1st Question

In [5]: sal = salary_Data['Salary']

```
import pandas as pd
In [3]:
          salary_Data = pd.read_csv('/content/Salary_Data.csv')
In [4]:
          salary_Data = salary_Data.fillna(0)
          salary_Data
Out[4]:
              YearsExperience
                                 Salary
           0
                           1.1
                                 39343.0
           1
                           1.3
                                 46205.0
           2
                           1.5
                                37731.0
           3
                           2.0
                                 43525.0
           4
                           2.2
                                 39891.0
                           2.9
           5
                                 56642.0
                           3.0
                                 60150.0
           6
           7
                           3.2
                                 54445.0
                           3.2
                                 64445.0
           8
           9
                           3.7
                                 57189.0
          10
                           3.9
                                 63218.0
                           4.0
                                 55794.0
          11
          12
                           4.0
                                56957.0
                                 57081.0
          13
                           4.1
          14
                           4.5
                                 61111.0
          15
                           4.9
                                 67938.0
          16
                           5.1
                                 66029.0
          17
                           5.3
                                83088.0
          18
                           5.9
                                81363.0
          19
                           6.0
                                93940.0
          20
                           6.8
                                 91738.0
          21
                           7.1
                                 98273.0
          22
                           7.9
                               101302.0
                           8.2 113812.0
          23
          24
                               109431.0
          25
                           9.0 105582.0
          26
                           9.5 116969.0
          27
                           9.6 112635.0
                          10.3 122391.0
          28
          29
                          10.5 121872.0
```

```
In [6]: import matplotlib.pyplot as plt

In [9]: plt.figure(figsize=(10,8))
    plt.scatter(exp,sal, color='red')
    plt.xlabel('Years of Experince')
    plt.ylabel('Salary')
    plt.title('Experience vs Salary')
    plt.show()
```

exp = salary_Data.drop('Salary',axis=1)

In [10]: Norm_data = (salary_Data-salary_Data.min())/(salary_Data.max()-salary_Data.min())
Norm_data

Out[10]:	YearsExperience	Salary
0	0.000000	0.019041
1	0.021277	0.100094
2	0.042553	0.000000
3	0.095745	0.068438
4	0.117021	0.025514
5	0.191489	0.223376
6	0.202128	0.264812
7	0.223404	0.197425

8	0.223404	0.315545
9	0.276596	0.229837
10	0.297872	0.301051
11	0.308511	0.213359
12	0.308511	0.227097
13	0.319149	0.228561
14	0.361702	0.276163
15	0.404255	0.356804
16	0.425532	0.334255
17	0.446809	0.535755
18	0.510638	0.515379
19	0.521277	0.663938
20	0.606383	0.637928
21	0.638298	0.715119
22	0.723404	0.750898
23	0.755319	0.898665
24	0.808511	0.846917
25	0.840426	0.801453
26	0.893617	0.935956
27	0.904255	0.884763
28	0.978723	1.000000
29	1.000000	0.993870

2nd Question

```
In [11]: diabetes_Data = pd.read_csv('/content/diabetes_data_upload.csv')
    diabetes_Data = diabetes_Data.fillna(0)
    diabetes_Data.head()
```

sudden Out[11]: Genital visual de Age Gender Polyuria Polydipsia weight weakness Polyphagia Itching Irritability thrush blurring he loss 0 40 Male No Yes No Yes No No No Yes No 1 58 Male No No No Yes No No Yes No No 2 41 Yes Male Yes No No Yes No No Yes No 3 45 Male Yes No No Yes Yes Yes No Yes No 4 60 Male Yes Yes Yes Yes Yes No Yes Yes Yes

```
In [12]: print(diabetes_Data.dtypes)

Age int64
```

Gender object
Polyuria object
Polydipsia object

```
Genital thrush
                                   object
          visual blurring
                                   object
          Itching
                                   object
          Irritability
                                   object
          delayed healing
                                   object
          partial paresis
                                   object
          muscle stiffness
                                   object
          Alopecia
                                   object
          Obesity
                                   object
          class
                                   object
          dtype: object
In [13]:
          cls = diabetes_Data['class'] #Target
          fea = diabetes_Data.drop('class',axis=1) #Features
          age = diabetes_Data['Age']
          gender = diabetes_Data['Gender']
          polyuria = diabetes_Data['Polyuria']
          polydipsia = diabetes_Data['Polydipsia']
          sudden_weight_loss = diabetes_Data['sudden weight loss']
          weakness = diabetes_Data['weakness']
          polyphagia = diabetes_Data['Polyphagia']
          genital_thrush = diabetes_Data['Genital thrush']
          visual_blurring = diabetes_Data['visual blurring']
          itching = diabetes_Data['Itching']
          irritability = diabetes_Data['Irritability']
          delayed_healing = diabetes_Data['delayed healing']
          partial_paresis = diabetes_Data['partial paresis']
          muscle_stiffness = diabetes_Data['muscle stiffness']
          alopecia = diabetes_Data['Alopecia']
          obesity = diabetes_Data['Obesity']
          diabetes_Data = diabetes_Data.replace({'Yes':1,'No':0,'Positive':1,'Negative':0,'Male':1
In [14]:
          diabetes_Data.head()
                                             sudden
Out[14]:
                                                                          Genital
                                                                                   visual
                                                                                                           de
                  Gender Polyuria Polydipsia
                                             weight weakness
                                                              Polyphagia
                                                                                          Itching Irritability
             Age
                                                                          thrush
                                                                                 blurring
                                                                                                           he
                                                loss
                                                                       0
                                                                               0
                                                                                                        0
          0
              40
                       1
                                0
                                          1
                                                  0
                                                            1
                                                                                       0
                                                                                              1
          1
              58
                       1
                               0
                                          0
                                                  0
                                                            1
                                                                       0
                                                                               0
                                                                                       1
                                                                                              0
                                                                                                        0
          2
                                1
                                          0
                                                  0
                                                            1
                                                                               0
                                                                                       0
                                                                                              1
              41
                       1
                                                                       1
                                                                                                        0
          3
              45
                       1
                                0
                                          0
                                                  1
                                                                               1
                                                                                       0
                                                                                              1
                                                                                                        0
                       1
                                          1
                                                                       1
                                                                               0
          4
              60
                                1
                                                  1
                                                            1
                                                                                       1
                                                                                              1
                                                                                                        1
          norm_data2=(diabetes_Data-diabetes_Data.min())/(diabetes_Data.max()-diabetes_Data.min())
In [15]:
          norm_data2.head()
Out[15]:
                                                 sudden
                                                                              Genital
                                                                                       visual
                 Age
                      Gender Polyuria Polydipsia
                                                 weight weakness
                                                                   Polyphagia
                                                                                              Itching Irritability
                                                                              thrush blurring
                                                    loss
            0.324324
                                                     0.0
                          1.0
                                  0.0
                                             1.0
                                                               1.0
                                                                          0.0
                                                                                 0.0
                                                                                         0.0
                                                                                                 1.0
                                                                                                          0.0
          1 0.567568
                                  0.0
                                             0.0
                                                     0.0
                                                                                 0.0
                                                                                          1.0
                                                                                                 0.0
                          1.0
                                                               1.0
                                                                          0.0
                                                                                                          0.0
          2 0.337838
                          1.0
                                  1.0
                                             0.0
                                                     0.0
                                                               1.0
                                                                          1.0
                                                                                 0.0
                                                                                         0.0
                                                                                                 1.0
                                                                                                          0.0
             0.391892
                          1.0
                                  0.0
                                             0.0
                                                     1.0
                                                               1.0
                                                                          1.0
                                                                                 1.0
                                                                                         0.0
                                                                                                 1.0
                                                                                                          0.0
```

sudden weight loss

weakness

Polyphagia

0.594595

1.0

1.0

1.0

1.0

1.0

1.0

0.0

1.0

1.0

1.0

object

object

object

```
In [26]: plt.figure(figsize=(8,5))
    plt.scatter(age,cls, color='blue')
    plt.xlabel('Age')
    plt.ylabel('Class')
    plt.title('Age Vs Class')
    plt.show()
```



```
In [22]: plt.figure(figsize=(8,5))
    plt.scatter(gender,cls)
    plt.title('Age Vs Class')
    plt.xlabel('Gender')
    plt.ylabel('Class')
    plt.show()
```

Age Vs Class

Gender

```
In []: ployuria = diabetes_Data['Polyuria']

plt.figure(figsize=(10,5))
plt.title('Polyuria Vs Class')
plt.scatter(ployuria, cls, color='blue')
plt.xlabel('Polyuria')
plt.ylabel('Class')
plt.show()
```



```
In [ ]: plt.figure(figsize=(8,5))
    plt.scatter(polydipsia, cls)
    plt.xlabel('Polydipsia')
```

```
plt.ylabel('Class')
plt.title('Polydipsia VS Class')
plt.show()
```



```
In [ ]: plt.figure(figsize=(8,5))
    plt.scatter(sudden_weight_loss,cls)
    plt.xlabel('Sudden weight loss')
    plt.ylabel('Class')
    plt.title('Sudden weight loss VS Class')
    plt.show()
```

Sudden weight loss VS Class


```
In [ ]: plt.figure(figsize=(8,5))
   plt.scatter(weakness,cls)
   plt.xlabel('Weakness')
   plt.ylabel('Class')
   plt.title('Weakness VS Class')
   plt.show()
```



```
In []: plt.figure(figsize=(8,5))
    plt.scatter(genital_thrush,cls)
    plt.xlabel('Genital thrush')
    plt.ylabel('Class')
    plt.title('Genital thrush VS Class')
    plt.show()
```

Genital thrush VS Class


```
In [ ]: plt.figure(figsize=(8,5))
    plt.scatter(itching,cls)
    plt.xlabel('Itching')
    plt.ylabel('Class')
    plt.title('Itching VS Class')
    plt.show()
```


Itching

No

```
In []: plt.figure(figsize=(8,5))
   plt.scatter(visual_blurring,cls)
   plt.xlabel('Visual blurring')
   plt.ylabel('Class')
   plt.title('Visual blurring VS Class')
   plt.show()
```

Yes


```
In []: plt.figure(figsize=(8,5))
    plt.scatter(itching,cls)
    plt.xlabel('Itching')
    plt.ylabel('Class')
    plt.title('Itching VS Class')
    plt.show()
```



```
In []: plt.figure(figsize=(8,5))
   plt.scatter(delayed_healing,cls)
   plt.xlabel('Delayed healing')
   plt.ylabel('Class')
   plt.title('Delayed healing VS Class')
   plt.show()
```


Delayed healing

```
In []: plt.figure(figsize=(8,5))
   plt.scatter(partial_paresis,cls)
   plt.xlabel('Partial paresis')
   plt.ylabel('Class')
   plt.title('Partial paresis VS Class')
   plt.show()
```

Partial paresis VS Class


```
In []: plt.figure(figsize=(8,5))
    plt.scatter(muscle_stiffness,cls)
    plt.xlabel('Muscle stiffness')
    plt.ylabel('Class')
    plt.title('Muscle stiffness VS Class')
    plt.show()
```

Muscle stiffness VS Class


```
In []: plt.figure(figsize=(8,5))
    plt.scatter(alopecia,cls)
    plt.xlabel('Alopecia')
    plt.ylabel('Class')
    plt.title('Alopecia VS Class')
    plt.show()
```



```
plt.figure(figsize=(8,5))
plt.scatter(obesity,cls)
plt.xlabel('Obesity')
plt.ylabel('Class')
plt.title('Obesity VS Class')
plt.show()
```


DONE BY K SHISHIR BHAGATH [2303A52164]