Linear Equations

Geometric Algorithms
Lecture 1

Outline

- Sive a few motivating examples for the study of linear systems
- >> Formally define linear systems
- » Solve some systems of linear equations

Keywords

Systems of linear equations

Solutions

Coefficient matrix

Augmented matrix

Elimination and Back-substitution

Replacement, interchange, scaling

Row Equivalence

(In)consistency

Motivation

Lines (Slope-Intercept Form)

$$y = mx + b$$
slope y-intercept

Given a value of x, I can compute a value of y

Lines (Graph)

Lines (General Form)

$$ax + by = c$$

$$x-intercept: \frac{c}{a}$$

$$y-intercept: \frac{c}{b}$$

What values of x and y make the equality hold?

Lines (Graph)

$$\{(x,y): (-2)x + y = 6\}$$

Lines

slope-int → general

$$(-m)x + y = b$$

 $general \rightarrow slope-int$

$$y = \left(\frac{-a}{b}\right)x + \frac{c}{b}$$

Line Intersection

$$y = m_1 x + b_1$$
$$y = m_2 x + b_2$$

Question. Given two lines, where do they intersect?

Line Intersection (Graph)

Line Intersection (Alternative)

$$a_1x + b_1y = c_1$$

 $a_2x + b_2y = c_2$

Question. Given two (general form) lines, what values of x and y satisfy **both** equations?

Example: Balancing Chemical Equations

$$\begin{array}{c} C_6H_{12}O_6 \rightarrow C_2H_5OH + CO_2 \\ \text{Glucose} \end{array}$$

We want to know how much ethanol is produced by fermentation (for science)

The **number of atoms** has to be *preserved* on each side of the equation

Balancing Chemical Equations

$$\alpha C_6 H_{12} O_6 \rightarrow \beta C_2 H_5 O H + \gamma C O_2$$
 Glucose Ethanol

$$6\alpha = 2\beta + \gamma \qquad (C)$$

$$12\alpha = 6\beta \qquad (H)$$

$$6\alpha = \beta + 2\gamma \qquad (O)$$

Balancing Chemical Equations

$$\alpha C_6 H_{12} O_6 \rightarrow \beta C_2 H_5 O H + \gamma C O_2$$
Glucose Ethanol

$$6\alpha - 2\beta - \gamma = 0 \qquad (C)$$

$$12\alpha - 6\beta = 0 \qquad (H)$$

$$6\alpha - \beta - 2\gamma = 0 \qquad (O)$$

Formal Definitions

Linear Equations

Definition. A *linear equation* in variables $x_1, x_2, ..., x_n$ is an equation which can be written in the form

coefficients unknowns
$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where $a_1, a_2, ..., a_n, b$ are real numbers ($\mathbb R$)

Linear Equations (Point sets)

Linear equations describe point sets:

$$\{(s_1, s_2, ..., s_n) \in \mathbb{R}^n : a_1 s_1 + a_2 s_2 + ... + a_n s_n = b\}$$

The collections of numbers such that the equation holds

Linear Equations (Geometrically)

If a 2D linear equation is a *line* then a 3D linear equation is...

Not a line...

Linear Equations (Geometrically)

If a 2D linear equation is a *line* then a 3D linear equation is...

A plane(!)

$$0x + 0y + z = 5$$

This equation describes the solution set

$$\{(x, y, z) : z = 5\}$$

so x and y can be whatever we want

$$-x + 0y + z = 5$$

This equation describes the point set

$$\{(x, y, z) : z = x + 5\}$$

so y can be whatever we want

$$-x + -y + z = 5$$

This equation describes the solution set

$$\{(x, y, z) : z = x + y + 5\}$$

so all variables depend on each other

XYZ-intercepts

$$ax + by + cz = d$$

Just like with lines, we can define

x-intercept:
$$\frac{d}{a}$$
 y-intercept: $\frac{d}{b}$ z-intercept: $\frac{d}{c}$

These three points define the plane

Question

I just lied

Give an example of a linear equation that defines a plane with an x-intercept and y-intercept but no z-intercept

Answer

Hyperplanes

After three dimensions, we can't visualize planes

The point set of a linear equation is called a hyperplane

<u>Theme of the course:</u> Hyperplanes "behave" like 3D planes in many respects

Systems of Linear Equations

Definition. A *system of linear equations* is just a collection of linear equations *over the same variables*

Definition. A *solution* to a system is a point that satisfies all its equations *simultaneously*

linear system:

$$x + 2y = 1$$

$$-x - y - z = -1$$

$$2x + 6y - z = 1$$

solution:
$$(3, -1, -1)$$

System of Linear equations (General-form)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Does a system have a solution?

How many solutions are there?

What are its solutions?

