

Principle of Communications

Sampling and Analog-Digital Conversion

Dr. Xiang Cheng

Wireless Communications and Signal
Processing Research Center
Peking University

- Sampling Theorem
- Pulse Code Modulation (PCM)
- Delta Modulation & Differential Pulse Code Modulation
- Vocoders and Video Compression

- Sampling Theorem
 - Sampling
 - Reconstruction
- Pulse Code Modulation (PCM)
- Delta Modulation & Differential Pulse Code Modulation
- Vocoders and Video Compression

Communication System Diagram

Sampling: Anything we should know?

Sampling & Reconstruction ABC

- Sampling is the process of converting a continuoustime signal to a sequence of numbers.
- Reconstruction is the operation of filling the gaps in the sampled data.
- Aliasing refers to the fundamental distortion introduced by sampling.

Rotating period: T

Sampling period: Ts=T/12

Rotating frequency: f=1/T

Sampling frequency: fs=12/T=12f

Rotating period: T/2

Sampling period: Ts=T/12

Rotating frequency: f=2/T

Sampling frequency: fs=12/T=6f

Rotating period: T/3

Sampling period: Ts=T/12

Rotating frequency: f=3/T

Sampling frequency: fs=12/T=4f

Rotating period: T/6

Sampling period: Ts=T/12

Rotating frequency: f=6/T

Sampling frequency: fs=12/T=2f

Rotating period: T/8

Sampling period: Ts=T/12

Rotating frequency: f=8/T

Sampling frequency: fs=12/T=1.5f

Rotating period: T/10

Sampling period: Ts=T/12

Rotating frequency: f=10/T

Sampling frequency: fs=12/T=1.2f

Rotating period: T/12

Sampling period: Ts=T/12

Rotating frequency: f=12/T

Sampling frequency: fs=12/T=f

Implementation of the Sampling Process

Ideal continuous-to-discrete-time (C/D) converter

- Practical approximation of the ideal C/D converter: analog-to-digital (A/D) converter.
 - quantization
 - linearity of quantization
 - sample-and-hold circuits
 - sampling rate

Mathematical Representation

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

$$x_s(t) = x_c(t)s(t) = x_c(t)\sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t - nT)$$

Sampling Theorem

$$X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\Omega - \frac{2\pi k}{T} \right) \right)$$

To obtain the FT of $x_s(t)$ from the FT of $x_c(t)$

Summation of an infinite number of replicas of the given spectrum, shifted by integer multiples of $2\pi/T$.

roof of Sampling Theorem

$$x_{s}(t) = s(t)x_{c}(t) \implies X_{s}(j\Omega) = \frac{1}{2\pi}X_{c}(j\Omega) \star S(j\Omega) ,$$

$$S(j\Omega) := \mathcal{F}\{s(t)\} = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(j\left(\Omega - \frac{2\pi k}{T}\right)\right)$$

$$X_{s}(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j\Omega) \star \delta\left(j\left(\Omega - \frac{2\pi k}{T}\right)\right)$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j\left(\Omega - \frac{2\pi k}{T}\right)\right)$$

Band-Limited Signal & Nyquist frequency

DEF

A continuous-time signal x(t) is called *band limited* if its FT vanishes outside a certain frequency range; that is, if $\exists \Omega_m > 0$ such that

$$X_c(j\Omega) = 0, \ \forall |\Omega| > \Omega_m.$$

DEF

The Nyquist frequency is $\Omega_N = 2\Omega_m$.

Sampling Case 1 & 2:

$$\Omega_s \geq \Omega_N = 2\Omega_m$$

Sampling Case 3:

$$\Omega_s < \Omega_N = 2\Omega_m$$

The 3 Cases of Sampling

Sampling of an infinite bandwidth signal always gives rise to aliasing, no matter how high the sampling rate.

- Problem: A famous theorem in the theory of FT asserts that a signal of finite duration must have an infinite bandwidth. Real-life signals always have finite duration, so their bandwidth is always infinite.
- Solution: Practical solutions are
 - 1. The bandwidth of a real-life signal is always practically finite (i.e., the percentage of energy outside a certain frequency range is negligibly small).
 - 2. Filter the signal before it is sampled. (Antialiasing filter: an analog low-pass filter whose cutoff frequency is not larger than half the sampling frequency.)

