Birim Örnek (Darbe) Cevabı:

$$\mathcal{S}[k] = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

$$y[k] = x[k] + 2 \cdot x[k-1] + 3 \cdot x[k-2] - 4 \cdot x[k-3] + 5 \cdot x[k-4]$$

$$y[k] = \delta[k] + 2 \cdot \delta[k-1] + 3 \cdot \delta[k-2] - 4 \cdot \delta[k-3] + 5 \cdot \delta[k-4]$$

k	x[k]	x[k-1]	x[k-2]	x[k-3]	x[k-4]	y[k]
-1	0	0	0	0	0	0
0	1	0	0	0	0	1
1	0	1	0	0	0	2
2	0	0	1	0	0	3
3	0	0	0	1	0	-4
4	0	0	0	0	1	5
5	0	0	0	0	0	0

Bu sistemler sonlu birim darbe cevabına sahip (FIR) sistemlerdir.

$$y[k] = 4 \cdot x[k] - 0.5 \cdot y[k-1]$$

k	x[k]	y[k-1]	y[k]
0	1	0	4
1	0	4	-2
2	0	-2	1
3	0	1	-0,5
4	0	-0,5	0,25
5	0	0,25	-0,125

Bu sistem için çıkışın sıfır olduğu ve öyle kaldığı bir k değeri bulunamaz. Bu tür sistemlere IIR (sonlu olmayan darbe cevabına) sahip sistem denir.

FIR, IIR Karşılaştırması

$$h[k] = 0$$
, $k < N_1$ veya $k > N_2$

şeklinde bir N_1 veya N_2 değeri bulabiliyorsak ($N_1 \le N_2$) LZD sistem sonlu darbe cevabına sahiptir denir. Böyle bir N_1 veya N_2 değeri bulamıyorsak da LZD sistem sonlu olmayan darbe cevabına sahiptir denir.

Örnek:
$$h[k] = u[k] - u[k-1] = \begin{cases} 1 & 0 \le n \le N-1 \\ 0 & \deg ilse \end{cases}$$

FIR system $N_1 = 0$, $N_2 = ?$

Kararlılık

Sınırlı bir giriş dizisi sınırlı bir çıkış dizisi üretiyorsa bu sistem kararlıdır. (BIBO) (Bounded Input Bounded Output)

$$|x[k]| \le B_X < \infty$$
 için

$$|y[k]| \le B_y < \infty \text{ ise } (B_x, B_y \in R)$$

Not: Birim örnek cevabı sınırlı olan sistemler de kararlıdır.

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

Not: FIR sistemler kesinlikle kararlıdır.

Tekrarlı (Recursive) ve Tekrarlı Olmayan(Non-Recursive) Sistemler

$$\sum_{n=0}^{N} a_n \cdot y[k-n] = \sum_{n=0}^{M} b_n \cdot x[k-n]$$

$$a_o \cdot y[k] = \sum_{n=0}^{M} b_n \cdot x[k-n] - \sum_{n=1}^{N} a_n \cdot y[k-n]$$

$$y[k] = \frac{1}{a_o} \cdot \left(\sum_{n=0}^{M} b_n x[k-n] - \sum_{n=1}^{N} a_n \cdot y[k-n] \right)$$

Eğer a₀ haricindeki (a₁,a₂,.....,a_N) bütün a'lı katsayılar sıfır ise bu tür sistem tekrarlı olmayan (non-recursive) olarak adlandırılır. Bu tür sistemlerde çıkışın daha önceki değerleri o anki çıkışın bulunmasında kullanılmaz.

$$y[k] = \frac{1}{a_0} \cdot \sum_{n=0}^{M} b_n \cdot x[k-n]$$
 (tekrarlı olmayan sistem)

Bu tür bir sistemin birim darbe cevabı sınırlıdır. Yani bütün tekrarlı olmayan sistemler sonlu darbe cevabına sahiptir.

