OPTIMIZACIÓN DE MODELOS ESTOCÁSTICOS DE MERCADO ELÉCTRICO MÚLTIPLE MEDIANTE MÉTODOS DUALES

Unai Aldasoro Marcellan

TFM - MIEIO curso 2010/2011

March 17, 2011

Director: Francisco Javier Heredia Cervera programación estocástica, optimización dual, mercados eléctricos

Introducción Modelo de optimización Método de resolución: Proximal Bundle Method Adaptación del problema al PBM

Índice

1 Introducción

- 2 Modelo de optimización
 - Conjuntos y elementos
 - Constantes
 - Variables
 - Función objetivo
 - Restricciones
- 3 Método de resolución: Proximal Bundle Method
 - Problema principal y subproblema
 - Esquema gráfico
 - Ejemplo ilustrativo
 - Algoritmo Proximal Bundle Method
- 4 Adaptación del problema al PBM
- 5 Implementación
- 6 Posultados
 - Resumen de resultados
 - Resultados iterativos
- 7 Conclusiones y líneas futuras

Contexto de investigación

Proyecto de investigación DPI2008-02153. MCI

Short and Medium-Term multimarket Optimal Electricity Generation Planning with Risk and Environmental Constraints

ENTORNO ACADÉMICO

■ Group on Numerical Optimization and Modeling (GNOM)

ENTE PROMOTOR OBSERVADOR

■ Gas Natural - Unión Fenosa

Introducción
Modelo de optimización
Método de resolución: Proximal Bundle Method
Adaptación del problema al PBM
Implementación
Resultados

Objetivos

Objetivo principal

Valorar posibles métodos duales y contruir la base de una resolución eficiente del modelo eléctrico multimercado de oferta óptima en el MIBEL

Modelo de optimizazión basado en "Optimal Day-Ahead Bidding in the MIBEL's Multimarket Energy Production System" C. Corchero and F.J Heredia

Descripción del problema: MIBEL

Introducción

Modelo de optimización Método de resolución: Proximal Bundle Method Adaptación del problema al PBM Implementación Resultados Conclusiones y líneas futuras

Descripción del problema: Estructura del mercado

Mercados MIBEL

- Day-Ahead Market (DAM)
- Reserve Market (RM)
- Intraday Market (IM)

Generación no optimizable

- Bilateral Contracts (BC)
- Furures Contracts (FC)

Descripción del problema: Incertidumbre

Hipótesis

Hipótesis 1

Sólo se decidirá si una unidad participa o no en IM.

Hipótesis 2

Se considera únicamente la primera sesión de IM.

Hipótesis 3

Todas las pujas realizadas en los RM e IM serán casadas.

Indice

- 1 Introducción
 - Modelo de optimización
 - Conjuntos y elementos
 - Constantes
 - Variables
 - Función objetivo
 - Restricciones
- 3 Método de resolución: Proximal Bundle Method
 - Problema principal y subproblema
 - Esquema gráfico
 - Ejemplo ilustrativo
 - Algoritmo Proximal Bundle Method
- 4 Adaptación del problema al PBM
- 5 Implementación
- 6 Posultados
 - Resumen de resultados
 - Resultados iterativos
- 7 Conclusiones y líneas futuras

Conjuntos y elementos

Conjuntos y elementos

- U_j Conjunto de unidades cuya generación es asignable (parcial o totalmente) a la demanda del contrato j de tipo FC
- T Conjunto de **intervalos**
- / Conjunto de unidades
- 5 Conjunto de **escenarios**
- F Conjunto de **contratos FC**
- B Conjunto de contratos BC

- t Elemento del conjunto T
- i Elemento del conjunto I
- s Elemento del conjunto S
- j Elemento del conjunto F
- bc Elemento del conjunto B

Constantes

Caracterización de la incertidumbre

- Ps Probabilidad del escenario s
- $\lambda_t^{D,s}$ **Precio** de mercado **DAM** en el intervalo t bajo el escenario s
- $\lambda_t^{R,s}$ **Precio** de mercado **RM** en el intervalo t bajo el escenario s
- $\lambda_t^{I,s}$ **Precio** de mercado **IM** en el intervalo t bajo el escenario s

Constantes

Coeficientes de coste

- c_i Coeficiente de coste de **funcionamiento** de la unidad i
- ci^{on} Coeficiente de coste de **encendido** de la unidad i
- c_i Coeficiente de coste de **apagado** de la unidad i
 - c! Coeficiente de coste **lineal** de la unidad i
 - c_i^q Coeficiente de coste **cuadrático** de la unidad i

Constantes

Constantes de generación

- gi Capacidad de generación ACG de la unidad i
- \overline{P}_i Máxima capacidad de generación de la unidad i
- \underline{P}_i Mínima capacidad de generación de la unidad i
- *R_i* Cota superior de la diferencia de generación total entre dos intervalos consecutivos de la unidad i
- L_i^{FC} Generación energética acordada en el FC j
- $L_{bc,i}^{BC}$ Generación necesaria en el intervalo t para cubrir el BC bc

Constantes

Constantes de conmutación

- t_i^{on} Número de intervalos consecutivos en los que la unidad i debe permanecer activa tras el encendido
- t^{off} Número de intervalos **consecutivos** en los que la unidad i debe permanecer **inactiva** tras el encendido
- *G_i* Número de periodos **iniciales** durante los cuales la unidad i deber permanecer **encendida**
- *H_i* Número de periodos **iniciales** durante los cuales la unidad i deber permanecer **apagada**

Variables

Variables de primera etapa

- $f_{itj} \ge 0$ Contribución de la unidad i en el intervalo t al contrato FC j
- $b_{it} \ge 0$ Contribución de la unidad i en el intervalo t para el cumplimiento de los contratos bilaterales
- $q_{it} \geq 0$ Cantidad energética ofertada a precio nulo
- $c_{it}^u \geq 0$ Coste de encendido de la unidad i en el intervalo t
- $c_{it}^d \geq 0$ Coste de apagado de la unidad i en el intervalo t

Variables

Variables de primera etapa

Binaria

- $u_{it} \in \{0,1\}$ Estado de la unidad de generación, 1 si está en funcionamiento, 0 si está parada
 - $f_{itj} \ge 0$ Contribución de la unidad i en el intervalo t al contrato FC i
 - $b_{it} \ge 0$ Contribución de la unidad i en el intervalo t para el cumplimiento de los contratos bilaterales
 - $q_{it} \geq 0$ Cantidad energética ofertada a precio nulo
 - $c_{it}^u \geq 0$ Coste de encendido de la unidad i en el intervalo t
 - $c_{it}^d \geq 0$ Coste de apagado de la unidad i en el intervalo t

Variables

Variables de segunda etapa y posteriores

- w_{it}^s Cantidad energética vendida o comprada por la unidad i en el intervalo t bajo el escenario s
- $p_{it}^{M,s} \geq 0$ Cantidad energética de la unidad i casada en el mercado DAM en el intervalo t bajo el escenario s
 - $y_{it}^s \ge 0$ Cantidad energética comprada por la unidad i en el intervalo t bajo el escenario s
 - $p_{it}^{s} \geq 0$ Generación total de la unidad i en el intervalo t bajo el escenario s

Variables

Variables de segunda etapa y posteriores

Binaria

 $r_{it}^s \in \{0,1\}$ Valdrá 1 si la unidad i participa en el RM en el intervalo t bajo el escenario s. Valdrá 0 en otro caso

- w_{it}^s Cantidad energética vendida o comprada por la unidad i en el intervalo t bajo el escenario s
- $p_{it}^{M,s} \ge 0$ Cantidad energética de la unidad i casada en el mercado DAM en el intervalo t bajo el escenario s
 - $y_{it}^s \ge 0$ Cantidad energética comprada por la unidad i en el intervalo t bajo el escenario s
 - $p_{it}^{s} \geq 0$ Generación total de la unidad i en el intervalo t bajo el escenario s

Función objetivo

Función objetivo

$$\max_{p,q,f,b} \sum_{t \in T} \sum_{i \in I} \left\{ -c_{it}^{u} - c_{it}^{d} - c_{i}^{b} u_{it} + \sum_{s \in S} P^{s} \left[\lambda_{t}^{D,s} p_{it}^{M,s} + \lambda_{t}^{R,s} r_{it}^{s} g_{i} + \lambda_{t}^{I,s} w_{it}^{s} - \left(c_{i}^{I} p_{it}^{s} + c_{i}^{q} (p_{it}^{s})^{2} \right) \right] \right\}$$
(1)

ingresos derivados de los contratos bilaterales y de futuros

$$\sum_{t \in T} \left(\sum_{bc \in BC} \lambda_{bc}^{BC} L_{bc,t}^{BC} + \sum_{i \in F} (\lambda_{i}^{FC} - \overline{\lambda}_{t}^{D,s}) L_{i}^{FC} \right)$$

 $\overline{\lambda}_t^{D,s}$ Valor promedio de los precios de mercado en el periodo t

Restricciones generales

Restricciones referidas a FC y BC

$$\sum_{i \in U_j} f_{itj} = L_j^{FC} \qquad j \in F, t \in T, i \in I$$
 (2)

$$\sum_{i \in I} b_{it} = \sum_{bc \in BC} L_{bc}^{BC} \qquad t \in T, i \in I$$
(3)

Restricciones de cada unidad $i \in I$

Nota

Las restricciones (4) a (26) se aplican a cada unidad $i \in I$

Restricciones referidas a FC y BC

$$f_{itj} \ge 0 \qquad j \in F, t \in T$$
 (4)

$$0 \le b_{it} \le \overline{P}_i \qquad t \in T \tag{5}$$

Restricciones referidas al DAM

$$P_{it}^{M,s} \leq \overline{P}_i u_{it} - b_i t \qquad t \in T, s \in S$$
 (6)

$$P_{it}^{M,s} \ge q_{it} \qquad t \in T \tag{7}$$

Restricciones de cada unidad $i \in I$

Restricciones referidas al DAM(continuación)

$$q_{it} \ge \underline{P}_i u_{it} - b_i t \qquad t \in T$$
 (8)

$$q_{it} \ge \sum_{j \text{ inF}} f_{itj} \qquad t \in T$$
 (9)

$$q_{it} \ge 0 \qquad t \in T$$
 (10)

Restricciones referidas al RM

$$P_{it}^{s} - P_{i,(t-1)}^{s} \le (1 - r_{it}^{s})R_{i} \qquad t \in T, s \in S$$
 (11)

$$P_{it}^s - P_{i,(t-1)}^s \ge (1 - r_{it}^s)(-R_i) \qquad t \in T, s \in S$$
 (12)

Restricciones de cada unidad $i \in I$

Restricciones referidas a la generación total

$$p_{it}^{s} = b_{it} + p_{it}^{M,s} + w_{it}^{s} \qquad t \in T, s \in S$$
 (13)

$$\underline{P}_{i}u_{it} + g_{i}r_{it}^{s} \leq p_{it}^{s} \leq \overline{P}_{i}u_{it} - g_{i}r_{it}^{s} \qquad t \in T, s \in S$$
 (14)

$$r_{it}^s \leq u_{it} \qquad t \in T, s \in S$$
 (15)

Restricciones referidas a la conmutación de unidades

$$c_{it}^{u} \ge c_{i}^{on}[u_{it} - u_{i,(t-1)}] \qquad t \in T \setminus \{1\}$$
 (16)

$$c_{it}^d \ge c_i^{off}[u_{i,(t-1)} - u_{it}] \qquad t \in T \setminus \{1\}$$
 (17)

$$c_{it}^{u}, c_{it}^{d} \ge 0 \qquad t \in T \tag{18}$$

Restricciones

Restricciones de cada unidad $i \in I$

Restricciones referidas a la conmutación de unidades

$$\sum_{j=1}^{G_i} (1 - u_{ij}) = 0 \qquad t \in T$$
 (19)

$$\sum_{i=1}^{H_i} u_{ij} = 0 \qquad t \in T \tag{20}$$

$$\sum_{n=t}^{t+t_i^{on}-1} u_{in} \ge t_i^{on} [u_{it} - u_{i,(t-1)}] \qquad t = G_i + 1, \dots, |\mathcal{T}| - t_i^{on} + 1$$
 (21)

$$\sum_{n=t}^{t+t_i^{\text{off}}-1} (1-u_{in}) \ge t_i^{\text{off}} [u_{i,(t-1)}-u_{it}] \qquad t=H_i+1,\ldots,|T|-t_i^{\text{off}}+1 \qquad (22)$$

$$\sum_{n=t}^{|T|} (u_{in} - [u_{it} - u_{i,(t-1)}]) \ge 0 \qquad t = |T| - t_i^{on} + 2, \dots, |T|$$
Unai Aldasoro Marcellan

Problema multimercado de oferta óptima

22/56

Restricciones general

Condiciones de no anticipatividad

(DAM)
$$p_{it}^s = p_{it}^{\hat{s}}$$
 $\forall s, \hat{s} : (\lambda^{D,s} = \lambda^{D,\hat{s}}), \forall t \in T$ (25)

$$(RM) r_{it}^{\mathfrak{s}} = r_{it}^{\hat{\mathfrak{s}}} \forall \mathfrak{s}, \hat{\mathfrak{s}} : \left((\lambda^{D,\mathfrak{s}}, \lambda^{R,\mathfrak{s}}) = (\lambda^{D,\hat{\mathfrak{s}}}, \lambda^{R,\hat{\mathfrak{s}}}) \right), \forall t \in T$$

$$(26)$$

Compactación de restricciones

Conjunto τ_i

De cara a compactar la notación, se define un conjunto que contiene las restricciones (4) a (26) asociadas a la unidad i:

$$\tau_i = \{(4)\dots(26)\}\tag{27}$$

Problema principal y subproblema Esquema gráfico Ejemplo ilustrativo Algoritmo Proximal Bundle Method

Indice

- 1 Introducción
- 2 Modelo de optimización
 - Conjuntos y elementos
 - Constantes
 - Variables
 - Función objetivo
 - Restricciones
- 3 Método de resolución: Proximal Bundle Method
 - Problema principal y subproblema
 - Esquema gráfico
 - Ejemplo ilustrativo
 - Algoritmo Proximal Bundle Method
- 4 Adaptación del problema al PBM
- 5 Implementación
- 6 Resultados
 - Resumen de resultados
 - Resultados iterativos
- 7 Conclusiones y líneas futuras

Algoritmo Proximal Bundle Method

PROBLEMA PRINCIPAL PROXIMAL BUNDLE

$$\Psi(\mu) = \min_{\mu} f(\mu) \tag{28}$$

s.a μ libre

SUBPROBLEMA PROXIMAL BUNDLE

$$\min_{\mu^{k}, r} = \left\{ r + \frac{1}{2 \cdot t^{k}} \| \mu^{k} - \overline{\mu}^{k} \|^{2} \right\}$$
 (29)

s.a
$$r \ge \Psi(\overline{\mu}^k) - e^j + s(\mu^j) \cdot (\mu^k - \overline{\mu}^k)'$$
 $j \in \beta$

Esquema gráfico

Ejemplo $f(x) = 3 - x + \frac{x^2}{6}$: Inicialización

Subgradiente asociado a $\overline{x}^0 = 0$

Modelo de optimización
Método de resolución: Proximal Bundle Method
Adaptación del problema al PBM
Implementación
Resultados
Conclusiones y líneas futuras

Problema principal y subproblema Esquema gráfico **Ejemplo ilustrativo** Algoritmo Proximal Bundle Method

Ejemplo $f(x) = 3 - x + \frac{x^2}{6}$: Iteración 1

Función cuadrática asociada a $x^1 \rightarrow \overline{x}^1 = 2$

Ejemplo $f(x) = 3 - x + \frac{x^2}{6}$: Iteración 1

Subgradiente asociado a \overline{x}^1

Problema principal y subproblema Esquema gráfico **Ejemplo ilustrativo** Algoritmo Proximal Bundle Metho

Ejemplo $f(x) = 3 - x + \frac{x^2}{6}$: Iteración 2

Función cuadrática asociada a $x^2 \rightarrow \overline{x}^2 = 2, \widehat{3}$

Ejemplo $f(x) = 3 - x + \frac{x^2}{6}$: Iteración 2

Subgradiente asociado a \overline{x}^2

Problema principal y subproblema Esquema gráfico **Ejemplo ilustrativo** Algoritmo Proximal Bundle Methoc

Ejemplo $f(x) = 3 - x + \frac{x^2}{6}$: Iteración 3

Función cuadrática asociada a $x^3 \rightarrow \overline{x}^3 = 2. \, \widehat{4}$

Problema principal y subproblema Esquema gráfico **Ejemplo ilustrativo** Algoritmo Proximal Bundle Method

Ejemplo $f(x) = 3 - x + \frac{x^2}{6}$: Iteración 3

Subgradiente asociado a \overline{x}^3

Problema principal y subproblema Esquema gráfico Ejemplo ilustrativo Algoritmo Proximal Bundle Method

Algoritmo Proximal Bundle Method

Paso 0: INICIALIZACIÓN

```
Paso 0.01 Seleccionar el punto inicial \mu_1
```

Paso 0.02 Seleccionar el tamaño máximo del Bundle
$$\overline{\beta}$$

Paso 0.06 Fijar el número máximo de iteraciones
$$K_{max}$$

Paso 0.03 Inicializar el contador de iteraciones
$$k = 1$$

Paso 0.04 Inicializar el tamaño del Bundle
$$\beta=1$$

Paso 0.05 Calcular
$$s_1 = s(\mu_1)$$

Paso 0.06 Fijar
$$e_1 = 0$$

Paso
$$0.08$$
 Seleccionar la longitud de paso inicial t^1

Problema principal y subproblema Esquema gráfico Ejemplo ilustrativo Algoritmo Proximal Bundle Method

Algoritmo Proximal Bundle Method

Paso 1: COMPUTACIÓN PRINCIPAL

Paso 1.01 Elegir una longitud de paso $t^k > 0$

Paso 1.02 Resolver el problema de optimización (29)

Paso 2: TEST DE DESCENSO

Paso 2.01 Calcular $\Psi(\mu^{k+1})$ y $s(\mu^{k+1})$

Paso 2.02 Si $\Psi(\mu^{k+1}) \leq \Lambda$ **STOP**

Paso 2.02 Si $\Psi(\mu^{k+1}) \nleq \Psi(\overline{\mu}^k)$

Paso: NULO \rightarrow Ir a Paso 4

Problema principal y subproblema Esquema gráfico Ejemplo ilustrativo Algoritmo Proximal Bundle Method

Algoritmo Proximal Bundle Method

Paso 3: PASO DE DESCENSO

Paso 3.01
$$\overline{\mu}^{k+1} := \mu^{k+1}$$
 Paso: DESCENSO

Paso 3.02 Para
$$j \in \beta$$
 hacer

$$e^j := e^j + \Psi(\overline{\mu}^{k+1}) - \Psi(\overline{\mu}^k) - \langle s^j, \overline{\mu}^{k+1}, \overline{\mu}^k \rangle$$

Paso 4: GESTIÓN DEL TAMAÑO DEL BUNDLE

Paso 4.01 Si
$$\beta = \overline{\beta}$$
 entonces
Eliminar el elemento (s^j, e^j) $j \in \beta$ de mayor e^j

Algoritmo Proximal Bundle Method

Paso 5: ADICIÓN DEL NUEVO ELEMENTO AL BUNDLE

Paso 5.01 Insertar el elemento (s^{j+1},e^{j+1}) al Bundle, donde $e^{j+1}=0$ si PASO DE DESCENSO $e^{j+1}=\Psi(\overline{\mu}^k)-[\Psi(\mu^{k+1})+\langle s^{j+1},\overline{\mu}^k,\overline{\mu}^{k+1}\rangle]$ si PASO DE NULO

Paso 5.02 Remplazar k por k + 1 e ir al PASO 1

Índice

- 1 Introducción
- 2 Modelo de optimización
 - Conjuntos y elementos
 - Constantes
 - Variables
 - Función objetivo
 - Restricciones
- 3 Método de resolución: Proximal Bundle Method
 - Problema principal y subproblema
 - Esquema gráfico
 - Ejemplo ilustrativo
 - Algoritmo Proximal Bundle Method
- 4 Adaptación del problema al PBM
- 5 Implementación
- 5 Implementació
 - Resumen de resultados
 - Resultados iterativos
- 7 Conclusiones y líneas futuras

PROBLEMA ORIGINAL

$$\max_{p,q,f,b} \sum_{t \in T} \sum_{i \in I} \left\{ -c_{it}^{u} - c_{it}^{d} - c_{i}^{b} u_{it} + \sum_{s \in S} P^{s} \left[\lambda_{t}^{D,s} p_{it}^{M,s} + \lambda_{t}^{R,s} r_{it}^{s} g_{i} + \lambda_{t}^{I,s} w_{it}^{s} - \left(c_{i}^{I} p_{it}^{s} + c_{i}^{q} (p_{it}^{s})^{2} \right) \right] \right\} = \\ \max_{p,q,f,b} \sum_{t \in T} \sum_{i \in I} C(p,q,f,b)$$
s.a (2),(3), $\tau_{i} \quad \forall i \in I$

TRANSFORMACIÓN A PROBLEMA DE MINIMIZACIÓN

$$\min_{p,q,f,b} \sum_{t \in T} \sum_{i \in I} -C(p,q,f,b)$$
 (30)

s.a
$$(2), (3), \tau_i \quad \forall i \in I$$

RELAJACIÓN LAGRANGIANA

$$\phi(\mu^{F}, \mu^{B}) = \min_{p,q,f,b} \sum_{t \in T} \sum_{j \in F} \mu_{t,j}^{F} \left(L_{j}^{FC} - \sum_{i \in U_{j}} f_{itj} \right)$$

$$+ \sum_{t \in T} \mu_{t}^{B} \left(\sum_{bc \in BC} L_{bc,t}^{BC} - \sum_{i \in I} b_{it} \right) + \sum_{t \in T} \sum_{i \in I} -C(p,q,f,b)$$
s.a $\tau_{i} \quad \forall i \in I$

cambio de notación

$$\sum_{i \in I} f_{itj} = \sum_{i \in I} f_{itj} J_{ij}$$

RELAJACIÓN LAGRANGIANA

$$\phi(\mu^{F}, \mu^{B}) = \min_{p,q,f,b} \sum_{t \in T} \sum_{i \in I} \left\{ -C(p, q, f, b) - \sum_{j \in F} \mu_{t,j}^{F} f_{itj} J_{ij} - \mu_{t}^{B} b_{it} \right\} \sum_{t \in T} \sum_{j \in F} \mu_{t,j}^{F} L_{j}^{FC} + \sum_{t \in T} \sum_{bc \in BC} \mu_{t}^{B} L_{bc,t}^{BC}$$
(32)
s.a $\tau_{i} \quad \forall i \in I$

