Author: Pavel Kocourek

3. Continuity

- Open and closed sets
- Function limit and continuity
- Intermediate value theorem and extreme value theorem

Reference: Chapter 4 in Craw's book

3.1. Open and Closed Sets

- a set $S \subseteq \mathbb{R}$
- Definition:
 - \circ **Open Set:** A set $U \subseteq \mathbb{R}$ is *open* if for every $a \in U$ there is a neighborhood of a contained in U.
 - Interior Point: a point $x \in S \subseteq \mathbb{R}$ is an interior point of S iff there is a neighborhood of x that is contained in S.
 - Interior of a Set: int S is the collection of all the interior points of set S.
 - **Limit Point:** A point $x \in \mathbb{R}$ is a limit point of set S iff there exists a sequence $\{s_n\}$ of points from S such that $s_n \to x$ as $n \to \infty$.
 - \circ Closed Set: A set $C \subset \mathbb{R}$ is closed if any limit point of points from C is in C.
 - \circ Closure of a Set: cl S (also denoted \overline{S}) is the set of all the limit points of set S.
 - Boundary Point: A point $x \in \mathbb{R}$ is a boundary point of set S if it is a limit point of both the set S and $\mathbb{R} \setminus S$.
 - \circ $\,$ Boundary of a Set: ∂S is the collection of all boundary points of S

3.2. Continuous Functions

- A real valued function: $f:D\to\mathbb{R}$, where $D\subseteq\mathbb{R}$.
- Definition:
 - Limit of a Function: A function $f:D\to\mathbb{R}$ tends to y_0 as $x\to x_0\in\overline{D}$ if, given any $\varepsilon>0$, there exists a $\delta>0$ such that for all $x\in D$ with $0<|x-x_0|<\delta$ the inequality $|f(x)-y_0|<\varepsilon$ holds. We write $\lim_{x\to x_0}f(x)=y_0$.

- Continuous at a Point: A function f is continuous at $x_0 \in D$ iff $f(x) \to f(x_0)$ as $x \to x_0$.
- Continuous Function: A function $f:D\to\mathbb{R}$ is continuous if it is continuous at every $x\in D$.

Exercise:

1. What is f(9) if f is continuous and for any $x \neq 9$, f is given by the formula

$$f(x) = \frac{\sqrt{x} + 3}{x - 9}?$$

2. Show that the function

$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is continuous at 0.

- 3. Show that the function $f(x) = \mathbf{1}_{\mathbb{Q}}(x)$ is not continuous at any $x \in \mathbb{R}$.
- 4. Formulate the continuity using convergence of sequences.

3.3. One Sided Limits

- Definition:
 - Left Limit: We say that

$$\lim_{x \to x_0 -} f(x) = y_0$$

if given $\varepsilon>0$, there is $\delta>0$ such that $|f(x)-f(x_0)|<\varepsilon$ for all $x\in (x_0-\delta,x_0)\cap D$.

Right Limit: We say that

$$\lim_{x \to x_0 +} f(x) = y_0$$

if given $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) - f(x_0)| < \varepsilon$ for all $x \in (x_0, x_0 + \delta) \cap D$.

- **Proposition:** Let $x_0 \in \partial D$. If $\lim_{x \to x_0} f(x)$ exists, then both one sided limits exist. Conversely, if both one sided limits exist and are equal, then $\lim_{x \to x_0} exists$.
- **Continuity Test:** The function f is continuous at x_0 if both one sided limits exist and are equal to $f(x_0)$.
- 🧩 Exercise:
 - 1. Show that the function f(x) = |x| is continuous.
 - 2. Find the left and right limit of the function $f(x)=\mathbf{1}_{\mathbb{R}_+}(x)$ at x=0 and discuss its continuity.

3.4. "Algebra" of Continuity

- **Proposition:** Let f and g be continuous at x_0 , and let $k \in \mathbb{R}$ be a constant. Then the functions $k \cdot f$, f + g, and $f \cdot g$ are continuous at x_0 . Moreover, if $g(x_0) \neq 0$, then the function f/g is continuous at x_0 .
- **Proposition:** Let f be continuous at x_0 , and let g be continuous at $f(x_0)$. Then the composition $g \circ f$ is continuous at x_0 .
- **Exercise:** Show that the function $f(x) = |x^2 1|$ is continuous.

3.5. Intermediate Value Theorem

- **Theorem:** Let $f:[a,b] \to \mathbb{R}$ be a continuous function such that f(a) < 0 < f(b). Then there exists $c \in (a,b)$ such that f(c) = 0.
- **Corollary:** Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then for any y between f(a) and f(b) there exists $c \in [a,b]$ such that f(c)=y.
- **Exercise:** Show that $f(x) = \frac{x}{x^3 + 1}$ attains the value $\frac{1}{3}$ at some $x \in (1, 2)$.
- **Extreme Value Theorem:** A continuous function $f:[a,b]\to\mathbb{R}$ attains both a minimum and a maximum.
- **Exercise:** A function $f:[0,2]\to\mathbb{R}$ has values f(0)=1, f(1)=9, and f(2)=3.
 - a. Show that it has a maximum on (0, 2).
 - b. Give an example of a function f such that it has no minimum on (0,2).