2. test iz Uvoda v geometrijsko topologijo

27. 5. 2016

Veliko uspeha!

1. naloga (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna

oziroma napačna 🚺

Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

Prostor $(0, \infty)$ je retrakt evklidske premice \mathbb{R} .

Prostor $(\mathbb{B}^2 \times \{0\}) \cup (\{(0,0)\} \times [-1,1])$ ima lastnost negibne točke.

S potmi povezan podprostor absolutnega ekstenzorja, je absolutni ekstenzor.

Za poljubni različni točki T_4 prostora X obstaja zvezna funkcija $X \to \mathbb{S}^1$, ki ju loči.

Če je stožec $CX = X \times I/X \times \{1\}$ povezan s potmi, je X povezan s potmi.

Zvezno preslikavo $(-\infty,0] \to \mathbb{R}^2$ je mogoče razširiti do zvezne preslikave $\mathbb{R} \to \mathbb{R}^2$.

Naj bo $A \subset \mathbb{R}^2, B \subset \mathbb{R}^3$. Če sta A in B homeomorfna, ima B prazno notranjost v \mathbb{R}^3 .

Prostor $([0,\infty)\times(0,\infty))\cup([t,\infty)\times\{0\})$ je mnogoterost natanko tedaj, ko je t=0.

Projektivni prostor $\mathbb{R}P^n$, ki je kvocient prostora $\mathbb{R}^{n+1} - \{0\}$, je nekompakten.

Če je $X\subset\mathbb{R}^2$ zaprta množica in je X mnogoterost, je X retrakt ravnine \mathbb{R}^2 .

2. naloga (5 točk)

Preslikava $f: X \to Y$ je univerzalna za topološka prostora X in Y, če za vsako zvezno preslikavo $g: X \to Y$, obstaja $x \in X$, da je f(x) = g(x).

- 1. Pokaži, da če obstaja univerzalna $f\colon X\to Y$, je f surjektivna in prostor Y ima lastnost negibne točke.
- 2. Za spodnje primere ugotovi, ali obstaja univerzalna preslikava f (preslikavo f zapiši in argumentiraj, da je univerzalna, ali pa argumentiraj, zakaj ne obstaja):
 - $X = \mathbb{B}^2$, $Y = \mathbb{B}^2$,
 - $X = \mathbb{B}^2, Y = [-1, 1],$
 - $X = \mathbb{R}, Y = \mathbb{S}^1$,
 - $X = [0,1], Y = ([0,1] \times \{0\}) \cup (\{0\} \times [0,1]) \cup (\bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times [0,1]).$

3. naloga (5 točk)

Naj bo $X = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = 1, z \ge 0\} \cup (\mathbb{R}^2 \times \{0\})$ in $Y = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 = 1, z \ge 0\} \cup \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 \ge 1\}.$

- 1. Ali je kateri od X in Y retrakt prostora \mathbb{R}^3 ?
- 2. Ali je kateri od X in Y mnogoterost?

Vse odgovore utemelji!