Review:

At steady state, $V_0 > V_m$

If $V_0 < V_m$, i, will \uparrow , even when 'S' is opened.

$$\frac{di_{L}}{dt} = \frac{(V_{01} - V_{0})}{L}$$
; peak of $V_{01} = V_{m}$

 i_1 and \therefore i_2 goes on \uparrow .

When $V_0 > V_{01}$, i starts \downarrow .

'V' rating of 'S' or $D_R > V_0$

Switching time of $D_R \approx \text{that of 'S'}$

In fixed 'D' control, $i_p \propto instantaneous value of v_{01}$

$$D \rightarrow i_L$$
 is just continuous at $\omega t \approx \frac{\pi}{2}$

High frequency components of i_s can be filtered out using a small filter.

P.F. ≈ 1.

- \Rightarrow Switching F is constant. In current control, $\mathbf{i}_{L}^{*} \leq \mathbf{i}_{L} \leq \mathbf{i}_{U}^{*}$ Smaller the band, Higher the switching frequency.
- ⇒ Waveform is superior.

How to choose the magnitude of i_{ref}^* or D:

- \Rightarrow At the output side if V_0 is constant.
- ⇒ Power supplied by the source = Power consumed by the load.
- \Rightarrow Input power = VIcos θ , cos $\theta \approx 1$
- \Rightarrow If V_0 \uparrow above the set value, decrease magnitude of i_{ref}^* .
- OR If $V_0 \downarrow$ below the set limit, increase magnitude of i_{ref}^* .

Inductor on AC side:

Principle of operation is the same.

 \Rightarrow Better utilization of iron (both halves of hysteresis loop).

Case 3:

With two switching devices.

In the +ve half:

At a particular instant, close 'S₄'.

 $i_{L} \uparrow linearly.$

'C' supplies power to the load.

Depending upon the switching strategy, open 'S₄'.

The stored energy is now transferred to the load.

In the -ve half:

Close S_2 to \uparrow Ii_l and open S_2 to \downarrow Ii_l

What sort of waveform across AB:

In the + ve half

- 1) When S_4 is closed: $V_{AB} = 0$
- 2) When S_4 is open: $V_{AB} = V_0$

Bi – Directional Power Transfer:

⇒ 2 quadrant converter
('V' is +ve and 'l' can be +ve or -ve)

In the +ve half:

At a particular instant, close 'S₂' as

$$\frac{di}{dt} = \frac{v_i}{L}$$

Capacitor supplies power to the load.

$$V_{AB} = 0$$

Open S₂:

Stored energy is transferred to the load through D₁D₂

$$V_{AB} = V_0$$

Similarly in the -ve half:

Close 'S₂'.

$$V_{AB} = 0$$

After a while, open 'S₂'

$$V_{AB} = -V_0$$

.. Power transfer from source to

the load =
$$\frac{V_i V_{AB1}}{\omega L} \sin \delta$$
,
where $\omega = 2\pi F$ and

 $F \rightarrow frequency of v_i$

If
$$\delta = 0$$
 and $IV_SI \neq IV_{AB1}I$

Power transfer to the load is = 0.

 $:: IV_SI \neq IV_{AB1}I$, is will flow

If
$$IV_SI < IV_{AB1}I$$
, $\angle_{V_S}^{i_S} = 90^{\circ}$ leading

⇒ Capacitor

If
$$IV_sI > IV_{AB1}I$$
, $\angle_{V_s}^{i_s} = 90^{\circ}$ lagging

- ⇒ Inductor
- ⇒ Can be used to improve the P.F. both supplying ± VARs

