01 Math for Data Science

Basic Definitions (Not complete notes). See pictures for complete notes, not guaranteed correct, for reference only.

Definition

A **Vector space** (V, +,) over \mathbb{R} is a set with two operations:

$$V \times V \rightarrow V, (x,y) \longmapsto x+y$$

$$\mathbb{R} \times V \to V, (\lambda, y) \longmapsto \lambda y$$

Elements of $V \in \mathbb{R}$ are called **Vector**

The operations satisfy:

for all $lpha,lpha_1,lpha_2\in\mathbb{R}$ and $x,y\in V$

- (V, +) is a commutative group
- $\bullet \quad 1 \cdot y = y \text{ for all } y \in V$
- $\alpha(x+y) = \alpha x + \alpha y$
- $\alpha_1(\alpha_2 x) = (\alpha_1 \alpha_2)x$
- $(\alpha_1 + \alpha_2)x = \alpha_1 x + \alpha_2 x$

Definition

A *Linear combination* of the vector $V_1, V_2 \ldots V_n \in V$ is an expression of the from

 $C_1V_1+C_2V_2+\ldots+C_nV_n$ where $C_1,C_2\ldots C_n\in\mathbb{R}$ are called *Weights or coefficients* of the linear combination.

Definition

The **Span** of $V_1, V_2 \dots V_n \in V$ is the set of all the linear combinations of $V_1, V_2 \dots V_n$ with coefficients in \mathbb{R} , $Span(v_1 \dots v_n)$

Definition

A list of vectors $V_1, V_2 \dots V_n$ is **Linear independent** if none of the vectors can be written as a Linear combination of the others

Definition

A **Spanning List (or Set)** of a vector space V is a list $V_1,V_2\ldots V_n\in V$ such that $Span(V_1,V_2\ldots V_n)=V$

Definition

A Linearly independent spanning list of V is a \emph{Basis} of V

All Basis of V have the same number of elements, which is called the **Dimension** of V

Definition

Given V,W two vector spaces L:V o W is a **Linear transformation**

$$L(\alpha_1v_1 + \alpha_2v_2) = \alpha_1L(v_1) + \alpha_2L(v_2)$$

Definition

Given a Linear transformation L:V o W

The Set $L(v)=\{w\in W\}$ there is $v\in V$ so that L(v)=w is the **Image** of L, or Image of V under L

The $\it Rank$ of $\it L$ is the dimension of $\it L(v)$

Definition

The *Kernel or (null space)* of a Linear transformation $L:V \to W$ is the set of elements of V which mapped to 0_w by L

$$Ker(L) = \{v \in V | L(v) = 0_w\}$$

Definition

Let V be a vector space, a non empty subset U < V is a **Subspace of V**, if V is a vector space with the operations +,*, of V