Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 11

PHYSICAL SCIENCES P2 (CHEMISTRY)

COMMON TEST

JUNE 2019

MARKS: 100

TIME : 2 Hours

This question paper consists of 9 pages and 2 data sheets.

INSTRUCTIONS AND INFORMATION TO CANDIDATES

- Write your name on the ANSWER BOOK.
- Answer ALL the questions in the answer book.
- You may use a non-programmable calculator.
- You may use appropriate mathematical instruments.
- Number the answers correctly according to the numbering system used in this question paper.
- YOU ARE ADVISED TO USE THE ATTACHED DATA SHEETS.
- Give brief motivations, discussions, et cetera where required.
- Show the formulae and substitutions in ALL calculations.
- Round off answers to a minimum of TWO decimal places

QUESTION 1: MULTIPLE- CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1 - 1.7) in the ANSWER BOOK. Eg 1.8 A

- 1.1 The shape of the OF₂ molecule is :
 - A Trigonal pyramidal
 - B Linear
 - C Bent
 - D Tetrahedral

(2)

- 1.2 Which statement BEST explains the formation of the dative bond between ammonia (NH₃) and the hydrogen ion (H⁺)?
 - A Both NH₃ and H* are polar
 - B The NH₃ molecule has a lone pair of electrons and the H⁺ ion has an empty orbital.
 - C H⁺ ion is regarded as a proton and is attracted to the electrons on the nitrogen atom of the NH₃ molecule.
 - D The electronegativity of the nitrogen atom is greater than the electronegativity of hydrogen. (2)
- 1.3 Which ONE of the following statements concerning ideal gases is INCORRECT?
 - A Ideal gases do not exert pressure
 - B Ideal gas molecules do not occupy a volume
 - C The collision between ideal gas molecules is elastic
 - D There are no intermolecular forces between ideal gas molecules. (2)
- 1.4 Which ONE of the following statements regarding the effect of intermolecular forces and some physical properties is INCORRECT?
 - A The stronger the intermolecular force, the slower the rate of evaporation.
 - B The weaker the intermolecular force, the lower the boiling point.
 - C The stronger the intermolecular force, the higher the surface tension.
 - D The stronger the intermolecular force, the lower the melting point.. (2)

1.5 2,50 mol of SO₂ and 1 mol of O₂ are sealed in a 1 dm³ flask and allowed to react completely at STP according to the following balanced equation.

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$

The TOTAL number of moles of gas in the flask at the END of the reaction is:

- A 2
- B 3.50
- C 2,50
- D 0.50

(2)

- 1.6 The gas law that expresses the relationship between pressure and temperature of a gas is known as:
 - A Charle's Law
 - B Gay- Lussac Law
 - C Boyle's Law
 - D Avogadro's Law

(2)

- 1.7 The type of intermolecular force involved when CO2 is added to water is :
 - A Dipole- induced dipole forces
 - B London forces
 - C Covalent bonds
 - D Ion induced dipole forces

(2)

TOTAL : SECTION A [14]

Consider the substances in the table below. Select the correct answer for each of the questions that follow. Write down only the LETTER that corresponds to your choice

	SUBSTANCE		SUBSTANCE
A.	HCN	F	H ₂ O
В	MgCl ₂	G	CCI ₄
С	.12	Н	CO ₂
D	NH ₄ ⁺	1	C ₂ H ₂
E	.Cl ₂	J	H ₂ S

2.1 Identify

	2.1.1 TWO molecules that have triple bonds.	(2)
	2.1.2 TWO substances that when mixed together will result in ion-dipole forces of attraction.	(2)
	2.1.3 A non-polar LIQUID at room temperature	(1)
	2.1.4 A MOLECULE having a tetrahedral shape.	(1)
	2.1.5 A SOLID that is insoluble in water.	(1)
	2.1.6 A GAS at room temperature with pure covalent bonds between its atoms.	(1)
2.2	Compounds F (H ₂ O) and J (H ₂ S) are hydrides of group 6 elements. H ₂ O has a lower molar mass than H ₂ S, but a higher boiling point than H ₂ S.	
	Explain fully why H ₂ O has a higher boiling point than H ₂ S, by referring to the types and strengths of the intermolecular forces in each and the energy involved.	(4)
2.3	Draw the Lewis structure for compound G (CH ₄)	(2)
2.4	Compound H (CO ₂) has polar covalent bonds in the molecule.	
	2.4.1 Is the compound CO₂ polar or non-polar? Explain fully.	(3)
	2.4.2 Name the type of intermolecular forces found in this compound.	(1) [18]

Grade 11 learners investigated the effect of intermolecular force on capillarity. They pour 100ml each of water; glycerine and nail polish remover in separate beakers. A capillary tube is inserted into each liquid and after a while, the level of liquid in the capillary tube is measured.