Passing $g_s(t)$ through a filter whose impulse response is $h(t) = \text{rect}\left(\frac{t}{T}\right)$ (This is actually a sample holding device that extend each sample into a rectangular waveform)

 $y(t) = \sum_{k=-\infty}^{\infty} g(kT_s) \operatorname{rect}\left(\frac{t - kT_s}{T_s}\right)$

$$H(\omega) = T_s \operatorname{sinc}\left(\frac{\omega}{2\omega_s}\right)$$

Signal Reconstruction (1)

Signal Reconstruction (2)

Ideal sampling $g_s(t) = \sum_{n=-\infty}^{\infty} g(nT_s)\delta(t-nT_s)$: $\delta(t)$ has infinite bandwidth

Practical sampling $g_s(t) = \sum_{n=-\infty}^{\infty} g(nT_s)p(t-nT_s)$: p(t) has finite essential bandwidth

If sampling rate >2B, can be viewed as passing the ideal sampled signal through a filter. Similar to the signal reconstruction problem

- Sampling Theorem
- Pulse Code Modulation (PCM)
 - Pulse modulation
 - Quantization: Uniform vs Nonuniform
 - Transmission bandwidth of PCM
 - Time division multiplexing
- Delta Modulation & Differential Pulse Code Modulation
- Vocoders and Video Compression

Pulse Modulation

- Sampling: a continuous-time signal → a discrete-time sequence
- Pulse modulation:
 - Tx: convert the sequence into a modulated pulse train
 - Rx: reconstruct the signal by tracking certain parameter of the pulse train
 - Examples: PAM, PWM, PPM, PCM,

Pulse amplitude modulation (PAM)

Pulse position modulation (PPM)

Benefit of Pulse Modulation

 Enables simultaneous transmission of multiple signals using timedivision multiplexing (TDM)

Figure 6.12 Time division multiplexing of two signals.

This is the counterpart of frequency-division multiplexing (FDM)

Pulse Code Modulation (PCM)

- One of the most important forms used today
- Key steps of PCM: sample, quantize, and code

Figure 6.13 PCM system diagram.

Figure 6.13 PCM system diagram.

Sampling: Convert a continuous time signal into a discrete-time signal

Quantization: Round off the sample values to the closest level (so the quantized samples only take finite number of possible values)

Coding: Index the finite number of levels and use bit streams to represent the indices of the samples.

- how many samples?
- how much distortion caused by quantization?
- how many bits to transmit the signal?
- What is the tradeoff between these parameters?

Assume the message signal m(t) is between $\lfloor m_p, m_p \rfloor$. Divide $\lfloor m_p, m_p \rfloor$ uniformly into L intervals, each of width $2m_p/L$

Approximate each sample using the mid-point of the interval where it falls. The signal is now "digitized" since its amplitude now can only take L possible values. This is known as an L-ary digital signal.

Can then convert the index to binary signals using "pulse coding"

Digital Telephone System

Anti-aliasing filter has cut-off frequency at 3.4KHz (for voice signal) Sample at 8KHz, 8000 samples per second. Use 256 level uniform quantizer. Needs 8 bits to represent each sample. Therefore, output bitstream has data rate 64k bit/second.

Compact CD

Need to record Hi-Fi music (0~15kHz)

Sample at 44.1KHz. Quantize with L=65536. Need 16 bits to represent each Sample. Hence data rate=706k bit/second

Note: In digital communication, we do not transmit these bits directly using square waveforms. There are advanced modulation schemes to save bandwidth

Each sample is approximated using the mid-point of the interval where it falls.

