Cryptography Final Report PRIMES is in $P^{[1]}$

臺灣大學資訊工程學系 B04902012 劉瀚聲

在得知這學期的密碼學報告可以自選相關主題時,腦海中浮現的第一選擇,便是這篇「PRIMES is in P」。質數在大多數的密碼系統中,往往是相當重要的一環。一個有效率的質數判別算法對密碼學的貢獻不言自明。身爲一個資工系學生,目前的研究領域又是關於演算法與複雜度,這篇論文一直在我的 Wishing List 的前幾位。PRIMES 屬於 coNP 相當顯然,但 PRIMES 在 NP 內並不直觀。可以想像,這篇論文的在 2002 年的發表震驚了多少猜測 PRIMES 屬於 NP-Complete 或coNP-Complete 的學者。

一些教授和網路上大多數的網友對這篇論文的評價都是「直白易懂」、「半小時內可以讀完」之類。但我親自讀之後,並不覺得它有傳聞中的那麼簡單。除了某些引理用到了一些我不曾學過的定義和性質(如分圓多項式等),相對影響較大的,是裡面某些推導或敘述並沒有給出詳細的原因,試著把敘述的正確性證明一次,卻發現原因並不顯然等諸如此類的情況。這些過程在這篇報告中會詳細的證明,而這樣的心得,會以腳註的方式寫在報告中。

爲了證明自己有學到東西,這篇報告是用中文寫成(再附上 IATEX 原始碼),至少能表示有理解論文的內容而不是抄襲而得。此外,也把證明的架構系統化,改成自己比較喜歡的形式。我所讀過的論文,大多是 Top-down 的架構。在這篇報告中,定理會在後面的其他節證明,而引理會在當節的最後證明。如此一來,讀者在熟悉整個證明之前,便可以先了解證明的架構、知道每一個定理與引理在證明中的地位,之後再選擇想了解的定理與引理閱讀其證明。

在開始寫起這篇報告後,才發現貫徹這些原則有許多困難:用中文寫數學證明實在是太痛苦了。一來是習慣用用英文思考,翻成中文往往很奇怪,二來是論文中有一些作者自己創造的專有名詞(如"introspective",意譯成自省函數很奇怪,但原封不動的將英文單字夾在中文報告中又顯得突兀。幾經思索,決定按照函數的特性,擅自翻譯成幂同態)等等,果然還是好想用英文寫啊。

正如我的專題指導教授所言,易寫則難讀,易讀則難寫。期許我的這篇報告費 盡心思的結果,能讓所有想認識這個演算法的讀者快速了解其運作及正確性。 整個演算法以引理 2.1 爲核心。事實上,引理 2.1 已經提供了一個顯然充分的質數判別法:枚舉 [0, n-1] 中的所有 a,並檢驗

$$(X+a)^n \equiv X^n + a \pmod{n}$$

是否成立,但這樣一來迭代的次數就高達 n 次,而且 n 次多項式的乘法與比較需要的時間也是 O(n),但輸入規模是 $O(\lg n)$ 。在這個算法中,解決迭代次數過多的方法是將 a 的範圍縮減到 [0,l],而解決多項式次數過高的方法是在模 (X^r-1) 的剩餘類環上進行運算和比較。但如此一來,這個算法作爲質數檢驗法的充分性就不再顯然,而 l 和 r 的上界也需要證明。

0 Notation

 \mathbb{Z}_r 表示整數模 r 形成的環,而 \mathbb{Z}_r^* 表示與 r 互質的整數模 r 形成的乘法群。

 \mathbb{F}_p 表示 p 個元素的有限體,而 $f(X) \equiv g(X) \pmod{h(X),p}$ 表示在 $\mathbb{Z}_p[X]/(h(X))$ 上, $f(X) = g(X) \circ 1$

 $\phi(r)$ 表示小於 r 且與 r 互質的自然數個數,而對於 (a,r)=1, $o_r(a)$ 表示在 \mathbb{Z}_r^* 中 a 的週期。亦即, $o_r(a)=\min\{k|k\in\mathbb{N},a^k\equiv 1\pmod{r}\}$ 。顯然, $o_r(a)\mid\phi(r)$ 。

