Basis SMEFTsim-MFV (EFT SMEFT)

Basis used in the SMEFTsim_MFV UFO models, version 3.0.0 or later. Implements Warsaw basis with U(3) flavor symmetry for all fermions and includes up to 1 lepton Yukawa and 3 quark Yukawa insertions. BSM CP violation is forbidden. q,u,d are the left- and right-handed quark fields. ℓ,e are left- and right-handed lepton fields. Y_l,Y_u,Y_d are the 3x3 yukawa matrices for leptons, up- and down-quarks, defined by $L_{SM} \supset \bar{d}Y_dH^\dagger q$ and analogously for the others. Quark fields are in the up-aligned basis: Y_l,Y_u are assumed diagonal at the scale of evaluation, while $Y_d = Y_d^{diag}V_{CKM}^\dagger$. Flavor indices are indicated with p,r,s,t with Einstein conventions on repeated indices. They run over 1,2,3 for all fields. This basis definition corresponds to a fixed LambdaSMEFT=10e+3 in the UFO models. Notation and conventions can vary compared to the Warsaw basis paper, see arXiv:2012.11343 for all definitions.

Sectors

The effective Lagrangian is defined as

$$\mathcal{L}_{\text{eff}} = -\mathcal{H}_{\text{eff}} = \sum_{O_i = O_i^{\dagger}} C_i O_i + \sum_{O_i \neq O_i^{\dagger}} \left(C_i O_i + C_i^* O_i^{\dagger} \right).$$

dB=dL=0

WC name	Operator	Type
cG	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}/TeV^2$	R
cW	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}/TeV^2 \ arepsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}/TeV^2$	${ m R}$
сН	$(H^{\dagger}H)^3/TeV^2$	${ m R}$
cHbox	$(H^{\dagger}H)\Box(H^{\dagger}H)/TeV^2$	${ m R}$
cHDD	$(D_{\mu}H^{\dagger}H)(H^{\dagger}D^{\mu}H)/TeV^{2}$	\mathbf{R}
cHG	$G^{A}_{\mu u}G^{A\mu u}H^{\dagger}H/TeV^{2}$	\mathbf{R}
cHW	$W^{I}_{\mu u}W^{I\mu u}H^{\dagger}H/TeV^2$	\mathbf{R}
сНВ	$B_{\mu\nu}^{'}B^{\mu u}H^{\dagger}H/TeV^{2}$	R
cHWB	$B_{\mu\nu}W^{I\mu\nu}H^{\dagger}\sigma^{I}H/TeV^{2}$	R
ceH	$(Y_l^\dagger)_{pr}(ar\ell_p H e_r)(H^\dagger H)/TeV^2 + hc$	${ m R}$
cuH0	$(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}u_r)(H^{\dagger}H)/TeV^2 + hc$	${ m R}$
DeltaucuH	$(Y_u^{\dagger} Y_u Y_u^{\dagger})_{pr} (\bar{q}_p \tilde{H} u_r) (H^{\dagger} H) / TeV^2 + hc$	${ m R}$
