HC32F072 系列

32 位 ARM® Cortex®-M0+ 微控制器

数据手册

产品特性

- 48MHz Cortex-M0+32 位 CPU 平台
- HC32F072 系列具有灵活的功耗管理系统, 低功耗性能:
 - 5μA@3V深度休眠模式:所有时钟关闭,上电复位有效,IO状态保持,IO中断有效,所有寄存器、RAM和CPU数据保存状态时的功耗
 - 12μA @32.768KHz 低速工作模式:
 CPU 运行,外设关闭,从 FLASH 运行程序
 - 40μA/MHz@3V@24MHz 休眠模式:
 CPU 停止,外设关闭,主时钟运行
 - 140μA/MHz@3V@24MHz 工作模式:
 CPU 运行,外设关闭,从 FLASH 运行程序
 - 4μs 唤醒时间,使模式切换更加灵活高效,系统反应更为敏捷
- 128K 字节 FLASH 存储器,具有擦写保护 功能,支持 ISP、ICP、IAP
- 16K 字节 RAM 存储器,附带奇偶校验, 增强系统的稳定性
- 通用 I/O 管脚 (86IO/100PIN, 50IO/64PIN, 36IO/48PIN, 25IO/32PIN)
- 时钟、晶振
 - 外部高速晶振 4~32MHz 外部低速晶振 32.768KHz
 - 内部高速时钟 4/8/16/22.12/24MHz
 - 内部低速时钟 32.8/38.4KHz
 PLL 时钟 8~48MHz
 - 内部高速 USB 时钟 48MHz
 - 硬件支持内外时钟校准和监控
- 定时器/计数器
 - 3个通用 16 位定时器,支持 1 组互补 PWM 输出,支持 2 倍主频 PWM 输出, 最高支持 96MHz PWM 输出
 - 1 个高级 16 位定制器,支持 3 相互补 PWM 输出,支持 2 倍主频 PWM 输出, 最高支持 96MHz PWM 输出

- 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能
- 1 个可编程 16 位定时器 PCA, 支持 5 通道捕获比较, 5 通道 PWM 输出
- 1 个 20 位可编程看门狗电路,内建专用 10KHz 振荡器提供 WDT 计数
- 通讯接口
 - 4路 UART 标准通讯接口
 - 2 路 LPUART 低功耗通讯接口,深度 休眠模式下可工作
 - 2路 SPI 标准通讯接口
 - 2路 I2C标准通讯接口
 - 2路 I2S 音频通信接口
 - 1路 Crystal-less USB Full Speed Device
 - 1 路 CAN 2.0B 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件 CRC-16/32 模块
- 硬件 32 位除法器
- AES-128/192/256 硬件协处理器
- TRNG 真随机数发生器
- 2 通道 DMAC
- 全球唯一10字节 ID 号
- 12位1Msps 采样的高速高精度 SARADC, 内置运放,可测量高输出阻抗的信号
- 2路12位500Ksps DAC
- 集成 5 个多功能运算放大器,其中两个 OPA 可以作为 2 路 DAC 的输出 Buffer
- 集成 3 路电压比较器,具有 6 位 DAC 和可编程比较基准
- 集成低电压侦测器,可配置 16 阶比较电压,可监控端口电压以及电源电压
- SWD 调试解决方案,提供全功能调试器
- 工作条件: -40~85°C, 1.8~5.5V
- 封装形式: LQFP100/64/48, QFN32

支持型号

HC32F072PATA-LQFP100	HC32F072KATA-LQFP64
HC32F072JATA-LQ48	HC32F072FAUA-QN32TR

声明

- ▶ 华大半导体有限公司(以下简称: "HDSC")保留随时更改、更正、增强、修改华大半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。HDSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ▶ 用户对 HDSC 产品的选择和使用承担全部责任,用户将 HDSC 产品用于其自己或指定第 三方产品上的,HDSC 不提供服务支持且不对此类产品承担任何责任。
- ▶ HDSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ▶ HDSC 产品的转售,若其条款与此处规定不同,HDSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"™"标识的图形或字样是 HDSC 的商标。所有其他在 HDSC 产品上显示的 产品或服务名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2019 华大半导体有限公司 - 保留所有权利

目 录

产品	品特性		1
声	明		2
目	录		3
1	简介		6
	1.1	32 位 CORTEX M0+ 内核	7
	1.2	128K Byte FLASH	7
	1.3	16K Byte RAM	7
	1.4	时钟系统	7
	1.5	工作模式	8
	1.6	端口控制器 GPIO	8
	1.7	中断控制器 NVIC	8
	1.8	复位控制器 RESET	9
	1.9	DMA 控制器 DMAC	9
	1.10	定时器 TIM	10
	1.11	看门狗 WDT	12
	1.12	通用同步异步收发器 UART0~UART3	12
	1.13	低功耗同步异步收发器 LPUART0~LPUART1	13
	1.14	串行外设接口 SPI	13
	1.15	I2C 总线	14
	1.16	音频接口 I2S	14
	1.17	USB2.0 全速模块	14
	1.18	控制器局域网 CAN	15
	1.19	Crystal-less USB 时钟校准器 CTS	15
	1.20	蜂鸣器 Buzzer	15
	1.21	时钟校准模块 CLKTRIM	15
	1.22	器件电子签名	15
	1.23	循环冗余校验 CRC	16
	1.24	硬件除法器模块 HDIV	16
	1.25	高级加密标准模块 AES	16
	1.26	真随机数发生器 TRNG	16
	1.27	模数转换器 ADC	16
	1.28	数模转换器 DAC	17
	1.29	模拟比较器 VC	17
	1.30	低电压检测器 LVD	17
	1.31	运算放大器 OPA	18
	1.32	嵌入式调试系统	18
	1.33	编程模式	18
	1.34	高安全性	18
2	产品阵	F容	19
	2.1	产品名称	19

FDSC 华大半导体

	2.2	功能	20
3	引脚	配置及功能	22
	3.1	引脚配置图	22
	3.2	引脚功能说明	26
	3.3	模块信号说明	39
4	功能	框图	41
5	存储	区映射图	42
6	典型	应用电路图	44
7	电气	特性	45
	7.1	测试条件	45
		7.1.1 最小和最大数值	45
		7.1.2 典型数值	45
	7.2	绝对最大额定值	46
	7.3	工作条件	48
		7.3.1 通用工作条件	
		7.3.2 上电和掉电时的工作条件	
		7.3.3 内嵌复位和 LVD 模块特性	49
		7.3.4 内置的参考电压	51
		7.3.5 供电电流特性	
		7.3.6 从低功耗模式唤醒的时间	
		7.3.7 外部时钟源特性	
		7.3.7.1 外部输入高速时钟	
		7.3.7.2 外部输入低速时钟	
		7.3.7.3 高速外部时钟 XTH	
		7.3.7.4 低速外部时钟 XTL	
		7.3.8 内部时钟源特性	
		7.3.8.1 内部 RCH 振荡器	
		7.3.8.2 内部 RCL 振荡器	
		7.3.8.3 内部 USB 专用 RCH48M 振荡器	
		7.3.9 PLL 特性	
		7.3.10 存储器特性	
		7.3.11 EFT 特性	
		7.3.12 ESD 特性	
		7.3.13 I/O 端口特性	
		7.3.13.1 输出特性——端口	
		7.3.13.2 输入特性——端口 PA, PB, PC, PD, PE, PF, RESET, USB_DP	
		7.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock	
		7.3.13.4 端口漏电特性——PA, PB, PC, PD, PE, PF	
		7.3.14 RESETB 引脚特性	
		7.3.15 ADC 特性	
		7.3.16 VC 特性	
		7 3 17 OPA 特性	73

	7.	3.18 DAC 特性	74
	7.	3.19 TIM 定时器特性	75
	7.	3.20 通信接口	77
		7.3.20.1 I2C 特性	77
8	封装信息	<u></u>	78
	8.1	封装尺寸	78
	8.2	焊盘示意图	82
	8.3	丝印说明	86
	8.4	封装热阻系数	87
9	订购信息	<u></u>	88
版ス	本记录 &	联系方式	89

1 简介

HC32F072 系列是一款宽电压工作范围的通用 MCU。集成 12 位 1Msps 高精度 SARADC, 2 个 12 位 DAC 以及集成了比较器、运放、内置高性能 PWM 定时器、多路 UART、SPI、I2C、I2S、USB、CAN 等丰富的通讯外设,内建 AES、TRNG 等信息安全模块,具有高整合度、高抗干扰、高可靠性的特点。本产品内核采用 Cortex-M0+内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

通用 MCU 典型应用

可广泛应用于各类市场应用:如人机交互、手持设备、游戏外设、打印机、可视对讲等智能家居应用。

1.1 32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0,包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路,支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2		
流水线	2级流水线		
性能效率	2.46 CoreMark / MHz		
性能效率	0.95 DMIPS / MHz in Dhrystone		
中断	32个快速中断		
中断优先级	可配置4级中断优先级		
增强指令	单周期32位乘法器		
调试	Serial-wire 调试端口,支持4个硬中断(break point)以及2个观察点		
	(watch point)		

1.2 128K Byte FLASH

内建全集成 FLASH 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

1.3 16K Byte RAM

根据客户选择不同的功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

1.4 时钟系统

- 一个频率为 4~24MHz 可配置的高精度内部时钟 RCH。在配置 24MHz 下,从低功耗模式到工作模式的唤醒时间为 4us,全电压全温度范围内的频率偏差小于 ±2.5%,无需外接昂贵的高频晶体。
- 一个频率为 4~32MHz 的外部晶振 XTH。
- 一个频率为 32.768KHz 的外部晶振 XTL。

- 一个频率为 32.8/38.4KHz 的内部时钟 RCL。
- 一个频率为 8~48MHz 输出的 PLL。

1.5 工作模式

- 1) 运行模式(Active Mode): CPU 运行,周边功能模块运行。
- 2) 休眠模式(Sleep Mode): CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式(Deep sleep Mode): CPU 停止运行,高速时钟停止,低功耗功能模块运行。

1.6 端口控制器 GPIO

最多可提供 86 个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制,支持 FAST IO。支持边沿触发中断和电平触发中断,可从各种深度休眠模式下把 MCU 唤醒到工作模式。支持位置位、位清零、位置位清零操作。支持Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 18mA 的电流驱动能力。所有通用 IO 可支持外部异步中断。

1.7 中断控制器 NVIC

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。 32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_PA
[1]	GPIO_PB
[2]	GPIO_PC/GPIO_PE
[3]	GPIO_PD/GPIO_PF
[4]	DMAC
[5]	TIM3
[6]	UART0/UART2
[7]	UART1/UART3
[8]	LPUART0
[9]	LPUART1

[10]	SPI0/I2S0
[11]	SPI1/I2S1
[12]	I2C0
[13]	I2C1
[14]	TIM0
[15]	TIM1
[16]	TIM2
[17]	保留
[18]	TIM4
[19]	TIM5
[20]	TIM6
[21]	PCA
[22]	WDT
[23]	保留
[24]	ADC/DAC
[25]	保留
[26]	VC0/VC1/VC2/ LVD
[27]	USB
[28]	CAN
[29]	保留
[30]	RAM FLASH
[31]	CLKTRIM /CTS

1.8 复位控制器 RESET

本产品具有7个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会指向起始地址。

	复位来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软件
	复位
[6]	LVD 复位

1.9 DMA 控制器 DMAC

DMAC(直接内存访问控制器)功能块可以不通过 CPU 高速传输数据。使用 DMAC能

提高系统性能。

- DMAC 配有独立的总线,所以即便是在使用 CPU 总线的同时, DMAC 也可进行传输操作。
- 由 2 条通道组成,能执行 2 种相互独立的 DMA 传输。
- 可设置传输目标地址、传输源地址、传输数据大小、传输请求源以及传输模式,并能控制各通道的传输操作启动、传输的强行终止以及传输的暂停。
- 可控制所有通道批量传输的启动、强行终止及暂停。
- 多通道同时操作时,可用固定方法或循环方法选择操作通道的优先级。
- 支持使用外设中断信号的硬件 DMA 传输。
- 遵从系统总线(AHB),支持32位地址空间(4GB)。

