

10/809 655
May 24, 2004

5

2. The nucleic acid of Claim 1, wherein said nucleotide sequence comprises a nucleotide sequence selected from the group consisting of the sequence shown in Figure 1 (SEQ ID NO:3), Figure 3 (SEQ ID NO:5), Figure 5 (SEQ ID NO:7), Figure 7 (SEQ ID NO:9), Figure 9 (SEQ ID NO:11), Figure 11 (SEQ ID NO:16), Figure 13 (SEQ ID NO:21), Figure 15 (SEQ ID NO:23), Figure 17 (SEQ ID NO:28), Figure 19 (SEQ ID NO:30), Figure 21 (SEQ ID NO:32), Figure 23 (SEQ ID NO:40), Figure 25 (SEQ ID NO:42), Figure 27 (SEQ ID NO:49), Figure 29 (SEQ ID NO:51), Figure 31 (SEQ ID NO:53), Figure 33 (SEQ ID NO:55), Figure 35 (SEQ ID NO:57), Figure 37 (SEQ ID NO:62), Figure 39 (SEQ ID NO:67), Figure 41 (SEQ ID NO:69), Figure 43 (SEQ ID NO:71), Figure 45 (SEQ ID NO:76), Figure 47 (SEQ ID NO:78), Figure 49 (SEQ ID NO:83), Figure 51 (SEQ ID NO:85), Figure 53 (SEQ ID NO:87), Figure 55 (SEQ ID NO:94), Figure 57 (SEQ ID NO:99), Figure 59 (SEQ ID NO:101), Figure 61 (SEQ ID NO:103), Figure 63 (SEQ ID NO:110), Figure 65 (SEQ ID NO:115), Figure 67 (SEQ ID NO:117), Figure 69 (SEQ ID NO:122), Figure 71 (SEQ ID NO:127), Figure 73 (SEQ ID NO:129), Figure 75 (SEQ ID NO:131), Figure 77 (SEQ ID NO:133), Figure 79 (SEQ ID NO:135), Figure 81 (SEQ ID NO:137), Figure 83 (SEQ ID NO:139), Figure 85 (SEQ ID NO:141), Figure 87 (SEQ ID NO:143), Figure 89 (SEQ ID NO:145), Figure 91 (SEQ ID NO:147), Figure 93 (SEQ ID NO:152), Figure 95 (SEQ ID NO:157), Figure 97 (SEQ ID NO:159), Figure 99 (SEQ ID NO:161), Figure 101 (SEQ ID NO:169), Figure 103 (SEQ ID NO:179), Figure 105 (SEQ ID NO:188), Figure 107 (SEQ ID NO:193), Figure 109 (SEQ ID NO:195), Figure 111 (SEQ ID NO:197), Figure 113 (SEQ ID NO:202), Figure 115 (SEQ ID NO:209), Figure 117 (SEQ ID NO:211), Figure 119 (SEQ ID NO:213), Figure 121 (SEQ ID NO:215), Figure 123 (SEQ ID NO:217), Figure 125 (SEQ ID NO:219), Figure 127 (SEQ ID NO:224), Figure 129 (SEQ ID NO:226), Figure 131 (SEQ ID NO:228), Figure 133 (SEQ ID NO:233), Figure 135 (SEQ ID NO:235), Figure 137 (SEQ ID NO:242), Figure 139 (SEQ ID NO:247), Figure 141 (SEQ ID NO:252), Figure 143 (SEQ ID NO:259), Figure 145 (SEQ ID NO:264), Figure 147 (SEQ ID NO:266), Figure 149 (SEQ ID NO:268), Figure 151 (SEQ ID NO:270), Figure 153 (SEQ ID NO:272), Figure 155 (SEQ ID NO:274), Figure 157 (SEQ ID NO:276), Figure 159 (SEQ ID NO:281), Figure 161 (SEQ ID NO:286), Figure 163 (SEQ ID NO:291), Figure 165 (SEQ ID NO:296), Figure 167 (SEQ ID NO:301), Figure 169 (SEQ ID NO:303), Figure 171 (SEQ ID NO:305), Figure 173 (SEQ ID NO:307), Figure 175 (SEQ ID NO:309), Figure 177 (SEQ ID NO:314), Figure 179 (SEQ ID NO:316), Figure 181 (SEQ ID NO:321), Figure 183 (SEQ ID NO:323), Figure 185 (SEQ ID NO:325), Figure 187 (SEQ ID NO:327), Figure 189 (SEQ ID NO:329), Figure 191 (SEQ ID NO:331), Figure 193 (SEQ ID NO:333), Figure 195 (SEQ ID NO:335), Figure 197 (SEQ ID NO:337), Figure 199 (SEQ ID NO:339), Figure 201 (SEQ ID NO:346), Figure 203 (SEQ ID NO:351), Figure 205 (SEQ ID NO:353), Figure 207 (SEQ ID NO:355), Figure 209 (SEQ ID NO:357), Figure 211 (SEQ ID NO:363), Figure 213 (SEQ ID NO:365), Figure 215 (SEQ ID NO:371), Figure 217 (SEQ ID NO:373), Figure 219 (SEQ ID NO:375), Figure 221 (SEQ ID NO:377), Figure 223 (SEQ ID NO:382), Figure 225 (SEQ ID NO:384), Figure 227 (SEQ ID NO:389), Figure 229 (SEQ ID NO:394), Figure 231 (SEQ ID NO:396), Figure 233 (SEQ ID NO:401), Figure 235 (SEQ ID NO:405), Figure 237 (SEQ ID NO:409), Figure 239 (SEQ ID NO:414), Figure 241 (SEQ ID NO:422), Figure 242 (SEQ ID NO:428) and Figure 245 (SEQ ID NO:430).

50

5

3. The nucleic acid of Claim 1, wherein said nucleotide sequence comprises a nucleotide sequence selected from the group consisting of the full-length coding sequence of the sequence shown in Figure 1 (SEQ ID NO:3), Figure 3 (SEQ ID NO:5), Figure 5 (SEQ ID NO:7), Figure 7 (SEQ ID NO:9), Figure 9 (SEQ ID NO:11), Figure 11 (SEQ ID NO:16), Figure 13 (SEQ ID NO:21), Figure 15 (SEQ ID NO:23), Figure 17 (SEQ ID NO:28), Figure 19 (SEQ ID NO:30), Figure 21 (SEQ ID NO:32), Figure 23 (SEQ ID NO:40), Figure 25 (SEQ ID NO:42), Figure 27 (SEQ ID NO:49), Figure 29 (SEQ ID NO:51), Figure 31 (SEQ ID NO:53), Figure 33 (SEQ ID NO:55), Figure 35 (SEQ ID NO:57), Figure 37 (SEQ ID NO:62), Figure 39 (SEQ ID NO:67), Figure 41 (SEQ ID NO:69), Figure 43 (SEQ ID NO:71), Figure 45 (SEQ ID NO:76), Figure 47 (SEQ ID NO:78), Figure 49 (SEQ ID NO:83), Figure 51 (SEQ ID NO:85), Figure 53 (SEQ ID NO:87), Figure 55 (SEQ ID NO:94), Figure 57 (SEQ ID NO:99), Figure 59 (SEQ ID NO:101), Figure 61 (SEQ ID NO:103), Figure 63 (SEQ ID NO:110), Figure 65 (SEQ ID NO:115), Figure 67 (SEQ ID NO:117), Figure 69 (SEQ ID NO:122), Figure 71 (SEQ ID NO:127), Figure 73 (SEQ ID NO:129), Figure 75 (SEQ ID NO:131), Figure 77 (SEQ ID NO:133), Figure 79 (SEQ ID NO:135), Figure 81 (SEQ ID NO:137), Figure 83 (SEQ ID NO:139), Figure 85 (SEQ ID NO:141), Figure 87 (SEQ ID NO:143), Figure 89 (SEQ ID NO:145), Figure 91 (SEQ ID NO:147), Figure 93 (SEQ ID NO:152), Figure 95 (SEQ ID NO:157), Figure 97 (SEQ ID NO:159), Figure 99 (SEQ ID NO:161), Figure 101 (SEQ ID NO:169), Figure 103 (SEQ ID NO:179), Figure 105 (SEQ ID NO:188), Figure 107 (SEQ ID NO:193), Figure 109 (SEQ ID NO:195), Figure 111 (SEQ ID NO:197), Figure 113 (SEQ ID NO:202), Figure 115 (SEQ ID NO:209), Figure 117 (SEQ ID NO:211), Figure 119 (SEQ ID NO:213), Figure 121 (SEQ ID NO:215), Figure 123 (SEQ ID NO:217), Figure 125 (SEQ ID NO:219), Figure 127 (SEQ ID NO:224), Figure 129 (SEQ ID NO:226), Figure 131 (SEQ ID NO:228), Figure 133 (SEQ ID NO:233), Figure 135 (SEQ ID NO:235), Figure 137 (SEQ ID NO:242), Figure 139 (SEQ ID NO:247), Figure 141 (SEQ ID NO:252), Figure 143 (SEQ ID NO:259), Figure 145 (SEQ ID NO:264), Figure 147 (SEQ ID NO:266), Figure 149 (SEQ ID NO:268), Figure 151 (SEQ ID NO:270), Figure 153 (SEQ ID NO:272), Figure 155 (SEQ ID NO:274), Figure 157 (SEQ ID NO:276), Figure 159 (SEQ ID NO:281), Figure 161 (SEQ ID NO:286), Figure 163 (SEQ ID NO:291), Figure 165 (SEQ ID NO:296), Figure 167 (SEQ ID NO:301), Figure 169 (SEQ ID NO:303), Figure 171 (SEQ ID NO:305), Figure 173 (SEQ ID NO:307), Figure 175 (SEQ ID NO:309), Figure 177 (SEQ ID NO:314), Figure 179 (SEQ ID NO:316), Figure 181 (SEQ ID NO:321), Figure 183 (SEQ ID NO:323), Figure 185 (SEQ ID NO:325), Figure 187 (SEQ ID NO:327), Figure 189 (SEQ ID NO:329), Figure 191 (SEQ ID NO:331), Figure 193 (SEQ ID NO:333), Figure 195 (SEQ ID NO:335), Figure 197 (SEQ ID NO:337), Figure 199 (SEQ ID NO:339), Figure 201 (SEQ ID NO:346), Figure 203 (SEQ ID NO:351), Figure 205 (SEQ ID NO:353), Figure 207 (SEQ ID NO:355), Figure 209 (SEQ ID NO:357), Figure 211 (SEQ ID NO:363), Figure 213 (SEQ ID NO:365), Figure 215 (SEQ ID NO:371), Figure 217 (SEQ ID NO:373), Figure 219 (SEQ ID NO:375), Figure 221 (SEQ ID NO:377), Figure 223 (SEQ ID NO:382), Figure 225 (SEQ ID NO:384), Figure 227 (SEQ ID NO:389), Figure 229 (SEQ ID NO:394), Figure 231 (SEQ ID NO:396), Figure 233 (SEQ ID NO:401), Figure 235 (SEQ ID NO:405), Figure 237 (SEQ ID NO:409), Figure 239 (SEQ ID NO:414), Figure 241 (SEQ ID NO:422), Figure 242 (SEQ ID NO:428) and Figure 245 (SEQ ID NO:430).

50

5

4. Isolated nucleic acid which comprises the full-length coding sequence of the DNA deposited under any ATCC accession number shown in Table 2.

10

5. A vector comprising the nucleic acid of Claim 1.

5 6. The vector of Claim 5 operably linked to control sequences recognized by a host cell transformed with the vector.

15

7. A host cell comprising the vector of Claim 5.

10 8. The host cell of Claim 7 wherein said cell is a CHO cell.

20

9. The host cell of Claim 7 wherein said cell is an *E. coli*.

10. The host cell of Claim 7 wherein said cell is a yeast cell.

15

25 11. A process for producing a PRO polypeptides comprising culturing the host cell of Claim 7 under conditions suitable for expression of said PRO polypeptide and recovering said PRO polypeptide from the cell culture.

30

20 12. Isolated PRO polypeptide having at least 80% sequence identity to an amino acid sequence selected from the group consisting of the amino acid sequence shown in Figure 2 (SEQ ID NO:4), Figure 4 (SEQ ID NO:6), Figure 6 (SEQ ID NO:8), Figure 8 (SEQ ID NO:10), Figure 10 (SEQ ID NO:12), Figure 12 (SEQ ID NO:17), Figure 14 (SEQ ID NO:22), Figure 16 (SEQ ID NO:24), Figure 18 (SEQ ID NO:29), Figure 20 (SEQ ID NO:31), Figure 22 (SEQ ID NO:33), Figure 24 (SEQ ID NO:41), Figure 26 (SEQ ID NO:43), Figure 28 (SEQ ID NO:50), Figure 30 (SEQ ID NO:52), Figure 32 (SEQ ID NO:54), Figure 34 (SEQ ID NO:56), Figure 36 (SEQ ID NO:58), Figure 38 (SEQ ID NO:63), Figure 40 (SEQ ID NO:68), Figure 42 (SEQ ID NO:70), Figure 44 (SEQ ID NO:72), Figure 46 (SEQ ID NO:77), Figure 48 (SEQ ID NO:79), Figure 50 (SEQ ID NO:84), Figure 52 (SEQ ID NO:86), Figure 54 (SEQ ID NO:88), Figure 56 (SEQ ID NO:95), Figure 58 (SEQ ID NO:100), Figure 60 (SEQ ID NO:102), Figure 62 (SEQ ID NO:104), Figure 64 (SEQ ID NO:111),

35

25 Figure 66 (SEQ ID NO:116), Figure 68 (SEQ ID NO:118), Figure 70 (SEQ ID NO:123), Figure 72 (SEQ ID NO:128), Figure 74 (SEQ ID NO:130), Figure 76 (SEQ ID NO:132), Figure 78 (SEQ ID NO:134), Figure 80 (SEQ ID NO:136), Figure 82 (SEQ ID NO:138), Figure 84 (SEQ ID NO:140), Figure 86 (SEQ ID NO:142), Figure 88 (SEQ ID NO:144), Figure 90 (SEQ ID NO:146), Figure 92 (SEQ ID NO:148), Figure 94 (SEQ ID NO:153), Figure 96 (SEQ ID NO:158), Figure 98 (SEQ ID NO:160), Figure 100 (SEQ ID NO:162), Figure 102 (SEQ ID NO:170), Figure 104 (SEQ ID NO:180), Figure 106 (SEQ ID NO:189), Figure 108 (SEQ ID NO:194), Figure 110 (SEQ ID NO:196), Figure 112 (SEQ ID NO:198), Figure 114 (SEQ ID NO:203), Figure 116 (SEQ ID NO:210), Figure 118 (SEQ ID NO:212), Figure 120 (SEQ ID NO:214), Figure 122 (SEQ ID

40

45

30 Figure 66 (SEQ ID NO:116), Figure 68 (SEQ ID NO:118), Figure 70 (SEQ ID NO:123), Figure 72 (SEQ ID NO:128), Figure 74 (SEQ ID NO:130), Figure 76 (SEQ ID NO:132), Figure 78 (SEQ ID NO:134), Figure 80 (SEQ ID NO:136), Figure 82 (SEQ ID NO:138), Figure 84 (SEQ ID NO:140), Figure 86 (SEQ ID NO:142), Figure 88 (SEQ ID NO:144), Figure 90 (SEQ ID NO:146), Figure 92 (SEQ ID NO:148), Figure 94 (SEQ ID NO:153), Figure 96 (SEQ ID NO:158), Figure 98 (SEQ ID NO:160), Figure 100 (SEQ ID NO:162), Figure 102 (SEQ ID NO:170), Figure 104 (SEQ ID NO:180), Figure 106 (SEQ ID NO:189), Figure 108 (SEQ ID NO:194), Figure 110 (SEQ ID NO:196), Figure 112 (SEQ ID NO:198), Figure 114 (SEQ ID NO:203), Figure 116 (SEQ ID NO:210), Figure 118 (SEQ ID NO:212), Figure 120 (SEQ ID NO:214), Figure 122 (SEQ ID

50

5 NO:216), Figure 124 (SEQ ID NO:218), Figure 126 (SEQ ID NO:220), Figure 128 (SEQ ID NO:225), Figure
130 (SEQ ID NO:227), Figure 132 (SEQ ID NO:229), Figure 134 (SEQ ID NO:234), Figure 136 (SEQ ID
10 NO:236), Figure 138 (SEQ ID NO:243), Figure 140 (SEQ ID NO:248), Figure 142 (SEQ ID NO:253), Figure
144 (SEQ ID NO:260), Figure 146 (SEQ ID NO:265), Figure 148 (SEQ ID NO:267), Figure 150 (SEQ ID
NO:269), Figure 152 (SEQ ID NO:271), Figure 154 (SEQ ID NO:273), Figure 156 (SEQ ID NO:275), Figure
15 158 (SEQ ID NO:277), Figure 160 (SEQ ID NO:282), Figure 162 (SEQ ID NO:287), Figure 164 (SEQ ID
NO:292), Figure 166 (SEQ ID NO:297), Figure 168 (SEQ ID NO:302), Figure 170 (SEQ ID NO:304), Figure
172 (SEQ ID NO:306), Figure 174 (SEQ ID NO:308), Figure 176 (SEQ ID NO:310), Figure 178 (SEQ ID
NO:315), Figure 180 (SEQ ID NO:317), Figure 182 (SEQ ID NO:322), Figure 184 (SEQ ID NO:324), Figure
186 (SEQ ID NO:326), Figure 188 (SEQ ID NO:328), Figure 190 (SEQ ID NO:330), Figure 192 (SEQ ID
10 NO:332), Figure 194 (SEQ ID NO:334), Figure 196 (SEQ ID NO:336), Figure 198 (SEQ ID NO:338), Figure
200 (SEQ ID NO:340), Figure 202 (SEQ ID NO:347), Figure 204 (SEQ ID NO:352), Figure 206 (SEQ ID
NO:354), Figure 208 (SEQ ID NO:356), Figure 210 (SEQ ID NO:358), Figure 212 (SEQ ID NO:364), Figure
214 (SEQ ID NO:366), Figure 216 (SEQ ID NO:372), Figure 218 (SEQ ID NO:374), Figure 220 (SEQ ID
NO:376), Figure 222 (SEQ ID NO:378), Figure 224 (SEQ ID NO:383), Figure 226 (SEQ ID NO:385), Figure
15 228 (SEQ ID NO:390), Figure 230 (SEQ ID NO:395), Figure 232 (SEQ ID NO:397), Figure 234 (SEQ ID
NO:402), Figure 236 (SEQ ID NO:406), Figure 238 (SEQ ID NO:410), Figure 240 (SEQ ID NO:415), Figure
242 (SEQ ID NO:423), Figure 244 (SEQ ID NO:429) and Figure 246 (SEQ ID NO:431).

30 13. Isolated PRO polypeptide having at least 80% sequence identity to the amino acid sequence
20 encoded by a nucleic acid molecule deposited under any ATCC accession number shown in Table 2.

35 14. A chimeric molecule comprising a polypeptide according to Claim 12 fused to a heterologous
25 amino acid sequence.

40 15. The chimeric molecule of Claim 14 wherein said heterologous amino acid sequence is an
45 epitope tag sequence.

16. The chimeric molecule of Claim 14 wherein said heterologous amino acid sequence is a Fc
region of an immunoglobulin.

30 17. An antibody which specifically binds to a PRO polypeptide according to Claim 12.

45 18. The antibody of Claim 17 wherein said antibody is a monoclonal antibody.

35 19. The antibody of Claim 17 wherein said antibody is a humanized antibody.

50 20. The antibody of Claim 17 wherein said antibody is an antibody fragment.

- 5 21. An isolated nucleic acid which has at least 80% sequence identity to a nucleic acid sequence selected from the group consisting of that shown in Figure 1 (SEQ ID NO:3), Figure 3 (SEQ ID NO:5), Figure 5 (SEQ ID NO:7), Figure 7 (SEQ ID NO:9), Figure 9 (SEQ ID NO:11), Figure 11 (SEQ ID NO:16), Figure 13 (SEQ ID NO:21), Figure 15 (SEQ ID NO:23), Figure 17 (SEQ ID NO:28), Figure 19 (SEQ ID NO:30), Figure 21 (SEQ ID NO:32), Figure 23 (SEQ ID NO:40), Figure 25 (SEQ ID NO:42), Figure 27 (SEQ ID NO:49), Figure 29 (SEQ ID NO:51), Figure 31 (SEQ ID NO:53), Figure 33 (SEQ ID NO:55), Figure 35 (SEQ ID NO:57), Figure 37 (SEQ ID NO:62), Figure 39 (SEQ ID NO:67), Figure 41 (SEQ ID NO:69), Figure 43 (SEQ ID NO:71), Figure 45 (SEQ ID NO:76), Figure 47 (SEQ ID NO:78), Figure 49 (SEQ ID NO:83), Figure 51 (SEQ ID NO:85), Figure 53 (SEQ ID NO:87), Figure 55 (SEQ ID NO:94), Figure 57 (SEQ ID NO:99), Figure 59 (SEQ ID NO:101), Figure 61 (SEQ ID NO:103), Figure 63 (SEQ ID NO:110), Figure 65 (SEQ ID NO:115), Figure 67 (SEQ ID NO:117), Figure 69 (SEQ ID NO:122), Figure 71 (SEQ ID NO:127), Figure 73 (SEQ ID NO:129), Figure 75 (SEQ ID NO:131), Figure 77 (SEQ ID NO:133), Figure 79 (SEQ ID NO:135), Figure 81 (SEQ ID NO:137), Figure 83 (SEQ ID NO:139), Figure 85 (SEQ ID NO:141), Figure 87 (SEQ ID NO:143), Figure 89 (SEQ ID NO:145), Figure 91 (SEQ ID NO:147), Figure 93 (SEQ ID NO:152), Figure 95 (SEQ ID NO:157), Figure 97 (SEQ ID NO:159), Figure 99 (SEQ ID NO:161), Figure 101 (SEQ ID NO:169), Figure 103 (SEQ ID NO:179), Figure 105 (SEQ ID NO:188), Figure 107 (SEQ ID NO:193), Figure 109 (SEQ ID NO:195), Figure 111 (SEQ ID NO:197), Figure 113 (SEQ ID NO:202), Figure 115 (SEQ ID NO:209), Figure 117 (SEQ ID NO:211), Figure 119 (SEQ ID NO:213), Figure 121 (SEQ ID NO:215), Figure 123 (SEQ ID NO:217), Figure 125 (SEQ ID NO:219), Figure 127 (SEQ ID NO:224), Figure 129 (SEQ ID NO:226), Figure 131 (SEQ ID NO:228), Figure 133 (SEQ ID NO:233), Figure 135 (SEQ ID NO:235), Figure 137 (SEQ ID NO:242), Figure 139 (SEQ ID NO:247), Figure 141 (SEQ ID NO:252), Figure 143 (SEQ ID NO:259), Figure 145 (SEQ ID NO:264), Figure 147 (SEQ ID NO:266), Figure 149 (SEQ ID NO:268), Figure 151 (SEQ ID NO:270), Figure 153 (SEQ ID NO:272), Figure 155 (SEQ ID NO:274), Figure 157 (SEQ ID NO:276), Figure 159 (SEQ ID NO:281), Figure 161 (SEQ ID NO:286), Figure 163 (SEQ ID NO:291), Figure 165 (SEQ ID NO:296), Figure 167 (SEQ ID NO:301), Figure 169 (SEQ ID NO:303), Figure 171 (SEQ ID NO:305), Figure 173 (SEQ ID NO:307), Figure 175 (SEQ ID NO:309), Figure 177 (SEQ ID NO:314), Figure 179 (SEQ ID NO:316), Figure 181 (SEQ ID NO:321), Figure 183 (SEQ ID NO:323), Figure 185 (SEQ ID NO:325), Figure 187 (SEQ ID NO:327), Figure 189 (SEQ ID NO:329), Figure 191 (SEQ ID NO:331), Figure 193 (SEQ ID NO:333), Figure 195 (SEQ ID NO:335), Figure 197 (SEQ ID NO:337), Figure 199 (SEQ ID NO:339), Figure 201 (SEQ ID NO:346), Figure 203 (SEQ ID NO:351), Figure 205 (SEQ ID NO:353), Figure 207 (SEQ ID NO:355), Figure 209 (SEQ ID NO:357), Figure 211 (SEQ ID NO:363), Figure 213 (SEQ ID NO:365), Figure 215 (SEQ ID NO:371), Figure 217 (SEQ ID NO:373), Figure 219 (SEQ ID NO:375), Figure 221 (SEQ ID NO:377), Figure 223 (SEQ ID NO:382), Figure 225 (SEQ ID NO:384), Figure 227 (SEQ ID NO:389), Figure 229 (SEQ ID NO:394), Figure 231 (SEQ ID NO:396), Figure 233 (SEQ ID NO:401), Figure 235 (SEQ ID NO:405), Figure 237 (SEQ ID NO:409), Figure 239 (SEQ ID NO:414), Figure 241 (SEQ ID NO:422), Figure 242 (SEQ ID NO:428) and Figure 245 (SEQ ID NO:430).

5

22. An isolated nucleic acid which has at least 80% sequence identity to the full-length coding sequence of a nucleotide sequence selected from the group consisting of that shown in Figure 1 (SEQ ID NO:3), Figure 3 (SEQ ID NO:5), Figure 5 (SEQ ID NO:7), Figure 7 (SEQ ID NO:9), Figure 9 (SEQ ID NO:11), Figure 11 (SEQ ID NO:16), Figure 13 (SEQ ID NO:21), Figure 15 (SEQ ID NO:23), Figure 17 (SEQ ID NO:28), Figure 19 (SEQ ID NO:30), Figure 21 (SEQ ID NO:32), Figure 23 (SEQ ID NO:40), Figure 25 (SEQ ID NO:42), Figure 27 (SEQ ID NO:49), Figure 29 (SEQ ID NO:51), Figure 31 (SEQ ID NO:53), Figure 33 (SEQ ID NO:55), Figure 35 (SEQ ID NO:57), Figure 37 (SEQ ID NO:62), Figure 39 (SEQ ID NO:67), Figure 41 (SEQ ID NO:69), Figure 43 (SEQ ID NO:71), Figure 45 (SEQ ID NO:76), Figure 47 (SEQ ID NO:78), Figure 49 (SEQ ID NO:83), Figure 51 (SEQ ID NO:85), Figure 53 (SEQ ID NO:87), Figure 55 (SEQ ID NO:94), Figure 57 (SEQ ID NO:99), Figure 59 (SEQ ID NO:101), Figure 61 (SEQ ID NO:103), Figure 63 (SEQ ID NO:110), Figure 65 (SEQ ID NO:115), Figure 67 (SEQ ID NO:117), Figure 69 (SEQ ID NO:122), Figure 71 (SEQ ID NO:127), Figure 73 (SEQ ID NO:129), Figure 75 (SEQ ID NO:131), Figure 77 (SEQ ID NO:133), Figure 79 (SEQ ID NO:135), Figure 81 (SEQ ID NO:137), Figure 83 (SEQ ID NO:139), Figure 85 (SEQ ID NO:141), Figure 87 (SEQ ID NO:143), Figure 89 (SEQ ID NO:145), Figure 91 (SEQ ID NO:147), Figure 93 (SEQ ID NO:152), Figure 95 (SEQ ID NO:157), Figure 97 (SEQ ID NO:159), Figure 99 (SEQ ID NO:161), Figure 101 (SEQ ID NO:169), Figure 103 (SEQ ID NO:179), Figure 105 (SEQ ID NO:188), Figure 107 (SEQ ID NO:193), Figure 109 (SEQ ID NO:195), Figure 111 (SEQ ID NO:197), Figure 113 (SEQ ID NO:202), Figure 115 (SEQ ID NO:209), Figure 117 (SEQ ID NO:211), Figure 119 (SEQ ID NO:213), Figure 121 (SEQ ID NO:215), Figure 123 (SEQ ID NO:217), Figure 125 (SEQ ID NO:219), Figure 127 (SEQ ID NO:224), Figure 129 (SEQ ID NO:226), Figure 131 (SEQ ID NO:228), Figure 133 (SEQ ID NO:233), Figure 135 (SEQ ID NO:235), Figure 137 (SEQ ID NO:242), Figure 139 (SEQ ID NO:247), Figure 141 (SEQ ID NO:252), Figure 143 (SEQ ID NO:259), Figure 145 (SEQ ID NO:264), Figure 147 (SEQ ID NO:266), Figure 149 (SEQ ID NO:268), Figure 151 (SEQ ID NO:270), Figure 153 (SEQ ID NO:272), Figure 155 (SEQ ID NO:274), Figure 157 (SEQ ID NO:276), Figure 159 (SEQ ID NO:281), Figure 161 (SEQ ID NO:286), Figure 163 (SEQ ID NO:291), Figure 165 (SEQ ID NO:296), Figure 167 (SEQ ID NO:301), Figure 169 (SEQ ID NO:303), Figure 171 (SEQ ID NO:305), Figure 173 (SEQ ID NO:307), Figure 175 (SEQ ID NO:309), Figure 177 (SEQ ID NO:314), Figure 179 (SEQ ID NO:316), Figure 181 (SEQ ID NO:321), Figure 183 (SEQ ID NO:323), Figure 185 (SEQ ID NO:325), Figure 187 (SEQ ID NO:327), Figure 189 (SEQ ID NO:329), Figure 191 (SEQ ID NO:331), Figure 193 (SEQ ID NO:333), Figure 195 (SEQ ID NO:335), Figure 197 (SEQ ID NO:337), Figure 199 (SEQ ID NO:339), Figure 201 (SEQ ID NO:346), Figure 203 (SEQ ID NO:351), Figure 205 (SEQ ID NO:353), Figure 207 (SEQ ID NO:355), Figure 209 (SEQ ID NO:357), Figure 211 (SEQ ID NO:363), Figure 213 (SEQ ID NO:365), Figure 215 (SEQ ID NO:371), Figure 217 (SEQ ID NO:373), Figure 219 (SEQ ID NO:375), Figure 221 (SEQ ID NO:377), Figure 223 (SEQ ID NO:382), Figure 225 (SEQ ID NO:384), Figure 227 (SEQ ID NO:389), Figure 229 (SEQ ID NO:394), Figure 231 (SEQ ID NO:396), Figure 233 (SEQ ID NO:401), Figure 235 (SEQ ID NO:405), Figure 237 (SEQ ID NO:409), Figure 239 (SEQ ID NO:414), Figure 241 (SEQ ID NO:422), Figure 242 (SEQ ID NO:428) and Figure 245 (SEQ ID NO:430).

50

23. An isolated extracellular domain of a PRO polypeptide.

55

5

24. An isolated PRO polypeptide lacking its associated signal peptide.

25. An isolated polypeptide having at least about 80% amino acid sequence identity to an extracellular domain of of PRO polypeptide.

10

5 26. An isolated polypeptide having at least about 80% amino acid sequence identity to a PRO polypeptide lacking its associated signal peptide.

