HW 6.3

Rob Navarro

May 31, 2015

Section 10.5

10. Can someone cross all the bridges shown in this map exactly once and return to the starting point?

Since the degree of each vertex of the graph is even, the graph has a Euler circuit. Therefore, someone can indeed cross all six bridges exactly once and return to the starting point.

- 14. Since the picture is a graph in which there are only two vertices of degree we know it has a Euler path. This means that the picture can be drawn without lifting the pencil if the Euler path is followed.
- 26. For which values of n do these graphs have an Euler circuit?
- a) K_n

The degree of each vertex of K_n is n-1, for any $n \ge 1$. So, the degree of each vertex is even only when n is odd. This means that K_n has a Euler circuit for all $n \ge 3$ when n is odd.

- b) C_n
- C_n has a vertex of two for all $n \geq 3$. So, there is a Euler circuit for all $n \geq 3$.
- c) W_n

For all W_n where $n \geq 3$ there are more than two vertices of odd degree. Therefore, W_n has no Euler circuit for all $n \geq 3$.