

UNIVERSIDADE FEDERAL DE VIÇOSA / DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELT 310 - ELETRÔNICA I

PROFESSORA KÉTIA SOARES MOREIRA

Nome: Matrícula: Turma:			
	Nome:	Matrícula:	Turma:

ROTEIRO DE AULA PRÁTICA 9

O TRANSISTOR BIPOLAR NA AMPLIFICAÇÃO DE PEQUENOS SINAIS-CONFIGURAÇÃO SEGUIDOR DE EMISSOR- SIMULAÇÃO

OBJETIVOS:

- Verificar a capacidade de amplificação de um estágio em coletor comum;
- Compreender a utilização do teorema da superposição para análise de um amplificador transistorizado;

MATERIAL UTILIZADO:

1 resistor de 100 k Ω , 2 resistores de 560 Ω , 2 capacitores de 1 μ F, 1 transistor BC547, 1 resistor de 10 k Ω e 1 resistor de 1 k Ω .

PARTE TEORICA:

MEDIÇÃO DO GANHO DE CORRENTE E CALCULOS

a) Com o valor obtido de β (h_{fe}) retirado do datasheet, calcular i_B, i_C, i_E,V_B,V_C,V_{CE e} V_{BE} e preencher as demais colunas da tabela 1;

Tabela 1:

Transistor utilizado:	$i_B(\mu A)$	i _C (mA)	i _E (mA)	$V_{B}(v)$	$V_{C}(v)$	V _{CE} (v)
β=						

- c) Efetuar os cálculos dos parâmetros do amplificador Z i, Z o, Av e Ai;
- d) Desenhe o circuito equivalente (modelo re).
- e) Considerando RS= 560Ω (resistor entre o gerador de sinais e o capacitor) e RL= $1k\Omega$ (resistor em paralelo com RE após o capacitor), recalcule: Z_i , Z_o , A_v , A_{vS} e A_i .

PARTE PRÁTICA: Medições das principais tensões e correntes. Verificação dos parâmetros do amplificador e das formas de onda alternadas.

a) Montar o circuito da fig. 1 sem conectar a fonte de tensão senoidal e os capacitores ao circuito, como mostrado na Figura 2. Medir os parâmetros relativos ao ponto quiescente e anotar na tab.2.

Tabela 2:

i _b (μA)	i _c (mA)	i _e (mA)	V_{RB}	V_{RE}	V _b (v)	V _c (v)	V _{ce} (v)

b) Conectar ao circuito a uma fonte ou gerador de sinais (Sinal senoidal, V_{SPP}=2V e f=5kHz) e medir os valores de pico-a-pico das tensões V_S, V_i, V_E e V_O. Calcular o ganho de tensão A_{VNL}.

Figura 1 Figura 2

Tabela 3:

$V_{SPP}(V)$	$V_{ipp}(V)$	$V_{epp}(V)$	$V_{opp}(V)$

- c) Desenhar as formas de ondas de V_S, Vi, V_E e V_O. Medir e desenhar com a componente continua (circuito físico acoplamento CC dos canais 1 e 2 do osciloscópio habilitados).
- d) Qual é a componente contínua presente no emissor?
- e) Os sinais de VS e VO estão em fase? Explique:
- f) Compare com os valores teóricos e práticos.
- g) Conectar ao circuito RS=560 Ω (resistor entre o gerador de sinais e o capacitor) e RL= 1k Ω (resistor em paralelo com RE após o capacitor) e medir os valores de pico-a-pico das tensões V_S , V_i e V_O . Calcular os ganhos de tensão A_V e A_{VS} .

Desenhar as formas de ondas de V_S, Vi, V_E e V_O. Desenhar com a componente continua.

h) Compare com os valores teóricos e práticos. O que aconteceu com o ganho de tensão? Por quê? Coloque os resultados da simulação:

Esquema elétrico.

Diagramas nos principais pontos. Explique detalhadamente os resultados da simulação e seus valores. Conclua seus resultados e observações.

i) Montar o circuito da figura abaixo (sem conectar a fonte de tensão senoidal e os capacitores ao circuito). Medir os parâmetros relativos ao ponto quiescente e anotar na tab.4.

Tabela 4:

i _{b1} (μA)	i _{c2} (mA)	i _{e1} (mA)	V_{RB1}	V_{RB2}	V _{b1} (v)	V _{c1} (v)	V _{ce1} (v)

V_{RB3}	V_{RE}	V _{b2} (v)	V _{c2} (v)	V _{ce2} (v)

j) Conectar ao circuito a uma fonte ou gerador de sinais (Sinal senoidal, Vi1_{PP}=20mV e f=1kHz) e medir os valores de pico-a-pico das tensões Vo1 e Vo2. Calcular o ganho de tensão A_{VNL}.

- k) Desenhar as formas de ondas de Vi1, Vo1 e V₀₂. Desenhar com a componente continua (circuito físico acoplamento CC dos canais 1 e 2 do osciloscópio habilitados).
- 1) Qual é a componente contínua presente no coletor de Q2?
- m) Os sinais de Vi e VO estão em fase? Explique:
- n) Compare com os valores teóricos e práticos. . O que aconteceu com o ganho de tensão? Por quê? Coloque os resultados da simulação:

Esquema elétrico.

Diagramas nos principais pontos. Explique detalhadamente os resultados da simulação e seus valores. Conclua seus resultados e observações.