CS 4102: Algorithms – Unit C Dynamic Programming

Co-instructors: Robbie Hott and Tom Horton
Spring 2022

CS4102 Algorithms

Spring 2022

Warm Up

How many ways are there to tile a $2 \times n$ board with dominoes?

How		iy w	ays	s to	With these				
tile th	nis:								

Warm Up

How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:

$$Tile(n) = Tile(n-1) + Tile(n-2)$$

$$Tile(0) = Tile(1) = 1$$

Today's Keywords

- Maximum Sum Continuous Subarray
- Domino Tiling
- Dynamic Programming
- Log Cutting

CLRS Readings

Chapter 15

- Section 15.1, Log/Rod cutting, optimal substructure property
 - Note: r_i in book is called Cut() or C[] in our slides. We use their example.
- Section 15.3, More on elements of DP, including optimal substructure property
- Section 15.2, matrix-chain multiplication (later example)
- Section 15.4, longest common subsequence (even later example)

How to compute Tile(n)?

```
Tile(n):

if n < 2:

return 1

return Tile(n-1)+Tile(n-2)
```

Problem?

Recursion Tree

Many redundant calls!

Run time: $\Omega(2^n)$

Better way: Use Memory!

Computing Tile(n) with Memory

```
Initialize Memory M
                                           M
Tile(n):
     if n < 2:
          return 1
     if M[n] is filled:
          return M[n]
     M[n] = Tile(n-1)+Tile(n-2)
     return M[n]
```

Technique: "memoization" (note no "r")

Computing Tile(n) with Memory - "Top Down"

```
Initialize Memory M
Tile(n):
     if n < 2:
          return 1
     if M[n] is filled:
          return M[n]
     M[n] = Tile(n-1)+Tile(n-2)
     return M[n]
```


Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory

Generic Divide and Conquer Solution

```
def myDCalgo(problem):
      if baseCase(problem):
             solution = solve(problem)
             return solution
      for subproblem of problem: # After dividing
             subsolutions.append(myDCalgo(subproblem))
      solution = Combine(subsolutions)
      return solution
```

Generic Top-Down Dynamic Programming Soln

```
mem = \{\}
def myDPalgo(problem):
      if mem[problem] not blank:
             return mem[problem]
      if baseCase(problem):
             solution = solve(problem)
             mem[problem] = solution
             return solution
      for subproblem of problem:
             subsolutions.append(myDPalgo(subproblem))
      solution = OptimalSubstructure(subsolutions)
      mem[problem] = solution
      return solution
```

Computing Tile(n) with Memory - "Top Down"

```
Initialize Memory M
Tile(n):
     if n < 2:
          return 1
     if M[n] is filled:
          return M[n]
     M[n] = Tile(n-1)+Tile(n-2)
     return M[n]
```


Recursive calls happen in a predictable order

Better Tile(n) with Memory - "Bottom Up"

```
Tile(n):
     Initialize Memory M
     M[0] = 1
     M[1] = 1
     for i = 2 to n:
          M[i] = M[i-1] + M[i-2]
     return M[n]
```


Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the (optimal) solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

More on Optimal Substructure Property

- Detailed discussion on CLRS p. 379
 - If A is an optimal solution to a problem, then the components of A are optimal solutions to subproblems
- Examples (we'll see these come up later):
 - True for coin-changing
 - True for single-source shortest path
 - True for knapsack problem

Log Cutting

Given a log of length nA list (of length n) of prices P (P[i] is the price of a cut of size i) Find the best way to cut the log

Select a list of lengths ℓ_1, \dots, ℓ_k such that:

$$\sum \ell_i = n$$
to maximize
$$\sum P[\ell_i]$$

Brute Force: $O(2^n)$

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
 - Select the most profitable cut first

Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
 - Select the "most bang for your buck"
 - (best price / length ratio)

