ESP32 Bug 描述 及解决方法

版本 1.5 版权 © 2018

关于本手册

本文收录了 ESP32 芯片的设计问题, 结构如下:

章	标题	内容
第1章	芯片修订	介绍如何辨识 ESP32 的修订版本。
第2章	Bug 列表	概述每个 bug,并给出影响的芯片版本。
第3章	Bug 描述和解决方法	详细描述了每个 bug 并给出了解决办法。

发布说明

日期	版本	发布说明	
2016-11	V1.0		
2016-12	V1.1		
0017.04	V1.2	修改章节 3.1 bug 的描述;	
2017-04		增加章节 3.8 bug。	
2017-06	V1.3	增加章节 3.9、3.10 bug。	
2018-02	V1.4	修正章节 3.3 中前五个寄存器的名称里的笔误。	
2018-02	V1.5	增加章节 3.11 bug。	

文档变更通知

用户可通过乐鑫官网订阅技术文档变更的电子邮件通知。

证书下载

用户可通过乐鑫官网下载产品证书。

1.	芯片修订	.1
2.	Bug 列表	.2
3.	Bug 描述和解决方法	3
	3.1. 由于 cache MMU bug,芯片上电或 Deep-sleep 醒来后,会随机发生一次看门狗复位。	.3
	3.2. CPU 使用 cache 访问外部 SRAM 时,会随机发生读写错误。	.3
	3.3. CPU 访问外设时,如果连续不间断地写同一个地址,会出现数据丢失的现象。	.3
	3.4. Brown-out Reset(欠压复位)功能在当前版本无法工作,复位之后芯片无法起来。	.4
	3.5. CPU 频率从 240 MHz 切换到 80/160 MHz 会卡死。	.4
	3.6. 同时有 GPIO 和 RTC_GPIO 功能的 pad 的上拉下拉寄存器只能使用 RTC_GPIO 的上拉下拉寄 存器,GPIO 寄存器无效。	
	3.7. Audio PLL 使用频率有限制。	.5
	3.8. 由于 flash 启动的速度慢于芯片读取 flash 的速度,芯片上电或 Deep-sleep 醒来后,会随机发 生一次看门狗复位。	
	3.9. CPU 在访问外部 SRAM 时会小概率发生错误。	.5
	3.10. 双核 CPU 在读不同地址空间时会发生错误。	.6
	3.11. 当用于控制温度传感器、SARADC1 传感器、SARADC2 传感器、AMP 传感器或 HALL 传感器 的电源打开时,GPIO36 和 GPIO39 的数字输入会被拉低约 80 ns。	

1.

芯片修订

用户可以根据 ESP32 的 eFuse bit 来读取芯片的版本。详情请参考 <u>ESP32 技术参考手册</u>中的 eFuse 控制器章节。

表 1-1. 芯片修订

芯片版本	发布日期
0	2016-09
1	2017-02

2.

Bug 列表

表 2-1 列出了每个 bug 的概要和影响的芯片版本。

表 2-1. Bug 列表

章节	概要	影响版本
章节 3.1	由于 cache MMU bug,芯片上电或 Deep-sleep 醒来后,会随机发生一次看门狗复位。	0
章节 3.2	CPU 使用 cache 访问外部 SRAM 时,会随机发生读写错误。	0
章节 3.3	CPU 访问外设时,如果连续不间断地写同一个地址,会出现数据丢失的现象。	0
章节 3.4	Brown-out Reset(欠压复位)功能在当前版本无法工作,复位之后芯片无法起来。	0
章节 3.5	CPU 频率从 240 MHz 切换到 80/160 MHz 会卡死。	0
章节 3.6	同时有 GPIO 和 RTC_GPIO 功能的 pad 的上拉下拉寄存器只能使用 RTC_GPIO 的上拉下拉寄存器,GPIO 寄存器无效。	0/1
章节 3.7	Audio PLL 的频率范围有限制。	0
章节 3.8	由于 Flash 启动慢于芯片读取 Flash 的速度,芯片上电或 Deep-sleep 醒来后,会随机发生一次看门狗复位。	0/1
章节 3.9	CPU 在访问外部 SRAM 时会小概率发生错误。	1
章节 3.10	双核 CPU 在读不同地址空间时会发生错误。	0/1
章节 3.11	当用于控制温度传感器、SARADC1 传感器、SARADC2 传感器、AMP 传感器或 HALL 传感器的电源打开时,GPIO36 和 GPIO39 的数字输入会被拉低约 80 ns。	0/1

3.

Bug 描述和解决方法

3.1. 由于 cache MMU bug, 芯片上电或 Deep-sleep 醒来后, 会随机 发生一次看门狗复位。

描述:

芯片上电的看门狗复位无法使用软件绕过。

Deep-sleep 醒来后的看门狗复位可以使用软件绕过。

解决方法:

Deep-sleep 醒来后,CPU 首先读取 RTC fast memory 中的一段指令,然后再执行 boot 程序。RTC fast memory 中的这段指令需要清除 cache MMU 的非法访问标志。首先将 DPORT_PRO_CACHE_CTRL1_REG 寄存器的 PRO_CACHE_MMU_IA_CLR 比特置 1,然后将该比特清零。

3.2. CPU 使用 cache 访问外部 SRAM 时,会随机发生读写错误。

描述:

这个 bug 无法使用软件绕过。

当前版本的芯片,CPU 使用 cache 访问外部 SRAM 的功能将受到限制。CPU 使用cache 访问外部 SRAM 时,只能够进行单向操作,即只能够单纯的进行写 SRAM 操作,或者单纯的进行读 SRAM 操作,不能交替操作。

