Assignment 8

Reid Ginoza 4/05/2020

Analytical

This is Exercise 5.11 from (Särkkä and Solin 2019), which asks for the mean and variance of the Black-Scholes function, defined as:

$$dx = \mu x dt + \sigma x d\beta, \tag{1}$$

where β is standard Brownian motion.

The author provides the following system of equations:

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \mu m \tag{2}$$

$$\frac{\mathrm{d}P}{\mathrm{d}t} = 2\mu P + \sigma^2 P + \sigma^2 m^2,\tag{3}$$

where m is the mean, P is the variance, and μ and σ are parameters of the Black-Scholes SDE. We are also given the intial conditions:

$$m\left(0\right) = m_0\tag{4}$$

$$P\left(0\right) = P_0 \tag{5}$$

My solution

Mean

First we'll solve the mean equation by separation of variables.

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \mu m \tag{6}$$

$$\frac{1}{m}dm = \mu dt \tag{7}$$

$$\int \frac{1}{m} dm = \int \mu dt \tag{8}$$

$$\ln m = \mu t + c_1 \tag{9}$$

$$m = c e^{(\mu t)} \tag{10}$$

and with the initial condition $m(0) = m_0$:

$$m(0) = m_0 = ce^{\mu(0)} \tag{11}$$

$$m_0 = c \tag{12}$$

$$\therefore m(t) = m_0 e^{\mu t} \tag{13}$$

Variance

We will solve the Variance equation by substituting in the mean equation and then using an integrating factor, I. Note that we assume that $\sigma > 0$.

$$\frac{\mathrm{d}P}{\mathrm{d}t} = 2\mu P + \sigma^2 P + \sigma^2 m^2 \tag{14}$$

$$\frac{dP}{dt} = 2\mu P + \sigma^2 P + \sigma^2 m_0^2 e^{2\mu t}$$
 (15)

$$\frac{\mathrm{d}P}{\mathrm{d}t} - \left(2\mu + \sigma^2\right)P = \sigma^2 m_0^2 \,\mathrm{e}^{2\mu t} \tag{16}$$

Let
$$I := e^{\int -(2\mu + \sigma^2)dt} = e^{-(2\mu + \sigma^2)t}$$
 (17)

Then,
$$e^{-(2\mu+\sigma^2)t} \frac{dP}{dt} - (2\mu+\sigma^2) P e^{-(2\mu+\sigma^2)t} = \sigma^2 m_0^2 e^{2\mu t} e^{-(2\mu+\sigma^2)t}$$
 (18)

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\mathrm{e}^{-\left(2\mu + \sigma^2\right)t} P \right) = \sigma^2 m_0^2 \, \mathrm{e}^{-\sigma^2 t} \tag{19}$$

$$\int \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{-(2\mu + \sigma^2)t} P \right) \mathrm{d}t = \sigma^2 m_0^2 \int e^{-\sigma^2 t} \mathrm{d}t$$
 (20)

$$e^{-(2\mu+\sigma^2)t}P = -\sigma^2 \frac{1}{\sigma^2} m_0^2 e^{-\sigma^2 t} + c_2$$
 (21)

$$P = -m_0^2 e^{-\sigma^2 t} e^{(2\mu + \sigma^2)t} + c_2 e^{(2\mu + \sigma^2)t}$$
 (22)

$$P = -m_0^2 e^{2\mu t} + c_2 e^{(2\mu + \sigma^2)t}$$
(23)

with the initial condition $P(0) = P_0$,

$$P(0) = P_0 = -m_0^2 e^{2\mu(0)} + c_2 e^{(2\mu + \sigma^2)(0)}$$
(24)

$$P_0 = -m_0^2 + c_2 (25)$$

$$\implies c_2 = P_0 + m_0^2 \tag{26}$$

$$\therefore P(t) = -m_0^2 e^{2\mu t} + (P_0 + m_0^2) e^{(2\mu + \sigma^2)t}$$
(27)

Numerical Problem

We will

from matplotlib.colors import Normalize from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import pandas as pd from scipy.stats import kde import seaborn as sns

References

Särkkä, Simo, and Arno Solin. 2019. Applied Stochastic Differential Equations. Vol. 10. Cambridge University Press.