Tendis在实时数仓中的应用

王新春@唯品会 数据平台

实时数仓架构

实时数仓--数据看板

实时数仓-

- 各端埋点统一登记在埋点配置系统,包含埋点详细字段、埋点注释含义等
- 实时数据清洗埋点日志时,只认已经在埋点配置系统登记过的埋点字段,未登记的则不识别

实时数仓--维表关联(打宽)

实时数仓——UV计算

实时数仓——KV强需求

选择Tendis的主要原因

自主可控

项目代码完全开源

快速迭代

社区版迭代节奏与云上基本一致

社区活跃

专职研发对接社区的issue

关注Tendis开源项目

协议兼容

完全兼容Redis协议和命令

去中心化

保持Redis的使用和运维习惯

内核自治管理

故障探测,水平扩展,副本迁移

关注Tendis官方社区交流群

Tendis的版本演进

2015.4

Tendis SSD正式立项

Based redis-2.8.17 + rocksdb

2018.9

Tendis存储版

多线程,集群自治,去中心化架构

2020

上云+开源

2020.9 Tendis冷热混合存储上线 2020.12 Tendis存储版开源 2021.6 Tendis存储版上线

2016.4

Tendis SSD v1.2发布

数据结构持久化,物理备份,增 量复制 2019.5

Tendis冷热混合存储

热数据在内存,全量数据在Tendis存储版 缓存层+存储层支持分别扩缩容

Tendis存储版 vs Redis Cluster

可靠性

数据落地 Binlog落地 秒级备份

复制

镜像 +binlog 断点续传 并行复制

并发机制

key级锁 多线程 线程池动态调整

集群

独立的gossip线程 压缩的gossip消息

数据搬迁

slot搬迁,独立线程搬迁过程可观察,可控制,对服务无影响

可靠性

内存 aof rewrite bgsave

复制

rdb+aof 全量复制 串行复制

并发机制

单线程 redis 6.0引入网 络多线程

集群

Gossip共用主线程 gossip消息

数据搬迁

key搬迁,共用线程依赖工具,大key会阳寒服务

Tendis存储版 vs Pika

独立的gossip线程 压缩的gossip消息

Sentinel / Codis 初步的集群模式3.4

	Tendis-24T	Pika-20T	Tendis-36T	Pika-36T
GET 100w	6.93s	6.00s	6.15s	5.83s
HGET 100w	7.87s	6.07s	5.81s	6.38s
HGETALL 100w	40.60s	21.80s	23.96s	24.97s
HSET 100w	14.10s	10.19s	9.51s	9.73s
SET 100w	10.79s	11.81s	7.30s	9.59s

Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz 24/3.2T FIO/256G内存注: Pika先采用20线程而非24线程测试是因为和线上标配一致,故尝试先观察下和当前线上的差别

数据出仓的业务视角对比数据导入量 : 515510873

* redis batch size

8000

redis_key_expire_seconds

86400

* redis commit sleep time

5

Pika: 04:33:05 Tendis: 04:34:43

Tendis存储版 vs HBase

优点:极强的可扩展性(PB)

缺点:complex(部署、运维、性能调优)hot region、cache;数据结构单一

示例 rowkey: 获取一级部类A01在活动 202102211567 中app的2021年2月21日19时的指标数据A01FC765112201202HOURappSP2021022119

Tendis存储版@VIP——维表关联和指标存储

实时数仓Flink + Tendis

实时数仓Flink + Tendis

期待Tendis

• 更多特性的开源,如Tendis冷热混合存储

• AEP支持; Redis on AEP (memKeyDB)

为什么会有AEP内存

感谢聆听 **THANKS!**

