## A REPORT ON

## STERILIZATION UNIT USING 8086 MICROPROCESSOR

By

ANUPAM AGGARWAL 2016A7PS0033P BHAVANA N. PIYUSH GARG

**MEGH THAKKAR** 

2016A7PS0034P 2016A7PS0035P 2016A7PS0036P

# Prepared for partial fulfillment of the Course Microprocessors and Interfacing AT



BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI (APRIL 2018)

#### PROBLEM STATEMENT

Description: This unit performs sterilization by increasing temperature to maximum value (x0C). The temperature has to be maintained at the maximum value for 2 minutes before it is brought gradually to a nominal temperature value (y0C). The time taken for bringing down the temperature can be varied between four different values as decided by the user. A slider is used to decide this value

Level 1: 2 minutes

Level 2: 4 minutes

Level 3: 6 minutes

Level 4:8 minutes

While the sterilization process is taking place the door to the unit must remain locked. The Door can be opened only when user presses End.

User Interface: Status LED glows as long as the sterilization process is being done. Once 30 C has been reached then LED goes off and the door mechanism unlocks. Once the door is closed again the temperature has to be brought back to 30 C.



## **Design Specifications:**

#### Simple DC Motor:

Nominal Voltage: 12 V

Coil Resistance: 12

Coil Inductance: 100mH Zero load RPM: 2200

Max Torque%: 1

Effective mass: 0.0000001

#### Heater:

Ambient temperature: 25

Thermal Resistance to Ambient: 0.05

Oven Time Constant: 6

Heater Time Constant: 0.0001 Temperature coefficient: 1 Heating power: 2.3 kW

## 74LS138(Decoder):



#### 8255:



## 8253(Counter):





## ADC 0808(AC to DC Converter):



#### **Components Used:**

- 1. 8086(1) Microprocessor
- 2. 8255(1) Programmable Peripheral Interface
- 3. 8253(1) Programmable Interval Timer
- 4. 2732(2) 4K ROM
- 5. 6116(2) 2K SRAM
- 6. ADC0808 (1) Analog to Digital Converter
- 7. 74LS373 (3) Latch
- 8. 74LS245 (2) Bidirectional Buffer
- 9. 74LS138 (1) Decoder (3:8)
- 10. 2- Simple DC motors
- 11. L293D (1) Motor Driver
- 12. 1 Heater
- 13. 1 − Tri-state buffer
- 14. 1 Toggle Switch
- 15. 6 Button Switches
- 16. 3 LEDs
- 17. 6 OR Gates
- 18. 4 NOT Gates

#### LED Status Values and meanings:

- 1. 'TIMER' LED Used to count the time when the temperature reaches 80 deg. C. Along with this, the user chosen time is also displayed here.
  - a. 1 = Counting
  - b. 0 = Not Counting
- 2. 'STATUS' LED
  - a. 1 = Sterilization process going on
  - b. 0 = Sterilization process stopped
- 3. 'DOOR' LED
  - a. 1 = Door is locked
  - b. 0 = Door is unlocked

#### Input/Output port matching

- 1. Port A: 00h
- 2. Port B: 02h
- 3. Port C: 04h
- 4. Control Register: 06h
- 5. Counter 0: 08h
- 6. Counter 1: 0Ah
- 7. Counter 2: 0Ch
- 8. Counter Control Register: 0Eh

#### **Memory Matching**

- 1. ROM 1E  $\Rightarrow$  00000H -01FFEH (4K)
- 2. ROM  $1O \Rightarrow 00001H-01FFFH (4K)$
- 3. RAM  $1E \Rightarrow 02000H 02FFEH (2K)$
- 4. RAM  $2O \Rightarrow 02001H 02FFFH (2K)$

## Assumptions

- 1. Assuming x=80 deg. cel.
- 2. Sterilization takes place at 80 deg. cel.
- 3. Open the door only when 'END' is pressed and the door opening is done using Motor. IR (toggle switch) =0 => Door closed and IR (toggle switch) =1 => Door open (Done manually)
- 4. Level of sterilization is selected using 4 switches over which a slider will move and as it hovers over the switches it will press the switches.

## **Cooling methods**

- 1. LEV1: Fan motor cools the sterilization unit from 80oC to 30 oC in 2 mins at 50% duty cycle.
- 2. LEV2: Fan motor cools the sterilization unit from 80oC to 30 oC in 4 mins at 33% duty cycle.
- 3. LEV3: Fan motor cools the sterilization unit from 80oC to 30 oC in 6 mins at 20% duty cycle.

4. LEV4: Fan motor cools the sterilization unit from 80oC to 30 oC in 8 mins at 10% duty cycle.

## **ASM CHART**





## Circuit Diagram



#### **ASM CODE**

```
#make_bin#
#LOAD SEGMENT=FFFFh#
#LOAD OFFSET=0000h#
#CS=0100h#
#IP=03feh#
#DS=0100h#
#ES=0100h#
#SS=0100h#
#SP=9FFFh#
#AX=0000h#
#BX=0000h#
#CX=0000h#
#DX=0000h#
#SI=0000h#
#DI=0000h#
#BP=0000h#
     jmp
          st1
          509 dup(0)
     db
;IVT entry for 80H
     dw
          0000
     db
          508 dup(0)
;main program
; intialize ds, es,ss to start of RAM
```

st1: cli

mov ax,0200h

mov ds,ax

mov es,ax

mov ss,ax

mov sp,0FFFEH

MOV AL,92H

OUT 06H,AL ;config 8255

MOV AL,00110100B ;config 8254 (Counter 0, Mode 2)

OUT 0Eh,AL

MOV AL,64H ;08H - 2710h(10,000)

OUT 08H,AL

MOV AL,00H ;08H - 2710h(10,000)

OUT 08H,AL

MOV AL,01110010B ;config 8254 (Counter 1, Mode 1)

OUT 0Eh,AL

MOV AL,0Ch ;0Ah - 78h(120)

OUT 0Ah,AL

MOV AL,00H ;0Ah - 78h(120)

OUT 0Ah,AL

MOV AL,10110110B ; config 8254 (Counter 2, Mode 3)

OUT 0Eh,AL

MOV AL,64H ;0Ch( To be given to SOC) – 064h(100)

OUT 0Ch,AL

MOV AL,00H

OUT 0Ch,AL

IR1:

IN AL,02h ; (PB 0 - IR Sensor)

AND AL,01H

JNZ IR1

MOV CL,0

MOV AL,00000000B ;( PC4- GATE1 =0)

OUT 04H,AL

MOV AL,00000000B ;( PC1- heater =0)

OUT 04H,AL

START:

IN AL, 00h

CMP AL,38 ; Maintaining Temperature= 30 degrees

JGE X1

MOV AL,00000010b ;Heater(PC 1) on

OUT 04H,AL JMP START

X1:

MOV AL,00000000b ;Heater(PC 1) off

OUT 04H,AL

**GETLEVEL:** 

IN AL,02H

MOV AH,AL

AND AH,01000000B

JNZ LVL3

MOV CL,04H

JMP END10

LVL3:

MOV AH,AL

AND AH,00010000B

JNZ LVL2

MOV CL,03H

JMP END10

LVL2:

MOV AH,AL

AND AH,00001000B

JNZ LVL1

MOV CL,02H

JMP END10

LVL1:

MOV AH,AL

AND AH,00001000B

MOV CL,01H

END10:

IN AL,02h

MOV AH,AL

AND AH,80H

;CMP AH,80H ;80h = sterlize

JZ STER

MOV AH,AL

AND AH,20H

;CMP AH,20H ;20H=END

JZ END1

JMP START

END1: ;end pressed

CALL DELAY\_20MS ;de-bounce

IN AL,02h

AND AL,20H

;CMP AL,20H

JNZ START

MOV AL,10110110B ;config 8254 (Counter 2, Mode 3) "reinitialize for adc "

OUT 0Eh,AL

MOV AL,64H ;0Ch( To be given to SOC) – 064h(100)

OUT 0Ch,AL

MOV AL,00H

OUT 0Ch,AL

MOV AL,01110010B ;COUNTER 1 MODE 1

OUT 0Eh,AL

MOV AL,03H ; COUNT =3 (3 sec)

OUT 0Ah,AL MOV AL,00H

OUT 0Ah,AL

MOV AL,00010000B ; PULSE TO GATE 1 (PC4)

OUT 04H,AL

NOP;??

**NOP** 

MOV AL,00000000B ;PULSE

OUT 04H,AL

DOOR:

MOV AL,00100000B

OUT 04H,AL ;Switching motor on( PC 5)

IN AL,02h ;OUT 1 (PB1)

AND AL,02H

JZ DOOR

MOV AL,00000000B ;Switching motor off( PC 5)

OUT 04H,AL

JMP IR1

STER: ;sterilize pressed

CALL DELAY\_20MS ;de-bounce

IN AL,02h

AND AL,80H

;CMP AL,80H

JNZ START

MOV AL,10000000b ;lock door( PC 7)/ STATUS ON

OUT 04H,AL

X5:

MOV AL,10000010b ; HEATER (PC 1)-ON

OUT 04H,AL

WAIT1: IN AL, 00h

CMP AL,102 ; Waiting for 80 degree Celsius ???