1 Algorithm and Proof Sketch

Algorithm 1.1 判定質數的算法

- O Input: integer n > 1.
- 1 If $n=a^b$ for some $a\in\mathbb{N}$ and b>1, output COMPOSITE.
- 2 Find the smallest r such that $o_r(n) > \lg^2 n$.
- 3 If 1 < (a, n) < n for some $a \le r$, output COMPOSITE.
- 4 If $n \leq r$, output PRIME.
- 5 For a from 1 to $\lfloor \sqrt{\phi(r)} \lg n \rfloor$ do: If $(X+a)^n \not\equiv X^n + a \pmod{X^r-1,n}$, output COMPOSITE
- 6 Output PRIME.

 $^{^1}$ 原論文中,作者強調 h(X) 須爲不可約多項式,但論文中最常用到的是 $\pmod{X^r-1,p}$,而 (X^r-1) 並非不可約多項式。

Theorem 1.2 當算法 1.1 輸出 COMPOSITE 時, n 爲合數

第2節爲定理1.2之證明。

Theorem 1.3 當算法 1.1 輸出 PRIME 時,n 爲質數

第3節爲定理1.3之證明。

Theorem 1.4 算法 1.1 的時間複雜度爲 $O(\lg^{12} n)$

第4節爲定理1.4之證明。

定理 1.2 及定理 1.3 保證了算法的正確性。而由於輸入規模爲 $\lg n$,定理 1.4 保證了算法的運行時間爲多項式時間。故算法 1.1 是一個 PRIME 的多項式時間算法。 2

2 Correctness When Output COMPOSITE

當算法在第 1 步或第 3 步輸出 COMPOSITE 時,n 是合數,因爲第 1 步的 a 和第 3 步的 (a,n) 會是一個 n 的非平凡因數。

Lemma 2.1
$$a \in \mathbb{Z}$$
, $n \in \mathbb{N}$, $n \ge 2$, $(a, n) = 1$,那麼 n 爲質數若且唯若
$$(X + a)^n \equiv X^n + a \pmod{n}$$

當算法在第 5 步輸出 COMPOSITE 時,表示 $(X+a)^n \not\equiv X^n + a \pmod{X^r-1}$, n),因此 $(X+a)^n \not\equiv X^n + a \pmod{n}$ 。根據引理 2.1,n 爲合數。

2.1 Proof to Lemma 2.1

根據二項式定理, $\forall 0 < i < n$, $(X+a)^n$ 中 X^i 的係數爲 $C_i^n a^{n-i}$,而 X^n 的係數顯然同餘。

(1) n 爲質數

 $^{^2}$ 將演算法的 $\phi(r)$ 改爲 r 看起來並無不妥。

由於 $\forall 0 < i < n$, $C_i^n = \frac{n!}{i!(n-i)!}$, $n \mid (n!)$, $n \nmid (i!(n-i)!)$, 故 $C_i^n a^{n-i} \equiv 0$ (mod n) 。 根據費瑪小定理 , $a^n \equiv a \pmod n$ 。 故 $(X+a)^n \equiv X^n + a \pmod n$ 。 (2) n 爲合數

對於 n 的任何一個質因數 q,若 $q^k \mid n$ 但 $q^{k+1} \nmid n$,那麼由於 $C_q^n = \frac{n(n-1)...(n-q+1)}{q(q-1)(q-2)...(1)}$,而 $q^k \nmid \frac{n}{q}$,且分子及分母中之其他項皆與 q 互質,故 $n \nmid C_q^n$ 。亦即, $C_q^n a^{n-q} \not\equiv 0 \pmod n$ 。

綜合以上兩種情況,引理得證。

3 Correctness When Output PRIME

當算法在第 4 步輸出 PRIME 時,n 爲質數。因爲第 3 步和 $n \le r$ 保證了 $\forall a < n$,(a,n) = 1。以下證明算法在第 6 步輸出 PRIME 的正確性。

