Статический режим

Out[6]:

<matplotlib.legend.Legend at 0x194ad0c9c50>

Out[7]:

<matplotlib.legend.Legend at 0x194ae9047b8>

Оценим размер электронной оболочки с помощью формулы :

$$l = \frac{h}{2\sqrt{2m(E_1 + U_0)}}$$

где E_1 - энергия электронов, соответствуая максимуму и $U_0 = 2.5 V$

$$l \approx 276 - 300pm$$

Оценим размер электронной оболочки с помощью формулы :

$$l=rac{h}{4}\sqrt{rac{5}{2m(E_2-E_1)}}$$
 где E_1,E_2 - энергии электронов, соответствующие максимуму и минимуму

$$l \approx 287 - 322pm$$

Ковалентный диаметр ксенона (табличный) $\approx 260 pm$

Глубина потенциальной ямы :

$$U_0 = \frac{4E_2 - 9E_1}{5} \approx (1.2 - 3)eV$$

Напряжение пробоя \approx 12V, что совпадает с ионизационным потенциалом ксенона.

Зависимость
$$E_n = f(E_1, n)$$

$$\sqrt{\frac{2m(E_n + U_0)}{\hbar^2}} l = n\pi$$

$$E_n=rac{(n\pi/l)^2\hbar^2}{2m}-U_0=rac{(n/l)^2h^2}{8m}-U_0$$
Приняв $U_0=2.5eV$ и $lpprox 296pm$ $E_1pprox 1.7eV$ $E_2pprox 14.3eV$ $E_3pprox 25.2eV$

Динамический режим

Ток накала: 2.75V

Out[14]:
<matplotlib.legend.Legend at 0x12445a578d0>

Out[26]:

<matplotlib.legend.Legend at 0x12448419e48>

Оценим размер электронной оболочки с помощью формулы :

$$l = \frac{h}{2\sqrt{2m(E_1 + U_0)}}$$

где E_1 - энергия электронов, соответствуая максимуму и $U_0=2.5V$

$$l \approx 340pm$$

Оценим размер электронной оболочки с помощью формулы:

$$l = \frac{h}{4} \sqrt{\frac{5}{2m(E_2 - E_1)}}$$
 где E_1, E_2 - энергии электронов,

соответствующие максимуму и минимуму

$$l \approx 250 pm$$