ACVAE-VC: Non-Parallel Voice Conversion With Auxiliary Classifier Variational Autoencoder by Kameoka et al.

Master MVA - Audio Signal Analysis, Indexing, and Transformations

Dorian Desblancs March 15, 2021

Outline

- 1. Motivation
- 2. Methodology
- 3. Results
- 4. Wrap-up

Motivation

Voice Conversion

- Change one or more aspects of a speech signal while preserving linguistic information
- Applications: speaker-identity modification, speaking assistance, speech enhancement...
- · Two types:
 - Parallel voice conversion
 - · Non-Parallel voice conversion

Variational Auto-Encoder

Illustration of the variational autoencoder model with the multivariate Gaussian assumption (2) (3)

Methodology

Auxiliary Classifier Variational Auto-Encoder

Illustration of the auxiliary class variational autoencoder model (1)

Network Architecture

VAE Architecture (1)

Auxiliary Model Architecture (1)

VAE Inputs and Outputs

· Mel-Cepstral Coefficients

Sample Inputs and Outputs (1)

Experimental Design

Loss function:

$$L(\phi, \theta, \psi) = VAE(\phi, \theta) + \lambda_Q Q(\phi, \theta, \psi) + \lambda_R R(\psi)$$
 (1)

· Performance Measure: mel-cepstral distortion (MCD) along DTW Path

$$MCD[dB](x,y) = \frac{10}{\ln 10} \sqrt{2 \sum_{d=2} D(x_d - y_d)^2}$$
 (2)

• Data set: Voice Conversion Challenge (VCC) 2018

Results

...From Paper (1/2)

Speakers		Auxiliary classifier		
source	target	not included	included	
SF1	SM1	7.48 ± 0.150	6.70 ± 0.129	
	SF2	7.38 ± 0.163	6.57 ± 0.134	
	SM2	7.70 ± 0.140	6.97 ± 0.124	
SM1	SF1	7.64 ± 0.144	7.01 ± 0.108	
	SF2	6.93 ± 0.148	6.29 ± 0.133	
	SM2	7.25 ± 0.136	6.64 ± 0.111	
SF2	SF1	7.83 ± 0.164	6.94 ± 0.115	
	SM1	7.25 ± 0.151	6.36 ± 0.108	
	SM2	7.49 ± 0.167	6.85 ± 0.137	
SM2	SF1	7.82 ± 0.176	7.24 ± 0.151	
	SM1	7.22 ± 0.150	6.66 ± 0.133	
	SF2	7.15 ± 0.170	6.64 ± 0.152	

Results obtained with and without auxiliary classifier (1)

...From Paper (2/2)

Speakers			parallel method			
source	target	VAE [19]	VAEGAN [20]	StarGAN [35]	Proposed	sprocket [61]
SF1	SM1	7.66 ± 0.123	7.70 ± 0.122	7.81 ± 0.126	6.70 ± 0.129	6.91 ± 0.119
	SF2	7.53 ± 0.118	7.43 ± 0.124	7.54 ± 0.146	6.57 ± 0.134	6.70 ± 0.125
	SM2	8.06 ± 0.143	8.04 ± 0.145	8.11 ± 0.123	6.97 ± 0.124	7.06 ± 0.118
SM1	SF1	8.25 ± 0.104	8.20 ± 0.128	8.27 ± 0.119	7.01 ± 0.108	7.01 ± 0.114
	SF2	7.43 ± 0.111	7.23 ± 0.117	7.27 ± 0.134	6.29 ± 0.133	6.30 ± 0.108
	SM2	7.92 ± 0.106	7.82 ± 0.103	7.56 ± 0.106	6.64 ± 0.111	6.58 ± 0.099
SF2	SF1	7.97 ± 0.127	7.83 ± 0.121	7.99 ± 0.144	6.94 ± 0.115	7.21 ± 0.111
	SM1	7.38 ± 0.108	7.37 ± 0.097	7.28 ± 0.112	6.36 ± 0.108	6.77 ± 0.108
	SM2	7.92 ± 0.122	7.78 ± 0.109	7.75 ± 0.124	6.85 ± 0.137	6.85 ± 0.115
SM2	SF1	8.33 ± 0.148	8.20 ± 0.158	8.30 ± 0.189	7.24 ± 0.151	7.31 ± 0.116
	SM1	7.73 ± 0.138	7.66 ± 0.142	7.44 ± 0.122	6.66 ± 0.133	6.88 ± 0.114
	SF2	7.74 ± 0.135	7.65 ± 0.137	7.53 ± 0.154	6.64 ± 0.152	6.78 ± 0.146

Results compared to other methods (1)

...Generated

ALL CODE AND RESULTS ON MY GITHUB!

USERNAME: D-DAWG78, REPO: MVA_ASAIT

Wrap-up

Discussion

Advantages:

- Great results
- · Clear distinction between outputs depending on class

Improvement:

Improve data processing and loading for large-scale training feasibility

Future Work

- Auxiliary classifier added to a GAN ?
- Improve pre-processing
- Data augmentation to create more training samples out of small data sets

THANK YOU

QUESTIONS?

Bibliography

- 1. Kameoka, H., Kaneko, T., Tanaka, K., & Hojo, N. (2019). ACVAE-VC: Non-parallel voice conversion with auxiliary classifier variational autoencoder. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(9), 1432-1443.
- 2. Weng, L. (2018, August 12). From Autoencoder to Beta-VAE. GitHub. https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html#vae-variational-autoencoder
- 3. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.