Feature Representation by Convolution

A convolutional layer is not fully connected, but has a narrowed down receptive field (e.g. 3x3).

The parameters of each filter are spatially shared: A feature that is useful in one place, ought to be useful in another, too.

Downsampling
Upsampling
Parameter sharing

• Depth: number of filters

• Stride: filter step size (when we "slide" it)

• Padding: zero-pad the input

https://selfdrivingcars.mit.edu/

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

Zero-Padding is adding zero-valued pixel to the image border (gray area).

Downsampling
Upsampling
Parameter sharing

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

0	0	-1	
-1	0	0	
-1	-1	-1	Filte
0	Bias		

-4	-4	0	
-3	-4	-3	
0	-3	-1	Output

Zero-padded image

Downsampling
Upsampling
Parameter sharing

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

0	0	-1		
-1	0	0		
-1	-1	-1	Filter	
0	Bias			

	-4	-4	0	
	-3	-4	-3	
	0	-3	-1	Output
,				

Downsampling
Upsampling
Parameter sharing

Amount of filters or convolution depth: 1
Filter step size or Stride: 2
Zero-padded image

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

Downsampling
Upsampling
Parameter sharing

Review edge detector:

Similar idea, now the parameters of the filters are learned. We want a lot of filters!

$$L_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}\! L \quad ext{and} \quad L_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}\! L.$$

Lena Test image

Lena, the 'hello world!' of image processing. 330x330

Cover photo of 1972 Playboy magazine of the Swedish model Lena Söderberg.

Since then Lena was a guest at several IEEE conferences. The image also sparked discussions on gender-equality in the male-dominated field of engineering.

It is a good test image because of its detail, flat regions, shading, and texture.

https://en.wikipedia.org/wiki/Lenna

Introduction – Conventional segmentation approaches

Thresholding

Edge detection

Segment boundaries and edges are closely related.

Since there is often a large gradient at the segment boundaries.

Canny Edge Detection

$$L_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}\! L \quad ext{and} \quad L_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}\! L.$$

Clustering

Region growing

Sobel Operators for Edge Detection

Feature Representation by Convolution

0	0	0	0	0	0	0
0	1	2	0	0	0	0
0	2	2	0	0	0	0
0	2	2	2	1	0	0
0	1	0	0	2	0	0
0	1	1	0	1	0	0
0	0	0	0	0	0	0

Downsampling
Upsampling
Parameter sharing

Review edge detector:

Similar idea, now the parameters of the filters are learned. And we want to go deep!

Neural Network Segmentation - Optimization

Last layer

Last Layer results in a tensor with H x W image resolution and a depth of C: Number of classes to segment.

The last layer should encode the values into a range of values of (0;1). Either by softmax or sigmoid function.

http://cs231n.github.io/

Cross-entropy
Dice-coefficient

Neural Network Activation Functions - Review

Sigmoid

Binary classification only.

The probability sum does not need to be one.

$$f(z) = 1 - \frac{1}{1 + e^{-x}}$$
$$f'(z) = (1 - f(z))f(z)$$

http://cs231n.github.io/neural-networks-1/

Neural Network Activation Functions - Review

Softmax

Normalized exponential function

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{i=1}^K e^{z_j}}$$

Used for multi-class segmentation.

Probability sum will be 1.

oefore	after
2.0	0.7
1.0	0.2
0.1	0.1