prior_montecarlo

April 28, 2019

1 Run and process the prior monte carlo and pick a "truth" realization

```
In [1]: import os
    import shutil
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import flopy
    import pyemu

flopy is installed in /Users/jeremyw/Dev/gw1876/activities_2day_mfm/notebooks/flopy

In [2]: t_d = "template"
    pst = pyemu.Pst(os.path.join(t_d,"freyberg.pst"))
```

1.0.1 Decide what pars are uncertain in the truth

We need to decide what our truth looks like - should the pilot points or the grid-scale pars be the source of spatial variability?

```
In [3]: par = pst.parameter_data
    # grid pars
    should_fix = par.loc[par.pargp.apply(lambda x: "gr" in x), "parnme"]
    # pp pars
    # should_fix = par.loc[par.pargp.apply(lambda x: "pp" in x), "parnme"]
    #pst.npar - should_fix.shape[0]

In [4]: pe = pyemu.ParameterEnsemble.from_binary(pst=pst,filename=os.path.join(t_d,"prior.jcb")
    pe.loc[:,should_fix] = 1.0
        pe.to_csv(os.path.join(t_d,"sweep_in.csv"))

new binary format detected...
```

1.0.2 run the prior ensemble in parallel locally

1.0.3 Load the output ensemble and plot a few things

```
In [6]: obs_df = pd.read_csv(os.path.join(m_d, "sweep_out.csv"),index_col=0)
        obs_df.shape
Out[6]: (200, 4445)
  drop any failed runs
In [7]: obs_df = obs_df.loc[obs_df.failed_flag==0,:]
        obs df.shape
Out[7]: (200, 4445)
In [8]: fnames = pst.pestpp options["forecasts"].split(',')
        fnames
Out[8]: ['fa_hw_19791230',
         'fa_hw_19801229',
         'fa_tw_19791230',
         'fa_tw_19801229',
         'hds_00_015_002_000',
         'hds_00_015_002_001']
In [9]: obs_df.loc[:,fnames].plot(kind="hist",subplots=True,figsize=(10,10),sharex=False)
Out[9]: array([<matplotlib.axes. subplots.AxesSubplot object at 0x181da81b00>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x181d9ab780>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x181d9b5cf8>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x1083f72b0>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x108419828>,
               <matplotlib.axes._subplots.AxesSubplot object at 0x113a10da0>],
              dtype=object)
```


We see that under scenario conditions, many more realizations for the flow to the aquifer in the headwaters are postive (as expected). Lets difference these two:

We now see that the most extreme scenario yields a large decrease in flow from the aquifer to the headwaters (the most negative value)

1.0.4 setting the "truth"

We just need to replace the observed values (obsval) in the control file with the outputs for one of the realizations on obs_df. In this way, we now have the nonzero values for history matching, but also the truth values for comparing how we are doing with other unobserved quantities. Im going to pick a realization that yields an "average" variability of the observed gw levels:

```
In [11]: # choose the realization with a historic gw to sw headwater flux
    hist_swgw = obs_df.loc[:,"fa_hw_19791230"].sort_values()
    idx = hist_swgw.index[20]
```

In [12]: obs_df.loc[idx,pst.nnz_obs_names]

```
Out[12]: fo_39_19791230
                                11469.000000
         hds_00_002_009_000
                                   37.762375
         hds_00_002_015_000
                                   35.533577
         hds_00_003_008_000
                                   38.118275
         hds 00 009 001 000
                                   40.013752
         hds 00 013 010 000
                                   35.797760
         hds 00 015 016 000
                                   34.970028
         hds_00_021_010_000
                                   35.883907
         hds_00_022_015_000
                                   34.855595
         hds_00_024_004_000
                                   38.254478
         hds_00_026_006_000
                                   37.210945
         hds_00_029_015_000
                                   34.562653
         hds_00_033_007_000
                                   35.690334
         hds_00_034_010_000
                                   34.577950
         Name: 159, dtype: float64
```

