#### Diszkrét matematika 1.

1. előadás

Juhász Zsófia jzsofia@inf.elte.hu jzsofi@gmail.com Mérai László diái alapján

Komputeralgebra Tanszék

2020 tavasz

#### Diszkrét matematika

#### Részterületei:

- Logika
- Halmazelmélet
- Kombinatorika
- Gráfelmélet
- Számelmélet
- Algebra
- Kriptográfia
- Algoritmusok
- Számítástudomány
- Információelmélet
- Játékelmélet
- Diszkrét geometria
- Operációkutatás
- Valószínűségszámítás

#### Mit tanulunk az idén?

#### Négy fő témakör:

1. Alapok: logika, halmazok, relációk



2. Komplex számok

(cos t + i\*sin t)= cos n\*t + i\*sin n\*t

3. Kombinatorika



4. Gráfok



# Egy kis matematikai logika . . .

Matematikai logika Diszkrét matematika 1. 2020 tavasz

### Logikai műveletek

A logikában az állításokat logikai műveletekkel tudjuk összekapcsolni:

- Tagadás (negáció), jele:  $\neg A$ .
- És (konjunkció), jele:  $A \wedge B$ .
- Vagy (megengedő vagy/diszjunkció), jele:  $A \lor B$ .
- Ha ..., akkor ... (implikáció), jele:  $A \Rightarrow B$ .
- ... pontosan akkor, ha ... (ekvivalencia), jele:  $A \Leftrightarrow B$ .

#### Igazságtáblázat

| Α | В   | $\neg A$ | $A \wedge B$ | $A \vee B$ | $A \Rightarrow B$ | $A \Leftrightarrow B$ |
|---|-----|----------|--------------|------------|-------------------|-----------------------|
|   | - 1 | Н        | ı            | I          | I                 | ı                     |
| I | Н   | Н        | Н            | ı          | Н                 | Н                     |
| Н | ı   | I        | Н            | I          | I                 | Н                     |
| Н | Н   | I        | Н            | Н          | I                 | I                     |

Matematikai logika Diszkrét matematika 1. 2020 tavasz

## Logikai műveletek: a vagy fajtái

#### A köznyelvben a **vagy** háromféle értelemmel bírhat:

- Megengedő vagy: A V B pontosan akkor igaz, ha A és B közül legalább az egyik igaz.
- Pl. "Átok reá ki gyávaságból vagy lomhaságból elmarad,..."
- Kizáró vagy:  $A \oplus B$  pontosan akkor igaz, ha A és B közül pontosan az egyik igaz. ( $\oplus$  helyett a XOR jelölés is használatos.)
  - Pl. "Most jobbra vagy balra kell fordulnunk."
- Összeférhetetlen vagy: A||B| pontosan akkor igaz, ha A és B közül legfeljebb egyik igaz.
  - Pl. "Iszik vagy vezet!"

| Α | В | $A \vee B$ | $A \oplus B$ | A  B |
|---|---|------------|--------------|------|
| I | ı | I          | Н            | Н    |
| I | Н | I          | I            | I    |
| Н | ı | I          | I            | I    |
| Н | Н | Н          | Н            | ı    |

# Logikai műveletek

Az implikáció  $(A \Rightarrow B)$  csak *logikai* összefüggést jelent és nem okozatit!

| Α | В | $A \Rightarrow B$ |
|---|---|-------------------|
| I | ı | I                 |
| ı | Н | Н                 |
| Н | ı | I                 |
| Н | Н | ļ                 |
|   |   |                   |

Példa

• 
$$2 \cdot 2 = 4 \Rightarrow i^2 = -1$$

• 
$$2 \cdot 2 = -3 \Rightarrow A$$
 kutya emlős állat.

Hamis állításból minden következik:

Példa

• 
$$2 \cdot 2 = 5 \Rightarrow i^2 = -2$$

Adott logikai művelet más módon is kifejezhető:  $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$ 

Matematikai logika Diszkrét matematika 1. 2020 tavasz

# A logikai műveletek tulajdonságai, ítéletlogikai tételek

## Állítás (Logikai műveletek tulajdonságai)

- $\bullet A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C), A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$  (disztributivitás)

