

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 08

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

Bayesian warm-up?

Binomial Model

statistics computing

WLWWLWLW

$$p\left(w\mid N, heta
ight)=\left|egin{array}{c}N\w\end{array}
ight| heta^{w}(1- heta)^{N-w}$$


```
data
    int<lower=0> w;
    int<lower=0> N;
parameters {
    real<lower=0,upper=1> theta;
model {
    w ~ binomial(N, theta);
```

statistics

computing

Model Summary

```
> print(fit_globe)
Inference for Stan model: binomial_globe_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

```
      mean
      se_mean
      sd
      2.5%
      25%
      50%
      75%
      97.5%
      n_eff
      Rhat

      theta
      0.64
      0.00
      0.14
      0.35
      0.54
      0.65
      0.74
      0.87
      1278
      1

      lp___
      -7.72
      0.02
      0.69
      -9.77
      -7.89
      -7.46
      -7.27
      -7.21
      1824
      / 1
```

Samples were drawn using NUTS(diag_e) at Tue Apr 09 12:44:04 2019. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Gelman-Rubin convergence diagnostic (Gelman & Rubin, 1992)

statistics

computing

Diagnostics - traceplot

Diagnostics - density

cognitive model

statistics

Diagnostics

statistics
computing

MCMC

Grid Approximation

statistics

computing

Draw a Conclusion?

- W = 6 out of N = 9
- uncertainty (relative plausibility) of all ϑ values
- the relative plausibility of $\vartheta = 0.64$ is the highest, but it never rules out the possibility of ϑ being other values, e.g., 0.5, 0.75
- \rightarrow when $\vartheta = 0.5$, you may still observe 6W / 9 trials

Is Anything Missing? – NO

statistics

```
data {
    int<lower=0> w;
    int<lower=0> N;
parameters {
    real<lower=0,upper=1> theta;
model {
    w ~ binomial(N, theta);
```

```
data {
    int<lower=0> w;
    int<lower=0> N;
parameters {
    real<lower=0,upper=1> theta;
model {
    w ~ binomial(N, theta);
```

What We Talk About When We Talk About "Bayesian" Models

Parameter estimate

Why Use Stan?

vs. BUGS and JAGS

- Time to converge and per effective sample size:
 - 0.5∞ times faster
- Memory usage: I 10%
- Language features
 - variable overwrite: a = 4, then a = 5
 - formal control flow
 - full support of vectorizing

NUTS vs. Gibbs and Metropolis

cognitive model statistics

computing

Hamilton MC (HMC) implements No-U-Turn Sampler (NUTS)

- Two dimensions of highly correlated 250-dim normal
- 1,000,000 draws from Metropolis and Gibbs (thin to 1000)
- 1,000 draws from NUTS; 1000 independent draws

General Properties of Stan Language

- Whitespace does not matter
- Comments
 - // - /* ... */
- Must use semicolon (;)
- Variables are typed and scoped

cognitive model statistics

computing

Variable's Scope

	data	transformed data	parameters	transformed parameters	model	generated quantities
Variable Declarations	Yes	Yes	Yes	Yes	Yes	Yes
Variable Scope	Global	Global	Global	Global	Local	Local
Variables Saved?	No	No	Yes	Yes	No	Yes
Modify Posterior?	No	No	No	No	Yes	No
Random Variables	No	No	No	No	No	Yes

Variable Declaration

- Each variable has a type (static type; scalar, vector, matrix etc.)
- Only values of that type can be assigned to the variable
 - e.g. cannot assign [I 2 3] to a (declared as a scalar)
- Declaration of variables happen at the top of a block (including local blocks)

Scalar Variables

computing

real

- scalar
- continuous

```
data {
  real y;
}
```

int

- scalar
- integer
- can't be used in parameters or transformed parameters blocks

```
data {
  int n;
}
```

cognitive model statistics

```
Constraining Scalar Variables
```

```
data {
  int<lower=1> m;
  int<lower=0,upper=1> n;
  real<lower=0> x;
  real<upper=0> y;
  real<lower=-1,upper=1> rho;
```

cognitive model statistics

computing

Vector & Matrix

```
vector[3] a;
// column vector
row vector[4] b;
// row vector
matrix[3,4] A;
// A is a 3x4 matrix
// A[1] returns a 4-element row vector
vector<lower=0,upper=1>[5] rhos;
row vector<lower=0>[4] sigmas;
matrix<lower=-1, upper=1>[3,4] Sigma;
```

computing

Control Flow

• if-else if (cond) {
 ..statement..
}

```
if (cond) {
    ..statement..
} else {
    ..statement..
}
```

```
if (cond) {
    ..statement..
} else if (cond) {
    ..statement..
} else {
    ..statement..
}
```

for-loop

```
for ( j in 1:J) {
    ..statement..
}
```

```
for ( j in 1:J ) {
    for ( k in 1:K ) {
        ..statement..
    }
}
```

same as the R syntax, but terminate each line with;

BERNOULLI MODEL

- You are interested in if a coin is biased.
- You will flip the coin.
- You will record whether it comes up a head (h) or a tail (t).
- You might observe 15 heads out of 20 flips.
- What is your degree of belief about the biased parameter ϑ ?

Bernoulli Model

statistics

computing

 $\theta \sim \text{Uniform}(0, 1)$

 $h \sim \text{Bernoulli }(\theta)$

statistics

Exercise VIII

computing

.../BayesCog/03.bernoulli_coin/_scripts/bernoulli_coin_main.R

TASK: fit the Bernoulli model

