

SF1626 Flervariabelanalys Exam 15e Mars 2021

Tid: 8:00-11:00

Inga hjälpmedel är tillåtna!

Examinator: John Andersson and Henrik Shahgholian

Del A.

Fråga A1. Betrakta ytan i \mathbb{R}^3 som definieras av ekvationen

$$(x+y)^2 + (2x-y)^2 + z^2 = 9.$$

a) Hitta en normalvektor till ytan i punkten (1, -1, 0).

[2 poäng]

b) Hitta en ekvation för tangentplanet till ytan i punkten (1, -1, 0).

[2 poäng]

Lösningsförslag Fråga A1:

a) Ytan är en nivåyta till funktionen

$$f(x, y, z) = (x + y)^{2} + (2x - y)^{2} + z^{2}.$$

Vi vet att en normal till nivåytan som går genom punkten (1,-1,0) ges av $\nabla f(1,-1,0)$. Vi beräknar

$$\nabla f(x,y,z) = \left(\frac{\partial f(x,y,z)}{\partial x}, \frac{\partial f(x,y,z)}{\partial y}, \frac{\partial f(x,y,z)}{\partial z}\right) = \left(2(x+y) + 4(2x-y), 2(x+y) - 2(2x-y), 2z\right) = \left(10x - 2y, -2x + 4y, 2z\right).$$

Sätter vi in (x, y, z) = (1, -1, 0) i gradienten får vi svaret (12, -6, 0).

Svar fråga A1a: En normal ges av $\nabla f(1, -1, 0) = (12, -6, 0)$.

b) En tangents ekvation i en punkt (a, b, c) ges av

$$\nabla f(a, b, c) \cdot (x - a, y - b, z - c) = 0.$$

Om vi sätter in våra värden (a, b, c) = (1, -1, 0) i detta så får vi ekvationen för ett tangentplan.

Svar fråga A1b: En ekvation för tangentplanet är

$$12(x-1) - 6(y+1) = 0$$
, dvs $2x - y = 3$.

Fråga A2. Positionen för en partikel vid tidpunkten $t \ge 0$ beskrivs av

$$\mathbf{r}(t) = (2\cos(2t), A\sin(2t), 4t),$$

 $d\ddot{a}r A > 0$ är ett reellt tal.

a) Beräkna partikelns hastighet och fart som funktioner av tiden t. Observera att ditt svar ska innehålla den obestämda konstanten A.

b) Välj konstanten A så att partikelns hastighet och acceleration är ortogonala mot varandra.

[2 poäng]

Lösningsförslag Fråga A2:

a) Hastigheten ges av $\mathbf{r}'(t)$. Vi beräknar

$$\mathbf{r}'(t) = (-4\sin(2t), 2A\cos(2t), 4).$$

Farten ges av $|\mathbf{r}'(t)|$. Detta ger

$$|\mathbf{r}'(t)| = \sqrt{16\sin^2(2t) + 4A^2\cos^2(2t) + 16}.$$

Svar fråga A2a: Hastigheten av partikeln i tiden t ges av

$$(-4\sin(2t), 2A\cos(2t), 4).$$

Farten är $\sqrt{16\sin^2(2t) + 4A^2\cos^2(2t) + 16}$.

b) Accelerationen av partikeln är

$$\mathbf{r}''(t) = (-8\cos(2t), -4A\sin(2t), 0) = 2(-4\cos(2t), -2A\sin(2t), 0).$$

Om hastigheten är ortogonal mot accelerationen så måste $\mathbf{r}'(t) \cdot \mathbf{r}''(t) = 0$ d.v.s.

$$0 = (-2\sin(2t), A\cos(2t), 2) \cdot (-4\cos(2t), -2A\sin(2t), 0) =$$

$$8\sin(2t)\cos(2t) - 2A^2\sin(2t)\cos(2t) + 2\cdot 0 = 2\sin(2t)\cos(2t)(4 - A^2).$$

Detta innebär att $A=\pm 2$, men i uppgiftsformuleringen så har vi specifikationen att $A\geq 0$ så A=2.

Svar Fråga A2b: Konstanten A = 2.

Fråga A3. Betrakta trippelintegralen

$$\iiint_K \frac{z}{2+x^2+y^2} dV,$$

där K är området som definieras av $z \ge \sqrt{x^2 + y^2}$ och $x^2 + y^2 + z^2 \le 9$.

a) Skriv om området K i cylindriska koordinater.

[1 poäng]

b) Skriv om integralen i cylindriska koordinater.

[1 poäng]

c) Beräkna integralen.

[2 poäng]

Lösningsförslag Fråga A3:

a) I cylindriska koordinater (r, θ, z) så är $x = r\cos(\theta)$, $y = r\sin(\theta)$ och z = z, där $r \ge 0$, $0 \le \theta < 2\pi$ och $-\infty < z < \infty$. Vidare så ger trigonometriska ettan att $r = \sqrt{x^2 + y^2}$.

Detta gör att $z \geq \sqrt{x^2 + y^2} \geq 0$ i kartesiska koordinater motsvarar $z \geq r$ is cylinder koordinater. På samma sätt så motsvarar $x^2 + y^2 + z^2 \leq 9$ i kartesiska koordinater att $r^2 + z^2 \leq 9$. Om vi tar hänsyn till att $z \geq r \geq 0$ så får vi att $r \leq z \leq \sqrt{9 - r^2}$.

Eftersom $0 \le r \le z \le \sqrt{9-r^2}$ så måste $r \le \sqrt{9-r^2}$ vilket betyder att $0 \le r \le \frac{3}{\sqrt{2}}$.

Svar Fråga A3a: I cylindriska koordinater så ges mängden K av

$$0 \le \theta < 2\pi,$$

$$0 \le r < \frac{3}{\sqrt{2}},$$

$$r \le z \le \sqrt{9 - r^2}.$$

b) I cylinder koordinater så är $dV = rdzdrd\theta$ så integralen blir

$$\int_{0}^{2\pi} \int_{0}^{\frac{3}{\sqrt{2}}} \int_{r}^{\sqrt{9-r^2}} \frac{zr}{2+r^2} dz dr d\theta.$$

c) Vi börjar med att beräkna integralen i θ , därefter med avseende på z och slutligen m.a.p. r, och får då

$$\int_{0}^{2\pi} \int_{0}^{\frac{3}{\sqrt{2}}} \int_{r}^{\sqrt{9-r^2}} \frac{zr}{2+r^2} dz dr d\theta = 2\pi \int_{0}^{\frac{3}{\sqrt{2}}} \int_{r}^{\sqrt{9-r^2}} \frac{zr}{2+r^2} dz dr =$$

$$2\pi \int_{0}^{3/\sqrt{2}} \left[\frac{z^2 r}{2(2+r^2)} \right]_{r}^{\sqrt{9-r^2}} dr = \pi \int_{0}^{3/\sqrt{2}} \frac{9r - 2r^3}{2+r^2} dr =$$

$$\pi \int_{0}^{3/\sqrt{2}} \left(\frac{13r}{2+r^2} - 2r \right) dr = \left[\frac{13\pi}{2} \ln|2+r^2| - \pi r^2 \right]_{0}^{3/\sqrt{2}} =$$

$$\frac{13\pi}{2} \ln\left(\frac{13}{4}\right) - \frac{9\pi}{2}.$$

Svar Fråga A3c: Integralens värde är $\frac{13\pi}{2} \ln \left(\frac{13}{4} \right) - \frac{9\pi}{2}$.

Del B.

Fråga B1. Låt D vara det begränsade området i första kvadranten i \mathbb{R}^2 som begränsas av kurvorna

$$x^2 + 16y^2 = 16$$
, $x^2 + 16y^2 = 1$, $x = y$

samt den positiva y-axeln.

a) Beskriv D i (u, v)-planet då $u = x^2 + 16y^2$ och $v = \frac{y}{x}$.

[2 poäng]

b) Beräkna jacobianen för transformationen ovan.

[2 poäng]

c) Beräkna integralen

$$\int \int_D \frac{y}{x} dA.$$

[2 poäng]

Lösningsförslag Fråga B1:

a) Vi får direkt $1 \le u \le 16$. Vidare, eftersom $x, y \ge 0$ och området ligger över y = x så kommer $v = \frac{y}{x} \ge 1$.

Svar Fråga B1a: I (u, v)-koordinater så beskrivs området av $1 \le u \le 16$ och $1 \le v$.

b) För att beräkna integralen så måste vi först beräkna Jacobianen som är

$$\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} 2x & 32y \\ -\frac{y}{x^2} & \frac{1}{x} \end{vmatrix} = 2 + 32\frac{y^2}{x^2} = 2 + 32v^2.$$

Svar Fråga B1b: Jacobianen är $2 + 32v^2$.

c) Vi beräknar, där vi använder att ett areaelement i (u, v)-koordinater ges av

$$\frac{1}{\left|\frac{\partial(u,v)}{\partial(x,y)}\right|}dudv = \frac{1}{2+32v^2}dudv,$$

den generaliserade integralen

$$\int \int_{D} \frac{y}{x} dA = \int_{1}^{\infty} \int_{1}^{16} \frac{v}{2 + 32v^{2}} du dv =$$

$$\lim_{R \to \infty} \int_{1}^{R} \int_{1}^{16} \frac{v}{2 + 32v^{2}} du dv = \lim_{R \to \infty} \int_{1}^{R} \frac{15v}{2 + 32v^{2}} dv =$$

$$\lim_{R \to \infty} \left[\frac{15}{64} \ln(2 + 32v^{2}) \right]_{1}^{R} = \lim_{R \to \infty} \frac{15}{64} \ln\left(\frac{1 + 16R^{2}}{17}\right) = \infty.$$

Så den generaliserade integralen divergerar.

Svar Fråga B1c Integralen är divergent.

Fråga B2. En snickare vill tillverka en låda med volym $1m^3$. Lådan har sidorna parallella med koordinatplanen och sidlängderna ges av x, y och z,

$$0 \le x \le 10$$
, $0 \le y \le 10$ $0 \le z \le 10$.

Lådans framsida och ovansida skall tillverkas i ett fint träslag som kostar $900kr/m^2$ och undersidan och de övriga sidorna tillverkas av ett billigare träslag som kostar $300kr/m^2$. Snickaren vill välja sidlängderna så att kostnaden blir så låg som möjligt.

a) Formulera snickarens problem matematiskt som ett minimeringsproblem med bivillkor.

[2 poäng]

b) Använd Lagrange multiplikatormetod för att lösa minimeringsproblemet i a) delen av uppgiften. Andra metoder ger inga poäng.

[4 poäng]

Lösningsförslag Fråga B2:

a) Volymen är lika med 1 vilket ger xyz=1. Om vi säger att framsidan av lådan är den sida med sidlängder x och z så blir kostnaden för framsidan 900xz, kostnaden för toppen blir 900xy. Totala kostnaden för det dyra materialet blir 900xz+900xy.

Arean av de övriga sidorna är: botten xy, baksidan xz och de två andra sidorna har arean yz. Detta ger att kostnaden för det billiga materialet är $300xy + 300xz + 2 \cdot 300yz$.

Totala kostnaden blir därför, mätt i kr,

$$900xz + 900xy + 300xy + 300xz + 600yz = 1200yx + 1200zx + 600yz.$$

Om vi också tar hänsyn till bivillkoren att $0 \le x, y, z \le 10$ så får vi minimeringsproblemet (och vårt **Svar Fråga B1b**:

Minimera
$$f(x,y,z)=1200yx+1200zx+600yz$$
 under bivillkoren $xyz=1$ och $0 \le x,y,z \le 10$.

b) Eftersom f(x,y,z) är kontinuerlig och området är slutet så existerar ett minimum. Vi observerar att eftersom $x,y,z \le 10$ och xyz = 1 så måste $x,y,z \ge \frac{1}{100} > 0$. Specifikt så kan vi dela med x,y och med z utan att riskera att dela med noll.

För att se om minimum inträffar för inre punkter, 0 < x, y, z < 10, så använder vi Lagranges multiplikatormetod. Om ett minimum inträffar i en inre punkt så måste det finnas en Lagrangemultiplikator $\lambda \in \mathbb{R}$ så att

$$\nabla f(x, y, z) = \lambda \nabla (xyz).$$

Om vi skriver upp detta komponentvis så får vi

där vi multiplicerade respektive rad med x, y och z (som alla är $\neq 0$ enligt första stycket i lösningen) samt använde att xyz = 1.

Om vi subtraherar 3e från 2a raden i (1) så får vi

$$1200(y-z)x = 0 \Rightarrow y = z,$$

där implikationen följer eftersom $x \neq 0$.

Om vi subtraherar 3e raden i (1) från den första raden så får vi

$$600(2x - y)z = 0 \Rightarrow y = 2x,$$

där vi använde att $z \neq 0$ och att y = z.

Vi får därför att 2x = y = z. Insatt i xyz = 1 ger detta att

$$x = 2^{-\frac{2}{3}}, \quad y = z = 2^{\frac{1}{3}}.$$

Vi observerar att dessa värden uppfyller $0 \le x, y, z \le 10$ så ett möjligt minimum är

(2)
$$f(2^{-\frac{2}{3}}, 2^{\frac{1}{3}}, 2^{\frac{1}{3}}) = 1800 \cdot 2^{2/3}.$$

Härnäst måste vi kolla randpunkter, då $x=10,\,y=10$ eller $z=10.\,$ Om x=10 så får vi minimeringsproblemet

Minimera
$$g(y, z) = 12000(y + z) + 600yz$$

När $10yz = 1$.

Om vi sätter in $y = \frac{1}{10z}$ (kom ihåg att $z \neq 0$) i minimeringsfunktionen g så får vi att vi ska minimera

$$\frac{1200}{z} + 12000z + 60,$$

för $0 \le z \le 10$. Om vi deriverar (3) och sätter lika med noll för att hitta kritiska punkter så får vi att

$$-\frac{1200}{z^2} + 12000 = 0 \Rightarrow z = \frac{1}{\sqrt{10}}.$$

Så vi får ett möjligt minimivärde då $x=10,\,y=\frac{1}{\sqrt{10}}$ och $z=\frac{1}{\sqrt{10}}.$ Sätter vi in dessa värden i f(x,y,z) så får vi att

(4)
$$f\left(10, \frac{1}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right) = 2400\sqrt{10} + 60 > 7200.$$

Om vi jämför detta med det möjliga minimum vi hade i (2) så ser vi direkt att

$$f(2^{-\frac{2}{3}}, 2^{\frac{1}{3}}, 2^{\frac{1}{3}}) = 1800 \cdot 2^{2/3} < 3600 < 7200 < f\left(10, \frac{1}{\sqrt{10}}, \sqrt{1}\sqrt{10}\right).$$

Så minimivärdet inträffar inte då x = 10.

På samma sätt måste vi undersöka när y=10 och när z=10. Men eftersom f(x,y,z) är symmetrisk i y och z så räcker det med att undersöka det ena fallet, säg y=10. Vi får då minimeringsproblemet

Minimera
$$h(x, z) = 12000x + 6000z + 1200xz$$

När $10xz = 1$.

Vi fortsätter som i föregående fall och substituerar $z=\frac{1}{10x}$ i funktionen h(x,z) och får då att vi ska minimera

$$12000x + \frac{600}{x} + 120,$$

under villkoret att 0 < x < 10. Om vi deriverar (5) och sätter lika med noll för att hitta kritiska punkter så får vi

$$12000 - \frac{600}{x^2} = 0 \Rightarrow x = \frac{1}{\sqrt{20}} = \frac{1}{2\sqrt{5}}.$$

Sätter vi in $x=\frac{1}{2\sqrt{5}}, y=10$ och $z=\frac{1}{\sqrt{5}}$ i f(x,y,z) så får vi kostnaden

$$f\left(\frac{1}{2\sqrt{5}}, 10, \frac{1}{\sqrt{5}}\right) = 2400\sqrt{5} + 600 > 3600 > f(2^{-\frac{2}{3}}, 2^{\frac{1}{3}}, 2^{\frac{1}{3}}).$$

Det följer att vi inte kan ha något minumum när y = 10 eller, p.g.a. symmetri, då z = 10.

Det sista fallet vi måste undersöka är om två av $x=10,\,y=10$ eller z=10 är uppfyllda. Men eftersom x,y,z>0 så kommer $f(x,y,z)>1200xy,\,f(x,y,z)>1200xz$ och f(x,y,z)>600yz. D.v.s. om två av $x,\,y$ eller z är lika med 10 så kommer f(x,y,z)>60000. Vilket innebär att dessa inte är minimum.

Vi får därför svaret:

Svar Fråga B2b: Minimum inträffar då $x=2^{-\frac{2}{3}}, \quad y=z=2^{\frac{1}{3}}$ och är då

$$f(2^{-\frac{2}{3}}, 2^{\frac{1}{3}}, 2^{\frac{1}{3}}) = 1800 \cdot 2^{2/3}.$$

Del C.

Fråga C1. Beräkna flödet av vektorfältet

$$\mathbf{F}(x, y, z) = (y + 2xz, y + z, -2x - z^2)$$

ut genom den yta som ges av $x^2+y^2+z^2=4$ och x,y,z>0. Normalriktningen till ytan pekar bort från origo.

[6 poäng]

Lösningsförslag Fråga C1: Vi kommer att använda Gauss sats på området

$$K = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 < 4, \ x, y, z > 0\}.$$

Randen till K består av fyra delar: först den yta vi vill beräkna flödet igenom

$$S = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 = 4, \ x, y, z > 0\},\$$

och därtill tre ytor som ligger i koordinatplanen

$$A_x = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 \le 4, \ y, z > 0 \text{ och } x = 0\},$$

$$A_y = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 \le 4, \ x, z > 0 \text{ och } y = 0\}$$

samt

$$A_z = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 \le 4, \ x, y > 0 \text{ och } z = 0\}.$$

Vi får, från Gauss sats, att

Om vi beräknar $\operatorname{div}(F(x,y,z))=1$ och sätter in i (6) så får vi, efter att ha flyttat om termerna,

$$\iint_{S} \mathbf{F}(x, y, z) \cdot d\mathbf{S} = \iiint_{K} dV + \iint_{A_{x}} y dA + \iint_{A_{y}} z dA - \iint_{A_{z}} 2x dA.$$

Vi beräknar först

$$\iiint_{K} dV = \frac{4\pi}{3},$$

eftersom den integralen är en åttondel av volymen av sfären med radie 2. Sen observerar vi att, p.g.a. symmetri,

$$\iint_{A_x} y dA = \iint_{A_y} z dA = \iint_{A_z} x dA.$$

Detta gör att

$$\iint_{S} F(x,y,z) \cdot d\mathbf{S} = \underbrace{\iiint_{K} dV}_{=\frac{4\pi}{2}} + \underbrace{\iint_{A_{x}} y dA + \iint_{A_{y}} z dA - \iint_{A_{z}} 2x dA}_{=0} = \frac{4\pi}{3}.$$

Svar Fråga C1: Flödet ut genom ytan är $\frac{4\pi}{3}$.

Fråga C2. Låt Γ vara en enkel kurva som parametriseras av

$$\mathbf{r}(t) = (x(t), y(t)) : [0, 1] \mapsto \mathbb{R}^2$$

där \mathbf{r} är en kontinuerlig och styckvis kontinuerligt deriverbar kurva från intervallet [0,1] in i \mathbb{R}^2 . Antag att kurvan är sluten; d.v.s. $\mathbf{r}(0) = \mathbf{r}(1)$. Slutligen så antar vi att för alla $t \in [0,1]$ så kommer minst ett av x(t), y(t) att vara heltal.

Avgör alla möjliga numeriska värden av linjeintegralen

$$\int_{\Gamma} (y, -x) \cdot d\mathbf{r}.$$

[6 poäng]

Lösningsförslag Fråga C2: Observera att om Γ är en sluten kurva som är orienterad moturs så kommer, enligt Greens Sats i planet,

$$\int_{\Gamma} (y, -x) \cdot d\mathbf{r} = \iint_{A} \left(-\frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} \right) dA = \iint_{A} (-2) dA,$$

där A är området som innesluts av kurvan. På samma sätt så kommer, om kurvan är orienterad medurs,

$$\int_{\Gamma} (y, -x) \cdot d\mathbf{r} = -\iint_{A} \left(-\frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} \right) dA = \iint_{A} 2dA.$$

Eftersom kurvan löper längs rutnätet som ges av $x \in \mathbb{Z}$ och/eller $y \in \mathbb{Z}$ hävdar vi att arean av det inneslutna området kommer att vara $1, 2, 3, \ldots$ Vi får därför att de möjliga värdena integralen kan anta är $\pm 2, \pm 4, \pm 8, \ldots$

Låt oss argumentera för att arean som innesluts av Γ är ett heltal. För det kommer vi att använda notationen Q_{ij} för den öppna kvadraten med hörn i (i, j), (i + 1, j), (i + 1, j + 1) och (i, j + 1).

Vi hävdar att om centrum av en given kvadrat Q_{ij} ligger innanför kurvan Γ så ligger hela kvadraten i området som omges av kurvan Γ , och motsvarande om centrum ligger utanför området begränsat av Γ så ligger hela kvadraten utanför Γ . Låt oss säga att (i+1/2,j+1/2) ligger innanför Γ och om det finns en punkt $(i+a,j+b) \in Q_{ij}$, d.v.s. 0 < a,b < 1, som inte ligger innanför Γ så måste det finnas en punkt på linjen

$$(1-t)(i+1/2.j+1/2) + t(i+a,j+b), t \in [0,1]$$

som ligger på Γ . Men för alla $t \in [0, 1]$ så kommer

$$\begin{aligned} i &< (1-t)\big(i+1/2\big) + t\big(i+a\big) = i + \frac{1}{2} + t(a-1/2) < i+1 \\ j &< (1-t)\big(j+1/2\big) + t\big(j+b\big) = j + \frac{1}{2} + t(b-1/2) < j+1, \end{aligned}$$

där vi använde att $0 \le a, b \le 1$. Det följer att om centrum av kvadraten ligger innanför kurvan så ligger alla punkter i kvadraten innanför kurvan.

På samma sätt kommer hela det inre av Q_{ij} att ligga utanför området som innesluts av Γ om centrum av Q_{ij} gör det.

Det följer att innandömet av Γ består av ett antal enhetskvadrater och har därför en area som är ett heltal.

Figur: I bilden ovan så har vi markerat heltalskoordinater med röda streckade linjer. Vi har även skissat en kurva Γ (blå linje). Om det skulle finnas två punkter i en kvadrat $Q_{i,j}$ så att den ena ligger innanför Γ och den andra utanför Γ , såsom högst uppe till höger på Γ . Då skulle vi kunna dra ett linjesegment mellan dessa punkter, skissat i grönt i den förstorade bilden, så att detta linjesegment skär Γ i koordinater som inte är heltal. Detta är en motsägelse.

Svar Fråga C2: De möjliga värdena är $\pm 2n$ för n=1,2,3,4,...

¹Detta påstående kallas Jordans sats och är mycket djupare än det framstår, men ingen motivering krävs för full poäng.