

PCT
WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5 :	A1	(11) Internationale Veröffentlichungsnummer: WO 93/10385 (43) Internationales Veröffentlichungsdatum: 27. Mai 1993 (27.05.93)
(21) Internationales Aktenzeichen: PCT/DE92/00976		
(22) Internationales Anmeldedatum: 19. November 1992 (19.11.92)		
(30) Prioritätsdaten: P 41 38 491,1 23. November 1991 (23.11.91) DE		
(71)(72) Anmelder und Erfinder: JOSWIG, Jürgen [DE/DE]; Steinbacher Straße 14, D-8029 Dresden (DE).		
(74) Anwalt: LIPPERT, STACHOW, SCHMIDT & PARTNER; Löscherstraße 33, P.O. Box 2438, D-8019 Dresden (DE).		

(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, SE).

Veröffentlicht

*Mit internationalem Recherchenbericht.
Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.*

(54) Title: MICROMECHANICAL VALVE FOR MICROMECHANICAL DOSING DEVICES

(54) Bezeichnung: MIKROMECHANISCHES VENTIL FÜR MIKROMECHANISCHE DOSIEREINRICHTUNGEN

(57) Abstract

The object of the invention is to allow the smallest doses of substances to be supplied and shut off over a variable period of time in a very reliable manner and with stable operation. The new micromechanical valve essentially has three superimposed layers (1, 2, 3). The central layer is designed as a valve membrane (2) and the top layer is designed as a thin driving membrane (3). An actuating element (4) for controlling the valve is arranged on the driving membrane (3). The valve membrane (2) has on both sides shaped channel and chamber forming inlet and outlet structures, a central bore (9), its central area is non-detachably secured to the driving membrane (3) and relatively easily attached to the bottom layer (1), without hindering the flow of substance through the inlet channel (5), inlet chamber (6), bore (9) and, in the active state, through the outlet chamber (6) and outlet channel (8).

(57) Zusammenfassung

Mit der erfindungsgemäßen Lösung soll erreicht werden, daß Medien in kleinster Dosierung über einen variablen Zeitraum bei hoher Zuverlässigkeit und stabiler Arbeitsweise zu- und abgeschaltet werden können. Das neue mikromechanische Ventil besteht im wesentlichen aus drei übereinander angeordneten Schichten (1, 2, 3), wobei die mittlere Schicht als Ventilmembran (2) und die obere Schicht als dünne Antriebsmembran (3) ausgebildet ist. An der Antriebsmembran (3) ist ein Betätigungsselement (4) für die Ansteuerung des Ventils angeordnet. Die Ventilmembran (2) weist beidseitig eingearbeitete kanal- und kammerbildende Strukturen für Ein- und Auslaß auf, besitzt einen mittigen Durchgang (9) und ist in ihrem mittleren Bereich unlösbar mit der Antriebsmembran (3) und lösbar mit der Grundschicht (1) verbunden, ohne dadurch den Durchfluß des Mediums über Einlaßkanal (5), Einlaßkammer (6), Durchgang (9) und im aktiven Zustand Auslaßkammer (6) und Auslaßkanal (8) zu behindern.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfhögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	FR	Frankreich	MR	Mauritanien
AU	Australien	CA	Gabon	MW	Malawi
BB	Barbados	GB	Vereinigtes Königreich	NL	Niederlande
BE	Belgien	CN	Guinea	NO	Norwegen
BF	Burkina Faso	GR	Griechenland	NZ	Neuseeland
BG	Bulgarien	HU	Ungarn	PL	Polen
BJ	Benin	IE	Irland	PT	Portugal
BR	Brasilien	IT	Italien	RO	Rumänien
CA	Kanada	JP	Japan	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KP	Demokratische Volksrepublik Korea	SD	Sudan
CG	Kongo	KR	Republik Korea	SE	Schweden
CH	Schweiz	KZ	Kasachstan	SK	Slowakischen Republik
CI	Öste d'Ivorie	LI	Liechtenstein	SN	Senegal
CM	Kamerun	LK	Sri Lanka	SU	Soviet Union
CS	Tschechoslowakei	LU	Luxemburg	TD	Tschad
CZ	Tschechischen Republik	MC	Monaco	TG	Togo
DE	Deutschland	MG	Madagaskar	UA	Ukraine
DK	Dänemark	ML	Mali	US	Vereinigte Staaten von Amerika
ES	Spanien	MN	Mongolci	VN	Vietnam
FI	Finnland				

