Aula 8: Arranjos simples

Conteúdo:

- **Introdução**
- Arranjo simples
- Número de arranjos simples

Introdução:

Exemplo 1:

Um prédio tem 8 portas. De quantas maneiras 1 pessoa pode entrar por 1 porta e sair por outra diferente?

entrada saída

Resolução:

Possibilidades

Resposta:

Uma pessoa pode entrar por uma porta e sair por outra de 56 maneiras distintas.

Reformulação do exemplo 1:

Um prédio tem 8 portas. De quantas maneiras 1 pessoa pode entrar por 1 porta e sair por outra diferente?

De <u>quantas maneiras distintas</u> uma pessoa pode escolher <u>2</u> portas <u>diferentes</u> (entrada, saída) entre <u>8</u> portas <u>diferentes</u>?

Resposta:

Uma pessoa pode entrar por uma porta e sair por outra de 56 maneiras distintas.

Resposta:

Uma pessoa pode escolher <u>2</u> portas <u>distintas</u> para entrar e sair entre <u>8</u> portas <u>distintas</u> de <u>56</u> maneiras diferentes.

Observação:
$$8.7 = \frac{8.7.6!}{6!} - \frac{8.7.6.5.4.3.2.1}{6!} = \frac{8!}{6!} = \frac{8!}{(8-2)!}$$

Exemplo 2:

Quantos números distintos de 3 algarismos distintos podem se formar com os dígitos 3, 5, 7, 8 e 9?

Resolução:

Possibilidades

$$\frac{5}{p_1} \times \frac{4}{p_2} \times \frac{3}{p_3}$$
posições dos dígitos no número

Resposta:

Podem se formar 5.4.3 = 60 números diferentes com 3 algarismos escolhidos entre os dígitos 3, 5, 7, 8 e 9.

Observação:
$$5.4.3 = \frac{5.4.3.2!}{2!} = \frac{5!}{2!} = \frac{5!}{(5-3)!}$$

Características dos exemplos:

- Os <u>elementos</u> considerados a₁, a₂, ..., a_n são <u>diferentes</u>
- Cada escolha de r elementos $(r \le n)$ distintos e ordenados entre $a_1, a_2, ..., a_n$ corresponde a uma possibilidade
- Na obtenção do número de possibilidades aplica-se os princípios aditivo e multiplicativo

Arranjo simples:

Definição

Dados n objetos <u>distintos</u> $a_1, a_2, ..., a_n$, um <u>arranjo</u> <u>simples</u> de n elementos tomados \mathbf{r} a \mathbf{r} é uma <u>ordenação</u> de r elementos <u>distintos</u> escolhidos entre $a_1, a_2, ..., a_n$, sendo \mathbf{r} e n números naturais com $1 \le \mathbf{r} \le \mathbf{n}$.

Dados os dígitos 3, 5, 7, 8 e 9,

398 é um arranjo simples de <u>5</u> elementos tomados <u>3</u> a <u>3</u>

Número de arranjos simples:

Problema:

 \underline{Dados} n elementos distintos, $a_1, a_2, ..., a_n$, $\underline{encontrar}$ o número de arranjos simples dos n elementos tomados r a r

Propriedade:

O número de <u>arranjos simples</u> de n elementos distintos tomados r a r, denominado A(n, r), é dado por:

$$A(n, r) = n(n-1) ... (n-r+1) = \frac{n!}{(n-r)!}$$

Observação:

Exemplo 3:

Vários amigos combinaram passar o dia no clube. Planejaram ir para a piscina, fazer um churrasco, jogar volei e tennis. Mas, como chegaram tarde precisaram escolher 3 entre as 4 atividades. De quantas maneiras

Resolução:

programa : arranjo simples de 3 atividades escolhidas entre 4

diferentes poderiam programar essas atividades?

número de programas possíveis $A(4, 3) = \frac{4!}{(4-3)!} = 4! = 24$ Resposta:

Eles têm 24 maneiras diferentes de fazer um programa.

Exemplo 4:

Uma companhia aérea tem vôos ligando 5 cidades. Cada rota interliga 3 cidades. Calcule o número de rotas diferentes.

Ilustração

exemplos de rotas ACD, DCA, ADB

Resolução:

rota: arranjo simples de 3 cidades escolhidas entre 5

número de rotas: A(5, 3) =
$$\frac{5!}{(5-3)!}$$
 = $\frac{5!}{2!}$ = 5 · 4 · 3 = 60

Resposta:

A companhia pode ter 60 rotas ligando as 5 cidades.

Exemplo 5:

As placas dos automóveis são formadas por três letras seguidas de quatro dígitos. Quantas placas com letras e números diferentes podem ser formadas?

Resolução:

As letras do alfabeto são 26.

número de letras = 26 número de letras numa placa = 3 número de dígitos = 10

número de dígitos numa placa = 4

Característica:

• Pares ordenados de 3 letras e 4 números

Número de possibilidades:

letras

números

$$A(26, 3) \times A(10, 4) = \frac{26!}{23!} \cdot \frac{10!}{6!} = 78624 \times 10^3$$

Resposta:

Tem-se 78624000 placas com 3 letras e 4 números diferentes.

Exemplo 6:

Quantos números naturais de três algarismos distintos (na base 10) existem?

