Alignement multiple de séquences

Plan de la présentation

- Introduction Définition et signification biologique
- II. Modèles de comparaisons
- III. Alignements pour le score "sum-of-pairs"
 - 1. Méthode exacte
 - Accélération de la méthode exacte
 - 3. Heuristique bornée
- IV. Alignement phylogénétique
- V. Heuristiques usuelles
 - 1. Méthode progressive
 - 2. Méthode itérative
 - 3. Méthode par points d'ancrage

I. Introduction à l'alignement multiple

Généralisation de l'alignement de 2 séquences

Données: Un ensemble de séquence homologues (nucléotides ou AA): S₁, S₂, ..., S_k

Alignement multiple: Matrice A = (a_{ij}), 1≤i≤k; 1 ≤j≤l.

aij symboles de l'alphabet ou '-', tq contaténation des caractères à la ligne i produit Si

$$\begin{bmatrix} A & A & G & A & A & - & A \\ A & T & - & A & A & T & G \\ C & T & G & - & G & - & G \\ C & C & - & A & G & T & T \\ C & C & G & - & G & - & - \end{bmatrix}$$

timhum.aa timsac.aa timmus.aa timdro.aa timcel.aa	10 1 MAPSRKFFV0 1 MARTFFV0 1 MAPTRKFFV0 1 MTRKFFV0	GNUKMNGRKQ GNFKLNGSKQ GNUKMNGRKK GNUKMNGDQK	30 8_66_16-1- 81K=1VER CL66_16-1- 81A=-1AK1- 8VDG1V1F	40 LNAAKUPADT LNTAS IPENU LNAANUPAGT LSSAALDPNT LNASADNSSU	50 EUUCAPPT EUUI-C-PPA EUUCAPPT EUUIGEPA DUUUAPPA	50 50 50 50 50
timhum.aa timsac.aa timmus.aa timdro.aa timcel.aa	60 51 <mark>AYLOFAROKI</mark> 51 TYLOYSUSLU 51 AYLOFAROKI 51 TYLMYARNI 51 PYLAYAKSKI	D-P-KIAVAA KKP-QUTUBA D-P-KIAVAA PCELGLAB	80 QNCY-KUTNG QNAYLK-ASG QNCY-KUTNG QNAY-KUAKG QNCY-KUPKG	90 AFTGEISPGM AFTGENSVDO PFTGEISPGM AFTGEISPAM AFTGEISPAM	100 IKDDGATWU IKDUGAKWU IKDLGATWU LKDIGADWU IKDLGLEWUI	100 100 100 100 100
timhum.aa timsac.aa timmus.aa timdro.aa timcel.aa	110 101 _GHSERRHUF 101 _GHSERRSVF 101 _GHSERRHUF 101 _GHSERRAUF	GESDELIGOK HEDOKFIADK GESDELIGOK GESDALIAEK	130 VA <mark>HAL AEGLG</mark> TKFAL 305VG VSHAL AEGLG AEHAL AEGLK TVHAL EAGTK	140 VIACIGEKLD VILCIGETLE VIACIGETLE VIACIGETLE VVFCIGEKLE	150 EREAGITEKU EKKAGKTLOU EREAGITEKU EREAGKTNEU EREAGHTKOU	150 150 150 150 150
timhum.aa timsac.aa timmus.aa timdro.aa timcel.aa	160 151 JESTK-VI 151 JESON-BUL 151 JESTK-VI 151 J-AROMCEV 151 NEROLO-BU	OK-IKDMKNA DW-AKDMZKA EE-AKDMINA DW-AKDMSKA	180 VLAYEPVWAT VVAYEPVWAT VVAYEPVWAT VTAYEPVWAT	190 STGKTATPOO STGLAATPED STGKTATPOO STGKTASGEO	200 AQEVHEKLRG AQDIHASIRK AQEVHEKLRG AQEVHASLRQ AQEVHEWIRA	200 200 200 200 200 200
timhum.aa timsac.aa timmus.aa timdro.aa timcel.aa	210 201 JLKSNUSDAU 201 FLASKLGOKA 201 JLKSNUNOG 201 JLSDNISKE 201 FLKEKUSPAU	I AQSTRIIYGG A <mark>SEL</mark> RI <mark>L</mark> YGG	230 SUTGATCKEL SANGSNAUTF SUTGATCKEL SUTAANAKEL SUTADNAADU	240 ASOPOVOGEL KOKADVOGEL ATPADVOGEL AKKPOTOGEL GKKPOTOGEL	250 VGGASLKPEF VGGASLKPEF VGGASLKPEF VGGASLKPEF VGGASLKP	250 250 250 250 250
timhum.aa timsac.aa timmus.aa timdro.aa timcel.aa	260 251 UDIIN-AKO. 251 UDIINS-BN. 251 UDII-NAKO. 251 LOIIN-ARO. 251 UKIIN-ARS.	270	280	290	300	300 300 300 300 300

