ENGN/COMP8535 Homework 2

Yuyang Han u7434576

Q1

(a) P is

```
      [[0.
      1.
      0.
      0.
      ]

      [0.333333333
      0.
      0.333333333
      0.333333333]

      [0.
      0.
      1.
      ]

      [1.
      0.
      0.
      ]]
```

(b) G is

(c) Use G and α , rank the webpages with fullrank algorithm. Using the power method to compute an approximation of π_{∞} with 5 iterations from $\pi_0 = [0.25, 0.25, 0.25, 0.25]^T$ gets the following rank results.

```
[[0.32885526]
[0.31353484]
[0.11935062]
[0.23825928]]
```

where the first page has the highest rank.

Here is the result of find the svd of X using python numpy library

```
X = np.array([ [3, 2, 2],
   [2, 3, -2] ])
   U, s, Vt = np.linalg.svd(X)
   print('U:\n', U)
   print('S:\n', np.diag(s))
   print('V:\n', Vt.T)
 ✓ 0.3s
U:
 [[-0.70710678 -0.70710678]
 [-0.70710678 0.70710678]]
S:
 [[5. 0.]
 [0.3.]]
۷:
 [[-7.07106781e-01 -2.35702260e-01 -6.66666667e-01]
 [-7.07106781e-01 2.35702260e-01 6.66666667e-01]
 [-6.47932334e-17 -9.42809042e-01 3.33333333e-01]]
```

continue...

(a) Working out the svd of X by hand

$$X^{T_{z}}\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & -\nu \end{bmatrix}$$

$$X^{T}X = \begin{bmatrix} 13 & 12 & 2 \\ 12 & 13 & -2 \\ 2 & -2 & 8 \end{bmatrix}$$

the eigenvoles and ergenvectors of X^TX can be found by Setting the det $(X^TX - \lambda I) = 0$

where we have $\det(X^TX-\lambda I)=-\lambda(X-\lambda I)=0$ the eigenvalues of X^TX ove $\lambda_1=\lambda I$ $\lambda_2=0$ Then we can find the eigenvectors λ_1 λ_2 λ_3

$$(X^{T}X - 25]) = \begin{bmatrix} 12 & 12 & 2 \\ 12 & 42 & 2 \end{bmatrix} \text{ reduce to fow-echlor form is}$$

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} X_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ we have } X_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{c} (x^{T}x - 97)x_{2} = 0 \\ 0 & | 4 \\ 0 & | 4 \\ 0 & | 4 \end{array} \begin{array}{c} (x^{T}x - 97)x_{2} = 0 \\ 2 & | 4 \\ 0 & | 4 \\ 0 & | 4 \end{array} \begin{array}{c} (x^{T}x - 97)x_{2} = 0 \\ 2 & | 2 \\ 0 & | 4 \end{array} \begin{array}{c} (x^{T}x - 97)x_{2} = 0 \\ 2 & | 2 \\ 0 & | 4 \end{array} \begin{array}{c} (x^{T}x - 97)x_{2} = 0 \\ 2 & | 2 \\ 0 & | 4 \end{array} \begin{array}{c} (x^{T}x - 97)x_{2} = 0 \\ 2 & | 2 \\ 0 & | 4 \end{array} \begin{array}{c} (x^{T}x - 97)x_{2} = 0 \\ 2 & | 2 \\ 0 & | 4 \end{array} \begin{array}{c} (x^{T}x - 97)x_{2} = 0 \\ 2 &$$

$$\begin{array}{c} \lambda_{3} = 0 \\ (x^{T}x) \times_{3} = 0 \end{array} \begin{bmatrix} 13 & 12 & 2 \\ 12 & |3 & -2 \\ 2 & -2 & 8 \end{bmatrix} \text{ reduce to } \text{ fow-echlor form is} \end{array}$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \times_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
Solve for x_3 we have $x_3 = \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}$

the singular values are the square roots of the eigenvalues $\sum = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & D \end{bmatrix}$

columns of
$$\sqrt{ano}$$
 the normalized eigenvectors

therefore $V_1 = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ 0 \end{bmatrix}$
 $V_2 = \begin{bmatrix} \sqrt{2} \\ \sqrt{3} \\ \sqrt{2} \\ 3 \end{bmatrix}$
 $V_3 = \begin{bmatrix} -2/3 \\ 2/3 \\ 2/3 \end{bmatrix}$