1

5

Mikromechanisches Ventil für mikromechanische Dosiereinrichtungen

10

Die Erfindung betrifft ein mikromechanisches Ventil für mikromechanische Dosiereinrichtungen, im wesentlichen bestehend aus mindestens drei übereinander angeordneten und unlösbar miteinander verbundenen Schichten, die mit einem Betätigungsselement zum Ansteuern des Ventils gekoppelt sind, wobei die Schichten flächige Strukturierungen zur Bildung von Ein- und Auslaßkanälen und von Ein- und Auslaßkammern aufweisen, die mittlere Schicht als Trennschicht zwischen Ein- und Auslaß und die äußeren Schichten als Grund- bzw. Deckschicht angeordnet sind.

20

Solche mikromechanischen Ventile sind insbesondere für den Einsatz in der Medizintechnik, zum Beispiel zur Medikamentendosierung oder in der Laboranalysetechnik, aber auch in der Kfz-Technik, der Raumfahrttechnik oder der Drucktechnik vorgesehen.

30

Aus der Literatur sind mikromechanische Ventile in Mehrschichtenstruktur bekannt, die mittels Fertigungstechnologien, wie sie in der Halbleitertechnik angewendet werden, herstellbar sind. Diese Ventile besitzen zwei Druckmittelanschlüsse und einen dazwischen geschalteten Ventilsitz, dem ein Schließglied zugeordnet ist. Dabei ist das Schließglied durch elektrische oder thermische Betätigungsmitte

35

1 auslenkbar und entgegen der elektrischen oder thermischen
BetätigungsmitteL mittels federnder Membran, die mit dem
Schließglied fest verbunden ist, bewegbar. Die federnde
Membran ist in eine der Schichten integriert und grenzt an
5 einen mit Druckmittel beaufschlagten Raum. Für den Druck-
kraftausgleich ist eine der druckbeaufschlagten Membran
entgegenwirkende Druckausgleichsfläche angeordnet.

10 Mit dieser Lösung wird jedoch keine vollständige Druckkom-
pensation sondern nur ein teilweiser Druckausgleich er-
reicht, da die Kompensationsfläche deutlich kleiner als die
zu kompensierende Fläche ist. Nachteilig ist auch das
schlechte Dichtverhalten der Ventile aufgrund des großen
Umfanges des Ventilspaltes, da das Schließglied die Einlaß-
15 kammer über ihre gesamte Breite abdichten muß. Außerdem
wird bei Ventilbetätigung ein instabiler Zustand durchlau-
fen, da der Unterdruck unter der Kompensationsfläche im
Moment des Öffnens schlagartig abgebaut wird. Die dabei
entstehenden dynamischen Lasten wirken sich an den Verbin-
20 dungsstellen von Ventilsitz und Kompensationsfläche aus,
was die Lebenserwartung der Ventile negativ beeinflußt. Die
Herstellung solcher Ventile erfordert eine aufwendige und
komplizierte Strukturierungs- und Montagetechnologie, wobei
nur eine enge Fehlertolerierung zulässig ist.

25 Es ist deshalb Aufgabe der Erfindung, ein mikromechanisches
Ventil für mikromechanische Dosiereinrichtungen zu ent-
wickeln, das mit hoher Zuverlässigkeit und stabiler Ar-
beitsweise Medien in kleinster Dosierung über einen langen
Zeitraum variabel zu- und abschaltet, wobei das Ventil
30 konstruktiv so aufgebaut ist, daß es durch gleichmäßige
Ansteuerung mit geringem Energiebedarf den Einsatz von
kleinen, effektiven Antriebselementen ermöglicht, geringen
Platzbedarf benötigt und mittels einfacher Montagetechnolo-
35 gien herstellbar ist.

