

Capítulo 2 – Cinemática da partícula material

Universidade do Minho

Introdução

O repouso e o movimento de um corpo são conceitos relativos:

- com o tempo
- corpo está em repouso se a sua posição relativa a outro objeto não varia com o tempo.

- O observador A verifica que o carro se afasta dele.
- O observador B verifica que o observador A se afasta dele.

Assim, o primeiro problema que se põe no estudo de um movimento é o da escolha de uma referência.

Tomamos habitualmente como referência a origem de um sistema de três eixos ortogonais - que constitui um referencial.

O lugar geométrico dos pontos do espaço que vão sendo sucessivamente ocupados pela partícula designa-se por <u>trajetória</u>.

Com base na trajetória podemos classificar os movimentos possíveis da partícula como:

Movimentos retilíneos

Vetor posição; Deslocamento

Universidade do Minho

O estudo do movimento retilíneo simplifica-se, se fizermos coincidir um dos eixos do referencial com a direção do movimento.

A posição da partícula é, em cada instante, caracterizada pelo vetor posição

$$\vec{r}(t) = x(t)\hat{i}$$

O vetor deslocamento traduz a mudança de posição de um objeto.

É caracterizado por:

$$\Delta \vec{r} = \vec{r} - \vec{r}_0$$

direção - da reta suporte do vetor

sentido - aponta da posição inicial para a posição final

módulo - menor distância entre a posição inicial e final

unidade SI: metro (m)

Velocidade média

Universidade do Minho

<u>Velocidade média</u> da partícula define-se, no intervalo de tempo $[t_1, t_2]$, como o quociente do deslocamento pelo tempo que o levou a percorrer:

$$v_{m\acute{e}dia} = \frac{\text{deslocamento}}{\text{intervalo de tempo}} \qquad \qquad \qquad \vec{v}_{m\acute{e}dia} = \frac{\Delta \vec{r}}{\Delta t} = \left(\frac{x_2 - x_1}{t_2 - t_1}\right)$$

unidade SI: (m/s)

Admitindo que $t_2 > t_1$ teremos

se $v_{med} > 0 \implies x(t_2) > x(t_1)$	o movimento tem o sentido positivo do eixo Ox.
se $v_{med} < 0 \Rightarrow x(t_2) < x(t_1)$	o movimento tem o sentido negativo do eixo Ox.

Velocidade instantânea

Universidade do Minho

A velocidade média, devido a ser um valor médio, não contém informação detalhada sobre a mudança de posição.

Quanto menores forem os intervalos de tempo considerados, mais detalhada é a informação sobre a velocidade.

A velocidade instantânea, v, indica a velocidade, a direção e o sentido do movimento de um objeto em cada instante. É igual ao valor limite da velocidade média, quando o intervalo de tempo se torna muito pequeno. Isto é:

$$\vec{v} = \lim_{\Delta t \to 0} \left(\frac{x(t + \Delta t) - x(t)}{\Delta t} \right) \hat{i} = \frac{dx}{dt} \hat{i}$$

Aceleração média e instantânea

Universidade do Minho

Aceleração: taxa de alteração da velocidade instantânea.

Aceleração média num dado intervalo de tempo, $[t_1, t_2]$:

$$\vec{a}_{med} = \frac{\vec{v}(t_2) - \vec{v}(t_1)}{t_2 - t_1}$$

Aceleração instantânea é o valor limite da velocidade média, quando o intervalo de tempo tende para zero.

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{r}}{dt^2}$$

Supondo novamente que $t_2 > t_1$, teremos:

• Se $a > 0 \implies v(t_2) > v(t_1)$:

- Universidade do Minho
- Se $v(t_2)$ e $v(t_1)$ são positivas, isto significa que a velocidade aumenta, isto é, o movimento é acelerado. (a)
- Mas se $v(t_2)$ e $v(t_1)$ são negativas, $v(t_2) > v(t_1)$ significa que o valor absoluto (a grandeza ou módulo) da velocidade em t_2 é menor do que em t_1 e o movimento é <u>retardado</u>. (b)
- Se $a < 0 \implies v(t_2) < v(t_1)$:
 - > Se $v(t_2)$ e $v(t_1)$ são positivas a velocidade está a decrescer e o movimento é portanto <u>retardado</u>. (c)
 - Mas se $v(t_2)$ e $v(t_1)$ são negativas e a velocidade (em grandeza ou módulo) está a aumentar e o movimento será acelerado. (d)

- Um movimento em que existe aceleração diz-se variado.
- Se a aceleração é constante dir-se-á <u>uniformemente variado</u> (acelerado ou retardado).
- No caso particular de ser a = 0 isto significa que a velocidade não varia e o movimento diz-se então <u>uniforme</u>.

Resumo: movimento retilíneo

O deslocamento, entre dois instantes, t_1 e t_2 , é dado pela diferença das posições nestes dois instantes:

$$\Delta \vec{r} = [x(t_2) - x(t_1)]\hat{i}$$

Deslocamento

E que pode ser bastante diferente do espaço percorrido, pois a partícula pode inverter o sentido do movimento. Assim, para determinar o espaço percorrido temos que determinar os instantes em que a velocidade se anula, $\{t_1, t_2, t_3, \ldots\}$, e somar os espaços percorridos para todos os intervalos:

$$\Delta S = \sum_{i=1}^{n} |x(t_i) - x(t_{i-1})|$$
 Espaço percorrido

$$\vec{a} = \frac{d\vec{v}}{dt} \Rightarrow dv = adt$$

Caso se desconheça a velocidade, conhecendo a aceleração, a relação anterior pode ser integrada. Para isso é necessário o conhecimento de um valor da velocidade (v_0 por exemplo) para um dado instante, t_0 . Temos então:

$$\int_{\mathbf{v}_0}^{\mathbf{v}} d\mathbf{v} = \int_{0}^{t} a dt$$

$$v - v_0 = \int_{0}^{t} a dt$$

Caso a <u>aceleração seja constante</u> o integral anterior reduz-se à seguinte equação:

$$\mathbf{v}(\mathbf{t}) = \mathbf{v}_0 + \mathbf{a}\mathbf{t}$$

A variação temporal da velocidade é uma $\underline{\text{reta}}$, onde v_0 é a ordenada na origem (t=0) e a aceleração é o declive.

Do mesmo modo a equação do movimento pode ser obtida por integração, uma Universidade do Minho vez conhecida a lei das velocidades. Tem-se:

$$\vec{v} = \frac{d\vec{x}}{dt} \Rightarrow dx = vdt$$

$$\int_{x_0}^{x} dx = \int_{0}^{t} v dt$$

$$x - x_0 = \int_{0}^{t} v dt$$

Da página anterior temos que $\mathbf{v(t)} = \mathbf{v_0} + \mathbf{at}$, caso a aceleração seja constante. Então ao substituirmos esta expressão no integral anterior temos:

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$
 Equação de movimento

A variação temporal da posição é <u>parabólica</u>, onde x_0 é a ordenada na origem (t=0) A velocidade é uma reta tangente em cada instante da curva de x(t).

Se for dada a aceleração de um corpo em função do tempo, a=f(t), é possível determinar a sua velocidade em função do tempo.

$$a = \frac{dv}{dt}$$
 \Leftrightarrow $dv = a dt$

integrando os dois membros, e considerando que entre t_1 e t_2 a velocidade varia de v_1 até v_2 :

$$\int_{V_1}^{V_2} dv = \int_{t_1}^{t_2} a \, dt \qquad \iff \qquad v_2 - v_1 = \int_{t_1}^{t_2} a \, dt$$

Esta expressão indica que a área medida sob a curva **a-t** entre os instantes t₁ e t₂ é igual à variação da velocidade durante o mesmo intervalo de tempo.

Considerando a expressão:

$$v = \frac{dx}{dt}$$
 \Leftrightarrow $dx = v dt$

integrando os dois membros, e considerando que no intervalo de tempo entre t_1 e t_2 a posição varia de x_1 até x_2 :

$$\int_{X_1}^{X_2} dx = \int_{t_1}^{t_2} v \, dt \qquad \iff \qquad x_2 - x_1 = \int_{t_1}^{t_2} v \, dt$$

Esta expressão indica que a área medida sob a curva **v-t** entre os instantes t₁ e t₂ é igual à variação da posição durante o mesmo intervalo de tempo.

Exemplo 1: Considere uma partícula que se desloca ao longo de uma linha reta e cuja posição é definida pela equação: $\mathbf{x}(t) = 6t^2 - t^3$

Universidade do Minho

- A velocidade em função do tempo pode ser obtida por:

$$v(t) = \frac{dx}{dt} = 12 t - 3 t^2$$

- A velocidade também pode ser obtida pela tangente em cada ponto no gráfico da posição em função do tempo.
- A aceleração em função do tempo pode ser obtida por:

$$a = \frac{dv}{dt} = 12 - 6 t$$
 (não é constante!!)

- A aceleração também pode ser obtida pela tangente em cada ponto no gráfico da velocidade em função do tempo.

Caracterização do movimento da partícula:

entre t=0 e t=2s

aceleração positiva, velocidade aumenta;

t=2s

aceleração nula;

entre t=2s e t=4s

velocidade diminui, aceleração negativa;

t=4s

velocidade nula, posição atinge valor máximo;

entre t=4s e t=6s

velocidade diminui, a partícula volta para trás;

Exemplo 2:

Uma partícula desloca-se ao longo de uma linha reta com a velocidade indicada na figura. Sabendo que a partícula parte da posição x_0 =40 m (em t=0s), calcule:

- a) o instante t, quando a velocidade é zero.
- **b)** a posição da partícula para t = 26 s,
- c) a distância percorrida pela partícula no intervalo [0; 26] s.
- d) a velocidade média da partícula no intervalo [10; 26] s.
- e) a velocidade instantânea para t = 20 s.

- **a)** $a = -5 \text{ m/s}^2$; $v = v_0 + a.(t-t_0)$; t = 22 s;
- **b)** $\Delta x = 920 \text{ m}$; $x = x_0 + \Delta x = 960 \text{ m}$;
- c) $S = \Delta x_{[0; 10]} + \Delta x_{[10; 22]} + |\Delta x_{[22; 26]}| = 600 + 360 + 40 = 1000 \text{ m};$
- **d)** $v_m = \Delta x/\Delta t$; $v_m = 320/16 = 20 \text{ m/s}$;
- e) $v = v_0 + a.(t-t_0)$; utilizando $v_0 = 60$ m/s e $t_0 = 10$ s; v = 10 m/s.

Exemplo 3:

Uma carruagem de metro parte da estação A, ganhando velocidade a uma razão de 4 m/s² durante 6 s, e depois a uma razão de 6 m/s² até que alcança a velocidade de 48 m/s. A carruagem mantêm a velocidade até se aproximar da estação B, sendo então aplicados os travões, o que provoca uma desaceleração constante que conduz à paragem em 6 s. O tempo total gasto no percurso entre A e B é de 40 s. Desenhe as curvas a-t, v-t, e x-t e determine a distância entre as estações A e B.

