Feature Selection

Why Feature Selection Matters

* Curse of dimensionality, overfitting, training speed, interpretability.

Key Terminology

* Features vs. attributes, relevance, redundancy, variance, target leakage.

Three Classic Families of Methods

- * Filter methods (e.g., correlation, mutual information, variance threshold).
- * Wrapper methods (e.g., forward/backward selection, RFE).
- * Embedded methods (e.g., LASSO/L1, tree-based impurity pruning).

Dimensionality Reduction vs. Feature Selection

- * Clarify the difference (e.g., PCA transforms vs. selecting existing features).
- * When to prefer one over the other.

Evaluation Strategies

- * Using cross-validation pipelines; nested CV to avoid biased performance estimates.
- * Metrics to watch (accuracy, AUC, F1, training time).

Real-World Pitfalls & Best Practices

- * Data leakage, class imbalance effects, stability of selected sets.
- * Domain knowledge integration.

Simple End-to-End Example

* Show a quick scikit-learn pipeline choosing top k features and comparing baseline vs. selected-feature model.

Ensemble Learning

Why Ensembles?

- * Variance-reduction, bias-reduction, robustness, Kaggle dominance.
- * Quick contrast with bagging & boosting to set the stage for stacking/blending.

Key Terminology

* Base (level-0) learner, meta (level-1) learner, folds, hold-out set, out-of-fold (OOF) predictions.

Stacking: Core Workflow

- * K-fold OOF prediction generation.
- * Training the meta-model on OOF data.
- * Diagram of two-level stack.

Blending: The Lightweight Cousin

- * Train/validation split instead of K-folds.
- * Pros: speed & simplicity; Cons: more data-hungry, less stable.

Design Choices & Hyperparameters

- * Selecting diverse base models (trees, linear, NN).
- * Meta-model options (linear regression, GBM, NN).
- * Number of folds, blending hold-out size, regularization.

Evaluation & Leakage-Free Pipelines

- * Nested CV or separate test set.
- * Why fitting scalers & encoders inside each fold matters.
- * Use of sklearn's StackingClassifier/Regressor vs. manual pipelines.

Common Pitfalls + Best Practices

- * Collinearity of base-model outputs, overfitting in small data, long training times.
- * Tricks: heterogeneous feature subspaces, feature selection per base model, regularizing meta-learner.

Mini End-to-End Demo Idea

- * Stack logistic regression, random forest, and gradient boosting; meta-model = elastic-net.
- * Compare single best base learner vs. stacked ensemble on accuracy/F1 and discuss results.