Take \mathcal{O}_o to be some locally orientable orbifold and \mathcal{O}_n to be some locally non-orientable orbifold.

It is well known that orbifold of different dimensions will have different Laplace Spectra. So, we only must consider the case in which $\dim(\mathcal{O}_o) = \dim(\mathcal{O}_n)$. Without loss of generality, we will take this dimension to be odd.

By Lemma /*4.5*/ \mathcal{O}_o will have no even dimensional primary strata while \mathcal{O}_n will have at least one even dimensional primary stratum.

We first claim that every integer power coefficient in the heat expansion of \mathcal{O}_o is 0. We proceed by contradiction under the assumption that there exists some nonzero integer power coefficient. So, consider the asymptotic expansion given by

$$I_0 + \sum_{N \in S(\mathcal{O})} \frac{I_N}{|\operatorname{Iso}(N)|}$$

But, for an odd dimensional orbifold, the I_0 will not contribute to integer power terms. So, we consider only the second part of the sum. We use /**/ to expand the second half of the sum and arrive at the following expression.

$$\sum_{N \in S(\mathcal{O})} \frac{(4\pi t)^{-\dim(N)/2}}{|\operatorname{Iso}(N)|} \sum_{k=0}^{\infty} t^k \int_N \sum_{\gamma \in \operatorname{Iso}^{\max}(\widetilde{N})} b_k(\gamma, x) dvol_N$$

In studying the above, we find that in order for \mathcal{O}_o to have some nonzero integer power coefficient, \mathcal{O}_o must have some even dimensional primary strata. However, this contradicts our earlier conclusion and thus we reject our assumption and conclude that every integer power coefficient in the expansion of \mathcal{O}_o is 0.

We now show that at least one integer power coefficient in the expansion of \mathcal{O}_n is nonzero. We have that there exists at least one even dimensional primary strata in \mathcal{O}_n , so we consider all such strata of maximal dimension d in \mathcal{O}_n . Note that only these strata of maximal dimension will contribute to the -d/2 term in the heat expansion, which occurs in the k=0 iteration in the sum. Furthermore, by Lemma /*4.1*/ the b_0 term for each contributing strata is strictly positive. Thus, the integer -d/2 term is the sum of strictly positive terms and is thus nonzero. This confirms the claim that \mathcal{O}_n has at least one nonzero integer power coefficient.

So, \mathcal{O}_o and \mathcal{O}_n differ in at least one term in the heat expansion. Specifically, \mathcal{O}_n will have some nonzero integer power coefficient in the expansion while the same term in \mathcal{O}_o is guaranteed to be 0.

So, any orientable and non-orientable orbifold will have differing heat expansions, so we conclude that any orientable and non-orientable orbifold will have different Laplace Spectra. This concludes the proof that we can hear local orientability.

The proof for the case that \mathcal{O}_o and \mathcal{O}_n are of even dimension proceeds identically to the above with a few small differences. Instead of considering even dimensional primary stratum, take odd dimensional primary stratum. And, instead of looking at integer coefficients, take half-integer coefficient.