数值解析学

Sumire

2022.12.22

概要

常微分方程式の数値解析

目次

1	実験目的	4			
2	問題設定	4			
3	理論 ····································	5			
4	実験結果	7			
4.	1. 解の様子をグラフで表示する	7			
	4.1.1	7			
	4.1.2	7			
4.5	2. 数値解の誤差と収束の速さを考察する	9			
	4.2.1	10			
	1.2.2	10			
5	考察 	11			
6	結論	11			
7	感想	12			
8	使用したソースコード	13			
参老	。 \$老 ▽献				

表目次

1	$ x_N^{Euler} - x_s $
2	$ x_N^{Heun} - x_s \dots \dots$
図目次	
1	$\omega = 1, \ \mu = 1, \ (x_0, y_0) = (-4, 3), \ T = 15, \ N = 1500 \dots $
2	$(x_0, y_0) = (0, 0)$
3	$(x_0, y_0) = (5, 5)$
4	$(x_0, y_0) = (-5, -5)$
5	$(x_0, y_0) = (5, -5)$
6	$(x_0, y_0) = (-5, 5)$
7	$\mu = 1, \ \omega = 1$
8	$\mu = 5, \ \omega = 5$
9	$\mu = -5, \ \omega = 5 \dots \dots$

1 実験目的

また, report 1 のときには深く考える余裕はなかったが, 微分方程式がどのように応用されているのかを知り, 数理モデル化するなど理解さらにを深めたいと思った。

2 問題設定

今回は、課題 II を扱う.

van der Pol 方程式

$$\begin{cases} \frac{d^2x}{dt^2} - \mu(1 - x^2)\frac{dx}{dt} + \omega^2 x = 0 & 0 < t < T, \\ x(0) = x_0, & \frac{dx}{dt}(0) = y_0 \end{cases}$$

に対して、Euler 法と Heun 法を適用し、初期値とパラメータ (μ, ω) によって回の振る舞い、解の精度、収束の速さを、以下を例に調べよ.

- 1. 解の様子をグラフで表示する.
 - (a) $y = \frac{dx}{dt}$ とする. $\omega = 1$, $\mu = 1$, $(x_0, y_0) = (-4, 3)$, T = 15, N = 1500 に対して, (t, x(t)), (t, y(t)), (x(t)t, y(t)) の散布図を描いてみる.
 - (b) 初期値 (x_0, y_0) とパラメータ (μ, ω) を変えて、解の様子を調べてみる.
- 2. 数値解の誤差と収束の速さを考察する.

 $\omega=1,~\mu=1,~(x_0,y_0)=(-4,-3),~T=4$ と固定する. N を十分大きく取ったとき (例: N=10000), Heun 法によって得られた近似解 $x_{10000}=:x_s$ を真の解と見なし, 以下の考察をする.

- (a) N=100,200,400,800,1600 に対して、Euler 法によって得られた近似解 x_N^{Euler} と x_s の誤差 $|x_N^{Euler}-x_s|$ を計算し、誤差と刻み幅 h=T/N の関係を調べ、収束の速さを考察する.
- (b) N=100,200,400,800,1600 に対して、Heun 法によって得られた近似解 x_N^{Heun} と x_s の誤差 $|x_N^{Heun}-x_s|$ を計算し、誤差と刻み幅 h=T/N の関係を調べ、収束の速さを考察する.

3 理論

まず初めに、わかっている理論的な事実について述べる.

常微分方程式とは、未知数とその導関数含み、独立変数が1つの方程式のことを言う.

van der Pol 方程式は, 2 階微分方程式である. van der Pol 方程式を支配方程式とするのが, van der Pol 振動子である. (支配方程式とは, 物理現象の数理モデルを構築するために, その現象を数学的に方程式で表したものを指す.)

van der Pol 方程式を一般化した方程式に、Liénard の方程式というものがある.

----- Liénard の定理 –

Liénard の方程式

$$\begin{pmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{pmatrix} = \begin{pmatrix} x_2 \\ -f(x_1)x_2 - g(x_1) \end{pmatrix}$$

について,

- 1. f, g が連続微分可能
- 2. g は奇関数
- 3. x > 0 のとき, g(x) > 0
- 4. f は偶関数
- 5. $F(x) := \int_0^x f(s)ds$ と置く.

