1611A LOGIC STATE ANALYZER

CERTIFICATION

Hewlett-Packard Company certifies that this instrument met its published specifications at the time of shipment from the factory. Hewlett-Packard Company further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from the date of shipment. The cathode-ray tube (CRT) in the instrument and any replacement CRT purchased from HP are also warranted against electrical failure for a period of one year from the date of shipment from Colorado Springs. BROKEN TUBES AND TUBES WITH PHOSPHOR OR MESH BURNS, HOWEVER, ARE NOT INCLUDED UNDER THIS WARRANTY. Hewlett-Packard will, at its option, repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard, and provided the preventive maintenance procedures in this manual are followed. Repairs necessitated by misuse of the product are not covered by this warranty. NO OTHER WARRANTIES ARE EX-PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD IS NOT LIABLE FOR CONSEQUENTIAL DAMAGES.

Service contracts or customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

OPERATING AND SERVICE MANUAL

MODEL 1611A LOGIC STATE ANALYZER

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1723A.

With changes described in Section VII, this manual also applies to instruments with serial numbers prefixed 1635A.

For additional information about serial numbers, see IN-STRUMENTS COVERED by MANUAL in Section I.

© COPYRIGHT HEWLETT-PACKARD COMPANY/COLORADO SPRINGS DIVISION 1978 1900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U.S.A.

ALL RIGHTS RESERVED

Manual Part Number 01611-90905 Microfiche Part Number 01611-90805

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements.

GROUND THE INSTRUMENT.

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE.

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

USE CAUTION WHEN EXPOSING OR HANDLING THE CRT.

Breakage of the Cathode-ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent CRT implosion, avoid rough handling or jarring of the instrument. Handling of the CRT shall be done only by qualified maintenance personnel using approved safety mask and gloves.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

SS-2-1/76

Model 1611A Table of Contents

TABLE OF CONTENTS

Sect	ion		Page	Sect	ion		Page
I	GENE	CRAL INFORMATION	1-1	VI	REPL	ACEABLE PARTS	6-1
	1-1.	Introduction	. 1-1		6-1.	Introduction	6-1
	1-5.	Specifications	. 1-1		6-3.	Abbreviations	6-1
	1-7.	Instruments Covered by Manual	. 1-2		6-5.	Replaceable Parts List	6-1
	1-12.	Description			6-7.	Ordering Information	6-1
	1-16.	Options			6-10.	Direct Mail Order System	6-1
	1-18.	Accessories Supplied				•	
	1-20.	Accessories Available					
	1-22.	Recommended Test Equipment					
				VII	MAN	UAL CHANGES	7-1
II	INST	ALLATION	2-1			_	
					7-1.	Introduction	
	2-1.	Introduction	. 2-1		7-3.	Manual Changes	
	2-3.	Initial Inspection	. 2-1		7-6.	Manual Change Instructions	7-1
	2-5.	Preparation for Use	. 2-1				
	2-6.	Power Requirements	. 2-1				
	2-7.	Line Voltage Selection	. 2-1	VIII	SERV	ICE	8-1
	2-8.	Power Cable	. 2-1				
	2-9.	Probe Installation	. 2-1		8-1.	Introduction	8-1
	2-10.	Personality Module Installation	2-2		8-4.	Principles of Operation	8-1
	2-11.	Repacking for Shipment	2-2		8-6.	Logic Conventions	8-1
					8-7.	Mnemonics	8-1
III	OPER	ATION	. 3-1		8-8.	Troubleshooting	8-1
					8-11.	Fault Isolation	8-1
IV	PERF	ORMANCE TESTS	. 4-1		8-15.	Troubleshooting Microprocessor	
						Problems	8-2
V	ADJU	STMENTS	. 5-1		8-16.	Troubleshooting with Logic Test	
						Equipment	8-2
	5-1.	Introduction	5-1		8-17.	Recommended Test Equipment	8-2
	5-3.	Equipment Required			8-19.	Service Aids	8-2
	5-5.	Adjustment Locations			8-20.	Test Points	8-2
	5-7.	+5 Volt Power Supply Adjustment			8-21.	Extender Board	8-2
	5-8.	Comparator Adjustment			8-22.	Part Location Aids	8-3
	5-9.	Display Alignment			8-23.	Repair	8-3
	5-10.	Display Adjustment			8-24.	CRT Replacement Procedure	8-3
	J 10.	~-~praj rrajabomitemo	• 5-0			p	

LIST OF ILLUSTRATIONS

Figure	Title	Page	Figure	Title	Page
2-1.	Power Cables Available	2-1	8-1.	Schematic Diagram Notes	8-0
2-2.	Rear Panel Probe Connectors	2-2	8-2.	5004A Block Diagram	
			8-3.	CRT Yoke Installation	
			8-4.	1611A Troubleshooting	8-7
			8-5.	1611A Block Diagram	8-15
5-1.	Power Supply Assy A2, Adjustment		8-6.	1611A Macro Flowchart	8-15
01.	Location	5-1	8-7.	Service Sheet 1, Main Board Assembly A	
5-2.	Delay and Clock Width Adjustments		0 1.	Interconnections	8-16
5-3.	Display Assembly A3, Adjustment	. 02	8-8.	Service Sheet 2, Low Voltage Power	010
0-0.	Location	5-9	00.	Supply A2	8-20
	Location	0-2	8-9.	Service Sheet 3, Display Driver Assembly A3	8-22
6-1.	Illustrated Parts Breakdown	6.3	8-10	Service Sheet 4, Keyboard	0-24
0-1.	mustrated raits Dieakdowii	. 0-0	0-10	Assembly A4	8-24
7-1.	Replacement for Figure 8-13, Service		8-11.	Service Sheet 5, Microprocessor and	
	Sheet 7, (Sheet 4 of 4)	. 7-3		Keyboard Scan Assembly A5	8-26
7-2.	Replacement for Figure 8-14, Service		8-12.	Service Sheet 6, RAM and Display	0 20
	Sheet 8, (Sheet 1 of 6)	. 7-5		Format Generator Assembly A6	8-28
7-3.	Replacement for Figure 8-14, Service		8-13.	Service Sheet 7, RAM Comparator	0 20
	Sheet 8, (Sheet 2 of 6)	. 7-7		Assembly A7	8-32
7-4.	Replacement for Figure 8-14, Service		8-14.	Service Sheet 8, Data Storage and	002
	Sheet 8, (Sheet 4 of 6)	. 7-9		Counter Assembly A8	8-38
7-5.	Replacement for Figure 8-4, 1611A Trou		8-15.	Service Sheet 9, External Probe	0.00
	shooting			Assembly A9	8-40

LIST OF TABLES

Table	Title	Page
1-1.	Supplemental Characteristics	1-1
1-2.	Recommended Test Equipment	1-3
6-1.	Reference Designators and Abbreviations	6-2
6-2.	Replaceable Parts	6-5
6-3.	List of Manufacturers' Codes	6-16
7-1.	Manual Changes	7-1
8-1.	1611A Mnemonics	8-3

SECTION I

GENERAL INFORMATION

1-1. INTRODUCTION.

- 1-2. This Operating and Service Manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard Model 1611A Logic State Analyzer.
- 1-3. In addition to this manual, an Operating and Service Supplement for each microprocessor personality module option or accessory ordered with the instrument is also provided.
- 1-4. Listed on the title page of this manual is a microfiche part number. This number can be used to order 4-x 6-inch microfilm transparencies of the manual. Each microfiche contains up to 96 photo-duplicates of the

manual pages. The microfiche package also includes the latest Manual Changes supplement.

- 1-5. SPECIFICATIONS. Complete instrument performance specifications are listed in the personality module Operating and Service Supplement for each microprocessor option and accessory ordered with the instrument. These specifications are the performance standards or limits against which the instrument is tested. Detailed performance tests are also included in the personality module Operating and Service Supplement.
- 1-6. Table 1-1 lists supplemental characteristics of the 1611A which are not performance specifications but are typical characteristics included as additional information to the user.

Table 1-1. Supplemental Characteristics

General Information Model 1611A

1-7. INSTRUMENTS COVERED BY MAN-UAL.

- 1-8. Attached to the instrument is a serial number plate. The serial number is in the form: 0000A00000. It is in two parts; the first four digits and the letter are the serial prefix and the last five digits are the suffix. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.
- 1-9. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a yellow Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.
- 1-10. In addition to change information, the changes supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page. Complimentary copies of the supplement are available from Hewlett-Packard.
- 1-11. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-12. DESCRIPTION.

- 1-13. The HP 1611A Logic State Analyzer is dedicated to the design and troubleshooting of microprocessor based systems. For ease-of-use, a special probe offers two methods of connection to microprocessors—a dual in-line clip and a connector plug for interfacing with microprocessors in sockets. Measurements of system activity are displayed on the analyzer's CRT screen in selectable mnemonic or absolute codes of the microprocessor's own instruction set. The display is divided into three distinct fields—address, data, and external. Events and activity displayed in the address and op code/data fields are collected directly from the system microprocessor's address and data buses. An additional eight bits of binary information gathered by auxiliary probes is displayed in the external field.
- 1-14. With relational triggering capabilities, the 1611A permits framing of a real-time data window around virtually any event or set of related events—

any desired sequence of system operations. The 1611A will also measure execution time or count selected events between two keyboard selected events. At a desired point, defined from a keyboard entry, the 1611A can be commanded to halt microprocessor operation; then, if desired, it can control the following transactions in single or multiple keyed steps. Keyboard entry of address or data bus trigger words may be entered in either octal or hexadecimal notation and the external trigger information is entered in binary format.

1-15. For increased confidence of instrument operation, it performs a self-test during the turn-on period and indicates test results on the CRT. The microprocessor probe data-gathering circuits may also be checked by connecting the probe to the front panel probe test socket with the test results displayed on the CRT.

1-16. **OPTIONS.**

1-17. The following options for the 1611A are available to configure the instrument for specific microprocessors and are covered by separate Manual Supplements.

Option A68: Model 1611A with Model 10257B Personality Module for use with any microprocessor that meets specifications of the Motorola 6800.

Option A80: Model 1611A with Model 10258B Personality Module for use with any microprocessor that meets specifications of the Intel 8080A.

Option 0F8: Model 1611A with Model 10259A Personality Module for use with any microprocessor that meets specifications of the Fairchild F8.

Option Z80: Model 1611A with Model 10260A Personality Module for use with any microprocessor that meets specifications of the Zilog Z80.

Option A65: Model 1611A with Model 10261A Personality Module for use with any microprocessor that meets specifications of the Rockwell R6502A.

1-18. ACCESSORIES SUPPLIED.

1-19. The following accessories are supplied with the 1611A:

External 8-bit Probe, HP Part No. 01611-62101
One Dual In-line Clip with 30.5 cm (12 in.)
Cable, HP Part No. 01611-61609
One Male Plug with 30.5 cm (12 in.)
Cable, HP Part No. 01611-61610
One Male Plug with 7.6 cm (3 in.)
Cable, HP Part No. 01611-61612
One Extender Board, HP Part No. 01611-66515
One 2.3 m (7.5 ft) Power Cord (refer to Section II)
One 40-pin Protection Socket HP Part No. 1200-0682
One Accessory Bag, HP Part No. 1540-0325

1-20. ACCESSORIES AVAILABLE.

1-21. The following accessories are available for the 1611A:

Model 10257B Personality Module Model 10258B Personality Module Model 10259A Personality Module Model 10260A Personality Module Model 10261A Personality Module

1-22. RECOMMENDED TEST EQUIPMENT.

1-23. Equipment required to maintain the Model 1611A is listed in table 1-2. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

Table 1-2. Recommended Test Equipment

Instrument	Critical Specification	Recommended Model	Use*
Pulse Generators (2)	10 V output into 50 ohms, External trigger, 0 to +2.5 V DC offset, 0 to 1.4µs adjustable delay	HP 8013B	Р
Digital Voltmeter	±1000 Vdc range, 0.1% accuracy	HP 3465 A	P, A, T
Dual Channel Oscilloscope	50 MHz BW min	HP 1740A	P, T
Logic State Analyzer	Pattern recognition and state display	HP 1600A	Т
Logic Pulser	Pulse logic circuits	HP 10526T	Т
Logic Probe	Monitor digital IC's	HP 10525T	Т
50Ω Feedthroughs (2)	50Ω feedthrough termination	HP 10100C	P
BNC-to-alligator Clip Adapters (3)		HP Part No. 8120-1292	Р
BNC Tee Connectors (2)		HP Part No. 1250-0781	P
Current Tracer		HP 547A	Т
Signature Analyzer	No Substitute	HP 5004A	Т
*P=Performance Test; A=A	Adjustment, T=Troubleshooting		•

Model 1611A Installation

SECTION II

INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains information and instructions for installing the Model 1611A. Included are initial inspection procedures, power and grounding requirements, and instructions for repacking for shipment.

2-3. INITIAL INSPECTION.

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. Procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the Performance Tests, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for carrier's inspection. The HP office will arrange for repair or replacement at HP option without waiting for claim settlement.

2-5. PREPARATION FOR USE.

2-6. POWER REQUIREMENTS. The 1611A requires a power source of 100, 120, 220, or 240 Vac, —10%, +5%; single-phase; 48 to 440 Hz; 120 VA maximum.

CAUTION

The instrument may be damaged if the LINE SELECTOR switch setting does not match the input power source.

- 2-7. LINE VOLTAGE SELECTION. The LINE SELECTOR switches on the rear panel select either 100-, 120-, 220-, or 240-volt operation. To check or change positions of the LINE SELECTOR switches, proceed as follows:
 - a. Remove input power cord (if connected).
- b. For 100- or 120-volt operation, set LINE SE-LECTOR switches to 100 V or 120 V respectively.

- c. For 220- or 240-volt operation, set LINE SE-LECTOR switches to 220 V or 240 V respectively.
 - d. Reconnect power cord.
- **2-8. POWER CABLE.** This instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. Refer to figure 2-1 for the part numbers of the power cable and plug configurations available.

Figure 2-1. Power Cables Available

- **2-9. PROBE INSTALLATION.** To install the Microprocessor Probe and External Probe, proceed as follows:
 - a. Ensure that LINE switch is in OFF position.
- b. Connect Microprocessor Probe ribbon cable to Microprocessor Probe connector on 1611A rear panel (see figure 2-2). Ensure that cable socket is fully seated on board edge connector. Red stripe on cable indicates top edge.
- c. Connect External Probe to External Probe connector on rear panel in same manner as for Microprocessor Probe.
- d. Secure probe connectors to rear panel with screws provided.

Installation Model 1611A

Figure 2-2. Rear-panel Probe Connectors

2-10. PERSONALITY MODULE INSTALLATION. To install a Personality Module in the instrument, refer to installation procedures in the manual supplement supplied with the Personality Module.

2-11. REPACKING FOR SHIPMENT.

- 2-12. If the instrument is to be shipped to a Hewlett-Packard Sales/Service Office for service or repair, attach a tag showing owner (with address), complete instrument serial number, and a description of the service required.
- 2-13. Use the original shipping carton and packing material. If the original packing material is not available, the Hewlett-Packard Sales/Service Office will provide information and recommendations on materials to be used.

Model 1611A Operation

SECTION III

OPERATION

Detailed operating information is provided in the Operating and Service Manual Supplement that is supplied with each Personality Module.

SECTION IV

PERFORMANCE TESTS

Detailed performance tests for the 1611A are dependent upon the personality module installed in the instrument. Therefore, complete performance tests for the 1611A are provided in the appropriate Person-

ality Module Supplement provided with each 1611A Option and accessory. 1611A Options and Personality Module accessories are listed in Section I of this manual.

SECTION V

ADJUSTMENTS

5-1. INTRODUCTION.

5-2. This section contains a complete adjustment procedure for the 1611A. Power supply and display adjustments may be made separately following repairs or in sequence during periodic calibration.

WARNING

Read the Safety Summary at the front of this manual before performing adjustment procedures.

5-3. EQUIPMENT REQUIRED.

5-4. A list of Recommended Test Equipment is listed in Section I of this manual.

5-5. ADJUSTMENT LOCATIONS.

5-6. Adjustments and test point locations are shown in figures 5-1 and 5-3.

Figure 5-1. Power Supply Assy A2, Adjustment Location

5-7. +5 VOLT POWER SUPPLY ADJUST-MENT. (See figure 5-1 and service sheet 2.)

- a. Disconnect 1611A power cord.
- b. Remove 1611A top cover.
- c. Reconnect power cord and place LINE switch in on position. LINE indicator lamp should light.
- d. Connect (+) input of DVM to A2TP14 and connect (—) input of DVM to A2TP6.
- e. Adjust A2R6 until DVM indicates +5.1 Vdc ±0.025 Vdc.

5-8. COMPARATOR ADJUSTMENT. (See figure 8-13, sheet 1 of 4, for part locations.)

- a. Place LINE switch to off position and remove power cord.
 - b. Remove 1611A top cover.
- c. Connect microprocessor probe to front-panel probe-test socket.
- d. Connect dual-channel oscilloscope to test points TP1 and TP2 on A7.
- e. Adjust delay clock A7R10 for 200-ns delay (± 10 ns) between falling edges of signals at A7TP1 and A7TP2 (figure 5-2).

NOTE

The signals at A7TP1 and A7TP2 will be present for approximately 1 second in each 3 seconds.

f. Adjust clock width A7C4 for 95 ± 5 ns between falling edge and rising edge of signal at A7TP2 (figure 5-2).

NOTE

Some 1611A Options require additional adjustment of the Personality Board. Refer to the Operating and Service Manual Supplement to determine if additional adjustment is required.

Figure 5-2. Delay and Clock Width Adjustments

5-9. DISPLAY ALIGNMENT. (See figure 6-1 for parts locations.)

NOTE

Normally, it is not necessary to perform this procedure unless the CRT has been replaced.

- a. Place LINE switch to off position and remove power cord.
 - b. Remove 1611A top cover.
- c. Remove screw that secures CRT post-accelerator lead holder (H39) to CRT shield (MP13).
- d. Loosen four screws that hold CRT shield (MP13).
 - e. Remove CRT shield MP13.

Figure 5-3. Display Assembly A3, Adjustment Locations

- f. Loosen clamp on yoke L1.
- g. Reconnect power cord and place LINE switch in on position.
- h. Rotate yoke L1 so that horizontal lines on display are parallel with top and bottom of display window.
- i. Set LINE switch to off position and remove power cord.
 - j. Tighten clamp on yoke L1.

CAUTION

Hand-tighten only. Over tightening will damage the CRT.

k. Install CRT shield MP13 and PA lead holder H39.

5-10. DISPLAY ADJUSTMENT. (See figure 5-3 and service sheet 3.)

- a. Remove 1611A top cover and left side cover.
- b. Connect external probe and microprocessor probe to their respective connectors on rear panel of 1611A.
 - c. Set front panel switches as follows:

FORMAT	HEXADECIMAL
TEST MODE	NORMAL
TRIGGER QUALIFIER	
(Option 068 only)	NORMAL

- d. Connect microprocessor probe cable to PROBE TEST socket on front panel.
- e. Press TRACE; a list should be displayed on CRT. If list is not displayed, set LINE switch to off, then on, and press TRACE again.

f. Turn contrast control A3R61 fully clockwise.

NOTE

This control is a service aid only. For normal operation, it should always be set fully clockwise.

g. Adjust intensity control A3R60 cw until retrace lines can be seen, then reduce intensity control until desired brightness is obtained.

CAUTION

Excessive intensity will cause permanent burning of CRT phosphor; however, this will not degrade display performance.

- h. Adjust focus control A3R45 for best overall focus of display.
- i. Adjust horizontal size A3R6 and vertical size A3R18 fully ccw.
- j. Adjust horizontal position A3R14 and vertical position A3R40 to center display.
- k. Adjust linearity control A3R23 so that characters in top and bottom lines of display are same height.
- l. Adjust horizontal size A3R6 and horizontal position A3R14 for 20 mm (0.8 in.) margin on each side of display.
- m. Adjust vertical size A3R18 and vertical position A3R40 for 5 mm (0.2 in.) margins at top and bottom.
 - n. Repeat step k.

•		

Model 1611A Replaceable Parts

SECTION VI

REPLACEABLE PARTS LIST

6-1. INTRODUCTION.

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designator order. Table 6-3 contains the names and addresses that correspond to the manufacturer's code number.

6-3. ABBREVIATIONS.

6-4. Table 6-1 lists abbreviations used in the parts list, the schematics and throughout the manual. In some cases, two forms of the abbreviation are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-5. REPLACEABLE PARTS LIST.

- 6-6. Table 6-2 is the list of replaceable parts and is organized as follows:
- a. Electrical assemblies and their components in alphanumerical order by reference designation.
- b. Chassis-mounted parts in alphanumerical order by reference designation.
 - c. Miscellaneous parts.

The information given for each part consists of the following:

- a. The Hewlett-Packard part number.
- b. The total quantity (Qty) in the instrument.
- c. The description of the part.

- d. A typical manufacturer of the part in a fivedigit code.
 - e. The manufacturers' number for the part.

The total quantity for each part is given only once—at the first appearance of the part number in the list.

6-7. ORDERING INFORMATION.

- 6-8. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.
- 6-9. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-10. DIRECT MAIL ORDER SYSTEM.

- 6-11. Within the USA, Hewlett-Packard can supply parts through a direct mail order system. Advantages of using the system are as follows:
- a. Direct ordering and shipment from the HP Parts Center in Mountain View, California.
- b. No maximum or minimum on any mail order (there is a minimum order amount for parts ordered through a local HP office when the orders require billing and invoicing).
- c. Prepaid transportation (there is a small handling charge for each order).
- d. No invoices—to provide these advantages, a check or money order must accompany each order.
- 6-12. Mail-order forms and specific ordering information are available through your local HP office. Addresses and phone numbers are located at the back of the 1611A Operating and Service Manual.

Table 6-1. Reference Designators and Abbreviations

			REFERENCE DE	SIGNATORS			
A	= assembly	F	= fuse	MP	= mechanical part	U	= integrated circuit
В	= motor	FL	= filter	P	= plug	V	= vacuum, tube, neo
ВТ	= battery	IC	= integrated circuit	Q	= transistor		bulb, photocell, etc
С	= capacitor	J	= jack	R	= resistor	VR	= voltage regulator
CP	= coupler	ĸ	= relay	RT	= thermistor	w	= cable
CR	= diode	Ë	= inductor	s	= switch	x x	= socket
DL.	= delay line .	LS	= loud speaker	Ť	= transformer	Ŷ	= crystal
DS .	= device signaling (lamp)	M	= meter	ТВ	= terminal board	ż	= tuned cavity,
E	= misc electronic part	MK	= microphone	TP	= test point	-	network
=	miles electronic part		тисториене	••	todi poini		HOLWOIN
			ABBREVIA	TIONS			
A	= amperes	н	= henries	N/O	= normally open	RMO	= rack mount only
AFC	= automatic frequency control	HDW	= hardware	NOM	= nominal	RMS	= root-mean square
AMPL	= amplifier	HEX	= hexagonal	NPO	= negative positive zero	RWV	= reverse working
		HG	= mercury		(zero temperature		voltage
BFO	= beat frequency oscillator	HR	= hour(s)		coefficient)		Ü
BE CU	= beryllium copper	HZ	= hertz	NPN	= negative-positive-	S-B	= slow-blow
ВН	= binder head				negative	SCR	= screw
BP	= bandpass			NRFR	= not recommended for	SE	= selenium
BRS	= brass	IF	= intermediate freq		field replacement	SECT	= section(s)
BWO	= backward wave oscillator	IMPG	= impregnated	NSR	= not separately	SEMICON	= semiconductor
	basiliars mare econiais	INCD	= incandescent		replaceable	SI	= silicon
CCW	= counter-clockwise	INCL	= include(s)		replaceable	SIL	= silver
CER	= ceramic	INS	= insulation(ed)	OBD	= order by description	SL	= slide
CMO	= cabinet mount only	INT	= internal	ОН	= oval head	SPG	= spring
COEF	= coefficient		- internal	οx	= oxide	SPL	= special
COM	= common	K	= kilo = 1000	O.A.	- oxide	SST	
COMP		Α	- KIIO - 1000				= stainless steel
	= composition	LH		P		SR	= split ring
COMPL	= complete		= left hand		= peak	STL	= steel
CONN	= connector	LIN	= linear taper	PC	= printed circuit		
CP	= cadmium plate	LK WASH	= lock washer	PF	= picofarads = 10-12	TA	= tantalum
CRT	= cathode-ray tube	LOG	= logarithmic taper		farads	TD	= time delay
CW	= clockwise	LPF	= low pass filter	PH BRZ	= phosphor bronze	TGI	= toggle
				PHL	= Phillips	THD	= thread
DEPC	= deposited carbon	M	= milli = 10-3	PIV	= peak inverse voltage	TI	= titanium
DR	= drive	MEG	= meg = 10 ⁶	PNP	= positive-negative-	TOL	= tolerance
		MET FLM	= metal film		positive	TRIM	= trimmer
ELECT	= electrolytic	MET OX	= metallic oxide	P/O	= part of	TWT	= traveling wave tub
ENCAP	= encapsulated	MFR	= manufacturer	POLY	= polystyrene		
EXT	= external	MHZ	= mega hertz	PORC	= porcelain	U	$= micro = 10^{-6}$
		MINAT	= miniature	POS	= position(s)		
•	= farads	MOM	= momentary	POT	= potentiometer	VAR	= variable
FH	= flat head	MOS	= metal oxide substrate	PP	= peak-to-peak	VDCW	= dc working volts
FIL H	= fillister head	MTG	= mounting	PT	= point		<u> </u>
FXD	= fixed	MY	= "mylar"	PWV	= peak working voltage	W/	= with
			*			W	= watts
G	= giga (10 ⁹)	N	= nano (10-9)	RECT	= rectifier	WIV	= working inverse
GE	= germanium	N/C	= normally closed	RF	= radio frequency		voltage
GL	= glass	NE	= neon	RH	= round head or	ww	= wirewound
GRD	= ground(ed)	NI PL	= nickel plate		right hand	W/O	= without

Model 1611A

Replaceable Parts

Figure 6-1. Illustrated Parts Breakdown (Sheet 1 of 2)

Replaceable Parts Model 1611A

Model 1611A Replaceable Parts

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1 A2 A3 A4 A5	01611-66501 01611-66502 01611-66503 01611-66504 01611-66506		BOARD ASSEMBLY, MAIN BOARD ASSEMBLY, LOW VOLTAGE POWER SUPPLY BOARD ASSEMBLY, DISPLAY DRIVER ASSEMBLY, KEYBOARD BOARD ASSEMBLY, MICROPHOCESSUR AND KEYBOARD SCAN BOARD ASSEMBLY, RAM & DISPLAY GENERATOR	28480 28480 28480 28480 28480 28480	01611-66501 01611-66502 01611-66503 01611-66504 01611-66505
A7 A8 A9 A10	01611-66507 01611-66535		BOARD ASSEMBLY, COMPARATUR BOARD ASSEMBLY, DATA STORE & COUNTERS BOARD ASSEMBLY, PERSONALITY (SEE MANUAL SUPPLEMENT FOR OPTION INSTALLED IN YOUR INSTRUMENT) BOARD ASSEMBLY, RUM (SEE MANUAL SUPPLEMENT FOR OPTION INSTALLED IN YOUR INSTRUMENT) ASSEMBLY, PERSONALITY PANEL (SEE MANUAL SUPPLEMENT FOR OPTION INSTALLED IN YOUR INSTRUMENT)	28480 28480	01611-66535 01611-66535
412	01611-62101		ASSEMBLY, EXTERNAL PROBE	28480	01611-62101
A14 C1	01611=66515 0160=4026	1	BOARD, EXTENDER CAPACITOR-FXD .2UF +-20% 250WVDC PPR	28480 28480	01611=66515 0160=4026
CR1	1901=0768	1	DIODE-HY RECT ZOKY .6MA 300NS	83003	H617
051	1990=0524 2110-0007	1	LED-VISIBLE LUM-INT=1MCD IF=20MA-MAX	28480	1990=0524
F1 F2	2110-0007	1 1	FUSE 1.0AT 250V SLO-BLO 1.25X.25 UL IEC FUSE .5A 250V	71400	MDL-1 AGC 1/2
H1 H2 H3 H4 H5	0520-0129 2200-0103 2200-0105 2200-0111 2200-0101	2 19 5 4 1	SCREW-MACH 2-56 .312-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .25-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .312-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .5-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .188-IN-LG PAN-HD-POZI	28480 28480 28480 28480 28480 28480	0520-0129 2200-0103 2200-0105 2200-0111 2200-0101
H6 H7 H8 H9	2200-0143 2360-0113 2360-0115	5 21 7	SCREW-MACH 4-40 .375-IN-LG PAN-HD-POZI DELETED SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .212-IN-LG PAN-HD-POZI	28480 28480 28480	2200-0143 2360-0113 2360-0115
H10 H11 H12 H13 H14 H15	2360-0121 2300-0194 2510-0043 2510-0192 2680-0128 0610-0001	í 9 4 16 6 2	SCREW-MACH 6-32 .5-IN-LG PAN-HD-POZI SCREW-MACH 6-32 .312-IN-LG 100 DEG SCREW-MACH 8-32 .312-IN-LG PAN-HD-POZI SCREW-MACH 8-32 .25-IN-LG PAN-HD-POZI SCREW-MACH 10-32 .25-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 2-56-THD .062-THK	28480 28480 28480 28480 28480 28480	2360=0121 2360=0194 2510=0043 2510=0192 2680=0128 0615=0002
H16 H17 H18 H19 H20	2260=0001 2260=0009 2420-0001 2580=0004 2950=0038	1 1 4 2	NUT-HEX-DBL-CHAM 4-40-THD .094-THK NUT-HEX-A/LKWR 4-40-THD .094-THK .25-A/F NUT-HEX-DBL-CHAM 6-32-THD .094-THK NUT-HEX-DBL-CHAM 8-32-THD .125-THK NUT-SPCLY 1/2-24-THD .125-THK .688-A/F	28480 28480 28480 28480 75915	2260=0002 2260=0011 2420-0001 2580=0004 903=12
H21 H22 H23 H24 H25	2950=0043 2680=0172 1400=0090 2190=0011 2190=0016	4 2 6 4	NUT-HEX-DBL-CHAM 3/8-32-THD .094-THK SCREW-MACH 10-32 .375-IN-LG 100 DEG WASHERRUBBER 5/8" UD WASHER-LK INTL T NO10 .195-IN-ID WASHER-LK INTL T NO3/8 .377-IN-ID	73743 28480 00000 0G791 28480	2x 28200 2680-0173 080 1022 2190-0016
H26 H27 H28 H29 H30	2190=0017 2110-0467 2190=0019 2190=0037 2190=0112	4 2 6 2 2	WASHER-LK MLCL NO8 .168-IN-IO NUT-FUSE HOLDER-HEX, 1/2-28 THD, 0.688 WASHER-LK HLCL NO4 .115-IN-IO WASHER-LK INTL T NO1/2 .512-IN-ID WASHER-LK HLCL NO2 .088-IN-IO	28480 75915 28480 78189 28480	2190=0017 903-070 2190=0019 1224=08 2190=0112
H31 H32 H33 H34 H35	2190-0910 3050-0066 3050-0071 3050-0425 3050-0194	1 4 2 2	WASHER-LK NO4 .12-IN-ID .275-IN-OD STL WASHER-FL MILC NO6 .147-IN-ID WASHER-FL MILC NO8 .169-IN-ID WASHER-FL MILC NO2 .125-IN-ID WASHER-FL MILC NO2 .088-IN-IO	78189 28480 28480 28480 28480	4704-04-02-0531 3050-0066 3050-0071 3050-0425 3050-0194
H36 H37 H38 H39 H40	3050-0235 3050-0791 1400-0017 1400-0335 1400-0540	2 2 1 2 1	WASHER-FL MTLC NO4 .117-IN-ID INSULATOR-XSTR NYLON CLAMP-CA .312-DIA .375-MD NYL CABLE TIE 1.75-DIA .188-MD NYL RETAINER R-LED 0.270-IN SERRATED ID	28480 28480 71616 06383 28480	3050-0235 3050-0791 CPC-1953-5B SSC-2 1400-0540

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
H41 H42 J1 J2 J3 J4	1400-0547 2360-0123 1250-0083 1250-0083 1250-0083 1250-0083	1 4 4	CLIP-LED MTG 0,202-IN ID; 0,315-IN DIA SCREW-MACH 6:32 PAN HD POZI REC SST:300 CONNECTUR-RF BNC FEM SGL-HDLE-FR 50-DHM CUNNECTUR-RF BNC FEM SGL-HDLE-FR 50-DHM CONNECTUR-RF BNC FEM SGL-HDLE-FR 50-DHM CGNNECTUR-RF BNC FEM SGL-HDLE-FR 50-DHM	28480 28480 24931 24931 24931 24931	1400-0547 2360-0123 28JR-130-1 28JR-130-1 28JR-130-1 28JR-130-1
L1	01011-01603	1	YUKE, WITH CABLE	28480	01611-61603
MP1 MP2 MP3 MP4 MP5	5020-8805 5020-8806 5020-8835 1520-0063 5000-9940	1 1 4 1 2	FRAME, FRONT FRAME, REAR STRUT, CURNER MOUNT VIBRATION COVER, SIVE HANDLE	28480 28480 28480 70485 28480	5020=8805 5020=8806 5020=8835 080 5060=9940
MP6 MP7 MP8 MP9 MP10	5060-9991 9320-3699 5061-1933 7120-5696 01611-00202	1 1 1 1	COVER, BOTTOM CARD, INSTRUCTION COVER, TOP NAMEPLATE, 1611A PANEL, KEAR	28480 28480 28480 28480 28480 28480	5060=9991 9320-3699 5061=1933 7120=5696 01611=00202
MP11 MP12 MP13 MP14 MP15	01611-00101 01610-43101 01611-00601 01611-00602 01611-01202	1 1 1 1	DECK, MAIN GUIDE, CIRCUIT BOARD SHIELD, CRI SHIELD, CRI FLAT BRACKET, PC BOARD FLAT	28480 28480 28480 28480 28480	01611-00101 01610-43101 01611-00601 01611-00602 01611-01202
MP16 MP17 MP18 MP19 MP20	01011-04101 01011-01204 01011-20501 01011-23701 01011-00201	1 1 1 1	CGVEH, KEYBOARD BRACKET, PC HOARD, REAR HEAT SINK, MA SHAFT, SWITCH EXTENSION PANEL, KEYHOARD	28480 28480 28480 28480 28480	01611-04101 01611-01204 01611-20501 01611-23701 01611-00201
MP21 MP22 MP23A MP23B MP24 MP25 MP26 MP27 MP27	01611-24101 01830-23201 2110-0465 2110-0470 1540-0325 0340-0511 5001=0440	1 1 2 2 1 3 2	SHIELD, SAFETY COUPLER, SWITCH EXTENSION FUSEHOLDER CAP—EXTR POST; BAYONET; 20A FUSEHOLDER BODY—EXTR POST; BAYONET; 20A CASE, CRVG HANDLE INSULATOR-XSTR KAPTON TRIM, SIDE DELETED STRAP, HANDLE	28480 28480 04703 04703 28480 13103 28480	01611-24101 .01830-23201 345001-020 345003-010 1540-0325 43-77-2 5001=0440
MP29 MP30	5040-7201 5040-7202	4	FEET TRIM STRIP, TUP	28480 28480	5040-7201 5040-7202
MP31 MP32 MP33 MP34 MP35	5040-7675 0370-2989 5040-7219 5040-7220 5041-0676	1 2 2 1	PUSHRUD, SWITCH KEY CAP, OFF/LINE CAP, STAPH HANDLE, FRONT CAP, STAPH HANDLE KEAR KEYCAP, 1	28480 28480 28480 28480 28480	5040-7675 0370-2989 5040-7219 5040-7220 5041-0676
ЧР36 ЧР37 НР38 ИР39 МР40	5041-0677 5041-0678 5041-0679 5041-0680 5041-0681	1 1 1 1	KEYCAP, 2 KEYCAP, 3 KEYCAP, 4 KEYCAP, 5 KEYCAP, 6	28480 28480 28480 28480 28480	5041=0677 5041=0678 5041=0679 5041=0680 5041=0681
MP41 MP42 MP44 MP44	5041-0682 5041-0683 5041-0684 5041-0685 5041-0040	1 1 1 1	KEYCAP, 7 KEYCAP, 8 KEYCAP, 9 KEYCAP, O KEYCAP, A	28480 28480 28480 28480 28480	5041=0682 5041=0683 5041=0684 5041=0685 5041=0685
MP46 MP47 MP48 MP49 MP50	5041-0041 5041-0042 5041-0043 5041-0044 5041-0045	1 1 1 1	KEYCAP, B KEYCAP, C KEYCAP, C KEYCAP, E KEYCAP, F	28480 28480 28480 28480 28480	5041=0041 5041=0042 5041=0043 5041=0044 5041=0045
MP51 MP52 MP53 MP54 MP55	5041-0046 5041-0047 5041-0048 5041-0649 5041-0650	1 1 1 1	KEYCAP, TIME INTRVL KEYCAP, COUNT TRIGS KEYCAP, BEFORE TRIG KEYCAP, AFTER TRIG KEYCAP, STOP	28480 28480 28480 28480 28480	5041=0046 5041=0047 5041=0048 5041=0049 5041=0050
MP56 MP57 MP58 MP59 MP60	5041-0051 5041-0052 5041-0053 5041-0060 5041-0065	1 2 2 1	KEYCAP, DUN'T CARE KEYCAP, TRIGGER OCCURRENCE KEYCAP, ARROW KEYCAP, DATA BUS#, LIGHT KEYCAP, TRACE TRIGS	28480 28480 28480 28480 28480	5041-0051 5041-0052 5041-0053 5041-0060 5041-0065
MP61 MP62 MP63 MP64 MP65	5041-0073 5041-0074 5041-0075 5041-0076 5041-0088	1 1 1 2 1	KEYCAP, MNEMONIC-ABSOLUTE KEYCAP, ADRS BUS - KEYCAP, ADRS BUS - KEYCAP, ADRS BUS - KEYCAP, EXT =, LIGHT KEYCAP, DATA BUS =, DARK	28480 28480 28480 28480 28480	5041=0073 5041=0074 5041=0076 5041=0076 5041=0088
МР66 МР67 МР68 МР69 МР70	5041-0089 5041-0630 5041-0631 5041-0636 0360-0016	1 2 1 2	KEYCAP, EXT =, DARK KEYCAP, ADDRESS BUS =, LIGHT KEYCAP, TRACE KEYCAP, ADDRESS BUS =, DARK TERMINAL-LUG-SLDR 4 SCR .123/.1 ID HOLE	28480 28480 28480 28480 78452	5041=0089 5041=0630 5041=0631 5041=0636 718

