Lab 2

Chanwoo Kim

Seoul National University
Graduate School of Data Science

Vectorization in Numpy

Two Major Tips for Vectorization in Numpy

1. Broadcasting

2. Boolean Indexing& Fancy Indexing

Regularization

Ridge Regression

Estimation in Ridge Regression

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} (\mathbf{Y} - \mathbf{X}\beta)^{\top} (\mathbf{Y} - \mathbf{X}\beta) + \frac{\lambda \|\beta\|_{2}^{2}}{2}$$

$$\frac{\partial RSS(\beta)}{\partial \beta} = -\mathbf{X}^{\top} (\mathbf{Y} - \mathbf{X}\beta) - (\mathbf{Y} - \mathbf{X}\beta)^{\top} \mathbf{X} + 2\lambda \beta$$
$$= -\mathbf{X}^{\top} (\mathbf{Y} - \mathbf{X}\beta) - \mathbf{X}^{\top} (\mathbf{Y} - \mathbf{X}\beta) + 2\lambda \beta$$
$$= -2\mathbf{X}^{\top} (\mathbf{Y} - \mathbf{X}\beta) + 2\lambda \beta = 0$$

$$\mathbf{X}^{\top}\mathbf{Y} - \mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} - \lambda\boldsymbol{\beta} = 0$$

$$\boldsymbol{\beta} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

$$\boldsymbol{\alpha} = (\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

Check dimensions!

Ridge Regression

Implement the method fit in the class RidgeRegression


```
Hint:
      np.eye
      np.eye(3)
    0.0s
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])
```

Lasso Regression

Estimation in Lasso Regression

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} (\mathbf{Y} - \mathbf{X}\beta)^{\top} (\mathbf{Y} - \mathbf{X}\beta) + \lambda \|\beta\|_{1}$$

- No closed form solution.
 - -> Let's use gradient descent!

learning rate

$$\beta^{\text{new}} = \beta^{\text{old}} - \alpha \bigcirc_{\beta} \mathcal{L}(\beta)$$

Gradient

$$rac{\partial}{\partial eta} L = 2 X^T (X eta - y) + \lambda imes ext{sign}(eta)$$

Lasso Regression

• Implement the method fit in the class LassoRegression

$$eta^{
m new} = eta^{
m old} - lpha^{iggraphi_{eta} \mathcal{L}(eta)}$$

Gradient

$$rac{\partial}{\partial eta} L = 2 X^T (X eta - y) + \lambda imes ext{sign}(eta)$$

```
Hint:
       np.sign
    np.sign([-1,2,-3,4])
 ✓ 0.0s
array([-1, 1, -1, 1])
```

Decision Trees

Recursive Binary Splitting

```
while (!stopping condition):
  for all splittable node v, dimension j, threshold s: -
                                                               Three Nested For-loops
    split R1(v, j, s) = v(x j < s)
    split R2(v, j, s) = v(x j \ge s)
    compute y1 = argmax k(y i = k) for x i in R1
    compute y2 = argmax k(y i = k) for x i in R2
    err(v, j, s) = impurity(R1)/|\{x: x \in R1\}|
               + impurity(R2)/|\{x: x \in R2\}|
  pick (v, j, s) with minimum err(v, j, s)
  split node v at x j = s
```

```
while (!stopping condition):
  for all splittable node v, dimension j, threshold s:
    split R1(v, j, s) = v(x) = s)
    split R2(v, j, s) = v(x) \ge s
    compute y1 = argmax k(y i = k) for x i in R1
    compute y2 = argmax k(y i = k) for x i in R2
   err(v, j, s) = impurity(R1)/|\{x: x \in R1\}|
               + impurity(R2)/|\{x: x \in R2\}|
 pick (v, j, s) with minimum err(v, j, s)
  split node v at x j = s
```



```
while (!stopping condition):
  for all splittable node v, dimension j, threshold s:
    split R1(v, j, s) = v(x j < s)
    split R2(v, j, s) = v(x j \ge s)
    compute y1 = argmax k(y i = k) for x i in R1
   compute y2 = argmax k(y i = k) for x i in R2
   err(v, j, s) = impurity(R1)/|\{x: x \in R1\}|
               + impurity(R2)/\{x: x \in R2\}
 pick (v, j, s) with minimum err(v, j, s)
  split node v at x j = s
```



```
while (!stopping condition):
 for all splittable node v, dimension j, threshold s:
    split R1(v, j, s) = v(x_j < s)
    split R2(v, j, s) = v(x_j \ge s)
    compute y1 = argmax k(y i = k) for x i in R1
                                                             Hits
    compute y2 = argmax k(y i = k) for x i in R2
                                                                 90
    err(v, j, s) = impurity(R1)/|\{x: x \in R1\}|
               + impurity(R2)/|\{x: x \in R2\}|
 pick (v, j, s) with minimum err(v, j, s)
  split node v at x j = s
                                                                 0
                                                                                     10
                                                                                              15
                                                                                                      20
                                                                                        Years
```

```
while (!stopping condition):
 for all splittable node v, dimension j, threshold s:
    split R1(v, j, s) = v(x j < s)
    split R2(v, j, s) = v(x_j \ge s)
    compute y1 = argmax k(y i = k) for x i in R1
                                                            Hits
    compute y2 = argmax k(y i = k) for x i in R2
                                                                9
    err(v, j, s) = impurity(R1)/|\{x: x \in R1\}|
               + impurity(R2)/|\{x: x \in R2\}|
 pick (v, j, s) with minimum err(v, j, s)
  split node v at x j = s
                                                                0
                                                                                             15
                                                                                                     20
```

```
200
while (!stopping condition):
  for all splittable node v, dimension j, threshold s:
    split R1(v, j, s) = v(x j < s)
    split R2(v, j, s) = v(x j \ge s)
                                                                50
    compute y1 = argmax k(y i = k) for x i in R1
                                                             Hits
    compute y2 = argmax k(y i = k) for x i in R2
                                                                9
    err(v, j, s) = impurity(R1)/|\{x: x \in R1\}|
               + impurity(R2)/\{x: x \in R2\}
 pick (v, j, s) with minimum err(v, j, s)
  split node v at x j = s
                                                                 0
                                                                                    10
                                                                                        Years
```

```
while (!stopping condition):
  for all splittable node v, dimension j, threshold s:
    split R1(v, j, s) = v(x j < s)
    split R2(v, j, s) = v(x_j \ge s)
                                                                 20
    compute y1 = argmax k(y i = k) for x i in R1
                                                             Hits
    compute y2 = argmax k(y i = k) for x i in R2
                                                                 9
    err(v, j, s) = impurity(R1)/|\{x: x \in R1\}|
               + impurity(R2)/\{x: x \in R2\}
 pick (v, j, s) with minimum err(v, j, s)
  split node v at x j = s
                                                                 0
                                                                            5
                                                                                     10
                                                                                             15
                                                                                                      20
                                                                                        Years
```


Complete the method best split in the class DecisionTree

Ensemble Methods and Boosting

Bagged Trees

- A split in a tree of Random Forest
- Random forests provide an improvement over bagged trees with a small tweak that decorrelates the trees.
 - At each time to split in training decision trees, only a subset of m predictors are considered as candidates, from the full set of *p* predictors.
 - A typical value of $m \approx \sqrt{p}$

A split in a tree of Random Forest

```
while (!stopping condition):
 for all splittable node v, dimension j, threshold s:
    split R1(v, j, s) = v(x j < s)
    split R2(v, j, s) = v(x j \ge s)
    compute y1 = argmax k(y i = k) for x i in R1
    compute y2 = argmax k(y i = k) for x i in R2
   err(v, j, s) = impurity(R1)/|\{x: x \in R1\}|
               + impurity(R2)/|\{x: x \in R2\}|
  pick (v, j, s) with minimum err(v, j, s)
  split node v at x j = s
```

$$X_1, X_2, X_3, X_4, X_5, ..., X_p$$
 Randomly choose m predictors!
$$X_2, X_5, ..., X_{p-3}$$

Complete the method best split with random in the class DecisionTreeForRF

$$X_1, X_2, X_3, X_4, X_5, ..., X_p$$
To split this node, Randomly choose \sqrt{p} predictors! $X_2, X_5, ..., X_{p-3}$

```
Hint:
       np.random.choice
     print(np.random.choice(5, size=2, replace=False))
     print(np.random.choice(5, size=2, replace=False))
   3 print(np.random.choice(5, size=2, replace=False))
 0.0s
[0 2]
[2 1]
[1 3]
```

Ensemble Methods and Boosting

AdaBoost

Training AdaBoost

Input: training dataset $\{x_i, y_i\}$ for $i = 1, ..., n, y \in \{-1, +1\}$ D.: Sampling weight distribution over training samples at step t. Initialize $D_1(i) = 1/n^{-1}$ → We start with uniform distribution. We train T base learners sequentially. for t = 1, ..., T: \circ Train a base learner, $h_t: \mathbf{X} \to \{+1, -1\}$, with $D_t \longleftarrow$ Each base learner is trained on a training set sampled with D_t . $\epsilon_t = p_{D_t}[h_t(\mathbf{x}_i) \neq \mathbf{y}_i]$ $-\varepsilon_t$ is the error rate under the current sample distribution D_t . $\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t} \quad \longleftarrow$ a_t is log (success rate / error rate), going to $-\infty$ if $\varepsilon_t \to 1$, to $+\infty$ if $\varepsilon_t \to 0$, and being zero if success rate = 50%. $\forall i D_{t+1}(i) = D_t(i)e^{-\alpha_t \mathbf{y}_i h_t(\mathbf{x}_i)}$ $\forall i D_{t+1}(i) = \frac{D_{t+1}(i)}{\sum_{j=1}^n D_{t+1}(j)}$ Data distribution update for the next step: $\mathbf{y}_{t}h_{t}(\mathbf{x}_{t}) > 0$ if h_{t} is correct for \mathbf{x}_{t} and $\mathbf{y}_{t}h_{t}(\mathbf{x}_{t}) < 0$ if incorrect. For correct examples, weight D_{t+1} gets smaller than D_t . For incorrect ones, weights D_{t+1} gets larger than D_t . Then, normalize D_{t+1} so that it sums to 1. Output $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$ Final classifier is a weighted sum of base learners, weighted by their log success rate (a_{\cdot}) .

AdaBoost

Complete the method fit in the class AdaBoost

Input: training dataset $\{\mathbf{x}_i, \mathbf{y}_i\}$ for $i = 1, ..., n, \mathbf{y} \in \{-1, +1\}$

- Initialize $D_1(i) = 1/n$
- for t = 1, ..., T:
 - Train a base learner, h_t : $\mathbf{x} \rightarrow \{+1, -1\}$, with D_t
 - $\circ \quad \epsilon_t = p_{D_t}[h_t(\mathbf{x}_i) \neq \mathbf{y}_i]$

$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

$$\bigcirc \qquad \forall i D_{t+1}(i) = D_t(i) e^{-\alpha_t \mathbf{y}_i h_t(\mathbf{x}_i)}$$

$$\forall i D_{t+1}(i) = D_t(i) e^{-\alpha_t \mathbf{y}_i h_t(\mathbf{x}_i)}$$

$$\forall i D_{t+1}(i) = \frac{D_{t+1}(i)}{\sum_{j=1}^n D_{t+1}(j)}$$

• Output $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$

Sampling Weight Update

Hint:

np.exp

np.sum

Clustering

Hierarchical Clustering

- **Agglomerative Clustering**
 - Level 0: Start from singleton clusters (each example is a cluster).
 - while there remain only *N* clusters:
 - Calculate the distances between all the data pairs from different cluster
 - Find the closest data pair and merge their clusters into one cluster

Hierarchical Clustering

Complete the method fit in the class HierarchicalClustering

Dimension Reduction

Principal Component Analysis

PCA Algorithm

Step 1. Zero-center (+ and normalize) the data

Step 2. Estimate the covariance matrix

Step 3. Perform the eigenvalue decomposition of Σ . Then, order them by

eigenvalues in decreasing order: $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_d$

Step 4. If we choose the first $k \ll d$ eigenvectors (with largest k eigenvalues) and discard the rest, we get a k-dimensional space such that the original data loses least amount of information (in terms of variance).

Homework 2

Homework 2

- **Due:** 4/30 Tue 6pm
 - No late penalty until 6:30 pm
- Comments from HW1
 - Optimize your code as much as you can.
 - Submit the code with your output and without unnecessary output.
 - Double check your submission.
- We **DO NOT** guarantee to run unreasonably inefficient codes for grading.

K-Means Clustering

Image Compression

Image Compression

Image shape = (Height, Width, Channel)

Image Compression

One pixel value = (R, G, B)

K-Means Clustering Algorithm

- 1. Randomly initialize the centroids (number of centroids = K)
- Assign each pixel to the closest centroid
- 3. Calculate the mean of each pixel in the same cluster and update the centroid
- Repeat updating with max_iter times

K-Means Clustering Algorithm

Decide your K according to the value of J

K-Means

- How to decide *K*?
 - Usually, we do not know natural distribution of the data.
 - What about choosing the *K* resulting in minimum value of *J*?

$$J = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{i,k} ||x_i - \mu_k||^2$$

Unfortunately, J decreases always with larger K.

- o If there are natural clusters in the data, you may observe an elbow point. Choose it in that case.
- Life is not that easy. You may not observe such a point...

Spring 2024 27

- Classifiers we have learned:
 - discriminant analysis, logistic regression, SVM, Naive Bayes, Random Forest ...
- Datasets: (1)diabetes.csv, (2)credit_score.csv
 - For each dataset, implement and train classifier models among the above. (scikit-learn allowed)

(a), (c): Train at least 2 models for each dataset. Write the code and report the performances of the models.

Make sure your codes are all run and the evaluated model performance is printed out!

- (b), (d): Report the **best model** among the models you've trained.
 - What you should include:
 - **Comparison** of the models you trained in (a)/(c).
 - **Justification** on why you chose the final model.
 - Explanation on the **optimizations** you applied to your model to get the best performance.
 - e.g., regularization, hyperparameter tuning, cross validation,...
 - You will get full credit if you plot the process of model optimization. (example below)

- (e): Discuss the **differences or commonalities between the two datasets** with respect to why you chose the best model for each dataset.
 - If you chose the same model for the two datasets, why?
 - If you chose different models for the two datasets, why?