

Global United Technology Services Co., Ltd.

Report No.: GTS201801000170F01

FCC REPORT

IPW China Limited Applicant:

Address of Applicant: 2826, Fu Xin Business Centre 31, Fu Yuan Yi Road, Fuhai

Jiedao, Baoan, Shenzhen, China

IPW China Limited Manufacturer:

Address of 2826, Fu Xin Business Centre 31, Fu Yuan Yi Road, Fuhai

Jiedao, Baoan, Shenzhen, China Manufacturer:

Equipment Under Test (EUT)

Product Name: TableLite

Model No.: **TableLite**

FCC ID: **2ANRU-TABLELITE**

FCC CFR Title 47 Part 15 Subpart C Section 15.249 **Applicable standards:**

Date of sample receipt: January 22, 2018

January 23-29, 2018 Date of Test:

Date of report issued: January 30, 2018

PASS * **Test Result:**

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	January 30, 2018	Original

Prepared By:	Bill. Yvan	Date:	January 30, 2018
	Project Engineer		
Check By:	Andy w	Date:	January 30, 2018
	Reviewer		

3 Contents

		Page
1	COVER PAGE	1
^	VERSION	
2	VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
-		
	4.1 MEASUREMENT UNCERTAINTY	
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 TEST FACILITY	7
	5.5 TEST LOCATION	7
	5.6 OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
	5.7 Additional instructions	8
6	TEST INSTRUMENTS LIST	9
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 RADIATED EMISSION METHOD	14
	7.3.1 Field Strength of The Fundamental Signal	16
	7.3.2 Spurious emissions	17
	7.3.3 Bandedge emissions	
	7.4 20DB OCCUPY BANDWIDTH	23
8	TEST SETUP PHOTO	25
9	FUT CONSTRUCTIONAL DETAILS	27

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10: 2013 and ANSI C63.4: 2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

5 General Information

5.1 General Description of EUT

-	
Product Name:	TableLite
Model No.:	TableLite
Serial No.:	EI2018MESHV200
Test sample(s) ID:	GTS201801000170-2
Sample(s) Status:	Engineered sample
Hardware:	0.2.0
Software:	2.0.0
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	40
Channel separation:	2MHz
Modulation type:	GFSK
Antenna Type:	Integral antenna
Antenna gain:	2.0 dBi(declare by Applicant)
Power supply:	Rechargeable Li-ion Battery: DC 3.7V, 850mAh, 3.145Wh
	DC 5.0V,0.3A by USB charger

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
•			. !	·	•		•
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Υ	Z
Field Strength(dBuV/m)	94.35	95.12	93.17

5.3 Description of Support Units

None

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.7 Additional instructions

Software (Used for test) from client

	Special software is used.
Mode	The software provided by client to enable the EUT under transmission
	condition continuously at specific channel frequencies individually.

Channel	Power level	
Lowest	default	
Middle	default	
Highest	default	

6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2017	June 27 2018	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2017	June 27 2018	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018	
10	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018	
11	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018	
12	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2017	June 27 2018	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2017	June 27 2018	
16	Band filter	Amindeon	82346	GTS219	June 28 2017	June 27 2018	
17	Power Meter	Anritsu	ML2495A	GTS540	June 28 2017	June 27 2018	
18	Power Sensor	Anritsu	MA2411B	GTS541	June 28 2017	June 27 2018	

Conduc	ted Emission:					
Item	Test Equipment Manufacturer Model No.		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 28 2017	June 27 2018
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 28 2017	June 27 2018
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	KTJ	TA328	GTS233	June 28 2017	June 27 2018

Gene	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date	Cal.Due date				
			, , ,	(mm-dd-yy)	(mm-dd-yy)					
	_									
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integral antenna, the best case gain of the antenna is 2.0dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto							
Limit:	Francisco (MIII.)	Limit (d	lBuV)					
	Frequency range (MHz) Quasi-peak 0.15-0.5 Quasi-peak Average 56 to 56* 56 to 46*							
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarithm	n of the frequency.	_					
Test setup:	Reference Plane							
	Remark E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow	er					
Test procedure:	The EUT and simulators are impedance stabilization net coupling impedance for the The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs)	twork (L.I.S.N.). This properties measuring equipment. also connected to the ron/50uH coupling imped	ovides a 50ohm/50uH main power through a ance with 50ohm					
	photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.							
Test Instruments:	Refer to section 6.0 for details	·						
Test mode:	Refer to section 5.2 for details	;						
Test results:	Pass							

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data

Line:

Freq MHz	Reading level dBuV	1ISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.176	39.42	0.40	0.09	39.91	64.68	-24.77	QP
0.176	23.88	0.40	0.09	24.37	54.68	-30.31	Average
0.437	33.39	0.34	0.11	33.84	57.11	-23.27	QP
0.437	26.83	0.34	0.11	27.28	47.11	-19.83	Average
0.481	39.75	0.32	0.11	40.18	56.32	-16.14	QP
0.481	35.34	0.32	0.11	35.77	46.32	-10.55	Average
0.524	41.71	0.31	0.11	42.13	56.00	-13.87	QP
0.524	33.16	0.31	0.11	33.58	46.00	-12.42	Average
0.953	32.14	0.21	0.15	32.50	56.00	-23.50	QP
0.953	21.94	0.21	0.15	22.30	46.00	-23.70	Average
1.296	30.92	0.20	0.16	31.28	56.00	-24.72	QP
1.296	22.90	0.20	0.16	23.26	46.00	-22.74	Average

