Logică matematică și computațională Cursul I

Claudia MUREŞAN cmuresan11@yahoo.com

Universitatea din București Facultatea de Matematică și Informatică București

2011-2012, semestrul I

Introducere

2 Mulţimi şi funcţii

Introducere

• Logica: modelare matematică a legilor gândirii

Înainte de a trece la prezentarea unor sisteme logice, este necesar un capitol de preliminarii algebrice, în care va fi introdusă o structură algebrică numită **algebră Boole**, structură cu foarte multe aplicații în matematică și informatică.

Aplicații ale algebrelor Boole în informatică:

- la proiectarea circuitelor electronice
- la crearea de sisteme și aplicații software
- în fundamentarea matematică a multor ramuri ale informaticii

Cuprinsul orientativ al cursului

Capitolul 1: Latici și algebre Boole:

- Mulțimi și funcții
- Relaţii binare. Relaţii de echivalenţă. Relaţii de ordine. Mulţimi (parţial) ordonate
- Latici
- Algebre Boole. Morfisme de algebre Boole. Filtre şi congruenţe în algebre Boole. Ultrafiltre. Teorema de reprezentare a lui Stone. Structura algebrelor Boole finite

Cuprinsul orientativ al cursului

Capitolul 2: Calculul propozițional clasic:

- Sintaxa
- Algebra Lindenbaum–Tarski
- Semantica
- Teorema de completitudine

Capitolul 3: Calculul cu predicate clasic:

- Structuri de ordinul I
- Sintaxa
- Semantica

Bibliografie

- S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, The Millenium Edition, disponibilă online.
- D. Bușneag, D. Piciu, *Lecții de algebră*, Editura Universitaria Craiova, 2002.
- D. Bușneag, D. Piciu, Probleme de logică și teoria mulțimilor, Craiova, 2003.
- V. E. Căzănescu, Curs de bazele informaticii, Tipografia Universității din București, 1974, 1975, 1976.
- G. Georgescu, Elemente de logică matematică, Academia Militară, București, 1978.
- G. Georgescu, A. Iorgulescu, Logică matematică, Editura ASE, București, 2010.
- K. Kuratowski, Introducere în teoria mulțimilor și în topologie, traducere din limba poloneză, Editura Tehnică, București, 1969.
- S. Rudeanu, Curs de bazele informaticii, Tipografia Universității din București, 1982.
- A. Scorpan, Introducere în teoria axiomatică a mulțimilor, Editura Universității din București, 1996.
- Articolele de logică (inclusiv cele cu probleme date la examenul de logică matematică și computațională) din Revista de logică a Profesorului Adrian Atanasiu, publicație online.

Prescurtări uzuale

- i. e. = id est = adică
- ddacă = dacă și numai dacă
- a. î. = astfel încât
- ş. a. m. d. = şi aşa mai departe
- Vom folosi și notația ":=", cu semnificația de atribuire, ca prescurtare pentru scrierea definiție sau notație := sau notație :=

Exemplu

Scrierea "x := f(y)" semnifică:

- se atribuie lui x valoarea f(y)
- se definește x ca fiind f(y)
- se notează f(y) cu x

Introducere

2 Mulţimi şi funcţii

Mulțimi și funcții

Începem Capitolul 1 al cursului: "Latici și algebre Boole", cu secțiunea "Mulțimi și funcții".

- Ce este o mulţime?
- Teoria naivă a mulțimilor versus teoria axiomatică a mulțimilor
- O definiție din teoria naivă a mulțimilor: o mulțime este o colecție de obiecte bine determinate și distincte, numite elementele mulțimii.
- distincte: o mulțime nu conține un același obiect de mai multe ori; un element apare într-o mulțime o singură dată
- bine determinate: orice mulțime are o descriere precisă, care o identifică în mod unic, adică îi identifică în mod unic elementele

Exemplu

Să considerăm mulțimea zerourilor (i. e. a rădăcinilor) funcției zeta a lui Riemann. Nu sunt cunoscute toate elementele acestei mulțimi (a se vedea **ipoteza lui Riemann**, care este o parte din **a 8-a problemă a lui Hilbert**, problemă de un milion de dolari, în enciclopedia online wikipedia sau în cartea *Vârsta de aur a matematicii* a lui Devlin etc.), dar nu există două mulțimi distincte (diferite) fiecare având ca elemente zerourile funcției zeta a lui Riemann, deci această definiție descrie o mulțime, o identifică în mod unic.

Teoria naivă a mulțimilor

Teoria naivă a mulțimilor a fost inițiată de matematicianul Georg Cantor, care, în 1884, a definit pentru prima dată noțiunea de *mulțime*, ca fiind o "grupare într-un tot a unor obiecte distincte ale intuiției sau gândirii noastre".

O mulțime este considerată ca un tot unitar, deci ca un obiect unitar, care poate fi așadar element al altei mulțimi.

