Calculate with and without using l'Hopital's rule.

$$\lim_{y\to 0} \frac{\sin(y)\cos(y)}{\sin(2y)}$$

• W/O l'Hôpital

lim
$$\frac{\sin y \cos y}{\sin \lambda y} = \lim_{y \to 0} \frac{\sin y \cos y}{a \sin y \cos y} = \lim_{y \to 0} \frac{1}{a} = \frac{1}{a}$$

• W/ l'Hôpital

lim $\frac{\sin y \cos y}{\sin \lambda y} = \lim_{y \to 0} \frac{\cos y \cos y + \sin y(-\sin y)}{a \cos \lambda y}$

$$= \lim_{y \to 0} \frac{\cos^2 y - \sin^2 y}{a \cos^2 y} = \frac{1 - 0}{a \cdot 1} = \frac{1}{a}$$

THEOREM 10—Limits of Continuous Functions If g is continuous at the point b and $\lim_{x\to c} f(x) = b$, then

$$\lim_{x \to c} g(f(x)) = g(b) = g(\lim_{x \to c} f(x)).$$

Ex)
$$\lim_{x\to 0} e^{\sin x} = e^{\lim_{x\to 0} \sin x} = e^{\int_{x\to 0} \sin x} = e^{\int_{x$$

Calculate the limit. Note that $\ln(8x^2)$ and $\ln(1-\cos x)$ are undefined at x=0 but that this limit may exist nevertheless.

$$= \lim_{x \to 0} \ln(8x^{2}) - \ln(1 - \cos x)$$

$$= \lim_{x \to 0} \ln\left(\frac{8x^{2}}{1 - \cos x}\right) = \ln\left(\lim_{x \to 0} \frac{8x^{2}}{1 - \cos x}\right)$$

$$= \ln\left(\lim_{x \to 0} \frac{16x}{\sin x}\right) = \ln\left(\lim_{x \to 0} \frac{16}{\cos x}\right)$$

$$= \ln\left(\frac{16}{\cos x}\right) = \ln 16$$

Calculate the limit.

$$\lim_{y\to 1^+} \quad y^{\frac{1}{1-y}}$$

=
$$\lim_{y \to 1^+} e^{\ln y} = \lim_{y \to 1^+} e^{\frac{\ln y}{1-y}}$$
 (log perties)
= $\lim_{y \to 1^+} \frac{\ln y}{1-y}$ (L'H)
= $\lim_{y \to 1^+} \frac{\ln y}{1-y} = \lim_{y \to 1^+}$

Calculate the limit or explain why the limit does not exist

$$\lim_{x \to 0} \frac{\tan(x)}{1 - \cos(x)}$$
 DNF

Reason: If this limit exists, then we would have,

$$\lim_{x\to 0} \frac{\tan x}{1-\cos x} = \lim_{x\to 0} \frac{\sec^2 x}{\sin x}$$

$$\lim_{x\to 0} \frac{\tan x}{1-\cos x} = \lim_{x\to 0} \frac{\sec^2 x}{\sin x}$$

$$\lim_{x\to 0} \frac{\tan x}{1-\cos x} = \lim_{x\to 0} \frac{\sec^2 x}{\sin x}$$

$$\lim_{x\to 0} \frac{\tan x}{1-\cos x} = \lim_{x\to 0} \frac{\sec^2 x}{\sin x}$$

$$\lim_{x\to 0} \frac{\tan x}{1-\cos x} = \lim_{x\to 0} \frac{\sec^2 x}{\sin x}$$

$$\lim_{x\to 0} \frac{\tan x}{1-\cos x} = \lim_{x\to 0} \frac{\sec^2 x}{\sin x}$$

$$\lim_{x\to 0} \frac{\tan x}{1-\cos x} = \lim_{x\to 0} \frac{\sec^2 x}{\sin x}$$

$$\lim_{x\to 0} \frac{\tan x}{1-\cos x} = \lim_{x\to 0} \frac{\sec^2 x}{\sin x}$$

As
$$x \to 0$$
, $\sec^2 x = \left(\frac{1}{\cos x}\right)^2 \to 1$
As $x \to 0^+$, $\frac{1}{\sin x} \to \infty$.

Since the numerator of Sec2x approaches a finite value (1), while

the denominator of sec= approaches

$$\infty$$
 if we approach $x=0$ from the right and $-\infty$ if we approach $x=0$

from the left,

$$\lim_{x\to 0^+} \frac{\sec^2 x}{\sin x} = \infty \neq -\infty = \lim_{x\to 0^-} \frac{\sec^2 x}{\sin x}.$$

Therefore lim secax DNE, so lim

Calculate the limit or explain why the limit does not exist

$$\lim_{x \to 0+} \frac{x-1}{x^3}$$

As
$$\chi$$
 approaches 0 from the right, $\chi-1$ approaches -1 while $\frac{1}{\chi^3}$ approaches ∞ . This means $\lim_{\chi\to0^+}\frac{\chi-1}{\chi^3}=-\infty$ (since $\chi-1\to-1=1=1$) think of this roughly as $-\frac{1}{\xi}$ for very small but positive values for ξ).

Problem 1

Calculate with and without using l'Hopital's rule.

$$\lim_{y \to 2\pi} \frac{\sin(6y)}{\sin(3y)}$$

Hint: $\sin(6y) = \sin(2(3y))$ and follow example 1.

Problem 2

Calculate the limit.

$$\lim_{x\to\infty} (1+2x)^{\frac{1}{2\ln(x)}}$$

$$= \lim_{x\to\infty} e^{\ln\left(1+\frac{1}{2x}\right)} = e^{\lim_{x\to\infty} \frac{\ln\left(1+\frac{1}{2x}\right)}{2\ln x}}$$

$$= e^{\lim_{x\to\infty} \frac{\ln\left(1+\frac{1}{2x}\right)}{2\ln x}}$$

Problem 3

Calculate the limit.

$$\lim_{x\to 0^+} \frac{1}{x^4} - \frac{1}{x^5}$$

solution smitted (HW problem). One way to do this problem is to rewrite as $\lim_{x\to 0^+} \frac{x-1}{x^5}$.