Curva aceleração - tempo

variação em v = área sob a curva a-t

$$0 < t < 6$$
 $v_6 - 0 = (6 \text{ s})(4 \text{ m/s}^2) = 24 \text{ m/s}$
 $6 < t < t_2$ $48 \text{ m/s} - 24 \text{ m/s} = (t_2 - 6)(6 \text{ m/s}^2)$
 $t_2 = 10 \text{ s}$

$$t_2 < t < 34$$
 aceleração nula $34 < t < 40$ $0 - 48 \text{ m/s} = (6 \text{ s}) a_4$ $\mathbf{a}_4 = -8 \text{ m/s}^2$

$$v = v_0 + at$$

Curva velocidade - tempo

A aceleração é constante, pelo que a curva v-t é construída com segmentos de recta que ligam os pontos onde a velocidade é conhecida.

variação em x = área sob a curva v-t

$$\begin{array}{ll} 0 < t < 6 & x_6 - 0 = 0.5(6 \cdot 24) = 72 \text{ m} \\ 6 < t < 10 & x_{10} - x_6 = 24 \cdot 4 + 0.5 \cdot 6 \cdot 4^2 = 144 \text{ m} \\ 10 < t < 34 & x_{34} - x_{10} = 48 \cdot 24 = 1152 \text{ m} \\ 34 < t < 40 & x_{40} - x_{34} = 48 \cdot 6 - 0.5 \cdot 8 \cdot 6^2 = 144 \text{ m} \end{array}$$

$$d = x_{40} - 0 = 1512 \text{ m}$$

ou
$$x - x_0 = v_0 t + \frac{1}{2} a t^2$$

Curva posição - tempo

Entre 10 < t < 34 tem-se um segmento de reta dado que o movimento é uniforme (v = constante)

Nos outros intervalos os pontos determinados devem ser ligados por arcos de parábola dado o movimento ser uniformemente variado.

Universidade do Minho

Movimento de queda livre

Universidade do Minho

É um movimento retilíneo com uma aceleração constante, igual à aceleração da gravidade, g, dirigida de cima para baixo. Seja h a altura da qual a partícula cai. O sentido do movimento é descendente. Escolhamos o eixo Oy com a direção do movimento. A escolha da origem do eixo e do seu sentido positivo é arbitrária. Considerando o sistema de coordenadas indicado na figura:

$$\vec{a} = -\vec{g}; \rightarrow g = 9.8m/s^2$$

Partícula libertada da altura $h \Rightarrow t = 0, v_0 = 0$

$$t = 0, v_0 = 0$$

a=constante

$$\mathbf{v}_{\mathbf{y}} = \mathbf{v}_{0\mathbf{y}} + \mathbf{a}_{\mathbf{y}}\mathbf{t}$$

$$\mathbf{v}_{\mathbf{y}} = -\mathbf{g.t}$$

Conhecendo a velocidade, podemos obter a equação de movimento em y:

a=constante
$$y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2$$
 $y = h - \frac{1}{2}g.t^2$

$$y = h - \frac{1}{2} g.t^2$$

Exemplo 4: Um homem atira o chapéu ao ar, de uma altura de 2 m, duas vezes: da primeira com uma velocidade inicial de 5.1 m/s e da segunda com uma velocidade inicial de 14.7 m/s. (g=9,8 m/s²)

a) Quanto tempo demora o chapéu a atingir a altura máxima. Qual o valor dessa altura

máxima?
$$v_y = v_{0y} + a_y t \Rightarrow 0 = v_0 - g t \Rightarrow t_{h max} = \frac{v_0}{g}$$
 $t_{h max} = 0.52 \text{ s} \text{ e } t_{h max} = 1.5 \text{ s}$

$$y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2$$
 \Rightarrow $y_{max} = 2 + v_{0y}t_{hmax} - 4.9t_{hmax}^2$
 $y_{max} = 3.33 \text{ m}$ e $y_{max} = 13.03 \text{ m}$

b) Quanto tempo fica o chapéu no ar?

$$y(t) = y_0 + v_{0y}t + \frac{1}{2}a_yt^2$$
 \Rightarrow $0 = 2 + v_{0y}t - 4.9t^2$ $t = 1.34 \text{ s}$ $t = 3.13 \text{ s}$

c) Faça uma análise gráfica do movimento.

Análise gráfica do movimento

Exemplo 5:

Uma bola é arremessada com uma velocidade de 10 m/s dirigida verticalmente para cima, a partir de uma janela localizada 20 m acima do solo. Sabendo que a aceleração da bola é a da gravidade - constante e igual a 9,8 m/s² para baixo, determine:

- a) a velocidade v e a altura y da bola em qualquer instante,
- b) a altura máxima atingida pela bola e o correspondente valor de t
- c) o instante em que a bola toca o solo e a correspondente velocidade. Trace os gráficos v-t e y-t.

a) a velocidade v e a altura y da bola em qualquer instante

$$a = -g = -9.8 \text{ m/s}^2 \implies \text{constante}$$

$$v = v_0 - 9.8t$$

Sabendo que
$$v_0 = 10 \text{ m/s} \Rightarrow v = 10 -9.8t$$

Sabendo que $y_0 = 20$ m e que:

$$y = y_0 + 10t - (1/2)9.8t^2$$
 \Rightarrow $y = 20 + 10t - 4.9t^2$

equação do movimento

Exemplo 5 (cont.):

