

Virtual Robot Experimentation Platform

V-REP

www.coppeliarobotics.com

V-REP Overview

What is it? General purpose robot simulator with integrated development environment

What can it do? Sensors, mechanisms, robots and whole systems can be modelled and simulated in various ways >> Play overview video

- **Typical applications?** Fast prototyping and verification
 - Fast algorithm development
 - Robotics related education
 - Remote monitoring
 - Hardware control
 - Simulation of factory automation systems
 - Safety monitoring
 - Product presentation
 - etc.

3 Central Elements

Scene Objects

Scene Objects

- Basic building blocks
- 14 different types
- Can be combined with each other
- Can form complex systems together with calculation modules and control mechanisms

Scene Objects

Proximity Sensors & Graphs

Proximity Sensors

- More than simple ray-type detection
- Configurable detection volume
- Fast minimum distance calculation within volume
- Much more realistic simulation than with ray-type sensors

Graphs

- Time graphs
- X/Y graphs
- 3D curves
- Can be exported

Vision Sensors

Vision Sensors

- Integrated image processing
- Extendable via plugin mechanism
- Ray-traced rendering also available

Paths and Mills

Paths

- 6 dim. trajectory definition
- Path can be shaped

 (i.e. automatically generate extruded meshes)

Mills

- Customizable cutting volume
- Cuts shapes (i.e. meshes)

Cameras, Lights and Mirrors

Cameras

- Perspective / orthographic projection
- Tracking & automatic view-fitting function

Spotlight / directional / omnidirectional

Mirrors

Mirror or scene / object clipping function

Joints, Shapes, Force/Torque Sensors, and Dummies

Shapes

- Random mesh, convex mesh, primitive mesh or heightfield mesh
- Can be grouped/ungrouped
- Optimized for fast calculations

Force/Torque Sensors

- Measures force and torque
- Can conditionally break apart

Joints

- Revolute-type
- Prismatic-type
- Screw-type
- Spherical-type

Auxiliary refenrence frame & helper object

Octrees and Point Clouds

Octrees

- Spatial partitioning, made up by a tree data structure for fast data access
- Voxel-based, can be modified during simulation
- Can be used as a simplified representation of meshes, as an occupancy grid/space, etc.
- Can be used for fast collision detection, minimum distance calculation, proximity sensor detection

Point Clouds

- Point container
- Octree-based, for fast data access
- Can be used for fast collision detection, minimum distance calculation, proximity sensor detection

3 Central Elements

Calculation modules

- 5 basic algorithms
- Can be combined with each other
- Can form complex systems together with scene objects and control mechanisms

Calculation Modules

Calculation Modules

Physics / Dynamics

Minimum distance calculation

Path / motion planning

Forward / Inverse kinematics

Kinematics and Distance Calculation

Inverse / forward Kinematics

- Any mechanism: redundant, branched, closed, etc.
- Damped / undamped resolution
- Weighted resolution
- Conditional resolution
- Obstacle avoidance

Minimum Distance Calculation

- Any mesh (also open / concave / polygon soups)
- Any octree
- Any point cloud
- Any individual point

Dynamics

Dynamics / Physics

• 4 physics engines: Bullet Physics

Open Dynamics Engine

Vortex Dynamics

Newton Dynamics

- •Simple mouse click to switch
- Dynamic particles to simulate air or water jets
- Can work hand-in-hand with kinematics module

Collision Detection and Path Planning

Collision Detection

- Any mesh (also open / concave / polygon soups)
- Any octree
- Any point cloud
- Any individual point

Path / Motion Planning

Supported via an OMPL plugin for V-REP

3 Central Elements

Control Mechanisms

Control Mechanisms

- 6 methods or interfaces
- >7 languages
- 6 methods can be used at the same time, and even work hand-in-hand

Control Mechanisms

Local and Remote Interfaces

Local Interfaces

Plugins

Plugins

- > 500 API functions. Extendable
- C/C++ interface
- Can customize the simulator
- Can register new embedded script commands

