Divided Differences

Let the function, y = f(n)

The first diveded differences of f(n)
for the arguments Xo, X, is defined
as

f(n.)-f(n,)

: f(no, n,) = f(no) - f(no) no-no

Similarly we can define, $f(n_1, n_2) = \frac{f(n_1) - f(n_2)}{n_1 - n_2}$ $f(n_2, n_3) = \frac{f(n_2) - f(n_3)}{n_1 - n_3}$

The second diveded differences
for the arguments $x_0, x_1, x_2 - is$ define of, $f(x_0, x_1, x_2) = \frac{f(x_0, x_1) - f(x_1, x_2)}{x_0 - x_2}$

similarly the third distrerences for the arguments xo, M, M2, M3 is defined as,

f(n., n, nz, nz) = f(n, n, nz) - f(n, nz, nz) no - kz

The diveded difference table:

Entry	Af(n)	47(h)	47(n)
tw)			
f(n)	f(n,,n,)		
7(1/1)		f (no) non	f (norun
7(~~)		f(n,, x2)2) n3
t (n2)	子いかり		
	t(n²) t(n²) t(n²)	f(n) f(n,n) f(n,n) f(n,n) f(n,n)	f(n) f(n,n) f(n,n) f(n,n) f(n,n) f(n,n) f(n,n)

Example: 5.1: If
$$f(n) = \frac{1}{h}$$
, then find $f(a,b,c)$

Given,
$$f(y) = \frac{1}{x}$$

 $f(y) = \frac{1}{a-b} = \frac{1}{a-b}$
 $= \frac{1}{ab(a-b)} = \frac{1}{ab}$
 $= \frac{1}{ab(a-b)} = \frac{1}{ab}$

and.
$$f(a,b,c) = \frac{f(a,b) - f(b,c)}{a - c}$$

$$= \frac{1}{abc} = \frac{1}{abc}$$

Newton's Greneral divided difference formula !-

Example: 5.3

Use Newton divided difference farmula and evaluate f (c), given tuble

5	7	10	13	21
150	392	1452	2366	9702
	5	5 7 150 392	5 7 11 150 392 1452	5 7 11 13 150 392 1452 2366

Solution:

+(n)	af(n)	1-7(n)	4张)	44(M)
150 392 1452 2366 9702	121 265 457 917	24 32 46	l	0
	J(N) 150 392 1452 2366	+(n) 4+(n) 150 131 392 1452 265 256 2766 217	150 392 1452 265 1452 265 457 266 917	150 121 24 1452 265 32 127 266 917

We have,

$$: f(6) = 252.$$

Function f(n) under suitable assumption from the following data.

Solli The divided difference table is given as under

n	5(N)	atin)	a7(n)	134(n)
0 1 2 3	2 3 12 147	1 9 45	9	l

we have, n.=0, f(no)=2, f(no,ni)=1

f(no,ni,ni)=4 f(no,ni,ni,ni)=1

The newton divided difference formula is

f(n)=f(no)+(n-no)f(no,ni)+(n-no)(n-no)

f(no,ni,ni)+(n-no)f(no,ni)

f(no,ni,ni)+(n-no)f(no,ni)

substituting we get, substituting we get, substituting we get, substituting we get, (n-0)(n-1)(n-1)(n-1)(n-1) (n-1)(n-2)(n-1) (n-1)(n-2)(n-1)(n-1)(n-2)(n-1)

Lag. Trange's Interpolation Formula

Lagrange's interpolation formula is;

$$y = f(n) = \frac{(n-n_1)(n-n_2)-...(n_n-n_n)}{(n_n-n_1)(n-n_2)-...(n_n-n_n)}$$

(n-n.) (n-N2) -.. (n-n.) f(n.) + (n,-n.) (n,-n.) ... (n,-n.)

(n-no) (n-n) ... (n-nn) (nn) +... (nn-no) (nn-no) ... (nn-nn) Example 5.6: Using Lagrange's intempolation formula find the value of y connesponding to x = 10 from the following table

T	5	6	2	11
N ION	13	13	19	16
y=+(n)	12	13		

 $\frac{501^{11}}{\text{We}}$ have, $\chi_0 = 5$ $\chi_1 = 6$ $\chi_2 = 9$ $\chi_3 = 11$ $\chi_3 = 16$ $\chi_4 = 12$ $\chi_5 = 13$ $\chi_2 = 14$ $\chi_3 = 16$

