# **Project 1. MIPS Assembler**

Due 23:59, March. 27th

TA: Hongbeen Kim, Suhwan Kim

# 1. Introduction

This project aims to develop a MIPS Instruction Set Architecture (ISA) assembler. The assembler will translate assembly language codes into a binary file. This project is intended to help you understand the MIPS better.

The scope of this project includes the development of a simplified assembler that omits the linking process, and consequently, **symbol and relocation tables are not required.** 

The assembler must support a subset of the MIPS instruction set, particularly handling labels for jump/branch targets and labels for the static data section.

### **Instruction Set**

Refer to the green card page from the textbook, also attached at the last pages of the current document. The assembler should implement the following instructions, focusing on signed operations and handling sign extension for immediate and offset fields where applicable:

| ADDI | ADD  | AND | ANDI | BEQ | BNE | J   |
|------|------|-----|------|-----|-----|-----|
| JAL  | JR   | LUI | LW   | LA* | NOR | OR  |
| ORI  | SLTI | SLT | SLL  | SRL | SW  | SUB |

- Implement only signed operation instructions
- Implement sign extension for immediate fields and offset fields in specific instructions (addiu, sltiu, beq, bne, lw, sw)
- Implement only 4B words loads and stores
- The assembler must support decimal and hexadecimal (0x prefix) for immediate fields and the .data section
- Use the format "\$n" for register names, where n ranges from 0 to 31.
- The la (load address) instruction is a pseudo instruction and thus should be translated into lui or ori instructions

la \$2, VAR1 // VAR1 is a label in the data section
// It should be converted to lui and ori instructions.
lui \$reg, upper 16bit address
ori \$reg, \$reg, lower 16bit address // Skipped if the lower 16bit address is 0x0000
Case 1) load address is 0x1000 0000
lui \$2, 0x1000
Case 2) load address is 0x1000 0004
lui \$2, 0x1000
ori \$2, \$2, 0x0004

### **Directives**

- .text: Indicates instructions stored in the user text segment, starting from 0x400000.
- .data: Indicates data stored in the data segment, starting from 0x10000000.
- word: Stores n 32-bit quantities in consecutive memory words.
- You may assume that the .data and .text directives appear only once, and the .data appear before .text directive.

# **Memory Layout**



### **Execution command**

> ./runfile <assembly file>

The program should produce a single output file (.\*o) from the input assembly file (\*.s).

# **Input format**

```
.data
array:
       .word
                3
    .word
            123
    .word
            4346
array2: .word
                0x11111111
    .text
main:
            $2, $0, 1024
    addi
            $3, $2, $2
    add
    or $4, $3, $2
    sll $6, $5, 16
            $7, $6, 9999
    addi
    sub $8, $7, $2
    nor $9, $4, $3
    ori $10, $2, 255
    srl $11, $6, 5
      $4, array2
    and $13, $11, $5
    andi
            $14, $4, 100
    lui $17, 100
    addi $2, $0, 0xa
```

### **Output Format**

The output format is an ASCII string of '0's and '1's representing the binary code. The ASCII string follows a simplified custom format.

- The first two words (32bits) are the size of text section and data section.
- The next bytes are the instructions in binary. The length must be equal to the specified text section length.
- After the text section, the rest of bytes are the initial values of the data section.

```
<text section size> // There should be no newlines in the actual output
<data section size>
<instruction 1>
...
<instruction n>
<value 1>
...
<value m>
```

 Please refer to the example output file inside the project files for a better idea of this format.

# **Program Language**

You should use C or C++ for this project, considering the continuity with subsequent projects.

# **GitLab Repository Setup**

Create a new repository by forking the project prepared by the TAs at cs311.kaist.ac.kr/handout/project1.

The guidelines for forking, cloning and pushing using Git have been uploaded to the notice tab on KLMS.

### **Grading Policy**

The grading is based on five open cases and two hidden cases. The two hidden cases are included to prevent hardcoding. The five open cases can be found in the forked repository. Each open case is worth 10 points, and each hidden case is worth 15 points, making a total of 80 points. For each case, you can get points only if every digit of the output binary matches the expected answer.

