Министерство науки и высшего образования Российской Федерации

Санкт-Петербургский государственный электротехнический университет

«ЛЭТИ» им. В.И. Ульянова (Ленина)

Кафедра систем автоматического управления

Реферат

по дисциплине

«Нелинейное адаптивное управление в технических системах»

Студент группы 9492

Викторов А.Д.

Преподаватель

Путов В.В.

Санкт-Петербург

2024

Содержание

1	Постановка задачи	3
2	Параметризованная модель объекта управления	6
3	Робастное управление с использованием алгоритмов адап-	-
	тации высокого порядка: теорема	9
4	Нелинейный робастный регулятор	12

1 Постановка задачи

В данной работе рассматривается задача применения методов адаптивного, робастного и нелинейного управления для выхода линейных объектов с неопределённостями при наличии внешних возмущений. Пусть исследуемый объект описывается в виде линейной системы с параметрическими неопределённостями:

$$\dot{x}(t) = A(\theta)x(t) + B(\theta)u(t) + Dd(t), \tag{1}$$

где $x(t) \in \mathbb{R}^n$ — вектор состояния, $u(t) \in \mathbb{R}^m$ — вектор управления, $d(t) \in \mathbb{R}^p$ — внешние возмущения, $A(\theta)$ и $B(\theta)$ — матрицы, зависящие от вектора неопределённых параметров $\theta \in \mathbb{R}^q$, D — известная матрица, описывающая воздействие возмущений.

Задача заключается в синтезе закона управления u(t), который обеспечивает:

- \bullet устойчивость замкнутой системы при всех допустимых значениях неопределённых параметров θ ;
- ullet удовлетворительное поведение выходной переменной y(t) в присутствии внешних возмущений d(t).

Выходная переменная определяется следующим образом:

$$y(t) = Cx(t), (2)$$

где $C \in \mathbb{R}^{l \times n}$ — матрица выходов.

Характеристика неопределённостей и возмущений

Параметрические неопределённости в системе описываются следующим образом:

$$\theta \in \Theta, \tag{3}$$

где Θ — компактное множество, определяющее допустимые значения параметров. Внешние возмущения d(t) предполагаются ограниченными:

$$||d(t)|| \le d_{\max},\tag{4}$$

где d_{\max} — известная верхняя граница величины возмущений.

Цель управления

Основной целью является разработка робастного и адаптивного закона управления u(t), который обеспечивает выполнение следующих требований:

- Адаптивность: закон управления должен приспосабливаться к изменениям параметров системы в пределах множества Θ.
- 2. **Робастность**: устойчивость системы должна сохраняться при любых допустимых возмущениях d(t) и неопределённостях параметров θ .
- 3. Уменьшение воздействия возмущений: минимизация влияния внешних возмущений на поведение выходной переменной y(t).

Формулировка задачи

Необходимо найти такой закон управления в виде:

$$u(t) = \mathcal{U}(x(t), t), \tag{5}$$

где \mathcal{U} — некоторая функция, зависящая от состояния системы и, возможно, от времени, обеспечивающая выполнение требований к устойчивости и качеству управления.

2 Параметризованная модель объекта управления

Для построения эффективных методов управления линейным объектом с неопределёнными параметрами необходимо ввести параметризованную модель, которая учитывает все возможные изменения в структуре системы. Параметризованная модель позволяет формализовать неопределённости и описывать объект управления в удобной форме для последующего анализа и синтеза законов управления.

Рассмотрим линейную систему, описываемую следующими уравнениями состояния:

$$\dot{x}(t) = A(\theta)x(t) + B(\theta)u(t) + Dd(t), \tag{6}$$

где $x(t) \in \mathbb{R}^n$ — вектор состояния, $u(t) \in \mathbb{R}^m$ — вектор управления, $d(t) \in \mathbb{R}^p$ — вектор внешних возмущений. Матрицы $A(\theta)$ и $B(\theta)$ зависят от вектора неопределённых параметров $\theta \in \mathbb{R}^q$.

Описание параметрической неопределённости

Неопределённости в системе могут возникать по разным причинам, включая:

- изменения физических параметров объекта (например, массы, инерции, сопротивления и т.д.);
- погрешности измерений или неполное знание параметров модели;
- влияние внешней среды, которое невозможно точно учесть в модели.

Пусть вектор параметров θ принадлежит компактному множеству $\Theta \subset \mathbb{R}^q$, определяющему все возможные значения неопределённых параметров. Тогда матрицы системы имеют следующий вид:

$$A(\theta) = A_0 + \sum_{i=1}^{q} \theta_i A_i, \tag{7}$$

$$B(\theta) = B_0 + \sum_{i=1}^{q} \theta_i B_i, \tag{8}$$

где A_0 и B_0 — номинальные матрицы системы, а A_i и B_i — известные матрицы, задающие структуру неопределённостей.