Table 6-2. Replaceable Parts (Cont'd)

Reference	HP Part		Tuoie 0-2. Replaceaole 1 aris (Cont a	Mfr	
Designation	Number	Qty	Description	Code	Mfr Part Number
MP71 MP72 MP73	u360=0u53 0390=0u96 5061=1230	1 4 1	TERMINAL-LUG-SLDR 10 SCR .204/.094 ID INSULATOR-99HG-FLG NYLUN CUVER, INSTRUCTION CARD	83330 71002 28480	1410=10 65498 5061=1230
P1	1251-2357	1	CONNECTOR-AC PWR HP-9 MALE FLG-MTG	28480	1251-2357
Q1	1854-0433	1	TRANSISTOR NPN SI PD=90W FT=2MHZ	28480	1854-0433
51	3101-1720	1	SAITCH-PB DPDT 44 250VAC	28480	3101-1720
T1	9100-3878	1	TRANSFORMER-LINE	28480	9100-3878
U1 U2	1826=0369 1826=0368	1	IC-LINEAR REG +12V IC-LINEAR REG –12V	28480 28480	1826=0369 1826=0368
V1	5061-1250	1	ASSEMBLY, CRT	28480	5061-1250
*1	8120-1521	1	CABLE ASSY 18AWG 3-CNDCT GRA-JKT	28480	8120-1521
			NOTE: FOR OTHER POWER CORDS AVAILABLE, SEE SECTION II OF THIS MANUAL.		
N2 N3 N4	8120=2309 01611=61601 01611=61602	1 1 1	CABLE ASSEMBLY, HV CABLE ASSEMBLY, TRANSFORMER CABLE ASSEMBLY, CRT	28480 28480 28480	8120-2309 01611-61601 01611-61602
	<u> </u>	L			

Table 6-2. Replaceable Parts (Cont'd)

Reference	DQB
A1C1	DQB
A1C1	DQB
A1C2	DQB
A1C3	
A1C3	DOB
A1E1	
A1E2 0360-1653 TERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1653 1ERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1653 0360-1653 1ERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1653 1ERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1653 1ERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1653 0360-1653 1ERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1653 0360-1653 1ERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1653 0360-	
A1E4 0300-1653 TERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1653 TERMINAL-STUD SGL-PIN PRESS-MTG 28480 0360-1653 A1H1 0380-0059 1 SPACER-RVT-0W .25LG .152ID .2500 BRS 28480 0380-0059 A1H1 1251-4546 2 CONNECTOR 8-PIN M (2 EACH) 28480 1251-4546	
A1H1 0380-0059 1 SPACER-RVT-0W .25LG .152ID .2500 BRS 28480 0380-0059 A1P1 1251-4546 2 CONNECTOR 8-PIN M (2 EACH) 28480 1251-4546	
A1P1 1251-4546 2 CONNECTOR 8-PIN M (2 EACH) 26480 1251-4546	
A1P2 1251-4549 2 CONNECTOR 7-PIN M (2 EACH) 28480 1251-4549	
A1P3 1251-3195 1 CONNECTOR 4-PIN M PUST TYPE 27264 09-60-1041(2403-	04A)
A1P5 1251-0513 1 CONNECTOR 5-PIN M POST TYPE 27264 09-60-1051	
A1K1 0698-3180 1 RESISTOR 68 2% 2# MO TC=0+-200 11502 RG42	
A1U1 1820-1450 1 IC-DIGITAL SN74S37N TTL S GUAD 2 NAND 01295 SN74S37N A1XA2 1251-1886 2 CUNNECTOR-PC EDGE 15-CUNT/ROW 2-ROWS 71785 252-15-30-340	
A1XA3 1251-1886 CONNECTOR-PC EDGE 15-CUNT/ROW 2-ROWS 71785 252-15-30-340	
A1xA5	
A1×A8 1251-4587 CONNECTOR-PC EDGE 50-CONT/ROW 2-ROWS 28480 1251-4587	
A1 X A 1 O P 1	
A1XU1 1200-0474 SOCKET:IC 14 PIN DIP 28480 1200-0474 A2 01611-66502 1 BUARD ASSEMBLY, LOW VOLTAGE POWER SUPPLY 28480 01611-66502	
A2 01611-06502 1 BUARD ASSEMBLY, LOW VOLTAGE POWER SUPPLY 28480 01611-66502 A2C1 0160-3508 9 CAPACITUR-FXD 1UF +60-20% 50WVDC CER 28480 0160-3508	
A2C2 0160-3508 CAPACITUR-FXD 1UF +80-20% 50WVDC CER 28480 0160-3508 A2C3 0160-3508 CAPACITUR-FXD 1UF +80-20% 50WVDC CER 28480 0160-3508	
A2C4 0160-3508	
A2C6 0160-3508 CAPACITOR-FXD 1UF +80-20% 50WVDC CER 28480 0160-3508	
A2C7	
A2C9 0160-1714 1 CAPACITOR-FXD 330UF+-10% 6VDC TA 56289 150D337X900682 A2C10 0160-0137 1 CAPACITUR-FXD 100UF+-20% 10VDC TA 56289 150D107X0010R2	
A2C11 0160-2055 CAPACITOR=FXD .01UF +80=20% 100#VDC CER 28480 0160-2055 A2C12 0160-2055 CAPACITOR=FXD .01UF +80=20% 100#VDC CER 28480 0160-2055	
A2C13 0160-2204 2 CAPACITOR-FXD 100PF +-5% 300WVDC MICA 28480 0160-2204	
A2CR1	
A2CP3	
A2CP6 1901-0028 D100E-PWR RECT 400V 750MA DU-29 28480 1901-0028	
A2CR7 1901-0662 DIODE-PWR RECT 100V 6A 28480 1901-0662 A2CR8 1901-0662 DIODE-PWR RECT 100V 6A 28480 1901-0662	
A2CR9 1901-0662 DIODE-PWR RECT 100V 6A 28480 1901-0662 A2CR10 28480 1901-0662	
A2CR11 1901-0511 1 DIODE-PHR RECT 143889R 50V 12A 200NS 12954 1N3889R A2CR12 1901-0028 DIODE-PHR RECT 400V 750MA DO-29 28480 1901-0028	
A2F1 2110-0003 2 FUSE 3A 250V FAST-BLO 1,25%,25 UL IEC 75915 312003, A2F2 2110-0003 FUSE 3A 250V FAST-BLO 1,25%,25 UL IEC 75915 312003, A2F3 2110-0014 1 FUSE 4A 250V SLO-BLO 1.25%,25 IEC 75915 313004	
A2H1 2360-0117 2 SCREN-MACH 6-32 375-IN-LG PAN-HD-POZI 28480 2360-0117 A2H2 2420-0002 2 NUT-HEX-DBL-CHAM 6-32-THD 109-THK 28480 2420-0003	
A2H2	
A2H5 2190-0034 1 WASHER-LK HLCL NO10 ,194-IN-ID 28480 2190-0034	
A2H6 3050-0066 3 WASHER-FL MTLC NO6 .147-IN-ID 28480 3050-0066 A2H7 3050-0027 1 WASHER-FL MTLC NO10 .203-IN-ID 28480 3050-0027	

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
AZL1 AZLZ	9100-3465 9100=3829	1 1	FILTER-CHOKE 1MH COIL 10H 10% .688DX1.188LG SRF=20MHZ	28480 28480	9100-3465 9100 -3 829
A2MP1 A2MP2	2110-0269 1205-0310	9	FUSEHOLDER-CLIP TYPE "25FUSE. HEAT SINK SGL TO-3-PKG	28480 28480	2110=0269 1205=0310
105V 105V	1853-0062 1864-0082	1 1	TRANSISTOR PNP SI PD=300MW FT=200MHZ Thyristor=scr 2n4441 vmrm=50	28480 04713	1853-0062 2N4441
A2K1 A2R2 A2R3 A2K4 A2R5	0698-4313 0698-4313 0698-4313 0757-0488 0757-0428	3 4 1	RESISTOR 2K 1% .5W F TC=-50/+0 PESISTOR 2K 1% .5W F TC=-50/+0 RESISTOR 2K 1% .5W F TC=-50/+0 RESISTOR 90% 1% .5W F TC=0+-100 RESISTOR 1.62K 1% .125W F TC=0+-100	91637 91637 91637 24546 24546	MFF-1/2-10 MFF-1/2-10 MFF-1/2-10 NA4 C4-1/8-T0-1621-F
A2R6 A2R7 A2R8 A2R9 A2R10	2100-3352 0757-0280 0757-0438 0757-0419 0757-0809	1 10 6 1	RESISTOR-TRMR 1K 10% C SIDE-ADJ 1-TRN RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 681 1% .125W F TC=0+-100 RESISTOR 332 1% .5W F TC=0+-100	73138 24546 24546 24546 19701	72-143-0 C4-1/8-70-1001-F C4-1/8-70-5111-F C4-1/8-70-681R-F MF7C1/2-T0-332R-F
A2R11 A2R12 A2R13 A2R14 A2R15	0698-3430 0757-0346 0757-0200 0757-0395 0811-2771	1 2 1 2 3	RESISTOR 21.5 1% .125w F TC=0+-100 RESISTOR 10 1% .125w F TC=0+-100 RESISTOR 5.02K 1% .125w F TC=0+-100 RESISTOR 56.2 1% .125w F TC=0+-100 RESISTOR .18 5% 3W PW TC=0+-800	03888 24546 24546 24546 91637	PME55=1/8=T0=21R5=F C4=1/8=T0=10R0=F C4=1/8=T0=5621=F C4=1/8=T0=56R2=F RS-2B
A2H16 A2H17 A2H18 A2H19	0811=1758 0757=0346 0757=0395 0811-2771		RESISTOR .24 5% 2M PW TC=0+=800 RESISTOR 10 1% .125W F TC=0+=100 RESISTOR 56.2 1% .125W F TC=0+=100 RESISTOR .18 5% 3W PW TC=0+=800	75042 24546 24546 91637	8*H2-24/100-J C4-1/8-T0-10R0-F C4-1/8-T0-56R2-F RS-2B
A2U1	1820-0196	1	IC UA 723C V RGLTR	07263	723HC
AZVR1	1902=3104	1	DIODE-ZNR 5.62V 5% DO-7 PD=.4w TC=+.016%	15818	CD 35634
A2W2	01611=61613 01607=61613	1	CABLE, VOLTAGE REGULATUR (NOT SUPPLIED */A2, ORDER SEPARATELY) CABLE, VOLTAGE REGULATOR	28480 28480	01611=61613
42%3	01611-61614	1	(NOT SUPPLIED W/A2, ORDER SEPARATELY) CABLE, VOLTAGE REGULATUR (NOT SUPPLIED W/A2, ORDER SEPARATELY)	28480	01611-61614
A3	01611-66503	ı	BOARD ASSEMBLY, DISPLAY DRIVER	28480	01611-66503
A3C1 A3C2 A3C3 A3C4 A3C5	0160-0161 0140-0199 0180-0097 0180-0106 0180-0097	1 3 7 3	CAPACITOR-FXD .010F +-10% 200mVDC POLYE CAPACITOR-FXD 240PF +-5% 300mVDC MICA CAPACITOR-FXD 470F+-10% 35VDC TA CAPACITOR-FXD 600F+-20% 6VDC TA CAPACITOR-FXD 470F+-10% 35VDC TA	56289 72136 56289 56289 56289	292P10392 DM15F241J0300WV1CR 1500476X903582 1500606X000662 1500476X903582
A3C6 A3C7 A3C8 A3C9 A3C10	0160-4455 0160-3127 0160-3830 0180-0230 0180-0230	1 2 1 4	CAPACITOR-FXD 10F +-10% 50WVDC MET POLYC CAPACITOR-FXD .022UF +-5% 400WVDC POLYE CAPACITOR-FXD 5UF +-10% 50WVDC MET POLYC CAPACITOR-FXD 1UF++20% 50VVDC TA CAPACITOR-FXD 1UF++20% 50VVDC TA	28480 84411 28480 56289 56289	0160-4455 663UW22354W2 0160-3830 1500105X0050A2 1500105X0050A2
A3C11 A3C12 A3C13 A3C14 A3C15	0180-0230 0160-3508 0180-1701 0160-3762 0160-3762	1 2	CAPACITOR-FXD 1UF+-20% 50VDC TA CAPACITOR-FXD 1UF +80-20% 50WVDC CER CAPACITOR-FXD 6.8UF+-20% 5VDC TA CAPACITOR-FXD 6.68UF +-5% 50WVDC MET CAPACITOR-FXD 6.68UF +-5% 50WVDC MET	56289 28480 56289 28480 28480	150D105x0050A2 0160-3508 150D685x0006A2 0160-3762 0160-3762
A3C16 A3C17 A3C18 A3C19 A3C20	0180-0097 0180-0097 0180-0097 0160-3127 0180-2667	1	CAPACITUR=FXD 47UF+=10% 35VDC TA CAPACITUR=FXD 47UF+=10% 35VDC TA CAPACITUR=FXD 47UF+=10% 35VDC TA CAPACITUR=FXD .022UF +=5% 400WVDC POLYE CAPACITUR=FXD 150UF+=10% 20VDC TA	56289 56289 56289 84411 56289	1500476x903582 1500476x903582 1500476x903582 6630w22354w2 1500157x902082
A3C21 A3C22 A3C23 A3C24 A3C25	0180-0230 0160-2055 0160-3508 0180-0106 0180-0097		CAPACITOR=FXD 1UF+=20% 50VDC TA CAPACITOR=FXD .01UF +80=20% 100WVDC CER CAPACITOR=FXD 1UF +80=20% 50WVDC CER CAPACITOR=FXD 60UF+=20% 6VDC TA CAPACITOR=FXD 47UF+=10% 35VDC TA	56289 28480 28480 56289 56289	150D105x0050A2 0160-2055 0160-3508 1500606x0006B2 1500476x903582
A3C26 A3C27 A3C28 A3C29 A3C30	0180-0097 0160-4449 0160-3665 0160-3665 0160-3665	1 6	CAPACITOR-FXD 47UF+-10% 35VDC TA CAPACITOR-FXD 8200PF +-10% 400WVDC POLYE CAPACITUR-FXD .01UF +80-20% 500WVDC CER CAPACITUR-FXD .01UF +80-20% 500WVDC CER CAPACITOR-FXD .01UF +80-20% 500WVDC CER	56289 28480 28480 28480 28480	1500476x903582 0160-4449 0160-3665 0160-3665 0160-3665
A3C31 A3C32 A3C33 A3C34 A3C35	0160-3665 0160-3665 0160-3665 0160-2204 0180-0196	1	CAPACITOR-FXD .01UF +80-20% 500hVDC CER CAPACITOR-FXD .01UF +80-20% 500hVDC CER CAPACITUR-FXD .01UF +80-20% 500hVDC CER CAPACITOR-FXD 100PF +-5% 300WVDC MICA CAPACITUR-FXD 60UF+-20% 6VDC TA	28480 28480 28480 72136 56289	0160=3665 0160=3665 0160=3665 RDM15F910J3C 1500606X000682
A3C36 A3C37	0180-0098 0160-3508	1	CAPACITOR-FXD 100UF+-20% 20VDC TA CAPACITUR-FXD 1UF +80-20% 50%VDC CER	562 89 28480	150D107x002082 0160-3508
		L			

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3CR1 A3CR2 A3CR3 A3CR4 A3CR5	1901-0767 1901-0040 1901-0029 1901-0767 1901-0029	3 2 5	DIODE-PWR RECT 400V 6A DIODE-SMITCHING 30V 50MA 2NS DU-35 DIODE-PWR RECT 600V 750MA 0U-29 DIODE-PWR RECT 400V 6A DIODE-PWR RECT 600V 75UMA DU-29	04713 28480 28480 04713 28480	7 754 1901-0040 1901-0029 7 754 1901-0029
A3CR6 A3CR7 A3CR8 A3CR9	1901-0029 1901-0767 1901-0029 1901-0029		DIODE-PWR RECT 600V 750MA D0-29 DIODE-PWR RECT 400V 6A DIODE-PWR RECT 600V 750MA D0-29 DIODE-PWR RECT 600V 750MA D0-29	28480 04713 26480 28480	1901-0029 7 754 1901-0029 1901-0029
A 3 H 1 A 3 H 2 A 3 H 3 A 3 H 4 A 3 H 5	2360-0201 2420-0003 2260-0001 2190-0018 2190-0019	6 7 3	SCREW-MACH 6-32 .5-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 6-32-IHD .094-IHK NUT-HEX-DBL-CHAM 4-40-IHD .094-IHK WASHER-LK HLCL NO6 .141-IN-ID WASHER-LK HLCL NO4 .115-IN-ID	28480 28480 28480 28480 28480	2360=0201 2420=0004 2260=0002 2190=0018 2190=0019
A3H6 A3H7	3050=0016 3050=0235	10	WASHER-FL MTLC NO6 .147-IN-ID WASHER-FL MTLC NO4 .117-IN-ID	28480 28480	3050-0016 3050-0235
A3L1 A3L2 A3L3 A3L4 A3L5	9100-3930 9100-3677 9100-3931 01611-86001 9140-0111	1 1 1 1	INDUCTOR-2.5 MH CHOKE-INDUCTOR INDUCTOR-700 UH CUIL, FXD COIL-MLO 3,3UH 10% Q=33 ,155DX,375LG	28480 28480 28480 28480 24226	9100-3930 9100-3877 9100-3931 01611-86001 15/331
A3MP1	1205-0310	,	HEAT SINK SGL TO-3-PKG	28480	1205=0310
A 3 G 1 A 3 G 2 A 3 G 3 A 3 G 4 A 3 G 5	1854-0751 1854-0558 1853-0334 1854-0215 1854-0330	3 1 1 5 1	TRANSISTOR-245840 TRANSISTOR NPW SI DARL PD=70W FT=1MHZ TRANSISTOR PNP SI DARL PD=70W FT=1MHZ TRANSISTUR NPW SI PD=350Mm FT=300MHZ TRANSISTUR NPW SI PD=21W FT=10MHZ	28480 28480 28480 04713 28480	1854-0751 1854-0558 1853-0334 SPS 3611 1854-0330
A306 A3w7 A308 A309 A3010	1854-0751 1854-0215 1853-0036 1854-0751 1854-0215	5	TRANSISTOR-2N5840 TRANSISTOR NPN SI PD=350MW FT=300MMZ TRANSISTOR PNP SI PD=310MW FT=250MHZ TRANSISTOR-2N5840 TRANSISTOR NPN SI PD=350MW FT=350MHZ	28480 04713 28480 28480 04713	1854-0751 SPS 3611 1853-0036 1854-0751 SPS 3611
A3011 A3612 A3013	1854-0215 1854-0215 1853-0036		TRANSISTOR NPN SI PD#350MW FT#300MHZ Transistor npn si pd#350mm ft#300mHZ Transistor Pnp si pd#310mm ft#250mHZ	04713 04713 26460	SPS 3611 SPS 3611 1853-0036
A3R1 A3R2 A3R3 A3R4 A3R5	0757-0812 0757-0442 0811-1878 0698-3605 0757-0401	1 1 1 1 6	RESISTOR 432 1% .5w F TC=0+=100 RESISTOR 10K 1% ,125w F TC=0+=100 RESISTOW 7.5 5% 25w Pn TC=0+=260 RESISTOK 15 5% 20w M0 TC=0+=200 RESISTOR 100 1% ,125w F TC=0+=100	19701 24546 91637 11502 24546	MF7C1/2=T0=432R=F C4=1/8=T0=1002=F HL=25=02Z=4 RG42 C4=1/8=T0=101=F
A3K6 A3R7 A3R8 A3R9 A3R10	2100-3576 0757-0280 0757-0457 0757-0457 0757-0457	1	PESISTOR-VAR CONTROL CC 50 10% LIN PESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 47.5K 1% .125W F TC=0+-100 RESISTOR 47.5K 1% .125W F TC=0+-100 RESISTOR 47.5K 1% .125W F TC=0+-100	01121 24546 24546 24546 24546	73M4G0248500U C4-1/8-T0-1001-F C4-1/8-T0-4752-F C4-1/8-T0-4752-F C4-1/8-T0-4752-F
A3R11 A3R12 A3R13 A3R14 A3R15	0757-0457 0757-0283 0757-0283 2100-3252 0757-0283	4	RESISTOR 47.5k 1% .125w F TC=0+-100 RESISTOR 2K 1% .125w F TC=0+-100 RESISTOR 2K 1% .125w F TC=0+-100 RESISTOR-TRMR 5K 10% C TUP-ADJ 1-TRN RESISTOR 2K 1% .125w F TC=0+-100	24546 24546 24546 73138 24546	C4-1/8-T0-4752-F C4-1/8-T0-2001-F C4-1/8-T0-2001-F 72-107-0 C4-1/8-T0-2001-F
A3K16 A3K17 A3K18 A3K19 A3K20	0757-0437 0757-0488 2100-3213 0757-0470 0757-0394	3 1 2 3	RESISTOR 4,75K 1% ,125W F TC#0+-100 RESISTOR 909K 1% ,125W F TC#0+-100 RESISTOR-TRMR 200K 10% C TOP-ADJ 1-TRN RESISTOR 162K 1% ,125W F TC#0+-100 RESISTOR 51:1 1% ,125W F TC#0+-100	24546 24546 73138 24546 24546	C4-1/8-T0-4751-F NA4 72-111-0 C4-1/8-T0-1623-F C4-1/8-T0-51R1-F
A3R21 A3R22 A3R23 A3R24 A3R25	0757-0437 0757-0470 2100-3252 0698-5437 0698-5437	2	RESISTOR 4.75K 1X .125W F TC=0+-100 RESISTOR 162K 1X .125W F TC=0+-100 RESISTOP-TRMR 5K 10% C TOP-ADJ 1-TRN RESISTOR 12K .1X .125W F TC=0+-50 PESISTOR 12K .1X .125W F TC=0+-50	24546 24546 73138 24546 24546	C4-1/8-T0-4751-F C4-1/8-T0-1623-F 72-107-0 NC55 NC55
A3K26 A3R27 A3K28 A3R29 A3R30	0698-5420 0698-5420 0757-0407 0757-0437 0757-0283	2 1	RESISTUR 3.874k .1% .125w F TC=0+-50 RESISTOR 3.874k .1% .125w F TC=0+-50 RESISTOR 200 1% .125w F TC=0+-100 RESISTOR 4.75k 1% .125w F TC=0+-100 RESISTOR 2K 1% .125w F TC=0+-100	24546 24546 24546 24546 24546	NC55 NC55 C4-1/8-T0-201-F C4-1/8-T0-4751-F C4-1/8-T0-2001-F
A3R31 A3H32 A3R33 A3R34 A3R35	0757-0401 0811-1071 0757-0804 0757-0401 0757-0457	1 1	RESISTOR 100 1% .125W F TC=0+-100 PESISTOR 2.7 5% 24 PW TC=0+-400 RESISTOR 200 1% .5W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 47.5K 1% .125W F TC=0+-100	24546 75042 19701 24546 24546	C4-1/8-T0-101-F BWH2-2R7-J MF7C-1/2-T0-201-F C4-1/8-T0-101-F C4-1/8-T0-4752-F
A3R36 A3R37 A3R38 A3R39 A3R40	0757-0457 0757-0457 0757-0457 0757-0280 2100-3252		RESISTOR 47.5K 1% .125W F TC=0+-100 RESISTOR 47.5K 1% .125W F TC=0+-100 RESISTOR 47.5K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR-TRMR 5K 10% C TOP=ADJ 1-TRN	24546 24546 24546 24546 73138	C4-1/8-T0-4752-F C4-1/8-T0-4752-F C4-1/8-T0-4752-F C4-1/8-T0-1001-F 72-107-0

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A 3 K 4 1 A 3 K 4 2 A 3 K 4 3 A 3 K 4 4 A 3 R 4 5	0757=0280 0757=0280 0811=1678 0684=1041 2100=0569	1 2 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 10 5% 2W PM TC=0+-400 RESISTOR 100K 10% .25W FC TC==400/+800 RESISTOR-TRMR 1M 20% C TUP-ADJ 1-TRN	24546 24546 75042 01121 73138	C4-1/8-T0-1001-F C4-1/8-T0-1001-F BWH2-10R-J CB1041 72-116-0
A3R46 A3R47 A3R48 A3R49 A3R50	0684-1041 0757-0488 0757-0488 0757-0457 0757-0401		RESISTOR 100K 10% .25W FC TC==400/+800 RESISTOR 909K 1% .125W F TC=0+-100 RESISTOR 909K 1% .125W F TC=0+-100 RESISTOR 47.5K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100	01121 24546 24546 24546 24546	CB1041 NA4 NA4 C4-1/8-T0-4752-F C4-1/8-T0-101-F
A3R51 A3R52 A3R53 A3R54 A3R55	0757-0159 0757-0394 0757-0394 0698-0090 0757-0412	2 1 1	RESISTOR 1K 1% .5W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 51.1 1% .125W F TC=0+=100 RESISTOR 464 1% .5W F TC=0+=100 RESISTOR 365 1% .125W F TC=0+=100	19701 24546 24546 91637 24546	MF7C1/2-T0-1R0-F C4-1/8-T0-51R1-F C4-1/8-T0-51R1-F MFF-1/2-10 C4-1/8-T0-365R-F
A3R56 A3R57 A3R58 A3R59 A3R60	0757-0284 0757-0469 0757-0453 0757-0401 2100-3214	1 1 1	RESISTOR 150 1% .125W F TC=0+-100 RESISTOR 150K 1% .125W F TC=0+-100 RESISTOK 30.1K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR-TAMP 100K 10% C TOP-ADJ 1-TRN	24546 24546 24546 24546 73138	C4-1/8-T0-151-F C4-1/8-T0-1503-F C4-1/8-T0-3012-F C4-1/8-T0-101-F 72-112-0
A3R61 A3R62	2100+3252 0757+0159		RESISTOR-TRMR 5K 10% C TOP-ADJ 1-TRN RESISTOR 1K 1% .5W F TC=0+-100	73138 19701	72-107-0 MF7C1/2-T0-1R0-F
A3T1 A3T2 A3TP1 A3TP2 A3TP3 A3TP4 A3TP4	5061-1228 9100-3927 0360-0535 0360-0535 0360-0535 0360-0535	1 1 45	TRANSFORMER TRANSFORMER: FLYBACK TERMINAL, TEST POINT	28480 28480 46819 46819 46819 46819	5061=1228 9100-3927 DBD OBD OBD OBD OBD
A3TP6 A3TP7 A3TP8 A3TP9 A3TP10	0360-0535 0360-0535 0360-0535 0360-0535 0360-0535		TERMINAL, TEST POINT	4G819 4G819 4G819 4G819 4G819	08D 08D 08D 08D 08D
A3TP11 A3TP12	0360-0535 0360-0535		TERMINAL, TEST POINT TERMINAL, TEST POINT	4G819 4G819	08D 08D
A3U1 A3U2 A3U3 A3U4 A3U5	1826-0254 1826-0254 1826-0254 1826-0254 1820-1422	4	IC MC 17419C OP AMP IC MC 17418C OP AMP IC MC 17418C OP AMP IC MC 17418C OP AMP IC-DIGITAL SN74L8122N TTL LS	04713 04713 04713 04713 04713	MC1741SCP1 MC1741SCP1 MC1741SCP1 MC1741SCP1 SN74LS122N
A 3 U 6	1820-1796	1	IC-DIGITAL 3611 TTL DUAL 2	27014	D83611N
A3VR1 A3VR2	1902-0041 1902-0593	2	DIODE-ZNR 5.11V 5% DO-7 PD=.4w TC==.009% DIODE-ZNR-43.2V 10%	15818 04713	CD 35622 SZ11213-322
A4	01611-66504	1	ASSEMBLY, KEYBOARD	28480	01611-66504
A4C1 A4C2 A4C3	0180=0228 0160-2055 0160=0158	1	CAPACITOR-FXD 22UF++10% 15VDC TA CAPACITOR-FXD .01UF +80-20% 100W4DC CER CAPACITOR-FXD 5600PF +-10% 200WVDC POLYE	56289 28480 56289	150D226X901582 0160-2055 292P56292
A4H1	2360=0113	55	SCREW-MACH 6-32 .25-IN-LG PAN-HD-POZI	28480	2360-0113
A4MP1	01611-04701	1	SUPPORT, KEYBOARD	28480	01611-04701
A4R1 A4R2	0757-0416 0684-2711	1 1	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 270 10% .25W FC TC=-400/+600	24546 01121	C4-1/8-T0-511R-F C82711
A451- A4548	3101-2137	48	SWITCH-PB SPST NO	28480	3101-2137
A4U1 A4U2 A4U3 A4U4 A4U5	1820-1418 1820-0535 1820-0535 1820-0535 1820-0535	4	IC-DIGITAL SN74LS42N TTL LS 4 BCD-TO-DEC IC-DIGITAL SN75451BP TTL DUAL 2 AND IC-DIGITAL SN75451BP TTL DUAL 2 AND IC-DIGITAL SN75451BP TTL DUAL 2 AND IC-DIGITAL SN75451BP TTL DUAL 2 AND	01295 01295 01295 01295 01295	SN74L342N SN754518P SN754518P SN754518P SN754518P
A4n1	01611-61604	1	CABLE ASSEMBLY, KEYBOARD	28480	01611-61604
A5	01611=66505	1	BOARD ASSEMBLY, MICROPHOCESSOR AND KEYBOARD SCAN	28480	01611=66505
A5C1 A5C2 A5C3 A5C4 A5C5	0140-0198 0160-2150 0180-0229 0180-0155 0180-1746	1 1 2 1	CAPACITOR-FXD 200PF +-5% 300WVDC MICA CAPACITOR-FXD 33PF +-5% 300WVDC MICA CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD 2.2UF+-20% 20VDC TA CAPACITOR-FXD 15UF +80-20% 100WVDC CER	72136 28480 56289 56289 28480	OM15F201J0300WY1CR 0160-2150 1500336X9010B2 1500225X0020A2 0180-1746