15

27. An isolated nucleic acid encoding the polypeptide of any one of Claims 23 to 26.

20

25

30

35

40

45

50

FIGURE 1

CCAATGCCCGGTGCGGTGGTGCAGGGTCGGGCTAGTCATGGCGTCCCCGTCTCGGAGAC
TGCAGACTAAACCAGTCATTACTGTTCAAGAGCGTTCTGCTAATCTACACTTTATTTTC
TGGATCACTGGCATTATCCTTCTGCAGTTGGCATTGGGCAAGGTGAGCCTGGAGAATTA
CTTTTCTCTTTAAATGAGAAGGCCACCAATGTCCCCITCGTGCCTATTGCTACTGGTACCG
TCATTATTCTTTGGGCACCTTGGTTGGTGTACCTGCCAGCTCTGCATGGATGCTA
AAACTGTATGCAATGTTCTGACTCTGTTTTGGTCGAACGGTCGTGCCATCGTAGG
ATTGTTGGTTCAGACATGAGATTAAGAACAGCTTAAGAATAATTATGAGAAGGCTTGAAAGC
AGTATAACTCTACAGGAGATTATAGAACGATGCAGTAGACAAGATCCAAAATACGTTGCAT
TGTGTTGGTGTACCGATTATAGAGATTGGACAGATACTAATTACTCAGAAAAGGATT
TCCTAAGAGTTGCTGTAACCTTGAGATTGTACTCCACAGAGAGATGCAGACAAAGTAAACA
ATGAAGGTTGTTTATAAGGTGATGACCATTATAGAGTCAGAAATGGAGTCGTTGCAGGA
ATTTCCCTTGAGTTGCTTCCAACTGATTGGAAATCTTCTCGCCTACTGCCWCTCTCG
TGCCTAAACAAATAACCAGTATGAGATAGTGTAAACCAATGTATCTGGGGCTATTCCCTCT
CTACCTTAAGGACATTAGGGTCCCCCTGTGAATTAGAAAGTGCTGGCTGGAGAACTG
ACAACACTACTGATAGACAAAAAACTACACCAGTAGGTTGATTCAATCAAGATGTAT
GTAGACCTAAACTACACCAATAGGCTGATTCAATCAAGATCCGTGCTCGCAGTGGCTGAT
TCAATCAAGATGTATGTTGCTATGTTCTAAGTCCACCTCTATCCCATTCTAGATCG
TTGAAACCTGTATCCCTGTGAAACACTGGAAGAGCTAGAAATTGTAAATGAAGT

FIGURE 2

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA19902
><subunit 1 of 1, 245 aa, 1 stop, 1 unknown
><MW: -1, pI: 8.36, NX(S/T): 1
MASPSRRLQTQPVITCFKSVLLIYTFIGWITGVILLAVGIGKVSLENYFSLLNEKATNVPF
VLIATGTVIILLGTFGCFATCRASAWMLKLYAMFLTLVFLVELVAAIVGFVFRHEIKNSFKN
NYEKALKQYNSTGDYRSHAVDKIQNTLHCCGVTDYRDWTDTNYYSEKGFPKSCKLEDCTPQ
RDADKVNNEGCFIKVMTIIESEMGGVAGISFGVACFQLIGIFLAYCXSRAITNNQYEIV
```

Important features of the protein:**Signal peptide:**

amino acids 1-42

Transmembrane domains:

amino acids 19-42, 61-83, 92-114, 209-230,

N-glycosylation site.

amino acids 134-138

Tyrosine kinase phosphorylation site.

amino acids 160-168, 160-169

N-myristoylation site.

amino acids 75-81, 78-84, 210-216, 214-220, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 69-80, 211-222

FIGURE 3

3/270

FIGURE 4

MIVFGWAVFLASRSLGQQQLLLTLEEHIAHFLGTGGAATTMGNNSICRDDSGTDDSVDTQQQQ
AENSAVPTADTRSQPRDPVRPPRRGRGPHEPRRKKQNVDGLVLDTLAVIRTLVDKO

Signal peptide:

amino acids 1-16

Casein kinase II phosphorylation site.

amino acids 22-26, 50-54, 113-117

N-myristoylation site.

amino acids 18-24, 32-38, 34-40, 35-41, 51-57

4/270

FIGURE 5

GGCACGAGGCCTGTCCACCCGGGGCTGGGAGTGAGGTACCAAGATTCAAGCCATTGGCC
CCGACGCCTCTGTTCTCGGAATCCGGGTGCTGCCGATTGAGGTCCCGGTTCTAACGGACTG
CAAGATGGAGGAAGGCGGGAACCTAGGAGGCCTGATTAAGATGGTCATCTACTGGTCTTGT
CAGGTGCCTGGGCATGCAAATGTGGGTGACCTTCGTCAGGCTTCCTGCTTTCCGAAGC
CTTCCCCGACATACTTCCGGACTAGTGCAGAGCAAACCTCTTCCCTTCTACTTCCACATCTC
CATGGGCTGTGCCTTCATCAACCTCTGCATCTGGCTTCACAGCATGCTTGGCTCAGCTCA
CATTCTGGGAGGCCAGCCAGCTTACCTGCTGTTCTGAGCCTTACGCTGGCCACTGTCAAC
GCCCGCTGGCTGGAACCCCGCACACAGCTGCCATGTGGGCCCTGCAAACCGTGGAGAAGGA
GCGAGGCCTGGGTGGGGAGGTACCAGGCAGCCACAGGGTCCCCTGCTACCGCCAGCTGC
GAGAGAAGGACCCAAGTACAGTGCCTCCGCCAGAAATTCTTCCGCTACCATGGCTGTCC
TCTCTTTGCAATCTGGCTGCGTCTGAGCAATGGCTCTGCTCGCTGGCCTTGGCTTGG
AATAAGGAGCCTCTAGCATGGCCCTGCATGCTAATAATGCTTCTTCAGAAATGAAAAAAA
AAAAAAAAAAAAA

FIGURE 6

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56107
<subunit 1 of 1, 231 aa, 1 stop
<NX(S/T) : 0
MEEGGNLGGLIK MVHLLVLSGA WGMQM WVT FVSGFLLFRSL P RHT FGLVQSKLFPFYFHISM
GCA FINLCILAS QHAWA QLT FW EAS QLY LLFLS LTLATVN ARW LEPRTTAAMWA LQT VEKER
GLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHGLSSL CNLGCVL SNGLCLAGLA LEIRSL
```

Signal peptide:
amino acids 1-24

Transmembrane domain:
amino acids 86-103, 60-75

Casein kinase II phosphorylation site.
amino acids 82-86

Tyrosine kinase phosphorylation site.
amino acids 144-151

N-myristoylation site.
amino acids 4-10, 5-11, 47-53, 170-176, 176-182

Prokaryotic membrane lipoprotein lipid attachment site.
amino acids 54-65

G-protein coupled receptors proteins.
amino acids 44-85

6/270

FIGURE 7

AATT CAG ATTTA AGCC CATT CTGC ACTG GAA TT CATGA ACTAGCAAGAGGAC ACCAT CTT
CTTG TATTATA CAAGA AAGGAGTGTACCTATCACACACAGGGGGAAAATGCTCTTTGGGT
GCTAGGCCTCCTAATCCTCTGTGGTTTCTGTGGACTCGTAAGGAAA ACTAAAGATTGAAG
ACATCACTGATAAGTACATTTTATCACTGGATGTGACTCGGCTTGGAAACTTGGCAGCC
AGAACCTTTGATAAAAAGGGATTCATGTAATCGCTGCCGTGACTGAATCAGGATCAAC
AGCTTTAAAGGCAGAACCTCAGAGAGACTTCGTACTGTGCTCTGGATGTGACCGACCCAG
AGAATGTCAAGAGGACTGCCAGTGGGTGAAGAACCAAGTTGGGAGAAAGGTCTCTGGGT
CTGATCAATAATGCTGGTGTCCC GGCGTGCTGGCTCCACTGACTGGCTGACACTAGAGGA
CTACAGAGAACCTATTGAAGTGAACCTGTTGGACTCATCAGTGTGACACTAAATATGCTTC
CTTTGGTCAAGAAAGCTCAAGGGAGAGTTATTAAATGTCTCCAGTGTGAGCTGCTTGC
ATCGTGGAGGGGCTATACTCCATCAAATATGCA GTGGAAGGTTCAATGACAGCTTAAG
ACGGGACATGAAAGCTTGGTGTGCA CGTCTCATGCATTGAACCAGGATTGTTCAAACAA
ACTTGGCAGATCCAGTAAAGTAATTGAAAAAAACTGCCATTGGAGCAGCTGTCTCCA
GACATCAAACAACAATATGGAGAAGGTTACATTGAAAAAAAGTCTAGACAAACTGAAAGGCAA
TAAATCCTATGTGAACATGGACCTCTCCGGTGGTAGAGTGCATGGACCACGCTCAAACAA
GTCTCTCCCTAAGACTCATTATGCCGTGGAAAAGATGCCAAAATTCTGGATACCTCTG
TCTCACATGCCAGCAGCTTGCAAGACTTTTATTGTTGAAACAGAAAGCAGAGCTGGCTAA
TCCCAAGGCAGTGACTCAGCTAACACAAATGTCCTCCAGGCTATGAAATTGGCCGAT
TTCAAGAACACATCTCCTTTCAACCCCATTCTTATCTGCTCCAACCTGGACTCATTTAGA
TCGTGCTTATTGGATTGCAAAAGGGAGTCCCACATCGCTGGTGGTATCCAGGGTCCCTG
CTCAAGTTTCTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCTGCCCTGT
ATTTAGGCTTGCCTGCTGGTGTGATGTAAGGAAATTGAAAAGACTTGCCCAATTCAAATG
ATCTTACCGTGGCTGCCCATGCTTATGGTCCCCAGCATTACAGTAACCTGTGAATGTT
AAGTATCATCTTATCTAAATATTAAAGATAAGTCACCCAAAAAAA
AAAAAAAAAAAAAAA

FIGURE 8

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56406
><subunit 1 of 1, 319 aa, 1 stop
><MW: 35227, pI: 8.97, NX(S/T): 3
MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIACLT
ESGSTALKETSERLLRTVLLDVTDPENVKRTAQWVKNQVGEGKGLWGLINNAGVPGVLAPTDW
LTLEDYREPIEVNLFG利SVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGF
NDSLRRDMKAFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEFYIEKSLD
KLKGKNSYVNMDLSPVVECMDHALTSFPKTHYAGKDAKIFWIPLSHMPAALQDFLLLKQK
AELANPKAV
```

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

8/270

FIGURE 9

GCGGGCTGTTGACGGCGCTGGCAGGCTGGCTGCCAGGGAGAAGCGGAAGCTCTCGGTT
 CCTCTCAGTCGGACTTCCTGACGCCAGTGGCGGGGCCCCCTGGCCGTGCCACCACT
 GTAGTCATGTACCCACCAGCGCCGCCGCCTCATCGGACTTCATCTCGGTGACGCTGAG
 CTTTGGCGAGAGCTATGACAACAGCAAGAGTTGGCGCGGCGCTCGTGTGGAGGAATGGA
 AGCAACTGTGAGATTGAGCGAAATATGATTCTTCTCTGGCTTCTGCTTTCTGT
 GGACTCCCTCTACATCAACTTGGCTGACCATTGAAAGCTCTGGCTTCAGGCTAGAGGA
 AGAGCAGAAGATGAGGCCAGAAATTGCTGGGTTAAACCAGCAATCCACCCGCTTACCG
 CTCTCAGAAGGCCAGCACCGACCTGAGAACCTACCTGAGATTCTGTCACAGAACACAA
 AGACACATCCAGCGGGACCACCTCACCTGAGATTAGACCCCAAGCCAAGACCTGAAGGA
 TGGGACCCAGGAGGGAGGCCACAAAAAGCAAGAAGCCCTGTGATCCCCGCCGAAGGAG
 ATCCGCAGAGGACAGTCATCAGCTGGAGGGAGCGGTGATCGAGCCTGAGCAGGGACCGAG
 CTCCCTCAAGAAGAGCAGAAGTGCCCACCAAGCCTCCCCTGCACCGCCAGGACACAGGG
 CACACCAGTCATCTGAACTATCGCAGAAGGGCTGATTGACGTCTTCTGATGCATGGA
 AAGGATAACCGCAAGTTGATGGGCCATGACGAGCTGAAGCCTGTGTCAGGCTTCACT
 GAGTGGTTGGCCTCGGTCTCACACTGATCGACGCCGCTGGACACCATGTGGATCTGGGCT
 GAGGAAAGAATTGAGGAAGCCAGGAAGTGGGTGTCAGAAGAATTACACTTGAAAAGGACG
 TGACGTCAACCTGTTGAGGACAGTCGCATCCTGGGGGCTCTGAGTGCCTACCCAC
 CTGCTGGGGACAGCCCTTCTGAGGAAGCTGAGGATTGAAATCGGCTAATGCCTGC
 CTCAGAACACCATCCAAGATTCTTACTCGGATGTGAAACATCGGACTCGGAGTTGCCACC
 CGCCACGGTGACCTCCGACAGCACTGTGGCCGAGGTGACCAGCATTAGCTGGAGTTCCGG
 GAGCTCTCCCGTCTCACAGGGATAAGAAGTTCAAGGAGCTGGAGAAGGTGACACAGCA
 CATCCACGGCTGTCAGGGAGAAGGATGGGCTGGGCTGGCCATGTCATCAATACCCACAGTG
 GCCTCTCACCCACCTGGCGTATTCACTGGCTGGGCCAGGGCCAGCTACTATGAGTAC
 CTGCTGAAGCAGTGGATCCAGGGGGAGCAGGAGACAGCTGCTGGAGACTACGTGGA
 AGCCATCGAGGGTGTCAAGACGCACTGCTGCCAGGCTGAGCTAACGCTCACCTTG
 TGGGGAGCTGCCACGGCCCTTCAGTGCAGAAGATGGACCACTGGCTGCTTCTGCCA
 GGGACGCTGGCTGGCGTCTACCACGGCTGCCAGCCACATGGAGCTGGCCAGGA
 GCTCATGGAGACTTGTACAGATGAACCGGCAGATGGAGACGGGCTGAGTCCGAGATCG
 TGCACTTCAACCTTACCCCCAGCCGGCGTGGGACGTGGAGGTCAAGCCAGCAGACAGG
 CACAACCTGCTGCCAGAGACCGTGGAGAGCCGTTACCTGTAACCGCTCACAGGGGA
 CCGCAAATACCAAGGACTGGGCTGGAGATTCTGCAAGGCTTCAACCGGATTCAACACGGGTC
 CCTCGGGTGGTATTCTTCATCAACAATGTCCAGGATCTCAGAAGCCGAGCCTAGGGAC
 AAGATGGAGAGCTTCTCTGGGGAGACGCTCAAGTATCTGTTCTGCTCTCTCCGATGA
 CCCAAACCTGCTGCCAGGCTGACGCCAACGCTACGTGTTAACCGAAGCCACCTCTGCTATCT
 GGACCCCTGCCTAGGTGGATGGCTGGTGTGGGACTTCGGGTGGCAGAGGCACCTTG
 CTGGGTCTGGCATTTCAGGGCCACGCTAGCACGGCAACCGCAAGTGGCCAGGCT
 CTGAACCTGGCTCTGGCTCTCTCGTCTGCTTTAATCAGGACACCGTGGAGGACAAGTGA
 GGGCGTAGCTTGGTGTGATGCCGGGTGGCTGGCCGCTGGCCTCGCTGCTTCTC
 CAGAACACGAATCATGACTCACGATTGCTGAAGGCTGAGCAGGTCTCTGGGCCGACCA
 GAGGGGGCTTGGAGGTGGCTGGACTGGGTGACCGAGTGGAGCAGGCCAGGGTGCAGC
 TCTGCCGGGCTGTGAAGCCTCAGATGTCCCACCAAGGGTCTGGAGGGCTGCCGTGA
 CTCCAGAGGCCCTGAGGCTCAGGGCTGGCTCTGGTGTACAGCTGGACTCAGGGATCCTC
 CTGGCCGCCAGGGCTGGAGGGCTGGACGGCAAGTCCGCTAGCTCACGGGCC
 CCAGTGAATGGTCTTCTGGAGATAAAAGTGTATTGCTAACCGCAA

9/270

FIGURE 10

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56529
><subunit 1 of 1, 699 aa, 1 stop
><MW: 79553, pI: 7.83, NX(S/T): 0
MAACEGRRSGALGSSQSDFLTPVGGAPWAATTVVVMYPFFFFPHRDFISVTLFGESYDN
SKSWRRRSCWRWKQLSRLQRNMLFLAFLFCGLLFYINLADHWKALAFRLEEEQKMRPE
IAGLK PANPPVLPAPQKADTDPENLPEISSQKTQRHIQRGPPHLQIRPPSQDLKDGTQEET
KRQEAPVDPRPEGDPQRTVISWRGA VIEPEQGTEPSRRAEVPTKPLPPARTQGTPVHLNY
RQKGVIDVFLHAWKGYRKFAWGHDELKPVSRSFSEWFGLGLTLIDALDTMWILGLRKEFEAA
RKWVSKKLHFEKDVNL FESTIRILGGLLSAYHLSGDSLFLRKAEDFGNR LMPAFRTPSKI
PYSDVNIGTGVAHPPRWTSDSTVAEVTSIQLEFRELSRLTGDKKFQEAVEKV TQH I HGLSGK
KDGLVPMFINTHSGLFTHLGVTL GARADSYYEYLLKQWIQGGKQETQLLEDYVEAIEGVRT
HLLRHSEPSKLT FVGELAHGRFSAKMDHLCFLPGTLALGVYHGLPASHMELAQELMETCYQ
MNRQMETGLSPEIVHFNLYPQPGRRDVEVKPADRHNL LR PETVESLFYLYRVTGDRKYQDWG
WEILQSFSRFTRVPSGGYSSINNVQDPQKPEPRDKMESFFLGETLKYLFL FSDDPNLLSLD
AYVFNTAEHPLPIWTPA
```

Important features of the protein:

Transmembrane domain:

amino acids 21-40 and 84-105 (type II)

FIGURE 11

GGCGCCGCGTAGGCCCGGGAGGCCGGCGGCCGGCTGCAGCGCTGCCCATGCCCGC
CGCCCTCCGCACGAATGTTCCCCTCGCGGAGGAAGCGCGCAGCTGCCCTGGGAGGACGGC
AGGTCCGGGTTGCTCTCCGGCGGCCTCCCTCGGAAGTGTTCGGTCTTCCACCTGTTCGTGGC
CTGCTCTCGCTGGCTTCTCTCCCTACTCTGGCTGCAGCTCAGCTCTGGGACGTGG
CCGGGCAGTCAGGGACAAGGGCAGGAGACCTCGGGCCCTCCCCGTGCCTGCCAGAG
CCGCCCCCTGAGCACTGGAAAGAAGACGATCCTGGGCCCCACCGCTGGCAGTGCTGGT
GCCCTCCGCGAACGCTTCGAGGAGCTCTGGTCTTCGTGCCCATGCCCGCTTCTGA
GCAGGAAGAAGATCCGGCACACATCTACGTGCTAACCAAGGTGGACCACITCAGGTTAAC
CGGGCAGCGCTCATCAACGTGGCTTCTGGAGAGCAGCAACAGCACGGACTACATTGCAT
GCACGACGTTGACTGCTCCCTCTAACGAGGAGCTGGACTATGGCTTCTGAAGCTGGC
CCTTCCACGTGGCTCCCCGGAGCTCCACCCCTCTTACCAACTACAAGACCTATGTCGGCGC
ATCCTGCTGCTCTCCAAGCAGCACTACCGGCTGCAATGGATGTCCAACCGCTTCTGGG
CTGGGGCCGGAGGACGAGTTCTACCGCGCATTAAGGGAGCTGGCTCCAGCTTCC
GCCCTCGGAATCACAACGGGTACAAGACATTGCCACCTGCAATGACCCAGGCCGG
AAGAGGGACAGAAGCGCATCGAGCTCAAAAACAGGACAGTTCAAGGTGGACAGGGAGG
AGGCCTGAACACTGTGAAGTACCATGTTGACTGTGACAAGACGCCACCCCTGGTGCACATT
CCTGCACTGTCTCAACATCATGTTGACTGTGACAAGACGCCACCCCTGGTGCACATT
AGCTGACTGGATGGACAGTGAGGAAGCCTGTACCTACGCCATTGCTCAGGCTCAGGA
CAAGGCCCTAGGTGCTGGGCCAGCTGTGACAGGATGTGGAGTGGCCAGGACCAAGACAGCA
AGCTACGCAATTGCAAGCCACCCGGCCAGGCTTGGCTGGCCAGGACACGTGG
GTGCCCTGGGACGCTGCTGCCATGCACAGTGTGATCAGAGAGAGGCTGGGTGTCTGTCCG
GGACCCCCCTGCCCTCTGCTCACCTACTCTGACCTCTCACGTGCCAGGCCGTGG
TAGTGGGGAGGGCTGAACAGGACAACCTCTCATCACCTACTCTGACCTCTCACGTGCC
AGGCCCTGTGGGTAGTGGGAGGGCTGAACAGGACAACCTCTCATCACCCCCAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA

FIGURE 12

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56531
><subunit 1 of 1, 327 aa, 1 stop
><MW: 37406, pI: 9.30, NX(S/T): 1
MFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHLFVACLSLGFFSLLWLQLSCSGDVARAVR
CQQQETSGPPRACPPEPPPEHWEEDASWGPRLAVLVPFRERFEELLVFVPHMRRFLSRKKI
RHHIYVLNQVDHFRFNRAALINVGFLESSNSTDYIAMHDVDLLPLNEELDYGFPEAGPFHVA
SPELHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWRGREDDEFYRRIKGAGLQLFRPSGI
TTGYKTFRHLHDPAWRKRDQKRIAAQKQEKFVDRREGGLNTVKYHVASRTALSVGGAPCTVL
NIMLDCKTATPWCTFS
```

Signal peptide:
amino acids 1-42

Transmembrane domain:
amino acids 29-49 (type II)

N-glycosylation site.
amino acids 154-158

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 27-31

Tyrosine kinase phosphorylation site.
amino acids 226-233

N-myristoylation site.
amino acids 19-25, 65-71, 247-253, 285-291, 303-309, 304-310

12/270

FIGURE 13

CAATGTTGCCTATCCACCTCCCCAAGCCCCCTTACCT**ATG**CTGCTGCTAACGCTGCTGCT
GCTGCTGCTGCTGCTAAAGGCTCATGCTTGGAGTGGGACTGGTCGGTGCCAGAAAGTCT
CTTCTGCCACTGACGCCCCATCAGGGATTGGGCCTTCTTCCCCCTTCCTTGTGTCTC
CTGCCTCATCGGCCCTGCCATGACCTGCAGCCAAGCCCAGCCCCGTGGGAAGGGGAGAAAGT
GGGGGATGG**CTAAG**AAAGCTGGGAGATAGGGAACAGAACAGGGTAGTGGGTGGCTAGGGGG
GCTGCCTTATTTAAAGTGGTGTTATGATTCTTATACTAATTATACAAAGATATTAAGGC
CCTGTTCATTAAGAAATTGTTCCCTTCCCTGTGTCAATGTTGTAAGATTGTTCTGTGT
AAATATGTCTTATAATAAACAGTTAAAGCTGAAAAAAAAAAAAAAA

13/276

FIGURE 14

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56862
<subunit 1 of 1, 73 aa, 1 stop
<MW: 7879, pI: 7.21, NX(S/T): 0
MLLLTLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCQAO
PRGEGEKVGDG
```

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

FIGURE 15

GGGACCCATCGGGCCGTGACCCCCGGCTCCTAGAGGCCAGCGCAGCCGAGCGGACAAAG
 GAGCATGTCCCGCCGGGAAGGCCGCTCTCCGCCGCATAAGGCTCCGGTCGCCGCTGG
 GCCCGCGCCCGCCTCTGCCGCCGGCTCCGGCGGGCCGCTAGGCCAGTGCGCCGCCG
 CTCGCCCGCAGGCCGCCGCCAGCATGGAGCCACCCGGACGCCGGCGGGCCGCCA
 GCCGCCGCTGTTGCTGCCGCTCTCGCTGTTAGCGCTGCTGCCGCTGCTGGGAGGCCGCC
 GCGGCCGCCGCCGGCGCTGCCGCCGGCTGCAACGACGATGGCGGCCGCCGCCGCC
 AGGGCGCCGGGCCGCCAGGGCAAGGTGGTGTGCAAGCAGCCTGGAACTCGCGCAGGTCT
 GCCCCCAGATACTCTGCCAACCGCACGGTCACCGTATTCTGAGTAACAATAAGATATCC
 AGCTGAAGAATGGCTCATTTCTGGGTTAACGATCTCTTGAAAGATTGGACCTCCGAAACAT
 CTTATTAGTAGTATAGATCCAGGTGCTCTGGGACTGTCATCTAAAAGATTGGATCT
 GACAAAACAATCGAATAGGATGTCGAATGCAGACATATTGAGGACTCACAATCTGGTC
 GGCTAAACCTTCGGGAATTGTTCTCATTATCTCAAGGAACCTTGATTATCTGCG
 TCATTACGGCTTTGAAATTCCAGACTGAGTATCTTGTTGTGACTGTAACATACTGTGGAT
 GCATCGCTGGTAAAGGAGAAGAACATCACGGTACGGGATACCAGGTGTTTATCCTAAGT
 CACTGCAGGCCAACCGACTCACAGGCTGAAGCAGGAGCTGTTGACATGCAGCCCTCCGCTT
 GAATTGCGCTTTCTACATGACTCCATCTCATGCCAACGTTGTTGAGGAGACAGCCT
 TCCCTTCCAGTCATGGCTCATATATTGATCAGGACATGCAAGTGTGTTGTGTTAGGATG
 CGAGAAATAGTTGAAACCGATGAATGCCAGGTATTGTTGAAAAGAACATGATTCAAC
 TGCTCCTTGATTGCAAGTGCCCTAACCTTCTAATATTGAGGCTGGATCTACTGGAAATTG
 GGGCTGTCATGTCAGACCAACGTTGGAAATAATACGAGGACTGTTGATATTGTTGATTAG
 AGAGTTCTGACAGTACTGTCCTCCAGAGAGGGTGTAAACAAACAAAGGTGACTTCAGATGG
 CCCAGAACATTGGCAGGCATTACTGCATATCTGCAGTGTACCGGAACACCCATGGCAGTGG
 GATATATCCCGAACCCCACAGGATGAGAGAAAAGCTGGCGCAGATGTGATAGAGGTGGCT
 TTGGGAGATGATGATTATTCTCGCTGTCAGTATGCAAATGATGTCAGTGTGTTCTTAT
 ATGTTAACAGATGCCCTCAATCTTACCAATGCCGTGGCAACAGCTCGACAGTTACTGGC
 TTACACTGTGGAAGCAGCCAACCTTCTGACAAAATGGATGTTATTTGTTGAGGAAATGA
 TTGAAAAATTGGAAGATTACCAAGGAGGAAATCAAAGAGCTAGGTGACGTGATGGTT
 GACATTGCAAGTAACATCATGTTGGCTGATGAACTGTCCTGGCTGGCGAGAGGGAAAC
 TAAAGCCTGCACTGAGGATTGTCAGTGTCTCAGGCATTGCTACCTACCGCTAGCCGGTG
 GAGCTCACGTTTATTCAACATATTGCCAACATTGCTCTGGAGCTTATGTCATCAAGTCT
 ACTGGCTCACGGGATGACCTGTACCGTGTCCAGAAAGTGGCAGCCCTGATCGTACAGG
 ACTTCCGGATTATGGGAGGCCGATCCAGAGGGAAACCTGGATAAGCAGCTGAGCTTAAAGT
 GCAATGTTCAAAATACATTTCGAGTCTGGCACTAAAGGTATGTTACATTCTGCAATCATT
 AAGACTATTACAGTTAAATTAGAATGCTCAAATGTTCTGTCAGTGTGAAATACCTTATT
 AAAGATTTTTTTGGAGAAGATAGGTATTGCTTTGCTACTGTTAAAGAAAACAA
 ACCAGGAAGAACATGCACTTCAAGGGCCCTAGGCATTGCTTGGCTTGGGACTT
 CTTCACATAAAATCAGAAATTACATTGCTTAACTGCACTGCTGTTAAATGCAAATATACT
 ATTGTTACATGAAAAAATTGACTTAAAGTTTATTGCTTAAAGTATCATGAGGCTTGGCACTGC
 GCTGCCAACGCTAGTGAGAAGTCACCCCTGAGACCAGGTGTTAAATCAAGCAAGCTGTAT
 ATCAAATTTGGCAGAAAACACAAATATGTCATATCTTTTAAAGTATTCA
 TTGAAGCAAGCAAATGAAAGCATTTTACTGATTAAATTGGTCTTGTGTTAGATATTT
 GACTACACTGTATTGAGGAAATAGAGGAGGCCAACACTCCAGCACCTAATGGAACCCACATT
 TTTTCACCTAGCTTCTGTTGGCATGTTAATTGTTCTGCGGTTTTAATCTCACAG
 TACTTTTATTCTGCTTGTCCCTCAATAATATCACAAACAAATATTCCAGTCATTAAATGGC
 TGCAATAAAACTGATCCAACAGGTGTTAGGTGTTCTGGTTAGTGTGAGCACTCAATAAAATA
 TTGAATGAATGAACGAAAAAAAAAAAAAA

FIGURE 16

MEPPGRRRGRAQPPLLLPLSLLALLALLGGGGGGAAALPAGCKHDGRPRGAGRAAGAAEGK
VVCSSLELAQVLPPDTLPNRTVTLILSNNKISELKNGSFSGLSLLERLDLRNNLISSIDPGA
FWGLSSLKRLDLTNNRIGCLNADIFRGLTNLVRNLNSGNLFSSLSQGTFDYLASLRSLEFQT
EVLLCDCNILWMHRWVKEKNITVARDTRCVYPKSLQAQPVTGVVKQELLTCDPPELPSFYMT
SHRQVVFEGDSLFPQCMASYIDQDMQVLWYQDGRISETDESQGIFVEKNMIHNCSLIASALT
ISNIQAGSTGNWGCHVQTKRGNNRTVDIVVLESSAQYCPPERVNNKGDFRWPRTLAGITA
YLQCTRNTHGSGIYPGNPQDERKAWRRCDRGGFWADDYSRCQYANDVTRVLYMFNQMPNL
TNAVATARQLLAYTVAAANFSDKMDVIFVAEMIEKFGRFTKEEKSKELGDMVDIASNIMLA
DERVLWLAQREAKACSRIVQCLQRIATYRLAGGAHVYSTYSPNIALEAYVIKSTGFTGMTCT
VFQKVAASDRTGLSDYGRRDPEGNLDKQLSFKCNVSNTFSSLALKVCYILQSFKTIYS

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 13-40 (type II)

N-glycosylation site.amino acids 81-85, 98-102, 159-163, 206-210, 301-305, 332-336,
433-437, 453-457, 592-596**N-myristoylation site.**amino acids 29-35, 30-36, 31-37, 32-38, 33-39, 34-40, 51-57,
57-63, 99-105, 123-129, 142-148, 162-168, 317-323, 320-326,
384-390, 403-409, 554-560

16/270

FIGURE 17

GCGTGGGGAATGTCTAGGAGCTCGAAGGTGGTGC~~T~~GGCCTCTCGGTGCTGACGGCGCC
ACAGTGGCCGGCGTACATGTGAAGCAGCAGTGGGACCAGCAGAGGCTTCGTACGGAGTTAT
CAGAGACATTGAGAGGCAAATTGGAAAAAGAAAACATTGGCTTTGGGAGAACAGATTA
TTTGACTGAGCAACTTGAAGCAGAAAGAGAGAAGATGTTATTGGCAAAAGGATCTCAAAAA
TCATGACTTGAATGTGAAATATCTGTTGGACAGACAACACGAGTTGTGTGTGTTGAT
GGAGAGTAGCTTAGTGTATCTTCATCTTTTTGGTCACTGTCCTTAAACTGATCA
AATAAAGGACAGTGGGTCA~~T~~ATAAGTTACTGCTTCAGGGTCC~~T~~TATATCTGAATAAAGGA
GTGTGGGCAGACACTTTGGAAGAGTCTGTCTGGGTGATCTGGT~~A~~AGGCCCATAGGG
TCACTGTCCAGTGCTTAGGGTTACTGAGAAC~~T~~GTGCCGAGCTTGTGAGAAGGAAGGG
TGGATAGTAGCATCCACCTGAGTAGTCTGATCAGTCGGCATGATGACGAAGCCACGAGAAC
TCGACCTCAGAAGGACTGGAGGAAGGTGAAGTGGAGGGAGAGACGCTCCTGATCGTCGAATCC

