DESeq Mini Project: Pathway Analysis from RNA-Seq Results

Andrew Kapinos

11/19/2021

Section 1. Differential Expression Analysis

ENSG0000279928

```
library(DESeq2)
## Warning: package 'GenomicRanges' was built under R version 4.1.2
Let's load our count and metagene data files. We can then import our metadata.
metaFile <- "GSE37704_metadata.csv"</pre>
countFile <- "GSE37704_featurecounts.csv"</pre>
# Import metadata and take a look
colData = read.csv(metaFile, row.names=1)
head(colData)
##
                  condition
## SRR493366 control_sirna
## SRR493367 control_sirna
## SRR493368 control_sirna
## SRR493369
                  hoxa1_kd
## SRR493370
                  hoxa1_kd
## SRR493371
                  hoxa1_kd
Let's import our count data as well.
countData.raw = read.csv(countFile, row.names=1)
head(countData.raw)
                    length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
##
## ENSG0000186092
                                   0
                                                         0
                                                                   0
                                                                              0
                       918
                                              0
## ENSG00000279928
                       718
                                   0
                                              0
                                                         0
                                                                   0
                                                                              0
                                  23
                                             28
                                                        29
                                                                  29
## ENSG0000279457
                      1982
                                                                             28
## ENSG00000278566
                       939
                                   0
                                              0
                                                         0
                                                                   0
## ENSG0000273547
                                   0
                                                         0
                       939
                                              0
                                                                   0
                                                                              0
## ENSG0000187634
                      3214
                                 124
                                            123
                                                       205
                                                                 207
                                                                            212
##
                    SRR493371
## ENSG0000186092
```

0

```
## ENSG00000279457 46
## ENSG00000278566 0
## ENSG00000273547 0
## ENSG00000187634 258
```

Q. Complete the code below to remove the troublesome first column from countData.

```
countData <- as.matrix(countData.raw[,-1])
head(countData)</pre>
```

##	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
## ENSG0000186092	0	0	0	0	0	0
## ENSG00000279928	0	0	0	0	0	0
## ENSG00000279457	23	28	29	29	28	46
## ENSG00000278566	0	0	0	0	0	0
## ENSG00000273547	0	0	0	0	0	0
## ENSG00000187634	124	123	205	207	212	258

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

Tip: What will rowSums() of countData return and how could you use it in this context?

rowSums(countData)==0 will return the row numbers of rows will all 0s, which we want to remove. We can add the minus symbol to select rows that don't have all 0s.

```
# Filter count data where you have 0 read count across all samples.
countData = countData[-which(rowSums(countData)==0),]
head(countData)
```

##		SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
## EN	NSG00000279457	23	28	29	29	28	46
## EN	NSG00000187634	124	123	205	207	212	258
## EN	NSG00000188976	1637	1831	2383	1226	1326	1504
## EN	NSG00000187961	120	153	180	236	255	357
## EN	NSG00000187583	24	48	65	44	48	64
## EN	NSG00000187642	4	9	16	14	16	16

Optional: PCA Analysis

Let's perform PCA to ensure that the data looks well separated.

```
pca.counts <- prcomp(t(countData))
attributes(pca.counts)</pre>
```

summary(pca.counts\$x)

```
PC1
                            PC2
                                               PC3
                                                                  PC4
##
##
    Min.
           :-185705
                       Min.
                               :-173585
                                          Min.
                                                  :-33499
                                                            Min.
                                                                    :-10518
    1st Qu.:-164392
                       1st Qu.: -30247
                                          1st Qu.: -3696
##
                                                            1st Qu.: -4387
##
    Median : -10861
                       Median:
                                  12872
                                          Median : -1112
                                                            Median :
                                                                       2204
##
                       Mean
                                                            Mean
##
    3rd Qu.: 132618
                       3rd Qu.:
                                          3rd Qu.: 10853
                                                            3rd Qu.:
                                                                       5270
                                 74778
##
    Max.
           : 242550
                       Max.
                                  97047
                                          Max.
                                                  : 25439
                                                            Max.
                                                                       6403
##
         PC5
                            PC6
##
    Min.
           :-6734.7
                       Min.
                               :-3.045e-09
    1st Qu.:-3527.9
                       1st Qu.:-4.769e-10
##
##
    Median :
              323.4
                       Median: 1.729e-10
##
    Mean
                 0.0
                       Mean
                               :-1.890e-12
    3rd Qu.: 2729.8
                       3rd Qu.: 1.178e-09
##
           : 7367.7
                               : 1.868e-09
##
    Max.
                       Max.
plot(pca.counts$x[,1], pca.counts$x[,2],
     xlim=c(-300000,300000), ylim=c(-200000,100000),
     xlab="PC1",
     ylab="PC2",col=as.factor(colData$condition),pch=16)
text(pca.counts$x[,1], pca.counts$x[,2], colnames(countData), pos=1)
```


