es. 4)

Sie $X = [0, +\infty) \subseteq IK$, Z(B) generator dolla lose $B = \{[0, n) \mid n \in \mathbb{Z}^{>0}\}$. Stabilize chiusura ed internor dei seguenti sottonisieni di IK:

 $A_1 = (1,3)$, $A_2 = [0,5]$, $A_3 = [0,15)$, $A_4 = \mathbb{R}^{>0}$

 $\Rightarrow N.B.$ $Q^{>0} = {\frac{m}{m} \mid m, n \in \mathbb{Z} \setminus \{0\} \land sgn(n) = sgn(m)}$

⇒ N.B

In QUESTO coso (NON SEMPRE) gli elementi di B sono tutti gli aperti di T(B) dator che unen do elementi arlitrari di B si ottiene aucora m elemento di B!!! (In più, varmo agginti p e X)

$$\Rightarrow \quad \mathcal{T}(\mathcal{B}) = \left\{ \phi, \times \right\} \cup \left\{ \left[o, u \right) \mid u \in \mathbb{Z}^{>0} \right\}$$

$$\Rightarrow \nabla(B) = \{\emptyset, \times\} \cup \{[n, +\infty) \mid n \in \mathbb{Z}^{>0}\}$$

	INTERNO Ai	CHIUSURA Āi
$A_{\perp} = (1,3)$	Ø	$\left[1,+\infty\right)$
$A_2 = [0, 5]$	[0,5)	$\left[O_{l}+\infty\right) =\times$
$A_3 = \left[0, \sqrt{5}\right)$	[0, [N5]) = [0, 2)	$\left[\mathcal{O}_{i}+\infty\right)=\times$
$A_4 = Q^{>0}$	ϕ	$\left[0,+\infty\right)=X$

Dim. che in 12 la topologia cofinita è menor fine della topologia enclidea

$$\Rightarrow \mathcal{T}_{col} = \{\emptyset, \mathbb{R}^n\} \cup \{A \mid C_{\mathbb{R}^n}(A) \in \text{finiter}\}$$

$$= \{\emptyset, \mathbb{R}^n\} \cup \{A \mid A = \mathbb{R}^2 \setminus \{a_1, ..., a_l\}\}$$

⇒ Dimostro che A = IR" \{a_1,..,a_k} è apertor in Te:

mostro che il suo complementore è chiuso

⇒ A é aperto in Te

mastro na che Te possiede aperti che nem sono aperti

 \Rightarrow es. $(0,1)\times(0,1)\in \text{Te mo}\notin \text{Tcof}$ (il camplementore non \bar{e} finito)

es.s)

Determinare il nuevo di topologie distinte per un insieme di 3 elementi:

$$\Rightarrow$$
 $\times = \{a, b, c\}$

1) Topologia bouale: T = { \$\phi_{\times} \times}

2) Topologia discreto: T = { \$\phi_{\chi} \times_{\chi} \{a\}, \{6\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}

US. EXTRA:

Verificare che $T = \{\phi, \times\} \cup \{[\times, +\infty) \mid \times \in \mathbb{R}^n\}$ von è una topologia su \mathbb{R}

Diw.

1)
$$\phi, x \in T V$$

2)
$$[x_1, +\infty) \cap [x_2, +\infty) = [ma \times \{x_1, x_2\}, +\infty) \in TV$$

3)
$$\left[\frac{1}{2}, +\infty\right) \quad n \in \mathbb{Z}^{>0} \Rightarrow \bigcup \left[\frac{1}{2}, +\infty\right) = (0, +\infty) \notin \mathbb{T}^{\times}$$

9. e-d