Odpowiedzi i schematy oceniania

Arkusz 10

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania	
zadania	odpowiedź		
1.	A.	$0.2x = 8 \Rightarrow x = 40, 40 - 8 = 32$	
2.	D.	$1000 \cdot \left(1 + \frac{0,06}{4}\right)^{2\cdot 4}$	
3.	В.	$W = \left(\frac{2}{7}\right)^{40} \left(\frac{2}{7}\right)^{-30} = \left(\frac{2}{7}\right)^{10}$	
4.	D.	$a = 3^{2\log_3 4} = 3^{\log_3 16} = 16$	
5.	В.	$W = 25 - (2x - 3y)^{2} \Rightarrow W = [5 - (2x - 3y)][5 + (2x - 3y)] \Rightarrow$ $\Rightarrow W = (5 - 2x + 3y)(5 + 2x - 3y)$	
6.	D.	$x + 4 \neq 0 \land x^2 + 6x + 9 \neq 0 \Rightarrow x \neq -4 \land x \neq -3$	
7.	C.	$-x^2 - 5x < 0 \Rightarrow x(-x-5) < 0$, zatem $x_1 = 0$, $x_2 = -5$, zaś ramiona	
		paraboli skierowane są do dołu.	
8.	D.	$-m-3 < 0 \Rightarrow m > -3$	
9.	A.	Skorzystaj z zasady przesuwania wykresu funkcji wzdłuż osi układu współrzędnych.	
10.	B.	Funkcja, której wykres przechodzi przez dane punkty, ma wzór	
		y = 3x - 1 (rozwiąż odpowiedni układ równań).	
11.	D.	$x^2 + 4 > 0 \Rightarrow x \in R$	
12.	B.	Każda funkcja wykładnicza ma zbiór wartości (0, +∞), a wykres	
		danej funkcji został przesunięty wzdłuż osi OX.	
13.	C.	$2 - \frac{n}{7} > 0 \Rightarrow n < 14 \land n \in N_{+}$	
14.	A.	$r = \frac{1}{\sqrt{3} + \sqrt{2}} - \left(\sqrt{3} + \sqrt{2}\right) = \sqrt{3} - \sqrt{2} - \sqrt{3} - \sqrt{2} \Rightarrow r = -2\sqrt{2}, \text{ zatem}$ $a_3 = \sqrt{3} - 3\sqrt{2}.$	
		$a_3 = \sqrt{3} - 3\sqrt{2} .$	

15.	D.	$a_7 = 256 \cdot \left(-\frac{1}{2}\right)^6 \Rightarrow a_7 = 4$
16.	В.	$a_1 = 2, a_n = 2n \Rightarrow S_n = \frac{2+2n}{2}n \Rightarrow S_n = n^2 + n$
17.	C.	Funkcja $y = \cos x$ jest dla $x \in (0, 90^{\circ})$ malejąca.
18.	В.	$W = \frac{1 - \cos^2 x}{\sin x} = \frac{\sin^2 x}{\sin x} \Rightarrow W = \sin x$
19.	C.	Mniejszy kąt leży naprzeciwko mniejszego boku trójkąta.
20.	D.	Dwa koła są podobne, więc skala podobieństwa $k^2=4 \Rightarrow k=2$, stąd promień większego koła jest dwa razy większy od promienia mniejszego koła.
21.	D.	$a_k = -\frac{1}{a_l} \Rightarrow a_k = -\frac{3}{2}$, zaś punkt P spełnia równanie prostej z przykładu D.
22.	A.	$a_k = a_l \Leftrightarrow -1 - 3a = -\frac{5}{3} \Leftrightarrow a = \frac{2}{9}$
23.	D.	$ AO = \sqrt{7+9} = 4$
24.	B.	$l = 12, r = 6 \Rightarrow P_b = 72\pi$
25.	В.	Suma oczek co najwyżej 8, to znaczy suma jest mniejsza lub równa 8, $\Omega = 36$, $A = 26 \Rightarrow P(A) = \frac{26}{36}$.

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów
26.	Zapisanie większej potęgi za pomocą mniejszej:	1
	$a = 3^{27} + 3^{27} \cdot 3^2.$	
	Wykazanie tezy zadania: $a = 3^{27} (1+9) \Rightarrow a = 3^{27} \cdot 10$, zatem	1
	liczba jest podzielna przez 3 i przez 10, czyli jest podzielna	
	przez 30.	

