Implementación do Método de Elementos Finitos

Iván Martínez Suárez

Resumo

Análise variacional da ecuación de Helmholtz, discretización do problema e presentación dos diferentes elementos finitos empregados na súa resolución, así como dos esquemas de cuadratura empregados no código, comparación dos erros cometidos e da súa evolución co tamaño característico da malla.

1. Análise variacional

1.1. Formulación variacional

Figura 1: Dominio do problema.

Sexa $\Omega = [0, L_x] \times [0, L_y] \subset \mathbb{R}^2$ o dominio rectangular da figura 1, con fronteira $\partial \Omega \equiv \Gamma = \bigcup_{i=1}^4 \Gamma_i$. Consideramos o problema consistente en atopar unha función u(x, y) definida en $\overline{\Omega}$ tal que

$$\left\{ \begin{array}{cc}
-\Delta u(x,y) + u(x,y) = f(x,y) & \text{en } \Omega \\
u(x,y) = 0 & \text{sobre } \Gamma
\end{array} \right\},$$
(1)

onde

$$f(x,y) = \left(1 + \frac{\pi^2}{L_x^2} + \frac{\pi^2}{L_y^2}\right) u(x,y). \tag{2}$$

Pódese comprobar facilmente que a solución deste problema vén dada por

$$u(x,y) = \operatorname{sen}\left(\frac{\pi x}{L_x}\right) \operatorname{sen}\left(\frac{\pi y}{L_y}\right).$$
 (3)

Para construír a formulación variacional do problema, comezamos multiplicando a ecuación diferencial en (1) por unha función test v(x, y) e integramos ambos membros sobre o dominio Ω , de modo que

$$-\Delta u(x,y) \ v(x,y) + u(x,y) \ v(x,y) = f(x,y) \ v(x,y).$$

Para que as integrais existan, nun principio sería necesario que $u \in H^2(\Omega)$, de forma que $\Delta u \in L^2(\Omega)$. Ademais, necesariamente $v \in L^2(\Omega)$ e $f \in L^2(\Omega)$.

$$-\int_{\Omega} \Delta u \ v \ dV + \int_{\Omega} u \ v \ dV = \int_{\Omega} f \ v \ dV \qquad \forall v \in L^{2}(\Omega).$$

Aplicamos a fórmula de Green no primeiro membro de (1.1), esixindo $v \in H^1(\Omega)$ para que $\nabla v \in (L^2(\Omega))^2$:

$$-\int_{\Omega} \Delta u \ v \ dV = \int_{\Omega} \vec{\nabla} u \cdot \vec{\nabla} v \ dV - \int_{\Gamma} \vec{\nabla} u \cdot \vec{\nu} \ v \ d\gamma.$$

Dado que $u \in H^2(\Omega)$ y $v \in H^1(\Omega)$, isto implica $\frac{\partial u}{\partial \vec{\nu}} = \vec{\nabla} u \cdot \vec{\nu} \in L^2(\Gamma)$ y $v|_{\Gamma} \in H^{1/2}(\Gamma) \hookrightarrow L^2(\Gamma)$ e garantiza a existencia das integrais anteriores. Escollemos que a nosa función test v sexa nula sobre a fronteira Dirichlet (toda a fronteira), de forma que $v \in H^1_0(\Omega)$ e a integral de fronteira anterior anúlase.

Vemos que, logo de aplicar a fórmula de Green e tendo en conta que u ha de anularse sobre a fronteira, basta con que $u \in H_0^1(\Omega)$, e podemos reordenar a ecuación:

$$\underbrace{\int_{\Omega} \vec{\nabla} u \cdot \vec{\nabla} v \ dV + \int_{\Omega} u \ v \ dV}_{a(u,v)} = \underbrace{\int_{\Omega} f \ v \ dV}_{l(v)} \qquad \forall v \in H_0^1(\Omega).$$

É dicir, dada a función $f \in L^2(\Omega)$ (neste caso $f \in H_0^1(\Omega)$), trátase de atopar $u \in H_0^1(\Omega)$ tal que

$$\int_{\Omega} \vec{\nabla} u \cdot \vec{\nabla} v \ dV + \int_{\Omega} u \ v \ dV = \int_{\Omega} f \ v \ dV \qquad \forall v \in H_0^1(\Omega)$$
(4)

