

What means "Estimation"?

- A sender transmits a signal $s_{\Theta}(t)$ which depends on an **unknown** parameter Θ
- ▶ The signal is affected by noise, we receive $r(t) = s_{\Theta}(t) + noise$
- We want to find out the correct value of the parameter
 - based on samples from the received signal, or the full continuous signal
 - available data is noisy => we "estimate" the parameter
- ▶ The found value is $\hat{\Theta}$, **the estimate** of Θ ("estimatul", rom)
 - lacktriangle there will always be some estimation error $\epsilon = \hat{\Theta} \Theta$
- Examples:
 - ▶ Unknown amplitude of constant signal: r(t) = A + noise, estimate A
 - Unknown phase of sine signal: $r(t) = \cos(2\pi f t + \phi)$, estimate ϕ
 - ► Record speech signal, estimate/decide what word is pronounced

Estimation vs Decision

- ▶ Consider the following estimation: r(t) = A + noise, estimate A
- For detection, we have to choose between **two known values** of *A*:
 - ▶ i.e. A can be 0 or 5 (hypotheses H_0 and H_1)
- ► For estimation, A can be anything => we choose between **infinite number of options** for A:
 - ightharpoonup A might be any value in \mathbb{R} , in general

Estimation vs Decision

- ▶ Detection = Estimation constrained to only a few discrete options
- ▶ Estimation = Detection with an infinite number of options available
- The statistical methods used are quite similar
 - In practice, distinction between Estimation and Detections is somewhat blurred
 - (e.g. when choosing between 1000 hypotheses, do we call it "Detection" or "Estimation"?)

Available data

- ▶ The available data is the received signal r(t)
 - lacktriangle affected by noise, and depending on the unknown Θ
- ▶ We consider **N** samples from r(t), taken at some sample times t_i

$$\mathbf{r} = [r_1, r_2, ... r_N]$$

- ightharpoonup Each sample r_i is a random variable that depends on Θ (and the noise)
 - Each sample has a distribution that depends on Θ

$$w_i(r_i;\Theta)$$

- ▶ The whole sample vector \mathbf{r} is a N-dimensional random variable that depends on Θ (and the noise)
 - \triangleright It has a N-dimensional distribution that depends on Θ

$$w(\mathbf{r};\Theta)$$

Likelihood function

- ▶ In an estimation problem:
 - r is known
 - Θ is unknown
- ▶ We want to estimate Θ based on \mathbf{r} , so we are interested in the following function:

$$L(\Theta) = w(\Theta|\mathbf{r})$$

▶ This is the likelihood (distribution / probability) of Θ , for a given known \mathbf{r}

Bayes rule

▶ In general, we can use the Bayes rule

$$L(\Theta) = w(\Theta|\mathbf{r}) = \frac{w(\mathbf{r}|\Theta) \cdot w(\Theta)}{w(\mathbf{r})}$$

- Explanation of the terms:
 - Θ is the unknown parameter
 - **r** are the observations that we have
 - ▶ $L(\Theta) = w(\Theta|\mathbf{r})$ is the likelihood of Θ , given our current observations;
 - $\mathbf{w}(\mathbf{r}|\Theta)$ is the "normal" probability of \mathbf{r} for a given Θ , given by the noise distribution
 - \blacktriangleright $w(\Theta)$ is the **prior** distribution of Θ , i.e. what we know about Θ even in the absence of evidence
 - $\mathbf{w}(\mathbf{r})$ is the prior distribution of \mathbf{r} , it is assumed constant

Bayes rule

- ▶ The previous relation is rather complex
- It shows that our estimation of Θ depends on two things:
 - 1. The observations that we have, via the term $w(\mathbf{r}|\Theta)$
 - 2. The prior knowledge (or prior belief) about Θ , via the term $w(\Theta)$

(the third term $w(\mathbf{r})$ is considered a constant, and plays no significant role)

Two types of estimation

- \blacktriangleright We consider estimating a parameter Θ under two circumstances:
- 1. No distribution is known about the parameter, except maybe some allowed range (e.g. $\Theta > 0$)
 - ▶ The parameter can be any value in the allowed range, equally likely
 - We treat $w(\Theta)$ as a constant
- 2. We know a distribution $p(\Theta)$ for Θ , which tells us the values of Θ that are more likely than others
 - this is known as a priori (or prior) distribution (i.e. "known beforehand")

II.2 Maximum Likelihood estimation

Maximum Likelihood definition

- ▶ When no distribution is known about the parameter, we use a method known as Maximum Likelihood estimation (MLE)
- ▶ We treat $w(\Theta)$ as a constant, so that the likelihood function becomes:

$$L(\Theta) = w(\mathbf{r}|\Theta) \cdot constant$$

Maximum Likelihood definition

Maximum Likelihood (ML) Estimation:

- The estimate Ô is the value that maximizes the likelihood of the observed data
 - ▶ i.e. the value Θ that maximizes $L(\Theta) = w(\mathbf{r}; \Theta)$

$$\hat{\Theta} = \arg\max_{\Theta} \mathit{L}(\Theta) = \arg\max_{\Theta} \mathit{w}(\mathbf{r}|\Theta)$$

▶ If Θ is allowed to live only in a certain range, restrict the maximization only to that range.

How to solve

- How to solve the maximization problem?
 - i.e. how to find the estimate Θ which maximizes $L(\Theta)$
- Find maximum by setting derivative to 0

$$\frac{dL(\Theta)}{d\Theta}=0$$

 We can also maximize natural logarithm of the likelihood function ("log-likelihood function")

$$\frac{d\ln\left(L(\Theta)\right)}{d\Theta}=0$$

Solving procedure

Solving procedure:

1. Find the function

$$L(\Theta) = w(\mathbf{r}|\Theta)$$

2. Set the condition that derivative of $L(\Theta)$ or $ln((L(\Theta)))$ is 0

$$\frac{dL(\Theta)}{d\Theta} = 0$$
, or $\frac{d\ln(L(\Theta))}{d\Theta} = 0$

- 3. Solve and find the value $\hat{\Theta}$
- 4. Check that second derivative at point $\hat{\Theta}$ is negative, to check that point is a maximum
 - because derivative = 0 for both maximum and minimum points

Examples:

Estimating a constant signal in gaussian noise:

- ► Find the ML estimate of a constant value A from 5 noisy measurements $r_i = A + noise$ with values [5, 7, 8, 6.1, 5.3]. The noise is AWGN $\mathcal{N}(\mu = 0, \sigma^2)$.
- ► Solution: at whiteboard.
- ightharpoonup The estimate \hat{A} is the average value of the samples (not surprisingly)

/home/ncleju/.local/bin/pweave:5: UserWarning: In Matplotlib individual lines on a stem plot will be added as a LineCollectinstead of individual lines. This significantly improves the performance of a stem plot. To remove this warning and switch new behaviour, set the "use_line_collection" keyword argument

Curve fitting

- ► Estimation = curve fitting
- From the previous graphical example:
 - we have some data r
 - ▶ we know the shape of the signal = a line (constant A)
 - we're fitting the best line through the data

- ▶ Consider that the true underlying signal is $s_{\Theta}(t)$
- ► Consider AWGN noise $\mathcal{N}(\mu = 0, \sigma^2)$.
- ▶ The samples r_i are taken at sample moments t_i
- ► The samples r_i have normal distribution with average $s_{\Theta}(t_i)$ and variance σ^2
- lacktriangle Overall likelihood function = product of likelihoods for each sample r_i

$$L(\Theta) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(r_i - s_{\Theta}(t_i))^2}{2\sigma^2}}$$
$$= \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2}}$$

► The log-likelihood is

$$\ln(L(\Theta)) = \underbrace{\ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right)}_{constant} - \frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2}$$

▶ The maximum of the function = the minimum of the exponent

$$\hat{\Theta} = rg \max_{\Theta} w(r; \Theta) = rg \min \sum (r_i - s_{\Theta}(t_i))^2$$

