CS306: Introduction to IT Security Assignment Project Exam Help

https://powcoder.com Lecture 4: Ciphers in Practice (I)

Add We Chat powcoder instructor: Nikos Friandopoulos

September 22, 2020

Assignment Project Exam Help

https://powcoder.com
4.0 Announcements
Add WeChat powcoder

CS306: Other announcements

- Homework assignment HW1 is out
 - due in almost two weeks: Friday, October 2
 - covering perfectseigenmentaPrioriectnExam Help
 - relevant materials
 https://powcoder.com
 Lectures 2.2, 2.3, 3.1, 3.2, lecture 4.demo

 - ◆ Lab 2

- please
 - start early
 - ask for help if needed
 - respect the non-collaboration policy

CS306: Tentative Syllabus

Week	Date	Topics	Reading	Assignment
1	Sep 1	Introduction ment Project Exam Symmetric-key encryption	Lecture 1	-
2	ASSIGII Sep 8	Symmetric-key encryption	Lecture 2	Lab 1
3	Sep 15 htt	ps://powcoder.com	Lecture 3	Lab 2, HW 1
4	Sep 22	Public-key crypto l		
5	Sep 29 A (dd Wechentropowcoc	ler	
6	Oct 6	Access control & authentication		
<u>-</u>	Oct 13	No class (Monday schedule)		
7	Oct 20	Midterm	All materials covered	

CS306: Tentative Syllabus

(continued)

Week	Date	Topics	Reading	Assignment
8	Oct 27	Software & Web security	Holm	
9	ASSIGII Nov 3	ment Project Exam	петр	
10	Nov 10 htt	ps://patabase security	1	
11	Nov 17	Cloud security		
12	Nov 24 A (dd WeChatvpowcod	ler	
13	Dec 1	Economics		
14	Dec 8	Legal & ethical issues		
15	Dec 10 (or later)	Final (closed "books")	All materials covered*	

Last week

- Symmetric-key Cryptography
 - Perfect secrecy
 - The One-Time Pasignment Project Exam Help
- Demo https://powcoder.com
 - Why encryption matters?
 - Using the Wireshark Andrew West Was Sehat powcoder

Today

- Ciphers in practice
 - The big picture
 - Computational sezignment Project Exam Help
 - Pseudo-randomness
 https://powcoder.com
 stream ciphers, pseudorandom generators

- Demo
 - The Caesar and Vigenère ciphers and their cryptanalysis
 - Pseudo-randomness in practice

Assignment Project Exam Help

https://powcoderiom.cryptography
Add WeChat powcoder

Cryptography / cryptology

Etymology

```
    two parts: "crypto" + "graphy" / "logy"
    original meaning: signment Project Example (in Greek)
    English translation: https://powcoder.com speech, logic
    meaning: secret writing / the study of secrets
```

- Historically developed of dollar temporations
 - message encryption in the symmetric-key setting
 - main application area: use by military and governments

Classical Vs. modern cryptography

antiquity - ~70s

~80s - today

"the art of writing chassing mount Project to a securing information, systems, and distributed https://powcoodetation.mgainst adversarial attacks"

- approach
 - ad-hoc design
 - trial & error methods
 - empirically evaluated

- systematic design & analysis
- formal notions of security (or adversary)
- rigorous proofs of security (or insecurity)

Example: Classical Vs. modern cryptography for encryption

antiquity - ~70s

~80s - today

"the art of writing Assignment' Project to was prical techniques for securing information, systems, and distributed https://powcoodetation.mgainst adversarial attacks"

- ad-hoc study
 - vulnerabilities/insecurity Add WeChat power secret communication over
 - Caesar's cipher
 - shift cipher
 - mono-alphabetic substitution cipher
 - Vigenère cipher

- rigorous study
 - problem statement: secret communication over insecure channel
 - abstract solution concept: symmetric encryption, Kerckhoff's principle, perfect secrecy
 - concrete solution & analysis: OTP cipher, proof of security

Example: Differences of specific ciphers

Caesar's/shift/mono-alphabetic cipher The one-time pad

- substitution ciphessignment Projects Examptitute pripher
 - Caesar's cipher

shift is unknown and

- shift is always 3
- https://powcod@pe@entent for each character occurrence

- shift cipher
 - shift is unknown and Add WeChat powcoder the same for all characters
- mono-alphabetic substitution/Vigènere cipher
 - shift is unknown and the same for all/many character occurrences

Formal treatment in modern cryptography

Problem is formulated as an abstract crypto primitive

captures the essence of the problem at hand, provides clarity and focus

Design & evaluations of gryphept in Private of low anys Helpic process

- (A) formal definitions (what it means for a crypto primitive to be secure?)
 https://powcoder.com
- (B) precise assumptions Add Which forms PPAKECRS are allowed and which aren't?)

