

Long-Distance Gesture Recognition using Dynamic Neural Networks

Shubhang Bhatnagar^{1,2}, Sharath Gopal², Narendra Ahuja¹, Liu Ren²

¹ University of Illinois Urbana-Champaign

² Bosch Research North America, Bosch Center for Artificial Intelligence Oct 2nd 2023

Motivation Gesture Recognition for Human-Machine Interaction

- Gestures form a natural interface for communication between humans and machines
- Provide a convenient and contact-less way to communicate with robots

Mobile Robots and Drones

Home Automation

AR/VR

Conference Rooms

Challenges Long Distance Gesture Recognition

Gesturing subject is small

3D CNNs down sample input

Features might lose too much gesture information

Higher resolution video requires more compute, bandwidth!

Method Spatially Dynamic Neural Network

Spatially Dynamic Neural networks can adapt computational graph to input at run-time

Selectively Discard background features

Selectively Preserve gesturing subject features

Our Pipeline

3 blocks made of 3D CNN subnetworks

Method Patch Selection Subnetwork

Selected Patch

Discarded Patches

Benchmark

Long Distance Gesture Recognition

Measure Top-1 Accuracy on LDConGR [1] long range gesture recognition dataset

- subjects seated 1-4 meters away
- 10 gestures (static and dynamic)

Results

Long Distance Gesture Recognition

Lower compute required compared to state-of-the-art

Better performance compared to state-of-the-art

Significant improvements in resource constrained settings

Method	Compute (GFLOPS)	Top-1 Accuracy
Ours (3D MobileNet)	1.5	76.68
3D MobileNet [6]	1.5	65.33

Results **Detecting Finer Gestures**

Better Performance on **finer gestures** due to utilization of higher resolution features

- 25% lower error on Pinch
- 8% lower error on Click
- 7% lower error on Fist

Results Deterioration with Distance

Lower deterioration in performance with distance

Conclusion

- We propose a novel dynamic neural network for long distance gesture recognition
- Proposed network can recognize gestures more accurately and efficiently by discarding background features
 early on
- Shows state-of-the-art performance for long distance recognition, especially for resource constrained devices

Visit us at 10 am @ Track 13 (Visual Learning), Slot 9

Thank You!
Questions?