#### **Submission**

- 1. Commit and Push: Ensure that your code and Makefile are committed and pushed to your forked GitLab repository.
- 2. Tagging for Submission: Follow these commands in your working directory to tag your submission:

```
git tag -a submit -m 'your_custom_message'
git push origin submit
```

### Important notes

- The absence of Makefile in submission will result in your work not being graded.
- The absence of a "submit" tag will result in your work not being graded.
- Always double-check to confirm the submission tag has been properly applied.

# **Late Policy and Academic Integrity**

- A penalty of 30% will be applied to submissions made within the first day after the deadline (March 28th 23:59). Submissions beyond this period will not be accepted.
- Engaging with peers and referencing external materials is encouraged for educational purposes. However, direct copying from other students or publicly available code is strictly prohibited and will be actively monitored. Detected plagiarism will result in severe penalties.
- The TAs will employ code comparison tools against open-source repositories and submissions from the previous semesters to ensure the originality of your work.

For any further questions or if you encounter any administrative issues (e.g., late submission due to extenuating circumstances, technical difficulties with GitLab), please reach out on Piazza.

# MIPS Reference Data

|   | - |   |   |
|---|---|---|---|
| A | V | Ï | A |
|   |   | F |   |
|   | A | 1 | y |
| A |   | - |   |

1

| CORE INSTRUCTION               | ON SE                                  | Т                        |                                                                                                                                                                   |         | OPCODE                |
|--------------------------------|----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|
| OONE MOTHOUT                   |                                        | FOR-                     |                                                                                                                                                                   |         | / FUNCT               |
| NAME, MNEMO                    | NIC                                    | MAT                      | OPERATION (in Verilog)                                                                                                                                            |         | (Hex)                 |
| Add                            | add                                    | R                        | R[rd] = R[rs] + R[rt]                                                                                                                                             | (1)     | 0 / 20 <sub>hex</sub> |
| Add Immediate                  | addi                                   | I                        | R[rt] = R[rs] + SignExtImm                                                                                                                                        | (1,2)   | 8 <sub>hex</sub>      |
| Add Imm. Unsigned              | addiu                                  | I                        | R[rt] = R[rs] + SignExtImm                                                                                                                                        | (2)     | 9 <sub>hex</sub>      |
| Add Unsigned                   | addu                                   | R                        | R[rd] = R[rs] + R[rt]                                                                                                                                             |         | 0 / 21 <sub>hex</sub> |
| And                            | and                                    | R                        | R[rd] = R[rs] & R[rt]                                                                                                                                             |         | 0 / 24 <sub>hex</sub> |
| And Immediate                  | andi                                   | I                        | R[rt] = R[rs] & ZeroExtImm                                                                                                                                        | (3)     | c <sub>hex</sub>      |
| Branch On Equal                | beq                                    | I                        | if(R[rs]==R[rt])<br>PC=PC+4+BranchAddr                                                                                                                            | (4)     | 4 <sub>hex</sub>      |
| Branch On Not Equal            | bne                                    | I                        | if(R[rs]!=R[rt])<br>PC=PC+4+BranchAddr                                                                                                                            | (4)     | 5 <sub>hex</sub>      |
| Jump                           | j                                      | J                        | PC=JumpAddr                                                                                                                                                       | (5)     | 2 <sub>hex</sub>      |
| Jump And Link                  | jal                                    | J                        | R[31]=PC+8;PC=JumpAddr                                                                                                                                            | (5)     | 3 <sub>hex</sub>      |
| Jump Register                  | jr                                     | R                        | PC=R[rs]                                                                                                                                                          |         | 0 / 08 <sub>hex</sub> |
| Load Byte Unsigned             | lbu                                    | 1                        | R[rt]={24'b0,M[R[rs]<br>+SignExtImm](7:0)}                                                                                                                        | (2)     | 24 <sub>hex</sub>     |
| Load Halfword<br>Unsigned      | lhu                                    | I                        | R[rt]={16'b0,M[R[rs]<br>+SignExtImm](15:0)}                                                                                                                       | (2)     | 25 <sub>hex</sub>     |
| Load Linked                    | 11                                     | I                        | R[rt] = M[R[rs] + SignExtImm]                                                                                                                                     | (2,7)   | 30 <sub>hex</sub>     |
| Load Upper Imm.                | lui                                    | I                        | $R[rt] = \{imm, 16'b0\}$                                                                                                                                          |         | f <sub>hex</sub>      |
| Load Word                      | lw                                     | I                        | R[rt] = M[R[rs] + SignExtImm]                                                                                                                                     | (2)     | 23 <sub>hex</sub>     |
| Nor                            | nor                                    | R                        | $R[rd] = \sim (R[rs] \mid R[rt])$                                                                                                                                 |         | 0/27 <sub>hex</sub>   |
| Or                             | or                                     | R                        | R[rd] = R[rs]   R[rt]                                                                                                                                             |         | 0 / 25 <sub>hex</sub> |
| Or Immediate                   | ori                                    | I                        | R[rt] = R[rs]   ZeroExtImm                                                                                                                                        | (3)     | d <sub>hex</sub>      |
| Set Less Than                  | slt                                    | R                        | R[rd] = (R[rs] < R[rt]) ? 1 : 0                                                                                                                                   |         | 0 / 2a <sub>hex</sub> |
| Set Less Than Imm.             | slti                                   | I                        | R[rt] = (R[rs] < SignExtImm)? 1                                                                                                                                   | : 0(2)  | a <sub>hex</sub>      |
| Set Less Than Imm.<br>Unsigned | sltiu                                  | I                        | R[rt] = (R[rs] < SignExtImm) $? 1: 0$                                                                                                                             | (2,6)   | b <sub>hex</sub>      |
| Set Less Than Unsig.           | sltu                                   | R                        | R[rd] = (R[rs] < R[rt]) ? 1 : 0                                                                                                                                   |         | 0 / 2b <sub>hex</sub> |
| Shift Left Logical             | sll                                    | R                        | $R[rd] = R[rt] \ll shamt$                                                                                                                                         | (-)     | 0 / 00 <sub>hex</sub> |
| Shift Right Logical            | srl                                    | R                        | R[rd] = R[rt] >>> shamt                                                                                                                                           |         | 0 / 02 <sub>hex</sub> |
|                                | 011                                    |                          | M[R[rs]+SignExtImm](7:0) =                                                                                                                                        |         |                       |
| Store Byte                     | sb                                     | I                        | R[rt](7:0)                                                                                                                                                        | (2)     | 28 <sub>hex</sub>     |
| Store Conditional              | sc                                     | I                        | M[R[rs]+SignExtImm] = R[rt];<br>R[rt] = (atomic) ? 1 : 0                                                                                                          | (2,7)   | 38 <sub>hex</sub>     |
| Store Halfword                 | sh                                     | I                        | M[R[rs]+SignExtImm](15:0) = R[rt](15:0)                                                                                                                           | (2)     | 29 <sub>hex</sub>     |
| Store Word                     | SW                                     | I                        | M[R[rs]+SignExtImm] = R[rt]                                                                                                                                       |         | 2b <sub>hex</sub>     |
| Subtract                       | sub                                    | R                        | R[rd] = R[rs] - R[rt]                                                                                                                                             | (1)     | 0 / 22 <sub>hex</sub> |
| Subtract Unsigned              | subu                                   | R                        | R[rd] = R[rs] - R[rt]                                                                                                                                             |         | 0 / 23 <sub>hex</sub> |
|                                | (2) Sig<br>(3) Ze<br>(4) Br<br>(5) Jui | mExtleroExtleroExtleroAd | se overflow exception    mm = { 16{immediate[15]}, immediate     mm = { 16{1b'0}, immediate }   ddr = { 14{immediate[15]}, immediate     C+4[31:28], address, 2'b | ediate, | 2'b0 }                |
|                                |                                        |                          | s considered unsigned numbers (vi<br>est&set pair; R[rt] = 1 if pair atom                                                                                         |         |                       |
| BASIC INSTRUCT                 |                                        |                          |                                                                                                                                                                   |         |                       |

