542 .A226

Heliport Visual Approach Surface High Temperature and High Altitude Tests

Suzanne Samph Rosanne M. Weiss Christopher J. Wolf

May 1990

QT/FAA/CT-TN89/34

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

TIC ECTE SEP 1 9 1990 S COE

U.S. Department of Transportation

Federal Aviation Administration

Technical Center Atlantic City International Airport, N.J. 08405

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.

Technical Report Documentation Page

1,	Repart No.	2. Government Acces	sion No.	J. Recipient's Catalog No.
	TOT /TALL (OF THEO /O/			
4.	POT /FAA /CT-TN89/34	<u> </u>		5. Report Date
	HELIPORT VISUAL APPROACH	CUDDACE UTCU		May 1990
	TEMPERATURE AND HIGH ALTI			6. Perferming Organization Code
	TEMPERATURE AND RIGH ALII	TUDE TESTS		ACD-330
				8. Performing Organization Report No.
7.	Author's) Suzanne Samph,	Rosenne M Wei	g g	
	and Christopher J. Wolf	Robanne II. Wel	<i>55</i> ,	DOT/FAA/CT-TN90/34
9.	Performing Organization Name and Address	8		10. Werk Unit No. (TRAIS)
	U.S. Department of Transp	ortation		
	Federal Aviation Administ		al Center	11. Contract or Grant No.
	Atlantic City Internation			T0701U
		·		13. Type of Report and Period Covered
12.	Sponsoring Agency Name and Address			
	U.S. Department of Transp	ortation		Technical Note
	Federal Aviation Administ			April 1988
	Rotorcraft Technology Bra			14. Sponsering Agency Code
	Washington, D.C. 20490			ADS-220 and AAS-100
15.	Supplementary Nates			
	Albuquerque, New Mexico, flights was to examine thunder hot climate and/or	at an auxiliar e current heli high altitude	y landing field port approach/ conditions as	at Kirkland Air Force Base, d. The purpose of these departure surface criteria defined in the Heliport Design cas, if appropriate. Data were
	collected using a Bell UH approach surfaces. Also, were used. In addition t	-1 helicopter straight-in d o these proced arture. All m	for 7.125 ⁰ , 8.0 eparture surfa ures, the pilo	0°, and 10.0° straight-in ces of 7.125°, 10.0°, and 12.0° ts were able to choose any tracked using an onboard Global
	and evaluation methodolog It provides statistical a discussion of pilot subje workload, safety, and con	y and addresse nd graphical a ctive opinions trol margins a consider to be considered.	s technical as nalysis of pil concerning the ssociated with ered in the fu	It describes the flight test well as operational issues. ot performance along with a e acceptability and perceived the procedures flown. ture modifications of the Advisory Circular, AC
				/ 1
17.	Key Words		18. Distribution State	men!
17,	Key Wards		18. Distribution State	
17.	Approach Surface Hot Clim	ate	This docum	ent is available to the U.S.
17.	Approach Surface Hot Clim Departure Profiles	ate	This docum	ent is available to the U.S. ough the National Technical
12.	Approach Surface Hot Clim Departure Profiles High Density Altitude		This docum	ent is available to the U.S.
17.	Approach Surface Hot Clim Departure Profiles		This docum	ent is available to the U.S. ough the National Technical

Unclassified

85

Unclassified

TABLE OF CONTENTS

			Page
EXECUTIVE SUM	MARY		ix
INTRODUCTION			1
Objectiv Backgrou			1 1
METHODS			2
Faciliti Subject	lection Flights es and Instrumentation Pilots Pilot Briefings	•	2 6 9 10
DATA PROCESSI	NG AND ANALYSIS		10
Source o Analysis	f Data Procedures		10 11
RESULTS			12
Data Plo Pilot Qu	ts estionnaires		12 61
CONCLUSIONS			69
RECOMMENDATIO	ons		69
APPENDIX	Accession For MINS GIVER DEFC TAB Unincounced Februication By Distribution/ Availability Codes Avail and/or Dick Special	MSAECTEO	•

LIST OF ILLUSTRATIONS

Figure		Page
1	Kirkland AFB Auxiliary Field North Traffic Pattern	3
2	Kirkland AFB Auxiliary Field West Traffic Pattern	4
3	Kirkland AFB Auxillary Field South Traffic Pattern	5
4	Modified Cooper-Harper Rating Scale	7
5	Sample Individual Plot Formats (7 Sheets)	13
6	7.125° Composite Approach Plot	20
7	8.0° Composite Approach Plot	21
8	10.0° Composite Approach Plot	22
9	7.125° Composite Departure Plot	23
10	10.0° Composite Departure Plot	24
11	12.0° Composite Departure Plot	25
12	7.125° Composite Approach Plot of Minimum Vertical Error (Maximum Undershoot)	26
13	8.0° Composite Approach Plot of Minimum Vertical Error (Maximum Undershoot)	27
14	10.0° Composite Approach Plot of Minimum Vertical Error (Maximum Undershoot)	28
15	7.125° Composite Approach Plot of Maximum Vertical Error (Maximum Overshoot)	29
16	8.0° Composite Approach Plot of Maximum Vertical Error (Maximum Overshoot)	30
17	10.0° Composite Approach Plot of Maximum Vertical Error (Maximum Overshoot)	31
18	Pilot Choice Composite Departure Plot	62

LIST OF TABLES

Table		Page
1	Flight Test Approach and Departure Order	8
2	Test Environmental Conditions	8
3	Subject Pilot Affiliation	9
4	Subject Pilot Experience	10
5	Data Collection Parameters	11
6	7.125° Approaches: Heading Data	33
7	7.125° Approaches: Roll Data	34
8	7.125° Approaches: Pitch Data	35
9	7.125° Approaches: Peak Positive/Negative Data	36
10	8.0° Approaches: Heading Data	37
11	8.0° Approaches: Roll Data	38
12	8.0° Approaches: Pitch Data	39
13	8.0° Approaches: Peak Positive/Negative Data	40
14	10.0° Approaches: Heading Data	42
15	10.0° Approaches: Roll Data	43
16	10.0° Approaches: Pitch Data	44
17	10.0° Approaches: Peak Positive/Negative Data	45
18	Pilot Choice Approaches	45
19	Pilot Choice Approaches: Heading Data	46
20	Pilot Choice Approaches: Roll Data	47
21	Pilot Choice Approaches: Pitch Data	48
22	Pilot Choice Approaches: Peak Positive/Negative Data	49
23	7.125° Departures: Heading Data	50
24	7.125° Departures: Roll Data	51

LIST OF TABLES (CONTINUED)

Table		Page
25	7.125° Departures: Pitch Data	52
26	7.125° Departures: Peak Positive/Negative Data	53
27	10.0° Departures: Heading Data	54
28	10.0° Departures: Roll Data	55
29	10.0° Departures: Pitch Data	56
30	10.0° Departures: Peak Positive/Negative Data	57
31	12.0° Departures: Heading Data	58
32	12.0° Departures: Roll Data	59
33	12.0° Departures: Pitch Data	60
34	12.0° Departures: Peak Positive/Negative Data	61
35	Pilots Choice Departures: Heading Data	63
36	Pilots Choice Departures: Roll Data	64
37	Pilots Choice Departures: Pitch Data	65
38	Pilots Choice Departures: Peak Positive/Negative Data	66
39	Cooper-Harper Inflight Questionnaire Ratings	66
40	Cooper-Harper Post-Flight Ratings for Safety Margin	67
41	Post-Flight Ratings for Workload	68
42	Cooper-Harper Post-Flight Ratings for Control Margin	68
43	Summary Table	70

EXECUTIVE SUMMARY

During the summer of 1988 flight tests were conducted at Kirkland Air Force Base, Albuquerque, New Mexico, at an auxiliary landing field. The purpose of these flights was to examine, under hot climate and/or high altitude conditions, the current heliport approach/departure surface criteria as defined in the Heliport Design Guide and to verify or modify these surfaces, if appropriate.

Flight activities were conducted using a Bell UH-1 helicopter. A total of 187 data runs were completed. Three different approach angles, 7.125°, 8.0° and 10.0°, and three departure angles, 7.125°, 10.0°, and 12.0°, were flown for straight—in procedures. In addition to these procedures, the pilots were able to choose any angle of approach and departure. All maneuvers were tracked by an onboard Global Positioning System (GPS) to provide accurate three-dimensional position information. Pilot opinions were also collected using both an inflight and a post-flight rating system. The inflight rating system was based on the pilot's immediate recall of what occurred during the test run. The post-flight system was based on the pilot's opinion of the flight test.

This report documents the results of this activity. The flight test profiles, pilot questionnaires, and ratings are described. Data evaluation and analysis methods are explained. The initial data analysis was accomplished by plotting radar altitude vs range, magnetic heading vs range, vertical gyro pitch vs range, and vertical gyro roll vs range for individual approaches and departures. Summary statistics were calculated and composite plots were created for in-depth analysis of pilot performance. Analysis of the pilot subjective opinions concerning the acceptability and perceived workload, and safety and control margins associated with the procedures flown were also conducted.

According to the flight data, the pilots had no difficulty maintaining consistent angles of approach and departure. However, from the subjective data, the pilots had to work harder to maintain consistent angles of departure and the steeper angles of approach. This was due to aircraft limitations.

It is recommended that part 77 surfaces for visual flight rules (VFR) heliports be revised to include an acceleration area on the order of 200 feet followed by an 8 to 1 or steeper surface.

INTRODUCTION

OBJECTIVES.

The Federal Aviation Administration (FAA) Technical Center's Heliport visual approach/departure surface testing was designed to provide data to validate the current approach/departure surface criteria as defined in the FAA Heliport Design Advisory Circular AC 150/5390-2 dated January 4, 1988. A second objective was to provide data to validate analytical studies of aircraft performance in hot/high altitudes conditions.

The flight test objectives addressed were:

- 1. The determination of the airspace consumed during visual approaches and departures for hot climate and/or high altitude heliport locations. For purposes of this report, hot/high altitudes are defined as density altitudes in excess of 6000 feet with temperatures in excess of 80°F.
- 2. The verification or modification of the current FAA Heliport Design Advisory Circular visual approach/departure path surfaces for hot climate and/or high altitude locations. Specific issues addressed are the performance of the pilot and his perception in flying fixed angle approaches and departures in hot/high altitude conditions.

BACKGROUND.

The focus of this test is the issue of airspace and obstruction protection in a hot climate and/or high altitude environment for visual approaches and departures at a heliport. AC 150/5390-2 (January 4, 1988) states:

"The approach surface is an FAR Part 77 Subpart C heliport imaginary surface which is centered on each designated approach and departure route." The approach surface also serves as a departure surface. FAR 77.29(b) defines the approach surface as follows: "the approach surface begins at each end of the heliport primary surface with the same width as the primary surface, and extends outward and upward for a horizontal distance of 4,000 feet where its width is 500 feet. The slope of the approach is 8 to 1 for civil heliports...." The transition surfaces are FAR 77 subpart C heliport imaginary surfaces which extend outward from the lateral boundaries of the primary and approach surfaces. FAR 77.29(c) defines the transitional surfaces as follows: "These surfaces extend outward and upward from the lateral boundaries of the heliport primary surface and from the approach surfaces at a slope of 2 to 1 for a distance of 250 feet measured horizontally from the centerline of the primary and approach surfaces."

The criteria for visual flight rules (VFR) heliport approach and departure surfaces has remained unchanged for a decade or more. Prior to this test, flight tests were conducted at the FAA Technical Center under mean sea level (m.s.l.) and relatively cool climate conditions. Because a helicopter's engine and rotor systems' performance deteriorate with increasing density altitude, it was necessary to conduct further flight tests under hot climate and/or high altitude conditions. Some portions of the rotorcraft industry have argued that the minimum VFR heliport approach and departure airspace is

excessive. However, there has been a concern expressed that insufficient data are available to define the minimum required airspace for hot climate and high altitude.

The data collected during this study were designed to measure pilot performance and pilot perception of safety and aircraft control margins associated with various approach and departure surfaces. These tests were not designed to address operational issues such as Category A departure requirements and emergency operations protection. The specific protected airspace issues addressed were surface slope, penetrations of the slope, and the location of the slope penetrations.

METHODS

DATA COLLECTION FLIGHTS.

