N84-24716

ANALYSIS OF ELECTROPHORESIS PERFORMANCE

Final Report
RAI-84-E-3

Period Covered: 11/27/83 - 4/6/84

Contract: NAS8-35912

Prepared for:
George C. Marshall Space Flight Center
MSFC, AL 35812

Prepared by: Glyn O. Roberts

Date: 4/6/84

Roberts Associates, Incorporated 1726 Pine Ualley Drive Uienna, UA 22180

ABSTRACT

Our computer code SAMPLE models electrophoresis separation in a wide range of conditions. Applications include steady three-dimensional continuous-flow electrophoresis (CFE), time-dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. Sample results for all these are included.

The code evolves N two-dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations.

The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is therefore also invalid.

We have duplicated one-dimensional results obtained with a similar model by Bier et al.

We have successfully modeled eight experiments done with hemoglobin in a barbitol buffer on acetate film.

TABLE OF CONTENTS

Appendix.	Graphs 1-47	· A-1
3.	Results	3-1
2.	Description	2-1
Section 1.	Introduction	1-1
Table of C	ontents	(ii)
Abstract		(i)

Section 1

INTRODUCTION

This report is brief, and references the numbered view graphs in the Appendix.

Graphs 1 - 6 are an introduction to the presentation and to electrophoretic separation processes, and are not further described.

Section 2 and graphs 7 - 22 are a description of the model formulation, assumptions, and applications, and of the numerical methods, coding and use.

Section 3 and graphs 23 - 46 present results of analytic validations, acetate film experiment simulations, continuous flow electrophoresis simulations, and simulations of electrophoresis cases modeled by Bier et al.

This is a continuing program. Some plans for future work are presented in graph 47.

Section 2

DESCRIPTION

Graph 7 is a code summary, listing the six stages in updating N two_dimensional radical concentration distributions, and describing some available applications of the code in its present form.

Graphs 8 and 9 describe the ionization model and assumptions. All salts are fully ionized. The ionization equilibrium of each radical (or ampholyte, including proteins and cells) is a function only of pH. Four distinct ionization models are used. The coefficients are determined to fit titration measurements of the mean ionization. Graph 10 presents the mean ionization for three hemoglobin types; the root mean square difference from measurements is of order 0.1, which is excellent for magnitudes of order 20.

Graph 11 describes the calculation of the pH distribution from local charge neutrality. Newtons iteration gives very high efficiency and accuracy.

Graph 12 describes the model for ion motion and radical flux, and for the resulting changes in radical concentration. The radical flux is obtained by summing over the degrees of ionization, and has terms representing transport by the mean flow, transport proportional to the local electric field, and a diffusive flux.

The electric field distribution is calculated from charge continuity, the computed total conductivity distribution, and the computed ion diffusion current potential, as described in Graph 13.

Graph 14 discusses an improved model for ion motion, including activity effects of varying concentration. This model has not yet been finalised or implemented, but is a requirement for quantitative agreement with measurements, except at the lowest concentrations.

Applications to continuous flow electrophoresis (CFE), movingwall CFE, and to time-dependent one and two-dimensional cases are described in Graphs 15 through 19, with the corresponding requirements for initial conditions, computational domain and boundary conditions. Output options are listed in Graph 21.

Graph 22 show the input data, and demonstrates the code's flexibility. This data file can be modified in a few moments to make appropriate changes in the problem, the method or the output. This data is for a 3-radical computation with hemoglobin in a barbitol buffer.

Section 3

RESULTS

Analytic code validations are discussed in Graph 23. In certain simple cases and for some components of the problem, analytic solutions and simple measurements are available. The success of the code in duplicating these encourages us in applying it to much more complicated situations. Graphs 24 and 25 are contour plots showing how a weak circular hemoglobin sample preserves its shape after 40 seconds of advection in a uniform barbitol buffer with pH 8.5, with a field of 100 V/cm. This is only one of the wide range of validations we have performed.

Graphs 26 through 36 describe our successful simulations of eight hemoglobin-barbitol experiments with a circular sample in acetate film, performed in May 11983. Graph 27 is a poor reproduction of some of the original films, with the hemoglobin "fixed" by standard processing. Graphs 28 through 36 (including some plots without graph numbers) are concerned with one case, with sample 8.8% hemoglobin in a 2.5% MACDAC barbitol solution, and with a 0.75% buffer. The mean field is 12 V/cm to the left, and the computation went to 360 seconds. Graphs 31 to 3 show successive center-line concentrations of hemoglobin, barbiturate sodium; the hemoglobin spreads to the right with a low constant concentration of approximately circular shape, while the sodium and barbiturate build up on the left and are depleted on the right. Graph 34 shows the successive conductivity profiles on the center-line. ratio of maximum to minimum increases from 2 to 50; the maximum moves to the left and a minimum forms to the right.

The following plots show the successive pH profiles, the electric field along the film (varying from 2.8 to 25 compared with a mean of 12 volts/cm), the current lines, and the transverse electric field, with peak 6 V/cm, which spreads the hemoglobin sample.

Graphs 35 through 39 are contour plots of continuous flow electrophoresis (CFE) tests, with a weak circular hemoglobin sample so that the conductivity and field remained effectively uniform. The tests include a moving wall case where the sample remains circular and CFE with electroosmosis respectively zero, negative and positive. The distortions due to nonuniform flow down the chamber and to positive electroosmosis approximately cancel in Graph 39, as predicted by theory.

Finally our successful duplication of the seven onedimensional computation of Bier et al. is described and demonstrated in Graphs 40 through 46.

APPENDIX

Computer-generated viewgraphs numbered from 1 through 47 are presented on the following pages.