由於 $o_r(n) > 1$,n 必定有質因數 p 滿足 $o_r(p) > 1$ 。又因爲通過了第 3 步和第 4 步的檢驗,所以 (r,n) = 1,且 p > r,故 $p,n \in \mathbb{Z}_r^*$ 。另外,令 $l = \lfloor \sqrt{\phi(r)} \lg n \rfloor$ 。在第 5 步中,算法檢驗了 l 個等式。由於第 5 步沒有輸出 COMPOSITE,因此對於所有的 $0 \le a \le l$,都有:

$$(X+a)^n \equiv X^n + a \pmod{X^r - 1, n}$$

由於p是n的因數,故:

$$(X+a)^n \equiv X^n + a \pmod{X^r - 1, p}$$

由於 p 是質數,故:

$$(X+a)^p \equiv X^p + a \pmod{X^r - 1, p}$$

Lemma 3.1
$$(X+a)^{\frac{n}{p}} \equiv X^{\frac{n}{p}} + a \pmod{X^r - 1, p}$$
°

對於多項式函數 f 和自然數 m,定義 m 對於 f 是幂同態的,表示 $f(X)^m \equiv f(X^m) \pmod{X^r-1,p}$ 。由上面的敘述可知,對所有的 $0 \le a \le l$, $n \cdot p \cdot \frac{n}{p}$ 對於 (X+a) 都是幂同態的。

Lemma 3.2 如果 $m_1 \cdot m_2$ 對於 f(X) 都是幂同態的,那麼 m_1m_2 對於 f(X) 也是幂同態的。

Lemma 3.3 如果 m 對於 $f_1(X) \cdot f_2(X)$ 都是幂同態的,那麼 m 對於 $f_1(X)f_2(X)$ 也是幂同態的。

接下來考慮以下幾個集合:令 $I = \{p^i(\frac{n}{p})^j|i,j\geq 0\}$, $P = \{\prod_{a=0}^l (X+a)^{e_a}|e_a\geq 0\}$ 。根據引理 3.2 和 3.3,I 中的每一個元素對於 P 中的每一個元素都是幂同態的。由於 $n \cdot p \cdot \frac{n}{p}$ 都分別和 r 互質,故 I 模 r 所形成的集合會在 \mathbb{Z}_r^* 内,而且是一個乘法群。令 G 爲那個群,亦即, $G = I/r\mathbb{Z} = \{p^i(\frac{n}{p})^j \mod r|i,j\geq 0\}$,並令 t = |G|。

由於 $o_r(n)>\lg^2 n$,故 $t>\lg^2 n$ 。令 $Q_r(X)$ 爲 r 次分圓多項式,根據分圓多項式的性質, $Q_r(X)\mid (X^r-1)$,且在 \mathbb{F}_p 上, $Q_r(X)$ 是若干個 $o_r(p)$ 次不可約多項式的乘積。令 h(X) 是其中一個這樣的多項式。由於 $o_r(p)>1$,故 $\deg(h(X))>1$ 。令 $F=\mathbb{F}_p[X]/(h(X))$,而 G 爲 P 模 h(X) 再把係數模 p 得到的集合。由於 h(X) 不可約,故 F 和 G 都是乘法群。

可以觀察到 G 爲 \mathbb{Z}_r^* 的乘法子群,而 G 爲 F 的乘法子群。故 $t \leq \phi(r)$ 。

Lemma 3.4 $|\mathcal{G}| \geq {t+l \choose t-1}$ °

Lemma 3.5 若 n 不是 p 的幂次,則 $|\mathcal{G}| \leq n^{\sqrt{t}}$ 。

Lemma 3.6 對於 k>1, $\binom{2k+1}{k}>2^k$ 。

根據引理 3.4,

$$\begin{aligned} |\mathcal{G}| &\geq \binom{t+l}{t-1} \\ &\geq \binom{l+1+\lfloor \sqrt{t} \lg n \rfloor}{\lfloor \sqrt{t} \lg n \rfloor} (\because t \geq \lg^2 n) \\ &\geq \binom{2\lfloor \sqrt{t} \lg n \rfloor + 1}{\lfloor \sqrt{t} \lg n \rfloor} (\because l = \lfloor \sqrt{\phi(r)} \lg n \rfloor \geq \lfloor \sqrt{t} \lg n \rfloor) \\ &> 2^{\lfloor \sqrt{t} \lg n \rfloor + 1} (\because \sqrt{t} \lg n > 1) \\ &> n^{\sqrt{t}} \end{aligned}$$

