

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

РАКУЛЬТЕТ _	<u>ИНФОРМАТИК</u>	А И СИСТЕМЫ УПРА	АВЛЕНИЯ			
КАФЕДРАКОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)						
		Отчет				
	o pyoex	кном контроле № 1				
		15 вариант				
		13 вариант				
Дисциплин	на: Электротехника_					
C	ID/(225		D ** 5			
Студ	ент гр. ИУ6-33Б	<u>22.10.2023</u> (Подпись, дата)	В. К. Залыгин (И.О. Фамилия)			
		(подпись, дага)	(11.0. vaminin)			
Преп	одаватель					
1	• •	(Подпись, дата)	(И.О. Фамилия)			

Задание

Для схемы и значений параметров своего варианта ДЗ1:

1. Рассчитать токи методом уравнений Кирхгофа

2. Рассчитать баланс активной мощности

Расчеты следует представить подробно со всеми промежуточными выкладками в рукописном виде. После аналитического вывода системы линейных алгебраических уравнений (СЛАУ) с действительными коэффициентами для каждого из методов решение СЛАУ можно выполнить в любом математическом пакете. Обозначения в формулах должны быть отмечены на чертеже схемы и объяснены в тексте.

Параметры к РК1 и ДЗ1

		<u>эд</u> с						
	E1	E2	E3	E4	E5	E6	E7	E8
1	200j	200-200j	100cos(ωt+270°)	100sin(ωt+90°)	100cos(ωt- 180 ⁰)	200+200j	-200-200j	200
2	200-200j	100cos(ωt+270°)	100sin(ωt+90°)	100cos(ωt-180 ⁰)	200+200j	-200-100j	200	200j
3	100cos(ωt+270°)	100sin(ωt+90°)	100sin(ωt-180 ⁰)	200+200j	-100-200j	200	200j	200-200j
4	100sin(ωt+90°)	100cos(ωt-180 ⁰)	200+200j	-200-200j	200	200j	200-200j	100cos(ωt+270°)
5	100cos(ωt-180 ⁰)	200+200j	-200-200j	200	200j	200-200j	100cos(ωt+270°)	100sin(ωt+90°)

Пассивные компоненты

Обозна-	Z1*	Z2*	Z3*	Z4*	Z5*	Z6*	Z 7*	Z8*
чения								
групп								
1	100 Ом	100 мГн	10 мкФ	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн
2	100 мГн	10 мкФ	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом
3	10 мкФ	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом	100 мГн
4	200 Ом	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом	100 мГн	10 мкФ
5	200 мГн	20 мкФ	400 Ом	400 мГн	100 Ом	100 мГн	10 мкФ	200 Ом

Рисунок 1 - схема

Решение

Рисунок 2 - решение, страница 1

Рисунок 3 - решение, страница 2

 $P_{6 \times 07 \times 29} = \sum_{i=1}^{2} \vec{L}_{i}^{*} \vec{E}_{i} = (9,67 + 0,22) \cdot (-700) + (9,58 + 0,2) \cdot (-100) + (-9,70 + 90) \cdot (-100) = (-100) \cdot (-100) \cdot$ = 83-32j Pluxogras = \(\bar{2} | \bar{1} | \bar{2}; = 10,67-0,22 \(\beta | \bar{2} | \bar{1} | -50j \) + 10,58-0,25 \(\beta | \bar{2} | + 1-0,65+0,22 1-1-25) + 1907+0,03 1-2. (400) + 1903-0,01 1 3/800) = 82,9-32,481 83-32 ја 82,9-32 48 ј - бами вапосна е ток. Погренность свозана с точностью представления чине в дентичного дробох

Рисунок 4 - решение, страница 3

Вывод

Был выполнен расчет токов в ветвях схемы методом уравнений Киргофа и метода комплексных амплитуд с помощью математического пакета Wolfram Alpha. Решение проверено путём вычисления активной мощности системы.