```
In [1]: import pandas as pd
In [2]: !pip install plotly
    Requirement already satisfied: plotly in c:\users\ykyas\appdata\local\programs\py
    thon\python312\lib\site-packages (5.21.0)
    Requirement already satisfied: tenacity>=6.2.0 in c:\users\ykyas\appdata\local\pr
    ograms\python\python312\lib\site-packages (from plotly) (8.2.3)
    Requirement already satisfied: packaging in c:\users\ykyas\appdata\local\programs
    \python\python312\lib\site-packages (from plotly) (24.0)
In [3]: import warnings
In [4]: warnings.filterwarnings('ignore')
In [5]: df=pd.read_csv('Titanic-Dataset.csv')
```

#we are printing the en

In [6]: df

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	7
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	5
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	
•••										
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	1
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	3
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	2
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	(1)
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	

891 rows × 12 columns

Out[6]:

1

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtvp	es: float64(2), int64(5), obi	ect(5)

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [8]: df.describe() #stats of the dataset

Out[8]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.91(
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329

In [9]: df=df.drop(['PassengerId','Name','Ticket','Cabin'],axis=1) #retain whates needed

In [10]: df

Out[10]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	male	22.0	1	0	7.2500	S
	1	1	1	female	38.0	1	0	71.2833	С
	2	1	3	female	26.0	0	0	7.9250	S
	3	1	1	female	35.0	1	0	53.1000	S
	4	0	3	male	35.0	0	0	8.0500	S
	•••								
	886	0	2	male	27.0	0	0	13.0000	S
	887	1	1	female	19.0	0	0	30.0000	S
	888	0	3	female	NaN	1	2	23.4500	S
	889	1	1	male	26.0	0	0	30.0000	С
	890	0	3	male	32.0	0	0	7.7500	Q

891 rows × 8 columns

In [11]: df.isna()

_			-			-	
0	1.1	+	н	1	1	-	0
\cup	u	υ.		_	4	- 1	

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
•••								
886	False	False	False	False	False	False	False	False
887	False	False	False	False	False	False	False	False
888	False	False	False	True	False	False	False	False
889	False	False	False	False	False	False	False	False
890	False	False	False	False	False	False	False	False

891 rows × 8 columns

Out[12]: Survived 0 Pclass 0 0 Sex 177 Age 0 SibSp Parch 0 0 Fare Embarked 2 dtype: int64

In [13]: df=df.dropna(subset=['Embarked']) #all missing embarked values are dropped

In [14]: **df**

Out[14]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S
•••								
886	0	2	male	27.0	0	0	13.0000	S
887	1	1	female	19.0	0	0	30.0000	S
888	0	3	female	NaN	1	2	23.4500	S
889	1	1	male	26.0	0	0	30.0000	С
890	0	3	male	32.0	0	0	7.7500	Q

889 rows × 8 columns

In [15]: import seaborn as sss #to use graphs

In [16]: sss.boxplot(df['Age']) #outliers

Out[16]: <Axes: ylabel='Age'>

In [17]: sss.kdeplot(df['Age']) #normal

Out[17]: <Axes: xlabel='Age', ylabel='Density'>

In [18]: sss.boxplot(df['Fare']) #outliers

Out[18]: <Axes: ylabel='Fare'>

In [19]: sss.kdeplot(df['Fare']) #right sqewed

Out[19]: <Axes: xlabel='Fare', ylabel='Density'>


```
In [20]: sss.kdeplot(df['Pclass']) #normal graph
```

Out[20]: <Axes: xlabel='Pclass', ylabel='Density'>

In [21]: sss.boxplot(df['Pclass']) #no outliers

Out[21]: <Axes: ylabel='Pclass'>


```
In [22]: dfage=df['Age']
    dffare=df['Fare']
    #we need to fix age and fare
```

```
In [23]: import numpy as np
         dfage_abs=dfage.abs() #avoid non negative numbers
         dffare_abs=dffare.abs()
         changedage=dfage_abs.apply(lambda x: x^{**}(1/2)) #reducing the values using square
         changedfare=dffare_abs.apply(lambda x: np.log1p(x))
         df['Age']=changedage
         df['Fare']=changedfare
In [24]: df['Age']
Out[24]: 0
                4.690416
         1
               6.164414
         2
              5.099020
         3
               5.916080
               5.916080
         886 5.196152
         887
              4.358899
         888
                     NaN
         889 5.099020
         890
               5.656854
         Name: Age, Length: 889, dtype: float64
In [25]: df['Fare']
Out[25]: 0
                2.110213
         1
               4.280593
         2
               2.188856
         3
               3.990834
         4
               2.202765
         886
              2.639057
         887
               3.433987
         888
               3.196630
         889
               3.433987
         890
                2.169054
         Name: Fare, Length: 889, dtype: float64
In [26]: sss.boxplot(df['Fare'])
```