1.10 定时器 TIM

类型	名称	位宽	预除频	计数方向	PWM	捕获	互补输出
通用定时	TIM0	16/32	1/2/4/8/16	上计数/	2	2	1
器			32/64/256	下计数/			
				上下计数			
	TIM1	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM2	16/32	1/2/4/8/16/	上计数/	2	2	1
			32/64/256	下计数/			
				上下计数			
	TIM3	16/32	1/2/4/8/16/	上计数/	6	6	3
			32/64/256	下计数/			
				上下计数			
可编程计	PCA	16	2/4/8/16/32	上计数	5	5	无
数阵列							
高级定时	TIM4	16	1/2/4/8/16/	上计数/	2	2	1
器			64/256/1024	下计数/			
				上下计数			
	TIM5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	TIM6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

通用定时器包含四个定时器 TIM0/1/2/3。

通用定时器特性

- PWM 独立输出, 互补输出
- 捕获输入
- 死区控制
- 刹车控制
- 边沿对齐、对称中心对齐与非对称中心对齐 PWM 输出
- 正交编码计数功能
- 单脉冲模式
- 外部计数功能

TIM0/1/2 功能完全相同。TIM0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。TIM0/1/2 每个定时器都具有 2 路捕获比较功能,可以产生 2 路 PWM 独立输出或 1 组 PWM 互补输出。具有死区控制功能。

TIM3 是多通道的通用定时器,具有 TIM0/1/2 的所有功能,可以产生 3 组 PWM 互补输出或 6 路 PWM 独立输出,最多 6 路输入捕获。具有死区控制功能。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块4 有额外的看门狗定时器模式。

高级定时器 Advanced Timer 包含三个定时器 TIM4/5/6。TIM4/5/6 是功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1个定时器可以产生互补的一对 PWM或者独立的 2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

Advanced Timer 基本的功能及特性如表所示:

波形模式	锯齿波、三角波
	• 递加、递减计数方向
	• 软件同步
	• 硬件同步
甘木州化	• 缓存功能
基本功能	• 正交编码计数
	• 通用PWM输出
	• 保护机制
	• AOS关联动作
	计数比较匹配中断
中断类型	计数周期匹配中断
	死区时间错误中断

1.11 看门狗 WDT

WDT(Watch Dog Timer)是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内建 10KHz 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

1.12 通用同步异步收发器 UART0~UART3

- 4 路通用同步异步收发器(Universal Asynchronous Receiver/Transmitter), UART0~UART3。 通用 UART 基本功能:
 - 半双工和全双工传输
 - 8/9-Bit 传输数据长度
 - 硬件奇偶校验
 - 1/1.5/2-Bit 停止位
 - 四种不同传输模式
 - 16-Bit 波特率计数器
 - 多机通讯
 - 硬件地址识别
 - DMAC 硬件传输握手
 - 硬件流控

• 支持单线模式

1.13 低功耗同步异步收发器 LPUART0~LPUART1

2 路低功耗模式下可以工作的同步异步收发器(Low Power Universal Asynchronous Receiver/Transmitter),LPUART0/LPUART1。

LPUART 基本功能:

- 传输时钟 SCLK(SCLK 可选择 XTL、RCL 以及 PCLK)
- 系统低功耗模式下收发数据
- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 1/1.5/2-Bit 停止位
- 四种不同传输模式
- 16-Bit 波特率计数器
- 多机通讯
- 硬件地址识别
- DMAC 硬件传输握手
- 硬件流控
- 支持单线模式

1.14 串行外设接口 SPI

2 路同步串行接口(Serial Peripheral Interface)

SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式7种波特率可配置
- 主机模式最大分频系数为 PCLK/2, 最高通信速率为 16M bps
- 从机模式最大分频系数为 PCLK/4, 最高通信速率为 12M bps
- 可配置的串行时钟极性和相位

- 支持中断
- 8位数据传输,先传输高位后低位
- 支持 DMA 软件/硬件访问

1.15 I2C 总线

2 路 I2C,采用串行同步时钟,可实现设备之间以不同的速率传输数据。 I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps) / 快速(400Kbps) / 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

1.16 音频接口 I2S

2路 I2S 音频通信接口

- 支持 Philip/ MSB/LSB /PCM 模式
- 支持 MCK 输出
- 支持 5 种音频采样率: 48、44.1、32、16、8 KHz
- 支持 3 种数据长度: 16、24、32 Bit
- 支持 2 种帧长度: 16、32 Bit
- 支持 DMA 数据传输
- 支持全双工收发(2个I2S配合)
- 支持 master 发送、接收
- 支持 slave 发送、接收

1.17 USB2.0 全速模块

USB 全速(USBFS) 控制器为便携式设备提供了一套 USB 通信解决方案。USBFS 控制器支持设备模式,且芯片内部集成全速 PHY。设备模式下支持全速(FS,12Mb/s)收发

器。USBFS 控制器支持 USB2.0 协议所定义的所有四种传输方式(控制传输、批量传输、中断传输和同步传输)。

1.18 控制器局域网 CAN

CAN 通信接口模块配备 512 字节的 RAM 用于存储发送接收的数据。支持 ISO11898-1 规定的 CAN2.0B 协议和 ISO11898-4 规定的 TTCAN 协议。

1.19 Crystal-less USB 时钟校准器 CTS

时钟校准定时器可以调整校准 RCH48M 时钟频率,以便提供给 Crystal-less USB 使用。 也可以调整校准其他 RC 振荡的时钟频率,还可以作为一个通用定时器来使用。

1.20 蜂鸣器 Buzzer

4 个通用定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 18mA 的 sink 电流,互补输出,不需要额外的三极管。

1.21 时钟校准模块 CLKTRIM

内建时钟校准模块,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 6 种待校准时钟源
- 支持中断方式

1.22 器件电子签名

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标

信息等。UID 地址为: 0x00100E74 - 0x00100E7D。

1.23 循环冗余校验 CRC

CRC16 符合 ISO/IEC13239 中给出的多项式 X¹⁶ + X¹² + X⁵ + 1。

CRC32 符合 ISO/IEC13239 中给出的多项式 $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$ 。

1.24 硬件除法器模块 HDIV

HDIV(Hardware Divider)是一个 32 位有/无符号整数硬件除法器。

HDIV 硬件除法器基本特性:

- 可配置有符号/无符号整数除法计算
- 32 位被除数, 16 位除数
- 输出 32 位商和 32 位余数
- 除数为零警告标志位,除法运算结束标志位
- 10 个时钟周期完成一次除法运算
- 写除数寄存器触发除法运算开始
- 读商寄存器/余数寄存器时自动等待计算结束

1.25 高级加密标准模块 AES

AES(The Advanced Encryption Standard)是美国国家标准技术研究所(NIST)在 2000年 10月 2日正式宣布的新的数据加密标准。AES 的分组长度固定为 128 Bit,而密钥长度支持 128/192/256 Bit。

1.26 真随机数发生器 TRNG

TRNG 是一个真随机数发生器,用来产生真随机数。

1.27 模数转换器 ADC

单调不失码的 12 位逐次逼近型模数转换器,在 24MHz ADC 时钟下工作时,采样率达 到 1Msps。参考电压可选择片内精准电压(1.5V 或 2.5V)或从外部输入或电源电压。

41 个输入通道,包括 36 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、1 路内建 BGR 1.2V 电压、2 路 DAC 输出。内建可配置的输入信号放大器以检测高输出阻抗的信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1Msps 转换速度;
- 41 个输入通道,包括 36 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 AVCC 电压、1 路内建 BGR 1.2V 电压、2 路 DAC 输出;
- 4 种参考源: AVCC 电压、ExRef 引脚、内置 1.5V 参考电压、内置 2.5V 参考电压;
- ADC 的电压输入范围: 0~Vref:
- 4种转换模式:单次转换、顺序扫描连续转换、插队扫描连续转换、连续转换累加;
- 输入通道电压阈值监测:
- 软件可配置 ADC 的转换速率;
- 内置信号放大器,可转换高阻信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

1.28 数模转换器 DAC

2 通道 12Bit 500Ksps DAC,可以进行数模转换。

1.29 模拟比较器 VC

内建 3 路 VC, 芯片管脚电压监测/比较电路。16 个可配置的正外部输入通道,11 个可配置的负外部输入通道; 5 个内部负输入通道,包括 1 路内部温度传感器电压、1 路内建 BGR 2.5V 参考电压、1 路内建 BGR 1.2V 电压、1 路 64 阶电阻分压。VC 输出可供通用定时器 TIM0/1/2/3 与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

1.30 低电压检测器 LVD

对芯片电源电压或芯片管脚电压进行检测。16档电压监测值(1.8~3.3V)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4路监测源, AVCC、PC13、PB08、PB07;
- 16 阶阈值电压, 1.8~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断;
- 8 阶滤波配置, 防止误触发;
- 具备迟滞功能,强力抗干扰。

1.31 运算放大器 OPA

OPA0/1/2 模块可以灵活配置,适用于简易滤波器和 Buffer 应用。OPA3/4 模块可以作为 DAC buffer 使用,也可以配置为运放使用。

1.32 嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4 个硬断点以及多个软断点。

1.33 编程模式

支持两种编程模式: 在线编程、离线编程。

支持两种编程协议: ISP 协议、SWD 协议。

支持统一编程接口: ISP 协议与 SWD 协议共用 SWD 端口。

当复位时 BOOT0 (PF11) 管脚为高电平,芯片工作于 ISP 编程模式,可通过 ISP 协议对 FLASH 进行编程。

当复位时 BOOT0 (PF11) 管脚为低电平,芯片工作于用户模式,芯片执行 FLASH 内的程序代码,可通过 SWD 协议对 Flash 进行编程。

1.34 高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2 产品阵容

2.1 产品名称

2.2 功能

产品名称		HC32F072PATA	HC32F072KATA	HC32F072JATA	HC32F072FAUA		
引脚数		100	64	48	32		
GPIO 引脚数		86	50	36	25		
	内核		Corte	x M0+	,		
CPU	频率		48N	ſНz			
电源	原电压范围		1.8 ~	-5.5V			
温度	更范围		-40 ~	- 85°C			
调证	式功能		SWD 调试接口				
唯一	一识别码		支	持			
		UART	Γ0/1/2/3	UART0/1	UART0/1		
		LPU A	ART0/1	LPUART0/1	LPUART0		
通信	接口	SPI0/1		SPI0/1	SPI0		
		120	C0/1	I2C0/1	I2C0		
		I2:	I2S0/1 I2S0/1 I2S0				
		通用定时器 TIM0/1/2/3					
定时] 奋		高级定时都	定时器 TIM4/5/6			
12位 A/D 转换		24ch	23ch	17ch	11ch		
器		24011	23011	1701	TTCII		
	立 D/A 转换	2ch	2ch	2ch	2ch		
器				2011			
模扣	以电压比较器		VC	0/1/2			
运算	算放大器	5	5	3	2		
USE	3		支	持			
CA	N		支	持			
端口中断		86	50	36	25		
低电压检测复位		1					
内部高速振 荡器		RCH 4/8/16/22.12/24MHz					
时钟	内部低速振 荡器		RCL 32.8,	/38.4KHz			
	PLL		8~48	MHz			

	产品名称	HC32F072PATA HC32F072KATA HC32F072JATA			HC32F072FAUA
	外部高速晶 振振荡器	4~32MHz			
蜂鸣器 Max 4ch					
闪存	享安全保护	支持			
RAI	AI 奇偶校验 支持				

3 引脚配置及功能

3.1 引脚配置图

HC32F072PATA

HC32F072KATA

HC32F072 系列数据手册 Rev1.5

HC32F072JATA

HC32F072 系列数据手册 Rev1.5

HC32F072FAUA

注:

- Exposed Thermal Pad 需要连接到 DVSS。
- 一 在应用中,需要将该封装未引出的 IO 引脚设为输入并使能上拉。
- 该封装未引出的 IO 详见 3.2 引脚功能说明。
- BOOT0 引脚用于控制 FLASH 编程,详见 3.3 模块信号说明。

图 3-1 引脚配置图

3.2 引脚功能说明

LQFP100	LQFP64	LQFP48	QFN32	NAME	DIGITAL	ANALOG
1				PE02	PCA_ECI	
2				PE03	PCA_CH0	
3				PE04	PCA_CH1	
4				PE05	PCA_CH2	
5				PE06	PCA_CH3	
6	1	1	1	VCAP		
7	2	2		PC13	TIM3_CH1B	LVD0
					I2S0_SCK	
8	3	3		PC14		XTLI
9	4	4		PC15		XTLO
10				PF09	TIM0_CHA	
11				PF10	TIM0_CHB	
12	5	5	2	PF00	I2C0_SDA	XTHI
					CRS_SYNC	
					UART1_TXD	
13	6	6	3	PF01	I2C0_SCL	ХТНО
					TIM4_CHB	
					UART1_RXD	
14	7	7	4	RESETB		
15	8			PC00	UART1_CTS	AIN10,
					UART2_RTS	VC0_INP0
					I2S0_MCK	VC1_INN0
16	9			PC01	TIM5_CHB	AIN11
					UART1_RTS	VC0_INP1
					UART2_CTS	VC1_INN1
					I2S0_SD	
17	10			PC02	SPI1_MISO	AIN12,
					UART2_RXD	VC0_INP2
						VC1_INN2
18	11			PC03	SPI1_MOSI	AIN13
					UART2_TXD	VC0_INP3
						VC1_INN3
19				PF02		
20	12	8		AVSS		
21	13	9	5	AVCC		
22				PF03		

22	14	10	6	DA00	HADTI CTC	AINO
23	14	10	6	PA00	UART1_CTS	AIN0
					LPUART1_TXD	VC0_INP4
					TIM0_ETR	VC0_INN0
					VC0_OUT	VC1_INP0
					TIM1_CHA	VC1_INN4
					TIM3_ETR	
					TIM0_CHA	
24	15	11	7	PA01	UART1_RTS	AIN1
					LPUART1_RXD	VC0_INP5
					TIM0_CHB	VC0_INN1
					TIM1_ETR	VC1_INP1
					TIM1_CHB	VC1_INN5
					HCLK_OUT	
					SPI1_MOSI	
25	16	12	8	PA02	UART1_TXD	AIN2
					TIM0_CHA	VC0_INP6
					VC1_OUT	VC0_INN2
					TIM1_CHA	VC1_INP2
					TIM2_CHA	
					PCLK_OUT	
					SPI1_MISO	
26	17	13	9	PA03	UART1_RXD	AIN3
					TIM0_GATE	VC0_INP7
					TIM1_CHB	VC0_INN3
					TIM2_CHB	VC1_INP3
					SPI1_CS	
					TIM3_CH1A	
					TIM5_CHA	
27	18			DVSS		
28	19			DVCC		
				PF04		
				PF05		
29	20	14	10	PA04	SPI0_CS	AIN4
					UART1_TXD	VC0_INP8
					PCA_CH4	VC0_INN4
					TIM2_ETR	VC1_INP4
					TIM5_CHA	OP3_OUT
					LVD_OUT	DAC0_OUT
					TIM3_CH2B	
					_	

30 21 15 11 PA05 SPI0_SCK AIN5 TIM0_ETR VC0_INP9 PCA_ECI VC0_INN5 TIM0_CHA VC1_INP5 TIM5_CHB VC2_INP0	
PCA_ECI VC0_INN5 TIM0_CHA VC1_INP5	
TIM0_CHA VC1_INP5	
TIMS CHR VC2 INDO	
THVID_CTID VCZ_HVFU	
XTL_OUT VC2_INN0	
XTH_OUT OP4_OUT	
DAC1_OUT	
31 22 16 12 PA06 SPIO_MISO AIN6	
PCA_CH0 VC0_INP10	
TIM3_BK VC0_INN6	
TIM1_CHA OP4_INN	
VC0_OUT	
TIM3_GATE	
LPUART0_CTS	
32 23 17 13 PA07 SPI0_MOSI AIN7	
PCA_CH1 VC0_INP11	
HCLK_OUT VC0_INN7	
TIM3_CH0B OP4_INP	
TIM2_CHA	
VC1_OUT	
TIM4_CHB	
33 24 PC04 LPUARTO_TXD AIN14	
TIM2_ETR VC0_INN8	
IR_OUT	
VC2_OUT	
12S0_WS	
34 25 PC05 LPUARTO_RXD AIN15	
TIM6_CHB VC0_INN9	
PCA_CH4 OP3_INN	
I2S0_SDIN	
35 26 18 14 PB00 PCA_CH2 AIN8	
TIM3_CH1B VC1_INN6	
LPUART0_TXD OP3_INP	
TIM5_CHB	
RCH_OUT	
RCL_OUT	
PLL_OUT	
36 27 19 15 PB01 PCA_CH3 AIN9/EXVRE	F
PCLK_OUT VC1_INP6	
TIM3_CH2B VC1_INN7	
TIM6_CHB VC2_INP1	

					LPUART0_RTS	VC2_INN1
					VC2_OUT	
					TCLK_OUT	
37	28	20	16	PB02	PCA_ECI	AIN16,
					LPUART1_TXD	VC1_INP7
					TIM4_CHA	VC1_INN8
					TIM1_BK	OP2_INN
					TIM0_BK	
					TIM2_BK	
38				PE07	TIM3_ETR	
39				PE08	TIM3_CH0B	OP2_OUT4
40				PE09	TIM3_CH0A	VC2_INP2
						OP2_OUT3
41				PE10	TIM3_CH1B	VC2_INP3
						OP2_OUT2
42				PE11	TIM3_CH1A	VC2_INP4
						VC2_INN2
						OP2_OUT1
43				PE12	TIM3_CH2B	OP1_OUT4
					SPI0_CS	
					UART3_CTS	
44				PE13	TIM3_CH2A	VC2_INP5
					SPI0_SCK	OP1_OUT3
					UART3_RTS	
45				PE14	TIM3_CH0B	VC2_INP6
					SPI0_MISO	OP1_OUT2
					UART3_RXD	
46				PE15	TIM3_BK	AIN23,
					SPI0_MOSI	VC2_INP7
					UART3_TXD	VC2_INN3
						OP1_OUT1
47	29	21		PB10	I2C1_SCL	AIN17,
					SPI1_SCK	VC1_INP8
					TIM1_CHA	OP2_INP
					LPUART0_TXD	
					TIM3_CH1A	
					LPUART1_RTS	
					UART1_RTS	
					JIMII_KID	

48	30	22		PB11	I2C1_SDA	AIN18,
					TIM1_CHB	VC2_INP8
					LPUART0_RXD	VC2_INN4
					TIM2_GATE	OP2_OUT
					TIM6_CHA	
					LPUART1_CTS	
					UART1_CTS	
49	31	23		DVSS		
50	32	24	17	DVCC		
51	33	25		PB12	SPI1_CS	AIN19
					TIM3_BK	VC1_INP9
					LPUART0_TXD	OP1_INN
					TIM0_BK	
					LPUART0_RTS	
					TIM6_CHA	
52	34	26		PB13	SPI1_SCK	AIN20
					I2C1_SCL	VC1_INP10
					TIM3_CH0B	OP1_INP
					LPUART0_CTS	
					TIM1_CHA	
					TIM1_GATE	
					TIM6_CHB	
53	35	27		PB14	SPI1_MISO	AIN21,
					I2C1_SDA	VC1_INP11
					TIM3_CH1B	VC2_INP9
					TIM0_CHA	VC2_INN5
					LPUART0_RTS	OP1_OUT
					TIM1_BK	
54	36	28		PB15	SPI1_MOSI	AIN22,
					TIM3_CH2B	OP0_INN
					TIM0_CHB	
					TIM0_GATE	
					LPUART1_RXD	
55				PD08	LPUART0_TXD	OP0_OUT4
					I2S0_SCK	3-3_002.
56				PD09	LPUART0_RXD	VC2_INP10
					I2S0_MCK	OP0_OUT3
57				PD10		
57				PD10	LPUARTO_TXD	VC2_INP11
					I2S0_SD	VC2_INN6
						OP0_OUT2

58				PD11	LPUARTO_CTS	VC2_INP12
					I2S0_WS	VC2_INN7
						OP0_OUT1
59				PD12	LPUART0_RTS	
					UART2_RTS	
60				PD13	UART2_RXD	
					I2S0_SDIN	
61				PD14	UART2_TXD	
62				PD15	CRS_SYNC	
					UART2_CTS	
63	37			PC06	PCA_CH0	OP0_INP
					TIM4_CHA	
					TIM2_CHA	
					UART3_RXD	
					I2S1_SCK	
64	38			PC07	PCA_CH1	VC2_INP13
					TIM5_CHA	VC2_INN8
					TIM2_CHB	OP0_OUT
					UART3_TXD	
					I2S1_MCK	
65	39			PC08	PCA_CH2	
					TIM6_CHA	
					TIM2_ETR	
					UART3_CTS	
					I2S1_SD	
66	40			PC09	PCA_CH3	
					TIM4_CHB	
					TIM1_ETR	
					UART3_RTS	
					I2S1_WS	
67	41	29	18	PA08	UART0_TXD	
					TIM3_CH0A	
					CRS_SYNC	
					CAN_STBY	
					TIM1_GATE	
					TIM4_CHA	
					TIM3_BK	
68	42	30	19	PA09	UART0_TXD	COM0
					TIM3_CH1A	
					TIM0_BK	
					I2C0_SCL	

		1				
					HCLK_OUT	
					TIM5_CHA	
69	43	31	20	PA10	UART0_RXD	COM1
					TIM3_CH2A	
					TIM2_BK	
					I2C0_SDA	
					TIM2_GATE	
					PCLK_OUT	
					TIM6_CHA	
				PA11	UART0_CTS	
					TIM3_GATE	
					I2C1_SCL	
					CAN_RX	
					VC0_OUT	
					SPI0_MISO	
					TIM4_CHB	
				PA12	UART0_RTS	
					TIM3_ETR	
					I2C1_SDA	
					CAN_TX	
					VC1_OUT	
					SPI0_MOSI	
70	44	32	21	USBDM		
71	45	33	22	USBDP		
72	46	34	23	PA13	IR_OUT	SWDIO
					UART0_RXD	
					LVD_OUT	
					TIM3_ETR	
					VC2_OUT	
73				PF06	I2C1_SCL	
					LPUART1_CTS	
					UART0_CTS	
				PF07	I2C1_SDA	
					LPUART1_RTS	
					UART0_RTS	
74	47	35		AVSS_USB		
75	48	36	24	AVCC_USB		
				l		1

76	49	37	25	PA14	UART1_TXD UART0_TXD TIM3_CH2A LVD_OUT RCH_OUT RCL_OUT PLL_OUT	SWCLK
77	50	38		PA15	SPIO_CS UART1_RXD LPUART1_RTS TIMO_ETR TIMO_CHA TIM3_CH1A	
78	51			PC10	LPUART1_TXD LPUART0_TXD PCA_CH2	COM4
79	52			PC11	LPUART1_RXD LPUART0_RXD PCA_CH3	COM5
80	53			PC12	LPUART0_TXD LPUART1_TXD PCA_CH4	COM6
81				PD00	CAN_RX SPI1_CS	
82				PD01	CAN_TX SPI1_SCK	
83	54			PD02	PCA_ECI LPUART0_RTS TIM1_ETR	COM7
84				PD03	UART1_CTS SPI1_MISO I2S1_SCK	
85				PD04	UART1_RTS SPI1_MOSI I2S1_MCK	
86				PD05	UART1_TXD CAN_STBY I2S1_SD	
87				PD06	UART1_RXD I2S1_WS	
88				PD07	UART1_TXD	