TEST LOCATION. The flight tests were conducted at Kirtland Air Force Base (AFB), Albuquerque, New Mexico, at an auxiliary landing field. The field is located 6 miles southeast of the Albuquerque International Airport with a field elevation of 5360 feet m.s.l. Figure 1 shows the north traffic pattern for Kirkland AFB auxillary field. This approach was made to slide B. Figure 2 shows the west traffic pattern for Kirkland AFB auxillary field. This approach was made to pad 2. Figure 3 shows the south traffic pattern for Kirkland AFB auxillary. This approach was made to pad 5. For all these patterns, the 7.125° approach was initiated 4000 feet from the helipad. The 8° approach was initiated 3557.7 feet from the helipad, and the 10° approach was initiated 2835.6 feet from the helipad. The 12° departures, for all the patterns, were concluded 470.5 feet from the helipad. The 10° departures were concluded 567.1 feet from the helipad and the 7.125° departures were concluded 711.5 feet from the helipad. The terrain at the flight test location is characterized as nearly level, which permitted the use of radar altitude data in determining the aircraft's height above the ground.

<u>FLIGHT TEST PROCEDURES</u>. A cross section of subject pilots from the private sector, the military, and the FAA were used during these tests. Each subject pilot was asked to fly nine approaches and nine departures, using one of three approach or departure angles.

Each approach started at a specified distance from the helipad and at an altitude of 500 feet above ground level (AGL). The distance to the helipad specified the reference approach angle to be flown (see figures 1-3). These surveyed locations resulted in constant approach angles of 7.125°, 8°, and 10°. The approach was terminated with either a low hover or a landing.

Each subject pilot flew each approach angle at least twice during a flight. In addition, the subject pilot was allowed to fly three approaches using an approach angle of his choice. This yielded a total of nine approaches. The scenarios flown did not include curved approaches due to decreased fuel loads necessitated by high density altitude. In addition, curved approach procedures were restricted because of traffic pattern at the heliport.

The departures also consisted of three different angles: 7.125°, 10°, or 12°.

FIGURE 1. KIRKLAND AFB AUXILIARY FIELD NORTH TRAFFIC PATTERN

FIGURE 2. KIRKLAND AFB AUXILIARY FIELD WEST TRAFFIC PATTERN

FIGURE 3. KIRKLAND AFB AUXILIARY FIELD SOUTH TRAFFIC FATTERN

The pilot was asked to fly the departure so that he would clear a simulated obstacle 100 feet AGL in height at a specified distance from the heliport (see figures 1-3). The departure began either from the ground or a low hover. As with the approaches, each departure angle was flown twice. The pilot also flew three departure angles of personal choice, yielding a total of nine departures. Curved departures were not flown for the same reasons the curved approaches were not flown. The 7.125° angles set-up approaches and departures that vertically paralleled the current approach/departure surface requirements. Test runs at this angle allowed for measurement of pilot performance against the current standard.

A safety pilot flew on each flight. Except for the pilot choice procedures, the safety pilot told the subject when to initiate the approach and which 100 feet simulated obstacle to clear during the departure. For each approach the safety pilot gave a countdown so that the subject pilot could initiate the approach as close as possible to the surveyed location. To aid in data collection the safety pilot also announced when the aircraft was above each surveyed point in the approaches and departures.

Following each maneuver the safety pilot took the controls while the subject rated the maneuver using a modified version of the Cooper-Harper Rating Scale (figure 4). Subject pilots were thoroughly briefed on the use of the Cooper-Harper Rating Scale during the subject pilot briefing sessions prior to the data collection flight.

A rating between 1 and 3 for the procedure just flown indicates the subject would routinely perform the maneuver. A characteristic rating of 4 to 6 should be interpreted as a subject being willing to only rarely conduct the maneuver. Ratings in excess of 6 indicates the subject felt the maneuver should never be attempted.

Table 1 identifies the order in which the approaches and departures were flown during a particular flight. The pilot choice maneuvers were flown both at the beginning and end of each flight in order to evaluate any change in pilot perceptions during the conducted flight.

FACILITIES AND INSTRUMENTATION.

TEST AIRCRAFT.

<u>Bell UH-1H</u>. The UH-1H used for this project was assigned to, and maintained by, the Department of the Army, U.S. Army Communications and Electronics Command (CECOM), Fort Monmouth, N.J., and was obtained by an Interagency Agreement. It is a single engine helicopter equipped with electromechanical displays representative of civil instrument flight rules (IFR) certified helicopters. The aircraft was designed to carry up to 14 passengers and a pilot, is capable of speeds up to 120 knots, and has a rotor diameter of 48 feet.

The aircraft was flown at maximum gross weight for in-ground effect hover capability, for the density altitude conditions which were present. Depending on the density altitude conditions present, the fuel load was varied from 8100 to 8400 pounds to obtain maximum gross weight. This test consisted of 198

FIGURE 4. MODIFIED COOPER-HARPER RATING SCALE

test runs and was conducted between August 9 and August 16, 1988. The environmental conditions present for each flight are presented in table 2.

TABLE 1. FLIGHT TEST APPROACH AND DEPARTURE ORDER

Run	Maneuver	<u>Angle</u>
1	Departure	Pilot's Choice
2	Approach	Pilot's Choice
3	Departure	Pilot's Choice
4	Approach	Pilot's Choice
5	Departure	7.125°
6	Approach	7.125°
7	Departure	7.125°
8	Approach	7.125°
9	Departure	10 °
10	Approach	8*
11	Departure	10°
12	Approach	8*
13	Departure	12 °
14	Approach	10°
15	Departure	12 °
16	Approach	10°
17	Departure	Pilot's Choice
18	Approach	Pilot's Choice

TABLE 2. TEST ENVIRONMENTAL CONDITIONS

Flight	Wind Condi	tions	Density Altitude	Temperature
Number	Direction	<u>Speed</u>	(ft)	(°F)
1	210	8	8300	92-98
2	170	11	8150	92-98
3	190	5	8300	92-98
4	360	5	8300	92-98
5	360	5	8300	92-98
6	360	5	8100	92-98
7	230	10	8900	92-98
8	230	10	8200	92-98
9	200	15	7200	92-98
10	100	10	7400	92-98
11	Calm		6700	84
12	Calm		6700	84

AIRCRAFT TRACKING.

Global Positioning System. Precision tracking of the aircraft was accomplished by an onboard Global Positioning System (GPS) receiver. The receiver was manufactured by Collins Radio under the U.S. Air Force GPS User Equipment development contract. This receiver was provided by the GPS Joint Program Office to the U.S. Army Avionics Research and Development Activity (AVRADA), Fort Monmouth, New Jersey.

GPS accuracy was the topic of a Department of the Army Flight Test Program conducted at the FAA Technical Center in December 1986 and January 1987. The flight tests were conducted in the same UH-1H helicopter used for these tests. The GPS accuracy results are described in the AVSCOM Test Report 8412, "Report of Investigative Testing of the Global Positioning System Slant Range Accuracy." During the hot/high altitude test period, the GPS constellation had six operating satellites that provided 2- to 4- hour intervals of four-satellite coverage over selected geographical areas. For the purpose of GPS, the masking angle is the minimum angle of satellite elevation at which that satellite's signal is usable. For this test a 5° or better masking angle was needed. The four-satellite coverage period began shortly after noon at the test locations. This resulted in the best satellite coverage when the density altitude conditions were approaching their peak.

SUBJECT PILOTS.

The selection of pilots participating in this project was based primarily on the qualifications and availability of the individuals. Subjects were obtained from industry, military, and government agencies. In order to comply with the operating procedures of the Department of Army, all the pilots were required to be qualified and current in the aircraft, in accordance with provisions of Army Regulation 95-1. The affiliations of the subject pilots are listed in table 3.

Subject pilot total helicopter experience ranged from 1000 to 7800 hours with time in type over the last 6 months ranging from 20 to 130 hours. The subject pilots were questioned about the percentage of their rotorcraft flight time conducted under high density altitude conditions. A summary of the UH-1H subject pilots experience is presented in table 4.

TABLE 3. SUBJECT PILOT AFFILIATION

<u>Affiliation</u>	Number
FAA	3
Military	1
Industry	3

TABLE 4. SUBJECT PILOT EXPERIENCE

Total Flight <u>Hours</u>	Number of <u>Pilots</u>	Total Helicopter Hours	Number of Pilots
0-5000	2	0-2500	4
5001-10000	4	2501-5000	1
>10000	1	>5000	2
Total Time in	Number of	Total Helicopter	Number of
<u>UH-1H</u>	<u> Pilots</u>	Hours Last 6 Months	Pilots
0-1000	2	0-50	3
1001-2500	2	51-100	2
>2500	3	>100	2
Total '	Time in UH-1H	Number of	
Las	t 6 Months_	<u> Pilots</u>	
	0-50	4	
	51-100	2	
>100		1	
High Densi	ty Altitude Flight		
	a Percentage of	Number of	
	Flight Time	<u>Pilots</u>	
	0-10	3	
	11-20	2	
	>20	2	

SUBJECT PILOT BRIEFINGS.

Each subject received a project information packet and a preflight briefing which explained the purpose of the test flight activities and the flight profiles (see appendix A for a sample of the information packet). This included a detailed description of the approaches and departures which were to be flown. In addition to the above information, the responsibilities of the subject pilot and safety pilot were defined. Local area conditions and aircraft operating information were also discussed. This included planned maximum gross weight, density altitude, and wind conditions.

In most cases, when the premission briefing was completed, an approach and departure procedure was flown to familiarize the subject pilot with test procedures and data collection activities.

DATA PROCESSING AND ANALYSIS

SOURCE OF DATA.

Test data came from four sources: in-flight pilot ratings of the procedures, observer flight logs, post-flight questionnaire and ratings, and the airborne data collection tape.

<u>IN-FLIGHT PILOT RATINGS</u>. The in-flight questionnaire was designed to provide immediate subject response following a particular maneuver. Each subject pilot was asked to rate each approach and departure using his perception of pilot workload, safety margin, and control margin (aircraft controllability/flyability). This rating was obtained after each procedure was flown, using a modified version of the Cooper-Harper Rating Scale (figure 4). Pilot responses were recorded on an observer log by the data technician.

OBSERVER FLIGHT LOG. The data technician was responsible for filling in the observer log during each flight. Pilot name, flight date, and start/stop times for each approach/departure available were recorded. Subject pilot comments, aircraft parameters (such as torque and maximum gross weight) and local weather and wind conditions were also noted. See appendix B for a sample observer log.

<u>POST-FLIGHT QUESTIONNAIRE</u>. At the conclusion of the last flight, each pilot was given a post-flight questionnaire to complete (see appendix C). This questionnaire asked for the subject's opinion about issues such as the suitability of the approach/departure, control and safety margins, and workload. The post-flight questionnaire was designed to provide comparative subject pilot measures across all test profiles. Pilot background information was also collected such as the number of flight hours and aircraft experience. Other questions asked for the subject pilot input regarding the publication of maneuver and surface information and heliport factors. This information was analyzed and correlated with pilot performance.

AIRBORNE DATA COLLECTION TAPE. Airborne data were collected onboard the UH-1H helicopter. These data focused on aircraft state and control positions. The data collected are presented in table 5. The data collection system is based on a Motorola 6809 microprocessor package which is a combination of an off the shelf data package and FAA designed and built interface boards. The information is stored utilizing a Kennedy magnetic tape recorder.

TABLE 5. DATA COLLECTION PARAMETERS

<u>Parameters</u>	<u>Units</u>	Minimum Sample Rate/Second	Resolution <u>Level</u>
Time	Hours/minutes/seconds	5	0.001 sec
Aircraft Heading	Degrees	5	0.022 deg
Radar Altitude	Feet	5	1.732 ft
Vertical Gyro Pitch	Degrees	5	0.022 deg
Vertical Gyro Roll	Degrees	5	0.022 deg
GPS Time	Hours/minutes/seconds	1	10E-39 sec
Position (x,y,z)	Feet	1	10E-39 m
Standardized Figure of Merit	••	1	10E-39

ANALYSIS PROCEDURES.

FLIGHT DATA. Flight data were provided from two possible sources: the airborne data collection tape and the observer flight logs. The observer logs chronologically listed specific events that occurred during the various

approaches and departures, along with wind information and other miscellaneous information and comments.

STATISTICS. Statistical calculations were performed on the airborne data. The arithmetic mean and the unbiased estimate of the standard deviation for the magnetic heading were calculated on a per run basis. Overall statistics were calculated for magnetic heading, vertical gyro (VG) pitch and VG roll. All plotting done for the project was accomplished using a California Computer (Calcomp) 1051 drum plotter using Calcomp 907 software for the VAX 11/750 computer. The formulas used can be found in Theory and Problems of Statistics, by Murray R. Spiegel, Ph.D, Schaun Publishing Company, New York, 1961. Examples of the types of plots compiled are described below.