# Bizonyítás.

#### Példa:

| Α | В | С | B ∨ C | $A \lor (B \lor C)$ | A ∨ B | (A ∨ B) ∨ C | $A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$ |
|---|---|---|-------|---------------------|-------|-------------|-------------------------------------------------------|
| 1 | I |   |       |                     | I     |             | I                                                     |
| I | I | Н | I     | l                   | ı     | I           | I                                                     |
| 1 | Н |   | I     | l                   | ı     | I           | I                                                     |
| I | Н | Н | Н     |                     |       |             | I                                                     |
| Н |   |   | I     |                     |       |             | I                                                     |
| Н | ı | Н | I     |                     |       |             | I                                                     |
| Н | Н |   | I     |                     | Н     |             | I                                                     |
| Н | Н | Н | Н     | Н                   | Н     | Н           | I                                                     |

L

Matematikai logika Diszkrét matematika 1. 2020 tavasz

#### Kvantorok

#### **Kvantorok**

- ∃ (egzisztenciális kvantor): "létezik", "van olyan".
- • ∀ (univerzális kvantor): "bármely", "minden".

#### Példák

- $\exists x \in \mathbb{R} : x^2 = 5$ "Van olyan x valós szám, melyre  $x^2 = 5$ ."
- ②  $\forall x \in \mathbb{R} : x^2 \ge 0$ "Minden x valós számra  $x^2 \ge 0$ ."
- ∀  $n \in \mathbb{Z}$  ∃ $x \in \mathbb{R}$  : x > n "Minden n egész számhoz létezik olyan x valós szám, amelyre x > n."

# Halmazok

# Egy nevezetes paradoxon a naív halmazelméletben

## Russell paradoxon (Bertrand Russell, 1872 - 1970)

Nevezzünk minden olyan halmazt, amely nem eleme önmagának jó halmaznak, és minden olyan halmazt, amely eleme önmagának, rossz halmaznak. Legyen A az összes jó halmazok halmaza. Jó vagy rossz halmaz-e A?



12.

- A jó halmaz.  $\Rightarrow$  (A definíciója alapján) A eleme önmagának.  $\Rightarrow$  A rossz halmaz.  $\checkmark$
- $A \operatorname{rossz}$  halmaz.  $\Rightarrow$  ( $A \operatorname{definiciója}$  alapján)  $A \operatorname{nem}$  eleme önmagának.  $\Rightarrow A \operatorname{ió}$  halmaz.  $\checkmark$

Körül kell bástyázni a halmazok definiálásának lehetséges módjait  $\Rightarrow$  **Axiomatikus halmazelmélet:** Zermelo-Fraenkel-féle axiómarendszer

#### Halmazok

Halmazelméletben az alapvető fogalmak (ún. predikátumok), nem definiáljuk őket:

- Halmaz (rendszer, osztály, összesség, ...): Informálisan elképzelhető úgy, mint elemeinek gondolati burka.
- $x \in A$ , ha az x eleme az A halmaznak.

A halmazok alapvető tulajdonságai axiómák, nem bizonyítjuk őket.

#### Példa

#### Meghatározottsági axióma.

Egy halmazt az elemei egyértelműen meghatároznak.

- Két halmaz pontosan akkor egyenlő, ha ugyanazok az elemeik.
- Egy halmaznak egy elem csak egyszer lehet eleme.

#### Halmazok

#### Halmaz megadása elemei felsorolásával:

Véges halmazt definiálhatunk elemei  $\{\}$  között történő felsorolásával. Például: Annak a halmaznak, melynek csak az a eleme az eleme a jelölése:  $\{a\}$ . Annak a halmaznak, melynek pontosan az a és b az elemei a jelölése:  $\{a,b\}$ . (Speciálisan, ha a=b, akkor  $\{a\}=\{a,b\}=\{b\}$ .) . . .

#### Definíció (üres halmaz)

Azt a halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:  $\emptyset$  vagy  $\{\}$ .

#### Megjegyzés

- Figyelem!  $\emptyset \neq \{\emptyset\}$ .
- A meghatározottsági axióma alapján az üres halmaz egyértelmű.

15.

# Részhalmaz fogalma

# Definíció (részhalmaz)

Az A halmaz részhalmaza a B halmaznak:  $A \subseteq B$ , ha A minden eleme B-nek is eleme, azaz

$$\forall x: x \in A \Rightarrow x \in B.$$

Ha  $A \subseteq B$ -nek, de  $A \neq B$ , akkor A valódi részhalmaza B-nek:  $A \subsetneq B$ .

#### Megjegyzés:

- Az üres halmaz minden halmaznak részhalmaza.
- Minden halmaz részhalmaza önmagának, de nem valódi részhalmaza.

