question on intrinsic and extrinsic geometry

Consider hypersurfaces embedded in the Euclidean \mathbb{R}^3 manifold.

Compute the intrinsic and extrinsic curvature of:

- (i) an embedded 2^d plane
- (ii) an (infinite) cylinder

solution

We recall some definitions and make a comment:

A **hypersurface** of $(\mathcal{M},\,n+1)$ is the image Σ of an n-dimensional manifold $\hat{\Sigma}$ by an embedding $\Phi:\hat{\Sigma}\to\mathcal{M}$: $\Sigma=\Phi(\hat{\Sigma})$.

An **embedding** means that the map $\Phi: \hat{\Sigma} \to \Sigma$ is a homeomorphism. Geometrically this avoids self-intersection.

A hypersurface can be defined **locally** as the set of points for which a scalar field on \mathcal{M} is constant. Denote this field by σ and set the constant to zero, we get:

$$orall p \in \mathcal{M}, \qquad p \in \Sigma \Longleftrightarrow \sigma(p) = 0$$

If $\Phi: \hat{\Sigma} \to \mathcal{M}$ is the embedding which induces the submanifold structure of \mathcal{M} , the pullback map Φ^* **induces** the natural metric $\gamma = \Phi^* g$ on Σ .

In components we have:

$$\gamma_{\rm IJ}(x) = g_{kl}(\Phi(x)) \frac{\partial \Phi^k}{\partial x^{\rm I}} \frac{\partial \Phi^l}{\partial x^{\rm J}},$$
 (eq:pullbackmetric)

where (Φ^k) denote the coordinates of $\Phi(x)$.

Given a Manifold, metric and associated Levi-Civita connection (\mathcal{M}, g, ∇) , the intrinsic curvature is usually introduced as the anti-commutator: $[\nabla_a, \nabla_b]\omega_c = \mathrm{Riem}_{abc}{}^d\omega_d$. We may expand the definition of the covariant derivative to provide a method for computation:

$$\operatorname{Riem}_{abc}{}^{d}[g] = -2\partial_{[a}\Gamma^{d}{}_{b]c} + 2\Gamma^{e}{}_{c[a}\Gamma^{d}{}_{b]e}; \tag{eq:Riem}$$

with Christoffel symbols given by:

$$\Gamma^c{}_{ab}[g] = rac{1}{2}g^{cd}(\partial_a[g_{bd}] + \partial_b[g_{ad}] - \partial_d[g_{ab}]).$$
 (eq:Christoffel)

The extrinsic curvature of Σ may be computed with the projector and unit normal n^a to Σ :

$$K_{ab} := -\gamma_a^c \gamma_b^d \nabla_{(c}[n_d)] = -\gamma_a^c \gamma_b^d \nabla_{c}[n_d], \tag{eq:Extrinsic}$$

this may also be written via direct evaluation over appropriate basis vectors:

$$K_{\mathrm{IJ}} = \mathbf{K}(\boldsymbol{\partial}_{\mathrm{I}}, \, \boldsymbol{\partial}_{\mathrm{J}}) = -\nabla_{i}[n_{j}](\partial_{\mathrm{I}})^{i}(\partial_{\mathrm{J}})^{j}.$$
 (eq:Extrinsic2)

We need to construct: Embedding map, induced metric, unit normal, intrinsic curvature Riem (Wald convention), extrinsic curvature K (negative convention).

(i)

Let $\hat{\Pi}$ be a connected submanifold of $\mathcal{M}:=\mathbb{R}^3$ with topology \mathbb{R}^2 , i.e., the 2-d plane. Introduce locally (In this case they also hold globally) a set of coordinates for \mathcal{M} , $(x^i)=(x,y,z)$, such that σ spans \mathbb{R} and (x,y) are Cartesian coordinates spanning \mathbb{R}^2 . The hypersurface Π is then defined by the coordinate condition $\sigma=0$. An explicit form of the mapping Φ can be obtained by considering $(x^I)=(x,y)$ as coordinates on $\hat{\Pi}$:

$$egin{aligned} \Phi := & \hat{\Pi}
ightarrow \mathcal{M}, \ (x,y) \mapsto & (x,y,0). \end{aligned}$$

In short, we view the hypersurface Π as the z=0 plane. The scalar function σ defining Π is thus $\sigma=z$.

In order to find the induced metric we make use of Eq.(eq:pullbackmetric) and note that the Euclidean metric on \mathcal{M} is simply δ_{ij} . Clearly we must have $\gamma_{IJ} = \operatorname{diag}(1, 1)$.

Furthermore, it follows trivially from Eq.(eq:Riem) and Eq.(eq:Christoffel) that Riem vanishes (note $\Gamma[\delta] = 0$).

