<u>Power Density</u> at distance d from a radiator: $P = \frac{P_t}{4\pi d^2}$; Far-field (far from transmitter) power density: $P = \frac{P_t G_t}{4\pi d^2}$ $c = f \cdot \lambda$, $\Delta \phi = \frac{2\pi \Delta d}{\lambda}$

<u>Ideal Dish Antenna:</u> $P_r(d) = P = \frac{P_t G_t A_d}{4\pi d^2}$; for practical antennas, A_e replaces area; $A_e = \frac{G_r \lambda^2}{4\pi}$

Received Power at distance d (Friis Free Space Equation): $P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4\pi d)^2}$

Decibel Notation: $G_{dB} = 10 \log_{10} G$; $G = 10^{\frac{G_{dB}}{10}}$;

 $P_{dBm} = 10 \log_{10} P_{mW}; P_{dBW} = 10 \log_{10} P_{W}; P_{dBm} = 10 \log_{10} (1000 P_{mW}) = 30 + P_{dBW}$

Exponential Path Loss: $PL_{dB} = 20 \log_{10} d + 20 \log_{10} f - 147.6 \, dB$; with exponential n: $PL_{dB} = 10n \log_{10} d + 20 \log_{10} f - 147.6 \, dB$

 $[P_r(d)]_{dBm} = [P_r(d_0)]_{dBm} - 20\log_{10}\frac{d}{d_0}; \text{ with exponential } n: [P_r(d)]_{dBm} = [P_r(d_0)]_{dBm} - 10n\log_{10}\frac{d}{d_0};$

 $\underline{\textbf{SIGNAL ENERGY:}} \ E_g = \int_{-\infty}^{\infty} |g(t)|^2 dt; \ \underline{\textbf{SIGNAL POWER:}} \ P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt; \ \text{RMS} = \sqrt{P_g}$

Inner Product: $\langle g, x \rangle = \|g\| \cdot \|x\| \cdot \cos(\theta)$; Norm of $x = \langle x, x \rangle = \|x\|^2$, $c\|x\| = \|g\| \cos(\theta) \to c = \frac{\langle g, x \rangle}{\langle x, x \rangle}$

Error: inner product of the function with predicted function $e(t) = \begin{cases} g(t) - cx(t), t_1 \leq t \leq t_2 \\ 0, otherwise \end{cases}$; $c = \frac{\int_{t_1}^{t_2} g(t)x(t)}{\int_{t_1}^{t_2} x^2(t)} dt$ or $c = \frac{1}{\sqrt{E_x}} \int_{t_1}^{t_2} g(t)x^*(t) dt$ (for complex);

if $\langle g, x \rangle = \sum_{i=1}^{\infty} g_i x_i$, then $\langle g(t), x(t) \rangle = \int_{t_1}^{t_2} g(t) x(t) dt$; $g(t) \approx \sum_i c_i \cdot f_i(t) C_i = \frac{\langle g, fi \rangle}{\|fi\|}$

Cross-correlation: similarity of g(t) and z(t) left-shifted by τ : $\psi_{zg}(\tau) \equiv \int_{-\infty}^{\infty} z(t)g^*(t-\tau) \, dt = \int_{-\infty}^{\infty} z(t+\tau)g^*(t) dt =$. Autocorrelation: with itself: $\psi_g(\tau) = \int_{-\infty}^{\infty} g(t) \cdot g(t+\tau) \, dt$

<u>Fourier synthesis:</u> $S(t) = \sum_{n=-\infty}^{\infty} a_n e^{\frac{j2\pi nt}{T}}$; Generalized Fourier Series: $\sum_{n=1}^{\infty} c_n x_n(t)$; Parseval's Theorem: $E_g = \sum_n c_n^2 E_n$

Compact Fourier Series: $a_n \cos n2\pi f_0 t + b_n \sin n2\pi f_0 t = C_n \cos(n2\pi f_0 t + \theta_n)$, where $a_0 = C_0$, $C_n = \sqrt{a_n^2 + b_n^2}$, $\theta_n = \tan^{-1}(\frac{-b_n}{a_n})$; $P_g = C_0^2 + \frac{1}{2}\sum_{n=1}^{\infty} C_n^2$

