MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

min (++ 100) ~ min (=) + 605(4) 100

Problem 1. (15 pts). Estimate the following to two decimal places (show work)

Put a check next to your recitation:

Rec. 1	Ilya Elson	10am
Rec. 2	Kobi Kremnizer	10am
Rec. 3	Liat Kessler	12pm
Rec. 4	Matthew Hedden	1pm
Rec. 5	Jérôme Waldispühl	2pm
Rec. 6	Liat Kessler	2pm
Rec. 7	Matthew Hedden	2pm
Rec. 8	Jérôme Waldispühl	3pm

Problem 1		
Problem 2	20 points	
Problem 3		
Problem 4	15 points	
Problem 5	20 points	
Problem 6	10 points	

b. (7 pts). √101

a. (8 pts). $\sin(\pi + 1/100)$

$$\sqrt{101} = \sqrt{100+1} = \sqrt{100(1+\frac{1}{100})} = 10\sqrt{1+\frac{1}{100}}$$

$$\approx 10\left(1+\frac{1}{2}\frac{1}{100}\right) = 10+\frac{1}{20} = 10.05$$

Problem 2. (20 pts). Sketch the graph of $y = \frac{4}{x} + x + 1$ on $-\infty < x < \infty$ and label all critical points and inflection points with their coordinates on the graph along with the letter "C" or "I".

and
$$A>0$$
 at the unique critical pt. in between.
So this crit pt must be when max is achieved. (2nd deniv test is tonger, $\pm k$, $\pm k$)

METHOD 2. (Implicit Diff.) $2hh' + \frac{2}{2} = 0 = 0 h' = \frac{-x}{4h}$
 $0 = A' = \frac{1}{2}(h + xh') = \frac{1}{2}(A + x(\frac{-x}{4h})) = 0 h = \frac{x}{4h}$

 $\Rightarrow k^2 = \frac{x^2}{4} \Rightarrow \frac{x^2}{4} + \frac{x^2}{4} = L^2 \Rightarrow x^2 = 2L^2 \Rightarrow x = \sqrt{x}$

(REASONING FOR MAX IS THE SAME.)

Problem 4. (15 pts.) A rocket is launched straight up, and its altitude is $h=10t^2$ feet after t seconds. You are on the ground 1000 feet from the launch site. The line of sight from you to the rocket makes an angle θ with the horizontal. By how many radians per second is θ changing ten seconds after the launch?

Problem 5. a. (10 pts) Evaluate the following indefinite integrals

i.
$$\int \cos(3x) dx = \frac{1}{3} \sin(3x) + C$$

ii.
$$\int xe^{(x^2)}dx = \frac{1}{2} \int e^{u} du = \frac{1}{2} e^{u} + C$$

 $u = x^2$
 $du = 2xdx$ = $\frac{1}{2}e^{u} + C$

b. (10 pts) Find y(x) such that $y' = \frac{1}{v^3}$ and y(0) = 1

$$\frac{dy}{dx} = \frac{1}{y^3}$$

$$y^3 dy = 4x$$

$$\frac{1}{4}y^4 = x + C$$

$$\frac{1}{4} = C$$

$$y = (4x + 1)^{4}$$

Problem 6. (10 pts.) Suppose that $f'(x) = e^{(x^2)}$, and f(0) = 10. One can conclude from the mean value theorem that

for which numbers A and B?

Beautiful

$$\frac{f(1)-f(0)}{1-0}=f'(c)$$
 for some C, OCC < 1.

$$f(1) = f(0) + f'(0) = 10 + e^{(c^0)}$$
, occ<1.