Nella Zezione 15 abbiano definito il determinante di ma matrice quadrata e abbianto visto come calcolorlo con il metodo di Laplace.

In particulare, il metodo di Laplace permetto di dimostrare le osservazioni seguenti.

Osservazioni

1) Sia A E Mn (K) una matrice con una riga o una colonna nulla. Allora det (A) = 0.

Dinu: sviluppando il determinante rispetto alla riga o alla calanna nulla si attiene det(A)=0.

2) le determinante di una matrice diagonale è uguale al prodotto degli elementi sulla diagonale.

Procedia us per induzione. Per agni n>1 pogliamo dunque mostrare che

$$P(n) = \begin{cases} a_{n} & 0 \\ 0 & a_{n} \end{cases} = a_{n} \cdot a_{22} \cdot ... \cdot a_{n} = \prod_{i=1}^{n} a_{ii}.$$

BASE DELL'INDUZIONE: N=1: det (Qu) = Qu => P(1) & vera.

PASSO INDUTTIVO: Mostriano che se P(n) è vera, allora P(n+1) è vera.

Allora abbians:

$$= \underbrace{Q_{N+1}, N+1}_{Q_{N+1}} \cdot \underbrace{\prod_{i=1}^{N+1} Q_{ii}}_{i=1} \cdot \underbrace{\prod_{i=1}^{N+1} Q_{ii}}_{i=1}.$$

Quindi P(n+1) è vera e l'asserb è dimastrato.

2	SaAC	H. (K) =	ma makin	Ariana -00	*****		
3)	interior	allow det(A)	e vousti al	and the deli	superiore o elementi sulla		
	diagonale		1 3 3	4			
	9						
	Dim. per	exercitio.					
Quest'ultimo punto, in particolare, suggerisce un metodo per il calcolo del determinante attroverso l'algoritmo di Gauss-Tordan. Infatti l'algoritmo di Gauss-Tordan riduce una qualsiasi matrice quadrata in una matrice triangolare superiore.							
deter	minante at	troverso l'al	goritmo di Gaus	s-Jordan.			
Infa	thi C'alax	oritumo di C	jouss - Jordon	riduce una 9	valsiasi matrice		
quad	luga in o	una matri	ice triangolar	c superione.			
•							
Calco	Pare il d	Seterminant	di una matr	ice con l'alo	oritmo di Gauss-		
Zordo	w.				7		
<		1. 1	0-0		1.		
20 gg	owawo Mulk	an doner	ickcotore il	det et minant	di una matrice		
	'Υν(K).						
1'al	Sapritua d	li Gauss Ja	adan permet	te di ridure (bij) E Ulu(K) III tipo:	A in una		
mof	ribe tric	e malogane	=8 noisepei	$(\bowtie_j) \in U_N(\kappa)$	unicamente		
attro	sverso d	elle opera 3	ádni di I e	ogit III.			
		Α		$ B = (b_i)$	TRIANGOLARE		
		Opero	zioni elementori	الخا الحا	SUPERIORE		
		L'.	tipo: Ri <> Rg				
		.	tipo: $R_i \leftarrow R_i + \lambda$	Rj			
D-00	- delinizia	03:04-1	so del debossi	nank offeniam			
Dag	a agricere			MAZVITA SIJE MAZ WA			
			#permbazioni	# Der	who zioni h		
		det (A) = (4) ·	det (B) = (-1) # per			
					1=4		
		ogwi	permotions				
			determinante.				
"							
<u> </u>	cigus						
	Caliano	il detern	1-00-	200' a	xupio precedente		
	6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6	orituro di	Cyauss - Jordan	d dad ded e	emplo processin		
	1-40	3 -1		(-1 0 3 -1 0 1 15 -3 0 -1 2 0 0 0 13 -3			
A :	_ 5 1	0 2	0 1 0 1 50	0 4 45 -3	0 1 0 1 0		
	10-7	3 - 1 0 2 - 2 0 1	K2← K2+5K4	0 -1 2 0	R3 - R3+ R2		
	, α ο		14 - 14141				
					1		
	1-10	3 - 4 15 - 3 17 - 3 13 - 3		-1 0 3 -1			
	> 0 1	15 -3	. C. 130	0 1 15 -3	\ <u>=</u> B.		
	000	12 -2	4 - R4 - 13R2				
		75 37	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-1 0 3 -1 0 1 15 -3 0 0 17 -3	71		

