Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) Computation-Tree Logic **Equivalences and Abstraction** bisimulation CTL, CTL*-equivalence computing the bisimulation quotient abstraction stutter steps simulation relations

\mathcal{T}/\sim arises by collapsing all bisimilar states in \mathcal{T}

- states of \mathcal{T}/\sim : bisimulation equivalence classes of \mathcal{T}
- transitions: arise by lifting T's transitions to the bisimulation equivalence classes

Applications of the bisimulation quotient

partsplitalg5.3-1b

1. equivalence checking: check whether $\mathcal{T}_1 \sim \mathcal{T}_2$

Applications of the bisimulation quotient

1. equivalence checking: check whether $\mathcal{T}_1 \sim \mathcal{T}_2$ for two transition systems \mathcal{T}_1 , \mathcal{T}_2 , e.g., abstract model and its refinement

Applications of the bisimulation quotient

1. equivalence checking: check whether $\mathcal{T}_1 \sim \mathcal{T}_2$ for two transition systems \mathcal{T}_1 , \mathcal{T}_2 , e.g., abstract model and its refinement

equivalence checking: check whether T₁ ~ T₂
 for two transition systems T₁, T₂,
 e.g., abstract model and its refinement
 regard T₁ ⊎ T₂

equivalence checking: check whether T₁ ~ T₂
 for two transition systems T₁, T₂,
 e.g., abstract model and its refinement
 regard T₁ ⊎ T₂ and check whether for all
 bisimulation equivalence classes C in T₁ ⊎ T₂:

$$C \cap S_{0,1} \neq \emptyset$$
 iff $C \cap S_{0,2} \neq \emptyset$

where $S_{0,i}$ is the set of initial states in T_i

equivalence checking: check whether T₁ ~ T₂
 for two transition systems T₁, T₂,
 e.g., abstract model and its refinement
 regard T₁ ⊎ T₂ and check whether for all
 bisimulation equivalence classes C in T₁ ⊎ T₂:

$$C \cap S_{0,1} \neq \emptyset$$
 iff $C \cap S_{0,2} \neq \emptyset$

where $S_{0,i}$ is the set of initial states in T_i

Applications of the bisimulation quotient

1. equivalence checking: check whether $\mathcal{T}_1 \sim \mathcal{T}_2$ for two transition systems \mathcal{T}_1 , \mathcal{T}_2 , e.g., abstract model and its refinement regard $\mathcal{T}_1 \uplus \mathcal{T}_2$ and check whether for all bisimulation equivalence classes \mathcal{C} in $\mathcal{T}_1 \uplus \mathcal{T}_2$:

$$C \cap S_{0,1} \neq \emptyset$$
 iff $C \cap S_{0,2} \neq \emptyset$
where $S_{0,i}$ is the set of initial states in T_i

2. graph minimization:

Applications of the bisimulation quotient

1. equivalence checking: check whether $\mathcal{T}_1 \sim \mathcal{T}_2$ for two transition systems \mathcal{T}_1 , \mathcal{T}_2 , e.g., abstract model and its refinement regard $\mathcal{T}_1 \uplus \mathcal{T}_2$ and check whether for all bisimulation equivalence classes \mathcal{C} in $\mathcal{T}_1 \uplus \mathcal{T}_2$:

$$C \cap S_{0,1} \neq \emptyset$$
 iff $C \cap S_{0,2} \neq \emptyset$
where $S_{0,i}$ is the set of initial states in \mathcal{T}_i

2. graph minimization:

replace \mathcal{T} with \mathcal{T}/\sim and analyze \mathcal{T}/\sim

Computing the bisimulation quotient

.... relies on a partitioning refinement algorithm ...

here: only explanations for finite transition systems, possibly with terminal states

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 finite transition system

partition for \mathcal{T} : decomposition of the state space S into pairwise disjoint nonempty subsets

$$\mathcal{B} = \{B_1, \dots, B_k\}$$
 s.t.

- $B_i \neq \emptyset$
- $B_i \cap B_j = \emptyset$ for $i \neq j$
- $S = B_1 \cup ... \cup B_k$

The B_i 's are called blocks of \mathcal{B} . A superblock denotes any union of blocks. partitions $\widehat{=}$ equivalences on S

• partition $\mathcal{B} \leadsto$ equivalence relation $\mathcal{R}_{\mathcal{B}}$ where

$$\mathcal{R}_{\mathcal{B}} = \{(s, s') : [s]_{\mathcal{B}} = [s']_{\mathcal{B}}\}$$
 $[s]_{\mathcal{B}} = \text{unique block } B_i \in \mathcal{B} \text{ with } s \in B_i$

• equivalence \mathcal{R} on $S \rightsquigarrow$ partition $\mathcal{B} = S/\mathcal{R}$

Notations for partitions: finer, coarser

Let \mathcal{B}_1 and \mathcal{B}_2 be partitions for \mathcal{T} .

 \mathcal{B}_1 is called *finer* than \mathcal{B}_2 (and \mathcal{B}_2 coarser than \mathcal{B}_1) if $\forall B \in \mathcal{B}_1 \; \exists B' \in \mathcal{B}_2$ such that $B \subseteq B'$, i.e., if all blocks $B' \in \mathcal{B}_2$ are superblocks of \mathcal{B}_1

 \mathcal{B}_1

Notations for partitions: finer, coarser

Let \mathcal{B}_1 and \mathcal{B}_2 be partitions for \mathcal{T} .

 \mathcal{B}_1 is called *finer* than \mathcal{B}_2 (and \mathcal{B}_2 coarser than \mathcal{B}_1) if $\forall B \in \mathcal{B}_1 \; \exists B' \in \mathcal{B}_2$ such that $B \subseteq B'$, i.e., if all blocks $B' \in \mathcal{B}_2$ are superblocks of \mathcal{B}_1

Example: if \mathcal{R} is a bisimulation for \mathcal{T} and an equivalence then S/\mathcal{R} is finer than S/\sim

Let \mathcal{B}_1 and \mathcal{B}_2 be partitions for \mathcal{T} .

 \mathcal{B}_1 is called *finer* than \mathcal{B}_2 (and \mathcal{B}_2 coarser than \mathcal{B}_1) if $\forall B \in \mathcal{B}_1 \ \exists B' \in \mathcal{B}_2$ such that $B \subseteq B'$, i.e., if all blocks $B' \in \mathcal{B}_2$ are superblocks of \mathcal{B}_1

 \mathcal{B}_1 is called *strictly finer* than \mathcal{B}_2 if (1) \mathcal{B}_1 is finer than \mathcal{B}_2 and (2) $\mathcal{B}_1 \neq \mathcal{B}_2$

by stepwise refinement of partitions the state set S

initial partition:
$$\mathcal{B}_{AP} = \mathcal{B}_0 = S/\mathcal{R}_{AP}$$
 where $\mathcal{R}_{AP} = \{(s_1, s_2) : L(s_1) = L(s_2)\}$

Characterization of S/\sim_T

... as the coarsest partition of the state space **S** such that

Bisimulation equivalence $\sim_{\mathcal{T}}$

 $\sim_{\mathcal{T}}$ is the coarsest equivalence on **S** s.t.

 $\sim_{\mathcal{T}}$ is the coarsest equivalence on **S** s.t.

1.
$$s_1 \sim_{\mathcal{T}} s_2$$
 implies $L(s_1) = L(s_2)$

2.
$$s_1 \sim_{\mathcal{T}} s_2$$
 \downarrow can be completed to $s_1 \sim_{\mathcal{T}} s_2$ \downarrow $s_1' \sim_{\mathcal{T}} s_2'$

 $\sim_{\mathcal{T}}$ is the coarsest equivalence on **S** s.t.

1.
$$s_1 \sim_{\mathcal{T}} s_2$$
 implies $L(s_1) = L(s_2)$

2.
$$s_1 \sim_{\mathcal{T}} s_2$$
 \downarrow can be completed to
 $s_1 \sim_{\mathcal{T}} s_2$
 \downarrow
 $s_1' \sim_{\mathcal{T}} s_2'$

bisimulation quotient space S/\sim_T : coarsest partition $\mathcal B$ of the state space S s.t.

partsplitalg5.3-6

 $\sim_{\mathcal{T}}$ is the coarsest equivalence on **5** s.t.

1.
$$s_1 \sim_{\mathcal{T}} s_2$$
 implies $L(s_1) = L(s_2)$

2.
$$s_1 \sim_{\mathcal{T}} s_2$$
 \downarrow can be completed to \downarrow \downarrow \downarrow $s'_1 \sim_{\mathcal{T}} s'_2$

bisimulation quotient space S/\sim_T : coarsest partition \mathcal{B} of the state space S s.t.

1. \mathcal{B} is finer than \mathcal{B}_{AP}

 $\sim_{\mathcal{T}}$ is the coarsest equivalence on **S** s.t.