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A5C6 A5C7 A5C8 A5C9 A5C10	0160-2055 0160-2055 0160-2055 0180-0229 0160-3451	1	CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR=FXD .01UF +80-20% 100*VDC CER CAPACITOR=FXD .01UF +80-20% 100*VDC CER CAPACITOR=FXD 33UF+=10% 10V0C TA CAPACITUR=FXD .01UF +80-20% 100*VDC CER	28480 28480 28480 56289 28480	0160-2055 0160-2055 0160-2055 1500336x901082 0160-3451
A5R1 A5R2 A5R3 A5R4 A5R5	0757-0427 0761-0054 0761-0054 0757-0280 0684-3311	5 5	RESISTOR 1.5K 1% .125W F TC=0+-100 RESISTOR 330 5% 1W MO TC=0+-200 RESISTOR 330 5% 1W MO TC=0+-200 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 330 10% .25W FC TC=-400/+600	24546 11502 11502 24546 01121	C4-1/8-T0-1501-F RG32 RG32 C4-1/8-T0-1001-F CB3311
A5R6 A5R7 A5R8 A5R9 A5R10	0757-0279 0698-3154 0757-0280 0757-0429 0757-0280	1 1 4	RESISTOR 3.16k 1% .125w F TC=0+-100 RESISTOR 4,22k 1% .125w F TC=0+-100 RESISTOR 1k 1% .125w F TC=0+-100 RESISTOR 1,82k 1% .125w F TC=0+-100 RESISTOR 1k 1% .125w F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-3161-F C4-1/8-T0-4221-F C4-1/8-T0-1001-F C4-1/8-T0-1821-F C4-1/8-T0-1001-F
ASR11 ASR12 ASR13 ASR14 ASR15	0757-0280 0757-0429 0698-0084 0757-0427 0757-0420	1 1	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1.82K 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 1.5K 1% .125W F TC=0+-100 RESISTOR 1.5K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1821-F C4-1/8-T0-2151-F C4-1/8-T0-2501-F C4-1/8-T0-751-F
ASTP1 ASTP2 ASTP3 ASTP4 ASTP5	0360-0535 0360-0535 0360-0535 0360-0535 0360-0535		TERMINAL, TEST POINT	4G819 4G819 4G819 4G819 4G819	080 08D 08D 08D 08D
ASTP6 ASTP7 ASTP8 ASTP9	0360-0535 0360-0535 0360-0535 0360-0535		TERMINAL, TEST POINT TERMINAL, TEST POINT TERMINAL, TEST POINT TERMINAL, TEST POINT	4G819 4G819 4G819 4G819	080 080 080 080
A5U1 A5U2 A5U3 A5U4 A5U5	1820-1112 1820-1201 1820-1199 1820-0471 1820-1217	3 4 2 1 1	IC-DIGITAL SN74LS74N TTL LS DUAL IC-DIGITAL SN74LS08N TTL LS QUAD 2 AND IC-DIGITAL SN74LS04N TTL LS MEX 1 IC-DIGITAL SN74LS04N TTL LS MEX 1 IC-DIGITAL SN74U6N TTL HEX 1 IC-DIGITAL SN74LS151N TTL LS 8	01295 01295 01295 01295 01295	SN74LS74N SN74LS08N SN74LS08N SN7406N SN74LS151N
A5U6 A5U7 A5U8 A5U9 A5U10	1820-1422 1820-1464 1820-1198 1820-1198 1820-1201	5	IC-DIGITAL SN74LS122N TTL LS IC-DIGITAL SN74393N TTL DUAL BIN IC-DIGITAL SN74LS03N TTL LS GUAD 2 NAND IC-DIGITAL SN74LS03N TTL LS GUAD 2 NAND IC-DIGITAL SN74LS03N TTL LS GUAD 2 AND	01295 01295 01295 01295 01295	SN74L3122N SN74393N SN74L903N SN74L903N SN74L908N
A5U11 A5U12 A5U13 A5U14 A5U15	1820-1783 1820-1491 1820-1207 1820-1425 1821-0001	1 2 1 2	IC-DIGITAL 8080 NMOS IC-DIGITAL SN74LS367N TTL LS MEX 1 IC-DIGITAL SN74LS30N TTL LS MAND IC-DIGITAL SN74LS32N TTL LS QUAD 2 NAND TRANSISTOR ARRAY DIP	34649 01295 01295 01295 02735	8080AP 9n7al3367n 9n7al336n 9n7al3132n CA3046
A5U16 A5U17 A5U18 A5U19 A5U20	1821-0001 1820-1282 1820-1439 1820-1439 1820-1201	1 8	THANSISTOR ARRAY DIP IC-DIGITAL SN74LS109N TTL LS DUAL IC-DIGITAL SN74LS25SN TTL LS 2 IC-DIGITAL SN74LS25SN TTL LS 2 IC-DIGITAL SN74LS25SN TTL LS QUAD 2 AND	02735 01295 01295 01295 01295	CA3046 SN74L3109N SN74L3258N SN74L3258N SN74L3258N
A5U21 A5U22 A5U23 A5U24 A5U25	1820-1491 1820-1196 1820-1429 1810-0283 1810-0049	5 2 1	IC-DIGITAL SN74LS367N TTL LS MEX 1 IC-DIGITAL SN74LS174N TTL LS MEX IC-DIGITAL SN74LS160N TTL LS DECD NETHORK-RES 16-PIN-DIP .1-PIN-SPC6 270 NETWORK-RES 12-PIN-SIP .15-PIN-SPC6 6.8K	01295 01295 01295 28480 28480	SN74LS367N SN74LS174N SN74LS160N 1810-0283 1810-0049
A5U26 A5U27 A5U28	1810-0049 1810-0163 1810-0121	1 1	NETWORK-RES 12-PIN-SIP .15-PIN-SPCG 6.8K NETWORK-RES 9-PIN-SIP .15-PIN-SPCG 200 NETWORK-RES 9-PIN-SIP .15-PIN-SPCG 1K	28480 28480 28480	1810-0049 1810-0163 1810-0121
ASVR1	1902-3092	1	DIODE-ZNR 4.99V 2X DO-7 PD=.4W TC=012X	04713	8Z 10939-96
A5XU11	1200-0624	1	SOCKET-IC 40 PIN DIP	28480	1200-0624
A5XY1	1200-0761	1	SOCKET-XTAL 2-CONT HC-6/U DIP-BLDR	91506	8000-AG7
45Y1	0410-1003	1	CRYSTAL-10-MHZ	28480	0410-1003
A6	01611-66506	1	BOARD ASSEMBLY, RAM & DISPLAY FORMAT Generator	28480	01611-66506
A6C1 A6C2 A6C3 A6C4 A6C5	0160-2306 0160-2306 0140-0197 0180-0228 0160-2055	1	CAPACITOR-FXD 27PF +-5% 300WVDC MICA CAPACITOR-FXD 27PF +-5% 300WVDC MICA CAPACITOR-FXD 180PF +-5% 300WVDC MICA CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD .01UF +80-20% 100WVDC CER	28480 28480 72136 56289 28480	0160=2306 0160=2306 DM15F181J0300mV1CR 1500226X901582 O160-2055
A6C6 A6C7 A6C8 A6C9 A6C10	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055		CAPACITOR-FXD .01UF +80-20% 100WYDC CER CAPACITOR-FXD .01UF +80-20% 100WYDC CER CAPACITOR-FXD .01UF +80-20% 100WYDC CER CAPACITUR-FXD .01UF +80-20% 100WYDC CER CAPACITOR-FXD .01UF +80-20% 100WYDC CER	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A6C11 A6C12 A6C13 A6C14 A6C15	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055		CAPACITOR-FXD .01UF +80-20% 100mVDC CER CAPACITOR-FXD .01UF +80-20% 100mVDC CER CAPACITOR-FXD .01UF +80-20% 100mVDC CER CAPACITOR-FXD .01UF +80-20% 100mVDC CER CAPACITOR-FXD .01UF +80-20% 100mVDC CER	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A6C16	0160-2055		CAPACITUR-FXD .01UF +80-20% 100WVDC CER	28480	0160-2055
A6#1 A6#2 A6#3 A6#4 A6#5	0757-0430 0757-0430 0757-0391 0757-0430 0757-0280	3 1	RESISTOR 2,21K 1% .125W F TC=0++100 RESISTOR 2,21K 1% .125W F TC=0+-100 RESISTOR 39.2 1% .125W F TC=0+-100 RESISTOR 2,21K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-2211-F C4-1/8-T0-2211-F C4-1/8-T0-39R2-F C4-1/8-T0-2211-F C4-1/8-T0-1001-F
A6R6 A6K7	0757=0409 0757=1090	1 1	RESISTOR 274 1% .125W F TC=0+=100 RESISTOR 261 1% .5W F TC=0+=100	24546 19701	C4-1/8-T0-274R-F MF7C1/2-T0-261R-F
A6TP1 A6TP2 A6TP3 A6TP4 A6TP5	0360-0535 0360-0535 0360-0535 0360-0535 0360-0535		TERMINAL, TEST POINT	4G819 4G819 4G819 4G819 4G819	OBD OBD OBD OBD OBD
A6TP6 A6TP7 A6TP8 A6TP9 A6TP10	0360-0535 0360-0535 0360-0535 0360-0535 0360-0535		TERMINAL, TEST POINT	4G819 4G819 4G819 4G819 4G819	080 080 080 080 080 080
A6U1 A6U2 A6U3 A6U4 A6U5	1820-1196 1820-0683 1820-1285 1820-1196 1820-1430	1 3 11	IC-DIGITAL 9N74L9174N ITL L9 HEX IC-DIGITAL 9N74S04N TTL 5 HEX 1 IC-DIGITAL 9N74L954N TTL L5 4 AND-OR-INV IC-DIGITAL 9N74L9174N TTL L5 HEX IC-DIGITAL 9N74L9174N TTL L5 BIN	01295 01295 01295 01295 01295	8N74L8174N 8N74804N 8N74L854H 8N74L8174N 8N74L8174N
A6U6 A6U7 A6U8 A6U9 A6U10	1820-1429 1820-1430 1820-1430 1820-1202 1820-1202	5	IC-DIGITAL SN74LS160N TTL LS DECD IC-DIGITAL SN74LS161N TTL LS BIN IC-DIGITAL SN74LS161N TTL LS BIN IC-DIGITAL SN74LS16N TTL LS TPL 3 NAND IC-DIGITAL SN74LS10N TTL LS TPL 3 NAND IC-DIGITAL SN74LS10N TTL LS TPL 3 NAND	01295 01295 01295 01295 01295	\$N74L\$160N \$N74L\$161N \$N74L\$161N \$N74L\$16N \$N74L\$10N \$N74L\$10N
A6U11 A6U12 A6U13 A6U14 A6U15	1820-1430 1820-1430 1818-0237 1820-1042 1818-0348	1 1 8	IC-DIGITAL SN74LS161N TTL LS BIN IC-DIGITAL SN74LS161N TTL LS BIN IC 2513 2-5K ROM CHAR GEN MOS IC-DIGITAL SN74165N TTL R-S PRL-IN IC 9102 1K RAM NMOS	01295 01295 18324 01295 34335	9N74L9161N 9N74L9161N 2513 9N74165N AM9102DPC
A6U16 A6U17 A6U18 A6U19 A6U20	1818-0348 1818-0348 1818-0348 1818-0348 1818-0348		IC 9102 1K RAM NMOS IC 9102 1K RAM NMOS	34335 34335 34335 34335 34335	AM9102DPC AM9102DPC AM9102DPC AM9102DPC AM9102DPC
A6U21 A6U22 A6U23 A6U24 A6U25	1818-0348 1818-0348 1820=1202 1820=1196 1820=1196		IC 9102 1K RAM NMUS IC 9102 1K RAM NMOS IC-DIGITAL SN7ALS110N TIL LS TPL 3 NAND IC-DIGITAL SN7ALS174N TTL LS HEX IC-DIGITAL SN7ALS174N TTL LS HEX	34335 34335 01295 01295 01295	AM9102DPC AM9102DPC SN74L510N SN74L5174N SN74L5174N
A6U26 A6U27 A6U28 A6U29 A6U30	1820-1200 1820-1158 1820-1112 1820-1200 1820-1415	1	IC-DIGITAL SN74LSOSN TIL LS HEX 1 IC-DIGITAL SN74S51N TTL S DUAL 2 IC-DIGITAL SN74LS7AN TTL LS DUAL IC-DIGITAL SN74LSOSN TIL LS HEX 1 IC-DIGITAL SN74LSOSN TIL LS HEX 1 IC-DIGITAL SN74LSOSN TIL LS DUAL 4 NAND	01295 01295 01295 01295 01295	\$N74L805N \$N74851N \$N74L874N \$N74L805N \$N74L805N \$N74L813N
A6U31 A6U32 A6U33 A6U34	1820-1470 1820-1470 1820-1470 1820-1197	11	IC-DIGITAL SN74LS157N TTL LS QUAD 2 IC-DIGITAL SN74LS157N TTL LS QUAD 2 IC-DIGITAL SN74LS157N TTL LS QUAD 2 IC-DIGITAL SN74LS00N TTL LS QUAD 2 NAND	01295 01295 01295 01295	\$N74L3157N \$N74L3157N \$N74L3157N \$N74L300N
A6VR1	1902-0041		DIODE-ZNR 5.11V 5% 00-7 PD=.4% TC=009%	15818	CD 35622
A7	01611-66507	1	BUARD ASSEMBLY, COMPARATUR	28480	01611-66507
A7C1 A7C2 A7C3 A7C4 A7C5	0140-0196 0160-2308 0160-2055 0121-0434 0180-0228	1	CAPACITUR-FXD 150PF +-5% 300NVDC MICA CAPACITUR-FXD 300PF +-5% 300NVDC MICA CAPACITUR-FXD .01UF +80-20% 100NVDC CER CAPACITOR-VAR TRMR-AIR 2-19.3PF 350 V CAPACITOR-FXD 22UF+-10% 15VDC TA	72136 28480 28480 74970 56289	DM15F151J0300WV1CR 0160-2308 0160-2055 189-0507-125 150D226X9015B2
A7C6 A7C7 A7C8 A7C9 A7C10	0140-0149 0160-2055 0160-2055 0160-2055 0160-2055		CAPACITOR-FXD 470PF +-5% 300WVDC MICA CAPACITOR-FXD .01UF +80-20% 100WVDC CER	72136 28480 28480 28480 28480	DM15F471J0300WV1CR O16O-2055 O16O-2055 O16O-2055 O16O-2055
A7C11 A7C12 A7C13 A7C14	0160-2055 0160-2055 0160-2055 0140-0196		CAPACITOR-FXD .01UF +80-20% 100hVDC CER CAPACITOR-FXD .01UF +80-20% 100hVDC CER CAPACITOR-FXD .01UF +80-20% 100hVDC CER CAPACITOR-FXD 150UF +—5% 300WVDC MICA	28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0140-0196

 $Table \ 6\text{-}2. \ Replaceable \ Parts \ (Cont'd)$

Table 6-2. Replaceable Parts (Cont'a)						
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number	
A7R1 A7R2 A7R3 A7R4 A7R6 A7R6 A7R6 A7R8 A7R9 A7R10 A7R10 A7R11 A7IP2 A7IP2 A7IP3 A7IP3	0757-0413 0757-0429 0757-0424 0757-0424 0757-0429 0757-0429 0757-0438 0757-0438 0757-0401 0757-0415 2100-2489 0757-0413 0360-0535 0360-0535 0360-0535	3 2	RESISTOR 392 1% .125W F TC=0+=100 RESISTOR 1.82K 1% .125W F TC=0+=100 RESISTOR 1.1K 1% .125W F TC=0+=100 RESISTOR 1.1K 1% .125W F TC=0+=100 RESISTOR 1.82K 1% .125W F TC=0+=100 RESISTOR 5.11K 1% .125W F TC=0+=100 RESISTOR 475 1% .125W F TC=0+=100 RESISTOR 475 1% .125W F TC=0+=100 RESISTOR 392 1% .125W F TC=0+=100 TERMINAL, TEST POINT	24546 24546 24546 24546 24546 24546 24546 24546 46819 46819 46819 46819	C4-1/8-T0-392R-F C4-1/8-T0-1821-F C4-1/8-T0-1101-F C4-1/8-T0-1101-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-475R-F ETSOX502 C4-1/8-T0-392R-F 0BD 0BD 0BD	
A7TP6 A7U1 A7U2 A7U3 A7U4 A7U5	0360=0535 1820=1782 1816=0913 1816=0913 1820=1285	1 11	TERMINAL, TEST POINT IC-DIGITAL 26S02 TIL S DUAL MONOSTBL IC 31L01 64-BIT RAM TIL IC-DIGITAL SN74LS54N TIL LS 4 AND-OR-INV	4G819 34335 34335 34335 34335 01295	OBD AM26502PC AM31L01PC AM31L01PC AM31L01PC SN74L554N	
A7U6 A7U7 A7U8 A7U9 A7U10	1820-1112 1820-1285 1820-0691 1820-1202 1816-0913	2	IC-DIGITAL SN74LS74N TTL LS DUAL IC-DIGITAL SN74LS54N TTL LS 4 AND-OR-INV IC-DIGITAL SN74S64N TTL S AND-OR-INV IC-DIGITAL SN74LS10N TTL LS TPL 3 NAND IC 31L01 64-BIT RAM TTL	01295 01295 01295 01295 01295 34335	SN74LS74N SN74LS54N SN74S64N SN74LS10N AM31L01PC	
A7U11 A7U12 A7U13 A7U14 A7U15	1816-0913 1816-0913 1816-0913 1816-0913 1816-0913		IC 31L01 64-BIT RAM TTL	34335 34335 34335 34335 34335	AM31L01PC AM31L01PC AM31L01PC AM31L01PC AM31L01PC	
A7U16 A7U17 A7U18 A7U19 A7U20	1916-0913 1916-0913 1820-1195 1820-1203 1820-1212	1 1 3	IC 31L01 64-BIT RAM TIL IC 31L01 64-BIT RAM TIL IC-DIGITAL SN74LS175N TIL LS QUAD IC-DIGITAL SN74LS11N TIL LS TPL 3 AND IC-DIGITAL SN74LS11N TIL LS DUAL	34335 34335 01295 01295 01295	AM31L01PC AM31L01PC SN74L9175N SN74L911N SN74L9112N	
A7U21 A7U22 A7U23 A7U24 A7U25	1820-0681 1820-1470 1820-1470 1820-1470 1820-1470	1	IC-DIGITAL SN74SOON TTL S QUAD 2 NAND IC-DIGITAL SN74LS157N TTL LS QUAD 2	01295 01295 01295 01295 01295	9N74500N SN74L5157N SN74L9157N SN74L9157N SN74L9157N	
A7U26 A7U27 A7U28 A7U29 A7U30	1820-1470 1820-1470 1820-1470 1820-1470 1820-1418		IC-DIGITAL SN74LS157N TTL LS QUAD 2 IC-DIGITAL SN74LS42N TTL LS 4 BCD-TO-DEC	01295 01295 01295 01295 01295	SN74LS157N SN74LS157N SN74LS157N SN74LS157N SN74LS42N	
A7U31 A7U32 A7U33 A7U34 A7U35 A7U36	1820-1202 1820-0691 1820-0686 1820-1212 1820-0041 1820-0041	i 2	IC-DIGITAL SN74LS10N TTL LS TPL 3 NAND IC-DIGITAL SN74S64N TTL S AND-OR-INV IC-DIGITAL SN74S11N TTL S TPL 3 AND IC-DIGITAL SN74S11N TTL S TPL 3 AND IC-DIGITAL SN74LS112NTTL LS DUAL NETWORK-RES 9-PIN-SIP .15-PIN-SPCG 2.7K NETWORK-RES 9-PIN-SIP .15-PIN-SPCG 2.7K	01295 01295 01295 01295 01295 28480 28480	SN74LS10N SN74S64N SN74S11N SN74LS112N 1810-0041 1810-0041	
A8 A8C1 A8C2 A8C3 A8C4 A8C5	01611-66535 0140-0203 0140-0203 0160-0196 0180-0228 0160-3451	1	BOARD ASSEMBLY, DATA STUPE AND COUNTERS CAPACITOR-FXD 30PF +-5% 500MVDC MICA CAPACITOR-FXD 30PF +-5% 500MVDC MICA CAPACITOR-FXD 24PF +-5% 300MVDC MICA CAPACITOR-FXD 22UF+-10% 15VDC TA CAPACITOR-FXD .01UF +80-20% 100MVDC CER	28480 72136 72136 28480 56289 28480	01611-66535 DM15E300J0500WY1CR DM15E300J0500WV1CR 0160-0196 1500226X9015B2 0160-3451	
A8C6 A8C7 A8C9 A8C9 A8C10	0160-3451 0160-3451 0160-3451 0160-3451 0160-3451		CAPACITOR-FXD .01UF +80-20% 100mVDC CER CAPACITOR-FXD .01UF +80-20% 100mVDC CER CAPACITOR-FXD .01UF +80-20% 100mVDC CER CAPACITOR-FXD .01UF +80-20% 100mVDC CER CAPACITOR-FXD .01UF +80-20% 100mVDC CER	28480 28480 28480 28480 28480	0160-3451 0160-3451 0160-3451 0160-3451 0160-3451	
A8C11 A8C12 A8CR1	0160=3451 0160=3451 1901=0040		CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER DIODE-SWITCHING 30V SOMA 2NS DO-35	28480 28480 28480	0160=3451 0160=3451 1901=0040	
A8L1 A8R1 A8R2 A8R3 A8R4	9140-0210 0757-0438 0757-0438 0757-0413 0757-0438	1	COIL-MLD 100UH 5% 9=50 .1550%.375LG RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 392 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	15/103 C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-392R-F C4-1/8-T0-5111-F	
ARTP1 ABTP2 ABTP3 ABTP4 ABTP5	0360-0535 0360-0535 0360-0535 0360-0535 0360-0535		TERMINAL, TEST POINT	4G819 4G819 4G819 4G819 4G819	OBD OBD OBD OBD OBD	

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A8TP6 A8TP7 A8TP8	0360=0535 0360=0535 0360=0535		TERMINAL, TEST POINT TERMINAL, TEST POINT TERMINAL, TEST POINT	46819 46819 46819	OBD OBD
A8U1 A8U2 A8U3 A8U4 A8U5	1820-1464 1820-1425 1820-1144 1820-1423 1820-1212	1 1	IC-DIGITAL SN74393N TTL DUAL BIN IC-DIGITAL SN74LS132N TTL LS QUAD 2 NAND IC-DIGITAL SN74LS12N TTL LS QUAD 2 NOR IC-DIGITAL SN74LS123N TTL LS DUAL IC-DIGITAL SN74LS123N TTL LS DUAL	01295 01295 01295 01295 01295	SN74393N SN74LS132N SN74LS02N SN74LS123N SN74LS123N
A8U6 A8U7 A8U8 ARU9 A8U10	1820-1430 1820-1199 1820-1210 1820-1430 1820-1430	1	IC-DIGITAL SN74LS16IN TIL LS BIN IC-DIGITAL SN74LS04N TIL LS HEX 1 IC-DIGITAL SN74LS5IN TIL LS DUAL 2 IC-DIGITAL SN74LS16IN IIL LS BIN IC-DIGITAL SN74LS16IN TIL LS BIN	01295 01295 01295 01295 01295	SN74LS161N SN74LS04N SN74LS051N SN74LS161N SN74LS161N
- A8U11 A8U12 A8U13 A8U14 A8U15	1820-1430 1820-1130 1820-1430 1820-1430 1820-1430	1	IC-DIGITAL SN74LS161N TTL LS BIN IC-DIGITAL SN74S13N TTL S 13 NAND IC-DIGITAL SN74LS161N TTL LS BIN IC-DIGITAL SN74LS161N TTL LS BIN IC-DIGITAL SN74LS161N TTL LS BIN IC-DIGITAL SN74109N TTL DUAL J-K BAR	01295 01295 01295 01295 01295	SN74L3161N SN74S133N SN74LS161N SN74LS161N SN74L09N
A8U16 A8U17 A8U18 A8U19 A8U20	1820-1418 1820-1439 1820-1439 1820-1439 1820-1439		IC-DIGITAL SN74LS42N TIL LS 4 BCD-TO-DEC IC-DIGITAL SN74LS258N TIL LS 2 IC-DIGITAL SN74LS258N TIL LS 2 IC-DIGITAL SN74LS258N TIL LS 2 IC-DIGITAL SN74LS258N TIL LS 2	01295 01295 01295 01295 01295	\$N74L\$42N \$N74L\$258N \$N74L\$258N \$N74L\$258N \$N74L\$258N \$N74L\$258N
A8U21 A8U22 A8U23 A8U24 A8U25	1820-1439 1820-1439 1820-1201 1820-1418 1816-0728	4	IC-DIGITAL SN74LS258N TTL LS 2 IC-DIGITAL SN74LS258N TTL LS 2 IC-DIGITAL SN74LS08N TTL LS GUAD 2 AND IC-DIGITAL SN74LS08N TTL LS 4 BCD-TO-DEC IC 82S09I RAM TTL	01295 01295 01295 01295 18324	SN74LS258N SN74L8258N SN74LS08N SN74LS42N 82809I
A8U26 ARU27 A8U28 A8U29 A8U30 A8U31 A8U32 A8U33	1816-0728 1816-0728 1816-0728 1820-1205 1820-1112 1820-1439 1810-0055 1810-0055	1	IC 82S091 RAM TTL IC 82S091 RAM TTL IC 82S091 RAM TTL IC 82S091 RAM TTL IC-DIGITAL SN74LS21N TTL LS DUAL 4 AND IC-DIGITAL SN74LS25NTTL LS DUAL IC-DIGITAL SN74LS25NTTL LS2 NETWORK-RES 9-PIN-SIP .15-PIN-SPCG 10K NETWORK-RES 9-PIN-SIP .15-PIN-SPCG 10K	18324 18324 18324 01295 01295 01295 28480 28480	82309I 82309I 82309I 8774L821N SN74LS258N 1810-0055 1810-0055
A9	·		BCARD ASSEMBLY, PERSONALITY (SEE MANUAL SUPPLEMENT FOR OPTION INSTALLED IN YOUR INSTRUMENT)		
A10			BOARD ASSEMBLY, ROM (SEE MANUAL SUPPLEMENT FOR OPTION INSTALLED IN YOUR INSTRUMENT)		·
A11			ASSEMBLY, PERSONALITY PANEL (SEE MANUAL SUPPLEMENT FOR OPTION INSTALLED IN YOUR INSTRUMENT)		·
A12	01611-62101	1	ASSEMBLY, EXTERNAL PROBE NOTE: BOARD ASSEMBLY A12A1 IS NOT SOLD SEPARATELY. TO OBTAIN A REPLACEMENT ASSEMBLY, THE ENTIRE PROBE (HP PART NO. 01611-62101) MUST BE ORDERED. PROBE ASSEMBLY-HOOK TYPE	28480 28480	01611=62101 10230-62101
A12H1 A12H2	0624-0306 2200-0111	8	SCREM-TPG 2-28 .5-IN-LG PAN-HD-POZI STL SCREM-MACH 4-40 .5-IN-LG PAN-HD-POZI	28480 28480 28480	0624-0306 2200-0111
A12MP1 A12MP2 A12MP3 A12MP4 A12MP5	5040-0568 5040-0567 7120-5707 5040-0563 1540-0320	1 1 1 1	BOTTOM POD COVER, POD LABEL, EXTERNAL PROBE CONNECTOR CLIP CASE, VINYL	28480 28480 28480 28480 28480	5040-0568 5040-0567 7120-5707 5040-0563 1540-0320
A12W1 A12W2 A12W3 A12W4 A12W4	01611-61607 5061-1215 5061-1217 5061-1218 5061-1219	1 1 1	CABLE, EXTERNAL PROBE CABLE, BLACK, PIN ADAPTER CABLE, WHITE/BLACK PIN ADAPTER CABLE, WHITE/BROWN PIN ADAPTER CABLE, WHITE/RED PIN ADAPTER	28480 28480 28480 28480 28480	01611-61607 5061-1215 5061-1217 5061-1218 5061-1219
A12%6 A12%7 A12%8 A12%9 A12%10	5001-1220 5061-1221 5061-1222 5061-1223 5061-1224	1 1 1 1	CABLE, WHITE/ORANGE PIN ADAPTER CABLE, WHITE/YELLOW PIN ADAPTER CABLE, WHITE/GREEN PIN ADAPTER CABLE, WHITE/BLUE PIN ADAPTER CABLE, WHITE/VIOLET PIN ADAPTER	28480 28480 28480 28480 28480	5061=1220 5061=1221 5061=1222 5061=1223 5061=1224
A12%1H1 A12%1H2 A12%1H3 A12%1H4 A12%1H4	2200=0111 3050=0235 2190=0019 2260-0002 01611=61201	2	SCREW=MACH 4-40 .S-IN-LG PAN-HD-POZI WASHER-FL MTLC NO4 .117-IN-ID WASHER-LK HLCL NO4 .115-IN-ID NUT-HEX-DBL CHAM 4-40-THD .026-THK .188 CABLE CLAMP	26480 28480 28480 26480 28480	2200-0111 3050-0235 2190-0019 2260-0002 01611-61201

Table 6-2. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
41241C1 A1241C2	υ1ο0=3451 ⊍18υ=0228		CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD 22UF+-10% 15VDC TA	28480 56289	0160-3451 1500226×901582
A12A1CH1 A12A1E1 A12A1E2 A12A1E3 A12A1E4 A12A1E5 A12A1E6 A12A1E7 A12A1E8 A12A1E9 A12A1U1 A12A1U1 A12A1U3 A12A1U4	1901-0025 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473	2 2	DIODE-GEN PRP 100V 200MA DG-7 SPRING (SH MET) BE CU IC-DIGITAL HEX BUS DRIVER 8T37 SEL IC-DIGITAL HEX BUS DRIVER 8T37 SEL RC NETWORK-4.7K 10PF RC NETWORK-4.7K 10PF	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	1901-0025 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473 1460-1473

Table 6-3. List of Manufacturers' Codes

Mfr Code	Manufacturer Name	Address	Zip Code
0G791	THOMPSON BREMER DIV VARE	CHICAGO IL	60622
00000	NO M/F DESCRIPTION FOR THIS MFG NUMBER		
0007K	KABELMETAL		1
01121	ALLEN-BRADLEY CO	MILWAUKEE WI	53212
01295	TEXAS INSTR INC SEMICOND CMPNT DIV	DALLAS TX	75231
02735	RCA CORP SOLID STATE DIV	SOMMERVILLE NJ	08876
03888	KDI PYROFILM CORP	WHIPPANY NJ	07981
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX AZ	85008
06383	PANDUIT CORP	TINLEY PARK IL	60477
07263	FAIRCHILD SEMICONDUCTOR DIV	MOUNTAIN VIEW CA	94040
11502	TRW INC BOONE DIV	BOONE NC	28607
12954	DICKSON ELECTRONICS CORP	SCOTTSDALE AZ	85252
13103	THERMALLOY CO	DALLAS TX	75247
15818	TELEDYNE SEMICONDUCTOR	MOUNTAIN VIEW CA	94040
18324	SIGNETICS CORP	SUNNYVALE CA	94086
19701	MEPCO/ELECTRA CORP	MINERAL WELLS TX	76067
24226	GOWANDA ELECTRONICS CORP	GOWANDA NY	14070
24546	CORNING GLASS WORKS (BRADFORD)	BRADFORD PA	16701
24931	SPECIALTY CONNECTOR CO INC	INDIANAPOLIS IN	46227
27014	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA CA	95051
27264	MOLEX PRODUCTS CO	DOWNERS GROVE IL	60515
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO CA	94304
34335	ADVANCED MICRO DEVICES INC	SUNNYVALE CA	94086
34649	INTEL CORP	MOUNTAIN VIEW CA	94040
4G819	OVERLAND PRODUCTS CO	FREMONT NE	68025
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS MA	01247
70485	ATLANTIC INDIA RUBBER WORKS INC	CHICAGO IL	60607
71002	BIRNBACK CO INC	FREEPORT LI NY	11520
71400	BUSSMAN MEG DIV OF MCGRAW-EDISON CO	ST LOUIS MO	63017
71616	COMMERCIAL PLASTICS CO	MUNDELEIN IL	60060
71785	TRW ELEK COMPONENTS CINCH DIV	ELK GROVE VILLAGE IL	60007
72136	ELECTRO MOTIVE CORP SUB IEC	WILLIMANTIC CT	06226
72619	DIALIGHT CORP SUB DIGITRONICS CORP	BROOKLYN NY	11237
73138	BECKMAN INSTRUMENTS INC HELIPOT DIV	FULLERTON CA	92634
73734	FEDERAL SCREW PRODUCTS CO	CHICAGO IL	60618
73743	FISCHER SPECIAL MFG CO	CINCINNATIOH	45206
75042	TRW INC PHILADELPHIA DIV	PHILADELPHIA PA	19108
75915	LITTELFUSE INC	DES PLAINES IL	60016
76381	3M COMPANY	ST PAUL MN	55101
78189	ILLINOIS TOOL WORKS INC SHAKEPROOF	ELGIN IL	60126
78452	EVERLOCK CHICAGO INC	CHICAGO IL	60622
80120	SCHNITZER ALLOY PRODUCTS CO	ELIZABETH NJ	07206
83003	VARO INC	GARLAND TX	75040
83330	SMITH HERMAN H INC	BROOKLYN NY	11207
84411	TRW CAPACITOR DIV	OGALLALA NE	69153
91506	AUGAT INC	ATTLEBORO MA	02703
91637	DALE ELECTRONICS INC	COLUMBUS NE	68601
91001	DALE ELECTRONICS INC	COLUMBOSINE	00001

Model 1611A Manual Changes

SECTION VII

MANUAL CHANGES

7-1. INTRODUCTION.

7-2. This section contains information for adapting this manual to instruments for which the content does not apply directly.

7-3. MANUAL CHANGES.

- 7-4. To adapt this manual to your instrument, refer to table 7-1 and make all of the manual changes listed opposite your instrument serial number. Perform these changes in the sequence listed.
- 7-5. If your instrument serial number is not listed on the title page of this manual or in table 7-1 below, it may be documented in a yellow MANUAL CHANGES supplement. For additional information about serial number coverage, refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Table 7-1. Manual Changes

Serial Prefix	Make Changes
1635 A	1
Instruments with Options 068 or 080 installed	2

7-6. MANUAL CHANGE INSTRUCTIONS.

CHANGE 1

Paragraph 5-8,

Delete: 5-8. COMPARATOR ADJUSTMENT.

Table 6-2,

A7C2: Change to HP Part No. 0160-2204, CAPACI-TOR-FXD 100PF+-5% 300WVDC MICA, Mfr Code 28480, Mfr Part No. 0160-2204.

A7C4: Change to HP Part No. 0121-0202, CAPACI-TOR-FXD 15PF +-5% 500WVDC CER, Mfr Code 72136, Mfr Part No. DM15C150J0500WV1CR.

A7C6: Change to HP Part No. 0140-0199, CAPACI-TOR-FXD 240PF ±5% 300WVDC MICA, Mfr Code 72136, Mfr Part No. DM15F241J0300WV1CR.

Delete: A7R9.

Delete: A7R10.

Delete: A7U34.

A7U36: Change Reference Designation to A7U34. A8: Change HP Part No. and Mfr Part No. to 01611-66508.

Delete: A8U30.

Delete: A8U31.

Figure 8-13, Service Sheet 7 (Sheet 4 of 4):

Replace with figure 7-1.

Figure 8-14, Service Sheet 8 (Sheet 1 of 6):

Replace with figure 7-2.

Figure 8-14, Service Sheet 8 (Sheet 2 of 6):

Replace with figure 7-3.

Figure 8-14, Service Sheet 8 (Sheet 4 of 6):

Replace with figure 7-4.

CHANGE 2

Figure 8-4 (8 Sheets):

Replace with figure 7-5 (5 Sheets).

	•		
·			
		,	
		·	

Figure 7-1. Replacement for figure 8-13, Service Sheet 7, (Sheet 4 of 4) 7-3/(7-4 blank)

Model 1611A Manual Changes

Data Store and Counters Board A8 Component Locator (01611-66508)

REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC
DESIG C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 CR1 L1	C-4 D-4 B-1 B-4 B-3 D-3 G-3 C-2 B-1 E-2 F-3 F-3	TP3 TP4 TP5 TP6 TP7 TP8 U1 U2 U3 U4 U5 U6 U7 U8	B-4 B-4 C-4 G-4 A-3 A-4 B-4 C-4 D-4 E-4 F-4	U15 U16 U17 U18 U19 U20 U21 U22 U23 U24 U25 U26 U27	F-3 G-3 A-2 B-2 C-2 D-2 E-2 F-2 G-2 A-2 B-2 C-2
R1 R2 R3 R4 TP1 TP2	C-4 D-4 D-4 D-4 A-4 B-4	U9 U10 U11 U12 U13 U14	A-3 B-3 C-3 D-3 D-3 E-3	U29 U32 U33	A-2 A-2

ICs ON THIS SCHEMATIC

HP PART NO.	MFR PART NO.
1820-1464	SN74393N
1820-1425	SN74LS132N
1820-1144	SN74LS02N
1820-1423	SN74LS123N
1820-1212	SN74LS112N
1820-1430	SN74LS161N
1820-1199	SN74LS04N
1820-1210	SN74LS51N
1820-1130	SN74S13N
1820-1116	SN74109N
1820-1418	SN74LS42N
1820-1439	SN74LS258N
1820-1201	SN74LS08N
1816-0728	82S09I
1820-1205	SN74LS21N
1810-0055	1810-0055
	1820-1464 1820-1425 1820-1144 1820-1423 1820-1212 1820-1430 1820-1199 1820-1210 1820-1130 1820-1116 1820-1418 1820-1448 1820-1439 1820-1201 1816-0728 1820-1205

Figure 7-2. Replacement for Figure 8-14. Service Sheet 8, Assembly A8 Component Locator (Sheet 1 of 6)

Model 1611A

Manual Changes

Figure 7-4.
Replacement for figure 8-14,
Service Sheet 8 (Sheet 4 of 6)
7-9/(7-10 blank)

NOTE

Procedures in this figure apply only to instruments with Option 068 or 080 installed.

SIGNATURE ANALYSIS PROCEDURE NO. 1.

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, and A10 assemblies from 1611A.

NOTE

The boards installed in the 1611A for the following measurements depend upon the Troubleshooting Tree. Follow the procedure given in the Troubleshooting Tree.

- c. Ground A5U3, pin 6.
- e. Connect signature analyzer probe to the following circuit points:

START	A5U11, Pin 36
STOP	A5U11, Pin 36
CLOCK	A5U11, Pin 18
GND	A5TP9 (GND)

- f. Set 1611A LINE switch to on position.
- g. Verify that signature measurements called out in troubleshooting tree match following table.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
101	VH	755U
102	MEMORY BUS A5U9, PIN 13 A5U9, PIN 9 A5U9, PIN 1 A5U9, PIN 5 A5U8, PIN 13 A5U8, PIN 9 A5U8, PIN 1 A5U8, PIN 1 A5U8, PIN 1 A5U8, PIN 5	VH VH VH VH VH VH VH VH
103	DATA BUS A5U20, PIN 8 A5U20, PIN 11 A5U20, PIN 6 A5U20, PIN 3 A5U10, PIN 8 A5U10, PIN 11 A5U10, PIN 11 A5U10, PIN 6 A5U10, PIN 3	H335 VLP VLP H335 H335 VLP VLP
104	μΡ OUTPUTS A5U11, PIN 10	H335

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
(Cont'd)	A5U11, PIN 9 A5U11, PIN 8 A5U11, PIN 7 A5U11, PIN 3 A5U11, PIN 4 A5U11, PIN 5 A5U11, PIN 6	VLP VLP H335 H335 VLP VLP
105	ADDRESS BUS	64 HU 9P9F HPF6 UF9P A8H9 2225 0258 H6PP 074P HU57 F1PF 722H 050U F44F A66A
106	A6U30, PIN 5 A6U30, PIN 4 A6U30, PIN 1 A6U29, PIN 11	9P9F HPF 6 A8H9 UF9P
107	A6U29, PIN 10 A6U30, PIN 6 A6U29, PIN 8	89F1 HA34 AU6C
108	A5U11, PIN 17 A5U3, PIN 4	V _{LP} V _{HP}
109	A8U17, PIN 15 A8U18, PIN 15 A8U19, PIN 15 A8U20, PIN 15 A8U21, PIN 15 A8U22, PIN 15	VH VH VH VH VH VH
110	A8U24, PIN 2 A8U24, PIN 1 A8U24, PIN 12 A8U24, PIN 13 A8U24, PIN 14 A8U24, PIN 15 A8U29, PIN 6 A8U29, PIN 8 A8U29, PIN 5 A8U29, PIN 4 A8U29, PIN 10	VH VH VH 722H 050U F44F VL A41U H335 VLP AC99

111	A6U26, PIN 12 A6U26, PIN 10	1079
	A6U26, PIN 8 A6U26, PIN 6 A6U26, PIN 4 A6U26, PIN 2 A6U29, PIN 2 A6U29, PIN 5	VH VH 1079 1079 1079 VH VH
112	A6U25, PIN 2 A6U25, PIN 5 A6U25, PIN 7 A6U25, PIN 10 A6U25, PIN 12 A6U25, PIN 15 A6U28, PIN 9 A6U28, PIN 5	6526 VL VL 6526 6526 6526 VL VL

SIGNATURE ANALYSIS PROCEDURE NO. 2

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, and A10 assemblies from 1611A.
 - c. Reinstall A6 on extender board A14.
 - d. Ground A5U3, pin 6.
 - e. Set signature analyzer controls as follows:

START			٦
STOP			
CLOCK			าี
HOLD	R	tele	easec

f. Connect signature analyzer probe to the following circuit points:

START	A 5U11, Pin 36
STOP	. A5U11, Pin 36
CLOCK	A 6TP3
GND	. A5TP9 (GND)

- g. Set 1611A LINE switch to on postion.
- h. Verify that signature measurements called out in troubleshooting tree match following table.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
201	VH	7 A 70
202	A6U33, PIN 12 A6U33, PIN 9 A6U33, PIN 7 A6U33, PIN 4 A6U32, PIN 12 A6U32, PIN 9	6H44 PF45 7H02 355A 3P32 9A40

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
(Cont'd)	A6U32, PIN 7 A6U32, PIN 4 A6U31, PIN 12 A6U31, PIN 9 A6U31, PIN 7	AAHA A077 F86A AF5U VLP
V	H = 7A70, VLP = 0000	0

SIGNATURE ANALYSIS PROCEDURE NO. 3

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, A9, and A10 assemblies from 1611A.
 - c. Reinstall A6 on extender board A14.
 - d. Ground A5U3, pin 6.
 - e. Set signature analyzer controls as follows:

START]
STOPCLOCK	·····
CLOCK	Released

f. Connect signature analyzer probe to the following circuit points:

START	A6TP4
STOP	A6TP4
CLOCK	A6TP2
GND A6TP	10 (GND)

- g. Set 1611A LINE switch to on position.
- h. Verify that signature measurements called out in troubleshooting tree match following table.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
301	v_{H}	7092
302	A6U15, PIN 12 A6U16, PIN 12 A6U17, PIN 12 A6U18, PIN 12 A6U19, PIN 12 A6U20, PIN 12 A6U21, PIN 12 A6U21, PIN 12	5U1F VL or VLP VL or VLP 5U1F 5U1F 5U1F VL or VLP VL or VLP
303	A6U33, PIN 12 A6U33, PIN 9 A6U33, PIN 7 A6U33, PIN 4 A6U32, PIN 12 A6U32, PIN 9	H93A 5UA3 U869 57PC PPPP U6P0

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
(Cont'd)	A6U32, PIN 7 A6U32, PIN 4 A6U31, PIN 12 A6U31, PIN 9 A6U31, PIN 7	05F9 065F 1U2U 2U8P VHP
304	A6U33, PIN 14 A6U33, PIN 11 A6U33, PIN 5 A6U33, PIN 2 A6U32, PIN 14 A6U32, PIN 11 A6U32, PIN 5 A6U32, PIN 2 A6U31, PIN 14 A6U31, PIN 11	H93A 5UA3 U869 57PC PPPP U6P0 05F9 065F 1U2U 2U8P
V _H = 7092, V ₁	HP = 7092, VL = 0000, V	VLP = 0000

SIGNATURE ANALYSIS PROCEDURE NO. 4.

