Дифференциальные уравнения и динамические системы.

Лектор — С.Ю.Пилюгин Создатель конспекта — Глеб Минаев *

TODOs

Содержание

0.1	Дифференциальные уравнения 1-го порядка, разрешённые относительно произ-	
	водных	1
0.2	Интегрируемые дифференциальные уравнения 1-го порядка	3
	0.2.1 Лифференицальные уравнения с разделяющимися переменными	4

Литература:

- В.И. Арнольд, "Обыкновенные дифференциальные уравнения".
- Ю.Н. Бибиков, "Общий курс обыкновенных дифференциальных уравнений".
- С.Ю. Пилюгин, "Пространства динамических систем", 2008.

Определение 1. Дифференциальное уравнение — уравнение вида

$$f(x, y, y', \dots, y^{(m)}) = 0,$$

где x — независимая переменная, f — данная функция, а y(x) — искомая функция. Обыкновенное дифференциальное уравнение — дифференциальное уравнение над $\mathbb R$

Замечание. Бывают ещё дифференциальные уравнения над комплексными числами и дифференциальные уравнения в частных производных. Но это уже совершенно другие области; а мы будем рассматривать только обыкновенные дифференциальные уравнения.

0.1 Дифференциальные уравнения 1-го порядка, разрешённые относительно производных

Пусть x — независимая переменная, y(x) — искомая функция. Тогда будем рассматривать уравнения вида

$$y' = f(x, y).$$

f будет всегда рассматриваться непрерывной.

Зафиксируем область (открытое связное множество) G в $\mathbb{R}^2_{x,y}$. Будем также писать $f\in C(G)$.

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

Определение 2. $y:(a;b)\to\mathbb{R}$ называется решением данного уравнения на (a;b), если

- \bullet если y дифференцируема на (a;b),
- для всякого $x \in (a; b) (x, y(x)) \in G$,
- y'(x) = f(x, y(x)) на (a; b).

 Π ример 1. При $k>0,\ f(x,y):=ky,\ G=\mathbb{R}^2$ имеем уравнение

$$y = ky'$$
.

Тогда всем известно, что $y(x)=ce^{kx}$ для некоторого $c\in\mathbb{R}.$

Определение 3. Интегральная кривая — график решения.

Определение 4 (задача Коши). Пусть фиксирована $(x_0, y_0) \in G$. y(x) — решение задачи Коши c начальными dанными (x_0, y_0) , если

- y(x) решение дифференциального уравнения на некотором интервале $(a;b) \ni x$,
- $y(x_0) = y_0$.

Пример 2. В случае того же уравнения

$$y' = ky$$

решением будет $y(x) = y_0 e^{k(x-x_0)}$.

Определение 5. $(x_0; y_0)$ называется точкой единственности, если для всяких решений y_1 и y_2 задачи Коши с входными данными $(x_0; y_0)$ есть некоторая окрестность x_0 , где y_1 и y_2 совпадают.

Пример 3. Возьмём уравнение

$$y' = 3y^{2/3}$$

с входными данными (0;0). Понятно, что сюда подойдёт всякое решение вида $y(x) = cx^3$ $(c \in \mathbb{R})$, что уже говорит о неединственности данной точки. Но есть случаи ещё хуже: можно склеить кусок слева одного решения и кусок справа другого и получить новое решение!

Определение 6 (поле направлений). Зададим в области G поле направлений: в каждой точке $(x_0; y_0)$ поставим направление соответствующее производной $f(x_0, y_0)$. Это равносильно векторному полю, где вектор в точке $(x_0; y_0) - (1; f(x_0; y_0))$. Следовательно график всякого решения y(x) будет касаться поля направлений в области определения, а векторное поле будет градиентом графиком решения с нативной параметризацией по x.

Теорема 1 (существования для дифференциального уравнения 1-го порядка). *Пусть имеется дифференциальное уравнение*

$$y' = f(x, y)$$

и $f \in C(G)$. Тогда для всякой точки $(x_0; y_0) \in G$ существует решение задачи Коши с начальными данными $(x_0; y_0)$.

Теорема 2 (единственности для дифференциального уравнения 1-го порядка). *Пусть имеется дифференциальное уравнение*

$$y' = f(x, y)$$

 $u\ f, \frac{\partial f}{\partial u} \in C(G)$. Тогда всякая точка $(x_0; y_0) \in G$ является точкой единственности.

0.2 Интегрируемые дифференциальные уравнения 1-го порядка

Первый случай. Наше уравнение имеет вид

$$y' = f(x)$$
.