1.2. Existencia e unicidade

Para demostrar a existencia e unicidade da solución en $H_0^1(\Omega)$ da formulación variacional construída anteriormente empregaremos o teorema de Lax-Milgram. Dado que se comproba trivialmente que a(u,v) é unha aplicación bilineal e l(v) é lineal, vexamos se a(u,v) é continua, é dicir, se $|a(u,v)| \leq C_a ||u||_{1,\Omega} ||v||_{1,\Omega}$.

$$|a(u,v)| = \left| \int_{\Omega} \vec{\nabla} u \cdot \vec{\nabla} v \ dV + \int_{\Omega} u \ v \ dV \right| \le \left| \int_{\Omega} \vec{\nabla} u \cdot \vec{\nabla} v \ dV \right| + \left| \int_{\Omega} u \ v \ dV \right| \le$$

$$\le \left| \langle \vec{\nabla} u, \vec{\nabla} v \rangle_{0,\Omega} \right| + |\langle u, v \rangle_{0,\Omega}| \le ||\vec{\nabla} u||_{0,\Omega} ||\vec{\nabla} v||_{0,\Omega} + ||u||_{0,\Omega} ||v||_{0,\Omega} \le$$

$$\le \underbrace{2}_{C_{a}} ||u||_{1,\Omega} ||v||_{1,\Omega}.$$

$$(5)$$

Acabamos de comprobar que a(u,v) é continua, utilizando unha constante $C_a=2$.

Veremos agora a continuidade de L(v), de xeito que $|L(v)| \leq C_l ||v||_{1,\Omega}$.

$$|l(v)| = \left| \int_{\Omega} f \ v \ dV \right| = |\langle f, v \rangle_{0,\Omega}| \le ||f||_{0,\Omega} ||v||_{0,\Omega} \le \underbrace{||f||_{0,\Omega}||}_{C_l} ||v||_{1,\Omega}.$$
(6)

Polo tanto, l(v) é continua con $C_l = ||f||_{0,\Omega}||$, que se pode calcular.

Resta por comprobar que a(v,v) é coerciva, é dicir, $a(v,v) \ge \alpha ||v||_{1,\Omega}^2$, con $\alpha > 0$.

$$a(v,v) = \int_{\Omega} \left(\vec{\nabla} v \right)^2 dV + \int_{\Omega} v^2 dV = \|v\|_{1,\Omega}^2 \ge \alpha \|v\|_{1,\Omega}^2, \tag{7}$$

certo para calquera $\alpha < 1$.

Demostramos que a(u,v) é unha aplicación bilineal e continua, l(v) é unha aplicación lineal e continua, e ademais a(v,v) é coerciva. Por tanto, en virtude do teorema de Lax–Milgram, a formulación variacional (4) ten solución única.

1.3. Recuperación da formulación forte

A continuación veremos que, se engadimos certa regularidade adicional sobre a solución do problema variacional, de forma que $u \in H^2(\Omega)$, entón u é solución do problema forte para case todos os puntos $x \in \overline{\Omega}$. Lembramos que, dada a función $f \in L^2(\Omega)$ (neste caso $f \in H^1_0(\Omega)$), trátase de atopar $u \in H^1_0(\Omega)$ tal que

$$\int_{\Omega} \vec{\nabla} u \cdot \vec{\nabla} v \ dV + \int_{\Omega} u \ v \ dV = \int_{\Omega} f \ v \ dV \qquad \forall v \in H_0^1(\Omega)$$
 (8)

Supoñendo regularidade adicional, é dicir, $u \in H^2(\Omega)$, podemos desfacer a aplicación da fórmula de Green

$$\int_{\Omega} -\Delta u \ v \ dV + \int_{\Omega} u \ v \ dV = \int_{\Omega} f \ v \ dV \qquad \forall v \in H_0^1(\Omega).$$

Como $v \in H_0^1(\Omega)$, en particular podemos escoller $v \in D(\Omega)$, e polo tanto con soporte compacto (anúlase sobre a fronteira), de forma que

$$\int_{\Omega} -\Delta u \ v \ dV + \int_{\Omega} u \ v \ dV = \int_{\Omega} f \ v \ dV \qquad \forall v \in D(\Omega).$$

$$\int_{\Omega} (-\Delta u + u) \ v \ dV = \int_{\Omega} f \ v \ dV \qquad \forall v \in D(\Omega).$$

$$\langle -\Delta u + u, v \rangle = \langle f, v \rangle \qquad \forall v \in D(\Omega).$$

É dicir, no sentido das distribucións verifícase

$$-\Delta u + u = f$$
 en $D'(\Omega)$.