Embedded Scripts

- > 500 API functions. Extendable
- Can be attached to any scene object
- Many Lua extension libraries available
- Threaded or non-threaded. Threads can be synchronized easily
- Tilleaded of hori-tilleaded. Tilleads can be synchronized easily
- Various types: main script, child scripts, callback scripts (e.g. custom joint controllers)

Lua interface

Lightweight and easy to program

Extremely portable solution

Add-ons

- > 400 API functions. Extendable
- Lua interface
- Can customize the simulator
- Lightweight and easy to set-up
- Many Lua extension libraries available

Remote Interfaces

Remote API clients

Remote API

- > 100 API functions. Extendable
- C/C++, Python, Java, Matlab, Octave, Lua & Urbi interfaces
- Data streaming and partitioning modes
- Lightweight and easy to use

ROS nodes

ROS Interfaces

- Plugin-based
- Supports all standard messages, extendable
- Naturally duplicates the ROS C++ API

Embedded Script Advantages 1/6

Controller Integration

Plugins

Embedded scripts

2 items

1 item

Embedded Script Advantages 2/6

Scalability

Plugins

Simulation model 1

Simulation model 2

Plugin

Simulation model 3

Plugin has to manage instances

Embedded scripts

Simulation model 1

Simulation model 2

Simulation model 3

Scalability is inherent

Embedded Script Advantages 3/6

Version Conflicts

Plugins

Embedded scripts

High chances for conflicts

Simulation model 1 (version 1)

Simulation model 2 (version 1)

Simulation model 1 (version 2)

No chances for conflicts

Embedded Script Advantages 4/6

Embedded Script Advantages 5/6

Other Considerations

Plugins

Embedded scripts

Creation, compilation and installation difficulty:

High

Creation, compilation and installation difficulty:

Low

Model modification difficulty:

High

Model modification difficulty:

Low

Maintenance over the years:

OS-dependent Compiler-dependent Framework-dependant Maintenance over the years:

OS-independent Compiler-independent Framework-independent

Embedded Script Advantages 6/6

Synchronization with Simulation Loop

Plugins | Embedded scripts

Non-threaded

Control routine called at each simulation pass

Easy

Threaded

Complex synchronization mechanism required

Difficult

Non-threaded

Control routine called at each simulation pass

Easy

Threaded

Control routine thread can behave as a coroutine

e.g. simSwitchThread()
simSetThreadSwitchTiming(delay)
simSetThreadIsFree(isFree)
simSetThreadResumeLocation(location,order)

Easy

Embedded Scripts – Simple Example

Remote API Advantages 1/2

Runs on any hardware, lightweight, several languages

Remote API Advantages 2/2

• simx opmode buffer

• etc.

Easy to use, almost like a regular API

Remote API function

• simx return local error flag

• etc.

Regular arguments

Collaborative Control Mechanisms

Example of Collaborative Mechanism 1 / 3


```
Remotely call a script function

Remotely call a script function

API client

float coords[3]={0.1f,0.2f,0.3f};

int retIntCnt;

int* retInts;

simxCallScriptFunction(...,"createDummy_function",...,3,coords,1,"MyDummyName",

...,&retIntCnt,&retInts,...,simx_opmode_blocking);

printf("Dummy handle: %i\n",retInts[0]);
```


Creates a dummy, renames it and positions it according to the received parameters

```
createDummy_function=function(inInts,inFloats,inStrings,inBuffer)
   -- Create a dummy object with specific name and coordinates
   if #inStrings>=1 and #inFloats>=3 then
        local dummyHandle=simCreateDummy(0.05)
        local position={inInts[2],inInts[3],inInts[4]}
        simSetObjectName(dummyHandle,inStrings[1])
        simSetObjectPosition(dummyHandle,-1,inFloats)
        return {dummyHandle},{},{},{},'' -- return the handle of the dummy
   end
end
```