But de l'alignement multiple

- Trouver des caractéristiques communes à une famille de protéines
- Relier la séquence à la structure et à la fonction
- Caractériser les régions conservées et les régions variables
- Déduire des contraintes de structures pour les ARN
- Construire l'arbre phylogénétique des séquences homologues considérées
- Différencier entre gènes orthologues et gènes paralogues

Représentations d'une famille de séquences

☐ Séquence consensus:

```
G
                         V
                                                  L
Y
                                                  т.
                        L
                                                 т.
                  I L
F
                                                 V
                        V
Y
                               V
                                                  L
                  A/I
                        V/L
                                                  т.
```

Signature ou motif conservé: Expression régulière

G-{EDRKHPFYW}-x (2)-[STAGCN]- {P}

Matrice consensus (ou profile): Taux d'apparition de chaque nuc. à chaque colonne de l'alignement multiple

C1	C2	C3	C4	C5
а	С	g	-	t
a	С	а	С	t
a	g	g	С	-
g	С	-	С	g

	C1	C2	C3	C4	C5
а	0.75	0	0.25	0	0
С	0	0.75	0	0.75	0
g	0.25	0.25	0.50	0	0.25
t	0	0	0	0	0.50
_	0	0	0.25	0.25	0.25

II. Modèles de comparaison

 Un bon alignement reflète le modèle d'évolution qui a donné lieu aux séquences

Hypothèses:

- les séquences à aligner descendent d'un ancêtre commun
- Les séquences ont évolué par mutations ponctuelles

Pondération d'un alignement

 Par rapport à l'arbre phylogénétique produit. Garder l'alignement qui produit l'arbre de poids minimal. Complexité de calcul considérable

Score "sum of pairs" (SP)

- ☐ Généralisation du score utilisé pour l'alignement de deux séquences
- ☐ Le plus utilisé, bonnes propriétes théoriques et pratiques

Score SP d'un alignement A = somme des scores des alignements induits pour chaque paire de séquences dans A

Modèle:

III- Alignement pour le score SP Méthode exacte

- ☐ Trouver un alignement multiple ayant un score SP minimum
- □ Problème NP-complet (Wang and Jiang 1994)
- □Généralisation de l'alignement de deux séquences: si m séquences de taille n, algorithme en $O(n^m)$. Très inefficace dès que m>5 et $n\sim100$

Solution exacte pour *n*=3

- ☐ On considère la distance d'édition avec pondération de l'alphabet.
- □ S,T,U trois seq. de tailles *n1*, *n2*, *n3*
- □ D(i,j,k): Score SP de l'al. op. de S[1..i], T[1..j], et U[1..k];
 b: score d'un blanc; c(i,j): sore de l'appariement (S [i],T [j]).
- ☐ Pour chaque case (i,j,k), examiner 7 cases voisines:
 - d1 = D(i-1,j-1,k-1)+c(i,j)+c(i,k)+c(j,k)
 - d2 = D(i-1,j-1,k)+c(i,j)+2b; d3 = D(i-1,j,k-1)+c(i,k)+2b; d4 = D(i,j-1,k-1)+c(j,k)+2b
 - d5 = D(i-1,j,k)+2b; d6=D(i,j-1,k)+2b; d7=D(i,j,k-1)+2b.
 - -D(i,j,k) = min(d1,d2,d3,d4,d5,d6,d7)
- \square $D_{ST}(i,j)$: Score de l'al. Op. de S[1..i] et T[1..j]...
 - $D(i,j,0) = D_{ST}(i,j) + (i+j)b; D(i,0,k) = D_{SU}(i,k) + (i+k)b;$ $D(0,j,k) = D_{TU}(i,k) + (i+k)b$

Algorithme MSA (Lipman *et al.* 1989)

- □ Calculer les alignements optimaux pour chaque paire de séquences
- □Trouver un alignement multiple provisoire par une heuristique rapide: *z*
- □Effectuer la programmation dynamique en scrutage avant dans un espace d'alignement restreint

