Chapter 2 Convex sets

Last update on 2022-02-23 19:03

Table of contents

Affine and convex sets

Important examples

Operations preserving convexity

Generalized inequalities

Separating and supporting hyperplanes

Dual cones and generalized inequalities

Affine and convex sets

Important examples

Operations preserving convexity

Generalized inequalities

Separating and supporting hyperplanes

Dual cones and generalized inequalities

upcoming concepts

affine combination	convex combination	conic combination
affine set	convex set	convex cone
affine hull	convex hull	conic hull

affine combination of $x_1, \dots, x_k \in \mathbb{R}^n$: points of the form

$$\theta_1 x_1 + \dots + \theta_k x_k$$
, where $\theta_1 + \dots + \theta_k = 1$

line through x_1 and x_2 : the set of all affine combinations of x_1 and x_2

$$\{x = \theta x_1 + (1 - \theta)x_2 \mid \theta \in \mathbb{R}\}\$$

$$\theta = 1.2$$

$$\theta = 1$$

$$\theta = 0.6$$

$$\theta = 0$$

$$\theta = -0.2$$

affine set: $C \subseteq \mathbb{R}^n$ is affine if it contains the line through any pair of points in C

example

- ▶ the solution set of linear equations $\{x \mid Ax = b\}$ is an affine set
- conversely, every affine set can be expressed as the solution set of a system of linear equations

affine hull of $C \subseteq \mathbb{R}^n$: the set of all affine combinations of points in C

aff
$$C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C, \theta_1 + \dots + \theta_k = 1\}$$

facts

- ▶ the affine hull of *C* is the smallest affine set containing *C*
- ightharpoonup if C is an affine set, then aff C = C

Convex set

convex combination of $x_1, \dots, x_k \in \mathbb{R}^n$: points of the form

$$\theta_1 x_1 + \dots + \theta_k x_k$$
, where $\theta_1, \dots, \theta_k \ge 0$ and $\theta_1 + \dots + \theta_k = 1$

line segment between x_1 and x_2 : the set of all convex combinations of x_1 and x_2

$${x = \theta x_1 + (1 - \theta)x_2 \mid 0 \le \theta \le 1}$$

convex set: $C \subseteq \mathbb{R}^n$ is convex if contains line segment between any pair of points in C examples (one convex, two nonconvex)

convex hull of $C \subseteq \mathbb{R}^n$: the set of all convex combinations of points in C

$$\mathsf{conv}\; C = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C; \theta_1, \dots, \theta_k \geq 0; \theta_1 + \dots + \theta_k = 1\}$$

facts

- ▶ the convex hull of *C* is the smallest convex set containing *C*
- ightharpoonup if C is a convex set, then **conv** C = C

Convex cone

cone: $C \subseteq \mathbb{R}^n$ is a cone if $\theta x \in C$ for every $x \in C$ and $\theta \ge 0$.

conic combination of $x_1, \dots, x_k \in \mathbb{R}^n$: points of the form

$$\theta_1 x_1 + \dots + \theta_k x_k$$
, where $\theta_1, \dots, \theta_k \ge 0$

convex cone: $C \subseteq \mathbb{R}^n$ is a convex cone if it is convex and a cone

fact

C is a convex cone \iff C contains all conic combinations of points in itself

conic hull of $C \subseteq \mathbb{R}^n$: the set of all conic combinations of points in C

$$\{\theta_1 x_1 + \dots + \theta_k x_k \mid x_1, \dots, x_k \in C; \theta_1, \dots, \theta_k \ge 0\}$$

facts

- ▶ the conic hull of *C* is the smallest convex cone containing *C*
- ▶ if *C* is a convex cone, then its conic hull is itself

Affine and convex sets

Important examples

Operations preserving convexity

Generalized inequalities

Separating and supporting hyperplanes

Dual cones and generalized inequalities

a huge wave of zombies is approaching

- hyperplanes
- halfspaces
- ► Euclidean balls
- ellipsoids
- second-order cone (Lorentz cone)
- norm balls
- norm cones
- polyhedra
- positive semidefinite cone

Hyperplanes

hyperplane: set of the form $\{x \mid a^Tx = b\}$ $(a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R})$

fact: hyperplanes are affine and convex

Halfspaces

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R})$

fact: halfspaces are convex

Euclidean balls

Euclidean ball with center x_c and radius r: two equivalent representations

> set of the form

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\}$$

set of the form

$$B(x_c, r) = \{x_c + ru \mid ||u||_2 \le 1\}$$

fact: Euclidean balls are convex

Ellipsoids

ellipsoid: two equivalent representations

set of the form

$$\{x \mid (x - x_c)^T P^{-1}(x - x_c) \le 1\}$$
 with $P \in \mathbb{S}_{++}^n$

> set of the form

$$\{x_c + Au \mid ||u||_2 \le 1\}$$
 with A square and nonsingular

fact: ellipsoids are convex

Norm balls

norm: a function $\|\cdot\|$ satisfying

- $\|x\| \ge 0$, equality holds iff x = 0;
- $||tx|| = |t| \cdot ||x||$ for $t \in \mathbb{R}$
- $\|x + y\| \le \|x\| + \|y\|$

