	$\sigma_{1^{+}lphaeta}^{\#1}$	$\sigma_{1^{+}\alpha\beta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1^{-}\alpha}^{\sharp 1}$	$\sigma_{1-\alpha}^{\#2}$	$ au_1^{\#1}{}_{lpha}$	$ au_1^{\#2}$ α
$\sigma_{1}^{\sharp 1}\dagger^{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$ † $^{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 r_5 + t_1}{(1+k^2)^2 t_1^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 r_5 + k^2 t_1}{(1+k^2)^2 t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}\dagger^{lpha}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	$-\frac{i}{kr_5+2k^3r_5}$
$\sigma_1^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k+2 k^3)^2 r_5 t_1}$	0	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\tau_1^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{#2} \uparrow^{\alpha}$	0	0	0	$\frac{i}{k r_5 + 2 k^3 r_5}$	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6 k^2 r_5 + t_1}{(1 + 2 k^2)^2 r_5 t_1}$

Lagrangian density

Lagrangian achisity
$-\frac{1}{3}t_1 \omega_i^{\alpha i} \omega_{\kappa \alpha}^{\kappa} - t_1 \omega_i^{\kappa \lambda} \omega_{\kappa \lambda}^{i} - r_5 \partial_i \omega_{\kappa}^{\kappa \lambda} \partial^i \omega_{\lambda}^{\alpha} - r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} +$
$r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} -$
$\frac{1}{2} t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{2} t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{2} t_1 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha \lambda} +$
$\frac{1}{3} t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{,i} + \frac{1}{3} t_1 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{,i} + \frac{2}{3} t_1 \partial^{\alpha} f_{\kappa\alpha}^{\alpha} \partial^{\kappa} f'_{,i} -$
$\frac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{i} + 2 t_1 \omega_{i\kappa\theta} \partial^{\kappa} f'^{\theta} - \frac{1}{3} t_1 \omega_{i\alpha}^{\alpha} \partial^{\kappa} f'_{\kappa} - \frac{1}{3} t_1 \omega_{i\lambda}^{\lambda} \partial^{\kappa} f'_{\kappa} +$
$\frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda \alpha} + \frac{1}{2} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} + \frac{1}{2} t_1 \partial_{\kappa} f^{\lambda}_{\theta} \partial^{\kappa} f^{\theta}_{\lambda} -$
$\frac{1}{3} t_1 \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda \kappa} + r_5 \partial_{\alpha} \omega_{\lambda \theta}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} - r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}$
Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

$\sigma_{2}^{*1} + ^{\alpha\beta\chi}$	$\tau_{2+}^{#1} + \alpha \beta$	$\sigma_{2+}^{\#1} + \alpha \beta$	
0	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{2}{(1+2k^2)^2t_1}$	$\sigma_{2}^{*1}{}_{lphaeta}$
0	$\frac{4k^2}{(1+2k^2)^2t_1}$	1	$ au_{2}^{\#1} lpha eta$
$\frac{2}{t_1}$	0	0	$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$

$\omega_{2^{-}}^{#1} \dagger^{\alpha\beta\chi}$	$f_{2^{+}}^{#1}\dagger^{\alpha\beta}$	$\omega_{2}^{*1} \dagger^{\alpha\beta}$	
0	$\frac{i k t_1}{\sqrt{2}}$	<u>t1</u> 2	$\omega_{2}^{\#1}{}_{lphaeta}$
0	$k^2 t_1$	$-\frac{ikt_{1}}{\sqrt{2}}$	$f_{2}^{\#1}_{lpha eta}$
<u>t1</u> 2	0	0	$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$

$f_{1^{-}}^{#2} +^{\alpha}$	$f_{1^{-}}^{#1} \dagger^{\alpha}$	$\omega_{1^{-}}^{#2} \dagger^{\alpha}$	$\omega_{1^{-}}^{*1}\dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1}^{#2} + \alpha^{\beta}$	$\omega_{1^+}^{*1} \dagger^{\alpha\beta}$	
0	0	0	0	$\frac{ikt_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$k^2 r_5 - \frac{t_1}{2}$	$\omega_{1}^{\#1}{}_{lphaeta}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1+\alpha\beta}^{\#2} f$
0	0	0	0	0	0	$-\frac{ikt_{1}}{\sqrt{2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$
$-\frac{1}{3}ikt_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 r_5 + \frac{t_1}{6}$	0	0	0	$\omega_{1^-}^{\#1}{}_{lpha}$
$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	<u>†1</u> 3	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^- \ lpha}^{\# 2}$
0	0	0	0	0	0	0	$f_{1^{-}\alpha}^{\#1}$
2 k ² t1	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	<u> </u>	0	0	0	$f_{1^-\alpha}^{\#2}$

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2ik \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_1^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	SO(3) irreps	Source constraints
17	5	ω	ω	ω	1	1	1	#	

 $\frac{\text{Unitarity conditions}}{r_5 < 0 \&\& t_1 < 0 || t_1 > 0}$

(No massive particles)