Modern Applied Statistics Chap 12: Classification

Yongdai Kim

October 30, 2022

Seoul National University

Outline

- 1 Introduction
- 2 Discriminant Analysis
- 3 Classification Theory
- 4 Non-parametric Rules
- **6** Neural Networks
- 6 Support Vector Machine
- 7 Forensic Glass Example
- 8 Calibration Plots

Introduction

Introduction

In the statistical literature the word is used in two distinct senses.

- The sense of cluster analysis discussed in Section 11.2
- The other meaning (Ripley, 1997) of allocating future cases to one of g prespecified classes

It is sometimes helpful to distinguish discriminant analysis in the sense of describing the differences between the g groups from classification, allocating new observations to the groups.

- The first provides some measure of explanation
- The second can be a 'black box' that makes a decision without any explanation.

Suppose that we have a set of g classes, and for each case we know the class. We can then use the class information to help reveal the structure of the data.

The sample covariance matrices

$$W = \frac{(X - GM)^T (X - GM)}{n - g}, \quad B = \frac{(GM - 1\bar{x})^T (GM - 1\bar{x})}{g - 1}$$

- W: the within-class covariance matrix
- B: the between-classes covariance matrix
- M: the $g \times p$ matrix of class means
- G: the $n \times g$ matrix of class indicator variables
 - Then the predictions are GM
- \bar{x} : the means of the variables over the whole sample.

Note that B has rank at most min(p, g - 1).

Fisher introduced a **linear discriminant analysis** seeking a linear combination xa of the variables that has a maximal ratio of the separation of the class means to the within-class variance.

- ► Maximizing the ratio $\mathbf{a}^T B \mathbf{a} / \mathbf{a}^T W \mathbf{a}$
 - Choose a sphering xS of the variables
 - The problem is to maximize $\mathbf{a}^T B \mathbf{a}$ subject to $\|\mathbf{a}\| = 1$
 - This is solved by taking a to be the eigenvector of B corresponding to the largest eigenvalue.
 - The linear combination *a* is unique up to a change of sign.

As for principal components, we can take further linear components corresponding to the next largest eigenvalues.

- **Eigenvalues**: the proportions of the between classes variance explained by the linear combinations.
- The corresponding transformed variables are called the linear discriminants or canonical variates.
- The linear discriminants are conventionally centred to have mean zero on dataset.

Figure 12.1: The log iris data on the first two discriminant axes.

- ▶ This shows that 99.65% of the between-group variance is on the first discriminant axis.
 - Rao (1948) used the unweighted covariance matrix of the group means.
 - Our approach uses a covariance matrix weighted by the prior probabilities of the classes if these are specified.

Discrimination for normal populations

An alternative approach to discrimination is via probability models.

 \blacktriangleright Posterior distribution of the classes after observing x is

$$p(c \mid \mathbf{x}) = \frac{\pi_c p(\mathbf{x} \mid c)}{p(\mathbf{x})} \propto \pi_c p(\mathbf{x} \mid c)$$

- π_c : the prior probabilities of the classes
- $p(x \mid c)$: the densities of distributions of the observations for each class
- Bayes rule: The allocation rule which makes the smallest expected number of errors chooses the class with maximal p(c | x)

Suppose the distribution for class c is multivariate normal with mean μ_c and covariance Σ_c . Then the Bayes rule minimizes

$$Q_c = -2\log p(\mathbf{x} \mid c) - 2\log \pi_c$$

= $(\mathbf{x} - \mu_c) \Sigma_c^{-1} (\mathbf{x} - \mu_c)^T + \log |\Sigma_c| - 2\log \pi_c$

- The first term is the squared Mahalanobis distance to the class centre.
- The difference between the Q_c for two classes is a quadratic function of x.
 - ▶ Quadratic discriminant analysis.
- The boundaries of the decision regions are quadratic surfaces in x space.

Suppose that the classes have a common covariance matrix Σ .

 \blacktriangleright Differences in the Q_c are then linear functions of x

We can maximize $-Q_c/2$ or

$$L_c = \mathbf{x} \Sigma^{-1} \boldsymbol{\mu}_c^T - \boldsymbol{\mu}_c \Sigma^{-1} \boldsymbol{\mu}_c^T / 2 + \log \pi_c$$

To use Q_c or L_c we have to estimate μ_c and Σ_c or Σ .

▶ Using obvious estimates, estimate μ_c as the sample mean, Σ_c as covariance matrix, and Σ as W.

How does this relate to Fisher's linear discrimination?

- $ightharpoonup L_c$ gives new variables, the linear discriminants, with unit within-class sample variance.
 - ▶ On these variables the Mahalanobis distance is

$$\|x-\mu_c\|^2$$

Only the first r components of the vector depend on c.

$$L_c = \boldsymbol{x} \boldsymbol{\mu}_c^T - \left\| \boldsymbol{\mu}_c \right\|^2 / 2 + \log \pi_c$$

▶ We can work in *r* dimensions.

$$L_2 - L_1 = \boldsymbol{x} \left(\mu_2 - \mu_1 \right)^T + \text{ const}$$

► An affine function of the linear discriminant.

Classification Theory

Classification Theory

Non-parametric Rules

Non-parametric Rules

Neural Networks

Neural Networks

Support Vector Machine

Support Vector Machine

Forensic Glass Example

Forensic Glass Example

Calibration Plots

Calibration Plots