Fields and Waves I

Lecture 20

Displacement Current
Lossless and Lossy EM Waves

James D Rees

Electrical, Computer, and Systems Engineering Department Rensselaer Polytechnic Institute, Troy, NY

Maxwell's Equations

Eddy Currents

Fields and Waves I

Maxwell's Equations

Eddy Currents + Skin Effect

Maxwell's Equations

Full Version

$$\oint \vec{H} \cdot d\vec{l} = \int \vec{J} \cdot d\vec{S} + \left(\int \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}\right) \qquad \nabla \times \vec{H} = \vec{J} + \left(\frac{\partial \vec{D}}{\partial t}\right)$$

$$\oint \vec{B} \cdot d\vec{S} = 0 \qquad \qquad \nabla \cdot \vec{B} = 0$$

$$\oint \vec{E} \cdot d\vec{l} = \left(-\frac{d}{dt} \int \vec{B} \cdot d\vec{S}\right) \qquad \nabla \times \vec{E} = \left(-\frac{\partial \vec{B}}{\partial t}\right)$$

$$\oint \vec{D} \cdot dS = \oint \rho dv = Q_{encl} \qquad \nabla \cdot \vec{D} = \rho$$

Note that the time-varying terms couple electric and magnetic fields in both directions. Thus, in general, we cannot have one without the other.

Displacement Current

Conductors vs. Dielectrics

The analysis of the capacitor under time-varying conditions assumed that the insulator had no conductivity. If we generalize our results to include both σ and ε we will have both a conduction and a displacement current.

$$I = I_C + I_D = \sigma \pi a^2 \frac{V_o}{d} + j \omega \frac{\varepsilon \pi a^2}{d} V_o = (\sigma + j \omega \varepsilon) \pi a^2 \frac{V_o}{d}$$

Note that the conduction current has a phase angle of zero degrees while the displacement current has an angle of 90 degrees.

Conductors vs. Dielectrics

The material will behave mostly like a conductor when

$$\frac{|I_c|}{|I_D|} = \frac{\sigma}{\omega \varepsilon} >> 1$$

The material will behave mostly like a dielectric when

$$\frac{|I_c|}{|I_D|} = \frac{\sigma}{\omega \varepsilon} << 1$$

Conductors vs. Dielectrics

Loss tangent of the material:

$$\tan \delta = \frac{\sigma}{\omega \varepsilon}$$

This tells us the phasor-domain angle of the current that results from the conduction and displacement currents combined.

Source: LibreTexts

Displacement Current

Do Lecture 20 Exercise 1 in groups of up to 4.

Overview

Tesla's wireless power transmission experiments

	e remnant			dencliff	Lab	oratory	in Lon	ıg İsla	nd are	still sta	nding.		
(bu	t not ope	n to the	public)										
			F	ields	an	d Wa	aves	I		11			
			_			=		T					

Typical values of f, β , λ for X-rays, visible light, microwaves, and FM radio in free space

1	£(4)	B(m-1)) (m)	
X-rays	1019	2.1×1011	3×10-11	
visible light	6×1014	13×107	5×10-7	
microwaves	100	210	0.03	
FM radio	108	2.1	3.0	
B = c for fre	e space	λ=.	P = + 140E	•

http://www.esat.kuleuven.ac.be/sista/education/techecon/

Transmission Line Review

Model of a short section:

Model the full length as:

Transmission Line Review

- One of the definitions of ϵ_0 is "the capacitance of the vacuum"; likewise, μ_0 is "the inductance of the vacuum".
- To visualize EM waves propagating through space, we can think of space as a T-line with $C' = \varepsilon_0$ and $L' = \mu_0$.