#### Állítás (A részhalmaz reláció tulajdonságai; Biz. HF)

Tetszőleges A, B és C halmazokra:

- $\bullet$   $A \subseteq A$  (reflexivitás).
- **2**  $(A \subseteq B \land B \subseteq C) \Rightarrow A \subseteq C$  (tranzitivitás).

16.

# Részhalmaz definiálása formula segítségével

#### Definíció (Részhalmaz axióma)

Legyen A egy halmaz és  $\mathscr{F}(x)$  egy formula (azaz  $\mathscr{F}$  egy olyan tulajdonság, amely leírható formálisan, a logika nyelvén). Ekkor létezik az a halmaz, amely A-nak pontosan azon x elemeit tartalmazza, melyekre  $\mathscr{F}(x)$  igaz (azaz amelyekre az  $\mathscr{F}$  tulajdonság teljesül). Ezt a halmazt  $\{x \in A : \mathscr{F}(x)\} = \{x \in A \mid \mathscr{F}(x)\}$  jelöli.

**Megjegyzés:**  $\{x \in A : \mathscr{F}(x)\}$  helyett az  $\{x : x \in A \land \mathscr{F}(x)\}$  vagy  $\{x : x \in A, \mathscr{F}(x)\}$  jelölés is szokásos.

#### Példa

- $\{n \in \mathbb{Z} : \exists m \ (m \in \mathbb{Z} \land n = m^2)\}$ : a négyzetszámok halmaza.
- $\{x\in\mathbb{R}:x^2=3\}$ : az  $x^2=3$  egyenlet valós megoldásainak halmaza, azaz  $\{\sqrt{3},-\sqrt{3}\}$ .

17.

# Műveletek halmazokkal: halmazok uniója

# Definíció (halmazok uniója)

Az A és B halmazok uniója:  $A \cup B$  az a halmaz, mely pontosan A és B összes elemét tartalmazza:

$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$

Åltalában: Legyen  $\mathscr A$  egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor  $\bigcup \mathscr A = \bigcup \{A: A \in \mathscr A\} = \bigcup_{A \in \mathscr A} A$  az a halmaz, mely  $\mathscr A$  összes elemének elemeit tartalmazza:

$$\cup \mathscr{A} = \{x \mid \exists A \in \mathscr{A} : x \in A\}.$$

Speciálisan:  $A \cup B = \cup \{A, B\}$ .

#### Példák

- $\{a, b, c\} \cup \{b, c, d\} = \{a, b, c, d\}$
- $\{x \in \mathbb{R} : 0 < x\} \cup \{x \in \mathbb{R} : x < 0\} = \{x \in \mathbb{R} : x \neq 0\}$

# Műveletek halmazokkal: az unió tulajdonságai

# Állítás (Az unió tulajdonságai)

Minden A, B, C halmazra:

#### Bizonyítás.

- ②  $x \in A \cup (B \cup C) \Leftrightarrow x \in A \lor x \in B \cup C \Leftrightarrow x \in A \lor (x \in B \lor x \in C) \Leftrightarrow (x \in A \lor x \in B) \lor x \in C \Leftrightarrow x \in A \cup B \lor x \in C \Leftrightarrow x \in (A \cup B) \cup C$
- 2-höz hasonló.
- 2-höz hasonló.
- **⑤** ⇒:  $A \subseteq B \Rightarrow A \cup B \subseteq B$ , de  $B \subseteq A \cup B$  mindig teljesül, így  $A \cup B = B$ .
  - $\Leftarrow$ : Ha  $A \cup B = B$ , akkor A minden eleme eleme B-nek.

18.

19.

#### Műveletek halmazokkal: halmazok metszete

# Definíció (halmazok metszete)

Az A és B halmazok metszete:  $A \cap B$  az a halmaz, mely pontosan az A és B  $k\ddot{o}z\ddot{o}s$  elemeit tartalmazza:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Általában: Legyen  $\mathscr A$  egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor  $\cap \mathscr A = \cap \{A: A \in \mathscr A\} = \cap_{A \in \mathscr A} A$  a következő halmaz:

$$\cap \mathscr{A} = \{ x \mid \forall A \in \mathscr{A} : x \in A \}.$$

Speciálisan:  $A \cap B = \cap \{A, B\}$ .

