20 | Simplicial Complexes

20.1 Definition. A simplicial complex K = (V, S) consists of a set V together with a set S of finite, non-empty subsets of V such that the following conditions are satisfied:

- 1) For each $v \in V$ the set $\{v\}$ is in S.
- 2) If $\sigma \in S$ and $\emptyset \neq \tau \subseteq \sigma$ then $\tau \in S$.

20.2 Notation. If K = (V, S) is a simplicial complex then:

- \bullet Elements of V are called *vertices* of K.
- Elements of S are called *simplices* of K.
- If a simplex $\sigma \in S$ consists of n+1 elements then we say that σ is an n-simplex.
- If $\sigma \in S$ and $\tau \subseteq \sigma$ then we say that τ is a face of σ . If $\tau \neq \sigma$ then τ is a proper face of σ . The inclusion $j_{\tau}^{\sigma} : \tau \to \sigma$ is called a face map.
- We say that K is a simplicial complex of dimension n if K has n-simplices, but it does not have m-simplices for m > n. We write: dim K = n. If K has simplices in all dimensions then dim $K = \infty$.
- ullet We say that K is a finite simplicial complex if K consists of finitely many simplices.

20.6 Definition. If K = (V, S) is a simplicial complex, then a *subcomplex* of K is a simplicial complex L = (V', S') such that $V' \subseteq V$ and $S' \subseteq S$. In such case we write $L \subseteq K$.

20.8 Definition. Let $e_1=(1,0,0,\ldots,0),\ e_2=(0,1,0,\ldots,0),\ldots,\ e_{n+1}=(0,0,0,\ldots,1)$ be the standard basis vectors in \mathbb{R}^{n+1} . The *standard geometric n-simplex* is a subspace $\Delta^n\subseteq\mathbb{R}^{n+1}$ given by

$$\Delta^{n} = \left\{ \sum_{i=1}^{n+1} t_{i} e_{i} \in \mathbb{R}^{n+1} \mid t_{i} \in [0, 1], \sum_{i=0}^{n} t_{i} = 1 \right\}$$

20.9 Definition. Let A be a finite set. The *geometric A-simplex* is a metric space (Δ^A, ϱ) , such that elements of Δ^A are formal sums $\sum_{a \in A} t_a a$ where $t_a \in [0,1]$ for each $a \in A$, and $\sum_{a \in A} t_a = 1$. If $x = \sum_{a \in A} t_a a$ and $y = \sum_{a \in A} t'_a a$ then

$$\varrho(x,y) = \sqrt{\sum_{a \in A} (t_a - t_a')^2}$$

20.10 Proposition. If A is a set consisting of n + 1 elements then Δ^A is homeomorphic to the standard n-simplex Δ^n .

Proof. Exercise.

20.11 Definition. Let K be a simplicial complex. The *geometric realization* of K is the topological space |K| defined by:

$$|K| = \bigsqcup_{\sigma \in K} \Delta^{\sigma} /_{\sim}$$

where the equivalence relation \sim is given by $x \sim \Delta(j_{\tau}^{\sigma})(x)$ for each face map $j_{\tau}^{\sigma} \colon \tau \to \sigma$ and $x \in \Delta^{\tau}$.

20.13 Proposition. If L is a subcomplex of a simplicial complex K, then |L| is a closed subspace of |K|.

Proof. Exercise.

20.14 Definition. Let K be a finite simplicial complex. For n = 0, 1, 2, ... let $s_n(K)$ denote the number of n-simplices of K. The *Euler characteristic* of K is the integer

$$\chi(K) = \sum_{n=0}^{\infty} (-1)^n s_n(K)$$

20.15 Theorem. If K, L are finite simplicial complexes such that |K| is homeomorphic to |L| then $\chi(K) = \chi(L)$.

20.19 Example. We will use the Euler characteristic to show that the 2-dimensional sphere S^2 is not homeomorphic to the torus $T = S^1 \times S^1$.

Topological data analysis.

data points and the hypothetical underlying space \boldsymbol{X}

20.21 Theorem. If K is a simplicial complex then the geometric realization $ K $ is a normal space.
20.22 Definition. The <i>n-skeleton</i> of a simplicial complex K is a subcomplex $K^{(n)} \subseteq K$ given as follows – vertices of $K^{(n)}$ are the same as vertices of K ; – m -simplices of $K^{(n)}$ are the same as m -simplices of K for any $m \le n$; – $K^{(n)}$ has no m -simplices for $m > n$.
20.23 Proposition . Let K be a simplicial complex, and let X be a topological space. A function $f: K \to X$ is continuous if and only if $f _{ K^{(n)} }: K^{(n)} \to X$ is continuous for each $n = 0, 1, \ldots$
Proof. Exercise.
20.24 Lemma. Let K be a simplicial complex, and let $f_n \colon K^{(n)} \to X$ be a continuous function. Assume that for each $\sigma \in S_{n+1}$ we have a continuous function $f_\sigma \colon \overline{\sigma} \to X$ such that $f_\sigma _{ \partial \sigma } = f_n _{ \partial \sigma }$. Then f_σ
extends to a function $f_{n+1}\colon K^{(n+1)} \to X$ such that $f_{n+1} _{ \overline{\sigma} }=f_{\sigma}.$ Proof. Exercise.

Proof of Theorem 20.21.