

Zero Knowledge Proofs and ZCash

Shubham Sahai Srivastava

CS-731: Lecture 17

Department of Computer Science and Engineering, IIT Kanpur.

In the last class ...

- Zero Knowledge proof introduction
- All languages in NP have a zero knowledge proofs
- ZKP of Graph 3-coloring
- Issues with using interactive ZKP in blockchains
- zk-SNARKS: introduction
- zk-SNARKS: an example

zkSNARKS: Example

$$x^3 + x + 5 == 35$$

Function:

def qeval(x):

$$y = x^{**}3$$

return $x + y + 5$

Flattened Code:

$$sym_1 = x * x$$

$$y = sym_1 * x$$

$$sym_2 = y + x$$

$$\sim out = sym_2 + 5$$

Arithmetic Circuit from code...

Flattened Code:

$$sym_1 = x * x$$

$$y = sym_1 * x$$

$$sym_2 = y + x$$

$$\sim out = sym_2 + 5$$

Fix a variable ordering amongst <u>all</u> the variables of the circuit

[ONE, x, sym₁, y, sym₂, out]

RECALL: Every gate corresponds to a constraint

R1CS Constraints ...

[ONE, x, OUT, sym₁, y, sym₂]

A	В	C
[0, 1, 0, 0, 0, 0]	[0, 1, 0, 0, 0, 0]	[0, 0, 0, 1, 0, 0]
[0, 0, 0, 1, 0, 0]	[0, 1, 0, 0, 0, 0]	[0, 0, 0, 0, 1, 0]
[0, 1, 0, 0, 1, 0]	[1, 0, 0, 0, 0, 0]	[0, 0, 0, 0, 0, 1]
[5, 0, 0, 0, 0, 1]	[1, 0, 0, 0, 0, 0]	[0, 0, 1, 0, 0, 0]

S = [1, 3, 35, 9, 27, 30]

R₁CS

- Goal is to come up with s, that satisfies all the R1CS simultaneously.
- To verify: Solve each R1CS equation corresponding to a solution vector.

QAP: Implement the same logic as R1CS, but using polynomials instead of dot products.

R1CS to QAP

Quadratic Arithmetic Programs (QAPs)

QAP ...

$$A(x) * B(x) - C(x) = 0, \forall x \in [1, |Gates|]$$

Target Polynomial (T(x))

$$T(x) = \prod_{i=1}^{|Gates|} (x-i)$$

$$A(x) * B(x) - C(x) = H(x) * T(x)$$

$$A(x) = \sum s_i A_i(x)$$

$$B(x) = \sum s_i B_i(x)$$

$$C(x) = \sum s_i C_i(x)$$

If we know the solution vector (s), then:

- We know: s_i, ∀i ∈ [1, |Vars|]
- For a given e, can compute: A(e), B(e), C(e)
- T(x) is <u>public</u>, so we can compute H(e)

Proof

- The evaluation point e is chosen randomly by the *Verifier* and sent to the *Prover*.
- A(e), B(e), C(e), H(e) is the desired proof.
- The point e is send in an "hidden" form.
- Polynomials have to be evaluated "blindly"

Road Ahead ...

- Homomorphic Hiding Scheme
- Blind evaluation of polynomial
- Knowledge of Coefficient Assumption
- Making blind evaluation verifiable

Homomorphic Hiding (HH)

- A Homomorphic Hiding can be defined as E(.):
 - Given E(x), its hard to find x
 - Given $x \neq y$, $E(x) \neq E(y)$... different inputs lead to different outputs
 - If one knows E(x) and E(y), she can compute arithmetic expressions in x and y ... given E(x) and E(y) compute E(x+y)

HH: an example

- Consider the group Z_p*:
 - Elements of the group: {1, 2, 3, ... p-1}
 - Its a cyclic group ... ∃ a generator g
 - For large p, discrete log problem is believed to be hard ... given h
 ∈ Z_p, its difficult to find a ∈ {0, ... p-2}, st, g^a = h (mod p)
 - Exponents add up when elements are multiplied ... $g^a \times g^b = g^{a+b \pmod{p-1}}$

