Lógica, teoría de números y conjuntos

Parcial #4

Indicaciones generales

- Este es un examen individual con una duración de 90 minutos.
- No se permite el uso de libros o apuntes, calculadoras o cualquier medio electrónico.
- Los celulares deben estar apagados y guardados durante todo el examen.
- Cualquier incumplimiento de lo anterior conlleva la anulación del examen.
- $A \cup A \cup A$ Demuestre o refute: Si $P \cup Q$ son particiones de los conjuntos $A \cup B$ respectivamente, entonces $P \cup Q$ es una partición de $A \cup B$.
- [1.0 pt] Suponga que es R una relación sobre un conjunto A que satisface la siguiente propiedad: $\forall x \in A, \exists y \in A : xRy$. Demuestre que si R es simétrica y transitiva entonces R es reflexiva.
 - 3. Sea $A = \{n \in \mathbb{Z} : n \text{ es impar}\}$. Sea R una relación en $A \times A$ definida por:
 - a. [0.5 pt] Demuestre que R es una relación de equivalencia. b. [0.5 pt] Escriba la partición P inducida por R.
- 4. [1.0 pt] Sea $n \in \mathbb{Z}$. Demuestre por contrarrecíproca que si $(3n-1)^2$ es impar entonces n es par.
 - 5. [1.0 pt] Sea A un conjunto y R una relación de equivalencia en A. Sean $x, y \in A$.

 Demuestre por contradicción que si $[x] \cap [y] = \emptyset$ entonces x R y.