Orthogonal Range Searching in 2D using Ball Inheritance

Mads Ravn

Computer Science, Aarhus University

2015

- Giv en præsentation af den i specialet introducerede simplificerede datastruktur til range searching i 2d. (3)
- Beskriv ball-inheritance problemet og forklar sammenhængen til range searching. (2)
- Beskriv også det klassiske kd-træ (1)
- og fortæl om hvilke eksperimenter du har foretaget for at sammenligne performance af de to strukturer. Forklar hvad du så og om det var som forventet. (4)

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - Previous data structures
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater
 - Resultater

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - Previous data structures
 - Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater
 - Resultater

Orthogonal Range Searching i 2D

Preleminaries

Orthogonal range searching

- Svar effektivt på forespørgslen $q = [x_1, x_2] \times [y_1, y_2]$.
- $p \in [x_1, x_2] \times [y_1, y_2] \Leftrightarrow p_x \in [x_1, x_2] \land p_y \in [y_1, y_2]$

Preleminaries

- n punkter fra \mathbb{R}^2 . Alle koordinater er unikke
- Rank space. Vi finder \hat{y}_1 og \hat{y}_2 og så ved vi hvor mange elementer der er imellem dem.
- *n* er en potens af 2
- static og output-sensitive

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - Previous data structures
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- 3 Resultater
 - Resultater

kd-træ

Jon L. Bentley. 1975.

- $\mathcal{O}(n)$ plads
- $\mathcal{O}(\sqrt{n}+k)$ tid

Givet *n* punkter: *x* eller *y* på skift. Et punkt per blad i træet.

Opbygning af kd-træ

Det $\lceil \frac{n}{2} \rceil$ 'te element bliver valgt som median. Dette element fungerer som en skille-linje mellem de to punkt-mængder.

Punkter i region, punkter i undertræ. Under-inddel.

Søgning i kd-træ

1 tager $\mathcal{O}(k)$ tid, 3 tager $\mathcal{O}(1)$ tid. Bound på 2.

Søgning i kd-træ

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - Previous data structures
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater
 - Resultater

• Vi er givet et perfekt binært træ.

- Vi er givet et perfekt binært træ.
- Roden indeholder *n* punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Boldene i roden er sorteret.

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Boldene i roden er sorteret.
- Hver knude har en liste over hvilke bolder der går igennem den. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Boldene i roden er sorteret.
- Hver knude har en liste over hvilke bolder der går igennem den. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.
- Løs: Givet en knude og et index i knudens liste, hvilket blad ender denne bold ved?

- Vi er givet et perfekt binært træ.
- Roden indeholder n punkter(bolde) som er blevet fordelt sådan at hvert blad lagrer et punkt. Boldene i roden er sorteret.
- Hver knude har en liste over hvilke bolder der går igennem den. Boldene i knudens liste har samme rækkefølge som boldene i forældre-knudens liste.
- Løs: Givet en knude og et index i knudens liste, hvilket blad ender denne bold ved?
- Vi kan nu følge en bold fra en knude til et blad med $\mathcal{O}(\lg n)$ skridt.

RANK SELECT

Rank-Select query er en constant-time query der finder boldens nye position.

Man kan nu komme ned med $\mathcal{O}(\lg n)$ skridt.

Faster Queries

Vi ønsker at gøre antallet skridt fra en knude til et blad mindre. Vi udvider alfabetet på udvalgte niveauer. Det bruger

- $\mathcal{O}(\frac{n}{\epsilon}) = \mathcal{O}(n)$ plads
- $\mathcal{O}(\lg^{\epsilon} n)$ tid

hvor $\epsilon>0$ er en arbitrær lille konstant. Space-time tradeoff. knuder på niveau deleligt med B^i hopper B^i niveauer over.

Faster Queries

Vi ønsker at gøre antallet skridt fra en knude til et blad mindre. Vi udvider alfabetet på udvalgte niveauer. Det bruger

- $\mathcal{O}(\frac{n}{\epsilon}) = \mathcal{O}(n)$ plads
- $\mathcal{O}(\lg^{\epsilon} n)$ tid

hvor $\epsilon > 0$ er en arbitrær lille konstant. Space-time tradeoff. knuder på niveau deleligt med B^i hopper B^i niveauer over. $B = \Omega(\lg^{\epsilon} n)$.

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - Previous data structures
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- 3 Resultater
 - Resultater

BISintro

Ball Inheritance Search (BIS) er en datastruktur som er en simplificering af den datastruktur der findes i **Orthogonal Range Searching on the RAM, Revisited**[1] af Chan et al. UDDYB simplificering.

