CONCOURS CENTRALE-SUPÉLEC

Mathématiques 2

MP

Dans l'énoncé, n désigne un entier naturel supérieur ou égal à 3 et N un entier naturel non nul.

Oral

Un jeu oppose n joueurs notés $J_1, ..., J_n$. Le jeu consiste à lancer N fois une pièce équilibrée. Avant les lancers, chaque joueur écrit une liste de prévisions pour les lancers. Les gagnants sont les joueurs ayant obtenu le plus grand nombre de prévisions correctes : ils se partagent alors la somme de S euros.

Dans la suite, on abrégera pile en P et face en F.

Par exemple, si N=3 et que les lancers donnent PPF, le joueur ayant prédit PFP aura une prévision correcte (l'ordre compte).

Pour $i \in [\![1,n]\!]$, on note X_i le nombre de prévisions correctes du joueur J_i et G_i son gain.

- 1. Dans cette question, on suppose que les joueurs choisissent leur prédiction au hasard indépendamment les uns des autres. On admet que dans ces conditions, les variables aléatoires X_i sont mutuellement indépendantes et de même loi.
 - a. Justifier que les variables G_i suivent la même loi. On ne demande pas de déterminer explicitement cette loi.
 - b. Justifier que l'espérance de G_i est $\frac{S}{n}$ quelque soit $i \in [\![1,n]\!]$
- 2. À l'aide de Python, écrire une fonction d'arguments n, N, S simulant une partie et renvoyant la liste des gains de chaque joueur. On pourra représenter pile par 0 et face par 1.

Calculer le gain moyen de chaque joueur à l'issue d'un grand nombre de parties.

À partir de maintenant, on suppose que les joueurs J_1 et J_2 adoptent la stratégie suivante. Le joueur J_1 effectue ses prédictions au hasard mais le joueur J_2 choisit les prévisions contraires de celles de J_1 . Par exemple, pour N=3, si J_1 choisit PFP, alors J_2 choisit FPF. Le reste des joueurs jouent indépendamment de J_1 et J_2 . On admet qu'alors les variables $X_1, X_3, ..., X_n$ sont mutuellement indépendantes de même que les variables $X_2, X_3, ..., X_n$. À l'issue du jeu, les joueurs J_1 et J_2 se partagent leurs gains éventuels. On pose $G'=G_1+G_2$ et $Y=\max(X_1,X_2)$.

- 3. Dans cette question, on suppose N impair et on notera p l'entier tel que N=2p+1.
 - a. Montrer que les X_i suivent tous la même loi que l'on précisera.

Dans la suite, on notera $q_k = P(X_i = k)$ et $\tau_k = P(X_i \le k)$.

- b. Préciser l'ensemble V des valeurs prises par Y.
- c. Soit $j \in [1, n-1]$ et $k \in V$. Calculer $P(G' = \frac{S}{j}, Y = ka)$ en fonction de q_k et τ_{k-1} .
- d. En déduire E(G'), E(G1) et E(G2). La stratégie adoptée par les joueurs J_1 et J_2 est-elle avantageuse ?
- 4. On se place dans les mêmes conditions que la **question 3** mais on suppose maintenant que N est pair. On notera p l'entier tel que N = 2p. Montrer que

$$E(G') = \frac{2S}{n-1}\left(1 - \frac{r_p^n}{nq_p} + \frac{r_{p-1}^n}{nq_p}\right)$$

La stratégie adoptée par les joueurs J_1 et J_2 est-elle à nouveau avantageuse ?

5. Reprendre la question 2 en tenant compte de la stratégie des joueurs J_1 et J_2 . Vérifier que les gains moyens sont cohérents avec les espérances calculées aux questions précédentes. On pourra utiliser la fonction factorial du module math qui renvoie la factorielle d'un entier.