(C) provable security (why a candidate solution is secure – or not)?

(A) Formal definitions

abstract but rigorous description of security problem

- computing setting (to be considered)

 Assignment Project Exam Help
 - involved parties, communication model, core functionality Help
- underlying cryptographic scheme powcoder.com (to be designed)
 - e.g., symmetric-key encryption scheme
- desired properties Add WeChat powcoder (to be achieved)
 - security related
 - non-security related
 - e.g., correctness, efficiency, etc.

(A) Why formal definitions are important?

- successful project management
 - good design requires clear/specific security goals
 - helps to avoid skilg nument of the Eingam Help
- provable security https://powcoder.com
 rigorous evaluation requires a security definition
 - - helps to separate secure do wine cultadupor coder
- qualitative analysis/modular design
 - thorough comparison requires an exact reference
 - helps to secure complex computing systems

Example: Problem at hand

abstract but rigorous description of security problem (to

(to be solved)

Assignments Pretject n Existic Help

https://powcoder.com

Add WeChat powcoder Insecure channel

Example: Formal definitions (1)

computing setting

(to be considered)

e.g., involved parties, communication model, core functionality

Alice, Bob Assignment Project Exam Help

Alice wants to send a message m to Bob; Eve can eavesdrop sent messages https://powcoder.com

Alice/Bob may transform the transmitted/received message and share info

Example: Formal definitions (2)

underlying cryptographic scheme

(to be designed)

- symmetric-key encryption scheme Assignment Project Exam Help
- Alice and Bob share and use a key k
- Alice encrypts plaintexhittpsiphepotweodeds.ciotad of m
- Bob decrypts received c to get a message m'

Example: Formal definitions (3)

desired properties

(to be achieved)

security (informal)
 correctness (Informal)
 Eve "cannot learn" m (from c)
 correctness (Informal)

If Alice encrypts m to c, then Bobs decrypts c to (the original message) m https://powcoder.com

Example: Formal definitions (4)

Perfect correctness

Perfect security (or information-theoretic accurity)

• the adversary should be able to learn no additional information on m

(B) Precise assumptions

precise description of all relevant problem components

- adversary / attacker
 - type of attacks Aska. threat model Project Exam Help
 capabilities (e.g., a priori knowledge, access to information, party corruptions)

 - limitations (e.g., bounded memory, passive Vs. active) nttps://powcoder.com
 computational assumptions (about hardness of certain tasks)
- - e.g., factoring of large composite numbers is hard WeChat powcoder
- computing setting
 - system set up, initial state, key distribution, randomness...
 - means of communication (e.g., channels, rounds, ...)
 - timing assumptions (e.g., synchronicity, epochs, ...)

(B) Why precise assumptions are important?

- basis for proofs of security
 - security holds under specific assumptions
- comparison among signing entire Project Exam Help
 - relations among different assumptions https://powcoder.com
 stronger/weaker (i.e., less/more plausible to hold), "A implies B" or "A and B are equivalent"

 - refutable Vs. non-repatable WeChat powcoder
- flexibility (in design & analysis)
 - validation to gain confidence or refute
 - **modularity** to choose among concrete schemes that satisfy the same assumptions
 - characterization to identify simplest/minimal/necessary assumptions

Example: Precise assumptions (1)

adversary

- type of attacks a.k.a. threat model
- eavesdropping
- capabilities (egg siprintegy ledge pecets toxinform to party corruptions)
- limitations (e.g., bounded memory, passive Vs. active)

Eve doesn't know/learn the segret k (shared by Alice and Bob)

Add WeChat powcoder

Example: Precise assumptions (2)

- computational assumptions (about hardness of certain tasks)
 - e.g., factoring of large composite numbers is hard

Assignment Project Exam Help no computational assumptions

- a.k.a. perfect secrecy (or information-theoretic security)

Example: Precise assumptions (3)

computing setting

system set up, initial state, key distribution, randomness...

