### Naïve Bayes

### Decision theory

 Decision theory is the study of making decisions that have a significant impact

- Decision-making is distinguished into:
  - Decision-making under certainty
  - Decision-making under non-certainty
    - Decision-making under risk
    - Decision-making under uncertainty

### Probability theory

- Most decisions have to be taken in the presence of uncertainty
- Basic elements of probability theory:
  - Random variables describe aspects of the world whose state is initially unknown
  - Each random variable has a domain of values that it can take on (discrete, boolean, continuous)
  - An atomic event is a complete specification of the state of the world

## **Probability Theory**

- · All probabilities are between 0 and 1
- The sum of probabilities for the atomic events of a probability space must sum up to 1

### Prior

• Priori Probabilities or Prior reflects our prior knowledge of how likely an event occurs.

# **Class Conditional probability**

(posterior)

• When we have information concerning previously unknown random variables then we use posterior conditional probabilities: P(a|b) probability of a given event a that we know b

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$

· Alternatively this can be written (the product rule):

## Bayes rule

- The product rule can be written as:
- $P(a \land b) = P(a \mid b)P(b)$
- $\cdot$  P(a b)=P(b|a)P(a)

By equating the right hand sides:  $P(b|a) = \frac{P(a|a)}{P(a)}$ 

### **Posterior Probabilities**

- Define p(cj/x) as the posteriori probability
- We use Baye's formula to convert the prior to posterior probability

$$p(cj \mid x) = \underline{p(x \mid cj)} p(cj)$$
$$p(x)$$

### **Bayes Classifiers**

· Bayesian classifiers use **Bayes theorem**, which says

$$p(cj \mid x) = p(x \mid cj) p(cj)$$
$$p(x)$$

- $p(cj \mid x)$  = probability of instance x being in class cj, This is what we are trying to compute
- $p(x \mid cj)$  = probability of generating instance x given class cj,

We can imagine that being in class cj causes you to have feature x with some probability

p(cj) = probability of occurrence of class cj,

This is just how frequent the class cj is in our database

### **Bayes Formula**

 Suppose the priors P(cj) and conditional densities p(x|cj) are known,



### **Bayesian Decision Theory**

Tradeoffs between various decisions using probabilities and costs that accompany such decisions.

Example: Patient has trouble breathing

- Decision: Asthma versus Lung cancer
- Decide lung cancer when person has asthma
  - Cost: moderately high (e.g., order unnecessary tests, scare patient)
- Decide asthma when person has lung cancer
  - Cost: very high (e.g., lose opportunity to treat cancer at early stage, death)

### **Decision Rules**

### Progression of decision rules:

- Decide based on prior probabilities
- Decide based on posterior probabilities
- 3. Decide based on risk

## Fish Sorting Example

· C class

C=c1 (sea bass)

C=c2 (salmon)

- P(c1) is the prior probability that the next fish is a sea bass
- P(c2) is the prior probability that the next fish is a salmon

# Decision based on prior probabilities

- Assume P(c1) + P(c2) = 1
- Decision ??
- · Decide →
  - C1 if P(c1)> P(c2)
  - C2 otherwise
- Error probabilityp(error)=min (P(c1),P(c2))

# Decision based on class conditional probabilities

- Let x be a continuous random variable
- Define p(x/cj) as the conditional probability density (j=1,2)
- P(x/c1) and P(x/c2) describe the difference in measurement between populations of sea bass and Solomon

### Making a Decision

- Decision ??? (After observing x value)
- · Decide:
  - C1 if P(c1/x) > P(c2/x)
  - C2 otherwise
- P(c1/x) + P(c2/x)=1

## **Probability of Error**

- · P(error/x):
  - P(c1/x) if we decide c2
  - P(c2/x) if we decide c1
- $P(error/x) = min \{P(c1/x), P(c2/x)\}$

Assume that we have two classes

c1 = male, and c2 = female.

We have a person whose sex we do not (now, say "drew" or d.

Classifying *drew* as male or female is equivalent to asking is it more probable that drew is male or female, I.e which is greater p(male | *drew*) or p(female | *drew*)

(Note: "Drew can be a male or female name")



**Drew Barrymore** 



**Drew Carey** 

What is the probability of being called "drew" given that you are a male?

 $p(\text{male} \mid drew) = p(drew \mid \text{male}) p(\text{male})$ 

p(drew)

What is the probability of being a male?

What is the probability of being named "drew"? (actually irrelevant, since it is same for all classes)



# This is Officer Drew (who arrested abc in 2007). Is Officer Drew a Male or Female?

Luckily, we have a small database with names and sex.

We can use it to apply Bayes rule...

