

Segmento de Logística Reversa e Transportes no Contexto de Cidades e Regiões Inteligentes: Literatura e Proposta

Autores: Luciano Ferreira Plouvier Luiz Satoru Ochi

Definição do Tema

- Problema de Roteamento de Veículos (PRV)
 - o Truck Dispatching Problem, de (Dantzig & Ramser, 1959);
 - Grande quantidade de conteúdo sobre este tema;
 - Transporte eficiente.

Definição do Tema

- A partir do PRV básico:
 - Diversas Variantes:
 - Entrega e Coleta;
 - Janela de Tempo;
 - Frota Heterogênea;
 - Entregas Fracionárias;
 - Muitas outras.

- Problema de Roteamento de Veículos de Frota Heterogênea e Entregas Fracionárias
 (PRVFHEF)
 - Definição do Problema
 - Criar um conjunto de rotas a serem percorridas por veículos;
 - Atender por completo as demandas de todos os clientes;
 - Veículos começam e terminam no depósito;
 - Clientes podem ser visitados mais de uma vez;
 - Veículos são de tipos diferentes;
 - Tipos de veículos com capacidade, custo fixo e custo variável diferentes.

PRVFHEF

Motivação

- Problema complexo de otimização:
 - O PRV é NP-Difícil por ser uma variação do Caixeiro Viajante, este também NP-Difícil (BALDACCI; BATARRA; VIGO, 2008).
 - Algoritmos exatos são lentos para problemas maiores.

Motivação

- Problema complexo de otimização
 - O PRV é NP-Difícil por ser uma variação do Caixeiro Viajante, este também NP-Difícil (BALDACCI; BATARRA; VIGO, 2008).
 - Algoritmos exatos são lentos para problemas maiores.
- Motivações Econômicas
 - Crescimento do setor de vendas online (NIELSENIQ, 2022);
 - Reduzir custos de entregas;
 - Útil para empresas de transporte.
- Pouco conteúdo sobre o PRVFHEF na literatura.

Literatura

Principais

- Tavakkoli-Moghaddam et al. (2007) com um problema de alocação de transporte público com custos de veículos variáveis;
- Ozfirat & Ozkarahan (2010) com custos fixos de veículos;

Relacionados

- Penna (2013) sugere uma solução de custos fixos com heurística Iterated Local Search.
- Silva (2013) resolve entregas fracionárias com *Iterated Local Search*;
- Subramanian (2012) resolve vários PRVs com *Iterated Local Search*.

Proposta

 Desenvolver um algoritmo que resolve o PRVFHEF de forma eficiente com uso de *Iterated Local Search*.

Ideias principais

- Construção a partir das ideias:
 - Entregas Fracionárias:
 - (Silva, 2013) e (Boudia et al, 2007).
 - Frota Heterogênea:
 - (Penna, 2013).
 - Outros:
 - (Subramanian, 2012).

Estrutura do algoritmo desenvolvido

Heurística Iterated Local Search (ILS)

```
Algoritmo 1: Iterated Local Search
 1: função ILS
       SoluçãoInicial \leftarrow GeraSoluçãoInicial()
 2:
       SoluçãoIteração ← BuscaLocal(SoluçãoInicial)
 3:
       enquanto Critério de parada não atingido faça
 4:
          SoluçãoAlterada ← Perturbar(SoluçãoIteração)
 5:
          SoluçãoBuscada ← BuscaLocal(SoluçãoAlterada)
 6:
          Solução Iteração — Avalia (Solução Buscada, Solução Iteração, Critério)
 7:
       fim enquanto
 8:
       devolve Melhor Solução Encontrada
 9:
10: fim função
```

Métodos auxiliares

- Divisão da demanda de um cliente entre as rotas.
- Esvaziar rotas pequenas.
- Escolher veículos de menor custo.

Algoritmos de busca

- Busca local com Random Variable Neighborhood Descent (RVND)
 - Escolhe um método de busca local aleatório e executa;
 - Se encontrar uma solução melhor, retornar.
 - Métodos Interrota:
 - Shift(1,0)
 - Shift(2, 0)
 - Swap(1,1)
 - Swap(2,1)
 - Cross
 - Swap*(1,1)
 - Swap*(2,1)
 - KSplit
 - Estratégia Best Improvement.

