Dynamical Systems and Optimal Control for Economists

Jorge R. Chávez Fuentes & Marcelo M. Gallardo Burga

Contents

1	Intr	roduction	1
	1.1	Introduction	1
	1.2	Preliminaries	3
	1.3	First order linear differential	
		equations	21
	1.4	Two particular cases	35
2	Nor	nlinear scalar models	48
	2.1	Introduction	48
	2.2	Maximal solution and	
		continuous dependence	49
	2.3	Qualitative analysis	60
	2.4	Bifurcations	86
	2.5	Numerical solution	103
3	Line	ear Systems	117
	3.1	Introduction	117
	3.2	Matrix exponential	124
	3.3	Linear systems in the plane	139

	3.4	Invariant subspaces	184
	3.5	Non homogeneous linear systems	194
4	Nor	nlinear dynamical systems	216
	4.1	Introduction	216
	4.2	Linearization and Hartman-Grobman	
		Theorem	229
	4.3	Stable manifolds and stationary	
		saddle solutions	268
	4.4	Limit cycles and periodic solutions	279
5	Cal	culus of Variations	312
	5.1	Introduction	312
	5.2	The \mathcal{P}_v problem	318
	5.3	The Euler-Lagrange Equation	324
	5.4	Sufficient Conditions and Autonomous Equation	332
6	Opt	imal Control Theory	342
	6.1	Introduction	342
	6.2	Maximum Principle of Pontryagin	348
	6.3	Mangasarian and Arrow conditions	369
	6.4	Final state conditions	381
	6.5	Infinite horizon	409
\mathbf{A}	Top	ology in vector normed spaces	469
R	Cal	culus and Real Analysis	481