Analog Modulo Integrator For Use In Open-Loop Sigma-Delta Modulators

Carsten Wulff, Øystein Knauserud, Trond Ytterdal

Department of Electronics and Telecommunication Norwegian University of Science and Technology

Outline

- Motivation for Open-Loop Sigma Delta Modulation (OLSDM)
- Analog Modulo Integrator
- Simulations of Analog Modulo Integrator
- Simulations of OLSDM
- Future Work

Motivation

- What is Open-Loop Sigma Delta Modulation?
 - It is Sigma Delta Modulation without global feedback, for low pass Sigma Delta it will be an integrator followed by a quantizer and a differentiator

Sampling of Analog Input is not shown

- Why do Open-Loop Sigma Delta?
 - Removes feedback DAC, may potentially alleviate linearity problems in Sigma Delta modulators with multi bit quantizers

Analog-to-Digital OLSDM

- Do an operation on analog side to limit signal swing (modulo integration), and do the inverse operation on the digital side (modulo differentiation)
 - STF(Signal Transfer Function): digital output = analog input
 - NTF(Noise Transfer Function) : digital output = $(1-z^{-1})$ quantization error
- Need to implement analog modulo integration:
 - Frequency-to-digital Sigma-Delta Modulator [1]
 - Our approach: Make an analog modulo integrator

Conventional SC Integrator

Charge C₁ during phi1

$$Q_1(n) = C_1 \times V_i(n)$$
, $Q_2(n) = C_2 \times V_o(n)$

Transfer charge from C₁ to C₂ during phi2

$$Q_2(n+1) = C_2 \times V_0(n+1) = Q_1(n) + Q_2(n) = C_1 \times V_0(n) + C_2 \times V_0(n)$$

Define: -V_{ref} < V_o < V_{ref} and C₁=C₂

$$V_{o}(n+1) = V_{i}(n) + V_{o}(n)$$

- If $V_i(n)=V_{ref}-\Delta$ and $V_o(n)=V_{ref}-\Delta$, where Δ is a small value, then charge transfer will be incomplete because opamp will saturate
- But the total charge: Q_{total}(n+1) = Q₁(n) + Q₂(n) ≈ C x 2V_{ref} is preserved

Analog Modulo Circuit connected here

Analog Modulo SC Integrator (1)

- Phi1 and Phi2 stay the same
- In Phi3 the circuit detects whether V_o exceeds V_{ref} or –V_{ref}
 - 1. If $V_o \ge V_{ref}$ it subtracts $2xV_{ref}$
 - 2. If $-V_{ref} < V_o < V_{ref}$ it does nothing
 - 3. If $V_o \le -V_{ref}$ it adds $2xV_{ref}$

Pseudo Code:

- Add the previous output to the current input
- If the new output exceeds the reference voltages
- Subtract/Add the range of the integrator, $V_r = 2xV_{ref}$
- Set the new output to the remainder

Analog Modulo SC Integrator (2)

a) In ϕ 1 the capacitor is charged.

b) In $\phi 3$, if $V_o \ge V_{ref}$ the charge transfered to V_g will be $Q_3 = C_3 V_r$

$$V_o(n+1) = V_i(n) + V_o(n) - V_r$$

Analog Modulo SC Integrator (3)

c) In $\phi 3$, if $V_o \le -V_{ref}$ the charge transfered to V_g will be $Q_3 = -C_3V_r$

$$V_o(n+1) = V_i(n) + V_o(n) + V_r$$
 $V_o(n+1) = V_i(n) + V_o(n)$

d) In φ 3, if $-V_{ref} < V_o < V_{ref}$ no charge is transfered to C₃

$$V_{o}(n+1) = V_{i}(n) + V_{o}(n)$$

Simulations in AimSPICE[2]

The output never exceeds references V_{ref} =1V and $-V_{ref}$ =-1V

Simulations of OLSDM in SystemDotNet[3]

Third order OLSDM with 8 bit quantizer with OSR=8

No noise shaping: ENOB = 9.5 bits

With noise shaping: ENOB = 15 bits

Future Work/Conclusion

- Analog Modulo SC Integrator is (to our knowledge) a new circuit
 - But as of yet, no show stoppers have been found
- The Analog Modulo SC Integrator makes it possible to do OLSDM with conventional SC circuits

References

- 1. M. Høvin, A. Olsen, T. S. Lande, and C. Toumazou, "Delta-sigma modulators using frequency -modulated intermediate values," *IEEE J.Solid-State Circuits*, vol. 32, no. 1, pp. 13–22, 1997.
- 2. T. Ytterdal, "Aimspice," http://www.aimspice.com
- 3. C. Wulff, "SystemDotNet," http://sourceforge.net/projects/systemdotnet