1.
$$s_1 \sim_{\mathcal{T}} s_2$$
 implies $L(s_1) = L(s_2)$

2.
$$s_1 \sim_{\mathcal{T}} s_2$$
 \downarrow can be completed to
 $s_1 \sim_{\mathcal{T}} s_2$
 \downarrow
 $s_1' \sim_{\mathcal{T}} s_2'$

bisimulation quotient space S/\sim_T : coarsest partition \mathcal{B} of the state space S s.t.

- 1. \mathcal{B} is finer than \mathcal{B}_{AP}
- 2. for all blocks $B, C \in \mathcal{B}$:

$$B \subseteq Pre(C)$$
 or $B \cap Pre(C) = \emptyset$

 $\sim_{\mathcal{T}}$ is the coarsest equivalence on **S** s.t.

1.
$$s_1 \sim_{\mathcal{T}} s_2$$
 implies $L(s_1) = L(s_2)$

bisimulation quotient space S/\sim_T : coarsest partition \mathcal{B} of the state space S s.t.

- 1. \mathcal{B} is finer than \mathcal{B}_{AP}
- 2. for all blocks $B, C \in \mathcal{B}$:

$$B \subseteq Pre(C)$$
 or $B \cap Pre(C) = \emptyset$
where $Pre(C) = \{s \in S : \exists s' \in C \text{ s.t. } s \to s'\}$

Partitioning refinement algorithm

input: finite TS T with state space S over AP

(possibly with terminal states)

output: bisimulation quotient S/\sim_T

$$\mathcal{B}_0 := \mathcal{B}_{AP} \leftarrow \text{ identifies states with the same labeling}$$
 $i := 0$

REPEAT $\mathcal{B}_{i+1} := Refine(\mathcal{B}_i)$
 $i := i+1$

UNTIL $\mathcal{B}_i = \mathcal{B}_{i-1} \leftarrow \text{no more refinement possible hence: } \mathcal{B}_i = S/\sim_{\mathcal{T}}$

loop invariant:

 \mathcal{B}_i is coarser than $S/\sim_{\mathcal{T}}$ and finer than \mathcal{B}_{AP}

```
\mathcal{B}_0 := \mathcal{B}_{AP}; \ i := 0
REPEAT
\mathcal{B}_{i+1} := Refine(\mathcal{B}_i); \ i := i+1
UNTIL no further refinement is possible
```

Assuming that \mathcal{B}_i is strictly coarser than \mathcal{B}_{i+1} for all i, what is the maximal number of refinement steps ?

$$\mathcal{B}_0 := \mathcal{B}_{AP}; \ i := 0$$
REPEAT
 $\mathcal{B}_{i+1} := Refine(\mathcal{B}_i); \ i := i+1$
UNTIL no further refinement is possible

Assuming that \mathcal{B}_i is strictly coarser than \mathcal{B}_{i+1} for all i, what is the maximal number of refinement steps ?

answer:
$$|S| - 1$$

Note that $|\mathcal{B}_i| \geq i+1$.

Hence: if there are k = |S| - 1 iterations then \mathcal{B}_k consists of singletons

initial partition \mathcal{B}_{AP} :
identifies all states s, ts.t. L(s) = L(t)

$$\mathcal{B}_{AP} = \left\{ \{s_0, s_2, s_6, s_5\}, \{s_1\}, \{s_3, s_4\} \right\}$$

initial partition \mathcal{B}_{AP} :

- identifies all states with the same labeling
- agrees with the quotient under the equivalence

$$s \equiv_{AP} t$$
 iff $L(s) = L(t)$

compute \mathcal{B}_{AP} by an on-the-fly generation of the decision tree for AP

compute \mathcal{B}_{AP} by an on-the-fly generation of the decision tree for $AP = \{a_1, ..., a_k\}$

inner nodes at level i: decision " $a_i \in L(s)$?" leaves: sets of states with the same labeling

Computing the initial partition

compute \mathcal{B}_{AP} by an on-the-fly generation of the decision tree for $AP = \{a_1, ..., a_k\}$

Computing the initial partition

compute \mathcal{B}_{AP} by an on-the-fly generation of the decision tree for $AP = \{a_1, ..., a_k\}$

initally: each leaf represents the empty state-set for each state s:

traverse the decision tree from the root to a leaf v insert s in the set for v

Example: initial partition

Example: initial partition

decision tree for

$$AP = \{a, b\}$$

1. level: $a \in L(s)$?

2. level: $b \in L(s)$?

Example: initial partition

decision tree for

$$AP = \{ a, b \}$$

1. level: $a \in L(s)$?

2. level: $b \in L(s)$?

{*s*₀}

{*s*₀}

 $\{s_1\}$

$$AP = \{a, b\}$$

- 1. level: $a \in L(s)$?
- 2. level: $b \in L(s)$?

$$AP = \{a, b\}$$

- 1. level: $a \in L(s)$?
- 2. level: $b \in L(s)$?

$$AP = \{a, b\}$$

- 1. level: $a \in L(s)$?
- 2. level: $b \in L(s)$?

$$AP = \{a, b\}$$

- 1. level: $a \in L(s)$?
- 2. level: $b \in L(s)$?

$$AP = \{a, b\}$$

- 1. level: $a \in L(s)$?
- 2. level: $b \in L(s)$?


```
generate the root node v_0 of the decision tree
FOR ALL states 5 DO
                                              suppose
    \mathbf{v} := \mathbf{v}_0
                                             AP = \{a_1, \ldots, a_k\}
    FOR i=1,\ldots,k OD
        IF a_i \in L(s)
             THEN \mathbf{v} := \mathbf{find}_{\mathbf{or}} - \mathbf{add}(\mathbf{right} \text{ son of } \mathbf{v})
             ELSE \mathbf{v} := \mathbf{find}_{\mathbf{or}} - \mathbf{add}(\mathbf{left} \text{ son of } \mathbf{v})
        FΤ
    OD \leftarrow | \mathbf{v} | is a leaf of depth \mathbf{k} |
    add s into the state-set of v
0D
```

The state-sets of the leaves are the blocks in \mathcal{B}_{AP} .

```
generate the root node v_0 of the decision tree
FOR ALL states 5 DO
                                                       complexity: \mathcal{O}(|S| \cdot |AP|)
    \mathbf{v} := \mathbf{v}_0
    FOR i = 1, \ldots, k OD
        IF a_i \in L(s)
             THEN \mathbf{v} := \mathbf{find}_{\mathbf{or}} - \mathbf{add}(\mathbf{right} \text{ son of } \mathbf{v})
              ELSE \mathbf{v} := \mathbf{find}_{\mathbf{or}} - \mathbf{add}(\mathbf{left} \text{ son of } \mathbf{v})
        FΤ
    OD \leftarrow v is a leaf of depth k
    add s into the state-set of v
0D
```

The state-sets of the leaves are the blocks in \mathcal{B}_{AP} .

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO
\mathcal{B} := Refine(\mathcal{B})
OD
return \mathcal{B}
```

$$\mathcal{B} := \mathcal{B}_{AP} \longleftarrow \text{complexity: } \mathcal{O}(|S| \cdot |AP|)$$

WHILE refinements are possible DO

 $\mathcal{B} := Refine(\mathcal{B})$

OD

return \mathcal{B}

$$\mathcal{B} := \mathcal{B}_{AP} \longleftarrow \text{complexity: } \mathcal{O}(|S| \cdot |AP|)$$

WHILE refinements are possible DO

 $\mathcal{B} := Refine(\mathcal{B})$

OD

return $\mathcal{B} \longleftarrow \mathcal{B} = S/\sim_{\mathcal{T}}$

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO
\mathcal{B} := Refine(\mathcal{B})
OD
return \mathcal{B}
```

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO
\mathcal{B} := Refine(\mathcal{B})
OD
return \mathcal{B}
```

refinement: stabilization for some superblock C of B:

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO
\mathcal{B} := Refine(\mathcal{B})
OD
return \mathcal{B}
```

```
refinement: stabilization for some superblock C of B: split each block B \in B into two blocks:
B \cap Pre(C) \text{ and } B \setminus Pre(C)
```

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO
\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}) \text{ for some splitter } \mathcal{C}
OD
return \mathcal{B}
```

```
refinement: stabilization for some superblock C of B: split each block B \in B into two blocks: B \cap Pre(C) and B \setminus Pre(C)
```

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO
\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}) \text{ for some splitter } \mathcal{C}
OD
return \mathcal{B}
```

```
refinement: stabilization for some superblock C of B: split each block B \in B into two blocks: B \cap Pre(C) and B \setminus Pre(C)
```

PARTSPLITALG5.3-11B

Partitioning splitter algorithm

```
B:= BAP
WHILE refinements are possible DO
    choose some superblock C of B;
B:= Refine(B, C)
OD
return B
```

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO

choose some superblock \mathcal{C} of \mathcal{B};
\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C})
OD

return \mathcal{B}
```

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO

choose some superblock \mathcal{C} of \mathcal{B};

\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C})
OD

return \mathcal{B}
```

Refine(B, C)


```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO
choose some superblock \mathcal{C} of \mathcal{B};
\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C})
OD
return \mathcal{B}
```

Refine(B, C)


```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO
choose some superblock \mathcal{C} of \mathcal{B};
\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C})
OD
return \mathcal{B}
```

Refine(B, C) =
$$\{B \cap Pre(C), B \setminus Pre(C)\}$$

$$B \cap Pre(C)$$

$$B \setminus Pre(C)$$
block B superblock C

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE refinements are possible DO

choose some superblock \mathcal{C} of \mathcal{B};

\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C})
OD

return \mathcal{B}
```

$$Refine(B, C) = \{B \cap Pre(C), B \setminus Pre(C)\} \setminus \{\emptyset\}$$

The refinement operator

Let \mathcal{B} be a partition for S and C a superblock of \mathcal{B} .

$$Refine(\mathcal{B}, C) = \bigcup_{B \in \mathcal{B}} Refine(B, C)$$
where $Refine(B, C) = \{B \cap Pre(C), B \setminus Pre(C)\} \setminus \{\emptyset\}$

Let \mathcal{B} be a partition for S and C a superblock of \mathcal{B} .

$$Refine(\mathcal{B}, \mathcal{C}) = \bigcup_{B \in \mathcal{B}} Refine(B, \mathcal{C})$$
where $Refine(B, \mathcal{C}) = \{B \cap Pre(\mathcal{C}), B \setminus Pre(\mathcal{C})\} \setminus \{\emptyset\}$

If \mathcal{B} is finer than \mathcal{B}_{AP} and coarser than $S/\sim_{\mathcal{T}}$ then:

- (a) **Refine**(\mathcal{B} , \mathcal{C}) is finer than \mathcal{B} and \mathcal{B}_{AP}
- (b) **Refine**(\mathcal{B} , \mathcal{C}) is coarser than $\mathcal{S}/\sim_{\mathcal{T}}$
- (c) $Refine(\mathcal{B}, C) = \mathcal{B}$ for all $C \in \mathcal{B}$ iff $\mathcal{B} = S/\sim_{\mathcal{T}}$

partsplitalg5.3-12

⇒ refinement w.r.t. •

partsplitalg5.3-12

PARTSPLITALG5.3-12

w.r.t.

PARTSPLITALG5.3-12

7 bisimulation equivalence classes

The refinement operator

given a partition \mathcal{B} and a superblock \mathcal{C} of \mathcal{B} , how to compute

 $Refine(\mathcal{B}, C)$

efficiently?

The refinement operator

given a partition \mathcal{B} and a superblock \mathcal{C} of \mathcal{B} , how to compute

$$Refine(\mathcal{B}, \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C})$$

efficiently?

where for all blocks $B \in \mathcal{B}$:

$$Refine(B, C) = \{ B \cap Pre(C), B \setminus Pre(C) \} \setminus \{\emptyset\}$$

block **B** superblock **C**

Refinement operator *Refine*(B, C)

Refinement operator *Refine*(B, C)

```
FOR ALL s' \in C DO

FOR ALL s \in Pre(s') DO

"move" state s from block [s]_B = B

to the new block B \cap Pre(C)

OD

OD
```

```
Refinement operator Refine(B, C)
```

```
FOR ALL s' \in C DO
  FOR ALL s \in Pre(s') DO
         "move" state s from block [s]_{\mathcal{B}} = B
                to the new block B \cap Pre(C)
  OD
ΩD
```

... states left in block $B \in B$ belong to the new block $B \setminus Pre(C)$

Refinement operator $Refine(\mathcal{B}, C)$

```
FOR ALL s' \in C DO

FOR ALL s \in Pre(s') DO

"move" state s from block [s]_B = B

to the new block B \cap Pre(C)

OD

OD
```

... states left in block $B \in \mathcal{B}$ belong to the new block $B \setminus Pre(C)$

time complexity:

$$\mathcal{O}\left(\sum_{s'\in\mathcal{C}}|Pre(s')|+|\mathcal{C}|\right)$$

Example: refinement operator

partition ${\cal B}$

Example: refinement operator

partition $\mathcal{B} \rightsquigarrow Refine(\mathcal{B}, C)$

superblock $C = \{x, y\}$

partition $\mathcal{B} \rightsquigarrow Refine(\mathcal{B}, C)$

block
$$B \longrightarrow s \longrightarrow t \longrightarrow u$$

 $B' \cap Pre(C)$

superblock
$$C = \{x, y\}$$

partition $\mathcal{B} \rightsquigarrow Refine(\mathcal{B}, C)$

block
$$B'$$
 \longrightarrow V \longrightarrow W

superblock
$$C = \{x, y\}$$

partition $\mathcal{B} \rightsquigarrow Refine(\mathcal{B}, C)$

block
$$B \longrightarrow X \longrightarrow u \leftarrow \text{new block } B \setminus Pre(C)$$

$$B \cap Pre(C) \longrightarrow s \longrightarrow t$$

block
$$B' \longrightarrow X \longrightarrow X$$

$$B' \cap Pre(C) \longrightarrow V \longrightarrow W$$

$$\leftarrow B' \setminus Pre(C) = \emptyset$$

superblock
$$C = \{x, y\}$$

partition $\mathcal{B} \rightsquigarrow Refine(\mathcal{B}, C)$

block
$$B \longrightarrow X \longrightarrow u \leftarrow \text{new block } B \setminus Pre(C)$$

$$B \cap Pre(C) \longrightarrow s \longrightarrow t$$

$$\begin{array}{c|c}
 & & & & & & & & & & \\
\hline
B' \cap Pre(C) & & & & & & & \\
\end{array}$$

$$\leftarrow B' \setminus Pre(C) = \emptyset$$

superblock $C = \{x, y\}$

Refine(\mathcal{B} , \mathcal{C})

$$\begin{array}{c|c}
B \setminus Pre(C) & \rightarrow u \\
\hline
B \cap Pre(C) & \rightarrow s & \rightarrow t
\end{array}$$

$$B' \cap Pre(C) \longrightarrow v \longrightarrow w$$

```
\mathcal{B} := \mathcal{B}_{AP}
WHILE there is a splitter C for \mathcal{B} DO
select such a splitter C;
\mathcal{B} := Refine(\mathcal{B}, C)
OD
return \mathcal{B}
```

PARTSPLITALG5.3-15

```
— time complexity: \mathcal{O}(|S| \cdot |AP|)
\mathcal{B} := \mathcal{B}_{AP}
WHILE there is a splitter C for B DO
       select such a splitter C;
       \mathcal{B} := Refine(\mathcal{B}, \mathcal{C})
UD
return B
```

```
-|time complexity: \mathcal{O}(|S|\cdot|AP|)
\mathcal{B} := \mathcal{B}_{AP}
WHILE there is a splitter C for B DO
      select such a splitter C;
      \mathcal{B} := Refine(\mathcal{B}, \mathcal{C})
UD
                               each state s' ∈ C causes
return B
                              the costs O(|Pre(s')| + 1)
```

$$\mathcal{B} := \mathcal{B}_{AP} \qquad \longleftarrow \text{time complexity: } \mathcal{O}(|S| \cdot |AP|)$$
WHILE there is a splitter C for B DO
$$\text{select such a splitter } C;$$

$$\mathcal{B} := Refine(\mathcal{B}, C)$$
OD
$$\text{return } \mathcal{B}$$

$$\text{each state } s' \in C \text{ causes}$$

$$\text{the costs } \mathcal{O}(|Pre(s')| + 1)$$

time complexity:

$$\mathcal{O}\left(\sum_{c}\left(\sum_{s'\in C}|Pre(s')|+|C|\right) + |S|\cdot|AP|\right)$$

$$\mathcal{B} := \mathcal{B}_{AP} \qquad \leftarrow \text{time complexity: } \mathcal{O}(|S|\cdot|AP|)$$
WHILE there is a splitter C for B DO
$$\text{select such a splitter } C;$$

$$\mathcal{B} := Refine(\mathcal{B}, C)$$
OD
$$\text{each state } s' \in C \text{ causes}$$

$$\text{the costs } \mathcal{O}(|Pre(s')| + 1)$$

time complexity:

$$\mathcal{O}\left(\sum_{s' \in C} \left| Pre(s') \right| + |C| \right) + |S| \cdot |AP| \right)$$

+ cost for splitter search and management

2 instances of the partitioning splitter algorithm that differ in the choice and management of splitters

- Kanellakis-Smolka algorithm:
 refinement according to all blocks of the
 partition of the previous iteration
- Paige-Tarjan-algorithm:
 simultaneous refinement according to
 2 superblocks

Kanellakis-Smolka algorithm

```
\mathcal{B} := \mathcal{B}_{AP}; \ \mathcal{B}_{old} := \{S\}

REPEAT

\mathcal{B}_{old} := \mathcal{B};