Out[26]: <Axes: ylabel='Fare'>

In [27]: sss.kdeplot(df['Fare'])

Out[27]: <Axes: xlabel='Fare', ylabel='Density'>


```
In [28]: sss.boxplot(df['Age'])
```

Out[28]: <Axes: ylabel='Age'>

In [29]: sss.kdeplot(df['Age'])

Out[29]: <Axes: xlabel='Age', ylabel='Density'>

In [30]: df

Out[30]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	male	4.690416	1	0	2.110213	S
	1	1	1	female	6.164414	1	0	4.280593	С
	2	1	3	female	5.099020	0	0	2.188856	S
	3	1	1	female	5.916080	1	0	3.990834	S
	4	0	3	male	5.916080	0	0	2.202765	S
	•••								
	886	0	2	male	5.196152	0	0	2.639057	S
	887	1	1	female	4.358899	0	0	3.433987	S
	888	0	3	female	NaN	1	2	3.196630	S
	889	1	1	male	5.099020	0	0	3.433987	С
	890	0	3	male	5.656854	0	0	2.169054	Q

889 rows × 8 columns

```
In [31]: from sklearn.preprocessing import OneHotEncoder #we are converting string valu

In [32]: attr_val=['Sex','Embarked']
    data_to_encode=df[attr_val]

    data_to_encode=data_to_encode.dropna() #remove missing values as encoder will no
    encoder=OneHotEncoder(drop='first') #we remove sex_female,embarked_c because the
    encoded_data=encoder.fit_transform(data_to_encode) #transform data into encoded
    encoded_df=pd.DataFrame(encoded_data.toarray(),columns=encoder.get_feature_names

    df.reset_index(drop=True,inplace=True)#reset indices
    encoded_df.reset_index(drop=True,inplace=True)

    df_encoded=pd.concat([df,encoded_df],axis=1)#joining old dataframe with new data
    df=df_encoded.drop(columns=attr_val) #remove original columns that got encoded

In [33]: df
```

Out[33]:		Survived	Pclass	Age	SibSp	Parch	Fare	Sex_male	Embarked_Q	Embai
	0	0	3	4.690416	1	0	2.110213	1.0	0.0	
	1	1	1	6.164414	1	0	4.280593	0.0	0.0	
	2	1	3	5.099020	0	0	2.188856	0.0	0.0	
	3	1	1	5.916080	1	0	3.990834	0.0	0.0	
	4	0	3	5.916080	0	0	2.202765	1.0	0.0	
	•••								•••	
	884	0	2	5.196152	0	0	2.639057	1.0	0.0	
	885	1	1	4.358899	0	0	3.433987	0.0	0.0	
	886	0	3	NaN	1	2	3.196630	0.0	0.0	
	887	1	1	5.099020	0	0	3.433987	1.0	0.0	
	888	0	3	5.656854	0	0	2.169054	1.0	1.0	

889 rows × 9 columns

Out[34]: <Axes: ylabel='Age'>

In [35]: sss.kdeplot(df['Age'])

Out[35]: <Axes: xlabel='Age', ylabel='Density'>


```
In [36]:
         df.isna().sum() #we still have outliers in age
Out[36]: Survived
                          0
          Pclass
                          0
          Age
                        177
          SibSp
                          0
          Parch
                          0
                          0
          Fare
          Sex_male
                          0
          Embarked_Q
                          0
          Embarked_S
                          0
          dtype: int64
```

In [37]: #we could not eliminate missing values,so we use linear regression to predict mi
from sklearn.linear_model import LinearRegression
from sklearn.impute import SimpleImputer

```
In [38]: #seperating rows with values and without values
without_age=df[df['Age'].isnull()]
with_age=df.dropna(subset=['Age'])

#training using with_age
x_train=with_age.drop(columns=['Age'])
y_train=with_age['Age']
regressor_obj=LinearRegression()
regressor_obj.fit(x_train,y_train)

#predicting missing data
missing_x_values=without_age.drop(columns=['Age'])
predicted_age=regressor_obj.predict(missing_x_values)

#replacing missing values with predicted values in the dataset
df.loc[df['Age'].isnull(), 'Age']=predicted_age
```