- teorie **naivă**: ambiguitatea exprimării în această definiție, care lasă loc de interpretări: ce este un "obiect (al intuiției sau gândirii noastre)", ce este o "grupare într-un tot"?
- teorie naivă: din definiții exprimate în limbaj natural (metalimbaj) (vom vedea), inerent ambigue, se încearcă stabilirea unor proprietăți ale noțiunilor definite
- matematica lucrează cu noțiuni precise ⇒ necesitatea fundamentării axiomatice (vom vedea)
- teorie axiomatică: se lucrează cu noțiuni distinse inițial doar prin denumirile lor, asupra cărora se impun axiome (vom vedea), proprietăți, reguli de lucru precise cu acele noțiuni; de ce este mai avantajoasă această abordare? pentru că matematica este interesată de proprietățile noțiunilor cu care lucrează, nu de natura lor; vom relua această discuție când vom vorbi despre egalitate versus izomorfism

Noțiunea de mulțime se dovedește a nu fi suficient de cuprinzătoare: în 1903, Bertrand Russell demonstrează că nu există **mulțimea tuturor mulțimilor**, prin paradoxul care îi poartă numele.

Este unanim acceptat faptul că, dacă M este o multime, iar P este o proprietate referitoare la elementele multimii M, atunci colectia tuturor elementelor lui Mcare satisfac (au) proprietatea P este tot o multime, notată uzual astfel: $\{x \in M \mid P(x)\}$; facem apel aici la cunoștințele despre notațiile legate de mulțimi învățate în gimnaziu și liceu, unde se studiază teoria naivă a mulțimilor: M este o literă (o notație, un nume, o variabilă) ce desemnează o mulțime arbitrară (dar fixată), x este o literă ce desemnează un element arbitrar al mulțimii $M_i \in \text{este}$ simbolul de apartenență, scrierea $x \in M$ semnifică faptul că x este un element al mulțimii M, iar scrierea P(x) semnifică faptul că elementul x satisface proprietatea P. Acoladele încadrează o mulțime, dată fie prin enumerarea elementelor ei separate de virgule, fie prin specificarea unei proprietăți asupra elementelor unei mulțimi "mai mari" și a faptului că mulțimea la care ne referim se obtine din acea multime "mai mare" prin selectarea elementelor care au acea proprietate, cum este cazul de față. Vom folosi și simbolul ∉, care este negația apartenenței, adică scrierea $x \notin M$ semnifică faptul că nu are loc $x \in M$, i. e. xnu este un element al lui M.

"arbitrar, dar fixat" = care poate fi înlocuit cu orice obiect "de același tip"
 (de exemplu, în cazul de mai sus, cu orice mulțime), dar, în momentul în care
 lucrăm cu un astfel de obiect, atunci acel obiect (cu care lucrăm) este fixat,
 adică "nu se schimbă", "nu este înlocuit" cu un alt obiect în timp ce lucrăm
 cu el

Ce s–ar întâmpla dacă ar exista **mulțimea tuturor mulțimilor**, adică mulțimea având ca elemente toate mulțimile? Să presupunem că această mulțime a tuturor mulțimilor există, și s–o notăm cu M. Am presupus că M este mulțime, deci, întrucât M conține toate mulțimile, înseamnă că M se conține pe sine: $M \in M$, un fapt "neobișnuit" în condițiile în care până acum am lucrat doar cu mulțimi care nu se conțin pe ele însele ca elemente (mulțimea numerelor naturale conține numai numerele naturale, nu și mulțimea acestor numere, adică pe sine, ca element; și la fel stau lucrurile cu toate mulțimile pe care le–am întâlnit în gimnaziu și liceu).

Acest fapt ne furnizează ideea de a considera proprietatea ca o mulțime să nu se conțină pe sine. Fie așadar P proprietatea referitoare la elementele lui M, adică la mulțimi, definită astfel: o mulțime A satisface proprietatea P ddacă $A \notin A$ (i. e. A nu se conține pe sine).

Şi acum să considerăm mulțimea tuturor mulțimilor care nu se conțin pe ele însele, adică mulțimea $\{A \in M \mid P(A)\}$ a mulțimilor care satisfac proprietatea P, sau, altfel scris, mulțimea $\{A \in M \mid A \notin A\}$, și să notăm această mulțime cu X. **Paradoxul lui Russell**: X satisface proprietatea P sau n-o satisface? Adică $X \notin X$ sau $X \in X$?

Dacă $X \in X$, atunci, întrucât elementele lui X sunt mulțimile care nu se conțin pe ele însele, înseamnă că X nu se conține pe sine: $X \notin X$. Am obținut o contradicție, pentru că nu pot avea loc simultan proprietățile $X \in X$ și $X \notin X$. Dacă $X \notin X$, atunci, întrucât X conține **toate** mulțimile care nu se conțin pe ele însele, înseamnă că X nu este una dintre mulțimile care nu se conțin pe ele însele, adică X se conține pe sine: $X \in X$. Iarăși am obținut o contradicție.

Sigur că, pentru orice mulțime X, are loc una dintre situațiile: $X \in X$ și $X \notin X$ (și numai una), pentru că, dacă una dintre aceste două proprietăți nu este satisfăcută, atunci cealaltă este satisfăcută.

Deci oricare dintre cazurile posibile duce la o contradicție.

De unde a provenit contradicția? Din presupunerea că există mulțimea tuturor mulțimilor. Înseamnă că această presupunere este falsă, i. e. **nu există mulțimea tuturor mulțimilor**.

Totalitatea mulțimilor nu formează o mulțime, ci o **clasă**. Din punctul de vedere al teoriei naive a mulțimilor, nu se pot spune multe lucruri despre noțiunea de *clasă*, decât că este "ceva mai vag/mai mare/mai cuprinzător decât o mulțime". Se consideră că orice mulțime este o clasă, dar nu și invers.