Exponential Fourier Series: $g(t) = \sum_{n=-\infty}^{\infty} e^{-jn2\pi f_0 t}; D_n = \frac{1}{T_0} \int_{T_0}^{\square} g(t) e^{-jn2\pi f_0 t}; P_g = \sum_{n=-\infty}^{\infty} |D_n|^2 \rightarrow D_0^{-2} + 2\sum_{n=1}^{\infty} |D_n|^2 \text{ (if } g(t) \text{ is real)}$

Parseval's Theorem: $\int_{-\infty}^{\infty} |g(t)|^2 dt = \int_{-\infty}^{\infty} |g(f)|^2 dt$

Existence of Fourier Transform: $\int_{-\infty}^{\infty} |g(t)| dt < \infty$

Rectangular Function: $\Pi(x) = \begin{cases} 1 & \text{if } |x| \leq \frac{1}{2} \\ 0 & \text{if } |x| > \frac{1}{2} \end{cases}$ $\frac{\text{Triangular Function:}}{0 & \text{if } |x| > \frac{1}{2}} \Rightarrow \text{Triangular Function:} \Delta(x) = \begin{cases} 1 - 2|x| & \text{if } |x| < \frac{1}{2} \\ 0 & \text{if } |x| > \frac{1}{2} \end{cases}$ $\text{Triangular Function:} \Delta(x) = \begin{cases} 1 - 2|x| & \text{if } |x| < \frac{1}{2} \\ 0 & \text{if } |x| > \frac{1}{2} \end{cases}$ $\text{Triangular Function:} \Delta(x) = \begin{cases} 1 - 2|x| & \text{if } |x| < \frac{1}{2} \\ 0 & \text{if } |x| > \frac{1}{2} \end{cases}$ $\text{Triangular Function:} \Delta(x) = \begin{cases} 1 - 2|x| & \text{if } |x| < \frac{1}{2} \\ 0 & \text{if } |x| > \frac{1}{2} \end{cases}$

Bandwidths: \rightarrow if $g_1(t)$ and $g_2(t)$ have bandwidths B_1 and B_2 , then $g_1(t) \cdot g_2(t)$ has bandwidth $B_1 + B_2$.

- \rightarrow width of x(t) * y(t) is sum of widths of x(t) and y(t)
- \rightarrow if bandwidth of g(t) is B Hz, then bandwidth of $g^n(t)$ is nB Hz.
- $|Y(f)| = |X(f)| \cdot |H(f)|$ and $\theta_{v}(f) = \theta_{x}(f) + \theta_{h}(f)$

Distortionless Transmission: $y(t) = kx(t - t_d) \rightarrow identical in shape w/delay; and <math>Y(f) = kX(f)e^{-j2\pi ft_d}$

Parseval's Theorem (frequency domain): $E_g = \int_{-\infty}^{\infty} |G(f)|^2 df$; if through a filter: Y(f) = G(f)H(f), $E_y = 2|G(f_0)|^2 \Delta f$ (if H(f) = 1), where $|G(f_0)|^2$ is the ESD and $2|G(f_0)|^2$ b/c of + and -. Otherwise, $E_y = \int_{-\infty}^{\infty} |G(f)H(f)|^2 df$

ENERGY SPECTRAL DENSITY: $\psi_g(\tau) = |G(f)|^2$; $E_g = \int_{-\infty}^{\infty} \psi_g(f) \ df$

Wiener-Khintchine Theorem: Autocorrelation of g(t) and its ESD $\Psi_g(f)$ are Fourier Transform paie: $\psi_g(\tau) \leftrightarrow \Psi_g(f) = |G(f)|^2$; ** $\psi_g(\tau) = g(\tau)$ *

Power: $P_g = \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{|G(f)|^2}{T} df$; **POWER SPECTRAL DENSITY:** $S_g(f) = \lim_{T \to \infty} \frac{|G(f)|^2}{T}$, so $P_g = \int_{-\infty}^{\infty} S_g(f) df = 2 \int_{0}^{\infty} S_g(f) df$ if it is an even function

Time Autocorrelation of Power Signals: $R_g(-\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(t) \cdot g(t-\tau) dt; R_g(-\tau) = R_g(\tau);$

- $\rightarrow \text{PSD of } S_g(f) \text{ is Fourier Transform of } R_g(\tau); R_g(\tau) = \lim_{T \to \infty} \frac{\psi_{gT}(\tau)}{T}, \rightarrow \text{From Wiener-Khintchine: } R_g(\tau) \leftrightarrow \lim_{T \to \infty} \frac{|G(f)|^2}{T} = S_g(f)$
- \rightarrow PSD of Modulated Signal: if $\psi(t) = g(t)\cos(2\pi f_0 t)$ and if $f_0 \ge B$, then PSD $S_{\psi}(f) = \frac{1}{4}[S_g(f+f_0) + S_g(f-f_0)]$

<u>Modulation:</u> $s(t) = m(t) \cos(2\pi f_c t)$, where m(t) is modulating/message signal, $\cos(2\pi f_c t)$ is carrier, and s(t) is modulated signal.