27.	Pogrupowanie wyrazów: $W(x) = x^2(x+5) - 16(x+5)$.	1
	Rozłożenie wielomianu na czynniki:	1
	$W(x) = (x^2 - 16)(x + 5) \Rightarrow W(x) = (x - 4)(x + 4)(x + 5).$	
28.	Przekształcenie pierwszego wielomianu do postaci ogólnej:	1
	$W_1(x) =$	
	$= x^{3} + 6x^{2} + 12x + 8 - 4x^{2} + 9 \Rightarrow W_{1}(x) = x^{3} + 2x^{2} + 12x + 17.$	
	Przekształcenie drugiego wielomianu do postaci ogólnej:	1
	$W_2(x) = x^3 - 5x^2 + x - 5 + 7x^2 + 11x + 22 \Rightarrow$	
	$\Rightarrow W_2(x) = x^3 + 2x^2 + 12x + 17$, zatem wielomiany są równe.	
29.	Zapisanie warunków koniecznych do wyznaczenia dziedziny	1
	funkcji: $x^2 \ge 0 \land x^2 \le 0$.	
	Wyznaczenie dziedziny i zbioru wartości funkcji:	1
	$D = \{0\}, D^{-1} = \{0\}.$	
30.	$\cos \alpha = \frac{3}{5} \Rightarrow \sin \alpha = \sqrt{1 - \frac{9}{25}} \Rightarrow \sin \alpha = \frac{4}{5}$	1
	$tg\alpha = \frac{3}{4} \wedge \sin\alpha = \frac{4}{5} \Rightarrow \cos\alpha = \frac{16}{15} - sprzeczność z treścią$	1
	zadania.	
31.	Wprowadzenie oznaczeń:	1
	x, y, z – szukane liczby,	
	(x, y, z) – ciąg arytmetyczny,	
	(x, y+3, z+9) – ciąg geometryczny,	
	x + y + z = 45.	
	x + y + z = 45	1
	Zapisanie układu równań: $y = \frac{x+z}{2}$.	
	$(y+3)^2 = x(z+9)$	
	Wyznaczenie liczby $y: y = 15$.	1
	Doprowadzenie układu do równania: $x^2 - 39x + 324 = 0$ i	1
	rozwiązanie równania: $x_1 = 12, x_2 = 27$.	
	Wyznaczenie trzeciej liczby i podanie odpowiedzi.:	1
	V V 1 1	

	$\begin{cases} x = 12 \\ y = 15 \lor \begin{cases} x = 27 \\ y = 15 . \\ z = 18 \end{cases} $ $\begin{cases} x = 27 \\ z = 3 \end{cases}$	
	z = 18 $z = 3$	
32.	Wyznaczenie długości odcinka S_2O w zależności od promienia	1
	mniejszego okręgu : $ S_2O = 2r_2$, O – punkt przecięcia prostej l i	
	S_1S_2).	
	$\left[\frac{r_1}{\sin 30^\circ}\right] = \sin 30^\circ$	2
	Zapisanie układu równań: $\begin{cases} \frac{r_1}{r_1 + r_2 + 2r_2} = \sin 30^{\circ} \\ . \end{cases}$	(po 1 punkcie
	$r_1 + r_2 = 24$	za każde
		równanie)
	Rozwiązanie układu i podanie odpowiedzi: $r_1 = 18, r_2 = 6$.	2 (1 punkt za
		metodę i 1 za
		obliczenia)
33.	Wykonanie rysunku z oznaczeniami lub wprowadzenie	1
	oznaczeń:	
	a, b – przyprostokątna i przeciwprostokątna podstawy	
	graniastosłupa,	
	h – wysokość graniastosłupa.	
	Wyznaczenie przeciwprostokątnej podstawy: $b = 9\sqrt{2}$.	1
	Wyznaczenie wysokości graniastosłupa: $h = 3\sqrt{6}$.	1
	Wyznaczenie pola powierzchni bocznej graniastosłupa:	1
	$P_b = 54\left(\sqrt{6} + \sqrt{3}\right).$	
	Wyznaczenie objętości graniastosłupa: $V = \frac{243\sqrt{6}}{2}$.	1