Programmation dynamique avec scrutage avant

D		G	Т	С	Α	G	G	Т
			•					•
	0	1	→ 2-	→ 3 -	→4 -	→ 5-	→ 6 _	→ 7
С	1	1	2	2	4	5	6	7
Α					V	W		
Т					•			
Α								
G								
Т								
G								

Les flèches vont de (i,j) à (i,j+1), (i+1,j) et (i+1,j+1)

p(v,w): Poids de la flèche de v à w

p(w): Valeur provisoire de D(w). Après calcul de D(v):

 $p(w) = \min(p(w), D(v)+p(v,w))$

Valeur de D(w) = valeur de p(w) après considération de tous les voisins de w

Programmation dynamique avec scrutage avant

D		G	Т	С	Α	G	G	Т
	0_	1 -	→ 2-	→ 3 -	4	→ 5-	→6 _	→ 7
С	1	→1 _	2	2	4	5	6	7
Α	2	2	2					
Т								
Α								
G								
Т							_	_
G								

```
Les flèches vont de (i,j) à (i,j+1), (i+1,j) et (i+1,j+1)
```

p(v,w): Poids de la flèche de v à w

p(w): Valeur provisoire de D(w). Après calcul de D(v):

$$p(w) = \min(p(w), D(v)+p(v,w))$$

Valeur de D(w) = valeur de p(w) après considération de tous les voisins de w

Algorithm:

- q=(0,0) (liste contenant les cases à considérer)
- Tant que q n'est pas vide faire v = première case de q;Supprimer v de q; D(v)=p(v); Si w=(i,j+1) pas dans q, le rajouter a la fin de q; p(w)=min(p(w),D(v)+p(v,w));Même chose pour w=(i+1,j) et w=(i+1,j+1)

Accélération de l'alignement SP exact

- □ ID_{ST}(i,j): Score de l'al. Op. de S[i..n] et T[j..n]. Définition similaire pour ID_{SU}(i,k) et ID_{TU}(j,k).
- ightharpoonup z = score d'UN alignement multiple de S, T, U

Observation:

Score SP pour S[i..n], T[j..n], U[k..n] supérieur à $ID_{ST}(i,j) + ID_{SU}(i,k) + ID_{TU}(j,k)$

Si $D(i,j,k) + ID_{ST}(i,j) + ID_{SU}(i,k) + ID_{TU}(j,k) > z$, alors (i,j,k) ne peut pas faire partie d'un chemin optimal

Aucun scrutage avant n'est nécessaire pour (i,j,k). Plus important, certaines cases ne sont jamais introduites dans la liste *q*.

Observation ampirique: Cette méthode peut aligner efficacement jusqu'à 6 séquences de longueur 200. Efficacité dépend beaucoup de la val. z initiale

Heuristique bornée pour le score SP

- Heuristique: Algorithme qui n'est pas garanti d'obtenir la solution optimale. Utilisé pour des problèmes difficiles (NPcomplets)
- Heuristique bornée: On sait dans quel intervalle se situe la solution
- Heuristique pour le score SP: Algorithme garanti d'obtenir un alignement dont le score est au plus deux fois plus élevé que le score d'un alignement optimal.

Alignement consistant avec un arbre

- S: Ensemble de séquences;
- T: Arbre reliant les séq. de S
- A: Alignement multiple de S

A consistant avec T ssi: pour tout couple de séquences S_i , S_j reliées par un arc, S_i et S_j sont alignées de façon optimale dans A

- 3: AXX Z
- 1: AX Z
- 2: A X Z
- 4: AY - Z
- 5: A Y X X Z

Méthode

- ☐ Choisir deux séquences qques adjacentes dans l'arbre et former un alignement optimal A
- ☐ Choisir une séquence non encore alignée S_i , adjacente à une séquence alignée S_i
- \square Aligner S_i et S_j .
- ☐ Incorporer l'alignement à A.
 - Si un nouvel espace a été rajouté dans S_j , rajouter un espace à chaque ligne à la colonne correspondante dans A

Complexité: k séquences de taille n,

 $O(kn^2)$

Arbre étoile

- S: ensemble de séquences
- Séquence centrale S_c : Séquence de S tq la somme des distances à toutes les autres séquences de S est minimale.
- Arbre étoile T_c : Arbre en étoile, connectant toutes les séquences de S, et de racine S_c

