

Description

Image

Caption

1. Super light camera body in die-cast magnesium. © Canon 2. Magnesium Alloy body of a camera (Sony Alpha 900 made and owned by Sony Corporation). © SkywalkerPL at en.wikipedia - (CC BY 3.0) 3. Cast magnesium wheel alloy of a high-end sports car. © Klau

The material

Magnesium is a metal almost indistinguishable from aluminum in color, but of lower density. It is the lightest of the light-metal trio (with partners aluminum and titanium) and light it is: a computer case made from magnesium is barely two thirds as heavy as one made from aluminum. It, aluminum and magnesium are the mainstays of airframe engineering. Only beryllium is lighter, but its expense and potential toxicity limit its use to special applications only. Magnesium is flammable, but this is only a problem when it is in the form of powder or very thin sheet. It costs more than aluminum but nothing like as much as titanium. Die and investment castings account for about 75% of magnesium alloy consumption. Almost all are used for components that remain below 150 C in service, since above this temperature most Mg alloys soften.

Composition (summary)

Mg+alloying elements, e.g. Al, Mn, Si, Zn, Cu, Li, rare earth elements

General properties

Density	109	-	116	lb/ft^3
Price	* 1.22	-	1.32	USD/lb
Date first used	1930			

Mechanical properties

Young's modulus	6.09	-	6.82	10^6 psi
Shear modulus	2.18	-	2.61	10^6 psi
Bulk modulus	5.08	-	5.95	10^6 psi
Poisson's ratio	0.29	-	0.31	
Yield strength (elastic limit)	10.2	-	31.2	ksi
Tensile strength	17.3	-	41	ksi

Compressive strength	10.2	-	31.2	ksi
Elongation	1	-	10	% strain
Hardness - Vickers	35	-	90	HV
Fatigue strength at 10^7 cycles	* 8.7	-	18.1	ksi
Fracture toughness	* 10.9	-	16.4	ksi.in^0.5
Mechanical loss coefficient (tan delta)	0.001	-	0.03	

Thermal properties

Melting point	836	-	1.2e3	F
Maximum service temperature	266	-	374	F
Minimum service temperature	-118	-	-63.7	F
Thermal conductor or insulator?	Good cor	nduc	tor	
Thermal conductivity	28.9	-	72.2	BTU.ft/h.ft^2.F
Specific heat capacity	0.228	-	0.253	BTU/lb.℉
Thermal expansion coefficient	13.7	-	15.6	µstrain/℉

Electrical properties

Electrical conductor or insulator?	Good co	onductor	
Electrical resistivity	5.5	- 15	µohm.cm

Optical properties

Transparency	Opaque
--------------	--------

Critical Materials Risk

High critical material risk?	Yes

Processability

Castability	4	-	5
Formability	2	-	3
Machinability	5		
Weldability	4		
Solder/brazability	2	-	3

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Limited use
Soils, acidic (peat)	Limited use
Soils, alkaline (clay)	Limited use
Wine	Acceptable

Durability: acids

Acetic acid (10%)	Limited use
-------------------	-------------

Acetic acid (glacial)	Unacceptable
Citric acid (10%)	Limited use
Hydrochloric acid (10%)	Unacceptable
Hydrochloric acid (36%)	Unacceptable
Hydrofluoric acid (40%)	Acceptable
Nitric acid (10%)	Unacceptable
Nitric acid (70%)	Unacceptable
Phosphoric acid (10%)	Unacceptable
Phosphoric acid (85%)	Unacceptable
Sulfuric acid (10%)	Acceptable
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Acceptable
Sodium hydroxide (60%)	Acceptable

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Limited use
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Chlorine gas (dry)	Limited use
Fluorine (gas)	Acceptable
O2 (oxygen gas)	Unacceptable
Sulfur dioxide (gas)	Excellent

Durability: built environments

Industrial atmosphere	Acceptable
Rural atmosphere	Excellent
Marine atmosphere	Limited use
UV radiation (sunlight)	Excellent

Durability: flammability

Flammability	Non-flammable
--------------	---------------

Durability: thermal environments

Tolerance to cryogenic temperatures	Unacceptable
Tolerance up to 150 C (302 F)	Acceptable
Tolerance up to 250 C (482 F)	Unacceptable
Tolerance up to 450 C (842 F)	Unacceptable
Tolerance up to 850 C (1562 F)	Unacceptable
Tolerance above 850 C (1562 F)	Unacceptable

