Fixed Linear Effects Models

Peter von Rohr

24.02.2020

Background

- Given a population of N animals
- ▶ Each animal has information on genotypes at loci *G*, *H* and *I*
- Each animal has an observation for one quantitative trait of interest y
- ► **Goal**: Predict genomic breeding values

Data

Two Types Of Models

- 1. **Genetic** Model: How can we decompose the phenotype into genetic part and non-genetic environmental part
- 2. **Statistical** Model: How to estimate unknown parameters from a dataset

Goals:

- 1. Use genetic model to show how observations and genetic information can be used to predict breeding values.
- 2. Use statistical techniques to do the prediction

Genetic Model

- simple model from quantitative genetics to split phenotypic observation into
 - genetic part g and
 - environmental part e

$$y = g + e$$

- environment: split into
 - known environmental factors: herd, year, ... (β)
 - ightharpoonup unknown random error (ϵ)
- polygenic model: use a finite number of loci to model genetic part of phenotypic observation

Genetic Model (II)

Phenotype

Polygenic Model

 Component g can be decomposed into contributions g_j of single loci

$$g = \sum_{j=1}^k g_j$$

- Assume that loci are additive, hence genotypic values g_j depends on a_i with $d_i = 0$
- ▶ Genotypic values at locus j can either be $-a_j$, 0 or a_j
- Breeding values based on locus j depends on aj.

Genotypic Value

ightharpoonup Genotypic value g_i for animal i over all loci

$$g_i = M_i \cdot a$$

where M_i is a row vector with elements -1, 0 and 1 and a is the vector of all genotypic values of the positive homozygous genotypes of all loci.

Phenotypic Value

 \triangleright Collecting all components for an observation y_i for animal i

$$y_i = W_i \cdot \beta + M_i \cdot a + \epsilon_i$$

▶ all animals in the population

$$y = W \cdot \beta + M \cdot a + \epsilon$$

ightharpoonup combining $b^T = [\beta \quad a]$ and $X = [W \quad M]$

$$y = X \cdot b + \epsilon$$

Statistical Model

- genetic model from statistics point of view
- phenotypic observation as response y
- vector b (known environment and genotypic values) as unknown parameter
- fixed predictor variales in matrix X
- \triangleright vector ϵ as random error terms
- → Fixed Linear Effects Model

Parameter Estimation

- use regression model
- regression means both response and predictors are continuous
- example dataset: body weight on breast circumference

Regression Dataset

Animal	Breast Circumference	Body Weight
1	176	471
2	177	463
3	178	481
4	179	470
5	179	496
6	180	491
7	181	518
8	182	511
9	183	510
10	184	541

Regression Model

- response *y*: body weight
- predictor x: breast circumference
- \triangleright model for observation y_i

$$y_i = x_i * b + \epsilon_i$$

- ▶ meaning of *b*: change x_i by one unit y_i changes on average by *b* units.
- use case: measure x_{N+1} for animal N+1 with unknown weight and use b to predict y_{N+1}

Least Squares

- How to find b such that y is best approximated by x
- ightharpoonup Residuals $r_i = y_i x_i * b$
- ▶ Minimization of sum of squared residuals (SSQ_R)
- ▶ Use \hat{b} at minimal SSQ_R as estimate

LSQ Diagram