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, A9, and A10 assemblies from 1611A.
 - c. Reinstall A6 on extender board A14A.
 - d. Ground A5U3, pin 6.
 - e. Set signature analyzer controls as follows:

START	 									 					٦		
$STOP\dots\\$	 		 							 					r	:	
CLOCK HOLD.	 		 							 					╁		
HOLD.	 		 								F	₹,	el	ea	ise	ed	

f. Connect signature analyzer probe to the following circuit points:

START	A 6TP4
STOP	A 6TP4
CLOCK	A 6TP7
GND A61	'P10 (GND)

- g. Set1611A LINE switch to on position.
- h. Verify that signature measurements called out in troubleshooting tree match following table.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
401	V_{H}	31PA
402	A6U24, PIN 2 A6U24, PIN 5 A6U24, PIN 7 A6U24, PIN 10 A6U24, PIN 12	8791 VL or VLP VL or VLP 8791 8791

MEASUREMENT NUMBER	TEST POINT	SIGNATURE				
(Cont'd)	A6U24, PIN 15 A6U1, PIN 13 A6U27, PIN 9	8791 VL or VLP VL or VLP				
403	A6TP5	4UF5				
404	A6U10, PIN 4 A6U10, PIN 5	81UF 9PP0				
405	A6U27, PIN 13 A6U27, PIN 10	2F02 31PA and 0000 Alternating				
406	A6U1, PIN 3 A6U1, PIN 4 A6U1, PIN 6 A6U1, PIN 14	5H5A HF38 7F9C 8AH9				
407	A6U1, PIN 2 A6U1, PIN 5 A6U1, PIN 7 A6U1, PIN 10 A6U1, PIN 12 A6U1, PIN 15	7A8U 3P84 5CP4 408A VL 8F56				
408	A6U14, PIN 5 A6U14, PIN 4 A6U14, PIN 3 A6U14, PIN 14 A6U14, PIN 13	F33H 047F 29C3 288A 186A				
409	A6U14, PIN 2 A6U14, PIN 9 A6U14, PIN 7	VHP PU0H HPP7				
410	A6U3, PIN 6 A6U2, PIN 2	HA0H PCP7				
V _H = 31PA, V	YHP = 31PA, VL = 0	000, V _L P = 0000				

SIGNATURE ANALYSIS PROCEDURE NO. 5.

SETUP PROCEDURE

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, and A8 assemblies from from 1611A.
 - c. Reinstall A6 on extender board A14.
 - d. Set signature analyzer controls as follows:

Manual Changes Model 1611A

START	Γ
STOP	า้
CLOCK	-
CLOCK Depres	$\vec{\mathbf{s}}$ ed

e. Connect signature analyzer probe to the following circuit points:

START	A6U33, Pin 13
STOP	A6U33, Pin 13
CLOCK	A5U11, Pin 18
GND	A5TP9 (GND)

NOTE

Connect CLOCK probe to A6TP3 for measurements 503, 504, and 505.

f. Set 1611A LINE switch to on position.

MEASUREMENT PROCEDURE

- a. Ground (+) side of A5C3.
- b. Place signature analyzer probe on pin to be measured.
 - c. Press and release RESET on probe.
- d. Release ground on A5C3 and take reading. Verify that reading matches value in following table.
 - e. Repeat steps a thru d for each measurement.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
	VH	4596
501	A6U26, PIN 12 A6U26, PIN 10 A6U26, PIN 8 A6U26, PIN 6 A6U26, PIN 4 A6U26, PIN 2 A6U29, PIN 2 A6U29, PIN 6	496A 3917 687P 902A A5C4 AH58 8P3U A0A6
502	A6U25, PIN 2 A6U25, PIN 5 A6U25, PIN 7 A6U25, PIN 10 A6U25, PIN 12 A6U25, PIN 15 A6U28, PIN 9 A6U28, PIN 5	0FUF 7F81 2HP8 H5CF P022 P8FP FCA9 P530
503	A6U15, PINS 12, 11	0FUF
504	A6U16, PINS 12, 11 A6U17, PINS 12, 11 A6U18, PINS 12, 11 A6U19, PINS 12, 11 A6U20, PINS 12, 11	7F81 2HP8 H5CF P022 P8FP

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
503 * 504 * (Cont'd)	A6U21, PINS 12, 11 A6U22, PINS 12, 11	FCA9 P530
505	A5U11, PIN 10 A5U11, PIN 9 A5U11, PIN 8 A5U11, PIN 7 A5U11, PIN 3 A5U11, PIN 4 A5U11, PIN 5 A5U11, PIN 6	0FUF 7F81 2HP8 H5CF P022 P8FP FCA9 P530

SIGNATURE ANALYSIS PROCEDURE NO. 6 SETUP PROCEDURE

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, and A8 assemblies from 1611A.
 - c. Reinstall A6 on extender board A14.
 - d. Set signature analyzer controls as follows:

 START
 STOP
 CLOCK
 HOLD
 Depressed
- e. Connect signature analyzer probe to the following circuit points:

START	. A6U33, Pin 13
STOP	A6U33, Pin 13
CLOCK	A6TP3
GND	. A5TP9 (GND)

f. Set 1611A LINE switch to on position.

MEASUREMENT PROCEDURE

- a. Ground (+) side of A5C3.
- b. Place signature analyzer probe on pin to be measured.
 - c. Press and release RESET on probe.
- d. Release ground on A5C3 and take reading. Verify that reading matches value in following table.
 - e. Repeat steps a thru d for each measurement.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
601	A6U15, PINS 11, 12	*
	A6U16, PINS 11, 12	*
	A6U17, PINS 11, 12	*
	A6U18, PINS 11, 12	*
	A6U19, PINS 11, 12	*
	A6U20, PINS 11, 12	*
	A6U21, PINS 11, 12	*
	A6U22, PINS 11, 12	*
*Pins 11 and 12	of each IC should h	ave the same

Figure 7-5 (Sheet 2 of 5). Replacement for figure 8-4, 1611A Troubleshooting

reading.

Model 1611A

Figure 7-5 (Sheet 3 of 5).
Replacement for figure 8-4. 1611A Troubleshooting

Manual Changes Model 1611A

1611A-029-02-01-77

Figure 7-5 (Sheet 4 of 5). Replacement for figure 8-4, 1611A Troubleshooting

Figure 7-5 (Sheet 5 of 5). Replacement for figure 8-4. 1611A Troubleshooting

Model 1611A

Figure 8-1. Schematic Diagram Notes

SECTION VIII

SERVICE

8-1. INTRODUCTION.

- 8-2. This section contains instructions for troubleshooting and repairing the Hewlett-Packard Model 1611A Logic State Analyzer.
- 8-3. Principles of operation and troubleshooting information are located opposite the schematics on foldout Service Sheets. The rest of this section has general service information that should help you to quickly service and repair the 1611A.

8-4. PRINCIPLES OF OPERATION.

- 8-5. Principles of operation appear on pages opposite the block diagram and schematics on the Service Sheets. Figure 8-1 explains symbols that appear on the schematics. Figure 8-5 is an overall block diagram that briefly describes overall instrument operation. It is keyed, by Service Sheet numbers in the blocks, to schematics on the Service Sheets. These Service Sheets provide a stage-by-stage description of circuits on the schematics. The stages are keyed to the descriptions by stage names that appear on the schematics. An overall view of instrument program operation is presented in the macro flowchart shown in figure 8-6.
- **8-6. LOGIC CONVENTIONS.** Positive logic convention is used in describing logic variables and circuits within the 1611A. Positive logic convention defines a logic "1" as the more positive voltage (high) and a logic "0" as the more negative voltage (low). The integrated circuits in the 1611A are almost entirely transistor-transistor-logic (TTL). Major exceptions are the 8080A microprocessor, ROMs, and some RAMs. All these devices have TTL drive capability.
- 8-7. MNEMONICS. Signals in the 1611A have been assigned mnemonics that describe the active state and function of the signal line. A prefix letter (H, L, P, or N) indicates the active state of the signal, and the remaining letters indicate its function. An H prefix indicates the function is active in the high state; an L prefix indicates the function is active in the low state. For edge-controlled devices, the prefix P indicates the function is active on the positive-going transition; prefix N indicates the function is active on the negative-going transition. Mnemonic functional definitions and points of origin are listed alphabetically in table 8-1.

8-8. TROUBLESHOOTING.

Read the Safety Summary at the front of this manual before troubleshooting the instrument.

- 8-9. The most important prerequisites for successful troubleshooting are an understanding of instrument functional operation and the correct use of front panel controls. Suspected malfunctions may be caused by improper control settings. Before performing the test and/or troubleshooting procedures, refer to the Operating and Service Manual Supplement(provided with each μ P personality module. For an explanation of controls, connectors, and general operating considerations, and to the service sheets in this section for an explanation of circuit functional operation.
- 8-10. If trouble is suspected, visually inspect the instrument. Look for loose or burned components that might suggest a source of trouble. Check to see that all circuit board connections are making good contact and are not shorting to an adjacent circuit. If no obvious trouble is found, check the instrument power-supply voltages, and external power sources.
- **8-11. FAULT ISOLATION.** Figure 8-4 is a 1611A troubleshooting tree which can be used to isolate problems that cause an incorrect turn-on display. Refer to Service Sheets 7 and 8 for measurement problems such as improper triggering or incorrect measurement results. Some paths in the troubleshooting tree reference ROM test procedures. These procedures are provided in the personality module supplement for this manual.
- 8-12. Many measurements in the troubleshooting tree are made with an HP Signature Analyzer. Each signature is measured under specific conditions described in the test procedures accompanying the troubleshooting tree. Each signature measurement in the tree is assigned a three-digit number. This refers to a measurement step in the test procedures. If the measured signature matches the signature given in the test procedure, the circuit is functioning correctly at the node being measured. An incorrect signature indicates a malfunction somewhere in the circuit leading up to the measured node. An oscilloscope can be used in place of the signature analyzer, but problems other than nodes stuck at one level will be difficult to find.

Figure 8-2. 5004A Block Diagram

8-13. Troubleshooting with the HP Signature Ana-Lyzer (SA). The SA is a service tool designed to analyze complex digital signals. The instrument provides a unique four-digit alphanumeric signature for each monitored data pattern. Figure 8-2 is a simple block diagram of the SA. The SA collects data between the occurrence of START and STOP signals. The data probe input is read on the selected clock edge. Data is routed to a 16-bit shift register through a parity generator. Parallel outputs of the shift register drive the four-digit display. START, STOP, and CLOCK signals are selected so that normally they are not dependent on the circuitry being analyzed.

8-14. Signatures of some nodes are designated with special symbols. These nodes are at one state (high or low) everytime the clock edge occurs. These symbols are:

VH-Corresponds to signature displayed when the SA data probe is at a node that is always high. This signature should be checked at the +5 V supply on the board before test measurements are made. A correct signature verifies that clock and time intervals are correct. The probe-tip indicator is on continuously at VH.

VHP-Indicates node is high whenever clock edge occurs. The signature is the same as VH, but the probe-tip indicator flashes on and off, rather than staying on continuously.

 $V_L\text{-Indicates}$ node being measured is always low; signature for V_L is 0000. The probe-tip indicator always remains off when probing a V_L node.

VLP-Indicates node is low whenever a clock edge occurs. The VLP signature is 0000 as for VL, but the probe-tip indicator flashes.

A reading other than VH, VHP, VL, or VLP indicates that the state of the node varies on the clock edge during the measurement interval.

8-15. TROUBLESHOOTING MICROPROCESSOR PROBLEMS. The troubleshooting tree can be used to isolate some microprocessor (A5U11) problems. However, it is sometimes difficult to isolate μP failures due to complexity of the device. It is possible for

the 1611A to pass all tests in the troubleshooting tree and still have a faulty μP . Therefore, it is recommended that a good μP be substituted for the one in the instrument before attempting to isolate a problem that could be caused by a faulty μP . A5U11 is mounted in a 40-pin socket for easy removal.

8-16. TROUBLESHOOTING WITH LOGIC TEST EQUIPMENT. Dedicated logic test equipment is required to efficiently and effectively troubleshoot most faults in the 1611A. The following equipment is recommended:

HP 547A Current Tracer—used for precise localization of low-impedance faults. The hand-held probe senses the magnetic field generated by a pulsing current internal to the circuit or by current pulses supplied by an external stimulus such as the HP 10526A Logic Pulser.

HP 1600A Logic State Analyzer—used to monitor counters, address decoders, and data selectors within the 1611A.

HP 10525T Logic Probe—used to check operation of gates and flip-flops.

HP 10526T Logic Pulser—used with the HP 547A to provide a high-current pulse.

8-17. RECOMMENDED TEST EQUIPMENT.

8-18. Equipment required for troubleshooting is listed in the Recommended Test Equipment Table in Section I. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

8-19. SERVICE AIDS.

8-20. TEST POINTS. Test points shown on schematics correspond to pins protruding from circuit boards and do not necessarily correspond to waveform measurement points.

8-21. EXTENDER BOARD. An extender board (HP Part No. 01611-66515) is supplied with the 1611A to provide access to circuits on plug-in boards while the instrument is operating.

8-22. PART LOCATION AIDS. The locations of assemblies, chassis-mounted parts, and hardware are shown in the Illustrated Parts Breakdown in Section VI. The locations of individual components mounted on printed circuit boards or other assemblies are shown on the page opposite the appropriate schematic diagram page. The part reference designator is the assembly designator plus the part designator (for example, A6R9 is R9 on the A6 assembly). For specific component description and ordering information, refer to the parts list in Section VI.

8-23. **REPAIR.**

8-24. CRT REPLACEMENT PROCEDURE. (See figure 6-1.)

- Set LINE power switch to off position and disconnect power cord.
 - b. Remove top, bottom, and side covers.
- c. Disconnect diode CR1 from PA (post-accelerator) cable W2.
- d. Remove 3 screws that hold A3 board to corner strut MP3 and remove A3 board from instrument.
- e. Remove PA cable clamp H39 from CRT shield MP13.
- f. Loosen, but do not remove, 4 screws securing CRT shield MP13.
 - g. Remove MP13 from instrument.
- h. Disconnect yoke cable (P/O L1) and CRT cable W4 from connectors P3 and P4 on main board A1.
- i. Remove 2 lower screws H12 that hold CRT to Keyboard Support MP27 through bottom of instrument.
- j. Remove 2 upper screws H12 that hold CRT to MP27 through top of instrument.

Figure 8-3. CRT Yoke Installation

- k. Slide CRT back from MP27 and remove contrast filter.
- l. Remove CRT from instrument with CRT cable W4 and yoke assembly L1 attached.
 - m. Remove CRT cable and L1 from CRT.
- n. Install L1 on new CRT with yoke cable on bottom of CRT (see figure 8-3).
 - o. Install CRT cable W4 on new CRT.
- p. Install CRT in instrument by reversing steps a through l.
- $q.\ Perform\ Trace\ Alignment\ Procedure\ (Section <math display="inline">V).$

Table 8-1. 1611A Mnemonics

MNEMONIC	DESCRIPTION	ORIGIN
A0-A13	Microprocessor Address Bus. Address lines from 8080A μP on A5 board. Bus is shown in red on schematics.	Schematic 5, A5P1, PINS 78-91
A0*-A9*	Display RAM address lines. Lines originate from μP ADDRESS BUS or display format generator, depending on the state of $H\mu PCY$.	Schematic 6, A6U31-A6U33
D0-D7	Microprocessor Data Bus. Data that 8080A μP A5U11 is outputting. Bus is shown in red on schematics.	Schematic 5, A5P1, PINS 68-75
EXT 0-EXT 7	External Inputs 0-7. Inputs from External Probe.	Schematic S4, A10P1, PINS 3-10
FLAG 0-FLAG 3	Flags 0-3. Status bits indicating the type of machine cycle being executed by the μP under test. A 4-bit flag byte is stored for each of the 64 words stored in High-Speed Memory.	Schematic S2, A9P1, PINS 19-22

Table 8-1. 1611A Mnemonics (Cont'd)

MNEMONIC	DESCRIPTION	ORIGIN					
HAND	High, AND. Determines whether the two outputs LTRG1 and LTRG2 from RAM Comparator A7 will be logic ANDed or logic ORed.	Schematic 7, A7U11, PIN 11					
HARM	High, Armed. Signal is true when μP under test is between the Enable and Disable trace specifications.	Schematic 7, A7U33A, PIN 12					
HBLINK	High, Blink. Signal is true when character being read from RAM is to be displayed in a blinking mode.	Schematic 6, A6U22, PIN 12					
нст	High, Count Triggers. Signal is true when 1611A is executing a a COUNT TRIGS measurement.	Schematic 7, A7U18, PIN 15					
нстоғ	High, Counter Overflow. Signal is true when delay counter overflows during Trace, Time Interval, or Count Trigs measurement.	Schematc 8, A8U15A, PIN 7					
HDLEN	High, Delay Enable. Signal Enables Delay Counter on A8. True when Pass Counter = Terminal Count.	Schematic 7, A7U21B, PIN 6					
HDSB	High, Disable. Signal assumes true state when Disable trace specification is met.	Schematic 7, A7P1, PIN 53					
HDSBL	High, Disable Latched. Signal is latched in true state when Disable trace specification is met.	Schematic 7, A7U20A, PIN 5					
HDSPC	High, Display Cycle. Signal is true when Display Format Generator is accessing <u>RAM on A6</u> . Rising edge of HDSPC is used to latch data onto <u>MEMORY</u> bus.	Schematic 6, A6U31, PIN 7					
HENB	High, Enable. Signal assumes true state when Enable trace specification is met.	Schematic 7, A7P1, PIN 51					
HENBL	High, Enable Latched. Signal is latched in true state when Enable trace specification is met.	Schematic 7, A7U20B, PIN 9					
ннвьк	High, Horizontal Blank. Signal is true when display is blanked during horizontal retrace.	Schematic 6, A6U4, PIN 15					
ннѕү	High, Horizontal Sync. Positive edge of signal starts horizontal retrace.	Schematic 6, A6U34C, PIN 8					
HINVS	High, Inverse. Signal is true when character being generated is displayed in inverse video (black character on white background).	Schematic 6, A6U4, PIN 7					
HMCOF	High, Memory counter Overflow. Signal is true when memory state counter reaches count of 64 or greater.	Schematic 8, A8U3D, PIN 13					
HNORM	High, Normal. Signal is true when character being generated is displayed normally (white character on dark background). Signal is false when character is displayed in inverse video.	Schematic 6, A6U4, PIN 5					
НРСТС	High, Pass Counter Terminal Count. Signal is true when pass counter MSD (A8U11, pin 15) reaches terminal count.	Schematic 8, A8U9, PIN 15					
HRADR	High, RAM Address. Signal is true when μP ADDRESS Bus (A0-A13) is equal to RAM address (320008-337778).						

Table 8-1. 1611A Mnemonics (Cont'd)

MNEMONIC	DESCRIPTION	ORIGIN						
HRMC	High, Reset Memory Counter. Signal resets memory state counter and clears memory counter overflow flip-flop A8U3.							
нті	High, Time Interval. Signal is true when 1611A is executing Time Interval measurement.							
HTRC	High, Trace. Signal is true when 1611A is executing Trace or Trace Trigs measurement.	Schematic 7, A7U18, PIN 2						
HTRG	High, Trigger. Signal is true when trigger specification is met and LCPCK is low.	Schematic 7, A7U8, PIN 8						
HTSTOR	High, Trigger Store. Signal is true when 1611A is executing Trace Trigs measurement.	Schematic 8, A8U15B, PIN 10						
HVBLK	High, Vertical Blank. Signal is true when display is blanked for vertical retrace.	Schematic 6, A6U4, PIN 10						
HWRT								
ΗμΡСΥ	Schematic 5, A5U14A, PIN 3							
INP. A0-A15	P. A0-A15 Input Address Bus. Address Lines from μP under test.							
INP D0-D7	Input Data Bus. Data lines from μP under test.							
KS0-KS4, KS7	Key Sense Lines. Lines are tied to keyboard matrix columns. Depressed key in a column will generate a 1 to 2 volt pulse output on appropriate sense line.	Schematic 4, A4W1J1						
LCPCK	Low, Compare Clock. When true, signal enables outputs of RAM Comparator (LTRG1 and LTRG2) to be gated through A7U8.	Schematic 7, A7U1B, PIN 9						
LCTOF	Low, Counter Overflow. When True, signal indicates Delay Counter has reached terminal count.	Schematic 8, A8U15B, PIN 7						
LDLYDS	Low, Delayed Disable. Delayed HDSBL. Signal allows trigger to be recognized if HDSB and HTRG are true on same cycle.	Schematic 7, A7U6B, PIN 8						
LDLYL	Low, Delaying Latched. Signal is true after pass counter reaches terminal count when executing Trace measurement.	Schematic 7, A7U9B, PIN 6						
LDSBL	Low, Disable Latched. Signal is true when Disable trace specification is met.	Schematic 7, A7U20A, PIN 5						
LDSTOR	Low, Data Store. Signal enables write mode of high-speed RAM (A8U25-28) and clocks memory counter during measurements.	Schematic 8, A8U8B, PIN 8						
LLSRE	Low, Load Shift Register Enable. Signal enables character shift register A6U14 to parallel load when 200 ns CLK is low.	Schematic 5, A5U22, PIN 15						
LMCOF	Low, Memory Counter Overflow. Signal is true when memory counter counts pass 63.	Schematic 8, A8U3C, PIN 10						

MNEMONIC	DESCRIPTION	ORIGIN					
LREAD	Low, Read. Signal is true when μP A5U11 is reading from $\overline{\text{MEMORY}}$ Bus.	Schematic 5, A5U3B, PIN 4					
LRST	Low, Reset. Signal Clears Enable and Disable flip-flops on A7 board and inhibits pass and delay counters on A8 board.	Schematic 7, A7U18, PIN 11					
LTRG1	Low, Trigger 1. Signal is true when = and < trigger conditions are met.	Schematic 7, A7U7, PIN 6					
LTRG2	Low, Trigger 2. Signal is true when > trigger conditions are met.	Schematic 7, A7U5, PIN 6					
LTSTOR	Low, Trigger Store. Signal is true when 1611A is executing Trace Trigs measurement.	Schematic 8, A8U15B, PIN 9					
M0-M7	MEMORY Bus. Data that is read by μP A5U11. BUS lines are shown in red on schematics.	Schematics 6, 8, and 10					
MSC0-5	Memory State Count. Signal indicates address of high-speed RAM (A8U25-28) that is being written into or read from.	Schematic 8, A8U1A/B					
NCNT	Negative, Count. Negative edge of signal clocks pass and delay counters when enabled.	Schematic 7, A7U32, PIN 8					
NCP	Negative Compare. Negative edge of signal indicates that personality board A9 has valid data ready for comparator.	Schematic S2, A9P1, PIN 50					
NMCCK	Negative, Memory Counter Clock. Negative edge of signal clocks memory counter.	Schematic 8, A8U2C, PIN 8					
NSTOR	Negative, Store. Negative edge of signal enables LDSTOR when executing Trace measurement.	Schematic S2, A9P1, PIN 49					
PEXCK	Positive, External Clock. Positive edge of signal latches data from external probe.	Schematic S2, A9P1, PIN 47					
PRWCK	Positive, RAM Write Clock, Signal enables RAM on A6 to be written into.	Schematic 5, A5U3E, PIN 10					
PHLTEN	Positive, Halt Enable. Positive edge of signal enables personality board A9 to halt μP under test in Trace Then Wait or Trace Then Halt Test modes.	Schematic 8, A8U8A, PIN 6					
SCAN A-D	Four signals scan keyboard.	Schematic 5, A5U7/A5U17					
SW0-7	Switch lines 0-7. Signals indicate personality panel switch positions. SW0=HEXADECIMAL/OCTAL switch, SW7=TEST MODE. Some lines are not used by all options.	Schematic S3, A11W1					
VIDEO	Z-axis blanking signal from character generator.	Schematic 6, A6U2A, PIN 2					
1μS CK	Signal provides timing clock for Time Interval measurements and is master clock for porbe test generator.	Schematic 5, A5U23, PIN 11					
2 Hz CLK	Signal provides blanking signal for A6 assembly. It is also used by probe test generator. Schematic 6 A6U5, PIN						

NOTE

The following procedures do not apply to Options 068 and 080. If either of these Personality Panel Modules are installed in your 1611A, refer to Section VII for Signature Analysis Procedures.

SIGNATURE ANALYSIS PROCEDURE NO. 1.

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, A9, and A10 board assemblies from 1611A.
 - c. Reinstall A10 on extender board A14.
 - d. Ground A5U3 pin 6 and A5U11 pin 6.

e. Connect signature analyzer probes to the following circuit points:

START	Γ	 A5U11,	Pin	36
STOP		 A5U11,	Pin	38
CLOCI	K	 A5U11,	Pin	17
GND.		 A 5TP	(GN	D)

f. Set signature analyzer controls as follows:

START	 		 								L
STOP.	 		 								Ī
CLOCK											

- g. Set 1611A LINE switch to on position.
- h. Verify that signatures called out in trouble-shooting tree match the following table.

MEASUREMENT NUMBER	TEST PO	DINTS			
	ALL OPTIONS EXCEPT 0F8	0F8	ALL OPTIONS EXCEPT 0F8, A65	0F8	A65
101	VH A5U8, PIN 5 A5U8, PIN 1 A5U8, PIN 9 A5U8, PIN 13	VH A5U8, PIN 5 A5U8, PIN 1 A5U8, PIN 9 A5U8, PIN 13	P254 A8PF UPAF A0UA 314F	P254 FF3F U646 76HP U697	P254 3HPF C73P 5APH H6FH
	A5U9, PIN 5 A5U9, PIN 1 A5U9, PIN 9 A5U9, PIN 13	A5U9, PIN 5 A5U9, PIN 1 A5U9, PIN 9 A5U9, PIN 13	C583 600F A220 CH06	935F 6038 7U90 8P5U	F803 42H3 2P A 9 456C
102	A10U14, PIN 11 A10U14, PIN 13 A10U14, PIN 15 A10U14, PIN 17 A10U14, PIN 8 A10U14, PIN 6 A10U14, PIN 4 A10U14, PIN 2	A10U8, PIN 11 A10U14, PIN 13 A10U14, PIN 15 A10U14, PIN 17 A10U14, PIN 8 A10U14, PIN 6 A10U14, PIN 4 A10U14, PIN 2	42AP	2P68 1412 948A 14F3 7108 826F 9HF4 6F0C	HUC8 556A C8C9 3499 2A57 A087 FFUH A73U
	ALL OPTIONS EXCEPT 0F8	0F8	ALL OPTIONS		
103	A10U10, PIN 8 A10U10, PIN 7 A10U10, PIN 6 A10U10, PIN 5 A10U10, PIN 4 A10U10, PIN 3 A10U10, PIN 2 A10U10, PIN 1 A10U10, PIN 22 A10U10, PIN 23 A10U11, PIN 3 A10U11, PIN 2 A10U11, PIN 2	A10U13, PIN 8 A10U13, PIN 7 A10U13, PIN 6 A10U13, PIN 5 A10U13, PIN 4 A10U13, PIN 3 A10U13, PIN 2 A10U13, PIN 1 A10U13, PIN 22 A10U13, PIN 23 A10U14, PIN 3 A10U14, PIN 2 A10U14, PIN 1	5P33 FA11 3HUA 12U0 C7A5 46HC 65CA 8AUC 1U5P 9241 826P U665 AAHU		

MEASUREMENT NUMBER	TEST P	OINT	SIGNATURE		
	ALL OPTIONS EXCEPT 0F8	0F8	ALL OPTIONS		
104	A10U11, PIN 15 A10U11, PIN 14 A10U11, PIN 13 A10U11, PIN 12 A10U11, PIN 11	A10U14, PIN 15 A10U14, PIN 14 A10U14, PIN 13 A10U14, PIN 12 A10U14, PIN 11	879F 6CC3 931U 1U0A 4A78		
105	A5U21C, PIN 7 A5U21C, PIN 6 A5U21B, PIN 5 A5U21B, PIN 4 A5U21A, PIN 3 A5U21A, PIN 9 A5U21D, PIN 9 A5U21D, PIN 10 A5U21E, PIN 11 A5U21E, PIN 12 A5U12E, PIN 12 A5U12E, PIN 12 A5U12F, PIN 13 A5U12F, PIN 13 A5U12F, PIN 14 A5U12C, PIN 7 A5U12C, PIN 6 A5U12B, PIN 5 A5U12B, PIN 6 A5U2B, PIN 5 A5U2A, PIN 3 A5U2A, PIN 2 A5U12A, PIN 3 A5U12A, PIN 2 A5U12A, PIN 2 A5U2C, PIN 8 A5U2C, PIN 9	A5U21C, PIN 7 A5U21C, PIN 6 A5U21B, PIN 5 A5U21B, PIN 4 A5U21A, PIN 3 A5U21A, PIN 2 A5U21D, PIN 9 A5U21D, PIN 10 A5U21E, PIN 11 A5U21E, PIN 11 A5U12E, PIN 11 A5U12E, PIN 12 A5U12F, PIN 14 A5U12F, PIN 14 A5U12C, PIN 7 A5U12B, PIN 6 A5U12B, PIN 6 A5U12B, PIN 6 A5U2B, PIN 6 A5U2B, PIN 6 A5U2B, PIN 6 A5U2B, PIN 5 A5U2A, PIN 3 A5U2A, PIN 3 A5U12A, PIN 2 A5U12A, PIN 2 A5U12A, PIN 9	C7A5 C7A5		
		,	VLP=0000		

- a. Set 1611A LINE switch to off position.
- b. Remove A7 and A8 boards from 1611A.
- c. Install A6 board on extender board A14.
- d. Jumper A6U31 pin 7 to pin 8.
- e. Connect signature analyzer probes to the following circuit points:

START	 	 A6U33,	Pin :	13
STOP	 	 A6U33,	Pin :	13

CLOCK	 	 	 	 	A 6TP3
GND	 	 	 	 	A6TP (GND)

f. Set signature analyzer controls as follows:

START]_
STOP	¬¯
CLOCK	┄┌

- g. Set 1611A LINE switch to on position.
- h. Verify that signature measurements called out in troubleshooting tree match following table.

Figure 8-4. 1611A Troubleshooting (Sheet 1 of 8)

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
201	VH	2A42 or 5216
press ABSOLUTE/ MNEMONIC key while reading signatures.	A6U15, PIN 12 A6U16, PIN 12 A6U17, PIN 12 A6U18, PIN 12 A6U19, PIN 12 A6U20, PIN 12 A6U21, PIN 12 A6U22, PIN 12	44AC or CC27 007A or 7U7H 2P47 or U140 05P3 or 9405 6FP5 or AF05 2P78 or H6CC 8235 or C811 A8CU or F81A
203	A6U31, PIN 9 A6U31, PIN 12 A6U32, PIN 4 A6U32, PIN 7 A6U32, PIN 9 A6U32, PIN 12 A6U33, PIN 4 A6U33, PIN 7 A6U33, PIN 9 A6U33, PIN 12	C51U or A8C3 4405 or 6405 U21A or 636C C0P6 or U40F A70H or 4P5F H597 or 461F 2HP1 or H24C 1892 or 2U1P PP62 or C6A7 7A70 or 72A0
204	A6U31, PIN 13 A6U31, PIN 10 A6U32, PIN 13 A6U32, PIN 10 A6U32, PIN 6 A6U32, PIN 3 A6U33, PIN 13 A6U33, PIN 10 A6U33, PIN 6 A6U33, PIN 6	4405 or 6405 C51U or A8C3 H597 or 461F A70H or 4P5F C0P6 or U40F U21A or 636C 7A70 or 72A0 PP62 or C6A7 1892 or 2U1P 2HP1 or H24C
205	A5U11, PIN 25 A5U11, PIN 26 A5U11, PIN 27 A5U11, PIN 29 A5U11, PIN 30 A5U11, PIN 31 A5U11, PIN 32 A5U11, PIN 33 A5U11, PIN 34 A5U11, PIN 35 A5U11, PIN 1 A5U11, PIN 1 A5U11, PIN 37 A5U11, PIN 37	C51U or A8C3 4405 or 6405 U21A or 636C C0P6 or U40F A70H or 4P5F H597 or 461F 2HP1 or H24C 1892 or 2U1P PP62 or C6A7 7A70 or 72A0 VHP or VHP VLP or VLP VHP or VHP
press ABSOLUTE/ MNEMONIC key while reading signatures	A6U15, PIN 11 A6U16, PIN 11 A6U17, PIN 11 A6U18, PIN 11 A6U19, PIN 11 A6U20, PIN 11 A6U21, PIN 11 A6U22, PIN 11	44AC or CC27 007A or 7U7H 2P47 or U140 05P3 or 9405 6FP5 or AF05 2P78 or H6CC 8235 or C811 A8CU or F81A

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
press ABSOLUTE/ MNEMONIC key while reading signatures.	A5U11, PIN 10 A5U11, PIN 9 A5U11, PIN 8 A5U11, PIN 7 A5U11, PIN 3 A5U11, PIN 4 A5U11, PIN 5 A5U11, PIN 6	44AC or CC27 007A or 7U7H 2P47 or U140 05P3 or 9405 6FP5 or AF05 2P78 or H6CC 8235 or C811 A8CU or F81A

SIGNATURE ANALYSIS PROCEDURE NO. 3.

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, A9, and A10 assemblies from 1611A.
 - c. Reinstall A6 on extender board A14.
 - d. Ground A5U3, pin 6.
- e. Connect signature analyzer probe to the following circuit points:

START	. A6TP4
STOP	. A6TP4
CLOCK	. A6TP7
GND A6T	P (GND)

f. Set signature analyzer controls as follows:

START	
STOP	
CLOCK ThOLD Release	
HOLD Release	d

- g. Set 1611A LINE switch to on position.
- h. Verify that signature measurements called out in troubleshooting tree match following table.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
301	VH	31 PA
302	A6U24, PIN 2 A6U24, PIN 5 A6U24, PIN 7 A6U24, PIN 10 A6U24, PIN 12 A6U24, PIN 15 A6U1, PIN 13 A6U27, PIN 9	8791 VL or VLP VL orVLP 8791 8791 8791 VL or VLP VL or VLP
303	A6TP5	4UF5

Service Model 1611A

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
304	A6U10, PIN 4 A6U10, PIN 5	81UF 9PP0
305	A6U27, PIN 13 A6U27, PIN 10	2F02 31PA and 0000 Alternating
306	A6U1, PIN 3 A6U1, PIN 4 A6U1, PIN 6 A6U1, PIN 14	5H5A HF38 7F9C 8AH9
307	A6U1, PIN 2 A6U1, PIN 5 A6U1, PIN 7 A6U1, PIN 10 A6U1, PIN 12 A6U1, PIN 15	7A8U 3P84 5CP4 408A VL 8F56
308	A6U14, PIN 5 A6U14, PIN 4 A6U14, PIN 3 A6U14, PIN 14 A6U14, PIN 13	F33H 047F 29C3 288A 186A
309	A6U14, PIN 2 A6U14, PIN 9 A6U14, PIN 7	VHP PU0H HPP7
310	A6U3, PIN 6 A6U2, PIN 2	HA0H PCP7
VH=31PA, VH	P=31PA, VL=0000	, VLP=0000

SIGNATURE ANALYSIS PROCEDURE NO. 4

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, A9, and A10 assemblies from 1611A.
 - c. Reinstall A6 on extender board A14.
 - d. Ground A5U3, pin 6.
- e. Connect signature analyzer probe to the following circuit points:

START		A6TP
STOP.		A6TP
GND	A6TP (GND

f Set signature analyzer controls as follows:

START	 	, , ,	 	 	 	
STOP	 	, , ,	 	 	 	. Г

CLOCK	΄.			 															Г		
HOLD			 ,	 				,]	R	e.	lε	a	ıs	eć	1

- g. Set 1611A LINE switch to on position.
- h. Verify that signature measurements called out in troubleshooting tree match following table.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
401	VH	7092
402	A6U15, PIN 12 A6U16, PIN 12 A6U17, PIN 12 A6U18, PIN 12 A6U19, PIN 12 A6U20, PIN 12 A6U21, PIN 12 A6U22, PIN 12	5U1F VL or VLP VL or VLP 5U1F 5U1F 5U1F VL or VLP VL or VLP
403	A6U33, PIN 12 A6U33, PIN 9 A6U33, PIN 7 A6U33, PIN 4 A6U32, PIN 12 A6U32, PIN 9 A6U32, PIN 7 A6U32, PIN 4 A6U31, PIN 12 A6U31, PIN 9 A6U31, PIN 7	H93A 5UA3 U869 57PC PPPP U6P0 05F9 065F 1U2U 2U8P VHP
404	A6U33, PIN 14 A6U33, PIN 11 A6U33, PIN 5 A6U33, PIN 2 A6U32, PIN 14 A6U32, PIN 11 A6U32, PIN 5 A6U32, PIN 2 A6U31, PIN 14 A6U31, PIN 11	H93A 5UA3 U869 57PC PPPP U6P0 05F9 065F 1U2U 2U8P
VH=7092, VH	P=7092, VL=0000,	VLP=0000

SIGNATURE ANALYSIS PROCEDURE NO. 5

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, and A10 assemblies from 1611A.
 - c. Reinstall A6 on extender board A14.
 - d. Ground A5U3, pin 6.