HERE ONLY MULTIPLY

**Officer Drew** 

HERE WE MULTIPLY ONLY BECAUSE LIKLYHOOD IS CALCULATED BUT BELOW WE SHOULD WRITE PRIOR PROBABILTY, HERE COMPARISON BASED ON CONDITIONAL PROBABILTY

$$p(cj \mid d) = \underline{p(d \mid cj)} p(cj)$$

$$p(d)$$

| Name    | Sex    |
|---------|--------|
| Drew    | Male   |
| Claudia | Female |
| Drew    | Female |
| Drew    | Female |
| Alberto | Male   |
| Karin   | Female |
| Nina    | Female |
| Sergio  | Male   |



| p(cj | d) = $p(d$ | c <i>j</i> | ) <i>p</i> ( <i>cj</i> ) |
|------|------------|------------|--------------------------|
|      | p(d)       |            |                          |

| Name    | Sex    |
|---------|--------|
| Drew    | Male   |
| Claudia | Female |
| Drew    | Female |
| Drew    | Female |
| Alberto | Male   |
| Karin   | Female |
| Nina    | Female |
| Sergio  | Male   |

Officer Drew is more likely to be a Female.



### Officer Drew IS a female!

**Officer Drew** 

$$p(\text{male} \mid drew) = 1/3 * 3/8$$
 = 0.125  
 $3/8$  3/8  
 $p(\text{female} \mid drew) = 2/5 * 5/8 = 0.250$   
 $3/8$  3/8

# Generalized Bayesian Decision Theory

- More than one observation x
  - Replace scalar x with vector x
- · Allowing actions other than just decision?
  - Allow the possibility of rejection
- Different risks in the decision
  - Define how costly each action is

### **Bayesian Decision Theory**

- Let {c1,c2,...cn} be classes/states
- Let  $\{\alpha 1, \alpha 2, \alpha 3, ..., \alpha a\}$  be finite set of a possible actions.
- Let λ(αi/cj) be the loss incurred for taking action αi when the class is cj.
- · Let x be random variable (vector).

### **Conditional Risk**

- · Suppose we observe **x** and take action  $\alpha$ i.
- If the true class is cj, we incur the loss  $\lambda(\alpha i/cj)$ .
- The expected loss (conditional risk) with taking action  $\alpha i$  is

$$R(\alpha_i \mid x) = \sum_{j=1}^{j=c} \lambda(\alpha_i \mid c_j) P(c_j \mid x)$$

STUDY TOTAL PROBABILITY CONCEPT ???

### Minimum-Risk Classification

- For every x the decision function  $\alpha(x)$  assumes one of the a values  $\alpha 1, ..., \alpha a$ .
- The overall risk R is the expected loss associated with a given decision rule.
- The general decision rule  $\alpha(x)$  tells us which action to take for x.
- · We want to find out the decision rule that minimizes the overall risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$

Bayes decision rule, minimizes the overall risk by selecting the action  $\alpha i$  for which  $R(\alpha i/x)$  is minimum.

# Two-category classification

 $\alpha 1$ : deciding c1

 $\alpha 2$ : deciding c2

 $\lambda ij = \lambda(\alpha i \mid cj)$ 

loss incurred for deciding ci when the true state of nature is cj

Conditional risk:

$$R(\alpha 1 \mid x) = \lambda 11P(c1 \mid x) + \lambda 12P(c2 \mid x)$$

$$R(\alpha 2 \mid x) = \lambda 21P(c1 \mid x) + \lambda 22P(c2 \mid x)$$

### The rule is the following:

if 
$$R(\alpha 1 \mid x) < R(\alpha 2 \mid x)$$

action  $\alpha 1$ : "decide c1" is take

PUT VALUE IN THIS INEQUALITY AND THEN SUBTRACT

This results in the equivalent rule:

Decide c1 if:

|x|

$$(\lambda 21 - \lambda 11) P(c1 | x) > (\lambda 12 - \lambda 22) P(c2)$$

By Bayes formula

$$(\lambda 21 - \lambda 11) P(x | c1) P(c1) > (\lambda 12 - \lambda 22) P(x | c2)$$
  
 $P(c2)$ 

#### Likelihood ratio

if 
$$\frac{P(x \mid c_1)}{P(x \mid c_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \cdot \frac{P(c_2)}{P(c_1)}$$

Then take action  $\alpha 1$  (decide c1)
Otherwise take action  $\alpha 2$  (decide c2)

## Example

Suppose selection of c1 and c2 has same probability:

$$P(c1)=p(c2)=1/2$$

Assume that the lo

$$L = \begin{bmatrix} 0 & \lambda_{12} \\ \lambda_{21} & 0 \end{bmatrix}$$
 he form

If misclassification of patterns that come from

· Thus, patterns are assigned to c2 class if



That is,  $P(x \mid c1)$  is multiplied by a factor less than 1

# The Bayesian Doctor Example

A person doesn't feel well and goes to the doctor.

