Computer Graphics Lucien Zürcher

Computer Graphics

November 20, 2018

Contents

1	Cur	ves	2
	1.1	Kurvie in der Ebene	2
	1.2	Kurve im Raum	2
	1.3	Spirale entlang des Zylinders	2
	1.4	Methode unbestimmte Koeffizienten	2
	1.5	Lagrange Methode	2
	1.6	Lineare Bézier spline	2
	1.7	Quadric Bézier spline	2
	1.8	Qubic Bézier Spline	2
	1.9	Bernsteinpolynome	2
2	Appendix		2
	2.1	Radians	2

IMATH November 20, 2018 Page 1 of 2

Computer Graphics Lucien Zürcher

TODO insert T / $R_{y,x,z}$ Todo rotation around any axis Todo altertative, rotation around origin

1 Curves

1.1 Kurvie in der Ebene

Explizite Darstellung

$$\gamma:[a,b]
ightarrow \mathbb{R}, x \mapsto y = f(x)$$

Kreis: oberer Halbkreis $\sqrt{r^2-x^2}$
unterer Halbkreis $\sqrt{r^2-x^2}$

Implizite Darstellung

$$F(x,y) = 0$$

Kreis: $x^2 + y^2 - r^2 = 0$

Parameterdarstellung

$$\gamma:[a,b] o \mathbb{R}^2, t \mapsto X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
Punkte miteinander verbunden, einzeln angegeben Kreis: $\begin{bmatrix} r\cos t \\ r\sin t \end{bmatrix}$

1.2 Kurve im Raum

$$\gamma: [a,b] \to \mathbb{R}^3, t \mapsto X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$$

1.3 Spirale entlang des Zylinders

$$\begin{split} x^2 + y^2 &= r^2 \\ \gamma : [0, 4\pi] \to \mathbb{R}^3, t \mapsto X(t) = \begin{bmatrix} r \cos t \\ r sint \\ ht/(2\pi) \end{bmatrix} \\ \textit{Grundriss ergibt Kreis, H\"{o}he Linear} \end{split}$$

1.4 Methode unbestimmte Koeffizienten

$$P_3(x) = c_0 + c_1 x^2 + c_2 x^2 + c_3 x^3$$

$$\begin{bmatrix} 1 & x_0 & x_0^2 & x_0^3 \\ 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

$$c_0 = c_1 = c_2 = c_3 = 1$$

1.5 Lagrange Methode

$$l_0(x) = (x - x_1)(x - x_2) \dots$$

$$L_0(x) = \frac{l_0(x)}{l_0(x_0)} = \frac{(x - x_1)(x - x_2) \dots}{(x_0 - x_1)(x_0 - x_2) \dots}$$

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$$

$$l_k(x) = \prod_{i=0i \neq k}^n (x - x_i)$$

$$L_k(x) = \frac{l_k(x)}{l_k(x_k)}$$

1.6 Lineare Bézier spline

$$P(t) = (1 - t)P_0 + P_1(0 \le t \le 1)$$

Gewichteter Durchschnitt der Kontrollpunkte

$$P(t) = (P_1 - P_0)t + P_0$$
Polynom in t

$$P(t) = \begin{bmatrix} P_0, P_1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix} (0 \le t \le 1)$$
Matrixform

1.7 Quadric Bézier spline

drei Kontrollpunkte P_0, P_1, P_2

$$P_0^1(t) = (1-t)P_0 + P_1$$

$$P_1^1(t) = (1-t)P_0 + P_1$$

$$P(t) = (1-t)^2 P_0 + 2(1-t)t P_1 + t^2 P_2$$

1.8 Qubic Bézier Spline

vier Kontrollpunkte P_0, P_1, P_2, P_3

$$\begin{aligned} &\textit{Mit } P_0^1, \, P_1^1 \, \textit{und} \\ &P_2^1(t) = (1-t)P_2 + tP_3 \\ &P_1^2(t) = (1-t)P_0^1(t) + tP_1^1(t) \\ &P_2^2(t) = (1-t)P_1^1(t) + tP_2^1(t) \\ &P(t) = (1-t)^3P_0 + 3(1-t)^2tP_1 + 3(1-t)t^2P_2 + t^3P_3 \end{aligned}$$

1.9 Bernsteinpolynome

2 Appendix

2.1 Radians

insert radians table 0 30 45 60 90 180 270 Grad Radians Sinus Cosinus -30 -45 -60 -90 -180 -270 Grad Radians Sinus Cosinus