PS1 Solutions

Jingle Fu

Solution 1 (Gains from Trade).

Assuming the consumption bundle of Australia(A) before trading with China is $\mathbf{c_1}$ and after is $\mathbf{c_2}$.

Before China's involvement, according to the Weak Axiom of Revealed Preference, we have $\mathbf{p_1c_1} \leq \mathbf{p_1c_2}$.

After China's entering, we have $\mathbf{p_2c_2} \leq \mathbf{p_2c_1}$.

Solution 2 (Ricardian Trade and Technological Progress).

- 1. For absolute advantage, we compare unit labor productivity directly:
 - Clothing
 - Home: produces z unit per hour.
 - Foreign: produces 1 unit per hour.

Home has an absolute advantage in clothing if z > 1; otherwise, Foreign does.

- Food
 - Home: produces z unit per hour.
 - Foreign: produces 4 unit per hour.

Home has an absolute advantage in food if z > 4; otherwise, Foreign does.

Thus, comparing the absolute advantage, we have the following table:

	Clothing	Food
z > 4	Home	Home
1 < z < 4	Home	Foreign
z < 1	Foreign	Foreign

- 2. For comparative advantage, we compare the opportunity cost of producing one unit of one good in terms of the other good:
 - Home: The opportunity cost of 1 unit of Clothing over 1 unit of Food is: $\frac{a_C}{a_F} = 1$.

• Foreign: The opportunity cost of 1 unit of Clothing over 1 unit of Food is: $\frac{a_C^*}{a_E^*} = 4$.

Thus, Home has a comparative advantage in Clothing, and Foreign has a comparative advantage in Food, regardless of z.

- 3. If z=2, the relative price of Clothing is $P=\frac{P_C}{P_F}=\frac{a_C}{a_F}=1, \ P^*=\frac{a_C^*}{a_F^*}=4.$ $Q_C=\frac{L}{a_C}=2000=Q_F, \ Q_C^*=\frac{L^*}{a_C^*}=1000, \ Q_F^*=\frac{L^*}{a_F^*}=4000.$
 - (a) Draw the world relative supply of clothing.
 - When P<1, both Home and Foreign produce only Food, giving $R=\frac{Q_C+Q_C^*}{Q_F+Q_F^*}=0;$
 - When P=1, Home can vary production between (Clothing, Food) = $\left[(2000,0),(0,2000)\right]$ and Foreign produces only Food, giving $R\in[0,0.5]$;
 - When 1 < P < 4, Home produces only Clothing and Foreign produces only Food, giving R = 0.5;
 - When P=4, Home produces only Clothing and Foreign can vary production between (Clothing, Food) = [(0,4000),(1000,0)], giving $R \in [0.5,\infty)$;
 - When P>4, both Home and Foreign produce only Clothing, giving $R=\infty.$

(b) Under the Cobb-Douglas utility function U(C, F) = CF, we can tell that consumers will spend the same expenditure on both goods. So, worldwide, $P_CQ_C = P_FQ_F$, which gives $\frac{P_C}{P_F} = \frac{Q_F}{Q_C} = \frac{1}{R} = 2$.

- (c) In Home, a worker produces z=2 units of Clothing per hour, hence the value of one hour's output is: $w=2P_C$; While in foreign, a worker produces 4 units of Food per hour, having a value of $p^*=4P_F$. Given that $\frac{P_C}{P_F}=2$, we know it that $\frac{w}{w^*}=1$.
- 4. As analyzed before, the change of z won't affect the world relative price. We assume that after the change both countries remain completely specialized in their comparative-advantage goods.
 - (a) Home produces 1000z units of Clothing, and Foreign produces 4000 unnits of food. The world relative supply of Clothing is $R = \frac{1000z}{4000} = \frac{z}{4}$. For Home, a worker's nominal income is $w = zP_C$, and for Foreign, $w^* = 4P_F$. Our Cobb-Douglas utility with equal share tells us that $P = \frac{P_C}{P_F} = \frac{Q_F}{Q_C} = \frac{1}{R}$, thus $P = \frac{4}{z}$.

