Statistical hypothesis testing

Why hypothesis testing?

Q: If Accuracy(A) > Accuracy(B), can we conclude that classifier A is better than B?

A: No, not necessarily. Only if the difference between Accuracy(A) and Accuracy(B) is unlikely to arise by chance.

Hypothesis testing

We have a hypothesis H that we wish to show is true. (H = "There is a difference between A and B")

We have a statistic *M* that measures the difference between A and B, and we have measured a value *m* of *M* in our data. But *m* itself doesn't tell us whether H is true or false.

Instead, we estimate how likely m were to arise if the opposite of H (= the 'null hypothesis', H_o) was true. (H_o = "There is no difference between A and B"). If $P(M \ge m \mid H_o) < p$, we can *reject* H_owith p-value p

Rejecting

- Ho defines a distribution $P(M | H_0)$ over some statistic M(e.g. M = the difference in accuracy between A and B)
- Select a significance value S (e.g. 0.05, 0.01, etc.) You can only reject H_0 if $P(M=m | H_0) \le S$
- Compute the test statistic *m* from your data e.g. the average difference in accuracy over N folds
- Compute $P(M \ge m \mid H_0)$
- Reject H_o with p-value $p \le S$ if $P(M \ge m \mid H_o) \le S$ Caveat: the p-value corresponds to $P(m \mid H_o)$, not $P(H_o \mid m)$

p-Values

Commonly used *p*-values are:

- 0.05: There is a 5% (1/20) chance to get the observed results under the null hypothesis.

Corollary: If you run 20 or more experiments, at least one of them will yield results that fall in the "statistically significant range" with p=0.05, even if the null hypothesis is actually true.

- 0.01: There is a 1% (1/100) chance to get the observed results under the null hypothesis.

Null hypothesis

Null hypothesis:

We assume the data comes from a (normal) distribution $P(M \mid H_0)$ with mean μ =0 and (unknown) variance σ^2/N .

From the data (sample) $X = \{x^1...x^N\}$, we compute the **sample mean** $m = \sum_i x^i/N$

How likely is it that m came from $P(M|H_o)$?

For m₁: very likely. For m₂: pretty unlikely

Confidence intervals

One-tailed test:

Test whether the accuracy of A is higher than B with probability p

Two-tailed test:

Test whether the accuracies of A and B are different (lower or higher) with probability *p*This is the stricter test.

Confidence intervals

One-tailed test:

We fail to reject H_0 if m is inside the asymmetric 100(1-p) percent confidence interval ($-\infty$, a)

Two-tailed test:

We fail to reject H_0 if m lies in the symmetric 100(1-p)

percent confidence interval (-a, $\pm a$) around the mean. p=0.05%; Confidence 95% p=0.05%; Confidence 95%

Hypothesis tests to evaluate classifiers

Paired t-test:

Compare the performance of two classifiers on N test sets (e.g. N-fold cross-validation). Uses the t-statistic to compute confidence intervals.

N-fold cross validation: Paired t-test

N-fold cross validation

Instead of a single test-training split:

train test

- Split data into N equal-sized parts

- -Train and test N different instances of the same classifier
 - This gives N different accuracies

Evaluating N-fold cross validation

	test set 1	test set 2	test set 3	test set 4	test set 5
A	80%	82%	85%	78%	85%
В	81%	81%	86%	80%	88%
diff (A-B)	-1%	+1%	-1%	-2%	-3%

The paired t-test tells us whether there is a (statistically significant) difference between the accuracies of classifiers A and B, based on their difference in accuracy on N different test sets.

Paired t-test for

Two different classifiers, A and B are trained and tested using N-fold cross-validation

For the *n*-th fold:

accuracy(A, n), accuracy(B, n) $diff_n = accuracy(A, n) - accuracy(B, n)$

Null hypothesis: *diff* comes from a distribution with mean (expected value) = 0.

Null hypothesis (H_o; to be rejected), informally:

There is no difference between A and B's accuracy.