• means of confrontent Projecto Intames desp)

randomly using the uniform distribution

timing assumptions (e.g., synchronicity, epochs, ...)

key k is securely tispisite powcoder comed at Alice and Bob

one message m is only communicated k, m are chosen independently

Possible eavesdropping attacks (I)

An attacker may possess a

Possible eavesdropping attacks (II)

An attacker may possess a

Possible eavesdropping attacks (III)

An attacker may possess a

Assignment Project Exam Help

https://powcoder.com

collection of plaintext/ciphertext pairs
 for plaintexts selected by the htta were Chat 1

chosen plaintext attack (CPA)

Advanced threat model

Possible eavesdropping attacks (IV)

An attacker may possess a

Assignment Project Exam Help

https://powcoder.com

- collection of plaintext/ciphertext pairs for ciphertexts selected by the attacker
 - chosen ciphertext attack (CCA)

Main security properties against eavesdropping

"plain" security

protects against ciphertext-only attacks

Assignment Project

https://powcoder.com

Add WeChat powcoder

"advanced" security

protects against chosen plaintext attacks

(C) Provably security

Security

- subject to certain assumptions, a scheme is proved to be secure according to a specific definition spin moniti Parois Exam Help
 - in practice the scheme may break if
 https://powcoder.com

 some assumptions do not hold or the attacker is more powerful

Add WeChat powcoder

Insecurity

- a scheme is proved to be **insecure** with respect to a specific **definition**
 - it suffices to find a counterexample attack

(C) Why provable security is important?

Typical performance

Worst case performance

- in some areas of Assignment Project drystagraphycho secure protocol design formal proofs may not be essential formal proofs are essential
 - behavior of hard-to-analyatips ith power of experimental security analysis is not possible simulated to experimentally study their performance on "typical" Applied WeChat power of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of a "typical" adversary makes little power of the notion of the notion of a "typical" adversary makes little power of the notion of the notio
- in practice, typical/average case occurs
- in practice, worst case attacks will occur
 - an adversary will use any means in its power to break a scheme

Assignment Project Exam Help

https://powcoder.com/putational
Add WeChat powcoder

The big picture: OPT is perfect but impractical!

We formally defined and constructed the perfectly secure OTP cipher

- This scheme has some major drawbacks
 - it employs a very large key which can je use Exam Help
- Such limitations are unpygidable and make OTE not practical
 - why?

Our approach: Relax "perfectness"

Initial model

- the perfect secrecy (or security) requires that
 - the ciphertext leaks absolutely no extra information about the plaintext
 - to adversaries of unlimited computational power https://powcoder.com

Refined model

- a relaxed notion of security, called computational security, requires that
 - the ciphertext leaks a tiny amount of extra information about the plaintext
 - to adversaries with bounded computational power

Computational security

- to be contrasted against information-theoretic security
 - de facto way to model security in most settings
 - an integral part spignement by the proofs
- entails two relaxations://powcoder.com
 - security is guaranteed against efficient adversaries
 - if an attacker invested deut with the transfer pessources, at the break security
 - goal: make required resources larger than those available to any realistic attacker!
 - security is guaranteed in a probabilistic manner
 - with some small probability, an attacker may break security
 - goal: make attack probability sufficiently small so that it can be practically ignored!

Towards a rigorous definition of computational security

Concrete approach

• "A scheme is (t,ε)-secure if any attacker A, running for time <u>at most</u> t, succeeds in breaking the schemesivith properbility at most ε Exam Help

https://powcoder.com

Asymptotic approach

• "A scheme is secure if a verific verific to the scheme with at most negligible probability"

Examples

- almost optimal security guarantees
 - if key length n, the number of possible keys is 2ⁿ
- attacker running for time t succeeds w/ prob. at most ~ t/2ⁿ (brute-force attack)
 Assignment Project Exam Help
 if n = 60, security is enough for attackers running a desktop computer
 - 4 GHz (4x10⁹ cycles/sec) thecking all 2⁶⁰ keys require about 9 years
 - if n = 80, a supercomputer would still need ~2 years
- today's recommended sandity ware mentispot ever nele 18
 - ◆ large difference between 2⁸⁰ and 2¹²⁸; e.g., #seconds since Big Bang is ~2⁵⁸
 - a once-in-100-years event corresponds to probability 2⁻³⁰ of happening at a particular sec
 - if within 1 year of computation attack is successful w/ prob. $1/2^{60}$ then it is more likely that Alice and Bob are hit by lighting

Assignment Project Exam Help

https://powcoderscymmetric encryption,
Add WeChat powcoder

Security

Three equivalent "looks" of perfect secrecy

1) a posteriori = a priori

2) C is independent of M

For every $\mathcal{D}_{\mathcal{M}}$, $m \in \mathcal{M}$ and $c \in \mathcal{C}$, for which Pr[C = c] > 0, it holds that Project Exam Help

Pr[M = m | C = c] = Pr[M = m]
$$Pr[M = m | C = c] = Pr[Enc_K(m) = c] = Pr[Enc_K(m') = c]$$

