

IP Generators — The next wave of design creation

Neena Chandawale (Host)

Amanjyot Kaur (Presenter)

Agenda

- Introduction to IP generators
- Challenges in IP reuse
- Solutions
 - Chisel based
 - IDesignSpecTM Register automation
 - ISequenceSpecTM Custom sequence automation
 - SLIP-G Standard Library of IPs Generator
- SLIP-G Overview
 - Configurability
 - Customizability
 - Standard sequences
- Deep dive into SLIP-G
 - o GPIO
 - o I2C
 - o TIMER
 - o PIC
- Benefits of IP generators

Conclusion

Progression of design methodologies

 Designs evolved from hundreds of transistors to hundreds of billions over last several decades

 Shrinking transistor and increasing transistor count drove various design and verification methodologies

 Abstraction is the key to managing ever-increasing complexity and scale of ASIC/SoC designs

Design abstraction

GENERATIVE DESIGNS (language or template based)

RTL

GATE LEVEL

TRANSISTOR LEVEL

Advantages

- > Efficient design flows
- > Improved productivity

Challenges in IP reuse

- RTL for an IP can be reused but it is quite brittle
 - Breaks when reused in a substantially changed environment
- Parameters based configuration is typically used to keep the IP flexible for reuse
 - Parameters are not enough
 - Changes in the port-list cannot be handled by parameters
- Customizations for the IP is not possible once the RTL IP is created
 - Example: Adding a custom field in an existing IP's register
- It's not just about the RTL
 - There are other aspects of the development flow that are impacted
 - Example: Firmware, Software
- **Solution**: Generate design IPs including RTL, firmware access code

Introduction to IP generators

Must-have features

- Ease of generation with minimal time and effort
- Generated code should not be encrypted and indistinguishable from hand-crafted code
- Should provide appropriate error messages
- Ability to customize the IPs
 - Example: add functionality such as additional fields and registers to IP's reg-map
- Ability to configure the IPs
 - Example: set values for the parameters
- IPs must be fully tested, verified and validated

Creation of correct-by-construction, reusable designs, faster

Chisel Based

- Chisel (Constructing Hardware In a Scala Embedded Language) is a hardware design language that facilitates advanced circuit generation and design reuse for both ASIC and FPGA digital logic designs
- Chisel adds hardware construction primitives to the Scala programming language
- Chisel not only allows you to express hardware at the register-transfer level (RTL) but also to write hardware generators
- This generator methodology enables the creation of reusable components and libraries raising the level of abstraction in design while retaining fine-grained control

```
val myNode =
Wire(UInt(8.W))
when (input > 128.U) {
myNode := 255.U
} else
when (input > 64.U) {
myNode := 1.U
}
otherwise{
myNode := 0.U
}
Scala

FirRTL

Verilog
```


Chisel Based Flow

IDesignSpec[™]

- **IDesignSpec (IDS)** is a generator that takes a high-level specification and generates parameterizable code
- So, it helps IP/SoC design architects and engineers to create an executable specification for registers and automatically generate output for SW and HW teams

IDesignSpec™ - Continued

Benefits and Capabilities

Template based approach

Eliminate inefficiencies

Generate hardware and testbench

A better approach

		signals	Signals	
name	port type		description	
INTR	In			
PRIOR	inout			

				TX_REG		Reg.
off:	set	extern	al	size	32	
bits	name	s/w	h/w	default		description
31:16	DATA	Rw	Rw	0		
15:13	ACK	Rw	Rw	0		
12:8	PAR_TX	Rw	Ro	0		
7:0	ADDR	Wo	Ro	0		

ISequenceSpec[™]

SLIP-G: Standard Library of IP Generators

- Automatically generate standard IPs, while providing add-in functionality of configurability and customizability
- Standard sequences can also be created for the same.
- Standard Agnisys Library:

SLIP-G - Continued

Standard Sequences

- In addition to the register specification for IPs, a set of standard programming sequences can be created for the IPs
- These configuration sequences will help configure the IPs through a few arguments
- These sequences are a standard set of sequences used to initialize and configure the registers of the selected IP
- Sequences will be created for various scenarios/configurations of that IP
- Example
 - In IDS, TIMER IP can be configured in multiple ways by selecting the generation parameters such as the number of timers, number of sources, counter width, prescaler width, etc.