FLIGHT DATA PLOTS. The plots were prepared on a per run basis in which each individual run of a particular flight was plotted separately. All plots depict the final approach take off area (FATO) as a square. Plots were generated for several parameters of interest in both the time domain and range domain. Radar altitude in feet and pitch and roll in degrees were plotted. Magnetic heading in degrees versus time in seconds were also plotted, with the dotted line representing the intended flightpath. Peak negative and positive magnetic headings for all 7.125° runs were calculated by subtracting the course heading for each run from the peak positive and negative headings for that run, then all peak positive and negative headings were averaged together. Other plots were generated for radar altitude in feet versus range in feet and VG pitch and roll attitude in degrees versus range in feet. Magnetic heading in degrees was plotted versus range in feet with the dotted line representing the intended flightpath. Examples of these plots are presented in figure 5.

Composite plots of radar altitude in feet versus range in feet for the 7.125° approaches, 8° approaches and 10° approaches were also generated along with composite pilots for the 7.125°, 10°, and 12° departures. The dashed line depicts the reference surface. These plots show how the subject pilots flew compared to the actual angle (see figures 6 through 11).

Plots of maximum undershoot and overshoot in feet versus range from the FATO for all approaches were also produced. The maximum undershoot is the largest deviation below the approach surface. These plots present the location of the maximum undershoot point for each approach. The maximum overshoot is the largest deviation above the reference surface for each approach. These plots present the location for the maximum overshoot for each run. Figures 12 through 17 present these plots.

RESULTS

Data resulting from this project will be considered in the updating of the current Heliport Design Guide Advisory Circular.

DATA PLOTS.

Plots for data cases of magnetic heading, roll, and VG pitch for all procedures can be found in division report ACD-330-90-7, "Data for Heliport Visual Approach Surface High Temperature and High Altitude Tests." Approaches

PROCESSING DATE: 14-0CT-1988 13:44:29.73 FLIGHT: 02 RUN NO: 4 RUN START: 13:20:23.0 RUN STOP: 13:21:35.0 DATA PROCESSED BY FAA TECHNICAL CENTER -- ATLANTIC CITY AIRPORT NJ.. 08405 HOT/HIGH ALTITUDE TESTS USING THE UNI
7.125 DEGREE STRAIGHT IN APPROACH
FLIGHT: 02 RUN NO: 4 RUN START: 13:

FIGURE 5. SAMPLE INDIVIDUAL PLOT FORMAT (SHEET 1 OF 7)

PROCESSING DATE: 18-0CT-1988 08:09:02.31 FLIGHT! OI RUN NO! 8 RUN START! 1416.56.0 RUN STOP! 1418.21.0 Data processed by Faa Technical Center -- Atlantic City Airport NJ.. 0840S HOI/HIGH ALTITUDE TESTS USING THE UHI 8.000 DEGREE STRAIGHT IN APPROACH

FIGURE 5. SAMPLE INDIVIDUAL PLOT FORMAT (SHEET 2 OF 7)

PROCESSING DATE: 14-0CT-1988 10:13:39.56 HOT/HIGH ALTITUDE TESTS USING THE UHI
7.125 DEGREE STRAIGHT IN APPROACH
FLIGHT: 10 RUN NO: 5 RUN START: 8:5:11.0 RUN STOP: 8:6:16.0
DATA PROCESSED BY FAA TECHNICAL CENTER -- ATLANTIC CITY AIRPORT NJ.. 08405

FIGURE 5. SAMPLE INDIVIDUAL PLOT FORMATS (SHEET 3 OF 7)

FIGURE 5. SAMPLE INDIVIDUAL PLOT FORMATS (SHEET 4 OF 7)

FIGURE 5. SAMPLE INDIVIDUAL PLOT FORMATS (SHEET 5 OF 7)

FIGURE 5. SAMPLE INDIVIDUAL PLOT FORMATS (SHEET 7 OF 7)

FIGURE 6. 7.125° COMPOSITE APPROACH PLOT

FIGURE 7. 8.0° COMPOSITE APPROACH PLOT

FIGURE 8. 10.0° COMPOSITE APPROACH PLOT

FIGURE 9. 7.125° COMPOSITE APPROACH PLOT

FIGURE 10. 10.0° COMPOSITE DEPARTURE PLOT

FIGURE 11. 12.0 COMPOSITE DEPARTURE PLOT

FIGURE 12. 7.125° COMPOSITE APPROACH PLOT OF MINIMUM VERTICAL ERROR (MAXIMUM UNDERSHOOT)

FIGURE 13. 8.0° COMPOSITE APPROACH PLOT OF HINIHUM VERTICAL ERROR (MAXIMUM UNDERSHOOT)

FIGURE 14. 10.0° COMPOSITE APPROACH PLOT OF MINIMUM VERTICAL ERROR (MAXIMUM UNDERSHOOT)

FIGURE 15. 7.125° COMPOSITE APPROACH PLOT OF MAXIMUM VERTICAL ERROR (MAXIMUM OVERSHOOT)

VERTICAL ERROR (MAXIMUM OVERSHOOT)

and departures were oriented so the pilot was always flying with a head wind. Three FATO's were used to support this orientation. The first FATO had a course headings of 160°, the second heading was 250° and the third heading was 340°. It must be remembered that for all approaches, there were no obstacles to aid in defining the desired surface. A negative number for VG pitch indicates the aircraft moved down while a positive number indicates up. A negative number for VG roll indicates the aircraft moved left and positive indicates right. Large variations in magnetic heading, VG pitch, and VG roll implies increased pilot workload. A positive undershoot indicates the pilot never operated below the reference angle.

APPROACHES.

7.125° Approaches. Figure 6 presents the composite 7.125° approach results. All but one approach were initiated above the reference surface. However, pilots did not maintain a consistent approach angle to touchdown. With the exception of one approach, all resulted in penetration of the 7.125° approach surface. The initial penetration points ranged from 1600 to 2800 feet from the FATO. The maximum penetration was 70 feet.

Figure 12 shows the plot of maximum undershoot for the 7.125° approaches. For one run, the pilot never operated below the reference surface resulting in a positive undershoot. The remaining runs had errors ranging from -15 to -83 feet. These undershoots occurred between 983 and 1760 feet from the FATO. Figure 15 shows the plot for the maximum overshoot for the 7.125° approaches. Results show a majority of maximum overshoots occurred very early in the approach between 3500 and 4000 feet from the FATO. The errors ranged from 45 to 165 feet. The one exception occurred right at the FATO (20 feet).

Tables 6, 7, and 8 show the magnetic heading, VG roll, and VG pitch data for all 7.125° approaches. Table 9 lists the mean values for these data. The standard deviation for magnetic heading for each run ranged from 1.50° to 4.68°. The large standard deviation of 4.68° occurred because the peak positive heading was 192° and the peak negative heading was 164°. The peak positive heading occurred at the beginning of the run and the event mark may have been cued before the actual start of the run. The mean peak positive magnetic heading for all 7.125° runs is 7.81° and the mean peak negative magnetic heading is -4.60°. Lateral heading changes were minimal for all 7.125° approaches. This indicates pilots had little difficulty in maintaining their course.

The 7.125° approach data for VG roll show the peak positive roll events occurring between 4.57° and 11.23°. All the peak positive VG roll angles occurred near the beginning of the runs in the range of 3114 to 2332 feet from the FATO. The mean peak positive VG roll angle for all 7.125° runs is 8°. The peak negative VG roll angle occurred between -3° and -6°. All peak negative VG roll angles occurred in the end of the runs from 40 to 1557 feet from the FATO. This is representative of a single rotor helicopter with the tail rotor below the main rotor disc. The mean peak negative VG roll angle for all 7.125° runs is -4.67°.

TABLE 6. 7.125 APPROACHES: HEADING DATA

—			
		# of Points	372 331 342 342 342 343 343 354 367
	rse Heading Statistics	Std Dev (Deg)	1.52 2.99 2.10 1.75 1.77 2.26 2.54 2.02 1.60 1.60 3.09
	Course Sta	Mean (Deg)	163.70 162.01 165.58 163.92 346.71 343.54 347.07 256.72 165.03 164.34 157.19
	ve	Range (Ft)	2151.65 825.80 899.59 456.69 1689.39 3916.69 897.11 2404.70 3954.96 3954.96 39538
Approaches	Peak Negative Heading	Alt (Ft)	256.15 76.49 70.22 57.24 200.31 592.76 66.43 524.33 26.46 524.37 49.22 535.04
1	Pea]	Value (Deg)	161.00 155.29 160.61 159.90 341.66 343.12 343.12 252.11 161.44 160.96 153.84
7.125*	eak Positive Heading	Range (Ft)	419.89 3546.91 3547.87 1229.99 57.37 296.83 296.83 403.28 403.28 403.28 420.50
		Alt (Ft)	45.55 513.65 612.54 551.02 136.35 27.63 30.24 34.84 28.07 88.98 528.30 51.28 45.35
	Pea H	Value (Deg)	167.20 169.97 170.72 167.60 354.49 352.13 355.43 351.08 262.81 170.28 170.89
		Run	404008087857087
		Flight	01 02 04 04 05 05 06 09 09

TABLE 7. 7.125° APPROACHES: ROLL DATA

			7.125° Approaches	proaches			
		Peak Po	Peak Positive Roll	1	Peak	Peak Negative Roll	Roll
	Run	Value (deg)	Altitude (ft)	Range (ft)	Value (deg)	Altitude (ft)	Range (ft)
	4	7.76	380.72	2852.72	-4.31	67.19	866.02
	9	9.59	409.04	3114.60	-4.09	67.97	1196.46
	4	8.46	394.50	2963.23	-4.61	53.03	416.45
	9	90.6	372.89	2762.03	-3.93	27.08	156.60
	9	8.46	358.44	2518.61	-5.24	53.74	403.00
	œ	8.02	388.53	2641.62	-5.43	49.14	342.67
	7	11.23	297.25	2509.55	-4.63	44.24	261.93
	œ	9.16	293.88	2638.60	-5.05	40.95	365.84
	ß	9.64	323.40	2533.09	-4.44	41.29	219.87
	7	7.89	390.38	2910.67	-4.00	29.21	40.02
	9	4.57	306.78	2495.33	-6.11	47.34	362.82
	æ	4.64	325.13	2694.86	-5.78	133.89	1557.76
	7	9.44	510.74	3084.48	-3.79	121.03	550.90
11	7	•	10.7	•	-3	•	.79 121.

TABLE 8. 7.125° APPROACHES: PITCH DATA

			7.125° 1	Approaches	SS		
		Peak Po	Peak Positive Pitch	tch	Peak	Peak Negative	Pitch
Flight	Run	Value (deg)	Altitude (ft)	Range (ft)	Value (deg)	Altitude (ft)	Range (ft)
01	4	7.76	60.50	728.03	1.43	420.93	3075.79
01	9	9.59	56.72	1006.65	0.02	25.46	35.46
02	4	8.46	52.25	403.70	2.70	194.17	1747.19
02	9	90.6	53.33	608.74	1.05	627.46	3978.56
04	9	8.46	51.65	370.91	<u>'</u>	106.64	993.62
04	ω	8.02	47.63	319.53	-3.59	133.18	1248.31
05	9	6.61	57.18	578.90		580.97	3864.53
05	∞	5.47	43.24	456.38	<u> </u>	116.04	1506.73
90	7	11.23	38.59	180.50	1.69	232.04	1962.09
07	∞	9.16	42.32	388.25	1.03	125.17	1378.50
80	വ	9.97	45.20	276.29	1.52	194.17	1653.07
80	7	7.89	65.76	641.54	2.94	344.90	2672.41
60	9	8.82	564.83	3902.54	0.79	242.52	2159.78
60	œ	4.90	470.07	3476.15	-1.12	43.92	390.76
11	7	9.03	72.34	13.72	3.05	608.19	3759.91

The 7.125° data for VG pitch show the peak positive VG pitch angles occurred between 4° and 11°. The majority of the peak positive VG pitch angles occurred near the end of the runs in the range of 13 to 608 feet from the FATO. On flight 9, the peak positive VG pitch applications occurred early in the approach. The reason for this was the presence of a 15-knot tail wind at 500 feet AGL. The mean peak positive VG pitch angle for all 7.125° runs is 8.30°. The peak negative VG pitch angles occurred between $\pm 3^\circ$. The majority of the peak negative VG pitch angles occurred near the beginning of the run in the range of 1248 to 3978 feet from the FATO. There were two runs, however, in which the peak negative VG pitch angles were at the end of the run between 35 and 390 feet from the FATO. The peak negative VG pitch angle for all 7.125° runs is 0.57°.