Assume two states of nature:

- $\omega_1$ : The person has a common flue.
- ω<sub>2</sub>: The person is really sick (a vicious bacterial infection).

The doctors **prior** is:  $p(\omega_1) = 0.9$   $p(\omega_2) = 0.1$ 

 $W1 \rightarrow c1$  and  $w2 \rightarrow c2$ 

# √ The Bayesian Doctor Example

A person doesn't feel well and goes to the doctor.

Assume two states of nature:

- $\omega_1$ : The person has a common flue.
- ω<sub>2</sub>: The person is really sick (a vicious bacterial infection).

The doctors **prior** is:  $p(\omega_1) = 0.9$   $p(\omega_2) = 0.1$ 

This doctor has two possible actions: "prescribe" hot tea or antibiotics. Doctor can use prior and predict optimally: always flue. Therefore doctor will always prescribe hot tea.

 $W1 \rightarrow c1$  and  $w2 \rightarrow c2$ 

## The Bayesian Doctor - Cntd.

- But there is very high risk: Although this doctor can diagnose with very high rate of success using the prior, (s)he can lose a patient once in a while.
- Denote the two possible actions:
  - $a_1$  = prescribe hot tea
  - $a_2$  = prescribe antibiotics
- Now assume the following cost (loss) matrix:

$$\lambda_{i,j} = \frac{a_1}{a_1} \begin{vmatrix} \omega_1 & \omega_2 \\ 0 & 10 \\ a_2 & 1 & 0 \end{vmatrix}$$

# The Bayesian Doctor - Cntd.

Choosing a<sub>1</sub> results in expected risk of

$$R(a_1) = p(\omega_1) \cdot \lambda_{1,1} + p(\omega_2) \cdot \lambda_{1,2}$$
$$= 0 + 0.1 \cdot 10 = 1$$

# The Bayesian Doctor - Cntd.

Choosing a<sub>1</sub> results in expected risk of

$$R(a_1) = p(\omega_1) \cdot \lambda_{1,1} + p(\omega_2) \cdot \lambda_{1,2}$$

$$= 0 + 0.1 \cdot 10 = 1$$

Choosing a<sub>2</sub> results in expected risk of

$$R(a_2) = p(\omega_1) \cdot \lambda_{2,1} + p(\omega_2) \cdot \lambda_{2,2}$$

$$= 0.9 \cdot 1 + 0 = 0.9$$

Choosing a<sub>1</sub> results in expected risk of

$$R(a_1) = p(\omega_1) \cdot \lambda_{1,1} + p(\omega_2) \cdot \lambda_{1,2}$$
$$= 0 + 0.1 \cdot 10 = 1$$

Choosing a<sub>2</sub> results in expected risk of

$$R(a_2) = p(\omega_1) \cdot \lambda_{2,1} + p(\omega_2) \cdot \lambda_{2,2}$$
$$= 0.9 \cdot 1 + 0 = 0.9$$

 So, considering the costs it's much better (and optimal!) to always give antibiotics.

- But doctors can do more. For example, they can take some observations.
- A reasonable observation is to perform a blood test.
- Suppose the possible results of the blood test are:

- But doctors can do more. For example, they can take some observations.
- A reasonable observation is to perform a blood test.
- Suppose the possible results of the blood test are:

```
x_1 = negative (no bacterial infection)
```

 $x_2$  = positive (infection)

- But doctors can do more. For example, they can take some observations.
- A reasonable observation is to perform a blood test.
- Suppose the possible results of the blood test are:

```
x_1 = negative (no bacterial infection)
x_2 = positive (infection)
```

 But blood tests can often fail. Suppose (class conditional probabilities.)

infection 
$$p(x_1 | \omega_2) = 0.3$$
  $p(x_2 | \omega_2) = 0.7$   
flue  $p(x_2 | \omega_1) = 0.2$   $p(x_1 | \omega_1) = 0.8$ 

Define the conditional risk given the observation

$$R(a_i | x) = \sum_{\omega_i} p(\omega_j | x) \cdot \lambda_{i,j}$$

- We would like to compute the conditional risk for each action and observation so that the doctor can choose an optimal action that minimizes risk.
- How can we compute P(ω<sub>j</sub> | X)?
- We use the class conditional probabilities and Bayes inversion rule.