故根據引理 3.5,n 爲 p 的幂次。但由於第 1 步沒有輸出 COMPOSITE,故 n=p,即 n 是個質數,定理得證。

 $3.1 Proof to lemma 3.1^3$

$$(X^{\frac{n}{p}} + a)^p \equiv X^n + a$$
$$\equiv ((X + a)^{\frac{n}{p}})^p \pmod{X^r - 1, p}$$

故只須證明對於多項式 $f(X) \circ g(X) \in \mathbb{Z}_p[X]/(X^r-1)$, $f^p(X) \equiv g^p(X)$ (mod $X^r-1,p) \Rightarrow f(X) \equiv g(X)$ (mod $X^r-1,p)$ °

但 $f^p(X)-g^p(X)\equiv 0\pmod{X^r-1,p}\Rightarrow (f(X)-g(X))^p\equiv 0\pmod{X^r-1,p}$ (證明類似定理 2.1 的證明,展開後觀察係數)。故進一步,只須證明

$$(f(X)-g(X))^p\equiv 0\ (\mathrm{mod}\ X^r-1,p)\Rightarrow (f(X)-g(X))\equiv 0\ (\mathrm{mod}\ X^r-1,p)\circ$$

其充分條件是對於多項式 $z(X) \in \mathbb{Z}_p[X]/(X^r-1)$,

$$z^p(X) \equiv 0 \pmod{X^r - 1, p} \Rightarrow z(X) \equiv 0 \pmod{X^r - 1, p}$$
°

假設 $z^p(X)\equiv 0\pmod{X^r-1,p}$,那麼存在多項式 q(X) 使得 $z^p(X)\equiv q(X)(X^r-1)\pmod{p}$ 。

若 $(X^r-1)\nmid z(X)$,那麼 (X^r-1) 必有重數大於 1 的因式。亦即存在多項式 $q_1(X) \cdot q_2(X)$ 滿足 $(X^r-1) \equiv [q_1(X)]^2 q_2(X) \pmod p$,且 $\deg(q_1(X)) > 1$ 。但考慮 (X^r-1) 之形式微分:

³原論文對本引理的證明隻字未提,彷彿這個引理的結論十分直觀。若 $\mathbb{F}_p[X]/(X^r-1)$ 爲體,那麼由於沒有零因子,故引理顯然成立,但 (X^r-1) 可約。

$$(X^r-1)' \equiv rX^{r-1} \pmod{p} ,$$

$$([q_1(X)]^2q_2(X))' \equiv 2q_1(X)q_1'(X)q_2(X) + [q_1(X)^2q_2'(X) \pmod{p} \circ$$

但 $(X^r-1,(X^r-1)')\equiv 1\pmod p$, $q_1(X)\mid ([q_1(X)]^2q_2(X),([q_1(X)]^2q_2(X))')$,矛盾,故 $(X^r-1)\mid z(X)$,即引理得證。

3.2 Proof to lemma 3.2

$$\begin{split} [f(X)]^{m_1m_2} &\equiv [f(X^{m_1})]^{m_2} \pmod{X^r-1,p} \\ [f(X^{m_1})]^{m_2} &\equiv f(X^{m_1m_2}) \pmod{X^{rm_1}-1,p} \\ &\implies (X^r-1) \mid (X^{rm_1}-1) \text{ , } \\ & [f(X)]^{m_1m_2} &\equiv f(X^{m_1m_2}) \pmod{X^r-1,p} \text{ ,} \\ & \exists \, \mathbb{P}$$
 得證。

3.3 Proof to lemma 3.3

$$[f_1(X)^m \equiv f_1(X^m) \pmod{X^r - 1, p}$$
,
$$[f_2(X)^m \equiv f_2(X^m) \pmod{X^r - 1, p}$$
,故 $[f_1(X)f_2(X)]^m \equiv f_1(X^m)f_2(X^m) \pmod{X^r - 1, p}$,引理得證。

