Package 'PCBS'

August 27, 2024

Type Package
Title Principal Component BiSulfite
Version 0.1.1
Description A system for fast, accurate, and flexible whole genome bisulfite sequencing (WGBS) data analysis of two-condition comparisons. Principal Component BiSulfite, 'PCBS', assigns methylated loci eigenvector values from the treatment-delineating principal component in lieu of running millions of pairwise statistical tests, which dramatically increases analysis flexibility and reduces computational requirements. Methods: https://katlande.github.io/PCBS/articles/Differential_Methylation.html .
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 2.10)
<pre>URL https://github.com/katlande/PCBS</pre>
<pre>BugReports https://github.com/katlande/PCBS/issues</pre>
Imports ggplot2, tibble, ggrepel, dplyr, data.table
NeedsCompilation no
Author Kathryn Lande [aut, cre, cph]
Maintainer Kathryn Lande <kathryn.lande@mail.mcgill.ca></kathryn.lande@mail.mcgill.ca>
Repository CRAN
Date/Publication 2024-08-27 18:00:02 UTC
Contents
addRanks 2 CheckOvercompression 3 checkRank 4 chromDict 4 chromDictMeth 5 DefineBestPC 6

2 addRanks

Index		20
	trimDMR	19
	tilt	
	se	18
	score_metagene	17
	rankDist	17
	plot_metagene	16
	oneSeed	15
	Ol_Reliable	15
	multiple_metagenes	14
	methylDiff_metagene	13
	MethylDiff	12
	MethyDiff_Set	11
	lmIntx	11
	lin	10
	Get_Novel_DMRs	9
	get_all_DMRs	9
	getRegionScores	8
	getPCRanks	7
	eigen	6

addRanks

Add ranks to eigenvector scores.

Description

Defines the best principle component to use for downstream analysis.

Usage

```
addRanks(ranks)
```

Arguments

ranks

getPCRanks output data frame.

Value

The input data. frame with rank order and absolute rank order columns.

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"))
ranks <- addRanks(ranks)</pre>
```

CheckOvercompression

CheckOvercompression Check if DMR calling seed number is ovcompressed.

Description

Identifies if seed number to use for DMR calling causes overcompression.

Usage

CheckOvercompression(ranks, CpG_cutoff, values, max.dmr.size, return.plot)

Arguments

ranks	Rank data frame from getPCRanks.
CpG_cutoff	NULL or numeric. If NULL, seed numbers tested will be input of the values argument. If numeric, seed numbers tested will be CpG_cutoff*values argument. Recommended to us rankDist estimate if not null
values	Numeric vector, either seed numbers to test if CpG_cutoff=NULL or multipliers if CpG_cutoff is numeric
max.dmr.size	Automatic=5000. Maximum DMR expansion size in downstream analysis. Note: pipeline is optimized for 5000bp max DMR size, it is not recommended to play with this value.
return.plot	T/F, whether to return a plot or a numeric representing the best seed number for downstream analysis

Value

If return.plot=T, a grob plotting input seed number vs. compressed seed number is returned. Otherwise, a numeric is returned containing the largest tested input value without detectable overcompression.

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"), PC = 1)
CheckOvercompression(ranks, 980)</pre>
```

4 chromDict

checkRank

Check rank cut-off values manually.

Description

Plots a score vs. rank plot with a manually chosen rank cut-off for manual k selection.

Usage

```
checkRank(ranks, cutoff)
```

Arguments

ranks getPCRanks output data frame cutoff integer, rank value to check

Value

Returns a grob plotting the input cutoff on a plot of absolute eigenvector score vs. absolute rank order.

Examples

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"), PC = 1) test_50 <- checkRank(ranks, 50) # set cut-off to 50 test_500 <- checkRank(ranks, 500) # set cut-off to 500
```

chromDict

Convert a rank object into a chromDict.

Description

Internal to many functions; creates a chromDict for faster computing times. chromDict can be run separately to speed up functions run iteratively. A chromDict is a list of chromosome-specific data.tables generated from ranks.

Usage

```
chromDict(ranks)
```

Arguments

ranks

getPCRanks output data frame

chromDictMeth 5

Value

Returns a list of data.tables for each chromosome, for faster analysis. Used internall by many PCBS functions.

Examples

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"), PC = 1)
chromDictObj <- chromDict(ranks)</pre>
```

chromDictMeth

Create a chromDict of percent methylation difference at all sites.

