HOMOTOPY INVARIANCE FOR NONSTABLE K_2 -FUNCTORS

S. SINCHUK, A. STAVROVA, AND A. LAVRENOV

1. AIM OF THE PAPER

The aim of this text is to prove that the non-stable K_2 -functors K_2^G , where G is a simply connected Chevalley group of suitable type, satisfy \mathbb{A}^1 -invariance on regular rings R containing a field k, that is,

{eq:A1-main}

(1.1)
$$K_2^G(R[t]) = K_2^G(R).$$

As a corollary, we should easily deduce that

$$K_2^G(R) = KV_2^G(R),$$

where $KV_2^G(R)$ is the Karoubi–Villamayor K-functor associated to G. This functor originates from [J]. The above equality by e.g. [AHW, Corollary 4.3.3] implies that $\pi_1^{\mathbb{A}^1}(G)(R) = K_2^G(R)$, i.e. we obtain an explicit presentation for the \mathbb{A}^1 -fundamental group of G in the sense of Morel–Voevodsky.

"Suitable type" here means that we consider only the cases where we know the centrality of K_2 , or at least the Quillen-Suslin lgp. Some intermediate steps can be proved in larger generality.

Essentially, we need to prove that $K_2^G(k[x_1,\ldots,x_n])=K_2^G(k)$. (Then (1.1) follows by standard geometric methods.) There are two models: Tulenbaev's proof for the SL_n case [Tul82] and Stavrova's proof for K_1^G [St14]. Tulenbaev [Tul82] uses stabilization of the K_2 -functor, and the good properties of the limit=algebraic K-theory. In [St14] stabilization is not used. However, the key steps of both proofs are the same: the case of R=k (hidden somewhere around [Tul82, p. 140], or, respectively, [St14, Theorem 3.1]); Quillen-Suslin lgp; \mathbb{P}^1 -gluing (see [Tul82, Theorem 5.1] or [St14, Theorem 1.1]).

1.1. The case R = k. We consider the case of $K_2^G(k[t])$ vs. $K_2^G(k)$. (As in the \mathbb{A}^1 -invariance of K_1^G , this case should be used to deduce that $K_2^G(k[t_1,\ldots,t_n]) = K_2^G(k)$.)

In Tulenbaev's framework, it follows from stabilization. However, the equality $K_2^G(k[t]) = K_2^G(k)$ is sort of known for all groups. Namely, in [Wen14, Theorem 5.1]: let k be an infinite field and let G be a connected reductive group over k. Then the inclusion $k \hookrightarrow k[t]$ induces an isomorphism

$$H_{\bullet}(G(k), \mathbb{Z}) \xrightarrow{\cong} H_{\bullet}(G(k[t]), \mathbb{Z}),$$

if the order of the fundamental group of G is invertible in k. Once we know that the homology H_2 coincides with K_2^G (on both sides), this gives the result. It would be nice to check Wendt's proof; maybe, discuss it in a seminar?

Is it necessary to know the centrality in order to show that K_2^G coincides with H_2 ? If yes, then we probably know it for $K_2^G(k)$ even for isotropic groups [Deo], but only for the

 $^{2010\} Mathematics\ Subject\ Classification.\ 19C09,\ 19C20,\ 14L15,\ 20G35.$

Key words and phrases. Chevalley group, non-stable K_2 -functor, Steinberg group.

good Chevalley groups for $K_2^G(k[t])$. We should try to understand what is proved in [VW, Proposition 5.3] using only the universality of the Steinberg group. This may be useful. The paper is unpublished, so again everything should be double-checked if you want to refer to it.

1.2. Plan of the proof.

plan:3t

(1) (done) Let R be a local ring. Show that

$$St(R[t^{\pm 1}]) = i_{+}(St(R[t]))i_{-}(St(R[t^{-1}]))i_{+}(St(R[t]))$$

Here i_{\pm} denote the natural homomorphisms into $St(R[t^{\pm 1}])$.

plan:k[t]

n:k-intersect

(2) Show that $K_2^G(k[t]) = K_2^G(k)$.