They recorded their results in a table as follows:

Liquid	Height (mm)				
Water	19				
Glycerine	5				
Nail polish remover	26				

3.1	State the dependent variable in the above investigation.	(1)
3.2	Which liquid displayed the greatest degree of capillarity?	(1)
3.3	Explain the answer to question 3.2 above.	(3)
3.4	Use the results in the table and arrange the liquids in order of INCREASH STRENGTH of intermolecular force that is, from the weakest intermolecular to the strongest intermolecular force.	
3.5.	Identify the liquid with the highest boiling point.	(1) [8]

4.1 The graph below shows the relationship between the volume and Celsius temperature of an enclosed gas maintained at a constant pressure, P₁. The experiment is repeated for different constant pressures P₂ and P₃.

- 4.1.1 Give the name, and state in words, the Law that is illustrated in the graph. (3)
- 4.1.2 Apart from pressure, state ONE other variable that must be kept constant for each experiment (1)
- 4.1.3 What is the relationship between the volume and temperature of the gas? (1)
- 4.1.4 Which one of the 3 pressures, P₁; P₂ or P₃ is the HIGHEST? (1)
- 4.1.5 Fully explain the answer to question 4.1.4 above. Use a relevant equation to support your explanation. (3)
- 4.2 A 10 dm³ steel vessel that holds a sample of oxygen gas at 25°C and 100kPa develops a leak. Some of the oxygen gas escapes before the leak is repaired. The pressure of the O₂ in the vessel after the leak is repaired is 55kPa. The temperature remains at 25°C.

Calculate the mass of oxygen gas that leaked.

(8) [17]

A compound contains the elements carbon, hydrogen and oxygen only. It consists of 54.56% carbon and 36.36% hydrogen. The molar mass of the compound is 132 g.mol⁻¹.

- 5.1 State the definition of empirical formula. (2)
- 5.2 Calculate the empirical formula of the compound. (6)
- 5.3 Determine the molecular formula of the compound. (2)
 [10]

QUESTION 6

Iron is recovered from iron ore (Fe₂O₃) in a blast furnace. The following reaction takes place.

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2 Fe(s) + 3CO_2(g)$$

In one such reaction, 160g of impure iron ore was reacted and 63 dm³ of CO₂ was produced at STP.

- 6.1 Write down the definition of the mole. (2)
- 6.2 Calculate the number of CO₂ molecules that formed at STP (4)
- 6.3 Calculate the maximum no of moles of iron that will be formed in the above reaction.
 (2)
- 6.4 Calculate the percentage purity of the iron ore sample used. (4)
 [12]

QUESTION 7

Industrially, vanadium metal, (V) which is used in steel alloys can be obtained by reacting vanadium pentoxide(V_2O_5) with calcium at high temperatures. The balanced equation for the reaction is:

During an industrial process 31850 g of V₂O₅ reacts with 2 x 10⁴ g of Ca.

- 7.1 State the definition of a limiting reagent. (2)
- 7.2 Calculate the theoretical yield of vanadium. (6)
- 7.3 Calculate the percentage yield if 8,67 x 10³ g of vanadium is obtained. (2)

[10]

- 4.14 g of solid LiNO₃ is first dissolved in a small amount of water and then made up to a certain final volume so that the concentration of the solution is 0,05 mol.dm⁻³
- 8.1 Write down the definition of concentration.
 8.2 Calculate the number of moles of LiNO₃ used.
 8.3 Calculate the final volume of the solution.
 8.4 An additional 250 cm³ of water is now added to this solution. Calculate the new concentration of the solution

TOTAL MARKS: 100

[11]

				Γ	0,7			0,7			0,8		-	0,8			0,9		18	1,0	Т	-	2,1	٦			
					Ţ	87	133	င္ပင္ခ	55	86	공	37	39	×	19	23	Na	⇉	7	<u> </u>	ω	- :	I.	-	3	-	
					0,9	,		0,9		8	1,0			1,0			1,2		-	1,5	+			_	_		
				1	S R	88	137	Ba	56	88	ş	38	6	င္မ	20	24	Mg	12	9	Be	4				3	N	
											1,2		8	1,3							_						
					S	89	139	2	57	89	<	39	45	Š	21											ω	
				_				1,6			1,4	8		1,5													
		_			_		179	莱	72	91	ŗ	8	8	⇉	22				10				_			•	
232	=	9	#	င္ပ	58		_	_			_			1,6	10000					E E	7		KEY/SLEUTEL			G,	
2.	_	4	-	Φ			181	Ta	73	92	_	=	51	<									SLE				X.
	Pa	9	=	P	59		184	8	74	96	1,8 M O	42	5	1,6 Ω		Ben	ş		9	egal Egal			JE I			6	В
	0.505	+	36.		\dashv		4	_	4	6	1,9	2	2	1.5	4	ader	X			Elektronegatiwiteit							မှ
238		92	1	ă	8		186	Re	75		って	43	55	1,5 M	25	1 ep	mate		į	•	•			*	•	7	로
	_	_		T				V2-20			2,2	3		1,8		elati	rela			1,9]	Ato	Atomic number			丽
+	Z	8		3	61		190	စ္ပ	76	2	굗	4	56	Fe	26	9449	tive	*	63,5	5	3	*	mo	icn		00	Ř
	2	9	#	Sm	6		_			_	2,2			1,8		atox	ato	L	4			J	Atoomgetal	툂			õ
1	E	2	8	3	62		192	=	77	23	ア		59	_		ă	룺		'	Simboo				9		9	S
	A	95	3	<u>_</u>	63		=	77	7	=	2,2		cn	1,8		Benaderde relatiewe atoommassa	Approximate relative atomic mass			Simbool	5					5	TABLE 3: THE PERIODIC TABLE O
-	_	-	~	_	_		195	꾸	00	8	Pd 1,9	_	59	1,9			u										BE
!	S	96	157	G	64		197	P	75	10	βĄ		63,5	S.	25											=	E 0
		+			\dashv		7	=	_	8	1,7		C	1,6													П
!	묫	97	159	4	8		201	Hg	80	112			65													2	ELEMENTS
	_	_	_	_				1,8	1		1,7			1,6			1,5			2,0					_		M
!	ξ	8	8	۲	66		204	76	81	115	5	49	70	Ga	31	27	æ	3	=	Ø	S				⋾	ಭ	Z
	П	9	=	I	6			1,8		_	1,8			1,8			1,8			2,5	- 1				3	_	S
	S)	9	8	0	67		207	_		19			73	_		28			_	ဂ	_				5	•	
	Ţ	6	167	ш	2		2	1,9	000	_	1,9	cn	7	2,0 A	u	w	2,1		_	3,0					3	3	
1	3	•	7	_			9			22		_	5	2,4		-	2,5			Z					_	-	
	š	9	160	Ħ	69			2,0		12	2,1		7			3				0	- 1				3	16	
Η.	_	7	_	_			H	2,5		œ	2,5		-	2,8		-	3,0		-	4,0	_						
;	Š	200	173	8	70					127			80			35,5				TI					3	17	
	_	_	_	_			r		_	+			_			_		_	_				_		3	_	
'	-	ဍ	175	Ë	3			줌	86	131	ĕ	2	20	4	36	6	2	18	20	ě	6	4	౼	N	₫	00	

Downloaded from Stanmorephysics.com

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p*	1,013 x 10° Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm³-mol-1
Molère gaskonstante Molar gas constant	R	8.31 J-K-1-mol-1
Standard temperature Standaardtemperatuur	T*	273 K
Avogadro's Constant	N of/or Na	6.022x10 ²³ mot ⁻¹
Charge on Electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C

TABLE 2: FORMULAE/TABEL 2: FORMULES

$$n = \frac{m}{M} c = \frac{n}{V} \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$c = \frac{m}{MV} c = \frac{m}{MV} pV = nRT$$

PHYSICAL SCIENCES P2 (CHEMISTRY)

COMMON TEST

JUNE 2019

MARKING GUIDELINE

NATIONAL SENIOR CERTIFICATE

GRADE 11

TIME: 2 hours

MARKS: 100

This marking guideline consists of 7 pages.