FIR → Tekrarlı olmayan

$$y[k] = \frac{1}{a_o} \cdot \left(\sum_{n=0}^{M} b_n x[k-n] - \sum_{n=1}^{N} a_n \cdot y[k-n] \right)$$

Burada (a₁,a₂,....,a_N) katsayılarından herhangi biri sıfırdan farklıysa bu sistem tekrarlıdır. Yani o anki çıkışın elde edilebilmesi için geçmiş çıkış bilgilerinden birini veya bir kaçını kullanmak gerekmektedir.

Fark Denklemleri Diyagramları

D → gecikme operatörü olarak tanımlansın

$$D\{x(k)\} = x[k-1]$$

$$x[k]$$

$$x[k]$$

$$x[k]$$

$$y[k]$$

$$x[k+2]$$

$$x[k] - x[k+1] + x[k+2] = y[k]$$

Örnek: y[n] = x[n] + 2x[n-1] + 3x[n-2] - 4x[n-3] + 5x[n-4]

Şekil: tekrarlı olmayan bir filtrenin blok diyagramı (genel) IIR filtre için

Direkt I. Kanonik Korm

Ayrık Zamanda Konvolüsyon

$$x[k] = \dots + x[-1] \cdot \delta[k+1] + x[0] \cdot \delta[k] + x[1] \cdot \delta[k-1] + \dots$$

$$x[k] = \sum_{n = -\infty}^{+\infty} x[n] \cdot \delta[k - n]$$

$$x[k] = \left\{ -2,0,1,-1,3 \right\}$$
 olsun.

$$x[k] = -2 \cdot \delta[k] + 0 \cdot \delta[k-1] + 1 \cdot \delta[k-2] - 1 \cdot \delta[k-3] + 3 \cdot \delta[k-4]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$h[k] \qquad h[k-1] \qquad h[k-2] \qquad h[k-3] \qquad h[k-4]$$

$$y[k] = x[0] \cdot h[k] + x[1] \cdot h[k-1] + x[2] \cdot h[k-2] + x[3] \cdot h[k-3] + x[4] \cdot h[k-4]$$

$$y[k] = \sum_{n = -\infty}^{+\infty} x[n] \cdot h[k - n]$$

y[k] = x[k] * h[k] şeklinde gösterilir.

Birim darbe cevabı bilinen bir sistemin herhangi bir girişe verdiği cevap da bulunabilir.

Örnek:
$$x[k] = a^k \cdot u[k] = \begin{cases} a^k & k \ge 0 \\ 0 & k < 0 \end{cases}$$
 Direkt değerlendirme

$$h[k] = u[k]$$
 ise

$$y[k] = \sum_{n=-\infty}^{+\infty} a^k \cdot u[n] \cdot u[k-n] = \sum_{n=0}^{k} a^k = \frac{1-a^{k+1}}{1-a}$$

Konvolüsyon Toplamının Özellikleri

1) Değişme Özelliği

$$x_1[k] * x_2[k] = x_2[k] * x_1[k]$$

İspat:
$$x_1[k] * x_2[k] = \sum_{n=-\infty}^{+\infty} x_1[n] \cdot x_2[k-n] = x[k]$$
 k - n = m

$$x_1[k] * x_2[k] = \sum_{m=-\infty}^{+\infty} x_1[k-m] \cdot x_2[m] = x_2[k] * x_1[k]$$

2) Dağılma Özelliği

$$x_1[k] * (x_2[k] + x_3[k]) = x_1[k] * x_2[k] + x_1[k] * x_3[k]$$

3) Birleşme Özelliği

$$x_1[k]*(x_2[k]*x_3[k]) = (x_1[k]*x_2[k])*x_3[k]$$

4) Darbe İşareti İle Konvolüsyon

$$x[k] * \delta[k] = x[k]$$

İspat:
$$\sum_{n=-\infty}^{+\infty} x[n] \cdot \delta[k-n] = x[k]$$

$$x[k] * \delta[k-n] = x[k-n]$$

Grafiksel Yaklaşımla Ayrık Zamanda Konvolüsyonun Bulunması

$$x[k] = \left\{ -2, 0, 1, -1, 3 \right\}$$
 $h[k] = \left\{ 1, 2, 0, -1 \right\}$

$$y[k] = \sum_{n=-\infty}^{+\infty} x[n] \cdot h[k-n]$$

$$n=0$$
, $y[k]=x[0]\cdot h[k-0]=x[0]\cdot h[k]$

n=1 ,
$$y[k]=x[1]\cdot h[k-1]=x[0]\cdot h[k]$$
 (Bütün örnekler 0 $x[1]=0$)

$$n=2$$
, $y[k]=x[2]\cdot h[k-2]$

$$n=3$$
, $y[k]=x[3]\cdot h[k-3]$

$$n=4$$
, $y[k]=x[4]\cdot h[k-4]$

Bütün y[k] lar toplanırsa;

