RÖNTGEN-DIFFRAKTOMETRIE (XRD) und RÖNTGEN-PULVERDIFFRAKTOMETRIE (XRPD)

Strukturbestimmung mittels Röntgenstrahlen Ortslagenbestimmung von Atomen Kristall- bzw. Röntgenstrukturanalyse Fingerprint, Substanzidentifizierung Phasenanalyse, Phasenübergänge

Erzeugung von Röntgenstrahlen mit Röntgenröhren

Ionisation mit schnellen Elektronen

→ Emission von Röntgenstrahlen

Röntgenröhre Anode aus z.B. Cr, Cu, Mo)

Erzeugung von Röntgenstrahlen mit Röntgenröhren

Röntgenröhre Anode aus z.B. Cr, Cu, Mo)

: Schaltschema eines Röntgengenerators (nach Jost, 1975).

Röntgenröhre Schaltung, Anode, Fokus

Brems- und Emissionsspektren von Röntgenröhren

Bremsspektren (W)

 $\lambda_{\text{Min}} [\text{Å}] = 12.4/\text{V} [\text{kV}], \lambda_{\text{Max}} \approx 1.5 \cdot \lambda_{\text{Min}}$

Brems- und Emissionsspektren (Mo)

 $v_{K\alpha} \sim Z^2$ (Henry Moseley, 1913)

Emissionsspektrum einer Röntgenröhre

 $Brems-/Emissionsspektrum $$\nu_{K\alpha}\sim Z^2$ (Henry Moseley, 1913) $$\lambda_{Min} [Å] = 12.4/V [kV], $\lambda_{Max}\approx 1.5\cdot\lambda_{Min}$$$

Termschema (Auswahlregeln: 2n-1 Zustände, $1 \le n \le 7, \ 0 \le l \le n-1, \ \Delta l = \pm l, \ -l \le m_1 \le +l, \ \Delta m_1 = 0, \ \pm 1$

Wellenlängen verschiedener Röntgenröhren

Wellenlängen der wichtigsten K-Serien in Å *

Atom Nr.	Element	Κα	$K\alpha_1$	$K\alpha_2$	κβ
24	Chrom	2,29092	2,28962	2,29351	2,08480
26	Eisen	1,93728	1,93597	1,93991	1,75653
27	Kobalt	1,79021	1,78892	1,79278	1,62075
28	Nickel	1,65912	1,65784	1,66169	1,50010
29	Kupfer	1,54178	1,54051	1,54433	1,39217
42	Molybdän	0,71069	0,70926	0.71354	0.63225
47	Silber	0,56083	0,55936	0,56378	0,49701
74	Wolfram	0,21060	0,20899	0,21381	0,18436

^{* 1} Å = 10^{-10} m. Früher wurden Wellenlängen auch in X-Einheiten angegeben: 1000 X = 1 KX = 1,00202 Å = 100,202 pm.

Strahlenschutz und Einheiten in der Röntgenographie

Aktivität: Becquerel (Bq) 1 Bq = 1/s früher Curie (Ci): $1\text{Ci} = 3.7 \times 10^{10} \text{ Bq}$

Ionendosis (C/kg): früher Röntgen (R): $1 R = 2.6 \times 10^{-4} \text{C/kg}$)

Energiedosis: Gray (Gy) 1 Gy = 1 J/kg früher Rad (rd): 1 rd = 0,01 Gy Äqivalentdosis: Sievert (Sv) 1 Sv = 1 J/kg früher Rem (rem): 1 rem = 0,01 Sv

- Aktivität: 1 Ci ist die Zerfallsrate von 1 g ²²⁶Ra (historisch zu Ehren von Marie Curie).
- Ionendosis: streng physikalisch bezogen auf Erzeugung von Ionen in Luft.
- Energiedosis: die pro Masseeinheit des Körpers absorbierte Strahlungsenergie.
- Äqivalentdosis: Maß für die Schädlichkeit einer Strahlung (Wirkungsfaktor · Energiedosis). Wirkungsfaktoren: 1 für Röntgenstrahlung bis 20 für α-Strahlen.
- Natürliche Strahlenbelastung: ~2,5 mSv/Jahr (kosmisch ~1 mSv, terrestrisch ~1 mSv, sonstige ~0,5 mSv), das im Körper des Menschen enthaltene ⁴⁰K liefert z.B, ~4500 Bq (~0,18 mSv/Jahr).
- Medizinische Strahlenbelastung: ~1,5 mSv/Jahr (z.B. Magen/Darm-Untersuchung ~160 mSv).
- Sonstige Strahlenbelastung (Technik, Atombomben, Atommeiler etc.): ~0.01-0.03 mSv/Jahr.
- 20 mSv wurden als Ganzkörper-Jahresgrenzdosen für strahlenexponierte Personen festgelegt.
- 400 mSv pro Jahr gelten als gerade noch nicht gesundheitsschädlich. Ab 2-10 Sv treten schwere gesundheitliche Schäden auf. Dosen von 10-15 Sv sind zu 90-100 % tödlich, Dosen >50 Sv zu 100 % innerhalb von 1 Stunde bis 2 Tagen.