Figure 8-4, 1611A Troubleshooting (Sheet 2 of 8)

e. Connect signature analyzer probe to the following circuit points:

START	A5U11, Pin 36
STOP	A5U11, Pin 36
CLOCK	A 6 TP 3
GND	A5TP (GND)

f. Set signature analyzer controls as follows:

START	
STOP	
CLOCK	
HOLD Re	leased

- g. Set 1611A LINE switch to on position.
- h. Verify that signature measurements called out in troubleshooting tree match following table.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
501	VH	7 A 70
502	A6U33, PIN 12 A6U33, PIN 9 A6U33, PIN 7 A6U33, PIN 4 A6U32, PIN 12 A6U32, PIN 9 A6U32, PIN 7 A6U32, PIN 4 A6U31, PIN 12 A6U31, PIN 9 A6U31, PIN 7	6H44 PF45 7H02 355A 3P32 9A40 AAHA A077 F86A AF5U VLP

SIGNATURE ANALYSIS PROCEDURE NO. 6

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, and A10 assemblies from 1611A.

NOTE

The boards installed in the 1611A for the following measurements depend upon the Troubleshooting Tree. Follow the procedure given in the Troubleshooting Tree.

- c. Ground A5U3, pin 6.
- d. Connect signature analyzer probe to the following circuit points:

START	A5U11, Pin 36
STOP	A5U11, Pin 36

CLOCK	A5U11, Pin 18
GND	A5TP (GND)

e. Set signature analyzer controls as follows:

START	. L
STOP	
CLOCK	· 丁
HOLD Rel	eased

- f. Set 1611A LINE switch to on position.
- g. Verify that signature measurements called out in troubleshooting tree match following table.

MEASUREMENT		
NUMBER	TEST POINT	SIGNATURE
601	VH	755U
602	MEMORY BUS	
002	A5U9, PIN 13	VH
	A5U9, PIN 9	VH
	A5U9, PIN 1	$_{ m VH}$
	A5U9, PIN 5	VH
	A5U8, PIN 13	VH
	A5U8, PIN 9	VH
	A5U8, PIN 1	VH
	A5U8, PIN 5	VH
603	DATA BUS	
000	A5U20, PIN 8	H335
	A5U20, PIN 11	VLP
	A5U20, PIN 6	VLP
	A5U20, PIN 3	H335
	A5U10, PIN 8	H335
,	A5U10, PIN 11	H335
	A5U10, PIN 6	VLP
	A5U10, PIN 3	VLP
604	μP OUTPUTS	
	A5U11, PIN 10	H335
	A5U11, PIN 9	VLP
	A5U11, PIN 8	VLP
•	A5U11, PIN 7	H335
	A5U11, PIN 3	H335
	A5U11, PIN 4	H335
i	A5U11, PIN 5	VLP
	A5U11, PIN 6	VLP
605	ADDRESS BUS	
	A5U2, PIN 13	64HU
	A5U2, PINS 9, 8	9P9F
	A5U12, PINS 2, 3	HPF6
	A5U2, PINS 1, 3	UF9P
	A5U2, PINS 4, 6	A8H9
	A5U12, PINS 4, 5	2225
	A5U12, PINS 6, 7	0258
	A5U12, PINS 13,	
	14	H6PP

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
	A5U12, PINS 11,	074P
	A5U12, PINS 9,	0141
005	10 A5U21, PINS 11,	HU57
(Cont'd)	12	F1PF
	A5U21, PINS 9,	722H
	A5U21, PINS 2, 3	050U
	A5U21, PINS 4, 5	F44F
	A5U21, PINS 6, 7	A66A
606	A6U30, PIN 5	9P9F
	A6U30, PIN 4 A6U30, PIN 1	HPF6 A8H9
	A6U29, PIN 11	UF9P
607	A 6U29, PIN 10	89F1
	A6U30, PIN 6	H A 34
	A6U29, PIN 8	AU6C
608	A5U11, PIN 17	VLP
	A5U3, PIN 4	VHP
609	A8U17, PIN 15	VH
	A8U18, PIN 15	VH
	A8U19, PIN 15	VH
	A8U20, PIN 15 A8U21, PIN 15	VH VH
	A8U22, PIN 15	VH
610	A8U24, PIN 2	VH
	A8U24, PIN 1	VH
	A8U24, PIN 12	VH
	A8U24, PIN 13 A8U24, PIN 14	722H 050U
	A8U24, PIN 15	F44F
	A8U29, PIN 6	VL
	A8U29, PIN 8	A41U
	A8U29, PIN 5 A8U29, PIN 4	H335 VLP
	A8U29, PIN 10	AC99
611	A6U26, PIN 12	1079
	A6U26, PIN 10	VH
	A6U26, PIN 8	VH
	A6U26, PIN 6 A6U26, PIN 4	1079 1079
	A6U26, PIN 2	1079
	A6U29, PIN 2	VH
	A6U29, PIN 6	VH
612	A6U25, PIN 2	6526
	A6U25, PIN 5 A6U25, PIN 7	VL VL
	A6U25, PIN 10	6526
	A6U25, PIN 12	6526

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
(Cont'd)	A6U25, PIN 15 A6U28, PIN 9 A6U28, PIN 5	6526 VL VL
VH=755U, VH	P755U, VL=0000,	VLP=0000

SIGNATURE ANALYSIS PROCEDURE NO. 7.

- a. Set 1611A LINE switch to off position.
- b. Remove A8 board from 1611A and reinstall on Extender Board A14.
- c. Connect signature analyzer probes to the following circuit points:

START	A8U15, Pin 10 (TP7)
STOP	A8U15, Pin 10 (TP7)
CLOCK	A5U11, Pin 17 (DBIN)
GND	A8TP (GND)

d. Set signature analyzer controls as follows:

START	 	 	 		 				٠.	ل
STOP	 	 	 		 					l
CLOCK	 	 	 		 					L
HOLD .	 	 	 		 		R	el	ea	sed

e. Hold DON'T CARE key down and set LINE switch to on position. Keep DON'T CARE key held down for several seconds to force 1611A into loop to check error in hardware.

NOTE

"ERROR IN HARDWARE" message must be displayed during test no. 7 in order for correct signatures to occur. If a wrong key is pressed or circuit pins are shorted together, repeat the power up sequence.

 $\,$ f. Verify that signature measurements called out in troubleshooting tree match the following table.

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
701	VH	7C3U
702	A8U18, PIN 4 A8U18, PIN 7 A8U18, PIN 9 A8U18, PIN 12 A8U19, PIN 4 A8U19, PIN 7 A8U19, PIN 9 A8U19, PIN 12 A8U21, PIN 4	FAH7 3608 21FU A6C8 FAH7 3608 21FU A6C8 7081

Figure 8-4.

1611A Troubleshooting (Sheet 3 of 8)

MEASUREMENT TNUMBER	TEST POINT	SIGNATURE
	A8U21, PIN 7	$4 \mathrm{H2C}$
702	A8U21, PIN 9	68H2
(Cont'd)	A8U21, PIN 12	C799
	A8U22, PIN 4	7081
	A8U22, PIN 7 A8U22, PIN 9	4H2C 68H2
	A8U22, PIN 9 A8U22, PIN 12	C799
	710022, 1 111 12	0100
703	A8U18, PIN 15	51F1
	A8U18, PIN 1	693U
	A8U19, PIN 15	C83P
704	ACITY DIN 10	1000
704	A8U7, PIN 13 A8U7, PIN 3	1200 VLP
	A8U7, PIN 4	VH
	A8U7, PIN 11	VLP
	A8U7, PIN 10	VHP
	A8U29, PIN 13	P9UU
	A8U29, PIN 12	P9UU
	A8U29, PIN 9	P9UU
	A8U29, PIN 8	P9UU
	A8U2, PIN 5	VHP P9UU
	A8U2, PIN 4 A8U2, PIN 6	92F0
	A8U24, PIN 15	38H3
	A8U24, PIN 14	756 A
	A8U24, PIN 13	8AU8
705	A8U18, PIN 3 A8U18, PIN 6 A8U18, PIN 10 A8U18, PIN 13 A8U18, PIN 12 A8U18, PIN 5 A8U18, PIN 11 A8U18, PIN 14 A8U19, PIN 14 A8U19, PIN 6 A8U19, PIN 10 A8U19, PIN 13 A8U21, PIN 3 A8U21, PIN 13 A8U21, PIN 10 A8U21, PIN 13 A8U22, PIN 13 A8U22, PIN 13 A8U22, PIN 10 A8U22, PIN 13 A8U22, PIN 13 A8U22, PIN 13 A8U22, PIN 15 A8U22, PIN 5 A8U22, PIN 11	61UA 1A2U 58UF 73C9 5607 8F4A 6HF8 C936 5A3C 3420 4247 5864
700	A8U22, PIN 14	PAH5
706	A8U14, PIN 3 A8U14, PIN 4	AUUC 34U8
	A8U14, PIN 4 A8U14, PIN 5	9408 P727
	A8U14, PIN 6	CU13
	A8U9, PIN 3	HU89
L		

MEASUREMENT		
NUMBER	TEST POINT	SIGNATURE
	A8U9, PIN 4	6UF4
	A8U9, PIN 5	37P2
	A8U9, PIN 6	9CU1
	A8U6, PIN 3	AUUC
706	A8U6, PIN 4	34U8
(Cont'd)	A8U6, PIN 5	P727
(Cont a)	A8U6, PIN 6	CU13
	A8U10, PIN 3	HU89
	A8U10, PIN 4	6UF4
	A8U10, PIN 5	37P2
	A8U10, PIN 6	9CU1
	A8U13, PIN 3	AUUC
	A8U13, PIN 4	34U8
	A8U13, PIN 5	7P27
	A8U13, PIN 6	CU13
	A8U11, PIN 3	HU89
	A8U11, PIN 4	6UF4
	A8U11, PIN 5	37P2
	A8U11, PIN 6	9CU1
707	A8U6, U9, U10,	VH
	U11, U13, U14 PIN 1	
	A8U6, U9, U10,	VLP
	U11, U13, U14, PIN 2	
	A8U6, U9, U10,	VL
	U11, U13, U14, PIN 7	
	A8U14, U19, PIN 9	A69P
	A8U6, U10, PIN 9	50PA
	A8U11, U13, PIN 9	С86Н
708	A8U7, PIN 13	F4A8
	A8U7, PIN 12	1PU3
	¹ Λ8U16, PIN 15	1PU3
	A8U16, PIN 14	2F2P
	A8U16, PIN 13	0001
	A8U16, PIN 12	VLP
	A8U7, PIN 11	VLP
	A8U7, PIN 10	VHP
	A8U29, PIN 13	VHP
	A8U29, PIN 12	VHP
	A8U29, PIN 9	VHP
	A8U29, PIN 8 A8U2, PIN 1	VHP VHP
	A8U2, PIN 3	VHP
709	A8U5, PIN 15	VLP
	A8U5, PIN 5	VL
710	A8U2, PIN 13	VHP
110	A8U2, PIN 12	VH
	A8U2, PIN 11	VLP
	1.002, 111, 11	, 131

Service Model 1611A

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
711	A8U21, PIN 2 A8U21, PIN 5 A8U21, PIN 11 A8U21, PIN 14 A8U19, PIN 2 A8U19, PIN 5	H576 846A 965P HA14 45HC 47HH
712	A8U1, PIN 12 A8U1, PIN 13	VLP 4P18
713	A7U18, PIN 7 A7U18, PIN 5	VLP CU13
714	A7U18, PIN 9	VHP
715	A7U30, PIN 15 A7U30, PIN 14 A7U30, PIN 13 A7U30, PIN 12 A7U31, PIN 8 A7U31, PIN 11 A7U31, PIN 10 A7U31, PIN 9 A7U19, PIN 11 A7U19, PIN 10 A7U19, PIN 9	VLP VLP VHP VHP VHP VHP VLP VHP VHP VHP
716	A8U2, PIN 9 A8U2, PIN 10	VH 9443
717	A8U8, PIN 1 A8U8, PIN 11	VL VL
718	A8U4, PIN 13 A8U4, PIN 3	VL VL
719	A8U5, PIN 15	VLP
720	A7U18, PIN 11 A7U18, PIN 12	VL 7P27
721	A7U18, PIN 7 A7U18, PIN 5	VLP CU13
722	A7U20, PIN 14	VL
723	A7U33, PIN 11	VL
724	A7U18, PIN 12	7P27
725	A7U32, PIN 6 A7U32, PIN 10 A7U32, PIN 12	VL VL VL

MEASUREMENT NUMBER	TEST POINT	SIGNATURE
726	A7U33, PIN 3 A7U33, PIN 4 A7U33, PIN 5	VH VL VH
727	A7U18, PIN 13 A7U18, PIN 4 A7U18, PIN 12 A7U18, PIN 5	AUUC 34U8 7P27 CU13

SIGNATURE ANALYSIS PROCEDURE NO. 8

- a. Set 1611A LINE switch to off position.
- b. Remove A8 board from 1611A and reinstall on Extender Board A14.
- c. Connect signature analyzer probes to the following circuit test points.

START	A5U11, Pin 36
STOP	A5U11, Pin 36
CLOCK	
GND	

d. Set signature analyzer controls as follwos:

START	
STOP	วี
CLOCK	 Released

- e. Ground A5U3, pin 6.
- f. Set 1611A LINE switch to on position.

MESUREMENT NUMBER	TEST POINT	SIGNATURE
801	A8U15, PIN 10 A8U15, PIN 14 A8U15, PIN 12 A8U16, PIN 15 A8U16, PIN 14 A8U16, PIN 12 A8U16, PIN 12 A8U7, PIN 12 A8U7, PIN 13 A8U7, PIN 11 A8U7, PIN 11 A8U7, PIN 10 A8U29, PIN 13 A8U29, PIN 12 A8U29, PIN 9 A8U29, PIN 9	VL H335 C719 H335 F44F 050U H140 H335 A66A HPF6 AC99 A8H9 UF9P 9P9F
VH=755U, VH	A8U2, PIN 1 IP=755U, VL=0000	VHP), VLP=0000

Figure 8-4-1611A Troubleshooting (Sheet 4 of 8)

Model 1611A

B

≅ 600 ఒS

Figure 8-4. 1611A Troubleshooting (Sheet 6 of 8)

Figure 8-4.
1611A Troubleshooting (Sheet 7 of 8)

BLOCK DIAGRA

Each block in assembly in the areas are describe rear of this manu the personality m ment for a partic are described in a each personality m

POWER SUPPLY.

-12, and +5 volts

DISPLAY DRIVER

three digital signa deflection, vertical that drive the CRT also developed on t

KEYBOARD. Keybo of keys for enterin 1611A. The keybo through a keyboar

MICROPROCESSO BOARD SCANNER

contains an 8080A 1611A, a timing g signals used in the ning circuit which read the keyboar its instructions frocessor reads the personality pa A6, A7, and A8 a red).

RAM AND FORM

contains the rar display informati resulting from trac board. RAM is time and the display continuously scan

1611A-010-04-04-78

Figure 8-4. 1611A Troubleshooting (Sheet 8 of 8)

1611A-010-04-04-78

Figure 8-4. 1611A Troubleshooting (Sheet 8 of 8)

Service Model 1611A

BLOCK DIAGRAM DESCRIPTION

Each block in the diagram represents a board assembly in the 1611A. Blocks in the gray-shaded areas are described in detail on service sheets at the rear of this manual. The remaining blocks make up the personality module which configures the instrument for a particular microprocessor. These blocks are described in detail in a manual supplement for each personality module.

POWER SUPPLY. Power supply A2 provides the +2, -12, and +5 volts required for operation of the 1611A.

DISPLAY DRIVER AND CRT. Display Driver A3 uses three digital signals from A6 to generate horizontal deflection, vertical deflection, and blanking signals that drive the CRT. Dc high voltages for the CRT are also developed on this board.

KEYBOARD. Keyboard Assembly A4 contains a matrix of keys for entering measurement parameters into the 1611A. The keyboard is read by the microprocessor through a keyboard scanning circuit on A5.

MICROPROCESSOR, SYSTEM TIMING, AND KEY-BOARD SCANNER ASSEMBLY. This assembly (A5) contains an 8080A microprocessor that controls the 1611A, a timing generator that provides basic clock signals used in the instrument, and a keyboard scanning circuit which enables the microprocessor to read the keyboard. The 8080 microprocessor gets its instructions from ROM Board A10. The microprocessor reads the keyboard, monitors switches on the personality panel, and controls and monitors the A6, A7, and A8 assemblies via the buses (shown in red).

RAM AND FORMAT GENERATOR. Assembly A6 contains the random-access memory that stores display information and temporary information resulting from trace specifications entered on the keyboard. RAM is time shared between the microprocessor and the display character generator. The RAM is continuously scanned by the character generator

which converts display information stored in RAM into a video signal that drives the display. Horizontal and vertical sync signals that control Display Driver A3 are also generated on this board.

COMPARATOR. Comparator A7 consists of the trigger comparator and measurement control circuits. This board compares the information from the system under test with the trace specification and supplies the appropriate measurement signals to the A8 board.

DATA STORE AND COUNTERS. A8 contains the high-speed memory where data from the microprocessor under test is stored and counters that count time, delay, and trigger occurrences.

PERSONALITY BOARD. Personality Board A9 interfaces the 1611A to the microprocessor under test. It collects address, data, and status information during each machine or instruction cycle of the microprocessor under test and provides a clock that tells the A7 and A8 boards when to process the information. The Personality Board also contains circuitry which allows the 1611A to halt the microprocessor under test and a circuit which generates the test signals available at the PROBE TEST socket on A11.

ROM BOARD. ROM Board A10 provides a read-only memory which contains instructions for the microprocessor on A5 and data latches which store information from External Probe A12.

PERSONALITY PANEL. Personality Panel A11 contains switches that control measurement mode and display format. Panel indicators show status of the microprocessor under test. A probe test socket on the personality panel allows the operator to make a quick operational check of the instrument.

EXTERNAL PROBE. Probe A12 is used to monitor up to eight lines of information in the system under test.

MICROPROCESSOR PROBE. A13 is a dedicated probe that connects the 1611A to the microprocessor under test. It monitors the address, clock, data, and status lines of the microprocessor.

Model 1611A
Service

1611A-028-03-78

1611A-030-01-77

A1XA2 INTERCONNECTION LIST

ATXAZ INTERCONNECTION LIST				
	PIN	SIGNAL	ORIGIN	CONNECTS TO
A		COM	A2P1-A	A1C3
	1	NC		
В		COM	A2P1-B	A1C3
	2	COM	A2P1-2	ALL BOARDS
C		+5V	A 2P1-C	A1C3
	3	COM	A2P1-3	ALL BOARDS
D		+5V	A2P1-D	A1C3
	4	COM	A2P1-4	ALL BOARDS
E		-12V	A2P1-E	AlC2
	5	+5V	A2P1-5	ALL BOARDS
F		COM	A1P5-1	A2P1-F, A3P1, CRT GND
	6	+5V	A2P1-6	ALL BOARDS
Н		COM	A1P5-1	A2P1-H, A3P1, CRT GND
	7	+5V	A2P1-7	ALL BOARDS
J		+12V	A2P1-J	A1C1
	8	COM	A2P1-8	ALL BOARDS
K		+12V	A2P1-K	A3P1-2, A5P1-100 THROUGH A10P1-100
	9	-12V	A2P1-9	A5P1-99 THROUGH A10P1-99
L		-12V	A2P1-L	A1P4-1, A3P1-C
	10	XFMR SEC	A1P5-4	A2P1-10
M		COM	A2P1-M	A3P1-3
	11	XFMR SEC	A1P5-4	A2P1-11
N		COM	A2P1-N	A3P1-3
	12	XFMR SEC	A1P5-5	A2P1-12
P		+12V	A2P1-P	A3P1-K, R
	13	XFMR SEC	A1P5-5	A2P1-13
R		COM	A1P5-1	A2P1-R, A3P1, CRT GND
	14	XFMR SEC	A1P5-3	A2P1-14
S		COM	A1P5-1	A2P1-S, A3P1, CRT GND
	15	XFMR SEC	A1P5-2	A2P1-15

A1XA3 INTERCONNECTION LIST

PI	N	SIGNAL	ORIGIN	CONNECTS TO	
A		HVSY	A6P1-94	A3P1-A	
	1	VERT GND	A2P1	A 3P1-1	
В		NC			
	2	+12V	A2P1-K	A3P1-2	
C		-12V	A2P1-L	A3P1-C	
	3	COM	A2P1		
D		V YOKE	A3P1-D	A1P3-2	
	4	V YOKE	A3P1-4	A1P3-1	
E		H YOKE	A3P1-E	A1P3-3	
	5	H YOKE	A 3P1-5	A1P3-3	
F		H YOKE	A3P1-F	A1P3-3	
	6	H YOKE	A3P1-6	A1P3-3	
Н		H YOKE	A3P1-H	A1P3-4	
	7	H YOKE	A3P1-7	A1P3-4	
J		H YOKE	A3P1-J	A1P3-4	
	8	H YOKE	A3P1-8	A1P3-4	
K		+12V	A2P1-P	A3P1-K	
	9	COM	A1P5-1	A3P1-9	
			-		

Service Model 1611A

XA1A3 INTERCONNECTION LIST (CONT'D)

PIN		SIGNAL	ORIGIN	CONNECTES TO
L		HHSY	A6P1-95	A3P1-L
	10	HORIZ GND	A2P1	A3P1-10
M		GRID 1	A3P1-M	A1P4-4
	11	FOCUS	A3P1-11	A1P4-3
N		CATHODE	A3P1-N	A1P4-6
	12	GRID 2	A3P1-12	A1P4-5
P		+5V	A2P1	A3P1-P
	13	COM	A1P5-1	A3P1-13
R		+12V	A2P1-P	A3P1-R
	14	-12V	A2P1-L	A3P1-14
\mathbf{S}		VIDEO	A6P1-96	A3P1-S
	15	VIDEO GND	A 2P1	A3P1-15

A1 INTERCONNECTION LIST (XA5, XA6)

PIN NO.	SIGNAL	ORIGIN	CONNECTS TO
1	+5V	A 2P1	A5P1-1, A6P1-1
$\overline{2}$	+5V	A2P1	A5P1-2, A6P1-2
3	KS0	A4W1-15	A5P1-3
4	KS1	A4W1-2	A5P1-4
5	KS2	A4W1-14	A5P1-5
6	KS3	A4W1-3	A5P1-6
7	KS4		A5P1-6 A5P1-7
8	KS7	A4W1-13	
		A4W1-4	A5P1-8
9	KS GND	A4W1-1, 5, 12, 16	A5P1-9
10	KS GND	A4W1-1, 5, 12, 16	A5P1-10
11	GND on XA5, +5V on XA6	A2P1	A5P1-11, A6P1-11
12	GND on XA5,+5V on XA6	A2P1	A5P1-12, A6P1-12
13	SCAN D	A5P1-13	A4W1-10
14	SCAN A	A5P1-14	A4W1-7
15	SCAN B	A5P1-15	A4W1-8
16	SCAN C	A5P1-16	A4W1-9
17	SW0	A11W1-14	A5P1-17
18	SW1	A11W1-1	A5P1-18
19	SW2	A11W1-13	A5P1-19
20	SW3	A11W1-2	A5P1-20
21	SW4	A11W1-12	A5P1-21
22	SW5	A11W1-3	A5P1-22
23	SW6	A11W1-11	A5P1-23
$\frac{26}{24}$	SW7	A11W1-4	A5P1-24
25	NC	7 # T T II T - I	TAGE T-GT
26	NC		
20 27	GND on XA5, +5V on XA6	A2P1	A5P1-27, A6P1-27
28	GND on XA5,+5V on XA6	A2P1	A5P1-27, A6P1-27 A5P1-28, A6P1-28
29	GND GND	A2P1	
30			A5P1-29, A6P1-29
<i>ა</i> 0	GND	A2P1	A5P1-30, A6P1-30

Figure 8-7. Service Sheet 1, Main Board Assembly A1, Interconnections (Sheet 1 of 4)

Model 1611A

A1 INTERCONNECTION LIST (XA5, XA6) (CONT'D)

PIN NO.	SIGNAL	ORIGIN	CONNECTS TO
31 32 33 34 35	GND GND GND GND GND	A2P1 A2P1 A2P1 A2P1 A2P1	A5P1-31, A6P1-31 A5P1-32, A6P1-32 A5P1-33, A6P1-33 A5P1-34, A6P1-34 A5P1-35, A6P1-35
36 37 38 39 40	GND GND GND PRWCK GND	A2P1 A2P1 A2P1 A5P1-39 A2P1	A5P1-36, A6P1-36 A5P1-37, A6P1-37 A5P1-38, A6P1-38 A6P1-39 A5P1-40, A6P1-40
41 42 43 44 45	GND HµPCY GND GND NC	A2P1 A5P1-42 A2P1 A2P1	A5P1-41, A6P1-41 A6P1-42 A5P1-43, A6P1-43 A5P1-44, A6P1-44
46 47 48 49 50	LDSTOR PEXCK NC NC LLSRE	A8P1-46 A9P1-47 A5P1-50	A9P1-46 A10P1-47 A6P1-50
51 52 53 54 55	NC NC NC NC NC		
56 57 58 59 60	200 ns CK NC 1 μs CK 2 Hz CK M0	A5P1-56 A5P1-58 A6P1-59 A6P1, A8P1, A10P1-60	A6P1-56 A7P1-58, A9P1-58 A9P1-59 A5P1-60
61 62 63 64 65	$\begin{array}{c} \overline{M1} \\ \overline{M2} \\ \overline{M3} \\ \overline{M4} \\ \overline{M5} \end{array}$	A6P1, A8P1, A10P1-61 A6P1, A8P1, A10P1-62 A6P1, A6P1, A10P1-63 A6P1, A8P1, A10P1-64 A6P1, A8P1, A10P1-65	A5P1-61 A5P1-62 A5P1-63 A5P1-64 A5P1-65
66 67 68 69 70	M6 M7 D0 D1 D2	A6P1, A8P1, A10P1-66 A6P1, A8P1, A10P1-67 A5P1-68 A5P1-69 A5P1-70	A5P1-66 A5P1-67 A6P1-68, A7P1-68, A8P1-68 A6P1-69, A7P1-69, A8P1-69 A6P1-70, A7P1-70, A8P1-70
71 72 73 74 75	D3 D4 D5 D6 D7	A5P1-71 A5P1-72 A5P1-73 A5P1-74 A5P1-75	A6P1-71, A7P1-71, A8P1-71 A6P1-72, A7P1-72, A8P1-72 A6P1-73, A7P1-73, A8P1-73 A6P1-74, A7P1-74, A8P1-74 A6P1-75, A7P1-75, A8P1-75

A1 INTERCONNECTION LIST (XA5, XA6) (CONT'D)

PIN NO.	SIGNAL	ORIGIN	CONNECTS TO
76	LREAD	A5P1-76	A7P1-76, A8P1-76
77	HWRT	A5P1-77	A6P1-77, A7P1-77, A8P1-77
78	$\mathbf{A}0$	A5P1-78	A6P1-78, A7P1-78, A8P1-78, A10P1-78
79	A 1	A5P1-79	A6P1-79, A7P1-79, A8P1-79, A10P1-79
80	A 2	A5P1-80	A6P1-80, A7P1-80, A8P1-80, A10P1-80
81	A 3	A5P1-81	A6P1-81, A7P1-81, A8P1-81, A10P1-81
82	A4	A5P1-82	A6P1-82, A7P1-82, A10P1-82
83	$\mathbf{A}5$	A5P1-83	A6P1-83, A7P1-83, A10P1-83
84	$\mathbf{A6}$	A5P1-84	A6P1-84, A7P1-84, A10P1-84
85	A 7	A5P1-85	A6P1-85, A10P1-85
86	A 8	A5P1-86	A6P1-86, A10P1-86
87	A 9	A5P1-87	A6P1-87, A7P1-87, A8P1-87, A10P1-87
88	A 10	A5P1-88	A6P1-88, A7P1-88. A8P1-88, A10P1-88
89	A 11	A5P1-89	A6P1-89, A7P1-89, A8P1-89, A10P1-89
90	A 12	A5P1-90	A6P1-90, A7P1-90, A8P1-90, A10P1-90
91	A13	A5P1-91	A6P1-91, A7P1-91, A8P1-91, A10P1-91
92	LDLYL	A7P1-92	A8P1-92, A9P1-92
93	HDSBL	A7P1-93	A8P1-93
94	HTRG	A7P1-94	A8P1-94
95	HARM	A7P1-95	A8P1-95
96	LTPT	A8P1-96	A1U1-5
97	GND	A2P1	
98	GND	A2P1	
99	-12V	A2P1	
100	+12V	A2P1	

A1 INTERCONNECTION LIST (XA7, XA8, XA9P1, XA10P1)

PIN NO.	SIGNAL	ORIGIN	CONNECTS TO
1	+5 V	A2P1	
$\overline{2}$	+5 V	A2P1	
2 3	EXT 0	A10P1-3	A7P1-3, A8P1-3
	EXT 1	A10P1-4	A7P1-4, A8P1-4
4 5	EXT 2	A10P1-5	A7P1-5, A8P1-5
6	EXT 3	A10P1-6	A7P1-6, A8P1-6
7	EXT 4	A10P1-7	A7P1-7, A8P1-7
8	EXT 5	A10P1-8	A7P1-8, A8P1-8
8 9	EXT 6	A10P1-9	A7P1-9, A8P1-9
10	EXT 7	A10P1-10	A7P1-10, A8P1-10
11	INP D0	A9P1-11	A7P1-11, A8P1-11
12	INP D1	A9P1-12	A7P1-12, A8P1-12
13	INP D2	A9P1-13	A7P1-13, A8P1-13
14	INP D3	A9P1-14	A7P1-14, A8P1-14
15	INP D4	A9P1-15	A7P1-15, A8P1-15

PIN NO.	S
16 17 18 19 20	INF INF INF FLA
21 22 23 24 25	FLA FLA INF INF
26 27 28 29 30	INF INF INF INF
31 32 33 34 35	INF INF INF INF
36 37 38 39 40	INF INF INF MSO MSO
41 42 43 44 45	MS6 MS6 MS6 MS6 HR1
46 47 48 49 50	LDS PEX PHI NST NCI
51 52	HEI
53 54 55	HDS LRS NCI
56 57 58 59 60	ΗΡ(HDI 1 μs 2 Hz M0

A1 INTERCONNECTION LIST (XA5, XA6) (CONT'D)

STO

3P1-68 3P1-69 3P1-70

3P1-71 3P1-72 3P1-73 3P1-74 3P1-75

AT INTERCONNECTION LIST (AAS, AAO) (CONT D)			
PIN NO.	SIGNAL	ORIGIN	CONNECTS TO
76	LREAD	A5P1-76	A7P1-76, A8P1-76
77	HWRT	A5P1-77	A6P1-77, A7P1-77, A8P1-77
78	$\mathbf{A}0$	A5P1-78	A6P1-78, A7P1-78, A8P1-78, A10P1-78
79	A 1	A5P1-79	A6P1-79, A7P1-79, A8P1-79, A10P1-79
80	A 2	A5P1-80	A6P1-80, A7P1-80, A8P1-80, A10P1-80
81	A 3	A5P1-81	A6P1-81, A7P1-81, A8P1-81, A10P1-81
82	A 4	A5P1-82	A6P1-82, A7P1-82, A10P1-82
83	$\mathbf{A}5$	A5P1-83	A6P1-83, A7P1-83, A10P1-83
84	A 6	A5P1-84	A6P1-84, A7P1-84, A10P1-84
85	A 7	A5P1-85	A6P1-85, A10P1-85
86	A 8	A5P1-86	A6P1-86, A10P1-86
87	A 9	A5P1-87	A6P1-87, A7P1-87, A8P1-87, A10P1-87
88	A 10	A5P1-88	A6P1-88, A7P1-88. A8P1-88, A10P1-88
89	A 11	A5P1-89	A6P1-89, A7P1-89, A8P1-89, A10P1-89
90	A 12	A5P1-90	A6P1-90, A7P1-90, A8P1-90, A10P1-90
91	A 13	A5P1-91	A6P1-91, A7P1-91, A8P1-91, A10P1-91
92	LDLYL	A7P1-92	A8P1-92, A9P1-92
93	HDSBL	A7P1-93	A8P1-93
94	HTRG	A7P1-94	A8P1-94
95	HARM	A7P1-95	A8P1-95
96	LTPT	A8P1-96	A1U1-5
97	GND	A2P1	
98	GND	A2P1	
99	-12V	A2P1	
100	+12V	A2P1	

A1 INTERCONNECTION LIST (XA7, XA8, XA9P1, XA10P1)

PIN NO.	SIGNAL	ORIGIN	CONNECTS TO
1	+5 V	A2P1	
2	+5 V	A2P1	
3	EXT 0	A10P1-3	A7P1-3, A8P1-3
4	EXT 1	A10P1-4	A7P1-4, A8P1-4
4 5	EXT 2	A10P1-5	A7P1-5, A8P1-5
6	EXT 3	A10P1-6	A7P1-6, A8P1-6
7	EXT 4	A10P1-7	A7P1-7, A8P1-7
8	EXT 5	A10P1-8	A7P1-8, A8P1-8
9	EXT 6	A10P1-9	A7P1-9, A8P1-9
10	EXT 7	A10P1-10	A7P1-10, A8P1-10
11	INP D0	A9P1-11	A7P1-11, A8P1-11
12	INP DI	A9P1-12	A7P1-12, A8P1-12
13	INP D2	A9P1-13	A7P1-13, A8P1-13
14	INP D3	A9P1-14	A7P1-14, A8P1-14
15	INP D4	A9P1-15	A7P1-15, A8P1-15
10	1111 171	A31 1-10	

A1 INTERCONNECTION LIST (XA7, XA8, XA9P1, XA10P1) (CONT'D)

PIN	SIGNAL	NTERCONNECTION LIST (XA7, XA ORIGIN	CONNECTS TO
NO.	0.0		COMMESTS TO
16	INP D5	A9P1-16	A7P1-16, A8P1-16
17	INP D6	A9P1-17	A7P1-17, A8P1-17
18	INP D7	A9P1-18	A7P1-18, A8P1-18
19	FLAG 0	A9P1-19	A8P1-19
20	FLAG 1	A9P1-20	A8P1-20
		1101120	1101120
21	FLAG 2	A9P1-21	A8P1-21
22	FLAG 3	A9P1-22	A8P1-22
23	INP A0	A9P1-23	A7P1-23, A8P1-23
24	INP A1	A9P1-24	A7P1-24, A8P1-24
25	INP A2	A9P1-25	A7P1-25, A8P1-25
26	INP A3	A9P1-26	A7P1-26, A8P1-26
27	INP A4	A9P1-27	A7P1-27, A8P1-27
28	INP A5	A9P1-28	A7P1-28, A8P1-28
29	INP A6	A9P1-29	
30	INP A7	A9P1-30	A7P1-29, A8P1-29
30	INI A	A31 1-30	A7P1-30, A8P1-30
31	INP A8	A9P1-31	A7P1-31, A8P1-31
32	INP A9	A9P1-32	A7P1-32, A8P1-32
33	INP A10	A9P1-33	A7P1-33, A8P1-33
34	INP A11	A9P1-34	A7P1-34, A8P1-34
35	INP A12	A9P1-35	A7P1-35, A8P1-35
00	INI AIZ	A31 1-33	A7F1-55, A6F1-55
36	INP A13	A9P1-36	A7P1-36, A8P1-36
37	INP A14	A9P1-37	A7P1-37, A8P1-37
38	INP A15	A9P1-38	A7P1-38, A8P1-38
39	MSC 0	A8P1-39)	
40	MSC 1	A8P1-40	NOT USED WITH ALL OPTIONS
41	MCCO	A ODI AI	
41	MSC 2	A8P1-41	
42	MSC 3	A8P1-42	NOT USED WITH ALL
43	MSC 4	A8P1-43	1611A OPTIONS
44	MSC 5	A8P1-44'	
45	HRMC	A7P1-45	A8P1-45, A9P1-45
46	LDSTOR	A8P1-46	A9P1-46
47	PEXCK	A9P1-47	A10P1-47
48	PHLTEN	A8P1-48	A9P1-48
49	NSTOR	A9P1-49	A8P1-49
50	NCP	A9P1-50	A7P1-50
	1101	A31 1-00	A7P1-90
51	HENB	A7P1-51	NOT LICED WITH AT I
52		A7P1-52 } ————	NOT USED WITH ALL
53	HDSB	A7P1-53)	1611A OPTIONS
54	LRST	A7P1-54	A8P1-54
55	NCNT	A7P1-55	A8P1-55
56	НРСТС	A8P1-56	A 7D1 5C
57	HDLEN	A7P1-57	A7P1-56
58	1 μs CK	A5P1-58	A8P1-57
59	2 Hz CK	A6P1-59	A7P1-58, A9P1-58
60	MO	•	A9P1-59
00	TATO	A6P1, A8P1, A10P1-60	A5P1-60