Особенности параметризованной модели

Параметризованная модель системы позволяет:

- 1. Учитывать неопределённости: модель включает в себя все допустимые изменения параметров, что позволяет проводить анализ устойчивости и синтезировать робастные регуляторы.
- 2. Обеспечивать адаптивность: в случае использования адаптивных методов управления параметры θ могут оцениваться в реальном времени, что позволяет системе адаптироваться к изменяющимся условиям.

Анализ структуры матриц системы

Структура матриц $A(\theta)$ и $B(\theta)$ является ключевым элементом при синтезе законов управления. Важно отметить, что параметры θ могут влиять на поведение системы как линейно, так и нелинейно, что усложняет задачу обеспечения устойчивости и желаемого качества управления. Тем не менее, использование параметризованной модели позволяет систематически подходить к анализу влияния неопределённостей.

Пример параметризованной модели

Для наглядности рассмотрим пример простейшей линейной системы с одной неопределённостью:

$$\dot{x}(t) = \begin{pmatrix} 0 & 1 \\ -\theta_1 & -\theta_2 \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t), \tag{9}$$

где θ_1 и θ_2 — параметры, изменяющиеся в пределах заданного множества Θ . В этом случае задача синтеза управления осложняется необходимостью учёта всех возможных значений θ_1 и θ_2 для обеспечения устойчивости системы.

Таким образом, параметризованная модель объекта управления является основой для разработки робастных и адаптивных методов управления, которые могут эффективно справляться с неопределённостями и внешними возмущениями.

3 Робастное управление с использованием алгоритмов адаптации высокого порядка: теорема

В этой главе рассматриваются методы синтеза робастного управления с использованием алгоритмов адаптации высокого порядка для линейных систем с параметрическими неопределённостями. Использование адаптивных алгоритмов позволяет существенно повысить устойчивость системы к внешним возмущениям и неопределённостям.

Постановка задачи управления

Рассмотрим линейную систему, описываемую уравнением:

$$\dot{x}(t) = A(\theta)x(t) + B(\theta)u(t) + Dd(t), \tag{10}$$

где $x(t) \in \mathbb{R}^n$ — вектор состояния, $u(t) \in \mathbb{R}^m$ — вектор управления, $d(t) \in \mathbb{R}^p$ — вектор внешних возмущений, а $A(\theta)$ и $B(\theta)$ зависят от вектора неопределённых параметров $\theta \in \Theta$.

Целью является разработка такого закона управления u(t), который гарантирует устойчивость системы и минимизирует влияние возмущений при всех допустимых значениях параметров θ .

Основной принцип адаптивного робастного управления

Алгоритмы адаптации высокого порядка обеспечивают корректировку параметров управления в реальном времени на основе измерений состояния системы. Они могут использовать методы, которые учитывают вы-

сокие производные состояния для более точной оценки неопределённостей.

Пусть u(t) определяется следующим образом:

$$u(t) = -Kx(t) + \alpha(t), \tag{11}$$

где K — матрица обратной связи состояния, а $\alpha(t)$ — адаптивный компонент управления, предназначенный для компенсации параметрических неопределённостей и внешних возмущений.

Теорема об устойчивости робастного управления

Теорема. Пусть система описывается уравнением (1), и пусть адаптивный закон управления имеет вид:

$$\dot{\alpha}(t) = -\gamma \operatorname{sign}\left(\frac{\partial V}{\partial x}B(\theta)x(t)\right),$$
 (12)

где $\gamma > 0$ — коэффициент адаптации, V(x) — положительно определённая функция Ляпунова. Тогда при условии правильного выбора матрицы K и параметра γ замкнутая система устойчива в смысле Ляпунова и удовлетворяет следующим свойствам:

- 1. **Асимптотическая устойчивость**: при отсутствии возмущений d(t) и точной оценке параметров θ , состояние системы x(t) стремится к нулю при $t \to \infty$.
- 2. **Робастность**: при наличии внешних возмущений и неопределённостей параметры адаптивного алгоритма гарантируют ограниченность всех траекторий системы.

Доказательство теоремы

Для доказательства устойчивости рассмотрим функцию Ляпунова:

$$V(x) = x^T P x, (13)$$

где $P = P^T > 0$ — симметричная положительно определённая матрица, удовлетворяющая уравнению Алгебраической Риккати:

$$A^T P + P A = -Q, (14)$$

где $Q=Q^T>0$ — заданная положительно определённая матрица. Вычислим производную функции Ляпунова:

$$\dot{V}(x) = x^T (A^T P + PA)x + 2x^T PB(\theta)u(t). \tag{15}$$

Подставив выражение для u(t), можно показать, что $\dot{V}(x) \leq -c \|x\|^2$ для некоторого c>0, что доказывает асимптотическую устойчивость системы.

