#1 Spin Chairs 101 [A,B]= AB-BA. $\mathbb{Q} \ \mathcal{L}_{\alpha}^{\Omega} = \mathcal{C}_{\alpha}^{\Omega} \mathcal{C}_{\alpha}^{2\mu} \ \big[\mathcal{E}_{\alpha}^{L} \ \mathcal{E}_{\beta}^{L} \big] = \mathcal{C}_{\alpha}^{\Omega} \mathcal{E}_{\alpha}^{2\mu} \mathcal{E}_{\beta}^{L} \mathcal{E}_{\alpha}^{2\mu} - \mathcal{E}_{\beta}^{L} \mathcal{E}_{\alpha}^{2\mu} \mathcal{E}_{\alpha}^{2\mu} \mathcal{E}_{\alpha}^{2\mu} = \underbrace{\underline{\underline{\underline{L}}}}_{\partial L} \otimes \mathcal{E}_{\alpha} \mathcal{E}_{\alpha} \otimes \mathcal{E}_{\alpha}$ - I BEER EE BI (1) d= b =) (e_d) = I = I = I = V (1) 0+10 (0+ Q.G.=C. (2+0/6) =) C.G.= C. (Q.G.=-C. $\left(\left(\mathcal{L}_{\alpha}^{3}, \mathcal{L}_{1}^{3} \right) = 0 \right)$

=) [22, 26]= [@ 6, @ 6, @ [@ [...] - I @ (-6, /@ (-6,) @ [...]

(D) [2, 2, 2,] = 6, 62, 62, 64 645 - 64 645 61 64 = [0,1,8 6,8 6,8 6,8 0 I - I 00,1 8 6,8 6,8 8 I " MM ALO

[6,6)=2,6

: [S_x (S_3h) to

#2 Schoolner dranter

 $S(G) = G_{eff} S(G) \qquad \overline{S(G)} = \frac{1}{G} \left(\frac{1}{G_{eff}} \right) S(G) = \left(\frac{1}{G_{eff}} \frac{1}{G_{eff}} \right) \frac{1}{G_{eff}} S(G) = \left(\frac{1}{G_{eff}} \frac{1}{G_{eff}} \frac{1}{G_{eff}} \right) \frac{1}{G_{eff}} S(G) = \left(\frac{1}{G_{eff}} \frac{1}{G_{eff$

= (\sum_{\infty} \frac{\alpha_{\infty}}{\psi_{\infty}} \frac{\alpha_{\infty}}{\sum_{\infty}} \frac{\alpha_{\infty}}{\sum_{\infty}}} \frac{\alpha_{\infty}}{\sum_{\infty}} \frac{\alpha_{\infty}}{\sum_{\infty}} \frac{\alpha_{\infty}}{\sum_{\infty}} \frac{\alpha_

(a) O AB=RA \Rightarrow $e^{A}e^{B} = \left(\sum_{n=1}^{\infty} \frac{A^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{B^{n}}{n!}\right)$

 $= 6_{\text{H}} 6_{\text{B}} = 6_{\text{HB}}$

3 5X5 MOGYX

$$A = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad B = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = \begin{cases} 0 \\ 0 \\ 0 \end{cases} \quad (A,B) = (AB - BA) = (AB$$

$$\forall tB = X \qquad \forall z = \begin{bmatrix} 00 \\ 0 \end{bmatrix} \begin{bmatrix} 00 \\ 0 \end{bmatrix} = 0 \qquad \forall z = \begin{bmatrix} 0 \\ 00 \end{bmatrix} \begin{bmatrix} 0 \\ 00 \end{bmatrix} = 0$$

$$\begin{cases}
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A} = E + A \\
e^{A} = (A + A \frac{A}{A})^{A}$$

N trother time, 2 July for cod step 3 depth 2

 $|(t)| \leq \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u) = \left(\frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)\right)_{u} \qquad \frac{1}{U} \mathcal{B}_{2}(\Theta \setminus u)$

I for each gulit (J), gulit undergoes gate I+th, Ith.

=> depth 2. ===2

#4 Staggered Magnetization

 $0 = \sum_{x} \lambda_{x}(1x \times x)$ let $149 = \sum_{x} \alpha_{x}(x)$, $p_{x} = (\alpha q)^{2} = (\beta_{x})^{2}$ $0 = \sum_{x} \lambda_{x}(1x \times x)$. Therefore, 0 on be represented by spectral decomposition with least eigenvalue λ_{x} .

 $\langle \psi | \phi | \psi \rangle = \langle \psi | \sum_{k} \lambda_{k} (x x x x) | \psi \rangle = \sum_{k} \lambda_{k} \langle \psi | x \rangle \langle x | \psi \rangle = \sum_{k} \lambda_{k} | \langle x | \psi \rangle |^{2} = \sum_{k}$

Test Pass

I housed for you fort-NXS() to fort-X65m-englypuc)