Semnul (simbolul) de apartenență **nu** poate apărea la dreapta unei clase care nu este multime, adică nu se consideră a avea sens faptul că o clasă care nu este multime apartine unui alt obiect. O multime poate apartine unei clase (chiar și unei mulțimi), dar niciodată invers, adică nicio clasă care nu este mulțime nu aparține unei mulțimi, și, mai mult, nicio clasă care nu este mulțime nu aparține unei clase (sau vreunui alt fel de obiect). În particular, ultima dintre observațiile anterioare arată că nu există clasa tuturor claselor, din simplul motiv că s-a impus restricția ca o clasă care nu este mulțime să nu fie element al niciunui obiect, si deci nu există un obiect care să aibă clase care nu sunt multimi ca elemente. Dacă nu s-ar fi impus această restricție, atunci clasele nu s-ar fi deosebit semnificativ de mulțimi, și procesul de a considera mereu obiecte matematice "mai cuprinzătoare" ar fi continuat la infinit: să denumim ε tipul de obiect în care se încadrează obiectul care are drept elemente toate clasele, să denumim Ω tipul de obiect în care se încadrează obiectul care are drept elemente toate ε -urile, ş. a. m. d..

• Ce este o axiomă?

- O axiomă este un fapt dat ca fiind adevărat într-o teorie matematică.
- O axiomă nu se demonstrează, ci pur și simplu este dată ca fiind adevărată.
- Orice teorie matematică trebuie să aibă la bază (i. e. ca fundament) un sistem (i. e. o colecție) de axiome. Pornind de la aceste axiome, se demonstrează teoremele (rezultatele matematice) ale acelei teorii.
- Scopul axiomatizării, adică al construirii unui sistem de axiome pentru o teorie matematică, este acela de a elimina ambiguitățile din definirea noțiunilor, conceptelor cu care lucrează acea teorie matematică.
- Desigur, axiomele unei teorii matematice care modelează un fenomen din lumea înconjurătoare trebuie să reflecte proprietățile acelui fenomen, de regulă obținute experimental. Respectiva construcție (teorie) matematică în sine, ca orice teorie matematică, trebuie să beneficieze de un sistem de axiome, din rațiuni ce țin de natura matematicii ca știință, de ceea ce se numește rigoare matematică, anume lipsa ambiguităților, de necesitatea oricărei teorii matematice de a fi o construcție de sine stătătoare, independent de fenomenul pe care îl modelează.

- Exemplu de axiomă: axioma paralelelor pentru geometria euclidiană: "două drepte paralele tăiate de o secantă formează unghiuri alterne interne congruente".
- Faptul de a fi axiomă nu este o proprietate intrinsecă a unei afirmații, chiar dacă, așa cum am menționat mai sus, la originea sistemelor axiomatice se află "proprietăți observabile", "judecăți primare", fapte considerate "fundamentale", considerate a fi necesare ca "bază" a unei teorii matematice, care nu se demonstrează pornind de la alte fapte, ci tocmai invers, ele servesc la demonstrarea altor fapte în acea teorie matematică.
- Există mai multe sisteme axiomatice pentru geometria euclidiană, iar enunțul
 denumit mai sus axioma paralelelor nu este considerat ca axiomă în toate
 aceste sisteme. De aceea spunem că acest enunț nu are ca proprietate
 intrinsecă faptul de a fi axiomă.
- Acest enunț este echivalent cu alte enunțuri, adică acele alte enunțuri se deduc din el (atunci când el este considerat ca axiomă), dar și el se deduce din fiecare dintre acele alte enunțuri (atunci când acele enunțuri sunt considerate ca axiome, și atunci spunem că acest enunț de mai sus este un rezultat, o teoremă a geometriei euclidiene, bazate pe un alt sistem axiomatic).

- Sigur că oricare două sisteme axiomatice pentru o aceeași teorie
 matematică trebuie să fie echivalente, adică din fiecare dintre ele trebuie să
 se deducă fiecare altul dintre ele, iar acest lucru înseamnă nimic altceva decât
 faptul că din oricare două sisteme axiomatice pentru o teorie se deduc
 aceleași rezultate, adică se construiește aceeași teorie matematică.
- De exemplu, toate axiomatizările geometriei euclidiene sunt **echivalente**.
- De asemenea, toate axiomatizările teoriei mulţimilor (dintre care vom vedea în continuare una) sunt echivalente. De exemplu, axioma alegerii şi axioma lui Zorn (din axiomatizări diferite ale teoriei mulţimilor) sunt echivalente, şi când prima este aleasă ca axiomă, atunci a doua se numeşte lema lui Zorn (şi se deduce din prima), iar când a doua este aleasă ca axiomă, atunci prima se numeşte lema alegerii (şi se deduce din a doua).
- În cazurile date ca exemple mai sus, avem enunțuri (individuale)
 echivalente, dar, așa cum am menționat, putem avea sisteme de enunțuri
 echivalente, caz în care fiecare enunț din oricare dintre acele sisteme se
 deduce dintr—un întreg alt sistem de enunțuri, adică din toate
 enunțurile acelui alt sistem luate la un loc.