DeltadcuH	$(Y_d^{\dagger}Y_dY_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}u_r)(H^{\dagger}H)/TeV^2 + hc$	${ m R}$
cdH0	$(Y_d^{\dagger})_{pr}(\bar{q}_pHd_r)(H^{\dagger}H)/TeV^2 + hc$	\mathbf{R}
DeltaucdH	$(Y_u^{\dagger}Y_uY_d^{\dagger})_{pr}(\bar{q}_pHd_r)(H^{\dagger}H)/TeV^2 + hc$	\mathbf{R}
DeltadcdH	$(Y_d^{\dagger}Y_dY_d^{\dagger})_{pr}(\bar{q}_pHd_r)(H^{\dagger}H)/TeV^2 + hc$	\mathbf{R}
ceW	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p\sigma^I H \sigma^{\mu\nu}e_r)W_{\mu\nu}^I/TeV^2 + hc$	\mathbf{R}
ceB	$(Y_l^{\dagger})_{pr}(\bar{\ell}_p H \sigma^{\mu\nu} e_r) B_{\mu\nu}/TeV^2 + hc$	${ m R}$
cuG0	$(Y_u^{\dagger})_{pr}(\bar{q}_p\tilde{H}\sigma^{\mu\nu}T^Au_r)G^A_{\mu\nu}/TeV^2 + hc$	\mathbf{R}

WC name	Operator	Type
DeltaucuG	$(Y_u^{\dagger} Y_u Y_u^{\dagger})_{pr} (\bar{q}_p \tilde{H} \sigma^{\mu\nu} T^A u_r) G_{\mu\nu}^A / TeV^2 + hc$	\mathbf{R}
DeltadcuG	$(Y_d^{\dagger} Y_d Y_u^{\dagger})_{pr} (\bar{q}_p \tilde{H} \sigma^{\mu\nu} T^A u_r) G_{\mu\nu}^A / TeV^2 + hc$	\mathbf{R}
cuW0	$(Y_u^{\dagger})_{pr}(\bar{q}_p\sigma^I\tilde{H}\sigma^{\mu\nu}u_r)W_{\mu\nu}^I/TeV^2 + hc$	\mathbf{R}
DeltaucuW	$(Y_u^{\dagger} Y_u Y_u^{\dagger})_{pr} (\bar{q}_p \sigma^I \tilde{H} \sigma^{\mu\nu} u_r) W_{\mu\nu}^I / TeV^2 + hc$	\mathbf{R}
DeltadcuW	$(Y_d^{\dagger} Y_d Y_u^{\dagger})_{pr} (\bar{q}_p \sigma^I \tilde{H} \sigma^{\mu\nu} u_r) W_{\mu\nu}^I / TeV^2 + hc$	\mathbf{R}
cuB0	$(Y_u^{\dagger})_{pr}(\bar{q}_p \tilde{H} \sigma^{\mu\nu} u_r) B_{\mu\nu}/TeV^2 + hc$	\mathbf{R}
DeltaucuB	$(Y_u^{\dagger} Y_u Y_u^{\dagger})_{pr} (\bar{q}_p \tilde{H} \sigma^{\mu\nu} u_r) B_{\mu\nu} / TeV^2 + hc$	\mathbf{R}
DeltadcuB	$(Y_d^{\dagger} Y_d Y_u^{\dagger})_{pr} (\bar{q}_p \tilde{H} \sigma^{\mu\nu} u_r) B_{\mu\nu} / TeV^2 + hc$	\mathbf{R}
cdG0	$(Y_d^{\dagger})_{pr}(ar{q}_p H \sigma^{\mu\nu} T^A d_r) G_{\mu\nu}^A / TeV^2 + hc$	\mathbf{R}
DeltaucdG	$(Y_u^{\dagger}Y_uY_d^{\dagger})_{pr}(\bar{q}_pH\sigma^{\mu\nu}T^Ad_r)G^A_{\mu\nu}/TeV^2 + hc$	\mathbf{R}
DeltadcdG	$(Y_d^{\dagger} Y_d Y_d^{\dagger})_{pr} (\bar{q}_p H \sigma^{\mu\nu} T^A d_r) G_{\mu\nu}^A / TeV^2 + hc$	\mathbf{R}