Tablo Yöntemi

$$x[k] \quad 0 \le k \le 3$$

$$h[k] \quad 0 \le k \le 2$$

	0	1	2	3	4	5
x[k]	x[0]	x[1]	x[2]	x[3]		
h[k]	h[0]	h[1]	h[2]			
h[0]·x[k]	h[0]·x[0]	h[0]·x[1]	h[0]·x[2]	h[0]·x[3]		
h[1]·x[k-1]		h[1]·x[0]	h[1]·x[1]	h[1]·x[2]	h[1]·x[3]	
h[2]·x[k-2]			h[2]·x[0]	h[2]·x[1]	h[2]·x[2]	h[2]·x[3]
y[k]	$\sum Kolon$	$\sum Kolon$	$\sum Kolon$	$\sum Kolon$	$\sum Kolon$	$\sum Kolon$

k	0	1	2	3	4	5
h[k]	h[0]	h[1]	h[2]			
x[k]	x[0]	x[1]	x[2]	x[3]		
x[0]·h[k]	x[0]·h[0]	x[0]·h[1]	x[0]·h[2]			
x[1]·h[k-1]		x[1]·h[0]	x[1]·h[1]	x[1]·h[2]		
x[2]·h[k-2]			x[2]·h[0]	x[2]·h[1]	x[2]·h[2]	
x[3]·h[k-3]				x[3]·h[0]	x[3]·h[1]	x[3]·h[2]
y[k]	$\sum Kolon$	$\sum Kolon$	$\sum Kolon$	$\sum Kolon$	$\sum Kolon$	$\sum Kolon$

Örnek:

$$x[k] = \left\{ -2, 0, 1, -1, 3 \right\}$$
 $h[k] = \left\{ 1, 2, 0, -1 \right\}$

k	0	1	2	3	4	5	6	7
x[k]	-2	0	1	-1	3			
h[k]	1	2	0	-1				
	-2	0	1	-1	3			
		-4	0	2	-2	6		
			0	0	0	0	0	
				2	0	-1	1	-3
y[k]	-2	-4	1	3	1	5	1	-3

Örnek:

$$x[k] = \left\{3, -2, 4\right\} \qquad h[k] = \left\{4, 2, -1\right\}$$

k	-1	0	1	2	3
x[k]	3	-2	4		
h[k]		4	2	-1	
	12	-8	16		
		6	-4	8	
			-3	2	-4
y[k]	12	-2	9	10	-4

$$h[k] = \{..., 0,..., 0, 1, 2, 3, -4, 5, 0, 0,\}$$

$$x[k] = \{...0,...,0,1,2,3,0,...,0,....\}$$

$$y[k] = \sum_{n=0}^{4} h[n] \cdot x[k-n] = x[k] + 2 \cdot x[k-1] + 3 \cdot x[k-2] - 4 \cdot x[k-3] + 5 \cdot x[k-4]$$

$$y[k] = x[k] + 2 \cdot x[k-1] + 3 \cdot x[k-2] - 4 \cdot x[k-3] + 5 \cdot x[k-4]$$

k	x[k]	x[k-1]	x[k-2]	x[k-3]	x[k-4]	y[k]
•			•			•
-1	0	0	0	0	0	0
0	1	0	0	0	0	1
1	2	1	0	0	0	4
2	3	2	1	0	0	10
3	0	3	2	1	0	8
4	0	0	3	2	1	6
5	0	0	0	3	2	-2
6	0	0	0	0	3	15
7	0	0	0	0	0	0
		·		·		

$$y[k] = \{....0,, 0, 1, 4, 10, 8, 6, -2, 15, 0,, 0,\}$$