La regla de L'Hôpital

Sean f y g funciones derivables en $A = (a - \delta, a + \delta) - \{a\}$ y tales que $g'(x) \neq 0$ en A. Entonces:

$$\left| \lim_{x \to a} f(x) = 0 \\
\lim_{x \to a} g(x) = 0 \\
\lim_{x \to a} f'(x)/g'(x) = L \circ \pm \infty
\right\} \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = L \circ \pm \infty$$

La regla de L'Hôpital permite resolver indeterminaciones del tipo $\frac{0}{0}$.

Ejemplo:
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

$$\left| \begin{aligned} & \lim_{x \to 0} \operatorname{sen}(x) = 0 \\ & \lim_{x \to 0} x = 0 \\ & f'(x)/g'(x) = \cos(x) \overset{x \to 0}{\longrightarrow} 1 \end{aligned} \right\} \Rightarrow \lim_{x \to 0} \frac{\operatorname{sen}(x)}{x} = 1$$

Demostración:

Redefinimos f y g poniendo f(a) = g(a) = 0. Entonces f y g son continuas en a.

Tomemos x tal que $a < x < a + \delta$. Entonces f y g son continuas en [a,x] y derivables en (a,x).

Aplicamos el TVM a g para concluir que debe ser $g(x) \neq 0$. En efecto, si fuede g(x) = 0, existiría $x_1 \in (a,x)$ tal que $g'(x_1) = \frac{g(a) - g(x)}{a - x} = 0$. Aplicamos ahora el Teorema de Cauchy a f y g en [a,x]. Como f(a) = g(a) = 0, existe $c_x \in [a,x]$ tal que

$$f(x)g'(c_x) = g(x)f'(c_x) \Rightarrow \frac{f(x)}{g(x)} = \frac{f'(c_x)}{g'(c_x)}.$$

Como $c_x \rightarrow a$ cuando $x \rightarrow a$,

$$\lim_{x \to a} \frac{f'(c_x)}{g'(c_x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Variantes de la Regla de L'Hôpital

Vale también si los límites son laterales.

$$\lim_{x\to a^{\pm}} f(x) = 0, \ \lim_{x\to a^{\pm}} g(x) = 0$$

$$\lim_{x\to a^{\pm}} f'(x)/g'(x) = L \ o \ \pm \infty$$

$$\} \Rightarrow \lim_{x\to a^{\pm}} \frac{f(x)}{g(x)} = L \ o \ \pm \infty$$

2 Vale también si x tiende a $\pm \infty$.

$$\lim_{x \to \pm \infty} f(x) = 0, \ \lim_{x \to \pm \infty} g(x) = 0$$

$$\lim_{x \to \pm \infty} f'(x)/g'(x) = L \text{ o } \pm \infty$$

$$\Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = L \text{ o } \pm \infty$$

ullet Vale también para indeterminaciones " $\frac{\infty}{\infty}$ ".

$$\left. \begin{array}{l} \lim_{x \to **} f(x) = \pm \infty, \ \lim_{x \to **} g(x) = \pm \infty \\ \lim_{x \to **} f'(x)/g'(x) = L \ o \ \pm \infty \end{array} \right\} \Rightarrow \lim_{x \to **} \frac{f(x)}{g(x)} = L \ o \pm \infty$$

reemplazando ** por a, a^+ , a^- , $\pm \infty$.

Ejemplo: Calculemos

$$\lim_{x\to 0^+} x \ln(x).$$

Tenemos una indeterminación del tipo "0. $(-\infty)$. La transformamos en " $\frac{\infty}{\infty}$ " y aplicamos L'Hôpital poniendo

$$x\ln(x)=-\frac{-\ln(x)}{\frac{1}{x}}.$$

Tenemos entonces $(\ln)'(x) = \frac{1}{x}$, $(x^{-1})' = -\frac{1}{x^2}$, y entonces

$$\frac{-(\ln)'(x)}{(x^{-1})'} = x \stackrel{x \to 0^+}{\longrightarrow} 0.$$

Aplicando la Regla de L'Hôpital concluimos que

$$\lim_{x \to 0^+} x \ln(x) = 0.$$

Análisis de una función

Máximos y mínimos locales: f alcanza un mínimo local en x_0 si $f(x_0) \le f(x)$ para cada x en un entorno de x_0 . De manera análoga (invirtiendo la desigualdad) se define cuando f asume un máximo local en x_0 . En ambos casos, x_0 es un **extremo local** de f.

$$x_0$$
 mínimo local de $f \Rightarrow f'(x_0) = 0$

La recíproca es falsa. ¿Ejemplo?

