Erwartungswert und Wahrscheinlichkeitsverteilung

Aufgabe 1:

Die Zufallsgröße X beschreibt den Gewinn bei einer Lotterie. Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von X mit $p_1>0$ und $p_2>0$.

k	-1€	0€	1€	4€
P(X=k)	p_1	0,3	0,2	p ₂

Geben Sie einen möglichen Wert von p_1 und den zugehörigen Wert von p_2 an.

Erreichbare BE-Anzahl: 02

Zeigen Sie, dass der Erwartungswert von X für alle möglichen Werte von p_1 und p_2 stets kleiner als $2,20 \in ist$.

Erreichbare BE-Anzahl: 03

Aufgabe 2:

Ein idealer Würfel mit den Augenzahlen 1 bis 6 wird zweimal geworfen. Die Zufallsgröße X beschreibt, wie oft dabei die Augenzahl 1 auftritt. Berechnen Sie den Erwartungswert der Zufallsgröße X.

Erreichbare BE-Anzahl: 03

Aufgabe 3:

Gegeben ist die Wahrscheinlichkeitsverteilung einer Zufallsgröße X.

$X = x_i$	0	3	5	a
$P(X=x_i)$	0,1	0,3	0,4	0,2

Für welchen Wert von a beträgt der Erwartungswert dieser Zufallsgröße 4,9 ?

□ 6 7

8

9

10

Aufgabe 4:

In einer Urne befinden sich drei rote und sieben weiße Kugeln.

a Zweimal nacheinander wird jeweils eine Kugel zufällig entnommen und wieder zurückgelegt. Berechnen Sie die Wahrscheinlichkeit dafür, dass höchstens eine der entnommenen Kugeln weiß ist.

b Zehnmal nacheinander wird jeweils eine Kugel zufällig entnommen und wieder zurückgelegt. Die Zufallsgröße X beschreibt die Anzahl der entnommenen weißen Kugeln. Begründen Sie ohne Berechnung von Wahrscheinlichkeiten, dass keine der
folgenden Abbildungen die Wahrscheinlichkeitsverteilung von X darstellt.

2

3