<u>DSB-SC:</u> $\psi_{DSB-SC}(t) = A_c m(t) \cos(2\pi f_c t);$

 $\underline{\mathbf{DSB-SC}}: \psi_{DSB-SC}(t) = A_c m(t) \cos(2\pi f_c t);$ $\underline{\mathbf{AM:}} \left(A + m(t) \right) \cos(2\pi f_c t) \leftrightarrow \frac{1}{2} [M(f + f_c) + M(f - f_c)] + \frac{A}{2} [\delta(f + f_c) + \delta(f - f_c)] : \rightarrow \text{For signal } E(t) \cos \omega_c t, \text{ "envelope" is } |E(t)| \text{ if } E(t) \text{ varies}$ slowly

- \rightarrow Envelope Detection: 1) $f_c \gg$ Bandwidth of $m(t) \sim$ condition for envelope detection, 2) $A + m(t) \ge 0$
- \rightarrow **Power:** $\frac{A^2}{2} + \frac{m^2(t)}{2}$ if message is orthogonal with carrier, where $P_c = \frac{A^2}{2}$ (carrier power) and $P_s = \frac{m^2(t)}{2}$ (sideband power); Power efficiency: $\frac{P_s}{P_c + P_s}$; for tone modulation $m(t) = \mu A \cos \omega_m t$: $\eta = \frac{\mu^2}{2 + \mu^2}$: Modulation Index: $\mu = \frac{m_p}{A} (0 \le \mu \le 1)$ if distortionless demodulation; if nonzero offset, then: $\mu = \frac{m_p}{A} (0 \le \mu \le 1)$

Hilbert Transform:
$$x_h(t) = \mathcal{H}[x(t)] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\alpha)}{t-\alpha} d\alpha = x(t) * \frac{1}{\pi t}; ** \frac{1}{\pi t} \leftrightarrow -j \operatorname{sgn}(f) = \begin{cases} j, & f > 0 \\ -j, & f < 0 \end{cases}$$

Quadrature Amplitude Modulation (QAM): $\psi_{QAM}(t) = m_1(t)\cos(\omega_c t) + m_2(t)\sin(\omega_c t) \rightarrow 2$ baseband signals can be separated at the receiver if 2 local carriers are used in phase quadrature: $x_1(t) = 2\psi_{QAM}(t)\cos(\omega_c t)$ and $x_2(t) = 2\psi_{QAM}(t)\sin(\omega_c t)$

 $\underbrace{ \begin{array}{c} \underline{\text{Vestigial Sideband (VSB) Amplitude Modulation:}} \\ \Phi_{VSB}(f) = [M(f+f_c) + M(f-f_c)]H_i(f); \text{ Demodulation:} \\ \Phi_{VSB}(f) = \underbrace{ \begin{array}{c} \underline{\text{M(}f+f_c) + M(f-f_c)}}_{2} + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v(f-f_c)}}_{2j} \\ \end{array} \\ + \underbrace{ \begin{array}{c} \underline{\text{Mv}(f+f_c) + M_v$ where $m_v(t)$ is a lowpass signal

Instantaneous Frequency: $\omega_i(t) = \frac{d\theta}{dt}$, $\theta(t) = \int_{-\infty}^t \omega_i(\alpha) d\alpha$

PM: $\psi_{PM} = A\cos(\omega_c t + k_P m(t))$; $\Delta f = k_p \frac{m(t)_{max} - m(t)_{min}}{2 \cdot 2\pi}$, $\beta = \frac{\Delta f}{B}$, $B_{PM} = 2(\Delta f + B) = 2B(\beta + 1)$; Power = $\frac{A^2}{2}$

