통계분석 Statistical Analysis

Regression

Regression Problems

Variable
$$X$$
 Variable Y
$$\{x_1, x_2, \cdots, x_n\} \longleftarrow \{y_1, y_2, \cdots, y_n\}$$
 Relationship between X and Y?
$$y_i = f(x_i)?$$

X and Y are related to each other in a <u>nondeterministic</u> way.

[EX1] X = age of a child, Y = size of that child's vocabulary

[EX2] X = size of engine, Y = fuel efficiency of that engine

- Obviously X can affect Y, but X is not related to Y in a deterministic way.
- Individual by individual, X can have a slightly different value of Y.

Variable x Random Variable Y $\{x_1, x_2, \cdots, x_n\} \longleftarrow \{y_1, y_2, \cdots, y_n\}$ $Y = \beta_0 + \beta_1 x + \epsilon$

- x: the variable fixed by the experimenter, which is called the <u>independent</u>, <u>predictor</u>, or <u>explanatory variable</u>.
- Y: the random variable <u>affected by randomness</u> for a fixed value of x, dependent or response variable.

Variable
$$x$$
 Random Variable Y
$$\{x_1, x_2, \cdots, x_n\} \longleftarrow \{y_1, y_2, \cdots, y_n\}$$

$$Y = \underbrace{\beta_0 + \beta_1 x}_{\text{Deterministic part}} + \epsilon$$
 Random deviation or random error

 ϵ is a rando variable, normally distributed.

$$\epsilon \sim N(0, \sigma^2) \begin{cases} E(\epsilon) = 0 \\ Var(\epsilon) = \sigma^2 \end{cases}$$

linear regression equation:

$$f(x) = \beta_0 + \beta_1 x$$

data points (x_i, y_i) are NOT necessarily on the fit equation.

Vertical deviations

$$\epsilon_i = y_i - f(x_i)$$

= $y_i - (\beta_0 + \beta_1 x_i)$

 $\epsilon_i = \text{error,residual, or deviation}$

$$Y = \beta_0 + \beta_1 x + \epsilon$$

•
$$E(Y|x) = E(\beta_0 + \beta_1 x + \epsilon) = \beta_0 + \beta_1 x$$

When the independent variable x is fixed, the mean value of the random variable Y

•
$$Var(Y|x) = Var(\epsilon) = \sigma^2$$

$$Y = \beta_0 + \beta_1 x + \epsilon$$

How can we determine these parameters?

→ Determine parameters by minimizing errors.

$$Y = \beta_0 + \beta_1 x + \epsilon$$

→ Determine parameters by minimizing errors.

Sum of squared vertical deviations (errors)

$$S(b_0, b_1) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} [y_i - b_0 - b_1 x_i]^2$$

Least-square fit: Minimizing the sum of squared errors

$$\beta_0 = b_0, \ \beta_1 = b_1 \text{ satisfying}$$

$$\frac{\partial}{\partial b_0} S(b_0, b_1) = 0 \quad \frac{\partial}{\partial b_1} S(b_0, b_1) = 0$$

$$\frac{\partial}{\partial b_0} S(b_0, b_1) = (-1) \sum_{i=1}^n \left[y_i - b_0 - b_1 x_i \right] = 0$$

$$\frac{\partial}{\partial b_1} S(b_0, b_1) = \sum_{i=1}^{n} [y_i - b_0 - b_1 x_i] (-x_i) = 0$$

Normal Equations

$$nb_0 + \left(\sum_{i=1}^{n} x_i\right)b_1 = \sum_{i=1}^{n} y_i$$

$$b_0 \left(\sum_{i=1}^n x_i \right) + \left(\sum_{i=1}^n x_i^2 \right) b_1 = \sum_{i=1}^n x_i y_i$$

$$nb_0 + \left(\sum_{i=1}^{n} x_i\right) b_1 = \sum_{i=1}^{n} y_i$$

$$b_0 \left(\sum_{i=1}^{n} x_i\right) + \left(\sum_{i=1}^{n} x_i^2\right) b_1 = \sum_{i=1}^{n} x_i y_i$$

$$\hat{\beta}_{1} = b_{1} = \frac{\sum x_{i}y_{i} - \frac{1}{n}(\sum x_{i})(\sum y_{i})}{\sum x_{i}^{2} - \frac{1}{n}(\sum x_{i})^{2}} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}} = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_{0} = b_{0} = \frac{\sum y_{i} - \hat{\beta}_{1} \sum x_{i}}{\sum x_{i}} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

We need to calculate
$$\sum x_i$$
, $\sum x_i^2$, $\sum y_i$, $\sum x_iy_i$

True Regression Line vs Estimated Regression Line

Variable
$$x \leftarrow \rightarrow$$
 Random Variable Y

$$Y = \beta_0 + \beta_1 x + \epsilon$$
True regression line random error

To estimate true values of β_1 and β_2 ,

 $\hat{\beta}_1$ and $\hat{\beta}_2$ are calculated from sample data by using the least-square fit.