Lets see how our selected truth does with the swgw forecasts:

```
In [13]: obs_df.loc[idx,fnames]
Out[13]: fa_hw_19791230
                              -1256.133800
         fa_hw_19801229
                               -708.594700
         fa_tw_19791230
                               -658.232200
         fa tw 19801229
                               -214.870210
         hds_00_015_002_000
                                  39.905678
         hds 00 015 002 001
                                  38.688923
         Name: 159, dtype: float64
In [14]: pst = pyemu.Pst(os.path.join(t_d, "freyberg.pst"))
         obs = pst.observation_data
         obs.loc[:,"obsval"] = obs_df.loc[idx,pst.obs_names]
         obs.loc[obs.obgnme=="calhead", "weight"] = 10.0
         obs.loc["fo 39 19791230", "weight"] = 0.025
         obs.weight.value_counts()
Out[14]: 0.000
                   4420
         10.000
                     13
         0.025
                      1
         Name: weight, dtype: int64
```

Now, it is custom to add noise to the observed values...we will use the classic Gaussian noise...zero mean and standard deviation of 1 over the weight

```
In [16]: noise = snd * 1./obs.loc[pst.nnz_obs_names,"weight"]
         noise
Out[16]: obsnme
         fo_39_19791230
                                70.562094
         hds_00_002_009_000
                                 0.040016
         hds_00_002_015_000
                                 0.097874
         hds_00_003_008_000
                                 0.224089
         hds_00_009_001_000
                                 0.186756
         hds_00_013_010_000
                                -0.097728
         hds_00_015_016_000
                                 0.095009
         hds_00_021_010_000
                                -0.015136
         hds_00_022_015_000
                                -0.010322
         hds_00_024_004_000
                                 0.041060
         hds_00_026_006_000
                                 0.014404
         hds_00_029_015_000
                                 0.145427
         hds_00_033_007_000
                                 0.076104
         hds_00_034_010_000
                                 0.012168
         Name: weight, dtype: float64
  Only run this block once!!!
In [17]: pst.observation_data.loc[noise.index,"obsval"] += noise
         pst.write(os.path.join(t_d, "freyberg.pst"))
         pyemu.os_utils.run("pestpp-ies freyberg.pst",cwd=t_d)
In [18]: pst = pyemu.Pst(os.path.join(t_d, "freyberg.pst"))
         print(pst.phi)
         pst.res.loc[pst.nnz_obs_names,:]
818.9806345994934
Out[18]:
                                                                              modelled \
                                            name
                                                    group
                                                                measured
         name
                                  fo 39 19791230
                                                  calflux
                                                            11539.562094
                                                                          11430.000000
         fo 39 19791230
         hds_00_002_009_000
                             hds_00_002_009_000
                                                  calhead
                                                               37.802391
                                                                             37.107498
                                                                             35.045185
         hds_00_002_015_000
                             hds_00_002_015_000
                                                  calhead
                                                               35.631451
                                                  calhead
         hds_00_003_008_000
                             hds_00_003_008_000
                                                               38.342364
                                                                             37.397289
         hds_00_009_001_000
                             hds_00_009_001_000
                                                  calhead
                                                               40.200508
                                                                             39.546417
                                                  calhead
         hds_00_013_010_000
                             hds_00_013_010_000
                                                               35.700032
                                                                             35.571774
         hds_00_015_016_000
                             hds_00_015_016_000
                                                  calhead
                                                               35.065037
                                                                             34.835716
                                                  calhead
         hds_00_021_010_000
                             hds_00_021_010_000
                                                               35.868772
                                                                             35.386250
                                                  calhead
         hds_00_022_015_000
                             hds_00_022_015_000
                                                               34.845273
                                                                             34.577492
                                                  calhead
         hds_00_024_004_000
                             hds_00_024_004_000
                                                               38.295538
                                                                             36.760464
         hds_00_026_006_000
                             hds_00_026_006_000
                                                  calhead
                                                               37.225349
                                                                             35.896149
         hds_00_029_015_000
                             hds_00_029_015_000
                                                  calhead
                                                               34.708080
                                                                             34.453842
                             hds_00_033_007_000
                                                  calhead
         hds_00_033_007_000
                                                               35.766438
                                                                             34.678810
         hds_00_034_010_000
                             hds_00_034_010_000
                                                  calhead
                                                               34.590117
                                                                             34.118073
```

```
residual weight
        name
        fo_39_19791230
                            109.562094
                                         0.025
        hds_00_002_009_000
                              0.694892 10.000
        hds_00_002_015_000
                              0.586266 10.000
        hds_00_003_008_000
                              0.945075 10.000
        hds_00_009_001_000
                              0.654091 10.000
        hds_00_013_010_000
                              0.128259 10.000
        hds_00_015_016_000
                              0.229321 10.000
        hds_00_021_010_000
                              0.482522 10.000
        hds_00_022_015_000
                              0.267781 10.000
        hds_00_024_004_000
                              1.535075 10.000
        hds_00_026_006_000
                              1.329201 10.000
        hds_00_029_015_000
                              0.254238 10.000
        hds_00_033_007_000
                              1.087628 10.000
        hds_00_034_010_000
                              0.472045 10.000
In [19]: pst.phi_components
        pst.plot(kind='phi_pie')
Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x181e18f0f0>
```


