# PIDKiln - PID Temperature Controller to Ceramic/Glass/ Metal Kiln

By Adrian Siemieniak in CircuitsMicrocontrollers

## Introduction: PIDKiln - PID Temperature Controller to Ceramic/Glass/Metal Kiln



This is "yet another" PID temperature controller. I've made this one, because bought one was crappy and I needed something solid. There are two or three other DIY controllers "on the market" but this one, at least I see it this way:), is much more robust and has all features I needed.

#### **Key features:**

- · interface accessible both from LCD screen and WWW webpage
- unlimited (only by storage) kiln programs number,
- program file size limited to 10KiB (but this is artificial limit can be extended)
- internal ESP storage for programs, data, logs (perhaps later SD but I'm not sure yet)
- · local preferences on disk, editable with Web interface
- · online monitoring, program management, editing, graphs and kiln controll
- build in clock synchronised with NTP servers (if Internet connected)
- safety features build in (temperature run out protection, probe failure, SSR failure, kiln insulation failure)
- simply cool and cheap (comparing to commercially available products) all in one solution

1 of 4 10/14/25, 11:51 PM

## **Supplies**

- ESP32-Wrover board
- MAX31855 breakout board (or two)
- K-type thermocouple
- DC->AC solid state relay

Kind of optional, but recommended:

- 128x65 dot matrix LCD 12864B v2
- Rotary encoder with button

#### Optional:

- DC/AC secondary relay like SLA-05VDC-SL-C (240V/30A) mechanical relay
- Additional MAX31855 board with K-type thermocouple for housing temperature measuring
- Perhaps a kiln :)

2 of 4 10/14/25, 11:51 PM

## Step 1: Wiring



#### **LCD**

Connected to one of three SPI on ESP32 - called VSPI (MOSI-23, MISO-19, CLK-18, CS-5)

| ESP32 | LCD                                                                                                         |
|-------|-------------------------------------------------------------------------------------------------------------|
|       |                                                                                                             |
| +3.3V | BLA (this can be also +5V if you wish)                                                                      |
| GND   | BLK                                                                                                         |
| 4     | RST                                                                                                         |
| GND   | PSB                                                                                                         |
| +5V   | VCC (This should be - for ESP sake - 3,3V, but my LCD doesn't work with lower voltage. Try first with 3,3V) |
| GND   | GND                                                                                                         |
| 5     | RS                                                                                                          |
| 18    | į E                                                                                                         |
| 23    | i R/W                                                                                                       |

#### **Encoder**

| ESP32        | Encoder         |
|--------------|-----------------|
| +3.3V<br>GND | 5V/VCC<br>  GND |
| 32           | Key             |
| 34           | S2              |
| 35           | S1              |

#### MAX31855

Connected to one of three SPI on ESP32 - called HSPI (MOSI-13, MISO-12, CLK-14) CS-15/27

| EPS32 | MAX31855 A                       |
|-------|----------------------------------|
|       |                                  |
| +3.3V | VCC                              |
| GND   | GND                              |
| 12    | SO/DO (slave output/data output) |
| 14    | SCK (clock)                      |
| 15    | CS (chip select)                 |

3 of 4 10/14/25, 11:51 PM

| EPS32 | MAX31855 B                       |
|-------|----------------------------------|
|       |                                  |
| +3.3V | VCC                              |
| GND   | GND                              |
| 12    | SO/DO (slave output/data output) |
| 14    | SCK (clock)                      |
| 27    | CS (chip select)                 |

#### Relays

| ESP32  | SSR                  |
|--------|----------------------|
| GND    | GND                  |
| 19     | IN                   |
| ESP32  | EMR (SLA-05VDC-SL-C) |
| GND    | GND                  |
| 21     | IN                   |
| 5-48V* | VCC                  |

<sup>\*</sup> Do not connect 5V from ESP - use external source. This can be any 5V-48V power supply with around 1W power.

Required source code is part of the Github: <a href="https://github.com/Saur0o0n/pidkiln">https://github.com/Saur0o0n/pidkiln</a>

Some more information you can find on my webpage: https://adrian.siemieniak.net/portal/tag/PIDKiln/

3d printable case: <a href="https://www.thingiverse.com/thing:3907643">https://www.thingiverse.com/thing:3907643</a>

### **Step 2: Assembled Controller**



This is fully assembled controller - on the left, and remote relay box (with power meter) - on the right. I've split those two elements because SSR relay can get quite hot and I wanted to have mains voltage away from logic boards.

PIDKiln is in 3d printed box, for relays I've used old 3,5" aluminium disk enclosure and some 3d printed sides. I wanted this to be metal as an additional heatsink for SSR.

4 of 4