

Z sieciami złożonymi, na tropie tajemnic liczb pierwszych

Jakub Wawrzonkowski

Liczby

Liczby naturalne można podzielić na 2 grupy:

- ► liczby pierwsze
- ► liczby złożone

Każdą liczbę złożoną można przedstawić jako iloczyn liczb pierwszych:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots$$

Graf dwudzielny

Sieć rzeczywista

Rozkład stopni swobody

Rysunek: Rozkład stopni swobody dla sieci rzeczywistej

Skumulowany rozkład stopni swobody

Rysunek: Skumulowany rozkład stopni swobody dla sieci rzeczywistej Politechnika
Varszawska

Model stochastyczny

Postepowanie modelu:

- 1. Każda nowa liczba n, która dołącza do sieci, próbuje połączyć się z już istniejącymi losowymi liczbami pierwszymi $p_i \leq \sqrt{n}$ z niezależnymi prawdopodobieństwami $1/p_i$ jedna po drugiej, zaczynając od najmniejszej liczby pierwszej, aż do nawiazania pierwszego połączenia.
- 2. Jeśli liczba połączy się z istniejącą liczbą pierwszą, to kontynuuje próby połączenia się sekwencyjnie z istniejącymi liczbami pierwszymi w zakresie $[R_m,R_M]$, gdzie $R_m=p$ i $R_M=\sqrt{n'}$, a $n'=\frac{n}{p}$. Za każdym razem, gdy n połączy się z nową losową liczbą pierwszą p', zakres jest redefiniowany. Jeśli $p'>R_{M,\mathrm{nowy}}$ lub n nie uzyska nowych połączeń w nowym zakresie oceny, n jest połączona z liczbą pierwszą najbliższą R_M^2 .
- 3. Jeśli liczba n nie połączy się z żadną istniejącą liczbą pierwszą mniejszą lub równą \sqrt{n} , jest deklarowana jako liczba pierwsza. **Politechnika**

Warszawska

Skumulowany rozkład stopni swobody

Rozkład wag połączeń

Bibliografia

Complex architecture of primes and natural numbers, Phys. Rev. E 90, 022806 (2014), G. Garcia-Perez, M.A. Serrano, M. Boguna

Dziękuję za uwagę