DS203: Programming in Data Science IE605: Engineering Statistics

Introduction to Probability and Statistics
Lecture 02

Manjesh K. Hanawal

21th August 2020

Previous Lecture:

- Sample Space and Events
- Axioms of probability
- Conditional probability
- Independence of probability
- Baye's formula

This Lecture:

- Random Variable (RVs)
- Discrete and Continuous RVs
- Cumulative density functions (CDFs)
- Probability Density functions (PDFs)
- Examples of discrete RVs
- Examples of Continuous RVs

Random Variables

In most experiments we would be interested in some function of outcomes and not the out come itself.

- Example 1: Tossing two coins We may be interested in the number of heads appeared. If we want at least one head, (H, H) and (H, T) are same
- **Example 2:** Rolling of two dice We may be interested in sum of the two outcomes and of the value of outcomes. If we want the sum to be 6 all (1,5), (5,1), (2,4), (4,2), (3,3) are same
- Example 3: Marks. You may be interested in what grades/points you receive and not the exact marks you score.

> 90	AA(10)
75-90	AB(9)
65-75	BB(8)

Random Variable Contd..

Roughly, random variable (X) is a real function on sample space

$$X:\Omega \to \mathbb{R}$$

Note: Formal definition of RV requires its inverse map to be measurable, but we do not go into this!

Example: Consider repeated throw of a coin. Your interest is in the number of tosses it takes to get head for the first time. How do you define a random value?

Ω	X
(H)	1
(T,H)	2
(T,T,H)	3
(T,T,T,H)	4
:	:

Probability of Random Variable

For any point $x \in \mathbb{R}$ and subset $\mathcal{A} \in \mathcal{R}$

- $X = x \} = \{ w \in \Omega : X(w) = x \} \subset \Omega$
- $Y(X \in \mathcal{A}) = \{ w \in \Omega : X(w) \in \mathcal{A} \} \subset \Omega.$

We can assign probabilities to these events.

- ► $P({X = x}) = P_X(x)$
- $P(\{X \in \mathcal{A}\}) = P_X(\mathcal{A}).$

Example: Rolling two dice: Let *X* is the random variable which denotes the sum of the outcomes.

- $P_X(5) =$
- $P_X(\{4,5\}) =$

Discrete vs Continuous RVs

Possible values taken by a random variable can be finite, countable or uncountable values.

- Discrete RV: Values taken are finite or countable
 - ▶ Sum of outcomes in rolling of two dice. $X \in \{2, 3, ..., 11, 12\}$
 - Number of tosses till head appears. $X \in \{1, 2, 3, \dots, \}$
- Continuous RV: Values taken are uncountable (to be made precise!)
 - ▶ Temperature of a room in Mumbai. $X \in [0, 40]$
 - ▶ Height of a person in cms. $X \in [50, 200]$
 - ▶ Price of a share. $X \in [p_{\min}, p_{\max}]$.

Cumulative Density function (CDF)

▶ CDF of a random variable X is a function $F_X : \mathbb{R} \to [0,1]$, defined for any $x \in \mathbb{R}$ as

$$F_X(x) = P_X((-\infty, x]) = P(X \le x).$$

 $ightharpoonup F_X(x)$ denotes the probability that random variables takes value less than or equal to x

Example A random variable X takes values 1, 2, 3 with probabilities $P_X(1) = \frac{1}{2}, P_X(2) = \frac{1}{3}, P_X(3) = \frac{1}{6}$

$$F_X(x) = \begin{cases} 0 & \text{if} & x < 1\\ 1/2 & \text{if} & 1 \le x < 2\\ 5/6 & \text{if} & 2 \le x < 3\\ 1 & \text{if} & 3 \le x \end{cases}$$

Properties of CDF

Properties of CDF: For any random variable X

- $ightharpoonup F_x(x)$ is non-decreasing in x
- $\blacktriangleright \lim_{x\to\infty} F_X(x) = 1$
- $ightharpoonup F_X(\cdot)$ is right continuous

Sketch:

- for any x < y. $F(x) = P(X \le x) \le P(X \le y) = F(y)$
- ▶ X is finite! All values included as $X \to \infty$. None as $X \to -\infty$

All probability question about X can be answered from its CDF

- $P(x < X \le y) = P(X \le y) P(X \le x) = F(y) F(x)$
- ▶ $P(X < x) = \lim_{h \to 0^+} F(x h)$. (h is decreasing to 0).
- ▶ P(X < x) need not be equal to $P(X \le x) = F(x)$ (right continuous!).

PMF and PDF

Probability Mass Function (PMF) of a Discrete RV

- ▶ Let discrete random varaible takes values $\{x_1, x_2, x_3, \ldots\}$
- ▶ $\{P(x_i), i = 1, 2, ...\}$ is called PMF of X. $\sum_i P(x_i) = 1$.
- \triangleright $P(x_i)$ is the mass assigned to point x_i

Probability Density Function (PDF)

Random variable X is continuous if there exists a non-negative function $f_X : \mathbb{R} \to \mathbb{R}_+$ such that for any $A \in \mathbb{R}$

$$P_X(A) = \int_{x \in A} f_X(x) dx.$$

 f_X is called the PDF function of X. Properties of PDF:

- $f_X(\cdot)$ is such that $\int_{-\infty}^{\infty} f_X(x) dx = P_X(X \in (-\infty, \infty)) = 1$
- $A = [a, b], P(a \le X \le b) = \int_a^b f_X(x) dx.$
- If a = b, $P(X = a) = \int_a^a f_X(x) dx = 0$. Probability that a continuous random value assuming a particular value is zero!