FIGURE 18

MSRSSKVVLGLSVLLTAATVAGVHVQQWQQQLRDGVIRDIERQIRKKENIRLLGEQIILT
EQLEAEREKMLLAKGSQKS

Signal peptide:
amino acids 1-21

FIGURE 19

CTGTCGTCTTGCTTCAGCCGAGTCCCCTGGCTGCCCTGGCTCTTACAGCCTGTT
CAAGTGTGGCTTAATCCGTCTCCACCACAGATCTTCTCCGTGGATTCCCTGCTAAGACC
GCTGCCATGCCAGTGACGGTAACCCGACCACCATCACAAACCACACGACGTCACTTCGGG
CCTGGGGTCCCCATGATCGTGGGTCCCCTGGGCTGACACAGCCCTGGTCTCCCTCGC
CTGCTGCAGCTGGTCTACCTGCCTGGCCTTCTCGTGGTGGCTAGCGTGGCGCCTGGAC
GGGGTCCATGGCAACTGGTCCATGTTCACCTGGTCTGCTTCTCCGTGACCGTGA
TCCTCATCGTGGAGCTGCGGGCTCAGGCCGCTTCCCCCTGTTGGCCAACCTCCC
ATCACCTCGCTGCTATCGGCCCTCTCGCCTCGGCCATCATCTACCCACAC
CTATGTCAGTTCTGTCCCACGGCCCTCGCGGACACGCCATGCCGCCACCTTCTTCT
CCTGCATCGCTGTGGCTTACGCCACCGAACGAGTGGCCTGGACCCGGCCCGGGAG
ATCACTGGCTATATGGCCACCGTACCCGGCTGCTGAAGGTGCTGGAGACCTTCGTTGCC
CATCATCTTCGCGTTACGCCACCGAACCTGTACCCAGCACCAGCCGGCCCTGGAGTGG
GGCGTGGCGGTGTACGCCATCTGCTCATCCTAGGCCATGCCATCCTGCTGAACCTGGGG
GAGTGCACCAACGTGCTACCCATCCCCCTCCCCAGCTTCCCTGTCGGGCTGGCCTTGCT
TGTCTCTCTATGCCACCGCCCTGTTCTGCCCCCTACAGTTGATGAGAAGTATG
GGGGCCAGCCTCGCGCTCGAGAGATGTAAGCTGCAGCCGACCCATGCCACTACGTGTT
GCCCTGGGACCGCCGACTGGCTGTGGCCTCGACGGCCATCAACCTACTGGCTATGTGGC
TGACCTGGTGCACTCTGCCACCTGGTTTGCTAAGGTCTAAGACTCTCCAAGAGGCTCC
CGTTCCCTCTCCAACCTCTTGTTCTTGCCCCAGTTCTTATGGAGTACTTCTTCC
TCCGCCCTTCCTCTGTTCTCTGCCACCTGGTTTGCTCTCCCTCCACCTTTTCTTCC
CAATTCCCTGCACTCTAACCGAGTTGGATGCATCTCTCCCTCCCTTCTGCTGT
TTCTCTCTGTTGTTGCTCTGCCACATCCTGTTCAACCTTGAGCTGTTCTCTTT
CTTTCTTCTTTTTTTTTTTAAAGACGGATTCTCACTCTGTCGGCCAGGCTGGAG
TGCAGTGGTGCATCTCAGCTCACTGCACACCCCCGCCCTGGTTCAAGCGATTCTCC
CCCAGCCTCCAAGTAGCTGGGAGGACAGGTGTGAGCTGCCGCACCCAGCTGGTCTCTT
TTCCACTCTCTTTCTCATCTCTCTGTTGCTCTGCCCTGTCGGCTTCTTATCTGCTGT
TTGCAAGCACCTCTCTGTCCTGGGAGCCCTGAGACTCTTCTCTCTGCTTCA
CCCACCTCCAAGGTGCTGAGCTCACATCCACACCCCTTGCGCCGGCATGCCACAGCCCC
CCAAGGGGCCCTGGCAAAGCATGCTGCCACCCCTCGCTGTCCTTAGTCAGTGTAC
GTGTGTGTGTGTGTGTGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
CCCAGTGGAGGAAGGTGTGCAGTGTACTTCCCTTAAATTAAAAACATATATATATAT
ATTTGGAGGTCACTTCAATGGGGGGAGGCATTAAGCACCGACCCCTGGTCCCTAGG
CCCCGCCCTGGCACTCAGCTGGCAGAGATTGGCTCCAGAATTGGCAGGTTACAGAACAC
CCACTGCCCTAGAGGCCATCTTAAAGGAAGCAGGGCTGGATGCCCTTCA
CTGTGGTATGAAAAG

19/270

FIGURE 20

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58727
<subunit 1 of 1, 322 aa, 1 stop
<MW: 35274, pI: 8.57, NX(S/T): 1
MPVTVTRTTTTTTSSSGLGSPMIVGSPRALTQPLGLRLLQLVSTCVAFSLVASVGAWTG
SMGNWSMFTWCFCFSVTLLILIVELCGLQARFPLSWRNFPITFACYAALFCLSASIIYPTTY
VQFLSHGRSRDHAIATFFSCIACVAYATEVAWTRARPGEITGYMATVPGLLKVLTFVACI
IFAFISDPNLYQHQPALEWCVAVYAICFILAIAILLNLGECTNVLPPIPFFSFLSGLALLSV
LLYATALVLWPLYQFDEKYGGQPRRSRDVSCSRSHAYYVCAWDRRLLAVAILTAINLLAYVAD
LVHSAHLVFKV
```

Important features:

Transmembrane domains:

amino acids 41-60 (type II), 66-85, 101-120, 137-153, 171-192,
205-226, 235-255 and 294-312

N-glycosylation site.

amino acids 66-69

Glycosaminoglycan attachment site.

amino acids 18-21

20/270

FIGURE 21

GAACGTGCCACCATGCCAGCTAATTTGATTTAGTAGAGACGGGGTTTCAACCAGTGGCCAGGCTGGTC
 TTGAACCTCGTGCACCTCATGATCCGCTCACCTGGCCTCCAAAGTGCTGGATTACAGGCATGAGCCACTGACGC
 CTGGCAGGCTATGCATTTTAAGAAATTATTCTGTATTAGGTGCTGCTAAACATTGGGACTACAGTGACCA
 AACAGACTGAATTCCCAAGAGCCAAAGACCCAGTGAGGGAGACCAACAAGAAACAGGAATGCAAAGAGACCA
 TTATTACTCACTATGACTAAGGGTCAAAATGGGTACGGTGTAGGAGACTGATTGTTAAAGAGACTACAGAGGG
 AGGAGACACTACCAAGAGGGGGCAGGAAGCTCTGACGAGGTGTTAAGCCCCAACTGGAAGAATGAA
 GAAAGAGCTAGCCAGCCATCAGAATAGTCCAGAAGAGATGGGGACACTACACTACACTACACTTGGGCTGAGAA
 ATATGACATGGGATTGGAGGAGCTGGGGAAACACCACTTCTGCGACCTGGCAGGGAGGATTGAGGCTTGGAGA
 AAGGGCAATGGCAGTAGCAGTAGAAGGACAGGGTAGGAGCAGGGACTTGCAAGTGGAAATCATTAGGTCTATC
 AACAGATATGGCAAGAACAGGGAGAATTGATGGTAATGCTGAGGTGGAGGCCAGGGTAGATGGGACAG
 TGGTGGGTGATGCAAGGAAGAGGTCAAGGAGCAGGGCAGACCTGGGGAGAAGGTGAGGGGTTTGGGTTTCCA
 TCTTGGCGAGTCGCGGAATGTTGATGGGAAGACCAAGAGGAGGAGCAGGGGAAGGGGAAGGGAAATCTTAA
 AGAAGCTCTGGATGCCACACTTCTTCCCTTCTCCCTCTCAGAGGTCTACTCGTGGTTCTTCAT
 TTCTGCCCCTGCCCTCATCTCTCTGGTGTGGGAAAGTGAGGATTAGCTGAAGTTTGTCTCGGGGCTG
 TCTGAATCTCCATTGCTTCTGGAGGACATAATTCACTGTCTGCTCTTATCATCTTACATTCCCTGAG
 CCACTGGGACATATGTTCTCTCTAGCTCTCTCATGCTTGTCTGGTGTGGGATGGGATGTTAG
 GGGGAAGGTCAITGCTGTCAGAGGGCACTGACTTTCTAATGGTGTACCAAGGTGAATGTTGGAGACACAGTC
 GCGATGCTGCCAAGTCCGGGAGGCCCTAACTATCCAGGAGATCGTGCCTGGCAGGCTTCCCTGCAAGGT
 ATGCAAGCCCCCTCCCATGTTCTGGCACTTTGCTCTCTCCCGTTGCAACATCCCTTGGAACTGTTCT
 GTGAGTACATGCTGGGTCTCCCTTCTCCCTTGCTCAGGTGATCTCAGGCCCTCTCCACCCAAAGGTT
 ACATGGATCCTAACTACTGCCACCCCTCCACCTCTGACCTGTGCTCCCTGGCTGGTCTTACAGGGCTTC
 TCCACCCCTCCCTATCTCCAGGTTTCCAGGTTGGTGAAGGACACGTGACCAAGGCTACCCGCAATGGCCAGG
 GCGAGTGGCTCACCTATTGAGTGGAAAGGGCTGGAGCAAGGGCTGGCTTGTGAGGAGTGGCTGAGCAGTTGCA
 TGGCAGGAAAGCTCGAGCATGGTCTGGGGATGGCAGGAGCTTCACTGTGACTCTTATGATGAGGACT
 TTGCTGGGGGAATGGACACAGACATGGCTGGCAGCTGCCCTGGGCTGGGCTGGCTGGCAGGACCTGTTACCGGCC
 ACCGGTTCTCCGGGCTGTGCCAGGGCTCCGTGGAGCCTGAGAGGCACTGCTCACAGACGGTGTCCCCAGACA
 CCTCTGCTCTAGTCTGTCAGGCTGGAGGATGGTTGTTGGCTCCCGGGGCTGGCTTCCCTGGCTGCTG
 GCGATGAGCTGCTCTGCCAAACTGCCCCCAGGGGAAAGTGCTTCCCGAGCTGGGCACTGGAGGCC
 AGGACTCACTCTAACACTGCCCTCACAGACTCTGCCCTTCCCGGGGAGGGAGGCCAGGCCCTGCAAG
 ACTGCGACCACTCTGCCACCAACTAACGGGAGCTGGCAAGGCCAGGCTCTGACCTGGCTCTTCTG
 GGTGGTGTCTTAGATGAGGTGAGGGAGGCAAGGAAAGCATGACCCACATCATGCTGGCAGTGGCATGCA
 TCCCCGGCTCTGCAAGGGCAGAGCCTCTGSCCAAGTGTGGCTCAAGGCTCCACAGGAGCTCACAGG
 TAGAGGCTCTGGAGGCGCTCTCCGTGTGTGTGTTTGCAATGAAAGTGTGGAGAGGGAGGCCAGGGCTG
 GGCTGGGGGCCATGCTGCCCTCACCGGGGCTTGCCGGGGGCTCTGGGCAATGGCTACA
 GCTGTCAGACAGTGTGATGTTCAAAATGCCACACATTTCTCTGGATAATGAAACCA
 AGGGGTTGTGACTGGCTGTGAGGGTGGGGAGGGGGCCAGCAACCCCCCACCTCCCTGCTCTC
 TCTCTCTGCTTTCTCTCCTACTTCCGAGTCCATGTCAGTGTGCTGATGAAATCACCCCCACCTGGAGGGCTGG
 CTCTGCCCCTCCGGGAGCTATGGTTGAGGGCTCTCAAGGGCCCTGCCAGCTGGCTGTGCTGCTTC
 ATTCAACTCTCCATGCTCTAAATCTCTTCTTCTAAAGACAGAAGGTTTTGGCTGTGTTTTCAGTC
 GGATCTCTCTTCTGGGAGGCTTGGGAATGATGAAAGCATGACCTCCACCTTCTGGCCCTTAATGG
 GGCTGGGCCCTTCCAACCCCTCTAGGATGTCGGGAGTGTGCTGGGCCCTCACAGCCAGGCCAG
 ATTCACGCAAGAGCTCTGAGCGGGAGGTGGAAGAAAGGATGGCTCTGGTGTGAGGCTCACAGG
 CTCTAGAGAGGGGAGGCAAGAGGGCCACAGGGGTGCGGGAGGTGTCAGCTGATGCCCTGCTGAGAGGAGGAAT
 TGCTGGCAGTGAGTACAGTGGAGGAGTGTCTCTTCTGGGGAGGAAGAAGGTAGAGCCCTTCTGCTGAAAT
 GAAAGGCCAGGCTACAGTACAGGGCCCGGCCAGCCAGGGTGTAAAGCCACGTTAGTGGAGGCCCTGCGAG
 ATCCCTGCATTCAAGGTCACTGGACTGTACGTTTATGTTGTTGGAAAGGGTGGGTGGCTTAAAGAATTAAGGC
 CTGAGGCTTGGCAGGTAAAGAGGCCAAGGTAAAGAACGAGGCCAACGGCACAAAGCATTCTATATAAGT
 GGCTCATGGGTGTTATTTGTTCTATTAAGAATTGTTTATTAATTAATAAAATCTTGAAATCTC
 TAAAA

21/270

FIGURE 22

MFLATLSFLLPFAHPFGTVSCEYMLGSPLSSLAQVNLSPFSHPKVHMDPNYCHPSTSLHLCS
LAWSFTRLLHPPPLSPGISQVVKDHVTKPTAMAQGRVAHLIEWKGWSKPSDSPALESAFSSY
SDLSEGEQEARFAAGVAEQFAIAEAKLRAWSSVDGEDSTDDSYDEDFAGGMDTDAMGQLPLG
PHLQDLFTGHRSRPRVQGSVEPESDCSQTVPDTLCSSLCSLEDGLLGSPARLASQLLGDE
LLLAKLPPSRESAFRSILGPLEAQDSLYNSPLTESCLSPAEEEPAPCKDCQPLCPLTGSWER
QRQASDLASSGVVSLDEDEAEPEEQ

Signal peptide:
amino acids 1-15

Casein kinase II phosphorylation site.
amino acids 123-127, 128-132, 155-159, 162-166, 166-170, 228-232,
285-289, 324-328

Tyrosine kinase phosphorylation site.
amino acids 44-52

N-myristoylation site.
amino acids 17-23, 26-32, 173-179

Prokaryotic membrane lipoprotein lipid attachment site.
amino acids 11-22

22/270

FIGURE 23

GGTTCCCTGGCGCTCTGTTACACAAGCAAGATAACAGCCAGCCCCACCTAATTTGTTCCCT
 GGCACCCCTCCTGCTCAGTGCACATTGTACACTTAACCCATCTGTTCTAATGCACGA
 CAGATTCCTTCAGACAGGACAACGTGATATTCAGTTCTGATTGTAATACCTCTAAG
 CCTGAAGCTCTGTTACTAGCCATTGTGAGCTTCAGTTCTCATCTGCAAATGGCATAA
 TACAATCTATTCTGCCACATCAAGGGATTGTTATCCTTAAAAAAACCAATACCAAAG
AAGCCTACAATGTTGGCCTAGCCAAAATTCTGTTGATTCACACGTTGTTTATTCACTTCT
 ATCGGGGAGCCATGGAAAAGAAAATCAAGACATAAACACACAGAACATTGCAGAAGTTT
 TAAAAACAATGGAAAATAACCTATTCTTGAAAGTGAAGCAAACCTAAACTCAGATAAA
 GAAAATATAACCACCTCAATCTCAAGGCAGTCATTCCCCTCCTTGAATCTACCCAAACAA
 CAGCCACGGAATAACAGATTCTCCAGTAACCTCATCAGCAGAGCATTCTGGCAGTCTAA
 AACCCACATCTACCATTCCACAAGCCCTCCCTGATCCATAGCTTGTAAAGTGCCT
 TGAATGCACCTATAGCAGATGAAGATCTTGCCATCTCAGCACATCCAAATGCTACACC
 TGCTCTGCTTCAGAAAACCTTCACTGGTCTTGGCAATGACACCGTGAAAACCTGATA
 ACAGTTCCATTACAGTTAGCATCCTCTTCAGAACCAACTCTCCATCTGTGACCCCTTG
 ATAGTGGAACCAAGTGGATGGCTTACCAACAGTGTAGCTTCACTGGGTTACCCCTTA
 TCAAGAAAAACAACTCTACAGCCTACCTTAAACTCACCATAATTCAAACCTTTCAA
 ATACGTCAAGATCCCCAAAAAGAAAATAGAAATACAGGAATAGTATTGGGCCATTAGGT
 GCTATTCTGGGTGTCATGCTTACTCTGTGGCTACTTGTGTGGAAAAGGAAAAC
 GGATTCACTTCCATCGCGACTTTATGACGACAGAAAATGAACCGTTCTCGGATTAGACA
 ATGCACCGAACCTTATGATGTGAGTTGGATTCTAGCTACTACAATCCAACTTGAAT
 GATTCAGCCATGCCAGAAAAGTGAAGAAAATGCACGTGATGGCATTCTATGGATGACATACC
 TCCACTTCTGACTCTGTATAGAACTAACAGCAAAAGCGTTAACAGCAAGTGTCACTA
 CATCCTAGCCTTGTACAAATTCTACCTTCAAAGGTTACACAAAATTACTGTCACTGGAT
 TTGTCAAGGAGAATCATAAAAGCAGGAGACAGTAGCAGAAATGTAGACAGGATGTATCAT
 CCAAAGTTCTTACAATTGGCCATCCTGAGGCAATTACTAAGTAGCCTTAATT
 TGTATTCTAGTACTTCTGTATAGAAATATTGTGGAATCAGATAAAACTAAAGATT
 TCACCAATTACAGCCCTGCCCTACAACTAAATAAAATTATTCCACCAAAATTCTAA
 ACAATGAAGATGACTCTTACTGCTCTGCTGAAGCCCTAGTACCATTAATTCAAGATTGCAT
 TTCTTAAATGAAAATTGAAAGGGTGTCTTAAAGAAAATTGACTTAAAGCTAAAAGAG
 GACATAGCCCAGAGTTCTGTTATTGGAAATTGAGGCAATAGAAATGACAGACCTGTATTIC
 TAGTACGTTATAATTCTAGATCAGCACACACATGATCAGCCCACTGAGTTATGAAGCTGA
 CAATGACTGCATTCAACGGGCCATGGCAGGAAAGCTGACCCCTACCCAGGAAAGTAATAGCT
 TCTTAAAGTCTCAAAGGTTTGGGATTAACTTGTCTTAAATATCTTAGGCTTCAA
 TTATTGGGTGCCTTAAAACCAATGAGAATCATGGT

FIGURE 24

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58732
><subunit 1 of 1, 334 aa, 1 stop
><MW: 36294, pI: 4.98, NX(S/T): 13
MLALAKILLISTLFYSLLSGSHGKENQDINTTQNIAEVFKTMENKPISLESEANLNSDKENI
TTSNLKASHSPPLNLPNNSHGITDFSSNSSAEHSLGSLKPTSTISTSPPLIHSFVSKVPWNA
PIADEDLLPISAHPNATPALSENFTWSLVNDTVKTPDNSSITVSILSSEPTSPSVTPLIVE
PSGWLTTNSDSFTGFTPYQEKTTLQPTLKFTNNSKLFPNTSDPQKENRNTGIVFGAILGAIL
GVSLLTIVGYLLCGKRKTDSFSHRRLYDDRNEPVRLDNAPEPYDVSGNSSYYNPTLNSA
MPEESEENARDGIPMDDIPPLRTSV
```

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 235-262

N-glycosylation site.amino acids 30-34, 61-65, 79-83, 90-94, 148-152, 155-159,
163-167, 218-222, 225-229, 298-302, 307-311

FIGURE 25

AACAGGATCTCCTCTTGCA~~G~~TCTGCAGCCCAGGACGCTGATTCCAGCAGGCCCTACCGCG
AGCCCGAAGATTCACTATGGTAAAATGCCCTCAATACCCCTACCGCCGTGCAAAAGGAGG
AGGCGCGGCGAACAGACGTGGAGGCCCTCTGAGCCGACGGTCAGAACTCAGATACTGACCGC
AAGGAGCTCCGAGTTGCCACCCAGGAAAAGAGGGCTCCTCTGGAGATGTATGCTTACTCT
CTTAGGCCTTCATTCATCTTGGCAGGACTTATTGTTGGTGGAGCCTGCATTACAAGTACT
TCATGCCCAAGAGCACCATTTACCGTGGAGAGATGTGCTTTTTGATTCTGAGGATCTGCA
AATTCCCTCGTGGAGGAGGAGCCTAACCTCCTGCCTGTGACTGAGGAGGCTGACATTGTGA
GGATGACAACATTGCAATCATTGATGTGCCTGTCCCCAGTTCTCTGATAGTGACCCCTGCAG
CAATTATTCATGACTTTGAAAAGGGAATGACTGCTTACCTGGACTTGTGCTGGGAACCTGC
TATCTGATGCCCTCAATACCTCTATTGTTATGCCTCCAAAAATCTGGTAGAGCTCTTGG
CAAACCTGGCGAGTGGCAGATATGCCTCAAACCTATGTGGTCAGAAGACCTAGTTGCTG
TGGAGGAAATTCTGTGATGTTAGTAACCTTGGCATTTTACCAACTTGCATAACAGA
AAGTCCTCCGCCCTCGCAGAGACCTCTGCTGGTTCAACAAACGTGCCATTGATAA
ATGCTGGAAGATTAGACACTCCCCAACGAATTATTGTTGAGACCAAGATCTGTCAAGAGT
AAAGGCAACAGATAGAGTGTCTTGTATAAGAAGTCAGAGATTACAATATGACTTTAA
CATTAAGGTTATGGGATACTCAAGATATTTACTCATGCATTACTCTATTGCTTATGCTTT
AAAAAAAGGAAAAAAAAAAACTACTAACCAACTGCAAGCTCTGTCAAATTAGTTAAT
TGGCATTGCTTGTGAAACTGAAATTACATGAGTTCATTTTCTTGCATTATAG
GGTTTAGATTCTGAAAGCAGCATGAATATCACCTAACATCCTGACAATAAAATTCCATCC
GTTGTTTTTTGTTGTTGTTCTTTCTTTAAGTAAGCTCTTATTCACTTATG
GTGGAGCAATTAAATTGAAATATTTAAATTGTTGAACTTTGTGTAAGGATA
TCAGATCTCAACATTGTTGTTCTTTGTTCTTTCAACTTGTACAACCTTCTGAAATTAGA
AATTACATCTTGCAGTTCTGTTAGGTGCTGTAAATTACCTGACTTATATGTGAA
TTCATGAGACAGTCATTTAACTAATGCACTGATTCTTCACTACTATCTGTATTG
AATGCACAAAATTGTGTAAGGTGCTGAATGCTGAAGGAGTTAGGTGATGAAATTCTACAA
CCCTATAATAATTACTCTATACAAAAAA

25/1270

FIGURE 26

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58828
<subunit 1 of 1, 263 aa, 1 stop
<MW: 29741, pI: 5.74, NX(S/T): 1
MVKIAFNTPTAVQKEEARQDVALLSRTVRTQILTGKELRVATQEKEGSSGRCMLLGLSF
ILAGLIVGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEADIREDDNIA
IIDVPVPSFSDPAAIIHDFEKGMTAYLDLLLGNCYLMPNNTSIVMPPKNLVELFGKLASG
RYLPQTYYVVREDLVAVEEIRDVSNLGIFYQLCNRKSFRRLRRDLLLGFNKRAIDKCWKIR
HFPNEFIVETKICQE

Type II transmembrane domain:

amino acids 53-75

N-glycosylation site.

amino acids 166-170

Casein kinase II phosphorylation site.

amino acids 35-39, 132-136, 134-138

N-myristoylation site.

amino acids 66-72, 103-109

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 63-74

26/270

FIGURE 27

GGAGGAGGGAGGGCGGGCAGGCCAGCCCCAGACAGCCCCGGGACCAGCACGGACTCTCT
CTTCCAGCCCAGGTGCCCTTCACTCTCGCTCATTCGGGGAGCACCCAGCTCTGTACGCC
AAGGA~~ACTGGT~~CCTGGGGCACC~~ATGGTT~~CGGGCAGCCCCAGCCTCCATCCTCTG
TTGCTGCTGCTGGGTCTGCTGCTACCGACGCCGCTGTGCCCCGAGGGCCACGTT
CCTGGAGGATGTGGGGTAGTGGGGAGGCCAGGGCTCGTGGCCTCTCCCCGAGCCTCC
CGCCACCCCTGGACCCGCCCTCAGCCCCACATCGATGGGCCCCAGCCCACAACCTGGGG
GGCCCACATACCCCCCACCACCTCCTGGATGGATAGTGGACTTCTTCCGCCAGTACGTGAT
GCTGATTGCTGTGGTGGCTCCCTGGCCTTCTGCTGATGTTCATCGTCTGTGCCGCCAGTCA
TCACCCGGCAGAACGAGAACAGGCCCTGGCCTATTACCCATCGTCTTCCCCAAGAACAGTAC
GTGGACCAGAGTGACCGGGCGGG
CGACAGCAGGCCGAGGAAGCCCTGGATTCCCTCCGGCAGCTCCAGGGCAGACATCTGGCCG
CCACCCAGAACCTCAAGTCCCCCACCAAGGGCTGCAGTGGGGGGGGGGGGGGGGGGGGGG
GTGGAGGGCAGGGCGCAGAGGAAGAGGAAGGGCAGCCAGGAGGGGGGGGGGGGGGGGGGG
GGGACATGGGTCCCAGTGGAGACACCAGAGGCCAGGGAGGGGGGGGGGGGGGGGGGGGGGG
AGGGGGCTGTGGTGGCCGGTGGGGCAAGGGAGCTGGAAGGGTCTCTTGTAGCCAG
GAAGCCCAGGGACCAGTGGTCCCCCGAAAGCCCTGTGCTTGCAGCAGTGTCCACCCAG
TGTCTAACAGTCCTCCGGCTGCCAGCCCTGACTGTCGGCCCCCAAGTGGTCACCTCCCC
GTGTATGAAAAGGCCTTCAGCCCTGACTGCTTCTGACACTCCCTCTTGGCTCCCTGTGG
TGCCAATCCCAGCATGTGCTGATTCTACAGCAGGCCAGAAATGCTGGTCCCCGGTCCCCGG
GGAATCTTACCAAGTGCATCATCCTCACCTCAGCAGCCCCAAAGGGCTACATCCTACAGC
ACAGCTCCCTGACAAAGTGAGGGAGGGCACGTGCTGTGACAGCCAGGATAAAACATCC
CCCAAAGTGTGGATTACAGGCAGGCCACCGTGGCCGGCCAAACTACTTTTAAACACA
GCTACAGGGTAAATCCTGCAGCACCCACTCTGGAAAATACTGCTTAAATTTCCTGAAGG
TGGCCCCCTGTTCTAGTTGGTCCAGGATTAGGGATGTGGGTATAGGGCATTAAATCCTC
TCAAGCGCTCTCCAAGCACCCCCGGCTGGGGTGAGTTCTCATCCGCTACTGCTGCTGG
GATCAGGGTGAATGAATGAACTCTTCTGTCTGGCTCCAAAGCAGCCTAGAAGCTGAGGG
GCTGTGTTGAGGGACCTCCACCTGGGAAGTCCGAGGGGCTGGGAAGGGTTCTGACG
CCCAGCCTGGAGCAGGGGGCCCTGGCACCCCCCTGTGCTCACACATTGCTGGCAGCCTG
TGTCCACAATATTGCTAGTCCTCGACAGGGAGCCTGGCTCCGCTGCTTAAAGGGAGGCT
CTGGCAGGAGGTCTCTCCCCATCCCTCATCTGGGGCTCCCCAACCTCTGCACAGCTCT
CCAGGTGCTGAGATATAATGCACCAGCACAATAACCTTTATTCCGGCTGAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA

27/270

FIGURE 28

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58852
><subunit 1 of 1, 283 aa, 1 stop
><MW: 29191, pI: 4.52, NX(S/T): 0
MVSAAAPSLILLLLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSLPPPWTAL
SPTSMGPQPTTLGGPSPTNFLDGIVDFRQYVMLIAVVGSLAFLLMFIVCAAVITRQKQKA
SAYYPSSFPKKKYVDQSDRAGGPRAFSEVPDRAPDSRPEEALDSSRQLQADILAATQNLKSP
TRAALGGGDARMVEGRGAEEEEKGSQEGDQEVTQGHGVPVETPEAQEEPCSGVLEGAVVAGE
QQGELEGSLLLQAQEAQGPVGPPESPACSSVHPSV
```

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 94-118

N-myristoylation site.amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199,
211-217, 238-244, 242-248

FIGURE 29

GTGGACTCTGAGAAGCCCAGGCAGTTGAGGACAGGGAGAGAAGGCTGCAGACCCAGAGGGA
GGGAGGACAGGGAGTCGAAGGAGGGACAGAGGAGGGCACAGAGACGCAGAGCAAGGGCG
GCAAGGAGGGAGACCCCTGGTGGGAGGAAGACACTCTGGAGAGAGAGGGGGCTGGCAGAGATG
AAGTTCCAGGGCCCCCTGCCCTGCCTCTGCTGGCCCTCTGCCCTGGCAGTGGGAGGCTGG
CCCCCTGCAGAGCGGAGAGGAAAGCAGGGACAAATATTGGGAGGCCCTGGACATGCC
TGGGAGACGCCCTGAGCGAAGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGCAGCT
GGCTCTAAAGTCAGTGAGGCCCTGGCAAGGGACCAGAGAACAGTGGCACTGGAGTCAG
GCAGGTTCCAGGCTTGCGCAGCAGATGCTTGCAACAGGGTCGGGAAGCAGGCCATG
CTCTGGGAAACACTGGCACGAGATTGGCAGACAGGCAGAAGATGTCATTGACACGGAGCA
GATGCTGTCCGGCTCTGGCAGGGGTGCCTGGCACAGTGGCTTGGAACCTTCTGG
AGGCCATGGCATTTGGCTCTAAGGGCCTTGGGAGGCCAGGGCAATCCTGGAG
GTCTGGGACTCCGTGGTCCACGGATAACCCGAAACTCAGCAGGCAGCTTGGAAATGAAT
CCTCAGGGAGCTCCCTGGGTCAAGGAGGCAATGGAGGCCACAAACTTGGGACCAACAC
TCAGGGAGCTGGCCAGCCTGGCTATGGTTCAAGTGAGAGGCCAGCAACCAGAACATGAAGGGT
GCACGAATCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCAACTCTGGGGAGGCAGCGGC
TCACAGTCGGCAGCAGTGGCAGTGGCAGCAATGGTACAACAAACAATGGCAGCAGCAGTGG
TGGCAGCAGCAGTGGCAGCAGCAGTGGCAGCAGCAGTGGCGGCAGCAGTGGCGGCAGCAGTGG
GTGGCAGCAGTGGCAACAGTGGTGGCAGCAGGGTACAGCGGCAGTGAGTCCTCCTGGGA
TCCAGCACCGGCTCCTCCTCCGGCAACACGGTGGAGCGGGAGCGGGGAAATGGACATAAAC
CGGGTGTGAAAAGCCAGGGAAATGAAGCCCGGGAGCGGGGAAATCTGGATTAGGGCTTCA
GAGGACAGGGAGTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATGCCCTGG
GGCTCTGGAGACAATTATCGGGGCAAGGGTCAGCTGGGAGTGGAGGAGGTGACGCTGT
TGGTGGAGTCATACTGTGAACTCTGAGACGTCTCTGGATGTTAACTTGACACTTCT
GGAAGAATTAAATCCAAGCTGGTTCATCAACTGGGATGCCATAACAAAGGACCAGAGA
AGCTCTCGCATCCCGTGACCTCCAGACAAGGAGCCACAGATTGGATGGGAGCCCCCACACT
CCCTCCCTAAACACCACCCCTCTCATCAACTCTCAGCCCTGCCCTGAAATAACCTTA
GCTGCCCAACAA
AA

FIGURE 30

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59212
><subunit 1 of 1, 440 aa, 1 stop
><MW: 42208, pI: 6.36, NX(S/T): 1
MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALESEGVGKAIGKEAGGA
AGSKVSEALGQGTREAVGTGVRQVPGFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHG
ADAVRGSWQGVPGHSGAWETSGGHGIFGSQGGLGGQQGNPGGLGTPWVHGPNGSAGSFGM
NPQGAPWGQGGNGGPPNFGTNTQGAVAQPGYGSVRASNQNNEGCTNPPPSGSGGGSSNSGGGS
GSQSGSSCGSNGDNNNGSSSSGSSSSGSSGGSSGGSSGSSGNGSGSRGDSGSESSW
GSSTGSSSGNHGGSGGGNGHKPGCEKPGNEARGSGESGIQGFRGQGVSSNMRREISKEGNRLL
GGSGDNYRGQGSSWGSGGDAVGGVNTVNSETSPGMFNFDTFWKNFKSKLGFINWDAINKDQ
RSSRIP
```