FOR ALL C \in \mathcal{B}_{old} DO \mathcal{B} := Refine(\mathcal{B}, C) OD

UNTIL \mathcal{B} = \mathcal{B}_{old}

return \mathcal{B}
```

PARTSPLITALG5.3-16

```
\mathcal{B} := \mathcal{B}_{AP}; \ \mathcal{B}_{old} := \{S\} \longleftrightarrow cost: \mathcal{O}(|S|\cdot|AP|)

REPEAT

\mathcal{B}_{old} := \mathcal{B};

FOR ALL C \in \mathcal{B}_{old} DO \mathcal{B} := Refine(\mathcal{B}, C) OD

UNTIL \mathcal{B} = \mathcal{B}_{old}

return \mathcal{B}
```

```
\mathcal{B} := \mathcal{B}_{AP}; \ \mathcal{B}_{old} := \{S\} \ \leftarrow \text{cost: } \mathcal{O}(|S|\cdot|AP|)

REPEAT

\mathcal{B}_{old} := \mathcal{B};

FOR ALL C \in \mathcal{B}_{old} DO \mathcal{B} := Refine(\mathcal{B}, C) OD

UNTIL \mathcal{B} = \mathcal{B}_{old}

return \mathcal{B}
```

maximal |S| iterations

```
\mathcal{B} := \mathcal{B}_{AP}; \ \mathcal{B}_{old} := \{S\} \ \longleftarrow \text{cost: } \mathcal{O}(|S| \cdot |AP|)

REPEAT

\mathcal{B}_{old} := \mathcal{B};

FOR ALL C \in \mathcal{B}_{old} DO \mathcal{B} := Refine(\mathcal{B}, C) OD

UNTIL \mathcal{B} = \mathcal{B}_{old}

return \mathcal{B}
```

- maximal |S| iterations
- per iteration: each state $s' \in C$ causes the costs $\mathcal{O}(|Pre(s')| + 1)$

```
\mathcal{B} := \mathcal{B}_{AP}; \ \mathcal{B}_{old} := \{S\} \ \leftarrow \text{cost: } \mathcal{O}(|S| \cdot |AP|)

REPEAT

\mathcal{B}_{old} := \mathcal{B};

FOR ALL C \in \mathcal{B}_{old} DO \mathcal{B} := Refine(\mathcal{B}, C) OD

UNTIL \mathcal{B} = \mathcal{B}_{old}

return \mathcal{B}
```

- maximal |S| iterations
- per iteration: each state $s' \in C$ causes the costs $\mathcal{O}(|Pre(s')| + 1)$
- cost per iteration: $\mathcal{O}(m + |S|)$

```
\mathcal{B} := \mathcal{B}_{AP}; \ \mathcal{B}_{old} := \{S\} \ \leftarrow \text{cost: } \mathcal{O}(|S| \cdot |AP|)

REPEAT

\mathcal{B}_{old} := \mathcal{B};

FOR ALL C \in \mathcal{B}_{old} DO \mathcal{B} := Refine(\mathcal{B}, C) OD

UNTIL \mathcal{B} = \mathcal{B}_{old}

return \mathcal{B}
```

- maximal |S| iterations
- per iteration: each state $s' \in C$ causes the costs $\mathcal{O}(|Pre(s')| + 1)$
- cost per iteration: $\mathcal{O}(m + |S|)$ if $m = \text{number of edges} = \sum_{s'} |Pre(s')|$

```
\mathcal{B} := \mathcal{B}_{AP}; \ \mathcal{B}_{old} := \{S\} \ \leftarrow \ \text{cost: } \mathcal{O}(|S| \cdot |AP|)

REPEAT

\mathcal{B}_{old} := \mathcal{B};

FOR ALL \mathcal{C} \in \mathcal{B}_{old} DO \mathcal{B} := Refine(\mathcal{B}, \mathcal{C}) OD

UNTIL \mathcal{B} = \mathcal{B}_{old}

return \mathcal{B}
```

- maximal |S| iterations
- per iteration: each state $s' \in C$ causes the costs $\mathcal{O}(|Pre(s')| + 1)$
- cost per iteration: $\mathcal{O}(m + |S|) = \mathcal{O}(m)$ if $m = \text{number of edges} = \sum_{s'} |Pre(s')| \ge |S|$

```
\mathcal{B} := \mathcal{B}_{AP}; \ \mathcal{B}_{old} := \{S\}

REPEAT

\mathcal{B}_{old} := \mathcal{B};

FOR ALL C \in \mathcal{B}_{old} DO \mathcal{B} := Refine(\mathcal{B}, C) OD

UNTIL \mathcal{B} = \mathcal{B}_{old}

return \mathcal{B}
```

- maximal |S| iterations
- per iteration: each state $s' \in C$ causes the costs $\mathcal{O}(|Pre(s')| + 1)$
- cost per iteration: $\mathcal{O}(m + |S|) = \mathcal{O}(m)$ if $m = \text{number of edges} = \sum_{s'} |Pre(s')| \ge |S|$

1. iteration:

1. refinement w.r.t. $\{v_1, v_2, v_3\}$

1. iteration:

1. refinement w.r.t. $\{v_1, v_2, v_3\}$

1. iteration:

- 1. refinement w.r.t. $\{v_1, v_2, v_3\}$
- 2. refinement w.r.t. $\{w\}$: no changes

1. iteration:

- 1. refinement w.r.t. $\{v_1, v_2, v_3\}$
- 2. refinement w.r.t. $\{w\}$: no changes
- 3. refinement w.r.t. $\{s_1, s_2, s_3\}$: no changes

1. iteration:

- 1. refinement w.r.t. $\{v_1, v_2, v_3\}$
- 2. refinement w.r.t. $\{w\}$: no changes
- 3. refinement w.r.t. $\{s_1, s_2, s_3\}$: no changes
- 4. refinement w.r.t. $\{u_1, u_2, u_3\}$: no changes

Example: Kanellakis-Smolka algorithm

2. iteration:

Example: Kanellakis-Smolka algorithm

2. iteration:

1. refinement w.r.t. $\{u_3\}$

Example: Kanellakis-Smolka algorithm

Partsplitalg5.3-17

2. iteration:

1. refinement w.r.t. $\{u_3\}$

- 1. refinement w.r.t. $\{u_3\}$
- 2. refinement w.r.t. other blocks of the first iteration: no changes

refinement w.r.t. all blocks of the second iteration: no changes

refinement w.r.t. all blocks of the second iteration: no changes

6 bisimulation equivalence classes:

$$\{s_1, s_2\}, \{s_3\}, \{u_1, u_2\}, \{u_3\}, \{v_1, v_2, v_3\}, \{w\}$$

refinement w.r.t. •:

refinement w.r.t. •:

refinement w.r.t. : causes the costs

$$\sum_{s'} \left| Pre(s') \right| = n$$

refinement w.r.t. : causes the costs

$$\sum_{s'} |Pre(s')| = n$$

alternatively: refinement w.r.t. : constant costs

initially: $\mathcal{B}_{old} = \mathcal{B} = \mathcal{B}_{AP}$

Partitioning splitter algorithms

Kanellakis-Smolka algorithm:

initially: $\mathcal{B}_{old} = \mathcal{B} = \mathcal{B}_{AP}$

iteration: stabilization for each block in \mathcal{B}_{old}

Partitioning splitter algorithms

Kanellakis-Smolka algorithm:

initially: $\mathcal{B}_{old} = \mathcal{B} = \mathcal{B}_{AP}$

iteration: stabilization for each block in \mathcal{B}_{old}

loop invariant: ${\cal B}$ finer than ${\cal B}_{\rm old}$ and coarser than S/\sim

initially: $\mathcal{B}_{old} = \mathcal{B} = \mathcal{B}_{AP}$

iteration: stabilization for each block in \mathcal{B}_{old}

loop invariant: ${\cal B}$ finer than ${\cal B}_{\sf old}$ and coarser than ${\cal S}/{\sim}$

Paige-Tarjan algorithm:

Partitioning splitter algorithms

Kanellakis-Smolka algorithm:

initially: $\mathcal{B}_{old} = \mathcal{B} = \mathcal{B}_{AP}$

iteration: stabilization for each block in \mathcal{B}_{old}

loop invariant: ${\cal B}$ finer than ${\cal B}_{\sf old}$ and coarser than ${\cal S}/{\sim}$

Paige-Tarjan algorithm:

loop invariant:

- (1) \mathcal{B} finer than \mathcal{B}_{old} and coarser than S/\sim
- (2) \mathcal{B} is stable for each block in \mathcal{B}_{old}

initially: $\mathcal{B}_{old} = \mathcal{B} = \mathcal{B}_{AP}$

iteration: stabilization for each block in \mathcal{B}_{old}

loop invariant: ${\cal B}$ finer than ${\cal B}_{\sf old}$ and coarser than ${\cal S}/{\sim}$

Paige-Tarjan algorithm:

loop invariant:

- (1) ${\cal B}$ finer than ${\cal B}_{old}$ and coarser than ${\cal S}/{\sim}$
- (2) \mathcal{B} is stable for each block in \mathcal{B}_{old}

iteration: ternary refinement operator

initially: $\mathcal{B}_{old} = \mathcal{B} = \mathcal{B}_{AP}$

iteration: stabilization for each block in \mathcal{B}_{old}

loop invariant: ${\cal B}$ finer than ${\cal B}_{\sf old}$ and coarser than ${\cal S}/{\sim}$

Paige-Tarjan algorithm:

loop invariant:

- (1) ${\cal B}$ finer than ${\cal B}_{\sf old}$ and coarser than ${\it S/\sim}$
- (2) ${\cal B}$ is stable for each block in ${\cal B}_{\sf old}$

iteration: ternary refinement operator

initially: $\mathcal{B}_{old} = \{S\}$

initially: $\mathcal{B}_{old} = \mathcal{B} = \mathcal{B}_{AP}$

iteration: stabilization for each block in \mathcal{B}_{old}

loop invariant: ${\cal B}$ finer than ${\cal B}_{\sf old}$ and coarser than ${\cal S}/{\sim}$

Paige-Tarjan algorithm:

loop invariant:

- (1) ${\cal B}$ finer than ${\cal B}_{\sf old}$ and coarser than ${\cal S}/{\sim}$
- (2) ${\cal B}$ is stable for each block in ${\cal B}_{\sf old}$

iteration: ternary refinement operator

initially: $\mathcal{B}_{old} = \{S\}, \ \mathcal{B} = Refine(\mathcal{B}_{AP}, S)$

\mathcal{B}_{AP} is generally not stable w.r.t. 5

\mathcal{B}_{AP} is generally not stable w.r.t. **5**

state space
$$S = \{s_1, s_2, v_1, v_2\}$$

$$\mathcal{B}_{AP}=\Big\{\,\{ extstyle s_1, extstyle s_2\},\,\{ extstyle v_1, extstyle v_2\}\,\Big\}$$

state space
$$S = \{s_1, s_2, v_1, v_2\}$$

$$\mathcal{B}_{AP} = \{\{s_1, s_2\}, \{v_1, v_2\}\}$$

$$Pre(S) = \text{set of nonterminal states}$$

$$= \{s_1, s_2, v_1\}$$

state space
$$S = \{s_1, s_2, v_1, v_2\}$$

$$\mathcal{B}_{AP} = \Big\{ \{s_1, s_2\}, \, \{v_1, v_2\} \Big\}$$

Pre(S) = set of nonterminal states $= \{s_1, s_2, v_1\}$

$$\{v_1, v_2\} \cap Pre(S) = \{v_1\}$$

 $\{v_1, v_2\} \setminus Pre(S) = \{v_2\}$

$$\{v_1, v_2\} \cap Pre(S) = \{v_1\}$$

 $\{v_1, v_2\} \setminus Pre(S) = \{v_2\}$

initial partition of Paige/Tarjan algorithm:

$$Refine(\mathcal{B}_{AP}, 5)$$

state space
$$S = \{s_1, s_2, v_1, v_2\}$$

$$\mathcal{B}_{AP} = \{\{s_1, s_2\}, \{v_1, v_2\}\}$$

$$Pre(S) = \text{set of nonterminal states}$$

$$= \{s_1, s_2, v_1\}$$

$$\{v_1, v_2\} \cap Pre(S) = \{v_1\}$$

 $\{v_1, v_2\} \setminus Pre(S) = \{v_2\}$

initial partition of Paige/Tarjan algorithm:

$$Refine(\mathcal{B}_{AP}, S) = \{ \{s_1, s_2\}, \{v_1\}, \{v_2\} \}$$

$$\mathcal{B}_{old} := \{S\}; \ \mathcal{B} := Refine(\mathcal{B}_{AP}, S);$$
WHILE $\mathcal{B} \neq \mathcal{B}_{old}$ DO

$$\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);$$
WHILE $\mathcal{B} \neq \mathcal{B}_{old}$ DO select a block $C' \in \mathcal{B}_{old} \setminus \mathcal{B};$