Using Lagrange's Interpolation formula we Oon write,

Con white,

$$y=f(n)=\frac{(n-n_1)(n-n_2)(n-n_3)}{(n_0-n_1)(n_0-n_3)}y_0+\frac{(n-n_1)(n_0-n_2)(n_0-n_3)}{(n_1-n_2)(n_0-n_3)}y_1+\frac{(n-n_2)(n-n_3)(n_0-n_3)}{(n_1-n_2)(n_0-n_3)}y_1+\frac{(n-n_2)(n-n_3)(n_0-n_3)}{(n_1-n_2)(n_0-n_3)}y_1+\frac{(n-n_2)(n-n_3)(n_0-n_3)}{(n_1-n_2)(n_0-n_3)}y_1+\frac{(n-n_2)(n-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_1-n_3)(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_0-n_3)}y_1+\frac{(n-n_3)(n_0-n_3)}{(n_$$

(n-n) (n-n) (n-n3) 52+ (n2-n) (n2-n) (n2-n3) (n-n0) (n-n1) (n-n2) 53 (n3-n0) (n3-n1) (n3-n3)

$$\frac{(10-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)} \times 12 + \frac{(0-5)(10-9)(10-11)}{(6-5)(6-9)(6-11)} \times 13 + \frac{(10-5)(10-6)(10-11)}{(9-5)(9-6)(9-11)} \times 14 + \frac{(10-5)(10-6)(10-9)}{(11-6)(11-9)} \times 16$$

$$= 2 - \frac{13}{3} + \frac{35}{3} + \frac{16}{3} = \frac{92}{3}$$

$$= 14.$$

Gauss Forward Interpolation Formula

to find y for n=30 given that

In	121	25	29	33	37
3	18.4708	17.8144	17,1070	16.3432	15.5154

Sol": Constaucting the difference table:

		14	My	34	44
и	7	14	40	40	40
21	18.4708	-0.656	((4y-2)		
25	17.8144	-0.7074	-0.0510	- DIOO99	-0.002
29	17.1070		-0.070	0.000	6(a) (4 /2 2)
33	16.3432	-0.827	8(47) -0.000		
37	15.5154				

Herre 1 h= 4 P=
$$\frac{x-x_0}{h} = \frac{30-29}{4} = \frac{1}{4} = 0.75$$

5

foreword foremula, gauss

$$y = y + \frac{P}{1!} \Delta y + \frac{P(P-1)}{3!} \Delta y + \frac{(P+1)P \cdot (P-1)}{3!} \Delta y + \frac{3y}{3!} + \frac{(P+1)P \cdot (P-1)(P-2)}{4!} \Delta y + \frac{4y}{3!} + \frac{4y}$$

We get,
$$y_{0.25} = f(0.25) = 17.1070 + (0.25) - 0.7638 + \frac{(0.25)(-0.75)}{2}$$

$$f_{0.0564} + \frac{(1.25)(0.25)(-0.75)}{6}$$

$$f_{0.0564} + \frac{(1.25)(0.25)(-0.75)(-0.75)}{6}$$

$$f_{0.0076} + \frac{(1.25)(0.25)(-0.75)(-0.75)(-0.75)}{24}$$

$$f_{0.00022} + \frac{(1.25)(0.25)(-0.7$$

=16.9216

Gauss Backward Intempolation Formula

Example: 6.2: Use Grauss's backward formula and find the sales for the year 1966, given that.

Year	1931	1991	1951	1961	1971	1981
Sales (shs)	12	15	20	27	39	52

Solmo We have, h=10

We take 1971 as the origin. The

centeral difference table with origin

at 1971 is

yearch!	Sales	(x) 47	My	434	447	45 7
1931	12					
1941	15	3(44)	2 (AY - 1) 2 (AY - 1))3		
1951	20	5 (44-3)	2(AY-3	0 (43)	3 (4) -3) -7(4)	(-10 (a) 5/4
1961	27	7(42)	564.	2) 247	-3) -7(4	y-3)
1971	39	13(4)	1 (4%	x-D -40	7-3)	
1981	52	170	•/			

Here,
$$h=10$$
, $P=\frac{X-X_0}{h}=\frac{1966-1971}{10}=-\frac{5}{10}$

Causs's backward formula is

$$= 39 + (0.5)(12) + \frac{(0.5)(-0.5)}{2} \times 1 + \frac{0.5 \times (-0.5) \times (-15)}{6} \times (-4) + \dots$$

$$=39-6-0.125-0.25$$

A

Bessel's Formula

Bassel's Formula is

$$S_{n} = \frac{Y_{0} + Y_{1}}{2} + (P - \frac{1}{2}) \Delta y_{0} + \frac{P(P - 1)}{2!} (\frac{\Delta^{n} y_{-1} + \Delta^{n} y_{-1}}{2})$$

$$+ \frac{(P - \frac{1}{2}) \cdot P \cdot (P - 1)}{3!} \Delta^{3} y_{-1} + \dots$$

Example 6.6: Apply Bessel's tonwola to obtain y₂₅ given that y₂₀= 2854, obtain y₂₅ given that y₂₀= 2854, y₂₄ = 3162, y₂₈ = 3544 and y₃₂= 3992.