¿Cómo podemos distinguir si un punto crítico es un extremo local? ¿Cuál es el comportamiento típico de f arededor de un mínimo local? ¿Y de un máximo?

Intervalos de crecimiento y decrecimiento

Teorema 50: Sea f una función derivable en (a, b). Entonces:

- si f'(x) > 0 para cada $x \in (a, b)$, entonces f es creciente en (a, b).
- ② si f'(x) < 0 para cada $x \in (a, b)$, entonces f es decreciente en (a, b).

Demostración:

Supongamos f'(x) > 0 para cada $x \in (a, b)$. Tomemos $x_1 < x_2 \in (a, b)$ cualesquiera.

f es continua en $[x_1, x_2]$ y derivable en (x_1, x_2) (¿por qué?).

Por el TVM, existirá $\alpha \in (x_1, x_2)$ tal que

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\alpha).$$

Pero por hipótesis $f'(\alpha) < 0$, y como $x_2 - x_1 > 0$, resulta

$$f(x_2) - f(x_1) < 0$$
, o sea $f(x_2) < f(x_1)$.

Ejemplo

Las recíprocas del Teorema anterior son falsas. ¿Algún contraejemplo?

Ejemplo: Intentaremos esbozar la gráfica de

$$f(x) = x^4 - 2x^2$$

a partir de sus propiedades y las propiedades de su derivada.

- Paridad / imparidad. En este caso, f(-x) = f(x) para cada x, y por lo tanto f es par. Su gráfica será simétrica respecto del eje y.
- Ceros de f. $f(x) = x^2(x^2 2)$, de donde resulta que f(x) = 0 sii x = 0 o $x = \pm \sqrt{2}$.
- Puntos singulares o críticos de f. Son los puntos tales que f'(x) = 0.

$$f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x + 1)(x - 1).$$

- Intervalos de crecimiento y decrecimiento. Como f' es continua, en los intervalos $(-\infty, -1)$, (-1, 0), (0, 1) y $(1, \infty)$, f' no cambiará de signo.
 - f'(-2) = -24, entonces f'(x) < 0 en $(-\infty, 1)$ y por lo tanto f es decreciente en $(-\infty, 1)$.
 - f'(-1/2) = 3/2 > 0, entonces f'(x) > 0 en (-1,0) y por lo tanto f es creciente en (-1,0).
 - f(1/2) = -3/2, entonces f'(x) < 0 en (0,1) y por lo tanto f es decreciente en (0,1).
 - f(2) = 24, entonces f'(x) > 0 y por lo tanto f es creciente en (-1,0).

Concluimos que f alcanza un mínimo local en x = -1 y en x = 1 y un máximo local en x = 0.

• Asíntotas y límite al infinito En este caso es fácil ver que f no tiene asíntotas y que lím $_{x\to\pm\infty} f(x)=\infty$.

Podemos con estos datos esbozar la gráfica de f:

Observación: Estos datos sin embargo son insuficientes para determinar las "panzas" de la gráfica de f. Es simple imaginar gráficas distintas a ésta para funciones que tengan las mismas propiedades que hemos estudiado hasta ahora.

Caracterización de los extremos locales mediante f''.

Teorema 51: Sea f una función dos veces derivable en un entorno de un punto a y tal que f'(a) = 0. Entonces:

- Si f''(a) > 0 entonces f alcanza un mínimo local en a.
- ② Si f''(a) < 0 entonces f alcanza un máximo local en a.

Demostración:

$$f''(a) = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h} = \lim_{h \to 0} \frac{f'(a+h)}{h}.$$

O sea, para cada $\varepsilon > 0$, existirá $\delta > 0$ tal que si $-\delta < h < \delta$, entonces

$$f''(a) - \varepsilon < \frac{f'(a+h)}{h} < f''(a) + \varepsilon$$

Supongamos que f''(a) > 0. Tomando $\varepsilon < f''(a)$, resulta $\frac{f'(a+h)}{h} > 0$ si $-\delta < h < \delta$.

Por lo tanto, si $0 < h < \delta$, f'(a+h) > 0 y si $-\delta < h < 0$, f'(a+h) < 0.

