Lecture 14: Sampling from Normal Distribution

Mathematical Statistics I, MATH 60061/70061

Tuesday October 26, 2021

Reference: Casella & Berger, 5.3

Recap: PDF of a location-scale transformation

Let X have PDF f_X , and let Y=a+bX, with $b\neq 0$. Let y=a+bx, to mirror the relationship between Y and X. Then $\frac{dy}{dx}=b$, so the PDF of Y is

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right| = f_X \left(\frac{y-a}{b} \right) \frac{1}{|b|}.$$

Change of variables in multiple dimensions

Let $\boldsymbol{X}=(X_1,\ldots,X_n)$ be a continuous random vector with joint PDF $f_{\boldsymbol{X}}$. Let $\boldsymbol{Y}=g(\boldsymbol{X})$, and mirror this by letting $\boldsymbol{y}=g(\boldsymbol{x})$. Suppose g is invertible, so we have $\boldsymbol{X}=g^{-1}(\boldsymbol{Y})$ and $\boldsymbol{x}=g^{-1}(\boldsymbol{y})$.

Suppose that all partial derivatives $\partial x_i/\partial y_j$ exist and are continuous, so we can form the **Jacobian matrix**

$$\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{y}} = \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & & & \vdots \\ \frac{\partial x_n}{\partial y_1} & \frac{\partial x_n}{\partial y_2} & \cdots & \frac{\partial x_n}{\partial y_n} \end{pmatrix}.$$

Also assume that the determinant of this Jacobian matrix is never 0. Then the joint PDF of \boldsymbol{Y} is

$$f_{\boldsymbol{X}}(\boldsymbol{y}) = f_{\boldsymbol{X}}\left(\boldsymbol{g}^1(\boldsymbol{y})\right) \cdot \left| \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{y}} \right|.$$

Recap: Gamma distribution

The Gamma distribution is a continuous distribution on the positive real line, which generalizes the Exponential distribution.

A random variable Y is said to have the **Gamma distribution** with parameters a and λ , $Y \sim \mathrm{Gamma}(a,\lambda)$, where a>0 and $\lambda>0$, if its PDF is

$$f(y) = \frac{1}{\Gamma(a)} (\lambda y)^a e^{-\lambda y} \frac{1}{y}, \quad y > 0.$$

where Γ is the **gamma function**, defined by

$$\Gamma(a) = \int_0^\infty x^a e^{-x} \frac{dx}{x},$$

for real numbers a > 0.

Mean and variance of $Gamma(a, \lambda)$

Mean of $X \sim \text{Gamma}(a, 1)$:

$$\begin{split} E(X) &= \int_0^\infty x \cdot \frac{1}{\Gamma(a)} x^a e^{-x} \frac{dx}{x} = \frac{1}{\Gamma(a)} \int_0^\infty x^{a+1} e^{-x} \frac{dx}{x} \\ &= \frac{\Gamma(a+1)}{\Gamma(a)} = a. \end{split}$$

Variance of $X \sim \text{Gamma}(a, 1)$:

$$E(X^2) = \int_0^\infty \frac{1}{\Gamma(a)} x^{a+2} e^{-x} \frac{dx}{x} = \frac{\Gamma(a+2)}{\Gamma(a)} = (a+1)a,$$

$$Var(X) = (a+1)a - a^2 = a.$$

For $Y = X/\lambda \sim \text{Gamma}(a, \lambda)$,

$$E(Y) = \frac{1}{\lambda}E(X) = \frac{a}{\lambda}, \quad Var(Y) = \frac{1}{\lambda^2}Var(Y) = \frac{a}{\lambda^2}.$$

A sum of independent Gamma RVs

Let X_1, \ldots, X_n be independent with $X_j \sim \operatorname{Gamma}(a_j, \lambda)$. What is the distribution of $X_1 + \cdots + X_n$?