A1 INTERCONNECTION LIST (XA7, XA8, XA9P1, XA10P1) (CONT'D)

	A1 INTERCONNECTION LIST (XA7, XA8, XA9P1, XA10P1) (CONT'D)				
PIN NO.	SIGNAL	ORIGIN	CONNECTS TO		
61	<u>M</u> 1	A6P1, A8P1, A10P1-61	A5P1-61		
62	$\overline{M2}$	A6P1, A8P1, A10P1-62	A5P1-62		
63	<u>M3</u>	A6P1, A8P1, A10P1-63	A5P1-63		
64	$\frac{M3}{M4}$	A6P1, A8P1, A10P1-64	A5P1-64		
65	$\frac{M4}{M5}$	A6P1, A8P1, A10P1-65	A5P1-65		
		7101 1, 7101 1, 71101 1-00	Adl 1-00		
66	<u>M6</u>	A6P1, A8P1, A10P1-66	A5P1-66		
67	$\overline{\mathbf{M7}}$	A6P1, A8P1, A10P1-67	A5P1-67		
68	D0	A5P1-68	A6P1-68, A7P1-68, A8P1-68		
69	D1	A5P1-69	A6P1-69, A7P1-69, A8P1-69		
70	D2	A5P1-70	A6P1-70, A7P1-70, A8P1-70		
71	D3	A 5P1-71	A6P1-71, A7P1-71, A8P1-71		
72	D4	A5P1-72	A6P1-72, A7P1-72, A8P1-72		
73	D5	A5P1-73	A6P1-73, A7P1-73, A8P1-73		
74	D6	A5P1-74	A6P1-74, A7P1-74, A8P1-74		
75	D7	A5P1-75	A6P1-75, A7P1-75, A8P1-75		
76	LREAD	A5P1-76	A7P1-76, A8P1-76		
77	HWRT	A5P1-77	A6P1-77, A7P1-77, A8P1-77		
78	A0	A5P1-78	A6P1-78, A7P1-78, A8P1-78, A10P1-78		
79		A5P1-78 A5P1-79	A6P1-79, A7P1-79, A8P1-79, A10P1-79		
80	A1	A5P1-79 A5P1-80			
80	A 2	A5P1-80	A6P1-80, A7P1-80, A8P1-80, A10P1-80		
81	A 3	A5P1-81	A6P1-81, A7P1-81, A8P1-81, A10P1-81		
82	A 4	A5P1-82	A6P1-82, A7P1-82, A10P1-82		
83	A 5	A5P1-83	A6P1-83, A7P1-83, A10P1-83		
84	A 6	A5P1-84	A6P1-84, A7P1-84, A10P1-84		
85	A 7	A5P1-85	A6P1-85, A10P1-85		
86	A 8	A5P1-86	A6P1-86, A10P1-86		
87	A 9	A5P1-87	A6P1-87, A7P1-87, A8P1-87, A10P1-87		
88	A10	A5P1-88	A6P1-88, A7P1-88, A8P1-88, A10P1-88		
89	A11	A5P1-89	A6P1-89, A7P1-89, A8P1-89, A10P1-89		
90	A12	A5P1-90	A6P1-90, A7P1-90, A8P1-90, A10P1-90		
	A 13	A F.D.1 O.1	ACD1 01 A7D1 01 A2D1 01 A10D1 01		
91		A5P1-91	A6P1-91, A7P1-91, A8P1-91, A10P1-91		
92	+5 V	A2P1			
93	+5 V	A2P1	A ODY A		
94	HVSY	A6P1-94	A3P1-A		
95	HHSY	A6P1-95	A3P1-L		
96	VIDEO	A6P1-96	A3P1-S		
97	GND	A2P1			
98	GND	A2P1			
99	-12 V	A2P1			
100	+12 V	A2P1			
					

A1P1 INTERCONNECTION LIST

PIN NO.	SIGNAL	ORIGIN	CONNECTS TO
1	KS GND	A4W1-1	A5P1-9, 10
2	KS1	A4W1-2	A5P1-4
3	KS3	A4W1-3	A5P1-6
4	KS7	A4W1-4	A5P1-8
5	KS GND	A4W1-5	A5P1-9, 10
6	+5 V	A2P1	A4W1-6
7	SCAN A	A5P1-14	A4W1-7
8	SCAN B	A5P1-15	A4W1-8
9	SCAN C	A5P1-16	A4W1-9
10	SCAN D	A5P1-13	A4W1-10
11	GND	A2P1	A4W1-11
12	KS GND	A4W1-12	A5P1-9, 10
13	KS4	A4W1-13	A5P1-7
14	KS2	A4W1-14	A5P1-5
15	KS0	A4W1-15	A5P1-3
16	KS GND	A4W1-16	A5P1-9, 10

A1P2 INTERCONNECTION LIST

SIGNAL	ORIGIN	CONNECTS TO
SW1	A11W1-1	A5P1-18
SW3	A11W1-2	A5P1-20
SW5	A11W1-3	A5P1-22
SW7	A11W1-4	A5P1-24
+5 V	A2P1	A11W1-5
+5 V	A2P1	A11W1-6
+5 V	A2P1	A11W1-7
GND	A2P1	A11W1-8
GND	A2P1	A11W1-9
GND	A2P1	A11W1-10
SW6	A11W1-11	A5P1-23
SW4	A11W1-12	A5P1-21
SW2	A11W1-13	A5P1-19
SW0	A11W1-14	A5P1-17
	SW3 SW5 SW7 +5 V +5 V +5 V GND GND GND SW6 SW4 SW2	SW3 SW5 SW7 A11W1-2 A11W1-3 SW7 A11W1-4 +5 V A2P1 +5 V A2P1 GND GND GND GND GND A2P1 GND A2P1 GND A2P1 SW6 A11W1-11 SW4 A11W1-12 SW2 A11W1-13

Service

A1P1 INTERCONNECTION LIST

TO

P1-68 P1-69 P1-70

P1-71 P1-72 P1-73 P1-74 P1-75

P1-77 P1-78, A10P1-78 P1-79, A10P1-79 P1-80, A10P1-80

P1-81, A10P1-81 0P1-82 0P1-83

P1-87, A10P1-87 P1-88, A10P1-88 P1-89, A10P1-89 P1-90, A10P1-90

P1-91, A10P1-91

0P1-84

PIN NO.	SIGNAL	ORIGIN	CONNECTS TO
1	KS GND	A4W1-1	A5P1-9, 10
$\overset{ ext{-}}{2}$	KS1	A4W1-2	A5P1-4
$\bar{3}$	KS3	A4W1-3	A5P1-6
4	KS7	A4W1-4	A5P1-8
5	KS GND	A4W1-5	A5P1-9, 10
6	+5 V	A2P1	A4W1-6
7	SCAN A	A5P1-14	A4W1-7
8	SCAN B	A5P1-15	A4W1-8
9	SCAN C	A5P1-16	A4W1-9
10	SCAN D	A5P1-13	A4W1-10
11	GND	A2P1	A4W1-11
12	KS GND	A4W1-12	A5P1-9, 10
13	KS4	A4W1-13	A5P1-7
14	KS2	A4W1-14	A5P1-5
15	KS0	A4W1-15	A5P1-3
16	KS GND	A4W1-16	A5P1-9, 10

A1P2 INTERCONNECTION LIST

PIN NO.	SIGNAL	ORIGIN	CONNECTS TO
1	SW1	A11W1-1	A5P1-18
$\overset{\circ}{2}$	SW3	A11W1-2	A5P1-20
3	SW5	A11W1-3	A5P1-22
4	SW7	A11W1-4	A5P1-24
5	+5 V	A 2P1	A11W1-5
6	+5 V	A2P1	A11W1-6
7	+5 V	A 2P1	A11W1-7
8	GND	A2P1	A11W1-8
9	GND	A2P1	A11W1-9
10	GND	A2P1	A11W1-10
11	SW6	A11W1-11	A5P1-23
12	SW4	A11W1-12	A5P1-21
13	SW2	A11W1-13	A5P1-19
14	SW0	A11W1-14	A5P1-17

Service Model 1611A

		02310	LUC
C1	E-3	U1	B-4
C2	F-3	XA2	D-3
C3	E-3	XA3	G-2
C4	A-3	XA5	A-2
P1	A-1	XA6	B-2
P2	A-2	XA7	B-2
P3	F-2	XA8	C-2
P4	F-3	XA9P1	C-2
P5	F-3	XA10P1	D-2
R1	D-1		

GRID LOC REF GRID DESIG LOC

Main Board A1 Component Locator (01611-66501)

Figure 8-7. Service Sheet 1, Main Board Assembly A1 Interconnections (Sheet 3 of 4)

Figure 8-7. Service Sheet 1, Main Board Assembly A1 Interconnections (Sheet 4 of 4)

PRINCIPLES OF OPERATION

+5V POWER SUPPLY. The +5V supply is a switching regulator with current limiting and over-voltage protection. The series element Q1 in the switching regulator is either saturated or in the cut-off condition. Therefore, very little power is dissipated in Q1. This keeps power supply efficiency high.

The regulator operates as follows: A2U1 compares output voltage of the power supply and a reference voltage established by the VREF output of A2U1 and divide network R4 through R8. When the output voltage drops below the reference voltage, A2U1 turns Q1 on through A2Q1. When Q1 is turned on, its emitter voltage is very close to the unregulated DC at the input. R4 then increases the voltage reference that is compared to the output voltage. As a result, the reference voltage is higher when Q1 is on than when it is off. This dual threshold determines peak-to-peak ripple of the supply. When Q1 is on, current is supplied to the load through L1. When the upper threshold is

met, A2U1 turns Q1 off and the emitter voltage of Q1 goes to -0.6 volts. When Q1 is off, the energy stored in L1 supplies current to the load. This current flows through CR11. When the output voltage of the regulator drops below the lower voltage reference threshold, Q1 again turns on and the cycle repeats.

The +5 volt regulator is protected against short circuits and overloads. When Q1 is on and the peak current through L1 reaches 5 amperes, the voltage between current limit and current sense of A2U1 is sufficient to cause A2U1 to turn Q1 off. After Q1 is turned off the current through L1 must fall below 3.75 amperes and output of the supply must fall below the lower voltage reference before Q1 is turned on again. As the load increases, the on time of Q1 decreases. If there is a malfunction in the regulator and the output of the +5 volt supply goes above 5.6 volts, the voltage developed across R18 will turn on SCR Q2 and blow fuse F3.

±12 V POWER SUPPLIES. The ±12 volt supplies are three-terminal voltage regulators. They are internally protected against thermal and current overloads.

Service Model 1611A

REF DESIG	GRID LOC	REF DESIG	GRID LOC	RE F DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC
C1	B-1	CR2	C-2	L1	C-3	R10	B-4	TP5	C-4
C2	B-2	CR3	C-2	L2	D-2	R11	B-4	TP6	C-4
C3	B-1	CR4	C-2	MP2	B-3	R12	D-3	TP7	D-4
C4	B-2	CR5	B-1	Q1	B- 4	R13	D-3	TP8	D-4
C5	B-4	CR6	B-2	Q2	C-4	R14	E-3	TP9	D-3
C6	D-3	CR7	C-2	R1	C-1	R15	D-2	TP10	D-4
C7	D-3	CR8	C-2	R2	C-1	R16	D-2	TP11	D-3
C8	C-4	CR9	D-2	R3	D-1	R17	C-4	TP12	E-4
C9	E-2	CR10	D-2	R4	E-3	R18	C 4	TP13	E-3
C10	E-2	CR11	B-3	R5	E-3	R19	E-2	TP14	E-2
C11	C-1	CR12	8-4	R6	E-3	TP1	B-4	U1	D-3
C12	D-1	F1	D-4	R7	E-3	TP2	B-4	VR1	D-3
C13	D-3	F2	E-4	R8	D-3	TP3	B-4	W1	A-4
CR1	C-2	F3	D-4	R9	B-4	TP4	C-4	W2	A-2
								W3	A-1

Power Supply A2 Component Locator (01611-66502)

Figure 8-8. Service Sheet 2, Low Voltage Power Supply A2 (Sheet 1 of 2)

8.20

Figure 8-8. Service Sheet 2, Low Voltage Power Supply A2 (Sheet 2 of 2)

PRINCIPLES OF OPERATION

Display Driver A3 generates signals to drive the display. The display is a magnetically-deflected, rasterscanned CRT. Display format is 24 lines of 32 characters each; each line consists of 10 horizontal scans of the CRT. Three signals from the A6 assembly, HVSY, HHSY, and VIDEO control the horizontal deflection, vertical deflection, and video amplifier cir-

HORIZONTAL SYNC. HHSY (horizontal sync) controls the horizontal deflection circuit and the highvoltage supply. The HHSY signal is applied to U5 where, under normal operation, it is inverted, and used to drive U6. If the HHSY signal has an incorrect repetition rate or pulse width, U5 prevents the outputs of U6 from being on continuously, which would result in damage to U6. U6 provides a current pulse to the primary of T1. The secondary of T1 drives the horizontal deflection and high voltage circuits.

HIGH-VOLTAGE SUPPLY. The HV supply provides dc voltages for the CRT, bias voltage for the horizontal deflection circuit, and +35 volts for the video ampli-

When Q9 is on, the current through L3 and the primary of T2 increases. When Q9 is turned off, energy stored in L3 and the primary of T2 rapidly charges C27. The result of the rapid charging is a large positive voltage across L3. This voltage is rectified by CR5 to provide the CRT accelerator grid bias. The positive voltage is also coupled to the secondaries of T2 where it is rectified.

HORIZONTAL DEFLECTION CIRCUIT. The secondary of T1 also controls the horizontal deflection circuit. Just before Q1 is turned off, current is flowing in the deflection coil and the beam is at the right side of the CRT. When Q1 is turned off, the deflection coil current changes direction as C7 charges rapidly. After all the energy is transferred to C7, it then discharges through the coil, causing another change in direction of coil current. The rapid charge and discharge of C7 causes a rapid retrace of the beam. At the end of retrace, the voltage across the coil attempts to go negative and charge C7 again. When voltage across the coil reaches a few volts positive, CR1 turns on and becomes the current path for the coil. This voltage clamping by CR1 causes a constant rate of change in coil current. This accounts for the first half of horizontal scan. CR1 is turned on at a positive voltage, rather than zero, to compensate for resistive elements in the coil current path. This keeps the rate of current change from being greater at the beginning of the sweep than at the center or right side of the sweep.

When the beam reaches center screen, the deflection coil current is zero. At this time, Q1 is turned on and the current flow changes direction. This deflects the CRT beam toward the right side of the screen until Q1 turns off. When Q1 turns off, retrace begins.

Compensation for the deflection rate at the sides of the CRT is accomplished using C8. During the first half of the sweep the charge on C8 increases slightly. At center screen, when Q1 is turned on, C8 is slowly discharged, until the beam reaches the end of the sweep. This reduces voltage across the deflection coil at the beginning and end of the sweep, reducing the rate of current change in the coil.

Size of the horizontal scan is controlled by R6, R6 controls the voltage available to the deflection circuit by decreasing the coil current rate of change. Since the period of the sync signal does not vary, the scan will be shorter if the deflection rate is decreased.

Horizontal position is accomplished by injecting a constant current into the deflection coil. R14 determines the current. U1 compares voltage drops across C12 and R4, and drives Q2 and Q3 until the voltage drops are equal. This establishes a constant current through R4.

VERTICAL DEFLECTION CIRCUIT. This circuit generates the vertical sweep and controls height, linearity. and position of the sweep. One vertical sweep of the CRT occurs every 13.7 msec. Vertical sync (HVSY) from A6 controls a ramp generator, which in turn controls current through the deflection coil. When HVSY goes high, Q4 is turned on; this discharges C14 and C15 through R20. HVSY remains high for 0.5 milliseconds (until capacitor charge returns to a few millivolts). When HVSY goes low, Q4 is turned off and C14 and C15 charge at a rate determined by R18 and R19. R18 controls amplitude of the vertical sweep. Since the period of HVSY is constant (13.7 milliseconds), R18 can be used to control the distance the beam is deflected within that period.

The voltage ramp developed at the junction of R20 and C14 is applied to U4. Part of the output of U4 is fed back to C14 and C15 to correct the voltage input of U4 which compensates the ramp generator. R23 controls the amount of feedback, which in turn controls the shape of the sweep generated. The ramp at the output of U4 drives current amplifier U3/Q5/Q6 which maintains a current through the emitter of Q6 that is proportional to the ramp voltage. U3 compares the ramp voltage to voltage across R32. U3 drives Q5 until the inputs to U3 are equal.

At the beginning of the sweep a very small current is flowing through Q6 and a large current is flowing from the ±5 volt supply through deflection coil L1. This cor-

responds with the beam being at the top of the display. As the Q6 current increases, more current from the +5 volt supply flows through Q6 and less through the deflection coil. Coil current decreases and Q6 current increases until the beam reaches center screen. At that time, coil current has reached zero and begins to flow in the opposite direction as Q6 current starts to draw current from the coil and the +5 volts supply. When the beam reaches the bottom of the screen, coil current is about the same as it was at the top of the screen but is flowing in the opposite direction.

At the end of the sweep, Q6 is turned off abruptly, and the current through R32 is reduced to zero. This sudden change in coil current results in a positive voltage pulse at the collector of Q6. This charges C19, using energy stored in the deflection coil. This causes the beam to return to center screen as C19 reaches its peak voltage. C19 then discharges through R62 and the deflection coil. Discharge current and the current through L2 change the coil current direction and return the beam to the top of the CRT. At this time, Q6 starts conducting again and the sweep starts over.

Compensation for deflection rate at the top and bottom of the CRT is accomplished by C20 in a manner similar to that used in the horizontal deflection circuit. Position control is maintained by injecting a constant current into the deflection circuit through R33.

VIDEO. This circuit amplifies the video signal to drive the CRT cathode. Gain control R61 is provided for contrast adjustment of the display.

TROUBLESHOOTING

Before attempting to repair the A3 assembly, verify that horizontal sync, vertical sync and video signals from A6 are present (see waveforms). If these signals are incorrect, see service sheet 6.

The presence of deflection currents can be checked at A6TP8 and TP9. Isolation of deflection circuits and positioning circuits can be accomplished by removing A6R4 or A6R33; this will cause only a slight shift in position of the display. The horizontal deflection circuit and the video amplifier require voltages from the high voltage supply. Always check the HV supply before troubleshooting deflection or video problems.

If A3U6, A3Q1 or A3Q9 should fail, check capacitors A3C2, A3C7 or A3C27. Open circuits or a decrease in capacitance can cause the peak voltage across U6 or Q9 to increase, causing breakdowns.

Deflection correction magnets on the coils are permanently attached and are not adjustable. However, they should be inspected for damage if display distortion is evident.

MONOSTABLE U5 TIMING EQUATION

R=kΩ C=pF T=ns

Service

REF DESIG	GRID LOC	D
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18	E-2 E-3 E-2 C-2 C-2 C-2 C-4 C-4 C-4 C-4 A-1 A-1 F-2 A-2	

screen, the deflection , Q1 is turned on and ion. This deflects the of the screen until Q1 race begins.

on rate at the sides of C8. During the first C8 increases slightly. rned on, C8 is slowly iches the end of the oss the deflection coil e sweep, reducing the

ntrolled by R6. R6 cone deflection circuit by of change. Since the ot vary, the scan will s decreased.

lished by injecting a ction coil. R14 detervoltage drops across Q3 until the voltage es a constant current

UIT. This circuit gentrols height, linearity, vertical sweep of the Vertical sync (HVSY) or, which in turn conon coil. When HVSY s discharges C14 and ns high for 0.5 millireturns to a few milliis turned off and C14 ined by R18 and R19. ctical sweep. Since the 3.7 milliseconds), R18 ce the beam is deflect-

the junction of R20 and e output of U4 is fed the voltage input of p generator. R23 conhich in turn controls l. The ramp at the outfier U3/Q5/Q6 which emitter of Q6 that is ge. U3 compares the 32. U3 drives Q5 until

a very small current is urrent is flowing from tion coil L1. This corresponds with the beam being at the top of the display. As the Q6 current increases, more current from the +5 volt supply flows through Q6 and less through the deflection coil. Coil current decreases and Q6 current increases until the beam reaches center screen. At that time, coil current has reached zero and begins to flow in the opposite direction as Q6 current starts to draw current from the coil and the +5 volts supply. When the beam reaches the bottom of the screen, coil current is about the same as it was at the top of the screen but is flowing in the opposite direction.

At the end of the sweep, Q6 is turned off abruptly, and the current through R32 is reduced to zero. This sudden change in coil current results in a positive voltage pulse at the collector of Q6. This charges C19, using energy stored in the deflection coil. This causes the beam to return to center screen as C19 reaches its peak voltage. C19 then discharges through R62 and the deflection coil. Discharge current and the current through L2 change the coil current direction and return the beam to the top of the CRT. At this time, Q6 starts conducting again and the sweep starts over.

Compensation for deflection rate at the top and bottom of the CRT is accomplished by C20 in a manner similar to that used in the horizontal deflection circuit. Position control is maintained by injecting a constant current into the deflection circuit through R33.

VIDEO. This circuit amplifies the video signal to drive the CRT cathode. Gain control R61 is provided for contrast adjustment of the display.

Û +275V BLANK DC ≈+35V +35V TTL +10V -- UNBLANK − 50 µs +40V +180V +28V - 50 μs +150V 13.7 ms 13.7 ms

TROUBLESHOOTING

Before attempting to repair the A3 assembly, verify that horizontal sync, vertical sync and video signals from A6 are present (see waveforms). If these signals are incorrect, see service sheet 6.

The presence of deflection currents can be checked at A6TP8 and TP9. Isolation of deflection circuits and positioning circuits can be accomplished by removing A6R4 or A6R33; this will cause only a slight shift in position of the display. The horizontal deflection circuit and the video amplifier require voltages from the high voltage supply. Always check the HV supply before troubleshooting deflection or video problems.

If A3U6, A3Q1 or A3Q9 should fail, check capacitors A3C2. A3C7 or A3C27. Open circuits or a decrease in capacitance can cause the peak voltage across U6 or Q9 to increase, causing breakdowns.

Deflection correction magnets on the coils are permanently attached and are not adjustable. However, they should be inspected for damage if display distortion is evident.

MONOSTABLE U5 TIMING EQUATION

T = 0.4 RC

Where

 $R=k\Omega$

C=pF

T=ns

Service Model 1611A

REF DESIG	GRID LOC	REF DESIG	GRID LOC	RE F DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC	RE F DESIG	GRID LOC
C1	E-2	C20	C-2	CR2	B-1	Ω7	B-3	R12	C-4	R30	B-2	R48	G-3	TP2	E-3
C2	E-3	C21	B-3	CR3	G-4	Q8	B-3	R13	C-4	R31	B-2	R 4 9	G-2	TP3	F-2
C3	E-2	C22	B-3	CR4	E-4	Q9	F-3	R14	C-3	R32	A-2	R50	G-2	TP4	F-2
C4	D-2	C23	C-3	CR5	F-4	Q10	F-2	R15	C-4	R33	B-3	R51	G-3	TP5	F-1
C5	C-2	C24	E-4	CR6	G-3	Q11	F-2	R16	B-1	R34	B-3	R52	F-2	TP6	F-2
C6	C-2	C25	F-4	CR7	D-2	Q12	G-2	R17	B-1	R35	C-3	R53	F-2	TP7	E-2
C7	D-2	C26	F-4	CR8	G-3	Q13	G-2	R18	A-2	R36	B-3	R54	F-1	TP8	D-2
C8	D-2	C27	F-4	CR9	G-2	R1	E-2	R19	B-2	R37	C-3	R55	G-2	TP9	B-2
C9	C-4	C28	G-3	L1	C-2	R2	E-2	R20	B-2	R38	B-3	R56	G-2	TP10	B-2
C10	C-4	C29	G-3	L2	B-4	R3	D-3	R21	B-2	R 3 9	B-3	R57	F-2	TP11	B-1
C11	C-4	C30	F-3	L3	F-4	R4	C-3	R22	B-2	R40	B-3	R58	G-2	TP12	C-3
C12	C-4	C31	F-3	L4	D-3	R5	D-2	R23	B-2	R41	B-3	R59	G-2	U1	C-4
C13	B-1	C32	G-3	L5	G-2	R6	D-3	R24	B-2	R42	C-3	R60	G-3	U2	B-3
C14	A-1	C33	F-3	Q1	E-2	R7	C-4	R25	B-2	R43	E-4	R61	F-1	U3	B-1
C15	A-1	C34	F-2	Q2	C-4	R8	C-4	R26	B-2	R44	F-3	R62	B-2	U4	B-2
C16	A-1	C35	G-2	Q3	C-4	R9	C-4	R27	B-2	R45	F-3	T1	E-3	U5	E-2
C17	F-2	C36	F-2	Q4	B-1	R10	C-4	R28	B-2	R46	F-3	Т2	D-4	U6	E-3
C18	A-2	C37	G-2	Q5	B-2	R11	C-4	R29	B-2	R47	F-3	TP1	F-4	VR1	E-2
C19	B-2	CR1	D-2	Ω6	B-3									VR2	E-2

ICs ON THIS SCHEMATIC

HP PART NO.	MFR PART NO.
1826-0254	MC1741SCP1
1020 1122	SN74LS122N DS3611N

Display Driver Assy A3 Component Locator (01611-66503)

Figure 8-9. Service Sheet 3, Display Driver Assembly A3 (Sheet 1 of 2)

Figure 8-9. Service Sheet 3.
Display Driver Assembly A3 (Sheet 2 of 2)

PRINCIPLES OF OPERATION. (Also refer to keyboard scanner circuit description on Service Sheet 5.)

KEYBOARD. The 1611A keyboard contains 39 switches wired in a matrix of 8 rows by 6 columns. Each switch has two, one-turn coils wrapped around a core. When a key is not pressed, the magnet is held so that its field permeates the core, saturating it completely; thus, there is very little coupling between coils. If the key is pressed, the magnet is released and the core and windings act as a transformer.

The primary (scan) windings of the switches are wired together in eight rows. All windings in each row are connected in series between R1/C3 and the buffered outputs of BCD-To-Decimal decoder U1. The secondary (sense) windings are wired together in 6 columns. All windings in each column are connected in series between ground and key-sense lines KS0-KS4, and KS7. The key-sense lines go to the Keyboard Scanner circuit on A5 (Service Sheet 5). Three separate ground paths are provided to switch columns for isolation between column grounds.

The rows of switches are scanned by U1. The outputs of U1 are buffered by U2-U5 to increase their current sink capability. The BCD inputs of U1 are driven by SCAN A-C from the three LSB outputs of the Keyscan Counter on A5. SCAN D functions as an enable for U1. Each time SCAN D goes low, SCAN A, B, and C are interpreted as a count, driving the selected output of U1 low.

When an output of U1 goes low, C3 is discharged through the row of switches connected to that output. This provides a sharp current pulse through the primary winding of each switch. Since the discharge rate of C3 is limited only by inductance of the switches, a pulse width of approx 100 ns is obtained. If a key in a row is pressed when that row is excited, a pulse is generated on the key-sense line for that column due to coupling between the primary and secondary windings in the switch. This pulse is routed to the Keyboard Scanner circuit on A5.

TROUBLESHOOTING

If the 1611A does not respond to a key or group of keys, check the junction of A4R1 and A4C1 for the proper waveform (shown on schematic). Adjust the oscilloscope to observe at least eight cycles. If a pulse is missing, a key may be open or one output of U2 through U5 may not be driving a row of switches. If no pulses are detected at the junction of R1/C3, and the inputs of U2 through U5 are being driven, one of the outputs of U2 through U5 is shorted. Disconnect A4W1 from Main Board A1 and use a current tracer and logic pulser to detect the shorted output.

If the waveform at R1/C3 is correct, check the output voltage of the keysense lines; It should be from 1 to 2 volts when a key is depressed. If there is no output voltage, a key switch in the monitored column is faulty.

Service Model 1611A

1611A-004-01-01-77

REF DESIG	GRID LOC								
C1	E-2	S8	F-3	S20	B-2	S32	B-1	S44	B-2
C2	E-2	S9	A-2	S21	B-2	S33	B-1	S45	C-2
C3	E-2	S10	B-2	S22	C-2	\$34	C-1	S46	F-2
R1	E-2	S11	B-2	S23	D-2	S35	C-1	S47	F-2
R2	F-2	S12	B-2	S24	D-2	S36	D-1	S48	A-1
S1	A-2	S13	C-2	S25	E-2	S37	D-1	U1	E-2
S2	B-2	S14	D-2	S26	C-2	S38	E-1	U2	E-2
S3	B-2	S15	D-2	S27	C-2	S39	F-1	U3	E-2
S4	C-3	S16	E-2	S28	D-2	S40	A-2	∪4	E-2
S5	D-3	S17	F-2	S29	D-2	S41	E-3	U5	E-2
S6	D-3	S18	A-2	S30	E-2	S42	F-3	W1	E-3
S7	E-3	S19	A-2	S31	A-1	S43	A-2		

Keyboard A4 Component Locator (01611-66504)

Figure 8-10. Service Sheet 4, Keyboard Assembly A4 (Sheet 1 of 2)

Model 1611A

PRINCIPLES OF OPERATION

MICROPROCESSOR AND I/O. 8080 Microprocessor U11 is an N-channel MOS device with a separate 16-line address bus and an 8-line bidirectional data bus. The microprocessor monitors both keyboard and personality panel switches and configures the 1611A circuits for selected operating modes and measurements. The microprocessor controls all data acquisition and data manipulation in the 1611A. In addition, it provides diagnostic routines for self-test, and generates error and status messages.

The data bus on the microprocessor chip is the only bidirectional bus in the 1611A. During microprocessor read operations, DBIN (U11, pin 17) enables NAND gates U8/U9. This routes all data on the $\overline{\text{MEMORY}}$ bus through to pins D0-D7 of the microprocessor. During microprocessor write operations, DBIN enables AND gates U10/U20. U10/U20 transfer data on pins D0-D7 of the microprocessor to the μP DATA bus (P1, pins 68-75). NAND gates U8/U9 are open collector devices which present a high impedance to microprocessor data lines during write operations.

Buffers U12/U21 and AND gates U2A/B/C buffer the microprocessor address bus to increase the limited drive capability of the MOS microprocessor. The μP ADDRESS bus accesses ROM (ROM Board A10) and RAM (Service Sheet 6). It also controls most hardware in the instrument.

Microprocessor Power-up Circuit. C3, R6/R7, and NAND gate U14C form the power-up circuit that resets the microprocessor to its startup routine at instrument turn on. The output of U14C holds the RESET pin of the microprocessor high for a time interval determined by RC network C3/R6/R7. The microprocessor program counter is cleared during this time. When RESET goes low, the microprocessor starts at location 0 in memory.

TIMING GENERATOR. System timing signals for the 1611A are provided by the Timing Generator. The Timing Generator consists of 10-MHz crystal Y1, decade counter U23, hex "D" latch U22, and associated gating.

The 10-MHz cystal oscillator drives decade counter U23. U23 divides the 10-MHz signal to 1 MHz (1 μ s CK) and 5 MHz (200 ns CK). The 1 μ s CK is used as the time base for 1611A timing measurements and as the clock for the probe Test Generator on A9. 200 ns CK is routed to the display generator circuit on A6 and to Hex "D" latch U22.

U22 is wired as a six-bit shift register. Eight-input NAND gate U13 provides a low to the first stage of the shift register only when outputs of the first five stages are high. Therefore only one bit of the six-bit

shift register can be low at any time. Thus, the shift register divides 200 ns CK by six and yields 833-kHz outputs. U22 and RS latch U14A/B provide the two-phase, non-overlapping clock for the microprocessor (ϕ 1 and ϕ 2), and other system timing signals required by the instrument. (see timing diagram on this service sheet.)

KEYBOARD SCANNER

Keyboard Scan. Keyboard scanning is accomplished by six-bit Keyscan Counter U17B/U17A/U7A, which is driven by 4-bit binary counter U7B. U7B divides the 833-kHz system clock down to 52 kHz. The three LSB's from the Keyscan Counter address the switch rows on the keyboard through BCD-to-decimal decoder A4U1 (Service Sheet 4). The three MSB's from the counter address the switch columns through 8-to-1 data selector U5. Thus the counter points to one column of switches and scans each switch in the column, then points to the next column of switches and scans each switch in that column. In this manner the Keyscan Counter repetitively scans the keyboard until a depressed key is sensed.

Key Sense. Operation of the keysense circuit is best explained by the following example: Assume the D key is pressed; keycode for D is 15 (octal). Thus, the switch is in row 5 of column 1 on the keyboard matrix (see Service Sheet 4). When the keyscan count reaches 001 101 (octal 15), data selector U5 is pointing to KS 1 (D1 input) and row 5 of the matrix is excited. Since D is held down, a pulse is generated on KS1 and applied to the base of U15Q2 (pin 6). Transistor arrays U15 and U16 form a differential amplifier The bases of Q4 in both arrays are connected in parallel. Base voltage of each transistor is determined by a voltage divider network consisting of a 200Ω resistor (P/O U27), three 6800Ω resistors (P/O U26), and R14. The voltage divider maintains the bases of the two transistors at +0.7 V. Therefore, the pulse (>+0.7 V) on KS1 turns U15Q2 on, forcing the D1 input of U5 low. Since the keyscan counter is pointing to the D1 input of U5, the W output goes high, triggering monostable U6. U6 clocks the Q output of D flip-flop U1A high and places the first stage of the keyscan counter in its hold state. This locks the counter at state 15 and clears D flip-flop U1B. The counter remains locked as long as D is depressed because the monostable is re-triggered each time SCAN D occurs and not allowed to time out.

The Keyscan Count (key code) is routed to the six LSB of the MEMORY bus (M0-M5) through quad 2-to-1 data selectors U18/U19. The two MSB's of MEMORY bus (M6, M7) come from monostable U6 and D flip-flop U1A. The first time the microprocessor reads the keyboard, both lines are high. The microprocessor sees 3158 on its data bus, indicating that key D is being read for the first time. At the end of the first read, the positive-going edge on

the select line of U18/U19 clears U1A by clocking U1B. Thus, on subsequent reads, the microprocessor sees 1158 on its data bus. The 1 in the MSD indicates that the information has been read but the key is still depressed. This condition is held until the D key is released. The monostable then times out and unlocks the counter.

The counter then continues to scan the keyboard until another depressed key is sensed. When the counter is scanning, a 0 in the MSD of the keycode indicates to the microprocessor that no key is depressed.

Data selectors U18/U19 are enabled during a microprocessor read operation by A14 (U11, pin 39). The data selectors select either the keyboard or the switch lines (SW0-SW7) from personality panel A11 under control of A15 (U11, pin 36).

TROUBLESHOOTING

Most failures on the A5 assembly result in a faulty display at turn-on. The troubleshooting tree in figure 8-4 should be used to isolate problems affecting the display.

The keyboard and personality panel can cause problems that will not be seen until the power-up routine is completed. If the 1611A fails to respond to personality panel switches, check the switches as follows: Toggle the HEXADECIMAL/OCTAL format switch between both positions and verify that A5U18 pin 3 changes levels. Toggle the TEST MODE switch while monitoring A5U19 pin 10. Verify that the signal changes levels. Also check A5U19 pin 15 for a low pulse. If the pulse is not present, check A5U4 and A5U2. Check A5U19 pin 1 for presence of a toggling signal. This signal determines whether the microprocessor reads data from the personality panel or the keyboard. If inputs are correct and the gating signal (U18/19 pin 15) and select signal (U18/19 pin 1) are present, U18 or U19 is bad.

If the 1611A does not respond to the keyboard or responds incorrectly, check U19 pins 1 and 15 as done for the personality panel switches. Verify that U6 pin 8 is high only when a key is depressed. Verify that the outputs of U17 and U7 do not toggle while U6 pin 8 is high. If the instrument does not respond to a key, check TP1 for presence of a clocking signal to U6. Check for a pulse at one of the inputs of U5. If no pulse is present, check keysense lines KS0-4 and KS7. A pulse with amplitude of more than one volt indicates that a key is depressed.

Incorrect key codes can be checked by pressing a key while monitoring the outputs of keyscan counter U17/U7 with a logic analyzer. The codes of each key is shown on the keyboard schematic (see Service Sheet 4). Incorrect codes can result from U5 selecting the wrong keysense line or from a fault on the keyboard. If all signals from the Keyboard Scanner are correct, replace U18 or U19.

