



### UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

# Facultad de Ingeniería Mecánica y Eléctrica PE Doctorado en Ingeniería de Sistemas

### PROGRAMA ANALÍTICO

| I | . Datos | de | Identificación | i de la | Unidad | de | Aprendiza | ıje: |
|---|---------|----|----------------|---------|--------|----|-----------|------|
|   |         |    |                |         |        |    |           |      |

1. Nombre: Simulación de sistemas

2. Frecuencia semanal: horas de trabajo presencial 4

3. Horas de trabajo extra aula por semana: 2

**4. Modalidad:** ⊠ Escolarizada □ No escolarizada □ Mixto

5. Período académico: ⊠ Semestral □ Tetramestral □ Modular

6. LGAC: Sistemas estocásticos y simulación

7. Ubicación semestral: 1-8

8. Área curricular: formación, libre elección

9. Créditos: 4

10. Requisito: Ninguno

11. Fecha de elaboración: 20/01/2010

12. Fecha de la última actualización: 10/06/2021

13. Responsable(s) del diseño:

100546 Dra. Sara Verónica Sánchez Rodríguez

096633 Dra. Satu Elisa Schaeffer

Revisión: 1 Vigente a partir del: 01 de agosto del 2016





### II. Presentación:

Simulación refiere a la reproducción (computacional) de fenómenos y procesos del mundo real. Típicamente involucra primero el modelado de dicho proceso o fenómeno a través de experimentos estadísticos. Después la reproducción involucra la generación pseudo-aleatoria para crear los modelos en el ambiente simulado. Sus aplicaciones son numerosas en temas científicos, industriales, de construcción, de la salud, evacuaciones, etcétera. Las epidemias son particularmente interesantes de estudiar con simulaciones. El análisis de elemento finito (FEM) para aspectos estructurales es muy parecido a la simulación; se extrapola el comportamiento de una entidad a través de un modelo que lo parte a una cantidad discreta de elementos pequeños de comportamiento ya modelado. La simulación también está presente en el entretenimiento (películas y videojuegos) en la creación de ambientes virtuales y efectos.

En la unidad de aprendizaje se realizan actividades de aprendizaje que permiten la paralelización de algunas tareas fundamentales de simulación, desde más sencillos hasta más complejos, para que el participante pueda en sus trabajos futuros identificar oportunidades de paralelización y dominar las técnicas básicas de llevarlo a cabo con elegancia y eficiencia. Se implementan diversas simulaciones computacionales para generar y analizar información de distintos tipos.

### III. Propósito(s):

Formación de competencia profesional de nivel posgrado que permita el participante identificar de fenómenos que se pueda estudiar vía la simulación computacional, proponer modelos matemáticos que capturen dichos fenómenos a un nivel adecuado, implementar simulaciones computacionales de estos modelos, además de diseñar, ejecutar y analizar experimentos computacionales que adecuadamente capturan la precisión de dichos simulaciones y permiten conclusiones estadísticamente válidas sobre el fenómeno en cuestión. Además se incluye de forma integral la preparación de competencias en la visualización de la información científica y la redacción científica.

Revisión: 1 Página 2 de 9





# IV. Competencias del perfil de egreso:

- **14. Competencias del perfil de egreso** P1) Realizar investigación original y resolver problemas en el área de toma de decisiones en ambientes operativos que pueden ser dinámicos o inciertos para lograr una asignación más efectiva de recursos y decidir el curso de acción óptimo para lograr objetivos establecidos.
- **15. Competencias generales a que se vincula la Unidad de Aprendizaje:** La unidad se vincula con las siguientes competencias generales:

| Declaración de la competencia general vinculada a la unidad de aprendizaje                                                                                                                                                                                                                                                                         | Evidencia        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| C2) Utiliza los lenguajes lógico, formal, matemático, icónico, verbal y no verbal de acuerdo a su etapa de vida en el área de las ciencias para comprender, interpretar y expresar ideas, sentimientos, teorías y corrientes de pensamiento con un enfoque ecuménico.                                                                              | Tareas           |
| C3) Maneja las tecnologías de la información de acuerdo a los usos del campo de las ciencias y la comunicación como herramientas para el acceso a la información y su transformación en conocimiento, así como para el aprendizaje y trabajo colaborativo con técnicas de vanguardia que le permitan su participación constructiva en la sociedad. | Tareas           |
| C5) Emplea pensamiento lógico, crítico, creativo y propositivo, siguiendo los modelos de pensamiento científico para analizar fenómenos naturales y sociales que le permitan tomar decisiones pertinentes en su ámbito de influencia con responsabilidad social.                                                                                   | Tareas           |
| C10) Practica los valores promovidos por la UANL: verdad, equidad, honestidad, libertad, solidaridad, respeto a la vida y a los demás, respeto a la naturaleza, integridad, ética profesional, justicia y responsabilidad, en su ámbito personal y profesional para contribuir a construir una sociedad sostenible.                                | Tareas, proyecto |
| C15) Logra la adaptabilidad que requieren los ambientes sociales y profesionales de incertidumbre de nuestra época para crear mejores condiciones de vida utilizando todos los avances científicos a los cuales ha tenido acceso                                                                                                                   | Tareas, proyecto |

Revisión: 1 Página 3 de 9





**16.** Competencias específicas y nivel de dominio a que se vincula la unidad de aprendizaje: La unidad se vincula con las siguientes competencias específicas:

| Competencia Especí-<br>fica              | Nivel I Inicial                        | Evidencia | Nivel II Básico       | Evidencia | Nivel III Autónomo | Evidencia | Nivel IV Estratégico | Evidencia |
|------------------------------------------|----------------------------------------|-----------|-----------------------|-----------|--------------------|-----------|----------------------|-----------|
| E2) Resolver problemas concretos en sis- | Interpreta y apli-<br>ca correctamente | Tareas.   | Resuelve<br>problemas | Tareas.   |                    |           |                      |           |
| temas de la industria,                   | los principios de                      |           | de libro de           |           |                    |           |                      |           |
| la academia o el sec-                    | la toma de deci-                       |           | texto en el           |           |                    |           |                      |           |
| tor público en base                      | siones con bases                       |           | área de toma          |           |                    |           |                      |           |
| a las herramientas de                    | científicas en sis-                    |           | de decisiones         |           |                    |           |                      |           |
| la toma de decisiones                    | temas determinís-                      |           | con bases             |           |                    |           |                      |           |
| con bases científicas                    | ticos o estocásti-                     |           | científicas.          |           |                    |           |                      |           |
| para lograr el mejor                     | cos.                                   |           |                       |           |                    |           |                      |           |
| diseño, análisis, pla-                   |                                        |           |                       |           |                    |           |                      |           |
| neación o gestión de dichos sistemas.    |                                        |           |                       |           |                    |           |                      |           |

Página 5 de 9





# V. Representación gráfica:



Revisión: 1





# VI. Estructuración en capítulos, etapas o fases de la unidad de aprendizaje:

17. Desarrollo de las fases de la Unidad de Aprendizaje: Se cubren los principios teóricos de la simulación computacional. Se busca desarrollar habilidades en la resolución en casos prácticos concretos. Se necesita contar con un buen entendimiento de variosconceptos matemáticos, especialmente de matemáticas discretas y probabilidad, o en el caso contrario, estar preparado a estudiarlos según necesidad. También es conveniente contar con conocimiento de programación.

Al inicio hay una fase introductoria breve, seguida por la fase de tareas en la cual se aprenden las técnicas, y concluyendo al final con la tercera fase del desarrollo del proyecto individual para aplicar las técnicas aprendidas a un problema particular. La sesiones son de cuatro horas cada una y son veinte semanas en total.

- 1. Introducción (2 semanas); selección de temas de proyecto
- 2. Movimiento Browniano (A1)
- 3. Autómata celular (A2)
- 4. Teoría de colas (A3)
- 5. Diagramas de Voronoi (A4)
- 6. Método Monte-Carlo (A5)
- 7. Sistema multiagente (A6)
- 8. Búsqueda local (A7)
- 9. Modelo de urnas (A8)
- 10. Interacciones entre partículas (A9)
- 11. Algoritmo genético (A10)
- 12. Frentes de Pareto (A11)
- 13. Red neuronal (A12)
- 14. Desarrollo de proyectos (4 semanas)
- 15. Presentaciones de proyectos
- 16. Revisión de portafolios de evidencia