SLIP-G - Continued

Features

- Highly customizable and configurable
- Supports all IDS standard bus interfaces

- Hooks to custom glue logic
- Comes with standard sequences
- Tested, verified and validated IPs

Configurability GPIO

- GPIO stands for General Purpose Input/Output
- It's a standard interface used to connect microcontrollers to other electronic devices

Configurability – Continued

 I2C is a serial protocol for a 2-wire interface to connect low-speed devices such as microcontrollers, A/D and D/A converters, EEPROMs, I/O interfaces and other similar peripherals in embedded systems

Configurability – Continued TIMER

- This block is used to provides the timing information
- This block provides the measurement of the pulse width, period of the clock by using external sources

Configurability – ContinuedPIC

- PIC stands for Programmable Interrupt Controller
- This is an external device which takes interrupt sources from various peripherals and depending upon their priorities routes them to one or more CPU lines

Customizability

- Flexibility to add custom fields to the register
- Flexibility to add custom signals through signal tables
- Flexibility to add custom registers for adding user-specified functionality

Standard Sequences

- In SLIP-G, user gets the flexibility to create configurable APIs
- Configuration APIs are basically customizable IP initialization sequences to initialize usercontrolled registers of the standard IPS through simple arguments
- User can generate configuration APIs for different modes of the IPs using different arguments
- Standard sequences are generated for
 - TIMER
 - GPIO
 - I2C
 - PIC

GPIO

- GPIO stands for General Purpose Input/Output
- It's a standard interface used to connect microcontrollers to other electronic devices
 - For example, it can be used with sensors, diodes, displays, and system-on-chip (SoC) modules
- GPIO pins do not have any predefined functions and they are unused by default
 - These pins' behavior is controlled by the users at run time
- GPIOs can work as either input or output depending upon the configuration setting for each GPIO pin

BLOCK DIAGRAM

- It has:
 - Configurable number of GPIO pins
 - Configurable number of external sources for driving the GPIO pins
 - Configurable interrupt detection for GPIO pins selected as input at run time
 - For 32 pin GPIO:
 - Maximum operational frequency: 167MHz
 - Size: 1188 LUTs (Xilinx® ZYNQ®)

Register Map

									gp	io_p	oin_	cfg						Re										
	offset	t							Ext	erna	al																	
{repeat	=NUN	M_GPIO	} repe	at va	lue v	will b	e ec	qual	to t	he n	um	ber of	gpio	pins														
	29 2	28 27	26 29			22	21	20	19	18	17	16 19	14	13	12	11	10	9	8	7	6	5 5	;	4	3	2	1	0
bits		name		s/	w	h,	/w		Def	ault								De	scrip	otio	n							
0	gpio_	out_en		rw		ro		0				0: GPI0 1: GPI0					•											
1	ext_s	rc_sel		rw		ro		0				0: outp 1: outp src_sel	ut pi	n is (_			end	ling	upo	n th	e
4:2	Intr_c	detectio	n	Rw		Ro		0				GPIO p 000: pc 001: nc 010: Bc	sedg egedg oth n	ge de ge de eged	tect tect	tion tion			e de	tect	ion							
msb:5	src_s	el		Rw		ro		0				For sel configu Note: - param	ectin ired	g the	inp itpu	t.								٥.	·			n

												gp	10_0	Tg								Ney.									
		offse	et									Ext	erna	al																	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
b	its		r	name	e		S,	/w	h	/w		def	ault									Des	crip	tion							
0 0		bloc	k_e	n			Rw		Ro		0				1: Ei 0: A						ase	d or	USI	E_BL	OCI	_EN					
1		glb	intr	en			Rw		Ro		0				Glob	al si	igna	ls fo	r en	abli	ng ti	he ir	nter	rupt							

												sta	atus									Reg									
		offse	et									Ext	tern	al																	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bi	ts		n	ame	•		s/	w	h	/w		Def	fault									des	cript	ion							
NUM, 0-1:0	_GPI	fld					R/W	/1c	wo		0																				