Input
$$\{m[kT_s]\}$$
, Output $\{\hat{m}[kT_s]\}$. Quantization error, $\{q[kT_s]\}=\{m[kT_s]-\hat{m}[kT_s]\}$

Interpolation
$$m(t) = \sum_{k} m[kT_s] \operatorname{sinc}(2\delta B t - k\delta)$$
 $\hat{m}(t) = \sum_{k} \hat{m}[kT_s] \operatorname{sinc}(2\delta B t - k\delta)$

Distortion
$$q(t) = \sum_{k=0}^{\kappa} (m[kT_s] - \hat{m}[kT_s]) \sin(2\delta B t - k\delta)$$
 Quantization Noise

Quantization Noise (2)

$$q(t) = \sum_{k} (m[kT_s] - \hat{m}[kT_s] \sin(2\delta Bt - k\delta)$$

Power
$$P_q = \lim_{T \circledast \infty} \frac{1}{T} \int_{-T/2}^{T/2} q^2(t) dt = \lim_{T \circledast \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} (m[kT_s] - \hat{m}[kT_s]) \sin(2\delta Bt - k\delta) \right]^2 dt$$

The signals $\operatorname{sinc}(2\delta Bt-m\delta)$ and $\operatorname{sinc}(2\delta Bt-n\delta)$ are orthogonal (can show)

$$\int_{-\infty}^{\infty} \left[\operatorname{sinc}(2\delta Bt - m\delta) \operatorname{sinc}(2\delta Bt - n\delta) \right] dt = \begin{cases} 0 & m \neq n \\ \frac{1}{2B} & m = n \end{cases}$$

Hence
$$P_{q} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} q^{2}(t) dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[\sum_{k} (m[kT_{s}] - \hat{m}[kT_{s}]) \operatorname{sinc}(2\delta B t - k\delta) \right]^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \sum_{k} (m[kT_{s}] - \hat{m}[kT_{s}])^{2} \operatorname{sinc}^{2}(2\delta B t - k\delta) dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \sum_{k} (q[kT_{s}])^{2} \int_{-T/2}^{T/2} \operatorname{sinc}^{2}(2\delta B t - k\delta) dt = \lim_{T \to \infty} \frac{1}{2BT} \sum_{k} q^{2} [kT_{s}]$$

Quantization Noise (3)

Quantization interval is $2m_{_{p}}/L$, and the sample values are approximated by the mid-points. We have

$$|q(kT_s)| < m_p/L$$

Therefore

$$P_{q} = \lim_{T \circledast \infty} \frac{1}{2BT} \sum_{k} q^{2} [kT_{s}] \leq (m_{p}/L)^{2}$$

Alternatively, if we assume error takes value in $\lfloor m_p/L, m_p/L \rfloor$ with uniform probability . We have

$$P_{q} = \lim_{T \in \mathbb{R}} \frac{1}{2BT} \sum_{k} q^{2} \left[kT_{s} \right] = E \left[q^{2} \left[kT_{s} \right] \right] = \int_{-m_{p}/L}^{m_{p}/L} q^{2} \frac{1}{2m_{p}/L} dq = \frac{1}{6m_{p}/L} q^{3} \Big|_{-m_{p}/L}^{m_{p}/L} = \frac{1}{3} \frac{m_{p}^{2}}{L^{2}}$$

If we define $\Delta=2m_p/L$, which is the width of each interval, $P_q=\frac{1}{12}\Delta^2$ Signal to noise ratio $SNR=\frac{P_m}{P_a}=\frac{P_m}{\Delta^2/12}$

Analog-to-Digital Conversion

It is difficult to do A/D conversion with a large number of quantization levels.

Expensive High-Speed ADC

Single A/D convertor

Can use 4 parallel A/D convertors to save 2 clock cycles (expensive!)

Nonuniform Quantization

Figure 6.15 Nonuniform quantization.

Can be interpreted as uniform quantization on a compressed (transformed) signal

Figure 6.17 Utilization of compressor and expander for nonuniform quantization.

