Scuttle robot Wiring Guide (rev 2019.11.21)

Important Info:

To match the beaglebone pins to the pin numbers on the diagram: The tiny white circle on the silkscreen at each connector indicates "pin1"

Available Sensors & Actuators

Motor Driver Signal Cables

common ground to the

battery pack.

in1 on DuPont connector goes to in1 on driver

Hardware design convention: Pin 1 uses the square solder had

Connector vector image reserved.

Ultrasonic Distance Sensor (GPIO)

NOTE: For JST connectors out-of-box, the colors are not in the correct order. You need to rearrange them.

Beaglebone to I2C bus cable

Compass CMPS or CMPS2 (12C)

Plugs into I2C Bus Board

This compass is not necessary since you can access the compass on the beaglebone blue. Be sure to calibrate the compass on the blue since it lies within close proximity of magnetic hardware on the robot.

12C Bus Board

The board is made from a breadboard and soldered manually. The board can be cut between rows J & K. The solder bridges all pins from left to right.

Rear of robot

Screw Hole

Front of robot

Encoder AS5048 (I2C)

Left Hand Encoder A1 is pulled **down** to GND I2C address is 0x40

Right Hand Encoder A1 is pulled **up** to 3.3v I2C address is 0x41

PIN	Left	Right
A1	0 (low)	1 (high)
A2	0 (low)	0 (low)
i2C Address	0×40	0x41

On the Left Hand Encoder PCB, bridge the pins A1 and A2 using solder, to each other.

Encoder Cables

Battery

Battery Pack

Switch PN:SRB22A2FBBNN Carries 10A max

Two pairs of Anderson connectors are attached here.

LIDAR

Typical Lidar power consumption: 2.1v

GamePad

Button Behavior:

• not pressed: 0

• Pressed: 1

Axis behavior:

- Right returns positive values
- down returns positive values

Servos

Without a power source available at the positive (third pin) input of the liPo connector, the board has insufficient current available to the servos to drive servos at full torque or to drive multiple servos.

A safe fix is to solder the positive terminal of the DC jack to the third pin of the connector shown. When a battery is connected, the pins correspond to 0.0v, 3.7v, and 7.2v terminals of a 2-cell lipo.

RFID reader

Pyle PCB3BK Audio Amp 22AWG or larger wires 3.6" inches PAM8610 D Amp Board 4.6" inches 3.6" inches Power switch 1-speaker is OK. Mute switch To 12v power Power LED **G**TROND

Aux cord

usb adapter

Input

To Beagle USB

GPIO Connections

Connector vector image preserved for later use

Note: JST wires don't come with the proper color sequence. They must be rearranged.

GPIO Example - Relay

Wifi Antenna