Poichi non abbiano effethato alcuna permotione abbiano: det (A) = (-1) det (B) = det (B) = (-1) - 1 - 17 . (-12) = 12. B triangolare Superiore Ritroviano, avianente, la stessa risultato precedente. R determinante gade delle sequenti proprietà PROPRIETA' DEL DETERMINANTE 1) Se $A \in U'_n(K)$ ha una riga o una colonna nulla allora det(A) = 02) Se $A \in U_n(K)$ ha due right (0 due colonne) upuali o proportionali, allora det (A) = 0. 3) Se una riga (risq. una colonna) di $A \in M_N(K)$ $\tilde{\epsilon}$ combinazione lineare di lue o più righe (risq. di due o più colonne) allora det(A) = 0. a) Sia $A \in Uln(K)$. Allow det $(A) = det (A^T)$. Teorema di Binet Siano A, B E Mn (K). Allora $det(AB) = det(A) \cdot det(B)$ Osservazione: Una consequenza del teorema di Binet è du se Ac Un(K) é shivertibile allone det (A) ≠ 0 $\det \left(A^{-1} \right) = \frac{\lambda}{\det(A)}.$ dim: Se A é invertible allora 3 A-1 E Mn (K) $AA^{-1} = I_n \Longrightarrow det(AA^{-1}) = det(I_n) = 1$ $n \leftarrow terreuro di Binuk$ det (A). det (A-1) Quindi det (A) $\neq 0$ e det (A-1) = $\frac{1}{deh(A)}$

Interpretazione geometrica del determinante di una matrice 2×2 0 3×3.

Nel caso n=2 e n=3 il determinante ha un significato geometrico.

Siano U= (a,b), V = (c,d) E R². Sia P il para lelogramma di lati U e V. Allora E passibile mostrare che

Più precisamente:

Da questa interpretatione geometrica é chiano inoltre che $det(A) = 0 \iff Area(P) = 0 \iff P$ é un para Aelogramma $\iff U$ e V sono collinear i degenere (ossia linear mente dipendenti).

Siano $v = (\alpha_{11}, \alpha_{12}, \alpha_{13}), v = (\alpha_{21}, \alpha_{22}, \alpha_{23}), w = (\alpha_{31}, \alpha_{32}, \alpha_{33}) \in \mathbb{R}^3$. Sia P il parallelepipedo di lati v,v e w. Allora | det(A)|= Volume (P).

Anche in questo caso quindi abbiano che det(A)=0 se e solo se U,V e W sono Cinearmente dipendenti. (in tal caso infatti il parallelepipedo è un parallelepa quanna, che ha volume nulla).

Abbiamo quindi visto geometricomente per n=2,3 che n vettori di K" sono litheormente indipendenti se e solo se det(A) to, dove A è la matrice che ha per righe gli n vettori.

Più in generale abbiana il risoltato segrente. Proposizione: Sia $A \in \mathcal{U}_N(K)$.

I parte [Allona $A \in \mathcal{U}_N(K)$]

I parte [In tal caso $A^{-1} = \frac{1}{\det(A)} [(cof(A))]$]. Dim Dimostrio uno solo la prima parte dell'enunciato. Abdiano ojà visto che A è invertibile se e seo se ra(A)=n. Mostriano ora che A è invertibile se e seo se det(A) + d. =>) Alobiamo gia visto che questa implicatione è una consequenta del teorena di Binet. ←) Mostriano che se det(A) ≠ 0 ⇒ A ĕ invertibile o, equalente mente, che se A non ĕ invertibile ⇒ det(A) = 0. Se A non é invertibile => rg (A) < n => le righe di A sono linearmente dipendenti. Per le proprietà del determi nante si ottiene che det(A)=0. Esempio La II part de la proposizione rappresenta un metado di calcala dell'inversa di una matrice. Sia A = (0 0 4) E Ho(R). Dalla regola di Sarrus Heniano det (A) = -3. Calcoliano la matrice cofattore: $Col(A)_{23} = (-1)^{2+3} | 0 | 3 | = -3$ Cof(A) 4 = (-1) 4 0 1 = 0 Cof(A) 12 = (-1) 1+2 0 1 = -1 $cof(A)_{31} = (-1)^{3+1} | 3 | 1 | = 3$ $CO_{1}(A)_{43} = (-1)^{4+3} | 0 | 0 | = 0$ $Cof(A)_{32} = (-1)^{3+2} \mid 0 \mid 1 = 0$ $cof(A)_{24} = (-4)^{2+4} | 3 | 4 | = -6$ $col(4)^{33} = (-1)^{3+3} | 0 | 3 | = 0$ $cof(A)_{22} = (-1)^{2+2} \mid 0 \mid 1 \mid = 1$

