

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ECE Y325: ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΕΦΗΣ ΤΕΧΝΟΛΟΓΙΑ

Άσκηση 3η

Περιγραφή του προβλήματος

Ο σκοπός της $3^{n\varsigma}$ άσκησης είναι η απόκτηση εμπειρικής γνώσης σχετικά με τη χρήση μεθόδων μεταλλαγής (mutator) και πρόσβασης (accessor) στα πλαίσια εφαρμογών αντικειμενοστρεφούς προγραμματισμού. Επίσης μέσω της εργασίας θα εμπλακείτε και στη διαχείριση εξαιρέσεων (exception handling).

Ζητούμενα: Καλείστε να δημιουργήσετε μια κλάση **T a n k F u e l** η οποία αναπαριστά και υλοποιεί τη διαδικασία γεμίσματος του ρεζερβουάρ ενός μεταφορικού μέσου. Η κλάση έχει τις παρακάτω ιδιότητες: α) μια *final ιδιωτική* μεταβλητή τύπου *double* με όνομα **gasolineTankCapacity** η οποία αρχικοποιείται μέσω του κατασκευαστή (constructor) της κλάσης και αντιστοιχεί στην ονομαστική χωρητικότητα του ρεζερβουάρ του οχήματος και β) μια μεταβλητή **tankFuel** η οποία αντιστοιχεί στην τρέχουσα τιμή του καυσίμου που υπάρχει στο ρεζερβουάρ (θεωρούμε ότι η αρχική τιμή της tankFuel είναι μηδέν).

Η κλάση υλοποιεί τις παρακάτω λειτουργίες πρόσβασης getTankFuel και getTankCapacity η οποίες επιστρέφουν αντίστοιχα τις τιμές των προαναφερθέντων ιδιοτήτων. Επίσης η κλάση υλοποιεί την μεθόδο μεταλλαγής fuelTank η οποία κάθε φορά που καλείται σηματοδοτεί το γέμισμα του ρεζερβουάρ του οχήματος με καύσιμο είτε κατά 0.1 είτε κατά 0.2 λίτρα. Τα όρια αυτά (0.1 ή 0.2) έχουν δοθεί ώστε να μη δημιουργείται μεγάλη πίεση στα ηλεκτρονικά του ρεζερβουάρ από το γέμισμά του. Για την ομαλή λειτουργία της διαδικασίας του γεμίσματος του ρεζερβουάρ του οχήματος, η μέθοδος fuelTank δημιουργεί δυο εξαιρέσεις όταν ο απαιτούμενος ρυθμός γεμίσματος του ρεζερβουάρ δεν υποστηρίζεται και όταν το ρεζερβουάρ είναι ήδη γεμάτο. Οι εξαιρέσεις φαίνονται στο παρακάτω διάγραμμα.

Δημιουργείστε μια κλάση **M a I n C I a s s** η οποία θα δημιουργεί αντικείμενα τύπου **TankFuel** και στη συνέχεια θα καλεί την μέθοδο fuelTank έως ότου γεμίσει το ρεζερβουάρ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ECE Y325: ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΕΦΗΣ ΤΕΧΝΟΛΟΓΙΑ

Ενδεικτικός Κώδικας της main:

```
import tankFuel.*;
public class MainClass {
    public static void main(String[] args) {
        TankFuel myTank=new TankFuel(50);
        boolean fillTank=true;
        double fuelTempo=0.1;
        while(fillTank) {
            try {
                myTank.fuelTank(fuelTempo);
                }
            catch (InvalidFuelTempoException ex)|{|
                fillTank=false;
                System.out.println(ex.getMessage());
            catch (TankFullException ex) { fillTank=false;}
        }
        System.out.println(myTank.getTankFuel());
        myTank=null;
```

Ενδεικτικός Κώδικας της fuelTank:

Ενδεικτικός Κώδικας της TankFullException:

```
class TankFullException extends Exception
{
   public TankFullException (String str)
   {
       super(str);
   }
}
```

Σημείωση: Μπορείτε να δημιουργήσετε και επιπρόσθετες εξαιρέσεις. Για παράδειγμα αν ο χρήστης της κλάσης επιχειρήσει να δημιουργήσει ένα ρεζερβουάρ με αρνητική τιμή χωρητικότητας καυσίμων η κλάση Τ a n k F u e l τι πρέπει να κάνει; Προσπαθήστε να αλλάξετε την τιμή της ιδιότητας gasolineTankCapacity σε οποιαδήποτε setter ή getter μέθοδο. Τι παρατηρείτε;