In order to compute the extrinsic curvature we select a (global) unit normal to Π , namely, $n^i=(0,\,0,\,1)$. For the present case we have $n_i\delta^{ij}=n^j$. Due to this and $\Gamma[\delta]=0$ we have $\nabla_a[n_b]=\partial_a[n_b]=(0,\,0,\,0)$. Based on Eq.(eq:Extrinsic) we immediately conclude that the extrinsic curvature vanishes as well.

Geometric intuition: The unit vector stays constant when translated along Π and hence the extrinsic curvature (measuring how the hypersurface bends in the ambient space) is zero. Furthermore, on a plane, the internal angles of a triangle must sum to π - the intrinsic curvature vanishes verifies this fact.

(ii)

For the hypersurface describing our (infinite) cylinder $\mathcal C$ we take the local definition $\sigma:=\rho-a=0$, where $\rho:=\sqrt{x^2+y^2}$ and $a\in\mathbb R^{>0}$ is the radius of the cylinder. We introduce the cylindrical coordinates $(x^i)=(\rho,\,\varphi,\,z)$, such that $\varphi\in[0,\,2\pi)$, $x=\rho\cos\varphi$ and $y=\rho\sin\varphi$. On $\mathcal C$, $(x^{\rm I})=(\varphi,\,z)$ constitute a coordinate system.

Thus, we take:

$$\Phi: (\varphi, z) \mapsto (\rho \cos \varphi, \rho \sin \varphi, z).$$

From Eq.(eq:pullbackmetric) we can compute the induced metric:

$$oldsymbol{\gamma} = \gamma_{ ext{IJ}} ext{d} x^{ ext{I}} \otimes ext{d} x^{ ext{J}} = \delta_{ij} rac{\partial \Phi^i}{\partial x^{ ext{I}}} rac{\partial \Phi^j}{\partial x^{ ext{J}}} ext{d} x^{ ext{I}} \otimes ext{d} x^{ ext{J}}
onumber \ = a^2 ext{d} arphi \otimes ext{d} arphi + ext{d} z \otimes ext{d} z;$$

Thus $\gamma_{IJ} = \operatorname{diag}(a^2, 1)$.

Notice that a is constant. We may therefore introduce another coordinate $\eta := a\varphi$ and further map the induced metric via coordinate transformation to:

$$\gamma = d\eta \otimes d\eta + dz \otimes dz.$$

This is in the form of the Euclidean metric and therefore we once again conclude that the intrinsic curvature Riem is zero.

In order to compute extrinsic curvature we need a unit normal. Notice that on \mathcal{C} for fixed φ , translation along the z-direction should leave the unit normal unaffected. We make the out-ward pointing choice:

$$n^i = \left(\frac{x}{a}, \frac{y}{a}, 0\right) \Longrightarrow n_i = \delta_{ij} n^j = \left(\frac{x}{a}, \frac{y}{a}, 0\right),$$

with a constant. It follows then that:

$$abla_i[n_j] = \partial_i[n_j] = \operatorname{diag}(1/a, \, 1/a, \, 0);$$

as $\Gamma[\gamma]=0$.

Consider Eq.(eq:Extrinsic2). We have the natural basis $(\partial_I) = (\partial_{\varphi}, \partial_z)$ associated with the coordinates (φ, z) . The components $(\partial_I)^i$ are of the vector ∂_I we take with respect to the natural basis $(\partial_i) = (\partial_x, \partial_y, \partial_z)$ in Cartesian coordinates. As $\partial_{\varphi} = -y\partial_x + x\partial_y$, one has $(\partial_{\varphi})^i = (-y, x, 0)$ and $(\partial_z)^i = (0, 0, 1)$.

We find:

$$egin{aligned} \mathbf{K}(oldsymbol{\partial}_{\mathrm{I}},\,oldsymbol{\partial}_{\mathrm{J}})\mathrm{d}x^{\mathrm{I}}\otimes\mathrm{d}x^{\mathrm{J}} &= -\left(rac{1}{a}(oldsymbol{\partial}_{I})^{1}(oldsymbol{\partial}_{J})^{1} + rac{1}{a}(oldsymbol{\partial}_{I})^{2}(oldsymbol{\partial}_{J})^{2}
ight)\mathrm{d}x^{\mathrm{I}}\otimes\mathrm{d}x^{\mathrm{J}}, \ &= -rac{1}{a}ig[(-y)(-y) + x^{2}ig]\partial_{arphi}\otimes\partial_{arphi}, \ &= -a\partial_{arphi}\otimes\partial_{arphi}. \end{aligned}$$

The trace of the extrinsic curvature can be found using the relation $\gamma^{\mathrm{IJ}}=\mathrm{diag}(a^{-2},1)$ which results in $K=-a^{-1}$.

other things to try:

- Intrinsic / extrinsic quantities associated with sphere embedded in \mathbb{R}^3 .
- Given Schwarzschild in isotropic coordinates compute (spatial) 3-metric, extrinsic curvature and its trace. (see Eq.6.11 of lecture notes)