Master on Data Science

Semantics

WordNet

SentiWordNet

Sentiment analysis

Mining Unstructured Data 4. Lexical semantics

Semantics

WordNet

SentiWordNet

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
 - 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

Semantics

Semantics

 ${\sf WordNet}$

SentiWordNet

Sentiment analysis

Semantics deals with the meaning:

- Lexical semantics: deals with the meaning of individual words
- Compositional semantics: deals with the construction of meaning usually in high concordance with syntax

This session focuses on lexical semantics

Semantics

Motivation of lexical semantics

WordNet

 ${\sf SentiWordNet}$

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
- 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

Motivation of lexical semantics

Some examples of usefulness:

Discovery of semantic patterns

Ex: USA bombed Hiroshima

They began to bombard the defenses

 \rightarrow A sense_12533 B

Determine discourse relations

Ex: [Anna will show up later.] [She has missed the train.] \rightarrow

explanation

Ex: [Mathew is good cooking.] [Albert fails making every dish] \rightarrow

contrast

■ Twitter sentiment analysis

Ex: @vooda1: CNN Declines to Air White House Press Conference

Live YES! THANK YOU @CNN FOR NOT LEGITIMI...

positive

Ex: @Slate: Donald Trump's administration: "Government by the

worst men."

negative

Semantics

Motivation of lexical

WordNet

SentiWordNet

Semantics

 ${\sf WordNet}$

SentiWordNet

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
 - 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

Resources of lexical semantics

Semantics Resources

WordNet

SentiWordNet

Sentiment

analysis

Knowledge-based resources: represented as graphs

Ex: WordNet (English lexical ontology)

SentiWordNet (sentiment polarity into WordNet)

BabelNet (Wikipedia+WordNet)

VerbNet (syntactic/semantic verbal behaviour)

FrameNet (conceptual behaviour -fine-grained event representation-)

ConceptNet (common sense knowledge)

Resources of lexical semantics

Semantics Resources

WordNet

SentiWordNet

Sentiment analysis

■ Knowledge-based resources: represented as graphs

Ex: WordNet (English lexical ontology)
SentiWordNet (sentiment polarity into WordNet)
BabelNet (Wikipedia+WordNet)
VerbNet (syntactic/semantic verbal behaviour)
FrameNet (conceptual behaviour –fine-grained event representation–)
ConceptNet (common sense knowledge)

Corpus-based resources: contextual usage of words

Ex: Latent Semantic Analysis (LSA)
Word embeddings (word2vect, glove, fasttext, ...)
Contextual word embeddings as compositional semantics
(BERT, RoBERTA, GPT3, ...)

Resources of lexical semantics

Semantics Resources

WordNet

SentiWordNet

	<u>, </u>		
WordNet	https://wordnet.princeton.edu/		
SentiWordNet	https://github.com/aesuli/SentiWordNet		
BabelNet	https://babelnet.org/		
VerbNet	https://verbs.colorado.edu/verbnet/		
FrameNet	https://framenet.icsi.berkeley.edu/fndrupal/		
LSA	accessible from		
Word embeddings	https://radimrehurek.com/gensim/		

Semantics WordNet

SentiWordNet

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
- 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

Semantics

WordNet Definition

 ${\sf SentiWordNet}$

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
- 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

WordNet

- Free large lexical database of English
- Contains only nouns, verbs, adjectives and adverbs
- Words are grouped into synonyms sets (synsets)
- each synset has an associated gloss and some examples
- synsets are interlinked by means of lexical relations https://en-word.net/lemma/demo

Semantics

WordNet

Definition

SentiWordNet
Sentiment
analysis

Open English Wordnet

EMMA Search

Nouns

(n) demo, demonstration a visual presentation showing how something works "the lecture was accompanied by dramatic demonstrations" "the lecturer shot off a pixtol as a demonstration of the startie response"

MDRE >

MURE.

Verbs

(w) demo, demonstrate, exhibit, present, show give an exhibition of to an interested audience "She shows her dags frequently" "We will demo the new software in Washington"

MREF.

Lexical relations

Semantics

WordNet Definition

SentiWordNet

Sentiment analysis

Example of Lexical Relation Net

Lexical relations

Semantics

WordNet Definition

SentiWordNet

- Synonymy: same meaning. Ex: age historic_period
- Antonymy: opposite meaning. Ex: dark light
- Homophome: same sound. Ex: son sun
- Homograph: same written form. Ex: lead (noun verb)
- Polysemy: different related meaning. Ex: newspaper (paper - firm)
- Homonymy: different unrelated meaning. Ex: position (place - status)
- Hypernymy: parent. Ex: cat feline
- Hyponymy: child. Ex: feline cat
- Holonym: group, whole. Ex: student class
- Meronym: member, part. Ex: class student
- Metonymy: substitution of entity. Ex: We ordered many delicious dishes at the restaurant.