1 Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß die
Trennschicht als dünne, elastische Ventilmembran mit beid-
seitig eingearbeiteten kanal- und kammerbildenden Struktu-
ren für Ein- und Auslaß ausgebildet ist. Sie weist einen
5 mittigen Durchgang auf und ist in ihrem mittleren Bereich
mit der Deckschicht unlösbar und mit der Grundsicht
lösbar verbunden, derart, daß der Durchfluß für das Medium
über Einlaßkanal, Einlaßkammer, Durchgang und im geöffneten
10 Zustand Auslaßkammer, Auslaßkanal gewährleistet ist. Das
Betätigungsselement ist dabei an der als dünne Antriebsmem-
bran ausgebildeten Deckschicht angeordnet.

Nach der weiteren Ausführung der erfindungsgemäßen Lösung
15 sind in beide Seiten der Trennschicht sämtliche kanal- und
kammerbildenden Strukturen für Ein- und Auslaß so eingear-
beitet, daß ihre Flächenschwerpunkte übereinander liegen
und die verbleibende Restschicht die Ventilmembran bildet.
Dabei besitzt die Einlaßkammer im wesentlichen die gleiche
20 Form und Größe wie die Auslaßkammer.

Nach einer weiteren Ausführungsform der Erfindung ist die
Einlaßkammer zwischen Antriebsmembran und Ventilmembran und
die Auslaßkammer zwischen Ventilmembran und Grundsicht
25 angeordnet. Ein- und Auslaßkanal liegen sich versetzt
gegenüber.

Des Weiteren ist im mittleren Bereich der Ventilmembran
30 rings um den als Durchgangsloch ausgebildeten Durchgang
mindestens ein, in die Einlaßkammer bis zur Antriebsmembran
ragendes Verbindungselement angeordnet und unlösbar mit der
Antriebsmembran verbunden. Auslaßseitig ist im mittleren
Bereich der Ventilmembran rings um das Durchgangsloch ein
35 Ventilwall angeordnet, der im nichtbetätigten Zustand an
der Innenfläche der Grundsicht anliegt.

- 1 Bei einer weiteren Ausführungsform ist zwischen der Auflagefläche des Ventilwalles und der Innenfläche der Grundschicht eine dünne Schicht aus nichtbondbarem Material, wie Siliziumoxid oder Siliziumnitrit, angeordnet.
- 5
- Nach einer weiteren Ausführung der Erfindung sind Grundschicht, Ventilmembran und Antriebsmembran vorzugsweise mittels anodischem Bonden unlösbar miteinander verbunden. Dabei bestehen die Grundschicht und die Antriebsmembran vorzugsweise aus einem thermisch angepaßten Glasmaterial und die Ventilmembran aus einem halbleitenden Siliziumsubstrat.
- 10
- 15 Nach einer anderen Fortbildung der Erfindung besteht die Deckschicht aus einem halbleitenden Siliziumsubstrat, in deren äußere Fläche eine Aussparung für das Betätigungsselement eingearbeitet ist, die restliche Schicht die Antriebsmembran bildet und Ein- und Auslaßkammer in Form und Größe unterschiedlich gestaltet sind. Deck- und Trennschicht sind dabei mittels Waferbonden und die Trennschicht mit der Grundschicht mittels anodischem Bonden unlösbar miteinander verbunden.
- 20
- 25 Als Betätigungsselemente sind piezoelektrische Membrananregungselemente, vorzugsweise in Form einer auf die Antriebsmembran aufgebrachten Piezoscheibe, aber auch thermoelektrische oder elektrostatische Ansteuerungsvarianten vorgesehen.
- 30
- Die Erfindung soll nachfolgend anhand eines Ausführungsbeispieles näher erläutert werden. Die dazugehörigen Zeichnungen zeigen in
- 35 Fig.1 eine Ausführungsform des erfindungsgemäßen

1 mikromechanischen Ventils in schematischer
Schnittdarstellung,

Fig. 2 eine andere Ausführungsform des erfindungsgemäßen Ventils in schematischer Schnittdarstellung,

Fig.3 eine Ansicht auf die Ventilmembran einlaßseitig und

Fig. 4 eine Ansicht auf die Ventilmembran auslaßseitig.