Transmission Line Review

$$\frac{\partial^2 V}{\partial z^2} = lc \frac{\partial^2 V}{\partial t^2} \longrightarrow \frac{\partial^2 V}{\partial t^2} = \frac{1}{lc} \frac{\partial^2 V}{\partial z^2} \longrightarrow \frac{\partial^2 V}{\partial t^2} = u^2 \frac{\partial^2 V}{\partial z^2}$$

For free space,

$$u = \frac{1}{\sqrt{lc}} = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = 3.0 \times 10^8 m/s = c$$

The "Waves" Part of Fields & Waves

In Lecture 1 we briefly described electromagnetic waves propagating in space according to the following equations:

$$\frac{\partial^2 \vec{E}}{\partial t^2} = c^2 \nabla^2 \vec{E} \qquad \frac{\partial^2 \vec{B}}{\partial t^2} = c^2 \nabla^2 \vec{B}$$

Equipped with the full version of Maxwell's Equations, we can now turn our attention to the propagation of EM waves.

Source: https://en.wikipedia.org/wiki/Electromagnetic_radiation

EM wave propagation involves electric and magnetic fields having 3 components, each dependent on all three coordinates, in addition to time.

e.g. Electric field

$$E(x, y, z, t) = \operatorname{Re} \left\{ \widetilde{E}(x, y, z) e^{j\omega t} \right\}$$

instantaneous field

vector phasor

Valid for the other fields D, H, B and their sources J, ρ

Maxwell's Equations in Phasor Domain

$$\nabla \bullet \ \widetilde{E} = \widetilde{\rho}_{v} / \varepsilon$$

$$\nabla \times \tilde{E} = -j\omega \mu \tilde{H}$$

$$\nabla \bullet \tilde{H} = 0$$

$$\nabla \times \tilde{H} = \tilde{J} + j\omega \varepsilon \tilde{E}$$

remember

$$D = \varepsilon E$$

$$D = \varepsilon E$$
 $B = \mu H$

$$\nabla \bullet E = \rho_v / \varepsilon$$

$$\nabla \bullet E = \rho_{v} / \varepsilon$$

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$\nabla \bullet H = 0$$

$$\nabla \bullet H = 0$$

$$\nabla \times H = J + \frac{\partial D}{\partial t}$$

$$J = \sigma E$$

Homogenous wave equation (charge free)

Combining
$$\nabla \times \tilde{E} = -j\omega\mu \tilde{H}$$
 and $\nabla \times \tilde{H} = j\omega\varepsilon_c \tilde{E}$

$$\nabla^2 \tilde{E} - y^2 \tilde{E} = 0$$

$$\nabla^2 \tilde{H} - y^2 \tilde{H} = 0$$

$$y^2 = -\omega^2 \mu \varepsilon_c$$

$$y \text{ propagation constant}$$

- Thus we get the same results using either Maxwell's Equations or T-line equations!
- This also means that we could do transmission line analysis using Maxwell's Equations if we wished.

Transmission Line Review

For lossless systems:

$$\beta = \omega \sqrt{lc}$$

For lossy systems:

$$\gamma = \alpha + j\beta = \sqrt{(r + j\omega l)(g + j\omega c)}$$

The phasors have the factor:

$$e^{-\gamma z} = e^{-\alpha z} \cdot e^{-j\beta z}$$

Attenuation/loss factor due to resistance

How do we translate the treatment of losses from T-lines to EM waves in general?

Fields and Waves I

Some Typical Waves

(a) Circular waves

(b) Plane and cylindrical waves

Ulaby

Figure 1-10

Transverse Electromagnetic Wave (TEM)

- A plane wave has no electric or magnetic field components along the direction of propagation
- Electric and magnetic fields are perpendicular to each other and to the direction of propagation
- They are uniform in planes perpendicular to the direction of propagation

Ulaby

Transverse Electromagnetic Wave

Spatial variation of E and H at t=0

$$\lambda = \frac{2\pi}{k}$$

$$k = \omega \sqrt{\mu \varepsilon}$$

Fields and Waves I

Some Typical Waves

Source: Gfycat

Traveling Plane Waves

The Electric Field in phasor form (only x component)

$$\frac{d^{2}\widetilde{E}_{x}}{dz^{2}} + k^{2}\widetilde{E}_{x} = 0$$

General solution of the differential equation

$$\widetilde{E}_{x}(z) = \widetilde{E}_{x}^{+}(z) + \widetilde{E}_{x}^{-}(z) = E_{x0}^{+} e^{-jkz} + E_{x0}^{-jkz}$$

amplitudes (constant)