Description

chromDicts are lists of keyed data.tables that enable very fast computing times. Much like the primary PCBS function chromDict() which makes a chromDict of all locus ranks, the chromDict-Meth() function makes is a list of chromosome-specific data.tables containing percent methylation differences at all loci..

Usage

```
chromDictMeth(mat, IDs, filter_thresh)
```

Arguments

mat	data frame ob	iect containing percent	methylation and	locus information for all

sites, in the format of eigen

IDs character vector of IDs containing the common names for compared condi-

tions. E.g., for samples trt1 & trt2 vs. ctl1 & ctl2, IDs=c("trt1", "ctl")

must be larger than this value. Auto=50

Value

Returns a list of data.tables for each chromosome, for faster analysis.

```
chromDictMethylDiff <- chromDictMeth(eigen, c("trt", "ctl"))</pre>
```

6 eigen

DefineBestPC	Identify your best principle component.

Description

Defines the best principle component to use for downstream analysis.

Usage

```
DefineBestPC(mat, IDs, filter_thresh, return.plot)
```

Arguments

mat	Bismark2Matrix.R output file, or data frame object
IDs	A character vector of IDs containing the common names for compared conditions. E.g., for samples trt1, trt2 vs. ctl1, ctl2, IDs=c("trt", "ctl")
filter_thresh	A coverage threshold for filtering, where CpG coverage of all samples must be larger than this value
return.plot	T/F, whether to return a PCA plot or a numeric representing the best principle component for downstream analysis

Value

If return.plot=T, a grob plotting a PCA of percent methylation of all samples is returned. Otherwise, a numeric representing the best principal component to use for PCBS analysis is returned.

Examples

```
DefineBestPC(eigen, IDs = c("trt", "ctl"))
```

eigen	Simulated WGBS data for PCBS vignettes

Description

simulated WGBS data with added DMRs and DMLs

Usage

eigen

getPCRanks 7

Format

A data frame with 50000 observations on the following 13 variables.

cpgID a character vector, chrom:locus

trt1_PercMeth a numeric vector, percent methylated of sample trt1

trt1_nCpG a numeric vector, depth of sample trt1

trt2_PercMeth a numeric vector, percent methylated of sample trt2

trt2_nCpG a numeric vector, depth of sample trt2

trt3_PercMeth a numeric vector, percent methylated of sample trt3

trt3_nCpG a numeric vector, depth of sample trt3

ctl1_PercMeth a numeric vector, percent methylated of sample ctl1

ctl1_nCpG a numeric vector, depth of sample ctl1

ctl2_PercMeth a numeric vector, percent methylated of sample ctl2

ctl2_nCpG a numeric vector, depth of sample ctl2

ctl3_PercMeth a numeric vector, percent methylated of sample ctl3

ctl3_nCpG a numeric vector, depth of sample ctl3

Source

generated through simulation

getPCRanks	Get CpG eigenvector scores from a principle component.
------------	--

Description

Returns eigenvector scores for input CpG sites.

Usage

```
getPCRanks(mat, IDs, PC, filter_thresh)
```

Arguments

mat	Bismark2Matrix.R output file, or data frame object
IDs	A character vector of IDs containing the common names for compared conditions. E.g., for samples trt1 & trt2 vs. ctl1 & ctl2, IDs=c("trt1", "ctl")
PC	Integer, which principle component to use. Use to DefineBestPC if unsure.
filter_thresh	Integer, a coverage threshold for filtering, where CpG coverage of all samples must be larger than this value.

8 getRegionScores

Value

Returns a data. frame of eigenvector scores for all loci.

Examples

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"), PC = 1)</pre>
```

getRegionScores

Calculated methylation significance in a set of regions.

Description

Returns p-values and Z-scores for CpGs in a set of regions, compared to a local null background distribution.

Usage

```
getRegionScores(ranks, regions, chromDictObj)
```

Arguments

ranks getPCRanks output data.frame, only necessary if chromDictObj=NULL

regions A three-column dataframe containing a set of regions to test. Columns = chrom,

start, end.

chromDictObj chromDict() output object, recommended input instead of ranks.

Value

Returns a data. frame with significance scores for all input regions.

get_all_DMRs 9

get_all_DMRs	Nested DMR calling function within Get_Novel_DMRs()
--------------	---

Description

Expands DMRs from collapsed seeds iteratively.

Usage