```
\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);

WHILE \mathcal{B} \neq \mathcal{B}_{old} DO

select a block C' \in \mathcal{B}_{old} \setminus \mathcal{B};

select a block C \in \mathcal{B} with C \subseteq C'
```

```
\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);

WHILE \mathcal{B} \neq \mathcal{B}_{old} DO select a block C' \in \mathcal{B}_{old} \setminus \mathcal{B}; select a block C \in \mathcal{B} with C \subseteq C' and |C| \leq |C'|/2;
```

$$\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);$$
WHILE $\mathcal{B} \neq \mathcal{B}_{old}$ DO
select a block $C' \in \mathcal{B}_{old} \setminus \mathcal{B};$
select a block $C \in \mathcal{B}$ with $C \subseteq C'$ and $|C| \leq |C'|/2;$

```
\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
select a block C' \in \mathcal{B}_{old} \setminus \mathcal{B};
select a block C \in \mathcal{B} with C \subseteq C' and |C| \leq |C'|/2;
```

refine \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$

```
\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);

WHILE \mathcal{B} \neq \mathcal{B}_{old} DO

select a block C' \in \mathcal{B}_{old} \setminus \mathcal{B};

select a block C \in \mathcal{B} with C \subseteq C' and |C| \leq |C'|/2;

\mathcal{B} := Refine(\mathcal{B}, C)

\mathcal{B} := Refine(\mathcal{B}, C')

refine \mathcal{B}

w.r.t. C and C' \setminus C
```

$$\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);$$
WHILE $\mathcal{B} \neq \mathcal{B}_{old}$ DO
select a block $C' \in \mathcal{B}_{old} \setminus \mathcal{B};$
select a block $C \in \mathcal{B}$ with $C \subseteq C'$ and $|C| \leq |C'|/2;$

 $\mathcal{B} := Refine(\mathcal{B}, \mathbf{C})$

 $\mathcal{B} := Refine(\mathcal{B}, C')$

refine **B** simultaneously w.r.t. C and $C' \setminus C$

0D

$$\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);$$
WHILE $\mathcal{B} \neq \mathcal{B}_{old}$ DO
select a block $C' \in \mathcal{B}_{old} \setminus \mathcal{B};$
select a block $C \in \mathcal{B}$ with $C \subseteq C'$ and $|C| \leq |C'|/2;$

$$\mathcal{B} := Refine(\mathcal{B}, \mathbf{C}, \mathbf{C}' \backslash \mathbf{C})$$

refine \mathcal{B} simultaneously w.r.t. C and $C' \setminus C$

OD

```
\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
    select a block C' \in \mathcal{B}_{old} \setminus \mathcal{B};
    select a block C \in \mathcal{B} with C \subseteq C' and |C| \leq |C'|/2;
                                                        refine B simultaneously
    \mathcal{B} := Refine(\mathcal{B}, \mathbf{C}, \mathbf{C}' \backslash \mathbf{C})
                                                        w.r.t. C and C' \setminus C
    add C and C' \ C to \mathcal{B}_{old}
0D
```

```
\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
    select a block C' \in \mathcal{B}_{old} \setminus \mathcal{B};
    select a block C \in \mathcal{B} with C \subseteq C' and |C| \leq |C'|/2;
                                                       refine {\cal B} simultaneously
    \mathcal{B} := Refine(\mathcal{B}, \mathbf{C}, \mathbf{C}' \backslash \mathbf{C})
                                                       w.r.t. C and C' \setminus C
    add C and C' \ C to \mathcal{B}_{old} and remove C' from \mathcal{B}_{old}
0D
```