Thus the free-trade relative price is $\frac{P_C}{P_F} = \frac{4}{z}$, the wage ratio is:

$$\frac{w}{w^*} = \frac{zP_C}{4P_F} = 1.$$

(b) If z increases, the relative price $P = \frac{4}{z}$ decreases, since the

Solution 3 (Two-by-Two-by-Two with Fixed Coefficients).

- 1. Relative Factor Abundance: $RFA_A = \frac{K_A}{L_A} = \frac{420}{460} \approx 1.095$, $RFA_G = \frac{K_G}{L_G} = \frac{900}{600} = 1.5$. Thus Germany is relatively capital abundant and Austria is relatively labor abundant.
 - Relative Factor Intensity of Goods: $RFIG_B = \frac{a_{KB}}{a_{LB}} = 3$, $RFIG_S = \frac{a_{KS}}{a_{LS}} = 0.5$. Thus Buns are capital intensive, while Sausages are labor intensive.

- Comparative Advantage: By the Heckscher-Ohlin theorem, the relatively capital-abundant country, Germany, will have a comparative advantage in the capital-intensive good, Buns, and the relatively labor-abundant country, Austria, in the labor-intensive good, Sausages.
- Autarkic Relative Price: In autarky, each country's relative price reflects its "shadow" cost. Because factor prices adjust differently in each country (with the excess factor receiving a zero "price"), we expect:
 - Austria: As labor is in excess, the wage is set to 0, hence $P_A=\frac{P_{BA}}{P_{SA}}=\frac{a_{KB}}{a_{KS}}=3;$
 - Germany: As capital is in excess, the rental rate is set to 0, hence $P_G = \frac{P_{BG}}{P_{SG}} = \frac{a_{LB}}{a_{LS}} = \frac{1}{2}$.

Thus, the autarkic price of Buns is higher in Austria than in Germany. Under trade we expect Germany to export Buns and Austria to export Sausages.

- Free Trade: Under trade we expect Germany to export Buns and Austria to export Sausages.
- 2. We separate the two countries' production functions and factor endowments: $B = Q_{BA} + Q_{BG}$, $S = Q_{SA} + Q_{SG}$.
 - (a) For Austria, the full employment conditions are:
 - Labor:

$$L_A = a_{LB}Q_{BA} + a_{LS}Q_{SA} \Rightarrow Q_{BA} + 2Q_{SA} = 420$$

• Capital:

$$K_A = a_{KB}Q_{BA} + a_{KS}Q_{SA} \Rightarrow 3Q_{BA} + Q_{SA} = 460$$

Both constraints hold with equality, we can have: $(Q_{BA}, Q_{SA}) = (100, 160)$.

(b) For Germany, the full employment conditions are:

• Labor:

$$L_G = a_{LB}Q_{BG} + a_{LS}Q_{SG} \Rightarrow Q_{BG} + 2Q_{SG} = 600$$

• Capital:

$$K_G = a_{KB}Q_{BG} + a_{KS}Q_{SG} \Rightarrow 3Q_{BG} + Q_{SG} = 900$$

Solve the equations, we have: $(Q_{BG}, Q_{SG}) = (240, 180)$.

- 3. Consumers have Leontief preferences (they want to consume 1 Bun and 1 Sausage per hotdog). Because the consumption ratio is fixed at 1, autarkic equilibrium production must satisfy B = S.
 - (a) We first find the ebalanced production point in both countries:
 - Austria:

Labor:
$$B + 2B < 420$$

Capital:
$$3B + B < 460$$

The binding constraint is capital, so the maximum balanced production in Austria is B=S=115.

• Germany:

Labor:
$$B + 2B < 600$$

Capital:
$$3B + B \le 900$$

The binding constraint is labor, so the maximum balanced production in Germany is B = S = 200.

The autarkic relative price is set by the zero-profit conditions.

For Austria, as balanced production (115, 115) lies in the interior of the production possibilities frontier, labor is in excess. (Thus W = 0, and prices are determined solely by the rental rate R.)

In Germany, capital is in excess, so R = 0.

The zero-profit conditions then are:

$$P_{BA} = W + 3R = 3R$$

$$P_{SA} = 2W + R = R$$

$$P_{BG} = W$$

$$P_{SG} = 2W$$

These relative prices are in line with our prediction from part (1).

(b) In Austria, labor is in excess, hence W = 0. Total national income is $R \cdot K_A = 460R$. Each hotdog costs $P_{BA} + P_{SA} = 4R$, so each owner of a unit of capital can buy $\frac{R}{4R} = \frac{1}{4}$ hotdogs.

In Germany, capital is in excess, so R=0. Total income is $W \cdot L_G = 600W$. Each hotdog costs $P_{BG} + P_{SG} = 3W$, so each worker can buy $\frac{W}{3W} = \frac{1}{3}$ hotdogs.

4. (a)

Solution 4 (Two-by-Two-by-Two).

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.

Solution 5 (Gravity with Multilateral Resistance).

Let the income of country j denoted by Y_j , and the price of a good from country i in country j be p_{ij} . For consumers, their UMP is:

$$\max_{x_{kj}} \left[\sum_{k} \alpha_{kj}^{\frac{1}{\sigma}} x_{kj}^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$
s.t.
$$\sum_{k} x_{kj} p_{kj} \le Y_{j}$$

Define the Lagrangian:

$$\mathcal{L} = \left[\sum_{k} \alpha_{kj}^{\frac{1}{\sigma}} x_{kj}^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}} - \lambda \left(\sum_{k} x_{kj} p_{kj} - Y_j \right)$$

The FOCs are:

$$\frac{\partial \mathcal{L}}{\partial x_{kj}} = \left[\sum_{k} \alpha_{kj}^{\frac{1}{\sigma}} x_{kj}^{\frac{\sigma-1}{\sigma}} \right]^{\frac{1}{\sigma-1}} \alpha_{kj}^{\frac{1}{\sigma}} x_{kj}^{-\frac{1}{\sigma}} - \lambda p_{kj} = 0$$
 (1)

$$\frac{\partial \mathcal{L}}{\partial \lambda} = \sum_{k} x_{kj} p_{kj} - Y_j = 0 \tag{2}$$

From (1), we know that for two countries k and k', we have:

$$\frac{p_{kj}}{p_{k'j}} = \frac{\alpha_{kj}^{\frac{1}{\sigma}} x_{kj}^{-\frac{1}{\sigma}}}{\alpha_{k'j}^{\frac{1}{\sigma}} x_{k'j}^{-\frac{1}{\sigma}}} \Leftrightarrow \frac{\alpha_{kj}}{\alpha_{k'j}} = \frac{p_{kj}^{\sigma}}{p_{k'j}^{\sigma}} \frac{x_{kj}}{x_{k'j}}$$

Rearranging and multiplying both sides by $p_{k'j}$ yields:

$$x_{k'j}p_{k'j} = \frac{1}{\alpha_{kj}}x_{kj}p_{kj}^{\sigma}\alpha_{k'j}p_{k'j}^{1-\sigma}$$

Summing for all countries gives:

$$\sum_{k'} x_{k'j} p_{k'j} = \frac{1}{\alpha_{kj}} x_{kj} p_{kj}^{\sigma} \sum_{k'} \alpha_{k'j} p_{k'j}^{1-\sigma} \Leftrightarrow Y_j = \frac{1}{\alpha_{kj}} x_{kj} p_{kj}^{\sigma} P_j^{1-\sigma}$$
 (3)

where $P_j = \left[\sum_k \alpha_{kj} p_{kj}^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$ is the Dixit-Stiglitz price index. Rearrange (3) gives the CES demand function:

$$x_{kj} = \alpha_{kj} p_{kj}^{-\sigma} Y_j P_j^{\sigma - 1} \tag{4}$$

Noting that the value of total trade is simply equal to the price times quantity, which gives $X_{kj} = p_{kj}x_{kj}$, we have:

$$X_{kj} = \alpha_{kj} p_{kj}^{1-\sigma} Y_j P_j^{\sigma-1} \tag{5}$$

As we suppose that the market for each country/good is perfectly competitive, the price of a good is simply the marginal cost. Let w_i be the wage of a worker in country i.