Universidade do Minho

b) a altura máxima atingida pela bola e o correspondente valor de t: a bola atinge a altura máxima quando v=0:

$$0 = 10 - 9.8 t \implies t = 1.02 s$$

considerando a expressão da altura em função do tempo:

$$y=20 + 10(1,02) - 4,9(1,02)^2 \implies y = 25,1 \text{ m}$$

c) o instante em que a bola toca o solo e a correspondente velocidade a posição do solo é y=0:

$$0 = 20 + 10t - 4.9t^{2}$$

 $t = -1.24 \text{ s}$ ou $t = 3.28 \text{ s}$

$$v = 10 - 9.8(3.28)$$
 \Rightarrow $v=-22.2 \text{ m/s} \text{ (para baixo)}$

Exemplo 6:

Uma bola é arremessada verticalmente para cima, com uma velocidade inicial de 18 m/s, a partir do nível de 12 m do poço de um elevador. No mesmo instante, uma plataforma elevatória passa pelo nível dos 5 m, com uma velocidade constante de 2 m/s. Determine:

- a) quando e onde a bola atingirá o elevador.
- b) a velocidade da bola relativamente ao elevador, quando a bola o atinge.

a) quando e onde a bola atingirá o elevador movimento da bola

A bola movimenta-se com uma aceleração constante

$$a= -9.8 \text{ m/s}^2$$

 $y_{0 \text{ bola}} = 12 \text{ m}$ $v_{0 \text{ bola}} = 18 \text{ m/s}$

as equações correspondentes para a posição e velocidade em função do tempo são:

$$v_{bola} = v_0 + a t$$
 $v_{bola} = 18 - 9.8 t$
 $y_{bola} = y_0 + v_0 t + \frac{1}{2} a t^2$ $y_{bola} = 12 + 18 t - 4.9 t^2$

movimento do elevador

O elevador movimenta-se com uma velocidade constante (a=0)

$$v_{elev} = 2 \text{ m/s}$$

 $y_{0elev} = 5 \text{ m}$

a equação correspondente para a posição do elevador em função do tempo é:

$$y_{elev} = y_{0 elev} + v_{elev} t$$
 $y_{elev} = 5 + 2 t$

Exemplo 6 (cont.):

quando a bola atinge o elevador

$$t=0,39$$
 s

$$y_{elev} = y_{bola}$$

 $5 + 2 t = 12 + 18 t - 4.9 t^{2}$
e $t = 3.65 s$

só a solução positiva tem sentido físico.

a posição em que ocorre a colisão:

$$y_{elev} = 5 + 2 (3,65)$$

$$y_{elev} = y_{bola} = 12,3 \text{ m}$$

b) a velocidade da bola relativamente ao elevador, quando a bola o atinge

a velocidade da bola relativa ao elevador no instante t = 3,65 s:

$$v_{\text{bola/elev}} = v_{\text{bola}} - v_{\text{elev}} = (18 - 9.8 \text{ t}) - 2 = 16 - 9.8(3.65)$$

$$v_{\text{bola/elev}} = -19.81 \text{ m/s}$$

Exemplo 7

Universidade do Minho

Um corpo move-se ao longo do eixo X, segundo a equação: $x = t^3 - 5t^2 + 5$, (x em metros, t em segundos). Calcule:

- a) a velocidade e a aceleração num instante qualquer, t.
- b) a posição, a velocidade e a aceleração para t = 2 s.
- c) a velocidade média e a aceleração média entre t = 1 s e t = 2 s.

a)
$$v = \frac{dx}{dt} = 3t^2 - 10t$$
 (m/s) $a = \frac{dv}{dt} = 6t - 10$ (m/s²)

b)
$$x=8-5x4+5=-7 \text{ m}$$

$$v=3x4-10x2=-8 \text{ m/s}$$

$$a=6x2-10=2 \text{ m/s}^2$$

c)

$$t = 1 \text{ s}$$

 $v = 1 - 5x1 + 5 = 1 \text{ m}$
 $v = 3x1 - 10x1 = -7 \text{ m/s}$
 $v = 3x1 - 10x1 = -7 \text{ m/s}$
 $v = 3x1 - 10x1 = -7 \text{ m/s}$
 $v = 3x1 - 10x1 = -7 \text{ m/s}$

Exemplo 8

A aceleração de uma partícula é definida pela expressão: a = At-1, em que A é uma constante. No instante t = 0, a partícula parte da posição x = 2 m com v = 0. Sabendo que em t = 1 s, v = 1 m/s, determine:

- a) o valor da constante A
- **b)** a posição para t = 2 s

aceleração não é constante!

a)
$$\int_{v_0}^{v} dv = \int_{0}^{t} a dt$$
 $v - v_0 = \int_{0}^{t} (At - 1) dt$ $v = -t + A \frac{t^2}{2}$

$$t = 1 \text{ s}$$
 $1 = -1 + A \frac{1^2}{2}$ $A = 4 \text{ m/s}^3$ $V = -t + 2t^2$

b)

$$\int_{x_0}^{x} dx = \int_{0}^{t} v dt \implies x - x_0 = \int_{0}^{t} (-t + 2t^2) dt \implies x = 2 - \frac{t^2}{2} + \frac{2t^3}{3}$$

$$t = 2 s$$
 $x = 2 - \frac{2^2}{2} + \frac{2x2^3}{3} = \frac{16}{3} m$

Movimento curvilíneo no plano

Universidade do Minho

Coordenadas cartesianas

A posição de uma partícula que se move numa trajetória plana fica definida se for conhecido, em cada instante, o seu vetor posição $\vec{r} = \vec{r}(t)$

