STAT 408 Applied Regression Analysis

Miles Xi

Department of Mathematics and Statistics
Loyola University Chicago

Fall 2022

Part 1: Probability and Random Variable

Population and Sample

- Population is a well-defined collection of objects that we are interested in
 - All individuals who received a B.S. in engineering during the most recent academic year

- A <u>sample</u> is a subset of the population selected in some prescribed manner
 - A group of last year's engineering graduates to obtain feedback about the quality of the engineering curricula

Populations and Samples

Data Collection

 Data Collection should guarantee that the sample is representative of the target population

- Random sampling is the simplest method for ensuring a representative selection
 - Any individual in the population has the same chance to be selected

 <u>Stratified sampling</u> separates the population into non-overlapping groups and takes a random sample from each one

Data Collection

Probability

• Given an experiment and a sample space S, probability is to assign to each event A a number P(A), which will give a precise measure of the chance that A will occur

Sample space S: all possible outcomes

• Event: a set of outcomes

Probability

AXIOM 1

AXIOM 2

AXIOM 3

For any event A, $P(A) \ge 0$.

$$P(\mathcal{S}) = 1.$$

If A_1, A_2, A_3, \dots is an infinite collection of disjoint events, then

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i)$$

Probability

Conditional Probability

 Sometimes, we examine how the "an event B has occurred" affects the probability of event A

We will use the notation P(A | B) to represent the conditional probability of A given that the event B has occurred

• For example, what is the probability of getting covid 19 if vaccinated

This will be different from the probability without any conditions

Conditional Probability

For any two events A and B with P(B) > 0, the conditional probability of A given that B has occurred is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{2.3}$$

Independence

• Independence means whether event A happens or not does not affect event B

- Formal definition
 - A and B are independent if and only if P(B|A) = P(B) and P(A|B) = P(A)
- Another definition
 - $P(A \cap B) = P(A) * P(B)$

Random Variable

- Random variable is a variable whose values depend on the outcomes of a random experiment
 - The number of responses in one survey
 - The gene expression from different biological samples
- Discrete random variable
 - Take a countable number of distinct values such as 0,1,2,3,4, ...
- Continuous random variable
 - Take an infinite number of possible values

Distribution

 The probability distribution shows the probability for each outcome of one random variable

 <u>Discrete distribution</u> describes the probabilities of the possible values of a discrete random variable

\mathcal{X}	0	1	2	3	4	5	6
p(x)	.05	.10	.15	.25	.20	.15	.10

This table defines the probability mass function (pmf) of a discrete RV

Distribution

• <u>Continuous distribution</u> describes the probabilities of the possible values of a continuous random variable

$$P(a \le X \le b) = \int_a^b f(x)dx$$

Function f(x) is the probability density function (pdf) of a continuous RV

Distribution

- Question
 - What is the relationship between discrete and continuous distributions?

- We use expectation to measure the average of a random variable
- The expectation of a <u>discrete</u> random variable:

Let *X* be a discrete rv with set of possible values *D* and pmf p(x). The **expected** value or mean value of *X*, denoted by E(X) or μ_X or just μ , is

$$E(X) = \mu_X = \sum_{x \in D} x \cdot p(x)$$

- Question
 - What is the expectation for the following random variable X?

X	0	1	2	3	4	5	6
p(x)	.05	.10	.15	.25	.20	.15	.10

• The expectation of a continuous random variable:

The expected or mean value of a continuous rv X with pdf f(x) is

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

• Some useful properties

1.
$$E(aX + b) = aE(X) + b$$

2.
$$E(X + Y) = E(X) + E(Y)$$

3. If X and Y are independent, then E(XY) = E(X)E(Y)

• We use variance to measure the average deviance of a random variable

• The variance of a discrete random variable:

Let *X* have pmf p(x) and expected value μ . Then the **variance** of *X*, denoted by V(X) or σ_X^2 , or just σ^2 , is

$$V(X) = \sum_{D} (x - \mu)^{2} \cdot p(x) = E[(X - \mu)^{2}]$$

The **standard deviation** (SD) of *X* is

$$\sigma_X = \sqrt{\sigma_X^2}$$

- Question
 - What is the variance for the following random variable X?

\mathcal{X}	0	1	2	3	4	5	6
p(x)	.05	.10	.15	.25	.20	.15	.10

• The variance of a continuous random variable:

The variance of a continuous random variable X with pdf f(x) and mean value μ is

$$\sigma_X^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx = E[(X - \mu)^2]$$

The standard deviation (SD) of X is $\sigma_X = \sqrt{V(X)}$.

• Some useful properties

•
$$V(X) = E(X^2) - E^2(X)$$

•
$$V(aX + b) = a^2V(X)$$

If X and Y are independent, then V(X + Y) = V(X) + V(Y)

- Bernoulli Random Variable
 - Take the value 1 with probability p and the value 0 with probability q = 1 p
- Bernoulli distribution
 - P(X=1) = p; P(X=0) = 1 p = q
- Expectation = p
- Variance = pq

Bernoulli distribution

- Binomial Random Variable
 - Sum of n independent Bernoulli random variables
 - Number of successes in n Bernoulli experiments
- Binomial Distribution

$$\Pr(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

- Expectation = np
- Variance = npq

Binomial distribution

- Poisson Random Variable
 - Number of independent events occurring in a fixed time period
 - The events occur with a constant rate
- Poisson Distribution

$$\Pr(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

- Expectation = λ
- Variance = λ

Poisson Distribution

- Unform Random Variable
 - Take the same value in its domain with the same probability
- Unform distribution

$$f(x) = egin{cases} rac{1}{b-a} & ext{for } a \leq x \leq b, \ 0 & ext{for } x < a ext{ or } x > b \end{cases}$$

- Expectation = (a + b)/2
- Variance = $(b a)^2/12$

- Normal/Gaussian Random Variable
 - Most important, widely used
- Normal distribution

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

- Expectation = μ
- Variance = σ^2

- t Random Variable
 - Similar shape to normal, but always centered at zero
- t distribution
 - Complicated density function, not shown
 - Degree of freedom (DF or v) controls the spread

- Expectation = 0
- Variance = ?

List of Probability Distributions

• https://en.wikipedia.org/wiki/List of probability distributions