Source: [KBe2020math530refExr0nRetIndex]

#### 1 | Prompt

Which of the following systems have a unique solution? You do NOT have to solve the 3 variable system by hand; you can graph it or use other resources. What does this have to do with linearly dependent/independent vectors??

### 2 | Ideas

I first focused on the systems of 2 var 2 equs. I thought of the first set

$$2x - 3y = 1$$
$$x + 3y = 3$$

as asking

$$(1,3) \stackrel{?}{\in} \text{span}((2,1),(-,31))$$

but that didn't really get me anywhere.

Then, I tried writing it as a matrix equation:

$$\begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

I figured that because we wanted to know whether the system is linearly independent or not, which is a boolean value, I had to compress the matrix down to some number that can then be compared. The only way I know how to do that is by taking the determinant, so I tried to find some connection between the determinant of a 2x2 matrix and whether it's component rows interpreted as vectors of  $\mathbb{F}^2$  are linearly dependant.

# 3 | Lemma

A pair of vectors u,v in a vector space V over  $\mathbb{F}^2$  are linearly dependent iff  $\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} = 0$ .

# 4 | **Proof**

#### In the forwards direction

Showing that if u,v are linearly dependent, then  $\begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} = 0.$ 

Suppose u,v are linearly dependent. Then, we can write v as  $au:a\in\mathbb{F}$ . The lemma in this direction (directional lemma?) can be written as

Exr0n · 2020-2021 Page 1