cdW0	$(Y_d^{\dagger})_{pr}(\bar{q}_p\sigma^I H \sigma^{\mu\nu} d_r) W_{\mu\nu}^I/TeV^2 + hc$	\mathbf{R}
DeltaucdW	$(Y_u^{\dagger} Y_u Y_d^{\dagger})_{pr} (\bar{q}_p \sigma^I H \sigma^{\mu\nu} d_r) W_{\mu\nu}^I / TeV^2 + hc$	\mathbf{R}
DeltadcdW	$(Y_d^{\dagger}Y_dY_d^{\dagger})_{pr}(\bar{q}_p\sigma^I H \sigma^{\mu\nu} d_r)W_{\mu\nu}^I/TeV^2 + hc$	\mathbf{R}
cdB0	$(Y_d^{\dagger})_{pr}(\bar{q}_p H \sigma^{\mu\nu} d_r) B_{\mu\nu}/TeV^2 + hc$	\mathbf{R}
DeltaucdB	$(Y_u^{\dagger} Y_u Y_d^{\dagger})_{pr} (\bar{q}_p H \sigma^{\mu\nu} d_r) B_{\mu\nu} / TeV^2 + hc$	\mathbf{R}
DeltadcdB	$(Y_d^{\dagger}Y_{\underline{d}}Y_{\underline{d}}^{\dagger})_{pr}(\bar{q}_pH\sigma^{\mu\nu}d_r)B_{\mu\nu}/TeV^2 + hc$	\mathbf{R}
cHl1	$(H^\dagger i D_\mu H) (ar{\ell}_p \gamma^\mu \ell_p) / TeV^2$	\mathbf{R}
cH13	$(H^\dagger i \overleftrightarrow{D}_{\mu}^I H) (\bar{\ell}_p \gamma^\mu \sigma^I \ell_p) / TeV^2$	\mathbf{R}
cHq10	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{q}_p \gamma^\mu q_p) / TeV^2$	\mathbf{R}
DeltaucHq1	$(Y_u^\dagger Y_u)_{pr} (H^\dagger i D_\mu H) (\bar q_p \gamma^\mu q_r) / TeV^2$	\mathbf{R}
DeltadcHq1	$(Y_d^\dagger Y_d)_{pr} (H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{q}_p \gamma^\mu q_r) / TeV^2$	\mathbf{R}
cHq30	$(H^\dagger i \overleftrightarrow{D}_\mu^I H) (ar{q}_p \gamma_{\downarrow}^\mu \sigma^I q_p) / TeV^2$	\mathbf{R}
DeltaucHq3	$(Y_u^{\dagger}Y_u)_{pr}(H^{\dagger}i\overleftrightarrow{D}_{\mu}^IH)(\bar{q}_p\gamma^{\mu}\sigma^Iq_r)/TeV^2$	\mathbf{R}
DeltadcHq3	$(Y_d^{\dagger}Y_d)_{pr}(H^{\dagger}i\overleftrightarrow{D}_{\mu}^IH)(\bar{q}_p\gamma^{\mu}\sigma^Iq_r)/TeV^2$	\mathbf{R}
сНе	$(H^\dagger i \overrightarrow{D}_\mu H) (\overline{e}_p \gamma^\mu e_p) / TeV^2$	\mathbf{R}
cHu0	$(H^\dagger i \overrightarrow{D}_\mu H) (\bar{u}_{\slashed p} \gamma^\mu u_p) / TeV^2$	\mathbf{R}
DeltacHu	$(Y_u Y_{\underline{\psi}}^{\dagger})_{pr} (H^{\dagger} i \overleftrightarrow{D}_{\mu} H) (\bar{u}_p \gamma^{\mu} u_r) / TeV^2$	\mathbf{R}
cHd0	$(H^\dagger i \overrightarrow{D}_\mu H) (ar{d}_{\clip} \gamma^\mu d_p) / TeV^2$	\mathbf{R}