Sample data
$$\begin{cases} \hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}} \\ \{y_1, y_2, \cdots, y_n\} \end{cases}$$
Least-square fit
$$\hat{\beta}_0 = \frac{\sum y_i - \hat{\beta}_1 \sum x_i}{n} = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$Y = \hat{\beta}_0 + \hat{\beta}_1 x$$
Estimated regression line

Estimators of True Regression Line

Variable $x \leftarrow \longrightarrow \text{Random Variable } Y$

$$Y = \beta_0 + \beta_1 x + \epsilon$$

True regression line

random error

Sample data
$$\begin{cases} \hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}} \\ \{y_1, y_2, \cdots, y_n\} \end{cases}$$
 Least-square fit
$$\hat{\beta}_0 = \frac{\sum y_i - \hat{\beta}_1 \sum x_i}{n} = \bar{y} - \hat{\beta}_1 \bar{x}$$
 Estimated regression line

 $\hat{\beta}_{0,1}$ = Estimators of the true regression line, $\beta_{0,1}$

Least-Square Fit: Example

X	132.0	129.0	120.0	113.2	105.0	92.0	84.0	83.2	88.4	59.0	80.0	81.5	71.0	69.2
у	46.0	48.0	51.0	52.1	54.0	52.0	59.0	58.7	61.6	64.0	61.4	54.6	58.8	58.0

$$\sum x_i = 1307.5 \qquad \sum y_i = 779.2$$

$$\sum x_i^2 = 128913.93 \qquad \sum x_i y_i = 71347.30$$

$$\longrightarrow \hat{\beta_1} = -0.20938742, \ \hat{\beta_1} = 75.212432$$

Least-Square Fit: Example

$$\sum x_i = 1307.5 \qquad \sum y_i = 779.2$$

$$\sum x_i^2 = 128913.93 \qquad \sum x_i y_i = 71347.30$$

$$\longrightarrow \hat{\beta}_1 = -0.20938742, \ \hat{\beta}_1 = 75.212432$$

Estimation of Residual Variance

 $\{y_1, y_2, \cdots, y_n\}$: observed values

 $\{\hat{y}_1, \hat{y}_2, \cdots, \hat{y}_n\}$: predicted values by $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

• Sum of squared errors (SSE)

SSE =
$$\sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

= $\sum y_i^2 - \hat{\beta}_0 \sum y_i - \hat{\beta}_1 \sum x_i y_i$

Unbiased Estimator of Residual Variance

$$\hat{\sigma}^2 = s^2 = \frac{\text{SSE}}{n-2} = \frac{\sum (y_i - \hat{y}_i)^2}{n-2}$$

Why is degree of freedom reduced by 2?

We have two relations of $\{x_i\}, \{y_i\}, \text{ which are } \hat{\beta}_0, \hat{\beta}_1$

Coefficient of Determination

deterministic non-deterministic

What determines the sample variation in y?

1. linearity of x and y 2. ran

2. random error

No random error Definitely, linear between x and y.

Very small random error Linear model well explains relationship between x and y.

A large variation in y implies that a simple linear model fails to explain the relationship between x and y.

Coefficient of Determination

$$y=\beta_0+\beta_1x+\epsilon$$
 What determines the sample variation in y?
 1. linearity of x and y 2. random error

Coefficient of Determination (결정계수)

Numeric measure to show the contribution of linearity between x and y to the sample variation of y data, especially, in comparison with random error contributions

We need to define

- 1) The sample variation of y data
- 2) The contribution of the linear relationship between x and y
- 3) The contribution of random errors

Sum of Squares

Total Sum of Squares (SST, 총제곱합)

$$\mathrm{SST} = S_{yy} = \sum_{i=1}^n \left(y_i - \bar{y}\right)^2 = \sum_{i=1}^n y_i^2 - \frac{1}{n} \left(\sum_{i=1}^n y_i\right)^2$$
 Sample mean of y $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$

• The total sum of squares (SST) represents the sample variation (variance) of y data

Sum of Squared Errors (SSE, 오차제곱합)

$$SSE = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

• SSE measures squared deviation between y data and the (estimated) regression line.

Regression Sum of Squares (SSR, 회귀제곱합)

$$SSR = \sum_{i} (\bar{y} - \hat{y}_i)^2 = \sum_{i} (\bar{y} - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

• SSR measures squared deviations between the mean of y data and the regression line.

Relationships among Sum of Squares

Graphical Interpretation

SSE < SST

Relationships among Sum of Squares

Graphical Interpretation

Relationships among Sum of Squares

Mathematical Relation

$$SST = SSE + SSR$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\bar{y} - \hat{y}_i)^2$$
 SST SSE SSR

The Coefficient of Determination

$$r^2 = 1 - \frac{\text{SSE}}{\text{SST}} = \frac{\text{SSR}}{\text{SST}}$$

The proportion of observed y variation that can be explained by the simple linear regression model.

 \rightarrow The higher coefficient of determination, the better the regression model explains the variation of y.

The sum of squared residuals

$$\sum_{i=1}^{\infty} (y_i - a_0 - a_1 x_i)^2 \sim 10^4$$

It seems that data points do not show a linear behavior. Least-square linear fit might not be a good model for them.

