Analysis of AlphaFold2 Predictions for MPOX-22 Proteins

Devon J. Boland Norman Borlaug Endowed Research Scholar

Review So Far

- We used AF2 to predict protein 3D structure
- Each assigned a protein from the recently assembled MPOX-22' outbreak strain
- Today we are going to analyze our predicted structures and even infer the expected function

Jumper, et. al. 2021 Nature.

https://en.wikipedia.org/wiki/Mpox

Jumper, et. al. 2021 Nature.

Extracting Our Output For Analysis

- Our data is stored here, we need to offload it so that we can analyze it
 - You will download the files ranked_0.pdb, ranked_debug.json
 - and any file ending in the .pkl extension
 - You will upload the entire output folder to the class drive folder
 - You also must install ChimeraX for us to view the structures

Output of AlphaFold2

https://github.com/deepmind/alphafold#alphafold-output

How Can We Evaluate Our Confidence In The Model?

Sequence Coverage Plot

Sequence coverage plot from FLS2-BAK1-flg22 Receptor Complex - From AlphaFold 2.1.3

Black line shows coverage depth (i.e. how many homologous sequences at given residue)

Each line here represents a single sequence (protein)

How Can We Evaluate Our Confidence In The Model?

- THE limiting factor
 - sequence coverage depth

Petti S, et. al. Bioinformatics. 2023;39(1)

- >30 sequences/residue
- Typically areas of low coverage:
 - random disordered coils
 - low pLDDT
 - High pAE

Side-Chain Cα Confidence

Mariani V, et. al., Bioinformatics. 2013;29(21)

- <u>Local Distance Difference Test</u>
 - 3D-structure depedent
 - (LDDT)
- R-group "feasibility"
 - Very High (pLDDT > 90)
 - Confident (90 > pLDDT < 70)
 - Low (70 > pLDDT > 50)
 - Very Low (pLDDT < 50)

*suitable for experimental design

Predicted Local Distance Differance Plot

pLDDT plot for 25 models of FLS2-BAK1-flg22 Receptor Complex - From AlphaFold 2.1.3

8

How Can We Evaluate Our Confidence In The Model?

Petti S, et. al. Bioinformatics. 2023;39(1)

- THE limiting factor
 - sequence coverage depth
 - >30 sequences/residue
- Typically areas of low coverage:
 - random disordered coils
 - low pLDDT
 - High pAE

Side-Chain Cα Confidence

Mariani V, et. al., Bioinformatics. 2013;29(21)

- <u>Local Distance Difference Test</u>
 - 3D-structure depedent
 - (LDDT)
- R-group "feasibility"
 - Very High (pLDDT > 90)
 - Confident (90 > pLDDT < 70)
 - Low (70 > pLDDT > 50)
 - Very Low (pLDDT < 50)

*suitable for experimental design

Inter-domain Accuracy

Varadi M, et. al., Nucleic Acids Res.2022;50

- <u>A</u>ligned <u>E</u>rror
 - 3D-structure indepedent
 - (AE)
- Relative position of domains
- Mutual location of domains

Predicted Aligned Error Plot

pAE plot for model 5 of FLS2-BAK1-flg22 Receptor Complex - From AlphaFold 2.1.3

Bad PAE Example

Photo: AlphaFold2 Database, PAE Tutorial

Good PAE Example

Photo: AlphaFold2 Database, PAE Tutorial

Using Protein Conserved Domains to Probe Function

We can leverage this classification system to probe potential function of our protein sequences.

Combining Predicted Structures & Conserved Domain For Sequence Annotation

- So far you have....
 - predicted 3D structure
 - analyzed sequence for conserved domains
- Combine all of this information
 - structure confidence
 - predicted protein function
- Can you think of a way we could test our structure for cofactor/substrate binding?
- Conclusions:
 - What metrics do we have for scoring AF2 model confidence?
 - pLDDT (3D structure depedent, R chain placement)
 - pAE (3D structure indepedent, inter-domain placement)
 - What situtations is AF2 evaluated for?
 - Single monomeric, naturally occuring protein chains
 - What is the largest limitation in AF2?
 - Homologous sequence coverage