GAUGE AND HIGGS BOSONS

 γ (photon)

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 1 \times 10^{-18} \text{ eV}$

Charge $q < 1 \times 10^{-46} e$ (mixed charge)

Charge $q < 1 \times 10^{-35} e$ (single charge)

Mean life $\tau = \text{Stable}$

g or gluon

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

graviton

$$J=2$$

W

$$J=1$$

Charge
$$= \pm 1~e$$
 Mass $m = 80.377 \pm 0.012~{\rm GeV}$ W/Z mass ratio $= 0.88145 \pm 0.00013$ $m_Z - m_W = 10.811 \pm 0.012~{\rm GeV}$ $m_{W^+} - m_{W^-} = -0.029 \pm 0.028~{\rm GeV}$ Full width $\Gamma = 2.085 \pm 0.042~{\rm GeV}$ $\langle N_{\pi^\pm} \rangle = 15.70 \pm 0.35$ $\langle N_{K^\pm} \rangle = 2.20 \pm 0.19$ $\langle N_p \rangle = 0.92 \pm 0.14$ $\langle N_{\rm charged} \rangle = 19.39 \pm 0.08$

 W^- modes are charge conjugates of the modes below.

W ⁺ DECAY MODES	F	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[<i>b</i>]	(10.86 ± 0.09) %		_
$e^+ \nu$		$(10.71 \pm 0.16) \%$		40189
$\mu^+ \nu$		$(10.63 \pm \ 0.15) \%$		40189
$ au^+ u$		$(11.38 \pm \ 0.21) \%$		40170
hadrons		(67.41± 0.27) %		_

https://pdg.lbl.gov

Page 1

$\pi^+ \gamma$ $D_s^+ \gamma$	< 7 < 1.3	$\times 10^{-6} \times 10^{-3}$	95% 95%	40189 40165
cX	(33.3 ± 2)	.6) %		_
c s	$(31 \begin{array}{cc} +13 \\ -11 \end{array}$) %		_
invisible	[c] (1.4 \pm 2			_
$\pi^{+}\pi^{+}\pi^{-}$	< 1.01	\times 10 ⁻⁶	95%	40189

Z

$$J = 1$$

Charge = 0 Mass $m = 91.1876 \pm 0.0021$ GeV [d] Full width $\Gamma = 2.4952 \pm 0.0023$ GeV $\Gamma(\ell^+\ell^-) = 83.984 \pm 0.086$ MeV [b] $\Gamma(\text{invisible}) = 499.0 \pm 1.5$ MeV [e] $\Gamma(\text{hadrons}) = 1744.4 \pm 2.0$ MeV $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-) = 1.0001 \pm 0.0024$ $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-) = 1.0020 \pm 0.0032$ [f]

Average charged multiplicity

$$\langle N_{charged} \rangle = 20.76 \pm 0.16 \quad (S = 2.1)$$

Couplings to quarks and leptons

 $g_{V}^{\ell} = -0.03783 \pm 0.00041$ $g_{V}^{u} = 0.266 \pm 0.034$ $g_{V}^{d} = -0.38^{+0.04}_{-0.05}$ $g_{A}^{\ell} = -0.50123 \pm 0.00026$ $g_{A}^{u} = 0.519^{+0.028}_{-0.033}$ $g_{A}^{d} = -0.527^{+0.040}_{-0.028}$ $g_{V}^{\nu_{\ell}} = 0.5008 \pm 0.0008$ $g_{V}^{\nu_{e}} = 0.53 \pm 0.09$ $g_{V}^{\nu_{\mu}} = 0.502 \pm 0.017$

Asymmetry parameters [g]

 $A_e = 0.1515 \pm 0.0019$ $A_\mu = 0.142 \pm 0.015$ $A_\tau = 0.143 \pm 0.004$ $A_s = 0.90 \pm 0.09$ $A_c = 0.670 \pm 0.027$ $A_b = 0.923 \pm 0.020$

Charge asymmetry (%) at \boldsymbol{Z} pole

$$A_{FB}^{(0\ell)} = 1.71 \pm 0.10$$
 $A_{FB}^{(0u)} = 4 \pm 7$
 $A_{FB}^{(0s)} = 9.8 \pm 1.1$
 $A_{FB}^{(0c)} = 7.07 \pm 0.35$
 $A_{FB}^{(0b)} = 9.92 \pm 0.16$