norm ball with center x_c and radius r: set of the form

$$\{x \mid ||x - x_c|| \le r\}$$

fact: norm balls are convex

Norm cones

norm cone: set of the form

$$\{(x,t) \mid ||x|| \le t\}$$

Euclidean norm cone is also called second-order cone

fact: norm cones are convex cones

Polyhedra

polyhedron: solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
, $Cx = d$

where $A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, \leq is componentwise inequality i.e. polyhedra are intersections of finite number of halfspaces and hyperplanes;

fact: polyhedra are convex

Positive semidefinite cone

- ▶ \mathbb{S}^n : set of symmetric $n \times n$ matrices
- ▶ $\mathbb{S}^n_+ = \{X \in \mathbb{S}^n \mid X \succeq 0\}$: set of symmetric positive semidefinite $n \times n$ matrices

$$X \in \mathbb{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z \in \mathbb{R}^n$$

▶ $\mathbb{S}_{++}^n = \{X \in \mathbb{S}^n \mid X \succ 0\}$: set of symmetric positive definite $n \times n$ matrices

fact: positive semidefinite cone \mathbb{S}^n_+ is a convex cone

Affine and convex sets

Important examples

Operations preserving convexity

Generalized inequalities

Separating and supporting hyperplanes

Dual cones and generalized inequalities

Establishing convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. reconstruct C from known convex sets by operations preserving convexity:
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

example

$$S = \{x \in \mathbb{R}^m \mid |p_x(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p_x(t) = x_1 \cos t + \cdots + x_m \cos mt$

Affine function

affine function $f: \mathbb{R}^n \to \mathbb{R}^m$ is of the form

$$f(x) = Ax + b$$
 with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

▶ the image of a convex set under *f* is convex

$$S \subseteq \mathbb{R}^n$$
 convex \Longrightarrow $f(S) = \{f(x) \mid x \in S\}$ convex

▶ the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbb{R}^m$$
 convex \Longrightarrow $f^{-1}(C) = \{x \in \mathbb{R}^n \mid f(x) \in C\}$ convex

examples

▶ scaling and translation: if $S \subseteq \mathbb{R}^n$ is convex, $\alpha \in \mathbb{R}$ and $a \in \mathbb{R}^n$, then

$$\alpha S = \{ \alpha x \mid x \in S \}$$
 and $S + a = \{ x + a \mid x \in S \}$

are convex

▶ projection: if $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$ is convex, then

$$T = \{x_1 \in \mathbb{R}^m \mid (x_1, x_2) \in S \text{ for some } x_2 \in \mathbb{R}^n\}$$

is convex

solution set of linear matrix inequality

$$\{x \in \mathbb{R}^n \mid x_1 A_1 + \dots + x_n A_n \leq B\}$$

where $A_i, B \in \mathbb{S}^m$, is convex

proof

inverse image of the positive semidefinite cone under the affine function

$$f: \mathbb{R}^n \to \mathbb{S}^m, \qquad f(x) = B - (x_1 A_1 + \cdots + x_n A_n)$$

hyperbolic cone

$$\left\{ x \in \mathbb{R}^n \mid x^T P x \le \left(c^T x \right)^2, c^T x \ge 0 \right\}$$

where $P \in \mathbb{S}^n_+$ and $c \in \mathbb{R}^n$, is convex

proof

inverse image of the second-order cone

$$\{(z,t) \mid z^T z \le t^2, t \ge 0\}$$

under the affine function $f: \mathbb{R}^n \to \mathbb{R}^{n+1}$ given by $f(x) = (P^{1/2}x, c^Tx)$

Perspective function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ given by

$$P(x,t) = x/t,$$
 dom $P = \mathbb{R}^n \times \mathbb{R}_{++} = \{(x,t) \mid t > 0\}$

- images of convex sets under perspective function are convex
- inverse images of convex sets under perspective function are convex

Linear-fractional functions

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$ given by

$$f(x) = \frac{Ax + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\}$$

it is the composition of an affine function g and the perspective function P, where

$$g(x) = \begin{bmatrix} A \\ c^T \end{bmatrix} x + \begin{bmatrix} b \\ d \end{bmatrix}$$

- images of convex sets under linear-fractional functions are convex
- inverse images of convex sets under linear-fractional functions are convex

example

$$f(x) = \frac{x}{x_1 + x_2 + 1},$$
 dom $f = \{(x_1, x_2) \mid x_1 + x_2 + 1 > 0\}$

