

MATEMÁTICAS AVANZADAS

Solución de Ecuaciones Diferenciales Ordinarias Por Series de Fourier

Anexo

FACULTAD DE INGENIERÍA

Universidad Nacional de Cuyo 2020

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Solución de Ecuaciones Diferenciales Ordinarias por Series de Fourier

Anexo

MATEMÁTICAS AVANZADAS 2020

Solución de Ecuaciones Diferenciales Ordinarias por Series de Fourier Anexo

	MA MASA-RESORTE NO AMORTIGUADO CON UNA FUERZA PERIODICA (12):
The same in	lo Matematico
mi	i(t) + ku(t) = f(t)
i	$i(t) + \frac{k}{m} u(t) = \frac{f(t)}{m} ; \frac{k}{m} = \omega_0^2$
50	ución general:
	$l = c_{\Lambda} \cos(\omega_{o}t) + c_{2} \sin(\omega_{o}t) + U_{sp}(t)$
5i	(t) es una junción imper con período 2L, su serie de Fourier
tien	the la forma: $\frac{f(t)}{m} = \sum_{n=1}^{\infty} \frac{B_n}{m} \operatorname{sen}\left(\frac{n\pi t}{L}\right) ; \omega_n = \frac{n\pi}{L}$
Usi	amos Serie de Fourier para encontrar usp(t): "solución periodica
est	acionaria", "solución periódica en estado permanente.
Se	propone una solución de la forma:
	0
	$U_{sp}(t) = \sum_{n=1}^{\infty} b_n \operatorname{sen}(n\pi t)$ con $\omega_n = n\pi \neq \omega_s$
5	ustituimos Usp(t) y ft/m en la EDO. Para ello debemos eva
lua	or $\ddot{\mathcal{U}}_{sp}(t)$:
1	$\int_{Sp}(t) = \sum_{n=1}^{\infty} b_n \frac{n\pi}{L} \cos\left(\frac{n\pi}{L}t\right) ; \lim_{sp}(t) = \sum_{n=1}^{\infty} -(b_n)\left(\frac{n\pi}{L}\right)^2 \sin\left(\frac{n\pi}{L}t\right)$
M	5p(0)= / con/(=)
6	institution of a sight be well sight a discourse
	bustituimos en ii(t) + k u(t) = f(t) y obtenemos:
- 2	$\frac{\sum_{n=1}^{\infty} \left(b_n \left(\frac{n\pi}{L}\right)^2 \operatorname{sen}\left(\frac{n\pi}{L}t\right) + k \sum_{m=1}^{\infty} b_n \operatorname{sen}\left(\frac{n\pi}{L}t\right) = \sum_{n=1}^{\infty} \frac{B_n}{m} \operatorname{sen}\left(\frac{n\pi}{L}t\right)$
	lada coeficiente bn se obtiene de igualar coeficientes de
	rminos semejantes:

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Solución de Ecuaciones Diferenciales Ordinarias por Series de Fourier

Anexo

$$\begin{bmatrix} -\left(\frac{n\pi}{L}\right)^2 + \frac{k}{m} \right] b_n = \frac{B_n}{m} \implies b_n = \frac{B_n/m}{[k/m - (n\pi)^2]} \frac{B_n}{m[\omega_n^2 - \omega_n^2]} \frac{\omega_n \chi \omega_n}{\omega_n \pi L}$$

Por lo tanto: $U_{\infty}p(t) = \sum_{n=1}^{\infty} \frac{B_n}{m} \frac{1}{[\omega_n^2 - \omega_n^2]} \frac{sen(\omega_n t)}{m[\omega_n^2 - \omega_n^2]} \frac{\omega_n \pi L}{\omega_n \pi L}$

Ahora bien, si existe un termino B_n sen $(u_n t)$

Ia Senie de Fourier de $f(t)$ para el cual $\frac{1}{N!} = u_n$, entonces ese termino causa resonancia pura. Veamos porque:

Si consideramos la ecuación $mi(t) + k u(t) = B_n sen(\omega_n t)$, $\omega_n = \omega_n$; $\omega_n^2 = k/m$

el metodo de los coeficientes indeterminados propone como solución $u_n^2(t)$. $u_n^2(t) = t$ (Acos $(\omega_n t) + B$ sen $(\omega_n t)$)

porque si se propone $u_n^2(t) = A cel(\omega_n t) + B sen(\omega_n t)$)

porque si se propone $u_n^2(t) = A cel(\omega_n t) + B sen(\omega_n t)$ queda una contradicción. Veámoslo:

| si $u_n^2(t) = A cos(\omega_n t) + B sen(\omega_n t)$
 $u_n^2(t) = A cos(\omega_n t) + B sen(\omega_n t)$