Ball Inheritance Search

Et punkt er kun lagret i et blad.

Ball Inheritance Search

Et punkt er kun lagret i et blad.

- $\mathcal{O}(n + n \cdot \lg_B \lg n) = \mathcal{O}(n + \frac{n}{\epsilon})$ plads.
- $\mathcal{O}(\lg n + k \cdot B \lg_B \lg n) = \mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ tid, hvor $\epsilon > 0$ er en arbitrær lille konstant

da vi har valgt $B = \Omega(\lg^{\epsilon} n) = \lceil \frac{1}{2} \lg^{\frac{1}{3}} n \rceil$.

Vi vil nu gerne bruge ball inheritance datastrukturen til flere ting: OMFORMULER

- Følge \hat{y}_1 og \hat{y}_2 fra roden til lca.
- Følge dem fra lca til x_1 og x_2 og markere de knuder der kun indeholder punkter imellem dem $(x_1 \text{ og } x_2)$.
- Til at lave egentlig ball inheritance med sådan at vi kan slå punktet op.

Det er til at følge en range ned. Denne range indeholder kun y-koordinater som ligger i $[y_1, y_2]$. Dette gøres et skridt ad gangen. Og så bruges det til at slå blade op baseret på knude-index forhold.

- Rank space opslag ved roden.
- Vedligehold [ŷ₁, ŷ₂] ned til
 LCA.
- Find fully contained knuder og deres $[\hat{y}_1, \hat{y}_2]$ interval.
- Ball Inheritance fra knuder.

x-range

• Vi oversætter vores query til rank space $[x_1, x_2] \times [y_1, y_2] \Rightarrow [\hat{x}_1, \hat{x}_2] \times [\hat{y}_1, \hat{y}_2].$

x-range

- Vi oversætter vores query til rank space $[x_1, x_2] \times [y_1, y_2] \Rightarrow [\hat{x}_1, \hat{x}_2] \times [\hat{y}_1, \hat{y}_2].$
- Vi går ned til least common ancestor af \hat{x}_1 og \hat{x}_2 og herfra ned til \hat{x}_1 og \hat{x}_2 . På den måde finder vi knuder der kun indeholder punkter i $[x_1, x_2]$.

y-range

• Vi har opdateret $[\hat{y}_1, \hat{y}_2]$ fra roden til både \hat{x}_1 og \hat{x}_2 . Dvs vi ved hvilke bolde i hver knude vi fandt før der indeholder punkter i $[y_1, y_2]$.

y-range

- Vi har opdateret $[\hat{y}_1, \hat{y}_2]$ fra roden til både \hat{x}_1 og \hat{x}_2 . Dvs vi ved hvilke bolde i hver knude vi fandt før der indeholder punkter i $[y_1, y_2]$.
- $[\hat{y}_1, \hat{y}_2]$ betegner det interval af y-koordinater der ligger mellem y_1 og y_2 i knuden v.

y-range

- Vi har opdateret $[\hat{y}_1, \hat{y}_2]$ fra roden til både \hat{x}_1 og \hat{x}_2 . Dvs vi ved hvilke bolde i hver knude vi fandt før der indeholder punkter i $[y_1, y_2]$.
- $[\hat{y}_1, \hat{y}_2]$ betegner det interval af y-koordinater der ligger mellem y_1 og y_2 i knuden v.
- Vi har nu nogle knuder og lister over indeces i disse knuder.
 Det er præcis det problem ball inheritance løser. Vi kan nu bruge ball inheritance på alle disse knuder til at finde ud af hvilke blade der indeholder punkter i [y1, y2].

ballinheritance

Vi har nu at hver knude der er fully contained laver ball inheritance på det y-range den får givet. Det tager $\mathcal{O}(k \cdot \lg^{\epsilon} n)$ tid. Det tager $\mathcal{O}(\lg n)$ at lave binær søgning og at gå fra roden til \hat{x}_1 og \hat{x}_2 .

ballinheritance

Vi har nu at hver knude der er fully contained laver ball inheritance på det y-range den får givet. Det tager $\mathcal{O}(k \cdot \lg^{\epsilon} n)$ tid. Det tager $\mathcal{O}(\lg n)$ at lave binær søgning og at gå fra roden til \hat{x}_1 og \hat{x}_2 . Det giver en kørselstid på $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ for at finde k punkter.

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

• Bit vectors. $\mathcal{O}(n)$ bits per level.

