Kapitel 1.

Differenzierbare Mannigfaltigkeiten

Definition Eine n-dimensionale **topologische Mannigfaltigkeit** M ist ein topologischer Hausdorff-Raum mit einer abzählbaren Basis der Topologie in dem zu jedem Punkt $p \in M$ eine offene Menge U mit $p \in U$ existiert und ein Homöomorphsimus $\varphi \colon U \to V$ auf eine offene Menge $V \subset \mathbb{R}^n$.

 $\varphi' \circ \varphi^{-1}$ ist ein Homö
omorphismus offener Mengen des \mathbb{R}^n bzw. \mathbb{R}^m . Nach dem Satz von Brouwer (1912) gilt dann m=n. Damit ist die Dimension einer zusammenhängenden topologischen Mannigfaltigkeit eindeutig definiert.

Die Abbildung $\varphi \colon U \to V \subset \mathbb{R}^n$ heißt Karte von M um p, die Menge U heißt Kartengebiet.

Eine Menge von Karten $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in J\}$ heißt **Atlas** von M, falls $\bigcup_{\alpha \in J} U_{\alpha} = M$.

Ein Atlas \mathcal{A} von M heißt C^k -Atlas, wenn für alle $\alpha, \beta \in J$ mit $U_\alpha \cap U_\beta \neq \emptyset$ der sogenannte **Kartenwechsel**:

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \colon \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$$

ein C^k -Diffeomorphismus ist.

Eine Karte $\psi \colon U \to V$ von M heißt **verträglich** mit einem C^k -Atlas $\mathcal{A} = \{(\varphi_\alpha, U_\alpha) \mid \alpha \in J\}$ wenn jeder Kartenwechsel

$$\varphi_{\alpha} \circ \psi^{-1} : \psi(U \cap U_{\alpha}) \to \varphi_{\alpha}(U \cap U_{\alpha})$$

ein C^k -Diffeomorphismus ist, also $\mathcal{A}' = \mathcal{A} \cup \{(\psi, U)\}$ ebenfalls ein C^k -Atlas ist. Die Menge aller mit \mathcal{A} verträglichen Karten ist ein **maximaler** C^k -Atlas. Jeder maximale Atlas enthält alle mit ihm verträglichen Karten. Ein maximaler C^k -Atlas heißt auch C^k -differenzierbare Struktur.

Definition 1.1 (differenzierbare Mannigfaltigkeit) Eine differenzierbare Mannigfaltigkeit der Klasse C^k ist eine topologische Mannigfaltigkeit zusammen mit einer C^k -differenzierbaren Struktur.

Beispiel Einige Beispiele für glatte Mannigfaltigkeiten:

- 1) $M = \mathbb{R}^n, \mathcal{A} = \{(\mathrm{id}_{\mathbb{R}^n}, \mathbb{R}^n)\}$
- 2) $M \subset \mathbb{R}^n$ offen, $\mathcal{A} = \{(i_M, M)\}$
- 3) $S^1\subset \mathbb{R}^2$ ist eine eindimensionale $C^\infty\text{-Mannigfaltigkeit:}$

$$U = \{(\sin t, \cos t) \mid t \in (0, 2\pi)\}\$$

ist offen in S^1 und die Kartenabbildung

$$\varphi \colon (\sin t, \cos t) \mapsto t$$

ist ein Homöomorphismus.

$$\varphi' \colon U' = \{(\sin t, \cos t) \mid t \in (-\pi, \pi)\} \to (-\pi, \pi)$$

ebenfalls. $\mathcal{A} = \{(\varphi, U), (\varphi', U')\}$ ist ein Atlas von S^1 , denn $U \cup U' = S^1$.

$$\varphi' \circ \varphi^{-1} \colon \varphi(U \cap U') \to \varphi'(U \cap U')$$

$$(0, \pi) \cup (\pi, 2\pi) \to (-\pi, 0) \cup (0, \pi) \qquad t \mapsto \begin{cases} t & 0 < t < \pi \\ t - 2\pi & \pi < t < 2\pi \end{cases}$$

4) Jeder reelle Vektorraum endlicher Dimension ist in kanonischer Weise eine C^{∞} -Mannigfaltigkeit.

Wähle eine Basis $\{v_1, \ldots, v_n\}$ von V. Diese definiert mit

$$\varphi\left(\sum \lambda_i v_i\right) = (\lambda_1, \dots, \lambda_n)$$

eine Bijektion auf \mathbb{R}^n . Damit erhält man eine globale Karte von V. Der zugehörige Atlas hängt nicht von der Wahl der Basis ab, denn ist $\{w_1, \ldots, w_n\}$ eine weitere Basis von V und $\psi(\sum \lambda_i w_i) = (\lambda_1, \ldots, \lambda_n)$ eine weitere Karte, so ist $\varphi \circ \psi^{-1}$ als Endomorphismus des \mathbb{R}^n schon C^{∞} .

5)
$$S^n = \{(x^0, x^1, \dots, x^n) \mid \sum_{i=0}^n (x^i)^2 = 1\}.$$

Betrachte den Nordpol $N=(1,0,\ldots,0)$ und den Südpol $S=(-1,0,\ldots,0)$ und die Abbildung

$$\varphi \colon U = S^n \setminus \{N\} \to \mathbb{R}^n \qquad x \mapsto \left(\frac{x^1}{1 - x^0}, \dots, \frac{x^n}{1 - x^0}\right),$$
$$\psi \colon U' = S^n \setminus \{S\} \to \mathbb{R}^n \qquad x \mapsto \left(\frac{x^1}{1 + x^0}, \dots, \frac{x^n}{1 + x^0}\right)$$

 $1+x^0$

 $S^2\subset\mathbb{R}^3$

Aufgabe: Zeige, dass $(\varphi, U), (\psi, U')$ einen C^{∞} -Atlas auf S^n definiert.

Definition 1.2 (Differenzierbare Abbildungen) Eine stetige Abbildung $f: M \to N$ zwischen glatten Mannigfaltigkeiten M und N heißt glatt (C^{∞} -differenzierbar), wenn es zu jedem $p \in M$ Karten (φ, U) in M um p und geeignete (φ', U') in N um f(p) gibt, so dass $\varphi' \circ f \circ \varphi^{-1}$ glatt ist.

Die Menge aller glatten Abbildungen von M nach N wird $C^{\infty}(M,N)$ genannt.

Konvention: Ab jetzt seien zunächst alle Mannigfaltigkeiten, wie auch alle Abbildungen als glatt vorrausgesetzt.

Bemerkung Da Kartenwechsel C^{∞} sind, gilt obige Bedingung automatisch für alle Karten von M und N (evtl. nach Einschränkung).

Beispiel Es folgen zwei Beispiele für differenzierbare Abbildungen:

1.
$$(\varphi, U) \in \mathcal{A} \Rightarrow \varphi \in C^{\infty}(U, \mathbb{R}^n)$$
, denn

$$\mathrm{id}_{\mathbb{R}^n}\circ\varphi\circ\varphi^{-1}=\varphi\circ\varphi^{-1}\in C^\infty.$$

2.
$$f \in C^{\infty}(M, N), g \in C^{\infty}(N, P) \Rightarrow g \circ f \in C^{\infty}(M, P), \text{ denn}$$

$$\varphi_p \circ g \circ f \circ \varphi_m^{-1} = (\varphi_p \circ g \circ \varphi_n^{-1}) \circ (\varphi_n \circ f \circ \varphi_m^{-1}) \in C^{\infty}.$$

Definition 1.3 (Diffeomorphismus) Eine Abbildung $f: M \to N$ heißt **Diffeomorphismus**, wenn f bijektiv ist und f, sowie f^{-1} C^{∞} -Abbildungen von M nach N sind. Insbesondere haben M und N in diesem Fall dieselbe Dimension. Die Menge der Diffeomorphismen von M nach M wird mit Diff(M) bezeichnet. $(Diff(M), \circ)$ ist bezüglich der Hintereinanderausführung eine Gruppe.

1. Produkte von Mannigfaltigkeiten

Es seien M und N glatte Mannigfaltigkeiten der Dimensionen m und n. Dann hat $M \times N$ versehen mit der Produkttopologie, die Struktur einer Mannigfaltigkeit. Da M und N hausdorffsch sind und abzählbare Basen ihrer Topologie besitzen gilt dies auch für $M \times N$. Sind (φ, U) und (ψ, V) Karten von M bzw. N, so ist $\varphi \times \psi$ ein Homöomorphismus von $U \times V$ auf sein offenes Bild in $\mathbb{R}^m \times \mathbb{R}^n \cong \mathbb{R}^{m+n}$.

Seien $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \mathcal{I}\}$ und $\mathcal{A}' = \{(\psi_{\beta}, V_{\beta}) \mid \beta \in \mathcal{J}\}$ C^{∞} -Atlanten von M und N. Dann ist $\mathcal{B} = \{(\varphi_{\alpha} \times \psi_{\beta}, U_{\alpha} \times V_{\beta}) \mid (\alpha, \beta) \in \mathcal{I} \times \mathcal{J}\}$ ein C^{∞} -Atlas von $M \times N$, denn

$$(\varphi_{\alpha} \times \psi_{\beta}) \circ (\varphi_{\mu} \times \psi_{\nu})^{-1} = (\varphi_{\alpha} \circ \varphi_{\mu}^{-1}) \times (\psi_{\beta} \circ \psi_{\nu}^{-1})$$

ist ein C^{∞} -Diffeomorphismus. Damit ist $M \times N$ in kanonischer Weise eine glatte (m+n)-dimensionale Mannigfaltigkeit. Die kanonischen Projektionen $\pi_M \colon M \times N \to M$, $\pi_N \colon M \times N \to N$ und die Abbildung $\tau \colon M \times N \to N \times M$, $(p,q) \mapsto (q,p)$ sind glatte Abbildungen.

Beispiel Es folgen einige Beispiele für Produkt-Mannigfaltigkeiten:

- 1) Zylinder $\mathbb{R} \times S^1$
- 2) $T^n = \times_{i=1}^n S^1$ $\iota : \mathbb{R}^m \hookrightarrow \mathbb{R}^n, (x^1, \dots, x^m) \mapsto (x^1, \dots, x^m, 0, 0, \dots)$

2. Untermannigfaltigkeiten

Definition 1.4 (Untermannigfaltigkeit) Es sei N eine glatte Mannigfaltigkeit. Eine Teilmenge $M \subseteq N$ heißt **Untermannigfaltigkeit** von N, wenn für alle $p \in M$ eine Karte (φ, U) von N um p existiert, so dass

$$\varphi(U\cap M) = \varphi(U) \cap \underbrace{(\mathbb{R}^m \times \{0\})}_{\{(x^1,\dots,x^m,0,\dots,0)\in\mathbb{R}^m \times \mathbb{R}^{n-m} \cong \mathbb{R}^n\}}$$

gilt. Eine solche Karte heißt an M adaptierte Karte. Die Zahl n-m heißt Kodimension von M in N.

Lemma 1.5 Es seien N eine n-dimensionale glatte Mannigfaltigkeit und $M \subseteq N$ eine m-dimensionale Untermannigfaltigkeit von N. Bezeichnet \mathcal{A} einen C^{∞} -Atlas von N und $\pi \colon \mathbb{R}^n \to \mathbb{R}^m, (x^1, \dots, x^m, \dots, x^n) \mapsto (x^1, \dots, x^m)$, so ist

$$\mathcal{B} = \{(\pi \circ \varphi|_{U \cap M}, U \cap M) \mid (\varphi, U) \in \mathcal{A} \text{ an } M \text{ adaptierte Karte}\}$$

 $ein \ C^{\infty}$ -Atlas von M.

Beweis Die Hausdorff-Eigenschaft und die Abzählbarkeit der Topologie werden von N auf M vererbt. Ist $p \in N$, so existiert eine adaptierte Karte (φ, U) von N um p und $\pi \circ \varphi|_{U \cap M}$ ist ein Homöomorphismus von $U \cap M$ auf eine offene Teilmenge des \mathbb{R}^m . Jeder Kartenwechsel

$$(\pi \circ \varphi|_{U \cap M}) \circ (\pi \circ \psi|_{V \cap M})^{-1} = (\pi \circ \varphi) \circ (\psi^{-1} \circ i) = \pi \circ (\varphi \circ \psi^{-1}) \circ i$$

ist ein C^{∞} -Diffeomorphismus.

Bemerkung Erinnerung: $M \subseteq \mathbb{R}^n$ heißt glatte n-dimensionale Untermannigfaltigkeit des \mathbb{R}^n , wenn für alle $p \in M$ eine offene Umgebung U und eine Abbildung $\varphi \colon U \to \mathbb{R}^n$ mit folgenden Eigenschaften existiert:

- (i) $\varphi \colon U \to \varphi(U)$ ist ein Diffeomorphismus auf sein offenes Bild im \mathbb{R}^n .
- (ii) $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^m \times \{0\}).$

Jedes solche M ist eine Untermannigfaltigkeit im Sinne von Definition 1.4, denn jedes φ wie oben ist wegen (i) eine Karte von \mathbb{R}^n (im Sinne glatter Mannigfaltigkeiten) und wegen (ii) eine an M adaptierte Karte. Also sind mit Lemma 1.5 glatte Untermannigfaltigkeiten des \mathbb{R}^n glatte Mannigfaltigkeiten (im allgemeineren Sinne).