Example of Collaborative Mechanism 2 / 3

Registers and handles the custom script API function "simExt doSomeMagic"

Calls the custom API function "simExt doSomeMagic"

Embedded script

returnData1, returnData2=simExt doSomeMagic(arg1, arg2)

Example of Collaborative Mechanism 3 / 3


```
Left motor speed subscriber callback
        function LVel cb (msq)
from ROS
            simSetJointTargetVelocity(leftMotor, msg.data)
        end
                                                                 Subscriber
                                                                 callbacks
        -- Right motor speed subscriber callback
        function RVel cb (msq)
            simSetJointTargetVelocity(rightMotor, msg.data)
from ROS
        end
        -- Initialization
                                                                                         Advertise publisher
        if (sim call type==sim childscriptcall initialization) then
                                                                                         and subscribers
            pub=simExtRosInterface advertise('/sensorData','std msqs/Bool')
            subL=simExtRosInterface subscribe('/leftVel','std msgs/Float32','LVel cb')
            subR=simExtRosInterface subscribe('/rightVel','std msgs/Float32','RVel cb')
        end
           Actuation phase, once per simulation step
        if (sim call type==sim childscriptcall actuation) then
            local result=simReadProximitySensor(noseSensor)
            local detectionTrigger={}
            detectionTrigger['data']=result>0
            simExtRosInterface publish(pub,detectionTrigger)
                                                                                             to ROS
            simExtRosInterface sendTransform(...)
        end
```

Publish sensor data and send transform

Control Mechanisms – Feature Overview

	Embedded script	Add-on	Plugin	Remote API client	ROS node	Custom client/server
Control entity is external (i.e. can be located on a robot, different machine, etc.)	No	No	No	Yes	Yes	Yes
Difficulty to implement	Easiest	Easiest	Relatively easy	Easy	Relatively difficult	Relatively difficult
Supported programming language	Lua	Lua	C/C++	C/C++, Python, Java, Matlab, Octave, Lua, Urbi	Any 1	Any
Simulator functionality access (available API functions)	500+ functions, extendable	500+ functions, extendable	500+ functions	>100 functions, extendable	Depends on the selected ROS interface	custom implementation
The control entity can control the simulation and simulation objects (models, robots, etc.)	Yes	Yes	Yes	Yes	Yes	Yes
The control entity can start, stop, pause and step a simulation	Start, stop, pause	Start, stop, pause	Start, stop, pause, step	Start, stop, pause, step	Start, stop, pause, step	Start, stop, pause, step
The control entity can customize the simulator	Yes	Yes	Yes	No	No	No
Code execution speed	Relativ. slow ² (fast with JiT compiler)	Relativ. slow ² (fast with JiT compiler)	Fast	Depends on programming language	Depends on programming language	Depends on programming language
Communication lag	None	None	None	Yes, reduced ³	Yes, reduced	Yes, can be reduced
Control entity is fully contained in a scene or model, and is highly portable	Yes	No	No	No	No	No
API mechanism	Regular API	Regular API	Regular API	Remote API	ROS	Custom communication + regular API
API can be extended	Yes, with custom Lua functions	Yes, with custom Lua functions	Yes, V-REP is open source	Yes, Remote API is open source	Yes, ROS plugin is open source	N/A
Control entity relies on	V-REP	V-REP	V-REP	Sockets + Remote API plugin	Sockets + ROS plugin + ROS framework	Custom communication + script/plugin
Synchronous operation ⁴	Yes, inherent. No delays	Yes, inherent. No delays	Yes, inherent. No delays	Yes. Slower due to comm. Lag	Yes. Slower due to comm. Lag	Yes. Slower due to comm. Lag
Asynchronous operation ⁴	Yes, via threaded scripts	No	No (threads available, but API access forbidden)	Yes, default operation mode	Yes, default operation mode	Yes

¹⁾ Depends on what ROS currently supports

The execution of API functions is however very fast. Additionally, there is an optional JIT (Just in Time) compiler option that can be activated

