ALGORITMA ANALIZI VE TASARIMI

BIG O GÖSTERİMİ

- Çalışma zamanının üst sınırını göstermektedir (en kötü durum).
- Bir A algoritması f(n) ile orantılı zaman gerektiriyorsa A Algoritmasına f(n) mertebesindedir denilir ve O(f(n)) ile gösterilir.
- f(n)'e algoritmanın growth-rate fonksiyonu denir.
- Bu gösterime Big O notation adı verilir.
- A algoritması n^2 , ile orantılı zaman gerektiriyorsa $O(n^2)$.
- A algoritması \mathbf{n} ile orantılı zaman gerektiriyorsa $\mathbf{O}(\mathbf{n})$ ile ifade edilir.

BIG O GÖSTERİMİ

Tanım:

Öyle bir k ve n_0 sabitleri vardır ki A algoritması $n \ge n_0$ boyutunda bir problemi çözmek için k*f(n) den daha fazla zamana ihtiyaç duymaz ise A algoritmasının mertebesi O(f(n)) ile gösterilir.

Yani; f(n) ve g(n) iki fonksiyon olsun. Her $n \ge n_0$ ve c > 0 için eger $f(n) \le c.g(n)$, n > 0 oluyorsa, f(n) = O(g(n)) yani g(n): f(n) için üst sınırdır denir.

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} \text{ var ve obliden for kli ise} = \int f(n) = O(g(n))$$

BIG O GÖSTERİMİ

• Eğer bir algoritma n elemanlı bir problem için $n^2-3*n+10$ saniye gerektiriyorsa ve öyle bir k ve n_0 değerleri vardır ki;

bütün
$$n \ge n_0$$
 için $k*n^2 > n^2-3*n+10$

ve algoritmanın mertebesi n^2 olur. (Gerçekten k=3 ve n_0 =2)

Bütün
$$n \ge 2$$
 için $3*n^2 > n^2-3*n+10$ olur.

Yani algoritma $(n \ge n_0)$ için, $k*n^2$ den daha fazla zamana ihtiyaç duymaz.

ve böylece **O(n²)** ile ifade edilir.

BÜYÜK- Ω(BIG-OMEGA) GÖSTERİMİ

• Alt sınır hakkında bilgi verir (en iyi durum).

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} \neq 0 \to f(x) = \Omega(g(x))$$

Tanım: f ve g, tamsayı kümesinden veya reel sayı kümesinden reel sayılara tanımlanmış olsun. $\mathbb{Z} + \to \mathbb{R}$

Eğer, x > k olduğunda $|f(x)| \ge C|g(x)|$ oluyorsa ve bu eşitsizliği sağlayan C ve k gibi sabit sayılar varsa $f(x) = \Omega(g(x))$ olmaktadır.

Big-O ile Big- Ω arasında sıkı bir ilişki vardır. Ancak ve ancak g(x), O(f(x)) olduğunda f(x), $\Omega(g(x))$ olacaktır.

BÜYÜK- O(BIG-THETA) GÖSTERİMİ

• Çalışma zamanı hakkında yaklaşık değil, tam cevap verir. Hem alt hem üst sınır g(x) ise, g(x) tam çözümdür (ortalama durum).

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=C \implies f(x)=\Theta(g(x)) \text{ olur.}$$

Tanım: f ve g, tamsayı kümesinden veya reel sayı kümesinden reel sayılara tanımlanmış olsun. $\mathbb{Z} + \to \mathbb{R}$

Eğer, f(x), O(g(x)) ve f(x), $\Omega(g(x))$ ise f(x), $\theta(g(x))$ deriz.

Eğer x>k olduğunda $C_1|g(x)| \le |f(x)| \le C_2|g(x)|$ oluyorsa ve bu eşitsizliği sağlayan pozitif C_1 ve C_2 reel sayıları ve bir pozitif k reel sayısı bulunabiliyorsa bu durumda f(x)'in $\theta(g(x))$ olduğunu gösterebiliriz.

