# Azure Al Search

#### 概要

- 公式ドキュメント
- 大量のデータに対する高速な検索を実現するためのサービス
- 旧名称「Azure Cognitive Search」「Azure Search」
- さまざまな「データソース」(データの格納場所)に対応
- サーバー、ネットワーク、ストレージなどの設計、運用、メンテナンスは マイクロソフトが実施。

#### AIエンリッチメント

- AIを使用したデータ処理(インデックス作成)が可能(「AIエンリッチメント」)
  - PDFに含まれる画像から「画像のキャプション」(説明文)を生成することで、画像(の説明文)に対するキーワード検索が可能
  - PDFに含まれる文章から「エンティティ抽出」により価格などを認識し、抽出することで「5,000円以上, 10,000円以下」といった価格の商品データの検索などが可能

# Azure Al Search の運用イメージ



### クエリ

Azure Al Searchは、通常、アプリの内部での「クエリ」(検索)の実行に利用される。

- データの検索を行うことを「クエリ」(query、問い合わせ)という
- 開発者はユーザー向けのアプリ(Webアプリ、モバイルアプリなど)を開発
- ユーザーがアプリに検索キーワードや検索条件を入力
  - 例: 東京在住の「山本」さん
- アプリはAzure Al SearchのAPIに、クエリの実行を依頼
- Azure Al Searchはクエリを実行
  - Azure Al Searchに接続された「データソース」(から作成した「イン デックス」)を使用して検索を行う
- Azure Al Searchは検索結果(JSON)をアプリに返す

# 主なデータソース(1)

#### Azure Al Search で利用可能なデータソース

- ※データソース = Azure Al Searchで検索できるデータの置き場所
  - ストレージアカウント (Blob, Table, Azure Files)
  - Azure Data Lake Storage Gen2
  - Azure SQL Database (Azure SQL Database, Azure SQL Database Managed Instance, SQL Server on VM)
  - Azure Cosmos DB (for NoSQL, for MongoDB, for Apache Gremlin)
  - SharePoint サイト (SharePoint Online)
  - Fabric OneLake レイクハウス

# 主なデータソース(2)

サードパーティから提供される「データソースコネクタ」を使用することで、 更に多くのデータソースに接続できる

- Amazon S3、Amazon RDS
- ファイルシステム(Windows, Linux, Mac), Googleドライブ, OneDrive
- MySQL, Oracle, PostgreSQL
- Salesforce, ServiceNow
- SAP ERP, SAP HANA
- Twitter, Slack
- その他多数

#### サポートされる主なファイル・ドキュメント形式

- ※データソースがストレージアカウントの Blob や Azure Files の場合
  - DOCX/DOC/DOCM、XLSX/XLS/XLSM、PPTX/PPT/PPTM、MSG
  - PDF
  - テキストファイル, HTML, CSV, XML
  - Markdown (プレビュー)
  - JSON
    - 1つのJSONファイルの全体を1データとして取り出す
    - 1つのJSONファイル内の配列に含まれる複数のデータを取り出す
  - JSONL
    - 1つのJSONファイルから複数のデータを取り出す

#### データの例(複数の社員の情報)

ストレージアカウントのBlobコンテナーにJSONファイルとして保存する。

```
"Id": 1,
"Name": "宮城 直樹",
"Department": "開発部",
"Profile": "C#が得意です。山口県出身で現在は東京に住んでいます",
"Age": 35,
"HireDate": "2015-04-01",
"Location": "東京",
"Certifications": ["Microsoft Certified Azure AI Engineer"],
"Seniority": "上級",
"Languages": ["日本語", "英語"],
"RemoteWork": true
```

9 / 25

# インデックス

### インデックス(検索インデックス、search indexes とも)

- Azure Al Searchでは、データソースのデータに対して事前にインデックス (索引)を作る
  - 大量のデータをあらかじめスキャンして、どのファイルのどの位置に どの単語が出現するか、という情報をあらかじめインデックスとして 保存しておく。
  - すると、ユーザーがクエリを実行する際に、インデックスを利用して、検索結果をすばやく提供することができる。
- インデックスは Azure Al Search リソースの内部に置かれる
  - インデックスの最大サイズには制限があることに注意(後述)