Because we assume that one unit of labor produces one unit of the local output, the wage in country i is simply the price of the good produced in country i: $p_i = w_i$.

So, the price of j consuming 1 unit of country i's good is:

$$p_{ij} = \tau_{ij} w_i \Rightarrow \tau_{ij} = \frac{p_{ij}}{p_i}.$$
 (6)

1. Let λ_{ij} be the share of total spending in country j that is devoted to goods imported

from country i. Implementing (5), (6) and the price index, We have:

$$\lambda_{ij} = \frac{X_{ij}}{Y_j} = \alpha_{ij} p_{ij}^{1-\sigma} P_j^{\sigma-1}$$

$$= \alpha_{ij} \left(\tau_{ij} w_i \right)^{1-\sigma} \left[\sum_k \alpha_{kj} \left(\tau_{kj} w_k \right)^{1-\sigma} \right]^{\sigma-1}$$

$$= \frac{\alpha_{ij} \tau_{ij}^{1-\sigma} w_i^{1-\sigma}}{\sum_k \alpha_{kj} \left(\tau_{kj} w_k \right)^{1-\sigma}}$$
(*)

2. As market clearing requires income is equal to payments to, the Y we previously defined is the same as the X_i (defined as GDP in country i).

Income in a country is also equal to its total sales:

$$X_{i} = \sum_{j} X_{ij} = \sum_{j} \alpha_{ij} \tau_{ij}^{1-\sigma} w_{i}^{1-\sigma} X_{j} P_{j}^{\sigma-1}$$

$$\Rightarrow w_{i}^{1-\sigma} = X_{i} / \sum_{j} \alpha_{ij} \tau_{ij}^{1-\sigma} X_{j} P_{j}^{\sigma-1}$$

Replace this equation back into (5), we have:

$$X_{ij} = \alpha_{ij} \tau_{ij}^{1-\sigma} w_i^{1-\sigma} X_j P_j^{\sigma-1}$$

$$= \alpha_{ij} \tau_{ij}^{1-\sigma} \frac{X_i}{\sum_k \alpha_{ik} \tau_{ik}^{1-\sigma} X_k P_k^{\sigma-1}} X_j P_j^{\sigma-1}$$

$$= X_i X_j \left(\frac{\tau_{ij}}{P_j}\right)^{1-\sigma} \frac{\alpha_{ij}}{\sum_k \alpha_{ik} \left(\frac{\tau_{ik}}{P_k}\right)^{1-\sigma}} X_k$$
(**)

3. Under CES preferences, utility of the representative agent is the real wage. Thus in our notation, we have: $X_j = U_j P_j$. The per capita welfare W_i can be written as:

$$W_{j} = \frac{U_{j}}{L_{i}} = \frac{X_{j}}{P_{i}L_{j}} = \frac{w_{j}L_{j}}{P_{i}L_{j}} = \frac{w_{j}}{P_{j}}$$
(7)

We assume that $\tau_{jj} = 1$, and by choosing i = j, (*) implies:

$$\lambda_{jj} = \alpha_{jj} w_j^{1-\sigma} P_j^{\sigma-1} \Rightarrow P_j = \left(\lambda_{jj} \alpha_{jj}^{-1} w_j^{\sigma-1}\right)^{\frac{1}{\sigma-1}} = \lambda_{jj}^{\frac{1}{\sigma-1}} \alpha_{jj}^{-\frac{1}{\sigma-1}} w_j$$

Replacing this equation into (7), we have:

$$W_{j} = \frac{w_{j}}{\lambda_{jj}^{\frac{1}{\sigma-1}} \alpha_{jj}^{-\frac{1}{\sigma-1}} w_{j}} = \lambda_{jj}^{-\frac{1}{\sigma-1}} \alpha_{jj}^{\frac{1}{\sigma-1}} \tag{***}$$