2024 春《过程控制系统》期末考查内容、相应例题及答案

注: 2024 春过程控制系统考试,题型均为综合题,每题分值都很大。基本都能在 PPT 中找到相应例题。下面给出 PPT 上的例题或相关的作业题,并标注出知识点对应的 2024 春课件 PPT 序号。

PPT链接(校内网络下访问):

https://open.osa.moe/openauto/AUTO3007/slides/2024%E6%98%A5%E8%AF%BE%E4%BB%B6

期末考试题目(回忆版)及对应例题

- 一. 模型预测控制的特点(第 18 次课 ppt)
- 二.压力表的选择(类型、测量范围、精度)并简述理由(第 2 次课 ppt)

作业题:

某台空压机的缓冲器,其工作压力范围为 1.0—1.6MPa, 工艺要求在远处观察罐内压力,并要求测量结果的误差不得大于罐内压力的 ±5%. 试选择一块合适的压力表(类型、测量范围、精度等级),并说明其理由. (可供选择的精度有 1.5, 2.0, 2.5; 可供选择的量程有 0-2.0 MPa, 0-2.5 MPa, 0-3.0 MPa)

三. 热电偶 (第 2 次课 ppt、第 3 次课 ppt)

叙述三种热电偶冷端补偿的方法

查表法算温度,并说明查表法的过程使用了哪种原理

PPT 例题:

用 K 型热电偶测量某加热炉的温度。测得的热电势 $E(t,t_0)=36.122 \text{ mV}$,而自由端的温度 $t_0=30 \, \mathbb{C}$,求被测的实际温度。

镍铬—镍硅热电偶分度表(简表) 分度号 K t_n=0℃, E/mV

t/℃	00	10	20	30	40	50	60	70	80	90
0	0.000	0.397	0.798	1.203	1.611	2.022	2.436	2.850	3.266	3.681
100	4.095	4.508	4.919	5.327	5.733	6.137	6.539	6.939	7.338	7.737
200	8.137	8.537	8.938	9.341	9.745	10.151	10.560	10.969	11.381	11.793
300	12.207	12.632	13.039	13.456	13.874	14.292	14.712	15.132	15.552	15.974
400	16.395	16.818	17.241	17.664	18.088	18.513	18.938	19.363	19.788	20.214
500	20.640	21.066	21.493	21.919	22.346	22.772	23.198	23.624	24.050	24.476
600	24.902	25.327	25.751	26.176	26.599	27.022	27.445	27.867	28.288	28.709
700	29.128	29.547	29.965	30.383	30.799	31.214	31.629	32.042	32.455	32.866
800	33.277	33.686	34.095	34.502	34.909	35.314	35.718	36.121	36.524	36.925
900	37.325	37.724	38.122	38.519	38.915	39.310	39.703	40.096	40.488	40.897
1000	41.269	41.657	42.045	42,432	42.817	43.202	43.585	43.968	44.349	44.729
1100	45.108	45.486	45.863	46.238	46.612	46.985	47.356	47.726	48.059	48.462
1200	48.828	49.192	49.555	49.916	50.276	50.633	50.990	51.344	51.697	52.049
1300	52.398									

四.分析转子流量计在流量减少时的过程和平衡条件,并总结工作原理(第5次课 ppt)

五. 机理法建模与测试法建模

简述机理法建模步骤 (第 6 次课 ppt) 由响应曲线对单容自衡过程和非自衡过程建模 (第 7 次课 ppt)

六. 水箱液位建模

分析被控对象和控制对象(第 10 次课 ppt、第 11 次课 ppt) 判断各个环节的正反作用,并简述理由(第 13 次课 ppt) 简述 PID 机理,并概述临界比例法整定参数的过程(第 13 次课 ppt)

七. 流通能力系数 C 的计算

(根据 PPT 例题改编,修改了部分参数。红框内公式最好记一下并注意单位及含义,不记得试卷上有没有提供。)

例 某供暖系统,流过加热盘管的水流量为 $Q=31\text{m}^3/\text{h}$ 热水为 80°C , $P_m-P_r=2.0\times100\text{kPa}$,所装阀门C可以从 28,30,32,34四种中选取,应该选择那种? (配管s=0.5,80°C热水的密度 $\rho=971\text{kg/m}^3$)

八. 复杂控制系统简答

简述串级控制的四个优点 (第 15 次课 ppt) 简述前馈-反馈控制的优点 (第 17 次课 ppt)

九. 大滯后过程的 Smith 预估补偿控制(第 17 次课 ppt 最后部分与第 18 次课 ppt 开头)

给定系统方框图,要求框选广义调节器并计算广义调节器传函。

计算 smith 预测补偿下输出与干扰信号的关系(求传递函数),并分析 smith 预测控制对干扰信号的作用。

十.解耦控制(第18次课ppt)

给定方框图, 计算相对增益矩阵。

判断配对是否正确,若正确,用前馈补偿对其进行解耦,画出框图,并写出各个传函。

对应例题答案

一. 模型预测控制的特点

答:

- 1、简化了建模过程和计算:
- 2、采用了滚动优化策略:
- 3、预测控制算法除一般线性过程外,已推广到有约束条件、大时延、非线性等过程,获取较满意的控制效果;
- 4、鲁棒性好。

二. 压力表的选择(类型、测量范围、精度)并简述理由

(作业题答案)

解:

选择电气式压力表, 测量范围为 0-2.5 MPa, 精度等级为 2.0 级. 理由如下:

由于工艺要求在远处观察罐内压力, 需选择 电气式压力表.

