IDENTITIES IN RASCAL TRIANGLE

PETRO KOLOSOV

ABSTRACT. Your abstract here.

CONTENTS

1.	Definitions	1
2.	Introduction	2
3.	Conclusions	2

1. Definitions

Definition 1.1. Generalized rascal number

$$\binom{n}{k}_{i} = \sum_{m=0}^{i} \binom{n-k}{m} \binom{k}{m} \tag{1.1}$$

Definition 1.2. (1,q)-Binomial coefficient

$$\begin{bmatrix} n \\ k \end{bmatrix}^{q} = \begin{cases} q & \text{if } k = 0, n = 0 \\ 1 & \text{if } k = 0 \\ 0 & \text{if } k > n \end{cases}$$

$$\begin{bmatrix} \binom{n-1}{k} \rceil^{q} + \binom{n-1}{k-1} \rceil^{q}$$
(1.2)

Date: June 30, 2024.

2010 Mathematics Subject Classification. 11B25, 11B99.

Key words and phrases. Pascal's triangle, Rascal triangle, Binomial coefficients, Binomial identities, Binomial theorem, Generalized Rascal Triangles, Iterated rascal triangles.

2. Introduction

Proposition 2.1. Generalized rascal triangle number equals to binomial coefficient up to i-th column

$$\binom{n}{k}_{i} = \binom{n}{k}, \quad 0 \le k \le i \tag{2.1}$$

Thus,

$$\binom{n}{i-k}_i = \binom{n}{i-k}$$

By symmetry of binomial coefficients, we have

$$\binom{n}{n-i+k}_i = \binom{n}{n-i+k}$$

Proposition 2.2. Generalized rascal number equals to binomial coefficient up to 2i + 1-th row

$$\binom{n}{k}_i = \binom{n}{k}, \quad 0 \le n \le 2i + 1$$

Therefore, for every fixed $i \geq 0$

Let be $t \ge 2i+1$ then for every fixed $i \ge 0$ follows

3. Conclusions

Conclusions of your manuscript.

Version: Local-0.1.0

SOFTWARE DEVELOPER, DEVOPS ENGINEER

Email address: kolosovp940gmail.com

 URL : https://kolosovpetro.github.io