BÜYÜME HIZI FONKSİYONLARININ KARŞILAŞTIRILMASI

(a)					n		
	Function	10	100	1,000	10,000	100,000	1,000,000
	1	1	1	1	1	1	1
	log ₂ n	3	6	9	13	16	19
	n	10	10 ²	10^{3}	104	105	106
	n ∗ log₂n	30	664	9,965	105	106	10 ⁷
	n²	10 ²	104	106	108	1010	1012
	n ³	10³	10^{6}	10 ⁹	1012	10 ¹⁵	10 ¹⁸
	2 ⁿ	10³	1030	1030	103,0	10 10 ³⁰	10 ^{301,030}

BÜYÜME HIZI FONKSİYONLARININ KARŞILAŞTIRILMASI

KARMAŞIKLIK

KARMAŞIKLIK

BÜYÜME HIZI FONKSİYONLARI

- O(1) Zaman gereksinimi sabittir ve problem boyutundan bağımsızdır.
- O(log₂n) Zaman gereksinimi logaritmiktir ve problem boyutuna göre yavaş artar.
- O(n) Zaman gereksinimi doğrusaldır ve problem girişiyle doğru orantılı artar.
- $O(n*log_2n)$ Zaman gereksinimi $n*log_2n$ dir ve doğrusaldan daha hızlı artar.
- O(n²) Zaman gereksinimi karesel olup problem boyutuna göre hızlı bir artış gösterir.
- O(n³) Zaman gereksinimi cubic problem boyutuna göre hızlı bir artış gösterir.
- **O(2ⁿ)** problem girdi boyutu artarken zaman üstel (çok çok hızlı) olarak artar.

BÜYÜME HIZI FONKSİYONLARI

- Bir algoritma 8 elemanlı bir problemi 1 saniyede sonuçlandırıyorsa 16 elemanlı bir problem için ne kadar zaman gerekir.
- Algoritmanın mertebesi:

$$O(1) \rightarrow T(n) = 1$$
 saniye

$$O(\log_2 n)$$
 \rightarrow T(n) = (1*log₂16) / log₂8 = 4/3 saniye

$$O(n) \rightarrow T(n) = (1*16) / 8 = 2 \text{ saniye}$$

$$O(n*log_2n)$$
 \rightarrow $T(n) = (1*16*log_216) / 8*log_28 = 8/3 saniye$

$$O(n^2) \rightarrow T(n) = (1*16^2) / 8^2 = 4 \text{ saniye}$$

$$O(n^3) \rightarrow T(n) = (1*16^3) / 8^3 = 8 \text{ saniye}$$

$$O(2^n) \rightarrow T(n) = (1*2^{16}) / 2^8 = 2^8 \text{ saniye} = 256 \text{ saniye}$$

BÜYÜME HIZI FONKSİYONLARININ ÖZELLİKLERİ

- 1. Algoritmanın büyüme hızı fonksiyonundaki düşük dereceli terimleri yok sayabiliriz.
 - $O(n^3+4n^2+3n)$, aynı zamanda $O(n^3)$ olarak ifade edilebilir.
 - Büyüme hızı fonksiyonu olarak sadece en yüksek derece kullanılabilir.
- 2. Büyüme hızı fonksiyonundaki en yüksek dereceli terimin sabit çarpanını yok sayabiliriz.
 - $O(5n^3)$, aynı zamanda $O(n^3)$ ile ifade edilir.
- 3. O(f(n)) + O(g(n)) = O(f(n)+g(n))
 - Büyüme hızı fonksiyonları birleştirilebilir.

BAZI EŞİTLİKLER

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n * (n+1)}{2} \approx \frac{n^{2}}{2}$$

$$\sum_{i=1}^{n} i^2 = 1 + 4 + \dots + n^2 = \frac{n * (n+1) * (2n+1)}{6} \approx \frac{n^3}{3}$$

$$\sum_{i=0}^{n-1} 2^{i} = 0 + 1 + 2 + \dots + 2^{n-1} = 2^{n} - 1$$

ÖRNEKI

```
maliyet
                                                          Tekrar
 i = 1;
                                         сl
  sum = 0;
                                         c2
                                         c3
  while (i \leq n) {
                                                            n+l
        i = i + 1;
                                         c4
                                                            n
                                         c5
        sum = sum + i;
T(n) = c1 + c2 + (n+1)*c3 + n*c4 + n*c5
        = (c3+c4+c5)*n + (c1+c2+c3)
        = a*n + b
```

