Devoir à la maison n° 11

À rendre le 28 janvier

On note $\mathbb{Z}[X]$ (resp. $\mathbb{Q}[X]$) l'ensemble des polynômes à coefficients dans \mathbb{Z} (resp. \mathbb{Q}).

Soit $A \in \mathbb{Z}[X]$, que l'on écrit $A = a_0 + a_1X + \cdots + a_nX^n$. On appelle *contenu* de A le PGCD de ses coefficients, noté c(A):

$$c(A) = a_0 \wedge a_1 \wedge \cdots \wedge a_n$$
.

La polynôme A est dit *primitif* si c(A) = 1, *i.e.* si les coefficients de A sont premiers entre eux dans leur ensemble.

Soit $A \in \mathbb{Q}[X]$ non constant. A est dit réductible sur $\mathbb{Q}[X]$ s'il existe deux polynômes $B, C \in \mathbb{Q}[X]$ non constants vérifiant A = BC. Sinon, A est dit *irréductible sur* $\mathbb{Q}[X]$.

L'objectif de ce problème est de démontrer le critère d'irréductibilité d'Eisenstein, qui s'énonce comme suit. Soit $A \in \mathbb{Z}[X]$ de degré $n \in \mathbb{N}^*$, que l'on écrit :

$$A = a_0 + a_1 X + \dots + a_n X^n.$$

On suppose qu'il existe un nombre premier \boldsymbol{p} vérifiant :

- $-\sin 0 \leqslant i \leqslant n-1, \ p \mid a_i;$
- $-p \nmid a_n;$
- $-p^2 \nmid a_0.$

Alors, A est irréductible sur $\mathbb{Q}[X]$.

- 1) a) Un polynôme $P \in \mathbb{Q}[X]$ irréductible sur $\mathbb{R}[X]$ est-il aussi irréductible sur $\mathbb{Q}[X]$?
 - b) Donner (en le justifiant) un polynôme de degré 2 irréductible sur $\mathbb{Q}[X]$, mais pas sur $\mathbb{R}[X]$.
- 2) Soit $A, B \in \mathbb{Z}[X]$ non nuls, que l'on écrit sous formes développées-réduites $A = \sum_{k=0}^{+\infty} a_k X^k$ et $B = \sum_{k=0}^{+\infty} b_k X^k$. On écrit aussi sous forme développée-réduite $AB = \sum_{k=0}^{+\infty} c_k X^k$
 - a) Soit p un nombre premier, on suppose que p ne divise pas tous les coefficients de A, ni tous les coefficients de B.
 - i) Montrer qu'il existe deux plus grands entiers naturels k et ℓ vérifiant $p \nmid a_k$ et $p \nmid b_\ell$.

- ii) Déterminer alors un entier i vérifiant $p \nmid c_i$.
- b) Montrer que si A et B sont primitifs, alors AB est primitif.
- c) Montrer qu'il existe un polynôme primitif associé à A.
- d) Déduire des questions précédentes que c(AB) = c(A)c(B).
- 3) Soit $A \in \mathbb{Z}[X]$ non nul, soit $B, C \in \mathbb{Q}[X]$ vérifiant A = BC. En utilisant les questions précédentes, construire deux polynômes $\tilde{B}, \tilde{C} \in \mathbb{Z}[X]$ de même degrés que B et C vérifiant $A = \tilde{B}\tilde{C}$.

Indication: on pourra commencer par supposer A primitif, et considérer les PPCM des dénominateurs de coefficients de B et de C.

- 4) On montre maintenant le critère d'irréductibilité d'Eisenstein, en raisonnant par l'absurde. Soit donc un polynôme A vérifiant les hypothèses du critère (dont on reprend les notations), soit $B, C \in \mathbb{Z}[X]$ non constants vérifiant A = BC. On écrit sous formes développées-réduites : $B = \sum_{k=0}^{+\infty} b_k X^k$ et $C = \sum_{k=0}^{+\infty} c_k X^k$. Notons $d = \deg(B)$ et $d' = \deg(C)$.
 - **a)** Montrer que $p \mid b_0$ ou (exclusif) $p \mid c_0$.

On suppose dorénavant que $p \mid b_0$ et $p \nmid c_0$.

- **b)** Montrer que $p \nmid b_d$.
- c) En considérant un coefficient de B que l'on choisira judicieusement, montrer que $p \mid c_0$ et conclure.
- 5) Montrer que pour tout $n \ge 1$, $\mathbb{Q}[X]$ contient au moins un polynôme de degré n irréductible sur $\mathbb{Q}[X]$.

— FIN —