Universidade Federal de Viçosa UFV

Departamento de Engenharia Elétrica

ELT 476 Laboratório de Robótica Industrial

Manipulador Cartesiano

Autores

1. Thiago Gomes	86305
2. Celso Barcelos	93736
3. Hiago Batista	96704
4. Werikson Alves	96708

Professor

Alexandre Santos Brandão

m Viçosa, Agosto de 2022

Sumário

1	Introdução				
	1.1	Objetivos	2		
2	Mo	delagem do manipulador	2		
	2.1	Lista de materiais	3		
	2.2	Modelo Real	3		
	2.3	Modelo CAD	4		
3	Sim	ulação	5		
	3.1	Cinemática	5		
		3.1.1 Cinemática Inversa	5		
		3.1.2 Cinemática Direta	6		
	3.2	Parametrização	7		
	3.3	Geração de Trajetória	8		
		3.3.1 Traçando uma reta qualquer no espaço	8		
		3.3.2 Espaço de Trabalho			
	3.4	Condições de Singularidades	10		
4	Mo	delo do manipulador real	11		
5	Cor	nclusão	11		

1 Introdução

Ao estudar robótica, lidamos constantemente com a localização de objetos no espaço tridimensional. Esses objetos são os links do manipulador, às peças e dispositivos que ele gerencia e a outros objetos no ambiente do manipulador. De forma simples, mas importante, esses objetos são descritos por apenas dois atributos: sua posição e sua orientação (ÇETIN, 2002). Assim, o manipulador robótico pode ser definido como um sistema mecânico composto por links, juntas e efetuadores. Os links são representados pelo tamanho do braço, as juntas realizam o deslocamento no espaço, podendo elas serem prismáticas ou rotacionais e o efetuador é executa a tarefa ao qual o manipulador está associado.

O números de juntas e o seu tipo determinam quais e quantos movimentos o manipulador consegue realizar no espaço, sendo isto chamado de grau de liberdade. A combinação das juntas prismáticas e rotacionais proporcionam diversas combinação que formam diferentes tipos de manipuladores tais como: antropomórfico (RRR), esférico (RRP), SCARA (RRP), cilíndrico (RPP), prismático (PPP) e paralelo, sendo o foco desde trabalho o manipulador cartesiano.

O manipulador cartesiano, segundo Spong, Hutchinson e Vidyasagar (2020), é caracterizado por possuir três juntas prismáticas. Fazendo uma analise rápida, o manipulador cartesiano é o mais fácil de de se representar no espaço tridimensional e mais simples de ser de ser descritos matematicamente em comparação aos outros manipuladores. De forma genérica, o manipulador cartesiano é comumente aplicado em montagens, transferências de cargas e tarefas de soldagem.

1.1 Objetivos

Uma empresa fabricante de pneus solicitou a um grupo de estudantes da disciplina de robótica industria que desenvolvesse um protótipo de manipulador cartesiano para realizar a paletização de pneus em seu pátio. Este manipulador deverá possuir ótima precisão e ser capaz de suportar elevada carga. Portanto, o objetivo deste trabalho é desenvolver este protótipo que atenta os requisitos solicitados pela empresa.

2 Modelagem do manipulador

A modelagem do manipulador foi dividida em duas etapas, sendo elas o modelo real impresso e o modelo CAD utilizado no MatLab.

2.1 Lista de materiais

Para a construção deste manipulador foram utilizados os seguintes materiais:

- 1x Arduino Nano
- 3x Micro servo motores
- Parafusos
- Cabos/Fios
- PLA
- 3x Potenciometros
- 2x Ponte H L293B

2.2 Modelo Real

Com base nas restrições impostas pelo roteiro, a modelagem tridimensional do manipulador foi implementada de forma a atender as limitações físicas. O manipulador conta com um batente no final de forma a impedir que a "junta" saia do eixo no qual se desloca. Para realizar o deslocamento foi utilizado um "fuso" com uma porca retangular controlada por um servo motor. O modelo do link do manipulador é apresentado na Figura 1a. Para fazer o encaixe do servo foi modelado um suporte, para o mesmo, através do SolidWorks, apresentado na Figura 1b. Após modelado os braços e suportes foi realizado o processo de manufatura aditiva, imprimindo o manipulador completo, e em seguida foi realizada a montagem do manipulador, conforme mostrado na Figura 2.