Consistency

Definition. A system of linear equations is *consistent* if it has a solution

It is inconsistent if it has <u>no</u> solutions

inconsistent

consistent

Example

Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

These are the **only** options

$$\begin{bmatrix} 2 & 3 & -8 \\ 0 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix} \approx \begin{aligned} 2x + 3y &= -8 \\ y &= 2 \\ 2y &= 0 \end{aligned}$$

Writing down the unknowns is *tedious* (and more difficult to input into a computer)

We'll write down linear systems as **matrices**, which are just 2D grids of numbers with *fixed* width and height

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

augmented matrix

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

coefficient matrix

$$6\alpha - 2\beta - \gamma = 0 \qquad (C)$$

$$12\alpha - 6\beta = 0 \qquad (H)$$

$$6\alpha - \beta - 2\gamma = 0 \qquad (O)$$

$$\begin{bmatrix} 6 & -2 & -1 & 0 \\ 12 & -6 & 0 & 0 \\ 6 & -1 & -2 & 0 \end{bmatrix}$$

Solving Linear Systems

$$2x + 3y = -6$$

 $4x - 5y = 10$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$2x = (-3)y - 6$$
$$4x - 5y = 10$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)y - 3$$
$$4x - 5y = 10$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)y - 3$$
$$4((-3/2)y - 3) - 5y = 10$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)y - 3$$
$$-6y - 12 - 5y = 10$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)y - 3$$
$$-11y = 22$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)y - 3$$
$$y = -2$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)(-2) - 3$$
$$y = -2$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = 3 - 3$$

$$y = -2$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = 0$$

$$y = -2$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

another perspective...

$$2x + 3y = -6$$

 $4x - 5y = 10$

The Approach

Eliminate x from the EQ2 and solve for yEliminate y from EQ1 and solve for x

Let's work through it

$$2x + 3y = -6$$
$$4x - 5y = 10$$

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1

Elimination

Back-Substitution

$$x - 2y + z = 5$$

$$2y - 8z = -4$$

$$6(5 + 2y - z) + 5y + 9z = -4$$

```
Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1
```

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$30 + 12y - 6z + 5y + 9z = -4$$

```
Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1
```

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$17y + 3z = -34$$

```
Eliminate x from the EQ2 and EQ3
Eliminate y from EQ3
Eliminate z from EQ2 and EQ1
Eliminate y from EQ1
```

$$x - 2y + z = 5$$

$$2y - 8z = -4$$

$$17(8z - 4)/2 + 3z = -34$$

The Approach

```
Eliminate x from the EQ2 and EQ3
```

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$17(4z - 2) - 3z = -34$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$68z - 34 - 3z = 26$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$

 $2y - 8z = -4$
 $71z = 0$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + 0 = 5$$

 $2y - 8(0) = -4$
 $z = 0$

```
Eliminate x from the EQ2 and EQ3
Eliminate y from EQ3
Eliminate z from EQ2 and EQ1
Eliminate y from EQ1
```

$$x - 2y = 5$$

$$2y = -4$$

$$z = 0$$

```
Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1
```

$$x - 2(-2) = 5$$

$$y = -2$$

$$z = 0$$

```
Eliminate x from the EQ2 and EQ3
Eliminate y from EQ3
Eliminate z from EQ2 and EQ1
Eliminate y from EQ1
```

$$x = 1$$

$$y = -2$$

$$z = 0$$

```
Eliminate x from the EQ2 and EQ3
Eliminate y from EQ3
Eliminate z from EQ2 and EQ1
Eliminate y from EQ1
```

$$x = 1$$

$$y = -2$$

$$z = 0$$

The Approach

```
Eliminate x from the EQ2 and EQ3
Eliminate y from EQ3
Eliminate z from EQ2 and EQ1
Eliminate y from EQ1
```

Elimination

Back-Substitution

Verifying the Solution

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

$$x = 1$$

$$y = -2$$

$$z = 0$$

Solving Systems as Matrices

How does this look with matrices?

Observation. Each intermediate step of elimination and back-substitution gives us a new linear system with the same solutions

Can we represent these intermediate steps as operations on matrices?

Let's look back at this...

$$2x + 3y = -6$$
$$4x - 5y = 10$$

Elementary Row Operations

scaling multiply a row by a number

replacement add a multiple of one row to

another

interchange switch two rows

These operations don't change the solutions

Scaling Example

$$2x + 3y = -6$$
$$4x - 5y = 10$$

$$R_1 \leftarrow 2R_1$$

$$4x + 6y = -12$$
$$4x - 5y = 10$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 6 & -12 \\ 4 & -5 & 10 \end{bmatrix}$$

Replacement Example

$$2x + 3y = -6$$
$$4x - 5y = 10$$

$$R_2 \leftarrow R_2 + R_1$$

$$2x + 3y = -6$$
$$6x - 2y = 4$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 6 & -2 & 4 \end{bmatrix}$$

Interchange Example

$$2x + 3y = -6$$
$$4x - 5y = 10$$

$$R_1 \leftrightarrow R_2$$

$$4x - 5y = 10$$
$$2x + 3y = -6$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -5 & 10 \\ 2 & 3 & -6 \end{bmatrix}$$

Example: Row Reductions

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

$$R_2 \leftarrow R_2 - 2R_1$$

$$R_2 \leftarrow R_2/(-11)$$

$$R_1 \leftarrow R_1 - 3R_2$$

$$R_1 \leftarrow R_1/2$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 0 & 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$

Example: Row Reductions

$$R_2 \leftarrow R_2 - 2R_1$$
 elimination $R_2 \leftarrow R_2/(-11)$ $R_1 \leftarrow R_1 - 3R_2$ $R_1 \leftarrow R_1/2$ substitution

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

Row Equivalence

Definition. Two matrices are *row equivalent* if one can be transformed into the other by a sequence of row operations

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix} \qquad \qquad \qquad \qquad \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$

We can compute solutions by sequence of row operations

Question

How do we know when we're done? What is the "target" matrix?

We'll get to that next time...

Summary

Linear equations define <u>hyperplanes</u>

Systems of linear equations may or may not have <u>solutions</u>

Linear systems can be represented as matrices, which makes them more convenient to solve