Al sustituir en la EDO $mi(t) + k u(t) = B_n sen(\omega_n t)$, queda:

- $u_n^2(t) = A cos(\omega_n t) + B sen(\omega_n t) + B sen(\omega_n t)$

Al sustituir en la EDO $mi(t) + k u(t) = B_n sen(\omega_n t)$

Polvemos entonces a $u_n^2(t) = t (A ces(\omega_n t) + B sen(\omega_n t))$

Volvemos entonces a $u_n^2(t) = t (A ces(\omega_n t) + B sen(\omega_n t))$

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Solución de Ecuaciones Diferenciales Ordinarias por Series de Fourier

Anexo

$$\begin{aligned} |\mathcal{Y}_{p}(t)| &= t \left[A \cos(\omega_{0}t) + B \sin(\omega_{0}t) \right] \\ |\mathcal{Y}_{p}(t)| &= A \cos(\omega_{0}t) + B \sin(\omega_{0}t) + t \left[-A \omega_{0} \sin(\omega_{0}t) + B \omega_{0} \cos(\omega_{0}t) \right] \\ |\mathcal{Y}_{p}(t)| &= -A \omega_{0} \sin(\omega_{0}t) + B \omega_{0} \cos(\omega_{0}t) + \left[-A \omega_{0} \sin(\omega_{0}t) + B \omega_{0} \cos(\omega_{0}t) \right] \\ &= + t \left[-A \omega_{0}^{2} \cos(\omega_{0}t) - B \omega_{0}^{2} \sin(\omega_{0}t) \right] \\ &= -2 A \omega_{0} \sin(\omega_{0}t) + 2B \omega_{0} \cos(\omega_{0}t) - A \omega_{0}^{2} t \cos(\omega_{0}t) - B \omega_{0}^{2} t \sin(\omega_{0}t) \end{aligned}$$

<u>Sutituimos</u> en la EDO y obtenemos:

m[-2A
$$\omega_0$$
 sen(ω_0 t) + 2B ω_0 (ω_0 s(ω_0 t) - At ω_0^2 cos(ω_0 t) - Bt ω_0^2 sen(ω_0 t)] + kt (A cos(ω_0 t) + B sen(ω_0 t)) = B_H sen(ω_0 t)

$$\begin{cases}
2B m \omega_0 \cos(\omega_0 t) = 0 & \longrightarrow B = 0 \\
[-A (m \omega_0^2) + kA] t \cos(\omega_0 t) = 0 & \longrightarrow (-kA + kA) t \cos(\omega_0 t) = 0
\end{cases}$$

El coeficiente de sen(cust) debe ser 'Bn':

$$-2 \text{ Am } \omega_o = B_H$$
 $A = \frac{-B_H}{2 \text{ m } \omega_o}$

Entonces, la ecuación milt)+k ll(t) = B, sen(a,t), a= k/m

tiene la solución de resomancia

$$U_{sp}(t) = \frac{-B_H}{2m\omega_0} + \cos(\omega_0 t)$$

La amplitud de oscilación crece sin acotamiento.

Facultad de Ingeniería

Universidad Nacional de Cuyo

Tema:

Solución de Ecuaciones Diferenciales Ordinarias por Series de Fourier

Anexo

En la solución $u_{sp}(t)$ se excluye el termino de frecuencia ω_{s} de la suma toria y finalmente resulta: $u_{sp}(t) = -\frac{B_N}{B_N} t \cos(\omega_s t) + \sum_{\substack{n \neq N \\ n \neq N}} \frac{B_n}{m(\omega_o^2 - \omega_n^2)} \sin(\omega_n t); \quad \omega_n = \frac{n\pi}{L}$ | solución asociada | $\sum_{\substack{n \neq N \\ n \neq N}} \frac{1}{m(\omega_o^2 - \omega_n^2)} \sin(\omega_n t)$ | al termino de f(t) | $\sum_{\substack{n \neq N \\ n \neq N}} \frac{1}{m(\omega_o^2 - \omega_n^2)} \sin(\omega_n t)$ | para el ω_{s} | $\omega_$