Let's calculate first p(x<sub>1</sub>) and p(x<sub>2</sub>)

$$p(x_1) = p(x_1 | \omega_1) \cdot p(\omega_1) + p(x_1 | \omega_2) \cdot p(\omega_2)$$

• Let's calculate first  $p(x_1)$  and  $p(x_2)$ 

$$p(x_1) = p(x_1 | \omega_1) \cdot p(\omega_1) + p(x_1 | \omega_2) \cdot p(\omega_2)$$
  
= 0.8 \cdot 0.9 + 0.3 \cdot 0.1  
= 0.75

•  $p(x_2)$  is complementary to  $p(x_1)$ , so  $p(x_2) = 0.25$ 

$$R(a_1 | x_1) = p(\omega_1 | x_1) \cdot \lambda_{1,1} + p(\omega_2 | x_1) \cdot \lambda_{1,2}$$

$$= 0 + p(\omega_2 | x_1) \cdot 10$$

$$= 10 \cdot \frac{p(x_1 | \omega_2) \cdot p(\omega_2)}{p(x_1)}$$

$$= 10 \cdot \frac{0.3 \cdot 0.1}{0.75} = 0.4$$

$$R(a_{1} | x_{1}) = p(\omega_{1} | x_{1}) \cdot \lambda_{1,1} + p(\omega_{2} | x_{1}) \cdot \lambda_{1,2}$$

$$= 0 + p(\omega_{2} | x_{1}) \cdot 10$$

$$= 10 \cdot \frac{p(x_{1} | \omega_{2}) \cdot p(\omega_{2})}{p(x_{1})}$$

$$= 10 \cdot \frac{0.3 \cdot 0.1}{0.75} = 0.4$$

$$R(a_{2} | x_{1}) = p(\omega_{1} | x_{1}) \cdot \lambda_{2,1} + p(\omega_{2} | x_{1}) \cdot \lambda_{2,2}$$

$$= p(\omega_{1} | x_{1}) \cdot 1 + p(\omega_{2} | x_{1}) \cdot 0$$

$$= \frac{p(x_{1} | \omega_{1}) \cdot p(\omega_{1})}{p(x_{1})}$$

$$= \frac{0.8 \cdot 0.9}{0.75} = 0.96$$

$$R(a_1 | x_2) = p(\omega_1 | x_2) \cdot \lambda_{1,1} + p(\omega_2 | x_2) \cdot \lambda_{1,2}$$

$$= 0 + p(\omega_2 | x_2) \cdot 10$$

$$= 10 \cdot \frac{p(x_2 | \omega_2) \cdot p(\omega_2)}{p(x_2)}$$

$$= 10 \cdot \frac{0.7 \cdot 0.1}{0.25} = 2.8$$

$$R(a_{1} | x_{2}) = p(\omega_{1} | x_{2}) \cdot \lambda_{1,1} + p(\omega_{2} | x_{2}) \cdot \lambda_{1,2}$$

$$= 0 + p(\omega_{2} | x_{2}) \cdot 10$$

$$= 10 \cdot \frac{p(x_{2} | \omega_{2}) \cdot p(\omega_{2})}{p(x_{2})}$$

$$= 10 \cdot \frac{0.7 \cdot 0.1}{0.25} = 2.8$$

$$R(a_{2} | x_{2}) = p(\omega_{1} | x_{2}) \cdot \lambda_{2,1} + p(\omega_{2} | x_{2}) \cdot \lambda_{2,2}$$

$$= p(\omega_{1} | x_{2}) \cdot 1 + p(\omega_{2} | x_{2}) \cdot 0$$

$$= \frac{p(x_{2} | \omega_{1}) \cdot p(\omega_{1})}{p(x_{2})}$$

$$= \frac{0.2 \cdot 0.9}{0.25} = 0.72$$

• To summarize:  $R(a_1 | x_1) = 0.4$ 

$$R(a_2 \mid x_1) = 0.96$$

$$R(a_1 | x_2) = 2.8$$

$$R(a_2 \mid x_2) = 0.72$$

• To summarize:  $R(a_1 \mid x_1) = 0.4$   $R(a_2 \mid x_1) = 0.96$   $R(a_1 \mid x_2) = 2.8$   $R(a_2 \mid x_2) = 0.72$ 

 Whenever we encounter an observation x, we can minimize the expected loss by minimizing the conditional risk.

• To summarize:  $R(a_1 \mid x_1) = 0.4$   $R(a_2 \mid x_1) = 0.96$   $R(a_1 \mid x_2) = 2.8$   $R(a_2 \mid x_2) = 0.72$ 

- Whenever we encounter an observation x, we can minimize the expected loss by minimizing the conditional risk.
- Makes sense: Doctor chooses hot tea if blood test is negative, and antibiotics otherwise.

#### Advantages/Disadvantages of Naïve Bayes

- Advantages
  - Fast to train (single scan). Fast to classify
  - Handles real and discrete data
  - Handles streaming data well
- Disadvantages
  - Assumes independence of features