- Statistically, we treat accuracy(A) and accuracy(B) as random variables drawn from some distribution.
- H_o says that accuracy(A) and accuracy(B) are drawn from the same distribution.
- If H_o is true, then the expected difference (over all possible data sets) between their accuracies is o.

Null hypothesis (H_o; to be rejected), formally:

The difference between accuracy(A) and accuracy(B) on the same test set is a random variable with mean = 0.

$$H_o$$
: $E[accuracy(A) - accuracy(B)] = $E[diff_D] = o$$

Null hypothesis (H_0 ; to be rejected), formally: The difference between accuracy(A) and accuracy(B) on the same test set is a random variable with mean = 0.

$$H_o: E[accuracy(A) - accuracy(B)] = E[diff_D] = o$$

- $E[diff_D]$ is the expected value (mean) over all possible data sets. We don't (can't) know that quantity.
- But N-fold cross-validation gives us N samples of $diff_D$ We can ask instead: How likely are these N samples to come from a distribution with mean = 0?

Paired t-test: The accuracy of A on test set *i* is paired with the accuracy of B on test set *i*

Assumption: Accuracies are drawn from a normal distribution (with unknown variance)

Null hypothesis: The accuracies of A and B are drawn from the same distribution.

Hence, the *difference* of the accuracies on test set i comes from a normal distribution with mean = 0 **Alternative hypothesis:** The accuracies are drawn from two different distributions: $E[diff] \neq 0$

Given: a sample of N observations

We assume these come from a normal distribution with fixed (but unknown) mean and variance

- Compute the **sample mean** and **sample variance** for these observations
- This allows you to compute the **t-statistic**.
- The **t-distribution for** *N-1* **degrees of freedom** can be used to estimate how likely it is that the true mean is in a given range

Reject H_o at significance level *p* if the t-statistic does not lie in the interval $(-t_{p/2, \, \text{n-1}}, \, +t_{p/2, \, \text{n-1}})$. There are tables where you can look this up

Computing the

Difference in accuracy on the *n*-th test set:

$$diff_n = Accuracy_n(A) - Accuracy_n(B)$$

Sample mean m of $diff_D$, based on N samples of $diff_D$:

$$m \quad \frac{1}{N} \sum_{n=1}^{N} diff_n$$

Sample standard deviation S of $diff_D$:

$$S = \sqrt{\frac{\sum_{n=1}^{N} (diff_n - m)^2}{N}}$$

t-statistic for N samples of $diff_D$:

$$t = \sqrt{N \cdot m}$$

Can we reject

H. Compute the t-statistic *t* for your N samples.

- 2. Define a p-value $p \in \{0.05, 0.01, 0.001\}$.
- 3. Look up $t_{p/2,N-1}$ for N-1 degrees of freedom (df)
- 4. If $t > t_{N-1,p}$: Reject H_o with p-value p

For our example:

	test set 1	test set 2	test set 3	test set 4	test set 5
A	80%	82%	85%	78%	85%
В	81%	81%	86%	80%	88%
diff(A-B)	-1%	+1%	-1%	-2%	-3%

$$m = (-1 + 1 - 1 - 2 - 3)/5 = -6/5 = -1.2$$

$$S = \sqrt{\frac{(-2.2)^2 + 2.2^2 + (-2.2)^2 + (-3.2)^2 + (-4.2)^2}{4}} \approx$$

Our t-statistic t = -0.8243.256

With p=0.05 and N-1 = 4:
$$t_{0.025,4}$$
=2.776

We cannot reject H_o:
$$t$$
 is between $-t_{0.025,4}$ and $+t_{0.025,4}$ $-t_{0.025,4} = -2.776 < t = -0.824 < +t_{0.025,4} = 2.776$

Summary t-test

The t-test can be used to to compare two classifiers on N-fold cross-validation.

Caveat: N should be at least 30.

Alternative: 5x2 Cross-validation