→ Algoritma büyüme hızı: O(n)

ÖRNEK2

```
<u>maliyet</u>
                                                                          <u>Tekrar</u>
  i=1;
                                                     с1
  sum = 0;
                                                     с2
  while (i \leq n) {
                                                     с3
                                                                             n+1
          j=1;
                                                     c4
                                                                             n
          while (j <= n) {
                                                     с5
                                                                            n*(n+1)
               sum = sum + i;
                                                     С6
                                                                             n*n
               j = j + 1;
                                                     с7
                                                                             n*n
      i = i +1;
                                                     С8
                                                                             n
T(n)
          = c1 + c2 + (n+1)*c3 + n*c4 + n*(n+1)*c5+n*n*c6+n*n*c7+n*c8
          = (c5+c6+c7)*n^2 + (c3+c4+c5+c8)*n + (c1+c2+c3)
          = a*n^2 + b*n + c
```

→ Algoritmanın büyüme hızı fonksiyonu: O(n²)

ÖRNEK 3

for (i=1; i<=n; i++) c1
$$\sum_{j=1}^{n} (j+1)$$
 for (j=1; j<=i; j++) c2 $\sum_{j=1}^{n} \sum_{k=1}^{j} (k+1)$ for (k=1; k<=j; k++) c3 $\sum_{j=1}^{n} \sum_{k=1}^{j} k$

 $= cl*(n+1) + c2*(\sum_{j=1}^{n} (j+1)) + c3*(\sum_{j=1}^{n} \sum_{k=1}^{j} (k+1)) + c4*(\sum_{j=1}^{n} \sum_{k=1}^{j} k)$

→ Algoritmanın büyüme hızı fonksiyonu: O(n³)

 $= a*n^3 + b*n^2 + c*n + d$

T(n)

ÖRNEK:SIRALI ARAMA

```
int sequentialSearch(const int a[], int item, int n) {
  for (int i = 0; i < n && a[i]!= item; i++);
  if (i == n)
      return -1;
  return i;
}</pre>
```

Aranan eleman bulunamadı: → O(n)

Aranan eleman bulundu:

Best-Case: Aranan eleman dizinin ilk elemanı →O(I)

Worst-Case: Aranan eleman dizinin son elemanı →O(n)

Average-Case: Karşılaştırma sayısı, 1, 2, ..., n

$$\frac{\sum_{i=1}^{n} i}{n} = \frac{(n^2 + n)/2}{n} \rightarrow O(n)$$

IKILI ARAMA - BINARY SEARCH

```
int binarySearch(int a[], int size, int x) {
  int low =0;
  int high = size -1;
  int mid; // mid will be the index of
                      // target when it's found.
  while (low <= high) {
    mid = (low + high)/2;
    if (a[mid] < x)
       low = mid + 1;
    else if (a[mid] > x)
         high = mid - 1;
     else
         return mid;
  return -1;
```

IKILI ARAMA: ANALIZ

- Aranan eleman bulunamadı:
 - Döngüdeki adım sayısı: Llog₂n + I
 - \rightarrow O(log₂n)
- Aranan eleman bulundu:
 - Best-Case: tek adımda bulunur. → O(1)
 - Worst-Case: Adım sayısı: $\lfloor \log_2 n \rfloor + 1$ \rightarrow $O(\log_2 n)$
 - Average-Case: Adım sayısı $< log_2 n$ \rightarrow $O(log_2 n)$
 - 0 1 2 3 4 5 6 7 **← 8 elemanlı bir dizi**
 - 3 2 3 1 3 2 3 4 \leftarrow # adımlar

Ortalama adım sayısı= $21/8 < log_2 8$

<u>n</u>	<u>O(log₂n)</u>
16	4
64	6
256	8
1024 (IKB)	10
16,384	14
131,072	17
262,144	18
524,288	19
1,048,576 (IMB)	20
1,073,741,824 (IGB)	30

- Fikir: Oyun kartlarını sıralamaya benzer.
 - Sol elimiz boş ve masadaki kartlar resimleri aşağıda (tersyüz) olarak başlarız.
 - Masadan bir kart alırız ve onu sol elimizde uygun yere yerleştiririz.
 - Elimizdeki kartların herbiriyle sağdan sola karşılaştırırız.
 - Sol elimizde tuttuğumuz kartlar sıralıdır.
 - Bu kartlar orijinal olarak masadaki destenin en üstündeki kartlar idi.

