

Programming with C I

Fangtian Zhong CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu

Objectives

- To become familiar with the three kinds of control structures: sequence, selection, and repetition.
- To understand compound statements.
- To learn how to compare numbers and characters.
- To learn how to use the relational, equality, and logical operators to write expressions that are true or false.
- To learn how to write selection statements that choose between two alternatives in a program using the if statement.

Objectives

- To learn how to implement decisions in algorithms using the if statement.
- To understand how to select among more than two alternatives by nesting if statements.
- To learn how to use the switch statement as another technique for selecting among multiple alternatives.

Control Structures

Selection control structure

 a control structure that chooses among alternative program statements

Conditions

- ignition is an expression that is either false
 - represented by 0
- or true
 - usually represented by 1

rest heart rate > 75

Relational and Equality Operators

Operator	Meaning	Type
<	less than	relational
>	greater than	relational
<=	less than or equal to	relational
>=	greater than or equal to	relational
==	equal to	equality
!=	not equal to	equality

Logical Operators

logical expressions

- an expression that uses one or more of the logical operators
 - > && (and)
 - > || (or)
 - > ! (not)

Logical Operators

logical complement (negation)

- the complement of a condition had the value 1 (true) when the condition's value is 0 (false)
- the complement of a condition has the value 0 (false) when the condition's value is nonzero (true)

Operator Precedence

Figure

Range of True Values for min <= x && x <= max

Figure

Range of True Values for z > x || x > y

Evaluation Tree and Step-by-Step Evaluation for !flag || $(y + z \ge x - z)$

Short-Circuit Evaluation

stopping evaluation of a logical expression as soon as its value can be determined

```
(div != 0 \&\& (num \% div == 0))
```

Comparing Characters

Expression	Value	
'9'>= '0'	1 (true)	
'a' < 'e'	1 (true)	
'B' <= 'A'	0 (false)	
z' == z'	0 (false)	
'a' <= 'A'	System dependent	
'a' <= ch && ch <= 'z' 1 (true) if ch is a lowercase le		

The if-statement

making decisions

Figure Flowcharts of if Statements with (a) Two Alternatives and (b) One Alternative

if-statement with one alternative

if-statement with two alternatives

```
if (rest_heart_rate > 75)
        printf( "Keep up your exercise program!\n" );
else
        printf( "Your heart is doing well!\n" );
```

Figure Program Using an if statement for selection

```
* Displays message about heart rate.
#include <stdio.h>
int main(void)
                               /* resting pulse rate for 10 secs */
       int pulse;
       int rest_heart_rate;
                              /* resting heart rate for 1 minute */
       /* Enter your resting pulse rate */
       printf("Take your resting pulse for 10 seconds. \n");
       printf("Enter your pulse rate and press return>");
       scanf("%d", &pulse);
       /* Calculate resting heart rate for minute */
       rest heart rate = pulse * 6
       printf("Your resting heart rate is %d.\n", rest heart rate);
       /* Display message based on resting heart rate */
       if (rest heart rate > 56)
         printf("Keep up your exercise program!\n");
       else
         printf("Your heart is in excellent health!\n");
       return (0);
```

Figure Program Using an if statement for selection

Sample Run 1

Take your resting pulse for 10 seconds.

Enter your pulse rate and press return> 12

Your resting heart rate is 72.

Keep up your exercise program!

Sample Run 2

Take your resting pulse for 10 seconds.

Enter your pulse rate and press return> 9

Your resting heart rate is 54.

Your heart is in excellent health!

Figure if Statement to Order x and y

Nested if-statement

an if statement with another if statement as its true task or its false task

```
if (x > 0)
    num_pos = num_pos + 1
else
    if (x < 0)
        num_neg = num_neg + 1
    else /* x equals 0 */
        num_zero = num_zero + 1</pre>
```

Figure Function comp_tax

```
* Computes the tax due based on a tax table.
* Pre: salary is defined.
* Post : Returns the tax due for 0.0 \le \text{salary} \le 150,000.00;
        returns -1.0 if salary is outside the table range.
double
comp tax(double salary)
    double tax;
    if (salary < 0.0)
        tax = -1.0:
    else if (salary \leq 15000.00)
                                                  /* first range
        tax = 0.15 *salary;
    else if (salary \leq 30000.00)
                                                  /* second range
         tax = (salary -15000.00) * 0.18 + 2250.00;
                                                  /* third range
    else if (salary \leq 50000.00)
         tax = (salary - 30000.00) * 0.22 + 5400.00;
                                                  /* fourth range
    else if (salary \leq 80000.00)
         tax = (salary - 50000.00) * 0.27 + 11000.00;
                                                  /* fifth range
    else if (salary \leq 150000.00)
                                                                         */
         tax = (salary - 80000.00) * 0.33 + 21600.00;
     else
        tax = -1.0;
     return (tax)
```

Nested if-statements with more than one variable

```
if (road status == 'S')
       if (temp > 0) {
              printf("Wet roads ahead\n");
              printf("Stopping time doubled\n");
       } else {
              printf("Icy roads ahead\n");
              printf("Stopping time quadrupled\n");
else
       printf("Drive carefully!\n")
```

Flowchart of Road Sign Decision Process

The switch statement

- ignition is also used to select one of several alternatives
- is useful when the selection is based on the value of
 - a single variable
 - or a simple expression ← controlling expression
- values may of type int or char
 - not double

Syntax

```
switch (controlling expression) {
               label set<sub>1</sub>
                             statements<sub>1</sub>
                             break;
               label set<sub>2</sub>
                             statements<sub>2</sub>
                             break;
               label set<sub>n</sub>
                             statements<sub>n</sub>
                             break;
```

Figure Program Using a switch Statement for Selection

```
* Reads serial number and displays class of ship
#include <stdio.h>
int
main(void)
       char class;
                                                             /* input - character indicating class of ship */
       /* Read first character of serial number */
       printf("Enter ship serial number>");
                                                             /* scan first letter */
       scanf("%c", &class);
       /* Display first character followed by ship class */
       printf("Ship class is %c: ", class);
       switch (class) {
       case 'B';
                                                                                                          (continued)
       case 'b';
                printf("Battleship\n");
                break;
```

Figure Program Using a switch Statement for Selection

```
case 'C';
case 'c';
         printf("Cruiser\n");
         break;
case 'D';
case 'd';
         printf("Destroyer\n");
         break;
case 'F';
case 'f';
         printf("Frigate\n");
         break;
default:
         printf("Unknown\n");
return (0);
```

Sample Run 1

Enter ship serial number> f3456 ship class is f: Frigate

Sample Run 2

Enter ship serial number> P210 ship class is P: Unknown

Wrap Up

- Use control structures to control the flow of statement execution in a program.
- Use selection control structures to represent decisions in an algorithm.
- Nested if statements are common in C and are used to represent decisions with multiple alternatives.
- The switch statement implements decisions with several alternatives where the alternative selected depends on the value of a variable or (controlling) expression.

THE END

Fangtian Zhong CSCI 112

Gianforte School of Computing
Norm Asbjornson College of Engineering
E-mail: fangtian.zhong@montana.edu