Math 316 Complex Variables

Homework I

Frédéric Boileau

Prof. John Toth

Contents

1		2
	1.1	2
2	dump	3

1

1.1

To prove that a function is holomorphic we keep in mind that products and sums, products and quotients of holomorphic functions are construct holomorphic functions (provided that there is no division by zero)

a)

$$f(z) = \sin(z) - \frac{z^2}{z+1}$$

 $\sin(z)$ is a trigonometric function so it is holomorphic, z^2 and z+1 are both polynomials and so are holomorphic, therefore their quotient is holomorphic therefore the sum of the two parts is holomorphic when $z \neq -1$

c)

$$h(z) = \frac{\cos(z)}{z^2 + 1}$$

 $\cos(z)$ is a trigonometric function so it is homomorphic, z^2+1 is a polynomial is z so it is holomorphic. Their quotient is therefore holomorphic when $z\neq i,-i$

1.2

2 dump