Precum am menționat mai sus, sunt cunoscute mai multe **sisteme axiomatice** (i. e. **sisteme de axiome**) pentru teoria mulțimilor. De exemplu următoarele, denumite astfel după matematicienii care le-au creat:

- sistemul axiomatic Zermelo-Fraenkel, care lucrează numai cu mulțimi
- sistemul axiomatic von Neumann-Bernays, numit și sistemul axiomatic von Neumann-Bernays-Gödel, care admite și existența claselor

S-a demonstrat că:

 Orice rezultat despre mulţimi care poate fi demonstrat pornind de la (axiomele) sistemul(ui) axiomatic von Neumann-Bernays-Gödel poate fi demonstrat şi pornind de la sistemul axiomatic Zermelo-Fraenkel.

Este de menționat faptul că problema fundamentării prin sisteme axiomatice a teoriei mulțimilor (care este ea însăși un fundament al întregii matematici) a dat naștere la controverse care nu sunt încheiate nici în ziua de azi, pentru că scopul principal al elaborării oricăror sisteme axiomatice, anume eliminarea tuturor ambiguităților (de limbaj, din definiții, din formulări de proprietăți etc.) dintr-o teorie matematică, este foarte greu de atins în cazul teoriei mulțimilor, tocmai datorită caracterului ei primar, de bază, de fundament al întregii matematici.

Vom face acum o scurtă prezentare a **sistemului axiomatic von Neumann–Bernays–Gödel**, după cartea *Foundations of Set Theory*, de Abraham A. Fraenkel, Yehoshua Bar–Hillel și Azriel Levy (seria "Studies in Logic and the Foundations of Mathematics", volumul 67).

Primul lucru de care vom avea nevoie este o formalizare a limbajului teoriei mulțimilor, care să elimine ambiguitățile din acest limbaj.

- formalizare: exprimare folosind numai simboluri matematice
- metalimbaj: "limbajul natural", "vorbirea curentă (obișnuită)", "exprimarea în cuvinte", "fără simboluri matematice"
- un enunț formalizat nu conține elemente (cuvinte, exprimări) din metalimbaj

Precum am anunțat mai sus, acest sistem axiomatic operează atât cu **mulțimi**, cât și cu **clase**. Natura mulțimilor și a claselor este neprecizată, în sensul că ele sunt considerate a fi obiecte matematice date doar prin denumirile de **mulțime** și **clasă**, și tot ce știm despre ele sunt proprietățile care vor fi enumerate mai jos (a se vedea mai sus o discuție despre abordarea axiomatică și avantajele ei). Așadar, primele elemente ale limbajului pe care îl vom construi sunt:

• mulțimile și clasele, denumite generic obiecte, care satisfac condiția că orice mulțime este o clasă (dar nu orice clasă este o mulțime)

Pentru a scrie axiomele, vom avea nevoie să putem atribui (asocia) nume mulțimilor și claselor arbitrare, dar și mulțimilor și claselor precizate, fixate, constante.

Deci vom folosi noțiunile de:

- variabilă sau nume variabil, care semnifică un nume atribuit unui obiect arbitrar și neprecizat
- constantă sau nume constant, care semnifică un nume atribuit unui obiect fixat, precizat

- regulă: în definițiile şi axiomele acestui sistem axiomatic, numele variabile şi numele constante vor fi litere din alfabetul latin; numele atribuite mulțimilor vor fi litere mici, iar numele atribuite claselor (care pot fi mulțimi, dar despre care nu se precizează dacă sunt sau nu sunt mulțimi) vor fi litere mari
- în prezentarea limbajului acestui sistem axiomatic, vom folosi litere grecești
 ca nume variabile pentru orice fel de obiecte, i. e. și pentru mulțimi, și
 pentru clase care pot să nu fie mulțimi
- în majoritatea cazurilor, vom folosi litere de tipurile enumerate mai sus fără a preciza că ele denumesc mulțimi, clase care nu sunt neapărat mulțimi sau obiecte de oricare dintre aceste tipuri, iar convențiile pe care tocmai le–am stabilit ne vor spune la ce fel de obiecte ne vom referi

Vom folosi următoarele simboluri pentru a enunța proprietăți ale obiectelor: \in , \notin , =, \neq , \neg , \vee , \wedge , \rightarrow , \leftrightarrow , \forall , \exists .

€ și ∉:

- \in se numește simbolul de apartenență; $\alpha \in \beta$ (este un enunț (i. e. o proprietate), care) se citește " α aparține lui β " sau " β conține pe α "
- un obiect care aparține unui alt obiect va fi numit element sau membru al obiectului căruia îi aparține
- simbolul \notin va fi folosit cu semnificația: $\alpha \notin \beta$ (este un enunț (i. e. o proprietate), care este satisfăcut) ddacă nu are loc $\alpha \in \beta$ (și se citește " α nu aparține lui β " sau " β nu conține pe α ")

Am precizat că obiectele cu care lucrăm se numesc **mulțimi** sau **clase**. Deci orice element la care ne vom referi este la rândul său o mulțime sau o clasă (de fapt un element nu va fi niciodată o clasă care nu e mulțime, ci orice element va fi o mulțime; o clasă care nu e mulțime nu aparține niciunui obiect; nu vom întâlni în acest sistem axiomatic clase care nu sunt mulțimi și sunt elemente ale unui obiect; a se vedea o discuție de mai sus referitoare la acest aspect legat de clase și de proprietatea de apartenență).