Das Ausführungsbeispiel beschreibt Ventilvarianten, die speziell für den Einsatz in der Medizintechnik, im Bereich der Mikrodosierung von Medikamenten vorgesehen sind. Die Wirkstoffdosiersysteme sollen dabei ex- oder intern, festprogrammiert, gesteuert oder geregelt den Wirkstoff in der für die Therapie erforderlichen Menge und Qualität sowie dem vorgegebenen Zeitplan applizieren. Im Vordergrund stehen sowohl die möglichst gute Anpassung an physiologische Gegebenheiten der Patienten, zum Beispiel bei der Insulintherapie als auch eine optimale Prozeßführung, wie sie vor allem bei der Schmerztherapie notwendig ist.

Daraus ergeben sich hohe Anforderungen, die insbesondere auch die einzusetzenden mikromechanischen Ventile betreffen und vor allem in einer hohen Systemzuverlässigkeit, einer weiteren Miniaturisierung der Elemente, im optimalen Materialeinsatz und geringem Energieverbrauch liegen.

Nach Fig.1 besteht das erfindungsgemäße mikromechanische Ventil aus drei übereinander angeordneten und mittels anodischem Bonden unlösbar miteinander verbundenen Schichten. Die Deckschicht, die als dünne Antriebsmembran 3 ausgebildet ist und die Grundschicht 1, sind beide aus einem thermisch angepaßten Glasmaterial hergestellt. An der

- 1 Außenfläche der Antriebsmembran 3 ist ein Betätigungsle-
ment 4 in Form eines piezoelektrischen Elementes aufge-
klebt, das die Ansteuerung des Ventils übernimmt.
- 5 Beide Schichten 1 und 3 sind fest mit der als dünne Ventil-
membran 2 ausgebildeten Trennschicht verbunden. Sie ist aus
einem Siliziumsubstrat gefertigt, wie es aus der Halblei-
tertechnik bekannt ist. In beide Seiten der Trennschicht
10 sind sämtliche kanal- und kammerbildenden Strukturen einge-
arbeitet, derart, daß - entsprechend der Darstellung nach
Fig.1 - über die gesamte wirksame Breite des piezoelektri-
schen Elementes 4 unterhalb der Antriebsmembran 3 eine
Einlaßkammer 5 und über der Grundsicht 1 eine Auslaßkam-
mer 6 angeordnet sind. Die Flächenschwerpunkte beider
15 Kammern 5 und 6 liegen übereinander. Die im aktiven Bereich
der Trennschicht übrigbleibende Schichtdicke wirkt als
Ventilmembran 2. Der Einlaßkanal 7 ist seitlich zwischen
Antriebsmembran 3 und Ventilmembran 2 und der Auslaßkanal
20 8 versetzt gegenüberliegend zwischen Ventilmembran 2 und
Grundsicht 1 angeordnet. Der seitliche Ein- und Auslaß
sichert damit den Einsatz des Ventils innerhalb komplexer
Systeme.
- 25 Wie in Fig. 3 und 4 dargestellt, weist die Ventilmembran 2
ein mittiges Durchgangsloch 9 auf und einlaßseitig rings um
das Durchgangsloch 9 mehrere, in Abstand zueinander an-
geordnete, zylinderförmige Verbindungselemente 10, die
durch die Einlaßkammer 5 ragen und mit der Antriebsmem-
bran 3 fest verbunden sind. Auslaßseitig ist rings um das
30 Durchgangsloch 9 ein Ventilwall 11 angeordnet, der im
geschlossenen Zustand an der Innenfläche der Grundsicht 1
anliegt. Um zu verhindern, daß während des Bondprozesses
der Ventilwall 11 unlösbar mit der Grundsicht 1 verbunden
wird, ist auf die an der Grundsicht 1 anliegenden Fläche
35 des Ventilwall 11, eine dünne Schicht 12 aus Siliziumoxid

1 aufgebracht. Damit wird außerdem erreicht, daß das Ventil
im geschlossenen Zustand sicher abdichtet.

