Review of ultrapowers and monster models

Advanced Model Theory

March 3, 2022

1 Ultrafilters and ultrapowers

If X is a set, let $\mathcal{P}(X)$ denote the power set of X.

Recall an ultrafilter \mathcal{U} on a set I is a collection of subsets $\mathcal{U} \subseteq \mathcal{P}(I)$ such that

- $I \in \mathcal{U}, \varnothing \notin \mathcal{U}$.
- $X, Y \in \mathcal{U} \implies X \cap Y \in \mathcal{U}$
- $X \in \mathcal{U}$ and $X \subseteq Y \subseteq I$ implies $Y \in \mathcal{U}$.
- For any $X \subseteq I$, either $X \in \mathcal{U}$ or $I \setminus X \in \mathcal{U}$.

This implies:

$$(X \cap Y) \in \mathcal{U} \iff (X \in \mathcal{U} \land Y \in \mathcal{U})$$

 $(X \cup Y) \in \mathcal{U} \iff (X \in \mathcal{U} \lor Y \in \mathcal{U})$
 $(I \setminus X) \in \mathcal{U} \iff \neg (X \in \mathcal{U}).$

Definition 1. A family of sets $\mathcal{F} \subseteq \mathcal{P}(I)$ has the *finite intersection property* (FIP) if for any $n \geq 0$ and $X_1, \ldots, X_n \in \mathcal{F}$, we have $\bigcap_{i=1}^n X_i \neq \emptyset$.

Fact 2. If $\mathcal{F} \subseteq \mathcal{P}(I)$ has the FIP, then there is an ultrafilter $\mathcal{U} \supseteq \mathcal{F}$.

If M is a structure and \mathcal{U} is an ultrafilter on a set I, there is a structure called the ultrapower $M^{\mathcal{U}}$, also written M^I/\mathcal{U} . The set M^I is the set of I-tuples in M, i.e., functions from I to M. The underlying set of $M^{\mathcal{U}}$ is M^I modulo the equivalence relation where $f \sim g \iff \{i \in I : f(i) = g(i)\} \in \mathcal{U}$. Let $[f] \in M^{\mathcal{U}}$ denote the equivalence class of $f \in M^I$. The L-structure on $M^{\mathcal{U}}$ is chosen in a certain way that makes Łoś's theorem be true:

Fact 3. For any L-formula $\varphi(x_1,\ldots,x_n)$ and any $f_1,\ldots,f_n\in M^I$,

$$M^{\mathcal{U}} \models \varphi([f_1], \dots, [f_n]) \iff \{i \in I : M \models \varphi(f_1(i), \dots, f_n(i))\} \in \mathcal{U}.$$

For example, when $\varphi(x,y)$ is (x=y), this says that $[f]=[g]\iff \{i\in I: f(i)=g(i)\}\in\mathcal{U}$, in agreement with the definition of \sim above.

2 Monster models

Fix a complete L-theory T.

Definition 4. Let κ be a cardinal.

- 1. A model $M \models T$ is κ -saturated if for every $A \subseteq M$ with $|A| < \kappa$, every type over A is realized in M.
- 2. A model $M \models T$ is strongly κ -homogeneous is for every partial elementary map f from M to M with $|\operatorname{dom}(f)| = |\operatorname{im}(f)| < \kappa$, there is an automorphism $\sigma \in \operatorname{Aut}(M)$ extending f.

A monster model is a model $\mathbb{M} \models T$ that is κ -saturated and strongly κ -homogeneous, where κ is a cardinal bigger than any cardinals we care about. A set $A \subseteq \mathbb{M}$ is small if $|A| < \kappa$. A small model is $M \preceq \mathbb{M}$ with $|M| < \kappa$. If $\sigma \in \operatorname{Aut}(\mathbb{M})$ and $A \subseteq \mathbb{M}$, then σ fixes A pointwise if $\forall x \in A : \sigma(x) = x$. The notation $\operatorname{Aut}(\mathbb{M}/A)$ denotes the group of automorphisms $\sigma \in \operatorname{Aut}(\mathbb{M})$ which fix A pointwise.

Fact 5. Let $A \subseteq \mathbb{M}$ be small.

- 1. A is contained in a small model.
- 2. If $p \in S_n(A)$, then p is realized in M.
- 3. If $\operatorname{tp}(\bar{b}/A) = \operatorname{tp}(\bar{c}/A)$, then there is $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$ with $\sigma(\bar{b}) = \bar{c}$.
- (2) and (3) also hold for α -types instead of n-types, where α is infinite but small.

Also, if $M \leq \mathbb{M}$ is a small model and $N \succeq M$ with $|N| < \kappa$, then there is an N' such that $M \leq N' \leq \mathbb{M}$, and N' is isomorphic to N as an L(M)-structure.