Matgeo Presentation

Pushkar Gudla AIBTECH11012 IIT Hyderabad.

November 5, 2024

Contents

- Problem
- Solution
 - Setup and Variable Definitions
 - Converting to Matrix form
 - Parametric Form of the Line
 - Finding Points of Intersection
 - Finding Area through Integration
- Codes
 - C code to verify Area
- Figure

Problem Statement

The area of the region bounded by the curve $x^2=4y$ and the straight line x=4y-2 is

Setup and Variable Definitions

Variable	Description
g(x)	Equation of Conic
L	Equation of line
h	A point on line <i>L</i>
m	Direction vector of line L
x_1 and x_2	Points of intersection of L and $g(x)$

Table: Variables and given data

Converting the equations to Matrix form

To simplify the calculation of points of intersection, the curve $x^2 = 4y$ is represented in standard conic matrix form:

$$g(x) = x^{\mathsf{T}} \mathbf{V} x + 2\mathbf{u}^{\mathsf{T}} x + f = 0$$
 (3.1)

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \tag{3.2}$$

$$\mathbf{u} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \tag{3.3}$$

$$f = 0 (3.4)$$

Parametric Form of the Line

$$L: \mathbf{x} = \mathbf{h} + k\mathbf{m} \tag{3.5}$$

where k is a scalar constant

$$\mathbf{h} = \begin{pmatrix} -2\\0 \end{pmatrix} \tag{3.6}$$

$$\mathbf{m} = \begin{pmatrix} 1 \\ \frac{1}{4} \end{pmatrix} \tag{3.7}$$

$$\mathbf{x_i} = \mathbf{h} + k_i \mathbf{m} \tag{3.8}$$

Finding Points of Intersection

On substituting L in g(x) we get a quadratic equation in k. We find that the discriminant is not equal to zero and thus we get two values k_1 and k_2 . The point obtained by substituting k_1 in L is $\mathbf{x_1}$ and similarly on substituting k_2 in L we get $\mathbf{x_2}$.

$$k_{1} = \frac{1}{\mathbf{m}^{\top}\mathbf{V}\mathbf{m}} \left(-m^{\top} \left(\mathbf{V}\mathbf{h} + \mathbf{u} \right) + \sqrt{[\mathbf{m}^{\top} \left(\mathbf{V}\mathbf{h} + \mathbf{u} \right)]^{2} - g(\mathbf{h}) \left(\mathbf{m}^{\top}\mathbf{V}\mathbf{m} \right)} \right)$$

$$k_{2} = \frac{1}{\mathbf{m}^{\top}\mathbf{V}\mathbf{m}} \left(-m^{\top} \left(\mathbf{V}\mathbf{h} + \mathbf{u} \right) - \sqrt{[\mathbf{m}^{\top} \left(\mathbf{V}\mathbf{h} + \mathbf{u} \right)]^{2} - g(\mathbf{h}) \left(\mathbf{m}^{\top}\mathbf{V}\mathbf{m} \right)} \right)$$

$$(3.10)$$

On solving for k_1 and k_2 we get $k_1 = 4$ and $k_2 = 1$. Thus

$$\mathbf{x_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{3.11}$$

$$\mathbf{x_2} = \begin{pmatrix} -1\\ \frac{1}{4} \end{pmatrix} \tag{3.12}$$

Finding Area through Integration

The area between the curve and the line from x = -1 to x = 2 is calculated using the following integration:

Area =
$$\int_{-1}^{2} \left(\frac{x}{4} + \frac{1}{2} - \frac{x^2}{4} \right) dx$$

Solving this integral, we get Area= $\frac{9}{8}$.

Hence, the area bound between the curve $x^2=4y$ and the line x=4y-2 is $\frac{9}{8}$.

C code to verify the Area

We can use the following C code to verify that the area we found is correct.

https://github.com/GPushkar16/EE1030/blob/main/Matgeo/question-4/codes/area_between_curves.c

Generating Parabola and Plotting the Figure

We can use the following C code to generate points that lie on the parabola:

 ${\tt https://github.com/GPushkar16/EE1030/blob/main/Matgeo/question-4/codes/generate_parabola.c}$

We can then use the following Python code to generate the figure:

https://github.com/GPushkar16/EE1030/blob/main/Matgeo/question-4/codes/plot.py

Figure