Algoritmos de busca

- Métodos Intrarota
 - Utilizados com os métodos interrota caso este encontre solução melhor.
 - Lista de métodos:
 - Reinsert
 - Exchange
 - Or-Opt2
 - Or-Opt3
 - 2-Opt

Perturbação

- Alterar a solução de forma a buscar outras soluções.
- Lista de métodos de perturbação:
 - Multi-Shift(1, 0) entre [1, 3] vezes
 - Multi-Swap(1, 1) entre [1, 3] vezes
 - Random K-Split entre [2, 4] vezes
 - Random Split
 - Random Merge

PRVFHEF

se NumVeículos desconhecido então NumVeículos ← EstimarVeículos() 4: fim se

gas Fracionárias

- MelhorSolução $\leftarrow \emptyset$ 5: para $iters \leftarrow 0$ até MáximoIteraçõesAlg faça 6: IterILS $\leftarrow 0$
- 7:
- 9:
- 10: 11:
- 12: 13:
- 14: 15:
- 16:
- 17:
- 18:

- 19:

- 20:
- 21: 22:

- 23:

- 24:
- fim para

- 25:

- devolve MelhorSolução 26: fim função
- fim se

senão

fim se

- se Avalia(SoluçãoIteração) < Avalia(MelhorSolução) então MelhorSolução ← SoluçãoIteração
- VehicleRedimension(SoluçãoIteração)
- fim enquanto
- IterILS \leftarrow IterILS + 1
- IterILS $\leftarrow 0$
- SoluçãoIteração ← SoluçãoCalculada
- SoluçãoCalculada ← BuscaRVND(SoluçãoCalculada) se Avalia(SoluçãoCalculada) < Avalia(SoluçãoIteração) então

Algoritmo 1 : Solução Roteamento de Veículos de Frota Heterogênea e Entre-

1: função SOLPRVFHEF (MáximoIteraçõesAlg, NumMaxIterILS, NumVeículo

- enquanto IterILS < NumMaxIterILS faça SoluçãoCalculada ← Perturbar(SoluçãoIteração)
- $SoluçãoInicial \leftarrow GeraSoluçãoInicial(NumVeículos)$ SoluçãoIteração ← BuscaRVND(SoluçãoInicial)

Resultados custo fixo

					Média (30 execuções)				
(Taillard, 1999) Fixos	# Instâncias Frota Limitada	# Instâncias Frota Ilimitada	# Melhores	# Empates	Gap Médio (%)	Tempo médio (s)			
Penna	4	8	12	0	0	278,44 ⁽¹⁾			
SOLPRVFHEF	4	8	0	0	7,96	359,66 ⁽²⁾			
⁽¹⁾ : Tempo em segundos para um computador com 5839 Mflops. ⁽²⁾ : Tempo em segundos para um computador com 24220 Mflops.									

Resultados custo fixo e variável

				Média (30 execuções)				
(Taillard, 1999) Fixos e variáveis	# Instâncias Frota Ilimitada	# Melhores	# Empates	Gap Médio (%)	Tempo médio (s)			
Penna	12	10 ⁽¹⁾	0	-	7,56 ⁽¹⁾			
SOLPRVFHEF	12	2 ⁽²⁾	0	10,49	396,65 ⁽²⁾			
⁽¹⁾ : Sem divisão de demanda. ⁽²⁾ : Com divisão de demanda.								

Conclusão

- O PRVFHEF encontrou respostas razoáveis para uma boa parte dos problemas, quando comparado aos resultados da literatura;
- O tempo de execução foi elevado, quando comparado aos outros algoritmos da literatura;
- O PRVFHEF consegue obter algumas respostas melhores com divisão de demanda, para custos fixos e variáveis.

Trabalhos Futuros

- Melhoria da performance e qualidade da resposta;
- Executar mais testes com outros problemas;
- Estudar outras sub variantes.

Caminhos promissores

- Desenvolvimento de novos algoritmos híbridos, combinando métodos heurísticos e exatos;
- Otimização combinatória & inteligência artificial (machine learning).

Referências

BALDACCI, R.; BATTARRA, M.; VIGO, D. Routing a heterogeneous fleet of vehicles. Em: **Operations Research/Computer Science Interfaces**. Boston, MA: Springer US, 2008. p. 3–27.

BALDACCI, R.; MINGOZZI, A. A unified exact method for solving different classes of vehicle routing problems. **Mathematical programming**, v. 120, n. 2, p. 347–380, 2009.

BOUDIA, M.; PRINS, C.; REGHIOUI, M. An effective memetic algorithm with population management for the split delivery vehicle routing problem. Em: **Hybrid Metaheuristics**. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. p. 16–30.

CANHONG LIN, K.L. Choy, G.T.S. Ho, S.H. Chung, H.Y. Lam: Survey of Green Vehicle Routing Problem: Past and future trends, Expert Systems with Applications 41 (2014) 1118–1138.

CHEN, S.; GOLDEN, B.; WASIL, E. The split delivery vehicle routing problem: Applications, algorithms, test problems, and computational results. **Networks (New York, NY)**, v. 49, n. 4, p. 318–329, 2007.

DANTZIG, G. B.; RAMSER, J. H. The truck dispatching problem. **Management science**, v. 6, n. 1, p. 80–91, 1959.

