Raster Imagery and Deep Learning

Deep Learning in Remote Sensing

Episode-3

İrem KÖMÜRCÜ iremkomurcu.com iremkomurcubm@gmail.com

Building Segmentation

Chhor, Guillaume and Cristian Bartolome Aramburu. "Satellite Image Segmentation for Building Detection using U-net." (2017).

Building Segmentation

Classification of Hyperspectral Data

Classification of Hyperspectral Data

Classification of Hyperspectral Data

blesaux.github.io/courses/JURSE_Deep Learning_for_Remote_Sensing_Tutorial.pdf

Deep Learning on SAR

blesaux.github.io/courses/JURSE_Deep Learning_for_Remote_Sensing_Tutorial.pdf

Despeckling of SAR Data

Object characterization for SAR Data

Remote Sensing and Object Detection

Two-Step Object Detection and One-Step Object Detection

Source1: Medium, Towards Data Science, Prakhar Ganesh Source2: lilianweng.qithub.io/lil-loq

ML And DL Based Object Detection

ML Based Object Detection:

- Viola–Jones object detection framework based on Haar features
- Scale-invariant feature transform (SIFT)
- Histogram of oriented gradients (HOG) features

DL Based Object Detection

- R-CNN
- Fast R-CNN
- Faster R-CNN
- YOLO (You Only Look Once)
- SSD (Single Shot MultiBox Detector)
- Retina Net
 - RefineDet (Single-Shot Refinement Neural Network for Object Detection)
- Deformable convolutional networks

Object Detection and OpenCV

Frameworks

- Caffe
- TensorFlow
- Torch DarkNet

Models

- AlexNet
- GoogLeNet
- ResNet
- SqueezeNet
- VGG
- ENet
- VGG-based SSD
- MobileNet-based SSD

Object Detection and OpenCV Algorithm

- Template Matching
- Cascade Classifier
- LBP Local Binary Pattern
- HOG Histogram of Oriented Gradients
- Convolutional Neural Network (CNN)

Tensorflow Object Detection API

Model name	Speed (ms)	COCO mAP[^1]	Outputs
ssd_mobilenet_v1_coco	30	21	Boxes
ssd_mobilenet_v1_0.75_depth_coco ☆	26	18	Boxes
ssd_mobilenet_v1_quantized_coco 🛪	29	18	Boxes
ssd_mobilenet_v1_0.75_depth_quantized_coco ☆	29	16	Boxes
ssd_mobilenet_v1_ppn_coco ☆	26	20	Boxes
ssd_mobilenet_v1_fpn_coco ☆	56	32	Boxes
ssd_resnet_50_fpn_coco 🌣	76	35	Boxes
ssd_mobilenet_v2_coco	31	22	Boxes
ssd_mobilenet_v2_quantized_coco	29	22	Boxes
ssdlite_mobilenet_v2_coco	27	22	Boxes
ssd_inception_v2_coco	42	24	Boxes
faster_rcnn_inception_v2_coco	58	28	Boxes
faster_rcnn_resnet50_coco	89	30	Boxes
faster_rcnn_resnet50_lowproposals_coco	64		Boxes
rfcn_resnet101_coco	92	30	Boxes
faster_rcnn_resnet101_coco	106	32	Boxes
faster_rcnn_resnet101_lowproposals_coco	82		Boxes

Faster R-CNN

YOLO

TF	miss detection rate	Recall	FP	false detection rate	TP	all
16	7.34%	92.66%	29	13.30%	206	218

Test süresi

R-CNN	Fast R- CNN	Faster R- CNN	YOLO
64.8	3.3	0.9	0.1

Ref.: RAPID TARGET DETECTION IN HIGH RESOLUTION REMOTE SENSING IMAGES USING YOLO MODEL, April 2018; DOI: 10.5194/isprs-archives-XLII-3-1915-2018

SSD - Single Shot Detector

RetinaNet

Object Detection Dataset

- COCO (Common Objects in Context)
- Kitti
- Open_images_v4
- Pascal VOC()
- Wider_Face

"info": info, "licenses": [license], "categories": [category], "images": [image], "annotations": [annotation] <annotation> <folder>Kangaroo</folder> <filename>00001.jpg</filename> <path>./Kangaroo/stock-12.jpg</path> <source> <database>Kangaroo</database> </source> <size> <width>450</width> <height>319</height> <depth>3</depth> </size> <segmented>0</segmented> <object> <name>kangaroo</name> <pose>Unspecified</pose> <truncated>0</truncated> <difficult>0</difficult>
bndbox> <xmin>233 <pmin>89</pmin> <max>386</max> <ymax>262 </bndbox> </object>

</annotation>

(Common Objects in Context)

Pascal VOC()

COCO

Proposed - Public General Datasets

- ISPRS datasets: semantic labeling, reconstruction
 - Toronto Massachusetts Roads and Buildings Dataset
- https://www.cs.toronto.edu/~vmnih/data/
- **IEEE GRSS Data Fusion Contests:**

https://www.isprs.org/data/

- http://www.grss-ieee.org/community/technical-committees/data-fusion/data-fusion-contest/
 - IEEE GRSS: hyperspectral datasets with standard train/test splits (DFC2018, Pavia, Indian Pines)
 - http://dase.grss-ieee.org/ INRIA Aerial Semantic labeling dataset: buildings
- https://project.inria.fr/aerialimagelabeling/
- XView: objects in aerial images
 - http://xviewdataset.org/
- DOTA: Detecting Objects in Aerial images https://captain-whu.github.io/DOTA/dataset.html

Practical Session and Sources

https://colab.research.google.com/drive/10m2H3T9Kt4CtBBMieN0JHdR5-ZqJ1Cbehttps://drive.google.com/drive/folders/10AgLjM52sbEsMSO44tC7yvh93IFKcfv_

https://github.com/qubvel/segmentation_models

https://github.com/AlexeyAB/darknet

Please visit on YouTube video to talk about this presentation and practice session. You can find the video link in the my GitHub repo.

THANKS

Does anyone have any questions?

iremkomurcubm@gmail.com iremkomurcu.com