³⁾ Lag reduced via streaming and data partitioning modes

⁴⁾ Synchronous in the sense that each simulation pass runs synchronously with the control entity, i.e. simulation step by step

Architecture Overview

Other Feature: Custom User Interfaces

Custom User Interfaces

- OpenGl-based or
- Qt-based

Other Feature: Mesh Edit Modes

Mesh Edit Modes

- Triangle, vertex or edge edit mode
- Modify meshes (adjust vertices, add/remove triangles)
- Semi-automatic primitive shape extraction function
- Triangle, vertex or edge extraction
- Mesh decomposition
- Convex decomposition
- Convex hull extraction
- Mesh decimation

More Features

- Headless mode support (i.e. via command line)
- Import formats: OBJ, STL, 3DS, DXF, COLLADA & URDF
- Integrated Reflexxes motion library: www.reflexxes.com
- Model browser and scene hierarchy
- Multilevel undo / redo
- Movie recorder
- Simulation of wireless communication
- Simulation of paint or welding seams
- Static & dynamic textures
- Exhaustive documentation
- Etc.

V-REP Overview

State-of-the-art distributed control architecture

- Embedded scripts
- Remote API
- 2 ROS interfaces

Extremely fine-grained and large amount of features

- >500 different API function
- 14 types of simulation objects (force/torque sensor, joint, camera, etc.)
- Integrated physics, kinematics, collision/distance calculation & path planning

V-REP sets on several horses

- Interfaces (plugins, embedded scripts, add-ons, Remote API, ROS interfaces)
- Languages (C/C++, Java, Python, Lua, Matlab, Octave, Lua, Urbi)
- Physics engines (Bullet, ODE, Vortex, Newton)
- Platforms (Windows, MacOS, Linux)

V-REP Flavours

V-REP PRO EDU

- For hobbyists, students, teachers, professors, schools and universities
- Free
- No limitations (i.e. fully functional)
- No registration
- Not for commercial applications
- Not for companies, research institutions, non-profit organizations, etc.

- **V-REP PRO** For companies, research institutions, non-profit organizations, etc.
 - Not free
 - No limitations (i.e. fully functional)
 - For commercial applications

V-REP PLAYER • For everyone

- Free, can be distributed
- Limited editing capability, saving is disabled
- For any application

V-REP Source Code Licensing

contact Coppelia Robotics for details

PLUGIN educational license

(where 'PLUGIN' may refer to 'DYNAMICS PLUGIN' or 'MESH CALCULATION PLUGIN'):

The PLUGIN educational license applies ONLY to EDUCATIONAL ENTITIES composed by following people and institutions:

- 1. Hobbyists, students, teachers and professors
- 2. Schools and universities

EDUCATIONAL ENTITIES do NOT include companies, research institutions, non-profit organisations, foundations, etc.

An EDUCATIONAL ENTITY may use, modify, compile and distribute the modified/unmodified PLUGIN under following conditions:

- 1. Distribution should be free of charge.
- 2. Distribution should be to EDUCATIONAL ENTITIES only.
- 3. Usage should be non-commercial.
- 4. Altered source versions must be plainly marked as such and distributed along with any compiled code.
- 5. When using the PLUGIN in conjunction with V-REP, the "EDU" watermark in the V-REP scene view should not be removed.
- 6. The origin of the PLUGIN must not be misrepresented. you must not claim that you wrote the original software.

The PLUGIN is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. In no event will the original author be held liable for any damages arising from the use of this software.

The PLUGIN is copyrighted by Dr. Marc Andreas Freese (the original author). All rights reserved.

Resources

V-REP website: <u>www.coppeliarobotics.com</u>

V-REP user manual: www.coppeliarobotics.com/helpFiles/

V-REP forum: www.forum.coppeliarobotics.com

V-REP YouTube channel: <u>VirtualRobotPlatform</u>

V-REP Twitter account: coppeliaRobotic

V-REP contact: info_at_coppeliarobotics_dot_com