In [39]: **df**

Out[39]:

	Survived	Pclass	Age	SibSp	Parch	Fare	Sex male	Embarked_Q	Embai
0	0	3	4.690416	1	0	2.110213	1.0	0.0	
1	1	1	6.164414	1	0	4.280593	0.0	0.0	
2	1	3	5.099020	0	0	2.188856	0.0	0.0	
3	1	1	5.916080	1	0	3.990834	0.0	0.0	
4	0	3	5.916080	0	0	2.202765	1.0	0.0	
•••							•••		
884	0	2	5.196152	0	0	2.639057	1.0	0.0	
885	1	1	4.358899	0	0	3.433987	0.0	0.0	
886	0	3	4.583992	1	2	3.196630	0.0	0.0	
887	1	1	5.099020	0	0	3.433987	1.0	0.0	
888	0	3	5.656854	0	0	2.169054	1.0	1.0	

889 rows × 9 columns

In [40]: df.isna().sum() #no outliers left in age

Out[40]: Survived 0
 Pclass 0
 Age 0
 SibSp 0

Sex_male 0 Embarked_Q 0 Embarked_S 0

0

Parch

Fare

dtype: int64

In [41]: #remove any duplicates if present
df=df.drop_duplicates()

In [42]: df #around 100 rows were removed

Out[42]: Survived Pclass Age SibSp Parch Fare Sex_male Embarked_Q Embar 0 0 3 4.690416 0 2.110213 1.0 0.0 1 6.164414 0 4.280593 0.0 0.0 2 1 3 5.099020 0 0 2.188856 0.0 0.0 0 3.990834 3 1 5.916080 0.0 0.0 4 0 3 5.916080 0 0 2.202765 1.0 0.0 883 0 3 6.244998 0 5 3.405355 0.0 1.0 885 1 4.358899 0 3.433987 0.0 0.0 0 886 3 4.583992 1 2 3.196630 0.0 0.0 887 1 5.099020 0 3.433987 1.0 0.0

778 rows × 9 columns

0

3 5.656854

888

0 2.169054

1.0

1.0

In [43]: #we have finished the preprocessing of data ,now we need to do visualization

0

In [44]: import matplotlib.pyplot as plt
import seaborn as sss

In [45]: sss.countplot(df,x='Pclass',hue='Survived')

Out[45]: <Axes: xlabel='Pclass', ylabel='count'>

In [46]: #we can see 3rd class people have not survived ,so 3rd class is in lower berth o
 #1st and second class have survived
df

Out[46]:		Survived	Pclass	Age	SibSp	Parch	Fare	Sex_male	Embarked_Q	Embai
	0	0	3	4.690416	1	0	2.110213	1.0	0.0	
	1	1	1	6.164414	1	0	4.280593	0.0	0.0	
	2	1	3	5.099020	0	0	2.188856	0.0	0.0	
	3	1	1	5.916080	1	0	3.990834	0.0	0.0	
	4	0	3	5.916080	0	0	2.202765	1.0	0.0	
	•••								•••	
	883	0	3	6.244998	0	5	3.405355	0.0	1.0	
	885	1	1	4.358899	0	0	3.433987	0.0	0.0	
	886	0	3	4.583992	1	2	3.196630	0.0	0.0	
	887	1	1	5.099020	0	0	3.433987	1.0	0.0	
	888	0	3	5.656854	0	0	2.169054	1.0	1.0	

778 rows × 9 columns

```
In [49]: df['Family']=df['SibSp']+df['Parch']
df['Family'] #we created dataset of people containing family
```

```
Out[49]: 0
                1
          1
                1
          2
          3
                1
          4
          883
                5
          885
                0
          886
                 3
          887
                 0
          888
          Name: Family, Length: 778, dtype: int64
In [50]: df['Alone']=df['Family']==0 #create dataset of people who dont have family
In [51]: df=df.drop(['SibSp','Parch'],axis=1)
In [52]: sss.boxplot(df)
Out[52]: <Axes: >
        10
                                                                      0
          8
                                                                      0
          6
          4
          2
          0
                                     Fare Sex_mathebarke@dm@arked_Bamily Alone
            Survived Pclass
                              Age
In [53]:
        #outliers in family ,age,embarked,fare
         #standardize the age first
         from sklearn.preprocessing import StandardScaler
         scaler=StandardScaler()
```

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scale_age=['Age']

df[scale_age]=scaler.fit_transform(df[scale_age])