The $\mathrm{Gamma}(a_j,\lambda)$ MGF is $\left(\frac{\lambda}{\lambda-t}\right)^{a_j}$ for $t<\lambda$, so the MGF of $X_1+\cdots+X_n$ is

$$M_n(t) = \left(\frac{\lambda}{\lambda - t}\right)^{(a_1 + \dots + a_n)}, \text{ for } t < \lambda.$$

This is the MGF of $\operatorname{Gamma}(\sum_{i=1}^n a_i, \lambda)$

Chi-Squared distribution

Let $V=Z_1^2+\cdots+Z_n^2$ where Z_1,Z_2,\ldots,Z_n are i.i.d. $\mathcal{N}(0,1)$. Then V is said to have the **Chi-Squared distribution with** n degrees of freedom. We write this as $V\sim\chi_n^2$.

Chi-Squared distribution

Let $V=Z_1^2+\cdots+Z_n^2$ where Z_1,Z_2,\ldots,Z_n are i.i.d. $\mathcal{N}(0,1)$. Then V is said to have the **Chi-Squared distribution with** n degrees of freedom. We write this as $V\sim\chi_n^2$.

The PDF of $Z_1^2 \sim \chi_1^2$ equals the PDF of the $\operatorname{Gamma}(\frac{1}{2}, \frac{1}{2})$: for x > 0,

$$F(x) = P(Z_1^2 \le x) = P(-\sqrt{x} \le Z_1 \le \sqrt{x}) = \Phi(\sqrt{x}) - \Phi(-\sqrt{x}) = 2\Phi(\sqrt{x}) - 1,$$

SO

$$f(x) = \frac{d}{dx}F(x) = 2\varphi(\sqrt{x})\frac{1}{2}x^{-1/2} = \frac{1}{\sqrt{2\pi x}}e^{-x/2},$$

which is the $Gamma(\frac{1}{2}, \frac{1}{2})$ PDF.

Chi-Squared distribution

Let $V=Z_1^2+\cdots+Z_n^2$ where Z_1,Z_2,\ldots,Z_n are i.i.d. $\mathcal{N}(0,1)$. Then V is said to have the **Chi-Squared distribution with** n degrees of freedom. We write this as $V\sim\chi_n^2$.

The PDF of $Z_1^2 \sim \chi_1^2$ equals the PDF of the $\operatorname{Gamma}(\frac{1}{2},\frac{1}{2})$: for x>0,

$$F(x) = P(Z_1^2 \le x) = P(-\sqrt{x} \le Z_1 \le \sqrt{x}) = \Phi(\sqrt{x}) - \Phi(-\sqrt{x}) = 2\Phi(\sqrt{x}) - 1,$$

SO

$$f(x) = \frac{d}{dx}F(x) = 2\varphi(\sqrt{x})\frac{1}{2}x^{-1/2} = \frac{1}{\sqrt{2\pi x}}e^{-x/2},$$

which is the $Gamma(\frac{1}{2}, \frac{1}{2})$ PDF.

Then, because $V=Z_1^2+\cdots+Z_n^2\sim\chi_n^2$ is the sum of n independent $\mathrm{Gamma}(\frac{1}{2},\frac{1}{2})$ random variables, we have $V\sim\mathrm{Gamma}(\frac{n}{2},\frac{1}{2})$.

Mean and variance of χ_n^2

A χ^2_n random variable V has the $\mathrm{Gamma}(\frac{n}{2},\frac{1}{2})$ distribution. So, from our knowledge about the Gamma, we have

$$E(V) = \frac{n/2}{1/2} = n$$
, $Var(V) = \frac{n/2}{(1/2)^2} = 2n$.

Plugging n/2 and 1/2 into the more general $\mathrm{Gamma}(a,\lambda)$ MGF gives the MGF of the Chi-Square distribution:

$$M_V(t) = \left(\frac{1/2}{1/2 - t}\right)^{n/2} = \left(\frac{1}{1 - 2t}\right)^{n/2}.$$

Chi-Squared is a special case of the Gamma distribution

The Chi-Squared PDF with n degrees of freedom ($\operatorname{Gamma}(n/2,1/2)$ PDF) is given by

$$f(x) = \frac{1}{\Gamma(\frac{p}{2})2^{p/2}} x^{p/2-1} e^{-x/2}, \quad 0 < x < \infty.$$

- ② If X_1,\ldots,X_n are independent and $X_i\sim\chi^2_{p_i}$, then $X_1+\cdots+X_n\sim\chi^2_{p_1+\cdots+p_n}$.