Literatur: Hans Kiefer, Winfried Koelzer: Strahlen und Strahlenschutz, Springer-Verlag

Internet: www.bfs.de (Bundesamt für Strahlenschutz)

Strahlenschutz erfordert Abschirmung

Röntgenröhre

Röhre mit Röhrenhaube

Röntgendetektoren

Klassischer Detektor: Geiger-Müller Zähler

Röntgendetektoren

Szintillationszähler

Moderner Detektor: Szintillationszähler

Röntgendetektoren

Moderner orts-empfindlicher Detektor

Ein- oder zweidimensionale Erfassung des Winkels oder Ortes, unter dem die Röntgenstrahlen gebeugt werden

Absorption von Röntgenstrahlung

Abschwächung durch Absorber

$$I = I_0 \cdot e^{-\alpha d}$$

- Absorptionskoeffizient α
- Halbwertsdicke

$$d_{\frac{1}{2}} = \alpha^{-1} \cdot \ln(2)$$

Absorption von Röntgenstrahlung

Spektrum: Absorptionskanten

Filterwirkung einer Ni-Folie für Cu-K_aStrahlung (Monochromatisierung)

Streuung von Röntgenstrahlen

(Gas, Flüssigkeit, Glas, Kristallpulver, Einkristall)

Detektor (Film, Zählrohr, Imaging plate)

 \vec{S}_0 : WVPS

 \vec{s} : WVSS; $|\vec{s}| = |s_0| = 1/\lambda$ (oder 1)

 \vec{S} : Streuvektor

Beugungsbild = Fouriertransformierte der Elektronendichteverteilung

V : Probenvolumen

r: Raumvektor

R : Streuamplitude

 \vec{S} : Streuvektor = Vektor im Fourier- (Impuls-) Raum, $|R(S)|^2 \approx I_{hkl}$

Streuung an einer amorphen Probe

keine Fernordnung, keine Nahordnung (monoatomares Gas, z.B. He) ⇒ monotoner Abfall

keine Fernordnung, aber Nahordnung (z.B. Flüssigkeiten, Gläser) ⇒ Modulation

Streuung an einer kristallinen Probe

Kristallpulver
Orientierung statistisch, λ fest \Rightarrow Interferenzkegel

Debye-Scherrer-Diagramm

Einkristall Orientierung oder λ variabel \Rightarrow Interferenzpunkte (Reflexe)

Präzessions-Diagramm

Die von einem Kristall gestreute Röntgenstrahlung wird nur für die Strahlen nicht vollständig ausgelöscht, die "in Phase" sind also eine Phasendifferenz von genau $n \cdot \lambda$ aufweisen \rightarrow **positive Interferenz**.

Reflexion von Röntgenstrahlen an den Netzebenen der Kristalle mit Interferenzbedingung $\mathbf{n} \cdot \lambda = 2\mathbf{d} \cdot \sin \theta$ bzw. $\lambda = 2\mathbf{d}_{hkl} \cdot \sin \theta_{hkl}$ (Bragg-Gleichung)

Der Kristall bzw. Kristallit eines Pulvers befinde sich im Mittelpunkt einer (gedachten) Kugel mit dem Radius $1/\lambda$ und werde entlang einer Mittelpunktsgeraden dieser Kugel von einem Röntgenstrahl mit der Wellenlänge λ getroffen.