► The term $\sum (r_i - s_{\Theta}(t_i))^2$ is the **squared distance** $d(\mathbf{r}, s_{\Theta})$

$$d(\mathbf{r}, s_{\Theta}) = \sqrt{\sum (r_i - s_{\Theta}(t_i))^2}$$

$$(d(\mathbf{r}, s_{\Theta}))^2 = \sum (r_i - s_{\Theta}(t_i))^2$$

ML estimation can be rewritten as:

$$\hat{\Theta} = \arg\max_{\Theta} w(r; \Theta) = \arg\min d(\mathbf{r}, \mathbf{s}_{\Theta})^2$$

- ▶ ML estimate $\hat{\Theta}$ = the value that makes $s_{\Theta}(t_i)$ closest to the received values r
 - closer = more likely
 - closest = most likely = maximum likelihood
- ▶ ML estimation = minimization of distance
- ► True for all kinds of vector spaces
 - vectors with N elements, continous signals, etc
 - just change the definition of the distance function

► Find maximum by setting derivative to 0

$$\frac{d\ln\left(L(\Theta)\right)}{d\Theta}=0$$

means

$$\sum (r_i - s_{\Theta}(t_i)) \frac{ds_{\Theta}(t_i)}{d\Theta} = 0$$

Estimating the frequency f of a cosine signal

- Find the Maximum Likelihood estimate of the frequency f of a cosine signal, from 10 noisy measurements $r_i = cos(2\pi ft_i) + noise$ with values [...]. The noise is AWGN $\mathcal{N}(\mu = 0, \sigma^2)$. The sample times $t_i = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]$
- Solution: at whiteboard.

The likelihood function is:

/home/ncleju/.local/bin/pweave:15: UserWarning: In Matplotlib individual lines on a stem plot will be added as a LineCollect instead of individual lines. This significantly improves the performance of a stem plot. To remove this warning and switch new behaviour, set the "use_line_collection" keyword argument True frequency = 0.070000, Estimate = 0.071515

ML Estimation and ML Detection

- ▶ In ML Estimation, the estimate $\hat{\Theta}$ is the value that maximizes the likelihood function
- ▶ In ML Detection, the decision criterion $\frac{w(r|H_1)}{w(r|H_0)} \stackrel{H_1}{\gtrless} 1$ means "choose the hypothesis that maximizes the likelihood function".
- ▶ Therefore it is the same principle, merely in a different context:
 - ▶ in Detection we are restricted to a few predefined options
 - ▶ in Estimation we are unrestricted => choose the maximizing value

Loss function

- ► The distance $d(\mathbf{r}, \mathbf{s}_{\Theta})$ is known as the "loss function" in machine learning terminology
 - ▶ the Euclidean distance = the "Mean Squared Error" (MSE) loss function
- ► For a given **r**, the MSE loss = $\frac{1}{N}d(\mathbf{r},\mathbf{s}_{\Theta})$
- Other loss functions are used in different scenarios

Multiple parameters

- What if we have more than one parameter?
 - e.g. unknown parameters are the amplitude, frequency and the initial phase of a cosine:

$$s_{\uparrow}(t) = A\cos(2\pi f t + \phi)$$

ightharpoonup We can consider the parameter Θ to be a vector:

$$\boldsymbol{\Theta} = [\Theta_1, \Theta_2, ... \Theta_M]$$

▶ e.g. $\Theta = [\Theta_1, \Theta_2, \Theta_3] = [A, f, \phi]$

Gradient Descent

- ightharpoonup How to estimate the parameters Θ in complicated cases?
 - e.g. in real life applications
 - usually there are many parameters (Θ is a vector)
- Typically it is impossible to get the optimal values directly
- Improve them iteratively with Gradient Descent algorithm or its variations

