

Definitions

- A Play: An exploration concept that includes a specific source, reservoir, and trap type
- A Lead: An possible trap, data is not sufficient to fully map it.
- A Prospect: A specific trap that has been identified and mapped but has not been drilled yet.
- Wildcat Well: A well far from previous drilling
- Reserves: Oil and gas that have been drilled and can be produced economically

CRITICAL DECISIONS?

- ♦ Which Play to Enter
- ♦ Which Prospects to Drill
- ♦ Play and Prospect Decisions Require Methodical Analysis
 - Technical Risk Evaluation
 - Economic Evaluation

4

Basin/Play Evaluation

- 1. Basin Scale Assessment
- 2. Estimation of undiscovered potential within each Play
- 3. Volumetric Calculations (Reserve estimates)
- 4. Assessment of Prospect-Specific Risk
- 5. Economic Analysis
 - Infrastructure
 - Market
 - Price
 - Taxes and Royalties
 - Political Risks

Risk Factor]	⋆ Risk (0-1.0
Probability hydro	ocarbon charge	0.80
Probability of good reservoir		0.80
• Probability of a t	rap	0.70
(Multiply all the factors)	Chance of Succes	ss 0.44

To drill or not to drill?

- Basin-scale Conventional Play Assessment:
- 1) Identify areas of a basin where there are: source rocks, reservoirs and traps
- 2) Identify prospects in those areas
- 3) Rank the prospects by risk
- 4) Drill the best one, then re-evaluate the others

More Detailed Risk Factors

- Hydrocarbon charge
 - Source Rock Quality (TOC, Kerogen type)
 - Maturity of Source Rock
 - Migration Pathways
- Reservoir
 - Porosity
 - Permeability
- Trap
 - Closure (Trap volume)
 - Top Seal, Fault Seal (Trapping efficiency)
 - Timing

Volumetric calculation • Reserves= Area of trap x Net reservoir thickness x Porosity x Hydrocarbon saturation x Recovery factor x Formation volume factor

Recovery Factor

- Oil in place vs. Reserves
- Most of the oil stays stuck in the reservoir
- Reserves "can be produced economically"
- Varies widely depending on permeability, oil viscosity, reservoir pressure, etc.
- 30% average?

Formation Volume Factor

- Change in volume from reservoir to surface conditions
- Depends on Reservoir Temp, Pressure and gas-oil ratio
- 1 to 3.0
- High shrinkage oil $B_{oi} = 1.4$
- Low Shrinkage oil $B_{oi} = 1.2$

Take Home Ideas

- Exploration is about reducing risk by collecting the right data
- Risk comes from uncertainty (incomplete knowledge)
- Reserves calculations require quantitative evaluation of all components of the Petroleum System