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70,
74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158,
155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205,
218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252,
249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281,
279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298,
295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328,
323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387,
383-389, 387-393, 389-395, 395-401

Cell attachment sequence.

amino acids 301-304

30/270

FIGURE 31

GACCGGTCCCTCGGTCTGGATGTGCGGACTCTGCTGCAGCGAGGGCTGCAGGCCGCCGGGGTCTCACCG
 TGCCCTGGCTGGAGATTCTCTCTTGTGACCATGTTGTTCCCTTGCTGGAATATTACCGGGACATCTTCA
 CTCTCTGTGCGCCTGCACCGGAGCTTGGTGTGCGAGAGTGAGGGAAAGATGTTCTGAAACAAGC
 TGCTGCTACTTGCTGTCTGGCTTTCAGATTCCCACAGTCCCTGAGGACTTGTCTTCTGGAAGAGG
 GTCCCTCATATGCCCTTGAGGGACACTAGGCCAGAGCATGGCTTGACATGCGCTGTGGACACAGC
 AGCTGCTCTACACTGCTGCCCTACATCGGAGACTCGGAAGCTGCTGCTTGTGGGTGTCAGGCAGTAGTG
 GACGGAGTGGGGCTTCATAGGGAAAATCACCCCCAACACTACCACGCCGCTGGAGGCCAGCCTCCAGACCA
 GCCAGGGCTGCGAGCACGCTGCCAGGCCCTTCCACAAACAGGCCCTCTTGCGCCGCCAGCTAGAGT
 TCGCTGAGAAGAATACTGGATCAAACATATCAAGGCTACACTGGTGGCAGATCTGGTGGCCAGG
 CAGAGTCACCTCCAAGCAGCTGGTACAGCAGGGAGAGGAAGGGGAGACCCAGGCCAGCTGGAGATCT
 TGTGTTCCCAGCTGTGCCCTCACGGGCCAGCTGGGAGGAGTTCTGTCAAAGGAAGAGGCCCTG
 GGGCTGTGCGGCCCTGCTTCAGAGGAGACCCGGCAGCGCTTGAGCAGAGAACATTGCTGTGGGC
 TTGCAACAGAGAAAAGCCTGTGCTGGCTGTGAGCAGTCAGCAACATCACAGCAGTGTAGCAGGGAGGTGAAAGCAGCAG
 TGAGTCGACACACTTGAGGCCAGGGCTCTGAACCTGCTGCCGGGGAGGCCAGGGCTGCTCCGCCCTGAC
 GTGCTCTCTGGCCCTGGGACCTGAGAGGAGTCTCCCAGAGCATCTGAAACAGCTCTAGG
 CAGCTGGGCCAGACGCTGGCTGCCAGTCTGTCAGACAGCTGCTGCCACCTGAGCAGCATCTGAAAGTCTGTG
 GAGTTAGCTCCCTCTGTTGAGATTCAGATCTGCTTCTGAGCAGTAACTTCTATCTCTGGGCCAGAGCTACAGGCTGGAGAGAGG
 CAGGCTGAGGCCAGAAAGAATGTGGGGCTCTGAGACACAAGGCCAGGGAGTGGGACTTGTCTCTGAGCTG
 CTGCTGAGGCCAGAAAGAATGTGGGGCTCTGAGACACAAGGCCAGGGAGTGGGACTTGTCTCTGAGCTG
 CGGGAGCTGGTGGAGAAGGGTCTGATGGGACGGATGGAGATAGGGCTGCTGGCAGCCTCACCAGGCCAG
 TGGCCAGGGAGCTTGCTGAAGAATTAGCAACACTGCTTAATCTGTTCTGAGGCCAGGGCCACCTGAGCAGAACCC
 CAGCTAAGAGCCTGTGAGTTGGTGCAGGCAACGGGCCAGGGCTGCTGGCCAGAGCTAGGGCTGAGAAGTGGCC
 CTGCTTGGGCATTGACCCAGAACCTGGACCCCGCTCAGGAGGGCCAGTGCCAAATGCAAGACCCCTCAC
 TGTTGGGGTGTAGCTGGCTACAGTCAGACTTCTGCTCTAAGGGTGTACTGCTGGCATCCACAGGCCA
 ATCCTAGAGGAAGGGAGTTGGCTGATTTGGGATTATGGCAAAAACTCCAGAGATGCCAGTCTGGAGTAGAA
 GAGGTGGTTTTTATCTCTGGATACTTAATGAAATGAGGTGTGTTGGCTTGCAACACAGAAATCAAGCCT
 CATTGCTATCCAGCATCTCTTAAACTTGTAGCTGGATCATGACAGGGAAATGACTCTGCTTAAAC
 TTATGAAAGAAGTTAAACATGAATCTGGGAGTCTACATTTCTTATCAGGGAGCTGGACTGCCATCTCTT
 ATAAATGCCAACACAGGCCGGTCTGGTGGCTCATGCTGTAACTCCAGCATTGAGAGGGCTGAGGTGGCG
 GACTGCCAGGGAACTTCTGGCTGATTTGGGATTATGGCAAAACAGGCCAGGGCTTCTGAGCTTCTGGAGTAGAA
 TTATTAGCTGGCATGGTGTGCTGTAACTCCAGCATCTGGAGGTGAGGGAGACCTGCTTGAAC
 CTGGAGGTGGAGGTTGCACTGAGGCCAGGGCTGCAACTGCACTCTGGTAAACAGAGCAGAGACTTCTAG
 AAAAGCCTAACAAACAGATAAGGTAGGACTCAACCAACTGAACCTTCTGAGGGCTGAGCTGCCCTG
 TGCAAGGTAGTAACCTCTGAGACCTCTCCCTGACCRGGGACAAAGCACAGGGCATTTAGAGCTTCTGGAGTAGAA
 CTGGTTTCTTAAAGGGGGCTTCTTAAAGGGGGCTTCTTAAAGGGGGCTTCTTAAAGGGGGCTTCTTAAAGGGGG
 TTT
 TGGGGCGTGTCTGTAGGGAAAGGCCCTGTTTCTCTGAGGGGGCTGGCTGTCCATGGGTCCGCCAGCTG
 GCCGTGCTTGGGCCCTGGCGTGTGCTAGCTGCTCTGCGGGCACAGAGCTGGGGCTGGGGCAACGGGG
 AGCTAAGAGCAGGCTCTGGTGCAGGGGCTGCTCTTAACCGACACCCCTGAGGTGCTCTGAGATGCTG
 GGTCACCCCTGAGTGGCACGGGAGCAGCTGGGGCTGCTCTTCTYTAGGCCAGTCTCTGGGAAACTAAGCTC
 GGGCCCTTCTTGCACAGAGGAGATGGGGCTGGTGTGGGGACTCATGGGAATGGGGAGCTACGTGT
 GAAGAGGGCGCCGGTTGGCTGAGGCCCTGAGGGCTCTCTCTGAGGCTCAGTTCCCTTCCGCTTA
 ATGAAGAACATGCCGCTCGGTGTCAGGGCTATTAGGACTTGGCTCTGAGGAGTGGCCTGGAGCGCTCAT
 GTTATTTTCAACACTGCTCTGAGCAGCTGGCTGGCAGCTGCACTGAGAATGCCCATGTCCTCTGCTGGG
 GTCGGGTGGAGTGGCAGCAGAGGCCAGCTGGCTGGGGCTGGAGCTGAGGGAGGCCAGGGGGAGGG
 CCTCACAGGAAGTTGGGCTCCCGCACCCAGGAGGGGGCTCCGCCGCCAGGCCACCCAGCTCAGG
 GGGCGGTAGACAAGTGGAGTGGCTTGGGCTGCTGCGCAGCAGGAGCTGAGGGAGGCCAGGGGGAGGG
 TCCTGCGGCCAGCTGGAAAGCAGGCCCTCCACACAGCACGAACAGCCGGTCC

31/270

FIGURE 32

MCFLNKLLLLAVLGWLFIPTVPEDLFFLEEGPSYAFEVDTVAPEHGLDNAPVVDQQLLYTC
CPYIGELRKILLASWVGSSGRSGGFMRKITPTTTSLGAQPSOTSQGLQAQLAQAFFHNQPP
SLRRRTVEFVAERIGSNCVKHIKATLADLVRQAESLLQEQLVTQGEEGGDPAQLLEILCSQL
CPHGAQALALGREFCQRKSPGAVRALLPEETPAAVLSSAENIAVGLATEKACAWLSANITAL
IRREVKAAVSRTLRAQGPEPAARGERGCSRA

Signal peptide:
amino acids 1-18

N-glycosylation site.
amino acids 244-248

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 89-93

Casein kinase II phosphorylation site.
amino acids 21-25, 167-171, 223-227

N-myristoylation site.
amino acids 100-106, 172-178, 207-213

Microbodies C-terminal targeting signal.
amino acids 278-282

FIGURE 33

TCCCTTGACAGGTCTGGTGGCTGGTGGGCTACTGAAGGCTGCTTGATCAGGAACTG
 AAGACTCTGCTTTGCCACAGCAGTCAGCTGCAGCTTCTTGAGGTGTGAACCCACATCCC
 TGCCCCCAGGCCACCTGCAGGACGCCACACCTACCCCTCAGCAGACGCCAGAGAAAATG
 AGTAGCAACAAAGAGCAGCGGTCAAGCAGTGTCTGTGATCCTCTTGCCCTCATCACCATCCT
 CATCCTCTACAGCTCCAACAGTGCAATGAGGTCTTCCATTACGGCTCCCTGCCGGGCCGTA
 GCCGCCGACCTGTCACCTCAAGAAGTGGGACATCACTGACGGCTATGTCCCCATTCTCGGC
 AACAAAGACACTGCCCTCTCGGTGCCACAGTGTGATTGTCAAGCAGCTCCAGGCCACCTGCT
 GGGCACCAGCTGGGCCCTGAGATCGAGCGGGCTGAGTACAATCCGCATGAATGATGCAC
 CCACCACTGGCTACTCAGTGATGTCGGCAACAAGGACACCTACCCGCTGTCGGGCCATTCC
 AGTGTGTTCCGGTCTGAGGAGGCCCCAGGAGTTGTCAACCGGACCCCTGAAACCGTGT
 CATCTTCTGGGGGCCCGAGCAAGATGCAAGGCCCAGGGCAGCCTCGTGCCTGATCC
 AGCGAGCGGGCTGGTGTGCCCCAACATGGAAGCATATGCCGTCTCCGGCCATGCC
 CAATTGACGACCTCTCCGGGTGAGACGGCAAGGAAGGGAGTCTCATCGTGGGCCAGCTGTATGGC
 GAGCACAGGCTGGTTTACATGGTATCGCGGTGGAGTTGTGACCACGTGATGTCTATG
 GCATGGTCCCCCCTACTACTGCAAGCAGCGGCCCTCCAGGGCATGCCCTAACCTAC
 TACGAGCCAAGGGCCGGACGAATGTCACCTACATCCAGAAATGAGCACAGTCGAAGGG
 CAACCAACCACCGCTCATCACCGAGAAAAGGGTCTTCTCATCGTGGGCCAGCTGTATGGC
 TCACCTCTCCCACCCCTCTGGACCTAGGCCACCCAGGCCCTGGGACCTCAGGAGGGTCAG
 AGGAGAACGCCCTCGGCCAGCCGCTAGGCCAGGGACCATCTTCTGGCAATCAAGGCTTG
 CTGGAGTGTCTCCAGCCAATCAGGGCTTGAGGAGGATGTATCTCCAGCCAATCAGGGCC
 TGGGAATCTGTTGGCAATCAGGGATTGGGAGTCTATGTTAATCAGGGTGTCTTC
 TTGTCAGTCAGGTCTGGCACAGTCATCAGGTAGAGGGGTATTCAGTCAATCTG
 AGGCTAAGGACATGTCCTTCCATGAGGCCCTGGTCTAGAGGCCAGGAATGGACCCCA
 ATCACTCCCCACTCTGTCGGATAATGGGTCTGTCCAAGGAGCTGGAACTTGGTGT
 CCCCCTCAATTCCAGCACAGAAAGAGAGATTGTGTTGGGAGTCTGGAGGCC
 GGGCAGAGAATTGTCGGGCTTGAGGTTGTGGGGCGGTGGAGGTCCCAGGGTGG
 GGCTGGCATCAGGTCTGGCTCTGCCCTGAGACCTTGGACAACCCCTCCCCCTCTGG
 CACCCCTCTGCCACACCACTGGGAGTCTGAGACCCCTTCCACCTCCCCCTACAA
 GTGCCCTCGGGCTGTCTGCCCTGGGAGGCTGGCAACTATCCCTGCTGGAAAGGCT
 CAGCTCTTGGGGGGTCTGGGTGACCTCCCCACCTCTGGAAAACCTTAAAGGTATTTGC
 GCAAACCTCTCAGGGTTGGGACTCTGAAGGAAACGGGACAAAACCTTAAAGCTGTTCT
 TAGCCCCCTCAGCCAGCTGCCATTAGCTGGCTCTTAAAGGGCAGGCCCTTTCTGCCCT
 CTAGCAGGGAGGTTTCAACTGTTGGAGGCCCTGGGCTGCCCTTGTCTGGAGTCA
 CTGGGGGCTTCCGAGGGTCTCCCTGACCCCTGTCTGGCTCTGGATGGCTGCTGGAGCTGT
 ATCACCTGGGTTCTGCTCCCTGGCTGTATCAGGCACTTTATTAAAGCTGGCCTCAGTGG
 GGTGTGTTGTCTCTGCTCTCTGGAGGCCCTGGAGGAAAGGGCTCAGGAGGAGGCTGTGA
 GGCTGGAGGGACAGATGGAGGAGGCCAGCAGCTAGCCATTGCAACTGGGTGATGGTGG
 GGGCGGTGACTGCCCGAGCTGGTTTGTAAATGATTGTACAGGAATAAACACACCTACGC
 TCCGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

33/270

FIGURE 34

MSSNKEQRSAVFVILFALITILYSSNSANEVFHYGSLRGRSRRPVNLKKWSITDGYVPIL
GNKTLPSRCHQCVIVSSSSHLLGKLGPEIERAECTIRMNDAPTTGYSADVGNKTTYRVVAH
SSVFRVLRRPQEJVNRTPETVFIFWGPPSKMQKPQGSLVRVIQRAGLVFPNMEAYAVSPGRM
RQFDLFRGETGKDREKSHSWLSTGWFTMVIAVELCDHVHVYGMVPPNYCSQRPRLQRMPYH
YYEPKGPDECVTYIQNEHSRKGNHHRFITEKRVFSSWAQLYGITFSHPSWT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 9-31 (type II)

N-glycosylation site.

amino acids 64-68, 115-119

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 50-54

Casein kinase II phosphorylation site.

amino acids 3-7, 29-33, 53-57, 197-201

Tyrosine kinase phosphorylation site.

amino acids 253-262

N-myristoylation site.

amino acids 37-43, 114-120, 290-294

FIGURE 35

GTTTCTCATAGTGGCTCTTCTAAAGGAAAACACTAAAATGAGGAACCTCAGCGAACGGGAGCGACGCAGCTT
 GAGGGAGCATCCTAGCTGGCGCAGAGGGCGAGGCTGAAGCCGAGTGGCCAGGGTGTGAGGGCTGG
 GCAAAGGTAAAGAGTTCAAGAACAGCTCTGAAACCCATGAAGTCTGTGACATTATACCGT
 CTGAGGTAGCACTCGAAACTAGAAGAAGTGGAGTGTGCCAGGGAGCGAGTATCTCTTGTCACCTGGC
 GCCCTATGGGACGGCTTCAGACCTTGATAACCACTGCTGGAGCATGACGGCTGGAGAGAGGAATG
 AGGCTGAGGTCAACACTGCTTCCTCTGCCACAGCGAGCTTCTGACTTGAACCGAGGTCCCTCAG
 GTCACCGTCCACGGCTGGCTTCAAGGCCAGCGAGCTGTGATCTGGCTGGCTGGAGACCTCCA
 AGGATGAATGAACTGGCTGAGTGGAAAGGAGCTGAATGGCTCGGATGATGCTCTGGGTGTCCTCATCACC
 CACGGGACCTCTGTCATCACTGCCCCCTAAACAAACACTGTGGGACGGTACAGTGTGGCCCGGATGCTGG
 GGGCTGTCAGCTGGCAGCTGGCAGCTGTGACACTAGCCACCTCAGGACTCTAAGTTAGATGTGAGCACCGT
 ATTGAAGTGGATGAGGGAAACACAGCAGTCATGCCACCTGCCAGAGGCCACCCAAAGCCCAGGTC
 TACAGCGTCAAAAGGTGGCTGGCCAGCTGGAGGTAACCTACCTGATCATGCCCTCAGGGAACCTCCAGATT
 GTGAATGCCAGGGAGGACGGGCTGTGAGGCTACAGTGTGCGCTTCAACCCAGTGAACCCAGGAGAAGTGAAC
 TCCGGCTCCAGGACAGGGCTACGTGTGCGCTTCAACCCAGTGAACCCAGGAGAAGTGAAC
 CAACACATCATGTCATGCAACAGGCAAGGCTCATTCTGGAGTGTGTGGCCAGTGGAAATCCACCCACGGGTC
 ACCTGGGCAAGGATGGTCAGTGTGAGGCTTCAACAAAGACGGCTTCTGCTGAGCAACCTCCTCATCGAC
 ACCACAGCGAGGAGACTCAGGACACTACCGCTGATGCCAGCATGGGGTGGCAGCCGGGAGCGGGTC
 ATCTCTACAATGTCAGGTGTTGAACCCCTGAGGTACCATGGAGCTATCCAGCTGGCATCCCTGGGG
 CAGAGTGGCAACTTACCTGTGAGGTGGCTGGAAACCCCCCGCCCTCCGTCGTGCTGGCTGAGGAATGCTGTGCC
 CTCATCTCAGGCCAGGCCCTCCGCTTCCCGCATGGGGCTGCGCAGCATGGGGCTGAGGACGAAGGC
 GTCTACCTAGTGCATGGCGAGAACGAGGTTGGAGGGCCATGGCTGAGTCACTGGGACCTCAGGCCAAG
 ATAACCCCAAGGCTATGGCAGGATGCTGAGCTGGCTACTGGACACCTCCCTGATCACCTCAAACCTGGCAAC
 CCTGAGCAGATGCTGAGGGGCAACGGGCGCTCCAGACCCAGGCTGGGAGCTGGGGCTGCTTCCCGAAGTGT
 CGAGGAGAGAAGGGGAGGGGCTCCGGCAGGCTCCAGTACATCTCAGCTGCCCGCACCTCCAAGACAGAC
 TCATATGAACTGGTGTGGCGCTCGGATGAGGGCAGTGGCGGGGCGCAATCTCTACTATGTTGAAACAC
 CGCAAGCAGGTCACAAATTCTCTGAGATGGCTGAGGAGATGGCAGGCTTCAACAGCAGGCCCTGACCC
 ACCAGACTTGCACCCGGAGCTTGTGAGTGGAGATGGCAGGCTTCAACAGCAGGCCCTGACCC
 ATGGTCACCTCCGAACTGGACGGCGCCAAACCCGAGATCATGCCAGCAGAACAGAGCAGAGATCCAGAGAGAC
 GACCTGGAGCCAGTGGCCAGAGCGACGCCAGACCCAGGGCGCTCTCCCCCAGAAGCTCCCGACAGG
 CCCACATCTCCAGGGCCAGGCTCAGTGGCTACGTGACCTGGCATGGGGAGTGGTGGGTTCCCAATC
 CAGTCCTTCCGGTGGAGTACAAGAACAGGAAAGTGGGGAGACTGGATTCTGGCACCAGCGCCATCCCCCA
 TGCGGCTGTGGTGGAGATCACGGGCTAGAGAACGGCACCTCTACAAGTTCTGAGTGGCTGGGCTCTGAACATG
 CTGGGGAGAGCGAGGCCAGGGCCACTGGGCTCTGCCCTACGGGCTTACGGTGTGGGAGAGGG
 CCCGGGGAGGGCTGGGACTGGGCACTGGGCTCGCTCAGCGACCTGCCCTATGTAATGTCGGGGTGT
 CCAGCAGTAAACAAACACCCAAATCCATGCTTTATATCTATTATGACCCACAGACAGTACAATGATAGT
 GACTACAAGAAGGATATGGTGAAGGGGACAAGACTGGACCTCCATCAGGCCACCTGCAAGCAGAACCTCTAC
 GACATTAAGATGTCAGTGTCAATGAAGGGGGAGAGCTGGAGTGTGATGATCTGTGAGGACCAAAGCT
 CGGAAGTCTCTGGCAGCTGGTCACTGCCACCCCAACTCTGGCCCCACACAGCGCCCTTCTGAAC
 ATAGACGGCCGGTGGGACTGGGCACTGGGCACTGGTGGCTCGCTCAGCGACCTGCCCTATGTAATGTCGGGGTGT
 CTGGGGCTCATGTTCTCATCTGTCACCTCATCCCCTCTGCTGAGGGCTGGCTTAAGCAAAACAT
 ACAAACAGACCTGGGTTCTCGAAGTGGCTCCACCCCTCTGCCCTGCTGCTGAGGGCTGGCTTAAGCAAAACAT
 CCAGGCCACCGGCCAGTGGACAGCCCTACCTCTGAGTGGACGGGGCTGTGCTTAATGGGATCCACATG
 AATAGGGGCTGCCCTCTGGCTGAGTGGGCTACCCGGGAGTGAAGGCCACAGCAGACTGCCAGGGGAGCTCAG
 CAGCAGAGTGAACAGCAGGCCAGGGCTCTTCTTATACACACTGCCAGCAGTCCACTCAGGCC
 ACAGGGGGTCCCAAGTGTAGCCGGACGGGGCTTCTTATATGGGAGTGGGAGTGGGAGGACCTGGGCTTGTG
 CGAGTGTGAGGGTGGACACTCTGACTCTGGCAAGTGGAGTGGGAGGACTGGTGTGCCCCAGCAGGCC
 GCTCTAGTGGACAGGAACCTGGAGTGCAGCTCTCCCGGGGCACTGGCTGGCTGTGCTTGGGAGG
 CTCAACATTAGGCAAGGCTGATACTCCAGAAAGACTATATATTGTTTTTTAAAAAAAGAAGAAAA
 AGAGACAGAGAAAATTGGTATTATTTCTATATAGCCATTATATTATGCACTTGTAAATAAATGTA
 ATGTTTATAATTCTGGAGAGACATAAGGAGTCTACCCGTTGAGGTTGGAGGGAAAATAAAGAAGCTGCCA
 CCTAACAGGAGTCACCCAGGAAGCACCAGCAGGGCTGGCGGGAGCAGACTCTAACCTGGGCTCTGAGCTG
 GCAGGGAGGGCTGAGGAGGCCACAGATAAGCTGGCAAGGAGAAGGATCCAGGCACATGGTTCATCAGGAGCA
 TGAGGGAAACAGCAAGGGGAGGGTACAGCAGCTGGAGGAGACCCACACAGATGGCTGGATCCGGTGTACGGGAA
 ACATTTCTAAGATGCCCATGAGAACAGCAAGATGTGTCAGCACTGAGCATTAAAAACCTCCAGAAT
 CAATAATCCGTGGCAACATATCTGAAAAACAAACACTGTAACCTCTAAATAATGTTAGCTTCCCTGTAAAA

FIGURE 36

MLRGTMATAWRGMRPEVTLACLLATAGCFADLNEVPQVTVPQASTVQKPGGTIVLGCVVEPP
RMNVTWRLNGKELNGSDDALGVLITHGLVITALNNHTVGRYQCVARMPAGAVASVPATVTL
ANLQDFKLDVQHVIEVDEGNTAVIACHLPESHPKAQVRYSVKQEWEASRGNYLIMPSGNLQ
IVNASEQEDEMYKCAYNPVTVQEVKTSGSSDRLRVRSTAEEAARIIYPPEAQTIIVTKQSL
ILECVASGIPPPRVTWAKDGSSVTGYNKTRFLLSNLLIDTTSEEDSGTYRCMADNGVGQPGA
AVILYNVQVFEPPEVTMELSQLVIPWGQSAKLTCEVRGNPPPSVLWLRNAVPLISSQLRLS
RRALRVLSMGPEDEGVYQCMANEVGSAAHVQLRTSRPSITPRLWQDAELATGTPPVSPSK
LGNPEQMLRGQPALPRPPTSVGAPSKCPGEKGQQGAPAEAPIILSSPRTSKTDSYELVWRPR
HEGSGRAPILYYVVVKHRKVQTNSSDDWTISGIPANQHRLTLTRDPGSLYEVEMAAYNCAGE
GQTAMVTFRGRRPKPEIMASKEQQIQRDDPGASPQSSQPDHGRLSPPEAPDRPTISTASE
TSVYVTWIPRGNGGFPIQSFRVEYKKLKVGDWILATSAPIPPSRLSVEITGLEKGTSYKFRV
RALNMLGESEPSAPSRPYVVSGYSGRVYERPVAGPYITFTDAVNNETTIMLKWMYIPASNNT
PIHGFYIYYRPTDSDNDSDYKKDMVEGDKYWHISHLQPETSYDIKMQCFNEGGESEFSNVM
ICETKARKSSGQPGRLPPPTLAPPQPLPETIERPVGTGAMVARSSDLPYLIVGVVLGSIVL
IIVTFIPFCLWRAWSKQKHTTDLGFPRLPPSCPYTMVPLGGLPGHQASGQPYLSGISGRA
CANGIHMNRGCPAAVGYPGMKPQQHCPGELQQQSDTSSLRQTHLGNGYDPQSHQITRGPK
SSPDEGSFLYTLPPDDSTHQLQPHDCCQRQEQQPAAVGQSGVRRAPDSPVLEAVWDPPFHSG
PPCCLGLVPVEEVDPDSCQVSGGDWCPCQHPVGAYVGQEPGMQLSPGPLVRVSFETPPLTI

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 16-30 (type II), 854-879

FIGURE 37

CGGGAGGCTGGTCTCATGATCCGGACCCCATTGTGGCCTCTGCCCATGCCCTGCTCCTC
CCAGGCTCCCGGGCCGACCCCCGGCAACATGCAGCCCACGGGGCGAGGGTTCCCGCGC
GCTCAGCCGGCGGTATCTGGCGCTCTGCTGCTACTGCTGCTGCTGCTGCGGCAGC
CCGTAACCCGCGGGAGACCACGCCGGCGCCCCAGAGCCCTCTCACGCTGGCTCCCC
AGCCTCTTACCCACGCCGGGTGCCCCAGGCCCTCACTACCCCAGGCCCTCACTACGCCAGG
CACCCCCAAACCTGGACCTTCGGGTCGGCGCAGGCCCTGATGCCAGTTCCACTCG
TCGACGGCCACAATGACCTGCCCTAGGTCTGAGACAGCGTTACAAGAATGTGCTTCAGGAT
GTTAACCTGCGAAATTTCAGCCATGGTCAGACCAGCCTGGACAGCGTTAGAGACGCCCTCGT
GGGTGCCAGTTCTGGTCAGCCTCGTCTGCCAGTCCAGGACCAGACTGCCGTGCGCC
TCGCCCTGGAGCAGATTGACCTCATTCACCGCATGTGTGCCCTCTACTCTGAACCTCGAGCTT
GTGACCTCAGCTGAAGGTCTGAACAGCTCTCAAAAGCTGCCCTGCCCTATTGGCGTNAGGG
TGGTCACTCACTGGACAGCAGCCTCTGTGCTGCCAGTTCTATGTGCTGGGGTGCCT
ACCTGACACTTACCTTCACCTGCAGTACACCATGGGAGAGAGTTCCACCAAGTTCAAC
CACATGTACACCAACGTCAAGGGATTGACAAGCTTGAGAGAGTTCAACAGCT
CCGCTGGGCATGATAGATTTGCTATGCATGGACACCTTGATAAGAAGGGTCTGG
AAGTGTCTCAGGCTCTGTGATCTTCTCCACTCAGCTGCCAGAGCTGTGTGACAATTG
TTGAATGTTCCCGATGATATCCTGCAGCTCTGAAGAACGGTGGCATCGTGTGGTACACT
GTCCATGGGGTGTGCACTGCAACCTGCTTGCTAACGTGTCCACTGTGGCAGATCACTT
ACCACATCAGGGCAGTCATTGGATCTGAGTTCATGGGATTGGTGGAAATTATGACGGGACT
GGCCGGTTCCCTCAGGGCTGGAGGATGTGCCCCACTCAGCTGCCAGAGCTGTGTGACAATTG
GAGTCGTASCTGGAGCGAGGAAGAGCTCAAGGTGTCTCGTGGAAACCTGCTGCCGGTCT
TCAGACAAGTGGAAAAGGTGAGAGAGGAGAGCAGGGCGAGAGCCCCGGAGGCTGAGTT
CCATATGGGCAACTGACCATCCTGCCACTCCCACCTCGTCCCTCAGAATGGACACCAGGC
TACTCATCTGGAGGTGACCAAGCAGCCAACCAATGGTCCCTGGAGGTCCCTCAAATGCC
CCCCATACCTTGTCCAGGCCCTGTGGCTGCCACCATCCACCTCACCCAGTGGCTC
TGCTGACACAGTCGGTCCCCGAGAGGTCACTGTGGCAAAGCCTCACAAAGCCCCCTCCT
AGTTCAATTACAAGCATATGCTGAGAATAAACATGTTACACATGGAAAA

