Engineering Mechanics: Statics in SI Units, 12e

6

Structural Analysis

Chapter Objectives

 Determine the forces in the members of a truss using the method of joints and the method of sections

Chapter Outline

- 1. Simple Trusses
- 2. The Method of Joints
- 3. Zero-Force Members
- 4. The Method of Sections

 A truss composed of slender members joined together at their end points

Planar Trusses

- Planar trusses used to support roofs and bridges
- Roof load is transmitted to the truss at joints by means of a series of purlins

Planar Trusses

- The analysis of the forces developed in the truss members is 2D
- Similar to roof truss, the bridge truss loading is also coplanar

Assumptions for Design

- 1. "All loadings are applied at the joint"
 - Weight of the members neglected
- 2. "The members are joined together by smooth pins"
 - Assume connections provided the center lines of the joining members are *concurrent*

- Each member in a truss is a two-force member.
- The end forces must be equal in magnitude and opposite each other
- When loaded, the member is either in tension or compression.

Simple Truss

- Form of a truss must be rigid to prevent collapse
- The simplest form that is rigid or stable is a triangle

6.2 The Method of Joints

- For truss, we need to know the force in each members
- Forces in the members are internal forces
- For external force members, equations of equilibrium can be applied
- Force system acting at each joint is coplanar and concurrent
- $\sum F_x = 0$ and $\sum F_y = 0$ must be satisfied for equilibrium

6.2 The Method of Joints

Procedure for Analysis

- Find the external reactions at the truss support
- Draw the FBD with at least 1 known and 2 unknown forces
- Determine the correct direction of the member
- Orient the x and y axes
- Apply $\sum F_x = 0$ and $\sum F_y = 0$
- Use known force to analyze the unknown forces

Example 6.1

Determine the force in each member of the truss and indicate whether the members are in tension or compression.

- 2 unknown member forces at joint B
- 1 unknown reaction force at joint C
- 2 unknown member forces and 2 unknown reaction forces at point A

For Joint B,

$$+ \rightarrow \sum F_x = 0;$$

$$500N - F_{BC} \sin 45^{\circ} N = 0 \Rightarrow F_{BC} = 707.1N(C)$$

$$+ \uparrow \sum F_y = 0;$$

$$F_{BC} \cos 45^{\circ} N - F_{BA} = 0 \Rightarrow F_{BA} = 500N(T)$$

For Joint C,

$$+ \rightarrow \sum F_{x} = 0;$$

 $-F_{CA} + 707.1\cos 45^{\circ} N = 0 \Rightarrow F_{CA} = 500N(T)$
 $+ \uparrow \sum F_{y} = 0;$
 $C_{y} - 707.1\sin 45_{\circ} N = 0 \Rightarrow C_{y} = 500N$

For Joint A,

$$+ \rightarrow \sum F_x = 0;$$

$$500N - A_x = 0 \Rightarrow A_x = 500N$$

$$+ \uparrow \sum F_y = 0;$$

$$500N - A_y = 0 \Rightarrow A_y = 500N$$

- FBD of each pin shows the effect of all the connected members and external forces applied to the pin
- FBD of each member shows only the effect of the end pins on the member

6.3 Zero-Force Members

- Method of joints is simplified using zero-force members
- Zero-force members is supports with no loading
- In general, when 3 members form a truss joint, the 3rd member is a zero-force member provided no external force or support reaction is applied to the joint

Example 6.4

Using the method of joints, determine all the zero-force members of the Fink roof truss. Assume all joints are pin connected.

For Joint G,

$$+ \uparrow \sum F_y = 0 \Longrightarrow F_{GC} = 0$$

GC is a zero-force member.

For Joint D,

$$\sum F_x = 0 \Longrightarrow F_{DF} = 0$$

For Joint F,

$$+ \uparrow \sum F_y = 0 \Rightarrow F_{FC} \cos \theta = 0$$

 $\theta \neq 90^\circ, F_{FC} = 0$

$$+\Sigma F_{x} = 0;$$
 $2 \text{ kN} - F_{BH} = 0$ $F_{BH} = 2 \text{ kN}$ (C)

 F_{HC} satisfy $\sum F_y = 0$ and therefore HC is not a zero-force member.

