МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

«Метод автоматической нормализации для реляционных баз данных с использованием анализа функциональных зависимостей»

Студент: Зуев Тимофей Александрович

Группа: ИУ7-85Б

Руководитель: Исаев Андрей Львович

Актуальность

Нормальными формами называются уровни структурной организации отношений, определённые набором строгих требований к функциональным зависимостям, позволяющие устранить избыточность и аномалии обновления.

Нормализация отношений — важный процесс в проектировании баз данных, который преследует две основные цели:

- 1. Минимизация объема хранимых данных
- 2. Максимизация согласованности данных

Цель и задачи

Целью работы является разработка метода нормализации в реляционных базах данных с использованием анализа функциональных зависимостей.

Задачи:

- Проанализировать предметную область реляционных баз данных;
- Спроектировать метод автоматической нормализации в реляционных базах данных;
- Разработать спроектированный метод;
- Исследовать зависимость времени анализа и декомпозиции отношений от количества атрибутов и функциональных зависимостей.

Структура реляционных баз данных

Заголовком отношения называют

множество

 $U = \{A_1, A_2, ..., A_n\}$, где A_i - имя i-ого атрибута.

Отношением называют пару вида R(U) = (U, r), где

- $r = \{t_1, t_2, ..., t_m\} \subseteq dom(A_1) \times dom(A_2) \times \cdots \times dom(A_n)$, где
 - $t = (v_1, v_2, ..., v_n), v_i \in dom(A_i), -$ кортеж из n значений
 - т количество кортежей
- $U = \{A_1, A_2, \dots, A_n\}$ заголовок отношения

Пусть существует отношение:

Экзамены (

Студент,

Дисциплина,

Преподаватель,

Оценка):

Студент	Дисциплина	Преподаватель	Оценка
Иванов И. И	Базы данных	Марьина Е. А.	5
Иванов И. И	Теория вероятностей	Земцова А. Ю.	4
Петров П. П	Базы данных	Марьина Е. А.	4
Смирнов А. А	Теория вероятностей	Земцова А. Ю	3

Функциональные зависимости

Пусть $X, Y \in U$ — непустые подмножества заголовка U. Говорят, что между множествами атрибутов X и Y существует функциональная зависимость (Ф3), когда:

$$\forall t_1, t_2 \in r$$
: если $t_1[X] = t_2[X]$, то $t_1[Y] = t_2[Y]$,

где t[X] — проекция кортежа t на подмножество атрибутов X.

Функциональную зависимость X от Y обозначают как $X \to Y$.

Пусть существует отношение Экзамены (Студент, Дисциплина, Преподаватель, оценка):

Студент	Дисциплина	Преподаватель	Оценка
Иванов И. И	Базы данных	Марьина Е. А.	5
Иванов И. И	Теория вероятностей	Земцова А. Ю.	4
Петров П. П	Базы данных	Марьина Е. А.	4
Смирнов А. А	Теория вероятностей	Земцова А. Ю	3

Тогда в нем выполняются ФЗ:

- {Студент, Дисциплина} → {Оценка}
- ${Дисциплина} \rightarrow {Преподаватель}$

Проблема избыточности данных

Аномалией называют любое нарушение целостности или согласованности базы данных, при котором операции изменения содержания отношений приводят к избыточному хранению или потере информации.

Аномалия обновления

	Студент	Дисципл ина	Преподава тель	Оце нка
1	Иванов И. И	Базы данных	Марьина Е. А.	5
2	Иванов И. И	Теория вероятно стей	Земцова А. Ю.	4
3	Петров П. П	Базы данных	Марьина Е. А.	4

Обновить на "Карпова 3. А" Если обновить значение поля «Преподаватель» только в строке 3, возникнет рассогласованность — два преподавателя на один

два преппредмет.

