

MonitorLight: Reinforcement Learning-based Traffic Signal Control Using Mixed Pressure Monitoring

Zekuan Fang, Fan Zhang, et al.
CIKM 2022

→ 研究背景 ≪

≫实验

> 提纲

> 研究背景

背景介绍

研究现状

> 背景介绍

交通拥堵问题

- ▶ 城市交通拥堵情况越来越严重。交通拥堵会导致经济、环境、生活 上的诸多问题。
- ▶ 如何缓解交通拥堵?

> 背景介绍

交通信号控制 Traffic Signal Control (TSC)

合理的交通信号控制策略可以最大化交通流,有效缓解道路拥堵。

> 研究现状

Conventional TSC methods

- [1] Seung-Bae Cools et al. . Self-organizing traffic lights: A realistic simulation.. Advances in applied self-organizing systems, 2013.
- [2] Peter Koonce and Lee Rodegerdts. **Traffic signal timing manual**. Technical report, 2008.

- 在交通领域经典算法的基础上,设定固定的总周期和信号变化顺序,优
 化各相位的绿灯持续时间和交叉口之间的相位偏移。
- 不适用于复杂动态的交通环境。

〉背景介绍

- Road Side Units (RSU)
- Artificial Intelligence (AI)
- Traffic-oriented Cyber-Physical Systems(CPS)

〉背景介绍

RL-Based Traffic Signal Control (TSC):

Transition: $\langle S, A, S' \rangle$

> 研究现状

RL-based TSC methods

- [1] Hua Wei et al. Colight: Learning network-level cooperation for traffic signal control. CIKM 2019.
- [2] Chang Liu et al. Generalight: Improving environment generalization of traffic signal control via meta reinforcement learning. CIKM 2020.
- [3] Yutong Ye et al. Fedlight: Federated reinforcement learning for autonomous multi-intersection traffic signal control. DAC 2021.
- [4] Hua Wei et al. Presslight: Learning max pressure control to coordinate traffic signals in arterial network. SIGKDD 2019.
 - 在复杂交通流条件下,与<mark>环境交互</mark>来自主优化信号策略。
 - 只考虑相位的选择,忽略了相位的持续时间。可能会降低样本效率,导 致收敛缓慢。

> 研究现状

Dynamic duration RL methods

- [1] Xiaorong Hu et al. A traffic light dynamic control algorithm with deep reinforcement learning based on gnn prediction. CoRR abs/2009.14627 (2020).
- [2] Wupan Zhao et al. IPDAlight: Intensity-and phase duration-aware traffic signal control based on reinforcement learning. Journal of Systems Architecture 2022.

• 现有关于动态相位持续时间的RL方法,只分析<mark>车道上的车辆数量</mark>来计算相位的持续时间。

> 提纲

> 算法设计

Preliminaries

Mixed pressure

Monitoring attribute

Preliminaries

Action Non-action Movement Phase Lane Lane $l_1, l_4, l_5,$ SN l_2, l_8 straight l_7 , l_{10} , l_{11} $l_1, l_2, l_4,$ WE l_5, l_{11} straight l_7 , l_8 , l_{10} $l_2, l_4, l_5,$ **SN-left** l_1, l_7 l_8, l_{10}, l_{11} $l_1, l_2, l_5,$ WE-left l_4 , l_{10} l_7 , l_8 , l_{11}

Road Network

Intersection (Signals, Lanes)

Traffic Movement

Pressure

Pressure of Lane^[1]:

车道上的车辆数

Pressure of Movement:

出车道与入车道上的车辆数差

Mixed pressure

Static Pressure:
$$P_s = \sum_{veh \in V_i^s} (1 + \omega \times t_s)$$

Dynamic Pressure:
$$P_d = \sum_{veh \in V_i^d} \frac{1}{v \times \frac{L}{L_{max}} + 1}$$

[1] Presslight: Learning max pressure control to coordinate traffic signals in arterial network. SIGKDD 2019.

