Xⁱ Records

Can Popularity Be Predicted?

Introduction

- With Spotify being so well used is it possible to predict the popularity of song?
- Are there certain characteristics of a song that make it more popular?
- Can we predict whether a new artist has released a song to rival that of Ed Sheeran or Taylor Swift?

Let's See What the Data Says!

The Data

The dataset I have sourced from Kaggle and is entitled "Most Streamed Spotify Songs 2023". It has 943 rows and 24 columns with the titles:

- •track name: Name of the song
- •artist(s) name: Name of the artist(s) of the song
- •artist_count: Number of artists contributing to the song
- •released vear: Year when the song was released
- •released_month: Month when the song was released
- •released day: Day of the month when the song was released
- •in spotify playlists: Number of Spotify playlists the song is included in
- •in_spotify_charts: Presence and rank of the song on Spotify charts
- •streams: Total number of streams on Spotify
- •in_apple_playlists: Number of Apple Music playlists the song is •speechiness_%: Amount of spoken words in the song included in
- •in apple charts: Presence and rank of the song on Apple Music charts
- •in deezer playlists: Number of Deezer playlists the song is included in
- •in deezer_charts: Presence and rank of the song on Deezer charts
- •in shazam charts: Presence and rank of the song on Shazam charts

- •bpm: Beats per minute, a measure of song tempo
- •key: Key of the song
- •mode: Mode of the song (major or minor)
- •danceability_%: Percentage indicating how suitable the song is for dancing
- •valence_%: Positivity of the song's musical content
- •energy_%: Perceived energy level of the song
- •acousticness_%: Amount of acoustic sound in the song
- •instrumentalness_%: Amount of instrumental content in the song
- •liveness_%: Presence of live performance elements

Initial Modelling

To begin with a created a simple plot of all variables against streams to get a feel for the data.

Modelling

This was followed by collinearity tests:

This showed that the variables with the highest collinearity with no. of streams were:

- in_spotify_playlists
- in_spotify_charts

Modelling

To answer the brief I then reduced the dataset to just necessary variables.

Unfortunately the initial OLES results weren't favourable:

And the resulting Q-Q plot was not ideal.

OLS Regression Resu	ılts					
Dep. Variable	e: s	treams	R-so	uared:	0.029	
Mode	el:	OLS	Adj. R-squared:		0.021	
Metho	d: Least S	quares	F-statistic:		3.558	
Date	e: Sat, 16 De	c 2023 P	Prob (F-statistic):		0.000450	
Time	e: 1	2:33:15	Log-Likelihood:		-20524.	
No. Observation	s:	952	AIC:		4.107e+04	
Df Residual	s:	943	BIC:		4.111e+04	
Df Model:		8				
Covariance Typ	Type: nonrobus					
	coef	std en	r t	P> t	[0.025	0.975]
Intercept	1.037e+09	1.69e+08	6.128	0.000	7.05e+08	1.37e+09
bpm	-3.078e+05	6.62e+05	-0.465	0.642	-1.61e+06	9.92e+05
danceability	-4.227e+06	1.46e+06	5 -2.886	0.004	-7.1e+06	-1.35e+06
valence	2.192e+05	9.32e+05	0.235	0.814	-1.61e+06	2.05e+06
energy	-1.119e+06	1.47e+06	5 -0.761	0.447	-4e+06	1.77e+06
acousticness	-1.121e+06	8.95e+05	5 -1.253	0.211	-2.88e+06	6.36e+05
instrumentalness	-4.291e+06	2.19e+06	5 -1.957	0.051	-8.59e+06	1.21e+04
liveness	-2.519e+06	1.34e+06	5 -1.873	0.061	-5.16e+06	1.2e+05
speechiness	-5.719e+06	1.88e+06	5 -3.044	0.002	-9.41e+06	-2.03e+06
Omnibus:	377.983 D u	ırbin-Wat	son:	1.521		
Prob(Omnibus):	0.000 Jar	que-Bera	(JB): 13	34.683		
Skew:	1.944	Prob	(JB): 1.50	e-290		
Kurtosis:	7.305	Cond.	6e+03			

Modelling

Needing some direction I performed a stepwise selection that showed the best result would come from the two variables: speechiness and danceability.

I then proceeded create another model with only those two variables. The results did not improve. I even tried to apply polynomial regression to see if the plot could be more linear.

It was not conclusive.

Insights

From these models I was able to conclude:

- That with this data set it is unable to be predicted whether a song would be popular from it's characteristics using a linear regression model.

From an early collinearity test I did see a high collinearity between streams and in_spotify_playlists. I decided to create a further model around this.

Further Modelling.

This new model between streams and in_spotify_playlists had promising results:

OLS Regression Results	5					
Dep. Variable:	streams		R-squared:		0.624	
Model:		OLS A	Adj. R-squ	ıared:	0.623	
Method:	Least Sc	luares	F-sta	tistic:	1575.	
Date:	Sat, 16 Dec	2023 Pr	ob (F-stat	tistic):	6.74e-204	
Time:	13	:13:24 L	.og-Likeli	hood:	-20073.	
No. Observations:		952		AIC:	4.015e+04	
Df Residuals:		950		BIC:	4.016e+04	
Df Model:		1				
Covariance Type:	nonr	obust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.193e+08	1.35e+07	16.247	0.000	1.93e+08	2.46e+08
in_spotify_playlists	5.666e+04	1427.598	39.691	0.000	5.39e+04	5.95e+04
Omnibus: 20	4.656 Du i	rbin-Watso	on:	1.687		
			D) 460	4 005		
Prob(Omnibus):	0.000 Jarq	ue-Bera (J	B): 168 ²	4.065		
, ,	0.000 Jarq 0.738	ue-Bera (J Prob(J	,	0.00		

Testing

Testing was simple I split the data at 75 % to train the model and test it which resulted in:

Train Mean Squared Error: 1.1530396750430474e+17

Test Mean Squared Error: 1.1945768783483576e+17

Conclusion

Although we may not have been able to use a linear regression model to predict the popularity of a song based on its characteristics it is possible to predict the popularity of a song based on the number of playlists it appears in, using this dataset.

Thank you

Nyssa Mitchell

Data Scientist

nysmitch@gmail.com

Any Questions?

Questions?