Аномалия вставки

	Студент	Дисципл ина	Преподава тель	Оце нка
1	Иванов И. И	Базы данных	Марьина Е. А.	5
2	Иванов И. И	Теория вероятно стей	Земцова А. Ю.	4
3	Петров П. П	Базы данных	Марьина Е. А.	4
Добавит		вить		

Нельзя добавить дисциплину без сдающих ее студентов

алгоритмов"

Аномалия удаления

	Студент	Дисципл ина	Преподава тель	Оце нка	
1	Иванов И. И	Теория вероятно стей	Земцова А. Ю.	4	
2	Петров П.П	Базы данных	Марьина Е. А.	4	
3	Иванов И. И	Базы данных	Марьина Е. А.	5	

Удалить информацию о результатах по "Базам данных"

Если удалить все сдачи студентов по «Базам данных», потеряется связь с преподавателем по этой дисциплине.

Решение для всех трех случаев – **декомпозиция** отношения на два новых: Курс(Дисциплина, Преподаватель) и Экзамен(Студент, Дисциплина, Оценка).

6

Декомпозиция без потерь

Декомпозицией отношения R(U) называют разложение его схемы и множества кортежей на два или более подотношений $R_1(U_1)$, $R_2(U_2)$, ..., $R_k(U_k)$, таких что $U = U_1 \cup U_2 \cup ... \cup U_k$.

Разложение R на R_1 и R_2 называется **декомпозицией без потерь**, если при естественном соединении R_1 и R_2 восстанавливается исходное отношение R без появления лишних или утраченных кортежей. В ином случае, разложение называется **декомпозицией с потерями**.

Декомпозиция без потерь

Студент	Дисциплина	Оценка
Иванов И. И	Базы данных	5
Иванов И. И	Теория вероятностей	4
Петров П. П	Базы данных	4
Смирнов А. А	Теория вероятностей	3

Дисциплина	Преподаватель
Базы данных	Марьина Е. А.
Теория вероятностей	Земцова А. Ю.

Декомпозиция с потерями

Оценка

Студент	Преподаватель	Дисциплина
Иванов И. И	Марьина Е. А.	Базы данных
Иванов И. И	Земцова А. Ю.	Теория вероятностей
Петров П. П	Марьина Е. А.	Базы данных
Смирнов А. А	Земцова А. Ю	Теория вероятностей

Естественное соединение $R_1 \bowtie R_2$ по атрибуту «Дисциплина» состоит из 4-х исходных кортежей.

$$R_1 \bowtie R_2 = R$$

Естественное соединение $R_1 \bowtie R_2$ дает декартово произведение из 16 кортежей, из которых только 4 – исходные.

$$R_1 \bowtie R_2 \neq R$$

Нормальные формы

- Первая нормальная форма (1НФ): каждое значение атрибута неделимо (атомарно).
- Вторая нормальная форма (2НФ): отношение находится в 1НФ и каждый неключевой атрибут полностью зависит от всего составного ключа, а не от его части.
- Третья нормальная форма (3НФ): отношение в 2НФ и каждый неключевой атрибут зависит непосредственно от ключа, без транзитивных зависимостей через другие неключевые атрибуты.
- Нормальная форма Бойса—Кодда (BCNF): для любой функциональной зависимости $X \to Y$ в отношении X является суперключом.
- **Четвёртая нормальная форма (4НФ):** отношение в BCNF и не содержит ненулевых многозначных зависимостей.

Студент	Курсы_и_оценки	Руководитель	Факультет
Иванов И. И	Базы данных:5, Экономика:4	Марьина Е. А.	ИУ
Петров П. П	Математика:5	Марьина Е. А.	ФН
Смирнов А. А	Базы данных:4, Философия:3	Земцова А. Ю	ИУ

Приведем к 1НФ, сделав все записи атомарными:

Студент	Курс	Оценка	Руководитель	Факультет
Иванов И. И	Базы данных	5	Марьина Е. А.	ИУ
Иванов И. И	Экономика	4	Марьина Е. А.	ИУ
Петров П. П	Математика	5	Марьина Е. А.	ФН
Смирнов А. А	Базы данных	4	Земцова А. Ю	ИУ
Смирнов А. А	Философия	3	Земцова А. Ю	ИУ

Ключ отношения – (Студент, Курс). Это отношение нарушает $2H\Phi$, так как есть частичная зависимость: {Руководитель, Факультет} зависит только от «Студент», а не от всего ключа. Приведем к $2H\Phi$:

Студент	Курс	O-a
Иванов И. И	Базы данных	5
Иванов И. И	Экономика	4
Петров П. П	Математика	5
Смирнов А. А	Базы данных	4
Смирнов А. А	Философия	3