```
\mathcal{B}_{old} := \{S\}; \mathcal{B} := Refine(\mathcal{B}_{AP}, S);
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
    select a block C' \in \mathcal{B}_{old} \setminus \mathcal{B};
    select a block C \in \mathcal{B} with C \subseteq C' and |C| \leq |C'|/2;
                                                      refine B simultaneously
    \mathcal{B} := Refine(\mathcal{B}, \mathbf{C}, \mathbf{C}' \backslash \mathbf{C})
                                                      w.r.t. C and C' \setminus C
    add C and C' \ C to \mathcal{B}_{old} and remove C' from \mathcal{B}_{old}
0D
```

loop invariant: \mathcal{B} is stable w.r.t. each block in \mathcal{B}_{old}

Let \mathcal{B} be a partition and

• C' a superblock of B s.t. B is stable w.r.t. C'

Let \mathcal{B} be a partition and

• C' a superblock of B s.t. B is stable w.r.t. C'

Let \mathcal{B} be a partition and

- C' a superblock of B s.t. B is stable w.r.t. C'
- C a block in B s.t. $C \subseteq C'$

Let \mathcal{B} be a partition and

- C' a superblock of B s.t. B is stable w.r.t. C'
- C a block in B s.t. $C \subseteq C'$

simultaneous refinement of \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$:

Let \mathcal{B} be a partition and

- C' a superblock of B s.t. B is stable w.r.t. C'
- C a block in B s.t. $C \subset C'$

simultaneous refinement of \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$:

$$Refine(\mathcal{B}, C, C' \backslash C) = \bigcup_{B \in \mathcal{B}} Refine(B, C, C' \backslash C)$$

Let \mathcal{B} be a partition and

- C' a superblock of B s.t. B is stable w.r.t. C'
- C a block in B s.t. $C \subseteq C'$

simultaneous refinement of \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$:

$$Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C})$$

where for block $B \subseteq Pre(C')$:

$$Refine(B, C, C' \setminus C) = \{B_1, B_2, B_3\} \setminus \{\emptyset\}$$

Let \mathcal{B} be a partition and

- C' a superblock of B s.t. B is stable w.r.t. C'
- C a block in B s.t. $C \subset C'$

simultaneous refinement of \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$:

$$Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C})$$

where for block $B \subseteq Pre(C')$:

$$Refine(B, C, C' \setminus C) = \{B_1, B_2, B_3\} \setminus \{\emptyset\}$$

block **B**

superblock C'

Let \mathcal{B} be a partition and

- C' a superblock of B s.t. B is stable w.r.t. C'
- C a block in B s.t. $C \subset C'$

simultaneous refinement of \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$:

$$Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C}) = \bigcup_{B \in \mathcal{B}} Refine(B, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C})$$

where for block $B \subseteq Pre(C')$:

$$Refine(B, C, C' \setminus C) = \{B_1, B_2, B_3\} \setminus \{\emptyset\}$$

block B

superblock C'

simultaneous refinement of \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$:

$$Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C})$$

where for block $B \subseteq Pre(C')$:

$$Refine(B, C, C' \backslash C) = \{B_1, B_2, B_3\} \backslash \{\emptyset\}$$

block B

superblock C'

Partsplitalg5.3-22

$$B_1 = B \cap Pre(C) \cap Pre(C' \setminus C)$$

simultaneous refinement of \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$:

$$Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C})$$

where for block $B \subseteq Pre(C')$:

$$Refine(B, C, C' \backslash C) = \{B_1, B_2, B_3\} \backslash \{\emptyset\}$$

block B

Partsplitalg5.3-22

$$B_1 = B \cap Pre(C) \cap Pre(C' \setminus C)$$

$$B_2 = (B \cap Pre(C)) \setminus Pre(C' \setminus C)$$

simultaneous refinement of \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$:

$$Refine(\mathcal{B}, C, C' \backslash C) = \bigcup_{B \in \mathcal{B}} Refine(B, C, C' \backslash C)$$

where for block $B \subseteq Pre(C')$:

$$Refine(B, C, C' \backslash C) = \{B_1, B_2, B_3\} \backslash \{\emptyset\}$$

$$B_1 = B \cap Pre(C) \cap Pre(C' \setminus C)$$

$$B_2 = (B \cap Pre(C)) \setminus Pre(C' \setminus C)$$

$$B_3 = (B \cap Pre(C' \setminus C)) \setminus Pre(C)$$

simultaneous refinement of \mathcal{B} w.r.t. \mathcal{C} and $\mathcal{C}' \setminus \mathcal{C}$:

$$Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C}) = \bigcup_{\mathcal{B} \in \mathcal{B}} Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \backslash \mathcal{C})$$

where for block $B \subseteq Pre(C')$:

$$Refine(B, C, C' \backslash C) = \{B_1, B_2, B_3\} \backslash \{\emptyset\}$$

for block B with $B \cap Pre(C') = \emptyset$:

Refine(
$$B, C, C' \setminus C$$
) = { B }

Stability of *Refine*(\mathcal{B} , \mathcal{C} , $\mathcal{C}' \setminus \mathcal{C}$)

Suppose that for all blocks $B \in \mathcal{B}$:

$$B \subseteq Pre(C')$$
 or $B \cap Pre(C') = \emptyset$

Stability of *Refine*(\mathcal{B} , \mathcal{C} , $\mathcal{C}' \setminus \mathcal{C}$)

Suppose that for all blocks $B \in \mathcal{B}$:

$$B \subseteq Pre(C')$$
 or $B \cap Pre(C') = \emptyset$

Stability of $Refine(\mathcal{B}, C, C' \setminus C)$

Suppose that for all blocks $B \in \mathcal{B}$:

$$B \subseteq Pre(C')$$
 or $B \cap Pre(C') = \emptyset$

Then the new blocks B_1 , B_2 , B_3 in $Refine(B, C, C' \setminus C)$ are stable w.r.t. the superblocks C and $C' \setminus C$.

Stability of $Refine(\mathcal{B}, C, C' \setminus C)$

Suppose that for all blocks $B \in \mathcal{B}$:

$$B \subseteq Pre(C')$$
 or $B \cap Pre(C') = \emptyset$

Then the new blocks B_1 , B_2 , B_3 in $Refine(B, C, C' \setminus C)$ are stable w.r.t. the superblocks C and $C' \setminus C$.

If \mathcal{B} is stable w.r.t. all blocks in \mathcal{B}_{old} and $C' \in \mathcal{B}_{old}$, $C \in \mathcal{B}$ s.t. $C \subsetneq C'$ then $Refine(\mathcal{B}, C, C' \setminus C)$ is stable w.r.t. all blocks in the partition $(\mathcal{B}_{old} \setminus \{C'\}) \cup \{C, C' \setminus C\}$

$$AP = \{green, gray\}, \quad \mathcal{B}_{old} = \{S\}$$

$$AP = \{green, gray\}, \quad \mathcal{B}_{old} = \{S\}$$

initial partition:

$$\mathcal{B}_{0} = Refine(\mathcal{B}_{AP}, S) = \mathcal{B}_{AP} = \{\{v_{1}, v_{2}\}, \{u_{1}, \dots, u_{8}, w_{1}, w_{2}, w_{3}\}\}$$

initially:
$$\mathcal{B}_{old} = \{S\}$$

 $\mathcal{B}_{0} = \{\{v_{1}, v_{2}\}, \{u_{1}, \dots, u_{8}, w_{1}, w_{2}, w_{3}\}\}$

first refinement step:

Refine(
$$\mathcal{B}_0$$
, { v_1 , v_2 }, $S \setminus \{v_1, v_2\}$)

initially:
$$\mathcal{B}_{old} = \{S\}$$

 $\mathcal{B}_{0} = \{\{v_{1}, v_{2}\}, \{u_{1}, \dots, u_{6}, u_{8}, u_{7}, w_{1}, w_{2}, w_{3}\}\}$

first refinement step:

Refine(
$$\mathcal{B}_0$$
, $\{v_1, v_2\}$, $S \setminus \{v_1, v_2\}$) =
 $\mathcal{B}_1 = \{\{v_1, v_2\}, \{u_1, \dots, u_6, u_8\}, \{u_7\}, \{w_1, w_2, w_3\}\}$

initially:
$$\mathcal{B}_{old} = \{S\}$$

 $\mathcal{B}_{0} = \{\{v_{1}, v_{2}\}, \{u_{1}, \dots, u_{6}, u_{8}, u_{7}, w_{1}, w_{2}, w_{3}\}\}$

first refinement step:

$$\begin{aligned} &\textit{Refine}(\mathcal{B}_0, \{v_1, v_2\}, \mathcal{S} \setminus \{v_1, v_2\}) = \\ &\mathcal{B}_1 = \big\{ \{v_1, v_2\}, \{u_1, \dots, u_6, u_8\}, \{u_7\}, \{w_1, w_2, w_3\} \big\} \\ &\mathcal{B}_{\text{old}} = \big\{ \{v_1, v_2\}, \{u_1, \dots, u_6, u_8, u_7, w_1, w_2, w_3\} \big\} \end{aligned}$$

first refinement step:

$$\mathcal{B}_1 = \left\{ \{v_1, v_2\}, \{u_1, \dots, u_6, u_8\}, \{u_7\}, \{w_1, w_2, w_3\} \right\}$$

$$\mathcal{B}_{old} = \left\{ \{v_1, v_2\}, \{u_1, \dots, u_6, u_8, u_7, w_1, w_2, w_3\} \right\}$$

second refinement step:

$$Refine(\mathcal{B}_1,?,?)$$

first refinement step:

$$\mathcal{B}_1 = \{\{v_1, v_2\}, \{u_1, \dots, u_6, u_8\}, \{u_7\}, \{w_1, w_2, w_3\}\} \}$$

$$\mathcal{B}_{old} = \{\{v_1, v_2\}, \{u_1, \dots, u_6, u_8, u_7, w_1, w_2, w_3\}\}$$

second refinement step:

Refine(
$$\mathcal{B}_1, \{u_7\}, \{u_1, \ldots, u_6, u_8, w_1, w_2, w_3\}$$
)

first refinement step:

$$\mathcal{B}_1 = \{\{v_1, v_2\}, \{u_1, \dots, u_6, u_8\}, \{u_7\}, \{w_1, w_2, w_3\}\}\}$$

$$\mathcal{B}_{old} = \{\{v_1, v_2\}, \{u_1, \dots, u_6, u_8, u_7, w_1, w_2, w_3\}\}$$

second refinement step:

$$\begin{aligned} &\textit{Refine}(\mathcal{B}_1, \{\textit{u}_7\}, \{\textit{u}_1, \dots, \textit{u}_6, \textit{u}_8, \textit{w}_1, \textit{w}_2, \textit{w}_3\}) \\ &= \big\{ \{\textit{v}_1, \textit{v}_2\}, \{\textit{u}_1, \dots, \textit{u}_6, \textit{u}_8\}, \{\textit{u}_7\}, \{\textit{w}_1\}, \{\textit{w}_2\}, \{\textit{w}_3\} \big\} \end{aligned}$$