Példa

- $\{a, b, c\} \cap \{b, c, d\} = \{b, c\}.$
- Ha  $I_n = \{x \in \mathbb{R} : n \le x \le n+1\}, \ \forall \ n \in \mathbb{Z}$ -re és  $\mathscr{I} = \{I_n : n \in \mathbb{Z}\}$ , akkor
  - $I_2 \cap I_3 = \{3\}$ •  $I_8 \cap I_{11} = \emptyset$
  - $18 \cap 11 = \emptyset$
  - $I_n \cap I_{n+1} = \{n+1\}$ •  $\cap \mathscr{I} = \emptyset$

# Diszjunkt és páronként diszjunkt halmazrendszerek

# Definíció ((páronként) diszjunkt halmazrendszer)

Ha  $A \cap B = \emptyset$ , akkor A és B diszjunktak.

Åltalánosabban: Ha  $\mathscr A$  egy halmazrendszer, és  $\cap \mathscr A=\emptyset$ , akkor  $\mathscr A$  diszjunkt, illetve  $\mathscr A$  elemei diszjunktak.

Ha  $\mathscr A$  egy halmazrendszer, és  $\mathscr A$  bármely két eleme diszjunkt, akkor  $\mathscr A$  elemei páronként diszjunktak.

#### Példa

- Az {1,2} és {3,4} halmazok diszjunktak.
- Az {1,2}, {2,3} és {1,3} halmazok diszjunktak, de nem páronként diszjunktak.
- Az {1,2}, {3,4} és {5,6} halmazok páronként diszjunktak.
- Ha  $I_n = \{x \in \mathbb{R} : n \le x \le n+1\}$ ,  $\forall n \in \mathbb{Z}$ -re és  $\mathscr{I} = \{I_n : n \in \mathbb{Z}\}$ , akkor  $\mathscr{I}$  diszjunkt halmazrendszer, de elemei nem páronként diszjunktak.

21.

# Műveletek halmazokkal: a metszet tulajdonságai

### Állítás (A metszet tulajdonságai; Biz. HF)

Minden A, B, C halmazra:

- $\bullet A \subseteq B \Leftrightarrow A \cap B = A$

#### Disztributivitás

#### Allítás (Az unió és metszet disztributivitási tulajdonságai)

#### Bizonyítás.

- 4 HF. hasonló



22

# Halmazok különbsége, komplementere

## Definíció (halmazok különbsége)

Az A és B halmazok különbsége az  $A \setminus B = \{x \in A : x \notin B\}$  halmaz.

#### Definíció (halmaz komplementere)

Egy rögzített X alaphalmaz és  $A\subseteq X$  részhalmaz esetén az A halmaz komplementere az  $\overline{A}=A'=X\setminus A$  halmaz.

# Állítás (Különbség kifejezése komplementer segítségével)

 $A \setminus B = A \cap \overline{B}$ .

#### Bizonyítás.

$$x \in A \setminus B \Leftrightarrow x \in A \land x \notin B \Leftrightarrow x \in A \land x \in \overline{B} \Leftrightarrow x \in A \cap \overline{B}$$

# Komplementer tulajdonságai

# Allítás (Komplementer tulajdonságai; Biz. HF)

Legyen X az alaphalmaz. Ekkor minden  $A, B \subseteq X$  halmazra:

- $\bullet \overline{A} = A;$

- $\bullet A\subseteq B\Leftrightarrow \overline{B}\subseteq \overline{A};$

A 7. és 8. összefüggések az ún. de Morgan szabályok.

## Komplementer tulajdonságai

# Bizonyítás.

#### Példa

:

:

#### Halmazok szimmetrikus differenciája

#### Definíció (szimmetrikus differencia)

Az A és B halmazok szimmetrikus differenciája az

$$A\triangle B = (A \setminus B) \cup (B \setminus A)$$

halmaz.

Állítás (Szimmetrikus differencia másik előállítása; Biz. HF)

$$A\triangle B=(A\cup B)\setminus (B\cap A).$$

# Halmaz hatványhalmaza

# Definíció (hatványhalmaz)

Ha A egy halmaz, akkor azt a halmazrendszert, melynek elemei pontosan az A halmaz részhalmazai az A hatványhalmazának mondjuk, és  $2^A$ -val jelöljük. (A  $\mathscr{P}(A)$  jelölés is szokásos.)

- $\bullet \ A = \emptyset, \ 2^{\emptyset} = \{\emptyset\}$
- $A = \{a\}, 2^{\{a\}} = \{\emptyset, \{a\}\}$
- $A = \{a, b\}, 2^{\{a,b\}} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

**Jelölés:** Egy véges A halmaz elemszámát |A| jelöli.

#### Állítás (Hatványhalmaz elemszáma; biz. később)

Tetszőleges A véges halmazra:  $|2^A| = 2^{|A|}$ .