> Agent设计

Element	Design							
State	Mixed pressure for each lane: $S_{j} = (P_{m}^{l_{1}^{i}}, P_{m}^{l_{2}^{i}},, P_{m}^{l_{12}^{i}}, -P_{m}^{l_{1}^{o}}, -P_{m}^{l_{2}^{o}},, -P_{m}^{l_{12}^{o}})$							
Action	Choose one of the four Phases							
Reward	$R_j = -\sum_{l^i \in L^{in}} P_m^{l^i}$,进入车道混合压力值和的负数							

 P_m : 车道的混合压力

Lin: 进入交叉口的车道

Lout: 离开交叉口的车道

Monitoring attribute

相位时间固定存在的问题?

(a) A WE-straight phase with vehicles entering the intersection.

(b) A WE-straight phase with no vehicle entering the intersection.

>

Monitoring attribute

相位持续时间选择

Monitoring Attribute:

$$Monitoring_{j} = \frac{\sum_{l_{i} \in l_{act}} P_{d}}{max_{l_{i} \in l_{nac}} P_{s} + \epsilon}$$

 P_s : 车道的静压

 P_d : 车道的动压

lact: 动作车道,允许车辆通行的驶入车道

(右转车道除外)。

 l_{nac} :非行动车道,禁止车辆通行的车道。

Training Framework

> Test Framework

MonitorLight-r

MonitorLight-p

- MonitorLight-r: 相位切换基于实时Monitoring属性。
- MonitorLight-p:无Monitoring属性,基于时间预测模型确定相位时间。

> 提纲

实验设计

> 实验

实验结果

总结

> 实验设计

交通模拟器:

CityFlow

数据集:

- 杭州 4x4 network, 16 intersections
- 济南 3x4 network, 12 intersections
- 四个合成数据集 Syn_1x3, Syn_2x2, Syn_3x3, Syn_4x4

> 实验设计

对比算法:

1) 传统TSC方法:

Fixedtime

SOTL

2) 强化学习方法:

GRL

CoLight

PressLight

3) 动态相位时间的RL方法:

IPDALight

评价指标:

- 平均行驶时间 (ATT): 所有车辆从进入网络到离开网络的平均时间
- 收敛性能 (SEC): 开始收敛时的Episode轮数

> 实验结果

Type		Method	st.	Synthetic	Real-World Datasets			
		Method	Syn_1×3	Syn_2×2	Syn_3×3	Syn_4×4	Jinan	Hangzhou
Traditional		Fixed-Time	384.47	454.01	508.87	565.99	405.91	488.51
		SOTL	247.07	331.64	424.66	474.32	410.65	505.53
RL	Fixed	GRL	208.21	239.13	431.43	523.01	562.91	598.17
		CoLight	210.01	312.29	328.70	397.07	327.65	337.45
		PressLight	98.74	123.90	166.28	215.32	285.65	341.99
	Dynamic	IPDALight	88.01	109.66	146.92	184.54	255.35	298.99
Our		MonitorLight-r	84.03	103.56	136.90	173.56	246.21	292.71
		MonitorLight-p	87.64	109.16	143.44	183.52	251.33	296.79
Improvement over IPDALight 4.5			4.52%	5.56%	6.82%	5.95%	3.58%	2.10%

Performance comparison

- 基于RL的方法优于传统TSC方法
- MonitorLight-r 和 MonitorLight-p 的表现都优于其他Baseline

>实验结果

Method	Syn_2×2			Syn_4×4			Hangzhou		
Method	SEC	JP (s)	APD (s)	SEC	JP (s)	APD (s)	SEC	JP (s)	APD (s)
PressLight-5s	28	542.75	5	66	842.84	5	21	626.31	5
PressLight-10s	56	707.62	10	46	1068.62	10	54	770.15	10
PressLight-15s	58	837.35	15	71	1084.22	15	81	890.19	15
IPDALight	12	279.44	14.96	26	507.38	13.21	7	356.90	7.09
MonitorLight	10	160.48	10.99	9	254.30	11.09	5	316.58	14.35
Improvement	16.67%	42.57%	17	65.38%	49.88%	-	28.57%	11.30%	12

Learning Convergence Rate Comparison

> 总结展望

总结

- 基于Mixed pressure的新Agent定义
- 对于相位持续时间的研究

请指正!

Thank you!