= și \neq :

- = se numește simbolul de egalitate; $\alpha = \beta$ (este un enunț (i. e. o proprietate), care) se citește " α coincide cu β " și semnifică faptul că α și β sunt (nume pentru) (denumesc) (reprezintă) același obiect
- simbolul = se consideră a avea următoarele proprietăți:
 - reflexivitate: pentru orice object α , are loc $\alpha = \alpha$
 - simetrie: pentru orice obiecte α și β , dacă $\alpha=\beta$, atunci are loc și $\beta=\alpha$
 - tranzitivitate: pentru orice obiecte α , β și γ , dacă $\alpha=\beta$ și $\beta=\gamma$, atunci are loc și $\alpha=\gamma$
 - substitutivitate: pentru orice obiecte α și β și orice proprietate P referitoare la obiecte, dacă $P(\alpha)$ (adică α satisface proprietatea P; am mai folosit această notație) și $\alpha = \beta$, atunci are loc și $P(\beta)$
- simbolul \neq va fi folosit cu semnificația: $\alpha \neq \beta$ (este un enunț (i. e. o proprietate), care este satisfăcut) ddacă nu are loc $\alpha = \beta$ (și se citește " α nu coincide cu β ")

Simbolurile \neg , \lor , \land , \rightarrow și \leftrightarrow se numesc *conectorii logici*.

- \neg se numește negația și se citește "non" sau "not"; dacă E este un enunț (o proprietate) referitor la obiecte, atunci $\neg E$ se citește "non E" sau "not E" și semnifică negația proprietății E, adică acea proprietate care este adevărată ddacă E este falsă (și, desigur, falsă ddacă E este adevărată)
- V se numește disjuncția și se citește "sau"; dacă E și F sunt enunțuri (proprietăți) referitoare la obiecte, atunci E V F se citește "E sau F" și semnifică acea proprietate care este adevărată ddacă măcar (cel puțin) una dintre proprietățile E și F este adevărată
- \(\) se numeşte conjuncţia şi se citeşte "şi"; dacă \(E \) şi \(F \) sunt enunţuri (proprietăţi) referitoare la obiecte, atunci \(E \) \(F \) se citeşte "\(E \) şi \(F \) semnifică acea proprietate care este adevărată ddacă ambele proprietăţi \(E \) şi \(F \) sunt adevărate (i. e. ddacă fiecare dintre proprietăţile \(E \) şi \(F \) este adevărată)

- ullet \to se numește implicația și se citește "implică"; dacă E și F sunt enunțuri (proprietăți) referitoare la obiecte, atunci $E \to F$ se citește "E implică F" și semnifică acea proprietate care este adevărată ddacă din E rezultă (i. e. se deduce) F, i. e. acea proprietate care este adevărată ddacă, în situația când E este adevărată, atunci și F este adevărată, i. e. acea proprietate care este adevărată ddacă fie E este falsă, fie F este adevărată (fie ambele)
- definiția de mai sus a implicației pare să contrazică intuiția noastră, dar ea ilustrează de fapt foarte bine modul de a raționa matematic: cum demonstrăm că o proprietate E implică o proprietate F? (că din E rezultă F? că din E se deduce F?); ce avem, de fapt, de arătat? avem de arătat că, dacă E este adevărată, atunci și F este adevărată; deci, dacă E este falsă, atunci nu avem nimic de demonstrat, dacă E este falsă, atunci nu ne interesează cum este F, și, neavând nimic de demonstrat, putem spune că implicația "E implică F" este adevărată; dacă E este adevărată, atunci trebuie ca F să fie adevărată pentru ca această implicație să fie adevărată; deci, indiferent cum este E, dacă F este adevărată, atunci implicatia respectivă este adevărată; și, dacă recitim acest paragraf, observăm că implicația "E implică F" este adevărată exact atunci când (adică atunci și **numai atunci când**) fie E este falsă, fie F este adevărată (fie ambele)

 \leftrightarrow se numește *echivalența* și se citește "echivalent"; dacă E și F sunt enunțuri (proprietăți) referitoare la obiecte, atunci $E \leftrightarrow F$ se citește "E este echivalentă cu F" și semnifică acea proprietate care este adevărată ddacă au loc și $E \to F$, și $F \to E$, i. e. acea proprietate care este adevărată ddacă E și F sunt simultan false sau simultan adevărate (adică sunt ambele false sau ambele adevărate) (**temă**: citiți de mai sus semnificația implicației și justificați (i. e. arătați "în cuvinte") faptul că proprietatea $E \leftrightarrow F$ (adică ambele proprietăți $E \to F$ și $F \to E$, adică proprietatea ($E \to F$) \land ($F \to E$), după cum arată definiția conjuncției) este adevărată ddacă E și F sunt fie ambele false, fie ambele adevărate)

Simbolurile \forall și \exists se numesc *cuantificatorii*.

