←□→	Barra sob carga axial (/ = comprimento, A = área da seção transversal)	$k_{eq} = \frac{EA}{l}$
+	Barra cônica sob carga axial (D, d = diâmetros das extremidades)	$k_{eq} = \frac{\pi E D d}{4l}$
←1101111111000→	Mola helicoidal sob carga axial (d = diâmetro do arame, D = diâmetro médio do enrolamento, n = número de espiras ativas)	$k_{eq} = \frac{Gd^4}{8nD^3}$
1	Viga bi-engastada com carga no meio	$k_{eq} = \frac{192EI}{l^3}$
-	Viga em balanço com carga na extremidade	$k_{eq} = \frac{3EI}{l^3}$
	Viga simplesmente apoiada com carga no meio	$k_{eq} = \frac{48EI}{l^3}$
 ~~+~+~+	Molas em série	$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n}$
+	Molas em paralelo	$k_{eq} = k_1 + k_2 + \dots + k_n$
()	Eixo oco sob torção (I = comprimento, D = diâmetro externo, d = diâmetro interno)	$k_{eq} = \frac{\pi G}{k} (D^4 - d^4)$

Fonte: Livro: Vibrações Mecânicas. Autor: Rao. Pag. 5

Figura 1: Rigidez equivalente

Material	Módulo de Elasticidade E	Módulo de Rigidez G	Densidade em massa p
Ligas de Alumínio	71,7 GPa	26,8 GPa	2,8 Mg/m³
Cobre	120,7 GPa	44,7 GPa	8,9 Mg/m ³
Ferro Fundido Cinzento	103,4 GPa	5,9 GPa	7,2 Mg/m³
Ferro Fundido Dúctil	168,9 GPa	9,4 GPa	6,9 Mg/m³
Aço-carbono	206,8 GPa	11,7 GPa	7,8 Mg/m³
Aço Inoxidável	189,6 GPa	10,7 GPa	7,8 Mg/m³

Fonte: Livro: Projeto de Máquinas. Autor: Robert L. Norton. Pag. 846.

Figura 2: Propriedades de alguns materiais

1 Equações:

1.1 Associação de molas em paralelo

$$k_{eq} = \sum_{i=1}^{n} k_i \tag{1}$$

1.2 Associação de molas em série

$$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_n} \tag{2}$$

Seção	Momento de Inércia
X	$I = \frac{bh^3}{12}$
Y X	$I = \frac{a^4}{12}$
	$I = \frac{\pi d^4}{64}$
x	$I = \frac{\pi}{64} (D^4 - d^4)$

Figura 3: Momento de inércia

2 Vibração livre com amortecimento viscoso

2.1 Frequência natural

$$\omega_n = \sqrt{\frac{k}{m}} = \text{rad/s} \tag{3}$$

2.2 Fator de amortecimento

$$\zeta = \frac{c}{c_c} \tag{4}$$

$$c_c = 2m\sqrt{\frac{k}{m}} = 2\sqrt{km} = 2m\omega_n \tag{5}$$

2.3 Solução Geral

$$x_t = A_1 e^{\lambda_1 t} + A_2 e^{\lambda_2 t} \tag{6}$$

Em que λ_1 e λ_2 são calculados com a equação 7 abaixo:

$$\lambda_{1,2} = \omega_n \left(-\zeta \pm \sqrt{\zeta^2 - 1} \right) \tag{7}$$

Ou ainda da forma expandida:

$$x_t = A_1 e^{\left[\omega_n(-\zeta + \sqrt{\zeta^2 - 1})\right]t} + A_2 e^{\left[\omega_n(-\zeta - \sqrt{\zeta^2 - 1})\right]t}$$
(8)

- \bullet Sistema Superamortecido: $\zeta>1$
- \bullet Sistema criticamente amortecido: $\zeta=1$
- \bullet Sistema sub-amortecido: $\zeta<1$

3 Sistema Criticamente Amortecido

A equação da posição é a seguinte, visto que $\lambda_1=\lambda_2$

$$x(t) = (A_1 + A_2 t) e^{-\omega_n t}$$
(9)

E a equação da velocidade (derivada primeira da equação 9) fica da forma:

$$\dot{x}(t) = A_2 e^{-\omega_n t} + (A_1 + A_2 t) (-\omega_n) e^{-\omega_n t}$$
(10)