MANTE GLYN ROBERTS	PATE: FEBRUARY 14,1984		TIONS	CONDITIONS	14-FEB-84 07:29
MARSHALL SPACE FLIGHT CENTER	THE SAMPLE CODE	i i	SCRIBE FORMULATION AND ASSUMPTIONS SCRIBE CODE AND CAPABILITIES RESENT VALIDATIONS AND RESULTS JIDANCE ON ELECTROCHEMISTRY AND APPLICATIONS	INTRODUCTION DESCRIPTION DESCRIPTION - FORMULATION, EQUATIONS, AND ASSUMPTIONS - APPLICATIONS, INITIAL AND BOUNDARY COND - CODING, NUMERICAL METHODS, AND USE RESULTS - ACETATE FILM EXPERIMENTS - ACETATE FILM ELECTROPHORESIS - CONTINUOUS FLOW ELECTROPHORESIS - IMPROUE OUTPUT OPTIONS (MOUIES) - IMPROUE FORMULATION - INTERACTION WITH EXPERIMENTS - ADD DYNAMICS IF APPROPRIATE	
ORGANIZATION: RAI/ES73	CHART NO. :	•		OUTIL OU	

GLYN ROBERTS	DATE: FEBRUARY 14,1984		ATUS	SES IT FO SAMPLE	ENTRY FLOW ING AND GRAUITY	Z	
MARSHALL SPACE FLIGHT CENTER	THE SAMPLE CODE	PROBLEMS WITH CFE	CTION AND WALL ELECTRO-OSMOSIS TS CROSS SECTIONS TO CRESCENTS ING RESTRICTIONS ON RADIUS IS RESTRICTS THROUGHPUT ATED BY PLANNED MOUING-WALL APPARATUS	ORM ELECTRIC FIELD TS CROSS SECTION AND OFTEN INCREASES ATES DISTORTION BY WALL EFFECTS BY NON-UNIFORM CONDUCTIVITY DUE TO S ATED BY LOW CONCENTRATIONS IS RESTRICTS THROUGHPUT	DRM FLOW ALONG COLUMN BY CHAMBER SHAPE AND DESIGN AND ENTRY FLOW BY CONVECTION, DUE TO OHMIC HEATING AND GRAVITY ATED BY SMALL CHAMBER DIMENSIONS IS RESTRICTS THROUGHPUT	PROBLEMS ELD TURNS SAMPLE COLUMN TO A RIBBON N SAMPLES APPEAR TO BREAK DOWN	
ORGANIZATION: RAI/ES73	INTRODUCTION- 4		WALL FRICE DISTORY RESULT BUT TH ALLEVIA	NON-UNIFC DISTORY AGGRAUM CAUSED CAUSED ALLEUIM BUT THI	● NON-UNIFO - CAUSED - CAUSED - ALLEVIA - BUT THI	MYSTERY R A/C FIE CERTAIN	

 GLYN ROBERTS	FEBRUARY 10,1984	H ACETATE FILM			RESIS, WITH LINEAR SAMPLES.	FINAL SAMPLES (TYPICAL)	•	4.) •	◆ 19-FEB-84 17:36
MARSHALL SPACE FLIGHT CENTER		ECTROPHORESIS EXPERIMENTS WITH ACETATE	SAMPLE	ELECTRIC FIELD >	ONE-DIMENSIONAL ELECTROPHORESIS, CFE STUDIES, WITH CIRCULAR SAMPL	FINAL SK			
ORCANIZATION: RAIZES73 FIECTS	INTRODUCTION- 5	TIUO-DIMENSIONAL ELECTROP		□	THIS SYSTEM WAS DESIGNED FOR ON SAMPLES. WE HAVE USED IT FOR CF	INITIAL SAMPLE			

DATE: FEBRUARY 10,1984		CATION. I IMPERMEABLE TES, INCLUDING ANY MEAN IONIZATION AND ARE DISTRIBUTED TE LARGE PROTEIN	Hd.	DISTANCE 10-FEB-84 17:36
ELECTROPHORESIS MODELING THE SAMPLE CODE	ISOELECTRIC FOCUSING	THIS IS A DIAGNOSTIC METHOD OF WIDE BIOCHEMICAL APPLICATION. ELECTROLYSIS OF AN AMPHOLYTE MIXTURE IN A GEL BETWEEN IMPERMEABLE ELECTRODES ESTABLISHES A STEADY PH GRADIENT. AMPHOLYTES, INCLUDING ANY PROTEINS, ARE FOCUSED AT THE PH VALUE AT WHICH THEIR MEAN IONIZATION IS ZERO. SMALL AMPHOLYTE MOLECULES HAVE LARGER DIFFUSIVITIES, AND ARE DISTRIBUTED OUER A RANGE SURROUNDING THEIR EQUILIBRIUM POINT, WHILE LARGE PROTEIN MOLECULES ARE SHARPLY FOCUSED.		
ORGANIZATION: RAI/ES73 CHART NO.: INTRODUCTION— 6		THIS IS A DIAGNOSTIC ELECTROLYSIS OF AN A ELECTRODES ESTABLISH PROTEINS, ARE FOCUSE IS ZERO. SMALL AMPHOLYTE MOLE OUER A RANGE SURROUN MOLECULES ARE SHARPL	CONCENTRATIONS	

ORGANIZATION: RAI/ES73	MARSHALL SPACE FLIGHT CENTER	MATE: GLYN ROBERTS
	FLECTROPHORESIS MODELING	
DESCRIPTION- 7	THE SAMPLE CODE	PATE: FEBRUARY 14,1984
	CODE SUMMARY	

