Team Reference Document Team #define true false, TU München NWERC 2014

Inhaltsverzeichnis

0															
C++ Input/Output/Lii	nits		 		 . . .		 	 		 					
Y															
Computations															
Greatest Common Div															
Binomial Coefficients			 	٠.	 		 	 	 •	 	 •	 •		 •	•
ata Structures															
Union Find			 		 		 	 		 	 			 	
lath-Stuff															
Euclid-Stuff			 		 		 	 		 					
Gauss-Jordan			 		 		 	 		 					
Collected Binomials .			 		 		 	 		 				 	
hortest Paths															
Floyd-Warshall			 		 . . .		 	 		 					
Dijkstra/Java			 		 		 	 		 					
Bellman-Ford/Java		 	 		 					
low															
MaxFlow Push-Relab	el		 		 		 	 		 				 •	
latching															
Max Bipartite Matchi	200														
Max Dipartite Materia	ıg		 		 	•	 ٠.	 •	 •	 	 •	 •	• •	 •	•
raph Stuff															
Strongly Connected C	omponents	s	 		 		 	 		 	 			 	
Topological Sort	-														
trings															
Suffix Array			 		 		 	 		 					
Knuth-Morris-Pratt A	gorithm		 		 		 	 		 					
eometry															
Geometry/C++															
Geometry/Java															
Graham Scan – Konve															
Delaunay Triangulation	n		 		 		 	 		 					
rees															
Binary Indexed Tree .															
Segment Tree- TODO															
KD-tree			 		 		 	 		 					

```
      Misc
      15

      Longest Increasing Subsequence
      15

      Simulated Annealing
      15

      Simplex Algorithm
      16

      Dates
      17

      Primes
      17

      LatLon
      17

      Theoretical CS Cheat Sheet
      19
```

i neoreticai CS Cheat Sheet

Ю

C++ Input/Output/Limits

```
#include <iostream>
#include <iomanip>
#include <fstream>
#include <sstream>
#include <limits >
#include <algorithm>
#include <math.h>
#include <cstdlib>
#include <queue>
#include <vector>
#include <set>
#include <map>
#include <unordered_map>
#include <unordered set>
using namespace std;
const int iMAX = numeric limits < int >::max();
const int iMIN = numeric limits < int >::min();
typedef long long LL;
int main() {
  // massively improve cout and cin performance for large streams
  ios::sync_with_stdio(false);
   cin.tie(0);
  // Ouput a specific number of digits past the decimal point, in this case 5
   cout.setf(ios::fixed); cout << setprecision(5);</pre>
  cout << 100.0/7.0 << endl;
   cout.unsetf(ios::fixed);
  // Output the decimal point and trailing zeros
   cout.setf(ios::showpoint);
   cout << 100.0 << endl;
  // Output a '+' before positive values
  cout.setf(ios::showpos);
   cout << 100 << " " << -100 << endl;
  // Output numerical values in hexadecimal
   cout << hex << 100 << " " << 1000 << " " << 10000 << dec << endl;
```

Computations

Greatest Common Divisor

```
long gcd(long a, long b) {
    if (b == 0) return a;
    else return gcd(b, a % b);
}
```

Binomial Coefficients

```
long binomial(long n, long k) {
    if (k > n - k) return binomial(n, n - k);
    long result = 1;
    if (k > n) return 0;
    for (long next = 1; next <= k; ++next) {
        long cancelled = gcd(result, next);
        result = (result / cancelled) * (n - next + 1);
        result /= next / cancelled;
    }
    return result;
}</pre>
```

Data Structures

Union Find

```
initialize(): for all x, boss[x] = x, rank[x] = 0.

union(x, y)
    a = find(x); b = find(y);
    if (rank(a) < rank(b)) boss[a] = b;
    if (rank(a) > rank(b)) boss[b] = a;
    if (rank(a) == rank(b)) {boss[b] = a; rank[a] += 1;}

find(x)
    if (boss[x] == x] return x;
    boss[x] = find(boss[x]); // path compression
    return boss[x];
```

Math-Stuff

Euclid-Stuff

```
// This is a collection of useful code for solving problems that
// involve modular linear equations. Note that all of the
// algorithms described here work on nonnegative integers.

typedef vector<int> VI;
typedef pair<int,int> PII;
// return a % b (positive value)
int mod(int a, int b) {
    return ((a%b)+b)%b;
}
```

```
// computes gcd(a,b)
int gcd(int a, int b) {
 int tmp:
 while (b) { a\%=b; tmp=a; a=b; b=tmp;}
 return a:
// computes lcm(a,b)
int lcm(int a, int b) {
 return a/gcd(a,b)*b;
// returns d = gcd(a,b); finds x,y such that d = ax + by
int extended euclid(int a, int b, int &x, int &y) {
 int xx = y = 0;
 int yy = x = 1;
  while (b) {
   int q = a/b;
   int t = b; b = a\%b; a = t;
   t = xx; xx = x-q*xx; x = t;
   t = yy; yy = y-q*yy; y = t;
 return a;
// finds all solutions to ax = b \pmod{n}
VI modular linear equation solver(int a, int b, int n) {
 int x, y;
  VI solutions;
  int d = extended_euclid(a, n, x, y);
  if (!(b%d)) {
   x = mod (x*(b/d), n);
   for (int i = 0; i < d; i++)
      solutions.push_back(mod(x + i*(n/d), n));
 return solutions;
// computes b such that ab = 1 \pmod{n}, returns -1 on failure
int mod inverse(int a, int n) {
 int x, y;
 int d = extended_euclid(a, n, x, y);
 if (d > 1) return -1;
 return mod(x,n);
// Chinese remainder theorem (special case): find z such that
// z % x = a, z % y = b. Here, z is unique modulo M = lcm(x,y).
// Return (z,M). On failure, M=-1.
PII chinese_remainder_theorem(int x, int a, int y, int b) {
 int s. t:
 int d = extended_euclid(x, y, s, t);
 if (a\%d != b\%d) return make pair(0, -1);
 return make_pair(mod(s*b*x+t*a*y,x*y)/d, x*y/d);
```

```
69 // Chinese remainder theorem: find z such that
70 // z % x[i] = a[i] for all i. Note that the solution is
71 // unique modulo M = Icm_i (x[i]). Return (z,M). On
_{72} // failure, M = -1. Note that we do not require the a[i]'s
73 // to be relatively prime.
74 PII chinese_remainder_theorem(const VI &x, const VI &a) {
   PII ret = make pair(a[0], x[0]);
   for (int i = 1; i < x.size(); i++) {
      ret = chinese_remainder_theorem(ret.second, ret.first, x[i], a[i]);
      if (ret.second == -1) break;
   return ret:
83 // computes x and y such that ax + by = c; on failure, x = y = -1
84 void linear diophantine (int a, int b, int c, int &x, int &y) {
   int d = gcd(a,b);
   if (c%d) {
      x = y = -1;
   } else {
      x = c/d * mod inverse(a/d, b/d);
      y = (c-a*x)/b;
   int main() {
    // expected: 2
    cout \ll gcd(14, 30) \ll endl;
    // expected: 2 -2 1
    int x, y;
    int d = extended_euclid(14, 30, x, y);
    cout << d << " " << x << " " << y << endl;
103
    // expected: 95 45
    VI sols = modular linear equation solver(14, 30, 100);
    for (int i = 0; i < (int) sols.size(); i++) cout << sols[i] << " ";
    cout << endl;
108
    // expected: 8
    cout << mod inverse(8, 9) << endl;
111
    // expected: 23 56
                 11 12
    int xs[] = \{3, 5, 7, 4, 6\};
    int as [] = \{2, 3, 2, 3, 5\};
    PII ret = chinese_remainder_theorem(VI (xs, xs+3), VI(as, as+3));
    cout << ret.first << " " << ret.second << endl;</pre>
    ret = chinese_remainder_theorem (VI(xs+3, xs+5), VI(as+3, as+5));
    cout << ret.first << " " << ret.second << endl;</pre>
120
    // expected: 5 -15
121
```

```
linear_diophantine(7, 2, 5, x, y);
cout << x << " " << y << endl;
}
```