The exponential model

$$\hat{y} = \alpha \exp[\beta x]$$

$$\downarrow$$

$$\ln \hat{y} = \ln \alpha + \beta x$$

Data points

$$(x_i, y_i) \to (x_i, \ln y_i)$$

Exponential Equation

$$\hat{y} = \alpha \exp[\beta x] \xrightarrow{\text{Lineorized}} \ln \hat{y} = \ln \alpha + \beta x$$

Power Equation

$$\hat{y} = \alpha x^{\beta} \qquad \qquad \qquad \longrightarrow \log_{10} \hat{y} = \log_{10} \alpha + \beta \log_{10} x$$

• Saturation-Growth-Rate Equation

$$\hat{y} = \alpha \frac{x}{\beta + x} \qquad \xrightarrow{\text{Linearized}} \qquad \frac{1}{\hat{y}} = \frac{1}{\alpha} + \frac{\beta}{\alpha} \frac{1}{x}$$

Polynomial Regression

Nonlinear Curve-fitting

- Linearization of nonlinear equations
- Extension of linear fitting to polynomials
- Observed data points

$$(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$$

Polynomial regression equation

$$f_m(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$

Error (Residual): Vertical deviation from data points

$$e_i = y_i - f(x_i) = y_i - (a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_m x_i^m)$$

Best fit to Data Points

The sum of squared vertical deviations

$$S(a_0, a_1, \dots, a_m) = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n \left[y_i - (a_0 + a_1 x_i + \dots + a_m x_i^m) \right]^2$$

• The best fit? ——— Minimizing the sum of squared errors

$$\frac{\partial}{\partial a_k} S(a_0, a_1, \dots, a_m) = 0$$

$$\to \sum_{i=1}^n 2 [y_i - (a_0 + a_1 x_i + \dots + a_m x_i^m)] (-x_i^k) = 0$$

$$\frac{\partial}{\partial a_k} S(a_0, a_1, \cdots, a_m) = 0$$

$$\to \sum_{i=1}^{m} \left[y - (a_0 + a_1 x_i + \dots + a_m x_i^m) \right] (-x_i^k) = 0$$

$$\to \left(\sum_{i=1}^n x_i^k\right) a_0 + \left(\sum_{i=1}^n x_i^{k+1}\right) a_1 + \dots + \left(\sum_{i=1}^n x_i^{k+m}\right) a_m = \sum_{i=1}^n x_i^k y_i$$

Normal Equations

Normal Equations

$$\begin{aligned}
na_0 + \left(\sum_{i=1}^n x_i\right) a_1 + \dots + \left(\sum_{i=1}^n x_i^m\right) a_m &= \sum_{i=1}^n y_i \\
\left(\sum_{i=1}^n x_i\right) a_0 + \left(\sum_{i=1}^n x_i^2\right) a_1 + \dots + \left(\sum_{i=1}^n x_i^{m+1}\right) a_m &= \sum_{i=1}^n x_i y_i \\
&\vdots \\
\left(\sum_{i=1}^n x_i^m\right) a_0 + \left(\sum_{i=1}^n x_i^{m+1}\right) a_1 + \dots + \left(\sum_{i=1}^n x_i^{2m}\right) a_m &= \sum_{i=1}^n x_i^m y_i
\end{aligned}$$

(m+1) linear eqns

(m+1) unknowns: a_0, a_1, \dots, a_m

Uniquely determined

Normal Equations: Solving linear equations

$$\begin{pmatrix} n & \sum x_i & \cdots & \sum x_i^m \\ \sum x_i & \sum x_i^2 & \cdots & \sum x_i^{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_i^m & \sum x_i^{m+1} & \cdots & \sum x_i^{2m} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} \sum y_i \\ \sum x_i y_i \\ \vdots \\ \sum x_i^m y_i \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} n & \sum x_i & \cdots & \sum x_i^m \\ \sum x_i & \sum x_i^2 & \cdots & \sum x_i^{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_i^m & \sum x_i^{m+1} & \cdots & \sum x_i^{2m} \end{pmatrix}^{-1} \begin{pmatrix} \sum y_i \\ \sum x_i y_i \\ \vdots \\ \sum x_i^m y_i \end{pmatrix}$$

Here,
$$\sum \equiv \sum_{i=1}^{n}$$

Polynomial Least-Square Fit

data points:
$$y = 20 + 5x - 0.5x^3 + e$$
 $\begin{cases} e = \text{random number} \\ |e| \le 0.5 \end{cases}$

Polynomial Least-Square Fit

data points:
$$y = 20 + 5x - 0.5x^3 + e$$

$$\begin{cases} e = \text{random number} \\ |e| \le 0.5 \end{cases}$$

Multiple Regression Analysis

Variables x_1, x_2, \cdots, x_k \longleftarrow Random Variable Y

$$Y = \underline{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k} + \epsilon$$

True regression line

random error

Sample data: $\{(x_{1j}, x_{2j}, \dots, x_{kj}), y_j\}$ for $j = 1, \dots, n$

$$Y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \cdots + \hat{\beta}_k x_k$$

Estimated regression line from the least-square fit