HH: an example

- Homomorphic Hiding can be defined as $E(x) = g^x$:
 - Given E(x), its hard to find x ... discrete log is hard
 - Given $x \neq y$, $E(x) \neq E(y)$... different inputs lead to different outputs
 - If one knows E(x) and E(y), she can compute arithmetic expressions in x and y ... given E(x) and E(y) compute E(x+y)

$$P(x) = a_0 + a_1.x + a_2.x^2 + a_3.x^3 \dots + a_d.x^d$$

Evaluating P at a point $s \in F_p$,

$$P(s) = a_0 + a_1.s + a_2.s^2 + a_3.s^3 \dots + a_d.s^d$$

P is a linear combination of 1, s, s², ... s^d

$$E(ax + by) = g^{(ax + by)} = E(x)^{a} \cdot E(x)^{b}$$

$$E(ax + by) = g^{(ax + by)} = E(x)^a \cdot E(x)^b$$

$$P(x) = a_0 + a_1.x + a_2.x^2 + a_3.x^3 + a_d.x^d$$

 $s \in F_p$

$$P(x) = a_0 + a_1.x + a_2.x^2 + a_3.x^3 \dots + a_d.x^d$$

 $s \in F_p$

Given E(x) =
$$g^x$$
, E(y) = g^y , a, b
E(ax + by) = $g^{(ax + by)} = E(x)^a . E(x)^b$

$$P(x) = a_0 + a_1.x + a_2.x^2 + a_3.x^3 \dots + a_d.x^d$$

$$s \in F_p$$

Ensuring Alice is honest...

How do we ensure that Alice sent E(P(s))?

|G| = p, discrete log is hard

Knowledge of Coefficient Assumption

For $\alpha \in F_p$; $a,b \in G$ is an α -pair if $b = \alpha.a$

(a,b)

Alice has to compute (a',b') an α-pair

$$(a',b') = (\beta.a, \beta.b); \beta \in F_p$$

|G| = p, discrete log is hard

Knowledge of Coefficient Assumption

 $(a_0,b_0), (a_1,b_1), \dots (a_d,b_d)$

(a',b')

 $\begin{aligned} a' &= c_0.a_0 + c_1.a_1 \dots c_d.a_d \\ b' &= c_0.b_0 + c_1.b_1 \dots c_d.b_d \\ \text{where, } c_0, c_1, \dots c_d \in F_p \end{aligned}$

 $\alpha \in F_p$ $a \in G$ Computes: $b = \alpha.a$

Stitching everything together...

$$P(x) = a_0 + a_1.x + a_2.x^2 + a_3.x^3 \dots + a_d.x^d$$

$$E(1), E(s), E(s^2), ... E(s^d),$$

 $E(\alpha.1), E(\alpha.s), E(\alpha.s^2), ... E(\alpha.s^d)$

$$(a',b') = (E(P(s)), \alpha.E(P(s)))$$

Alice computes: E(P(s)), $\alpha.E(P(s))$

 $\alpha \in F_p$ $s \in G$

Finally,

$$T(x) = \prod_{i=1}^{|Gates|} (x-i)$$

$$A(x) * B(x) - C(x) = H(x) * T(x)$$

$$A(x) = \sum s_i A_i(x)$$

$$B(x) = \sum s_i B_i(x)$$

$$C(x) = \sum s_i C_i(x)$$

If we know the solution vector (**s**), then:

- We know: s_i, ∀i ∈ [1, |Vars|]
- For a given e, can compute: A(e), B(e), C(e)
- T(x) is <u>public</u>, so we can compute H(e)

ZCash

Decentralized Anonymous Payments

ZeroCash: Decentralized anonymous payment from Bitcoin: Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, Madars Virza, *IEEE S&P 2014*

- Proposed in 2014, improving on ZeroCoin.
- Construct decentralized anonymous payment scheme, that hides sender and receiver address as well as the amount.

Goals

- Issues with bitcoin:
 - De-anonymization
 - Purchase/Cash Flow visible
 - Amount being transacted
 - Can leverage competitors
 - Transaction Graph analysis

Designing a anonymous payment scheme, which hides the sender/ receiver details as well as the amount.

User Anonymity with fixed value coins

Each coin has a same value, lets say 1 BTC

- Picks a random serial number sn and nonce r
- cm := $COMM_r(sn)$
- **c** := (r, sn, cm)
- tx_{MINT} containing cm is sent to the ledger
- Its added to the ledger if Bob has payed 1 BTC to a backing escrow pool

User Anonymity with fixed value coins

Each coin has a same value, lets say 1 BTC

cm ₁	cm ₂	cm ₃							cmα	CMList
-----------------	-----------------	-----------------	--	--	--	--	--	--	-----	--------

- txspend
 - Serial number sn
 - zkSNARK proof for the NP statement: I know a r such that $COMM_r(sn)$ appears in CMList.
- If sn does not appear in the ledger, then its a valid txn.

