Single-Source Shortest Paths

Shortest Path Problems

- How can we find the shortest route between two points on a road map?
- Model the problem as a graph problem:
 - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

• Goal: find a shortest path between two vertices (cities)

Shortest Path Problem

■ Input:

- Directed graph G = (V, E)
- Weight function $w : E \rightarrow \mathbf{R}$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$ $w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$

■ Shortest-path weight from u to v:

$$\delta(\mathbf{u}, \mathbf{v}) = \min \begin{cases} w(p) : \mathbf{u} & \text{\mathbb{P}} \mathbf{v} \text{ if there exists a path from } \mathbf{u} \text{ to } \mathbf{v} \end{cases}$$
otherwise

■ Note: there might be <u>multiple shortest</u> paths from u to v

Variants of Shortest Path

■ Single-source shortest paths

• $G = (V, E) \Rightarrow$ find a shortest path from a given source vertex **s** to each vertex $v \in V$

■ Single-destination shortest paths

- Find a shortest path to a given destination vertex t
 from each vertex v
- ◆ Reversing the direction of each edge ⇒ singlesource

Variants of Shortest Paths (cont'd)

■ Single-pair shortest path

◆ Find a shortest path from u to v for given vertices u and v

■ All-pairs shortest-paths

 Find a shortest path from u to v for every pair of vertices u and v

Single-Source Shortest Path Problem

- Given: A single source vertex in a weighted, directed graph.
- Want to compute a shortest path for each possible destination.
 - Similar to BFS.
- We will assume either
 - no negative-weight edges, or
 - no <u>reachable</u> negative-weight cycles.
- Algorithm will compute a shortest-path tree.
 - Similar to BFS tree.

Negative-Weight Edges

- Negative-weight edges may form negative-weight cycles
- If such cycles are reachable from the source, then $\delta(s, v)$ is not properly defined!
 - Keep going around the cycle, and get

 $w(s, v) = -\infty$ for all v on the cycle

Negative-Weight Edges

 \blacksquare s \rightarrow a: only one path

$$\delta(s, a) = w(s, a) = 3$$

 \blacksquare s \rightarrow b: only one path

$$\delta(s, b) = w(s, a) + w(a, b) = -1$$

 \blacksquare s \rightarrow c: infinitely many paths

$$\langle s, c \rangle, \langle s, c, d, c \rangle, \langle s, c, d, c, d, c \rangle$$

cycle has positive weight (6 - 3 = 3)

 $\langle s, c \rangle$ is shortest path with weight $\delta(s, b) = w(s, c) = 5$

Negative-Weight Edges

- \blacksquare s \rightarrow e: infinitely many paths:
 - \diamond \langle s, e \rangle , \langle s, e, f, e \rangle , \langle s, e, f, e, f, e \rangle
 - ◆ cycle ⟨e, f, e⟩ has negative weight:

$$3 + (-6) = -3$$

- can find paths from **s** to **e** with arbitrarily large negative weights
- $\delta(s, e) = -\infty \Rightarrow$ no shortest path exists between **s** and **e**
- Similarly: $\delta(s, f) = -\infty$, $\delta(s, g) = -\infty$

$$\delta(s, h) = \delta(s, i) = \delta(s, j) = \infty$$

Shortest-Paths Notation

For each vertex $v \in V$:

- $\blacksquare \delta(s, v)$: shortest-path weight
- ■d[v]: shortest-path weight estimate(
 - Initially, $d[v]=\infty$
 - $d[v] \rightarrow \delta(s,v)$ as algorithm progresses
- $\blacksquare \pi[v] = \mathbf{predecessor}$ of \mathbf{v} on a shortest path from \mathbf{s}
 - If no predecessor, $\pi[v] = NIL$
 - π induces a tree—shortest-path tree

Initialization

All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

```
Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

1. for each v \in V

2. do d[v] := \infty

3. \pi[v] := NIL

4. d[s] := 0
```

Relaxation Step

■ **Relaxing** an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If
$$d[v] > d[u] + w(u, v)$$

we can improve the shortest path to v

Relaxation

• Algorithms keep track of d[v], $\pi[v]$. These values are changed when an edge (u, v) is **relaxed**:

```
Relax(u, v, w)

if d[v] > d[u] + w(u, v) then

d[v] := d[u] + w(u, v);

\pi[v] := u

fi
```

Dijkstra's Algorithm

- Assumes no negative-weight edges.
- Maintains a set S of vertices whose SP from s has been determined.
- Repeatedly selects u in V–S with minimum
 SP estimate (greedy choice).
- Store V–S in priority queue Q.

