CS321: Computer Networks

Media Access Control (MAC)

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Introduction to MAC

- Two types of network links:
 - point-to-point links
 - protocol => PPP, HDLC
 - broadcast links
 - protocol => multiple access protocols

- Handles the problem of controlling the access to the medium which is shared among nodes
 - Who
 - When
 - How

Multiple Access Protocols

Random Access

- No station is superior to another station
- None is assigned control over another
- No scheduled time for transmission
- Station compete with one another to access the medium

Pure ALOHA

- Developed in early 1970 at University of Hawaii
- Principle:
 - each station sends a frame whenever it has a frame to send
 - relies on acknowledgments from the receiver
 - if time-out occurs, then wait for random backoff time before retransmission
 - after a maximum number of retransmission, a station must give up and try later
 - Time-out := maximum round-trip time
 - Backoff time := random value generated by backoff algorithm (e.g. binary exponential backoff)

Problem in Pure ALOHA

Frame Collision

• vulnerable time: the length of time in which there is a possibility of collision.

Slotted ALOHA

 we divide the time into slots of T_{fr} seconds and force the station to send only at the beginning of the time slot

Vulnerable time= T_{fr}

Carrier Sense Multiple Access

- Sense the medium before trying to use it
- "sense before transmit" or "listen before talk"

CSMA vulnerable time

- What should a station do if channel is busy/idle?
 - 1-persistent
 - Non-persistent
 - p-persistent

Persistent Methods

1-persistent

- Continuously sense the channel
- if idle, transmit frame (with probability 1)

Non-persistent

- Sense the channel
- If idle, transmit frame (with probability 1)
- If busy, wait a random amount of time and then sense the channel again

p-persistent

Non-persistent, but transmit frame (with probability p)

CSMA/CD (Collision Detection)

12

Points to remember:

- Use of the persistence process
- The station transmits and receives continuously and simultaneously (using two different ports or a bidirectional port)
- We constantly monitor in order to detect one of two conditions: either transmission is finished or a collision is detected
- sending of a short jamming signal to make sure that all other stations become aware of the collision
- Use of random backoff mechanism
- Use of retransmission limit

Jamming Signal in CSMA/CD

- Did a collision occur? If so, go to collision detected procedure.
 - In that procedure, continue transmission (with a jam signal instead of frame header/data/CRC) until minimum packet time is reached to ensure that all receivers detect the collision.
 - The jam signal is a signal that carries a 32-bit binary pattern
 - The maximum jam-time:
 - The maximum allowed diameter of an <u>Ethernet</u> is limited to 232 bits. This makes a round-trip-time of 464 bits. As the <u>slot</u> <u>time</u> in Ethernet is 512 bits, the difference between slot time and round-trip-time is 48 bits (6 bytes), which is the maximum "jam-time".

CSMA/CA (Collision Avoidance)

- CSMA/CD is not useful in wireless networks
- So, CSMA/CA was invented
- Why??
 - In wireless, send power (generally around 100mw) and receive sensitivity (commonly around 0.01 to 0.0001mw)
 - The sending would cover up any possible chance of receiving a foreign signal, no chance of "Collision Detection"
 - So, wireless transceivers can't send and receive on the same channel at the same time
 - But, in wired networks (like Ethernet) the voltage is around
 1 to 2.5v; sending and receiving are roughly same voltage
 - Let, sending a 2.5v signal, and someone else collides with a
 2.5v signal; so receive signal would be around 5v.

- Common features:
 - Channel sensing; Retransmission; Backoff
- Important modifications:
 - Inter-Frame Space (IFS): used instead of persistent method
 - Contention window (CW) and Binary exponential backoff (BEB): time is treated in slots
 - Acknowledgement / Timeout : no collision detection
 - Basic / RTS-CTS mode of transmission
 - Use of Network Allocation Vector (NAV)

Station has

Legend

K: Number of attempts

 T_B : Backoff time

IFS: Interframe Space

RTS: Request to send

CTS: Clear to send

HT/ET Problem

A is an exposed terminal for B

RTS/CTS-based Approach

RTS: Request-to-send

CTS: Clear-to-send

ACK: Acknowledgement

NAV: how much time must pass before these stations are allowed to check the channel for idleness.

DIFS: DCF Inter-frame Space = SIFS + 2*slot time

SIFS: Short Inter-frame Space

Controlled Access

- Basic Idea: the stations consult one another before transmission
- Approaches:
 - Reservation
 - Polling
 - Token Passing

Channelization Approach

 Basic idea: the available bandwidth of a link is shared in time, frequency, or through code, among different stations.

Protocols:

- FDMA (frequency-division multiple access)
- TDMA (time-division multiple access)
- CDMA (code-division multiple access)

Basic Idea of CDMA

- Let 4 stations: 1,2,3,4
- Their data frames: d₁, d₂, d₃, d₄
- Assigned codes: c₁, c₂, c₃, c₄
 - Property-1: $c_i \cdot c_k => 0$
 - Property-2: c_i . c_i => 4 (number of station)
- Channel carrying:
 - $-(d_1.c_1)+(d_2.c_2)+(d_3.c_3)+(d_4.c_4)$
- Let station 1 & 3 are talking,
- station1 wants data from station3
- Station1 do:

$$(d1.c1)+(d2.c2)+(d3.c3)+(d4.c4).c_3 = 4.d_3$$

Chip Sequences & Operations

$$C_1$$
 C_2 C_3 C_4 [+1 +1 +1] [+1 -1 +1 -1] [+1 +1 -1 -1] [+1 -1 -1]

- Multiply by number:
- $2 \bullet [+1 +1 -1 -1] = [+2 +2 -2 -2]$

• Inner product:

$$[+1+1-1-1] \bullet [+1+1-1-1] = 1+1+1+1=4$$

$$[+1 +1 -1 -1] \bullet [+1 +1 +1 +1] = 1 +1 -1 -1 = 0$$

• Addition: $[+1+1-1-1] + [+1+1+1+1] = [+2+2 \ 0 \ 0]$

Encoding Rules:

$$0 => -1$$
; $1 => 1$; silence $=> 0$

Example

- wants to send:
 - Station1: 0; Station2: 0; Station3: silent; Station4: 1
- Encoded to: [-1, -1, 0, 1]
- Transmitted:

$$[-1.(+1+1+1+1)] + [-1.(+1-1+1-1)] + [0.(+1+1-1-1)] + [+1.(+1-1-1+1)]$$

+ $[-1.(+1-1-1+1)]$
= $[-1-1-1-1] + [-1+1-1+1] + [0000] + [+1-1-1+1]$
= $[-1-1-3]$

Let station4 wants to listen station2

```
- Station4 do: [-1 -1 -3 +1].[+1 -1 +1 -1] = -4
```

- Receive: -4/4 = -1 bit 0

Walsh Table

$$w_1 = \begin{bmatrix} +1 \end{bmatrix} \ w_{2N} = \begin{bmatrix} w_N & w_N \\ w_N & \overline{w_N} \end{bmatrix}$$

a. Two basic rules

b. Generation of W_2 and W_4

Thanks!