Der Ursprung des mit dem Kristall(it) verbundenen reziproken Gitters sei entlang dieses Röntgenstrahls (Primärstrahl \mathbf{s}_0) auf den Umfang der Kugel (um \mathbf{s}_0) parallel verschoben. Dann ist die **Bragg-Gleichung immer dann erfüllt**, wenn der Streuvektor $\mathbf{S} = \mathbf{s} - \mathbf{s}_0$ gleich einem reziproken Gittervektor $\mathbf{H}_{hkl} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$ ist, also wenn $\mathbf{S} = \mathbf{H}_{hkl}$ ist, also **ein Punkt des reziproken Gitters auf dem Umfang der Ewald-Kugel liegt**.

Die Überlagerung (Interferenz) der von den Elektronen der Atome gestreuten Röntgenstrahlen führt zur Verstärkung (a) oder Auslöschung (b) der Röntgenstrahlen.

- Die von einem Atom gestreute
 Röntgenstrahlung wird durch den
 Atomformfaktor f_i beschrieben.
- Die von allen Atomen einer Elementarzelle eines Kristalls gestreuten Röntgenstrahlen werden durch den **Strukturfaktor F**_{hkl} beschrieben.

Überlagerung (Interferenz) von Röntgenstrahlen

Streuvermögen f_{j0} eines **ruhenden** Einzelatoms (Atomformfaktor, atomarer Streufaktor) als Funktion von $\sin\theta/\lambda$

Strukturfaktor

Das Streuvermögen **aller** Atome einer Elementarzelle wird durch den **Strukturfaktor** \mathbf{F}_{hkl} beschrieben und ist (für $\theta = 0$) proportional zur Summe der Streubeiträge aller Atome der Eementarzelle. \mathbf{F}_{hkl} ist für jede Netzebenenschar charakteristisch und im allgemeinen Fall eine komplexe Zahl. In einer mit n Atomen besetzten Elementarzelle ergibt sich der Strukturfaktor zu:

(imaginäre Achse)

$$F_{hkl} = \sum_{j=1}^{n} f_j \exp [2\pi i (hx_j + ky_j + lz_j)]$$

h,k,l: Miller-Indizes, xj, yj, zj: atomare Lagekoordinaten.

Mit der Euler-Gleichung $\exp(i\varphi) = \cos\varphi + i \sin\varphi$ erhält man für den Strukturfaktor:

$$\mathbf{F}_{hkl} = \sum f_j \cos 2\pi (hx_j + ky_j + lz_j) + i \sum f_j \sin 2\pi (hx_j + ky_j + lz_j)$$

Meßbar ist aber nur das Quadrat der Strukturamplitude: $I_{hkl} \sim F^2_{hkl}$. Damit gehen alle Vorzeichen (im allg. Fall die "Phase" der komplexen Zahl) verloren.

≡ "Phasenproblem der Röntgenstrukturanalyse"

Strukturfaktor

Hat die Kristallstruktur ein Symmetriezentrum, so vereinfacht sich der Strukturfaktor

$$\mathbf{F}_{hkl} = \sum f_j \cos 2\pi (hx_j + ky_j + lz_j) + i \sum f_j \sin 2\pi (hx_j + ky_j + lz_j)$$

durch Kompensation/Fortfall des Imaginärteils zu

$$\mathbf{F}_{hkl} = \sum f_j \cos 2\pi (hx_j + ky_j + lz_j)$$

Damit wird das das "Phasenproblem" zu einem "Vorzeichenproblem".

Strukturamplitude und Streuintensität

Der Betrag des Strukturfaktors wird Streu- oder Strukturamplitude genannt.

Die Streuintensität ist proportional zum Quadrat der Strukturamplitude: $I_{hkl} \sim |F_{hkl}|^2$.

Die Strukturamplituden können nach Korrektur für Absorptions-, Extinktions-,

Lorentz- und Polarisationseffekte (→ Datenreduktion) aus den Streuintensitäten berechnet werden :

$$I_{hkl} = K \cdot F \cdot A \cdot E \cdot Lp \cdot |F_{hkl}| 2$$

(K = Skalierungs-, F = Flächenhäufigkeits-, A = Absorptions-, E = Extinktions-, Lp = Lorentz-Polarisationsfaktor)

In einer Pulverprobe sind die Kristallite statistisch (random) orientiert. Eine Pulverprobe liefert daher für jede Netzebenenschar hkl je einen Diffraktionskegel mit hoher Streuintensität.