					I2S1_SDIN	
89	55	39	26	PB03	SPI0_SCK	VC1_INN9
					TIM0_CHB	
					TIM1_GATE	
					TIM3_CH0A	
					XTL_OUT	
					XTH_OUT	
90	56	40	27	PB04	SPI0_MISO	VC0_INP12
					PCA_CH0	VC1_INP12
					TIM2_BK	OP2_OUT4
					UART0_CTS	OP2_OUT4
					TIM2_GATE	
					TIM3_CH0B	
91	57	41	28	PB05	SPI0_MOSI	VC0_INP13
					TIM1_BK	
					PCA_CH1	
					UART0_RTS	
92	58	42	29	PB06	I2C0_SCL	VC0_INP14
					UART0_TXD	VC1_INP14
					TIM1_CHB	
					TIM0_CHA	
					TIM3_CH0A	
93	59	43		PB07	I2C0_SDA	VC1_INP15
					UART0_RXD	LVD2
					TIM2_CHB	
					LPUART1_CTS	
					TIM0_CHB	
94	60	44	30	BOOT0/PF11		
95	61	45	31	PB08	I2C0_SCL	LVD1
					TIM1_CHA	
					CAN_RX	
					TIM2_CHA	
					TIM0_GATE	
					TIM3_CH2A	
					UART0_TXD	
96	62	46	32	PB09	I2C0_SDA	
					IR_OUT	
					SPI1_CS	
					TIM2_CHA	
					CAN_TX	
					TIM2_CHB	
					UART0_RXD	

97			PE00	TIM1_CHA	
98			PE01	TIM2_CHA	
99	63	47	DVSS		
100	64	48	DVCC		

每个引脚的数字功能由 PSEL 位域进行控制,详见下表。

	PSEL											
0	1	2	3	4	5	6	7					
PA00	UART1_CTS		TIM0_ETR	VC0_OUT	TIM1_CHA	TIM3_ETR	TIM0_CHA					
PA01	UART1_RTS		TIM0_CHB	TIM1_ETR	TIM1_CHB	HCLK_OUT	SPI1_MOSI					
PA02	UART1_TXD	TIM0_CHA	VC1_OUT	TIM1_CHA	TIM2_CHA	PCLK_OUT	SPI1_MISO					
PA03	UART1_RXD	TIM0_GATE	TIM1_CHB	TIM2_CHB	SPI1_CS	TIM3_CH1A	TIM5_CHA					
PA04	SPIO_CS	UART1_TXD	PCA_CH4	TIM2_ETR	TIM5_CHA	LVD_OUT	TIM3_CH2B					
PA05	SPI0_SCK	TIM0_ETR	PCA_ECI	TIM0_CHA	TIM5_CHB	XTL_OUT	XTH_OUT					
PA06	SPI0_MISO	PCA_CH0	TIM3_BK	TIM1_CHA	VC0_OUT	TIM3_GATE						
PA07	SPI0_MOSI	PCA_CH1	HCLK_OUT	TIM3_CH0B	TIM2_CHA	VC1_OUT	TIM4_CHB					
PA08	UARTO_TXD	TIM3_CH0A	CRS_SYNC	CAN_STBY	TIM1_GATE	TIM4_CHA	TIM3_BK					
PA09	UARTO_TXD	TIM3_CH1A	TIM0_BK	I2C0_SCL		HCLK_OUT	TIM5_CHA					
PA10	UARTO_RXD	TIM3_CH2A	TIM2_BK	I2C0_SDA	TIM2_GATE	PCLK_OUT	TIM6_CHA					
PA11	UARTO_CTS	TIM3_GATE	I2C1_SCL	CAN_RX	VC0_OUT	SPI0_MISO	TIM4_CHB					
PA12	UARTO_RTS	TIM3_ETR	I2C1_SDA	CAN_TX	VC1_OUT	SPI0_MOSI						
PA13	IR_OUT	UARTO_RXD	LVD_OUT	TIM3_ETR			VC2_OUT					
PA14	UART1_TXD	UARTO_TXD	TIM3_CH2A	LVD_OUT	RCH_OUT	RCL_OUT	PLL_OUT					
PA15	SPIO_CS	UART1_RXD		TIM0_ETR	TIM0_CHA	TIM3_CH1A						
PB00	PCA_CH2	TIM3_CH1B		TIM5_CHB	RCH_OUT	RCL_OUT	PLL_OUT					
PB01	PCA_CH3	PCLK_OUT	TIM3_CH2B	TIM6_CHB		VC2_OUT	TCLK_OUT					
PB02		PCA_ECI		TIM4_CHA	TIM1_BK	TIM0_BK	TIM2_BK					
PB03	SPI0_SCK	TIM0_CHB	TIM1_GATE	TIM3_CH0A		XTL_OUT	XTH_OUT					
PB04	SPI0_MISO	PCA_CH0	TIM2_BK	UARTO_CTS	TIM2_GATE	TIM3_CH0B						
PB05	SPI0_MOSI		TIM1_BK	PCA_CH1			UARTO_RTS					
PB06	I2C0_SCL	UARTO_TXD	TIM1_CHB	TIM0_CHA		TIM3_CH0A						
PB07	I2C0_SDA	UARTO_RXD	TIM2_CHB		TIM0_CHB							
PB08	I2C0_SCL	TIM1_CHA	CAN_RX	TIM2_CHA	TIM0_GATE	TIM3_CH2A	UARTO_TXD					
PB09	I2C0_SDA	IR_OUT	SPI1_CS	TIM2_CHA	CAN_TX	TIM2_CHB	UARTO_RXD					
PB10	I2C1_SCL	SPI1_SCK	TIM1_CHA		TIM3_CH1A		UART1_RTS					
PB11	I2C1_SDA	TIM1_CHB		TIM2_GATE	TIM6_CHA		UART1_CTS					
PB12	SPI1_CS	TIM3_BK		TIM0_BK			TIM6_CHA					
PB13	SPI1_SCK	I2C1_SCL	TIM3_CH0B		TIM1_CHA	TIM1_GATE	TIM6_CHB					
PB14	SPI1_MISO	I2C1_SDA	TIM3_CH1B	TIM0_CHA			TIM1_BK					
PB15	SPI1_MOSI	TIM3_CH2B	TIM0_CHB	TIM0_GATE								
PC00			UART1_CTS	UART2_RTS	I2S0_MCK							
PC01		TIM5_CHB	UART1_RTS		12S0_SD	UART2_CTS						
PC02	SPI1_MISO			UART2_RXD								
PC03	SPI1_MOSI				UART2_TXD							
PC04		TIM2_ETR	IR_OUT	VC2_OUT	12S0_WS							
PC05		TIM6_CHB	PCA_CH4		I2S0_SDIN							

					_	_	
PC06	PCA_CH0	TIM4_CHA	TIM2_CHA		I2S1_SCK	UART3_RXD	
PC07	PCA_CH1	TIM5_CHA	TIM2_CHB		I2S1_MCK	UART3_TXD	
PC08	PCA_CH2	TIM6_CHA	TIM2_ETR		12S1_SD	UART3_CTS	
PC09	PCA_CH3	TIM4_CHB	TIM1_ETR		12S1_WS	UART3_RTS	
PC10			PCA_CH2				
PC11			PCA_CH3				
PC12			PCA_CH4				
PC13			TIM3_CH1B		I2SO_SCK		
PC14							
PC15							
PD00	CAN_RX	SPI1_CS					
PD01	CAN_TX	SPI1_SCK					
PD02	PCA_ECI		TIM1_ETR				
PD03	UART1_CTS	SPI1_MISO		I2S1_SCK			
PD04	UART1_RTS	SPI1_MOSI		I2S1_MCK			
PD05	UART1_TXD		CAN_STBY	I2S1_SD			
PD06	UART1_RXD			I2S1_WS			
PD07	UART1_TXD			I2S1_SDIN			
PD08		I2S0_SCK					
PD09		I2S0_MCK					
PD10		12S0_SD					
PD11		12S0_WS					
PD12		UART2_RTS					
PD13	UART2_RXD	I2S0_SDIN					
PD14	UART2_TXD						
PD15	CRS_SYNC	UART2_CTS					
PE00	TIM1_CHA						
PE01	TIM2_CHA						
PE02	PCA_ECI						
PE03	PCA_CH0						
PE04	PCA_CH1						
PE05	PCA_CH2						
PE06	PCA_CH3						
PE07	TIM3_ETR						
PE08	TIM3_CH0B						
PE09	TIM3_CH0A						
PE10	TIM3_CH1B						
PE11	TIM3_CH1A						
PE12	TIM3_CH2B	SPIO_CS	UART3_CTS				
PE13	TIM3_CH2A	SPI0_SCK	UART3_RTS				
PE14	TIM3_CH0B	SPI0_MISO	UART3_RXD				

PE15	TIM3_BK	SPI0_MOSI	UART3_TXD		
PF00	I2C0_SDA	CRS_SYNC	UART1_TXD		
PF01	I2C0_SCL	TIM4_CHB	UART1_RXD		
PF02					
PF03					
PF04					
PF05					
PF06	I2C1_SCL		UARTO_CTS		
PF07	I2C1_SDA		UARTO_RTS		
PF09	TIM0_CHA				
PF10	TIM0_CHB				
PF11					

3.3 模块信号说明

模块	引脚名称	描述
电源	DVCC	数字电源
	AVCC	模拟电源
	DVSS	数字地
	AVSS	模拟地
	AVCC_USB	USB模块电源(不大于3.6V,详见电气特性)
	AVSS_USB	USB模块地
	VCAP	LDO内核供电输出(仅限内部电路使用,需外接不小于1uF的去耦电容)
ISP	воото	当复位时 BOOT0(PF11)管脚为高电平,芯片工作于ISP 编程模式,可使用ISP协议对FLASH进行编程 当复位时 BOOT0(PF11)管脚为低电平,芯片工作于用户 模式,芯片执行FLASH内的程序代码,可通过SWD对Flash 进行编程。
ADC	AIN0~AIN35	ADC输入通道0~35
	ADC_VREF	ADC外部参考电压
VC	VCIN0~VCIN15	VC输入0~15
	VC0_OUT	VC0比较输出
	VC1_OUT	VC1比较输出
	VC2_OUT	VC2比较输出
LVD	LVDIN0	电压侦测输入0
	LVDIN1	电压侦测输入1
	LVDIN2	电压侦测输入2
	LVD_OUT	电压侦测输出
OPA	OPx_INN	OPA负端输入
x=0,1,2,3,4	OPx_INP	OPA正端输入
	OPx_OUTy	OPA输出
UART	UARTx_TXD	UARTx数据发送端
x=0,1,2,3	UARTx_RXD	UARTx数据接收端
	UARTx_CTS	UARTx CTS
	UARTx_RTS	UARTx RTS
LPUART	LPUARTx_TXD	LPUART数据发送端
x=0,1	LPUARTx_RXD	LPUART数据接收端
	LPUARTx_CTS	LPUART CTS
	LPUARTx_RTS	LPUART RTS
I2Sx	I2Sx_CK	I2S模块时钟信号
x=0,1	I2Sx_WS	I2S模块字选信号
	I2Sx_MCK	I2S模块主模式时钟输出

