Comparison of alternative kriging models

	Matern 5/2	Matern 3/2	Gaussian	exponent.	power exp.
Q2 constant trend	0.8305	0.8143	0.8590	0.6829	0.5310
Q2 1st order poly. trend	0.8393	0.8214	0.8672	0.7743	0.8459
RMSE constant trend	0.0030	0.0030	0.0030	0.0030	0.0030
RMSE 1st order poly. trend	0.0018	0.0018	0.0018	0.0018	0.0018
MAE constant trend	0.0024	0.0024	0.0024	0.0024	0.0024
MAE 1st order poly. trend	0.0014	0.0014	0.0014	0.0014	0.0014
RMA constant trend	2.3340	2.3340	2.3340	2.3340	2.3340
RMA 1st order poly. trend	1.4694	1.4694	1.4694	1.4694	1.4694

Q2: cross validation Q2 (higher is better) RMSE/MAE/RMA: external validation RMSE/MAE/RMA (lower is better)

Kriging meta-model estimation (standardized)

trend(intercept)	0.081	Trend specification	1st order poly.
trend(inclination)	0.002	Correlation function	Gaussian
theta(omega1)	1.881	Cross-sample Q2	0.867
theta(omega2)	1.567	External RMSE	0.002
theta(zeta1)	1.613	External MAE	0.001
theta(zeta2)	1.606	External RMA	1.469
theta(varPhi1)	0.946	DoE samples	65
theta(varPhi2)	1.568	External samples	20
theta(upsilon)	1.442		
theta(chi)	1.635		
theta(xi)	0.343		
theta(gammau)	0.690		
theta(n)	0.802		

Sobol decomposition indexes (invRate)

Di	irect effects Inte	eractions
omega1	0.031	0.002
omega2	0.049	0.002
zeta1	0.005	0.002
zeta2	0.007	0.002
varPhi1	0.011	0.002
varPhi2	0.000	0.002
upsilon	0.045	0.002
chi	0.112	0.002
xi	0.014	0.002
gammau	0.630	0.002
n	0.087	0.002

Sobol decomposition indexes (invRate)

Meta-model response for parameter 'gammau'

Meta-model response for parameter 'chi'

Meta-model response for parameter 'n'

Meta-model response surface (n = 150)

All other parameters are at default settings

Meta-model response surface (n = 200)

95% confidence interval: invRate = [0.07,0.1] at defaults (red dot)

Meta-model response surface (n = 250)

All other parameters are at default settings

Meta-model response surface (n = 150)

gammau
All other parameters are at default settings

Meta-model response surface (n = 200)

95% confidence interval: invRate = [0.07,0.1] at defaults (red dot)

Meta-model response surface (n = 250)

gammau
All other parameters are at default settings