#### インデックスの作成方法

# プルモデルとプッシュモデルの2つの作成方法がある

- プルモデル: Azure Al Searchの中に「インデクサー」を作り、データソースのデータをスキャンし、インデックスを作る
  - インデクサー作成直後に初回のスキャンが実行される
  - その後のスキャンのスケジュール設定も可能。毎日、毎時、など。
- プッシュ モデル: ユーザーのアプリケーション側のコードで、データをスキャンし、Azure Al Searchのインデックスを作成・更新する
- ※プッシュモデルは比較的高度な方式(インデックスを書き込むプログラムコードの開発が必要)。ラボではプルモデルを使用。

#### インデクサーの作成

- Azure portalから比較的簡単にインデクサーを作成できる
- 基本的な流れ
  - データソースを選択
  - データのフィールド属性 (各検索項目のデータ型や検索オプション) を設定
  - インデクサーの名前や実行スケジュールを設定



#### 検索エクスプローラー

#### 検索エクスプローラー

- Azure portal に組み込まれているクエリ(検索)ツール
- 開発者向けのツール
  - 通常エンドユーザー向けには別途、検索画面を持つアプリを開発し、 そちらから検索を行ってもらう
- **クエリビュー** と **JSON ビュー** という2つの検索モードがある
  - クエリビューでは単純な全文検索を実行。つまり指定されたキーワードを含むデータを検索
  - JSONビューは、専用の形式を使用して、高度な検索条件の指定が可能

#### 検索エクスプローラーの「クエリ ビュー」での検索の例

※ Name と Profile と Location に対して Searchable と設定されているとす る

宮城

検索

結果

```
1
       "@odata.context": "https://ai902837425.search.windows.net/indexes('index1')/$metadata#docs(*)",
       "@odata.count": 1,
       "value": [
4
          "@search.score": 2.367833,
6
          "Id": 1,
          "Name": "宮城 直樹",
8
          "Department": "開発部",
          "Profile": "C#が得意です。山口県出身で現在は東京に住んでいます",
10
          "Age": 35,
11
          "HireDate": "2015-04-01T00:00:00Z",
12
          "Location": "東京",
13
          "Certifications": [
14
            "Microsoft Certified: Azure AI Engineer"
15
16
           "Seniority": "上級",
17
```

### 検索エクスプローラーの「JSON ビュー」での検索の例

```
JSON クエリ エディター
         "filter": "Certifications/any(c: c eq 'Microsoft Certified: Azure AI Engineer')"
    3
                                                                                                                        検索
結果
   1
          "@odata.context": "https://ai902837425.search.windows.net/indexes('index1')/$metadata#docs(*)",
          "value": [
    3
                                                                                                                    Trans.
                                                                                                                    "@search.score": 1,
    5
                                                                                                                    The same
             "Id": 1,
             "Name": "宮城 直樹",
             "Department": "開発部",
             "Profile": "C#が得意です。山口県出身で現在は東京に住んでいます",
    9
             "Age": 35,
  10
             "HireDate": "2015-04-01T00:00:00Z",
   11
             "Location": "東京",
   12
             "Certifications": [
  13
               "Microsoft Certified: Azure AI Engineer"
   15
             ],
             "Seniority": "上級",
  16
```