- \forall se numește cuantificatorul universal și se citește "oricare ar fi"; dacă α este o variabilă (un nume variabil) și P este o proprietate referitoare la obiecte, atunci $\forall \alpha P(\alpha)$ se citește "pentru orice α , $P(\alpha)$ " și este acea proprietate care este adevărată ddacă orice obiect α satisface proprietatea P (α poate fi un nume variabil pentru mulțimi, caz în care condiția anterioară devine: orice mulțime satisface proprietatea P, sau poate fi un nume variabil pentru clase, caz în care condiția anterioară devine: orice clasă satisface proprietatea P)
- \exists se numește *cuantificatorul existențial* și se citește "există"; dacă α este o variabilă (un nume variabil) și P este o proprietate referitoare la obiecte, atunci $\exists \alpha P(\alpha)$ se citește "există α , a. î. $P(\alpha)$ " și este acea proprietate care este adevărată ddacă există (măcar, cel puțin) un obiect α care satisface proprietatea P (α poate fi un nume variabil pentru mulțimi, caz în care condiția anterioară devine: există (măcar) o mulțime care satisface proprietatea P, sau poate fi un nume variabil pentru clase, caz în care condiția anterioară devine: există (măcar) o clasă care satisface proprietatea P)

 Vom folosi și parantezele rotunde și pătrate, pentru a delimita enunțuri (i. e. proprietăți) și obiecte cu notații compuse din mai multe simboluri (vom vedea ce sunt acestea).

Am prezentat limbajul pe care îl vom folosi. Acum începem prezentarea (efectivă a) acestui sistem axiomatic pentru teoria mulțimilor. În primul rând, se consideră că există cel putin o multime.

Definiție

Pentru orice mulțimi x și y, dacă, oricare ar fi z, faptul că $z \in x$ implică $z \in y$ (adică orice element al lui x este și element al lui y), atunci scriem $x \subseteq y$ și spunem că x este o submulțime a lui y.

I. Axioma extensionalității de mulțimi:

• Intuitiv: Dacă $x \subseteq y$ și $y \subseteq x$, atunci x = y.

• Formal (i. e. formalizat):
$$\begin{cases} \forall x \forall y [(x \subseteq y \land y \subseteq x) \to x = y] \\ \text{sau} \\ \forall x \forall y [\forall z (z \in x \leftrightarrow z \in y) \to x = y] \end{cases}$$

Dacă citim a doua exprimare formalizată a acestei axiome, observăm că ea spune că două mulțimi cu aceleași elemente coincid.

Pentru cele ce urmează, această primă axiomă arată unicitatea mulțimilor la care ne vom referi mai jos, care sunt descrise prin precizarea elementelor lor.

Reciproca afirmaţiei din această axiomă, anume faptul că două mulţimi care coincid au aceleaşi elemente, este o consecinţă a proprietăţii de **substitutivitate** a simbolului =.

Definiție

O mulțime n care nu conține niciun element (i. e. pentru care are loc: $\neg \exists x(x \in n)$)) se numește *mulțime vidă*.

Teoremă

Există o unică mulțime vidă.

Unicitatea în teorema anterioară este o consecință a **Axiomei I**. Pentru a demonstra existența, se aplică **Axioma XI** pentru a arăta că există o clasă N având ca elemente acele obiecte x care satisfac proprietatea $x \neq x$, și **Axioma V** pentru a arăta că "intersecția" dintre clasa N și o mulțime arbitrară a este o mulțime, pe care o notăm cu n. Deci $n = \{x \in a \mid x \neq x\}$, folosind notațiile cunoscute din teoria naivă a mulțimilor. Sigur că niciun obiect x nu satisface proprietatea $x \neq x$, ceea ce înseamnă că x nu are niciun element.

Notație

Vom nota cu *n* mulțimea vidă (despre care în acest moment ne mulțumim să știm că, dacă există, atunci este unică).

II. Axioma perechii:

- Intuitiv: Pentru orice elemente a şi b, există o mulțime y care conține doar a și b.
- Formal: $\forall a \forall b \exists y \forall x [x \in y \leftrightarrow (x = a \lor x = b)]$

Definiție

O mulțime care conține doar elementele a și b se numește perechea formată din a și b și se notează $\{a,b\}$ sau $\{b,a\}$. Perechea ordonată formată din a și b se notează < a,b > și se definește prin: $< a,b >= \{a,\{a,b\}\}$.

Să remarcăm că, în **Axioma II** și definiția anterioară, nu a fost impusă condiția ca a să nu coincidă cu b.

Definiție

O clasă se numește *relație* ddacă toate elementele ei sunt perechi ordonate.

Definiție

Dacă F este o clasă (relație sau clasă oarecare), atunci definim:

- domeniul lui F, notat D(F), ca fiind clasa ce are ca membri exact acele elemente x pentru care există y astfel încât $< x, y > \in F$
- imaginea lui F, notată R(F), ca fiind clasa ce are ca membri exact acele elemente y pentru care există x astfel încât $< x, y > \in F$ (R de la englezescul "range")

Definiție

O clasă F se numește funcție ddacă F este relație și are loc:

$$\forall x \forall y \forall z [(< x, y > \in F \land < x, z > \in F) \rightarrow y = z]$$

(intuitiv: pentru orice x, există cel mult un y (desigur, $y \in R(F)$) a. î. $\langle x, y \rangle \in F$, sau, cu o exprimare echivalentă: pentru orice $x \in D(F)$, există un unic y (desigur, $y \in R(F)$) a. î. $\langle x, y \rangle \in F$).

Notație

Să notăm cu Fnc proprietatea care se aplică claselor și spune că o clasă este funcție, adică, pentru orice clasă F, notația Fnc(F) semnifică faptul că F este o funcție.