Таким образом, алгоритмы адаптации высокого порядка в сочетании с правильно выбранной функцией Ляпунова позволяют обеспечить устойчивость и робастность системы в условиях неопределённостей и внешних возмущений.

4 Нелинейный робастный регулятор

В этой главе рассматривается синтез нелинейного робастного регулятора для управления системой с параметрическими неопределённостями и внешними возмущениями. Нелинейные методы управления могут значительно улучшить устойчивость и качество управления по сравнению с линейными, особенно в случае сильных неопределённостей и нелинейного поведения объекта.

Постановка задачи управления

Рассмотрим нелинейную систему с параметрическими неопределённостями, описываемую уравнением:

$$\dot{x}(t) = f(x(t), \theta) + g(x(t), \theta)u(t) + Dd(t), \tag{16}$$

где $x(t) \in \mathbb{R}^n$ — вектор состояния, $u(t) \in \mathbb{R}^m$ — вектор управления, $d(t) \in \mathbb{R}^p$ — вектор внешних возмущений, а $f(x,\theta)$ и $g(x,\theta)$ — нелинейные векторные функции, зависящие от вектора неопределённых параметров $\theta \in \Theta$.

Цель заключается в разработке нелинейного регулятора u(t), который обеспечивает устойчивость замкнутой системы и уменьшает влияние возмущений и параметрических неопределённостей.

Синтез нелинейного робастного регулятора

Для синтеза робастного регулятора будем использовать метод обратной связи по состоянию, который учитывает нелинейности системы и неопределённости параметров. Закон управления u(t) имеет следующий вид:

$$u(t) = \alpha(x(t)) + \beta(x(t))\eta(t), \tag{17}$$

где $\alpha(x(t))$ — основная нелинейная часть управления, зависящая от состояния, $\beta(x(t))$ — управляющая функция, и $\eta(t)$ — робастный адаптивный компонент, предназначенный для компенсации внешних возмущений и неопределённостей.

Выбор функций управления

Рассмотрим структуру нелинейного регулятора более подробно:

- Функция $\alpha(x(t))$. Основная часть управления выбирается таким образом, чтобы стабилизировать номинальную систему при отсутствии возмущений и неопределённостей. Например, можно использовать обратное проектирование, метод Ляпунова или другие нелинейные методы стабилизации.
- Функция $\beta(x(t))$. Эта функция задаёт усиление для робастного компонента управления и должна быть положительно определённой, чтобы обеспечить устойчивость системы.
- Робастный компонент $\eta(t)$. Этот компонент проектируется с использованием принципов робастного управления, чтобы компенсировать воздействие неопределённостей и возмущений. Примером может служить алгоритм скользящего режима, который обеспечивает инвариантность к внешним воздействиям:

$$\eta(t) = -\gamma \operatorname{sign}(s(x(t))), \tag{18}$$

где $\gamma > 0$ — коэффициент усиления, а s(x(t)) — скользящая поверхность, определяемая как функция состояния.

Анализ устойчивости

Для анализа устойчивости замкнутой системы вводится функция Ляпунова V(x), которая является положительно определённой и непрерывно дифференцируемой:

$$V(x) = x^T P x, (19)$$

где $P=P^T>0$ — симметричная положительно определённая матрица. Производная функции Ляпунова по времени должна удовлетворять условию:

$$\dot{V}(x) = \frac{\partial V}{\partial x} \dot{x} \le -c ||x||^2 + ||d(t)||, \tag{20}$$

где c>0 — положительная константа. При правильном выборе параметров регулятора и робастного компонента $\eta(t)$ можно доказать, что замкнутая система устойчива в смысле Ляпунова.

Теорема об устойчивости

Теорема. Если функции $\alpha(x(t))$, $\beta(x(t))$ и $\eta(t)$ выбраны таким образом, что производная функции Ляпунова $\dot{V}(x)$ удовлетворяет вышеуказанному неравенству, то замкнутая система устойчива, а состояние x(t) стремится к нулю при $t \to \infty$.

Заключение

Нелинейный робастный регулятор позволяет эффективно справляться с неопределённостями и возмущениями, обеспечивая устойчивость и высокое качество управления даже в сложных условиях. Использование адаптивных и робастных методов в сочетании с нелинейным управлением обеспечивает инвариантность системы и её устойчивость при широком

диапазоне неопределённостей.