Gauss-Jordan

```
// Gauss-Jordan elimination with full pivoting.
 // Uses:
      (1) solving systems of linear equations (AX=B)
     (2) inverting matrices (AX=I)
      (3) computing determinants of square matrices
 1//
// Running time: O(n^3)
// INPUT:
              a[][] = an nxn matrix
              b[][] = an nxm matrix
12 //
| // OUTPUT: X
                     = an nxm matrix (stored in b[][])
              A^{-1} = an nxn matrix (stored in a[][])
              returns determinant of a[][]
 const double EPS = 1e-10;
 typedef vector<int> VI;
 typedef double T:
 typedef vector<T> VT;
 typedef vector < VT> VVT;
 T GaussJordan(VVT &a, VVT &b) {
   const int n = a.size();
   const int m = b[0]. size();
   VI irow(n), icol(n), ipiv(n);
   T det = 1;
   for (int i = 0; i < n; i++) {
     int pj = -1, pk = -1;
     for (int j = 0; j < n; j++) if (!ipiv[j])
      for (int k = 0; k < n; k++) if (!ipiv[k])
    if (p_i == -1 \mid | fabs(a_{[i]}[k]) > fabs(a_{[i]}[pk]))  { p_i = i; p_k = k; }
     if (fabs(a[pj][pk]) < EPS) { cerr << "Matrix is singular." << endl; exit(0); }
     ipiv[pk]++;
     swap(a[pi], a[pk]);
     swap(b[pi], b[pk]);
     if (pj != pk) det *= -1;
     irow[i] = pj;
     icol[i] = pk;
     T c = 1.0 / a[pk][pk];
     det *= a[pk][pk];
     a[pk][pk] = 1.0;
     for (int p = 0; p < n; p++) a[pk][p] *= c;
     for (int p = 0; p < m; p++) b[pk][p] *= c;
     for (int p = 0; p < n; p++) if (p != pk) {
       c = a[p][pk];
```

```
a[p][pk] = 0;
      for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
      for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
 for (int p = n-1; p >= 0; p--) if (irow[p] != icol[p]) {
    for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);
 return det;
int main() {
 const int n = 4;
 const int m = 2;
 double A[n][n] = \{ \{1,2,3,4\}, \{1,0,1,0\}, \{5,3,2,4\}, \{6,1,4,6\} \} \}
 double B[n][m] = \{ \{1,2\}, \{4,3\}, \{5,6\}, \{8,7\} \} \}
 VVT a(n), b(n);
 for (int i = 0; i < n; i++) {
   a[i] = VT(A[i], A[i] + n);
   b[i] = VT(B[i], B[i] + m);
 double det = GaussJordan(a, b);
 // expected: 60
 cout << "Determinant: " << det << endl;</pre>
 // expected: -0.233333 0.166667 0.133333 0.0666667
               0.166667 \ 0.166667 \ 0.333333 \ -0.333333
               0.233333 \ 0.833333 \ -0.133333 \ -0.0666667
               0.05 - 0.75 - 0.1 0.2
 cout << "Inverse: " << endl;</pre>
 for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++)
      cout << a[i][j] << ' ';
    cout << endl;
 // expected: 1.63333 1.3
               -0.166667 0.5
               2.36667 1.7
               -1.85 - 1.35
 cout << "Solution: " << endl;</pre>
 for (int i = 0; i < n; i++) {
   for (int j = 0; j < m; j++)
      cout << b[i][j] << ' ';
    cout << endl;
```

Collected Binomials

```
//Berechnet alle Binomialkoeffizienten (n ueber k) mod m mit n<N
```

```
int binom[N][N];
void calcbinomials(int m) {
    for(int n=0; n<N; n++) {
        binom[n][0] = binom[n][n] = 1;
        for(int k=1; k<n; k++)
            binom[n][k] = (binom[n-1][k]+binom[n-1][k-1])%m;
    }
}
//Berechnet einzelnen Binomialkoeffizienten in Restklasse O(log n)
void calcbinom(int n, int k, int m) {
    return (fak[n] * inverse(fak[k], m) * inverse(fak[n-k], m))%m;
} //fak[n] = (n!)%m

//Berechnet fuer fixes n fuer alle k (n ueber k) O(n)
void calcbinomrow(int n) {
    binom[n][0] = 1;
    for(int k=1; k<=n; k++) {
        binom[n][k] = binom[n][k-1]*(n-k+1)/k; //*inv(k) % MOD
}
}
</pre>
```

Shortest Paths

Flovd-Warshall

Floyd-Warshall kommt mit negativen Gewichten zurecht. All sources, all targets.

```
procedure FloydWarshallWithPathReconstruction ()
    for k := 1 to n
       for i := 1 to n
          for j := 1 to n
              if (path[i][k] + path[k][j] < path[i][j]) {</pre>
                path[i][j] := path[i][k]+path[k][j];
                next[i][j] := next[i][k];
function Path (i,j)
   if path[i][i] equals infinity then
       return "no path";
    int intermediate := next[i][j];
    if intermediate equals 'null' then
        return " ";
    else
        return Path(i,intermediate)
          + intermediate
          + Path(intermediate, j);
```

Dijkstra/Java

```
PriorityQueue < Item > q = new PriorityQueue < Item > ();
Item[] index = new Item[n];
for(int i = 0; i < n; ++i) index[i] = new Item(-1, oo);
index[start] = new Item(-1, 0);</pre>
```

```
q.add(new Item(start, 0));
                                                                                              jackpot = true;
                                                                                              break:
  while (!q.isEmpty()) {
     Item curr = q.poll();
                                                                                           Item it = index[i];
     if (curr.value > index[curr.node].value) continue;
                                                                                            ArrayList < Item > e = v.get(i);
     /* if (curr.node == end) break; */
                                                                                            for(int x = 0; x < e.size(); ++x) {
     ArrayList < Item > edges = v.get(curr.node);
                                                                                              Item edge = e.get(x);
     for(int i = 0; i < edges.size(); ++i) {
                                                                                              double nv = edge.value + it.value;
        int nv = edges.get(i).value + curr.value;
                                                                                              Item other = index[edge.node];
        int otherNode = edges.get(i).node;
                                                                                              if (nv < other.value) {</pre>
        Item oi = index[otherNode];
                                                                                                  other.value = nv;
        if (nv < oi.value) {</pre>
                                                                                                  if (!inQueue[edge.node]) {
           oi.value = nv;
                                                                                                     q.add(edge.node);
           oi.node = curr.node;
                                                                                                     if (nextPhaseStart == -1) nextPhaseStart = edge.node;
                                                                                                     inQueue[edge.node] = true;
           q.add(new Item(otherNode, nv));
                                                                                              }
25 return index;
```

Bellman-Ford/Java

```
static class Item {
     public int node;
     public double value;
  ArrayList < ArrayList < Item >> v = new ArrayList < ArrayList < Item >> (n);
  for (int i = 0; i < n; ++i) {
     v.add(new ArrayList < Item > ());
10 // Kanten einfuegen:
11 // v.get(a).add(new Item(b, c));
12 ArrayDeque<Integer > q = new ArrayDeque<Integer > ();
13 Item[] index = new Item[n];
_{14} | index[0] = new | Item(-1, 0);
15 for (int i = 1; i < n; ++i) {
     index[i] = new Item(-1, oo);
boolean[] inQueue = new boolean[n];
inQueue[0] = true;
_{21} int phase = 0;
int nextPhaseStart = -1;
23 q.add(0);
24 boolean jackpot = false; // neg cycle
while (!q.isEmpty()) {
     int i = q.poll();
     inQueue[i] = false;
     if (i == nextPhaseStart) {
     phase++;
     nextPhaseStart = -1;
_{32} if (phase == n-1) {
     System.out.format("Case \#%d: Jackpot\n", numCase+1);
```

Flow

MaxFlow Push-Relabel

```
struct Edge {
 int from, to, cap, flow, index;
 Edge(int from, int to, int cap, int flow, int index):
   from(from), to(to), cap(cap), flow(flow), index(index) {}
};
struct PushRelabel {
 int N:
 vector<vector<Edge> > G;
 vector<LL> excess;
 vector<int> dist, active, count;
 queue<int > Q:
  PushRelabel(int N): N(N), G(N), excess(N), dist(N), active(N), count(2*N) {}
  void AddEdge(int from, int to, int cap) {
   G[from].push back(Edge(from, to, cap, 0, G[to].size()));
   if (from == to) G[from].back().index++;
   G[to].push back(Edge(to, from, 0, 0, G[from].size() - 1));
  void Enqueue(int v) {
   if (!active[v] \&\& excess[v] > 0) { active[v] = true; Q.push(v); }
  void Push(Edge &e) {
   int amt = int(min(excess[e.from], LL(e.cap - e.flow)));
    if (dist[e.from] <= dist[e.to] || amt == 0) return;</pre>
    e.flow += amt:
   G[e.to][e.index].flow -= amt;
    excess[e.to] += amt;
    excess[e.from] -= amt;
    Enqueue (e.to);
  void Gap(int k) {
    for (int v = 0; v < N; v++) {
     if (dist[v] < k) continue;</pre>
     count[dist[v]]--;
      dist[v] = max(dist[v], N+1);
     count[dist[v]]++;
     Enqueue(v);
  void Relabel(int v) {
   count[dist[v]]--;
    dist[v] = 2*N;
    for (int i = 0; i < G[v]. size(); i++)
     if (G[v][i].cap - G[v][i].flow > 0)
   dist[v] = min(dist[v], dist[G[v][i].to] + 1);
    count[dist[v]]++;
```

```
Enqueue(v);
54
   }
    void Discharge(int v) {
      for (int i = 0; excess[v] > 0 && i < G[v].size(); i++) Push(G[v][i]);
      if (excess[v] > 0) {
       if (count[dist[v]] == 1)
     Gap(dist[v]);
        else
     Relabel(v);
    LL GetMaxFlow(int s, int t) {
      count[0] = N-1;
      count[N] = 1;
      dist[s] = N;
      active[s] = active[t] = true;
      for (int i = 0; i < G[s].size(); i++) {
        excess[s] += G[s][i].cap;
        Push(G[s][i]);
      while (!Q.empty()) {
        int v = Q. front();
        Q.pop();
        active[v] = false;
        Discharge(v);
      LL totflow = 0;
      for (int i = 0; i < G[s]. size(); i++) totflow += G[s][i]. flow;
      return totflow:
  };
```

