Subject code- CS-801 Subject: Soft Computing

Semester: VIII

For credits & marks refer your scheme

Course Objective- This course introduces soft computing techniques that are different from conventional AI techniques. This course also provides necessary mathematical background for understanding and implementing soft computing Techniques, such as neural networks, fuzzy systems, and genetic algorithms.

COURSE CONTENT:

Unit – I

Soft Computing: Introduction of soft computing, soft computing vs. hard computing, various types of soft computing techniques, applications of soft computing. Artificial Intelligence: Introduction, Various types of production systems, characteristics of production systems, breadth first search, depth first search techniques, other Search Techniques like hill Climbing, Best first Search, A* algorithm, AO* Algorithms and various types of control strategies. Knowledge representation issues, Prepositional and predicate logic, monotonic and non monotonic reasoning, forward Reasoning, backward reasoning, Weak & Strong Slot & filler structures, NLP.

Unit – II

Neural Network: Structure and Function of a single neuron: Biological neuron, artificial neuron, definition of ANN, Taxonomy of neural net, Difference between ANN and human brain, characteristics and applications of ANN, single layer network, Perceptron training algorithm, Linear separability, Widrow & Hebb;s learning rule/Delta rule, ADALINE, MADALINE, AI v/s ANN. Introduction of MLP, different activation functions, Error back propagation algorithm, derivation of BBPA, momentum, limitation, characteristics and application of EBPA,

Unit – III

Counter propagation network, architecture, functioning & characteristics of counter Propagation network, Hopfield/ Recurrent network, configuration, stability constraints, associative memory, and characteristics, limitations and applications. Hopfield v/s Boltzman machine. Adaptive Resonance Theory: Architecture, classifications, Implementation and training. Associative Memory.

Unit - IV

Fuzzy Logic: Fuzzy set theory, Fuzzy set versus crisp set, Crisp relation & fuzzy relations, Fuzzy systems: crisp logic, fuzzy logic, introduction & features of membership functions, Fuzzy rule base system: fuzzy propositions, formation, decomposition & aggregation of fuzzy rules, fuzzy reasoning, fuzzy inference systems, fuzzy decision making & Applications of fuzzy logic.

Unit - V

Genetic algorithm: Fundamentals, basic concepts, working principle, encoding, fitness function, reproduction, Genetic modeling: Inheritance operator, cross over, inversion & deletion, mutation operator, Bitwise operator, Generational Cycle, Convergence of GA, Applications & advances in GA, Differences & similarities between GA & other traditional methods.

- 1. S, Rajasekaran & G.A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic & Genetic Algorithms, Synthesis & applications, PHI Publication.
- 2. S.N. Sivanandam & S.N. Deepa, Principles of Soft Computing, Wiley Publications
- 3. Rich E and Knight K, Artificial Intelligence, TMH, New Delhi.
- 4. Bose, Neural Network fundamental with Graph, Algo.& Appl, TMH
- 5. Kosko: Neural Network & Fuzzy System, PHI Publication
- 6. Klir & Yuan ,Fuzzy sets & Fuzzy Logic: Theory & Appli.,PHI Pub.
- 7. Hagen, Neural Network Design, Cengage Learning

Subject code-CS-802 Subject: Web Engineering

Semester: VIII

For credits & marks refer your scheme

Course Objective-

Student will able to understand the concepts, principles and methods of Web engineering and apply them to Web applications development. Also be familiar with current Web technologies, Web application development software tools and environments currently available on the market.

COURSE CONTENT:

UNIT-1

Web Engineering: Introduction, History, Evolution and Need, Time line, Motivation, Categories & Characteristics of Web Applications, Web Engineering Models, Software Engineering v/s Web Engineering. World Wide Web: Introduction to TCP/IP and WAP, DNS, Email, TelNet, HTTP and FTP. Browser and search engines: Introduction, Search fundamentals, Search strategies, Directories search engines and Meta search engines, Working of the search engines. Web Servers: Introduction, Features, caching, case study-IIS, Apache.

