

중간 발표 요약

데이터 셋: 캐글 Netflix-movies-and-tv-shows

> 1차 목표: 관객 수(imdb_votes)에 영향을 미치는 변수 회귀분석

> 2차 목표: 머신러닝을 통한 '관객수' 예측 모델링

│ 중간 발표 이후

4가지 가설 검증

- 가설1: '제목의 길이'와 '관객 수'의 상관관계
- 가설2: '생산 국가'와 '관객 수'의 상관관계
- 가설3: '시즌 수'와 '관객 수'의 상관관계
- 가설4: '관람 등급'과 '관객 수'의 상관관계

word_count 변수 추가
country_weight 변수 추가
season 변수 예측에 사용

genres_weight 변수 추가

중간 발표 이후

최종 선택한 변수(10개)

release_year
runtime
production_countries
seasons
imdb_votes
tmdb_popularity
tmdb_score
word_count
genres_weight
country_weight

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0
1		title	type	release_ye	runtime	production	seasons	imdb_scor	imdb_vote	tmdb_pop	tmdb_scor	word_cour	genres_we	country_weig	ght
2	0	Taxi Drive	MOVIE	1976	114	92	1	8.2	808582	40.965	8.179	11	0.0365	0.016954	
3	1	Deliverand	MOVIE	1972	109	92	1	7.7	107673	10.01	7.3	11	0.0365	0.016954	
4	2	Monty Pyt	MOVIE	1975	91	91	1	8.2	534486	15.461	7.811	31	0.055242	0.027723	
5	3	The Dirty	MOVIE	1967	150	91	1	7.7	72662	20.398	7.6	15	0.110314	0.027723	
6	4	Monty Pyt	SHOW	1969	30	91	4	8.8	73424	17.617	8.306	28	0.022292	0.027723	
7	5	Life of Bria	MOVIE	1979	94	91	1	8	395024	17.77	7.8	13	0.022292	0.027723	
8	6	Dirty Harry	MOVIE	1971	102	92	1	7.7	155051	12.817	7.5	11	0.085455	0.016954	
9	7	Bonnie an	MOVIE	1967	110	92	1	7.7	112048	15.687	7.5	16	0.053294	0.016954	
10	8	The Blue I	MOVIE	1980	104	92	1	5.8	69844	50.324	6.156	15	0.039498	0.016954	
11	9	The Guns	MOVIE	1961	158	91	1	7.5	50748	13.844	7.3	20	0.061918	0.027723	
12	10	The Profes	MOVIE	1966	117	92	1	7.3	16446	13.123	7.1	17	0.105119	0.016954	
13	11	Richard Pr	MOVIE	1979	78	92	1	8.1	5141	4.718	7.5	30	0.022292	0.016954	
14	12	White Chr	MOVIE	1954	115	92	1	7.5	42488	8.915	7.2	15	0.039498	0.016954	
15	13	Cairo Stati	MOVIE	1958	77	38	1	7.5	4471	5.546	7.3	13	0.0365	0.003786	
16	14	Hitler: A C	MOVIE	1977	150	89	1	7.5	2460	4.305	7.3	16	0.043407	0.009867	
17	15	FTA	MOVIE	1972	97	92	1	6.2	418	1.268	6.1	3	0.110314	0.016954	

| TABLE OF CONTENTS

선형 모델

(1)(5) 비선형모델 (1)(4) 예측모델

선형모델

선형 회귀

```
In [12]:
        ▶ from sklearn.linear_model import LinearRegression
             Ir=LinearRegression()
   y = df["imdb_votes"]
   x = df[['release_year', 'runtime', 'production_countries',
           'seasons', 'imdb_score','tmdb_popularity', 'tmdb_score',
           'word_count', 'genres_weight', 'country_weight']]
    reg = sm.OLS(y, x).fit()
   print(reg.summary())
```


|선형 회귀

OLS Regression Results										
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Covariance Type:	Tue, 11 Apr 2023 12:15:27 5129 5119 10	R-squared (uncentered): Adj. R-squared (uncentered): F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:	0.202 0.201 129.7 2.80e-242 -65777. 1.316e+05 1.316e+05							
Covariance Type: =========	nonrobust ===========		=======================================							