DeltacHd	$(Y_dY_d^\dagger)_{pr}(H^\dagger i \overleftrightarrow{D}_\mu H)(ar{d}_p \gamma^\mu d_r)/TeV^2$	\mathbf{R}
cHud0	$(Y_u Y_d^{\dagger})_{pr} (\tilde{i}H^{\dagger}D_{\mu}H)(\bar{u}_p \gamma^{\mu} d_r)/TeV^2 + hc$	\mathbf{R}
cll	$(\bar{\ell}_p \gamma_\mu \ell_p)(\bar{\ell}_r \gamma^\mu \ell_r)/TeV^2$	\mathbf{R}
cll1	$(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{\ell}_r \gamma^\mu \ell_p)/TeV^2$	\mathbf{R}
clq10	$(\bar{\ell}_p \gamma_\mu \ell_p)(\bar{q}_r \gamma^\mu q_r)/TeV^2$	\mathbf{R}
Deltauclq1	$(Y_{\underline{u}}^{\dagger}Y_{u})_{rs}(\bar{\ell}_{p}\gamma_{\mu}\ell_{p})(\bar{q}_{r}\gamma^{\mu}q_{s})/TeV^{2}$	R
Deltadclq1	$(Y_d^{\dagger}Y_d)_{rs}(ar{\ell}_p\gamma_{\mu}\ell_p)(ar{q}_r\gamma^{\mu}q_s)/TeV^2$	R
clq30	$(\bar{\ell}_p \gamma_\mu \sigma^I \ell_p)(\bar{q}_r \gamma^\mu \sigma^I q_r)/TeV^2$	R
Deltauclq3	$(Y_u^{\dagger}Y_u)_{rs}(\bar{\ell}_p\gamma_{\mu}\sigma^I\ell_p)(\bar{q}_r\gamma^{\mu}\sigma^Iq_s)/TeV^2$	R
Deltadclq3	$(Y_d^{\dagger}Y_d)_{rs}(\bar{\ell}_p\gamma_{\mu}\sigma^I\ell_p)(\bar{q}_r\gamma^{\mu}\sigma^Iq_s)/TeV^2$	R

WC name	Operator	Type
cqq10	$(\bar{q}_p\gamma_\mu q_p)(\bar{q}_r\gamma^\mu q_r)/TeV^2$	\mathbf{R}
Deltaucqq1	$(Y_u^{\dagger}Y_u)_{ps}(\bar{q}_p\gamma_{\mu}q_s)(\bar{q}_r\gamma^{\mu}q_r)/TeV^2$	${ m R}$
Deltadcqq1	$(Y_d^\dagger Y_d)_{ps} (\bar{q}_p \gamma_\mu q_s) (\bar{q}_r \gamma^\mu q_r) / TeV^2$	${ m R}$
cqq110	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_r\gamma^\mu q_p)/TeV^2$	\mathbf{R}
Deltaucqq11	$(Y_u^{\dagger}Y_u)_{ps}(\bar{q}_p\gamma_{\mu}q_r)(\bar{q}_r\gamma^{\mu}q_s)/TeV^2$	${ m R}$
Deltadcqq11	$(Y_d^{\dagger}Y_d)_{ps}(\bar{q}_p\gamma_{\mu}q_r)(\bar{q}_r\gamma^{\mu}q_s)/TeV^2$	${ m R}$
cqq30	$(\bar{q}_p \gamma_\mu \sigma^I q_p)(\bar{q}_r \gamma^\mu \sigma^I q_r)/TeV^2$	${ m R}$
Deltaucqq3	$(Y_u^{\dagger}Y_u)_{ps}(\bar{q}_p\gamma_{\mu}\sigma^Iq_s)(\bar{q}_r\gamma^{\mu}\sigma^Iq_r)/TeV^2$	${ m R}$
Deltadcqq3	$(Y_d^\dagger Y_d)_{ps} (ar q_p \gamma_\mu \sigma^I q_{ar s}) (ar q_r \gamma^\mu \sigma^I q_r) / TeV^2$	\mathbf{R}
cqq310	$(\bar{q}_p\gamma_\mu\sigma^Iq_r)(\bar{q}_r\gamma^\mu\sigma^Iq_p)/TeV^2$	${ m R}$
