Harten's Multiresolution Scheme on Adaptive Mesh Refinement Blocks for More Efficient Simulation of Reactive Flows

Brandon Gusto

Dept. of Scientific Computing Florida State University

March 25, 2019

Introduction

Many engineering applications depend on numerically solving systems of conservation laws of the form

$$\mathbf{U}_t + \mathbf{F}(\mathbf{U})_{\mathsf{x}} = \mathbf{S}(\mathbf{U})$$

where $\mathbf{U} = (\rho, \rho u, E)$ is a vector of conserved quantities, $\mathbf{F}(\mathbf{U})$ is a flux vector, and $\mathbf{S}(\mathbf{U})$ is a vector of source terms. The discretized solution are represented as averages over each cell

$$\mathbf{U}_i = \frac{1}{|V_i|} \int_{V_i} \mathbf{U} dV.$$

where the i denotes spatial index.

Discretization

The semi-discretized form of the system of PDEs is

$$\frac{\partial \mathbf{U}_i}{\partial t} = -\frac{1}{|V_i|} \left(\mathbf{F}_{i+\frac{1}{2}} - \mathbf{F}_{i-\frac{1}{2}} \right) + \mathbf{S}_i$$

where the source terms are also averaged over each cell

$$\mathbf{S}_i = \frac{1}{|V_i|} \int_{V_i} \mathbf{S} dV.$$

These equations are typically solved on a cartesian grid with non-uniform mesh spacing:

the refinement needs to follow localized features.

- ▶ the refinement needs to follow localized features
- some type of estimator of the local error is needed

- the refinement needs to follow localized features.
- some type of estimator of the local error is needed
- grid is typically refined in big groups (blocks) for efficiency

- the refinement needs to follow localized features.
- some type of estimator of the local error is needed
- grid is typically refined in big groups (blocks) for efficiency
- blocks introduce inherent "overresolution" in some regions of the mesh

Refinement

Block-Structured AMR

Filling Factor

The filling factor is the number of cells in a block which were flagged, divided by the total.

Filling Factor

The filling factor is the number of cells in a block which were flagged, divided by the total.

blocks with multiple parents becomes complicated

Filling Factor

The filling factor is the number of cells in a block which were flagged, divided by the total.

- blocks with multiple parents becomes complicated
- parallel communication between neighboring blocks becomes costly

a la Harten

Besides the AMR concepts, a multiresolution approach was also introduced by Harten. Grid is not refined in space. Instead, a wavelet transform is performed on the uniform grid, and the fluxes are interpolated in smooth regions.

a la Harten

- Besides the AMR concepts, a multiresolution approach was also introduced by Harten. Grid is not refined in space. Instead, a wavelet transform is performed on the uniform grid, and the fluxes are interpolated in smooth regions.
- "The goal of a multi-scale decomposition of a discrete set of data is a "rearrangement" of its information content in such a way that the new discrete representation, exactly equivalent to the old one, is more "manageable" in some respects." -Arandiga, Donat

Multiresolution

Define multiple, nested grids

$$\mathcal{G}^{I} = \left\{ x_{i+\frac{1}{2}}^{I} \right\}_{i=0}^{N_{I}} = \left\{ x_{i+\frac{1}{2}}^{I+1} \right\}_{i=1,i \text{ even}}^{N_{I+1}}.$$

Coarsening of avarage data in cell done via

$$\mathbf{U}_{i}^{l} = \frac{1}{2} \left(\mathbf{U}_{2i}^{l+1} + \mathbf{U}_{2i+1}^{l+1} \right)$$

Decomposition

The prediction from coarse to fine is done by

$$\hat{\mathbf{U}}_{2i+1}^{l+1} = \sum_{j=1-s}^{s-1} \gamma_j \mathbf{U}_{i+j}^l$$

The regularity information is assessed by computing detail coefficients as

$$\mathbf{d}_{i}^{l} = \mathbf{U}_{2i+1}^{l+1} - \hat{\mathbf{U}}_{2i+1}^{l+1}.$$

A mask $\{\mathbf{m}\}_{i}^{N'}$ is created for significant cells.

Decomposition

Once the forward wavelet transform has been computed on cell-averaged solution data...

Once the forward wavelet transform has been computed on cell-averaged solution data...

utilize this regularity information to identify sufficiently smooth regions in which to interpolate the flux

Once the forward wavelet transform has been computed on cell-averaged solution data...

- utilize this regularity information to identify sufficiently smooth regions in which to interpolate the flux
- introduce sufficiently large buffer region (why?) around flagged cells

Once the forward wavelet transform has been computed on cell-averaged solution data...

- utilize this regularity information to identify sufficiently smooth regions in which to interpolate the flux
- introduce sufficiently large buffer region (why?) around flagged cells
- \blacktriangleright perform inverse transform and either compute or interpolate each $F_{i\pm\frac{1}{2}}$

Two Interacting Blast Waves

Two Interacting Blast Waves

Two Interacting Blast Waves

Convergence

Sine wave advection after one period:

