# IE5600 Project 3:

## Time-Dependent Pickup and Delivery Problem with Time Windows

### 1. Problem description

We define an undirected graph G = (N, A), whose node set N consists of pickup nodes  $N_P =$  $\{1, 2, \dots, n\}$ , delivery nodes  $N_D = \{n + 1, \dots, 2n\}$ , and depots  $\{0, 2n + 1\}$ . Each request is specified by its pickup node i and delivery node i + n. Moreover, all feasible routes need to start from depot 0 and to end at 2n + 1 (which can be the same node as 0 in reality). For each pickup node  $i \in N_P$ , a non-negative profit  $p_i$  and load  $q_i$  is assigned. It must hold that  $q_i = q_{n+i}$ . Without loss of generality,  $q_0 = q_{2n+1} = 0$ . A time window[ $e_i$ ,  $l_i$ ] is associated with every vertex  $i \in N_P \cup N_D$ , where  $e_i$  and  $l_i$  represent the earliest and latest times, respectively, at which service may start at node i. The vehicle waits until time  $e_i$ , if arriving at i before  $e_i$ ; arriving later than  $l_i$  is not allowed. The service time of each node  $i \in N_P \cup N_D$  is denoted by  $s_i$ . The depot nodes also have time windows  $[e_0, l_0], [e_{2n+1}, l_{2n+1}]$  representing the earliest and latest times, respectively, at which the vehicle may leave from and return to the depot. Without loss of generality, we assume that  $s_0 = s_{2n+1} = 0$ . Let K denote the set of vehicles to serve those requests. We assume that vehicles are identical and have capacity Q. Furthermore, a fixed operational cost, Z, is assigned per used vehicle and the cost per unit of route duration is denoted as  $c_t$ . The route's duration, defined as the arrival time at the returning depot minus the departure time at the starting depot, should not exceed the driver's maximum working hour  $(T_{max})$  as regulated by the government and the company's policy. This is also referred to as the maximum route duration constraint.

The solution must satisfy the following constraints:

• The route of vehicle k starts from the origin depot and ends at the destination depot, if vehicle k is used.



Figure 1: Example of a pickup and delivery problem

- Every request is served at most once and its pickup and delivery nodes are visited by the same vehicle.
- For each request, its pickup node is required to be visited before the delivery node.
- The departure time at each node of the request should be within the given time window (if the request is served).
- Capacity constraints of vehicles.
- The route duration should not exceed the maximum route duration allowed.

The objective function includes three parts: (i) the profit obtained from served requests; (ii) cost related to travel duration; and (iii) total fixed cost for the number of used vehicles.

#### 2. Time dependent travel time function

Pan et al. (2019) characterized the piecewise linear travel time function proposed in (Ichoua et al., 2003), and its main idea is briefly presented below. A typical workday ( $[e_0, l_0]$ ) is divided into non-overlapping time zones T, where the m-th time zone is  $[w^{m-1}, w^m]$ . It is assumed that the

travel speed is constant within a time zone and will change only at the end of each time zone.Let  $v_{i,j}^m$  be the travel speed along (i,j) during the m-th time zone. The actual time-dependent travel time along (i, j) with departure time  $t_0$  (denoted as  $\bar{\tau}_{i,j}(t_0)$ ) depends on the speed profile of (i, j)and  $d_{ij}$ , which can be calculated using Algorithm 1. Let the time-dependent travel time along (i, j)with departure time t be denoted as function  $\tau_{i,j}(t)$ . As an example in Figure 2, this function can be fully determined using the break points  $(w_{i,j}^0$  to  $w_{i,j}^0$ ) of the unique arc time zones  $T_{i,j}$  and their actual travel times (e.g,  $\bar{\tau}_{i,j}(w_{i,j}^1)$ ,  $\bar{\tau}_{i,j}(w_{i,j}^2)$ , and etc). Again the arc time zones  $T_{i,j}$  is unique to the arc and we denote the *m*-th arc time zone for (i, j) as  $T_{i,j}^m$ . For ease of calculation, the slope  $(\theta_{i,j}^m)$ and the intersection with y-axis  $(\eta_{i,j}^m)$  of the m-th line segment (representing the m-th arc time zone) can be pre-calculated and used to fully represent the piecewise linear travel time function  $\tau_{i,j}(t)$  as below:

$$\tau_{i,j}(t) = \sum_{m \in T_{i,j}} \left( \theta_{i,j}^m t + \eta_{i,j}^m \right) \mathbf{1}_{T_{i,j}^m}(t), \ \forall t \in [e_0, l_0],$$
 (1)

where the indicator function  $\mathbf{1}_{T_{i,j}^m}(t)$  indicates whether t belongs to  $T_{i,j}^m$ .

#### **Algorithm 1** Calculation of actual travel time $\bar{\tau}_{i,j}(t_0)$ )

- 1: Determine the time zone of  $t_0$  as M
- 2:  $t \leftarrow t_0, d \leftarrow d_{ij}, t' \leftarrow t + (d/v_{ij}^M),$
- 3: while  $t' \ge w^M \operatorname{do}$
- $\begin{aligned} d \leftarrow d v_{ij}^M \times (w^M t) \\ t \leftarrow w^M \end{aligned}$
- $t' \leftarrow t + (d/v_{ij}^{M+1})$
- $M \leftarrow M + 1$
- 8: end while
- 9: **return**  $t' t_0$

Similarly, the backward travel time function (denoted as  $\tau_{i,j}^{-1}(t)$ ), defined as the travel time required for the vehicle to definitely arrive at node j at time t along arc (i, j), is also a piecewise linear function and can be determined in a similar way as  $\tau_{i,j}(t)$ .



Figure 2: Example of a time-dependent travel time function.

#### 3. Test instances

The data can be retrieved from Sun et al. (2018). Note that no  $T_{max}$  is set for the test instance and you need to determine the values yourself for this project.

#### References

Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle dispatching with time-dependent travel times. *European Journal of Operational Research*, 144, 379–396.

Pan, B., Zhang, Z., & Lim, A. (2019). Multi-trip time-dependent vehicle routing problem with time windows. *Submitted*, .

Sun, P., Veelenturf, L. P., Hewitt, M., & Van Woensel, T. (2018). The time-dependent pickup and delivery problem with time windows. *Transportation Research Part B: Methodological*, 116, 1–24.