Gradient Descent procedure

- 1. Start with some random parameter values $\Theta^{(0)}$
- 2. Repeat for each iteration k:
 - 2.1 Compute loss value $L(\Theta^{(k)})$
 - 2.2 Compute derivative $\frac{\partial L}{\partial \Theta^{(k)}}$ for each Θ_i
 - 2.3 Update all values Θ_i by subtracting the derivative

$$\Theta_i^{(k+1)} = \Theta_i^{(k)} - \mu \frac{\partial L}{\partial \Theta_i^{(k)}}$$

or, in vector form:

$$\mathbf{\Theta}^{(k+1)} = \mathbf{\Theta}^k - \mu \frac{\partial L}{\partial \mathbf{\Theta}^{(k)}}$$

3. Until termination criterion (e.g. parameters don't change much)

Gradient Descent explained

- Explanations at blackboard
- ► Simple example: logistic regression on 2D-data
 - maybe do example at blackboard

Neural Networks

- ► The most prominent example is **Artificial Neural Networks** (a.k.a. Neural Networks, Deep Learning, etc.)
 - ► Can be regarded as ML estimation
 - Use loss function (typically not MSE, but others)
 - ► Use Gradient Descent to update parameters
 - State-of-the-art applications: image classification/recognition, automated driving etc.
- ▶ More info on neural networks / machine learning:
 - look up online courses, books (e.g. prof. Iulian Ciocoiu's book)
 - ▶ join the IASI AI Meetup

Prior distribution

- Suppose we know beforehand a distribution of Θ , $w(\Theta)$
 - we know beforehand how likely it is to have a certain value
 - known as a priori distribution or prior distribution
- ▶ The estimation must take it into account
 - the estimate will be slightly "moved" towards more likely values
- Known as "Bayesian estimation"
 - ► Thomas Bayes = discovered the Bayes rule
 - Stuff related to Bayes rule are often named "Bayesian"

Cost function

▶ The **estimation error** is the difference between the estimate $\hat{\Theta}$ and the true value Θ

$$\epsilon = \hat{\Theta} = \Theta$$

- ▶ The **cost function** $C(\epsilon)$ assigns a cost to each possible estimation error
 - when $\epsilon = 0$, the cost C(0) = 0
 - ightharpoonup small errors ϵ have small costs
 - large errors ϵ have large costs
- Usual types of cost functions:
 - Quadratic: $C(\epsilon) = \epsilon^2 = (\hat{\Theta} \Theta)^2$
 - ▶ Uniform ("hit or miss"): $C(\epsilon) = \begin{cases} 0, & \text{if } |\epsilon| = |\hat{\Theta} \Theta| \leq E \\ 1, & \text{if } |\epsilon| = |\hat{\Theta} \Theta| > E \end{cases}$
 - ▶ Linear: $C(\epsilon) = |\epsilon| = |\hat{\Theta} \Theta|$
 - draw them at whiteboard

The Bayesian risk

- For each pair of values \mathbf{r} and Θ , $w(\mathbf{r}; \Theta)$ tells us how likely it is to have them
- ▶ Multiplying with $C(\epsilon \text{ gives us the cost, for each } \mathbf{r} \text{ and } \Theta$

$$C(\epsilon)w(\mathbf{r};\Theta)$$

ightharpoonup Integrating over Θ gives the cost for a certain ${f r}$

$$\int_{-\infty}^{\infty} C(\epsilon) w(\mathbf{r};\Theta) d\Theta$$

ightharpoonup Further integrating also over ${f r}$ gives the global cost for all ${f r}$ and all Θ

$$R = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C(\epsilon) w(\mathbf{r}; \Theta) d\Theta d\mathbf{r}$$

Minimizing the risk

- We want to minimize the risk R
- ▶ Bayes rule: $w(\mathbf{r}; \Theta) = w(\Theta|\mathbf{r})w(\mathbf{r})$
- ► Replacing in R, we obtain

$$R = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C(\epsilon) w(\Theta | \mathbf{r}) w(\mathbf{r}) d\Theta d\mathbf{r}$$
$$= \int_{-\infty}^{\infty} w(\mathbf{r}) \left[\int_{-\infty}^{\infty} C(\epsilon) w(\Theta | \mathbf{r}) d\Theta \right] d\mathbf{r}$$

▶ Since $w(\mathbf{r}) \ge 0$, minimizing the inner integral will minimize R

$$I = \int_{-\infty}^{\infty} C(\epsilon) w(\Theta | \mathbf{r}) d\Theta$$

- lacktriangle Next, we'll replace $C(\epsilon)$ with its definition and derivate over $\hat{\Theta}$
 - ► Attention: $\hat{\Theta}$, not Θ !