```
get_all_DMRs(chromDictObj, seeds, res=40, max.dmr.size=3000, min.dmr.cpgs=10, min.absZscore, null)
```

Arguments

chromDictObj chromDict() output.

seeds compressed seeds

res Get_Novel_DMRs arg DMR_resolution

max.dmr.size Get_Novel_DMRs arg QueryLimit

min.dmr.cpgs Get_Novel_DMRs arg minCpGs

min.absZscore Get_Novel_DMRs arg minZ

null null distribution

Value

Returns a list with two indicies, representing intermediate DMR calls within the Get_Novel_DMRs() function and a list of background regions.

Get_Novel_DMRs Call DMRs from WGBS data.

Description

DMR Calling.

Usage

```
Get_Novel_DMRs(ranks, nSeeds, chromDictObj, DMR_resolution,
QueryLimit, minCpGs, minZ, perms)
```

lin

Arguments

ranks Rank data frame from getPCRanks.

nSeeds Integer, number of input seeds for DMR expansion.

chromDictObj chromDict() output. If null, chromDict() is run internally.

DMR_resolution Automatic=NULL. Integer, number of bases to increase the DMR by with each

expansion. If NULL, QueryLimit/25.

QueryLimit Automatic=5000. Maximum DMR expansion size (bp)

minCpGs Automatic=15. Minimum CpGs in a DMR region, regions with fewer CpGs will

be discarded.

minZ Automatic=1. Absolute Z score threshold for DMR calling; internal value. Not

recommended to play with this setting.

perms Automatic=1000. Number of permutations to use when defining the null distri-

bution. Increasing this value largely influences computational time with minimal

return

Value

Returns a data. frame of all novel DMRs.

Examples

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"), PC = 1)
DMRs <- Get_Novel_DMRs(ranks, 2940, minCpGs=10)</pre>
```

lin

Find y value of linear regression given x.

Description

Find y value of linear regression given x.

Usage

lin(x, 1)

Arguments

x x coordinate

linear model of lm()

Value

Returns a column numeric representing the y coordinate at the input x of the linear model 1.

ImIntx 11

mΙ	n	tx
шт		ι
	mΙ	mIn

PC-Intersect nested function.

Description

Finds the intersection point of two linear regression models, lm().

Usage

```
lmIntx(fit1, fit2, rnd=2)
```

Arguments

fit1	lm() model 1
fit2	lm() model 2

rnd number of significant figures

Value

Returns a 2 column data. frame of one row, containing the x and y coordinates of the intersection point of the input models.

MethyDiff_Set

Add a mean methylation column to a data.frame of regions.

Description

Using a chromDictMeth() output object, quickly calculate the mean methylation difference across set of regions.

Usage

```
MethyDiff_Set(chromDictMeth, regions)
```

Arguments

 $chromDictMeth()\ output\ object$

regions data.frame of regions, where column 1 = chromosome, column 2 = region

start, and column 3 = region end

Value

Returns the regions object with a mean percent methylation column.

MethylDiff

Examples

MethylDiff

Get the mean methylation difference across a specified region.

Description

Using a chromDictMeth() output object, quickly calculate the mean methylation difference across a user-specified region.

Usage

```
MethylDiff(chromDictMeth, chrom, start, end)
```

Arguments

```
chromDictMeth chromDictMeth() output object
chrom character, chromosome
start integer, region start
end integer, region end
```

Value

Returns a list of data. tables for each chromosome, for faster analysis.

```
chromDictMethylDiff <- chromDictMeth(eigen, c("trt", "ctl"))
MethylDiff(chromDictMethylDiff, "chr3", 4920450, 4923267)</pre>
```

methylDiff_metagene 13

methylDiff_metagene

Make a metagene from mean percent methylation differences.

Description

Uses mean binned percent methylation differences across a set of regions to draw a metagene.

Usage

```
methylDiff_metagene(chromDictMethObj, regions, bin, title,
xaxis, yaxis, return.data, linecol, value)
```

Arguments

chromDictMethObj

chromDictMeth() output object

regions A three-column data frame containing a set of regions to test. Columns = chrom,

start, end.

bin integer, number of bins to use in metagenes. Default=100.

title Output plot title

xaxis Output plot x-axis title yaxis Output plot y-axis title

return.data T/F, whether to return a plot, or data that can be run with plot metagene() or

multiple_metagenes().

linecol Colour for line, auto="red"

value Name of the plotted metric in chromDictMethObj. Only needs to be set explicity

for abnormal use cases where chromDictMethObj contains a non-rank value

output by chromDict().