Solm: Taking 24 as the origin we

$$P = \frac{29 - 24}{4}$$

The difference table 15,

N 1=\frac{x-24}{4} \frac{y}{2} \quad \text{Ay} \quad \quad \text{Ay} \quad \quad \text{Ay} \quad \text{Ay} \quad \quad \text{Ay} \quad \quad \text{Ay} \quad \qu

The Bessel's formula is given by
$$V_{n} = \frac{Y_{0} + Y_{1}}{2} + (P - \frac{1}{2}) 4y_{0} + \frac{P(P - 1)}{2!} (\frac{\Delta^{2} y_{-1} + \Delta^{2} y_{0}}{2}) + \frac{(P - \frac{1}{2})P(P - 1)}{3!} 4y_{0} + \frac{2y_{-1}}{2!} + \frac{(\frac{1}{2})(\frac{1}{2} - \frac{1}{2})P(P - 1)}{3!} 4y_{0} + \frac{(\frac{1}{2})(\frac{1}{2} - \frac{1}{2})P(P - 1)}{3!} 4y_{0} + \frac{(\frac{1}{2})(\frac{1}{2} - \frac{1}{2})P(P - 1)}{2!} (\frac{1}{2} - \frac{1}{2}) (\frac{1}{2} + \frac{1}{2})$$

 $+\frac{\left(\frac{1}{4}-\frac{1}{2}\right)^{\frac{1}{4}}\left(\frac{1}{4}-1\right)}{3!}\left(-\frac{1}{4}-1\right)}{68}$ =3353-955-65625-0.0625

$$\Rightarrow Y_{0.25} = 3250.875$$

$$\therefore Y = 3250.875$$

$$\therefore U = 25$$

$$\therefore Y_{25} = 3250.875$$

Stireling's Formula

Grauss's forward intempolation is

$$y_e = y_o + \frac{p}{1!} Ay_o + \frac{p(p-1)}{2!} Ay_{-1} + \frac{(p+1)}{3!} \frac{p(p-1)}{4!} Ay_{-1} + \frac{(p+1)}{4!} \frac{p(p-1)}{4!} \frac{p(p-2)}{4!} Ay_{-1} + \frac{(p+1)}{4!} \frac{p(p-1)}{4!} Ay_{-1} + \frac{(p+1)}{4!} \frac{p(p-1)}{4!} Ay_{-1} + \frac{(p+1)}{4!} \frac{p(p-1)}{4!} Ay_{-2} + \frac{(p+1)}{4!} \frac{p(p-1)}{4!} Ay_{-2} + \frac{(p+1)}{4!} \frac{p(p-1)}{4!} Ay_{-2} + \frac{(p+2)(p+1)}{4!} \frac{p(p-1)}{4!} Ay_{-2} + \dots = 3$$

Taking the mean of the two Gauss's formulae, we get,

$$y_{p} = y_{0} + P\left(\frac{Ay_{0} + Ay_{-1}}{2}\right) + \frac{P'}{2}A'y_{-1} + \frac{P(P'-1)}{3!} \\
\left(\frac{A^{3}y_{-1} + A^{3}y_{-2}}{2}\right) + \frac{P'(P'-1)}{4!} A^{3}y_{-2} + \frac{P'(P'-1)}{2!} A^{3}y_{-2} + \frac{P$$

The above is called stituling's formula gives formula. Stituling's formula gives the most accurate the soft occurate the soft accurate the soft of the

Therefore, we have to choose to soch that p satisfies this inequality.

to complete Piziz From the Following table

Tu Ti	. 11	12	13	14
105logn 23	967 28060	31788	35269	38368

Solli The difference table is

n	4=1051gn	47	My	43 y	44
10	23967	4 ralay			
u	28060	9728(47-1	- 365(4°)	(3) 58(A3).	-13(44-2)
12/n) 31788(4.)	342164	-307(44.	1) 45 (Ry	1) 13
13	35209	3159(48	-2070	(4)	
14	38368	717/0	<i></i>		

we have,
$$p = \frac{x - x_0}{h} = \frac{12 \cdot 2 - 12}{1} = 0.2$$

where, $x_0 = 12$ is the origin.

The Stirling formula is,

$$y = y + p(\frac{xy_{3} + xy_{4}}{2}) + \frac{p^{2}y_{4}}{2} + \frac{p(p^{2} - 1)}{6} \frac{(x^{2}y_{4} + x^{2}y_{2})}{2} + \frac{p^{2}(p^{2} - 1)}{2} \frac{(x^{2}y_{4} + x^{2}y_{4})}{2} + \frac{p^{2}(p^{2} - 1)}{2} \frac{(x^{2}y_{4} + x^{2})}{2} + \frac{p^{2}(p^{2} - 1)}{2} \frac{(x^{2}y_{4} + x^{2})}{2}$$

$$-(0.0016)(-13)$$

$$= 31788 + 714.9 - 6.1 + 1.6 + 0$$