

Aula 4 - Simplificação de Expressões Lógicas MinTermos & Maxtermos

Prof. Danilo Reis

Histórico Álgebra de Boole

- Desenvolvida pelo matemático e filósofo britânico George Boole para estudo da lógica (1850-Leis do Pensamento).
- Definida sobre um conjunto de dois elementos:(falso, verdadeiro) (0, 1) (baixo, alto)
- Seus elementos, a princípio, não tem significado numérico.

Postulados: se x é uma variável boleana então:

Se x diferente de $0 \Rightarrow x = 1$

Se x diferente de $1 \Rightarrow x = 0$

Álgebra de Boole: funções

- Uma variável boleana só pode assumir apenas um dos valores possíveis (0 e 1)
- Uma ou mais variáveis e operadores podem ser combinados formando uma função lógica Z1(A) = f(A) = ... (expressão usando var. A) Z2(A,B) = f(A,B) = ... (expr. usando var. A e B)
- Resultados de uma função lógica podem ser expressos numa tabela relacionando todas as combinações possíveis dos valores que suas variáveis podem assumir e seus resultadoscorrespondentes: a Tabela-Verdade

Álgebra de Boole: Tabela Verdade

	Variáveis		Função Lógica	
	A	В	Z=f(A,B)	
Lista das	0	0	0	Resultados da
combinações possíveis	0	1	1	função lógica para cada
dos estados das variáveis	1	0	1	combinação dos estados de
de entrada	1	1	1	entrada

- Tabela-Verdade relaciona os resultados (saída) de uma função lógica para todas as combinações possíveis de suas variáveis (entrada).
- Na Tabela-Verdade acima a função lógica Z possui duas variáveis A e B, sendo Z = f(A, B) = A + B

Álgebra de Boole: operações

São definidas algumas operações elementares na álgebra boleana:

- Operação "Não" (NOT);
- Operação "E" (AND);
- Operação "Ou" (OR);
- NAND;
- NOR;
- Operação "Ou-Exclusivo" (Exclusive-Or ou XOR);
- XNOR;

Álgebra de Boole: precedência

- Precedência das Operações
 - 1. parêntesis
 - 2. "Negação"
 - 3. "E"
 - 4. "Ou", "Ou-exclusivo"
- O uso de parêntesis altera a precedência "normal" dos operadores, como na álgebra comum.

Postulados básicos

Postulado 1:

Uma variável booleana x tem dois valores possíveis 0 e 1. Esses valores são exclusivos:

se x =0 então x não pode ser 1

se x =1 então x não pode ser 0

Postulado 2:

A operação NOT é definida como:

$$0 = 11 = 0$$

Postulado 3:

As operações AND e OR são definidas como:

$$0.0 = 0.0 + 0.0 = 0$$

$$0.1 = 00 + 1 = 1$$

$$1.0 = 01 + 0 = 1$$

$$1.1 = 11 + 1 = 1$$

A partir destes postulados podem ser construídos os teoremas que permitem manipular e simplificar expressões lógicas.

Propriedades básicas

Leis e Teoremas da Algebra Booleana:

Operações com 0 and 1:

1.
$$X + 0 = X$$

2D.
$$X \cdot 0 = 0$$

Lei da Indepotência:

3.
$$X + X = X$$

Lei da Involução:

Lei de Complementação:

5.
$$X + \overline{X} = 1$$

5D.
$$X \cdot \overline{X} = 0$$

Lei comutativa:

Lei Distributiva:

$$7. A. (B+C) = A. B+A. C$$

$$8. A + B . C = (A + B) . (A + C)$$

Propriedades básicas

☑ Leis Associativas:

7.
$$(X + Y) + Z = X + (Y + Z)$$

= $X + Y + Z$

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

9.
$$X \cdot Y + X \cdot \overline{Y} = X$$

11.
$$(X + \overline{Y}) \cdot Y = X \cdot Y$$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

= $X \cdot Y \cdot Z$

8D.
$$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$$

9D.
$$(X + Y) \cdot (X + \overline{Y}) = X$$

11D.
$$(X \cdot \overline{Y}) + Y = X + Y$$

Propriedades básicas

$$x+(\overline{x}.y) = x+y$$

- Partindo de x+(x̄.y) teremos
- Usando a lei distributiva x+(x̄.y) = (x+x̄).(x+y)
- Usando a lei de complementação (x+x).(x+y) = 1.(x+y)
- Propriedade especial de 1, 1.(x+y) = x+y

Lei DeMorgan

"The negation of a <u>conjunction</u> is the <u>disjunction</u> of the negations." and "The negation of a disjunction is the conjunction of the negations."

$$\begin{array}{ccc} 1 & \overline{X \cdot Y} = \overline{X} + \overline{Y} \\ 2 & \overline{X + Y} = \overline{X} \cdot \overline{Y} \end{array}$$

Álgebra de Boole: dualidade

Existe um princípio especial na álgebra boleana denominado "princípio da dualidade": Para uma equação boleana qualquer, se trocarmos as operações E (.) e operações OU (+) entre si assim como valores 0s e 1s entre si, obteremos uma equação igualmente válida.

$$A + 0 = A$$
 $A \cdot 1 = A$

$$A + 1 = 1$$
 $A \cdot 0 = 0$

$$A + A = A$$
 $A \cdot A = A$

$$A + A = 1$$
 $A \cdot A = 0$

Equivalência e Suficiência de Operações

Equivalência das operações

Qualquer função lógica pode ser expressa em termos das operações AND, OR e NOT.

