PLAN

- 1. Modélisation et Représentation
- 2. Spécifications Fonctionnelles
- 3. Outils de la qualité
- 4. Schématisation Fonctionnelle
- 5. Assemblage des Systèmes
- 6. Transmission et Automatisation

1. Graphisme de la cotation

☐ Une cote est une représentation graphique montrant à quels éléments se rapporte une dimension linéaire ou

angulaire et qui en spécifie sa valeur.

1.1 Éléments d'une cote

- ☐ Les éléments d'une cote sont :
 - les lignes d'attache;
 - la ligne de cote;
 - les extrémités;
 - la valeur de la dimension.

	Règles générales
1	Les lignes d'attache et les lignes de cote sont tracées en trait continu fin (chapitre 4).
2	La ligne de cote dimensionnelle est tracée parallèlement à la dimension à coter.
3	Les lignes d'attache sont parallèles entre elles.
4	Les lignes d'attache doivent dépasser légèrement la ligne de cote.
5	Les lignes d'attache doivent être tracées perpendicu- lairement à l'élément à coter ; toutefois, en cas de nécessité, elles peuvent être tracées obliquement mais parallèles entre elles.
6	Les lignes d'attache passant par l'intersection de lignes d'épures (ou de construction) doivent être prolongées légèrement au-delà du point de concours.
7	Si un élément est représenté en vue interrompue, les lignes de cote le concernant ne sont pas interrompues.

1.2 Méthode générale

VALEURS LINÉAIRES

- ☐ l'orientation de la cote dépend l'inscription des chiffres
- ☐ évitez d'orienter les cotes dans une direction comprise à l'intérieur de la zone teintée en rouge.

VALEURS ANGULAIRES

- □ Les valeurs angulaires doivent être inscrites suivant la figure a. Toutefois, les valeurs peuvent être inscrites horizontalement (fig. b) si leur lecture en est facilitée.
- ☐ Éviter d'inscrire des valeurs angulaires à l'intérieur de la zone teintée en rouge.

COTATION D'UNE CORDE, D'UN ARC, D'UN ANGLE

□ Pour un arc, la valeur de la longueur de l'arc est précédée d'un demi-cercle.

COTATION DES CHANFREINS ET DES FRAISURES

1.3 Dispositions particulières

1.3.1 Symboles normalisés

Élémen	t à coter	Sym	ıbole					
Diamètre		(Ø					
Rayon			R					
Surplat d'u	n carré	[
Rayon de s	phère	5	SR					
Diamètre d	e sphère	S	Ø					
Longueur o	le l'arc	-	`					
Épaisseur		t						
	Symbole pou	r les profilé	5					
Profilé	Symbole	Profilé	Symbole					
Rond	Ø	en U	Ш					
Carré		en I	I					
Plat		en T						
Cornière	L	en Z	1					

1.3.2 Cas où l'on manque de place

- ☐ Afin d'assurer la meilleure lisibilité possible de la valeur d'une cote:
- inscrire la valeur de la cote au-dessus du prolongement de la ligne de cote et de préférence à droite ;
- utiliser une ligne de repère lorsque la solution précédente n'est pas possible.

1.3.3 Cotation des rayons

- ☐ Pour coter un rayon, on trace :
- une ligne de cote ayant pour direction un rayon de l'arc de cercle ;
- une flèche pointée du côté concave de l'arc; si l'on manque de place, il est possible de tracer la flèche du côté convexe.

□ lorsqu'il est nécessaire de situer, avec précision, le centre de l'arc de cercle qui se trouve hors des limites du dessin, briser la ligne de cote du rayon et indiquer clairement sur quelle ligne se trouve le centre.

☐ Si la valeur de la cote d'un rayon se déduit des valeurs d'autres cotes, mettre uniquement le symbole R.

1.3.4 Cotes non à l'échelle

□ Les dimensions qui, exceptionnellement n'auraient pas été tracées à l'échelle, doivent être soulignées d'un trait continu fort.

1.3.5 Cotation de grands diamètres

☐ facilite la lecture des cotes en évitant une trop importante superposition des chiffres.

1.3.6 Cotation d'une demi-vue

☐ Prolonger les lignes de cotes au-delà de l'axe ou du plan de symétrie.

1.4 Modes de cotation

1.4.1 Cotation en série

☐ Ce mode de cotation consiste à tracer plusieurs cotes sur une même ligne. Les cotes se suivent sans se chevaucher.

1.4.2 Cotation en parallèle

☐ Les cotes sont disposées sur des lignes parallèles et elles partent d'une ligne d'attache commune.

1.4.3 Cotation à cotes superposées

- □ nombre de cotes en parallèle est important → plus simple et l'on gagne de la place, en utilisant une cotation à cotes superposées.
- ☐ Toutes les cotes sont disposées sur une même ligne et elles partent de la même origine. L'origine est marquée par un cercle et l'extrémité de chaque ligne de cote est terminée par une flèche.
- On inscrit les valeurs des cotes :
 - soit *au-dessus* de la ligne de cote et près des flèches ;
 - soit *dans le prolongement* des lignes d'attache.

1.4.4 Cotation en coordonnées cartésiennes

- ☐ Ce mode de cotation est utilisé essentiellement pour les dessins de fabrication.
- ☐ Le point zéro de référence peut se trouver sur l'intersection de deux cotes de la pièce ou sur tout autre élément.
- ☐ Généralement les cotes sont regroupées dans un tableau hors du tracé ; le dessin s'en trouve moins chargé et donc plus lisible.

1.4 Fautes à éviter

2. Système ISO de tolérances

2.1 Objet des tolérances

L'imprécision inévitable des procédés d'élaboration fait qu'une pièce ne peut pas être réalisée de façon rigoureusement conforme aux dimensions fixées au préalable. Il a donc fallu tolérer que la dimension effectivement réalisée soit comprise entre deux dimensions limites, compatibles avec un fonctionnement correct de la pièce. La différence entre ces deux dimensions constitue la tolérance.

2.2 Système ISO

- ☐ Ce système définit un ensemble de tolérances concernant la taille linéaire d'un élément, c'est-à-dire :
 - le diamètre d'un cylindre;
 - le diamètre d'une sphère ;
 - la distance entre deux surfaces planes parallèles opposées.

2.2.1 Principe

- ☐ On affecte à la pièce une dimension nominale et l'on définit chacune des deux dimensions limites par son écart par rapport à cette dimension nominale.
- ☐ Cet écart s'obtient en valeur absolue et en signe en retranchant la dimension nominale de la dimension limite considérée.

Alésage	Écart supérieur ES = D max. – D nom. Écart inférieur EI = D min. – D nom.
Arbre	Écart supérieur es = d max. – d nom. Écart inférieur ei = d min. – d nom.

les deux écarts de l'alésage sont positifs et les deux écarts de l'arbre sont négatifs.

2.2.2 Désignation des tolérances

- □ Pour chaque dimension nominale ou taille nominale,
 il est prévu toute une gamme de tolérances.
- □ La valeur de ces tolérances est symbolisée par un numéro dit « degré de tolérance ». Il existe 20 degrés de tolérances: 01-0 1 2 ... 17 18 correspondant chacune à des tolérances fondamentales: IT 01 IT 0 IT 1 IT 2 ... IT 17 IT 18, fonction de la dimension nominale ou taille nominale.

□ La position de l'intervalle de tolérance par rapport à la ligne d'écart nul ou ligne « zéro » est symbolisée par une ou deux lettres (de A à Z pour les alésages, de a à z pour les arbres).