Trouver un Alignement consistant avec l'arbre étoile

k = nb de séquences, n = taille de chaque séquence

Complexité:

 \square Trouver la séquence centrale S_c :

$$O(k^2n^2)$$

 \square Alignement A_c consistant avec T_c :

$$O(kn^2)$$

Bornes

- \square d(A): Score SP de l'alignement multiple A
- □ A_c: Alignement consistant avec l'arbre étoile
- \Box $d_c(Si,Sj)$: Score induit par A_c pour Si, Sj
- \square D(Si,Sj): Score d'un alignement optimal de Si et Sj
- □ A*: Alignement multiple optimal de S
- \Box $d^*(Si,Sj)$: Score induit par A^*

Si le score considéré vérifie l'inégalité triangulaire:

$$e(x,z) \le e(x,y) + e(y,z)$$

alors

$$d_c(S_i, S_j) \le d_c(S_i, S_c) + d_c(S_c, S_j) = D(S_i, S_c) + D(S_c, S_j)$$

Et donc:

$$d(A_c)/d(A^*) \le 2(k-1)/k < 2$$

IV. Alignement phylogénétique

Données: Un ensemble de séquences *S*, et un arbre phylogénétique *T* pour *S*. On considère la distance d'édition entre deux séquences.

Problème: Trouver un étiquettage des nœuds internes de T qui minimise la score de *T* (somme des poids des arcs)

L'arbre *T* avec étiquettage de ses nœuds internes est appelé alignement phylogénétique.

Un alignement phylogénétique *T** induit un alignement de S: c'est l'alignement consistant avec T*.

Alignement soulevé optimal: borne sup pour l'al. phyl. opt.

- □ T*: alignement phylogénétique optimal
- ☐ On veut construire un alignement soulevé T^S à partir de T*

Dans T^S, v est étiquetté par la séquence de **S** la plus proche de S_v*

Score de $T^S \le 2$ fois score de T^*

Alignement soulevé optimal

- \Box T_{v} : sous-arbre de racine v de T
- \Box d(v,S): Score de l'al. phyl. opt. de T_v sachant que v étiquetté par S

$$d(v,S) = D(S,S1) + D(S,S2)$$
 $d(v,S) = \Sigma_{v'} min_{S'} [D(S,S') + d(v',S')]$

Valeur de l'al. Soulevé op. = minimum de d(r,S) où r racine de l'arbre

Complexité: k seq. de taille n.

Au cours d'un prétraitement, calculer tous les D(Si,Sj): $O(k^2n^2)$

Pour chaque nœud v, calculer chaque d(v,S) en $O(k^2): O(k^2n^2+k^3)$

V. Heuristiques usuelles Méthodes progressives

Créer un alignement multiple de **S** en fusionnant deux alignements de deux sous-ensembles **S1** et **S2** de **S**

Méthode générale:

- ☐ Calculer les alignements deux à deux
- ☐ Construire un arbre guide des séquences (UPGMA, Neighbor-Joining)
- ☐ Incorporer les séquences une à une dans l'alignement multiple, en suivant l'ordre déterminé par l'arbre guide

Exemple d'alignement progressif

 □ Pour commencer, aligner les deux séquences de distance minimale

1: A C T G G 2: A C T T G G 3: A C T G C 4: C T T G

	1	2	3	4
1		1	1	2
2			2	2
3				3
4				

 □ À chaque étape, choisir la séquence dont la distance avec une des séquences déjà alignée est minimale

Plusieurs implémentations de la méthode progressive

- MultAlign, ClustalW, Pileup, T-Coffee
- Diffèrent surtout par la méthode de construction de l'arbre guide
- <u>Avantages</u>: Rapide, simple à programmer, nécessite peu de mémoire
- Inconvénients:
 - Alignement obtenu très dépendant de l'arbre considéré
 - L'alignement ne peut pas être modifié au cours du processus
 - Produit un seul alignement

ClustalW

(Thompson, Higgins, Gibson 1994)

Algorithme progressif le plus utilisé

- ☐ Calculer les scores d'alignement de chaque paire de séquences.
- ☐ Construire un arbre guide par Neighbour-Joining
- □ Utiliser cet arbre pour choisir les séquences à incorporer à l'alignement. Choisir les plus petites distances à chaque fois

Effectue trois sortes d'alignements: Entre deux séquences, une séquence et une matrice consensus, ou deux matrices consensus