# リソースの作成

| ■ Microsoft Azure                                 | ענו 🔎                                                                          | ース、サービス、ドキュメントの検索 (G+/) |
|---------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|
| ホーム > Azure AI services   AI Search > 検索サービスを作成する |                                                                                |                         |
| 基本情報 スケーリング ネットワーク                                | タグ 確認して作成                                                                      |                         |
| プロジェクトの詳細                                         |                                                                                |                         |
| サブスクリプション*                                        | MOC Subscription-lod50579408                                                   | ~                       |
| リソース グループ *                                       | ResourceGroup1<br>新規作成                                                         | ~                       |
| インスタンスの詳細                                         |                                                                                |                         |
| サービス名* ①                                          | aisearch0928734825                                                             | ~                       |
| 場所 *                                              | (US) Central US                                                                | ~                       |
| 価格レベル* ①                                          | <b>Standard</b> 160 GB/パーティション、最大 12 個のレプリカ、最大<br>ン、最大 36 個の検索ユニット<br>価格レベルの変更 | 12 個のパーティショ             |

# 価格レベルの選択

■ Microsoft Azure

| Azure AI services | AI Search | 検索サービスを作成する | AI Search | 検索サービスを作成する | AI Search | 検索サービスを作成する | AI Search | AI S

| SKU $\vee$ | オファリング $\vee$ | インデックス 🗸 | インデクサー 🗸 | ベクター クォータ ∨    | ストレージの合計 🗸     | 検索単位 🗸 | レプリカ $\vee$ | パーティション 💛 | 検索ユニットのコスト/月 (推定) 🗸 |
|------------|---------------|----------|----------|----------------|----------------|--------|-------------|-----------|---------------------|
| F          | Free          | 3        | 3        | 25 MB (i)      | 50 MB          | 1      | 1           | 1         | \$0.00              |
| В          | 基本            | 15       | 15       | 5 GB/パーティション   | 15 GB/パーティション  | 9      | 3           | 3         | \$75.14             |
| S          | Standard      | 50       | 50       | 35 GB/パーティション  | 160 GB/パーティション | 36     | 12          | 12        | \$249.98            |
| S2         | Standard      | 200      | 200      | 150 GB/パーティション | 512 GB/パーティション | 36     | 12          | 12        | \$999.94            |
| S3         | Standard      | 200      | 200      | 300 GB/パーティション | 1 TB/パーティション   | 36     | 12          | 12        | \$1,999.87          |
| S3HD       | 高密度           | 1000     | 0        | 300 GB/パーティション | 1 TB/パーティション   | 36     | 12          | 3         | \$1,999.87          |
| L1         | ストレージ最適化      | 10       | 10       | 150 GB/パーティション | 2 TB/パーティション   | 36     | 12          | 12        | \$2,856.22          |
| L2         | ストレージ最適化      | 10       | 10       | 300 GB/パーティション | 4 TB/パーティション   | 36     | 12          | 12        | \$5,711.69          |

● このリージョンの新規サービスでは、追加コストなしでより高いストレージ上限を利用できます。

Select

示されている価格は、現地通貨での推定価格であり、Azure インフラストラクチャのコストと、サブスクリプションおよび場所に対する割引のみが含まれます。価格には、適用されるソフトウェアのコストは含まれません。最終的な料金は、コスト分析と課金のビューに 現地通貨で表示されます。 Azure 料金計算ツールを表示します。 ☑

### 価格レベル

- リソース作成時に、Free、Basic、Standardなどの価格レベルを選択する
- 価格レベルにより以下のようなものが決まる
  - 「インデックス」の上限数、「インデクサー」の上限数
  - 「検索ユニット」の性能
    - 検索性能やインデックス作成の性能に関係
  - 。「検索ユニット」1個あたりのストレージの容量
    - このストレージはインデックスデータを格納するのに使用される
  - 「検索ユニット」の上限数、「レプリカ」の上限数、「パーティション」の上限数

#### 価格レベルの変更

- 以前は、リソース作成時に選択した価格レベルは リソース作成後に変更することはできなかった
- 2025/3より、価格レベルの変更が可能となった(現在プレビュー)
- Basic レベルと Standard レベル (S1、S2、S3) の間の変更がサポートされる
- Basic から S1 に移行するなど、下位レベルから上位レベルにのみ切り替え が可能
- 操作の完了には数時間かかり、取り消しはできない

