MATRIX-VARIATE NORMAL FIXED FACTOR ANALYSIS

JAN DE LEEUW

ABSTRACT. Meet the abstract. This is the abstract.

1. Introduction

Suppose \underline{Y} is an $n \times m$ matrix with matrix-variate normal distribution. We suppose the means have *reduced-rank* structure, i.e. there exists and $n \times p$ matrix A and and $m \times p$ matrix B such that

(1a)
$$\mathbf{E}(Y) = AB',$$

From the definition of the matrix-variate normal we suppose the dispersions have *direct product structure*, i.e. there exist positive definite matrices Θ and Ω of orders n and m such that

(1b)
$$C(\underline{y}_{ij}, \underline{y}_{k\ell}) = \theta_{ik}\omega_{j\ell}.$$

People who are so inclined often write $\mathbf{C}(\mathbf{vec}(Y)) = \Theta \otimes \Omega$, but we shall refrain from using this notation.

The deviance, i.e. minus two times the log-likelihood, is (2)

$$\mathcal{D}(A, B, \Theta, \Omega) = m \log |\Theta| + n \log |\Omega| + \operatorname{tr} \{\Theta^{-1}(Y - AB')\Omega^{-1}(Y - AB')'\},$$

except for irrelevant constants.

Now set $\alpha_i = y_{i1}$ and $\beta_j = 1$. All other β_j are zero. Also set $\omega_1^2 = \epsilon^2$, while all other ω_j and all θ_i are equal to one. For this solution we have $\mathcal{D} = n \log \epsilon^2 + \sum_{i=1}^n \sum_{j=2}^m y_{ij}^2$, and thus $\mathcal{D} \to -\infty$ if $\epsilon^2 \to 0$. The deviance is unbounded below, and maximum likelihood estimates do not exist.

Date: August 30, 2010 − 12h 42min − Typeset in Lucida Bright.

²⁰⁰⁰ Mathematics Subject Classification. 00A00.

Key words and phrases. Binomials, Normals, LATEX.

If $(y_{ij} - \alpha_i \beta_j)^2 > 0$ for all i, j we have

(3)
$$\mathcal{D}_1(\alpha, \beta) = \min_{\theta, \omega} \mathcal{D}(\alpha, \beta, \theta, \omega) > -\infty$$

and the minimum is attained at θ and ω that are unique, up to a scale constant. This is the Sinkhorn theorem, familiar from iterative proportional fitting theory.

Also define

(4)
$$\mathcal{D}_0(\alpha, \beta, \sigma) = \sum_{i=1}^n \sum_{j=1}^m \log \sigma_{ij}^2 + \sum_{i=1}^n \sum_{j=1}^m \left(\frac{y_{ij} - \alpha_i \beta_j}{\sigma_{ij}} \right)^2.$$

If $(y_{ij} - \alpha_i \beta_j)^2 > 0$ for all i, j we have

(5)
$$\mathcal{D}_0(\alpha, \beta) = \min_{\sigma} \mathcal{D}(\alpha, \beta, \sigma) = \sum_{i=1}^{n} \sum_{j=1}^{m} \log(y_{ij} - \alpha_i \beta_j)^2 + nm$$

Clearly $\mathcal{D}_0(\alpha, \beta) \leq \mathcal{D}_1(\alpha, \beta)$, so

(6)
$$\mathcal{D}_{10}(\alpha,\beta) = \mathcal{D}_1(\alpha,\beta) - \mathcal{D}_0(\alpha,\beta) \ge 0.$$

Our proposal is to estimate α and β by minimizing $\mathcal{D}_{10}(\alpha, \beta)$, i.e. by minimizing the non-negative function

(7)
$$\Delta(\alpha, \beta, \theta, \omega) = m \sum_{i=1}^{n} \log \theta_i^2 + n \sum_{j=1}^{m} \log \omega_j^2 + \sum_{i=1}^{n} \sum_{j=1}^{m} \left\{ \left(\frac{y_{ij} - \alpha_i \beta_j}{\theta_i \omega_j} \right)^2 - \log(y_{ij} - \alpha_i \beta_j)^2 - 1 \right\}.$$

over $\alpha, \beta, \theta, \omega$. One interesting problem is to find out how well this estimate behaves compared with the OLS estimate, i.e. the first left and right singular vectors.

In the special case that $\Theta = I$, i.e. the rows are i.i.d., we find that

(8)
$$\mathcal{D}_1(\alpha,\beta) = \min_{\Omega} \mathcal{D}(\alpha,\beta,I,\Omega) = n \sum_{j=1}^m \log \frac{1}{n} \sum_{i=1}^n (y_{ij} - \alpha_i \beta_j)^2 + nm$$

and thus

(9)
$$\mathcal{D}_{10}(\alpha, \beta) = n \sum_{j=1}^{m} \log \frac{1}{n} \sum_{i=1}^{n} (y_{ij} - \alpha_i \beta_j)^2 - \sum_{i=1}^{n} \sum_{j=1}^{m} \log(y_{ij} - \alpha_i \beta_j)^2.$$

Compare this McDonald's maximum likelihood ratio method for fixed effect factor analysis. For this we go back to the more general

(10)
$$\mathcal{D}(\alpha, \beta, \Theta, \Omega) = m \log |\Theta| + n \log |\Omega| + \operatorname{tr} \Theta^{-1}(Y - \alpha \beta') \Omega^{-1}(Y - \alpha \beta')',$$
 which becomes for $\Theta = I$

(11)
$$\mathcal{D}(\alpha, \beta, I, \Omega) = m + n \log |\Omega| + \operatorname{tr} (Y - \alpha \beta') \Omega^{-1} (Y - \alpha \beta')'.$$

Now

(12)

$$\mathcal{D}_M(\alpha,\beta) = \min_{\Omega} \mathcal{D}(\alpha,\beta,I,\Omega) = m + n \log |(Y - \alpha\beta')'(Y - \alpha\beta')| + nm,$$
 and thus

(13)
$$\mathcal{D}_1(\alpha, \beta) - \mathcal{D}_M(\alpha, \beta) = \log |\Gamma(Y - \alpha \beta')|,$$

where $\Gamma(Y - \alpha \beta')$ is the correlation matrix of the residuals $Y - \alpha \beta'$.

Department of Statistics, University of California, Los Angeles, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu