Problem (R question). In this question, you will create a decision tree, a Naive Bayes classifier, a random forest and a boosting model for detecting e-mail spam on a publicly available spam dataset. You will test your classifier using 10-fold cross-validation. Download the Spambase dataset available from the <u>UCI Machine Learning Repository</u>. The <u>Spambase</u> data set consists of 4,601 e-mails, of which 1,813 are spam (39.4%). The data set archive contains a <u>processed version</u> of the e-mails wherein 57 real-valued features have been extracted and the spam/non-spam label has been assigned. You should work with this processed version of the data. The data set archive contains a <u>description of the features extracted</u> as well as some <u>simple statistics</u> over those features.

Solution

We imported the spambase dataset set and renamed the variables. Following are the details of the same:

It has 4601 observations and 58 variables.

Our Target variable is spam.

#Good-Bad Cases

```
> count(spambase, 'spam')
   spam freq
1    0 2788
2    1 1813
> |
```

1813/4601 = 39.4% of the emails are actually spam

As we can see the error rate 39.4% of the emails were wrongly classified by the constant classifier.

We applied decision tree, a Naive Bayes classifier, a random forest and a boosting model for detecting e-mail spam

Results of Naïve Bayes

```
Actual
Predicted 0 1
0 1564 94
1 1224 1719
Error= (1224+94)/4601= 0.2864
```

We now run k fold cross validation on Naïve Bayes Model.

```
Confusion Matrix and Statistics
          Reference
Prediction 0 1
         0 1561
                  91
         1 1227 1722
               Accuracy: 0.7135
                 95% CI: (0.7002, 0.7266)
    No Information Rate : 0.606
    P-Value [Acc > NIR] : < 2.2e-16
                  Kappa : 0.4594
 Mcnemar's Test P-Value : < 2.2e-16
            Sensitivity: 0.5599
            Specificity: 0.9498
         Pos Pred Value : 0.9449
         Neg Pred Value: 0.5839
             Prevalence: 0.6060
         Detection Rate: 0.3393
   Detection Prevalence: 0.3591
      Balanced Accuracy: 0.7549
       'Positive' Class: 0
Error rate for Naïve Bayes CV : (1227+91)/4601 : 0.286459
```

Decision Tree without Pruning

We clearly see a case of overfitting from above thus we now try pruning the tree to arrive at the best model possible.

Decision Tree Model after Pruning

```
> CV_spam_tree <- do.call(rbind, CV_spam_tree)</pre>
> confusionMatrix(CV_spam_tree$preds, CV_spam_tree$real)
Confusion Matrix and Statistics
         Reference
Prediction 0
         0 2670 293
         1 118 1520
               Accuracy: 0.9107
                95% ci : (0.9021, 0.9188)
    No Information Rate: 0.606
    P-Value [Acc > NIR] : < 2.2e-16
                  Карра: 0.8097
Mcnemar's Test P-Value : < 2.2e-16
            Sensitivity: 0.9577
            Specificity: 0.8384
         Pos Pred Value : 0.9011
         Neg Pred Value: 0.9280
             Prevalence: 0.6060
         Detection Rate: 0.5803
   Detection Prevalence: 0.6440
      Balanced Accuracy: 0.8980
       'Positive' Class: 0
```

Testing Error: (118+293)/4601: 0.089328

Plot of Cv Error Vs Tree Size

As we can see from the above plot, the CV error stabilizes after around tree size of 6-7, thus we have finalized our best model with a max depth of 6 though there might be other fit but that might increase the tree size (maxdepth = 6)

Plot of the final model

Following are the variables that appear in the tree:

```
> print(dt_spam_train)
n= 4601
node), split, n, loss, yval, (yprob)
     * denotes terminal node
  1) root 4601 1813 0 (0.605955227 0.394044773)
   2) char_freq_5< 0.0555 3471 816 0 (0.764909248 0.235090752)
4) word_freq_remove< 0.055 3141 516 0 (0.835721108 0.164278892)
       8) char_freq_4< 0.191 2524 209 0 (0.917194929 0.082805071)
        16) word_freq_hp>=0.025 905
                                    7 0 (0.992265193 0.007734807) *
        17) word_freq_hp< 0.025 1619 202 0 (0.875231624 0.124768376)
          34) capital_run_length_longest< 10.5 1047
                                                 54 0 (0.948424069 0.051575931) *
          35) capital_run_length_longest>=10.5 572 148 0 (0.741258741 0.258741259)
            70) word_freq_our< 0.74 523 108 0 (0.793499044 0.206500956) *
            71) word_freq_our>=0.74 49
                                       9 1 (0.183673469 0.816326531) *
       9) char_freq_4>=0.191 617 307 0 (0.502431118 0.497568882)
        18) capital_run_length_average< 2.7655 371 108 0 (0.708894879 0.291105121)
          36) word frea free< 0.065 299
                                       56 0 (0.812709030 0.187290970)
            72) word_freq_business< 0.225 277
                                            38 0 (0.862815884 0.137184116) *
            73) word_freq_business>=0.225 22
                                             4 1 (0.181818182 0.818181818) *
          13 0 (0.566666667 0.433333333) *
            74) char_freq_4< 0.4605 30
            75) char_freq_4>=0.4605 42
                                      3 1 (0.071428571 0.928571429) *
        19) capital_run_length_average>=2.7655 246 47 1 (0.191056911 0.808943089) *
     5) word_freq_remove>=0.055 330 30 1 (0.090909091 0.909090909)
      10) word_freq_george>=0.14 13
                                    0 0 (1.000000000 0.0000000000) *
                                    17 1 (0.053627760 0.946372240) *
      11) word_freq_george< 0.14 317
   3) char_freq_5>=0.0555 1130 133 1 (0.117699115 0.882300885)
     word_freq_hp>=0.4 70
                            7 0 (0.900000000 0.100000000)
      12) capital_run_length_average< 3.296 48
                                              0 0 (1.000000000 0.000000000) *
      13) capital_run_length_average>=3.296 22
                                              7 0 (0.681818182 0.318181818)
                                   0 0 (1.000000000 0.0000000000)
        26) word_freq_our< 0.245 12</p>
        27) word_freq_our>=0.245 10
                                    3 1 (0.300000000 0.700000000) *
     7) word_freq_hp< 0.4 1060 70 1 (0.066037736 0.933962264)
      14) word_freq_edu>=0.49 15
                                0 0 (1.000000000 0.0000000000) *
      30) capital_run_length_longest< 9.5 46
                                             21 1 (0.456521739 0.543478261)
          120) word_freq_email< 0.19 22
                                         3 0 (0.863636364 0.136363636) *
           121) word_freq_email>=0.19 11
                                         2 1 (0.181818182 0.818181818) *
                                         0 1 (0.000000000 1.000000000) *
          61) word_freq_remove>=0.025 13
        > |
```

Random Forest Model

```
call:
 randomForest(formula = spam ~ ., data = spamData, ntree = 100,
Type of random forest: classification
                                                                   proximity = T, replace = T, importance = T, mtry = 3)
                    Number of trees: 100
No. of variables tried at each split: 3
        OOB estimate of error rate: 5.19%
0 1 class.error
0 2709 79 0.02833572
1 160 1653 0.08825152
Confusion matrix:
> confusionMatrix(CV_spam_rf$preds, CV_spam_rf$real)
Confusion Matrix and Statistics
           Reference
Prediction 0 1
0 2715 156
          1 73 1657
                 Accuracy : 0.9502
                   95% CI: (0.9435, 0.9563)
    No Information Rate : 0.606
    P-Value [Acc > NIR] : < 2.2e-16
                     Карра : 0.8949
 Mcnemar's Test P-Value: 6.003e-08
              Sensitivity: 0.9738
              Specificity: 0.9140
          Pos Pred Value : 0.9457
          Neg Pred Value : 0.9578
              Prevalence : 0.6060
          Detection Rate: 0.5901
   Detection Prevalence: 0.6240
       Balanced Accuracy : 0.9439
        'Positive' Class: 0
```

Error rate: (73+1657)/4601: 0.0497

150

100

MeanDecreaseGini

Ada Boost

\$confusion

Observed Class
Predicted Class 0 1
0 2787 3
1 1 1810

\$error
[1] 0.0008693762

Confusion Matrix and Statistics

Reference Prediction 0 1 0 2689 94 1 99 1719

Accuracy: 0.9581

95% CI: (0.9519, 0.9637)

No Information Rate : 0.606 P-Value [Acc > NIR] : <2e-16

Карра : 0.9122

Mcnemar's Test P-Value : 0.7734

Testing Error: (94+99)/4601: 0.0419

Variables Relative Importance

Error Table of various models across 10 folds for comparison

Folds			Overall
	False Positive	False Negative	Error Rate
Fold1	0.368	0.041	0.2304
Fold2	0.517	0.046	0.3152
Fold3	0.471	0.043	0.3000
Fold4	0.442	0.047	0.2783
Fold5	0.446	0.046	0.2935
Fold6	0.441	0.076	0.3059
Fold7	0.441	0.059	0.3000
Fold8	0.429	0.072	0.2891
Fold9	0.423	0.040	0.2761
Fold10	0.425	0.034	0.2761
Average Error Rate across all folds	0.29		

	Random Forest		
Folds	False	False	Overall
	Positive	Negative	Error Rate
Fold1	0.011	0.108	0.0522
Fold2	0.042	0.081	0.0587
Fold3	0.014	0.092	0.0457
Fold4	0.026	0.089	0.0522
Fold5	0.018	0.086	0.0435
Fold6	0.025	0.137	0.0674
Fold7	0.035	0.063	0.0457
Fold8	0.029	0.072	0.0457
Fold9	0.028	0.100	0.0543
Fold10	0.034	0.029	0.0325
Average Error			
Rate across all		0.05	
folds			

	Decision Tree		
Folds			Overall
	False	False	Error
	Positive	Negative	Rate
Fold1	0.049	0.170	0.100
Fold2	0.034	0.147	0.083
Fold3	0.043	0.196	0.104
Fold4	0.037	0.152	0.085
Fold5	0.021	0.217	0.096
Fold6	0.032	0.177	0.087
Fold7	0.077	0.125	0.096
Fold8	0.043	0.156	0.087
Fold9	0.034	0.141	0.074
Fold10	0.052	0.135	0.082
Average Error			
Rate across all	0.089		
folds			

	Boosting		
Folds			Overall
	False	False	Error
	Positive	Negative	Rate
Fold1	0.041	0.023	0.035
Fold2	0.021	0.053	0.033
Fold3	0.039	0.028	0.035
Fold4	0.035	0.040	0.037
Fold5	0.039	0.063	0.048
Fold6	0.046	0.080	0.059
Fold7	0.037	0.047	0.041
Fold8	0.018	0.071	0.039
Fold9	0.053	0.061	0.057
Fold10	0.026	0.052	0.037
Average Error Rate across all folds		0.042	

ROC Curve:

We have generated ROC curve for various models as follows for Fold1:

Naïve Bayes

Random Forest

Decision Tree

Boosting

Following are the summary and findings of the performance of various models:

- 1. As it is evident from the error table as well as ROC, Naïve Bayes shows a trade off between False Positive and False Negative. In this example higher false positive is likely to be riskier as the chances that a legitimate e-mail is misclassified as spam can be a threat in missing out important information. Also the overall error rate is higher. Thus, Naïve Bayes is not a good model to predict the spam/non-spam classifiers.
- 2. Now out of the other models, we can see that Boosting performs the best with an average overall error of ~4% slightly lower than Random Forest with an error rate of 5%. However, when we look at the False Positive and False Negative rate, Random Forest comparatively performs better than Boosting with a slightly lower False positive rate across all the folds in our cross validation thus making it better for this prediction.
- 3. For this dataset, the decision tree though has a lower false positive rate across the folds but compared the Random Forest and Boosting, its performance is at a lower end with a higher overall testing error as well.

Thus, we can conclude that Random forest or Boosting would be a preferred model that helps in better prediction of spam and non-spam e-mails.