Automatic RFIC Synthesis for Passive Downconversion Mixers

Narasimhan Srikanth

Indian Institute of Technology
Madras

Aim

- ► In this project, I have automated the schematic design of Passive Downconversion Voltage mode and Current mode Mixers.
- ► The automation uses the popular **Gradient Descent** algorithm.

Introduction

Why ML in circuit design?

- ► The complexity and density of integrated circuits continue to grow exponentially in the VLSI industry. Today a processor chip can have over a billion transistors..
- ► Al and ML offer innovative solutions to optimize various processes and improve efficiency.

Figure 1: microprocessor chip with over 10⁹ transistors

Active ML applications today

- ▶ **Performance Optimization** ML-driven optimization techniques enhance circuit performance by fine-tuning design parameters.
- Design Automation ML algorithms assist in automating layout generation and optimizing power, performance, and area.
- ▶ Fault Detection and Testing ML algorithms increase the accuracy of fault detection checks in designs where manual checking is near impossible.

Downconversion Mixers

- ▶ In a direct conversion RF receiver, a mixer translates the received signal from RF to baseband.
- Passive mixers are a class of mixers in which the transistors do not operate as amplifying devices. Instead, they function as switches.

Figure 2: Downconversion mixer in receiver path

Passive mixers are a suitable option for applications requiring low noise figures and good impedance matching over a wide range of frequencies, such as,

- ▶ Wireless communication cellular base station transceivers
- AM/FM and two-way radio systems
- RADARs used in defence

Types of Passive Mixers

1) Based on whether the input is an RF voltage or RF current:

Figure 3: Voltage mode passive mixer Figure 4: Current mode passive mixer

2) Based on whether the load used is a resistor or capacitor:

Figure 5: Return-to-zero mixer

Figure 6: Non-return-to-zero/sampling mixer

3) Based on whether the input is single-ended or differential:

Figure 7: Single-balanced mixer

Figure 8: Double-balanced mixer

Optimisation Algorithm - Gradient Descent

Principle

The **loss function** is minimised by iteratively adjusting the model parameters in the opposite direction of the *gradient* of the loss function with respect to those parameters.

Figure 9: 1-D gradient descent

Key parameters in gradient descent: Loss function, loss weights, gradient of the loss function, learning rate (α), model parameter updation.

Gradient Descent - Optimising Schematic design

The specifications of the passive mixer that are of importance are input impedance matching S_{11} , conversion gain, integrated single sideband (SSB) noise figure, IIP_3 and power consumption.

The automation routine implements gradient descent on the mixer netlist

- starting with hand-calculated circuit parameters
- ► The loss function and its gradient with respect to the circuit parameters used in optimisation are evaluated in every iteration.
- Every iteration, the circuit parameters are updated using the gradient.

Gradient Descent - Loss Function

Mixer specifications used to define the Loss-input impedance matching S_{11} , conversion gain, integrated single sideband (SSB) noise figure, IIP_3 and power consumption.

The Rectified Linear Unit function ReLU(x) is used to define loss.

Figure 10: Rectified Linear Unit

Gradient Descent - Loss Function (cont.)

Loss
$$S_{11} = ReLU($$
 Simulation $S_{11} -$ Reference $S_{11})$ (1)

Loss gain
$$= ReLU($$
 Reference gain $-$ Simulation gain $)$ (2)

Loss
$$NF = ReLU($$
 Simulation $NF -$ Reference $NF)$ (3)

Loss
$$IIP_3 = ReLU(Reference IIP_3 - Simulation IIP_3)$$
 (4)

$$Loss Idd = Idd (5)$$

Total Loss function:

Loss =
$$A_1 \cdot \text{Loss } S_{11} + A_2 \cdot \text{Loss gain} + A_3 \cdot \text{Loss } NF + A_4 \cdot \text{Loss } IIP_3 + A_5 \cdot \text{Loss Idd}$$
 (6)

Gradient Descent - Updating Circuit Parameters

In the k^{th} iteration, $x_j(k)$ indicates the j^{th} circuit parameter

$$\frac{\partial Loss}{\partial x_j} \approx \frac{\Delta Loss}{\Delta x_j} \tag{7}$$

$$x_j(k+1) = x_j(k) - \alpha_j \frac{\partial Loss}{\partial x_j} x_j^2(k)$$
 (8)

Equation (7) - computation of gradient with respect to x_j Equation (8) - Updating x_j

Voltage Mode Passive Mixer

Circuit diagram

The schematic chosen for optimisation is the double-balanced, fully differential voltage mode downconversion mixer.

Figure 11: Double-balanced fully differential Voltage mode mixer

Voltage Mode Passive Mixer

- Quadrature LO signalling with 25% duty cycle (figure 23)
- ▶ LO Range of operation 100 MHz to 1 GHz
- Input impedance looking in from the differential RF inputs matched to 50Ω
- ► LO input is fed to the gate of the switching nMOSFET through buffers built with inverters (figure 24)

