

We claim:

A
B'

5 A carboxylic acid derivative of the formula I

10

where R is formyl, tetrazole [~~sic~~], nitrile [~~sic~~], a COOH group
 15 or a radical which can be hydrolyzed to COOH, and the other sub-
 stituents have the following meanings:

- 20 R^2 hydrogen, hydroxyl, NH_2 , $NH(C_1-C_4\text{-alkyl})_2$,
 halogen, $C_1-C_4\text{-alkyl}$, $C_1-C_4\text{-haloalkyl}$, $C_1-C_4\text{-alkoxy}$,
 $C_1-C_4\text{-haloalkoxy}$ or $C_1-C_4\text{-alkylthio}$;
- 25 X nitrogen or CR^{14} where R^{14} is hydrogen or $C_{1-5}\text{-alkyl}$, or CR^{14}
 forms together with CR^3 a 5- or 6-membered alkylene or
 alkenylene ring which can be substituted by one or
 two $C_{1-4}\text{-alkyl}$ groups and in which in each case a methylene
 group can be replaced by oxygen, sulfur, $-NH$ or $-NC_{1-4}\text{-alkyl}$;
- 30 R^3 hydrogen, hydroxyl, NH_2 , $NH(C_1-C_4\text{-Alkyl})_2$,
 halogen, $C_1-C_4\text{-alkyl}$, $C_1-C_4\text{-haloalkyl}$, $C_1-C_4\text{-alkoxy}$,
 $C_1-C_4\text{-haloalkoxy}$, $-NH-O-C_{1-4}\text{-alkyl}$, $C_1-C_4\text{-alkylthio}$ or CR^3 is
 linked to CR^{14} as indicated above to give a 5- or 6-membered
 ring;
- 35 R^4 and R^5 (which can be identical or different):
 phenyl or naphthyl, which can be substituted by one or more
 of the following radicals: halogen, nitro, cyano, hydroxyl,
 $C_1-C_4\text{-alkyl}$, $C_1-C_4\text{-haloalkyl}$, $C_1-C_4\text{-alkoxy}$, $C_1-C_4\text{-haloalkoxy}$,
 phenoxy, $C_1-C_4\text{-alkylthio}$, amino, $C_1-C_4\text{-alkylamino}$ or $C_1-C_4\text{-di-}$
 alkylamino; or
- 40 phenyl or naphthyl, which are connected together in the ortho
 positions via a direct linkage, a methylene, ethylene or
 ethenylene group, an oxygen or sulfur atom or an SO_2 , NH or
 $N\text{-alkyl}$ group
- 44

, or C_3-C_7 -cycloalkyl;

B / Out

R⁶ hydrogen, C_1-C_8 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl or C_3-C_8 -cycloalkyl, where each of these radicals can be substituted one or more times by: halogen, nitro, cyano, C_1-C_4 -alkoxy, C_3-C_6 -alkenyloxy, C_3-C_6 -alkynyloxy, C_1-C_4 -alkylthio, C_1-C_4 -haloalkoxy, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxy-carbonyl, C_3-C_8 -alkylcarbonylalkyl, C_1-C_4 -alkylamino, di- C_1-C_4 -alkylamino, phenyl or phenyl or phenoxy which is substituted one or more times, e.g. one to three times, by halogen, nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy or C_1-C_4 -alkylthio;

phenyl or naphthyl, each of which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy, phenoxy, C_1-C_4 -alkylthio, C_1-C_4 -alkylamino, C_1-C_4 -dialkylamino or dioxomethylene {sic} or dioxoethylene [sic];

a five- or six-membered heteroaromatic moiety containing one to three nitrogen atoms and/or one sulfur or oxygen atom, which can carry one to four halogen atoms and/or one or two of the following radicals: C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy, C_1-C_4 -alkylthio, phenyl, phenoxy or phenylcarbonyl, it being possible for the phenyl radicals in turn to carry one to five halogen atoms and/or one to three of the following radicals: C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy and/or C_1-C_4 -alkylthio;

with the proviso that R⁶ can be hydrogen only when Z is not a single bond;

35 Y sulfur or oxygen or a single bond;

Z sulfur, oxygen, $-SO-$, $-SO_2-$ or a single bond.

40

added

45