For a traveling direction in the +z direction only

Fields and Waves I

Solution of the Wave Equation

The Electric Field in phasor form (only x component)

$$\frac{d^{2}\widetilde{E}_{x}}{dz^{2}} - \gamma^{2}\widetilde{E}_{x} = 0$$

General solution of the differential equation for a lossy medium

$$\widetilde{E}_{x}(z) = \widetilde{E}_{x}^{+}(z) + \widetilde{E}_{x}^{-}(z) = E_{x0}^{+} e^{-(\alpha+j\beta)z} + E_{x0}^{-} e^{(\alpha+j\beta)z}$$

forward traveling in +z direction

backward traveling in -z direction

Capacitor Current Review

 Remember how we treated the two types of current flowing through this capacitor:

$$I = I_C + I_D = \sigma \pi a^2 \frac{V_o}{d} + j \omega \frac{\varepsilon \pi a^2}{d} V_o = (\sigma + j \omega \varepsilon) \pi a^2 \frac{V_o}{d}$$

Note that the conduction current has a phase angle of zero degrees while the displacement current has an angle of 90 degrees.

Complex Permittivity

$$\nabla \times \tilde{H} = (\sigma + j\omega\varepsilon)\tilde{E} = j\omega(\varepsilon - j\frac{\sigma}{\omega})\tilde{E}$$

$$\varepsilon_c = \varepsilon' - j\varepsilon''$$

For lossless medium $\sigma=0$ $\epsilon = 0$ $\epsilon = \epsilon' = \epsilon$

 \mathcal{E}_c complex permittivity

$$\nabla \times \widetilde{H} = J + j\omega\varepsilon\widetilde{E} = (\sigma + j\omega\varepsilon)\widetilde{E} = j\omega(\varepsilon - j\frac{\sigma}{\omega})\widetilde{E}$$

$$\varepsilon_c = \varepsilon' - j\varepsilon''$$

complex permittivity $|\mathcal{E}_c|$

Homogenous wave equation (charge free)

Combining
$$\nabla \times \tilde{E} = -j\omega\mu \tilde{H}$$
 and $\nabla \times \tilde{H} = j\omega\varepsilon_c \tilde{E}$

$$\nabla^2 \tilde{E} - y^2 \tilde{E} = 0 \qquad y^2 = -\omega^2 \mu \varepsilon_c$$

$$y^2 = -\omega^2 \mu \varepsilon_c$$
propagation constant

$$\nabla^2 \tilde{H} - y^2 \tilde{H} = 0$$

Fields and Waves I

Wave Equations for a Conducting Medium

$$abla^2 \widetilde{E} - \gamma^2 \widetilde{E} = 0$$
 Homogenous wave equation for \widetilde{E}

$$\nabla^2 \widetilde{H} - \gamma^2 \widetilde{H} = 0$$
 Homogenous wave equation for \widetilde{H}

 γ ; propagation constant is complex

$$\gamma^{2} = -\omega^{2} \mu \varepsilon_{c} = -\omega^{2} \mu (\varepsilon' - j\varepsilon'')$$

$$\varepsilon' = \varepsilon$$

$$\varepsilon'' = \frac{\sigma}{\omega}$$

$$\varepsilon' = \varepsilon$$
 $\varepsilon'' = \frac{\sigma}{\omega}$

Fields and Waves I

Can also have this term in a lossy dielectric

Propagation Constant

$$\gamma = \alpha + j\beta$$

Attenuation constant

Phase constant

$$\alpha = \omega \left\{ \frac{\mu \varepsilon'}{2} \left[\sqrt{1 + \left(\frac{\varepsilon''}{\varepsilon'}\right)^2} - 1 \right] \right\} [Np/m]$$
 (for a lossy medium)

$$\beta = \omega \left\{ \frac{\mu \varepsilon'}{2} \left[\sqrt{1 + \left(\frac{\varepsilon''}{\varepsilon'} \right)^2 + 1} \right] \right\} \quad [rad/m]$$

Fields and Waves I

31

• For T-line analysis we defined characteristic impedance Z_0 , the ratio of voltage to current:

$$Z_{o} = \sqrt{\frac{r + j\omega l}{g + j\omega c}} \approx \sqrt{\frac{r + j\omega l}{j\omega c}} \approx \sqrt{\frac{j\omega l}{j\omega c}} \sqrt{1 + \frac{r}{j\omega l}} \approx \sqrt{\frac{l}{c}} \left(1 - j\frac{r}{2\omega l}\right)$$

For EM wave analysis we define intrinsic impedance η
 (also called wave impedance), which is the ratio of E
 to H.

$$\eta = \frac{E(x, y, z)}{H(x, y, z)}$$
 $\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377\Omega$

Intrinsic Impedance, η_c

The relationship between electric and magnetic field phasors is the same but the intrinsic impedance of lossy medium, η_c is different

If +z is the direction of the propagation

$$\tilde{E} = -\eta_c \hat{a}_z \times \tilde{H}$$
 $\tilde{H} = \frac{1}{n} \hat{a}_z \times \tilde{E}$

intrinsic impedance $\eta_c = \sqrt{\frac{\mu}{\varepsilon}} = \sqrt{\frac{\mu}{\varepsilon'}} \left(1 - j\frac{\varepsilon''}{\varepsilon'}\right)^{-1/2}$

Intrinsic Impedance, η_c

$$\tilde{E} = -\eta_c \hat{a}_z \times \tilde{H}$$

$$\tilde{H} = \frac{1}{\eta_c} \hat{a}_z \times \tilde{E}$$

Low-Loss Dielectric

defined when $\epsilon''/\epsilon' <<1$

practically if $\varepsilon''/\varepsilon' < 10^{-2}$, the medium can be considered as a low-loss

dielectric

$$\alpha = \frac{\omega \varepsilon''}{2} \sqrt{\frac{\mu}{\varepsilon'}} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$$

[Np/m]

Note that these two terms have the same function but have different frequency dependence

$$\beta \cong \omega \sqrt{\mu \varepsilon'} = \omega \sqrt{\mu \varepsilon}$$

[rad/m]

$$\eta_{c} \cong \sqrt{rac{\mu}{arepsilon'}}$$

 $[\Omega]$

Fields and Waves I

35

Good Conductor

defined when $\epsilon''/\epsilon' > 1$ practically if $\epsilon''/\epsilon' > 100$, the medium can be considered as a good conductor

$$\alpha \cong \omega \sqrt{\frac{\omega \varepsilon''}{2}} = \omega \sqrt{\frac{\sigma \mu}{2 \omega}} = \sqrt{\pi f \mu \sigma}$$
 [Np/m]

$$\beta = \alpha \cong \sqrt{\pi / \mu \sigma}$$
 [rad/m]

$$\eta_c \cong \sqrt{j \frac{\mu}{\varepsilon''}} = (1+j) \sqrt{\frac{\pi f \mu}{\sigma}} = (1+j) \frac{\alpha}{\sigma}$$
[\O]

• When 10⁻²≤ ε"/ε' ≤100, the medium is considered as a "Quasi-Conductor".

Skin Depth, δ_s

shows how well an electromagnetic wave can penetrate into a conducting medium

$$\delta_s = \frac{1}{\alpha}$$
 [m]

Perfect dielectric:

$$\sigma=0$$

$$\alpha = 0$$

$$\sigma=0$$
 $\alpha=0$ $\delta_s=\infty$

Perfect Conductor:

$$\alpha = \infty$$

$$\infty = \infty$$

$$\delta_s = 0$$

Fields and Waves I

Ulaby

Example 1

Find α , β , λ , and η of an electromagnetic wave traveling through seawater ($\varepsilon_r = 72$ $\sigma = 4$) at 10 MHz and 100 GHz.

Example 1

$$\frac{f = 100 \text{ GHz}; \quad \omega \in = \frac{4}{2\pi \times 10^{11}} \frac{4}{72\%} = .0100 \Rightarrow low - loss \\
dielectric$$

$$\gamma = \sqrt{\frac{1}{E^{1}}} \left(|+j\frac{\sigma}{2\omega E}| = 44.4 \left(|+j.005| = 44.4 \right) \frac{1.005}{1.005} \right) = 44.4 \frac{1.005}{1.005} = 2\pi \times 10^{4} \frac{1.005}{1.005} = 2\pi \times 10^{$$

Fields and Waves I

39

Example 1 – 100 GHz

What features do you observe in this wave?

Example 1 – 10 MHz

What features do you observe in this wave?

Example 3

The electric field of a plane wave is given by $\vec{E}=E_mcos(\omega t-\beta z)\hat{a}_x$ a. Write **E** in phasor form.

- b. Is **E** the solution of this wave equation? $\frac{\partial^2 E_x}{\partial z^2} = -\mu \varepsilon \omega^2 E_x$
- c. Find **H** using the phasor form of the ∇ x **E** equation. Assume the **E** and **H** phasors are only a function of z.
- d. Evaluate the amplitude ratio, $\eta = |\mathbf{E}| / |\mathbf{H}|$ in terms of material properties.
- e. If **E** was in the **a**_v direction, what direction would **H** be in?
- f. How many independent parameters are there in the following set? $\omega, \beta, \mu, \varepsilon, \eta, \lambda, T$

Fields and Waves I

Example 3

a.
$$\begin{bmatrix} \vec{E} = E_m e^{-j\beta}\hat{a}_x \end{bmatrix}$$

b. $\frac{\partial^2 E_x}{\partial z^2} = -\mu \epsilon \omega^2 E_x \Rightarrow \frac{\partial E_x}{\partial z} = -j\beta E_m e^{-j\beta}\hat{a}$
 $-\beta^2 E_x = -\mu \epsilon \omega^2 E_x \Rightarrow \beta^2 = \mu \epsilon \omega^2$

c. $\nabla x \vec{E} = -j \omega_M \vec{H} \Rightarrow \vec{H} = \frac{1}{2} \nabla x \vec{E}$,

 $\nabla x \vec{E} = \frac{\partial E_x}{\partial z} \hat{a}_x + 5 \text{ ferms} = -j\beta E_m e^{-j\beta}\hat{a}_y$
 $\vec{H} = \frac{1}{2} \vec{E}_m \vec{E}_m e^{-j\beta}\hat{a}_y = \frac{1}{2} \vec{E}_m e^{-j\beta}\hat{a}_y = \frac{\omega \sqrt{\mu \epsilon}}{\omega \mu} \vec{E}_m e^{-j\beta}\hat{a}_y$
 $\vec{H} = \sqrt{\frac{\epsilon}{\mu}} E_m e^{-j\beta}\hat{a}_y = \frac{1}{2} E_m e^{-j\beta}\hat{a}_y = \frac{\omega \sqrt{\mu \epsilon}}{\omega \mu} \vec{E}_m e^{-j\beta}\hat{a}_y$
 $\vec{E}_x \vec{E}_x \vec{E}_y = -j\beta \vec{E}_y \vec{E}_y = -j\beta \vec{E}_y$

Example 3

There are 3 independent parameters 2 are material - related (i.e. Equ)

1 is frequency-related (for x = B)

Plane Waves

Example 4

WRPI broadcasts at 91.5 MHz. The amplitude of $\bf E$ on campus is roughly 0.08 V/m. Assume a coordinate system in which the wave is polarized in the $\bf a_y$ direction and propagating in the $\bf a_z$ direction.

Assume the phase is 0 at z = 0.

- a. What are β , η and λ for this wave?
- b. Write the electric and magnetic fields in phasor form.
- c. Write the electric field in time domain form.

