Continuous Functions

Given two domains, $\mathbb{X}=(X, \perp_X, \sqsubseteq_X)$ and $\mathbb{Y}=(Y, \perp_Y, \leq_y)$ The set $Cont(X,Y)=\{f: X \to Y\}$ where:

- $\forall x, x' \in X$. $x \sqsubseteq_X x' \Rightarrow f(x) \leq_Y f(x')$
- $x \in Chain(X) \Rightarrow f(\sqcup x_i) = \sqcup f(x_i)$

The relation \sqsubseteq_C is defined as

$$\sqsubseteq_C = \{(f,g) \mid f,g \in Cont(X,Y) \land \forall x \in X. \ f(x) \leq_Y g(x)\}$$

1 $\forall f \in Cont(X,Y). \perp \sqsubseteq_C f$

 $\bot_{X\to Y}$ is defined as the function $\bot = \lambda x.\bot(x)$, the function that loops on all inputs. The output of this function will always be \bot , because it does not terminate. So for all $x\in X$ we have $\bot \le_Y f(x)$. As $\mathbb Y$ is a domain we know this holds for every element of Y and as the codomain of f is Y, every f(x) is in Y. Therefore $\bot \sqsubseteq_C f$.

2 Prove \sqsubseteq_C is a partial order

For \sqsubseteq_C to be a partial order, it must be reflexive, antisymmetric and transitive. As \mathbb{Y} is a domain, we know that \leq_Y is a partial order.

Reflexivity We need to prove that $\forall f \in Cont(X, Y)$. $f \sqsubseteq_C f$. We can rewrite this using the definition of \sqsubseteq_C to get

$$\forall f \in Cont(X, Y). \ (\forall x \in X. \ f(x) \leq_Y f(x))$$

Functions are single valued, so we know $\forall f. \forall x. \ f(x) = f(x)$ and as \leq_Y is reflexive we know $\forall f. \forall x \in X. \ f(x) \leq_Y f(x)$. Therefore we have $f \sqsubseteq_C f$, for any $f \in Cont(X,Y)$.

Antisymmetry We need to prove that $\forall f, g \in Cont(X, Y)$. $f \sqsubseteq_C g \land g \sqsubseteq_C f \Rightarrow f = g$. Rewriting this using the definition of \sqsubseteq_C gives us

$$\forall f, g \in Cont(X, Y). \ (\forall x \in X. \ f(x) \leq_Y g(x) \land g(x) \leq_Y f(x) \Rightarrow f(x) = g(x))$$

 \leq_Y is antisymmetric, so we have $\forall x \in X$. f(x) = g(x), for any values of f and g. Therefore \sqsubseteq_C is also antisymmetric.

Transitivity We need to prove that $\forall f, g, h \in Cont(X, Y)$. $f \sqsubseteq_C g \land g \sqsubseteq_C h \Rightarrow f \sqsubseteq_C h$. Rewriting this using the definition of \sqsubseteq_C gives us

$$\forall f, g, h \in Cont(X, Y). \ (\forall x \in X. \ (f(x) \leq_Y g(x) \land g(x) \leq_Y h(x)) \Rightarrow f(x) \sqsubseteq_C h(x))$$

As \leq_Y is transitive, we have $\forall x \in X. f(x) \leq_Y h(x)$, for all f, g and h. Therefore \sqsubseteq_C is also transitive.

All three properties hold, so \sqsubseteq_C is a partial order on Cont(X,Y)

3 All chains have a least upper bound (limit)

For all chains f in Chain(Cont(X,Y)), when $\exists z \in Cont(X,Y)$ we must have:

- $\forall i.f_i \sqsubseteq_C z$
- $\forall g.(\forall i.f_i \sqsubseteq_C g) \Rightarrow z \sqsubseteq_C g$

Let $z = \lambda x$. $\sqcup^Y f_i(x)$, where $\sqcup^Y f_i(x)$ is the limit of the chain obtained by applying the functions in Cont(X,Y) to a certain element $x \in X$.

A chain of functions will be a chain of elements of the set Cont(X,Y), for example

$$f_1 \sqsubseteq_C f_2 \sqsubseteq_C \dots \sqsubseteq_C \sqcup f_i$$

If we expand this using the definition of \sqsubseteq_C we have

$$\forall x \in X. \ (f_1(x) \leq_y f_2(x) \leq_Y \ldots \leq_Y \sqcup f_i(x))$$

This is a set of chains in $Chain(\mathbb{Y})$ where every chain contains the result of each function on a certain x value. As \mathbb{Y} is a domain, for any chain using the elements of Y, rhe least upper bound is defined. Therefore we know that the least upper bound $\sqcup f_i(x)$ is defined. Now we can see that this is the same as our definition of z.

$$z = \lambda x. \sqcup^{Y} f_i(x)$$

For the second part of the proof, we can rewrite it using the definition of \sqsubseteq_C as

$$\exists z \in Cont(X,Y). \ \forall x \in X. \ (\forall g. (\forall i. f_i(x) \leq_Y g(x)) \Rightarrow z(x) \leq_Y g(x))$$

As \mathbb{Y} is a domain, $(\forall i.f_i(x) \leq_Y g(x)) \Rightarrow z(x) \leq_Y g(x))$ holds for each of our individual chains for each $x \in X$. Therefore we have $\exists z \in Cont(X,Y)$. $\forall g.(\forall i.f_i \sqsubseteq_C g) \Rightarrow z \sqsubseteq_C g$