# BASIC INSTRUCTION FORMATS

| R  | opcode |    | rs |       | rt |       | rd           | shamt     | funct |
|----|--------|----|----|-------|----|-------|--------------|-----------|-------|
| 10 | 1      | 26 |    | 21 20 |    | 16 15 | 2000         |           | 5 0   |
| I  | opcode |    | rs |       | rt |       | HEI          | immediate | e     |
|    | 31     | 26 | 25 | 21 20 |    | 16 15 |              |           | 0     |
| J  | opcode |    |    |       |    |       | address      |           |       |
|    | 31     | 26 | 25 | 7/1   |    |       | THE STATE OF |           | n     |

### ARITHMETIC CORE INSTRUCTION SET

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 0                                                                   | / FMT /FT |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FOR   |                                                                     | / FUNCT   |
| NAME, MNEMONIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAT   |                                                                     | (Hex)     |
| Branch On FP True bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lt FI | if(FPcond)PC=PC+4+BranchAddr (4)                                    | 11/8/1/   |
| Branch On FP False bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | if FI | if(!FPcond)PC=PC+4+BranchAddr(4)                                    | 11/8/0/   |
| Divide di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v R   | Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]                                      | 0//-1a    |
| Divide Unsigned div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vu R  | Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)                                  | 0///1b    |
| FP Add Single add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .s FR | F[fd] = F[fs] + F[ft]                                               | 11/10//0  |
| FP Add<br>Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .d FR | ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + {F[ft],F[ft+1]}$               | 11/11//0  |
| FP Compare Single cx.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s* FR | FPcond = (F[fs] op F[ft])? 1:0                                      | 11/10//y  |
| FP Compare Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | FPcond = $(\{F[fs], F[fs+1]\})$ op $\{F[ft], F[ft+1]\}$ ) ? 1:0     | 11/11//y  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ==, <, or <=) ( y is 32, 3c, or 3e)                                 |           |
| And the second s | .s FR | F[fd] = F[fs] / F[ft]                                               | 11/10//3  |
| FP Divide Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .d FR | ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} / {F[ft],F[ft+1]}$               | 11/11//3  |
| FP Multiply Single mul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .s FR | F[fd] = F[fs] * F[ft]                                               | 11/10//2  |
| FP Multiply Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .d FR | ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$               | 11/11//2  |
| FP Subtract Single sub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .s FR | F[fd]=F[fs]-F[ft]                                                   | 11/10//1  |
| FP Subtract Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d FR  | ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$               | 11/11//1  |
| Load FP Single lw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c1 I  | F[rt]=M[R[rs]+SignExtImm] (2)                                       | 31//      |
| Load FP<br>Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c1 I  | F[rt]=M[R[rs]+SignExtImm]; (2)<br>F[rt+1]=M[R[rs]+SignExtImm+4]     | 35//      |
| Move From Hi mf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hi R  | R[rd] = Hi                                                          | 0 ///10   |
| Move From Lo mf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lo R  | R[rd] = Lo                                                          | 0 ///12   |
| Move From Control mf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c0 R  | R[rd] = CR[rs]                                                      | 10 /0//0  |
| Multiply mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lt R  | ${Hi,Lo} = R[rs] * R[rt]$                                           | 0///18    |
| Multiply Unsigned mul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tu R  | $\{Hi,Lo\} = R[rs] * R[rt] $ (6)                                    | 0///19    |
| Shift Right Arith. sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a R   | R[rd] = R[rt] >> shamt                                              | 0//-3     |
| Store FP Single sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cl I  | M[R[rs]+SignExtImm] = F[rt] (2)                                     | 39//      |
| Store FP<br>Double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c1 I  | M[R[rs]+SignExtImm] = F[rt]; (2)<br>M[R[rs]+SignExtImm+4] = F[rt+1] | 3d//      |

(2) OPCODE

### FLOATING-POINT INSTRUCTION FORMATS

| FR | opcode | fmt   | ft    | fs    | fd        | funct |
|----|--------|-------|-------|-------|-----------|-------|
|    | 31 26  | 25 21 | 20 16 | 15 11 | 10 6      | 5 0   |
| FI | opcode | fint  | ft    |       | immediate |       |
|    | 31 26  | 25 21 | 20 16 | 15    |           | 0     |