In [54]: sss.boxplot(df)

Out[54]: <Axes: >
```



```
In [55]:
         rel mat=df.corr()
         rel_with_surv=rel_mat['Survived'].drop('Survived')
In [56]: rel_with_surv
Out[56]:
         Pclass
                      -0.333291
                      -0.115660
         Age
         Fare
                       0.309705
                     -0.511686
         Sex_male
         Embarked_Q -0.038347
         Embarked S
                      -0.131168
         Family
                       0.015938
         Alone
                      -0.179048
         Name: Survived, dtype: float64
In [57]:
         #lets assign a threshold and find values nearest to target variable
         threshold=0.2
         close_rel_with_surv=rel_with_surv[abs(rel_with_surv)>threshold]
In [59]: close_rel_with_surv
Out[59]:
         Pclass
                    -0.333291
                     0.309705
         Fare
                    -0.511686
         Sex_male
         Name: Survived, dtype: float64
In [60]: ID=df[['Pclass','Age','Fare','Sex_male']]
         D=df['Survived']
In [61]: ID
```

Out[61]:		Pclass	Age	Fare	Sex_male
	0	3	-0.383212	2.110213	1.0
	1	1	0.638601	4.280593	0.0
	2	3	-0.099957	2.188856	0.0
	3	1	0.466450	3.990834	0.0
	4	3	0.466450	2.202765	1.0
	•••				
	883	3	0.694464	3.405355	0.0
	885	1	-0.613028	3.433987	0.0
	886	3	-0.456988	3.196630	0.0
	887	1	-0.099957	3.433987	1.0
	888	3	0.286748	2.169054	1.0

778 rows × 4 columns

```
In [62]: D
Out[62]: 0
                0
          1
                1
          2
                1
          3
                1
          4
                0
          883
                0
          885
                1
          886
                0
          887
                1
          888
          Name: Survived, Length: 778, dtype: int64
In [63]: from sklearn.model_selection import train_test_split
         ID_train,ID_test,D_train,D_test=train_test_split(ID,D,test_size=0.2,random_state
In [64]: ID_train
```

Out[64]:		Pclass	Age	Fare	Sex_male
	788	1	1.066956	4.384524	1.0
	722	2	1.267117	2.639057	1.0
	141	3	-0.238630	2.824351	0.0
	388	2	-0.776486	2.564949	0.0
	56	2	-0.457969	2.442347	0.0
	•••				
	72	3	-0.099957	2.737881	1.0
	112	3	-0.534529	2.381858	0.0
	287	2	0.857887	2.639057	1.0
	483	1	-0.168600	4.522649	1.0
	108	3	-0.637370	3.224858	0.0

622 rows × 4 columns

In [65]: ID_test

Out[65]:

	Pclass	Age	Fare	Sex_male
676	3	-0.693621	2.383400	0.0
667	3	0.911056	2.202765	1.0
614	2	-0.238630	4.189655	0.0
728	3	-0.168600	2.188856	0.0
545	2	-0.613028	3.295837	0.0
•••				
382	1	0.466450	3.970292	0.0
82	1	0.033477	3.873282	1.0
156	3	0.162225	2.202765	1.0
362	3	0.466450	2.085672	1.0
177	2	0.162225	2.639057	1.0

156 rows × 4 columns

In [66]: D_train

```
Out[66]: 788
         722
         141
                1
         388
               1
         56
         72
         112 0
         287
              1
         483
                1
         108
         Name: Survived, Length: 622, dtype: int64
In [67]: D_test
Out[67]: 676
                1
         667
         614
                1
         728
                0
         545
              1
         382
         82
                a
         156
         362
                0
         177
         Name: Survived, Length: 156, dtype: int64
In [80]: #using logistic regression model for training
         #first technique
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import accuracy_score,confusion_matrix
         from sklearn.model_selection import cross_val_score
         from sklearn.metrics import classification_report
         #training the model
         model1=LogisticRegression()
         model1.fit(ID_train,D_train)
         D_pred=model1.predict(ID_test)
         #lets determine the model accuracy
         accuracy=accuracy_score(D_test,D_pred)
         print(accuracy)
        0.782051282051282
In [82]: #using decsion tree second method
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy_score,classification_report,confusion_matri
         from sklearn.model_selection import cross_val_score
         model2=DecisionTreeClassifier()
         model2.fit(ID_train,D_train)
         D_pred=model2.predict(ID_test)
         accuracy=accuracy_score(D_test,D_pred)
         print(accuracy)
```