 $F(a)=0,\,0< x< a$ ならば, $F(x)<0,\,x>a$ ならば F(x)>0 で広義単調増加で $\lim_{x\to\infty}F(x)=\infty$. これ満たす a>0 が存在する.

これらの条件を満たすとき、方程式はただひとつの漸近安定なリミットサイクルが存在する.

リミットサイクルとは、力学系における位相空間上での閉軌道のことである.

Van der Pol 方程式は支配方程式が非線形の摩擦項を持つ 2 階微分方程式で記述される. 摩擦項は、ある決まった範囲にある場合(範囲は摩擦項の係数によって変化する)は正の摩擦となる. つまり、振動を減衰させる方向に作用する. しかしそのの範囲外では、負の摩擦となり、振動を成長させる方向に作用する. (減衰力は負となる.)減衰振動と発散振動の境界(リミットサイクル)が存在していることになる.

それでは、課題 II の方程式を見ていく.

 $y = \frac{dx}{dt}$ とおくと、課題 II の方程式は、

$$\begin{cases} \frac{dy}{dt} - \mu(1 - x^2)y + \omega^2 x = 0 & 0 < t < T, \\ \frac{dx}{dt} = y & 0 < t < T, \\ x(0) = x_0, \quad y(0) = y_0 \end{cases}$$

と変形できる.

今回は, Van der Pol 方程式を変形したあとの方程式に対して, Euler 法, Heun 法を適用していく.

4 実験結果

4.1 1. 解の様子をグラフで表示する.

4.1.1

- 1. (a)

 $y=rac{dx}{dt}$ とする. $\omega=1,\,\mu=1,\,(x_0,y_0)=(-4,3),\,T=15,\,N=1500$ に対して、 $(t,x(t)),\,(t,y(t)),\,(x(t)t,y(t))$ の散布図を描いてみる.

 $y = \frac{dx}{dy}$ とし, $\omega = 1$, $\mu = 1$, $(x_0, y_0) = (-4, 3)$ とすると, van der Pol 方程式は,

$$\begin{cases} \frac{dy}{dt} - (1 - x^2)y + x = 0 & 0 < t < T, \\ \frac{dx}{dt} = y & 0 < t < T, \\ x(0) = -4, \quad y(0) = -3 \end{cases}$$

となる.

 $T=15,\,N=1500$ に対する, $(t,x(t)),\,(t,y(t)),\,(x(t)t,y(t))$ の散布図は以下のようである.

 $\boxtimes 1$ $\omega = 1$, $\mu = 1$, $(x_0, y_0) = (-4, 3)$, T = 15, N = 1500

4.1.2

- 1. (b) -

初期値 (x_0, y_0) とパラメータ (μ, ω) を変えて、解の様子を調べてみる.

まず初めに, $T=15,\,N=1500,\,$ パラメータ $\mu=1,\,\omega=1$ と固定して, 初期値 (x_0,y_0) を変えて実験を行う. 今回は, 初期値の符号に着目する.

 $\boxtimes 2 \quad (x_0, y_0) = (0, 0)$

 $\boxtimes 3 \quad (x_0, y_0) = (5, 5)$

 $\boxtimes 4 \quad (x_0, y_0) = (-5, -5)$

 $\boxtimes 5 \quad (x_0, y_0) = (5, -5)$

 $\boxtimes 6 \quad (x_0, y_0) = (-5, 5)$

次に, T=15, N=1500, 初期値 $(x_0,y_0)=(5,-5)$ と固定して, パラメータ μ , ω を変えて実験を行う. ここでは, パラメータの符号に着目する. $(\omega$ は方程式において二乗されているため, 絶対値を考える.)

 $\boxtimes 7$ $\mu = 1$, $|\omega| = 1$

 $\boxtimes 8$ $\mu = 5$, $|\omega| = 5$

 $\boxtimes 9 \quad \mu = -5, \ |\omega| = 5$

4.2 2. 数値解の誤差と収束の速さを考察する.

 $\omega=1,~\mu=1,~(x_0,y_0)=(-4,-3),~T=4$ と固定する。Nを十分大きく取ったとき (例: N=10000), Heun 法によって得られた近似解 $x_{10000}=:x_s$ を真の解と見なし、以下の考察をする。

以下, $x_{10000} =: x_s = -3.287011966884707e + 00$ を用いる.

4.2.1

- 2. (a) -

N=100,200,400,800,1600 に対して、Euler 法によって得られた近似解 x_N^{Euler} と x_s の誤差 $|x_N^{Euler}-x_s|$ を計算し、誤差と刻み幅 h=T/N の関係を調べ、収束の速さを考察する.

N	x_N^{Euler}	$ x_N^{Euler} - x_s $
100	-3.0235e + 00	2.6351e - 01
200	-3.0187e + 00	2.6834e - 01
400	-3.0168e + 00	2.7023e - 01
800	-3.0159e + 00	2.7108e - 01
1600	-3.0155e + 00	2.7148e - 01

表 1 $|x_N^{Euler} - x_s|$

4.2.2

- 2. (b) -

N=100,200,400,800,1600 に対して、Heun 法によって得られた近似解 x_N^{Heun} と x_s の誤差 $|x_N^{Heun}-x_s|$ を計算し、誤差と刻み幅 h=T/N の関係を調べ、収束の速さを考察する.

N	x_N^{Heun}	$ x_N^{Heun} - x_s $
100	-3.2135e + 00	7.3471e - 02
200	-3.2507e + 00	3.6312e - 02
400	-3.2692e + 00	1.7773e - 02
800	-3.2785e + 00	8.5129e - 03
1600	-3.2831e + 00	3.8856e - 03

表 2
$$|x_N^{Heun} - x_s|$$

5 考察

図 2 ~ 6 より, T = 15, N = 1500 において, パラメータ $\mu = 1$, $\omega = 1$ を固定したとき,

- 初期値が共に 0 のとき, 方程式は一定である.
- x_0 , y_0 の符号を共に反転させた場合, (x(t), y(t)) のグラフは, 符号を反転させる前の初期値 のグラフに対して点対称であることがわかる.
- x_0 の値が正であるとき (t, x(t)) のグラフの最後は増加しているが, x_0 の値が負であるとき (t, x(t)) のグラフの最後は減少している.
- y_0 についても, x_0 の時と同様のことがいえる.
- (x(t), y(t)) のグラフには、直線の部分と曲線の部分が存在する。直線部分の増減には y_0 の符号が、曲線部分のえぐり具合の大小には x_0 の符号が関連していると考えられる。

図 7 ~ 9 より, T = 15, N = 1500 において, 初期値 $(x_0, y_0) = (5, -5)$ を固定したとき,

- μ , ω の値を大きくするほど, (t, x(t)), (y, y(t)) のグラフでは周期性が明らかにみえる.
- μ を負の値でとると, (x(t), y(t)) のグラフは, 直線的になってしまう.
- $\mu = 5$, $|\omega| = 5$ の (t, x(t)), (y, y(t)) のグラフは, $\mu = 1$, $|\omega| = 1$ のグラフを t 軸方向に縮小したようになっていると読み取れる.

また、パラメータを固定、初期値を固定した場合ともに、Euler 法のほうが Heun 法よりも、y の値の値域が大きいと感じる.

表 1, 2 より, N=100,200,400,800,1600 に対して, Euler 法と Heun 法によって得られた解と x_s の誤差を求めたとき,

- x_N^{Euler} の値は, N を大きくするほど小さくなり, x_N^{Heun} の値は, N を大きくするほど大きくなっていることがわかる.
- $|x_N^{Euler} x_s|$ については, N を大きくするほどその誤差は大きくなっている.
- $|x_N^{Heun} x_s|$ においては, N を大きくするほどその誤差は小さくなっている. また, その小さくなる速度は, かなり早いとわかる.

6 結論

今回掲載した図の中では、図 1 ($\omega=1$, $\mu=1$, $(x_0,y_0)=(-4,3)$, T=15, N=1500 に対する,(t,x(t)), (t,y(t)), (x(t)t,y(t)) のグラフ)が最も綺麗に,リミットサイクルを表している。また, μ , ω が同符号であるときよりも,異符号であるときの方がリミットサイクルが明らかにみえる。van der Pol 方程式は、2 階の非線形常微分方程式であるため、安定性を判別するためにはまず「線

形化 (局所的な近似)」を Taylor 展開と Jacobi 行列 J を使って行う必要がある. この方程式の解の様子を見てみると, 減衰振動と発散振動の境界が存在する. 境界の外側では減衰振動, 内側では不安定な平衡点が発散振動をする場合, その境界が「リミットサイクル」となっている.

また, x_N^{Euler} と x_N^{Heun} の値は, N を大きくするとだんだん近づいていく, つまり, 誤差が減ると予測していたが, 今回の実験を通して, 近づいてはいないということがわかった. これは, Euler 法 と Heun 法の反復式の性質によるものであると考えた.

7 感想

近似解と x_s との誤差について、今回は $x_s:=x_{10000}^{Heun}$ とおいていたため、全体的に誤差は Heun 法での会の方が小さくなったが、 $x_s:=x_{10000}^{Euler}$ とおいた場合は、また違う結果が出るのではないかと感じた、興味を持ったため、今後の課題としたい.

8 使用したソースコード

使用したソースコードの一部を以下に記載する.

```
% van der Pol 方程式において, Euler法と Heun 法の
1
2
    %(t, x(t)), (t, y(t)), (x(t), y(t)) のグラフを出力する
3
4
    function re1_a_1(x0, y0, N, T, mu, omega)
5
    % 引数
6
    % x0 : 初期值
7
8
    % y0 : 初期值
9
    % N : 分割数
    % T: 最大計算時間
10
    % mu : van der Pol 方程式のパラメータμ
11
    % omega : van der Pol 方程式のパラメータω
12
13
    a = 0;
14
15
    b = T;
16
    f = @(t, x, y)mu*(1 - x^2)*y - omega^2*x;
17
18
    g = @(t, x, y)y;
    % h:分割幅
19
   h = (b-a)/N;
20
    % 区間分割
21
22
    x = a : h : b;
23
    % 初期条件
24
25
    x1 = zeros(size(x));
    y1 = zeros(size(x));
26
27
    x1(1) = x0;
    y1(1) = y0;
28
29
    x2 = zeros(size(x));
30
    y2 = zeros(size(x));
31
    x2(1) = x0;
32
    y2(1) = y0;
33
    % 反復
34
    for i = 1: length(x) - 1
35
       % Heun法の反復
36
37
        y1(i+1) = y1(i)+h/2*(f(i,x1(i),y1(i))+f(i+1,x1(i+1),y1(i+1)));
38
        x1(i+1) = x1(i)+h/2*(g(i,x1(i),y1(i))+g(i+1,x1(i+1),y1(i+1)));
39
       % Euler法の反復
40
        y2(i+1) = y2(i)+h*f(i,x2(i),y2(i));
41
        x2(i+1) = x2(i)+h*g(i,x2(i),y2(i));
42
    end
43
44
    45
    tiledlayout (1,3)
46
47
   nexttile
```

```
48
     plot(x, x1, 'DisplayName', 'Heun');
49
     hold on
50
     plot(x, x2, 'DisplayName', 'Euler');
     hold off
51
52
     \mathbf{title}\left(\,{}^{,}(\,t\,,\,\,x(\,t\,))\,{}^{,}\right)
53
     xlabel('t-axis')
54
     ylabel('x-axis')
55
56
     nexttile
57
     plot(x, y1, 'DisplayName', 'Heun');
58
     hold on
     plot(x, y2, 'DisplayName', 'Euler');
59
60
     hold off
61
     title('(t, y(t))')
62
     xlabel('t-axis')
63
     ylabel('y-axis')
64
65
     n\,e\,x\,t\,t\,i\,l\,e
     plot(x1, y1, 'DisplayName', 'Heun');
66
67
     hold on
68
     plot(x2, y2, 'DisplayName', 'Euler');
     hold off
69
70
     title('(x(t), y(t))')
71
     xlabel('x-axis')
     ylabel('y-axis')
72
```

参考文献

- [1] 大学の講義資料
- [2] 黒田真也. 「付録 E 線形微分方程式の平衡点の安定性解析」 (閲覧日:2022.12.19) http://kurodalab.bs.s.u-tokyo.ac.jp/iwanami/pdf/appE.pdf.
- [3] 木村すらいむ. 趣味の大学数学 読み物としての数学入門サイト (閲覧日:2022.12.19) https://math-fun.net/20210914/18421/.
- [4] MathWorks ヘルプセンター (閲覧日:2022.12.21) https://jp.mathworks.com/help/matlab/index.html?s_tid=CRUX_lftnav.