3) indistinguishability WeChat powcoder

For every \mathcal{A} , it holds that

$$Pr[b' = b] = 1/2$$

$$\mathcal{D}_{\mathcal{K}} \rightarrow \mathsf{k}$$

 $\{0, 1\} \rightarrow \mathsf{b}$
 $\mathsf{Enc}_{\mathsf{k}}(\mathsf{m}_{\mathsf{b}}) \rightarrow \mathsf{c}_{\mathsf{b}}$

ciphertext looks completely random

Security relaxation

Perfect security: M, $Enc_{K}(M)$ are independent, **unconditionally**

no extra information is leaked to any attacker

Computational security: M, Enc_k(M) are independent, for all practical purposes

- no extra information is leaked by point and extra information is leaked by point and extra information is leaked by the content of the cont
 - e.g., with prob. 2⁻¹²⁸ (or much less than the likelihood of being hit by lighting)
- to computationally bounded at the cershat powcoder
 - e.g., who cannot count to 2¹²⁸ (or invest work of more than one century)
- attacker's best strategy remains ineffective
 - random guess a secret key or exhaustive search over key space (brute-force attack)

Recall: Main security properties against eavesdropping

"plain" security

protects against ciphertext-only attacks

Assignment Project

https://powcoder.com

Add WeChat powcoder

"advanced" security

protects against chosen plaintext attacks

Computational EAV-security or indistinguishability

Relax the definition of perfect secrecy that is based on indistinguishability

- require that target messages m₀, m₁ are chosen by a PPT attacker
- require that no such attacker can distinguish Enck(m₀) from Enck(m₁)

Computational CPA-security

Advanced security implies probabilistic encryption - why?

PPT

Strengthen the definition of computational plain-security

- allow attacker to have access to an encryption "box"
- Assignment Project Exam, Help allow the attacker to select m₀, m₁ after using this "box" (as many times as desired)

https://powcoder.com

3) indistinguishabilityWeChat powcoder

For every PPT \mathcal{A} , it holds that

PPT

something that can be safely ignored

 $\mathcal{D}_{\mathcal{K}} \rightarrow \mathsf{k}$ $\{0, 1\} \rightarrow b$ $Enc_k(m_h) \rightarrow c_h$

Enc(k,)

Assignment Project Exam Help

https://powcoder.commetric encryption, revisited: OTP with Add WeChat posecoderandomness

Perfect secrecy & randomness

Role of randomness in encryption is **integral**

- in a perfectly secret cipher, the ciphertext doesn't depend on the message
 the ciphertext appears to be truly random Exam Help
 - the uniform key-selection distribution is imposed also onto produced ciphertexts
 e.g., c = k XOR m (for uniform k and any distribution over m)

Add WeChat powcoder
When security is computational, randomness is **relaxed** to "pseudorandomness"

- the ciphertext appears to be "pseudorandom"
 - it cannot be efficiently distinguished from truly random

Symmetric encryption as "OPT with pseudorandomness"

Stream cipher

Uses a **short** key to encrypt **long** symbol

based on abstract crypto primitive of

Block cipher

Uses a **short** key to encrypt **blocks** of symbols

- streams into a pseudorandom sinhertext Project pseudorandom siphertext blocks
 - based on abstract crypto primitive of pseudorandom generator 1/2000://powcodequeorandom function (PRF)

47

Assignment Project Exam Help

https://powcodaracomseudorandom

Add WeChat powcoder

Stream ciphers

Pseudorandom generators (PRGs)

Deterministic algorithm G that on input a **seed** $s \in \{0,1\}^t$, outputs $G(s) \in \{0,1\}^{l(t)}$ Assignment Project Exam Help

G is a PRG if:

https://powcoder.com

expansion

- for polynomial *I*, it holds that for any n, *I*(n) > n
- models the process of <u>extracting</u> randomness from a short random string
- pseudorandomness
 - no efficient statistical test can tell apart G(s) from a truly random string

Generic PRG-based symmetric encryption

Fixed-length message encryption

Generic PRG-based symmetric encryption (cont.)

- Bounded- or arbitrary-length message encryption
 - specified by a mode of operation for using an underlying stateful stream cipher, repeatedly, to ensign the property appropriate of symbols. Help

https://powcoder.com

Add WeChat powcoder

Stream ciphers: Modes of operations

Bounded or arbitrary-length message encryption

on-the-fly computation of new pseudorandom bits, no IV needed, plain-secure Assignment Project Exam Help

random IV used for every new message is sent along with ciphertext, advanced-secure