

Vrsta s prednostjo

- · Vrsta s prednostjo (priority queue)
 - odvzemanje (dequeue)
- odstranimo element z najmanjšo oz. največjo *prioriteto*
- prioriteta je lahko tudi vrednost elementa oz. ključa
 - dodajanje s prioriteto (enqueue)
 - dodamo element v vrsto in pri tem podamo prioriteto

PriorityQueue enqueue (p, x) front()

enqueue (x) dequeue ()

Kopica

- Min-kopica
- ključ starša ≤ ključi otrok
- v korenu je najmanjši element

Kopica v korenu je največji element – Ključ starša ≥ ključi otrok Max-kopica

Kopica

Lastnosti

- celovito drevo
- višina kopice: $h = \mathbb{H}g \, n\hat{\sigma}$
- koren vedno vsebuje najmanjši oz. največji element
 - učinkovita implicitna predstavitev celovitih dreves vsako poddrevo kopice je tudi kopica
 - otroka: l = 2i+1, r = 2i+2
- starš: $p = \frac{1}{4}(i-I) / 2\theta$
- notranja vozlišča: prvih 新/2∂ elementov
- listi: zadnjih ≥n/2μelementov

Dvigovanje elementa (sift up)

Kopica

- skoraj kopica, v kateri le en element
- otrok kvari urejenost (glede na starša)
 - zamenjano ga z njegovim staršem
 - ponavljamo dokler gre

Kopica

- · Vstavljanje elementa (enqueue)
 - dodamo element za konec kopice
 - velikost kopice povečamo za ena
- ga dvignemo na ustrezno mesto

Kopica

Ugrezanje elementa (sift down)

- starš na indeksu i kvari urejenost (glede na otroke)
- obe poddrevesi na 2i+1 in 2i+2 sta že kopici
- zamenjamo ga z večjim (max-kopica) otrokom

 - zakaj ne smemo ugrezati v smeri manjšega?

Kopica

- Odvzemanje spredaj (dequeue)
- vrnemo najmanjši / največji element
- koren kopice

Ideja algoritma

- shrani koren in ga na koncu vrni
- zamenjaj koren in zadnji element
- zmanjšaj velikost kopice za ena

- ugrezni koren

Kopica

- Gradnja kopice 1. način (dvigovanje)
 - gradnja kopice iz zaporedja elementov
- vkopičenje (heapify, heapification)
- Ideja algoritma
- prazna kopica je kopica
- zaporedoma vstavljamo elemente
- Online algoritem
- ni nujno poznavanje celotnega zaporedja v naprej
- elementi lahko prihajajo sproti

Kopica

- Gradnja kopice 2. način (ugrezanje)
- gradnja kopice iz zaporedja elementov
- poznati moramo vse elemente v naprej
- Ideja algoritma
- listi so kopice
- ugrezanje notranjih vozlišč
- notranja vozlišča: prvih 新/20 elementov
 - obiskovanje po višini

Kopica

- Ostale operacije
- največji element
- drugi največji element
- iskanje elementa
- povečevanje ključa elementa
- zmanjševanje ključa elementa
 - spreminjanje ključa elementa
- brisanje poljubnega elementa

Uporaba

- Razporejanje opravil
- ko se opravilo zaključi, je naslednje na vrsti tisto z največjo prioriteto
- Urejanje s kopico
- Iskanje najkrajše poti v omrežju

Povzetek

operacija (max kopica)	zahtevnost	
siftUp	O(lg n)	
siftDown	$O(\lg n)$	
enenbue	O(lg n)	
enenbep	$O(\lg n)$	
gradnja z dvigovanjem	$O(n \lg n)$	
gradnja z spuščanjem	$\Theta(n)$	
maksimum	(1)	
drugi največji	(1)	
iskanje elementa	$\Theta(n)$	
večanje ključa elementa	$O(\lg n)$	
zmanjševanje ključa elementa	O(lg n)	
odstranjevanje poljubnega elementa	O(lg n)	