

2º Grado Informática Estructura de Computadores 9 de febrero de 2018

Test de Teoría (3.0p)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
b	b	d	С	d	b	С	С	b	b	a	a	a	d	b	d	d	b	С	d	a	С	a	d	b	a	С	a	b	С

Test de Prácticas (4.0p)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	b	d	С	С	a	С	С	d	d	d	a	a	a	b	d	b	b	d	a

Examen de Problemas (3.0p)

1. Ensamblador (1 punto).

11+7=18 instrucciones, 3+3=6 etiquetas, 2+2=4 directivas, alrededor de $\frac{0.05p}{\text{p}}$ /instrucción, $\frac{0.02p}{\text{etiqueta}}$, total $18 \times 0.05p + 6 \times 0.02p = \frac{0.9p + 0.12p \ge 1p}{\text{p}}$ total

Alternativamente, 0.5p cada programa. Las puntuaciones son aproximadas, de todas formas.

Solución:

32 bits	(0.5 pt	untos, 11 instruc	cciones máquina)	64 bits	(0.5 pt	intos, 7 instrucc	ciones máquina)
	.text .globl	mystrlen			.text .globl	mystrlen	
mystrle	pushl	%ebp %esp, %ebp		mystrle	en:		
	xorl	%eax, %eax	; len = 0		xorl	%eax, %eax	; len = 0
	movl cmpb je		; edx = &s[0] ; s[0] == '\0'? ; == '\0' => end		cmpb je		; s[0] == '\0'? ; == '\0' ==> end
.L3:	addl cmpb jne		; len++ ; s[len] == '\0'? ; != '\0' => loop	.L3:	cmpb		; len++ ; s[len] == '\0'? ; != '\0' ==> loop
.L2:	popl ret	%ebp		.L4:	ret		

2. Unidad de Control (0.6 puntos).

8 micro-instrucciones, 12 micro-pseudo-ops (incluyendo goto fetch). Se puntúa 0.05p por micro-pseudo-op (total $0.05 \times 12 = 0.60p$)

3. Entrada/salida (0.4 puntos).

Se puntúa 0.1p por operación indicada, 0.1p por valor correcto, total $2 \times 0.1 + 2 \times 0.1 = 0.4p$

30 pollings/s * 400 ciclos/polling = 12000 ciclos/s Porcentaje = 100 * 12 000 ciclos/s / 2 000 000 000 ciclos/s = 12 / 20000 = 0,0006%

4. Configuración de memoria (0.5 puntos).

Aproximadamente 0.1p por zona (CS/A₁₁, WE/WR, OE/RD, A₁₀₋₀, D₇₋₀)

5. Memoria cache (0.5 puntos).

Solución:

a) Indique la primera y la última direcciones virtuales en hexadecimal: 0.1p

0x00 0000 0000

0x7F FFFF FFFF

b) (0,1) Indique la primera y la última direcciones físicas en hexadecimal: 0.1p

0x00 0000 0000

0x3F FFFF FFFF

c) (0,3) Indique los nombres y tamaños de los campos en los que se divide una dirección de memoria física de memoria desde el punto de vista de una cache L1.

0.3p

Explicación:

38 - 12 = 26 bits cada etiqueta

Referencias:

https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf https://riscv.org/specifications/privileged-isa/