JLE WAIT1

MOV AL,10010010B ; PULSE TO GATE 1 (PC4)

OUT 04H,AL

NOP

**NOP** 

MOV AL,10000010B ;PULSE

OUT 04H,AL

TEMP100:

IN AL, 00h

CMP AL,102 ; Mantaining Temperature=80 degrees

JLE HTRON

MOV AL,10000000b ;Heater(PC 1) oFF

OUT 04H,AL

NOP ;NOP given to calibrate heater's rate of cooling with

heating

NOP

**NOP** 

**NOP** 

**NOP** 

**NOP** 

NOP

NOP

NOP

NOP

NOP

NOI

NOP

\_ \_ \_ \_

NOP

HTRON:

MOV AL,10000010b ;Heater(PC 1) on

OUT 04H,AL

IN AL,02h ;OUT 1 (PB1)

AND AL,02H

```
CMP AL,0
JZ TEMP100
```

MOV AL,01110010B ;COUNTER 1 MODE 1

OUT 0Eh,AL

CMP CL,1 ;Count of level button

JZ S1

CMP CL,2

JZ S2

CMP CL,3

JZ S3

CMP CL,4

JZ S4

S1:

MOV AL,120 ; COUNT =120 (2 MIN)

OUT 0Ah,AL

MOV AL,00H

OUT 0Ah,AL

MOV AL,10010000B ;PULSE TO GATE 1 (PC4)

OUT 04H,AL

**NOP** 

**NOP** 

MOV AL,10000000B ;PULSE

OUT 04H,AL

FAN1:

MOV AL,10001000B ;Switching motor on (PC 3)

OUT 04H,AL

IN AL,02h ;OUT 1 (PB1)

AND AL,02H

JZ FAN1

JMP OUT1

S2:

MOV AL,10110100B ;COUNTER 2, MODE 2

OUT 0Eh,AL

MOV AL,02H ;GIVEN COUNT 2 (Duty cycle:50%)??

OUT 0Ch,AL

MOV AL,00H

OUT 0Ch,AL

MOV AL,0f0H ; COUNT = 240 (4 MIN)

OUT 0Ah,AL

MOV AL,00H

OUT 0Ah,AL

MOV AL,10010000B ; PULSE TO GATE 1 (PC4)

OUT 04H,AL

**NOP** 

**NOP** 

MOV AL,10000000B ;PULSE

OUT 04H,AL

FAN2:

MOV AL,10001000B ;Switching motor on (PC 3)

OUT 04H,AL

IN AL,02h ;OUT 1 (PB1)

AND AL,02H

CMP AL,0

JZ FAN2

JMP OUT1

S3:

MOV AL,10110100B ;COUNTER 2, MODE 2

OUT 0Eh,AL

MOV AL,03H ;GIVEN COUNT 3 (Duty cycle:33%)

OUT 0Ch,AL

MOV AL,00H

OUT 0Ch,AL

MOV AL,68H; COUNT = 360 (6 MIN)

OUT 0Ah,AL

MOV AL,01H

OUT 0Ah,AL

MOV AL,10010000B ; PULSE TO GATE 1 (PC4)

```
OUT 04H,AL
NOP
NOP
MOV AL,10000000B
                   ;PULSE
OUT 04H,AL
FAN3:
MOV AL,10001000B
                  ;Switching motor on (PC 3)
OUT 04H,AL
IN AL,02h
               ;OUT 1 (PB1)
AND AL,02H
CMP AL,0
JZ FAN3
JMP OUT1
S4:
                   ;COUNTER 2, MODE 2
MOV AL,10110100B
OUT 0Eh,AL
MOV AL,04H
                    GIVEN COUNT 4 (Duty cycle:25%)
OUT 0Ch,AL
MOV AL,00H
OUT 0Ch,AL
MOV AL,0e0H
                    ; COUNT = 480 (8 MIN)
OUT 0Ah,AL
MOV AL,01H
OUT 0Ah,AL
MOV AL,10010000B
                   ; PULSE TO GATE 1 (PC4)
OUT 04H,AL
NOP
NOP
MOV AL,10000000B
                   ;PULSE
OUT 04H,AL
FAN4:
                  ;Switching motor on (PC 3)
MOV AL,10001000B
OUT 04H,AL
               ;OUT 1 (PB1)
IN AL,02h
```

AND AL,02H

CMP AL,0 JZ FAN4

JMP OUT1

OUT1:

MOV AL,10000000B ;Switching motor off (PC 3)

OUT 04H,AL

MOV AL,00000000b ;Unlock door( PC 7)/ STATUS OFF

OUT 04H,AL

MOV AL,10110110B ;config 8254 (Counter 2, Mode 3)

OUT 0Eh,AL

MOV AL,0E8H ;0Ch( To be given to SOC) – 03E8h(1000)

OUT 0Ch,AL

MOV AL,03H ;0Ch( To be given to SOC) –03E8h(1000)

OUT 0Ch,AL JMP START

DELAY\_20MS PROC NEAR ;subroutine

MOV DX,CX

MOV CX,10

X2:

NOP

**NOP** 

LOOP X2

MOV CX,DX

**RET** 

DELAY\_20MS ENDP