

Analog IC Design

Lecture 21 Slew Rate (SR) and Power Supply Rejection (PSR)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Linear and non-linear settling
 - ☐ SR examples
- ☐ Power supply rejection
- ☐ PSRR examples

Outline

- ☐ Linear and non-linear settling
- ☐ SR examples
- ☐ Power supply rejection
- ☐ PSRR examples

Linear System

- ☐ One important property of linear systems: doubling the input doubles the output
 - More generally: scaling the input scales the output

Linear Settling

- \Box The system time constant (τ) do not depend on the input level
 - Need to settle to a higher voltage in the same time
 - Need larger slope
 - Need higher current!
- ☐ For linear systems: doubling the input doubles the output
 - The slope is also doubled!
- ☐ Linear settling: Scaling the input scales the output slope

Linear Settling

Linear settling: Output slope and charging current

input

$$V_{out} = V_{step} \left(1 - e^{-\frac{t}{\tau}} \right)$$

$$\frac{dV_{out}}{dt} = V_{step} \left(\frac{1}{\tau} e^{-\frac{t}{\tau}} \right) \rightarrow \frac{dV_{out}}{dt} \propto V_{step}$$

$$I_{out} = C_L \frac{dV_{out}}{dt} \rightarrow I_{out} \propto V_{step}$$

Non-linear Settling: Slewing

- Non-linear settling: Output slope and current NOT ∝ input
 - Output is linear ramp → finite constant slope
- ☐ Slew Rate (SR): the maximum possible slope of the op-amp output
- ☐ Linear ramp → constant current charging a capacitor

$$I_{out} = C_L \frac{dV_{out}}{dt} \rightarrow SR = \left(\frac{dV_{out}}{dt}\right)_{max} = \frac{I_{out,max}}{C_L} = const.$$

 \Box Slope independent of the input level \rightarrow non-linear behavior

Small Input Step: Linear Settling

- Linear settling: Output slope and charging current

 input
- Output voltage has exponential settling behavior
- \Box When the output settles $\rightarrow \Delta V_{id} = V_{in} V_{out} \approx 0$

Large Input Step: Slewing

- \square M2 OFF, I_{SS} is fully steered to M1 \rightarrow M3 \rightarrow M4 then to C_L
- □ Nonlinear settling: output slope and charging current NOT ∝ input
 - Linear ramp \rightarrow constant current (I_{SS}) charging a capacitor
- \square As V_{out} approaches V_{in} the circuit resumes linear settling (exp)
- $\square SR = \frac{I_{SS}}{C_{L}}$
- ☐ Efficiency ~ 100%

Outline

- ☐ Linear and non-linear settling
- ☐ SR examples
- ☐ Power supply rejection
- ☐ PSRR examples

SR of FD OTA

- $\square V_{out-}: SR = \frac{I_{SS}}{2}/C_L$
- $\square V_{outd} = V_{out+} V_{out-} : SR = I_{SS}/C_L$
- ☐ Symmetrical slewing → Necessary to maintain constant CM level

SR of Telescopic Cascode

$$\square SR = \frac{I_{SS}}{C_L}$$

☐ Efficiency ~ 100%

SR of Folded Cascode

- \square At equilibrium: Usually set $I_{DQ,CS} = I_{DQ,CG} \rightarrow I_{B1} = I_{B2}$
- \square At slewing: $I_{B2} \rightarrow I_{B2} I_{B1} \approx 0$
- $\square SR = I_{SS}/C_L$
- ☐ Efficiency $\approx 50\%$

SR of Two-Stage Miller OTA

- $oxedsymbol{\square}$ I_{B2} is usually much larger than I_{B1}
 - SR usually limited by I_{B1}
- Internal slewing limits output slewing
- Positive slewing

$$\frac{I_{D6} - I_{B1} - I_{B2}}{C_L} > \frac{I_{B1}}{C_1 + C_C}$$

$$SR_{+} \approx \frac{I_{B1}}{C_1 + C_C}$$

Negative slewing

$$\frac{I_{B2} - I_{B1}}{C_L} > \frac{I_{B1}}{C_1 + C_C}$$

$$SR_{-} \approx \frac{I_{B1}}{C_1 + C_C}$$

SR of Fully-Differential Miller OTA

- \square Must design the circuit such that $SR_+ = SR_-$
 - Both should be limited by I_{B1}
- Otherwise the slewing is asymmetric
 - Causes a shift in CM output
 - Slow transients if the CMFB network is slow

Outline

- ☐ Linear and non-linear settling
 - ☐ SR examples
- Power supply rejection
- ☐ PSRR examples

Power Supply Rejection (PSR)

- ☐ Supply lines carry noise from regulators, digital loads, etc.
- \Box We don't want V_{out} to be affected by V_{DD} noise

$$PSR = \frac{1}{v_{out}/v_{DD}}$$

$$PSRR = \frac{v_{out}/v_{in}}{v_{out}/v_{DD}} = A_{vd} \cdot PSR$$

☐ Both PSR and PSRR usually reported in dB

Power Supply Rejection Ratio (PSRR)

- \square The diode-connected device "clamps" V_M to VDD
- \square V_M and V_{out} experience approximately the same change as VDD

$$PSR = \frac{1}{v_{out}/v_{dd}} \approx 1$$

$$PSRR = \frac{v_{out}/v_{in}}{v_{out}/v_{dd}} = A_{vd} \cdot PSR \approx \frac{g_{m1,2}(r_{o2}||r_{o4})}{1}$$

$$M_3 \longrightarrow M_4$$

Outline

- ☐ Linear and non-linear settling
 - ☐ SR examples
- ☐ Power supply rejection
- ☐ PSRR examples

Quiz: PSRR of 5T OTA

- ☐ Derive the PSRR for a 5T OTA with PMOS input pair
 - Assume the tail current source is generated by a simple current mirror
- ☐ What is the relation between the PSRR you derived and the CMRR?

Quiz: PSRR of Complementary CS

☐ Find the PSRR of the complementary CS amplifier (inverter-based amplifier)

$$PSRR = \frac{v_{out}/v_{in}}{v_{out}/v_{dd}}$$

☐ Very poor PSRR!

Quiz: PSRR of CS with Active Load

- lacktriangle Assume all transistors have the same g_m and r_o
- ☐ Note: The gate of the active load is **NOT** ac ground

PSRR: SE Output vs Fully Differential

- \square In both cases ΔV_{DD} gets transferred to the output
 - But for the fully diff amp, the differential output is not affected

Thank you!

Folded Cascode Slewing (IB1 < IB2)

- The slewing is always symmetrical independent of the speed of the CMFB network.
 - This is an advantage for driving slightly more current in the output branch.

Folded Cascode Slewing (IB1 > IB2)

 \square Assume a fast CMFB network that forces a constant CM (symmetrical slewing).

Folded Cascode Slewing (IB1 > IB2)

☐ Assume a slow CMFB network (non-symmetrical slewing).