根据工作压力范围, 分别计算测量范围最大值的上限

$$\frac{1.0}{1/3} = 3.0 \,\mathrm{MPa}$$

和下限

$$\frac{1.6}{2/3} = 2.4 \,\mathrm{MPa},$$

故量程可以取 0-2.5 MPa.

绝对误差不得大于

$$1.0 \times (\pm 5\%) = \pm 0.05 \,\text{MPa},$$

从而计算指定量程下应具有的精度至少为

$$\frac{\pm 0.05}{2.5} \times 100\% = \pm 2.0\%.$$

再考虑经济性,则选择精度为 2.0 级.

三. 热电偶

问: 叙述三种热电偶冷端补偿的方法

答: 查表法(计算法)、仪表零点调整法、冰浴法、补偿电桥法、半导体 PN 结补偿法。(任选三种进行叙述,**具体表述见PPT**)

问: 查表法算温度,并说明查表法的过程使用了哪种原理 (例题答案)

解 由分度表可以查得 E (30, 0) =1.203mV 则 E (t, 0) = E (t, 30) + E (30, 0) = 36.122+1.203=37.325mV

再查分度表可以查得37.325mV 对应的温度为900 ℃。

查表法的过程中使用了中间温度定律。

四.分析转子流量计在流量减少时的过程和平衡条件,并总结工作原理

(答案略, 见第5次课 ppt)

五. 机理法建模与测试法建模

- 问: 简述机理法步骤
- 答: 机理法建模的步骤如下:
- 1、根据过程和模型使用目的作出合理假设。
- **2**、根据被控过程内在机理建立数学模型。依据物料、能量的动态平衡关系 以及各种基本定律和方程,得到描述过程动态特性的方程组。
 - 3、简化。如采用忽略次要参数、模型降阶处理等方法。
 - 问:由响应曲线对单容自衡过程和非自衡过程建模

(答案略, 见第7次课 ppt)

六. 水箱液位建模

分析被控对象和控制对象 判断各个环节的正反作用,并简述理由 简述 PID 机理,并概述临界比例法整定参数的过程 (略, PPT 上都有)

七. 流通能力系数 C 的计算

答:

$$C = Q\sqrt{\frac{\rho}{10\Delta P}} = 31 \times \sqrt{\frac{971}{10 \times 2.0 \times 100 \times 0.5}} \approx 30.547$$
,故选择 32。

八. 复杂控制系统简答

问: 简述串级控制的四个优点

(仅供参考,请结合 PPT 内容自行整合)

串级系统特点总结:

- ①对进入副回路的干扰有很强的克服能力;
- ②改善了被控过程的动态特性,提高了系统的工作频率;对进入主回路的干扰控制效果也有改善;
 - ③对负荷或操作条件的变化有一定自适应能力。

串级控制系统相对于单回路控制系统优势:

1. 提高系统的工作频率;

- 2. 改善对负荷变化的适应能力(副回路增益与变送器增益成反比);
- 3. 抗干扰能力;
- 4. 减小控制通道的时间常数。

问: 简述前馈-反馈控制的优点

(需要自行概括理解表达)

复合控制系统具有以下优点:

①由于在前馈系统中增加了反馈控制回路,这就大大简化了原有的前馈控制系统(对每一个干扰要设计一个前馈控制),只需要对主要的且反馈控制不易克服的干扰进行前馈补偿,而其他干扰均可由反馈控制予以校正。既提高了控制速度,又保证了控制精度。

主要干扰是指"可测不可控"的主要扰动。

所谓"可测"是指可通过测量变送器,在线可将扰动转换为前馈补偿器所能接收的信号。"不可控"是指这些扰动不易通过控制回路予以控制。

- ②反馈控制回路的存在,降低了对前馈控制器的精度要求,有利于简化前馈控制器的设计和实现。
- ③在单纯的反馈控制系统中,提高控制精度与系统稳定性是一对矛盾。往往为保证系统的稳定性而无法实现高精度的控制。而前馈——反馈控制系统既可实现高精度控制,又能保证系统稳定运行。

九. 大滯后过程的 Smith 预估补偿控制(第 17 次课 ppt 最后部分与第 18 次课 ppt 开头)

给定系统方框图,要求框选广义调节器并计算广义调节器传函。

计算 smith 预测补偿下输出与干扰信号的关系(求传递函数),并分析 smith 预测控制对干扰信号的作用。

(答案略, 见相应 ppt)

十. 解耦控制 (第 18 次课 ppt)

给定方框图, 计算相对增益矩阵。

判断配对是否正确,若正确,用前馈补偿对其进行解耦,画出框图,并写出各个传函。

(答案略,见相应 ppt)