#### In [5]: !pip install matplotlib

Requirement already satisfied: matplotlib in c:\users\user\anaconda3\lib\site -packages (3.7.0)

Requirement already satisfied: python-dateutil>=2.7 in c:\user\user\anaconda 3\lib\site-packages (from matplotlib) (2.8.2)

Requirement already satisfied: pillow>=6.2.0 in c:\user\user\anaconda3\lib\s ite-packages (from matplotlib) (9.4.0)

Requirement already satisfied: pyparsing>=2.3.1 in c:\user\user\anaconda3\lib\site-packages (from matplotlib) (3.0.9)

Requirement already satisfied: contourpy>=1.0.1 in c:\users\user\anaconda3\lib\site-packages (from matplotlib) (1.0.5)

Requirement already satisfied: cycler>=0.10 in c:\users\user\anaconda3\lib\si te-packages (from matplotlib) (0.11.0)

Requirement already satisfied: numpy>=1.20 in c:\users\user\anaconda3\lib\sit e-packages (from matplotlib) (1.23.5)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\user\anaconda3\l ib\site-packages (from matplotlib) (4.25.0)

Requirement already satisfied: packaging>=20.0 in c:\users\user\anaconda3\lib \site-packages (from matplotlib) (22.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\user\anaconda3\l ib\site-packages (from matplotlib) (1.4.4)

Requirement already satisfied: six>=1.5 in c:\users\user\anaconda3\lib\site-p ackages (from python-dateutil>=2.7->matplotlib) (1.16.0)

```
Diwali Sales Analysis - Jupyter Notebook
In [6]: !pip install seaborn
        Requirement already satisfied: seaborn in c:\users\user\anaconda3\lib\site-pa
        ckages (0.12.2)
        Requirement already satisfied: matplotlib!=3.6.1,>=3.1 in c:\users\user\anaco
        nda3\lib\site-packages (from seaborn) (3.7.0)
        Requirement already satisfied: numpy!=1.24.0,>=1.17 in c:\user\user\anaconda
        3\lib\site-packages (from seaborn) (1.23.5)
        Requirement already satisfied: pandas>=0.25 in c:\user\user\anaconda3\lib\si
        te-packages (from seaborn) (1.5.3)
        Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\user\anaconda3\l
        ib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.4.4)
        Requirement already satisfied: pyparsing>=2.3.1 in c:\users\user\anaconda3\li
        b\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (3.0.9)
        Requirement already satisfied: contourpy>=1.0.1 in c:\users\user\anaconda3\li
        b\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (1.0.5)
        Requirement already satisfied: python-dateutil>=2.7 in c:\user\user\anaconda
        3\lib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (2.8.2)
        Requirement already satisfied: packaging>=20.0 in c:\user\anaconda3\lib
        \site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (22.0)
        Requirement already satisfied: cycler>=0.10 in c:\user\user\anaconda3\lib\si
        te-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (0.11.0)
        Requirement already satisfied: pillow>=6.2.0 in c:\user\anaconda3\lib\s
        ite-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (9.4.0)
        Requirement already satisfied: fonttools>=4.22.0 in c:\user\user\anaconda3\l
        ib\site-packages (from matplotlib!=3.6.1,>=3.1->seaborn) (4.25.0)
        Requirement already satisfied: pytz>=2020.1 in c:\users\user\anaconda3\lib\si
        te-packages (from pandas>=0.25->seaborn) (2022.7)
        Requirement already satisfied: six>=1.5 in c:\user\\anaconda3\\lib\\site-p
        ackages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.1->seaborn) (1.16.
        0)
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline
```

```
In [29]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

In [110]: df = pd.read_csv ('Diwali Sales Data.csv' , encoding = "ISO-8859-1")

In [111]: df.shape
Out[111]: (11251, 15)
```

```
In [112]: df.head()
```

#### Out[112]:

| Zoı    | State          | Marital_Status | Age | Age<br>Group | Gender | Product_ID | Cust_name | User_ID |   |
|--------|----------------|----------------|-----|--------------|--------|------------|-----------|---------|---|
| Weste  | Maharashtra    | 0              | 28  | 26-35        | F      | P00125942  | Sanskriti | 1002903 | 0 |
| Southe | Andhra Pradesh | 1              | 35  | 26-35        | F      | P00110942  | Kartik    | 1000732 | 1 |
| Centı  | Uttar Pradesh  | 1              | 35  | 26-35        | F      | P00118542  | Bindu     | 1001990 | 2 |
| Southe | Karnataka      | 0              | 16  | 0-17         | М      | P00237842  | Sudevi    | 1001425 | 3 |
| Weste  | Gujarat        | 1              | 28  | 26-35        | M      | P00057942  | Joni      | 1000588 | 4 |
| •      |                |                |     |              |        |            |           |         | 4 |

