Python para Hackers

Python para Hackers

Contenido del curso

Capítulo 1. Introducción

Capítulo 2. Primeros pasos

Capítulo 3. Python Capítulo 4. Hands-On

Ataques de diccionario | Banner Grabbing | Reconocimiento de máquinas | Servidor/Cliente TCP | Web Server | Web Scraping | Packet Sniffing con Scapy | Paramiko (Cliente SSH) | Nmap con Python | MacChanger | Fuerza bruta de Directorios Web | Fuerza bruta a formularios de autenticación (web)

Python cuenta con diferentes funciones para la manipulación de archivos (creación, lectura, escritura, eliminación, actualización).

Apertura de un archivo

Para comenzar a utilizar un archivo se tiene que utilizar la función open().

Manejo de errores

Se utiliza el bloque **try..except** para manejar errores que ocurren durante la ejecución de un programa.

Apertura de un archivo

Crear un archivo.

Crear un archivo con un editor de texto, escribir las siguientes líneas de código y guardar el archivo.

PyCharm.

Escribir las siguientes líneas de código:

```
try:
    archivo = open("ruta a su archivo de texto")
except OSError as err:
    print("Error: " + str(err))
else:
    archivo.close()
```

Colocar la ruta al archivo de texto.

Archivos Atributos

Código:

Colocar dentro del else, antes de la línea de código archivo.close()

```
print(archivo.name) # Obtiene el nombre del archivo
print(archivo.mode) # Obtiene el modo con el que se abrió el archivo
print(archivo.closed) # Indica si el archivo está cerrado
```

```
C:\Users\yunue\Documents\archivo.txt
r
False
Cambiará dependiendo de la ruta donde tengan su archivo
```


Leer contenido de un archivo línea por línea

Código

Colocar dentro del else, antes de la línea de código archivo.close()

```
01. for linea in archivo:
02. print(linea)
```


Archivos Método read()

Código

Colocar dentro del *else*, antes de la línea de código *archivo.close()*. Comentar las líneas de código de la diapositiva anterior.

01. print(archivo.read()) # Lee todo el contenido del archivo

Ejecución del código

linea1 linea2 linea3 linea4

Archivos Método read()

Código

Colocar dentro del *else*, antes de la línea de código *archivo.close()*. Comentar la línea de código de la diapositiva anterior

```
#print(archivo.read()) # Lee todo el contenido del archivo
print(archivo.read(5)) # Lee hasta el número de caracter indicado
```


Método readline()

Código

Colocar dentro del *else*, antes de la línea de código *archivo.close()*. Comentar la línea de código de la diapositiva anterior

```
#print(archivo.read()) # Lee todo el contenido del archivo
#print(archivo.read(5)) # Lee hasta el número de caracter indicado
print(archivo.readline()) # Lee una línea del archivo
```


Escritura de un archivo

Código

```
01.
      try:
02.
          archivo2 = open("C:\\ruta_al_archivo\\archivo2.txt","w+")
          archivo2.write("Hola") # Escribe en el archivo el texto indicado
03.
          archivo2.write(" mundo!\n")
04.
          archivo2.seek(0) # Cambia la posicion al inicio del archivo
05.
          print(archivo2.read())
06.
07.
     except OSError as err:
          print("Error: " + str(err))
08.
      else:
09.
          archivo2.close()
10.
```


Ataques de diccionario

Ataque de diccionario

Ataque a hashes (utilizados para representar contraseñas) que prueba una lista de posibles contraseñas que se encuentran en un archivo llamado "diccionario".

Hash

Cadena hexadecimal de tamaño fijo que representa una huella digital o resumen de la información.