								enab	le							F	≀eg.	1							
	offs	et						Exter	nal																
																		-	_		_				
31 30	29		25			21	20	19 18		16	15	14	13	12	11			8	7	6	5	4	3	2	1
bits NUM_GPI	61-1	name		s/w		ı/w	_	Defau	π								aesc	ripti	on						
0-1:0	па			rw	ro		0																		
								gpio_	out								eg.	1							
	offse	t						extern	al																
	_																								
	29	28 27 26	25				20	19 18 defaul		16	15	14	13	12	11				7	6	5	4	3	2	1
bits NUM_GPI		name		s/w		/w	0	deraui		Dario			:					riptio						1:	- 0
0-1:0	ata			rw	ro		0			Drive	e the	gpi	o pii	n wn	en s	selec	tea	as o	utp	ut ar	na e	ext_	src_	sei i	S U
								gpio_	in							R	eg.								
	offse	t						extern	al																
31 30	29	28 27 26	25	24 23	22	21	20	19 18	17	16	15	14 1	13	12 1	11 :	10	9	8 7	7	6 !	5	4	3	2	1 (
Bits		name		s/w	h	/w		default								d	escr	iptio	n						
NUM_GPI 0-1:0	data			ro	wo		0																		
								User	C		Dag					R	eg.								
								ozei_	Cusi	.om_	reg							1							
offs	et			externa	al				size			32													
This reg	gister	is added b	y us	er for so	me o	usto	om f	unction	ality.																
bits		name		s/w	h/v	V	d	lefault								d	escri	iptio	n						
0	F1			Rw	Ro	0			U	lser o	can u	se ti	his f	ield	in a	ny c	omp	lex "	nex	t" o	r "a	ssig	n" e	xpre	ession
											n the														
											ard (
											eats						aram	eter	s he	ere e	e.g.	to s	et ti	ne n	umbe
									F.	or ev	amp	le													

interrupt occurs on a GPIO pin.

Standard Sequences

- GPIO pin as output with external source
 - This API is used to configure GPIO pin as an output when driving with external source
 - The following arguments need to be passed while using this API:
 - out_pin GPIO pin number to be configured as an output
 - out_src_sel select the external source which will drive the GPIO out pin
 - Usage-

```
GPIO_init_out_ext_src(out_pin , ext_src_sel)
```

- GPIO pin as output with no external source
 - This API is used to configure GPIO pin as an output when driving with gpio_out register
 - The following arguments need to be passed while using this API:
 - out_pin GPIO pin number to be configured as an output
 - gpio_out_val drive the gpio pin with gpio_out register
 - Usage-

GPIO_init_out_no_ext_src(out_pin , gpio_out_val)

Standard Sequences

- GPIO pin as input with enable interrupt with posedge detection
 - This API is used to configure GPIO pin as an input with enable interrupt when interrupt occurs on posedge
 - The following arguments need to be passed while using this API:
 - inp_pin GPIO pin number to be configured as an input
 - intr_enb GPIO pin enable interrupt
 - Usage-

```
GPIO_init_in_enb_posedge_detect(inp_pin , intr_enb )
```

- Similarly, for negedge use GPIO_init_in_enb_negedge_detect API
- GPIO pin as input with enable interrupt with both posedge and negedge detection
 - This API is used to configure GPIO pin as an input with enable interrupt when interrupt occurs on both posedge and negedge
 - The following arguments need to be passed while using this API:
 - inp_pin GPIO pin number to be configured as an input
 - intr_enb GPIO pin enable interrupt


```
GPIO_init_in_enb_pos_neg_edge(inp_pin , intr_enb )
```

I2C

- I2C is a serial protocol for a 2-wire interface to connect low-speed devices such as microcontrollers, A/D and D/A converters, EEPROMs, I/O interfaces and other similar peripherals in embedded systems
- The I2C Master is used to communicate between the processor and different slaves in the chip
- The I2C in SLIP-G is a subset of the I2C protocol as some of the features of the protocol are not supported
- It has:
 - Configurable sizes of read and write data transactions
 - Configurable operational clock frequency
 - Interrupts for various events
 - I2C with transfer data size of 16 uses 296 LUTs (Xilinx® ZYNQ®)

I2C - Continued

Register Map

1.1.2	slaveregs			slave	egs		Reg.	0x4
offse	et	extern	al		size	32	default	0x00000000
••••								
bits	name	s/w	h/w	default			descrip	tion
slave_t ransfer _reg_si ze:0		Rw	Ro	0				

1.1.3 t	x			tx			Reg.	0x8
offset	t	extern	al		size	32	default	0x00000000
••••								
bits	name	s/w	h/w	defa	lt		descrip	tion
transfe d r_data _size:0	lata	Rw	Ro	0	Data	to be writte	n on Write operation	on
1.1.4 p				CX.			Reg.	Охс

_size:0										
1.1.4	гх					CX.		Re	eg.	Охс
offs	et		extern	al		siz	e 32	default	0x0	00000000
····										
bits		name	s/w	h/w	de	fault		de	scription	
transfe r_data size:0			Ro	Rw	0		Data written	by slave after succ	essful READ ope	ration