Deltaucqq31	$(Y_u^{\dagger}Y_u)_{ps}(\bar{q}_p\gamma_\mu\sigma^Iq_r)(\bar{q}_r\gamma^\mu\sigma^Iq_s)/TeV^2$	${ m R}$
Deltadcqq31	$(Y_d^{\dagger}Y_d)_{ps}(\bar{q}_p\gamma_{\mu}\sigma^Iq_r)(\bar{q}_r\gamma^{\mu}\sigma^Iq_s)/TeV^2$	${ m R}$
cee	$(\bar{e}_p\gamma_\mu e_p)(\bar{e}_r\gamma^\mu e_r)/TeV^2$	${ m R}$
cuu0	$(\bar{u}_p \gamma_\mu u_p)(\bar{u}_r \gamma^\mu u_r)/TeV^2$	R
Deltacuu	$(Y_uY_u^{\dagger})_{ps}(\bar{u}_p\gamma_{\mu}u_s)(\bar{u}_r\gamma^{\mu}u_r)/TeV^2$	R
cuu10	$(\bar{u}_p\gamma_\mu u_r)(\bar{u}_r\gamma^\mu u_p)/TeV^2$	R
Deltacuu1	$(Y_uY_u^{\dagger})_{ps}(\bar{u}_p\gamma_{\mu}u_r)(\bar{u}_r\gamma^{\mu}u_s)/TeV^2$	R
cdd0	$(\bar{d}_p \gamma_\mu d_p)(\bar{d}_r \gamma^\mu d_r)/TeV^2$	R
Deltacdd	$(Y_dY_d^{\dagger})_{ps}(ar{d}_p\gamma_{\mu}d_s)(ar{d}_r\gamma^{\mu}d_r)/TeV^2$	R
cdd10	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_r \gamma^\mu d_p)/TeV^2$	R
Deltacdd1	$(Y_dY_d^{\dagger})_{ps}(\bar{d}_p\gamma_{\mu}d_r)(\bar{d}_r\gamma^{\mu}d_s)/TeV^2$	R
ceu0	$(\bar{e}_p \gamma_\mu e_p)(\bar{u}_r \gamma^\mu u_r)/TeV^2$	R
Deltaceu	$(Y_u Y_u^{\dagger})_{rs} (\bar{e}_p \gamma_{\mu} e_p) (\bar{u}_r \gamma^{\mu} u_s) / TeV^2$	R
ced0	$(ar{e}_p\gamma_\mu e_p)(ar{d}_r\gamma^\mu d_r)/TeV^2$	R
Deltaced	$(Y_d Y_d^{\dagger})_{rs} (\bar{e}_{\underline{p}} \gamma_{\mu} e_p) (\bar{d}_r \gamma^{\mu} d_s) / TeV^2$	R
cud10	$(\bar{u}_p\gamma_\mu u_p)(\bar{d}_r\gamma^\mu d_r)/TeV^2$	R
Deltaucud1	$(Y_uY_u^{\dagger})_{ps}(\bar{u}_p\gamma_{\mu}u_s)(\bar{d}_r\gamma^{\mu}d_r)/TeV^2$	${ m R}$
Deltadcud1	$(Y_dY_d^\dagger)_{rs}(ar{u}_p\gamma_{\underline{\mu}}u_p)(ar{d}_r\gamma^{\mu}d_s)/TeV^2$	\mathbf{R}
cud80	$(\bar{u}_p\gamma_\mu T^A u_p)(\bar{d}_r\gamma^\mu T^A d_r)/TeV^2$	${ m R}$
Deltaucud8	$(Y_u Y_u^{\dagger})_{ps} (\bar{u}_p \gamma_{\mu} T^A u_s) (\bar{d}_r \gamma^{\mu} T^A d_r) / TeV^2$	\mathbf{R}
Deltadcud8	$(Y_d Y_d^{\dagger})_{rs} (\bar{u}_p \gamma_{\mu} T^A u_p) (\bar{d}_r \gamma^{\mu} T^A d_s) / TeV^2$	${ m R}$
cle	$(ar{\ell}_p \gamma_\mu \ell_p) (ar{e}_r \gamma^\mu e_r) / TeV^2$	${ m R}$
clu0	$(\bar{\ell_p}\gamma_\mu\ell_p)(\bar{u}_r\gamma^\mu u_r)/TeV^2$	${ m R}$
