Feature Engineering

Outline

Feature Engineering

Introduction

Scaling

Encoding

Missing Value

Outlier

Binning

Generating new features

Feature Selection

Feature Engineering

Your machine learning only as good as your data With Feature Engineering, you can provide better input In real word practice data is not clean:

missing value

outlier

unreliable and invalid data

covariate/lurking variable, etc

Each Model Optimize Differently

For each model, some variable work best when we give certain treatment

Why Does It Matter?

Scaling

What is Scaling?

Transform numerical data into same range (typically small) Scaling:

- MinMax Scaler
- Standard Scaler
- Robust Scaler

Some method may work best with scaling

- ex. KNN, Neural Network, Linear Model

Default Distribution

$$y = \frac{x - \bar{x}}{s} \qquad \bar{x} = \text{mean}$$

 $y = \frac{x - \min x_i}{\max x_i - \min x_i}$

$$\bar{x}$$
 = mean

$$S = Standard deviation$$

Default Distribution

Transform To Small Range

$$z_i = rac{x_i - Q_1(x_i)}{Q_3(x_i) - Q_1(x_i)}$$

Where:

 $Q_1(x_i)$ = first quartile

 $Q_3(x_i)$ = third quartile

Encoding

What is Encoding?

- Encoding is used as our way to represent categorical variable in Machine Learning
- In Python, there are available some method such as one hot encoding, ordinal encoding dan binary encoding.
- Which method to use depend on the variable's scale of measurement

Scale of Measurement	Suggested Method		
Scale of Measurement	One Hot Encoding	Ordinal Encoding	Binary Encoding
Nominal	v	x	v
Ordinal	V	v	х

One Hot Encoding

Gender	
Male	
Female	
Female	
Male	
Female	

Male	Female
1	0
0	1
0	1
1	0
0	1

City
Jakarta
Bogor
Bogor
Bekasi
Bekasi

Jakarta	Bogor	Bekasi
0	1	0
1	0	0
1	0	0
0	0	1
0	0	1

Work best for nominal variable and can used for ordinal variable as well

One Hot Encoding For Linear Model

Gender	
Male	
Female	
Female	
Male	
Female	

Male	
	1
	0
	0
	1
	0

City
Jakarta
Bogor
Bogor
Bekasi
Bekasi

Jakarta	Bogor
0	1
1	0
1	0
0	0
0	0

- Only need k-1 variable from k category
- k variable will cause multicollinearity

Ordinal Encoding

Education	
SD	
SMP	
SD	
SMA	
S1	
S1	

Education Encode	
	1
	2
	1
	3
	4
	4

Value	Mapping
Other/None	0
SD	1
SMP	2
SMA	3
S1	4
Post-Grad	5

- Work best for ordinal variable
- can mislead if you use this method for nominal variable

Binary Encoding

(CAR
Av	/anza
2	Xenia
2	Xenia
	CR-V
Av	/anza
	Calya
	City
	Calya
	Jazz

Order
Oraci
1
2
2
3
1
4
5
4
6

Bi	nary Num
	001
	010
	010
	011
	001
	100
	101
	100
	110

C1	C2	C3	
0	0	1	
0	1	0	
0	1	0	
0	1	1	
0	0	1	
1	0	0	
1	0	1	
1	0	0	
1	1	0	

Work best for nominal categorical variable that has too many categories

Binary Number

Number	Binary Number	Binary Number(alt.)
1	1	0001
2	10	0010
3	11	0011
4	100	0100
5	101	0101
6	110	0110
7	111	0111
8	1000	1000
9	1001	1001

Follow the largest digit

EXAMPLE:

3:
3 = 11
3 = 2**1 x (1) + 2**0 x (1)

5:
5 = 101
5 = 2**2 x (1) + 2**1 x (0) + 2**0 x (1)

6:
6 = 110
6 = 2**2 x (1) + 2**1 x (1) + 2**0 x (0)

10:
10 = 1010
10 = 2**3 x (1) + 2**2 x (0) + 2**1 x (1) + 2**0 x (0)

100 ?