EUOLUED ARE CONCENTRATION DISTRIBUTIONS IN TIME, OR IN DISTANCE DOWN A CFE CHAMBER. TWO-DIMENSIONAL RADICAL

SULFATE, ACETATE, AMMONIUM, BARBITURATE FOR EXAMPLES. OR HEMOGLOBIN, MAY BE SODIUM, THE RADICALS HISTIDINE,

IONIZATION DISTRIBUTION FROM THE LOCAL IONIZATION EQUILIBRIUM OR DISTANCE: CORRESPONDING MEAN AND MEAN SQUARE DEGREES OF TIME EACH INCREMENT OF STAGES FOR Ha SIX THE ARE GET **THERE**

GET GET

CORRESPONDING CONDUCTIVITY DISTRIBUTION; DR THE ELECTRIC FIELD AND CURRENT DISTRIBUTIONS FOR THE ELECTRIC FIELD AND SOLUE

FOR EACH SEPARATE RADICAL DISTRIBUTIONS BY APPLYING UPDATE THE RADICAL CONCENTRATION GET THE FLUXES IN EACH DIRECTION

DIVERGENCES TO THE FLUX AN IMPLICIT METHOD

AN OPTION. AS CAN BE DONE CASES ONE-DIMENSIONAL

APPLICATIONS INCLUDE:

CFE SOLUTIONS; STEADY THREE-DIMENSIONAL

MOUING-UALL CFE SOLUT THREE-DIMENSIONAL MOUING-WALL CFE TWO-DIMENSIONAL MOUING-WALL CFE STEADY

FILM EXPERIMENTS; SOLUTIONS ACETATE TWO-DIMENSIONAL IME-DEPENDENT STEADY

FILM EXPERIMENTS ACETATE ONE-DIMENSIONAL IME-DEPENDENT

ISOTACHOPHORESIS: ONE-DIMENSIONAL IME-DEPENDENT

MOVING BOUNDARY ELECTROPHORESIS ONE-DIMENSIONAL ISOELECTRIC FOCUSING. ONE-DIMENSIONAL -DEPENDENT IME-DEPENDENT

ORGANIZATION: RAI/ES73	MARSHALL SPACE FLIGHT CENTER	MAME: GLYN ROBERTS
DESCRIPTION- 8	THE SAMPLE CODE	DATE: FEBRUARY 14,1984
	IONIZATION MODEL	
ALL SALTS ARE	FULLY IONIZED.	
RADICALS IN AC ONLY ON THE	RADICALS IN AQUEOUS SOLUTION HAVE A DEGREE OF IONIZ ONLY ON THE HYDROGEN ION CONCENTRATION:	IONIZATION DEPENDING
	H = 10 ^{-pH} .	
THERE ARE AT	PRESENT FOUR	ABLE:
1. STRONG ACII TO AN IMF	STRONG ACIDS AND BASES ARE ASSUMED TO BE FULLY IONIZED. TO AN IMPOSED DEGREE.	ONIZED.
2. WEAK ACIDS, WEAK EACH DEGREE OF	, WEAK BASES, AND AMPHOLYTES HAVE CONCENTRATIONS OF REE OF IONIZATION IN THE RATIOS	ENTRATIONS OF
••	A: A : A : A++	•
•	$K_1K_2 : K_1 : 1 : H : H^2$ $H^2 : H : C_1 : C_1^2$	
	a_2H^2; a_1H^1; 1 ; a_1H1 ; a_2H2	

WHERE THE CONSTANTS C AND K ARE GIVEN, FROM MEASUREMENTS. FOR A MONOVALENT WEAK ACID THERE IS ONLY ONE CONSTANT, K

M = SlagHJ / SagHJ

- ZjajHJ / ZajHJ

E

THEN

	WITH 19 DATA POINTS FOR ONE HEMOGLOBIN TYPE, THIS GIVES A ROOT MEAN SQUARE ERROR OF LESS THAN 0.10.	IN PRACTICE WE USE N = 4, AND GET THE 13 COEFFICIENTS BY A Least squares fit to measured mean'ionization data.	WITH N = 1, m DECREASES SMOOTHLY FROM a_0 TO a_0 = a_1 AS p_H INCREASES FROM -log(t_1) TO -log(b_1).		4. COMPLEX PROTEINS CAN ICHIZE UP 30 OR MORE TIMES. WE THEREFORE USE ANALYTIC FORMULATIONS FOR m AND M :	$\mathbf{m} = \sum H/(C_j + H) - \sum K_j/(K_j + H)$	3. WEAK ACIDS, WEAK BASES, AND AMPHOLYTES WITH EACH IONIZATION INDEPENDENT OF THE OTHERS HAVE	IONIZATION MODEL (continued)		ORGANIZATION: RAI/ES73 E1 ECTDODUODESTS MODELING	AND M: TO a ₀ - a ₁ FFICIENTS BY A DATA.	WEAK AC IONIZ COMPLEX UE THE WITH AS PH IN PR LEAST ROOT
--	--	---	--	--	---	--	--	------------------------------	--	--	---	--

RGANIZATION	MARSHALL SPACE FLIGHT CENTER	NAME: GI YN ROBERTS
KHIZESIS	ELECTBODHODESTS MODELING	
- 07 2001		DATE
DESCRIPTION- 11	THE SAMPLE CODE	FEBRUARY 14,1984

OH DISTRIBUTION FROM CHARGE NEUTRALITY

THE CHARGE DENSITY IS NEGLIGIBLE COMPARED WITH ITS COMPONENTS. HENCE

$$\sum_{1}^{N} c_{1} m_{1}(H) + H - K_{\omega}/H = 0$$

THIS EQUATION DETERMINES H, AS A FUNCTION OF THE LOCAL CONCENTRATIONS $c_{
m i}$ IS THE IONIZATION CONSTANT FOR WATER, 10-14 THE SOLUTION IS UNIQUE, SINCE EVERY TERM IS MONOTONIC. WHERE K

ONE ITERATION IS ALWAYS SUFFICIENT EXCEPT AT THE FIRST STEP. THE CODE USES NEWTON'S ITERATION, WHICH REQUIRES dm/dH.

20.00

	FIFCTROPHORESIS MODELING	THE SAMPLE CODE FEBRUARY 14,1984	ON AND FLUX AND THE SPECIES CONCENTRATION	ION MOVES INDEPENDENTLY THROUGH THE FLUID WITH VELOCITY	EnU ,	DEGREE OF IONIZATION, MOBILITY PER UNIT IONIZATION (ASSUMED CONSTANT), ELECTRIC FIELD VECTOR.	, THE CONCENTRATIONS (mmole/cc) OBEY	c ₁ = - VE ₁	TLUX OF RADICAL 1 IS OBTAINED BY SUMMING	E_1 = $c_1(\frac{u_f}{u_f} + \overline{E_m_1}U_1)$ - $D_1 \nabla c_1$. Fluid velocity, varies with the application, and is at present zero except for cfe, einstein diffusivity	U ₁ RT/F ,	
ABAANTAATAM.	RAI/ES73	CHART NO.: DESCRIPTION- 12	ION MOTION AN	ASSUME THAT EACH ION MO		WHERE N IS THE DEGREE U IS THE MOBILI E IS THE ELECTR	FROM CONSERUATION, THE		WHERE THE VECTOR FLUX O	HERE US THE FLUID AT PRE DI IS THE EINSTE		

MARSHALL SPACE FLIGHT CENTER GLYN ROBERTS	FIFCTROPHORESIS MODELING		N- 13 THE SAMPLE CODE FEBRUARY 1471364	
ORGANIZATION:		CHART NO. 1	DESCRIPTION- 13	

ELECTRIC FIELD AND CURRENT DISTRIBUTIONS

IMPOSE EITHER THE MEAN ELECTRIC FIELD OR THE MEAN CURRENT DENSITY.

THE ELECTRIC FIELD HAS ZERO CURL, AND IS MINUS THE GRADIENT OF THE POTENTIAL. THE CURRENT VECTOR HAS ZERO DIVERGENCE AND IS THE CURL OF THE CURRENT FUNCTION.

THESE TWO EQUATIONS LEAD TO POISSON-LIKE EQUATIONS FOR EITHER THE POTENTIAL OR THE CURRENT FUNCTION.

EITHER EQUATION IS SOLVED USING FINITE DIFFERENCES AND AN ALTERNATING DIRECTION IMPLICIT (ADI) ITERATIVE METHOD.

THE CURRENT VECTOR IS OBTAINED BY SUMMING OVER IONS AND SPECIES

WHERE THE CONDUCTIVITY AND ION DIFFUSION CURRENT POTENTIAL ARE K_wU_{OH}/H) H 표 $c_1 M_1 U_1$ $c_1^{\mathsf{m}_1}\mathsf{U}_1$ P - RT(

THERE IS NO CURRENT CONTRIBUTION FROM THE FLUID VELOCITY, BECAUSE THE CHARGE DENSITY IS ZERO.

IS ZERO IF THE MOBILITIES ARE ALL EQUAL, FROM CHARGE NEUTRALITY.

14-FEB-84 9213

ORGANIZATION:	MARSHALL SPACE FLIGHT CENTER	HAME: CI VN ROBERTS
KH1/E3/3	ELECTROPHORESIS MODELING	
CHART NO. 1		DATE:
DESCRIPTION- 14	THE SAMPLE CODE	FEBRUARY 14,1984

DEBYE-HUCKEL-ONSAGER MODEL FOR RETARDED ION MOTION

FROM BOLTZMAN'S EQUATIONS, THE RADIUS VARIES WITH THE SQUARE ROOT ION HAS AN ATMOSPHERE OF MEAN CHARGE WITH THE OPPOSITE SIGN. THE CONCENTRATION.

THE ION MOTION IS RETARDED BY TWO EFFECTS:

DIRECTION BECAUSE OF THE FORCE ON THE CHARGED CLOUD. FIRST, THE FLUID AT THE ION IS MOVING IN THE OPPOSITE

SECONDLY, THE CLOUD ITSELF IS DISPLACED BY THE FIELD. THIS REDUCES THE FIELD AT THE ION. THESE EFFECTS CHANGE THE ION VELOCITY THROUGH THE FLUID TO

(1-B)nEU ,

BEING DEVELOPED FOR B. OF ORDER THE SQUARE ROOT OF THE CONCENTRATIONS. THEY WILL BE TESTED AGAINST MEASUREMENTS. APPROXIMATE ANALYTIC FORMULATIONS ARE WHERE 1-B IS THE ACTIVITY.