Como supuxemos $u \in H^2(\Omega)$ temos que $\Delta u \in L^2(\Omega)$, e como dato $f \in L^2(\Omega)$. Logo a igualdade é certa en $L^2(\Omega)$ e verifícase para case todos os puntos de Ω :

$$-\Delta u + u = f \qquad \text{p.c.t. } x \in \Omega. \tag{9}$$

Ademais, como na formulación variacional $u \in H_0^1(\Omega)$, tamén recuperamos a condición de contorno Dirichlet:

$$u = 0$$
 sobre Γ . (10)

2. Discretización do problema

A discretización da formulación variacional (4), utilizando un espazo de aproximación V_h (dimensión N), sabemos que equivale ao sistema lineal seguinte:

$$\mathbf{A}\mathbf{u} = \mathbf{B},\tag{11}$$

con $\mathbf{u} \in \mathbb{R}^N$, $\mathbf{B} \in \mathbb{R}^N$ e $\mathbb{A} \in M_{N \times N}$, sendo

$$A = K + M$$

a matriz de rixidez

$$K_{ij} = \int_{\Omega} \nabla w_j \cdot \nabla w_i dV, \tag{12}$$

a matriz de masa

$$M_{ij} = \int_{\Omega} w_j w_i dV, \tag{13}$$

e o vector de termos independentes

$$B_i = \int_{\Omega} f w_i dV. \tag{14}$$

Utilizaremos un mallado construído con triángulos, nos que as funcións de base $(w_j)_{j=1}^N$ han de satisfacer $w_j(M_i) = \delta_{ij}$ para todos os nodos $(M_j)_{j=1}^N$ da malla. De seguido veremos cales son estas funcións de base para cada un dos elementos finitos de tipo Lagrange empregados: P_1 , P_2 e P_3 . Como os cálculos van ser realizados no triángulo de referencia de lados unitarios, serán de utilidade as coordenadas baricéntricas asociadas a el:

$$\lambda_1(x, y) = 1 - x - y$$
$$\lambda_2(x, y) = x$$
$$\lambda_3(x, y) = y$$

Agárdase que a utilización de máis nodos por parte do elemento P_3 ralentice os cálculos, pero tamén se espera maior precisión nos mesmos, conxugados coa fórmula de cuadratura adecuada. Pretendemos resolver o mesmo problema cos tres tipos de elementos, para poder realizar comparacións do erro cometido e das solucións obtidas.

2.1. Elemento Lagrange P_1

Para o elemento P_1 , dado que os tres nodos que utiliza se corresponden cos vértices do triángulo, as funcións de base son trivialmente:

$$w_1(x, y) = \lambda_1(x, y)$$

$$w_2(x, y) = \lambda_2(x, y)$$

$$w_3(x,y) = \lambda_3(x,y)$$

Figura 2: Nodos do elemento de referencia tipo Lagrange P_1 .

2.2. Elemento Lagrange P_2

As funcións de base locais, asociadas a cada nodo da figura 3, detállanse a continuación:

$$\begin{split} w_1(x,y) &= 2\lambda_1 \left(\lambda_1 - 1/2 \right) \\ w_2(x,y) &= 2\lambda_2 \left(\lambda_2 - 1/2 \right) \\ w_3(x,y) &= 2\lambda_3 \left(\lambda_3 - 1/2 \right) \\ w_4(x,y) &= 4\lambda_1 \lambda_2 \\ w_5(x,y) &= 4\lambda_2 \lambda_3 \\ w_6(x,y) &= 4\lambda_3 \lambda_1 \end{split}$$

Figura 3: Nodos do elemento de referencia tipo Lagrange P_2 .

2.3. Elemento Lagrange P_3

As funcións de base locais, asociadas aos nodos da figura 4, detállanse a continuación:

$$w_{1}(x,y) = (9/2)\lambda_{1} (\lambda_{1} - 1/3) (\lambda_{1} - 2/3)$$

$$w_{2}(x,y) = (9/2)\lambda_{2} (\lambda_{2} - 1/3) (\lambda_{2} - 2/3)$$

$$w_{3}(x,y) = (9/2)\lambda_{3} (\lambda_{3} - 1/3) (\lambda_{3} - 2/3)$$

$$w_{4}(x,y) = (27/2)\lambda_{1}\lambda_{2} (\lambda_{1} - 1/3)$$

$$w_{5}(x,y) = (27/2)\lambda_{1}\lambda_{2} (\lambda_{2} - 1/3)$$

$$w_{6}(x,y) = (27/2)\lambda_{2}\lambda_{3} (\lambda_{2} - 1/3)$$

$$w_{7}(x,y) = (27/2)\lambda_{2}\lambda_{3} (\lambda_{3} - 1/3)$$

$$w_{8}(x,y) = (27/2)\lambda_{1}\lambda_{3} (\lambda_{3} - 1/3)$$

$$w_{9}(x,y) = (27/2)\lambda_{1}\lambda_{3} (\lambda_{1} - 1/3)$$

$$w_{10}(x,y) = 27\lambda_{1}\lambda_{2}\lambda_{3}$$

Figura 4: Nodos do elemento de referencia tipo Lagrange P_3 .

3. Esquemas de cuadratura

Na implementación do método de elementos finitos no código MATLAB, ademais das funcións de base asociadas a cada tipo de elemento, necesitamos empregar un esquema de integración (cuadratura) suficientemente preciso para cada caso. Para P_1 e P_2 utilizaremos os esquemas Hammer–Stroud e Hammer–Marlowe–Stroud da folla de fórmulas de cuadratura que se nos facilitou. No caso de P_3 , como detallaremos posteriormente, o esquema de cuadratura empregado será o de Taylor–Wingate–Bos publicado en [2].

3.1. Elemento Lagrange P_1

Para Lagrange P_1 utilízase un esquema de cuadratura exacto para polinomios de grao 2.

λ_1	λ_2	λ_3	Multiplicidade	Peso / meas(T)
1/2	1/2	0	3	1/3

Cadro 1: Nodos e pesos de cuadratura empregados para Lagrange P_3 . Neste caso a medida do triángulo é meas(T) = 1/2. Este esquema utiliza 3 nodos de cuadratura e integra exactamente polinomios de grado 2.

Figura 5: Nodos do esquema de cuadratura escollido para integrar elementos P_1 .

3.2. Elemento Lagrange P_2

Para Lagrange P_2 empregaremos un esquema de cuadratura que integra exactamente polinomios de grado 5, e polo tanto será exacto para P_2 . Definimos a_1 e a_2 como segue:

$$a_1 = \frac{6 - \sqrt{15}}{21}, \qquad a_2 = \frac{6 + \sqrt{15}}{21}.$$

λ_1	λ_2	λ_3	Multiplicidade	$\operatorname{Peso}/\operatorname{meas}(T)$
a_1	a_1	$1 - 2a_1$	3	$(155 - \sqrt{15})/1200$
a_2	a_2	$1 - 2a_2$	3	$(155 + \sqrt{15})/1200$
1/3	1/3	1/3	1	9/40

Cadro 2: Nodos e pesos de cuadratura empregados para Lagrange P_2 . Neste caso a medida do triángulo é meas(T) = 1/2. Este esquema utiliza 7 nodos de cuadratura e integra exactamente polinomios de grado 5.

Figura 6: Nodos do esquema de cuadratura escollido para integrar elementos P_2 .

3.3. Elemento Lagrange P_3

Neste caso utilizaremos un esquema de cuadratura de 15 nodos e exacto para polinomios de grado 7, polo tanto tamén para P_3 . A obtención do esquema descríbese detalladamente en [2].