Figure 12: quadrature LO with 25% duty cycle

Figure 13: Buffer connecting LO to switching transistor

Voltage Mode Passive Mixer - Small signal

Figure 14: single-balanced mixer, small signal LPTV model

Voltage Mode Passive Mixer - Equations

Equations based on figures 14 and 15 are used to set up the netlist before optimisation

$$R_{sw} \cdot C_L \ll T_{on}$$
, during the on-time of the switch (9)

$$R_B \cdot C_L \gg T_{off}$$
 , during the off-time of the switch (10)

$$R_{sh} = (R_{sw} + R_s) \cdot \frac{4\gamma}{1 - 4\gamma} \tag{11}$$

$$Z_{in} = R_{sw} + (\gamma R_B) \parallel R_{sh} \tag{12}$$

Number of Inverters
$$= N = \log_{\rho} \left(\frac{2C_{sw}}{C_i} \right)$$
 (13)

$$R_s=50\Omega$$
 and $\gamma=rac{2}{\pi^2}=0.203$

Voltage Mode Passive Mixer

Updating the circuit parameters in each iteration

$$W_r \leftarrow W_r - \alpha \frac{\partial Loss}{\partial W_r} W_r^2 \tag{14}$$

$$W_c \leftarrow W_c - \alpha \frac{\partial Loss}{\partial W_c} W_c^2 \tag{15}$$

$$W_{sw} \leftarrow W_{sw} - \alpha \frac{\partial Loss}{\partial W_{sw}} W_{sw}^2$$
 (16)

$$\rho \leftarrow \rho - \alpha \frac{\partial Loss}{\partial \rho} \rho^2 \tag{17}$$

 $W_r =$ width of resistance R_B $W_c =$ width of capacitance C_L $W_{sw} =$ width of nMOSFET $\rho =$ inverter size ratio

	Pre-optimisation	Specification	Post-optimisation
S ₁₁	−23.98 dB	<-15~dB	−16.05 dB
Gain	2.61 dB	> 4 dB	4.27 dB
SSB NF	6.86 dB	< 7 dB	6.01 dB
IIP_3	24.78 dBm	> 15 dBm	26.42 dBm
Power	3.692 mW	Minimise	3.529 mW

Table 1: Specifications at $f_{LO} = 550$ MHz before and after optimisation

Loss	Starting value	Post-optimisation
S ₁₁	0	0
Gain	0.421	0
SSB NF	0	0
IIP ₃	0	0
Power	9.23×10^{-4}	8.82×10^{-4}
Total loss	0.422	8.82×10^{-4}

Loss vs iterations

Figure 16: Loss vs iterations for voltage mode mixer

S_{11} process and temperature variations

Figure 17: Temperature

Figure 18: Process variations at 27°C

Gain process and temperature variations

Figure 19: Temperature

Figure 20: Process variations at 27°C

Circuit diagram

The schematic chosen for optimisation is the double-balanced, fully differential current mode downconversion mixer.

Figure 21: Double-balanced fully differential Current mode mixer

 Z_{BB} is a trans-impedance amplifier (TIA). The trans-impedance amplifier (figure 22) translates the switching current from the RF side to a baseband output voltage. The trans-impedance, $Z_{BB}(j2\pi f)$ (or current to voltage gain) of the amplifier is given by (the OPAMP is assumed to be ideal)

Figure 22: Trans-impedance amplifier

- Quadrature LO signalling with 25% duty cycle (figure 23)
- ▶ LO Range of operation 100 MHz to 1 GHz
- Input impedance looking in from the differential RF inputs matched to $\Omega\Omega$
- ► LO input is fed to the gate of the switching nMOSFET through buffers built with inverters (figure 24)
- ▶ The input impedance looking into the mixer from the differential RF port resembles a frequency-translated version of $Z_{BB}(j2\pi f)$

Figure 23: quadrature LO with 25% duty cycle

Figure 24: Buffer connecting LO to switching transistor

Updating the circuit parameters in each iteration

$$W_r \leftarrow W_r - \alpha \frac{\partial Loss}{\partial W_r} W_r^2 \tag{19}$$

$$W_c \leftarrow W_c - \alpha \frac{\partial Loss}{\partial W_c} W_c^2 \tag{20}$$

$$W_{sw} \leftarrow W_{sw} - \alpha \frac{\partial Loss}{\partial W_{sw}} W_{sw}^2$$
 (21)

$$\rho \leftarrow \rho - \alpha \frac{\partial Loss}{\partial \rho} \rho^2 \tag{22}$$

 $W_r =$ width of resistance R_B $W_c =$ width of capacitance C_L $W_{sw} =$ width of nMOSFET $\rho =$ inverter size ratio

	Pre-optimisation	Specification	Post-optimisation
S ₁₁	−5.66 dB	$ S_{11} < 5 \text{ dB}$	−4.953 dB
Gain	61.847 dB	> 60 dB	60.532 dB
SSB NF	7.28 dB	< 8 dB	7.3 dB
IIP_3	25.63 dBm	> 15 dBm	27.46 dBm
Power	12.431 mW	Minimise	10.09 mW

Table 3: Specifications at $f_{LO} = 550$ MHz before and after optimisation

Loss	Starting value	Post-optimisation	
S ₁₁	0.098	0	
Gain	0	0	
SSB NF	0	0	
IIP ₃	0	0	
Power	3.1×10^{-3}	2.523×10^{-3}	
Total loss	0.101	2.523×10^{-3}	

Loss vs iterations

Figure 25: Loss vs iterations for current mode mixer

S_{11} process and temperature variations

Figure 26: Temperature

Figure 27: Process variations at 27°C

Gain process and temperature variations

Figure 28: Temperature

Figure 29: Process variations at 27°C

Conclusion

In this project,

- ▶ I have automated the schematic design of double-balanced fully differential voltage and current mode passive downconversion mixers
- Optimisation algorithm used Gradient Descent
- Quadrature LO waveforms with 25% duty cycle are used to drive both mixers
- ▶ Specifications optimised are input impedance matching S_{11} , conversion gain, integrated single sideband (SSB) noise figure, IIP_3 and power consumption
- Temperature and process variations are analysed post-optimisation using Python code

Further Improvements

- Expand Automatic RFIC synthesis for more mixer circuit topologies
- Automation for Layout design
- ➤ The local minimum achieved in gradient descent depends on the choice of initial circuit parameters in the netlist. Hence the role of a circuit designer is very important in converging to the optimum solution faster.

END

Thank You