TABLE 9. 7.125° APPROACHES: PEAK POSITIVE/NEGATIVE DATA

	7.125°	Approache	es	
		Positive Data	i	Negative ata
Parameter	Va: Mean	lue Count	Va: Mean	Lue
Heading (Deg) VG Roll (Deg) VG Pitch (Deg)	7.81 8.00 8.30	15 15 15	-4.60 -4.67 0.57	15 15 15

<u>8° Approaches</u>. Figure 7 presents the composite 8° approach results. This plot shows trends similar to the 7.125° composite approach plot. All but one of the approaches were initiated above the reference surface. However, pilots did not maintain a consistent approach angle to touchdown. All the approaches except one resulted in penetration of the 8° approach surface. The initial penetration point ranged from 200 to 2500 feet from FATO with penetration amounts as large as 70 feet.

Figure 13 shows the plot of maximum undershoot for the 8° approaches. This indicates four runs were flown above the surface throughout the approach. The errors ranged from 42 to 45 feet AGL occurring 800 to 1200 feet from the FATO. The maximum undershoot for the remaining runs was -71 feet. All undershoots occurred between 711 and 1700 feet from the FATO. Figure 16 presents a plot for the maximum overshoot for the 8° approaches. The overshoots ranged from 30 to 190 feet AGL and occurred 2400 to 3600 feet from the FATO very early in the approach.

Tables 10, 11, and 12 show the magnetic heading, VG roll, and VG pitch data for the 8° approaches. Table 13 presents the mean values for these data. The standard deviation of the magnetic heading ranged from 0.83° to 3.28°. The mean peak positive magnetic heading for all 8° approaches is 5.91°, and the mean peak negative magnetic heading is -4.89°. Lateral heading changes were minimal for all the 8° approaches. This indicates pilots had little difficulty in laterally tracking the FATO during the approaches.

TABLE 10. 8.0 APPROACHES: HEADING DATA

				8 . A	Approaches	sət				
		Pea He	ak Positive eading	lve	Peak Head	eak Negative Heading	lve	Course Stat	urse Heading Statistics	סנ
Flight	Run	Value (deg)	Alt (ft)	Range (ft)	Value (deg)	A1t (ft)	Range (ft)	Mean (deg)	Std Dev (deg)	# of Points
01	8	67.5	5	9	58.3	03.	N.	163.59		(1)
01	10	167.33	1.0	728.6	57.6	199.21	1	162.79	•	339
02	ω	68.5	8.1		55.0	?	m	φ.		m
02		68.0	7.7	20.7		57.88	554.49	5.5	۳,	362
03		57.2	8.6	127.9	50.0	78.0	3481.20	4.3	3	S
04	10	43.9	57.	43.0	35.7	φ.	2209.74	9.6	æ	~
04		54.8	2.1	396.50	۳.		835.65	φ.	φ.	9
05		51.1	6.4	003.2	က		8.0	7.		366
90	6	55.7	30.9	7.3	7		933.38		٦.	$\boldsymbol{\leftarrow}$
90		53.8	<u>ي</u>	35.69	342.11	1.6	694.22	7.4	ദ	4
07	10	63.7	1.5	626.3	55.2	5.4	1358.87	.5	٦.	0
07		64.0	46.2	26.6	8.3	22.	2371.64	4.	7	254
80	0	68.8	3	S	8.2	7.2		162.88	7	9
80	11	6.69	43.35	69.8	159.03	162.57	1448.49	163.66	2.16	347
60		62.6	5.2		۳.	84.39	115.67	160.06	1.51	S
11	6	75.8	71.1	3544.33	163.33	177.93	946.55	165.25	1.89	~
11	11	67.9	629.97	3543.48	162.45	590.29	3072.82	164.07	0.83	က

TABLE 11. 8° APPROACHES: ROLL DATA

,		i ·	<i>t</i> .8	Approaches	SS		
		Peak Po	Positive Roll	11	Peak	k Negative	Roll
Flight	Run	Value (deg)	Altitude (ft)	Range (ft)	Value (deg)	Altitude (ft)	Range (ft)
01	8	•	388.16	514.	رى د	39.25	9
07	0 8	9.21	424.99	2421.46	-5.24	75.11 35.45	711.86 291.84
02	10	•		379.9	ന	9.	۳.
03	12	9.12	•	2516.64	-4.47	99.31	•
04	10	7.80	419.08	2171.01	-4.70	159.11	745.38
04	12	7.93	323.97	2153.77	-4.44		176.75
05	10	6.57	312.94	2090.22	-5.08	55.43	439.37
90	O	10.97	21.	2494.31	-4.92	46.91	254.66
90	11	12.42	453.11	2956.47	-6.39	27.15	49.95
07	10	10.17	442.52	2450.19	-4.97	64.37	534.84
07	12	10.57	364.78	2615.76	-7.01	249.36	1983.12
80	O	13.13	435.01	2866.46	-4.63	60.82	475.51
80	11	6.61	402.83	2665.28	-4.00	161.52	1439.71
60	10	4.81	434.33	2474.07	-6.02	150.91	673.07
11	6	11.07	565.65	2901.16	-4.22	77.37	66.17
11	11	9.73	550.48	2858.94	-4.53	352.44	1903.70

TABLE 12. 8° APPROACHES: PITCH DATA

			8° A	Approaches			
		Peak Po	Positive Pit	Pitch	Peak	Peak Negative	Pitch
Flight	Run	Value (deg)	Altitude (ft)	Range (ft)	Value (deg)	Altitude (ft)	Range (ft)
0.1	8	98*9	57.01	818.22	60.0-	26.46	40.43
01	10	5.65	52.35	374.01	-0.92	613.85	3342.81
02	8	9.21	64.56	824.35	00.0		3496.29
02	10	7.67	49.57	0	•	355.91	2281.81
03	12	9.12	55.64	606.71	1.96	559.07	3318.92
05	10	•	34.82	159.35	•	264.59	1819.81
90	6	9.12	55.64	606.71	1.96	559.07	3318.92
90	11	12.42	30.86	93.01	•	\leftarrow	3342.92
07	10	•	46.47	10	1.93	309.45	1915.19
07	12	10.57	36.74	395.68	1.56	394.81	2793.54
80	6	13.13	111.51	946.06	1.74	138.07	1147.67
80	11	6.61	83.92	901.89	-0.97	23.46	18.50
60	10	4.11	501.18	2927.54	1.52	439.05	2500.14
11	6	8.55	73.34	25.86	-1.32	620.77	3343.33
11	11	8.81	76.19	40.17	1.12	626.36	3500.59

The 8° approach data for VG roll show the peak positive VG roll angles occurred between 5.65° and 13.13°. The angles observed were slightly larger than those observed during the 7.125° approaches. All peak positive VG roll angles occurred near the start of the 10° angle mark in the range of 2901 to 2956 feet from the FATO. The mean peak positive VG roll angle for all 8° approach runs is 8.84°.

TABLE 13. 8° APPROACHES: PEAK POSITIVE/NEGATIVE DATA

	8° A	proaches		
	Peak Dat	Positive ta	Peak No	egative ta
Parameter	Va:	lue	Va:	lue
	Mean	Count	Mean	Count
Heading (Deg)	5.91	17	-4.89	17
VG Roll (Deg)	8.84	17	-4.88	17
VG Pitch (deg)	8.46	17	0.87	17

The peak negative roll angles occurred between -3° and -7°. All but four of these angles occurred near the end of the run in the range of 49 to 770 feet from the FATO. The remaining four runs occurred 1112 to 1983 feet from the FATO. The mean peak negative VG roll angle for all 8° runs is -4.88°.

The positive VG pitch angles observed for the 8° approach data were slightly larger than for the 7.125° approaches. These peak positive VG pitch angles ranged from 4° to 13°. All of these except one occurred near the end of the run between 25 to 946 feet from the FATO. On flight 8, application of peak positive VG pitch occurred at the 10° event mark. The mean peak positive VG pitch angle is 8.46°. The peak negative VG pitch angles occurred between -0.97° and 2.66°. All the runs except two were located near the 10° angle mark in the range of 1147 to 3414 feet from the FATO. Two exceptions occurred near the end of the run. The mean peak negative VG pitch angle for all 8° approach runs is 0.87°.

10° Approaches. Figure 8 presents the composite 10° approach results. All the approaches were initiated above the reference surface. Pilots did not maintain a consistent approach angle to touchdown. With the exception of four approaches, all resulted in penetration of the intended 10° approach surface. The initial penetration points ranged between 200 and 1600 feet from the FATO with penetration amounts as large as 80 feet.

Figure 14 presents the plot of maximum undershoot for the 10° approaches. As with the 8° approach, four pilots remained above the surface throughout the approach. The errors ranged from 40 to 55 feet and occurred between 600 and 900 feet from the FATO. The undershoot for the remaining runs were from -23

to -75 feet and occurred between 536 and 995 feet from the FATO. The steeper angle resulted in smaller undershoot errors, closer to the FATO. Figure 17 presents the plot for the maximum overshoot for the 10° approaches. The overshoots ranged from 90 to 257 feet AGL and occurred 2100 to 2500 feet from the FATO. The largest overshoot errors were observed when the pilot initiated the approach.

Tables 14, 15, and 16 display the magnetic heading, VG roll, and VG pitch data for the 10° approaches. Table 17 lists the mean values for these data. The standard deviation of the magnetic heading ranged from 0.99° to 3.24°. The mean positive magnetic heading for all the 10° approaches is 6.71°. The mean negative magnetic heading for all 10° approaches is -3.92°. The heading analysis indicates the pilots did not experience a workload increase for the lateral tracking task with increasing approach angles.

The peak positive VG roll angles for the 10° approach data ranged from 5° to 14°. All the peak positive VG roll angles occurred near the 10° event mark, 1710 to 2216 feet from the FATO. The mean peak positive VG roll angle for all 10° approaches is 9.06°. The peak negative VG roll angles occurred between -3.76° and -8.00°. All but two of these events occurred near the end of the runs in the range of 83 to 901 feet from the FATO. The two exceptions occurred 1169 feet and 1269 feet from the FATO. The mean peak negative VG roll angle for all 10° runs is -4.80°.

The peak positive VG pitch angles observed for the 10° approach data were slightly larger than the 8° approach positive VG pitch angles. These ranged from 5° to 16° with all the peaks except one occurring near the end of the runs, 36 to 837 feet from the FATO. The exception, flight 2, occurred at 1926 feet from the FATO. The mean peak positive VG pitch angle for all 10° runs is 9.26°. The peak negative VG pitch angles occurred between -5° and +2°. The majority of the peak negative VG pitch angles occurred near the 10° event mark, 1296 to 2820 feet from the FATO. Three negative peaks occurred near the end of the runs, in the range of 22 to 68 feet from the FATO. The mean of the peak negative VG pitch events for all 10° approaches is 0.38°. The increase in peak VG pitch for the steeper approach angles was expected since a higher deceleration rate is required for increasing angles of approach if the approach entry speed is held constant.

<u>Pilot Choice Approaches</u>. For the pilot choice approaches 13 out of 27 approaches were initiated at locations resulting in approaches shallower than 7.125°. The other approaches were evenly distributed among the 7.125°, 8°, and 10° angles with only one pilot initiating an approach after 10°. See table 18 for the starting points of the pilot choice approaches.