.fit and .transform Method in preprocessing

Method	training set	test set or validation set		
.fit	V	Х		
.transform	V	V		

```
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

- .fit method only applied to training set to avoid many problem such as information leakage (overly optimistic score in test set or validation set)
- some method simply require it. For example, binary encoding and tf-idf.

Apply Several Preprocessing Method to Modeling at once Part 1a: Ridge

```
data: tips
target: tip
preprocess:
1. one hot encoding: sex, smoker, time
2. binary encoding: day
3. robust scaler: total_bill
4. no treatment: size
Random state 10, data splitting 70:30 model Ridge default
```

Apply Several Preprocessing Method to Modeling at once Part 1b: Tree

data: tips

target: tip

preprocess v1:

1. one hot encoding: sex, smoker, time

2. ordinal encoding : day

3. no treatment : size, total_bill

Random state 10, data splitting 70:30 model

Tree(max depth 3)

data: tips

target : tip

preprocess v2:

1. one hot encoding : sex, smoker

2. ordinal encoding: time, day

3. no treatment : size, total_bill

Random state 10, data splitting 70:30 model

Tree(max depth 3)

Missing Value

What is Missing Value?

Gender	City	Income(IDR)		
Male	Jakarta	-1		
Female	Bogor	5,000,000		
NaN	Unknown	2,500,000		
Male	Bekasi	7,000,000		
Female	Bekasi	12,000,000		
	Missing Value			

Another value that might represent missing value : "?", 999999, "miss", etc

Missing Value

	x1	x2	х3	x4	x5	х6
0	4.0	3.0	10	Α	Χ	М
1	5.0	5.0	11	Α	Υ	М
2	NaN	6.0	12	С	X	NaN
3	6.0	5.0	9	С	X	М
4	7.0	NaN	8	D	NaN	Ν
5	9.0	5.0	11	NaN	Υ	NaN

Simple Technique:

- Drop Column
- Drop Row
- Substitution with mean, median or mode.

Advance Technique for Handling Missing Data

- Regression imputation
- Last observation carried forward (Time Series Data)
- Maximum Likelihood
- Expectation-Maximization (Regression imputation done iteratively until stable)
- Multivariate Feature Imputation

Another Ways Of Handling Missing Value

- Track back where is the data coming from and find the real value
- Just let it be missing. Some method is able to automatically handle missing value

Missing Value Imputation in Python

Pandas:

fillna

Scikit-Learn:

- Mean
- Median
- Mode or new constant
- Multivariate feature imputation (equivalent to Expectation-Maximization)
- KNN-Imputer

Simple Imputer: Mean or Median

Simple Imputer : Mode

Simple Imputer : Constant

Iterative Imputer

work for multiple variable at once

In Sklearn, work only for numerical

How does it work:

- Predict missing value using regression
- Update the predicted missing value using regression until certain changes in from previous iteration

KNN Imputer

In Sklearn, work only for numerical

work for multivariable at once

How does it work:

 Predict missing value using KNN algorithm

Outlier

Outlier

Outlier is an observation point that is distant from other observations An outlier may indicate an experimental error, or it may be due to variability in the measurement

Outlier type:

Global Outlier

Contextual Outlier

Collective Outlier

Global Outlier

Contextual Outlier

Any data points fall far outside the data points within the same context.

- When we talked about people who has low height, it is rare if those people has heavy weight
 - it is rare that people with height around 155 157 cm weighted above 66
 - but for people around 175 177 it is common
- Another example, For American it is common thing if the height fall around 180 but not for Asian

Collective Outlier

Any data point deviate significantly from the entire dataset but neither considered as either global outlier nor contextual outlier.

- The individual data instances in a collective outlier may not be outliers by themselves, but their occurrence together as a collection is anomalous.
