Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1	
Cognome,	nome	ρ	matricol	ล:
Cognonic,	1101110	\mathbf{c}	manico	u.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Siano $\varphi(z)$ e $\psi(z,w)$ formule del prim'ordine e σ un enunciato.

2 punti

- $\blacksquare \forall z \neg \varphi(z) \models \neg \exists z \varphi(z)$
- Se \mathcal{C} è una struttura tale che $\mathcal{C} \models \neg \exists z \varphi(z)$, allora $\mathcal{C} \models \forall z (\varphi(z) \to \sigma)$.
- Se \mathcal{D} è una struttura tale che $\mathcal{D} \models \exists w \, \varphi(w)$, allora $\mathcal{D} \models \exists w \, (\neg \sigma \lor \varphi(w))$.
- $\Box \ \forall z \exists w \, \psi(w, z) \models \exists w \forall z \, \psi(w, z)$
- (b) Consideriamo le funzioni $h: \mathbb{Z}^2 \to \mathbb{Z}, \quad (z, w) \mapsto 4z^2 + w$

2 punti

- e $k: \mathbb{Z} \to \mathbb{Z}^2$, $z \mapsto (z, 4z)$. Allora
- □ k è iniettiva e h è l'inversa di k.

 Esiste $z \in \mathbb{Z}$ tale che k(z) = (1, 4).
- \square la funzione h è iniettiva.
- $h \circ k(z) = 4z(z+1)$ per ogni $z \in \mathbb{Z}$.
- (c) Sia R la proposizione $\neg A \rightarrow \neg C \vee \neg D$. Allora

2 punti

- \blacksquare R è conseguenza logica di C \rightarrow A.
- □ R non è soddisfacibile.
- \square Se i è un'interpretazione tale che i(A) = 0 allora necessariamente i(C) = i(D) = 0.
- \square R è una tautologia.
- (d) Quali delle seguenti sono formule che formalizzano correttamente 2 punti "x è un numero primo" utilizzando il linguaggio $\cdot,1$ e relativamente alla struttura $\langle \mathbb{N},\cdot,1\rangle$
 - $\Box \neg (x=1) \land \forall y (y \cdot x = x \cdot x \lor x \cdot y = x)$
 - $\Box x = x \cdot 1 \land \forall y (\neg \exists z (x \cdot y = z))$
 - $\Box (x = 1) \lor \forall y \forall z (y \cdot z = x \to y = 1 \lor z = 1)$
 - $\blacksquare \neg (x=1) \land \forall y (\exists z (y \cdot z = x) \rightarrow y = 1 \lor y = x)$

(e) Sia T una relazione binaria su un insieme non vuoto C.

2 punti

2 punti

- Se T è un preordine e Q è un'altra relazione binaria su C tale che $T \subseteq Q$, allora Q è riflessiva.
- \square Se T è antisimmetrica, allora non può essere anche simmetrica.
- \blacksquare Se T è riflessiva, allora non può essere anche irriflessiva.
- \blacksquare Se T è una relazione di equivalenza, allora è anche un preordine.
- (f) Sia $L = \{R, h, k, c\}$ un linguaggio del prim'ordine con R simbolo di relazione binario, h simbolo di funzione unario, k simbolo di funzione binario e c simbolo di costante. Quali dei seguenti sono L-termini?
 - $\blacksquare h(k(k(c,h(c)),k(h(c),c)))$
 - $\blacksquare k(k(h(c),h(c)),k(h(c),h(c)))$
 - $\Box k(h(h(k(c,c),c)),c)$
 - \square R(c,h(c))
- (g) Siano D e A insiemi tali che $A\subseteq D$. Allora possiamo concludere con certezza che 2 punti
 - $\blacksquare (D \cup A) \setminus (D \setminus A) = A.$
 - \square se |D| = |A| allora $D \setminus A$ è finito.
 - \square D e A non possono essere disgiunti.
 - \blacksquare se $|D| \le |A|$ allora |D| = |A|.

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{R, T, c\}$ con R ed T simboli di relazione binaria e c simbolo di costante. Consideriamo la L-struttura $C = \langle \mathbb{Z}, >, |, 3 \rangle$, dove | è l'usuale relazione di divisibilità.

Sia φ la formula

$$(R(z, w) \wedge T(c, w))$$

 $e \psi$ la formula

$$(R(z, w) \rightarrow T(c, w))$$

- 1. Determinare se:
 - $\mathcal{C} \models \varphi[z/-1000, w/-2000],$
 - $C \models \varphi[z/-1000, w/-3000],$
 - $C \models \exists w \ \varphi[z/-1000, w/-999].$
- 2. Determinare se $\mathcal{C} \models \forall z \exists w \varphi[z/0, w/0]$.
- 3. Determinare se:
 - $\mathcal{C} \models \psi[z/-1000, w/-2000],$
 - $\mathcal{C} \models \psi[z/-1000, w/-3000],$
 - $C \models \forall w \psi[z/-1000, w/-998].$
- 4. Determinare se $\mathcal{C} \models \exists z \forall w \, \psi[z/-1, w/3]$.
- 5. Determinare se $\forall z \exists w \varphi \models \exists z \forall w \psi$.

Giustificare le proprie risposte.

Soluzione:

- 1. La formula φ è verificata in $\mathcal C$ con l'assegnamento z/n e w/m se e solo se n>m e m è multiplo di 3. Quindi
 - $\mathcal{C} \not\models \phi[z/-1000, w/-2000]$ perché -2000 non è multiplo di 3
 - $\mathcal{C} \models \phi[z/-1000, w/-3000]$ perché -3000 è multiplo di 3 e -1000 > -3000
 - $\mathcal{C} \models \exists w \, \varphi[z/-1000, w/-999]$, come mostrato dall'assegnazione di w a -3000 nel punto precedente.
- 2. L'enunciato $\forall z \exists w \varphi$ interpretato in \mathcal{C} afferma che

Per ogni numero intero z esiste un numero intero w minore di z che è divisibile per 3,

ovvero

Vi sono numeri interi arbitrariamente piccoli che sono multipli di 3.

Quindi si ha che $\mathcal{C} \models \forall z \exists w \varphi$.

3. La formula ψ è verificata in $\mathcal C$ con l'assegnamento z/n e w/m se e solo se si verifica che

Se n > m, allora m è multiplo di 3.

Quindi

- $\mathcal{C} \not\models \psi[z/-1000, w/-2000]$ perché -1000 > -2000 ma -2000 non è multiplo di 3, e quindi l'antecedente dell'implicazione in ψ è vero mentre il conseguente è falso;
- $\mathcal{C} \models \psi[z/-1000, w/-3000]$ perché -3000 è multiplo di 3 e quindi con questi assegnamenti il conseguente dell'implicazione in ψ è verificato, rendendo quindi vera ψ stessa. (Si può notare che anche l'antecedente dell'implicazione in ψ è vero con tale assegnamento, anche se questo è di fatto irrilevante nel determinare se $\psi[z/-1000, w/-3000]$ sia vera in \mathcal{C} .)
- $\mathcal{C} \not\models \forall w \psi[z/-1000, w/-998]$, come mostrato dall'assegnazione di w a -2000 nel punto precedente.
- 4. L'enunciato $\exists z \forall w \psi$ interpretato in \mathcal{C} afferma che

Esiste un numero intero z tale che tutti i numeri interi minori di esso sono divisibili per 3,

ovvero

Tutti i numeri interi sufficientemente piccoli sono multipli di 3.

Quindi si ha che $\mathcal{C} \not\models \exists z \forall w \psi$.

5. Poiché $\mathcal{C} \models \forall z \exists w \varphi \text{ ma } \mathcal{C} \not\models \exists z \forall w \psi$, per definizione di conseguenza logica si ha che $\forall z \exists w \varphi \not\models \exists z \forall w \psi$.

Esercizio 3 9 punti

Sia C un insieme non vuoto e $h\colon C\to C$ una funzione. Formalizzare relativamente alla struttura $\langle C,h\rangle$ mediante il linguaggio $L=\{h\}$ con un simbolo di funzione unario le seguenti affermazioni:

- 1. h è biettiva
- 2. se h è biettiva, allora h è una funzione costante (ovvero il suo range contiene un solo punto)
- 3. $h \circ h$ è suriettiva
- 4. ogni elemento ha almeno due preimmagini distinte.

Soluzione:

- 1. $h \in \text{biettiva: } \forall y \exists x (h(x) = y) \land \forall x \forall y (h(x) = h(y) \rightarrow x = y).$
- 2. se h è biettiva, allora h è una funzione costante:

$$[\forall y \exists x (h(x) = y) \land \forall x \forall y (h(x) = h(y) \to x = y)] \to \exists y \forall x (h(x) = y).$$

- 3. $h \circ h$ è suriettiva: $\forall y \exists x (h(h(x)) = y)$.
- 4. ogni elemento ha almeno due preimmagini distinte:

$$\forall y \exists x_1 \exists x_2 (\neg(x_1 = x_2) \land h(x_1) = y \land h(x_2) = y).$$