Value

If return.data=F, returns a grob containing a metagene plot. Otherwise, returns a list of two data.frames containing metagene and metagene standard error plotting information.

14 multiple_metagenes

 $multiple_metagenes$ P

Plot multiple metagene data objects on a single plot.

Description

Plots multiple metagene object using the raw data generated by score_metagene().

Usage

```
multiple_metagenes(data_list, set_names, title, xaxis, yaxis, legend.title, col, se_alpha)
```

Arguments

data_list	List of score_metagene() raw data output
set_names	Character vector of names for score_metagene() object
title	Output plot title
xaxis	Output plot x-axis title
yaxis	Output plot y-axis title
legend.title	T/F, whether to show legend title
col	Vector of colours to use for lines
se_alpha	0-1, alpha value for standard error shading

Value

Returns a grob containing a plot of the input metagene data.

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"), PC = 1)
DMRs <- Get_Novel_DMRs(ranks, 2940, minCpGs=10)

# Select all significantly hypomethylated DMRs:
hypo_DMRs <- DMRs[DMRs$FDR <= 0.05 & DMRs$DMR_Zscore < 0,]
# Select all significantly hypermethylated DMRs:
hyper_DMRs <- DMRs[DMRs$FDR <= 0.05 & DMRs$DMR_Zscore > 0,]

# select chrom, start, and end of all hyper DMRs
regions_hypo <- hypo_DMRs[c(1:3)]
regions_hyper <- hyper_DMRs[c(1:3)]

# return.data = T returns raw data instead of a plot:
hyper_metagene <- score_metagene(ranks, regions_hyper, return.data = TRUE)
hypo_metagene <- score_metagene(ranks, regions_hypo, return.data = TRUE)

# The multiple_metagenes function plots multiple metagenes
# using a list of raw data objects from score_metagene().
multiple_metagenes(data_list = list(hyper_metagene, hypo_metagene),</pre>
```

Ol_Reliable 15

```
set_names = c("Hyper DMRs", "Hypo DMRs"),
title="Metagenes of DMR Regions", legend.title = FALSE)
```

Ol_Reliable

PCBS ggplot theme.

Description

Custom theme for ggplot used by all PCBS output figures.

Usage

```
Ol_Reliable()
```

Value

Theme for ggplot objects used by PCBS.

Examples

```
df <- data.frame(A=c(1,2,3), B=c(1,2,3))
ggplot2::ggplot(df, ggplot2::aes(x=A, y=B))+
ggplot2::geom_point()+
Ol_Reliable()</pre>
```

oneSeed

Nested DMR calling function within within get_all_DMRs(), Get_Novel_DMRs()

Description

Expands one DMR from a single point.

Usage

```
oneSeed(chroms, seed, resolution, max.size, mincpgs, null_list, Zlim=1)
```

Arguments

chroms	<pre>chromDict() output.</pre>
seed	seed value input

resolution Get_Novel_DMRs arg DMR_resolution
max.size Get_Novel_DMRs arg QueryLimit
mincpgs Get_Novel_DMRs arg minCpGs

 $\begin{array}{ll} \text{null_list} & \text{get_all_DMRs arg null} \\ \text{Zlim} & \text{Get_Novel_DMRs arg minZ} \end{array}$

plot_metagene

Value

returns a list of two indices, containing a data. frame with the output from a single compressed seed expansion and a data. frame of locus information around the seed expansion, intended for use within the Get_Novel_DMRs() function.

plot_metagene

Generate a metagene plot from raw metagene data.

Description

Plots a metagene object using the raw data generated by score_metagene().

Usage

```
plot_metagene(data, title, xaxis, yaxis, linecol)
```

Arguments

data	list, score_metagene() raw data output
title	Output plot title
xaxis	Output plot x-axis title
yaxis	Output plot y-axis title
linecol	Colour for line, auto="red"

Value

Returns a grob containing a plot of the input metagene data.

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"), PC = 1)
DMRs <- Get_Novel_DMRs(ranks, 2940, minCpGs=10)

# Select all significantly hypomethylated DMRs:
hypo_DMRs <- DMRs[DMRs$FDR <= 0.05 & DMRs$DMR_Zscore < 0,]

# select chrom, start, and end of all hyper DMRs
regions_hypo <- hypo_DMRs[c(1:3)]

# return.data = T returns raw data instead of a plot:
hypo_metagene <- score_metagene(ranks, regions_hypo, return.data = TRUE)
plot_metagene(hypo_metagene)</pre>
```

rankDist 17

rankDist Identify the best rank cut-off for significant CpGs.	
---	--

Description

Automated rank cut-off estimator for input CpGs.

