

PROJETO DE MECANISMO AUTÔNOMO DE DUAS RODAS - "MINI SEGWAY"

Wilson Siou Kan Chow - wilsonchow@usp.br Flavio Celso Trigo Escola Politécnica da Universidade de São Paulo (USP) Departamento de Engenharia Mecânica

INTRODUÇÃO

Na atualidade muitos sistemas, equipamentos são controlados por meio de técnicas de controle, sem que o usuário final tenha conhecimento da sua existência

Desde grandes tanques de armazenamento, aviões, drones, máquinas de ar-condicionado, carros até celulares, a presença do controle quase não é notada, embora seja responsável por grande parte do trabalho.

O desenvolvimento inicial do controle se dá por volta dos anos de 1900 até 1940. onde os primeiros sensores pneumáticos foram criados.

O FUNCIONAMENTO DO SEGWAY

O Segway é um mecanismo que se equilibra em duas rodas, sem precisar de um terceiro apoio.

Este tema está em crescimento no mercado de tecnologia, pois pode reduzir drasticamente o tempo gasto em deslocamento de produtos e o espaço dedicado para transporte, sendo um claro exemplo da implementação do controle.

DIAGRAMAS DE CORPO LIVRE

MÉTODO DE LAGRANGE E LINEARIZAÇÃO

$$\frac{d}{dt} \begin{pmatrix} \frac{\partial L}{\partial \dot{q}} \end{pmatrix} - \frac{\partial L}{\partial q} + \frac{\partial R}{\partial \dot{q}} = u$$

$$\begin{bmatrix} \dot{\theta} \\ \ddot{\theta} \\ \dot{\phi} \\ \ddot{\phi} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -0.0702 & -0.2815 & 0.0077 \\ 0 & 0 & 0 & 1 \\ 0 & 0.3551 & 65.4657 & -0.3405 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ \dot{\phi} \\ \dot{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ 3.0883 \\ 0 \\ -217.6796 \end{bmatrix} u$$

CONTROLE

A essência do controle se trata em utilizar um sinal de feedback para se calcular a ação u, que terá o propósito de levar a planta à situação desejada.

Malha fechada (com controle)

Critério de Estabilidade

A planta do sistema não é estável, e por isso precisa ser controlado.

Critério de Observabilidade Qualquer estado inicial pode ser determinado pelas medidas e pelas entradas.

Critério de Controlabilidade Existe entrada u que pode levar o sistema de volta para a origem.

Sistema Totalmente Controlável

SIMULAÇÕES DO CONTROLE POR PID

Embora o PID seja originalmente utilizado para referências únicas. é possível realizar uma dissociação do sinal fazendo com que o mesmo possa levar em conta duas referências, que nesse caso são o equilíbrio do Segway, e o deslocamento horizontal, cuja origem é 0.

Esquema da dissociação PID

SINAIS CONTÍNUOS / DISCRETOS

PROTOTIPAGEM

Para se criar o robô, foi utilizada a tecnologia Arduino para criar uma rotina ativa de controle do equilíbrio.

COMPONENTE	QUANTIDADE	PREÇO
Arduino UNO R3	1	75,00
Driver L298N	1	32,90
Giroscópio MPU - 6050	1	32,90
Motores genéricos (208 RPM)	2	43,60
Baterias	2	160,00
TOTAL		344,40

TRATAMENTO DE SINAIS

Ajustes na parte dos sensores de movimento do componente MPU-6050 foram feitos, incluindo filtros para eliminar ruídos nas medições. A linha vermelha representa o sinal bruto e a linha azul representa o sinal filtrado.

Figura 11. Sinais filtrados e não filtrados

CONCLUSÕES

→ Equilíbrio

- Algoritmo para determinar centro de massa;
- Aproximação da distância percorrida;
- Calibragem das rodas

→ Fatores determinantes

- Giroscópio na região mais alta;
- Inércia no nível das rodas;
- Posição do centro de massa;
- Carga das baterias;
- Fixação dos componentes.

TRABALHOS FUTUROS

→ Motores de passo

Eliminar aproximação de distância percorrida.

→ Melhoria de Microprocessador

Velocidade de processamento permite maior controle sobre a planta.

→ Baterias

Desejável maior duração da carga.