

IFSP – SÃO JOÃO DA BOA VISTA CIÊNCIA DA COMPUTAÇÃO

Sistemas Operacionais

SEMANA 3

Prof.: Ederson Borges

Tópicos

- Tarefas
 - Conceito
 - Objetivos
 - Gerência de tarefas
 - Sistemas monotarefa
 - Monitor de sistema
 - Sistemas Multitarefas
 - Sistemas de tempo compartilhado
 - Ciclo de vida das tarefas

Tarefas

- Sabe-se que atualmente o número de atividades que um sistema gerencia é maior que o número de processadores disponíveis
- Como multiplexar o(s) processador(es) entre as tarefas existentes?
- Além disso, existem atividades que exigem maior tempo de processamento que outras.
 - Como o sistema operacional cuida disso?

Tarefas

- Tarefa é a execução de um fluxo sequencial de instruções, construído para atender uma finalidade específica:
 - Realizar um cálculo
 - Edição de um gráfico
 - Formatação de um disco
 - Etc
- Desta forma, a execução de uma sequência de instruções em linguagem de máquina, é uma tarefa ou atividade (inglês task)

- Tarefa e programa
 - Diferenças entre os conceitos
 - Programa: conjunto de uma ou mais sequências de instruções escritas para resolver um problema específico, constituindo assim uma aplicação ou utilitário
 - Conceito estático, não possui estados
 - Tarefa: execução sequencial, por um processador, da sequência de instruções definidas em um programa para realizar seu objetivo.
 - Conceito dinâmico, possui estados (executando, pronta,...)

- Tarefas
 - As tarefas podem ser criadas de várias formas:
 - Como processos
 - Como threads

Tarefas

Figura 4.1: Tarefas de um navegador Internet

- faz busca via rede dos elementos da página
- Recebe, analisa e renderiza o código
 HTML e figuras
- Animações e outros elementos interativos
- Receber e tratar
 eventos do usuário
 (cliques e outros)

- Gerência de Tarefas
 - Todas as tarefas solicitadas pelo usuário devem ser executadas
 - São só essas?

- Gerência de Tarefas
 - Tarefas de sistema
 - Relógio
 - Tela
 - Animações
 - Tarefas do usuário
 - Aplicativos
 - Outras tarefas
 - Rede
 - Teclado
 - Mouse

- Gerência de Tarefas
 - Sistemas monotarefas
 - Anos 40
 - Uma tarefa por vez
 - Programa completo era carregado para memória e executado até o final
 - Não existe interação com o usuário, mas um operador humano deve fazer a carga de programas e dados
 - Dados de entrada são carregados na memória junto a tarefa
 - » Resultados são enviados para o disco ao final da tarefa
 - Sistemas primitivos
 - » Cálculo numérico, trigonometria, mecânica de fluídos

- Gerência de Tarefas
 - Sistemas monotarefas

Figura 4.2: Execução de tarefa em um sistema monotarefa.

Tarefas

- Gerência de Tarefas
 - Sistemas monotarefas
 - Carga na memória do

Programa

Figura 4.2: Execução de tarefa em um sistema monotarefa.

- Carga na memória dos dados
- Processamento (execução da tarefa)
- Dados enviados de volta ao disco com resultados

- Gerência de Tarefas
 - Sistemas monotarefas

Figura 4.3: Estados de uma tarefa em um sistema monotarefa.

- Gerência de Tarefas
 - Monitor de sistema
 - Evolução do hardware
 - Demora para operador humano iniciar a execução da tarefa
 - » Processos manuais demoram mais que o processamento em si
 - Evolução: Carga e descarga são coordenadas por um programa monitor
 - Programa monitor
 - Carregado antes do início do programa a ser executado
 - Gerencia a execução do programa

- Gerência de Tarefas
 - Monitor de sistema
 - Passos do Programa monitor
 - Carregar um programa do disco para a memória
 - Carregar dados de entrada do disco para a memória
 - Transferir a execução para o programa recém carregado
 - Aguardar o término da execução do programa
 - Escrever os resultados gerados pelo programa no disco

- Gerência de Tarefas
 - Monitor de sistema
 - Gerencia fila de programas a executar, disponíveis no disco
 - Monitor coordena a execução de cada programa
 - Monitor possui uma biblioteca de funções para facilitar acesso a dispositivos de hardware
 - Início dos sistemas operacionais

- Gerência de Tarefas
 - Sistemas multitarefas
 - Com a criação do *Programa Monitor*, o uso do processador melhorou
 - Mas outros problemas persistem
 - Processador fica ocioso durante comunicação com dispositivos
 - » Processador é mais rápido que a comunicação
 - » Acesso a memória $(5x10^{-9}s)$ Acesso a disco $(5x10^{-3}s)$
 - Valor de manter o processador parado é alto
 - » Consumo de energia

- Gerência de Tarefas
 - Sistemas multitarefas
 - Solução
 - Suspender tarefa que está aguardando comunicação
 - » Quando os dados estiverem em memória, pode voltar a executar a tarefa
 - Colocar outra tarefa para executar durante a espera
 - Problemas
 - » Mais um (ou vários) programa(s) na memória (maior memória)
 - » Criar métodos e mecanismos para que o monitor faça a suspensão e retomada da tarefa anterior

- Gerência de Tarefas
 - Sistemas multitarefas
 - Novo programa monitor
 - Foram criadas rotinas padronizadas de entrada/saída
 - Rotinas recebem solicitações de entrada/saída de dados
 - Podem suspender a tarefa quando necessário
 - » Programa Monitor assume o controle
 - Programas mais produtivos
 - » Muito mais complexos
 - » Várias tarefas em andamento de forma simultânea
 - Estados das tarefas

- Gerência de Tarefas
 - Sistemas multitarefas

Figura 4.4: Execução de tarefas em um sistema multitarefas.