- □ La classe de tolérance se compose du symbole de la position de l'intervalle de tolérance suivie du degré de tolérance.
- ☐ La première lettre de l'alphabet correspond à l'état minimal de matière pour l'arbre ou pour la pièce possédant l'alésage .
- ☐ La dimension minimale d'un alésage H correspond à la dimension nominale (écart inférieur nul) .
- ☐ La dimension maximale d'un arbre h correspond à la dimension nominale (écart supérieur nul) .
- ☐ Les tolérances Js ou js donnent des écarts égaux en valeur absolue (ES = EI = es = ei).

2.2.3 Ajustements

☐ Un ajustement est constitué par l'assemblage de deux pièces de même dimension nominale. Il est désigné par cette dimension nominale suivie des classes de tolérance correspondant à chaque pièce, en commençant par l'alésage.

- ☐ La position relative des intervalles de tolérances détermine:
- soit un ajustement avec jeu;
- soit un ajustement incertain, c'est-à-dire pouvant présenter tantôt un jeu, tantôt un serrage ;
- soit un ajustement avec serrage.

SYSTÈME DE L'ARBRE NORMAL

- ☐ Dans ce système, la position pour les intervalles de tolérances de tous les arbres est donnée par la lettre h (écart supérieur nul). L'ajustement désiré est obtenu en faisant varier pour l'alésage la position de l'intervalle de tolérance.
- □ L'emploi de ce système est réservé à des applications bien définies : emploi d'arbre en acier étiré, logements des roulements, etc.

SYSTÈME DE L'ALÉSAGE NORMAL

- □ Dans ce système, la position, pour les intervalles de tolérances, de tous les alésages est donnée par la lettre H (écart inférieur nul).
- ☐ L'ajustement désiré est obtenu en faisant varier pour l'arbre la position de l'intervalle de tolérance.
- □ C'est ce système que l'on doit toujours employer de préférence (il est plus facile de réaliser des tolérances différentes sur un arbre que dans un alésage).

RELATION ENTRE LES AJUSTEMENTS DE DEUX SYSTÈMES

- ☐ Les ajustements homologues des deux systèmes présentent les mêmes jeux ou serrages.
- ☐ Par exemple : L'ajustement 30 H7/f7 donne les mêmes jeux que l'ajustement 30 f7/h7.
- ☐ Afin de faciliter l'usinage des pièces, on associe habituellement un alésage de qualité donnée avec un arbre de qualité voisine inférieure: ex. H7/p6- P7/ h6.

CHOIX D'UN AJUSTEMENT

- 1. On détermine les jeux ou serrages limites compatibles avec un fonctionnement correct (éviter tout excès de précision inutile, diagramme diapo 115).
- 2. On choisit dans les normes, et de préférence, dans les valeurs les plus couramment utilisées, l'ajustement ISO qui comporte des jeux ou serrages aussi voisins que possible des valeurs précédemment déterminées (Tableaux suivants).

Alésages

. 26	Princ	ipau	x éca	rts er	micr	omèt	res			Températur	re de référe	ence : 20 °(
Alésages	Jusqu'à 3 inclus	3 à 6 inclus	6 à 10	10 à 18	18 à 30	30 à 50	50 à 80	80 à 120	120 à 180	180 à 250	250 à 315	315 à 400	400 à 50
D 10	+ 60 + 20	+ 78 + 30	+ 98 + 40	+ 120 + 50	+ 149 + 65	+ 180 + 80	+ 220 + 100	+ 260 + 120	+ 305 + 145	+ 355 + 170	+ 400 + 190	+ 440 + 210	+ 480 + 230
F7	+ 16 + 6	+ 22 + 10	+ 28 + 13	+ 34 + 16	+ 41 + 20	+ 50 + 25	+ 60 + 30	+ 71 + 36	+ 83 + 43	+ 96 + 50	+ 108 + 56	+ 119 + 62	+ 121 + 68
6.6	+ 8 + 2	+ 12 + .4	+ 14 + 5	+ 17	+ 20 + 7	+ 25 + 9	+ 29 + 10	+ 34 + 12	+ 39 + 14	+ 44 + 15	+ 49 + 17	+ 54 + 18	+ 60 + 20
H 6	+ 6 0	+ 8 0	+ 9	+ 11	+ 13 0	+ 16 0	+ 19	+ 22	+ 25	+ 29 0	+ 32 0	+ 36 0	+ 40
H7	+ 10	+ 12	+ 15 0	+ 18 0	+ 21	+ 25 0	+ 30	+ 35 0	± 40 0	+ 46 0	+ 52 0	+ 57	+ 63
Н8	+ 14	+ 18	+ 22 0	+ 27	+ 33	+ 39	+ 46	+ 54	+ 63 0	+ 72 0	+ 81	+ 89 0	+ 97 0
H 9	+ 25	+ 30	+ 36	+ 43 0	+ 52 0	+ 62 0	+ 74	+ 87	+ 100 0	+ 115	+ 130	+ 140	+ 155 0
H-10	+ 40	+ 48	+ 58	+ 70 0	+ 84 0	+ 100 0	+ 120 0	+ 140	+ 160 0	+ 185 0	+ 210	+ 230 0	+ 250 0
H 11	+ 60	+ 75 0	+ 90 0	+ 110 0	+ 130	+ 160 0	+ 190 0	+ 210 0	+ 250 0	+ 290 0	+ 320 0	+ 360 0	+ 400
H 12	+ 100	+ 120 0	+ 150 0	+ 180 0	+ 210 0	+ 250 0	+ 300	+ 350 0	+ 400 0	+ 460 0	+ 520 0	+ 570 0	+ 630 0
H 13	+ 140	+ 180	+ 220 0	+ 270	+ 330	+ 390	+ 460	+ 540 0	+ 630	+ 720 0	+ 810	+ 890	+ 970 0

17	+ 4	+ 1	-	8	+	10 8	+ 1	12	* 1	14	+	18 12	+ -	13	* "	26 14	+	30 16	+ -	36 16	+ -	39 18	*	- 22
K 6	- 6	+ 3		7	+	2 9	+	11	*	13	+:	15	+1	4 18	+ -	4 21	+	5 24	+	5 27	+	7 29	+	3
K 7	- 10	+ 3	-	5	+ 1	6 12	+ -	6 15	I	7	*11	9 21	1 +	10 25	+ -	12 28	+ -	13	+ 1	16 36	+ -	17 40	t	1 4
M 7	- 12	- 12	2 -	15	-	18	-	0 21	-	25	= 5	30	100	0 35	_	40	_	0 46		52	-	57	L	6
N 7	- 4 - 14	- 16	-	19	-	5 23	× 1	7 28	-	33	Ž.	9	1	10 45	- 2	12 52	-	14 60	1	14 66	1 1	16 73	-	1 8
N 9	- 4 - 29	- 30		36		0 43	K	0 52	-	0 52		0 74	40	0 87	-	100	_	0 115	-	130	-	0 140		15
P 6	- 6 - 12	- 17	-	12	-	15 26	-	18 31		21 37	-	26 45		30 52	7.	36 61	1	41 70	15	47 79	7.0	51 87	-	5 9
P.7	- 6 - 16	- 3	-		-	11 29	-	14 35	-	17 42	-	21 51	-	24 59	2	28 68	-	33 79	1.1	36 88	-	41 98	1	
P 9	- 9 - 31	- 12	-	15 51	7	18 61		72	-	26 88	-	32 106	-	37 124	51	43 143		50 165	T .	56 186		62 202		£ 22

