MAT2006 Tutorial #3

- 1. (a) Let $C \subset [0,1]$ be uncountable. Show that there exists $a \in (0,1)$ such that $C \cap [a,1]$ is uncountable.
- (b) Now let A be the set of all $a \in (0,1)$ such that $C \cap [a,1]$ is uncountable, and set $\alpha = \sup A$. Is $C \cap [\alpha, 1]$ an uncountable set?
 - (c) Does the statement in (a) remain true if "uncountable" is replaced by "infinite"?
- **2.** Show that $2^{\mathbb{N}}$ and \mathbb{R} have the same cardinality.

Hint. Consider the Schröder-Bernstein theorem.

- **3.** Assume $\lim_{n\to\infty} a_n = a$. Show that $\lim_{n\to\infty} |a_n| = |a|$.
- **4.** Show that

- $\lim_{n\to\infty} \sqrt[n]{p} = 1, \quad \text{where } p > 0.$
- $\lim_{n \to \infty} \sqrt[n]{n} = 1.$ (ii)
- $\lim_{n\to\infty} \sqrt[2n+1]{n^2+n} = 1.$ (iii)

— End —