3.4 Proof to lemma 3.4

由於 $h(X) \mid Q_r(X)$, 根據分圓多項式的性質, r 爲最小的、滿足在 F 上 $X^r = 1$ 的自然數。

以下證明 P 中任兩個相異的、低於 t 次的多項式,在 F 上也相異。

令 f(X) 和 g(X) 就是兩個這樣的多項式,亦即, $f(X) \cdot g(X) \in P$, $f(X) \neq g(X)$, $\max(\deg(f(X)), \deg(g(X))) < t$ 。假設在 F 上, f(X) = g(X)。

令 $m \in I$,顯然在 $F \perp [f(X)]^m = [g(X)]^m$ 。由於 m 對於 f(X) 和 g(X) 都是 幂同構的,而且 $h(X) \mid (X^r - 1)$,故在 $F \perp$, $f(X^m) = g(X^m)$ 。這表示對所有的 $m \in G$, (X^m) 都是 f(Y) - g(Y) = 0 的一個根。以下證明這 |G| = t 個根全部相 異。

假設有相異的 $m_1 \cdot m_2 \in G$, 滿足在 $F \perp X^{m_1} = X^{m_2}$ 。不失一般性假設

 $m_1 > m_2$,那麼 $X^{m_1-m_2} = 1$ 。但注意到由於 G 爲 \mathbb{Z}_r^* 的子群,導致 $(m_1-m_2) < r$,這與證明開頭提到的 r 的最小性矛盾。故那 t 個根全部相異。

但 $\deg(f(Y) - g(Y)) < t$, 與他有 t 個相異根矛盾, 故 P 中任兩個相異的、低於 t 次的多項式, 在 F 上也相異。

P 中低於 t 次多項式的個數,與方程 $\sum_{a=0}^{l} e_a \leq t-1$ 的非負整數解的個數相同。 令 $d=(t-1)-\sum_{a=0}^{l} e_a$,那麼該方程解的個數又與 $\sum_{a=0}^{l} e_a+d=t-1$ 的非負整數解的個數相同,爲 $H_{t-1}^{l+2}=\binom{t+l}{t-1}$ 。由於這 $\binom{t+l}{t-1}$ 在 F 上也全部相異,故 G 中也至少有 $\binom{t+l}{t-1}$ 個相異元素。引理得證。

3.5 Proof to lemma 3.5

考慮 I 的子集 $\hat{I} = \{p^i(\frac{n}{p})^j | i, j \leq \lfloor \sqrt{t} \rfloor \}$ °

若 n 不是 p 的幂次,那麼 \hat{I} 中的元素全部相異, $|\hat{I}|=(\lfloor \sqrt{t}\rfloor+1)^2>t$ 。由於 $|G|=t<|\hat{I}|$,故 \hat{I} 中必定有相異元素 m_1 和 m_2 模 r 同餘。不失一般性,假設 $m_1>m_2$ 。那麼,

$$X^{m_1} \equiv X^{m_2} \pmod{X^r - 1} \circ$$

 $\Leftrightarrow f(X) \in P \circ$

$$[f(X)]^{m_1} \equiv f(X^{m_1})$$
$$\equiv f(X^{m_2})$$
$$\equiv [f(X)]^{m_2}$$

亦即,在 F 上, $[f(X)]^{m_1} = [f(X)]^{m_2}$,故在 F 上,對於所有的 $f(X) \in \mathcal{G}$, f(X) 都是 $Y^{m_1} - Y^{m_2} = 0$ 的根。但注意到 $\deg(Y^{m_1} - Y^{m_2}) = m_1 \leq (\frac{n}{p} \times p)^{\lfloor \sqrt{t} \rfloor} \leq n^{\sqrt{t}}$,最多只有 $n^{\sqrt{t}}$ 個根,故 $|\mathcal{G}| \leq n^{\sqrt{t}}$ 。引理得證。