# **PSEUDOINSTRUCTION SET**

| NAME                        | MNEMONIC | OPERATION                        |
|-----------------------------|----------|----------------------------------|
| Branch Less Than            | blt      | if(R[rs] < R[rt]) PC = Label     |
| Branch Greater Than         | bgt      | if(R[rs]>R[rt]) PC = Label       |
| Branch Less Than or Equal   |          | $if(R[rs] \le R[rt]) PC = Label$ |
| Branch Greater Than or Equa | l bge    | if(R[rs] >= R[rt]) PC = Label    |
| Load Immediate              | 11       | R[rd] = immediate                |
| Move                        | move     | R[rd] = R[rs]                    |

# REGISTER NAME, NUMBER, USE, CALL CONVENTION

| NAME      | NUMBER | USE                                                   | PRESERVEDACROSS<br>A CALL? |
|-----------|--------|-------------------------------------------------------|----------------------------|
| Szero     | 0      | The Constant Value 0                                  | N.A.                       |
| Sat       | 1      | Assembler Temporary                                   | No                         |
| \$v0-\$v1 | 2-3    | Values for Function Results and Expression Evaluation | No                         |
| \$a0-\$a3 | 4-7    | Arguments                                             | No                         |
| \$t0-\$t7 | 8-15   | Temporaries                                           | No                         |
| \$s0-\$s7 | 16-23  | Saved Temporaries                                     | Yes                        |
| \$t8-\$t9 | 24-25  | Temporaries                                           | No                         |
| \$k0-\$k1 | 26-27  | Reserved for OS Kernel                                | No                         |
| Sgp       | 28     | Global Pointer                                        | Yes                        |
| Ssp       | 29     | Stack Pointer                                         | Yes                        |
| \$fp      | 30     | Frame Pointer                                         | Yes                        |
| Sra       | 31     | Return Address                                        | Yes                        |

© 2014 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 5th ed.

