Name: Sunjare Zulfiker

Id: 1912050642

Sec: 4

(1.3) Convert the following numbers with the indicated bases to decimal

(a)
$$(4310)_5$$

= $(4\times5^3)+(3\times5^2)+(1\times5')$
= $(580)_{10}$

$$(5)(198)_{12} = (1\times12^2) + (9\times12') + (8\times12')$$

$$= (260)_{10}$$

$$(435)_{8} = (4x8) + (3x8) + (5x8)$$

$$(285)_{6}$$

$$(285)_{6} = (285)_{6}$$

$$= (3×6) + (4×6') + (5×6')$$

$$= (137)_{6}$$

(1.3) Convert 64CD to binary, then convent it from binary to octal.

Now,
$$(110010011001101)_2$$

(1.8) Convent	(43), to	binary	in	(00)	ways
	/10				0 ′

method 2 in faster.

$$(19) \otimes (10110.0101)_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{4} + 0 \times 2^{5} + 1 \times 2^{5} + 0 \times 2^{5} + 0$$

$$(16.5)_{16} = 1 \times 16' + 6 \times 16^{\circ} + 5 \times 16'$$

$$= (22.3125)_{10}$$

©
$$(26.24)_{8} = 2\times6' + 6\times8' + 2\times6' + 4\times8'^{2}$$

= $(22.3125)_{10}$

$$(0)(1010.1101)_{2} = 8 + 2 + 0.5 + 0.625$$

= 10. 8125 (Ans.)

(()				
11 16 1	(6)			_
1117	(U.) (1000	()()()	$\mathcal{O}(\mathcal{O})$
(1.14)	\bigcup	100	\circ	

1's complement: 11101111

2's complement: 11101111 + 1

11110000

© 11011010 1's complement: 00100101

2's complement: 00100101

00100110

0101010

1's complement: 01010101

2'5 complement: 01010101

01010110

@ 10000101

1's complement: 01111010

2's complement: 01111010

(F) [[[]]]

1's complement: 0000000

2's complement: 0000000

17

(1.18) @ 10011-10010

Now, 0-10010

1's comp: 1-01101

2's comp:1_0 1101

+1

1_01110

Hene, 0-10011 1-01110 0-00001

Check: 19-18 = +1

6 100010-100110

Now,

0-100110

l's comp: 1_011001

2's comp: 1-011001

1-011010

Hene, 0-100010 1-011010

[Sign bit indicates that nexultin nexulting

.: 1's comp: 0_000011

2's comp: 0_000011

0-000100

Check: 34-38=-4

© 1001 - 110101

Now,0-110101

1'5 comp: 1-001010

2's compil_001010

1-001011

Hene, 0-001001

1-010100 [Sign bit in negative]

So, l's comp: 0-101011

2's comp: 0-101011

0_101100

Check: 9-53 = -44

$$\begin{array}{c} (1.19) +9286 \rightarrow 009286 \\ +801 \rightarrow 000801 \\ -9286 \rightarrow 990714 \\ -801 \rightarrow 999199 \end{array}$$

$$\begin{array}{c} \textcircled{0} & (-9286) \\ + & (+801) = 990714 + 000801 \\ & (-9286) + & (-801) \end{array}$$

$$(514)_{10}$$

BCD = 0110 0101 0001 0100

ASCII = 0_011_0110_0_011_0101_1_011_0001_1_011_0100

ASCII = 0011_0110_0011_0101_1011_0001_1011_0100

(1.23) 791 GCD: 0111 1001 0001 BCD: 0110 0101 1000

0111 1001 0001 0110 0101 1000 1**0**010 0110 0001 0011 0100

0001 0001

- (1.25) 6248
 - @ BCD = 0110 0010 0100 1000
 - (5) Encent-3: 100/010/01/11/10/1
 - © 2421 : 0110 0010 0100 1110
 - @ 6311: 1000 0010 0110 1011