14-FEB-84 0713

ORGANIZATION: RAI/ES73	MARSHALL SPACE FLIGHT CENTER	CLYN ROBERTS
- 15	ELECTROPHORESIS MODELING THE SAMPLE CODE	PREBRUARY 14,1984
APPLICATION 1	APPLICATION TO CONTINUOUS FLOW ELECTROPHORESIS	RESIS
TAKE THE x AXIS ALO TAKE THE y AXIS ACO	ALONG THE CHAMBER. ACROSS THE CHAMBER. IN THE FIELD DIRECTION.	
THEN LE (3UC)	3U(1-y ² /y ²)/2 , 0 , E _z U _w (3y ² /y ² -)	- 1)/2)
WHERE U IS THE MEAN ZY IS THE CHAM Y IS MEASURED EZU IS THE CO	THE MEAN FLOW THE CHAMBER THICKNESS, MEASURED FROM THE MID-PLANE, IS THE CONSTANT ELECTRO-CSMOSIS WALL SLIP VELOCITY.	IP VELOCITY.
THE RADICAL CONCENTRA	NTRATION EQUATION BECOMES $u(y) \dot{c_i} = -\nabla_i E_i \qquad , \qquad ,$	
WHERE THE VECTOR FLUX THE NEW TIME VAND	FLUX OF RADICAL i IS NOW ONLY TWO-DIMENSIONAL. E VARIABLE IS THE RESIDENCE TIME t = x / U .	D-DIMENSIONAL,
7	= $3(1 - y^2/v^2)/2$.	
		14-FEB-84 07:33

ELECTROPHORESIS MODELING DATE: THE SAMPLE CODE FE	ELECTROPHORESIS MODELING THE SAMPLE CODE	ORGANIZATION:	MARSHALL SPACE FLIGHT CENTER	NAME: ACT TO THE ACT OF THE ACT O
Ā	THE SAMPLE CODE	KH1/ES/3	TECTROPHOPESIS MODELING	STATE WORKING
		THE TOTAL 16	THE SAMPLE CODE	DATE: FERRUARY 14,1984

OTHER APPLICATIONS

- MOUING-WALL CFE
- L SPEED E_zU_w IS STILL IMPOSED; IT MAY BE ZERO. $u = 1 + (U_b 1)(3y^2/\gamma^2 1)/2$ IS THE RATIO OF THE WALL SPEED TO THE MEAN - WALL SPEED
- TIME-DEPENDENT ONE- AND TWO-DIMENSIONAL CASES
- THE FLUID FLOW IS ZERO. USE $U_{\mathbf{b}}$ = 1 TO TIME STEP.
- THE BOUNDARY AND INITIAL CONDITIONS DIFFERENTIATE THE CASES

ORGANIZATION: DAT JEC73	MARSHALL SPACE FLIGHT CENTER	NAME: GLYN ROBERTS
STOCK TO STO	ELECTROPHORESIS MODELING	
DESCRIPTION- 17	THE SAMPLE CODE	PATE: FEBRUARY 14,1984
	,	

INITIAL CONDITIONS

TWO SETS OF INITIAL CONCENTRATIONS ARE SPECIFIED, FOR THE BUFFER AND SAMPLE RESPECTIVELY.

THE SAMPLE IS CIRCULAR, CENTERED AT $(y_{S},0)$, WITH RADIUS r_{S} THE CONCENTRATION DISCONTINUITY IS SMOOTHED USING THESE CONDITIONS ARE SUFFICIENTLY GENERAL FOR ALL APPLICATIONS SO FAR. THE FOR ISOELECTRIC FOCUSING THE FINAL STEADY STATE IS INDEPENDENT OF INITIAL DISTRIBUTION

AND MOUING-BOUNDARY ELECTROPHORESIS THERE IS NO TWO BUFFERS WITH A PLANE INTERFACE. THE CODE E0 , 2rg , the Left Buffer is the Sample. FOR ISOTACHOPHORESIS SAMPLE, THERE ARE USES THE Z-DOMAIN

ORGANIZATION: RAI/E573	MARSHALL SPACE FLIGHT CENTER	HAME: GLYN ROBERTS
CHART NO.1 DESCRIPTION- 18	ELECTROPHORESIS MODELING THE SAMPLE CODE	PATE: FEBRUARY 14,1984
	COMPUTATIONAL DOMAIN	
FOR THE ONE-DIMENSIONAL WE MAKE Y VERY SMALL, A	:IONAL CASES, THE y-DOMAIN IS ARTIFICIAL. ILL, AND USE ONE INTERIOR MESH POINT.	•
EXCEPT FOR ISOELECTRIC	TRIC FOCUSING, THE z-DOMAIN IS EFFECTIVELY	JELY INFINITE.
THE BOUNDARIES OF (IMPOSED INITIAL (IMPSED INITIAL)	THE BOUNDARIES OF OUR COMPUTATIONAL DOMAIN CAN BE FIXED AT THEIR IMPOSED INITIAL VALUES, OR THEY CAN MOVE WITH IMPOSED CONSTANT THIS GIVES OPTIMAL RESOLUTION OF THE EVOLVING SAMPLE SHAPE.	NT THEIR CONSTANT VELOCITIES. PE.
THIS IS ILLUSTRATED	D IN THE NEXT VIEWGRAPH.	
· · · · · · · · · · · · · · · · · · ·		

	FEBRUARY 14,1984			ON IS INTO THE DOMAIN OTION IS OUT OF THE DOMAIN	
MARSHALL SPACE FLIGHT CENTER ELECTROPHORESIS MODELING	THE SAMPLE CODE	BOUNDARY CONDITIONS	* ZERO FLUX OF EVERY RADICAL	C FOCUSING EITHER z BOUNDARY CASES IONS IMPOSED WHEN MEAN ION MOTION ATIVE (PASSIVE) WHEN MEAN ION MOTION	
ORGANIZATION: RAI/ES73	CHART NO.: RESULTS- 20		y BOUNDARIES:	● ISOELECTRIC FOCEND FLUX AT EITHEN ALL OTHER CASES CONCENTRATIONS ZERO DERIUATIUE	