- Used to determine the loadings within a body
- If a body is in equilibrium, any part of the body is in equilibrium

 To find forces within members, an imaginary section is used to cut each member into 2 and expose each internal force as external

- Consider the truss and section a-a as shown
- Member forces are equal and opposite to those acting on the other part

- Newton's Law

2 m

1000 N

(b)

-2 m -

 $\mathbf{F}_{BC} \perp_{C}$

 \leftarrow F_{GF}

Procedure for Analysis

Free-Body Diagram

- Decide the section of the truss
- Determine the truss's external reactions
- Use equilibrium equations to solve member forces at the cut session
- Draw FBD of the sectioned truss which has the least number of forces acting on it
- Find the sense of an unknown member force

Procedure for Analysis

Equations of Equilibrium

- Summed moments about a point
- Find the 3rd unknown force from moment equation

Example 6.9

For the frame, draw the free-body diagram of (a) each member, (b) the pin at B and (c) the two members connected together.

Copyright © 2010 Pearson Education South Asia Pte Ltd

Part (a)

- BA and BC are not two-force
- AB is subjected to the resultant forces from the pins

Copyright © 2010 Pearson Education South Asia Pte Ltd

Part (b)

- Pin at B is subjected to two forces, force of the member BC and AB on the pin
- For equilibrium, forces and respective components must be equal but opposite
- B_x and B_y shown equal and opposite on members AB

Problems

Determine the force in each member of the truss, and state if the members are in tension or compression. Set $\theta = 0^{\circ}$.

Determine the force in each member of the truss, and state if the members are in tension or compression. Set $\theta = 0^{\circ}$.

SOLUTION

Support Reactions: Applying the equations of equilibrium to the free-body diagram of the entire truss, Fig. a, we have

Method of Joints: We will use the above result to analyze the equilibrium of joints C and A, and then proceed to analyze of joint B.

Joint C: From the free-body diagram in Fig. b, we can write

$$+\uparrow \Sigma F_y = 0;$$
 $3.125 - F_{CD} \left(\frac{3}{5}\right) = 0$ $F_{CD} = 5.208 \text{ kN} = 5.21 \text{ kN (C)}$

$$^{+}\Sigma F_{x} = 0;$$
 $5.208\left(\frac{4}{5}\right) - F_{CB} = 0$ $F_{CB} = 4.167 \text{ kN} = 4.17 \text{ kN (T)}$

Joint A: From the free-body diagram in Fig. c, we can write

$$+\uparrow \Sigma F_y = 0;$$
 $0.875 - F_{AD} \left(\frac{3}{5}\right) = 0$ $F_{AD} = 1.458 \text{ kN} = 1.46 \text{ kN (C)}$

$$F_{AB} = 0;$$
 $F_{AB} = 3 - 1.458 \left(\frac{4}{5}\right) = 0$ $F_{AB} = 4.167 \text{ kN} = 4.17 \text{ kN (T)}$

Ans.

Ans.

Ans.

Ans.

Joint B: From the free-body diagram in Fig. d, we can write

$$+ \uparrow \Sigma F_y = 0;$$
 $F_{BD} - 4 = 0$ $F_{BD} = 4 \text{ kN (T)}$ Ans. $+ \Sigma F_x = 0;$ $4.167 - 4.167 = 0$ (check!)

Note: The equilibrium analysis of joint D can be used to check the accuracy of the solution obtained above.

Determine the force in each member of the truss and state if the members are in tension or compression. Set $P_1 = 10 \text{ kN}$, $P_2 = 15 \text{ kN}$.