TABLE 14. 10.0° APPROACHES: HEADING DATA

				10° AF	10° Approaches	SS				
		реа Не	ak Positive Geading	ıve	Pea} Hea	Peak Negative Heading	ive	Course Stat	urse Heading Statistics	ηg
Flight	Run	Value (deg)	Alt (ft)	Range (ft)	Value (deg)	Alt (ft)	Range (ft)	Mean (deg)	Std dev (deg)	# of Points
01		68.5	39.09	338.60	159.95	84.13	786.17	164.05	1.86	373
01		68.4	80.5	12	161.62	341.78	8	164.89	1.73	333
02		66.5	189.70	•	161.66	۲.	87.87	164.31	1.10	290
02		70.0	12.4		162.46	0.7	۳,	164.82	۲.	308
04		45.5	4.1	59.15	336.36	64.84	473.82	339.92	9.	325
04		40.0	3	0	330.69		545.65	ري.	9.	277
90	13	352.40	.	523.64	342.88	317.11	1410.18	347.58	2.07	265
90		54.4	415.91	1768.68	340.54	84.79	606.67	346.19	.2	251
80		62.9		317.48	7.3	6.9	790.9	9.	٦.	357
80		68.3	ŗ.	125.50	155.14	516.68	2304.18	161.09	3	366
60		71.3	27.81	166.94	157.36	536.69	2372.02	162.35	•	318
11		87.3	21.1		162.81	462.47	1767.86	165.01	•	271
11		67.3	321.31	393.7	163.03	70.34	8.50	164.82	0.99	253
12	4	173.00	629.32	2825.98	158.63	591.96	2334.18	163.00	2.27	280

TABLE 15. 10° APPROACHES: PITCH DATA

			10. 1	Approaches	SS		
		Peak	Peak Positive Roll	Roll	Pea}	Peak Negative Roll	Roll
Flight	Run	Value (deg)	Altitude (ft)	Range (ft)	Value (deg)	Altitude (ft)	Range (ft)
01	12	7.52	357.50	1917.86	-4.64	40.12	351.34
01	14	14.93	480.59	2122.25	-4.92	86.89	901.92
02	12	89.8	519.69	2154.46	-3.76	157.64	1169.76
05	14	8.53	521.19	2125.20	-4.46	36.85	197.35
04	14	6.97	384.49	1710.68	-4.35	80.49	586.23
04	16	•	449.33	1982.37	-4.57	64.84	554.02
90	13	7.36	500.41	2216.06	-8.00	282.56	1269.11
90	15	8.81	475.78	2013.42	-4.79	49.11	326.94
80	13	6.26	384.77	1845.11	-4.00	95.17	704.89
80	15	14.30	408.43	1947.40	-4.75	73.17	565.64
60	14	5.52	3	1975.67	-5.52	48.54	440.84
11	13	9.38	593.28	2109.99	-4.36	80.66	202.34
11	15	10.13	553.86	2152.16	-4.19	80.93	83.28
12	4	10.17	495.69	1975.46	-4.83	117.23	337.01
							1

TABLE 16. 10° APPROACH DATA: PITCH DATA

			10° A	10° Approaches	,,,		
		Peak	Peak Positive Pitch	Pitch	Pea	Peak Negative Pitch	Pitch
Flight	Run	Value (deg)	Altitude (ft)	Range (ft)	Value (deg)	Altitude (ft)	Range (ft)
01	12	7.52	63.57	639.06	0.15	23.46	22.24
01	14	14.93	73.09	837.69	60.0-	23.46	68.71
02	12	9.47	407.04		2.22	632.35	2390.30
02	14	8.53	61.83	525.43	0.07	603.90	2437.03
04	14	6.97	48.28	305.12	-5.09	581.65	2308.04
04	16	8.33	44.15	301.96	3.49	579.87	
90	13	7.36	92.08	201.37	2.79	568.72	2775.84
90	15	8.81	42.93	265.84	1.78	261.23	1296.86
80	13	6.26	50.26	354.74	0.33	558.51	2641.81
80	15	16.27	66.95	489.84	1.16	581.56	2820.51
60	14	5.52	55.62	534.44	1.16	23.46	38.52
11	13	9.38	74.88	36.39	-1.05	716.70	2783.80
11	15	10.09	76.40	51.26	-0.44	619.00	2696.82
12	4	58.60	74.48	36.51	-1.54	627.85	2806.57

TABLE 17. 10° APPROACH DATA: PEAK POSITIVE/NEGATIVE DATA

	10° Ap	proaches		
		Positive ata	i	legative ita
Parameter	Va]	ue	Val	Lue
	Mean	Count	Mean	Count
Heading (deg)	6.71	14	-3.92	14
VG Roll (deg)	9.06	14	-4.80	14
VG Pitch (deg)	9.26	14	0.38	14

TABLE 18. PILOT CHOICE APPROACHES

Flight Number	Run Number	Start of Run
2	2	Before 7°
2 2 2 3 3	16	Between 8° - 10°
2	18	After 10°
3	2	Between 8° - 10°
3	4	Between 7° - 8°
4	4	Before 7°
	18	Before 7°
4 5 5 5	2	Before 7°
5	4	Before 7°
5	18	Before 7°
6	3	Before 7°
6	17	Between 7° - 8°
7	2	Before 7°
7	4	Before 7°
7	18	Before 7°
8	1	Between 7° - 8°
8	3	Between 7° - 8°
8	17	Between 7° - 8°
9	2	Between 8° - 10°
9	4	Between 7° - 8°
ģ	18	Between 8° - 10°
10	2	Between 8° - 10°
11	1	Before 7°
11	3	Between 8° - 10°
11	17	Before 7°
12	2	Before 7°
12	4	Between 7° - 8°

Tables 19, 20, and 21 show the magnetic heading, VG roll and VG pitch data for the pilot choice approaches. Table 22 gives the mean values for these data. The standard deviation of the magnetic heading ranged from 0.85° to 6.01° . The large standard deviation could have been due to the event mark for the start time being incorrectly cued with the pilot turning into the approach at

TABLE 19. PILOT CHOICE APPROACHES: HEADING DATA

			Pilc	ot Choice	Pilot Choice Approaches	70		
		Реак Неа	ak Positive Heading	Peak N Head	ak Negative Heading	Course Stat	se Heading Satistics	i
Flight	Run	Value (deg)	Altitude (ft)	Value (deg)	Altitude (ft)	Mean (deg)	Std dev (deg)	# of Points
0.1	2	71.5	31.1	60.5	44.28	66.3	8	5
01	16	169.55	0.	158.06	74.	163.72	2.53	409
01	18	69.1		60.4	101.95	4.	.5	5
02	7	7.6	69.8	9	2	65.4	•	2
02		68.4	67.6	59.8	•	65.1	4.	S
02	18	69.7	80.7	62.2	ъ.	65.5	4.	\sim
04	7	57.3	31.3	41.5	44.	45.5	۳,	4
04	4	58.2	1.5	42.0	4.	45.7	۲.	0
04	18	38.5	562.65	331.92	•	•	4.	9
02	7	56.6	5.6	41.4	•	45.0	.2	Н
90	е	49.6	1.5	42.1	•	46.1	9	9
90	17	51.4	3.9	42.3	. 7	45.6		0
07	7	63.	7	55.4		59.0	6.	$\boldsymbol{\vdash}$
80	٦	70.8	3.9	61.0	0.	166.20	.7	٦
80	က	9.9	.7	59.8	2.7	64.7	0.	S
60	7	6.		43.4	1.9	0.	0.	Н
11	٦	168.25	7.0		73.55	.7		4
12	7	٠٦	62.78	8.09	0.7	4.4	1.16	3

TABLE 20. PILOT CHOICE APPROACHES: ROLL DATA

		Pilot	Pilot Choice Approaches	aches	
		Peak Pc	Peak Positive Roll	Peak Nega	Peak Negative Roll
Flight	Run	Value (deg)	Altitude (ft)	Value (deg)	Altitude (ft)
01	2 5	9.14	435.94		•
01	18	12.84	328.97	-5.67	36.54
02	2	•	411.29	-4.27	21.67
02	16	8.33	334.61	-3.61	99.49
02	18	8.97	582.73	-4.04	•
04	7	9.02	281.11	-6.98	317.07
04	4	•	321.15	-11.97	5
04	18	6.70	263.77	-4.22	113.89
05	7	00.9	246.33	-5.76	19.93
90	٣	•	349.17	-3.48	•
90	17	7.27	317.34	-4.53	28.46
.07	7	•	250.78	-4.18	33.56
80	٦	7.71	332.02	-5.05	135.92
80	က	9.95	363.83	-5.34	۳,
60	2	3.89	207.37	-5.33	27.58
60	4	4.68	340.28	-6.64	21.04
11	-	7.67	461.18	-4.46	.5
12	7	11.28	423.09	-4.70	92.71
				_	

TABLE 21. PILOT CHOICE APPROACHES: PITCH DATA

the start time recorded on the log sheet. The mean of the positive and negative magnetic heading for all the pilot choice approaches is 6.51° and -4.43° . The lateral heading changes were minimal for all pilot choice approaches.

The peak positive VG roll angles for pilot choice approaches occurred between 3° and 12° with a mean of 8.23° . The peak negative VG roll angles occurred between -3° and -11° with a mean of -5.24° .

The peak positive VG pitch angles for pilot choice approaches occurred between 4° and 15° with a mean of 8.34° . The peak negative VG pitch angles occurred between -16° and 3° with a mean of -0.58° .

DEPARTURES.

7.125° Departures. Figure 9 presents the composite 7.125° departure results. All the departures were initiated above the reference surface. However, pilots did not maintain a consistent departure angle to the 100-foot barrier. Only two pilots dropped below the surface during the initial phase of the departure. By the end of the run, all the pilots had cleared the 100-foot barrier.

TABLE 22. PILOT CHOICE APPROACHES: PEAK POSITIVE/NEGATIVE DATA

Pilo	ot's Cho	oice Appro	paches	
		Positive ata	ì	Negative ata
Parameter	Val	lue	Val	lue
	Mean	Count	Mean	Count
Heading (deg)	6.51	19	-4.43	19
VG Roll (deg)	8.23	19	-5.24	19
VG Pitch (deg)	8.23	19	-0.58	19

Tables 23, 24, and 25 show the magnetic heading, VG roll, and VG pitch data for the the 7.125° departures. Table 26 contains summary data. The standard deviation of the magnetic heading ranged from 1.82° to 7.06°. On flight 9, the large standard deviation was due to 15-knot tail winds. The mean of the positive and negative magnetic heading for all 7.125° runs is 4.82° and -5.30°. Lateral heading changes were minimal for all the 7.125° departures. Although these means were slightly greater than the approach heading changes, the pilots appeared to have little difficulty in maintaining their course.

The peak positive VG roll angles for the 7.125° departure data occurred between 1.91° and -1.23°. All the peak positive VG roll angles occurred near the beginning of the run, 73 to 206 feet from the FATO with a mean of -0.08°. The peak negative VG roll angles occurred between -4° and -5°. As with the peak positive VG roll, the peak negative VG roll angles occurred in the beginning of the runs, 30 to 139 feet from the FATO with a mean of -4.70°.

TABLE 23. 7.125° DEPARTURES: HEADING DATA

			7.12	7.125° Departures	rtures			
		Peak Hea	Peak Positive Heading	Peak Nega Heading	Peak Negative Heading	Course Stati	urse Heading Statistics	
Flight	Run	Value (deg)	Altitude (ft)	Value (deg)	Altitude (ft)	Mean (deg)	std dev (deg)	# of Points
10	5	167.79	113.22	160.96	206.89	164.62	1.71	80
02	Ŋ	9	9.	157.16	174.00	163.93	4.03	66
04	7	355.19	161.66	38.1	90.87	•	4.47	85
05	വ	356,35	159.67	48.6	•	•	2.07	89
05	7	357.67	99.05	49.7	107.66	354.16	2.00	79
90	9	52.8	114.31	342.87	96.72	349.62	2.66	112
90	80	55.	136.00	348.35	85.07	52	1.82	98
0.7	Ŋ	261.57	87.08	247.49	107.18	255.59	4.57	89
07	7	S		247.54	204.72	50	2.41	78
80	æ	165.88	74.25	158.81	105.51	163.02	1.97	77
60	2	168.91	77.01	147.29	98.05	155.90	7.06	79
11	9	168.08	74.13	162.28	197.67	165.03	1.57	85
11	80	166.76	84.65	160.74	114.32	163.81	2.11	65
	_		_					

TABLE 24. 7.125° DEPARTURES: ROLL DATA

		!	7.125° Departures	tures	
		Peak Pc	Peak Positive Roll	Peak Nec	Peak Negative Roll
Flight	Run	Value (DEG)	Altitude (ft)	Value (deg)	Altitude (ft)
01	2	1.91	206.89	-4.48	30.13
02	S	-0.92	155.59	.4.53	91.36
04	7	1.11	107.46	-5.23	93.79
05	വ	0.20	75. <7	-4.92	42.56
05	7	0.55	151.75	-4.03	80.88
90	9	-0.09	87.92	-4.44	40.20
90	∞	-0.48	73.04	-4.11	124.28
07	വ	-0.74	101.60	-5.52	87.08
07	7	0.18	77.94	-4.61	125.52
80	80	-1.23	113.32	-4.44	139.27
60	ഗ	-0.57	103.79	-5.93	83.70
11	9	-0.94	122.08	-4.11	86.56
11	80	00.00	163.12	-4.72	118.59

TABLE 25. 7.125° DEPARTURES: PITCH DATA

			7.125° Departures	cures	
		Peak Po	Peak Positive Pitch	Peak Negat	Peak Negative Pitch
Flight	Run	Value (Deg)	Altitude (ft)	Value (deg)	Altitude (ft)
01	2	6.26	181.86	-7.12	38.09
02	ഗ	1.03	140.69	-3.38	86.52
04	7	0.86	164.12	-6.72	74.25
05	വ	-0.24	30.41	-5.41	102.31
05	7	-2.86	120.72	-5.85	91.40
90	ഹ	2.31	113.32	-2.48	211.00
90	7	1.30	31.27	-7.60	154.73
07	œ	-0.04	39.11	-12.74	92.66
07	വ	0.94	36.26	-9.45	79.21
80	9	-0.86	164.12	-6.24	93.79
60	∞	-1.12	163.12	-9.71	90.39
11	9	3.76	136.74	-2.55	219.00
11	ω	1.82	115.28	-4.72	79.87

The peak positive VG pitch angles occurred between -2° and 6°. All these were in the range of 113 to 181 feet from the FATO with a mean of 1.01°. The peak negative VG pitch angles occurred between -2° and -12°. All the peak negative VG pitch angles occurred near the beginning of the runs, 38 to 210 feet from the FATO with a mean of -6.46°.

