Sujet 1

I \mid Réflexion et transmission

Deux câbles coaxiaux différents, d'impédances caractéristiques Z_1 et Z_2 sont mis bout à bout en x=0. Une onde harmonique est émise dans le câble occupant les abscisses x<0, qui se propage dans le sens des x croissants.

- 1) Proposez une expression pour les ondes incidente, réfléchie et transmise (courant et tension).
- 2) Quelles sont les deux conditions limites en x = 0
- 3) Définir et établissez les expressions des coefficients de transmission et de réflexion en amplitude pour la tension à la jonction entre les deux câbles.
- 4) On définit les coefficients de réflexion et transmission en puissance par la valeur absolue du rapport entre la valeur moyenne de la puissance réfléchie/transmise sur la valeur moyenne de la puissance incidente. Calculez ces deux coefficients ; par quelle relation simple sont-ils reliés ?

Khôlles PSI – semaine 18

Sujet 2

I Puits canadien

Un puits canadien est un échangeur géothermique à très basse énergie utilisé pour rafraîchir ou réchauffer l'air ventilé dans un bâtiment. Ce type d'échangeur est notamment utilisé dans l'habitat passif. (Source : wikipdia).

On donne de plus les données suivantes :

- Conductivité thermique du sol terrestre : $\lambda = 0.75 \,\mathrm{W}\cdot\mathrm{m}^{-1}\cdot\mathrm{K}^{-1}$
- Capacité thermique du sol terrestre : $c = 1350 \,\mathrm{kJ} \cdot \mathrm{m}^{-3} \cdot \mathrm{K}^{-1}$
- 1) A quelle profondeur doit on enterrer une canalisation d'air servant à ventiler une habitation pour la refroidir l'été et la réchauffé l'hiver à moindre frais d'usage.

Il s'agit ici d'un problème libre dont la résolution n'est pas immédiate. Pensez donc effectuer des hypothèses soigneusement justifiées.

Sujet 3

I | Fibre nerveuse

On considère une chaîne électrique dont on représente une longueur élémentaire dx, modélisant une fibre nerveuse.

Attention, $g_m dx$ représente une conductance (l'inverse d'une résistance).

- 1) Déterminer les équations différentielles couplées vérifiées par u(x,t) et i(x,t)
- 2) En déduire l'équation vérifiée par u(x,t) seulement.

On envisage dans la suite une solution sous forme d'onde plane progressive monochromatique $\underline{u}(x,t) = u_0 e^{j(\omega t - kx)}$.

3) À quelle condition sur ω , c_m et g_m l'équation différentielle vérifiée par u(x,t) se simplifie-t-elle en

$$\frac{\partial^2 u(x,t)}{\partial x^2} = r_a c_m \frac{\partial u}{\partial t}$$

On supposera cette condition vérifiée par la suite.

- 4) Déterminer la relation de dispersion entre ω et k. Montrer que le milieu est dispersif et absorbant. Que valent les vitesses de phase et de groupe ? Quelle relation lie ces deux grandeurs ?
- 5) Mettre en évidence une distance caractéristique d'atténuation. Commenter.

Sujet 4

I | Transmission entre deux cordes

Une corde infinie est constituée de deux parties :

- x < 0: masse linéique μ_1 , tension T
- x > 0: masse linéique μ_2 , même tension T

Une onde progressive se dirige vers le point O en provenant de la région des x négatifs. On notera c_1 (respectivement c_2) la célérité des ondes susceptibles de se propager sur la partie x < 0 (respectivement x > 0) de la corde.

On note $y_i(x,t)$, $y_r(x,t)$, $y_t(x,t)$ les élongations correspondant à l'onde incidente, réfléchie et transmise. À ces élongations correspondent les ondes de vitesse respectives

$$v_i(x,t) = \frac{\partial y_i(x,t)}{\partial t}$$
 , $v_r(x,t) = \frac{\partial y_r(x,t)}{\partial t}$, $v_t(x,t) = \frac{\partial y_t(x,t)}{\partial t}$.

- 1) Définir une onde progressive se propageant à la vitesse v selon les x croissants. Justifier que $\frac{\partial y_i(x,t)}{\partial x} = -\frac{v_i(x,t)}{c_1}$.
- 2) Déterminer les coefficients de réflexion r et de transmission t relatifs à la vitesse. On introduira la quantité $\eta = \sqrt{\mu_2/\mu_1}$.

Que se passe-t-il pour les cas limites $\mu_2 \to \infty$ et $\mu_1 = \mu_2$?

- 3) Définir la puissance $\Pi(x,t)$ transférée en x dans le sens des x>0 dans le cas général d'une corde infinie de tension T et de masse linéique μ . On exprimera $\Pi(x,t)$ en fonction de T, c, la célérité de l'onde, et v(x,t) sa vitesse transversale. On se placera dans le cas d'une onde progressive.
- 4) En traduisant la conservation de l'énergie en x=0, établir une relation entre r, t et η . Vérifier que cette expression est compatible avec les expressions obtenues précédemment.