

TEORÍA DE ERRORES

fuents

* REDONDEU (\(\frac{1}{17}\)^2 of the porter nedondes de la compu

anomul see fue your STUBBBHUI \$

★ TRUNCAMIENTO dis cretización o aproximación (cuando des cortamos)

Enro

cota:
$$|e_{rx}| = \frac{\Delta x}{\overline{x}}$$

$$\Delta x = 0.01.00^{-t}$$

sin importar la coto de enor, lo mayoramo a 1 digeto

Ejemplo:

$$\Delta x = 0.0033 < 0.004$$
 (may vamo)

$$\Rightarrow \Delta x < 0.006$$

significations

(3)
$$\bar{x}_z 123.123$$
, $4x_z 0.005$ (ye esté mayrado)

$$4$$
 \sqrt{x} = 188.141 $\Rightarrow x = 188 \pm 3$ $\Delta x = 2.18 < 3$

(5
$$\bar{x}$$
 = 211117
 $\Delta x = 611 < 200$ (1 solo digito $\neq 0$)

 $\Delta x = 611 < 200$ (1 solo digito $\neq 0$)

Propagación

$$3 = \int (x, y, z, \dots, z) \qquad \text{perhabotions}$$

$$43 = \int (x, y, z, \dots, z) \qquad \text{perhabotions}$$

harenos un aprox. luist: aproxmación Taylor

Imago:
$$\Delta S = \sum_{i=0}^{\infty} \left| \frac{dx}{dx^{i}} \right| \nabla x^{i} + \left| \frac{dy}{dx^{i}} \right| \nabla x^{i} + \dots$$

Ejncicios (guía)

$$w = xy^2$$
 tror absolute, w , cuais is le variable qui més $\frac{3}{3}$ tror aporte $w = \overline{w} \pm \Delta w$

$$x = 2.0 \pm 0.1$$

$$y = 3.0 \pm 0.2$$

$$z = 1.0 \pm 0.1$$

$$\overline{W} = \frac{\overline{x} + \overline{y}^2}{\overline{z}} = \frac{2.0.30^2}{1.0} = 18.0$$

$$\frac{\partial w}{\partial w} = \frac{\hat{\Gamma}}{\hat{\Gamma}} \left| \frac{\partial w}{\partial x_i} \right| \cdot \Delta x_i = \left| \frac{\partial w}{\partial x} \right|_{\frac{x}{3}}^{\frac{x}{3}} \Delta x + \left| \frac{\partial w}{\partial y} \right|_{\frac{x}{3}}^{\frac{x}{3}} \Delta y + \left| \frac{\partial w}{\partial z} \right|_{\frac{x}{3}}^{\frac{x}{3}} \Delta y$$

$$= \left| \frac{\bar{y}^2}{\bar{3}} \right| \Delta x + \left| \frac{2\bar{x}\bar{y}}{\bar{3}} \right| \Delta y + \left| -\frac{\bar{x}\bar{y}^2}{\bar{3}^2} \right| \Delta z$$

Representación de Punto Flotonte

Números de Maguina

$$\mathcal{J} = \{ m : m = (-1)^5, c.2^{\frac{q}{2}} \}$$
 cuanto està corrido signo mantisa la coma $b \in \{0,1\}$, $C = 1.6, b_2 b_3 ... b_p$, $E_{min} \leq q \leq E_{max}$ $b \in \{0,1\}$ $-126 \leq q \leq 127$

No se puede representor es o → cuanto més cerca estay au o, més valores puedo representor.

-1022 < q < 1023

· Hay valores que mo se pueden representor, por lo cuol la computadora tien que tornor decisione y a veces los resultados mo son los que esperamos.

formatos

Tipo	signo	mantisa	exponente	total	Emin	Emax	Bits prec	dig sign
Half	1	10	5	16	-14	+15	11	3.3
Single	1	23	8	32	-126	+127	24	7.2
Double	1	52	11	64	-1022	+1023	53	15.9

Anitmético de Punto flotonte

cade operación trabajo el abble de precisión y se almarens el neultado redondeándolo e un mimero ou máquimo.

Ejimplo:

$$\chi^2 + \omega^8 + 1 \rightarrow \chi_1 = \frac{-2c}{b + \sqrt{b^2 - 4ac}} \wedge \chi_2 = \frac{-2c}{b - \sqrt{b^2 - 4ac}}$$

cuando epuacios con mimeros muy distantes lo casculados tomo as mó cuico como dispresiable y fallo

le cos culadore outrenée verificer «i es diviser es mucho moi grands que es dividendo pora maluer bajo qui algoritmo realizar es cálculo.

EJERCICIO PARCIAL

 El calor que recibe un cuerpo cuando pasa del estado sólido al estado líquido se calcula como:

$$Q = m * L$$

Siendo m la masa de sustancia que cambia de estado y L el calor latente de fusión. Si se sabe que el calor necesario para fundir una masa m de aluminio es 500 J con un error relativo porcentual del 2 % y el calor latente de fusión del aluminio es:

$$L = (3.97 * 10^5 \pm 0.01 * 10^5)$$
 J/kg

- (a) Estimar la masa de aluminio fundida con su cota de error absoluto. Expresar m = $\overline{m} \pm \Delta m$.
- (b) Estimar el error relativo porcentual de la masa.

$$\mathcal{L}(\omega \pm 0.05)$$

$$\Delta m = \Gamma \left(\left| \frac{\partial L m}{\partial x_i} \right|_{\frac{\overline{m}}{\overline{Q}}}^{\Delta x_i} \right) = \left| \frac{1}{\overline{L}} \right| \Delta Q + \left| -\frac{\overline{Q}}{\overline{L}^2} \right| \Delta L$$

$$= \left| \frac{1}{3.97.005} \right| \cdot \omega + \left| \frac{-500}{(3.97.005)^2} \right| \cdot (0.001.005) = 0.0000284 \log 1$$

$$\overline{M} = \frac{\overline{0}}{\overline{L}} = \frac{500 \text{ J}}{\frac{3}{4} \cdot 10^{5}} = \frac{500 \text{ J}}{\frac{3}{4}} = \frac{500 \text{ J}}{\frac{3}} = \frac{500 \text{ J}$$

onier, se ser au aug comarguem « ¿ aco, o

0,0003 - 5 citus significations y dejamos m como tel:

m = (0,00126 ± 0,00003) la

pour la cálcula usamo lo mayor cartidos de dui mals que polus

$$l_{\text{fm}} = \frac{m_{-m}}{m} \cdot \omega_0 = \frac{l_{\text{abs} m}}{m} \cdot \omega_0 = \frac{0.0002836...}{0.001259445..}$$

→ erm = 2,4%.