



# Universidade Estadual do Ceará

#### Capacitação em Inteligência Artificial e Aplicações

#### Aprendizado Não Supervisionado:

- Prof. Gerson Vieira Albuquerque Neto
- Prof. Rodrigo Carvalho Souza Costa
- Prof. Yves Augusto Romero













# Planejamento da Disciplina

| D  | S                                                      | Т                                                                | Q                                                         | Q                                                | S                                                                   | S  |
|----|--------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|----|
| 26 | 27<br>Introdução ao curso                              | 28<br>Áreas e aplicações de<br>IA                                | 29<br>Tipos e definições de<br>Inteligência artificial    | 30<br>Revisão de álgebra e<br>probabilidade      | 31<br>Laboratório Python 1                                          | 1  |
| 2  | Introdução aos classificadores supervisionados         | 4<br>Aula teórica Naive<br>BaSim                                 | 5<br>Aula prática Naive<br>BaSim                          | 6<br>Feriado Semana Santa                        | Feriado Semana Santa                                                | 8  |
| 9  | 10<br>KNN + Métricas de<br>Avaliação                   | 11<br>Regressão Linear e<br>e Introdução à árvores<br>de decisão | 12<br>Prática Regressão<br>Lienar + Árvores de<br>Decisão | 13<br>Introdução à<br>Clusterização<br>+ KMédias | 14 Introdução ao PCA / prática com classificadores já implementados | 15 |
| 16 | 17<br>Introdução ao<br>Perceptron Simples –<br>Prática | 18<br>Teoria MLP /<br>Aplicação scilearn                         | 19<br>Introdução ao<br>DeepLearning                       | 20<br>Uso de biblioteca<br>DeepLearning          | 21<br>Feriado Tiradentes                                            | 28 |
| 23 | 24<br>Introdução ao<br>TensorFlow / Keras              | 25<br>Introdução ao Pytorch                                      | 26<br>Tensorflow for android                              | 27                                               | 28                                                                  | 29 |















## **Objetivos da Aula**

- Após a conclusão deste módulo, você será capaz de:
  - Compreender o funcionamento de algoritmos de clusterização
  - Compreender o funcionamento de métodos de redução de características
  - Compreender o conceito de Hiperparâmetros



















## **Revisão: Algoritmos de Machine Learning**





















#### Aprendizado Não Supervisionado:

- Revisão sobre aprendizado não supervisionados
- Clustering
- Redução de dimensionalidade
- Hiperparâmetros













# Revisão clusterização

- O agrupamento (*clustering*) é uma forma comum de aprendizagem não supervisionada.
- Para amostras não rotuladas, os algoritmos de aprendizado modelam diretamente os conjuntos de dados de entrada.
- Precisamos apenas colocar amostras altamente semelhantes juntas, calcular a semelhança entre amostras novas e as existentes e classificá-las por semelhança.

#### **Unsupervised Learning**



















## **Aprendizagem não-supervisionada**

#### Espaço de Dados

Característica

. . .

. . .

. . .

Característica

n

Característica

Característica

n

Característica

Característica

n

Algoritmo de aprendizagem não supervisionado

Semelhança interna

Consumo Tempo de Mercadoria Mensal Consumo Raquete de 1000-2000 6:00-12:00 badminton 18:00-24:00 500-1000 Basquete Console de 00:00-6:00 1000-2000 jogos

Categoria

Cluster 1

Cluster 2









#### Revisão



















#### Aprendizado Não Supervisionado:

- Revisão de aprendizado não supervisionado
- Clustering
- Redução de dimensionalidade
- Hiperparâmetros













## K-médias

- O agrupamento K-médias visa particionar n observações em k clusters em que cada observação pertence ao cluster com a média mais próxima, servindo como um protótipo do cluster.
- Para o algoritmo K-médias, especifique o número final de clusters (k). Em seguida, divida n objetos de dados em k clusters.
- Os clusters obtidos atendem às seguintes condições:
  - 1. Os objetos no mesmo cluster são altamente semelhantes.
  - 2. A semelhança de objetos em diferentes aglomerados é pequena.