Se o plano *xOy* é coincidente com o plano do movimento isto corresponde a conhecer as leis de variação no tempo das suas coordenadas cartesianas, e temos duas equações de movimento

$$x = x(t)$$

$$y = y(t)$$

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$$

Velocidade média:

$$\vec{v}_{med} = \frac{\vec{r}(t_2) - \vec{r}(t_1)}{t_2 - t_1} = \frac{\Delta \vec{r}}{\Delta t}$$

Velocidade instantânea:

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t} = \frac{d\vec{r}}{dt}$$

$$\vec{v} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j}$$

Aceleração média:

$$\vec{a}_{med} = \frac{\vec{v}(t_2) - \vec{v}(t_1)}{t_2 - t_1}$$

Aceleração instantânea:

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} = \frac{d\vec{v}}{dt}$$

$$\vec{a} = \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\hat{j} = \frac{d^2x}{dt^2}\hat{i} + \frac{d^2y}{dt^2}\hat{j}$$

Movimento de projéteis

Universidade do Minho

O movimento de projéteis constitui um bom exemplo de um movimento plano. Normalmente é conhecida a sua velocidade inicial (de grandeza v_0) e direção, fazendo um ângulo α com a horizontal, para além da aceleração (g). Temos assim:

$$\begin{cases} a_x = 0 & \text{(desprezando o atrito do ar)} \\ a_y = -g & \text{(gravidade)} & \text{Constante !} \end{cases}$$

$$\begin{cases} v_x = v_{0x} + a_x t \\ v_y = v_{0y} + a_y t \end{cases}$$

A partir da figura vemos que as componentes da velocidade inicial são:

Velocidade em qualquer instante t da trajetória:

$$v_{0x} = v_0 \cdot \cos \alpha$$

$$v_{0y} = v_0$$
.sen α

$$\begin{cases} v_x = v_0 \cos \alpha & \text{(constante!!)} \\ v_y = v_0 \sin \alpha - gt \end{cases}$$
$$\vec{v}(t) = v_0 \cos \alpha \hat{i} + (v_0 \sin \alpha - gt)\hat{j}$$

Para se obter as leis do movimento, como a aceleração é constante:

Universidade do Minho

$$\begin{cases} v_x = \frac{dx}{dt} \\ v_y = \frac{dy}{dt} \end{cases}$$

$$\begin{cases} v_{x} = \frac{dx}{dt} \\ v_{y} = \frac{dy}{dt} \end{cases}$$

$$\begin{cases} x = x_{0} + v_{0x}t + \frac{1}{2}a_{x}t^{2} \\ y = y_{0} + v_{0y}t + \frac{1}{2}a_{y}t^{2} \end{cases}$$

E obtemos:

$$\begin{cases} x = x_0 + v_0 \cos \alpha t \\ y = y_0 + v_0 \operatorname{sen} \alpha t - \frac{1}{2} \operatorname{gt}^2 \end{cases}$$
 Leis do movimento

$$a_x = 0$$
; $a_y = -g$

Eliminando t nas equações anteriores e considerando x_{θ} e y_{θ} nulos (origem), por exemplo, obtemos a equação cartesiana da trajetória.

$$t = \frac{x}{v_0 \cos \alpha}$$

$$y = tg\alpha \cdot x - \frac{g}{2v_0^2 \cos^2 \alpha} x^2$$
 Equação de uma parábola

O vértice desta parábola é o ponto B (altura máxima).

$$x_B = \frac{v_0^2 sen\alpha \cos \alpha}{g} = \frac{v_0^2 sen2\alpha}{2g}$$

Posição do máximo

Na altura máxima, a componente vertical da velocidade anula-se, isto é,

$$v_y(B) = v_0 \cdot sen \alpha - g \cdot t_{hmax} = 0$$

Nesse ponto a velocidade é horizontal, tangente à trajetória. Desta forma, o tempo, t_{hmax} , que a partícula demora a atingir o ponto mais alto da sua trajetória é dado por:

$$t_{\text{h max}} = \frac{v_0 \text{sen}\alpha}{g}$$

A <u>distância máxima percorrida na horizontal</u> (alcance) é $x_{max} = x_A$. Para a calcular

Universidade do Minho

basta notar que, para $x = x_A$, temos $y_A = 0$, isto é

$$y_A = v_0 sen\alpha t_A - \frac{1}{2}gt_A^2 = 0$$

em que t_A , o tempo que o projétil está no ar, é o <u>tempo de voo</u> e é a solução não nula desta equação. Temos

$$t_{A}\left(v_{0}sen\alpha - \frac{1}{2}gt_{A}\right) = 0$$

$$\begin{cases} t_{A} = 0 \\ t_{A} = \frac{2v_{0}sen\alpha}{g} \end{cases}$$

$$t_{A} = 2t_{B}$$

Obtemos assim:

$$x_{max} = x_A = v_0 \cos\alpha \frac{2v_0 sen\alpha}{g} = \frac{v_0^2 sen(2\alpha)}{g}$$

As grandezas h_{max} , x_{max} e t_A são importantes no estudo de projéteis. Note-se no entanto que as expressões aqui deduzidas para estas grandezas só são válidas para as condições iniciais consideradas, isto é, quando temos $x_0 = y_0 = 0$.

Exemplo 9:

Universidade do Minho

Num jogo de basebol um jogador lança a bola conforme a figura em baixo. Determine: a) o alcance da bola

- b) a altura máxima que a bola atinge, e a velocidade nessa posição
- c) a velocidade da bola quando toca no chão.

a) Alcance?

