	COMPUTER SCI CIAL INTELLIG		DEPARTMENT OF COMPUTER SCIENCE ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordin	Coordinator Name Dr. Vairachilai Shenbagavel			
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI ((P)
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00PM	
Duration	2 Hours	Applicable to Batches	0 23CSBTB45	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Snap Shoots – Photography Studio	

Context:

Snap Shoots tracks the impact of Facebook ads (in ₹000s) on the number of wedding bookings.

Facebook Ads (x in ₹k)	Bookings (y)
1	8
2	15
3	20
1	10
2	17

Objective:

Analyze how Facebook ad spending influences wedding bookings using Linear Regression and SHAP value interpretation.

Requirements:

1. Perform Linear Regression Analysis

- Use the dataset where:
 - Independent Variable (x): Facebook Ads (₹k)
 - Dependent Variable (y): Bookings

2. Calculate the Baseline Value

o Compute the mean of all y-values (bookings).

3. Calculate SHAP Values

o For each entry, calculate:

SHAP Value = Prediction - Baseline

o Attribute this value to the number of Facebook ads.

4. Compute Final Prediction

- o Use the regression equation to predict bookings for each Facebook ad value.
- Verify that:

Final Prediction = Baseline + SHAP Value

5. Interpret the Results

- o Explain how each input (Facebook Ads) contributed to the final prediction.
- o Compare predicted vs actual values.
- o Indicate whether the model overpredicted or underpredicted, with possible reasoning.

Deliverables:

• Regression equation (slope and intercept)

- Baseline booking value
- Table with Facebook ads, predicted bookings, SHAP values, and actual bookings
- Interpretation for each case
- Overall summary covering model accuracy, feature influence, and SHAP-based insights

Q. No.	Question	Expected Time to complete
2	HomeGenie – Service Requests using Multiple Linear Regression and SHAP Analysis	

Objective:

Analyze the influence of advertisement clicks and response time on the number of service bookings using Multiple Linear Regression and SHAP value interpretation.

Given Dataset:

Ad Clicks	Response Time (min)	Booking
(X_1)	(X_2)	s (y)
150	10	300
100	15	250
120	8	280
90	12	240
80	20	200

Tasks:

1. Perform Multiple Linear Regression Analysis

- o Independent variables: Ad Clicks and Response Time
- Dependent variable: Bookings

2. Compute the Baseline Value

Use the average of the bookings

3. Calculate SHAP Values

- o Calculate SHAP Value
- o Break down SHAP contributions by each feature

4. Generate Model Predictions

- o Apply the regression equation
- Oconfirm decomposition: Prediction = Baseline + SHAP(Ad Clicks) +

SHAP(Response Time)

5. Interpret SHAP Contributions for Each Entry

- o For every data point, explain the effect of each feature
- $_{\odot}$ $\,$ Comment on whether the model overpredicts or underpredicts, and why, using SHAP values

Q. No.	Question	Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all available features from the Diabetes dataset as independent variables.
 - Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to

each feature.

- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.

- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.