(3) Consequently, $\operatorname{St}(k[t]) \to \operatorname{St}(k[t^{\pm 1}])$ is injective and $\operatorname{St}(k[t]) \cap \operatorname{St}(k[t^{-1}]) = \operatorname{St}(k)$ inside $\operatorname{St}(k[t^{\pm 1}])$. Also, $K_2^G(k) = K_2^G(k[t^{\pm 1}])$.

The first claim uses (2). The second claim follows from (2) and (1).

plan:QSlgp plan:Zglu (4) (done) Prove the Quillen-Suslin lgp for K_2^G . See Theorem 2.

(5) (Zariski gluing) for any commutative ring A and any non-nilpotent $f, g \in A$ such that A = fA + gA, the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A_f) \times K_2^G(A_g) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A_{fg})$$

is exact. The proof is usually almost the same as for (4).

(Remark. It seems that we need this property only for A=R[t] and f,g non-constant polynomials.)

plan:S-lemma

(6) (S-lemma) Let A be a commutative ring, S a multiplicative subset of A. If

$$K_2^G(A[X_1,\ldots,X_n]) = K_2^G(A)$$

for some $n \geq 1$, then $K_2^G(A_S[X_1, \ldots, X_n]) = K_2^G(A_S)$ as well.

This should be easy; see [A, Lemma 3.6].

plan:Nglu

- (7) (Nisnevich gluing) Assume that B is a subring of a commutative ring A, and let $h \in B$ be a non-nilpotent element. Denote by $F_h: A \to A_h$ the localization homomorphism.
 - (i) If Ah + B = A, i.e. the natural map $B \to A/Ah$ is surjective, then for any $x \in \text{St}(A_h)$ there exist $y \in \text{St}(A)$ and $z \in \text{St}(B_h)$ such that $x = F_h(y)z$.
 - (ii) If moreover $Ah \cap B = Bh$, i.e. $B/Bh \to A/Ah$ is an isomorphism, and h is not a zero divisor in A, then the sequence of pointed sets

$$K_2^G(B) \xrightarrow{g \mapsto (F_h(g),g)} K_2^G(B_h) \times K_2^G(A) \xrightarrow{(g_1,g_2) \mapsto g_1 F_h(g_2)^{-1}} K_2^G(A_h)$$

is exact.

This should use something from the proof of (4) or (5); see [St14, Lemma 3.4].

|plan:P1

(8) (\mathbb{P}^1 -gluing) Let A be any commutative ring. Show that the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A[t]) \times K_2^G(A[t^{-1}]) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A[t,t^{-1}])$$

is exact.

This should use (2), (4), (1), (3).

plan:[]f

(9) (Main corollary of \mathbb{P}^1 -gluing) Let A be any commutative ring, and let $f \in A[t]$ be a monic polynomial. Show that $K_2^G(A[t]) \to K_2^G(A[t]_f)$ is injective.

The proof uses (5) and (8).

plan:k(t)

(10) Prove that $K_2^G(k(t)) = K_2^G(k)$.

This may be a bit tricky; I will think if we can get rid of it. I don't think Tulenbaev uses it.

plan:k[tn]

(11) Prove that

$$K_2^G(k[t_1,\ldots,t_n]) = K_2^G(k).$$

If we strictly follow the pattern of K_1^G , this uses (9), (2), and (10). There may be other ways.

plan:final

- (12) Final result: let R be a regular ring containing a field k. Then $K_2^G(R[t]) = K_2^G(R)$. This uses (4), (11) and (7).
 - 2. Steinberg groups of Chevalley groups: preliminaries

Definition, functoriality, "congruence subgroups" $\operatorname{St}(\Phi, R, I)$ versus $\ker(\operatorname{St}(\Phi, R) \to \operatorname{St}(\Phi, R/I))$.

3. Decomposition theorems for $\operatorname{St}(A[t^{\pm 1}])$ and $\operatorname{St}(A((t)))$.

Lemma 3.1. Let (R, m) be a local ring, and let G be a simply connected simple group over R of isotropic rank ≥ 2 . Let $i_+: \operatorname{St}(R[t]) \to \operatorname{St}(R[t^{\pm 1}])$ and $i_-: \operatorname{St}(R[t^{-1}] \to \operatorname{St}(R[t^{\pm 1}])$ be the natural homomorphisms. Then

$$i_+ \left(\operatorname{St}(m \cdot R[t])^{\operatorname{St}(R[t])}\right) i_- \left(\operatorname{St}(R[t^{-1}]\right) = i_- \left(\operatorname{St}(R[t^{-1}]\right) i_+ \left(\operatorname{St}(m \cdot R[t])^{\operatorname{St}(R[t])}\right)$$

inside $St(R[t^{\pm 1}])$.