로그 변환

| 반응 변수 log 치환

```
import math
df["log_votes"] = df["imdb_votes"].map(math.log10)
df[["imdb_votes", "log_votes"]]
      imdb_votes log_votes
         808582.0 5.907724
         107673.0 5.032107
         534486.0 5.727936
          72662.0 4.861307
          73424.0 4.865838
 5124
            163.0 2.212188
 5125
            38.0 1.579784
 5126
            327.0 2.514548
 5127
            68.0 1.832509
 5128
             18.0 1.255273
5129 rows × 2 columns
```

반응 변수 imdb_votes에 log 를 붙인 log_votes를 새롭게 만들어줌

 $log_votes = log_{10}(imdb_votes)$

|선형 회귀

```
from sklearn.linear_model import LinearRegression
# log(반응변수) 선형회귀
model_10 = LinearRegression()
model_10.fit(x_train, y_train)
```

LinearRegressionLinearRegression()

|분석

0.403421917955605

```
# 절편
model_10.intercept_
11.297895987852847
# 회귀계수
model_10.coef_
array([-8.25102131e-03, -5.27010650e-03,
                                        6.19995555e-03.
                                                         4.35412427e+01,
       7.40735132e+00, 4.92352056e-02,
                                        1.99857910e-01.
                                                         1.64948297e-03.
       1.89035122e-02])
# 결정계수
pred1 = model_10.predict(x_valid)
r2_score(y_valid, pred1)
```

반응변수를 log 변환 한 뒤 선형회귀를 돌려본 결과,

결정계수가 40%로 변환 전보다 설명력이 크지만 여전히 유의하지 않은 수준으로 보임

분석

```
# 월이 2인 로그 변환
log_y = df["imdb_votes"].map(math.log2)
x_train, x_valid, y_train, y_valid = train_test_split(x, log_y, test_size=0.2)
model_2 = LinearRegression()
model_2.fit(x_train, y_train)
pred2 = model_2.predict(x_valid)
r2_score(y_valid, pred2)
```

0.3912336071361828

```
# 일이 e(자연상수)인 로그변환
log_y = df["imdb_votes"].map(math.log)
x_train, x_valid, y_train, y_valid = train_test_split(x, log_y, test_size=0.2)
model_e = LinearRegression()
model_e.fit(x_train, y_train)
pred3 = model_e.predict(x_valid)
r2_score(y_valid, pred3)
```

0.3795882599240975

밑을 다르게 해도 설명력은 비슷하게 나옴

비선형 모델

"선형이 아닐 수도 있겠다."

종속변수인 "imdb_votes"를 0과 1로 바꾸어 비선형모델인 '로지스틱 회귀'를 사용해보기로 결정

<u>~</u>

```
# 해결방법 2. 로지스틱 함수 (y를 흥행 / 실패 두 개로 만든다.)
empty = []
for y in df["imdb_votes"]:
   if y < df["imdb_votes"].median():</pre>
       empty.append(np.array([0]))
   else:
       empty.append(np.array([1]))
# 여기에 imdb_votes가 중간값보다 낮으면 0(실패), 높으면 1(흥행)으로 나눈 값을 넣는다.
df["Success"] = empty
df["Success"]
# 흥행 여부(0과 1)을 담은 새로운 칼럼 "Success"을 df에 추가
       [1]
       [1]
       [1]
       [1]
       [1]
5126
       [0]
```

<u>~</u>

```
[] # 로지스틱을 돌리기 위한 코드
    from sklearn.model_selection import train_test_split
    train_features, test_features, train_labels, test_labels = train_test_split(x, y)
     from sklearn.preprocessing import StandardScaler
     scaler = StandardScaler()
    train features = scaler.fit transform(train features)
    test features = scaler.transform(test features)
     from sklearn.linear model import LogisticRegression
     model = LogisticRegression()
    model.fit(train_features, train_labels)
     ▼ LogisticRegression
     LogisticRegression()
```