MMSE estimator

• When the cost function is quadratic $C(\epsilon) = \epsilon^2 = (\hat{\Theta} - \Theta)^2$

$$I = \int_{-\infty}^{\infty} (\hat{\Theta} - \Theta)^2 w(\Theta | \mathbf{r}) d\Theta$$

▶ We want the $\hat{\Theta}$ that minimizes I, so we derivate

$$\frac{dI}{d\hat{\Theta}} = 2 \int_{-\infty}^{\infty} (\hat{\Theta} - \Theta) w(\Theta | \mathbf{r}) d\Theta = 0$$

Equivalent to

$$\hat{\Theta} \underbrace{\int_{-\infty}^{\infty} w(\Theta | \mathbf{r})}_{1} d\Theta = \int_{-\infty}^{\infty} \Theta w(\Theta | \mathbf{r}) d\Theta$$

▶ The Minimum Mean Squared Error (MMSE) estimator is

$$\hat{\Theta} = \int_{-\infty}^{\infty} \Theta \cdot w(\Theta|\mathbf{r}) d\Theta$$

Interpretation

- $\mathbf{w}(\Theta|\mathbf{r})$ is the **posterior** (or a **posteriori**) distribution
 - \triangleright it is the distribution of Θ after we know the data we received
 - ightharpoonup the prior distribution $w(\Theta)$ is the one before knowing any data
- ► The MMSE estimation is the average value of the posterior distribution

The MAP estimator

▶ When the cost function is uniform

$$C(\epsilon) = \begin{cases} 0, & \text{if } |\epsilon| = |\hat{\Theta} - \Theta| \le E \\ 1, & \text{if } |\epsilon| = |\hat{\Theta} - \Theta| > E \end{cases}$$
\$\$\text{begin}\{\text{split}\}

- Keep in mind that $\Theta = \hat{\Theta} \epsilon$
- ► We obtain

$$egin{aligned} I &= \int_{-\infty}^{\hat{\Theta}-E} w(\Theta|\mathbf{r})d\Theta + \int_{T\hat{he}ta+E}^{\infty} w(\Theta|\mathbf{r})d\Theta \ I &= 1 - \int_{\hat{\Theta}-E}^{\hat{\Theta}+E} w(\Theta|\mathbf{r})d\Theta \end{aligned}$$

The MAP estimator

- ► To minimize I, we must maximize $\int_{\hat{\Theta}-E}^{\hat{\Theta}+E} w(\Theta|\mathbf{r})d\Theta$, the integral around point $\hat{\Theta}$
- ▶ For E a very small, the function $w(\Theta|\mathbf{r})$ is approximately constant, so we pick the point where the function is maximum
- ► The Maximum A Posteriori (MAP) estimator is

$$\hat{\Theta} = \arg\max w(\Theta|\mathbf{r})$$

- arg max = "the value which maximizes the function"
 - ightharpoonup max f(x) = the maximum value of a function
 - ightharpoonup arg max f(x) =the x for which the function reaches its maximum

Interpretation

- The MAP estimator chooses Θ as the value where the posterior distribution is maximum
- The MMSE estimator chooses Θ as average value of the posterior distribution

Figure 1: MAP vs MMSE estimators

Finding the posterior distribution

- ▶ That's cool, but how do we find this posterior distribution $w(\Theta|\mathbf{r})$?
- Use the Bayes rule

$$w(\Theta|\mathbf{r}) = \frac{w(\mathbf{r};\Theta)}{w(\mathbf{r})} = \frac{w(\mathbf{r}|\Theta) \cdot w(\Theta)}{w(\mathbf{r})}$$

