MATH 4400/6400 - Homework #1

posted January 19, 2022; due Friday, January 28

Directions. Give complete solutions, providing full justifications. (Ask me if you have a question about what constitutes a "full" justification.)

MATH 4400 problems

- 1. This exercise asks you to fill in details of the proofs for some statements made in class.
 - (a) Let $a, b \in \mathbf{Z}$. Show that if $a \mid b$ and $b \mid a$, then $a = \pm b$.

 Hint: You may assume, as stated in class, that if $a \mid b$ and $b \neq 0$, then $|a| \leq |b|$. But make sure your proof also works in the case when one of a, b is 0.
 - (b) Suppose d, e are both greatest common divisors of the same pair of integers a, b. Prove that $d = \pm e$.
- 2. Let $a, b \in \mathbf{Z}$. We know that gcd(a, b) can be written in the form ax + by for some integers x, y.
 - (a) Prove or give a counterexample: If there are integers x and y with ax + by = 2, then gcd(a, b) = 2.
 - (b) Prove or give a counterexample: If there are integers x and y with ax + by = 1, then gcd(a, b) = 1.
- 3. Suppose $a, b \in \mathbf{Z}$ and gcd(a, b) = 1. Find all possible values of gcd(a b, a + b). Justify your answer.
- 4. Suppose $a, b \in \mathbf{Z}$ and gcd(a, b) = 1. Find all possible values of $gcd(a + b, a^2 ab + b^2)$. Justify your answer.
- 5. Let a, b, c be positive integers with gcd(a, b) = 1 and gcd(a, c) = 1. Find all possible values of gcd(a, bc) = 1. Justify your answer.

In what follows, $\operatorname{ord}_p(n)$ denotes the exponent of p in the prime factorization of n. For example, $\operatorname{ord}_3(54) = 3$, while $\operatorname{ord}_3(17) = 0$.

The function $\operatorname{ord}_p(\cdot)$ is well-defined (by unique factorization). Note that $\operatorname{ord}_p(n)$ can be defined, equivalently, as the largest nonnegative integer for which $p^{\operatorname{ord}_p(n)} \mid n$.

6. Show that if a, b are positive integers, and p is a prime, then

$$\operatorname{ord}_p(a+b) \ge \min\{\operatorname{ord}_p(a), \operatorname{ord}_p(b)\}.$$

Prove moreover that equality holds whenever $\operatorname{ord}_{p}(a) \neq \operatorname{ord}_{p}(b)$.

Here the min of two numbers means the smaller of the two, or the common value if the two are equal.

7. Suppose u, v are positive integers and that uv is a perfect square (meaning, m^2 for some integer m). Suppose also that gcd(u, v) = 1. Show that u, v are both perfect squares.

Hint: First show that a positive integer n is a perfect square if and only if $\operatorname{ord}_p(n)$ is even for all primes p.

8. Let a, b be positive integers. Show that for every prime p,

$$\operatorname{ord}_{p}(\gcd(a,b)) = \min\{\operatorname{ord}_{p}(a), \operatorname{ord}_{p}(b)\}.$$

Using this formula, give the prime factorization of the number $\gcd(2^3 \cdot 7 \cdot 11, 2^2 \cdot 7^4 \cdot 13)$.

9. Let a, b be positive integers. Prove that there is a positive integer L satisfying the following two conditions: (a) $a \mid L$ and $b \mid L$, (b) if M is any positive integer for which $a \mid M$ and $b \mid M$, then $L \mid M$.

The number L is called a least common multiple of a, b.

MATH 6400 problems (extra credit for 4400 students)

- G1. Prove that the product of two consecutive positive integers (meaning n, n+1) is never a square. Do the same with "two" replaced by "three" and then by "four".
- G2. Define a sequence $\{F_n\}$, for integers $n \geq 0$, by setting

$$F_n = 2^{2^n} + 1.$$

Show that for any pair of distinct integers $n, m \ge 0$, we have $\gcd(F_n, F_m) = 1$.

Hint: Compute the first several products of the form $F_0, F_0F_1, F_0F_1F_2, \ldots$; you should notice a pattern, which you can prove by induction. Use this pattern to establish the gcd claim.