Compressor

Figure 6.16 (a) μ -Law characteristic. (b) A-Law characteristic.

$$|v| = \frac{\log(1 + \mu|m|)}{\log(1 + \mu)} \qquad \text{A law:} \quad |v| = \begin{cases} \frac{A|m|}{1 + \log A} & 0 \le |m| \le \frac{1}{A} \\ \frac{1 + \log(A|m|)}{1 + \log A} & \frac{1}{A} \le |m| \le 1 \\ \frac{1 + \log A}{A} & \frac{1}{A} \le |m| \le 1 \end{cases}$$

An illustration of A law

$$\mu$$
 law: $|v| = \frac{\log(1 + \mu |m|)}{\log(1 + \mu)}$

A law:
$$|v| = \begin{cases} \frac{A|m|}{1 + \log A} & 0 \le |m| \le \frac{1}{A} \\ \frac{1 + \log(A|m|)}{1 + \log A} & \frac{1}{A} \le |m| \le 1 \end{cases}$$

Figure 2.18 Uniform and nonuniform quantization of signals.

Benefit of Nonuniform Quantization

Figure 6.18 Ratio of signal to quantization noise in PCM with and without compression.

Transmission Bandwidth of PCM (1)

Figure 6.17 Utilization of compressor and expander for nonuniform quantization.

Binary PCM Signal is transmitted using binary waveforms, $m(t) = \sum_{k} m(kT_s)p(t-kT_s)$ that is, $m(kT_s) = 0.1$ or $m(kT_s) = \pm 1$

If no noise, a channel of bandwidth B can at most support 2B bps.

Example 1: With sampling rate f_s and L-level uniform quantization, determine the minimum channel bandwidth for binary PCM.

The output data contains $f_s\lceil\log_2L\rceil$ bits per second. To transmit these bits using binary PCM, the minimum channel bandwidth is $f_s\lceil\log_2L\rceil/2$ Hz

Transmission Bandwidth of PCM (2)

Example 2:

Use binary PCM, the channel bandwidth is *B*. Use *L*-level uniform quantization. Determine the maximum bandwidth of the message signal.

Each sample contains $\lceil \log_2 L \rceil$ bits. Channel can support 2B sym/sec Therefore, we can at most have $2B/\lceil \log_2 L \rceil$ samples per second. According to Nyquist sampling theorem, the maximum bandwidth of the message signal equals $2B/\lceil \log_2 L \rceil/2$

Example 3:

Use binary PCM, the channel bandwidth is *B*. The message signal has bandwidth *W*. Determine the maximum number of the uniform quantization levels.

Need 2W samples per second. Can transmit at most 2B bits per second. Therefore each sample can have at most $\lfloor B/W \rfloor$ bits. This means the maximum number of uniform quantization levels equals $2^{\lfloor B/W \rfloor}$

- Sampling Theorem
- Pulse Code Modulation (PCM)
- Delta Modulation & Differential Pulse Code Modulation
 - Delta modulation
 - PCM vs. Delta modulation
 - Differential PCM
 - Delta modulation vs. Differential PCM
- Vocoders and Video Compression

Motivations:

- To save channel bandwidth, we want to use as small number of bits as possible to represent a (quantized) sample.
- It is difficult to implement high speed A/D converter with many levels.

If message signal vary slowly in time:

- Do NOT represent each quantized sample independently
- DO represent the difference between the amplitudes of successive samples.

FIGURE 5.14 Illustration of delta modulation. (a) Analog waveform m(t) and its staircase approximation $m_a(t)$. (b) Binary sequence at the modulator output.

Delta Modulation: Transmitter

$$e(nT_s) = m(nT_s) - m_q(nT_s - T_s)$$

$$m_q(nT_s) = \sum_{k=0}^{n} e_q(kT_s)$$
 $m_q(z) = e_q(z) \frac{1}{1 - z^{-1}}$

FIGURE 5.16 Illustration of quantization errors, slope-overload distortion and granular noise, in delta modulation.

Conventionally, use one bit to represent sample amplitude difference. Can have slope overload distortion.