UNIT- 2

Information Architecture: Role, Collaboration and Communication, Organizing Information, Organizational Challenges, Organizing Web sites parameters and Intranets Website Design: Development, Development phases, Design issues, Conceptual Design, High-Level Design, Indexing the Right Stuff, Grouping Content. Architectural Page Mockups, Design Sketches, Navigation Systems. Searching Systems, Good & bad web design, Process of Web Publishing. Web-site enhancement, submission of website to search engines. Web security: issues, security audit. Web effort estimation, Productivity Measurement, Quality usability and reliability. Requirements Engineering for Web Applications: Introduction, Fundamentals, Requirement Source, Type, ,Notations Tools. Principles Requirements Engineering Activities, Adapting RE Methods to Web Application.

UNIT-3

Technologies for Web Applications I: HTML and DHTML: Introduction, Structure of documents, Elements, Linking, Anchor Attributes, Image Maps, Meta Information, Image Preliminaries, Layouts, Backgrounds, Colors and Text, Fonts, Tables, Frames and layers, Audio and Video Support with HTML Database integration, CSS, Positioning with Style sheets, Forms Control, Form Elements. Introduction to CGI, PERL, JAVA SCRIPT, JSP, PHP, ASP & AJAX. Cookies: Creating and Reading

UNIT-4

Technologies for Web Applications II: XML: Introduction, HTML Vs XML, Validation of documents, DTD, Ways to use, XML for data files, Embedding XML into HTML documents, Converting XML to HTML for Display, Displaying XML using CSS and XSL, Rewriting HTML as XML, Relationship between HTML, SGML and XML, web personalization, Semantic web, Semantic Web Services, Ontology.

UNIT-5

E- Commerce: Business Models, Infrastructure, Creating an E-commerce Web Site, Environment and Opportunities. Modes & Approaches, Marketing & Advertising Concepts. Electronic Publishing issues, approaches, legalities and technologies, Secure Web document, Digital Signatures and Firewalls, Cyber crime and laws, IT Act. Electronic Cash, Electronic Payment Systems: RTGS, NEFT, Internet Banking, Credit/Debit Card. Security: Digital Certificates & Signatures, SSL, SET, 3D Secure Protocol.

List of Experiments (Expandable):

At least ten practical experiments based on above syllabus and a mini project is desirable to be completed by a group of three that cover following.

- 1. HTML/ DHTML
- 2. PHP
- 3. XML
- 4. Java Script, CGI, PERL
- 5. ASP
- 6. Configuration of Web Servers.

- 1. Roger S.Pressman, David Lowe, "Web Engineering", Tata Mc Graw Hill Publication, 2007
- 2. Achyut S Godbole and Atul Kahate, "Web Technologies", Tata McGraw Hill
- 3. Gopalan N P, Akilandeswari, "Web Technology: A Developer's Perspective", PHI
- 4. Neil Gray, "Web server Programming" Wiley
- 5. Chris Bates, "Web Programming: Building Internet applications" Wiley
- 6. Moller, "An Introduction to XML and Web Technologies", Pearson Education New Delhi, 2009
- 7. "Web Technologies: Black Book", Kogent, Dreamtech
- 8. Internet & World Wide Web How to Program, Pearson education, 3rd edition, by: H.M. Deitel, P.J. Deitel, A.B. Goldberg.
- 9. C. Xavier, "Web Technology & Design", Tata McGraw Hill.
- 10 Ivan Bay Ross, "HTML, DHTML, Java script, Perl CGI", BPB

Subject code-CS-803(A) Subject: Distributed System

Semester: VIII

For credits & marks refer your scheme

Course Objective-

The course aims to provide an understanding of the principles on which the Internet and otherdistributed systems are based; their architecture, algorithms and how they meet the demands of contemporary distributed applications.

COURSE CONTENT:

Unit-I

Introduction to distributed systems Architecture for Distributed System, Goals of Distributed system, Hardware and Software concepts, Distributed Computing Model, Advantages & Disadvantage distributed system, Issues in designing Distributed System,

Unit-II

Distributed Share Memory And Distributed File System Basic Concept of Distributed Share Memory (DSM), DSM Architecture & its Types, Design & Implementations issues In DSM System, Structure of Share Memory Space, Consistency Model, and Thrashing. Desirable features of good Distributed File System, File Model, File Service Architecture, File Accessing Model, File Sharing Semantics, File Catching Scheme, File Application & Fault tolerance. Naming: - Features, System Oriented Names, Object Locating Mechanism, Human Oriented Name.