Resolução:

dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Raciocínio 1

Possibilidades:

$$9 \times A(9, 2) = 9.9.8 = 648$$

Exemplo 6 (raciocínio 2)

Usamos o conceito de complemento:

U: conjunto universo := o conjunto das ordenações de três dígitos

A := conjunto dos números de 3 <u>algarismos</u>

B := conjunto dos elementos de U que <u>iniciam</u> com 0

$$\begin{cases} A = U - B \\ N = |A| = |U| - |B| \end{cases}$$

$$|U| = A(10, 3) = \frac{10!}{7!}, |B| = A(9, 2) = \frac{9!}{7!}$$

$$N = \frac{10!}{7!} - \frac{9!}{7!} = \frac{10.9! - 9!}{7!} = 648$$

Resposta:

Tem-se 648 números naturais de três algarismos distintos.

Em geral é conveniente começar a análise dos eventos (ou possibilidades) por aquelas que tem algum tipo de impedimento (ou dificuldade).

Exemplo 7:

Quantos números naturais com todos os dígitos distintos ímpares, m, existem entre 1000 e 9999 (1000 < m < 9999)?

Resolução:

Os números m têm 4 dígitos

• Dígitos impares: 1, 3, 5, 7, 9

n: quantidade de dígitos ímpares = 5

r: quantidade de dígitos de um número = 4

Possibilidades:
$$A(5, 4) = \frac{5!}{(5-4)!} = 5! = 5.4.3.2.1 = 120$$

Resposta: Existem 120 números com todos os dígitos distintos ímpares entre 1000 e 9999.

Observação

$$A(5, 4) = \frac{5!}{(5-4)!} = 5! = P_5 = A(5, 5) = \frac{5!}{(5-5)!}$$

em geral,

$$A(n, n-1) = A(n, n) = P_n = n!$$

Exemplo 8:

Quantos números pares entre 1000 e 9999 têm dígitos distintos?

$$egin{array}{c|ccccc} & 0 & & etapa 1 \ & 2 & & 4 \ & 6 & & & & etapa 2 \ \hline p_1 & p_2 & p_3 & p_4 \ \end{array}$$

M: quantidade de números naturais de 4 dígitos terminados em 0, 2, 4, 6 ou 8

$$\mathbf{M} = \mathbf{M}_1 + \mathbf{M}_2$$
, sendo

 M_1 : quantidade de números de 4 dígitos terminados em 0 (etapa 1)

M₂: quantidade de números de 4 dígitos terminados em 2, 4, 6 ou 8 (etapa 2)

Exemplo 8 (etapa 1):

Obtenção de M_1 , quantidade de números de dígitos distintos, entre 1000 e 9999 terminados em 0:

Possibilidades:

$$\underbrace{-} \underbrace{0}$$

$$A(9,3)$$

como
$$A(n, r) = n(n-1) ... (n-r+1)$$

 $n = 9, r = 3$

Resposta da etapa 1:

$$M_1 = A(9, 3) = 9 . 8 . 7 = 504$$

Exemplo 8 (etapa 2):

Obtenção de M_2 , quantidade de números de dígitos distintos, entre 1000 e 9999 terminados em 2, 4, 6 ou 8:

Possibilidades:

Exemplo 8 (continuação etapa 2):

Possibilidades para $p_4: 4$ (2, 4, 6, ou 8)

Possibilidades para $p_1:8$ (dos 10 dígitos elimina-se o 0 e o dígito já usado na posição p_4)

Possibilidades para p_2 e p_3 : A(8,2)=8. 7 (dos 10 dígitos já foram <u>usados</u> 2, então, temos 8 dígitos tomados 2 a 2)

Resposta da etapa 2:

$$M_2 = 8.8.7.4 = 1792$$

Exemplo 8 (análise final):

Enunciado: Quantos números naturais entre 1000 e 9999 têm dígitos distintos e <u>são pares</u>?

Resolução:

$$M = M_1 + M_2$$
, sendo

M: total de números naturais de 4 dígitos terminados em 0, 2, 4, 6 ou 8

 M_1 : total de números de 4 dígitos terminados em 0 (etapa 1)

M₂: total de números de 4 dígitos terminados em 2, 4, 6 ou 8 (etapa 2)

Resposta:

Como,
$$M_1 = A(9, 3) = 504$$
, $M_2 = 8.4 \cdot A(8, 2) = 1792$

Resumo:

Sejam n objetos <u>distintos</u> a₁, a₂, ..., a_n.

Conceito:

Arranjo simples de n objetos tomados r a r.

Características:

Importa os <u>objetos</u> considerados e a <u>posição</u> deles.

(exemplos: $\mathbf{a}_1\mathbf{a}_2 \dots \mathbf{a}_r \neq \mathbf{a}_2\mathbf{a}_1\mathbf{a}_3 \dots \mathbf{a}_r \neq \mathbf{a}_2\mathbf{a}_3 \dots \mathbf{a}_r\mathbf{a}_{r+1}$)

Propriedade:

Número de arranjos simples de n objetos tomados r a r:

$$A(n, r) = \frac{n!}{(n-r)!} = n(n-1)...(n-r+1)$$

Observação:
$$P_n = A(n, n) = A(n, n-1)$$

cederi