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

- Bit vectors. $\mathcal{O}(n)$ bits per level.
- Store hop $\mathcal{O}(\lg \Sigma)$ bits per entry hvert $\lg \Sigma$ level.

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

- Bit vectors. $\mathcal{O}(n)$ bits per level.
- Store hop $\mathcal{O}(\lg \Sigma)$ bits per entry hvert $\lg \Sigma$ level.
- Egentlig punkter

Denne datastruktur bruger $\mathcal{O}(n)$ plads.

- Bit vectors. $\mathcal{O}(n)$ bits per level.
- Store hop $\mathcal{O}(\lg \Sigma)$ bits per entry hvert $\lg \Sigma$ level.
- Egentlig punkter
- Binær søgning

OBIS

OBIS af Chan et al. Med $\mathcal{O}(n)$ plads og $\mathcal{O}(\lg \lg n + (1+k) \cdot \lg^{\epsilon} n)$. Bruger også Ball Inheritance til at finde de k punkter.

OBIS

- Op til nærmeste level med pred-search
- Gå ned til LCA højst lg lg n levels nede.
- Gå ned og find resultater i begge børn af LCA.

OBIS

Outline

- Introduction
 - Orthogonal Range Searching i 2D
 - Previous data structures
- Ball Inheritance Search
 - Ball Inheritance Problem
 - Ball Inheritance Search Data Structure
- Resultater
 - Resultater

setup

- Square area $\sqrt{n} \cdot \sqrt{k} \times \sqrt{n} \cdot \sqrt{k}$ returnerer k punkter.
- Slices af størrelse k returnerer k punkter. $[0, n] \times [y, y + k]$
- Hvad forventer vi af $\mathcal{O}(\sqrt{n}+k)$ vs $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$?
- $\sqrt{n} + k = \lg n + k \cdot \lg^{\epsilon} n \Leftrightarrow k = \frac{\sqrt{n} \lg n}{\lg^{\epsilon} n 1}$

- Hvad vil vi gerne vise af resultater?
- Hvad forventer vi at se af tendenser og hvorfor?
- Mindre ændring mellem shapes når det er $\lg^{\epsilon} n$ i stedet for $\mathcal{O}(\sqrt{n})$.
- Hvert eksperiment er kørt mange gange. 10 forskellige data-set, mange forskellige steder i søgerummet.
- $\mathcal{O}(\lg n + k \cdot \lg^{\epsilon} n)$ vs $\mathcal{O}(\sqrt{n} + k)$.
- BIS er mere stabil når vi ændrer shape.
- kd-træ er hurtigere jo flere punkter, og jo mindre $\mathcal{O}(\sqrt{n})$ er.
- $\lg n < \sqrt{n}$, så vi forventer at en dårlig shape betyder meget for kd-træet.
- Vi har også kigget på $k \le 200$ for personlig interaktion. Der er BIS god.

Squared

Squared

vertical

vertical

horizontal

horizontal

sizes

Future work

- Bedre udpakning
- Cache
- Concurrency
- Bedre kd-træ

Færdig

Spørgsmål?

praktisk log epsilon n

Små hop

Hvert niveau gemmer n bits som indikerer om bolden er gået til højre eller venstre. Hvert 32 bit gemmer vi et 32 bit major checkpoint. Precomputed tabel med 16 bit tal som tæller antal 1-entries. $\mathcal{O}(n)$ bits per level.

Store hop

 $\mathcal{O}(\lg \Sigma)$ per entry. $\Sigma = 2^{B^i}$. Så plads er $\mathcal{O}(B^i)$ bits per entry. Det er

$$\sum_{i=1}^{\lg_B \lg n} \frac{\lg n}{B^i} \cdot \mathcal{O}(B^i) = \mathcal{O}(\lg n \cdot \lg_B \lg n)$$

for hele kæden. Vælg nu $B = \Omega(\lg^{\epsilon} n)$.

Vi har n punkter, hvilket giver $\mathcal{O}(n \lg n \cdot \lg_B \lg n)$ bits. Det er $\mathcal{O}(n \cdot \frac{\lg \lg n}{\epsilon \lg \lg n}) = \mathcal{O}(\frac{n}{\epsilon})$ ord.

Store hop

Tiden for de store hop er højst $\mathcal{O}(B \lg_B \lg n)$. Vælg $B = \lg^{\epsilon/2} n = \Omega(\lg \lg n)$.

References I

Timothy M. Chan, Kasper Green Larsen, Mihai Patrascu.

Orthogonal Range Searching on the RAM, Revisited.