예측 모델의 정확도

Train-set: 76.3%

0

print(model.score(train_features, train_labels))
모델의 정확도: 대략 76%

0.7628705148205929

Test-set: 76.0%

print(model.score(test_features, test_labels))
테스트 정확도: 76% 정도

0.7607170693686672

| Movie #1

lnception (2010)

· IMDB_VOTES: 2,294,231

· 러닝타임: 148분

•국가: 미국

· 시즌: 1개

· 평점: 8.8 / 8.4

•제목길이: 9자

· 장르: 액션

| Movie #2

Squid Game (2021)

· IMDB_VOTES: 426,967

· 러닝타임: 55분

•국가: 한국

·시즌: 2개

· 평점: 8.0 / 7.8

ㆍ제목길이: 10자

· 장르: 액션

Movie #3

b Lokillo (2021)

· IMDB_VOTES: 68

· 러닝타임: 90분

・국가: 호주

· 시즌: 1개

· 평점: 3.8 / 6.3

ㆍ제목길이: 7자

· 장르: 코미디


```
[] # 예측력 테스트하기
#'release_year', 'runtime', 'production_countries','seasons', 'imdb_score','tmdb_popularity', 'tmdb_score','word_count', 'genres_weight', 'country_weight' 집어넣기
Squid_game = np.array([2021, 55, 63, 2.0, 8.0, 361.925, 7.82100000000000015, 10, 0.0619181141740407, 0.007858757670362794])
# 오징어게임은 흥행(1)한다고 나와야 한다.
Inception = np.array([2010, 148, 92, 1.0, 8.8, 108.284, 8.4, 9, 0.0619181141740407, 0.016953682702195032])
# 인센션은 흥행(1)한다고 나와야 한다.
Lokillo = np.array([2021, 90, 22, 1.0, 3.8, 26.005, 6.3, 7, 0.022292220482381, 0.0008129749314168408])
# 로킬로는 실패(0)한다고 나와야 한다.
sample_movies = np.array([Squid_game, Inception, Lokillo])
```

Interpretation

	Inception	Squid Game	Lokillo
Success (1)	99.1%	97.6%	2.5%
Fail (0)	0.01%	2.3%	97.5%


```
[] print(model.predict(sample_movies))

print(model.predict_proba(sample_movies))

# [1 1 0]은 첫번째, 두번째 영화는 흥행, 세번째 영화는 실패할 것임을 예측해준다.

# 각 영화의 흥행할 확률도 말해준다. 오징어 게임 97%, 인셉션 99%, 로킬로 2.4%

[1 1 0]

[[0.02328919 0.97671081]
 [0.00862129 0.99137871]
 [0.97537036 0.02462964]]
```

Insight

비선형성

로지스틱

다른 모델

단순히 선형 회귀 모델로는 종속변수를 예측할 수 없다. 로지스틱은 imdb_votes 예측값을 알 수 없다. 다른 예측 모델이 필요하다.