User Anonymity with fixed value coins

cm ₁	cm ₂	cm ₃							cmα	CMList
-----------------	-----------------	-----------------	--	--	--	--	--	--	-----	--------

- txmint: add a new commitment to CMList
- tx_{SPEND}: redeem a coin in CMList
 - Does not reveal anything about r
 - Finding which **cm** is spent is difficult.
- Can represent CMList in the form of Merkle tree with root rt.
- tx_{SPEND} includes zkSNARK proof for the NP statement: I know a r such that COMM_r(sn) appears in the leaf of a Merkle tree with root rt.

Issues...

- Coin commitment cm of a coin c is a commitment to sn
- u_A created c and sends to u_B, then
 - its not anonymous, as u_A can see when the coin is spent
 - its not safe, as u_A can spend the coin again
- Coins are created of fixed values
 - It reveals the amount being transferred
 - Transferring amount not in multiples of 1 BTC not supported.

Extending coins for DAP

(a_{pk}, a_{sk}) address keypair

- To mint a coin with value v a user u:
 - Randomly choses a serial number **sn** using a random nonce β : sn := PRF_{ask}(β).
- u commits to the tuple: (a_{pk}, sn, β) in two phases:
 - u computes $k := COMM_r$ ($a_{pk} \parallel \beta$), for a random r
 - u computes cm := COMM_s (v II k), for a random s
- The minting results in a coin: (a_{pk}, v, β, r, s, cm)
- $tx_{MINT} := (v, k, s, cm)$

Any user can verify the tx_{MINT} by computing COMM_s(v || k). But it reveals nothing about the owner or serial number of the coin.

Spending coins: Pour Operation

Pour takes a set of input coins to be spent and "pours" their value into a set of freshly output coins, st, output value = input value.

(a_{pk}, a_{sk}) address keypair

- Alice wants to spend coin: (a_{pk}, v, β, r, s, cm) to produce two coins
 - c_1 and c_2 with values v_1 and v_2 , st $v_1 + v_2 = v_1$
 - targeted to address: b_{pk,1} and b_{pk,2}
- Then Alice, for each i ∈ {1,2} does:
 - computes $k_i := COMM_{ri}$ ($b_{pk,i}$ II β_i), for a random ri
 - u computes cm_i := COMM_{si} (v_i II k_i), for a random si
- This yields two new coins:
 - $c_1 = (b_{pk,1}, v_1, \beta_1, r_1, s_1, cm_1)$
 - $c_2 = (b_{pk,2}, v_2, \beta_2, r_2, s_2, cm_2)$

Spending coins: Pour Operation

Next Alice produces zkSNARK proof for the following NP statement:

(a_{pk}, a_{sk}) address keypair

- Given MT root rt, serial number sn, and coin commitments cm₁ and cm₂, I know coins c, c₁, c₂ and a_{sk} such that:
 - The coins are well formed.
 - a_{sk} matches a_{pk}.
 - **sn** is computed correctly
 - cm appears as a leaf of MT with root rt
 - $V_1 + V_2 = V$
- tx_{POUR} := (rt, sn, cm₁, cm₂, Proof_{POUR}) is appended to the ledger

ZCash

- Algorithms:
 - Setup
 - Create Address
 - Mint

- Pour
- VerifyTransaction
- Receive

- Security
 - Anonymity
 - Ledger Indistingushability ... nothing revealed beside public information
 - Balance ... cant own more money that received or minted

Network simulation third-scale Bitcoin network on EC2

Bitcoind + Zerocash hybrid currency

libzerocash
provides DAP interface

Statement for zkSNARK

Hand-optimized

libsnark Instantiate ZkSNARK Zerocash

SCIPR Lab

Instantiate
Zerocash
primitives and
parameters

bitcoind

Performance (quadcore desktop)

Setup	<2 min, 896MB params
Mint	Country of the state of the sta
Pour	46 s, 1KB transaction
Verify Transact ion	<9 ms/ transaction
Receive	<2 ms/ transaction

Questions?

Thank You!