Coordenada y	$2 \operatorname{Peso} / \operatorname{meas}(T)$
0,0000000000000	0,0102558174092
0,0000000000000	0,0102558174092
1,00000000000000	0,0102558174092
0,0421382841642	0,1116047046647
0,7839656651012	0,1116047046647
0,0421382841642	0,1116047046647
$0,\!1738960507345$	0,1116047046647
$0,\!1738960507345$	0,1116047046647
0,7839656651012	0,1116047046647
$0,\!4743880861752$	0,1679775595335
$0,\!0512238276497$	0,1679775595335
$0,\!4743880861752$	0,1679775595335
0,5228769399639	0,2652238803946
0,2385615300181	0,2652238803946
0,2385615300181	0,2652238803946
	0,000000000000000000000000000000000000

Cadro 3: Nodos e pesos de cuadratura empregados para Lagrange P_3 . Neste caso a medida do triángulo é meas(T) = 1/2. Este esquema utiliza 15 nodos de cuadratura e integra exactamente polinomios de grado 7.

Figura 7: Nodos do esquema de cuadratura escollido para integrar elementos P_3 .

4. Estudo do erro en función da malla

Dada a solución exacta U_{ex} e a aproximada U_h , defínese o erro absoluto cometido como

$$e = U_{ex} - U_h, (15)$$

entón o erro en norma H_1 , E, virá dado por

$$E^{2} = \int_{\Omega} \left(e^{2} + \nabla e \cdot \nabla e \right) d\Omega, \tag{16}$$

que pode ser calculado numericamente empregando as matrices de masa e rixidez como $E = \sqrt{\mathbf{e}^t (\mathbb{M} + \mathbb{K}) \mathbf{e}}$. A malla, creada con Gmesh (http://gmsh.info/), será uniforme (creada por extrusión) e para un cadrado unitario, de forma que $L_x = L_y = 1$. As mallas empregadas terán $N \times N$ elementos, e utilizaremos varias para comprobar o cambio nos resultados (faremos referencia ao cambio de N, o número de divisións do lado).

Figura 8: Prototipo de malla con N=10 divisións por lado, con elementos Lagrange P_2 .

Por outra banda, para un método de elementos finitos que utilice funcións de base Lagrange P_k , cabe agardar que o erro E se reduza co tamaño da malla conforme a k; é dicir:

$$E(h) = Ah^k. (17)$$

O parámetro h defínese como o radio da maior circunferencia exterior a un elemento da triangulación. Dado que a nosa malla é uniforme, sendo L o lado dun triángulo, o parámetro h será $\frac{\sqrt{2}}{2}L$. Ademais, L é claramente o inverso do número de divisións de cada lado, que chamaremos N, polo que L=1/N. Tendo isto en conta podemos expresar o erro E como función do número de divisións:

$$E(N) = E_* N_*^k \frac{1}{N^k} = C \frac{1}{N^k}, \tag{18}$$

sendo E_* o erro asociado a unha malla de N_* divisións (deste xeito fixamos a constante A). No que segue axustaremos os datos obtidos con cada tipo de elementos P_k a un modelo da forma $E(N) = CN^{-k}$, dando en cada caso o coeficiente R^2 da regresión.

4.1. Elemento Lagrange P_1

Para Lagrange P_1 (k = 1), resolvemos o problema con 10 mallas distintas, variando o número de divisións de cada lado progresivamente. Os resultados obtidos foron os seguintes:

# divisións	E
5	$2,82 \times 10^{-1}$
10	$1,24 \times 10^{-1}$
15	$7,98 \times 10^{-2}$
20	$5,92 \times 10^{-2}$
25	$4,70 \times 10^{-2}$
30	$3,91 \times 10^{-2}$
35	$3,34 \times 10^{-2}$
40	$2,92 \times 10^{-2}$
45	$2,59 \times 10^{-2}$
50	$2,33 \times 10^{-2}$

Cadro 4: Erros cometidos para diferentes mallas (P1).

Realizamos un axuste dos datos da forma $E(N) = CN^{-1}$, obténdose C = 1,339, e un coeficiente $R^2 = 0,989$.

Figura 9: Evolución do erro en norma H_1 co número de divisións (N) de cada lado da malla. Os puntos representan os valores obtidos na resolución e a liña continua é o axuste realizado para P1.

