TD6: Intervalles de confiance, tests

Exercice 1.

Le chiffre d'affaires moyen d'un commerçant, calculé sur les trente derniers jours, est de 2000 euros, avec un écart type de valeur $s_{30} = 300$ euros.

- 1. Si on admet que son chiffre d'affaires quotidien peut être représenté par une v.a. X de loi normale de moyenne m et de variance σ^2 inconnues, donner un intervalle de confiance de niveau 0.95 pour le paramètre m.
- 2. Le commerçant affirme que son chiffre d'affaire quotidien peut être représenté par une gaussienne d'espérantce 1850 €. Que répondez-vous avec ces données? Quelle critique éventuelle pouvez-vous formuler sur la méthodologie?
- 3. Obtient-on le même intervalle si σ est connu et de valeur $\sigma = 300$?

Correction. Posons n=30, notons X_i le chiffre d'affaires du jour i, notons $\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_i$, et $\widehat{\sigma}^2=\sum_{i=1}^{n}(X_i-\overline{X})^2/(n-1)$.

1. Si les v.a. X_i sont i.i.d. $\mathcal{N}(m \; ; \; \sigma^2)$ alors en utilisant le fait que la loi de $T := \frac{\sqrt{n}(\overline{X}-m)}{\sqrt{\sigma^2}}$ est la loi de Student $\mathcal{T}(n-1)$, et donc la relation $\mathbb{P}(-2,045 \leq T \leq 2,045) = 95\%$, on obtient :

$$\mathbb{P}(\overline{X} - \frac{2,045\sqrt{\widehat{\sigma}^2}}{\sqrt{n}} \le m \le \overline{X} + \frac{2,045\sqrt{\widehat{\sigma}^2}}{\sqrt{n}}) = 95\%.$$

Le calcul numérique donne $I_{obs} = [1888; 2112].$

2. On utilise l'équivalence entre l'intervalle de Student et le test de Student. Ici, 1850 n'appartient pas à l'intervalle de confiance observé, donc on rejette le test de Student de (H_0) : m=1850 contre (H_1) : $m \neq 1850$, avec un risque de première espèce $\alpha=5\%$.

Il faudrait d'une part s'assurer que les observations d'un jour à l'autre soient bien indépendantes. Par ailleurs, il est possible que le mois observé soit particulièrement bénéfique. Si le commerçant parle de la loi de son chiffre d'affaire quotidien en référence à l'année, il faudrait prendre l'échantillon au hasard sur toute l'année.

3. Dans ce cas on utilise la statistique $U := \frac{\sqrt{n}(\overline{X}-m)}{\sqrt{\sigma^2}}$ dont la loi est la loi $\mathcal{N}(0; 1)$. La même technique que précédemment nous conduit à

$$\mathbb{P}(\overline{X} - \frac{1,96\sqrt{\sigma^2}}{\sqrt{n}} \le m \le \overline{X} + \frac{1,96\sqrt{\sigma^2}}{\sqrt{n}}) = 95\%.$$

Le calcul numérique donne $I_{obs} = [1892, 65; 2107, 35]$ et on remarque que cet intervalle est plus précis que le précédent, puisqu'il n'y a plus d'incertitude sur la variance.

Exercice 2.

Soient deux échantillons gaussiens $X = (X_1, \ldots, X_n)$ et $Y = (Y_1, \ldots, Y_m)$ indépendants et chacun iid de lois respectives $\mathcal{N}(\mu_X, \sigma_X^2)$ et $\mathcal{N}(\mu_Y, \sigma_Y^2)$. Les paramètres d'espérance et de variance sont inconnus.

- 1. Construire un intervalle de confiance bilatère de $\beta = \sigma_X^2/\sigma_Y^2$
- 2. Construire un test d'égalité des variances au niveau 5%. La pvalue observée est 0.01. Que conclure, et avec quel risque?