Since $w(\mathbf{r})$ is constant for a given \mathbf{r} the MAP estimator is

$$\hat{\Theta} = \operatorname{arg\,max} w(\Theta|\mathbf{r}) = \operatorname{arg\,max} w(\mathbf{r}|\Theta)w(\Theta)$$

- ► The MAP estimator is the one which **maximizes** the likelihood of the observed data, **but multiplying with the prior distribution** $w(\Theta)$
- ▶ The MMSE estimator is the average of the same thing

Relation with Maximum Likelihood Estimator

- ▶ The ML estimator was just arg max $w(\mathbf{r}|\Theta)$
- ► The MAP estimator = like the ML estimator but multiplied with the prior distribution $w(\Theta)$
- ▶ If $w(\Theta)$ is a constant, the MAP estimator reduces to ML
 - \triangleright $w(\Theta) = \text{constant means all values } \Theta \text{ are equally likely}$
 - ightharpoonup i.e. we don't have a clue where the real Θ might be
- ► The MMSE estimator = like MAP, but don't take the *argmax* of the function, but its average value

Relation with Detection

- ▶ The minimum probability of error criterion $\frac{w(r|H_1)}{w(r|H_0)} \stackrel{H_1}{\gtrless} \frac{P(H_0)}{P(H_1)}$
- ▶ It can be rewritten as $w(r|H_1) \cdot P(H_1) \stackrel{H_1}{\underset{H_0}{\gtrless}} w(r|H_0)P(H_0)$
 - ▶ i.e. choose the hypothesis where $w(r|H) \cdot P(H)$ is maximum
 - \triangleright $w(r|H_1)$, $w(r|H_0)$ are the likelihood of observed data
 - \triangleright $P(H_1)$, $P(H_0)$ are the prior probabilities (known beforehand)
- ▶ The MAP estimator is where $w(\mathbf{r}|\Theta)w(\Theta)$ is maximum
 - $\mathbf{w}(\mathbf{r}|\Theta)$ is the likelihood of observed data
 - \blacktriangleright $w(\Theta)$ is the prior distribution (known beforehand)
- Therefore it is the same principle, merely in a different context:
 - ▶ in Detection we are restricted to a few predefined options
 - in Estimation we are unrestricted => choose the maximizing value of the whole function

2018-2019 Exam

▶ Chapter ends here for 2018-2019 exam. Following slides not needed.

Exercise

Exercise: constant value, 3 measurement, Gaussian same σ

- ▶ We want to estimate today's temperature in Sahara
- Our thermometer reads 40 degrees, but the value was affected by Gaussian noise $\mathcal{N}(0, \sigma^2 = 2)$ (crappy thermometer)
- We know that this time of the year, the temperature is around 35 degrees, with a Gaussian distribution $\mathcal{N}(35, \sigma^2 = 2)$.
- Estimate the true temperature using ML, MAP and MMSE estimators

Exercise

Exercise: constant value, 3 measurements, Gaussian same σ

▶ What if he have three thermometers, showing 40, 38, 41 degrees

Exercise: constant value, 3 measurements, Gaussian different σ

- What if the temperature this time of the year has Gaussian distribution $\mathcal{N}(35, \sigma_2^2 = 3)$
 - different variance, $\sigma_2 \neq \sigma$

General signal in AWGN

- ▶ Consider that the true underlying signal is $s_{\Theta}(t)$
- ► Consider AWGN noise $\mathcal{N}(\mu = 0, \sigma^2)$.
- As in Maximum Likelihood function, overall likelihood function

$$w(\mathbf{r}|\Theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{\sum(r_i - s_\Theta(t_i))^2}{2\sigma^2}}$$

▶ But now this function is also **multiplied with** $w(\Theta)$

$$w(\mathbf{r}|\Theta) \cdot w(\Theta)$$

General signal in AWGN

▶ MAP estimator is the argument that maximizes this product

$$\hat{\Theta}_{MAP} = \arg\max w(\mathbf{r}|\Theta)w(\Theta)$$

Taking logarithm

$$\begin{split} \hat{\Theta}_{MAP} &= \arg\max \ln \left(w(\mathbf{r}|\Theta) \right) + \ln \left(w(\Theta) \right) \\ &= \arg\max - \frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2} + \ln \left(w(\Theta) \right) \end{split}$$