 $\text{FM: } \psi_{FM} = A\cos(\omega_{\text{C}}\mathsf{t} + \mathsf{k}_{\text{f}} \int_{-\infty}^{\mathsf{t}} \mathsf{m}(\alpha) \, \mathrm{d}\alpha) \text{ ; } \Delta f = k_{f} \frac{m_{max} - m_{min}}{2 \cdot 2\pi}, \\ B_{FM} \cong 2(\Delta \mathsf{f} + 2\mathsf{B}) \text{ (for peak frequency deviation); } B_{FM} = 2(\Delta \mathsf{f} + \mathsf{B}) = 2(\frac{k_{f} m_{p}}{2\pi} + B) \text{ (for peak frequency deviation); } B_{FM} = 2(\Delta \mathsf{f} + \mathsf{B}) = 2(\frac{k_{f} m_{p}}{2\pi} + B) \text{ (for peak frequency deviation); } B_{FM} = 2(\Delta \mathsf{f} + \mathsf{B}) = 2(\Delta \mathsf{f} + \mathsf{B}) = 2(\Delta \mathsf{f} + \mathsf{B}) \text{ (for peak frequency deviation); } B_{FM} = 2(\Delta \mathsf{f} + \mathsf{B}) =$ $\beta = \frac{\Delta f}{R}$

Diagram:

Sampling:

`Original: 9(t) ; Sampled:
$$\bar{g}(t) = g(t)$$
: $\bar{g}(f) = \bar{f}(f) = \bar{f}(g(f)) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} G(f - nf_s) = \frac{1}{T_s} G(f - \frac{n}{T_s})$

 \rightarrow For $f_s \ge 2B$, can recover with Brick Wall Filter: $H(f) = T_s \Pi\left(\frac{f}{2B}\right) \to H(f) \cdot \overline{\mathbf{G}} \mid \mathbf{G} \mid$

$$\rightarrow g(t) = \sum_{n}^{\infty} g(nT_s) sinc(2\pi B(t - nT_s))$$

Equalizer: undo distortion and remove copies of LPF: $E(f) \cdot \widetilde{G(f)} = G(f)e^{-j2\pi ft_0} = E(f)P(f)\frac{1}{T_s}\sum_n G(f-nf_s);$

$$E(f) = \begin{cases} T_s \frac{e^{-j2\pi f t_0}}{P(f)}, |f| < B\\ flexible, B \le |f| \le f_s - B\\ 0, |f| \ge f_s - B \end{cases}$$

MODULATIONS: Pulse Amplitude Modulation (pulse amplitude is signal amplitude); Pule Width Modulation (same location, different widths); Pulse Position Modulation (same widths, different positions); Pulse Code Modulation (analog signal quantized over a range) ... mapped to a bit sequence; bits sent as pulses (on-off signaling) where 1-pulse and 0-no pulse

Bandwidth of PCM: $\rightarrow m(t)$ bandwidth of B; need to be $\geq 2B$ samples/s to reconstruct; \rightarrow each sample quantized to n bits; \rightarrow bit rate $\geq 2nB$ bits/s; max info rate needs nB Hz channel BW; \rightarrow need n times as much BW for PCM as original signal.

Line coding: **Symbol — "piece of info", digital or analog. Line Coding – class of digital modulation for baseband channels (usually binary): $0 \rightarrow s_0(t)$ and $1 \rightarrow s_1(t)$; has 2 broad classes:

Polarity/Type (for $u = [1 1 0 1 0]$	Non-Return to Zero (NRZ)	Return-to-Zero
Unipolar	11010	الألمان
Bipolar		<u>∏∏°∏°</u> >t

PSD of Line Coding: If the transmitted signal is $y(t) = \sum_k a_k p(t - kT_b)$ where T_b is bit duration and a_k is line code amplitude, then $y(t) = p(t) * \sum_k a_k \delta(t - kT_b) = p(t) * x(t)$ and $S_y(f) = |p(f)|^2 S_x(f)$ and $S_x(f) \leftrightarrow R_x(\tau)$

Optimal Demodulator:

$$r(t) \to \bigotimes \xrightarrow{P_{T}(t)} \bigcup \bigcap Dec Dev$$

BPSK: $s_0(t) = \sqrt{\frac{2E}{T}}cos(\omega_c t)p_T(t)$ and $s_1(t) = \sqrt{\frac{2E}{T}}cos(\omega_c t + \pi)p_T(t) = -\sqrt{\frac{2E}{T}}cos(\omega_c t)p_T(t)$, Antipodal since $s_0(t) = -s_1(t)$; $E = ||s_0||^2 = ||s_1||^2 = \frac{1}{2}||\sqrt{\frac{2E}{T}}p_T(t)||^2 = \frac{E}{T}\int_0^T \mathbf{1}^2 dt = E$, so $s_0 = \sqrt{E}$ and $s_1 = -\sqrt{E}$ (same as Bipolar NRZ)

$$\begin{aligned} & \textbf{Line-coded:} \ S_y(f) = \frac{|P(f)|^2}{T_b} (R_0 + 2 \sum_{n=1}^{\infty} R_n \text{cos}(2 \pi \text{nf} \ T_b)) \ \textbf{Polar Signaling:} \ S_y(f) = \frac{|P(f)|^2}{T_b} \textbf{On-Off:} \ S_y(f) = \frac{|P(f)|^2}{4 T_b} \Big(\textbf{1} + \frac{1}{T_b} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{T_b} \right) \Big) \ \textbf{Bipolar signaling:} \ S_y(f) = \frac{|P(f)|^2}{4 T_b} \Big(\sin^2(\pi f T_b) \Big) \end{aligned}$$

For Binary Modulation: ML Decision Rule (ONLY USE THIS) ... for AWGN channel, this is minimum distance rule.

Gram-Schmidt: 1) represent current signal $s_i(t)$ using current basis: $s_{ij} = \langle s_i(t), f_j(t) \rangle$ for all j.

- 2) Find error signal: $e_i(t) = s_i(t) \widehat{s_i(t)}$
- 3) If $||e_i(t)||^2 = 0$, go to the next signal, else create a new basis function, $e_i(t)$ must be orthogonal to all existing $f_j(t)$. Let $f_k(t) = \frac{e_i(t)}{||e_i(t)||}$, then $f_k(t)$ orthogonal to $f_j(t)$ for all j and $||f_k(t)||^2 = 1$... new set of $\{f_j(t), \dots, f_k(t)\}$, can represent $s_i(t)$ with 0 error energy, then $s_i = [s_{i0}, s_{i1}, \dots, s_{iN-1}]$ ~ if did not find one, put 0 in its place. At each iteration either make a new $f_k(t)$ or don't make it.
- ** Dimensionality of a signal set S is the cardinality of a basis for S. $N = dim S = |\mathcal{F}|$

Digital Receiver Design

$$i \rightarrow mod \xrightarrow{S_i(t)} \bigoplus_{r(t)} \underset{basis}{\text{projents}} \xrightarrow{\Gamma} \underset{det}{\longrightarrow} ML \xrightarrow{\Gamma}$$

With $r_i = \langle r(t), f_i(t) \rangle$:

$$\begin{array}{c|c}
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
\downarrow &$$

Energy Efficiency: probability of error as a function of signal-to-noise ratio; Spectral Efficiency: frequency/BW

Signal set with M signals is M-ary modulation; and $m = log_2(M)$ bits/symbol.

Bit Rate/data rate $R_b = m \frac{bit}{sym} * R_s \frac{sym}{s}$ and $\eta = \frac{R_b \frac{bits}{s}}{B Hz}$ (this is spectral efficiency, B = bandwidth)

Decision rule: MLE $P_{error} = Q\left(\frac{d/2}{\sqrt{N/2}}\right)$, related to distance on signal constellation too. **If given dB values, compute in linear units. Report $\frac{E_b}{N_0}$ needs to be in dB units. **Q() function is the survival function or 1-normalcdf() if using calculator. **For binary modulation, $P_S = \frac{E_b}{N_0}$

$$Q\left(\frac{\frac{d}{2}}{\sqrt{\frac{N_0}{2}}}\right) = Q\left(\frac{\sqrt{\frac{E}{2}}}{\sqrt{\frac{N_0}{2}}}\right) = Q\left(\sqrt{\frac{E}{N_0}}\right)$$

OTHERS: $||s_i(t)||^2 = \int_0^T (s_i(t))^2 dt$ and $E_S = E_b log_2(M)$

Energy efficiency: average neighbors Q function or distance. Spectral efficiency: related to η , max around $log_2(M)$

OFDM: assign data at different frequencies channels, IFFT, add guard time, circular convolution.