Matching

Max Bipartite Matching

```
int BipartiteMatching(const VVI &w, VI &mr, VI &mc) {
    mr = VI(w.size(), -1);
    mc = VI(w[0].size(), -1);

int ct = 0;
    for (int i = 0; i < w.size(); i++) {
        VI seen(w[0].size());
        if (FindMatch(i, w, mr, mc, seen)) ct++;
     }
    return ct;
}</pre>
```

Graph Stuff

Strongly Connected Components

```
// Der Graph.
  vector < int > g[20000];
  // Anzahl der Knoten im Graphen.
  int V;
  // Interne Variablen fuer den Algorithmus
  int d[20000], low[20000];
  int t:
 vector<int> stack;
10 bool instack[20000];
  // Ergebnis-Struktur: enthaelt am Ende die starken
  //Zusammenhangskomponenten (als Listen von Knotenindizes)
vector<vector<int> > sccs;
  void VISIT(int v) {
   d[v] = low[v] = ++t;
    stack.push back(v);
    instack[v] = true;
    for (vector<int>::iterator w = g[v].begin(); w != g[v].end(); ++w) {
     if (! d[*w]) {
        VISIT(*w);
        low[v] = min(low[v], low[*w]);
      } else if (instack[*w]) {
        low[v] = min(low[v], low[*w]);
    if (d[v] == low[v]) {
      vector<int> scc;
      while (1) {
       int w = stack.back();
        stack.pop_back();
        instack[w] = false;
        scc.push_back(w);
        if (v == w)
          break:
```

```
}
sccs.push_back(scc);
}

// Aufruf der VISIT Funktion:
memset(d, 0, sizeof(d));
memset(instack, 0, sizeof(instack));
t = 0;
for (int v = 0; v < V; v++)
if (! d[v])
VISIT(v);
</pre>
```

Topological Sort

```
void dsf(int x) {
    if(visited[x] {
        if(!f[x]) circle = true;
        return;
    }
    visited[x] = true;
    for(Integer curr : list.get(x)) dsf(curr);
    out[tt] = x;
    tt++;
    f[x] = true;
}
```

Strings

Suffix Array

```
struct SuffixArray {
 const int L;
 string s;
 vector<vector<int> > P;
 vector<pair<pair<int,int>,int> > M;
 Suffix Array (const string &s): L(s.length()), s(s), P(1, vector<int>(L, 0)), M(L)
   for (int i = 0; i < L; i++) P[0][i] = int(s[i]);
   for (int skip = 1, level = 1; skip < L; skip *= 2, level++) {
     P.push back(vector<int>(L, 0));
     for (int i = 0; i < L; i++)
     M[i] = make_pair(make_pair(P[level-1][i],
               i + skip < L ? P[level - 1][i + skip] : -1000),
           i);
     sort (M. begin (), M. end ());
     for (int i = 0; i < L; i++)
  P[level][M[i].second] = (i > 0 && M[i].first == M[i-1].first)?
      P[level][M[i-1].second] : i;
 vector<int> GetSuffixArray() { return P.back(); }
```

```
// returns the length of the longest common prefix of s[i...L-1] and s[j...L-1]
  int LongestCommonPrefix(int i, int j) {
    int len = 0:
    if (i == j) return L - i;
    for (int k = P. size() - 1; k >= 0 && i < L && j < L; k--) {
     if (P[k][i] == P[k][i]) {
  i += 1 << k;
  i += 1 << k;
   len += 1 << k;
    return len;
};
int main() {
 // bobocel is the 0'th suffix
 // obocel is the 5'th suffix
      bocel is the 1'st suffix
       ocel is the 6'th suffix
       cel is the 2'nd suffix
         el is the 3'rd suffix
       I is the 4'th suffix
 SuffixArray suffix ("bobocel");
  vector<int> v = suffix.GetSuffixArray();
 // Expected output: 0 5 1 6 2 3 4
 for (int i = 0; i < v.size(); i++) cout << v[i] << " ";
 cout << endl;
 cout << suffix.LongestCommonPrefix(0, 2) << endl;</pre>
```

Knuth-Morris-Pratt Algorithm

```
/* Searches for the string w in the string s (of length k). Returns the 0-based index of the first match (k if no match is found).

Algorithm runs in O(k) time. */

typedef vector<int> VI;

void buildTable(string& w, VI& t)
{
    t = VI(w.length());
    int i = 2, j = 0;
    t[0] = -1; t[1] = 0;

while(i < w.length())
{
    if (w[i-1] == w[j]) { t[i] = j+1; i++; j++; }
    else if (j > 0) j = t[j];
    else { t[i] = 0; i++; }
}
```

```
int KMP(string&s, string&w)
 int m = 0, i = 0;
 VI t:
 buildTable(w, t);
 while (m+i < s.length())
   if(w[i] == s[m+i])
     if (i == w.length()) return m;
   else
     m += i-t[i];
     if(i > 0) i = t[i];
 return s.length();
int main()
 string a = (string) "The example above illustrates the general technique for assembling "-
   "the table with a minimum of fuss. The principle is that of the overall search:
   "most of the work was already done in getting to the current position, so very
   "little needs to be done in leaving it. The only minor complication is that the
   "logic which is correct late in the string erroneously gives non-proper "+
   "substrings at the beginning. This necessitates some initialization code.";
 string b = "table";
 int p = KMP(a, b);
 cout << p << ":" << a.substr(p, b.length()) << "" << b << endl;
```