1.1.5	ctrl			ctrl		Reg	
offs	et	extern	al	s	ize 32	default	0x0000000
bits	name	s/w	h/w	default		desc	ription
0	en	Rw	Ro	0	I2c bus enable 0:i2c OFF 1:i2c on		
2:1	freq	Rw	Ro	0			
3	srenb	Rw	Ro	0	Repeated start e 0 : Disable 1: Enable	nable bit	
4	singleslave	Rw	Ro	0			

1.1.6	inten			i	inten			Reg.		0x14	
offs	set	extern	al		size	32	defau	ılt	0x	00000000	
(intr.er	nable=abc}										
bits	name	s/w	h/w	def	ault			description	n		
0	tx	Rw	Ro	0	Writ	e complete i	interrupt e	enable			
1	rx	Rw	Ro	0	Read	d complete i	nterrupt e	nable			
2	ack	Rw	Ro	0	Ackr	owledge eri	ror interru	pt enable			
3	rs	Rw	Ro	0	Repe	eated start ir	nterrupt e	nable			
4	gyf.	Rw	Ro	0 Overflow interrupt enable							

1.1.7	intstat				intstat			Reg.	0x18
off:	set	externa	al		size	32	defau	lt	0x00000000
√intr.st	atus=abc;rtl.hw_	enb=false}							
bits	name	s/w	h/w	det	fault			descriptio	n
0	tx	R/w1c	Rw	0		ite complete i .hw_w1p = tru			
1	rx	r/w1c	Rw	0		id complete ir .hw_w1p = tru			
2	ack	r/w1c	Rw	0		nowledge err .hw_w1p = tru		pt	
3	sr	r/w1c	Rw	0		eated start ir .hw_w1p = tru			
4	ovf	r/w1c	rw	0		erflow error ir .hw_w1p = tru			

I2C - Continued

Standard Sequences

- i2cReset
 - This API clears the registers of the 'i2cm' IP specification, including the addr, slaveregs, tx, ctrl, inten, intstat, etc.
- i2cWrite
 - This API is used to configure the i2cm for a write transaction in the slave
 - The arguments to passed for calling this API are:
 - slave_addr to pass the base address of the slave to perform the write transaction
 - reg_addr to pass the register address of the slave to perform the write transaction
 - data_write to pass the data that is to be written in the transaction
 - wr_intr_enb to enable write interrupt
 - Usage-

i2cwrite(slave_addr , reg_addr , data_write , wr_intr_enb)

I2C - Continued

Standard Sequences

- i2cRead
 - This API is to configure the i2cm for a read transaction in the slave
 - The arguments to passed for calling this API are :
 - slave_addr to pass the base address of the slave to perform the read transaction
 - reg_addr to pass the register address of the slave to perform the read transaction
 - Usage-

i2cread (slave_addr, reg_addr)

TIMER

- This block is used to provides the timing information or timing events
- It is sometimes also used to measure pulse width, period of the clock by using external sources
- The timer is an increment counter whose width and counting events will be selected through generation parameters
- Functionalities offered by the block are:
 - Free running mode
 - Periodic mode
 - Prescaling
 - Interrupt generation

BLOCK DIAGRAM

TIMER - Continued

- It has:
 - Configurable number of timers
 - Selectable counter types increment or decrement
 - Configurable counter width with support for wide counters
 - Configurable measurement modes at run time
 - Interrupt generations for different modes
 - Configurable pre-scaler at run time
 - For 32-bit increment counter with 8 number of sources:
 - Maximum operational frequency: 150MHz
 - Size: 1149 LUTs (Xilinx® ZYNQ®)

TIMER - Continued

Register Map

										Control									Reg													
	offs	et				exte							ternal																			
31 30 Bits	29	28 n:	27 ame	26	25		23 w	_	21 /w	20		18 ault		16	15	14	13	1	2 1	1		9 des	8 crin	tio	7 n	6	5	4	3	2	1	0
0 en					rw			ro	,	0		-		1:- Enables the timer block or calculations 0:- Disables the timer block																		
2:1	mod	node				rw		ro		0				00: running mode 01: Periodic mode with source enable 10: reserved 11: reserved																		
5:3 Event_sel				rw				ro		0				000 001 010 011 Leg 100 101	Legal values for running mode 000: high level 001: low level 010: between two high edges 011: between two low edges Legal values for the Periodic Mode 100: Posedges 101: negedges 110: both edges 111: without the source and counting event will be the posedge of the clock																	
Src_wi dth-1:0	Src_wi Src_sel dth-1:0					rw		ro		0				The	select the source on which measurement will be performed. ese act as a counter enable signals for a given timer. no source width is defined, then the timer will count the clock ges depending upon the prescaling value.																	