ORGANIZATION	MARSHALL SPACE FLIGHT CENTER	NAME: CL VN ROBERTS
KHI/ES/3	ELECTROPHORESIS MODELING	hate
CHART NO.: RESULTS- 21	THE SAMPLE CODE	FEBRUARY 14,1984
	OUTPUT OPTIONS	
➤ NUMERICAL DI	SAL DIAGNOSTICS	
➤ GRAPHICS OUT PRINTER	SS OUTPUT VTER	
TEKT	TEKTRONIX (1D AND 2D) (MOUIES)	
➤ GRAPHIC	GRAPHICS PLOTS ARE AUAILABLE FOR THE FOLLOWING VARIABLES	3 VARIABLES
● GENERAL - PH = - CONDU - DISTU - CURRE - ELECT - TRANS	<pre>INERAL UARIABLES ph = - log(H) CONDUCTIUITY (MHO/CM) DISTURBANCE UOLTAGE CURRENT LINES (AMPS/CM) ELECTRIC FIELD (UOLTS/CM) TRANSUERSE ELECTRIC FIELD (UOLTS/CM) DIFFUSION CURRENT POTENTIAL (AMPS/CM)</pre>	
● R	ME EACH RADICAL TYPE MOLAR CONCENTRATION MEAN IONISATION MEAN SQUARE IONISATION CHARGE MOLARITY	
- I	ZU	14-FEB-84 07155

.:.

ORGANIZATION: USRA/RAI/ES73		MARS	-L1G	IT CENTER	~	NAME	GLYN R	OBERTS	
CHART NO.1 RESULTS- 22		ELECTI	ELECTROPHORESIS (INPUT DATA P	MUDELING	5 2 3	DATE! JAN	JANUARY 1	18, 198	4
CELLULOSE ACETATE A/8.8(2 Z MESH ZBL1.0000000 ZBR - 1.0000000 ZDL - 0.0000000 ZDR - 4.0000000	A/8.8(2)/0.75X/MIX Y MESH Y MESH 00000 YT - 1 00000 YB - 0 00000 DYRAT - 4	###PRO 1.00000000 0.00000000	######################################	0000 0 0000 0 0000 0	UATER MOBILITIES BOUNDARY FLOU UH . 6.0020 UOH . 6.0020 UUE . 1.0000	1/2/3 999 999 999	SIDE BOUNDA FOR BUFFET ILEFT IRIGHT	BOUNDARY CONDITIONS BUFFER/SAMPLE/MO-FLUX ILEFT - 1 IRIGHT - 1	Ĕ
SPECIES BUFFER MOLARITY 6.001900 8.00228999 HENGLOBIN A. 0.00009999	5AMPLE MOLARITY 9.00570000 9.00584000	SINCLE ION MOBILITY 0.00052700 0.00036000	IONISATION DEFINING 1-3.00 1.80 0.00 -1.00 7.85 0.00 36.09 25.74 3.39	0.86 0.86 7.86	HSTANTS N 0.00 0.00 0.00 0.00 0	N .00 0.00 .90 0.00 .45 11.40 6	9.60 8.60 9.60 8.90 5.97 6.99	N 0.60 0.60 0.00 0.00 12.65 4.99	6.00 6.00 4.79
TIME STEPS NSTEP - 120 TSTEP - 1.00	ADVECTION 3. THZFX . 0.	050 167	######################################		FIXING AMPLITUDES BETCA * 0.500 RETCD * 0.580		POISSON ME NPITER - PEXTRP -	METHOD 10 . 0.500	
DIRECT ACCESS READ & URITE SEG 15EGR - 0 15EGU - 1 1 AFTER PRIOR 15FE BEGIN & INCREMON INCREMENT O 40 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ENTS CASE) CASE) TEGER CONT 1903 9904 1903 9904 1903 9904 1903 9904 1903 9904 1903 9904	UR P	BEGINNING & 11 NCD & 11 NCD & 11 NCD & 12 NCD & 13 NCD & 14 NCD &	Σ . ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	A A B C C C C C C C C C C C C C C C C C	C FREQUENCY G - 0 NC - 0 A A LOTTER IDAOUT 1 9914 1 9914 1 9914 1 9914 1 9914 1 9914 1 9914 1 9914 1 9914	<u>ا</u>	CONTOUR LIMES P	·
	. •							18-JAN-84	97:44

ORGANIZATION	MARSHALL SPACE FLIGHT CENTER	NAME:
RAI/ES73	CIECADOBLOBECTE MODELTNC	GLYN KUBERIS
CUADT NO .	TERVINOREGIA CONFELING	DATE
RESULTS- 23	THE SAMPLE CODE	FEBRUARY 14,1984

ANALYTIC UALIDATIONS

- PH AND CONDUCTIVITY COMPUTATION
- PH AGREES EXACTLY WITH MEASUREMENT AND THEORY FOR CASES ANALYZED
- CONDUCTIVITY AGREES WITH MEASUREMENTS ONLY FOR LOW CONCENTRATIONS. THE MODEL CONDUCTIVITY IS LINEAR IN CONCENTRATION.
- ELECTRIC FIELD AND CURRENT CALCULATION
- AGREEMENT WITH THEORY FOR SIMPLE CASES. AGREEMENT OF CURRENT AND POTENTIAL METHODS. INTERNAL CONSISTENCY.
- **©** EVOLUTION OF RADICAL CONCENTRATIONS
- NO CHANGE IN CIRCULAR SAMPLE UNDER
 ZERO FIELD, MOUING DOMAIN
 WEAK SAMPLE, UNIFORM FIELD
- CORRECT SPREADING OF CIRCULAR GAUSSIAN SAMPLE UNDER DIFFUSION ALONE
- AGREEMENT WITH ANALYTIC SOLUTION FOR SEPARATION OF THREE HEMOGLOBIN TYPES AT LOW CONCENTRATIONS.