```
In [85]: !pip install xgboost
    from xgboost import XGBClassifier
    from sklearn.metrics import accuracy_score,classification_report,confusion_matri
    from sklearn.model_selection import cross_val_score

model3=XGBClassifier()
model3.fit(ID_train,D_train)
D_pred=model3.predict(ID_test)

accuracy=accuracy_score(D_test,D_pred)
print(accuracy)
```

Collecting xgboost

Downloading xgboost-2.0.3-py3-none-win_amd64.whl.metadata (2.0 kB)

Requirement already satisfied: numpy in c:\users\ykyas\appdata\local\programs\python\python312\lib\site-packages (from xgboost) (1.26.4)

Requirement already satisfied: scipy in c:\users\ykyas\appdata\local\programs\python\python312\lib\site-packages (from xgboost) (1.13.0)

Downloading xgboost-2.0.3-py3-none-win_amd64.whl (99.8 MB)

```
----- 0.0/99.8 MB ? eta -:--:-
----- 0.0/99.8 MB 660.6 kB/s eta 0:02:31
----- 0.4/99.8 MB 5.5 MB/s eta 0:00:19
----- 1.4/99.8 MB 11.1 MB/s eta 0:00:09
----- 2.3/99.8 MB 13.2 MB/s eta 0:00:08
----- 3.5/99.8 MB 15.8 MB/s eta 0:00:07
 ----- 4.6/99.8 MB 17.5 MB/s eta 0:00:06
-- ------ 5.8/99.8 MB 18.6 MB/s eta 0:00:06
-- ----- 6.8/99.8 MB 19.7 MB/s eta 0:00:05
--- ------ 8.1/99.8 MB 19.8 MB/s eta 0:00:05
--- 9.2/99.8 MB 20.2 MB/s eta 0:00:05
---- 10.4/99.8 MB 24.2 MB/s eta 0:00:04
---- 10.6/99.8 MB 21.8 MB/s eta 0:00:05
  ----- 11.8/99.8 MB 23.4 MB/s eta 0:00:04
----- 13.3/99.8 MB 23.4 MB/s eta 0:00:04
---- 14.4/99.8 MB 24.2 MB/s eta 0:00:04
----- 15.7/99.8 MB 24.3 MB/s eta 0:00:04
----- 17.0/99.8 MB 25.2 MB/s eta 0:00:04
----- 18.4/99.8 MB 24.2 MB/s eta 0:00:04
------ 19.1/99.8 MB 25.2 MB/s eta 0:00:04
------ 20.3/99.8 MB 24.2 MB/s eta 0:00:04
------ 21.3/99.8 MB 26.2 MB/s eta 0:00:03
----- 22.3/99.8 MB 25.1 MB/s eta 0:00:04
----- 23.4/99.8 MB 24.2 MB/s eta 0:00:04
----- 24.8/99.8 MB 25.2 MB/s eta 0:00:03
----- 26.1/99.8 MB 25.2 MB/s eta 0:00:03
----- 27.1/99.8 MB 24.2 MB/s eta 0:00:03
----- 28.1/99.8 MB 24.2 MB/s eta 0:00:03
----- 29.1/99.8 MB 23.4 MB/s eta 0:00:04
----- 30.3/99.8 MB 23.4 MB/s eta 0:00:03
----- 31.5/99.8 MB 24.2 MB/s eta 0:00:03
----- 32.9/99.8 MB 25.1 MB/s eta 0:00:03
----- 33.8/99.8 MB 25.2 MB/s eta 0:00:03
----- 35.0/99.8 MB 24.2 MB/s eta 0:00:03
----- 36.1/99.8 MB 25.1 MB/s eta 0:00:03
----- 37.5/99.8 MB 25.2 MB/s eta 0:00:03
----- 38.9/99.8 MB 25.2 MB/s eta 0:00:03
------ 40.0/99.8 MB 26.2 MB/s eta 0:00:03
------ 41.5/99.8 MB 26.2 MB/s eta 0:00:03
------ 42.8/99.8 MB 27.3 MB/s eta 0:00:03
----- 43.8/99.8 MB 27.3 MB/s eta 0:00:03
----- 45.0/99.8 MB 28.4 MB/s eta 0:00:02
----- 46.0/99.8 MB 26.2 MB/s eta 0:00:03
------ 47.0/99.8 MB 27.3 MB/s eta 0:00:02
------ 48.0/99.8 MB 26.2 MB/s eta 0:00:02
------ 49.0/99.8 MB 25.2 MB/s eta 0:00:03
----- 50.4/99.8 MB 25.2 MB/s eta 0:00:02
----- 51.7/99.8 MB 25.2 MB/s eta 0:00:02
----- 52.9/99.8 MB 24.2 MB/s eta 0:00:02
----- 54.4/99.8 MB 26.2 MB/s eta 0:00:02
----- 55.7/99.8 MB 27.3 MB/s eta 0:00:02
----- 57.2/99.8 MB 27.3 MB/s eta 0:00:02
------ 58.5/99.8 MB 28.5 MB/s eta 0:00:02
```

```
----- 59.9/99.8 MB 29.7 MB/s eta 0:00:02
------ 62.6/99.8 MB 29.7 MB/s eta 0:00:02
------ 63.9/99.8 MB 29.7 MB/s eta 0:00:02
------ 65.1/99.8 MB 28.4 MB/s eta 0:00:02
  ----- 66.5/99.8 MB 28.4 MB/s eta 0:00:02
------ 67.5/99.8 MB 27.3 MB/s eta 0:00:02
----- 68.4/99.8 MB 26.2 MB/s eta 0:00:02
------ 69.9/99.8 MB 27.3 MB/s eta 0:00:02
----- 70.8/99.8 MB 26.2 MB/s eta 0:00:02
----- 71.9/99.8 MB 26.2 MB/s eta 0:00:02
----- 73.3/99.8 MB 26.2 MB/s eta 0:00:02
------ 74.6/99.8 MB 26.2 MB/s eta 0:00:01
------ 75.6/99.8 MB 26.2 MB/s eta 0:00:01
----- 76.8/99.8 MB 24.3 MB/s eta 0:00:01
----- 77.7/99.8 MB 25.1 MB/s eta 0:00:01
----- 78.9/99.8 MB 24.2 MB/s eta 0:00:01
------ 80.3/99.8 MB 26.2 MB/s eta 0:00:01
----- 81.6/99.8 MB 26.2 MB/s eta 0:00:01
----- 82.6/99.8 MB 26.2 MB/s eta 0:00:01
  ----- 83.8/99.8 MB 26.2 MB/s eta 0:00:01
----- 84.4/99.8 MB 24.2 MB/s eta 0:00:01
-------85.8/99.8 MB 24.2 MB/s eta 0:00:01
------ 86.9/99.8 MB 24.2 MB/s eta 0:00:01
----- 88.0/99.8 MB 25.1 MB/s eta 0:00:01
----- 89.2/99.8 MB 25.2 MB/s eta 0:00:01
----- 90.2/99.8 MB 24.2 MB/s eta 0:00:01
  ----- 91.8/99.8 MB 24.2 MB/s eta 0:00:01
----- -- 92.9/99.8 MB 25.2 MB/s eta 0:00:01
----- -- 94.0/99.8 MB 24.2 MB/s eta 0:00:01
------ 95.3/99.8 MB 25.2 MB/s eta 0:00:01
----- 96.6/99.8 MB 26.2 MB/s eta 0:00:01
----- 97.3/99.8 MB 26.2 MB/s eta 0:00:01
 ----- 97.8/99.8 MB 24.2 MB/s eta 0:00:01
------ 99.3/99.8 MB 25.1 MB/s eta 0:00:01
----- 99.7/99.8 MB 24.2 MB/s eta 0:00:01
----- 99.7/99.8 MB 24.2 MB/s eta 0:00:01
----- 99.7/99.8 MB 24.2 MB/s eta 0:00:01
------ 99.7/99.8 MB 24.2 MB/s eta 0:00:01
----- 99.8/99.8 MB 13.3 MB/s eta 0:00:00
```

Installing collected packages: xgboost
Successfully installed xgboost-2.0.3
0.7692307692307693

```
In [93]: #using radnom forest method
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score,classification_report,confusion_matri
    from sklearn.model_selection import cross_val_score

model4=RandomForestClassifier()
    model4.fit(ID_train,D_train)

D_pred=model4.predict(ID_test)

accuracy=accuracy_score(D_test,D_pred)
    print(accuracy)
```

print(classification_report(D_test,D_pred))

0.782051282051282

	precision	recall	f1-score	support
	0.70		0.00	0.4
0	0.78	0.87	0.82	91
1	0.78	0.66	0.72	65
accuracy			0.78	156
macro avg	0.78	0.76	0.77	156
weighted avg	0.78	0.78	0.78	156

In [94]: #at the moment we have random forest giving best accuracy

In []: