## 第 34 届全国青少年信息学奥林匹克竞赛

# CCF NOI 2017

## 第二试

时间: 2017年7月21日08:00~13:00

| 题目名称             | 游戏                | 蔬菜                      | 分身术                  |
|------------------|-------------------|-------------------------|----------------------|
| 题目类型             | 传统型               | 传统型                     | 传统型                  |
| 目录               | game              | vegetables              | phantom              |
| 可执行文件名           | game              | vegetables              | phantom              |
| 输入文件名            | game.in           | vegetables.in           | phantom.in           |
| 4A 11 -2 11. 14  |                   |                         |                      |
| 输出文件名            | game.out          | vegetables.out          | phantom.out          |
| 新出义件名<br>每个测试点时限 | game.out<br>1.0 秒 | vegetables.out<br>3.0 秒 | phantom.out<br>3.0 秒 |
|                  |                   |                         | '                    |
| 每个测试点时限          | 1.0 秒             | 3.0 秒                   | 3.0 秒                |

#### 提交源程序文件名

| 对于 C++ 语言    | game.cpp | vegetables.cpp | phantom.cpp |
|--------------|----------|----------------|-------------|
| 对于 C 语言      | game.c   | vegetables.c   | phantom.c   |
| 对于 Pascal 语言 | game.pas | vegetables.pas | phantom.pas |

#### 编译选项

| 对于 C++ 语言    | -lm | -02 -1m | -02 -1m |
|--------------|-----|---------|---------|
| 对于 C 语言      | -lm | -02 -1m | -02 -1m |
| 对于 Pascal 语言 |     | -02     | -02     |

### 游戏 (game)

#### 【题目背景】

狂野飙车是小 L 最喜欢的游戏。与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略。

#### 【题目描述】

小 L 计划进行 n 场游戏,每场游戏使用一张地图,小 L 会选择一辆车在该地图上完成游戏。

小 L 的赛车有三辆,分别用大写字母 A、B、C 表示。地图一共有四种,分别用小写字母 x、a、b、c 表示。其中,赛车 A 不适合在地图 a 上使用,赛车 B 不适合在地图 b 上使用,赛车 C 不适合在地图 c 上使用,而地图 x 则适合所有赛车参加。适合所有赛车参加的地图并不多见,最多只会有 d 张。

n 场游戏的地图可以用一个小写字母组成的字符串描述。例如: S=xaabxcbc 表示小 L 计划进行 8 场游戏,其中第 1 场和第 5 场的地图类型是 x,适合所有赛车,第 2 场和第 3 场的地图是 a,不适合赛车 A,第 4 场和第 7 场的地图是 b,不适合赛车 B,第 6 场和第 8 场的地图是 c,不适合赛车 C。

小 L 对游戏有一些特殊的要求,这些要求可以用四元组  $(i, h_i, j, h_j)$  来描述,表示若在第 i 场使用型号为  $h_i$  的车子,则第 j 场游戏要使用型号为  $h_i$  的车子。

你能帮小 L 选择每场游戏使用的赛车吗?如果有多种方案,输出任意一种方案。如果无解,输出"-1"(不含双引号)。

#### 【输入格式】

从文件 game.in 中读入数据。

输入第一行包含两个非负整数 n,d。

输入第二行为一个字符串 S 。

n,d,S 的含义见题目描述,其中 S 包含 n 个字符,且其中恰好 d 个为小写字母 x。输入第三行为一个正整数 m ,表示有 m 条用车规则。接下来 m 行,每行包含一个四元组  $i,h_i,j,h_i$  ,其中 i,j 为整数, $h_i,h_i$  为字符 a 、b 或 c ,含义见题目描述。

#### 【输出格式】

输出到文件 game.out 中。

输出一行。

若无解输出"-1"(不含双引号)。

若有解,则包含一个长度为 n 的仅包含大写字母 A、B、C 的字符串,表示小 L 在 这 n 场游戏中如何安排赛车的使用。如果存在多组解,输出其中任意一组即可。

#### 【样例1输入】

3 1

хсс

1

1 A 2 B

#### 【样例1输出】

ABA

#### 【样例 2】

见选手目录下的 game/game2.in 与 game/game2.ans。

#### 【样例1解释】

小 L 计划进行 3 场游戏, 其中第 1 场的地图类型是 x, 适合所有赛车, 第 2 场和 第 3 场的地图是 c, 不适合赛车 C。

小 L 希望: 若第 1 场游戏使用赛车 A, 则第 2 场游戏使用赛车 B。

那么为这3场游戏分别安排赛车A、B、A可以满足所有条件。

若依次为 3 场游戏安排赛车为 BBB 或 BAA 时,也可以满足所有条件,也被视为正确答案。但依次安排赛车为 AAB 或 ABC 时,因为不能满足所有条件,所以不被视为正确答案。

### 【子任务】

| 测试点编号 | n        | d           | m            | 其他性质         |  |
|-------|----------|-------------|--------------|--------------|--|
| 1     | < 9      | 0           | _ 1          |              |  |
| 2     | $\leq 2$ | $\leq n$    | $\leq 4$     |              |  |
| 3     | ≤ 5      | 0           | ≤ 10         | ]<br>        |  |
| 4     | 7.0      | $\leq n$    | ≥ 10         | <u>儿</u>     |  |
| 5     | ≤ 10     | 0           | ≤ 20         |              |  |
| 6     | ≥ 10     | ≤ 8         | ≥ 20         |              |  |
| 7     |          | 0           |              | S 中只包含 c     |  |
| 8     | ≤ 20     |             | <i>-</i> 40  | 无            |  |
| 9     | ≥ 20     | ≤ 40<br>≤ 8 | S 中只包含 x 或 c |              |  |
| 10    |          |             |              | 无            |  |
| 11    |          | 0           |              | S 中只包含 c     |  |
| 12    | ≤ 100    | U           | ≤ 200        |              |  |
| 13    | _ ≤ 100  | ≤ 8         | <u> </u>     | S 中只包含 x 或 c |  |
| 14    |          | 20          |              | <br>         |  |
| 15    |          | 0           |              |              |  |
| 16    | ≤ 5000   | ≤ 8         | ≤ 10000      | S 中只包含 x 或 c |  |
| 17    |          |             |              | <br>         |  |
| 18    |          | 0           |              | 儿            |  |
| 19    | ≤ 50000  | ≤ 8         | ≤ 100000     | S 中只包含 x 或 c |  |
| 20    |          |             |              | 无 无          |  |

## 蔬菜 (vegetables)

#### 【题目描述】

小 N 是蔬菜仓库的管理员,负责设计蔬菜的销售方案。

在蔬菜仓库中,共存放有 n 种蔬菜,小 N 需要根据不同蔬菜的特性,综合考虑各方面因素,设计合理的销售方案,以获得最多的收益。

在计算销售蔬菜的收益时,每销售一个单位第i种蔬菜,就可以获得 $a_i$ 的收益。

特别地,由于政策鼓励商家进行多样化销售,第一次销售第i种蔬菜时,还会额外得到 $s_i$ 的额外收益。

在经营开始时,第i种蔬菜的库存为 $c_i$ 个单位。

然而,蔬菜的保鲜时间非常有限,一旦变质就不能进行销售,不过聪明的小 N 已经计算出了每个单位蔬菜变质的时间:对于第 i 种蔬菜,存在保鲜值  $x_i$ ,每天结束时会有  $x_i$  个单位的蔬菜变质,直到所有蔬菜都变质。(注意:每一单位蔬菜的变质时间是固定的,不随销售发生变化)

形式化地:对于所有的满足条件  $d \times x_i \le c_i$  的正整数 d,有  $x_i$  个单位的蔬菜将在第 d 天结束时变质。

特别地,若  $(d-1) \times x_i \le c_i < d \times x_i$  ,则有  $c_i - (d-1) \times x_i$  单位的蔬菜将在第 d 天结束时变质。

注意, 当  $x_i = 0$  时, 意味着这种蔬菜不会变质。

同时,每天销售的蔬菜总量也是有限的,最多不能超过 m 个单位。

现在,小 N 有 k 个问题,想请你帮忙算一算。每个问题的形式都是:对于已知的  $p_j$ ,如果需要销售  $p_j$  天,最多能获得多少收益?