	I2Sx_SD	I2S模块数据输入输出		
USB	USB_DP	USB 信号		
	USB_DM	USB 信号		
CAN	CAN_TX	CAN TX输出信号		
	CAN_RX	CAN RX输入信号		
	CAN_STBY	CAN STBY 信号		
CTS	CTS_SYNC	CTS 外部同步信号		
SPI	SPIx_MISO	SPI模块主机输入从机输出数据信号		
x=0,1	SPIx_MOSI	SPI模块主机输出从机输入数据信号		
	SPIx_SCK	SPI模块时钟信号		
	SPIx_CS	SPI 片选		
I2C	I2Cx_SDA	I2C模块数据信号		
x=0,1	I2Cx_SCL	I2C模块时钟信号		
通用定时器	TIMx_CHA	Timer的捕获输入比较输出A		
TIMx	TIMx_CHB	Timer的捕获输入比较输出B		
x=0,1,2	TIMx_ETR	Timer的外部计数输入信号		
-, ,	TIMx_GATE	Timer的门控信号		
通用定时器	TIM3_CHyA	Timer的捕获输入比较输出A		
TIM3	TIM3_CHyB	Timer的捕获输入比较输出B		
y=0,1,2	TIM3_ETR	Timer的外部计数输入信号		
J - , ,	TIM3_GATE	Timer的门控信号		
可编程计数阵列	PCA_ECI	外部时钟输入信号		
PCA	PCA_CH0	捕获输入/比较输出/PWM输出 0		
	PCA_CH1	捕获输入/比较输出/PWM输出 1		
	PCA_CH2	捕获输入/比较输出/PWM输出 2		
	PCA_CH3	捕获输入/比较输出/PWM输出 3		
	PCA_CH4	捕获输入/比较输出/PWM输出 4		
高级定时器	TIM4_CHA	Advanced Timer4 比较输出/捕获输入端A		
Advanced Timer	TIM4_CHB	Advanced Timer4 比较输出/捕获输入端B		
	TIM5_CHA	Advanced Timer5 比较输出/捕获输入端A		
	TIM5_CHB	Advanced Timer5 比较输出/捕获输入端B		
	TIM6_CHA	Advanced Timer6 比较输出/捕获输入端A		
	TIM6_CHB	Advanced Timer6 比较输出/捕获输入端B		

表 3-1 模块信号说明

注意:

- IO 端口复位为输入高阻状态,休眠模式和深度休眠模式保持之前的端口状态。

4 功能框图

5 存储区映射图

0x200	保留		
	SRAM (16KByte)		
0x200	0_0000		
	保留		
0,4000	2_0000		
0.000	2_0000		
	主闪存区 (128KByte))	
0x000	0_0000		

6 典型应用电路图

注意:

- AVCC 与 DVCC 电压必须相同。
- 当向 AVCC USB 供电时, AVCC 与 DVCC 的电压应不小于 AVCC USB。
- 当不使用 USB 功能时,AVCC_USB 的管脚建议悬空或接地。
- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

7 电气特性

7.1 测试条件

除非特别说明,所有电压的都以 VSS 为基准。

7.1.1 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 TA=25°C 和 TA=TAmax 下执行的测试(TAmax 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均±3Σ)得到。

7.1.2 典型数值

除非特别说明,典型数据是基于 TA=25° C 和 VCC=3.3V(1.8V \leq VCC \leq 5.5V 电压范围)。这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差小于等于给出的数值(平均 $\pm 2\Sigma$)。

7.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含AVCC和DVCC) ⁽¹⁾	-0.3	5.5	V
AVCC_USB	USB模块供电电压 ⁽²⁾	3.0	3.6	V
$V_{\rm IN}$	在其它引脚上的输入电压(3)	VSS-0.3	VCC + 0.3	V
\Delta VCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD静电放电电压(人体模型)	参考绝对最大值电气参数		V

表 7-1 电压特性

- 1. 所有的电源(DVCC, AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. AVCC USB 不可高于 AVCC/DVCC 0.3V。
- 3. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > VCC 时,有一个正向注入电流;当 V_{IN} < VSS 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
$I_{ m VCC}$	经过DVCC/AVCC电源线的总电流(供应电流) ⁽¹⁾	300	mA
I_{VSS}	经过VSS地线的总电流(流出电流) ⁽¹⁾	300	mA
I_{IO}	任意I/O和控制引脚上的输出灌电流	25	mA
	任意I/O和控制引脚上的输出电流	-25	mA
$I_{\text{INJ(PIN)}}^{(2)(3)}$	RESETB引脚的注入电流	+/-5	mA
	XTH的XTHI引脚和XTL的XTLI引脚的注入电流	+/-5	mA
	其他引脚的注入电流49	+/-5	mA
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 7-2 电流特性

- 1. 所有的电源(DVCC, AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{IN} >
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, $\Sigma I_{INJ(PIN)}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 $4 \land I$ /O 端口上 $\Sigma I_{INJ(PIN)}$ 最大值的特性。

符号	描述	数值	单位
TSTG	储存温度范围	-60 ~ + 150	°C
TJ	最大结温度	105	°C

表 7-3 温度特性

7.3 工作条件

7.3.1 通用工作条件

符号	参数	条件	最小值	最大值	单位
fHCLK	内部AHB时钟频率		0	48	MHz
fPCLK0	内部APB0时钟频率		0	48	MHz
fPCLK1	内部APB1时钟频率		0	48	MHz
DVCC	数字部分工作电压	AVCC_USB=0V	1.8	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	AVCC_USD=UV	1.8	5.5	V
DVCC	数字部分工作电压	AVCC_USB>3.0V	AVCC_USB	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	AVCC_USD>5.0V	AVCC_USB	5.5	V
AVCC_USB	USB模块供电电压		3.0	3.6	V
	功率耗散 TA=85℃	LQFP100		476	mW
PD	功率耗散 TA=85℃	LQFP64		455	mW
רט	功率耗散 TA=85℃	LQFP48		364	mW
	功率耗散 TA=85℃	QFN32		526	mW
TA	环境温度	最大功率消耗	-40	85	°C
1A	小児値及	低功率消耗(2)	-40	105	°C
TJ	结温度范围		-40	105	°C

表 7-4 通用工作条件

- 1. AVCC与 DVCC 电压必须相同。
- 2. 在较低的功率耗散的状态下,只要 T_J 不超过 T_{Jmax} , T_A 可以扩展到这个范围。

7.3.2 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
tVcc	VCC上升速率		0	5	V/µs
tVcc	VCC下降速率		10	5	V/µs

表 7-5 上电和掉电的工作条件

7.3.3 内嵌复位和 LVD 模块特性

1. 设计保证,不在生产中测试。

图 7-1 POR/Brown Out 示意图

符号	参数	条件	最小值	典型值	最大值	单位
Vpor	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 7-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000	1.7	1.8	1.9	V
		LVD_CR.VTDS =0001	1.8	1.9	2.0	
		LVD_CR.VTDS =0010	1.9	2.0	2.1	
		LVD_CR.VTDS =0011	2.0	2.1	2.2	
		LVD_CR.VTDS =0100	2.1	2.2	2.3	
		LVD_CR.VTDS=0101	2.2	2.3	2.4	
		LVD_CR.VTDS=0110	2.3	2.4	2.5	
		LVD_CR.VTDS=0111	2.4	2.5	2.6	
		LVD_CR.VTDS=1000	2.5	2.6	2.7	
		LVD_CR.VTDS=1001	2.6	2.7	2.8	
		LVD_CR.VTDS=1010	2.7	2.8	2.9	
		LVD_CR.VTDS=1011	2.8	2.9	3.0	
		LVD_CR.VTDS=1100	2.9	3.0	3.1	
		LVD_CR.VTDS=1101	3.0	3.1	3.2	
		LVD_CR.VTDS=1110	3.1	3.2	3.3	
		LVD_CR.VTDS=1111	3.2	3.3	3.4	
Icomp	功耗			0.12		uA
Tresponse	响应时间			80		μs
Tsetup	建立时间			400		μs
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		μs
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		

表 7-7 LVD 模块特性

7.3.4 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF25}	Internal 2.5V Reference Voltage	常温25°C 3.3V	2.475	2.5	2.525	V
V _{REF25}	Internal 2.5V Reference Voltage	-40 ~ 85°C; 2.8 ~ 5.5V	2.463	2.5	2.525	$V^{[1]}$
V _{REF15}	Internal 1.5V Reference Voltage	常温25°C 3.3V	1.485	1.5	1.515	V
V _{REF15}	Internal 1.5V Reference Voltage	-40 ~ 85°C; 1.8 ~ 5.5V	1.477	1.5	1.519	$V^{[1]}$
T_{Coeff}	Internal 2.5V 1.5V temperature coefficient	-40 ~ 85°C			120	ppm/ °C

^{1.} 数据基于考核结果,不在生产中测试

7.3.5 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、 I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的 位置以及执行的代码等。

微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 fHCLK 的频率(0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个等待周期)。
- 当开启外设时: fPCLK0 = fHCLK, fPCLK1 = fHCLK。

Symbol	Parameter	Conditions			Typ ⁽¹⁾	Max ⁽²⁾	Unit
I _{DD} (AVCC_USB)			4		mA		
	All paripharals clock			4M	990		
		\/aaa=1.5\/		8M	1960		
				16M	3870		
I _{DD} (Run in	All peripherals clock ON,	Vcap=1.5V Vcc=3.3V		22.12M	5360		uA
RAM)	Run while(1) in RAM	$T_A=2xC$		24M	5780		uA
10/ (17/)	ran wille(1) in to avi	TA-ZAO	PLL RCH4M to	32M	7910		
			xxM clock source	48M	11770		

				4M	340		
				8M	650		
			RCH	16M	1240		
	All peripherals clock	Vcap=1.5V	clock source	22.12M	1700		
	OFF,	Vcc=3.3V		24M	1840		uA
	Run while(1) in RAM	T _A =2xC	PLL RCH4M to	32M	2690		
			xxM clock source	48M	3950		
				4M	820		
				8M	1550		
I _{DD}	All peripherals clock	Vcap=1.5V	RCH	16M	2980		
(Run	OFF,	V _{cc} =3.3V	clock source	22.12M	4000		uA
CoreMark)	Run CoreMark in Flash	T _A =2xC		24M	4320		
			PLL RCH4M to xxM	48M FlashWait=1	6810		
		Vcap=1.5V		4M	1330	1800	
		V _{cc} =1.8-		8M	2490	3430	uA
		5.5V	RCH	16M	4990	6570	
		T _A =N40C-	clock source	22.12M	6760	8960	
		85C		24M	7260	9680	
				16M	5270	6550	
	All peripherals clock ON,		PLL RCH4M to xxM	24M	7390	9260	
		Vcap=1.5V Vcc=1.8- 5.5V T _A =N40C- 85C		32M FlashWait=1	9200	10640	^
				40M FlashWait=1	11350	13150	uA
(Dun mada)	Run while(1) in Flash			48M FlashWait=1	13470	15750	
(Run mode)				16M	5350	6620	
		\/aan=1.5\/		24M	7460	9390	
		Vcap=1.5V Vcc=1.8-	PLL RCH8M to	32M FlashWait=1	9250	10740	
		5.5V T _A =N40C- 85C	xxM clock source	40M FlashWait=1	11380	13290	uA
				48M FlashWait=1	13560	15850	
	All a saiste de la la la	\/ 4 E\/		4M	670	1080	
	All peripherals clock	Vcap=1.5V	RCH	8M	1190	1990	uA
	OFF, Run while(1) in Flash	V _{cc} =1.8- 5.5V	clock source	16M	2280	3580	
	Kuli Willie(1) III FlaSII	J.5 V		22.12M	3070	4790	

	Τ	T	Т] 1			
		T _A =N40C- 85C		24M	3290	5120	
				16M	2560	3530	
) / 4 F) /		24M	3450	4780	
		Vcap=1.5V Vcc=1.8-	PLL RCH4M to	32M FlashWait=1	3950	4670	
		5.5V T _A =N40C- 85C	xxM clock source	40M FlashWait=1	4800	5710	uA
		830		48M FlashWait=1	5680	6780	
				16M	2620	3610	
				24M	3510	4860	
		Vcap=1.5V Vcc=1.8-		32M FlashWait=1	4010	4730	
		T _A =N40C-		40M FlashWait=1	4850	5760	uA
		000		48M FlashWait=1	5730	6850	
		Vcap=1.5V	RCH clock source	4M	840	950	
		Vcc=1.8-		8M	1640	1880	uA
		5.5V		16M	3240	3680	
		T _A =N40C-	Clock source	22.12M	4490	5120	
		85C		24M	4850	5570	
		1.51		16M	3550	4070	
				24M	5060	5770	
		Vcap=1.5V Vcc=1.8- 5.5V	PLL RCH4M to	32M FlashWait=1	6680	7640	uA
I _{DD}	All peripherals clock ON	T _A =N40C- 85C	clock source	40M FlashWait=1	8300	9510	uA
(Sleep mode)	OIV			48M FlashWait=1	9920	11370	
				16M	3620	4120	
		\/00:2=1.5\/		24M	5120	5850	
		Vcap=1.5V Vcc=1.8-	PLL RCH8M to	32M FlashWait=1	6740	7710	^
		5.5V T _A =N40C-	xxM clock source	40M FlashWait=1	8340	9580	uA
		85C		48M FlashWait=1	9980	11430	
	All peripherals clock	Vcap=1.5V	RCH	4M	180	230	uA
	OFF	Vcc=1.8-	clock source	8M	330	390	u/1

		5.5V		16M	600	690	
		T _A =N40C-		22.12M	820	930	
		85C		24M	880	1000	
				16M	900	1020	
				24M	1110	1260	
		Vcap=1.5V Vcc=1.8- 5.5V	PLL RCH4M to	32M FlashWait=1	1410	1610	uA
		T _A =N40C-	clock source	40M FlashWait=1	1730	1970	uA
				48M FlashWait=1	2040	2330	
				16M	960	1090	
		Vcap=1.5V		24M	1170	1330	
		Vcap=1.5V Vcc=1.8-	PLL RCH8M to	32M FlashWait=1	1470	1670	
		T _A =N40C-	clock source	40M FlashWait=1	1780	2030	uA
		030		48M FlashWait=1	2100	2390	
	All peripherals clock V cap=1.5V V cc=1.8- Run while(1) in Flash 5.5 V	XTL32K clock source	T _A =N40- 25C	17	22	^	
			Driver=0x0	T _A =50C	18	23	uA
I_{DD}	Run while(1) in Flash	L) IN Flash 5.5V	Driver = 0x0	T _A =85C	24	31	
(LP Run)	All peripherals clock	Vcap=1.5V	XTL32K clock source	T _A =N40- 25C	12	16	^
	OFF,	Vcc=1.8-		T _A =50C	13	17	uA
	Run while(1) in Flash	5.5V	Driver=0x0	T _A =85C	19	25	
	All peripherals clock	Vcap=1.5V	XTL32K	T _A =N40- 25C	12	13	, . ^
	ON	V _{cc} =1.8- 5.5V	clock source Driver=0x0	T _A =50C	13	14	uA
I_{DD}		J.JV	DIIVEL-0X0	T _A =85C	19	21	
(LP Sleep)	All peripherals clock	Vcap=1.5V	XTL32K	T _A =N40- 25C	7	7	
	OFF	Vcc=1.8-	clock source	T _A =50C	8	8	uA
		5.5V	Driver=0x0	T _A =85C	14	16	
l _{DD}	XTL32K	Vcap=1.5V Vcc=1.8- 5.5V	XTL32K	T _A =N40- 25C	4580	5460	nA
(DeepSleep	+DeepSleep			T _A =50C	5290	6390	
mode)				T _A =85C	9750	12000	

	I IRC32K I	Vcap=1.5V	·	T _A =N40- 25C	4570	5430	
	+DeepSleep	V _{cc} =1.8- 5.5V			5270	6350	nA
		3.34		T _A =85C	9750	12000	
	WDT	Vcap=1.5V		T _A =N40- 25C	4300	5120	
	+DeepSleep	V _{cc} =1.8- 5.5V	T _A =50C	4990	6030	nA	
			T _A =85C	9410	11620		
	DeepSleep Vo	Vcap=1.5V	·	T _A =N40- 25C	4190	5000	
		V _{cc} =1.8- 5.5V		T _A =50C	4880	5910	nA
		0.00	T _A =85C	9330	11570		

- 1. 若没有其他指定条件,该 Typ 的值是在 25 $^{\circ}$ & V_{CC} = 3.3V 测得。
- 2. 若没有其他指定条件,该 Max 的值是 V_{CC} = 1.8-5.5 & Temperature = N40 85 ℃范围内的最大值。
- 3. 数据基于考核结果,不在生产中测试

表 7-8 工作电流特性

7.3.6 从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 休眠模式:时钟源是 RCH 振荡器
- 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
T_{wu}	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	$F_{MCLK} = 4MHz$		9.0		μs
		$F_{MCLK} = 8MHz$		6.0		μs
		$F_{MCLK} = 16MHz$		5.0		μs
		$F_{MCLK} = 24MHz$		4.0		μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

7.3.7 外部时钟源特性

7.3.7.1 外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	8	32	MHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				20	ns
Tf(XTH)	下降的时间(1)				20	ns
Tw(XTH)	输入高或低的时间(1)		16			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比		40		60	%
IL	输入漏电流				±1	μΑ

^{1.} 由设计保证,不在生产中测试。

7.3.7.2 外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTL_ext	用户外部时钟频率(1)		0	32.768	1000	KHz
VXTLH	输入引脚高电平电压		0.7VCC		VCC	V
VXTLL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTL)	上升的时间 ⁽¹⁾				50	ns
Tf(XTL)	下降的时间(1)				50	ns
Tw(XTL)	输入高或低的时间(1)		450			ns
Cin(XTL)	输入容抗(1)			5		pF
Duty	占空比		30		70	%
IL	输入漏电流				±1	μΑ

^{1.} 由设计保证,不在生产中测试。

7.3.7.3 高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
F _{CLK}	振荡频率		4		32	MHz
ESR _{CLK}	支持的晶振ESR范围	32M		30	60	Ohm
		4M		400	1500	Ohm
C _{LX} ⁽³⁾	负载电容	按晶体制造商要求进行配置。				
Duty	占空比		40	50	60	%
$Idd^{(4)}$	电流	32M Xtal, CL=12pF, ESR=30ohm		600		uA
T _{start} ⁽⁵⁾	启动时间	32MHz		300		μs
		@ XTH_CR.Driver=1111				
		4MHz		2		ms
		@ XTH_CR.Driver=0011				

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. CLX 指 XTAL 的两个管脚的负载电容,用户必须按晶体制造商的要求选择该电容的容值。

如果晶体制造商给出了**负载电容的容值**,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了**匹配电容的容值**,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为 8pF 时,匹配电容的容值应为 16pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 15pF 或 12pF 的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。

- 4. 电流跟随频率变化而变化,测试条件: XTH CR.Driver=1110
- 5. Tstart 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。这个数值是在 XTH_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

注意:

- 晶体的匹配电容必须按照晶体制造商的技术手册的要求进行配置。
 如果晶体制造商给出了负载电容的容值,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。
 如果晶体制造商给出了*匹配电容的容值*,则直接使用晶体制造商所给出的匹配电容的容值即可。
- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

7.3.7.4 低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个 32.768KHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
F _{CLK}	振荡频率			32.768		KHz
ESR _{CLK}	支持的晶振ESR范围			65	85	KOhm
$C_{Lx}^{(2)}$	负载电容	按晶体制造商要求进行配置。				
DC _{ACLK}	占空比		30	50	70	%
Idd ⁽³⁾	电流	ESR= 65 KOhm		350	1000	nA
		$C_L=12 pF$				
T _{start} ⁽⁴⁾	启动时间	ESR=65 KOhm,		500		ms
		C _L =12 pF,				
		40% - 60% duty cycle has				
		been reached				

- 1. 由综合评估得出,不在生产中测试。
- 2. CLX 指 XTAL 的两个管脚的负载电容,用户必须按晶体制造商的要求选择该电容的容值。

如果晶体制造商给出了负载电容的容值,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。

如果晶体制造商给出了匹配电容的容值,则直接使用晶体制造商所给出的匹配电容的容值即可。

例:晶体制造商给出晶体的**负载电容**为 8pF 时,匹配电容的容值应为 16pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 15pF 或 12pF 的匹配电容。

晶体制造商给出晶体的**匹配电容**为 12pF 时,匹配电容的容值应为 12pF。考虑 PCB 与 MCU 引脚之间的分布电容,建议选择容值为 10pF 或 8pF 的匹配电容。。

- 3. 典型值为XTL_CR.Driver=1001时的功耗。选择具有较小ESR值的高质量振荡器,可以通过减小XTL_CR.Driver设置值以优化电流消耗。
- 4. Tstart 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在 XTL_CR.Driver=1001 和 XTL_CR.Startup=10 设置下,使用一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

注意:

- 晶体的匹配电容必须按照晶体制造商的技术手册的要求进行配置。
 如果晶体制造商给出了负载电容的容值,则匹配电容的容值应为晶体制造商所给出的负载电容容值的两倍。
 如果晶体制造商给出了*匹配电容的容值*,则直接使用晶体制造商所给出的匹配电容的容值即可。
- 芯片内已集成反馈电阻 R0。
- 阻尼电阻 R1 阻值的调试方法请参见相关应用笔记。

7.3.8 内部时钟源特性

7.3.8.1 内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User trimming step for given		0.25		%
		VCC and TA conditions				
		$VCC = 1.8 \sim 5.5V$	-3.5		+3.5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		$VCC = 1.8 \sim 5.5V$	-2.5		+2.5	%
		$T_{AMB} = -20 \sim 85^{\circ}C$				
		$VCC = 1.8 \sim 5.5V$	-2.0		+2.0	%
		$T_{AMB} = -20 \sim 50^{\circ}C$				
F _{CLK}	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
I_{CLK}	功耗	$F_{MCLK} = 4MHz$		80		μΑ
		$F_{MCLK} = 8MHz$		100		μΑ
		$F_{MCLK} = 16MHz$		120		μΑ
		$F_{MCLK} = 24MHz$		140		μΑ
DC _{CLK}	占空比(1)		45	50	55	%

^{1.} 由综合评估得出,不在生产中测试。

7.3.8.2 内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCL振荡器精度	User trimming step for		0.5		%
		given VCC and TA				
		conditions				
		$VCC = 1.8 \sim 5.5V$	-5		+5	%
		$T_{AMB} = -40 \sim 85^{\circ}C$				
		$VCC = 1.8 \sim 5.5V$	-3		+3	%
		$T_{AMB} = -20 \sim 50^{\circ}C$				
F _{CLK}	振荡频率			38.4		KHz
				32.768		
T _{CLK}	启动时间			150		us
DC _{CLK}	占空比 ⁽¹⁾		25	50	75	%
I_{CLK}	功耗			0.35		μA

^{1.} 由综合评估得出,不在生产中测试。

7.3.8.3 内部 USB 专用 RCH48M 振荡器

Parameter	Description	Min	Тур	Max	Units	Condition
DVCC	Analog 5V Supply	1.8	3.3	5.5	V	
Т	Junction Temperature	-40	27	105	deg C	
F _{RCH48M}	Frequency	-	48	-	MHz	-
TRIM	RCH48M user-trimming step	$0.06^{(2)}$	0.12	$0.2^{(2)}$	%	-
DUCy _{RCH48M}	Duty cycle	45(2)	-	55 ⁽²⁾	%	-
		6(3)	-	6(3)	%	T _A =-40 to 105 °C
ACC	Accuracy of the RCH48M	TBD ⁽³⁾	-	TBD ⁽³⁾	%	T _A =-10 to 85 °C
ACC _{RCH48M}	oscillator(factory calibrated)	TBD ⁽³⁾	-	TBD ⁽³⁾	%	TA=0 to 70 °C
		2 ⁽³⁾	-	2 ⁽³⁾	%	TA=25 °C
t _{su(RCH48M)}	RCH48M oscillator startup time	-	-	20(2)	us	
I _{DDA(RCH48M)}	RCH48M oscillator power consumption	-	270	350(2)	uA	

- 1. AVCC=3.3V, TA=-40 to 105 °C unless otherwise specified
- 2. Guatanteed by design, not tested in production
- 3. Data based on characterization results, not tested in production

