Aprendizaje de Máquinas I - Especialización en Inteligencia Artificial

Uso de Taxis Yellow Cab en USA en el año 2020

Autores

Domenje, Carlos R.

Fux, Santiago

Profesores

Canavesi, Tobías

Lopez, Yoel

¿Qué nos interesa conocer?

¿Existe una manera de caracterizar los lugares más recurrentes para inicio / fin de viaje?

Dataset: Yellow Cab

Descripción general de los features:

- **VendorID**: Proveedor de servicios de tecnologías en taxis (T-PEP)
- **tpep_pickup_datetime**: Fecha y hora en el cual el reloj fue activado al iniciar un viaje.
- tpep_dropoff_datetime: Fecha y hora en el cual el reloj fue desactivado al finalizar un viaje.
- Passenger_count: El número de pasajeros en el vehículo. (Es un dato que lo ingresa el conductor.
- Trip_distance: La distancia del viaje transcurrido en millas reportada por el taxímetro.
- **PULocationID**: TLC Zona en la que el taxímetro se activó.
- DOLocationID: TLC Zona en la que el taxímetro se desactivó.
- RateCodeID: El código de tarifa final vigente al final del viaje.
- Store_and_fwd_flag: almacenar y reenviar o envio contínuo.
- Payment_type: Un código numérico que significa cómo el pasajero pagó por el viaje.
- Fare_amount: La tarifa de tiempo y distancia calculada por el taxímetro.

Dataset: Yellow Cab

Descripción general de los features:

- Extra: Varios extras y recargos. Actualmente, esto solo incluye los cargos de \$0.50 y \$1 por la hora pico y por la noche.
- MTA_tax: Impuesto MTA de \$0.50 que se activa automáticamente según la tasa de uso del medidor.
- Improvement_surcharge: Recargo de mejora de \$ 0.30 en viaje en el descenso de bandera.
- 🚅 **Tip_amount:** Importe de la propina: Propinas de tarjetas de crédito. Las propinas en efectivo no están incluidas.
- Tolls_amount: Importe total de todos los peajes pagados en el viaje.
- Total_amount: El monto total cobrado a los pasajeros. No incluye propinas en efectivo.
- Congestion_Surcharge: Importe total recaudado en el viaje por el recargo por congestión del Estado de Nueva York.
- Airport_fee: \$1.25 para recoger solo en los aeropuertos LaGuardia y John F. Kennedy.

Consideraciones del Dataset

1. Se tomó el 10% de los datos del mes de Enero - Febrero y Marzo de 2020.

	VendorID	passenger_count	trip_distance	RatecodeID	PULocationID	DOLocationID	payment_type	fare_amount	extra
count	1571207.000	1555761.000	1571207.000	1555761.000	1571207.000	1571207.000	1571207.000	1571207.000	1571207.000
mean	1.673	1.501	3.040	1.057	164.392	162.203	1.252	12.615	1.423
std	0.470	1.143	215.275	0.767	65.721	70.006	0.486	11.756	398.892
min	1.000	0.000	-29.100	1.000	1.000	1.000	0.000	-320.000	-4.500
25%	1.000	1.000	0.970	1.000	125.000	113.000	1.000	6.500	0.000
50%	2.000	1.000	1.600	1.000	162.000	162.000	1.000	9.000	0.500
75%	2.000	2.000	2.930	1.000	234.000	234.000	2.000	14.000	2.500
max	6.000	9.000	269803.730	99.000	265.000	265.000	4.000	575.000	500000.800

Consideraciones del Dataset

2. Se filtraron los datos con los códigos que pertenecen a Manhattan.

[4,12,13,24,41,42,43,45,48,50,68,74,75,79,87,88,90,100,103,104,105,107,1 13,114,116,120,125,127,128,137,140,141,142,143,144,144,151, 152,153,158,161,162,163,164,166,170,186,194,202,209,211,224,229,230,2 31,232,233,234,236,237,238,239,243,244,246,249,261,262,263]

Distribución de las variables

Datos Inválidos y Nulos Cantidad de Nulos

VendorID: 0/1571075

tpep_pickup_datetime: 0/1571075
tpep_dropoff_datetime: 0/1571075
passenger_count: 15093/1571075

trip_distance: 0/1571075
RatecodeID: 15093/1571075

store_and_fwd_flag: 15093/1571075

PULocationID: 0/1571075
DOLocationID: 0/1571075
payment_type: 0/1571075
fare amount: 0/1571075

extra: 0/1571075 mta_tax: 0/1571075

tip_amount: 0/1571075 tolls_amount: 0/1571075

improvement_surcharge: 0/1571075

total amount: 0/1571075

congestion_surcharge: 15093/1571075

airport_fee: 1571075/1571075

Cantidad de Inválidos (<0)

trip_distance: 0/1555982

fare_amount: 4974/1555982

extra: 2390/1555982

mta_tax: 4891/1555982

tip_amount: 55/1555982

tolls_amount: 93/1555982

improvement_surcharge: 4974/1555982

total_amount: 4974/1555982

congestion_surcharge: 3998/1555982

Exploración gráfica de datos inválidos

Datos con valores negativos

Datos con filtro aplicado

Variables tipo DateTime

- Se genera una nueva feature llamada 'duration' qué representa la duración del viaje.
- Se crean tres features más que representan los viajes diurnos, vespertinos y nocturnos (One hot encoding)

duration	morning	afternoon	evening
538.000	0	1	0
621.000	0	1	0
292.000	1	0	0
612.000	1	0	0
379.000	0	1	0

