PLSC 503 - Spring 2020Introduction + Regression, Conceptually

January 14, 2020

"Multivariate Analysis for Political Research"

- "Regression" course
- Texts: Weisberg (2013) plus some readings
- Course materials: https://github.com/PrisonRodeo/PLSC503-2020-git
- Preceptor: Taegyoon Kim
- Software: R > Stata > Others
- Grading: Ten homework assignments (@ 50 points), plus a final project (500 points)

Things We Will And Won't Do

Will: "Regression":

$$Y = f(\mathbf{X})$$

Won't: Multivariate regression:

$$\mathbf{Y} = f(\mathbf{X})$$

Won't: Measurement (e.g. PCA, factor analysis, etc.):

$$\mathbf{Y} = \mathbf{W}^{\mathrm{T}}\mathbf{X}$$

Won't: Classification:

- Cluster Analysis
- ullet Classification and Regression Trees o Random Forests.
- Pattern Recognition
- Machine Learning, Support Vector Machines, etc.

Regression

"Regression," conceptually:

$$Pr(Y|X) = f(X)$$

Two important things:

- The distribution of Y is conditional on all variables in X, and
- The conditional distribution of Y is conditional on the joint distribution of the elements of X.
- \rightarrow Regression is <u>hard</u>...

Figure: Infant Mortality and Life Expectancy

Figure: Infant Mortality and Life Expectancy: "Residuals"

Figure: Infant Mortality and Fertility

Figure: Infant Mortality and Wealth

Figure: (Logged) Infant Mortality and (Logged) Wealth

Figure: Infant Mortality and Democracy

Figure: Infant Mortality, (Dichotomized) Wealth, and Democracy

Figure: Measurement: National Health Indicators

Figure: Measurement: National Health Indicators, Plus Additive Index

Why regression?

	Description	Explanation	Prediction
Task	Summarize data	Correlation/causation	Forecast OOS / future data
Emphasis	Data	Theory / Hypotheses	Outcomes
Focus	Univariate	Multivariate	Multivariate
Typical Application	Summarize / "reduce" data	Discuss marginal associations between predictors and an outcome of interest	Optimize out-of- sample predictive power / minimize prediction error