FIGURE 38

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59817
><subunit 1 of 1, 487 aa, 1 stop, 2 unknown
><MW: 53569.32, pI: 7.68, NX(S/T): 5
MQPTGREGSRALSRYYLRRLLLLLRLQPVTRAETTPGAPRALSTLGSPSLFTTPGVPS
ALTTPLGLTTPGTPKTLDLRGRAQALMRSFPLVDGHNDLPQVLRQRYKNVLQDVNLRNFSHGQ
TSLDRLRDGLVGAQFWASVSCQSQDQTAVRLALEQIDLIHRMCASYSELELVTSAEGLNSS
OKLAACIGVXGCHSLDSSLVLSFYVLGVRYLTLCSTPWAESSTKFRHHMYTNVSGLT
SFGEKVVEELNRLGMMIDLDSYASDTLIRRVLLEVSQAPVFSHSAARAVCDNLLNVPDDILQL
LKNGGIVMVTLISMGVLQCNLLANVSTVADHFDHTRAVIGSEFIGIGGNYDGTRFPQGLEDV
STYPVLIIEELLSRXWSEEELQGVLRGNILLRVFRQVEKVREESRAQS PVEAEFPYQQLSTSCH
SHLVPQNGHQATHLEVTKQPTNRVPWRSSNASPYLVPGLVAAATIPTFTQWLc
```

Important features of the protein:

Signal peptide:

amino acids 1-36

Transmembrane domain:

amino acids 313-331

N-glycosylation sites.

amino acids 119-122, 184-187, 243-246 and 333-336

N-myristoylation sites.

amino acids 41-46, 59-64, 73-78, 133-138, 182-187, 194-199, 324-329, 354-359, 357-362, 394-399, 427-432 and 472-477.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 136-146

FIGURE 39

TGCTAGGCTCTGCCCACAATGCACCCGAGAGCAGGGCTGAAAGCCTCTAACACCCACAGA
TCCCTCTATGACTGCAATGTGAGGTGTCCGGCTTGCTGGCCAGCAAGCCTGATAACCATG
AAGCTTATCTTGGTGGCTGTGGTCGGTGTGCTGGTCCCCAGCTGAAGCCAACAA
GAGTTCTGAAGATATCCGGTGCAAATGCATCTGCCACCTTATAGAAACATCAGTGGGCACA
TTTACAACCAGAATGTATCCAGAAGGACTGCAACTGCCGTGCACGTGGTGGAGGCCATGCCA
GTGCCCTGGCCATGACGTGGAGGCCTACTGCCGTGTGCGAGTCAGGTACGAGGAGGCCAG
CACCAACCACATCAAGGTCATCATTGTCATCTACCTGTCGTGGTGGGTGCCCTGTTGCTCT
ACATGGCCTTCTGATGCTGGACCCCTCTGATCGAAAGCCGGATGCATAACTGAGCAA
CTGCAAAATGAGGAGGAGAATGAGGATGCTCGCTATGGCAGCAGCTGCTGCATCCCTCGG
GGGACCCCGAGCAAACACAGTCCTGGAGCGTGTGGAAAGGTGCCAGCAGCGGTGGAAGCTGC
AGGTGCAGGAGCAGCGGAAGACAGTCGGCACAAGATGCTCAGCTAGATGGGCTGG
TGTGGTTGGGTCAGGCCAACACCATGGCTGCCAGCTCCAGGCTGGACAAGCAGGGGG
CTACTTCTCCCTTCCCTCGGTTCCAGTCTTCCCTTAAAGCCTGTCATTTGCTCCCTTCT
CTCCCTAACTTAGAAATGTTGACTTGGCTATTTGATTAGGGAAAGAGGGATGTTGCTCT
GATCTCTGTTGCTCTGGCTTGGGCTTGGGATGGCAGGCTGGCAGGCCAGAAGGG
ATGGAGACATTGAGGCGGCCTCAGGAGTGGATGCGATCTGCTCTGGCTCCACTCTTG
CCGCTTCCAGCTCTGAGTCTGGGAATGTTGTTACCTTGGAAAGATAAAGCTGGGCTTCA
GGAACTCAGTGTCTGGGAGGAAAGCATGGCCAGCATTGAGCATGTGTTCTTCTGAGTG
GTTCTTATCACCACCTCCCTCCAGCCCCGGCGCTCAGCCCCAGCCCCAGCTCCAGCCCTG
AGGACAGCTCTGATGGGAGAGCTGGGCCCTGAGCCCACTGGGCTTCAGGTGCACTGGA
AGCTGGTGTGCTGACTTCTGGGACTGGGCTGAGGCTGGGAGGCTGGGCTTGGGCTTGG
CTGCTGCCGGTCCCTCACCTGCACTTGAGGGTCTGGGAGTCCCTCCTCTCCCCAGTGT
CACACTCACTGAGCCAGACGGTGGTGGACATGAGACTCGAGGCTGAGCGTGGATCTGAA
CACACAGCCCCCTGTACTTGGGTTGCCTTGTCCCTGAACCTCGTTGTAACAGTGCATGGA
GAGAAAATTTGTCCTTGTCTTAGAGTTGTTGTAATCAAGGAAGCCATCATTAAATTG
TTTATTTCTCTCA

FIGURE 40

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60278
<subunit 1 of 1, 183 aa, 1 stop
<MW: 20574, pI: 6.60, NX(S/T): 3
MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVEPM
PVPGHDVEAYCLLCECRYEERSTTIKVIIIVIYLSVVGALLYMAFLMLVDPLIRKPDAYTE
QLHNEEENEDARSMAAAAASLGGPRANTVLERVEGAQQRWKLQVQEQRKTVFDRHKMLS

Important features:**Signal peptide:**

amino acids 1-20

Transmembrane domain:

amino acids 90-112

N-glycosylation sites.

amino acids 21-24, 38-41 and 47-50

40/270

FIGURE 41

AGCGGGTCTCGTTGGGTCGCTAATTCCTGAGGCGTGAGACTGAGTTCATAGGTCTGGTCCCCGA
 ACCAGAAGGGTGAGGGAACAACTCTGCAGGCCCCCGGGACCCAAAGTGAGGGGCCCGTGTGGGTCTCCC
 TCCCTTGCAATTCCCACCCCTCCGGCTTGCCTTCCTGGGACCCCTCGCCGGAGATGGCCGGTGTGATG
 CGGAGCAAGGATTCTGCTCGCTCCTACTGGCCGGTGTGATGGAGAGCTCACAGATCGGCACT
 TCGGGGCCAAACTCAACTCCATCAAGTCTCTCTGGCGGGGAGACGCCGGTGTGAGGCCCAATCGATCTGG
 GGCATGTACRAAGGACTGGCATTGGCGGAGTAAGAAGGGAAAAACCTGGGCAGGGCTACCCCTGTAGCAGT
 GATAAGGAGTGTGAGTTGGAGGTATTGCCACAGTCCCAACAGGATCATGCCCTGATGGTGTGAGGAGA
 AAAAAGAAGCGCTGCCACCGAGATGTGCTGCCAGTACCCGCTGCAATAATGGCATCTGTATCCAGTT
 ACTGAAGGATCTTAACCCCTCACATCCGGCTCTGGATGGTACTCGGCACAGAGATCGAAACACGGTCATTAC
 TCAAACCATGACTGGATGGCAGAATCTAGGAAGACCAACACACTAAGATGTCAATATAAAAAGGGCATGAAGGA
 GACCCCTGCCACAGATCATCAGACTGCATTGAAGGGTTTGCTGTGCTGTCATTTCTGGACAAAATCGAAA
 CCAGTGCTCATCAGGGGAAGTGTGACCAAACACGCAAGAAGGGTTCTCATGGCTGGAAATTTCAGGGT
 TGGACTGTGCGAACGGGGCTGTCTGCAAAGTATGGAAGATGCCACACTCTCCAAGGCCAGACTCCATGTG
 TGTGAGAAAATTTGATCACATTGAGGAACATCATCAATTGCAAGACTGTGAGTTGTGTATTTATGCAATTAG
 CATGGTGGAAAATAGGTTGAGATGAGAAGAATGGCTAAAATAAGAAACGTTGATAAGAATATAGATGATCACA
 AAAGGGAGAAGAAAATGAACTGAATAGATAATGGGTGACAAATGCACTGAGCCAGTGTTCATTATG
 CAACATTGCTATGTAATAATGTAACACATTGTTGAAAATGCTATTATAAGAGAACAGCACAGTGGAAATT
 ACTGATGAGTAGCATGTGACTTCCAAGGTTAGGTTGCTGAGGAGAGGTTCTTCAGATTGCTGATTTG
 TTATACAATAACCTACATGCCAGATTCTACGTTAACGTTAGAGTTAACAAATACTCTTAGAATAACTTGT
 TACAATAGGTTCTAAAATTGCTAACAGAAATGAAACATGGAGCATGTTAATTACAACAGAAAAT
 TACCTTTGATTTGAAACACTACTCTGCTGTCATCAAGAGTCTGGTAGATAAGAAAAAAATCAGTCATAT
 TTCCAATAATTGCAAAATAATGCCAGTTGTTAGGAAGGCCCTTAGGAAGGACAATAAAACAACAAACAG
 CCACAAATAACTTTTCAAAATTAGTTGTTACCTGTAATTATAAGAGACTGATACAAGACAAAACAGTTCC
 TTGAGATTCTACGGAATGACAGTATCTCTTCTTATGCTGATGGCTGATGCAATTATTTCCA
 AACTATAACCCATAATTGTGACTGACTAAACTACACAGGAGCAATTTCACAGATGCCAAAAAATTAAA
 GATGTCATAATTGAAAAGAGCTAACAGAGAGATCATTATTCTAAAGATTGGCATAACCTATATT
 GATGAAATTAGATTGTTAAATACATGTTACATACATACTCTGTGTTAAGAGACTTAAGCTGGATCTGACTG
 CACTGGAGTAAGCAAGAAAATTGGAAAACCTTCTGTTGCTGAGGTTGGCAACACATAGATCATATGCTG
 AGGCACAAGTTGGCTTCTTCAACAGGAGATGCACTGTTAAATGAAATTCTGCATGGGATTGCT
 CATAATTACTATGCACTGAGTGAATTGAGGCTCTGTGCTGGTACTATCTCAATTATTATTAG
 TGCTGAGATCTCAAATACTCAATTTCAGGAGTTTCACAAATGACTCTGAGTAGACAGAGTAGTGAGG
 TTCTATTGCCCTCTTAAAGCTTCTGACTGCAATTGCTCATCCAATTCTGCCAAACCTCTGCAGCATCTG
 CTTATTGCCAAAGGGTAGTTCTGCTGAGGCTATTGCTGTTAAAAAATATAAGTAGGATAACTTGTAAA
 ACCTGCTATTTGCTAATCTAGACACCAGTTCTAAATTCTGAAACACTTACTATTTTAAACTT
 AACTCAGTTCTAAACTTTGCTGGAGCACAAAACAATAAAAGTTATCTTATGCTGACTTTAAACTT
 TAGACCACAATTCACTTTTAGTTCTTTACTTAAATCCATCTGCAGTCTCAAATTAAAGTTCTCCAGTAG
 AGATGAGTTGAGGCTGTATATCTTAAATTTCAACTTCCACATATAATTACTAAGATGATTAAGACTTA
 CATTCTGCAAGGTCTGCAAACAAAACAAAATTATAAAACTAGTCCATCCAAGAACAAAGTTGTATAAACAGGT
 TGCTATAAGCTGTGAAATGAAACATTCAATCAAACATTCTTCTATATAACAAATTATTATTTACAAAT
 TTGTTCTGCAATTCTTATGTCACCCCTTAAAATTATTGAGTAATTATTACAGGAAATG
 TTAATGAGATGTATTTCTTATAGAGATAATTCTACAGAAAGCTTGTAGCAGAAATATTTGAGCTATTGAC
 TTGTTAATTAGGAAAATGTATAAAAGATAAACTTAAATTCTCCTCTAAAACACTGAAAAA
 AAAAAAAAAAAAAAAA

4/12/70

FIGURE 42

MAALMRSKDSSCCLLLAAVLMVESSQIGSSRAKLNSIKSSLGGETPGQAANRSAGMYQGLA
FGGSKKGKNLGQAYPCSSDKECEVGRYCHSPHQGSSACMVCRKKRCHRDGMCCPSTRCNN
GICIPVTEISILTPHIPALDGTRHRDRNHGHYSNHDLGWQNLGRPHTKMSHIKGHEGDPLRS
SDCIEGFCCARHFWTKICKPVLHQGEVCTKQRKKGSHGLEIFQRCDCAKGLSCKVWKDATYS
SKARLHVCQKI

Signal peptide:
amino acids 1-25

42/270

FIGURE 43

TCTCAATCTGCTGACCTCGTATCCGCCTGACCTTGTAAATCCACCTACCTGGCCTCCAAA
 GTGTTGGGATTACAGCGTGAGCCACCGCGCCGGCAACATCACGTTTTAAAAATTGATT
 TCTTCAAATTCATGGCAAATATTCCTTCCCTTAACCTTATGTAGAATGAGGAAGGA
 TAGCTGCAATTATTTAGTCAGTTTCATTGCATAGTAATATTTCATGTAGTATTTCTAAG
 TTATATTTAGTAATTCAATGTTTAGATTATAGGTTAACATACTTGTGAAAATACTTG
ATGTGTTAAAGCCTGGGAGAAATTCTGATTGTTGAGGATTGTTCTTTATCCCCCT
 TTTAAAGTCATCCGTCTGGCTCAGGATTGGAGAGCTTGCACCACAAAAATGGCAAACA
 TCACCAGCTCCAGATTTGGACCAGTTGAAAGCTCCGAGTTGGCCAGTTTACCAACCACC
 CCAAGTACACACGAGAATAGTACAAGTCACCCACAACACTACTTCTGGGACCTCAAGCC
 CCCAACATCCCAGTCCTCAGTCAGTCATCTGACTTCAAACTCAACCTGAGCCATCCC
 CAGTTCTTAGCCAGTTGAGCCAGCGACAACAGCACCAGAGCCAGGCAGTCAGTGTCTCCT
 CCTGGTTGGAGTCCTTCCCTCAGGAAAATTGAGAATCAACACCTGGAGACAGTCC
 CTCCACTGTGAACAAGCTTGTAGCTTCCCAGCAGCACCATTGAAAATATCTGTGTCTG
 TCCACCAGCCACAGCCAAACACATCAAACCTGCTAACGGCGGATACCCCCAGCTTCTAAG
 ATCCCACTTCTGCACTGGAAATGCCTGGTTCAAGCAGATGTCAGCAGGATTAAATGTGCAGTT
 TGGGCTCTGAAATTGGGTCAAGAACCTCTCTCTGAATTGGATCAGCTCCAAGCAGTG
 AAAATAGTAATCAGATTCCCATCAGCTTGTATTGAAAGTCTTAAGTGAGCCTTGAATACA
 TCTTATCAATGACCACTGCAGTACAGAACTCCACATATAACACTTCCGTATTACCTCCTG
 CAGTCTGACAAGCTCATCACTGAATTCTGCTAGTCCAGTAGCAATGCTTCTCTTATGACC
 AGAGTTCTGTGCATAACAGGATCCCATAACAAAGCCCTGTGAGTTCACTCAGAGTCAGCTCCA
 GGAACCATCATGAATGGACATGGCTGGTGGCGAAGTCAGCAGACACTAGACAGTAAGTATA
 CAGCAAGCTACTTGTCACTGGCTGGTGGCGAACCAAACAGAGGAAGAGGATAGCTCACGTGA
 TGTTGAAAACACCACTGGTCAATGGCTATTGTTAAAAGCAGCCCTTTGCTTTTGT
 TTTTGGACAGGTGTTGGCTGGTGTATTAGAAATGTCTTAAACCACAGCAAGAAGGAGGT
 GGTGGTCTCATATTCTCTGCCCTAATCAGACTGCACCAAGTCAGCAGCATACAGTATGCAT
 TTTAAAGATGCTTGGCCAGGCGGGGTGGCTGATGCCATAATCCAGTGCTTGGGGGCC
 AAGGCAGGAGATTGCCAAGCTCAGGAGTTGAGACCAACCTGGCAACATGGTAAACTC
 TGTCTCTACTAAAATCAGAAAAACTAGCCGGTGTGGTGGCGCGTGCCTGTAATCCCAG
 CTACTTGGGAGGCTGAGGCACAAGAATCGCTTGAGCCAGCTTGGCTACAAAGTGAGACTCC
 GTCTGAAAAGA

43/1270

FIGURE 44

MCFKALGRNSVLLRICSFIPLLKSSVLGGSGFGEIAPPKMANITSSQILDQLKAPSLGQFTTT
PSTQQNSTSHPTTTSWDLKPPTSQSSVLSHLDFKSQPEPSPVLSQLSQRQQHQSQAVTVPP
PGLESFPSQAKLRESTPGDSPSTVNKLQLPSTTIENISVSVHQPKHIKLAKRRIPPASK
IPASAVEMPGSADVTGLNVQFGALEFGSEPSLSEFGSAPSSENSNQIPISLYSKSLSEPLNT
SLSMTSAVQNSTYTTSVITCSLTSSSLNSASPAMSSSYDQSSVHNRIPYQSPVSSSESAP
GTIMNGHGGGRSQTLDSKYSSKLLSWLVPTKQRKRIAHVWMWKTPTVGQWLIR

Signal peptide:
amino acids 1-24

FIGURE 45

GCCGAGTGGGACAAAGCCTGGGCTGGCGGGGCCATGGCGCTGCCATCCGAATCTGCT
 TTGGAAACTTGTGTTCTGAGAGCTGCTGTCTCCTCTGCACTCAGCGGTGGAGGAGACGG
 ACGCGGGCTGTACACCTGCAACCTGCAACCATCACTACTGCACTCAGAGAGCCTGGCC
 GTCCGCCTGGAGGTACCGACGGCCCCCGGCCACCCCGCTACTGGGACGGCGAGAAGGA
 GGTGCTGGGGTGGCGCGGGCGCACCCCGCTCTGACCTGCTGAACCGCGGGCACGTGT
 GGACCGACCGGACGTGGAGGAGGCTAACAGGTGGTCACTGGGACCGGACGCCGGGG
 GTCCCGCACGACCGCGGGCGCTGTTGACCTCTACCGCTGGCGAGCGCCGCGCCTA
 CGGGCCCCCTTTCTGCGCGACCGCGTGTGTTGCGCGGATGCCCTTGAGCGCGGTGACT
 TCTCACTGCGTATCGAGCCGTGGAGGTGGCGACGAGGGCACCTACTCCTGCCACCTGAC
 CACCAATTACTGTGGCTGCAAGAACGGCGTCTTCACCTGACGGTCGCCAACCCACGC
 GGAGCCGCCCCCCCAGGGCTCTCCGGCAACGGCTCAGCCACAGCGGCCCCAGGGCCAG
 ACCCCACACTGGCGCGGGCCAAACGTATCAATGTCATGTCATGTCGGAGAGGCCAC
 TTCTTCAGCAGCTGGGTAAGTGTGGCTGGCACGCTGCTCTCATCTGCTACTGGTAC
 TGTCCTCTGGCGCCCGCAGCGCCGGAGGCTACGAATACTCGGACAGAAGTCGGAA
 AGTCAAAGGGGAAAGGATTTAACTGGGGAGITCGCTGTGGCTCAGGGGACAGATGCTT
 TACAGGAGTGGGACATCCAGTAGATTACAAAAAACATCTGAAAGGAGAGGGCGGAGCT
 GGCCCACAGCCCCCTGCCAGTAACATGCCAGAACAAAGGGTCCGGAAAGGAGAACT
 GCAAATAGGGAGGCCCTGGCTCTGGCTGGCCAGCAGCTGCACCTCTCTGTCTGTGTC
 CTCGGGCATCTCTGATGTCCTGGGGCTCACCCCCCTTCAGCGGCTGGTCCGCTTCC
 GGAATTGGCTGGCGTATGAGGGCCCTCCACACCCCTCCCCAGGGCTTGGTGGC
 AGCATAGCCCCACCCCTGGGCTTGTCAAGGGTGGCCCTGCCACCCCTGGCACACC
 AAAATCCCAGTGGCCATCATGCCCTCAGACCCCTCTGGCTCTGCCGCTGGGGCCTG
 AAGACATTCTGGAGGACACTCCCACATCAGAACCTGGCAGCCCCAAACTGGGTCA
 GGGCAGGAGTCCCACTCCTCCAGGGCTCTGCTCGTCCGGGCTGGAGATGTTCTGGAGGA
 GGACACTCCCATCAGAACCTGGCAGCCTGAAAGTTGGGCTAGCCTGGCAGGAGTCCACT
 CCTCCTGGGTGCTGCCACCAAGAGCTCCCCCACCTGTAACCCATGTGGACTCCAG
 GCACCATCTGTTCTCCCCAGGGACCTGACTGACTTGAATGCCAGCCCTGCTCCCTGTGTTG
 CTTGGGCCACCTGGGCTGACCCCCCTGCCCTTCTGCCCCATCCCTACCCCTAGCCTTG
 CTCTCAGCCACCTTGATAGTCACTGGCTCCCTGTGACTTCTGACCCCTGACACCCCTCC
 GGACTCTGCTGGGCTGGAGTCAAGGGCTGGGCTACATTGGCTCTGTACTGGCTGAGGA
 CAGGGGAGGGAGTGAAGTTGGTTGGGCTGTGTTGCCACTCTCAGCACCCACATT
 GCATCTGCTGGTGGACCTGCCACCATACAATAAGTCCCCATCTGATTAAAAAAA
 AAAAA

FIGURE 46

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60618
<subunit 1 of 1, 341 aa, 1 stop
<MW: 38070, pI: 6.88, NX(S/T): 1
MALPSRILLWKLVLQSSAVLLHSAVEETDAGLYTCNLHHHYCHLYESLAVRLEVTDGPPAT
PAYWDGEKEVILAVARGAPALLTCVNRGHVWTDRHVEEAQQVVHWRQPPGVPHDRADRLLDL
YASGERRAYGPLFLRDRVAVGADAERGDFSLRIEPLEVADEGTYSCHLHHHYCGLHERRVF
HTLVAEPPHAEPPPRGSPGNSSHSGAPGPDTLARGHNVINVIVPESRAHFFQQQLGYVLATL
LLFILLLVTVLLAARRRRGGYEYSQKSGKSKGDVNLAFAVAAGDQMLYRSEDIQLDYKN
NILKERAELAHSPPLPAKYIDLKGFRKENCK
```

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 237-262

N-glycosylation site.

amino acids 205-208

Cell attachment sequence.

amino acids 151-154

Coproporphyrinogen III oxidase proteins.

amino acids 115-140

FIGURE 47

CGCCGGAGGCAGCGGCGCGTGGCGCAGCGGCGACATGGCGTTCTCAGAGGACGACTTT
 CAGCACAGTTCAAACTCCACCTACGGAACCACAAGCAGCAGTCTCGAGCTGACCAGGAGGC
 ACTGCTTGAGAAGCTGCTGGACCGCCCCCTGGCTGCAGAGGCCAGGACCCTTCT
 GTGGCACATACATCTTCAGCTGGCATTGGCAGTCTACTGCCATGGAACTTCTTT
 ATCACTGCGAACGGAGTACTGGATGTTCAAACTCCGCAACTCCTCCAGCCCAGCACCGGGGGA
 GGACCCCTGAGGGCTCAGACATCCTGAACTACTTGGAGGCTACCTTGGCTGCCTCCACCG
 TGCCCTCCATGCTGTGCTGGCCAACTCCTGCTGTCAACAGGGTTGCAGTCCACATC
 CGTGCCTGGCCACTGACGGTCATCTGGCATCTCATGGTGATAACTGCACGGTGAA
 GGTGGACACTTCCCTGGACCCGTTGGCTTGGTACCATGCTGATGGTGATCC
 TCAGCGGTGCCCTTCACTGTCTTCAGCAGCAGCATCTACGGCATGACGGCTCCTTCCATAG
 AGGAACTCCCAAGCACTGATGAGGAGGACATGGCGGGACGGTCAGCGCCGTGGCCTC
 ATTGGTGGACTGGCTGATCCAGTGATGTGAGGAACAGCGCCTTCTCCTGACGG
 CCACCCATCTCCTCGTCTGCATGGACTCTACCTGCTGTCAGGCTGGAGTATGCC
 AGGTACTACATGAGGCTGTTGCGGCCATGTTCTGGTGAAGAGGAGCTTCCCCA
 GGACTCCCTCAGTGCCTTCGGTGGCTCCAGATTGATTCCACACACCCCTCTCC
 GCCCCATCTGAAGAAGACGCCAGCCTGGCTCTGTCACCTACGTCTTCATACC
 AGCCTCATCTACCCGCCGCTGCACCAACATCGACTCCCTCAACAAGGGCTGGGCTCACT
 GTGGACCACCAAGTTTCATCCCCCTCACTACCTCCCTGTACAACTTTGCTGACCTAT
 GTGGCCGGCAGCTCACCGCTGGATCCAGGTGCCAGGGCCAAACAGCAAGGCGTCCAGGG
 TTCGGCTCTCCGGACCTGCCATCCCCCTCTCGTGTCTGTAACTACCAGCCCCGCGT
 CCACCTGAAGACTGTGGTCTCCAGTCCAGTGTGACCCGACTCTCAGCTCCGTG
 GGCTCAGCAAGGCTACCTCAGCACCTGGCCCTCTACGGGCTAAGATTGTGCCAGG
 GAGCTGGTGAAGGACAGGGAGTGGTATGTCTTTATGTGTGTTGGCTTAACACTGG
 CTCAGCCTGCTCACCCCTGGTGCACCTCATCTAGAAGGAGGACACAAGGACATTGGT
 CTTCAGAGCCTTGAAGATGAGAAGAGAGTGCAGGAGGGCTGGGGCATGGAGGAAGGCC
 TAAAGTTCACTGGGACAGAGAGCAGAGCACACTCGGCCTCATCCCCCAAGATGCCA
 GTGAGGCCAGCCATGGCCATTCCGTCAAGGCAGATATTCCAGTCATATTAACAGAACACT
 CCTGAGACAGTTGAAGAAGAAATAGCACAAAATCAGGGTACTCCCTCACAGCTGATGGTTA
 ACATTCCACCTTCTTCTAGCCTTCAAGAGATGCTGCCAGTGTTGCCCTAGAGTTATTACA
 AAGCCAGTGCCAAAACCCAGCCATGGCTTTCAGCAACCTCCCAGCTGGCTATTCCAGCT
 GACAGCGAGATGCAAGCAAATGCTCAGCTCTCCTACCCCTGAAGGGGTCTCCCTGGAAATGGA
 AGTCCCTGGCATGGTCAGCTCAGGCCAAGACTCAAGTGTGACAGACCCCTGTGTTCT
 GCGGGTGAACAACTGCCACTAACAGACTGGAAAACCCAGAAAGATGGGCTTCCATGAAT
 GCTTCATTCCAGAGGACCAAGGGCCTCCCTGTGCAAGGGATCAAGCATGTCGGCCTGG
 TTTCAAAAAAGAGGATCCTCATGACCTGGTCTATGGCCTGGTCAAGATGAGGTC
 TTTCAGTGTCTGTTACAACATGTCAAAGCCATTGGTTCAAGGGCTAATAAATACTTGC
 GTATTCAAAA

471270

FIGURE 48

MAVVSEDDFQHSSNSTYGTSSSLRADQEALLEKLLDRPPPLQRPEDRFCGTYIIFDSLGI
GSLLPWNNFFITAKEWWMFKLRNSSSPATGEDPEGSDILNYFESYLAVASTVPSMLCLVANFL
LVNRVAVHIRVLASLTVILAIFMVITALVKVDTSSWTRGFFAVTIVCMVILSGASTVFSSSI
YGMTGSFPMRNSQALISGGAMGGTVSAVASLVDLAASSDVRNSALAFFLTATIFLVLCMGLY
LLLTSRLEYARYYMRPVLAAHVFSGEELPQDSLSAPSVASRFIDSHTPPLRPILKKTASLGF
CVTYVFFITSЛИYPAVCTNIESLNKGSGSLWTTKFFIPLTTFLLYNFADLCGRQLTAWIQVP
GPNSKALPGFVLLRTCLIPLFVLCNYQPRVHLKTVVFQSDVYPALLSLLGLSNGYLSTLAL
LYGPKIVPRELAEATGVVMSFYVCLGLTLGSACSTLLVHLI

Transmembrane domain:

amino acids 50-74 (type II), 105-127, 135-153, 163-183, 228-252,
305-330, 448-472

48/270

FIGURE 49

GACAGTGGAGGGCAGTGGAGAGGACCGCGCTGTCCCTGTCACCAAGAGCTGGAGACACCA
 TCTCCCACCGAGAGTCATGCCCATGGCCCTGCACCTCCTCGTCCTCGTCCCCATCCTCC
 TCAGCCTGGTGGCCTCCAGGACTGGAAGGCTGAACGCCAAGACCCCTCGAGAAATGC
 ATGCAGGATCCTGACTATGAGCAGCTGCTCAAGGTGGTGAACCTGGGGCTCAATGGACCCT
 GAAGCCCCAGAGGGTATTGGTGGCCTGGTGTGGCCGGCTGGTGGCCCAAGGTGC
 TCAGCGATGCTGGACACAAGGTACCATCCTGGAGGGCAGATAACAGGATCGGGGCCGCATC
 TTCACCTACCGGGACCAGAACACGGGCTGGATTGGGAGCTGGGAGCCATGCCATGCCAG
 CTCTCACAGGATCCTCCACAAGCTCTGCCAGGGCCTGGGCTCAACCTGACCAAGTTCACCC
 AGTACGACAAGAACACGTGGACGGAGGTGACGAAGTGAAGCTGCCAACTATGTGGTGGAG
 AAGGTGCCAGAGAACAGCTGGCTACGCCCTGCGTCCCCAGGAAAAGGGCCACTGCCCGAAGA
 CATCTACCAGATGGCTCTCAACCAGGCCCTCAAAGACCTCAAGGCACTGGCTGCAGAAAGG
 CGATGAAGAAGTTGAAAGGACACGCTTGGAATATCTTCTGGGAGGGAACCTGAGC
 CGGGCCGGCCGTGCAGCTCTGGGAGACGTGATGTCCAGGATGGCTTCTTCTATCTCAGCTT
 CGCCGAGGCCCTCCGGGCCACAGCTGCCCTAGCGACAGACTCCAGTACAGCCGATCGTGG
 GTGGCTGGGACCTGCTGCCCGCGCTGCTGAGCTCGTGTCCGGCTTGTGCTGTTGAAC
 GCGCCCGTGGTGGCGATGACCCAGGGACCGACGATGTGACGTGACGATCGAGACCTCTCC
 CCGCGCGGAACTGAAAGGTGCTGAAGGCCGACGTGGTGTGCTGACGGCGAGCGGACCGG
 CGGTGAAGCGCATCACCTCTGCCGCCGTGCCGCCACATGACGGAGGCCTGCGGAGG
 CTGCACTACGTGCCGCCACCAAGGTGTTCTAAGCTTCCGAGGCCCTCTGGCGCGAGGA
 GCACATTGAAGGCCGCACTAAACACCGATCGCCCTCGCATGATTTCTACCGCCG
 CGCGCGAGGCCGCTGCTGGCCTCGTACACGTGGTCGGACGCCGGCAGCGTTGCC
 GGCTTGAGCCGGAAAGAGGGCTTGCCTGGCGCTGACGACGTGGGGCATTCACGGCC
 TGTCGTGCGCACGCTCTGGACGGCACGGCTCGTAAGCGTTGGGGAGGACAGCACA
 GCCAGGGTGGCTTGTGGTACAGCCGCCGCTCTGGCAAACCGAAAAGGATGACTGGACG
 GTCCCTTATGGCCGATCTACTTGGCGAGCACCCGCTACCCGACGGCTGGGTGGA
 GACGGCGTCAAGTCGGCGCTGCCGCCATCAAGATCAACAGCGGAAGGGGCTGCAT
 CGGACACGCCAGCCCCGAGGGCACGCATCTGACATGGAGGGCAGGGCATGTGCATGG
 GTGGCCAGCAGCCCTCGCATGACCTGGCAAAGGAAGAAGGCAGCCACCCCTCAGTCCAAGG
 CCAGTTATCTCTCCAAAACACGACCCACACGAGGACCTCGCATTAAAGTATTCGGAAAAA
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 50