PDF properties continued

- $ightharpoonup F_X(x) = P(X \le x) = \int_{\infty}^x f_X(x) dx \implies \frac{d}{dx} F_X(x) = f(x)$
- ▶ $A = \{a \epsilon/2, a + \epsilon/2\}$ for some small $\epsilon > 0$ $P(a - \epsilon/2 \le X \le a + \epsilon/2) = \int_{a - \epsilon/2}^{a + \epsilon/2} f_X(x) dx \sim \epsilon f_X(a)$. $f_X(a)$ is a measure of how likely random variable X will be near a.

Commonly Used Distributions

Discrete RVs

- Bernoulli
- Geometric
- Binomial
- Poisson
- Hypergeometric

Continuous RVs:

- Uniform
- Exponential
- Gaussian
- Rayleigh
- Gamma

Discrete RVs

Bernoulli, $X \sim Ber(p), p \in [0, 1]$

- \triangleright X takes binary values, i,e., $\{0,1\}$
- ▶ PMF: P(X = 1) = p and P(X = 0) = 1 p
- Examples: coin toss, any experiments involving binary values

Binomial, $X \sim Bin(n, p), p \in (0, 1], n \in \mathbb{N}$

- \triangleright X takes value in $\{0, 1, 2, 3, ..., n\}$
- ▶ PMF: $P(X = i) = \binom{n}{i} p^i (1 p)^{n-i}$, for $0 \le i \le n$
- Examples: Number of success in independent trials. What is the probability that 3 samples are classified correctly out of 5?

Discrete RVs Contd...

Geometric, $X \sim Geo(p), p \in (0,1]$

- ► *X* takes value in {1, 2, 3, 4, . . . }
- ▶ PMF: $P(X = i) = (1 p)^{i-1}p$ for all $i \ge 1$
- ► Examples: Number of trials till success in independent trials. How many times I invest till profit is made?

Poisson, $X \sim Poi(\lambda), \lambda \geq 0$

- ► *X* takes value in {0,1,2,3,4,...}
- ▶ PMF: $P(X = i) = \frac{e^{-\lambda}\lambda^i}{i!}$ for all $i \ge 0$
- Examples: Used for counting. How many people visited a mall/airport/cinema today? How many cars on road today?

Continuous RVs

Uniform, $X \sim Unif(a, b), a, b \in \mathbb{R}$

- \triangleright X takes value in [a, b]

$$f_X(x) = egin{cases} 1/(b-a) & ext{if } x \in [a,b] \\ 0 & ext{otherwise} \end{cases}$$

Example: Height, weight, temperature. Often used when we do not have prior information.

Exponential, $X \sim Exp(\lambda), \lambda > 0$

- ightharpoonup X takes value in $[0,\infty)$

$$f_X(x) = \begin{cases} \lambda \exp(-\lambda x) & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Example: Used to model life times. Time before a bulb fails. Time before the next customer/item arrives.

Continuous RVs contd.

Gaussian,
$$X \sim \mathcal{N}(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma > 0$$

- ightharpoonup X takes value in $(-\infty, \infty)$
- ► PDF:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-(x-\mu)^2/2\sigma^2\}, \text{ for } x \in (-\infty,\infty)$$

Examples: Error and Noise modeling.

Rayleigh, $X \sim Rayleigh(\sigma^2), \sigma > 0$

- ightharpoonup X takes value in $(0,\infty)$
- ► PDF:

$$f_X(x) = \begin{cases} (x/\sigma^2) \exp\{-r^2/(2\sigma^2)\} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Example: Envelop of noise. $X_1 \sim \mathcal{N}(0, \sigma^2)$ and $X_2 \sim \mathcal{N}(0, \sigma^2)$, Then $X = \sqrt{X_1^2 + X_2^2} \sim Rayleigh(\sigma^2)$, under

Other distributions

- Uniform distribution on finite set of elements
- Gamma (rainfall accumulated in a reservoir)
- Weibull (reliability and survival analysis)
- ► Laplace (speech recognition to model priors on DFT)

Expectation and Variances

Expectation: Many times, instead of actual value of experiment, we would be interested in expected/average/mean value. Expectation of random variable X is denoted as E(X).

Discrete random variable X	Continuous random variable X
PMF $\{P_X(x_i), i = 1, 2,\}$	
$E(X) = \sum_{i=1}^{\infty} x_i P_X(x_i)$	$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$

Variance: How value of random variable varies around its mean. We measure variance, denoted Var(X), as

$$Var(X) = E\left[(X - E(X))^2\right] = \begin{cases} \sum_{i=1}^{\infty} (x_i - E(X))^2 P_X(x_i) \text{ discrete} \\ \int_{-\infty}^{\infty} (x - E(X))^2 f_X(x) dx \text{ continuous} \end{cases}$$

Summary of Expectation and Variance of Distributions

Random Variable $X \sim$	Mean $E[X]$	Variance $Var(X)$
Ber(p)	р	p(1 - p)
Bin(n, p)	np	np(1-p)
Geo(n,p)	1/p	$(1-p)/p^2$
$Poi(\lambda)$	λ	λ
Uni(a, b)	(a + b)/2	$(b-a)^2/12$
$\textit{Exp}(\lambda)$	$1/\lambda$	$1/\lambda^2$
$\mathcal{N}(\mu,\sigma^2)$	μ	σ^2
Rayleigh (σ^2)	$\sigma\sqrt{\pi/2}$	$\sigma^2(1-\pi/2)$
Gamma(n, lpha)	n/α	n/α^2