In [20]: figs = pst.plot(kind="1to1")

<Figure size 576x756 with 0 Axes>

Publication ready figs - oh snap!

Just to make sure we have everything working right, we should be able to load the truth parameters, run the model once and have a phi equivalent to the noise vector:

17.528847284852887

Out[21]:	name	group	measured	modelled	\
name					
fo_39_19791230	fo_39_19791230	calflux	11539.562094	11469.000000	
hds_00_002_009_000	hds_00_002_009_000	calhead	37.802391	37.762375	
hds_00_002_015_000	hds_00_002_015_000	calhead	35.631451	35.533577	
hds_00_003_008_000	hds_00_003_008_000	calhead	38.342364	38.118275	
hds_00_009_001_000	hds_00_009_001_000	calhead	40.200508	40.013752	
hds_00_013_010_000	hds_00_013_010_000	calhead	35.700032	35.797760	
hds_00_015_016_000	hds_00_015_016_000	calhead	35.065037	34.970028	
hds_00_021_010_000	hds_00_021_010_000	calhead	35.868772	35.883907	
hds_00_022_015_000	hds_00_022_015_000	calhead	34.845273	34.855595	
hds_00_024_004_000	hds_00_024_004_000	calhead	38.295538	38.254478	
hds_00_026_006_000	hds_00_026_006_000	calhead	37.225349	37.210945	
hds_00_029_015_000	hds_00_029_015_000	calhead	34.708080	34.562653	
hds_00_033_007_000	hds_00_033_007_000	calhead	35.766438	35.690334	
hds_00_034_010_000	hds_00_034_010_000	calhead	34.590117	34.577950	
	residual weight				
name					
fo_39_19791230	70.562094 0.025				
hds_00_002_009_000	0.040016 10.000				
hds_00_002_015_000	0.097874 10.000				
hds_00_003_008_000	0.224089 10.000				
hds_00_009_001_000	0.186756 10.000				
hds_00_013_010_000	-0.097728 10.000				
hds_00_015_016_000	0.095009 10.000				
hds_00_021_010_000	-0.015136 10.000				
hds_00_022_015_000	-0.010322 10.000				
hds_00_024_004_000	0.041060 10.000				
hds_00_026_006_000	0.014404 10.000				
hds_00_029_015_000	0.145427 10.000				
hds_00_033_007_000	0.076104 10.000				
hds_00_034_010_000	0.012168 10.000				

The residual should be exactly the noise values from above. Lets load the model (that was just run using the true pars) and check some things

```
In [22]: m = flopy.modflow.Modflow.load("freyberg.nam",model_ws=m_d)
```

```
In [23]: a = m.upw.vka[1].array
    #a = m.rch.rech[0].array
    a = np.ma.masked_where(m.bas6.ibound[0].array==0,a)
    print(a.min(),a.max())
    c = plt.imshow(a)
    plt.colorbar(c)
```

0.01556885 1.095735

Out[23]: <matplotlib.colorbar.Colorbar at 0x181ede8c88>


```
In [24]: lst = flopy.utils.MfListBudget(os.path.join(m_d,"freyberg.list"))
    df = lst.get_dataframes(diff=True)[0]
    ax = df.plot(kind="bar",figsize=(6,6))
    a = ax.set_xticklabels(["historic","scenario"],rotation=90)
```


1.0.5 see how our existing observation ensemble compares to the truth

sw-gw outputs:

```
In [25]: obs = pst.observation_data

for forecast in fnames:
    ax = plt.subplot(111)
    obs_df.loc[:,forecast].hist(ax=ax,color="0.5",alpha=0.5)
    ax.plot([obs.loc[forecast,"obsval"],obs.loc[forecast,"obsval"]],ax.get_ylim(),"r",
    ax.set_title(forecast)
    plt.show()
```


observations:

