Assignment #1

Elementary Particle Physics: Phys 4602-5602 Alain Bellerive Due January 16th, 2012

Students registered in 4602 and 5602 do ALL problems.

1. Consider an experiment similar to the experiment by J. J. Thomson. A beam of positron $(q = +e \text{ and } m = m_e)$ enters crossed electric and magnetic fields. The speed selector has an electric field E and a magnetic field B. Then the beam enters a mass spectrometer. The magnetic field and the circular deflection are B_0 and d, respectively. Figure 1 describes the experimental apparatus. Express m_e/e in term of E, B, d and B_0 .

Figure 1: Mass spectrometer.

- 2. Explain how the positron (i.e. anti-electron) was discovered.
- 3. In the Lawrence cyclotron a constant magnetic field B_0 guides the ions (nuclei) of charge q and mass m in a spiral path (see Figure 2). The acceleration is imparted by an electric field E_0 that has the correct direction any time the particle is subject to it.
 - (a) Show that the cyclotron frequency is $w_c = \frac{q}{m}B_0$.
 - (b) What is the kinetic energy of a non-relativistic ion in the emergant beam at a radius r?

(c) When the particle speed gets very large, the relativistic equation has to be used. Explain why the cycloron frequency will no longer be a constant but will vary with the particle speed.

Figure 2: E.O. Lawrence cyclotron.