Proof. This is proved exactly as [St14, Lemma 5.12].

thm:3t

Theorem 1. Let R be a local ring, and let G be a simply connected simple group over R of isotropic rank ≥ 2 . Let $i_+: \operatorname{St}(R[t]) \to \operatorname{St}(R[t^{\pm 1}])$ and $i_-: \operatorname{St}(R[t^{-1}] \to \operatorname{St}(R[t^{\pm 1}])$ be the natural homomorphisms. Then

$$St(R[t^{\pm 1}]) = i_{+}(St(R[t]))i_{-}(St(R[t^{-1}]))i_{+}(St(R[t])).$$

Proof. This is proved exactly as [St14, Theorem 5.1].

4. Quillen-Suslin Lgp, Zariski gluing, Nisnevich gluing, S-lemma

thm:lg-k2

Theorem 2. Let R be arbitrary commutative ring and let Φ be a root system of type A_{ℓ} , C_{ℓ} , D_{ℓ} or E_{ℓ} and rank $\ell \geq 3$. An element $g \in St(\Phi, R[t], tR[t])$ is trivial if and only if its image in $St(\Phi, R_M[t], tR_M[t])$ is trivial for all maximal ideals $M \subseteq R$.

Proof. The case $\Phi = \mathsf{C}_\ell$, $\ell \geq 3$ is contained in some future Lavrenov's solo paper. It think that the case of a simply laced Φ of rank ≥ 3 can be settled in a similar way as in [S15]. We already have a written proof that [Tul82, Lemma 2.3] extends to rank 3 groups, see here. It should be inserted into this article at a some place.

5. The case of $K_2^G(k[t])$ and some corollaries

thm:k[t]

Theorem 3. Let k be a field. Let $G = G(\Phi, -)$ be a simply connected simple Chevalley group of rank ≥ 2 such that ... Then

$$K_2^G(k[t]) = K_2^G(k).$$

Proof. ???

cor:k[t]inj

Corollary 5.1. Let G, k be as in Theorem 3. Then $St(k[t]) \to St(k[t^{\pm 1}])$ is injective and $St(k[t]) \cap St(k[t^{-1}]) = St(k)$ inside $St(k[t^{\pm 1}])$.

Proof. Clearly, $g \in \ker(\operatorname{St}(k[t]) \to \operatorname{St}(k[t^{\pm 1}]))$ implies $g \in K_2^G(k[t])$. Since $K_2^G(k[t]) = K_2^G(k)$, and there is a section $K_2^G(k[t^{\pm 1}]) \to K_2^G(k)$, the map is injective. Second claim: take $g \in \operatorname{St}(k[t]) \cap \operatorname{St}(k[t^{-1}])$. Then the image $\phi(g)$ belongs to $E(k) = E(k[t]) \cap E(k[t^{-1}])$, and after adjusting g by an element of $\operatorname{St}(k)$, we can assume that $g \in K_2^G(k[t]) \cap K_2^G(k[t^{-1}])$. Hence $g \in K_2^G(k) \subseteq \operatorname{St}(k)$.

Corollary 5.2. Let G, k be as in Theorem 3. Then $K_2^G(k[t^{\pm 1}]) = K_2^G(k)$.

Proof. We use Theorem 1. Take $g \in K_2^G(k[t^{\pm 1}])$, then $g = x_1yx_2, x_i \in St(k[t])$, $y \in St(k[t^{-1}])$. Since $E(k[t]) \cap E(k[t^{-1}]) = E(k)$, we have $y \in St(k)K_2^G(k[t^{-1}]) = St(k)$ and $x_1x_2 \in St(k)$. That is, $g \in K_2^G(k)$. □

6. \mathbb{P}^1 -GLUING

The following lemma is an analog of [Tul82, Proposition 4.3 (a)].

