

Model Development Phase Template

Date	10 JULY 2024
Team ID	FACULTY
Project Title	Fetal AI: Using Machine Learning To Predict And Monitor Fetal Health.
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Random Forest Model RF

```
[30] RF_model=RandomForestClassifier()
    RF_model.fit(x_train_smote,y_train_smote)
    predictions=RF_model.predict(x_test)
    print(accuracy_score(y_test,predictions))

3.945141065830721
```

```
\frac{1}{0} [31] print("For the amounts of training data is:", x_train_smote.shape[0]) # Assu
        print("Accuracy of RandomForestClassifier:",RF_model.score(x_test,y_test))
        cm=confusion_matrix(y_test,predictions)
        cm_display=ConfusionMatrixDisplay(cm).plot()
       For the amounts of training data is: 3477
        Accuracy of RandomForestClassifier: 0.945141065830721
            0
                                                                        400
                                                                        300
         True label
                                                                        200
                                                                        100
                      0
                                                        2
                                       1
                                Predicted label
```


Decision Tree DT

```
[32] DT_model=DecisionTreeClassifier()
      DT_model.fit(x_train_smote,y_train_smote)
      predictions=DT_model.predict(x_test)
      print(accuracy_score(y_test,predictions))
```

→ 0.9043887147335423

[Logistic Regression] LR

```
√
0s [34] LR_model=LogisticRegression()

        LR_model.fit(x_train_smote,y_train_smote)
        predictions=LR_model.predict(x_test)
        print(accuracy_score(y_test,predictions))
```

0.780564263322884

KNN K-Nearest Neighbors

0.8275862068965517

Model Validation and Evaluation Report:

Model	Classification Report		Confusion Matrix
Random Forest	print(classification_report(y_test,predictions)) precision recall f1-score support 1.0 0.96 0.84 0.90 496 2.0 0.53 0.81 0.64 101 3.0 0.71 0.83 0.76 41 accuracy 0.84 638 macro avg 0.73 0.83 0.77 638 weighted avg 0.88 0.84 0.85 638	93%	[36] confusion_matrix(y_test,predictions) array([[477, 17, 2],
Decision Tree	39 print(classification_report(y_test,predictions)) 39 print(classification_report(y_test,prediction	90%	[40] confusion_matrix(y_test,predictions) array([[462, 29, 5],
Logistic Regression	[43] print(classification_report(y_test,predictions))	77%	[44] confusion_matrix(y_test,predictions) array([[382, 92, 22],
KNN KNeighb ors Classifier	[47] print(classification_report(y_test,predictions))	83%	[48] confusion_matrix(y_test,predictions) array([[418, 69, 9],