Mathematics I (BSM 101)

Manju Subedi

Gandaki University

Bachelor in Information Technology(BIT) BSM 101

manjusubedi.061@gmail.com

December 29, 2022

Definition: The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}$$

Definition: The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}$$

Notice that the average rate of change of f over $[x_1, x_2]$ is the slope of the line through the points $P(x_1, f(x_1))$ and $Q(x_2, f(x_2))$ in geometry (look at the figure) a line joining two points of a curve is called a secant to the curve.

Definition: The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}$$

Notice that the average rate of change of f over $[x_1, x_2]$ is the slope of the line through the points $P(x_1, f(x_1))$ and $Q(x_2, f(x_2))$ in geometry (look at the figure) a line joining two points of a curve is called a secant to the curve.

Definition: The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}$$

Notice that the average rate of change of f over $[x_1, x_2]$ is the slope of the line through the points $P(x_1, f(x_1))$ and $Q(x_2, f(x_2))$ in geometry (look at the figure) a line joining two points of a curve is called a secant to the curve.

A secant to the graph y = f(x). Its slope is $\frac{\Delta y}{\Delta x}$, the average rate of change of f over the interval $[x_1, x_2]$ Thus, the average rate of change of f from x_1 to x_2 is identical with the slope of secant

Slope of a Curve at a Point (Tangent)

The slope of a curve at x = a is the slope of the tangent line at x = a

Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be any two points in the curve. Then the slope of straight line PQ is given by

$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope of a Curve at a Point (Tangent)

The slope of a curve at x = a is the slope of the tangent line at x = a

Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be any two points in the curve. Then the slope of straight line PQ is given

by

$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

As point Q moves towards P (i.e Δx approaches 0) the value of $\frac{\Delta y}{\Delta x}$ also change and will approach a limit, if it exist. This limit provides the slope of the curve at point P. This limit is also called the derivative of the function f(x) at the point P and written as

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{ay}{dx}$$

Derivative

Definition: The derivative of the function f with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

If the limits on the right hand side exist (i.e f'(x) exist) then we say f has a derivative (is differentiable) at x.

Notation: The derivative of y = f(x) with respect to x is denoted as

$$y'$$
 or $f'(x)$ or $\frac{dy}{dx}$ or $\frac{df}{dx}$ or $\frac{d}{dx}f(x)$

Example

Find the derivative of $y = \sqrt{x}$ for x > 0 using the definition of derivatives

Solution:

$$f(x) = \sqrt{x} \text{ and } f(x+h) = \sqrt{x+h}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{\sqrt{x+h} - \sqrt{x}}{h} \quad \text{Multiply by } \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

$$= \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})}$$

$$= \frac{1}{\sqrt{x+h} + \sqrt{x}}$$

$$f'(x) = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

Some Important Rules Without Proof

 $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \tag{1}$

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = 0 \tag{2}$$

 $\sin(x+h) = \sin x \cos h + \cos x \sin h \tag{2}$

$$\cos(x+h) = \cos x \cos h - \sin x \sin h \tag{2}$$

•

•

The Derivative of the Sine:

$$f(x) = \sin x$$
 and $f(x+h) = \sin(x+h) = \sin x \cos h + \cos x \sin h$

we have
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\frac{d}{dx}(sinx) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

The Derivative of the Sine:

$$f(x) = \sin x$$
 and $f(x+h) = \sin(x+h) = \sin x \cos h + \cos x \sin h$
We have

We have
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\frac{d}{dx}(\sin x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$
$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

The Derivative of the Sine:

$$f(x) = \sin x$$
 and $f(x+h) = \sin(x+h) = \sin x \cos h + \cos x \sin h$
We have dy , $f(x+h) - f(x)$

We have
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\frac{d}{dx}(\sin x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}$$

The Derivative of the Sine:

$$f(x) = \sin x \quad \text{and} \quad f(x+h) = \sin(x+h) = \sin x \cos h + \cos x \sin h$$
We have
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx}(\sin x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h} \right) + \lim_{h \to 0} \left(\cos x \cdot \frac{\sin h}{h} \right)$$

The Derivative of the Sine:

To calculate the derivative of $f(x) = \sin x$ and $f(x+h) = \sin(x+h) = \sin x \cos h + \cos x \sin h$

We have
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\frac{d}{dx}(sinx) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h} \right) + \lim_{h \to 0} \left(\cos x \cdot \frac{\sin h}{h} \right)$$

$$= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

The Derivative of the Sine:

To calculate the derivative of $f(x) = \sin x$ and $f(x+h) = \sin(x+h) = \sin x \cos h + \cos x \sin h$ We have

We have
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\frac{d}{dx}(\sin x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

$$\sin x(\cos h - 1) + \cos x \sin h$$

$$= \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h} \right) + \lim_{h \to 0} \left(\cos x \cdot \frac{\sin h}{h} \right)$$

$$= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

$$= \sin x \cdot 0 + \cos x \cdot 1 = \cos x.$$

The Derivative of the Sine:

To calculate the derivative of

$$f(x) = \sin x$$
 and $f(x+h) = \sin(x+h) = \sin x \cos h + \cos x \sin h$
We have dy , $f(x+h) - f(x)$

We have
$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\frac{d}{dx}(sinx) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x(\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h} \right) + \lim_{h \to 0} \left(\cos x \cdot \frac{\sin h}{h} \right)$$

$$= \sin x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} + \cos x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$
$$= \sin x \cdot 0 + \cos x \cdot 1 = \cos x.$$

 $= \sin x \cdot 0 + \cos x \cdot 1 = \cos x.$

In short, the derivative of the sine is the cosine.

The Derivative of the Cosine:

Here, we have
$$f(x) = \cos x$$

 $f(x+h) = \cos(x+h) = \cos x \cos h - \sin x \sin h$, then, we have

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx}(\cos x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x(\cos h - 1) - \sin x \sin h}{h}$$

$$= \lim_{h \to 0} \cos x \cdot \frac{\cos h - 1}{h} - \lim_{h \to 0} \sin x \cdot \frac{\sin h}{h}$$

$$= \cos x \cdot \lim_{h \to 0} \frac{\cos h - 1}{h} - \sin x \cdot \lim_{h \to 0} \frac{\sin h}{h}$$

$$= \cos x \cdot 0 - \sin x \cdot 1 = -\sin x.$$

In short, the derivative of the cosine is the negative of the sine,

Formulas

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

Classwork Problems

• Find the average rate of change of the function over the given interval or intervals.

(i)
$$f(x) = x^3 + 1$$
; (a) $[2,3]$, (b) $[-1,1]$

(ii)
$$g(x) = x^2$$
; (a) $[-1, 1]$, (b) $[-2, 0]$

(iii)
$$h(t) = \cot t$$
; (a) $[\pi/4, 3\pi/4]$, (b) $[\pi/6, \pi/2]$

2 Find the derivative of f. State the domain of f'

(i)
$$f(x) = 5x + 3$$

(ii)
$$f(x) = \sqrt{x-1}$$

(ii)
$$f(x) = \sqrt{x-1}$$

(iii) $f(x) = \frac{1}{x^2}$

Thank You