 -0.6 -0.7 -0.8 -0.7 -0.9 -0.9 -0.9 -0.9 -0.9 -0.7 -0.9 -0.7 -0.7 -0.7 -0.6 -0.7 -0	12	9	0.3													0.4
8 0.7 0.6 0.7 0.6 0.8 0.8 0.7 0.8 0.7 0.7 0.7 0.7 9 0.2 0.2 0.2 0.1 0.2 0.2 0.1	12	7	6.0-													8.0-
9 0.2 0.2 0.2 0.1 0.2	12	∞	0.7													8.0
10 -1.4 -1.3 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4	12	6	0.2													0.3
11 -0.4 -0.4 -0.4 -0.3 -0.3 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	12	10	-1.4													-1.4
12 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	12	11	4.0-		•											-0.4
	12	12	6.0													0.0

Table 13. Schmidt Normalized External Gauss Coefficients, for q, Modeled at 14 Epochs

	WMD													
	01	02	03	04	05	90	07	80	60	10	11	12	13	14
	1991.053	1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992.631	1993.097	1993.371	1993.530
ı.	ш													
-	0 17.6				12.0	14.1	14.3		14.6	11.1		•	•	
_	1 -0.9				-8.5	9.7-	-3.0		-6.4	-2.7				
7	0 1.4				-1.0	1.0	2.0		6.0	0.3				
7	1 2.6				4.0	4.2	4.6		4.0	3.2				
7	2 0.7				9.0-	9.0-	-1.6		9.0	1.5				
က	0 -5.2				-3.7	-3.7	-5.0		-5.1	-4.3				
ю	1 -2.2				6.0	0.3	0.0		-0.2	-0.9				
8	2 0.6				8.0	9.0	1.5		-0.2	0.0				
ю	3 0.2	0.3	1.1	0.7	0.5	0.4	6.0	1.3	1.7	9.0	0.7	0.0	1.7	6.0
4	0 1.8				-1.1	-0.1	-0.1		0.4	-0.2				
4	1 1.8				-2.2	-1.3	-1.1		-0.2	0.2				
4	2 -1.4				-1.1	-1.8	-1.6		-1.6	-1.1				
4	3 -0.6				0.0	-0.4	9.0-		-0.3	-0.5				
4	4 -0.1				-0.2	-0.3	0.2		0.0	0.1				
S	0 1.5				0.5	0.3	1.0		1.6	0.0				
S	1 0.3				0.5	0.3	0.5	***	0.5	0.5				
w	2 0.0				0.8	0.7	9.0		0.7	0.7				
w	3 0.6				0.3	0.3	0.3		0.0	0.4				
S.	4 0.5				0.3	0.1	0.2		8.0	9.0				
3	5 -0.4				9.0-	6.0-	-0.5	-0.3	-0.4	-0.5	-0.7	0.3		

Table 14. Schmidt Normalized External Gauss Coefficients, for s, Modeled at 14 Epochs

		WMD													
		01	02	03	04	05	90	0.7	80	60	10	11	12	13	14
		1991.053	1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992.631	1993.097	1993.371	1993.530
_ I	ш														
_	0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	-	-0.7		-0.4	-0.5	-0.5	-0.4	-0.3	-0.4	-0.5	9.0-	-0.8	-0.9	-0.8	-0.9
7	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	1	8.0-		-0.5	0.2	0.1	-0.1	-0.3	9.0-	-0.4	-0.5	-0.4	9.0-	-0.5	-0.8
7	7	0.0		0.1	0.1	0.1	0.2	0.0	0.5	0.2	0.3	0.3	0.4	0.2	0.2
3	0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	_	0.1		0.1	0.0	0.0	0.1	0.0	0.2	0.2	0.1	-0.1	-0.1	0.1	0.2
3	7	-0.2		-0.3	-0.2	-0.2	-0.2	-0.3	-0.3	-0.3	-0.3	-0.4	-0.4	-0.4	-0.3
3	е	-0.1		-0.1	0.0	-0.1	-0.1	-0.2	-0.3	-0.5	-0.3	-0.2	-0.3	-0.4	-0.9
4	0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	_	0.3		0.0	0.0	0.1	0.3	0.3	0.4	-0.2	0.2	0.2	0.0	0.3	0.2
4	7	-1.1		-0.9	-0.2	-0.4	9.0-	-0.9	-1.1	-1.0	-0.7	-0.8	-1.0	-1.2	-1.1
4	8	0.0		0.2	0.5	0.5	0.3	0.2	0.2		0.2	0.0	0.0	-0.1	0.0
4	4	-0.2		-0.3	-0.5	-0.4	-0.3	-0.2	-0.5		-0.4	-0.3	-0.3	-0.3	-0.3
S	0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
w	_	0.2		0.3	0.2	0.2	0.3	0.3	0.3		0.3	0.4	0.4	0.4	0.3
S	7	0.2		0.2	0.2	0.3	0.3	0.3	0.2	0.1	0.2	0.3	0.2	0.2	0.1
N.	<u>e</u>	0.4		0.5	0.4	0.4	0.5	9.0	9.0		0.5	9.0	0.4	0.5	9.0
w	4	0.1		-0.1	0.1	0.1	0.1	0.2	0.0		-0.1	0.1	0.1	0.1	0.1
S	v	9.0-	9.0-	-0.2	-0.5	9.0-	-0.3	9.0-	-0.8	-0.1	9.0-	-0.9	9.0-	8.0-	-0.8

Table 15. Dst Correction Coefficients, for α , Modeled at 14 Epochs

		WMD	WW DWW WW	WW	WW.	WWD		WAA	WW.	W/A/D	MAATIN TO	WANT		1	TANATA
		10	02	03	90	05	90	07	80	60	10	uww 11	12	13 13	14 14
		1991.053	1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992.631	1991.053 1991.092 1991.143 1991.404 1991.537 1991.702 1992.069 1992.364 1992.451 1992.530 1992.631 1993.097 1993.371 1993.530	1993.371	1993.530
	E														
_	0	-0.06	0.01	-0.18	-0.05	-0.02	-0.03	0.02	-0.02	-0.08	-0.01	-0.02	-0.15	-0.13	-0.06
_	1	-0.06	-0.07	-0.11	0.04	-0.01	0.02	90.0	0.05	0.05	0.02	90.0	-0.01	-0.13	0.03

Table 16. Dst Correction Coefficients, for β , Modeled at 14 Epochs

		WMD 01	WMD WMD WM 01 02 03	Ω	WMD 04	WMD 05	90	WMD 07	WMD 08	WWD 60	WMD 10	WMD 11	WMD 12	WMD 13	WMD 14
		1991.053	1991.092	1991.143	1991.404	1991.537	1991.702	1992.069	1992.364	1992.451	1992.530	1992.631	1991.053 1991.092 1991.143 1991.404 1991.537 1991.702 1992.069 1992.364 1992.451 1992.530 1992.631 1993.097 1993.371		1993.530
u	m														
1	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	1	-0.07	0.02	-0.02	0.05	0.05	0.00	0.12	0.01	0.08	90.0	-0.02	80.0	0.00	-0.02

FIGURE 20.

GEOMAGNETIC SPHERICAL-HARMONIC COEFFICIENTS \mathbf{g}_{nm} VERSUS TIME (units: $\mathbf{n}\mathbf{T}$)

(Pages 187-206)

FIGURE 21.

GEOMAGNETIC SPHERICAL-HARMONIC COEFFICIENTS \mathbf{h}_{nm} VERSUS TIME (units: nT)

(Pages 207-224)

Table 17. WMM-92.5 (optimum) Schmidt Normalized Gauss Coefficients

n	m	g _n ^m	h _n ^m	g _n	h _n
1	0	-29,728.767	0.000	18.515	0.000
1	1	-1,814.663	5,360.115	12.401	-17.993
2	0	-2,161.275	0.000	-13.612	0.000
2	1	3,069.051	-2,320.684	3.183	-15.218
2	2	1,686.907	-396.602	-0.308	-9.618
3	0	1,314.477	0.000	2.287	0.000
3	1	-2,256.676	-270.106	-6.635	3.980
3	2	1,248.229	296.252	-0.682	2.113
3	3	785.337	-385.921	-7.966	-12.161
4	0	937.376	0.000	0.166	0.000
4	1	781.347	254.624	0.390	2.288
4	2	308.423	-234.328	-6.591	1.248
4	3	-419.966	92.524	0.593	2.892
4	4	126.535	-302.970	-5.494	-1.529
5	0	-211.381	0.000	1.060	0.000
5	1	353.636	43.066	0.038	0.132
5	2	242.016	155.472	-1.069	1.134
5	3	-116.189	-150.883	-2.442	0.677
5	4	-162.449	-63.432	0.139	1.890
5	5	-28.572	102.206	2.510	0.907
6	0	66.286	0.000	0.930	0.000
6	1	65.579	-16.151	-0.027	0.639
6	2	62.534	77.571	0.958	-1.692
6	3	-174.393	70.482	1.886	-0.160
6		0.210	-53.068	-0.316	-0.69
6	1	17.505	0.937	-0.182	0.780
6		-91.402	28.656	0.455	1.94
7		78.619	0.000	0.041	0.00
7	1		-77.208	-1.000	0.55
7			-25.433	-0.625	0.23
7			0.221	0.699	0.63
7	1		20.799	0.750	-0.28
7			16.851	0.346	-0.07
7			-23.085		-0.19
7	1	}	-5.596		
8			0.000		0.00
8			13.793		
8			-18.597		

Table 17. WMM-92.5 (optimum) Schmidt Normalized Gauss Coefficients (Con.)

n	m	g _n ^m	h _n ^m	ġ _n	$\mathbf{h}_{\mathbf{n}}^{\mathbf{m}}$
			1.7		
8	3	-10.160	6.171	0.185	0.133
8	4	-14.226	-22.006	-0.676	0.36
8	5	2.213	12.478	0.056	-0.093
8	6	3.137	9.188	0.010	-1.33
8	7	-2.474	-17.539	-0.623	-0.21
8	8	-7.701	-7.340	-0.261	-0.62
9	0	2.924	0.000	0.029	0.00
9	1	7.716	-20.264	0.071	-0.17
9	2	0.549	14.070	0.069	-0.19
9	3	-10.245	11.284	0.035	0.15
9	4	9.536	-7.220	-0.066	0.10
9	5	-2.497	-7.230	-0.082	-0.16
9	6	-2.308	9.177	0.055	-0.04
9	7	6.859	7.570	0.007	-0.06
9	8	-0.415	-8.072	0.016	-0.00
9	9	-6.464	2.725	0.018	0.05
10	0	-2.975	0.000	-0.030	0.00
10	1	-3.508	3.116	-0.096	-0.05
10	2	2.903	1.288	0.031	-0.16
10	3	-4.281	2.923	0.014	0.01
10	4	-2.953	5.638	0.047	-0.00
10	5	2.676	-3.471	0.093	-0.01
10	6	2.920	-0.625	0.040	0.01
10	7	1.046	-2.616	0.127	0.10
10	8	3.958	2.425	-0.054	0.03
10	9	3.589	-1.638	-0.012	-0.00
10	10	0.569	-6.592	-0.029	0.02
11	0	1.767	0.000	0.014	0.00
11	1	-1.409	-0.101	0.072	-0.17
11	2	-3.353	1.069	0.081	0.00
11	3	1.277	-3.295	0.015	0.13
11	4	-0.668	-1.576	-0.034	-0.07
11	5	-0.200	1.640	-0.129	-0.086
11	6	-0.737	0.108	-0.004	-0.02
11	7	-0.734	-1.370	0.044	-0.033
11	8	1.365	-2.303	0.041	0.04
11	9	-0.307	-0.729	-0.021	-0.033

Table 17. WMM-92.5 (optimum) Schmidt Normalized Gauss Coefficients (Con.)

n	m	g _n ^m	h _n ^m	$\overset{\bullet}{\mathbf{g}}_{\mathrm{n}}^{\mathrm{m}}$	h _n
11	10	2.146	-2.138	-0.015	0.011
11	11	4.070	1.357	-0.045	0.038
12	0	-1.784	0.000	0.025	0.000
12	1	0.432	0.301	-0.202	-0.018
12	2	-0.039	1.162	0.024	-0.095
12	3	-0.382	1.095	0.062	0.118
12	4	0.739	-2.891	-0.011	0.042
12	5	0.358	0.349	0.072	-0.126
12	6	0.474	0.460	-0.015	-0.003
12	7	0.536	-0.764	0.058	0.034
12	8	-0.502	0.737	-0.041	0.042
12	9	0.418	0.186	0.033	0.023
12	10	0.208	-1.410	-0.001	-0.025
12	11	0.449	-0.391	0.015	-0.016
12	12	0.414	0.900	-0.063	0.000

Table 18. WMM-90 (revised) Schmidt Normalized Gauss Coefficients

n	m	g _n ^m	h _n ^m	g _n	• m h _n
					1
1	0	-29,775.1	0.0	18.6	0.0
1	1	-1,845.7	5,405.1	12.7	-17.9
2	0	-2,127.2	0.0	-13.5	0.0
2	1	3,061.1	-2,282.6	3.5	-15.3
2	2	1,687.7	-372.6	-0.4	-9.2
3	0	1,308.8	0.0	2.0	0.0
3	1	-2,240.1	-280.1	-6.7	3.8
3	2	1,249.9	291.0	-0.6	2.0
3	3	805.3	-355.5	-7.8	-12.2
4	0	937.0	0.0	0.6	0.0
4	1	780.4	248.9	0.5	2.1
4	2	324.9	-237.4	-6.8	1.3
4	3	-421.4	85.3	0.5	2.9
4	4	140.3	-299.1	-5.3	-1.4
5	0	-214.0	0.0	0.9	0.0
5	1	353.5	42.7	0.1	0.2
5	2	244.7	152.6	-1.3	1.0
5	3	-110.1	-152.6	-2.4	0.5
5	4	-162.8	-68.2	0.0	1.8
5	5	-34.8	99.9	2.3	0.9
6	0	64.0	0.0	0.9	0.0
6	1	65.6	-17.7	0.0	0.5
6	2	60.1	81.8	0.8	-1.5
6	3	-179.1	70.9	2.0	-0.3
6	4	1.0	-51.3	-0.3	-0.8
6	5	18.0	-1.0	-0.3	0.8
6	6	-92.5	23.8	0.3	1.9
7	0	78.5	0.0	-0.1	0.0
7	1	-63.6	-78.6	-0.9	0.5
7	2	3.1	-26.0	-0.6	0.3
7	3	26.6	-1.4	0.6	
7	4	1.0	21.5	1.0	
7	5	6.2	17.0	0.5	1
7	6	8.7	-22.6	0.1	
7	7	1.1	-3.8	-0.7	-0.6

Table 18. WMM-90 (revised) Schmidt Normalized Gauss Coefficients (Con.)

n	m	g ^m	h _n ^m	• m g _n	• m h _n
8	0	24.2	0.0	0.1	0.0
8	1	4.9	12.4	-0.3	0.5
8	2	-1.0	-18.0	-0.1	-0.3
8	3	-10.6	5.8	0.2	0.1
8	4	-12.5	-22.9	-0.8	0.5
8	5	2.1	12.7	0.1	-0.1
8	6	3.1	12.5	0.1	-1.1
8	7	-0.9	-17.0	-0.8	-0.4
8	8	-7.0	-5.8	-0.3	-0.6
9	0	2.9	0.0	0.0	0.0
9	1	7.5	-19.8	0.0	0.0
9	2	0.4	14.6	0.0	0.0
9	3	-10.3	10.9	0.0	0.0
9	4	9.7	-7.5	0.0	0.0
9	5	-2.3	-6.8	0.0	0.0
9	6	-2.4	9.3	0.0	0.0
9	7	6.8	7.7	0.0	0.0
9	8	-0.5	-8.1	0.0	0.0
9	9	-6.5	2.6	0.0	0.0
10	0	-2.9	0.0	0.0	0.0
10	1	-3.3	3.2	0.0	0.0
10	2	2.8	1.7	0.0	0.0
10	3	-4.3	2.9	0.0	0.0
10	4	-3.1	5.6	0.0	0.0
10	5	2.4	-3.4	0.0	0.0
10	6	2.8	-0.7	0.0	0.0
10	7	0.7	-2.9	0.0	0.0
10	8	4.1	2.3	0.0	0.0
10	9	3.6	-1.6	0.0	0.0
10	10	0.6	-6.6	0.0	0.0
11	0	1.7	0.0	0.0	0.0
11	1	-1.6	0.3	0.0	0.0
11	2	-3.6	1.0	0.0	0.0
11	3	1.2	-3.6	0.0	0.0
11	4	-0.6	-1.4	0.0	0.0

Table 18. WMM-90 (revised) Schmidt Normalized Gauss Coefficients (Con.)

n	m	g _n ^m	h _n ^m	g _n	h _n
				•	
11	5	0.1	1.9	0.0	0.0
11	6	-0.7	0.2	0.0	0.0
11	7	-0.8	-1.3	0.0	0.0
11	8	1.3	-2.4	0.0	0.0
11	9	-0.3	-0.6	0.0	0.0
11	10	2.2	-2.2	0.0	0.0
11	11	4.2	1.3	0.0	0.0
12	0	-1.8	0.0	0.0	0.0
12	1	0.9	0.3	0.0	0.0
12	2	-0.1	1.4	0.0	0.0
12	3	-0.5	0.8	0.0	0.0
12	4	0.8	-3.0	0.0	0.0
12	5	0.2	0.7	0.0	0.0
12	6	0.5	0.5	0.0	0.0
12	7	0.4	-0.8	0.0	0.0
12	8	-0.4	0.6	0.0	0.0
12	9	0.3	0.1	0.0	
12	10	0.2	-1.3	0.0	0.0
12	11	0.4	-0.4	0.0	0.0
12	12	0.6	0.9	0.0	0.0

3.1 The WMM-95 Model

Truncating the SV portion of the WMM-92.5 (optimum) model to degree and order 8 yields the WMM-92.5(A) SV model in table 4. This SV model was averaged with another degree and order 8 SV model (WMM-92.5(B) SV), which was derived independently by the BGS and which is also listed in table 4. The resulting degree and order 8 SV model was then used to adjust the full degree and order 12 WMM-92.5 (optimum) MF model coefficients forward 2.5 years to yield MF Gauss coefficients at the 1995.0 epoch. When merged with the Predictive 1997.5 SV model, which was also supplied by the BGS, the desired 1995 Epoch World Magnetic Model listed in table 3 results. The BGS method for determining the WMM-92.5(B) SV model and the Predictive 1997.5 SV model is discussed by Macmillan (1994).

An indication of the erratic nature of the geomagnetic field is provided by the wanderings of the North Geomagnetic Pole and the South Geomagnetic Pole. The movements of these poles, which are sometimes referred to as *Dip poles*, since 1945 are illustrated in charts 61 and 62. These charts are derived from the Definitive International Geomagnetic Reference Field (DGRF) models, the WMM-90 (revised) model and the WMM-95 model. The pole movements illustrate a poorly understood phenomena known as the *geomagnetic jerk* which occurred around 1970. It is more pronounced for the South Magnetic Pole movement, which exhibits a sudden change in direction at about that time. These jerks occur only a few times per century and are thought to be due to the sudden release of energy built up over a long period at the core-mantle boundary. This build-up is presumed to arise as a consequence of electromagnetic coupling between the top of the fluid core and the bottom of the lower mantle, both of which have substantial electrical conductivities. These jerks have been correlated to *irregular changes* in the *Length-of-Day*. The numerical values of the pole positions at 1-year intervals for both poles are listed in table 19.

It should be noted that roughly 90 percent of the Earth's magnetic field is contained in the degree-1 spherical-harmonic coefficients: g_1^0 , h_1^0 , and h_1^1 . These three coefficients characterize the Earth's magnetic dipole field and form the basis of the geomagnetic coordinate system, which for the 1995 epoch is illustrated in chart 63. The axis of the geomagnetic coordinate system pierces the Earth's surface at the poles of the Earth's magnetic dipole. These poles are different from the geomagnetic dip poles which are derived from the full degree and order 12 model. The location of the dipole poles is determined when the horizontal (H) component, computed from just the degree-1 spherical-harmonic coefficients, is equal to zero. The dip poles on the other hand are determined when the H component of the magnetic field, computed from the full set of degree-12 spherical-harmonic coefficients, is equal to zero. For the WMM-95 model at 1995.0, the North-magnetic dipole pole-position is located at 79.30 degrees latitude and -71.46 degrees longitude, while the South-magnetic dipole pole-position is located at -79.30 degrees latitude and +108.54 degrees longitude. The displacement vector for the eccentric (off-center) dipole for 1995.0 in the usual Earth-fixed spherical coordinate system (i.e., Z-axis is the rotation axis (positive North), X-axis points to the prime meridian, and the Y-axis is orthogonal to the other two, thereby creating a right-handed system) is 527.20 km radially outward from the Earth's center, with a colatitude of 21.43 degrees and a longitude of 144.77 degrees. The off-center dipole pole-positions are computed from the degree and order 1 and 2 spherical-harmonic Gauss coefficients.

1945-1989 DGRF MODELS 1990-1994 WMM-90 (REVISED) 1995-2000 WMM-95

Chart 61. North Magnetic Pole Movement: 1945 - 2000

1945-1989 DGRF MODELS 1990-1994 WMM-90 (REVISED) 1995-2000 WMM-95

Chart 62. South Magnetic Pole Movement: 1945 - 2000

Table 19. North and South Magnetic Pole Positions: 1945 - 2000

			Nor	th Pole	Sout	th Pole
			Latitude	Longitude	Latitude	Longitude
		Year	degrees	degrees	degrees	degrees
Γ						
	1	1945.000	73.90	-100.20	-68.15	144.42
	2	1946.000	74.05	-100.35	-68.10	144.25
	3	1947.000	74.20	-100.45	-68.05	144.08
	4	1948.000	74.35	-100.60	-68.00	143.91
	5	1949.000	74.50	-100.75	-67.94	143.71
ı	6	1950.000	74.65	-100.85	-67.89	143.53
	7	1951.000	74.75	-100.95	-67.75	143.12
	8	1952.000	74.85	-101.10	-67.62	142.72
	9	1953.000	74.95	-101.20	-67.48	142.31
	10	1954.000	75.05	-101.25	-67.34	141.90
	11	1955.000	75.20	-101.45	-67.20	141.50
l	12	1956.000	75.20	-101.35	-67.10 67.00	141.24
l	13	1957.000	75.25	-101.30	-67.00	140.99
-	14	1958.000	75.25 75.30	-101.20 101.15	-66.91 -66.81	140.75 140.50
	15	1959.000	75.30 75.30	-101.15 -101.05	-66.70	140.50
	16 17	1960.000 1961.000	75.35 75.35	-101.05	-66.63	140.21
	18	1962.000	75.45	-101.10	-66.55	139.93
	18 19	1963.000	75.45 75.50	-101.15	-66.48	139.79
	20	1964.000	75.55	-101.25	-66.41	139.67
	21	1965.000	75.60	-101.25	-66.33	139.51
	22	1966.000	75.65	-101.25	-66.27	139.48
	23	1967.000	75.70	-101.20	-66.21	139.44
	24	1968.000	75.75	-101.10	-66.15	139.41
ļ	25	1969.000	75.80	-101.05	-66.09	139.38
	26	1970.000	75.90	-101.00	-66.03	139.40
	27	1971.000	75.95	-100.90	-65.96	139.40
	28	1972.000	76.00	-100.80	-65.90	139.43
	29	1973.000	76.05	-100.70	-65.84	139.46
	30	1974.000	76.10	-100.60	-65.77	139.46
	31	1975.000	76.15	-100.65	-65.74	139.51
	32	1976.000	76.30	-100.85	-65.69	139.51
	33	1977.000	76.40	-101.05	-65.63	139.49
	34	1978.000	76.55	-101.25	-65.58	139.49
	35	1979.000	76.65	-101.45	-65.52	139.46
	36	1980.000	76.90	-101.70	-65.43	139.35
	37	1981.000	77.00	-101.90	-65.37	139.33
	38	1982.000	77.10	-102.10	-65.31	139.32
	39	1983.000	77.20 77.30	-102.30	-65.26 65.20	139.33 139.31
	40 41	1984.000 1985.000	77.30	-102.55 -102.65	-65.20 -65.15	139.31
	41	1985.000	77.45	-102.65 -102.75	-65.10	139.19
	42	1986.000	77.45 77.60	-102.75	-65.05	139.13
	44	1988.000	77.70	-103.05	-65.00	139.02
	45	1989.000	77.85	-103.45	-64.95	138.96
	46	1990.000	78.00	-103.30	-64.94	138.86
	47	1991.000	78.20	-103.65	-64.90	138.81
	48	1992.000	78.40	-104.00	-64.86	138.77
	49	1993.000	78.60	-104.35	-64.82	138.73
	50	1994.000	78.80	-104.75	-64.78	138.68
	51	1995.000	79.00	-105.10	-64.74	138.64
	52	1996.000	79.20	-105.50	-64.71	138.63
	53	1997.000	79.40	-105.95	-64.67	138.55
	54	1998.000	79.60	-106.35	-64.63	138.49
	55	1999.000	79.80	-106.80	-64.60	138.46
	56	2000.000	80.00	-107.25	-64.56	138.40

Chart 63. Geomagnetic Coordinate System: 1995.0 Epoch

A 5-degree grid of MF and SV values for seven components (X, Y, Z, H, F, D, I) of the Earth's magnetic field derived from WMM-95 are tabulated in table 20. Contours of five of these components (Z, H, F, D, I) for the MF are illustrated in charts 64 through 68, while contours of the SV for these five components are illustrated in charts 69 through 73. These charts are plotted on a corrected Mercator projection. North polar stereographic projections of contours for these same five components plus the Grid Variation are illustrated in charts 74 through 79, while corresponding SV contours of these components for the north pole are illustrated in charts 80 through 85. Similarly, for the south polar region, the main field contours are given in charts 86 through 91, while the corresponding Secular Variation contours are illustrated in charts 92 through 97. The magnetic field components contoured on both the Mercator and the polar stereographic charts were generated with respect to the 1984 World Geodetic System (WGS-84) ellipsoid at the 1995.0 Epoch for the MF and at the 1997.5 Epoch for the SV using gridded data derived from the WMM-95 model and the GEOMAG algorithm.

TABLE 20.

WMM-95 MAIN FIELD AND ANNUAL CHANGE GRID VALUES

units: $\begin{cases} MF & nT \\ SV & nT/yr \end{cases}$

(Pages 239-323)

E. Long	Lat 90	85	80	75	70	65	09	55	50	45	40	35	30	25	20	15	10	ĸ	Lat	E. Long
55	1944.9 -15.4	3308.9 -16.2	4897.1	6782.3 -17.9	8971.1 -16.8	11423.9	14079.0 -9.5	16876.3	19773.8 -1.9	22746.3 -0.4	25764.7 -0.7	28761.4	31602.4	34082.2 -5.4	35949.9 -5.6	36959.0 -4.4	36926.3 -2.4	35782.8 -0.1	33604.8	25
90	2014.2	3554.9 -15.6	5259.3 -17.1	7187.9	9349.3	11718.3	14255.3	16924.7	19706.1 -2.0	22589.2 -0.6	25549.8 -0.6	28514.7 -1.6	31335.5 -3.0	33789.3 -4.3	35610.9 -5.2	36545.8 -5.8	36409.2 -6.2	35135.7 -6.4	32810.0 -6.2	92
45	2068.2 -12.8	3785.3 -14.9	5601.2 -16.6	7567.6 -16.8	9699.4 -15.3	11988.7	14419.4	16979.0 -4.9	19666.8 -2.1	22484.3 -0.5	25409.2 0.1	28359.3 0.1	31169.8 -0.3	33600.3 -1.2	35372.3 -2.9	36225.7	35976.8 -8.5	34564.6 -11.9	32082.3	45
40	2106.4	3994.5 -14.2	5914.1 -16.0	7912.4	10014.2	12231.1	14569.5 -8.1	17038.6 -5.0	19653.9 -2.4	22426.2 -0.5	25332.1 1.1	28278.8	31084.8	33493.0 3.0	35213.9 1.0	35984.3	35622.6 -9.0	34073.6 -15.8	31437.9 -21.8	40
35	2128.6	4177.0	6190.3 -15.2	8214.9 -15.2	10288.5 -13.6	12442.6 -10.8	14704.7 -7.8	17102.0 -5.1	19663.0 -2.8	22404.2 -0.6	25299.3 1.9	28245.0 4.5	31044.9 6.7	33428.0 7.4	35097.2 5.5	35788.5 0.4	35323.8 -7.8	33652.7 -17.5	30881.7	35
30	2134.7	4328.2	6423.0	8468.7	10517.9 -12.5	12621.2 -10.0	14824.1 -7.4	17167.7	19689.2	22407.3 -0.8	25291.6	28229.4	31013.0	33363.0 11.1	34978.9	35597.9 4.3	35046.2 -5.0	33277.2 -16.9	30401.8	30
25	2124.4	4443.8	6606.4	8668.7	10698.9	12765.0	14926.7	17234.3	19728.9	22428.0 -0.8	25296.0 2.5	28212.5	30963.9 11.0	33267.9 13.6	34825.1 13.0	35376.7 8.0	34753.2 -1.5	32912.1 -14.2	29967.9 -27.7	25
20	2098.0	4520.4	6735.8	8810.6 -11.5	10828.5 -9.8	12871.9 -7.5	15010.7 -5.5	17299.9 -3.9	19779.6 -2.5	22462.9 -0.4	25307.5 2.8	28187.9 7.2	30888.8	33130.6 14.9	34619.3 15.1	35101.9 10.9	34414.3	32519.8 -10.3	29538.7 -24.4	20
15	2055.7	4555.3	6807.5 -10.1	8.90.9 -9.8	10903.4 -8.0	12938.9 -5.7	15073.0 -3.7	17360.8	19837.9 -0.8	22509.4	25325.4	28156.9 7.9	30790.6	32953.7 15.4	34360.4	34765.0 12.9	34011.0 5.3	32071.0 -6.1	29075.7 -20.0	15
10	1997.7 -1.5	4546.5	6818.9 -8.3	8906.6	10920.4 -5.9	12961.8 -3.5	15108.0 -1.3	17410.5	19896.7	22561.4 3.9	25346.3 6.5	28119.9	30673.8	32744.2	34055.1 16.5	34369.4 14.0	33540.2 7.6	31554.1 -2.5	28558.6	10
ın	1924.5 0.3	4493.2	6768.2	8855.6 -5.6	10876.3	12935.5	15108.3	17438.9	19944.1 6.1	22606.5	25359.1 10.6	28069.1 13.2	30534.7 15.6	32503.3 17.2	33709.3	33924.4 14.6	33013.1 8.9	30979.6 -0.1	27993.7 -12.3	'n
0	1836.6	4395.2	6654.9	8736.1 -3.1	10767.5	12853.9	15064.4	17433.1 8.4	19963.8 11.3	22626.1 13.9	25344.6 16.3	27986.7 18.3	30359.4 19.5	32223.0 19.7	33323.0 18.3	33440.2 15.0	32450.4 9.3	30376.4	27412.5	0
E. Long	Lat 90	82	08	75	7.0	99	09	55	50	45	40	35	30	25	20	15	10	vs	0 Lat	E. Long

E. Long	Lat 90	82	80	75	70	99	09	55	20	45	40	35	30	25	70	15	10	ĸ	0 Lat	E. Long
115	210.1	1092.9	2396.0 -18.9	4299.3	6864.7 -27.1	10025.8 -31.6	13616.6 -35.0	17428.6 -36.5	21271.2	25003.4 -32.5	28528.7 -27.5	31765.0 -21.2	34620.4 -14.4	36992.8	38792.5 -2.0	39964.9 2.5	40496.1 5.8	40396.7 8.1	39680.3 9.9	115
110	394.5 -19.7	1146.5	2320.4	4107.4	6582.7 -25.8	9692.1 -29.8	13276.6 -32.6	17127.5	21046.9	24882.4 -30.1	28525.2 -26.4	31882.5 -21.9	34852.2 -17.1	37321.6 -12.2	39188.0 -7.3	40383.8	40885.2	40700.3 7.2	39850.1 11.8	110
105	575.8 -20.1	1228.0 -17.7	2304.7	4003.6	6407.6 -24.6	9470.6	13039.6 -29.8	16907.6 -30.1	20872.5	24774.3 -26.3	28495.5 -23.4	31935.8 -20.4	34987.2 -17.5	37529.8 -14.2	39449.8 -10.4	40665.0 -5.6	41137.6 0.1	40868.4	39882.8 13.1	105
100	752.8	1338.5 -17.6	2351.6 -18.0	3991.1 -20.4	6342.0 -23.5	9362.5 -26.0	12904.4 -26.9	16764.1 -26.1	20739.4 -24.0	24666.6 -21.3	28423.4 -18.8	31906.6 -16.9	35006.0 -15.4	37597.5 -13.6	39557.9 -10.8	40788.9	41234.7	40884.7	39765.9 14.0	100
95	924.0 -20.4	1478.2	2461.2 -17.8	4068.7 -20.0	6382.8 -22.6	9361.9 -24.2	12862.2 -24.0	16685.5	20633.4 -18.9	24543.4 -15.7	28293.5 -13.3	31780.8 -12.0	34896.5 -11.4	37514.5 -10.6	39502.4 -8.7	40744.7 -5.0	41165.2	40738.9 7.7	39492.9 14.6	95
06	1088.2	1645.8 -17.6	2630.9 -17.8	4231.1 -19.7	6521.2 -21.7	9457.3 -22.5	12899.1	16656.4 -18.1	20539.3 -14.1	24391.8	28096.7 -7.8	31555.1 -6.7	34660.9	37286.5 -6.5	39289.7 -5.1	40537.0 -1.9	40930.9	40431.3	39065.5 15.4	06
88	1244.2 -20.0	1839.2 -17.5	2855.8 -17.8	4469.6	6744.8 -20.9	9633.0 -20.8	12998.3	16661.0 -14.6	20444.4	24204.6 -5.7	27833.3	31238.3	34316.0 -2.4	36935.4	38943.1 -1.4	40186.6	40548.2	39974.7 11.6	38495.4 16.4	82
80	1390.6	2055.1 -17.5	3129.1	4772.9	7038.1	9871.4 -19.4	13142.4	16685.2 -11.6	20340.7	23981.6	27512.7 0.1	30849.0 0.7	33888.0 0.3	36492.6 0.1	38495.3 1.3	39724.8 4.2	40045.1 8.6	39393.6 13.5	37804.3 17.3	08
75	1526.5 -19.0	2289.6	3442.5	5128.0 -19.1	7384.2	10154.4	13315.6	16718.8	20226.0	23730.1 -0.3	27151.0 1.6	30411.3	33407.3 1.0	35991.9 0.8	37981.6 2.0	39186.5 5.1	39455.5 9.6	38720.1 14.3	37021.8 17.7	75
70	1650.8	2537.8	3786.3 -17.8	5520.5 -18.9	7766.2	10465.1 -16.8	13504.8	16755.7 -7.6	20103.4	23463.0 0.5	26769.9 1.6	29953.0 1.1	32905.0 0.0	35466.3 -0.5	37435.8 0.8	38606.3	38814.5	37989.2 13.4	36180.8 16.8	70
59	1762.5 -17.5	2794.3	4150.3	5936.2 -18.6	8167.6	10788.3	13699.5	16793.6	19980.7	23197.6	26394.4	29504.5 -0.4	32414.0 -2.0	34949.3	36891.8	38018.5 1.5	38156.9 5.9	37235.3 10.5	35313.1 14.1	99
09	1860.8	3053.4 -16.6	4524.1	6361.2	8573.6 -17.5	11111.3	13892.6	16833.2	19867.6	22952.9	26051.4	29097.6 -1.8	31969.1	34476.6	36385.0 -4.1	37458.2 -1.7	37517.0 1.9	36490.4	34446.5 9.1	09
E. Long	Lat 90	82	08	75	70	99	09	22	50	45	40	35	30	25	20	15	10	ĸ	0 Lat	E. Long

E. Long	Lat 90	82	08	27	70	\$9	09	55	20	45	94	35	30	25	20	15	01	vo	0 Lat	E. Long
175	-1734.8 -3.8	1165.1 -11.0	4445.9	7999.5	11629.1	15099.6	18197.6 -27.8	20781.7	22805.7	24316.9 10.4	25435.7 18.3	26326.0 19.3	27161.6 13.4	28091.2	29205.0	30506.6 -19.0	31901.9 -24.0	33211.6 -23.6	34209.8 -18.9	175
170	-1619.7 -5.6	1213.6	4447.9	7983.9	11623.4	15125.4	18274.5 -30.9	20932.4	23057.2	24692.8 6.1	25944.9 14.2	26954.0 15.5	27871.2 10.3	28831.7	29924.8 -10.6	31164.1 -19.2	32470.7 -23.0	33680.7 -21.4	34579.8 -15.6	170
165	-1492.4	1238.8 -13.6	4387.0	7868.6	11492.1 -37.0	15016.5	18225.1 -33.7	20979.2 -23.8	23234.6	25027.2 1.0	26445.2 9.1	27605.2 11.2	28634.1 7.2	29650.2 -1.0	30737.5 -10.2	31916.0	33121.9 -20.0	34210.0 -17.9	34983.6	165
160	-1353.6	1243.2	4268.6	7660.8	11242.3	14778.1	18051.1 -36.0	20918.1 -27.5	23327.5 -16.0	25302.6 -4.7	26912.7 3.6	28250.7 6.9	29419.1 4.9	30516.4	31616.5	32742.1 -13.3	33843.3 -15.5	34795.9 -13.7	35425.3 -9.0	160
155	-1204.6 -10.4	1230.3 -15.5	4100.7	7371.5	10886.2	14420.7 -40.1	17758.6	20749.9	23330.2 -21.0	25506.8	27329.7 -1.8	28868.8	30201.6	31404.6	32537.5	33621.9 -7.7	34620.5 -9.7	35431.2 -9.1	35904.5 -6.5	155
150	-1046.4	1204.2 -16.1	3893.3 -22.8	7015.6	10440.7	13960.1 -40.2	17359.9 -39.4	20480.7	23242.4	25633.7 -15.9	27684.8 -6.9	29443.3 -0.3	30962.0 3.1	32292.8	33478.2 1.5	34535.3 -1.1	35437.6 -3.4	36105.6 -4.6	36415.9	150
145	-880.3	1169.9 -16.6	3658.0 -22.4	6610.6	9926.9	13417.6	16872.7	20122.7 -36.8	23069.7	25682.5 -20.8	27971.4	29962.3	31683.2	33160.2 6.3	34415.9 6.9	35460.4 5.4	36276.1 2.6	36805.0 -0.5	36950.2	145
140	-707.4	1132.8	3408.0	6176.7	9369.5	12819.0 -39.1	16320.3	19694.4	22824.4	25658.7 -25.1	28188.0	30417.2	32349.7 2.6	33985.6 8.5	35326.1 11.2	36372.4 10.8	37113.7 7.7	37511.6 3.1	37494.5	140
135	-529.2 -15.8	1098.3	3156.6	5734.8	8795.4 -33.1	12193.5 -38.0	15731.0 -40.5	19219.8 -39.9	22524.7 -35.8	25573.9 -28.6	28338.6	30803.7 -8.6	32949.1 1.3	34749.4	36184.6 13.4	37245.6 14.0	37926.1 11.1	38204.4 5.9	38032.1 0.0	135
130	-346.9 -16.9	1072.0	2917.4	5306.7 -25.8	8232.3 -31.6	11572.2	15135.8 -39.9	18727.3	22194.4	25445.7	28433.6	31124.0	33474.9 -1.5	35437.4 7.2	36971.3 12.8	38056.7 14.5	38689.2 12.4	38860.6	38543.0	130
125	-162.0 -17.8	1059.3 -17.5	2703.4 -20.0	4912.7	7707.3	10985.9 -35.1	14566.4	18246.8	21859.7	25295.1 -32.9	28487.8	31385.6 -15.5	33927.1 -5.5	36042.7	37673.4 9.4	38788.2 12.2	39382.5 11.7	39458.1 8.7	39004.2	125
120	24.1	1064.9	2526.3 -19.4	4571.7	7244.6 -28.5	10462.7	14052.0 -37.1	17806.4	21545.5	25142.8	28516.2 -27.0	31597.7 -18.8	34309.0	36562.6	38283.0 4.0	39428.0 7.8	39989.7 9.2	39976.4	39391.2 7.4	120
E. Long	Lat 90	85	08	75	70	99	09	55	20	45	40	35	30	25	20	15	10	w	0 Lat	E. Long

E. Long	Lat 90	82	08	75	70	99	09	55	20	45	40	35	30	25	20	15	10	ĸ	0 Lat	E. Long
235	-1944.9 15.4	-657.7 16.1	758.0 18.7	2517.2 22.3	4771.1 25.9	7540.2 27.7	10690.1 26.7	13971.8 22.6	17110.4	19900.1 7.0	22257.9	24216.8	25869.8	27302.0 -25.4	28545.5 -31.0	29573.7 -35.5	30327.0 -38.6	30752.0 -40.0	30832.1 -39.6	235
230	-2014.2 14.2	-514.2 13.8	1120.4	3074.7 18.0	5475.3 21.2	8325.6 23.6	11483.3 24.0	14701.3 21.6	17716.8 16.6	20343.8	22523.5 1.8	24312.3 -6.2	25823.8 -13.6	27159.1 -20.1	28362.3 -25.9	29411.2 -30.7	30241.3 -34.4	30782.0 -36.7	30990.1 -37.3	230
225	-2068.2 12.8	-349.8	1512.6 11.5	3670.2 13.3	6220.2 16.1	9146.4 18.9	12298.7 20.4	15434.6 19.8	18307.4 16.8	20755.4 11.7	22747.0 5.4	24363.5 -1.4	25738.3 -8.0	26987.0 -14.1	28162.7 -19.6	29246.5 -24.5	30167.4	30836.6 -31.8	31182.6	225
220	-2106.4 11.4	-170.8 8.9	1922.2 7.7	4286.4 8.3	6986.1 10.5	9982.9 13.5	13118.9 16.1	16158.9 17.2	18875.6 16.2	21134.8 13.1	22934.5 8.6	24382.0 3.2	25629.7 -2.4	26805.6 -7.8	27968.8 -12.9	29100.5 -17.7	30121.4	30924.3 -26.4	31409.4	220
215	-2128.6	16.5 6.4	2336.4	4905.5 3.2	7752.5	10815.0 7.7	13927.5	16863.3 13.8	19417.5 14.9	21485.4	23095.6 11.5	24381.8 7.6	25514.8	26632.5 -1.7	27797.2 -6.5	28987.1 -11.5	30112.8 -16.5	31048.2	31667.4	215
210	-2134.7 8.3	206.0 3.8	2742.2 0.0	5509.4 -1.9	8499.0	11623.0	14708.3	17538.4 10.0	19931.8 13.3	21814.0	23244.1 14.1	24381.0 11.8	25412.3 8.1	26484.6 3.6	27661.3 -1.4	28915.0 -6.7	30145.2 -12.3	31207.4 -18.0	31951.6 -23.5	210
205	-2124.4 6.7	391.6 1.3	3127.1 -3.8	6080.4	9205.1 -7.4	12387.2	15445.9 0.1	18175.7 6.0	20419.2 11.5	22131.5 15.3	23399.2 16.7	24403.4 15.6	25346.6 12.4	26382.5	27575.0 1.9	28891.5 -4.2	30219.6 -10.5	31398.3 -16.5	32255.2 -22.2	205
200	-2098.0 5.0	567.8	3479.4 -7.3	6601.6	9851.5 -13.2	13088.8 -11.0	16125.5 -5.5	18767.8	20882.3	22450.8 15.8	23583.4 19.1	24477.8	25347.2 15.8	26351.7 10.1	27556.7 3.1	28925.9	30338.1 -11.1	31616.9 -17.0	32570.9 -22.1	200
195	-2055.7 3.2	729.5	3788.6 -10.6	7057.5 -16.2	10419.8 -18.6	13709.9 -16.8	16733.1 -10.8	19307.7 -1.9	21323.2 7.9	22784.8 16.2	23819.3	24633.5 21.6	25446.3 17.9	26421.8 10.9	27629.2 2.3	29032.8 -6.3	30506.2 -13.5	31861.9 -18.9	32891.6 -22.6	195
190	-1997.7 1.5	872.8 -5.6	4045.7 -13.5	7434.7 -20.2	10893.7 -23.5	14234.3 -22.1	17255.4 -15.7	19787.8 -5.6	21742.0 6.0	23142.0 16.1	24123.4 22.3	24894.0 23.1	25671.0 18.7	26620.3 10.2	27816.8 0.0	29230.2 -9.7	30734.7 -17.0	32136.0 -21.4	33213.2 -23.0	190
185	-1924.5 -0.3	994.3 -7.6	4243.8	7722.2	11259.7 -27.7	14647.8 -26.8	17680.5	20199.8 -9.1	22134.9 3.8	23523.2 15.3	24501.5 22.4	25269.7 23.3	26036.2 18.1	26965.5 8.3	28138.8	29535.6 -13.6	31036.5 -20.5	32446.3 -23.4	33536.0 -22.7	185
180	-1836.6	1092.1 -9.4	4377.9	7912.0 -26.4	11507.1 -31.2	14938.9	17997.6	20534.4	22493.6 1.1	23920.2 13.4	24945.6 21.1	25754.2 22.0	26539.6 16.2	27460.4 5.6	28603.6	29960.7 -16.9	31423.5	32801.9 -24.2	33865.2 -21.3	180
E. Long	Lat 90	82	08	75	70	5 9	09	55	50	45	40	35	30	25	20	15	10	v.	0 Lat	E. Long

E. Long	Lat 90	\$	08	75	70	\$9	09	22	20	45	40	35	30	25	20	15	10	w	0 Lat	E. Long
295	-210.1 19.2	507.8 23.8	1334.6 30.5	2503.7 38.2	4159.2 45.2	6328.6 50.3	8925.8 52.6	11783.6 52.0	14703.5	17502.7 44.2	20041.8 38.2	22230.6 31.1	24023.0 22.5	25408.6 12.1	26404.7 -0.7	27045.1 -15.4	27361.5 -31.1	27367.8 -46.2	27057.5 -58.6	295
290	-394.5	200.2	919.0 31.9	2003.0 39.8	3603.4 46.7	5752.1 51.1	8362.1 52.4	11260.3 50.4	14240.4 45.5	17113.6 38.5	19737.8 30.2	22022.1 21.0	23917.9 10.7	25408.8 -0.6	26505.2 -13.1	27236.6 -26.2	27637.3 -39.2	27728.7 -50.5	27511.0 -58.8	290
285	-575.8 20.1	-77.7 25.5	554.6 32.9	1570.6 40.8	3129.5 47.4	5268.8 51.1	7901.4	10848.8	13896.6	16848.9 31.5	19560.2 21.2	21939.0 10.2	23935.2	25528.1 -12.4	26720.6 -23.8	27535.9 -34.7	28007.2	28160.9 -52.1	28004.9	285
280	-752.8 20.3	-321.2 25.9	250.4 33.5	1219.8	2755.2 47.4	4899.9 50.2	7567.0 48.9	10572.2 43.4	13691.9 34.5	16722.2 23.6	19513.8 11.7	21975.7 -0.3	24059.4 -11.7	25742.7 -22.3	27022.4 -31.9	27913.4 -40.2	28443 -46.8	28639,9 -51.1	28517.4 -52.8	280
275	-924.0 20.4	-526.2 26.0	13.7	961.5 41.3	2494.6 46.9	4661.8 48.7	7375.9 46.0	10445.6 38.8	13637.0 28.2	16737.2 15.7	19593.8 2.7	22118.7 -9.6	24269.2 -20.5	26025.1 -29.7	27378.4	28334.0 -42.8	28910.1 -46.5	29131.0 -48.2	29016.6 -48.0	275
270	-1088.2 20.3	-689.8 25.8	-150.1 33.3	803.8 40.6	2357.6 45.7	4565.1 46.7	7337.3 42.8	10474.7 34.2	13731.9	16887.3 8.6	19786.8 -4.9	22348.5	24539.0 -27.0	26343.9 -34.6	27752.2 -39.9	28757.5	29365.4 -44.7	29593.9 -44.7	29467.9 -43.3	270
265	-1244.2 20.0	-810.2 25.3	-237.6 32.5	751.5 39.5	2349.6 44.1	4613.9 44.4	7452.3 39.7	10655.8 30.2	13967.3 17.3	17157.3 3.2	20072.3 -10.4	22639.9 -22.0	24839.6	26665.8	28106.0	29142.9 -42.4	29767.9 -42.6	29991.6 -41.6	29843.5 -39.7	265
260	-1390.6	-886.5 24.5	-247.5	806.3 37.8	2471.5	4806.6 42.0	7714.8 36.9	10977.0 27.0	14325.3 13.9	17524.4	20424.2 -13.5	22964.5 -24.5	25140.7 -32.6	26958.0	28405.0 -40.5	29454.8 -41.5	30085.4	30299.7 -39.8	30130.8 -37.8	260
255	-1526.5 19.0	-919.1 23.3	-180.7 29.5	966.4 35.6	2719.5 39.6	5135.8 39.6	8112.3 34.5	11420.3 24.9	14782.8	17961.8	20813.7	23293.1 -24.7	25412.9 -32.3	27191.8	28621.7 -39.7	29669.2 -40.8	30301.0 -40.6	30511.8 -39.5	30336.0 -37.6	255
250	-1650.8 18.3	-909.5 21.9	-40.6 27.3	1226.7 33.0	3085.9 36.8	5589.7 37.0	8628.1 32.5	11963.8	15313.9 11.9	18441.3	21212.4	23598.8	25632.2 -30.4	27346.5	28740.2	29776.9 -40.4	30414.5 -41.0	30638.8	30480.6 -38.6	250
245	-1762.5 17.5	-860.2 20.2	167.8 24.8	1579.4 29.9	3559.6 33.6	6153.4 34.3	9243.1 30.8	12584.5	15893.1 12.8	18937.1 1.2	21596.3	23861.0 -19.7	25783.0 -27.4	27412.7 -33.1	28758.1 -37.2	29783.7 -39.9	30440.4	30703.3	30594.0 -39.8	245
240	-1860.8 16.5	-774.8 18.3	436.9 21.9	2013.8 26.3	4126.7 30.0	6809.7 31.2	9937.0 28.9	13260.5	16498.0 14.2	19428.3	21948.0	24067.9 -15.6	25860.5	27393.3 -29.8	28686.2	29707.4 -38.5	30402.1 -40.8	30732.6	30704.2 -40,4	240
E. Long	Lat 90	82	80	75	70	99	09	55	50	45	40	35	30	25	20	15	10	νn	0 Lat	E. Long

E. Long	Lat 90	\$2	08	57	70	\$9	09	55	20	45	40	35	30	25	20	15	10	ĸ	0 Lat	E. Long
355	1734.8 3.8	4253.4	6479.5 -1.6	8547.6 -0.4	10591.0 2.3	12710.9 5.8	14966.6	17379.4	19938.3 17.0	22599.6 20.4	25280.2 23.1	27849.9 24.7	30127.3 24.9	31887.8 23.5	32889.8 20.5	32923.2 15.9	31873.6	29780.5 0.3	26859.5	355
350	1619.7 5.6	4069.3	6243.7 1.0	8290.1 2.6	10344.4 5.7	12500.7	14805.5 13.8	17264.9 18.3	19851.7 22.8	22508.6	25146.1 30.1	27638.3 31.7	29818.5	31480.6 28.5	32398.6 23.8	32372.9 17.3	31297.3 9.1	29222.3	26377.5 -13.3	350
345	1492.4	3845.8	5950.3	7965.2 5.9	10026.5	12218.9	14573.9 18.2	17079.9	19692.7	22341.0 33.1	24930.0 36.8	27339.7 38.5	29420.4 37.7	30988.2	31837.6	31782.6 19.6	30724.5	28718.1 -2.8	25995.3 -16.4	345
340	1353.6	3586.1 6.3	5603.5 6.7	7.575.7 9.3	9637.6 13.1	11862.9	14266.6	16818.1	19454.8 33.1	22091.8 38.3	24628.7 42.4	26952.1 44.6	28930.5 43.9	30406.0	31199.3	31144.0 22.5	30150.0 9.9	28269.8	25724.0 -20.0	340
335	1204.6 10.4	3294.4 8.6	5208.5 9.6	7126.1 12.8	9179.8	11432.5	13881.5 26.8	16476.6 31.9	19136.4	21761.8	24246.3 46.8	26482.4 49.4	28356.9 49.1	29740.7 45.2	30487.0 37.3	30455.8	29569.1 11.0	27872.2	25560.5 -23.6	335
330	1046.4 11.9	2975.9 10.9	4772.1	6622.6	8658.0	10930.1 26.1	13419.4 30.9	16055.8 35.7	18739.0	21355.1 45.5	23791.2 49.9	25943.8 52.8	27717.4 53.0	29012.9 49.3	29720.5 41.1	29733.2 28.3	28989.2 11.8	27523.2 -7.3	25494.7 -27.4	330
325	880.3 13.3	2636.0	4302.1 15.7	6073.4 20.1	8079.0 25.3	10361.2 30.4	12884.5 35.1	15559.4 39.3	18266.7 43.5	20878.4	23274.5 51.8	25354.6	27038.6 55.2	28256.7 51.7	28937.6	29011.0 29.7	28434.0	27229.8 -9.5	25515.8 -31.4	325
320	707.4 14.6	2280.7 15.3	3807.4 18.6	5488.7 23.7	7453.1	9735.0 34.7	12284.8 39.1	14994.6 42.8	17727.4	20341.7	22711.0 52.7	24737.3	26353.7 55.4	27516.3 51.9	28189.6	28338.9	27940.6	27007.6	25614.5 -35.9	320
315	529.2 15.8	1916.7	3298.0 21.5	4880.5	6793.1 33.4	9064.5 38.8	11632.8	14373.8	17134.0	19760.0	22120.3	24119.1 54.1	25700.0 53.5	26839.4	27530.6 39.9	27769.0 25.0	27548.6	26874.2	25783.5 -41.0	315
310	346.9 16.9	1550.6	2784.7	4262.4 30.5	6114.6	8366.4 42.6	10946.2 46.5	13715.4	16506.0 50.1	19155.0	21527.6	23530.3	25114.0 49.2	26268.2	27005.4	27342.6 17.9	27288.0	26842.3	26016.2	310
305	162.0	1189.3	2278.6	3649.6 33.5	5435.9 40.3	7661.6	10247.7	13043.8 51.0	15869.9	18555.2	20962.9	23001.7	24626.6	25832.4 35.3	26640.8	27081.2	27172.6	26916.3	26307.7	305
300	-24.1 18.6	839.5	1791.5	3057.9 36.1	4777.0	6973.7 48.5	9564.4	12389.0 52.1	15257.7	17993.3	20457.9	39.7	24259.3	25546.0 24.4	26443.6	26986.4	27201.0	27093.7	26655.2	300
E. Long	Lat 90	82	08	75	70	99	09	55	90	45	40	35	30	25	20	15	10	٧n	0 Lat	E. Long