#### スケーリングオプション(レプリカ、パーティション、検索ユニット)

- 検索ユニット: Azure Al Searchリソースを構成する内部サーバー
  - クエリの実行を担当
  - ストレージを提供
  - ○検索ユニットを増やすことで、クエリ同時実行性能が向上し、トータ ルのストレージ容量が増加する
- パーティション: 検索ユニットの集まりのこと
  - 例えばパーティション=3 と設定すると、パーティション内に検索ユニットが3個作成される
- レプリカ:パーティションの集まりのこと
  - 。 可用性を向上させるしくみ

可能

これらのスケーリングオプションについてはリソース作成後に設定変更が

#### スケーリングオプション(レプリカ、パーティション、検索ユニット)



Azure Al Search リソース 価格レベル: S(Standard), レプリカ=2、パーティション=3

パーティション (可用性ゾーン1)



パーティション (可用性ゾーン2)



ストレージの総容量 = 160 GB \* 3 = 480 GB

リソース全体の検索ユニット数 = 2レプリカ\*3パーティション = 6

検索ユニットのコスト = \$250/月

全体のコスト = \$250/月 \* 6検索ユニット = \$1,500/月

# 料金

- Azure Al Searchの価格
- 検索ユニット1個あたりの単価は、リソースの価格レベルとリージョンによって決まる
  - たとえば Standard (S) の場合 \$250/月 など
- リソース全体のコストは、検索ユニット数(=パーティション\*レプリカ)に比例
  - たとえばパーティション 3、レプリカ 2 の場合、\$250/月 \* 3 \* 2 = \$1,500/月 など
- 小規模な利用や検証向けの、無料で使用できる Free 価格レベル も選択可能。
  - ストレージが50MBまで、検索ユニット(サーバー数)が1個のみ(パーティションとレプリカは1で固定、スケーリング不可)

#### **SDK**

- SDK = Software Development Kit
- C# / Python / Java / JavaScript(TypeScript) の4言語のSDKが提供されている。
- 各機能の「クイックスタート」で、リソースの作成、プロジェクトの作成、SDKの導入、コードの記述と実行などの具体的な手順を確認できる
  - C#
  - Python
  - Java
  - JavaScript

#### コード例(東京在住の「山本」さんを検索する例、主要部分のみ)

```
// エンドポイント、キー、インデックス名を環境変数から読み取り
string endpoint = Environment.GetEnvironmentVariable("SEARCH ENDPOINT") ?? "";
string key = Environment.GetEnvironmentVariable("SEARCH KEY") ?? "";
string index = Environment.GetEnvironmentVariable("SEARCH INDEX") ?? "";
// 検索クライアントを作成
var client = new SearchClient(new Uri(endpoint), index, new AzureKeyCredential(key));
// 検索を実行
var response = client.Search<SearchDocument>("山本", new SearchOptions()
   Filter = "Location eq '東京'",
});
// 検索結果を表示
await foreach (var result in response.Value.GetResultsAsync())
   Console.WriteLine($"Name: {result.Document["Name"]}");
```

# このコードの検索結果は、以下のような「JSONビュー」のクエリの検索結果と同じとなる。

```
JSON クエリ エディター
    1
            "search": "山本",
    2
            "filter": "Location eq '東京'"
    3
    4
    5
                                                                                                                           検索
結果
    1
                                                                                                                       "@odata.context": "https://ai902837425.search.windows.net/indexes('index1')/$metadata#docs(*)",
                                                                                                                       PE-wee
          "value": [
                                                                                                                       3
                                                                                                                       1/Carr
    4
              "@search.score": 1.052196,
                                                                                                                       1 Laure
              "Id": 3,
    6
              "Name": "山本 愛",
    7
              "Department": "総務部",
    8
              "Profile": "C#, Django, JavaScript",
    9
              "Age": 30,
   10
              "HireDate": "2017-09-01T00:00:00Z",
   11
              "Location": "東京",
   12
```

"Certifications": [

13