Usage

```
rankDist(ranks, draw_intersects, noise_perc, mode, return.plot)
```

Arguments

ranks getPCRanks output data frame.

draw_intersects

T/F whether to draw intersect lines if return.plot=T

noise_perc Automatic=0.5, numeric between 0 and 1. Fraction of ranks to use to model

the background noise. Not recommended to play with this value. Increas-

ing/decreasing returns a looser/stricter threshold, respectively.

mode "intersect" or "strict", determine cut-off with "intersect" or "strict" method. "Strict"

is recommended for sets with lower variability

return.plot T/F, whether to return a plot or a numeric

Value

If return.plot=T, a grob plotting the estimated cutoff on a plot of absolute eigenvector score vs. absolute rank order is returned. Otherwise, a numeric of the estimated cut-off is returned.

Examples

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"), PC = 1)
rankDist(ranks, mode="intersect")</pre>
```

score_metagene

Make a metagene from PC Scores.

Description

Uses mean binned PC scores across a set of regions to draw a metagene.

Usage

```
score_metagene(ranks, regions, bin, title, xaxis, yaxis,
chromDictObj, return.data, linecol)
```

18 se

Arguments

ranks	getPCRanks output data.frame
regions	A three-column data.frame containing a set of regions to test. Columns = chrom, start, end.
bin	integer, number of bins to use in metagenes. Default=100.
title	Output plot title
xaxis	Output plot x-axis title
yaxis	Output plot y-axis title
chromDictObj	Optional chromDictObject made from chromDict(), runs internally if set to NULL (default). Scripts that run this function multiple times will be sped up by setting this option.
return.data	T/F, whether to return a plot, or data that can be run with plot_metagene() or multiple_metagenes().
linecol	Colour for line, auto="red"

Value

If return.data=F, returns a grob containing a metagene plot. Otherwise, returns a list of two data.frames containing metagene and metagene standard error plotting information.

Examples

```
ranks <- getPCRanks(eigen, IDs = c("trt", "ctl"), PC = 1)
DMRs <- Get_Novel_DMRs(ranks, 2940, minCpGs=10)

# select chrom, start, and end of all hyper DMRs:
hyper_DMRs <- DMRs[DMRs$FDR <= 0.05 & DMRs$DMR_Zscore > 0,]
regions_hyper <- hyper_DMRs[c(1:3)]
score_metagene(ranks, regions_hyper)</pre>
```

se

Standard error of a vector.

Description

Takes the standard error of a vector.

Usage

se(x)

Arguments

x numeric vector.

tilt 19

Value

Returns a numeric, representing the standard error of the input vector.

Examples

```
x <- sample(1:100, 20)
se(x)
```

tilt

Component of PCBS ggplot theme.

Description

Wrapper to title x-axis text in ggplot objects.

Usage

tilt()

Value

Theme for ggplot objects that cleanly rotates x-axis text.

trimDMR

Nested DMR calling function within within Get_Novel_DMRs()

Description

Trims the edges off of DMR expansions.

Usage

```
trimDMR(df, region, min.dmr.cpgs, max.dmr.size, null_summary, null_values)
```

Arguments

df DMR expansion output dataframe.
region get_all_DMRs() region output
min.dmr.cpgs Get_Novel_DMRs arg minCpGs
max.dmr.size Get_Novel_DMRs arg QueryLimit
null_summary null distribution conrtainer
null_values null distribution conrtainer

Value

Returns a data. frame of all trimmed DMRs for use within the Get_Novel_DMRs() function.

Index

```
\ast datasets
     eigen, 6
\mathsf{addRanks}, \textcolor{red}{2}
{\tt CheckOvercompression}, {\tt 3}
checkRank, 4
chromDict, 4
chromDictMeth, 5
DefineBestPC, 6
eigen, 6
{\tt get\_all\_DMRs}, {\tt 9}
Get_Novel_DMRs, 9
getPCRanks, 7
{\tt getRegionScores}, 8
lin, 10
lmIntx, 11
MethyDiff_Set, 11
MethylDiff, 12
methylDiff_metagene, 13
{\tt multiple\_metagenes}, 14
Ol_Reliable, 15
oneSeed, 15
plot_metagene, 16
rankDist, 17
score_metagene, 17
se, 18
tilt, 19
trimDMR, 19
```