Z DECAY MODES	Fraction (Γ_i/Γ)				cale factor/	p (M-)//-)
		Fraction (' <i>j</i> / ')	Con	fidence level	(MeV/c)
e^+e^-	[<i>h</i>]	•	2 ± 0.004	•		45594
$\mu^+\mu^-$	[<i>h</i>]	•	2 ± 0.006	,		45594
$ au^+ au^-$	[<i>h</i>]	,	6 ± 0.008	•		45559
$\ell^+\ell^-$	[b,h]	•	8 ± 0.002	•	c	_
$\ell^+\ell^-\ell^+\ell^-$	[<i>i</i>]) × 10	0	45594
invisible	[<i>h</i>]	,	± 0.055	•		_
hadrons	[<i>h</i>]	(69.911	± 0.056) %		_
$(u\overline{u}+c\overline{c})/2$ _		(11.6	± 0.6) %		_
$(d\overline{d} + s\overline{s} + b\overline{b})/3$		(15.6	± 0.4) %		_
c <u>c</u>		(12.03	±0.21) %		_
b <u>b</u> _		(15.12)	± 0.05) %	_	_
<i>b</i> b b b b		(3.6	± 1.3) × 10	4	_
ggg		< 1.1		%	CL=95%	_
$\pi^{0}\gamma$		< 2.01		× 10 [—]		45594
$\eta \gamma$		< 5.1			⁵ CL=95%	45592
$ ho^{0} \gamma$		< 2.5			⁵ CL=95%	45591
$\omega \gamma$		< 6.5		× 10		45590
$\eta'(958)\gamma$		< 4.2		× 10 [—]		45589
$\phi\gamma$		< 9		× 10 [—]		45588
$\gamma \gamma$		< 1.46		× 10		45594
$\pi^0\pi^0$		< 1.52		× 10		45594
$\gamma \dot{\gamma} \gamma$		< 2.2		× 10 [—]		45594
$\pi^{\pm}W^{\mp}$	[<i>j</i>]	< 7			5 CL=95%	10167
$ ho^\pm W^\mp$	[<i>j</i>]	< 8.3		× 10	⁵ CL=95%	10142
$J/\psi(1S)X$		(3.51	$^{+0.23}_{-0.25}$) × 10	3 S=1.1	-
$J/\psi(1S)\gamma$		< 1.4			6 CL=95%	45541
ψ (2 S)X		(1.60	± 0.29) × 10	3	_
ψ (2S) γ		< 4.5		\times 10 $^{-}$	6 CL=95%	45519
$J/\psi(1S)J/\psi(1S)$		< 2.2		\times 10 $^{-}$	6 CL=95%	45489
$\chi_{c1}(1P)X$		(2.9	±0.7) × 10	3	_
$\chi_{c2}(1P)X$		< 3.2			3 CL=90%	_

