

# MAC122 - Princípios de Desenvolvimento de Algoritmos

DCC - IME - USP 2° Semestre de 2014

Prof.: Dr. Paulo Miranda & Marco Aurélio Gerosa pmiranda@vision.ime.usp.br, gerosa@ime.usp.br

# <u>Lista 02:</u> Estruturas ligadas

# Questão 1:

Dado o problema de manipulação de polinômios de grau  $n \ge 0$ , como por exemplo:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0 x^0$$

Considere a solução usando listas circulares com nó-cabeça tal que:

- a) Cada nó representa um termo com coeficiente não nulo.
- b) Os termos estão em ordem decrescente dos expoentes.
- c) O nó-cabeça tem expoente -1.

Por exemplo, o polinômio  $P(x) = 5 x^{20} - 3 x^5 + 7$  é representado da seguinte forma:



Escreva uma possível definição em C para a estrutura de um termo do polinômio e escreva funções que implementem as operações especificadas abaixo:

A) Sem usar nenhuma função auxiliar, faça uma função que calcula e devolve o valor numérico de um polinômio para um dado valor de x:

float Valor(Polinomio p, float x);

Exemplo: Se  $p(x) = x^3 - 5x + 2$  para x = -1 temos p(-1) = 6.

OBS: Assuma que Polinomio é um tipo apontador para um termo da lista, e que p aponta para o nó-cabeça da lista.

B) Faça uma função em C para liberar toda a memória de um polinômio. Use o protótipo abaixo:

void LiberaPolinomio(Polinomio p);

C) Faça uma função que calcula e devolve a derivada de um polinômio fornecido: OBS: A função deve criar um segundo polinômio que será devolvido pela função.

Exemplo:

Se p(x) = 
$$3.00 \text{ x}^{10} + 2.50 \text{ x}^7 + 3.00 \text{ x}^1 + 5.00$$
, temos a derivada:  
p'(x) =  $30.00 \text{ x}^9 + 17.50 \text{ x}^6 + 3.00$ 

Lembrete: (a)' = 0 e (ax<sup>n</sup>)' = na 
$$x^{n-1}$$

D) Faça uma função que calcula e devolve a derivada segunda (derivada da derivada) de um polinômio fornecido:

OBS: A função deve criar um segundo polinômio que será devolvido pela função.

Polinomio DerivadaSegunda(Polinomio p); Exemplos:

Para 
$$p(x) = 5.00 x^4 + 7.50 x^2 + 3.00 x^1$$
, temos a derivada segunda:  $p''(x) = 60.00 x^2 + 15.00$ 

Para 
$$p(x) = 3.00 x^{10} + 2.50 x^7 + 3.00 x^1 + 5.00$$
, temos a derivada segunda:  $p''(x) = 270.00 x^8 + 105.00 x^5$ 

Para 
$$p(x) = x^3 - x^2$$
, temos a derivada segunda:  
 $p''(x) = 6.00 x^1 - 2.00$ 

OBS: Faça duas soluções: A primeira que usa as funções dos itens anteriores como funções auxiliares, e uma segunda que calcula a derivada segunda diretamente.

#### **Ouestão 2:**

Dada a definição abaixo:

```
struct Reg{
    int num;
    struct Reg *prox;
};
```

**A)** Faça uma função que recebe o endereço do primeiro nó de uma lista ligada simples (sem nó-cabeça), e que devolve o número de elementos da lista.

```
int NumElementos(struct Reg *p);
```

Ex: Assumindo a lista abaixo como entrada, a função deve devolver tamanho 5.



**B)** Faça uma função que recebe o endereço do primeiro nó de uma lista ligada simples (sem nó-cabeça), e que verifica se um valor fornecido "x" pertence a lista.

```
int Pertence(struct Reg *p, int x);
```

Use o protótipo acima onde "p" aponta para o primeiro nó da lista de entrada fornecida, e "x" é o valor a ser procurado. A função deve devolver verdadeiro ou falso.

**Ex:** Assumindo a lista do exemplo anterior como entrada, no caso de x=3 a função deve devolver verdadeiro. Já se x=4 a função deve devolver falso.

C) Faça uma função que recebe duas listas ligadas simples (sem nó-cabeça), e que devolve uma terceira lista (ligada simples) contendo a intersecção das duas primeiras.

```
struct Reg *Interseccao(struct Reg *p, struct Reg *q);
```

Use o protótipo acima onde "p" aponta para o primeiro nó da primeira lista fornecida, e "q" aponta para o primeiro nó da segunda lista. A função deve devolver o endereço da lista contendo a intersecção. Essa lista deve ser alocada dinamicamente pela função.

**Obs:** Você pode usar as funções dos itens anteriores como funções auxiliares. Assuma também que não existem elementos repetidos nas listas fornecidas.

Exemplo: Assumindo "p" como no exemplo do item A, e "q" apontando para uma lista com os números {7,3,5,1}, teremos a lista de intersecção contendo apenas os números 3 e 1.

## Questão 3:

A) Faça uma função que recebe o endereço do primeiro nó de uma lista ligada simples (sem nó-cabeça), e que elimina todas as ocorrências de um dado valor.

A função deve devolver o endereço do novo início da lista.

Ex: Assumindo a lista abaixo como entrada e valor de remoção 8,



teremos a nova lista:



### struct Reg \*RemoveNum(struct Reg \*p, int a);

Use o protótipo acima onde "p" aponta para o primeiro nó da lista de entrada fornecida, e "a" é o valor a ser eliminado.

**OBS:** Você deve liberar a memória dos nós que foram eliminados da lista, e reaproveitar os demais sem a necessidade de alocar memória adicional.

B) Faça uma função que recebe o endereço do primeiro nó de uma lista ligada simples (sem nó-cabeça), e que remove todos os elementos repetidos da lista. Você pode usar a função do item anterior como função auxiliar.

## struct Reg \*RemoveRepetidos(struct Reg \*p);

Use o protótipo acima onde "p" aponta para o primeiro nó da lista de entrada fornecida. A função deve devolver o endereço do novo início da lista.

**Exemplo:** Para a lista de entrada do item anterior, teremos:

