1. 입지선정 최종 결과

지도 레이어 추가 후 상위지역 확대>장소확인

공용 충전소 입지 1순위

건물1 0개 건물2 51개 건물3 0개 관공서 0개 전기차 4개 주차장 0개 충전소 0개 변압기 0개 전기안전 관리인 교통량 100 경제인구 3226

공용 충전소 입지 2순위

건물1 2개 건물2 51개 건물3 0개 관공서 0개 전기차 3개 추차장 0개 충전소 0개 변압기 0개 전기안전 관리인 교통량 100 경제인구 2476

공용 충전소 입지 3순위

건물1 11개 건물2 1개 건물3 6개 관공서 1개 전기차 0개 주차장 0개 충전소 0개 변압기 0개 전기안전 관리인 교통량 100 경제인구 210

공용 충전소 입지 4순위

건물1 4개 건물2 41개 건물3 0개 관공서 1개 전기차 3개 주차장 0개 충전소 1개 변압기 0개 전기안전 관리인 교통량 100 경제인구 2628

공용 충전소 입지 5순위

건물1 47개 건물2 8개 건물3 0개 관공서 2개 전기차 4개 주차장 2개 충전소 0개 변압기 0개 전기안전 관리인 교통량 100 경제인구 2239

여러 요인을 분석하여 도출한 공용 충전소 입 지 장소 순위는 위와 같다.

분석참조모델 결과를통한 과학적인 설치 입지 선정으로 지자체 예산의 효율적인 사용이가능할 것이다.

또한 공용 충전소의 효용성과 편의성을 높이고, 전기차 보급 활성화에 기여할 수 있을 것이며 전기차 충전소 이용 시민의 편의성 증가로 공용 전기차 충전소의 이용률 및 효용성이제고될 것이다.

결과 csv

gid	주차장	lon	lat	건물1	건물2	건물3	관공서	전기차	충전소	변압기	전기안전관	교통량	경제인구	sum	순위
다사70aa5	0	127.1615	37.61082	0	2	0	0	1		0 0	0	100	1	4	1
다사70aa5	0	127.1615	37.61307	0.026316	2	0	0	0.75		0 0	0	100	0.767514	3.54383	2
다사74aa7	0	127.2063	37.74614	0.144737	0.039216	3	0.25	0		0 0	0	100	0.065096	3.499049	3
다사69bb5	0	127.1587	37.61307	0.052632	1.607843	0	0.25	0.75		1 0	0	100	0.814631	3.475106	4
다사68ba6	2	127.1443	37.64908	0.618421	0.313725	0	0.5	1		0 0	0	100	0.694048	3.126195	5