12'yi eklemek için önce 36'yı ve daha sonra 24'ü sağa kaydırmamız gerekmektedir.

Giriş Dizisi

5 2

6 1 3

Her adımda,dizi iki alt diziye bölünür.

Alg.: INSERTION-SORT(A)

for $j \not \triangleright 2$ to n //2. elemandan sona kadar devam et

do key $\leftarrow A[j]$ //2. eleman yerini aradığımız key olsun

A[j] sıralı A[1..j-1] dizisine ekle

$$i \leftarrow j - 1$$

while i > 0 and A[i] > key //i. eleman key'den küçükse i dizinin başına gelene kadar azalarak devam etsin.

do
$$A[i + 1] \leftarrow A[i]$$
 //dizide key'in yeni yerini bulma $i \leftarrow i - 1$

A[i + 1] ← key //yerini bulunca key'i oraya yerleştirme

Insertion sort elemanları dizi içinde sıralar.

INSERTION SORT DÖNGÜ İÇERİKLERİ

Alg.: INSERTION-SORT(A)

for
$$j \leftarrow 2$$
 to n

do key
$$\leftarrow A[j]$$

A[j]'yi sıralı A[1..j-1] dizisine ekle

$$i \leftarrow j - 1$$

while i > 0 and A[i] > key

do
$$A[i + 1] \leftarrow A[i]$$

$$i \leftarrow i - 1$$

$$A[i + 1] \leftarrow \text{key}$$

Invariant: for döngüsünün başlangıcında A[1..j-1] içerisindeki elemanlar sıralıdır.

DÖNGÜLERIN ÇALIŞMASI

Döngü değişkenlerinin sınanması «induction» gibi çalışır.

Döngü Başlangıcı (base case):

Döngünün ilk iterasyonundan önce doğru

Emin olma (inductive step):

Döngünün bir iterasyonundan önce Doğru ise sonraki iterasyonundan önce doğru kalır.

Sonlanma (Termination):

 Döngü sonlandığında, Değişmezler algoritmanın doğru olduğunu göstermeye yardım eden yararlı özellikler verir.

DÖNGÜ SÜREÇLERİ

Başlangıç:

• İlk iterasyondan hemen önce,j = 2:

$$A[1..j-1] = A[1]$$
, alt dizisi

(I elemanlı bir dizi doğal olarak sıralıdır.)

DÖNGÜ SÜREÇLERI

Maintenance: (Emin olma)

- İç **while döngüsü**, key=A[j] değeri uygun pozisyona yerleşinceye kadar A[j -1], A[j -2], A[j -3],... biçiminde hareket eder
- Bu noktada, key değeri uygun pozisyona yerleşir.

			Ĵ				
_ 1	2	3	4	5	6		
2	4	5	6	1	3		

DÖNGÜ SÜREÇLERI

Sonlanma:

- Dıştaki for döngüsü $j = n + 1 \Rightarrow j-1 = n$ olduğunda biter.
- n, loop invariant içindeki j-1 ile yer değiştirir.
 - A[1..n] alt dizisi orjinal A[1..n] dizisini (sıralı) içerir.

 $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$

t_i: j. İterasyonda çalıştırılan while ifadesi sayısı

EN İYİ DURUM ANALİZİ (BEST CASE ANALYSIS)

• Dizi zaten sıralıdır.

"while i > 0 and A[i] > key"

- while döngüsü testi ilk çalıştığında A[i] ≤key olur (i=j-1)

(küçükten büyüğe zaten sıralı olduğu için key, A[i]'den zaten büyük)

- $-t_j = I$ (her turda sadece I karşılaştırma)
- T(n) = c_1 n + c_2 (n -1) + c_4 (n -1) + c_5 (n -1) + c_8 (n-1) = $(c_1 + c_2 + c_4 + c_5 + c_8)$ n + $(c_2 + c_4 + c_5 + c_8)$ = an + b = Θ (n)

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

EN KÖTÜ DURUM ANALIZI (WORST CASE ANALYSIS)

Dizi tersten sıralıdır.