| OPCOD      | ES. BASE     | CONVER    | SION. A | SCII  | SYMB     | OLS      |       | 0        |              |
|------------|--------------|-----------|---------|-------|----------|----------|-------|----------|--------------|
|            | (1) MIPS     | (2) MIPS  |         | -     |          | ASCII    | D .   | Неха-    | ASCII        |
| opcode     | funct        | funct     | Binary  | Deci- | deci-    | Char-    | Deci- | deci-    | Char-        |
| (31:26)    | (5:0)        | (5:0)     | 2       | mal   | mal      | acter    | mal   | mal      | acter        |
| (1)        | sll          | add.f     | 00 0000 | 0     | 0        | NUL      | 64    | 40       | (a)          |
| (-)        |              | sub.f     | 00 0001 | 1     | 1        | SOH      | 65    | 41       | A            |
| j          | srl          | mul.f     | 00 0010 | 2     | 2        | STX      | 66    | 42       | В            |
| jal        | sra          | div.f     | 00 0011 | 3     | 3        | ETX      | 67    | 43       | C            |
| beq        | sllv         | sqrt.f    | 00 0100 | 4     | 4        | EOT      | 68    | 44       | D            |
| bne        |              | abs.f     | 00 0101 | 5     | 5        | ENQ      | 69    | 45       | E            |
| blez       | srlv         | mov.f     | 00 0110 | 6     | 6        | ACK      | 70    | 46       | F            |
| bgtz       | srav         | neg.f     | 00 0111 | 7     | 7        | BEL      | 71    | 47       | G            |
| addi       | jr           |           | 00 1000 | 8     | 8        | BS       | 72    | 48       | H            |
| addiu      | jalr         |           | 00 1001 | 9     | 9        | HT       | 73    | 49       | I            |
| slti       | movz         |           | 00 1010 | 10    | a        | LF       | 74    | 4a       | J            |
| sltiu      | movn         |           | 00 1011 | 11    | b        | VT       | 75    | 4b       | K            |
| andi       | syscall      | round.w.f | 00 1100 | 12    | C        | FF       | 76    | 4c       | L            |
| ori        | break        | trunc.w.f | 00 1101 | 13    | d        | CR       | 77 78 | 4d<br>4e | M<br>N       |
| xori       |              | ceil.w.f  | 00 1110 | 14    | e<br>f   | SO<br>SI | 79    | 4f       | 0            |
| lui        | sync         | floor.w.f | 00 1111 | 16    | 10       | DLE      | 80    | 50       | P            |
| (2)        | mfhi<br>mthi |           | 01 0000 | 17    | 11       | DC1      | 81    | 51       | Q            |
| (2)        | mflo         | movz.f    | 01 0001 | 18    | 12       | DC2      | 82    | 52       | R            |
|            | mtlo         | movn.f    | 01 0010 | 19    | 13       | DC3      | 83    | 53       | S            |
|            | 111020       |           | 01 0100 | 20    | 14       | DC4      | 84    | 54       | T            |
|            |              |           | 01 0101 | 21    | 15       | NAK      | 85    | 55       | Ū            |
|            |              |           | 01 0110 | 22    | 16       | SYN      | 86    | 56       | V            |
|            |              |           | 01 0111 | 23    | 17       | ETB      | 87    | 57       | W            |
|            | mult         |           | 01 1000 | 24    | 18       | CAN      | 88    | 58       | X            |
|            | multu        |           | 01 1001 | 25    | 19       | EM       | 89    | 59       | Y            |
|            | div          |           | 01 1010 | 26    | 1a       | SUB      | 90    | 5a       | Z            |
|            | divu         |           | 01 1011 | 27    | 1b       | ESC      | 91    | 5b       | [            |
|            |              | 7         | 01 1100 | 28    | 10       | FS       | 92    | 5c       | 1            |
|            |              |           | 01 1101 | 29    | 1d       | GS       | 93    | 5d       | ]            |
|            |              |           | 01 1110 | 30    | 1e       | RS       | 94    | 5e       | ۸            |
|            |              |           | 01 1111 | 31    | 1f       | US       | 95    | 5f       | <del>-</del> |
| lb         | add          | cvt.s.f   | 10 0000 | 32    | 20       | Space    | 96    | 60       |              |
| lh         | addu         | cvt.d.f   | 10 0001 | 33    | 21       | !        | 97    | 61       | a            |
| lwl        | sub          |           | 10 0010 | 34    | 22 23    |          | 98    | 62       | b            |
| lw         | subu         |           | 10 0011 | 35    | 24       | \$       | 100   | 64       | d            |
| 1bu        | and          | cvt.w.f   | 10 0100 | 37    | 25       | %        | 101   | 65       | e            |
| lhu<br>lwr | or           |           | 10 0110 |       | 26       | &        | 102   | 66       | f            |
| TMT        | nor          |           | 10 0111 | 39    | 27       | 1        | 103   | 67       | g            |
| sb         | 1101         | _         | 10 1000 |       | 28       | (        | 104   | 68       | h            |
| sh         |              |           | 10 1001 | 41    | 29       | )        | 105   | 69       | i            |
| swl        | slt          |           | 10 1010 |       | 2a       | *        | 106   | 6a       | j            |
| SW         | sltu         |           | 10 1011 | 43    | 2b       | +        | 107   | 6b       | k            |
|            |              |           | 10 1100 |       | 2c       | 2        | 108   | 6c       | 1            |
|            |              |           | 10 1101 | 45    | 2d       | - 4      | 109   | 6d       | m            |
| swr        |              |           | 10 1110 | 46    | 2e       |          | 110   | 6e       | n            |
| cache      |              |           | 10 1111 | 47    | 2f       |          | 111   | 6f       | 0            |
| 11         | tge          | c.f.f     | 11 0000 |       | 30       | 0        | 112   | 70       | p            |
| lwcl       | tgeu         | c.un.f    | 11 0001 | 49    | 31       | 1        | 113   | 71       | q            |
| 1wc2       | tlt          | c.eq.f    | 11 0010 |       | 32       | 2        | 114   | 72       | r            |
| pref       | tltu         | c.ueq.f   | 11 0011 | 51    | 33       | 3        | 115   | 73       | S            |
|            | teq          | c.olt.f   | 11 0100 |       | 34       | 4        | 116   | 74       | t            |
| ldc1       |              | c.ult.f   | 11 0101 |       | 35       | 5        | 117   | 75       | u            |
| ldc2       | tne          | c.ole.f   | 11 0110 |       | 36       | 6        | 118   | 76       | V            |
|            |              | c.ule.f   | 11 0111 | 55    | 37       | 7        | 119   | 77       | W            |
| SC Scal    |              | c.sf.f    | 11 1000 |       | 38       | 8        | 120   | 78<br>79 | X            |
| swc1       |              | c.ngle.f  | 11 1001 |       | 39<br>3a |          | 121   | 7a       | y<br>z       |
| swc2       |              | c.seq.f   | 11 1011 | 59    | 3b       | ;        | 123   | 7b       | Z {          |
|            |              | c.ngl.f   | 11 1100 | 1000  | 3c       | , <      | 123   | 7c       |              |
| sdc1       |              | c.lt.f    | 11 1101 |       | 3d       | =        | 125   | 7d       | 3            |
| sdc1       |              | c.nge.f   | 11 1110 |       | 3e       | >        | 126   | 7e       | ~            |
| Back       |              | c.ngt,f   | 11 1111 |       | 3f       |          | 127   | 7f       | DEL          |
| (1) once   | ode(31:26)   |           | 11 1111 | 03    | 51       | *        | 141   | 7.1      | ar ha ka     |
| 111 oper   | 101110)      |           |         |       |          |          |       |          |              |