DATA SELECTOR U5 TRUTH TABLE

	INPUTS						
	SELECT		STROBE				
С	В	A	S	Y	W		
X	X	X	Н	L	Н		
L	L	L	L	D0	$\frac{H}{D0}$		
L	L	Н	L	D1	$\overline{\mathrm{D1}}$		
L	H	L	L	D2	$\frac{\overline{\mathrm{D1}}}{\mathrm{D2}}$		
L	Н	Н	L	D3	$\overline{\mathrm{D3}}$		
Н	L	L	L	D4	$\overline{\mathrm{D4}}$		
Н	L	Н	L	D5	$\overline{\mathrm{D5}}$		
Н	Н	L	L	D6	$\overline{\mathrm{D6}}$		
Н	Н	Н	L	D7	$\overline{\mathrm{D7}}$		

BINARY COUNTER U7 TRUTH TABLE

		OUTF	TU	
COUNT	QD	QC	QB	QQ
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	H	L	Н
6	L	Н	Н	L
7	L	Н	H	Н
8	Н	L	L	L
9	Н	L	L	H
10	Н	L	Н	L
11	Н	L	Н	Н
12	Н	Н	L	L
13	Н	Н	L	H
14	Н	Н	Н	L
15	Н	H	H	H

DATA SELECTORS U18/U19 TRUTH TABLE

DAIA.	DATA GELEGICATO GIO, GIO TITOTA TABLE									
IN	PUTS	OUTPUT Y								
OUTPUT CONTROL	SELECT	A	В							
Н	X	X	X	Z						
L	L	L	X	Н						
L	L	Н	X	L						
L	Н	X	L	Н						
L	Н	X	Н	L						

Z=high impedance (off)

μP HARDWARE ADDRESSES

ADDRESS	FUNCTION
753008	Reads position of personality panel switches
1753008	Reads keyboard

Service

G 1611A-005-01-01-77

REF DESIG	GRID LOC	RE DES
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 R1 R2	B-4 B-4 A-2 C-4 F-3 C-4 E-3 C-2 B-2 F-1 E-3 C-4	DES R11 R11 R17 TP2 TP2 TP4 TP5 TP6 TP7 TP8
R3 R4 R5 R6 R7 R8 R9 R10 R11	C-4 C-2 C-3 A-3 B-3 A-2 B-4 B-4	U1 U2 U3 U4 U5 U6 U7 U8

MONOSTABLE U6 T = 0.4 RC

DECADE COUNTE

COUNT ENAI TC = CET • QC PRESET = PE RESET = MR

Figure 8.

ime. Thus, the shift and yields 833-kHz /B provide the twothe microprocessor ting signals required diagram on this

sing is accomplished by U17A/U7A, which is U7B. U7B divides to 52 kHz. The three is address the switch ghard BCD-to-decimal the three MSB's from a columns through counter points to one each switch in the column of switches umn. In this manner scans the keyboard

sense circuit is best nple: Assume the D 15 (octal). Thus, the 1 on the keyboard n the keyscan count lector U5 is pointing he matrix is excited. s generated on KS1 2 (pin 6). Transistor fferential amplifier s are connected in sistor is determined onsisting of a 200Ω resistors (P/O U26), intains the bases of Therefore, the pulse on, forcing the D1 n counter is pointing output goes high, cks the Q output of he first stage of the ate. This locks the) flip-flop U1B. The as D is depressed riggered each time o time out.

is routed to the six 0-M5) through quad The two MSB's of rom monostable U6 st time the microoth lines are high. its data bus, indior the first time. At sitive-going edge on

the select line of U18/U19 clears U1A by clocking U1B. Thus, on subsequent reads, the microprocessor sees 1158 on its data bus. The 1 in the MSD indicates that the information has been read but the key is still depressed. This condition is held until the D key is released. The monostable then times out and unlocks the counter.

The counter then continues to scan the keyboard until another depressed key is sensed. When the counter is scanning, a 0 in the MSD of the keycode indicates to the microprocessor that no key is depressed.

Data selectors U18/U19 are enabled during a microprocessor read operation by A14 (U11, pin 39). The data selectors select either the keyboard or the switch lines (SW0-SW7) from personality panel A11 under control of A15 (U11, pin 36).

TROUBLESHOOTING

Most failures on the A5 assembly result in a faulty display at turn-on. The troubleshooting tree in figure 8-4 should be used to isolate problems affecting the display.

The keyboard and personality panel can cause problems that will not be seen until the power-up routine is completed. If the 1611A fails to respond to personality panel switches, check the switches as follows: Toggle the HEXADECIMAL/OCTAL format switch between both positions and verify that A5U18 pin 3 changes levels. Toggle the TEST MODE switch while monitoring A5U19 pin 10. Verify that the signal changes levels. Also check A5U19 pin 15 for a low pulse. If the pulse is not present, check A5U4 and A5U2. Check A5U19 pin 1 for presence of a toggling signal. This signal determines whether the microprocessor reads data from the personality panel or the keyboard. If inputs are correct and the gating signal (U18/19 pin 15) and select signal (U18/19 pin 1) are present, U18 or U19 is bad.

If the 1611A does not respond to the keyboard or responds incorrectly, check U19 pins 1 and 15 as done for the personality panel switches. Verify that U6 pin 8 is high only when a key is depressed. Verify that the outputs of U17 and U7 do not toggle while U6 pin 8 is high. If the instrument does not respond to a key, check TP1 for presence of a clocking signal to U6. Check for a pulse at one of the inputs of U5. If no pulse is present, check keysense lines KS0-4 and KS7. A pulse with amplitude of more than one volt indicates that a key is depressed.

Incorrect key codes can be checked by pressing a key while monitoring the outputs of keyscan counter U17/U7 with a logic analyzer. The codes of each key is shown on the keyboard schematic (see Service Sheet 4). Incorrect codes can result from U5 selecting the wrong keysense line or from a fault on the keyboard. If all signals from the Keyboard Scanner are correct, replace U18 or U19.

DATA SELECTOR U5 TRUTH TABLE

	INPUTS					
	SELE	СТ	STROBE			
С	В	Α	s	Y	W	
X	X	X	Н	L	Н	
L	L	L	L	D0	$\frac{H}{D0}$	
L	L	Н	L	D1	D1 D2 D3	
L	Н	L	L	D2	$\overline{\mathrm{D2}}$	
L	Н	Н	L	D3	$\overline{\mathrm{D3}}$	
H	L	L	L	D4	$\overline{\mathrm{D4}}$	
H	L	H	L	D5	$\overline{\mathrm{D5}}$	
į H	H	L	L	D6	$\overline{\mathrm{D6}}$	
H	H I	Н	L	D7	$\overline{\mathrm{D7}}$	

BINARY COUNTER U7 TRUTH TABLE

	ОИТРИТ						
COUNT	QD	дС	QB	QQ			
0	L	L	L	L			
1	L	L	L	H			
2	L	L	H	L			
3	L	L	H	H			
4	L	Н	L	L			
5	L	H	L	H			
6	L	Н	Н	L			
7	L	H	H	H			
8	Н	L	L	L			
9	Н	L	L	H			
10	Н	L	Н	L			
11	Н	L	Н	H			
12	Н	Н	L	L			
13	Н	Н	L	Н			
14	Н	Н	Н	L			
15	Н	Н	H	Н			

DATA SELECTORS U18/U19 TRUTH TABLE

IN	PUTS			OUTPUT Y
OUTPUT CONTROL	SELECT	A	В	
Н	X	X	X	Z
L	L	L	X	Н
L	L	Н	X	L
L	Н	X	L	Н
L	Н	X	Н	L

Z=high impedance (off)

μP HARDWARE ADDRESSES

ADDRESS	FUNCTION
753008	Reads position of personality panel switches
1753008	Reads keyboard

Service Model 1611A

Figure 8-11. Service Sheet 5, Microprocessor and Key Board Scan Assembly A5 (Sheet 1 of 2)

Figure 8-11. Service Sheet 5, Microprocessor and Keyboard Scan Assembly A5 (Sheet 2 of 2)

PRINCIPLES OF OPERATION

RAM and Display Format Generator Assembly A6 consists of several circuits. 1k-by-1 RAMs U15 through U22 form a 1k-by-8 random access memory. This memory stores display information for the Character Generator and provides temporary data storage for μ P A5U11. The RAM is time shared between the μ P and the Character Generator. This is accomplished with RAM Address Select Switch U31-33. U31-33 are quad 2 line-to-1 line data selectors that form a 10-pole, two-position switch. The switch toggles between the μ P ADDRESS Bus and the output of the counter chain. The counter chain is made up of Display Column Counter U8/U7, Character Line Counter U6, and Display Line Counter U11/U12. The switch is controlled by H μ PCY.

The CRT displays 24 lines of 32 characters. Each character is displayed as a 10-by-6 dot matrix. The display has a horizontal raster scan with 240 scan lines (24 lines of characters X 10 lines per character). Each character displayed on the CRT corresponds to an address in RAM. The upper left character is stored in location 0. This character location corresponds with a display column count of 0 and a display line count of 0. The character next to the upper left character horizontally is stored in location 1 in RAM. The upperright character is stored in location 31; the second line of characters correspond with addresses 32 through 63 in RAM, etc. The lower right character corresponds to address 76710 in RAM. Address 76710 is read when the display column count equals 31 and the display line count equals 23. Character Line Counter U6 determines which of the ten lines of a character is being written on the CRT screen by the Character Generator.

The Character Generator provides the video signal for Display Driver Assembly A3. The Character Generator consists of 64-by-8-by-5 character generator ROM U13, 8-bit shift register U14, AOI U3, and data Latches U1, U4, and U24. The Horizontal and Vertical Sync Generators synchronize the raster scan with the displayed data. The 2-Hz clock generator blinks the display and drives the probe test generator on personality board A9.

RAM. The 1024-by-8 RAM is controlled by the μP when $H\mu PCY$ is high. When the μP is addressing RAM (HRADR=1), NAND gate U30B and data latches U25 and U28A/B are enabled. When the μP is writing to RAM (HWRT=1), U30B pulls the WE lines on the RAMs low, writing information on the μP DATA Bus into RAM. During μP read operations, the data outputs from RAM are latched into data latches U25 and U28A B on the positive-going edge of HDSPC (complement of $H\mu PCY$). Outputs of the latches are

applied to the $\overline{\text{MEMORY}}$ bus through open-collector buffers U26 and U29. If the μP is not addressing RAM (HRADR=0), write gate U30B is disabled and the data latches are held in the clear state. This prevents the open collector buffer outputs from driving the $\overline{\text{MEMORY}}$ bus.

During the time that $H\mu PCY$ is low, RAM is addressed by the five LSBs of the Display Column Counter and the five LSBs of the Display Line Counter. The Character Generator reads from RAM the character code for the character to be displayed. The information is latched in data latches U1 and U24 on the positive-going edge of $H\mu PCY$. D0 through D5 from RAM provides the character code. D6 determines whether the character is displayed in inverse video (D6=1) or normal video (D6=0). D7 determines whether or not the character is blinked on the display.

DISPLAY COLUMN COUNTER AND HORI-ZONTAL SYNC GENERATOR. Six-bit Display Column Counter U8/U7 keeps track of which of the 32 characters on the displayed line is being addressed. In addition to supplying the five LSB's of RAM address, the counter also controls horizontal blanking and the Horizontal Sync Generator.

When Display Column Counter MSB (U7, pin 13) goes high on count 32, the condition is latched in U4. This pulls pin 1 of AOI U3 high (HHBLK=1). HHBLK forces the video signal to the Display Driver Assembly high, blanking the CRT. At count 35, the Horizontal Sync Generator is set. This generates HHSY which initiates horizontal retrace. The counter continues to count up to 41. The additional time is required by the CRT for retrace. At count 41, the counter is reset through U9B and the Character Line Counter is incremented. The Display Column Counter starts over and a new trace is initiated. At count 16, the Horizontal Sync Generator is reset. This forces HHSY low, completing the cycle.

CHARACTER LINE COUNTER. Character Line Counter U6 keeps track of which of the 10 lines in the 10-by-6 dot character is being written on the display. The three LSB's of the counter output address the three line select inputs (A1-A3) of character generator U13 through data latch U1. The MSB of the counter output blanks lines 8 and 9 of the character dot matrix to provide spacing between lines of characters on the display. The MSB output also increments the Display Line Counter when the tenth line of a character is written on the display.

DISPLAY LINE COUNTER AND VERTICAL SYNC GENERATOR. 5-bit Display Line Counter U11/U12 keeps track of which of the 24 rows of characters on the display is being addressed. It supplies the five MSB's of RAM address and controls vertical blanking and the Vertical Sync Generator.

When the display line count reaches 24, the condition is detected by NAND gate U10B and latched in U4 through U1 and U2F. This places HVBLK in the high state. HVBLK forces VIDEO high through AOI U3, blanking the CRT. At a count of 25, the Vertical Sync Generator is set by the QC output of U6, the LSB of the Display Line Counter, and HVBLK. This sets HVSY high for 0.5 milliseconds, initiating vertical retrace. During vertical retrace, the count of 25 is detected by NAND gate U10C. U10C then resets the Display Line Counter to 0.

CHARACTER GENERATOR. The Character Generator consists of character generator ROM U13, 8-bit shift register U14, AOI U3, and data latches U1/U4/U24. The data latches store information needed by the character generator to display each character. U1 stores the three LSB's of character line count, vertical and character-line blanking information, and inverse video field information (D6 From RAM). U4 stores blanking and inverse video information from U1 and the horizontal blanking signal from the Display Column Counter. U24 stores the six-bit character code from RAM.

U13 is a 64-by-8-by-5 character generator ROM. It is capable of generating the 64 characters in the modified ASCII set. Each ROM character is an 8-by-5 dot matrix. The actual displayed character is a 10-by-6 matrix. The first line of each character is always blanked by U13. The last two lines of each character are blanked by Character Line Counter U6. The first column of each character is blanked by the H input of shift register U14 (see character dot-matrix on this Service Sheet).

Input A4 through A9 of U13 provide the 6-bit character code that tells U13 which character to output. Inputs A1 through A3 determine which line of the character is generated. A1 through A3 are addressed by the stored character line count from U1. The code for each line of a character is output to inputs G through C of shift register U14 in parallel format. The shift register outputs the character code in serial format in sequence G through C.

The cutput code for the number 9 shown in the matrix illustration is as follows:

CHARACTER	U13 CODE OUTPUT						
LINE NO.	05	04	03	02	01		
()	0	0	0	0	0		
1	0	1	1	1	0		
2	1	0	0	0	1		
3	1	0	0	0	1		
4	()	1	1	1	1		
5	()	()	0	0	1		
6	()	()	0	1	0		
-	1	1	1	()	()		

Character Dot Matrix (9)

On the negative-going edge of the first 200 ns CLK after LLSRE goes low, the shift register is parallel loaded from the character generator. The H output of the shift register is immediately presented at the output. Since H is tied to ground, the first dot in each character line is blanked. This provides the horizontal spacing between characters of the display. On the next clock, the shift register starts outputting the code in serial format beginning with G. After inputs G through C are shifted out, LLSRE loads the shift register with the code for the same character line of the next character in the display line. The character Generator writes line 0 of all 32 characters in a display line, then horizontal retrace occurs. The Character Generator then writes line 1 of all 32 characters in the display line, and so forth until line 7 of all 32 characters has been written on the display. At this point, the Character Line Counter is incremented to eight, inhibiting the shift register for two scan lines. This generates two blank lines on the display. The two blank lines provide the vertical spacing between characters on the CRT screen.

AOI U3 controls normal and inverse video, vertical blanking, and horizontal blanking. When normal video is displayed, HNORM enables U3 to Gate the H output of U14 through to Display Driver Assembly A3. When inverse video is displayed, U3 gates the H output of U14 through to A3. In this manner, VIDEO is inverted when inverse video is selected. AOI U3 blanks the display any time HVBLK or HHBLK is true.

Blinking characters are generated by alternately displaying the character in normal video for 32 scans, then blanking the character for 32 scans. This is accomplished by gating the blinking signal (D7) with the 2 Hz clock through U27B and U4. When the 2 Hz clock signal is low, D7 inhibits U14 from shifting. This results in the character being blanked.

Relative timing between events on the A6 assembly is shown in the timing diagram on this service sheet

TROUBLESHOOTING

Most problems on using the troubleshood and vertical sync prostate analyzer.

vertical sync P a clock, monitor Dis with a logic state an from 0 to 41 and the is correct, the verti A6U9, U34, or U4.

HORIZONTAL SYNas a clock, monitor counter should count

SHI

U31-:

	INF
STROBE	SELEC
Н	X
L	L
L	L
L	H
L	Н

U5/7/8/11/1

COUNT E
TC = ET •
PRESET =
RESET = N

ED BY U13

ED BY CTER OUNTER

00 ns CLK is parallel e H output nted at the dot in each s the horidisplay. On putting the fter inputs is the shift cter line of e character in a display Character aracters in 7 of all 32 ay. At this emented to scan lines. ay. The two

leo, vertical ormal video hate the H ssembly A3. ates the H ner, VIDEO ed. AOI U3 BLK is true. alternately or 32 scans, ns. This is signal (D7) 1. When the om shifting. 1.

ıg between

6 assembly rvice sheet.

TROUBLESHOOTING

Most problems on the A6 assembly can be isolated using the troubleshooting tree in figure 8-4. Horizontal and vertical sync problems can be found using a logic state analyzer.

VERTICAL SYNC PROBLEMS. Using A6U8 pin 2 as a clock, monitor Display Column Counter A6U7/U8 with a logic state analyzer. The counter should count from 0 to 41 and then start at zero again. If the count is correct, the vertical sync problem is caused by A6U9, U34, or U4.

HORIZONTAL SYNC PROBLEMS. Using A6U6 pin 7 as a clock, monitor Character Line Counter U6. The counter should count from 0 to 9 repetitively. Display

Row Counter U11/U12 can be checked using A6U11 pin 2 as a clock. U11/12 should count from 0 to 25 repetitively. If the count is correct, the horizontal sync problem is in U23, U34, U10, U1, or U4.

INVERSE VIDEO PROBLEMS. Data line D6 from A6U21 controls the inverse video field. After the power-up sequence, D6 should be toggling. If inverse video problems occur, trace the signal through U1, U2, and U4.

BLINKING PROBLEMS. Data line D7 from A6U22 controls blinking characters. After the power-up sequence, D7 should be toggling. Check the 2-Hz signal from U5 pin 13. If the blanking between display lines is correct and a blinking problem exists, then U22, U5, or U27 is bad.

U14 TRUTH TABLE

	INPUT					RNAL	OUTBUT	
SHIFT/	CLOCK	OI OOK	OFDIAL	PARALLEL	OUT	PUTS	OUTPUT	
LOAD	INHIBIT	CLOCK	SERIAL	A H	QA	QB	QH	
L	X	X	X	ā h	a	b	h	
Н	L	L	X	X	Q_{A0}	$ m Q_{B0}$	Q_{H0}	
Н	L	†	H	X	H	$Q_{\mathbf{A}0}$	Q_{Gn}	
Н	L	1	L	X	L	Q_{An}	Q_{Gn}	
Н	Н	1	X	X	Q_{A0}	Q_{B0}	Q_{H0}	

U31-33 TRUTH TABLE

	INPUTS					
STROBE	SELECT	Α	В			
H L L L	X L L H H	X L H X	X X X L H	L L H L H		

μP HARDWARE ADDRESSES

ADDRESS	FUNCTION
320008 through 333778	Accesses Display RAM
33400 ₈ through 33777 ₈	Accesses Temporary Storage

U5/7/8/11/12 COUNT EQUATIONS

COUNT ENABLE = EP • ET • PE TC = ET • QA • QB • QC • QD PRESET = \overrightarrow{PE} • CK+ RESET = \overrightarrow{MR} **U6 COUNT EQUATIONS**

COUNT ENABLE = $EP \bullet ET \bullet PE$ RC = $ET \bullet QA \bullet \overline{QB} \bullet \overline{QC} \bullet QD$ PRESET = $\overline{PE} \bullet CK+$ RESET = \overline{MR} Service Model 1611A

ICs ON THIS SCHEMATIC

REF DESIG	GR'D LOC	RE F DESIG	GR:D LOC	RE F DES!G	GRID LOC	REF DESIG	GRID LOC
C1	D-4	R2	D-2	U2	F-4	U19	C-3
C2	A-4	R3	C-2	U3	F-4	U20	C-3
C3	F-4	R4	D-2	U4	E-4	U21	B-3
C4	G-1	R5	D-2	U5	E-4	U22	B-3
C5	F-4	R6	E-4	U6	D-4	U23	A-3
C6	D-4	R7	G-3	U7	D-4	U24	G-2
C7	C-4	TP1	G-4	U8	C-4	U25	F-2
C8	A-4	TP2	A-4	U9	C-4	U26	E-2
C9	G-3	TP3	D-4	U10	B-4	U27	E-2
C10	E-3	TP4	A-4	U11	B-4	U28	E-2
C11	D-3	TP5	A-4	U12	A-4	U29	D-2
C12	B-3	TP6	E-4	U13	G-3	U30	C-2
C13	A-3	TP7	F-4	∪14	F-3	U31	C-2
C14	F-2	TP8	G-4	U15	E-3	U32	B-2
C15	B-2	TP9	E-4	U16	E-3	U33	B-2
C16	A-2	TP10	A-4	U17	D-3	U34	A-2
R1	D-2	U1	G-4	U18	D-3	VR1	G-3

IC REF DES	HP PART NO.	MFR PART NO.
U1,4,24,25	1820-1196	SN74LS174N
U2	1820-0683	SN74S04N
U3	1820-1285	SN74LS54N
U5,7,8,11,12	1820-1430	SN74LS161N
U6	1820-1429	SN74LS160N
U9,10,23	1820-1202	SN74LS10N
U13	1818-0237	2513
U14	1820-1042	SN74165N
U15-22	1818-0238	AM9102APC
U26,29	1820-1200	SN74LS05N
U27	1820-1158	SN74S51N
U28	1820-1112	SN74LS74N
U30	1820-1415	SN74LS13N
U31,32,33	1820-1470	SN74LS157N
U34	1820-1197	SN74LS00N

RAM and Display Format Generator Board A6 Component Locator (01611-66506)

Figure 8-12. Service Sheet 6, and Display Format Generator Assembly A6 (Sheet 1 of 2)

Model 1611A

NOTE: *THESE SIGNALS ARE GENERATED BY A5U11 (8080A) AND ARE INSTRUCTION DEPENDENT. THE RELATIONSHIP BETWEEN SIGNALS AND ϕ 1, ϕ 2 IS AS SHOWN ONLY WHEN SIGNAL IS TRUE.

**T1, T2, TW, T3: REFER TO 8080A MICROPROCESSOR STATES.

A5 Timing Diagram

Figure 8-12. Service Sheet 6, RAM and Display Format Generator Assembly A6 (Sheet 2 of 2)

PRINCIPLES OF OPERATION

The A7 assembly compares data from the microprocessor (μP) under test to the trace specification and generates signals that control the counters and memory on the A8 assembly. A7 also outputs status signals that are used by the internal μP to determine the status of a measurement. A7 can be divided into these functions: an Address Decoder, a Trigger Gating circuit which controls various signal outputs dependent on measurement mode set-up, and a RAM Comparator circuit that generates triggers when trace specifications shown on the display are met.

The Address Decoder detects addresses of the RAM comparator (370008-371378) and of measurement mode control latch A7U18 (361408). When 370008 thru 371378 is detected on the μP ADDRESS bus, information on the μP DATA bus is loaded into the RAMs on A7. When address 36140 is detected, A7U18 is clocked by A7U30. The clock causes the four least significant bits of the μP DATA bus to be latched to the output of A7U18. A7U18 and A7U33B generate five signals (HRMC, LRST, HTRC, HTI, HCT) that initialize circuitry on A7 and A8 and control the type of measurement (COUNT TRIGGERS, COUNT TIME or TRACE) made by the 1611A.

The RAM comparator uses random access memory to generate triggers that meet trace specifications shown on the display. Figure 1 shows a basic 4-bit

Figure 1. 4-Bit RAM Comparator

RAM comparator. Before the RAM comparator can generate triggers, it must first be loaded (written to) with a pattern that will provide a high output when the trigger condition is met and a low output when it is not. This is done in the 1611A by allowing μP A5U11 to control the data and address information to the RAM. To load the RAM, the μP first selects the B input to the data selector and drives the WE (write enable) input to the RAM low. This allows the μP to load RAM with a pattern that will detect the trigger selected. Table 1 shows how the RAM is loaded when the selected trigger is 5. Notice that the B input goes through all 16 possible combinations of a 4-bit input. This ensures that each cell in RAM is set to the

correct state. The data loaded is the complement of the output desired because the RAM shown in figure 1 has an inverted output. After loading is completed, the control μ P selects the A input to the data selector and puts the RAM in a READ MODE£ (WE=HIGH). When the input to A is equal to 5, output of the RAM will go high. All other inputs will produce a low output.

Table 1.

Data at B input	Data Loaded For TRIG = 5
0	1
1	1
2	1
3	1
4	1
5	0
6	1
7	1
8	1
9	1
10	1
11	1
12	1
13	1
14	1
15	1

A RAM comparator can also be used to generate a trigger when the input is less than or greater than a specific trigger. This is accomplished by changing the pattern loaded into the RAM by the control μP . Table 2 shows some examples of the loaded patterns for different triggers.

 $Table\ 2.$

Data at B	Data Loaded for Specified Trigger Condition						
	TRIG=5	TRIG>5	TRIG>5	TRIG<5	TRIG<5		
0	1	1	1	0	0		
1	1	1	1	0	0		
2	1	1	1	0	0		
3	1	1	1	0	0		
4	1	1	1	0	0		
5	0	1	0	1	0		
6	1	0	0	1	1		
7	1	0	0	1	1		
8	1	0	0	1	1		
9	1	0	0	1	1		
10	1	0	0	1	1		
11	1	0	0	1	1		
12	1	0	0	1	1		
13	1	0	0	1	1		
14	1	0	0	1	1		
15	1	0	0	1	1		

Figure 2. 16 Bit RAM Comparator (= ONLY)

A RAM comparator can easily be expanded to more than 4 bits by adding more DATA SELECTORS and RAM plus some additional decoding circuitry. Figure 2 shows a 16 bit RAM comparator.

This circuitry employs the wired AND capability of the open collector outputs of the RAMs. The decoder determines when the RAM comparator is to be loaded and which RAM will be loaded. Since the trigger specified may be different for each group of A inputs, the RAMs must be loaded separately. When the RAMs are loaded, the control μP selects the A inputs. When all four A inputs are equal to the selected trigger, the output will go high. Anytime the trigger condition is not met in one or more of the RAMs, the output will be pulled low.

The circuit shown in figure 2 works only when a trigger is needed for A inputs equal to the specified value. To permit ≥ or ≤ triggering, additional RAMs and gating are necessary. In the 1611A, 16-by-4 RAMs are used instead of 16-by-1 RAMs. This allows four different trigger patterns, for the same 4 input bits to be loaded in one RAM. Figure 3 shows a 16-bit compara-

tor connected for triggering using two outputs of a 16-by-4 RAM. All RAMs except the one looking at the four least significant bits must provide two outputs, one for equal to and one for greater than triggering. These additional outputs are needed because conditions exist where less than 16 bits determine whether the trigger conditions are met. For example, if the A3 inputs are the most significant and they are greater than the specified trigger value for those bits, then the > condition has been met regardless of the value of the remaining 12 bits. Gating on the RAM outputs allows the less significant bits to be compared if the most significant bits equal the specified trigger.

The RAM comparator on A7 has four outputs (HENB, HDSB, LTRG1, LTRG2). ENABLE (HENB) and DISABLE (HDSB) are derived from 32 inputs made up of the Input Address bus (INP A0-A15), Input Data bus (IND D0-D7) and external inputs (EXT0-7) from the μ P under test. Both outputs produce a high level only when the inputs are equal to the trigger specified. LTRG1 is used for = or < trigger conditions depending on the trace specification field selected. LTRG2 is used for

> only. LTR0 ternal infor ADDRS BUS and Externa

the address are the same RAM outputs it true before LTRG2 goes the data and of outputs for LTRG1 (= or

The RAM (HAND), that mines wheth are combined A7U3 to proof Address Bus Bus > specific

The Trigge the four trig

Figure 3. 16 Bit RAM Comparator (≥)

> only. LTRG1 and LTRG2 use address, data, and external information to detect a trigger. When the ADDRS BUS > and ADDRS BUS < are used with Data and External specifications, the > or < applies only to the address bus. Data and External trigger conditions are the same for LTRG1 and LTRG2. Table 3 shows the RAM outputs associated with each of the four outputs. All outputs in the HENB or HDSB columns must be true before HENB or HDSB goes high. LTRG1 or LTRG2 goes low when outputs of the RAM comparing the data and external inputs go high and a combination of outputs for the addresses go high that satisfy the LTRG1 (= or <) or LTRG2 (>) conditions.

puts of a

ing at the

outputs,

riggering.

ause con-

e whether

if the A3

e greater

, then the

lue of the

ts allows

the most

3 (HENB,

and DIS-

ade up of

Data bus

from the

evel only

I. LTRG1

g on the

used for

The RAM comparator has one output, A7U11 pin 11 (HAND), that is not data dependent. HAND determines whether the two triggers LTRG1, and LTRG2 are combined in a logical AND or a logical OR at A7U3 to produce HTRG. HAND is true only when the Address Bus ≤ specification is greater than the Address Bus ≥ specification.

The Trigger Gating circuit detects the presence of the four triggers and generates signals for the A8

assembly. Each time a 32-bit word is captured by the A9 assembly, it may produce a compare command (NCP). NCP is delayed 270 ns by A7U1A. It then clocks A7U1B which produces a low pulse (LCPCK) for 75 ns. The 270 ns delay allows time for the data from A9 to propagate through the data selectors and to access the RAMs. The negative edge of LCPCK clocks enable-disable latches U20A and U20B. If HENB or HDSB are true on this edge, they are latched by U20 (HENBL and HDSBL). On the positive edge of LCPCK, A7U6B is clocked. If the disable trigger HDSB was true on the negative edge of LCPCK, A7U6 pin 8 (B) (LDLYDS) will go low. In some measurement modes LDLYDS allows processing of an HTRG from A7U8 when HDSB occurs at the same time. During the time that LCPCK is low, A7U8 is enabled. If a trigger is produced by LTRG1 or LTRG2 during this time, A7U8 pin 8 (HTRG) goes high. If HAND is true, both LTRG1 and LTRG2 must be true before HTRG can go high. If HAND is low only one of the triggers is need-

The remaining signals on A7 are discussed in the measurement mode description on Service Sheet 8.

Model 1611A Service

Table 3.

	HENB	HDSB	LTRG1 =	LTRG1 <	LTRG2 =	LTRG2
A ₀ -A ₃	U14 (11)	U14 (5)	U14 (9)	U14 (9)	U14 (7)	U14 (7)
A ₄ -A ₇	U15 (9)	U2 (5)	U15 (5)	U15 (7)	U2 (9)	U2 (11)
A8-A11	U16 (9)	U3 (5)	U16 (5)	U16 (7)	U3 (9)	U3 (11)
A ₁₂ -A ₁₅	U17 (9)	U4 (5)	U17 (5)	U17 (7)	U4 (9)	U4 (11
D ₀ -D ₃	U12 (9)	U12 (5)	U12 (7)	none	U12 (7)	none
D4-D7	U13 (9)	U13 (5)	U13 (7)	none	U13 (7)	none
Ext 0-3	U10 (9)	U10 (5)	U10 (7)	none	U10 (7)	none
Ext 4-7	U11 (9)	U11 (5)	U11 (7)	none	U11 (7)	none

LTRG2: ≥ only

ICs ON THIS SCHEMATIC

IC REF DES	HP PART NO.	MFR PART NO.
UI	1820-1782	AM26S02PC
U2-4, 10-17	1816-0913	AM31L01PC
U5, 7	1820-1285	SN74LS54N
U6	1820-1112	SN74LS74N
U8, 32	1820-0691	SN74S64N
U9, 31	1820-1202	SN74LS10N
U18	1820-1195	SN74LS175N
U19	1820-1203	SN74LS11N
U20, 34	1820-1212	SN74LS112N
U21	1820-0681	SN74S00N
U22-29	1820-1470	SN74LS157N
U30	1820-1418	SN74LS42N
U33	1820-0686	SN74S11N
U35, 36	1810-0041	1810-0041

REF DESIG REF DESIG GRID LOC RE F DESIG GRID LOC C-2 R3 D-4 U19 B-2 C1 C2 C3 C4 C5 C6 D-4 B-4 B-4 A-3 B-2 F-4 U20 U5 U21 A-3 G-2 F-2 F-2 F-4 E-4 B-3 B-3 A-3 G-3 F-3 E-4 G-1 U7 U23 U8 U24 A-4 U9 C7 F-4 B-2 F-4 U25 F-2 C8 B-4 U10 U26 E-2 B-2 C9 R11 U11 U27 E-2 C10 U12 U28 D-2 F-3 U13 U29 D-2 C-4 C12 TP3 E-3 U30 C-2 C13 B-4 E-3 U31 B-2 B-2 C14 TP5 A-4 U16 D-3 U32 B-2 B-2 U1 D-3 U33 A-2 R2 E-4 C-4 U34 C-4 U2 C-3 C-4 U35

> Comparator Board A7 Component Locator (01611-66507)

Figure 8-13. Service Sheet 7, RAM Comparator Assembly A7 (Sheet 1 of 4)

Model 1611A

*ONLY WHEN 8080A ON A5 IS WRITING TO THE A6 ASSEMBLY (ADD=32000g-32777g)

- to CHARACTER ROW SELECT, BLANKING, BLINKING, INVERSE VIDEO AND CHARACTER ARE CLOCKED INTO U1 AND U24 FOR CHARACTER BEING DISPLAYED.
- t1 COUNTERS FOR DISPLAY ADDRESS ARE CLOCKED.
- t_2 DATA FROM RAM IS LATCHED INTO U25 AND U28 IF INTERNAL μ P IS ADDRESSING A6.
- t₃ BLANKING AND CLOCK INHIBIT (U14) SIGNALS ARE LATCHED INTO U4 FOR NEXT CHARACTER. DISPLAY DATA FROM CHARACTER ROM IS LOADED INTO SHIFT REGISTER U14.

A6 Timing Diagram

TROUBLESHOOTING

Problems on the A7 assembly can be isolated by exercising the 1611A with the front-panel PROBE TEST socket outputs. If the 1611A is not operating properly in a measurement mode (or modes), it can be checked by comparing 1611A operation to measurement mode theory and flowcharts on Service Sheet 8. The simpler Time Interval and Count Trigs modes should be verified for proper operation before troubleshooting Trace Trigs or Trace mode problems.

An improperly operating mode should be checked for proper initialization. This can be done by disconnecting the uP probe from the PROBE TEST socket and checking for an HRMC pulse and either HTRC, HTI, or HCT going high when an Execute key is pressed. "WAITING FOR ENABLE" should be displayed after the key is pressed, except in the Trace Single Step mode. Next, connect the μP probe to the PROBE TEST socket and check for proper execution. The status messages are useful in analyzing defective measurement modes (see Status Byte Table on Service Sheet 8). When triggering problems are apparent, set the FORMAT switch to HEXADECIMAL so that each digit in a trigger field corresponds to the four input bits of a specific RAM in the RAM Comparator. Before attempting to check the RAM outputs for problems, check the Address Decoder and Data Selector for proper operation when the μP is loading the comparator. This may be done using the signature analyzer test procedure on this service sheet. The timing of A7U1 should also be checked. Next, the outputs of the RAM Comparator (LTRG1, LTRG2, HENB, and HDSB) should be checked with DON'T CARE entered in the Trace specification. These signals should be checked only when A7U1 pin 10 is high. If the trigger output in question does not go to its true state with DON'T CARE entered, use a current tracer to isolate the bad RAM output. Refer to the RAM Output Table on this service sheet for the RAM outputs used to generate each trigger.

Trigger problems that are dependent on the entered trigger specification can be isolated to four bits by entering DON'T CARE for all but one digit and checking for a trigger. Once a defective trigger is found, check for presence of that trigger at the inputs of the data selectors. Inputs of the data selectors are connected directly to the High Speed Memory on the A8 assembly. Therefore, if the trigger is displayed in the list resulting from a Trace measurement, it is present at the Data Selector inputs. If the trigger is not displayed, the A9 assembly should be checked. If data at the inputs of the Data Selector is correct, check the outputs for the presence of the trigger with a logic state analyzer using the positive edge of A7U1 pin 10 as a clock. If the trigger is present, then the RAM for those bits is bad.

If no NCNT clocks are occurring, check A7U32, U9, U21, and U8. Also verify the outputs of enable/disable latches U6 and U20. The status message displayed can be used to determine why a measurement is not being completed. For incorrect counting and listing, see Service Sheet 8.

A7 SIGNATURE ANALYSIS PROCEDURE

- a. Set 1611A LINE switch to off position.
- b. Remove A6, A7, A8, A9 and A10 assemblies from 1611A.
 - c. Reinstall A7 on extender board A14.
 - d. Ground A5U3, pin 6.
- e. Set Signature Analyzer (SA) controls as follows:

START	
STOP	· · · · Г
CLOCK	T
HOLD	Release

f. Connect SA probe to following circuit points.

