Indeed - ML Intern - Muhammad_Talha

Firslty, i explore the dataset and check how many rows, columns and dtypes of each columns inside the dataset.

In explore_dataset function we are doing all the things that given below:

- checking shape of dataset
- checking column names that exist in dataset
- checking null values
- checking overall information about dataset using info() method
- checking dtypes of columns

```
EDA Dataset: /content/drive/MvDrive/Assignment Data.csv
Total Rows: 129971
Total Columns: 17
Columns: ['Unnamed: 0', 'country', 'description', 'designation', 'points', 'price', 'province', 'region_1', 'region_2', 'taster_name', 'taster_twitter_handle', 'title', 'variety', 'winery', 'Unnamed: 14', 'Unnamed: 15', 'Unnamed: 16']
Total Null Values: 594665
Unnamed: 0
                             Θ
country
                             63
description
                             Θ
designation
                         37465
points
price
                          8996
province
region_1
                         21247
region_2
                          79460
taster_name
                         26244
taster_twitter_handle
                         31213
title
variety
                              1
winery
Unnamed: 14
                         129971
Unnamed: 15
Unnamed: 16
dtype: int64
```

After i selected two columns that description and variety that we will use for model training. Description features will be our independent features and variety will be dependent feature.

```
: df = df[['description', 'variety']]
  df.head()
                                           description
                                                                  variety
    0
         Aromas include tropical fruit, broom, brimston...
                                                             White Blend
    1
            This is ripe and fruity, a wine that is smooth... Portuguese Red
    2
          Tart and snappy, the flavors of lime flesh and...
                                                               Pinot Gris
    3 Pineapple rind, lemon pith and orange blossom ...
                                                                 Riesling
          Much like the regular bottling from 2012, this...
                                                               Pinot Noir
```

We can see below total 707 variety inside our dataset. So, I combine all the sub varieties into main variety.

```
v = df['variety'].value_counts().reset_index()
v
```

	index	variety
0	Pinot Noir	13272
1	Chardonnay	11753
2	Cabernet Sauvignon	9472
3	Red Blend	8946
4	Bordeaux-style Red Blend	6915
702	Cabernet Sauvignon-Barbera	1
703	Sauvignonasse	1
704	Forcallà	1
705	Meseguera	1
706	Bobal-Cabernet Sauvignon	1

707 rows × 2 columns

When I combine all the sub varieties into one main variety, So, we can see the distribution of varieties with count and percentage.

Distribution of Labels

After i do preprocssing on description features and convert variety categorical feature to numeric form.

In preprocess_text function we will apply all the things that given below:

- removing links
- removing special characters
- removing punctuations
- removing numbers
- removing stopwords
- doing stemming
- transforming in lowercase
- removing excessive whitespaces

I also check which words appears most times in our dataset, that analysis we can see below.

 	word	Frequency_distribution
0	wine	83105
1	flavor	70969
2	fruit	63934
3	aroma	41052
4	finish	40465
5	acid	39812
6	palat	38636
7	drink	33970
8	cherri	33590
9	tannin	32980
10	ripe	29143
11	black	29053
12	dri	26516
13	note	25305
14	spice	23546

Data Splition

- 60% for training
- 20% for validation
- 20% for testing

Feature Extraction From TfidfVectorizer

 TF-IDF (term frequency-inverse document frequency) is a statistical measure that evaluates how relevant a word is to a document in a collection of documents.

Models Evaluation

		precision	recall	f1-score
LogisticRegression (TF-IDF) XGBoost (TF-IDF) Random Forest (TF-IDF)	0.661345 0.588174 0.647457	0.721068 0.754979	0.543703 0.463351 0.480007	0.602493 0.550382 0.566715

From above model evaluation table, we can see random forest giving better precision 84% as compare to other models.

Deep Learning

Model Architecture

Model: "sequential_8"

Layer (type)	Output Shape	Param #
embedding_8 (Embedding)	(None, 73, 128)	384000
<pre>spatial_dropout1d_5 (Spatial lDropout1D)</pre>	a (None, 73, 128)	0
lstm_8 (LSTM)	(None, 256)	394240
dense_8 (Dense)	(None, 12)	3084

Total params: 781,324 Trainable params: 781,324 Non-trainable params: 0

None

Accuracy on validation set: 0.6749 Precision on validation set: 0.7838 Recall on validation set: 0.5748 F1_Score on validation set: 0.6394

Deep learning giving better results as compare to machie learning models. We can see F1 score is better then machine learning models.