Machine Learning for the precision determination of Parton Distribution Functions

Jesús Urtasun Elizari

Supervised by Dr. Stefano Forte and Dr. Stefano Carrazza

PhD Seminar - Milan, September 2019

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

How to adult...

How to be a mature physicist...

Outline

- Quantum Chromodynamics in a nutshell
 - The Standard Model
 - The strong interactions
 - Parton Distribution Functions
- The N3PDF project
 - Machine Learning for PDFs determination
 - Operator implementation in TensorFlow
 - Results & Conclusions

Quantum Chromodynamics in a nutshell

The Standard Model

Quantum Field Theory describing physics at the TeV scale

- Fermions composing matter
- Bosons mediating interactions
- Scalar Higgs generating mass

Explore the strong interactions

How to explore proton's inner structure?

?

- Point-like projectile on the object → DIS
- Smash the two objects → LHC physics

"A way to analyze high energy collisions is to consider any hadron as a composition of point-like constituents \longrightarrow partons" R.Feynman, 1969

Parton Distribution Functions

- Hadrons made of partonic objects non perturbative physics
- Interactions take place only at partonic level

Parton Distribution Functions: probability distribution of finding a particular parton (u, d, ..., g) carrying a fraction x of the proton's momentum

What PDFs look like

- Each parton has a different PDF $\longrightarrow u(x), d(x), ..., g(x)$
- PDFs are not predicted, and can not be measured
- PDFs are extracted from data

Machine Learning for the precision determination of PDFs

Machine Learning

- ML algorithms solve complex tasks like classification and regression
- Neural Networks \longrightarrow Non linear functions of an input x, given by $y(x) = \sigma\{\mathbf{w} \cdot x + b\}$
- **3** Rely on comparison with data \longrightarrow Learning, need for training \mathbf{w}, b

What we actually measure

Any theory must predict a number \longrightarrow Observable σ

Factorize the problem \longrightarrow Convolute the PDFs with the partonic $\hat{\sigma}_{ij}$

$$\sigma = \int_0^1 dx_1 dx_2 f_{\alpha}(x_1, \mu_F) * f_{\beta}(x_2, \mu_F) * \hat{\sigma}_{\alpha\beta}(\alpha_s(\mu_R), \mu_F)$$

- Use a Neural networks to generate the PDFs
- Generate a vector of observables y_N

$$y_N = \sum_{i,j,\alpha,\beta} f_{\alpha}(x_i) f_{\beta}(x_j) \hat{\sigma}_{Nij\alpha\beta}$$

General structure of n3fit

- Use TensorFlow and Keras to determine the PDFs
- See paper by S.Carraza J.Cruz-Martinez
 "Towards a new generation of parton densities with deep learning models", https://arxiv.org/abs/1907.05075

General structure of n3fit

Xgrid

- **1** Build a NN to compute y_{pred} observables from a grid x_i
- Compute loss function by comparing with data

Operator implementation

- lacktriangledown TF relies in symbolic computation \longrightarrow High memory usage
- 2 Implement c++ operator replacing the convolution

Results

Checking computation

DIS:

	TensorFlow	Custom	Ratio
	1.9207904	1.9207904	1.0000000
Convolution	2.4611666	2.4611664	0.9999999
	1.3516952	1.3516952	1.0000000
Gradient	1.8794115	1.8794115	1.0000000
	1.505316	1.505316	1.0000000
	2.866085	2.866085	1.0000000

Results

Checking computation

Hadronic:

	TensorFlow	Custom	Ratio
Convolution	8.142365	8.142366	1.0000001
	8.947762	8.947762	1.0000000
	7.4513326	7.4513316	0.9999999
Gradient	18.525095	18.525095	1.0000000
	19.182995	19.182993	0.9999999
	19.551006	19.551004	0.9999999

Results

Memory saving

Hadronic only:

	TensorFlow	Custom Convolution	Diff
Virtual	17.7 GB	13.8 GB	3.9 GB
RES	12.1 GB	8.39 GB	3.2 GB

Global:

	TensorFlow	Custom Convolution	Diff
Virtual	23.5 GB	19.7 GB	3.8 GB
RES	18.4 GB	12.5 GB	5.9 GB

Summary & Conclusions

- PDFs are required to have accurate predictions in high energy physics
- ML provides a new way of determine the PDFs
- Operator implementation leads to memory saving by taking full control on the computation

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.