START	A5U11, pin 36
STOP	A5U11, pin 36
CLOCK	A5U11, pin 18
GND	A5TP9 (GND)

- g. Set 1611A LINE switch to on position.
- h. Monitor test points listed in the following table and verify signatures.

TEST POINT	SIGNATURE
v_{H}	755U
A7U30, Pin 1	AFA4
A7U30, Pin 2	382F
A7U30, Pin 3	C17 A
A7U30, Pin 4	AA 76
A7U30, Pin 5	9UF8
A7U30, Pin 6	5365
A7U30, Pin 7	5988
A7U31, Pin 12	C9C6
A7U31, Pin 10	4U68
A7U31, Pin 8	3РНР
A7U22-29, Pin 1	FFP9
A7U22-29, Pin 4	3107
A7U22-29, Pin 7	4968
A7U22-29, Pin 9	H3UC
A7U22-29, Pin 12	P600

Service Model 1611A

U22-29 TRUTH TABLE

,	ОИТРИТ Ү			
STROBE	SELECT	A	В	
H L L L	X L H H	X L H X	X X X L H	L H L H

μP HARDWARE ADDRESSES

ADDRESS	FUNCTION
361408	Controls A7 measurement mode
370008 through 371378	Loads RAM Comparator

U1 TIMING EQUATION

$$T \approx 0.33 \text{ RC } (1 + \frac{3.0)}{R}$$

Where $R = k\Omega$ C = PFT = ns

U30 TRUTH TABLE

NO.	ВС	D	iNF	UT		DECIMAL OUTPUT								
NO.	D	С	В	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
1	L	L	L	Η	Н	L	Η	Η	Η	Η	Η	Η	Η	Η
2	L	L	Η	L	Η	Η	L	Η	Η	Η	Η	Η	Η	Η
3	L	L	Η	Η	H	Η	Η	L	Η	Η	Η	Η	Η	Η
4	L	Η	L	L	Н	Η	Η	Η	L	Η	Η	Η	Η	Η
5	L	H	L	H	Н	Н	H	Н	Н	L	Н	Η	Н	H
6	L	Η	Η	L	Н	Η	Η	Η	Η	Η	L	Η	Η	Η
7	L	Η	Η	Η	Η	Η	Η	Η	Η	Η	Η	L	Η	Η
8	Н	L	L	\mathbf{L}	Н	Η	Η	Η	Η	Η	Η	Η	L	Η
9	Н	L	L	Η	Н	Η	Η	Η	Η	Η	Η	Η	Η	\mathbf{L}
	Н	L	Н	L	Н	Н	Н	Н	Η	Η	Н	Н	Н	H
۵	Н	L	Η	Η	H	Η	Η	Η	Η	Η	Η	Η	Η	Η
INVALID	Н	Η	L	L	H	Η	Η	Η	Η	Η	Η	Η	Η	Η
\$	H	Η	L	Η	H	Η	Η	Η	Η	Η	Η	Η	Η	Η
<u>Z</u>	H	Η	Η	L	Н	Η	Η	Η	Η	Η	Η	Η	Η	Η
	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

B U1, PIN 6 95ns ±5ns (ADJ A7C4) 200ns ±10ns (ADJ A7R10)

Some 1611A Options may require different adjustment of ROM Comparator Board A7. Refer to the Operating and Service Manual Supplement to determine if different timing adjustments are used.

NOTE

A7 Timing Diagram

Figure 8-13. Service Sheet 7, RAM Comparator Assembly A7 (Sheet 3 of 4)

Figure 8-13. Service Sheet 7, RAM Comparator Assembly A7 (Sheet 4 of 4) 8-33

PRINCIPLES OF OPERATION

Assembly A8 contains the High-speed Memory that stores data acquired from the system under test and the Delay and Pass Counters that count time, triggers, and delay. A8 also contains the interface between the memory and counter circuits and the internal microprocessor (μ P) DATA and MEMORY buses.

HIGH-SPEED MEMORY. 9-by-64 RAMS A8U25-28 make up the High-speed Memory. The memory stores 64 36-bit words. Each word consists of 16 bits of μP address, eight bits of μP data, eight bits of external information, and four flag bits. Each word corresponds to one memory transaction of the μP under test. The information stored in memory comes from Personality Board A9 and the External Latch on A10. The memory outputs to the μP on A5 through data selectors U17 and U20.

The High-speed Memory is controlled by Memory-state Counter U1 and LDSTOR. The counter addresses the location in memory that is being written to or read from. LDSTOR controls the write lines (W) of the memory. When LDSTOR goes low, data at the RAM inputs is stored at the location in memory addressed by the Memory-state Counter. When LDSTOR returns high, the memory counter is incremented through NAND gate U2C to the next address to be written to.

LDSTOR is derived through AOI U8B from NSTOR or HTRG, depending upon the measurement mode. Trigger store flip-flop U15B determines how LDSTOR is generated. In Trace Trigs mode, HTRG generates LDSTOR when HARM is true and the Memory-state Counter is not in an overflow condition. In Trace mode, LDSTOR is generated by NSTOR when binary counter U11 in the Pass Counter is not in an overflow condition. In Count Trigs and Time Interval measurement modes, the High-speed Memory and Memory-state Counter are not used.

During a Trace Trigs measurement, μP A5U11 monitors the Memory-state Counter through data selectors U19 and U21. This is accomplished when the μP reads from address 260038. A0 is inverted by U7F and applied to the S inputs of the data selectors. This low level selects the A inputs of the data selectors. The remaining address lines (shown in red) are decoded in the Address Decoder circuit to produce a low level at pin 4 of BCD-to-decimal decoder U24. This low enables U19 and U21. U19 and U21 drive the $\overline{\text{MEMORY}}$ bus with the complement of the memory state count. The $\overline{\text{MEMORY}}$ bus is complemented again on A5 so that the μP reads the true value of the memory state count.

After a Trace or Trace Trigs measurement is completed, µP A5U11 reads the data stored in the High Speed Memory. The μP reads the data by reading from address 274048, 274068, 274108, 274128, and 260078. Each of the first four addresses enables one of the four RAMS in Highspeed Memory to be read through the B inputs of data selectors U17 and U20. When the μP reads from address 260078, all four RAMs are enabled (pin 15 of each RAM is pulled low). The μP then reads the four flag bits through the A inputs of data selector U17. The μP controls the address in High-speed Memory that it is reading from through the Memorystate Counter. The counter is clocked by NMCCK when the μP writes to address 260038. Pin 3 of BCD-to-decimal decoder U16 goes low when it detects a write operation to address 260038. U16, pin 3 returns to a high level when HWRT goes false. This clocks the Memory-state Counter through U2C.

DELAY AND PASS COUNTERS. The Pass and Delay Counters count time or triggers in TIME INTRVL and COUNT TRIGS measurements. They also provide digital delay when TRIGGER OCCURRENCES and BEFORE TRIG or AFTER TRIG specifications are selected.

When a counting measurement is selected, the six binary counters are cascaded to make a 24-bit binary counter. The counter counts the number of NCNT clocks generated by Assembly A7. During Count Trigs or Time Interval measurements, μP A5U11 reads the value of the counter outputs and converts the binary number to BCD. This number is written to the display memory for display on the CRT screen. The μP reads the count from addresses 260008, 260018, and 260028. These addresses are detected by the Address Decoder which enables one pair of data selectors (U19/U21 or U18/U22) by pulling pin 15 of the appropriate data selectors low. The Address Decoder also selects the correct input of the data selector (A or B). Data on the inputs is routed to the μP over the MEMORY bus.

The ripple carry (RC) output of U11 is routed to JK flop-flop U15A. U15A detects a counter overflow condition. When an overflow occurs, (U11 RC output goes high), the Q output of U15A goes high (HCTOF). This status condition is read through data selector U20 when the microprocessor reads from address 260078. In the Trace mode, HCTOF indicates that the measurement is complete. In Count Trigs or Time Interval modes, HCTOF indicates that the maximum count capability has been exceeded.

A measurement can be delayed in the Trace mode, until up to 256 triggers have occurred (TRIGGER OCCURRENCE) and/or until up to 65 472 memory transactions have occurred (AFTER TRIG). The

number of trigger occurrences specified must be met before the memory transaction delay starts. If no Trigger Occurrence specification is selected, the 1611Λ defaults to 1. The default condition for memory transaction delay is 0.

The Pass Counter counts trigger occurrences in the Trace mode. The counter is preset by the μP such that when the specified number of trigger occurrences is reached, the RC output of U9 goes high. The μ P presets the counter by subtracting 1 from the specified trigger occurrences and complementing the results. This value is written to address 260008 on the DATA bus. When the Address Decoder detects this address, it forces the parallel enable inputs (pin 7) of U9 and U14 low. This enables the two binary counters to be preset to the value on the DATA bus when a clock in received at pin 2 of both counters. The clock is produced by U4B when the Address Decoder detects HWRT and address 260008, U4B clocks U9 and U14 through U2D. R3 and C3 delay the clock so that the parallel enable inputs will go low before the clock arrives at the counters. U4B

also provides the clock for the Delay Counter when it is preset.

The Delay Counter is preset in the same manner as the Pass Counter, except that 63 is added to the specified delay. This number is complemented by the μP and is loaded into the Delay Counter. This offsets the Delay Counter so that it overflows 64 counts after the point where the measurement starts. The overflow condition indicates to the μP that the measurement is complete. The Delay Counter must be loaded in two steps since it is a 16-bit counter and the μP DATA bus is only 8-bits wide. The 8 LSB's are preset when the μP writes to address 260018. The 8 MSB's are preset when it writes to address 260028.

A partial list may be displayed when using negative delay (BEFORE TRIG) due to the way the Delay Counter is loaded. A partial list is displayed when the 1611A does not acquire a sufficient number of memory transactions before the specified trigger. This causes the RC output of A8U11 to go high before the High-speed Memory has been written to 64 times.

Α

Service

DESIG	LOC	DESI
C1	C-4	TP3
C2	D-4	TP4
C3	D-4	TP5
C4	B-1	TP6
C5	B-4	TP7
C6	B-3	TP8
C7	D-3	U1
C8	G-3	U2
C9	C-2	U3
C10	B-1	U4
C11	E-2	U5
C12	E-2	∪6
CR1	F-3	U7
L1	F-3	∪8
R1	C-4	U9
R2	D-4	U10
R3	D-4	U11
R4	D-4	U12
TP1	A-4	U13
TP2	B-4	U14

rigs measurement is ne data stored in the reads the data by 48, 274068, 274108, of the first four four RAMS in Highough the B inputs of nen the µP reads from Ms are enabled (pin The μP then reads the nputs of data selector ldress in High-speed through the Memoryclocked by NMCCK ess 260038. Pin 3 of goes low when it address 260038. U16, nen HWRT goes false. ounter through U2C.

ERS. The Pass and or triggers in TIME measurements. They n TRIGGER OCCURor AFTER TRIG speci-

ant is selected, the six of make a 24-bit binary number of NCNT clocks buring Count Trigs or μ P A5U11 reads the address written to the display a written to the display a screen. The μ P reads 260008, 260018, and detected by the Adsone pair of data by pulling pin 15 of a constant of the data nputs is routed to the

of U11 is routed to JK a counter overflow curs, (U11 RC output A goes high (HCTOF). through data selector reads from address CTOF indicates that 1 Count Trigs or Time es that the maximum led.

ed in the Trace mode, occurred (TRIGGER up to 65 472 memory AFTER TRIG). The number of trigger occurrences specified must be met before the memory transaction delay starts. If no Trigger Occurrence specification is selected, the 1611A defaults to 1. The default condition for memory transaction delay is 0.

The Pass Counter counts trigger occurrences in the Trace mode. The counter is preset by the μP such that when the specified number of trigger occurrences is reached, the RC output of U9 goes high. The µP presets the counter by subtracting 1 from the specified trigger occurrences and complementing the results. This value is written to address 260008 on the DATA bus. When the Address Decoder detects this address, it forces the parallel enable inputs (pin 7) of U9 and U14 low. This enables the two binary counters to be preset to the value on the DATA bus when a clock in received at pin 2 of both counters. The clock is produced by U4B when the Address Decoder detects HWRT and address 260008. U4B clocks U9 and U14 through U2D. R3 and C3 delay the clock so that the parallel enable inputs will go low before the clock arrives at the counters. U4B

also provides the clock for the Delay Counter when it is preset.

The Delay Counter is preset in the same manner as the Pass Counter, except that 63 is added to the specified delay. This number is complemented by the μP and is loaded into the Delay Counter. This offsets the Delay Counter so that it overflows 64 counts after the point where the measurement starts. The overflow condition indicates to the μP that the measurement is complete. The Delay Counter must be loaded in two steps since it is a 16-bit counter and the μP DATA bus is only 8-bits wide. The 8 LSB's are preset when the μP writes to address 260018. The 8 MSB's are preset when it writes to address 260028.

A partial list may be displayed when using negative delay (BEFORE TRIG) due to the way the Delay Counter is loaded. A partial list is displayed when the 1611A does not acquire a sufficient number of memory transactions before the specified trigger. This causes the RC output of A8U11 to go high before the High-speed Memory has been written to 64 times.

Service Model 1611A

Data Store and Counters Board A8 Component Locator (01611-66535)

ICs ON THIS SCHEMATIC

C1	C-4			DESIG	LOC
	C-4 1	TP3	B-4	U15	F-3
C2	D-4	TP4	B-4	U16	G-3
СЗ	D-4	TP5	C-4	U17	A-2
C4	B-1	TP6	C-4	U18	B-2
C5	B-4	TP7	G-4	U19	C-2
C6	B-3	TP8	A-3	U20	D-2
C7	D-3	U1	A-4	U21	D-2
C8	G-3	U2	B-4	U22	E-2
C9	C-2	U3	C-4	U23	F-2
C10	B-1	∪4	D-4	U24	G-2
C11	E-2	U5	D-4	U25	A-2
C12	E-2	U6	E-4	∪26	B-2
CR1	F-3	U 7	F-4	U27	D-2
L1	F-3	U8	G-4	U28	E-2
R1	C-4	U9	A-3	U29	G-2
R2	D-4	U10	B-3	U30	A-3
R3	D-4	U11	C-3	U31	B-3
R4	D-4	U12	D-3	U32	A-2
TP1	A-4	U13	D-3	U33	A-2
TP2	B- 4	U14	E-3	ļ	

IC REF DES	HP PART NO.	MFR PART NO.
U1	1820-1464	SN74393N
U2	1820-1425	SN74LS132N
U3	1820-1144	SN74LS02N
U4	1820-1423	SN74LS123N
U5	1820-1212	SN74LS112N
U6, 9-11,	1820-1430	SN74LS161N
13, 14		
U7	1820-1199	SN74LS04N
U8	1820-1210	SN74LS51N
U12	1820-1130	SN74S13N
U15	1820-1116	SN74109N
U16, 24	1820-1418	SN74LS42N
U17-22	1820-1439	SN74LS258N
U23	1820-1201	SN74LS08N
U25-28	1816-0728	82S09I
U29	1820-1205	SN74LS21N
U30	1820-1112	SN74LS74N
U31	1820-1439	SN74LS258N
U32, 33	1810-0055	1810-0055

Figure 8-14. Service Sheet 8, Data Storage and Counter Assembly A8 (Sheet 1 of 6)

Figure 8-14. Service Sheet 8, Data Storage and Counter Assembly A8 (Sheet 2 of 6)

TROUBLESHOOTING

The PROBE TEST socket output should be used as a test signal for isolating problems on A8. The simpler Time Interval and Count Trigs measurements should be verified before Trace and Trace Trigs. When a measurement mode is operating incorrectly, remove the test signal and restart the measurement. Initial conditions described in the Measurement Mode theory on this service sheet should be checked.

The Memory State Counter, Pass Counter, and Delay Counter outputs can be checked for a reset condition or the correct preset value. If initial conditions are not correct, the output of the Address Decoder controlling the device should be checked. To continuously generate initialization signals, it is necessary to repeatedly press the STOP key and then the EXECUTE key being checked. If desired, the Address Decoder can be checked with a signature analyzer (see procedure on this service sheet).

After initialization is checked, connect the Probe Test Generator and check status bits and counters. Data being written on the MEMORY bus by a data selector can be checked when pin 15 of the data selector is low. Note that the data selector output is the complement of the input. The Delay and Pass Counter chain can be checked four bits at a time by monitoring the QA, QB, QC, and QD outputs with a logic state analyzer and clocking on pin 10 of the counter (use pin 2 for U14). The Time Interval measurement with no trigger specification provides a good clock for this check. The outputs should count from 0 to 15 on each counter. The Memory State Counter sequence can be checked in the Trace mode by viewing the entire 64-line display in absolute mode and verifying that the list progresses from 0000 through FFFF in sequence. Lines in the listing that are partially correct usually indicate a bad RAM in Highspeed Memory or a bad data selector.

Inputs to the RAMs can be checked with a logic state analyzer using the negative edge of LDSTOR as a clock. Another easy check is to key in a trigger value equal to the data input being checked and verify that the 1611A triggers. This indicates presence of the data, since the inputs to the RAM Comparator are the same lines that are connected to the High-speed Memory.

A8 SIGNATURE ANALYSIS PROCEDURE.

- a. Set 1611A LINE Switch to off position.
- b. Remove A8 assembly and reinstall it on extender board A14.
 - c. Ground A5U3, pin 6.
 - d. Set Signature Analyzer (SA) controls as follows:

START	
STOP	Ē
CLOCKHOLD	Released

e. Connect SA Probe to following circuit points:

START	A5U11, Pin 36
STOP	A5U11, Pin 36
CLOCK	A5U11, Pin 18
GND	A5TP9 (GND)

- f. Set 1611A LINE switch to on position.
- g. Monitor test points listed in the following table and verify signatures.

TEST POINT	SIGNATURE*
	17
A8U2, Pin 1	VHP
A8U2, Pin 2	A41U
A8U2, Pin 3	H140
A8U2, Pin 4	A41U
A8U2, Pin 5	V_{LP}
A8U2, Pin 6	v_{H}
A8U29, Pin 6	$v_{\rm L}$
A8U7, Pin 3	VHP
A8U7, Pin 4	$ m V_{LP}$
A8U7, Pin 10	AC99
A8U7, Pin 12	H335
A8U16, Pin 1	897C
A8U16, Pin 2	8C4H
A8U16, Pin 3	85FP
A8U16, Pin 4	8H17
A8U16, Pin 5	C719
A8U16, Pin 6	947F
710010, 1 III 0	03/1

U17-22 TRUTH TABLE

	INPUTS						
OUTPUT CONTROL	SELECT	A	В	OUTPUT Y			
H L L L	X L L H H	X L H X	X X X L H	Z H L H L			

Z = high impedance (off)

Service Model 1611A

U16/24 TRUTH TABLE

NO.	ì	'42A, 'L42, 'LS42 BCD INPUT			DECIMAL OUTPUT									
	D	С	В	A	0	1	2	-3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
$\begin{vmatrix} 1\\2\\ 2\end{vmatrix}$	L	L L L	L H H	H L H	H H H	L H	H L H	H H L	H H H	H H H	H H H	H H H	H H H	H
3 4	L L	H	L	L	Н	H H	H	H	L	H	Н	Н	H	H H
5 6	L	H H	L H	H L	H H	H H	H H	H H	H H	H	H L	H	H H	H H
8	L H	H L	H L	H L	H	H H	H H	H H	H H	H H	H H	L H	H L	H H
9	H	L	L	<u>H</u>	H	<u>H</u>	H	H H	H	H	H	<u>H</u> H	<u>Н</u> Н	L
۵	H	L	H H	H	Н	H	H	H	H H	H	H	Н	H	H H
INVALID	H	H H	L L	L H	H H	H H	H H	H H	H H	H H	H H	H H	H H	H H
Z	H	H H	H H	L H	H H	H H	H H	H H	H H	H H	H H	H H	H H	H H

μ P HARDWARE ADDRESSES

ADDRESS	FUNCTION
260008	Reads or loads Pass Counter.
260018	Reads or loads 8 LSB of Delay Counter.
260028	Reads or loads 8 MSB of Delay Counter.
260038	Clocks Memory State Counter or reads its output.
260048	Resets Delay and Pass Counters to zero.
260058	Sets or clears trigger store mode. D0 = 0 → Clear, D0 = 1 → Set.
260078	Reads status of measurement and flags from High Speed Memory.
274048	Reads 8 bits of external data from High Speed Memory.
274068	Reads 8 bits of µP data from High Speed Memory.
274108	Reads 8 LSB of μP address from High Speed Memory.
274128	Reads 8 MSB of μP address from High Speed Memory.

U4 TIMING EQUATION

 $T \approx 0.4 \text{ RC}$

WHERE R = $k\Omega$ C = pF T = ns

U6/9/10/11/13/14 COUNT EQUATIONS

COUNT ENABLE = EP • ET • PE RC = CET • QA • QB • QC • QD PRESET = \overrightarrow{PE} • CP+ RESET = \overrightarrow{MR}

A8 Timing Diagram

Figure 8-14. Service Sheet 8, Data Storage and Counter Assembly A8 (Sheet 3 of 6)

MEASUREMENT MODES

The following paragraphs describe how the internal microprocessor (μP) initiates, monitors and terminates each measurement made by the 1611A. The descriptions follow the measurement flow charts on this service sheet.

TIME INTERVAL. The Time Interval measurement counts 1-us clocks between the Enable and Disable trace specifications. When TIME INTVL is pressed, internal µP A5U11 writes 148 to address 361408. This puts HTRC, HCT, and HTI in a low state, so that no NCNT clocks are generated by A7U32. LRST goes low and clears enable/disable latches A7U20A/B and U6B. LRST also inhibits the Pass and Delay Counters by applying a low through A8U5A to pin 7 on all the counters. HRMC goes high, resetting the Memory State Counter to 0, and resetting memory state count overflow flip-flop A8U3C/D. Next, a 0 is written to address 260048. This resets the Pass and Delay Counters to zero. Information on the data bus has no effect when the μP is writing to address 260048. This address is detected, and the master reset on all counters is pulled low by A8U16 pin 6. Next, a 0 is written to address 260058. This clears trigger store flip-flop A8U15B. A8U15B is not used in the Time Interval mode.

All counters and flip-flops are now initialized and the 1611A is ready to start a measurement. The internal μ P starts a measurement by writing 3708 to address 361408. HRMC then goes low, and LRST and HTI go high. HTI enables part of A7U32 to pass 1- μ s clocks as long as HENBL is true and LDSBL is false (see figure 1). Before the Enable trigger specification is detected by the 1611A, HENBL is low and LDSBL is high. As soon as the Enable trace specification is detected by the RAM Comparator, HENBL goes high and the 1- μ s clock is passed through A7U32. The count continues until the Disable trace specification is met. LDSBL then goes low and inhibits generation of NCNT.

Figure 1.

During the measurement μP A5U11 monitors and displays the status of the measurement. The μP reads from address 260078 and checks the four least significant bits. The status signals are monitored through the A input of A8U20. In the Time Interval mode, μP A5U11 detects four conditions. Before the Enable trace specification is met, all status bits are low except LDLYL; thus, the status byte is 2. A

WAITING FOR ENABLE message is displayed when the status byte equals 2. After the enable condition is met, the output of A7U33A (HARM) goes true, causing a COUNTING message to be displayed. If counter capacity is exceeded during the measurement, A8U15 pin 6 (HCTOF) goes high. This causes a COUNTER OVERFLOW message to be displayed (see status byte table on this service sheet).

Until the measurement is completed, μP A5U11 continues to check the status byte, update the count in the display, and monitor the keyboard for depressed keys. The count is updated by reading the binary count from the Pass and Delay Counters, converting it to BCD, and displaying the results. The keyboard monitoring function permits the operator to abort a measurement that is not complete. When the measurement is complete. A7U20 pin 5 (HDSBL) goes true. When this is detected, the μP reads the final count and displays it.

COUNTS TRIGS. The Count Trigs measurement counts the number of triggers between the Enable and Disable trace specifications. Initialization of circuits on A7 and A8 is accomplished in the same manner as in the Time Interval mode, except for generation of NCNT. To start the measurement, 3718 is written to address 361408, This enables A7U32 to generate NCNT when a trigger is recognized between the Enable and Disable trace specifications (see figure 2). The status byte has the same meaning as in the Time Interval mode. Except for the generation of NCNT, μP A11U5 treats Count Trigs measurements the same as Time Interval measurements.

TRACE TRIGS. The Trace Trigs measurement stores and displays 64 consecutive memory transactions that meet trigger specifications. No trigger occurrence or memory transaction delay is available in this mode. Before this measurement is started, the enable/disable latches and the Pass and Delay Counters are reset as in the Time Interval measurement. Next, a 1 is written to address 260058. The address is detected by the decoder on A8 and produces a clock for A8U15B. This allows the D0 line of the Data bus (high) to be latched. In Trace Trigs mode, A8U15 pin 10 (HTSTOR) is high and A815 pin 9 (LSTOR) is low. HSTOR AND LTSTOR cause LDSTOR to be generated by HTRG (see figure 3).

Figure 3.

The measurement begins when 2 is written to 361408 enabling A7U20A/B and A7U6 to latch the detected enable and disable triggers. Each time a trigger is recognized between the Enable and Disable trace specifications, LDSTOR causes the trigger to be stored and the Memory-state Counter to be clocked. In TRACE TRIGS mode, only two status messages are displayed. When HARM is false, a WAITING FOR ENABLE message is displayed; when HARM is true, a WAITING FOR TRIGGER message is displayed.

During the Trace Trigs measurement, data is read from address 260038. This data is the value of the memory state count. If the Memory-state Counter is not in an overflow condition, the number of memory transactions stored is displayed. When 64 words are stored, the memory counter will overflow. This inhibits A8U8 from generating more LDSTOR clocks (see figure 3). The overflow condition is detected by the internal μP , which then reads data from the Highspeed Memory and displays it in absolute format.

TRACE (NORMAL). In the normal test mode, the Trace measurement allows 64 consecutive memory transactions to be stored and displayed. The starting point of the acquisition can be delayed up to 256 trigger occurrences and/or 64,742 memory transactions relative to the first recognized trigger. TRACE is initiated by writing to addresses 361408 and 260048 as in the Time Interval mode. Next, a 0 is written to 260058 to disable the trigger store mode. (HTSTOR and LTSTOR). This allows the NSTOR clock from A9 to generate LDSTOR through A8U4A and A8U8B. The Delay and Pass counters are now preset as explained in the A8 theory. Thus A8U15, pin 6 goes high when the measurement is complete.

To start the measurement, a 2 is written to address 361408. This forces A7U32 pin 6 (HTRC) high, enabling part of U32. Until the pass counter reaches

terminal count, an NCNT clock is generated only when a memory transaction meets trigger specifications and is between the Enable and Disable trace specifications. A7U9A controls this by gating HTRG through U9 when HENBL is true and LDLYDS is false. Since NCNT is equivalent to a trigger occurrence, it serves as a clock for the Pass Counter which counts the number of trigger occurrences. When the specified number of trigger occurrences has been reached, A8U9 pin 15 (HPCTC) and A7U21 pin 6 (HDLEN) go true.

HDLEN enables the delay counter to count delay and forces A7U21 pin 11 high. This allows NCNT to be generated each time a pulse from A7U1 pin 10 occurs. Since the pulse is a delayed NCP generated by the A9 assembly, it occurs on every memory transaction. NCNT now clocks the Delay Counter on every memory transaction. At this time, the HTRG, HENBL, HDSBL, and LDLYDS signals generated by A7 no longer affect NCNT generation. The measurement stops after A8U11 pin 15 goes high. This forces A8U15 pin 7 low on the next NCNT clock and prevents A8U8B from generating more LDSTOR clocks.

Up to this point, LDSTOR has been generated for each NSTOR from A9. Thus, the memory counter may have overflowed many times and the first memory transaction to be displayed may not be at location 0 in the High-speed Memory. The μ P determines the first line to be displayed by first reading from address 260038, checking the Memory-state Counter for overflow, and determining the present value of the memory state count. If the counter has overflowed, the information to be displayed in the first line of the list is at the address equal to the present memory state count. If there is no overflow, the information for the first displayed line is at address 0 in the Highspeed Memory.

During a measurement interval, the 1611A monitors and displays the status of the measurement. Until the first trigger is recognized, a WAITING FOR TRIG-GER or WAITING FOR ENABLE message is displayed. If HARM is ture when the status is read, the message is WAITING FOR TRIGGER. Otherwise WAITING FOR ENABLE is displayed. When a status byte equal to 2 or 3 is read, the pass counter value is also read (address 260008). If the value is not equal to the preset value, one or more triggers have occurred. When this condition is detected, the number of trigger occurrences is computed and displayed, rather than WAITING FOR ENABLE or WAITING FOR TRIG-GER. When the pass counter reaches terminal count and LDLYL becomes true, the status byte is equal to 0 or 1, and a DELAYING message is displayed. When the measurement is complete, A8U15 pin 6 (HCTOF) goes true. This causes the status byte value to be greater than 3. A value greater than 3 indicates to the internal \(\mu P \) that the measurement is complete.

Service

the TRACE key μ P under test at executed. To especifications a mode is initiated except that the preset. The only HRMC. HRMC

STATUS

TRACE

2 (T 3 (T 2 or 0 or >3

TRACE 1

2 (M ≠ 2 (≠ 2 (

Don'

COUNT

2 <7 a 7 >7

Bit 0 Bit 1 Bit 2 Bit 3

* STATUS

ssage is displayed when the enable condition is A (HARM) goes true, age to be displayed. If uring the measurement, is high. This causes a sage to be displayed (see see sheet).

completed, μP A5U11 byte, update the count explored for depressed by reading the binary by Counters, converting the results. The keyboard the operator to abort a complete. When the U20 pin 5 (HDSBL) goes the μP reads the final

nt Trigs measurement rs between the Enable tions. Initialization of omplished in the same erval mode, except for tart the measurement, 361408, This enables n a trigger is recognized ble trace specifications has the same meaning le. Except for the genute treats Count Trigs time Interval measure-

rigs measurement stores is memory transactions s. No trigger occurrence is available in this mode. In the enable of disable ay Counters are reset as nent. Next, a 1 is written ress is detected by the clock for A8U15B. This bus (high) to be latched. In 10 (HTSTOR) is high is low. HSTOR AND be generated by HTRG

Figure 3.

The measurement begins when 2 is written to 361408 enabling A7U20A/B and A7U6 to latch the detected enable and disable triggers. Each time a trigger is recognized between the Enable and Disable trace specifications, LDSTOR causes the trigger to be stored and the Memory-state Counter to be clocked. In TRACE TRIGS mode, only two status messages are displayed. When HARM is false, a WAITING FOR ENABLE message is displayed; when HARM is true, a WAITING FOR TRIGGER message is displayed.

During the Trace Trigs measurement, data is read from address 260038. This data is the value of the memory state count. If the Memory-state Counter is not in an overflow condition, the number of memory transactions stored is displayed. When 64 words are stored, the memory counter will overflow. This inhibits A8U8 from generating more LDSTOR clocks (see figure 3). The overflow condition is detected by the internal μP , which then reads data from the Highspeed Memory and displays it in absolute format.

TRACE (NORMAL). In the normal test mode, the Trace measurement allows 64 consecutive memory transactions to be stored and displayed. The starting point of the acquisition can be delayed up to 256 trigger occurrences and/or 64,742 memory transactions relative to the first recognized trigger. TRACE is initiated by writing to addresses 361408 and 260048 as in the Time Interval mode. Next, a 0 is written to 260058 to disable the trigger store mode. (HTSTOR and LTSTOR). This allows the NSTOR clock from A9 to generate LDSTOR through A8U4A and A8U8B. The Delay and Pass counters are now preset as explained in the A8 theory. Thus A8U15, pin 6 goes high when the measurement is complete.

To start the measurement, a 2 is written to address 361408. This forces A7U32 pin 6 (HTRC) high, enabling part of U32. Until the pass counter reaches

terminal count, an NCNT clock is generated only when a memory transaction meets trigger specifications and is between the Enable and Disable trace specifications. A7U9A controls this by gating HTRG through U9 when HENBL is true and LDLYDS is false. Since NCNT is equivalent to a trigger occurrence, it serves as a clock for the Pass Counter which counts the number of trigger occurrences. When the specified number of trigger occurrences has been reached, A8U9 pin 15 (HPCTC) and A7U21 pin 6 (HDLEN) go true.

HDLEN enables the delay counter to count delay and forces A7U21 pin 11 high. This allows NCNT to be generated each time a pulse from A7U1 pin 10 occurs. Since the pulse is a delayed NCP generated by the A9 assembly, it occurs on every memory transaction. NCNT now clocks the Delay Counter on every memory transaction. At this time, the HTRG, HENBL, HDSBL, and LDLYDS signals generated by A7 no longer affect NCNT generation. The measurement stops after A8U11 pin 15 goes high. This forces A8U15 pin 7 low on the next NCNT clock and prevents A8U8B from generating more LDSTOR clocks.

Up to this point, LDSTOR has been generated for each NSTOR from A9. Thus, the memory counter may have overflowed many times and the first memory transaction to be displayed may not be at location 0 in the High-speed Memory. The μ P determines the first line to be displayed by first reading from address 260038, checking the Memory-state Counter for overflow, and determining the present value of the memory state count. If the counter has overflowed, the information to be displayed in the first line of the list is at the address equal to the present memory state count. If there is no overflow, the information for the first displayed line is at address 0 in the Highspeed Memory.

During a measurement interval, the 1611A monitors and displays the status of the measurement. Until the first trigger is recognized, a WAITING FOR TRIG-GER or WAITING FOR ENABLE message is displayed. If HARM is ture when the status is read, the message is WAITING FOR TRIGGER. Otherwise WAITING FOR ENABLE is displayed. When a status byte equal to 2 or 3 is read, the pass counter value is also read (address 260008). If the value is not equal to the preset value, one or more triggers have occurred. When this condition is detected, the number of trigger occurrences is computed and displayed, rather than WAITING FOR ENABLE or WAITING FOR TRIG-GER. When the pass counter reaches terminal count and LDLYL becomes true, the status byte is equal to 0 or 1, and a DELAYING message is displayed. When the measurement is complete, A8U15 pin 6 (HCTOF) goes true. This causes the status byte value to be greater than 3. A value greater than 3 indicates to the internal uP that the measurement is complete.

Service Model 1611A

TRACE SINGLE STEP. In Single Step test mode, the TRACE key allows the 1611A to single step the μP under test and to display the memory transaction executed. To excute single step trace, no trigger specifications are required. The Trace Single Step mode is initiated like TRACE in the Norm Test mode except that the Pass and Delay counters are not preset. The only signal used from A7 in this mode is HRMC. HRMC goes high to reset the Memory-state

Counter, and returns low when the measurement starts. When A9 generates an NSTOR, LDSTOR is produced by A8U8B and the memory state counter is clocked. The internal μP monitors the memory state count to determine when its value is not equal to zero. When a non-zero condition is detected, the μP starts reading from High-speed Memory and displays the result. No status messages are displayed in the Trace Single Step mode.

STATUS BYTE TABLE

STATUS BYTE VALUE*	MEASUREMENT STATUS
TRACE MODE	
2 (Trigger Occurrences = 0) 3 (Trigger Occurrences = 0) 2 or 3 (Trigger Occurrences ≠ 0) 0 or 1 >3	"WAITING FOR ENABLE" Displayed "WAITING FOR TRIGGER" Displayed "TRIGGER OCCURRENCE =" Displayed "DELAYING" Displayed End of Run
TRACE TRIGS MODE	
2 (Memory State Count = 0) ≠ 2 (Memory State Count = 0) ≠ 2 (Memory State Count ≠ 0) Don't Care (HMCOF = 1)	"WAITING FOR ENABLE" Displayed "WAITING FOR TRIGGER" Displayed "TRIGGER OCCURRENCES =" Displayed End of Run
COUNT TIME/COUNT TRIGS MODES	
2 <7 and ≠ 2 7 >7	"WAITING FOR ENABLE" Displayed "COUNTING" Displayed "COUNTER OVERFLOW" Displayed End of Run
* STATUS BYTE ADDRESS = 260078 Bit 0 = HARM (A8U20, Pin 2) Bit 1 = LDLYL (A8U20, Pin 5) Bit 2 = HCTOF (A8U20, Pin 11) Bit 3 = HDSL (A8U20, Pin 14)	

Figure 8-14. Service Sheet 8. Data Storage and Counter Assembly A8 (Sheet 5 of 6)

Figure 8-14. Service Sheet 8, Data Storage and Counter Assembly A8 (Sheet 6 of 6) 8-39

PRINCIPLES OF OPERATION

The External Probe allows the 1611A to monitor up to eight circuit nodes in the system under test. Bus drivers U1 and U2 buffer the monitored signals to reduce loading on the circuit being monitored. RC networks U3 and U4 adjust timing of signals so they arrive at the External Latch on A10 at the proper time. The External Latch is clocked by PEXCK from A9.

ICS ON THIS SCHEMATIC

IC REF DES	HP PART NO.	MFR PART NO.
U1, 2	1820-1829	1820-1829
U3, 4	1810-0293	1810-0293

Service Model 1611A

Figure 8-15. Service Sheet 9, External Probe Assembly A9