It looks like the data has some trends between the two groups based on their separation along PC1 in the PC plot. Let's continue to DESeq2.

Running DESEq2

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
dds = DESeqDataSetFromMatrix(countData=countData,
                             colData=colData,
                             design=~condition)
dds = DESeq(dds)
res = results(dds)
summary(res)
##
## out of 15975 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                     : 4349, 27%
## LFC < 0 (down)
                     : 4396, 28%
                     : 0, 0%
## outliers [1]
## low counts [2]
                     : 1237, 7.7%
## (mean count < 0)</pre>
## [1] see 'cooksCutoff' argument of ?results
```

27% are upregulated and 28% are downlregulated.

[2] see 'independentFiltering' argument of ?results

Volcano plot

```
plot(res$log2FoldChange, -log(res$padj))
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-value)" )

# Cut-off lines
abline(v=c(-2,2), col="gray", lty=2)
abline(h=-log(0.1), col="gray", lty=2)</pre>
```


Adding gene annotation

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
## Warning: package 'AnnotationDbi' was built under R version 4.1.2
library("org.Hs.eg.db")
columns(org.Hs.eg.db)
    [1] "ACCNUM"
                        "ALIAS"
                                        "ENSEMBL"
                                                        "ENSEMBLPROT"
                                                                        "ENSEMBLTRANS"
##
        "ENTREZID"
                        "ENZYME"
                                        "EVIDENCE"
                                                        "EVIDENCEALL"
                                                                        "GENENAME"
        "GENETYPE"
                        "GO"
                                        "GOALL"
                                                        "IPI"
                                                                        "MAP"
                                        "ONTOLOGYALL"
                                                        "PATH"
                                                                        "PFAM"
        "OMIM"
                        "ONTOLOGY"
   [16]
                        "PROSITE"
                                        "REFSEQ"
                                                        "SYMBOL"
                                                                        "UCSCKG"
   [21]
        "PMID"
##
   [26] "UNIPROT"
res$symbol = mapIds(org.Hs.eg.db,
                     keys=row.names(res),
                     keytype="ENSEMBL",
```

```
column="SYMBOL",
                    multiVals="first")
res$entrez = mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="ENTREZID",
                    multiVals="first")
res$name =
             mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="GENENAME",
                    multiVals="first")
head(res, 10)
## log2 fold change (MLE): condition hoxa1 kd vs control sirna
## Wald test p-value: condition hoxa1 kd vs control sirna
## DataFrame with 10 rows and 9 columns
##
                      baseMean log2FoldChange
                                                   lfcSE
                                                                stat
                                                                          pvalue
##
                     <numeric>
                                     <numeric> <numeric>
                                                           <numeric>
                                                                       <numeric>
## ENSG00000279457
                     29.913579
                                     0.1792571 0.3248216
                                                            0.551863 5.81042e-01
## ENSG00000187634 183.229650
                                     0.4264571 0.1402658
                                                            3.040350 2.36304e-03
## ENSG00000188976 1651.188076
                                    -0.6927205 0.0548465 -12.630158 1.43990e-36
## ENSG0000187961
                   209.637938
                                     0.7297556 0.1318599
                                                           5.534326 3.12428e-08
## ENSG0000187583
                     47.255123
                                     0.0405765 0.2718928
                                                            0.149237 8.81366e-01
## ENSG0000187642
                     11.979750
                                     0.5428105 0.5215598
                                                            1.040744 2.97994e-01
## ENSG0000188290
                    108.922128
                                     2.0570638 0.1969053
                                                          10.446970 1.51282e-25
## ENSG00000187608
                                     0.2573837 0.1027266
                                                           2.505522 1.22271e-02
                    350.716868
## ENSG00000188157 9128.439422
                                     0.3899088 0.0467163
                                                            8.346304 7.04321e-17
## ENSG00000237330
                      0.158192
                                     0.7859552 4.0804729
                                                            0.192614 8.47261e-01
##
                          padj
                                     symbol
                                                 entrez
                                                                           name
##
                     <numeric>
                                <character> <character>
                                                                    <character>
## ENSG00000279457 6.86555e-01
                                     WASH9P
                                              102723897 WAS protein family h..
## ENSG00000187634 5.15718e-03
                                     SAMD11
                                                 148398 sterile alpha motif ...
## ENSG00000188976 1.76549e-35
                                     NOC2L
                                                  26155 NOC2 like nucleolar ..
## ENSG00000187961 1.13413e-07
                                                 339451 kelch like family me..
                                     KLHL17
## ENSG00000187583 9.19031e-01
                                    PLEKHN1
                                                  84069 pleckstrin homology ...
                                                  84808 PPARGC1 and ESRR ind..
## ENSG00000187642 4.03379e-01
                                      PERM1
## ENSG00000188290 1.30538e-24
                                                  57801 hes family bHLH tran..
                                       HES4
## ENSG00000187608 2.37452e-02
                                      ISG15
                                                   9636 ISG15 ubiquitin like...
## ENSG00000188157 4.21963e-16
                                       AGRN
                                                 375790
                                                                          agrin
## ENSG0000237330
                                     RNF223
                                                 401934 ring finger protein ...
```

