ANALIZA III - LISTA 1

1. Podać przybliżoną wartość wykorzystując płaszczyznę styczną:

(b) $1.02^{3.01}$

(c) $\log(\sqrt[3]{1,03} + 0.08^4)$

- 2. Pokaż, że zbiór $\{x \in \mathbb{R}^n : x_i > 0, i = 1, ..., n\}$ jest otwarty, ale nie jest domknięty. Proszę zrobić to nie tylko rysunkowo, lecz spróbować zapisać.
- 3. Pokaż, że zbiór $\{x \in \mathbb{R}^n : x_1 \leq 0, x_i \geq 0, i = 2,...,n\}$ jest domknięty. Proszę zrobić to nie tylko rysunkowo, lecz spróbować zapisać.
- 4. Niech $U = \{(x,y) \in \mathbb{R}^2 : x^2 y^2 > 1, x > 0\}$. Pokaż, że U jest otwarty, ale nie jest domkniety. Proszę spróbować zrobić to nie tylko rysunkowo, lecz spróbować zapisać.
- 5. Niech $D = \{(x,y) \in \mathbb{R}^2 : x^2 y^2 \ge 1, x > 0\}$. Pokaż, że D jest domknięty. Proszę spróbować zrobić to nie tylko rysunkowo, lecz spróbować zapisać.
- 6. Niech $g: \mathbb{R}^n \to \mathbb{R}$ będzie funkcją ciągłą, a $S = \{x \in \mathbb{R}^n : g(x) = 0\}$. Pokaż, że S jest domkniety.
- 7. Niech $g:\mathbb{R}^n\mapsto\mathbb{R}$ będzie funkcją ciągłą, a $S=\{x\in\mathbb{R}^n:g(x)=0\}$. g nie jest tożsamościowo równa zero, ani nie jest wszędzie ostro dodatnia. Podaj przykład tak zdefinowanego S, który jest zwarty i takiego, który nie jest zwarty.
- 8^* . Pokaż, że jeśli zbiór $D \subset \mathbb{R}^n$ jest domknięty i ograniczony, to z każdego ciągu $x_m \in D$ można wybrać podciąg zbieżny do pewnego $x \in D$. Wsk. Zbieżność w \mathbb{R}^n to zbieżność po współrzędnych.
- 9*. Korzystając z poprzedniego zadania, pokaż, że jeśli zbiór $K \subset \mathbb{R}^n$ jest zwarty,a $f:D\mapsto\mathbb{R}$ jest ciągła, to jest ograniczona i przyjmuje kresy tzn. istnieją punkty $x_1, x_2 \in K$ takie, że

$$f(x_1) = \min_{y \in K} f(y), \qquad f(x_2) = \max_{y \in K} f(y).$$

- 10. Niech $u=(\bar{u},u_n)\in T_x$, dla funkcji różniczkowalnej f. Pokaż, że $|u_n-f(\bar{u})|=$ $o(\|\bar{u} - \bar{x}\|).$
- 11. Znaleźć ekstrema warunkowe funkcji przy podanych ograniczeniach i określić czy jest to minimum lub maksimum.

1

- (a) f(x,y,z)=x-y+z, przy warunku $x^2+y^2+z^2=2$ (b) $f(x,y)=x^2+y$, przy warunku $x^2+y^2=1$
- 12. Na elipsie $\frac{x^2}{4}+\frac{y^2}{9}=1$ znaleźć punkty najbliższy i najdalszy od prostej3x+y-9=0