10° Departures. Figure 10 presents the composite 10° departure results. All the departures were initiated above the reference surface. Pilots did not maintain a consistent departure angle to the 100-foot barrier. All the pilots except three dropped below the surface during the initial departure period. By the end of the run, all the pilots had cleared the 100-foot barrier.

TABLE	26	7.125°	DEPARTURES:	PEAK	POSITIVE	/NEGATIVE	DATA
IUDLL	20.	/ . I ~ J	DELUKTORES.	1 1701	LOSTITAD	\ mpouttan	Distr

	7.125°	Departure	es	
	i	Positive Data	i	Negative ata
Parameter	Val	lue	Val	lue
	Mean	Count	Mean	Count
Heading (deg)	4.82	13	-5.30	13
VG Roll (deg)	0.08	13	-4.70	13
VG Pitch (deg)	1.01	13	-6.46	13

Tables 27, 28, 29, and 30 show the magnetic heading, VG roll, VG pitch data, and summary data for the 10° departures. The standard deviation of the magnetic heading ranged from 0.76° to 5.57°. On flight 9 the large standard deviation was due to 15-knot tail winds. The mean positive and negative magnetic heading for all the 10° runs is 5.72° and -6.17°. Lateral heading changes were minimal for all the 10° departures. However, they were slightly larger than the approach heading changes. This indicates pilots had little difficulty in maintaining their course.

The peak positive VG roll angles for the 10° data occurred between -2° and 1°. All the peak positive VG roll angles occurred near the beginning of the run, 74 to 254 feet from the FATO with a mean of -0.52°. The peak negative VG roll angles occurred between -3° and -14°. All the peak negative VG roll angles occurred under 250 feet AGL in the range of 43 to 242 feet from the FATO with a mean of 5.66°.

The peak positive VG pitch angles occurred between -2° and 5° with the exception of one run having a value of 16°. The mean of the peak positive VG pitch angles for all the 10° departures is 2.53°. The peak negative VG pitch angles occurred between -2° and -11°. All the peak negative VG pitch occurred near the beginning of the run in the range of 69 to 256 feet from the FATO with a mean of -6.65°.

12° Departures. Figure 11 presents the composite 12° departure results. All the departures were initiated above the reference surface. However, pilots did not maintain a consistent departure angle to the 100-foot barrier.

TABLE 27. 10.0° DEPARTURES: HEADING DATA

			10	10° Departures	cures			
		Peak Hea	ak Positive Heading	Peak Nega Heading	Peak Negative Heading	Course Sta	rse Heading Statistics	
Flight	Run	Value (deg)	Altitude (ft)	Value (deg)	Altitude (ft)	Mean (deg)	Std Dev (deg)	# of points
01	6	172.74	77.38	57.1	256.89	65.5	. 2	06
02	7	4.	02.6	157.16	174.00	162.99	1.62	106
02	0	68.	9	60.1	95.4	63.8	4.	66
04	0	54.8	62.8	47.0	91.14	50.6	.5	9/
04		54.0	94.3	45.3	0.9	50.4	9.	85
05		55.0	2.0	345.60	8.4	49.9	4.	88
05		59.2	58.4	42.2	.7	51.2	æ	89
90		56.4	8.4	7.8	8.3	52.5		79
90		54.5	0.3	44.3	4.2	50.4	4.	107
07		70.0	6.1	8.0	3.4	54.8	ω.	84
07		55.8	5.9	48.9	11.5	52.3	9	67
80		70.1	0.4	5.8	58.8	64.0	ι.	112
80	12		86.98	Ŋ	212.00	64.0	9	89
60		70.5	6.7	149.71	07.5	58.9	3	82
60		164.26	9.8	6.9	05.7	56.1	œ	79
11		65.7	6.8	0.	7.7	63.9	.7	103
11		65.3	7.0	160.12	152.10	62.2		06

TABLE 28. 10° DEPARTURES: ROLL DATA

Flight Run (deg) (ft) (deg) (ft) (deg) (ft) (deg) (ft) (deg) (d				10° Departures	cures	
Value Altitude Value Run (deg) (ft) (deg) 9 0.33 254.14 -4.79 7 -1.54 253.05 -4.97 9 -0.70 218.72 -4.97 9 -0.70 85.94 -4.97 11 0.59 86.51 -4.97 9 -0.66 107.32 -5.49 10 -0.64 129.39 -5.49 10 -0.13 88.39 -5.67 12 1.03 101.74 -5.26 10 -0.59 126.06 -6.64 10 -1.01 113.89 -14.99 12 -0.09 158.11 -6.02 12 -0.09 158.11 -6.02 11 -1.38 118.98 -6.01 12 -0.91 191.98 -4.09			Peak Pc	sitive Roll	Peak Nega	tive Roll
9 0.33 254.14 -4.79 76. 7 -1.54 253.05 -4.97 66. 9 -0.70 218.72 -4.97 66. 11 0.59 86.51 -4.53 68. 11 0.59 86.51 -4.04 70. 10 -0.66 107.32 -5.49 83. 10 -0.64 129.39 -5.49 83. 10 -0.13 88.39 -5.05 204. 12 1.03 101.74 -5.26 78. 9 -0.59 126.06 -6.64 90. 10 -1.01 113.89 -14.99 241. 12 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 10 -1.74 89.44 -3.96 76. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	Flight	Run	Value (deg)	Altitude (ft)	Value (deg)	Altitude (ft)
7 -1.54 253.05 -4.97 66. 9 0.10 85.94 -4.37 87. 11 0.59 86.51 -4.04 70. 9 -0.66 107.32 -5.49 83. 11 0.64 129.39 -5.49 83. 10 -0.13 101.74 -5.67 79. 12 1.03 101.74 -5.26 78. 9 -0.59 126.06 -6.64 90. 10 -1.01 113.89 -14.99 241. 12 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 11 -1.38 118.98 -6.01 43. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	0.1	6	0.33	54.	•	76.04
9 0.10 85.94 -4.53 68 11 0.59 86.51 -4.04 70 9 -0.66 107.32 -5.49 83 11 0.64 129.39 -5.05 204 10 -0.13 88.39 -5.67 79 12 1.03 101.74 -5.26 78 9 -0.59 126.06 -6.64 90 10 -1.01 113.89 -14.99 241 12 -0.09 158.11 -6.02 212 9 -2.88 74.80 -6.01 43 10 -1.38 118.98 -6.01 43 10 -1.74 89.44 -3.96 76 12 -0.91 191.98 -4.09 95	05	۰ ٥	-1.54	253.05	•	ഗ
11 0.59 86.51 -4.04 70. 9 -0.66 107.32 -5.49 83. 10 -0.64 129.39 -5.67 79. 10 -0.13 101.74 -5.26 78. 11 0.13 109.29 -3.60 197. 10 -1.01 113.89 -14.99 241. 11 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 10 -1.38 118.98 -6.01 43. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	0.4	0	0.10	85.94		0
9 -0.66 107.32 -5.49 83.1 11 0.64 129.39 -5.05 204.1 10 -0.13 88.39 -5.67 79.2 12 1.03 101.74 -5.26 78.2 9 -0.59 126.06 -6.64 90.2 10 -1.01 113.89 -14.99 241.2 12 -0.09 158.11 -6.02 241.2 9 -2.88 74.80 -6.01 43.2 10 -1.38 118.98 -6.01 43.2 10 -1.74 89.44 -3.96 76.76 12 -0.91 191.98 -4.09 95.	04		•	86.51	•	•
11 0.64 129.39 -5.05 204. 10 -0.13 88.39 -5.67 79. 12 1.03 101.74 -5.26 78. 9 -0.59 126.06 -6.64 90. 10 -1.01 113.89 -14.99 241. 12 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 11 -1.38 118.98 -6.01 43. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	02	6	•	107.32	5	•
10 -0.13 88.39 -5.67 79. 12 1.03 101.74 -5.26 78. 9 -0.59 126.06 -6.64 90. 11 0.13 109.29 -3.60 197. 10 -1.01 113.89 -14.99 241. 12 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 11 -1.38 118.98 -6.01 43. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	02	11	•	129.39	ي	•
12 1.03 101.74 -5.26 78. 9 -0.59 126.06 -6.64 90. 11 0.13 109.29 -3.60 197. 10 -1.01 113.89 -14.99 241. 12 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 11 -1.38 118.98 -6.01 43. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	90	10	•	88.39	ك	_
9 -0.59 126.06 -6.64 90. 11 0.13 109.29 -3.60 197. 10 -1.01 113.89 -14.99 241. 12 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 11 -1.38 118.98 -6.01 43. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	90	12	•	101.74	Ŋ.	_
11 0.13 109.29 -3.60 197. 10 -1.01 113.89 -14.99 241. 12 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 11 -1.38 118.98 -6.81 154. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	07	6	•	126.06	9	•
10 -1.01 113.89 -14.99 241. 12 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 11 -1.38 118.98 -6.81 154. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	07	11	0.13	109.29	ъ.	7.
12 -0.09 158.11 -6.02 212. 9 -2.88 74.80 -6.01 43. 11 -1.38 118.98 -6.81 154. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	80	10	-1.01	113.89	14.	41.
9 -2.88 74.80 -6.01 43. 11 -1.38 118.98 -6.81 154. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	80	12	•	158.11	9	12.
11 -1.38 118.98 -6.81 154. 10 -1.74 89.44 -3.96 76. 12 -0.91 191.98 -4.09 95.	60	0	3	74.80	9	ص
10 -1.74 89.44 -3.96 76.0 12 -0.91 191.98 -4.09 95.1	60	11	1.3	18.	9	•
12 -0.91 191.98 -4.09 95.1	11	10	1.7	4.	3	6.0
	11	12	•	1.9	•	5.1

TABLE 29. 10° DEPARTURES: PITCH DATA

			10° Departures	ures	
		Peak Pc	Peak Positive Pitch	Peak Negative Pitch	ive Pitch
Flight	Run	Value (deg)	Altitude (ft)	Value (deg)	Altitude (ft)
01	6	3.71	122.46	-7.01	232.05
02	7	2.57	7	•	81.16
02	6	•	109.07	-3.12	77.06
04	σ	2.66	122.72	-4.43	70.57
04	11	0.94	182.73	-4.75	69.01
05	σ	-1.58	98.61	90.9-	167.71
05	11	-1.54	45.78	-5.36	87.70
90	10	2.79	180.75	-7.12	82.70
90	12	4.33	35.89	-10.00	82.73
07	6	1.14	190.68	-10.77	103.03
07	11	0.09	193.98	-11.65	93.68
80	10	2.13	132.33	-7.89	237.59
80	12	16.80	84.37	-5.52	212.00
60	6	-0.68	63.51	-7.16	88.96
60	11	-2.11	74.13	-8.83	100.93
11	c	5.60	168.33	-5.43	256.89
11	7.7	4.94	166.74	-5.43	85.61

TABLE 30. 10° DEPARTURES: PEAK POSITIVE/NEGATIVE DATA

	10° De	epartures					
	Peak 1	Positive ta	Peak Negative Data				
Parameter	Val	lue	Val	lue			
	Mean	Count	Mean	Count			
Heading (deg)	5.72	17	-6.17	17			
VG Roll (deg)	-0.52	17	-5.66	17			
VG Pitch (deg)	2.53	17	-6.65	17			

All the pilots penetrated the surface during the initial portion; yet by the end of the run, all cleared the 100-foot barrier.

Tables 31 through 34 show the magnetic heading, VG roll, VG pitch, and summary data for the 12° departures. The standard deviation for the magnetic heading ranged from 0.64° to 4.59°. The peak positive heading occurred at the beginning of the run, 41 to 262 feet from the FATO. The mean peak positive and negative magnetic heading for all the 12° departures is 4.50° and -4.85°. Lateral heading changes were minimal for all the 12° departures. This indicates pilots had little difficulty in maintaining their course.

The peak positive VG roll angles for the 12° data occurred between -2° and 1°. The peak positive VG roll angles occurred later in the run than the 7.125° and the 10° departures in the range of 57 to 259 feet from the FATO. The mean peak positive VG roll angle for all the 12° departures is -0.65°. The peak negative VG roll angles occurred between -1° and -6° with one run having a -12° error. All the peak negative VG roll angles also occurred later in the run than the 7.125° and 10° in the range of 63 to 262 feet from the FATO. The mean peak negative VG roll angle for all 12° departures is -5.16°.

The peak positive VG pitch angles occurred between -1° and 4° with the exception of one run having a value of 14°. All the peak positive VG pitch angles occurred near the beginning of the run, 42 to 288 feet from the FATO with a mean 2.82°. The peak negative VG pitch angles occurred between -0.35° and -10°. The peak negative VG pitch angles occurred later in the runs than the 7.125° departures, but about the same distance as the 10° departures in the range of 74 to 307 feet from the FATO. The mean of the peak negative VG pitch angle for all the 12° departures is -6.07°.

TABLE 31. 12.0° DEPARTURES: HEADING DATA

			1	12° Departures	tures			
		Peak Hea	Peak Positive Heading	Peak Nega Heading	Peak Negative Heading	Course Stat	rse Heading Statistics	
Flight	Run	Value (deg)	Altitude (ft)	Value (deg)	Altitude (ft)	Mean (deg)	Std Dev (deg)	# of Points
01	13	168.43	127.06	162.89	100.94	166.04	ω.	87
02	11	168.08	85.16	159.99	244.15	163.98	4.	107
02	13	167.41	102.80	161.71	251.15	64.	1.45	105
03	13	254.90	41.37	246.35	116.07	251.00	4.	105
04	13	57	254.40	344.99	0	350.07	4.52	91
04	15	351.69	9	342.48	101.61	348.20	2.65	81
90	14	360.00	216.00	344.60	115.20	50.	2.36	66
80	14	167.33	94.40	155.38	262.89	163.54	6	107
60	13	164.57	84.62	146.59	151.48	157.13	4.59	85
60	15	163.64	5.5	1.7	115.89	158.44		65
11	14	167.73	185.95	162.72		165.20	1.37	93
11	16	167.68	145.28	ហ	89.92	164.46	.7	130
12	٣	168.08	105.83	164.65	259.89	166.17	0.64	78

TABLE 32. 12° DEPARTURES: ROLL DATA

	Peak Negative Roll	Altitude (ft)	198.62	86.25	99.36	94.14	141.96	262.89	63.62	239.43	104.73	100.26	194.97	79.88	112.21
ures	Peak Nega	Value (deg)	-4.21	-3.87	-4.81	-4.00	-6.33	-4.66	-5.05	-12.66	-6.55	-6.03	-3.19	-3.96	-1.80
12° Departures	Peak Positive Roll	Altitude (ft)	259.89	172.52	122.50	157.12	71.68	57.09	216.00	120.74	222.34	109.18	231.36	190.59	255.20
	Peak Po	Value (deg)	-0.59	-0.40	-0.48	0.35	-0.83	0.33	-0.70	99.0-	-2.81	-2.24	-0.86	-0.83	1.25
		Run	13	11	13	13	13	15	14	14	13	15	14	16	Э
		Flight	01	02	02	03	04	04	90	80	60	60	11	11	12

TABLE 33. 12° DEPARTURES: PITCH DATA

TABLE 34. 12° DEPARTURES: PEAK POSITIVE/NEGATIVE DATA

	12° De	epartures					
	Peak I	Positive ta	Peak Negative Data				
Parameter	Val	lue	Value				
	Mean	Count	Mean Count				
Heading (deg)	4.50	13	-4.85	13			
VG Roll (deg)	-0.65	13	-5.16	13			
VG Pitch (deg)	2.82	13	-6.07	13			

<u>Pilot Choice</u>. Figure 18 presents the composite plots for the pilot choice departures results. All the departures were initiated above the reference surface. Only one pilot dropped below the 7.125° angle. The others stayed between the 7.125° and the 10° surface, although they did not maintain a consistent departure angle to the 100-foot barrier. All the pilots had cleared the 100-foot barrier by the end of the run.

Tables 35 through 38 show the magnetic heading, VG roll, VG pitch, and summary data for the pilot choice departures. The standard deviation of the magnetic heading ranged from 0.93° to 5.83° . The large standard deviation could have been because the event mark occurred before the actual start of the run. The mean peak positive and negative magnetic heading for all pilot choice departures is -4.74° and 5.75° .

The peak positive VG roll angles of the pilot choice departure data occurred between -0.3° and -1.3° with a mean of -0.70°. The peak negative VG roll angles occurred between -3° and -5° with a mean of -4.58°.

The peak positive VG pitch angles occurred between -1° and 4° with a mean of 0.58°. The peak negative VG pitch angles occurred between -8° and -2° with a mean of -5.16° .

PILOT QUESTIONNAIRES.

IN-FLIGHT QUESTIONNAIRE. The Cooper-Harper Modified Pilot Rating Scale used for the In-flight Questionnaire employs a 1 to 10 scale, where 1 is fully acceptable. Ratings between 3 and 4 indicate mild to minor unpleasant deficiencies, but the maneuver is still considered adequate from a safety standpoint. Ratings of 7 and above indicate major deficiencies with clearly "inadequate" to "no" safety margin. Overall, there were about 20 maneuvers of each type performed.

Table 39 contains a breakdown of these ratings. As the angle of approach increased, the acceptability rating decreased from the safety standpoint. For the departures, the variation in ratings were larger than to approaches. As the angle of departure increased, the acceptability ratings decreased from the safety standpoint. The pilots felt more comfortable with the shallower angles of approach and departure than the steeper angles.

FIGURE 18. PILOT CHOICE COMPOSITE DEPARTURE PLOT

TABLE 35. PILOT CHOICE DEPARTURES: HEADING DATA

			Pilot Ch	Pilot Choice Departures	artures			
		Реак Не <i>г</i>	Peak Positive Heading	Peak r Hea	Peak negative Heading	Course Stati	urse Heading Statistics	
Flight	Run	Value (deg)	Altitude (ft)	Value (deg)	Altitude (ft)	Mean (deg)	Std Dev (deg)	# of Points
02	ι	171.90	72.43	157.93	193.60	163.48	3.74	105
02	3	170.73	94.87	161.53	175.14	166.03	2.57	124
02	15	•	~	9.1	231.11	164.09	7	86
05	17	167.20	99.76	159.33	208.14	163.23	2.72	107
04	7	346.68	21.	IO	80.70	342.23	2.67	71
04	က	346.77	29.	7.6	51.27	342.31	2.34	67
05	7	352.74	10	343.83	91.29	348.41	2.61	29
80	16	164.74	73.42	161.05	153.47	162.61	0.93	80
60	1	163.29	40.78	151.20	109.87	156.02	3.65	75
60	3	170.89	39.43	147.78	160.12	155.23	5.83	85
12	7	167.46	73.75	159.20	160.12	163.71	2.48	77
12	2	166.98	97.13	158.28	114.26	161.94	2.49	91
_							_	

TABLE 36. PILOT CHOICE DEPARTURES: ROLL DATA

	ive Roll	Altitude (ft)	52.40	52.57	59.97	84.14	103.66	105.60	24.13	104.17	118.42	143.80	78.68	88.95
cures	Peak Negative Roll	Value (deg)	-5.01	-4.71	-4.04	-3.60	-4.86	-4.09	-4.92	-4.42	-5.25	-5.70	-4.66	-3.74
Pilot Choice Departures	Peak Positive Roll	Altitude (ft)	148.41	106.08	227.77	238.14	77.84	100.15	85.31	85.72	86.43	78.68	153.09	185.75
Pilot	Peak Po	Value (deg)	-0.51	-0.62	-0.26	-0.57	-0.68	-0.75	-0.59	-1.27	-1.10	-0.94	-0.48	-0.60
		Run	1	ო	15	17	-	m	-	16	Н	n	٦	S
		Flight	02	02	02	02	04	04	05	80	60	60	12	12

TABLE 37. PILOTS CHOICE DEPARTURES: PITCH DATA

		Pilot	Pilot Choice Departures	ures	
		Peak Pc	Peak Positive Pitch	Peak Nec	Peak Negative Pitch
Flight	Run	Value (deg)	Altitude (ft)	Value (deg)	Altitude (ft)
02	ι	1.56	117.12	-2.11	73.30
02	ო	4.50	160.12	-2.37	80.60
02	15	-0.15	114.90	-2.97	257.89
02	17	1.96	171.95	-2.88	91.48
04	Н	2.00	23.70	-7.30	102.71
04	ო	-1.39	27.83	-6.77	71.80
05	٦	0.73	21.79	-8.13	100.27
80	16	-2.11	159.83	-6.20	93.40
60	Н	-0.44	152.29	-7.69	77.51
60	m	-0.86	151.96	-8.09	81.16
12	~	0.46	67.16	-5.93	79.50
12	ഗ	1.25	192.97	-6.86	89.69

TABLE 38. PILOT CHOICE DEPARTURES: PEAK POSITIVE/NEGATIVE DATA

Pi	llot Cho	oice Depar	rtures	
	i	Positive ata	Peak M	Negative ca
Parameter	Val	lue	Va]	Lue
	Mean	Count	Mean	Count
Heading (Deg)	5.75	12	-4.74	12
VG Roll (Deg)	-0.70	12	-4.58	12
VG Pitch (Deg)	0.58	12	-5.61	12

TABLE 39. COOPER-HARPER IN-FLIGHT QUESTIONNAIRE RATINGS

Cooper H	larper :	[n-Flig	ht Rat	ings		
Procedure	1	2	3	4	5	>=6
		1	Number	of Res	sponses	5
7.125 Degree Approaches	6	12	1	1		
8.0 Degree Approaches	4	10	3	2	1	
10.0 Degree Approaches	0	5	7	3	3	3
7.125 Degree Departures	4	10	4	1		
10.0 Degree Departures	2	6	7	2	1	2
12.0 Degree Departures	1	1	10	3	1	4

<u>POST-FLIGHT QUESTIONNAIRE</u>. The scale used for the Post-Flight Questionnaire was exactly opposite of the Cooper-Harper Scale. A 5 indicates an adequate safety or control margin while a 1 indicates an inadequate rating. For example, with workload, a 5 indicates a decreased workload, while a 1 indicates an increase. There were seven pilots who rated the procedures following the flights.

<u>SAFETY MARGIN</u>. As the angle of approach increased, the pilots felt their safety margin decreased. The departures had a wider variation in the ratings than the approaches. As the angle of departure increased, the pilots felt their safety margin decreased. The pilots felt the shallower approach and departure angles had a higher safety margin than the steeper angles. Table 40 shows the ratings of the safety margin for seven pilots who rated the procedures.

<u>WORKLOAD</u>. The workload ratings for the approaches showed a much wider range than the safety margin ratings. As the angle of approach increased, the pilots felt their workload increased. The departures had a wider variation in the ratings than the approaches. The pilots felt the workload was greatest for the 10° and 12° departures, and the steeper the approach and departure angles the greater the workload. A summary of these ratings is presented in table 41.

CONTROL MARGIN. All three approach angles showed a similar spread in ratings as the safety margin ratings. The 7.125° and the 8° approaches were both given ratings of one 4 and six 5's while the 10° approach received ratings of four 4's and three 5's. The control margin for all the approaches did not increase with increasing angles. The pilots felt the control margins for the departures increased with increasing angles. Table 42 shows the ratings of the control margin for the seven pilots who rated the procedures.

TABLE 40. POST-FLIGHT RATINGS FOR SAETY MARGIN

Post-Flight Ratin	ngs for	r Safety	y Marg	in	
Procedure	5	4	3	2	1
	Nı	umber of	f Respo	onses	
7.125 Degree Approaches	6	1			
8.0 Degree Approaches	5	2			
10.0 Degree Approaches	1	3	3		
7.125 Degree Departures	5	2			
10.0 Degree Departures	0	3	3	1	
12.0 Degree Departures	0	1	2	3	1

TABLE 41. POST-FLIGHT RATINGS FOR WORKLOAD

Post-Flight R	atings	for Wo	kload		
Procedure	5	4	3	2	1
	1	Number o	of Res ₁	onses	
7.125 Degree Approaches	3	2	2		
8.0 Degree Approaches	2	2	2	1	
10.0 Degree Approaches	0	1	3	3	
7.125 Degree Departures	2	1	4		
10.0 Degree Departures	0	0	4	3	
12.0 Degree Departures	0	0	1	5	1

TABLE 42. POST-FLIGHT RATINGS FOR CONTROL MARGIN

Post-Flight Rati	ngs fo	r Contr	ol Mar	gin	
Procedure	5	4	3	2	1
		Number	of Re	sponse	s
7.125 Degree Approaches	6	1			
8.0 Degree Approaches	6	1			
10.0 Degree Approaches	3	4			
7.125 Degree Departures	5	2			
10.0 Degree Departures	1	5	1		
12.0 Degree Departures	0	3	3	1	

CONCLUSIONS

Table 43 presents a summary of important parameters for the approach and departure data.

- 1. The amount of surface penetration increased with increasing angle of departure.
- 2. The amount of surface penetration increased with increasing angle of approach.
- 3. On departure, the aircraft operated above the 7.125° surface by 150 feet from the final approach take off area (FATO).
- 4. On the approaches, the steeper the angle the closer the initial point of penetration was to the FATO.
- 5. Using the Cooper-Harper Rating Scale, the pilots rated the 10° approach angle unacceptable.
- 6. Using the Cooper-Harper Rating Scale, the pilots rated the 10° and 12° departure angles unacceptable.
- 7. Based on the flight data, the pilots had no difficulty maintaining consistent angles of approach and departure. However, from the subjective data, the pilots had to work harder to maintain consistent angles of departure and the steeper angles of approach. This was due to aircraft limitations.

RECOMMENDATIONS

Part 77 surfaces for visual flight rules (VFR) Heliports be revised to include an acceleration area on the order of 200 feet followed by an 8 to 1 surface or steeper.

Table 43. SUMMARY TABLE

	Approaches		
	7.125°	8.0°	10.0°
Point of Initial Penetration (Feet from FATO)	1600 - 2800	200 - 2500	200 - 1600
Maximum Depth of Penetration	70 ft	70 ft	80 ft
Range of Peak Pos VG Roll	5° to 11°	6° to 13°	5° to 14°
Range occurred from FATO	2332 - 3114 ft	2901 - 2956 ft	1710 - 2216 ft
Range of Peak Neg VG Roll	-3° to -6°	-3° to 7°	-8° to -3.70°
Range Occurred from FATO	40 - 1557 ft	49 - 770 ft	83 - 1269 ft
Range of Peak Pos VG Pitch	4° to 11°	4° to 13°	5° to 16°
Range Occurred From FATO	13 - 1608 ft	25 - 946 ft	36 - 837 ft
Range of Peak Neg VG Pitch	-3° to 3°	97° to 2.66°	-5° to 2°
Range Occurred from FATO	35 - 3978 ft	1147 - 3414 ft	22 - 2820 ft
	Departures		
	7.125°	10.0°	12.0°
Range of Peak Pos VG Roll	-1.23° to 1.91°	-2° to 1°	-2° to 1°
Range Occurred from FATO	70 - 206 ft	74 - 254 ft	57 - 259 ft
Range of Peak Neg VG Roll	-5° to -4°	-14° to -3°	-6° to -1°
Range Occurred from FATO	30 - 139 ft	43 - 242 ft	63 - 262 ft
Range of Peak Pos VG Pitch	-2° to 6°	-2° to 5°	-1° to 4°
Range Occurred from FATO	113 - 181 ft	45 - 193 ft	42 - 288 ft
Range of Peak Neg V3 Pitch	-12° to -2°	-11° to -2°	-10° to35°
Range Occurred from FATO	38 - 210 ft	69 - 256 ft	24 - 307 ft

APPENDIX A PROJECT INFORMATION PACKET

VMC APPROACHES AND DEPARTURES

Fit 0:

.VMC Date:

Aircraft: GPS Tracke' Used:

Subject Pilot:

Safety Pilot: Crew:

Data Period

GPS Antenna Ground Position . Cal. Offset ;Z =

Initial: X =

Final : X = ;Y = ;z =

[1] Liftoff	[2] Start curve	[3] End curve .	Sync clock to Radio and Tracker
[4] Touchdown	[5] 500' Rad Alt	[6] Start Descent	Depart Hdg 180 Deg

	•				
RUN #	WINDS	EVENTS		RATE	REMARKS
-	· · · · · · · · · · · · · · · · · · ·		-		
				•	
			·		
	<u> </u>				
1				-	
					, , , , , , , , , , , , , , , , , , ,
					1
	· · · · · · · · · · · · · · · · · · ·				<u> </u>
	•				
	<u> </u>	<u>!!</u>			<u> </u>

• 1 How do you rate the approach/departure?

HELICOPTER VISUAL METEOROLOGICAL CONDITIONS (VMC) SURFACE TEST QUESTIONNAIRE

AIRCRAFT TYPE:		
OPERATIONAL PILOT QUALIFICAT	TIONS	
NAME:		
AFFILIATION:		
ADDRESS:		
CITY:	STATE:	ZIP CODE:
PHONE (optional):		•
FAA HELICOPTER RATINGS (Priv		
TOTAL FLIGHT HOURS:		
TOTAL HELICOPTER HOURS:		
TOTAL TIME IN TYPE:		
TOTAL HELICOPTER HOURS LAST	6 MONTHS:	· · · · · · · · · · · · · · · · · · ·
TIME IN TYPE LAST 6 MONTHS:		
PERIOD OF PAA FLIGHT TEST (w	eek of):	

QUESTIONS

	Ac	ceptable	Unacceptable	
If unaccep	table why?	·		
	. —			
		·		
		CONTINUE ON BACK		
h. With a	79 approach	angle the safety ma	·	
			aryin was:	
1 Inadequate	2	3	4	
madequate		Marginal		Adequ
c. With a	7º approach	angle the workload	was:	
1	2	3	4	
Increased		Normal	·	Decrea
d. With a	7º androach	angle the control m	aroin was:	
	wpp. dda	angle the control of	iai grii wasi	
1 Inadequate a. The 8°	approach and		4 !!p.ggaat shii o	Adeau
Inadequate a. The 8°	approach and	Marginal gle was: ceptable	Unacceptable	
Inadequate a. The 8°	approach and	Marginal gle was: ceptable	Unacceptable	
Inadequate a. The 8°	approach and	Marginal gle was: ceptable	Unacceptable	
Inadequate a. The 8°	approach andAcc	Marginal gle was: ceptable	Unacceptable	
Inadequate a. The 8°	approach andAcc	Marginal gle was: ceptable	Unacceptable	
Inadequate a. The 8° If unaccept	approach and Acc	Marginal gle was: ceptable	Unacceptable	
Inadequate a. The 8° If unaccept b. With a	approach and Acc	Marginal gle was: ceptable CONTINUE ON BACK angle the safety man	Unacceptable	
Inadequate a. The 8° If unaccept b. With a	approach andAcc table why?	Marginal gle was: ceptable CONTINUE ON BACK angle the safety man	Unacceptable	
Inadequate a. The 8° If unaccept b. With a 1 Inadequate	approach and Acc table why? Be approach	Marginal gle was: ceptable CONTINUE ON BACK angle the safety man	Unacceptable rgin was:	
Inadequate a. The 8° If unaccept b. With a 1 Inadequate	approach and Acc table why? Be approach	Marginal gle was: ceptable CONTINUE ON BACK angle the safety man	Unacceptable rgin was:	
Inadequate a. The 8° If unaccept b. With a Inadequate c. With a	approach and Acc table why? 8 approach 2 8 approach	Marginal gle was: ceptable CONTINUE ON BACK angle the safety man Marginal angle the workload in	Unacceptable rgin was: 4	Adequ
Inadequate a. The 8° If unaccept b. With a Inadequate c. With a Increased	approach and Acc table why? 8 approach 2 8 approach 2	Marginal gle was: ceptable CONTINUE ON BACK angle the safety man Marginal angle the workload w	Unacceptable rgin was: 4 was:	Adequ
Inadequate a. The 8° If unaccept b. With a Inadequate c. With a Increased	approach and Acc table why? 8 approach 2 8 approach 2	Marginal gle was: ceptable CONTINUE ON BACK angle the safety man Marginal angle the workload was Normal	Unacceptable rgin was: 4 was:	

	Acce	eotable	Jnacceptable	
If unaccept	able why?			
		CONTINUE ON BACK		<u> </u>
b. With a	10° approach	angle the safety ma	argin was:	
1	2	3	4	
Inadequate		Marqinal		Adequ
c. With a 1	10° approach	angle the workload	was:	
1	2	. 3	4	
Increased		Normal		Decrea
d. With a 1	10° approach	angle the control m	margin was:	
1	2	3	4	
Inadequate		Marginal		Adequa
	departure and	ptableU		
	ACCE		waccebtapie	•
If unaccepta		,	·	:
			·	
	able why?			
	able why?			
	able why?			
b. With a 7	able why?	CONTINUE ON BACK angle the safety ma		
b. With a 7	departure	CONTINUE ON BACK angle the safety ma	rgin was:	
b. With a 7 1 Inadequate	departure	CONTINUE ON BACK angle the safety ma	rgin was:	
b. With a 7 Inadequate c. With a 7	departure	CONTINUE ON BACK angle the safety ma 3 Marginal angle the workload	rgin was:	
b. With a 7 Inadequate c. With a 7	departure 2 departure	CONTINUE ON BACK angle the safety ma 3 Marginal angle the workload	rgin was: 4 was:	
b. With a 7 Inadequate c. With a 7 Increased	departure 2 departure 2	CONTINUE ON BACK angle the safety ma 3 Marginal angle the workload	rgin was: 4 was:	Adequa
b. With a 7 1 Inadequate c. With a 7 1 Increased	departure 2 departure 2	CONTINUE ON BACK angle the safety ma 3 Marginal angle the workload 3 Normal	rgin was: 4 was:	Adequa

	Acc	eptableU	nacceotable	
If upaccos	otable why?		-	
	Cable Wiv:			
		CONTINUE ON BACK		
b. With a	10° departur	e angle the safety m	argin was:	
1	2	3	4	
Inadequate	!	Marginal		Adequ
c. With a	10° departur	e angle the workload	was:	
1	2	3	4	
Increased	_	Normal		Decrea
d. With a	10° departur	e angle the control	marqin was:	
1	2	3	4	
Inadequate	•	Marginal		Adequ
a. The 12	e departure a	ngle was:		
a. The 12		_	nacceptable	
	Acce	eptableU		
	Acce	_		
	Acce	eptableU		
	Acce	eptableU		
	Acce	eptableU		·
If unaccep	Acce	eptableU		
If unaccep	Accentable why?	CONTINUE ON BACK	rgin was:	
If unaccep	Accentable why?	CONTINUE ON BACK		Adeau
b. With a	Accentable why?	CONTINUE ON BACK angle the safety man	rgin was:	. *
b. With a linadequate	Accentable why? 12°departure 2 12°departure	CONTINUE ON BACK angle the safety man 3 Marginal angle the workload	rgin was: . 4	. *
b. With a	Accentable why?	CONTINUE ON BACK angle the safety man 3 Marginal	rgin was:	
b. With a landequate c. With a landequate	Accentable why? 12°departure 2 12°departure 2	CONTINUE ON BACK angle the safety man 3 Marginal angle the workload	rgin was: . 4 was:	Adeau
b. With a landequate c. With a landequate	Accentable why? 12°departure 2 12°departure 2	CONTINUE ON BACK angle the safety man 3 Marginal angle the workload	rgin was: . 4 was:	Adeau

7. What percentage of vour routine operations are conducted into and out of heliports or helistops?
8. Do you feel the turning approach/departure maneuver should have an appropriate surface published in a design guide?
YES NO
WHY?
CONTINUE ON BACK
9. Do vou feel heliports should be delineated by capability?
YES NO
If yes should it classed by:
Heliport size YES NO Rotor Configuration (single vs YES NO dual)
Aircraft Max Gross Weight YES NO Other
CONTINUE ON BACK
10. What improvements would you like to see added to a heliport to increase safety while performing approaches/departures (i.e. visual approach slope indicator)?
CONTINUE ON BACK
11. Should the approach surface ratio be published for the primary approach into a facility ?
YES NO
If yes how would you like it to be indicated?