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2: Pathway Analysis

Let's load the packages and data we'll need.

```
library(pathview)
```

##

```
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Examine the first 3 pathways
head(kegg.sets.hs, 3)
```

```
## $'hsa00232 Caffeine metabolism'
## [1] "10" "1544" "1548" "1549" "1553" "7498" "9"
##
## $'hsa00983 Drug metabolism - other enzymes'
  [1] "10"
                "1066"
                         "10720" "10941" "151531" "1548"
                                                            "1549"
                                                                     "1551"
   [9] "1553"
                "1576"
                         "1577"
                                  "1806"
##
                                          "1807"
                                                   "1890"
                                                            "221223" "2990"
## [17] "3251"
                "3614"
                         "3615"
                                  "3704"
                                          "51733" "54490" "54575"
                                                                     "54576"
## [25] "54577" "54578" "54579" "54600"
                                          "54657"
                                                   "54658"
                                                            "54659"
                                                                     "54963"
## [33] "574537" "64816"
                         "7083"
                                  "7084"
                                          "7172"
                                                   "7363"
                                                            "7364"
                                                                     "7365"
                "7367"
                         "7371"
                                  "7372"
                                          "7378"
                                                   "7498"
                                                            "79799" "83549"
## [41] "7366"
## [49] "8824"
                "8833"
                         "9"
                                  "978"
##
## $'hsa00230 Purine metabolism'
   [1] "100"
                 "10201" "10606"
                                  "10621" "10622"
                                                    "10623" "107"
                                                                      "10714"
##
    [9] "108"
                 "10846" "109"
                                   "111"
                                           "11128" "11164"
                                                            "112"
                                                                      "113"
##
## [17] "114"
                 "115"
                          "122481" "122622" "124583" "132"
                                                             "158"
                                                                      "159"
##
   [25] "1633"
                 "171568" "1716"
                                   "196883" "203"
                                                    "204"
                                                             "205"
                                                                      "221823"
                 "22978" "23649"
                                                                      "270"
## [33] "2272"
                                  "246721" "25885"
                                                    "2618"
                                                             "26289"
  [41] "271"
                 "27115" "272"
                                   "2766"
                                           "2977"
                                                    "2982"
                                                             "2983"
                                                                      "2984"
## [49] "2986"
                                  "3000"
                 "2987"
                          "29922"
                                           "30833" "30834" "318"
                                                                      "3251"
```

```
##
    [57] "353"
                   "3614"
                             "3615"
                                      "3704"
                                                "377841" "471"
                                                                   "4830"
                                                                             "4831"
                   "4833"
                             "4860"
                                      "4881"
                                                "4882"
                                                         "4907"
##
    [65] "4832"
                                                                   "50484"
                                                                             "50940"
##
    [73] "51082"
                   "51251"
                            "51292"
                                      "5136"
                                                "5137"
                                                         "5138"
                                                                   "5139"
                                                                             "5140"
    [81] "5141"
                   "5142"
                             "5143"
                                      "5144"
                                                          "5146"
                                                                   "5147"
                                                "5145"
                                                                             "5148"
##
##
    [89] "5149"
                   "5150"
                             "5151"
                                      "5152"
                                                "5153"
                                                          "5158"
                                                                   "5167"
                                                                             "5169"
   [97] "51728"
                   "5198"
                            "5236"
                                      "5313"
                                                "5315"
                                                         "53343"
                                                                   "54107"
                                                                             "5422"
##
## [105] "5424"
                   "5425"
                             "5426"
                                      "5427"
                                                "5430"
                                                         "5431"
                                                                   "5432"
                                                                             "5433"
## [113] "5434"
                   "5435"
                             "5436"
                                      "5437"
                                                "5438"
                                                          "5439"
                                                                   "5440"
                                                                             "5441"
## [121] "5471"
                   "548644" "55276"
                                      "5557"
                                                "5558"
                                                          "55703"
                                                                   "55811"
                                                                             "55821"
                   "5634"
                             "56655"
                                      "56953"
                                                "56985"
                                                         "57804"
                                                                             "6240"
## [129] "5631"
                                                                   "58497"
## [137] "6241"
                   "64425"
                             "646625"
                                      "654364"
                                                "661"
                                                          "7498"
                                                                   "8382"
                                                                             "84172"
                   "84284"
                                      "8622"
                                                "8654"
                                                                   "8833"
                                                                             "9060"
## [145] "84265"
                             "84618"
                                                          "87178"
                   "93034"
                                      "9533"
                                                          "955"
                                                                   "956"
                                                                             "957"
## [153] "9061"
                             "953"
                                                "954"
## [161] "9583"
                   "9615"
```

