A glimpse at the μ -calculus

Precise Modeling and Analysis group University of Oslo Daniel Fava

March 12, 2019

Roadmap

- 1. Start with LTL and motivate greater expressivity
- 2. Give some background: Hennessy Milner Logic (HML)
- 3. Build a modest foundation for understanding fixed points
- 4. μ -calculus syntax, semantics, and examples
- 5. Game theoretic approach to model checking the μ -calculus
- 6. Bisimulation

What do these mean?

What do these mean?

$$\Box p = p \land \bigcirc \Box p$$

$$\Diamond p = p \lor \bigcirc \Diamond p$$

$$pUq = q \lor (p \land \bigcirc (pUq))$$

$$pRq = (p \land q) \lor (q \land \bigcirc (pRq))$$

What do these mean? Notice the recursion

$$\Box p = p \land \bigcirc \Box p$$

$$\Diamond p = p \lor \bigcirc \Diamond p$$

$$pUq = q \lor (p \land \bigcirc (pUq))$$

$$pRq = (p \land q) \lor (q \land \bigcirc (pRq))$$

Think of \square , \lozenge , \mathcal{U} , \mathcal{R} as special purpose recursive operators

• What if we could have more powerful (arbitrary) recursions?

LTL: a trace σ or sets of traces

$$\llbracket \alpha \rrbracket^{\sigma} = \{T, F\}$$

 μ -calculus: Labeled Transition System (LTS) $\mathcal{M} = (S, \xrightarrow{l}, P_i)$

$$\llbracket \alpha \rrbracket^{\mathcal{M}} \subseteq S$$

- 1. Talk about a node's direct children
- 2. Talk about a node's descendants

LTL: a trace σ or sets of traces

$$\llbracket \alpha \rrbracket^{\sigma} = \{T, F\}$$

 μ -calculus: Labeled Transition System (LTS) $\mathcal{M} = (S, \xrightarrow{1}, P_i)$

$$\llbracket \alpha \rrbracket^{\mathcal{M}} \subseteq S$$

- 1. Talk about a node's direct children ← Hennessy Milner Logic
- 2. Talk about a node's descendants ← Fixed points

Background: Hennessy Milner Logic (1/3)

- ► Syntax $\Phi ::= tt \mid ff \mid p_i \mid \neg p_i \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$
- Semantics

$$[tt]^{\mathcal{M}} = S$$
$$[p_i]^{\mathcal{M}} = P_i$$

$$[tt]^{\mathcal{M}} = S \qquad [ff]^{\mathcal{M}} = \emptyset$$
$$[p_i]^{\mathcal{M}} = P_i \qquad [\neg p_i]^{\mathcal{M}} = S - P_i$$

Examples:

- 1. $[tt]^{\mathcal{M}} = \{n_1, n_2, n_3, n_4, n_5\}$
- 2. $[p]^{\mathcal{M}} = \{n_1, n_3, n_4\}$

Background: Hennessy Milner Logic (2/3)

- ► Syntax $\Phi ::= tt \mid ff \mid p_i \mid \neg p_i \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$
- Semantics

$$[\![\alpha \vee \beta]\!]^{\mathcal{M}} = [\![\alpha]\!]^{\mathcal{M}} \cup [\![\beta]\!]^{\mathcal{M}}$$
$$[\![\alpha \wedge \beta]\!]^{\mathcal{M}} = [\![\alpha]\!]^{\mathcal{M}} \cap [\![\beta]\!]^{\mathcal{M}}$$

Example:

$$\llbracket p \wedge q \rrbracket^{\mathcal{M}} = \{n_1, n_4\}$$

Background: Hennessy Milner Logic (3/3)

- Syntax $\Phi ::= tt \mid ff \mid p_i \mid \neg p_i \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi$
- Semantics
 - [a] All children accessible via an a-transition $[\![a]\alpha]\!]^{\mathcal{M}} = \{s \in S \mid \forall t. \ s \xrightarrow{a} t \ \rightarrow t \in [\![\alpha]\!]^{\mathcal{M}} \}$
 - $\langle a \rangle$ At least one child accessible via an $[\![\langle a \rangle \alpha]\!]^{\mathcal{M}} = \{ s \in S \mid \exists t. \ s \xrightarrow{a} t \land t \in [\![\alpha]\!]^{\mathcal{M}} \}$

Examples:

- 1. $n_1 \in \llbracket [a]q \rrbracket^{\mathcal{M}}$
- 2. $n_1 \notin \llbracket \lceil a \rceil p \rrbracket^{\mathcal{M}}$
- 3. $n_1 \in \llbracket \langle a \rangle p \rrbracket^{\mathcal{M}}$

Background: Fixed-points (1/3)

- Fixed point
- Monotonic function
- ▶ Partial order relation ⊑
- Upper bound
- ▶ Least Upper Bound (lub) ∐
- Lower bound
- Greatest Lower Bound (glb)
- Complete lattice
- Boundedness of complete lattices

Tarski-Knaster theorem

A monotonic function f: L → L on a complete lattice L has a greatest fixed point (gfp) and a least fixed point (lfp).

Background: Fixed-points (1/3)

- Fixed point $f(x) = x^2 + x 4$
- ▶ Monotonic function $x \le x' \to f(x) \le f(x')$
- ▶ Partial order relation □
- ▶ Upper bound $Y \subseteq S$, $u \in S$, if $\forall s \in S$. $s \sqsubseteq u$
- ▶ Lower bound $Y \subseteq S$, $I \in S$, if $\forall s \in S$. $I \sqsubseteq s$
- ► Greatest Lower Bound (glb)
- ▶ Complete lattice $(S, \sqsubseteq, \bigsqcup, \bigcap)$
- ▶ Boundedness of complete lattices $\square \emptyset = \bot$, $\square \emptyset = \top$

Tarski-Knaster theorem

A monotonic function f: L → L on a complete lattice L has a greatest fixed point (gfp) and a least fixed point (lfp).

Background: Fixed-points (2/3)

▶ Reductive $f(x) \sqsubseteq x$

• Extensive $x \sqsubseteq f(x)$

Tarski-Knaster theorem

A monotonic function f: L → L on a complete lattice L has a greatest fixed point (gfp) and a least fixed point (lfp).

$$\operatorname{gfp}(f) = \bigsqcup \{x \in L \mid x \sqsubseteq f(x)\} = \bigsqcup \{Ext(f)\} \in \operatorname{Fix}(f)$$

$$\operatorname{lfp}(f) = \bigsqcup \{x \in L \mid f(x) \sqsubseteq x\} = \bigsqcup \{Red(f)\} \in \operatorname{Fix}(f)$$

Background: Fixed-points (3/3)

▶ Reductive $f(x) \sqsubseteq x$

 $\operatorname{Fix}(f)$ - - - $\operatorname{Fix}(f)$ - - - $\operatorname{Ifp}(f)$

▶ Extensive $x \sqsubseteq f(x)$

gfp =
$$f^{\infty}(\top) = \prod_{n \ge 0} f^n(\top)$$

$$lfp = f^{\infty}(\bot) = \bigsqcup_{n \ge 0} f^n(\bot)$$

 $f^n(\top)$

μ -calculus (1/2)

- \blacktriangleright Extends HML by adding variables X, Y, Z, ...
- Syntax
 - Add variables and fixed point operators on top of HML

$$\Phi ::= tt \mid ff \mid p_i \mid \neg p_i \mid \Phi_1 \land \Phi_2 \mid \Phi_1 \lor \Phi_2 \mid [a] \Phi \mid \langle a \rangle \Phi \mid$$

$$X \mid \mu X. \Phi \mid \nu X. \Phi$$

- Variable occurrences can be free, or
- bounded by the fixed-point operators
- Note the absence of "first class" negation from the syntax

μ -calculus (2/2)