Afternoon 14-20hs

Evening

21-5hs

Duración

Fin - Inicio

Variable categórica PULocationID

Variable Ecualizada

Variable categórica PULocationID

Variable Top 10

Variable 90%

Análisis Gráfico - Inicio Viaje en zona 237 - 236 - 234 vs Total Amount

Análisis Gráfico - Fin Viaje en zona 237 - 236 - 161 vs Total Amount

Análisis Gráfico - Inicio Viaje en zona 237 - 236 - 234 vs TIP Amount

Análisis Gráfico - Fin Viaje en zona 237 - 236 - 161 vs Tip Amount

Selección de Features - Coef. Kendall

Test de correlación de Kendall:

- Test no paramétrico (no asume ninguna distribución.)
- H0: Las variables son independientes.
- H1: Las variables no son independientes.

Datasets Analizados

Dataset EQ

65 categorías

Dataset Top10

Dataset 90%

39 categorías

Modelos Aplicados

Clasificador

Random Forest Logistic Regression

Clasificador

Modelos Aplicados - Random Forest

```
from sklearn.ensemble import RandomForestClassifier
total trees = 100 # number of trees
max depth = 5
def run random forest(x tr, x te, y tr, y te):
 rf aux = RandomForestClassifier(n estimators = total trees, criterion = 'entropy', max depth = max depth, random state=0)
 rf aux.fit(x tr, y tr.values.reshape(-1))
 y rf pred aux = rf aux.predict(x te)
 print(classification report(y te,y rf pred aux))
 plt.barh(x tr.columns, rf aux.feature importances )
print(f'Dataset EQ:')
run random forest(X train eq, X test eq, y train eq, y test eq)
print(f'Dataset Top10:')
run random forest(X train top10, X test top10, y train top10, y test top10)
print(f'Dataset 90Percent:')
run random forest(X train 90percent, X test 90percent, y train 90percent, y test 90percent)
```

Modelos Aplicados

RF - Dataset EQ

recall f1-score support precision 0.00 0.00 0.00 12 0.00 0.00 0.00 1101 12 0.00 0.00 0.00 103 13 0.11 0.23 0.15 2488 24 0.00 0.00 0.00 41 0.17 0.03 0.04 1575 0.00 0.00 881 0.00 0.00 0.00 0.00 3272 0.00 0.00 0.00 557 0.08 0.01 0.02 6814 0.00 0.00 0.00 3191 0.00 0.00 0.00 6432 74 0.13 1763 0.19 0.10 75 0.00 0.00 3237 0.05 0.23 0.12 6516 0.08 87 0.12 0.11 0.11 2203 0.00 0.00 935 0.00 0.00 0.00 4437 0.00 100 0.00 0.00 0.00 3861 107 0.00 0.00 0.00 6234 113 0.00 0.00 0.00 4021 114 0.00 0.00 0.00 227587 227587 0.07 0.06 227587 weighted avg 0.07 0.10 0.04

RF - Dataset Top10

	precision	recall	f1-score	support
141	0.00	0.00	0.00	7716
142	0.30	0.02	0.04	8022
161	0.19	0.54	0.29	10569
162	0.00	0.00	0.00	8246
170	0.22	0.31	0.26	8931
230	0.32	0.00	0.00	6940
234	0.36	0.01	0.02	7968
236	0.23	0.68	0.35	13304
237	0.23	0.14	0.17	11606
239	0.40	0.12	0.19	7892
accuracy			0.22	91194
macro avg	0.23	0.18	0.13	91194
weighted avg	0.23	0.22	0.15	91194

RF - Dataset 90%

	precision		f1-score	support
13	0.20	0.24	0.22	2447
43	0.00	0.00	0.00	3274
48	0.15	0.03	0.05	6839
50	0.00	0.00	0.00	3234
68	0.00	0.00	0.00	6408
75	0.34	0.12	0.18	3216
79	0.09	0.25	0.13	6512
90	0.00	0.00	0.00	4445
100	0.00	0.00	0.00	3832
107	0.00	0.00	0.00	6268
113	0.00	0.00	0.00	4015
114	0.00	0.00	0.00	2906
137	0.00	0.00	0.00	3943
140	0.00	0.00	0.00	5676
141	0.00	0.00	0.00	7716
142	0.22	0.02	0.04	8023
143	0.00	0.00	0.00	4307
148	0.00	0.00	0.00	2709
151	0.42	0.10	0.16	2448
158	0.00	0.00	0.00	2885
161	0.09	0.55	0.16	10569
162	0.20	0.00	0.01	8246
163	0.00	0.00	0.00	6388
accuracy			0.10	227432
macro avg	0.07	0.06	0.04	227432
weighted avg	0.07	0.10	0.05	227432

Pesos de las variables de RF

Modelos Aplicados - Logistic Regression

```
def run lr(x tr, x te, y tr, y te):
  scaler = StandardScaler()
  X train sc = scaler.fit transform(x tr) # Estandarizamos los datos
  X test sc = scaler.transform(x te)
  lr = LogisticRegression(random state = 1, max iter=300, n jobs=-1)
  lr.fit(X train sc,y tr)
  y lr pred = lr.predict(X test sc)
  print(classification report(y te,y lr pred))
print(f'Dataset EQ:')
run lr(X train eq, X test eq, y train eq, y test eq)
print(f'Dataset Top10:')
run lr(X train top10, X test top10, y train top10, y test top10)
print(f'Dataset 90Percent:')
run lr(X train 90percent, X test 90percent, y train 90percent, y test 90percent)
```

Modelos Aplicados

LR - Dataset EQ

precision recall f1-score support 0.00 0.00 0.00 12 0.00 0.00 0.00 1103 12 0.00 0.00 0.00 108 2447 13 0.08 0.11 0.09 24 0.00 0.00 0.00 900 41 0.11 0.05 0.07 1561 870 42 0.10 0.02 0.03 43 0.00 0.00 0.00 3274 45 0.00 0.00 0.00 570 48 0.04 0.00 6839 0.00 3234 0.00 0.00 68 0.00 0.00 0.00 6408 74 0.09 0.01 0.02 1781 75 0.14 0.02 0.03 3216 79 0.06 0.35 0.10 6513 87 0.03 0.03 0.03 2255 0.22 0.01 0.02 967 0.00 0.00 0.00 4445 0.03 3832 0.00 0.00 6268 107 0.00 0.00 0.00 4015 0.00 0.00 114 0.00 0.00 0.00 2906 116 0.00 0.00 0.00 0.17 0.15 0.10 91194 0.17 0.12 91194 weighted ava 0.18

LR - Dataset Top10

	precision	recall	f1-score	support
141	0.18	0.02	0.03	7716
142	0.20	0.00	0.00	8022
161	0.18	0.42	0.25	10569
162	0.21	0.00	0.00	8246
170	0.17	0.25	0.20	8931
230	0.16	0.00	0.01	6940
234	0.04	0.00	0.00	7968
236	0.18	0.58	0.28	13304
237	0.19	0.15	0.17	11606
239	0.18	0.04	0.06	7892
accuracy			0.18	91194
macro avg	0.17	0.15	0.10	91194
weighted avg	0.17	0.18	0.12	91194

accuracy = 0.07

LR - Dataset 90%

13	0.14	0.13	0.14	2447
43	0.00	0.00	0.00	3274
48	0.04	0.00	0.00	6839
50	0.00	0.00	0.00	3234
68	0.00	0.00	0.00	6408
75	0.30	0.09	0.14	3216
79	0.07	0.35	0.11	6512
90	0.00	0.00	0.00	4445
100	0.00	0.00	0.00	3832
107	0.17	0.00	0.00	6268
113	0.00	0.00	0.00	4015
114	0.00	0.00	0.00	2906
137	0.00	0.00	0.00	3943
140	0.00	0.00	0.00	5676
141	0.05	0.00	0.00	7716
142	0.00	0.00	0.00	8023
143	0.00	0.00	0.00	4307
148	0.06	0.00	0.01	2709
151	0.34	0.12	0.18	2448
158	0.00	0.00	0.00	2885
161	0.08	0.40	0.13	10569
162	0.00	0.00	0.00	8246
163	0.00	0.00	0.00	6388
accuracy			0.08	227432
macro avg	0.05	0.05	0.03	227432
weighted avg	0.05	0.08	0.04	227432

Conclusiones

Modelo	Dataset Eq	Dataset Top10	Dataset 90%
Random Forest	10%	22%	10%
Logistic Regression	8%	18%	8%

PyCaret

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс	TT (Sec)
rf	Random Forest Classifier	0.1666	0.8195	0.1470	0.1600	0.1624	0.1439	0.1439	317.7660
dt	Decision Tree Classifier	0.1391	0.5587	0.1274	0.1394	0.1392	0.1169	0.1169	5.8300
ridge	Ridge Classifier	0.0690	0.0000	0.0301	0.0244	0.0250	0.0279	0.0321	0.8780
nb	Naive Bayes	0.0608	0.6045	0.0593	0.0230	0.0233	0.0251	0.0284	2.0740
ada	Ada Boost Classifier	0.0554	0.5536	0.0383	0.0164	0.0159	0.0113	0.0170	44.9280
svm	SVM - Linear Kernel	0.0265	0.0000	0.0175	0.0125	0.0047	0.0024	0.0036	53.6530
qda	Quadratic Discriminant Analysis	0.0004	0.0000	0.0152	0.0000	0.0000	0.0000	0.0000	2.4550

¡Muchas gracias!