Figura 1 – Braço do manipulador cartesiano impresso.

Figura 2 – Manipulador cartesiano impresso.

2.3 Modelo CAD

Para o desenvolvimento do modelo CAD, foi utilizado o *software* OnShape. Dada as restrições impostas de volume mínimo de trabalho e volume máximo do manipulador foi elaborado as partes do braço robótico. O modelo CAD proposto à simulação é semelhante ao impresso, sendo as partes utilizadas na simulação: Fuso, porca retangular, apoio e efetuador.

Primeiramente foi desenhado o fuso por onde a porca retangular irá se deslocar, ou seja, é o eixo que irá permitir o deslocamento. Após isto foi desenhado a porca retangular, que é a conexão entre dois eixos distintos, sendo portanto a junção; e por fim foi criado o efetuador, sendo que sua extremidade é onde, de fato, o manipulador atua no espaço. A Figura 3 ilustra o manipulador proposto à simulação. O modelo CAD proposto possui sua origem no centro geométrico da junta mais próxima ao plano da base.

Figura 3 – Esquema da estrutura CAD do manipulador cartesiano

3 Simulação

O manipulador consiste basicamente de três corpos rígidos unidos entre si através juntas prismáticas. A Figura 4 apresenta o modelo esquemático do manipulador abordado. Neste manipulador, a junta de base é fixa em relação ao mundo externo, sendo este indicado por "g", e o efetuador que estará na última junta é indicado por "4". A partir disto, é possível descrever a cinemática da posição, orientação, velocidade e aceleração das juntas e dos efetuadores a partir de um referencial posicionado na base do manipulador.

3.1 Cinemática

Tomando como base o sistema apresentado na Figura 4, ao escolher-se um determinado ponto "P" no espaço de trabalho, Figura 5, pode-se determinar as posições das juntas por meio da posição do efetuador ou a posição do efetuador através das posições das juntas, sendo estas a cinemática inversa e a direta, respectivamente (SICILIANO; KHATIB; KRÖGER, 2008).

Figura 4 – Esquema da estrutura do manipulador cartesiano

3.1.1 Cinemática Inversa

Aplicando o Teorema de Pitágoras no ponto P e H em relação a origem, conforme indicado na Figura 5.

$$H = \sqrt{x^2 + y^2} \tag{1}$$

$$H = \sqrt{x^2 + y^2}$$

$$H = \sqrt{d_3^2 + (d_1 + y_0)^2}$$
(1)
(2)

Figura 5 – Efetuador posicionado no ponto P(x,y,z).

$$P = \sqrt{x^2 + y^2 + z^2} \tag{3}$$

$$P = \sqrt{x^2 + y^2 + z^2}$$

$$P = \sqrt{d_3^2 + (d_1 + y_0)^2 + (d_2 - a_4)^2}$$
(3)

$$x^{2} + y^{2} + z^{2} = d_{3}^{2} + (d_{1} + y_{0})^{2} + (d_{2} - a_{4})^{2}$$
$$d_{3}^{2} + (d_{1} + y_{0})^{2} + z^{2} = d_{3}^{2} + (d_{1} + y_{0})^{2} + (d_{2} - a_{4})^{2}$$
$$z^{2} = (d_{2} - a_{4})^{2}$$

Portanto, conclui-se que:

$$d_1 = y + y_0 \tag{5}$$

$$d_2 = z + a_4 \tag{6}$$

$$d_3 = x \tag{7}$$

3.1.2 Cinemática Direta

Utilizando-se da mesma analise anterior, obtém-se:

$$x = d_3 \tag{8}$$

$$y = d_1 - y_0 \tag{9}$$

$$z = d_2 - a_4 (10)$$

3.2 Parametrização

Para posicionar os sistemas de coordenadas nas juntas do manipulador de forma sistemática, é utilizada a notação de Denavit-Hartenberg (DH), a qual é apresentada na Tabela 1. Para a construção desse manipulador, foi necessário realizar uma rotação na origem (indicado pelo índice "0" na Tabela 1) em relação ao eixo x, para que o manipulador começasse na origem. Além disso, foi realizada uma outra translação e rotação no efetuador (indicado pelo índice "4" na Tabela 1), em relação ao eixo x, que está localizado na última junta, conforme apresentado na Figura 4.

Juntas	θ	d	a	α
0	0	d_0	0	$-\frac{\pi}{2}$
1	0	d_1^*	0	$\frac{\pi}{2}$
2	$-\frac{\pi}{2}$	d_2^*	0	$-\frac{\pi}{2}$
3	0	d_3^*	0	0
4	$\frac{\pi}{2}$	0	a_4	0

Tabela 1 – Parâmetros de notação Denavit–Hartenberg

Em seguida, com os parâmetros de DH e a Equação (11) pode-se definir as matrizes de transformação homogênea do sistema 0 para o sistema 1, do sistema 1 para o 2, do sistema 2 para o 3, do sistema 3 para o 4, fixo no efetuador, conforme apresentado a seguir.

$$\mathbf{A_k^{k-1}} = \begin{bmatrix} \cos(\theta_k) & -\sin(\theta_k)\cos(\alpha_k) & \sin(\theta_k)\sin(\alpha_k) & a_k\cos(\theta_k) \\ \sin(\theta_k) & \cos(\theta_k)\cos(\alpha_k) & -\cos(\theta_k)\sin(\alpha_k) & a_k\sin(\theta_k) \\ 0 & \sin(\alpha_k) & \cos(\alpha_k) & a_k \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(11)

$$\mathbf{A_0^g} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{A_1^0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & d_1^* \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{A_2^1} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & d_2^* \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{A}_{3}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3}^{*} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{A}_{4}^{3} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & a_{3}^{'} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Para um melhor ajuste em relação ao desenho importado do modelo CAD, foi realizado

uma translação em relação a origem do sistema indo para o ponto (x_0, y_0, z_0) , sendo esta representada pela Equação (12).

$$\mathbf{A_0^g} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & y_0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & y_0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(12)

$$\mathbf{A_0^g} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & y_0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{A_1^g} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & y_0 + d_1^* \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{A_2^g} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & y_0 + d_1^* \\ 0 & -1 & 0 & d_2^* \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

3.3 Geração de Trajetória

3.3.1 Traçando uma reta qualquer no espaço

Para realizar o controle do manipulador cartesiano, foi desenvolvido um programa no MatLab, utilizando a estrategia polinomial, a qual utiliza como parâmetros de entrada: o tempo (inicial e final), as posições do efetuador (posição inicial e final) e as velocidades do efetuador (inicial e final). Para verificar o movimento e a precisão do manipulador, foi realizado uma simulação que consistia em traçar uma linha reta no espaço de trabalho tridimensional utilizando a estratégia polinomial. Para isto, ao considerar as restrições de tempo $(t_i \ e \ t_f)$, a trajetória pode ser modelada pela Equação (15) e (16).

