Uniformity and the delta-method

Maximilian Kasy José L. Montiel Olea

October 27, 2014

Maximilian Kasy Harvard

Introduction

Introduction

- Many procedures for estimation and inference:
 - motivated by asymptotic behavior
 - for fixed parameter values.
- Often, such procedures behave poorly
 - in finite samples
 - for some parameter regions.
- Such problems can arise, if approximations are not uniformly valid.
- Can lead to
 - large mean squared error for estimators,
 - undercoverage for confidence sets.
 - distorted rejection rates for tests.
 - 4. ...

The uniform delta-method Introduction

Examples in econometrics

- Instrumental variables: poor behavior for weak instruments
- 2. Inference under partial identification: poor behavior near point-identification
- Estimation after model selection: poor behavior around the critical values for model selection
- Time series: poor behavior near unit roots

- Unifying theme?
- One important tool in asymptotics: Delta-method
- ► Taylor expansions to approximate functions of random variables
- ▶ Problems ⇔ Large remainder for some parameter values
- This paper:
 - A sufficient and necessary condition
 - for uniform negligibility
 - of the remainder.

Introduction Preliminaries The uniform delta-method Application

Roadmap

- ► Literature
- Preliminaries:
 - Definitions
 - Uniformity and inference
 - Uniform continuous mapping theorem
- Uniform delta method:
 - Necessary and sufficient condition
 - Simpler sufficient conditions
- Applications:
 - Stylized examples: |t|, 1/t, \sqrt{t} , $\cos(t^2)$
 - Weak instruments, moment inequalities

Maximilian Kasy Harvard

5 of 31

Preliminaries The uniform delta-method

Preliminaries

Introduction

Notation:

- $m{\theta} \in \Theta$ indexes the distribution of the observed data
- ho $\mu = \mu(\theta)$ is some finite dimensional function of θ
- asymptotics wrt n
- F: cumulative distribution functions
- ► S, T, X, Y and Z: random variables / vectors

Definition (bounded Lipschitz metric)

- ▶ **BL**₁: set of all functions h on \mathbb{R}^k such that
 - 1. $|h(x)| \le 1$ and
 - 2. $|h(x) h(x')| \le ||x x'||$ for all x, x'
- bounded Lipschitz metric on the set of random variables:

$$d_{BL}^{\theta}(X_1,X_2):=\sup_{h\in \textbf{BL}_1}\left|E^{\theta}[h(X_1)]-E^{\theta}[h(X_2)]\right|.$$

▶ van der Vaart and Wellner (1996, section 1.12): convergence in distribution of X_n to X \Leftrightarrow convergence of $d_{BL}^{\theta}(X_n, X)$ to 0.

Maximilian Kasy Harvard

Definition (Uniform convergence)

1. X_n converges uniformly in distribution to Y_n if

$$d_{BL}^{\theta_n}(X_n,Y_n) \rightarrow 0$$

for all sequences $\{\theta_n \in \Theta\}$.

2. X_n converges uniformly in probability to Y_n if

$$P^{\theta_n}(\|X_n-Y_n\|>\varepsilon)\to 0$$

for all $\varepsilon > 0$ and all sequences $\{\theta_n \in \Theta\}$.

Maximilian Kasy

Lemma (Characterization of uniform convergence)

1. X_n converges uniformly in distribution to Y_n iff

$$\sup_{\theta} d_{BL}^{\theta}(X_n, Y_n) \to 0$$

2. X_n converges uniformly in probability to Y_n iff

$$\sup_{\theta} P^{\theta}(\|X_n - Y_n\| > \varepsilon) \to 0$$

for all $\varepsilon > 0$.

Maximilian Kasy Harvard

The uniform delta-method Preliminaries

Remarks

Definition of convergence: sequence X_n toward another sequence Y_n

- ightharpoonup Special case $Y_n = X$
- Uniform convergence in distribution safeguards
 - for large n
 - against poor approximation
 - for some θ .
- Next slide: uniform convergence in distribution ⇒ uniform validity of inference procedures

Preliminaries The uniform delta-method

Lemma (Uniform confidence sets)

- Suppose $Z_n = Z_n(\mu) \rightarrow^d Z$ uniformly, where
- Z is continuously distributed and
- the distribution of Z does not depend on θ .
- ▶ Let z be the 1 $-\alpha$ quantile of the distribution of Z.

Then

$$C_n := \{m : Z_n(m) \le z\}$$

is such that

$$P^{\theta_n}(\mu(\theta_n) \in C_n) \to 1-\alpha$$

for any sequence θ_n .

Theorem (Uniform continuous mapping theorem)

Let $\psi(x)$ be a Lipschitz-continuous function of x.

- 1. Suppose X_n converges uniformly in distribution to Y_n . Then $\psi(X_n)$ converges uniformly in distribution to $\psi(Y_n)$.
- 2. Suppose X_n converges uniformly in probability to Y_n . Then $\psi(X_n)$ converges uniformly in probability to $\psi(Y_n)$.