Suficiência das operações

Apenas as operações AND e NOT ou OR e NOT são suficientes para expressar qualquer operação:

Funções Lógicas: Formas Padrão

Funções lógicas podem ser padronizadas a duas "formas padrão":

- Forma padrão de soma de produtos expressão é uma soma (OR) de produtos (AND) de variáveis e variáveis complementadas;
- Forma padrão de produto de somas expressão é um produto (AND) de somas (OR) de variáveis e variáveis complementadas.

Forma Padrão: soma de produtos

As funções abaixo estão em sua forma canônica SDP:

A função abaixo não está em sua forma canônica

$$F = A.B + A'.C + B.C'$$

Forma Padrão: produto de somas

A função abaixo estão em sua forma canônica PDS:

$$F(x,y) = (x'+Y).(x+y')$$

A função abaixo não está em sua forma canônica PDS

$$F(x,y) = x \cdot (x+y')$$

Estratégia similar a SDP para formatar uma função qualquer e obter a sua forma canônica.

Forma Padrão: produto de somas

A função abaixo estão em sua forma canônica PDS:

$$F(x,y) = (x'+Y).(x+y')$$

A função abaixo não está em sua forma canônica PDS

$$F(x,y) = x \cdot (x+y')$$

Estratégia similar a SDP para formatar uma função qualquer e obter a sua forma canônica.

Mintermos e Maxtermos

Os conceitos de Mintermos e Maxtermos são utilizados para reescrever-se uma função lógica em uma forma padronizada no sentido de obter-se uma simplificação da mesma. Esta padronização serve como base, por exemplo, na utilização de Arranjos e PLAs.

Mintermos e Maxtermos

- Na soma padrão de produtos, cada termo correspondente a um produto é denominado mintermo.
- Analogamente, no produto padrão de somas, cada termo correspondente a uma soma é denominado de maxtermo.
- Embora as formas padrões não sejam as formas mais simplificadas (e por vezes mais complexas que as formas originais) se prestam a sistematização da simplificação.

Mintermos e Maxtermos

Cada mintermo ou maxtermo se associa a uma possibilidade de entrada de uma função lógica. Por exemplo

$$Y=f(A,B)=(A.B)$$

Mintermo	Maxtermo	A	В	Υ
A'.B'	A+B	0	0	1
A'.B	A+B'	0	1	1
A.B'	A'+B	1	0	1
A.B	A'+B'	1	1	0

Mintermos e Maxtermos

Numerando as entradas da tabela verdade é possível se identificar os mintermos e maxtermos genericamente:

mintermos: 0 equivale variável complementada

1 equivale variável

maxtermos: 0 equivale variável

1 equivale variável complementada

Assim a entrada 0, que equivale a A=0 e B=0:

mintermo: A'.B'

maxtermo: A+B

Mintermos e Maxtermos na Tabela Verdade

Linha nª	A	В	C	f(A,B,C)	Mintermos	Maxtermos
0	0	0	0	14	$\mathbf{m}_0 = \mathbf{A}'\mathbf{B}'\mathbf{C}'$	$\mathbf{M}_0 = \mathbf{A} + \mathbf{B} + \mathbf{C}$
1	0	0	1	D	$m_1 = A'B'C$	$\mathbf{M}1 = \mathbf{A} + \mathbf{B} + \mathbf{C}'$
2	0	1	O.	- 1	$m_2 = A'BC'$	$\mathbf{M}_2 = \mathbf{A} + \mathbf{B}' + \mathbf{C}$
3	0	1	1	- 1	$m_3 = A'BC$	$\mathbf{M}_3 = \mathbf{A} + \mathbf{B}' + \mathbf{C}'$
4	1	0	0	0	$\mathbf{m}_4 = \mathbf{AB}^{c}\mathbf{C}^{c}$	$\mathbf{M}_4 = \mathbf{A}' + \mathbf{B} + \mathbf{C}$
5	1	0	3	0	$m_5 = AB/C$	M ₅ = A' + B + C
6	1	1	0	1	$m_{\phi} = ABC'$	$\mathbf{M}^{6} = \mathbf{A}_{1} + \mathbf{B}_{1} + \mathbf{C}_{1}$
7	1	1	1	1	$m_{\gamma} = ABC$	$M_1 = A' + B' + C$

FUNDAÇÃO EDSON QUEIROZ T566 —SISTEMAS DIGITAIS AVANÇADOS UNIVERSIDADE DE FORTALEZA

Formas Canônicas

Mintermos forma canônica geral para uma função de n váriaveis

$$F(A, B..., X) = \sum_{i=0}^{2^n} m_i$$

Maxtermos torma canonica geral para uma função de n váriaveis

$$F(A, B, ..., X) = \prod_{i=0}^{2^n} M_i$$

Implementação em PALs ou PLAs

a	b	C	Ž
0	0	0	0
0	0	1	1
0	4	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Mapa de Karnaugh

Mapa de Karnaugh é um método alternativo para se representar uma tabela verdade. Ele propõe uma solução gráfica da informação contida na tabela verdade.

Simplificação com Karnaugh

c×	00	01	11	10
0	0	0	7	1
10	O	0	1	1

$$F(A,B,C) = A$$

$$F(A,B,C) = \Sigma m(1,2,3,6)$$

 $F' = B C' + A' C$

$$F(A,B,C) = \Sigma m(0,4,5,7)$$

Referências

- http://pt.wikipedia.org/wiki/George Boole
- http://www.cin.ufpe.br/~agsf/Sistemas Digitais.htm