Exemplo 9 (resolução):

Universidade do Minho

$$\begin{cases} x = x_0 + v_0 \cos \alpha t & \begin{cases} x = 0 + 28 \cos 45^{\circ} t \\ y = y_0 + v_0 sen \alpha t - (1/2)gt^2 \end{cases} \begin{cases} x = 0 + 28 \cos 45^{\circ} t \\ y = 1.6 + 28 sen 45^{\circ} t - 4.9t^2 \end{cases} \begin{cases} x = 19.8 t \\ y = 1.6 + 19.8t - 4.9t^2 \end{cases}$$

$$0 = 1.6 + 19.8t - 4.9t^2$$
 \Rightarrow $t = 4.12 s$
 $x = 82.6 m$

b) Altura máxima?

Na altura máxima v_y=0

$$\begin{cases} v_x = v_0 \cos \alpha & \text{(constante!!)} \\ v_y = v_0 sen \alpha - gt \end{cases} \begin{cases} v_x = 28 \cos 45^{\circ} \\ v_y = 28 sen 45 - 9.8t \end{cases} \begin{cases} v_x = 19.8 \\ v_y = 19.8 - 9.8t \end{cases}$$
$$\vec{v}(t) = 19.8\hat{i} + (19.8 - 9.8t)\hat{j}$$

$$y_{\text{max}} = 1.6 + 19.8(2.02) - 4.9(2.02)^2 \implies y_{\text{max}} = 21.6 \text{ m}$$

c) Velocidade quando a bola bate no chão?

$$\vec{v}(t) = 19.8\hat{i} + (19.8 - 9.8t)\hat{j}$$
$$\vec{v}(t = 4.1s) = 19.8\hat{i} - 20.4\hat{j} \quad (m/s)$$

$$v_{t=4.1s} = 28.4 \ m/s$$
 $tg\theta = \frac{v_y}{v_x} = \frac{-20.4}{19.8} \implies \theta = -45.8^{\circ}$

Velocidade na altura máxima?

$$\vec{v}_{h\text{max}} = 19.8\hat{i} \quad (m/s)$$

Exemplo 10:

Um motociclista está a tentar saltar sobre o maior número possível de autocarros (verdade do Minho figura). A rampa de salto tem uma inclinação de 18º e a rampa de receção é idêntica. Os autocarros estão estacionados lado a lado, e cada um tem uma largura de 2,74 m. O motociclista deixa a rampa com uma velocidade de 33,5 m/s. Calcule:

- a) a velocidade do motociclista após o primeiro autocarro.
- b) o maior número de autocarros sobre os quais o motociclista consegue saltar.

$$\begin{cases} v_x = v_0 \cos \alpha &= 33,5 \cos 18^{\circ} \\ v_y = v_0 \sin \alpha - gt = 33,5 \sin 18^{\circ} - 9,8t \\ \vec{v}(t) = 31,86\hat{i} + (10,35 - 9,8t)\hat{j} & (m/s) \end{cases}$$

$$\begin{cases} v_x = v_0 \cos \alpha &= 33,5 \cos 18^{\circ} \\ v_y = v_0 \sin \alpha - gt = 33,5 \sin 18^{\circ} - 9,8t \end{cases} \begin{cases} x = x_0 + v_0 \cos \alpha \ t = 31,86 \ t \\ y = y_0 + v_0 \sin \alpha - (1/2)gt^2 = 10,35t - 4,9t^2 \end{cases}$$

a)
$$2,74 = 31,86 \text{ t}$$
 $\begin{cases} v_x = 31,86 \text{ m/s} \\ v_y = 9,51 \text{ m/s} \end{cases}$ $\vec{v}(t) = 31,86\hat{i} + 9,51\hat{j} \text{ (m/s)}$

b)
$$0 = 10,35t - 4,9t^2$$
 $x = 31,86t$ $N = 67,3/2,74 = 24,6$
 $t = 2,11s$ $x = 67,3 m$ $N = 24$ autocarros

* 5

Exemplo 11:

Uma bola de borracha é atirada de encontro a uma parede (ver figura). Quando bate na parede a componente vertical da bola mantém-se e a componente horizontal mantém o módulo, mas inverte o sentido. Determine:

- a) a altura em que a bola bate na parede
- b) a velocidade com que a bola bate na parede,
- c) a distância da parede onde irá cair a bola e a sua velocidade.

2m

a) $\begin{cases} x = x_0 + v_{0x}t = 4 - 10t \\ y = y_0 + v_{0y}t - (1/2)gt^2 = 2 + 10t - 4.9t^2 \end{cases}$

b) Velocidade quando bate na parede

$$\begin{cases} v_x = v_{0x} = -10 \text{ m/s} \\ v_y = v_{0y} - \text{gt} = 10 - 9.8t = 6.08 \text{ m/s} \end{cases}$$

A bola atinge a parede quando x=0

$$0 = 4 - 10t \implies t = 0,4 \text{ s}$$

$$\log \text{o y} = 5,22 \text{ m}$$

Depois de bater na parede (inverte em x)

$$\begin{cases} v_{0x} = 10 \text{ m/s} \\ v_{0y} = 6.08 \text{ m/s} \end{cases} \begin{cases} v_{x} = v_{0x} = 10 \\ v_{y} = v_{0y} - gt = 6,08 - 9,8t \end{cases}$$

c)
$$\begin{cases} x = x_0 + v_{0x}t = 10t \\ y = y_0 + v_{0y}t - (1/2)gt^2 = 5.22 + 6.08t - 4.9t^2 \end{cases}$$

A bola bate no chão quando y=0 t = -0.58 s ou t = 1.825 s

$$logo x = 18,25 m$$

10g0 x-16,23 I

$$\vec{v}(t) = 10\hat{i} - 11.8\hat{j}$$
 (m/s)

 $v_0 = -10i + 10j (m/s)$

4m

e

Movimento Circular

Universidade do Minho

É útil em certas situações definir um vetor velocidade angular, $\vec{\omega}$, como sendo um vetor com a direção do eixo de rotação, a grandeza $d\theta/dt$ e o sentido tal que se verifique

O arco \underline{s} , percorrido pela partícula, está relacionado com o ângulo $\underline{\theta}$ por:

$$s = R \cdot \theta$$

Assim, e dado que $ds=R\cdot d\theta$ a velocidade vem simplesmente:

$$\vec{v} = v.\hat{u}_T = \frac{ds}{dt}\hat{u}_T = R\frac{d\theta}{dt}\hat{u}_T$$

uma vez que neste caso o raio, R, é constante. A grandeza

$$\omega = \frac{d\theta}{dt}$$

é designada por **velocidade angular**, e é igual à taxa de variação do ângulo. Temos assim:

$$\vec{v} = v \cdot \hat{u}_T = \omega R \hat{u}_T$$

$$v = \omega R$$

Movimento Circular Uniforme

Podemos neste caso obter também a variação temporal do ângulo. Se ω é

constante e sabendo que:

$$\omega = \frac{\Delta \theta}{\Delta t}$$

Obtemos assim para o caso do movimento circular uniforme ($\alpha=0$):

$$\theta = \theta_o + \omega (t - t_o)$$

⇒ Existe **aceleração normal** dado que o vetor velocidade varia de direção em cada instante, contudo o módulo da velocidade é constante! (v'= v e a_t=0) A aceleração total é igual à aceleração normal.

$$|\vec{a}| = \frac{v^2}{R}$$
 ou $|\vec{a}| = \omega^2 R$

Radial, aponta para o centro da trajetória.

Se o movimento se faz com velocidade angular constante ($\omega = d\theta/dt = constante \Rightarrow \alpha = 0$) diz-se então uniforme. Neste caso, o intervalo de tempo necessário para a partícula efetuar uma volta completa designa-se por período do movimento, T, e corresponde a uma rotação de $\theta = 2\pi$ rad. A sua relação com ω determina-se facilmente já que:

$$\omega = \frac{\Delta \theta}{\Delta t}$$
 Se $\Delta \theta = 2\pi$, então $\Delta t = T$ $\omega = \frac{2\pi}{T}$

Isto é: $T = \frac{2\pi}{\omega}$ Período do movimento

A frequência do movimento, f, é o número de voltas por unidade de tempo, e é o inverso do período:

$$f = 1/T$$
 \Rightarrow $\omega = 2\pi f$

Movimento Circular variado

Universidade do Minho

Se ω não é constante, a aceleração angular e a aceleração tangencial, já não são nulas.

 \Rightarrow O módulo da velocidade já não é constante (v' \neq v), pelo que para além da aceleração normal (a_n), existe uma aceleração tangencial (a_t), e a aceleração total (a), em cada instante, é igual à soma vetorial das duas.

$$\vec{a} = \vec{a}_n + \vec{a}_t$$

Aceleração total aponta sempre para dentro da concavidade.

Movimento circular não uniforme

Universidade do Minho

Existe aceleração angular (α≠0)

Caso geral $\rightarrow \alpha$ é diferente de zero e variável no tempo:

$$\alpha(t) = \frac{d\omega}{dt}$$

$$\omega - \omega_{o} = \int_{t_{0}}^{t} \alpha \, dt$$

$$\omega(t) = \frac{d\theta}{dt}$$

$$\theta - \theta_{o} = \int_{t_{0}}^{t} \omega \, dt$$

Se α é constante:

$$\omega - \omega_{o} = \int_{t_{0}}^{t} \alpha \, dt$$

$$\theta - \theta_o = \int_{t_0}^t \omega \, dt = \int_{t_0}^t (\omega_o + \alpha t) \, dt$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_o + \omega_o t + \frac{1}{2} \alpha t^2$$

Componentes normal e tangencial da aceleração

$$a_n = \frac{v^2}{R}$$

$$a_t = \frac{dv}{dt} = R \frac{d\omega}{dt}$$
 ou $a_t = R \frac{d^2\theta}{dt^2} = R\alpha$

$$\vec{a} = \vec{a}_n + \vec{a}_t$$

$$\vec{a} = \frac{v^2}{R}\hat{u}_n + R\frac{d^2\theta}{dt^2}\hat{u}_t = \frac{v^2}{R}\hat{u}_n + \alpha R\hat{u}_t$$

- ightharpoonup a componente tangencial, $a_t = dv/dt$, que está ligada à variação do módulo da velocidade.
- ➤ a componente normal, $a_n = v^2/R$, que está ligada à variação da direção do vetor velocidade.

Componentes normal e tangencial da aceleração

Universidade do Minho

> Como a velocidade é tangente à trajetória, logo:

$$\hat{u}_t = \frac{\vec{v}}{v}$$

> a componente tangencial da aceleração pode ser calculada:

$$\mathbf{a}_{t} = \vec{\mathbf{a}} \cdot \hat{\mathbf{u}}_{t} = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{v}}}{\mathbf{v}}$$

(projeção da aceleração segundo a direção da velocidade – tangente à trajetória)

> a componente normal da aceleração pode ser calculada: $\vec{a}_n = \vec{a} - \vec{a}_t$ $a_n = \sqrt{a^2 - a_t^2}$

> e o versor da normal à trajetória:

$$\hat{\mathbf{u}}_{\mathbf{n}} = \frac{\vec{\mathbf{a}}_{\mathbf{n}}}{\mathbf{a}_{\mathbf{n}}}$$

Exemplo 12:

Universidade do Minho

O secador de uma máquina de lavar roupa, reduz a velocidade uniformemente de 900 rpm para 300 rpm, fazendo 50 rotações nesse intervalo. Determine a aceleração angular e o tempo gasto nessas 50 rotações.