E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	59-	-70	-75	-80	-85	06-	Lat	E. Long
55	33604.8	30616.8	27158.7	23621.2	20362.8	17633.5	15534.1	14025.1	12977.0	12235.1	11665.9	11171.3	10672.4	10085.7	9307.9	8219.3	6704.7	4684.3	2146.8		55
90	32810.0 -6.2	29671.7	26085.2	22472.6	19221.4	16597.5	14696.3	13453.4	12705.4	12268.0	11990.0	11765.3	11510.8	11135.6	10526.7	9557.0	8110.5	6112.2	3557.0 2.0		20
45	32082.3	28783.9	25057.0	21353.5	18090.3	15549.7	13823.6	12825.2	12360.1	12215.9	12223.4	12267.4	12258.8	12098.8	11665.4	10825.0	9460.4	7499.7 3.1	4940.2		45
40	31437.9	27981.8	24113.2	20310.8	17017.6	14532.4	12946.4	12156.4	11943.1	12070.7	12352.8 -30.0	12662.8	12902.1	12962.0 -27.5	12711.4	12011.2	10743.1 0.4	8835.8 4.9	6285.7 5.3		40
35	30881.7	27286.7	23290.8	19393.5 -32.9	16058.9	13600.1	12111.1	11480.5	11474.6	11841.1	12379.0 -25.2	12947.9	13434.9	13718.4	13657.2	13107.3	11949.1	10110.3	7583.5 6.9		35
30	30401.8 -28.7	26701.8	22609.6	18637.4	15262.2 -36.8	12806.9	11371.1	10844.5	10991.0 -16.6	11552.8	12318.4	13131.8	13861.4	14368.4	14500.2	14108.1	13071.0	11314.0	8823.5 8.5		30
25	29967.9 -27.7	26206.2 -39.3	22063.0	18053.2	14655.3 -45.5	12194.5 -38.9	10776.1	10299.4 -24.9	10539.5 -20.9	11245.1	12200.9 -19.6	13235.3 -19.5	14194.7	14919.2	15242.9	15012.0	14103.6 5.6	12438.8	9996.3		25
20	29538.7 -24.4	25760.4	21620.2	17624.7	14240.5 -52.5	11784.0	10362.5	9891.2	10168.9	10963.6 -22.8	12064.7 -19.6	13287.7 -16.9	14455.2 -13.8	15383.7	15892.0 -4.1	15820.3 1.7	15043.4 6.8	13477.7	11093.1		20
15	29075.7 -20.0	25321.6	21240.0 -46.3	17319.6 -54.5	14000.0	11575.2 -56.6	10147.9	9652.3 -43.8	9920.3	10751.8 -27.9	11950.0	13322.2 -16.0	14667.9	15778.9 -6.6	16457.6 -1.8	16537.0 3.1	15888.9	14424.7 11.0	12105.4 12.8		15
10	28558.6 -15.6	24861.6	20889.5	17104.5	13905.8 -62.0	11551.2	10130.7 -61.1	9596.4	9820.6	10643.8	11892.3	13371.0 -16.8	14859.0	16124.1	16951.9 -0.4	17167.6 3.9	16639.6 8.0	15274.6 11.6	13025.6 14.0		10
ĸ	27993.7 -12.3	24379.0 -26.6	20557.0	16958.1 -55.1	13930.9	11686.1	10293.1 -70.0	9719.3	9879.2	10660.4	11918.4	13461.7	15053.2 -10.9	16438.9	17388.3	17719.1 4.0	17296.4 8.0	16023.3 11.9	13846.7 15.1		vo
0	27412.5	23899,9	20255.9	16876.7	14056.2	11952.0 -76.0	10607.5	10001.8	10090.5	10808.8	12045.1	13615.8 -23.1	15271.9	16741.5	17780.0	18198.6	17860.7 7.6	16667.4	14562.4 16.1		0
E. Long	Lat 0	κċ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	-80	-8. S.	-90 Lat		E. Long

E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	08-	-82	-90 Lat	İ	E. Long
115	39680.3 9.9	38355.9 11.7	36440.8 13.7	33982.6 15.6	31070.5 17.0	27823.6 17.0	24361.9 14.9	20777.5 10.3	17123.8 3.4	13428.5 -5.0	9720.6	6055.7 -21.7	2522.3	-775.9 -31.4	-3756.4	-6396.3 -31.8	-8748.7 -28.9	-10921.5 -23.9	-13020.5		115
110	39850.1 11.8	38359.6 16.0	36266.5 19.3	33638.5 21.3	30581.7 21.4	27228.4 19.2	23708.9 14.6	20122.7 7.7	16526.6	12944.9	9397.6	5926.5 -25.0	2605.9	-474.1	-3244.9	-5700.0 -30.9	-7911.3 -27.6	-10005.2 -22.6	-12099.7 -15.9		110
105	39882.8 13.1	38221.9 18.8	35947.1 22.9	33150.6 24.5	29959.3 23.2	26520.4 18.9	22974.1 12.1	19425.0 3.5	15929.7 -5.9	12506.0	9160.3	5917.7	2834.5	-15.1 -33.1	-2577.0	-4858.9 -29.8	-6947.8 -26.1	-8982.5	-11086.8		105
100	39765.9 14.0	37936.0 20.1	35483.2 24.0	32528.8 24.7	29223.3 21.9	25729.1 15.9	22193.7 7.4	18722.9 -2.3	15368.9	12139.9 -20.8	9027.6	6038.3	3209.2 -34.1	596.8	-1759.9	-3882.1 -28.6	-5867.6 -24.4	-7862.1 -19.4	-9989.6 -13.6		100
95	39492.9 14.6	37502.1 20.2	34884.1 23.0	31792.1 22.3	28401.6 18.0	24888.8 10.5	21404.8	18051.7 -9.2	14873.8 -18.9	11867.8	9010.6	6290.3	3724.8 -36.3	1352.0 -34.8	-805.7	-2781.9	-4682.4	-6654.1	-8816.3		98
06	39065.5 15.4	36926.8 19.7	34163.3 20.9	30960.8 18.5	27519.5 12.6	24027.2 4.0	20634.2 -6.2	17434.5 -16.5	14461.2	11699.0	9110.5	6667.8 -39.4	4369.9	2235.5 -35.8	269.6	-1573.8	-3405.5 -20.7	-5369.7 -15.6	-7575.9 -11.0		96
\$	38495.4 16.4	36222.8 19.1	33335.7 18.6	30052.0 14.6	26594.4 7.3	23159.6 -2.3	19893.5	16878.2	14133.1	11629.9	9318.7	7157.4	5127.5	3228.2 -36.9	1446.5	-275.7	-2052.3	-4021.0	-6277.9		88
08	37804.3 17.3	35409.8 18.8	32418.8 17.0	29079.3 11.7	25635.1 3.4	22289.0	19180.1	16375.7	13878.8	11647.0	9619.1 -46.2	7740.1	5976.2 -43.4	4307.4	2702.7	1092.1	-639.4	-2620.5 -11.5	-4932.1		80
75	37021.8 17.7	34513.4 18.6	31432.5	28055.1 10.2	24644.9	21410.4 -9.0	18482.3 -20.0	15910.8 -30.5	13679.7	11730.6	9990.2	8393.0 -49.0	6891.2 -45.5	5447.7	4013.9	2508.4	815.7	-1181.8	-3548.8		75
70	36180.8 16.8	33562.0	30397.2	26990.1 9.8	23624.2 1.5	20515.0	17784.7	15464.0	13514.0	11857.3	10407.8	9090.5	7846.3	6622.7	5354.9	3950.8	2295.3	281.7	-2138.4		70
59	35313.1 14.1	32581.5	29330.7	25892.1 9.5	22571.4	19592.8 -6.5	17070.8	15014.4	13358.1	12002.0	10845.6	9805.3	8813.6	7805.1	6700.4	5397.5	3781.4	1756.1	-711.8		\$9
09	34446.5	31593.6	28246.9	24766.7	21483.8	18634.0	16324.6	14541.1	13187.4	12137.4	11274.9	10508.7	9764.8	8967.9	8025.7	6826.9	5256.7	3228.1	720.3		09
E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	40	\$	-50	-55	09-	-65	-70	-75	08-	5S	06-	Lat	E. Long

E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	59-	-70	-75	-80	-85	06-	Lat	E. Long
175	34209.8 -18.9	34680.5	34473.9	33543.0 -4.6	31946.2	29819.7	27328.9	24619.4	21780.6	18829.1	15713.0 -12.0	12338.8	8617.8	4524.8	146.0	-4307.6	-8538.1 -21.5	-12237.4	-15167.3	-17.0	175
170	34579.8 -15.6	34958.4	34667.4	33655.8	31976.9	29762.7	27177.6	24369.0	21428.3	18373.8	15156.2	11688.5	7893.8	3760.3	-616.8	-5027.9 -22.1	-9187.0 -23.6	-12803.8	-15656.7	-17.8	170
165	34983.6	35245.3	34851.0 0.5	33748.1	31984.4	29686.1 -0.5	27013.9	24113.4	21075.2	17917.8	14596.0	11033.2	7168.8	3007.9	-1344.9	-5684.7	-9744.2	-13258.1	-16027.0	-18.4	165
160	35425.3 -9.0	35551.2 -3.3	35038.2 1.4	33834.1 3.9	31982.0 3.7	29601.6	26847.9	23861.4	20729.2	17468.9	14041.0	10382.6	6453.9	2279.7	-2026.4	-6267.8	-10201.7 -27.3	-13594.9	-16275.3	-18.9	160
155	35904.5 -6.5	35880.5	35235.6 0.4	33920.7	31975.8 3.1	29514.3 2.6	26683.6	23616.5 0.7	20393.7 -0.1	17031.4	13497.0 -3.4	9745.5	5760.8 -12.5	1589.2	-2647.9	-6765.9	-10551.8 -28.7	-13810.0 -25.6	-16399.8	-19.3	155
150	36415.9 -4.6	36231.5 -3.6	35443.4 -2.0	34008.5	31965.8 1.2	29423.3	26519.5	23376.6	20067.0	16605.1	12967.5	9129.6	5101.6	950.8 -20.6	-3195.2 -26.4	-7167.4 -29.8	-10786.9	-13899.5	-16399.4	c.41-	150
145	36950.2	36598.7	35658.3	34094.8 -3.5	31949.0 -1.0	29324.4 2.1	26349.6 4.8	23134.8 6.5	19742.5	16186.1	12453.3 -1.0	8542.0	4488.4	380.0	-3653.1 -28.1	-7460.5	-10899.8 -30.7	-13860.8 -26.8	-16274.2	c.41-	145
140	37494.5 -1.7	36973.4 -5.3	35874.7 -6.8	34175.7	31921.2	29211.0 2.0	26164.5 6.1	22879.3 8.6	19408.9 8.3	15766.9 5.1	11953.6 -1.0	7989.0	3934.1 -17.0	-107.7 -24.3	-4006.7	-7633.6 -32.1	-10884.1	-13692.1 -27.0	-16025.2	F.CI-	140
135	38032.1 0.0	37343.6	36084.4	34244.5 -5.8	31874.5	29072.6 3.0	25949.8 7.6	22593.8 10.1	19051.3 9.3	15338.0 5.1	11466.8	7477.8	3451.7 -18.9	-496.4 -26.1	-4241.4 -30.8	-7676.2 -32.7	-10734.4	-13392.8 -26.9	-15654.2		135
130	38543.0 2.2	37692.2 -2.3	36272.5 -4.3	34287.2	31793.9	28891.0 5.3	25685.3	22258.1 11.1	18653.4 9.3	14890.4	10993.2	7016.8	3055.3 -21.1	-770.8 -27.7	-4343.7 -31.8	-7579.5 -33.0	-10447.1 -31.2	-12963.5 -26.5	-15164.0		130
125	39004.2 4.8	37996.0 1.6	36415.4 0.5	34279.4 1.9	31653.8	28640.6	25346.2 11.6	21851.5 11.6	18201.3 8.3	14419.3	10536.8 -6.5	6616.7	2758.9 -23.3	-916.6 -29.1	-4302.3 -32.4	-7336.3 -32.9	-10020.0 -30.8	-12406.0 -25.9	-14558.5		125
120	39391.2 7.4	38226.7	36482.1 7.0	34188.7	31422.5	28292.2	24909.3	21358.7	17689.1	13927.6	10107.3	6291.1 -18.4	2576.8 -25.5	-921.5	-4108.3	-6942.4	-9453.1 -30.0	-11723.8 -25.0	-13842.2		120
E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	-80	-85	06-	Lat	E. Long

E. Long	Lat 0	ń	-10	-15	-20	-25	-30	-35	40	45	-50	-55	09-	-65	-70	-75	08-	-85	06-	Lat	E. Long
235	30832.1 -39.6	30596.0	30103.6 -34.6	29417.8 -31.9	28577.0 -30.6	27583.7 -31.3	26417.0 -33.9	25057.9 -37.2	23511.9	21807.1	19968.3 -34.5	17983.4 -26.5	15791.7 -16.4	13309.9	10488.0	7362.0	4071.4	828.0	-2146.8	1	235
230	30990.1 -37.3	30866.4 -36.4	30450.7 -34.6	29798.6 -32.9	28952.7 -32.2	27925.6	26703.0 -35.7	25267.0 -38.8	23619.3 -40.8	21784.0 -40.1	19785.1 -35.6	17615.2 -27.6	15222.8	12537.3 -7.5	9523.4 -0.2	6230.9	2808.7	-527.5 0.3	-3557.0	0.7	230
225	31182.6 -33.8	31175.2 -34.6	30830.6 -34.5	30195.8 -34.2	29320.6 -34.6	28233.0 -36.0	26933.8 -38.4	25412.4 -41.0	23668.8	21720.2	19584.0	17250.4	14672.2	11789.8	8583.4	5120.3 1.9	1563.5	-1863.8 -1.3	-4940.2	0 °°,	225
220	31409.4 -29.8	31515.4 -32.4	31233.7 -34.3	30602.0 -35.7	29677.7 -37.2	28508.1 -39.0	27114.4	25498.7 -43.0	23662.0 -43.5	21613.5 -41.5	19359.5 -36.3	16882.4	14134.3	11064.3	7668.9	4034.9	343.4 -0.4	-3171.6 -3.0	-6285.7	ç	220
215	31667.4 -26.2	31879.4	31651.8 -33.9	31012.4 -36.8	30025.5 -39.2	28758.3 -41.4	27255.5 -43.2	25535.8	23604.6	21463.7 -40.9	19106.3 -35.4	16502.7 -27.6	13600.8 -18.6	10355.2 -10.3	6778.1	2977.5 -1.7	-845.1 -2.3	-4441.7	-7583.5	6.9	215
210	31951.6 -23.5	32260.0 -28.6	32078.4 -33.2	31424.0 -36.9	30366.5 -40.0	28991.7 -42.4	27368.3	25534.4	23503.2 -42.8	21271.6	18819.3	16102.7 -26.0	13061.9	9654.9	5907.8 -5.7	1949.8	-1995.7 -4.5	-5665.1 -6.8	-8823.5	o o	210
205	32255.2	32649.4	32506.2 -31.9	31832.2 -35.9	30700.3 -39.1	29212.4	27460.0	25502.3 -42.5	23363.3	21037.9	18494.3	15674.1	12508.2	8955.3 -10.9	5053.7 -7.1	952.6 -5.9	-3103.1	-6833.2	-9996.3	-10.0	205
200	32570.9 -22.1	33037.8 -26.3	32924.8 -30.0	32227.6 -33.3	31020.0 -36.2	29416.9 -38.4	27530.8 -39.6	25441.8	23187.1	20762.9	18127.8	15210.5	11931.6	8249.4	4212.0	-13.4	-4161.8	-7937.7 -10.8	-11093.1	-11.4	200
195	32891.6 -22.6	33414.5 -25.0	33320.7 -27.0	32595.5 -29.1	31311.8	29594.5	27574.0	25350.3 -35.1	22974.6	20446.6	17718.6	14707.9 -18.5	11326.5	7531.5 -10.9	3379.4 -9.9	-947.4 -10.5	-5166.9	-8970.5 -12.9	-12105.4	-12.8	195
190	33213.2 -23.0	33769.3	33679.6 -23.0	32919.3	31559.0 -25.4	29730.7	27579.7 -29.7	25222.8	22724.8	20090.2	17267.4	14165.5 -15.9	10690.2	6798.7	2554.7	-1847.4	-6112.9	-9924.2 -14.9	-13025.6	-14.0	190
185	33536.0 -22.7	34096.7	33991.3 -18.0	33186.0 -17.3	31748.2	29814.2	27540.0 -24.0	25056.2 -25.3	22438.8	19697.1	16778.0	13585.8	10023.7	6050.9	1738.4	-2710.6	-6994.2	-10791.1 -16.9	-13846.7	-15.1	185
180	33865.2 -21.3	34397.6	34253.6	33391.5	31875.0	29841.6	27454.0	24852.4	22121.1	19273.7	16256.9	12974.3	9330.7	5291.1	933.7	-3532.7	-7804.8 -19.2	-11564.4	-14562.4	-16.1	180
E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	-45	-50	3 5-	09-	-65	-70	-75	08-	-85	06-	Lat	E. Long

E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	\$	-50	-55	09-	-65	-70	-75	-80	-85	9) te I	E. Long
295	27057.5	26422.5	25484.3	24318.7	23057.1	21861.0	20882.8	20231.4	19951.6	20014.5	20314.5	20674.7	20871.8	20688.8	19981,4	18729.5	17038.3	15082.6	13020.5	16.8	295
290	27511.0 -58.8	26975.8	26134.2	25046.0	23828.2	22636.3	21626.2	20915.3	20555.4	20519.6 -50.2	20699.2	20913.4	20938.4	20561.3	19648.0	18193.6	16322.9	14232.5	12099.7	15.9	290
285	28004.9	27534.4	26756.2 -56.6	25718.4	24525.2	23323.7	22270.3	21488.3	21036.6	20891.3	20943.2	21009.0	20864.9	20302.6	19196.5 -23.1	17554.2	15515.9 -2.3	13295.5	11086.8	14.8	285
280	28517.4 -52.8	28078.0 -52.1	27330.8 -49.5	26318.5	25134.6	23917.0	22817.5	21961.2	21410.9	21146.7	21060.8	20971.5	20657.6	19916.3 -27.4	18629.9	16814.9	14622.0	12277.8	9.6866	13.6	280
275	29016.6	28579.7 -46.1	27837.3	26833.1	25653.0	24423.2	23285.0	22358.3	21706.3	21312.7	21075.4	20819.1	20329.9	19412.5	17955.8	15982.0	13647.5	11186.3	8816.3	12.4	275
270	29467.9 -43.3	29013.5 -41.0	28261.3 -38.5	27260.2	26090.3	24862.2	23700.1	22711.3	21955.4	21420.4	21014.5	20575.0	19900.7	18805.9	17185.8 -10.0	15064.8	12600.1 1.9	10028.8	7575.9	11.0	270
265	29843.5	29364.3 -37.4	28601.1	27610.9 -34.1	26466.9	25260.6 -35.3	24092.2	23050.5 -39.1	22187.7 -39.7	21497.9	20904,4	20263.6 -28.1	19391.7	18115.4	16335.0 -6.2	14074.7 -0.9	11488.9	8813.5	6277.9	9.6	265
260	30130.8	29633.3 -35.6	28870.7 -33.7	27907.4 -32.7	26808.7	25643.8	24484.3	23396.0	22422.4	21565.0 -37.6	20766.6	19907.7 -25.9	18825.8	17361.4	15420.3	13024.9 1.4	10323.9 4.1	7549.3 5.9	4932.1	8.0	260
255	30336.0	29838.5 -35.4	29095.7 -33.2	28177.4 -32.0	27140.1 -32.1	26029.1	24886.6	23754.0 -38.4	22665.5	21631.3	20615.9	19526.6 -24.6	18224.4 -15.8	16565.0 -7.3	14459.9 -0.8	11929.3	9115.9	6245.5 5.4	3548.8	6.4	255
250	30480.6	30009.1	29307.4 -33.4	28448.1	27478.4	26422.8	25296.1 -34.9	24117.1	22911.2	21696.7	20460.1	19135.2	17606.6	15746.0 -6.0	13471.5 0.7	10802.3	7875.8 5.2	4911.5	2138.4	8.	250
245	30594.0 -39.8	30176.8 -37.1	29534.8 -33.9	28739.7 -31.3	27832.0 -30.2	26820.7 -31.2	25699.5	24468.5	23145.1	21754.5	20301.5	18744.0	16988.3	14921.8	12471.2	9657.5 4.9	6614.6	3557.4 3.9	711.8	3.1	245
240	30704.2	30367.5	29797.5 -34.3	29062.7	28200.4	27212.0 -30.7	26078.8	24788.0	23350.4	21794.6	20138.8	18359.3	16381.0 -15.4	14106.5	11473.1	8507.1 4.8	5343.2	2192.9	-720.3	1.5	240
E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09	-65	-70	-75	-80	-85	06-	Lat	E. Long

E. Long	Lat 0	٠¢	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	98-	-85	-90 Lat	E. Long
355	26859.5	23467.8 -25.4	20017.7 -41.2	16872.6 -57.2	14273.0 -71.1	12324.9 -80.5	11044.0 -83.8	10418.0 -80.2	10438.8 -70.6	11086.2	12280.3	13847.5 -28.1	15531.8 -17.0	17047.2	18138.6 -3.1	18612.9 1.8	18334.0 6.8	17204.4	15167.3 17.0	355
350	26377.5	23128.9 -27.7	19881.3	16967.8 -59.8	14583.0 -74.1	12788.7 -84.3	11577.2 -88.4	10942.2 -85.7	10905.8 -76.7	11484.4	12625.4	14165.5 -33.8	15844.7 -22.0	17368.0	18473.7	18967.9	18718.1	17632.3 11.9	15656.7 17.8	350
345	25995.3 -16.4	22919.2 -31.5	19880.6 -47.6	17185.9 -63.5	14994.5 -77.3	13336.9 -87.2	12190.6 -91.5	11555.5 -89.3	11475.6	11994.3	13078.6 -54.2	14573.4	16217.5 -27.8	17711.5	18791.8	19267.6 -3.0	19014.4	17949.7 11.6	16027.0 18.4	345
340	25724.0 -20.0	22857.2 -36.3	20037.1 -52.6	17544.7 -67.9	15517.0 -80.7	13969.8 -89.6	12877.2 -93.3	12246.9 -91.3	12137.7 -84.0	12608.0	13635.7 -59.5	15070.4 -46.2	16651.8	18080.6 -23.7	19095.8 -14.6	19514.2 -6.0	19223.4	18155.6 11.2	16275.3 18.9	340
335	25560.5 -23.6	22943.5	20354.5 -58.1	18049.5	16154.9 -84.0	14688.9	13635.0 -93.9	13011.7 -91.7	12885.4	13318.2 -75.5	14289.7 -64.0	15650.9 -52.0	17143.7	18473.0 -29.5	19384.9	19707.6	19345.5 0.9	18249.8 10.7	16399.8 19.3	335
330	25494.7 -27.4	23163.8 -46.6	20818.2 -63.6	18688.7	16901.1 -86.9	15490.5	14461.5 -93.4	13846.1 -90.8	13712.1 -85.1	14115.4	15029.4	16303.3	17683.1 -46.2	18881.0 -35.1	19654.0 -23.8	19845.3	19379.9 -0.8	18232.1 10.1	16399.4 19.5	330
325	25515.8 -31.4	23493.2 -51.8	21397.7	19434.3 -81.4	17734.9 -89.1	16362.0 -92.3	15349.1 -91.8	14742.5	14606.9	14984.6	15836.8	17009.5	18253.6 -51.2	19291.9 -40.1	19894.6 -27.9	19923.0 -15.1	19325.5	18103.2 9.6	16274.2 19.5	325
320	25614.5 -35.9	23902.5	22053.6 -73.3	20247.8	18626.4	17283.1	16282.9	15686.4	15551.4 -80.8	15902.6	16686.1	17743.7	18832.8	19688.1 -44.0	20094.9	19934.1 -17.3	19180.5	17863.9	16025.2 19.4	320
315	25783.5 -41.0	24363.3 -61.3	22746.8 -76.5	21090.3	19543.6	18229.8	17243.2	16656.5	16519.5 -76.8	16838.4	17544.1	18474.4	19393.4	20048.4	20240.5	19871.4	18942.9	17515.6 8.5	15654.2 19.2	315
310	26016.2 -46.5	24853.9 -65.1	23447.5 -78.1	21931.7	20460.6	19179.8	18207.3 -78.4	17625.7	17478.1	17754.5	18372.4	19166.0	19905.5	20350.0	20316.2	19726.7 -19.8	18611.1	17060.4	15164.0	310
305	26307.7	25361.8 -67.5	24139.4 -77.6	22754.6	21359.8	20113.7	19151.4	18564.2	18391.5	18611.7	19131.9	19782.9 -62.8	20339.2	20570.1	20306.8	19492.4	18183.3	16500.9	14558.5 18.3	305
300	26655.2	25884.2	24818.3	23551.9	22229.2	21013.7	20051.1	19441.7	19225.1	19374.0	19787.8 -61.0	20293.6	20668.1	20688.4	20198.8	19161.6 -19.0	17658.9	15840.3	13842.2	300
E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	40	-45	-50	-55	09-	-65	-70	-75	-80	85	-90 Lat	E. Long

E. Long	Lat 90	\$2	8	75	70	29	09	55	20	45	40	35	30	25	20	15	10	w	0	Lat	E. Long
55	880.3	1929.7 9.0	2788.6	3410.2	3773.3	3884.7	3774.4	3489.1	3084.0	2614.0	2126.9	1655.5	1213.8	796.1	380.6	-64.0	-573.1	-1181.8	-1922.7	-12.6	55
20	707.4	1777.1	2632.6 7.8	3234.7	3573.6 7.2	3667.8 7.6	3557.1 7.8	3294.0 7.4	2935.6 6.6	2535.8 5.8	2138.1 5.6	1769.3	1436.0	1125.0	809.0	453.7	23.0	-516.8 5.0	-1196.9	-2.3	20
45	529.2 15.8	1586.5 11.6	2413.3 9.3	2979.6 8.5	3287.5 8.6	3366.0 8.7	3261.4 8.5	3029.0 7.7	2725.1 6.7	2400.1 5.9	2092.3	1822.3	1590.3 10.2	1377.9	1154.3	884.2	533.2 18.7	69.6	-534.9	oc oc	45
40	346.9 16.9	1360.2 12.9	2135.0 10.8	2652.5 10.1	2925.7 10.1	2991.5 10.1	2899.8	2704.8	2458.3	2204.7	1975.3	1784.3	1627.3 10.8	1483.7	1323.4	1114.2 22.5	825.9	431.9	-91.8	17.7	40
35	162.0 17.8	1101.2	1803.4	2261.5 11.9	2498.3	2555.6	2483.2	2330.8	2142.4	1953.2 7.2	1785.7 6.9	1647.4	1530.7	1416.2 14.0	1278.8	1093.3 22.1	837.6	492.6	40.7	23.2	35
30	-24.1 18.6	813.3 15.5	1425.1 14.1	1815.5	2015.1 13.7	2068.0 13.6	2020.5 13.0	1914.9 11.9	1784.9 10.5	1654.3	1535.3 8.5	1428.0	1322.5	1202.9	1051.6 15.9	853.1 19.5	595.2 22.8	268.1 25.1	-137.4		30
25	-210.1 19.2	501.3 16.8	1007.3 15.8	1323.3	1485.2	1536.5 15.9	1517.8 15.5	1461.9 14.8	1391.2	1317.0 12.8	1240.3 12.0	1153.8	1045.5	902.8	715.8	478.4	188.0 20.9	-156.0 24.2	-552.3	1.72	25
20	-394.5 19.7	170.2 18.0	557.9 17.4	793.9 17.6	917.1 18.0	967.5 18.4	978.5 18.6	972.8 18.5	961.1 18.4	943.1 18.1	908.9	843.8	733.1 16.9	566.5 16.8	339.5 17.3	52.6 18.8	-289.9 21.5	-680.3	-1105.9	C:67	20
15	-575.8 20.1	-174.3	85.5 19.0	236.5 19.6	318.4 20.3	366.1 21.1	404.0	444.9	488.8	524.6 24.7	533.3 25.4	493.3 25.5	387.1 25.2	205.0 24.6	-55.0 24.2	-389.2 24.6	-789.6 26.3	-1242.4 29.4	-1724.0	33.1	15
10	-752.8 20.3	-526.1 20.0	-401.4 20.6	-339.7 21.6	-302.9 22.7	-263.1 23.9	-205.1 25.4	-126.2 27.3	-36.1 29.6	45.2 31.9	90.9 34.0	74.4 35.5	-24.5 36.0	-215.3 35.7	-499.3 35.0	-871.6 34.6	-1323.1 35.2	-1835.6 37.2	-2376.9		10
S	-924.0 20.4	-879.0 20.9	-893.6 22.1	-925.2 23.5	-938.9 25.0	-914.8 26.7	-847.4	-744.0 31.6	-622.9 35.0	-512.1 38.7	443.9	-448.7 45.3	-547.4 47.1	-749.0 47.7	-1052.8 47.4	-1453.2 46.7	-1939.6 46.4	-2491.8 47.0	-3071.7		w
0	-1088.2 20.3	-1226.6 21.6	-1382.0 23.4	-1510.1 25.3	-1580.9 27.2	-1582.4 29.4	-1519.1 32.0	-1407.7 35.3	-1275.1 39.4	-1155.5	-1086.1 48.9	-1098.9 53.2	-1213.8 56.4	-1436.9 58.3	-1763.9 58.8	-2185.4 58.3	-2688.1 57.5	-3249.5 56.9	-3829.7		0
E. Long	Lat 90	\$2	08	75	70	\$9	09	55	50	45	40	35	30	25	20	15	10	w.	0	Lat	E. Long

E. Long	Lat 90	82	08	75	70	59	09	22	20	45	40	35	30	25	20	15	10	w	0	Lat	E. Long
115	2124.4	1300.0	465.7	-347.3	-1100.4 5.2	-1752.1 8.0	-2266.3 10.9	-2618.8 13.7	-2800.9 16.1	-2817.7 17.5	-2683.8 17.5	-2419.4 15.5	-2047.4	-1594.1 6.2	-1090.9 0.0	-575.2 -5.9	-89.4	322.8 -12.5	621.7	/	115
110	2098.0	1438.0	779.1	140.8	-452.8 4.5	-974.1 7.3	-1396.9 10.6	-1701.5	-1878.6 18.1	-1929.9 21.3	-1865.6 23.1	-1700.0 23.2	-1449.5 21.2	-1131.9 17.5	-769.4 12.7	-391.7 7.8	-37.7	248.0	420.8	*	110
105	2055.7 -3.2	1578.6 -1.6	1110.7	659.6	234.7	-150.6 6.5	-480.7 10.2	-740.9 14.7	-921.6 19.5	-1021.0 24.1	-1043.3 27.8	-996.4 29.9	-888.2	-727.1 29.0	-525.8 26.6	-306.0	-102.6 21.5	38.9	69.5	0.00	105
100	1997.7 -1.5	1715.9	1446.7 0.2	1186.0	929.1 3.1	675.1 5.8	429.8 9.7	202.7 14.5	4.1 20.0	-159.7 25.5	-286.1 30.5	-374.7 34.4	-424.5 36.9	-434.3 38.1	-407.6 38.2	-359.5 37.8	-320.7 37.4	-336.9 37.4	-460.1	6.16	100
95	1924.5 0.3	1843.9	1773.5	1697.7 1.0	1598.5	1462.9 5.2	1287.3 9.0	1077.7 13.9	845.6 19.5	603.3	361.8 30.8	131.0 35.5	-79.0 39.3	-258.9 42.1	-405.4 44.3	-528.8 45.9	-657.1 47.2	-835.4	-1116.3	C.	95
96	1836.6	1956.8	2077.9 0.7	2173.7	2214.8	2178.2	2053.6 8.4	1845.1 13.0	1567.1 18.1	1239.3	882.4 28.4	516.5 32.9	160.3 36.8	-171.2	471.6	-749.6 45.7	-1032.7 48.1	-1365.0 50.0	-1797.2	CTC	06
82	1734.8	2048.8	2347.8	2595.7 1.0	2754.5	2794.3	2701.4 7.7	2480.2 11.8	2150.1 16.0	1739.0 20.2	1278.0 23.9	797.0	321.5 30.0	-130.1 32.5	-551.9 35.0	-954.8 37.5	-1367.5 39.9	-1833.2 41.9	-2399.4	t c	85
08	1619.7 5.6	2115.0	2572.6 1.7	2948.8 1.3	3199.6	3292.6	3214.1 7.2	2971.9 10.5	2591.2 13.6	2108.5	1564.3 18.3	996.6	436.0	-99.1 21.7	-605.5	-1098.1 24.0	-1608.2 25.4	-2178.0 26.8	-2851.2	9	80
75	1492.4	2150.7	2743.7	3221.5 1.8	3538.3 2.6	3662.8	3585.6 6.9	3320.0 9.3	2898.0	2363.6 12.5	1764.2 12.9	1143.2	533.1	-49.1 10.8	-604.6	-1152.6 9.5	-1726.4	-2367.2	-3114.7		75
70	1353.6	2152.3 5.4	2854.3	3406.4	3764.1	3902.0 4.7	3817.8 6.7	3532.5 8.4	3084.9 9.4	2524.6	1903.0 8.5	1264.9 6.9	641.9	47.6	-523.6 0.5	-1094.4 -1.5	-1699.1 -3.4	-2377.3	-3165.8		70
99	1204.6 10.4	2117.0	2900.0 4.1	3499.4 3.4	3876.0 3.9	4013.1 5.2	3918.5 6.7	3621.9 7.7	3168.6	2611.5	2002.9	1385.8	788.0	217.7	-335.1 -3.5	-895.9 -6.3	-1499.3 -9.5	-2182.8	-2981.3		65
09	1046.4	2043.1	2878.2	3499.9 4.4	3877.0	4003.9	3899.5 6.9	3602.7 7.4	3164.3	2639.0 6.2	2077.5	1518.5 3.4	983.3	473.8	-25.5	-542.9	-1113.1	-1772.1 -12.7	-2553.5	* ************************************	09
E. Long	Lat 90	85	08	27	70	99	09	22	20	45	40	35	30	25	20	15	10	vo	0	Lat	E. Long

E. Long	Lat 90	82	08	75	70	65	09	55	50	45	40	35	30	25	20	15	10	w	0 Lat	E. Long
175	1244.2	955.3 -18.5	741.2	625.3	606.5	668.4	795.7 -25.0	986.5	1253.4 -30.7	1612.9	2071.1 -35.3	2614.6	3211.8 -38.9	3821.9	4407.6	4943.6 -42.1	5419.8 -42.0	5838.6	6210.8	175
170	1390.6 -19.6	897.1 -17.1	456.1 -15.4	109.0 -14.6	-123.4	-237.1	-233.2	-109.1 -22.4	144.1 -26.4	534.1 -30.5	1057.7	1693.8 -37.5	2404.1	3141.0	3857.9	4518.2 -39.5	5100.0	5596.9 -34.4	6015.0	170
165	1526.5 -19.0	844.4	191.9 -12.9	-374.4	-813.7 -10.2	-1101.6	-1225.6 -13.3	-1178.3	-955.5 -22.0	-558.2	1.7	697.4 -36.4	1487.1	2319.4	3141.2	3906.2 -33.7	4582.0 -29.5	5153.1 -25.3	5620.6	165
160	1650.8	802.3	-38.6 -10.6	-803.8 -7.7	-1434.8 -6.0	-1889.2 -6.0	-2141.1 -8.1	-2178.7 -12.0	-2001.4 -17.5	-1618.1 -23.7	-1047.7 -29.3	-321.2 -33.5	518.2 -35.2	1417.1	2317.8	3166.5 -25.6	3921.4 -19.9	4558.9 -14.7	5074.6	160
155	1762.5 -17.5	775.1	-224.3	-1159.8 -4.8	-1959.5	-2565.4 -1.8	-2939.6 -3.4	-3066.0	-2946.3 -13.0	-2594.9 -19.4	-2036.0	-1302.9 -29.1	-439.1	501.0	1456.4	2367.4	3184.7	3877.4	4436.0	155
150	1860.8	766.5 -11.5	-355.7	-1426.3	-2363.9	-3098.7 1.8	-3583.5 0.6	-3797.4	-3742.8	-3437.5	-2908.5	-2189.9	-1325.1	-368.5	617.1 -16.4	1567.5 -9.5	2427.9 -2.6	3161.6	3753.6 5.9	150
145	1944.9 -15.4	779.0	-426.0 -5.0	-1590.6 -0.4	-2628.8 3.0	-3463.2	-4039.7 3.9	-4333.6 0.8	-4346.3	-4096.7	-3612.7 -14.8	-2928.3 -18.2	-2086.0 -18.8	-1139.0 -16.5	-150.8 -11.7	812.8 -5.6	1693.3 0.6	2449.6 5.5	3061.5 8.1	145
140	2014.2	814.2	-430.9	-1644.8 1.0	-2741.3	-3640.0 6.6	-4283.1 6.5	-4642.6	-4718.4 0.2	-4528.6 -4.8	-4100.8 -9.5	-3468.0 -13.0	-2671.0 -14.3	-1761.1 -13.3	-799.9 -10.2	147.1	1020.9	1777.4	2392.0	140
135	2068.2	872.3	-369.2 -2.6	-1586.0 2.0	-2695.8 5.7	-3619.7 7.9	-4298.9 8.4	-4703.7 7.0	-4831.7 4.0	-4699.7	-4333.6	-3765.3 -8.2	-3033.0 -10.7	-2185.2 -11.7	-1279.7 -11.1	-378.7 -9.4	460.2	1191.9	1788.6	135
130	2106.4	952.5 -6.5	-242.6 -1.8	-1416.7 2.6	-2494.7 6.1	-3403.1 8.6	-4085.3 9.7	-4510.8 9.3	-4675.5 7.5	-4593.4 4.5	-4288.8 0.7	-3791.6 -3.4	-3137.6 -7.3	-2370.8 -10.5	-1543.9	-714.1 -14.0	64.3	746.6	1302.7	130
125	2128.6	1052.8 -5.4	-55.9 -1.1	-1144.6	-2148.6 6.1	-3002.7 8.8	-3655.0 10.5	-4076.1	-4259.6 10.7	-4217.1 8.9	-3970.1	-3546.3 1.9	-2978.1 -2.9	-2304.8	-1572.7	-832.9 -16.6	-135.7 -19.0	475.3	967.6	125
120	2134.7	1169.9	183.5	-782.5 2.7	-1675.6 5.8	-2441.5 8.5	-3035.3 10.9	-3429.8	-3617.0 13.5	-3605.3	-3413.3	-3065.2	-2589.6 3.4	-2019.7 -2.6	-1394,9	-759.6 -14.3	-160.1 -18.3	360.4	766.4	120
E. Long	Lat 90	\$2	80	27	70	92	09	55	20	45	40	35	30	25	20	15	10	ĸ	0 Lat	E. Long

E. Long	Lat 90	82	08	75	70	99	09	52	90	45	40	35	30	25	20	15	10	ĸ	0 Lat	E. Long
235	-880.3 -13.3	294.0 -19.2	1519.4	2723.9 -32.0	3843.3 -36.9	4824.5	5625.9	6219.6 -37.6	6593.6 -33.1	6753.6 -27.1	6722.1 -20.5	6535.0 -13.7	6237.2	5879.2 -1.6	5514.3	5196.0 7.6	4973.2 11.0	4883.3	4946.0 15.6	235
230	-707.4 -14.6	511.5 -20.6	1799.3	3071.5	4249.8	5268.5	6078.7	6651.1	6978.0	7072.7	6967.4 -26.5	6706.9 -19.5	6343.4 -12.6	5932.0 -5.9	5528.3 0.4	5186.9 6.3	4957.4 11.6	4877.7 16.1	4966.6 19.6	230
225	-529.2 -15.8	697.9 -21.8	2011.2	3317.2 -36.1	4525.5	5559.9 -46.8	6364.9	6910.2 -47.9	7191.5 -44.6	7229.4	7064.3	6749.1 -25.9	6342.6 -18.6	5903.4 -11.2	5488.4	5150.7 3.0	4937.4 9.5	4883.5 15.2	5004.9	225
220	-346.9 -16.9	851.2 -22.6	2151.6	3455.6 -37.2	4664.2	5692.5 -49.3	6479.8	6994.7	7236.1	7230.0	7023.1	6674.7	6248.0 -24.1	5804.6 -16.5	5401.0 -8.9	5087.5 -1.8	4906.4	4887.7	5043.4 15.3	220
215	-162.0 -17.8	970.5	2219.1	3484.6	4663.0	5663.5 -50.8	6421.3	6904.6 -55.2	7114.7	7081.5	6855.4	6498.7	6076.7	5651.2 -20.8	5277.5 -13.9	5002.2 -7.5	4862.4	4882.7	5071.1 6.6	215
210	24.1 -18.6	1056.2 -23.4	2215.0 -29.9	3405.5 -37.3	4523.1	5473.9 -50.9	6191.0 -55.1	6642.9 -56.4	6832.9	6793.3 -50.7	6575.5	6240.9 -37.6	5852.4 -30.5	5469.1 -23.9	5142.9 -18.3	4916.4 -13.7	4822.4	4881.1	5097.7 -4.9	210
205	210.1 -19.2	1109.7	2142.7	3222.9 -36.3	4249.4	5128.8	5794.4	6215.7 -55.8	6398.6 -54.4	6376.3	6198.8	5922.0 -37.7	5601.7	5289.7 -26.0	5031.4 -22.1	4865.3	4820.5 -18.5	4915.3 -17.8	5154.3 -17.2	205
200	394.5 -19.7	1133.6	2008.1	2944.9 -34.5	3851.3 -41.2	4638.2	5241.2 -51.7	5632.8 -53.4	5821.5 -52.2	5840.9 -48.3	5736.9 -42.8	5556.5 -36.7	5343.0 -31.3	5135.9 -27.5	4971.0 -25.6	4880.6	4891.4	5021.6 -27.6	5277.3 -28.4	200
195	575.8 -20.1	1131.2	1819.2	2583.0 -32.1	3342.5 -38.1	4016.5	4546.0 -47.8	4907.6	5112.8	5194.9 -45.3	5193.8 -40.5	5144.5 -35.5	5074.5 -31.4	5006.4	4962.9 -29.0	4968.2	5045.9 -33.2	5214.8 -35.7	5483.9	195
190	752.8	1107.1	1585.9 -24.8	2151.7 -29.1	2740.5 -34.2	3282.9 -39.1	3727.8	4057.2	4284.8	4442.8	4563.8 -38.4	4669.6 -34.9	4769.6	4867.9	4971.4	5093.6 -35.4	5253.3 -38.6	5468.9	5752.7 -42.4	190
185	924.0 -20.4	1066.0	1319.8	1668.3	2066.8 -29.7	2461.1 -33.8	2810.5	3102.4 -39.3	3352.1 -39.8	3588.7 -38.7	3836.5 -36.9	4104.2	4384.2	4662.4	4929.1 -36.6	5185.3 -39.3	5442.2	5715.9 -44.1	6020.1	185
180	1088.2	1013.5	1033.7	1152.5	1346.4	1579.2 -28.0	1822.3	2068.7 -33.6	2333.4	2640.1 -35.8	3004.3	3422.6 -36.1	3873.6 -36.7	4327.6	4759.8 -39.8	5157.8 -41.9	5522.9 -43.5	5865.5 -44.0	6199.0	180
E. Long	Lat 90	82	80	75	70	99	09	22	92	45	40	35	30	25	20	15	10	v o	0 Lat	E. Long

E. Long	Lat 90	82	80	75	70	99	09	22	20	45	40	35	30	25	20	15	10	ĸ	0	Lat	E. Long
295	-2124.4	-2916.6 10.0	-3658.6 13.0	-4334.0 15.6	-4925.7 17.2	-5418.9 17.7	-5806.1 16.8	-6089.0 14.4	-6277.8 10.1	-6385.3 4.0	-6422.3	-6394.2 -13.8	-6303.7 -25.2	-6154.4 -37.5	-5953.1 -49.8	-5707.8 -61.2	-5422.4 -70.6	-5092.0 -77.1	-4702.0		295
290	-2098.0	-2743.3 7.5	-3357.7	-3923.0	-4418.9 12.5	-4826.8 12.0	-5134.8 9.9	-5340.9 6.0	-5451.7 0.3	-5478.5 -7.3	-5431.9 -16.5	-5317.8 -27.1	-5139.5 -38.7	-4900.2 -50.4	-4606.9 -61.6	-4269.4 -71.1	-3896.4	-3489.8	-3042.0		290
285	-2055.7	-2532.8	-2996.0	-3425.4 7.5	-3798.2 7.5	-4092.6 6.0	-4294.0 2.9	-4398.4 -2.1	-4411.9 -8.9	-4346.7 -17.4	-4215.1 -27.2	-4024.7 -37.8	-3778.2	-3476.5 -58.8	-3122.8	-2724.7 -74.5	-2292.1 -78.5	-1832.0 -79.7	-1344.0		285
280	-1997.7	-2290.2 2.3	-2582.3 3.0	-2853.9 3.1	-3080.3 2.4	-3238.1 0.2	-3311.7	-3297.5 -9.2	-3203.3 -16.5	-3044.0 -25.1	-2834.8	-2584.5	-2294.3	-1960.2 -61.3	-1579.3 -67.4	-1154.5 -71.1	-695.2 -72.2	-212.3 -70.8	287.4		280
275	-1924.5 -0.3	-2021.2 -0.4	-2127.0 -0.7	-2223.5	-2285.9	-2290.9	-2223.9	-2083.7 -14.8	-1881.3	-1635.5 -29.6	-1363.7	-1075.4	-768.3 -52.6	-432.9 -57.9	-59.3	355.2 -62.3	803.0 -61.1	1270.4	1745.7		275
270	-1836.6	-1732.0 -3.1	-1642.0	-1551.8 -5.7	-1439.0 -7.6	-1282.8 -10.3	-1071.8	-808.2	-507.3 -24.5	-190.8 -30.8	122.2 -36.9	423.5	719.0	1024.4	1356.1 -50.6	1722.3 -49.9	2118.3	2530.5	2945.5		270
265	-1734.8	-1429.4 -5.8	-1139.8 -7.9	-857.4 -10.1	-565.4 -12.4	-247.8 -14.9	101.9 -18.0	476.9	858.4 -25.3	1222.7	1551.1	1838.2 -35.6	2093.9	2339.2	2596.6 -37.7	2879.6	3188.4 -34.0	3512.8 -31.3	3841.7		265
260	-1619.7 -5.6	-1120.3	-633.4	-160.0 -14.3	308.4 -16.9	780.3 -19.3	1255.8 -21.3	1723.1	2161.0 -24.7	2546.0 -26.0	2862.1 -26.8	3107.5 -27.0	3296.8 -26.6	3455.8 -25.7	3612.1 -24.5	3785.7 -23.1	3983.5 -21.7	4202.3	4436.6		260
255	-1492.4	-811.5	-136.1	520.9	1156.6	1769.7 -23.4	2352.5 -24.4	2888.8	3356.2 -23.9	3733.9 -22.6	4010.5	4189.5	4290.2 -16.5	4343.1	4381.2	4431.7	4510.6	4623.8	4773.4		255
250	-1353.6	-509.6 -13.3	339.3 -18.0	1166.4	1954.9 -25.6	2691.6 -27.4	3360.4	3941.1 -26.4	4412.1 -23.9	4757.1 -20.4	4971.2	5064.7	5062.3	4999.2	4914.0	4842.0	4809.6	4832.8	4920.9		250
245	-1204.6	-221.1 -15.5	780.8	1758.9 -25.9	2681.2 -29.6	3521.2 -31.5	4254.1 -31.3	4856.5	5309.0 -25.2	5601.6 -20.2	5737.7 -14.7	5735.2 -9.4	5625.1 -4.6	5447.7	5247.3 1.7	5066.9	4943.0 3.4	4901.1	4956.5		245
240	-1046.4	48.4	1177.3	2282.6 -29.1	3316.1 -33.4	4237.7	5014.1	5619.3 -32.9	6037.3	6265.5	6316.8	6217.8 -10.0	6006.3	5727.7 0.4	5431.4 4.0	5167.1 6.5	4978.9 8.1	4900.0 8.9	4949.0		240
E. Long	Lat 90	\$8	80	75	70	99	09	55	50	45	40	35	30	25	20	15	10	เก	0	Lat	E. Long

E. Long	Lat 90	88	08	75	92	99	09	55	20	45	40	35	30	25	20	15	10	чo	0 Lat	E. Long
355	-1244.2 20.0	-1562.5 22.1	-1857.3 24.5	-2084.4 26.9	-2219.0 29.3	-2257.3 31.8	-2212.7 34.7	-2110.9 38.2	-1986.4 42.5	-1879.4 47.5	-1830.5 52.8	-1872.1 57.9	-2022.2 62.2	-2282.2 65.2	-2641.3 66.7	-3083.0 66.9	-3587.6 66.0	-4129.1 64.6	-4667.9 63.2	355
350	-1390.6 19.6	-1880.5 22.4	-2310.1 25.4	-2637.2 28.3	-2842.3 31.1	-2928.4 33.8	-2916.8 36.8	-2840.7 40.2	-2741.3 44.2	-2663.9 48.8	-2651.7 53.8	-2737.7 58.9	-2937.7 63.6	-3248.1 67.5	-3650.3 70.0	-4117.2 71.0	-4618.9 70.6	-5122.6 68.9	-5588.8 66.5	350
345	-1526.5 19.0	-2174.6 22.5	-2731.3 26.0	-3157.5 29.4	-3438.4 32.5	-3582.6 35.5	-3616.5 38.4	-3579.3	-3517.4	-3479.9	-3512.5 52.3	-3649.1 56.8	-3905.0 61.3	-4273.1 65.4	-4727.0 68.6	-5227.8 70.4	-5731.2 70.7	-6193.3 69.2	-6572.5 66.4	345
340	-1650.8 18.3	-2439.3 22.4	-3112.1 26.4	-3634.0 30.1	-3994.1 33.7	-4204.3 36.8	-4294.1 39.6	-4306.0 42.1	-4289.4	-4296.3	-4374.2 49.4	-4559.1 52.7	-4867.4 56.3	-5291.2 60.1	-5798.5 63.6	-6338.3	-6850.4 66.8	-7276.2 65.7	-7568.7 62.9	340
335	-1762.5 17.5	-2669.5 22.0	-3443.9 26.4	-4055.1 30.5	-4495.0 34.3	-4776.4 37.6	-4929.7 40.3	-4997.8 42.3	-5031.5	-5083.6 44.9	-5203.2 46.1	-5428.0 47.9	-5777.2 50.3	-6244.2 53.3	-6794.1 56.3	-7366.3 58.6	-7885.7 59.6	-8279.0 58.8	-8491.9 56.0	335
330	-1860.8 16.5	-2860.7 21.4	-3719.2 26.0	-4409.8 30.5	-4926.3 34.5	-5280.7 37.9	-5501.6 40.6	-5630.5 42.3	-5717.3 43.0	-5814.2 43.2	-5969.8 43.1	-6223.0 43.4	-6595.0 44.4	-7081.7 46.0	-7647.9 47.8	-8228.0 49.4	-8737.3 49.8	-9091.4 48.6	-9230.0 45.6	330
325	-1944.9	-3009.4 20.5	-3931.0 25.3	-4687.4 29.9	-5273.1 34.1	-5697.8 37.6	-5986.6 40.2	-6177.9 41.8	-6318.5 42.1	-6458.2	-6643.4 40.6	-6911.1 39.5	-7282.7 38.8	-7756.0 38.5	-8298.1 38.5	-8844.7 38.3	-9309.4 37.3	-9605.1 35.0	-9669.7 31.4	325
320	-2014.2 14.2	-3112.6 19.3	-4073.6 24.2	-4878.4 28.8	-5521.1 33.0	-6008.4 36.5	-6360.5 39.1	-6611.1 40.5	-6802.7	-6980.5 39.7	-7185.9 37.8	-7451.5 35.4	-7795.9 32.9	-8217.7 30.4	-8688.7 27.9	-9152.2 25.1	-9530.0 21.9	-9741.6 18.0	-9729.0 13.4	320
315	-2068.2	-3168.5 17.9	-4142.8 22.7	-4974.8 27.2	-5657.6 31.2	-6193.9 34.5	-6598.7 37.0	-6899.7 38.2	-7133.6 38.2	-7339.4 36.7	-7551.5 34.0	-7795.5 30.2	-8085.1 25.7	-8419.0 20.7	-8776.0 15.2	-9112.3 9.5	-9366.0 3.6	-9471.2 -2.2	-9378.3 -7.8	315
310	-2106.4	-3176.2 16.2	-4135.9 20.8	-4970.5 25.0	-5671.7 28.7	-6237.8 31.6	-6678.0 33.6	-7013.5 34.5	-7274.0 33.9	-7491.1 31.8	-7691.2 28.1	-7892.2 22.8	-8102.5 16.2	-8321.3 8.6	-8535.5 0.2	-8717.7	-8826.1 -16.7	-8813.4 -24.3	-8640.5 -30.6	310
305	-2128.6	-3135.8 14.3	-4051.8 18.6	-4862.1 22.3	-5555.9 25.5	-6127.3 27.8	-6579.3 29.1	-6926.3 29.1	-7190.8 27.7	-7396.5 24.5	-7562.7 19.5	-7700.4 12.7	-7814.2 4.0	-7904.5 -5.9	-7966.8 -16.7	-7989.4 -27.5	-7950.7 -37.6	-7821.0 -46.0	-7571.0 -52.2	305
300	-2134.7	-3048.5 12.2	-3891.7 15.9	-4649.1 19.2	-5306.8 21.6	-5854.6 23.1	-6289.9 23.4	-6620.2 22.3	-6861.1 19.6	-7030.0 15.0	-7140.4 8.5	-7199.2 0.0	-7209.2 -10.3	-7172.6 -21.9	-7092.1 -34.1	-6968.5 -45.9	-6795.7 -56.4	-6558.6 -64.5	-6235.9 -69.7	300
E. Long	Lat 90	82	80	75	70	59	09	22	20	45	40	35	30	25	20	15	10	NO.	0 Lat	E. Long

E. Long	Lat 0	ĸ,	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	08-	26 7C	-90 Lat	E. Long
55	-1922.7 -12.6	-2821.4 -20.8	-3890.8	-5122.3 -36.2	-6481.5 -41.4	-7910.0 -43.9	-9337.7	-10698.8 -41.1	-11946.1	-13055.7 -32.9	-14020.8 -29.1	-14839.8 -26.4	-15507.6 -24.9	-16014.6 -24.4	-16353.9 -24.2	-16529.3 -24.0	-16558.5 -23.1	-16466.2 -21.6	-16274.2 -19.5	38
20	-1196.9 -2.3	-2042.5	-3066.6	-4262.2 -31.6	-5596.3 -39.6	-7011.8 -45.0	-8438.9 -47.3	-9811.5 -46.9	-11081.2	-12222.3 -40.5	-13226.0 -36.4	-14090.0 -32.6	-14809.7 -29.5	-15377.1 -27.1	-15787.0 -25.3	-16042.7 -23.8	-16157.3 -22.4	-16147.5 -20.9	-16025.2 -19.4	20
45	-534.9 8.8	-1304.0 -0.4	-2250.8	-3370.7	-4635.4 -32.7	-5994.0 -40.7	-7383.2 -46.0	-8741.1 -48.3	-10020.3 -47.9	-11192.0	-12242.0	-13162.5 -37.5	-13945.9 -33.2	-14584.2 -29.3	-15073.3 -26.0	-15416.5 -23.3	-15622.9 -21.3	-15701.4 -19.9	-15654.2 -19.2	45
40	-91.8 17.7	-765.9 10.1	-1603.6	-2603.9	-3746.7	-4993.3 -32.0	-6293.4 -39.9	-7595.3 -45.1	-8855.7	-10042.3	-11132.6	-12109.3 -40.6	-12957.9 -35.7	-13668.5 -30.6	-14237.6 -26.0	-14668.4 -22.3	-14966.5 -19.9	-15133.9 -18.8	-15164.0 -18.8	40
35	40.7	-534.2 18.3	-1243.6 10.9	-2090.5	-3065.4	-4146.0 -20.0	-5301.3 -29.7	-6496.0 -37.5	-7695.0 -42.7	-8864.5	-9972.5 -44.3	-10989.6	-11892.3	-12666.0 -30.5	-13306.7	-13817,2 -20.8	-14200.5 -18.3	-14452.1 -17.5	-14558.5	35
30	-137.4 25.7	-629.7 24.1	-1215.6 20.0	-1899.3	-2680.9	-3556.9 -5.9	-4519.5 -16.5	-5555.2 -26.3	-6642.4	-7749.6 -39.0	-8837.1 -40.5	-9864.0 -38.8	-10796.0 -34.5	-11612.6 -28.9	-12307.4	-12882.3 -18.8	-13337.5 -16.3	-13663.7 -16.0	-13842.2	30
25	-552.3 27.1	-998.1 28.5	-1490.5 27.8	-2029.3	-2620.7 18.0	-3277.8 9.0	-4017.5	-4852.1 -12.7	-5778.4 -22.6	-6772.6 -29.8	-7792.2 -33.6	-8786.8	-9712.6 -30.6	-10542.0 -25.6	-11265.4 -20.3	-11882.4	-12390.4	-12777.1 -14.5	-13020.5 -16.8	25
20	-1105.9 29.3	-1549.6 32.9	-1993.1 35.0	-2425.8 34.5	-2853.5 30.7	-3302.0 23.4	-3811.1	-4419.4	-5146.5	-5981.3	-6884.0	-7799.8 -25.9	-8677.4	-9483.4	-10203.5 -16.3	-10834.6 -13.0	-11371.8	-11801.1 -12.8	-12099.7 -15.9	20
15	-1724.0 33.7	-2201.0 38.3	-2636.7 42.0	-3005.4	-3306.9	-3574.1 36.2	-3865.2 27.4	-4242.9 16.4	4749.9	-5391.6	-6135.9	-6928.7	-7715.9	-8459.3	-9140.6 -11.5	-9754.1 -9.3	-10293.4 -9.1	-10744.8	-11086.8	15
10	-2376.9	-2899.1 44.8	-3347.8 48.7	-3681.2	-3890.5	-4010.2 46.5	-4110.2 39.1	-4272.1 29.2	-4558.3 18.3	-4990.7 8.1	-5548.6	-6183.3	-6841.8	-7484.4	-8090.8	-8653.4 -5.4	-9166.2 -6.4	-9617.5 -9.3	-9989.6	10
VO.	-3071.7 48.9	-3622.0 51.7	-4076.4 54.6	-4380.9	-4518.4 56.5	-4521.4 53.6	-4464.5 47.8	-4439.5 39.6	-4521.8 30.0	-4747.0 20.5	-5106.0 12.4	-5558.9 6.4	-6058.0	-6566.0 0.9	-7063.1 -0.1	-7542.2 -1.4	-7999.7 -3.8	-8428.5	-8816.3	ĸ
0	-3829.7 57.0	-4368.9 57.8	-4797.5 59.0	-5057.6 59.8	-5127.7 59.5	-5036.4 57.4	-4856.5 53.1	4680.3	-4587.3 39.3	4620.9	-4781.8 23.8	-5040.6 17.5	-5358.3 12.5	-5703.8 8.8	-6061.2 5.7	-6426.9	-6802.2	-7187.1 -5.8	-7575.9 -11.0	0
E. Long	Lat 0	ĸٺ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	-80	-88- -88-	-90 Lat	E. Long

E. Long	Lat 0	٨٠	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	08-	-85	-90 Lat	E. Long
115	621.7	776.7	768.2	587.8	235.8	-281.2 15.9	-950.6 18.8	-1754.1 19.1	-2666.1 16.8	-3655.5 12.6	-4688.1 7.3	-5729.2 1.6	-6745.0 -3.7	-7700.2 -8.0	-8554.2 -11.1	-9258.8 -12.9	-9762.3 -13.3	-10017.9 -12.3	-9996.3	115
110	420.8	443.7	291.9 9.5	44.9	-564.6 19.1	-1255.2	-2096.8	-3061.7 21.5	-4114.9	-5216.0 12.3	-6322.7 6.1	-7395.1 -0.2	-8397.8 -5.7	-9298.1 -10.2	-10063.1 -13.4	-10656.9 -15.2	-11043.5 -15.5	-11193.5 -14.3	-11093.1	110
105	69.5 20.6	-53.7	-359.2 24.8	-857.4	-1541.7 29.2	-2392.8 29.5	-3382.3 27.8	-4474.9 24.1	-5629.4 18.7	-6801.0	-7944.4 5.3	-9017.9 -1.3	-9985.3 -7.1	-10816.3 -11.8	-11483.7 -15.2	-11962.7 -17.2	-12232.0 -17.5	-12279.2 -16.1	-12105.4 -12.8	105
100	-460.1 37.9	-736.7 38.7	-1196.8 39.5	-1848.8 39.7	-2680.6	-3665.2 36.2	-4766.8 32.0	-5945.0 26.4	-7156.8 19.7	-8357.6 12.4	-9502.8 5.1	-10551.3 -1.8	-11466.8	-12220.0 -12.9	-12788.0 -16.6	-13154.6 -18.8	-13312,4 -19.2	-13264.3	-13025.6 -14.0	100
95	-1116.3	-1546.5 49.7	-2155.0 49.2	-2946.3 47.6	-3902.5 44.6	4989.9	-6167.7 34.4	-7393.4 27.6	-8625.3 20.2	-9822.1 12.5	-10943.0 5.1	-11948.6	-12802.9 -8.1	-13476.7 -13.4	-13949.6 -17.5	-14212.9 -20.0	-14270.4	-14139.2 -19.1	-13846.7	95
06	-1797.2 51.3	-2373.5	-3118.5 50.8	-4031.9 48.4	-5090.4 44.6	-6255.2 39.5	-7482.4 33.4	-8729.5 26.6	-9957.7 19.4	-11130.8 12.2	-12212.8 5.0	-13167.1 -1.8	-13958.5 -8.1	-14557.5 -13.7	-14945.8 -18.1	-15120.1 -21.0	-15093.9 -21.8	-14895.6 -20.2	-14562.4	96
885	-2399.4	-3104.9 43.8	-3969.1 43.1	-4986.4 41.0	-6128.5 37.7	-7353.5 33.4	-8615.3 28.3	-9871.7 22.6	-11086.9 16.7	-12229.5 10.6	-13268.7	-14171.5 -2.0	-14904.5 -8.2	-15438.9 -13.9	-15757.7 -18.7	-15862.0 -21.8	-15772.5 -22.7	-15526.3 -21.1	-15167.3 -17.0	85
80	-2851.2 27.8	-3660.9 28.2	-4621.2 27.8	-5722.0 26.6	-6932.1 24.6	-8206.6 22.0	-9497.4 18.9	-10761.6 15.4	-11964.7 11.6	-13079.0 7.3	-14078.7 2.4	-14935.7 -3.1	-15619.7 -8.8	-16103.3 -14.4	-16371.3	-16427.8 -22.4	-16298.6 -23.4	-16025.7 -21.8	-15656.7	80
75	-3114.7	-3997.9 9.0	-5027.0 8.6	-6189.9 8.0	-7453.5 7.4	-8770.5 6.7	-10089.6 6.1	-11365.2 5.3	-12562.0 4.0	-13654.8 1.9	-14622.6	-15442.9 -5.3	-16090.0 -10.2	-16539.6 -15.3	-16778.0 -19.8	-16811.1	-16667.0 -23.8	-16389.7 -22.3	-16027.0 -18.4	75
70	-3165.8 -7.0	-4090.9	-5161.9 -9.9	-6366.4	-7670.7 -10.7	-9025.0 -9.9	-10373.3 -8.5	-11665.4	-12863.3	-13943.2 -5.4	-14888.9	-15684.3 -8.9	-16309.3 -12.6	-16743.2 -16.8	-16974.4 -20.7	-17009.2 -23.3	-16875.4 -24.0	-16615.9 -22.5	-16275.3	70
99	-2981.3	-3920.3 -20.5	-5010.0 -23.7	-6239.3 -25.7	-7574.0 -26.3	-8961.3 -25.3	-10339.7 -22.9	-11653.1 -19.8	-12860.1	-13937.5 -14.2	-14873.5	-15658.5 -13.9	-16278.4 -16.0	-16716.6 -18.9	-16963.1 -21.7	-17023.8 -23.6	-16924.3 -23.9	-16703.3 -22.4	-16399.8 -19.3	99
09	-2553.5	-3483.1 -24.5	-4572.3 -30.1	-5811.7 -34.5	-7166.8 -36.9	-8581.2	-9988.4	-11326.4	-12550.6 -27.5	-13637.7 -23.8	-14579.6 -21.1	-15371.8 -20.0	-16005.6 -20.3	-16468.5	-16751.8 -23.0	-16860.6 -23.9	-16816.8 -23.7	-16652.7 -22.1	-16399.4	09
E. Long	Lat 0	ψ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long

E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	-45	-20	-55	09-	- 59-	-70	-75	08-	-85	-90 Lat	E. Long
175	6210.8 -38.4	6549.8 -35.0	6868.0 -30.7	7173.1	7466.5 -20.4	7743.9	9.7997.9 7.6-	8220.1 -4.5	8402.7 0.8	8536.6	8609.1 11.0	8603.1 15.6	8500.9 19.3	8291.8 21.8	7979.9 22.5	7586.6 21.5	7147.0	6699.7	6277.9 9.6	175
170	6015.0	6369.0 -27.6	6676.3 -24.1	6952.4 -20.5	7206.6	7441.9 -12.9	7655.3 -8.5	7839.9	7985.6	8077.3	8093.9	8010.0 16.3	7803.2 19.4	7465.0 21.1	7009.0 21.2	6473.2 19.7	5912.3 16.8	5383.4	4932.1 8.0	170
165	5620.6 -21.5	5998.5 -18.6	6307.5 -16.5	6568.3 -14.9	6796.6	7001.0	7182.8	7336.8	7450.6	7503.6	7466.9	7308.0 16.5	7001.3 19.1	6541.0 20.1	5950.6 19.4	5284.2 17.5	4614.9 14.6	4017.2	3548.8 6.4	165
160	5074.6	5480.7	5798.8 -8.6	6052.6 -9.1	6262.3 -9.5	6441.3	6.595.0 -6.9	6719.8	6801.8	6814.9	6723.8 12.5	6490.3 16.2	6087.3	5513.2 18.5	4801.8	4021.2 15.0	3261.0 12.1	2610.6	2138.4	160
155	4436.0	4869.2	5197.6 -1.3	5446.1 -3.5	5637.7 -5.6	5790.4 -6.5	5913.3 -5.3	6004.6	6048.8	6015.5	5864.0 12.4	5553.1 15.6	5056.5 16.9	4378.4	3562.1 14.7	2687.9 12.3	1858.0 9.5	1173.7	711.8 3.1	155
150	3753.6 5.9	4208.3	4543.5	4783.7	4954.0 -1.9	5075.5 -3.4	5160.7 -2.9	5209.2 -0.2	5204.2	5112.2 8.5	4889.7 12.4	4495.7	3907.5 15.2	3136.4	2234.1 11.8	1290.0	414.9	-282.7	-720.3 1.5	150
145	3061.5	3528.5 8.3	3864.6 6.5	4092.3	4236.8	4321.0	4359.3	4351.9 2.7	4281.1	4113.0	3805.0 12.4	3320.1 13.6	2642.5 13.0	1790.8	823.9	-163.8 6.0	-1058.0 3.7	-1747.1	-2146.8 -0.2	145
140	2392.0 5.1	2859.1 5.8	3187.9 5.1	3397.4 3.9	3511.0 2.9	3550.5 2.8	3529.8 3.9	3449.0 6.1	3291.2 8.7	3025.3 11.0	2614.8 12.3	2030.9	1267.1 10.5	349.4	-658.8	-1662.5 2.6	-2548.7 0.7	-3207.8 -0.7	-3557.0 -2.0	140
135	1788.6	2239.8	2549.3 0.7	2731.2	2804.0 3.3	2786.0 5.1	2688.7 7.2	2511.6 9.5	2241.4	1854.2	1324.4	635.5 10.4	-208.6 7.8	-1175.3 4.6	-2200.4 1.6	-3192.2 -0.8	-4043.9	-4652.4	-4940.2 -3.6	135
130	1302.7	1717.5	1989.2 -5.0	2125.4	2138.5	2041.3	1841.9	1541.1	1131.5	601.3	-60.5	-855.9 8.3	-1770.2 4.8	-2766.6	-3783.4	-4736.4	-5528.9 -5.3	-6068.4	-6285.7 -5.3	130
125	967.6	1321.6	1529.5 -9.1	1592.4	1516.5 3.2	1309.4	977.4	524.4 14.9	-47.3 15.0	-735.0 13.3	-1533.0 10.1	-2428.4 6.0	-3397.8	-4402.7 -2.2	-5386.7 -5.3	-6276.2 -7.3	-6988.1	-7443.1 -7.9	-7583.5 -6.9	125
120	766.4	1033.3 -14.8	1147.2	1103.8	904.5	554.6	61.6 15.4	-564.2 17.0	-1309.3 16.1	-2155.7 13.1	-3081.7	-4062.0 3.7	-5066.4	-6057.3	-6985.9 -8.4	-7791.1 -10.2	-8404.8 -10.8	-8763.7 -10.2	-8823.5 -8.5	120
E. Long	Lat 0	şç.	-10	-15	-20	-25	-30	-35	-40	4	-50	-55	09-	-65	-70	-75	08-	-85	-90 Lat	E. Long

E. Long		Lat 0	S -	-10	-15	-20	-25	-30	-35	40	45	-50	-55	09-	-65	-70	-75	-80	-85 -85	06-	Lat	E. Long
235		4946.0 15.6	5161.7 16.8	5515.1 17.2	5983.8 17.1	6547.5 16.5	7193.2 15.8	7914.0 15.1	8704.2 14.4	9553.3 13.9	10443.1 13.5	11348.7	12241.0 12.6	13090.7 12.3	13870.7	14559.1 12.5	15142.5 13.5	15618.2 15.1	15992.4 17.2	16274.2		235
230		4966.6 19.6	5220.2 22.0	5615.0 23.0	6116.8 22.8	6693.4	7323.2 19.9	7998.2 18.1	8719.5 16.5	9489.6 15.4	10305.7 14.8	11155.6	12017.5 14.8	12861.9 15.1	13655.2 15.4	14364.8	14964.6	15440.7	15791.8 18.1	16025.2		230
225		5004.9 19.8	5294.2 22.9	5722.3 24.2	6247.5 24.0	6829.2 22.5	7439.4 20.1	8068.3	8721.6 15.5	9412.2	10150.3 13.9	10935.7 14.4	11754.0 15.5	12577.3 16.8	13367.5	14083.2	14687.0 18.8	15154.0 18.9	15475.0 18.9	15654.2		225
220		5043.4	5363.3 18.5	5815.8 19.9	6356.0 19.8	6938.6	7531.1 15.9	8120.9 13.5	8715.5 11.6	9334.0 10.8	9996.2	10711.9	11474.4	12259.0 17.4	13025.8 19.4	13727.3	14317.5 20.9	14762.0 20.4	15044.0	15164.0	0.01	220
215		5071.1 6.6	5415.7 9.2	5884.9 10.6	6433.9 10.6	7016.1	7595.9 8.2	8157.5 6.7	8706.6 5.7	9264.6	9856.7 7.4	10500.3	11196.0	11923.5	12644.3	13308.0 22.2	13863.4	14269.0	14501.7	14558.5	10.3	215
210	i	5097.7 -4.9	5460.2	5938.8 -2.0	6491.1	7071.6	7642.8	8185.3 -1.3	8701.0 -0.7	9209.5 0.9	9737.9 3.7	10308.4	10927.5 12.3	11580.5	12232.3 20.9	12833.4	13330.7	13679.2 22.5	13851.5 20.1	13842.2	17.0	210
205		5154.3	5526.7	6006.1	6554.1	7127.5	7688.6 -10.5	8214.7 -8.6	8702.9	9168.8	9638.1	10134.7	10669.3 11.2	11232.4	11793.8	12307.9 24.0	12723.7 24.6	12996.5 23.0	13097.7 20.1	13020.5	16.8	205
200	007	5277.3 -28.4	5650.7	6120.0	6651.8	7206.9	7748.8	8252.8 -13.7	8711.6	9135.9	9547.6	9969.5	10413.7 10.8	10874.8 16.6	11327.7	11733.0	12045.4 25.0	12224.7	12244.9 19.8	12099.7	15.9	200
301	561	5483.9 -37.0	5850.2	6297.4	6798.2	7318.8	7826.2	8295.7 -16.1	8717.2	9096.3	9449.8	9796.5	10147.2	10497.8	10828.3	11106.7	11296.8	11367.2	11298.3	11086.8	14.8	195
90	190	5752.7 -42.4	6106.8	6521.5	6977.0	7447.0	7903.7	8325.0 -15.9	8699.5	9028.7	9323.1 0.5	9595.4	9851.9	10087.8	10286.5	10424.7	10478.0	10427.5	10263.8 18.4	9.6866	13.6	190
	185	6020.1	6361.9	6739.2	7141.1	7549.8	7945.0	8308.8	8630.2	8907.1	9143.4	9344.0	9508.5	9628.9	9691.2	9681.0	9587.7	9408.5	9147.8	8816.3	12.4	185
	180	6199.0	6534,4	6877.1	7225.8	7572.4	7904.8	8210.1	8478.8	8705.5	8887.6	9021.3	9098.0	9105.0	9030.3	8868.4	8624.5	8313.8	7957.3	7575.9	11.0	180
	E. Long	Lat 0	'n	-10	-15	-20	-25	-30	-35	-40	55	-50	-55	09-	5 9-	-70	-75	08-	S8-	06-	Lat	E. Long

E. Long	Lat 0	şç	-10	-15	-20	-25	-30	-35	94	45	-50	-55	09-	-65	-70	-75	08-	-85	06-	Lat	E. Long
295	-4702.0	-4233.8	-3673.2	-3017.6	-2277.3	-1470.3	-613.8	282.4	1217.3	2194.6	3215.9	4274.6	5353.4	6423.3	7444.6	8367.6	9136.2	9694.3	9996.3	10.0	295
290	-3042.0	-2537.9	-1962.6 -75.6	-1308.7	-580.6	208.0	1040.7	1905.7	2798.9	3722.2	4677.5	5660.6	6657.8	7645.4	8590.8	9453.9	10189.0	10749.2 6.9	11093.1	41.4	290
285	-1344.0	-819.2	-244.6	390.2	1087.6	1840.7	2637.6	3466.8	4321.5	5199.2	6097.9	7012.0	7929.0	8830.3	9691.7	10484.3	11175.2	11727.6	12105.4	0.71	285
280	287.4	806.6	1356.0	1949.8	2598.7	3305.4	4064.6	4865.9	5698.1	6550.7 -41.5	7413.6	8275.8	9124.4	9945.3	10723.6	11443.3	12084.6	12622.1 8.2	13025.6	}	280
275	1745.7	2227.1	2725.1 -43.3	3259.3	3850.0 -35.6	4510.3	5241.5 -34.0	6033.1	6866.9	7721.2	8574.4	9407.7	10206.2	10960.2	11664.6	12315.8	12907.6 1.0	13425.8 9.0	13846.7		275
270	2945.5	3360.5 -35.9	3788.3	4254.8	4789.6	5414.5 -26.6	6135.4	6939.4	7799.2	8680.1	9547.8 -33.0	10374.9	11144.1	11849.6	12495.0 -15.4	13088.3	13635.3 1.9	14132.3 9.8	14562.4		270
265	3841.7 -28.6	4174.7	4528.0	4933.0	5425.5 -21.0	6032.6	6761.5 -21.4	7595,4 -22.6	8497.3	9420.4	10318.8 -26.4	11157.5	11917.0	12594.4	13199.7	13749.8	14260.1 3.1	14736.0 10.8	15167.3		265
260	4436.6	4689.9	4981.3	5343.6 -17.0	5814.4	6421.5	7170.6	8040.3	8986.6	9953.7 -18.1	10887.8 -18.7	11748.3	12513.9	13182.7	13768.1	14291.9	14775.8	15232.2	15656.7		260
255	4773.4	4966.3	5221.0 -12.7	5567.2 -12.6	6038.0	6657.3	7428.0 -10.5	8326.0 -10.0	9304.1 -9.9	10303.3 -10.2	11266.7	12151.0 -11.0	12933.3 -10.3	13610.3 -8.3	14195.0	14709.6 0.4	15178.0 6.6	15616.7 12.9	16027.0 18.4		255
250	4920.9	5082.5	5331.3 -7.0	5687.9	6176.0	6811.9 -5.6	7595.1 -4.3	8502.1 -3.2	9488.3	10497.6 -2.5	11475.4	12378.7	13182.6 -3.5	13880.5 -2.6	14480.6	15001.0 3.7	15463.7 8.6	15886.7 14.0	16275.3 18.9		250
245	4956.5	5116.5 1.0	5386.5	5774.0 0.1	6288.6 0.5	6937.5 1.4	7717.2 2.5	8607.9 3.6	9573.4	10566.4	11539.1	12451.6	13277.1 2.8	14003.2 3.0	14629.9	15167.4 7.0	15631.9 10.8	16040.0 15.1	16399.8 19.3		245
240	4949.0 9.2	5130.5 9.1	5439.2 8.9	5867.4 8.7	6409.5	7062.3	7820.2	8670.0 9.8	9587.5 10.0	10538.9 9.9	11486.7	12395.9 8.7	13238.1 8.1	13993.6 8.0	14652.0 8.6	15212.5 10.3	15682.8 13.0	16075.3 16.2	16399.4 19.5		240
E. Long	Lat 0	ψ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	-85	06-	Lat	E. Long

E. Long	Lat 0	κ̈́	-10	-15	-20	-25	-30	-35	40	45	-50	-55	09-	-65	-70	-75	-80	\$	-90	Lat	E. Long
355 F	4667.9	-5148.8 62.1	-5508.5 61.3	-5694.8 60.6	-5688.4 59.7	-5514.8 58.0	-5239.4 55.2	-4946.1 51.2	-4709.6 46.0	-4573.5 39.9	-4545.5 33.6	-4606.8 27.3	-4729.3 21.5	-4891.4 16.2	-5084.3 11.1	-5311.2 6.2	-5581.0 1.1	-5902.4 -4.2	-6277.9		355
350	- 5588.8	-5971.0 63.8	-6220.5	-6300.5 59.1	-6201.0 57.4	-5946.7 56.0	-5593.0 54.5	-5208.9 52.5	-4855.6 49.7	-4571.2 45.9	-4366.3 41.1	-4231.6 35.3	-4151.8 29.0	-4116.6 22.4	-4127.3 15.8	-4196.2 9.3	-4341.9 3.1	-4583.5 -2.7	-4932.1		350
345	-6572.5 66.4	-6831.9 62.7	-6942.5 58.9	-6889.7	-6679.2 53.2	-6339.1 51.8	-5913.8 51.4	-5453.4 51.2	-5000.9 50.7	-4583.7 49.0	-4212.3 45.8	-3886.2 40.8	-3602.4 34.4	-3363.5 27.0	-3182.0 19.2	-3080.8	-3089.9	-3239.3	-3548.8	į	345
340	-7568.7 62.9	-7699.2 58.7	-7659.3 54.1	-7460.0 50.0	-7127.0 47.1	-6694.1 45.9	-6196.5 46.2	-5664.5 47.5	-5120.7 48.8	-4579.6 49.1	-4050.0 47.5	-3538.7 43.5	-3054.8 37.4	-2613.1 29.7	-2237.8 21.4	-1962.7 13.2	-1829.3 6.0	-1878.5 0.0	-2138.4		340
335	-8491.9 56.0	-8501.1 51.7	-8316.7 46.7	-7974.0 42.2	-7518.6 39.1	-6991.4 38.1	-6419.4 39.1	-5815.1 41.5	-5181.8 44.3	-4521.7 46.2	-3841.5 46.0	-3154.4 43.1	-2480.3 37.7	-1845.1 30.3	-1283.2 21.9	-838.8	-564.0 6.8	-509.8	-711.8	Ţ,	335
330	-9230.0 45.6	-9133.4 41.2	-8825.3 36.2	-8359.3 31.7	-7796.1 28.7	-7182.1 28.1	-6537.6	-5860.5 33.1	-5138.8 37.1	-4365.1 40.2	-3544.9	-2697.1 39.7	-1850.2 35.2	-1039.2 28.6	-307.0 21.0	293.8 13.5	702.1 7.1	858.1	720.3	C.T.	330
325	-9669.7 31.4	-9486.0 26.8	-9084.2 22.0	-8527.2 17.9	-7883.0 15.6	-7198.9 15.7	-6489.6	-5743.2 22.4	-4937.8 27.3	-4060.7 31.5	-3117.5 33.7	-2131.7 33.3	-1138.0 30.2	-177.7 24.9	700.4	1437.2	1964.8	2216.7	2146.8	7.0	325
320	-9729.0 13.4	-9476.1 8.6	-9013.2 4.2	-8401.8 1.1	-7707.2 -0.1	-6973.6 1.1	-6211.3	-5403.5 9.7	-4525.1 15.4	-3562.2	-2521.4	-1428.8	-322.4 23.0	753.2 19.4	1745.6 14.9	2591.7	3219.2 6.4	3557.5	3557.0	0.7	320
315	-9378,3	-9071.8 -12.7	-8575.2 -16.3	-7939.5 -18.0	-7220.4	-6455.2	-5651.7 -10.1	-4794.2	-3859.6	-2835.7	-1730.2 12.1	-569.2 14.1	609.5	1760.7 12.6	2830.9 10.2	3755.4 7.6	4459.8 5.6	4871.9	4940.2	3.6	315
310	-8640.5 -30.6	-8290.8	-37.4	-7134.8	-6405.7	-5619.9 -30.5	-4785.8	-3892.5	-2923.2	-1868.6	-735.9	451.8	1659.6	2844.5	3953.9 4.9	4923.6	5679.9	6151.3	6285.7	5.3	310
305	-7571.0 -52.2	-7182.6	-6656.4	-6011.8	-5277.0 -50.0	-4476.6 -44.0	-3621.6	-2709.1	-1729.1	-675.2	447.6	1621.6	2817.3	3995.6 -2.8	5106.7	6088.9	6871.9 3.5	7387.1 5.4	7583.5	6.9	305
300	-6235.9	-5808.1 -71.5	-5266.4	-4616.8	-3876.9	-3067.8	-2204.2	-1290.6	-323.7	701.5	1783.4	2910.5	4059.7	5196.8	6276.2	7241.2	8027.2	8570.9 5.8	8823.5	90 NO.	300
E. Long	Lat 0	κ̈́	-10	-15	-20	-25	-30	-35	94	-45	-50	-55	09-	-65	-70	-75	08-	-85	06-	Lat	E. Long

E. Long	Lat 90	82	80	75	70	\$9	09	55	50	45	40	35	30	25	20	15	10	w	0	Lat	E. Long
55	56240.5	\$6009.8 -8.5	55854.4	55621.6	55155.7	54325.9	53038.7	51236.5	48879.4	45919.4	42280.6	37861.4	32568.0 7.9	26366.0	19330.4	11672.9	3734.2	-4058.0	-11255.7	16.8	55
20	56240.5	55895.2	55571.1	55148.9	54507.7	53544.4 10.1	52181.7	50365.3	48046.7	45160.5	41608.6	37269.4	32037.0 8.6	25876.3 10.8	18872.6	11253.6	3377.8 18.5	-4309.6 20.5	-11344.2	22.0	20
45	56240.5	55784.3	55298.9	54700.2	53900.3	52819.9	51393.4 13.3	49565.1 13.5	47275.1	44438.8	40936.4	36628.3	31400.7	25223.3	18196.0 8.0	10566.2 8.9	2711.4	-4906.4	-11806.7	6.61	45
40	56240.5	55678.8 -7.0	55042.6	54283.1	53342.8 8.3	52161.9 12.1	50681.9	48842.8	46571.2	43763.5	40279.1	35963.7 9.9	30698.7 7.3	24462.1 4.2	17371.3	9693.8	1825.4 0.1	-5756.3 4.3	-12556.9	12.3	40
35	56240.5	55580.2	54806.2	53903.9 4.2	52842.3 9.3	51576.7 13.0	50051.6 15.2	48201.0 16.1	45938.2 16.3	43142.1	39655.0 14.8	35310.8 12.3	29989.8 8.0	23679.2	16512.6	8774.9	876.8 -10.6	-6692.5	-13427.4	7.	35
30	56240.5 -10.1	55489.9	54593.5 -0.8	53567.9 5.1	52404.2 10.1	51067.9 13.7	49504.0 16.1	47639.1 17.5	45375.2 18.5	42577.2 19.0	39075.5 18.5	34697.3 16.0	29324.0 10.8	22951.5 3.2	15725.4 -5.8	7942.3	21.1	-7542.0 -16.1	-14234.5		30
25	56240.5	55409.1 -5.9	54407.4 -0.1	53279.1 5.8	52032.1 10.8	50637.8 14.3	49038.7 16.8	47154.3	44877.3 20.4	42064.2 21.8	38539.4 22.1	34129.1 20.2	28719.0 15.0	22311.8 6.7	15060.3	7265.4	-651.5 -20.3	-8192.9 -21.1	-14844.7		25
20	56240.5	55338.9 -5.6	54250.4 0.4	53040.6 6.3	51728.8 11.2	50287.6 14.7	48654.9 17.2	46743.3 19.3	44438.9	41594.3 23.6	38034.8 24.6	33591.6 23.5	28157.8 19.1	21742.5	14501.3 0.5	6735.0 -10.4	-1137.1 -19.1	-8620.5 -22.6	-15205.1		20
15	56240.5 -10.1	55280.2	54124.4 0.8	52854.9 6.7	51496.2 11.5	50018.5 14.8	48352.9 17.1	46405.1 19.2	44056.9	41161.1	37549.6 24.8	33064.5 24.3	27609.6 20.7	21201.0	13996.3 3.9	6294.4	-1488.5 -16.8	-8862.9 -22.7	-15329.4		15
10	56240.5 -10.1	55233.7 -5.2	54030.8 1.0	52723.5 6.9	51336.0 11.4	49831.9 14.5	48134,4 16.5	46142.4 18.0	43734.4 19.6	40767.4	37084.1 21.8	32541.9 21.1	27059.1 17.9	20660.4	13506.1 3.2	5894.8 -7.0	-1758.7 -17.0	-8970.4 -24.5	-15256.6 -27.5		10
vo	56240.5 -10.1	55199.8	53970.5 1.2	52647.5 6.9	51249.3 11.1	49730.0 13.8	48003.6 15.2	45962.2 15.9	43483.2	40429.6 16.2	36658.7	32046.6 13.6	26528.2 9.9	20138.5 4.2	13041.7	5538.2 -12.7	-1956.1 -22.2	-8961.5	-15014.0		ın
0	56240.5 -10.1	55178.8	53943.8 1.2	52627.3 6.6	51237.1 10.5	49715.4 12.7	47966.1	45875.5 12.9	43321.4	40175.4	36311.8 6.3	31627.5	26075.2 -3.0	19699.6 -9.3	12668.9 -16.8	5285.6 -25.0	-2032.1	-8808.2	-14598.7 -47.0		•
E. Long	Lat 90	\$2	80	75	7.0	59	09	55	20	45	40	35	30	25	20	15	10	w	0	Lat	E. Long

E. Long	Lat 90	88	08	75	02	99	09	22	90	45	40	35	30	25	20	15	10	w	0 Lat		E. Long
115	56240.5	57088.6	58238.2 -16.1	59405.9 -16.3	60242.0	60409.8	59659.6 3.6	57866.0 15.7	55017.1 28.6	511 <i>67.4</i> 41.1	46388.7 52.0	40747.3 60.4	34316.3 65.9	27199.8 68.3	19544.9 68.2	11527.7 66.2	3322.8 63.2	-4916.9 59.7	-13059.6 56.1		115
110	56240.5 -10.1	57046.5 -13.3	58202.6 -15.8	59425.7 -16.0	60360.1	60656.1	60044.4	58378.1 13.4	55626.8 24.8	51832.7 35.9	47062.1 45.8	41380.1 54.3	34860.6 61.1	27610.4 66.3	19782.8 69.9	11566.0 71.9	3154.9 72.1	-5272.8 70.6	-13559.8 66.9		110
105	56240.5 -10.1	56993.5 -13.0	58130.5 -15.3	59368.1 -15.4	60348.3	60714.6	60185.7	58599.9 11.6	55913.0 21.1	52157.3 30.0	47394.5 38.0	41688.6 45.3	35112.7 52.1	27771.8 58.6	19819.2 64.5	11449.3	2873.3 71.9	-5705.4 71.8	-14100.3 68.3		105
100	56240.5 -10.1	56929.6 -12.7	58021.3	59232.4 -14.5	60205.8	60584.9	60085.0	58536.9 10.2	55887.4 17.5	52162.0 23.8	47418.3 29.1	41718.6	35132.1 39.6	27757.3 45.6	19740.9 52.0	11277.1 57.7	2589.3 61.4	-6093.1 61.9	-14550.7 58.3		100
95	56240.5	56855.3	57876.2 -14.0	59020.9 -13.4	59937.7 -9.9	60276.7	59757.9 2.8	58212.3	55583.0 14.3	51890.6	47189.0 20.0	41536.0 22.1	34993.7 25.1	27649.2 29.4	19636.6 34.6	11145.1 39.5	2407.2	-6322.6 42.8	-14790.1 38.9		95
06	56240.5	56771.2 -11.9	57697.3 -13.1	58739.1 -12.0	59554.7 -8.2	59808.0	59231.3 3.7	57663.0 8.8	55046.8	51399.9 12.4	46770.4	41208.3	34764.2	27509.4 13.0	19562.9 16.1	11106.2 19.2	2379.6	-6338.0 19.5	-14758.4 14.7		06
82	56240.5	56678.2 -11.5	57487.6 -12.1	58394.6 -10.4	59071.7	59202.9 -0.7	58540.0 4.9	56934.0 8.7	54332.7 9.8	50749.6 8.3	46223.9	40792.7	34490.6	27370.8	19536.7	11163.4	2500.2	-6150.3 -1.9	-14468.3 -7.9		85
80	56240.5	56577.5	57251.5 -11.0	57997.2	58506.9	58490.0 1.2	57722.8 6.1	56073.2 8.9	53494.6 8.6	49995.4	45601.5	40332.3	34201.8 -6.0	27244.3 -7.5	19549.8 -8.0	11291.0	2728.6	-5810.8 -15.8	-13979.8 -23.3		80
75	56240.5	56470.4	56993.5 -9.9	57558.1	57880.3	57699.4 3.0	56819.6	55127.3 9.3	52581.8 8.2	49184.2	44943.3	39856.0	33913.0 -7.2	27130.0	19586.9	11458.6	3020.5 -13.6	-5378.0 -19.5	-13364.6		75
70	56240.5	56358.4 -10.0	56719.2	57089.1	57212.5	56861.2	55868.2 8.6	54138.4 9.8	51635.6 8.3	48351.6	44275.4	39378.3	33627.0 -4.5	27019.5	19629.4	11637.5	3335.2 -7.5	-4905.8 -13.6	-12692.0 -22.5		70
\$9	56240.5	56243.1	56434.1	56602.3	56523.7	56003.5	54902.6	53142.2	50688.4	47521.7	43609.7	38898.0	33329.8 0.3	26888.1	19643.3	11784.3	3619.0 3.3	-4460.7	-12042.0		99
09	56240.5	56126.3	56143.9	56109.4	55832.5	55151.3 7.7	53951.7	52167.6	49764.0	46708.4	42946.6	38399.5	32989.9	26689.4	19568.6	11826.5	3787.1	-4139.1 10.9	-11521.5		09
E. Long	Lat 90	82	08	75	20	\$9	09	55	20	45	40	35	30	25	20	15	10	w	0	Lat	E. Long

E. Long	Lat 90	88	08	75	70	65	09	55	50	45	40	35	30	25	20	15	10	ın	•	Lat	E. Long
175	56240.5	56987.8	57187.2	56623.7	55159.2 10.2	52775.7 25.2	49580.3	45773.2	41596.8	37283.1 40.0	33010.6	28877.3	24886.5	20948.5	16898.0	12531.5	7659.8	2165.5	-3951.6	30.2	175
170	56240.5	57016.6	57268.9	56766.2	55356.0 9.3	53013.9 24.5	49845.7 38.8	46048.7	41854.3	37477.1 44.2	33081.7 32.1	28763.9	24541.7	20351.5 0.0	16057.3 1.8	11478.3 10.1	6438.0	821.5	-5377.4	41.5	170
165	56240.5 -10.1	57045.0 -12.9	57366.7	56959.2	55652.4	53406.9 22.8	50317.6 37.4	46571.1 48.0	42384.9	37957.7 48.0	33441.4	28930.9 26.9	24457.2 17.0	19982.2 12.3	15400.5 14.3	10560.7 21.9	5306.9 32.5	466.4	-6767.0	48.4	165
160	56240.5 -10.1	57072.3	57477.3 -12.0	57196.5 -5.8	56039.0 5.5	53943.2 20.1	50983.7 34.9	47329.2	43181.1	38723.3 51.4	34098.1 45.1	29398.9 36.2	24667.7	19889.4	14990.4 25.0	9852.3 30.5	4346.9	-1615.4	-8040.2	50.0	160
155	56240.5 -10.1	57097.5 -13.2	57597.0 -12.8	57469.5 -7.4	56502.0 3.0	54604.3 16.8	51822.5 31.5	48301.1 44.1	44222.9 51.9	39758.5 54.0	35041.9 51.0	30165.1 44.8	25178.5 38.3	20087.6 33.8	14850.6 32.6	9385.5 34.7	3597.0 38.9	-2583.4	-9155.7	45.9	155
150	56240.5	57119.5 -13.4	57720.8 -13.5	57767.3 -9.1	57023.0 0.2	55364.7 13.1	52803.4 27.6	49453.8 40.9	45477.8 50.7	41033.1 55.7	36246.0 55.7	31206.5 52.0	25971.3 46.4	20564.7 40.8	14975.9 36.7	9162.2	3064.8 34.6	-3359.3 35.7	-10101.2	37.1	150
145	56240.5	57137.1 -13.5	57843.4	58077.1 -10.8	57579.9 -2.7	56192.7 9.2	53886.8	50743.0 37.2	46899.8	42501.6 56.3	37667.1 59.1	32483.3 57.5	27011.2 52.4	21292.0 45.4	15346.0 38.1	9170.4	2745.7 27.6	-3942.9 25.7	-10874.4	0.07	145
140	56240.5	57149.2 -13.6	57959.1 -14.9	58385.1 -12.4	58147.7 -5.5	57051.4 5.4	55025.5 18.9	52113.7 33.2	48429.7 46.1	44103.3 55.9	39245.4 61.1	33938.9 61.2	28248.0 56.7	22228.9 48.6	15931.5 38.7	9392.4 29.0	2631.9 21.2	-4334.8 16.8	-11471.2	691	140
135	56240.5 -10.1	57154.7 -13.7	58062.0 -15.4	58676.6 -13.8	58699.8 -8.0	57900.7 1.9	56166.0 14.8	53501.9 29.2	49995.6 43.1	45761.7 54.5	40902.9	35497.6 63.6	29612.0 60.1	23315.7 51.9	16685.4	9794.9 28.9	2702.7 19.0	-4545.6 12.9	-11896.3	0.11	135
130	56240.5 -10.1	57152.2 -13.7	58146.3 -15.8	58937.2 -14.9	59209.3 -10.0	58699.0 -1.2	57252.3 11.0	54838.1 25.3	51517.0 39.7	47388.2 52.3	42545.6 61.2	37063.6 65.0	31010.1 63.1	24465.9 56.1	17531.4 45.5	10313.3 33.6	2905.2 23.2	-4618.1 16.4	-12184.6	ĝ.	130
125	56240.5 -10.1	57140.9 -13.7	58206.8 -16.1	59153.3 -15.7	59650.7 -11.6	59406.2 -3.6	58228.7 7.9	56052.0 21.6	52910.5 36.1	48887.8	44069.9 59.5	38527.7 65.2	32330.3 65.7	25568.6	18362.6 53.0	10846.9	3146.4 34.0	-4637.0 27.4	-12412.4		125
120	56240.5 -10.1	57120.0 -13.6	58238.7 -16.2	59312.8 -16.2	60001.1 -12.7	59986.3 -5.3	59044.9 5.4	57078.9 18.4	54098.2 32.4	50171.4 45.6	45376.9 56.5	39783.0 63.9	33460.8 67.0	26508.8 65.9	19062.9 61.5	11280.9 55.3	3314.3 48.8	-4709.0 43.5	-12678.9		120
E. Long	Lat 90	82	08	75	70	99	09	55	20	45	40	35	30	25	20	15	10	In.	0	Lat	E. Long

E. Long	Lat 90	88	80	75	70	65	09	55	50	45	40	35	30	25	20	15	10	W)	0 Lat		E. Long
235	56240.5	56654.4 -11.0	57263.3 -12.7	57944.8 -16.5	58443.4	58430.2 -32.2	57604.8 -42.7	55797.4 -52.7	53020.1 -60.6	49442.1	45305.8	40829.0	36142.0 -59.0	31281.2 -51.9	26229.3 -43.0	20970.6	15531.3	9988.0	4446.6		235
230	56240.5	56690.0	57244.9 -12.3	57787.0 -14.9	58077.9 -20.0	57814.4 -27.6	56727.2 -36.9	54679.2 -46.6	51711.6 -55.0	48014.4	43839.9	39404.2 -63.4	34827.3 -60.4	30128.0	25264.8 -48.3	20192.2	14903.9	9448.8	3918.4 -9.3		230
225	56240.5 -10.1	56721.9	57215.6 -11.8	57606.2 -13.2	57673.8 -16.4	57145.3 -22.1	55787.6	53499.5 -38.6	50352.7 -46.9	46556.6 -53.6	42369.3	38000.9	33556.0 -58.5	29032.9 -55.7	24365.1 -51.3	19477.4	14332.1 -38.8	8950.7 -31.0	3410.9		225
220	56240.5 -10.1	56751.1 -11.3	57179.7	57411.9 -11.3	57247.2 -12.6	56445.7 -16.0	54814.2	52290.8 -29.0	48977.8	45102.6	40925.6	36646.1	32349.2 -53.6	28009.3	23533.4	18818.8	13799.1	8472.0	2903.2 -35.9		220
215	56240.5	56778.0	57141.2 -10.8	57214.0 -9.4	56815.1 -8.6	55739.8 -9.4	53837.5	51087.3 -18.0	47622.6	43686.6	39539.4 -37.9	35365.7 -43.0	31227.4	27071.8 -49.4	22779.3 -51.1	18220.7 -51.8	13305.5	8012.1	2397.3 -46.0		215
210	56240.5 -10.1	56803.6 -11.5	57104.6 -10.4	57023.0 -7.6	56395.4	55052.9 -2.7	52889.2	49924.9 -6.4	46323.6	42342.6	38238.7 -26.2	34180.1	30203.5	26228.2	22107.1 -48.9	17686.8 -51.9	12856.0	7577.9	1904.1		210
205	56240.5	56828.5	57073.8 -10.0	56848.8	56005.8	54410.8 3.9	52001.8 6.2	48840.2	45117.5 0.9	41102.0	37045.5 -14.9	33099.1 -24.1	29275.4 -32.8	25466.9	21501.0	17201.2	12437.8	7161.9	1421.1		205
200	56240.5 -10.1	56853.3	57052.8 -9.7	56701.4	55663.8	53839.1 10.0	51207.6 15.0	47869.0	44039.2	39993.0 5.4	35975.3 -4.9	32121.3	28423.9 -27.5	24754.2	20917.7	16717.6 -46.9	12007.1	6725.1 -46.1	915.5		200
195	56240.5	56878.6	57044.9 -9.5	56589.5	55385.8	53361.9 15.3	50537.2 22.8	47045.5	43121.0	39040.5 15.3	35039.4	31239.7	27621.4 -23.6	24043.0	20296.0	16166.8	11492.2	6198.2	322.9 -30.8		195
190	56240.5	56904.5 -12.0	57052.9 -9.5	56520.9	55186.1 8.1	53000.9	50018.4 29.2	46400.3 33.9	42392.8	38268.4	34250.8	30451.9 -5.9	26847.5	23294.6	19580.2	15480.6	10817.8	5503.8	-431.9 -16.0		190
185	56240.5	56931.4	57078.7 -9.6	56501.4	55076.7 9.6	52774.6 22.8	49674.9 34.1	45960.0 40.1	41881.3	37701.2	33629.4 15.3	29771.1	26105.8 -16.7	22500.2	18748.2	14623.7	9938.0 -18.5	4589.3	-1403.1 0.1		185
180	56240.5	56959.3 -12.3	57123.5	56535.1	55066.2 10.3	52696.8 24.6	49524.9 37.3	45746.1	41609.8	37364.5 35.3	33204.4	29230.1 3.5	25431.5	21694.2	17828.7	13615.7	8862.3	3456.0 6.5	-2594.6 16.0		180
E. Long	Lat 90	88	80	75	70	99	09	55	20	45	40	35	30	25	20	15	10	vo	0	Lat	E. Long

E. Long	Lat 90	85	80	75	70	59	09	55	20	45	40	35	30	25	20	15	10	N	0 Lat	E. Long
295	56240.5 -10.1	55849.8	55917.6 -8.9	56296.8	56731.5	56920.4	56587.0	55538.7	53692.2	51066.0	47749.2	43868.0	39560.8 -130.8	34961.6	30187.3	25326.5	20438.2	15565.5 -122.5	10762.7 -104.8	295
290	56240.5 -10.1	55937.5	56133.9 -9.8	56676.4	57298.5 -26.1	57684.1	57540.7	56661.3	54954.7 -87.9	52436.3	49194.5	45354.1	41050.9	36419.3	31582.0 -122.6	26638.7	21659.2 -105.4	16690.9	11781.7	290
285	56240.5 -10.1	56023.9	56338.9	57028.0 -17.2	57816.4	58374.2	58392.7 -59.0	57651.0 -74.9	56049.3	53600.9 -99.6	50395.3	46558.1	42224.4	37528.1 -106.4	32595.2 -99.4	27533.9 -88.9	22425.4 -75.1	17324.9	12280.1 -41.2	285
280	56240.5	56108.0 -9.0	56528.7 -11.4	57343.6 -18.4	58270.7 -29.8	589 <i>6</i> 7.2 -44.5	59109.2 -60.4	58462.5	56920.3	54496.1 -95.2	51284.4	47414.9	43023.2	38240.7 -85.6	33192.1 -75.0	27990.0 -62.1	22725.3	17464.7	12262.4 -16.5	280
275	56240.5	56188.7 -9.4	56700.2	57616.2 -19.4	58648.8	59443.7 -45.5	59662.6	59060.1	57525.7 -83.8	55077.2 -88.7	51817.9	47885.2	43415.9	38536.1 -65.1	33364.3	28012.3	22579.3 -25.0	17146.5	11781.6 0.8	275
270	56240.5 -10.1	56265.3	56850.9	57840.3	58941.1	59788.9 -45.8	60033.3	59420.8 -72.1	57841.1	55320.9 -81.7	51977.1 -78.5	47957.2	43399.3	38421.7	33132.1 -34.5	27637.6 -21.5	22044.3	16449.9 1.6	10939.8 10.9	270
265	56240.5 -10.1	56337.1 -9.9	56978.9	58011.9	59141.1	59993.7 -45.6	60210.8	59534.6 -69.7	57859.7 -75.4	55226.7 -75.4	51769.2 -70.0	47646.8	42998.9	37934.0 -35.3	32546.1 -22.5	26934.7	21210.9	15488.6 8.6	9871.7 15.7	265
260	56240.5 -10.1	56403.6	57083.1 -13.3	58128.9 -20.5	59245.4 -31.6	60054.9	60193.6 -57.6	59404.5 -67.3	57592.1 -71.9	54814.4 -70.8	51224.4	46994.8	42265.9	37135.7 -29.0	31683.0 -16.9	25997,2 -6.1	20191.0	14391.4 11.0	8717.5 17.4	260
255	56240.5 -10.1	56464.6 -10.4	57163.1 -13.4	58191.0 -20.3	59254.3	59974.6 -43.5	59988.1	59044.4	57062.0 -69.5	54119.7	50390.8	46060.9	41271.3	36109.0 -28.5	30636.7	24930.8	19100.7	13279.8 10.7	7597.0 17.6	255
250	56240.5 -10.1	56520.0 -10.6	57219.6 -13.4	58199.6 -19.7	59171.1 -29.6	59759.5 -41.7	59607.3 -53.6	58475.9 -62.9	56302.5 -67.8	53188.0 -67.5	49326.1 -62.5	44914.5 -54.0	40094.3	34941.9	29502.5 -21.4	23835.6	18040.7	12249.1 8.6	6592.4 17.0	250
245	56240.5 -10.1	56569.9 -10.8	57253.6 -13.3	58158.0 -18.9	59002.0 -27.9	59420.6 -39.2	59068.9 -50.8	57725.7 -60.4	55350.7 -66.3	52067.9 -67.6	48089.6	43623.6 -57.8	38810.1 -49.0	33713.5 -39.0	28360.2 -28.3	22788.4	17079.7	11354.6 4.8	5740.9 15.0	245
240	56240.5	56614.5	57267.3 -13.0	58071.0 -17.8	58755.8 -25.8	58971.9 -36.1	58393.6 -47.3	56823.0	54244.6	50805.5	46734.7	42246.8 -61.8	37478.7 -54.8	32481.9	27261.7 -36.0	21831.0 -25.0	16246.3 -13.1	10608.9 -1.1	5037.7	240
E. Long	Lat 90	82	08	75	70	92	99	55	20	45	40	35	30	25	20	15	10	w	0 Lat	E. Long