1.1. C ✓✓

1.2. B ✓✓

1.3. A ✓✓

1.4. D ✓✓

1.5. C ✓✓

1.6. B ✓✓

1.7. A $\checkmark\checkmark$ 7x2 = (14)

QUESTION 2

2.1.1 A \checkmark and I \checkmark (2)

2.1.2. (B and F) \checkmark OR (D and F) (2 or 0) (2)

2.1.3. G ✓ (1)

2.1.4. G√ (1)

2.1.5. C ✓ (1)

2.1.6. E ✓ (1)

2.2 H₂O has hydrogen bonding ✓ and H₂S has dipole- dipole forces. ✓ The intermolecular forces in water are stronger ✓ Therefore more energy is required to break the IMF

in water. ✓ (4)

2.3.

2.4.1, NON- POLAR√

CO₂ is a symmetrical molecule with even distribution of electrons ✓

There is no net dipole moment/dipoles cancel out√/. There is no distinct opposite positive and negative ends. (3)

2.4.2 London forces ✓ (1)

[18]

4.2.

OPTION 1

Change in pressure = 100-55 = 45kPa√

pV = nRT√

 $45 \times 10^3 \times 10 \times 10^{-3} \checkmark = n \times 8.31 \times 298 \checkmark$

 $n = 0.182 \text{mol} \checkmark$

 $n = m/M\sqrt{}$

0.182 = m/32

 $m = 5.824g \checkmark of O_2 is lost$

NB: ACCEPT p values in kPa with V values in dm3

OPTION 2

pV = nRT√

 $100 \times 10^3 \times 10 \times 10^{-3} = n \times 8.31 \times 298$

n= 0.404mol (original no. of moles of oxygen in vessel)

pV = nRT

 $55 \times 10^3 \times 10 \times 10^{-3} = n \times 8.31 \times 298$

n= 0.222mol (no of mol in vessel after leak is repaired)

no of moles of gas leaked =0.404 - 0.222

= 0.182mol√

 $n = m/M\sqrt{}$

0.182 = m/32

 $m = 5.824g \checkmark of O_2 is lost$

(8)

[17]

QUESTION 5

5.1 Simplest whole number ratio in which elements in a compound combine √√ (2)5.2.

Element	Mass per 100 g	n=m/M(mol)	Simplest ratio
С	54.56	54.56/12 = 4.547√	4.547/2.2725 = 2
Н	9.08√	9.08/1 = 9.08√	9.08/2.2725 = 4
0	36.36	36.36/16 = 2.2725√	2.2725/2.2725 = 1

Empirical formula is C₂H₄O√

(6)

5.3 n = True M_r / Empirical M_r

= 132/44

= 3√

Molecular formula is C₆ H₁₂ O₃✓ (award both marks if answer correct without calculation)

(2)

[10]

Copyright reserved

6.1. The amount of substance having the same number of particles as there are atoms in 12g of C-12. ✓✓/ Amount of substance having 6,02 x 10²³ elementary particles.

(2)

(4)

(4)

(2)

6.2.

6.3

6.4.

Common Test June 2019

QUESTION 7

7.1 Substance that is used up completely in a reaction. ✓ ✓

(2)

7.2

Ratio	5	1	5	2
Moles	Ca	V ₂ O ₅	CaO	V
Initial	500√	175 ✓	0	0
Change	500√	100	500	200√
End	0	75	500	200

 V_2O_5

n = m/M n = m/M

= 20 000/40 = 31 850/182

= 500 mol = 175mol

 n_V formed = 200 mol

m = nxM

= 200 x 51√

 $= 10\ 200\ g\ \checkmark$ (6)

7.3 % yield = $8670/10\ 200\ x\ 100$ \(\sqrt{}

= 85 %√ (2)

[10]

8.1 Amount of solute per litre of solution. ✓ ✓ (2)

8.2. n = m/M

8.3 Positive marking from 8.2.

$$0.05 = 0.06/V$$

 $V = 1,20 \text{ dm}^3 \checkmark$ (3)

8.4

Positive marking from 8.3

$$C_1V_1 = C_2V_2 \checkmark$$

 $0.05 \times 1.20 \checkmark = C_2 \times 1.45 \checkmark$

 $C_2 = 0.04 \text{ mol.dm}^{-3}$

Positive marking from 8.2. and 8.3

$$c = n/V \checkmark$$

c= 0.04 mol.dm⁻³√

(4)

[11]

TOTAL MARKS: 100