detectorSimulations_v10 Angular Correlations Extension Documentation

Rishita Gudapati

December 2017

All additions were made to the September 12 2017 commit to detectorSimulations_v10 on the GRIFFIN-Collaboration GitHub page.

EventAction

Header File

Additions:

- declared variables for deposited energy of particle pairs in cascade
 - the first will be paired with the second, then the second and third will be paired together, etc. Similar to the way G4VGammaDeexcitation works.
- declared variables for binning 2D angular correlations histograms (one for $\gamma\gamma$ correlations, and one for γe^- and $e^-\gamma$ correlations)
- declared variables for deciding whether or not to produce histograms for a specific particle pair (gg, ge, ee).
 - there are a matching set of booleans in <code>HistoManager.hh</code>. Both sets need to have matching values for each variable. There is definitely an easier way to do this.
 - the G4bool ee variable will have no effect until a Paces-Paces array is added.
- array of angles for germanium-germanium hits (thisGriffinCryMap): organized by crystal number from 0 to 63.
- array of angles for paces-germanium/germanium-paces hits (thisPacesGriffinCryMap): first index is the PACES detector that was hit, and the second is the germanium crystal that was hit.

Source File

Additions:

- track incoming hits in groups of two (along with their energies) and fill the appropriate 2D histograms based on particle types
- access the corresponding crystal maps to retrieve the angle between hits

HistoManager

Header File

Additions:

- G4int EDEPNBINSGRIFFIN: binning for GRIFFIN and PACES histograms
- G4int EDEPXMAXGRIFFIN and G4int EDEPXMINGRIFFIN: range for GRIFFIN and PACES histograms
- const G4int MAXNUMANG_GG and const G4int MAXNUMANG_GE: the number of angles used in the $\gamma\gamma$ and mixed particle graphs, respectively.
- G4int MAXANGCORRHISTO: number of different types of angular correlation graphs (one for $\gamma\gamma$, one for both γe^- and $e^-\gamma$, and one for e^-e^-).
- short AngCorrNumbers [MAXNUMANG_GE*MAXANGCORRHISTOMAXANGCORRHISTO];+ stores the 2D histograms. MAXNUMANG_GE should be replaced by MAXNUMANG_GG if the latter is greater. Again, there is definitely an easier way to do this.
- short fAngCorrAngles[1]; stores the 1D histograms of all angles produced in the simulation.
- a set of booleans matching the ones in **EventAction**. Both sets need to have matching values.

Source File

Additions:

- create 2D histograms for all correlation types
- fix PACES spectra titles
- replace range and binning for GRIFFIN and PACES graphs
- create 1D histogram for displaying distribution of all angles produced in the simulation.

DetectionSystemPaces

Header File

Unchanged.

Source File

modified measured ϕ angles to match the NIM paper.