

Introducing PS2 to PC Programmers

David Carter
SCEE Technology Group

Contact

- Contact Information:
 - SCEE Booth Exhibition Stand #9

What We Will Be Covering

What We Will Not Be Covering

- An overview of the hardware
- A basic rendering pipeline
- How to improve performance
- Under used capacities
- PS2 design techniques
- Questions...

- A MIPS programming course
- Showing any sample code
- The price of beer (I am so glad it is cheap!)
- A PS2 in chocolate (ummm...tasty!)

Basic PS2 Architecture

IOP: Input Output Processor **IOP** SPU2 SPU2: Sound Processor **Emotion Engine IPU** 128bit bus DMA GS Memory 32mb 4mb cache GIF VUI VU0 FPU EE CORE

EE: 128-bit Emotion Engine

VU0/VU1: Vector Units FPU: Floating Point Unit

GS: Graphic Synthesiser

DMA: Direct memory access IPU: Image processing Unit

Caches And Scratchpad

 PS2 has small caches, as it was felt that a lot of dynamic data would not be in the cache for any length of time.

EE CORE

EE Vector Units

Graphic Synthesiser

- Each vector unit can do 4 multiplies and 4 adds in a single instruction and can transform about 36million vertices/sec.
- Both can operate in Micromode LIW architecture (32bits*2)
- Argued that due to the PS2 architecture the PC paradigm started to shift with the emergence of Vertex Shaders.

Primitives per second:

150million points

50million textured sprites

75million untextured triangles

37.5 million textured triangles

Features:

Alpha blend, Z-test, Bilinear/tri-linear filtering. Efficient scissoring and a fill rate of 2.4-giga pixel.

GIF Connection For VU1

Fill Rate

- Vector Unit 1 has a dedicated output path to the GIF
- It also has a much larger internal memory than VU0 to support double buffering of input and output data.
- This enables fast transformation and output to GS of patterned data.

- Bandwidth of 4MB Embedded DRAM 48GB/sec
 - Bandwidth of frame buffer 38.4Gb/sec
 - Texture bandwidth 9.6Gb/sec
- Fill rate 1.2Giga pixel a sec for texture
- Fill rate 2.4Giga pixel a sec for untextured

IOP, SPU And Backwards Compatibility

DMA

The IOP processor comes from PS1, this solves compatibility!

- DMA bus has a bandwidth of 2.4Gb/sec, faster than AGPx8 which is (in theory!) 2.1Gb/sec.
- The DMA bus controls all data transfers in the system.
- The DMAC will not stall the CPU when transferring data.
- DMA transfers must be aligned to 128bits.

DMA Data Transfer

DMA Chains

To send data through a channel you just specify the start address, the data size and a start signal to the DMAC.

Basic Rendering Pipeline

Calculate animation Traverse scene List processing DMA Transform to 2D Rasterisation GS

How To Improve PS2 Performance

- By not treating the PS2 as a PC
- By using texture sizes and formats
- Prevent the thrashing of Texture Cache
- Without abusing Instruction and Data Cache

1st Attempt At A PC Port (max 0.5 million polys)

2nd Attempt At A PC Port (max 1.5 million polys)

VU Renderer (lighting, no animation) (typical 10-20 million polys)

Complete Game (lighting, animation) (typical 5-10 million polys)

VRAM Layout

- 4MB Embedded memory
- 4MB of VRAM is split into 8K pages
 - Pages split into 32 blocks of 256 bytes
- Frame buffers addressed by page
- Textures addressed by block
 - Allowing multiple textures per page

By Using Texture Size And Format

- 4MB of VRAM is split into 8K pages
 - Pages split into 32 blocks of 256 bytes
- Block position varies based on format
- Possible to store multiple textures in 1 page

EG 16-Bit Texture Page

	2	8	
	3	9	
44	()	12	14
15	7	13	15
116	18	24	26
117	9	25	27
20	21	28	30
72	.2.2	20	21

GS Coordinate System

- Frame Buffers use a 16-bit coordinate system
 - 12-bit integer . 4-bit fraction
 - Full Range 0 4095.9375
- Typically centre specified as (2048, 2048)
- Scissoring area specified based relative to this centre

GS Coordinate Scissoring

0.0

- X and Y Values are 16bit
 - Scissoring will not work outside that range
- No hardware clipping
 - There is a VU clip instruction

Prevent The Thrashing Of Texture Cache

- Current texels read from Texture Cache
 - Only 8K in size or 1 Texture Page
 - Costs to reload Texture Cache
- No need to use PC-style 32-bit textures
 - Too many colours, takes up too much VRAM
 - Aiming for TV not a PC Monitor
- Texture Sizes that fit into Texture Cache
 - 4bit 128x128, 8bit 128x64 (with CLUT)
 - 16bit 64x64, 32bit 64x32

Instruction And Data Cache Issues

Cache Issues

- Large Loops and Jumps
- Large Objects/Structures
- Consider the cost of useful C++ features (e.g.
 Templates) they can have a negative effect

What can help?

- Breaking large loops into several smaller loops
- Check disassembly of code for inlining
- Un-cached Memory Access (0x20000000)
- Scratchpad is the fastest memory you have direct access to, use as a main work area.

Vector Unit 0 Usage

VIF Data Compression/Decompression

- Suggested for taking some work off the CPU and help reduce I\$ misses.
- Its not recommended to use VU0 in Macromode.
- Use Micromode and allow the CPU to carry on in parallel.

- Compressed formats reduce memory size of model.
- Decompression from packed formats by the VIF, provides reduction load on VU.

Texture And Geometry Streaming

- 1.2Gb/sec max bandwidth (24-meg/frame).
- GIF arbitrates between paths and packs data in to 64bit for GS.
- Watch priority ordering with paths to the GIF.

Summary

- The key to PS2 power is keeping the units busy
- Keeping data moving in parallel is the key to keeping the processors fed with data.
- DMA is the system which does this. This is the most crucial thing to understand to get performance on PS2.
- VRAM seems small but there are plenty of tricks.
- Cache issues... remember Scratchpad!
- Vector Unit 0 is underused.