SESA 6071

Spacecraft Propulsion

Author: Yusaf Sultan Lecturer: Charlie Ryan Word Count: 777

Contents

Definitions	
1. Lecture 1	4
1.1. What is Rocket Propulsion	
1.2. Rocket Propulsion Family Tree	4
1.2.1. Chemical Rockets	4
1.2.2. Electric Rockets	4
1.2.3. Nuclear Rockets	5
1.2.4. Solar and Laser Rockets	5
1.2.5. Solar Sails	
1.3. Rocket Propulsion Applications	
2. Lecture 2	6
2.1. Definitions and Fundamentals	6
2.2. Maximum Chemical Performance	7
List of Figures Figure 1 Flowchart of the rocket propulsion family tree	4
List of Tables	
Table 1 Typical values of I	

Definitions

 $m{I_t}$ Total Impulse (Ns)

 \mathbf{F} Rocket Thrust (N)

 $\dot{\boldsymbol{m}}$ Propellent mass flow rate (kg/s)

 \boldsymbol{c} Effective exhaust velocity (m/s)

 $\boldsymbol{I_{sp}} \quad \text{Specific Impulse } (s)$

 $\boldsymbol{g_0}$ — Standard Gravitational Accel (\mathbf{m}/s^2)

 $\boldsymbol{m_p}$ -Expelled propellent mass (kg)

1. Lecture 1

1.1. What is Rocket Propulsion

Propulsion itself is the **act of changing the motion of a body**, typically by using newtons third law and it can be classified in various types of ways. A more colloquial way of defining rocket propulsion is as **mass drivers**, throwing out mass one way to yield an acceleration in the other.

1.2. Rocket Propulsion Family Tree

In **Figure 1** the rocket propulsion types are grouped by the energy source.

Figure 1: Flowchart of the rocket propulsion family tree

1.2.1. Chemical Rockets

These utilize either a chemical reaction or decomposition to generate energy. Gas is heated to between $700^{\circ}C - 1300^{\circ}C$ and to speeds between 1.5 km/s - 4.5 km/s. These require a fuel and oxidizer and come in the following types:

- **Solid:** Fuel and oxidizer mixed within into a solid grain which cannot stop burning once ignited. feature **high thrust with low performance**.
- Liquid: Burn a liquid fuel and oxidizer allowing for repeated firings and variable thrust. Feature high performance and thrust with high complexity.
- **Hybrid:** Have a liquid oxidizer but a solid fuel allowing for better performance than solid with lower complexity.

1.2.2. Electric Rockets

These use electrical energy to generate thrust without utilizing combustion. Typically have very high exhaust velocities ($\sim 60,000 \text{ m/s}$) and therefore very high performance at the costs of high complexities and very low thrust. The four distinct groups are:

- Electrothermal: Uses electrical energy to heat a propellent (Resistojet). Are simple to build at the cost of low thrust.
- **Electrostatic:** Uses electrical energy to accelerate ionized fuel across an electric fields. Feature **good performance** at the cost of **being expensive and low thrust**.
- Electromagnetic: Accelerates an ionized fuel using a magnetic field. Fall issue to low efficiency unless power input is high.
- Hall Effect Thruster: Uses a mixture of both electrostatic and electromagnetic propulsion methods to accelerate propellent. These are the most commonly used.

1.2.3. Nuclear Rockets

Broadly speaking there are two types of nuclear rockets, these are:

- Nuclear Detonation: Use the shockwave produced when nuclear bombs are detonated to produce thrust (Orion Drive). High performance and thrust but are very dangerous and have limited testing.
- Nuclear Thermal: Uses the heat energy produced during nuclear fission to heat a propellent (typically hydrogen) which is then exhausted. These have high performance and thrust but are dangerous and have limited testing.

1.2.4. Solar and Laser Rockets

These systems use large diameter telescopes to focus in a laser or solar radiation to heat up a propellent. These systems feature **high theoretical performance and moderate thrust** but are **very complex and lack any real testing**.

1.2.5. Solar Sails

These systems use no propellent at all and instead produce thrust through the momentum gained when a photon is incident on the sail. These systems feature **good performance** with no fuel but fall victim to low thrust and engineering complexity.

1.3. Rocket Propulsion Applications

Instead of grouping together rocket propulsion methods using the energy source, the rocket application can also be used, for example:

- **High Thrust/Maneuverability:** Typically have the cost of **low performance** and use **chemical or solid** propulsion methods.
- **High Performance:** Typically have the cost of **low thrust** and use **electrical** propulsion methods.
- Balanced Thrust and Performance: Typically the middle ground is nuclear thermal.

2. Lecture 2

2.1. Definitions and Fundamentals

To develop a empirical measure of performance we should first consider Eq. 1.

$$I_t = \int_0^t F \ dt \tag{1}$$

Where:

• I_t : Total Impulse (Ns)

• \mathbf{F} : Thrust Force (N)

• t: Burn Duration (s)

Note that for Eq. 1, if F is constant then the equation simplified to $I_t = Ft$. A more useful measure of performance for rocket engines is shown in Eq. 2.

$$I_{sp} = \frac{\int_0^t F \ dt}{g_0 \int_0^t \dot{m} \ dt} = \frac{I_t}{g_0 \int_0^t \dot{m} \ dt}$$
 (2)

Where:

• I_{sp} : Specific Impulse (s)

• g_0 : Standard Gravitational Accel (m/s²) = 9.81 m/s²

• \dot{m} : Propellent mass flow rate (kg/s)

There is no concrete reason on why g_0 is present in this equation, however one common theory is that it allows I_{sp} to be in seconds instead of featuring a length unit which would eliminate any error in conversion from metric to imperial. If F and \dot{m} are both constant over the t then Eq. 2 simplifies to Eq. 3.

$$I_{sp} = \frac{I_t}{g_0 m_p} \tag{3}$$

Where:

• m_n : Expelled propellent mass $(kg) = \dot{m}t$

Another useful parameter for defining engine performance is shown in Eq. 4.

$$c = \frac{F}{\dot{m}} \tag{4}$$

Where:

• c: Effective exhaust velocity (m/s)

The exhaust velocity is called as such as the **velocity profile of the exhaust is not uniform**, this is most seen in chemical rockets due to the **no slip condition** but is slightly seen in electrical rockets too. Rearranging all of the previous equations together yields a definition for I_{sp} in terms of c.

$$I_{sp} = \frac{c}{g_0} \tag{5}$$

Typical I_{sp} values for the rocket engine types defined in the previous lecture are shown in **Table 1**.

Rocket Engine Type	$I_{sp}(s)$
Chemical Using H_2/O_2	450
Solid	260
Cold Gas	70
Gridded Ion Thruster	3000

Table 1: Typical values of ${\cal I}_{sp}$

2.2. Maximum Chemical Performance

A typical chemical reaction used in chemical rockets is combustion shown in ${\bf Eq.}$ 6.

$$\mathrm{H_2} \ + \ 1/2 \ \mathrm{O_2} \longrightarrow \mathrm{H_2O} \ + \ \mathrm{Energy} \tag{6}$$