DIVISIÓN EN SUBPROBLEMAS

$$\phi(\mu^F, \mu^B) = \sum_{i \in I} \phi_i(\mu^F, \mu^B) + \sum_{t \in T} \left(\sum_{j \in F} \mu_{t,j}^F \mathcal{L}_j^{FC} + \sum_{bc \in BC} \mu_t^B \mathcal{L}_{bc,t}^{BC} \right)$$
(33)

s.a
$$\tau_i \quad \forall i \in I$$

donde

$$\phi_{i}(\mu^{F}, \mu^{B}) = \sum_{t \in T} \left\{ -C(p, q, f, b) - \sum_{j \in F} \mu_{t, j}^{F} f_{itj} J_{ij} - \mu_{t}^{B} b_{it} \right\}$$

FUNCIÓN DUAL LAGRANGIANA

$$L^* = \max \phi(\mu^F, \mu^B) \tag{34}$$

s.a
$$\mu^F, \mu^B$$
 libres

Índice

- 1 Introducción
- 2 Modelo de optimización
 - Conjuntos y elementos
 - Constantes
 - Variables
 - Función objetivo
 - Restricciones
- 3 Método de resolución: Proximal Bundle Method
 - Problema principal y subproblema
 - Esquema gráfico
 - Ejemplo ilustrativo
 - Algoritmo Proximal Bundle Method
- 4 Adaptación del problema al PBM
- 5 Implementación
- 6 Resultados
 - Resumen de resultados
 - Resultados iterativos
- 7 Conclusiones y líneas futuras

C++ & CPLEX: Paradigma Callable Library

C++ & CPLEX: Paradigma Concert Technology

Indice

- Introducción
- 2 Modelo de optimización
 - Conjuntos y elementos
 - Constantes
 - Variables
 - Función objetivo
 - Restricciones
 - Método de resolución: Proximal Bundle Method
 - Problema principal y subproblema
 - Esquema gráfico
 - Ejemplo ilustrativo
 - Algoritmo Proximal Bundle Method
- 4 Adaptación del problema al PBM
- 5 Implementación
- 6 Resultados
 - Resumen de resultados
 - Resultados iterativos
- 7 Conclusiones y líneas futuras

Condiciones de resolución

Equipo informático

Procesador de un solo núcleo, función de costes lineal

Dimensiones del problema

$$Arr N_{restricciones} = 47040$$

■
$$N_{var-lin} = 19680$$

$$N_{var-bin} = 6240$$

Resumen de resultados obtenidos

Tamaño de Bundle	Iteraciones realizadas	Tiempo de ejecución	Tiempo por iteración
5 pares de elementos	155	21100	136,13
10 pares de elementos	143	21824	152,62
20 pares de elementos	116	14538	125,33
30 pares de elementos	76	7698	101,29
Ilimitado	62	5535	89,27
SUBGRADIENTE	300	19810	66,03

Comparación de resultados iterativos

Comparación de resultados iterativos (Zoom)

Indice

- 1 Introducción
- 2 Modelo de optimización
 - Conjuntos y elementos
 - Constantes
 - Variables
 - Función objetivo
 - Restricciones
- 3 Método de resolución: Proximal Bundle Method
 - Problema principal y subproblema
 - Esquema gráfico
 - Ejemplo ilustrativo
 - Algoritmo Proximal Bundle Method
- 4 Adaptación del problema al PBM
- 5 Implementación
- 6 Resultados
 - Resumen de resultados
 - Resultados iterativos
- 7 Conclusiones y líneas futuras

Conclusiones

- Se han aportado mejoras al modelo
- Implementación satisfactoria de PBM
- Desigual valoración de Concert Technology
- Tiempo de ejecución significativamente inferior al método del subgradiente
- Mejores resultados obtenidos: tamaño ilimitado de Bundle

Introducción Modelo de optimización Método de resolución: Proximal Bundle Method Adaptación del problema al PBM Implementación Resultados Conclusiones y líneas futuras

Líneas futuras

- Programación en paralelo mediante OpenMP o MPI
- Método heurístico de recuperación de factibilidad
- Definir el subproblema asociado a cada unidad como un problema de caminos mínimos
- Mejora del criterio de eliminación de elementos