Geometry

Geometry/C++

```
double INF = 1e100;
double EPS = 1e-12;

struct PT {
    double x, y;
    PT() {}
    PT(double x, double y) : x(x), y(y) {}
    PT(const PT &p) : x(p.x), y(p.y) {}
    PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
    PT operator - (const PT &p) const { return PT(x-p.x, y-p.y); }
    PT operator * (double c) const { return PT(x*c, y*c); }
    PT operator / (double c) const { return PT(x*c, y*c); }
```

```
13 };
double dot(PT p, PT q) { return p.x*q.x+p.y*q.y; }
16 double dist2 (PT p, PT q) { return dot(p-q,p-q); }
double cross(PT p, PT q) { return p.x*q.y-p.y*q.x; }
ostream & operator < < (ostream & os, const PT & p) {
   OS << "(" << p.x << "," << p.y << ")";
21
22 // rotate a point CCW or CW around the origin
PT RotateCCW90(PT p) { return PT(-p.y,p.x); }
24 PT RotateCW90(PT p) { return PT(p.y,-p.x); }
25 PT RotateCCW(PT p, double t) {
  return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
28
29 // project point c onto line through a and b
30 // assuming a != b
PT ProjectPointLine(PT a, PT b, PT c) {
return a + (b-a)*dot(c-a, b-a)/dot(b-a, b-a);
34
35 // project point c onto line segment through a and b
36 PT ProjectPointSegment(PT a, PT b, PT c) {
   double r = dot(b-a,b-a);
   if (fabs(r) < EPS) return a;</pre>
   r = dot(c-a, b-a)/r;
   if (r < 0) return a;
   if (r > 1) return b;
   return a + (b-a)*r;
44
45 // compute distance from c to segment between a and b
46 double DistancePointSegment(PT a, PT b, PT c) {
   return sgrt(dist2(c, ProjectPointSegment(a, b, c)));
48 }
49
_{50} // compute distance between point (x,y,z) and plane ax+by+cz=d
double DistancePointPlane(double x. double v. double z.
                            double a, double b, double c, double d)
52
   return fabs (a*x+b*y+c*z-d)/ sqrt(a*a+b*b+c*c):
57 // determine if lines from a to b and c to d are parallel or collinear
bool LinesParallel(PT a. PT b. PT c. PT d) {
   return fabs(cross(b-a, c-d)) < EPS;</pre>
60 }
62 bool LinesCollinear(PT a, PT b, PT c, PT d) {
   return LinesParallel(a, b, c, d)
        && fabs(cross(a-b, a-c)) < EPS
64
        && fabs(cross(c-d, c-a)) < EPS;
67
```

```
68 // determine if line segment from a to b intersects with
   // line seament from c to d
   bool SegmentsIntersect(PT a, PT b, PT c, PT d) {
   if (LinesCollinear(a, b, c, d)) {
      if (dist2(a, c) < EPS || dist2(a, d) < EPS ||
        dist2(b, c) < EPS || dist2(b, d) < EPS) return true;
      if (dot(c-a, c-b) > 0 \& dot(d-a, d-b) > 0 \& dot(c-b, d-b) > 0)
        return false:
      return true:
    if (cross(d-a, b-a) * cross(c-a, b-a) > 0) return false;
    if (cross(a-c, d-c) * cross(b-c, d-c) > 0) return false;
    return true:
   // compute intersection of line passing through a and b
  // with line passing through c and d. assuming that unique
  // intersection exists; for segment intersection, check if
   // segments intersect first
  PT ComputeLineIntersection(PT a, PT b, PT c, PT d) {
    b=b-a; d=c-d; c=c-a;
    assert(dot(b, b) > EPS && dot(d, d) > EPS);
    return a + b*cross(c, d)/cross(b, d);
   // compute center of circle given three points
  PT ComputeCircleCenter(PT a, PT b, PT c) {
    b=(a+b)/2:
    c = (a+c)/2;
    return ComputeLineIntersection(b, b+RotateCW90(a-b), c, c+RotateCW90(a-c));
ιο // determine if point is in a possibly non-convex polygon (by William
| | // Randolph Franklin); returns 1 for strictly interior points, 0 for
// strictly exterior points, and 0 or 1 for the remaining points.
// Note that it is possible to convert this into an *exact* test using
// integer arithmetic by taking care of the division appropriately
10s // (making sure to deal with signs properly) and then by writing exact
  // tests for checking point on polygon boundary
bool PointInPolygon(const vector<PT> &p, PT q) {
    bool c = 0:
    for (int i = 0; i < p.size(); i++){
      int i = (i+1)\%p.size();
      if ((p[i].y <= q.y && q.y < p[j].y ||
        p[j].y \le q.y && q.y < p[i].y) &&
        q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y))
        c = !c:
    return c;
117 }
   // determine if point is on the boundary of a polygon
bool PointOnPolygon(const vector<PT> &p, PT q) {
    for (int i = 0; i < p.size(); i++)
      if (dist2(ProjectPointSegment(p[i], p[(i+1)%p.size()], q), q) < EPS)</pre>
```

```
return true;
124
       return false:
125
126
   // compute intersection of line through points a and b with
   // circle centered at c with radius r > 0
vector<PT> CircleLineIntersection (PT a, PT b, PT c, double r) {
130
    vector<PT> ret;
    b = b-a:
    a = a-c:
    double A = dot(b, b);
    double B = dot(a, b);
    double C = dot(a, a) - r * r;
     double D = B*B - A*C;
    if (D < -EPS) return ret:
     ret.push_back(c+a+b*(-B+sqrt(D+EPS))/A);
    if (D > EPS)
       ret.push back(c+a+b*(-B-sqrt(D))/A);
    return ret;
141
142 }
143
   // compute intersection of circle centered at a with radius r
145 // with circle centered at b with radius R
146 vector<PT> CircleCircleIntersection(PT a, PT b, double r, double R) {
    vector<PT> ret:
    double d = sqrt(dist2(a, b));
    if (d > r+R \mid\mid d+min(r, R) < max(r, R)) return ret;
    double x = (d*d-R*R+r*r)/(2*d);
    double y = sqrt(r*r-x*x);
    PT v = (b-a)/d;
     ret.push back(a+v*x + RotateCCW90(v)*y);
    if (y > 0)
      ret.push back(a+v*x - RotateCCW90(v)*y);
    return ret:
156
157 }
158
   // This code computes the area or centroid of a (possibly nonconvex)
160 // polygon, assuming that the coordinates are listed in a clockwise or
161 // counterclockwise fashion. Note that the centroid is often known as
162 // the "center of gravity" or "center of mass".
double ComputeSignedArea(const vector<PT> &p) {
    double area = 0;
    for(int i = 0; i < p.size(); i++) {
      int j = (i+1) \% p.size();
      area += p[i].x*p[j].y - p[j].x*p[i].y;
167
168
    return area / 2.0;
170 }
171
double ComputeArea(const vector <PT> &p) {
    return fabs(ComputeSignedArea(p));
173
174 }
PT ComputeCentroid(const vector<PT> &p) {
   PT c(0,0);
```

```
double scale = 6.0 * ComputeSignedArea(p);
    for (int i = 0; i < p.size(); i++){}
      int i = (i+1) \% p.size();
      c = c + (p[i]+p[j])*(p[i].x*p[j].y - p[j].x*p[i].y);
    return c / scale;
  // tests whether or not a given polygon (in CW or CCW order) is simple
bool IsSimple(const vector<PT> &p) {
   for (int i = 0; i < p.size(); i++) {
      for (int k = i+1; k < p.size(); k++) {
        int i = (i+1) \% p. size();
        int I = (k+1) \% p. size();
        if (i == | | | | | == k) continue;
        if (SegmentsIntersect(p[i], p[j], p[k], p[l]))
          return false:
    return true:
  int main() {
    // expected: (-5,2)
    cerr << RotateCCW90(PT(2,5)) << endl;</pre>
    // expected: (5.-2)
    cerr << RotateCW90(PT(2,5)) << endl;</pre>
    // expected: (-5,2)
    cerr << RotateCCW(PT(2,5),M_PI/2) << endl;</pre>
    // expected: (5,2)
    cerr << ProjectPointLine(PT(-5,-2), PT(10,4), PT(3,7)) << endl;
    // expected: (5,2) (7.5,3) (2.5,1)
    cerr << ProjectPointSegment(PT(-5,-2), PT(10,4), PT(3,7)) << "
         << ProjectPointSegment(PT(7.5,3), PT(10,4), PT(3,7)) << " "
         << ProjectPointSegment(PT(-5,-2), PT(2.5,1), PT(3,7)) << endl;
    // expected: 6.78903
    cerr \ll DistancePointPlane(4,-4,3,2,-2,5,-8) \ll endl;
    // expected: 1 0 1
    cerr << LinesParallel(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
         << LinesParallel(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << " "
         << LinesParallel(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
    // expected: 0 0 1
    cerr << LinesCollinear(PT(1,1), PT(3,5), PT(2,1), PT(4,5)) << " "
         << LinesCollinear(PT(1,1), PT(3,5), PT(2,0), PT(4,5)) << ""
         << LinesCollinear(PT(1,1), PT(3,5), PT(5,9), PT(7,13)) << endl;
    // expected: 1 1 1 0
```

```
cerr << SegmentsIntersect(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << " "
234
          \ll SegmentsIntersect(PT(0,0), PT(2,4), PT(4,3), PT(0,5)) \ll "
          \leftarrow SegmentsIntersect(PT(0,0), PT(2,4), PT(2,-1), PT(-2,1)) \leftarrow ""
235
          << SegmentsIntersect(PT(0,0), PT(2,4), PT(5,5), PT(1,7)) << endl;
236
237
     // expected: (1,2)
     cerr << ComputeLineIntersection(PT(0,0), PT(2,4), PT(3,1), PT(-1,3)) << endl;
239
240
     // expected: (1,1)
241
     cerr << ComputeCircleCenter(PT(-3,4), PT(6,1), PT(4,5)) << endl;
243
     vector <PT> v;
244
    v.push_back(PT(0,0));
245
    v.push back(PT(5,0));
246
    v.push back(PT(5,5));
247
    v.push_back(PT(0,5));
248
249
     // expected: 1 1 1 0 0
250
251
     cerr << PointInPolygon(v, PT(2,2)) << " "
          << PointInPolygon(v, PT(2,0)) << " "
252
253
          << PointInPolygon(v, PT(0,2)) << " "
          << PointInPolygon(v, PT(5,2)) << " "</pre>
254
          << PointInPolygon(v, PT(2,5)) << endl;</pre>
255
256
257
    // expected: 0 1 1 1 1
     cerr << PointOnPolygon(v, PT(2,2)) << " "
258
          << PointOnPolygon(v, PT(2,0)) << " "
259
          << PointOnPolygon(v, PT(0,2)) << " "
260
          << PointOnPolygon(v, PT(5,2)) << " "
261
262
          << PointOnPolygon(v, PT(2,5)) << endl;</pre>
263
    // expected: (1.6)
                  (5,4)(4,5)
265
                  blank line
266
                   (4,5) (5,4)
267
                  blank line
                  (4.5)(5.4)
269
    vector < PT > u = CircleLineIntersection(PT(0,6), PT(2,6), PT(1,1), 5);
270
    for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
271
     u = CircleLineIntersection(PT(0,9), PT(9,0), PT(1,1), 5);
272
     for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr <math><< endl;
273
    u = CircleCircleIntersection(PT(1,1), PT(10,10), 5, 5);
    for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr <math><< endl;
275
     u = CircleCircleIntersection(PT(1,1), PT(8,8), 5, 5);
    for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr <math><< endl;
     u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 10, sqrt(2.0)/2.0);
    for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
279
     u = CircleCircleIntersection(PT(1,1), PT(4.5,4.5), 5, sqrt(2.0)/2.0);
    for (int i = 0; i < u.size(); i++) cerr << u[i] << " "; cerr << endl;
281
282
    // area should be 5.0
283
    // centroid should be (1.1666666, 1.166666)
    PT pa[] = \{ PT(0,0), PT(5,0), PT(1,1), PT(0,5) \};
    vector <PT> p(pa, pa+4);
    PT c = ComputeCentroid(p);
```

```
cerr << "Area: " << ComputeArea(p) << endl;
cerr << "Centroid: " << c < endl;
return 0;
}
```

Geometry/Java

```
P cross(P o) {
   return new P(y*0.z-z*0.y, z*0.x-x*0.z, x*0.y-y*0.x);
P scalar(P o) {
   return new P(x*o.x, y*o.y, z*o.z);
P r90() {
   return new P(-y, x, z);
P parallel(P p) {
   return cross(zeroOne).cross(p);
Point2D getPoint() {
   return new Point2D.Double(x / z, y / z);
static double computePolygonArea(ArrayList < Point2D. Double > points) {
   Point2D.Double[] pts = points.toArray(new Point2D.Double[points.size()]);
   double area = 0;
   for (int i = 0; i < pts.length; i++) {
      int j = (i+1) \% pts.length;
      area += pts[i].x * pts[i].y - pts[i].x * pts[i].y;
   return Math.abs(area)/2;
```