Notație

Dacă F este o funcție și $x \in D(F)$, atunci notăm cu F(x) unicul element y (desigur, $y \in R(F)$) care verifică: $\langle x, y \rangle \in F$.

III. Axioma reuniunii:

- Intuitiv: Pentru orice mulţime a, există mulţimea ale cărei elemente sunt exact membrii membrilor lui a ("exact" = "nici mai mult, nici mai puţin" = "sunt toate acestea şi numai acestea").
- Formal: $\forall a \exists y \forall x [x \in y \leftrightarrow \exists z (x \in z \land z \in a)]$

Definiție

Pentru orice mulțimi a și b, mulțimea ale cărei elemente sunt membrii membrilor perechii $\{a,b\}$ (adică membrii lui a și membrii lui b, adică membrii lui a sau b) se numește reuniunea lui a și b și se notează $a \cup b$.

În axioma de mai sus intervine o **reuniune arbitrară** (vom vedea) (se reunesc membrii lui *a*).

IV. Axioma mulţimii părţilor:

- Intuitiv: Pentru orice mulțime a, există mulțimea ale cărei elemente sunt exact submulțimile lui a.
- Formal: $\forall a \exists y \forall x (x \in y \leftrightarrow x \subseteq a)$

Știm că mulțimea submulțimilor unei mulțimi a se mai numește *mulțimea părților* lui a.

V. Axioma submulţimilor:

- Intuitiv: Pentru orice clasă P şi orice mulţime a, există o mulţime ale cărei elemente sunt exact acei membri ai lui a care sunt şi membri ai lui P (în limbajul cunoscut al teoriei naive a mulţimilor, intersecţia unei mulţimi cu o clasă este o mulţime, şi, prin urmare, orice submulţime a unei mulţimi este, la rândul ei, o mulţime, sau, dacă dorim să renunţăm la restricţia simbolului ⊆ la mulţimi, impusă în definiţia acestui simbol, care face afirmaţia anterioară trivială, orice "subclasă" a unei mulţimi este, la rândul ei, o mulţime).
- Formal: $\forall P \forall a \exists y \forall x [x \in y \leftrightarrow (x \in a \land x \in P)]$

VI. Axioma infinității:

• Intuitiv: Pentru orice element o, există o mulțime z cu următoarele

```
proprietăți: \begin{cases} o \in z \\ \text{si} \\ \text{dacă } x \in z, \text{ atunci } (x \cup \{x\}) \in z. \end{cases}
```

• Formal: $\forall o \exists z [o \in z \land \forall x (x \in z \rightarrow (x \cup \{x\}) \in z)]$

De ce se numește axioma infinității această axiomă? Observăm că această a VI-a axiomă "seamănă" cu principiul inducției matematice. În fapt, această axiomă poate fi folosită pentru a defini numerele naturale, pentru a "construi" mulțimea numerelor naturale. Cum? În primul rând, ce vor fi numerele naturale? Ca să fie obiecte în cadrul acestui sistem axiomatic (altfel spus, în teoria matematică fundamentată pe (generată de) acest sistem axiomatic), vor trebui să fie mulțimi sau clase, pentru că acestea sunt obiectele aici. Ca să fie elemente ale unei mulțimi, pe care o vom numi mulțimea numerelor naturale, vor trebui să fie mulțimi, pentru că nicio clasă nu va fi element al unui obiect, în particular element al mulțimii numerelor naturale.

Și atunci, cum putem construi numerele naturale $0,1,2,3,\ldots,m,\ldots$, și mulțimea lor, notată \mathbb{N} , pe baza **axiomei infinității**? Pur și simplu:

- alegem în locul variabilei o din această axiomă un element arbitrar, pe care îl fixăm și îl notăm cu 0,
- mulţimea obţinută din această axiomă, din Axioma XI (vom vedea) şi Axioma V (a submulţimilor) pornind de la elementul 0 în locul lui o şi neavând niciun element în plus faţă de elementele obţinute din 0 "prin procedeul descris în această axiomă", adică mulţimea având ca elemente exact pe 0 şi elementele de mai jos, va fi notată cu N,
- iar numerele naturale "nenule" vor fi definite "recurent", sau "din aproape în

```
\mathsf{aproape}^\text{":} \begin{cases} 1 := 0 \cup \{0\}, \\ 2 := 1 \cup \{1\}, \\ 3 := 2 \cup \{2\}, \\ \vdots \\ m+1 := m \cup \{m\}, \\ \vdots \end{cases}
```

lar, cu această construcție, **Axioma I (a extensionalității de mulțimi)** (care spune că două mulțimi cu aceleași elemente coincid) implică **principiul inducției matematice**:

• dacă mulțimea M a numerelor naturale care verifică o anumită proprietate conține pe 0 și, pentru orice număr natural m pe care îl conține, M conține și numărul natural m+1, atunci $M=\mathbb{N}$.

VII. Axioma înlocuirii:

- Intuitiv: Dacă F este o funcție și a este o mulțime, atunci există o mulțime ale cărei elemente sunt exact elementele F(x), pentru toți membrii x ai lui a care se află în D(F).
- Formal: $\forall F[Fnc(F) \rightarrow \forall a \exists b \forall y [y \in b \leftrightarrow \exists x (x \in a \land x \in D(F) \land y = F(x))]]$

Cine este acea mulțime b, în limbajul cunoscut din teoria naivă a mulțimilor? b este imaginea mulțimii $a \cap D(F)$ prin funcția F, notată uzual cu $F(a \cap D(F))$.

