2.2.i State and prove the dual to Theorem 2.2.4, characterizing natural transformations $C(-,c) \implies F$ for a contravariant functor $F: C^{op} \to \text{Set}$.

Solution: Taking the dual of the theorem, we have that for any contravariant functor $F: C^{op} \to \text{Set}$, whose domain C^{op} is locally small and any object $c \in C^{op}$, there is a bijection

$$\operatorname{Hom}\left(C^{op}(-,c),F\right)\cong Fc$$

that associates a natural transformation $\alpha \colon C^{op}(-,c) \implies F$ to the element $\alpha_c(1_c^{op}) \in Fc$. Moreover, this correspondence is natural in both c and F.

For the proof, we insert C^{op} in the Yoneda lemma and choosing a covariant functor $F \colon C^{op} \to \operatorname{Set}$, so we get

$$\operatorname{Hom}\left(C^{op}(-,c),F\right)=\operatorname{Hom}\left(C(c,-),F\right)\cong Fc.$$

But a covariant functor $F: C^{op} \to \text{Set}$ is just a contravariant functor $C \to \text{Set}$ (which we usually just denote $F: C^{op} \to \text{Set}$ as in the statement of the dual theorem above), giving the desired bijection. We check naturality in the functor and object.

Naturality in the functor asserts that given a natural transformation $\gamma\colon F\implies G$, the element of Gc representing the composite natural transformation $\gamma\alpha\colon C^{op}(-,c)\implies F\implies G$ is the image under $\gamma_c\colon Fc\to Gc$ of the element Fc representing $\alpha\colon C^{op}(-,c)\implies F$, i.e the diagram

$$\operatorname{Hom} (C^{op}(-,c),F) \xrightarrow{\Phi_F} Fc$$

$$\downarrow^{\gamma_*} \qquad \qquad \downarrow^{\gamma_c}$$

$$\operatorname{Hom} (C^{op}(-,c),G) \xrightarrow{\Phi_G} Gc$$

commutes in Set. By definition, $\Phi_G(\gamma\alpha) = (\gamma\alpha)_c \mathbb{1}_c$ which is $\gamma_c(\alpha_c \mathbb{1}_c)$ by the definition of vertical composition, and this is $\gamma_c(\Phi_F(\alpha))$.

Naturality in the object asserts that given a morphism $f: d \to c$ in C, the element of Fd representing the composite natural transformation $\alpha f_*: C^{op}(-,d) \implies C^{op}(-,c) \implies F$ is the image under $Ff: Fc \to Fd$ of the element of Fc that represents α , i.e. the diagram

$$\operatorname{Hom}\left(C^{op}(-,d),F\right) \xrightarrow{\Phi_d} Fd \\ \downarrow^{(f_*)^*} \qquad \downarrow^{Ff} \\ \operatorname{Hom}\left(C^{op}(-,c),F\right) \xrightarrow{\Phi_c} Fc$$

commutes. Letting $\beta \in \text{Hom}(C^{op}(-,d),F)$, we get $Ff(\beta_d(\mathbb{1}_d))$ along the top right, and $\Phi_c(\beta f_*) = (\beta f_*)_c(\mathbb{1}_c)$ along the bottom left. But $(\beta f_*)_c(\mathbb{1}_c)$ by definition of vertical composition is the function $\mathbb{1}_c \mapsto f \mapsto \beta_c(f)$ and $\beta_c(f) = Ff(\beta_d(\mathbb{1}_d))$ by the commutative square (2.2.6) on page 58 in Riehl. This gives naturality in the object.

2.2.ii: Explain why the Yoneda lemma does not dualize to classify natural transformations from an arbitrary set-valued functor to a represented functor.

Solution: When we formulated the dual version, we replaced C with C^{op} and considered covariant functors $C^{op} \to \operatorname{Set}$. Taking the dual thus changed the direction of the morphisms in our category and the variance of our functor (as covariant $C^{op} \to \operatorname{Set}$ is the same as contravariant $C \to \operatorname{Set}$), but the direction of the functors (i.e. going $C \to \operatorname{Set}$ or $C^{op} \to \operatorname{Set}$) and natural transformations did not change, so the statement does not dualize to natural transformations going $F \Longrightarrow C(c,-)$.