```
\mathcal{B} := Refine(\mathcal{B}_{AP}, S); \ \mathcal{B}_{old} := \{S\};
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
    select C' \in \mathcal{B}_{old}, C \in \mathcal{B} s.t. C \subseteq C', |C| \leq |C'|/2;
    add C and C' \ C to \mathcal{B}_{old} and remove C' from \mathcal{B}_{old}
    \mathcal{B} := Refine(\mathcal{B}, C, C' \setminus C)
UD
return B
```

```
\mathcal{B} := Refine(\mathcal{B}_{AP}, S); \ \mathcal{B}_{old} := \{S\};
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
    select C' \in \mathcal{B}_{old}, C \in \mathcal{B} s.t. C \subseteq C', |C| \leq |C'|/2;
    add C and C' \ C to \mathcal{B}_{old} and remove C' from \mathcal{B}_{old}
     \mathcal{B} := Refine(\mathcal{B}, \mathbf{C}, \mathbf{C}' \setminus \mathbf{C})
UD
return B
```

efficient implementation of $Refine(\mathcal{B}, \mathcal{C}, ...)$ with time complexity $\mathcal{O}(|\mathcal{C}| + |Pre(\mathcal{C})|)$

```
\mathcal{B} := Refine(\mathcal{B}_{AP}, S); \ \mathcal{B}_{old} := \{S\};
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
    select C' \in \mathcal{B}_{old}, C \in \mathcal{B} s.t. C \subseteq C', |C| \leq |C'|/2;
    add C and C' \ C to \mathcal{B}_{old} and remove C' from \mathcal{B}_{old}
    \mathcal{B} := Refine(\mathcal{B}, C, C' \setminus C)
UD
return B
```

efficient implementation of $Refine(\mathcal{B}, \mathbb{C}, ...)$ with time complexity $\mathcal{O}(|\mathbb{C}| + |Pre(\mathbb{C})|)$ uses counters

$$\delta(s, D) = |Post(s) \cap D|$$
 for $D \in \mathcal{B}_{old}$

implementation of

$$Refine(\mathcal{B}, C, C' \setminus C) = \bigcup_{B \in \mathcal{B}} Refine(B, C, C' \setminus C)$$

using counters $\delta(s, D) = |Post(s) \cap D|$

implementation of

$$Refine(\mathcal{B}, C, C' \setminus C) = \bigcup_{B \in \mathcal{B}} Refine(B, C, C' \setminus C)$$

using counters
$$\delta(s, D) = |Post(s) \cap D|$$

$$D \in \mathcal{B}_{old}$$

implementation of
$$Refine(\mathcal{B},C,C'\setminus C) = \bigcup_{B\in\mathcal{B}} Refine(B,C,C'\setminus C)$$
 using counters $\delta(s,D) = |Post(s)\cap D|$
$$s\in Pre(D) \qquad D\in \mathcal{B}_{old}$$

implementation of
$$Refine(\mathcal{B},C,C'\setminus C) = \bigcup_{B\in\mathcal{B}} Refine(B,C,C'\setminus C)$$
 using counters $\delta(s,D) = |Post(s)\cap D|$
$$s\in Pre(D) \qquad D\in \mathcal{B}_{old}$$

step 1: compute
$$\delta(...)$$
 for the new blocks C and $C' \setminus C$ in \mathcal{B}_{old}

implementation of $Refine(\mathcal{B},C,C'\setminus C) = \bigcup_{B\in\mathcal{B}} Refine(B,C,C'\setminus C)$ using counters $\delta(s,D) = |Post(s)\cap D|$ $s\in Pre(D) \qquad D\in \mathcal{B}_{old}$

- step 1: compute $\delta(...)$ for the new blocks C and $C' \setminus C$ in \mathcal{B}_{old}
- step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in B$

step 1: compute $\delta(s, C)$, $\delta(s, C' \setminus C)$

step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in \mathcal{B}$

step 1: compute
$$\delta(s, C)$$
, $\delta(s, C' \setminus C) \leftarrow \text{for } s \in Pre(C')$

step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in \mathcal{B}$

Partsplitalg5.3-25b

step 1: compute
$$\delta(s, C)$$
, $\delta(s, C' \setminus C) \leftarrow$ for $s \in Pre(C')$

$$\delta(s, C) = |Post(s) \cap C|$$

$$\delta(s, C' \setminus C) = |Post(s) \cap (C' \setminus C)|$$
step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in B$

step 1: compute
$$\delta(s, C)$$
, $\delta(s, C' \setminus C) \leftarrow$ for $s \in Pre(C')$

$$\delta(s, C) = |Post(s) \cap C|$$

$$\delta(s, C' \setminus C) = |Post(s) \cap (C' \setminus C)|$$
step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in B$

for
$$B \in \mathcal{B}$$
 with $B \cap Pre(C') = \emptyset$ we have:
 $Refine(B, C, C' \setminus C) = \{B\}$

partsplitalg5.3-25b

step 1: compute
$$\delta(s, C)$$
, $\delta(s, C' \setminus C) \leftarrow$ for $s \in Pre(C')$

$$\delta(s, C) = |Post(s) \cap C|$$

$$\delta(s, C' \setminus C) = |Post(s) \cap (C' \setminus C)|$$
step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in B$

for $B \in \mathcal{B}$ with $B \subseteq Pre(C')$:

step 1: compute
$$\delta(s, C)$$
, $\delta(s, C' \setminus C) \leftarrow$ for $s \in Pre(C')$

$$\delta(s, C) = |Post(s) \cap C|$$

$$\delta(s, C' \setminus C) = |Post(s) \cap (C' \setminus C)|$$
step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in B$

for
$$B \in \mathcal{B}$$
 with $B \subseteq Pre(C')$:
$$Refine(B, C, C' \setminus C) = \{B_1, B_2, B_3\} \setminus \{\emptyset\}$$

step 1: compute
$$\delta(s, C)$$
, $\delta(s, C' \setminus C) \leftarrow$ for $s \in Pre(C')$

$$\delta(s, C) = |Post(s) \cap C|$$

$$\delta(s, C' \setminus C) = |Post(s) \cap (C' \setminus C)|$$
step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in \mathcal{B}$

for
$$B \in \mathcal{B}$$
 with $B \subseteq Pre(C')$:
 $Refine(B, C, C' \setminus C) = \{B_1, B_2, B_3\} \setminus \{\emptyset\}$

$$B_1 = B \cap Pre(C) \cap Pre(C' \setminus C)$$

$$B_2 = (B \cap Pre(C)) \setminus Pre(C' \setminus C)$$

$$B_3 = (B \cap Pre(C' \setminus C)) \setminus Pre(C)$$