Correction. Sous (H_0) , les estimateurs non biaisés de la variance dans chacun des deux échantillons sont indépendants et

$$Z = \frac{\widehat{\sigma}_X^2 / \sigma_X^2}{\widehat{\sigma}_Y^2 / \sigma_Y^2} \sim \mathcal{F}(n-1, m-1)$$

On note $qf_{\alpha}^{n-1,m-1}$ le quantile d'ordre α d'une loi de Fisher de paramètres n-1 et m-1. On en déduit

$$IC(\sigma_Y^2/\sigma_X^2) = \left[q f_{\alpha/2}^{n-1,m-1} \frac{\widehat{\sigma}_Y^2}{\widehat{\sigma}_X^2}; \ q f_{1-\alpha/2}^{n-1,m-1} \frac{\widehat{\sigma}_Y^2}{\widehat{\sigma}_X^2} \right]$$

ou

$$IC(\sigma_X^2/\sigma_Y^2) = \left[q f_{\alpha/2}^{m-1,n-1} \frac{\widehat{\sigma}_X^2}{\widehat{\sigma}_Y^2}; \ q f_{1-\alpha/2}^{m-1,n-1} \frac{\widehat{\sigma}_X^2}{\widehat{\sigma}_Y^2} \right]$$

puisque $qf_{1-\alpha}^{n-1,m-1} = 1/qf_{\alpha}^{m-1,n-1}$. En effet, soit $K \sim \mathcal{F}(n,m)$

$$\alpha = \mathbb{P}\left(K \leq q f_{\alpha}^{n,m}\right) = \mathbb{P}\left(\frac{1}{q f_{\alpha}^{n,m}} \leq \frac{1}{K}\right) = 1 - \mathbb{P}\left(\frac{1}{K} \leq \frac{1}{q f_{\alpha}^{n,m}}\right)$$

soit
$$1 - \alpha = \mathbb{P}\left(\frac{1}{K} \le \frac{1}{qf_{\alpha}^{n,m}}\right)$$
.

Rem: attention, il y a des coquilles sur l'expression de l'IC dans le poly p. Les bonnes informations sont celle du corrigé de TD.

Le test bilatère de fonction de test

$$\varphi_{\alpha}(X,Y) = 1 - \mathbb{I}_{qf_{\alpha/2} < Z < qf_{1-\alpha/2}}$$

est de niveau α .

La p-value étant inférieure au niveau, on rejette l'égalité avec un risque de 5%.

Exercice 3.

Le jeu de données birthwt¹ enregistre les poids de naissance (en gr.) de nouveauxnés pour 115 mères non fumeuses et 74 mères fumeuses.

- 1. La p-valeur du test de Shapiro-Wilks vaut 0.33 pour les mères non fumeuses et 0.42 pour les mères fumeuses. Quelle modélisation proposez-vous?
- 2. Effectuer un test d'égalité des variances des deux échantillons au niveau 5%. On observe $\hat{\sigma}_{nf}^2 = 566492$ et $\hat{\sigma}_f^2 = 435118$. Le quantile à 0.975 de la loi $\mathcal{F}(114,73)$ vaut 1.54, et celui de la loi $\mathcal{F}(73,114)$ vaut 1/0.66. Quelle décision prenez-vous?

Donner l'expression de la p-value. Est-elle supérieure ou inférieure à 5%

- 3. On observe $\bar{x}_{nf} = 3055.7$ et $\bar{x}_f = 2772$. Tester l'égalité des poids moyens des nouveaux-nés en fonction du statut fumeur/non fumeur de leur mère.
 - Calculer la p-value du test. Donner un intervalle de confiance de la différence des poids moyens. Interpréter.
- 4. On suspecte que le tabac ait une influence négative sur le poids des nouveauxnés, ceux de mère fumeuse étant plus chétifs. Que répondez-vous?
- Correction. 1. Le test de Shapiro-Wilks teste l'adéquation de l'échantillon à une loi gaussienne (hypothèse nulle) contre la non-adéquation (alternative). Pour les deux échantillons, la p-value est supérieure au niveau demandé pour le test, on conserve donc l'adéquation de chaque échantillon à la modélisation gaussienne, avec un risque de seconde espèce inconnu.
 - 2. Sous (H_0) : $\sigma_{nf} = \sigma_f$

$$Z = \frac{\widehat{\sigma}_{nf}^2}{\widehat{\sigma}_f^2} \sim \mathcal{F}(n_{nf} - 1, n_f - 1)$$