"while i > 0 and A[i] > key"

- while döngüsü testinde her zaman A[i] > key olacaktır.
- Key j'nci pozisyonun solundaki bütün elemanlarla karşılaştırılır

(j. elemanı \Rightarrow karşılaştır j-1 eleman ile \Rightarrow t_j = j)

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \Rightarrow \sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \Rightarrow \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$
 Elimizde olanların özdeşlikleri:
$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1)$$

$$= an^2 + bn + c \quad \text{Karesel bir fonksiyon}$$

• $T(n) = \Theta(n^2)$ =>> Büyüme derecesi: n^2

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

INSERTION SORT ALGORITMASINDAKI KARŞILAŞTIRMA VE YER DEĞIŞTIRMELER

GENEL DEĞERLENDIRME

- Avantaj:
 - Zaten sıralı bir dizi için iyi bir çalışma zamanına sahiptir: $\Theta(n)$
- Dezavantaj:
 - Ortalama ve en kötü durumlarda çalışma zamanı $\Theta(n^2)$ olur.
 - $\approx n^2/2$ karşılaştırma ve yer değiştirme

BUBBLE SORT

- İşletim :
 - Tekrar tekrar dizinin elemanları test edilerek dizi taranır.
 - Büyüklük küçüklük durumuna göre komşu elemanla yer değiştirilir.

- İşletimi kolay olmasına rağmen çalışma zamanı kötü $(O(n^2))$ bir algoritma
- İşletimi kolaydır, Fakat İnsertion sort algoritmasından daha yavaştır.

ÖRNEK

i = 7

BUBBLE SORT

```
for i \leftarrow 1 to length[A]

do for j \leftarrow length[A] downto i + 1

do if A[j] < A[j - 1]

then exchange A[j] \leftrightarrow A[j - 1]

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow i

i \rightarrow
```

BUBBLE-SORT ALGORİTMASININ ÇALIŞMA ZAMANI (RUNNING TIME) ANALİZİ

for
$$i \leftarrow 1$$
 to length[A] c_1

$$do \ \text{for } j \leftarrow length[A] \ \text{downto } i+1$$

$$Karşılaştırmalar: \approx n^2/2 \ \text{do if } A[j] < A[j-1] \ c_3$$

$$Yerdeğiştirme: \approx n^2/2 \ \text{then exchange } A[j] \leftrightarrow A[j-1] \ c_4$$

$$T(n) = c_1(n+1) + c_2 \sum_{i=1}^n (n-i+1) + c_3 \sum_{i=1}^n (n-i) + c_4 \sum_{i=1}^n (n-i)$$

$$= \Theta(n) + (c_2 + c_2 + c_4) \sum_{i=1}^n (n-i)$$

$$\sum_{i=1}^n (n-i) = \sum_{i=1}^n n - \sum_{i=1}^n i = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

$$Böylece, T(n) = \Theta(n^2)$$

SELECTION SORT

• İşletim:

- Dizideki en küçük elemanı bul
- En küçük elemanı dizinin ilk elemanı ile yer değiştir.
- Dizinin ikinci en küçük elemanını bul ve bunu dizinin ikinci indisindeki elemanla yer değiştir.
- Dizi sıralanıncaya kadar bu işlemlere devam et.
- Dezavantaj:
 - Çalışma zamanı, dizideki elemanların düzenine çok az bağlı, eleman sayısını artması durumunda çok maliyetli.

ÖRNEK:

SELECTION SORT

Alg.: SELECTION-SORT(A) $n \leftarrow length[A]$ for $j \leftarrow 1$ to n - 1 //dizinin başından sonunda kdr git do ek \leftarrow j //ek=1.eleman olsun for $i \leftarrow j + 1$ to n //sonraki elemanları teker teker kontrol et, ek'den küçükse ek olarak ata **do if** A[i] < A[ek] then $ek \leftarrow i$ exchange $A[j] \rightarrow A[ek]$ //bu türde kontrol bitince, dizinin ilk indisine ek yerleştir

SELECTION SORT ALGORITMASININ ANALIZI