

Model Checking

Computation Tree Logic (CTL)

[Baier & Katoen, Chapter 6.1-6.3]

Prof. Dr. Nils Jansen Radboud University, 2025

Credit to the slides: Prof. Dr. Dr.h.c. Joost-Pieter Katoen

Overview

- Branching-Time Logic
- 2 CTL Syntax
- 3 CTL Semantics
- 4 CTL Equivalence
- 5 Expressiveness of LTL versus CTL
- **6** Summary

Overview

- Branching-Time Logic
- 2 CTL Syntax
- 3 CTL Semantics
- 4 CTL Equivalence
- 5 Expressiveness of LTL versus CTL
- 6 Summary

Linear Time Versus Branching Time

Linear Time Versus Branching Time

- Linear Temporal Logic (LTL) is interpreted over infinite sequences
- Traces are obtained from paths in a transition system.

- Computation Tree Logic (CTL) is interpreted over infinite trees computation trees
- Computation trees are infinite trees whose nodes are labelled with sets of propositions
 - They are obtained by unfolding a transition system
 - Such trees keep track of branching between several traces

Linear Time Versus Branching Time

	1	
a	4	1

	linear time	branching time
behavior	path based traces	state based computation tree
temporal logic	LTL path formulas	CTL state formulas
model checking	PSPACE-complete $\mathcal{O}(\mathit{size}(T) \cdot \exp(\varphi))$	PTIME $\mathcal{O}(\operatorname{size}(T) \cdot \Phi)$
impl. relation	trace inclusion trace equivalence PSPACE-complete	simulation bisimulation PTIME

Overview

- Branching-Time Logic
- 2 CTL Syntax
- 3 CTL Semantics
- 4 CTL Equivalence
- 5 Expressiveness of LTL versus CTL
- 6 Summary

Computation Tree Logic

Edmund M. Clarke, Jr. (1945–†2020)

E. Allen Emerson (1954–†2024)

CTL Syntax

Definition: Syntax Computation Tree Logic

• CTL state-formulas with $a \in AP$ obey the grammar:

$$\Phi ::= \mathsf{true} \; \middle| \; a \; \middle| \; \Phi_1 \; \wedge \; \Phi_2 \; \middle| \; \neg \Phi \; \middle| \; \exists \varphi \; \middle| \; \forall \varphi$$

ullet and arphi is a path-formula formed by the grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2.$$

Example CTL State-formulas

- ∀□∃○ a
- ∃(∀□a) U b

CTL Syntax

Definition: Syntax Computation Tree Logic

• CTL state-formulas with $a \in AP$ obey the grammar:

$$\Phi ::= \mathsf{true} \ \middle| \ a \ \middle| \ \Phi_1 \wedge \Phi_2 \ \middle| \ \neg \Phi \ \middle| \ \exists \varphi \ \middle| \ \forall \varphi$$

• and φ is a path-formula formed by the grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2.$$

Intuition

- $s \models \forall \varphi$ if all paths starting in s fulfill φ
- $s \models \exists \varphi$ if some path starting in s fulfill φ

9

Derived CTL Operators

```
potentially \Phi: \exists \diamondsuit \Phi = \exists (\mathsf{true} \, \mathsf{U} \, \Phi)

inevitably \Phi: \forall \diamondsuit \Phi = \forall (\mathsf{true} \, \mathsf{U} \, \Phi)

potentially always \Phi: \exists \Box \Phi = \neg \forall \diamondsuit \neg \Phi

invariantly \Phi: \forall \Box \Phi = \neg \exists \diamondsuit \neg \Phi

weak until: \exists (\Phi \, \mathsf{W} \, \Psi) = \neg \forall ((\Phi \, \land \neg \Psi) \, \mathsf{U} \, (\neg \Phi \, \land \neg \Psi))

\forall (\Phi \, \mathsf{W} \, \Psi) = \neg \exists ((\Phi \, \land \neg \Psi) \, \mathsf{U} \, (\neg \Phi \, \land \neg \Psi))
```

The Boolean connectives are derived as usual

Intuitive CTL Semantics

Intuitive CTL Semantics

Overview

- Branching-Time Logic
- 2 CTL Syntax
- 3 CTL Semantics
- 4 CTL Equivalence
- 5 Expressiveness of LTL versus CTL
- **6** Summary

CTL Semantics

Define a satisfaction relation for CTL-formulas over AP for a given transition system TS without terminal states.

Two parts:

- Interpretation of state-formulas over states of TS
- Interpretation of path-formulas over paths of TS

CTL Semantics (1)

Notation

TS, $s \models \Phi$ if and only if state-formula Φ holds in state s of transition system TS. As TS is known from the context we simply write $s \models \Phi$.

Definition: Satisfaction relation for CTL state-formulas The satisfaction relation ⊨ is defined for CTL state-formulas by:

$$s \models a$$
 iff $a \in L(s)$ $S^{\{a_i,b_j\}}$ $s \models \neg \Phi$ iff $not (s \models \Phi)$ $s \models \Phi \land \Psi$ iff $(s \models \Phi)$ and $(s \models \Psi)$

CTL Semantics (1)

Notation

TS, $s \models \Phi$ if and only if state-formula Φ holds in state s of transition system TS. As TS is known from the context we simply write $s \models \Phi$.

Definition: Satisfaction relation for CTL state-formulas The satisfaction relation ⊨ is defined for CTL state-formulas by:

$$s \models a \qquad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \qquad \text{iff} \quad \text{not} \ (s \models \Phi)$$

$$s \models \Phi \land \Psi \qquad \text{iff} \quad (s \models \Phi) \text{ and} \ (s \models \Psi)$$

$$s \models \exists \varphi \qquad \text{iff} \quad \text{there exists} \ \pi \in Paths(s). \ \pi \models \varphi$$

$$s \models \forall \varphi \qquad \text{iff} \quad \text{for all} \ \pi \in Paths(s). \ \pi \models \varphi$$

where the semantics of CTL path-formulas is defined on the next slide.

CTL Semantics (2)

Definition: satisfaction relation for CTL path-formulas Given path π and CTL path-formula φ , the satisfaction relation \models where $\pi \models \varphi$ if and only if path π satisfies φ is defined as follows:

$$\pi \models \bigcirc \Phi$$
 iff $\pi[1] \models \Phi$
 $\pi \models \Phi \cup \Psi$ iff $(\exists j \ge 0, \pi[j] \models \Psi$ and $(\forall 0 \le i < j, \pi[i] \models \Phi)$)

where $\pi[i]$ denotes the state s_i in the path $\pi = s_0 s_1 s_2 \dots$

Transition System Semantics

• For CTL-state-formula Φ , the satisfaction set $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi$$
 if and only if $\forall s_0 \in I. s_0 \models \Phi$

■ Point of attention: $TS \not\models \Phi$ is not equivalent to $TS \models \neg \Phi$ because of several initial states, e.g., $s_0 \models \exists \Box \Phi$ and $s_0' \not\models \exists \Box \Phi$

Semantics of ○**-Operator**

$$s \models \exists \bigcirc \Phi$$
 iff $\exists \pi = s \ s_1 \ s_2 \ldots \in Paths(s)$. $\pi \models \bigcirc \Phi$, that is: $s_1 \models \Phi$

Semantics of ○**-Operator**


```
s \models \exists \bigcirc \Phi iff \exists \pi = s \ s_1 \ s_2 \ldots \in Paths(s). \pi \models \bigcirc \Phi, that is: s_1 \models \Phi

s \models \forall \bigcirc \Phi iff \forall \pi = s \ s_1 \ s_2 \ldots \in Paths(s). \pi \models \bigcirc \Phi, that is: s_1 \models \Phi
```

Example

Example

Infinitely Often

$$s \models \forall \Box \forall \Diamond \Phi$$
 iff $\forall \pi \in Paths(s)$ a Φ -state is visited infinitely often.

For
$$\Phi = a \in AP$$
 we get

$$\begin{array}{ccc}
\underline{s \models \forall \Box \forall \Diamond a} & \text{iff} & \underline{s \models \Box \Diamond a} \\
\hline
CTL & LTL
\end{array}$$

Example

(1) Does
$$TS \models \exists \bigcirc \forall \Box \neg a$$
?

(2) Does
$$TS \models \forall \Box \exists \bigcirc \neg a$$
?

Overview

- Branching-Time Logic
- 2 CTL Syntax
- 3 CTL Semantics
- 4 CTL Equivalence
- 5 Expressiveness of LTL versus CTL
- 6 Summary

CTL Equivalence

Definition: CTL equivalence

CTL-formulas Φ and Ψ (both over AP) are equivalent:

$$\Phi \equiv_{CTL} \Psi$$
 if and only if $Sat(\Phi) = Sat(\Psi)$ for any TS (over AP)

If it is clear from the context that we deal with CTL-formulas, we simply write $\Phi \equiv \Psi$.

Equivalently,

$$\Phi \equiv \Psi$$
 iff $(\forall TS : TS \models \Phi$ iff $TS \models \Psi)$

Duality

Distributive Laws

$$\forall \Box (\Phi \land \Psi) \equiv \forall \Box \Phi \land \forall \Box \Psi$$

$$\exists \diamondsuit (\Phi \lor \Psi) \equiv \exists \diamondsuit \Phi \lor \exists \diamondsuit \Psi$$
But:
$$\forall \diamondsuit (\Phi \lor \Psi) \neq \forall \diamondsuit \Psi \lor \forall \diamondsuit \Psi$$

Distributive Laws

$$\forall \Box (\Phi \wedge \Psi) \equiv \forall \Box \Phi \wedge \forall \Box \Psi$$

$$\exists \diamondsuit (\Phi \vee \Psi) \equiv \exists \diamondsuit \Phi \vee \exists \diamondsuit \Psi$$

$$\exists \Box (\Phi \wedge \Psi) \neq \forall \diamondsuit \Psi$$

$$\exists \Box (\Phi \wedge \Psi) \neq \exists \Box \Phi \wedge \exists \Box \Psi$$

Duality \bigcirc and \square — Correct or Wrong?

$$A \bigcirc A \Box a \equiv A \Box A \bigcirc a$$

Duality ○ and □ — Correct or Wrong?

$$\forall \bigcirc \forall \Box a \equiv \forall \Box \forall \bigcirc a$$

correct.

 $\exists \bigcirc \exists \Box a \equiv \exists \Box \exists \bigcirc a$

Duality ○ and □ — Correct or Wrong?

Overview

- Branching-Time Logic
- 2 CTL Syntax
- 3 CTL Semantics
- 4 CTL Equivalence
- 5 Expressiveness of LTL versus CTL
- 6 Summary

Equivalence of CTL and LTL Formulas

Definition: equivalence of LTL and CTL formulas CTL-formula Φ and LTL-formula φ (both over AP) are equivalent. denoted $\Phi \equiv \varphi$, if for any transition system *TS* (over *AP*):

 $TS \models \Phi$ if and only if $TS \models \varphi$.

Examples

- "Next a": $\forall \bigcirc a \equiv \bigcirc a$
- "Eventually a": $\forall \Diamond a \equiv \Diamond a$
- "Infinitely often a": ∀□∀♦ a ≡ □ ♦ a

What about e.g. $\forall \Diamond (a \land \forall \bigcirc a) \equiv \dots$?

LTL and CTL are Incomparable

- Some LTL-formulas cannot be expressed in CTL, e.g.,
 - ◊□ a
 - ♦ (a ∧ a)

There does not exist an equivalent CTL formula

- Some CTL-formulas cannot be expressed in LTL, e.g.,
 - ∀◊∀□a
 - $\forall \diamondsuit (a \land \forall \bigcirc a)$, and
 - ∀□∃♦ a

There does not exist an equivalent LTL formula

How to prove this formally?

From CTL to LTL

[Clarke & Draghicescu]

Let Φ be a CTL-formula, and φ the LTL-formula obtained by eliminating all path quantifiers in Φ . Then:

either $\Phi \equiv \varphi$ or there is no LTL-formula equivalent to Φ .

Examples

- ∀○ a →
- $\forall \diamondsuit (a \land \forall \bigcirc a) \mapsto$
- ∀□∀◇ a →
- ∀□∃◊ a →

From CTL To LTL (1)

CTL-formula $\forall \Diamond (a \land \forall \bigcirc a)$ cannot be expressed in LTL.

Proof.

$$s_0 \models \diamondsuit (a \land \bigcirc a)$$
 but $\underbrace{s_0 \not\models \forall \diamondsuit (a \land \forall \bigcirc a)}_{\text{path } s_0 s_1 (s_2)^{\omega}}$ violates it

From CTL To LTL (2)

 $\forall \Diamond \forall \Box a$ cannot be expressed in LTL.

Proof.

We show that: $\forall \Diamond \forall \Box a$ is not equivalent to $\Diamond \Box a$.

$$s_0 \models \diamondsuit \square a$$
 but $\underbrace{s_0 \not\models \forall \diamondsuit \ \forall \square a}_{\text{path } s_0^\omega \text{ violates it}}$

From CTL To LTL (3)

The CTL-formula $\forall \Box \exists \diamond a$ cannot be expressed in LTL.

Proof.

■ This is shown by contraposition: assume $\varphi \equiv \forall \Box \exists \diamond a$; let TS:

- $TS \models \forall \Box \exists \diamond a$, and thus—by assumption— $TS \models \varphi$
- Remove state t. Then: $Paths(TS') \subseteq Paths(TS)$, thus $TS' \models \varphi$
- But $TS' \not\models \forall \Box \exists \diamondsuit a$ as path $s^{\omega} \not\models \Box \exists \diamondsuit a$

From LTL To CTL

The LTL-formula $\Diamond \Box$ *a* cannot be expressed in CTL.

Proof.

Provide two series of transition systems TS_n and TS'_n for n = 0, 1, 2, ... (see next slide) such that:

- $TS_n \not\models \Diamond \Box a$ and $TS'_n \models \Diamond \Box a$ (*), and
- For any CTL-formula Φ with $|\Phi| \le n : TS_n \models \Phi$ iff $TS'_n \models \Phi$ (**) proof by induction on n (omitted here)

Proof by contraposition.

Assume there is a CTL-formula $\Phi \equiv \diamondsuit \square a$ with $|\Phi| = n$ for some n

- by (*), it follows $TS_n \not\models \Phi$ and $TS'_n \models \Phi$
- but this contradicts (**): $TS_n \models \Phi$ if and only if $TS'_n \models \Phi$

Proof

LTL Versus CTL

Syntax of CTL*

Definition: Syntax CTL*

• CTL* state-formulas with $a \in AP$ obey the grammar:

• and φ is a CTL* path-formula formed by the grammar:

$$\varphi ::= \Phi \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$$

where Φ is a CTL* state-formula, and $\varphi,\,\varphi_1$ and φ_2 are path-formulas.

in CTL*: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL.

CTL* Is More Expressive Than LTL And CTL

The CTL*-formula over $AP = \{a, b\}$:

$$\Phi = (\forall \diamondsuit \square \ a) \ \lor \ (\forall \square \exists \diamondsuit b)$$

can neither be expressed in LTL nor in CTL.

Relating LTL, CTL, and CTL*

Overview

- Branching-Time Logic
- 2 CTL Syntax
- 3 CTL Semantics
- 4 CTL Equivalence
- 5 Expressiveness of LTL versus CTL
- **6** Summary

Summary

- Computation tree logic (CTL) is a logic interpreted over infinite trees
- Path quantifiers in CTL alternate with temporal modalities
- CTL and LTL have an incomparable expressive power
- A CTL-formula Φ is equivalent to:
 - the LTL-formula obtained by removing all path quantifiers from Φ, or
 - there is no equivalent LTL-formula

CTL* is strictly more expressive than LTL and CTL