### Elementos de competencia:

| Evidencias de                                                                  | Criterios de desem-                                                                                                                                                                                           | Actividades de                                                                                                                                                          | Contenidos                                                | Recursos                                                                                                                                             |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| aprendizaje                                                                    | peño                                                                                                                                                                                                          | aprendizaje                                                                                                                                                             |                                                           |                                                                                                                                                      |
| Reporte escrito y código de la implementación de una simulación computacional. | Calidad de la redac-<br>ción científica del re-<br>porte; precisión de la<br>simulación desarro-<br>llada; eficiencia de la<br>implementación de<br>la simulación; cober-<br>tura de la experi-<br>mentación. | Experimentación con ejemplos; lectura de material de apoyo; modificación de ejemplos; diseño y ejecución de experimentos; análisis y reportaje de resultados obtenidos. | Métodos diversos de simulación computacional de sistemas. | Material en la página web de la unidad y la literatura citada; lenguaje R o Python; paquete LATEX para redacción científica; repositorios de GitHub. |
|                                                                                |                                                                                                                                                                                                               | obtenidos.                                                                                                                                                              |                                                           |                                                                                                                                                      |

Revisión: 1 Página 6 de 9





# VII. Evaluación integral de procesos y productos:

Las tareas son individuales; se recomienda estudiar juntos y discutir las soluciones, pero no se tolera ningún tipo de plagio en absoluto, ni de otros estudiantes ni de la red ni de libros — toda referencia bibliográfica tiene que ser apropiadamente citada. La entrega se realiza por un repositorio en GitHub que debe reflejar todas las fases del trabajo en su log correspondiente. El alumno selecciona su lenguaje de programación para cada tarea. Son 12 tareas (A1–A12) que reportan avances semanales de aplicación de la lectura de la semana para el proyecto del estudiante, otorgando por máximo 6 puntos por tarea más dos puntos por dos reto adicionales asociadas a ella:

NP = tarea omitida

 $\mathbf{6}$  = cumple con lo que se esperaba

5 = cumple con que se esperaba con errores menores

4 = cumple con lo que se esperaba con algunas omisiones

3 = débil en alcance y/o calidad

2 = débil en ambos alcance y calidad

 $1 = \sin$  contribuciones o méritos aunque fue entregada

 $\mathbf{0} = \mathsf{completamente}$  inadecuado en alzance y calidad

El proyecto final (A13) otorga un máximo de 30 puntos, evaluados en los siguientes rubros:

- 1. Complejidad del problema problemas retadores se califican más generosamente que problemas sencillos.
- 2. Fidelidad de la simulación la incorporación exitosa de múltiples aspectos del fenómeno estudiado dentro de la simulación otorga una mayor cantidad de puntos que modelos simplificados o poco realistas.
- 3. Visualización de la información el uso de métodos diversos e informativos para graficar los datos (ambos los originales y los generados por la simulación, igual como datos de desempeño de la misma simulación) es premiado en la calificación.
- 4. Análisis estadístico (recomendado)— aplicación de métodos rigurosos de examinación estadística, su selección adecuada y su interpretación correcta otorgan más puntos que el mero uso de medidas triviales o la ausencia total de análisis estadístico formal.
- 5. Grado y utilidad de paralelismo (opcional) la eficiente paralelización de todo lo que se pueda paralelizar sin pérdida de eficiencia es altamente deseable; también se aprecian comparasiones de desempeño entre versiones con y sin paralelismo igual como el efecto del número de núcleos disponibles.
- 6. Claridad y calidad de la redacción ortografía, gramática, puntuación, posicionamiento y formato de ecuaciones, cuadros y figuras, estructuración de frases, párrafos, secciones, organización de la discusión, igual como el formato y la extensión de la bibliografía entran en juego al calificar la calidad de un manuscrito.

con la escala:

NP = tarea omitida

5 =excede lo que se esperaba

4 = cumple con lo que se esperaba

3 = débil en alcance y/o calidad

2 = débil en ambos alcance y calidad

 $1 = \sin$  contribuciones o méritos aunque fue entregada

0 = completamente inadecuado en alzance y calidad

Revisión: 1 Página 7 de 9





Cada práctica contiene una tarea que se califica en una escala de 0 a 10. La versión básica de la tarea puede otorgar hasta seis puntos; hay dos retos opcionales para subir la calificación hasta ocho (un reto cumplido — cumplimiento parcial permite subir hasta siete) o diez (ambos retos cumplidos — cumplimiento parcial permite subir hasta nueve) según la cantidad de retos cumplidos. En algunas tareas el segundo reto depende del primero, mientras en otras se pueden llevar a cabo de manera independiente. Los puntos obtenidos de las tareas se suman directamente con los puntos obtenidos del proyecto (máximo 30) para formar la calificación final de la siguiente manera: C es el mínimo entre T+P y 100, donde T es la suma de los puntos de las tareas y P es el puntaje del proyecto. Calificaciones  $C \geq 80$  son aprobatorias. No se otorgan fracciones de puntos en ninguna actividad por lo cual no se requiere ninguna regla de redondeo. No hay exámenes.

Ponderación específica:

| Actividad   | A1 | A2 | А3 | A4 | A5 | <b>A</b> 6 | A7 | A8 | A9 | A10 | A11 | A12 | A13  | Total |
|-------------|----|----|----|----|----|------------|----|----|----|-----|-----|-----|------|-------|
| Ponderación | 6% | 6% | 6% | 6% | 6% | 6%         | 6% | 6% | 7% | 7%  | 7%  | 7%  | 30 % | 100 % |

Revisión: 1 Página 8 de 9





### VIII. Producto integrador de aprendizaje de la unidad:

18. Producto integrador de Aprendizaje: Portafolio en un repositorio digital público que contiene las tareas y un proyecto sobre la simulación computacional (documentada) de algún fenómeno de interés para la ingeniería de sistemas. Cada participante, una vez concluida su participación en las tareas, propone un tema de proyecto a la profesora. Una vez iniciado el proyecto, ya no se permite entregar tareas adicionales — los participantes pueden iniciar el proyecto cuando consideran que ya no necesitan tareas adicionales ni para aprendizaje ni para aprobar el curso (se recomienda agendar por lo menos dos semanas de trabajo para el proyecto y un buen proyecto puede requerir hasta un mes). No se permite iniciar trabajos sobre el proyecto antes de haber obtenido el permiso explícito de la profesora; es necesario que ella valide que el tema propuesto cubra los aspectos requeridos del proyecto y que su complejidad no es ni demasiado baja para un curso de este nivel ni demasiado alta para poder completarse durante el curso. El proyecto debe entregarse a la profesora antes de que termine el periodo de curso, por lo menos tres días hábiles antes de que la captura de las calificaciones (la fecha exacta en cada semestre depende del departamento escolar de posgrado). El reporte del proyecto se estructura como un artículo científico, contando con un título, autores, un resumen y secciones para introducción, antecedentes, trabajos relacionados, modelo propuesto, implementación de la simulación, experimentos (diseño, resultados y discusión), conclusiones y trabajo a futuro. Es obligatorio incluir una bibliografía y citar de manera adecuada a todas las fuentes de consulta.

### IX. Fuentes de apoyo y consulta:

### 19. Fuentes de apoyo y consulta

#### 19.1. Básicas

- M. TEMPL: Simulation for Data Science with R, 2016. Packt Publishing. 978-1785881169.
- O. JONES, R. MAILLARDET & A. ROBINSON: Introduction to Scientific Programming and Simulation Using R, Chapman & Hall/CRC, 2nd Edition, 2014, 978-1466569997.

### 19.2. Complementarias

- R PROJECT: Documentation, https://www.r-project.org/other-docs.html
- R.I. KABACOFF: Quick-R Accessing the power of R, 2017. http://www.statmethods.net

Artículos científicos especializados.

Revisión: 1 Página 9 de 9





Autorizó: Dr. César Emilio Villarreal Rodríguez

ALERE FLAMMAM VERITATIS
Ciudad Universitaria, 15 de junio de 2021

**Dr. César Emilio Villarreal Rodríguez**Coordinador Académico
Posgrado en Ingeniería de Sistemas

**Vo. Bo. Dr. Simón Martínez Martínez**Subdirector de Estudios de Posgrado
Facultad de Ingeniería Mecánica y Eléctrica

Revisión: 1