```
> dataList
$`flip`
 [1] 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1
$N
[1] 20
```


Possible Optimization?

cognitive model statistics

computing

```
model {
  for (n in 1:N) {
    flip[n] ~ bernoulli(theta);
  }
}
```

```
model {
  flip ~ bernoulli(theta);
}
```

61.59 secs*

53.25 secs*

Thinking before looping!

* compiling time included 25

Recap

What we've learned...

- R Basics
- probability distributions
- Bayes' theorem, $p(\theta|D)$
- Binomial model
- MCMC and Stan

statistics

Linear Regression: height ~ weight

statistics
computing

.../04.regression_height/_scripts/regression_height_main.R

make scatter plot and fit the model with 1m()

```
>load('_data/height.RData')
>d <- Howell1
>d <- d[ d$age >= 18 , ]
>head(d)
height weight age male
1 151.765 47.82561 63 1
2 139.700 36.48581 63 0
3 136.525 31.86484 65 0
4 156.845 53.04191 41 1
5 145.415 41.27687 51 0
6 163.830 62.99259 35 1
```


statistics

computing

```
> L <- lm( height ~ weight, d) # estimate model by minimizing least squares errors
> summary(L)

Call:
lm(formula = height ~ weight, data = d)

Residuals:
    Min    1Q    Median    3Q    Max
-19.7464   -2.8835    0.0222    3.1424   14.7744
```

Results with lm()

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.086 on 350 degrees of freedom

Multiple R-squared: 0.5696, Adjusted R-squared: 0.5684

F-statistic: 463.3 on 1 and 350 DF, p-value: < 2.2e-16

height ~ weight

statistics

statistics

computing

Rethinking Regression Model

$$\mu_{i} = \alpha + \beta x_{i}$$
 $y_{i} = \mu_{i} + \varepsilon$
 $\varepsilon \sim Normal(0, \sigma)$
 $y_{i} \sim Normal(\mu_{i}, \sigma)$

Rethinking Regression Model

cognitive model

statistics

statistics

```
\mu_i = \alpha + \beta x_i
y_i~Normal(\mu_i,\sigma)
                                                                            \sigma
                           i = 1, 2, ..., N
```

```
model {
  vector[N] mu;
  for (i in 1:N) {
    mu[i] = alpha + beta * weight[i];
    height[i] ~ normal(mu[i], sigma);
  }
}
```

```
model {
  vector[N] mu;
  mu = alpha + beta * weight;
  height ~ normal(mu, sigma);
}
```

```
model {
  height ~ normal(alpha + beta * weight, sigma);
}
```


statistics

computing

Thinking about Priors?

 $\overline{\text{height}} = \alpha + \beta * \text{weight}$

 $\sigma \sim halfCauchy(0,20)$

height ~ $Normal(\overline{\text{height}}, \sigma)$

Exercise VIII

computing

```
.../04.regression_height/_scripts/regression_height_main.R
```

TASK: estimate the model and produce the results

```
Inference for Stan model: regression height model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
       mean se_mean
                    sd 2.5% 25%
                                        50%
                                              75% 97.5% n eff Rhat
     113.97 0.06 1.86 110.27 112.76 113.93 115.20 117.66
                                                          934
alpha
beta 0.90 0.00 0.04 0.82 0.88 0.90 0.93 0.99 922
                                                                1
sigma 5.11 0.01 0.19 4.74 4.97 5.10 5.24
                                                    5.50
                                                         1437
     -747.61 0.04 1.23 -750.80 -748.15 -747.28 -746.72 -746.24
                                                         993
lp
```

cognitive model
statistics
computing

What does the Model Predict?

cognitive model

statistics

statistics

computing

```
Posterior Predictive Check (PPC)
```

```
generated quantities {
  vector[N] height_bar;
  for (n in 1:N) {
    height_bar[n] = normal_rng(alpha + beta * weight[n], sigma);
  }
}
```

the generated quantities block runs only AFTER the sampling, and the time it costs can be essentially ignored!

Posterior Predictive Check (PPC)

cognitive model

statistics

Posterior Predictive Check (PPC)

cognitive model

statistics

Exercise IX

.../05.regression_height_poly/_scripts
/regression_height_poly_main.R

TASK: (I) Complete "regression_height_poly2_model.stan"

(2) produce PPC plot for both 1st order and 2nd order polynomial fit

statistics

```
Exercise IX – Tips
```

```
> source('_scripts/regression_height_poly_main.R')
> out1 <- reg_poly(poly_order = 1)</pre>
```

```
\overline{\text{height}} = \alpha + \beta 1 * \text{weight} + \beta 2 * \text{weight}^2
\text{height} \sim Normal(\overline{\text{height}}, \sigma)
```

```
data {
  int<lower=0> N;
  vector<lower=0>[N] height;
  vector<lower=0>[N] weight;
  vector<lower=0>[N] weight_sq;
}
```

```
height ~ normal(alpha + beta1 * weight + beta2 * weight_sq, sigma);
```

statistics

AN JEST 101

Happy Computing!