$3.6 Proof to lemma 3.6^4$

使用數學歸納法。

當
$$k=2$$
 時, $\binom{2\times 2+1}{2}=10>2^{2+1}$,敘述成立。

⁴也是一個在原論文中被直接使用的結論,這邊給出證明。

假設當 $k = k_0 - 1$ 時, $\binom{2k_0 - 1}{k_0 - 1} > 2^{k_0}$,那麼當 $k = k_0$ 時, $\binom{2k_0 + 1}{k_0} = \binom{2k_0}{k_0} + \binom{2k_0}{k_0 - 1}$,其中 $\binom{2k_0}{k_0} = (\frac{2k_0}{k_0})(\frac{2k_0 - 1}{k_0 - 1})...(\frac{k_0 + 1}{1}) \ge (2)(2)...(2) = 2^{k_0}$,而 $\binom{2k_0}{k_0 - 1} > \binom{2k_0}{k_0 - 1} > 2^{k_0}$ 。故 $\binom{2k_0 + 1}{k_0} > 2^{k_0} + 2^{k_0} = 2^{k_0 + 1}$,敘述亦成立。 從而,根據數學歸納法,引理得證。

4 Time Complexity of Algorithm

第 1 步枚舉 b 自 1 至 $\lg n$,二分搜尋對應的 a,檢驗 a^b 與 n 的關係。時間複雜度 $O(\lg^3 n)$ 。

第 2 步自 1 開始枚舉 r,檢驗是否 $\forall 1 \leq i \leq \lg^2 n$, $n^i \not\equiv 1 \pmod{r}$ 。時間複雜 度 $O(r \lg^3 n)$ 。

第 3 步枚舉 a 自 1 至 r,計算 (a,n)。時間複雜度 $O(r \lg n)$ 。

第 4 步時間複雜度 O(1)。

第 5 步每次迭代可用快速幂在 $\lg n$ 次多項式乘法内算出 $(X+a)^n \pmod{X^r-1},n$ 的值,而多項式的次數不超過 r,故時間複雜度爲 $O((\sqrt{\phi(r)}\lg n)(r^2\lg n))=O(r^{\frac{5}{2}}\lg^2 n)$ 。

第 6 步時間複雜度 O(1)。5

故整體時間瓶頸爲第 5 步,複雜度爲 $O(r^{\frac{5}{2}} \lg^2 n)$ 。故只須證明 r 的上界。

$$S < n^{\lfloor \lg B \rfloor} \prod_{i=1}^{\lfloor \lg^2 n \rfloor} (n^i) = n^{\lfloor \lg B \rfloor + \frac{1}{2} \lg^2 n (\lg^2 n - 1)} \le n^{\lg^4 n} \le 2^B \circ$$

考慮 $R=\min\{R'|R'\nmid S\}$,由於 $\forall i\in[1,\lfloor\lg^2n\rfloor],R\nmid(n^i-1)$,故 $o_R(n)>\lg^2n$,亦即 R 是 r 的一個上界。

 $^{^{5}}$ 原論文在分析時間複雜度時,將整數乘法的時間複雜度算為 $\Theta(\lg n)$,這邊按照習慣,算為常數時間。

⁶將 $n^{\lfloor \lg B \rfloor}$ 刪除看起來並無不妥,在後續的證明並沒有用到。

Lemma 4.1 $(Nair)^{[2]}$ 令 LCM(m) 表示前 m 個自然數的最小公倍數,那麼對於 $m \geq 7$, $LCM(m) \geq 2^m$ 。

假設 R>B,那麼 $\forall i\leq B$, $i\mid S$,亦即 $S\mid LCM(B)$,但根據引理 4.1, $LCM(B)\geq 2^B>S$,矛盾,故 $R\leq B$ 。從而, $r\leq \lg^5 n$,定理得證。 ⁷

5 References

- [1] M. Agrawai, N. Kayal, N. Saxena. Annals of Math. 781-793, 2004.
- [2] M. Nair. On Chebyshev-type inequalities for primes. *Amer. Math. Monthly* 89:126 129, 1982.

 $^{^7}$ 原論文在這之前亦證明了 (n,R)=1,但這應該是算法的第 3 步所保證的。