Team name:

Please write down all people in your team.

1.

2.

3.

4.

Grading

Question	Score	Max
1		3
2		3
3		3
Total		9

6.3 Probability in games of chance

Theorem 1

Given a simple experiment, called a **Bernoulli trial**, and an event that occurs with a probability p, if the trial is repeated independently n times, then the probability of having exactly k successes is

$$C(n,k) \cdot p^k \cdot (1-p)^{n-k}$$

a

Example 1 What is the probability that in 10 successive rolls of a fair, six-sided die, we get exactly five results of 6?

Here, we have n = 10, k = 5, and $p = \frac{1}{6}$, so:

$$C(10,5)\cdot (\frac{1}{6})^5\cdot (1-\frac{1}{6})^{10-5}$$

$$\frac{10!}{5!(10-5)!}\cdot(\frac{1}{6})^5\cdot(\frac{5}{6})^5$$

$$\frac{3628800}{14400} \cdot \frac{1}{7776} \cdot \frac{3125}{7776}$$

$$\approx 0.013$$

^aFrom Discrete Math by Ensley and Crawley, page 460

Question 1 ____ / 3

What is the probability of getting exactly 3 heads on 10 tosses of a fair coin?

n, the amount of trial repeats: _____

k, the amount of successes (heads):

p, the probability of success:

Use the formula of $C(n,k) \cdot p^k \cdot (1-p)^{n-k}$ to find the probability.

Question 2 _____ / 3

What is the probability that in seven rolls of a six-sided die, the result of 1 appears at least five times?

Hint

For this one, we will need to use the **rule of sums** to combine several outcomes: Getting 5 1's, 6 1's, OR 7 1's.

		repeats n	successes k	probability p
A	Getting five 1's	7	5	1/6
В	Getting six 1's	7		
С	Getting seven 1's	7		

Now, using the formula $C(n,k) \cdot p^k \cdot (1-p)^{n-k}$ three different times for case (A), (B), and (C).

(A)
$$C(n,k) \cdot p^k \cdot (1-p)^{n-k} =$$

(B)
$$C(n,k) \cdot p^k \cdot (1-p)^{n-k} =$$

(C)
$$C(n,k) \cdot p^k \cdot (1-p)^{n-k} =$$

To find the probability of getting at least five 1's in seven rolls, add (A), (B), and (C) together. (Just write out the formula; don't solve.)

Prob(at least five 1's) =

____/3

Question 3

What is the probability of getting exactly one 6 on 10 tosses of a fair six-sided die?