T1 Autômatos

Francesco Ferraro, Diego Batista, Leonardo Martins ${\bf Setembro}/{\bf 2017}$

Abstract

Entrega formal do primeiro trabalho da disciplina de automatos na ${\it PUCRS}.$

1 Questão 1 - Cadeias

1.1 Terminam por bcb

Figure 1: Esse é um autômato determinístico

Input	Result
abcb	Accept
bcbb	Reject
cbcb	Accept
bcbaaa	Reject
aaaaa	Reject

1.2 Terminam por no máximo dois b's

Figure 2: Esse é um autômato determinístico

Input	Result
b	Reject
a	Reject
$^{\mathrm{c}}$	Reject
bb	Reject
aba	Reject
ac	Reject
ab	Reject
bc	Reject
ba	Reject

1.3 Não terminam por dois bs consecutivos

Input	Result
aa	Accept
bb	Reject
cc	Accept
c	Accept
a	Accept
b	Accept
aacbac	Accept
abcabc	Reject

Figure 3: Esse é um autômato determinístico

1.4 Iniciam por a e terminam com c

Figure 4: Esse é um autômato determinístico

$_{ m Input}$	Result
a	Reject
b	Reject
$^{\mathrm{c}}$	Reject
ac	Accept
abcbc	Accept
acac	Accept
abcbb	Reject

1.5 Iniciam e terminam pelo mesmo símbolo

Figure 5: Esse é um autômato determinístico

Input	Result
aa	Accept
bb	Accept
cc	Accept
ac	Reject
ab	Reject
bbaa	Reject
bba	Reject

Figure 6: Esse é um autômato determinístico

1.6 Iniciam e terminam por símbolos diferentes

Input	Result
aa	Reject
bb	Reject
cc	Reject
ac	Accept
ab	Accept
bbaa	Accept
bba	Accept
abcbcba	Reject

1.7 Número ímpar de b's

Figure 7: Esse é um autômato determinístico

Input	Result
aa	Reject
bb	Reject
cb	Accept
ac	Reject
ab	Accept
bbaa	Reject
bba	Reject
abcbcba	Accept
b	Accept

2 Questão 2 - Expressões Regulares

2.1 Terminam por 101

(0+1)*(101)

$2.2 \quad Iniciam \ por \ 1 \ e \ terminam \ com \ 0$

1(1+0)*0

2.3 Iniciam e terminam pelo mesmo símbolo

$$1(1+0)*1 + 0(1+0)*0$$

2.4 Iniciam e terminam por símbolos diferentes

$$1(1+0)*0 + 0(1+0)*1$$

2.5 TODO Falta Uma

ER

3 Questão 3 - 10n1

3.1 Automato

A figura 8 reponde essa questão.

Figure 8: Esse é um autômato determinístico

Input	Result
0	Reject
01	Reject
1	Reject
101	Accept
1001	Reject
10001	Accept
100001	Reject
1000001	Accept
10000001	Reject

3.2 Expressão regular

$$10+(00)*+1$$

4 TODO Questão 4 - AFND -> AFD

Aqui vai uma super resolução.

5 Questão 5 - V ou F

5.1 Falso

Uma vez que consumidas todas as entradas o AFND acaba com a execução ainda que a transição do vazia para o mesmo estado ocorra. O fato de que o estado anterior a ela ser o mesmo que o posterior não faz o autômato entrar em loop.

Figure 9: Esse é um autômato determinístico

5.2 Verdadeira

5.3 Falso

Um ADF sem ao menos 1 estado final reconhece só a linguagem vazia.

5.4 Falsa

Por definição um AFD e AFND tem igual poder de reconhecimento

6 Questão 6 - Estacionamento

Resposta é a figura 10.

7 TODO Questão 7 - Sinaleira

7.1 Analisando os semáforos paralelamente.

Resposta é a figura 11.

7.2 Analisando os semáforos simultaneamente.

Resposta é a figura 12.

Figure 10: Autômato de uma parquímetro

Figure 11: Autômato em paralelo

Figure 12: Autômato simultâneo