5 Die Funktionsweise des Ventils ist folgende: Im Ruhezustand
liegt der Ventilwall 11 in der Auslaßkammer 6 auf der
Grundschicht 1 auf, das Ventil ist geschlossen. Der Druck
des einfließenden Mediums wirkt gegen beide ungefähr
gleichgroßen Druckflächen von Antriebs- und Ventilmembran
10 3,2, die in der Mitte fest miteinander verbunden sind.
Damit erfolgt der Druckausgleich des Eingangsdruckes, der
unabhängig ist von der Lage des Ventilwalls 11. Mit An-
steuerung durch das piezoelektrische Element 4 werden das
piezoelektrische Element 4, Antriebsmembran 3 und die
Ventilmembran 2 gekrümmmt oder gebogen, der Ventilwall 11
15 wird von der Grundschicht 1 abgehoben und der Durchfluß von
der Einlaßkammer 5 in Auslaßkammer 6 ist frei. Der Öff-
nungszustand des Ventils ist somit nur noch von der An-
triebsspannung des piezoelektrischen Elementes 4 abhängig.
Die Antriebsleistung kann auf das für die Auslenkung der
20 Ventilmembran 2 im geöffneten Zustand notwendige Maß be-
grenzt werden, was einfache und kleine Konstruktionen für
Betätigungsselemente 4 zuläßt.

25 In Fig. 2 ist eine weitere Ausführungsform des erfindungs-
gemäßen mikromechanischen Ventils dargestellt. Hiernach ist
eine variable Gestaltung des Flächenverhältnisses von An-
triebs- und Ventilmembran 3,2 dadurch möglich, daß die
Deckschicht aus einer Siliziumsubstratschicht besteht, aus
anderen äußerer Fläche die wirksame, dünne Antriebsmembran-
30 fläche 13 herausgearbeitet ist, wobei die Aussparung
gleichzeitig der Aufnahme der piezoelektrischen Scheibe 4
dient. Die unlösbare Verbindung der drei Schichten ge-
schieht derart, daß die Deckschicht mittels Waferbonden mit
der Trennschicht und die Trennschicht mit der Grundschicht
35 durch anodisches Bonden miteinander verbunden werden. Ein-

WO 93/10385

2

1 und Auslaßkammer 5,6 können in ihren Abmessungen unterschiedlich groß sein. Damit wird ebenfalls ein vollständiger Ausgleich des Einflusses des Eingangsdruckes möglich.
5 Außerdem können im Rahmen der konstruktiven Möglichkeiten beliebige Abhängigkeiten der Lage des Ventilwalles 11 vom Eingangsdruck erzielt werden.

10 Mit dem erfindungsgemäßen mikromechanischen Ventil wird verhindert, daß im Moment des Öffnens des Ventils ein instabiler Zustand durch plötzlichen Abbau des Unterdruckes in der Auslaßkammer 6 entsteht, da das Medium erst über das Durchgangsloch 9 die Auslaßkammer 6 erreicht. Die Herstellung des Ventils ist mit normalem montagetechnischen Aufwand möglich, die einzusetzenden Betätigungs elemente 4 können je nach Anwendungsfall und benötigter Parameter ausgewählt werden. Es sind sowohl piezoelektrische, als auch thermoelektrische oder elektrostatische Betätigungs elemente 4 in einfachster Form und kleinster Ausführung einsetzbar.

20

25

30

35

5

Bezugszeichenliste

- | | |
|----|-----------------------------|
| 10 | 1 Grundschicht |
| | 2 Ventilmembran |
| | 3 Antriebsmembran |
| | 4 Betätigungsselement |
| | 5 Einlaßkammer |
| 15 | 6 Auslaßkammer |
| | 7 Einlaßkanal |
| | 8 Auslaßkanal |
| | 9 Durchgangsloch |
| | 10 Verbindungselemente |
| 20 | 11 Ventilwall |
| | 12 Schicht |
| | 13 Antriebsmembranfläche |