"La junta será a las 4:00 p.m." 3ba5ba9d2ba08ccfacbea33c0e58fb7b

"password" **5f4dcc3b5aa765d61d8327deb882cf99**

Función	Salida	Ejemplo
MD5	128 bits	5F4DCC3B5AA765D61D8327DEB882CF99

Función	Salida	Ejemplo
MD5	128 bits	5F4DCC3B5AA765D61D8327DEB882CF99
SHA-1	160 bits	5BAA61E4C9B93F3F0682250B6CF8331B7EE68FD8

Función	Salida	Ejemplo
MD5	128 bits	5F4DCC3B5AA765D61D8327DEB882CF99
SHA-1	160 bits	5BAA61E4C9B93F3F0682250B6CF8331B7EE68FD8
SHA-2	224, 256, 384, 512 bits	5E884898DA28047151D0E56F8DC6292773603D0D6AABBDD62A11EF721D 1542D8

Función	Salida	Ejemplo
MD5	128 bits	5F4DCC3B5AA765D61D8327DEB882CF99
SHA-1	160 bits	5BAA61E4C9B93F3F0682250B6CF8331B7EE68FD8
SHA-2	224, 256, 384, 512 bits	5E884898DA28047151D0E56F8DC6292773603D0D6AABBDD62A11EF721D 1542D8
SHA-3	224, 256, 384, 512 bits	C0067D4AF4E87F00DBAC63B6156828237059172D1BBEAC67427345D6A9 FDA484

Ataque de diccionario

Hashes a romper

5f4dcc3b5aa765d61d8327deb882cf99 e10adc3949ba59abbe56e057f20f883e

Diccionario de contraseñas

Qwerty123 password 123456 marzo2020 admin

2af9b1ba42dc5eb01743e6b3759b6e4b

Por cada contraseña en el diccionario se calcula su hash y se compara con los hashes a romper. Si son iguales, se ha identificado la contraseña.

Ataque de diccionario

Hashes a romper

marzo2020

admin

5f4dcc3b5aa765d61d8327deb882cf99 e10adc3949ba59abbe56e057f20f883e

Diccionario de contraseñas

5f4dcc3b5aa765d61d8327deb882cf99:password

Por cada contraseña en el diccionario se calcula su hash y se compara con los hashes a romper. Si son iguales, se ha identificado la contraseña.

Diccionario

Primero debemos de crear el diccionario que vamos a utilizar en el script.

Crear el diccionario.

Abrir un editor de texto, escribir las siguientes contraseñas y guardar el archivo.

Script

```
import hashlib
01.
02.
      # Hash que se quiere crackear o romper
03.
      hash a romper = "5f4dcc3b5aa765d61d8327deb882cf99"
04.
05.
06.
      # Ruta del diccionario a utilizar
      ruta = "C:\\ruta al archivo\\diccionario.txt"
07.
08.
09.
      try:
          # Abrir archivo del diccionario
10.
          diccionario = open(ruta, "r")
11.
      except OSError as err:
12.
          # Hubo un error a la hora de abrir el archivo
13.
14.
          print("Error: " + str(err))
          quit()
15.
16.
      else:
          print("\n== Comenzándo el crackeo ==")
17.
          # Toma cada contraseña en el diccionario, calcula su hash y lo compara con
18.
19.
          for contrasenia in diccionario:
     3
              print(" [+] Probando: " + contrasenia.strip())
20.
              # Calcula el hash de la contraseña en el diccionario
21.
             hash c = hashlib.md5(contrasenia.encode('utf-8').strip()).hexdigest()
22.
              # Compara si el hash calculado es el mismo que el se quiere romper
23.
              if hash c.strip() == hash a romper.strip():
24.
                  print("\nContraseña encontrada: " + contrasenia)
25.
                  break
26.
27.
          # Cerrar el archivo
28.
          diccionario.close()
29.
```

- hashlib es una librería de Python que permite utilizar las diferentes funciones hash que existen (MD5, SHA1, SHA2, etc.)
- open es una función que permite leer el contenido de un archivo.
- El ciclo perite tomar cada contraseña del diccionario para:
 - Calcular hash de la contraseña obtenida del diccionario.
 - 5 Compararlo con el hash a romper

Diccionarios de contraseñas

Existen diccionarios de contraseñas que se pueden descargar de internet. Estos son alimentados con contraseñas comúnmente usadas u obtenidas de sitios que han sido vulnerados.

Diccionarios de contraseñas

https://github.com/danielmiessler/SecLists/tree/master/Passwords

Próxima clase...

Capítulo 4: Hands-On (Parte II)

• Evaluación (Capítulo 2)

¡Muchas gracias por su atención!