Introduction to Reinforcement Learning – A Tutorial Barcode

Martin Lorenz lorenz@cs.uni-leipzig.de ScaDS.AI, Leipzig University

Reinforcement Learning -Agenda

RL Basics

- Terminology, MDP, POMDPHow to implement

- Define Environment, agent
- Train the agent

RL - Basics

Essential Terminology

- Agent:
 - The "subject" (♥ ¾ ¾ ➡) that observes and acts in a given environment
 - Tries to maximize reward over time (in our context)
- Fnvironment:
 - World in which agent operates (physical system, simulation)
- State:
 - Situations the agent can encounter during its interactions
 - Snapshot of the environment at time t, denoted as S_t
 - Encapsulates all relevant information for decission making
- Policy (π) :
 - The agent's learned strategy to maximize (long-term) reward (π^*)

Markov Decision Process (MDP)

The Foundation of RL

- Markov Decision Process (MDP) (S, A, P, R, γ)
 - *S* ... state space
 - A ... action space
 - P... transition function
 - P(s'|s,a) probability of transitioning from state s to state s' when taking action a
 - $R: S \times A \rightarrow \mathbb{R}$... reward function
 - R(s, a, s') immediate reward when transitioning from state s to s' taking action a
 - γ ... discount factor
 - Agent's preference for immediate vs. future rewards
 - Policy π is a (probabilistic) mapping from state space S to action space A

Source:

https://commons.wikimedia.org/wiki/File:Markov_Decision_Process.svg#/media/File:Markov_Decisior _Process.svg

Partially Observable Markov Decision Process (POMDP)

MDPs for Real World Problems

- POMDP $(S, A, P, R, \Omega, O, \gamma)$
 - *S* ... state space
 - A ... action space
 - P... transition function
 - P(s'|s,a) probability of transitioning from state s to state s' when taking action a
 - $R: S \times A \rightarrow \mathbb{R}$... reward function
 - R(s, a, s') immediate reward when transitioning from state s to s' taking action a
 - Ω ... observation space
 - 0 ... conditional observation probabilities
 - O(o|s',a) probability to observe o when transitioning to s' with action a
 - γ ... discount factor

Source: https://user-images.githubusercontent.com/33338567/60923303-8f087100-a296-11e9-8952-c46abcaab698.jpg

How to solve it?

How to find π^* ?

- Depends on:
 - MDP / POMDP
 - Model free / Model based
- Bunch of algorithms and architectures, e.g.:
 - Q-Learning
 - Deep Q-Learning / Network (DQN)
 - Soft Actor-Critic (SAC) [Haarnoja et al.]
 - Proximal Policy Optimization (PPO) [Schulman et al.]

Source: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.htm

How to implement?

Frameworks and Tools

- Gymnasium API (Farama Foundation)
 - "An API standard for reinforcement learning with a diverse collection of reference environments"
 - Based on PyTorch
 - https://gymnasium.farama.org
- StableBaselines3 (SB3)
 - "SB3 is a set of reliable implementations of reinforcement learning algorithms in PyTorch."
 - https://stable-baselines3.readthedocs.io/en/master/
- Ray Rllib
 - "offer[s] support for production-level, highly distributed RL workloads while maintaining unified and simple APIs for a large variety of industry applications."
 - Supports multi-agent setup
 - https://docs.ray.io/en/latest/rllib/index.html

Let's code

PyCharm

The Project

- Scenario:
 - Grid World $(n \times n)$
 - Agent has to find target (constant, random position)
- Actions:
 - Up, Down, Left, Right
- Observation:
 - Current agent's position
 - (distance to target)
- Reward:
 - Step: -1
 - Finding the target: +10
- git clone https://github.com/ciaogroup/RL-Tutorial.git

Summary

- Intuitive Introduction to Reinforcement Learning
 - Agent, Environemnt, Action, Observation, Reward, Policy
- MDP vs. POMDP
- Implementation with Gymnasium
- Training with Stable Baselines 3

Further reading

Thank you very much!