E. Long	Lat 90	\$8	08	27	70	9	09	55	20	45	40	35	30	25	20	15	10	w	0 Lat	E. Long
355	56240.5 -10.1	55170.7 -4.9	53950.4 1.0	52662.6 6.1	51300.1 9.5	49790.8	48028.5 10.9	45895.0 9.2	43270.3 6.0	40037.4	36089.4 -4.6	31345.2 -11.6	25774.6 -19.2	19430.9 -27.1	12482.9 -35.1	5232.7 -43.0	-1901.3 -50.6	-8447.1 -57.5	-13979.6 -62.5	355
350	56240.5 -10.1	55175.4 -5.0	53989.9 0.7	52752.7 5.3	51438.3 8.2	49958.6 9.1	48197.2 8.0	46032.7	43349.7	40044.7	36031.6 -15.8	31251.8 -25.8	25691.8 -36.3	19410.2 -46.6	12572.8 -56.0	5474.9	-1470.8	-7800.1 -77.1	-13105.6	350
345	56240.5 -10.1	55192.4 -5.0	54060.9 0.3	52896.0 4.4	51651.0 6.5	50220.4 6.6	48477.4	46298.4	43574.6	40217.9	36164.6 -26.1	31379.5 -38.9	25865.3 -52.3	19685.2 -65.3	12996.9 -76.8	6081.5	-664.4	-6792.5 -98.6	-11914.7 -100.6	345
340	56240.5	55221.3 -5.2	54161.8 -0.3	53090.3 3.1	51936.6 4.5	50576.5 3.6	48872.3	46698.6	43954.5 -12.0	40568.4	36500.3 -34.9	31739.4	26306.8 -65.7	20270.5	13777.8 -95.7	7086.8	565.4 -115.6	-5367.3 -120.2	-10348.0 -120.6	340
335	56240.5 -10.1	55261.3 -5.4	54290.5 -1.0	53332.3 1.7	52292.0 2.1	51025.4 0.2	49383.0	47237.2	44494.7	41101.7	37042.0	32331.3 -58.6	27011.7 -76.5	21159.0 -94.7	14909.8	8491.9	2230.1 -135.8	-3501.0 -140.7	-8371.7 -140.0	335
330	56240.5 -10.1	55311.6 -5.6	54444.2	53618.0 0.0	52712.9 -0.7	51563.8 -3.8	50008.0	47914.7	45198.1 -24.4	41821.0	37791.8 -49.4	33153.5 -66.2	27972.0 -85.4	22334.8 -105.7	16368.5	10266.1 -141.9	4297.6 -153.7	-1221.5 -159.3	-6004.6	330
325	56240.5 -10.1	55371.0 -5.9	54619.9 -2.7	53942.2	53193.1	52185.6	50742.7 -14.5	48728.9	46064.6	42728.7	38752.8 -56.8	34206.7 -73.8	29181.1 -93.7	23777.1 -115.3	18113.6 -136.8	12347.1 -155.5	6687.0 -168.8	1381.3	-3332.9	325
320	56240.5 -10.1	55438.4 -6.2	54814.1 -3.7	54299.0	53724.4 -7.0	52881.8 -12.9	51578.4 -20.8	49672.6	47089.8	43823.0	39924.7 -65.6	35488.5 -82.4	30627.3	25455.7 -124.6	20086.2	14642.2	9274.3	4163.6	-502.5 -181.9	320
315	56240.5 -10.1	55512.6 -6.5	55022.9 -4.7	54681.3	54296.8 -10.4	53640.0 -17.9	52501.6 -27.5	50732.4	48260.8	45092.0 -61.7	41295.1	36982.0 -92.4	32282.6	27321.6 -133.5	22207.3 -155.1	17036.5	11911.7	6956.3 -190.3	2313.7	315
310	56240.5 -10.1	55592.2 -6.9	55242.1 -5.8	55081.1 -8.0	54898.3	54444.2 -23.1	53492.7	51885.7	49552.7 -59.4	46507.4 -72.6	42830.8	38646.3	34093.3	29302.7 -141.0	24380.7	19407.8 -176.2	14453.7 -185.8	9599.8	4954.5	310
305	56240.5	55675.9 -7.2	55467.2 -6.8	55489.7	55515.0 -17.3	55274.7 -28.0	54525.8 -41.0	53100.2 -55.0	50925.7 -69.1	48021.1	44473.8	40412.0	35978.2 -128.7	31305.9	26502.0 -160.6	21641.7 -172.0	16778.5	11968.9	7295.7	305
300	56240.5 -10.1	55762.2	55693.9 -7.9	55898.1	56131.5	56108.5	55569.3	54334.2	52326.7 -77.6	49566.8	46144.2	42187.0	37836.5 -132.5	33226.6 -144.7	28468.4	23640.6	18795.2 -159.5	13977.1	9251.9 -136.0	300
E. Long	Lat 90	\$2	08	75	70	99	09	22	20	45	40	35	30	25	20	15	01 0	w	0 Lat	E. Long

E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	08-	-85	06-	Lat	E. Long
55	-11255.7 16.8	-17472.5 12.4	-22459.8 6.4	-26159.1 -0.6	-28707.3 -8.2	-30391.6 -15.2	-31563.2 -20.3	-32 5 45.6 -21.9	-33571.4 -18.4	-34767.7 -9.0	-36183.5 5.9	-37832.8 24.5	-39724.5 44.0	-41865.0 61.2	-44239.6 73.3	-46785.1 79.2	-49370.1 79.5	-51792.2 76.6	-53798.2		55
50	-11344.2	-17324.8 22.4	-21995.8 21.4	-25306.8 18.5	-27424.4 13.4	-28682.8 6.8	-29485.3 0.2	-30196.4	-31067.7 -4.5	-32223.5	-33698.1 13.4	-35490.0 30.0	-37597.4 48.3	-40018.3 64.7	-42726.1 76.2	-45640.1 81.5	-48609.7 81.1	-51416.7 77.4	-53798.2		20
45	-11806.7 19.9	-17574.4 25.7	-21946.3 30.7	-24879.4	-26568.3 32.4	-27392.9 28.1	-27807.9 21.6	-28219.7 15.5	-28900.8 12.6	-29976.3 15.2	-31469.2	-33364.9 37.9	-35651.0 54.1	-38316.2 69.0	-41321.3 79.4	-44569.4 83.8	-47892.8 82.7	-51059.8 78.1	-53798.2		45
40	-12556.9 12.3	-18148.1 22.8	-22259.1 33.7	-24851.9 42.4	-26144.3 46.9	-26555.5 46.5	-26586.3 41.9	-26681.5 35.8	-27137.2 31.4	-28085.1 31.4	-29544.6 37.1	-31493.7 48.0	-33912.0 61.5	-36778.1 74.2	-40039.3 82.9	-43582.8 86.1	-47225.5 84.1	-50724.2 78.9	-53798.2		40
35	-13427.4	-18888.4 15.9	-22796.7 31.5	-25115.8 45.8	-26078.6 55.9	-26132.6 60.2	-25812.8 59.1	-25596.5 54.7	-25803.2 50.3	-26579.2 48.7	-27950.9 51.9	-29898.3 59.7	-32397.2 70.0	-35417.0 79.9	-38890,1 86.6	-42687.5 88.3	-46612.7 85.4	-50412.7 79.5	-53798.2		35
30	-14234.5 -7.4	-19609.0 7.4	-23380.1 25.7	-25509.4 44.1	-26235.8 59.0	-26020.0 68.3	-25415.8 71.6	-24921.1 70.4	-24877.2 67.5	-25451.4 65.8	-26689.3	-28583.4 72.1	-31112.9 79.2	-34239.1 86.0	-37879.6 90.2	-41888.9 90.4	-46058.5 86.5	-50127.4 80.1	-53798.2		30
25	-14844.7	-20157.2 -0.9	-23843.0 17.7	-25862.3 38.0	-26452.4 56.3	-26072.1 70.2	-25274.4 78.4	-24562.9 81.6	-24293.8 81.6	-24659.6 81.1	-25735.0 81.7	-27536.6 84.4	-30054.1 88.3	-33243.9 92.1	-37009.4 93.7	-41189.9 92.2	-45566.0 87.5	-49870.3 80.6	-53798.2		25
20	-15205.1 -19.1	-20448.1 -8.4	-24069.8 8.2	-26034.7 28.3	-26575.3 48.5	-26135.0 66.0	-25247.2 79.1	-24401.7 87.3	-23959.1 91.5	-24136.2 93.4	-25043.5 94.4	-26731.0 95.5	-29205.8 96.8	-32424.4 97.6	-36277.7 96.9	-40591.4 93.8	-45137.3 88.2	-49643.1 81.0	-53798.2		20
15	-15329.4 -22.8	-20463.0 -15.9	-24006.0 -2.6	-25938.4 15.6	-26489.9 36.2	-26079.4 56.4	-25202.4 74.0	-24315.9 87.5	-23770.7 96.6	-23802.2 101.8	-24559.0 104.1	-26129.9 104.6	-28546.2 103.9	-31768.5 102.3	-35679.1 99.4	-40092.4 95.0	-44773.5 88.8	-49447.2 81.3	-53798.2		15
10	-15256.6 -27.5	-20222.3 -24.5	-23647.3	-25540.8 0.7	-26136.0 20.7	-25822.4 42.7	-25043.5 64.1	-24206.5 82.7	-23637.3 96.8	-23581.3 105.8	-24223.1 110.2	-25692.4 110.9	-28048.6 109.1	-31260.7 105.6	-35205.8 101.2	-39690.5 95.7	-44475.2 89.2	-49283.6 81.6	-53798.2		10
ĸ	-15014.0 -35.3	-19757.1 -35.2	-23021.1 -28.9	-24857.1 -15.8	-25508.9 3.2	-25335.7 26.3	-24721.1 50.9	-24009.9 73.8	-23490.9 92.5	-23410.1 105.5	-23982.8 112.4	-25378.3 114.0	-27684.9 111.8	-30883.2 107.4	-34848.6 102.0	-39382.2 96.0	-44242.2 89.4	-49153.2 81.8	-53798.2		vo
0	-14598.7	-19089.7 -48.5	-22168.2	-23934.1 -32.9	-24647.1 -14.7	-24638.4	-24230.0 35.7	-23699.0 62.0	-23290.0 84.6	-23242.1 101.1	-23794.2 110.6	-25150.8 113.7	-27427.9 111.9	-30618.0 107.4	-34597.0 101.8	-39163.0 95.8	-44073.7 89.3	-49056.4 81.9	-53798.2		0
E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	-85	06-	Lat	E. Long

E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	45	-50	\$\$.	09-	29 -	-70	-75	08-	-85	-90 Lat	E. Long
1115	-13059.6 56.1	-20975.0 52.2	-28519.0 47.7	-35538.0 42.0	-41895.0 34.8	-47498.3 26.2	-52313.2 17.2	-56347.5 8.9	-59620.0 2.9	-62132.4 0.1	-63861.0 1.4	-64774.6 6.5	-64868.4 14.6	-64194.7 24.6	-62872.5 35.3	-61061.9 46.1	-58911.2 56.2	-56497.7 65.5	-53798.2 73.3	115
110	-13559.8 66.9	-21556.4 61.2	-29108.1 53.3	-36060.4 43.5	42281.8 32.6	-47690.8 21.5	-52266.8 11.4	-56036.1 3.6	-59041.1 -0.8	-61309.1 -1.2	-62840.2 2.3	-63621.1 9.1	-63657.7 18.2	-63007.8 28.5	-61791.9 38.9	-60168.0 48.8	-58274.5 58.0	-56169.0 66.3	-53798.2 73.3	110
105	-14100.3 68.3	-22136.7 61.2	-29646.1 51.1	-36473.1 38.9	-42495.7 25.9	47648.6 13.8	-51931.7 4.1	-55395.8 -2.2	-58110.4 -4.3	-60130.4	-61479.5 3.7	-62160.5 12.2	-62186.3 22.3	-61614.8 32.7	-60561.9 42.7	-59176.8 51.8	-57583.6 59.9	-55817.8 67.1	-53798.2 73.3	105
100	-14550.7 58.3	-22579.6 50.7	-29994.8 39.7	-36641.0 26.8	-42410.8 13.8	-47261.8 2.6	-51220.5 -5.3	-54365.0 -8.9	-56792.3 -8.0	-58582.9 -3.0	-59781.8 5.2	-60404.9 15.4	-60469.7 26.3	-60030.8 36.9	-59195.1 46.5	-58097.8 54.8	-56844.5 61.9	-55447.1 68.0	-53798.2 73.3	100
95	-14790.1 38.9	-22760.0 31.0	-30030.4 20.2	-36448.5 8.2	-41926.4	-46450.4	-50077.1 -16.5	-52912.5 -16.7	-55078.1 -12.4	-56675.7 -4.3	-57767.1 6.3	-58379.1 18.2	-58532.6 30.1	-58277.2 41.0	-57708.1 50.3	-56942.9 57.9	-56064.4 64.0	-55059.8 68.9	-53798.2 73.3	95
06	-14758.4 14.7	-22615.7 6.6	-29693.2 -3.5	-35844.1 -13.9	-41004.3	-45192.4 -27.9	-48496.8 -29.0	-51049.6 -25.3	-52992.0 -17.5	-54441.3 -6.4	-55471.8 6.6	-56119.2 20.2	-56407.0 33.2	-56380.4 44.6	-56121.0 53.9	-55725.3 60.9	-55250.9 66.0	-54659.4 69.9	-53798.2 73.3	06
82	-14468.3	-22161.2 -16.5	-29001.4 -26.0	-34852.5 -34.9	-39677.2 -41.1	-43528.6 -43.4	-46526.7 -41.0	-48827.3 -34.1	-50586.4	-51931.4 -9.4	-52945.0 5.8	-53669.4 21.2	-54131.2 35.5	-54371.0 47.7	-54456.1 57.2	-54460.1 63.8	-54412.7 68.1	-54249.4 70.9	-53798.2 73.3	85
08	-13979.8 -23.3	-21463.8 -32.6	-28029.4 -42.2	-33553.8	-38029.1 -55.0	-41543.5	-44248.7 -50.8	-46321.9 -41.7	-47931.1 -28.7	-49209.2 -13.0	-50242.9 4.2	-51079.1 21.3	-51746.9 37.1	-52282.3 50.3	-52738.0 60.2	-53163.2 66.7	-53558.6 70.1	-53833.3 71.9	-53798.2 73.3	80
75	-13364.6 -28.1	-20607.8 -38.3	-26872.3 -48.5	-32050.7 -56.7	-36164.9 -61.3	-39339.0 -61.3	-41757.2 -56.4	-43618.6 -46.8	-45101.5 -33.0	-46341.0 -16.3	-47424.4 2.1	-48399.9 20.7	-49297.5 38.0	-50149.0 52.5	-50992.1 63.0	-51851.3 69.4	-52697.8 72.2	-53415.0 72.9	-53798.2 73.3	75
70	-12692.0 -22.5	-19677.8 -33.1	-25626.8 -43.9	-30447.2	-34190.2 -58.6	-37016.8 -59.9	-39146.1 -56.4	-40801.5 -47.9	-42172.1 -35.1	-43393.2 -18.6	-44548.3 0.4	-45683.3 20.1	-46827.1 38.7	-48006.3 54.3	-49244.5 65.6	-50541.4 71.9	-51839.6 74.1	-52998.1 73.8	-53798.2 73.3	70
92	-12042.0 -9.7	-18766.2 -19.8	-24395.1 -30.5	-28850.0 -40.1	-32210.8	-34677.5 -50.8	-36507.9 -50.0	-37954.4	-39218.1	-40432.9	-41674.3 -0.1	-42981.6 20.1	-44379.7 39.6	-45889.3 56.2	-47520.4 68.1	-49249.9 74.4	-50993.1 76.0	-52586.2 74.8	-53798.2 73.3	99
99	-11521.5 5.1	-17987.9	-23296.0 -12.2	-27377.8	-30341.6 -29.5	-32429.2	-33942.9	-35168.1 -35.5	-36320.7	-37531.5 -15.6	-38864.3 1.5	-40347.1 21.3	-41998.2 41.3	-43831.6 58.4	-45844.6 70.6	-47992.9 76.8	-50167.2 77.8	-52183.1 75.7	-53798.2 73.3	09
E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	\$	-50	-55	09-	29 -	-70	-75	08-	-85	-90 Lat	E. Long

E. Long	Lat 0	rĊ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	59 -	-70	-75	08-	\$C 80	-90 Lat	E. Long
175	-3951.6 30.2	-10560.4 34.2	-17421.2 33.1	-24242.0 29.1	-30746.3	-36730.1 22.5	-42090.3 23.5	-46820.1 27.4	-50977.6 32.5	-54640.9 36.8	-57858.5 39.0	-60606.3	-62764.0 37.9	-64125.5	-64452.0 39.8	-63555.4 45.2	-61379.8 53.6	-58040.0 63.5	-53798.2 73.3	175
170	-5377.4 41.5	-12037.1	-18928.6 40.8	-25767.3 34.7	-32279.7 28.4	-38259.8 24.4	-43600.6 23.9	-48291.6 26.2	-52388.9 30.0	-55968.1 33.2	-59073.6 34.5	-61677.1 34.0	-63658.2 33.0	-64819.9	-64942.4 36.3	-63860.9	-61538.6 52.4	-58098.4 63.1	-53798.2 73.3	170
165	-6767.0 48.4	-13483.5 49.3	-20400.9 45.3	-27247.3 38.5	-33756.6 31.5	-39725.0 26.6	-45043.7 24.9	-49699.3 25.8	-53743.4 27.9	-57245.7 29.6	-60242.5 29.9	-62698.4 29.0	-64493.6 28.1	-65443.9 29.1	-65354.6 33.3	-64090.1 41.0	-61636.1 51.4	-58122.6 62.8	-53798.2 73.3	165
160	-8040.2 50.0	-14826.0 50.1	-21773.3 46.3	-28626.1 40.3	-35129.3 34.1	41084.5	-46383.8 27.0	-51011.0 26.4	-55012.3 26.7	-58447.6 26.5	-61341.3 25.5	-63648.9 24.0	-65251.9 23.4	-65983.4 25.3	-65679.0 30.6	-64237.8 39.4	-61670.3 50.6	-58112.3 62.6	-53798.2 73.3	160
155	-9155.7 45.9	-16026.4 46.1	-23012.2 43.9	-29874.1 40.1	-36370.8 36.0	-42312.5 32.4	-47595.3 29.8	-52201.7 27.9	-56170.5 26.0	-59548.7 23.8	-62345.0 21.3	-64504.8 19.3	-65912.5 19.1	-66422.1 22.0	-65904.9 28.4	-64298.2 38.2	-61638.9	-58067.1 62.5	-53798.2 73.3	155
150	-10101.2 37.1	-17073.3 38.1	-24107.0 38.4	-30980.9 37.9	-37469.6 36.7	-43396.0 35.0	-48663.2 32.5	-53253.7 29.4	-57197.6 25.5	-60525.6 21.3	-63228.5	-65240.8 15.1	-66452.3 15.4	-66742.2	-66020.6 26.8	-64265.5 37.5	-61540.2 50.0	-57986.8 62.5	-53798.2 73.3	150
145	-10874.4	-17963.5 28.2	-25054.4 31.2	-31943.0 34.3	-38422.1 36.2	-44330.1 36.4	-49580.2 34.3	-54156.1 30.2	-58077.6 24.6	-61357.0 18.6	-63966.1 13.8	-65830.1 11.3	-66847.3 12.4	-66924.9 17.3	-66014.2 25.9	-64133.9 37.3	-61372.5 50.0	-57871.8 62.6	-53798.2 73.3	145
140	-11471.2	-18691.6 19.3	-25850.1 24.6	-32758.6 30.4	-39228.9 34.8	-45116.9 36.4	-50347.4 34.6	-54904.9 29.6	-58798.9 22.7	-62023.2 15.7	-64532.4 10.3	-66245.3 8.2	-67072.4 10.2	-66951.2 16.2	-65874.1 25.7	-63898.2	-61134.8 50.4	-57722.4 62.8	-53798.2 73.3	140
135	-11896.3 11.6	-19259.8 14.8	-26497.1 21.0	-33434.2 28.0	-39900.5	-45768.5 35.3	-50973.9 33.1	-55502.1 27.4	-59353.1 19.7	-62505.5 12.3	-64901.3 7.2	-66458.6 5.9	-67103.2 8.9	-66803.3 16.0	-65589.7 26.3	-63554.4 38.4	-60826.8 51.1	-57539.5 63.1	-53798.2 73.3	135
130	-12184.6	-19698.2 16.7	-27023.8 22.1	-33998.2 28.2	-40464.7 32.6	-46309.4 33.4	-51476.6 30.2	-55952.7 23.7	-59731.9 15.8	-62783.9 8.7	-65046.3 4.5	-66442.5 4.5	-66916.3 8.8	-66464.7 16.8	-65152.1 27.6	-63099.2 39.7	-60448.8 52.0	-57324.0 63.6	-53798.2 73.3	130
125	-12412.4	-20075.3 25.4	-27491.1 28.3	-34503.2 31.6	-40964.4 33.0	-46770.4 31.4	-51871.6 26.4	-56257.2 19.1	-59921.4 11.3	-62834.9 5.2	-64939.9 2.5	-66171.1 4.0	-66491.3	-65922.3 18.6	-64555.0 29.6	-62531.4	-60002.0 53.2	-57077.3 64.1	-53798.2 73.3	125
120	-12678.9	-20479.6 38.6	-27973.6 38.0	-35007.3 37.0	-41439.2 34.2	-47171.3 29.2	-52160.0 22.1	-56401.2 14.1	-59897.0 6.9	-62629.2 2.3	-64553.7 1.5	-65621.1 4.7	-65812.0 11.7	-65166.9 21.2	-63795.0 32.2	-61851.4 43.6	-59488.4 54.6	-56801.2 64.8	-53798.2 73.3	120
E. Long	Lat 0	κ.	-10	-15	-20	-25	-30	-35	40	-45	-50	-55	09-	-65	-70	-75	08-	-85	-90 Lat	E. Long

E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40		-50	55-	09-	-65	-70	-75	08-	-85	-90 Lat		E. Long
235	4446.6	-993.4 12.2	-6269.9 19.8	-11369.7 24.8	-16313.7 27.8	-21125.8 30.3	-25802.5 34.0	-30304.2 40.6	-34572.7 50.4	-38563.0 62.4	-42262.3 74.7	-45676.2 84.7	-48785.9 90.3	-51505.0 90.6	-53670.6 86.6	-55084.5 80.4	-55587.8 75.0	-55130.2 72.4	-53798.2 73.3		235
230	3918.4	-1583.9 0.1	-6976.2 7.7	-12218.6 13.1	-17309.3 17.0	-22259.6 20.6	-27063.1 25.4	-31680.8 32.8	-36052.3 43.2	-40124.9 55.8	-43873.4 68.6	-47289.7 79.2	-50343.6 85.5	-52941.0 86.7	-54917.5 83.5	-56080.7 78.1	-56283.6 73.5	-55489.9 71.6	-53798.2 73.3		230
225	3410.9	-2178.6	-7711.9 -7.5	-13115.7	-18358.2 4.0	-23433.7 9.4	-28333.9 16.1	-33027.0 25.1	-37460.6 36.5	-41583.8 49.8	-45365.4 62.9	-48784.7 73.8	-51796.1 80.5	-54292.4 82.3	-56102.0 79.9	-57034.1 75.5	-56952.1 71.8	-55835.5 70.8	-53798.2 73.3		225
220	2903.2 -35.9	-2791.8 -29.4	-8481.8 -22.5	-14057.4 -15.6	-19452.8 -8.5	-24642.1 -0.8	-29614.6 8.1	-34349.6 18.8	-38810.0 31.4	-42954.7 45.1	-46751.9 58.2	-50170.4 68.9	-53147.6 75.6	-55558.8 77.7	-57220.4 76.1	-57939.6 72.7	-57589.0 70.0	-56164.6 70.0	-53798.2 73.3		220
215	2397.3	-3415.7 -40.8	-9271.2 -34.2	-15023.8 -26.5	-20573.0 -17.7	-25870.4	-30900.9 3.0	-35656.0 15.2	-40117.2 28.5	-44258.9 42.2	-48054.2 54.8	-51463.9 64.8	-54408.6 71.0	-56744.0 73.1	-58271.6 72.0	-58793.9 69.6	-58190.6 68.1	-56474.7 69.1	-53798.2 73.3		215
210	1904.1	-4034.6	-10059.5	-15992.4 -31.7	-21698.4	-27105.0 -10.7	-32190.5 1.6	-36955.7 14.6	-41401.9 28.1	-45521.9 41.1	-49297.7 52.6	-52686.3 61.4	-55593.3 66.7	-57855.0 68.6	-59256.7 67.9	-59594.2 66.4	-58753.4 66.1	-56763.7 68.3	-53798.2 73.3		210
205	1421.1	-4645.9	-10840.4	-16954.4	-22821.1 -20.2	-28342.8	-33487.3	-38261.8 16.7	-42684.9 29.6	-46769.0 41.6	-50508.4 51.5	-53859.8 58.7	-56717.5 62.8	-58900.3 64.1	-60177.8 63.7	-60338.9 63.2	-59274.4 64.1	-57029.5 67.5	-53798.2 73.3		205
200	915.5	-5276.8	-11635.7	-17927.2	-23954.6 -14.0	-29595.4	-34804.1 8.3	-39589.8 20.4	43985.5	-48022.4 42.7	-51708.7 50.9	-55004.5 56.3	-57796.1 59.0	-59888.4 59.7	-61037.7 59.5	-61026.6 59.9	-59750.9 62.1	-57270.1 66.7	-53798.2 73.3		200
195	322.9	-5984.9	-12495.4	-18952.0 -12.4	-25131.6	-30887.3 3.8	-36159.2 13.8	-40955.1 24.4	-45318.8 34.7	-49298.2 43.6	-52915.2 50.1	-56135.5 53.9	-58841.0 55.3	-60826.5	-61838.5 55.4	-61656.2 56.7	-60180.3 60.2	-57483.9 65.9	-53798.2 73.3		195
190	-431.9	-6840.0	-13480.6	-20079.0 -0.1	-26389.7	-32244.6 10.8	-37569.1 18.5	-42367.9 27.4	-46692.4	-50603.9	-54136.8	-57262.0 51.0	-59859.9 51.4	-61719.2 50.9	-62581.5 51.3	-62226.0 53.6	-60560.2 58.4	-57669.1 65.2	-53798.2 73.3		190
185	-1403.1	-7893.1 6.4	-14635.5 9.8	-21343.2	-27753.5 13.2	-33681.0 16.3	-39038.8 21.7	-43827.7 28.8	-48103.8 36.2	-51938.0 42.5	-55373.8 46.4	-58386.4	-60855.7	-62568.3	-63266.5	-62734.3	-60888.3	-57824.4 64.6	-53798.2 73.3		185
180	-2594.6 16.0	-9149.6 21.4	-15963.9	-22744.4	-29218.0 19.8	-35187.3 20.1	-40555.9 23.1	-45320.6 28.6	-49539.7 34.8	-53289.8	-56618.9	-59504.5 43.6	-61826.1	-63372.2 42.0	-63891.3	-63178.6	-61162.3	-57948.4 64.0	-53798.2 73.3		180
E. Long	Lat 0	ķ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	08-	86 50	06-	Lat	E. Long

E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	84	-50	\$ 5	09-	59-	0.2-	-75	-80	-85	-90 Lat	E. Long
295	10762.7 -104.8	6116.4	1745.3 -61.8	-2230.1	-5731.9 -25.5	-8761.5 -14.0	-11410.3	-13842.9	-16266.7 4.4	-18897.0 12.0	-21921.8 22.6	-25460.4 35.8	-29521.4 50.2	-33978.1 63.6	-38586.6 74.0	-43054.4 80.1	-47136.8 81.6	-50712.2 79.1	-53798.2 73.3	295
290	11781.7	7005.0 -52.0	2467.7 -33.0	-1711.6	-5443.9	-8711.4	-11586.4 7.9	-14221.9	-16821.7 15.8	-19602.5 22.5	-22752.1 32.0	-26385.3 43.8	-30501.2 56.3	-34961.0 67.6	-39509.3 76.1	-43845.3 80.8	-47722.2 81.4	-51027.2 78.7	-53798,2 73,3	290
285	12280.1	7356.5 -23.9	2650.8 -8.6	-1721.9 3.5	-5665.9 11.9	-9147.7 17.1	-12221.8 20.3	-15028.5 23.2	-17767.1 27.4	-20654.9 34.0	-23880.9 42.8	-27557.2 53.2	-31676.0 63.7	-36089.5 72.6	-40533.6 78.8	-44701.8 81.7	-48346.2 81.3	-51360.4 78.3	-53798.2 73.3	285
280	12262.4	7183.0	2317.0	-2226.4	-6350.6	-10013.1 26.8	-13255.1 29.6	-16204.9 33.1	-19054.4 38.3	-22018.4 45.4	-25284.2 54.0	-28961.0 63.2	-33036.1 71.6	-37356.4	-41653.5 81.8	-45618.6 82.7	-49004.6 81.2	-51709.6 77.8	-53798.2 73.3	280
275	11781.6	6554.6 11.2	1552.1 19.3	-3126.0 25.1	-7390.1 29.1	-11197.6 32.3	-14581.8 36.0	-17658.7 40.9	-20608.4 47.6	-23635.7 55.8	-26921.1 64.6	-30568.5 72.9	-34562.3 79.4	-38748.2	-42859.2 84.7	-46589.0 83.7	-49692.9 81.0	-52072.2 77.4	-53798.2 73.3	275
270	10939.8 10.9	5593.4 18.4	493.0 23.9	-4275.8 27.9	-8639.4 31.3	-12563.5 35.0	-16077.6 39.9	-19283.7 46.6	-22342.0 55.1	-25438.7 64.6	-28739.8 73.8	-32341.6 81.5	-36226.9 86.4	-40245.6 88.3	-44137.9 87.4	-47604.5 84.6	-50405.8 80.8	-52445.7 76.9	-53798.2 73.3	270
265	9871.7 15.7	4448.9	-704.3 25.3	-5521.8 28.6	-9953.6 31.9	-13979.7 36.2	-17627.8 42.4	-20981.3 50.7	-24172.3 60.7	-27358.4 71.3	-30684.3	-34235.8 88.4	-37996.4	-41824.7 92.4	-45473.5 89.7	-48655.3 85.2	-51137.8 80.5	-52827.3 76.4	-53798.2 73.3	265
260	8717.5 17.4	3264.5	-1901.4 26.1	-6738.0 29.3	-11222.0 32.7	-15350.6 37.4	-19148.8 44.2	-22676.8 53.3	-26031.1 64.2	-29332.6 75.7	-32699,1 85,9	-36204.2 93.1	-39833.7 96.3	-43458.6 95.4	-46848.4 91.2	-49730.6 85.5	-51882.8 80.0	-53214.3 75.8	-53798.2 73.3	260
255	7597.0 17.6	2150.2 23.2	-3005.0 27.5	-7849.7 31.0	-12386.7 34.5	-16629.2 39.0	-20597.5 45.5	-24325.5 54.6	-27869.5 65.7	-31309.4	-34732.8 88.1	-38200.2 95.5	-41700.4 98.5	-45118.9 97.0	-48243.5 92.0	-50819.1 85.4	-52634.7 79.4	-53603.9 75.2	-53798.2 73.3	255
250	6592.4 17.0	1168.8 24.0	-3974.7	-8837.1 33.2	-13441.8 36.5	-17813.9 40.3	-21967.3 45.9	-25909.4 54.2	-29656.6 64.9	-33247.5 76.7	-36739.7 87.7	-40179.9 95.5	-43559.6 98.8	-46777.6 97.2	-49640.0 91.8	-51909.4 84.9	-53387.3 78.6	-53993.1 74.6	-53798.2 73.3	250
245	5740.9 15.0	336.1 23.5	-4816.0 29.9	-9722.4 34.2	-14417.6 37.1	-18932.5 40.0	-23274.6 44.6	-27428.1 51.8	-31374.4 61.9	-35115.8 73.7	-38681.6 84.9	-42104.9 93.4	-45377.5 97.3	-48408.8 96.1	-51020.2 90.9	-52990.4 83.8	-54134.2 77.6	-54379.1 73.9	-53798.2 73.3	245
240	5037.7	-369.9	-5564.8 27.3	-10550.3 31.9	-15360.1 34.6	-20024.6 36.9	-24545.1 40.7	-28889.6	-33014.1 56.9	-36892.1 68.7	-40529.0 80.4	-43944.2 89.6	-47126.5 94.3	-49990.4 93.8	-52368.2 89.1	-54051.8 82.4	-54869.6 76.4	-54759.0 73.2	-53798.2 73.3	240
E. Long	Lat 0	Š.	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	-60	5 9-	-70	-75	-80	-85	-90 Lat	E. Long

E. Long	Lat 0	ιċ	-10	-15	-20	-25	-30	-35	40	45	-50	-55	09-	-65	-70	-75	-80	-85 S	-90 Lat	E. Long
355	-13979.6	-18225.4 -64.0	-21125.6 -60.2	-22827.7 -49.7	-23609.0 -31.9	-23775.9 -7.8	-23592.9 20.2	-23272.5 48.6	-23014.2 73.9	-23045.6 93.2	-23622.8 105.1	-24978.6 109.9	-27252.4 109.4	-30447.6 105.7	-34440.9 100.6	-39028.4 95.1	-43968.6 89.0	-48993.6 81.9	-53798.2 73.3	355
350	-13105.6 -80.8	-17147.3	-19910.2 -76.4	-21579.6 -65.5	-22445.8 -47.5	-22793.5 -23.2	-22838.7	-22738.8 34.6	-22653.8 61.4	-22799.3 82.4	-23442.3 96.3	-24836.1 103.1	-27137.4 104.4	-30356.7 102.2	-34370.8 98.4	-38973.9 93.9	-43925.6 88.6	-48964.7 81.9	-53798.2 73.3	350
345	-11914.7 -100.6	-15815.9 -98.9	-18508.7 -92.3	-20199.3 -80.0	-21180.3	-21716.0 -36.8	-21984.4	-22102.3 20.7	-22201.2 47.7	-22487.0 69.6	-23232.5 85.0	-24703.5 93.8	-27065.7 97.3	-30332.7 97.3	-34378.8 95.4	-38995.4 92.3	-43943.2 88.0	-48969.7 81.8	-53798.2 73.3	345
340	-10348.0 -120.6	-14179.2 -116.6	-16883.1 -107.6	-18664.6 -93.1	-19803.3 -73.1	-20540.7 -48.5	-21027.9 -20.9	-21358.0 7.4	-21647.1 33.6	-22096.1 55.5	-22979.7 71.9	-24567.4 82.7	-27026.1 88.7	-30366.9 91.4	-34458,9 91.8	-39089.4 90.5	-44020.0 87.3	-49008.1 81.7	-53798.2 73.3	340
335	-8371.7 -140.0	-12198.5 -133.7	-14995.2 -121.9	-16942.3 -104.8	-18288.5 -83.3	-19248.5 -58.4	-19955.7 -31.6	-20495.8 -5.0	-20983.6 19.8	-21620.1 41.1	-22678.0 58.1	-24422.3 70.6	-27013.5 79.3	-30454.8 84.8	-34607.8 87.8	-39253.5 88.5	-44154.3 86.5	-49079.4 81.5	-53798.2 73.3	335
330	-6004.6	-9879.9 -149.3	-12839.3 -134.5	-15018.4	-16619.3 -91.5	-17824.7	-18758.6 -40.6	-19512.9 -15.8	-20213.0 7.0	-21063.7 27.2	-22332.5 44.4	-24272.2 58.5	-27030.0 69.7	-30597.0 78.2	-34824.4 83.8	-39486.2 86.4	-44344.9 85.7	-49182.9 81.3	-53798.2 73.3	330
325	-3332.9	-7294.9 -161.7	-10465.5 -144.2	-12922.7 -121.8	-14811.3	-16280.1 -71.5	-17449.1	-18426.7 -24.4	-19356.5 -3.8	-20449.2 15.0	-21962.9 32.0	-24132.4 47.4	-27085.8 60.8	-30798.7 71.9	-35110.4 80.0	-39786.9 84.5	-44590.4 84.9	-49317.7 81.0	-53798.2 73.3	325
320	-502.5 -181.9	-4573.9 -169.1	-7978.1 -149.0	-10731.9	-12920.9 -98.4	-14660.7 -73.2	-16071.5 -50.3	-17283.2	-18460.4	-19819.3 5.3	-21605.0 21.8	-24029.5 38.0	-27198.4 53.3	-31069.9 66.6	-35469.9 76.8	-40155.9 82.8	-44889.5 84.1	-49482.6 80.8	-53798.2 73.3	320
315	2313.7 -184.3	-1876.3 -169.1	-5511.7 -146.8	-8554.8 -120.8	-11037.3 -94.4	-13045.8	-14702.4	-16157.8 -31.8	-17596.3 -16.2	-19236.7 -1.1	-21308.8 14.7	-24000.0 31.2	-27391.8 47.7	-31424.0 62.7	-35908.7 74.3	-40593.9 81.4	-45240.9 83.4	49676.5 80.4	-53798.2 73.3	315
310	4954.5	646.9	-3200.8 -136.2	-6509.2 -109.8	-9267.6 -84.3	-11537.9	-13442.8 -44.0	-15148.7 -29.4	-16854.0 -16.6	-18777.9 -3.5	-21134.3	-24086.8 27.6	-27693.9 44.6	-31876.8 60.3	-36433.6 72.7	-41102.2 80.4	-45643.2 82.8	-49898.1 80.1	-53798.2 73.3	310
305	7295.7	2875.8 -141.5	-1160.4	-4707.5 -91.6	-7723.7	-10250.3 -48.9	-12405.4	-14363.3	-16330.1 -12.9	-18523.4	-21143.7 11.5	-24334.2	-28133.3 44.0	-32444.4 59.7	-37051.2 72.2	-41681.6 79.9	-46094.6 82.3	-50145.7 79.8	-53798.2 73.3	305
300	9251.9 -136.0	4721.8	514.9	-3251.2	-6513.6	-9293.7 -32.1	-11699.0 -21.1	-13902.5 -13.0	-16112.7 -5.5	-18545.5 3.6	-21392.5 15.5	-24782.1 30.1	-28735.8 45.9	-33141.2 60.8	-37767.6 72.6	-42332.6 79.8	-46593.2 81.9	-50417.7 79.4	-53798.2 73.3	300
E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	08-	-85	.90 Lat	E. Long

E. Long	Lat 90	88	08	75	70	92	09	25	20	45	40	35	30	25	20	15	10	ın	0 Lat	E. Long
55	2134.8	3830.5 -9.4	5635.5 -11.9	7591.4 -13.5	9732.4	12066.3	14576.1	17233.2 -3.6	20012.8	22896.0 0.3	25852.3	28809.0	31625.7	34091.5 -5.3	35951.9 -5.5	36959.1 -4.5	36930.8	35802.3 0.1	33659.8	55
20	2134.8	3974.3 -9.3	5881.4	7882.2 -13.0	10009.0	12278.9 -10.1	14692.4	17242.3	19923.5 -1.0	22731.1 0.1	25639.1 -0.1	28569.6 -1.2	31368.4	33808.1 -3.9	35620.1 -4.9	36548.6 -5.6	36409.2 -6.2	35139.5 -6.4	32831.8 -6.1	90
45	2134.8	4104.3	6099.0	8133.1 -12.5	10241.4	12452.3	14783.6	17247.1	19854.7	22612.0 0.1	25495.2 0.6	28417.8 0.6	31210.4 0.2	33628.5 -0.7	35391.1 -2.3	36236.5	35980.7 -8.2	34564.7 -11.9	32086.8 -14.7	45
40	2134.8	4219.7	6287.7	8345.2 -12.1	10432.8	12591.6 -8.8	14855.3 -6.1	17252.0 -3.6	19807.1 -1.5	22534.3 0.1	25409.0 1.6	28335.0 2.9	31127.4	33525.9 3.6	35238.8 1.7	36001.5 -2.4	35632.2 -8.5	34076.3 15.5	31438.0	40
35	2134.8	4319.7 -9.1	6447.6	8520.5 -11.5	10587.4	12702.4	14912.9	17260.1	19779.4	22489.2 0.1	25362.3 2.3	28293.0 4.9	31082.6 7.2	33458.0 8.0	35120.5 6.2	35805.2 1.1	35333.7 -7.2	33656.3 -17.1	30881.7 -26.7	35
30	2134.8	4404.0	6579.2 -10.8	8661.1	10709.2 -9.7	12789.5 -7.6	14961.1 -5.5	17274.2	19769.9 -2.1	22468.3 -0.1	25338.2 2.8	28265.5 6.4	31041.2	33384.7 11.6	34994.7 10.2	35608.2 4.8	35051.2 -4.6	33278.3 -16.6	30402.1 -28.8	30
25	2134.8	4472.0	6682.7 -10.5	8769.1 -10.4	10801.5	12857.2	15003.6 -5.0	17296.2 -3.6	19777.9 -2.1	22466.7 -0.1	25326.4 3.1	28236.1 7.2	30981.5 11.4	33280.1 14.0	34832.4 13.3	35380.0 8.2	34753.7 -1.4	32912.5 -14.3	29973.0 -28.2	25
20	2134.8	4523.6	6758.9	8846.3	10867.2	12908.2 -6.1	15042.6	17327.2 -2.9	19803.0 -1.6	22482.7 0.4	25323.8 3.5	28200.5 7.7	30897.5 12.1	33135.4 15.2	34620.9 15.2	35101.9 11.0	34415.5 2.0	32527.0 -10.8	29559.4 -25.5	20
15	2134.8	4558.6 -8.6	6808.1 -9.8	8894.0	10908.0 -7.4	12944.1 -5.1	15078.4 -3.1	17366.5	19843.9 -0.2	22515.5 1.7	25331.0 4.5	28161.2 8.4	30793.0 12.5	32954.4 15.6	34360.4 16.0	34767.2 12.6	34020.2 4.7	32095.0 -7.2	29126.8 -21.9	15
10	2134.8 -8.5	4576.9	6830.7 -9.4	8913.1 -8.6	10924.6 -6.5	12964.5 -4.0	15109.4 -1.6	17411.0 0.3	19896.7 2.0	22561.4 4.0	25346.5 6.7	28120.0 9.9	30673.8 13.3	32744.9 15.7	34058.7 16.0	34380.4 13.1	33566.3 6.3	31607.4	28657.3 -18.8	10
ĸ	2134.8	4578.4	6826.9	8903.8	10916.7 -5.6	12967.8 -2.7	15132.0 0.2	17454.8	19953.8 5.1	22612.3 7.4	25363.0 9.9	28072.7 12.5	30539.6 14.8	32512.0 16.1	33725.7 15.6	33955.5 12.6	33070.1 6.2	31079.7 -3.9	28161.7	vo.
0	2134.8	4563.2	6796.9	8865.7 -7.3	10882.9	12951.0 -1.3	15140.8	17489.9 5.6	20004.5	22655.6 11.7	25367.9 14.3	28008.2 16.2	30383.7 17.3	32255.0 17.1	33369.6 15.2	33511.6 11.3	32561.5 4.6	30549.7 -5.3	27678.7 -18.6	0
E. Long	Lat 90	85	80	75	70	65	09	55	50	54	40	35	30	25	20	15	10	v o	0 Lat	E. Long

E. Long	Lat 90	\$28	08	57	97	92	09	52	90	45	94	35	30	25	20	15	10	w	0 Lat	E. Long
115	2134.8	1698.3 -13.9	2440.9	4313.3 -22.6	6952.3 -27.6	10177.8 -32.6	13803.9 -36.3	17624.3 -38.1	21454.8	25161.7 -34.3	28654.7 -29.0	31857.0	34680.9	37027.2 -8.0	38807.8 -2.0	39969.0 2.6	40496.2 5.8	40398.0 8.0	39685.2 9.7	115
110	2134.8	1839.1 -12.9	2447.7 -17.6	4109.8	6598.2 -26.0	9741.0	13349.9	17211.9	21130.6	24957.1	28586.1 -27.8	31927.8 -23.1	34882.4	37338.8 -12.7	39195.6 -7.5	40385.7	40885.2	40701.0	39852.3 11.8	110
105	2134.8	2000.0	2558.4	4057.5	6411.9	9471.8 -28.0	13048.5	16923.8	20892.9	24795.4 -27.2	28514.6 -24.4	31951.3 -21.4	34998.5 -18.2	37536.9 -14.8	39453.3 -10.7	40666.2	41137.7	40868.4	39882.9 13.1	105
100	2134.8	2176.2	2761.0 -15.2	4163.6	6409.7	9386.8 -25.5	12911.6 -26.6	16765.3 -25.9	20739.4 -24.0	24667.1 -21.4	28424.8 -19.1	31908.8	35008.5 -15.8	37600.1 -14.0	39560.0 -11.2	40790.5	41236.0	40886.1	39768.6 13.5	100
96	2134.8	2363.3	3033.6	4408.6	6579.9 -21.3	9475.5 -23.1	12926.5	16720.3	20650.7	24550.8	28295.8	31781.1	34896.6	37515.4 -10.9	39504.5 -9.2	40748.1	41170.5	40747.5	39508.7 13.3	95
06	2134.8	2556.9	3352.5 -13.5	4756.8	6887.1	9704.9	13061.6	16758.3	20599.0	24423.3	28110.5	31559.3 -6.2	34661.3 -6.4	37286.9 -6.6	39292.6 -5.6	40544.0 -2.7	40943.9	40454.3 7.8	39106.8 13.1	06
85	2134.8	2753.2 -10.1	3697.0 -13.0	5168.7	7285.6	10030.1	13276.0	16844.6	20557.1	24266.9	27862.7	31248.5	34317.5	36935.6	38947.0 -1.9	40198.0	40571.2	40016.7	38570.1 13.7	88
80	2134.8	2949.0 -9.9	4050.9	5610.4	7731.2	10406.0	13529.7	16947.8 -9.6	20505.1	24074.1	27557.1 1.2	30865.1 1.4	33890.8 0.6	36492.7	38500.1 0.9	39740.0 3.5	40077.4 7.6	39453.8 12.0	37911.7 15.2	80
75	2134.8	3141.3	4402.1	6055.9	8188.2	10794.8	13790.0	17045.3	20432.5	23847.5	27208.3	30432.8	33411.5	35991.9 0.8	37986.4	39203.5	39493.3 9.1	38792.4 13.7	37152.6 16.9	75
70	2134.8	3327.6	4741.6	6486.8	8630.3	11168.9	14034.0	17124.0	20338.8	23598.4	26837.4	29979.7 1.4	32911.2 0.1	35466.3 -0.5	37439.5 0.8	38621.8	38851.7 8.8	38063.5	36319.0 17.4	70
99	2134.8	3505.7 -9.5	5063.1	6890.9	9040.7	11510.5	14248.9	17179.8	20230.4	23344.1	26470.3	29537.0 -0.2	32423.6 -1.9	34950.0	36893.3	38029.0	38186.4	37299.2	35438.7 15.5	59
09	2134.8	3673.9	5362.1 -12.0	7260.4	9409.4	11810.6	14429.5	17214.4	20118.0	23104.2	26134.1	29137.2 -1.6	31984.2	34479.9	36385.0	37462.1	37533.5 2.1	36533.4 6.5	34541.0 10.5	09
E. Long	Lat 90	82	08	75	20	99	09	55	20	45	40	35	30	25	20	15	10	w	0 Lat	E. Long

E. Long	Lat 90	88	80	75	70	\$9	09	55	50	8.	40	35	30	25	20	15	10	w	•	Lat	E. Long
175	2134.8	1506.7	4507.3	8023.9	11644.9	15114.3	18215.0	20805.1	22840.1	24370.3	25519.9 15.4	26455.5 15.6	27350.8 8.8	28350.0 -2.7	29535.7 -15.3	30904.6	32359.0	33720.9	34769.0	-25.4	175
170	2134.8	1509.2	4471.3	7984.7	11624.1	15127.2	18276.0	20932.7	23057.6	24698.6	25966.4 12.8	27007.2 13.2	27974.7	29002.3	30172.5	31489.9	32868.8	34142.6	35099.1	-20.7	170
165	2134.8	1499.2	4391.2	7877.5	11520.9	15056.9	18266.3	21012.2	23254.2	25033.4	26445.2 9.1	27614.0	28672.7	29740.8	30897.6	32154.1	33437.4	34595.9 -21.5	35432.2	-15.5	165
160	2134.8	1479.6	4268.8	7702.8	11333.5	14898.4	18177.6	21031.2	23413.2	25354.2	26933.1 4.8	28252.6 7.3	29423.7 4.3	30549.3	31701.3	32894.8	34069.7	35093.3 -15.5	35786.9	-10.5	160
155	2134.8	1454.1	4106.8	7462.2	11061.2	14647.1	18000.3	20975.2 -29.6	23515.5	25638.5 -8.4	27405.5 0.1	28898.2	30204.8	31408.6	32570.1	33705.2	34766.6	35642.8 -9.6	36177.5	9'9-	155
150	2134.8	1427.5	3909.5	7159.1	10704.9	14299.9	17725.9 -38.7	20829.7	23541.8 -24.0	25863.2 -13.8	27837.1	29524.6 1.5	30990.3 4.1	32294.9 3.6	33483.9	34570.9 -1.5	35520.7 -3.6	36243.7	36608.9	6. 0.	150
145	2134.8	1405.6 -19.5	3682.8	6799.3	10269.1	13857.3 -39.7	17349.5	20584.0	23475.6	26007.2 -19.1	28203.7 -9.4	30105.1 -1.3	31751.8	33179.8 6.9	34416.2 7.0	35469.7 5.3	36315.6 2.7	36886.4	37076.9	4.7-	145
140	2134.8	1395.0 -19.0	3435.1 -21.3	6391.9	9762.3 -34.5	13325.8 -39.4	16873.0	20234.2	23307.0 -32.6	26055.3 -23.9	28484.7 -13.9	30614.3	32459.8 3.8	34031.2	35335.2 11.5	36372.7 10.8	37127.8 7.7	37553.7 3.2	37570.7	4.I.	140
135	2134.8 -8.5	1402.5	3178.1	5950.1 -26.6	9199.3	12719.4	16307.8	19787.0 -40.4	23037.1 -35.8	26002.2	28668.1	31033.0	33088.4	34818.1	36207.2 13.8	37247.5 14.1	37928.9 11.0	38222.9	38074.2	1.0-	135
130	2134.8	1434.1	2927.5 -20.5	5492.5 -25.6	8602.0 -32.0	12062.2	15677.5 -41.0	19262.9 -41.3	22681.5 -38.1	25857.0 -31.5	28755.3 -22.2	31354.1 -11.4	33621.6 -0.8	35516.7 7.9	37003.5 13.3	38063.4	38689.2	38867.7 7.5	38565.0	9	130
125	2134.8	1493.5	2704.0 -20.0	5044.3 -24.6	8001.1 -30.6	11388.8	15017.9	18696.5	22270.8	25644.2 -33.9	28763.1 -25.7	31585.3	34057.6 -5.2	36116.3	37706.2 9.9	38797.2 12.6	39382.7 11.7	39460.9 8.4	39016.2	}	125
120	2134.8	1582.0	2532.9	4638.2	7435.8	10743.7	14376.0	18133.7	21847.0	25399.9	28719.8 -28.1	31746.0	34406.6	36618.3	38308.4	39435.3 8.1	39990.0 9.2	39978.1 8.5	39398.7	!	120
E. Long	Lat 90	\$2	08	75	70	99	09	55	20	45	40	35	30	25	20	15	10	vo.	0	Lat	E. Long

E. Long	Lat 90	82	08	75	0.2	99	09	22	20	45	40	35	30	25	20	15	10	NO.	0 Lat	E. Long
235	2134.8	720.5	1698.0 -14.4	3708.9 -8.1	6126.6 -2.9	8951.5	12080.1 5.2	15293.6 5.4	18336.9	21014.9	23250.9 -8.0	25083.1 -14.2	26611.1 -20.0	27927.8 -25.2	29073.3 -29.8	30026.7 -33.6	30732.0 -36.3	31137.4	31226.3	235
230	2134.8	725.3	2119.6 -15.1	4346.0	6931.1 -7.6	9852.5	12992.9 0.5	16135.9 2.1	19041.5 1.3	21538.2	23576.5	25220.5	26591.5 -16.2	27799.4 -20.9	28896.0 -25.3	29865.1 -29.1	30644.9 -32.1	31166.0	3138 5.5 -33.7	230
225	2134.8	780.7	2516.6 -16.0	4947.1	7692.3 -11.8	10703.7 -8.1	13848.1	16910.8 -1.4	19669.2	21978.4 -1.9	23818.7	25281.1	26508.2 -12.2	27625.1 -16.2	28692.5 -20.0	29696.6	30568.8 -26.7	31220.9 -29.1	31581.7 -30.2	225
220	2134.8	868.2 -23.9	2885.2 -16.9	5505.9 -16.8	8400.0 -15.6	11491.8	14631.9 -8.5	17607.8 -4.9	20215.0 -2.6	22337.3 -2.1	23985.7 -3.1	25279.1 -5.3	26380.3 -8.0	27426.9 -11.1	28485.5	29541.8 -17.8	30518.4 -21.2	31308.2 -24.4	31811.8 -27.0	220
215	2134.8	970.7 -23.0	3222.3 -17.8	6017.2 -19.1	9046.9 -19.1	12208.2	15336.5 -12.5	18222.1 -8.0	20679.9 -4.2	22622.3 -1.9	24091.5 -1.2	25233.0 -1.8	26228.4	27225.4 -5.9	28293.8 -9.0	29415.5 -12.6	30502.8 -16.6	31429.8 -20.8	32070.9 -24.8	215
210	2134.8 -8.5	1076.1 -22.3	3525.0 -18.7	6476.9	9627.6	12847.5	15958.1 -16.0	18754.3 -10.5	21070.5	22847.3 -0.9	24156.3 1.5	25167.1 2.1	26077.5	27043.4 -1.3	28135.3	29330.0 -8.9	30528.4 -13.8	31586.8 -18.9	32355.7 -24.0	210
205	2134.8 -8.5	1176.8	3790.8 -19.6	6881.7	10138.6 -24.9	13407.0	16497.0 -18.8	19209.2 -12.3	21398.3	23031.7 0.8	24206.4	25111.7	25958.2 5.4	26907.5 2.4	28030.3 -2.1	29298.3 -7.5	30601.7 -13.3	31780.7 -19.1	32664.5 -24.6	205
200	2134.8 -8.5	1267.8	4017.3	7228.6	10577.5	13886.4	16955.9 -21.1	19594.9 -13.4	21678.5	23198.2	24271.2 8.5	25100.5 10.4	25904.2 9.0	26847.5	28001.4 -1.5	29334.8 -8.4	30729.8 -15.1	32013.2 -21.2	32995.6 -26.3	200
195	2134.8	1346.1	4202.7 -21.0	7515.3 -26.2	10942.7 -29.3	14286.2	17339.6	19921.6	21927.5	23369.5	24379.0 12.0	25165.0 13.9	25947.3 11.4	26891.9	28071.4	29454.8	30920.7 -18.8	32285.8	33345.6 -28.3	195
190	2134.8	1409.7	4345.5	7739.8	11233.2	14608.0	17653.5	20199.4	22160.2	23564.6 7.9	24551.4 14.8	25328.2 16.4	26110.3 12.5	27061.7 4.4	28257.5 -5.8	29670.6 -15.6	31180.4	32598.0 -28.0	33707.7 -29.9	190
185	2134.8	1457.8 -20.4	4444.3	7900.4	11447.8	14853.1	17902.5	20436.7	22387.3	23795.3 9.3	24800.1 16.4	25600.8 17.4	26402.7 12.2	27365.6	28567.3 -9.5	29987.3 -20.1	31510.0 -27.5	32945.9 -30.6	34072.0 -30.2	185
180	2134.8	1490.0	4498.3	7995.5	11585.6	15022.2	18089.6	20638.4	22614.3	24065.4	25125.9 16.7	25980.6 17.1	26820.8	27799.3	28996.9	30401.4	31905.1 -30.2	33322.2	34427.9 -28.7	180
E. Long	Lat 90	82	08	25	70	99	09	55	50	5	40	35	30	25	20	15	10	w	0	E. Long