- Semantics
 - Adds function from variables to sets of states called valuation

$$\mathcal{V}: Var \rightarrow 2^{S}$$

▶ A variable occurring free is interpreted by the valuation

$$[\![X]\!]_{\mathcal{V}}^{\mathcal{M}} = \mathcal{V}(X)$$

Fixed-points are defined according to Tarski-Knaster theorem

$$\llbracket \mu X.\alpha \rrbracket_{\mathcal{V}}^{\mathcal{M}} = \bigcap \{ S' \subseteq S \mid \llbracket \alpha \rrbracket_{\mathcal{V}[S'/X]}^{\mathcal{M}} \subseteq S' \}$$
 (lfp)
$$= \bigcap \{ S' \subseteq S \mid f(S') \subseteq S' \}$$

$$\llbracket \nu X.\alpha \rrbracket_{\mathcal{V}}^{\mathcal{M}} = \bigcup \{ S' \subseteq S \mid S' \subseteq \llbracket \alpha \rrbracket_{\mathcal{V}[S'/X]}^{\mathcal{M}} \}$$
 (gfp)
$$= \bigcup \{ S' \subseteq S \mid S' \subseteq f(S') \}$$
where $f(S') = \llbracket \alpha \rrbracket_{\mathcal{V}[S'/X]}^{\mathcal{M}}$

- Tarski-Knaster doesn't help us compute FPs It only guarantees their existence
- We will use Kleene's FP theorem for computing FPs

μ -calculus: Example (1/3)

 $\mu X.[a]X$ represent states with no infinite sequences of a-transitions

$$\mu^{0}X.[a]X = \emptyset \qquad \text{false}$$

$$\mu^{1}X.[a]X = [a]\emptyset$$

$$= \{ s \in S \mid \forall t. \ s \xrightarrow{a} t \to t \models \emptyset \}$$

since no t satisfies \emptyset , the right hand side (RHS) of \to is false; thus the left hand side (LHS) of \to cannot be true.

This represents states with no outgoing a-transitions

$$\mu^2 X.[a]X = [a]T$$

where $T = \mu^1 X.[a]X$ are states with no outgoing a-transitions
Thus μ^2 means states with no aa-paths

μ -calculus: Example (2/3)

$$\nu X.p \wedge [a]X$$
 is informally analogous to LTL $\Box p$

$$\nu^{0}X.p \wedge [a]X = S$$
 true
 $\nu^{1}X.p \wedge [a]X = p \wedge [a]S$

Intersection between all nodes satisfying p (LHS of \wedge) and all nodes (RHS of \wedge)

$$\nu^2 X.p \wedge [a]X = p \wedge [a]T$$
Where $T = \nu^1 X.p \wedge [a]X$ are all nodes that satisfy p
Thus μ^2 is the intersection between all nodes that satisfy p
and all nodes that have an outgoing edge labeled a
to a node that satisfies p

All nodes that satisfy p and whose descendants that are reachable through a-transitions also satisfy p.

μ -calculus: Example (3/3)

$$\mu X.p \lor (\langle a \rangle True \land [a]X)$$
 is informally analogous to LTL $\Diamond p$

$$\mu^0 X.p \lor (\langle a \rangle True \land [a]X) = \emptyset$$

$$\mu^1 X.p \lor (\langle a \rangle True \land [a]\emptyset) = p \lor (\langle a \rangle True \land [a]\emptyset)$$

$$\langle a \rangle True \text{ is the set of states with an outer a-transition}$$

$$[a]\emptyset \text{ is the set of states with no outgoing a-transition}$$

$$\text{Therefore, intersection } \land \text{ is empty}$$

$$\text{and the formula boils down to the set of states satisfying p}$$

$$\mu^2 X.p \lor (\langle a \rangle True \land [a]T) = p \lor (\langle a \rangle True \land [a]T)$$

$$\text{where $T = \mu^1$ which means nodes satisfying p}$$

$$[a]T \text{ are nodes whose children reachable via a-transitions satisfy p}$$

Thus either p is satisfied, or it is satisfied via a node reachable through an a-transitions, or via an aa-transition, or via an a^n -transition.

Note

- Increasing complexity with alternation of fixed point types
 - With one fix-point we talk about termination properties
 - With two fix-points we can write fairness formulas

Model checking via parity games (1/5)

Adam pick t from $s \xrightarrow{a} t$ such that $t \not\models (p_1 \lor (p_2 \land p_3)$ Eve reply by showing that either $t \models p_1$ or that $t \models p_2$ and $t \models p_3$.