Neutral:

level dBuV	limit dB	Remark
64.77	-24.69	QP
54.77	-30.53	Average
56.32	-11.59	QP
46.32	-10.97	Average
56.00	-8.61	QP
46.00	-11.11	Average
56.00	-16.45	QP
46.00	-21.20	Average
56.00	-19.36	QP
46.00	-20.87	Average
60.00	-26.31	QP
50.00	-29.84	Average
	1evel dBuV 64.77 54.77 56.32 46.32 56.00 46.00 56.00 46.00 56.00 46.00 60.00	level limit dBuV dB

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Radiated Emission Method

7.3	Radiated Emission Me	tnoa							
	Test Requirement:	FCC Part15 C Section 15.209							
	Test Method:	ANSI C63.10:20	013						
	Test Frequency Range:	30MHz to 25GH	łz						
	Test site:	Measurement Distance: 3m							
	Receiver setup:	Frequency	Frequency Detector RBW VBW						
		30MHz- 1GHz	Quasi-pea	k	120KHz	300KHz	Quasi-peak Value		
		Above 1GHz	Peak		1MHz	3MHz	Peak Value		
		Above 1GHz	Peak		1MHz	10Hz	Average Value		
	Limit:	Freque	ency	L	.imit (dBuV/	m @3m)	Remark		
	(Field strength of the fundamental signal)	2400MHz-24	183.5MHz		94.0	0	Average Value		
	Limit:	Freque		L	.imit (dBuV/		Remark		
	(Spurious Emissions)	30MHz-8			40.0		Quasi-peak Value		
		88MHz-2 ⁻ 216MHz-9			43.5 46.0		Quasi-peak Value Quasi-peak Value		
		960MHz-			54.0		Quasi-peak Value		
		Above 1			54.0		Average Value		
		Above	IGHZ		74.0	0	Peak Value		
	Limit: (band edge)	harmonics, sha	II be attenuat to the genera	ed I al ra	by at least to adjust the distribution of the	50 dB below	bands, except for v the level of the in Section 15.209,		
	Test setup:	Below 1GHz	EUT-			Antennae de la constant de la consta	fiere-		
		, 10010 10112							

Test Procedure:

Report No.: GTS201801000170F01 Test Antenna < 1m ... 4m > EUT Tum Table+ <150cm> Preamplifier-Receiver+ 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB

margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	90.98	27.58	5.39	30.18	93.77	114.00	-20.23	Vertical
2402.00	88.58	27.58	5.39	30.18	91.37	114.00	-22.63	Horizontal
2440.00	89.40	27.55	5.43	30.06	92.32	114.00	-21.68	Vertical
2440.00	87.61	27.55	5.43	30.06	90.53	114.00	-23.48	Horizontal
2480.00	92.06	27.52	5.47	29.93	95.12	114.00	-18.88	Vertical
2480.00	89.03	27.52	5.47	29.93	92.09	114.00	-21.91	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	80.60	27.58	5.39	30.18	83.39	94.00	-10.61	Vertical
2402.00	78.17	27.58	5.39	30.18	80.96	94.00	-13.04	Horizontal
2440.00	78.79	27.55	5.43	30.06	81.71	94.00	-12.29	Vertical
2440.00	75.90	27.55	5.43	30.06	78.82	94.00	-15.18	Horizontal
2480.00	81.78	27.52	5.47	29.93	84.84	94.00	-9.16	Vertical
2480.00	78.65	27.52	5.47	29.93	81.71	94.00	-12.29	Horizontal

7.3.2 Spurious emissions

■ Below 1GHz

Horizontal:

Vertical:

■ Above 1GHz

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	37.25	31.78	8.60	32.09	45.54	74.00	-28.46	Vertical
7206.00	31.79	36.15	11.65	32.00	47.59	74.00	-26.41	Vertical
9608.00	31.43	37.95	14.14	31.62	51.90	74.00	-22.10	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	41.52	31.78	8.60	32.09	49.81	74.00	-24.19	Horizontal
7206.00	33.54	36.15	11.65	32.00	49.34	74.00	-24.66	Horizontal
9608.00	30.85	37.95	14.14	31.62	51.32	74.00	-22.68	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	26.07	31.78	8.60	32.09	34.36	54.00	-19.64	Vertical
7206.00	20.48	36.15	11.65	32.00	36.28	54.00	-17.72	Vertical
9608.00	19.57	37.95	14.14	31.62	40.04	54.00	-13.96	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	30.29	31.78	8.60	32.09	38.58	54.00	-15.42	Horizontal
7206.00	22.65	36.15	11.65	32.00	38.45	54.00	-15.55	Horizontal
9608.00	19.29	37.95	14.14	31.62	39.76	54.00	-14.24	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	l: Middle							
Peak value:				<u> </u>				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	37.24	31.85	8.67	32.12	45.64	74.00	-28.36	Vertical
7320.00	31.78	36.37	11.72	31.89	47.98	74.00	-26.02	Vertical
9760.00	31.43	38.35	14.25	31.62	52.41	74.00	-21.59	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	41.51	31.85	8.67	32.12	49.91	74.00	-24.09	Horizontal
7320.00	33.53	36.37	11.72	31.89	49.73	74.00	-24.27	Horizontal
9760.00	30.84	38.35	14.25	31.62	51.82	74.00	-22.18	Horizontal
12200.00	*					74.00		Horizontal
14640.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	26.08	31.85	8.67	32.12	34.48	54.00	-19.52	Vertical
7320.00	20.49	36.37	11.72	31.89	36.69	54.00	-17.31	Vertical
9760.00	19.57	38.35	14.25	31.62	40.55	54.00	-13.45	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	30.30	31.85	8.67	32.12	38.70	54.00	-15.30	Horizontal
7320.00	22.66	36.37	11.72	31.89	38.86	54.00	-15.14	Horizontal
9760.00	19.29	38.35	14.25	31.62	40.27	54.00	-13.73	Horizontal
12200.00	*					54.00		Horizontal
14640.00	*					54.00		Horizontal

Remark:

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	st channel: Highest								
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4960.00	37.30	31.93	8.73	32.16	45.80	74.00	-28.20	Vertical	
7440.00	31.83	36.59	11.79	31.78	48.43	74.00	-25.57	Vertical	
9920.00	31.47	38.81	14.38	31.88	52.78	74.00	-21.22	Vertical	
12400.00	*					74.00		Vertical	
14880.00	*					74.00		Vertical	
4960.00	41.59	31.93	8.73	32.16	50.09	74.00	-23.91	Horizontal	
7440.00	33.59	36.59	11.79	31.78	50.19	74.00	-23.81	Horizontal	
9920.00	30.89	38.81	14.38	31.88	52.20	74.00	-21.80	Horizontal	
12400.00	*					74.00		Horizontal	
14880.00	*					74.00		Horizontal	
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4960.00	26.21	31.93	8.73	32.16	34.71	54.00	-19.29	Vertical	
7440.00	20.58	36.59	11.79	31.78	37.18	54.00	-16.82	Vertical	
9920.00	19.65	38.81	14.38	31.88	40.96	54.00	-13.04	Vertical	
12400.00	*					54.00		Vertical	
14880.00	*					54.00		Vertical	
4960.00	30.45	31.93	8.73	32.16	38.95	54.00	-15.05	Horizontal	
7440.00	22.76	36.59	11.79	31.78	39.36	54.00	-14.64	Horizontal	
9920.00	19.38	38.81	14.38	31.88	40.69	54.00	-13.31	Horizontal	
12400.00	*					54.00		Horizontal	
1	1	1	1	1	1		I	1	

Remark:

14880.00

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

54.00

Horizontal

7.3.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

All of the restriction bands were tested, and only the data of worst case was exhibited.								
Test channel: Lowest channel								
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	41.04	27.59	5.38	30.18	43.83	74.00	-30.17	Horizontal
2400.00	57.57	27.58	5.39	30.18	60.36	74.00	-13.64	Horizontal
2390.00	41.42	27.59	5.38	30.18	44.21	74.00	-29.79	Vertical
2400.00	59.41	27.58	5.39	30.18	62.20	74.00	-11.80	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	32.01	27.59	5.38	30.18	34.80	54.00	-19.20	Horizontal
2400.00	43.14	27.58	5.39	30.18	45.93	54.00	-8.08	Horizontal
2390.00	31.82	27.59	5.38	30.18	34.61	54.00	-19.39	Vertical
2400.00	44.61	27.58	5.39	30.18	47.40	54.00	-6.60	Vertical
Test channel: Highest channel								

Peak	, va	luo.

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	42.93	27.53	5.47	29.93	46.00	74.00	-28.00	Horizontal
2500.00	42.45	27.55	5.49	29.93	45.56	74.00	-28.44	Horizontal
2483.50	43.46	27.53	5.47	29.93	46.53	74.00	-27.47	Vertical
2500.00	43.27	27.55	5.49	29.93	46.38	74.00	-27.62	Vertical

Average value:

								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	34.81	27.53	5.47	29.93	37.88	54.00	-16.12	Horizontal
2500.00	33.08	27.55	5.49	29.93	36.19	54.00	-17.81	Horizontal
2483.50	35.87	27.53	5.47	29.93	38.94	54.00	-15.06	Vertical
2500.00	32.85	27.55	5.49	29.93	35.96	54.00	-18.04	Vertical

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215					
Test Method:	ANSI C63.10:2013					
Limit:	Operation Frequency range 2400MHz~2483.5MHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	1.196	Pass
Middle	1.193	Pass
Highest	1.197	Pass

Test plot as follows:

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----