E. Long	Lat 90	85	08	75	70	59	09	55	50	45	40	35	30	25	20	15	10	vs	•	Lat	E. Long
295	2134.8	2960.4	3894.5	5005.2	6446.8	8331.6 26.8	10648.0 35.0	13263.8 39.6	15987.6 41.1	18631.1 40.1	21045.6 37.6	23131.9	24836.3	26143.3 20.6	27067.5 10.4	27640.8 -2.4	27893.6	27837.4	27463.0	-43.8	295
290	2134.8	2750.6	3481.2 -0.9	4404.7 7.9	5701.8 20.0	7509.0	9812.8 39.6	12462.7 43.0	15248.3 42.4	17969.2 38.9	20471.6	22655.1 26.8	24463.9	25877.0 9.0	26902.6	27569.2	27910.6	27947.4	27678.7	-49.2	290
285	2134.8	2534.0	3046.9	3768.3 10.4	4921.4 24.5	6671.6 36.7	8992.8	11706.5	14580.1 41.3	17400.6 34.8	20009.2 26.4	22305.1 16.9	24231.6	25763.7 -4.3	26902.4 -15.7	27670.4 -27.1	28100.8	28220.4	28037.2	-52.8	285
280	2134.8	2312.6	2594.4 0.5	3103.6 13.6	4132.7 30.0	5873.2 41.8	8260.0 46.2	11074.5	14061.6 37.4	16997.0 27.7	19718.6 16.5	22127.1 4.9	24168.6 -6.5	25817.3	27068.5 -27.9	27937.3	28451.9	28640.7 -50.4	28518.8	-53.4	280
275	2134.8	2088.5	2127.1 1.1	2422.5 17.8	3383.5	5194.3	7703.9	10651.4 40.9	13766.1 30.9	16816.9	19641.2 5.3	22144.9	24281.4	26028.7	27378.4 -37.0	28336.3	28921.3	29158.7 -50.6	29069.1	-51.0	275
270	2134.8	1864.3	1648.9	1747.6 24.1	2762.0 43.0	4741.9	7415.2 44.4	10505.8 35.6	13741.3	16888.4	19787.1 -5.1	22352.5	24549.5 -28.3	26363.8 -36.4	27785.3 -42.3	28809.1 -46.1	29441.7 -48.0	29701.9 -48.2	29614.8	D://4	270
265	2134.8	1643.1	1164.3	1140.2	2416.7 45.8	4620.6 45.2	7453.0 39.4	10666.4 29.2	13993.6 15.8	17200.8	20132.1 -12.9	22714.4 -24.8	24927.7 -33.9	26768.2 -40.2	28225.7 -44.0	29284.8 -45.8	29938.1 -46.0	30196.6 -44.9	30089.8	P:01	265
260	2134.8	1428.6	680.1	822.0 39.9	39.7	4869.6 38.5	7816.3 33.0	11111.4	14487.4 10.1	17708.4 -4.0	20623.7 -17.1	23173.8 -27.9	25355.9	27178.6 -40.7	28633.8 -43.2	29697.0 -44.0	30348.0 -43.6	30589.8	30455.7	7.01	260
255	2134.8	1226.0 -10.0	226.3 -12.6	1097.8	2955.3 28.3	5432.2 29.9	8446.5 26.4	11780.0 18.1	15159.0 6.6	18345.8 -6.1	21196.5 -17.9	23666.9 -27.6	25772.5 -34.5	27536.5 -38.9	28955.1 -41.2	29998.3 -42.1	30634.8 -41.9	30860.2 -40.8	30709.2		255
250	2134.8	1042.5	341.7	1692.7	3653.0 17.7	6204.0 21.6	9259.4 20.3	12596.2 14.3	15936.8 4.9	19045.0 -5.9	21787.2 -16.3	24136.2 -25.0	26127.4	27799.7	29157.2 -38.8	30168.0 -40.4	30792.4 -40.9	31017.6	30875.3		250
245	2134.8	888.1 -15.5	798.6	2364.0 1.0	4456.4 9.3	7089.7 14.2	10175.1 14.9	13489.1 11.2	16756.4	19748.2 -4.6	22345.5 -13.5	24540.6 -21.4	26389.5 -27.7	27948.8 -32.6	29232.9 -36.3	30211.6 -38.8	30839.1 -40.3	31092.0 -40.3	30992.9		245
240	2134.8	776.3 -19.1	1255.8	3044.0	5293.9 2.6	8020.6 7.8	11130.4	14402.0	17567.9 3.7	20413.6	22838.9 -10.5	24858.1 -17.6	26548.8 -23.8	27985.7 -29.0	29195.9 -33.4	30153.4 -36.8	30807.1 -39.0	31120.8 -39.6	31100.5		240
E. Long	Lat 90	82	08	75	70	99	09	55	50	45	40	35	30	25	20	15	10	ın	0	Lat	E. Long

E. Long	Lat 90	% %	08	75	0/	99	09	55	20	45	40	35	30	25	20	15	10	v o	•	Lat	E. Long
355	2134.8	4531.3	6740.4	8798.1 -6.7	10820.9	12909.8 0.2	15129.2	17507.1 8.6	20037.0 12.7	22677.6 16.4	25346.4 19.2	27912.8 20.8	30195.1 20.7	31969.4 18.9	32995.7 15.2	33067.2 9.6	32074.9 1.8	30065.4 -8.5	27262.1	ì	355
350	2134.8	4482.8	6657.3	8699.5 -6.0	10727.8 -2.7	12839.1 1.6	15090.1 6.5	17497.1	20040.1 16.6	22665.7 21.1	25285.5 24.4	27773.6 25.8	29962.9 24.9	31647.7 21.5	32603.6 15.9	32633.7 8.3	31636.3	29667.9 -12.9	26963.0		350
345	2134.8	4418.0	6547.2	8568.3	10599.7 -1.7	12733.2 3.0	15015.9 8.4	17451.0 14.2	20004.3 20.1	22610.4 25.3	25176.2 29.2	27582.2 30.7	29678.4 29.4	31281.5 25.0	32186.6	32209.7 8.0	31254.5	29378.4	26813.3	32.1	345
340	2134.8	4337.0	6409.7	8402.2 -4.6	10432.4 -0.7	12585.9	14898.8	17360.6	19922.1 22.9	22505.7 28.7	25014.2 33.2	27335.0 35.2	29337.1 34.0	30862.9 29.1	31733.6 20.6	31782.4	30918.4 -5.0	29191.2 -20.5	26814.3	-30.0	340
335	2134.8	4240.2	6244.2 -6.4	8199.1	10221.3	12390.1 5.7	14730.8	17217.9	19786.8	22347.7 31.1	24798.3 36.1	27032.9 38.8	28939.4 38.2	30389.2 33.3	31234.9	31334.0 11.2	30602.6	29075.8 -22.3	26934.2	-40.0	335
330	2134.8	4127.9 -6.9	6050.3	7956.5	9961.3 1.4	12138.9	14503.4	17014.5	19591.7 26.3	22132.4 32.6	24528.7	26679.7	28491.2	29864.7	30688.7	30850.7	30277.2	28985.8	27114.0	41.7	330
325	2134.8	4000.6	5827.6	7671.9	9647.6	11824.5 8.6	14207.4	16741.0	19328.6 27.4	21854.4	24204.1 38.7	26279.6 42.5	28002.2	29301.8 39.7	30103.9 31.1	30329.3	29919.1 -0.6	28874.2	27286.6	-40.5	325
320	2134.8	3858.8	5575.9 -4.9	7343.4	9275.3 4.1	11439.9 10.5	13833.7 16.9	16387.3 22.9	18987.8	21506.1	23820.8	25835.2 42.7	27482.6	28717.2 41.0	29498.2	29780.1 19.7	29521.2	28710.8 -18.2	27400.0	-38.3	320
315	2134.8	3703.1	5295.3 -4.3	6969.1	8840.5	10978.6 12.7	13374.0	15944.0 25.0	18559.7 30.0	21079.0	23373.8	25347.6	26941.8 43.4	28128.9 40.9	28895.5 33.4	29225.9 20.7	29097.2	28494.3	27436.1	-35.8	315
310	2134.8	3534.5 -6.1	4985.9	6547.9	8340.0 7.8	10435.8 15.4	12822.5	15404.5 27.9	18037.7	20567.7 35.9	22860.3	24818.5	26388.7	27554.7 39.1	28322.2 31.8	28698.7	3.2	28252.2	27413.5	-34.4	310
305	2134.8	3353.7 -5.9	4648.6	6079.5	7772.8	9810.3 18.6	12178.0 26.0	14768.7 31.5	17423.0	19975.1 37.6	22285.4	24256.4	25836.6 39.2	27014.7 35.5	27806.5	28235.1	28311.9	28029.5 -17.9	27375.4	-35.2	305
300	2134.8	3162.0	4284.3	5564.6	7140.2	9105.5	11447.3	14046.9	16729.3	19317.8	21668.2	23682.1	25307.9 34.9	26533.8	27378.1 20.6	27871.6	28037.0	27876.2	27374.9	-38.6	300
E. Long	Lat 90	82	08	75	70	9	09	55	20	45	40	35	30	25	20	15	10	w	0	Lat	E. Long

E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	94	4	-50	-55	09-	-65	-70	-75	08-	-85	.90 Lat	E. Long
55	33659.8 2.8	30746.6	27436.0 8.6	24170.2	21369.4	19326.4	18124.6	17639.9 10.5	17638.4	17892.7 -1.9	18239.4	18574.7	18825.2	18925.9 0.6	18817.2 7.8	18460.1	17864.4 19.2	17119.6 20.6	16415.2 19.4	55
20	32831.8	29741.9	26264.9	22873.2	20019.5	18017.8	16946.9 17.6	16651.1 16.5	16858.9	17317.3	17851.8	18356.2	18757.0	18985.8 1.4	18974.8 7.5	18673.7 13.8	18078.6	17265.6 20.0	16415.2 19.4	20
45	32086.8	28813.4	25157.8 -13.6	21617.9	18674.8 -0.1	16665.0 8.8	15671.7 15.7	15520.7 18.1	15911.6 15.9	16567.7 10.6	17299.6	17992.8	18567.9 -0.2	18949.4	19060.0 7.4	18837.4	18264.0	17400.6 19.3	16415.2 19.4	45
40	31438.0	27992.3 -25.7	24166.4	20477.0	17425.2	15366.4	14395.0 8.9	14334.1 14.9	14868.1 15.8	15701.9 12.6	16629.1 7.7	17520.9 3.5	18285.8 1.8	18837.3	19086.3 7.3	18958.7 12.3	18423.2	17524.5 18.7	16415.2 19.4	40
35	30881.7	27292.0 -33.6	23324.0 -35.9	19505.8 -32.9	16348.8	14218.0	13220.5	13191.0 7.4	13815.9 11.5	14791.6	15896.2 8.3	16982.9 4.9	17942.2 3.2	18671.4	19067.9 7.2	19045.1 11.5	18559.0 15.5	17637.5 18.1	16415.2 19.4	35
30	30402.1 -28.8	26709.2 -38.6	22642.3	18734.0 -43.1	15495.9 -37.0	13291.7 -26.7	12236.3	12184.5	12842.2 3.5	13911.2 6.4	15160.4 6.1	16423.9	17569.7 3.5	18474.4	19019.2 6.9	19104.8 10.7	18674.6 14.5	17739.9 17.4	16415.2 19.4	30
25	29973.0 -28.2	26225.2 -40.4	22113.3 -48.5	18166.9 -51.0	14887.7	12627.4 -39.9	11500.6	11385.1 -17.0	12019.6 -7.5	13127.1	14476.8 1.6	15886.5	17199.5	18267.9 3.9	18954.1 6.3	19145.5 9.8	18773.2 13.5	17831.9 16.7	16415.2 19.4	25
20	29559.4 -25.5	25807.0 -39.6	21711.8	17790.8 -56.9	14523.6 -57.5	12237.9 -52.7	11041.1	10833.6	11397.0 -20.3	12489.1	13890.5 -5.1	15407.8 -1.5	16859.7 0.8	18071.9 2.8	18885.7	19174.7 8.7	18858.0 12.4	17914.1 16.1	16415.2 19.4	20
15	29126.8 -21.9	25417.1 -37.3	21403.1 -51.0	17578.4 -61.1	14385.3 -66.0	12114.4 -64.7	10859.1 -57.7	10543.6	10998.9	12027.9 -22.6	13433.2	15016.3	16573.5	17903.4 1.0	18825.6 4.0	19199.3 7.4	18931.8	17986.7 15.4	16415.2	15
10	28657.3	25030.1 -34.9	21156.1 -50.9	17496.2	14439.8	12227.5 -75.7	10932.8 -71.3	10504.4 -61.4	10826.9	11755.8	13123.0 -22.6	14731.5 -13.1	16358.5	17776.5	18783.7	19225.2 5.9	18997.3	18050.1 14.7	16415.2	10
ю	28161.7 -17.5	24646.6 -33.9	20957.3	17514.8 -67.5	14645.4 -79.5	12530.3 -85.1	11219.6	10685.2 -74.7	10864.9	11669.5	12966.1	14564.3	16226.5	17701.7	18768.1 -0.1	19257.5 4.2	19056.8 8.9	18104.8 14.1	16415.2 19.4	ĸ
0	27678.7 -18.6	24295.9 -34.9	20816.3 -53.0	17618.2 -70.4	14962.2	12969.8	11666.4	11042.7 -85.9	11084.3	11755.1 -58.0	12959.6 -41.9	14518.8	16184.6 -16.6	17686.4	18784.7 -2.9	19300.1 2.2	19112.1 7.5	18150.9 13.4	16415.2 19.4	0
E. Long	Lat 0	κċ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	<u>-</u> 65	-70	-75	08-	-85 -	-90 Lat	E. Long

E. Long	Lat 0	ά	-10	-15	-20	-25	-30	-35	9	45	-20	-55	09-	59-	-70	-75	08-	-85	06-	Lat	E. Long
115	39685.2 9.7	38363.8 11.5	36448.9 13.6	33987.7 15.7	31071.4 17.1	27825.0 16.9	24380.4 14.2	20851.4 8.7	17330.1 0.8	13917.1	10792.0 -15.6	8336.3 -16.8	7201.1	7739.2	9342.6 23.4	11253.4 28.7	13108.8 29.2	14820.1 26.0	16415.2	19.4	115
110	39852.3 11.8	38362.1 16.0	36267.7 19.4	33638.6 21.3	30586.9 21.1	27257.3 18.2	23801.4 12.5	20354.3	17031.2 -4.9	13956.3 -13.6	11326.5	9476.9	8792.8	9310.2 11.9	10573.3 22.8	12085.5 28.0	13584.8 28.7	15013.3 2	16415.2	19,4	110
105	39882.9 13.1	38222.0 18.8	35948.9 22.6	33161.7 23.8	29998.9 21.7	26628.1 16.2	23221.7 8.0	19933.8 -2.0	16895.2	14235.6 -19.0	12125.4 -20.7	10786.1	10379.8 -1.8	10816.3 11.9	11769.3 21.9	12911.8 27.1	14067.5 28.1	15213.9 25.4	16415.2	19.4	105
100	39768.6 13.5	37943.1 19.4	35503.4 22.7	32581.3 22.4	29346.0 18.3	25988.9 10.6	22699.8	19644.1 -10.1	16953.5 -19.2	14738.6	13107.3 -22.7	12156.9 -14.3	11907.4	12234.5	12908.5 20.8	13715.5 26.1	14548.1 27.4	15419.3 25.1	16415.2	19.4	100
98	39508.7 13.3	37533.9 18.2	34950.6 20.0	31928.4 17.9	28668.4 11.8	25384.1 2.4	22275.6 -8.5	19507.0 -19.0	17193.7	15405.2	14175.4 -24.7	13503.2 -15.0	13333.7	13544.3 9.9	13972.9 19.3	14482.6 24.9	15019.0 26.7	15626.7 24.7	16415.2	19.4	95
06	39106.8 13.1	37002.9 16.4	34305.3 16.2	31222.3 12.1	27986.4	24828.1 -6.1	21948.9 -17.2	19497.8 -26.7	17558.0	16148.1	15236.6	14759.1	14626.5	14728.2	14948.3	15201.8 23.6	15473.3 25.8	15833.9 24.3	16415.2	19.4	96
88	38570.1 13.7	36355.6 15.3	33571.2 13.4	30462.8 7.7	27291.4	24299.0	21678.9	19553.1	17962.9	16876.5	16214.1	15876.4 -17.5	15761.9	15772.8	15824.0 15.8	15864.4	15905.5 24.9	16038.5 23.9	16415.2	19.4	85
08	37911.7 15.2	35598.5 15.8	32746.5 12.9	29637.0 6.3	26555.8	23751.8 -14.0	21402.7	19595.3 -31.9	18324.1	17513.2	17051.0	16822.2	16723.9	16669.4	16592.9 13.9	16464.1 20.8	16311.1 24.0	16238.5	16415.2	19.4	80
75	37152.6 16.9	34744.2	31831.9 14.5	28729.9 8.2	25747.3 -0.7	23137.1 -10.8	21057.0	19553.1 -27.8	18572.5	18001.7	17709.4	17576.3	17503.6	17413.6	17251.4	16997.2	16686.9	16432.3	16415.2	19,4	75
70	36319.0 17.4	33810.4	30832.3 16.9	27730.8 12.0	24838.4	22412.4	20588.9	19370.5 -19.9	18657.3	18303.3	18166.0	18128.3	18098.5	18005.5	17799.0	17462.0 18.0	17030.8 22.1	16618.3	16415.2	19.4	70
59	35438.7 15.5	32816.5	29755.5 17.7	26633.3 15.3	23808.3	21544.9	19958.0	19005.9	18542.4	18393.0	18407.8 -19.0	18475.2	18511.2	18448.9	18238.4	17858.9	17341.6 21.1	16795.4	16415.2	19.4	99
09	34541.0 10.5	31785.0 13.5	28614.6 15.2	25439.5 15.6	22647.7 14.6	20515.0 11.9	19138.0	18431.8	18205.1	18256.6	18430.6	18620.5	18749.2	18752.0 0.2	18575.1 8.4	18190.3	17619.2 20.1	16962.7	16415.2	19.4	09
E. Long	Lat 0	νç	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	<u> 5</u> 9-	-70	-75	-80	-85	00-	Lat	E. Long

E. Long	Lat 0	ιγ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	99-	-65	-70	-75	-80	-85	06-	Lat	E. Long
175	34769.0 -25.4	35293.6 -18.7	35151.4 -12.9	34301.4 -9.8	32807.1 -10.0	30808.8 -12.4	28475.2 -15.2	25955.4 -16.3	23345.2	20673.8 -10.8	17916.9 -5.3	15041.9 0.5	12105.0 6.2	9446.1 13.0	7981.2	8724.2 28.5	11134.6	13951.3 25.0	16415.2 19.4		175
170	35099.1 -20.7	35533.9 -13.2	35304.4 -7.0	34366.4	32778.9	30679.0 -7.1	28235.2 -10.2	25599.1 -11.8	22868.0	20070.9	17182.0	14169.7	11099.7	8358.6 12.6	7036.1	8196.5 29.1	10925.1 29.0	13889.5 25.3	16415.2		170
165	35432.2 -15.5	35752.1 -8.3	35417.2 -2.5	34381.4 0.3	32698.6 -0.3	30500.5	27952.6 -6.0	25204.9	22353.4	19425.5	16395.1 -1.0	13234.0	10020.5	7199.4	6100.7	7761.4	10781.7 29.4	13853.3 25.6	16415.2 19.4		165
160	35786.9 -10.5	35971.2 -4.6	35514.8 0.0	34371.2	32589.3 1.8	30294.3 -0.2	27646.1	24789.6	21816.6	18751.2 -1.5	15567.9 0.6	12244.3	8871.8	5966.0 10.7	5211.9 24.7	7446.8	10710.2 29.7	13843.3	16415.2		160
155	36177.5 -6.6	36209.4 -2.9	35616.9 0.2	34355.1 1.9	32469.0 2.1	30077.0	27331.0 0.4	24367.9 0.1	21271.8	18062.5	14715.8 1.8	11216.6	7665.2	4657.9 9.2	4438.5	7280.3	10714.2 30.0	13859.8 26.1	16415.2		155
150	36608.9	36475.1 -2.8	35733.5 -1.4	34343.3 -0.2	32347.4 0.9	29857.9 1.9	27016.9 2.8	23950.0 3.7	20730.9	17374.2 4.1	13858.8 2.6	10176.5 0.1	6426.1	3277.3 7.6	3898.8 28.4	7282.6 31.0	10794.9 30.1	13902.4 26.3	16415.2 19.4		150
145	37076.9 -2.4	36768.4 -3.9	35867.1 -4.1	34339.5 -3.0	32228.7 -0.8	29641.0	26707.8	23540.6 6.9	20201.4 7.5	16700.5 6.1	13021.7	9164.5	5208.5 -6.4	1830.6	3744.9 29.3	7462.3	10951.0 30.2	13970.5 26.4	16415.2 19.4		145
140	37570.7 -1.4	37083.8 -4.8	36016.1	34344.2	32113.7 -2.1	29426.0	26401.5 6.6	23137.8	19686.0	16054.5 7.0	12236.2	8243.1 -5.5	4133.1	365.7 15.4	4060.5	7812.5 30.8	11178.5 30.3	14062.9 26.4	16415.2 19.4		140
135	38074.2 -0.1	37410.7	36174.3	34353.3 -5.6	31997.6	29205.8 3.4	26088.7	22733.0 11.1	19182.7 10.6	15449.6 6.6	11543.0	7504.7	3458.0	1275.9	4778.2	8313.5 30.5	11470.9 30.2	14177.9 26.4	16415.2 19.4		135
130	38565.0 1.8	37731.3 -2.7	36327.0 -4.6	34353.0	31865.7 0.7	28963.1 5.8	25751.3 10.1	22311.4 12.0	18687.7 10.1	14902.5	10993.4 -3.8	7068.8	3531.0 -20.6	2872.0	5760.4 25.2	8937.7 30.1	11819.9 30.1	14313.5 26.4	16415.2 19.4		130
125	39016.2 4.3	38018.9 1.1	36447.5	34316.4	31690.2	28670.5	25365.0 12.1	21857.7 12.0	18201.3 8.3	14438.0	10647.7	7048.2	4376.8	4497.1	6893.9	9654.7 29.7	12216.1 29.9	14467.5 26.3	16415.2 19.4		125
120	39398.7 7.1	38240.7 6.2	36500.2 6.7	34206.6 8.6	31435.5	28297.7 13.4	24909.4 13.7	21366.1	17737.5 5.2	14093.4	10566.6	7488.5	5684.0	6127.0	8104.4	10435.4	12649.2 29.6	14637.3	16415.2		120
E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	40	45	-50	-55	09-	-65	-70	-75	-80	-85	06-	Lat	E. Long

E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	-45	-50	35	09-	-65	-70	-75	-80	-8°-	-90 Lat	E. Long
235	31226.3	31028.3	30604.6 -30.9	30020.2 -27.8	29317.4 -26.1	28506.2 -26.3	27576.9 -28.1	26526.6 -30.4	25378.6	24178.7 -29.2	22967.9 -23.5	21754.2	20512.1 -4.8	19223.7 4.3	17943.4 10.6	16837.3 14.0	16140.1 15.6	16013.8 17.3	16415.2 19.4	235
230	31385.5	31304.8	30964.1 -29.9	30419.9 -27.6	29716.4 -26.5	28869.8 -27.0	27875.1 -29.0	26729.2 -31.3	25454.4 -32.1	24098.7 -29.9	22713.4 -23.8	21324.1 -14.4	19928.9 -3.6	18537.8 6.3	17234.9 13.1	16210.0 16.3	15694.1 17.3	15800.7 18.1	16415.2 19.4	230
225	31581.7	31621.6 -30.3	31357.2 -29.5	30835.4 -28.7	30105.4 -28.6	29196.7 -29.6	28116.3	26867.4	25471.6 -34.1	23974.9	22430.3	20874.2	19325.2 -3.0	17823.9	16492.7	15553.9 18.4	15234.5 18.9	15586.8 18.9	16415.2 19.4	225
220	31811.8 -27.0	31968.5 -28.9	31770.5 -30.0	31255.1 -30.9	30478.1 -32.0	29486.1 -33.6	28304.5 -35.5	26947.1 -36.9	25436.5 -36.5	23813.1 -32.9	22125.4 -25.6	20412.7 -15.0	18709.9 -2.7	17090.7 8.6	15724.2 16.6	14875.2 20.2	14766.0 20.4	15374.7 19.7	16415.2 19.4	220
215	32070.9 -24.8	32336.1 -28.4	32194.2 -31.4	31672.7 -33.8	30834.3 -36.0	29744.6 -37.9	28450.1 -39.5	26979.3 -40.0	25357.6 -38.5	23618.7	21801.5	19942.2 -15.1	18087.3	16343.4	14934.7 17.8	14179.6 21.7	14294.0 21.7	15166.6 20.5	16415.2 19.4	215
210	32355.7 -24.0	32718.8 -28.8	32623.5 -33.0	32087.4 -36.5	31179.0	29982.2 -41.3	28566.1 -42.4	26976.2 -42.0	25243.2 -39.5	23394.6	21457.7 -25.7	19460.4 -14.6	17456.3	15583.5	14127.9 18.8	13472.5 23.0	13824.0 22.9	14965.2 21.2	16415.2 19.4	210
205	32664.5 -24.6	33113.8 -29.7	33056.4 -34.2	32499.9 -37.9	31516.9 -40.8	30207.3	28662.4	26946.4	25098.0 -38.9	23140.6	21089.1	18960.8 -13.4	16811.4	14808.5	13305.1 19.5	12759.3 24.0	13361.8 24.0	14773.0 21.8	16415.2	205
200	32995.6 -26.3	33517.6 -30.6	33488.7 -34.3	32906.9 -37.4	31846.2	30420.4	28741.2 -41.9	26892.0 -40.4	24922.0 -36.6	22852.9	20688.4	18433.8	16143.9 -0.1	14013.2 10.9	12466.1 20.1	12045.4 25.0	12913.7 25.0	14592.6 22.5	16415.2 19.4	200
195	33345.6 -28.3	33922.7 -30.9	33910.5 -32.9	33296.9 -34.8	32155.8 -36.6	30611.8 -38.0	28794.9	26807.3	24709.8 -33.0	22524.7 -26.8	20246.5	17868.6	15443.2 1.3	13189.9 11.6	11609.4 20.6	11336.5 25.8	12486.4 25.8	14426.5 23.1	16415.2 19.4	195
190	33707.7 -29.9	34317.0 -30.1	34305.2 -29.8	33650.6 -30.1	32425.8 -31.1	30763.4 -32.5	28808.7 -33.1	26680.9 -32.0	24452.7 -28.5	22148.1	19754.4 -15.0	17254.6	14698.4	12330.2	10733.2 21.1	10639.6 26.5	12087.2 26.6	14277.1 23.6	16415.2 19.4	190
185	34072.0 -30.2	34685.1	34653.0 -25.1	33945.6 -23.9	32633.6 -24.3	30854.6 -25.8	28766.0 -27.0	26500.8 -26.6	24141.9	21715.8	19204.5	16582.8	13899.3	11425.1	9835.8 21.5	9963.5 27.2	11723.5	14146.8 24.1	16415.2 19.4	185
180	34427.9 -28.7	35012.8 -23.8	34937.1 -19.2	34164.4	32762.2 -16.9	30870.8	28655.3 -20.8	26258.9	23772.4	21224.2	18592.2 -8.1	15846.3	13037.0	10466.2 13.0	8917.4 21.9	9319.9 27.8	11403.3	14037.6 24.6	16415.2 19.4	180
Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long

E. Long	Lat 0	ψ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long
295	27463.0 -43.8	26759.6	25747.7	24505.2 -59.4	23169.3	21910.3	20891.8	20233.4	19988.7	20134.5	20567.5	21111.9	21547.4	21663.0	21323.2	20513.7	19333.2	17929.5	16415.2 19.4	295
290	27678.7 -49.2	27094.9 -55.4	26207.8 -57.8	25080.1	23835.3	22637.2	21651.2	21001.9	20745.1	20854.4	21221.1	21665.9	21971.4	21936.7 -42.9	21444.0	20503.2	19241.9	17835.6 9.8	16415.2 19.4	290
285	28037.2	27546.6 -55.8	26757.3 -55.9	25721.4	24549.3	23396.3	22425.9 -48.0	21766.2 -49.4	21475.9	21528.6	21812.9	22148.3	22320.7	22139.8 -39.9	21504.3 -28.0	20446.8	19121.4	17728.7 10.2	16415.2 19.4	285
280	28518.8 -53.4	28089.6 -53.8	27364.5 -52.2	26390.6 -49.4	25268.6 -46.9	24144.3	23176.7 -46.0	22493.8 -48.1	22156.2 -50.9	22138.0	22327.5 -53.6	22545.3 -51.0	22583.0 -45.0	22261.4 -36.1	21495.8 -24.9	20339.4	18969.4 -0.3	17608.5 10.7	16415.2 19.4	280
275	29069.1 -51.0	28666.3 -49.7	27970.4 -47.3	27030.3	25940.3 -43.1	24836.2	23867.6	23157.9 -46.9	22766.5 -49.6	22668.2	22752.9 -50.4	22846.0	22748.0	22292.8	21412.0	20176.8	18784.5	17475.3	16415.2 19.4	275
270	29614.8 -47.0	29207.5 -44.8	28514.0 -42.4	27590.3 -40.6	26526.3 -39.9	25444.9 -40.8	24481.3 -43.0	23747.8	23299.5 -47.9	23112.3	23081.8	23042.7	22808.5	22227.8 -26.7	21248.0	19956.2 -7.2	18565.6 2.7	17329.1 11.8	16415.2 19.4	270
265	30089.8 -43.0	29659.5 -40.7	28957.4	28048.1 -37.4	27017.2	25970.9 -39.1	25023.0 -41.6	24269.6	23759.1	23471.3 -45.3	23312.4	23132.3 -37.1	22760.8 -29.8	22063.2 -21.5	21001.5	19676.2 -4.1	18312.4	17170.6 12.5	16415.2 19.4	265
260	30455.7 -40.2	30002.1 -38.1	29297.2 -36.2	28414.4	27432.0 -35.8	26435.6 -37.5	25512.7 -40.0	24739.0 -42.2	24156.2 -43.1	23751.3	23447.7 -37.9	23115.8	22605.5	21799.1 -16.1	20672.4	19336.6 -0.9	18025.2 6.2	17000.3 13.2	16415.2 19.4	260
255	30709.2 -39.0	30248.9 -36.9	29560.4 -35.0	28722.2 -33.8	27803.6	26867.0 -35.4	25971.5 -37.6	25170.9	24500.9 -40.0	23959.8	23493.7	22998.6	22347.2 -18.8	21439.2	20263.0	18938.9	17705.1 8.1	16819.3	16415.2 19.4	255
250	30875.3 -38.9	30436.4 -36.6	29788.4	29011.1 -32.3	28163.9	27286.8	26411.8	25571.9	24798.2	24102.9 -34.5	23458.5	22790.1 -22.2	21994.9	20990.6	19778.0 0.3	18485.7	17353.8 10.1	16628.6 14.8	16415.2 19.4	250
245	30992.9 -39.0	30607.5 -36.4	30022.0 -33.3	29313.9 -30.7	28533.6 -29.4	27703.4 -29.8	26833.2	25938.5	25046.9	24184.8	23351.7 -26.3	22502.9 -18.6	21561.2	20463.4 -2.0	19224.1	17981.0 8.5	16973.8 12.0	16429.7 15.6	16415.2 19.4	245
240	31100.5	30797.8 -35.7	30289.9 -32.2	29649.1 -29.0	28919.6 -27.3	28113.5 -27.4	27226.1 -29.1	26260.5	25242.1 -31.9	24208.9 -29.8	23184.4	22152.2	21061.4	19870.0	18609.5	17429.6	16568.0 13.8	16224.2 16.5	16415.2	240
E. Long	Lat 0	s.	-10	-15	-20	-25	-30	-35	40	45	-20	-55	99	-65	-70	-75	08-	-85	-90 Lat	E. Long

E. Long	Lat 0	rγ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long
355	27262.1 -21.9	24026.0 -38.0	20761.8 -55.9	17807.8	15364.8 -88.1	13502.4 -97.2	12223.8 -99.4	11532.5 -94.4	11452.0 -83.2	11992.6 -67.8	13094.6 -50.9	14593.7 -35.3	16235.8 -22.5	17735.0 -13.1	18837.7	19355.9 0.0	19164.7 6.2	18188.7 12.8	16415.2 19.4	355
350	26963.0 -26.8	23887.2	20831.7 -59.9	18099.8 -76.6	15846.7 -90.6	14103.7 -100.0	12857.4 -103.3	12118.8	11937.9 -90.3	12360.7	13359.1 -58.9	14784.1	16379.6 -28.6	17849.2	18929.1 -9.5	19426.5 -2.3	19215.1 4.8	18218.3	16415.2 19.4	350
345	26813.3	23915.8 -48.1	21057.9	18515.4 -79.5	16414.8	14766.8	13549.3 -104.8	12777.6	12518.0 -94.6	12840.3 -81.6	13740.3 -65.6	15082.7 -49.1	16612.8 -34.6	18028.0	19059.3	19512.4 -4.8	19263.8 3.4	18239.6	16415.2 19.4	345
340	26814.3	24119.0	21451.1	19064.8 -82.0	17075.4	15490.9 -100.6	14290.5 -104.1	13493.4	13173.7 -96.4	13414.0 -85.1	14224.4	15480.3 -54.9	16929.7	18268.4 -27.6	19226.5	19612.7 -7.3	19310.3	18252.6 11.1	16415.2 19.4	340
335	26934.2	24467.8 -56.7	21988.0	19732.4 -83.5	17818.8	16267.8 -98.8	15070.5 -101.6	14252.0 -100.7	13888.3 -95.6	14064.9	14797.0 -73.7	15965.6 -59.4	17322.2	18564.9	19427.3 -20.6	19725.4	19353.7 0.7	18256.9 10.6	16415.2	335
330	27114.0 -41.2	24899.4	22611.5 -72.7	20473.0	18612.5 -91.0	17074.4	15870.6 -97.4	15035.3	14643.4 -92.7	14775.0	15441.8	16524.9	17779.6	18909.6 -36.6	19656.4 -24.1	19847.5	19392.6 -0.5	18252.3 10.2	16415.2 19.4	330
325	27286.6	25336.0 -58.0	23246.1 -72.0	21222.8	19408.0	17875.7 -90.8	16664.6 -91.6	15821.7	15418.9 -87.9	15525.0 -82.8	16140.7	17142.5	18289.0 -53.0	19292.7 -40.3	19907.0 -27.2	19974.7 -14.1	19425.1 -1.6	18238.4	16415.2 19.4	325
320	27400.0	25712.4 -55.9	23824.3	21921.8	20158.0	18637.0	17427.4	16591.0 -83.7	16196.4 -81.9	16296.7	16875.6	17801.2	18835.5	19702.5 -43.3	20170.6	20101.9 -15.9	19448.7	18214.6	16415.2 19.4	320
315	27436.1 -35.8	25997.5 -53.0	24309.5	22535.3	20834.8	19339.0	18145.8	17332.7	16964.3	17075.5	17629.2	18483.2	19403.0	20125.6	20437.5	20223.2	19460.9	18180.5 9.4	16415.2	315
310	27413.5	26200.2	24703.6	23063.0	21439.9	19986.2	18825.7	18050.4	17720.9	17852.6	18387.1	19171.3	19974.6	20547.8	20697.4	20331.9	19458.5	18135.5 9.3	16415.2 19.4	310
305	27375.4 -35.2	26359.3	25040.3 -59.7	23535.4	22002.0	20605.9	19490.8 -62.9	18760.9	18472.6	18623.9	19137.1	19849.3	20533.4	20954.6	20939.1	20421.2	19438.5	18079.0 9.3	16415.2 19.4	305
300	27374.9 -38.6	26527.9 -50.8	25370.9	24000.1	22564.7 -61.4	21236.4	20171.9	19484.5	19227.9	19386.7	19868.0	20501.2	21063.0	21331.1	21151.4	20484.1	19397.8	18010.5	16415.2 19.4	300
E. Long	Lat 0	ιĆ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long

E. Long	Lat 90	\$8	80	75	70	99	09	55	20	45	40	35	30	25	20	15	10	ю	0 Lat	E. Long
\$5	56281.0 -10.4	56140.6	56138.0 -6.5	56137.3 -2.5	56007.8 2.1	55649.8 6.4	55005.2 9.1	54057.0 10.0	52817.7 9.1	51311.1 7.2	49558.0 5.1	47575.7 3.6	45396.7 2.9	43097.5	40819.1	38758.6 1.2	37119.1 -0.4	36031.5	35491.9 -2.6	55
20	56281.0 -10.4	56036.3 -8.6	55881.4	55709.4 -1.2	55419.1 3.5	54934.3 7.6	54210.7 10.1	53234.9 10.8	52013.7 10.0	50558.6 8.4	48873.7	46959.9	44836.9	42574.3 3.4	40310.8	38241.9	36565.6	35402.8 -8.9	34736.4 -12.9	20
45	56281.0 -10.4	55935.1 -8.2	55634.2	55301.5 0.1	54864.6	54267.9 8.7	53477.4 11.0	52480.1 11.7	\$1275.2 11.1	49860.9	48226.5	46359.5	44273.0	42036.8	39794.8 1.6	37745.6	36082.7	34911,2 -13.8	34190.1 -20.7	45
40	56281.0 -10.4	55838.5	55400.5	54920.8 1.3	54353.4 6.0	53660.2 9.7	52814.2 11.9	51800.1 12.7	50608.3	49224.3	47623.8	45784.9 9.5	43718.7	41501.6	39287.8 2.1	37283.7	35678.9 -8.5	34559.1 -16.0	33853.0 -24.9	40
35	56281.0 -10.4	55747.8	55184.2 -2.8	54573.2 2.3	53892.5 7.0	53117.8 10.6	52226.1 12.9	51198.1 13.9	50015.5 14.3	48651.8	47071.9	45247.7 12.7	43191.6 10.8	40989.5 7.8	38808.7 3.9	36864.8	35344.6 -7.4	34315.2 -15.4	33674.6 -25.4	35
30	56281.0	55664.4 -6.9	54988.5	54263.6 3.2	53487.2 7.9	52645.1 11.5	51715.4 13.8	50674.3 15.2	49495.0 16.1	48141.8 16.8	46571.6 17.0	44753.1 16.4	42701.9	40513.1 11.3	38365.6 7.0	36483.2	35051.2 -4.7	34122.2	33569.5 -23.0	30
25	56281.0	55589.3 -6.6	54816.3 -1.4	53995.9 4.0	53141.4 8.7	52244.6 12.2	51282.5 14.6	50226.3 16.3	49042.2 17.8	47688.0 19.2	46116.2 20.2	44295.3 20.1	42245.0 18.5	40067.2	37948.8 10.8	36118.3 5.3	34759.8 -1.0	33916.9 -8.8	33447.7 -18.8	25
20	56281.0 -10.4	55523.5 -6.3	54669.8	53773.3 4.6	52857.9 9.3	51917.9 12.7	50927.2 15.2	49851.5	48651.6 19.0	47281.7 20.9	45694.0 22.4	43859.6	41803.3	39631.9 18.8	37535.3 14.3	35742.2 8.8	34434.3	33649.9	33240.8 -13.9	20
15	56281.0 -10.4	55467.9 -6.0	54550.9 -0.4	53598.0 5.1	52638.8 9.7	51666.2 13.0	50649.4 15.4	49548.3 17.4	48319.7 19.3	46916.8	45294.9 23.1	43431.7 23.9	41358.2	39185.1 20.5	37101.7 16.3	35332.4 11.1	34052.7 5.5	33296.3 -0.9	32914.4	15
10	56281.0 -10.4	55423.0 -5.8	54460.9 -0.1	53471.6 5.4	52485.5 9.8	51490.7 13.0	50450.2 15.3	49318.0 17.0	48047.7 18.6	46594.0 20.3	44918.5	43008.3	40903.2	38718.0 19.6	36638.9 16.1	34882.1 11.8	33612.3 7.1	32855.7 2.2	32465.5 -3.7	10
w	56281.0 -10.4	55389.3	54400.5 0.0	53395.1 5.4	52399.1 9.7	51393.0 12.7	50332.1 14.6	49165.0 15.9	47842.9 16.9	46323.5	44577.3 18.4	42603.5 18.4	40452.6	38243.8 15.9	36159.5 13.3	34404.2 10.4	33127.9 7.5	32345.9 4.7	31914.0 1.1	ĸ
0	56281.0 -10.4	55367.1 -5.6	54370.3 0.1	53368.8	52380.1 9.3	51374.6 12.0	50299.0 13.4	49096.4 14.1	47717.1	46123.1 13.9	44295.3	42246.5 12.4	40038.5	37795.0 9.7	35693.6 8.3	33925.9 7.2	32624.9 6.7	31794.2 6.4	31292.7 5.5	0
E. Long	Lat 90	88	80	27	70	59	99	25	20	45	40	35	30	25	20	15	10	s.	0 Lat	E. Long

E. Long	Lat 90	85	08	75	70	99	09	55	20	45	40	35	30	25	20	15	10	w	0 Lat	E. Long
115	56281.0 -10.4	57113.9 -13.9	58289.3 -16.8	59562.3 -17.9	60641.8	61261.2	61235.7	60490.4 3.9	59052.5 13.1	57019.5 21.8	54525.2 29.0	51722.5 33.9	48789.0 35.7	45943.9 34.0	43451.7 28.9	41598.2 20.9	40632.3	40696.1	41778.8	115
110	56281.0	57076.2 -13.7	58254.1 -16.5	59567.6 -17.5	60719.7	61433.3	61510.6	60862.6 3.0	59504.9 11.1	57528.2 18.6	55063.6 24.7	52265.6 28.9	49315.8 30.5	46438.4	43905.0 24.8	42009.3 17.5	41006.7 8.0	41041.1	42096.0	110
105	56281.0	57028.6 -13.4	58186.7 -16.1	59506.6 -16.8	60688.0	61449.0	61583.9 -4.4	60994.8 2.6	59689.0 9.4	57751.1 15.4	55311.1 20.0	52524.5 23.0	49576.2 24.1	46693.5 23.0	44151.6 19.4	42247.2	41237.9	41264.8	42302.1 -10.3	105
100	56281.0	56971.2	58087.0	59378.5 -15.8	60546.0	61307.8	61456.6	60890.5	59611.5 8.1	57700.4 12.3	55285.3 15.1	52522.5 16.6	49597.0 16.9	46735.8 15.8	44212.0 13.2	42320.7 8.9	41317.2	41337.6	42346.9	100
95	56281.0 -10.4	56904.4	57955.7 -14.7	59185.4 -14.7	60297.8	61017.0	61140.0	60566.0 3.1	59295.2 7.1	57405.4 9.6	55022.3 10.5	52299.9 10.4	49419.9 9.7	46603.4	44115.8 7.2	42244.8	41240.8	41235.1	42186.3	95
06	56281.0 -10.4	56828.8	57794.6 -13.8	58931.4	59951.6 -10.4	60590.2	60654.4	60048.9	58774.7 6.5	56907.4 7.3	54568.1 6.5	51904.9 4.9	49091.2 3.4	46336.6	43893.2	42037.6 2.4	41013.0	40947.8	41799.0 7.1	96
88	56281.0 -10.4	56745.1	57606.4	58622.9	59519.3 -8.5	60046.5	60026.5	59373.6	58091.6	56253.1 5.7	53972.0 3.6	51385.9 0.9	48654.8 -1.3	45971.8	43572.4	41719.3	40648.2	40486.6	41194.5	8
80	56281.0 -10.4	56654.3	57394.6 -11.9	58268.0 -10.3	59015.5 -6.6	59408.4 -1.8	59287.2 2.7	58578.4	57289.9 6.4	55489.7	53281.3 1.8	50787.3 -1.5	48149.2	45540.9 -4.4	43179.3	41312.9	40170.2	39879.4 14.1	40407.1	80
75	56281.0 -10.4	56557.7	57163.3 -10.8	57875.8 -8.7	58456.6	58700.5 0.1	58469.0	57702.4 6.7	56412.1	54660.6 4.6	52537.6 1.2	50146.3	47607.0	45071.7	42738.9	40843.8	39608.6 8.1	39163.4 16.2	39483.2 25.4	75
70	56281.0 -10.4	56456.5	56917.0	57456.5 -7.1	57859.8 -2.8	57947.8 1.9	57603.9 5.8	56782.0 7.7	55496.8	53803.0 4.9	51774.1	49491.8	47052.4	44586.0	42273.3	40337.0	38994.6 8.1	38378.3 15.3	38472.8	70
59	55281.0 -10.4	56352.3 -10.1	56660.7	57020.2 -5.5	57242.1 -1.0	57174.2	56721.5 7.1	55850.2 8.5	54576.4 7.8	52945.8 5.5	51014.5 2.6	48841.4	46499.1	44096.2	41796.8	39813.0 3.0	38357.5 6.5	37565.0 11.4	37428.8	99
09	56281.0	56246.5 -9.6	56399.4	56577.2	56619.8 0.6	56401.8	55847.9 8.2	54934.4	53676.7	52110.3	50273.3	48202.7	45949.1 1.0	43602.6	41313.4	39284.6	37724.1	36767.1 5.2	36411.9	09
E. Long	Lat 90	\$2	08	37	70	S9	09	55	20	45	40	35	30	25	20	15	10	٧n	0 Lat	E. Long

E. Long	Lat 90	85	80	75	70	65	09	55	50	45	40	35	30	25	20	15	10	ĸ	0 Lat	E. Long
175	56281.0 -10.4	57007.7 -13.0	57364.5	57189.4 -6.6	56375.0 2.8	54897.4	52820.4 26.5	50279.6 35.7	47454.9	44541.4	41724.9	39163.7 17.8	36978.4 4.0	35250.0 -8.8	34027.9 -18.6	33348.6	33253.3 -27.8	33790.4 -28.8	34992.9	175
170	56281.0 -10.4	57036.5 -13.2	57443.2	57325.0 -7.4	56563.3	55129.9 13.7	53090.6 25.9	50583.2 35.7	47785.3	44883.8	42055.4 33.1	39455.7 22.0	37214.0 9.0	35430.5 -3.3	34179.1 -13.0	33516.6 -19.7	33493.4	34152.5 -25.9	35508.6 -26.8	170
165	56281.0	57064.7 -13.4	57534.5 -13.0	57501.4 -8.5	56832.4 0.2	55488.8	53530.6 24.0	51091.9 34.4	48345.0 40.5	45469.3 41.0	42634.2 35.9	39994.1 26.6	37686.6 15.0	35830.2 3.6	34523.0 -6.1	33844.0 -13.4	33855.9 -18.5	34599.1 -22.0	36072.6 -24.2	165
160	56281.0	57091.5 -13.6	57635.6 -13.7	57712.9 -9.8	57173.6	55962.8 9.2	54127.3 21.2	51791.6 31.9	49120.1 39.1	46285.3	43451.9 38.3	40773.8	38395.9 21.4	36453.3	35066.9 1.6	34338.6 -6.3	34345.9 -12.6	35130.4 -17.5	36679.0 -21.2	160
155	56281.0	57116.0 -13.7	57743.2	57952.0 -11.2	57574.5 -4.1	56534.7 6.1	54859.7 17.7	52658.9 28.6	50086.4 36.8	47308.3	44485.9	41773.6 35.4	39322.8 27.6	37282.9 18.4	35796.0 9.2	34987.5 0.8	34952.2	35736.3 -12.7	37318.1	155
150	56281.0	57137.3 -13.9	57853.0 -15.0	58209.2 -12.6	58019.1 -6.5	57181.6 2.8	55699.3 13.9	53661.5 24.9	51209.8 34.0	48503.8 39.8	45702.1 41.3	42959.9	40434.1	38286.7 25.0	36680.4 16.1	35764.4 7.4	35652.6 -0.6	36399.1 -7.6	37976.9 -13.7	150
145	56281.0	57154.4 -14.0	57960.5 -15.6	58473.8 -14.0	58488.4	57876.1 -0.6	56610.9 9.9	54759.1 20.9	52447.1 30.8	49827.3	47056.0	44288.6	41686.8	39424.0 30.3	37682.6 21.9	36636.0 13.1	36419.2	37096.5 -2.8	38638.6 -9.7	145
140	56281.0	57166.3 -14.1	58060.8	58734.0 -15.3	58961.5 -11.1	58587.0 -3.7	57554.3 6.1	55904.0 17.0	53746.1	51224.8 36.0	48493.1	45706.5	43030.1 40.1	40647.9	38760.6 26.4	37565.8 17.7	37221.0 9.2	37803.0 1.3	39282.9 -6.1	140
135	56281.0	57171.9 -14.1	58148.9 -16.5	58977.5 -16.4	59416.2 -13.0	59281.3 -6.5	58485.6 2.7	57043.7 13.4	55047.9 24.1	52633.2 33.5	49949.0 40.1	47150.1 43.0	44404.0	41903.7	39866.8 29.6	38513.9 21.0	38025.1 12.4	38492.3 4.2	39889.4 -3.5	135
130	56281.0 -10.4	57170.2 -14.1	58220.0 -16.8	59192.6 -17.2	59830.9 -14.5	59925.5 -8.7	59360.0	58123.0 10.1	56289.0 21.0	53983.5 30.8	51351.6 38.3	48546.8	45738.8 42.2	43127.9 38.3	40946.5	39435.9 23.0	38798.1 14.1	39141.1 5.5	40444.1	130
125	56281.0 -10.4	57160.4	58269.6 -17.0	59368.0	60184.9	60488.0	60134.2	59087.9 7.5	57406.5 18.0	55205.5 27.9	52625.8 35.8	49819.8	46959.2	44250.9	41939.7	40284.9	39508.2 14.4	39732.4 5.2	40943.0	125
120	56281.0 -10.4	57141.9 -14.0	58293.7 -17.0	59493.8	60460.1	60940.8	60769.8	59890.1 5.4	58343.0 15.4	56234.6 24.9	53701.9 32.7	50897.0 37.8	47994.2	45206.4 37.0	42789.4	41017.1 23.0	40127.1 13.3	40254.5 3.4	41388.5	120
E. Long	Lat 90	88	08	75	70	92	09	55	20	45	40	35	30	25	20	15	10	w	0 Lat	E. Long