(2) opcode(31:26) ==  $17_{\text{ten}} (11_{\text{hex}})$ ; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f = s$  (single); if fmt(25:21)== $17_{\text{ten}} (11_{\text{hex}}) f = d$  (double)

#### IEEE 754 FLOATING-POINT STANDARD

(3)

(-1)<sup>S</sup> × (1 + Fraction) × 2<sup>(Exponent - Bias)</sup> where Single Precision Bias = 127, Double Precision Bias = 1023.

# IEEE Single Precision and Double Precision Formats:

**IEEE 754 Symbols** Exponent Fraction Object 0 + 0 0 **≠**0 ± Denorm anything ± Fl. Pt. Num. 1 to MAX - 1 MAX 0 ±00 MAX **≠**0 NaN S.P. MAX = 255, D.P. MAX = 2047

(4)

 S
 Exponent
 Fraction

 31 30 23 22
 0

 S
 Exponent
 Fraction

 63 62 52 51
 52 51



### DATA ALIGNMENT

|          | Wo   | rd   |      |      | W    | ord  |         |  |  |
|----------|------|------|------|------|------|------|---------|--|--|
| Halfword |      | Half | word | Half | word | Half | alfword |  |  |
| Byte     | Byte | Byte | Byte | Byte | Byte | Byte | Byte    |  |  |

### **EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS**



BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

# **EXCEPTION CODES**

| Number | Name | Cause of Exception                                  | Number | Name | Cause of Exception                |
|--------|------|-----------------------------------------------------|--------|------|-----------------------------------|
| 0      | Int  | Interrupt (hardware)                                | 9      | Bp   | Breakpoint Exception              |
| 4      | AdEL | Address Error Exception (load or instruction fetch) | 10     | RI   | Reserved Instruction<br>Exception |
| 5      | AdES | Address Error Exception (store)                     | 11     | CpU  | Coprocessor<br>Unimplemented      |
| 6      | IBE  | Bus Error on<br>Instruction Fetch                   | 12     | Ov   | Arithmetic Overflow<br>Exception  |
| 7      | DBE  | Bus Error on<br>Load or Store                       | 13     | Tr   | Trap                              |
| 8      | Sys  | Syscall Exception                                   | 15     | FPE  | Floating Point Exception          |

### SIZE PREFIXES

|      | PREFIX | SYMBOL | SIZE | PREFIX | SYMBOL | SIZE | PREFIX | SYMBOL | SIZE | PREFIX | SYMBO |
|------|--------|--------|------|--------|--------|------|--------|--------|------|--------|-------|
| 103  | Kilo-  | К      | 210  | Kibi-  | Ki     | 1015 | Peta-  | P      | 250  | Pebi-  | Pj    |
| 106  | Mega-  | М      | 220  | Mehi-  | Mi     | 1018 | Exa-   | E      | 260  | Exhi-  | Ei    |
| 10%  | Giga-  | G      | 230  | Gibi-  | Gi     | 1021 | Zetta- | Z      | 270  | Zebi-  | Zí    |
| 1012 | Tera-  | Т      | 240  | Tebi-  | Ti     | 1024 | Yotta- | Y      | 280  | Yobi-  | Yi    |