Reasoning about Neural Network Learning

Caleb Kisby, Saúl Blanco, and Lawrence Moss

Luddy School of Informatics, Computing, and Engineering

Reasoning about Static Nets

Monotonicity Axioms

know (A \rightarrow B) \rightarrow (know A \rightarrow know B) (typ A1 \rightarrow A2) ... (typ An \rightarrow A1) \rightarrow $(\texttt{typ} \ \texttt{Ai} \ \leftrightarrow \ \texttt{Aj})$

Basic Modal Axioms

 $\mathtt{know}\ \mathtt{A}\ \rightarrow\ \mathtt{A}$

 $\mathtt{know} \ \mathtt{A} \ o \ \mathtt{know} \ \mathtt{know} \ \mathtt{A}$

 $\texttt{typ} \ \texttt{A} \ \to \ \texttt{A}$

 $\texttt{typ} \ \texttt{A} \ \to \ \texttt{typ} \ \texttt{typ} \ \texttt{A}$

know A \rightarrow typ A

Syntax

A and B $A \rightarrow B$

know A typ A

[hebb A] B

Classical Meaning

proposition

Reasoning about Learning

Induction Axioms

[hebb* A] B \rightarrow B and [hebb A] [hebb* A] B [hebb* A] (B \rightarrow [hebb A] B) \rightarrow [hebb* A] B

What The Net Learns

[hebb* A] typ B \leftrightarrow

typ [hebb* A] B

if typ A or typ B is \emptyset

typ [hebb* A] B and

(typ A or know B)

otherwise

Model Checking [hebb* A] B

Task: Does the net satisfy P?

 $\mathcal{N} \vDash \mathtt{typ} \ \mathtt{penguin} \rightarrow \mathtt{flies}, \ \mathtt{but}$ $\mathcal{N} \not\models [\text{hebb orca}] [\text{hebb zebra}] [\text{hebb panda}]$ $\texttt{typ penguin} \to \texttt{flies}$

>>> print(model.is_model("typ penguin ->> flies")) True

>>> print(model.is_model("[hebb orca] [hebb zebra] [hebb panda] \ typ penguin \rightarrow flies))

False

A and B A implies B the agent knows A typically A $A \Rightarrow B$ $\mathsf{typ}\ \mathsf{A}\ \to\ \mathsf{B}$ incremental pref upgrade on A preference upgrade on A

penguin \rightarrow bird

Model Building

bird \Rightarrow flies

Neural Network

a (fuzzy) set of neurons

 $A \cup B$ $A \supseteq B$

the set of neurons reachable from A the set of neurons activated by A on input A the net predicts B

penguin \rightarrow bird

 \neg (penguin \Rightarrow flies)

Model Checking

bird \Rightarrow flies

learn A (Hebbian) repeatedly learn A (Hebbian)

Model Building

Task: Build a net that satisfies P.

Goal. (Binary, feedforward) nets are equivalent to a certain class of classical modal frames.

COROLLARY. Given a knowledge base Γ , we can construct a net \mathcal{N} such that $\mathcal{N} \models \Gamma$

COROLLARY. The axioms for reasoning about know, typ, and [hebb* A] are complete.

Work in Progress

- Use Lean to verify model checking code
- Finish proof for model building
- Extend system to reason about fuzzy sets
- Extend with [backprop A] (backpropagation)

Acknowledgments: This work was funded by the US Department of Defense (Contract W52P1J2093009). Thank you for your support!

Knowledge

Engineering