E. Long	Lat 90	85	08	75	70	92	09	\$\$	20	45	40	35	30	25	20	15	10	w	0	Lat	E. Long
235	56281.0 -10.4	56659.0 -11.3	57288.5	58063.3 -17.0	58763.6 -23.3	59111.9 -31.6	58857.8 -40.7	57855.4 -49.4	56101.4 -56.4	53722.9 -60.9	50923.7 -62.7	47918.3	44882.0	41934.2	39156.5 -51.0	36624.7	34433.7 -42.0	32700.1 -38.4	31541.3	6.50-	235
230	56281.0 -10.4	56694.6 -11.4	57284.1 -12.8	57950.2 -15.7	58490.0 -20.7	58647.9 -27.7	58196.2 -35.9	57010.4	55105.9 -51.2	52624.0 -56.3	49777.3 -59.0	46784.2 -59.4	43818.3	40993.9 -54.8	38383.5 -50.9	36050.7	34077.0 -42.0	32566.9 -37.9	31629.2	04.0	230
225	56281.0 -10.4	56727.3 -11.6	57271.0 -12.5	57818.2 -14.3	58184.5 -17.8	58139.1 -23.2	57480.6 -30.0	56108.6	54058.1 -44.0	51483.7 -49.3	48605.4 -52.6	45642.1 -54.0	42763.2	40075.7	37642.0 -48.5	35514.2 -44.8	33761.8	32478.6 -36.5	31765.4	c:7e-	225
220	56281.0 -10.4	56757.7 -11.7	57252.4 -12.2	57675.3 -12.9	57860.2 -14.7	57603.6 -18.2	56733.5 -23.1	55175.7 -29.0	52985.6	50330.9 -40.0	47436.5	44519.3	41742.0	39201.4 -45.9	36949.2	35026.6	33493.1 -38.4	32434.2 -34.4	31944.0	-30.1	220
215	56281.0 -10.4	56786.3 -11.8	57232.0 -11.8	57529.6 -11.4	57530.9 -11.5	57061.0 -12.8	55979.3 -15.6	54239.8 -19.7	51918.8 -24.3	49196.4 -29.0	46300.8	43444.7	40780.9	38394.1 -39.0	36324.0 -39.0	34601.5 -37.9	33278.5 -35.7	32435.0 -32.3	32160.4	-28.1	215
210	56281.0 -10.4	56813.8	57213.3 -11.5	57389.6 -9.9	57211.3 -8.2	56532.1 -7.3	55244.3 -7.7	53331.2	50890.5 -12.9	48113.3	45229.7	42446.0	39903.5 -29.1	37673.1 -32.0	35781.6 -33.9	34250.2 -34.4	33124.9 -33.4	32483.1 -30.7	32411.6	-26.9	210
205	56281.0 -10.4	56840.7	57199.5 -11.3	57263.8	56916.1 -5.1	56038.2 -1.8	54555.8 0.2	52481.9 0.4	49934.8 -1.4	47115.1 -5.0	44252.9	41546.9	39126.4 -20.9	37048.3 -25.9	35326.9 -29.7	33974.5 -31.8	33032.7 -31.9	32 <i>577.7</i> -30.0	32695.4	-26.7	205
200	56281.0	56867.5	57194.0 -11.1	57160.3 -7.5	56659.9	55601.0 3.2	53941.8 7.6	51724.3 9.9	49085.7	46234.1 6.3	43397.1 0.7	40765.4	38457.1 -14.3	36517.9 -21.5	34951.8 -27.1	33764.0 -30.4	32992.3 -31.4	32711.9 -30.2	33008.3	-27.5	200
195	56281.0	56894.5	57199.5 -11.1	57086.4	56456.4 0.0	55241.1 7.5	53429.1 14.1	51089.6 18.4	48376.0 19.1	45500.5 16.1	42686.0	40114.8	37897.3 -9.4	36072.7 -18.6	34640.0 -25.8	33599.9 -30.1	32987.3	32875.4 -30.8	33347.2	-28.6	195
190	56281.0 -10.4	56922.0 -12.5	57218.1	57048.3 -6.1	56317.8	54977.2 10.9	53042.3 19.4	50606.3 25.3	47835.3 27.1	44941.8	42141.2	39608.5 5.9	37450.4 -5.9	35706.8 -16.8	34378.3 -25.2	33466.4 -30.1	33003.7 -32.0	33059.4 -31.5	33710.5	-29.7	190
185	56281.0 -10.4	56950.1 -12.6	57251.5 -11.3	57051.1 -5.9	56253.9 2.8	54825.0 13.3	52802.4	50298.9 30.6	47489.3	44582.5	41784.9	39264.7 10.2	37129.7	35427.9 -15.2	34169.9	33363.1 -29.7	33040.1 -31.8	33264.0 -31.6	34100.9	-30.2	185
180	56281.0	56978.7	57300.3	57097.7	56271.7	54796.1 14.5	52725.2 25.7	50186.1 34.0	47358.0	44443.8	41639.4	39107.5 14.0	36961.0	35262.5 -12.7	34039.4	33311.1	33113.1	33501.0 -30.7	34525.5	-29.8	180
E. Long	Lat 90	85	08	75	70	59	09	55	920	45	40	35	30	25	20	15	10	25	0	Lat	E. Long

E. Long	Lat 90	82	80	75	70	99	09	32	20	45	40	35	30	25	20	15	10	No.	0 Lat	T one	E. LOUR
355	56281.0 -10.4	55356.4 -5.6	54369.9 0.0	53392.5 4.9	52428.9 8.6	51437.2 10.8	50355.1 11.8	49120.8 11.7	47684.4	46013.8 9.2	44100.8 7.3	41971.9	39699.8	37411.2 2.1	35278.0 1.8	33478.7 2.8	32131.2 4.9	31229.5 7.4	30637.4 9.1	356	ces
350	56281.0 -10.4	55357.2 -5.6	54398.8	53465.2 4.3	52545.0 7.5	51582.0 9.2	50504.3	49245.9	47757.8 7.0	46014.2	44018.5	41809.7	39469.5 -4.8	37125.9 -6.0	34943.8 -5.2	33089.7 -2.4	31670.5 2.1	30676.1 7.3	29979.4 11.4	020	320
345	56281.0 -10.4	55369.0 -5.6	54455.9 -0.6	53585.5	52727.4 6.1	51809.5 7.1	50749.7 6.9	49478.0 5.4	47947.0	46137.9 -0.6	44064.9	41778.6	39367.8 -12.1	36959.9 -13.5	34711.7	32778.8 -8.1	31261.6	30153.4 5.6	29341.3 11.7	,	345
340	56281.0	55391.4 -5.7	54539.8 -1.1	53751.0 2.4	52974.0 4.3	52118.9 4.6	51092.8	49821.2 1.6	48258.5	46392.9	44249.1	41887.9	39404.5 -18.5	36924.4 -20.3	34595.5 -19.1	32562.9 -14.4	30923.6 -6.9	29680.5	28741.8	Š	340
335	56281.0	55423.8 -5.9	54648.4	53958.9 1.1	53281.6	52508.2 1.5	51533.3 -0.2	50277.3 -2.9	48696.0	46784.3	44576.5	42143.8 -20.0	39586.8	37029.8 -26.6	34611.0 -26.1	32464.3 -21.9	30683.7 -14.3	29285.8 -4.9	28205.2	;	335
330	56281.0	55465.4 -6.1	54779.4 -2.4	54205.1 -0.4	53645.9 -0.4	52973.4 -2.0	52068.7	50845.9	49261.6	47316.4	45054.2	42555.4 -25.6	39927.2 -30.2	37292.7 -33.5	34781.1 -34.1	32514.0 -31.0	30580.7 -24.3	29011.5 -15.0	27771.0	;	330
325	56281.0	55515.3 -6.3	54929.9 -3.3	54485.1	54060.9	53508.5	52694.1	51524.4 -14.3	49955.4	47993.3	45690.4	43136.0	40443.3	37735.2	35133.2	32746.3	30657.3 -37.0	28907.2	27489.4		325
320	56281.0	55572.6 -6.6	55097.0 -4.1	54793.3 -3.9	54519.2 -6.2	54105.1 -10.4	53401.4	52306.0 -21.2	50773.8	48815.7	46491.0	43896.4	41150.0	38375.4	35687.6 -55.1	33185.1 -55.4	30943.7	29011.1	27404.6		320
315	56281.0 -10.4	55636.0 -6.9	55277.1 -5.1	55123.6	55011.8	54752.0 -15.0	54178.2	53178.8 -28.9	51706.6	49775.7	47451.2 -46.7	44834.9	42047.9	39213.6 -63.5	36443.3	33828.9	31441.0	29331.2	27533.5 -50.6		315
310	56281.0 -10.4	55704.5	55466.6	55468.9	55528.2	55435.4 -19.8	55008.0	54124.2 -36.8	52733.5	50852.4	48549.7	45929.2	43112.8	40223.3	37370.7	34645.1	32116.1	29838.6	27857.6 -64.9		310
305	56281.0	55776.8 -7.6	55661.7	55821.8	56056.5	56138.5	55869.2	55115.8 -44.5	53823.7	52009.9	49744.9	47132.8 -75.8	44294.0	41350.3	38413.0 -90.5	35575.1 -91.9	32910.2	30478.0	28330.9 -75.2		305
300	56281.0 -10.4	55851.8	55858.4	56174.4	56583.9	56842.5	56736.2	56120.6	54935.9	53198.2	50978.4	48379.6	45520.2	42521.2	39496.9	36547.3	33754.0 -94.4	31184.0	28896.1 -79.9		300
3. Long	Lat 90	82	80	75	70	99	09	55	50	45	40	35	30	25	20	15	10	vn	0 1	Tal.	E. Long

E. Long	Lat 0	'n	-10	-15	-20	-25	-30	-35	40	-45	-50	-55	09-	-65	-70	-75	08-	-85	06-	Lat	E. Long
55	35491.9 -2.6	35364.4	35456.7 2.6	35615.9 8.4	35787.8 15.1	36016.1 21.3	36396.9 24.9	37018.7 24.2	37923.0 18.3	39101.6 7.1	40520.6	42146.7	43959.3	45944.2	48075.3	50295.4	52502.8 -68.2	54548.2 -66.2	56246.8	-64.5	55
20	34736.4	34419.9	34258.7 -15.0	34111.8	33954.1 -5.4	33872.5	34008.5 8.7	34483.1 11.8	35347.2 9.6	36582.0 1.3	38134.6 -12.0	39956.1 -28.2	42016.6	44293.6	46750.0	49312.5 -70.2	51862.7 -69.7	54238.1 -67.0	56246.8	-64.5	20
45	34190.1	33750.2	33385.0 -30.4	32959.4 -30.5	32475.0 -26.6	32063.9 -19.4	31920.0 -11.1	32206.2	32991.4 -3.4	34250.0 -8.1	35910.8 -18.7	37907.2 -33.1	40196.5	42745.9 -60.8	45505.3 -69.0	48386.8	51257.2 -71.0	53943.3	56246.8	-64.5	45
40	33853.0 -24.9	33360.5 -34.0	32855.5 -41.6	32201.3 -46.0	31419.1 -45.8	30680.9	30233.2	30288.1 -24.5	30943.3 -19.9	32176.4	33902.9 -28.6	36039.3	38527.8 -53.2	41321.5	44355.8	47527.8	50691.8	53666.1	56246.8	-64.5	40
35	33674.6 -25.4	33190.7	32614.3	31800.6	30779.5	29750.0 -59.3	29001.5	28795.5 -45.3	29269.2 -38.8	30417.8 -37.1	32155.0 -41.0	34384.9	37033.8 -59.7	40037.3	43313.1 -74.5	46743.4	50171.5	53409.0 -69.1	56246.8	-64.5	35
30	33569.5 -23.0	33134.5 -35.5	32546.9 -48.9	31649.5 -61.0	30470.3 -69.6	29218.3 -73.0	28208.0 -70.8	27740.3 -64.9	27996.4 -58.4	29005.1 -54.6	30694.5 -55.4	32965.9 -60.2	35731.1 -67.2	38905.3 -73.7	42386.2	46039.9	49700.4 -74.7	53173.8 -69.7	56246.8	64.5	30
25	33447.7	33076.8 -31.5	32519.0 -45.9	31605.3 -60.4	30354.2 -72.6	28969.0 -80.6	27768.0 -83.2	27073.2 -81.1	27104.6	27935.9 -72.2	29527.4 -70.4	31790.7 -71.9	34627.6 -75.3	37932.5 -78.8	41580.7	45422.0 -79.5	49281.8 -75.7	52962.5 -70.2	56246.8	-64.5	25
20	33240.8 -13.9	32926.1 -25.8	32415.4 -40.0	31532,9 -55.4	30285.0 -70.1	28858,4	27555.8 -89.8	26698.5 -92.6	26531.7 -91.4	27175.9 -88.1	28637.8 -85.0	30853.6 -83.4	33722.9 -83.4	37120.5 -83.9	40899.1	44892.4	48918.2 -76.6	52776.4 -70.7	56246.8	-64.5	20
15	32914.4	32630.7 -19.0	32161.8 -32.0	31333.7	30143.8	28755.8 -78.4	27442.3 -90.8	26503.5 -98.9	26192.0 -102.0	26668.6 -101.0	27992.7 -97.7	30137.3 -94.0	33008.6 -91.0	36466.0 -88.6	40341.0 -86.0	44452.4 -82.4	48611.5	52616.9 -71.1	56246.8	-64.5	15
10	32465.5	32178.4	31729.7 -22.8	30958.8 -36.9	29859.7 -53.5	28571.1 -70.9	27325.8 -87.3	26387.5 -100.3	25998.9 -108.1	26349.1	27549.4	29616.1 -102.7	32470.3 -97.3	35961.6 -92.6	39903.4 -88.2	44101.5	48362.6 -78.0	52485.0 -71.5	56246.8	-04.5	10
ın	31914.0 1.1	31587.9 -4.4	31131.7	30408.0 -25.9	29414.2 -42.3	28264.9	27148.0 -80.6	26280.2 -97.8	25881.8 -109.9	26157.5 -115.3	27263.5	29260.5 -108.9	32089.8 -102.1	35596.7 -95.6	39581.1 -89.8	43838.4	48171.9	52381.5 -71.9	56246.8		w
0	31292.7 5.5	30898.4	30409.7 -4.0	29719.4 -15.2	28833.1 -31.1	27843.7 -50.9	26892.3 -72.3	26145.5 -92.5	25793.1 -108.0	26045.7	27094.6	29040.6	31847.0 -104.8	35359.2 -97.3	39367.7 -90.8	43660.4	48039.2	52306.7 -72.1	56246.8	C:+0-	0
E. Long	Lat 0	ķ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	28-	06-	Lat	E. Long

E. Long	D	Lat 0	ψ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	rc c	06-	Lat	E. Long
115		41778.8	43723.3 -14.9	46280.1	49174.3 -19.5	52159.6 -17.7	55048.4	57715.5	60081.8	62087.7 -2.5	63672.0 -1.9	64766.5	65308.9	65266.8	64659.6 -23.1	63562.9	62090.3	60352.0	58409.1 -56.7	56246.8 -64.5		115
110		42096.0	44003.8	46504.0	49314.3	52185.3	54930.6	57431.0 -5.2	59618.3 -1.9	61448.5	62877.5	63852.8	64323.1	64262.1 -18.5	63692.0 -26.4	62690.0	61369.7	59837.0 -50.0	58140.8 -57.3	56246.8		110
105		42302.1 -10.3	44169.6	46596.3 -15.0	49294.9 -12.8	52017.5	54584.3	56887.2 -0.5	58873.2 1.4	60516.7 0.8	61792.5	62663.9	63089.4 -14.5	63046.6	62557.0 -30.1	61694.9	60569.0	59277.0 -51.5	57854.1 -58.0	56246.8		105
100		42346.9	44153.4	46477.7 -8.3	49031.7 -5.1	51573.8 -1.0	53936.1 2.8	56025.2	57805.2 4.9	59268.8	60408.5	61201.9	61616.1 -17.9	61631.0	61264.9 -33.9	60586.2	59694.8	58676.6	57551.1 -58.8	56246.8		100
ş	3	42186.3	43895.5 -0.5	46080.1	48455.3 5.6	50790.8	52933.8 11.5	54808.0 11.6	56393.8 9.1	57699.4 3.9	58732.1 -3.4	59480.9 -12.0	59920.5 -21.1	60032.1 -29.8	59830.4 -37.7	59375.7	58755.7 -49.9	58041.2 -54.9	57234.4 -59.6	56246.8		95
S	2	41799.0	43366.9	45371.1 14.6	47535.6 18.4	49644.6	51563.4 21.6	53232.5 19.3	54646.4 14.2	55825.0 6.5	56785.7 -3.0	57526.3 -13.3	58027.5 -23.6	58272.5	58272.4	58077.6	57761.6 -52.5	57376.7	56906.6 -60.4	56246.8		06
ď	3	41194.5	42577.6 21.7	44363.4	46289.1 31.3	48157.1 33.1	49851.6 31.9	51329.5 27.5	52596.8 20.0	53681.0 10.0	54604.9	55372.1	55968.4 -25.3	56379.3	56612.7	56708.6 -50.5	56723.7	56689.8	56570.5 -61.2	56246.8		88
08	6	40407.1 22.3	41568.6	43104.3	44768.4 41.9	46383.4	47854.0 41.1	49153.0 35.2	50296.0 26.0	51314.3 14.2	52232.7 0.9	53057.4 -12.9	53777.9 -26.0	54382.3	54875.4	55286.7	55654.2 -57.5	55987.3 -60.1	56229.1 -62.0	56246.8		98
ļ	C)	39483.2 25.4	40396.0 34.5	41658.0 42.4	43042.5	44393.9 49.6	45638.6 47.4	46766.0 41.2	47800.7	48775.8	49714.7 3.9	50623.1	51492.4 -25.9	52312.7	53086.3	53831.3 -55.8	54566.2	55276.7 -61.8	55885.4	56246.8		75
F	0	38472.8 23.8	39119.7 32.8	40092.0	41182.9	42260.1 50.2	43273.1 49.2	44230.3 44.1	45166.2 34.8	46114.8	47095.5	48109.8	49148.7 -25.2	50203.0 -39.3	51271.9 -50.5	52362.4 -58.1	53472.9 -62.1	54565.5	55542.4	56246.8		70
3	e e	37428.8 17.7	37803.3 25.2	38477.4 33.0	39263.9 39.9	40054.6 44.4	40825.3 45.6	41607.1	42447.2 35.4	43380.6	44419.8	45558.7 -7.5	46784.0 -24.5	48085.5	49459.0 -52.1	50900.2	52387.9	53861.2	55203.2 -64.6	56246.8		9
5	2	36411.9 8.3	36522.0 13.2	36898.5 19.5	37372.6 26.3	37861.9 32.4	38373.4 36.1	38966.4 36.4	39705.5 32.0	40627.8	41736.3	43013.0	44436.6	45993.3	47674.4	49464.7	51324.5	53171.2	54870.8 -65.4	56246.8		09
,	E. Long	Lat 0	κċ	-10	-15	-20	-25	-30	-35	-40	8	-50	-55	09-	-65	-70	-75	08-	-85	06-	Lat	E. Long

E. Long	Lat 0	ĸ	-10	-15	-20	-25	-30	-35	-40	8	-50	-55	09-	-65	-70	-75	-80	.85 75	06-	Lat	E. Long
175	34992.9	36839.6	39231.6 -26.3	42003.1 -24.8	44962.7	47940.4	50817.6 -28.0	53533.2 -31.9	56068.8	58421.2	60569.1	62445.0	63920.7	64817.5	64944.3	64151.4	62381.6	59693.3 -55.9	56246.8	}	175
170	35508.6 -26.8	37517.3 -26.6	40058.6	42953.5	46004.7	49040.9	51944.6	54657.1	57162.4 -31.8	59458.1	61521.6	63283.8	64618.6	65356.6	65322.4	64384.8	62500.8	59735.6 -55.5	56246.8		170
165	36072.6	38210.1 -25.1	40872.7	43869.0	46996.8	50083.4	53012.1 -24.3	55725.2 -26.5	58206.8 -28.5	60451.8	62433.6	64079.9	65267.4	65838.8	65638.7 -30.9	64558.4	62572.0 -45.5	59750.8 -55.1	56246.8		165
160	36679.0 -21.2	38906.8 -23.4	41657.9	44730.7	47918.0 -23.7	51045.9	53997.8 -24.5	56715.5 -25.4	59180.4 -26.0	61381.8	63285.9	64815.9	65852.3	66252.6	65885.5	64668.0	62593.4	59738.4 -54.8	56246.8		160
155	37318.1 -17.6	39597.5 -21.3	42404.3	45527.3 -24.9	48755.2 -25.4	51913.2 -25.7	54884.4	57609.1 -25.2	60063.5 -24.1	62227.8	64058.2 -20.3	65472.7 -18.8	66356.7	66585.2	66054.2 -26.6	64709.1 -34.5	62563.2	59698.2 -54.7	56246.8		155
150	37976.9 -13.7	40273.2	43104.9	46252.3 -25.5	49500.8	52675.5 -27.7	55659.8 -27.1	58391.4 -25.3	60838.6	62969.9	64729.5 -16.5	66029.7	66762.3	66822.6	66135.6 -25.1	64676.8 -33.8	62479.8 -44.0	59630.1 -54.6	56246.8		150
145	38638.6 -9.7	40921.9	43751.3	46899.5	50149.2 -28.3	53326.8 -29.1	56316.1 -27.9	59051.1 -24.9	61490.6 -20.8	63589.2 -16.4	65278.1 -13.0	66464.9	67049.9	66949.9	66120.3	64566.5 -33.4	62341.8	59534.2 -54.6	56246.8		145
140	39282.9 -6.1	41528.1	44332.7	47462.1 -24.8	50697.1 -28.3	53864.9	56849.8	59581.1 -23.6	62006.8	64067.3	65682.2	66756.2	67199.7 -11.0	66952.2	65999.1 -23.9	64374.1	62148.4	59410.8 -54.8	56246.8		140
135	39889.4 -3.5	42077.3 -10.9	44840.6	47937.4	51145.8 -27.1	54293.0 -27.9	57262.2 -25.7	59977.3 -21.1	62376.0 -15.5	64386.5	65919.8 -7.2	6.6880.9	67192.2 -9.9	66815.4 -15.9	65763.5 -24.3	64095.8	61899.0 -44.6	59260.5 -55.0	56246.8		135
130	40444.1	42563.7	45276.2	48332.3	51505.5 -25.2	54620.7 -25.3	57558.4 -22.5	60237.1	62586.9	64528.3 -7.4	65968.8	66817.4	67009.4 -9.8	66526.7 -16.5	65406.3 -25.2	63729.0	61593.6 -45.3	59084.0	56246.8		130
125	40943.0	42993.7 -10.8	45652.8 -16.9	48663.0	51791.4 -22.9	54858.6 -21.9	57741.2 -18.4	60354.2	62624.8	64472.3	65807.0	66545.4	66635.2 -10.7	66075.5	64922.1 -26.8	63272.3	61232.9	58882.4	56246.8		125
120	41388.5	43379.3	45986.8	48944.8	52013.5 -20.4	55008.1 -18.1	57802.6 -14.0	60312.5	62468.2	64195.4	65412.8	66047.0	66057.0 -12.5	65454.3 -20.2	64307.7	62725.5	60818.3	58656.9 -56.2	56246.8 -64.5		120
E. Long	Lat 0	κċ	-10	-15	-20	-25	-30	-35	40	-45	-50	-55	09-	-65	-70	-75	-80	\$c \$	06-	Lat	E. Long

E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	5 9-	-70	-75	98.	-85	.90 Lat	E. Long
235	31541.3 -35.9	31044.2 -34.6	31240.3	32101.1 -34.8	33550.7 -36.3	35481.0 -39.1	37765.8 -43.8	40274.1 -50.6	42887.6 -59.1	45516.1 -68.4	48100.2	50592.1 -82.8	52922.6 -85.0	54975.6 -83.4	56590.7 -78.7	57600.3 -72.8	57883.6	57408.9	56246.8 -64.5	235
230	31629.2 -34.6	31344.8	31740.2 -30.8	32782.0 -30.5	34390.0 -31.4	36454.8 -33.9	38851.4 -38.5	41450.3	44132.7	46805.5	49404.1	51875.2 -78.2	54144	56092.8 -79.7	57558.5 -75.7	58376.5 -70.5	58430.7 -66.1	57695.7 -63.9	56246.8 -64.5	230
225	31765.4 -32.5	31696.5	32291.6 -26.9	33508.8 -25.9	35261.3 -26.5	37437.7 -29.0	39916.6 -33.8	42575.1 -40.7	45300.1 -49.4	48000.1	50607.7	53062.9 -73.6	55283.8 -76.5	57143.3 -75.8	58476.0 -72.4	59116.9 -68.0	58954.4 -64.4	57970.3 -63.1	56246.8 -64.5	225
220	31944.0 -30.1	32090.1 -26.2	32883.2	34270.8 -21.8	36156.9 -22.4	38427.4 -25.3	40965.4 -30.4	43658.2 -37.6	46402.9 -46.3	49113.8 -55.4	51723.0 -63.6	54164.1 -69.5	56344.7	58128.0 -71.8	59341.6 -68.9	59818.7 -65.4	59451.9 -62.7	58230.9 -62.3	56246.8 -64.5	220
215	32160.4 -28.1	32516.0 -23.9	33502.6 -20.6	35055.3 -19.2	37067.6 -20.1	39421.0 -23.4	42003.3 -28.9	44712.8	47459.4	50166.7 -53.2	52768.5	55192.6 -65.8	57336.2 -68.2	59050.7 -67.7	60155.0	60479.6	59920.5 -60.9	58475.8 -61.5	56246.8 -64.5	215
210	32411.6 -26.9	32966.7 -22.8	34139.3	35851.9 -18.5	37986.2	40418.0 -23.5	43037.8	45754.1	48490.6	51181.6	53765.2 -58.5	56165.4 -62.7	58269.5	59917.0 -63.7	60917.6 -61.7	61098.1 -59.7	60357.8 -59.1	58703.3 -60.6	56246.8 -64.5	210
205	32695.4 -26.7	33438.2 -23.1	34788.5	36656.5	38911.6 -21.2	41422.1	44078.7 -31.0	46798.2	49516.8 -45.3	52180.7 -51.8	54734.3 -56.9	57099.8 -59.8	59156.6 -60.6	60733.3 -59.6	61631.1 -58.0	61673.2 -56.8	60761.8	58911.8 -59.8	56246.8 -64.5	205
200	33008.3 -27.5	33930.4	35452.6	37473.3 -21.8	39849.8 -23.5	42441.6	45137.3	47859.5	50555.2 -46.1	53182.8 -51.6	55693.8 -55.3	58011.2 -57.0	60008.4	61506.0	62297.7	62204.0 -54.0	61130.4	59100.0	56246.8 -64.5	200
195	33347.2 -28.6	34446.6	36139.5	38312.7	40811.6	43486.9	46223.7	48948.4	51617.6 -46.3	54200.3 -50.8	56656.3	58910.8 -54.0	60833.8	62240.1 -51.6	62918.8 -50.6	62689.7	61462.0	59266.5 -58.3	56246.8 -64.5	195
190	33710.5 -29.7	34992.1 -27.6	36858.8	39185.8 -25.8	41807.3	44565.6	47343.2	50069.0	52707.8 -45.3	55238.5 -49.1	57628.3 -50.9	59805.2 -50.7	61638.1	62938.8	63495.2	63129.1	61754.6	59410.1 -57.6	56246.8 -64.5	190
185	34100.9 -30.2	35571.9 -28.4	37616.8 -27.0	40097.8	42839.3	45677.3 -29.5	48492.4	51216.8	53822.0	56295.1	58609.4	60695.7	62422.8 -45.0	63602.9	64026.5	63520.6	62006.7	59529.7 -57.0	56246.8 -64.5	185
180	34525.5 -29.8	36188.5	38411.6	41042.8	43898.2	46809.8	49658.0	52378.3	54948.2	57360.8	59593.4	61578.3	63185.6 -40.6	64230.6	64510.6 -40.0	63862.3	62216.3	59624.4	56246.8 -64.5	180
E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	-45	-50	.55	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long

E. Long	Lat 0	rċ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	59-	-70	-75	-80	-85	06-	Lat	E. Long
295	29496.6	27449.7	25806.8 -62.3	24606.5	23867.8	23597.2	23804.6	24515.6 -43.7	25771.2 -46.0	27613.3 -50.9	30059.7	33074.9	36548.7	40296.4	44086.3	47691.6	50947.5	53788.4	56246.8	-64.5	295
290	30081.9	27985.8 -66.6	26323.7	25138.5 -55.7	24449.0	24255.6 -49.5	24556.5	25364.2 -48.8	26708.2 -51.6	28621.0 -56.7	31112.6	34140.9	37590.7 -76.1	41273.4	44953.7	48402.4	51455.4 -76.4	54054.5	56246.8	-64.5	290
285	30608.6 -64.9	28511.9	26888.3	25779.0 -53.9	25194.6	25121.0 -51.5	25540.0 -51.9	26450.4	27872.6	29834.6	32343.5 -69.5	35354.6 -75.6	38750.3 -80.2	42339.3	45884.7	49156.1 -80.4	51990.2 -76.1	54334.2	56246.8	-64.5 5:	285
280	31043.3 -55.6	28993.5	27462.4	26484.3	26054.4	26138.3	26699.4	27723.0 -58.4	29222.7 -63.6	31223.4	33731.4	36701.9	40017.2	43486.4	46873.1	49947.5	52548.0 -75.8	54625.5 -70.2	56246.8	-64.5	280
275	31365.8	29406.1 -45.9	28013.4	27210.5 -47.3	26972.5 -49.4	27243.7	27969.5 -56.6	29122.5 -62.1	30708.6 -68.7	32748.9	35248.2 -81.9	38162.5	41376.6	44703.4	47910.2	50770.5	53124.8	54926.3 -69.8	56246.8	64.5	275
270	31570.8 -40.3	29738.2 -40.6	28518.3	27919.6 -44.4	27897.7 -47.6	28377.5	29288.7 -57.8	30591.2 -64.9	32280.5	34370.1	36861.1	39710.8 -90.8	42809.0	45975.9	48986.0	51618.2	53716.2 -74.9	55234.5 -69.3	56246.8	-64.5	270
265	31667.7 -35.9	29991.3 -37.1	28965.9 -39.2	28586.5	28792.4	29494.4 -51.6	30608.7 -58.4	32081.6 -66.6	33893.9 -75.3	36046.9 -83.6	38535.6 -90.2	41318.2	44292.0	47287.3	50089.0 -86.8	52483.3 -80.5	54317.8	55547.8 -68.8	56246.8	-64.S	265
260	31678.7 -33.9	30179.2	29358.9 -37.9	29202.3	29638.6 -45.5	30569.3	31899.4	33559.7 -67.1	35512.5 -76.4	37742.9 -85.1	40237.2	42954.5 -95.6	45801.0 -95.7	48619.5	51206.6 -86.8	53357.7 -80.0	54924.8 -73.5	55863.9	56246.8	6. 6.	260
255	31634.9	30325.2 -35.2	29712.7 -37.6	29775.5 -40.8	30438.0 -45.0	31596.9	33147.8 -57.8	35004.4	37108.0 -75.7	39425.2 -84.6	41932.3	44589.1	47310.9	49953.5 -92.3	52326.1 -86.3	54233.4 -79.2	55532.7 -72.6	56180.6 -67.6	56246.8	C.+0-	255
250	31571.3 -34.5	30458.9 -35.7	30052.4 -37.7	30327.2	31207.2	32586.8	34353.2	36403.5	38658,3	41065.1	43590.2	46193.2	48797.7	51271.3	53435.0 -85.2	55102.7 -78.1	56136.9 -71.6	56495.7 -66.9	56246.8	Ç.	250
245	31520.1 -35.6	30609.4 -36.1	30405.8 -37.6	30884.2	31969.2 -43.0	33554.8 -47.2	35520.8 -53.1	37750.5 -60.6	40146.0	42638.3 -78.6	45183.7	47741.0	50239.5 -92.1	52556.3 -89.2	54521.8 -83.5	55958.0 -76.6	56732.9 -70.4	56806.8	56246.8	n P	245
240	31505.8 -36.2	30800.0 -35.9	30796.8 -36.6	31470.3 -38.0	32745.6 -40.3	34516.0 -43.7	36656.8	39041.3 -55.9	41558.3	44125.9	46691.7	49211.9	51618.7 -88.9	53794.6 -86.6	55576.4 -81.3	56792.5 -74.9	57316.4 -69.1	57112.0 -65.5	56246.8	Š	240
E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	08-	-85	06-	Lat	E. Long

E. Long	Lat 0	κ̈́	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	285	06-	Lat	E. Long
355	30637.4	30156.5 8.5	29620.0 3.9	28952.1 -5.9	28168.5 -21.2	27342.4 -41.1	26571.5 -63.5	25973.2 -85.4	25706.1 -103.2	25979.3	27009.3	28929.3	31722.2 -105.5	35236.2 -97.8	39256.0 -91.1	43564.5	47963.8	52260.9 -72.4	56246.8 -64.5		355
350	29979.4 11.4	29404.6 12.7	28816.3 9.7	28165.3 1.1	27476.0 -13.3	26804.1 -32.7	26209.2	25766.6 -77.5	25606.8 -96.3	25934.5 -108.6	26981.6 -112.9	28903.3	31697.4 -104.1	35215.4 -97.1	39238.5 -90.7	43547.2	47944.6	52244.2	56246.8		350
345	29341.3 11.7	28672.4 14.6	28035.9 12.9	27401.3 5.4	26796.5 -7.9	26261.1 -26.2	25824.4 -47.5	25530.0 -69.2	25487.2 -87.9	25894.8 -100.9	26991.6 -106.5	28943.9	31757.5 -101.0	35285.7 -95.3	39308.5 -89.8	43604.7	47980.2	52256.3 -72.6	56246.8		345
340	28741.8	27978.1 13.7	27298.1 13.1	26680.2 6.8	26148.5 -5.1	25727.2 -21.6	25424.3	25263.3 -61.0	25340.6 -78.7	25849.0 -91.6	27026.0 -98.3	29037.9 -99.2	31890.8 -96.5	35438.4 -92.5	39459.8 -88.4	43733.7	48069.2	52296.8	56246.8		340
335	28205.2 3.7	27340.0 9.3	26614.5 10.1	26007.8	25533.9 -4.7	25202.1 -18.9	25007.0 -35.8	24963.9 -53.3	25163.4 -69.2	25792.4 -81.5	27078.5 -88.9	29177.9 -91.6	32090.3 -91.2	35667.3 -89.2	39687.7 -86.7	43931.0	48209.7	52365.1 -72.7	56246.8		335
330	27771.0 -5.7	26787.9 1.2	26002.5	25390.9 1.0	24952.5 -6.6	24683.1 -18.0	24571.6 -31.7	24633.6 -46.3	24959.9 -60.0	25729.0 -71.3	27151.2 -79.2	29363.5 -83.7	32353.3	35968.8 -85.7	39988.9 -84.8	44193.7	48399.9	52460.5	56246.8		330
325	27489.4	26365.3 -10.5	25493.3 -5.9	24847.5	24414.0 -10.6	24178.1	24128.4 -29.0	24287.2	24747.0 -51.7	25674.8 -61.9	27256.1 -70.1	29601.3 -76.1	32682.2 -80.1	36342.4	40361.2	44519.5	48637.9	52582.0 -72.6	56246.8		325
320	27404.6 -34.3	26116.0 -24.8	25124.7 -18.0	24407.7 -15.2	23943.6	23712.3	23706.7 -27.9	23957.7 -36.2	24558.3	25659.1 -54.0	27414.6	29904.8 -69.6	33083.7 -75.4	36790.3 -79.4	40804.0	44906.4	48921.6	52728.6 -72.5	56246.8		320
315	27533.5 -50.6	26065.1 -40.1	24926.5	24104.4 -25.7	23577.8 -23.8	23327.9 -25.0	23354.5 -28.6	23695.9 -33.8	24442.1	25722.0	27656.0 -56.5	30292.4	33567.7 -71.8	37316.3 -77.2	41317.4	45352.4	49249.0	52898.9	56246.8		315
310	27857.6 -64.9	26208.2 -54.0	24910.1 -43.8	23964.0	23357.2	23077.5	23132.6	23564.8	24455.8	25909.9 -45.0	28013.3	30785.0 -61.8	34145.8	37925.5 -75.9	41902.1	45856.1	49617.8	53091.6 -72.1	56246.8		310
305	28330.9 -75.2	26515.7 -64.4	25067.2 -53.9	24001.6 -45.4	23318.3	23014.6	23103.8	23627.8	24655.8	26267.2 -44.6	28518.1	31403.0	34829.6	38622.9 -75.6	42558.6	46415.4	50025.7	53305.2	56246.8	\$	305
300	28896.1	26944.8	25376.1 -60.2	24219.4	23486.1	23181.0	23318.9	23935.8	25086.5	26828.7	29195.5 -54.1	32162.9	35628.6 -70.3	39412.6	43287.1	47028.1	50469.8	53538.1	56246.8		300
E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	94	-45	-50	-55	09-	59 -	-70	-75	08-	-85	06-	Lat	E. Long

E. Long	Lat 90	82	08	75	70	\$9	09	\$\$	20	45	40	35	30	25	20	15	10	NO.	0 Lat	E. Long
52	24.4	30.2	29.7	26.7	22.8	18.8	15.0	11.7	8.9	6.6 0.9	4.7 0.7	3.3	2.2	1.3	0.6	-0.1	0.0	-1.9	-3.3	55
50	19.4	26.6 14.0	26.6 8.6	24.2 5.9	20.9	3.1	14.0	11.0	8.5	6.4	4.8 0.8	3.6	2.6	1.9	1.3	0.7	0.0	-0.8 0.5	-2.1	50
45	14.4	22.7 13.8	23.3	21.5	18.7	15.7 3.2	12.7	10.1	7.9	6.1	4.7	3.7	2.9	2.3	1.9	1.8	0.8	0.1	-1.0 0.9	8
40	9.4	18.8	19.8 8.5	18.5	16.3	13.7	11.3	9.0	7.1	5.6	4.5	3.6	3.0	2.5	2.2	1.8	1.3	0.7	-0.2 1.9	40
35	4.4 29.9	14.8	16.2	15.4	13.6	3.7	9.6	7.8	6.2	5.0	4.0 0.9	3.3	2.8	2.4	2.1	1.7	1.4	0.8	0.1	35
30	-0.6 29.9	10.6	12.5 8.8	12.1 6.5	10.8	9.3	7.8	6.4	5.2	4.2	3.5	2.9	2.4	2.1	1.7	1.4	1.0	0.5	-0.3	30
25	-5.6 29.9	6.4	8.7	8.7	7.9 5.5	6.9	3.7	3.0	4.0	3.4	2.8	2.3	1.9	1.6	1.2	0.8	0.3	-0.3 2.5	3.0	25
20	-10.6 29.9	2.2	9.3	5.1	5.9	4.3 5.0	3.7	3.2	3.2	2.4	2.1	1.7	1.8	1.0	0.6	0.1	-0.5 2.1	-1.2 2.6	-2.1 3.3	20
15	-15.6 29.9	-2.2	7.0 7.6	1.5	1.7	1.6	1.5	1.5	1.4	1.3 3.8	1.2 3.4	3.1	0.7	0.4	-0.1	-0.6	-1.3	3.1	3.8	15
10	-20.6	-6.6 14.4	-3.4	-2.2 8.2	-1.6	-1.2	-0.8 5.8	-0.4 5.4	-0.1 5.1	0.1 4.9	0.2 4.6	0.2	0.0	-0.4 3.8	-0.8 3.6	-1.5 3.5	-2.3 3.6	-3.3	4.8	10
w	-25.6 29.9	-11.1	-7.5 10.6	.6.0 8.8	7.8	-4.0	-3.2	-2.4	-1.8	-1.3 5.9	-1.0	-0.9 5.6	-1.0	-1.3	-1.8	-2.5 4.8	-3.4	5.2	5.8	ın
0	-30.6 29.9	-15.6 15.2	-11.7	-9.8 9.5	-8.4 8.5	-7.0 7.8	-5.8 7.3	-4.6 7.1	-3.7	-2.9	-2.5	-2.2	-2.3	-2.6	-3.0	-3.7	-4.7	-6.1	-8.0	•
E. Long	Lat 90	85	08	75	7.0	59	09	55	50	45	40	35	30	25	20	15	10	w	0 Lat	E. Long

																				50
E. Long	Lat 90	82	08	75	70	99	09	55	20	45	40	35	30	25	20	15	10	ĸ	0 Lat	E, Long
115	84.4 29.9	49.9 23.0	11.0	-4.6 0.5	-9.1 0.4	9.9	-9.4	-8.5	-7.5 1.8	-6.4	-5.4 1.8	4.4	-3.4	-2.5 0.5	-1.6	-0.8	-0.1	0.5	0.9	115
110	79.4 29.9	51.4 23.0	18.6 8.1	2.0	-3.9	-5.7 1.5	-6.0 1.9	-5.7	-5.1 2.5	-4.4 2.6	-3.7	-3.1	-2.4	-1.7 1.6	111	-0.6 0.7	-0.1 0.3	0.3	0.6	110
105	74.4 29.9	52.1 22.4	25.7 10.7	9.4 4.3	2.1	-0.9	-2.1	-2.5 2.7	3.0	3.2	-2.1 3.2	-1.8	-1.5 2.9	-1.1 2.6	-0.8	-0.4	-0.1 1.8	0.1	1.8	105
100	69.4 29.9	52.0 21.4	31.6	16.6 5.8	8.3 3.5	4,1 2.8	1.9	3.0	3.3	3.5	3.7	3.7	-0.7 3.6	3.5	3.3	-0.5 3.2	-0.4 3.1	-0.5 3.1	3.3	100
95	64.4	51.3 20.3	35.8 12.2	22.6	14.1	3.2	5.7 3.0	3.7	2.3	1.4	3.8	0.2 3.8	-0.1 3.9	3.9	3.8	3.9	-0.9 3.9	-1.2 4.1	-1.6	95
06	59.4 29.9	49.9	38.3 11.9	27.2	18.8	13.0 3.4	9.0	6.3	4.4	2.9	1.8 3.5	0.9 3.6	0.3 3.6	-0.3 3.7	-0.7 3.8	-1.1 3.9	-1.4	-1.9	-2.6	96
82	54.4 29.9	48.1	39.4 11.3	30.1	22.2	16.2 3.4	11.7	2.8	6.0	4.1	3.0	3.0	3.0	-0.2 3.0	-0.8 3.1	-1.4	-1.9 3.4	-2.6 3.6	3.9	88
08	49.4 29.9	45.8 17.2	39.4	31.7	24.4	18.4	13.7	10.1	7.3	5.0	3.3	1.9	0.7	-0.2 2.0	-0.9 2.0	-1.6 2.1	-2.3	-3.2	4.3	80
75	44.4 29.9	43.2	38.6	32.1 6.6	25.6	19.8	15.1	11.2	8.2 2.0	5.7	3.7	2.2	0.9	-0.1 1.0	-0.9 0.9	-1.7	-2.5	-3.5	4.8	75
70	39.4 29.9	40.3	37.0 9.6	31.7	25.9	3.2	15.8	11.9	8.7	6.1	1.1	2.4	1.1	0.1	-0.8 0.0	-1.6	-2.5	-3.6	-5.0 -0.5	70
99	34.4 29.9	37.1 15.2	34.9 9.2	30.5	25.4	20.4 3.1	16.0	12.2	9.0	6.4	4.3	2.7	1.4	0.4	-0.5	-1.3	-2.3	-3.4	4.8	\$9
09	29.4 29.9	33.8 14.7	32.5 8.9	28.8	24.3	19.8 3.1	15.7	12.1	9.0	6.6 0.9	4.6 0.6	3.0	1.8	0.0	0.0	6.8 4.0-	-1.7	-2.8	-4.2	09
5.0																			_	gu
E. Long	Lat 90	82	08	75	70	92	09	55	20	45	40	35	30	25	20	15	10	v.	0 Lat	E. Long

WMM-95	

E. Long	Lat 90	85	80	75	70	9 9	09	55	20	45	40	32	30	25	20	15	10	ĸ	0 Lat	E. Long
175	144.4	39.3	9.5	4.5	3.0	2.5	2.5 4.5	2.7	3.1	8.E 8.8	7.4	5.7	6.7	7.7	8.6 -4.6	9.2	9.6	10.0	10.3	175
170	139.4	36.5 -14.7	5.9	0.8 -6.1	-0.6	-0.9	-0.7	-0.3	0.4	4.3	2.3	3.6	4.9 -5.0	6.2	7.3	8.2	8.9 -3.5	9.4	9.9	170
165	134.4	34.3 -12.4	2.5	-2.7 -5.5	-4.0	-4.2 -3.1	-3.8	-3.2	-2.4	-1.3	0.0	4.6	3.0	4.5 5.4	5.8 4.0	7.0	7.9	8.6	9.1	165
160	129.4	32.8 -9.6	-0.5 8.8	-6.0	-7.3 -3.3	-7.3 -2.5	-6.8	-5.9	-4.9	-3.7	-2.2	-0.7	1.0	2.7	4.2	5.5	6.6	7.5	8.2 -0.9	160
155	124.4	32.2	-3.1	-8.9 4.4	-10.2	-10.1 -2.1	-9.4	-8.4	-7.2 -2.3	-5.8	-4.3	-2.6	-0.8 -3.4	0.9 -3.1	2.6	4.0	5.3 -0.9	6.2	7.0	155
150	119.4	32.5 -2.6	-5.2 -7.7	-11.5	-12.8	-12.5	-11.7	-10.5	-9.1	-7.6 -2.2	-6.0	-4.3	-2.5 -2.7	-0.7	1.1	2.6	3.9	5.0	5.9	150
145	114.4	33.7	-6.6	-13.5	-14.8	-14.5 -1.4	-13.5 -1.1	-12.2 -1.2	-10.7	-9.1	-7.4	-5.6	-3.8	-2.0	-0.3	1.3 -0.5	2.7	3.8	4.7 0.8	145
140	109.4	35.7 6.7	-7.2	-14.9 -3.4	-16.3 -1.9	-15.9 -1.1	-14.7	-13.3	-11.7	-10.0	-8.3	-6.5 -1.5	-4.7 -1.5	-3.0	-1.3 -1.0	0.2	1.6	2.7	3.7	140
135	104.4	38.5	-6.7 -5.5	-15.5	-17.0	-16.5 -0.9	-15.3 -0.5	-13.8 -0.5	-12.1 -0.5	-10.4	-8.7	-7.0 -1.0	-5.3	-3.6	-2.0	-0.6	0.7	1.8	-0.2	135
130	99.4 29.9	41.6	4.8	-14.9	-16.9 -1.3	-16.4 -0.6	-15.1	-13.5 -0.1	-11.9 -0.1	-10.2 -0.2	-8.6	-6.9 -0.5	-5.4 -0.8	-3.8	-2.4	-1.1	0.1	1.1	1.9	130
125	94.4 29.9	44.8	-1.2	-13.1	-15.6 -0.9	-15.3 -0.2	-14.1	-12.6	-11.0 0.5	-9.5 0.5	-7.9 0.3	-6.4	-5.0	-3.7	-2.4	-1.2	-0.2	0.7	1.4	125
120	89.4	47.7 22.0	4.2	-9.7 -1.0	-13.0	-13.1	-12.2 0.7	-10.9	-9.5 1.1	-8.2	-6.8 1.0	-5.5	4.3	-3.2	-2.1 -0.8	-1.1	-0.2	0.5	1.1	120
E. Long	Lat 90	\$8	08	7.5	0.2	59	09	55	20	45	40	35	30	25	20	15	10	vo.	0 Lat	E. Long

E. Long	Lat 90	82	08	75	70	\$9	09	55	20	45	40	32	30	25	20	15	10	w	0 Lat	E. Long
235	-155.6 29.9	155.9 53.7	63.5	47.3	38.9	32.6 -18.6	27.8	24.0 -9.8	21.1	18.7	16.8 -2.8	15.1 -1.4	13.6	12.2	10.9	10.0	9.3	2.2	9.1	235
230	-160.6 29.9	135.1 23.7	58.1	45.0 -29.3	37.8 -22.1	32.3 -17.2	27.9	24.3	21.5	19.2	17.2	15.4	13.8	12.3	11.0	10.0	9.3	9.0	9.1	230
225	-165.6 29.9	116.6	53.1 -36.5	42.1 -24.9	36.0 -19.6	31.3 -16.0	27.4 -13.1	24.1 -10.5	21.4	19.2	17.3	15.5	13.8	12.3	11.0	10.0	9.3	9.0	2.7	225
220	-170.6	101.3	48.2	38.9 -21.4	33.7 -17.4	29.7	26.3	23.4	21.0	18.9	17.0	15.3	13.7	12.2	10.9	9.9	9.3	9.0	9.1	220
215	-175.6 29.9	89.0 -24.5	43.5	35.4 -18.7	31.0	27.6	24.8	22.3 -10.6	20.1	18.2	16.5	14.9 -5.0	13.4	12.0	10.8	9.8	9.2	8.9 0.7	9.1	215
210	179.4 29.9	79.0	38.9	31.7	28.0 -13.9	25.2 -12.5	22.8	20.7	18.9	17.3	15.8	14.4	13.0	11.7	10.5	9.6	9.1	8.9 -0.5	9.1	210
205	174.4 29.9	70.6	34.4	27.9	24.8	22.5	20.6	18.9	17.4	16.1	14.8	13.6	12.5	11.3	10.3	9.6	9.1	8.9	9.1	205
200	169.4	63.4	30.0	24.0	21.4	19.5	18.0 -9.6	16.7	15.6	14.6	13.7	12.8	11.9	11.0	10.2	9.6	9.2	9.0	9.2	200
195	164.4	57.2	25.6	20.1	17.8	16.3	15.2	14.3	13.5	12.8	12.3	11.8	11.3	10.7	10.2	9.7	9.4	9.3	9.5	195
190	159.4	51.7	21.4	16.1	14.1	13.0	12.2 -7.5	11.6	11.1	10.9	10.7	10.6	10.5	10.4	10.1	9.9	9.7	9.7	9.8	190
185	154.4	47.0	17.3	12.2	10.4	9.5	9.0	8.7	8.6	8.7	8.9 7.3.	9.2	9.6	9.8 5.4	9.9	10.0	9.9	10.0	10.2	185
180	149.4	42.9	13.3	8.3	6.7	6.0	5.8	5.8 8.4.	5.9 5.3	6.3 -5.3	6.9	7.6	8.3 6.0	9.0	9.4 4.5	9.8	10.0	10.1	10.4	180
E. Long	Lat 90	82	08	75	70	99	09	55	20	45	40	35	30	25	20	15	10	ĸ	0 1	E. Long

E. Long	Lat 90	82		75	70	59	09	22	90	45	40	35	30	25	20	15	10	vo	•	> ,	Lat	E. Long
295	-95.6	-80.1	-70.0	60.09-	49.8	40.6	-33.0	-27.3	-23.1	-20.0	-17.8	-16.0	-14.7	-13.6	-12.7	-11.9 -7.8	-11.2	-10.5	9	-11.2		295
290	-100.6	-85.8	-74.7	-63.0	-50.8	-40.0	-31.6	-25.4	-20.9	-17.8	-15.4	-13.6	-12.1	-10.9	6.6- 0.8-	8, 8, 6, 6, 8	-8.0	-7.2		-11.1		290
285	-105.6 29.9	-91.8 34.5	-79.5 37.9	36.6	-50.5	-37.8 18.5	-28.5 10.3	-22.1	-17.6	-14.5 -1.8	-12.2	-10.4	0.6-	.7.8 8.0	6.7	.5.7 9.6-	-4.7	-3.7	-2.7	6.6-		285
280	-110.6	-98.0 37.8	-84.5	-66.9	-48.2 30.5	-33.5 16.2	-23.6	-17.3	-13.2	-10.3	-8.3	-6.7 -6.8	-5.4	4.8	£. 85	-2.4	-1.4	-0.4	0.6	-8.0		280
275	-115.6	-104.6 41.8	-89.6	-66.6	-42.5 29.8	-26.2 11.0	-16.8 2.0	-11.3	-7.9	-5.6	-4.0 -6.6	-2.8	-1.8	-1.0	-0.1	0.7	1.6	2.5	3.4	-6.0		275
270	-120.6 29.9	-111.7	-95.2 69.8	-62.6	-31.4	-15.7	8- 6.5-	-4.4 -5.3	-2.1 -5.9	-0.6	0.4 -6.4	1.1	1.7	2.2	2.8	3.4 -5.6	4.1	6.4 7.4	5.7	4.		270
265	-125.6 29.9	-119.5 52.3	-101.8 98.5	-48.8 67.5	-13.5	-3.1 -9.2	0.8 -8.5	2.6	3.5 -6.5	4.1	4.4 4.5.	4.6 -5.1	8.4 8.8	5.0 5.4	5.3	5.6	6.1	6.7	7.3	-2.7		265
260	-130.6	-128.4 59.1	-111.3 167.9	-11.2	7.1 -29.9	9.2 -18.0	9.2	8.9	8.6	8.3	8.0	7.7	7.5	7.3	7.2	7.3	7.5	7.9	8.4	-1.5		260
255	-135.6 29.9	-138.6 66.8	-143.0	28.3 -101.6	23.0	19.0	16.2 -13.4	14.2	12.8	1.7	10.9	10.2	9.6	9.1	8.7	8.5 -0.6	8.5	8.6 -0.6	8.9	-0.7		255
250	-140.6	-150.7 74.5	96.8	43.6	32.4	25.7	21.3 -13.9	18.2	16.1	14.5	13.2	12.1	11.2	10.4	9.7	9.2	9.0	9.0	9.2	0.1		250
245	-145.6 29.9	-165.6 78.9	77.9	48.1	37.0	29.8	24.7	21.1	18.5	16.5	14.9	13.5 -0.6	12.3	11.2	10.3	9.7	9.2	9.1	9.2	6.0		245
240	-150.6	176.4 73.9	69.6	48.6	38.8 -29.1	31.9	26.8	23.0	20.1	17.9	16.1	14.5 -0.8	13.1	11.8 0.8	10.7	9.9	9.3	9.1	9.2	7.7		240
E. Long	Lat 90	8 8	08	75	70	59	09	55	20	45	-04	35	30	25	20	15	10	vo.	0	Lat		E. Long