예측모델

| Modeling

人					HI서형 다		예츠 모던					($\hat{}$
	release_y	еаг	runtime	product i or	n_countries	seasons	imdb_score	tmdb_popularity	tmdb_score	word_count	genres_weight	country_v	weight
0	1:	976	114		92	1.0	8.2	40.965	8.179	11	0.036500	0.0	016954
- 1	1	972	109		92	1.0	7.7	10.010	7.300	11	0.036500	0.0	016954
2	1	975	91		91	1.0	8.2	15.461	7.811	31	0.055242	0.0	027723
3	1:	967	150		Q1	1 0	77	20 20 8	7 600	15	N 11N31 <i>A</i>	0.0	027723
4	1:] ؛] fro	m sklearr	n.preproce	essing in	mport Stan	dardScaler # 3	표준 정규화	·(평균 0. 3	표준편차 1)	0.0	027723
							스케일러 툴 # × 데이터		3		/		
5126	2	C		scaler.f	fit_trans	form(x) ⊣		스케일				0.0	002049
5127	2	(Х									0.0	001147
5128	2	(arr	-0.1 [-6.2).12917051,	0.91022	0079], 1942, 0.81 0079], 117 , 0.76	1354681,,	, -0.6345614	ō,		0.0	003786
5129	2	(0.78071 0.56430 0.31451				_		0.0	000813
5130	2	C						1354681,,	., -0.63456145,			0.0	001147
				[-5.8				8850345,,	1.2813001	5,)	#측 	
				-0.0 0.6 -0.6)2961715, 66977056, 60094062,	-1.18748 0.28861 -1.58307	8048], 127, -2.33 7585],	1879455,, 3948828,, 8453164,,	-1.0177337	7,		여 향상	
					9590506 ,								

Modeling

Modeling

```
from sklearn.ensemble import RandomForestRegressor # RandomForest(RF)
model2 = RandomForestRegressor()
model2.fit(x_train, y_train)
pred2 = model2.predict(x_test)
import xgboost as xgb # XGBoost(XGB)
model3 = xgb.XGBRegressor()
model3.fit(x_train, y_train)
pred3 = model3.predict(x_test)
from sklearn.metrics import mean_squared_error, r2_score
import numpy as np
print('model2', np.sqrt(mean_squared_error(y_test, pred2))) # RMSE
print('model2', r2_score(y_test, pred2)) # R^2
print('model3', np.sqrt(mean_squared_error(y_test, pred3)))
print('model3', r2_score(y_test, pred3))
```


Hyper parameter tunning


```
from sklearn, model selection import GridSearchCV
import xgboost as xgb
rf = RandomForestRegressor()
xgb = xgb.XGBRegressor()
                 - RandomForestRegressor(bootstrap=False, max_features=3, n_estimators=10)
parameters2 = rf:
             rf: -2871705264.6827607
             xgb: XGBRegressor(base_score=None, booster=None, callbacks=None,
                          colsample bylevel=None, colsample bynode=None,
                          colsample_bytree=0.7, early_stopping_rounds=None,
parameters3 =
                          enable_categorical=False, eval_metric=None, feature_types=None,
                          gamma=None, gpu_id=None, grow_policy=None, importance_type=None,
                           interaction_constraints=None, learning_rate=0.07, max_bin=None,
                          max_cat_threshold=None, max_cat_to_onehot=None,
                          max delta step=None, max depth=6, max leaves=None,
                          min_child_weight=4, missing=nan, monotone_constraints=None,
                                                                                              |squared error')
model5 = Grid
                          n_estimators=500, n_jobs=None, nthread=4, num_parallel_tree=None,ean_squared_error')
model6 = Grid
                          objective='reg:linear', ...)
model5.fit(x_ xgb: -51394.04081624999
model6.fit(x_train, y_train)
print('rf: ', model5.best_estimator_)
print('rf: ', model5.best_score_)
print('xgb: ', model6.best_estimator_)
print('xgb: ', model6.best score )
```


Hyper parameter tunning

```
[ ] pred5 = model5.predict(x_test) # RF
    print('model5', np.sqrt(mean_squared_error(y_test, pred5)))
    print('model5', r2_score(y_test, pred5))
```

```
[ ] pred6 = mode16.predict(x_test) # XGB
    print('mode16', np.sqrt(mean_squared_error(y_test, pred6)))
    print('mode16', r2_score(y_test, pred6))
```


| 결론

기존 목표 : 70%의 설명력을 가지는 예측 모델 생성

회귀모델(LR, RF, XGB)과 분류모델(Logistic)을 통해 예측 해본 결과, RandomForest 회귀 모델이 약 81%의 설명력을 보임

Disney+와 같은 다른 OTT 플랫폼의 데이터를 가지고 모델에 적용시켜볼 수 있을 것으로 예상