Graham Scan – Konvexe Huelle

- 1. Finde p_0 mit min y, Unentschieden: betrachte x
- 2. Sortiere $p_{1...n}$. $p_i < p_j = ccw(p_0, p_i, p_j)$ (colinear \rightarrow naechster zuerst)
- 3. Setze $p_{n+1} = p_0$
- 4. $Push(p_0)$; $Push(p_1)$; $Push(p_2)$;
- 5. for i = 3 to n + 1
 - (a) Solange Winkel der letzten zwei des Stacks und p_i rechtskurve: Pop()
 - (b) $Push(p_i)$

```
int minPoint = 0;
for(int i = 1; i < n; ++i) {
   if(points[i].y < points[minPoint].y ||</pre>
```

```
(points[i].y == points[minPoint].y &&
           points[i].x < points[minPoint].x)) {</pre>
     minPoint = i;
final int mx = points[minPoint].x;
final int my = points[minPoint].y;
Arrays.sort(points, new Comparator<Point>() {
     @Override
     public int compare(Point a, Point b) {
        int ccw = Line2D.relativeCCW(mx, my, a.x, a.y, b.x, b.y);
        if (ccw == 0 || Line2D.relativeCCW (mx, my, b.x, b.y, a.x, a.y) == 0) {
           // gleich...
           double d1 = a.distance(mx, my);
           double d2 = b. distance (mx, my);
           if ((d2 < d1 \&\& d2 != 0) || d1 == 0) {
              return 1:
           } else {
              return -1;
        } else if(ccw == 1) {
           // clockwise ... -> zuerst b -> a > b
           return 1;
        else if (ccw == -1) {
           return -1;
        } else {
           System.out.println("shouldnt happen");
           System.exit(1);
        return 0;
35 });
37 ArrayList < Integer > stack = new ArrayList < Integer > ();
38 stack.add(n-1);
39 for (int i = 0; i < n; ++i) {
    if(stack.size() < 2) {
        stack.add(i);
        continue:
     int last = stack.get(stack.size() - 1);
     int I2 = stack.get(stack.size() - 2);
     int ccw = Line2D.relativeCCW(points[12].x, points[12].y,
      points[last].x, points[last].y, points[i].x, points[i].y);
     if (ccw != -1) {
        // clockwise oder gleiche Linie
        stack.remove(stack.size() - 1);
       i --;
    } else {
        stack.add(i);
```

```
// Slow but simple Delaunay triangulation. Does not handle
// degenerate cases (from O'Rourke, Computational Geometry in C)
// Running time: O(n^4)
// INPUT:
            x[] = x-coordinates
            y[] = y-coordinates
// OUTPUT: triples = a vector containing m triples of indices
                       corresponding to triangle vertices
typedef double T:
struct triple {
   int i, j, k;
   triple() {}
    triple(int i, int j, int k) : i(i), j(j), k(k) {}
};
vector<triple > delaunayTriangulation(vector<T>& x, vector<T>& y) {
  int n = x.size();
  vector < T > z(n);
  vector<triple > ret;
  for (int i = 0; i < n; i++)
       Z[i] = X[i] * X[i] + Y[i] * Y[i];
  for (int i = 0; i < n-2; i++) {
       for (int j = i+1; j < n; j++) {
     for (int k = i+1; k < n; k++) {
          if (i == k) continue;
          double xn = (y[j]-y[i])*(z[k]-z[i]) - (y[k]-y[i])*(z[j]-z[i]);
          double yn = (x[k]-x[i])*(z[j]-z[i]) - (x[j]-x[i])*(z[k]-z[i]);
          double zn = (x[j]-x[i])*(y[k]-y[i]) - (x[k]-x[i])*(y[j]-y[i]);
          bool flag = zn < 0;
          for (int m = 0; flag && m < n; m++)
         flag = flag && ((x[m]-x[i])*xn +
               (y[m]-y[i])*yn +
               (z[m]-z[i])*zn <= 0);
          if (flag) ret.push_back(triple(i, j, k));
     }
      }
  return ret;
int main()
   T xs[]={0, 0, 1, 0.9};
   T ys[]={0, 1, 0, 0.9};
    vector < T > x(&xs[0], &xs[4]), y(&ys[0], &ys[4]);
    vector<triple > tri = delaunayTriangulation(x, y);
    //expected: 0 1 3
```

```
// 0 3 2

int i;
for(i = 0; i < tri.size(); i++)
    printf("%d %d %d\n", tri[i].i, tri[i].j, tri[i].k);
return 0;
}
```

Trees

Binary Indexed Tree

```
//binary indexed tree
//verwaltet kumultative Summen in log(n)
int tree[1<<N];
int MaxVal = (1 << N) - 1;
int readsum(int idx){//sum_{i in [1;idx]} f[i]
   int sum = 0:
   while (idx > 0){
     sum += tree[idx];
     idx = (idx \& -idx);
  return sum;
int suminrange(int a, int b) { //sum {i in [a;b[} f[i]
   return readsum(b-1)-readsum(a-1);
void update(int idx ,int val){ //updates f[idx]->val
   while (idx \le MaxVal)
     tree[idx] += val;
      idx += (idx \& -idx);
```

Segment Tree- TODO

TODO

KD-tree

```
// A straightforward, but probably sub-optimal KD-tree implmentation that's
// probably good enough for most things (current it's a 2D-tree)
//
// - constructs from n points in O(n lg^2 n) time
// - handles nearest-neighbor query in O(lg n) if points are well distributed
// - worst case for nearest-neighbor may be linear in pathological case
//
// Sonny Chan, Stanford University, April 2009
```

```
// number type for coordinates, and its maximum value
  typedef long long ntype;
  const ntype sentry = numeric_limits < ntype > :: max();
  // point structure for 2D-tree, can be extended to 3D
  struct point {
      ntype x, y;
      point(ntype xx = 0, ntype yy = 0) : x(xx), y(yy) {}
20 };
  bool operator == (const point &a, const point &b)
      return a.x == b.x && a.y == b.y;
  // sorts points on x-coordinate
  bool on_x(const point &a, const point &b)
     return a.x < b.x;
  // sorts points on y-coordinate
  bool on_y(const point &a, const point &b)
      return a.y < b.y;</pre>
  // squared distance between points
  ntype pdist2 (const point &a, const point &b)
      ntype dx = a.x-b.x, dy = a.y-b.y;
      return dx*dx + dy*dy;
  // bounding box for a set of points
  struct bbox
      ntype x0, x1, y0, y1;
      bbox(): x0(sentry), x1(-sentry), y0(sentry), y1(-sentry) {}
      // computes bounding box from a bunch of points
      void compute(const vector<point> &v) {
          for (int i = 0; i < v.size(); ++i) {
              x0 = min(x0, v[i].x); x1 = max(x1, v[i].x);
              y0 = min(y0, v[i].y); y1 = max(y1, v[i].y);
      }
      // squared distance between a point and this bbox, 0 if inside
      ntype distance(const point &p) {
          if (p.x < x0) {
              if (p.y < y0)
                                  return pdist2(point(x0, y0), p);
```

```
else if (p.y > y1) return pdist2(point(x0, y1), p);
               else
                                   return pdist2(point(x0, p.y), p);
           else if (p.x > x1) {
                                   return pdist2(point(x1, y0), p);
              if (p.y < y0)
               else if (p.y > y1) return pdist2(point(x1, y1), p);
                                   return pdist2(point(x1, p.y), p);
                                                                                       126 };
           else {
                                                                                       129 struct kdtree
               if (p.y < y0)
                                   return pdist2(point(p.x, y0), p);
               else if (p.y > y1) return pdist2(point(p.x, y1), p);
                                   return 0;
                                                                                              kdnode *root;
  };
  // stores a single node of the kd-tree, either internal or leaf
82 struct kdnode
      bool leaf:
                       // true if this is a leaf node (has one point)
                       // the single point of this is a leaf
       point pt:
      bbox bound:
                      // bounding box for set of points in children
      kdnode *first, *second; // two children of this kd-node
      kdnode() : leaf(false), first(0), second(0) {}
      ~kdnode() { if (first) delete first; if (second) delete second; }
      // intersect a point with this node (returns squared distance)
      ntype intersect(const point &p) {
           return bound.distance(p);
      // recursively builds a kd-tree from a given cloud of points
      void construct(vector<point> &vp)
           // compute bounding box for points at this node
101
          bound.compute(vp);
102
103
           // if we're down to one point, then we're a leaf node
           if (vp.size() == 1) {
               leaf = true;
               pt = vp[0];
                                                                                                  else {
107
          else {
109
110
               // split on x if the bbox is wider than high (not best heuristic...)
               if (bound.x1-bound.x0 >= bound.y1-bound.y0)
111
                   sort(vp.begin(), vp.end(), on x);
               // otherwise split on y-coordinate
                                                                                              }
               else
114
                   sort(vp.begin(), vp.end(), on_y);
115
116
               // divide by taking half the array for each child
               // (not best performance if many duplicates in the middle)
118
               int half = vp.size()/2;
119
```

```
vector<point> vl(vp.begin(), vp.begin()+half);
               vector<point> vr(vp.begin()+half, vp.end());
               first = new kdnode(); first ->construct(vI);
               second = new kdnode(); second->construct(vr);
12k // simple kd-tree class to hold the tree and handle queries
      // constructs a kd-tree from a points (copied here, as it sorts them)
      kdtree(const vector<point> &vp) {
          vector<point> v(vp.begin(), vp.end());
          root = new kdnode():
          root -> construct (v);
      ~kdtree() { delete root; }
      // recursive search method returns squared distance to nearest point
      ntype search(kdnode *node, const point &p)
           if (node->leaf) {
               // commented special case tells a point not to find itself
                 if (p == node->pt) return sentry;
                   return pdist2(p, node->pt);
          ntype bfirst = node->first ->intersect(p);
           ntype bsecond = node->second->intersect(p);
          // choose the side with the closest bounding box to search first
          // (note that the other side is also searched if needed)
          if (bfirst < bsecond) {</pre>
               ntype best = search(node->first, p);
               if (bsecond < best)</pre>
                   best = min(best, search(node->second, p));
               return best;
               ntype best = search(node->second, p);
               if (bfirst < best)</pre>
                   best = min(best, search(node->first, p));
               return best;
      // squared distance to the nearest
      ntype nearest(const point &p) {
          return search(root, p);
```

```
176
   // some basic test code here
178
   int main()
180 {
       // generate some random points for a kd-tree
181
       vector<point> vp;
182
       for (int i = 0; i < 100000; ++i) {
           vp.push back(point(rand()%100000, rand()%100000));
185
       kdtree tree(vp);
186
187
       // guery some points
       for (int i = 0; i < 10; ++i) {
           point q(rand()%100000, rand()%100000);
           cout << "Closest squared distance to (" << q.x << ", " << q.y << ")"
191
                << " is " << tree.nearest(q) << endl;</pre>
       return 0;
196
197
```