Arbres

Arbres	Jusqu'à 3 inclus	3 à 6 inclus	6 à 10	10 à 18	18 à 30	30 à 5 0	50 à 80	80 à 12 0	120 à 180	180 à 250	250 à 315	315 à 400	400 à 500
a 11	- 270	- 270	- 280	- 290	- 300	- 320	- 360	- 410	- 580	- 820	- 1 050	- 1 350	- 1 650
	- 330	- 345	- 370	- 400	- 430	- 470	- 530	- 600	- 710	- 950	- 1 240	- 1 560	- 1 900
c 11	- 60	- 70	- 80	- 95	- 110	- 130	- 150	- 180	- 230	- 280	- 330	- 400	- 480
	- 120	- 145	- 170	- 205	- 240	- 280	- 330	- 390	- 450	- 530	- 620	- 720	- 840
d 9	- 20	- 60	- 40	- 50	- 65	- 80	- 100	- 120	- 145	- 170	- 190	- 210	- 230
	- 45	- 30	- 75	- 93	- 117	- 142	- 174	- 207	- 245	- 285	- 320	- 350	- 385
d 10	- 20	- 30	- 40	- 50	- 65	- 80	- 100	- 120	- 145	- 170	- 190	- 210	- 230
	- 60	- 78	- 98	- 120	- 149	- 180	- 220	- 250	- 305	- 355	- 400	- 440	- 480
d 11	- 20	- 30	- 40	- 50	- 65	- 80	- 100	- 120	- 145	- 170	- 190	- 210	- 230
	- 80	- 105	- 130	- 160	- 195	- 240	- 290	- 340	- 395	- 460	- 510	- 570	- 630
e 7	- 14	- 20	- 25	- 32	- 40	- 50	- 60	- 72	- 85	- 100	- 110	- 125	- 135
	- 24	- 32	- 40	- 50	- 61	- 75	- 90	- 107	- 125	- 146	- 162	- 182	- 198
e 8	- 14	- 20	- 25	- 32	- 40	- 50	- 60	- 72	- 85	- 100	- 110	- 125	- 135
	- 28	- 38	- 47	- 59	- 73	- 89	- 106	- 126	- 148	- 172	- 191	- 214	- 232
e 9	- 14	- 20	- 25	- 32	- 40	- 50	- 60	- 72	- 85	- 100	- 110	- 125	- 135
	- 39	- 50	- 61	- 75	- 92	- 112	- 134	- 159	- 185	- 215	- 240	- 265	- 290
f6	- 6	- 10	- 13	- 16	- 20	- 25	- 30	- 36	- 43	- 50	- 56	- 62	- 68
	- 12	- 18	- 22	- 27	- 33	- 41	- 49	- 58	- 68	- 79	- 88	- 98	- 108
f7	- 6	- 10	- 13	- 16	- 20	- 25	- 30	- 36	- 43	- 50	- 56	- 62	- 68
	- 16	- 22	- 28	- 34	- 41	- 50	- 60	- 71	- 83	- 96	- 106	- 119	- 131
f8	- 6	- 10	- 13	- 16	- 20	- 25	- 30	- 36	- 43	- 50	- 56	- 62	- 68
	- 20	- 28	- 35	- 43	- 53	- 64	- 76	- 90	- 106	- 122	- 137	- 151	- 165
95	- 2	- 4	- 5	- 6	- 7	- 9	- 10	- 12	- 14	- 15	- 17	- 18	- 20
	- 6	- 9	- 11	- 14	- 16	- 20	- 23	- 27	- 32	- 35	- 40	- 43	- 47
g 6	- 2	- 4	- 5	- 6	- 7	- 9	- 10	- 12	- 14	- 15	- 17	- 18	- 20
	- 8	- 12	- 14	- 17	- 20	- 25	- 29	- 34	- 39	- 44	- 49	- 54	- 60

h 5	- 4	- 5	- 6	- 8	- 9	- 11	- 13	- 15	- 18	- 20	- 23	- 25	- 2
h 6	- 6	- 8	- 0 - 9	- 11	- 13	- 16	- 19	- 0 - 22	0 - 25	0 - 29	- 32	0 - 36	- 4(
h 7	- 10	- 12	- 15	- 18	- 21	0 - 25	- 30	0 - 35	- 40	- 46	- 52	- 0 - 57	- 63
h 8	- 14	- 18	- 0 - 22	- 0 - 27	- 33	- 39	0 - 46	- 54	- 63 0	- 72	- 81	- 89	- 97
h 9	0 - 25	- 30	0 - 36	0 - 43	- 52	0 - 62	0 - 74	0 - 87	- 100	0 115	0 - 130	0 - 140	- 155
h 10	- 40	- 48	0 - 58	- 70	- 84	- 100	0 - 120	0 - 140	- 160	0 - 185	- 210	- 230	- 250
h 11	- 60 0	- 75	0 - 90	0 - 110	0 - 130	0 - 160	0 - 190	0 - 220	0 - 250	0 - 290	0 - 320	- 360	- 400
h 13	0 - 140	- 180	0 - 220	0 - 270	- 330	0 - 390	0 - 460	0 - 540	- 630	0 - 720	0 - 810	- 890	- 970

j 6	+ 4		+	5 2	+ -	7 2	+	8	# -	9	+ -	11 5	+ -	12 7	+ -	13	+ -	14 11	+ -	16 13	维	16 16	+ -	18 18	+ -	20 20
js 5	± 2	2	± 2	2,5	±	3	±	4	±	4,5	±	5,5	±	6,5	±	7,5	±	9	±	10	=	11,5	±	12,5	±	13,5
js 6	士 3	3	*	4	±	4,5	±	5,5	+	6,5	±	8	±	9,5	±	11	±	12,5	\pm	14,5	±	16	土	18	主	20
js 9	± 12	2	±	15	±	18	±	21	±	26	2	31	±	37	±	43	1	50	±	57	±	65	土	70	*	77
js 11	± 30)	± 3	37	+	45	+	55	±	65	t	80	±	95	±	110	+	125	+	145	+	160	#	180	+	200
k 5	+ 4	(A)	++	6	++	7	++	9	++	11 2	++	13	++	15	++	18	++	21	++	24 4	++	27 4	+ +	29 4	+ +	32 5
k 6	+ 6	200	++	9	+ +	10 1	++	12	++	15 2	+ +	18	++	21	++	25 3	++	28 3	++	33 4	++	36 4	++	40 4	+ +	45 5
m 5	+ 6		++++	9	++	12 6	++	15 7	+	17 8	++	20 9	++	24 11	+	28 13	++	33 15	++	37 17	++	43 20	+ +	46 21	+ +	50 23
m 6	+ 8 + 2		++	12 4	++	15 6	++	18 7	+ +	21 8	+ +	25 9	++	30 11	++	35 13	+++	40 15	++	46 17	+ +	52 20	++	57 21	+ +	63 23
n 6	+ 10		‡	16 8	++	19 10	++	23 12	++	28 15	++	33 17	+ +	39 20	++	45 23	+ +	52 27	++	60 31	+	66 34	+	73 37	+ +	80 40
р6	+ 12			20 12	++	24 15	+	29 18	++	35 22	+ +	42 26	+ +	51 32	+	59 37	++	68 43	++	79 50	++	88 56	++	98 62	++	108 68