Modes of operation

Running mode with high level

Waveform for Increment Counter for high level signal

• Running mode with two consecutive high level

Waveform for Increment Counter between two posedges

Modes of operation

· Periodic mode with source

Waveform for Increment Counter when the counting event is +ve edge of the selected source

Periodic mode without source

Standard Sequences

reset_seq

This API clears the registers of the 'Timer' IP specification, including the control register, period register, prescaler register, and counter register

- timer_init_gen_seq
 - This API is a general configuration API to initialize the timer IP with few arguments
 - The arguments to be passed while calling function `timer_init_gen_seq' are:
 - timer_en this is a single bit argument to enable the timer
 - timer_mode this is a two-bit argument to select the mode of the timer
 - timer_event_sel to select legal event of the selected mode of the timer
 - timer_src_sel to select the source in which timing measurement is to be performed
 - timer_prescal to select the 'Prescaler' register value of the Timer IP which modifies the clock frequency for counting events
 - Usage-

timer_init_gen_seq (timer_en,timer_mode,timer_event_sel,timer_src_sel,timer_prescal)

Standard Sequences

- running_mode_high_event
 - This API is to initialize a timer with running mode and 'high level' as 'event select'
 - The arguments to be passed while calling function 'running_mode _high_event' are:
 - timer_src_sel to select the source to perform 'high level' event of the running mode of the timer.
 - timer_prescal to select the 'Prescaler' register value of the Timer IP.
 - Usage-

```
running_mode_high_event(timer_src_sel , timer_prescal )
```

 Similarly, there are APIs for running_mode_low_event, running_mode_two_high_event, running_mode_two_low_event, periodic_mode_posedges_event, periodic_mode_negedges_event, periodic_mode_bothedges_event, and default_event

PIC

- PIC stands for Programmable Interrupt Controller
- This is an external device that takes interrupt sources from various peripherals and, depending upon their priorities, routes them to one or more CPU lines
- PIC commonly consists of hard priorities, configurable software priorities
- By using these relative priorities, interrupt source with highest priority is routed to CPU line

• It has:

- Configurable number of interrupt sources and their priorities
- Configurable software interrupt generation
- Configurable output interrupt generation, including active high or active low and edge or level triggered at run time
- Configurable enable/disable functionality packed enable bits in a register or separate enable register for each interrupt source
- Configurable interrupt clear functionality interrupt clear bits are packed or present in separate registers
- Vectored addressing
- Non vectored IP with 32 interrupt sources and registered acknowledge:
 - Maximum operational frequency: 167MHz
 - Size: 1253 LUTs (Xilinx® ZYNQ®)

Register Map

										in	tr_c	fg								Reg	=								
	offs	et								ext	tern	al																	
(repeat	= N	UM	INTR	SRCS	1																								
31 30	29	28	27 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bits		r	name		S,	/w	h	/w		Def	fault									desc	ript	ion							
0	dete	ect			rw		Ro		0				Edg	e de	tecti	ion (or le	vel o	lete	ctior	1								
1	leve	-1			rw		ro		0				Acti	ive h	igh (or ac	tive	low	-lev	el in	tern	unt	sour	ces					

#else				
-------	--	--	--	--

												S	tatus									Reg									
		offse	et									e	kterna	al																	
(cer	eat	= NI	JM	INT	R_SI	RCS	}																								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bits Name s/w h/w Default description																															
0 Fld r/w1c wo 0 {intr.status=a}																															

#if	d€	ef													UNI	PAC	ĸ	==	0												
												E.	nable	_								Red									
												EI	IdDit	=									•								
	C	offse	et .		Ш							ex	tern	al																	
(repe	at =	= (N	UM	_IN1	TR_S	RC	5 %3	2==	0) ?	NUI	N_II	VTR.	SRC	S/	32 : [NUN	1_IN	TR_	SRC	S /3	2 +1	.}									
31 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bits	5		n	name	ame s/w h/w Default description																										
31:0	f	fld					rw		ŋą		0				{intr	.ena	able:	=a}													

