磁気混合流体による 円管内面精密加工に用いる工具形状の 磁気的考察

> 池田·櫻井研究室、西田研究室 平松信義

〇研究の背景と目的

磁気混合流体(MCF)を用いた研磨加工の加工原理は分かっていない 体系的な原理実験は難しい

円管研磨に着目し、磁界シミュレーションを行った

〇工具の解析モデル

〇工具の解析モデル

- ◆磁束は対向する磁極から反発しあい 被加工管内面に向かう
- ◆磁束の方向に沿って磁気クラスタが 生成され、工具の回転による管内面との 相対運動によって研磨が行われる
- ◆磁石によって生起される磁界を分析する ことで、研磨工具の特性を評価する (磁気的な効果について考察する)

回転軸

〇解析の妥当性の検証

●被加工管内面での磁束密度の大きさについて 実験値と計算値での比較(工具TypeA,B)

〇解析の妥当性の検証

●被加工管内面での磁束密度の大きさについて 実験値と計算値での比較(工具TypeC)

適切に物理パラメータを選ぶと、 最大相対誤差は 12%程度

妥当な解析結果が 得られた

○解析の妥当性の検証

●鉄粉の体積あたりの力の概算

表. 諸元*

工具タイプ	Туре α
工具回転数 [rpm]	1000
外径 (鉄粉) [µm]	1.2
密度 (鉄粉) [g/cm3]	7.86
透磁率 (鉄粉)	2000

磁力が支配的であることが 確かめられた

重力と遠心力の影響は小さく、 磁気的な考察のみで十分

〇加工実験との比較

●内径変化量

[実験値出典] 西田研究室 西野 (加工時間 20分)

○加工実験との比較

●被加工管内面での磁束密度分布と内径変化量の比較(Typea)

磁束密度の各成分、大きさについて 相関係数を求めた

○加工実験との比較

●被加工管内面での磁束密度分布と内径変化量の比較(Typea)

Bz Br

Туре α	750rpm	1000rpm	1250rpm	1500rpm
Br	-0.65	-0.74	-0.54	-0.80
Bz	0.81	0.82	0.62	0.87
B	-0.34	-0.57	-0.34	-0.63

〇加工実験との比較

●被加工管内面での磁束密度の勾配と内径変化量の比較(Typea)

磁気浮揚力は近似的に以下の式で 表すことができる*

加工量との対応はとれていない

$$F = -\mathbf{M} \cdot \nabla \mathbf{H} \propto \nabla \mathbf{B_0}$$

*山口, 磁性流体, 森北出版 pp.99 (2011)

〇加工実験との比較

●被加工管内面での磁束密度分布と内径変化量の比較(Typea)

- <u>◆磁束密度の大きさと加工量との間には負の相関がある</u>
- ◆磁気浮揚力と加工量は対応がとれていない

○加工実験との比較

被加工管内面での磁束密度分布や磁束密度の大きさの勾配と 内径変化量の比較 (工具Typeβ)

〇加工実験との比較

被加工管内面での磁束密度分布や磁束密度の大きさの勾配と 内径変化量の比較(工具Typeβ)

磁東密度の大きさと 加工量との間には <u>負の相関</u>、軸方向の 磁東密度Bzとの間には 正の相関がある

加工量と磁束密度の 勾配には<u>対応が</u> <u>とれていない</u>

Bz
Br

Туре β	750rpm	1000rpm	1250rpm	1500rpm
Br	-0.77	-0.38	-0.67	-0.64
Bz	0.78	0.42	0.71	0.63
B	-0.52	-0.30	-0.38	-0.50

<u>〇解析システム</u>

●さらなる加工原理への理解のため、 また工学的な応用を目標として、 様々な工具寸法での解析などを自動で行う 解析システムを構築した。

- ◆計算条件の設定と数値計算、計算データの基礎分析を 体系的に行える
- ◆手作業では行うことのできない量の膨大な種類の 工具形状について分析を行うことができる

〇解析システムの構成

◆前任者の連続計算システム*を引き継ぎ、 データベース化や工具形状の自由度追加など改良を加え、 分析モジュールの追加を行った。

図:構成要素関連図(DFD: Data Flow Diagram)