			-
. •			•
.			
			•
		\.	
er (n. 1941) Programmer (n. 1944)			
	•		

MOLAR CONCENTRATION FOR HEMOGLOBIN A UEAK HEMOGLOBIN TEST MAXIMUM - 1.27658E-07 INIMUM - 2.37528E-15 INCREMENT - 3.00000E-08

RESULTS- 25 CHART NO.1 RESULTS- 25 UALIDATION RESULTS JANUARY 18,	ELECTROPHORESIS MODELING UALIDATION RESULTS JAI	ELECTROPHORESIS MODELING DATE: UALIDATION RESULTS JAI	ELECTROPHORESIS MODELING UALIDATION RESULTS JAI	ELECTROPHORESIS MODELING UALIDATION RESULTS		CAPILICE CHOLECTIC CHOLIC	
					CHART NO.1 RESULTS- 25		. =
					T		

ORGANIZATION I	MARSHALL SPACE FLYGHT CENTER	HANTEI GLYN ROBERTS
USKH/KHI/ES/3	ELECTROPHORESIS MODELING	
CHART NO.1 RESULTS- 26	THE SAMPLE CODE	JANUARY 18, 1984

CELLULOSE ACETATE FILM EXPERIMENTS

HEMOGLOBIN TESTS WERE PERFORMED IN MAY, 1983, USING SIX DIFFERENT SAMPLES AND FOUR DIFFERENT BARBITOL BUFFERS. TO UNCERTAINTY OF CONTENT. PLOTS OF THE HEMOGLOBIN DISTRIBUTIONS CAN BE COMPARED WITH PHOTOGRAPHS WE COULD SIMULATE ONLY FOUR OF THE SAMPLES DUE THIS INVOLVED A TOTAL OF EIGHT DISTINCT TESTS.

THE COMPARISONS ARE REASONABLY GOOD

ATTRIBUTE THE DIFFERENCES TO THE FOLLOWING CAUSES

- MODEL IS POOR FOR HIGH CONCENTRATIONS

METHOD OF APPLYING SAMPLE TO THE FILM CAUSED MIXING WITH BUFFER POSSIBLE EFFECTS OF OTHER COMPONENTS IN THE SAMPLE AND BUFFER

OTHER DEFICIENCIES IN THE MODEL

ORGANIZATIONI	MAR	MARSHALL SPACE FLIGHT CENTER	HAME
USRA/RAI/ES73	i		GLYN ROBERTS
CHART NO.1 RESULTS- 27	CELLULOSE	RUPHUKESIS MUDELING ACETATE FILM EXPERIMENTS	MENTS JANUARY 18, 1984
	. [8]	1.	20
		A III g. speps, pages pages before the spension of the spensio	Tripoprioritorius June 1 1 July
		de esta destrica francia esta de la companya de la	The state of the s
	•	A III of the property of the party of the pa	5-10-83
	E	den kuntwakuntuskut	Cellulose Acetate Electrophoresis
			18-JNH-84 07146

=;

r

CELCULOSE ACETATE FILM EXPERI RESULTS— 31 CELCULOSE ACETATE FILM EXPERI CONTROLL OF THE PROPERTY OF T	EXPERIMENTS DELING EXPERIMENTS DATE: JANUARY 18, 1984 EXPERIMENTS MANUARY 18, 1984 EXPERIMENTS TITLE RANGE 0.0 10 120 Z TICKS TICKS 3.00E-04 0.00E+00 1.20E-03 U TICKS 3.00E-04 0.00E+00 1.20E-03
--	--

M EXPERIMENTS JANUARY 18 MOLAR CONCENTRATION FOR BARBITURATE CELLULOSE ACTATE AS 88 (2) 75 xx nix RAXINUM . 1.32900E-04 TIME RANGE 0.30 0.00 E+00 1.50 E-06 Z TICKS 3.00E-03 0.00 E+00 1.50 E-06 Z TICKS 3.00 E-03 0.00 E-00 E-00 E-00 E-00 E-00 E-00 E-00	ORGANIZATION: USRA/RAI/ES73	MARSHALL SPACE, FLIGHT CENTER	NAME! GLYN ROBERTS
TICKS 3.00E-03 0.00E+00 1.50E-66 TICKS 3.00E-03 0.00E+00 1.50E-66 TICKS 3.00E-03 0.00E+00 1.50E-66 TICKS 3.00E-03 0.00E+00 1.50E-66	į i	ACETATE	NUARY 18.
MOLAR CONCENTRATION FOR BARBITURATE CELLLUGGE FATARE AR 8 (2)/0.75X/NIX NAXINUM - 5.94100E-04 TIME RANGE 0.0 TO 120.0 Z TICKS 3.00E-03 0.00E.00 1.50E-06 U TICKS 3.00E-03 0.00E.00 1.50E-06 U TICKS 3.00E-03 0.00E.00 1.50E-06			
5.0		MOLAR CONCENTRATIO CELLULOSE ACETATE NAXINUM . 1.329 HINIMUM . 5.941 TIME RANGE 0.0 TO Z TICKS 3.00E-03	H FOR BARBITURATE A/8.8(2)/0.75X/MIX 60E-02 60E-04 120.0 120.0 -1.20 0.00E+00 1.50E-02
5.0			
6.0			
6'0			