où l'on utilise les estimateurs non biaisés de la variance dans chacun des échantillon. L'alternative est (H_1) : $\sigma_{nf} \neq \sigma_f$. La région de rejet

$$\{Z > qf_{1-\alpha/2}^{n_{n_f}-1,n_f-1}\} \cup \{Z < qf_{\alpha/2}^{n_{n_f}-1,n_f-1}\}$$

est de risque α

 $A.N.: \widehat{\sigma}_{nf}^2/\widehat{\sigma}_f^2 = 1.3 < q f_{1-\alpha/2}^{115-1,74-1} = 1.54$. On conserve l'égalité des variances, avec un risque de seconde espèce inconnu.

La pvalue = $2(1 - \mathbb{P}_{\mathcal{F}(114,73)}(Z > \widehat{\sigma}_{nf}^2/\widehat{\sigma}_f^2))$ est supérieure à 5% puis qu'on a conservé (H_0) . Le calcul avec un logiciel donne 0.22.

¹accessible par exemple à partir du package MASS du logiciel R

3. Il s'agit du test de Student de comparaison de moyennes de deux échantillons gaussien indépendants. Puisqu'il s'agit de tester l'égalité, les hypothèses sont $(H_0): \mu_{nf} = \mu_f$ contre $(H_1): \mu_{nf} \neq \mu_f$. La statistique de test est

$$T = \frac{\overline{X}_{nf} - \overline{X}_f}{\widehat{\sigma}\sqrt{\frac{1}{n_{nf}} + \frac{1}{n_f}}} \sim \mathcal{T}(n_f + n_{nf} - 2), \text{ avec } \widehat{\sigma}^2 = \frac{(n_f - 1)\widehat{\sigma}_f^2 + (n_{nf} - 1)\widehat{\sigma}_{nf}^2}{n_f + n_{nf} - 2}$$

suit une loi de Student de paramètre $n_f + n_{nf} - 2$. Soit $q_t^{1-\alpha/2}$ le quantile d'ordre $1 - \alpha/2$ d'une loi $\mathcal{T}(n_f + n_{nf} - 2)$, la région de rejet $\{|T| > q_t^{1-\alpha/2}\}$ de niveau exact α

 $A.N.:\ t_{obs}=2.65>1.97=q_t^{1-\alpha/2},\ on\ rejette\ donc\ l'égalité\ des\ poids\ avec\ un$ risque de première espèce $\alpha=5\%$

L'intervalle de confiance bilatère de $\mu_{nf} - \mu_f$

$$IC(\mu_{nf} - \mu_f) = \left[\overline{X}_{nf} - \overline{X}_f \pm q_t \ \widehat{\sigma} \sqrt{\frac{1}{n_{nf}} + \frac{1}{n_f}} \right]$$

est de niveau exact $1-\alpha$.

A.N.: Sa valeur observée sur les données vaut $I_{obs} = [73; 495]$. O n'y appartient pas, on rejette donc bien (H_0) : $\mu_{nf} - \mu_{nf} = 0$.

4. Il s'agit maintenant de tester (H_0) : $\mu_f - \mu_{nf} = 0$ contre (H_1) : $\mu_{nf} - \mu_f > 0$. Même statistique de test, même loi sous (H_0) que dans la question précédente. La région de rejet est maintenant $\{T > q_t^{1-\alpha}\}$ de niveau exact α

 $AN: t_{obs} = 2.65 > q_t^{1-\alpha/2} > q_t^{1-\alpha}$. On rejette donc (H_0) et on conclut à une baisse de poids pour les nouveaux nés dont les mères sont fumeuses. Attention, ce n'est qu'une liaison qui est montrée, pas une relation de cause à effet.

Exercice 4.

A partir du jeu de données précédents, un indicateur de faible poids a été défini: il vaut 1 si le poids du nouveau-né est inférieur à un certain seuil, 0 sinon. 29 nourrissons sont de poids faible parmi les 115 non-fumeuses et 30 sont de poids faibles parmi les 74 fumeuses.

Tester l'hypothèse d'une liaison négative du tabac sur le poids des nouveaux-nés: décrire la(es) méthodologie(s) et conclure en précisant le risque de la décision prise.