#### K-means clustering



Os dados não está rotulado. O cluster K-médias pode classificar automaticamente os conjuntos de dados.













#### Procedimento Básico K-médias

- 1. Especifica-se o número K de clusters
- 2. Inicializa-se aleatoriamente os centroids.
- 3. Repita até que a posição dos centroids não mude ou o número máximo de iterações seja alcançado
  - 1. Realiza-se a classificação do dataset em função do centroid mais próximo
  - Recalcula-se o valor do centroid dos de cada cluster como a média dos pontos do cluster



















## **Agrupamento Hierárquico**

- O clustering hierárquico divide um conjunto de dados em diferentes camadas e forma uma estrutura de clustering semelhante a uma árvore.
- A divisão do conjunto de dados pode usar uma política de agregação "de baixo para cima" ou uma política de divisão de "cima para baixo". A hierarquia de agrupamento é representada em um gráfico de árvore.
- A raiz é o aglomerado único de todas as amostras, e as folhas são o aglomerado de apenas uma amostra.









#### Aprendizado Não Supervisionado:

- Revisão de aprendizado não supervisionado
- Clustering
- Redução de dimensionalidade
- Hiperparâmetros













## Redução de Dimensionalidade

- Transformação de dados de um espaço de alta dimensão em um espaço de baixa dimensão
- Idealmente perto de sua dimensão intrínseca.
- Métodos
  - Seleção de atributos
  - Projeção de atributos





















#### Análise de Componentes Principais PCA - Principal Component Analysis

 O PCA é frequentemente usado para reduzir a dimensionalidade de grandes conjuntos de dados, transformando um grande conjunto de variáveis em um menor que ainda contém a maioria das informações no grande conjunto.

















## **Componentes Principais**

 Consiste em uma técnica estatística que realiza uma transformação linear de um conjunto de variáveis originais em um menor conjunto com variáveis descorrelacionadas, representando a maior parte da informação do conjunto de dados originais.



A Componente Principal é o arranjo que melhor representa a distribuição dos dados (linha vermelha) e a Componente secundária é perpendicular a componente principal (linha azul).

















#### **Processo PCA**

• O c-componente principal é encontrado a partir da transformação do espaço original através do autovetor  $E_c = (e_1, e_2, ..., e_n)$  associado ao c-maior autovalor da matriz de covariância  $C_X$ , ou seja:



















#### Matriz de covariância

A matriz de covariância ( $C_X$ ) do espaço característico X é definida como:

$$C_X = \sum_{i=1}^m (x_i - \overline{x}) (x_i - \overline{x})^T$$

$$C = \begin{pmatrix} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{pmatrix}$$

- Em que:
  - $\circ$  Os componentes  $c_{ii}$  da matriz de covariância ( $C_X$ ) representam a covariância entre as variáveis *i* e *j*.
  - Quando duas características j e k dos dados estão correlacionadas, sua covariância é nula ( $c_{ik} = c_{ki} = 0$ ).
- Escolhendo os autovetores associados aos maiores autovalores, há a menor perda possível de informação neste novo espaço característico













#### Calculando os autovalores e autovetores de Cx

Para calcular os autovalores 
 \( \lambda \) da matriz Cx deve-se resolver a equação característica:

$$\det(C_x - \lambda I) = 0$$

• Sabendo que para cada autovalor  $\lambda_i$  encontrado, resolvemos o sistema linear  $(C_x - \lambda I)v = 0$  para calcular o autovetor v associado ao autovalor











#### Calculando os autovalores e autovetores de Cx

Para calcular os autovalores 
 \( \lambda \) da matriz Cx deve-se resolver a equação característica:

$$\det(C_x - \lambda I) = 0$$

• Sabendo que para cada autovalor  $\lambda_i$  encontrado, resolvemos o sistema linear  $(C_x - \lambda I)v = 0$  para calcular o autovetor v associado ao autovalor





