Appendix B: Formulation of the Benchmark Problems

 $\begin{tabular}{ll} Table~8 \\ Unconstrained~bi-objective~problems. \end{tabular}$

Problem	Objective functions	n	Variable bounds	Comments
Schaffer	$f_1(x) = x^2$ $f_2(x) = (x-2)^2$	1	$-10^5 \le x \le 10^5$	convex
Fonseca	$f_1(\vec{x}) = 1 - e^{-\sum_{i=1}^{n} (x_i - \frac{1}{\sqrt{n}})^2}$ $f_2(\vec{x}) = 1 - e^{-\sum_{i=1}^{n} (x_i + \frac{1}{\sqrt{n}})^2}$	3	$-4 \le x_i \le 4$	nonconvex
Kursawe	$f_1(\vec{x}) = \sum_{i=1}^{n-1} \left(-10e^{\left(-0.2*\sqrt{x_i^2 + x_{i+1}^2}\right)} \right)$ $f_2(\vec{x}) = \sum_{i=1}^n (x_i ^a + 5\sin(x_i)^b)$	3	$-5 \le x_i \le 5$	nonconvex
ZDT1	$f_1(\vec{x}) = x_1$ $f_2(\vec{x}) = g(\vec{x})[1 - \sqrt{x_1/g(\vec{x})}]$ $g(\vec{x}) = 1 + 9\left(\sum_{i=2}^n x_i\right)/(n-1)$	30	$0 \le x_i \le 1$	convex
ZDT2	$f_1(\vec{x}) = x_1$ $f_2(\vec{x}) = g(\vec{x}) \left[1 - (x_1/g(\vec{x}))^2 \right]$ $g(\vec{x}) = 1 + 9 \left(\sum_{i=2}^n x_i \right) / (n-1)$	30	$0 \le x_i \le 1$	nonconvex
ZDT3	$f_1(\vec{x}) = x_1$ $f_2(\vec{x}) = g(\vec{x}) \left[1 - \sqrt{\frac{x_1}{g(\vec{x})}} - \frac{x_1}{g(\vec{x})} \sin(10\pi x_1) \right]$ $g(\vec{x}) = 1 + 9 \left(\sum_{i=2}^n x_i \right) / (n-1)$	30	$0 \le x_i \le 1$	$convex \\ disconnected$
ZDT4	$f_1(\vec{x}) = x_1$ $f_2(\vec{x}) = g(\vec{x})[1 - (x_1/g(\vec{x}))^2]$ $g(\vec{x}) = 1 + 10(n - 1) + \sum_{i=2}^{n} [x_i^2 - 10\cos(4\pi x_i)]$	10	$0 \le x_1 \le 1$ $-5 \le x_i \le 5$ $i = 2,, n$	nonconvex
ZDT6	$f_1(\vec{x}) = 1 - e^{-4x_1} \sin^6(6\pi x_1)$ $f_2(\vec{x}) = g(\vec{x})[1 - (f_1(\vec{x})/g(\vec{x}))^2]$ $g(\vec{x}) = 1 + 9[(\sum_{i=2}^n x_i)/(n-1)]^{0.25}$	10	$0 \le x_i \le 1$	$nonconvex \\ nonunformly \\ spaced$

Table 9
Constrained test bi-objective problems.

	ed test bi-objective problems			
Problem	Objective functions	Constraints	n	Variable bounds
Osyczka2	$f_1(\vec{x}) = -(25(x_1 - 2)^2 +$	$g_1(\vec{x}) = 0 \le x_1 + x_2 - 2$ $g_2(\vec{x}) = 0 \le 6 - x_1 - x_2$		
	$(x_2-2)^2+$			$0 \le x_1, x_2 \le 10$
			6	$1 \le x_3, x_5 \le 5$
				$0 \le x_4 \le 6$
				$0 \le x_6 \le 10$
	$x_3^2 + x_4^2 + x_5^2 + x_6^2$	$g_6(\vec{x}) = 0 \le (x_5 - 3)^3 + x_6 - 4$		
		$g_1(\vec{x}) = -x_1^2 - x_2^2 + 1 +$		
Tanaka	$f_1(\vec{x}) = x_1$	$0.1\cos(16\arctan(x_1/x_2)) \le 0$		$-\pi \le x_i \le \pi$
тапака	$f_2(\vec{x}) = x_2$	$g_2(\vec{x}) = (x_1 - 0.5)^2 +$	2	$-\pi \leq x_i \leq \pi$
		$(x_2 - 0.5)^2 \le 0.5$		
Constr_Ex	$f_1(x) = x_1$	$g_1(\vec{x}) = x_2 + 9x_1 \ge 6$	2	$0.1 \le x_1 \le 1.0$
	$f_2(x) = (1+x_2)/x_1$	$g_2(\vec{x}) = -x_2 + 9x_1 \ge 1$		$0 \le x_2 \le 5$
	$f_1(\vec{x}) = (x_1 - 2)^2 +$	(→) 2 + 2 < 995	\Box	
Srinivas	$g_1(\vec{x}) = x_1^2 + x_2^2 \le 225$ $(x_2 - 1)^2 + 2$		2	$-20 \le x_i \le 20$
	$f_2(\vec{x}) = 9x_1 - (x_2 - 1)^2$	$g_2(\vec{x}) = x_1 - 3x_2 \le -10$		
		$g_1(\vec{x}) = \frac{1.0}{x_1 x_2^2 x_3} - \frac{1.0}{27.0} \le 0$		
		$g_2(\vec{x}) = \frac{1.0}{x_1 x_2^2 x_3} - \frac{1.0}{27.0} \le 0$ $g_3(\vec{x}) = \frac{x_3^4}{x_2 x_3^2 x_4^4} - \frac{1.0}{1.93} \le 0$ $g_4(\vec{x}) = \frac{x_3^2}{x_2 x_3 x_4^7} - \frac{1.0}{1.93} \le 0$		
	$f_1(\vec{x}) = 0.7854x_1x_2^2(10x_3^2/3 +$			$2.6 \le x_1 \le 3.6$
	$14.933x_3 - 43.0934$	$g_5(\vec{x}) = x_2 x_3 - 40 \le 0$		$0.7 \le x_2 \le 0.8$
	$-1.508x_1(x_6^2+x_7^2)+$	$g_6(\vec{x}) = x_1/x_2 - 12 \le 0$		$17.0 \le x_3 \le 28.0$
Golinski	$7.477(x_6^3 + x_7^3)$	$g_7(\vec{x}) = 5 - x_1/x_2 \le 0$	7	$7.3 \le x_4 \le 8.3$
	$f_2(\vec{x}) = \frac{\sqrt{(\frac{745.0x_4}{x_2x_3})^2 + 1.69*10^7}}{0.1x_6^3}$	$g_8(\vec{x}) = 1.9 - x_4 + 1.5x_6 \le 0$		$7.3 \le x_5 \le 8.3$
		$g_9(\vec{x}) = 1.9 - x_5 + 1.1x_7 \le 0$		$2.9 \le x_6 \le 3.9$
		$g_{10}(\vec{x}) = f_2(\vec{x}) \le 1300$		$5.0 \le x_7 \le 5.5$
		- 745 0 /		
		$a = 745.0x_5/x_2x_3$		
		$b = 1.575 * 10^8$		
		$g_{11}(\vec{x}) = \frac{\sqrt{a^2 + b}}{0.1x_7^3} \le 1100$		

