e5-AttitudeCtrl 姿态控制器设计

四旋翼无人机姿态控制器设计实验(SITL->HITL->FLY)

序号	实验名称	简介	文件地址	版本
1	基础	(1) 复现四旋翼飞行器的 Simulink 仿真,分析控制分配器的作用;(2)记录姿态的阶跃响应,并对开环姿态控制系统进行扫频以绘制 Bode 图,分析闭环姿态控制系统的稳定裕度;(3)完成四旋翼硬件在环仿真。	e5.1\Readme.pdf	免费版
2	分析	(1) 调节 PID 控制器相关参数以改善控制性能并记录超调量和调节时间,得到一组恰当参数; (2) 使用调试后的参数,对系统进行扫频以绘制 Bode 图,观察系统幅频响应,相频响应曲线,分析其稳定裕度。	e5.2\Readme.pdf	免费版
3	设计	(1)建立姿态控制通道的传递函数模型,设计校正控制器,使得姿态角速度环稳态误差,相位裕度>65°,截至频率>10rad/s。姿态角度环截至频率>5rad/s,相位裕度>60°;(2)使用自己设计的控制器进行硬件在环仿真实验;	e5.3\Readme.pdf	免费版
4	姿态控制器设计-实飞	熟悉实飞实验流程。	e5.4\Readme.pdf	免费版
5	基础	(1) 复现四旋翼飞行器的 Simulink 仿真,分析控制分配器的作用; (2) 记录姿态的阶跃响应,并对开环姿态控制系统进行扫频以绘制 Bode 图,分析闭环姿	e5.1\Readme.pdf	免费版

		态控制系统的稳定裕度;(3)完成四旋翼硬件在环仿		
		真。		
6	分析	(1) 调节 PID 控制器相关参数以改善控制性能并记	e5.2\Readme.pdf	免费版
		录超调量和调节时间,得到一组恰当参数;(2)使用		
		调试后的参数,对系统进行扫频以绘制 Bode 图,观		
		察系统幅频响应,相频响应曲线,分析其稳定裕度。		
7	设计	(1)建立姿态控制通道的传递函数模型,设计校正控制	e5.3\Readme.pdf	免费版
		器,使得姿态角速度环稳态误差 ,相位裕度>65°,截		
		至频率>10rad/s。姿态角度环截至频率>5rad/s,相位		
		裕度>60°;(2)使用自己设计的控制器进行硬件在环		
		仿真实验;		
8	姿态控制器设计-实飞	熟悉实飞实验流程。	e5.4\Readme.pdf	免费版
9	第 09 讲_实验五_姿态控制器	nan	第 09 讲_实验五_姿态控制器	免费版
	设计实验		设计实验.pdf	
10	第 11 讲_底层飞行控制 V2	nan	第 11 讲_底层飞行控制	免费版
			<u>V2.pdf</u>	

所有文件列表

序号	实验名称	简介	文件地址	版本
1	姿态控制器设计	四旋翼无人机姿态控制器设计实验	Readme.pdf	免费版
		(SITL->HITL->FLY)		
2	基础	(1)复现四旋翼飞行器的 Simulink 仿真,分析控制	e5.1\Readme.pdf	免费版
		分配器的作用;(2)记录姿态的阶跃响应,并对开环		
		姿态控制系统进行扫频以绘制 Bode 图,分析闭环姿		
		态控制系统的稳定裕度;(3)完成四旋翼硬件在环仿		
		真。		
3	分析	(1) 调节 PID 控制器相关参数以改善控制性能并记	e5.2\Readme.pdf	免费版
		录超调量和调节时间,得到一组恰当参数;(2)使用		
		调试后的参数,对系统进行扫频以绘制 Bode 图,观		
		察系统幅频响应,相频响应曲线,分析其稳定裕度。		
4	设计	(1)建立姿态控制通道的传递函数模型,设计校正控	e5.3\Readme.pdf	免费版
		制器,使得姿态角速度环稳态误差 , 相位裕度>65°,		
		截至频率>10rad/s。姿态角度环截至频率>5rad/s,相		
		位裕度>60°;(2)使用自己设计的控制器进行硬件在		
		环仿真实验;		
5	姿态控制器设计-实飞	熟悉实飞实验流程。	e5.4\Readme.pdf	免费版
6	第 09 讲_实验五_姿态控制器	nan	第 09 讲_实验五_姿态控制器	免费版
	设计实验		设计实验.pdf	
7	第 11 讲_底层飞行控制 V2	nan	第 11 讲_底层飞行控制	免费版
			V2.pdf	

8	基础	(1) 复现四旋翼飞行器的 Simulink 仿真,分析控制分配器的作用;(2)记录姿态的阶跃响应,并对开环	e5.1\Readme.pdf	免费版
		姿态控制系统进行扫频以绘制 Bode 图,分析闭环姿		
		态控制系统的稳定裕度;(3)完成四旋翼硬件在环仿		
		真。		
9	分析	(1) 调节 PID 控制器相关参数以改善控制性能并记	e5.2\Readme.pdf	免费版
		录超调量和调节时间,得到一组恰当参数;(2)使用		
		调试后的参数,对系统进行扫频以绘制 Bode 图,观		
		察系统幅频响应,相频响应曲线,分析其稳定裕度。		
10	设计	(1)建立姿态控制通道的传递函数模型,设计校正控	e5.3\Readme.pdf	免费版
		制器,使得姿态角速度环稳态误差 , 相位裕度>65°,		
		截至频率>10rad/s。姿态角度环截至频率>5rad/s,相		
		位裕度>60°;(2)使用自己设计的控制器进行硬件在		
		环仿真实验;		
11	姿态控制器设计-实飞	熟悉实飞实验流程。	e5.4\Readme.pdf	免费版

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。