Copyright © 2010 Pearson Education South Asia Pte Ltd

SOLUTION

$$\zeta + \Sigma M_A = 0$$

$$\zeta + \Sigma M_A = 0;$$
 $G_x(4) - 10(2) - 15(6) = 0$

$$G_r = 27.5 \text{ kN}$$

$$\pm \sum F_r = 0$$

$$^{\pm}\Sigma F_x = 0;$$
 $A_x - 27.5 = 0$

$$A_x = 27.5 \text{ kN}$$

$$+ \uparrow \Sigma F_v = 0$$

$$+ \uparrow \Sigma F_y = 0;$$
 $A_y - 10 - 15 = 0$

$$A_y = 25 \text{ kN}$$

$$\stackrel{\pm}{\rightarrow} \Sigma F_r = 0$$

$$\stackrel{\pm}{\longrightarrow} \Sigma F_x = 0;$$
 $F_{GB} - 27.5 = 0$

$$F_{GB} = 27.5 \text{ kN (T)}$$

Joint A:

$$\pm \Sigma F_x = 0$$

$$\Rightarrow \Sigma F_x = 0;$$
 $27.5 - F_{AF} - \frac{1}{\sqrt{5}} (F_{AB}) = 0$

$$+\uparrow \Sigma F_{v} = 0$$

$$+\uparrow \Sigma F_y = 0;$$
 $25 - F_{AB}\left(\frac{2}{\sqrt{5}}\right) = 0$

$$F_{AF} = 15.0 \text{ kN (C)}$$

$$F_{AB} = 27.95 = 28.0 \text{ kN (C)}$$

Joint B:

$$\pm \Sigma F_x = 0;$$
 $27.95 \left(\frac{1}{\sqrt{5}}\right) + F_{BC} - 27.5 = 0$

$$+\uparrow \Sigma F_y = 0; \qquad 27.95 \left(\frac{2}{\sqrt{5}}\right) - F_{BF} = 0$$

$$F_{BF} = 25.0 \text{ kN (T)}$$

$$F_{BC} = 15.0 \text{ kN (T)}$$

Joint F:

$$^{\pm}\Sigma F_x = 0;$$
 $15 + F_{FE} - \frac{1}{\sqrt{2}}(F_{FC}) = 0$

$$+\uparrow \Sigma F_y = 0;$$
 $25 - 10 - F_{FC} \left(\frac{1}{\sqrt{2}}\right) = 0$

$$F_{FC} = 21.21 = 21.2 \text{ kN (C)}$$

$$F_{FE} = 0$$

Joint E:

$$\stackrel{+}{\Rightarrow} \Sigma F_x = 0; \qquad F_{ED} = 0$$

$$+\uparrow\Sigma F_y=0;$$
 $F_{EC}-15=0$

$$F_{EC} = 15.0 \text{ kN (T)}$$

Joint D:

$$\stackrel{\pm}{\rightarrow} \Sigma F_x = 0; \qquad F_{DC} = 0$$

Determine the force in members HG, HE, and DE of the truss, and state if the members are in tension or compression.

SOLUTION

Method of Sections: The forces in members HG, HE, and DE are exposed by cutting the truss into two portions through section a-a and using the upper portion of the free-body diagram, Fig. a. From this free-body diagram, F_{HG} and F_{DE} can be obtained by writing the moment equations of equilibrium about points E and H, respectively. F_{HE} can be obtained by writing the force equation of equilibrium along the y axis.

Joint D: From the free-body diagram in Fig. a,

$$\zeta + \Sigma M_E = 0;$$
 $F_{HG}(4) - 1500(3) = 0$ $F_{HG} = 1125 \text{ lb (T)}$ Ans. $\zeta + \Sigma M_H = 0;$ $F_{DE}(4) - 1500(6) - 1500(3) = 0$ $F_{DE} = 3375 \text{ lb (C)}$ Ans. $+ \uparrow \Sigma F_y = 0;$ $F_{HE}(\frac{4}{5}) - 1500 - 1500 = 0$

$$F_{EH} = 3750 \text{ lb (T)}$$
 Ans.