PDS0101

Introduction to Digital Systems

Counters II

Lecture outcome

- By the end of today's lecture you should be able to
 - design your own synchronous counter that follows a specific pattern
 - implement the design as a logic circuit

NOTE: contents in this set of slides are intentionally incomplete and content will be shown in class as examples of how they are derived

Synchronous Counter Design

- Most requirements for synchronous counters can be met with available ICs.
- In cases where a special sequence is needed, you can apply a step-bystep design process
- Basically, you start with the desired sequence and draw a state diagram and next-state table, simplify the states using algebra rules and/or k-map and complete the logic circuit
 - The resulting circuit will be a sequential circuit or state machine
- In general, a sequential circuit consists of a combinational logic section and a memory section (flip-flop)
- In the case of a clocked sequential circuit, a CLK input to the memory is added

Synchronous Counter Design

Several methods are available that follow arbitrary sequence.

Here we will learn one common method using JK flip-Flops.

In synchronous counters all the FF's are clocked at the same time.

J-K Excitation Table

Before begin the designing we must know the operation of the J-K FF, let us analysis **Truth table for 74LS76 IC** (**JK flip-flop) and its** excitation table.

Truth table for 74LS76 IC (JK flip-flop)

CLEAR	PRESET	J	K	CLK	Qt	Qt'
0	0	0	0	X	1	1
		0	1	X	1	1
		1	0	X	1	1
		1	1	X	1	1
0	1	0	0	X	1	0
		0	1	X	1	0
		1	0	X	1	0
		1	1	X	1	0
1	0	0	0	X	0	1
		0	1	X	0	1
		1	0	X	0	1
		1	1	X	0	1
1	1	0	0	\downarrow	Q_0	Q_0
		0	1	\downarrow	0	1
		1	0	\downarrow	1	0
		1	1	\downarrow	TOGGLE	TOGGLE

JK FF Excitation Table where $\frac{\overline{CLEAR}}{}$ and $\frac{\overline{PRESET}}{}$ are High (1)

PRESENT	NEXT	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

	TPUT SITIONS	FLIP-FLOP INPUTS		
Q_N	Q_{N+1}	J	K	
0 —	→ 0	0	X	
0 —	→ 1	1	X	
1 —	→ 0	X	1	
1 —	→ 1	X	0	

J-K Excitation Table

TRANS AT OU		PRESENT STATE Q(N)	NEXT STATE Q(N+1)	J	K
0	0	0	0	0	X
0	1	0	1	1	X
1	0	1	0	X	1
1	1	1	1	X	0

 $0 \rightarrow 0$ TRANSITION; FF's Present status is 0 and it should remain in 0 when a clock pulse is applied. That can be either J=K=0 status or J=0,K=1.

That means J=0 and K=0 or 1

Resulted, J=0 and K=X(don't care)

Synchronous Counter Design

0→1 TRANSITION: The present state is 0 and it has to change to 1.
This can happen either J=1 and K=0 or J=K=1.

That means J=1 and K=0 or1

Resulted, J=1 and K=X (don't care)

1 → 0 TRANSITION; The present state is 1 and it has to change to 0. This can happen either J=0 and K=1 or J=K=1.

That means K=1 and J=0 or1

Resulted, K=1 and J=X (don't care)

1 \rightarrow 1 TRANSITION; The present state is 1 and it has to change to 1. This can happen either J=K=0 or J=1 and K=0.

That means K=0 and J can be 0 or 1

Resulted, K=0 and J=X (don't care)

STEP -1

Draw the state transition diagram showing all the possible states, including those that are not part of the desired counting sequence

Synchronous Counter Design / Example (1)

Use the state transition diagram to set up a table that lists all **PRESENT** states and their **NEXT** states

3162	Present state			Next state		
	C	В	\boldsymbol{A}	C	B	\boldsymbol{A}
1	0	0	0	0	0	1
2	0	0	1	0	1	0
3	0	1	0	0	1	1
4	0	1	1	1	0	0
5	1	0	0	0	0	0
6	1	0	1	0	0	0
7	1	1	0	0	0	0
8	1	1	1	0	0	0

Undesired states transition to 000 here

STEP -3

Add a column to this table for each J and K input. For each **PRESENT** state, indicate the level required at each J and K input in order to produce the transition to the **NEXT** state.