MAPLALHLLVLVPILLSLVASQDWKAERSQDPFEKCMQDPDYEQLLKVVTWGLNRRTLKPQRV
IVVGAGVAGLVAAKVLSDAHKVTILEADNRIGGRIFTYRDQNTGWIGELGAMRMPSSHRL
HKLCQGLGLNLTKFTQYDKNTWTEVHEVKLRNYVVEKVPPEKLYALRPQEKGHSPEDIYQMA
LNQALKDLKALGCRKAMKKFERHTLLEYLLGEGNLSRPAVQLLGDVMSEDGFFYLSFAEALR
AHSCLSDRLQYSRIVGGWDLLPRALLSSLSGLVLLNAPVVAMTQGPHDVHVQIETSPPARNL
KVLKADVVLLTASGPRAVKRITFSPPPLRHMQEALRLHYVPATKVFLSFRRPFWREEHIEGG
HSNTDRPSRMIFYPPPREGALLLASYTWSAAAAFAGLSREEALRLALDDVAALHGPVRQL
WDGTGVVKRWAEDQHSQGGFVQPPALWQTEKDDWTVPYGRIFPAGEHTAYPHGWVETAVKS
ALRAAIKINSRKGPASDTASPEGHASDMEGQGHVHGVAASSPSHDLAKEEGSHPPVQGQLSLQ
NTTHTRTSH

Signal peptide:
amino acids 1-21

50/270

FIGURE 51

CTGACATGGCCGTGACTCGGGACAGCTCAGAGCAGGGCAGAACTGGGGACACTCTGGGCCGGCTTCTG
 CCTGCATGGACGCTCTGAAGGCCACCTGTCTCTGGAGGAACCAAGGCGAGGGAAAGAAGGACAGGGAC
 TCGTGTGGCAGGAAGAACCTCAGACGGGAGGCCCCCATTCACTAGAACGACTGAGAGATGCGGCC
 CTCGCAAGGGTCTGAATTTCCTGCTGCTTCACAAAGATGCTTTTATCTTAACTTTTGTTTCCC
 CACTTCGACCCCGCGTGTGATCTGCATCTGACATTGGAGCTGCCATCTCTGGCTGATCAC
 AGACCTCAACCCGCTTACCTCTTGTACCTGAACAATCAGTCTGTGGAATTGAGGGAGGAGCACG
 GAAGGGGTTTCCCAGAAGAACATAAGCTTACAAGTCTGCTCTCAGATGCCAAGACTATGTATG
 AGGTTTCCAAGAGGACTCGCTGTGCAATGGGCTCTGCTGGGATATAGAAAACCAAACCG
 CCCTACAGATGGCTATCTTACAAACAGGTCTGTGATAGAGCAGAGTACTGGGTTCTGCTTGC
 TAAGGTTATAATCATCACCAAGACCAGTTGTGCCATCTTGTCTAGAATAGGCCAGAGTGGATCA
 TCTCGAATTGGCTTGTACAGTACTTATGGTAGCTGTACCTCTGTATGACACCTTGGGACCAGAA
 GCCATCGTACATATTGTCAACAAGGCTGATATCGCCATGGTGTGACACACCCCAAAGGCATT
 GGTGCTGATAGGGATGTAGAGAAGGGCTTACCCCGAGGCTGAGGTGATCATCCTTATGGACCC
 TTGATGATGACTGAAAGCAAAGGGGAGAAGAGTGGAAATTGAGATCTTATCCTTATGATGCTGAG
 AACCTAGGCAAAGAGCACTCAGAAAACCTGTGCCCTAGCCAGAAGACCTGAGCGTCATCTGCTT
 CACCAAGTGGGACACAGGTGACCCAAAGGAGCCATGATAACCCATCAAATATTGTTCAAATGCTG
 CTGCTTCTCAATATTGTGGAGCATGCTTATGAGCCCTACTCTGTATGTGGCCATATCCTACCTC
 CCTCTGGCTCATATGTGGAGGATTGTACAGGTGTGGTGTACAGCTGTGGAGGCCAGGTGGGATT
 CTTCAAGGGGATATTGGTGTGGCTGACGACATGAAGACTTGTGGCACATTGAGCCACATTGTTCCCG
 TGCTCGACTCTAACAGGATCTACGATAAGGTAACAAATGAGGCCAGACACCTTGAAGAAGTTC
 TTGTTGAAGCTGGCTGTTTCAAGTAAATTCTAACAGGCTTAAAGGATATCATCAGGATGATAGTT
 CTGGGACAAGCTCATCTTCAAAAGGATCCAGGACAGCCTGGGAGGGTTCTGTAAATTGTCACTG
 GAGCTGCCCATGTCCACTTCAGTCATGACATTCTCCGGCAGCAATGGGATGTCAAGGTGTATGAA
 GCTTATGGTCAAACAGAATGACACAGGTGGCTGTACATTACATTACCTGGGACTGGACATCAGGTC
 CGTGGGTGACTCTAACAGGATCTGCAATTACGGTGAAGCTGGAGAGTGTGGCTGACATGAACACTTACAG
 TGAATAATGAAGGAGAGGCTGCAACAGGATCAAACGGTGTAAAGGATACCTGAAGGACCCCTGAG
 AAGACACAGGAAGCCCTGGACAGTGTGCTGGCTTACACAGGAGACATTGGTCGCTGGCTCCGAA
 TGGAACTCTGAAGATCATGACCGTAAAAAGAACATTTCAGCTGGCCAAGGAGAACATTGAC
 CAGAGAAAGATAAAAATATCTACACAGGAGTCAACCAGTGTACAAATTGACACGGGGAGAGC
 TTACGGTCACTGCTTGTGGAGGTGGCTTGTGACACAGATGACTTCCCTCATTTGAGCCAG
 TGGGGTGAAGGGCTTGTGGAGACTGTGCAAAACCAAGGTTAAGGGAGGCCATTAGAAGACT
 TGCAAGAAAATTGGGAAAGAAAGTGGCTTAAACCTTTGAAACAGGTCAAAGCCATTTCCTTCATCCA
 GAGCCATTTCATTGAAAATGGCTTGTGACACCAACATTGAAAGCAAGCGAGGAGAGCTTCCAA
 ATACTTCCGACCCAATTGACAGCCTGTATGACACATCCAGGATTAGGATAAGGTACTTAAGTAC
 TGCCGGCCACTGTGCACTGCTGTGAGAAAATGGTAAATTGACATTTGTTGCTT
 CCTCTTATTGTTAAACTCTGTTAAACTCTAACGGCATAGCTTGTGTTAAGGACATATAAT
 GTGAAACTTAGTCCAAATAATCAATCTGTCTTCCCATCTCGATGTTGCTAATATTAAGCT
 TCAGGGCTACTTTTATCACATGCTGTCTCAAGATCCAGTTATGTTCTGTGCTTCTCATGA
 TTGTTCAACCTTAAACTATTAGTAAACCAACTGCTGAGGCTCAAAGGGACCCCTGTGCTGCTT
 TGTGTTGTGATAAACATAACTGCTAACAGCTCTATGCTTATTTACATCTTACTGTTCAAAC
 GAGATTTTAAATTCTGAAAATCTGTTAAACTCTAACGGTGTGTTCTAGGCACTCCACAAAC
 ACTTAAATTTAGCTTACACTCATGTCATCATATCTATGAGACAAATGTCGATGCTTCTGGT
 AAATTAAATTGTGACTGAAGGAAAAGTTGATCATAACAAACATTCTAAACTCTAGTGTAG
 ATCTGACTTGGAGTATAAAATGGGTCTATGACACATGCTGCAAAAGGAATGCTGTTCTAAAGC
 ATTATTTACAGTAGGAACGGGGAGTAAATCTGCTTCAAGGCTGAGCTGAGCTGGAAGGCTGTGG
 GGGAGGAGTTGACAGTGGGGCCAGTGAACCTTCCAGTAAATGAGCAAGCAAGCACTGA
 CCTGAACGGGAAACAAGATCTACAGGCAAGCAAGATGCCACACAAACAGGTTATTCTGTG
 AACCAACTGATCTCCCCACCCCTGGATTAGAGTCTCTGCTTACCTTACCCACAGATAACAC
 ATGTTCTACTTGTAAAGTCTTAAATAAAACTATTACAGATAAAAAAA

51/270

FIGURE 52

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60775
<subunit 1 of 1, 739 aa, 1 stop
<MW: 82263, pI: 7.55, NX(S/T): 3
MDALKPPCLWRNHERGKKDRDSCGRKNSEPGSPHSLEALRDAAPSQGLNFLLLFTKMLFIFN
FLFSPLPTPALICILTFGAIAIFLWLITRPQPVLPLLDLNNQSVGIEGGARKGVSQKNNDLTS
CCFSDAKTMYEVFQRGLAVSDNGPCLGYRKPNQPYRWLSYKQVSDRAEYLGSCLLHKGYKSS
PDQFVGIFAQNRPWEWIISELACYTYSMVAVPLYDTLGPEAIVHIVNKADIAMVICDTPQKAL
VLIGNVEKGFTPSSLKVIILMDPFDDDLKQRGEKSGIEILSLYDAENLGKEHFRKPVPPSPED
LSVICFTSGTTGDPKGAMITHQNIVSAAAFLKCVEHAYEPTPDVAISYLPAAHMFERIVQ
AVVYSCGARVGFFQGDIRLLADDMKTLKPTLFPAPVPRLLNRIYDKVQNEAKTPLKKFLLKIA
VSSKFKELOKGIIRHDSFWDKLIFAKIQDSLGGGRVRVIVTGAAPMSTSVMTFRAAMGCQVY
EAYGQTECTGGCTFTLPGDWTSGHVGVPACNYVKLEDVADMNYFTVNNEGEVCIKGTNVFK
GYLKDPKETQEAALDSDGWLHTGDIGRWPNGTLKIIDRKKNIFKLAQGEYIAPEKIENTIYNR
SQPVLIQIFVHGESLRSSLGVVVVPDTDVLPFAAKLGVKGSFEELCQNQVVREAILEDLQKI
GKESGLKTFEQVKAIFLHPEPFSIENGLLPTLKAKRGELSKYFRTQIDSPLYEHIQD
```

Important features:**Type II transmembrane domain:**

amino acids 61-80

Putative AMP-binding domain signature.

amino acids 314-325

N-glycosylation site.

amino acids 102-105, 588-591 and 619-622

52/270

FIGURE 53

GGAGGGCGGAGGCCGCGCGAGCCGGCGAGCAGTGAGGGCCCTAGCGGGGCCGAGCGGGG
 CCCGGGGCCCCCTAAGCACTCTGAAGTCATGGGCTGGCCAGGACATTGGTACCCGCCAAT
 CCGGTATGGACGACTGGAAGCCCAGCCCCCTCATCAAGCCCTTGGGCTCGGAAGAACGG
 AGCTGGTACCTACCTGGAAGTATAAACTGACAAACCAGCGGGCCCTGCGGAGATTCTGTCA
 GACAGGGGCCGTGTTTCTGCTGGTACTGTCAATTGCAATATCAAGTTGATCTGGACA
 CTCGGCGACCATCAGTGAAGCCAATGAAGACCCAGAGCCAGAGCAAGACTATGAGGCG
 CTAGGCCGCTGGAGCCCCCACGGCGAGAGGCAGTGGTCCCCGGCGGGCTTGACGTAGA
 GGTGATTCAAGTCGCAGCAAAGTATATGTCAGTGGATGGCACCCACGGTGTGGAGGATG
 AGGGCCGGAGCAGGGCCGGGACATCCATGTCAATTGTCCTCAACCTAGGCCACGGGCCACGTG
 ATGGCAAAACGTGTGTTGACGCTACTCACCTCATGAGGATGAGGCCATGGTGTATTCCCT
 CAACATGGTAGGCCCGCCGAGTGTCACTGCACTGTCAAGGATGAGGGCTCCCTCACC
 TCAAGGACACAGCCAAGGCTCTGCTGAGGAGCCTGGCAGGGCTGGCCCTGCCCCTGGGC
 TGGAGGGACACATGGCCTCTGTTGGACAAAAGGAGGTCTGTCTGGGGAGAAACATTCT
 TAAGTCACCTGCCCTCTTCTGGGGGACCCAGTCTGCTGAAGACAGATGTGCCATTGA
 GCTCAGCAGAAAGAGGCAGAGTGCCTGGCAGACACAGAGCTGAACCGTCGCCCGGGCG
 TTCTGAGCAAAGTTGAGGGCTATGAAAGTGTATGCAAGCTGAAGGACCCCACACCCATCGA
 GTTCAGCCCTGACCCACTCCAGACAACAAGGTCTCAATGTCCTGTCAGTGGCTGTCAATTGCA
 GGAACCGACCCAATTACCTGTACAGGATGCTCGCTCTGCTTCAGGCCAGGGGTGTCT
 CCTCAGATGATAACAGTTTCTTGTGAGGCTACTATGAGGAACCCATGGATGTTGGCACT
 GTTGGTCTGAGGGCATCCAGCATACTCCCCTCAGCATCAAGAATGCCCGCTGTCTCAGC
 ACTACAAGGCCAGCCTACTGCCACTTCAACCTGTTCCGGAGGCCAGTTGCTGTGGTT
 CTGGAAGAGGACCTGGACATTGCTGTGGATTTCAGTTCTGAGCCAATCCATCCACCT
 ACTGGAGGAGGATGACAGCCTGTACTGCATCTCTGCTGGAATGACCAGGGGTATGAACACA
 CGGCTGAGGCCAGCACTACTGTACCGTGTGGAGACCATGCCCTGGCTGGCTGGGTGCTC
 AGGAGGTCTTGTACAAGGAGGAGCTTGAGGCCAAGTGGCTACACGGAAAAGCTCTGGGA
 TTGGGACATGTTGGATGCCGATGCCGATGCCGATGCCGATGCCGATGCCGATGCCG
 TTTCCCGATCTTACCACTTGGCATCGTCGGCTCAACATGAATGCCACTTTCACGAGGCC
 TACTTCAGAAGCACAAGTTCAACACGGTTCCAGGTGTCCAGCTCAGGAATGTTGGACAGTCT
 GAAGAAAGAAGCTATGAAAGTTCACAGGCTGCTCAGTGGCTGAGGCTGAGGTTCTGGACC
 ACAGCAAGAACCTTGTAAAGACTCTTCTGCCAGACACAGAGGCCACACCTACGTGGCC
 TTATTCGAATGGAGAAAGATGACTTCACCACTGGACCCAGCTTGCCAAAGTGGCTTCCA
 TATCTGGGACCTGGATGTGGTGGCAACCATCGGGCTGGGCTGGGATTTTGGAAAGAAGA
 ACCACCTCTGGTGGTGGGCTCCGGCTTCCCCCTACTCAGTGAAGAACGCCACCTCAGTC
 ACCCCAAATTCTCTGGAGGCCACCCCAAGGAGGAGGCCACAGGAGGCCAGAACAGAC
 ATGAGACCTCTCCAGGACCTCTGGGCTGGGACTGTGTAACCCCAAGGCTGGCTAGCCCT
 TCCCTCCATCCTGTAGGATTGAGATGCTGGTAGGGCTGGGCTACCTTGTGTTTAACA
 TGAGACTTAATTACTAACTCAAGGGAGGGTCTCCCTGCTCAACACCCGTTCTGAGTT
 AAAAGTCTATTATTTACTTCTTGTGGAGAAGGGCAGGAGAGTACCTGGGAATCATTAG
 ATCCCTAGCAGCTCATCTGCCCTTGAAATACCCCTCACTTCTCAGGCCCTGGCTCAGAATCTA
 ACCTATTATGACTGTCTGAGGGCCTGAAAACAGGCCGAACCTGGAGGGCTGGATTTC
 TTTTGGGCTGGAAATGCTGCCCTGAGGGTGGGGCTGGCTTCTACTCAGGAAACTGCTGTGCC
 CAACCCATGGACAGGCCAGCTGGGCCACATGCTGACACAGACTCACTCAGAGACCCCTA
 GACACTGGACCAGGCCCTCTCAGCCTCTCTTGTCCAGATTCCAAAGCTGGATAACTT
 GGTCAATTGATTAAAAAAGGAGAAGCCCTCTGGAAAAAAAAAAAAAAAAAAAAAA

FIGURE 54

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA61185
><subunit 1 of 1, 660 aa, 1 stop
><MW: 75220, pI: 6.76, NX(S/T): 0
MDDWKPSPLIKPGARKKRSWYLTWKYKLTNQRALRRFCQTGAVLFLLVTIVNIKLILDTR
RAISEANEDPEPEQDYDEALGRLEPPRRRGSGPDRVLDVEVYSSRSKVVAVDGTTLDEEA
REQRGRIHVIVLNQATGHVMAKRVFDTYSFHEDEAMVLFLNMVAPGRVLICTVKDEGSFHLK
DTAKALLRSLGSQAGPALGWRDTWAFVGRKGGPVFGEKHSKSPALSSWGDPVLLKTDVPLSS
AEEAECHWADTELNRRLRFCSKVEGYGSVCSCDKPTPIEFSPDPPLPDNKVLNVPAVIAGN
RPNLYRMLRSSLQAQGVSPQMITYFIDGYEEPMDVVALFGLRGIQHTPISIKNARVSQHY
KASLTATFNLFPPEAKFAVVLEEDLDIAVDFFSFLSQSIHLLEEDDSLYCISAWNDQGYEHTA
EDPALLYRVETMPGLGVWLRSLYKEELEPKWPTPEKWLWDWDMWMRMPEQRGRRECIIPDVS
RSYHFGIVGLNMNGYFHEAYFKHKFNTVPGVQLRNVDSLKEAYBVEVHRLLSEAEVLDHS
KNPCEDSFLPDTEGHTYVAFIRMEKDDDFTTWTQLAKCLHIWDLDRGNHRGLWRLFRKKNH
FLVVGVPASPYSVKKPPSVTPIFLEPPPKEEGAPGAPEQT
```

Important features of the protein:

Transmembrane domain:

amino acids 38-55

Homologous region to Mouse GNT1

amino acids 229-660

FIGURE 55

CGGACCGCTGGCTGCTGGAGGCCAAAGAACCTGAAAGCCCCACTCTTGAACCACAC
 CTGTTAAAGAACCTAAGCACCAATTAAAGGAACTGGATTTCATCTCATTAGCCCTGCTGTCTGGCTATGTTGGTGGGGATGTTA
 AAGGGGGCAGAATGGATTTCATCTCATTAGCCCTGCTGTCTGGCTATGTTGGTGGGGATGTTA
 CGTGGCCGAATCATCCCTGGCTTTAATTCTCAGAGGAACGACTGAAGCTGGTGAATGTTGG
 GTGCTGGCCTCTGTGGAACTGCTCTGGCAGTCATGTGCTGAAGGAGTACATGCCCTTATGAA
 GATATTCTTGAGGGAAACACCAAGCAACTGAAACACATAATGTGATTGCATCAGACAAGCAGC
 AGAAAAATCAGTTGTCATGAACATGAGCACGCCAGCACCACACAGCTGCATGCCTATATTGGTG
 TTTCCCTCGTTCTGGGCTTCGTTTCATGTTGCTGGTGGACCAGATTGTAACCTCCATGTGATTCT
 ACTGACGATCCAGAAGCAGCAAGGCTAACCAATTCAAATCACCACAGCCTGGTCTGGTGTCCA
 TGCTGAGCTGATGGTGTCTTGGAGCAGCAGCATCTACTTACAGACAGCAGTGTCCAGTTAATTG
 TGTGTTGGAATCATGTCATCAAAAGGACAGCTGTTGGACTGGTTCTTCTGATGCATGCT
 GGCTTAGAGCGGAATCGAATCAGAAAGCATTGCTGTTGCATTGAGCAGCACCAGTTATGTCAT
 GGTGACATACTTAGGACTGAGTAAGAGCAGTAAAGAAGCCCTTCAGAGGTGAACGCCACGGGAGTGG
 CCATGCTTTCTGCGGGACATTCTTATGTTGCCACAGTACATGTCCTCCCTGAGGTGGCGGA
 ATAGGGCACGCCAACAGCCCAGTGCACGGGAGGGAGAGGCTCAGCCCTGGAAGTGGCAGCCCT
 GGTCTGGGTTGCGCTCATCCCTCATCTGTCAGTAGGACACCAGCATTAAATGTTCAAGGTCCAGC
 CTTGGTCCAGGGCCGTTGCGCATCAGTGAAGAACAGCCGGCAGTGACAGCTACTCACTCCCTCAGTC
 TCTGTCACCTTGCGCATCTACATGTTACGTTAGAGCTCAGAGGGAGGTGAGGTTAAACCTG
 ACTAATGAAAAGCTTTAGAGTAAACACATTACGTTGCAAGTAGTACATAGACATCCCATTGTT
 TATCTTTAAAGGCCATTGACATTTCGTTTAATTTCTTAACCCATTCTCAGGGAAAGATG
 GAATTTAGTTAAGGAAAGAGGAGAACTCATACTCAACATGAAATAGTGATTATGAAAATACAGT
 GTTCTGTAATTAAAGCTATGTCCTTCTCTAGTTAGAGGCTCTGCTACTTTATCATTGATT
 AACATGGTCCACCATGTAAGACTGGTGTAGCATCTATGCCACATGCGTTGATGGAAGGTCATA
 GCACCCACTCATTAGATGCTAAAGGTGATTCTAGTTAATCTGGGATTAGGGTCAAGAAAATGATAGC
 AAGACATTGAAAGCTCTTATACTCAAAAGAGATATCCATTGAAAGGGATGTCAGAGGGATT
 TAAACAGCTTGGCACGTCCTCTGAATCCAGCCTGCAATTCAATGGAGCAGGAGG
 TGGAGGGACTCTAAAGAGGTGACTGGTATTTGAGCATCTCTGCAAGTTCTCTTGCAGAAAT
 ACCTGTCACCTAGAGAGGAGCCAAGTCTAGTAGTTAGCTAGGCTTCTAGGCTTCTTCAGAA
 CAGTCAGATCACAAAGTCTTGGAAATTAAAGGATATTAAATTAAAGTGAATTGGATGGTTAT
 TGATATCTTGAGCTTTTAAAGACTACCAAAATGATGGTTGCTTTTTTTGTT
 TTTTTTTAAATATTCTTACAGATCAGCAATCCCTAGGGACCTAAATACTAGGTAGCTT
 GGCACACTGTGCTTCTACATAACCACCTGAGCAAGTGGATCATAATGAGAAGTGGTGCCTA
 TTGATTAAAGCTTATGGAAATCATGTCCTGCTCTGCTCTTCTGCTTTCTAACTTT
 TCCCTCTAGCCTCTCGCCAAATTGCTCTACTGCTGGCTTAATATTGTTGTTGATGAATT
 CTTATCAGGACAACCAACTCTGAACTGTAATAATGAAGATAATATTCTTATCCCCT
 CAAAGAAAATTACCTTGTGTCAAATGCCGTTGTTGAGCCCTTAAATACCACCTCTCATGTGTA
 ATTGACACAACTAATCTGTTAATTAAACAAATTGAGATAGCAAAAGTGTAAACAGACTAGGATA
 ATTATTTCTATTTGCAAAATTGTAACCCCTGCTTGTCAAAATAAGTGTATAATTGTT
 TATTAATTATTTACTTTCTATACCAATTCAAAACACATTACACTAAGGGGAACCAAGACTAGTT
 TCTTCAGGGCAGTGGACGCTAGTAGTTGTAACAGCTTCTATGACGCATAAGCTAGCATGCCTATG
 ATTATTTCTCTCATGAATTGTCAGGGATCAGCAGCTGTGGAAATAAGCTTGTGAGGCCCTGCT
 GCCACAGTGAGGAAGTAGCACAAATAGGATCAGTTGAGTGTAGTCATTGGCAACAAATTGCA
 ATTACTACCAAGAGAAGGTAGTATGAAAGTCCAAATGACTTCTGATTGGATGTTAACAGCT
 GACTGGTGTGAGACTTGAGGTTCTAGTCTGCTTAAACTATGTTGCTAGATTCTCTGGA
 AACTGACTTTGTCATAAAATAGCAGATTGAGTGTCAAAAAAA

FIGURE 56

MDDFISISSLAMLVGGYVAGIIPLAVNFSEERLKLVTVLGAGLLCGTALAVIVPEGVHAL
YEDILEGKHHQASETHNVIASDKAAEKSVVHEHEHSHDHTQLHAYIGVSLVLGFVFMLLVHQ
IGNSHVHSTDDPEAARSSNSKITTLGLVVHAAADGVALGAAASTSQTSVQLIVFVAIMLHK
APAAFGFLVSFLMHAGLERNRIRKHLVFALAAPVMSMVTYLGLSKSSKEALSEVNATGVAML
FSAGTFLYVATVHVLPEVGGIGHSHKPDATGGRGLSRLEVAALVLGCLIPLIILSVGHQH

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 37-56, 106-122, 211-230, 240-260, 288-304

FIGURE 57

GCTCGAGGCCGGCGGCGGGAGAGCGACCCGGCGGCCTCGTAGCGGGGCCCCGGATCCC
CGAGTGGCGCCGGAGCCTCGAAAAGAGATTCTCAGCGCTGATTGAGATGATGGGCTTGG
GAAACGGGCCTCGCAGCATGAAGTCGCCGCCCCCTGTGCTGGCCGCCCCGGCTGCATC
ATCGTCTGGGCTTCAACTACTGGATTGCGAGCTCCCGAGCGTGGACCTCCAGACACGGAT
CATGGAGCTGGAAGGCAGGGTCCGCAGGGCGGCTGCAGAGAGAGGCGCCGTGGAGCTGAAGA
AGAACGAGTTCCAGGGAGAGCTGGAGAACGAGCGGGAGCAGCTTGACAAAATCCAGTCCAGC
CACAACTCCAGCTGGAGAGCGTCAACAAGCTGTACCAGGACGAAAAGGCGGTTTGGTGA
TAACATCACACAGGTGAGAGGCTCATCGAGTGCTGCAAGACCAGTTAAAGACCCCTGCAGA
GGAATTACGGCAGGCTGCAGCAGGATGCTCCAGTTTCAAAGAACCAACCTGGAG
AGGAAGTTCTCCTACGACCTGAGCCAGTCATCAATCAGATGAAGGGAGGTGAAGGAACAGTG
TGAGGAGCGAATAGAAGAGGTACCAAAAAAGGGGAATGAAGCTGTAGCTTCCAGAGACCTGA
GTGAAAACAACGACCAGAGACAGCAGCTCAAGCCCTCAGTGAGCCTCAGGCCAGGCTGCAG
GCAGCAGGCCTGCCACACACAGAGGTGCCACAAGGGAAACGTGCTTGGTAACAGCAA
GTCCCAGACACCAGCCCCAGTTCCAAGTGGTTTGGATTCAAAGAGACAAGTTGAGAAAG
AGGAAACCAATGAGATCCAGGTGGTAATGAGGAGCTCAGAGGACAGGCTGCCAGGAG
CCAGGCCGGAGCAGGTGGAGACAGACCTGTAGGTGGAAGAGGCTTGGGGAGCCGG
AGAACTGGGCCAGACCCACAGGTGCAGGCTGCCCTGTCACTGAGGCCAGGAAAATCCAGAGA
TGGAGGGCCCTGAGCGAGACCAGCTTGTCACTCCCGACGGACAGGAGGAGCAGGAAGCT
GCCGGGGAGGGAGAAACAGCAGAAACTGAGAGGAGAAGATGACTACAACATGGATGAAAA
TGAAGCAGAATCTGAGACAGACAAGCAAGCAGCCCTGGCAGGGAAATGACAGAAACATAGATG
TTTTAAATGTTGAAGATCAGAAAAGAGACACCATAAATTACTTGATCAGCGTAAAAGCGG
AATCATAACTTGAATTGAACTGGAATCACATATTCAACAGGGCCGAAGAGATGACTA
TAAAATGTTCATGAGGGACTGAATACTGAAAATGTACTAAATAAAATGTACATCTGA

57/270

FIGURE 58

MMGLGNRSMKSPPLVLAALVACIIVLGFNYWIASSRSVDLQTRIMELEGRVRRAAAERGA
VELKKNEFQGELEKQREQLDKIQSSHNFQLESVNKLHQDEKAVLVNNITTGERLIRVLQDQL
KTLQRNYGRLQQDVLQFQKNQTNLERKFSDLSQCINQMKEVKEQCEERIEEVTKKGNEAVA
SRDLSENNNDQRQQLQALSEPQPRLQAAGLPHTEPQGKGNVLGNSKSQTPAPSSEVVLDISK
QVEKEETNEIQVVNEEPQRDRLPQEPMGREQVVEDRPVGGRGFGGAGELGQTPQVQAALSVSQ
ENPEMEGPERDQLVIPDGQEEEQEAAGEGRNQQKLRGEDDYNMDENEAESETDKQAALAGND
RNIDVFNVEDQKRDTINLLDQREKRNHTL