Scores de ClustalW

- Matrice de similarité choisie en fonction de la similarité des séquences comparées
 - 80 à 100 % identité --> Blosum80
 - 60 à 80 % identité --> Blosum60
 - 30 à 60 % identité --> Blosum45
 - 0 à 30 % identité --> Blosum30
- Scores des gaps:
 - -Score d'initialisation d'un gap (SIG) + score d'extension (SEG)
 - GTEAKLIVLMANE

 - Score des gaps dépendant des positions et des résidus supprimés (si hydrophiles, SIG plus faible)

Alignement d'une séquence avec une matrice consensus

C1	C2	C3	C4	C5
а	С	g	-	t
a	С	а	С	t
а	g	g	С	-
g	С	-	С	g

	C1	C2	C3	C4	C5
а	0.75	0	0.25	0	0
С	0	0.75	0	0.75	0
g	0.25	0.25	0.50	0	0.25
t	0	0	0	0	0.50
_	0	0	0.25	0.25	0.25

Valeur d'un tel alignement?

☐ Matrice de pondération

	а	С	g	t	ı
а	2	3	-1	3	-1
С	3	2	3	-1	-1
g	-1	-3	2	-3	-1
t	-3	-1	-3	2	-1
_	-1	-1	-1	-1	0

☐ Matrice consensus

	C1	C2	C3	C4	C5
а	0.75	0	0.25	0	0
С	0	0.75	0	0.75	0
g	0.25	0.25	0.50	0	0.25
t	0	0	0	0	0.50
-	0	0	0.25	0.25	0.25

□ Alignement :

$$p(a,C1) = 2 * 0.75 - 1 * 0.25 = 1.25$$

$$p(a,-) = -1*1 = -1$$
; $S(c,C2) = 2*0.75 - 3*0.25 = 0.75$

$$p(-,C3) = -1 * 0.25 - 1 * 0.50 + 0 * 0.25 = -0.75 \dots$$

=> Score alignement = Σ_i p(Ci,ti) =1.25 1+0.75+...= -1

Calcul d'un alignement optimal

D(i,j): Score alignement optimal entre S[1..i] et C[1..j]

$$\square D(i,0) = \Sigma_{k \le i} p(t_k,-) \quad ; \quad D(0,j) = \Sigma_{k \le j} p(-,C_k)$$

Complexité: $O(|\mathcal{L}| mn)$

(n: nbre de colonnes de C; m: taille de S)

Optimisation ``itérative'' des méthodes progressives

Un problème des méthodes progressives: alignements intermédiaires ``figés''

X: GAAGTT

Y: GAC - TT 1er alignement intermédiaire

Z: GAACTG

W: GTACTG Y aurait dû être: G - ACTT

Méthode itérative

- □ Obtenir un premier alignement multiple de basse qualité
- ☐ Améliorer l'alignement par une suite d'itérations bien définies, jusqu'à ce que l'alignement ne puisse plus être amélioré.
- ☐ Méthodes déterministes ou stochastiques (alignement modifié au hasard)
- ☐ MultAlign, IterAlign, Praline, SAGA, HMMER...

Algorithme de Barton-Stenberg (MultAlign)

- ☐ Calculer tous les alignements deux à deux
- ☐ Choisir l'alignement de score max, une première matrice consensus
- ☐ À chaque étape,
 - choisir une paire de séquences de score max, tq exactement une des séquences est dans l'alignement partiel obtenu.
 - Aligner la nouvelle séquence avec la matrice consensus courante.
 - Mettre à jour la matrice consensus
 - Recommencer jusqu'à épuisement des séquences
- ☐ Retirer S1 et la réaligner avec la matrice consensus de l'al. restant (S2.... Sn). Recommencer avec S2,...,Sn
- □ Répéter le processus un nbre fixé de fois, ou jusqu'à ce que le score de l'alignement converge.

Méthode d'alignement par points d'ancrage

Bas	ée sur la recherche de motifs (points d'ancrage,
	séquences consensus).
Par	exemple, MACAW:
	Rechercher un motif suffisamment long commun à une majorité de séquences
	Problème subdivisé en deux: partie gauche et partie droite par rapport au motif
	Recommencer récursivement avec chaque partie
	Les séquences ne contenant pas le motif sont alignées séparément, par score SP. Les deux sous-alignements sont ensuite fusionnés
	Lorsque les sous-séquences ne contiennent plus de bons motifs, elles sont alignées par score SP