Standard Sequences

- pic_vectored_negedge: This API handles vectored interrupts when negedge occurs on the interrupt source
- pic_vectored_posedge: This API handles vectored interrupts when posedge occurs on the interrupt source
- pic_vectored_level_low: This API handles vectored interrupts when the interrupt source has active low signal
- pic_vectored_level_high: This API handles vectored interrupts when the interrupt source has active high

Standard Sequences

- pic_non_vectored_level_low: This API handles non vectored interrupts when the interrupt source has active low signal
- pic_non_vectored_level_high: This API handles non vectored interrupts when the interrupt source has active high signal
- pic_non_vectored_posedge: This API handles non vectored interrupts when posedge occurs on the interrupt source
- pic_non_vectored_negedge: This API handles non vectored interrupts when negedge occurs on the interrupt source

DMA

- Configurable number of channels
- Interrupt controller for status and diagnostics
- Configurable source and destination address descriptors
- Scatter/Gather supports non-contiguous data block transfers to a contiguous segment of memory and vice versa
- Round robin arbitration between channels
- Support for multiple modes: memory to memory, memory to peripheral, peripheral to memory, and peripheral to peripheral modes

SLIP-G Benefits

- Fully configurable
 - Supports all configuration parameters for a varied set of needs
- Easily customizable
 - Users can perform customizations such as: add fields to existing registers, add additional registers, or even have dependencies on events of the IP and add arbitrary logic to the IP
- On-the-fly generation
 - IPs are generated from the command line or on a click of a button
- Unencrypted code
 - All the generated files are available as plain text for easy debugging and use by downstream tools
- IPs can be instantiated in IDesignSpec and come with standard sequences for ISS

Conclusion

- Complexity can be handled by using abstraction
- One of the forms of abstraction is reuse.
- Reuse is possible if the IPs are customizable and configurable
- Its not just about RTL reuse reuse must also happen in firmware and software
- Invest in tools and flows that help in the design abstraction and reuse
- Agnisys can help: IDesignSpec[™], ISequenceSpec[™], SLIP-G

Agnisys Webinar Series

BRINGING THE LATEST AUTOMATION IN IP/FPGA/SOC TO YOUR HOME!

Time: 10:00 AM - 11:00 AM PDT

IP connectivity and SoC design assembly

08-April-2020	Correct by construction SV UVM code with DVinsight - a smart editor	30-April-2020	Advanced UVM RAL - callbacks, auto- mirroring, coverage model, and more	28-May-2020	Steps to setup RISC-V based SOC Verification Environment
09-April-2020	Creating portable UVM sequences with ISequenceSpec	7-May-2020	Functional safety and security in embedded systems	04-June-2020	Automatic verification using Spectar-AV - a boost to verification product
16-April-2020	Register automation from SystemRDL to PSS - Basic to Pro	14-May-2020	IP generators - the next wave of design creation	11-June-2020	Al based sequence detection for verification and validation of IP/SoC
23-April-2020	Cross platform specification to code	21-May-2020	Δ flexible and customizable flow for	18-1upe-2020	Understanding clock domain cross

generation for IP/SoC with IDS-NG

About Agnisys

- The EDA leader in solving complex design and verification problems associated with HW/SW interface
- Formed in 2007
- Privately held and profitable
- Headquarters in Boston, MA
 - ~1000 users worldwide
 - ~50 customer companies
- Customer retention rate ~90%
- R&D centers (US and India)
- Support centers committed to ensure comprehensive support
 - Email: <u>support@agnisys.com</u>
 - Phone: 1-855-VERIFYY
 - Response time within one day; within hours in many cases
 - Multiple time zones (Boston MA, San Jose CA and Noida India)

IDESIGNSPEC™ (IDS) EXECUTABLE REGISTER SPECIFICATION

Automatically generate UVM models, Verilog/VHDL models, coverage model, software model, etc.

AUTOMATIC REGISTER VERIFICATION (ARV)

ARV-Sim[™]: Create UVM test environment, sequences, and verification plans, and instantly know the status of the verification project

 $\mathsf{ARV} ext{-}\mathsf{Formal}^\mathsf{TM}$: Create formal properties and assertions, and coverage model from the specification

ISEQUENCESPEC™ (ISS)

Create UVM sequences and firmware routines from the specification

DVinsight™ (DVi)

Smart editor for SystemVerilog and UVM projects

IDS – Next Generation™ (IDS-NG)

Comprehensive SoC/IP spec creation and code generation tool