В таком случае

$$y(x) = y_0 + \int_{x_0}^x f(t)dt.$$

Определение 7. Пусть имеется уравнение

$$y' = f(x, y),$$

где $f \in C(G)$, а H — подобласть G. Функция $U \in C^1(H,\mathbb{R})$ (т.е. $U: H \to \mathbb{R}$ и U дифференцируема на H) называется *интегралом* этого уравнения в H, если

- $\frac{\partial U}{\partial u} \neq 0$ в H,
- если $y:(a;b)\to\mathbb{R}$ решение в H, то $U(x,y(x))=\mathrm{const}$ на (a;b).

Теорема 3 (о неявной функции). Пусть дана $F \in C^1(H, \mathbb{R})$ и есть некоторая точка $(x_0; y_0) \in H$, что $F(x_0, y_0) = 0$, а $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0$. Тогда есть некоторые окрестности I и J точек x_0 и y_0 и функция $z \in C^1(I)$, что $z(x_0) = y_0$ и для всякой точки $(x; y) \in I \times J$, что F(x, y) = 0, будет верно y = z(x).

Теорема 4 (об интеграле для дифференциального уравнения 1-го порядка). Пусть имеется интеграл U уравнения y' = f(x,y) в $H \subseteq G$. Тогда для всякой точки $(x_0; y_0) \in H$ будут открытые I и J, что $I \times J \subseteq H$, $x_0 \in I$, $y_0 \in J$, и некоторое $y(x) \in C^1(I)$, что

- ullet y(x) решение задачи Коши с начальными данными $(x_0;y_0)$,
- для всякой точки $(x_1; y_1) \in H$, что $U(x_1; y_1) = U(x_0; y_0)$, верно $y_1 = y(x_1)$.

Доказательство. Рассмотрим

$$F(x,y) := U(x,y) - U(x_0,y_0).$$

Заметим, что $F(x_0,y_0)=0$, а $\frac{\partial F}{\partial y}(x_0,y_0)=\frac{\partial U}{\partial y}(x_0,y_0)\neq 0$, т.е. F удовлетворяет условию теоремы о неявной функции. Тогда по данной теореме существуют некоторые окрестности I_0 и J_0 точек x_0 и y_0 и функция $y(x)\in C^1(I)$.

По теореме о существовании существует решение z(x) задачи Коши с начальными данными (x_0, y_0) на $I \ni x_0$, что $(x, z(x)) \in I \times J$. По определению интеграла U имеем, что $U(x, z(x)) = U(x_0, y_0)$, а значит F(x, z(x)) = 0. Тогда по теореме о неявной функции z(x) = y(x) на всей области определения y и z.

Замечание 1. Равенство U(x,y) = c называют общим интегралом.

0.2.1 Дифференицальные уравнения с разделяющимися переменными

Будем рассматривать уравнение вида

$$y' = m(x)n(y),$$

 $m \in C((a;b)), n \in C((\alpha;\beta)), G = (a;b) \times (\alpha;\beta).$

Первый случай. Пусть $n(y_0) = 0$. Тогда есть решение $y(x) \equiv y_0$.

Второй случай. Рассмотрим некоторый интервал $I\subseteq(\alpha;\beta)$, что для всякого $y\in I$ верно $n(y)\neq 0$. Рассмотрим y(x), что $(x,y(x))\in(a;b)\times I$. Несложным преобразованием получаем, что

$$\frac{y'(x)}{n(y(x))} = m(x).$$

значит

$$\int_{x_0}^x m(s)ds = \int_{x_0}^x \frac{y'(t)dt}{n(y(t))} = \int_{x_0}^x \frac{dy(t)}{n(y(t))} = \int_{y(x_0)}^{y(x)} \frac{dz}{n(z)}.$$

Обозначим первообразные

$$N(y) := \int \frac{dy}{n(y)}$$
 и $M(x) := \int m(x) dx$.

Тогда мы имеем, что

$$N(y(x)) - N(y(x_0)) = M(x) - M(x_0).$$

Определим

$$U(x,y) := N(y) - M(x).$$

Тогда

$$U(x, y(x)) = N(y(x)) - M(x) = N(y(x_0)) - M(x_0) = \text{const}.$$

Также

$$\frac{\partial U}{\partial u} = N' = \frac{1}{n(u)} \neq 0.$$

Таким образом U — интеграл данного уравнения в $(a;b) \times I$.