Der Öffnungswinkel der Kegel beträgt $4\theta_{hkl}$ (4 x Beugungswinkel θ_{hkl})

Aus dem Beugungswinkel θ_{hkl} läßt sich der Netzebenenabstand d_{hkl} der zugehörigen Netzebenenschar nach der Bragg-Gleichung berechnen:

$$d_{hkl} = \lambda/(2\sin\theta_{hkl}).$$

Beugungskegel (Reflexe) mit zufällig oder symmetriebedingt gleichen d-Werten fallen zusammen. Symmetriebedingte Koinzidenzen → Flächenhäufigkeitsfaktoren

Flächenhäufigkeitsfaktoren für Pulververfahren

hkl	kubisch tetrag.		hexagonal	rhombisch	monoklin	triklin	
hkl	48 16		24	8	4	2	
hhl	24	8	12	8	4	2	
hlh	24	16	24	8	4	2	
lhh	24	16	24	8	4	2	
hk0	24	8	12	4	2	2	
h0l	24	16	12	4	4	2	
0kl	24	16	12	4	4	2	
hhh	8	8	12	8	4	2	
hh0	12	4	6	4	2	2	
h0h	12	8	12	4	4	2	
0hh	12	8	12	4	4	2	
h00	6	4	6	2	2	2	
0k0	6	4	6	2	2	2	
001	6	2	2	2	2	2	

Debye-Scherrer-Geometrie

Debye-Scherrer-Aufnahme mit ebenem Film

Debye-Scherrer-Aufnahme mit zylindrischem Film

Debye-Scherrer-Geometrie

$$\leftarrow$$
 ----- 180° \geq 2 $\theta_{hkl} \geq$ 0°-----

Röntgen-Pulverdiffraktometer

Röntgen-Pulverdiffraktometer und Beugungsgeometrie in der Probe

Röntgen-Pulverdiffraktometer

Röntgenpulverdiffraktogramm bzw. Beugungsdiagramm

Pulverdiffraktometer mit Bragg-Brentano-Geometrie

Probennormale halbiert Winkel zwischen Primär- und Streustrahlrichtungen.

- Probe steht fest, Röhre und Detektor drehen sich um Winkel θ gegeneinander.
- Röhre steht fest, Probe bzw. Detektor drehen sich um Winkel θ , bzw. 2θ in gleiche Richtung.

Strahlengang für Bragg-Brentano-Geometrie

Pulver-Diffraktometer Bruker Axis D 5000

Prinzipschaubild des Strahlengangs in einem Pulverdiffraktometer mit fokussierendem Monochromator und PS-Detektor

Standardmessung in Bragg-Brentano-Geometrie (Korund-Plättchen)

d	3.99	2.91	4,73	9.47	Ba (N ₃) ₂					*
1/11	100	80	70	20	Barium Azide					
Rad.	λ		Filter	Dia.	d A	1/11	hk1	d A	1/11	hkl
Cutoff I/I ₁ Visual Ref. Tokar, Krischner and Radl, Montash. Chem. 96, 3, 932-40 (1965)					9,47 5,33 5,03	20	001 100 101	2.295 2.282 2.196	40 40 70	21¶ 210 020,113
Sys. M	onoclinio .42 b ₀ β	()	S.G. c ₀ 9,59 y	A Z 2	C 4.73 4.35 5.99 3.39 3.27	30 100 60	002 101 011 110 102	2.182 2.152 2.083 2.046 2.030	20 10 30 10	202 211 014 114 120
€a 2V Ref. I	D	nωβ 3,22	мр	Color	Sign 3.15 3.08 2.94 2.90 2.69	70 3 20 9 80 3 40	003 111 103 112 201	2.013 1.992 1.961 1.952 1.942	40 60 30 30 10	121 213,022 121 212 204
					2.67 2.62 2.55 2.53 2.51 2.46 2.36	7 10 2 70 7 10 4 10 8 20	200 112 013 103 202 201 004	1.893 1.823 1.803	20 20 30	005,203 122 023

Vergleich mit eigenen Dateien

Vergleich mit dem JCPDS

Phasenanalyse bzw. Substanzidentifizierung mittels XRPD (JCPDF = Joint Committee of Powder Diffraction File)

Darstellung einer Phasenumwandlung mittels XRPD-Aufnahmen

- D8 ADVANCE,
- Cu-Strahlung, 40kV / 40 mA
- **Divergenzblende: 0,1°**
- Schrittweite: 0.007°
- Zählzeit/Schritt: 0.1 sec
- Geschwindigkeit:
 - 4.2°/Minute
- Gesamtmesszeit: 3:35 Minuten

