IAM COMPACT Study 7

Dietary shift to lower animal protein consumption

September 12, 2023

Outline

Motivation and the Model

System-wide effects

Future work and doubts

Motivation and the Model

Motivation

Literature has analyzed how a transition to healthy diets can benefit health, biodiversity, land use, and climate (Lancet-EAT)

But...

- * it is unclear how this transition will occur
- ★ the system-wide effects that could derive from this transition

We'll study the Flexitarian Vegetarian or Vegan (FVV) diet, ie., a diet encompassed in any of these categories.

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:

 - SDG 15: Land use

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - - Macronutrients consumption
 - SDG 3: Health
 - > SDG 6: Water management
 - > SDG 13: Emissions > SDG 15: Land use

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - SDG 2: Alimentation
 □
 - - ▶ Premature deaths due to AP
 - > SDG 6: Water management
 - SDG 13: Emissions
 - SDG 15: Land use

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - SDG 2: Alimentation
 - SDG 3: Health
 - - Water consumption (total)
 - ▶ Water consumption by crop and livestock
 - ▶ Irrigated and Rainfed water demand
 - > SDG 13: Emissions
 - SDG 15: Land use

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - SDG 2: Alimentation
 - SDG 3: Health
 Health
 SDG 3: Hea
 - ▷ SDG 6: Water management
 - SDG 13: Emissions
 - GHG emissions
 - ▷ CH₄ agricultural emissions
 - ▶ N₂O agricultural emissions
 - SDG 15: Land use

- 1. Create a model to deal with the uncertainty of the scenario projections
- 2. Study the following effects:
 - ▷ SDG 2: Alimentation
 - SDG 3: Health
 SDG 3: Health

 - ▷ SDG 15: Land use
 - ▶ Area of forest, pasture, cropland, and other land
 - Re-forestation
 - Cropland management (area and fertilizer demand)
 - Crop loss due to AP
 - Carbon stock

The model

Assumptions

- 1. Each person decides to become FVV independently but is influenced by 3 factors:
 - Social pressure weight
 - ▶ Percentage of the population following the FVV diet by 2100
 - ▶ Peak year when the majority of the population will shift
- 2. Once a person decides to follow the FVV diet, will stick to this decision for the rest of the century

The model

Binomial distribution with probability p

Where the probability p is influenced by

- ⋆ Social pressure weight
- ★ Percentage of the population following the FVV diet by 2100
- * Peak year when the majority of the population will shift

The model

Binomial distribution with probability p

Where the probability p is influenced by

- ★ Social pressure weight ★ Exogenous
- ★ Percentage of the population following the FVV diet by 2100
- * Peak year/when the majority of the population will shift

BC3

Uncertainty considerations

Each factor value is randomly chosen from a Normal Distribution $\mathit{N}(\mu,\sigma)$

BC3

Uncertainty considerations

Each factor value is randomly chosen from a Normal Distribution $N(\mu, \sigma)$

Recap

Fix parameters of final FVV population %

Fix parameters of peak year when more FVV shifts Compute *p* annually following the chosen parameters

Create the FVV distribution

and do this regionally

BC3

Scenario Behavior change Reference

System-wide effects

Avoided premature deaths

Annual avoided deaths in 2030

Water consumption

Annual water consumption abs difference in 2030

2025

AM COMPACT Study7: FVV dietary shift

50 2075 September 12, 2023 2100

Water consumption by crop and livestock

Irrigated and Rainfed water demand

Annual World IRR and RFD abs difference (beh.change - ref)

Study7: FVV dietary shift

GHG emissions

Abs GHG avoided emissions in 2030

CH4 agricultural emissions

Annual World CH₄ emissions prices

N2O agricultural emissions

Annual World N₂O emissions prices

Scenario = Behavior change = Reference

Land use

Re-forestation

Re-forestation (abs difference) in 2030

Cropland management

Cropland management

Crop loss due to AP

Doubts

- ⋆ Does it make sense the cropland area dynamic?
- ⋆ Does it make sense nutritionally speaking the FVV diet? (Reducing animal protein and increasing nuts and legumes)

Future work

- * Study nutritional values and other system-wide impacts.
- * Create multiple scenarios to see which one has better system-wide effects. Maybe considering different regional levels of FVV?
- Do a similar study for trade (with VWT) and transport. Maybe simplified?