Gaussian prior

▶ If the prior distribution is also Gaussian $\mathcal{N}(\mu_{\Theta}, \sigma_{\Theta}^2)$

$$\ln(w(\Theta)) = -\frac{\sum(\Theta - \mu_{\Theta})^2}{2\sigma_{\Theta}^2}$$

MAP estimation becomes

$$\hat{\Theta}_{MAP} = \arg\min \frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2} + \frac{\sum (\Theta - \mu_{\Theta})^2}{2\sigma_{\Theta}^2}$$

Can be rewritten as

$$\hat{\Theta}_{MAP} = \arg\min d(\mathbf{r}, s_{\Theta})^2 + \underbrace{\frac{\sigma^2}{\sigma_{\Theta}^2}}_{\lambda} \cdot d(\Theta, \mu_{\Theta})^2$$

Interpretation

MAP estimator with Gaussian noise and Gaussian prior

$$\hat{\Theta}_{MAP} = \arg\min d(\mathbf{r}, s_{\Theta})^2 + \underbrace{\frac{\sigma^2}{\sigma_{\Theta}^2}}_{\lambda} \cdot d(\Theta, \mu_{\Theta})^2$$

- $\hat{\Theta}_{MAP}$ is close to its expected value μ_{Θ} and it makes the true signal close to received data ${\bf r}$
 - Example: "search for a house that is close to job and close to the Mall"
 - $ightharpoonup \lambda$ controls the relative importance of the two terms
- Particular cases
 - σ_{Θ} very small = the prior is very specific (narrow) = λ large = second term very important = $\hat{\Theta}_{MAP}$ close to μ_{Θ}
 - σ_{Θ} very large = the prior is very unspecific = λ small = first term very important = $\hat{\Theta}_{MAP}$ close to ML estimation

Applications

- ▶ In general, practical applications:
 - can use various prior distributions
 - estimate multiple parameters (a vector of parameters)
- Applications
 - denoising of signals
 - signal restoration
 - signal compression

Estimator bias

- ► How good is an estimator?
 - Many ways to characterize
- ightharpoonup An estimator $\hat{\Theta}$ is a **random variable**
 - can have different values, because it is computed based on the received samples, which depend on noise
 - example: in lab, try on multiple computers => slightly different results
- As a random variable, it has:
 - ightharpoonup an average value (expected value): $E\left\{\hat{\Theta}\right\}$
 - ▶ a variance: $E\left\{(\hat{\Theta} \Theta)^2\right\}$

Estimator bias

▶ **Unbiased** estimator = if the average value of the estimator is the true value of Θ

$$E\left\{ \hat{\Theta}\right\} =\Theta$$

- ▶ Biased estimator = if the average value of the estimator is different from the true value Θ
 - ▶ the difference $E\left\{\hat{\Theta}\right\} \Theta$ is called **the bias** of the estimator

Estimator bias

- Example: for constant signal A with AWGN noise (zero-mean), ML estimator is $\hat{A}_{ML} = \frac{1}{N} \sum_{i} r_{i}$
- ► Then:

$$E\left\{\hat{A}_{ML}\right\} = \frac{1}{N}E\left\{\sum_{i} r_{i}\right\}$$

$$= \frac{1}{N}\sum_{i=1}^{N}E\left\{r_{i}\right\}$$

$$= \frac{1}{N}\sum_{i=1}^{N}E\left\{A + noise\right\}$$

$$= \frac{1}{N}\sum_{i=1}^{N}A$$

$$= A$$

This estimator in unbiased

Estimator variance

- ▶ Unbiased estimators are good, but if the **variance** of the estimator is large, then estimated values can be far from the true value
- ► We prefer estimators with **small variance**, even if maybe slightly biased