Misc

Longest Increasing Subsequence

```
1 // Given a list of numbers of length n, this routine extracts a
  // longest increasing subsequence.
 3 //
  // Running time: O(n log n)
  // INPUT: a vector of integers
  // OUTPUT: a vector containing the longest increasing subsequence
8 typedef vector<int> VI;
9 typedef pair<int,int> PII;
10 typedef vector<PII> VPII;
12 #define STRICTLY INCREASING
14 VI LongestIncreasingSubsequence(VI v) {
   VPII best:
    VI dad(v.size(), -1);
   for (int i = 0; i < v.size(); i++) {
19 #ifdef STRICTLY INCREASING
      PII item = make_pair(v[i], 0);
      VPII::iterator it = lower_bound(best.begin(), best.end(), item);
      item.second = i:
23 #else
      PII item = make_pair(v[i], i);
      VPII::iterator it = upper bound(best.begin(), best.end(), item);
26 #endif
```

```
if (it == best.end()) {
    dad[i] = (best.size() == 0 ? -1 : best.back().second);
    best.push_back(item);
} else {
    dad[i] = dad[it->second];
    *it = item;
}
}

VI ret;
for (int i = best.back().second; i >= 0; i = dad[i])
    ret.push_back(v[i]);
    reverse(ret.begin(), ret.end());
    return ret;
}
```

Simulated Annealing

```
Random r = new Random();
int numChanges = 0;
double T = 10000;
double alpha = 0.99;
int decreaseAfter = 20;
int nChanges = 0;
for (int i = 0; i < 1000000; ++i) {
  // calculate newCost (apply 2-opt-step) (swap two things)
  double delta = newCost - cost;
  boolean accept = newCost <= cost:
   if (!accept) {
      double R = r.nextDouble();
     double calc = Math.exp(-delta / T);
      double maxDiff = Math.exp(-10000/T);
     if (calc < maxDiff && i < 1000000/2) {
         calc = maxDiff;
      // System.out.println(calc);
      if (calc > R) {
         accept = true;
  // if (i \% 10000 == 0) {
      // System.out.println("after " + i + ": " + T);
  //}
   if (nChanges >= decreaseAfter) {
     nChanges = 0:
     T = alpha * T;
   if (accept) {
     cost = newCost;
     numChanges++;
     nChanges++;
  } else {
     // swap back
     swap(trip , a, b);
```

```
38 }
39 }
```

Simplex Algorithm

```
// Two-phase simplex algorithm for solving linear programs of the form
2 //
3 //
         maximize
                      c^T x
         subject to Ax \le b
 5 //
                      x >= 0
 6 //
  // INPUT: A -- an m x n matrix
           b -- an m-dimensional vector
8 //
 9 //
           c -- an n-dimensional vector
            x -- a vector where the optimal solution will be stored
10 //
11 //
  // OUTPUT: value of the optimal solution (infinity if unbounded
             above, nan if infeasible)
14 //
15 // To use this code, create an LPSolver object with A, b, and c as
\frac{16}{16} // arguments. Then, call Solve(x).
17 typedef long double DOUBLE;
18 typedef vector < DOUBLE> VD;
19 typedef vector < VD> VVD;
20 typedef vector<int> VI;
22 const DOUBLE EPS = 1e-9;
24 struct LPSolver {
    int m, n;
   VIB, N;
    VVD D;
    LPSolver(const VVD &A, const VD &b, const VD &c):
      m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, VD(n+2))
      for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] = A[i][j];
      for (int i = 0; i < m; i++) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; }
      for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
      N[n] = -1; D[m+1][n] = 1;
    void Pivot(int r, int s) {
      for (int i = 0; i < m+2; i++) if (i != r)
       for (int j = 0; j < n+2; j++) if (j != s)
     D[i][j] = D[r][j] * D[i][s] / D[r][s];
      for (int j = 0; j < n+2; j++) if (j != s) D[r][j] /= D[r][s];
      for (int i = 0; i < m+2; i++) if (i != r) D[i][s] /= -D[r][s];
      D[r][s] = 1.0 / D[r][s];
      swap(B[r], N[s]);
    bool Simplex(int phase) {
      int x = phase == 1 ? m+1 : m;
      while (true) {
       int s = -1;
```

```
for (int j = 0; j <= n; j++) {
   if (phase == 2 \&\& N[j] == -1) continue;
   if (s == -1 \mid |D[x][i] < D[x][s] \mid |D[x][i] == D[x][s] & N[i] < N[s]) s = i;
     if (D[x][s] >= -EPS) return true;
     int r = -1;
     for (int i = 0; i < m; i++) {
   if (D[i][s] <= 0) continue;</pre>
  if (r == -1 || D[i][n+1] / D[i][s] < D[r][n+1] / D[r][s] ||
      D[i][n+1] / D[i][s] == D[r][n+1] / D[r][s] && B[i] < B[r]) r = i;
     if (r == -1) return false;
     Pivot(r, s);
 DOUBLE Solve(VD &x) {
   int r = 0:
   for (int i = 1; i < m; i++) if (D[i][n+1] < D[r][n+1]) r = i;
   if (D[r][n+1] <= -EPS) {
     Pivot(r, n);
     if (!Simplex(1) || D[m+1][n+1] < -EPS) return -numeric_limits <DOUBLE>::infinity ();
     for (int i = 0; i < m; i++) if (B[i] == -1) {
  int s = -1:
  for (int j = 0; j <= n; j++)
    if (s == -1 \mid D[i][j] < D[i][s] \mid D[i][j] == D[i][s] && N[j] < N[s]) s = j;
  Pivot(i, s);
     }
   if (!Simplex(2)) return numeric limits < DOUBLE > :: infinity();
   for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n+1];
   return D[m][n+1];
};
int main() {
 const int m = 4:
 const int n = 3:
 DOUBLE A[m][n] = {
   \{6, -1, 0\},\
   \{-1, -5, 0\},\
   { 1, 5, 1 },
   \{-1, -5, -1\}
 DOUBLE _b[m] = \{ 10, -4, 5, -5 \};
 DOUBLE c[n] = \{ 1, -1, 0 \};
 VVD A(m);
 VD b(\_b, \_b + m);
 VD c(_c, _c + n);
 for (int i = 0; i < m; i++) A[i] = VD(A[i], A[i] + n);
 LPSolver solver(A, b, c);
 VD x:
```

```
2453089
     DOUBLE value = solver.Solve(x);
                                                                                                    3/24/2004
107
     cerr << "VALUE: "<< value << endl;
                                                                                                    Wed
108
109
     cerr << "SOLUTION:":
                                                                                              cout << id << endl
     for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];
                                                                                                << m << "/" << d << "/" << y << endl
     cerr << endl:
                                                                                                << day << endl;
111
    return 0;
113
```