4.2. Elemento Lagrange P_2

Para Lagrange P_2 (k=2), resolvemos o problema con 10 mallas distintas, variando o número de divisións de cada lado progresivamente. Os resultados obtidos foron os seguintes:

# divisións	E
5	$1,04 \times 10^{-2}$
10	1.82×10^{-3}
15	$5,52 \times 10^{-4}$
20	$2,35 \times 10^{-4}$
25	$1,21 \times 10^{-4}$
30	$7,04 \times 10^{-5}$
35	$4,44 \times 10^{-5}$
40	$2,98 \times 10^{-5}$
45	$2,10 \times 10^{-5}$
50	$1,53 \times 10^{-5}$

Cadro 5: Erros cometidos para diferentes mallas (P2).

Seguimos un procedemento análogo ao caso P1, e realizamos un axuste dos datos da forma $E(N)=CN^{-2}$, obténdose C=0.282 e $R^2=0.987$.

Figura 10: Evolución do erro en norma H_1 co número de divisións (N) de cada lado da malla. Os puntos representan os valores obtidos na resolución e a liña continua é o axuste realizado para P2.

4.3. Elemento Lagrange P_3

No caso de elementos P_3 (k=3), resolvemos o problema con 10 mallas distintas, variando o número de divisións de cada lado progresivamente. Os resultados obtidos foron os seguintes:

# divisións	E
5	$3,87 \times 10^{-3}$
10	$5,08 \times 10^{-4}$
15	$1,53 \times 10^{-4}$
20	$6,49 \times 10^{-5}$
25	$3,33 \times 10^{-5}$
30	$1,93 \times 10^{-5}$
35	$1,22 \times 10^{-5}$
40	$8,18 \times 10^{-6}$
45	$5,75 \times 10^{-6}$
50	$4,20 \times 10^{-6}$

Cadro 6: Erros cometidos para diferentes mallas (P3).

Neste caso cabería agardar un comportamento similar a (18) con k=3, polo que realizamos un axuste da forma $E(N)=CN^{-3}$ (C a determinar) dos datos para comprobalo. Do axuste obtemos C=0,4135 e un coeficiente de determinación $R^2=0,999$.

Figura 11: Evolución do erro en norma H_1 co número de divisións (N) de cada lado da malla. Os puntos representan os valores obtidos na resolución e a liña continua é o axuste realizado para P3.

5. Solución obtida

Sexan dúas funcións $p_h(x,y)$ e $q_h(x,y)$, aproximacións de p(x,y) e q(x,y) no espazo discretizado. Sexan $(w_i(x,y))_{i=1}^N$ as funcións de base locais, \mathbf{p} e \mathbf{q} os vectores que conteñen os coeficientes de $p_h(x,y)$ e $q_h(x,y)$ nesa base, de forma que

$$p_h(x,y) = \sum_{j=1}^{N} (\mathbf{p})_j w_j(x,y)$$
$$q_h(x,y) = \sum_{j=1}^{N} (\mathbf{q})_j w_j(x,y).$$

Entón, como vimos na clase, temos as aproximacións

$$\int_{\Omega} p_h q_h dV \approx \mathbf{p}^t \mathbb{M} \mathbf{q}$$
$$\int_{\Omega} \nabla p_h \cdot \nabla q_h dV \approx \mathbf{p}^t \mathbb{K} \mathbf{q},$$

que nos permitiron calcular o erro en norma $H_1(\Omega)$.

É interesante notar que estas expresións son moi útiles á hora de comprobar o correcto funcionamento do programa de elementos finitos, ademais de servir para calcular o erro.

Para unha malla de N=50 e con elementos P_3 , a solución que obtemos é a seguinte:

Figura 12: Solución obtida con elementos P_3 e unha malla de 50×50 elementos.

Conforme aumentamos o número de elementos da malla, a solución aproximada é cada vez mellor e máis próxima á exacta, para calquera dos elementos finitos empregados.

Referencias

- [1] Gmesh reference manual. http://gmsh.info/doc/texinfo/gmsh.html.
- [2] Mark A. Taylor, Beth A. Wingate, and Len P. Bos. Several new quadrature formulas for polynomial integration in the triangle. 2005.