2.2.3 Principaux ajustements

25	Principau	x ajustem	ents	Arbres*	H 6	H 7	Н8	Н9	H 11
l'une	Pièces dont le	fonctionnemen	nécessite un grand jeu (dilatation,	С				9	11
es l'un	mauvais aligne	ement, portées 1	rès longues, etc.).	d				9	11
Pièces mobiles l'une par rapport à l'autre	Cas ordinaire	des pièces tourn	ant ou glissant dans une bague ou	е		7	8	9	
r raps	palier (bon gra	issage assuré).		f	6	6-7	7		
Pie	Pièces avec gu	dage précis pou	r mouvements de faible amplitude.	g	5	6			
	Démontage	Vzccomblano	Mice on place peculible à la main	h	5	6	7	8	
re	Démontage et remontage	L'assemblage ne peut pas	Mise en place possible à la main	js	5	6			
illes à l'autre	possible sans détérioration	transmettre d'effort	Miss on place as maillet	k	5	H			
Pièces immobiles par rapport à l'a	des pièces		Mise en place au maillet	m		6			
Pièces immob l'une par rapport	Démontage	L'assemblag	Mise en place à la presse	р		6			
Pièc ne pa	impossible	e peut trans-	Mise en place à la presse ou par	5			7		
lu.	sans détério- ration des	mettre des efforts	dilatation (vérifier que les contraintes imposées au métal ne	u			7		
	pièces		dépassent pas la limite élastique)	х			7		

3. Inscription des tolérances

3.1 Tolérances chiffrées

3.1.1 Cotes linéaires

- ☐ Inscrire, à la suite de la dimension nominale, les valeurs des écarts supérieur et inférieur. Ces valeurs sont placées l'une au-dessous de l'autre, celle correspondant à la limite supérieure étant inscrite la première.
- □ Donner les valeurs des écarts, avec leur signe, dans la même unité que la dimension nominale et mettre à l'un et à l'autre le même nombre de décimales.
- ☐ Dans le cas d'un écart nul, ne mettre ni signe, ni décimale.

CAS PARTICULIERS

Tolérances à écarts symétriques

☐ Si les écarts sont symétriques par rapport à la dimension nominale, on ne doit inscrire leur valeur qu'une fois précédée du signe ±.

Tolérances données par des dimensions limites

☐ Inscrire les deux dimensions limites, la dimension la plus grande est inscrite la première.

Tolérances « unilimites »

☐ Si une seule dimension limite est imposée, la faire suivre de l'indication « min. » ou « max. >> (abrégés de minimal et maximal).

3.1.2 Cotes angulaires

☐ Elles suivent les mêmes règles générales que les cotes linéaires. excepté que les unités de l'angle nominal et des écarts sont toujours indiquées.

3.2 Symboles ISO

- ☐ Inscrire, à la suite de la dimension nominale, la classe de tolérance ISO choisie
- ☐ Afin d'éviter aux différents utilisateurs de consulter un tableau des écarts, il est conseillé d'indiquer la valeur numérique des écarts :
 - soit, regroupés avec d'autres écarts dans un tableau général ;
 - soit, entre parenthèses après le symbole ;
 - soit, en indiquant entre parenthèses les dimensions limites.

3.3 Ajustements

☐ Les valeurs des ajustements sont inscrites, si nécessaire, sur les dessins d'ensembles

3.3.1 Valeurs chiffrées

- ☐ La cote de chaque composant de l'assemblage est précédée:
 - soit. du repère de la pièce concernée;
 - soit, de la désignation << alésage » ou « arbre ».

3.3.2 Symboles ISO

- ☐ l'indication d'un ajustement comprend :
 - l'indication de la dimension nominale commune à l'alésage et à l'arbre;
 - le symbole de la tolérance de l'alésage précède celui de l'arbre.

☐ En fonction de l'utilisation, la valeur numérique des écarts peut être indiquée entre parenthèses.

3.4 Tolérances générales

- ☐ L'utilisation des tolérances générales a pour objet de permettre le tolérancement complet d'une pièce tout en
 - évitant d'inscrire un nombre trop important de spécifications.
- ☐ Les tolérances plus petites que les tolérances générales sont indiquées individuellement.
- ☐ Les tolérances plus grandes que les tolérances générales ne sont indiquées que s'il peut en résulter une

réduction des coûts de fabrication.

3.4.1 Écarts pour éléments usinés

NF EN 22768 - ISO 2788

	Dime	nsions	linéaire			Angles cassés			Dimensions angulaires				
	Section A				Rayons – chanfreins			Dime	nsion du co	té le plus	court		
Classe de précision	0,5 à 3 inclus	3 à 6	6 à 30	30 à 120	120 à 400	0,5 à 3 inclus	3 à 6	> 6	Jusqu'à 10	10 à 50 inclus	50 à 120	120 à 400	
f (fin)	± 0,05	± 0,05	± 0,1	± 0,15	± 0,2	± 0,2	± 0,5	± 1	± 1°	± 30'	+ 201	+ 10	
m (moyen)	± 0,1	± 0,1	± 0,2	± 0,3	± 0,5	± 0,2	± 0,5	± 1	7.1	± 30°	± 20'	± 10°	
c (large)	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 0,4	±1	± 2	± 1° 30′	± 1°	± 30'	± 15'	
v (très large)	3	± 0,5	±1	± 1,5	± 2,5	± 0,4	±1	± 2	± 3°	± 2°	± 1°	± 30'	

NF EN 22768 - ISO 2788

	3,22	100		all the	Toléra	inces gé	ométr	iques		New York	C TO	
Tolérances	erances								4		Axial Radial	
Classe de précision	Jusqu'à 10	10 à 30 inclus	30 à 100	100 à 300	300 à 1 000	Jusqu'à 100	100 à 300	300 à 1.000	Jusqu'à 100	100 à 300	300 à 1 000	Toutes dimensions
H (fin)	0,02	0,06	0,1	0,2	0,3	0,2	0,3	0,4	0,5	0,5	0,5	0,1
K (moyen)	0,05	0,1	0,2	0,4	0,6	0,4	0,6	0,8	0,6	0,6	0,8	0,2
L (large)	0,1	0,2	0,4	0,8	1,2	0,6	1	1,5	0,6	1	1,5	0,5
	//	/				0					0)
Même valeur que la tolérance dimen- sionnelle ou de rectitude ou de planéité si elles sont supérieures.				e tra	Même valeur que la tolérance diamé- trale mais à condition de rester infé- rieure à la tolérance de battement.							alité sont limités e battement.

- Si plusieurs tolérances géométriques s'appliquent à un même élément, retenir la plus large.
- Choisir comme référence le plus long des deux éléments. Si les éléments ont la même dimension nominale, chacun d'eux peut être pris comme référence.

INDICATIONS SUR LES DESSINS

Inscrire dans ou près du cartouche : Tolérances générales ISO 2768 - mK.

3.4.2 Pièces obtenues à partir de tôles

	Sciage		N	lécanosoud	age – Class	e B NF	E 86-050	
	± 1 millimètre par mètre	Tolérances	≤ 30	30 à 315	315 à 1 000	Tolérances	≤ 315	
avec	une tolérance minimale de ± 0,5 mm	linéaires	± 1	± 2	± 3	angulaires	± 45'	
	Tôle	rie – Chaudro	nnerie					
Tolérances linéaires	± 0,5 millimètre par mètre avec une tolérance minimale de ± 0,3 mm	Tolérances 2° à 3° angulaires						
	Découpage à la presse	Em	boutissa	ge		Extrusion		
Précis IT 6 à IT 8		17	10 A IT 13	,		IT 8 à IT 12		
Ordinaire	IT 9 à IT 10	1	THE PROPERTY OF THE PROPERTY O			sur diamètres)		

3.4.3 Pièces moulées en sable

FONTES À GRAPHITE LAMELLAIRE - FONTES MALLÉABLES - FONTES À GRAPHITE SPHÉROÏDAL - ACIERS MOULÉS

Cote nominale*	≤ 100			100 à 160				160 à 250)	≤ 250		
Cote nominale	L	A	В	L	A	В	L	А	В	L	Α	В
≤ 16	±1	± 0,5	± 0,5	±1	± 0,5	± 0,5	± 1	± 0,5	± 0,5	± 2	±1	2.1
16 à 25	±1	±1	± 0,5	± 1	± 1	± 0,5	±1	±1	± 0,5	± 2	±1	± 1
25 à 40	± 1,5	±1	± 0,5	± 1,5	±1	± 0,5	± 1,5	±1	± 0,5	± 2	± 1	± 1
40 à 63	± 1,5	±1	± 1	± 1,5	±1	±1	± 1,5	±1	±1	± 2	± 2	± 1
63 à 100	± 2	± 1,5	±1	± 2	± 1,5	±1	±2	± 1,5	+1	± 2	± 2	± 1

- Tolérances L : s'appliquent à des pièces acceptant des tolérances larges. .
- Tolérances A : correspondent à l' utilisation de modèles en bois fixés sur plaques.
- Tolérances B : nécessitent des modèles métalliques.

ALLIAGES DE CUIVRE ET ALLIAGES D'ALUMINIUM

	Plus	grande r	dimensio	on de la	pièce	Cote nominale	Plus grande dimension de la pièce						
Cote nominale	< 100	100 à 160	160 à 250	250 à 400	400 à 630		≤ 100	100 à 160	160 à 250	250 à 400	400 à 630		
≤ 25	± 0,5	± 0,5	± 0,5	± 0,5	± 0,5	40 à 63	± 0,5	±1	± 1	+1	±1		
25 à 40	± 0,5	± 0,5	± 0,5	± 0,5	± 1	63 à 100	± 1	±1	± 1	±1	± 1,5		

3.4.4 Moulages de précision

Procédé	Tol. en % pour dimensions < 250 mm	Procédé	Tol. en % pour dimensions < 250 mm
Au sable autosiccatif	\pm 0,5 % avec des écarts minimaux de \pm 0,5 mm	En coquille sous pression	± 0,3 % avec des écarts minimaux de ± 0,1 mm
En carapace « Croning »	± 0,3 % avec des écarts minimaux de ± 0,4 mm	À la cire perdue	± 0,2 % avec des écarts minimaux de ± 0,05 mm
En coquille par gravité	± 0,5 % avec des écarts minimaux de ± 0,4 mm	-	

3.4.5 Moulages par injection

Pièces en plastique NF T												IF T 58	-000		
Classe de précision	\$1	3	6	10	15	22	30	40	53	7.0	90	115	150	200	250
Normale	± 0,13	± 0,15	± 0,17	± 0,20	= 0,22	± 0,25	± 0,27	± 0,30	± 0,35	± 0,38	± 0,43	± 0,50	± 0,60	± 0,75	± 0,90
Reduite	± 0,06	± 0,07	± 0,08	± 0,09	± 0,10	± 0,11	± 0,13	± 0,15	± 0,17	± 0,20	± 0,24	± 0,29	± 0,35	± 0,44	± 0,55
De précision	= 0,04	± 0.05	±0.06	± 0,07	± 0,08	± 0.09	± 0,10	± 0,11	± 0,13	± 0,15	± 0,17	± 0,20	± 0,24	± 0,30	± 0,36

- Écarts par cote ne comprenant pas de plan de joint
- Les cotes non tolérancées sur le dessin sont, en principe, celles de la classe normale.
- Les emplacements des éjecteurs, plans de joints ... sont à indiquer sur le dessin après consultation du fabricant.
- Les tolérances sont valables pour les plastiques : PA- PPO ABS PS PMMA PVC et approchées pour les autres.
- Écrire dans ou près du cartouche : Tolérances générales classe ___ . NF T 58-000.

	Pièces en alliage de zinc												
Diagonale	Précision	Qualité de tolérance TF	≤ 10	10 à 18	18 à 30	30 à 50	50 à 80	80 à 120	120 à 180	Indication			
	Fine	10.5	± 0,036	± 0,044	± 0,052	± 0,065	-	-	_	Écrire près			
≤ 50	Moyenne	11.5	± 0,06	± 0,07	± 0,085	± 0,10	2	LES I	-	ou dans le cartouche			
	Courante	12.5	± 0,09	± 0,11	± 0,13	± 0,16		-	-	Tolérances générales			
	Fine	11.5	± 0,06	± 0,07	± 0,085	± 0,10	± 0,12	± 0,14	± 0,16	Qualité de tolérance			
50 à 180	Moyenne	12.5	± 0,09	± 0,11	± 0,13	± 0,16	± 0,19	= 0,22	± 0,25	TF,			
	Courante	13	± 0,11	± 0,14	± 0,17	± 0,20	± 0,23	± 0,27	± 0,32	NF A 66-002			

3.4.6 Pièces obtenues par déformation

Procedé	≤ 50	50 à 80	80 à 200	200 à 315	315 à 400	400 à 500	500 à 630
Forgeage	±3	±3	± 4	± 6	±8	±9	±10
Matriçage	± 0,5	±1	±1	± 1,5	± 2	± 2,5	± 2,5

4. Etats de surface

- □ L'aptitude d'une pièce, à une fonction donnée, dépend d'un ensemble de conditions, notamment des caractéristiques de ses états de surface.
- ☐ Par exemple, l'examen de la figure jointe montre que l'étanchéité et l'usure du joint sont essentiellement fonction de l'état de surface de l'alésage du cylindre.

4.1 Généralités

- ☐ Surface d'un corps : c'est le lieu des points qui délimitent une portion de l'espace.
- ☐ La surface d'une pièce est composée d'une ou plusieurs surfaces élémentaires.

Exemple: pour la pièce on distingue : une surface cylindrique et deux surfaces planes.

- □ Surface nominale: c'est une surface parfaite. Elle est définie géométriquement par des cotes nominales. Par exemple, pour la surface cylindrique : Ø 30.
- ☐ Surface spécifiée: c'est la surface géométrique affectée des tolérances de fabrication
- □ Surface réelle: c'est la surface qui résulte des procédés de fabrication, elle limite la pièce et la sépare du milieu environnant. La figure montre (en amplifiant les défauts) que la surface réelle diffère sensiblement de la surface nominale.

- □ Surface mesurée : la surface mesurée est le résultat de l'exploration, à l'aide des instruments de mesure, de la
 - surface réelle.
- □ Par exemple, avec l'appareil représenté figure ci-dessous, il arrive que le palpeur ne touche pas le fond de la surface réelle. C'est ce qui explique, en partie, la différence entre la surface réelle et la surface mesurée. Les divers types d'instruments et les différentes techniques de mesure peuvent donner, à partir d'une même surface réelle, des surfaces mesurées dissemblables. C'est pourquoi, il est nécessaire d'indiquer sur le plan ou dans le cahier des charges :
 - l'appareil de mesure choisi;
 - les conditions d'exécution du contrôle.

4.2 Analyse d'une surface

- ☐ Si l'on coupe normalement une surface par un plan, on obtient une courbe appelée« profil de surface>>. C'est à partir de ce profil que l'on analyse les différents défauts de la surface. On classe les défauts géométriques en quatre ordres de grandeur.
- Défauts du premier ordre: Ce sont des défauts de forme. Par exemple : écarts de rectitude, écarts de circularité, etc.
- Défauts du deuxième ordre: C'est une ligne ondulée. Elle est caractérisée par une ligne enveloppe supérieure. La distance d'irrégularité entre deux sommets est comprise entre 0,5 et 2,5 mm environ.

Défauts du troisième et du quatrième ordre: Ils caractérisent la rugosité de la surface. Les défauts du troisième ordre sont constitués par des stries ou sillons. La distance entre deux sillons est comprise entre 0,02 et 0,5 mm environ. Les défauts du quatrième ordre sont des défauts apériodiques constitués par des arrachements, fentes, etc. La distance entre deux pics de ces irrégularités est inférieure ou égale à 20 µm.

4.3 Caractéristiques du profil

- □ longueur d'évaluation In: Longueur, mesurée suivant la direction générale du profil.
- ☐ Longueur de base Ir: Partie de la longueur d'évaluation utilisée pour séparer les irrégularités du profil.

Ligne enveloppe supérieure: Segments de droites joignant les points les plus hauts des saillies locales du profil.

- Ligne moyenne: C'est une droite ayant la direction générale du profil et qui divise le profil de telle sorte qu'à l'intérieur de la longueur de base, la somme des carrés des écarts à partir de cette ligne soit minimale (« ligne des moindres carrés»).
- Approximativement, la somme des aires comprise entre la ligne moyenne et le profil est égale de part et d'autre.

4.3.1 Paramètres liés aux motifs

Profondeur moyenne d'ondulation W

C'est la moyenne des distances saillie-creux des écarts du deuxième ordre.

$$W \approx \frac{W_1 + ... + W_n}{n} \quad \text{avec } n \ge 3.$$

Pas moyen de l'ondulation AW

C'est la moyenne des distances saillie-saillie des écarts du deuxième ordre.

$$AW \approx \frac{AW_1 + ... + AW_n}{n} \quad \text{avec } n \ge 3.$$

Profondeur moyenne de rugosité R

C'est la moyenne des distances saillie-creux des écarts du troisième et quatrième ordre.

$$R \simeq \frac{R_1 + ... + R_n}{n}$$
 avec $n \ge 8$.

Pas moyen de rugosité AR

C'est la moyenne des distances saillie-saillie des écarts du troisième et quatrième ordre.

4.3.2 Paramètres liés à la ligne moyenne

Écart moyen arithmétique du profil Ra

Ra est égal à la moyenne arithmétique, calculée sur la longueur de base, de la valeur absolue de l'ordonnée z entre chaque point du profil et l'axe ox.

$$Ra = \frac{1}{l} \int_{0}^{l} |z(x)| dx$$
 $Ra = \frac{|z_1| + ... + |z_n|}{n}$

Hauteur maximale du profil Rz

C'est la distance entre la ligne des saillies et la ligne des creux.

Hauteur maximale de saillies Rp

C'est la distance entre la ligne des saillies et la ligne moyenne.

Taux de longueur portante Rmr(c)

Le taux de longueur portante s'exprime en pourcentage pour un plan de coupe à une profondeur donnée c en micromètres.

- Rmr(c) 70% signifie qu'après une usure de 5 µm le pourcentage de la longueur d'évaluation qui porterait sur une surface plane devrait être d'au moins 70 %.
- Si l'on recherche un état de surface fin, tout en laissant des sillons formant réserve d'huile, on peut tolérancer un taux de longueur portante: Rmr(c) 60% à 70 %.

$$Rmr(c) = \frac{ML_1 + ... + ML_n}{L_n}.$$

4.4 Indication d'un état de surface

4.4.1 Symboles de base

Surface prise en considération. Ce symbole ne spécifie aucune exigence pour l'état de surface.

Surface où l'enlèvement de matière est interdit, sans spécification d'exigence pour l'état de surface.

L'état de surface est le même pour toutes les surfaces de la pièce.

Surface à usiner par enlèvement de matière, sans spécification d'exigence pour l'état de surface.

Surface avec spécifications d'exigence complémentaires pour l'état de surface.

4.4.2 Indications de l'état de surface

L'état de surface Ra de limite supérieure 6,3 µm peut être obtenu par un procédé d'élaboration quelconque (enlèvement de matière par usinage facultatif).

L'écart moyen arithmétique du profil Ra doit être compris entre une limite supérieure de 6,3 µm et une limite inférieure de 1,6 µm.

L'état de surface Ra de limite supérieure 3,2 µm doit obligatoirement être obtenu par usinage.

L'état de surface Ra de limite supérieure 0,8 µm doit être obtenu par un procédé sans enlèvement de matière.

L'état de surface doit respecter deux paramètres de rugosité :

- Ra limite supérieure 0,8 µm,
- Rz limite inférieure 6,3 µm.

La profondeur moyenne d'ondulation du profil W doit être au maximum de 0,3 µm.

4.4.3 Indications complémentaires éventuelles

	Direction des stries												
Symbole	Exemple	Symbole	Exemple	Symbole	Exemple	Symbole	Exemple						
	\(= \)	1		×	×	M	M M M M M M M M M M M M M M M M M M M						
С		R	√R ⊗	P	P	procédé de fa La symbolisati	des stries résulte du brication utilisé. ion donne la direction tés de surface prédo-						

4.4.4 Spécifications simplifiées

^{*}La signification des indications simplifiées est à inscrire dans le cartouche ou dans son voisinage.

4.4.5 Positions du symbole

Les symboles de base, ou les lignes de repère, sont tracés du côté libre de matière. Les inscriptions doivent être orientées pour êtres lues depuis le bas ou depuis la droite du dessin.

4.4.6 Fonction d'une surface

- L' analyse d'une surface permet de définir les paramètres d'état de surface qui caractérisent au mieux les écarts maximaux à respecter pour satisfaire une fonction donnée.
- Dans l'exemple donné, l'examen du relevé topographique d'une surface rectifiée montre notamment :
 - que la forme du profil est irrégulière ;
 - que dans une direction perpendiculaire au plan de coupe la forme des saillies et des creux est sensiblement constante.

Coût relatif d'un usinage en fonction de l'état de surface											
Usinage	État de surface	Coût relatif									
Pas d'usinage - État brut	Ra 12,5	1									
Usinage ordinaire	Ra 3,2	5									
Usinage fin	Ra 0,8	12									
Polissage	Ra 0,2	50									

4.4.7 Fonctions et états de surface

Surface	Fonction	Condition	Exemples d'application	Ra*	R*	W*
	Frottement	Moyenne	Coussinets – Portées d'arbres	0,8	2	- 8.65
	de glissement (1)	Difficile	Glissières de machines-outils	0,4	1	≤ 0,8 R
2	Frottement	Moyenne	Galets de roulement	0,4	1	. 0.00
Avec déplacements relatifs	de roulement (2)	Difficile	Chemins de roulements à billes	0,02	0,06	≤ 0,3 R
acer	Résistance	Moyenne	Cames de machines automatiques	0,4	1	
léplacer relatifs	au matage**	Difficile	Extrémités de tiges de poussée	0,10	0,25	
ec c	Frottement	Moyenne	Conduits d'alimentation	6,3	16	
Av	fluide	Difficile	Gicleurs	0,2	0,5	
	Étanchéité	Moyenne	Portées pour joints toriques	0,4	1	
	dynamique (3)	Difficile	Portées pour joints à lèvres	0,3	0,8	≤ 0,6R