Dates

```
// Routines for performing computations on dates. In these routines,
  // months are expressed as integers from 1 to 12, days are expressed
  // as integers from 1 to 31, and years are expressed as 4-digit
  // integers.
  string dayOfWeek[] = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
  // converts Gregorian date to integer (Julian day number)
  int dateToInt (int m, int d, int y){
   return
      1461 * (y + 4800 + (m - 14) / 12) / 4 +
      367 * (m - 2 - (m - 14) / 12 * 12) / 12 -
      3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +
      d - 32075:
15 }
  // converts integer (Julian day number) to Gregorian date: month/day/year
void intToDate (int jd, int &m, int &d, int &y){
   int x, n, i, j;
20
   x = id + 68569;
   n = 4 * x / 146097:
   x = (146097 * n + 3) / 4;
   i = (4000 * (x + 1)) / 1461001;
   x = 1461 * i / 4 - 31;
   i = 80 * x / 2447;
   d = x - 2447 * j / 80;
   x = i / 11;
   m = j + 2 - 12 * x;
   y = 100 * (n - 49) + i + x;
  // converts integer (Julian day number) to day of week
34 string intToDay (int id){
   return dayOfWeek[jd % 7];
36 }
  int main (int argc, char **argv){
    int jd = dateToInt (3, 24, 2004);
    int m, d, y;
   intToDate (jd, m, d, y);
    string day = intToDay (jd);
43
    // expected output:
```

Primes

```
// Other primes:
      The largest prime smaller than 10 is 7.
      The largest prime smaller than 100 is 97.
      The largest prime smaller than 1000 is 997.
      The largest prime smaller than 10000 is 9973.
      The largest prime smaller than 100000 is 99991.
      The largest prime smaller than 1000000 is 999983.
1/
      The largest prime smaller than 10000000 is 9999991.
      The largest prime smaller than 100000000 is 99999989.
Ы //
      The largest prime smaller than 1000000000 is 999999937.
1 //
      The largest prime smaller than 10000000000 is 9999999967.
12 //
      The largest prime smaller than 10000000000 is 99999999977.
B //
      The largest prime smaller than 100000000000 is 999999999989.
14 //
      The largest prime smaller than 100000000000 is 999999999971.
15 //
      The largest prime smaller than 1000000000000 is 9999999999973.
16 //
      17 //
      The largest prime smaller than 100000000000000 is 99999999999937.
18 //
      The largest prime smaller than 100000000000000 is 999999999999997.
```

LatLon

```
/* Converts from rectangular coordinates to latitude/longitude and vice versa. Uses degrees (not radians). */
struct II {
    double r, lat, lon;
};

struct rect {
    double x, y, z;
};

II convert(rect& P) {
    II Q;
    Q.r = sqrt(P.x*P.x+P.y*P.y+P.z*P.z);
    Q.lat = 180/M_PI*asin(P.z/Q.r);
    Q.lon = 180/M_PI*acos(P.x/sqrt(P.x*P.x+P.y*P.y));

return Q;
}

rect convert(II& Q) {
    rect P;
    P.x = Q.r*cos(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);
```

```
23     P.y = Q.r*sin(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);
24     P.z = Q.r*sin(Q.lat*M_PI/180);
25     return P;
26     }
27     int main() {
29     rect A;
30     II B;
31
```

```
A.x = -1.0; A.y = 2.0; A.z = -3.0;

B = convert(A);
cout << B.r << " " << B.lat << " " << B.lon << endl;

A = convert(B);
cout << A.x << " " << A.y << " " << A.z << endl;

}
```

	Theoretical	Computer Science Cheat Sheet					
	Definitions	Series					
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$					
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$.	i=1 $i=1$ $i=1$ In general:					
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$					
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{k=1}^{m-1} i^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}.$					
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:					
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$					
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$					
$ \lim_{n \to \infty} \inf a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $ \frac{n}{n} = \sum_{i=1}^{n} 1 \qquad \sum_{i=1}^{n} \frac{n(n+1)}{n} \qquad n(n-1) $					
$ \limsup_{n \to \infty} a_n $	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$					
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$					
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	1. $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, 2. $\sum_{k=0}^{n} \binom{n}{k} = 2^n$, 3. $\binom{n}{k} = \binom{n}{n-k}$,					
$\left\{ egin{array}{l} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$					
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	8. $\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1},$ 9. $\sum_{k=0}^{n-1} {r \choose k} {s \choose n-k} = {r+s \choose n},$					
$\left\langle\!\left\langle {n\atop k}\right\rangle\!\right\rangle$	2nd order Eulerian numbers.	$10. \binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \qquad 11. \binom{n}{1} = \binom{n}{n} = 1,$					
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	13. $\binom{n}{2} = 2^{n-1} - 1,$ 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1},$					
	L J	$16. \begin{bmatrix} n \\ n \end{bmatrix} = 1, \qquad \qquad 17. \begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$					
		$ \binom{n}{n-1} = \binom{n}{n-1} = \binom{n}{2}, 20. \sum_{k=0}^{n} \binom{n}{k} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n}, $					
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle$	$\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, $24. \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,					
$25. \left\langle {0 \atop k} \right\rangle = \left\{ {1 \atop 0} \right\}$	if $k = 0$, otherwise 26. $\binom{n}{2}$						
28. $x^n = \sum_{k=0}^{n} \binom{n}{k}$	$\left\langle {x+k \choose n}, \qquad $ 29. $\left\langle {n \atop m} \right\rangle = \sum_{k=1}^{m}$	$\sum_{k=0}^{\infty} {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. m! \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^{\infty} {n \choose k} {k \choose n-m},$					
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n} \left\langle {n \atop m} \right\rangle = \sum_{k=0}^$	${n \choose k} {n-k \choose m} (-1)^{n-k-m} k!,$	32. $\left\langle \left\langle n \atop 0 \right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle n \atop n \right\rangle \right\rangle = 0$ for $n \neq 0,$					
34. $\left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle = (k + 1)^n$	-1) $\left\langle \left\langle {n-1\atop k} \right\rangle \right\rangle + (2n-1-k)\left\langle \left\langle {n-1\atop k} \right\rangle \right\rangle$						
$\begin{array}{ c c } \hline & 36. & \left\{ \begin{array}{c} x \\ x - n \end{array} \right\} = \begin{array}{c} 5 \\ \frac{2}{k} \end{array}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $ $2n$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$					

Theoretical Computer Science Cheat Sheet

 $\overline{\mathbf{38.} \begin{bmatrix} n+1 \\ m+1 \end{bmatrix}} = \sum_{k=0}^{n} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} n^{\underline{n-k}} = n! \sum_{k=0}^{n} \frac{1}{k!} {k \choose m}, \qquad \mathbf{39.} \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} {n \choose k} {x+k \choose 2n},$

40.
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} \binom{k}{m} (-1)^{m-k},$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k},$$
 45. $(n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k},$ for $n \ge m$,

$$\begin{array}{ccc}
(m) & \underset{k}{\longrightarrow} & (k+1) \lfloor m \rfloor \\
\mathbf{46.} & & \\
\end{array} = \sum \binom{m-n}{m-n} \binom{m+n}{m} \begin{bmatrix} m \\ & \\
\end{array}$$

46.
$${n \choose n-m}^k = \sum_k {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k} {m+k \choose n-m} = \sum_k {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$

$$48. \begin{cases} n \\ \ell + m \end{cases} {\ell + m \choose \ell} = \sum_{k=1}^{k} {k \choose k} {n - k \choose k},$$

$$\mathbf{48.} \ \, \left\{ \begin{matrix} n \\ \ell+m \end{matrix} \right\} \begin{pmatrix} \ell+m \\ \ell \end{pmatrix} = \sum_{k} \left\{ \begin{matrix} k \\ \ell \end{matrix} \right\} \begin{Bmatrix} n-k \\ m \end{Bmatrix} \begin{pmatrix} n \\ k \end{pmatrix}, \qquad \mathbf{49.} \ \, \left[\begin{matrix} n \\ \ell+m \end{matrix} \right] \begin{pmatrix} \ell+m \\ \ell \end{pmatrix} = \sum_{k} \left[\begin{matrix} k \\ \ell \end{matrix} \right] \begin{bmatrix} n-k \\ m \end{bmatrix} \begin{pmatrix} n \\ k \end{pmatrix}.$$

Every tree with nvertices has n-1edges.