Unit-III

Inter Process Communication And Synchronization API for Internet Protocol, Data Representation & Marshaling, Group Communication, Client Server Communication, RPC- Implementing RPC Mechanism, Stub Generation, RPC Messages. Synchronization: - Clock Synchronization, Mutual Exclusion, Election Algorithms:- Bully & Ring Algorithms.

Unit-IV

Distributed Scheduling And Deadlock Distributed Scheduling-Issues in Load Distributing, Components for Load Distributing Algorithms, Different Types of Load Distributing Algorithms, Task Migration and its issues. Deadlock-Issues in deadlock detection & Resolutions, Deadlock Handling Strategy, Distributed Deadlock Algorithms,

Unit-V

Distributed Multimedia & Database system Distributed Data Base Management System(DDBMS), Types of Distributed Database, Distributed Multimedia:- Characteristics of multimedia Data, Quality of Service Managements. Case Study of Distributed System:- Amoeba, Mach, Chorus

- 1. Sinha, Distributed Operating System Concept & Design, PHI
- 2. Coulouris & Dollimore, Distributed System Concepts and Design, Pearson Pub
- 3. Singhal & Shivratari, Advance Concept in Operating System, McGraw Hill
- 4. Attiva & Welch, Distributed Computing, Wiley Pub.

Subject code-CS-804(A) Subject: Network Management

Semester: VIII

For credits & marks refer your scheme

Course Objective-

The course covers the basics of network management, alternative architectures, evaluation techniques, network management system components, SNMP and CMIP management protocols and the ISO network management applications: fault management, performance management.

UDYOGIKI VISHW

COURSE CONTENT:

Unit-I

Introduction to Network Managements, Network Management Framework, Network Based Managements, Evolution of Network Management: SGMP, CMIP, SNMP. Network Implementation and Management Strategies, Network Management Categories: Performance Management, Fault Management, Configuration Management, Security Managements, Accounting Managements. Network Management Configuration: Centralized Configuration, Distributed Configuration. Selected Management Strategy.

Unit -II

Management Information Base (MIB), Structure of Management Information, NMS Presentation of the SMI, NMS Meter-ware Network View. Remote Monitoring (RMON), RMON Group. Desktop Management: Desktop Management Interface(DMI), DMI Architecture, DMI Browser, DMI/SNMP Mapping, Desktop SNMP Extension Agents. Setting up LAN Access, SNMP Configuration.

Unit-III

Introduction, layering, OSI Layering, TCP/IP Layering, Protocols & Standards, Internet standards, Internet administration, Internet Addresses, Internet protocol: introduction, IP header, IP routing, subnet addressing, subnet mask, special case of IP addresses, Comparative Study of IPV4 & IPV6, port numbers Address Resolution Protocol, ARP packet format, Proxy ARP, ARP command, ARP Example, Reverse Address Resolution Protocol (RARP): Introduction, RARP Packet format, RARP Examples, RARP server design

Unit-IV

Delivery and Routing of IP Packets, Routing Methods, Static versus Dynamic Routing, Routing table and Routing Module, Classless Addressing: CIDR. Internet Protocol (IP), Datagram, Fragmentation, Options, IP Package. Interior and Exterior Routing, Routing information protocol (RIP), Open shortest path first protocol (OSPF), BGP, GGP. Private Networks. Virtual Private Network (VPN), Network Address Translation (NAT).

Unit -V

Internet Control Message Protocols (ICMP):- Types of message, message format, error reporting, query, checksum, ICMP Package. IGMP, IGMP Message and its Operation, IGMP Package. Transmission control protocol, Process-to-Process Communication, TCP Services Flow Control, TCP Timers. TCP Operation, TCP Package.. Application layers protocol, Telnet Protocol, File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP), X-Window

system protocol, Remote procedure call, and Network file system.

- 1. Forouzan, TCP/IP Protocol Suite 4th edition, TMH
- 2. J.Richard Burkey, Network Management Concept and Practice, PHI
- 3. Stevens, TCP/IP Illustrated Volume-I, Pearson
- 4. Tittel: TCP/IP, Cenage Learning
- 5. Uyless Black, TCP/IP and related protocols, McGraw Hill.
- 6. Doughals E. Comer, Internetworking with TCP/IP Vol. I, Principles, Protocols, Architecture, Prentice Hall, India.