$\Upsilon(1S) \times + \Upsilon(2S) \times$		(1.0	± 0.5	$) \times 10^{-4}$		_
$+ \Upsilon(3S) X$				F		
$\Upsilon(1S)X$		< 4.4			CL=95%	_
$\gamma(1S)\gamma$		< 2.8			CL=95%	45103
$\Upsilon(2S)X$		< 1.39			CL=95%	_
$\Upsilon(2S)\gamma$		< 1.7			CL=95%	45043
$\Upsilon(3S)X$		< 9.4			CL=95%	_
Υ (3 S) γ		< 4.8			CL=95%	45006
$\Upsilon(1,2,3S) \Upsilon(1,2,3S)$		< 1.5		$\times 10^{-6}$	CL=95%	_
(D^0/\overline{D}^0) X		(20.7	± 2.0) %		_
$D^{\pm}X$		(12.2	± 1.7) %		_
$D^*(2010)^{\pm} X$		[j] (11.4	± 1.3) %		_
$D_{s1}(2536)^{\pm}X$		(3.6	± 0.8	$) \times 10^{-3}$		_
D_{sJ} (2573) $^\pm$ X		(5.8	± 2.2	$) \times 10^{-3}$		_
$D^{*'}(2629)^{\pm}X$		searched	for			_
B^+X		[k] (6.08	± 0.13) %		_
$B_s^0 X$		[k] (1.59	±0.13) %		_
$B_c^+ X$		searched	for			_
$B_c^+ X$ $A_c^+ X$ $\Xi_c^0 X$		(1.54	± 0.33) %		_
$=$ $\overset{\circ}{0}$ X		seen				_
$\Xi_b^{\circ}X$		seen				_
b-baryon X		[k] (1.38	± 0.22) %		_
anomalous $\gamma+$ hadrons		[/] < 3.2		$\times10^{-3}$	CL=95%	_
$e^+e^-\gamma$		[/] < 5.2		$\times10^{-4}$	CL=95%	45594
$\mu^+\mu^-\gamma$		[/] < 5.6		$\times10^{-4}$	CL=95%	45594
$\tau^+\tau^-\gamma$		[/] < 7.3		$\times10^{-4}$	CL=95%	45559
$\ell^+\ell^-\gamma\gamma$		[n] < 6.8		$\times 10^{-6}$	CL=95%	_
$q \overline{q} \gamma \gamma$		[n] < 5.5		$\times 10^{-6}$	CL=95%	_
$ u \overline{ u} \gamma \gamma$		[n] < 3.1		$\times 10^{-6}$	CL=95%	45594
$e^\pm\mu^\mp$	LF	[j] < 7.5		$\times 10^{-7}$	CL=95%	45594
$e^{\pm} au^{\mp}$	LF	[j] < 5.0		$\times 10^{-6}$	CL=95%	45576
$\mu^{\pm} \tau^{\mp}$	LF	[j] < 6.5		$\times 10^{-6}$	CL=95%	45576
рe	L,B	< 1.8		$\times 10^{-6}$	CL=95%	45589
$p\mu$	L,B	< 1.8		\times 10 ⁻⁶	CL=95%	45589

$$J = 0$$

Mass $m=125.25\pm0.17~{\rm GeV}~{\rm (S}=1.5)$ Full width $\Gamma=3.2^{+2.8}_{-2.2}~{\rm MeV}~{\rm (assumes~equal~on\mbox{-shell}}$ and off-shell effective couplings)

H⁰ Signal Strengths in Different Channels

Combined Final States = 1.13 ± 0.06 $WW^* = 1.19 \pm 0.12$ $ZZ^* = 1.01 \pm 0.07$ $\gamma \gamma = 1.10 \pm 0.07$ $c \overline{c}$ Final State = 37 ± 20 $b \overline{b} = 0.98 \pm 0.12$ $\mu^+ \mu^- = 1.19 \pm 0.34$ $\tau^+ \tau^- = 1.15^{+0.16}_{-0.15}$ $Z \gamma < 3.6$, CL = 95% $\gamma^* \gamma$ Final State = 1.5 ± 0.5 $t \overline{t} H^0$ Production = 1.10 ± 0.18 $t H^0$ Production = 6 ± 4 H^0 Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV = 56 ± 4 pb

H ⁰ DECAY MODES		Fraction (Γ_i/Γ)	Confidence level	p (MeV/ c)
e^+e^-		$< 3.6 \times 10^{-4}$	95%	62625
$Z \rho(770)$		< 1.21 %	95%	29423
$Z\phi(1020)$		$< 3.6 \times 10^{-3}$	95%	29417
$J/\psi\gamma$		$< 3.5 \times 10^{-4}$	95%	62587
$J/\psiJ/\psi$		$< 1.8 \times 10^{-3}$	95%	62548
$\psi(2S)\gamma$		$< 2.0 \times 10^{-3}$	95%	62571
$\Upsilon(1S)\gamma$		$< 4.9 \times 10^{-4}$	95%	62268
$\Upsilon(2S)\gamma$		$< 5.9 \times 10^{-4}$	95%	62224
$\Upsilon(3S)\gamma$		$< 5.7 \times 10^{-4}$	95%	62197
$\Upsilon(nS)\ \Upsilon(mS)$		$< 1.4 \times 10^{-3}$	95%	_
$ ho$ (770) γ		$< 8.8 \times 10^{-4}$	95%	62623
ϕ (1020) γ		$< 4.8 \times 10^{-4}$	95%	62621
$e\mu$	LF	$< 6.1 \times 10^{-5}$	95%	62625
e au	LF	$< 2.2 \times 10^{-3}$	95%	62612
μau	LF	$< 1.5 \times 10^{-3}$	95%	62612
invisible		<19 %	95%	_