Lemma 6.1. Let R be a local ring, k = R/m, and let k, G be as in Theorem 3. The natural homomorphism $St(R[t]) \to St(R[t^{\pm 1}])$ is injective.

Proof. Let I be the maximal ideal of R, l = R/I, and consider the natural maps ρ : $\operatorname{St}(R[t,t^{-1}]) \to \operatorname{St}(l[t,t^{-1}])$, ρ_+ : $\operatorname{St}(R[t]) \to \operatorname{St}(l[t])$, ρ_- : $\operatorname{St}(R[t^{-1}]) \to \operatorname{St}(l[t^{-1}])$. Take $x \in \ker(\operatorname{St}(R[t]) \to \operatorname{St}(R[t^{\pm 1}])$. By the field case Corollary 5.1 one has $\rho_+(x) = 1$, hence $x \in \operatorname{St}(I \cdot R[t])^{\operatorname{St}(R[t])}$. ????????

Lemma 6.2. Let G, k be as in Theorem 3. Let (R, m) be a local ring such that R/m = k. Then

$$\operatorname{St}(R[t]) \cap \operatorname{St}(R[t^{-1}]) = \operatorname{St}(R)$$

inside $St(R[t^{\pm 1}])$.

Proof. ??????

Theorem 4. Let A be any commutative ring. Then the sequence of pointed sets

$$1 \longrightarrow K_2^G(A) \xrightarrow{g \mapsto (g,g)} K_2^G(A[t]) \times K_2^G(A[t^{-1}]) \xrightarrow{(g_1,g_2) \mapsto g_1g_2^{-1}} K_2^G(A[t,t^{-1}])$$

is exact.

Proof. ????

Corollary 6.3. Let A be any commutative ring, and let $f \in A[t]$ be a monic polynomial. Show that $K_2^G(A[t]) \to K_2^G(A[t]_f)$ is injective.

Proof. ????

References

E. Abe, Whitehead groups of Chevalley groups over polynomial rings, Comm. Algebra 11 (1983),

A. Asok, M. Hoyois, M. Wendt, Affine representability results in A^1 -homotopy theory II: principal

Deo	[Deo]	V. V. Deodhar, On central extensions of rational points of algebraic groups, Amer. J. Math. 100
		(1978), 303–386.
J	[J]	J.F. Jardine, On the homotopy groups of algebraic groups, J. Algebra 81 (1983), 180–201.
S15	[S15]	S. Sinchuk, On centrality of K_2 for Chevalley groups of type E_{ℓ} , J. Pure Appl. Algebra 220 (2016),
		857–875.
St-poly	[St14]	A. Stavrova, Homotopy invariance of non-stable K_1 -functors, J. K-Theory 13 (2014), 199–248.
St-serr	[St15]	A. Stavrova, Non-stable K_1 -functors of multiloop groups, Canad. J. Math. (2015), Online First.
Sus	[Su]	A.A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR Izv.
		11 (1977), 221–238.
Tu	[Tul82]	M. S. Tulenbaev, The Steinberg group of a polynomial ring, Mat. Sb. (N.S.) 117(159) (1982),
		no. 1, 131–144.
W-k[t]	[Wen14]	M. Wendt, On homology of linear groups over $k[t]$, Math. Res. Lett. 21 (2014), no. 6, 1483–1500.
VW	[VW]	K. Völkel, M. Wendt, On \mathbb{A}^1 -fundamental groups of isotropic reductive groups,

 $bundles\ and\ homogeneous\ spaces,\ 2015\ arXiv:1507.08020.$

DEPARTMENT OF MATHEMATICS AND MECHANICS, St. PETERSBURG STATE UNIVERSITY, St. PETERSBURG, RUSSIA

 $E ext{-}mail\ address: sinchukss@gmail.com}$

2012 arXiv:1207.2364.

1271 - 1307.

Abe

[AHW]

AHW15

DEPARTMENT OF MATHEMATICS AND MECHANICS, St. PETERSBURG STATE UNIVERSITY, St. PETERSBURG, RUSSIA

 $E ext{-}mail\ address: anastasia.stavrova@gmail.com}$

Mathematisches Institut der Universität München, Theresienstr. 39, D-80333 München $E\text{-}mail\ address:}$ avlavrenov@gmail.com