九十二學年度台灣大學電資學院電機系電子學(一)期中考

1. A p^+-n diode is one in which the doping concentration in the p region is much greater than that in the n region. In such a diode, the forward current is mostly due to hole injection across the junction. Show that

$$I \cong I_p = Aqn_i^2 \frac{D_p}{L_p N_D} (e^{\frac{V_{V_T}}{V_T}} - 1)$$

For the specific case in which $N_D = 5 \times 10^{16}/\text{cm}^3$, $D_P = 10\text{cm}^2/\text{s}$, $\tau_P = 0.1\,\text{us}$, And $A = 10^4\,\text{um}^2$, find Is and the voltage V obtained when $I = 0.1\,\text{mA}$. Assume operation at 300K where $n_i = 1.5 \times 10^{10}/\text{cm}^3$. Also calculate the excess minority-carrier charge and the value of the diffusion capacitance at $I = 0.1\,\text{mA}$.

2. The circuit in Fig. 1 implements a comple-mentary-output rectifier. Sketch and clearly label the waveforms of v_o^+ and v_o^- . Assume a 0.7-V drop across each conducting diode. If the magnitude of the average of each output is to be 15 V, find the required amplitude of the sine wave across the entire secondary winding. What is the PIV of each diode?

Fig. 1

- 3. (a) Find the input resistance R_{in} of the circuit in Fig. 2-1. [12%]
 - (b) If voltage v_i is applied to the input of the circuit, what is the current flowing into the output of A_1 ? [5%] And what is the current flowing into the output of A_2 ? [5%]
 - (c) If the circuit has been modified to the one as shown in Fig. 2-2, what is the differential input resistance R_{in} ? [7%]

Hint: assume all op amps are ideal and negative feedback applies for the circuits.

Fig. 2-1

Fig. 2-2

4. Fig. 3 shows an OPAMP inverting amplifier, the slew rate of the OPAMP is $5V/\mu s$. The maximum amplitude of the input signal v_I is 80 m V. Find the maximum amplitude of the output signal v_O and the full-power bandwidth, f_M . (14%)

Fig. 3

5. The depletion width W of a one-side abrupt PN junction (N_A>>N_D) is

$$W = \sqrt{\frac{2\varepsilon_s(V_0 + V_R)}{qN_D}}$$

where ε_s is the dielectric constant, V_0 is the built-in voltage, q is the unit charge, and V_R is the reverse bias voltage. Show that the depletion capacitance per unit area C_i is

$$C_j = \frac{\varepsilon_s}{W}$$

Hint: the charge stored in the depletion region is $q_j \approx q N_D W$ and use the definition of small signal capacitance, i. e., the capacitance is the slope of the q_j - V_R curve. (15%)

For the full-wave peak rectifier circuit, $V_p(t)=100\sin(2\pi\times60t)$ volts, the turns ratio is 5:1, diodes D₁, D₂ have forward voltage 0.7 V, forward resistance $r_D=0$ Ω and reverse resistance $r_R=\infty$, Also, we have $R_L=10K\Omega$

- (a) What is the peak inverse voltage (PIV) experienced by D1 and D2? (5%)
- (b) Find the value of C such that the peak-to-peak ripple voltage at v_o is 0.2 V. (10%)
- (c) Find the conducting angle during which either D₁ or D₂ is conducting. (10%) $(360^{\circ} = \text{one period of } 60 \text{Hz Sinusoidal wave})$
- (d) Find the average and peak current through D1 and D2 during their conduction time. (5%)