$$\begin{bmatrix} \sqrt{2} & \sqrt{2} & -2/7 \\ 3 & \sqrt{3} \end{bmatrix}$$

$$V = \begin{bmatrix} \sqrt{2} & \sqrt{2} & -2/3 \\ \sqrt{2} & \sqrt{5} & 2/3 \\ \sqrt{2} & \sqrt{5} & 2/3 \\ 0 & 2\sqrt{2} & 1/3 \end{bmatrix}$$

$$u_i = \frac{1}{\sigma_i} \times v_i$$

So
$$U_{1} = \frac{1}{5} \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{bmatrix}$$

$$U_{2} = \frac{1}{3} \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \\ \sqrt{2} \end{bmatrix}$$

$$U = \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix} \quad \Sigma = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \quad V = \begin{bmatrix} \sqrt{2} & \sqrt{2} & \sqrt{3} \\ \sqrt{2} & \sqrt{3} & \sqrt{3} \\ 0 & 2\sqrt{2} & \sqrt{3} \end{bmatrix}$$

such that
$$X = U \ge V^T$$

(b) The best rank-one approximation to X is $\sigma_1 u_1 v_1^T$ where σ_1 is the first singular value, u_1 is the first left singular vector, and v_1^T is the first right singular vector of X. Below is the reconstructed X. using python.

[[2.50000000e+00 2.50000000e+00 2.29078674e-16]

[2.50000000e+00 2.50000000e+00 2.29078674e-16]]

The best rank-1 approximation to X is $O_1U_1V_1^T$ where O_1 is the first singular value. U_1 is the first left singular vector. V_1 is the first right singular vector

Hence
$$X_1$$
 is given by $O_1 U_1 V_1^T$

$$O_1 = 5 \quad U_1 = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix} \quad V_1^T = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}, \quad O_1$$

$$X_1 = \begin{bmatrix} 2.5 & 2.5 & 0 \\ 2.5 & 2.5 & 0 \end{bmatrix}$$

$$\begin{array}{c} (c) \\ X - X_1 = \begin{bmatrix} 0.5 & -0.5 & 2 \\ -0.5 & 0.5 & -2 \end{bmatrix} \end{array}$$

$$||X-X_1|| = \int_{0.5^2 + 0.5^2 + 0.5^2 + 0.5^2 + 2^2 + 2^2} = \int_{0.5^2 + 0.5^2 + 0.5^2 + 2^2 + 2^2} = \int_{0.5^2 + 0.5^2 + 0.5^2 + 2^2 + 2^2} = \int_{0.5^2 + 0.5^2 + 0.5^2 + 2^2 + 2^2} = \int_{0.5^2 + 0.5^2 + 2^2 + 2^2 + 2^2} = \int_{0.5^2 + 0.5^2 + 2^2 + 2^2 + 2^2} = \int_{0.5^2 + 0.5^2 + 2^2 +$$

therefore the approximation error under the Frobenius Norm is 3

Then the first principal component is $U_1 = \begin{bmatrix} -0.9764 \\ 0.2159 \end{bmatrix}$ Since it is the eigenvector

corresponding to largest eigenvalue $\lambda_1 = 7.0212$

(b) Use PCA to compute lower-dimensional $y_{j} = u_{i}^{T} x_{j} = [-0.9764 \text{ a.2159}] ax_{j}$ $y_{1} = -1.9114$ $y_{2} = 1.5622$ $y_{3} = 3.731$ $y_{4} = -2.7753$ $y_{5} = -0.6065$

(b)

```
pca = PCA(n_components=1)
  pca.fit(X)
  X_1d = pca.transform(X)
  print("original shape: ", X.shape)
  print("transformed shape:", X_1d.shape)

  print(X_1d)
  ✓ 0.2s

original shape: (5, 2)
  transformed shape: (5, 1)
[[-1.91144107]
  [ 1.56224295]
  [ 3.7310083 ]
  [-2.77528776]
  [-0.60652241]]
```

