1

Assignment 5

Gaureesha Kajampady - EP20BTECH11005

Download latex-tikz codes from

https://github.com/gaureeshk/assignment5/blob/ main/assignment5.tex

1 Problem

(CSIR UGC NET EXAM (Dec 2014), Q.105) Let $X_1, X_2, X_3, ...$ be independent random variables with $E(X_k) = 0$ and $Var(X_k) = k$. Let $S_n \sum_{k=1}^n X_k$. Then as $n \to \infty$,

- 1) $\frac{S_n}{n^{\frac{3}{2}}} \rightarrow 0$ in probability
- 2) $\frac{S_n}{n^{\frac{3}{2}}} \rightarrow 0$ in distribution
- 3) $\frac{S_n X_n}{n^{\frac{5}{2}}} \rightarrow 0$ in distribution
- 4) $\frac{S_n X_n}{n^{\frac{5}{2}}} \rightarrow 0$ in probability

2 Solution

Definition 1. (convergence in probability)

Let X_1, X_2, \ldots be an infinite sequence of random variables, and let Y be another random variable. Then the sequence $\{X_n\}$ converges in probability to Y, if for all $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr\left(|X_n - Y| \ge \epsilon\right) = 0 \tag{2.0.1}$$

And we write as $n \to \infty$, $X_n \to Y$ in probability.

Definition 2. (Convergence in Distribution)

Let $X, X_1, X_2,...$ be random variables. Then we say that the sequence $\{X_n\}$ converges to X, if $\forall x \in R^1$ such that $\Pr(X = x) = 0$, we have

$$\lim_{n \to \infty} \Pr(X_n \le x) = \Pr(X \le x). \tag{2.0.2}$$

Theorem 2.1. If $X_n \to X$ in probability, $X_n \to X$ in distribution.

Theorem 2.2. (Chebyshev's inequality)

Let X be a random variable with finite expected

value μ and finite non-zero variance σ^2 . Then for any real number $k \neq 0$,

$$\Pr(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$
 (2.0.3)

We know that,

Since S_n is a sum of random variables, it itself is a random variable. We also know that,

$$E\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} E(X_{i})$$
 (2.0.4)

Hence,

$$E(S_n) = \sum_{i=0}^{n} 0 = 0 (2.0.5)$$

$$\implies E\left(\frac{S_n}{n^{\frac{3}{2}}}\right) = 0 \tag{2.0.6}$$

Since the random variables $X_1, X_2,...$ are independent

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$
 (2.0.7)

$$Var(S_n) = \sum_{i=1}^{n} i = \frac{n \times (n+1)}{2}$$
 (2.0.8)

$$\implies Var\left(\frac{S_n}{n^{\frac{3}{2}}}\right) = \frac{Var(S_n)}{n^3}$$
 (2.0.9)

$$=\frac{(n+1)}{2n^2} \quad (2.0.10)$$

Hence as $n \to \infty$,

$$E\left(\frac{S_n}{n^{\frac{3}{2}}}\right) \to 0 \tag{2.0.11}$$

$$Var\left(\frac{S_n}{n^{\frac{3}{2}}}\right) \to 0 \tag{2.0.12}$$

(2.0.13)

Using theorem 2.2 (Chebyshev's inequality),

$$\Pr\left(\left|\frac{S_n}{n^{\frac{3}{2}}} - \mu\right| \ge \epsilon\right) \le \frac{\sigma^2}{\epsilon^2} \tag{2.0.14}$$

As $n \rightarrow \infty$, $\mu \rightarrow 0$ and $\sigma \rightarrow 0$

$$\Rightarrow \frac{\sigma^2}{\epsilon^2} \to 0 \qquad (2.0.15)$$

$$\Rightarrow \Pr\left(\left|\frac{S_n}{n^{\frac{3}{2}}} - 0\right| \ge \epsilon\right) \to 0 \qquad (2.0.16)$$

Hence $\frac{S_n}{n^{\frac{3}{2}}}$ converges to 0 in probability. By using theorem 2.1, $\Longrightarrow \frac{S_n}{n^{\frac{3}{2}}}$ converges to 0 in distribution.