Il teorema precedente non affre un metado pratico per il calcolo del rango: infatti per mostrare che una matrice AE Mn(K) ha rango pen, bisognerebbe mostrare che tutti i minori di ordine per sono mulli. Tutovia, il teorema sequente afferma che è sufficiente mostrare du solo "certi" minori di ordine per sono nulli, e quindi riduce il costo computationale. Principio dei minori orlati (Teorema di Kronecker) Sia $A \in \mathcal{M}_{m,n}(K)$. Sia M una sottomarice quadrata di ordine ρ can $det(M) \neq 0$. Si definiscono alati di M totte le sotomatrici quadrate di ordine pre ottenne appionagendo a M una riga e una colonna di A. Se tutti ali orlati hanno determinante nullo, allora ra (A) = P i Esembio Supponiano di voler calcalar il rango della matrice $A = \begin{pmatrix} 0 & 4 & 4 \\ 4 & 0 & 2 \\ 3 & -5 & 4 \\ 2 & -4 & 3 \end{pmatrix} \in \mathcal{H}_{43}(\mathbb{R}).$ Partians da un minor non nullo, ad exempio 0 1 = -1 70 => rg(A) =2. Possiano orlar la sottomatrice (0 1) soltonto in du modi diversi. In ciascun caso otteniamo: 2 0 1 1 1 = 4-1-3=0. Poidre tutti i minori orlati sono nulli otteniamo rg(A) = 2.

Condudiana que	da lezione	con un'appli	cazion dei	determinanti
Oba risoluzione de	ei sistemi (lineari.		
18 teorema di Cro in n incognite	wer permette	di risolven s	istui lineari	di n equazioni
in n incognite	quando esiste	un'unica soluz	ione.	1
Teorema di Craw				
Consideria wo il si	iskma			
	No.	stare che A d	en essere qu	adrata
AX = b, $Con A \in Un(K)$, b	E.H., (K) .	$X - \begin{pmatrix} x_i \\ \vdots \end{pmatrix}$		
So N a investiti	P. C.	(N) - N - C - C - C - C - C - C - C - C - C	(0) 000 0	es il teamu
Se A è invertibi di Rouché-Cop	edi il sist	emo possiede	esattament un	la Soluzione
$(x_1,,x_n)$ data $x_i = \frac{\text{det}(A_i)}{x_i}$				
2; <u>det (A)</u>] + 0			
dove Ai è la	matrice of	enuta Sostituend	o la i-esimo	celonna d; A
can il veltare '	b.			
Esempio				
Risolviano il	siskwa			
(3x + 2Z =	١.			
1 4- 5 = 3 X+4+5:				
Vediano innav		0 (20) 244 2		3- 6025-
201 101	0 2 1 -		30 Sielan	2 aumette un'unica (21,22,23) ∈ R³
Cer (A) = 10	1 1 1	5-2+3 = a + C	Solveione (RARERO E R3
Utilizziamo il	netodo	di Cramer	per determina	re di, de e de.
	1103	2		
21 = del (A1) del (A)	3 1 -	1 1+6-4+1		
XX = CO((X)	- 17 7	- (10 411	- 4.	
der (n)				
	3 2			
	0 3	9-1-6+		
$\chi_2 = \frac{\det(A_2)}{\det(A)}$	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 = 9-1-6+	6 _ 2	
		4		
$2C_3 = \frac{\det(A_2)}{\det(A)}$	301			
det(As)	1 1 1 2	6-1-9	4	
det(A)	4	a	4 = - 1	
Quindi l'unica	Solution	del sisteme	e dota d	a (1,2,-1) E 1K.

Prima di passare al capitalo sulle applicazioni lineari, facciamo un sunto dei vari metodi visti fin qui per: · calcolore il determinante di una matrice. · calcalare il rango di una matrici. · risolvere un sistena lineare. · Come calculare il determinante di una matrice A? 1) So $A = (\alpha) \in \mathcal{H}_{k}(k) \Longrightarrow det(A) = \alpha$. 2) Se A = (a b) E 1/2 (K) => det (A) = ad-bc. 3) Se $A \in M_n(K)$ (in particular $n \ge 3$): · terrema di Laplace (pratico grando esiste una riga o colonna · alapritus di Gauss-Jordan · regala di Sarrus (per n=3). · Come calcolars il rango di una matrice A? 1) Se A ∈ Mu, m(K): · Alapritus di Gauss-Jordan (riduca a s · Principio dei minori orbati calini e conto il di righe han nulle). 2) Se A \ Mn(K) e det(A) \ o -- > rg(A) = h.· Come risolvere un sistema Compatibilità: lineare AX=b? · alexitus di · teorema di Ro Gause-Jordon (quardo la posizione dell'ultimo pint) whi-Capelli (compatibile > rg(A) = rg (Alb)) Risolizioni (s · dopo (po e compatibile): · se - uxs-Jordan individuo le variabili liber e "risalgo" il sistema a scalini. $N \in \mathcal{H}_n(K)$ e det $(A) \neq 0$: metodo di Cramer.