Relations and Functions

Domain of definition of the function

$$f(x) = \frac{3}{4 - x^2} + \log_{10}(x^3 - x)$$
, is

[2003]

- (a) $(-1,0) \cup (1,2) \cup (2,\infty)$ (b) (a,2)
- (c) $(-1,0) \cup (a,2)$
- (d) $(1,2) \cup (2,\infty)$.
- 2. If $f: R \to R$ satisfies f(x+y) = f(x) + f(y),

for all $x, y \in R$ and f(1) = 7, then $\sum_{r=1}^{n} f(r)$ is

- (d) 7n + (n+1).

- The graph of the function y = f(x) is symmetrical about the line x = 2, then
 - f(x) = -f(-x)
 - f(2+x) = f(2-x)
 - f(x) = f(-x)
 - (d) f(x+2) = f(x-2)
- The domain of the function $f(x) = \frac{1}{\sqrt{|x|-x}}$ is

[2011]

- (a) $(0, \infty)$
- (b) $(-\infty, 0)$
- (c) $(-\infty, \infty) \{0\}$
- (d) $(-\infty, \infty)$

	Answer Key														
1	2	3	4												
(a)	(a)	(b)	(b)												

SOLUTIONS

1. **(a)** $f(x) = \frac{3}{4 - x^2} + \log_{10}(x^3 - x)$

$$4 - x^2 \neq 0$$
; $x^3 - x > 0$;

 $x \neq \pm \sqrt{4}$ and -1 < x < 0 or $1 < x < \infty$

$$\therefore D = (-1, 0) \cup (1, \infty) - \left\{ \sqrt{4} \right\}$$

$$D = (-1, 0) \cup (1, 2) \cup (2, \infty).$$

(a) f(x+y)=f(x)+f(y). Function should be f(x) = mxf(1) = 7; : m = 7, f(x) = 7x

$$\sum_{r=1}^{n} f(r) = 7\sum_{r=1}^{n} r = \frac{7n(n+1)}{2}$$

(b) Let us consider a graph symm. with respect 3. to line x = 2 as shown in the figure.

From the figure

$$f(x_1) = f(x_2)$$
, where $x_1 = 2 - x$
and $x_2 = 2 + x$

$$\therefore f(2-x) = f(2+x)$$

(b) $f(x) = \frac{1}{\sqrt{|x|-x}}$, define if |x|-x > 0 $\Rightarrow |x| > x, \Rightarrow x < 0$ Hence domain of f(x) is $(-\infty, 0)$