Semantics

WordNet Similarities

SentiWordNet

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
- 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

Similarities in WordNet

Semantics

WordNet Similarities

SentiWordNet

Sentiment analysis

■ Shortest Path Length: $Sim(s_1, s_2) = \frac{1}{SPL(s_1, s_2)}$ where $SPL(s_1, s_2) =$ Shortest Path Length from s_1 to s_2 as vertex-countings conto i vertici non gli archi

Leacock & Chodorow: $Sim(s_1, s_2) = -log_2 \frac{SPL(s_1, s_2)}{2 \cdot MaxDepth}$ where depth(s) = SPL(TopSynset,s) numero di bit necessari $MaxDepth = \max_{s \in WN} depth(s)$

- Wu & Palmer: $\frac{\text{deepest the common ancestor they}}{\text{have more similarity}} Sim(s_1, s_2) = \frac{2 \cdot \text{depth}(LCS(s_1, s_2))}{\text{depth}_{LCS(s_1, s_2)}(s_1) + \text{depth}_{LCS(s_1, s_2)}(s_2)}$ where $LCS(s_1, s_2) = \text{Lowest Common Subsumer of } s_1 \text{ and } s_2$ $\frac{\text{depth}_{s'}(s) = \text{SPL}(\text{TopSynset}, s)}{\text{throw s}}$
- Lin: $Sim(s_1, s_2) = \frac{2 \cdot IC(LCS(s_1, s_2))}{IC(s_1) + IC(s_2)}$ where $IC(s) = -log_2P(s) = \text{information content of s (from frequencies in a corpus)}$

Example / exercise

Semantics

WordNet Similarities

SentiWordNet

Sentiment analysis

spl(beer, milk) = 5 $Sim_{spl}(beer, milk) = 0.2$

 $Sim_{wp}(beer, milk) = 0.75$

 $Sim_{spl}(drug, milk)$? $Sim_{wp}(drug, milk)$?

Semantics

WordNet

 ${\sf SentiWordNet}$

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
- 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

Definition

Semantics

 ${\sf WordNet}$

SentiWordNet

Sentiment analysis

Extension of wordnet that adds for each synset 3 measures:

- positive_score
- negative_score
- objective_score = 1 positive_score negative_score

Wordnet		SentiWordnet		
Antonym				
Synsets	Gloss	obj	pos	neg
bad.a.01	having undesirable or negative qualities	0.375	0.0	0.625
good.a.01	having desirable or positive qualities	0.25	0.75	0.0
bad.n.01	that which is below standard or	0.125	0.0	0.875
	expectations as of ethics or decency			
good.n.03	that which is pleasing, valuable, useful	0.375	0.625	0.0

Semantics WordNet

SentiWordNet

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
 - 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

Semantics WordNet

SentiWordNet

Sentiment

analysis Definition

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
 - 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

Sentiment analysis

Semantics WordNet

SentiWordNet

Sentiment analysis Definition

Different subtasks:

- Opinion detection: given a piece of text (document or sentence), is it an objective text or a subjective one?
- Polarity classification: given a subjective piece of text, is it a positive opinion or a negative one?
- Opinion extraction: given a subjective piece of text, recognise the focuses of the opinion (templates <entity, aspect, polarity>).

Semantics

WordNet
SentiWordNet

Sentiment

analysis

Examples of methods

- 1 Semantics
 - Motivation of lexical semantics
 - Resources
 - 2 WordNet
 - Definition
 - Similarities
- 3 SentiWordNet
- 4 Sentiment analysis
 - Definition
 - Examples of methods

Unsupervised sentiment analysis

Possible simple solution with lexical information:

$$\textit{h}(D) = \sum_{w \in \hat{D}} \textit{word_score}(w) \qquad \textit{word_score}(w) = 1/|S(w)| * \sum_{s \in S(w)} \textit{score}(s))$$

 \hat{D} is usually the set of adjectives, or nouns and adjectives, or nouns, verbs, adjectives and adverbs. S(w) is the set of synsets for word w.

Opinion detection:

$$score(s) = 1 - obj_s$$
 or $score(s) = obj_s$

Polarity classification:

$$score(s) = pos_s - neg_s$$

Pros:

no need for training corpora

Cons:

- low results
- need for POS tagger

Semantics

WordNet

SentiWordNet

Sentiment analysis

Examples of methods

Supervised sentiment analysis

Possible simple solution with lexical information:

Bag of words with Naïve Bayes

$$h(D) = h(w_1, \ldots, w_n) = \underset{y}{\operatorname{argmax}} P(y) \prod_{i=1}^{n} P(w_i|y)$$

where y is the category (positive/negative, subjective/objective), and w_1, \ldots, w_n is the bag of words related to D

- lacksquare Given a training corpus $C=\{d_i\}$ partitioned into subsets Y_1 and Y_2
 - $P(y) \approx P_{MLE}(y) = \frac{|Y_i|}{|C|}$
 - $P(w_i|y) \approx P_{MLE}(w_i|Y_j) = \frac{c(w_i, Y_j)}{\sum_{w_i \in Y_j} c(w_i, Y_j)}$

Pros:

- higher results
- no need for POS tagger

Cons:

need for training corpora

Semantics

WordNet

 ${\sf SentiWordNet}$

Sentiment analysis

Examples of methods

Hybrid approach for sentiment analysis

Semantics

WordNet

SentiWordNet

Sentiment analysis

Examples of methods

Possible solution with lexical information:

- Combine two supervised methods with SentiWordnet method
- I.e., consensuate the output of the three methods, using voting, for instance:

if at least 2 of the methods answer y then output y else output the answer of the method with better accuracy in the training corpus

The combination improves the results of the isolated methods

Annex

Semantics

WordNet

SentiWordNet

Sentiment analysis

Examples of methods

Base on the Bayes' theorem:

$$P(y|x_1,\ldots,x_n) = \frac{P(y)P(x_1,\ldots,x_n|y)}{P(x_1,\ldots,x_n)}$$

■ Naïve assumption of independence between features:

$$P(y|x_1,\ldots,x_n)\approx P(y)\prod_{i=1}^n P(x_i|y)$$

- Maximum likelihood estimation of P(y) and $P(x_i|y)$ as training model
- Test prediction as:

$$h(x_1,\ldots,x_n) = \operatorname*{argmax}_{y} P(y) \prod_{i=1}^{n} P(x_i|y)$$

Need a smoothing technique to avoid zero counts: in NLTK never seen features are discarded