Scalability of Collective Operations

Victor Eijkhout

• Cost analysis

• Dense matrix-vector product

Cost analysis

Concepts

- α : message latency
- β : transfer time per byte
- ullet γ : time for floating point operation

Recall definitions of weak/strong scalability

Dense matrix-vector product

Parallel matrix-vector product; dense

- Assume a division by block rows
- Every processor p has a set of row indices I_p

Mvp on processor p:

$$\forall_i \colon y_i = \sum_i a_{ij} x_j$$

$$\forall_i \colon y_i = \sum_q \sum_{j \in I_q} a_{ij} x_j$$

Local and remote parts:

$$\forall_i \colon y_i = \sum_{j \in I_p} a_{ij} x_j + \sum_{q \neq p} \sum_{j \in I_q} a_{ij} x_j$$

Each processor needs to collect the whole vector: Allgather

Cost computation 1.

Algorithm:

Step	Cost (lower bound)
Allgather x_i so that x is avail-	
able on all nodes	_
Locally compute $y_i = A_i x$	$pprox 2rac{n^2}{P}\gamma$

Allgather

Assume that data arrives over a binary tree:

- latency $\alpha \log_2 P$
- transmission time, receiving n/P elements from P-1 processors

Algorithm with cost:

Step	Cost (lower bound)
Allgather x_i so that x is avail-	$\lceil \log_2(P) \rceil \alpha + \frac{P-1}{P} n\beta \approx$
able on all nodes	$\log_2(P)\alpha + n\beta$
Locally compute $y_i = A_i x$	$pprox 2rac{n^2}{P}\gamma$

Parallel efficiency

$$E_p^{\text{1D-row}}(n) = \frac{S_p^{\text{1D-row}}(n)}{p} = \frac{1}{1 + \frac{p \log_2(p)}{2n^2} \frac{\alpha}{\gamma} + \frac{p}{2n} \frac{\beta}{\gamma}}.$$

Strong scaling, weak scaling?

Two-dimensional partitioning

<i>x</i> ₀				x3				<i>x</i> ₆				Xg	
a ₀₀	a ₀₁	a ₀₂	<i>y</i> 0	a ₀₃	a ₀₄	a ₀₅		a ₀₆	a ₀₇	a ₀₈		a ₀₉	ao
a ₁₀	a ₁₁	a ₁₂		a ₁₃	a ₁₄	a ₁₅	<i>y</i> 1	a ₁₆	a ₁₇	a ₁₈		a ₁₉	a_1
a ₂₀	a ₂₁	a ₂₂		a ₂₃	a ₂₄	a ₂₅		a ₂₆	a ₂₇	a ₂₈	y_2	a ₂₉	a_2
a ₃₀	a ₃₁	a ₃₂		a ₃₃	a ₃₄	a ₃₅		a ₃₇	a ₃₇	a ₃₈		a39	аз
	<i>x</i> ₁				<i>x</i> ₄				<i>x</i> ₇				X
a ₄₀	a ₄₁	a ₄₂	<i>y</i> 4	a43	a44	a ₄₅		a46	a ₄₇	a48		a49	a4
a ₅₀	a ₅₁	a ₅₂		a ₅₃	a ₅₄	a55	<i>y</i> ₅	a ₅₆	a ₅₇	a ₅₈		a59	a ₅
a ₆₀	a ₆₁	a ₆₂		a ₆₃	a ₆₄	a ₆₅		a ₆₆	a ₆₇	a ₆₈	<i>y</i> ₆	a ₆₉	a ₆
a ₇₀	a ₇₁	a ₇₂		a ₇₃	a ₇₄	a ₇₅		a ₇₇	a ₇₇	a ₇₈		a ₇₉	a ₇
		<i>x</i> ₂				<i>x</i> ₅				<i>x</i> ₈			
a ₈₀	a ₈₁	a ₈₂	<i>y</i> 8	a ₈₃	a ₈₄	a ₈₅		a ₈₆	a ₈₇	a ₈₈		a ₈₉	a ₈
a ₉₀	a ₉₁	a ₉₂		a ₉₃	a94	a95	<i>y</i> 9	a ₉₆	a97	a98		a99	ag
a _{10,0}	$a_{10,1}$	a _{10,2}		a _{10,3}	a _{10,4}	a _{10,5}		a _{10,6}	a _{10,7}	a _{10,8}	<i>y</i> 10	a _{10,9}	a ₁₀
a _{11,0}	$a_{11,1}$	a _{11,2}	. '	a _{11,3}	a _{11,4}	a _{11,5}		a _{11,7}	a _{11.7}	a _{11.8}		a _{11,9}	a ₁ :

Algorithm

- Collecting x_j on each processor p_{ij} by an *allgather* inside the processor columns.
- Each processor p_{ij} then computes $y_{ij} = A_{ij}x_j$.
- Gathering together the pieces y_{ij} in each processor row to form y_i, distribute this over the processor row: combine to form a reduce-scatter.
- Setup for the next A or A^t product

Analysis 1.

Step	Cost (lower bound)
Allgather x_i 's within columns	
Perform local matrix-vector multiply	$\approx 2\frac{n^2}{p}\gamma$
Reduce-scatter y_i 's within rows	

Reduce-scatter

	t = 1	t = 2	t = 3	
p_0	$x_0^{(0)}, x_1^{(0)}, x_2^{(0)} \downarrow, x_3^{(0)} \downarrow$	$x_0^{(0:2:2)}, x_1^{(0:2:2)} \downarrow$	$x_0^{(0:3)}$	
p_1	$x_0^{(1)}, x_1^{(1)}, x_2^{(1)} \downarrow, x_3^{(1)} \downarrow$	$x_0^{(1:3:2)} \uparrow, x_1^{(1:3:2)}$	$x_1^{(0:3)}$	
p ₂	$x_0^{(2)}\uparrow, x_1^{(2)}\uparrow, x_2^{(2)}, x_3^{(2)}$	$x_2^{(0:2:2)}, x_3^{(0:2:2)} \downarrow$	$x_2^{(0:3)}$	
p ₃	$x_0^{(3)} \uparrow, x_1^{(3)} \uparrow, x_2^{(3)}, x_3^{(3)}$	$x_0^{(1:3:2)} \uparrow, x_1^{(1:3:2)}$	$x_3^{(0:3)}$	

Time:

$$\lceil \log_2 p \rceil \alpha + \frac{p-1}{p} n(\beta + \gamma).$$

Step	Cost (lower bound)		
Allgather x_i 's within columns	$\lceil \log_2(r) \rceil \alpha + \frac{r-1}{n} n \beta \approx \rceil$		
	$\log_2(r)\alpha + \frac{n}{c}\beta$		
Perform local matrix-vector multiply	$ \lceil \log_2(r) \rceil \alpha + \frac{r-1}{p} n \beta \approx \log_2(r) \alpha + \frac{n}{c} \beta \\ \approx 2 \frac{n^2}{p} \gamma $		
Reduce-scatter y_i 's within rows	$ \log_2(c) \alpha + \frac{c-1}{p} n\beta + \frac{c-1}{p} n\gamma \approx $ $ \log_2(r)\alpha + \frac{n}{c}\beta + \frac{n}{c}\gamma $		

Efficiency

$$E_p^{\sqrt{p}\times\sqrt{p}}(n) = \frac{1}{1 + \frac{p\log_2(p)}{2n^2}\frac{\alpha}{\gamma} + \frac{\sqrt{p}}{2n}\frac{(2\beta + \gamma)}{\gamma}}$$

Weak scaling: for $p \to \infty$ this is $\approx 1/\log_2 P$: only slowly decreasing.