Deltaclu	$(Y_u Y_u^{\dagger})_{rs} (\bar{\ell}_p \gamma_{\mu} \ell_p) (\bar{u}_r \gamma^{\mu} u_s) / TeV^2$	${ m R}$
cld0	$(\bar{\ell}_p \gamma_\mu \ell_p)(\bar{d}_r \gamma^\mu d_r)/TeV^2$	${ m R}$
Deltacld	$(Y_d Y_d^{\dagger})_{rs} (\bar{\ell}_p \gamma_{\mu} \ell_p) (\bar{d}_r \gamma^{\mu} d_s) / TeV^2$	${ m R}$
cqe0	$(\bar{q}_p\gamma_\mu q_p)(\bar{e}_r\gamma^\mu e_r)/TeV^2$	${ m R}$
Deltaucqe	$(Y_u^\dagger Y_u)_{ps} (ar q_p \gamma_\mu q_s) (ar e_r \gamma^\mu e_r) / TeV^2$	${ m R}$
Deltadcqe	$(Y_d^\dagger Y_d)_{ps} (\bar{q}_p \gamma_\mu q_s) (\bar{e}_r \gamma^\mu e_r) / TeV^2$	R
cqu10	$(\bar{q}_p\gamma_\mu q_p)(\bar{u}_r\gamma^\mu u_r)/TeV^2$	\mathbf{R}
Delta1ucqu1	$(Y_u^\dagger Y_u)_{ps}(ar q_p\gamma_\mu q_s)(ar u_r\gamma^\mu u_r)/TeV^2$	R
Delta1dcqu1	$(Y_d^{\dagger} Y_d)_{ps} (\bar{q}_p \gamma_{\mu} q_s) (\bar{u}_r \gamma^{\mu} u_r) / TeV^2$	\mathbf{R}

WC name	Operator	Type
Delta2cqu1	$(Y_u Y_u^{\dagger})_{rs} (\bar{q}_p \gamma_\mu q_p) (\bar{u}_r \gamma^\mu u_s) / TeV^2$	R
cqu110	$(Y_u^{\dagger})_{pt}Y_{u,sr}(\bar{q}_p\gamma_{\mu}q_r)(\bar{u}_s\gamma^{\mu}u_t)/TeV^2$	R
cqu80	$(\bar{q}_p\gamma_\mu T^Aq_p)(\bar{u}_r\gamma^\mu T^Au_r)/TeV^2$	R
Delta1ucqu8	$(Y_u^{\dagger}Y_u)_{ps}(\bar{q}_p\gamma_{\mu}T^Aq_s)(\bar{u}_r\gamma^{\mu}T^Au_r)/TeV^2$	R
Delta1dcqu8	$(Y_d^{\dagger}Y_d)_{ps}(\bar{q}_p\gamma_{\mu}T^Aq_s)(\bar{u}_r\gamma^{\mu}T^Au_r)/TeV^2$	R
Delta2cqu8	$(Y_uY_u^{\dagger})_{rs}(\bar{q}_p\gamma_{\mu}T^Aq_p)(\bar{u}_r\gamma^{\mu}T^Au_s)/TeV^2$	R
cqu810	$(Y_u^{\dagger})_{pt}Y_{u,\underline{sr}}(\overline{q}_p\gamma_{\mu}T^{A}q_r)(\overline{u}_s\gamma^{\mu}T^{A}u_t)/TeV^2$	R
cqd10	$(\bar{q}_p\gamma_\mu q_p)(\bar{d}_r\gamma^\mu d_r)/TeV^2$	R
Delta1ucqd1	$(Y_u^\dagger Y_u)_{ps} (\bar{q}_p \gamma_\mu q_s) (\bar{d}_r \gamma^\mu d_r) / TeV^2$	R
Delta1dcqd1	$(Y_d^{\dagger}Y_d)_{ps}(ar{q}_p\gamma_{\mu}q_s)(ar{d}_r\gamma^{\mu}d_r)/TeV^2$	R
Delta2cqd1	$(Y_dY_d^{\dagger})_{rs}(ar{q}_p\gamma_{\mu}q_p)(ar{d}_r\gamma^{\mu}d_s)/TeV^2$	R
cqd110	$(Y_d^{\dagger})_{pt}Y_{d,sr}(\bar{q}_p\gamma_{\mu}q_r)(\bar{d}_s\gamma^{\mu}d_t)/TeV^2$	R
cqd80	$(ar{q}_p\gamma_\mu T^Aq_p)(ar{d}_r\gamma^\mu T^Ad_r)/TeV^2$	R
Delta1ucqd8	$(Y_u^{\dagger}Y_u)_{ps}(\bar{q}_p\gamma_{\mu}T^Aq_s)(\bar{d}_r\gamma^{\mu}T^Ad_r)/TeV^2$	R
Delta1dcqd8	$(Y_d^{\dagger}Y_d)_{ps}(\bar{q}_p\gamma_{\mu}T^Aq_s)(\bar{d}_r\gamma^{\mu}T^Ad_r)/TeV^2$	R
Delta2cqd8	$(Y_dY_d^{\dagger})_{rs}(\bar{q}_p\gamma_{\mu}T^Aq_p)(\bar{d}_r\gamma^{\mu}T^Ad_s)/TeV^2$	R
cqd810	$(Y_d^\dagger)_{pt} Y_{d,sr} (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) / TeV^2$	R
cledq0	$(Y_{l}^{\dagger})_{pr}Y_{d,st}(\bar{\ell}_{p}^{I}e_{r})(\bar{d}_{s}q_{t}^{I})/TeV^{2}+hc$	R
Deltaucledq	$(Y_l^{\dagger})_{pr}(Y_dY_u^{\dagger}Y_u)_{st}(\bar{\ell}_p^I e_r)(\bar{d}_s q_t^I)/TeV^2 + hc$	R
Deltadcledq	$(Y_l^\dagger)_{pr}(Y_dY_d^\dagger Y_d)_{st}(\bar{\hat{\ell}_p^I}e_r)(\bar{d}_sq_t^I)/TeV^2 + hc$	R
cquqd1	$(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I u_r)(\bar{q}_s^J d_t)\varepsilon_{IJ}/TeV^2 + hc$	R
cquqd11	$(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\hat{q_p^I}u_r)(\bar{q_s^J}d_t)\varepsilon_{IJ}/TeV^2 + hc$	R
cquqd8	$(Y_u^{\dagger})_{pr}(Y_d^{\dagger})_{st}(\bar{q}_p^I T^A u_r)(\bar{q}_s^J T^A d_t)\varepsilon_{IJ}/TeV^2 + hc$	\mathbf{R}
cquqd81	$(Y_u^{\dagger})_{sr}(Y_d^{\dagger})_{pt}(\hat{q_p^I}T^Au_r)(\bar{q}_s^JT^Ad_t)\varepsilon_{IJ}/TeV^2 + hc$	\mathbf{R}
clequ10	$(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\hat{\ell_p^I}e_r)(\bar{q}_s^Ju_t)\varepsilon_{IJ}/TeV^2 + hc$	\mathbf{R}
Deltauclequ1	$(Y_l^{\dagger})_{pr}(Y_u^{\dagger}Y_uY_u^{\dagger})_{st}(\bar{\ell}_p^Ie_r)(\bar{q}_s^Ju_t)\varepsilon_{IJ}/TeV^2 + hc$	\mathbf{R}
Deltadclequ1	$(Y_l^{\dagger})_{pr}(Y_d^{\dagger}Y_dY_u^{\dagger})_{st}(\bar{\ell}_p^{I}e_r)(\bar{q}_s^{J}u_t)\varepsilon_{IJ}/TeV^2 + hc$	R
clequ30	$(Y_l^{\dagger})_{pr}(Y_u^{\dagger})_{st}(\bar{\ell}_p^I\sigma_{\mu\nu}e_r)(\bar{q}_s^J\sigma^{\mu\nu}u_t)\varepsilon_{IJ}/TeV^2 + hc$	R
Deltauclequ3	$(Y_l^{\dagger})_{pr}(Y_u^{\dagger}Y_uY_u^{\dagger})_{st}(\bar{\ell}_p^I\sigma_{\mu\nu}e_r)(\bar{q}_s^J\sigma^{\mu\nu}u_t)\varepsilon_{IJ}/TeV^2 +$	R
	hc	
Deltadclequ3	$(Y_l^{\dagger})_{pr}(Y_d^{\dagger}Y_dY_u^{\dagger})_{st}(\bar{\ell}_p^I\sigma_{\mu\nu}e_r)(\bar{q}_s^J\sigma^{\mu\nu}u_t)\varepsilon_{IJ}/TeV^2 +$	R
	hc	