Topic Modeling:

from a Network Perspective

Cindy Cook

Network Analysis: Presentation

26 April 2016

Outline

- Overview of Topic Modeling
- Replication of Paper
- Oata Sets
- 4 Extension

Clustering Documents

Topic Modeling: The General Idea

- 1. Obtain documents, D and have an idea as to the number of topics K within D.
- 2. Stem and remove stop words.
- 3. Create the term-frequency matrix.
- 4. Apply model: LDA, pLSA, etc...
- 5. Obtain:
 - a) For each *d*, a topic distribution.
 - b) For each topic k, a word distribution.

Example:

- d1: I like to eat fish for dinner.
- d2: I only eat ice cream after dinner.
- d3:I own a pet fish named Nemo.

Term-Frequency Matrix Topic/Word Distributions

	ropic/	vvora L	ristributions				
	d1	d2	d3	k1	k2	k1	k2
cream	0	1	0	0.0833	0	0.0825	0.0714
dinner	1	1	0	0.1666	0	0.1480	0.1597
eat	1	1	0	0.1666	0	0.2710	0.0369
fish	1	0	1	0.0833	1	0.1509	0.1568
ice	0	1	0	0.0833	0	0.0935	0.0604
like	1	0	0	0.0833	0	0.0387	0.1150
name	0	0	1	0.0833	0	0.0255	0.1283
nemo	0	0	1	0.0833	0	0.0809	0.0729
own	0	0	1	0.0833	0	0.0253	0.1285
pet	0	0	1	0.0833	0	0.0837	0.0701
k1	0.5010	0.5051	0.4939				
k2	0.4990	0.4949	0.5061				İ
k1	0	0	0.8				
k2	1	1	0.2	ii .	i i	İ	i i

A Network Prespective: TopicMapping

*Before step 4:

Bipartite Graph

Term-Frequency Matrix

	d1	d2	d3					
cream	0	1	0					
dinner	1	1	0					
eat	1	1	0					
fish	1	0	1					
ice	0	1	0					
like	1	0	0					
name	0	0	1					
nemo	0	0	1					
own	0	0	1					
pet	0	0	1					

Projected

Estimates

Topic/Word Dists

Topic/ Word Dists.							
	k1	k2					
cream	0.1667	0					
dinner	0.1667	0					
eat	0.1667	0					
fish	0.1667	1					
ice	0.1667	0					
like	0.1667	0					
name	0	0.25					
nemo	0	0.25					
own	0	0.25					
pet	0	0.25					

*Replication Study:

Data

- 1. Web of Science: Each document includes the title and abstract of an article from different fields including economics, astronomy, psychology, biology, and math.
- Indeed.com: Each document includes past work experience for an individual in teaching, graphic, architecture, accounting, and nursing.

Clustering Documents

Network Comparison: Descriptive

Modularity:

Clarata nina na Tanana	C -:	Land and
Clustering Type	Science	Indeed
InfoMap	0.3884	0.3881
Fast-Greedy	0.3398	0.3358
Eigenvalue	0.3624	0.3616
Louvain	0.3936	0.3904
Walktrap	0.3257	0.3431

Density, Transitivity, Betweenness Centrality, Degree Assortativity, Degree Distributions:

Clustering Documents 6 / 7

Network Comparison: Extension

*ERGM

	Science				Indeed			
	Estimate	Std. Error	MCMC%	p-value	Estimate	Std. Error	MCMC%	p-value
edges	-3.3591	0.0040	0	< 0.0001	-2.9925	0.0063	0	< 0.0001
isolate	-Inf	0	0	< 0.0001	-Inf	0	0	< 0.0001
homophily	3.3696	0.0077	1	< 0.0001	3.3616	0.0122	0	< 0.0001

*QAP

	Science				Indeed			
	Estimate	$\Pr(\leq b)$	$\Pr(\geq b)$	$\Pr(\geq b)$	Estimate	$\Pr(\leq b)$	$\Pr(\geq b)$	$\Pr(\geq b)$
intercept	0.0463	1	0	0	0.0621	1	0	0
Homophily	0.9537	1	0	0	0.9379	1	0	0
Adj. R ²	0.2406				0.245			

*CUG

-Conditional on each network's dyad distribution.

Modularity

Transiti vity