

WHAT IS CLAIMED IS

5

1. A data transmission method, comprising the steps of:

a) performing two-dimensional interleaving along a time axis and along a frequency axis;

10 b) transmitting the thus-obtained data by a multi-carrier transmission form; and

c) producing, by channel copy operation, data which is short for the number of channels required for fast inverse Fourier transform

15 performed antecedent to and subsequent to said step a).

20

2. The method as claimed in claim 1, further comprising the steps of:

d) generating zero points along the time axis equivalently by channel copy operation so as to provide the number of channels required for the fast inverse Fourier transform performed antecedent to said step a); and

25 e) removing the zero points from the result of the fast inverse Fourier transform before said step a).

35

3. The method as claim 2, further comprising the step of:

f) performing channel copy operation on

2057474-0141502

the result of said step a) so as to provide the number of channels required for the fast inverse Fourier transform performed subsequent to said step a).

5

4. The method as claimed in claim 1,
10 wherein the number of channels required for the fast inverse Fourier transform performed antecedent to said step a) and the number of channels required for the same but performed subsequent to said step a) are made equal.

15

5. The method as claimed in claim 1,
20 further comprising the step of:
g) extracting noise at the zero points
equivalently inserted along the time axis by the
channel copy operation; and
h) removing noise at signal points of a
25 reception signal by using the result of said step g).

30 6. A data transmission method, comprising
the steps of:
 a) performing two-dimensional interleaving
along a time axis and along a frequency axis;
 b) transmitting the thus-obtained data by
35 a multi-carrier transmission form; and
 c) producing, by zero value addition
operation, the number of channels which are short

for fast inverse Fourier transform performed antecedent to said step a).

5

7. The method as claimed in claim 6,
wherein the number of channels required for the fast
inverse Fourier transform performed antecedent to
10 said step a) and the number of channels required for
the same but performed subsequent to said step a)
are made equal.

15

8. A data transmission apparatus,
comprising:
a part performing two-dimensional
20 interleaving along a time axis and along a frequency
axis;
a part transmitting the thus-obtained data
by a multi-carrier transmission form; and
a part producing, by channel copy
25 operation, data which is short for the number of
channels required for fast inverse Fourier transform
performed antecedent and subsequent to the process
performed by said part of performing two-dimensional
interleaving.

30

9. The apparatus as claimed in claim 8,
35 further comprising:
a part performing the fast inverse Fourier
transform antecedent to the process performed by

100011211311-014502

said part of performing two-dimensional interleaving; and

- a part performing the fast inverse Fourier transform subsequent to the process performed by
5 said part of performing two-dimensional interleaving,
wherein said part producing the short data by channel copy operation comprises:

- a part producing data which is short for
the number of channels required for said part
10 performing the fast inverse Fourier transform performed antecedent to the process performed by
said part of performing two-dimensional interleaving; and
a part producing data which is short for
15 the number of channels required for said part performing the fast inverse Fourier transform performed subsequent to the process performed by
said part of performing two-dimensional interleaving.

20

10. The apparatus as claimed in claim 8,
wherein the number of channels required for the fast
25 inverse Fourier transform performed antecedent to
said process of two-dimensional interleaving and the
number of channels required for the same but
performed subsequent to said process of two-
dimensional interleaving are made equal.

30

11. The apparatus as claimed in claim 8,
35 wherein the number of channels required for fast
Fourier transform performed antecedent to a process
of performing two-dimensional inverse interleaving

100047134 -041502

performed at a reception end corresponding to the process of the two-dimensional interleaving and the number of channels required for the same but performed subsequent to said process of the two-dimensional inverse interleaving are made equal.

- 10 12. A data transmission apparatus,
comprising the steps of:
 a part performing two-dimensional
interleaving along a time axis and along a frequency
axis;
- 15 15. a part transmitting the thus-obtained data
by a multi-carrier transmission form; and
 a part producing, by zero value addition
operation, the number of channels which are short
for fast inverse Fourier transform performed
- 20 20. antecedent to the process performed by said part of
performing two-dimensional interleaving.

- 25 13. The apparatus as claimed in claim 12,
further comprising a part of thinning out zero
values corresponding to the zero values added by the
zero value addition operation.

- 30
- 35 14. The apparatus as claimed in claim 12,
wherein the number of channels required for the fast
inverse Fourier transform performed antecedent to
said process performed by the part performing the

RECORDED - FEB 22 1988 - 2

two-dimensional interleaving and the number of channels required for the same but performed subsequent to said process performed by the part performing the two-dimensional interleaving are made
5 equal.

10047131 - 011502