To use gage() we'll need a named vector of fold changes.

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
## 1266 54855 1465 51232 2034 2317
## -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Now let's run the gage pathway analysis.

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

Let's take a look at the result structure and the first few down (less) pathways.

```
attributes(keggres)
```

```
## $names
## [1] "greater" "less" "stats"
```

head(keggres\$less)

```
##
                                            p.geomean stat.mean
                                                                        p.val
## hsa04110 Cell cycle
                                         8.995727e-06 -4.378644 8.995727e-06
## hsa03030 DNA replication
                                         9.424076e-05 -3.951803 9.424076e-05
## hsa03013 RNA transport
                                         1.375901e-03 -3.028500 1.375901e-03
## hsa03440 Homologous recombination
                                         3.066756e-03 -2.852899 3.066756e-03
## hsa04114 Oocyte meiosis
                                         3.784520e-03 -2.698128 3.784520e-03
## hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
##
                                               q.val set.size
                                                                       exp1
## hsa04110 Cell cycle
                                         0.001448312
                                                           121 8.995727e-06
## hsa03030 DNA replication
                                         0.007586381
                                                           36 9.424076e-05
## hsa03013 RNA transport
                                         0.073840037
                                                           144 1.375901e-03
## hsa03440 Homologous recombination
                                         0.121861535
                                                            28 3.066756e-03
## hsa04114 Oocyte meiosis
                                                           102 3.784520e-03
                                         0.121861535
## hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                           53 8.961413e-03
```

And let's generate a pathview figure from KEGG data using our results.

pathview(gene.data=foldchanges, pathway.id="hsa04110", low="blue", mid="green", high="yellow")

Let's take a look at the up (more) pathways, too.

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

Let's pass these 5 IDs to the pathview() function, which will give us a combined output.

pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa", low="blue", mid="green", high="ye

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
## Focus on top 5 downregulated pathways here for demo purposes only
keggrespathways.down <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
keggresids.down = substr(keggrespathways.down, start=1, stop=8)
keggresids.down</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"

pathview(gene.data=foldchanges, pathway.id=keggresids.down, species="hsa", low="blue", mid="green", higher higher