Affine and convex sets

Important examples

Operations preserving convexity

Generalized inequalities

Separating and supporting hyperplanes

Dual cones and generalized inequalities

Proper cones

proper cone: a cone $K \subseteq \mathbb{R}^n$ satisfying

- ► *K* is convex
- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- \blacktriangleright K is pointed (contains no line, or equivalently, $\pm x \in K \Longrightarrow x = 0$)

examples

- ▶ nonnegative orthant $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$
- **positive semidefinite cone** $K = \mathbb{S}^n_+$
- ightharpoonup nonnegative polynomials on [0,1]

$$K = \{c \in \mathbb{R}^n \mid c_1 + c_2t + \dots + c_nt^{n-1} \ge 0 \text{ for } t \in [0,1]\}$$

Generalized inequalities

generalized inequality on \mathbb{R}^n defined by a proper cone $K \subseteq \mathbb{R}^n$

$$x \leq_K y \iff y - x \in K$$

 $x \prec_K y \iff y - x \in \text{int } K$

examples (same for \prec , \succeq , \succ)

▶ componentwise inequality $(K = \mathbb{R}^n_+)$

$$x \preceq_{\mathbb{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \cdots, n$$

ightharpoonup symmetric matrix inequality $(K = \mathbb{S}^n_+)$

$$X \preceq_{\mathbb{S}^n_+} Y \qquad \Longleftrightarrow \qquad Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in $\leq_{\mathcal{K}}$

properties (same for \prec , \succeq , \succ)

▶ many properties of $\leq_{\mathcal{K}}$ are similar to \leq on \mathbb{R} , e.g.

$$x \leq_{\kappa} y$$
, $u \leq_{\kappa} v \implies x + u \leq_{\kappa} y + v$

▶ not always a linear ordering, namely, it could happen that $x \not\preceq_K y$ and $y \not\preceq_K x$

Minimum and minimal elements

 $x \in S$ is the **minimum element** of S with respect to \leq_K if

$$y \in S \implies x \leq_{\kappa} y$$

 $x \in S$ is the **minimal element** of S with respect to \leq_K if

$$y \in S$$
, $y \leq_{\kappa} x \implies y = x$

example for $K = \mathbb{R}^2_+$

 x_2 is a minimal element of S_2

Affine and convex sets

Important examples

Operations preserving convexity

Generalized inequalities

Separating and supporting hyperplanes

Dual cones and generalized inequalities

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, then there exist $a \neq 0$ and b such that

$$a^T x \le b$$
 for $x \in C$, $a^T x \ge b$ for $x \in D$

the hyperplane $\{x \mid a^T x = b\}$ is called a **separating hyperplane**

proof of separating hyperplane theorem

- ▶ strict separation requires additional assumptions (e.g. point and closed convex set)
- converse separating theorem requires additional assumptions (e.g. one set is open)

Supporting hyperplane theorem

supporting hyperplane to a set C at a boundary point x_0 is a hyperplane

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$, such that $a^T x \leqslant a^T x_0$ for all $x \in C$

if C is convex, then supporting hyperplane exists at every boundary point of C

Affine and convex sets

Important examples

Operations preserving convexity

Generalized inequalities

Separating and supporting hyperplanes

Dual cones and generalized inequalities

Dual cones

dual cone of a cone K

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

$$K = \mathbb{R}^{n}_{+} \qquad \Longrightarrow \qquad K^{*} = \mathbb{R}^{n}_{+}$$

$$K = \mathbb{S}^{n}_{+} \qquad \Longrightarrow \qquad K^{*} = \mathbb{S}^{n}_{+}$$

$$K = \{(x,t) \mid ||x||_{2} \leq t\} \qquad \Longrightarrow \qquad K^{*} = \{(x,t) \mid ||x||_{2} \leq t\}$$

$$K = \{(x,t) \mid ||x||_{1} \leq t\} \qquad \Longrightarrow \qquad K^{*} = \{(x,t) \mid ||x||_{\infty} \leq t\}$$

first three examples are self-dual cones

Dual generalized inequalities

assume K is a proper cone, then K^* is also a proper cone

hence K^* also defines generalized inequalities

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Dual characterization of minimum element

x is the minimum element of S with respect to \leq_K

x is the unique minimizer of $\lambda^T z$ over S for each $\lambda \succ_{K^*} 0$

Dual characterization of minimal element

x is a minimal element of a convex set S with respect to \leq_K

 $\Rightarrow \begin{array}{c} x \text{ minimizes } \lambda^T z \text{ over } S \\ \text{for some nonzero } \lambda \succeq_{K^*} 0 \end{array}$

Optimal production frontier

- \triangleright different production methods use different amounts of resources $x \in \mathbb{R}^n$
- production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal with respect to \mathbb{R}^n_+

example for n = 2: x_1, x_2, x_3 are efficient; x_4, x_5 are not