E. Long	Lat 90	85	80	75	70	99	09	55	20	45	40	35	30	25	20	15	10	ĸ	0 Lat	E. Long
355	-35.6	-20.2 15.7	-16.0 11.8	-13.7 10.2	-11.8 9.3	-10.1 8.6	-8.4 8.1	-6.9 7.8	-5.7 5.7	7.4	-4.1 7.4	-3.8	-3.8	-4.1 7.2	-4.6 7.1	-5.3	-6.4 7.1	-7.9 7.3	7.6	355
350	-40.6	-24.8 16.2	-20.3 12.5	-17.6	-15.4	-13.2	-11.1 8.8	-9.3 8.4	-7.9 8.0	7.9	-6.0	-5.7 7.6	-5.6 7.6	-5.9 7.6	-6.4 7.6	-7.2 7.6	-8.4 7.7	-9.9 7.8	-12.0 7.9	350
345	-45.6 29.9	-29.5 16.8	-24.7 13.3	-21.6	-18.9 11.0	-16.3 10.2	-13.9 9.5	-11.8 8.9	-10.1	-8.9 8.0	-8.0	-7.6 7.6	-7.6 7.6	9.7- 7.6	-8.4	-9.3	-10.6 7.8	-12.2 7.9	-14.2 7.7	345
340	-50.6 29.9	-34.2 17.5	-29.0 14.1	-25.6 12.8	-22.5	-19.5 11.1	-16.8 10.2	-14.4	-12.4	-11.0	-10.1 7.7	-9.6 7.5	-9.6 7.4	-9.9 7.4	-10.5 7.4	-11.5 7.5	-12.8	-14.4	-16.4	340
335	-55.6 29.9	-39.0	-33.5	-29.6	-26.1 12.9	-22.7 12.0	-19.6 11.0	-16.9 9.9	-14.7	-13.1	-12.1 7.6	-11.6	-11.5	-11.9	-12.6	-13.6	-14.9	-16.5 6.5	-18.4	.335
330	-60.6	-43.9 19.1	-37.9	-33.7	-29.6	-25.8 12.9	-22.3	-19.3 10.4	-17.0 9.3	-15.2 8.3	-14.1 7.6	-13.5 7.0	-13.4	-13.7	-14.4	-15.5	-16.8	-18.3	-19.9	330
325	-65.6 29.9	-48.8 20.1	-42.4	-37.7	-33.1 15.1	-28.8 13.8	-24.9	-21.7 10.9	-19.1 9.6	-17.2 8.5	-15.9 7.5	-15.2 6.9	-15.1	-15.3 6.0	-16.0 5.6	-17.0 5.1	-18.1	-19.4	-20.8	325
320	-70.6 29.9	-53.8	-46.9 18.6	-41.6	-36.5	-31.7	-27.4	-23.8	-21.0	-18.9	-17.6 7.5	-16.8	-16.5	-16.6 5.3	-17.1 4.6	-17.9 3.8	-18.8	-19.8 1.5	-20.8	320
315	-75.6 29.9	-58.8 22.4	-51.5 20.1	-45.5 19.0	-39.8	-34.3 15.8	-29.6	-25.6	-22.6	-20.4	-18.8 7.2	-17.9	-17.5	-17.4	-17.7	-18.2	-18.8 0.6	-19.4	-20.0	315
310	-80.6	-64.0	-56.0 21.8	49.4	42.8	-36.7	-31.4	-27.1	-23.8	-21.4	-19.7	-18.5	-17.9	-17.6	-17.5	-17.7	-17.9	-18.2	-18.4 -5.5	310
305	-85.6 29.9	-69.2	-60.6	-53.1	-45.6 20.6	-38.7	-32.7	-28.0 11.5	-24.4	-21.7 7.1	-19.8	-18.5 3.8	-17.6	-17.0	-16.6	-16.4	-16.3	-16.2 -6.5	-16.1	305
300	-90.6 29.9	-74.6	-65.3	-56.7 25.1	-48.0	-40.0	-33.3 14.3	-28.1 10.8	-24.2	-21.3	-19.2 3.6	-17.7	0.0	-15.7	-15.0	-14.5	-14.0	-13.6	-13.2	300
E. Long	Lat 90	82	80	75	70	92	09	55	50	45	40	35	30	25	20	15	10	so	0 Lat	E. Long

E. Long	Lat 0	şŲ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	59 -	-70	-75	08-	-85	-90 Lat	E. Long
55	-3.3 -1.3	-5.3	-8.2	-12.2 -4.9	-17.7	-24.2	-31.0	-37.3	-42.6	-46.9 -9.7	-50.2 -10.1	-53.0	-55.5 -9.4	-57.8 -8.2	-60.4	-63.6	-68.0	-74.1 -1.3	-82.5 -0.5	55
20	-2.1	-3.9	-6.7	-10.7	-16.2	-22.9	-29.9	-36.1 -9.5	-41.1	-44.9	-47.8 -10.5	-50.1	-52.1	-54.1	-56.3	-59.2	-63.3	-69.3	-77.5 -0.5	20
45	-1.0	-2.6	-5.1	-9.0	-14.4	-21.1	-28.1	-34.3	-39.0	-42.5 -10.8	-45.0 -10.8	-47.0 -10.4	-48.7	-50.3	-52.3	-54.9	-58.8	-64.5	-72.5 -0.5	45
04	-0.2	-1.6	-3.8	-7.3 -2.3	-12.4	-19.0 -7.7	-25.9 -9.6	-32.0 -10.5	-36.6	-39.8	-42.0 -11.0	-43.7	-45.1 -9.2	-46.5 -7.5	-48.2	-50.7	-54.3	-59.7 -1.0	-67.5 -0.5	40
35	0.1	-1.1	-3.1	-6.2	-10.8	-17.0 -6.0	-23.6	-29.5 -10.1	-33.8	-36.8	-38.9	-40.3	-41.5	-42.7 -7.0	-44.3 -5.1	-46.5	-49.9	-55.0	-62.5 -0.5	35
30	-0.3	-1.4 3.0	-3.1	-5.8 1.6	-10.0	-15.5 -3.5	-21.7	-27.1	-31.1 -10.1	-33.9	-35.7 -10.3	-36.9	-37.9	-38.9	-40.3 -4.5	-42.4	-45.6 -1.6	-50.4	-57.5 -0.5	30
25	-1.1 3.0	-2.2 3.5	-3.9 3.8	-6.4 3.6	-10.1	-15.0	-20.4	-25.2	-28.7	-31.1	-32.6	-33.6	-34.4	-35.2	-36.5	-38.4	-41.3 -1.3	-45.8 -0.7	-52.5 -0.5	25
20	-2.1 3.3	-3.4	-5.3	-7.8	-11.3	-15.7 2.7	-20.2	-24.1	-26.8	-28.6	-29.7 -7.5	-30.4	-31.0	-31.7	-32.7	-34.4	-37.1	-41.2	-47.5 -0.5	20
15	-3.8 3.8	-5.0 4.8	-7.1 5.8	8.6- 6.6	-13.3 6.5	-17.2 5.1	-20.9	-23.7	-25.6	-26.6	-27.2	-27.5	-27.7	-28.2	-29.0	-30.5	-32.9	-36.7	-42.5 -0.5	15
10	8,4	5.6	-9.1 6.7	-12.1 7.5	-15.6 7.6	-19.1 6.5	-22.1	-24.0	-24.9	-25.1	-25.0	-24.8	-24.7	-24.9	-25.5	-26.8	-28.8	-32.2	-37.5	10
vo.	-6.3	-8.5	-11.2 7.5	-14.5 8.1	-18.0 7.9	-21.2 6.8	-23.4	3.0	-24.6 1.5	-24.0 0.5	-23.2	-22.4	-21.9	-21.8 -0.2	-22.1 0.0	-23.1 0.1	-24.8	-27.7	-32.5 -0.5	ĸ
0	-8.0	-10.4	-13.3 8.0	-16.7 8.1	-20.0 7.5	-22.8	-24.6	-25.1 3.6	-24.4 3.1	-23.1 2.7	-21.7 2.4	-20.3	-19.3 1.6	-18.8	-18.8 0.9	-19.5 0.6	-20.8	-23.3	-27.5 -0.5	0
E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	08-	-85	-90 Lat	E. Long

E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	94	-45	-50	-55	09-	5 9-	-70	-75	08-	-85	-90 1	į	E. Long
115	0.9	1.2	1.2	1.0	0.4	-0.6 2.0	-2.2 2.7	3.3	3.4	-15.2 2.7	-25.7 0.2	-43.4	-69.5 -13.0	-95.8 -13.5	-113.7	-124.6	-131.9	-137.5	-142.5 -0.5		115
110	0.6	0.7	0.5	-0.1	-1.1	-2.6	-5.1 3.5	3.8	-14.0 3.4	-21.9	-33.9 -1.5	-51.3 -7.1	-72.8 -11.8	-92.9 -11.7	-107.9	-118.1	-125.6	-131.8	-137.5		110
105	0.1	-0.1	2.4	-1.5 2.9	3.5	-5.2	-8.4	-13.0	-19.5 3.2	-28.5	-40.9 -3.1	-56.7 -7.8	-74.2 -10.8	-90.1 -10.5	-102.6	-112.1	-119.6	-126.2	-132.5 -0.5		105
100	-0.7	-1.1 3.5	-1.9 3.9	-3.3	-5.2	-8.1	-12.1	-17.6	-25.0 2.6	-34.5	-46.5	-60.2	-74.4 -10.1	-87.2 -9.7	-97.8 -7.8	-106.4	-113.8	-120.7 -1.7	-127.5 -0.5		100
95	-1.6	-2.4 4.6	-3.5	.5.3 5.3	-7.8 5.6	-11.3	-16.1	-22.3	-30.1	-39.6	-50.5	-62.2	-73.8 -9.6	-84.3 -9.1	-93.3 -7.5	-101.1 -5.5	-108.2	-115.2 -1.7	-122.5 -0.5		95
06	-2.6 4.6	-3.7	-5.2 5.3	5.5	-10.5	-14.6 5.4	-19.9 4.6	-26.6	-34.6	-43.6	-53.3	-63.1	-72.6	-81.3	-89.0	-95.9 -5.4	-102.7	-109.8 -1.7	-117.5		06
82	-3.6 3.9	4.9 6.3	-6.8 4.6	4.8	-13.0	-17.6	-23.4	-30.3	-38.1	-46.4	-54.9	-63.2	-71.0	-78.2 -8.5	-84.8	-91.0 -5.3	-97.4	-104.5	-112.5		88
08	-4.3	-5.9	-8.1 3.1	-11.1	-15.1 3.2	-20.2	-26.3	-33.3	-40.8	-48.3 -5.3	-55.7	-62.6	-69.1	-75.0 -8.3	-80.6	-86.2	-92.2 -3.3	-99.3 -1.6	-107.5		80
75	4.8	-6.6	-9.1	-12.4	-16.8 1.0	-22.3	-28.6	-35.5	-42.6	-49.3	-55.7	-61.5 -8.9	9.99-	-71.8	-76.5 -6.9	-81.5 -5.1	-87.2	-94,1	-102.5		75
70	-5.0 -0.5	-6.9	-9.6 -0.8	-13.3	-18.0	-23.7	-30.3	-37.0	-43.6	-49.6	-55.0 -8.6	-59.9	-64.3	-68.4	-72.5	-76.9	-82.3	-89.0	-97.5		70
92	-4.8 -1.5	-6.9 -1.9	-9.7	-13.5	-18.5	-24.6	-31.2 -4.9	-37.8	-43.9	-49.3	-53.9 -9.1	-57.9	-61.6	-65.0	-68.4	-72.4	-77.4	-84.0	-92.5 -0.5		99
99	-4.2 -1.8	-6.3 -2.5	-9.2	-13.2	-18.4	-24.7	-31.5	-37.9	-43.6	-48.3	-52.3	-55.6	58.6	-61.4	-64.4	-68.0	-72.6	-79.0	-87.5 -0.5	}	09
E. Long	Lat 0	ń	-10	-15	-20	-25	-30	-35	9	45	-50	55-	09-	-65	02-	-75	08-	-85	06-	Lat	E. Long

E. Long	Lat 0	'n	-10	-15	-20	-25	-30	-35	-40	\$	-50	-55	09-	-65	-70	-75	08-	-85	06-	Lat	E. Long
175	10.3	10.7	11.3	12.1	13.2	14.6	16.3	18.5	21.1	24.4	3.0	34.9	44.6	61.4	89.0	119.6	140.1	151.3	157.5	-0.5	175
170	9.9	10.3	10.9	11.7	12.7	14.0	15.7	17.8	20.4	23.7	3.0	34.4	44.7	63.3	95.0	127.8	147.2	157.2	162.5		170
165	9.1 -1.9	9.7	10.3	11.0	12.0	13.3	14.9 -0.8	16.9	19.5 0.7	22.7	3.0	33.5	44.3	65.3	102.7	137.1	154.7	163.1	167.5		165
160	8.2 -0.9	8.8 8.8	9.4	10.1	===	12.3	13.8	15.7	18.2	21.3	25.6 3.0	32.0	43.3	67.5	112.9	147.3	162.3	169.1	172.5	Ç	160
155	7.0	7.7	8.4	9.1	10.0	11.1	12.5	14.3	16.5	19.5	23.5	29.7	41.3	70.1	126.6	158.3	170.0	175.1	177.5	è	155
150	5.9 0.6	9.0	7.3	8.0	8.8	9.8	11.0	12.6	14.5	17.1	20.7	26.2	37.5 10.9	73.1 24.9	145.0	169.8	177.8	-178.8	-177.5		150
145	4.7	5.5	6.2	6.8	7.6	8.4	9.4	10.7	12.2 0.8	14.3	17.0	21.2 5.8	30.5	78.0 45.4	167.3	-178.7 -3.0	-174.5	-172.8	-172.5	}	145
140	3.7	4.4	5.1	5.7	6.3	6.9	7.7	8.6	9.6	10.9	12.3	14.3	17.9	107.1 188.3	-170.7 -8.3	-167.7	-166.8 -2.4	-166.8	-167.5		140
135	2.7	3.4	4.0	4.6	5.0	5.5	5.9	6.3	6.7	6.9	3.6	4,9 5,1	-3.5	-112.9	-152.6 -11.2	-157.4	-159.4	-160.8	-162.5 -0.5		135
130	1.9	2.6	3.1	3.5 -0.1	3.8	4.0	4.1	4.0	3.5	2.3	-0.3 3.5	-7.0 3.3	-30.1	-105.6 -32.2	-138.9 -11.5	-148.0	-152.1 -2.9	-154.9	-157.5 -0.5		130
125	1.4	2.0	2.4	2.7	2.7	2.6	2.2	1.4	-0.1	3.2	-8.3	-20.2	-50.9 -13.4	-101.8 -21.4	-128.6 -10.9	-139.5	-145.1 -3.1	-149.0 -1.5	-152.5 -0.5		125
120	1.1	1.5	1.8	1.8	1.6	1.1	0.1	-1.5 2.8	3.2	-8.8 3.1	-17.0	-32.8	-63.0	-98.6 -16.4	-120.5 -10.1	-131.7	-138.4	-143.2	-147.5 -0.5		120
E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	-40	-45	-50	55-	09-	S 9-	-70	37-	08-	\$ 8 -	06-	Lat	E. Long

E. Long	Lat 0	κċ	-10	-15	-20	-25	-30	-35	40	45	-50	-55	09-	-65	-70	-75	08-	.8 .25	-90 Lat	E. Long
235	9.1	9.6	10.4	11.5	12.9	14.6	16.7 3.0	19.2 3.4	22.1 3.8	25.6	29.6	34.2	39.7	46.2	54.2	64.1	75.4	87.0	97.5 -0.5	235
230	9.1	3.0	3.2	3.3	13.0 3.3	14.7 3.3	16.7 3.4	19.0 3.6	21.9	25.3	29.4	34.3	40.2	47.4	56.5	67.4	79.7	91.9	102.5 -0.5	230
225	9.1	9.6 3.1	3.3	3.4	13.1 3.4	14.8 3.4	16.7 3.4	18.9 3.6	21.7 3.9	25.0	29.2	34.3	40.6	48.6 3.5	58.6	70.8	84.1 0.1	96.9	107.5	225
220	9.1	9.7	10.5	11.7	13.2 3.0	14.8 3.0	16.7 3.0	18.9 3.2	21.5 3.5	24.8	29.0	34.2	40.9	49.7	60.8	74.3	88.7	101.9	112.5	220
215	9.1 1.1	9.6	10.5	11.7	13.2	14.8	16.7	18.8	21.4	3.5	28.8	34.2	41.2	50.7	63.0	77.9	93.4	107.0	117.5 -0.5	215
210	9.1	9.6	10.5	11.7	13.1	14.8	16.7	18.8	21.4	24.6	3.7	34.2	41.6	51.7	65.3 3.6	81.7	98.3	112.2	122.5 -0.5	210
205	9.1 -1.4	9.6	10.5	11.6	13.1	14.7	16.7	18.8	21.4	24.6	28.7	34.2	41.9	52.8 5.0	67.7	85.7 2.1	103.4	117.6	127.5 -0.5	205
200	9.2	9.7	10.5	11.7	13.1	14.8	16.7	18.9	21.5	24.7	28.8	34.4	42.3	53.9	70.3	90.1	108.8	123.0	132.5 -0.5	200
195	9.5 -3.4	9.9	10.7	11.8	13.2	14.8	16.7 -0.6	19.0	21.6	24.8	28.9	34.6	42.8	55.2 5.6	73.1	94.8	114.4	128.4	137.5 -0.5	195
190	9.8 -3.9	10.3	11.0	12.0	13.3	14.9	16.8	19.0	21.7	24.9	29.1	34.8	43.3	56.5	76.2	100.0	120.4	134.0 -0.5	142.5 -0.5	190
185	10.2	10.6	11.2	12.1	13.4	14.9	16.8 -0.8	19.0	21.7	24.9	29.1	35.0 3.9	43.8	58.0	79.8 5.9	105.8 2.8	126.5	139.7	147.5 -0.5	185
180	10.4	10.8	11.4	12.2 -2.7	13.4	14.8	16.6	18.8	21.5	24.8 1.9	29.0	35.0	44.3 5.5	59.6	84.0	112.3	133.2	145.5 -0.6	152.5 -0.5	180
E. Long	Lat 0	κ'n	-10	-15	-20	-25	-30	-35	40	-45	-50	-55	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long

E. Long	Lat 0	νç	-10	-15	-20	-25	-30	-35	40	-45	-50	-55	09-	-65	-70	-75	08-	-85	-90 Lat	E. Long
295	-9.9 -11.2	-9.1 -11.5	-8.2 -11.5	-7.1	-5.6 -10.5	-3.8 -9.6	-1.7	0.8 -7.6	3.5	6.3	9.0	11.7	14.4	17.2	20.4	24.1	28.2	32.7	37.5 -0.5	295
290	-6.3 -11.1	-5.4 -10.9	-4.3	-3.0	-1.4	0.5 -8.5	2.8 -7.7	5.2	7.8 -6.1	10.3	12.7	15.1	17.6	20.4	23.6	27.5	32.0 0.5	37.1 0.2	42.5 -0.5	290
285	-2.7	-1.7	-0.5 -8.8	0.9 -8.1	2.5 -7.5	4.5 -6.9	6.8	9.2	11.6	14.0	16.2	18.5	20.8	23.5 -1.5	26.8	30.8	35.8 0.3	41.4	47.5	285
280	9.0	1.6	2.8	4.2	5.9	7.9	10.1	12.5	14.9	17.2	19.4	21.5	23.8	26.5	29.9	34.2	39.6 0.2	45.8 0.1	52.5 -0.5	280
275	3.4	4.5	5.6	6.9	8.5	10.5	12.7	15.1	17.6	19.9 -3.3	22.1	24.3	26.7	29.4	33.0	37.6 -0.4	43.4	50.2	57.5 -0.5	275
270	5.7	6.6	7.6	8.9	10.4	12.3	14.5 -2.4	17.0	19.6	22.1	24.4	26.8	29.2 -1.9	32.2	36.0 -1.1	41.0	47.3	54.6 0.1	62.5	270
265	7.3	8.1	9.0	10.1	11.6	13.4	15.7 -1.5	18.2	21.0	23.7	26.3 -1.3	28.8	31.6	34.8 -1.3	38.9	44.3 -0.5	51.1	59.1 0.0	67.5	265
260	8.4	9.0	9.8	10.8	12.2	14.1	16.3	19.0 -0.4	21.8	24.8	27.7	30.5 -0.4	33.6 -0.7	37.2 -0.8	41.8	47.7	55.1 -0.1	63.6	72.5	260
255	8.9	9.4	10.2	11.2	12.5 -0.6	14.3	16.6	19.3 0.5	22.3	25.5	28.7	31.9	35.4 0.1	39,4	44.5 -0.5	51.0 -0.4	59.0 -0.1	68.2	77.5	255
250	9.2 0.1	9.6	10.3	11.3	12.7	14.5 0.3	16.7 0.8	19.4	22.5	25.8	29.3 1.9	32.9 1.5	36.8	41.4	47.1	54.2	63.0	72.8	82.5 -0.5	250
245	9.2	9.6	10.3	11.4	12.7	14.5	16.7	19.4	22.5	25.9	29.6	33.6	38.0	43.2	49.6	57.5 -0.1	67.1	77.5	87.5 -0.5	245
240	9.2	9.6	10.3	11.4	12.8	14.5	16.7	19.3	22.3	25.8 3.6	3.7	34.0	38.9	44.8	51.9	60.8	71.2	82.2 -0.1	92.5	240
E. Long	Lat 0	κ̈́	-10	-15	-20	-25	-30	-35	-40	45	-50	-55	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long

E. Long	Lat 0	κ	-10	-15	-20	-25	-30	-35	40	-45	-50	-55	09-	-65	-70	-75	-80	-85	06-	Lat	E. Long
355	9.9- 7.6	-12.4	-15.4 8.0	-18.7	-21.7 6.6	-24.1	-25.4	-25.4 3.6	-24.3 3.9	-22.4	-20.3	-18.4	-16.9 3.3	-16.0 2.5	-15.7 1.8	-15.9	-16.9 0.5	-18.9	-22.5		355
350	-12.0 7.9	-14.5 7.9	-17.4	-20.4	-23.0	-24.9 3.7	-25.8	-25.5 3.0	-24.0	-21.7 5.4	-19.1 6.0	-16.6 5.6	-14.7	-13.3 3.6	-12.6	-12.5 1.6	-13.1	-14.6	-17.5		350
345	-14.2	-16.6	-19.2 6.5	-21.8	-24.0 3.6	-25.4	-25.9	-25.3	-23.5 3.9	-20.9	-17.9	-14.9	-12.5	-10.8	-9.6 3.1	-9.1 2.0	-9.2 1.0	-10.2 0.2	-12.5		345
340	-16.4	-18.6	-20.9	-23.0 3.5	-24.7	-25.6 0.6	-25.7	-24.8	-22.9 3.3	-20.0	-16.5 6.9	-13.2 7.1	-10.4	-8.2	3.5	-5.7	-5.4	-5.9	-7.5 -0.5		340
335	-18.4	-20.3	-22.2	-23.8	-25.0	-25.5 -1.0	-25.2	-24.1 0.1	-21.9	-18.8	-15.0	-11.4	-8.2	-5.7 5.0	-3.8 3.7	-2.4	-1.7	-1.6	-2.5 -0.5		335
330	-19.9 4.3	-21.5 2.9	-23.0	-24.1 -0.4	-24.8	-24.9	-24.3	-22.9	-20.5 1.1	-17.2 3.7	-13.3 5.5	-9.4 6.2	-6.0 5.9	-3.2	-0.9	0.8	2.1	2.7	2.5		330
325	-20.8	-22.0	-23.0	-23.7 -2.6	-24.0 -3.9	-23.7	-22.9	-21.3	-18.7	-15.2	-11.1	-7.1 5.1	-3.6	-0.5 4.4	2.0	4.1	5.8	7.0	7.5		325
320	-20.8	-21.6	-22.2 -3.5	-22.5 -4.9	-22.5 -5.9	-22.0	-20.9	-19.0	-16.2	-12.6	-8.6 2.6	3.8	-1.0	3.7	5.0	7.4	9.5	11.3	12.5	!	320
315	-20.0	-20.4	-20.7	-20.6 -7.2	-20.3	-19.5 -7.7-	-18.1	-16.1	-13.2	-9.6 -0.9	-5.6 1.0	-1.8	1.8	5.0	8.0	10.7	13.2	15.5	17.5	}	315
310	-18.4 -5.5	-18.4	-18.3	-18.0	-17.4	-16.3	-14.7	-12.5	-9.5 4.4-	-6.0	-2.3	1.4	4.8	8.0	11.0	14.0	17.0	19.8	22.5		310
305	-16.1	-15.8	-15.4	-14.8	-13.9	-12.5	-10.7	-8.3	4.č.	-2.1	1.3	4.7	7.9	11.0	14.1	17.3	20.7	24.1	27.5		305
300	-13.2	-12.6	-12.0	-11.1	-9.9	-8.3	-6.3 -9.0	-3.8 -7.7-	-1.0	2.1	5.2	8.2	11.1	14.1	17.3	20.7	24.4	28.4	32.5	5.0	300
E. Long	Lat 0	'n	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	29 -	-70	-75	-80	-85	06-	Lat	E. Long

E. Long	Lat 90	82	08	75	70	59	09	55	50	45	40	35	30	25	20	15	10	w	0	Lat	E. Long
55	87.8	86.1	84.2	82.2	80.0	77.5	74.6	71.4	67.7	63.5	58.6	52.7	45.8	37.7	28.3	17.5	5.8	-6.5	-18.5		25
90	87.8 0.5	85.9 0.5	84.0	81.9 0.8	79.6	77.1	74.3	71.1	67.5	63.3	58.4	52.5	45.6 0.6	37.4	27.9	17.1	5.3	-7.0 1.9	-19.1		20
45	87.8 0.5	85.8 0.5	83.7	81.5 0.8	79.2	7.6.7	74.0	70.8	67.2	63.0	58.1 0.3	52.2	45.2	36.9	27.2	16.3	4.3	-8.1	-20.2	i	45
40	87.8 0.5	85.7 0.5	83.5	81.3 0.8	78.9	76.4	73.7	70.5 0.5	67.0	62.8	57.8 0.4	51.8 0.3	44.6	36.1 0.1	26.2	15.1 0.0	2.9	-9.6 0.2	-21.8		40
35	87.8 0.5	85.6 0.5	83.3 0.7	81.0	78.7	76.2	73.4	70.3	66.7	62.5	57.4 0.4	51.3 0.3	44.0	35.3 -0.2	25.2 -0.6	13.8 -0.8	1.4	-11.2	-23.5		35
30	87.8 0.5	85.5 0.5	83.1	80.8	78.5	75.9 0.7	73.2	70.1	66.5 0.6	62.2	57.0 0.6	50.8	43.4	34.5 -0.3	24.2 -0.8	12.6	0.0	-12.8	-25.1		30
25	87.8 0.5	85.4 0.5	83.0 0.7	80.7	78.3	75.8	73.0	6.69	66.2	61.9	56.7 0.7	50.4	42.8	33.8 -0.2	23.4	11.6	-1.1 -2.0	-14.0	-26.3		25
20	87.8 0.5	85.3 0.5	82.9	80.5	78.1 0.7	75.6	72.8	69.7	66.0	61.6	56.3	50.0	42.3 0.5	33.3	22.7	10.9	-1.9	-14.8	-27.2		20
15	87.8	85.3 0.5	82.8 0.6	80.4	78.0	75.5	72.7	69.5	65.8	61.3	56.0 0.8	49.6	41.9	32.8	22.2	10.3 -0.9	-2.5	-15.4	-27.8		15
10	87.8 0.5	85.3 0.5	82.8	80.4	78.0	75.4	72.6	69.3	65.5	61.0	55.6 0.5	49.2	41.4	32.2 0.1	21.6	9.7	-3.0	-15.8	-28.0		10
S	87.8 0.5	85.3 0.5	82.8 0.6	80.4	78.0	75.4	72.5	69.2	65.4	60.8	55.3 0.0	48.8	41.0	31.8	21.1	9.3 -1.5	-3.4	-16.1	-28.1		vo
•	87.8 0.5	85.3 0.5	82.8 0.6	80.4	78.0	75.4	72.5	69.1	65.2 -0.2	60.6	55.1 -0.6	48.5 -0.9	40.6	31.4	20.8	9.0	-3.6 -3.5	-16.1 -4.5	-27.8 -5.5		0
E. Long	Lat 90	82	08	75	70	99	09	55	50	45	40	35	30	25	2	15	10	NO.	0	Lat	E. Long

E. Long	Lat 90	82	08	75	70	99	09	55	20	45	40	35	30	25	20	15	10	NO.	0 Lat	E. Long	
115	87.8 0.5	88.3	87.6	85.8	83.4	80.4	77.0	73.1	68.7	63.8	58.3	52.0 3.6	44.7	36.3	26.7	16.1	5.3	-6.9	-18.2	115	
110	87.8 0.5	88.2	87.6 1.0	86.0	83.8	80.9	17.5	73.6	69.2	64.3	58.7 3.0	52.3	45.0 3.9	36.5	26.8	16.0	6.0	-7.4 5.9	-18.8 5.5	110	
105	87.8 0.5	88.0	87.5 0.9	86.1	83.9 1.3	81.1 1.5	17.8	73.9	69.5	64.6	59.0 2.5	52.5	45.1 3.4	36.5	26.7	15.7 5.5	4.0 6.0	6.0	-19.5 5.6	105	
100	87.8 0.5	87.8 0.7	87.3 0.9	86.0	83.9	81.2	77.9 1.5	74.0	69.6	64.7	59.1 1.9	52.6	45.1	36.4	26.5	15.5	3.6	-8.5	-20.1	100	
95	87.8 0.5	87.6 0.6	87.0 0.8	85.7 1.0	83.7	81.1	77.8	74.0	69.6	64.7	59.1 1.3	52.6 1.5	45.1 1.8	36.4	26.4	15.3	3.3	3.6	3.3	95	
06	87.8 0.5	87.4 0.6	86.7 0.8	85.4 0.9	83.4	80.8	77.6	73.8	69.5	64.6	59.0	52.6 0.8	45.1 0.9	36.4	26.5	15.3	3.3	-8.9	-20.7 1.5	06	
88	87.8 0.5	87.2 0.6	86.3	84.9 0.9	83.0	80.4	17.2	73.5 0.8	69.3	64.4	58.9	52.5	45.1 0.1	36.5	26.6	15.5 0.1	3.5	-8.7 0.0	-20.6	88	
08	87.8 0.5	87.0 0.6	86.0	84.5 0.9	82.5 1.0	79.9	76.8 0.9	73.2	69.0	64.3	58.9 0.0	52.6	45.3 -0.3	36.7 -0.5	26.9 -0.6	15.9 -0.8	3.9	-8.4	-20.2	80	
75	87.8	86.8	85.6 0.7	84.0 0.9	81.9 0.9	79.4	76.4	72.8	68.8	64.1	58.8 -0.1	52.6 -0.3	45.4 -0.4	37.0 -0.6	27.3 -0.7	16.3	4.4	-7.9 -1.5	-19.8	75	
70	87.8 0.5	86.6 0.5	85.2 0.7	83.5 0.8	81.4	78.9	75.9	72.4	68.5	64.0	58.8	52.7 -0.2	45.6	37.3 -0.3	27.7	16.8	4.9	-7.3	-19.3	70	
99	87.8 0.5	86.4	84.9	83.1	80.9	78.4	75.5	72.1	68.2	63.8	58.7	52.8 0.0	45.8 0.1	37.6	28.0	17.2	5.4	-6.8 0.0	-18.8	9	
09	87.8 0.5	86.3	84.5	82.6	80.4	977.9	75.0	71.7	68.0	63.7	58.7	52.8	45.9	37.7	28.3	17.5	5.8	-6.5	-18.4 0.8	9	
E. Long	Lat 90	82	80	75	70	29	09	55	50	45	40	35	30	25	20	15	10	ın	0 ,	E. Long	D

E. Long	Lat 90	82	08	7.5	70	59	09	55	90	45	40	35	30	25	20	15	10	ĸ	0	Lat	E. Long
175	87.8 0.5	88.5	85.5	81.9	78.1	74.0	69.8	65.6	61.2	56.8	52.3	47.5	42.3	36.5	29.8	22.1	13.3	3.7	-6.5	ì	175
170	87.8 0.5	88.5	85.5 1.3	82.0	78.1	74.1	69.9	65.6 2.6	61.1	56.6	51.9 0.8	46.8	41.3	35.1 0.2	28.0	20.0	11.1	1.4	-8.7	5	170
165	87.8 0.5	88.5	85.6	82.1	78.3	74.3	70.0	65.7	61.2	56.6	51.7	46.3	40.5	33.9	26.5	18,2	9.0	-0.8	-10.8	!	165
160	87.8 0.5	88.5	85.8 1.3	82.3	78.6	74.6	70.4	66.0	61.5	56.8	51.7	46.1	40.0	33.1	25.3	16.7	7.3	-2.6	-12.7 4.4		160
155	87.8 0.5	88.5	85.9	82.6	78.9	75.0	70.8	66.5	62.0	57.2 2.6	52.0 2.4	46.2	39.8	32.6 2.6	24.5 3.0	15.6 3.5	5.9 3.9	4.1	-14.2 3.9		155
150	87.8 0.5	88.6	86.1	82.9	79.4	75.5 2.5	71.4 2.8	67.2	62.6 3.0	57.8	52.5	46.6	40.0	32.5	24.1	14.8	3.3	3.3	-15.4 3.1		150
145	87.8 0.5	88.6	86.4	83.3	79.9	76.1 2.4	72.2	67.9	63.4	58.5 3.1	53.2	47.2	40.4	32.7	24.0	14.5	4.3	-6.1	-16.3		145
140	87.8 0.5	88.6	86.6	83.8	80.5	76.9	73.0	3.0	64.3	59.4	54.0	47.9	41.0	33.2	24.3	14.5	4.1	-6.6 1.6	-17.0		140
135	87.8 0.5	88.6	86.9	84.2	81.1	77.6	73.8	69.7	65.3	60.4	55.0 3.5	3.5	41.8	33.8	24.7	14.7	4.1	-6.8	-17.4		135
130	87.8 0.5	88.6	87.1 1.2	84.7	81.7 1.7	78.4	74.7	70.6	66.2	61.4	55.9 3.5	49.8	42.7	34.6	3.0	15.2	4.3	-6.8	-17.5		130
125	87.8 0.5	88.5	87.3	85.1 1.3	82.4	79.1 2.0	75.5	71.6	67.2 3.0	62.3	56.9 3.5	50.7 3.7	43.5	35.3	3.5	15.6 3.3	4.6	-6.7	-17.6		125
120	87.8 0.5	88.4	87.5	85.5 1.3	82.9 1.6	79.8	76.3	72.4	68.0	63.1	57.7 3.5	51.4	44.2	35.9 4.1	26.5	16.0	4.7	3.8	-17.8		120
E. Long	Lat 90	\$2	08	75	70	\$9	09	22	90	45	40	35	30	25	20	15	10	NO.	0	Lat	E. Long

E. Long	Lat 90	\$8	80	75	70	59	09	55	50	45	40	35	30	25	20	15	10	ĸ	0 Lat	E. Long
235	87.8 0.5	89.3	88.3 0.8	86.3	84.0 0.0	81.3	78.2 -0.8	74.7	70.9	67.0 -1.5	62.8	58.4	53.6	48.2	42.1	34.9	26.8	17.8	8.1 0.8	235
230	87.8 0.5	89.3	87.9 0.9	85.7 0.6	83.2	80.3 -0.1	77.1 -0.5	73.6	69.8	65.8	61.7	57.4 -1.8	52.6 -1.9	47.3	41.2	34.1 -1.6	25.9 -1.3	16.9	7.1	230
225	87.8 0.5	89.2 1.5	87.5 0.9	85.1 0.8	82.4 0.6	79.4	76.1 -0.2	72.5	68.7 -1.0	64.7	60.7	56.4	51.7	46.4	40.3	33.3 -2.4	25.1 -2.4	16.0	6.2	225
220	87.8 0.5	89.1 1.4	87.1 1.0	84.5	81.7	78.5	75.1 0.2	71.4	67.6 -0.8	63.7	59.6 -1.6	55.4 -2.0	50.8	45.6	39.6	32.5 -3.2	24.3	15.1 -3.6	5.2	220
215	87.8 0.5	89.0	86.8	84.0	81.0 1.0	6.0 9.0	74.1 0.5	70.4	66.5	62.6	58.6 -1.4	54.5 -1.9	50.0	44.8	38.8	31.8	23.6	14.3	4.3	215
210	87.8 0.5	88.9	86.5	83.5	80.3	76.9	73.2	69.4	65.5	61.6 -0.6	57.7	53.6	49.2	44.1	38.2	31.1	22.8	13.5 -5.0	3.4	210
205	87.8 0.5	88.8	86.2	83.1	79.7	76.2 1.5	72.4	68.5	64.6	60.7	56.8 -0.9	52.8 -1.6	48.4	43.4	37.5 -3.4	30.4	22.1	12.7	2.5	205
200	87.8 0.5	88.7	86.0	82.7	79.2	75.5	7.1.7	67.7	63.8 0.7	59.9 0.0	56.0	52.0 -1.5	47.7	42.7	36.8	29.7	21.3	11.9	1.6	200
195	87.8 0.5	88.6	85.8	82.4	78.8	75.0	71.1	67.0	63.0	59.1 0.2	55.2 -0.6	51.1	46.8	41.8	35.9 -3.1	28.8	20.4	10.9	-3.2	195
190	87.8 0.5	88.6	85.6	82.2 1.6	78.5	74.6	70.6	66.5	62.4	58.4	54.4 -0.5	50.2	45.8	40.7	34.7	27.6	19.1	9.6	-0.7	190
185	87.8 0.5	88.5	85.5 1.3	82.0	78.3	74.3	70.2	66.0	61.9	57.7	53.6 -0.3	49.3	44.7	39.4	33.3 -2.0	26.0 -1.5	17.5	7.9	-2.4	185
180	87.8 0.5	88.5	85.5	82.0	78.1	74.1	69.9	65.7	61.5	57.2 0.9	52.9 -0.1	48.4	43.5 -1.5	38.0	31.6	24.1 -0.5	15.5	5.9 1.0	-4.3 1.4	180
E. Long	Lat 90	85	80	75	70	59	09	55	50	45	40	35	30	25	20	15	10	ĸ	0 Lat	E. Long

E. Long	Lat 90	82	80	75	70	99	09	55	20	45	40	35	30	25	20	15	10	VO.	0	Lat	E. Long
295	87.8 0.5	87.0 0.3	86.0	84.9	83.5	81.7	79.3	76.6	73.4	70.0	66.2	62.2	57.9	53.2	48.1	42.5	36.2	29.2	21.4	s.k-	295
290	87.8 0.5	87.2 0.3	86.5	85.6 -0.5	84.3	82.6	80.3	77.6	74.5	71.1	67.4	63.5	59.2	54.6	49.6	44.0	37.8	30.8	23.1	4·6-	290
285	87.8 0.5	87.4 0.3	86.9	86.2	85.1 -1.6	83.5	81.2	78.5	75.4	72.0	68.3	64.4	60.1	55.5	50.5	44.9	38.6	31.5	23.7	G.	285
280	87.8	87.6	87.4	86.9	85.9 -1.9	84.3	82.0	79.3	76.1	72.7	69.0	65.0	60.7	56.0	50.8	45.1 -1.5	38.6 -0.9	31.4	23.3	ì	280
275	87.8 0.5	87.9 0.3	87.9 -0.1	87.6 -1.1	86.7	85.0 -2.9	82.6	79.8	76.5	73.0	69.2	65.2	60.8	56.0	50.6	44.7	38.0	30.5	22.1	i	275
270	87.8 0.5	88.1 0.4	88.3 -0.1	88.3	87.3	85.5 -2.9	83.0 -2.9	80.0	76.6	73.0	69.2	65.0	60.5	55.5 0.2	50.0	43.8	36.8	29.0	20.3	ì	270
265	87.8 0.5	88.3	88.8	88.9	87.7	85.6 -2.8	82.9	79.8	76.4	72.7	68.7	64.5	59.9	54.8 0.9	49.1	42.6	35.3	27.2 2.9	3.1		265
260	87.8 0.5	88.5	89.3	89.2	87.6	85.4	82.6	79.4	75.9	72.1	68.1 -0.5	63.8	59.0	53.8	47.9	41.2	33.6	25.2	16.0		260
255	87.8	88.8	8.68	88.9	87.1 -1.7	84.8	82.0 -1.9	78.7	75.1 -1.4	71.3	67.2	62.8	58.0	52.7 1.0	46.6	39.7 1.9	31.9	23.3	13.9		255
250	87.8 0.5	88.9	89.7	88.3	86.5	84.1	81.2	77.8	74.2	70.3	66.2	61.7	56.9	51.5	45.3	38.3	30.4	21.5	12.1		250
245	87.8 0.5	89.1 0.9	89.2	87.7 -0.1	85.7 -0.7	83.2	80.2	76.8	73.2	69.2	65.1 -1.0	60.6	55.8 -0.3	50.3	44.1	37.0 0.9	29.0	20.1	10.5 2.4		245
240	87.8 0.5	89.2	88.7	87.0	84.9	82.3	79.2	75.8	72.1	68.1	64.0	59.5 -1.1	54.7 -0.9	49.3	43.0	35.9 0.1	27.8	18.8	9.2		240
E. Long	Lat 90	\$	08	75	70	59	09	55	20	45	40	35	30	25	20	15	10	ko.	0	Lat	E. Long

E. Long	Lat 90	82	80	75	7.0	99	09	55	50	45	40	35	30	25	20	15	10	v	0 Lat	E. Long
355	87.8 0.5	85.3	82.9 0.5	80.5	78.1	75.5	72.5	69.1 -0.3	65.2	60.5	54.9	48.3	40.5	31.3 -3.0	20.7	9.0	-3.4	-15.7	-27.1	355
350	87.8 0.5	85.4 0.5	83.0 0.5	80.6	78.2	75.6	72.6	69.2 -0.6	65.2	60.5	54.9	48.4	40.6	31.5	21.1	9.5	-2.7	-14.7	-25.9 -9.7	350
345	87.8	85.4 0.4	83.1 0.5	80.8	78.4	75.8	72.8	69.3 -0.9	65.3 -1.5	60.7	55.2 -3.0	48.7	41.1	32.2 -6.4	22.0 -7.7	10.7	-1.2 -10.3	-13.0	-24.0 -12.3	345
340	87.8 0.5	85.5 0.4	83.3	81.0	78.6 0.1	76.0 -0.2	73.0	69.6	65.6 -1.8	61.0	55.6	49.3 -4.9	41.9 -6.3	33.3 -7.8	23.5	12.6	1.0	-10.4	-21.1 -15.0	340
335	87.8 0.5	85.6	83.4	81.3	78.9	76.4	73.4	70.0	66.0	61.5	56.2	50.1	43.0	34.8 -9.0	25.5	15.2	4.2	-6.9 -16.7	-17.3	335
330	87.8 0.5	85.7	83.7	81.6 0.2	79.3	76.8 -0.5	73.8	70.5	66.6	62.1	57.0 -4.5	51.2 -6.0	44.5	36.8 -9.9	28.1 -12.2	18.4	8.1	-2.4 -19.0	-12.5 -20.2	330
325	87.8 0.5	85.9 0.4	83.9	81.9 0.1	79.7	77.2	74.4	71.0	67.2	62.9	58.0	52.5	46.2	39.1 -10.5	31.0 -13.1	22.2 -15.8	12.6 -18.5	2.7 -20.7	-7.0 -22.0	325
320	87.8 0.5	86.0 0.4	84.2	82.3 0.0	80.2	77.8	75.0	71.7	68.0	63.9	59.2 -5.0	53.9	48.1	41.6	34.3 -13.5	26.2 -16.4	17.4	8.3	-1.1	320
315	87.8 0.5	86.2	84.5	82.7 0.0	80.8	78.4	75.7	72.6	69.0	64.9	60.5	55.6	50.2	44.2	37.5 -13.6	30.2	22.3 -19.1	13.7	4.8	315
310	87.8 0.5	86.4	84.8	83.2	81.4	79.1	76.5 -1.9	73.5	70.0	66.1	61.9	57.3	52.3	46.8	40.7	34.1 -15.6	26.7	18.8	10.2	310
305	87.8 0.5	86.6	85.2 0.2	83.7	82.0 -0.8	79.9	77.4	74.5	71.1	67.4	63.4	59.0	54.3 -8.3	49.2	43.6	37.5 -14.1	30.7	23.1	14.9	305
300	87.8 0.5	86.8	85.6 0.1	84.3	82.8 -0.9	80.8	78.4	75.5	72.3	68.7	64.8	60.7	56.2 -7.8	51.4 -9.2	46.1	40.3	33.8	26.6 -13.8	18.7	300
E. Long	Lat 90	85	80	75	70	99	09	. 22	20	45	40	35	30	25	20	15	10	v o	0 Lat	E. Long

E. Long	Lat 0	٠ċ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	08-	-85	-90 Lat	E. Long
35	-18.5 1.6	-29.6 1.3	-39.3	-47.3	-53.3	-57.5 0.5	-60.1	-61.5	-62.3	-62.8	-63.2	-63.9 0.3	-64.6	-65.7 1.9	-67.0 2.6	-68.5	-70.1 3.0	-71.7 2.7	-73.0 2.4	55
20	-19.1 1.9	-30.2	-39.9	47.9	-53.9 1.6	-57.9 1.6	-60.1	-61.1	-61.5 0.8	-61.7 0.5	-62.1 0.5	-62.7	-63.5	-64.6	-66.1	3.0	-69.6 3.0	-71.4 2.8	-73.0	90
45	-20.2	-31.4	41.1	-49.0 1.6	-54.9 2.0	-58.7	-60.6	-61.2 2.5	-61.2 2.1	-61.1	-61.2	-61.7	-62.5	-63.7	-65.2	-67.1 3.2	-69.1 3.1	-71.2 2.8	2.4	45
04	-21.8	-33.0	42.6	-50.5	-56.3	-59.9	-61.6 3.2	-61.8 3.4	-61.3	-60.8	-60.6	-60.9	-61.7	-62.9 3.1	-64.5 3.3	-66.5 3.3	-68.7	-70.9 2.8	-73.0	40
35	-23.5 -0.9	-34.7	-44.3	-52.2 0.2	-57.9 1.0	-61.5	-62.9 3.0	-62.7 3.8	-61.8 4.0	-60.9 3.8	-60.4 3.5	-60.4	3.4	-62.2	-63.9 3.5	-66.0 3.4	-68.3	-70.7 2.8	-73.0 2.4	35
30	-25.1 -1.9	-36.3	-45.9 -1.4	-53.7	-59.4	-62.9 0.9	-64.3	-63.9	-62.7	-61.3	-60.4	-60.1	-60.5	-61.7 3.9	-63.3	-65.5 3.5	-67.9	-70.5 2.8	-73.0	30
25	-26.3	-37.5	-47.2	-54.9	-60.6	-64.2	-65.5 0.8	-65.1	-63.7	-62.0	-60.6	-60.0	-60.2	-61.2	-62.9	-65.1 3.6	-67.6	-70.3 2.8	-73.0 2.4	25
20	-27.2	-38.4	-47.9	-55.7 -3.4	-61.3	-64.9	-66.4	-66.1 0.8	-64.6	-62.6	-61.0 5.0	-60.0	-60.0	-60.9	-62.5	-64.7 3.7	-67.3	-70.2 2.8	2.4	20
15	-27.8	-38.8	-48.3	-55.9	-61.5	-65.1	-66.7	-66.6	-65.2	-63.2	-61.3	-60.1	-59.9	-60.6	-62.2	-64.4	-67.1 3.2	-70.0 2.8	-73.0	15
10	-28.0	-38.9	-48.2 -5.2	-55.6 -5.9	-61.1	-64.7	-66.4	-66.5	-65.4	-63.5	-61.6	-60.2	-59.7 5.3	-60.4	-61.9 4.3	-64.2 3.7	-66.9 3.2	-69.9 2.7	-73.0	10
vo	-28.1	-38.7	-47.7	-54.8	-60.1 -7.9	-63.7 -7.9	-65.6 -7.0	-66.0	-65.2	-63.5 0.7	-61.6 3.2	-60.1 4.6	-59.6 5.0	-60.2	-61.7	-63.9 3.6	3.1	-69.8	-73.0	vo
Φ	-27.8	-38.2 -6.6	-46.8	-53.6	-58.7	-62.2	-64.3	-65.0	4.0	-63.2 -0.8	-61.4	-60.0 3.9	-59.5 4.6	-60.0	-61.5 4.0	-63.8 3.5	3.0	-69.7	-73.0	0
E. Long	Lat 0	ĸ.	-10	-15	-20	-25	-30	-35	40	-45	-50	-55	09-	59-	0.2-	-75	08-	-85	-90 Lat	E. Long

-03 -75 -85 -90 -90 E. Long	
.83.1 -81.5 -79.6 -79.6 -77.5 -75.3 -75.3 -73.0 -73.0	
-81.0 -80.3 1.6 -78.6 -76.9 -75.0 -73.0 -2.4 2.4	
-80.0 -79.0 1.7 -77.7 -77.7 -74.8 -73.0 -73.0 -2.4	:
78.5 1.0 1.7 1.7 76.7 2.2 77.6 2.5 74.5 2.5 74.5 2.5 2.5 2.4 2.4	
76.9 1.1 1.8 1.8 1.75.0 2.2 2.74.2 2.4 2.4 2.4 2.4	,
75.4 1.1 1.8 1.8 1.74.7 2.6 -73.8 2.6 -73.8	:
-73.8 1.2 1.9 1.9 1.9 2.4 -73.5 2.6 -73.5 2.6 -73.5 85	3
77.3 11.2 17.5 2.0 2.4 -73.1 2.6 -73.2 2.6 -73.0	00
70.9 1.3 -71.3 2.0 -71.4 2.7 -72.9 2.7 2.7 2.4	ũ
-69.4 1.3 -70.1 2.1 2.6 -71.8 2.8 2.7 2.7 2.7 2.7	9/
-68.1 1.5 -69.0 2.2 2.7 -70.1 2.7 -71.2 2.8 -72.3 2.4	9
-66.8 1.7 -67.9 2.4 -70.6 -70.6 -73.0 -73.0	09
	-68.1 -69.4 -70.9 -72.3 -73.8 -75.4 -77. 1.5 1.3 1.2 1.2 1.1 1.1 1.2 1.2 1.2 1.1 1.1 1.2 1.2

E. Long	Lat 0	κċ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	08-	-85	-90 Lat	E. Long
175	-6.5	-16.7 2.6	-26.4	-35.3	-43.1	-50.0	-55.9	-61.0	-65.4	-69.3	-72.8	-76.1 0.5	-79.1	-81.6	-82.9	-82.2	2.1	-76.5 2.3	-73.0	175
170	-8.7 3.7	-18.7 3.4	-28.2	-36.9	-44.6	-51.3 0.7	-57.1 0.3	-62.1	-66.4	-70.3 0.2	-73.8	-77.1 0.5	-80.1	-82.7	-83.8	-82.7	-79.9	-76.6 2.3	-73.0 2.4	170
165	-10.8	-20.7 3.9	-29.9	-38.4	45.9	-52.5 1.0	-58.2 0.5	-63.1 0.3	-67.4	.71.3	-74.8 0.4	-78.1	-81.2 0.5	-83.7	-84.7	-83.1	-80.1	-76.6 2.3	-73.0 2.4	165
160	-12.7	-22.4	-31.5	-39.8	-47.1	-53.6	-59.2 0.7	-64.1	-68.4	-72.2	-75.8 0.4	-79.1	-82.3	-84.8	-85.5	-83.4	-80.1	-76.6	-73.0	160
155	-14.2 3.9	-23.9	-32.9	41.0	-48.2	-54.6	-60.1	-65.0 0.7	-69.3	-73.1 0.5	-76.7 0.4	-80.1	-83.4	-86.0 0.6	-86.1 1.5	-83.5 1.9	-80.1	-76.6 2.3	-73.0 2.4	155
150	-15.4 3.1	-25.1 2.8	-34.0	-42.1 2.1	-49.2	-55.5 1.4	-61.0 1.1	-65.8 0.9	-70.1 0.7	-74.0 0.5	-77.6	-81.1 0.1	-84.5	-87.2 0.4	-86.6 1.6	-83.5 1.9	-80.1	-76.5 2.3	-73.0 2.4	150
145	-16.3	-26.0 2.0	-34.9	42.9	-50.0	-56.2	-61.7 1.3	-66.5	-70.8 0.8	-74.8 0.6	-78.5 0.3	-82.1	-85.5 -0.3	-88.4	-86.8 1.6	-83.4	-79.9 2.1	-76.4 2.3	-73.0 2.4	145
140	-17.0 1.3	-26.7	-35.7 1.3	-43.6	-50.7	-56.9	-62.3	-67.1	-71.5 0.9	-75.5 0.6	-79.3	-82.9	-86.5 -0.6	-89.7 0.8	-86.5 1.6	-83.0	-79.6 2.2	-76.3 2.3	-73.0 2.4	140
135	-17.4	-27.2 0.9	-36.2	-44.2	-51.3 1.3	-57.5 1.4	-62.9	-67.7	-72.1 0.9	-76.1 0.5	-79.9 0.0	-83.6 -0.5	-87.0	-88.9	-85.8 1.5	-82.5 1.9	-79.3 2.2	-76.2 2.4	2.4	135
130	-17.5	-27.6	-36.6	-44.7	-51.8 1.4	-58.0	-63.4	-68.3	-72.6 0.8	-76.6 0.3	-80.4	-83.9	-87.0 -1.0	-87.5 0.4	-84.9	-81.9 1.9	-78.9 2.2	-76.0 2.4	-73.0 2.4	130
125	-17.6	-27.8	-37.0	-45.2 1.7	-52.3	-58.5 1.5	-63.9	-68.8 1.0	-73.1	-77.1 0.1	-80.7	-83.9	-86.2	-86.1 0.5	-83.9	-81.2 1.9	-78.5 2.2	-75.8 2.4	-73.0 2.4	125
120	-17.8 3.4	-28.2	-37.5	-45.7	-52.8	-59.0 1.7	-64.5 1.3	-69.3	-73.5 0.4	-77.3 -0.1	-80.7	-83.5	-85.1 -0.5	-84.6	-82.8	-80.4	-78.0	-75.5 2.4	-73.0 2.4	120
E. Long	Lat 0	κċ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	08-	-85	-90 Lat	E. Long