RESULTS- 34 CELLULOSE ACETATE FILM EXPERIMENTS JANUARY 18, 1984 CONDUCTIVITY (FINANCE) THE AND THE FILM EXPERIMENTS JANUARY 18, 1984 CONDUCTIVITY (FINANCE) THE AND THE FILM EXPERIMENTS THE AND THE FILM EXPERIMEN	CHART NO.1 RESULTS- 34	RUPHUKESIS HUDELING	
COCHUCTIVITY (THO.CT) CCLLLUSE ACETATE A-8 - 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		ACETATE FILM EXPERIMENTS JANUARY	
CONTOUCTIVITY (MHO/CT) CELLUIOSE ARETRE A/B (2)/A FINITION			
TIPE RANGE 0.0 TO 12:00 TIPE RANGE 0.0 TO 12:		UCTIVITY (MHO/CM) ULOSE ACETATE A/8. NUN 3.68900E-	į.
		RANGE 0.0 TO 120.0 CKS 0.30 -1.20 CKS 1.50E-04 0.00E+00	9 4
-0			
-0			
-0			
	5-1-5		

DH - LOGIGCH)

CELLULOSE ACETATE A/8.8(2)/0.75X/MIX

MAXIMUM - 8.8810

TIME RANGE 0.0 TO 120.0

Z TICKS 4.00F-01 6.80F+00

CURRENT LINES (AMPS/CM)
CELLULOSE ACETATE A/8.8(2)/0.75X/NIX
NAXINUM - 6.44569E-11
MINIMINM - 6.57580E-94
MINIMINM - 1.59080E-04
TIME

TRANVERSE ELECTRIC FIELD (U/CM)
CELLULOSE ACETATE A/8.8(2)/0.75X/MIX
--> MAXINUM - 2.8301
INCREMENT - 2.0000
TIME - 120.00

FG73 MARSHALL SPACE FLIGHT CENTER MANE!	FLECTROPHORESIS MODELING		JOS SHIPLE CODE	
ORGANIZATION! BAT /FS73		1	KE20115- 35	

CONTINUOUS FLOW ELECTROPHORESIS

OF HEMOGLOBINE 'S PERFORMED TO DATE HAVE INVOLVED WEAK CONCENTRATIONS MOUING WALL - STRAIGHT ADVECTION WITH NO SHAPE CHANGE CFE - MORE MOTION AT EDGES, LEADING TO CRESCENT SHAPE CFE WITH NEGATIVE ELECTRO-OSMOSIS - STRONGER CRESCENT CFE WITH POSITIVE ELECTRO-OSMOSIS - NO SHAPE CHANGE. TESTS PERFORMED

THIS ALL AGREES WITH ANALYTIC SOLUTIONS.

THE TIME STEPS ARE EFFECTIVELY INFINITE AT THE EDGES, SINCE THE MEAN FLOW DOWN THE COLUMN IS ZERO.

WE HAVE NOT EXPERIENCED INSTABILITY PROBLEMS. THIS IS DUE TO OUR USE OF IMPLICIT METHODS.

ORGANIZATION: USRA/RAI/ES73	MARSHALL SPACE FLIGHT CENTER FIFCTROPHORESIS MODELING	MARIE 1 GLYN ROBERTS
CHART NO.1 RESULTS- 36	CFE TEST RESULTS	DATE: JANUARY 18, 1984
	MOLAR CONCENTRATION FOR HEMOGLOBIN A LEGA HEMOGL	

MOLAR CONCENTRATION FOR HEMOGLOBIN A UEAK HEMOGLOBIN TEST/CFE MAXIMUM - 1.27491E-07 ININIMUM - -4.40150E-11 INCREMENT - 3.00000E-08 TIME - 40.000

ORGANIZATION: USRA/RAI/ES73	MARSHALL SPACE FLIGHT CENTER	GLYN ROBERTS
CHART NO.1 RESULTS- 38	ELECTROPHORESIS MODELING CFE TEST RESULTS	JANUARY 18, 1984
·		

MOLAR CONCENTRATION FOR HENGLOBIN A UEAK HENGGLOBIN TEST/CFE/VESM/HEG MAXIMUM - 1.27600E-07 MINIMUM - -1.40365E-11 INCREMENT - 3.60000E-08 INCREMENT - 20.6000

0

ORGANIZATION:	MARSHALL SPACE FLIGHT CENTER	NAME 1
	ELECTROPHORESIS MODELING	
CHART NO.: RESULTS- 39	STINSE TEST RESULTS	DATE: JANIJARY 18, 1984

ORGANIZATION: DAT JEC73	MARSHALL SPACE FLIGHT CENTER	GLYN ROBERTS
CICT/III	ELECTROPHORESIS MODELING	
CHART NO.1	1400 H 1010 H	FERDIIARY 14.1984
RESULTS- 40	INE SHIPLE VODE	

BIER GROUP CASES

A. MOSHER, AND D.A. SAUILLE, March, MODELING AND COMPUTER SIMULATION. ELECTROPHORESIS. MATHEMATICAL SCIENCE 219, pp. 1281-1287.

SEPARATELY, RATHER THAN AVERAGING OVER THE CONFINE ATTENTION TO SINGLE IONIZATION. THEIR MODEL IS CONSISTENT WITH OURS. THE DEGREES OF IONIZATION AS EACH ION THEY COMPUTE FLUXES OF THEY

THEY NECLECT BULK FLUID MOTION. THEIR CODE IS LIMITED TO ONE DIMENSION.

EFFICIENT THAN OURS. THEY ARE PRESENTLY LIMITED TO 5 RADICALS. THEIR NUMERICAL METHODS ARE MUCH SLOWER AND LESS THEY WERE FIRST!

ONE-DIMENSIONAL COMPUTATIONS REPORT SEVEN SEPARATE THEY

- ZONE ELECTROPHORESIS
 - MOUING-BOUNDARY (2)
- SOTACHOPHORESIS (2)
- SOELECTRIC FOCUSING
 - ELECTRODIALYSIS

SEUEN.

Ç. :

.