תרגול מאקרו א' - צמיחה ב'

מתן לבינטוב

אוניברסיטת בן גוריון בנגב

נושאים

אופטימום חברתי

שיפורים טכנולוגיים

מסקנות חשובות בפונקציית קוב דאגלס

מתן לבינטוב

אופטימום חברתי

הגדרה

לפי הגדרה, אופטימום חברתי הינו מצב יציב, כלומר State Steady שבו רמת החיים במודל שלנו היא הצריכה לעובד היא מקסימלית.

קיימים 3 תנאים שמתקיימים באופטימום חברתי ונדרש לבדוק רק אחד מהם :

- הקו לשיפוע של פנקודה שווה לשיפוע על הקו אל לשיפוע, $MPK^{GR}=n+d$ שחיקת החון
 - שיעור החיסכון שווה לחזקה של החון בפונקציית היצור s=lpha
 - כלומר הריבית שווה לשיעור הריבוי r=n

אופטימום חברתי

חיסכון חסר

$$sMPK^{GR}\implies r>n$$
 פיתרון הינו הגדלת החיסכון על ידי צמצום פיסקלי או העלת מיסים
$$G\downarrow/T\uparrow\implies s\uparrow\implies k\uparrow\implies MPK\downarrow\implies r\downarrow$$

חיסכון יתר

$$s>lpha\implies k>k^{GR}\implies MPK < MPK^{GR}\implies r< n$$
הפיתרון הינו צמצום החיסכון על ידי הורדת מיסים או הרחבה פיסקלית
$$G\uparrow/T\downarrow\implies s\downarrow\implies k\downarrow\implies MPK\uparrow\implies r\uparrow$$

שיפורים טכנולוגיים

מודל העובד המתייעל

קיים מקדם יעילות E שמסמן את יעילות כוח העבודה L, נניח שמקדם היעילות צומח בקצב קבוע g לכן פונקציית היצור החדשה נראת כך :

$$Y = AK^{\alpha} (EL)^{1-\alpha}$$

Lלכן נעבור מלדבר על עובדים לעובדים יעילים, כלומר במקום לחלק ב לכן נעבור EL נחלק ב

$$\tilde{y} = A\tilde{k}^{\alpha}$$

: מושגים

$$\frac{Y}{LE} = \frac{y}{E} = \tilde{y}$$
 תוצר לעובד אפקטיבי •

$$rac{K}{LE}=rac{k}{E}= ilde{k}$$
 הון לעובד אפקטיבי •

שיפורים טכנולוגיים

SS - שיעור השינוי

$$\begin{split} \widehat{\hat{y}} &= \widehat{\hat{k}} = 0 \\ \widehat{k} &= \widehat{y} = \widehat{(\widehat{y}\widehat{E})} = \widehat{\hat{y}} + \widehat{E} = 0 + g = g \\ \widehat{K} &= \widehat{Y} = \widehat{(\widehat{y}\widehat{L}\widehat{E})} = \widehat{\hat{y}} + \widehat{L} + \widehat{E} = 0 + n + g = n + g \end{split}$$

מכך שמשוואת התנועה החדשה היא:

$$\dot{\tilde{k}} = s\tilde{y} - (n+d+g)\tilde{k}$$

: הוא $ilde{k_{ss}}$ ו

$$\tilde{k}_{ss} = \left[\frac{sA}{n+d+g}\right]^{\frac{1}{1-\alpha}}$$

מתו לבינטוב

מסקנות חשובות בפונקציית קוב דאגלס

: במצב עמיד הריבית הריאלית קבועה

$$r = mpk - d = A\alpha \tilde{k}^{\alpha - 1} - d$$

g לעומת המודל המקורי, במקרה הזה, השכר צומח בקצב

$$\frac{W}{P} = MPL = (1 - \alpha) \cdot y$$

• התמורה היחסית של כל גורם יצור קבועה לאורך הזמן (זה נכון בכללי עם קוב דאגלס ולא ספציפית בגלל העובד המתייעל) :

$$S_k = \frac{MPK \cdot K}{Y} = \frac{A\alpha K^{\alpha - 1}L^{1 - \alpha}K}{AK^{\alpha}L^{1 - \alpha}} = \alpha$$

$$S_L = \frac{MPL * L}{Y} = \frac{A(1-\alpha)K^{\alpha}L^{-\alpha}L}{AK^{\alpha}L^{1-\alpha}} = 1 - \alpha$$

יחס הון תוצר קבוע לאורך זמן (בS.S במידה ושום דבר לא משתנה): •

$$\frac{K}{Y} = \frac{\tilde{k}}{\tilde{y}} = \frac{s}{n+d+g}$$

מתו לבינטוב