Geo-economic data for principal component

Annual world production, principal component	5.61e5	ton/yr
Reserves, principal component	2.36e15 - 2.5e15	I. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 3.22e4	-	3.55e4	kcal/lb
CO2 footprint, primary production	* 34.1	-	37.6	lb/lb
Water usage	* 112	-	123	gal(US)/lb
Eco-indicator 99	1.51e3			millipoints/kg

Material processing: energy

Casting energy	* 1.12e3	-	1.24e3	kcal/lb
Metal powder forming energy	* 2.17e3	-	2.62e3	kcal/lb
Vaporization energy	* 1.57e6	-	1.73e6	kcal/lb
Coarse machining energy (per unit wt removed)	* 112	-	124	kcal/lb
Fine machining energy (per unit wt removed)	* 650	-	718	kcal/lb
Grinding energy (per unit wt removed)	* 1.25e3	-	1.38e3	kcal/lb
Non-conventional machining energy (per unit wt removed	1.57e4	-	1.73e4	kcal/lb

Material	processi	ing: (CO2 1	ootprint

Casting CO2	* 0.771	-	0.852	lb/lb
Metal powder forming CO2	* 1.6	-	1.94	lb/lb
Vaporization CO2	* 1.08e3	-	1.2e3	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.077	-	0.0851	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.45	-	0.497	lb/lb
Grinding CO2 (per unit wt removed)	* 0.864	-	0.955	lb/lb
Non-conventional machining CO2 (per unit wt removed	10.8	-	12	lb/lb

Material recycling: energy, CO2 and recycle fraction

Recycle	√
Embodied energy, recycling	* 4.92e3 - 5.44e3 kcal/lb
CO2 footprint, recycling	* 3.57 - 3.95 lb/lb
Recycle fraction in current supply	30 - 50 %
Downcycle	√
Combust for energy recovery	×
Landfill	√
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

Magnesium is the fifth most abundant metal in the Earth's crust, and the third in its oceans - and it can be extracted economically from both (the Dead Sea, thick with dissolved salts - is the best source of all). But its extraction is very energy intensive, consuming three times more per unit weight than commodity polymers and nearly twice as much as aluminum. It can be recycled, and doing this uses barely one fifth as much energy.

Supporting information

Design guidelines

The push for compact, light, electronics (laptops, mobile phones) and light-weight vehicles (wheels, in-cabin metal parts) has prompted designers to look harder at magnesium alloys than ever before, and has stimulated production and driven prices down. What does it offer? Magnesium has a low density, good mechanical damping, much better thermal conductivity than steel, less good electrical conductivity than copper and aluminum, but still good. It survives well in the protected environment of a house or office, but it corrodes badly in salt water and acids; even sweat is enough to tarnish it, so it has to be coated. It is easy to machine, but because of its low stiffness, parts must be firmly clamped while doing so. Magnesium alloys are designed for specific forming purposes. Some (like AZ63, AZ92 and AM100) have been formulated for investment casting; the AZ91 range are used for die casting. Most magnesium alloys can be welded using TIG or MIG methods; and soldering and adhesive bonding are both feasible. Spot and seam welds are possible but only in low stress applications; riveting is better, provided aluminum rivets are used to avoid galvanic corrosion.

Technical notes

The classification system of the American Society for Testing Materials (ASTM) is the most widely used. In this system, the first two letters indicate the principal alloying elements, thus: A = aluminum, C = copper, E = rare earths, K = zirconium, L = lithium, M = manganese, S = silicon, Z = zinc. The letter corresponding to the element present in the greatest quantity is used first; if they are equal, they are listed alphabetically. The letters are followed by numbers that list the amount of the principal alloying elements in weight % rounded to the nearest whole number; thus AZ91 means the alloy 90% Mg, 9% Al and 1% Zn; LA141 means the alloy 85% Mg, 14% Li and 1% Al.

Phase diagram

Phase diagram description

Cast magnesium alloys are based on alloys of magnesium (Mg) with 2 - 9% aluminum (AI), some with additions of zirconium, manganese or copper. This is the magnesium - aluminum phase diagram.

Typical uses

Aerospace, automotive, sports goods such as bicycles, nuclear fuel cans, vibration damping and shielding of machine tools, engine case castings, crank cases, transmission housings, automotive wheels, ladders, housings for electronic equipment, particularly mobile phone and portable computer chassis, camera bodies, office equipment, marine hardware and lawnmowers.

Tradenames

Electron, Dowmetal, Revere alloy, Eclipsalloy

×		
П	-	100
П	 	V 22

Reference

ProcessUniverse

Producers