Design of a Full Holder (1bit)

Stepl: Generate truth table

with 3 inputs a we have 8 different Contination ...

A, B, Cin

Outputs 5 a Cout

*	2	Expeds	Outputs			
	A	B	Cir		Cost	
1	0	0	0	0	0	,
2	0	0.	1	1,	0	Birary lob
3	0	6	0	i	0	1
4	0	1	. 1	0		1.
5	1	C	0	1	0	106
6	1	0	1	0	4	A = 1, B = 0
7	1	1	0	0	ŧ	CIN = O
8	1		1	1.	1	BINALY
						6)1
		رموار				0
						0
						_ 1

Step2: Determine the logical Expression 13

S = ABCIN + ABCIN + ABCIN + ABCIN

Coul = ABCin + ABCIN + ABCIN + ABCIN

Design of a Full Adder (1bit)

Step 3. Simplify Equation or logical Expression

S = ABCin + ABCin + ABCin + ABCin

ABCIN

Simplify Using K-Map

BCin

A OO OI II 10

Coul = ABCIN+ABCIN+ABCIN + ABCIN
= ACIN + AB + BCIN

Simplety Using K-Map

BCin Imp-3

A 00 01 W. 10

Imp-1 Imp-2

Pesign of A Full Adder (1bit) Step 4: Design of the Circuit - S = A + B + Cin

- Cout = ACIN + AB + BCIN APPI APPZ APP3

Condigued Inverter