*塚田,池田,平松,櫻井,西田. 磁気機能性流体を用いた円管内面マイクロ加工のための磁界解析 第38回 日本応用磁気学会学術講演会 講演番号: 2aF-2 (2014)

○解析システム

- ◆システムの保守性、計算データの再利用性が高まった。
- ◆幾何的に可能な工具形状を取り尽くすことができるようになった。
- ◆現在、15,000通り以上の工具寸法の組み合わせについて解析を終了している。

表:工具のとりうる寸法

磁石の個数	3	4	5								
磁石の厚み [mm]	3	4	5	6	7	8	9	10	11	12	13
磁石の内半径 [mm]	3	4	5	6	7	8	9	10	11		
磁石の外半径 [mm]	6	7	8	9	10	11	12	13	14	15	
磁石の間隔 [mm]	1	2	3	4	5	6	7				

<u>〇解析システムの応用例</u>

● 磁東密度の大きさの分布についての考察

磁場が小さな領域は磁気機能性流体の応用上重要でない。

効率の良い加工が行える工具形状を、絞り込む。

35

磁気機能性流体: 磁場のもとで機能性をもつ。

図:磁石の間隔を変化させた際の磁束密度の大きさの分布

〇解析システムの応用例

● 工具の磁場分布特性の体系的分析

さまざまな寸法の工具の磁場分布について体系的に評価できる。

異なる磁場分布特性をもつ工具での対照実験が可能

目標となる特性をもつ工具を選択可能

実験工具の設計の際の指針となる。

特性A:ほぼ同じ

特性B:著しく異なる

- ●磁東密度の大きさについての測定実験との比較から、 解析結果が物理的に妥当であることを確認した。
- ●加工実験との比較から、定量的に加工原理への考察を行った
 - ◆磁束密度の大きさは加工量と負の相関関係にあり相関係数は -0.6~-0.3 程度であった
 - ◆磁気浮揚力は加工量との対応がとれていない
- ●さらなる加工原理への考察と、工学的な応用を目標として、 解析システムを構築した
 - ◆効率のよい研磨ができる工具形状をしぼりことができる
 - ◆実験工具の設計の指針を得ることができる

<u>〇補助資料</u>

●工具寸法

	Number of Permanent Magnet [mm]	Size of Permanent Magnet [mm]	Size of Spacer [mm]	Size of Tool Cover [mm]	Internal Diameter of Fined-Tube [mm]
Type A	5	φ13 × φ6 × 5	φ13 × 2.5	-	15
Туре В	5	φ13 × φ6 × 5	φ8 × 2.5	-	15
Туре С	5	φ13 × φ6 × 5	φ8 × 5	-	15
Туре α	5	φ12 × φ6 × 5	φ12 × 2.5	φ12 × φ14	15
Туре β	5	φ12 × φ6 × 3	φ12 × 1.5	φ12 × φ14	15

<u>〇補助資料</u>

●被加工管内面での磁束密度と加工量の相関係数

Type α	n=750rpm	n=1000rpm	n=1250rpm	n=1500rpm
B [⊥]	-0.65	-0.74	-0.54	-0.8
B//	0.81	0.82	0.62	0.87
B	-0.34	-0.57	-0.34	-0.63

Туре β	n=750rpm	n=1000rpm	n=1250rpm	n=1500rpm
B <u></u> ⊥	-0.77	-0.38	-0.67	-0.64
B//	0.78	0.42	0.71	0.63
B	-0.52	-0.3	-0.38	-0.5

〇補助資料

- ●表. 磁石の磁気特性と設定パラメータ
 - ◆被加工管、スペーサ、回転軸は非磁性体であり、 MCFの比透磁率は十分に1に近いとした。

	Relative	Magnetic	Magnetic
Permeability		Coercivity	Coercivity
	μr	bHc [A/m]	iHc [A/m]
Material: N-40*	-	> 859000	> 955000
Model: NdFe30	1.045	828000	-
Model: NdFe35	1.099	890000	-

	Magnetic	Maximum
	Retensivity	Energy Product
	Br [T]	BH.max [J/m^3]
Material: N-40*	1.25 ~ 1.32	302000 ~ 334000
Model: NdFe30	1.10	-
Model: NdFe35	1.23	-

^{*}二六製作所公開データより引用