Computer Science & IT

ALGORITHMS

Algorithm

Lecture No. 2

Recap of Previous Lecture

Topics to be Covered

Join Telegram

Inspiring Stories: M. Balakrishnan

Background: Professor who wanted to make life easier for the blind.

Education: PhD in Computer Science, IIT Delhi.

Achievements: Co-created the SmartCane, a stick with sensors that helps blind people detect obstacles.

Impact: Thousands of visually impaired people in India move around more freely.

Inspiring Stories: D. Udaya Kumar

Background: Grew up in Tamil Nadu, passionate about type design.

Education: PhD in Design, IIT Bombay.

Achievements: Designed the ₹ symbol for the Indian Rupee.

Impact: Gave India a global currency symbol seen on every keyboard and note.

Inspiring Stories: Sirshendu De

Background: From West Bengal, wanted to solve the arsenic water crisis.

Education: PhD in Chemical Engineering, IIT Kanpur.

Achievements: Made cheap filters from local soil to clean arsenic from water.

Impact: Villages in Bengal and beyond now drink safe water at very low cost.

algolithmy Recurice îterative. A(n) main() for(i=0,i<n;i++) A (n-1)

Both iterative and recursive programs are equally powerful


```
main()

\begin{cases}
TC = O(1) \\
a = b + C;
\end{cases}
```


for
$$(i=0; i < n; i=i+2)$$

Pf (RBR)

Let the program executes (k) times

iteration $(i=0; i < n; i=i+2)$

iteration $(i=0; i < n; i=i+2)$

SC = O(1)

Pf (RBR)

SC = O(1)

SC = O(1)

Ktimes

(k+1)

Value $(i=0; i < n; i=i+2)$

iteration $(i=0; i < n; i=i+2)$

SC = O(1)

Pf (RBR)

Iteration $(i=0; i < n; i=i+2)$

SC = O(1)

Pf (RBR)

Iteration $(i=0; i < n; i=i+2)$

SC = O(1)

Pf (RBR)

Iteration $(i=0; i < n; i=i+2)$

SC = O(1)

Pf (RBR)

Iteration $(i=0; i < n; i=i+2)$

SC = O(1)

Pf (RBR)

Iteration $(i=0; i < n; i=i+2)$

SC = O(1)

Pf (RBR)

Iteration $(i=0; i < n; i=i+2)$

Iteration $(i=0; i < n; i=i+2)$

Iteration $(i=0; i < n; i=i+2)$

SC = O(1)

Pf (RBR)

Iteration $(i=0; i < n; i=i+2)$

Iteration $(i=0; i < n; i=i+2)$

Iteration $(i=0; i < n; i=i+2)$

Iteration $(i=0; i=i+2)$

For
$$(i=1)$$
 $i=1$, $i=$

- 12 (hoga)

= O(logn)

fd(
$$i=n; i>2; i=Ji$$
)

Pf(RBR)

Let book runs for k times.

iteration 1 2/2 3/4 - - K (K+1)

iteration 1 2/2 1/2² 1/2³ ... 1/2³ 1/2⁴

if $i=2$
 $i=3$
 $i=2$
 $i=3$
 $i=3$

K+1

int i=n

Let the loop execute k times

while (i>1)

i ef(RBR)

i n n/2
$$\frac{3}{2}$$
 $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1$

$$fa(i=1/2; i< n; i=2+i)$$

i $pf(RBR)$

iteration 1 2 $O(1)$

a) Rank b) Simple i $\frac{n}{2}$

$$fa(i=0; i<0, i+t) \qquad o(n^{2})$$

$$fa(j=0; j<0, j+t)$$

$$i = 0 \qquad |i=1 \qquad |i=2 \qquad |j=0,1,2,-n-1|$$

$$j=0,1,2-n-1 \qquad j=0,1,2,-n-1$$

$$j=0,1,2-n-1 \qquad n \qquad n = o(n^{2})$$

$$n < n = o(n^{2})$$

$$= o(n^{2})$$

$$fa(i=n^2;i71;i=i/2)$$
 $fa(j=1;j
 $fa(j=1;j)$
 $f$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$


```
fa(i=1/2; i<n; i++)
 { for(j=1) j≤n/2) j++)
                                      O(n)
   { for(k=1; k≤n; k=k*2) 7 o(logn)
      { pf("RBR")
                                   O(n^2 \log n)
```


a) Rank b) Simple algo

$$fo(\hat{x}=1; \hat{x}=n; \hat{x}+1)$$
 $\begin{cases} \hat{y}=2 \\ \text{while}(\hat{y}\leq n) \\ \hat{y}=\hat{y}^2; \end{cases}$
 $\begin{cases} \hat{y}=\hat{y}^2; \end{cases}$

<u>iteration</u>	1
2	222
3	223
4	2K-1
i. K	2 K
K+1	2

O(nloglogn


```
while (i=n) {
   while (j<n)
                                Loga
                         69
                    logn
```

Total = 17+2+3+3+--+ =の(1+1/2+1/3+1/4+~~+か)

$$\hat{x} = 25$$

While ($\hat{x} < n$)

 $\hat{x} = \hat{x}^3$;

THANK - YOU