4. Markov Chains

Markov chain: A discrete-time stochastic process $\{X_1, X_2, ...\}$ if for all $n=1,2,\cdots$,

$$\mathbb{P}[X_{n+1} = x_{n+1} | X_n = x_n, .., X_1 = x_1] = \mathbb{P}[X_{n+1} = x_{n+1} | X_n = x_n]$$

for all $x^{n+1} \in \mathcal{X}^{n+1}$.

ullet A Markov chain is time invariant if the conditional probability $p(x_{n+1}|x_n)$ does not depend on n

$$\mathbb{P}[X_{n+1} = b | X_n = a] = \mathbb{P}[X_2 = b | X_1 = a]$$

- A time invariant Markov Chain with $\mathcal{X}=\{1,2,...,M\}$ is characterized by an M imes M probability transition matrix P where

$$P_{i,j} = \mathbb{P}[X_{n+1} = j | X_n = i] \qquad i,j \in \{1,2,..,M\}$$

The vector of probabilities at time n is denote by

$$\mu_n=(\mathbb{P}[X_n=1],\mathbb{P}[X_n=2],...,\mathbb{P}[X_n=M])$$

and is updated according to

$$\mu_{n+1} = \mu_n P$$

A time-invariant Markov process is completely specified by three items:

- 1. the set of all states \mathcal{X}
- 2. the $|\mathcal{X}| imes |\mathcal{X}|$ transition probability matrix P
- 3. the starting distribution μ_1 .

A distribution μ is a **stationary distribution** of a time-invariant Markov process if

$$\mu = \mu P$$

Theorem: Consider a time-invariant Markov process that is irreducible and aperiodic. Then

- 1. The stationary distribution μ is unique
- 2. Independently of the starting distribution μ_1 , the distribution μ_n will converge to the stationary distribution as μ as $n \to \infty$.
- 3. The Markov process is stationary if, and only if, the starting distribution μ_1 is chosen to be the steady state distribution.

Theorem: For a stationary time-invariant Markov process. the entropy rate is given by

$$H(\mathcal{X}) = H(X_2|X_1)$$

where the conditional entropy is calculated using the stationary distribution.