$$q_{id} = a_0 + a_1 t + a_2 t^2 + a_3 t^3 (15)$$

$$\dot{q}_{id} = a_1 + 2a_2t + 3a_3t^2 \tag{16}$$

Algoritmo 1: Planejamento de trajetória

```
Entrada: posição inicial, posição final, tempo inicial, tempo final
   Resultado: Vetor P de trajetória
 1 Função gerar trajetória (q_0, q_f, t_0, t_f)
 2 begin
       Inicializar o vetor de restrições Q = [q_0, 0, q_f, 0]^T
 3
       Inicializar a matriz T de coeficientes a partir das equações (15) e (16)
 4
       Inicializar o vetor de pontos P = \{\}
 5
       Calcular as constantes a_1, a_2, ..., a_n
 6
       A \leftarrow T^{-1} \cdot Q
 7
       Inicializar temporizador t
 8
       while t \leq t_f do
 9
           q \leftarrow a_0 + a_1 t + a_2 t^2 + a_3 t^3
10
           P \leftarrow [P, q]^T
11
           Inicializar temporizador t_1
12
           while t_1 \leq 0, 1 do
13
               Aguarda
14
           end
15
       end
16
17 end
18 return P
```

3.3.2 Espaço de Trabalho

Baseando-se no algoritmo anterior, para descrever o espaço de trabalho foram traçadas retas as quais percorrem as arestas do cubo, Figura 6, de forma a demonstrar que o efetuador alcança todos pontos externos do volume do espaço de trabalho, sendo esta apresentado na Figura 7. A operação realizada para obter a trajetória das arestas do volume de trabalho está mostrada no algoritmo 2, após obter a trajetória foi realizada a plotagem.

```
Algoritmo 2: Volume de trabalho

Entrada: Vetor P com os pontos extremos do volume de trabalho

Resultado: Arestas do volume de trabalho

1 Função gerar volume de trabalho (P)

2 begin

3 | Q \leftarrow Executar a função gerar trajetória (p_i, p_{i+1}, 0, 0.5) \forall p_i \in P

4 end

Resultado: Q
```


Figura 6 – Aresta do espaço de trabalho.

Figura 7 – Volume do espaço de trabalho.

3.4 Condições de Singularidades

Os pontos de singularidade do manipulador cartesiano são determinados pelos pontos externos ao espaço de trabalho, ou seja, os pontos que o efetuador não alcança, portanto, os pontos fora do cubo da Figura 7.

4 Modelo do manipulador real

Com base no manipulador implementado na prática, a Tabela ?? a seguir exemplifica os valores sobre a extensão mínima e máxima dos movimentos em cada um dos 3 eixos x,y e z, levando em consideração o comprimento útil do fuso usado pela plataforma de deslocamento. Ademais, é informado tanto o comprimento dos fusos e também o comprimento total dos eixos do manipulador após o acoplamento dos micro servo motores.

Itens	Tipo	x [mm]	y [mm]	z [mm]
Lunto	Max	0	78	0
$Junta_1$	Min	0	8	0
Turnto	Max	0	78	103
$Junta_2$	Min	0	8	35
Turnto	Max	0	100	103
$Junta_3$	Min	70	30	35
Efetuador	Max	0	111	93
Eletuador	Min	70	41	25
Eixo ₁				
$Eixo_2$	Comprimento Total	91		
$Eixo_3$				
$\mathrm{Braço}_x$			140	
$\mathrm{Braço}_y$	Comprimento Total	136		
$\mathrm{Braço}_z$			150	

5 Conclusão

Dado a simplicidade do manipulador implementado na prática e validado por testes experimentais, verificou-se a sua praticidade e eficiência em aplicações do cotidiano dadas as tarefas de transporte de carga e paletização. Analisando-se o desempenho do manipulador, observou-se compatibilidade com a norma ISO 9283, que estabelece quais são os testes que devem ser realizados no manipulador de acordo com a tarefa a ser executada. Sua controlabilidade se mostrou eficiente ao ter um tempo mínimo de posicionamento e de estabilização e deslocamentos adequados, em contraste com sua complexidade.

Referências

ÇETIN, A. E. Handling interaction forces between an object and cartesian robot arm in planar motion. Tese (Doutorado) — Marmara Universitesi (Turkey), 2002.

SICILIANO, B.; KHATIB, O.; KRÖGER, T. Springer handbook of robotics. [S.l.]: Springer, 2008. v. 200.

SPONG, M. W.; HUTCHINSON, S.; VIDYASAGAR, M. Robot modeling and control. [S.l.]: John Wiley & Sons, 2020.