7.3.9 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
Fin ⁽¹⁾	输入时钟		4	4	24	MHz
	输入时钟占空比		40		60	%
Fout	输出频率		8	-	48	MHz
Duty ⁽¹⁾	输出占空比		48%	-	52%	
Tlock ⁽¹⁾	锁定时间	输入频率4MHz	-	100	200	us

^{1.} 由综合评估得出,不在生产中测试。

7.3.10 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
EC _{FLASH}	擦写次数	Regulator	20K			cycles
		voltage=1.5v,				
		$T_{AMB} = 25$ °C				
RET _{FLASH}	数据保存期限	$T_{AMB} = 85 ^{\circ}\text{C}$	20			Years
		常温	100			Years
T_{b_prog}	编程时间 (字节)		22		30	μs
T_{w_prog}	编程时间 (字)		40		52	μs
T _{p_erase}	页擦除时间		4		5	ms
T _{m_erase}	整片擦除时间		30		40	ms

7.3.11 EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO (IEC61000-4-4)	Class:4 (A)
EFT to Power (IEC61000-4-4)	Class:4 (A)

软件建议

软件的流程中必须包含应对程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等)

在进行 EFT 测试时,可以把超出应用要求的干扰直接施加在芯片电源或 IO 上,当检测到意外动作的地方,软件部分进行加强以防止发生不可恢复的错误。

7.3.12 ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device Mode			1		KV
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

7.3.13 I/O 端口特性

7.3.13.1 输出特性——端口

符号	参数	条件	最小值	最大值	单位
V _{OH}	High level output	Sourcing 4 mA, VCC = 3.3 V	VCC-0.25		V
	voltage	(see Note 1)			
	Source Current	Sourcing 8 mA, $VCC = 3.3 \text{ V}$	VCC-0.6		V
		(see Note 2)			
V _{OL}	Low level output voltage	Sinking 5 mA, $VCC = 3.3 \text{ V}$		VSS+0.25	V
	Sink Current	(see Note 1)			
		Sinking 14 mA, $VCC = 3.3 \text{ V}$		VSS+0.6	V
		(see Note 2)			
V_{OHD}	High level output	Sourcing 8 mA, VCC = 3.3 V	VCC-0.25		V
	voltage	(see Note 1)			
	Double source Current	Sourcing 18 mA, VCC = 3.3V	VCC-0.6		V
		(see Note 2)			
V_{OLD}	Low level output voltage	Sinking 8 mA, $VCC = 3.3 \text{ V}$		VSS+0.25	V
	Double Sink Current	(see Note 1)			
		Sinking 18 mA , $VCC = 3.3 \text{ V}$		VSS+0.6	V
		(see Note 2)			

表 7-9 端口输出特性

- NOTES: 1. The maximum total current, $I_{OH}(max)$ and $I_{OL}(max)$, for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.
 - 2. The maximum total current, $I_{OH}(max)$ and $I_{OL}(max)$, for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.

图 7-2 输出端口 VOH/VOL 实测曲线

7.3.13.2 输入特性——端口 PA, PB, PC, PD, PE, PF, RESET, USB_DP

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	Positive-going	VCC=1.8V	0.7VCC			V
	input	VCC=3.3V	0.7VCC			V
	threshold voltage	VCC=5.5V	0.7VCC			V
V _{IL}	Negative-going	VCC=1.8V			0.3VCC	V
	input	VCC=3.3V			0.3VCC	V
	threshold voltage	VCC=5.5V			0.3VCC	V
V _{hys(1)}	Input voltage	VCC=1.8V		0.3		V
	hysteresis	VCC=3.3V		0.4		V
	$(V_{IH} - V_{IL})$	VCC=5.5V		0.6		V
R _{pullhigh}	Pullup resistor	Transmitting	1425		3090	ohm
(USB_DP)		Idle	900		1575	
R _{pullhigh}	Pullup resistor	Pullup enabled		80		Kohm
(GPIO)		VCC=3.3V				
R _{pulllow}	Pulldown resistor	Pulldown enabled		40		Kohm
(GPIO)		VCC=3.3V				
Cinput	Input capacitance			5		pf

^{1.} 由综合评估得出,不在生产中测试。

7.3.13.3 端口外部输入采样要求——Timer Gate/Timer Clock

符号	参数	条件	最小值	典型值	最大值	单位
t(int)	External interrupt	External trigger signal for the	1.8V	30		ns
	timing	interrupt flag (see Note 1)	3.3V	30		ns
			5.5V	30		ns
t(cap)	Timer capture	Timer4/5/6 capture pulse	1.8V	0.5		us
	timing	width	3.3V	0.5		us
		Fsystem = 4MHz	5.5V	0.5		us
t(clk)	Timer clock	Timer0/1/2/4/5/6 external	1.8V		PCLK/2	MHz
	frequency applied	clock input	3.3V		PCLK/2	MHz
	to pin	Fsystem = 4MHz	5.5V		PCLK/2	MHz
t(pca)(2)	PCA clock	PCA external clock input	1.8V		PCLK/8	MHz
	frequency	Fsystem = 4MHz	3.3V		PCLK/8	MHz
	applied to pin		5.5V		PCLK/8	MHz

NOTES: 1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

^{2.} 由综合评估得出,不在生产中测试。

7.3.13.4 端口漏电特性——PA, PB, PC, PD, PE, PF

符号	参数	条件	最小值	典型值	最大值	单位
$I_{lkg(Px.y)}$	Leakage current	$V_{(Px,y)}$ (see Note 1, 2)		±50		nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

^{2.} The port pin must be selected as input.

7.3.14 RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
$V_{\text{IL}(\text{RESETB})}^{\ \ (1)}$	输入低电平电压		-0.3		0.8	V
$V_{\text{IH}(\text{RESETB})}$	输入高电平电压		0.8*VCC		VCC+0.5	V
$V_{\text{hys(RESETB)}}$	施密特触发器电压迟滞			200		mV
R_{PU}	弱上拉等效电阻	$V_{\text{IN}} = V_{\text{SS}}$		80		ΚΩ
$V_{\text{F(RESETB)}}^{(1)}$	输入滤波脉冲				100	ns
$V_{\text{NF(RESETB)}}^{(1)}$	输入非滤波脉冲		300			ns

^{1.} 由设计保证,不在生产中测试。

7.3.15 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCREFIN}	V
V _{ADCREFIN}	Input range of external reference voltage	Single ended	0		AVCC	V
DEV _{AVCC/3}	AVCC/3精度			3		%
I _{ADC1}	Active current including reference generator and buffer	200Ksps		2		mA
I _{ADC2}	Active current without reference generator and buffer	1Msps		0.5		mA
C _{ADCIN}	ADC input capacitance			16	19.2	pF
$R_{ADC}^{(1)}$	ADC sampling switch impedance			1.5		KOhm
R _{AIN} ⁽¹⁾	ADC external input resistor ⁽²⁾				100	KOhm
F _{ADCCLK}	ADC clock Frequency				24M	Hz
T _{ADCSTART}	Startup time of reference generator and ADC core			30		μS
T _{ADCCONV}	Conversion time		20	24	28	cycles
ENOB	Effective Bits	1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=EXREF		10.3		Bit
		1Msps@VCC>=2.7V		10.3	_	Bit

	1	1			1
	500Ksps@VCC>=2.4V				
	200Ksps@VCC>=1.8V				
	REF=VCC				
	200Ksps@VCC>=1.8V	0.4		D:4	
	REF=internal 1.5V	9.4	ı	Bit	
	200Ksps@VCC>=2.8V	9.4		D:4	
	REF=internal 2.5V			Bit	
	1Msps@VCC>=2.7V				
	500Ksps@VCC>=2.4V	68.2	60.2		dB
	200Ksps@VCC>=1.8V		08.2		
	REF=EXREF				
	1Msps@VCC>=2.7V				dB
Signal to Noise	500Ksps@VCC>=2.4V		69.2		
Ratio	200Ksps@VCC>=1.8V		68.2		
	REF=VCC				
	200Ksps@VCC>=1.8V		60		1D
	REF=internal 1.5V		60		dB
	200Ksps@VCC>=2.8V		60		1D
Differential non-linearity	REF=internal 2.5V	-1	60		dB
	200Ksps;			1	LCD
	VREF=EXREF/AVCC			I	LSB
Integral non-linearity	200Ksps;	-3		2	LSB
	VREF=EXREF/AVCC			<i>.</i>	LSD
Offset error			0		LSB
Gain error			0		LSB
	Ratio Differential non-linearity Integral non-linearity Offset error	200Ksps@VCC>=1.8V REF=VCC 200Ksps@VCC>=1.8V REF=internal 1.5V 200Ksps@VCC>=2.8V REF=internal 2.5V 1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=2.4V 200Ksps@VCC>=2.4V 200Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=EXREF 1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=VCC 200Ksps@VCC>=1.8V REF=internal 1.5V 200Ksps@VCC>=1.8V REF=internal 1.5V 200Ksps@VCC>=2.8V REF=internal 2.5V 200Ksps: VREF=EXREF/AVCC 200Ksps: VREF=EXREF/AVC	200Ksps@VCC>=1.8V REF=VCC 200Ksps@VCC>=1.8V REF=internal 1.5V 200Ksps@VCC>=2.8V REF=internal 2.5V 1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=EXREF 1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=EXREF 1Msps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=VCC 200Ksps@VCC>=1.8V REF=internal 1.5V 200Ksps@VCC>=1.8V REF=internal 2.5V 200Ksps@VCC>=2.8V REF=internal 2.5V 200Ksps@VCC>=2.8V REF=internal 2.5V 200Ksps: VREF=EXREF/AVCC -1 VREF=EXREF/AVCC -3 Offset error -4 Offset error -4 Offset error -4 Offset error -5 Offset er	200Ksps@VCC>=1.8V REF=VCC 200Ksps@VCC>=1.8V REF=internal 1.5V 200Ksps@VCC>=2.8V REF=internal 2.5V 9.4 1Msps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=2.4V 200Ksps@VCC>=2.4V 200Ksps@VCC>=2.7V 500Ksps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=EXREF 1Msps@VCC>=2.4V 200Ksps@VCC>=1.8V REF=VCC 200Ksps@VCC>=1.8V REF=internal 1.5V 60 200Ksps@VCC>=2.8V REF=internal 2.5V 60 Differential non-linearity 200Ksps VREF=EXREF/AVCC -1 Integral non-linearity 200Ksps VREF=EXREF/AVCC -3 Offset error 0 0 0 0	200Ksps@VCC>=1.8V REF=VCC 200Ksps@VCC>=1.8V REF=internal 1.5V 200Ksps@VCC>=2.8V REF=internal 2.5V 9.4

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表。

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	M
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R _{AIN} (KOhm)	$F_{ADC}(KHz)$
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

7.3.16 VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25℃ 3.3V	-10		+10	mV
Icomp	Comparator's current	VCx_BIAS_SEL=00		0.3		uA
		VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's response time	VCx_BIAS_SEL=00		20		us
	when one input cross	VCx_BIAS_SEL=01		5		
	another	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup time	VCx_BIAS_SEL=00		20		us
	when ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals unchanged.	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap enable			20		us
	to 1.2V BGR reference					
	Temp sensor voltage, ADC					
	internal 1.5V, 2.5V					
	reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		us
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

7.3.17 OPA 特性

OPA: (AVCC= $2.2 \sim 5.5 \text{ V}$, AVSS=0 V, Ta= $-40 \sim +85 ^{\circ}\text{C}$)

符号	参数	条件	最小值	典型值	最大值	单位
Vi	输入电压		0	-	AVCC	V
Vo	输出电压 ⁽¹⁾		0.1	-	AVCC- 0.2	V
Io	输出电流 ⁽¹⁾				2.2	mA
RL	负载电阻 ⁽¹⁾		5K			Ohm
Tstart	初始化时间(2)				20	us
Vio	输入失调电压	Vic=AVCC/2, Vo=AVCC/2, RL=5KΩ, Rs=50 pF		±6		mV
PM	相位裕度(1)	Vic=AVCC/2, Vo=AVCC/2 RL=5KΩ, CL=50pF		80	-	deg
UGBW	单位增益带宽(1)	Vic=AVCC/2, Vo=AVCC/2 RL=5KΩ, CL=50pF		9.3		MHz
SR	压摆率 ⁽¹⁾	RL= $5K\Omega$, CL= $50pF$		8		V/us