### In [113]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11251 entries, 0 to 11250 Data columns (total 15 columns):

```
#
     Column
                       Non-Null Count
                                      Dtype
 0
    User ID
                       11251 non-null int64
 1
    Cust_name
                       11251 non-null object
 2
    Product ID
                       11251 non-null object
 3
    Gender
                       11251 non-null object
 4
                       11251 non-null object
    Age Group
 5
    Age
                       11251 non-null int64
 6
    Marital_Status
                       11251 non-null int64
 7
    State
                       11251 non-null object
 8
    Zone
                       11251 non-null object
 9
                       11251 non-null
                                      object
    Occupation
 10 Product Category
                      11251 non-null
                                      object
 11 Orders
                       11251 non-null
                                       int64
 12 Amount
                       11239 non-null float64
 13
    Status
                       0 non-null
                                       float64
 14 unnamed1
                       0 non-null
                                       float64
dtypes: float64(3), int64(4), object(8)
```

memory usage: 1.3+ MB

```
In [114]: | df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
```

```
In [115]: pd.isnull(df).sum()
Out[115]: User ID
                                0
          Cust_name
                                0
          Product_ID
                                0
          Gender
                                0
          Age Group
          Age
          Marital_Status
                                0
          State
                                0
                                0
          Zone
                                0
          Occupation
          Product_Category
                                0
          Orders
                                0
          Amount
                               12
          dtype: int64
In [116]: df.dropna(inplace=True)
In [117]: df.shape
Out[117]: (11239, 13)
In [118]: | df['Amount'] = df['Amount'].astype('int')
In [119]: df['Amount'].dtypes
Out[119]: dtype('int32')
In [120]: df.columns
Out[120]: Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
                  'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
                  'Orders', 'Amount'],
                dtype='object')
```

In [121]: df.rename(columns = {'Marital\_Status' :'Shaadi'})

## Out[121]:

|       | User_ID | Cust_name   | Product_ID | Gender | Age<br>Group | Age | Shaadi | State             | Zone     |
|-------|---------|-------------|------------|--------|--------------|-----|--------|-------------------|----------|
| 0     | 1002903 | Sanskriti   | P00125942  | F      | 26-35        | 28  | 0      | Maharashtra       | Western  |
| 1     | 1000732 | Kartik      | P00110942  | F      | 26-35        | 35  | 1      | Andhra Pradesh    | Southern |
| 2     | 1001990 | Bindu       | P00118542  | F      | 26-35        | 35  | 1      | Uttar Pradesh     | Central  |
| 3     | 1001425 | Sudevi      | P00237842  | М      | 0-17         | 16  | 0      | Karnataka         | Southern |
| 4     | 1000588 | Joni        | P00057942  | M      | 26-35        | 28  | 1      | Gujarat           | Western  |
|       |         | •••         |            |        |              |     |        |                   |          |
| 11246 | 1000695 | Manning     | P00296942  | М      | 18-25        | 19  | 1      | Maharashtra       | Western  |
| 11247 | 1004089 | Reichenbach | P00171342  | М      | 26-35        | 33  | 0      | Haryana           | Northern |
| 11248 | 1001209 | Oshin       | P00201342  | F      | 36-45        | 40  | 0      | Madhya<br>Pradesh | Central  |
| 11249 | 1004023 | Noonan      | P00059442  | М      | 36-45        | 37  | 0      | Karnataka         | Southern |
| 11250 | 1002744 | Brumley     | P00281742  | F      | 18-25        | 19  | 0      | Maharashtra       | Western  |
|       |         |             |            |        |              |     |        |                   |          |

11239 rows × 13 columns

In [122]: df.describe()