25

30

35

5

Patentansprüche

- 10 1. Mikromechanisches Ventil für mikromechanische Dosier-
einrichtungen, im wesentlichen bestehend aus minde-
stens drei übereinander angeordneten und unlösbar
miteinander verbundenen Schichten, die mit einem
Betätigungs element gekoppelt sind, wobei die Schichten
flächige Strukturierungen zur Bildung von Ein- und
Auslaßkanälen bzw. Ein- und Auslaßkammern aufweisen,
die mittlere Schicht als Trennschicht zwischen Ein-
und Auslaß und die äußeren Schichten als eine Grund-
und eine Deckschicht angeordnet sind, dadurch
gekennzeichnet, daß die Trennschicht als
dünne, elastische Ventilmembran (2) mit beidseitig
eingearbeiteten kanal- und kammerbildenden Strukturen
für Ein- und Auslaß ausgebildet ist, einen mittigen
Durchgang (9) aufweist und in ihrem mittleren Bereich
mit der als dünne Antriebsmembran (3, 13) ausgebilde-
ten Deckschicht unlösbar und mit der Grundsicht (1)
lösbar verbunden ist, derart, daß der Durchfluß für
das Medium über Einlaßkanal (7), Einlaßkammer (5),
Durchgang (9) und im geöffneten Zustand Auslaßkammer
(6), Auslaßkanal (8) gewährleistet ist; und daß das
Betätigungs element (4) an der Außenfläche der dünnen
Antriebsmembran (3, 13) angeordnet ist.
- 20 2. Mikromechanisches Ventil nach Anspruch 1,
dadurch gekennzeichnet, daß die
- 25
- 30
- 35

11

- 1 elastische Ventilmembran (2) dadurch gebildet wird,
daß in beide Seiten der Trennschicht sämtliche kanal-
und kammerbildenden Strukturen für Ein- und Auslaß so
eingearbeitet sind, daß ihre Flächenschwerpunkte
übereinander liegen.

5

3.. Mikromechanisches Ventil nach Anspruch 1 und 2,
dadurch gekennzeichnet, daß Ein- und Auslaßkammer (5,6) im wesentlichen gleiche Form
und Größe aufweisen.

10

4.. Mikromechanisches Ventil nach Anspruch 1 bis 3,
dadurch gekennzeichnet, daß die Einlaßkammer (5) zwischen Antriebsmembran (3) und
Ventilmembran (2) und die Auslaßkammer (6) zwischen
Ventilmembran (2) und Grundsicht (1) angeordnet ist
und daß sich der Einlaßkanal (7) und der Auslaß-
kanal (8) seitlich versetzt gegenüberliegen.

15

5.. Mikromechanisches Ventil nach Anspruch 1,
dadurch gekennzeichnet, daß im mittleren Bereich der Ventilmembran (2) rings um den
als Durchgangsloch (9) ausgebildeten Durchgang mindestens ein, in die Einlaßkammer (5) bis zur Antriebs-
membran (3) ragendes, in Abstand zueinander angeordnetes Verbindungselement (10) unlösbar mit der An-
triebsmembran (3) verbunden ist.

20

6.. Mikromechanisches Ventil nach Anspruch 1 und 5,
dadurch gekennzeichnet, daß im mittleren Bereich der Ventilmembran (2) rings um das
Durchgangsloch (9) auslaßseitig ein Ventilwall (11)
angeordnet ist, der im nichtbetätigten Zustand an der
Innenfläche der Grundsicht (1) anliegt.