E. Long	Lat 0	ň	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long
235	8.1	-1.8	-11.6	-20.7	-29.1	-36.5 0.8	-43.1 0.5	-48.8	-53.7 0.4	-57.9 0.6	-61.5 1.1	-64.5 1.6	-67.2	-69.5	-71.5 2.3	-73.0	-73.8	-73.8 2.2	-73.0 2.4	235
230	7.1	-2.9	-12.7 0.1	-21.9	-30.2 0.1	-37.6	-44.2	-49.8	-54.8 -0.1	-59.0 0.2	-62.6	-65.7	-68.4	-70.7 2.1	-72.6 2.2	-73.9	-74.4 2.1	-74. 1 2.2	2.4	230
225	6.2	-3.9	-13.8	-23.0	-31.4	-38.8	-45.2 -1.0	-50.9 -0.8	-55.8 -0.6	-60.0	-63.7	-66.8	-69.5	-71.8 2.0	-73.6	-74.7	-75.0 2.1	-74.4	-73.0 2.4	225
220	5.2	-5.0 -3.4	-14.9	-24.2	-32.5	-39.9	-46.3	-51.9 -1.4	-56.8 -1.0	-61.0 -0.5	-64.7	67.9 0.8	-70.6	-72.9	-74.6 2.1	-75.6 2.2	-75.6 2.1	-74.7	-73.0 2.4	220
215	4.3	-6.0 -4.6	-16.1	-25.4	-33.7	-41.0	-47.4	-52.9	-57.7 -1.3	-61.9	-65.6 -0.1	-68.8 0.6	-71.6	-73.9 1.7	-75.6 2.0	-76.4 2.1	-76.2 2.1	-75.0 2.2	-73.0 2.4	215
210	3.4 -5.3	-7.0 -5.2	-17.1	-26.5	-34.8	-42.1	-48.4	-53.9	-58.6 -1.4	-62.8	-66.5	-69.7	-72.6	-74.9 1.6	-76.6 1.9	-77.3 2.1	-76.8 2.1	-75.2 2.2	-73.0 2.4	210
205	2.5	-8.0	-18.2	-27.5	-35.9	-43.2	-49.4	-54.8	-59.5	-63.7	-67.3	-70.6 0.4	-73.5 1.0	-75.9 1.5	-77.5	-78.1 2.0	-77.3 2.1	-75.5 2.2	-73.0 2.4	205
200	1.6	-8.9	-19.2	-28.6	-37.0	-44.2	-50.5	-55.8	-60.5	-64.6	-68.2	-71.5 0.4	-74.4 0.9	-76.8 1.4	-78.5 1.7	-78.8 2.0	2.1	-75.7 2.2	-73.0 2.4	200
195	9.6	-10.0	-20.2	-29.6	-38.0	-45.3 -1.9	-51.5 -1.6	-56.8	-61.4	-65.4	-69.1	-72.3 0.5	-75.3 0.9	-77.8 1.3	-79.4	-79.6 2.0	-78.3 2.1	-75.9 2.2	-73.0 2.4	195
190	-0.7 -1.7	-11.3	-21.5	-30.8	-39.1	-46.3	-52.5	-57.8	-62.4	-66.4	-70.0 0.2	-73.2 0.5	-76.2 0.8	-78.7	-80.3	-80.3	-78.7	-76.1 2.2	-73.0 2.4	190
185	-2.4	-12.8	-22.9	-32.2	-40.4	-0.6	-53.6	-58.8	-63.3	-67.3	-70.9 0.3	-74.1 0.5	-77.1 0.8	1.1	-81.2 1.5	-81.0	-79.1	-76.3 2.2	-73.0	185
180	4.1	-14.6	-24.6	-33.7	-41.7	-48.7	-54.8	-59.9	-64.4	-68.3	-71.8	-75.1 0.6	-78.1	-80.6	-82.1	-81.6	-79.4	-76.4	-73.0 2.4	180
E. Long	Lat 0	rċ	-10	-15	-20	-25	-30	-35	40	-45	-50	85,	09-	-65	-70	-75	08-	-85	-90 Lat	E. Long

E. Long	Lat 0	ĸ'n	-10	-15	-20	-25	-30	-35	9	-45	-50	-55	09-	59-	-70	-75	-80	-85	-90 Lat	E. Long
295	21.4	12.9	3.9	-5.2 -6.6	-13.9	-21.8	-28.6	-34.4 4.4	-39.1	-43.2 -3.9	-46.8	-50.3	-53.9	-57.5	-61.1	-64.5	-67.7 1.9	-70.5 2.3	-73.0 2.4	295
290	23.1	14.5	5.4	-3.9	-12.9	-21.0	-28.2	-34.1	-39.0	-43.2	-47.0	-50.6	-54.2 -0.9	-57.9	-61.5	-64.9	-68.0 1.9	-70.7	-73.0 2.4	290
285	23.7	15.0 -1.1	5.7	-3.8	-13.0	-21.4	-28.6	-34.6	-39.6	-43.8	-47.6	-51.2 -0.9	-54.8	-58.5 0.3	-62.1 0.9	-65.4	-68.4	-71.0 2.2	-73.0 2.4	285
280	23.3 0.7	14.3	4.8	-4.8 1.7	-14.1 1.5	-22.5 1.0	-29.8	-35.8	-40.7	-44.8	-48.6 -0.5	-52.1 -0.1	-55.6	-59.2 0.7	-62.7	-66.0 1.5	-68.8	-71.2	-73.0 2.4	280
275	22.1	12.9	3.2	-6.6 2.5	-15.9 2.1	-24.3 1.5	-31.4	-37.3 0.5	42.2	-46.2	-49.8 0.3	-53.2 0.5	-56.6	-60.1	-63.5	-66.6	-69.3 1.9	-71.4	-73.0 2.4	275
270	20.3	10.8 3.1	1.0	-8.8 2.6	-18.0 2.1	-26.3	-33.3	-39.1 0.8	-43.8	-47.7	-51.2	-54.5 1.1	-57.8 1.3	-61.1 1.4	-64.3	-67.3	-69.8	-71.7 2.2	-73.0 2.4	270
265	18.2	8.5	-1.4	-11.1	-20.2	-28.3	-35.2	-40.8	-45.5 1.0	49.4	-52.8	-56.0 1.6	-59.1 1.7	-62.2	-65.2	-68.0	-70.3 2.0	-72.0 2.2	-73.0 2.4	265
260	16.0	6.2	-3.7	-13.3	-22.2	-30.1	-36.9	-42.5	-47.1	-51.0	-54.4	-57.4	-60.4	-63.4	-66.2	-68.8	-70.8 2.0	-72.3 2.2	-73.0 2.4	260
255	13.9	4.1	-5.8 2.8	-15.3	-24.0	-31.8 1.6	-38.4	-44.0 1.2	-48.7	-52.6 1.5	-55.9 1.8	-58.9	-61.8	-64.6	-67.2	-69.6	-71.4 2.0	-72.6 2.2	-73.0 2.4	255
250	12.1	2.2	-7.6 2.8	-16.9	25.5	-33.1	-39.8	-45.4	-50.1	-54.1 1.4	-57.4	-60.4	-63.2	-65.8	-68.3	-70.4 2.1	-72.0 2.1	-72.9 2.2	-73.0	250
245	10.5	0.6	-9.1 2.8	-18.3	-26.8	-34.3	40.9	-46.6 1.0	-51.4	-55.4	-58.9	-61.9	-64.6	-67.1	-69.4	-71.3	-72.6 2.1	-73.2	-73.0	245
240	9.2	2.2	-10.4	-19.6	-28.0	-35.5	-42.0 1.0	47.7	-52.6 0.8	-56.7 1.0	-60.2	-63.2	-65.9	-68.3	-70.4 2.3	-72.1 2.2	-73.2	-73.5 2.2	-73.0	240
E. Long	Lat 0	φ.	-10	-15	-20	-25	-30	-35	94	45	-50	-55	09-	-68	-70	-75	08-	-85	-90 Lat	E. Long

E. Long	Lat 0	κċ	-10	-15	-20	-25	-30	-35	40	45	-50	-55-	09-	-65	-70	-75	-80	-85	-90 Lat	E. Long
355	-27.1 -7.4	-37.2	-45.5 -9.5	-52.0 -10.5	-56.9 -11.1	-60.4	-62.6	-63.6	-63.5	-62.5	-61.0	-59.7 3.0	-59.2 4.0	-59.8 4.1	-61.3 3.8	-63.6	-66.4	-69.6	-73.0 2.4	355
350	-25.9 -9.7	-35.7	-43.7	-50.0	-54.8 -12.7	-58.3 -12.5	-60.6	-61.9 -9.6	-62.2	-61.5 -3.6	-60.3	-59.2 1.9	-58.9 3.2	-59.5 3.6	-61.2	-63.5	-66.4	-69.6	-73.0 2.4	350
345	-24.0 -12.3	-33.5	-41.3	-47.5 -14.1	-52.2	-55.8 -13.7	-58.4	-60.0	-60.6 -8.0	-60.3	-59.4	-58.6 0.8	-58.5	-59.3	-61.0 3.0	-63.4	-66.3	-69.6	-73.0 2.4	345
340	-21.1 -15.0	-30.5	-38.2	-44.4	-49.2 -15.5	-53.0	-55.8 -13.3	-57.7 -11.3	-58.7	-58.7 -5.9	-58.2	-57.8	-57.9	-59.0	-60.8	-63.4	-66.3	-69.6	-73.0 2.4	340
335	-17.3	-26.5	-34.3	-40.6	45.7	-49.8 -15.4	-52.9 -13.8	-55.2 -11.8	-56.5 -9.4	-57.0 -6.7	-56.9 -3.8	-56.8 -1.3	-57.3 0.5	-58.6 1.6	-60.7	-63.3	-66.3	-69.6	-73.0	335
330	-12.5 -20.2	-21.6 -20.6	-29.6	-36.3 -19.2	-41.8 -17.8	-46.2 -16.0	-49.8 -14.1	-52.4	-54.1 -9.8	-55.0 -7.3	-55.3	-55.8	-56.7	-58.3	-60.6	-63.3	-66.4	-69.6	-73.0	330
325	-7.0 -22.0	-16.1	-24.2	-31.3	-37.3	-42.3 -16.2	-46.3 -14.1	-49.3	-51.5 -9.9	-52.8 -7.6	-53.7	-54.6	-56.0 -1.0	-57.9 0.4	-60.4	-63.3	-66.5	-69.7	-73.0 2.4	325
320	-1.1 -22.9	-10.1	-18.5	-26.1 -20.6	-32.7	-38.2	-42.7 -13.7	-46.2	-48.7	-50.6 -7.7	-52.0	-53.5	-55.3 -1.6	-57.6 -0.1	-60.4	-63.4	-66.6	-69.8	-73.0 2.4	320
315	4.8	-4.1	-12.8 -21.8	-20.8 -19.9	-27.9 -17.5	-34.0 -15.0	-39.0 -12.8	-43.0	-46.0	-48.4	-50.4 -5.6	-52.4	-54.7 -1.9	-57.4 -0.4	-60.4	-63.5	-66.7	-69.9	-73.0 2.4	315
310	10.2	1.4	-7.4	-15.8 -17.9	-23.4	-30.0	-35.5 -11.3	-40.0	-43.6 -8.4	-46.4	-49.0	-51.5	-54.2	-57.2 -0.6	-60.4	-63.7	-66.9	-70.0	-73.0 2.4	310
305	14.9	6.2	-2.7 -16.5	-11.3	-19.3	-26.4	-32.5	-37.4	-41.5	-44.8	47.9	-50.8	-53.9	-57.1 -0.6	-60.5	-63.9	-67.1	-70.2 2.3	-73.0	305
300	18.7	10.1	1.2	-7.7	-16.1	-23.6	-30.1	-35.5	-40.0 -5.8	-43.7	47.1	-50.4	-53.8	-57.2	-60.7	-64.2	-67.4	-70.3	-73.0	300
E. Long	Lat 0	ķ	-10	-15	-20	-25	-30	-35	-40	-45	-50	-55	09-	-65	-70	-75	08-	-85 -	-90 Lat	E. Long

Chart 64. Vertical Component (Z)

Chart 65. Horizontal Intensity (H)

Chart 66. Total Intensity (F)

Chart 67. Declination (D)

Chart 74. Vertical Component (Z)

Chart 75. Horizontal Intensity (H)

Chart 75. Horizontal Intensity (H)

Chart 76. Total Intensity (F)

Chart 77. Declination (D)

Chart 78. Inclination (I)

Chart 79. Grid Variation (GV)

1995.0 at surface of WGS-84 reference ellipsoid.

units: degrees

Chart 79. Grid Variation (GV)

1997.5 at surface of WGS-84 reference ellipsoid.

units: nT/yr

Chart 80. Vertical Component (\mathring{Z})

units: nT/yr

Chart 81. Horizontal Intensity (H)

1997.5 at surface of WGS-84 reference ellipsoid.

units: nT/yr

Chart 82. Total Intensity (F)

1997.5 at surface of WGS-84 reference ellipsoid.

units: minutes/yr

Chart 83. Declination (D)

1997.5 at surface of WGS-84 reference ellipsoid.

units: degrees

Chart 84. Inclination (I)

1997.5 at surface of WGS-84 reference ellipsoid.

units: minutes/yr

Chart 85. Grid Variation (GV)

1995.0 at surface of WGS-84 reference ellipsoid.

units: nT

Chart 86. Vertical Component (Z)

Chart 87. Horizontal Intensity (H)

Chart 88. Total Intensity (F)

Chart 89. Declination (D)

Chart 90. Inclination (I)

Chart 91. Grid Variation (GV)

1997.5 at surface of WGS-84 reference ellipsoid.

units: nT/yr

Chart 92. Vertical Component (\mathring{Z})

units: nT/yr

Chart 93. Horizontal Intensity (H)

1997.5 at surface of WGS-84 reference ellipsoid.

units: nT/yr

Chart 94. Total Intensity (F)

1997.5 at surface of WGS-84 reference ellipsoid.

units: minutes/yr

Chart 95. Declination (D)

units: minutes/yr

Chart 96. Inclination (I)

1997.5 at surface of WGS-84 reference ellipsoid.

units: minutes/yr

Chart 97. Grid Variation (GV)

ACKNOWLEDGEMENTS

Overall coordination and production of the joint US/UK World Magnetic Model for the 1995 Epoch (WMM-95) were the responsibilities of David R. Barraclough and Susan Macmillan of the British Geological Survey (BGS) and John M. Quinn and Rachel J. Coleman of the Naval Oceanographic Office (NAVOCEANO). Key NAVOCEANO Senior Scientists responsible for planning and executing the Project MAGNET survey flights were Virgil Bettencourt, Donald Wilson, Fred Valentine, and Jesus Anglero. The calibration and processing of aeromagnetic data are complicated affairs. Key geophysicists concerned with this aspect of Project MAGNET data analyses were John Nigro, Dave Irwin, and Larry McDonough. Donald Shiel was the principle geophysicist responsible for deploying and maintaining the Polar Orbiting Geomagnetic Survey (POGS) satellite ground stations and collecting, calibrating, and editing the POGS data from these stations. He also coordinated with the Defense Mapping Agency (DMA) to assure the continuous flow of accurate satellite-tracking data from DMA's tracking network, TRANET. Many other NAVOCEANO geophysicists, engineers, and technicians have been involved in the many and varied aspects of Project MAGNET and POGS data collection and data processing.

Special recognition must go to the military officers and personnel of the VXN-8 Naval Air Squadron located at the Patuxent River Naval Air Station, Maryland, who safely flew and maintained the Project MAGNET aircraft (a Lockheed RP3D Orion) during the many years of surveying covered by the data used in this and in previous US/UK World Magnetic Models.

Of course, this model could not have been produced without the tireless efforts of those many unnamed individuals around the world who collect and process magnetic field data on a day-to-day basis at the geomagnetic observatories. The Dst indices which were provided by M. Sugiura of the University of Kyoto, Japan, and the Kp indices which were provided by Helen Coffey of the National Oceanic and Atmospheric Administration's National Geophysical Data Center, World Data Center A (NOAA/NGDC/WDCA) in Boulder, Colorado, are both based on observatory data. These indices were key factors in selecting subsets of POGS data for input to this model.

A special effort has been made to preserve the several million Project MAGNET and POGS magnetic field measurements collected for use in the 1995 Epoch World Magnetic Model at NOAA/NGDC. This effort has been coordinated by Bob Jones and John Weaver of NAVOCEANO and Ronald Buhmann, Susanne McLean, and Stewart Racey of NGDC. The entire high-level data set from Project MAGNET, going back to its origins in 1951, will be placed on its own CD-ROM by NGDC, as will the entire POGS data set. Both CD-ROMs will then be made available to the general public in this convenient form through NGDC.

Many government agencies were responsible for placing the POGS satellite in space. Among these were the Office of Naval Research, the Navy Space Systems Activity, the Space Test Program, and the U.S. Air Force. The satellite itself was built by Defense Systems, Incorporated, of McLean, Virginia.

REFERENCES

- Cain, J. C., S. J. Hendricks, R. A. Langel, and W. V. Hudson; A Proposed Model for the International Geomagnetic Reference Field 1965, Journal of Geomagnetism and Geoelectricity, 19, pp. 335-355 (1967)
- Coleman, R.J.; Project MAGNET High-Level Vector Data Reduction, NASA Conference Publication 3153, ed. by R. A. Langel, pp. 215-248 (1992)
- Department of Defense World Geodetic System 1984, Technical Report TR 8350.2, 2nd ed., Defense Mapping Agency (1991)
- Department of Defense Military Specification: World Magnetic Model (WMM), MIL-W-89500, Defense Mapping Agency (1993)
- Haines, G. V.; Spherical Cap Harmonic Analysis, *Journal of Geophysical Research*, 90, pp. 2583-2591 (1985a)
- Haines, G. V.; MAGSAT Vertical Field Anomalies Above 40° N from Spherical Cap Harmonic Analysis, *Journal of Geophysical Research*, **90**, pp. 2593-2598 (1985b)
- Haines, G.V.; Spherical Cap Harmonic Analysis of Geomagnetic Secular Variation Over Canada 1960-1983, *Journal of Geophysical Research*, **90**, pp. 12563-12574 (1985c)
- Haines, G.V.; Regional Magnetic Field Modelling: a Review, Journal of Geomagnetism and Geoelectricity, 42, pp. 1001-1018 (1990)
- Kelley, M. C.; The Earth's Ionosphere: Plasma Physics and Electrodynamics, Academic Press, Inc., New York (1989)
- Langel, R. A. and R. H. Estes; The Near-Earth Magnetic Field at 1980 Determined from MAGSAT Data, *Journal of Geophysical Research*, **90**, pp. 2495-2509 (1985)
- Langel, R.. A.; The Use of Low Altitude Satellite Data Bases for Modeling of Core and Crustal Fields and the Separation of External and Internal Fields, *Surveys in Geophysics*, 14, pp. 31-87 (1993a)
- Langel, R. A., M. Purucker, and M. Rajaram; The Equatorial Electrojet and Associated Currents as Seen in MAGSAT Data, *Journal of Atmospheric and Terrestrial Physics*, **55**, pp. 1233-1269 (1993b)
- Lowes, F. J. and J. E. Martin; Optimum Use of Satellite Intensity and Vector Data in Modelling the Main Geomagnetic Field, *Physics of the Earth and Planetary Interiors*, **48**, pp. 183-192 (1987)

- Macmillan, S.; The 1994 Revision of the Models of Geomagnetic Secular Variation, Technical Report WM/94/25C, British Geological Survey (1994)
- McLean, S. J., W. M. Davis, L. D. Morris, and H. Meyers; A Report on Geomagnetic Observatories and Observations, 1994, Technical Report SE-52, World Data Center-A/NOAA/National Geophysical Data Center (1994)
- Quinn, J. M., D. J. Kerridge, and D. R. Barraclough; World Magnetic Charts for 1985 spherical harmonic models of the geomagnetic field and its secular variation, Geophysical Journal of the Royal Astronomical Society, 87, pp. 1143-1157 (1986)
- Quinn, J. M., R. J. Coleman, M. R. Peck, and S. E. Lauber; The Joint US/UK 1990 Epoch World Magnetic Model, Technical Report No. 304, Naval Oceanographic Office (1991)
- Quinn, J. M. and D. L. Shiel; Magnetic Field Modeling of the Northern Juan de Fuca and Explorer Plates, Technical Report No. 309, Naval Oceanographic Office (1993a)
- Quinn, J. M., D. L. Shiel, M. H. Acuna, and J. Scheifle; Initial Analysis and Modeling Results From the Polar Orbiting Geomagnetic Survey (POGS) Satellite, Technical Report No. 311, Naval Oceanographic Office (1993b)
- Sabaka, T. J. and R. T. Baldwin; Modeling the Sq Magnetic Field from POGO and MAGSAT Satellite and Contemporaneous Hourly Observatory Data: Phase I, Technical Report HSTX/G&G-9302, *Hughes STX Corp.* (1993)
- Stern, D. P. and J. H. Bredekamp; Error Enhancement in Geomagnetic Models Derived from Scalar Data, *Journal of Geophysical Research*, **80**, pp. 1776-1782 (1975)
- Stern, D. P., R. A. Langel, and G. D. Mead; Backus Effect Observed by MAGSAT, Geophysical Research Letters, 7, pp. 941-944 (1980)
- Zmuda, A. J. ed.; World Magnetic Survey 1957-1969, Bulletin No. 28, pp. 186-188
 International Association of Geomagnetism and Aeronomy (IAGA) (1971)

APPENDIX

FORTRAN LISTING OF SUBROUTINE GEOMAG WITH INTERNAL WMM-95 MODEL COEFFICIENTS C C SUBROUTINE GEOMAG (GEOMAGNETIC FIELD COMPUTATION) C ************* C*** C C WMM-95 is a Defense Mapping Agency (DMA) standard product. It is C covered under DMA Military Specification: MIL-W-89500 (1993). C For information on the use and applicability of this product contact C DIRECTOR DEFENSE MAPPING AGENCY/HEADQUARTERS C ATTN: CODE PR 8613 LEE HIGHWAY C FAIRFAX, VA 22031-2137 C*************************** C GEOMAG PROGRAMMED BY: C JOHN M. QUINN 7/19/90 C FLEET PRODUCTS DIVISION, CODE N342 NAVAL OCEANOGRAPHIC OFFICE (NAVOCEANO) C STENNIS SPACE CENTER (SSC), MS 39522-5001 C PHONE: COM: (601) 688-5828 485-5828 AV: FAX: (601) 688-5521 C THIS ROUTINE COMPUTES THE DECLINATION (DEC), C PURPOSE: INCLINATION (DIP), TOTAL INTENSITY (TI) AND GRID VARIATION (GV - POLAR REGIONS ONLY, REFERENCED TO GRID NORTH OF POLAR STEREOGRAPHIC PROJECTION) OF C THE EARTH'S MAGNETIC FIELD IN GEODETIC COORDINATES C FROM THE COEFFICIENTS OF THE CURRENT OFFICIAL C DEPARTMENT OF DEFENSE (DOD) SPHERICAL HARMONIC WORLD C MAGNETIC MODEL (WMM-95). THE WMM SERIES OF MODELS IS UPDATED EVERY 5 YEARS ON JANUARY 1'ST OF THOSE YEARS C WHICH ARE DIVISIBLE BY 5 (I.E. 1980, 1985, 1990 ETC.) BY THE NAVAL OCEANOGRAPHIC OFFICE IN COOPERATION C WITH THE BRITISH GEOLOGICAL SURVEY (BGS). THE MODEL IS BASED ON GEOMAGNETIC SURVEY MEASUREMENTS FROM C AIRCRAFT, SATELLITE AND GEOMAGNETIC OBSERVATORIES. C ************* C** 6 C THE WMM SERIES GEOMAGNETIC MODELS ARE COMPOSED C MODEL: OF TWO PARTS: THE MAIN FIELD MODEL, WHICH IS C VALID AT THE BASE EPOCH OF THE CURRENT MODEL AND C A SECULAR VARIATION MODEL, WHICH ACCOUNTS FOR SLOW TEMPORAL VARIATIONS IN THE MAIN GEOMAGNETIC FIELD C FROM THE BASE EPOCH TO A MAXIMUM OF 5 YEARS BEYOND C THE BASE EPOCH. FOR EXAMPLE, THE BASE EPOCH OF C THE WMM-95 MODEL IS 1995.0. THIS MODEL IS THEREFORE C CONSIDERED VALID BETWEEN 1995.0 AND 2000.0. THE С COMPUTED MAGNETIC PARAMETERS ARE REFERENCED TO THE C WGS-84 ELLIPSOID. C C*:

C

ACCURACY: IN OCEAN AREAS AT THE EARTH'S SURFACE OVER THE
ENTIRE 5 YEAR LIFE OF A DEGREE AND ORDER 12
SPHERICAL HARMONIC MODEL SUCH AS WMM-95, THE ESTIMATED
RMS ERRORS FOR THE VARIOUS MAGENTIC COMPONENTS ARE:

DEC - 0.5 Degrees DIP - 0.5 Degrees

C

C

C

C

C

C

C

C

C

C

С

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

С

C

C

C

C

C

C

C

C* C C

CCC

C

TI - 280.0 nanoTeslas (nT)

GV - 0.5 Degrees

OTHER MAGNETIC COMPONENTS THAT CAN BE DERIVED FROM THESE FOUR BY SIMPLE TRIGONOMETRIC RELATIONS WILL HAVE THE FOLLOWING APPROXIMATE ERRORS OVER OCEAN AREAS:

X - 140 nT (North)

Y - 140 nT (East)

Z - 200 nT (Vertical) Positive is down

H - 200 nT (Horizontal)

OVER LAND THE RMS ERRORS ARE EXPECTED TO BE SOMEWHAT HIGHER, ALTHOUGH THE RMS ERRORS FOR DEC, DIP AND GV ARE STILL ESTIMATED TO BE LESS THAN 1.0 DEGREE, FOR THE ENTIRE 5-YEAR LIFE OF THE MODEL AT THE EARTH'S SURFACE. THE OTHER COMPONENT ERRORS OVER LAND ARE MORE DIFFICULT TO ESTIMATE AND SO ARE NOT GIVEN.

THE ACCURACY AT ANY GIVEN TIME OF ALL FOUR GEOMAGNETIC PARAMETERS DEPENDS ON THE GEOMAGNETIC LATITUDE. THE ERRORS ARE LEAST AT THE EQUATOR AND GREATEST AT THE MAGNETIC POLES.

IT IS VERY IMPORTANT TO NOTE THAT A DEGREE AND ORDER 12 MODEL, SUCH AS WMM-95, DESCRIBES ONLY THE LONG WAVELENGTH SPATIAL MAGNETIC FLUCTUATIONS DUE TO EARTH'S CORE. NOT INCLUDED IN THE WMM SERIES MODELS ARE INTERMEDIATE AND SHORT WAVELENGTH SPATIAL FLUCTUATIONS OF THE GEOMAGNETIC FIELD WHICH ORIGINATE IN THE EARTH'S MANTLE AND CRUST. CONSEQUENTLY, ISOLATED ANGULAR ERRORS AT VARIOUS POSITIONS ON THE SURFACE (PRIMARILY OVER LAND, IN CONTINENTAL MARGINS AND OVER OCEANIC SEAMOUNTS, RIDGES AND TRENCHES) OF SEVERAL DEGREES MAY BE EXPECTED. ALSO NOT INCLUDED IN THE MODEL ARE NONSECULAR TEMPORAL FLUCTUATIONS OF THE GEOMAGNETIC FIELD OF MAGNETOSPHERIC AND IONOSPHERIC ORIGIN. DURING MAGNETIC STORMS, TEMPORAL FLUCTUATIONS CAN CAUSE SUBSTANTIAL DEVIATIONS OF THE GEOMAGNETIC FIELD FROM MODEL VALUES. IN ARCTIC AND ANTARCTIC REGIONS, AS WELL AS IN EQUATORIAL REGIONS, DEVIATIONS FROM MODEL VALUES ARE BOTH FREQUENT AND PERSISTENT.

IF THE REQUIRED DECLINATION ACCURACY IS MORE STRINGENT THAN THE WMM SERIES OF MODELS PROVIDE, THEN THE USER IS ADVISED TO REQUEST SPECIAL (REGIONAL OR LOCAL) SURVEYS BE PERFORMED AND MODELS PREPARED BY NAVOCEANO, WHICH OPERATES THE PROJECT MAGNET AIRCRAFT AND THE POLAR ORBITING GEOMAGNETIC SURVEY (POGS) SATELLITE. REQUESTS OF THIS NATURE SHOULD BE MADE THROUGH DMA AT THE ADDRESS ABOVE.

USAGE: THIS ROUTINE IS BROKEN UP INTO TWO PARTS:

- A) AN INITIALIZATION MODULE, WHICH IS CALLED ONLY ONCE AT THE BEGINNING OF THE MAIN (CALLING) PROGRAM
- B) A PROCESSING MODULE, WHICH COMPUTES THE MAGNETIC FIELD PARAMETERS FOR EACH SPECIFIED GEODETIC

366

POSITION (ALTITUDE, LATITUDE, LONGITUDE) AND TIME

INITIALIZATION IS MADE VIA A SINGLE CALL TO THE MAIN ENTRY POINT (GEOMAG), WHILE SUBSEQUENT PROCESSING CALLS ARE MADE THROUGH THE SECOND ENTRY POINT (GEOMG1). ONE CALL TO THE PROCESSING MODULE IS REQUIRED FOR EACH POSITION AND TIME.

THE VARIABLE MAXDEG IN THE INITIALIZATION CALL IS THE MAXIMUM DEGREE TO WHICH THE SPHERICAL HARMONIC MODEL IS TO BE COMPUTED. IT MUST BE SPECIFIED BY THE USER IN THE CALLING ROUTINE. NORMALLY IT IS 12 BUT IT MAY BE SET LESS THAN 12 TO INCREASE COMPUTATIONAL SPEED AT THE EXPENSE OF REDUCED ACCURACY.

THE PC VERSION OF THIS SUBROUTINE MUST BE COMPILED WITH A FORTRAN 77 COMPATIBLE COMPILER SUCH AS THE MICROSOFT OPTIMIZING FORTRAN COMPILER VERSION 4.1 OR LATER.

REFERENCES:

C

C

C

Ċ

C

C

C

C

C

C

C*

C

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C**

C

C

C

C

C

C

C

C

C

JOHN M. QUINN, DAVID J. KERRIDGE AND DAVID R. BARRACLOUGH, WORLD MAGNETIC CHARTS FOR 1985 - SPHERICAL HARMONIC MODELS OF THE GEOMAGNETIC FIELD AND ITS SECULAR VARIATION, GEOPHYS. J. R. ASTR. SOC. (1986) 87, PP 1143-1157

DEFENSE MAPPING AGENCY TECHNICAL REPORT, TR 8350.2: DEPARTMENT OF DEFENSE WORLD GEODETIC SYSTEM 1984, SEPT. 30 (1987)

JOSEPH C. CAIN, ET AL.; A PROPOSED MODEL FOR THE INTERNATIONAL GEOMAGNETIC REFERENCE FIELD - 1965, J. GEOMAG. AND GEOELECT. VOL. 19, NO. 4, PP 335-355 (1967) (SEE APPENDIX)

ALFRED J. ZMUDA, WORLD MAGNETIC SURVEY 1957-1969, INTERNATIONAL ASSOCIATION OF GEOMAGNETISM AND AERONOMY (IAGA) BULLETIN #28, PP 186-188 (1971)

JOHN M. QUINN, RACHEL J. COLEMAN, MICHAEL R. PECK, AND STEPHEN E. LAUBER; THE JOINT US/UK 1990 EPOCH WORLD MAGNETIC MODEL, TECHNICAL REPORT NO. 304, NAVAL OCEANOGRAPHIC OFFICE (1991)

JOHN M. QUINN, RACHEL J. COLEMAN, DONALD L. SHIEL, AND JOHN M. NIGRO; THE JOINT US/UK 1995 EPOCH WORLD MAGNETIC MODEL, TECHNICAL REPORT NO. 314, NAVAL OCEANOGRAPHIC OFFICE (1995)

PARAMETER DESCRIPTIONS:

A - SEMIMAJOR AXIS OF WGS-84 ELLIPSOID (KM)

B - SEMIMINOR AXIS OF WGS-84 ELLIPSOID (KM)

RE - MEAN RADIUS OF IAU-66 ELLIPSOID (KM)

SNORM - SCHMIDT NORMALIZATION FACTORS
C - GAUSS COEFFICIENTS OF MAIN GEOMAGNETIC MODEL (NT)

CD - GAUSS COEFFICIENTS OF SECULAR GEOMAGNETIC MODEL (NT/YR)

TC - TIME ADJUSTED GEOMAGNETIC GAUSS COEFFICIENTS (NT)

OTIME - TIME ON PREVIOUS CALL TO GEOMAG (YRS)

OALT - GEODETIC ALTITUDE ON PREVIOUS CALL TO GEOMAG (YRS)
OLAT - GEODETIC LATITUDE ON PREVIOUS CALL TO GEOMAG (DEG.)

```
- GEODETIC LONGITUDE ON PREVIOUS CALL TO GEOMAG (DEG.)
C
        OLON
               - COMPUTATION TIME (YRS)
C
                 (EG. 1 JULY 1995 = 1995.500)
                                                             (INPUT)
C
        ALT
               - GEODETIC ALTITUDE (KM)
                                                             (INPUT)
C
              - GEODETIC LATITUDE (DEG.)
        GLAT
                                                             (INPUT)
C
        GLON
              - GEODETIC LONGITUDE (DEG.)
C
        EPOCH - BASE TIME OF GEOMAGNETIC MODEL (YRS)
C
        DTR
               - DEGREE TO RADIAN CONVERSION
C
        SP(M) - SINE OF (M*SPHERICAL COORD. LONGITUDE)
        CP(M) - COSINE OF (M*SPHERICAL COORD. LONGITUDE)
C
C
               - SINE OF (SPHERICAL COORD. LATITUDE)
        ST
C
               - COSINE OF (SPHERICAL COORD. LATITUDE)
        CT
C
               - SPHERICAL COORDINATE RADIAL POSITION (KM)
               - COSINE OF SPHERICAL TO GEODETIC VECTOR ROTATION ANGLE
C
        CA
C
        SA
               - SINE OF SPHERICAL TO GEODETIC VECTOR ROTATION ANGLE
C
               - RADIAL COMPONENT OF GEOMAGNETIC FIELD (NT)
        RP
C
               - THETA COMPONENT OF GEOMAGNETIC FIELD (NT)
               - PHI COMPONENT OF GEOMAGNETIC FIELD (NT)
C
        BP
C
        P(N,M) - ASSOCIATED LEGENDRE POLYNOMIALS (UNNORMALIZED)
        PP(N) - ASSOCIATED LEGENDRE POLYNOMIALS FOR M=1 (UNNORMALIZED)
C
        DP(N,M)- THETA DERIVATIVE OF P(N,M) (UNNORMALIZED)
C
C
               - NORTH GEOMAGNETIC COMPONENT (NT)
        RX
C
               - EAST GEOMAGNETIC COMPONENT (NT)
               - VERTICALLY DOWN GEOMAGNETIC COMPONENT (NT)
C
        R7
               - HORIZONTAL GEOMAGNETIC COMPONENT (NT)
                                                             (OUTPUT)
C
        DEC
              - GEOMAGNETIC DECLINATION (DEG.)
C
                  EAST=POSITIVE ANGLES
                   WEST=NEGATIVE ANGLES
C
C
        DIP
              - GEOMAGNETIC INCLINATION (DEG.)
                                                             (OUTPUT)
C
                  DOWN=POSITIVE ANGLES
                    UP=NEGATIVE ANGLES
C
                                                             (OUTPUT)
               - GEOMAGNETIC TOTAL INTENSITY (NT)
C
        ΤI
C
               - GEOMAGNETIC GRID VARIATION (DEG.)
                                                             (OUTPUT)
                 REFERENCED TO GRID NORTH
C
                 GRID NORTH REFERENCED TO 0 MERIDIAN
C
C
                 OF A POLAR STEREOGRAPHIC PROJECTION
C
                 (ARCTIC/ANTARCTIC ONLY)
        MAXDEG - MAXIMUM DEGREE OF SPHERICAL HARMONIC MODEL
                                                             (INPUT)
C
        MOXORD - MAXIMUM ORDER OF SPHERICAL HARMONIC MODEL
C
C
    ************
C*
C
      NOTE: THIS VERSION OF GEOMAG USES THE WMM-95 GEOMAGNETIC
C
             MODEL REFERENCED TO THE WGS-84 GRAVITY MODEL ELLIPSOID
C
   ******************
C*
C
C
C
C
C
C
C,
C
                        INITIALIZATION MODULE
C
C*
C
     SUBROUTINE GEOMAG(MAXDEG)
C
C
     DIMENSION C(0:12,0:12),CD(0:12,0:12),TC(0:12,0:12)
```

```
DIMENSION P(0:12,0:12), DP(0:12,0:12), SNORM(0:12,0:12)
      DIMENSION SP(0:12), CP(0:12), FN(0:12), FM(0:12), PP(0:12)
      REAL K(0:12,0:12)
      EQUIVALENCE (SNORM, P)
C
C
      DATA EPOCH/1995.0/
C
                  0.0,-29682.1, -2194.7,
                                             1318.8,
                                                        940.0,
                                                                -209.5,
      DATA C/
                                                2.9,
                                                         -2.9,
                                                                   1.7,
                        78.0, 24.7
5315.6, -1782.2,
                68.5,
                                    24.7,
                -1.8,
                                             3078.6, -2273.6,
                                                                  782.9,
     *
                                              3.4,
                                                          7.5,
                                   -68.1,
                                                                   -3.3,
               354.0,
                           65.6,
                -1.6,
                                             -418.6,
                                                       1685.7,
                                                                 1246.9,
                            0.9, -2359.1,
                                               0.1,
                                                                    0.4,
               290.9,
                         238.2,
                                                         -1.5,
                                     64.1,
                                                        301.0,
                                             -261.1,
                 2.8,
                          -3.6,
                                     -0.1,
                                                                 -416.5,
               766.3,
                                  -122.1,
                                             -169.1,
                                                         29.6,
                                                                   -9.6,
                        -418.9,
                                               -0.5,
                                                        259.4,
                                                                 -230.9,
               -10.3,
                           -4.3,
                                     1.2,
                99.8,
                        -306.1,
                                    113.8,
                                             -162.8,
                                                          -0.5,
                                                                    6.0,
                                                          0.8,
                                                                   43.7,
                                    -3.1,
                                               -0.6,
                -16.5,
                            9.7,
               157.6,
                        -150.1,
                                    -59.2,
                                              104.4,
                                                        -23.3,
                                                                   16.5,
                                                          0.1,
                                                                    0.2,
                                     -2.3,
                            2.6,
                                               2.4,
                 8.7,
               -15.2,
                           74.3,
                                     69.4,
                                               -55.3,
                                                          3.0,
                                                                   33.3,
                                               -2.4,
                                                           2.8,
                                                                   -0.7,
               -91.0,
                                      3.6,
                            9.2,
                                                                   16.5,
                 0.5,
                          -76.1,
                                    -24.5,
                                                1.6,
                                                         20.0,
                                     -2.4,
                                               -4.9,
                                                                    0.7,
               -23.6,
                           -6.8,
                                                           6.8,
                                              -19.5,
                                                                   -20.4,
                -0.8,
                            0.4,
                                     14.9,
                                                           6.3,
                12.2,
                                    -19.0,
                                               -8.8,
                                                         -8.5,
                                                                   -0.5,
                            7.0,
                                                         14.6,
                                                                   10.9,
                                     -0.4,
                                              -19.8,
                 4.1,
                            1.3,
                 -7.5,
                           -6.8,
                                      9.3,
                                                7.7,
                                                         -8.1,
                                                                    2.6,
                                     -0.3,
                 -6.5,
                                                0.3,
                                                          3.2,
                                                                    1.7,
                            3.6,
                                                         -2.9,
                                                                    2.3,
                 2.9,
                            5.6,
                                     -3.4,
                                               -0.7,
                 -1.6,
                           -6.6,
                                     0.6,
                                                          0.2,
                                                                    0.3,
                                                2.2,
                                                          0.2,
                                                                   -1.3,
                           -3.6,
                                                1.9,
                 1.0,
                                     -1.4,
                           -0.6,
                 -2.4,
                                     -2.2,
                                                1.3,
                                                           4.2,
                                                                    0.4,
                 0.3,
                                      0.8,
                                               -3.0,
                                                           0.7,
                                                                    0.5.
                            1.4,
                                                         -0.4,
                                                                    0.9,
                 -0.8,
                            0.6,
                                      0.1,
                                                -1.3,
                  0.6/
C
                   0.0, 17.6, -13.7, 0.8, 1.2, 0.9, 0.4, -0.3,
      DATA CD/
                   0.1, 0.0, 0.0, 0.0,
6.6, 1.1, 0.5, -0.3,
                                              0.0,-18.0, 13.2, 4.0,
                                             -1.1, 0.0, 0.0, 0.0,
-0.3, -0.5, -6.8, -1.4,
     *
                  -6.6,
                   0.0, 0.0, -14.6, -7.2,
                   0.3, -0.5, 0.4, 0.0, 0.0, 0.0,
                                                          0.0, 4.0,
                                                   2.1,
                   2.2,-12.6, -8.5,
                                      0.3, -1.7,
                                                          0.5, 0.3,
                   0.0, 0.0,
                                0.0,
                                      0.0, 1.3,
                                                    1.0,
                                                          2.5, -1.2,
                  -4.5,
                                      1.3, -1.3,
                        0.0,
                                0.0,
                                                  0.0,
                                                          0.0, 0.0,
                                                   0.6, 2.1, -0.4
                                             1.7,
                   0.0, 0.5,
                                1.5, 0.6,
                   0.1, 0.5,
                                0.0, 0.0,
                                             0.0, 0.0, 0.7, -1.5,
                                1.1, 2.6, -0.4, 0.0, 0.4, 0.0,
                  -0.5, -0.7,
                   0.0, 0.0, 0.0, 0.3, 0.0, 0.7, -0.6, 0.1,
                  -0.6, -0.4, -0.9, -0.9, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4, -0.3, 0.1, 0.8, -0.1, -1.3, -0.9, -1.1, 0.1, 56*0.0/
C
C
С
          INITIALIZE CONSTANTS
С
C
      IF (MAXDEG .GT. 12) MAXDEG=12
      MAXORD=MAXDEG
      PI=3.14159265359
      DTR=PI/180.0
      SP(0)=0.
      CP(0)=1.
      P(0,0)=1.
```

PP(0)=1.

```
DP(0,0)=0.
      A=6378.137
      B=6356.7523142
      RE=6371.2
      A2=A**2
      B2=B**2
      C2=A2-B2
      A4=A2**2
      B4=B2**2
      C4=A4-B4
C
         CONVERT SCHMIDT NORMALIZED GAUSS COEFFICIENTS TO UNNORMALIZED
C
C
      SNORM(0,0)=1.
      DO 20 N=1, MAXORD
      SNORM(N,0)=SNORM(N-1,0)*FLOAT(2*N-1)/FLOAT(N)
      J=2
      DO 10 M=0,N
      K(N,M)=FLOAT((N-1)**2-M**2)/FLOAT((2*N-1)*(2*N-3))
      IF (M .GT. 0) THEN
      FLNMJ=FLOAT((N-M+1)*J)/FLOAT(N+M)
      SNORM(N,M)=SNORM(N,M-1)*SQRT(FLNMJ)
      C(M-1,N)=SNORM(N,M)*C(M-1,N)
      CD(M-1,N)=SNORM(N,M)*CD(M-1,N)
      ENDIF
      C(N,M)=SNORM(N,M)*C(N,M)
      CD(N,M)=SNORM(N,M)*CD(N,M)
   10 CONTINUE
      FN(N)=FLOAT(N+1)
      FM(N)=FLOAT(N)
   20 CONTINUE
      K(1,1)=0.
С
      OTIME=-1000.
      OALT=-1000.
      OLAT=-1000.
      OLON=-1000.
C
С
      RETURN
C
C************************
C
C
                          PROCESSING MODULE
C
C***********************
C
      ENTRY GEOMG1(ALT, GLAT, GLON, TIME, DEC, DIP, TI, GV)
C
C
      DT=TIME-EPOCH
      IF (OTIME .LT. O. .AND. (DT .LT. O. .OR. DT .GT. 5.)) THEN
      PRINT *, '
PRINT *, ' WARNING - TIME EXTENDS BEYOND MODEL 5-YEAR LIFE SPAN'
PRINT *, ' CONTACT DMA FOR PRODUCT UPDATES:'
      PRINT *, PRINT *, PRINT *,
                          DEFENSE MAPPING AGENCY'
                          ATTN: Code PRS'
                         8613 LEE HIGHWAY'
      PRINT *, 1
                         FAIRFAX, VA 22031-2137' (703)285-9197, AUTOVON 356-9197'
      PRINT *, '
      PRINT *,
     PRINT *, ' EPOCH = ',EPOCH
PRINT *, ' TIME = ',TIME
      ENDIF
```

```
RLON=GLON*DTR
     RLAT=GLAT*DTR
      SRLON=SIN(RLON)
      SRLAT=SIN(RLAT)
      CRLON=COS(RLON)
     CRLAT=COS(RLAT)
      SRLON2=SRLON**2
      SRLAT2=SRLAT**2
      CRLON2=CRLON**2
      CRLAT2=CRLAT**2
      SP(1)=SRLON
      CP(1)=CRLON
C
         CONVERT FROM GEODETIC COORDS. TO SPHERICAL COORDS.
С
      IF (ALT .NE. OALT .OR. GLAT .NE. OLAT) THEN
      Q=SQRT(A2-C2*SRLAT2)
      Q1=ALT*Q
      Q2=((Q1+A2)/(Q1+B2))**2
      CT=SRLAT/SQRT(Q2*CRLAT2+SRLAT2)
      ST=SQRT(1.0-CT**2)
      R2=ALT**2+2.0*Q1+(A4-C4*SRLAT2)/Q**2
      R=SQRT(R2)
      D=SQRT(A2*CRLAT2+B2*SRLAT2)
      CA=(ALT+D)/R
      SA=C2*CRLAT*SRLAT/(R*D)
      ENDIF
C
      IF (GLON .NE. OLON) THEN
      DO 40 M=2, MAXORD
      SP(M)=SP(1)*CP(M-1)+CP(1)*SP(M-1)
      CP(M)=CP(1)*CP(M-1)-SP(1)*SP(M-1)
   40 CONTINUE
      ENDIF
C
C
      AOR=RE/R
      AR=AOR**2
C
      BR=0.
      BT=0.
      BP=0.
      BPP=0.
C
      DO 70 N=1, MAXORD
      AR=AR*AOR
      DO 60 M=0,N
         COMPUTE UNNORMALIZED ASSOCIATED LEGENDRE POLYNOMIALS
         AND DERIVATIVES VIA RECURSION RELATIONS
C
C
      IF (ALT .NE. OALT .OR. GLAT .NE. OLAT) THEN
      IF (N .EQ. M) THEN
      P(N,M)=ST*P(N-1,M-1)
      DP(N,M)=ST*DP(N-1,M-1)+CT*P(N-1,M-1)
      GO TO 50
      ENDIF
      IF (N .EQ. 1 .AND. M .EQ. 0) THEN
      P(N,M)=CT*P(N-1,M)
      DP(N,M)=CT*DP(N-1,M)-ST*P(N-1,M)
      GO TO 50
      ENDIF
      IF (N .GT. 1 .AND. N .NE. M) THEN
      IF (M .GT. N-2) P(N-2,M)=0.0
      IF (M .GT. N-2) DP(N-2,M)=0.0
      P(N,M)=CT*P(N-1,M)-K(N,M)*P(N-2,M)
```

```
DP(N,M)=CT*DP(N-1,M)-ST*P(N-1,M)-K(N,M)*DP(N-2,M)
       ENDIF
       ENDIF
    50 CONTINUE
 C
          TIME ADJUST THE GAUSS COEFFICIENTS
 C
 C
       IF (TIME .NE. OTIME) THEN
       TC(N,M)=C(N,M)+DT*CD(N,M)
       IF (M .NE. O) THEN
       TC(M-1,N)=C(M-1,N)+DT*CD(M-1,N)
       ENDIF
       ENDIF
C
          ACCUMULATE TERMS OF THE SPHERICAL HARMONIC EXPANSIONS
C
C
       PAR=AR*P(N,M)
      IF (M .EQ. 0) THEN
TEMP1=TC(N,M)*CP(M)
      TEMP2=TC(N,M)*SP(M)
      ELSE
       TEMP1=TC(N,M)*CP(M)+TC(M-1,N)*SP(M)
      TEMP2=TC(N,M)*SP(M)-TC(M-1,N)*CP(M)
      ENDIF
      BT=BT-AR*TEMP1*DP(N,M)
      BP=BP+FM(M)*TEMP2*PAR
      BR=BR+FN(N)*TEMP1*PAR
C
           SPECIAL CASE: NORTH/SOUTH GEOGRAPHIC POLES
C
C
      IF (ST .EQ. 0.0 .AND. M .EQ. 1) THEN
      IF (N .EQ. 1) THEN
      PP(N)=PP(N-1)
      ELSE
      PP(N)=CT*PP(N-1)-K(N,M)*PP(N-2)
      ENDIF
      PARP=AR*PP(N)
      BPP=BPP+FM(M)*TEMP2*PARP
      ENDIF
C
C
   60 CONTINUE
   70 CONTINUE
C
C
      IF (ST .EQ. 0.0) THEN
      BP=BPP
      ELSE
      BP=BP/ST
      ENDIF
C
C
         ROTATE MAGNETIC VECTOR COMPONENTS FROM SPHERICAL TO
С
         GEODETIC COORDINATES
С
      BX=-BT*CA-BR*SA
      BY=BP
      BZ=BT*SA-BR*CA
C
C
         COMPUTE DECLINATION (DEC), INCLINATION (DIP) AND
C
         TOTAL INTENSITY (TI)
C
      BH=SQRT(BX**2+BY**2)
      TI=SQRT(BH**2+BZ**2)
      DEC=ATAN2(BY,BX)/DTR
      DIP=ATAN2(BZ,BH)/DTR
C
         COMPUTE MAGNETIC GRID VARIATION IF THE CURRENT
C
C
         GEODETIC POSITION IS IN THE ARCTIC OR ANTARCTIC
C
         (I.E. GLAT > +55 DEGREES OR GLAT < -55 DEGREES)
C
C
         OTHERWISE, SET MAGNETIC GRID VARIATION TO -999.0
```

DISTRIBUTION LIST

AVY	2
Chief of Naval Operations	2
Chief of Naval Research	2 2
David Taylor Naval Ship Research and Development Center	
Dept. of the Navy, Submarine Combat and Weapons Systems	1
Mine Countermeasure Group Two	1
Mine Warfare Command	1
Marine Corps Research, Development and Acquisitions Command	1
Naval Air Systems Command	1
Naval Air Test Center	2
Naval Air Warfare Center	4
Naval Avionics Center	1 2 2
Naval Coastal Systems Center	2
Naval Command Control and Ocean Surveillance Center	_
Naval Oceanographic Office (Maury Oceanographic Library and Code N342)	200
Naval Meteorology and Oceanography Command	3
Naval Ocean Systems Center	3
Naval Postgraduate School	
Naval Research Laboratory, Washington DC	6
Naval Research Laboratory Detachment, SSC	6
Naval Sea Systems Command	3
Naval Surface Warfare Center, White Oak	4
Naval Surface Weapons Center, Dahlgren	3
Naval Surface Weapons Laboratory Detachment, White Oak	
Naval Technical Intelligence Center	1
Naval Undersea Warfare Center Detachment, San Diego	1
Naval Underwater Systems Center Detachment, New London Laboratory	1
Naval Underwater Systems Center Detachment, Newport Laboratory	1
Naval Underwater Warfare Center	3
Naval Weapons Center	1
Office of Advanced Technology	2
Office of Naval Research, Washington DC	2 3 2
Office of Naval Research Detachment SSC	1
Office of Naval Technology	!
Space and Naval Warfare Systems Command PMW-182, PMW-185	2
USMC 3rd. R.P.V. Experimental Brigade	2
U. S. Naval Academy (Nimitz Library)	
AIR FORCE	,
Air Force Institute of Technology	
Air Force Office of Scientific Research	
Pacific Missile Test Center	,
Rome Research Laboratory	•

U. S. Air Force Academy (Technical Library) USAF Air Warfare Center USAF Hq., Electronics Systems Division USAF Phillips Laboratory, AFGL USAF Phillips Laboratory, Kirkland AFB USAF Weapons and Tactics Center	
ARMY	
Harry Diamond Laboratory (Technical Library) U. S. Army Combat Systems Test Activity	į
U. S. Army Research Laboratory	-
U. S. Military Academy (Technical Library)	
DOD	
DARPA, Submarine Technology Program	
DARPA, Nuclear Monitoring Program	- 1
Defense Mapping Agency, Aerospace Center	4
Defense Mapping Agency, GPS-NAVSTAR JPO Defense Mapping Agency Headquarters	
Defense Mapping Agency, Hydrographic and Topographic Center	2
Defense Mapping Agency, Systems Center	3
Defense Mapping School	2
Defense Technical Information Center	2
Los Alamos National Laboratory	2
National Security Agency	1
Sandia National Laboratory (Technical Library)	1
NON-DOD	
Australian Geological Survey	5
British Geological Survey	5
Bedford Institute of Oceanography (Technical Library) Canadian Defence Research Establishment Pacific	1
Colorado School of Mines, Center for Potential Field Studies	2
Geological Survey of Canada, Geophysics Division	2
Geological Survey of Canada, Atlantic Geoscience Centre	3
Geological Survey of Canada, Pacific Geoscience Centre	3
Geothe Universitat, Institute Fur Meteorologie und Geophysik	3 3 3
Hatfield Marine Science Center	3
Indian Institute of Geomagnetism	9
Istituto Nazionale Di Geofisica	3
IZMIRAN Institut de Physique du Globe de Poris	3
Institut de Physique du Globe de Paris Johns Hopkins University, Applied Physics Laboratory	5 2
Lawrence Livermore Laboratory (Technical Library)	1
McGill University Dent of Earth and Planetary Sciences	1

NASA, Geodynamics Branch	5
NOAA, NGDC	5
NOAA, Pacific Marine Environment Laboratory	2
Oregon State University, College of Oceanography	1
Purdue University, Dept. of Earth and Atmospheric Sciences	1
Raytheon Corporation	2
Royal Australian Navy, Maritime Hq.	2
SACLANT ASW Research Centre	2
Scripps Institution of Oceanography	2
Stanford University, Dept. of Geological Sciences	1
Tracor, Incorporated	3
U. S. Geological Survey, Denver	5
U. S. Geological Survey, Menlo Park	2
University of Cantebury, Dept. of Geology	1
University of Michigan, Dept. of Geophysics	1
University of Rhode Island, Graduate School of Oceanography	1
University of Sydney, School of Mathematics and Statistics	1
University of Toronto, Dept. of Physics, Geophysics Laboratory]
University of Washington, School of Oceanography	2
Woods Hole Oceanographic Institution	2