- Gerência de Tarefas
 - Sistemas multitarefas

Figura 4.5: Diagrama de estados de uma tarefa em um sistema multitarefas.

Tarefas

Atividades

- O que é o programa monitor no sistema monotarefa?
- Sobre sistema multitarefa, quando uma tarefa tem seu processamento suspenso?
- Quem é responsável por suspender uma tarefa em um sistema multitarefa?

- Gerência de Tarefas
 - Sistemas Monotarefa
 - Programa Monitor
 - Sistemas Multitarefas
 - Sistemas de tempo compartilhado

- Gerência de Tarefas
 - Sistemas de tempo compartilhado
 - O problema de ociosidade do processador foi resolvido
 - Novos problemas
 - » Veja o programa a seguir, qual o problema?

```
// calcula a soma dos primeiros 1000 inteiros

#include <stdio.h>

int main ()

int i = 0, soma = 0;

while (i <= 1000)
    soma += i;

printf ("A soma vale %d\n", soma);
    exit(0);
}</pre>
```


- Gerência de Tarefas
 - Sistemas de tempo compartilhado
 - O sistema multitarefa executa o programa até que ele finalize, ou suspenda
 - A suspensão só ocorre ao solicitar dados
 - E quando o programa não finaliza e não solicita dados?
 - O processador ficará ocupado o tempo todo sem finalizar a tarefa

- Gerência de Tarefas
 - Sistemas de tempo compartilhado
 - Caso tenhamos aplicativos de interação com o usuário, teremos um novo problema
 - O usuário demora para interagir, a cada leitura do teclado a tarefa perderia a sua "vez" no processador

- Gerência de Tarefas
 - Sistemas de tempo compartilhado
 - Início dos anos 60
 - CTSS
 - Compatible Time-Sharing System
 - Conceito de compartilhamento do tempo
 - » Time-Sharing
 - Agora uma tarefa recebe o processador e possui um prazo de uso
 - Fatia de tempo ou *Quantum*
 - » Varia por SO
 - » Linux 10 a 200 ms (prioridade e tipo de tarefa)

Tarefas

- Gerência de Tarefas
 - Sistemas de tempo compartilhado

Quantum

- Uma tarefa executa até esgotar seu quantum (ou finalizar)
- Esgotado o quantum, a tarefa "perde" o processador e volta para fila de tarefas com o estado "Pronta"
- Uma tarefa diferente que está com o estado "Pronta" é ativada

Preempção

- A retirada a "força" do recurso (processador) de uma tarefa
- SISTEMAS PREEMPTIVOS

- Gerência de Tarefas
 - Sistemas de tempo compartilhado
 - Preempção
 - Existe um temporizador programável que utiliza as interrupções para executar o processo de preempção
 - O temporizador gera interrupções em intervalos regulares
 - » Poderia ser a cada milissegundo
 - » Interrupt handler trata a interrupção e envia para o núcleo
 - » Cada ativação periódica do Interrupt Handler é chamada de tick

- Gerência de Tarefas
 - Sistemas de tempo compartilhado
 - Preempção
 - Quando uma tarefa recebe o processador, o núcleo inicia um contador decrescente de ticks
 - Essa tarefa poderá utilizar uma quantidade específica de ticks
 - » Quantum (número de ticks)
 - A cada tick o contador é decrementado
 - » Chegando a zero, a tarefa "perde" o processador
 - » Tarefa irá voltar a fila de tarefas prontas

- Gerência de Tarefas
 - Sistemas de tempo compartilhado

Figura 4.6: Dinâmica da preempção por tempo.

- Gerência de Tarefas
 - Sistemas de tempo compartilhado

Figura 4.7: Diagrama de estados de uma tarefa em um sistema de tempo compartilhado.

- Gerência de Tarefas
 - Ciclo de vida das tarefas
 - Representa os estados que cada tarefa pode assumir durante o tempo que está na fila de tarefas
 - Nova: A tarefa está sendo criada. Ainda está carregando dados na memória
 - Pronta: A tarefa está na memória, aguardando para que entre em execução ou que seja retomada sua execução
 - Executando: O processador está dedicado a esta tarefa, executando suas instruções
 - Suspensa: A tarefa está aguardando alguma informação externa para poder continuar sua sequência de instruções
 - Terminada: A tarefa foi finalizada, pode ser removida da memória

- Gerência de Tarefas
 - Ciclo de vida das tarefas
 - Transições de estados
 - A partir do estado "Nova" outras estados podem ser alcançados, não é possível voltar ao estado "Nova"
 - Nova -> Pronta
 - Pronta -> Executando
 - Executando -> Suspensa
 - Executando -> Pronta
 - Suspensa -> Pronta
 - Executando -> Terminada
 - Terminada..... Só pode ser removida da memória

Tarefas

Gerência de Tarefas

- Atividades
 - O que é time-sharing e qual sua importância para o SO?
 - Como é escolhida a duração de um quantum?

Tarefas

Atividades

 Considerando o diagrama de estados dos processos apresentado na figura a seguir, complete o diagrama com a transição de estado que está faltando (t6) e apresente o significado de cada um dos estados e transições.