25

30

12

- 1 7. Mikromechanisches Ventil nach Anspruch 1 und 6,
dadurch gekennzeichnet, daß zwischen der Auflagefläche des Ventilwalls (11) und der Innenfläche der Grundschicht (1) eine dünne Schicht (12) aus nichtbondbarem Material, wie Silizium-
5 oxid oder Siliziumnitrit, angeordnet ist.
- 10 8. Mikromechanisches Ventil nach Anspruch 1 bis 7,
dadurch gekennzeichnet, daß Grundschicht (1), Ventilmembran (2) und Antriebsmembran (3) vorzugsweise mittels anodischem Bonden unlösbar miteinander verbunden sind.
- 15 9. Mikromechanisches Ventil nach Anspruch 1 bis 8,
dadurch gekennzeichnet, daß Grundschicht (1) und Antriebsmembran (3) vorzugsweise aus einem thermisch angepaßten Glasmaterial und die Ventilmembran (2) aus einem halbleitenden Siliziumsubstrat bestehen.
- 20 10. Mikromechanisches Ventil nach Anspruch 1,
dadurch gekennzeichnet, daß die Deckschicht aus einem halbleitendem Siliziumsubstrat besteht, in deren äußere Fläche eine Aussparung für das Betätigungsselement (4) eingearbeitet ist, die restliche Schicht die Antriebsmembranfläche (13). bildet und Ein- und Auslaßkammer (5,6) in Form und Größe unterschiedlich ausgebildet sind.
- 25 11. Mikromechanisches Ventil nach Anspruch 10,
dadurch gekennzeichnet, daß Deck- und Trennschicht mittels Waferbonden und die Trennschicht mit der Grundschicht durch anodisches Bonden unlösbar verbunden sind.

13

- 1 12. Mikromechanisches Ventil nach Anspruch 1 bis 11,
d a d u r c h g e k e n n z e i c h n e t, daß als
Betätigungs element (4) ein piezoelektrisches Membran-
anregungselement, vorzugsweise in Form einer Piezo-
scheibe durch Aufkleben auf die Außenfläche der An-
triebsmembran (3), angeordnet ist.
- 5
- 10 13. Mikromechanisches Ventil nach Anspruch 1 bis 12,
d a d u r c h g e k e n n z e i c h n e t, daß zur
Ansteuerung der Ventilmembran (2) thermoelektrische
oder elektrostatische Membrananregungselemente an der
Antriebsmembran (3) angeordnet sind.

15

20

25

30

35

1/2

Fig. 1

Fig. 2

2/2

Fig.3

Fig.4

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 92/00976

I. KLASSEFIKATION DES ANMELDUNGSGEGENSTANDS (bei mehreren Klassifikationsymbolen sind alle anzugeben)⁶

Nach der internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC
 Int.Kl. 5 F16K7/14; F15C5/00

II. RECHERCHIERTE SACHGEBiete

Recherchierte Mindestpräfstoff⁷

Klassifikationssystem	Klassifikationsymbole
Int.Kl. 5	F16K ; F15C

Recherchierte nicht zum Mindestpräfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen⁸

III. EINSCHLAGIGE VERÖFFENTLICHUNGEN⁹

Art. ¹⁰	Kenzeichnung der Veröffentlichung ¹¹ , soweit erforderlich unter Angabe der maßgeblichen Teile ¹²	Betr. Anspruch Nr. ¹³
A	PATENT ABSTRACTS OF JAPAN vol. 015, no. 290 (M-1139)1991 & JP,A,31 03 680 (YOKOGAWA) siehe Zusammenfassung -----	1

¹⁰ Besondere Kategorien von angegebenen Veröffentlichungen¹⁰:

- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundliegenden Prinzips oder der ihr zugrundliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als neu oder auf erfunderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfunderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "A" Veröffentlichung, die Mitglied derselben Patentfamilie ist

IV. BESCHEINIGUNG

Datum des Abschlusses der internationalen Recherche 12. MAERZ 1993	Abschlußdatum des internationalen Recherchenberichts 31. 03. 93
Internationale Recherchenbehörde EUROPAISCHES PATENTAMT	Unterschrift des bevoilächtigten Bediensteten LOKERE H.P.

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl. 5 F 16 K 7/14 ; F 15 C 5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. 5 F 16 K; F 15 C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
-----------	--	-----------------------

A PATENT ABSTRACTS OF JAPAN
 volume 015, No 290 (M-1139) 1991
 & JP, A, 31 03 680 (YOKOGAWA)
 see abstract

1

<input type="checkbox"/>	Further documents are listed in the continuation of Box C.	<input type="checkbox"/>	See patent family annex.
• Special categories of cited documents:			
"A"	document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier document but published on or after the international filing date	"X"	document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)	"Y"	document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O"	document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
12 March 1993 (12.03.93)Date of mailing of the international search report
31 March 1993 (31.03.93)Name and mailing address of the ISA
European Patent Office
Facsimile No.Authorized office:
Telephone No.