HW4

RYSP

July 11, 2025

- 1. Prove that $\sqrt[3]{2}$ is algebraic but irrational. State the minimal polynomial it satisfies.
- 2. Show that the set of all algebraic numbers is countable.
- 3. Give an example of a transcendental number and briefly explain why it cannot be the root of any polynomial with integer coefficients.
- 4. Prove that every rational number is algebraic.
- 5. Is the number $e + \pi$ necessarily transcendental? Explain why this question remains open.
- 7. Define the class of computable numbers. Give an example of a number that is transcendental and non-computable.
- 8. Let * be a binary operation on \mathbb{Z} defined by a * b = a + b + 1. Is * associative? Is it commutative? Does it have an identity element?
- 9. Determine whether the operation $\max(a, b)$ on \mathbb{N} is associative and commutative.
- 10. Define a binary relation R on \mathbb{Z} by aRb if and only if a-b is even. Prove that R is an equivalence relation.
- 11. Define a partial order on the power set of $\{1, 2, 3\}$ using the subset relation \subseteq . Draw the corresponding Hasse diagram.
- 12. Find the reflexive, symmetric, and transitive closures of the relation $R = \{(1, 2), (2, 3)\}$ on the set $\{1, 2, 3\}$.
- 13. Let $(P(S), \cup, \cap)$ be the power set of a finite set S with union and intersection. Prove that it forms a lattice.
- 14. Define an algebraic system (A, \cdot) where \cdot is a binary operation on $A = \mathbb{Z}_5$. Describe its identity and inverses, if any.

- 15. Consider the Boolean algebra on $P(\{a,b\})$. List its elements, and verify that each element has a unique complement.
- 16. Let $G = S_3$ act on \mathbb{R}^3 by permuting coordinates. Show that the sum $x_1 + x_2 + x_3$ is a G-invariant.
- 17. Let $f(x,y) = (x \vee y) \wedge (\neg x \vee y)$. Write f in conjunctive normal form (CNF).
- 18. Find a complete system of invariants for the action of $G = \mathbb{Z}_2$ on \mathbb{R}^2 by swapping coordinates.
- 19. What is the canonical form of the set $\{4, 1, 3, 4, 2, 1\}$?
- 20. Prove that $\sqrt{2} + \sqrt{3}$ is irrational.
- 21. Show that if x is algebraic and $x \neq 0$, then 1/x is also algebraic.
- 22. Prove that the sum of two algebraic numbers is again algebraic.
- 23. Let $f(x) = x^2 2$ and $g(x) = x^2 3$. Compute lcm(f(x), g(x)) and use it to determine a minimal polynomial for $\sqrt{2} + \sqrt{3}$.
- 24. Prove that the set of real numbers with finitely many non-zero digits in base 10 is countable.
- 25. Explain why the set of constructible numbers is a subset of the algebraic numbers.
- 26. Let $x = \sum_{n=1}^{\infty} 10^{-n!}$. Prove that x is a Liouville number.
- 27. Prove that the set $A = \mathbb{Z}$ with the binary operation $a \circ b = ab + 1$ is not a group.
- 28. Define a binary operation \diamond on \mathbb{N} by $a \diamond b = \min(a, b)$. Is this operation associative? Does it have an identity?
- 29. Let $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \equiv b \pmod{3}\}$. Prove that R is an equivalence relation and describe its equivalence classes.
- 30. Define a relation R on \mathbb{Z} by aRb if and only if $a \leq b^2$. Is R reflexive? Symmetric? Transitive?
- 31. Let $A = \{1, 2, 3, 4\}$. Define a relation $R = \{(1, 2), (2, 3), (3, 4)\}$. Find its transitive closure explicitly.
- 32. Show that the structure $(\mathbb{Z}_6, +)$ is a finite group. Determine its identity and inverses.
- 33. Let (A, \land, \lor) be a lattice. Prove that $a \le b$ if and only if $a \lor b = b$ and $a \land b = a$.
- 34. Let $G = \mathbb{Z}_3$ act on \mathbb{C} by multiplication: $g \cdot z = e^{2\pi i g/3} z$. Find all G-invariant polynomials in z and \bar{z} .
- 35. Find a complete system of invariants for the action of S_2 on the set of 2-element subsets of $\{1, 2, 3\}$.

- 36. Consider the equivalence relation on \mathbb{R}^2 given by $(x,y) \sim (u,v)$ if $x^2 + y^2 = u^2 + v^2$. Find a canonical form for each equivalence class.
- 37. Let $f(x,y) = (x \wedge y) \vee (\neg x \wedge \neg y)$. Express f in disjunctive normal form (DNF).
- 38. Define a function $f: \mathbb{R}^3 \to \mathbb{R}$ by f(x, y, z) = xyz. Let $G = S_3$ act on \mathbb{R}^3 by permuting coordinates. Is f a G-invariant? Justify.
- 39. Let $f(x,y) = x^2 + y^2$ and define an equivalence relation $x \sim y$ if f(x) = f(y). Describe the equivalence classes and give a canonical representative for each.
- 40. Develop linear algebra and abstract algebra methods to find the minimal polynomial of the sum of two algebraic numbers.