CSE 105: Automata and Computability Theory

Autumn 2014

Homework #4 Solutions

ANDREAS PRODROMOU

A53049230

Collaborated with: NONE

Solution to Problem 1

Assume that language A is decidable. This means \exists TM M which decides A. For all $w \in \Sigma^*$, if $w \in A$ then M(w) accepts, otherwise M(w) rejects.

By definition, a string $W \in A$ iff $W = \varepsilon$ or $W = X_1 X_2 \dots X_k$ for some k and $X_{1\dots k}$ are nonempty and belong in A. To show that A^* is decidable, I will define a new TM N that decides A^* . This means that for a given string $W \in \Sigma^*$, N(W) accepts if $W \in A^*$ and rejects otherwise.

```
N = On input W:

If W = \varepsilon accept

Let n be the length of W

For k = 1 to n do

For each possible X_1, X_2, \dots, X_k \in \Sigma^* - \{\varepsilon\}, where W = X_1 X_2 \dots X_k do

Run M(X_i) for i = 1 to k

If all computation accept, then accept

If any computation rejects, reject
```

Solution to Problem 2

Assume languages A and B are recognizable and M_A and M_B are the TMs that recognize them. I will define a new TM N that recognizes the intersection of A and B.

```
N = On input w:
Run M_A on w. If it rejects, reject.
If M_A accepts w, Run M_B on w. If it rejects, reject. If it accepts, accept.
```

The new machine will accept a string iff M_A accepts it first and then M_B accepts it too. Consequently, N recognizes the language $A \cap B$.

Solution to Problem 3

We can observe that we can simulate a DFA using an always-right TM. We simply need to add transitions from the states in F to q_{accept} when blank is read and transitions from states outside of F to q_{reject} when blank is read. Consequently, DFAs, are a subset of always-right TMs.

Now assume a TM M = $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$. I will construct a DFA D = $(Q', \Sigma', \delta', q'_0, F)$ that recognizes the same language, where: $Q' = Q, \Sigma' = \Sigma$ and $q'_0 = q_0$. The

transition function will be:

$$\delta'(q,s) = \begin{cases} q & \text{if } q \in \{q_{accept}, q_{reject}\} \\ q' & \text{where M has transition } (q,s) \text{ to } q' \end{cases}$$
 (1)

F has to be defined as the set containing q_{accept} and the set of states $q \in Q$, $q \neq q_{accept}$, q_{reject} , such that M starting at q and reading blanks, eventually enters q_{accept} .

I showed that DFAs are a subset of always-right TMs and that always-right TMs are a subset of DFAs. Consequently, always-right TMs are equivalent to DFAs.

Solution to Problem 4

In a machine that can never move left, we can observe that any symbols written by this machine will never be read again. I will define a new character which is not in Γ , which will be written on every transition. If that character is read at some state, I will know that the machine moved left and I will transition to the q_{reject} state. The new TM will be the same as the old, except the new symbol and the simple transition rule upon reading this symbol.

This new machine is a decider for L_4 , since it will either accept if M accepts and only moves right, and it will reject if M moves left or attempts to loop.