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

1. Identify Recursive Structure

```
P[i] = value of a cut of length i
 Cut(n) = value of best way to cut a log of length n
 Cut(n-1) + P[1]
Cut(n) = \max - Cut(n-2) + P[2]
                      Cut(0) + P[n]
            Cut(n-\ell_k)
                                          \ell_k
best way to cut a log of length n-\ell_k
                                        Last Cut
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

$$Cut(0) = 0$$

$$Cut(1) = Cut(0) + P[1]$$

$$Cut(2) = \max \begin{cases} Cut(1) + P[1] \\ Cut(0) + P[2] \end{cases}$$

Log Cutting Pseudocode

```
Initialize Memory C
Cut(n):
     C[0] = 0
     for i=1 to n: // log size
           best = 0
          for j = 1 to i: // last cut
                best = max(best, C[i-i] + P[i])
          C[i] = best
     return C[n]
                                       Run Time: O(n^2)
```

How to find the cuts?

- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

```
Initialize Memory C, Choices
Cut(n):
      C[0] = 0
      for i=1 to n:
            best = 0
            for j = 1 to i:
                   if best < C[i-j] + P[j]:
                         best = C[i-j] + P[j]
                         Choices[i]=j Gives the size
                                          of the last cut
            C[i] = best
      return C[n]
```

Reconstruct the Cuts

Backtrack through the choices

Example to demo Choices[] only.
Profit of 20 is not optimal!

Backtracking Pseudocode

```
i = n
while i > 0:
    print Choices[i]
    i = i - Choices[i]
```

Our Example: Getting Optimal Solution

i	0	1	2	3	4	5	6	7	8	9	10
C[i]	0	1	5	8	10	13	17	18	22	25	30
Choice[i]	0	1	2	3	2	2	6	1	2	3	10

- If n were 5
 - Best score is 13
 - Cut at Choice[n]=2, then cut at Choice[n-Choice[n]]= Choice[5-2]= Choice[3]=3
- If n were 7
 - Best score is 18
 - Cut at 1, then cut at 6

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

Mental Stretch

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix? (don't overthink this)

Mental Stretch

How many arithmetic operations are required to multiply a $n \times m$ Matrix with a $m \times p$ Matrix? (don't overthink this)

- m multiplications and additions per element
- $n \cdot p$ elements to compute
- Total cost: $m \cdot n \cdot p$

Matrix Chaining

• Given a sequence of Matrices $(M_1, ..., M_n)$, what is the most efficient way to multiply them?

Order Matters!

$$c_1 = r_2$$

$$c_2 = r_3$$

•
$$(M_1 \times M_2) \times M_3$$

- uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ operations

Order Matters!

$$c_1 = r_2$$

$$c_2 = r_3$$

- $M_1 \times (M_2 \times M_3)$
 - uses $c_1 \cdot r_1 \cdot c_3 + (c_2 \cdot r_2 \cdot c_3)$ operations

Order Matters!

$$c_1 = r_2$$

$$c_2 = r_3$$

- $(M_1 \times M_2) \times M_3$
 - uses $(c_1 \cdot r_1 \cdot c_2) + c_2 \cdot r_1 \cdot c_3$ operations
 - $-(10 \cdot 7 \cdot 20) + 20 \cdot 7 \cdot 8 = 2520$
- $M_1 \times (M_2 \times M_3)$
 - uses $c_1 \cdot r_1 \cdot c_3 + (c_2 \cdot r_2 \cdot c_3)$ operations
 - $-10 \cdot 7 \cdot 8 + (20 \cdot 10 \cdot 8) = 2160$

$$M_1 = 7 \times 10$$
 $M_2 = 10 \times 20$
 $M_3 = 20 \times 8$
 $c_1 = 10$
 $c_2 = 20$
 $c_3 = 8$
 $r_1 = 7$
 $r_2 = 10$
 $r_3 = 20$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

 $Best(1,n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$

 $Best(1, n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$

 $Best(1,n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$

 $Best(1, n) = \text{cheapest way to multiply together } M_1 \text{ through } M_n$

• In general:

```
Best(i, j) = \text{cheapest way to multiply together } M_i \text{ through } M_i
Best(i,j) = \min_{k=i}^{j-1} \left( Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)
Best(i,i) = 0
                           Best(2,n) + r_1r_2c_n
                            Best(1,2) + Best(3,n) + r_1r_3c_n
                            Best(1,3) + Best(4,n) + r_1r_4c_n
Best(1,n) = \min \longrightarrow Best(1,4) + Best(5,n) + r_1r_5c_n
                            Best(1, n-1) + r_1 r_n c_n
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

2. Save Subsolutions in Memory

In general:

```
Best(i, j) = \text{cheapest way to multiply together } M_i \text{ through } M_i
Best(i,j) = \min_{k=i}^{j-1} \left( Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)
Best(i,i) = 0
Read from M[n]
if present
              Save to M[n] Best(2,n) + r_1r_2c_n
                              Best(1,2) + Best(3,n) + r_1r_3c_n
                              Best(1,3) + Best(4,n) + r_1 r_4 c_n
Best(1, n) = \min 
                             Best(1,4) + Best(5,n) + r_1r_5c_n
                                Best(1, n-1) + r_1 r_n c_n
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest

In general:

```
Best(i, j) = \text{cheapest way to multiply together } M_i \text{ through } M_i
Best(i,j) = \min_{k=i}^{j-1} \left( Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)
Best(i,i) = 0
Read from M[n]
if present
              Save to M[n] Best(2,n) + r_1r_2c_n
                              Best(1,2) + Best(3,n) + r_1r_3c_n
                              Best(1,3) + Best(4,n) + r_1 r_4 c_n
Best(1,n) = \min 
                              Best(1,4) + Best(5,n) + r_1r_5c_n
                                Best(1, n-1) + r_1 r_n c_n
```


Matrix Chaining

Run Time

- Initialize Best[i, i] to be all 0s $\Theta(n^2)$ cells in the Array
- Starting at the main diagonal, working to the upper-right, fill in each cell using:
 - 1. Best[i, i] = 0

Each "call" to Best() is a O(1) memory lookup

1.
$$Best[i,i] = 0$$

$$\Theta(n) \text{ options for each cell}$$
2. $Best[i,j] = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j \right)$

Backtrack to find the best order

"remember" which choice of k was the minimum at each cell

$$Best(i,j) = \min_{k=i}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j\right)$$

$$Best(i,i) = 0$$

$$j = 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

$$0 \quad 15750 \quad 7875 \quad 9375 \quad 11875 \quad 15125 \quad 3$$

$$0 \quad 2625 \quad 4375 \quad 7125 \quad 10500 \quad 2$$

$$0 \quad 750 \quad 2500 \quad 5375 \quad 3$$

$$Best(1,1) + Best(2,6) + r_1 r_2 c_6 \quad 0 \quad 1000 \quad 3500 \quad 4$$

$$Best(1,2) + Best(3,6) + r_1 r_3 c_6 \quad 0 \quad 5000 \quad 5$$

$$Best(1,3) + Best(4,6) + r_1 r_5 c_6 \quad 0 \quad 6$$

$$Best(1,5) + Best(6,6) + r_1 r_5 c_6 \quad 0 \quad 6$$

Matrix Chaining

Storing and Recovering Optimal Solution

- Maintain table Choice[i,j] in addition to Best table
 - Choice[i,j] = k means the best "split" was right after M_k
 - Work backwards from value for whole problem, Choice[1,n]
 - Note: Choice[i,i+1] = i because there are just 2 matrices
- From our example:
 - Choice[1,6] = 3. So $[M_1 M_2 M_3] [M_4 M_5 M_6]$
 - We then need Choice[1,3] = 1. So $[(M_1) (M_2 M_3)]$
 - Also need Choice[4,6] = 5. So $[(M_4 M_5) M_6]$
 - Overall: $[(M_1) (M_2 M_3)] [(M_4 M_5) M_6]$

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify the recursive structure of the problem
 - What is the "last thing" done?
 - 2. Save the solution to each subproblem in memory
 - 3. Select a good order for solving subproblems
 - "Top Down": Solve each recursively
 - "Bottom Up": Iteratively solve smallest to largest