# IA

## **Exemplo**

 $E_1 = 0.81071949x - 0.58543481y$  $E_2 = 0.58543481x + 0.81071949y$ 





















#### Aprendizado Não Supervisionado:

- Revisão de aprendizado não supervisionado
- Clustering
- Redução de dimensionalidade
- Hiperparâmetros













## Parâmetros e hiperparâmetros em modelos

- O modelo contém não apenas parâmetros, mas também hiperparâmetros.
- O objetivo é permitir que o modelo aprenda os parâmetros ideais.
  - Os parâmetros são aprendidos automaticamente por modelos.
  - Os hiperparâmetros são definidos manualmente.



















## Hiperparâmetros de um modelo

- Frequentemente usado em processos de estimativa de parâmetros de modelo.
- Muitas vezes especificado pelo praticante.
- Muitas vezes pode ser definido usando heurísticas.
- Muitas vezes ajustado para um determinado problema de modelagem preditiva.

Os hiperparâmetros do modelo são configurações externas dos modelos.

- λ durante a regressão de Lasso/Ridge
- Taxa de aprendizado para treinar uma rede neural, número de iterações, tamanho do lote, função de ativação e número de neurônios
- C e σ em máquinas vetoriais de suporte (SVM)
- K em k-vizinho mais próximo (KNN)
- Número de árvores em uma floresta aleatória

Hiperparâmetros comuns do modelo

















#### Procedimento e método de pesquisa de hiperparâmetros

Procedimento para pesquisar hiperparâmetros

- 1. Dividir um conjunto de dados em um conjunto de treinamento, conjunto de validação e conjunto de testes.
- 2. Otimização dos parâmetros do modelo usando o conjunto de treinamento com base nos indicadores de desempenho do modelo.
- 3. Procurar os hiperparâmetros do modelo usando o conjunto de validação com base nos indicadores de desempenho do modelo.
- 4. Execute as etapas 2 e 3 alternadamente. Finalmente, determine os parâmetros e hiperparâmetros do modelo e avalie o modelo usando o conjunto de testes.

Algoritmo de busca (etapa 3)

- Busca em grade
- Busca aleatória
- Busca inteligente heurística
- Busca bayesiana

















## Método de pesquisa de hiperparâmetros - Pesquisa em grade

- A pesquisa em grade tenta pesquisar exaustivamente todas as combinações de hiperparâmetros possíveis para formar uma grade de valores de hiperparâmetros.
- Na prática, o intervalo de valores de hiperparâmetros a serem pesquisados é especificado manualmente.
- A pesquisa em grade é um método caro e demorado.
- Este método funciona bem quando o número de hiperparâmetros é relativamente pequeno. Portanto, é aplicável a algoritmos de aprendizado de máquina em geral, mas inaplicável a redes neurais (consulte a parte de aprendizado profundo).



Hiperparâmetro 2

















## Método de pesquisa de hiperparâmetros - Pesquisa aleatória

- Quando o espaço de pesquisa de hiperparâmetro é grande, a pesquisa aleatória é melhor do que a pesquisa em grade.
- Na pesquisa aleatória, cada configuração é amostrada a partir da distribuição de possíveis valores de parâmetros, na tentativa de encontrar o melhor subconjunto de hiperparâmetros.

#### Nota:

- A pesquisa é realizada dentro de um intervalo grosseiro, que será reduzido com base em onde o melhor resultado aparece.
- Alguns hiperparâmetros são mais importantes do que outros, e o desvio de pesquisa será afetado durante a pesquisa aleatória.

#### Random search



Parameter 2









Parameter 1









Prática de aprendizado não supervisionado











# Dúvidas?

Módulo de Inteligência Artificial









