Support Vector Machines: How to compute the margin?

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

$$\min_{w,b} \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \xi_{i}$$

$$s.t. \forall i, y_{i} \cdot (x_{i} \cdot w + b) \ge 1 - \xi_{i}$$

- Want to estimate w and b!
 - Standard way: Use a solver!
 - Solver: software for finding solutions to "common" optimization problems
- Use a quadratic solver:
 - Minimize quadratic function
 - Subject to linear constraints
- Problem: Solvers are inefficient for big data!

- Want to estimate w, b!
- Alternative approach:
 - Want to minimize f(w,b):

$$\min_{w,b} \ \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \xi_i$$

$$s.t. \forall i, y_i \cdot (x_i \cdot w + b) \ge 1 - \xi_i$$

- $f(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 y_i (\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b) \right\}$
 - How to minimize convex functions f(z)?
 - Use gradient descent: min_z f(z)
 - Iterate: $z_{t+1} \leftarrow z_t \eta f'(z_t)$

Want to minimize f(w,b):

$$f(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i (\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b) \right\}$$

Empirical loss $L(x_i y_i)$

Compute the gradient \nabla(j) w.r.t. $w^{(j)}$

$$\nabla(j) = \frac{\partial f(w,b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = 0 \quad \text{if } y_i(\mathbf{w} \cdot x_i + b) \ge 1$$
$$= -y_i x_i^{(j)} \quad \text{else}$$

(Batch) Gradient Descent:

Iterate until convergence:

- For j = 1 d • Evaluate: $\nabla(j) = \frac{\partial f(w,b)}{\partial w^{(j)}} = w^j + C \sum_{i=1}^n \frac{\partial L(x_i,y_i)}{\partial w^{(j)}}$ • Update:
 - $\mathbf{w}^{(j)} \leftarrow \mathbf{w}^{(j)} \eta \nabla(\mathbf{j})$
- Problem:
 - Computing ∇ (j) takes O(n) time!
 - **n** ... size of the training dataset

η learning rate parameterC regularization parameter

We just had:

Stochastic Gradient Descent

$$\nabla(j) = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

 Instead of evaluating gradient over all examples evaluate it for each individual training example

$$\nabla(j,i) = w^{(j)} + C \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

Stochastic gradient descent:

Iterate until convergence:

- For i = 1 n
 - For j = 1 d
 - Evaluate: ∇(j,i)
 - Update: $\mathbf{w}^{(j)} \leftarrow \mathbf{w}^{(j)} \eta \nabla (\mathbf{j}, \mathbf{i})$

SGD vs. GD

Convergence of GD vs. SGD

Iteration/step

GD improves the value of the objective function at every step.

SGD improves the value but in a "noisy" way.

GD takes fewer steps to converge but each step takes much longer to compute.

In practice, **SGD** is much faster!

Example: Text categorization

Example by Leon Bottou:

- Reuters RCV1 document corpus
 - Predict a category of a document
 - One vs. the rest classification
- \blacksquare n = 781,000 training examples (documents)
- 23,000 test examples
- d = 50,000 features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words

Example: Text categorization

• Questions:

- (1) Is SGD successful at minimizing f(w,b)?
- (2) How quickly does SGD find the min of f(w,b)?
- (3) What is the error on a test set?

	Training time	Value of f(w,b)	Test error
Standard SVM	23,642 secs	0.2275	6.02%
"Fast SVM"	66 secs	0.2278	6.03%
SGD SVM	1.4 secs	0.2275	6.02%

- (1) SGD-SVM is successful at minimizing the value of *f(w,b)*
- (2) SGD-SVM is super fast
- (3) SGD-SVM test set error is comparable