Normal sample mean and variance

Let $X_1,...,X_n$ be a random sample from $\mathcal{N}(\mu,\sigma^2)$ and let \bar{X} and S^2 be the sample mean and sample variance. Then

- $\mbox{\bf 0}\mbox{\bf \ }\bar{X}$ and S^2 are independent random variables.
- ② \bar{X} has a $\mathcal{N}(\mu, \sigma^2/n)$ distribution.
- (3) $(n-1)S^2/\sigma^2$ has a Chi-Squared distribution with n-1 degrees of freedom.

Independence between Normal sample mean and variance

Without loss of generality, assume $\mu = 0$ and $\sigma = 1$.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$= \frac{1}{n-1} \left((X_{1} - \bar{X})^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2} \right)$$

$$= \frac{1}{n-1} \left(\left[-\sum_{i=2}^{n} (X_{i} - \bar{X}) \right]^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2} \right)$$

$$= \frac{1}{n-1} \left(\left[\sum_{i=2}^{n} (X_{i} - \bar{X}) \right]^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2} \right).$$

Thus, S^2 can be written as a function only of $(X_2 - \bar{X}, \dots, X_n - \bar{X})$

Independence between Normal sample mean and variance

The joint PDF of the sample X_1, \ldots, X_n is given by

$$f(x_1, \dots, x_n) = \frac{1}{(2\pi)^{n/2}} e^{-(1/2)\sum_{i=1}^n x_i^2}, \quad -\infty < x_i < \infty.$$

Consider a linear transformation:

$$y_1 = \bar{x}$$

$$y_2 = x_2 - \bar{x}$$

$$\vdots$$

$$y_n = x_n - \bar{x},$$

where $g^{-1}(y) = (y_1 - \sum_{i=2}^n y_i, y_2 + y_1, \dots, y_n + y_1)$, and the Jacobian equal to 1/n.

Independence between Normal sample mean and variance

The joint PDF of Y_1, \ldots, Y_n is

$$f(y_1, \dots, y_n) = \frac{n}{(2\pi)^{n/2}} e^{-(1/2)(y_1 - \sum_{i=2}^n y_i)^2} e^{-(1/2) \sum_{i=2}^n (y_i + y_1)^2}$$

$$= \left[\left(\frac{n}{2\pi} \right)^{1/2} e^{-ny_1^2/2} \right] \left[\frac{n^{1/2}}{(2\pi)^{(n-1)/2}} e^{-(1/2)[\sum_{i=2}^n y_i^2 + (\sum_{i=2}^n y_i)^2]} \right],$$

for
$$-\infty < y_i < \infty$$
.

The joint PDF of Y_1, \ldots, Y_n factors, so Y_1 is independent of Y_2, \ldots, Y_n .

Since $\bar{X}=Y_1$ and S^2 is a function of $Y_2\ldots,Y_n$, \bar{X} is independent of S^2 .

Normal sample variance is a scaled Chi-Squared

Note

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \sum_{i=1}^{n} (X_{i} - \mu - (\bar{X} - \mu))^{2}$$
$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\bar{X} - \mu)^{2}.$$

Then

$$n\left(\frac{\bar{X}-\mu}{\sigma}\right)^2 + \frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i-\mu}{\sigma}\right)^2 = \sum_{i=1}^n Z_i^2$$

Since $Z_i \sim \mathcal{N}(0,1)$ and Z_1,\dots,Z_n are independent, we have shown that

- Each $Z_i^2 \sim \chi_1^2$
- The sum $\sum_{i=1}^n Z_i^2$ is a χ_n^2 , and its MGF is $(1-2t)^{-n/2}$, t<1/2
- $\sqrt{n}(\bar{X}-\mu)/\sigma \sim \mathcal{N}(0,1)$ and hence $n[(\bar{X}-\mu)/\sigma]^2 \sim \chi_1^2$

Normal sample variance is a scaled Chi-Squared

In the expression

$$n\left(\frac{\bar{X}-\mu}{\sigma}\right)^2 + \frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n Z_i^2$$

• The LHS is a sum of two independent random variables. Hence, if M(t) is the MGF of $(n-1)S^2/\sigma^2$, then the MGF of the sum on LHS is

$$(1-2t)^{-1/2}M(t)$$

• Since the RHS has MGF $(1-2t)^{-n/2}$, we must have

$$M(t) = (1 - 2t)^{-(n-1)/2}$$
 $t < 1/2$,

which is the MGF of χ^2_{n-1} .

Inference about μ with a Normal random sample

Let X_1, \ldots, X_n be a random sample from $\mathcal{N}(\mu, \sigma^2)$. We know

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1).$$

- If σ is known, we can use the above expression as a basis for inference about μ .
- If both μ and σ are unknown (as in most cases), we consider the quantity

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

as a basis for inference about μ .

t distribution

Note

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{(\bar{X} - \mu)/(\sigma/\sqrt{n})}{\sqrt{S^2/\sigma^2}} = \frac{(\bar{X} - \mu)/(\sigma/\sqrt{n})}{\sqrt{[(n-1)S^2/\sigma^2]/(n-1)}}$$

- The numerator is a $\mathcal{N}(0,1)$ random variable.
- The denominator is a $\sqrt{\chi^2_{n-1}/(n-1)}$ random variable, independent of the numerator.

The quantity $(\bar{X}-\mu)/(S/\sqrt{n})$ is said to have t distribution with n-1 degrees of freedom. Equivalently, a random variable T has t distribution with p degrees of freedom, and we write $T\sim t_p$ if it has PDF is given by

$$f_T(t) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+t^2/p)^{(p+1)/2}}, \quad -\infty < t < \infty.$$

F distribution (distribution of a ratio of variances)

Let X_1,\ldots,X_n be a random sample from $\mathcal{N}(\mu_X,\sigma_X^2)$, Y_1,\ldots,Y_m be a random sample from $\mathcal{N}(\mu_Y,\sigma_Y^2)$, X_i 's and Y_i 's be independent, and S_X^2 and S_Y^2 be the sample variances based on X_i 's and Y_i 's, respectively.

From the previous discussion, $(n-1)S_X^2/\sigma_X^2$ and $(m-1)S_Y^2/\sigma_Y^2$ are both Chi-Squared random variables, and the ratio

$$\frac{S_X^2/S_Y^2}{\sigma_X^2/\sigma_Y^2} = \frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2}$$

has the F distribution with degrees of freedom n-1 and m-1 (denoted by $F_{n-1,m-1}$).

Properties of F distribution

Let $F_{p,q}$ denote the F distribution with degrees of freedom p and q. The PDF of $F_{p,q}$ is given by

$$f_F(x) = \frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)} \left(\frac{p}{q}\right)^{p/2} \frac{x^{(p/2)-1}}{(1+(p/q)x)^{(p+q)/2}}, \quad 0 < x < \infty.$$

- 1 If $X \sim F_{p,q}$, then $1/X \sim F_{q,p}$.
- ② If X has the t distribution with degrees of freedom q, then $X^2 \sim F_{1,q}$.
- **3** If $X \sim F_{p,q}$, then $(p/q)X/(1 + (p/q)X) \sim \text{Beta}(p/2, q/2)$.

The first two properties follow directly from the definitions of ${\cal F}$ and t distributions.

F distribution

Note that Z=(p/q)X has PDF

$$\frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)}\frac{z^{p/2-1}}{(1+z)^{(p+q)/2}}, \qquad z>0$$

Let u=z/(1+z). Then z=u/(1-u), $dz=(1-u)^{-2}du$, and the PDF of U=Z/(1+Z) is

$$\frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)} \left(\frac{u}{1-u}\right)^{p/2-1} \frac{1}{(1-u)^{-(p+q)/2}} \frac{1}{(1-u)^2}$$

$$= \frac{\Gamma\left(\frac{p+q}{2}\right)}{\Gamma\left(\frac{p}{2}\right)\Gamma\left(\frac{q}{2}\right)} u^{p/2-1} (1-u)^{q/2-1}, \quad u > 0$$