Signal peptide:
amino acids 1-29

FIGURE 59

GGATGCAGAAACCTCACTGTTGCTTCCCTGGCTGGCTGCTGCTTCCTACGCTGGCATGGCCCTTCA
 CCAGTGCTTCCTGCTCACCGTTGGAGCTCACCAACCATAGCAGCTGCCAAGAGCCCCAGGCCCTGGTCCC
 TGCATGGGGAGCAAGGAAACCTGGGCTGGATGGCTCCGATTTCGGGGTTGTGGTCTGA
 TAGATGCTCTGGATTGACTTCGCCAGGCCCAGCATTCACACGTGCCAGAGAGCTCTGTCTCCCTACCCCT
 TCCCTGGCAAACTAACGCTCTGGAGATTCGGAGCTGGAGATTCGGGCTCACCGATCTCCCTACCCCT
 TTGACCCCTCACACCAACATGCAAGGCCCTCACCACTGGCTACTGCCACCTTATTGATGCTG
 GTAGTAACCTGCCAGCCACGCCATAGTGAAGACAATCTCATTAAGCAGCTCACAGTCAGGAAGGGCTGTAG
 TCTCATGGGAGATGATACTGGAAAGCTTCCCTGGTGTCTTCCCAAAGCTTCTTCCATCTTCA
 ATGCAAGAGACTAACGACACTGGAAATGGCATCTGGACATGGACATGGGACAGTGGTGAATGGG
 ACGTGCTGATTGCTCACTCTGGGTGTGACACTGTGCCACAAAGCATGGCCCTACCACCTGAAATGGCCA
 AGAAACTTAGCAGATGGACAGGAGTGATCAGGACTGTGGAGSGCTGGAGAATGACACACTGCTGGTAGTGG
 CTGGGACCATGGATGACCAAAATGGAGACCATGGAGGGACAGTGAAGCTGGAGGGCTCAGCTGCTCTTTC
 TGATAGGCCAACAGCTTCCAGCACCCACCCAGAGGACAGGAGCTGATTCCTCAAGTTAGCCTTGTGSC
 CCACGCTGGCCCTGCTGGCCATCCCATTGGGAATATGGGAACTGGGAGGTGAAGCTGAGCTATTCTCAG
 GGGGTGAGGACTCCAGGCCACTCTGGTCTAGCCAAAGCTCAGTCTCCATCTCAATGCTCAGCAGGTGT
 CCCGATTCTTCATCACTCACGCTGACTCAGGACCTTCAAGGAGCTCATCAGCTGCAAAACCTCT
 TCTCCAAGGCCCTGCTGACTACAGTGGCTCTCAGGCCAACGGGGCTGAGGCCACACTGCCACTGTGA
 TTGCTGAGCTGAGCAGTCTGGGGGACTCGGGGATGTGATCGAGTCTGGCTCGTTCTCTGGTCC
 GCATGGGGGGGACTGCTCTGGCTCTGGCTCTGGCTTATCTGCTGCTGGCATCTCAGTGGCAATATGCC
 CAGGCTTCCATTCTGCCCTCACTCTGACACCTGTGGCCCTGGGCTTGGGCTCATAGGGTATGCTGGAC
 TCCCTGGAACTATTGAGCTGAAGCTAGATCTAGTCTCTAGGGCTGTGGCTGAGCTCATTCTCCCT
 TTCTGTTGAAAGCTGGCTGGCTGGGCTCAAGAGGGCCCTGGCAACCCCTTTCCTGGCCCGTCC
 TGTACTCTCTGCTTCTGGCTGTGTTCTCTGATAGTTGTGACTGTGGCCAGGCCACCCCT
 TCCTTTGGGCTCACTCATCTGCTCTGGTGTCCAGCTTCACTGGAGGGCAGCTGCTTCACTAACGCTAC
 TCACATGCCCGCTTCACTCAGGCCAACAAACCCCCAACGGCACATGGTGCATATGCCCTGAGGCTTG
 GAATTGGGTTGCTTTATGATCAACAGCTGCTGGCTTCTGCTTATGAGGACACCTGTTGGCCACT
 CCTCTCCCTGGCTGAGTCTCTGGCATCCATGGGGGGCTGGCTGAGGCCAAAGATTATGGTATGGAGCTGTG
 CGGGCCTGGCTGGGACTGGCTGTTAGCTGGCTGGCTGGCTTCGGCGCTATGGTATCTCAAGAGGCCAGGCC
 CCATGCTCTTGTGCTGGCTGTGAGCTGCCCTAATGGCATGGGACTTGGGACTCTGGGACTTGGGACTGGGG
 CAGATGAGGCTCCCGGCTCTGGGCTCTGGGACTCTGGGACTCTGGGACTCTGGGACTGGGCTGGCTGAGGGC
 TGGCTGCTTCAAGGCTCGGGCTGCTGCTGGAGGCTGTGAGCTGCTGGTGAAGGCTGGGAGCGCTCAA
 GGACCCAGGACTGCTCACTCCCTCTCAGGCCAACCTTCAAGCTACTGGATTATGGTCCCTCAA
 TCTACCCGACACATECAGGAGGAGTCTGGGGGGCTTAGAGAGGCCAAATCTAGGGTCCCTGACTGTGGCTG
 CTTATCAGTTGGGAGTGTCTACTCAGCTGCTATGGTACAGCCCTCACCCCTGGCTTCCCACTCTGCTGT
 TGCATGCGAGGCGCATCAGCCTTGTGCTCTGCTGAGAGCTTCCCTCTACATCTGCTTGCTG
 CTGGGATACCGTCAACCCCTGGCTCTGGGACTCTGGGACTCTGGGACTCTGGGCTTGGGCCATGGCCA
 CACAGACCTTCACTCCACAGGCCAACAGGCCCTGCTTCCAGGCCATCTGGGACTCTGGGCTGGGATTC
 CAGAGGGCATGGCTCCCTGACTGGCTGGCTGCTGGCTTCTGCTAGTGGGAGCCAACACCTTGGCTCCACCTCT
 TTGCACTGGGACTCTGGCTCTGGGACTCTGGCTGGGCTTCTGCTGAGAGTCAAGGGCTGGAGAGACAGCAGC
 CCCCAGGGAAATGAAGCTGCAAGGAGCTGAGGCCAACGGAGGAGGCCACTGAGGGAGATGGAGATGGCTCCGG
 ATGGCCCTCAGCACTTCTATGCAAGCAGCTGCTGAGCTGGGCCCTCAAGTACCTCTTATCTTGGTATTCAGATT
 TGGCTGTCCTGGGACTCTGGGACTCTGGGACTCTGGGACTCTGGGACTCTGGGACTCTGGGACTCTGGGACT
 TTGAGGGCTGGGCTTCTGGGACTCTGGGACTCTGGGACTCTGGGACTCTGGGACTCTGGGACTCTGGGACT
 CTGAGCTCTGGTCAAGGAGCTTCTGGGACTCTGGGACTCTGGGACTCTGGGACTCTGGGACTCTGGGACT
 ACAGAGACTGCTGGAGAACAGTGTAGCTGGCTGGCTGACAGGACTCTGGGACTCTGGGACTCTGGGACT
 TCTTACTATCATGCAAGGCCAGGGGGCGCTGACACTGAGACTTCTAGGACTTCTAGGACTTCTAGGACT
 TGATCCCTAACTCTGATTTGGATGCTCTGAGGGACAAGGGGGGGCTCTGGAAAGTGGAAATAAAATAGGCCGG
 GCGGGGTGACTTGACCTATAATCCAGACTTGGGAGGAGGGTGGGAGGATGCTTGGTCCAGGAGTTCA
 AGACCAGCCTGTGAAACATAACAAGACCCCCGTTACTATTAAAAAGTGTAAATAAAATGATAATAT

59/270

FIGURE 60

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62809
<subunit 1 of 1, 1089 aa, 1 stop
<MW: 118699, pI: 8.49, NX(S/T): 2
MQKASVLLFLAWCFLFYAGIALFTSGFLTRLELTNHSSCQEPGPGLPWGSQGKPGACW
MASRFSRVVVLVIDALRFDAQPQHSHVPREPPVSLPFLGKLSSLQRILEIQPHHARLYRSQ
VDPPPTTMQRALKALTGSPLTFIDAGSNFASHAIVEDNLKQLTSAGRRVVFMDGEWDVLIANFLGVDHCGHKHGPHPEM
PGAFSKAFFPSFNVRDLDLTVNDGILEHLYPTMDSGEWDVLIANFLGVDHCGHKHGPHPEM
AKLSQLMDQVIQGLVERLENDTLLVVAGDHGMTTNGDHGGSELEVSAALFLYSPTAVFPST
PPEEPEVIPQVSLVPTLAIIIGLPPIPGNIGEVMAELFGSGGEDSQPHSSALAQAQASALHLNAQ
QVSRLFLHTYSAATQDLQAKELHQQLQNLFSKASADYQWLQSPKGAEATLPTVIAELQQFLRG
ARAMCIESWARFSLVRMAGGTALLAASCFCICLLASQWAISPGFFCPLLLTPVAWGLVGAIA
YAGLLGTIELKLDLVLLGAVAASVSSFLPFLWKAWAGWGSKRPLATLFPPIPGPVLLLLLFRLA
VFVSDSFVVAEARATPFLIGSFILLLVVQQLHWEGQQLLPPKLLTMPRLCTSATTNPPRHNGAY
ALRLGIGLLLCTRLAGLFHRCPEETPVCHSSPWLSPLASMVGRAKNLWYGACVAALVALLA
AVRLWLRRYGNLKSPPEPMFLVRWGLPLMALGTAAYWALASGADEAPPRLRVLSGASMVLP
RAVAGLAASGLALLWKPVTVLVKAGAGAPRTRTVLTPFSGPPTSQADLDYVVPQIYRHMQE
EFRGRLERTKSQGPLTVAAAYQLGSVYSAAMVTALTLLAFPLLLLHAERISLVFLFLQSFL
LLHLLAAGIPVTTPGPFTVWPQAVSAWLMATQTFYSTGHQPVPAIHWHAAFVGFPSEGHS
CTWLPALLVGANTFASHLLFAVGCPLLLWPFLCESQGLRKRQQPPGNEADARVRPEEEEEP
LMEMRLRDAPQHFYAAALLQLGLKYLFI LGIQILACALAASILRRHLMVWKVFAPKFIFEAVG
FIVSSVGLLLGIALVMRVDGA VSSWFRQLFLAQQR
```

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 317-341, 451-470, 481-500, 510-527, 538-555, 831-850,
1016-1034, 1052-1070

Leucine zipper pattern.

amino acids 843-864

N-glycosylation sites.

amino acids 37-40, 268-271

60 / 270

FIGURE 61

TGCCGCTGCCGCCGTGCTGTTGCTCCTGGCGCCCTGGGACGGGCAGTTCCTGT
GTCTCTGGTGGTTGCCTAAACCTGCAAACATCACCTCTTATCCATCAACATGAAGAATGT
CCTACAATGGACTCCACCAGAGGGTCTCAAGGAGTTAAAGTTACTTACACTGTGCAGTATT
TCATCACAAATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTCTGTTG
CCTGACAGCTCCAGAGAAGTGAAGAGAAATCCAGAAGACCTCCTGTTCCATGCAACAAA
TAACTCCAATCTGAAGTATAACGTCTGTGAATACTAAATCAAACAGAACGTGGTCC
CACTGTGACCAACCACGCTGGTGCACCTGGCTGGAGCCAACACTCTTACTGCGT
ACACGTGGAGTCCTCGTCCCAGGGCCCCCTGCCGTGCTCAGCCTCTGAGAACAGTGTG
CCAGGACTTTGAAAGAATCAATCATCAGAGTTCAAGGCTAAATCATCTTCTGTATGTTTG
CCCATATCTATTACCGTGTTCCTTCTGTGATGGCTATTCCATCTACCGATATATCCA
CGTTGGCAAAGAGAAACACCAGCAAATTGATTTGATTTATGAAATGAATTGACAAAAA
GATTCTTGTGCCCTGCTGAAAAAAATGTGATTAACTTATCACCTCAATATCTGGATGAT
TCTAAATTTCTCATCAGGATATGAGTTACTGGAAAAAGCAGTGATGTATCCAGCCTTAA
TGATCCTCAGCCCAGGGAACCTGAGGCCCCCTCAGGAGGAAGAGGAGGTGAAACATTAG
GGTATGCTTCGATTTGATGGAAATTGGTACTCTGAAGAAAACACGGAGGTACTTCT
CTCACCCAGCAAGAGTCCTCAGCAGAACAAATACCCCGATAAAACAGTCATTGAATATGA
ATATGATGTCAGAACCACTGACATTGCGGGGCCTGAAGAGCAGGAGCTCAGTTGCAGG
AGGAGGTGTCACACAAGGAACATTGGAGTCGCAGGCAGCGTGGCAGTCTGGGCC
CAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCTGGCGAGGAGCA
CACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATCGACGACCCCTGGTCAGGGATCCCC
AAACTGGCAGGCTGTGATTCCTCGCTGTCCAGCTCGACCAGGATTCAAGGGCTGCGAG
CCTCTGAGGGGGATGGGCTGGAGAGGAGGGTCTTCTATCTAGACTCTATGAGGAGCCGGC
TCCAGACAGGCCACCAGGAGAAATGAAACCTATCTCATGCAATTCAATGGAGGAATGGGGT
TATATGTGAGATGGAAAACTGATGCCAACACTTCCTTTGCC~~TTTGTG~~CTGTGCAAAC
AAAGTGAGTCACCCCTTGATCCCAGCCATAAGTACCTGGGATGAAAGAAGTTTTCCAGT
TTGTCAGTGTGAGAATTACTTATTCTTTCTCTATTCTCATAGCACGTGTGATTG
GTTCATGCATGTAGGTCTTAAACATGATGGTGGGCTCTGGAGTCCAGGGGCTGGCCGGT
TGTTCTATGCAGAGAAAGCAGTCAATAATGTTGCCAGACTGGGTGCAGAATTATTCAAGG
TGGGTGT

61/270

FIGURE 62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62815
<subunit 1 of 1, 442 aa, 1 stop
<MW: 49932, pI: 4.55, NX(S/T): 5
MSYNGLHQQRVFKEKLTLCSISSQIGPPEVALTTDEKSISVVLTAAPEKWKRNPEDLPVSMQ
QIYSNLKYNVSVLNNTKSNRTWSQCVTNHTLVLWLEPNLTYCVHVESFVPGPPRRAQPSEKQ
CARTLKDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILYGNED
KRFFVPAEKIVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEVKH
LGYASHLMEIFCDSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSL
QEEVSTQGTLLESQAALAVLGPQTLQYSYTPQLQDPLAQEHTDSEEGPEEPSTTLVDWD
PQTGRLCIPSLSSFDQDSEGCEPSEGDSLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEW
GLYVQmen

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

62/270

FIGURE 63

CGGACGGCGTGGGCGGACGGCGTGGGCGGACGGCGTGGGTCTCTGCGGGAGACGCCAGCCTGCG
TCTGCCATGGGGCTCGGGTTGAGGGGCTGGGACGTCTCTGCTGACTGTGGCACCGCCCT
GATGCTGCCCGTGAAGCCCCCGCAGGCTCCTGGGGGCCAGATCATCGGGGCCACGAGG
TGACCCCCCACTCCAGGCCATGGCATCCGTGCCTCGGGGCCAACATCACTGCGGA
GGCTTCCTGCTGCGAGCCCCTGGGTGGTCTCGGCCGCCACTGCTTCAGCCACAGAGACCT
CCGCACTGGCCTGGTGGTCTGGGCCAACGTCTGAGTACTGGGAGGCCACCCAGCAGG
TGTGTCGATCGATGCTCTACCACGACCCGACTACCACCCATGACCCACGCCAACGAC
ATCTGCCTGCTGCGGCTGAACGGCTCTGTCCTGGGCCCTGCAGTGGGCTGCTGAGGCT
GCCAGGGAGAAGGGCCAGGGCCCCACAGGGGACACGGTGCCGGTGGCTGGCTGGGCT
TCGTGTCGACTTGAGGAGCTGCCGCTGGACTGATGGAGGCCAGGTCCGAGTGCTGGAC
CCGGACGCTCTGCAACAGCTCTGGAAGGGCCACCTGACACTTACCATGCTCTGCACCCGAG
TGGGGACAGCCACAGACGGGCTCTGCTCGGCCACTCCGGAGGGCCCTGGTGTGCAGGA
ACCGGGCTCAGGCCTCGTTCTCTCGGCCCTCTGGTGGCGACCCAAAGACCCCCGAC
GTGTACACGCAAGGTGTCGCCCTTGATGGACTGGACGTGGTCTGGCGAGCAGTCC
CCAGCCCCGGCCCCCTGCCTGGACCACCAGGCCAGGAGAAGCCGCTTGAGCCACAACCT
TGCGGCATGCAAATGAGATGCCGCTCCAGGCTGGAAATGTTCCGTGGCTGGGCCCCACGGG
AAGCCTGATGTTCAAGGGTTGGGTGGGACGGGAGCCGTGGGACACCCATTCCACATGCA
AAGGGCAGAAGCAAACCCAGTAAAATGTTAACTGACAAAAAAAAAAAAAAAGAAA

63/270

FIGURE 64

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62845
><subunit 1 of 1, 283 aa, 1 stop
><MW: 30350, pI: 9.66, NX(S/T): 2
MGLGLRGWGRPLLTVATALMLPVKPPAGSWGAQIIGGHEVTPHSRPYMASVRFGGQHHCGGF
LLRARWVVSAAHCFSHRDLRGLVVLGAEVLSTAEPQQVFGIDALTTHPDYHPMTHANDIC
LLRLNNGSAVLGPAVGLLRLPGRRARPPTAGTRCRVAGWGFVSDFEELPPGLMEAKVRVLDPD
VCNSSWKGHLTLMCTRSGDSHRRGFCSDGGPLVCRNRAHGLVSFSGLWCDPKTPDVY
TQVSAFVAWIWDVVRSSPQPGPLPGTTRPPGEAA
```

Signal peptide:
amino acids 1-30

64/270

FIGURE 65

GAGCTACCCAGGCGCTGGTGTGCAGCAAGCTCCGCGCAGCTCCGACGCCCTGACGCCCTGA
CGCCTGTCCCCGGCCCGCATGAGCCGTAACCTGCTGCCGCTGCGCCTGGGACCGTAG
CAGGCAGCCGCGCTGCTCAAGGACTATGTCACCGGTGGGCTTGGCCAGCAAGGCCACC
ATCCCCTGGGAAGACGGTACATCGTGACGGCGCAAACACAGGCATGGGAAGCAGACCGCCTT
GGAACACTGCCAGGAGAGGGCAACATCATCCTGGGCTGCCGACACATGGAGAAGTGTGAGG
CGGCAGCAAAGGACATCCGGGGAGACCCCTCAATCACCATGTCACGCCGACCTGGAC
TTGGCTTCCCTCAAGTCTATCCGAGAGTTGCAGCAAAGATCATGAAAGAGGAGGAGCGAGT
GGACATTCTAAACAAACGGGGTGTATGCGGTGCCCCACTGGACCAACGGAGGACGGCT
TCGAGATGCAAGTTGGCTAACACCTGGGTCACTTTCTCTTGACAAACTTGTGTGGAC
AAGCTGAAAGCCTCAGCCCTTCGGATCATCAACCTCTCGTCCCTGGCCATGTTGTGG
GCACATAGACTTGAAGACTGGCAGACGAGGAAGTATAACACCAAAGCCGCTACT
GCCAGAGCAAGCTGCCATCGTCCCTTCACCAAGGAGCTGAGCCGGCTGCAAGGCTCT
GGTGTGACTGTCACGCCCTGCACCCCGCGTGGCAGGACAGAGCTGGGAGACACAGGG
CATCCATGGCTCCACCTTCTCCAGCACACACTGGGCCATCTCTGGCTGTGGTCAAGA
GCCCGAGCTGGCCCGCCAGCCCAGCACATACCTGGCCGTGGCGAGGAAGTGGGGATGTT
TCCGGAAAGTACTTCGATGGACTCAAACAGAAGGCCCCGGCCCCCGAGGCTGAGGATGAGGA
GGTGGCCCGAGGCTTGGCTGAAAGTGGCCCTGGTGGCTAGAGGCTCCCTCTGTGA
GGGAGCAGCCCTCCCAGATAACCTCTGGAGCAGATTGAAAGCCAGGATGGCGCTCCAG
ACCGAGGACAGCTGTCGCCATGCCCGAGCTCTGGCACTACCTGAGCCGGAGACCCAG
GACTGGCCGCCATGCCCGAGTAGGTTCTAGGGGGCGGTGCTGGCCGAGTGGACTGGC
CTGCAGGTGAGCACTGCCCGGGCTCTGGCTGGTCTGCTCTGCTGCCAGAGGGAG
AGGGCCATCTGATGCTTCCCTGGGAATCTAAACTGGGAATGGCGAGGAGGAAGGGCTC
TGTGCACTTGCAAGGCCACGTCAAGGAGAGCCAGCGGTGCTGCGGGAGGGTCCAAGGTGC
TCCGTGAAGAGCATGGGCAAGTTGCTGACACTTGGTGGATTCTGGGTCCCTGTGGACCT
TGTGCACTGCACTGGTCTCTGAGCCTTGGTTCTCAGCAGTGAGATGCTCAGAATAACTG
CTGCTCCCATGATGGTGTGGTACAGCGAGCTGTTGCTGGCTATGGCATGGCTGTGCCGG
GGTGTGCTGAGGGCTCTGTGCCAGAGCCCAGCCAGAGAGCAGGTGCAGGTGTCATCCC
GAGTTCAAGGCTCTGACGGCATGGAGTGGAAACCCACCAAGCTGCTACAGGACCTGGGA
TTGCTGGGACTCCACCTTCTATCAATTCTCATGGTAGTCCAAACTGCAGACTCTCAAAC
TTGCTCATTT

FIGURE 66

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64842
><subunit 1 of 1, 331 aa, 1 stop
><MW: 35932, pI: 8.45, NX(S/T): 1
MSRYLLPLSALGTVAGAAVLLDYVTGGACPSKATIPGKTVIVTGANTGIGKQTALELARRG
GNIILACRDMEKCEAAAKDIRGETLNHHVNARHLDLASLKSIREFAAKIIEEEERVDILINN
AGVMRCPHWTTEDGFEMQFGVNLGHFLLTNLLDKLASAPSRIINLSSLAHVAGHIDFDD
LNWQTRKYNTKAAYCQSCLKAIVLFTKELSRRLQGSQVTVNALHPGVARTELGRHTGIHGSTF
SSTTLGPIFWLLVKSPELAAQPSTYLAVAEELADVSGKYFDGLKQKAPAPEAEDEEVARRLW
AESARLVGLEAPSVRREQPLPR
```

Signal peptide:
amino acids 1-17

FIGURE 67

GAAGTTCCGGAGCGCTGGC**ATGTGGTCTGGGGCGCGCTGGCGCGCTGCTGGCGGTGCTG**
 GCGCTCGGGACAGGAGACCCAGAAAGGGCTGCGGCTCGGGGCAACAGTTCCTCGGCCTGAC
 CAGCGTGGCGCGCCCTGGCGCCGAGCGGCCGGTGTGCTGGGGCTGAGGGCGTACCTGC
 GCGGGAGGAGGCGCGCTGCGGGACTGACTAGATTCTACGACAAGGTACTTTCTTGCA
 GAGGATTCAACAACCCCTGTGGCTAACCTCTGCTTGCTCATCAAACCCCTGCA
 CTCTGACTGGAGGAATGTGGTACATAGTCTGGAGGCCAGTGAGAACATCCGAGCTGTGAAGG
 ATGGCTATGAGAAGGTGGAGCAAGACCTTCAGCCTTGAGGACCTTGAGGGAGCAGCAAGG
 GCCCTGATGCGGCTGCAGGACGTGTACATGCTCAATGTGAAAGCCTGGCCGAGGTGTCTT
 TCAGAGAGTCACTGGCTTGCCATCACTGACCTGTACAGCCCCAAACGGCTTTTCTCA
 CAGGGGATGACTGCTTCCAAGTTGGCAAGTGGCTATGACATGGGGATTATTACCATGCC
 ATTCCATGGCTGGAGGAGGCTGTGACTCTCTCCGAGGATCTTACGGAGAGTGGAAAGACAGA
 GGATGAGGCAAGTCTAGAAGATGCCCTGGATCACTGGCTTGTATTTCGGGAGGAA
 ATGTTTCGTTGCCCCCTAGCCTCTCTGGGAGTTCTCTCACAGCCCAGATAATAAGAGG
 ATGGCCAGGAATGTTGAAAATGAAAGGCTTGGCAGAGAGCCCCAACACGTGGTAGC
 TGAGGCTGTCACTCCAGAGGCCAATATAACCCACCTGCAGACAGACACCTACGAGGGC
 TATGTCAGACCCCTGGGTTCCCAGCCACTCTCACAGATCCCTAGCCTCTACTGTTCTAT
 GAGACCAATTCAACGCCAACCTGCTGCTCCAGCCATCCGAAGGAGGTATCCACCTGGA
 GCCTACATTGCTCTCACCATGACTTCGTCAGTGACTCAGAGGCTCAGAAAATTAGAGAAC
 TTGCAAGAACATGGCTACAGAGGTCACTGGGAGCATCAGGGAGAACAGTTACAAGTGGAG
 TACCGCATCAGCAAAAGTGCCTGGCTGAAGGACACTGTTGACCCAAAATGGTGACCCCTCAA
 CCACCGCATTGCTGCCCTCACAGGCCCTGATGTCGGCCTCCCTATGAGAGTATCTGCAGG
 TGGTGAACTATGGCATCGAGGACACTATGAGCCTCACTTGACCATGCTACGTACCAAGC
 AGCCCCCTCACAGAACAGTCAAGGAACCCAGATTGCAACATTATGATCTATCTGAGCTC
 GGTGGAAGCTGGAGGAGCCACAGCCTCATCTATGCCAACCTCACCGTGCCTGGTTAGGA
 ATGCAGCACTGTTTGGTGGAAACCTGCAACAGGAGTGGTAAGGGACAGTGACACACTTCAT
 GCTGGCTGTCTGTCTGGAGATAAGTGGTGGCAACAAAGTGGATACTGAGTATGG
 ACAGGAATTCCGCAAGACCTCGAGCTCAGCCCTGAAGACT**GA**CTGTTGGCAGAGAGAAC
 TGTTGGAGTCCTGTGGTTCCAGAGAACGCCAGGAGCCAAAGCTGGGGTAGGAGAGGAGAA
 AGCAGAGCAGCCTCTGGAGAACGGCTTGTCACTGTTGTGCTGCCCTGCAAAATCAGAGGC
 AAGGGAGAGGTTGTTACAGGGACACTGAGAACATGTAATTGATCTGCCAACGCCACGGAA
 GTCAAGAGTAGGATGCACAGTACAAAGGAGGGGGAGTGGAGGCCAGAGGGAAAGTTCTGG
 AGTTCAAGATACTCTGTTGGAACAGGACATCTCAACAGTCTCAGGTTGATCAGTGGTC
 TTTTGGCACTTGAACCTTGACCACAGGGACAAAGTGGCAATGAGGACACCTGCAAGGAG
 GGGCTAGCCTGACTCCCAGAACATTAAAGACTTTCTCCCCACTGCCTCTGCTGCAAG
 CAGGGAGTGTCCCCCTCCAGAACAGCATATCCCAGATGAGTGGTACATTATATAAGGATTTT
 TTTAAGTGGAAAACAACCTTCTTTCTTTGTATGATGGTTAAACACAGTCATTAAAA
 ATGTTATAAATCAAAA

67/270

FIGURE 68

MGPALARALLAVLALGTGDPERAAARGDTFSALTTSVARALAPERRLLGLLRRLRGEEARL
RDLTRFYDKVLSLHEDSTTPVANPLLAFTLIKRLQSDWRNVHSLEASENIRALKDGYEKVE
QDLPAFEDLEGAARALMRLQDVYMLNVKGLARGVFQRVTGSAITDLYSPKRLFSLTGDDCFQ
VGKVAYDMGDYYHAIPWLEEAVSLFRGSYGEWKTEDEASLEDALDHLAGFAYFRAGNVSCALS
LSREFLLYSPDNKRMRNVLKYERLLAESPNSHVVAEAVIQRPNIPHLCQTLGS
QPTLYQIPSLYCSYETNSNAYLLLQPIRKEVIHLEPYIALYHDFVSDSEAQKIRELAEPWLQ
RSVVVASGEKQLQVEYRISKS A WLKD TV DP KLV TL NH RIA ALT GLD VR P PYA EYL QV V NY GIG
GH YEP HFD HAT SPSS PLY RM KSG N RV AT FM IY LSS V EAGG A TAF IY AN LS VP V VR NA AL FW
NLHRSGE GD S D TL HAG CP VL VG DK W VANK WI HEY GQ E FRR PC SSS PED

Signal peptide:
amino acids 1-19

FIGURE 69

GAGATAGGGAGTCTGGGTTAAGTCTGCTCATCTCAGGAGCCCTGCTCCCACCCCTAG
GAAGCCACCAGACTCCACGGTGTGGGCAATCAGGTGGAATCGCCCTGGCAGGTGGGCC
ACGAGCGCTGGCTGAGGGACCGAGCCGGAGAGCCCCGGAGCCCCCGTAACCCGCGGGGAG
CGCCCAGGATGCCGCAGGGACTCGGAGCAGGTGCGCTACTGCGCGCCTTCTCCTACCTC
TGGCTCAAGTTTCACTTATCATCTATTCCACCGTGTCTGGCTGATTGGGGCCCTGGTCCT
GTCTGTGGGCATCTATGCAGAGGTTGAGCGGCAGAAATAAAACCTTGAAAGTGCTTCC
TGGCTCCAGCCATCATCCTCATCCTCTGGCGTCGTATGTTATGGTCTCCTCATGGT
GTGCTGGCGTCCCTCCGTGACAACCTGTACCTTCTCCAAGCATTATGTACATCCTGGGAT
CTGCCTCATCATGGAGCTCATTGGTGGCGTGGTGGCCTTGACCTTCCGGAACCGAGGATTG
ACTTCTGAACGACAACATTGAAGAGGAATTGAGAACTACTATGATGATCTGGACTTCAA
AACATCATGGACTTGTCAAGAAAAGTCAAGTGTGCTGGCGGGAGGACTACCGAGATTG
GAGCAAGAATCAGTACCAACAGACTGCAGTGCCTGGACCCCTGGCCTGTGGGTGCCCTACA
CCTGCTGCATCAGGAACACGACAGAAGTTGCAACACCATGTGTGGCTACAAACTATCGAC
AAGGAGCGTTTCAGTGTGCAGGATGTATCTACGTGCGGGCTGCACCAACGGCGTGTAC
CTGGTTCATGGACAACATACCCATGGCGTGCATCCTCTGGCATCTGCTTCCCCAGT
TCCTGGGGGTGCTGCTGACGCTGTGTACATCACCCGGTGGAGGACATCATGGAGCAC
TCTGTCACTGATGGCTCCTGGGCCCCGTGCCAAGCCCAGCGTGGAGGCGCAGGCACGGG
ATGCTGCTTGTGCTACCCCAATTAGGGCCAGCCTGCCATGGCAGCTCCAACAAGGACCGTC
TGGGATAGCACCTCTCAGTCAACATCGTGGGCTGGACAGGGCTGCGGCCCTCTGCCACA
CTCAGTACTGACCAAAGCCAGGGCTGTGTGCTGTGTAGGTCCCACGGCCTCTGCCCTC
CCCAGGGAGCAGAGCCTGGCCTCCCTAAAGGGCTTCCCGAGGCAGCTCTGAATCTGT
GCCACCTGGGCCTGGGAACAAGGCCCTCTTCTCCAGGCCTGGCTACAGGGAGGGA
GAGCCTGAGGCTCTGCTCAGGGCCATTCTCATCTGGCAGTGCCTGGCGGTGGTATTCAA
GGCAGTTTGTAGCACCTGTAATTGGGAGAGGGAGTGTGCCCCCTGGGGCAGGAGGGAAGG
GCATCTGGGAAGGGCAGGAGGGAGACGCTGTCCATGCAGCCACGCCATGGCAGGTTGGC
CTCTCTCAGCCTCCAGGTGCTTGAAGCCCTTGTCAAGGGCGCTGCTTCTTGAGGCTA
GTTTTTTTACGTGATTTGTAAACATTCACTTTGTACAGATAACAGGAGTTCTGAC
TAATCAAAGCTGGTATTCCCGCATGTCTTATTCTGCCCTCCCCAACAGTTGTTAA
TCAAACAATAAAACATGTTGTTGTTTAAAAAA

69/270

FIGURE 70

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64863
><subunit 1 of 1, 294 aa, 1 stop
><MW: 33211, pI: 5.35, NX(S/T): 3
MPRGDSEQVRYCARFSYWLKFLSIIYSTVFWLIGALVLSVGIVAEVERQKYKTLESAFLAP
AIILILLGVVMFMVSFIGVLASLRDNLYLLQAFMYILGICLIMEELIGGVVALTFRNQTIDFL
NDNIRRGIEYYDDLDFKNIMDFVQKKFKCCGGEDYRDWSKNQYHDCSAPGPLACGVPYTCC
IRNTTEVVNTMCGYKTIDKERFSVQDVIIYVRGCTNAVIIWFMDNYTIMACILLGILLPQFLG
VLLTLLYITRVEDIIMEHSVTDGLPGAKPSVEAAGTGCLCYPN

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 22-42, 57-85, 93-116, 230-257

FIGURE 71

GAGGAGCGGGCCGAGGACTCCAGCGTCCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGA
CACCTGGGAAGATGGCCGGCCCGTGGACCTTCACCCCTCTCTGTGGTTGCTGGCAGCCACC
TTGATCCAAGCCACCCTCAGTCCCAGTGCAGTTCTCATCCTCGGCCAAAAGTCATCAAAGA
AAAGCTGACACAGGAGCTGAAGGACCAACGCCAACAGCATCCTGCAGCAGCTGCCGCTGC
TCAGTGCCATCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGCAGCCTGGTGAACACC
GTCCTGAAGCACATCATCTGGCTGAAGGTATCACAGCTAACATCCTCCAGCTGCAGGTGAA
GCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCA
ACACGCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCAACCCATC
CGCATGGACACCAGTGAAGTGGCCCAACCGCCTGGTCCAGTGAUTGTGCCACCAGCCA
TGGGAGCCTGCGCATCCAACGTGTATAAGCTCTCCTGGTGAACGCCCTAGCTAACG
AGGTATGAACCTCTAGTGCATCCCTGCCAACATCTAGTAAAAAACAGCTGTGTCCCGTG
ATCGAGGCTTCCTCAATGGCATGTATGCAGACCTCTGCAGCTGGTAAGGTGCCCAATTTC
CCTCAGCAITGACCGTCTGGAGTTGACCTCTGTATCCTGCCATCAAGGGTGACACCATTC
AGCTCTACCTGGGGGCAAGTTGGACTCACAGGAAAGGTGACCAAGTGGTTCAATAAC
TCCTGCAGCTTCCCTGACAATGCCACCCCTGGACAACATCCGTCAGCCTCATCGTGAGTC
GGACGGTGAAGCTGCAGTGGCTGTGCTCTCCAGAAGAATTATGGTCCGTGG
ACTCTGTGCTTCCGTAGAGTGCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGAAAAG
GCTGCAGATAAGCTGGGATCTACCCAGATGTGAAGATCTTAACCTCAGGACACTCCGAGTT
TTTTATAGACCAAGGCCATGCCAAGGTGCCCAACTGATCGTGTGCTGGAAAGTGTTCCTCCA
GTGAAGGCCCTCCGCCCTTGTTCACCTGGCATCGAAGCCAGCTCGGAAGCTCAGTTAC
ACCAAAGGTGACCAACTTAACTCAACTGAATAACATCAGCTGTGATCGGATCCAGCTGAT
GAACCTGGGATTGGCTGGTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCC
ACTCCATCCTGCTGCCGAACCAGAATGGAAATTAAAGATCTGGGGTCCAGTGTGATTGGTG
AAGGCCTTGGGATTGAGGCAGCTGAGTCTCACTGACCAAGGATGCCCTGTGCTTACTCC
AGCCTCTTGTGGAAACCCAGCTCTCTGCTCCAGTGAAGACTTGGATGGCAGCCATCAG
GGAAGGCTGGGTCCCAGCTGGAGTATGGGTGTGAGCTATAGACCATCCCTCTGCAAT
CAATAAACACTTGCCTGTGAAAAAA

71/270

FIGURE 72

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64881
><subunit 1 of 1, 484 aa, 1 stop
><MW: 52468, pi: 7.14, NX(S/T): 3
MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQPLLSAM
REKPAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPL
VKTIVEFHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMN
LLVPSL��NLVKNQLCPVIEASFNGMYADLLQLVVKVPISLSIDRLEFDLLYPAIKGDTIQLYL
GAKLLDSQGKVTKWFNNSAASLTMPTLNDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVL
PESAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSSEAL
RPLFTLGIASSEAQFYTKGDQLILNLNNISSDRIQLMNNSGIGWFQPDVLKNIITEIIHSIL
LPNQNGKLRSGPVSLVKALGFEEASSLTKDALVLTTPASLWKPSSPVSQ
```