A aceleração angular é constante pelo que:

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega_0 = 900 \text{ rpm} = 900. \frac{2\pi \text{ rad}}{60 \text{ s}} = 30 \pi \text{ rad/s}$$

$$\omega = 300 \text{ rpm} = 300. \frac{2\pi \text{ rad}}{60 \text{ s}} = 10 \pi \text{ rad/s}$$

1 rot. =
$$2 \pi$$
 rad

da primeira expressão:

$$t = \frac{\varpi - \varpi_0}{\alpha} = \frac{10\pi - 30\pi}{\alpha} = -\frac{20\pi}{\alpha}$$

substituindo na segunda expressão, onde exprimimos o deslocamento angular (θ) em radianos:

$$50 (2\pi) = 30 \pi \left(-\frac{20\pi}{\alpha}\right) + \frac{1}{2}\alpha \left(-\frac{20\pi}{\alpha}\right)^2$$
$$100 \pi = \frac{-400\pi^2}{\alpha}$$

$$\alpha = -4 \pi \text{ rad/s}^2$$

e

$$t = -\frac{20\pi}{-4\pi} \Leftrightarrow t = 5 \text{ s}$$

Exemplo 13:

Universidade do Minho

Um carro tem rodas de 30 cm de raio. Ele parte do repouso e acelera uniformemente até uma velocidade de 15 m/s, em 8 s. Determine a aceleração angular das suas rodas e o número de rotações efetuadas nesse intervalo de tempo.

$$v = \omega R$$
 $\Leftrightarrow \qquad \varpi = \frac{15 \text{ m/s}}{0.3 \text{ m}} = 50 \text{ rad/s}$

A aceleração angular é constante pelo que:

$$\omega = \omega_0 + \alpha t \qquad \alpha = \frac{\varpi - \varpi_0}{t} = \frac{50 \text{ rad/s} - 0}{8 \text{s}}$$

$$\alpha = 6.25 \text{ rad/s}^2$$

O deslocamento angular é dado por:

$$\Delta\theta = \omega_0 t + \frac{1}{2}\alpha t^2$$
 $\Delta\theta = 0 + \frac{1}{2}(6,25 \text{ rad/s}^2)(8s)^2 = 200 \text{ rad}$

Exemplo 14:

Universidade do Minho

 $\alpha(t) = \frac{d\omega}{dt}$

 $\omega(t) = \frac{d\theta}{dt}$

 $v = \omega R$

Uma partícula descreve uma trajetória circular de raio 2 m e parte do repouso e com uma velocidade em que o seu módulo varia de acordo com v= t²-2, durante 5

- s. Determine:
- a) aceleração angular em função do tempo
- b) o número de rotações efetuadas nesse intervalo de tempo.

a)
$$\omega(t) = \frac{v}{R} = \frac{t^2 - 2}{2} = \frac{t^2}{2} - 1$$

$$\alpha(t) = \frac{d\omega}{dt} = t \quad (rad/s^2)$$

b)
$$\omega(t) = \frac{d\theta}{dt} \implies \theta - \theta_o = \int_0^t \omega \, dt$$
 $\theta_0 = 0$

$$\theta = \int_{0}^{t} \left(\frac{t^{2}}{2} - 1 \right) dt = \frac{t^{3}}{6} - t$$

$$\theta = \frac{5^3}{6} - 5 = 15.83 \text{ rad}$$

$$n = \frac{15.83}{2\pi} = 2.52 \text{ rot}$$

Exemplo 15:

Universidade do Minho

Um ventilador gira a uma razão de 900 rpm. Determine:

- a) a velocidade angular de qualquer ponto numa das pás do ventilador
- b) a velocidade linear da ponta da pá se a distância do centro à ponta é de 20 cm.
- c) a aceleração normal num ponto da ponta da pá.
- d) o espaço percorrido por um ponto na extremidade da pá durante 10 s.
- e) o período de rotação

a)
$$\omega = 900 \text{ rpm} = 900. \frac{2\pi \text{ rad}}{60 \text{ s}} = 30 \pi \text{ rad/s}$$

$$\omega = \text{constante}$$

b)
$$v = \omega R \Leftrightarrow v = (30 \pi \text{ rad/s})(0.2 \text{ m})$$

$$v = 18.8 \text{ m/s}$$

$$a_n = \frac{v^2}{R} \iff a_n = \frac{(18.8 \text{ m/s})^2}{0.2 \text{ m}}$$

$$a_n = 1767,2 \text{ m/s}^2$$

d)
$$\omega = \text{constant}$$

o deslocamento angular do ponto considerado é dado por:

$$\theta = \omega t = (30 \pi \text{ rad/s}) (10 \text{ s}) \Leftrightarrow \theta = 943.8 \text{ rad}$$

o espaço percorrido será então:

$$s = \theta R \Leftrightarrow s = (943.8 \text{ rad})(0.2 \text{ m})$$

$$s = 188.8 \text{ m}$$

$$a_n = \frac{v^2}{R} \Leftrightarrow a_n = \frac{(18.8 \text{ m/s})^2}{0.2 \text{ m}}$$
 e)
 $T = \frac{1}{f} = \frac{2\pi}{\varpi} \Leftrightarrow T = \frac{2\pi}{30 \pi \text{ rad/s}}$

$$T = 0.067 s$$