If no overload distortion

$$|m(nT_s)-m_q(nT_s)|=|e(nT_s)-e_q(nT_s)|\leq \frac{\Delta}{2}$$

Delta Modulation: Receiver

$$m_q(nT_s) = m_q(nT_s - T_s) + e_q(nT_s)$$

$$m_q(z) = m_q(z)z^{-1} + e_q(z)$$

$$m_q(z) = e_q(z) \frac{1}{1 - z^{-1}}$$

$$m_q(nT_s) = \sum_{k=0}^n e_q(kT_s)$$

$$e(nT_s) = m(nT_s) - m_q(nT_s - T_s)$$

PCM:

- # of bits per sample determines # of quantization levels of samples
- → Bounds on the sample amplitude

Delata-modulation:

- # of bits per sample determines # of quantization levels of sample differences
- → Bounds on sample amplitude differences
- → Works well for low-frequency data

Σ - Δ Modulation:

- \triangle -modulation essentially samples dm(t)/dt
- lacktriangle Can apply Δ -modulation to $\int_{-\infty}^{\infty} m(\tau) d\tau$

Differential PCM

Why △ -modulation works for low frequency signal?

- $m(kT_s)$ and $m((k+1)T_s)$ are highly dependent.
- $m((k+1)T_s)$ can be "partially" predicted by $m(kT_s)$
- Only need to quantize the non-predictable part.

Generalization:

• Write $m(kT_s)$ as the summation of a predictable part and an independent noise: $m(kT_s) = \hat{m}(kT_s) + d(kT_s)$

$$\hat{m}_a(kT_s) = a_1 m_a((k-1)T_s) + a_2 m_a((k-2)T_s) + \dots + a_N m_a((k-N)T_s)$$

• Only quantize the non-predictable part $d(kT_s)$.

DPCM: Transmitter & Receiver

Figure 6.28 DPCM system: (a) transmitter; (b) receiver.

$$m_q(z) = \hat{m}(z) + d_q(z) = W(z)m_q(z) + d_q(z)$$

$$m_q(z) = \frac{d_q(z)}{1 - W(z)}$$

$$\hat{m}(nT_s) = w_1 m_q((n-1)T_s) + w_2 m_q((n-2)T_s) + \dots + w_p m_q((n-p)T_s)$$

$$\hat{m}(z) = W(z)m_a(z)$$

$$W(z) = w_1 z^{-1} + w_2 z^{-2} + \dots + w_N z^{-N}$$

$$d(z) = m(z) - \hat{m}(z)$$

$$d_q(z) = \text{quantize}(d(z))$$

If no overload distortion $|d(z)-d_q(z)| \le \frac{\Delta}{2}$

$$\left| m(z) - \hat{m}(z) - d_q(z) \right| = \left| m(z) - \left(\frac{W(z)d_q(z)}{1 - W(z)} + d_q(z) \right) \right| = \left| m(z) - \frac{d_q(z)}{1 - W(z)} \right| \le \frac{\Delta}{2}$$

Delta Modulation Revisited

DPCM

Predictor

 $\hat{m}_q[k]$

(b)

Delta Modulation

Delta Modulation is a special case of DPCM

Figure 6.29 ADPCM encoder uses an adaptive quantizer controlled only by the encoder output bits.

Figure 6.28 DPCM system: (a) transmitter; (b) receiver.

- Fix quantization level, but adjust the quantization interval.
- Tx and Rx need to agree upon the quantization interval.
- In the area of waveform source coding.

- Sampling Theorem
- Pulse Code Modulation (PCM)
- Delta Modulation & Differential Pulse Code Modulation
- Vocoders and Video Compression

Model-based Vocoder:

- Use certain parameters to model voice signals
- Quantize the parameters
- Reconstruct (artificially simulate) voice signals at the receiver

Source Coding: Video Compression

Figure 6.36 (a) Frame 1. (b) Frame 2. (c) Information transferred between frames 1 and 2.

MPEG Video compression:

 Use bidirectional interpolation and advanced lossy compression algorithms to minimize the number of bits used to describe each frame.

Note:

- lossless compression, zip, rar, etc.
- lossy compression, MP3, MPEG, etc.

- Sampling Theorem
 - Sampling
 - Reconstruction
- Pulse Code Modulation (PCM)
 - Pulse modulation
 - Quantization: Uniform vs Nonuniform
 - Transmission bandwidth of PCM
 - Time division multiplexing
- Delta Modulation & Differential Pulse Code Modulation
 - Delta modulation
 - Differential pulse code modulation
- Vocoders and Video Compression