Kleinwinkelmessung mit Silber-Behenate (CH₃(CH₂)₂₀-COOAg) (Bragg-Brentano-Geometrie)

RÖNTGEN-PULVERDIFFRAKTOMETRIE (XRPD)

Quantitative Phasenanalyse von Zement

RÖNTGEN-PULVERDIFFRAKTOMETRIE (XRPD)

Quantitative Phasenanalyse von Zement

Literatur

- •*Röntgenfeinstrukturanalyse* von **H. Krischner**, Vieweg (Allgemeine Einführung, Schwerpunkt Pulvermethoden) oder alternativ
- Röntgen-Pulverdiffraktometrie von Rudolf Allmann, Clausthaler Tektonische Hefte 29, Sven von Loga, 1994
- •Kristallstrukturbestimmung von W. Massa, Teubner, Stuttgart, 1984
- •Untersuchungsmethoden in der Chemie von H. Naumer und W. Heller, Wiley-VCH
- (Einführung in die moderne Analytik und Strukturbestimmungsmethoden)
- •*X-Ray Structure Determination* von **G. H. Stout, L.H. Jensen,** MacMillan, London

(Einführung in die Kristallstrukturanalyse für Fortgeschrittene)

Die Überlagerung (Interferenz) der von den Elektronen der Atome oder Ionen eines Kristalls gestreuten Röntgenstrahlen und die damit verbundene, durch die Bragg-Gleichung beschriebene Verstärkung oder Auslöschung dieser Röntgenstrahlung läßt sich geometrisch am besten mit dem reziproken Gitter und der sog. **Ewald-Kugel** beschreiben:

Der Kristall bzw. Kristallit eines Pulvers befinde sich im Mittelpunkt einer (gedachten) Kugel mit dem Radius $1/\lambda$ und werde entlang einer Mittelpunktsgeraden dieser Kugel von einem Röntgenstrahl mit der Wellenlänge λ getroffen. Der Ursprung des mit dem Kristall bzw. Kristallit verbundenen reziproken Gitters sei entlang dieses Röntgenstrahls (\equiv Primärstrahl mit Wellenvektor \mathbf{s}_0 und $|\mathbf{s}_0| = 1/\lambda$) auf den Umfang der Kugel (um \mathbf{s}_0) parallel verschoben.

Dann ist die Bragg-Gleichung immer dann erfüllt, wenn ein Punkt des rezipro-ken Gitters auf dem Umfang der Ewald-Kugel liegt, also wenn der Differenz-vektor $\mathbf{S} = \mathbf{s} - \mathbf{s}_0$ ($\mathbf{s} = \text{Wellenvektor der Streustrahlung mit } |\mathbf{s}_0| = 1/\lambda$) gleich einem reziproken Gittervektor $\mathbf{H}_{hkl} = \mathbf{h}\mathbf{a}^* + \mathbf{k}\mathbf{b}^* + \mathbf{l}\mathbf{c}^*$ ist, also wenn $\mathbf{S} = \mathbf{H}$ ist.

In den folgenden Abbildungen (nach C. Röhr, Freiburg) ist \mathbf{H}_{hkl} durch \mathbf{r}^*_{h} ersetzt.

Bragg-Bedingung für die Streuung von Röntgenstrahlen an Kristallen

- 'Reflektions' bedingung: Streuvektor $\vec{s}_{\vec{h}}$ (|| $d_{\vec{h}}$) = reziproker Gittervektor $r_{\vec{h}}^*$
- s winkelhalbierend zwischen ein- und aus-fallendem Strahl

Streuvektor $\mathbf{S} = \mathbf{s} - \mathbf{s}_0$ und reziproker Gittervektor \mathbf{r}_{hkl} bzw. \mathbf{r}_{h}

- Annahmen:
 - monochromatische Strahlung
 - feste Einfallsrichtung des Primärstrahls
 - Einkristall
- Ewald-Kugel: Kugel mit Radius 1/λ um Kristall (real → reziprok)
- wenn r^{**} auf Ewald-Kugel → s → Bragg-Reflex
- vom Kristall in Richtung Spitze des reziproken Gittervektors/Streuvektors
- Konsequenzen für Experimente:
 - Kristalldrehungen um mindestens 2 Achsen
 - Detektoren mit möglichst großer Fläche
 - Radius der Grenzkugel: ²/_λ
 - ♦ Reflex-Volumina (Mosaik-Struktur) → 'Scans' für integrale Intensitäten ⇒