Example 3

d.
$$\eta = \frac{|\vec{E}|}{|\vec{H}|} = \frac{E_m}{|\vec{E}|} = \sqrt{\frac{E}{E}} = \eta$$

There are 3 independent parameters 2 are material - related (i.e. Equ)

1 is frequency-related (for x = B)

Plane Waves

Example 4

a.
$$\beta = \omega \sqrt{ME} = 2\pi (91.5 \times 10^6) \sqrt{M_0 E_0} = 1.9 \times m^{-1}$$
 $\gamma = \sqrt{\frac{M_0}{E_0}} = \frac{377}{377}$
 $\lambda = \frac{3\pi}{\beta} = 3.28 \text{ m}$

b. generic $\hat{E} = E_m e^{-j\beta \beta} \hat{a}_y$
 $\hat{E} = 0.08 e^{-j.192} \hat{a}_y \hat{a$

c.
$$\vec{E}(z,t) = \text{Re}(\hat{E}(3)e^{j\omega t}) = E_{m}\cos(\omega t - \beta_{3})\hat{a}_{y}$$

 $\omega = 2\pi f = \pi\pi(91.5\times10^{6}) = 5.75\times10^{5}$

 \bullet Poynting Vector S, is defined

$$S = E \times H$$

 $S = E \times H$ [W/unit area]

S is along the propagation direction of the wave

Total power

$$P = \int_{A} S \cdot \hat{a}_{n} dA$$

$$OR P = S A \cos \theta \quad [W]$$

Ulaby

Average power density of the wave

 $[W/m^2]$

Average Power Density

$$\widetilde{E}(z) = \widetilde{E}_{x}^{+}(z)\widehat{a}_{x} + \widetilde{E}_{y}^{+}(z)\widehat{a}_{y}$$

$$\widetilde{E}(z) = (E_{x0}\widehat{a}_x + E_{y0}\widehat{a}_y)e^{-(\alpha+j\beta)z}$$

$$\widetilde{H}(z) = \frac{1}{\eta_c} \widehat{a}_z \times \widetilde{E} = \frac{1}{\eta_c} (-E_{y0} \widehat{a}_x + E_{x0} \widehat{a}_y) e^{-\alpha z} e^{-j\beta z}$$

Average power density

$$S_{av} = \frac{1}{2} \operatorname{Re} \left\{ \tilde{E} \times \tilde{H}^* \right\} = \hat{a}_z \frac{1}{2} (|E_{x0}|^2 + |E_{y0}|^2) e^{-2\alpha z} \operatorname{Re} \left\{ \frac{1}{\eta_c^*} \right\} [W/m^2]$$

EM Power Transmission

Plane wave in a Lossless Medium

$$\widetilde{E}(z) = \widetilde{E}_{x}^{+}(z)\widehat{a}_{x} + \widetilde{E}_{y}^{+}(z)\widehat{a}_{y}$$

$$\widetilde{E}(z) = (E_{x0}\widehat{a}_x + E_{y0}\widehat{a}_y)e^{-jkz}$$

$$\widetilde{H}(z) = \frac{1}{\eta} \widehat{a}_{z} \times \widetilde{E} = \frac{1}{\eta} (-E_{y0} \widehat{a}_{x} + E_{x0} \widehat{a}_{y}) e^{-jkz}$$

$$S_{av} = \hat{a}_z \frac{1}{2 n} (|E_{x0}|^2 + |E_{y0}|^2)$$

$$S_{av} = \hat{a}_z \frac{\left| \hat{E} \right|^2}{2 \eta}$$
 [W/m²]

Coaxial Cable Poynting Vector

Fields and Waves I

51

Electric Circuit Poynting Vector

Average Power Density

If η_c is written in polar form

$$\eta_c = |\eta_c| e^{j\theta_{\eta}}$$

Average power density

$$S_{av} = \hat{a}_z \frac{|E_0|^2}{2|\eta_c|} e^{-2\alpha z} \cos \theta_{\eta}$$

 $[W/m^2]$

where

$$|E_0| = \left| |E_{x0}|^2 + |E_{y0}|^2 \right|^{1/2}$$

Fields and Waves I

53

The transmitter is about 10 km from campus. What transmitter power is required to radiate the same power density into a sphere of radius 10 km?

The transmitter is about 10 km from campus. What transmitter power is required to radiate the same power density into a sphere of radius 10 km?