Table 10 Problems with more than two objectives.

Problem	Objective functions	Constraints	n	Variable bounds
1 topiem	$f_1(\vec{x}) = \frac{(x_1 - 2)^2}{2} +$	Constraints	111	variable bounds
Viennet2	$f_1(x) = \frac{(x_1+1)^2}{2} + \frac{(x_1+1)^2}{13} + 3.0$ $f_2(\vec{x}) = \frac{(x_1+x_2-3)^2}{36} + \frac{(-x_1+x_2+2)^2}{8} - 17$ $f_3(\vec{x}) = \frac{(x_1+x_2-1)^2}{175} + \frac{(2x_2+x_1)^2}{175} - 13$		2	$-4.0 \le x_i \le 4.0$
Viennet3	$f_1(\vec{x}) = 0.5x_1^2 + x_2^2 + sin(x_1^2 + x_2^2)$ $f_2(\vec{x}) = \frac{(3x_1 - 2x_2 + 4)^2}{27} + 8$ $\frac{(x_1 - x_2 + 1)^2}{27} + 15$ $f_3(\vec{x}) = \frac{1}{x_1^2 + x_2^2 + 1} - 1.1exp(-x_1^2 - x_2^2)$		2	$-3.0 \le x_i \le 3.0$
Viennet4	$\begin{array}{c} 1.1exp(-x_1^2 - x_2^2) \\ \hline f_1(\vec{x}) &= \frac{(x_1 - 2)^2}{2} + \\ \frac{(x_2 + 1)^2}{13} + 3 \\ f_2(\vec{x}) &= \frac{(x_1 + x_2 - 3)^2}{175} + \\ \frac{(2x_2 - x_1)^2}{175} - 13 \\ f_3(\vec{x}) &= \frac{(3x_1 - 2x_2 + 4)^2}{27} + 15 \end{array}$	$g_1(\vec{x}) = -x_2 - 4x_1 + 4 \ge 0$ $g_2(\vec{x}) = x_1 + 1 \ge 0$ $g_3(\vec{x}) = x_2 - x_1 + 2 \ge 0$	2	$-4.0 \le x_i \le 4.0$
Water	$f_1(\vec{x}) = 106780.37(x_2 + x_3) + 61704.67$ $f_2(\vec{x}) = 3000x_1$ $f_3(\vec{x}) = \frac{305700*2289x_2}{(0.06*2289)^{0.65}}$ $f_4(\vec{x}) = 250 * 2289x_2$ $exp(-39.75x_2 + 9.9x_3 + 2.74)$ $f_5(\vec{x}) = 25 \frac{1.39}{(x_1x_2) + 4940*x_3 - 80}$	$\begin{split} g_1(\vec{x}) &= 1 - \frac{0.00139}{(x_1x_2)} + \\ & 4.94x_3 - 0.08 \ge 0 \\ g_2(\vec{x}) &= 1 - \frac{0.000306}{(x_1x_2)} + \\ & 1.082x_3 - 0.0986 \ge 0 \\ g_3(\vec{x}) &= 5000 - \frac{12.307}{(x_1x_2)} + \\ & 4.9408x_3 + 4051.02 \ge 0 \\ g_4(\vec{x}) &= 16000 - \frac{2.09}{(x_1x_2)} + \\ & 8046.33x_3 - 696.71 \ge 0 \\ g_5(\vec{x}) &= 10000 - \frac{2.138}{(x_1x_2)} + \\ & 7883.39x_3 - 705.04 \ge 0 \\ g_6(\vec{x}) &= 2000 - \frac{0.417}{(x_1x_2)} + \\ & 1721.26x_3 - 136.54 \ge 0 \\ g_7(\vec{x}) &= 550 - \frac{0.164}{(x_1x_2)} + \\ & 631.13x_3 - 54.48 \ge 0 \end{split}$	3	$0.01 \le x_1 \le 0.45$ $0.01 \le x_2 \le 0.10$ $0.01 \le x_3 \le 0.10$