# Out[122]:

|       | User_ID      | Age          | Marital_Status | Orders       | Amount       |
|-------|--------------|--------------|----------------|--------------|--------------|
| count | 1.123900e+04 | 11239.000000 | 11239.000000   | 11239.000000 | 11239.000000 |
| mean  | 1.003004e+06 | 35.410357    | 0.420055       | 2.489634     | 9453.610553  |
| std   | 1.716039e+03 | 12.753866    | 0.493589       | 1.114967     | 5222.355168  |
| min   | 1.000001e+06 | 12.000000    | 0.000000       | 1.000000     | 188.000000   |
| 25%   | 1.001492e+06 | 27.000000    | 0.000000       | 2.000000     | 5443.000000  |
| 50%   | 1.003064e+06 | 33.000000    | 0.000000       | 2.000000     | 8109.000000  |
| 75%   | 1.004426e+06 | 43.000000    | 1.000000       | 3.000000     | 12675.000000 |
| max   | 1.006040e+06 | 92.000000    | 1.000000       | 4.000000     | 23952.000000 |

In [123]: df[['Age','Orders','Amount']].describe()

#### Out[123]:

|       | Age          | Orders       | Amount       |
|-------|--------------|--------------|--------------|
| count | 11239.000000 | 11239.000000 | 11239.000000 |
| mean  | 35.410357    | 2.489634     | 9453.610553  |
| std   | 12.753866    | 1.114967     | 5222.355168  |
| min   | 12.000000    | 1.000000     | 188.000000   |
| 25%   | 27.000000    | 2.000000     | 5443.000000  |
| 50%   | 33.000000    | 2.000000     | 8109.000000  |
| 75%   | 43.000000    | 3.000000     | 12675.000000 |
| max   | 92.000000    | 4.000000     | 23952.000000 |

```
In [124]: ax = sns.countplot(x='Gender', data = df)
for bars in ax.containers:
         ax.bar_label(bars)
```



```
In [125]: Sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values
sns.barplot(x = 'Gender',y = 'Amount', data =Sales_gen )
```

Out[125]: <Axes: xlabel='Gender', ylabel='Amount'>



# from above graphs we can see that most of the buyers are females and even the purchasing power of females are grater than man.

```
In [126]: df.columns
```

In [127]: ax = sns.countplot(data= df , x = 'Age Group' , hue = 'Gender')
for bars in ax.containers:
 ax.bar\_label(bars)



In [128]: Sales\_Age = df.groupby(['Age Group'], as\_index=False)['Amount'].sum().sort\_value
sns.barplot(x = 'Age Group',y = 'Amount', data =Sales\_Age )

Out[128]: <Axes: xlabel='Age Group', ylabel='Amount'>



#from above graph we can see that most of the buyers are of the age group between 26-35yrs female

```
In [129]: Sales_State = df.groupby(['State'], as_index=False)['Orders'].sum().sort_value
sns.set( rc= {'figure.figsize':(15,5)})
sns.barplot(x = 'State',y = 'Orders', data =Sales_State )
```

Out[129]: <Axes: xlabel='State', ylabel='Orders'>



```
In [130]: Sales_State = df.groupby(['State'], as_index=False)['Amount'].sum().sort_value
sns.set( rc= {'figure.figsize':(15,5)})
sns.barplot(x = 'State',y = 'Amount', data =Sales_State )
```

Out[130]: <Axes: xlabel='State', ylabel='Amount'>



#from above graph we can see that most of the orders are from uttar padesh, Maharastraand karnataka respectively



#from above graph we can see that most of the buyers are married (Women) and they have high purchasing power.

```
In [132]: ax = sns.countplot(x='Occupation', data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [133]: Sales_Occ = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_value
sns.set( rc= {'figure.figsize':(15,5)})
sns.barplot(x = 'Occupation',y = 'Amount', data =Sales_Occ )
```

Out[133]: <Axes: xlabel='Occupation', ylabel='Amount'>



#Above graph we can see that mpst of the buyers are workin in It. Healthcare and Aviation

```
In [134]: ax = sns.countplot(x='Product_Category', data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [135]: Sales_Prod= df.groupby(['Product_Category'], as_index=False)['Amount'].sum().solutions.barplot(x = 'Product_Category',y = 'Amount', data =Sales_Prod )
```

Out[135]: <Axes: xlabel='Product\_Category', ylabel='Amount'>



# from above graph we can see that most of the sold product are from food, clothing and Electronic categroy

```
In [136]: Sales_Prod= df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_value
sns.barplot(x = 'Product_ID',y = 'Orders', data =Sales_Prod )
```

Out[136]: <Axes: xlabel='Product\_ID', ylabel='Orders'>



#Conclusion: Married Women group 26-35 years from Up, Maharastraand Karnatka working in It, Healthcare and Aviation are more likely to buy products from food, clothings and Electronic category.

```
In [ ]:
```