Q11

2 Points

"A computer program is said to learn from experience E with respect to some task T ans some performance measure P, if its performance on T as measured by P, improves with experience E." Suppose your email program watches which e-mails you do or do not mark as spam, and based on that learns how to better filter spam. What is the task T in this setting?

- O Watching you label emails as spam or not spam
- O The number of emails correctly classified as spam/not spam
- O Classifying emails as spam or not spam
- O None of the above this is not machine learning problem

Q2 2

2 Points

Suppose you are running a company and you want to develop learning algorithms to address two problems:

Problem 1: You have a large inventory of identical items. You want to predict how many items will sell over the next 3 months.

Problem 2: You'd like the software to examine individual customer accounts, and for each account decide if it has been hacked/compromised.

- O Treat both as classification problems.
- O Treat problem 1 as a classification problem, problem 2 as a regression problem.
- Treat problem 2 as a classification problem, problem 1 as a regression problem.
- O Treat both as regression problems.

Q3 3

5 Points

Suppose we have training set with m=3 examples, plotted below. Our hypothesis representation is $h(\theta)=\theta_1x$ with parameter θ_1 . The cost function is

$$J(heta_1) = rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})^2.$$

What is J(0)?

No files uploaded

Q4 4

1 Point

Which of the following are true statements? Select all that apply?

- To make gradient descent converge, we must slowly decrease over time
- O Gradient descent is guaranteed to find the global minimum for any function $J(\theta)$.
- O Gradient descent can converge even if α is kept fixed. (But α cannot be too large, or else it may fail to converge.)
- O For the specific choice of the cost function, J used id linear regression, there are no local optima (other than the global optimum).

Q5 5

15 Points

The values of y and attribute x are given in the table below:

Q5.1 a

10 Points

Find the least square regression line y = mx + b

Q5.2 b

5 Points

Estimate the value of y when x=10

Q66

5 Points

Suppose we set $heta_0=-2, heta_1=3$ in the linear hypothesis from Q1. What is h(5)=?

Q7 7

70 Points

The problem of classification of Power Saving Lights by their economical feasibility as Preserver or Wasteful will be solved with k-NN. Suppose k = 3 and attributes : X_1 Lighting Duration and X_2 Power Consuming.

X_1 : Lighting Duration (Hours)	X_2 : Power Consuming (Watts)	Y
6	900	Wasteful
2	150	Wasteful
5	600	Wasteful
3	80	Preserver
4	200	Wasteful
2	60	Preserver
10	500	?

Q7.1 a

25 Points

Calculate the Euclidean distance between the test sample ($X_1:10,\,X_2:500$) and all training samples.

Q7.2 b

5 Points

Sort the training samples based on the calculated distance.

Q7.3 c

10 Points

Find the label of the test sample based on the closest k neighbors (k:3)

Q7.4 d

30 Points

Fill in the functions for the given tasks.

```
def calculate_euclidean(sample1, sample2):
    return distance

def nearest_neighbors(train_set, test_sample, k):
    \\calculate distances between test_sample and train_set

\\find closest neighbors and return k neighbors

return neighbors

def predict(train_set, test_sample, k):
    neighbors = nearest_neighbors(train_set, test_sample, k)

return label_test_sample
```

▼ IMG_20210312_165552.jpg

♣ Download

Quiz-1 • GRADED

STUDENT

MEHMET TAHA USTA

TOTAL POINTS

84 / 100 pts

QUESTION 1

View Submission Gradescope		
1	2 / 2 pts	
QUESTION 2		
2	2 / 2 pts	
QUESTION 3		
3	0 / 5 pts	
QUESTION 4		
4	0 / 1 pt	
QUESTION 5		
5	15 / 15 pts	
5.1 a	10 / 10 pts	
5.2 b	5 / 5 pts	
QUESTION 6		
6	0 / 5 pts	
QUESTION 7		
7	65 / 70 pts	
7.1 a	25 / 25 pts	
7.2 b	5 / 5 pts	
7.3 C	10 / 10 pts	
7.4 d	25 / 30 pts	