VIII. Axioma alegerii globale:

- Intuitiv: Există o funcție F al cărei domeniu conține toate mulțimile nevide și astfel încât, pentru fiecare mulțime nevidă y, F(y) este membru al lui y (desigur, mulțime nevidă = mulțime care nu coincide cu mulțimea vidă, n).
- Formal: $\exists F[Fnc(F) \land \forall y[y \neq n \rightarrow (y \in D(F) \land F(y) \in y)]]$

Funcția F "alege" câte un element F(y) din fiecare mulțime nevidă y.

IX. Axioma fundării:

- Intuitiv: Orice clasă P care are cel puţin un membru are un membru minimal u, i. e. există un element u cu proprietatea că u este membru al lui P, dar niciun membru al lui u nu este membru al lui P.
- Formal: $\forall P[\exists u(u \in P) \rightarrow \exists u[u \in P \land \forall x(x \in u \rightarrow x \notin P)]]$

Această axiomă spune că orice șir $u_0, u_1, u_2, u_3, \ldots$ de membri ai unei clase P, cu $u_1 \in u_0, u_2 \in u_1, u_3 \in u_2$ ș. a. m. d., este finit (i. e. nu există un astfel de șir infinit; cu notațiile cunoscute din teoria naivă a mulțimilor, nu există un șir $(u_m)_{m \in \mathbb{N}} \subseteq P$ cu $u_{m+1} \in u_m$ pentru orice $m \in \mathbb{N}$).

X. Axioma extensionalității claselor:

- Intuitiv: Oricare ar fi clasele A și B, dacă, pentru fiecare element x, x este membru al clasei A ddacă x este membru al clasei B, atunci A coincide cu B.
- Formal: $\forall A \forall B [\forall x (x \in A \leftrightarrow x \in B) \rightarrow A = B]$

Această axiomă spune că două clase cu aceleași elemente coincid, întocmai cum se întâmplă în cazul particular al mulțimilor, în care acest fapt era cunoscut din **Axioma I (a extensionalității de mulțimi)**.

XI. Axioma comprehensiunii predicative:

- Intuitiv: Dacă P este o proprietate referitoare la obiecte, care nu conține cuantificatori aplicați unor clase (adică expresii de forma "oricare ar fi o clasă X" sau "există o clasă X astfel încât"), atunci există o clasă având ca membri exact acele elemente x care satisfac proprietatea P.
- Formal, pentru o proprietate P ca mai sus: $\exists A \forall x (x \in A \leftrightarrow P(x))$

Așa cum am anunțat mai sus, într–o referire la teoria naivă a mulțimilor și în mai multe aplicații, dacă, în axioma anterioară, elementele x nu sunt oarecare, ci sunt elemente ale unei mulțimi y, atunci, conform **Axiomei V** (a submulțimilor), A este o mulțime, anume, cu notațiile cunoscute din teoria naivă a mulțimilor, $A = \{x \in y \mid P(x)\}.$

Motivul pentru care **Axioma XI (a comprehensiunii predicative)** poartă acest nume este faptul că astfel de proprietăți P, care capătă sens (înțeles, "valoare de adevăr", adică putem spune despre ele că sunt adevărate sau false) numai atunci când sunt aplicate unor obiecte "concrete", fixate, constante, adică numai atunci când scriem $P(\omega)$, cu ω obiect fixat, constant, se numesc predicate, sau propoziții (enunțuri) cu variabile (variabilă în acest caz, dar în general putem avea mai multe variabile, și să scriem $P(\alpha,\beta)$, $P(\alpha,\beta,\gamma)$ etc.).

Proprietățile (enunțurile) "fără variabile", care nu se aplică unor obiecte, ci sunt "în sine (ele însele)" adevărate sau false, se numesc *propoziții*.

Aceste definiții fac parte din limbajul logicii matematice, și vor fi formulate riguros mai târziu.

Exemplu

Enunțul "2 este un număr par" este o propoziție (adevărată).

Enunțul "x este un număr par" este un *predicat* cu variabila x, în care înlocuirea lui x cu 2 produce o propoziție adevărată (anume chiar propoziția de mai sus), iar înlocuirea lui x cu 1 produce o propoziție falsă.

Observație

Materialul prezentat până în acest moment nu face parte din materia pentru examen, cu excepția primei definiții naive a noțiunii de **mulțime**. Dar parcurgerea acestui material este foarte utilă pentru înțelegerea cursurilor care vor urma.

Observație

În cursurile următoare, vom adopta punctul de vedere al teoriei naive a mulțimilor, cu excepția cazurilor în care vom menționa că facem apel la o axiomă a teoriei mulțimilor. Toate rezultatele pe care le cunoaștem din gimnaziu și liceu despre mulțimi și funcții pot fi demonstrate pornind de la orice sistem axiomatic al teoriei mulțimilor, în particular de la cel de mai sus, deci, în orice moment, în ce vom studia, ne vom afla în cadrul acestor sisteme axiomatice. Definiția funcției însă nu o vom da în cazul general de mai sus, ci vom adopta definiția din gimnaziu și liceu, unde o funcție este considerată a fi definită între două mulțimi, nu între două clase oarecare.