# 18. A/Dコンバータ(繰り返しモード 0)(プロジェクト: ad\_kurikaeshi)

## 18.1 概要

本章では、 $0\sim5$ V の電圧をマイコンの A/D コンバータで読み込む方法を説明します。 A/D 変換した結果は、マイコンボードの LED に出力します。 今回の A/D 変換は、繰り返しモード 0 を使います。

## 18.2 接続

「17. A/Dコンバータ(単発モード)(プロジェクト:ad)」と同じです。

# 18.3 プロジェクトの構成



|   | ファイル名           | 内容                                                                                                                |
|---|-----------------|-------------------------------------------------------------------------------------------------------------------|
| 1 | startup.c       | 固定割り込みベクタアドレスの設定、スタートアッププログラム、RAM の初期化(初期値のないグローバル変数、初期値のあるグローバル変数の設定)などを行います。このファイルは共通で、どのプロジェクトもこのファイルから実行されます。 |
| 2 | ad_kurikaeshi.c | 実際に制御するプログラムが書かれています。R8C/35A の内蔵周辺機能(SFR)の初期<br>化も行います。                                                           |
| 3 | sfr_r835a.h     | R8C/35A マイコンの内蔵周辺機能を制御するためのレジスタ(Special Function Registers)を定義したファイルです。                                           |

# 18.4 プログラム「ad\_kurikaeshi.c」

```
/* 対象マイコン R8C/35A
     /* ファイル内容
/* バージョン
3
                   A/D変換(繰り返しモード0)
                                                                        */
                   N Dを残くながら
Ver. 1. 20
2010. 04. 19
ルネサスマイコンカーラリー事務局
日立インターメディックス株式会社
4
                                                                        */
     /* Date
5
                                                                        */
     /* Copyright
6
7
                                                                        */
8
9
     入力: AN7 (P0_0) 端子 0~5V (ミニマイコンカーの赤外線フォトインタラプタU8)
出力: P1_3−P1_0(マイコンボードのLED)
10
11
12
13
     AN7 (PO_0) 端子から入力した電圧をA/D変換して、デジタル値をマイコンボードの
     LEDへ出力します。
14
15
16
17
                                        =*/
     /* インクルード
18
                                        */
19
                                        */
20
     #include "sfr_r835a.h"
                                        /* R8C/35A SFRの定義ファイル
21
22
23
     /* シンボル定義
                                        */
24
                                        =*/
25
26
27
     /* プロトタイプ宣言
     void init( void );
29
     int get_ad7( void );
void led_out( unsigned char led );
30
31
32
33
     <sub>.</sub>
/* メインプログラム
34
     36
     void main( void )
37
38
        int ad;
39
40
        init();
                                        /* 初期化
41
        while(1) {
42
            ad = get_ad7();
ad = ad >> 6;
led_out( ad );
43
44
45
46
47
48
49
     50
51
     void init( void )
52
53
54
        int i;
55
        /* クロックをXINクロック (20MHz) に変更 */ prc0 = 1; /* プロテクト解除
56
        prc0 = 1;
cm13 = 1;
cm05 = 0;
57
                                        /* フロケクト解除 */

/* P4_6, P4_7をXIN-XOUT端子にする*/

/* XINクロック発振 */

/* 安定するまで少し待つ(約10ms) */

/* システムクロックをXINにする */
58
59
60
        for (i=0; i<50; i++);
        61
62
                                         /* プロテクトON
63
        /* ポートの入出力設定 */prc2 = 1;
64
                                        /* PD0のプロテクト解除
65
                                         /* 7-5:LED 4:SW 3-0:アナログ電圧*/
        pd0 = 0xe0;
66
        p1 = 0x0f;
                                         /* 3-0:LEDは消灯
67
        pd1 = 0xdf;
                                         /* 5:RXD0 4:TXD0 3-0:LED
                                                                     */
68
69
        pd2 = 0xfe;
                                         /* 0:PushSW
                                        70
        pd3 = 0xfb;
        pd4 = 0x83;
71
        pd5 = 0x40;
72
73
        pd6 = 0xff;
74
        /* A/Dコンバータの設定 */
                                        /* 繰り返しモード0に設定 */
/* 入力端子AN7(PO_0)を選択 */
/* A/D動作可能 */
/* φADの1サイクルウエイト入れる*/
/* A/D変換スタート */
76
        admod = 0x13;
        adinsel = 0x07;
77
        adcon1 = 0x30;
asm(" nop");
adcon0 = 0x01;
78
79
80
81
```

```
83:
    /* A/D値読み込み(AN7)
/* 引数 なし
84
                                              */
                                              */
85
    /* 戻り値 A/D値 0~1023
    int get_ad7( void )
89
90
      int i;
91
92
      /* 繰り返しモード0は、自動的に繰り返すので、結果を読み込むだけ */
93
      i = ad7;
94
95
      return i;
96
97
98
   /* マイコン部のLED出力
/* 引数 スイッチ値 0~15
99
    101
102
    void led_out( unsigned char led )
103:
      unsigned char data;
104
105
106
      1ed = ^{\sim}1ed;
107
      led \&= 0x0f;
      data = p1 & 0xf0;
p1 = data | led;
108
109
110:
111
    112
113
    /* end of file
```

### 18.5 プログラムの解説

#### 18.5.1 init関数(I/Oポートの入出力設定)

PO\_O はアナログ電圧入力端子なので、ポートの入出力設定は入力にします。 忘れやすいので、気をつけてください。

```
64:
         /* ポートの入出力設定 */
65:
         prc2 = 1;
                                            /* PD0のプロテクト解除
         pd0 = 0xe0;
                                            /* 7-5:LED 4:SW 3-0:アナログ電圧*/
66 :
67 :
                                            /* 3-0:LEDは消灯
         p1 = 0x0f;
68:
         pd1 = 0xdf;
                                            /* 5:RXD0 4:TXD0 3-0:LED
                                                                           */
69 :
         pd2 = 0xfe;
                                            /* 0:PushSW
                                                                           */
70 :
         pd3 = 0xfb;
                                            /* 4:Buzzer 2:IR
                                            /* 7:XOUT 6:XIN 5-3:DIP SW 2:VREF*/
71 :
         pd4 = 0x83;
72 :
                                            /* 7:DIP SW
         pd5 = 0x40;
                                                                           */
73 :
         pd6 = 0xff;
```

ポート 0 にセンサ部を接続している場合は、P0\_4 はマイクロスイッチ、P0\_3~P0\_1 はセンサが繋がっているので入力にします。 実習基板などを使ってこれらの端子が未接続の場合は、出力にしてください。

#### 18.5.2 init関数(A/Dコンバータの設定)

A/D コンバータを設定するプログラムは、次のようになります。

```
75 :
        /* A/Dコンバータの設定 */
76:
                                    /* 繰り返しモード0に設定
                                                              */
       admod = 0x13;
77 :
       adinsel = 0x07;
                                    /* 入力端子AN7(p0_0)を選択
                                                              */
       adcon1 = 0x30;
                                    /* A/D動作可能
78 :
                                                              */
79:
       asm( " nop ");
                                    /* φADの1サイクルウエイト入れる*/
80 :
       adcon0 = 0x01;
                                    /* A/D変換スタート
```

今回は、1本の端子からアナログ電圧を読み込み、繰り返しA/D変換する設定(**繰り返しモード 0**)にします。フォトインタラプタが接続されているPO\_0(AN7)の電圧を読み込みます。 レジスタの設定手順を下記に示します。



## ①A/D モードレジスタ(ADMOD: A-D mode register)の設定

A/D の動作モードを設定します。今回は繰り返しモード 0 に設定します。

| 設定 bit | 上:ビット名<br>下:シンボル                                   | 内容                                                                                                                                                                                                       | 今回の<br>内容 |
|--------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| bit7,6 | A/D 変換トリガ選択ビット<br>bit7: adcap1<br>bit6: adcap0     | 00:ソフトウェアトリガ(ADCON0 レジスタの ADST ビット) による A/D 変換開始 01:タイマ RD からの変換トリガによる A/D 変換開始 10:タイマ RC からの変換トリガによる A/D 変換開始 11:外部トリガ(ADTRG)による A/D 変換開始 A/D 変換を開始するきっかけをどれにするか設定します。ソフト的に開始するので、"00"を選択します。           | 00        |
| bit5~3 | A/D 動作モード選択<br>bit5: md2<br>bit4: md1<br>bit3: md0 | 000:単発モード                                                                                                                                                                                                | 010       |
| bit2   | クロック源選択ビット<br>cks2                                 | 0:f1(20MHz)を選択<br>1:fOCO-F(高速オンチップオシレータ)を選択<br>f1を選択します。                                                                                                                                                 | 0         |
| bit1,0 | 分周選択ビット<br>bit1: cks1<br>bit0: cks0                | 00:fAD の 8 分周 (8/20MHz=400ns) 01:fAD の 4 分周 (4/20MHz=200ns) 10:fAD の 2 分周 (2/20MHz=100ns) 11:fAD の 1 分周 (1/20MHz=50ns)  fAD とは、bit2 で設定したクロック源のことです。このクロックを何分周で使用するか選択します。遅くする必要はないので、いちばん速い 1 分周で使用します。 | 11        |

A/D モードレジスタ(ADMOD)の設定値を下記に示します。

| bit   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|---|---|---|---|---|---|---|---|
| 設定値   | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| 16 進数 | 1 |   |   |   | 3 |   |   |   |

## ②A/D 入力選択レジスタ(ADINSEL:A-D input select register)

どのアナログ入力端子を A/D 変換するか、設定します。

| A/D 入力グループ<br>選択ビット |      | bit5 | bit4 | bit3 |      | ログ入力:<br>選択ビット |      | アナログ入力端子   |
|---------------------|------|------|------|------|------|----------------|------|------------|
| bit7                | bit6 |      |      |      | bit2 | bit1           | bit0 |            |
| 0                   | 0    | 0    | 0    | 0    | 0    | 0              | 0    | AN0(P0_7)  |
| 0                   | 0    | 0    | 0    | 0    | 0    | 0              | 1    | AN1(P0_6)  |
| 0                   | 0    | 0    | 0    | 0    | 0    | 1              | 0    | AN2(P0_5)  |
| 0                   | 0    | 0    | 0    | 0    | 0    | 1              | 1    | AN3(P0_4)  |
| 0                   | 0    | 0    | 0    | 0    | 1    | 0              | 0    | AN4(P0_3)  |
| 0                   | 0    | 0    | 0    | 0    | 1    | 0              | 1    | AN5(P0_2)  |
| 0                   | 0    | 0    | 0    | 0    | 1    | 1              | 0    | AN6(P0_1)  |
| 0                   | 0    | 0    | 0    | 0    | 1    | 1              | 1    | AN7(P0_0)  |
| 0                   | 1    | 0    | 0    | 0    | 0    | 0              | 0    | AN8(P1_0)  |
| 0                   | 1    | 0    | 0    | 0    | 0    | 0              | 1    | AN9(P1_1)  |
| 0                   | 1    | 0    | 0    | 0    | 0    | 1              | 0    | AN10(P1_2) |
| 0                   | 1    | 0    | 0    | 0    | 0    | 1              | 1    | AN11(P1_3) |

今回は、AN7(P0\_0)を選択します。A/D 入力選択レジスタ(ADINSEL)の設定値を下記に示します。

| bit   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|---|---|---|---|---|---|---|---|
| 設定値   | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 16 進数 | О |   |   |   |   | 7 | 7 |   |

#### ③A/D 制御レジスタ 1 (ADCON1: A-D control register1)

A/D を動作可能にします。

| 設定 bit | 上:ビット名<br>下:シンボル             | 内容                                                                                                                     | 今回の<br>内容 |
|--------|------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------|
| bit7   | A/D 断線検出アシスト方式選<br>択ビット(注 4) | 0:変換前ディスチャージ<br>1:変換前プリチャージ<br>A/D 断線検出アシストしませんのでどちらでも構いませんが、今回は"0"にしておきます。                                            | 0         |
| bit6   | A/D 断線検出アシスト機能許可ビット(注 4)     | 0:禁止<br>1:許可<br>A/D 断線検出アシストは使いません。                                                                                    | 0         |
| bit5   | A/D スタンバイビット(注 3) adstby     | 0:A/D 動作停止(スタンバイ) 1:A/D 動作可能 A/D 動作可能にして A/D 変換できるようにします。この bit を"0"から"1"にしたときは、 φ A/D の 1 サイクル 以上経過した後に A/D 変換を開始します。 | 1         |
| bit4   | 8/10 ビットモード選択ビット<br>bits     | 0:8 ビットモード<br>1:10 ビットモード<br>A/D 変換を 10bit(0~1023) にするか、8bit(0~255) に<br>するか選択します。今回は、10bit にします。                      | 1         |
| bit3~1 | 拡張アナログ入力端子選択<br>ビット(注 1)     | <ul><li>"000"を設定</li><li>0:拡張アナログ入力端子を非選択</li><li>1:チップ内蔵基準電圧を選択(注 2)</li></ul>                                        | 000       |
| DILU   | adex0                        | 拡張アナログ入力端子は使いません。                                                                                                      | U         |

- 注 1. チップ内蔵基準電圧をアナログ入力として使用する場合、ADEX0 ビットを"1"( チップ内蔵基準電圧を選択)にした後に、OCVREFCR レジスタの OCVREFAN ビットを"1"( チップ内蔵基準電圧とアナログ入力を接続)にしてください。また、チップ内蔵基準電圧をアナログ入力として使用しない場合、OCVREFAN ビットを"0"( チップ内蔵基準電圧とアナログ入力を切断)にした後に、ADEX0 ビットを"0"(拡張アナログ入力端子を非選択)にしてください。
- 注2. 単掃引モード、繰り返し掃引モードでは設定しないでください。
- 注 3. ADSTBY ビットを"0"(A/D 動作停止) から"1"(A/D 動作可能) にしたときは、 $\phi$  AD の 1 サイクル以上経 過した後に A/D 変換を開始してください。
- 注 4. A/D 断線検出アシスト機能を許可にするためには、ADDDAEN ビットを"1"(許可)にした後、ADDDAEL ビットで変換開始状態を選択してください。 断線時の変換結果は、外付け回路によって変化します。 本機能はシステムに合わせた評価を十分に行った上で、使用してください。

A/D 制御レジスタ1(ADCON1)の設定値を下記に示します。

| bit   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|---|---|---|---|---|---|---|---|
| 設定値   | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 16 進数 | 3 |   |   |   | О |   |   |   |

#### ④ φ AD の 1 サイクル以上ウエイトを入れる

③の bit5 の A/D スタンバイビットを"1"にした場合、 $\phi$  A/D の 1 サイクル以上経過した後に A/D 変換を開始しなければいけません。

そのウエイトを入れるため、アセンブリ言語の nop 命令を実行します。C 言語ソースファイル内では、アセンブリ言語は実行できないため、asm命令というアセンブリ言語を実行できる命令を使って nop 命令を実行します。ちなみに、nop は「No Operation(何もしない)」命令で、この命令を実行するのに 1 サイクル分の時間がかかります。プログラムを下記に示します。

asm( " nop ");

#### ⑤A/D 制御レジスタ 0 (ADCON0: A-D control register0)

A/D 変換を開始します。

| 設定 bit | 上:ビット名<br>下:シンボル    | 内容                                                   | 今回の<br>内容   |
|--------|---------------------|------------------------------------------------------|-------------|
| bit7~1 |                     | ″0000000″を設定                                         | 000<br>0000 |
| bit0   | A/D 変換開始フラグ<br>adst | 0:A/D 変換停止<br>1:A/D 変換開始<br>A/D 変換を開始させるので"1"を設定します。 | 1           |

A/D 制御レジスタ 0 (ADCON0)の設定値を下記に示します。

| bit   | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|---|---|---|---|---|---|---|---|
| 設定値   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 16 進数 | О |   |   |   |   | ] | L |   |

#### 18.5.3 get\_ad7 関数

get\_ad7 関数は、A/D 変換した結果を取得する関数です。

```
84: /* A/D値読み込み(AN7)
                                    */
85: /* 引数 なし
                                    */
86: /* 戻り値 A/D値 0~1023
88 : int get_ad7( void )
89 : {
90 :
    int i;
91:
  /* 繰り返しモード0は、自動的に繰り返すので、結果を読み込むだけ */
92:
93 :
    i = ad7;
94 :
95 :
   return i;
96: }
```

93 行 ad 変換した結果が格納されている ad7 レジスタの値を、変数 i に代入します。

A/D 変換された結果は、A/D レジスタ 0~7(AD0~AD7)に格納されます。AD0~AD7 のどのレジスタに格納されるかは、アナログ入力端子によって変わります。アナログ入力端子とA/D レジスタの関係を下記に示します。

| アナログ入力端子   | 読み込むレジスタ |
|------------|----------|
| AN0(P0_7)  | AD0      |
| AN1(P0_6)  | AD1      |
| AN2(P0_5)  | AD2      |
| AN3(P0_4)  | AD3      |
| AN4(P0_3)  | AD4      |
| AN5(P0_2)  | AD5      |
| AN6(P0_1)  | AD6      |
| AN7(P0_0)  | AD7      |
| AN8(P1_0)  | AD0      |
| AN9(P1_1)  | AD1      |
| AN10(P1_2) | AD2      |
| AN11(P1_3) | AD3      |

今回は、AN7(P0\_0 端子)を使用しているので、表より AD7 レジスタを読み込みます。

#### 18.5.4 main関数

A/D 変換値を取得、マイコンボード上の LED へ値を出力します。

```
36 : void main(void)
37 : {
38 :
         int ad;
39 :
40 :
        init();
                                          /* 初期化
41:
42 :
        while(1) {
43 :
            ad = get_ad7();
            ad = ad >> 6;
44 :
            led_out( ad );
45 :
46:
47 : }
```

| 43 行 | get_ad7 関数で A/D 変換値を取得し、ad 変数に格納します。                                                                                                                                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44 行 | A/D 変換値は、0~1023(2 進数で 11 1111 1111)の値です。LED は 4 個しかありません。そのため 今回は、2 進数で 10 桁の A/D 値を 4 桁に変換します。プログラムは、右シフトを 6 ビット分行い、下 位の 6 桁を捨てます。その結果、A/D 値は 0~15 の値になり、ad 変数に代入します。 |
| 45 行 | 0~15 に変換した A/D 値をマイコンボード上の LED に出力します。                                                                                                                                 |

変数 ad の値が 1023 のとき、44 行のビットシフトのようすを下記に示します。



# 18.6 演習

- (1) ポート 6 に LED 基板 (実習基板の LED 部など) を接続して、A/D 変換値の上位 8bit をその LED へ出力しなさい。
- (2) (1)の状態で、アナログ入力端子をPO\_1 端子に変更して、LED へ出力しなさい。