	TPUT SITIONS	FLIP-FLOP INPUTS		
Q_N	Q_{N+1}	J	K	
0 —	→ 0	0	X	
0 —	→ 1	1	X	
1 —	→ 0	X	1	
1 —	→ 1	X	0	

	Pre	esent si	tate	Ne	ext stat	te						
	C	В	\boldsymbol{A}	C	В	\boldsymbol{A}	J_C	K_C	J_B	K_B	J_A	K_A
1	0	0	0	0	0	1	0	X	0	X	1	X
2	0	0	1	0	1	0	0	X	1	X	X	1
3	0	1	0	0	1	1	0	X	X	0	1	X
4	0	1	1	1	0	0	1	X	X	1	X	1
5	1	0	0	0	0	0	X	1	0	X	0	X
6	1	0	1	0	0	0	X	1	0	X	X	1
7	1	1	0	0	0	0	X	1	X	1	0	X
8	1	1	1	0	0	0	X	1	X	1	X	1

STEP 4: K-MAP SIMPLIFICATIONS

- Determine the logic required for the J and K inputs of each FF in the counter using K-maps
 - There will be one K-map for the J input and another K-map for the K input of each FF
- From the J and K states in the transition table a 1, 0 or X is mapped onto each present-state cell on the K-maps depending on the transition of the Q output for a particular FF
- An example of this operation is shown on the following slide

STEP-4

Design the logic expression to generate the level required at each J and K, using K-maps.

Pre	sent sta	ate		
C	В	\boldsymbol{A}	J_A	K_{A}
0	0	0	1	X
0	0	1	X	1
0	1	0	1	X
0	1	1	X	1
1	0	0	0	X
1	0	1	X	1
1	1	0	0	X
1	1	1	X	1

$$K_A = 1$$

STEP-4cont.

Pre	sent sta	ate		
C	В	\boldsymbol{A}	J_B	K_B
0	0	0	0	X
0	0	1	1	X
0	1	0	X	0
0	1	1	X	1
1	0	0	X	X
1	0	1	X	X
1	1	0	X	1
1	1	1	X	1

	\overline{A}	Α
$\overline{B}\overline{C}$	0	1
$\overline{B}C$	0	0
В	X	X
℃	X	X

$$K_B = A+C$$

 $J_B = A \overline{C}$

STEP-4cont

Pre	sent sta	ate		
C	В	\boldsymbol{A}	J c	Kc
0	0	0	0	X
0	0	1	0	X
0	1	0	0	X
0	1	1	1	X
1	0	0	0	1
1	0	1	X	1
1	1	0	0	1
1	1	1	X	1

	$\overline{\mathbf{A}}$	Α
$\overline{B}\overline{C}$	0	0
$\overline{B}C$	X	Х
В	X	X
BC	0	1

$$J_C = AB$$

$$K_C = 1$$

SETP-5

Finally to implement the final expressions.

$$J_c = AB$$
$$K_C = 1$$

$$J_B = A\bar{C}$$
 $J_A = \bar{C}$
 $K_B = A + C$ $K_A = 1$

Exercises

 Design a JK synchronous counter that has follows the sequence 000,010,101,110 and repeats. The undesired states go to 000 on the next clock pulse

Design a JK synchronous counter that follows the sequence 000,010,101,110 and repeats. For undesired states their NEXT states can be DON'T CARES

Answer 1

PRESENT STATE			NEXT STATE			FF2		FF1		FF0	
С	В	Α	С	В	Α	Jc	Kc	Jb	Kb	Ja	Ka
0	0	0	0	1	0	0	X	1	X	0	X
0	0	1	0	0	0	0	X	0	X	X	1
0	1	0	1	0	1	1	X	X	1	1	X
0	1	1	0	0	0	0	X	X	1	X	1
1	0	0	0	0	0	X	1	0	X	0	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X
1	1	1	0	0	0	X	1	X	1	X	1

Answer 2

PRESENT STATE			NEXT STATE			FF2		FF1		FF0	
С	В	Α	С	В	Α	Jc	Kc	Jb	Kb	Ja	Ka
0	0	0	0	1	0	0	X	1	Χ	0	X
0	0	1	X	X	Χ	Χ	X	Χ	Χ	X	X
0	1	0	1	0	1	1	X	Χ	1	1	X
0	1	1	X	X	X	X	X	Χ	Χ	X	X
1	0	0	X	X	X	X	X	X	X	X	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	Х	1	Χ	1	0	X
1	1	1	X	X	Х	Х	X	X	Х	Х	X

Summary

- These steps can be applied to any sequential circuit to create a counter
 - Specify the counter sequence and draw the state diagram
 - Derive the next-state table from the state diagram
 - Using the J-K FF transition/excitation table, develop the transition table showing the FF inputs required for each transition
 - Transfer J and K states to individual K-maps there is a K-map for each input of each FF
 - Group K-map cells to simplifyand derive the logic expression for each FF input
 - Implement the expressions with combinational logic and combine with FF to create the counter