DE OLIVEIRA, F. B. et al. A cooperative coevolutionary algorithm for the Multi-Depot Vehicle Routing Problem. **Expert systems with applications**, v. 43, p. 117–130, 2016.

DONGARRA, J. Performance of various computers using standard linear equations software, (linpack benchmark report). **University of Tennessee Computer Science Technical Report**, 2014.

NIELSENIQ, E., Webshoppers 45 ed. Versão Free. Disponível em:

https://nielseniq.com/global/pt/landing-page/ebit/nielseniq-ebit-brasil/webshoppers. Acesso em: 25 Julho 2022.

Referências

EPL – Empresa de Planejamento e Logística. Plano Nacional de Logística 2035. 2021. Disponível em: https://ontl.epl.gov.br/planejamento/relatorios/>. Acesso em: 4 jul. 2022.

FESTA, P.; RESENDE, M. G. C. GRASP. In: **Handbook of Heuristics**. Cham: Springer International Publishing, 2018. p. 465–488.

FROTA, Y. A. M.; OCHI, L. S.; MARTINS, S.; SILVA, W. G.; COELHO, I. M.; Souza, Uéverton S.. Problema de Roteamento de Veículos voltado para redução de emissões de carbono. 2018. Dissertação (Mestrado em CIÊNCIAS DA COMPUTAÇÃO) - Universidade Federal Fluminense.

GLOVER, F. Tabu search and adaptive memory programming — advances, applications and challenges. In: **Operations Research/Computer Science Interfaces Series**. Boston, MA: Springer US, 1997. p. 1–75.

GOLDEN, B. L.; RAGHAVAN, S.; WASIL, E. A. The vehicle routing problem: Latest advances and new challenges. 2008. ed. New York, NY: Springer, 2008.

HANSEN, P. et al. Variable Neighborhood Search. In: **International Series in Operations Research & Management Science**. Boston, MA: Springer US, 2010. p. 61–86.

LIN, C. et al. Survey of Green Vehicle Routing Problem: Past and future trends. **Expert systems with applications**, v. 41, n. 4, p. 1118–1138, 2014.

LOURENÇO, H. R.; MARTIN, O. C.; STÜTZLE, T. Iterated Local Search. In: International Series in Operations Research & Management Science. Boston: Kluwer Academic Publishers, 2006. p. 320–353.

MATOS, M. R. Problema de Roteamento de Veículos voltado para reduções de emissões de carbono. Orientadores: Yuri Abitbol de Menezes Frota e Luiz Satoru Ochi. Dissertação. IC/UFF, 2018.

Referências

OZFIRAT, P. M.; OZKARAHAN, I. A constraint programming heuristic for a heterogeneous vehicle routing problem with split deliveries. **Applied artificial intelligence: AAI**, v. 24, n. 4, p. 277–294, 2010.

PENNA, P. H. V. Um algoritmo unificado para uma classe de problemas de roteamento de veículos com frota heterogênea. Tese de Doutorado, orientador: Luiz Satoru Ochi. 150 p. IC/UFF, 2013.

REEVES, C. R. Genetic Algorithms. In: International Series in Operations Research & Management Science. Boston, MA: Springer US, 2010. p. 109–139.

SILVA, M. M. Uma Heurística baseada em Iterated Local Search para o Problema de Roteamento de Veículos com Entregas Fracionárias. Dissertação. Orientador: Luiz Satoru Ochi. 2013. 67 p. – IC/UFF, 2013.

SOLOMON, M., Desrosiers, J. Time Window Constrained Routing and Scheduling Problems. Transportation Science, vol 22, pp. 1-13, 1988.

SUBRAMANIAN, A. et al. Um Algoritmo Heurístico Baseado em Iterated Local Search para Problemas de Roteamento de Veículos. **Meta-Heurísticas em Pesquisa Operacional**, p. 165–180, 9 maio 2013.

SUBRAMANIAN, A. Heuristic, Exact and Hybrid Approaches for Vehicle Routing Problems. Tese de Doutorado, orientador: Luiz Satoru Ochi. 149 f. IC/UFF, 2012.

TAILLARD, E. D. A heuristic column generation method for the heterogeneous fleet VRP. RAIRO - Operations Research, v. 33, n. 1, p. 1–14, jan. 1999.

TAVAKKOLI-MOGHADDAM, R. et al. A new capacitated vehicle routing problem with split service for minimizing fleet cost by simulated annealing. **Journal of the Franklin Institute**, v. 344, n. 5, p. 406–425, 2007.

WILCK, J. H., IV; CAVALIER, T. M. A construction heuristic for the split delivery vehicle routing problem. **American journal of operations research**, v. 02, n. 02, p. 153–162, 2012b.

WILCK, J. H., IV; CAVALIER, T. M. A genetic algorithm for the split delivery vehicle routing problem. **American journal of operations research**, v. 02, n. 02, p. 207–216, 2012.