	Студент	Р-ель	Ф-т
	Иванов И. И	Марьина Е. А.	ИУ
	Иванов И. И	Марьина Е. А.	ИУ
	Петров П. П	Марьина Е. А.	ΦН
	Смирнов А. А	Земцова А. Ю	ИУ
i	Смирнов А. А	Земцова А. Ю	ИУ

Сравнение существующих методов нормализации отношений

Решение	Метод	Максимальная	Графический	Явное
		НФ	интерфейс	задание ФЗ
Micro	Графовый анализ	НФБК	+	+
RDBNorma	Графовый анализ	3НФ	+	+
JMathNorm	Грамматика для реляционных операций	НФБК	+	+
Genetic algorithm for decomposing relational databases	·	3НФ	-	-
Анализатор И. А. Зорина	Графовый анализ	3НФ	+	+

Формализованная постановка задачи

Автоматическую нормализацию можно формализовать как задачу оптимизации по двум критериям:

$$V = \sum_{i=1}^{k} |R_i| \rightarrow min;$$

 $A = Count_anomalies(R_1, ..., R_k) \rightarrow min,$ где:

- *k* количество декомпозированных отношений
- Count_anomailes $(R_1, ..., R_k)$ функция, вычисляющая количество аномалий всех типов.

Метод автоматической нормализации

Анализ исходного отношения

Алгоритм поиска замыкания

Начало Вход: Х - мн-во атрибутов; F - мн-во Ф3 Замыкание := Х Изменение := ложь Пока Изменение = истина Изменение := ложь Для каждой ф_з є F ф з.детерминант ⊆ Замыкание? Да новые_атр = ф_з.зависимая - Замыкание Нет новые aтр!= Ø? . Да Замыкание = Замыкание ∪ новые_атр Изменение := истина Конец цикла по ф_3 ∈ F Конец Пока Выход: Замыкание Конец

Алгоритм поиска кандидатных ключей

Общий алгоритм анализа

Декомпозиция отношения

Схема программного обеспечения

Зависимость временных характеристик метода от количества атрибутов отношения и от количества функциональных зависимостей

Время выполнения анализа и декомпозиции отношений растет как при росте количества атрибутов, так и при росте количества функциональных зависимостей. При этом при росте количества атрибутов время выполнения растет быстрее.

Постановка исследования

Схема отношения «Сотрудники_компании»:

```
КодСотрудника,
ИмяСотрудника,
Отдел,
НачальникОтдела,
Код проекта
НазваниеПроекта
БюджетПроекта
```

Функциональные зависимости:

- 1. {КодСотрудника} \rightarrow {ИмяСотрудника, Отдел};
- 2. {Отдел} → {НачальникОтдела}.
- 3. {КодПроекта} → {Бюджет, НазваниеПроекта}.

Исходные характеристики:

- Исходная нормальная форма 1НФ;
- Количество строк 3000;
- Объем исходного отношения -0.469 MБ,

Заполнение с высокой избыточностью:

- Уникальных отделов: 5
- Уникальных проектов: 10
- Уникальных начальников: 5
- Уникальных имен сотрудников: 200

Заполнение с низкой избыточностью:

- Уникальных отделов: 30
- Уникальных проектов: 28
- Уникальных начальников: 30
- Уникальных имен сотрудников: 500

Исследование зависимости занимаемой таблицами памяти от уровня нормализации

Вывод: для данного отношения нормализация дает существенное уменьшение используемой памяти, причем для более высокой избыточности данных эффективность нормализации выше

Заключение

В ходе выполнения выпускной квалификационной работы была достигнута цель разработки метода автоматической нормализации в реляционных базах данных, а также были успешно выполнены все поставленные задачи:

- Проанализирована предметная область реляционных баз данных;
- Спроектирован метод автоматической нормализации в реляционных базах данных;
- Разработан спроектированный метод;
- Исследована зависимость времени анализа и декомпозиции отношений от количества атрибутов и функциональных зависимостей.

Направления дальнейшего развития для разработанного метода могут включать:

- Реализацию обратной композиции отношений;
- Вычисление характеристик нормализованных отношений для различных типов запросов.