- Only happened in data sets where data instances are related
- Often happened in sequence data, graph data, spatial data.
- Collective outlier can also appeared contextually
- Example : Human electro diagram output

Collective Outlier

Outlier in Univariate Variable

A method can be used to detect outlier:

- 1. The data value > Q3 + 1.5 IQR, or
- 2. The data value < Q1 1.5 IQR

Outlier in Linear Regression

- Do not broke the pattern

- Broke the pattern
- also known as influential observation

Outlier In Linear Regression

- 1. Outlier slightly influence the line
- 2. Outlier do not much influence the line
- 3. Outlier slightly influence the line
- 4. Line badly fitted because outlier slightly influence the line and each of the cluster data points may have interesting explanation
- 5. Actually there is no certain pattern but the line appeared to be linearly positive because of the outlier
- 6. Outlier do not much influence the line

Outlier Cases

outlier detection aims to find patterns in data that do not conform to expected behavior. It is extensively used in many application domains such as

- Fraud detection for credit cards,
- Insurance,
- Healthcare
- Telecom fraud detection

Binning

What is Binning?

Transform numerical variable into interval or categorical variable.

Tip Binning	Name
0 <= Tip <=1	Very Low
1 < Tip <= 2.5	Low
2.5 < Tip <= 4	Medium
4 < Tip <= 5.5	High
Tip > 5.5	Very High

Tip (\$)		
	1.3	
	1.89	
	4.5	
	2.4	
	4.1	
	3.8	
	4.9	
	13	

Binning Method

0	16.99	(16.222, 19.818]	(12.618, 22.166]
1	10.34	(3.069, 12.636]	(3.022, 12.618]
2	21.01	(19.818, 26.098]	(12.618, 22.166]
3	23.68	(19.818, 26.098]	(22.166, 31.714]
4	24.59	(19.818, 26.098]	(22.166, 31.714]
239	29.03	(26.098, 50.81]	(22.166, 31.714]

(26.098, 50.81] (19.818, 26.098]

(16.222, 19.818]

(16.222, 19.818]

(22.166, 31.714]

(22.166, 31.714]

(12.618, 22.166]

(12.618, 22.166]

total_bill total bill eqfreq total bill eqintv

244 rows × 3 columns

27.18

22.67

17.82

18.78

240

241

242

243

Equal Frequencies

	freq
total bill eqfreq	
(3.069, 12.636]	49.0
(12.636, 16.222]	49.0
(16.222, 19.818]	48.0
(19.818, 26.098]	49.0
(26.098, 50.81]	49.0

Equal Interval

	freq
total bill eqintv	
(3.022, 12.618]	49.0
(12.618, 22.166]	119.0
(22.166, 31.714]	50.0
(31.714, 41.262]	19.0
(41.262, 50.81]	7.0

Generating New Features: Polynomial

What is Polynomial Features?

х		х	X**2
3		3	9
4		4	16
6		6	36
7		7	49
6		6	36

X**2	X**3	
9	27	
16	64	
36	216	OR
49	343	
36	216	
	9 16 36 49	9 27 16 64 36 216 49 343

х	X**2	 X**k
3	9	 3**k
4	16	 4**k
6	36	 6**k
7	49	 7**k
6	36	 6**k

Second Order Third Order k-th Order

 model performance will increase significantly If the right order chosen

Or

- too low: underfitting

- too high: overfitting

Polynomial Features for several variables

X1	Х2
3	10
4	13
6	12
7	11
6	10

X1	X2	X1**2	X2**2
3	10	9	100
4	13	16	168
6	12	36	144
7	11	49	121
6	10	36	100

OR

X1	X2	X1**2	X2**2	X1**3	X2**3
3	10	9	100	27	1000
4	13	16	168	64	2197
6	12	36	144	216	1728
7	11	49	121	343	1331
6	10	36	100	216	1000

Apply Several Preprocessing Method to Modeling at once Part 2: Decision Tree

data: adult.csv

target: income

preprocess:

1. missing value : simple imputer with constant

2. one hot encoding: relationship, race, sex

3. binary encoding: workclass, marital status, occupation, native country

4. ordinal encoding: education (already encoded)

5. no treatment: numerical

6. out:fnlwgt

Random state 10, data splitting 70:30 model Tree(max depth 5, criterion entropy)

Feature Selection

What is Feature Selection?

- Feature selection is a method to choose feature that actually have significant impact or important in the modeling
- Feature selection can be used as generalization method because too many feature may cause overfitting too little feature may cause undefitting
- Fewer feature can make interpretation easier (but beware of underfitting)

X1	X2	ХЗ	Х4	Х5	Х6	Х7	Y
3	10	11	32	0.5	100	54	12
4	13	12	30	0.5	99	56	10
6	12	15	33	0.1	87	57	13
6	10	12	12	1.9	81	78	16

X1	Х4	Х6	Y
3	32	100	12
4	30	99	10
6	33	87	13
6	12	81	16

Feature Selection Method

- 1. Univariate Statistics Feature Selection
- 2. Model Based Feature Selection
- 3. Iterative Feature Selection

Univariate Statistics Feature Selection

- Chose feature that has a statistically significant (based on F-Statistics or Log Likelihood) relationship with the target
 - SelectKBest: selects a fixed number k of features
 - SelectPercentile : selects a fixed percentage of features
- Do not need to build any model
 - pros : fast to compute
 - cons: the result completely independent of the model that you might use (potentially less optimal)
- Only consider feature individually
 - cons: some feature might be useful after combined with another feature (can't capture interaction)

Univariate Statistics Feature Selection

Model Based Feature Selection

- Judge the importance of each feature using a supervised machine learning (a single model)
 - Decision Tree and Tree based models : feature importances
 - Linear model: coefficient's abs. value can be seen as feature importance (feature must have same scale or standardized feature)
- Need to build the model first
 - pros : the result depend on the model that you used (potentially more optimal)
 - cons: might make whole modeling process take longer time
- Selection consider all feature at once
 - pros: can capture interaction

Model Based Feature Selection

Iterative Feature Selection

- Building a series of model with varying number of features
 - backward: start with using all features and keep removing it one by one until some criterion is reached (RFE(Recursive Feature Elimination))
 - forward: start with no feature and keep adding it one by one until some criterion is reached
- Need to build many model
 - pros: tried many possible combination and often outperform univariate and model based
 - cons: take significantly longer time than univariate and model based one
- Selection consider all feature at once
 - pros : can capture interaction

Iterative Feature Selection (backward)

Apply Several Preprocessing Method to Modeling at once Part 3: Logistic Regression

data: adult.csv target: income

preprocess:

missing value: simple imputer with constant

one hot encoding: relationship, race, sex

binary encoding: workclass, marital status, occupation, native country

ordinal encoding: education (already encoded)

no treatment: numerical

out : fnlwgt

Random state 10, data splitting 70:30

feature selection: select percentile

model: logistic regression(max iter 1000, solver liblinear, C 10)

References

References

https://medium.com/@danberdov/types-of-missing-data-902120fa4248'

https://www.real-statistics.com/handling-missing-data/types-of-missing-data/

https://www.anblicks.com/resources/insights-blogs/an-introduction-to-outliers/#:~:text=Outliers%20can%20be%20classified%20into,Intrusion%20detection%20in%20computer%20networks.&t ext=outlier%20classes.

https://stats.libretexts.org/Bookshelves/Introductory Statistics/Book%3A OpenIntro Statistics (Diez et al)./07%3A Introduction to Linear Regression/7.04%3A Types of Outliers in Linear Regression

https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02

http://contrib.scikit-learn.org/category_encoders/index.html

https://www.researchgate.net/publication/267964435 Outlier Detection Applications And Techniques

https://www.the-modeling-agency.com/crisp-dm.pdf

https://scikit-learn.org/stable/

https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114