计算机设计与实践 汇编语言程序设计

2025 · 夏

实验目的

- ◆ 熟练掌握RISC-V或LoongArch汇编语言,熟悉并理解相应的指令系统
- ◆ 了解程序在单周期RISC-V或LoongArch SoC中的运行过程
- ◆ 进一步熟悉RARS、Logisim等汇编和模拟仿真工具的使用

实验工具 — RARS

1. ☐ TheThirdOne / rars

汇编IDE: 编辑器+汇编器+模拟器

.text存储在指令存储器,.data存储在数据存储器如果汇编代码没有定义.data,则不会生成.data段

实验工具 — Logisim

2. Logisim

戳工具

可直接查看组件的值可显示连线当前的值

编辑工具

允许用户重新安排现有组件修改组件属性并添加连线

Ctrl + R: 电路复位

Ctrl + T: 时钟单步

Ctrl + K: 时钟连续

SoC电路

SoC采用I/O统一编址的方式,最高的4KB为I/O地址空间

外设	基址
数码管	0xFFFF_F <mark>000</mark>
计时器	0xFFFF_F <mark>020</mark>
	0xFFFF_F <mark>024</mark>
LED	0xFFFF_F <mark>060</mark>
拨码开关	0xFFFF_F070

实验内容 — 题目1: 基本输入输出

- ◆ 在Logisim运行示例程序Exercise1.asm (Exercise1A.asm for miniLA)
 - 阅读该程序源码,分析程序功能
 - 学习汇编程序如何访问I/O接口及外设
 - 根据实验指导书,运行程序,熟悉实验过程及各工具的使用

实验内容 — 题目2: 随机数排序

◆ 运用miniRV/miniLA指令, 编写汇编程序:

• 输入: 拨码开关sw[1:0]

• 输出:数码管、LED[0]

后续实现CPU后,本程序需下板演示,故不要使用

不准备实现的指令

实验原理 — LFSR

- 线性反馈移位寄存器
 - 移位寄存器的基础上添加反馈输入,常用于生成随机数、白噪声
 - LFSR的初始值即为随机数种子
 - · a_i 表示 bit_i 对应的反馈回路是否存在

实验原理 — LFSR

- 线性反馈移位寄存器
 - 32位的LFSR: $\{a_0, a_1, a_{21}, a_{31}\} = 4$ 'b1111

验收&提交

- 课堂验收
 - 课上检查题目2功能是否正确
- ・提交内容
 - 题目1: 自行完成,不需提交
 - 题目2: .asm源文件 (!!!**写注释!!!**) 、汇编生成的.hex机器码
- 将上述文件打包成.zip, 以"学号_姓名.zip"命名提交到作业系统
 - ◆ 注意: 如有雷同,双方均0分!
- 数据通路表、控制信号表DDL: July 4th 23:00

开始实验

1920

哈 T 大