解决方法:

- 清空流水线。在读操作之后,清空流水线,然后再发起写操作。
- 使用 MEMW 指令。在读操作之后,加上 __asm__("MEMW") 指令,然后再发起写操作。
- 3.3. CPU 访问外设时,如果连续不间断地写同一个地址,会出现数据 丢失的现象。

解决方法:

考虑到实际应用,与FIFO 相关的地址和 GPIO 部分地址,需要作如下转换:

寄存器名称	原地址	转换地址
UART_FIFO_REG	0x3ff40000	0x60000000
UART1_FIFO_REG	0x3ff50000	0x60010000
UART2_FIFO_REG	0x3ff6E000	0x6002E000
I2S0_FIFO_RD_REG	0x3ff4F004	0x6000F004
I2S1_FIFO_RD_REG	0x3ff6D004	0x6002D004
GPIO_OUT_REG	0x3ff44004	0x60004004
GPIO_OUT_W1TC_REG	0x3ff4400c	0x6000400c
GPIO_OUT1_REG	0x3ff44010	0x60004010
GPIO_OUT1_W1TS_REG	0x3ff44014	0x60004014
GPIO_OUT1_W1TC_REG	0x3ff44018	0x60004018
GPIO_ENABLE_REG	0x3ff44020	0x60004020
GPIO_ENABLE_W1TS_REG	0x3ff44024	0x60004024
GPIO_ENABLE_W1TC_REG	0x3ff44028	0x60004028
GPIO_ENABLE1_REG	0x3ff4402c	0x6000402c
GPIO_ENABLE1_W1TS_REG	0x3ff44030	0x60004030
GPIO_ENABLE1_W1TC_REG	0x3ff44034	0x60004034

3.4. Brown-out Reset (欠压复位) 功能在当前版本无法工作,复位之后芯片无法起来。

解决方法:

无。

3.5. CPU 频率从 240 MHz 切换到 80/160 MHz 会卡死。

解决方法:

建议使用以下两种模式:

- (1) 2 MHz <-> 40 MHz <-> 80 MHz <-> 160 MHz
- (2) 2 MHz <->40 MHz <->240 MHz

Espressif 4/7 2018.02

3.6. 同时有 GPIO 和 RTC_GPIO 功能的 pad 的上拉下拉寄存器只能使用 RTC_GPIO 的上拉下拉寄存器,GPIO 寄存器无效。

解决方法:

GPIO 和 RTC_GPIO 都使用 RTC_GPIO 寄存器。

3.7. Audio PLL 使用频率有限制。

描述:

受影响芯片的 audio PLL 频率公式如下:

$$f_{\text{out}} = \frac{f_{\text{xtal}}(sdm2+4)}{2(odiv+2)}$$

修复之后的频率公式如下:

$$f_{\text{out}} = \frac{f_{\text{xtal}}(sdm2 + \frac{sdm1}{2^8} + \frac{sdm0}{2^{16}} + 4)}{2(odiv+2)}$$

3.8. 由于 flash 启动的速度慢于芯片读取 flash 的速度,芯片上电或 Deep-sleep 醒来后,会随机发生一次看门狗复位。

描述:

芯片上电的看门狗复位无法使用软件绕过,但可以通过更换 Flash 绕过。

Deep-sleep 醒来后的看门狗复位可以通过更换 Flash 绕过(方法 1)或者使用软件绕过 (方法 2)。

解决方法:

- (1) 更换更快的 Flash, 要求 Flash 上电到可读的时间小于 800 µs。
- (2) Deep-sleep 醒来后, CPU 首先读取 RTC fast memory 中的指令,等待一段时间,然后再执行 boot 程序,从而使芯片从启动到读取 Flash 的时间大于 Flash 的启动时间。
- 3.9. CPU 在访问外部 SRAM 时会小概率发生错误。

描述:

CPU 在执行下面汇编指令访问外部 SRAM 时会小概率发生错误:

store.x at0, as0, n
load.y at1, as1, m

其中 store.x 表示 x 位写操作, load.y 表示 y 位读操作, 且 as0+n 和 as1+m 访问的外部 SRAM 的地址相同。

- x>=y 时, 写数据会丢失;
- x<y时,写数据会丢失,且读数据错误。

解决方法:

- x>=y 时, 写数据会丢失: 在 store.x 和 load.y 之间插入 4 个 nop 指令。
- x<y时,写数据会丢失,且读数据错误:在 store.x 和 load.y 之间插入 memw 指令。

3.10. 双核 CPU 在读不同地址空间时会发生错误。

描述:

双核情况下,一个 CPU 的总线在读 A (0x3FF0_0000 ~ 0x3FF1_EFFF) 地址空间,而另一个 CPU 的总线在读 B (0x3FF4_0000 ~ 0x3FF7_FFFF) 地址空间,读 A 地址空间的 CPU 会发生错误。

解决方法:

一个 CPU 在读 A 地址空间时,通过加锁和中断的方式来避免另一个 CPU 发起对 B 地址空间的读操作。

3.11. 当用于控制温度传感器、SARADC1 传感器、SARADC2 传感器、AMP 传感器或 HALL 传感器的电源打开时,GPIO36 和 GPIO39 的数字输入会被拉低约 80 ns。

解决方法:

当用户决定把用于控制温度传感器、SARADC1 传感器、SARADC2 传感器、AMP 传感器或 HALL 传感器的电源域打开时,应当忽略来自 GPIO36 和 GPIO39 的输入。

Espressif 6/7 2018.02

乐鑫 IOT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。 文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归© 2018 乐鑫所有。保留所有权利。