#### 【输入格式】

从文件 vegetables.in 中读入数据。

第一行包含三个正整数 n, m, k,分别表示蔬菜的种类数目、每天能售出蔬菜总量上限、小 N 提出的问题的个数。

接下来 n 行,每行输入四个非负整数,描述一种蔬菜的特点,依次为  $a_i$ ,  $s_i$ ,  $c_i$ ,  $x_i$ ,意义如上文所述。

接下来 k 行,每行输入一个非负整数  $p_i$  ,意义如上文所述。

#### 【输出格式】

输出到文件 vegetables.out 中。

输出 k 行,每行包含一个整数,第 i 行的数表示第 i 个问题的答案。

#### 【样例1输入】

2 3 2

3 3 3 3

2 5 8 3

1

3

#### 【样例1输出】

16

27

#### 【样例 2】

见选手目录下的 *vegetables/vegetables2.in* 与 *vegetables/vegetables2.ans*。

#### 【样例 3】

见选手目录下的 *vegetables/vegetables3.in* 与 *vegetables/vegetables3.ans*。

#### 【样例1解释】

共有两种蔬菜:

销售第 1 种蔬菜时,每销售一单位可以获得的收益为 3 ,第一次销售这种蔬菜时,额外可以获得的收益为 3。这种蔬菜共有 3 个单位,均会在第一天结束时变质。

销售第2种蔬菜时,每销售一单位可以获得的收益为2,第一次销售这种蔬菜时,额外可以获得的收益为5。这种蔬菜共有8个单位,其中,有3单位在第一天结束时变质,3单位在第二天结束时变质,2单位在第三天结束时变质。

在只销售1天时,应当销售2单位的第一种蔬菜和1单位的第二种蔬菜。

在这种情况下: 销售第一种蔬菜的收益为  $2 \times 3 + 3$ ; 销售第二种蔬菜的收益为  $1 \times 2 + 5$ ; 总共获得的收益为  $(2 \times 3 + 3) + (1 \times 2 + 5) = 16$ 。

在只销售3天时,第一天应当销售3单位的第一种蔬菜,第二天应当销售3单位的第二种蔬菜(此时选择在第二天结束时会变质的3个单位出售),第三天销售2单位的第二种蔬菜。

在这种情况下: 销售第一种蔬菜的收益为  $3 \times 3 + 3$ ; 销售第二种蔬菜的收益为  $(3+2) \times 2 + 5$ ; 总共获得的收益为  $(3 \times 3 + 3) + [(3+2) \times 2 + 5] = 27$ 。

#### 【子任务】

| 测试点编号 | n           | m                     | $p_j$         | 特性 1    | 特性 2       |            |
|-------|-------------|-----------------------|---------------|---------|------------|------------|
| 1     | ≤ 2         |                       |               |         |            |            |
| 2     | ≤ 3         | $\leq 10^3$ $\leq 10$ |               |         |            |            |
| 3     | $\leq 4$    |                       |               |         |            |            |
| 4     |             |                       |               |         |            |            |
| 5     | $\leq 10^3$ |                       | ≤ 3           |         | 无          |            |
| 6     |             |                       | ≤ 4           | 无       |            |            |
| 7     | ≤ 4         | ≤ 1                   | 2 4           |         |            |            |
| 8     | ≤ 6         | ≤ 2                   | ≤ 6           |         |            |            |
| 9     | ≤ 8         | ≤ 1                   | ≤ 8           |         |            |            |
| 10    | ≤ 10        | ≤ 2                   | ≤ 10          |         |            |            |
| 11    | ≤ 20        | ≤ 3                   | ≤ 20          |         |            |            |
| 12    |             |                       |               | 有       | 无          |            |
| 13    | $\leq 10^2$ |                       | $\leq 10^2$   | 无       | 有          |            |
| 14    | ≥ 10        |                       |               |         | <br>       |            |
| 15    |             |                       |               |         | <i>/</i> L |            |
| 16    |             |                       |               | <br>  有 | 有          |            |
| 17    |             |                       |               | 行       | 无          |            |
| 18    | $\leq 10^3$ | ≤ 10                  | $\leq 10^{3}$ |         | 有          |            |
| 19    |             | ≥ 10                  | <u> </u>      |         | 无          | <br>       |
| 20    |             |                       |               |         |            | <i>)</i> L |
| 21    |             | $\leq 10^5$           |               |         | 有          | 有          |
| 22    |             |                       |               |         |            | 无          |
| 23    | $\leq 10^5$ |                       |               |         | 有          |            |
| 24    |             |                       |               | 无       | 无          |            |
| 25    |             |                       |               |         | 无          |            |

特性 1: 所有的  $s_i$  均为 0。

特性 2: 所有的  $x_i$  均为 0。

对于所有的测试数据,均保证 k 组询问中的  $p_j$  互不相同。

对于所有的测试数据,均保证  $0 < a_i, c_i \le 10^9$  ,  $0 \le s_i, x_i \le 10^9$  。

## 分身术 (phantom)

#### 【题目描述】

"分! 身! 术!" — 小 P

平面上有 n 个小 P 的分身。定义一组分身占领的区域为覆盖这组分身的最小凸多 边形。小 P 能力有限,每一时刻都会有若干分身消失。但在下一时刻之前,小 P 会使用 "分!身!术!"

使得这些消失的分身重新出现在原来的位置。小 P 想知道,每一时刻分身消失后,剩下的分身占领的区域面积是多少?

#### 【输入格式】

从文件 phantom.in 中读入数据。

输入第一行包含两个正整数 n, m,描述初始时分身的个数,和总时刻数。

接下来 n 行, 第 i 行有两个整数  $x_i, y_i$  , 描述第 i 个分身的位置。

接下来 m 行,每行的第一个整数 k 表示这一时刻有 k 个分身消失。接下来有 k 个非负整数  $c_1, c_2, \cdots c_k$ ,用于生成消失的分身的编号。

生成方式如下:

设上一个时刻中,分身占领面积的**两倍**为 S 。则该时刻消失的分身  $p_1, p_2, \ldots, p_k$  的编号为:

$$p_i = [(S + c_i) \bmod n] + 1$$

特别的,在第一个时刻,我们认为上一个时刻中,S=-1,即:第一个时刻消失的分身  $p_1, p_2, \ldots, p_k$  的编号为:

$$p_i = [(-1 + c_i) \bmod n] + 1$$

#### 【输出格式】

输出到文件 phantom.out 中。

按给出时刻的顺序依次输出 m 行,每行一个整数,表示该时刻剩余分身所占领区域面积的**两倍**。

#### 【样例1输入】

6 2

-1 0

-1 -1

- 0 -1
- 1 0
- 0 1
- 0 0
- 3 1 3 6
- 2 0 1

#### 【样例1输出】

- 3
- 2

#### 【样例 2】

见选手目录下的 *phantom/phantom2.in* 与 *phantom/phantom2.ans*。

#### 【样例 3】

见选手目录下的 *phantom/phantom3.in* 与 *phantom/phantom3.ans*。

#### 【样例 4】

见选手目录下的 *phantom/phantom4.in* 与 *phantom/phantom4.ans*。

#### 【样例1解释】

如下图所示: 左图表示输入的 6 个分身的位置及它们占领的区域; 中图表示第一个时刻的情形, 消失的分身编号分别为 1,3,6, 剩余 3 个点占领图中实线内部区域, 占据面积的两倍为 3; 右图表示第二个时刻的情形, 消失的分身编号分别为

$$[(0+3) \mod 6] + 1 = 4$$

$$[(1+3) \mod 6] + 1 = 5$$

剩余的 4 个点占领图中实线内部区域。







#### 【子任务】

| 测试点编号 | <i>n</i> ≤ | <i>m</i> ≤ | k          |
|-------|------------|------------|------------|
| 1     | 10         | 10         |            |
| 2     |            |            |            |
| 3     | 1000       | 1000       | $\leq n-3$ |
| 4     |            |            |            |
| 5     |            |            |            |
| 6     |            |            | =1         |
| 7     |            |            |            |
| 8     |            |            |            |
| 9     |            | 100000     | =2         |
| 10    |            |            |            |
| 11    | 100000     |            | ≤ 3        |
| 12    |            |            | ≤ 5        |
| 13    |            |            | ≤ 9        |
| 14    |            |            | ≤ 12       |
| 15    |            |            | ≤ 20       |
| 16    |            |            | ≤ 100      |
| 17    |            |            |            |
| 18    |            |            |            |
| 19    |            |            |            |
| 20    |            |            |            |

#### 对于所有数据,保证:

- $|x_i|, |y_i| \le 10^8$ ;
- 没有两个分身的坐标是完全相同的;
- $k \le 100$ ;
- 所有时刻的 k 之和不超过  $2 \times 10^6$ ;
- $0 \le c_i \le 2^{31} 1$ ;
- 初始时,所有的 n 个分身占据区域面积大于 0;
- 定义所有 n 个分身所占据区域的顶点集合为 S, $|S| \ge 3$ 。在任意时刻,S 中至少存在两个未消失的分身。