FEUP - MIEIC

Resolução do exame de 30 de junho de 2017

Problema 1. (a) A figura ao lado mostra o diagrama de corpo livre da barra. Como a barra está em equilíbrio, as somas das componentes x e y das três forças devem ser nulas:

$$T_a \cos(60^\circ) - T_b \cos(70^\circ) = 0$$

 $T_a \sin(60^\circ) + T_b \sin(70^\circ) - mg = 0$

Regente: Jaime Villate

e a solução deste sistema é:

$$T_a = \frac{mg \cos(70^\circ)}{\sin(60^\circ)\cos(70^\circ) + \sin(70^\circ)\cos(70^\circ)} = 27.1 \text{ N}$$

$$T_b = \frac{mg \cos(60^\circ)}{\sin(60^\circ)\cos(70^\circ) + \sin(70^\circ)\cos(70^\circ)} = 39.7 \text{ N}$$

(b) A diferença de alturas entre os pontos A e B e a distância horizontal entre eles são (ver figura ao lado):

$$h = 4\sin(60^{\circ}) - 3\sin(70^{\circ}) = 0.6450 \,\mathrm{m}$$
 $d = \sqrt{6^2 - h^2} = 5.965 \,\mathrm{m}$

A soma dos momentos das forças em relação ao ponto A deve ser nula e, como tal,

$$\begin{vmatrix} r\cos\theta & r\sin\theta \\ 0 & -mg \end{vmatrix} + \begin{vmatrix} d & h \\ T_b\cos(70^\circ) & T_b\sin(70^\circ) \end{vmatrix} = -mgr\cos\theta + T_b(d\sin(70^\circ)) - h\cos(70^\circ) = 0$$

na qual r é a distância desde A até o centro de gravidade C e θ é o ângulo que a barra faz com a horizontal. Substituindo os valores de m, g, T_h e $\cos \theta = d/6$,

$$60.41r = 213.55 \implies r = 3.535 \text{ m}$$

Problema 2. (a) Introduz-se a variável auxiliar $y = \dot{x}$ para tornar a equação diferencial de segunda ordem numa equação de primeira ordem. As equações de evolução do sistema dinâmico são então,

$$\dot{x} = y$$
 $\dot{y} = (x^2 - 3) y + 3x - x^3$

Os pontos de equilíbrio obtêm-se resolvendo o sistema das duas expressões nos lados direitos iguais a zero. No Maxima escreve-se

(%i1) e: [y,
$$(x^2-3)*y+3*x-x^3$$
] \$

(%i2) p: solve(e);

[$[x=0, y=0], [x=-\sqrt{3}, y=0], [x=\sqrt{3}, y=0]$]

Existem então 3 pontos de equilíbrio (x, y):

$$P_1 = (0,0)$$
 $P_2 = (-\sqrt{3},0)$ $P_2 = (\sqrt{3},0)$

(b) a matriz jacobiana é

```
(%i3) j: jacobian(e, [x,y]);
\begin{bmatrix}
0 & 1 \\
2xy-3x^2+3 & x^2-3
\end{bmatrix}
```

E os valores próprios das matrizes das aproximações lineares do sistema, na vizinhança dos 3 pontos de equilíbrio, são

```
(%i4) map (eigenvalues, makelist (subst(q,j), q, p));  \left[ \left[ \left[ -\frac{\sqrt{21}+3}{2}, \frac{\sqrt{21}-3}{2} \right], [1, 1] \right], \left[ \left[ -\sqrt{6}i, \sqrt{6}i \right], [1, 1] \right], \left[ \left[ -\sqrt{6}i, \sqrt{6}i \right], [1, 1] \right] \right]
```

Como $\sqrt{21}$ é maior que 3, P_1 é ponto de sela e P_2 e P_3 parecem ser são ambos centros. Os centros podem ser deformados em focos o nós, devido aos termos não lineares, mas o retrato de fase corrobora que existem ciclos na vizinhança de P_2 e P_3 e, como tal, ambos são centros.

(c) O retrato de fase obtém-se com o comando:

```
(%i5) plotdf (e, [x, y], [x, -3, 3], [y, -3, 3])$
```

e traçando algumas curvas de evolução. A figura seguinte mostra as curvas mais importantes:

 C_1 e C_2 são dois dos ciclos que existem à volta de P_2 e P_3 . As duas curvas de evolução que saem do ponto de sela aproximam-se desses ciclos mas, como não se podem cruzar com eles, conclui-se que existem dois ciclos limite, L_1 e L_2 à volta de cada um dos pontos P_2 e P_3 .

(d) Existe um número infinito de ciclos, dentro dos dois ciclos limite L_1 e L_2 à volta de cada um dos pontos P_2 e P_3 .

Perguntas

 3. A
 6. C
 9. D
 12. C
 15. D

 4. A
 7. C
 10. D
 13. A
 16. B

 5. D
 8. D
 11. D
 14. D
 17. E

Critérios de avaliação

Problema 1

• Equação da soma das componentes x das forças	0.6
 Equação da soma das componentes y das forças Obtenção dos valores das duas tensões 	
Equação da soma dos momentos das forças	0.4
Obtenção da distância até o centro de gravidade	0.8
Problema 2	
Equações de evolução	0.4
Obtenção dos três pontos de equilíbrio	0.4
Cálculo da matriz jacobiana e valores próprios	0.8
Caraterização dos três pontos de equilíbrio	0.8
• Retrato de fase	1.2
Identificação dos ciclos	0.4