```
step 1: compute \delta(s, C), \delta(s, C' \setminus C) \leftarrow for s \in Pre(C')
\delta(s, C) = |Post(s) \cap C|
\delta(s, C' \setminus C) = |Post(s) \cap (C' \setminus C)|
step 2: compute Refine(B, C, C' \setminus C) for all B \in B
```

for
$$B \in \mathcal{B}$$
 with $B \subseteq Pre(C')$:
 $Refine(B, C, C' \setminus C) = \{B_1, B_2, B_3\} \setminus \{\emptyset\}$

$$B_1 = \{ s \in B : \delta(s, C) > 0, \delta(s, C' \setminus C) > 0 \}$$

$$B_2 = (B \cap Pre(C)) \setminus Pre(C' \setminus C)$$

$$B_3 = (B \cap Pre(C' \setminus C)) \setminus Pre(C)$$

step 1: compute
$$\delta(s, C)$$
, $\delta(s, C' \setminus C) \leftarrow$ for $s \in Pre(C')$

$$\delta(s, C) = |Post(s) \cap C|$$

$$\delta(s, C' \setminus C) = |Post(s) \cap (C' \setminus C)|$$
step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in B$

for
$$B \in \mathcal{B}$$
 with $B \subseteq Pre(C')$:
 $Refine(B, C, C' \setminus C) = \{B_1, B_2, B_3\} \setminus \{\emptyset\}$

$$B_1 = \{ s \in B : \delta(s, C) > 0, \delta(s, C' \setminus C) > 0 \}$$

$$B_2 = \{ s \in B : \delta(s, C) > 0, \delta(s, C' \setminus C) = 0 \}$$

$$B_3 = \{ B \cap Pre(C' \setminus C) \setminus Pre(C) \}$$

step 1: compute
$$\delta(s, C)$$
, $\delta(s, C' \setminus C) \leftarrow$ for $s \in Pre(C')$

$$\delta(s, C) = |Post(s) \cap C|$$

$$\delta(s, C' \setminus C) = |Post(s) \cap (C' \setminus C)|$$
step 2: compute $Refine(B, C, C' \setminus C)$ for all $B \in \mathcal{B}$

for
$$B \in \mathcal{B}$$
 with $B \subseteq Pre(C')$:
$$Refine(B, C, C' \setminus C) = \{B_1, B_2, B_3\} \setminus \{\emptyset\}$$

$$B_1 = \{s \in B : \delta(s, C) > 0, \delta(s, C' \setminus C) > 0\}$$

$$B_2 = \{s \in B : \delta(s, C) > 0, \delta(s, C' \setminus C) = 0\}$$

$$B_3 = \{s \in B : \delta(s, C) = 0, \delta(s, C' \setminus C) > 0\}$$

$$\mathcal{B} := Refine(\mathcal{B}_{AP}, S); \mathcal{B}_{old} := \{S\};$$

WHILE $\mathcal{B} \neq \mathcal{B}_{old}$ DO select $C' \in \mathcal{B}_{old}$, $C \in \mathcal{B}$ s.t. $C \subseteq C'$, $|C| \leq |C'|/2$; add C and $C' \setminus C$ to \mathcal{B}_{old} and remove C' from \mathcal{B}_{old}

$$\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \setminus \mathcal{C})$$

```
\mathcal{B} := Refine(\mathcal{B}_{\mathsf{AP}}, S); \ \mathcal{B}_{\mathsf{old}} := \{S\}; FOR ALL s \in S DO \delta(s, S) := |Post(s)| OD WHILE \mathcal{B} \neq \mathcal{B}_{\mathsf{old}} DO select C' \in \mathcal{B}_{\mathsf{old}}, \ C \in \mathcal{B} s.t. C \subseteq C', \ |C| \leq |C'|/2; add C and C' \setminus C to \mathcal{B}_{\mathsf{old}} and remove C' from \mathcal{B}_{\mathsf{old}}
```

$$\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \setminus \mathcal{C})$$

```
\mathcal{B} := Refine(\mathcal{B}_{AP}, S); \mathcal{B}_{old} := \{S\};
FOR ALL s \in S DO \delta(s, S) := |Post(s)| OD
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
  select C' \in \mathcal{B}_{old}, C \in \mathcal{B} s.t. C \subseteq C', |C| \leq |C'|/2;
  add C and C' \setminus C to \mathcal{B}_{old} and remove C' from \mathcal{B}_{old}
    FOR ALL s \in Pre(C) DO \delta(s, C) := 0 OD
     FOR ALL s' \in C DO
      FOR ALL s \in Pre(s') DO \delta(s, C) := \delta(s, C) + 1 OD
     UD
```

$$\mathcal{B} := Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \setminus \mathcal{C})$$

```
\mathcal{B} := Refine(\mathcal{B}_{AP}, S); \mathcal{B}_{old} := \{S\};
FOR ALL s \in S DO \delta(s, S) := |Post(s)| OD
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
  select C' \in \mathcal{B}_{old}, C \in \mathcal{B} s.t. C \subseteq C', |C| \leq |C'|/2;
  add C and C' \setminus C to \mathcal{B}_{old} and remove C' from \mathcal{B}_{old}
     FOR ALL s \in Pre(C) DO \delta(s, C) := 0 OD
     FOR ALL s' \in C DO
       FOR ALL s \in Pre(s') DO \delta(s, C) := \delta(s, C) + 1 OD
     ΩD
     FOR ALL s \in Pre(C) DO
               \delta(s, C' \setminus C) := \delta(s, C') - \delta(s, C) OD
  \mathcal{B} := Refine(\mathcal{B}, \mathcal{C}, \mathcal{C}' \setminus \mathcal{C})
תח
```

let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a finite TS
$$n = \# \text{ states} \qquad = |S|$$

$$m = \# \text{ transitions}$$

let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a finite TS

 $n = \#$ states $= |S|$
 $m = \#$ transitions $= \sum_{s \in S} |Pre(s)|$

let
$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 be a finite TS

 $\mathbf{n} = \# \text{ states} = |S|$
 $\mathbf{m} = \# \text{ transitions} = \sum_{s \in S} |Pre(s)|$

in what follows, we suppose m > n

```
\mathcal{B} := Refine(\mathcal{B}_{AP}, S);
\mathcal{B}_{old} := \{S\};
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
      select C' \in \mathcal{B}_{old}, C \in \mathcal{B} s.t.
          C \subseteq C' and |C| < |C'|/2:
      add C and C' \setminus C to \mathcal{B}_{old} and
                     remove C' from \mathcal{B}_{old}
     \mathcal{B} := Refine(\mathcal{B}, C, C' \setminus C)
תח
```

$$\mathcal{B} := \textit{Refine}(\mathcal{B}_{\mathsf{AP}}, S); \leftarrow \mathsf{complexity:} \mathcal{O}(n \cdot |AP|)$$
 $\mathcal{B}_{\mathsf{old}} := \{S\};$
WHILE $\mathcal{B} \neq \mathcal{B}_{\mathsf{old}}$ DO
select $C' \in \mathcal{B}_{\mathsf{old}}$, $C \in \mathcal{B}$ s.t.
 $C \subseteq C'$ and $|C| \leq |C'|/2;$
add C and $C' \setminus C$ to $\mathcal{B}_{\mathsf{old}}$ and remove C' from $\mathcal{B}_{\mathsf{old}}$
 $\mathcal{B} := \mathit{Refine}(\mathcal{B}, C, C' \setminus C)$

$$\mathcal{B} := \textit{Refine}(\mathcal{B}_{AP}, S); \leftarrow \text{complexity: } \mathcal{O}(n \cdot |AP|)$$
 $\mathcal{B}_{old} := \{S\};$
WHILE $\mathcal{B} \neq \mathcal{B}_{old}$ DO
select $C' \in \mathcal{B}_{old}$, $C \in \mathcal{B}$ s.t.
 $C \subseteq C'$ and $|C| \leq |C'|/2;$
add C and $C' \setminus C$ to \mathcal{B}_{old} and remove C' from \mathcal{B}_{old}

$$\mathcal{B} := Refine(\mathcal{B}, C, C' \setminus C)$$

```
\leftarrow complexity: \mathcal{O}(n \cdot |AP|)
\mathcal{B} := Refine(\mathcal{B}_{AP}, S);
\mathcal{B}_{old} := \{S\};
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
     select C' \in \mathcal{B}_{old}, C \in \mathcal{B} s.t.
          C \subseteq C' and |C| \leq |C'|/2;
     add C and C' \setminus C to \mathcal{B}_{old} and
                    remove C' from \mathcal{B}_{old}
                                                               time complexity:
    \mathcal{B} := Refine(\mathcal{B}, C, C' \setminus C)
                                                               \sum |Pre(s')| + 1
OD
```

```
\mathcal{B} := Refine(\mathcal{B}_{AP}, S);
                                      \leftarrow complexity: \mathcal{O}(n \cdot |AP|)
\mathcal{B}_{old} := \{S\};
WHILE \mathcal{B} \neq \mathcal{B}_{old} DO
     select C' \in \mathcal{B}_{old}, C \in \mathcal{B} s.t.
          C \subseteq C' and |C| \leq |C'|/2;
     add C and C' \setminus C to \mathcal{B}_{old} and
                     remove C' from \mathcal{B}_{old}
                                                                   time complexity:
     \mathcal{B} := Refine(\mathcal{B}, C, C' \setminus C) \quad \leftarrow
```

$$\mathcal{B} := \textit{Refine}(\mathcal{B}_{\mathsf{AP}}, S); \leftarrow \text{complexity: } \mathcal{O}(n \cdot |AP|)$$
 $\mathcal{B}_{\mathsf{old}} := \{S\};$

WHILE $\mathcal{B} \neq \mathcal{B}_{\mathsf{old}}$ DO

select $C' \in \mathcal{B}_{\mathsf{old}}$, $C \in \mathcal{B}$ s.t.

 $C \subseteq C'$ and $|C| \leq |C'|/2;$

add C and $C' \setminus C$ to $\mathcal{B}_{\mathsf{old}}$ and remove C' from $\mathcal{B}_{\mathsf{old}}$

$$\mathcal{B} := \textit{Refine}(\mathcal{B}, C, C' \setminus C)$$
 $\mathcal{O}(|C| + |Pre(C))$

total cost for all refinement operations: $\mathcal{O}(m \cdot \log n)$

time complexity:

$$\mathcal{O}(|C| + |Pre(C)|)$$