Real Variables: Problem Set I

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains the solutions to the first problem set of Real Variables 2015.

1 Solutions

Question 1. Royden 2.4. Counting Measure.

Solution. We wish to show that the counting measure, $c: \mathcal{P}(\mathbb{R}) \to [0, \infty]$, where $\mathcal{P}(\mathbb{R})$ denotes the power set of \mathbb{R} , is countably additive and translation invariant.

First, we prove that it is countably additive. Let $\{E_k\}_{k=1}^{\infty}$ be a countable, disjoint collection of subsets of \mathbb{R} . If one of the set in the collection has infinite cardinality, then we have

$$\sum_{k=1}^{\infty} c(E_k) = \infty,$$

as $c(E_k)=\infty$ for some k. Notice that the union of the collection $\cup_{k=1}^\infty E_k$, also has infinite cardinality, as it has a subset with an infinite cardinality. Hence, by the definition of counting measure, we have $c(\cup_{k=1}^\infty E_k)=\infty$. Therefore, we have

$$c(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} c(E_k),$$

for the case under consideration. Now, assume that $c(E_k) < \infty$ for all k.

Question 2. Royden 2.8.

Solution. Let B be a set of rational numbers in the interval [0,1], and let $\{I_k\}_{k=1}^n$ be a finite collection of open intervals that cover B.