PIntron: a fast method for gene-structure prediction

Paola Bonizzoni

Gianluca Della Vedova

Yuri Pirola

Raffaella Rizzi

Università degli Studi di Milano-Bicocca, Italy

Outline

- The computational problem
- Prior work
- Our pipeline
- Experimental comparison

Eukaryotic Gene Structure

Alternative Splicing

2 distinct mRNAs/full-length isoforms → 2 distinct proteins

- AS is widespread (95% of human genes)
- Aberrant AS events → diseases

(Pan et al., Nat Gen, 2008) and (Matlin et al., Nat Rev, 2005)

Alternative Splicing

Gene structure prediction: prior work

- Three strategies:
 - ab-initio: "statistical" recognition
 - GENEZILLA, NSCAN
 - expression-based: alignments of ESTs, mRNAs, or proteins to the genomic sequence
 - Exogean, ASPic, PIntron
 - (ab-initio + expression-based) methods
 - AUGUSTUS, JIGSAW

Spliced-alignment problem

Problem:

Align a transcript T to the genomic sequence G while admitting introns

Different alignments exist

PIntron: our pipeline

Input: a cluster of transcripts and a genomic sequence

- 1. For each transcript:
 - a. Represent all its possible spliced-alignments
 - b. Extract its biologically-meaningful alignments
- 2. Compute a raw consensus gene-structure
- 3. Refine the raw gene-structure

The Pipeline: Step 1.a

Task: represents all the spliced-alignments How?

Embedding Graph of G and T

- Vertices V: maximal common substrings of G and T
- Edges E: connect two common substrings that could be consecutive in a spliced-alignment
- Can be built efficiently: $O(|G|) + O(|T|+|V|) + O(|V|^2)$

The Pipeline: Step 1.b

Input: an embedding graph (for each transcript)

Task: extraction of "relevant" splicedalignments

Output: some biologically-meaningful splicedalignments (for each transcript)

How?

- 1. Embedding graph visit +
- 2. Spliced-alignment reconstruction

The Pipeline: Step 1.b (cont'd)

1. Embedding graph visit

computes representative embeddings

 (i.e. embeddings which induce distinct spliced-alignments)

2. Spliced-alignment reconstruction

- computes putative exons and raw intron boundaries
- discards low-quality alignments

The Pipeline: Step 2

Input: all the spliced-alignments of all the transcripts

Task: computation of a raw consensus genestructure

Output: a minimal gene-structure that "explains" a single spliced-alignment of each transcript

Min Factorization Agreement

(Bonizzoni et al., WABI 2009)

Bad news: NP_hard

Good news: efficient heuristic

The Pipeline: Step 3

Input: a raw gene-structure

Task: refine intron boundaries and discard possible errors

Output: a final gene-structure

How?

- classify introns (U2, U12, BSS)
- collapse highly-similar introns unless supported by high-quality alignments
- other heuristic criteria

PIntron evaluation

- Method: (Guigò et al., Genom Biol, 2006)
 - Sensitivity (Sn) = TP / (TP + FN)
 - Specificity (Sp) = TP / (TP + FP)
- Data: 112 genes on 13 ENCODE regions
- Gold standard: GENCODE annotations
- For this prelim. work:

gene structure ≡ set of introns

Evaluation Results

- Overall Sensitivity = 0.9780
- Overall Specificity = 0.6846
- Why Specificity is low?
 - our method "over-predicts", or
 - GENCODE annotation could be "biased"
- If we keep only "canonical" introns
 - *Sensitivity* = **0.9764**
 - *Specificity* = **0.9147**

Compared with... ASPicDB

ASPicDB

(Castrignano et al., Bioinf, 2008)

- accurate isoform-prediction method (Bonizzoni et al., JCB, 2009)
- 101 (over 112) also in ASPicDB

	Sn	Sp	Time
ASPic	0.9631	0.7070	> 100 h
PIntron	0.9727	0.7363	72 min

Conclusions

• PIntron:

fast and accurate pipeline for genestructure prediction based on transcripts

Ongoing/future work:

- Comparison with other tools
- Polishing implementation (open-source)
 (www.algolab.eu/PIntron)
- Extensions to RNA-Seq

PIntron: a fast method for gene structure prediction

Paola Bonizzoni

Gianluca Della Vedova

Yuri Pirola

Raffaella Rizzi

Thanks!

Università degli Studi di Milano-Bicocca, Italy