Avec assemblage fixe	Étanchéité statique (3)	Moyenne	Surfaces d'étanchéité avec joint plat	1,6	4	≤ R
		Difficile	Surfaces d'étanchéité glacées – sans joint	0,1	0,25	
	Assemblage fixe (contraintes faibles)	Moyenne	Portées et centrages de pièces fixes démontables	3,2	10	-
		Difficile	Portées et centrages précis	1,6	4	
	Ajustement fixe avec contraintes	Moyenne	Portées de coussinets	1,6	4	-
		Difficile	Portées de roulements	0,8	2	
	Adhérence (collage)	-	Constructions collées	1,6 à 3,2	2 à 10	-

Sans	Dépôt électrolytique	-	Indiquer la rugosité exigée par la fonction, après dépôt	0,1 à 3,2	0,25 à 10	-
	Mesure	Moyenne	Faces de calibres d'atelier	0,1	0,25	≈ R
	Revêtement (peinture)	-	Carrosseries d'automobiles	≥ 3,2	≥ 10	-
Avec	Résistance aux efforts alternés	Moyenne	Alésages de chapes de vérin	1,6	4	-
		Difficile	Barres de torsion	8,0	2	-
	Outils coupants (arête)	Moyenne	Outils en acier rapide	0,4	1	-
		Difficile	Outils en carbure	0,2	0,5	-

- Relations approximatives : Rp= 0.4 R; Rz=3,2 Ra ; W =2 Ra.
- L'intervalle de tolérance doit être supérieur à 10 Ra.

4.4.8 Procédés d'élaboration et états de surface

5. Tolérances géométriques

Les tolérances géométriques limitent les écarts admissibles de forme, d'orientation, de position ou de battement d'un élément (point, ligne, surface) en définissant une zone de tolérance à l'intérieur de laquelle l'élément doit être compris.

5.1 Indication d'un élément

- L'élément de référence est précisé par un triangle noirci ou non. L'élément tolérancé est indiqué par une flèche.
- Suivant la position du triangle ou de la flèche, on distingue deux cas :
 - si le triangle ou la flèche sont appliqués sur l'élément ou sur une ligne de rappel, la référence ou la tolérance concerne l'élément lui-même (fig. 1a et 1b);

 si le triangle ou la flèche sont appliqués dans le prolongement de la ligne de cote, la référence ou la tolérance concerne l'axe ou le plan médian ainsi spécifié (fig. 1 c).

- Le cadre est relié à l'élément concerné par une ligne de rappel pouvant partir de n'importe quel côté du cadre.
- Les écarts de forme de l'élément de référence doivent être négligeables par rapport aux écarts à contrôler. C'est pourquoi il peut être nécessaire de prescrire une tolérance de forme limitative pour la surface de référence

5.1.1 Elément restreint

 Si la référence, ou la tolérance, ne concerne qu'une partie restreinte de l'élément, représenter cette partie par un trait mixte fort distant de 0,8 mm de l'élément concerné

CAS PARTICULIER : références partielles

- Pour certaines applications, il est nécessaire de repérer certains points qui définissent géométriquement la surface de référence.
- La position des références partielles doit être cotée.

5.1.2 Éléments séparés

5.1.3 Direction de mesure

Influence de la direction de mesure

La figure montre l'influence de la direction de mesure sur la largeur de la zone de tolérance $a \neq b$.

Sauf spécification contraire, la direction de mesure doit toujours être perpendiculaire à la surface concernée et ce quelle que soit la direction de la ligne de rappel.

Cas des surfaces quelconques

En l'absence de spécifications particulières, la direction de la largeur de la zone de tolérance est normale à la géométrie ou à la surface concernée.

Si la direction de la zone de tolérance doit être différente, la direction de mesure doit être spécifiée.

Dans le cas de la circularité, la largeur de la zone de tolérance est dans le plan perpendiculaire à l'axe nominal.

5.1.4 Inscription de la valeur des tolérances

5.1.5 Inscription des références

Système de références spécifiées

Un système de références est composé de plusieurs références simples ou communes. Les références sont identifiées par des lettres majuscules indiquées de gauche à droite dans des cases séparées et dans l'ordre décroissant des degrés de liberté.

EXEMPLE

A : élimine 3 degrés de liberté.

B : élimine 2 degrés de liberté.

C: élimine 1 degré de liberté.

Filetages – Engrenages Cannelures

Les références et les tolérances s'appliquent à l'axe du cylindre à flanc de filet ou primitif sauf spécifications contraires.

MD Diamètre extérieur

PD Diamètre à flanc de filet ou primitif

D Diamètre intérieur

Groupe d'éléments

Si un groupe d'éléments (deux trous pour pieds de positionnement par exemple, voir § 53.1) participe à la définition du système de référence d'un ou de plusieurs autres éléments, on peut le spécifier en plaçant sur le dessous du cadre de la tolérance un symbole d'élément de référence (ici D).

5.2 Tolérances de forme

Profil d'une surface quelconque S Ø 0.04 La surface tolérancée doit être comprise 10,04 entre les deux surfaces qui enve-Zone de tolérance loppent l'ensemble des sphères de 0,04 centrées sur une surface ayant la forme géométrique théorique exacte 30 30 Surface R15 R15 (surface nominale). nominale 60 60 SYMBOLE Profil Profil Cylindricité SIGNIFICATION Planéité Rectitude Circularité d'une surface d'une ligne Tolérance large mm/m 0.1 mm/m 0.04 mm/m IT 8 Tolérance réduite IT 5 0,04 mm/m 0.02 mm/m 0.02 mm/m

5.3 Tolérances d'orientation

- Une tolérance d'orientation d'un élément est donnée obligatoirement par rapport à un autre élément pris comme référence.
- Pour l'inclinaison, il est nécessaire d'indiquer, en plus, l'angle par rapport à l'élément de référence.

Profil d'une surface par rapport à une référence

La surface tolérancée doit être comprise entre deux sphères équidistantes qui enveloppent l'ensemble des sphères de Ø 0,1 centrées sur une sphère ayant une forme et une position théoriquement exactes (surface nominale).

Profil d'une ligne par rapport à une référence

Dans chaque plan perpendiculaire à A et B, la ligne tolérancée doit être comprise entre deux cercles qui enveloppent l'ensemble des cercles de Ø 0,1 centrés sur un cercle ayant une forme et une position théoriquement exactes (surface nominale).

5.4 Tolérances de position

- La localisation théorique de l'élément est définie, par rapport au système de référence, au moyen de cotes encadrées.
- La zone de tolérance est répartie également de part et d'autre de cette position théorique exacte.

Éléments associés à une réfé			
SYMBOLE	+	0	=
SIGNIFICATION	Localisation	Coaxialité* Concentricité**	Symétrie
Tolérance large	IT 11	0,02	IT 11
Tolérance réduite	0,02	0,005	0, 02

Localisation 1

L'axe d'un trou doit être compris dans une zone cylindrique de Ø 0,1 dont l'axe est dans la position théorique exacte.

A : référence primaire (appui plan).

B: référence secondaire (orientation).

C : référence tertiaire (butée).

Localisation 2

La surface tolérancée doit être comprise entre deux plans parallèles distants de 0,05 et disposés symétriquement par rapport à la position théorique exacte.

A : référence primaire (plan).

B : référence secondaire (axe d'un cylindre court).

Coaxialité

L'axe du cylindre Ø 24 h8 doit être compris dans une zone cylindrique de Ø 0,02 coaxiale à l'axe du cylindre de référence Ø 18 h6.

Symétrie 1

Le plan médian de la rainure doit être compris entre deux plans parallèles distants de 0,04 et disposés symétriquement par rapport au plan médian du cylindre.

Dans ce cas, l'orientation du plan médian du cylindre est donnée par le plan médian de la rainure.

Symétrie 2

Le plan médian de la rainure doit être compris entre deux plans parallèles distants de 0,1 et disposés symétriquement par rapport à un plan de référence perpendiculaire au plan A et passant par l'axe du cylindre court B.

5.5 Tolérances de battement

- Les tolérances de battement s'appliquent aux surfaces de révolution;
- Les tolérances de battement permettent d'exprimer directement les exigences fonctionnelles de surfaces telles que : roues de friction, galets de roulement, jantes de roues, meules, sorties d'arbres de moteurs électriques ...

Battement circulaire axial

Le battement circulaire de la ligne tolérancée, lors d'une révolution complète de la pièce autour de l'axe du cylindre de référence, ne doit pas dépasser, séparément pour chaque Ø d du cylindre de mesure, la valeur 0,05.

Pour chaque Ø d du cylindre de mesure Course admissible 0,05 Cylindre pour le palpeur de mesure Axe du cylindre de référence Palpeur Zone de Ligne mesurée tolérance cylindrique

Battement circulaire radial

Le battement circulaire de la ligne tolérancée, lors d'une révolution complète de la pièce autour de l'axe du cylindre de référence A, ne doit pas dépasser, séparément pour chaque position I du plan de mesure, la valeur 0,05.

Battement total axial

Le battement axial de la surface tolérancée, lors des révolutions complètes de la pièce autour de l'axe du cylindre de référence, doit être compris entre 2 plans distants de 0,05 et perpendiculaire à l'axe du cylindre de référence. Pratiquement, la zone de tolérance est identique à celle d'une tolérance de perpendicularité.

Battement total radial

Le battement radial de la surface tolérancée, lors des révolutions complètes de la pièce autour de l'axe du cylindre de référence A, doit être compris entre 2 cylindres coaxiaux distants de 0,05 dont les axes coincident avec l'axe du cylindre de référence A.

Battement total dans une direction spécifiée

Le battement dans la direction spécifiée de la surface tolérancée, lors des révolutions complètes de la pièce autour de l'axe du cylindre de référence, doit être compris entre 2 cônes coaxiaux distants de 0,05 dans la direction donnée et dont les axes coïncident avec l'axe du cylindre de référence.

6. Cotations fonctionnelles

Etant donné l'imprécision des procédés de fabrication (fraisage, tournage ...), on tolère que les cotes réalisées, en théorie égales à la cote nominale, soient comprises entre une cote Maximale et une cote minimale.

6.1 Nécessité de la cotation fonctionnelle

- Un mécanisme est constitué de différentes pièces. Pour que ce mécanisme fonctionne, des conditions fonctionnelles doivent être assurées : Jeu, serrage, retrait, dépassement ...
- Ces conditions fonctionnelles sont susceptibles d'être modifiées en fonction des dimensions de certaines pièces.
- La cotation fonctionnelle permet de rechercher les cotes fonctionnelles à respecter afin que les conditions fonctionnelles soient assurées.

Remarque : Les cotes fonctionnelles déterminées sont ensuite inscrites sur le dessin de définition de chaque pièce.

6.2 Vocabulaire

 Afin d'illustrer la suite des explications, nous prendrons un exemple simple : *Une allumette dans sa boîte*.

6.2.1 Cote-condition (CC)

 Condition : Pour que l'allumette puisse être placée dans la boîte, il faut qu'il y ait un jeu entre l'allumette et la boîte.

 La cote-condition (CC) sera représentée sur le dessin par : un vecteur à double trait, orienté positivement

6.2.2 Surfaces Terminales

- Les surfaces auxquelles se rattachent une cote-condition (ex. : (a)), sont des SURFACES TERMINALES.
- Les surfaces terminales sont perpendiculaires à la direction de la cote-condition.

6.2.3 Surfaces de liaison

- Les surfaces de contact entre les pièces, assurant la cote-condition (ex. : a), sont des surfaces de liaison.
- Les surfaces de liaison sont perpendiculaires à la direction de la cote-condition.

6.3 Chaines de cotes

La cote-condition et les cotes fonctionnelles associées sont représentées dans une chaîne appelée chaine de cotes (boucle fermée). C'est une somme de vecteurs.

6.3.1 Methodes d'etablissement d'une chaine de cotes :

- 1) Dessiner la cote condition (si ce n'est déjà fait) :
- Représenter le corps du vecteur par 2 traits fins parallèles
- Orienter le vecteur cote-condition dans le sens positif, pour cela :
 - Dessiner le point origine du vecteur cote-condition
 - Dessiner la flèche d'extrémité du vecteur cote-condition
- Nommer la cote-condition

- 2) Repérer les surfaces terminales et les surfaces de liaison (ou de contact):

3) Coter la première pièce :

Partir toujours de l'origine du vecteur cote-condition. Dans notre exemple, l'origine touche la pièce 1, surface terminale T1.

- ∠ Coter cette pièce jusqu'à la surface de liaison en contact avec une autre pièce.
- Mommer la cote fonctionnelle obtenue de la façon suivante :

Nom de la cote-condition N° de la pièce

3) Coter la pièce en contact

6.3.2 Régles a respecter

- Les cotes sont positives dans le sens du vecteur cote-condition et négatives dans le sens opposé
- Il n'y a qu'une seule cote par pièce dans une chaîne de cote
- Une cote relie toujours deux surfaces d'une même pièce
- L'origine du premier vecteur est confondu avec l'origine du vecteur cote-condition (le point)
- L'extrémité du dernier vecteur est confondue avec l'extrémité du vecteur cote-condition (la flèche).

6.3.3 Equation de projection et calcul

☐ Soit la chaîne de cotes de la cote-condition (a)

a1 max. =
$$70,5$$
 mm
a1 = 70 a1 min. = 70 mm
a2 = 55 a2 max. = $55,8$ mm

□ EQUATION DE PROJECTION :

Les cotes sont positives dans le sens du vecteur cote-condition et négative dans le sens opposé.

la cote-condition = somme des cotes positives - la somme des cotes négatives.

 \odot Ecriture de l'équation de la cote-condition (a): a = a1 - a2

☐ Jeu Max (J Max):

Le jeu de la cote-condition est maximal quand les dimensions des vecteurs *positifs* sont *maximales* et les dimensions des vecteurs *négatifs* sont *minimales*.

© Calculer a max :

a max = a1 max - a2 min = 70,5 - 54,2 = 16,3 mm

☐ Jeu min (J min):

Le jeu de la cote-condition est minimal quand les dimensions des vecteurs positifs sont minimales et les dimensions des vecteurs *négatifs* sont *maximales*.

© Calculer a min :

a min = a1 min - a2 max = 70 - 55,8 = 14,2 mm

☐ Intervalle de tolerance du jeu (ITJ) :

⊕ Désigner l'IT du jeu : IT a

○ Calculer I'IT du jeu : IT a = a max – a min = 2,1 mm Ou IT a = IT a1 + IT a2= 0,5 + 1,6 = 2,1 mm