En función del Teorema 50, f es decreciente en $(a-\delta,a)$ y creciente en $(a,a+\delta)$, con lo cual f alcanza un mínimo en a.

De manera análoga se prueba el caso en que f''(a) < 0. La dejamos como **ejercicio**

La recíproca del Teorema 51 es **falsa**. Existe sin embargo una especie de recíproca más debil:

Teorema 52: Sea f una función dos veces derivable en a. Entonces:

- Si f tiene un mínimo local en a, entonces $f''(a) \ge 0$.
- ② Si f tiene un máximo local en a, entonces $f''(a) \le 0$.

Convexidad y concavidad

Decimos que una función f es **convexa** (o cóncava hacia arriba) en un intervalo (a, b) si el segmento que une los puntos (a, f(a)) y (b, f(b)) queda por encima de gráfica de f.

Si en cambio este segmento queda debajo de la gráfica de la función, decimos que f es **cóncava** (o cóncava hacia abajo) en (a, b).

La recta que determinan (a, f(a)) y (b, f(b)) puede representarse por la gráfica de la función

$$g(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

Esta recta queda por encima de la gráfica de f si para cada x entre a y b se tiene que g(x) > f(x), es decir, si para cada $x \in [a, b]$,

$$\frac{f(b) - f(a)}{b - a}(x - a) + f(a) > f(x) \iff \frac{f(b) - f(a)}{b - a}(x - a) > f(x) - f(a)$$
$$\Leftrightarrow \boxed{\frac{f(b) - f(a)}{b - a} > \frac{f(x) - f(a)}{x - a}}.$$

Para establecer la "forma" de la gráfica de una función convexa o cóncaba, podemos recurrir al siguiente resultado:

Teoremas 54-55: Sea f una función derivable en un intervalo I. Entonces

- f es convexa en I si y sólo si para cada $a \in I$ la gráfica de f queda por encima de la recta tangente por (a, f(a)), exepto en (a, f(a)).
- ② f es cóncava en I si y sólo si para cada $a \in I$ la gráfica de f queda por debajo de la recta tangente por (a, f(a)), exepto en (a, f(a)).

Leyendo las demostraciones de los teoremas anteriores, se llega a la conclusión que:

Teorema 56: Sea f una función derivable en un intervalo 1. Entonces:

- $oldsymbol{0}$ f es convexa en I si y sólo si f' es creciente.
- $oldsymbol{0}$ f es cóncava en I si y sólo si f' es decreciente.

Y en caso de que f'' sea no nula en el intervalo I, obtenemos el **criterio** de la derivada segunda:

Teorema 57: Sea f una función dos veces derivable en un intervalo I. Entonces:

- Si f''(x) > 0 para todo $x \in I$, entonces f es convexa.
- ② Si f''(x) < 0 para todo $x \in I$, entonces f es cóncava.

Definición 58: Sea f una función y a un punto de su dominio. Decimos que a es un **punto de infexión** de f si f es convexa (resp. cóncava) en $(a-\varepsilon,a)$ y cóncava (resp. convexa) en $(a,a+\varepsilon)$ para algún $\varepsilon>0$. En pocas palabras, suele decirse que un punto de inflexión hay un *cambio de concavidad* de f.

Observemos que si es posible determinar los intervalos de convexidad/concavidad de una función f por medio del Teorema 57 y f'' es continua, entonces necesariamente en un punto de inflexión deberá ser f''(a) = 0.

La recíproca es falsa. ¿Ejemplo?

Continuamos el ejemplo de $f(x) = x^4 - 2x^2$

Determinamos los intervalos de convexidad y concavidad. Tenemos

$$f''(x) = 12x^2 - 4$$

Entonces los posibles puntos de inflexión son $x=\pm \frac{\sqrt{3}}{3}$ Como f'' es una función cuadrática con las ramas hacia arriba, tendremos que

- f''(x) > 0 si $x < -\frac{\sqrt{3}}{3}$, $\Rightarrow f$ es convexa en $(-\infty, -\frac{\sqrt{3}}{3})$.
- f''(x) < 0 en $(-\sqrt{3}/3, \sqrt{3}/3)$, $\Rightarrow f$ es cóncava en $(-\sqrt{3}/3, \sqrt{3}/3)$.
- f''(x) > 0 si $x > \frac{\sqrt{3}}{3}$, $\Rightarrow f$ es convexa en $(\frac{\sqrt{3}}{3}, \infty)$.