Maximilian Kasy Harvard

12 of 31

The uniform delta-method

The uniform delta-method

Setting

- sequence of numbers r_n (eg. $r_n = \sqrt{n}$)
- sequence of random variables T_n
- such that

$$S_n := r_n(T_n - \mu) \rightarrow^d S$$

uniformly

- \blacktriangleright all distributions and μ indexed by θ
- corresponding sequence

$$X_n := r_n(\phi(T_n) - \phi(\mu))$$

 \triangleright goal: approximate the distribution of X_n by the distribution of

$$X:=\frac{\partial \phi}{\partial x}(\mu)\cdot S.$$

• first order Taylor expansion of ϕ :

$$\phi(t) = \phi(m) + \frac{\partial \phi}{\partial m}(m)(t-m) + o(t-m)$$

normalized remainder

$$\Delta(t,m) := \frac{1}{\|t-m\|} \left\| \phi(t) - \phi(m) - \frac{\partial \phi}{\partial m}(m) \cdot (t-m) \right\|.$$

$$p(arepsilon, arepsilon', m) := \int_{\|arepsilon\| \le 1} \mathbf{1} \left(\Delta \left(m + arepsilon \cdot oldsymbol{s}, m
ight) > arepsilon'
ight) d\mathbf{s}.$$

- ▶ necessary and sufficient condition for uniform delta-method: bound on $p(\varepsilon, \varepsilon', m)$
- sufficient condition: bound on Δ

Assumption (Uniform convergence of S_n)

Let
$$S_n := r_n(T_n - \mu)$$
.

- 1. $S_n \rightarrow^d S$ uniformly.
- 2. S is continuously distributed for all θ .
- 3. The collection $\{S(\theta)\}_{\theta\in\Theta}$ is tight.
- The density of S satisfies

$$\underline{f} \leq f_{\theta}(s) \qquad \forall s: ||s|| < \overline{s}, \forall \theta$$

$$f_{\theta}(s) \leq \overline{f} \qquad \forall s, \forall \theta$$

Leading example:

- \triangleright $S \sim N(0, \Sigma(\theta))$, with
- uniform lower and upper bounds on the eigenvalues of $\Sigma(\theta)$.

Introduction Preliminaries The uniform delta-method Application

Define

$$X_{n} = r_{n}(\phi(T_{n}) - \phi(\mu)),$$

$$\widetilde{T}_{n} = \mu + \frac{1}{r_{n}}S$$

$$\widetilde{X}_{n} = r_{n}(\phi(\widetilde{T}_{n}) - \phi(\mu))$$

$$X = \frac{\partial \phi}{\partial \mu}(\mu) \cdot S.$$

- Approximate X_n by \widetilde{X}_n (uniformly): straightforward under assumption on uniform convergence of S_n
- Approximate X_n by X (uniformly): requires uniform bound on remainder of Taylor approximation

The uniform delta-method

Theorem (Uniform delta method – part 1)

Suppose

- assumption on uniform convergence of S_n holds, and
- ϕ is continuously differentiable everywhere in $\mu(\Theta)$.

Then:

1. $X_n \rightarrow^d \widetilde{X}_n$

uniformly if $\partial \phi / \partial \mu$ is bounded.

2. $\widetilde{X}_n \to^p X$

uniformly if and only if

$$p(\varepsilon, \varepsilon', m) \le \delta(\varepsilon, \varepsilon') \tag{1}$$

for all $\varepsilon, \varepsilon'$, all $m \in \mu(\Theta)$ and some function δ where

$$\lim_{arepsilon o 0} \delta(arepsilon,arepsilon') = 0.$$

troduction Preliminaries The uniform delta-method Applications

Theorem (Uniform delta method – part 2)

3. A sufficient condition for condition (1):

$$\Delta(t,m) \le \widetilde{\delta}(\|t-m\|). \tag{2}$$

for some function $\widetilde{\delta}$ where $\lim_{\epsilon \to 0} \widetilde{\delta}(\epsilon) = 0$.

- 4. *If*
- the domain of φ is compact and convex
- $ightharpoonup \phi$ is everywhere continuosly differentiable on its domain

then

- $ightharpoonup \partial \phi/\partial \mu$ is bounded and
- condition (2) holds.

- compact and convex domain of continuously differentiable ϕ : sufficient for uniformity
- too restrictive for most applications
- but suggests where problems might occur:
 - 1. neighborhood of boundary points not included in the domain: near 0 for |t|, 1/t, \sqrt{t}
 - 2. infinity: $cos(t^2)$

The uniform delta-method Introduction

- \triangleright One of our assumptions: uniform convergence of S_n
- Special case: uniform CLT
- Follows from CLTs for triangular arrays, eg.

Lemma (Uniform central limit theorem)

- Let Y_i be i.i.d.
- with mean $\mu(\theta)$ and variance $\Sigma(\theta)$.
- Assume that $E\left[\|Y_i^{2+\varepsilon}\|\right] < M$.

Then

$$S_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n (Y_i - \mu(\theta))$$

converges uniformly in distribution to the tight family $S \sim N(0, \Sigma(\theta))$.

roduction Preliminaries The uniform delta-method Applications

Applications

- Our necessary condition is violated in several applications
- Stylized examples we will discuss next: |t|, 1/t
- In the paper:
 - $ightharpoonup \sqrt{t}$, $\cos(t^2)$
 - weak instruments
 - moment inequalities

Maximilian Kasy Harvard

Recall

Sufficient condition:

$$\Delta(t,m) \leq \widetilde{\delta}(\|t-m\|),$$

$$\lim_{arepsilon o 0}\widetilde{\delta}(arepsilon)=0.$$

Sufficient and necessary condition:

$$p(\varepsilon, \varepsilon', m) \leq \delta(\varepsilon, \varepsilon'),$$

$$\lim_{\varepsilon \to 0} \delta(\varepsilon, \varepsilon') = 0.$$

Graphically: Level sets of $p(\varepsilon, \varepsilon', m)$, given ε' , have to be bounded away from $\varepsilon = 0$ (*m*-axis).

Example 1: $\phi(t) = |t|$

- Stylized version of moment inequality-type problems.
- ▶ Domain: $\mathbb{R}\setminus\{0\}$

Introduction

$$\phi(t) = |t|$$
 $\partial_m \phi(m) = \operatorname{sign}(m)$

$$\Delta(t,m) = \frac{1}{|t-m|} |\phi(t) - \phi(m) - \partial_m \phi(m) \cdot (t-m)|$$

$$= \frac{1}{|t-m|} ||t| - |m| - \operatorname{sign}(m) \cdot (t-m)|$$

$$= \mathbf{1}(t \cdot m \le 0) \frac{2 \cdot |t|}{|t-m|}.$$

•

$$p(\varepsilon, \varepsilon', m) = \max\left(1 - \frac{2|m|/\varepsilon}{2 - \varepsilon'}, 0\right).$$

Consider

$$\varepsilon' = 1$$
 $\varepsilon_n = 1/n$
 $m_n = 1/(4n)$

Then

$$p(1/n,1,1/(4n)) = 1/2 \nrightarrow 0.$$

Our necessary condition is violated.

Figure: The Integrated remainder $p(\varepsilon, 1, m)$ for $\phi(t) = |t|$.

Example 2: $\phi(t) = 1/t$

- Stylized version of weak instrument-type problems.
- ▶ Domain: ℝ⁺⁺

$$\phi(t) = 1/t$$
$$\partial_m \phi(m) = -1/m^2$$

$$\Delta(t,m) = \frac{1}{|t-m|} |\phi(t) - \phi(m) - \partial_m \phi(m) \cdot (t-m)|$$

$$= \frac{1}{|t-m|} \left| \frac{1}{t} - \frac{1}{m} + \frac{t-m}{m^2} \right|$$

$$= \frac{1}{|t-m|} \left| \frac{m \cdot (m-t) + t \cdot (t-m)}{m^2 \cdot t} \right|$$

$$= \left| \frac{t-m}{m^2 \cdot t} \right|.$$

• for $m \ge \varepsilon \ge \frac{m^2 \varepsilon'}{1 - m^2 \varepsilon'}$, $m^2 \varepsilon' < 1$

$$p(\varepsilon,\varepsilon',m)=2\left(1-\frac{m}{\varepsilon}\cdot\frac{1}{\frac{1}{m^2\varepsilon'}-m^2\varepsilon'}\right).$$

Consider

$$\varepsilon' = 1$$
 $\varepsilon_n = 1/n$
 $m_n = 1/n$

▶ Then

$$p(1/n,1,1/n) = -\frac{2}{n^2 - 1/n^2} \rightarrow 2.$$

Our necessary condition is violated.

Figure: The Integrated remainder $p(\varepsilon, 1, m)$ for $\phi(t) = 1/t$.

The uniform delta-method Applications Introduction

Conclusion

- Problems with asymptotic approximations
- if approximations not uniformly valid.
- Can lead to
 - large mean squared error,
 - undercoverage,
 - distorted rejection rates.
- One important cause: large remainder of the delta-method
- We provide an easy-to-check condition which is necessary and sufficient for uniform negligibility of this remainder.

Thanks for your time!

Maximilian Kasy Harvard

troduction Preliminaries The uniform delta-method Applications

Literature

very incomplete list:

- Uniformity in statistics:
 - Rao (1963), Loh (1984), Hall et al. (1995), Bahadur and Savage (1956)
- Weak instruments:
 - Staiger and Stock (1997), Moreira (2003), Andrews et al. (2006), Andrews and Mikusheva (2014)
- Inference under partial identification, moment inequalities: Imbens and Manski (2004)
- Pretesting and model selection:
 Leeb and Pötscher (2005), Guggenberger (2010a), Guggenberger (2010b)
- Unit roots: Stock and Watson (1996), Mikusheva (2007)
- Sufficient condition for uniform delta-method: Belloni et al. (2013)

▶ Back