Correction. C'est un test de comparaison de moyennes, mais dans le cadre d'échantillons de Bernoulli. Soient π_1 la probabilité pour un nourrisson d'être de faible poids

parmi les mères fumeuses, π_0 celle pour un nourrisson d'être de faible poids parmi les mères non fumeuses.

On teste $\pi_0 = \pi_1$ contre $\pi_1 > \pi_0$.

Sous (H_0) , on a la même espérance de la loi de Bernoulli, $\pi = \pi_1 = \pi_2$ donc la même variance $\sigma^2 = \pi(1-\pi)$ où π est la probabilité (commune) pour un nourrisson d'être de faible poids. Or π est inconnue, on l'estime par la proportion de nouveauxnés de faible poids dans l'ensemble des deux échantillons $\widehat{\pi} = (n_1\widehat{\pi}_1 + n_0\widehat{\pi}_0)(n_1 + n_0)$. Utilisons maintenant la statistique

$$T_{n_0,n_1} = \frac{\widehat{\pi}_1 - \widehat{\pi}_0}{\widehat{\sigma}\sqrt{\frac{1}{n_1} + \frac{1}{n_0}}} = \frac{\widehat{\pi}_1 - \widehat{\pi}_0}{\sqrt{\frac{n_0\widehat{\pi}_0 + n_1\widehat{\pi}_1}{n_0 + n_1} \frac{n_0(1 - \widehat{\pi}_0) + n_1(1 - \widehat{\pi}_1)}{n_0 n_1}}}$$

En utilisant le TLC+ Slutsky, T_{n_0,n_1} converge en loi vers une gaussienne centrée réduite. On en déduit la région de rejet de la forme

$$\mathcal{R} = \{ T_{n_0, n_1} > q_{0.95}^{\mathcal{N}(0, 1)} \}$$

qui est asymptotiquement de niveau $\alpha=5\%$. Comme les proportions observées vérifient $n_j\widehat{\pi}_j(1-\widehat{\pi}_j)>12$ pour j=1,0 on peut utiliser la loi asymptotique à distance finie, avec un niveau qui n'est qu'approximativement α .

AN: $\widehat{\pi}_1 = 30/74 = 0.405$, $\widehat{\pi}_0 = 29/115 = 0.252$, $\widehat{\pi} = 59/189 = 0.31$, $t_{obs} = 2.21$, supérieur au quantile d'ordre 95% d'une loi gaussienne centrée réduite qui vaut 1.64, on rejette la non liaison, et on conclut avec un risque de 5% que la proportion de bébés de faible poids est plus important chez les mères fumeuses, d'où la liaison positive entre la prise de tabac et le faible poids de naissance.

Exercice 5.

Déterminer un intervalle de confiance bilatère exact de l'espérance d'une loi exponentielle à partir d'un n-échantillon iid de cette loi.

Construire un IC asymptotique.

Correction. Soit $\mu = \mathbb{E}(X_i)$. On utlise la méthode du pivot. Nous avons vu dans les TDs précédent que la région de rejet $T = \sum_i X_i/\mu$ suit un loi Gamma $\Gamma(n,1)$. D'où

$$\mathbb{P}(\gamma_n^{\alpha/2} < T < \gamma_n^{1-\alpha/2}) = 1 - \alpha$$

où γ_n^{α} est le quantile de $\Gamma(n,1)$ d'ordre α . Soit

$$IC(\mu) = \left[\sum_{i} X_i / \gamma_n^{1-\alpha/2}; \sum_{i} X_i / \gamma_n^{\alpha/2}\right]$$

Par le TLC, on a, avec q^* le quantile d'ordre $1-\alpha/2$ de la loi gaussienne centrée réduite

$$\mathbb{P}\left[-q^* < \sqrt{n}\left(\frac{\bar{X}}{\mu} - 1\right) < q^*\right] \to 1 - \alpha$$

d'où l'IC de niveau asymptotique α

$$IC(\mu) = \left[\frac{\bar{X}}{1 + q^*/\sqrt{n}}; \frac{\bar{X}}{1 - q^*/\sqrt{n}}\right]$$