Dijkstra's Algorithm

```
INITIALIZE(G, s);
S := \emptyset;
Q := V[G];
while Q \neq \emptyset do
   u := Extract-Min(Q);
   S := S \cup \{u\};
   for each v \in Adi[u] do
       Relax(u, v, w)
    od
od
```

```
Alg.: INITIALIZE(G, s)

1. for each v \in V

2. do d[v] := \infty

3. \pi[v] := NIL

4. d[s] := 0
```

```
Relax(u, v, w)

if d[v] > d[u] + w(u, v) then
d[v] := d[u] + w(u, v);
\pi[v] := u
fi
```


				У	
Steps	S	u.d, u. π	$v.d, v.\pi$	$x.d, x.\pi$	y.d, y. π
0	_	∞, -	∞, -	∞, -	∞, -

0	-	∞, -	∞, -	∞, -	∞, -

Steps	S	u.d, u. π	$v.d, v.\pi$	$x.d, x.\pi$	y.d, y. π
0	-	∞, -	∞, -	∞, -	∞, -

10, s 5, s ∞, -∞, -

				\sim 2	
				X	У
Steps	S	u.d, u. π	$v.d, v.\pi$	$x.d, x.\pi$	y.d, y. π
0	-	∞, -	∞, -	∞, -	∞, -
1	S	10, s	∞, -	5, s	∞, -

1 s	10, s	∞, -	5, s	∞, -
2 s, x	8, x	14, x		7, x

2	S, X	8, x	14, x	7, x

		r	r	ŕ	• •
0	-	∞, -	∞, -	∞, -	∞, -
1	S	10, s	∞, -	5, s	∞, -
2	SX	8, x	14, x		7, x

13, y

8, x

Steps

3

S

sxy

Steps	S	$\mathrm{u.d,u.}\pi$	$v.d, v.\pi$	$x.d, x.\pi$	y.d, y. π
0	-	∞, -	∞, -	∞, -	∞, -
1	c	10 s	00 -	5 s	00 -

		,	,	,	,	
1	S	10, s	∞, -	5, s	∞, -	
2	CV	8 v	1 <i>A</i> v		7 v	

2	SX	8, x	14, x	7, x
3	SXV	8, x	13. x	

2	SX	0, X	14, X	1, X
3	sxy	8, x	13, x	
4	sxyu		9, u	

		S	10/2	3 9 5 2 x	4 6 7 7 y
Steps	S	u.d, u. π	$v.d, v.\pi$	$x.d, x.\pi$	y.d, y. π
0	-	∞, -	∞, -	∞, -	∞, -
1	c	10 s	00 -	5 s	00 -

		S	0 2	5 2 x	4 6 7 y
Steps	S	u.d, u. π	$v.d, v.\pi$	$x.d, x.\pi$	y.d, y. π
0	_	∞, -	∞, -	∞, -	∞, -
1	S	10, s	∞, -	5, s	∞, -
2	SX	8, x	14, x		7, x

13, x

9, u

8, x

SXY

sxyu

sxyuv

3

5

Complexity of Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$
- 2. $S \leftarrow \emptyset$
- 3. $Q \leftarrow V[G] \leftarrow O(V)$ build min-heap
- 5. $\operatorname{do} \mathbf{u} \leftarrow \operatorname{EXTRACT-MIN}(\mathbf{Q}) \leftarrow \operatorname{O}(\operatorname{lgV})$
- 6. $S \leftarrow S \cup \{u\}$
- 7. **for** each vertex $v \in Adj[u] \leftarrow O(V+E)$ times

(total)

O((V+E)lg

- 8. do RELAX(u, v, w)
- 9. Update Q (DECREASE_KEY) \leftarrow O(lgV)

Running time: O(VlgV + (V+E)lgV) = O((V+E)lgV)

Complexity

- Running time is
 - O(V²) using linear array for priority queue.
 - $O((V + E) \lg V)$ using binary heap.