- 1. 由设计保证,不在生产中测试。
- 2. 需要同时设置 BGR_CR<0>=1

7.3.18 DAC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DACOUT}	Output voltage range	AVCC voltage reference, single ended	0		Vcc	V
V _{DACCM}	Output common mode voltage range		0		Vcc	V
I_{DAC}	Active current	500KSamples/s		15		uA
SR_{DAC}	Sample rate				500	Ksps
t _{DACCONV}	Conversion time		2			us
t _{DACSETTLE}	Setting time			5		us
SNR _{DAC}	Signal to Noise Ratio			59		dB
SNDR _{DAC}	Signal to Noise and Distortion Ratio			57		dB
SFDR _{DAC}	Spurious Free Dynamic Range			56		dB
$V_{\text{DACOFFSET}}$	Offset voltage	w/o buffer		2		mV
DNL _{DAC}	Differential non- linearity			±1		LSB
INL _{DAC}	Integral non- linearity			±5		LSB

7.3.19 TIM 定时器特性

有关输入输出复用功能引脚(输出比较、输入捕获、外部时钟、PWM 输出)的特性 详情,参见下表。

符号	参数	条件	最小值	最大值	单位
4	定时器分辨时间		1		t _{TIMCLK}
t_{res}	(上的命力 <i></i>	f _{TIMCLK} =48MHz	20.8		ns
t	外部时钟频率		0	f _{TIMCLK/2}	MHz
f_{ext}	21 印刷 押火件	f _{TIMCLK} =48MHz	0	24	MHz
Res _{Tim}	定时器分辨率			16	位
т	选择内部时钟时,16位计数		1	65536	t _{TIMCLK}
$T_{counter}$	器时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	us
Т	最大可能计数			67108864	t _{TIMCLK}
T _{MAX_COUNT}		f _{TIMCLK} =48MHz		1.4	S

1. 由设计保证,不在生产中测试。

表 7-1 高级定时器(ADVTIM)特性

符号	参数	条件	最小值	最大值	单位
4	定时器分辨时间		1		t _{TIMCLK}
t_{res}	是的命力 <i></i>	f _{TIMCLK} =48MHz	20.8		ns
t	外部时钟频率		0	f _{TIMCLK/2}	MHz
f_{ext}	7 10 m 1 m / / / / / / / / / / / / / / / / / /	f _{TIMCLK} =48MHz	0	24	MHz
Dag	定时器分辨率			16	位
Res _{Tim}		模式0自由计数		32	位
т	选择内部时钟时,16位计数		1	65536	t _{TIMCLK}
T _{counter}	器时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	us
т	最大可能计数			16777216	t _{TIMCLK}
T _{MAX_COUNT}		f _{TIMCLK} =48MHz		349.5	ms

1. 由设计保证,不在生产中测试。

表 7-2 通用定时器特性

符号	参数	条件	最小值	最大值	单位
4	定时器分辨时间		1		t _{TIMCLK}
t_{res}	上的 奋刀 <u>新</u> 的 问	f _{TIMCLK} =48MHz	20.8		ns
t	外部时钟频率		0	f _{TIMCLK/2}	MHz
f_{ext}	外部的 探观学	f _{TIMCLK} =48MHz	0	24	MHz
Res _{Tim}	定时器分辨率			16	位
т	选择内部时钟时,16位计数		1	65536	t _{TIMCLK}
$T_{counter}$	器时钟周期	f _{TIMCLK} =48MHz	0.0208	1363	us
T _{MAX_COUNT}	最大可能计数			2097152	t _{TIMCLK}
		f _{TIMCLK} =48MHz		43.69	ms

1. 由设计保证,不在生产中测试。

表 7-3 PCA 特性

符号	参数	条件	最小值	最大值	单位
t_{res}	WDT 溢出时间	f _{WDTCLK} =10KHz	1.6	52000	ms

1. 由设计保证,不在生产中测试。

表 7-4 WDT 特性

7.3.20 通信接口

7.3.20.1 I2C 特性

I2C 接口特性如下表:

符号	会 粉	标准模式	标准模式 (100K) 快速机		快速模式(400K)		高速模式(1M)	
付与	参数	最小值	最大值	最小值	最大值	最小值	最大值	位
tSCLL	SCL 时钟低时间	4.7		1.25		0.5		us
tSCLH	SCL 时钟高时间	4.0		0.6		0.26		us
tSU.SDA	SDA 建立时间	250		100		50		ns
tHD.SDA	SDA 保持时间	0		0		0		us
tHD.STA	开始条件保持时间	4.0		0.6		0.26		us
tSU.STA	重复的开始条件建立时间	2.5		0.6		0.25		us
tSU.STO	停止条件建立时间	4.0		0.6		0.26		us
4D1 IE	总线空闲(停止条件至开	4.7		1.2		0.5		
tBUF	始条件)	4.7		1.3		0.5		us

表 7-5 I2C 接口特性

1. 由设计保证,不在生产中测试。

图 7-3 I2C 接口时序

8 封装信息

8.1 封装尺寸

LQFP100 封装

WITH PLATING

	14x14 Millimeter		
Symbol	Min	Nom	Max
A			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18		0.26
b1	0.17	0.20	0.23
c	0.13		0.17
c1	0.12	0.13	0.14
D	15.80	16.00	16.20
D1	13.90	14.00	14.10
Е	15.80	16.00	16.20
E1	13.90	14.00	14.10
eB	15.05		15.35
e		0.50BSC	
L	0.45		0.75
L1	1.00REF		
θ	0		7°

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

SECTION B-B

LQFP64 封装

SECTION B-B

	10x10 Millimeter				
Symbol	Min	Nom	Max		
A			1.60		
A1	0.05		0.15		
A2	1.35	1.40	1.45		
A3	0.59	0.64	0.69		
b	0.18		0.26		
b1	0.17	0.20	0.23		
С	0.13		0.17		
c1	0.12	0.13	0.14		
D	11.80	12.00	12.20		
D1	9.90	10.00	10.10		
E	11.80	12.00	12.20		
E1	9.90	10.00	10.10		
eB	11.05		11.25		
e	0.50BSC				
L	0.45		0.75		
L1	1.00REF				
θ	0°		7°		

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

LQFP48 封装

SECTION B-B

		7x7 Millimete	r
Symbol		7X7 WITHINGTO	
	Min	Nom	Max
A			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
ь	0.18		0.26
b1	0.17	0.20	0.23
С	0.13		0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
eB	8.10		8.25
e	-	0.50BSC	-
L	0.40		0.65
L1	1.00REF		
θ	0		7°

NOTE:

 Dimensions "D1" and "E1" do not include mold flash.

QFN32 封装

	5	x5 Millimete	r
Symbol	Min	Nom	Max
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
b	0.20	0.25	0.30
b1		0.16REF	
С	0.18	0.20	0.25
D	4.90	5.00	5.10
D2	3.70	3.80	3.90
e		0.50BSC	
Ne		3.50BSC	
Nd		3.50BSC	
Е	4.90	5.00	5.10
E2	3.70	3.80	3.90
L	0.25	0.30	0.35
h	0.30	0.35	0.40
L/F 载体 尺寸	4.10 x 4.10		

	וי
 POSED THERMAL PAD ZONE	D2 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8.2 焊盘示意图

LQFP100 封装(14mm x 14mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP64 封装 (10mm x 10mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

LQFP48 封装 (7mm x 7mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

QFN32 封装 (5mm x 5mm)

- Dimensions are expressed in millimeters.
- 尺寸仅做参考。

8.3 丝印说明

以下给出各封装正面丝印的 Pin 1 位置和信息说明。

LQFP100 封装(14mm x 14mm) LQFP64 封装(10mm x 10mm)

QFN32 封装 (5mm x 5mm)

注意:

- 上图空白框表示与生产相关的可选标记,本节不作说明。

8.4 封装热阻系数

封装芯片在指定工作环境温度下工作时,芯片表面的结温 Tj (℃) 可以按照下面的公式计算:

$$T_{J} = T_{amb} + (P_{D} \times \theta_{JA})$$

- Tamb 是指封装芯片工作时的工作环境温度,单位是℃;
- θ_{JA}是指封装对工作环境的热阻系数,单位是℃/W;
- P_D等于芯片的内部功耗和 I/O 功耗之和,单位是 W。芯片的内部功耗是产品的 I_{DD} x V_{DD}, I/O 功耗指的是指芯片工作时 I/O 引脚产生的功耗,通常该部分值很小,可以忽略。

芯片在指定工作环境温度下工作时芯片表面的结温 T_j ,不可以超出芯片可容许的最大结温度 T_J 。

Package Type and Size	Thermal Resistance Junction-ambient Value (θ_{JA})	Unit
LQFP100 14mm x 14mm / 0.5mm pitch	50 +/- 10%	°C/W
LQFP64 10mm x 10mm / 0.5mm pitch	65 +/- 10%	°C/W
LQFP48 7mm x 7mm / 0.5mm pitch	75 +/- 10%	°C/W
QFN32 5mm x 5mm / 0.5mm pitch	42 +/- 10%	°C/W

表 8-1 各封装热阻系数表

9 订购信息

Part Number		HC32F072PATA-LQFP100	HC32F072KATA-LQFP64	HC32F072JATA-LQ48	HC32F072FAUA-QN32TR
Memory	Flash	128K	128K	128K	128K
	RAM	16K	16K	16K	16K
I/O		86	50	36	25
TIMER	GTIMER	4	4	4	4
	ATIMER	3	3	3	3
	UART	4	4	2	2
	LPUART	2	2	2	1
vity	I2C	2	2	2	1
Connectivity	SPI	2	2	2	1
Con	USB	√	√	√	√
	CAN	√	√	√	√
	I2S	2	2	2	1
Analog	ADC*12bit	24ch	23ch	17ch	11ch
	DAC*12bit	2ch	2ch	2ch	2ch
	OP	5	5	3	2
	Comp	3	3	3	3
Secruty	AES	√	√	√	√
LVD		√	√	√	√
LVR		√	√	√	√
Votage	Vdd	1.8~5.5v	1.8~5.5v	1.8~5.5v	1.8~5.5v
Package		LQFP100(14*14)	LQFP64(10*10)	LQFP48(7*7)	QFN32(5*5)
出货形式		盘装	盘装	盘装	卷带
产品厚度		1.6mm	1.6mm	1.6mm	0.75mm
脚间距		0.5mm	0.5mm	0.5mm	0.5mm

订购前,请联系销售窗口咨询最新量产信息。

版本记录 & 联系方式

版本	修订日期	修订内容摘要		
Rev1.0	2019/11/18	初稿发布。		
Rev1.1	2019/12/25	更新以下信息:①增加QFN32封装;②典型应用电路图;③高速外部时钟 XTH和低速外部时钟XTL中配图和注意事项;④丝印说明;⑤通用工作条件 描述;⑥订购信息。		
Rev1.2	2020/4/10	更新以下信息:①引脚功能说明;②ADC特性中增加AVCC/3精度。		
Rev1.3	2020/5/29	更新以下信息: ①7.3.7.2中修正笔误; ②7.3.8.2中RCL振荡器精度。		
Rev1.4	2020/6/30	更新以下信息: ①引脚功能说明中增加I2S信息; ②统一引脚功能名称		
Rev1.5	2020/7/31	更新以下信息: ①增加7.3.19、7.3.20、8.2和8.4; ②7.3.11等级; ③7.3.13.2中 V _{IH} 和V _{IL} 的值。		

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址:上海市浦东新区中科路 1867号 A座 10层

邮编: 201203

