In the following circuit, find the node voltage V_A (in Volt). Given R_1 = 8 Ω , R_2 = 7 Ω , R_3 = 8 Ω , V_1 = 9 V, I_1 = 6 A, I_2 = 6 A.

From https://lms.bennett.edu.in/mod/quiz/review.php?attempt=217221

Nodal Analysis at hodely
$$\frac{V_A - V_I}{R_I} + T_I + \frac{V_A - 0}{R_3} = 0$$

$$\frac{V_A - V_I}{R_I} + \frac{V_A - 0}{R_3} = 0$$

$$\frac{V_A - 9}{8} + 6 + \frac{V_A}{8} = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

$$\frac{V_A - 9}{8} + 48 + V_A = 0$$

In the following circuit, find the voltage V_0 (in Volt) across the resistor R_L . Given R_1 = 6 k Ω , R_2 = 8 k Ω , R_3 = 7 k Ω , R_L = 7 k Ω , V_1 = 9 V, V_2 = 10 V.

From https://lms.bennett.edu.in/mod/quiz/review.php?attempt=217221

$$v_{0} = 5 \cdot 8V$$

In the following circuit, find the voltage V_2 (in Volt) across the resistor R_2 . Given $R_1 = 7$ Ω , $R_2 = 6$ Ω , $R_3 = 6$ Ω , $R_4 = 6$ Ω , $R_1 = 6$ Ω , $R_2 = 6$ Ω .

From < https://lms.bennett.edu.in/mod/quiz/review.php?attempt=217221>

The charge flowing through a conductor is given by q = 47t $Sin(4\pi t)$ mC in 0.5 s. Calculate the current (in mA) flowing through the conductor at t = 0.5 s.

From < https://lms.bennett.edu.in/mod/quiz/review.php?attempt=217221>

$$\hat{l} = \frac{d7}{dt} = \frac{d}{dt} \left(47t \sin(4\pi t) \right)$$

$$= 47 \sin(4\pi t) + 47t (4\pi) \cos(4\pi t)$$

$$|_{t=0.5s} = 0 + 47(0.5)(4\pi), \cos(2\pi)$$

$$= 295.16 \text{ mA} \quad \text{(considering } \pi = 3.14)$$

Consider three resistors each having a resistance of 114 Ω . Let R_S be the equivalent resistance when the resistances are connected in series. Similarly, R_P be the equivalent resistance when the resistances are connected in parallel. The ratio RS/RP is equal to______.

From < https://lms.bennett.edu.in/mod/quiz/review.php?attempt=217221>

Ratio 9,

3 parallel resintor resistance
$$R/3$$

3 series " " 3R

$$\frac{R_S}{R_O} = \frac{3R}{R/3} = 9$$

A voltage source V_S = 7.9 V, and two resistors R_1 = 5.3 Ω and R_L (in Ω) are connected in series to form a circuit. The maximum power (in Watt) that can be transferred to the load resistor R_L is Answer

From < https://lms.bennett.edu.in/mod/quiz/review.php?attempt=217221>

Power dissipated by
$$R_L = i^2 R_L$$

$$= \frac{V_s^2}{4R_1^2} R_1$$

$$= \frac{V_s^2}{4R_1} = \frac{7.9^2}{4X5.3}$$

$$= 2.9438 \text{ mW}$$