Neutral Higgs Bosons, Searches for

Mass limits for heavy neutral Higgs bosons (H_2^0, A^0) in the MSSM

Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$) Searches for

```
Mass limits for m_{H^+} < m(top)
```

m > 155 GeV, CL = 95%

Mass limits for $m_{H^+} > m(top)$

New Heavy Bosons (W', Z', leptoquarks, etc.), Searches for

Additional W Bosons

```
W' with standard couplings Mass m>6000 GeV, {\rm CL}=95\% (pp direct search) W_R (Right-handed W Boson) Mass m>715 GeV, {\rm CL}=90\% (electroweak fit)
```

Additional Z Bosons

```
Z'_{\rm SM} with standard couplings Mass m>5150 GeV, {\rm CL}=95\% (pp direct search) Z_{LR} of {\rm SU}(2)_L \times {\rm SU}(2)_R \times {\rm U}(1) (with g_L=g_R) Mass m>630 GeV, {\rm CL}=95\% (p\overline{p} direct search) Mass m>1162 GeV, {\rm CL}=95\% (electroweak fit)
```

$$Z_{\chi}$$
 of SO(10) \rightarrow SU(5)×U(1) $_{\chi}$ (with $g_{\chi}=e/\cos\theta_W$)
Mass $m>4800$ GeV, CL = 95% (pp direct search)
 Z_{ψ} of $E_6 \rightarrow$ SO(10)×U(1) $_{\psi}$ (with $g_{\psi}=e/\cos\theta_W$)
Mass $m>4560$ GeV, CL = 95% (pp direct search)
 Z_{η} of $E_6 \rightarrow$ SU(3)×SU(2)×U(1)×U(1) $_{\eta}$ (with $g_{\eta}=e/\cos\theta_W$)
Mass $m>3.900\times10^3$ GeV, CL = 95% (pp direct search)

Scalar Leptoquarks

```
m>1800 GeV, CL = 95% (1st gen., pair prod., B(eq)=1) m>1755 GeV, CL = 95% (1st gen., single prod., B(eq)=1) m>1700 GeV, CL = 95% (2nd gen., pair prod., B(\mu q)=1) m>660 GeV, CL = 95% (2nd gen., single prod., B(\mu q)=1) m>1430 GeV, CL = 95% (3rd gen., pair prod., B(\tau t)=1) m>740 GeV, CL = 95% (3rd gen., single prod., B(\tau t)=1) (See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)
```

Diquarks

Mass
$$m > 7200$$
 GeV, $CL = 95\%$ (E_6 diquark)

Axigluon

Mass
$$m > 6600 \text{ GeV}$$
, $CL = 95\%$

Axions (A^0) and Other Very Light Bosons, Searches for

See the review on "Axions and other similar particles."

The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $> 7.2 \times 10^{24}$ years (CL = 90%).

NOTES

- [a] Theoretical value. A mass as large as a few MeV may not be precluded.
- [b] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [c] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.
- [d] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
- [e] This partial width takes into account Z decays into $\nu \overline{\nu}$ and any other possible undetected modes.
- [f] This ratio has not been corrected for the τ mass.
- [g] Here $A \equiv 2g_V g_A / (g_V^2 + g_A^2)$.
- [h] This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06 (Physics Reports (Physics Letters C) **427** 257 (2006)).
- [i] Here ℓ indicates e or μ .
- [j] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [k] This value is updated using the product of (i) the $Z \rightarrow b \, \overline{b}$ fraction from this listing and (ii) the b-hadron fraction in an unbiased sample of weakly decaying b-hadrons produced in Z-decays provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/#FRACZ).
- [/] See the Z Particle Listings for the γ energy range used in this measurement.
- [n] For $m_{\gamma\gamma}=(60\pm5)$ GeV.