Trees

Kraft inequality: If the depths of the leaves of a binary tree are

$$d_1, \dots, d_n$$
:

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$
$$= 2n(c^{\log_2 n} - 1)$$
$$= 2n(c^{(k-1)\log_c n} - 1)$$
$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:

$$\sum_{i>0} g_{i+1}x^i = \sum_{i>0} 2g_ix^i + \sum_{i>0} x^i.$$

We choose $G(x) = \sum_{i>0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{G(x)} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$

$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$

$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

	Theoretical Computer Science Cheat Sheet							
	$\pi \approx 3.14159,$	$e \approx 2.7$	_	1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$				
i	2^i	p_i	General	Probability				
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If				
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$				
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	Ja				
4	16	7	Change of base, quadratic formula:	then p is the probability density function of X . If				
5	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$				
6	64	13	ou	then P is the distribution function of X . If				
7	128	17	Euler's number e :	P and p both exist then				
8	256	19	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	$P(a) = \int_{-a}^{a} p(x) dx.$				
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J-\infty$				
10	1,024	29	$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$.	Expectation: If X is discrete				
11	2,048	31		$E[g(X)] = \sum g(x) \Pr[X = x].$				
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	If X continuous then				
13	8,192	41	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$				
14	16,384	43	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$				
15	32,768	47		Variance, standard deviation:				
16	65,536	53	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$				
17	131,072	59	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{\text{VAR}[X]}.$				
18	262,144	61	Factorial, Stirling's approximation:	For events A and B :				
19	524,288	67	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	$\Pr[A \lor B] = \Pr[A] + \Pr[B] - \Pr[A \land B]$				
$\begin{array}{c c} 20 \\ 21 \end{array}$	1,048,576	71	1, 2, 0, 24, 120, 120, 5040, 40320, 502660,	$\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$ iff A and B are independent				
$\frac{21}{22}$	2,097,152	73	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	iff A and B are independent. $P_{P}[A \land P]$				
$\frac{22}{23}$	4,194,304 8,388,608	79 83		$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$				
$\frac{23}{24}$	16,777,216	89	Ackermann's function and inverse:	For random variables X and Y :				
$\frac{24}{25}$	33,554,432	97	$a(i, j) = \begin{cases} 2^j & i = 1 \\ a(i-1, 2) & i = 1 \end{cases}$	$E[X \cdot Y] = E[X] \cdot E[Y],$				
26	67,108,864	101	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	if X and Y are independent.				
27	134,217,728	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X + Y] = E[X] + E[Y],				
28	268,435,456	107	Binomial distribution:	$\mathbf{E}[cX] = c\mathbf{E}[X].$				
29	536,870,912	109	I	Bayes' theorem:				
30	1,073,741,824	113	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}.$				
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = np.$					
32	4,294,967,296	131	$E[A] = \sum_{k=1}^{n} {\binom{k}{p}} q = np.$	Inclusion-exclusion:				
	Pascal's Triangl	le	Poisson distribution:	$\Pr\left[\bigvee X_i\right] = \sum \Pr[X_i] +$				
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, E[X] = \lambda.$	i=1 $i=1$ n k				
	1 1		Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^k X_{i_j}\right].$				
	1 2 1		$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	$k=2$ $i_i < \dots < i_k$ $j=1$ Moment inequalities:				
	1 3 3 1		$\sqrt{2\pi\sigma}$ The "coupon collector": We are given a	1				
	$\begin{array}{c} 1\ 4\ 6\ 4\ 1 \\ 1\ 5\ 10\ 10\ 5\ 1 \end{array}$		random coupon each day, and there are n	$\Pr[X \ge \lambda \operatorname{E}[X]] \le \frac{1}{\lambda},$				
	1 6 15 20 15 6	1	different types of coupons. The distribu-	$\Pr\left[\left X - \operatorname{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$				
	1 7 21 35 35 21 7		tion of coupons is uniform. The expected	Geometric distribution:				
	1 8 28 56 70 56 28		number of days to pass before we to collect all n types is	$\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$				
1	9 36 84 126 126 84		nH_n .	$\mathbf{p}[Y] = \sum_{k=0}^{\infty} l_{ma} k - 1 = 1$				
	5 120 210 252 210 1		"	$E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$				

Theoretical Computer Science Cheat Sheet

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$.

Identities:

$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot \frac{x}{2} - \cot x,$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$$

 $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$

$$\cos 2x = \cos^2 x - \sin^2 x, \qquad \cos 2x = 2\cos^2 x - 1,$$

$$\cos 2x = 1 - 2\sin^2 x,$$
 $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$$
 $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.02 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden

$$C = A \cdot B$$
, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$.

Matrices

Determinants: $\det A \neq 0$ iff A is non-singular.

$$\det A \cdot B = \det A \cdot \det B,$$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
$$= \frac{aei + bfg + cdh}{-ceg - fha - ibd}.$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$$

Identities:

$$\cosh^2 x - \sinh^2 x = 1,$$
 $\tanh^2 x + \operatorname{sech}^2 x = 1,$ $\coth^2 x - \operatorname{csch}^2 x = 1,$ $\sinh(-x) = -\sinh x,$ $\cosh(-x) = \cosh x,$ $\tanh(-x) = -\tanh x,$

 $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

 $\sinh 2x = 2\sinh x \cosh x$,

$$\cosh 2x = \cosh^2 x + \sinh^2 x,$$

$$\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$$

 $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$

$$2\sinh^2 \frac{x}{2} = \cosh x - 1, \quad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	in mathematics
0	0	1	0	you don't under-
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	stand things, you just get used to
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	them.
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	– J. von Neumann
π	1	0	∞	

More Trig.

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area:

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2 \sin A \sin B}{2 \sin C}.$$

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}}$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{\sin x}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$
$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

$$\cos x = \frac{2}{2},$$

$$\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$$

$$\tan x = -i\frac{e^{ix} + e^{-ix}}{e^{ix} + e^{-ix}},$$
$$= -i\frac{e^{2ix} - 1}{e^{2ix} + 1},$$

$$\sin x = \frac{\sinh ix}{i},$$

 $\cos x = \cosh ix,$

$$\tan x = \frac{\tanh ix}{i}.$$

neor	eticai Compt	iter Science Cheat Sheet	
Number Theory		Graph Th	1eo
The Chinese remainder theorem: There ex-	Definitions:		
sts a number C such that:	Loop	An edge connecting a vertex to itself.	
$C \equiv r_1 \bmod m_1$	Directed	Each edge has a direction.	
: : :	Simple	Graph with no loops or multi-edges.	
$C \equiv r_n \mod m_n$	Walk	A sequence $v_0e_1v_1\dots e_\ell v_\ell$.	
$f m_i$ and m_j are relatively prime for $i \neq j$.	Trail	A walk with distinct edges.	
Culer's function: $\phi(x)$ is the number of cositive integers less than x relatively	Path	A trail with distinct vertices.	
orime to x . If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then	Connected	A graph where there exists a path between any two vertices.	
$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$	Component	A maximal connected subgraph.	
Euler's theorem: If a and b are relatively	Tree	A connected acyclic graph.	
orime then $1 \equiv a^{\phi(b)} \bmod b.$	Free tree	A tree with no root.	
	DAG $Eulerian$	Directed acyclic graph. Graph with a trail visiting	
Fermat's theorem: $1 \equiv a^{p-1} \bmod p.$	Latertan	each edge exactly once.	
	Hamiltonian	Graph with a cycle visiting	
The Euclidean algorithm: if $a > b$ are in-		each vertex exactly once.	
egers then $gcd(a, b) = gcd(a \mod b, b).$	Cut	A set of edges whose removal increases the num-	
$f \prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x	Cut-set	ber of components. A minimal cut.	
hen $n_{n_i} = n_i e_i + 1$	Cut edge	A size 1 cut.	
$S(x) = \sum_{d x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$	-	A graph connected with the removal of any $k-1$	
Perfect Numbers: x is an even perfect num-	h Tough	vertices. $\forall S \subset V S \neq \emptyset$ we have	
per iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.	k- $Tough$	$\forall S \subseteq V, S \neq \emptyset$ we have $k \cdot c(G - S) \leq S $.	
Vilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$.	k-Regular	A graph where all vertices have degree k .	
Möbius inversion: $ \begin{pmatrix} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square free} \end{pmatrix} $	$k ext{-}Factor$	A k-regular spanning subgraph.	
$\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$	Matching	A set of edges, no two of which are adjacent.	
f	Clique	A set of vertices, all of which are adjacent.	
$G(a) = \sum_{d a} F(d),$	Ind. set	A set of vertices, none of which are adjacent.	
hen $F(a) = \sum \mu(d)G\left(\frac{a}{a}\right).$	Vertex cover	A set of vertices which cover all edges.	
$F(a) = \sum_{d a} \mu(d) G\left(\frac{a}{d}\right).$ Prime numbers:	Planar graph	A graph which can be embeded in the plane.	
Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$	Plane graph	An embedding of a planar graph.	
$+O\left(\frac{n}{\ln n}\right),$	Σ	$\sum_{v=1}^{\infty} \deg(v) = 2m.$	
` /	v	= V	
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$			

v	
Notatio	on:
E(G)	Edge set
V(G)	Vertex set
c(G)	Number of components
G[S]	Induced subgraph
deg(v)	Degree of v
$\Delta(G)$	Maximum degree
$\delta(G)$	Minimum degree
$\chi(G)$	Chromatic number
$\chi_E(G)$	Edge chromatic number
G^c	Complement graph
K_n	Complete graph
K_{n_1,n_2}	Complete bipartite graph
$r(k,\ell)$	Ramsey number
,	·

Geometry

Projective coordinates: triples (x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0$.

Cartesian Projective

Cartesian	1 To Jecuive
(x,y)	(x, y, 1)
y = mx + b	(m, -1, b)
x = c	(1, 0, -c)
	, ,

Distance formula, L_p and L_{∞} metric:

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$
$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p\right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle (x_0, y_0) , (x_1, y_1) and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

$$(x_2, y_2)$$

$$\ell_2$$

$$(0,0) \quad \ell_1 \quad (x_1, y_1)$$

$$\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$$

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

If I have seen farther than others, it is because I have stood on the shoulders of giants.

– Issac Newton

Any planar graph has a vertex with de-

gree ≤ 5 .