Lecture 4 Point Operators

COMP6223 Computer Vision (MSc)

How many different operators are there on image points?

Content

- 1. How do we best display images?
- 2. What operators are available; which work solely on image points?

An image and its histogram

- The histogram plots the number of pixels with a particular brightness level
- The histogram shows contrast (the range of brightness levels)

Different Histograms

[Credit: Wikipedia]

Example: Histogram of 10000 points in [-4, 4] Can also be scaled so that the highest frequency is 1 by dividing the total number of pixels/points **Cumulative histogram Ordinary histogram** 2000 10000 8000 1500 0009 Frequency Frequency 1000 4000 500 2000 0 0 -2 2 -2 2 the number of pixels rnorm(10000) the number of pixels rnorm(10000) ≤ a particular value

with a particular value

Modifying Image Intensity by choosing values for k and l

(a) image of brighter eye

Intensity mappings

Applying exponential and logarithmic point operators

Brightness compression

$$\mathbf{N}_{x,y} = \log(\mathbf{O}_{x,y})$$

Brightness expansion

$$\mathbf{N}_{x,y} = \exp\left(\mathbf{O}_{x,y}\right)$$

(b) exponential expansion

(a) logarithmic compression

Intensity normalisation

Toy example

Before normalization:

After normalization (whole range used):

The ratio between the distances of these smileys is kept

Intensity normalisation

Aim is to use all available grey levels for display

E.g.: Nmax = 255;

Histogram Equalisation

Toy example

Before normalization:

After equalisation (whole range used):

two adjacent smileys

Histogram Equalisation – aim is a flat histogram

ntensity normalisation and equalisation histogram

(a) intensity normalised eye

(c) histogram equalised eye

(b) histogram of intensity normalised eye

Grey levels all 'weigh' the same

Used in Matlab's imagesc

Grey levels have different weights

Aimed for human vision

Applying Histogram Equalisation

Thresholding

Thresholding selects points that exceed a chosen threshold au

$$\mathbf{N}_{x,y} = \begin{cases} 255, & \text{if } \mathbf{O}_{x,y} > \tau \\ 0, & \text{otherwise} \end{cases}$$

coordinates

An eye image

After thresholding

Thresholding: Manual vs Automatic

An eye image

Thresholding: $\tau = 160$

Automatic thresholding by Otsu: $\tau = 127$

Otsu Thresholding

Per cent of the number of pixels in each group (separated by τ) against the total number of pixels

Thresholding an image of a walking subject

Main points so far

- 1. point operators are largely about image display
- 2. concern histogram manipulation
- 3. thresholding used a lot
- 4. intensity normalisation used for display

Need sets of points. That's group operators, coming next.

Adaptive Thresholding

Starting with an initialization $\tau^{(0)}$, e.g. the mean of given image, find a proper threshold iteratively by

Mean of the two groups separated by
$$\tau^{(i)}$$

$$\tau^{(i+1)} = \frac{\mu_0(\tau^{(i)}) + \mu_1(\tau^{(i)})}{2}$$

Other thresholding techniques...