Model checking via parity games (2/5)

Definition (Game)

A game is a triple G = (V, T, Acc) where

- 1. V are *nodes* partitioned between two players, Adam and Eve, $V=V_A\cup V_E$ and $V_A\cap V_E=\emptyset$,
- 2. $T \subseteq V \times V$ is a *transition relation* determining the possible successors of each node, and
- 3. $Acc \subseteq V^{\omega}$ is a set defining the winning condition
 - ▶ It is Adam's turn if $v \in V_A$, otherwise $v \in V_E$ and it is Eve's
 - The player who cannot make a move loses
- ▶ If a play is infinite, $v_0v_1...$, then Eve wins if $v_0v_1... \in Acc$

Model checking via parity games (3/5)

Theorem (Reducing model-checking to parity games)

Let $\mathcal{G}(\mathcal{M}, \alpha)$ denote a game constructed from the labeled transition system \mathcal{M} and the μ -calculus formula α . For every sentence α , transition system \mathcal{M} , and initial state s, then $\mathcal{M}, s \models \alpha$ iff Eve has a winning strategy for the position (s, α) in $\mathcal{G}(\mathcal{M}, \alpha)$.

Model checking via parity games (4/5)

Define $\mathcal{G}(\mathcal{M}, \alpha)$ inductively on the syntax of α

- Create node (s, β) for every state s of $\mathcal M$ and every formula β in the closure of α (similar to the automata based LTL model checking construction we have seen)
- Recall that Eve's goal is to show that a formula holds, and that the player who can't make a move loses
- $\begin{array}{ll} (s,p) & \text{Eve wins if } p \text{ holds in } s \text{, that is } s \vDash p \\ & \text{Thus assign } (s,p) \text{ to Adam and we put no transitions from it} \end{array}$
- $(s, \neg p)$ Same as (s, p) but reversing Adam and Eve's roles
- $(s,\langle a\rangle\beta)$ Connect to (t,β) for all t such that $s\stackrel{a}{\to} t$ and $(s,[a]\beta)$ assign $(s,[a]\beta)$ to Adam and $(s,\langle a\rangle\beta)$ to Eve
- $(s, \mu X.\beta(X))$ Connect to $(s, \beta(\mu X.\beta(X)))$ and to $(s, \beta(\nu X.\beta(X)))$
- $(s,\nu X.\beta(X)) \qquad \text{This corresponds to the intuition that a fixed-point} \\ \text{is equivalent to its unfolding}.$

Model checking via parity games (5/5)

- How to define Acc and the parity winning condition
 See [Bradfield and Walukiewicz, 2015]
- ▶ Model checking $\mathcal{M} \models \alpha$ Use algorithm for determining winner of parity game once $\mathcal{G}(\mathcal{M}, \alpha)$ has been created

Bisimulation (1/3)

- Equivalence between systems
 - Preserves compositionality
 - Programs as functions (denotational semantics)

$$x := 2$$
 and $x := 1$; $x := x + 1$
 $x := 2 \mid\mid x := 2$ versus $x := 2 \mid\mid x := 1$; $x := x + 1$

Language acceptance (trace equivalence)

Bisimulation (2/3)

- Equivalence between systems
 - Not overly strong as graph isomorphism

Bisimulation (3/3)

Definition (Bisimulation)

Bisimulation is a symmetric relation \mathcal{R} on the states of an LTS such that whenever $P \mathcal{R} Q$, for all t we have:

• for all P' which $P \xrightarrow{t} P'$, there is Q' such that $Q \xrightarrow{t} Q'$ and $P' \mathcal{R} Q'$

Definition (Logic equivalence)

Two statements are logically equivalent if they have the same truth value in every model

logic	logic equivalence
LTL	trace equivalence
HML, μ -calculus, CTL	bisimilarity

References

- Lattice and fixed points
 - Nielson, F., Nielson, H. R., and Hankin, C. (2015). Principles of program analysis.
 Springer
 - Davey, B. A. and Priestley, H. A. (2002). Introduction to lattices and order.
 - Cambridge university press
- μ -calculus and model checking
 - Bradfield, J. and Walukiewicz, I. (2015). The mu-calculus and model-checking.
 - Handbook of Model Checking. Springer-Verlag, pages 35-45
 - Cleaveland, R. (1990). Tableau-based model checking in the propositional mu-calculus.
 - Acta Informatica, 27(8):725-747
- Bisimulation
 - Sangiorgi, D. (2012). Introduction to bisimulation and coinduction.
 - Cambridge University Press