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

72/270

FIGURE 73

GAGCGAACATGGCAGGCCCTGGCGGTTGGTGTCTGTGACCATGGTGGTGGCGCTG
 CTCATCGTTTGCAGCTCCCTCAGCCTCTGCCAAAGAAAGAAGGAGATGGTGTATCTGA
 AAAGGTTAGTCAGCTGATGGAATGGACTAACAAAAGACCTGTAATAAGAATGAATGGAGACA
 AGTTCCGTCGCCCTGTGAAAGCCCCACCGAGAAAATTACTCCGTTATCGTCATGTTCACTGCT
 CTCCAACTCGATAGACAGTGTGCTTGTGCAAGCAAGCTGATGAAGAATTCCAGATCCTGCG
 AAACCTGGCGAATCTCCAGTGCATTCCAACAGGGATATTTTGCCATGGTGGATTITG
 ATGAAGGCTCTGATGTATTTCAGATGCTAACACATGAATTCTAGCTCAACTTCATCAACTTT
 CCTGCAAAGGGAAACCCAAACGGGGTGATACATATGAGTTACAGGTGCGGGGTTTTCAAC
 TGAGCAGATTGCCCGTGGATGCCGACAGAAGCTGATGTCATAATTAGACTGATTAGACCCC
 CAAATTATGCTGGTCCCTTATGTTGGATTGCTTTGGCTTATTGGTGGACTTGTGAT
 CTTCGAAGAAGTAATATGGAATTCTCTTTAATAAAACTGGATGGGCTTTGCAGCTTGTG
 TTTTGTGCTTGTATGACATCTGGTCAAATGTGGAACCATATAAGAGGACCAACATGCC
 ATAAGAATCCCCACACGGGACATGTGAATTATATCCATGGAAGCAGTCAGCCTGTTGTA
 GCTGAAACACACATTGTTCTGTGTTAATGGTGGATTACCTTAGGAATGGTGTCTTATG
 TGAAGCTGCTACCTCTGACATGGATATTGAAAGCGAAAGATAATGTGTGTGGCTGGTATTG
 GACTTGTGTTATTATTCTTCAGTTGGATGCTCTATTTTAGATCTAAATATCATGGCTAC
 CCATACAGCTTCTGATGAGTTAAAAGGTCCACAGAGATATATAGACACTGGAGTACTGGAA
 ATTGAAAAACGAAATCGTGTGTTGAAAAGAAGAATGCAACTTGTATATTGTATTAC
 CTCTTTTTCAAGTGAATTAAATAGTTAATCATTTAACCAAAAGAAGATGTGTACTGCC
 ACAAGCAATCCTCTGTCAAATCTGAGGTTATTGAAAATAATTATCCTCTAACCTCT
 CCCAGTGAACCTTATGGAACATTAAATTAGTACAATTAGTATATTATAAAATTGAAAA
 CTACTACTTTGTTAGTTAGAACAAAGCTCAAAACTACTTTAGTTAATTGGTCATCTGAT
 TTATATTGCCCTATCCAAGATGGGAAAGTAAGTCTGACCAGGTGTTCCACATATGCC
 TGTACAGATAACTACATTAGAACATTCTTAGCTTCTGATCTTGTGTGGATGTGAT
 ACTTTACGCATTTCTTTGTTAGTGAATTCTGTTAGCTTCTGATCTTGTGTGGTCTCTGAA
 GAACACCATCTTCAGAGCACACGCTAGCCTCAGCAAGACAGTTGTTCTCTCT
 GCATATTCTACTGCGCTCCAGCCTGAGTGAATAGAGTGGACTCTGCTCAAAAAAGTA
 TCTCTAAATAACAGGATTATAATTCTGCTTGTAGTGGTGTAACTACCTTGATTTAGAAA
 GATTTCAGATTCCATCTCTTAGTTCTTAAAGGTGACCCATCTGTGATAAAAATA
 TAGCTTAGTGTAAAATCAGTGAACTTATACATGCCCTAAATGTTCTACAAATTAGAGT
 TTGTCACTTATTCCATTGTACCTAAGAGAAAATAGGCTCAGTTAGAAAAGGACTCCCTGG
 CCAGGGCGCAGTGAATTACGCTGTAATCTCAGCACTTGGGAGGCCAAGGCAGGAGATCAC
 GAGGTAGGAGTTGAGACCATCTGGCCAACATGGTGAACCCCCGCTCTACTAAAAATAT
 AAAATTAGCTGGGTGGTGGCAGGAGCTGTAATCCAGCTACACAGGAGGCTGAGGCAC
 GAGAATCACTTGAACTCAGGAGATGGAGGTTCACTGAGGCCAGATCACGCCACTGCACTCC
 AGCCTGGCAACAGAGCGAGACTCCATCTAAAAAAAAAAAAA

FIGURE 74

MAARWRFWCVSVTMVALIVCDVPSASAQRKKEMVLSEKVSQLMETNKRPVIRMNGDKFR
RLVKAPPRNYSVIVMFTALQLHRQCVVCKQADEFQILANSWRYSSAFTNRIFFAMVDFDEG
SDVFQMLNMNSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNY
AGPLMLGLLLAVIGGLVYLRRSNMEFLFNKTGWAFAALCFVLAMTSGQMWNHIRGPPYAHKN
PHTGHVNYIHGSSQAQFVAETHIVLLFNGGVTLGMVLLCEAATSDMDIGKRKIMCVAGIGLV
VLFFSWMLSIFRSKYHGYPYSFLMS

Signal peptide:

amino acids 1-29

Transmembrane domains:

amino acids 183-205, 217-237, 217-287, 301-321

74/270

FIGURE 75

AAGCAACCAAATGCAAGCTTGGGAGTTGTTCGCTGCCCTGCTCTGCTAGGGAGA
 GAACGCCAGAGGGAGGCCGCTGGCCGGCAGGCCTCAGAACCGCTACCGGCGATGCTA
 CTGCTGTGGGTGCGGTGCGAGCCTTGGCGCTGGCGTACTGGCCCCGGAGCAGGGGA
 GCAGAGGGCGAGAGCAGCCAAGGCCAATGTGGTGTGGCTGAGCGACTCCTCGATG
 GAAGGTTAACATTTCATCCAGGAAGTCAGGTAGTGAAACTTCTTTATCAACTTTATGAAG
 ACACGTGGGACTTCCTTCTGAATGCTACACAAACTCTCCAATTGTTGCCCATCACGCC
 AGCAATGTGGAGTGGCCTTCACTCACTTAACAGAAATCTTGAATAATTAAAGGGTAG
 ATCCAAATTATAAACATGGATGGATGTATGGAGAGGCATGGCTACGAACACAGAAATT
 GGGAAACTGGACTATACTCAGGACATCACTCCATTAGTAATGTTGAGCGTGGACAAG
 AGATGTTGCTTCTTACTCAGACAAGAAGGCAGGGCCATGGTTAATCTTATCCGTAACAGGA
 CTAAAGTCAGAGTGTGGAAAGGGATTGGCAGAAATACAGACAAAGCAGTAACACTGGTTAAGA
 AAGGAAGCAATTAAATTACACTGAACCATTGTTATTACTTGGATTAAATTACACACCC
 TTACCCCTCACCATCTTGGAGAAAATTGGATCTTCAACATTCAACATCTTATT
 GGCTTGAAAAAGTGTCTCATGATGCCATCAAATCCAAAGTGGTACCTTGTCAAGAAATG
 CACCCCTGTAGATTATTACTCTTCTTACAAAAAAACTGCACTGGAAGATTACAAAAAAAGA
 ATTAAAGAATATTAGAGCATTTTATTATGCTATGTTGCTGAGACAGATGCCATGCTTGGT
 AAATTATTTGGCCCTTCTCATCAATTAGATCTTCTCAGAAAACATTGTCATATACTCCTCA
 GACCATGGAGAGCTGGCCATGGAACATCGACACTTTATAAAATGAGCATGTACGAGGCTAG
 TGCACATGTTCCGCTTTGATGATGGGACCCAGGAATTAAAGCCGGCTACAAGTATCAAATG
 TGGTTCTCTGTGGATATTACCCCTACCATGCTTGTATATTGCTGGAATTCTCTGCTCAG
 AACCTGAGTGGATACTCTTGTGCGGTATCATCAGAAAACATTAAAGAATGAAACATAAACT
 CAAAAACCTGCATCCACCTGGATTCTGACTGAATTCCATGGATGTAATGTAATGCTTCCA
 CCTACATGCTCGAACTAACACTGGAATATATAGCCTATTGGATGGTGCATCAATATTG
 CCTCAACTCTTGTATCTTCTCGGATCCAGATGAATTAAACAAATGTTGCTGTAAAATTCC
 AGAAATTACTTATTCTTGGATCAGAAGCTTCATTCCATTAAACTACCCAAAGTTCTG
 CTTCTGTCCACCAAGTATAAAAGAGCAGTTTATCAAGTGGAAACAAAGTATAGGACAGAAAT
 TATTCAAACGTTATAGCAAATCTTAGGTGGCAGGAAGACTGGCAGAAGGAACCAAGGAAGTA
 TGAAAATGCAATTGATCAGTGGCTAAACCCATATGAATCCAAGAGCAGTTTGAACAAAAA
 GTTTAAAAATAGTGTCTAGAGATACTATAAATATTACAAGATCATAATTATGTATT
 AAATGAAAACAGTTTAATAATTACCAAGTTTGGCCGGGCACAGTGGCTCACACCTGTAATC
 CCAGGACTTGGGAGGCTGAGGAAGCAGATCACAAGGTCAAGAGATTGAGACCATCCTGGC
 CAACATGGTAAACCCCTGCTCTACTAAAAATACAAAAATTAGCTGGCGCCGTGGTGCACA
 CCTATAGTCTCAGCTACTCAGAGGCTGAGGAGGATCGCTGAAACCCGGGAGGCAGCAG
 TTGCACTGAGCTGAGATTGCGCCACTGTACTCCAGCCTGGCAACAGAGTGGACTGTGTCG
 AAAAATAAAAATAATAATTACCAATTTCATTATTGTAAAGAATGTAGTG
 TATTAAAGATAAAATGCCAATGATTATAAAATCACATATTTCAAAATGGTTATTATT
 GGCTTGTACAATTCTAACATTAGTGGAAAGTATCAAAGGATTGAAGCAAATACTGTA
 ACAGTTATGTTCTTAAATAATAGAGAAATATAAAATTGTAAATAATATGTATCATAAAAT
 AGTTGTATGAGCATTGATGGTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 AAA

FIGURE 76

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64885
<subunit 1 of 1, 536 aa, 1 stop
<MW: 61450, PI: 9.17, NX(S/T): 7
MLLLWWSVVAALALAVLAPGAGEQRRRAAKAPNVVLVSDSFGRFTHPGSQVVKLPFINF
MKTRGTSFLNAYTNSPICCPSSRAAMWGLFTHLTESWNKFGLDPNYTTWMDVMERHGYRTQ
KFGKLDYTSGHHSISNRVEAWTRDVAFLRQEGRPMVNLIIRNRTKVRVMERDWQNTDKAVNW
LRKEAINYTFPVVIYLGLNLPHPYPSPSSGENFGSSTFHTSLYWLEKVSHDAIKIPKWSPLS
EMHPVDYYSSYTNCRFTKKEIKNIRAFYYAMCAETDAMLGEIILALHQIDLLQKTIVY
SSDHGELAMEHRQFYKMSMYEASAHVPLMMGPGIKAGLQVSNNVSLVDIYPTMLDIAGIPL
PONLSGYSSLPLSSETFKNEHKVKNLHPPWILSEFHGCNVNASTYMLRTNHWKYIAYSDGAS
ILPQLFDLSSDPDELTNVAVKFPEITYSLDQKLHSIINYPKVSASVHQYNKEQFIKWQSIG
QNYNSVIANLRWHQDWQKEPRKYENAIIDQWLKTHMNPRAV
```

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-111, 166-169, 193-196, 262-265, 375-378, 413-416,
498-501

Sulfatases proteins:

amino acids 286-315, 359-369, 78-97

FIGURE 77

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAG
AGCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCACTGAGAGGTCTGCCATG
GCCTCTCTTGGCCTCCAACTTGTGGCTACATCCTAGGCCTCTGGGGCTTTGGCACACT
GGTGCCATGCTGCTCCCAGCTGGAAAACAAGTCTTATGTCGGTGCCAGCATTGTGACAG
CAGTTGGCTCTCCAAGGGCTCTGGATGGAATGTGCCACACACAGCACAGGCATCACCAG
TGTGACATCTATAGCACCTCTGGCCTGCCGCTGACATCCAGGCTGCCAGGCCATGAT
GGTGACATCCAGTGCATCTCCTCCCTGGCCTGCATTATCTCTGTGGTGGCATGAGATGCA
CAGTCTTCTGCCAGGAATCCCGAGCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCCTTTC
ATCCTTGGAGGCCTCTGGGATTCACTCTGTGGCTGGAATCTCATGGATCCTACGGGA
CTTCTACTCACCACTGGTGCCTGACACCATGAAATTGAGATTGGAGAGGCTCTTACTTGG
GCATTATTTCTTCCCTGTTCTCCCTGATAGCTGGAAATCATCCTCTGCTTCTGCTCATCC
CAGAGAAATCGCTCCAACTAACAGATGCCAACCTCTGCCACAAGGAGCTC
TCCAAGGCCTGGTCAACCTCCAAAGTCAGAGTGAGTTCAATTCTACAGCCTGACAGGGT
ATGTGTGAAGAACCAAGGGCCAGAGCTGGGGGGTGGCTGGCTGTGAAAAACAGTGGACAG
CACCCCCGAGGGCCACAGGTGAGGGACACTACCAACTGGATCGTCAGAAGGTGCTGCTGAGG
ATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGGCTAGTGTAAACAGCATG
CAGGTTGAATTGCCAAGGATGCTGCCATGCCAGCCTCTGTTCTCCTCACCTGCTGCTC
CCCTGCCCTAAGTCCCCAACCTCAACTGAAACCCATTCCCTTAAGCCAGGACTCAGAGG
ATCCCTTGGCCCTCTGGTTACCTGGACTCCATCCCCAACCCACTAATCACATCCACTG
ACTGACCCCTCTGTGATCAAAGACCCCTCTCTGGCTGAGGTTGGCTCTTAGCTATTGCTGG
GGATGGGAAGGAGAACAGCAGTGGCTTTGTGGGATTGCTCTAACCTACTTCTCAAGCTTCCC
TCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCACTCTGTTATGACTCCACAGTGTCC
AGACTAATTGTGCACTGAAATAAAACATCCTACGGTATCCAGGGAACAGAAAGCAG
GATGCAGGATGGGAGGACAGGAAGGCAGCCTGGACATTAAAAAAATA

FIGURE 78

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64886
><subunit 1 of 1, 230 aa, 1 stop
><MW: 24549, pI: 8.56, NX(S/T): 1
MASLGLQLVGYILGLLGTLVAMILLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGIT
QCDIYSTLLGLPADIQAAQAMMVTSSTAISLACIISVVGMRCTVFCQESRAKDRVAVAGGVF
FILGGLLGFIPVAWNLHGISLDRFYSPVPDSMKFEIGEALYLGISSLFSLIAGIILCFSCS
SQRNRSNYYDAYQAQPLATRSSPRPGQPPKVKEFNSYSLTGYV
```

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 79

GCAC TGCT GCT GTCCC AT CAG CTG CTGA AGCT CC ATGGT CCCAGA AT CTT CGCT CCT GC
TTAT GTGT CAG TCT GTCT CCT CCT TT GTGT CC AAGG GAAGT CAT CGCT CCCG CT GGCT CAG
AACCAT GGCT GTGCC AGCCGG CACC CAGGT GTGGAG ACAGA AGAT CTACA ACCC TTGGAG CAG
TGCT GTT ACA ATGACGCC ATCGT GTCC CTGAG CGAG ACCC GCA AT GTGGT CCCCCC CTGC AC
CTT CTGGCC CTGCT TTGAG CT GTCT GTCT GATT CCTT GGCT CACAA AC GATT TT GTTG
TGAAG CTGA AGGTT CAGGGT GTGA ATT CCCAGT GCCACT CATCTCC ATCTCC AGTAA ATGT
GAAAG CAGA AGAC GCTT CCCT TGAGA AGAC ATAGAAA AGAAA ATCA ACT TT CACTA AGG CAC
TCAGAA ACATAGG CTAAGG TAAT ATGT TACCA GTAGAGA AGCCT GAGGA ATT TACAAA ATG
ATGCAG CTCCA AGCC ATT GTATGCC ATGTGGGAG ACTGATGGGAC ATGGAGA ATGAC AGT
AGATTATCAGGAAATAAAATAAGTGGTTTCCAATGTACACACCTGTAAAA

FIGURE 80

MVPRIFAPAYVSVC~~LLL~~C~~PREVI~~A~~PAGSE~~PWL~~QPA~~PRCGDKIYNPLEQCCYND~~AI~~VSL~~SE~~
TRQCGPPCTFWPCFELCCLDSFG~~L~~TND~~FVV~~KLKVQGVNSQCHSSPISSKCESRRRF~~P~~

Signal peptide:
amino acids 1-25

80/270

FIGURE 81

CTCCACTGCAACCACCCAGAGCCATGGCTCCCGAGGCTGCATCGTAGCTGTCTTGCCATT
TTCTGCATCTCCAGGCTCCTCTGCTCACACGGAGCCCCAGTGGCCCCCATGACTCCTTACCT
GATGCTGTGCCAGCCACACAAGAGATGTGGGGACAAGTTCTACGACCCCCCTGCAGCACTGTT
GCTATGATGATGCCGTGCGCCCTTGCCAGGACCCAGACGTGTGGAAACTGCACCTTCAGA
GTCTGCTTGAGCAGTGCTGCCCTGGACCTTCATGGTAAGCTGATAAACAGAACTGCGA
CTCAGCCCGGACCTCGGATGACAGGCTTGTGCGAGTCAGCTAATGGAACATCAGGGAA
CGATGACTCCTGGATTCTCCTCCTGGGTGGGCTGGAGAAAAGAGGCTGGTGTACCTGAGA
TCTGGATGCTGAGTGGCTGTTGGGGCCAGAGAAAACACACACTCAACTGCCACTTCATT
CTGTGACCTGTCTGAGGCCACCCCTGCAGCTGCCCTGAGGAGGCCACAGGTCCCCCTCTAG
AATTCTGGACAGCATGAGATGGCTGCTGATGGGGCCAGGGACTCTGAACCCCTCTGAT
GACCCCTATGGCCAACATCAACCCGGCACCACCCAAGGCTGGCTGGGAACCCCTTCACCCCT
TCTGTGAGATTTCCATCATCTCAAGTTCTTTCTATCCAGGAGCAAAGCACAGGATCATAA
TAAATTATGTACTTTATAAATGAAAA

FIGURE 82

MAPRGCIVAVFAIFCISRLLC SHGAPVAPMTPYLM CQPHKRCGDKFYDPLQHCCYDDAVVP
LARTQTCGNCTFRVCFEQCCPWTFMVKLINQNCD SARTSDDRLCRSVS

Signal peptide:
amino acids 1-24

82/270

FIGURE 83

GGGGGCGGGGTGCCCTGGAGCACGGCGTGGGGCCGCCGCAGCGTCACTCGCTCGCACTCGA
TCGCGGGAGGCTTCCCCGCGCCGGCGTCCCGCCGCTCCCCGGCACAGAAGTCCCT
GCGCGTCCGACGGCAGACATGGCGTCCCCAGGCCCTGGAGGCCGAGCTGGCGCTGGGA
TCCCTGCTCTTCGCTCTTCTGGCTGCGTCCCTAGGTCGGTGGCACCTCAAGGTGCG
CACGCCGTATTCCCCTGTTATGCTGTCCCAGGGCAGAACGTCACCTCACCTGCAAGGCTCT
TGGGCCCTGTGGACAAAGGGCAGCATGTGACCTTCTACAAGACGTTGACCGCAGCTGAGG
GGCGAGGTGCAAGCTGCTCAGAGGCCGGCCCATCGCACCTCACGTTCCAGGACCTTCA
CCTGCACCATGGAGGCCACCAGGTGCCAACACCAGGCCAGCTGGCTCAGGCCACGGC
TGGAGTCGGCCTCCGACCACCATGGCAACTTCTCCATCACCATGGCAACCTGACCTGCTG
GATAGCGCCCTACTGCTGCTGGTGGAGATCAGGCACCAACTCGGAGCACAGGGT
CCATGGTGCATGGAGCTGCAGGTGCAAGACAGGCAAAGATGCAACATCCAACGTGTTGGTGT
ACCCATCTCCTCCAGGATAGTGAACATCACGGCTGCAAGCCCTGGCTACGGTGCCTG
ATCGTAGGAATCTCTGCCCTCCCTCATCTGCTCTGGTCTACAAGCAAAGGCAGGCAGC
CTCCAAACCGCCGTGCCAGGAGCTGGTGGATGGCACAGCAACATTCAAGGGATTGAAAACC
CCGGCTTGTGAAAGCCTACCACCTGCCAGGGATAACCGAGGCCAAAGTCAGGCACCCCTG
TCTCATGTGGCCAGGGCAGCCTCTGAGCTGGCGGATCTGCTTCTGGAGCCAGCAC
CCCCCTGCTCTCCAGGCCAGGAGACGCTCTCTTCCATCCCTGGACCCCTGCTCCCTGACT
CTCCAAACTTGAGGTCACTAGCCCAGCTGGGGACAGTGGCTGTTGTGGCTGGTCTGG
GGCAGGTGCAATTGAGCCAGGGCTGGCTCTGAGGTGGCTCCCTGGCTCGGCCCTGGTTC
CCTCTCTCTGCTCTGGCTCAGATACTGTGACATCCCAGAAGGCCAGCCCTCAACCCCTC
TGGATGCTACATGGGATGCTGGAGGCCAGGCCCTGTTCAAGGATTGGGGTGTGAG
ATTCTCCCTAGAGACCTGAAATTCACCAAGCTACAGATGCCAAATGACTTACATCTTAAGAA
GTCTCAGAACGTCAGCCCCCTCAGCAGCTCTGTTCTGAGACATGAGCTTGGGATGTGGCA
GCATCAGTGGACAAGATGGACACTGGGCCACCCCTCCAGGCCAGACACAGGGCACGGT
GAGAGACTCTCCCCGTGGCCGCCCTGGCTCCCCGTTTGCCCCGAGGCTGCTCTCTGTC
AGACCTCTTTGTAACACAGTGGCTCTGGGCCAGGCCACTGGCCATGCCACTGCC
ACCTTCCCCAGCTGCTCTCACCAAGCAGTTCTGAGACATGTCACAGGTTAACTAAT
CTGGGGCTTCACTGCTGCATCCAGTCCCCAGAGCTGGTGGTCCGAAACGGGAAGTAC
ATATTGGGCATGGTGGCTCCGTGACCAATGGTGTCTGGCAATCTGAGGCCAGGACAG
ATGTTGCCCAACCACTGGAGATGGTGTGAGGGAGGTGGTGGGCCCTCTGGGAAGGTGA
GTGGAGAGGGGACCTGCCCCCCCCCTCCCCATCCCCACTCTCCACTGCTCAGGCCAGGG
ATTGCAAGGGTGCACACAATGTCITGTCCACCCCTGGGACACTTCTGAGTATGAAGGGAT
GCTATTAAAAACTACATGGGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA

FIGURE 84

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64897
><subunit 1 of 1, 311 aa, 1 stop
><MW: 33908, pI: 6.87, NX(S/T): 6
MGVPTALEAGSWRWGSLLFALFLAASLGPVAAFKVATPYSLYVCPEGQNVTLTCRLLGPVDK
GHDVTFYKTWYRSSRGEVQTCSEERRPIRNLTQDLHLHHGGHQAANTSHDLAQRHGLEASAD
HHGNFSITMRNLTLDSGLYCCCLVVEIRHHHSEHRVHGAMELQVQTGKDAPSNCVVYPSSQ
DSENITAAALATGACIVGILCLPLILLLVYKQRQAASNRRRAQELVRMDSNIQGIENPGFEAS
PPAQGIPPEAKVRHPLSYVAQRQPSESRHLLSEPSTPLSPPPGDVFVFFPSLDPVPDSPNFEVI

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 190-216

FIGURE 85

CCCCACCGCGTCCGCGCCTCTCCCTCTGGACCTTCCTCGTCTCCATCTCTCCCTCT
TTCCCCCGCGTTCTCTTCCACCTTCTCTTCTTCCCACCTTAGACCTCCCTTCCTGGCCCTCC
TTTCCTGCCAACCGCTGCTTCGGCCCTTCTCCGACCCGCTAGCAGCAGACCTCCCTGG
GGTCTGTGGGTTGATCTGTGGCCCTGTGCCTCCGTGTCCTTCTGTCCTCCCTTCCTCCGA
CTCCGCTCCCGGACCAGCGGCCTGACCTGGGAAAGGATGGTCCCAGGTGAGGGTCTC
TCCTCTTGCTGGGACTCGCGCTGCTCTGGTCCCCCTGGATCCACGCTCGAGCCCGCC
AGACATGTTCTGCCTTCCATGGGAAGAGATACTCCCCCGGAGAGCTGGCACCCCTACT
TGGAGCCACAAGGCTGATGTACTGCCTGCCTGTACCTGCTCAGAGGGCGCCATGTGAGT
TGTTACCGCCTCCACTGTCCGCCTGCACTGCCCCCAGCCTGTGACGGAGGCCACAGCAATG
CTGTCCCAAGTGTGGAACCTCACACTCCCTGGATCCGGGCCCCACCAAAGTCTGCC
AGCACAA~~CGGGACC~~ATGTACCAACAGGAGAGATCTCAGTGCCTGAGCTGTTCCCTCC
CGCCTGCCAACCACAGTGTGCCTCTGCAGCTGCACAGAGGGCCAGATCTACTGCC
AACCTGCCCGAACCAGGCTGCCAGCACCCCTCCACTGCCAGACTCTGCTGCCAACCT
GCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGACAGTGTGAGCGCTCCATGGGTG
AGACATCCTCAGGATCCATGTTCAGTGATGCTGGAGAAAGAGAGGGCCGGCACCCAGC
CCCCACTGGCCTCAGGCCCCTGAGCTCATCCCTGCCACTCAGACCCAAGGGAGCAG
GCAGCACAACTGTCAAGATGTCGTAAGGGAGAAACATAAGAGCCTGTGCAGGGGG
AAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCTTCCGTGCCTGGCCCTTGGCCCTG
CATCCTATGCACCTGTGAGGATGCCGCCAGGACTGCCAGCGTGTGACCTGTCCACCGAGT
ACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGTGCAAGATTGCCAGAGGACAAA
GCAGACCCCGGCCACAGTGAGATCAGTCTACCAGGGTGTCCCAAGGCACCGGGCGGGTCT
CGTCCACACATCGGTATCCCAAGCCAGACAACCTGCGTGCTGGCCCTGGAACACGAGG
CCTCGGATGGTGGAGATCTACCTGTGAGAGCTGGTAAAGATGAGGAAACTGAGGCTCAG
AGAGGTGAAGTACCTGGCCAAGGCCACACAGCCAGAATCTTCAACTGACTCAGATCAAGA
AAGTCAGGAAGCAAGACTTCCAGAAAGAGGCAAGCAACTCCGACTGCTCGTGGCCCCAC
GAAGGTCACTGGAACGTCTTCCAGGCCAGACCCCTGGAGCTGAAGGTCAGGGCCAGTCCAGA
CAAAGTGACCCAAGACATAACAAAGACTACAGTGTGCAGATATGAGCTGTATAATTGGTGT
ATTATATATTAATAAAAGAAGTGTGCATACCAGTGTGCAGATATGAGCTGTATAATTGGTGT

FIGURE 86

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64902
><subunit 1 of 1, 451 aa, 1 stop
><MW: 49675, pI: 7.15, NX(S/T): 1
MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCT
CSEGAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIF
SAHELFPSRLPNQCVCILCSCTEGQIYCGLTTCPPEPGCPAPLPLPDSCCQACKDEASEQSDEED
SVQSLHGVRHPQDPCSSDAGRKRGPGTAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKH
KKACVHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKC
CKICPEDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLV
KDEETEAQRGEVPGPRPHSQNLPLSDQESQEARNPERGTALPTARWPPRSLERLPSPDPG
AEGHGQSRQSDQDITKT
```

Signal peptide:
amino acids 1-25

86/270

FIGURE 87

CTAGCCTGCGCCAAGGGTAGTGAGACCGCGCGCAACAGCTGC GGCTGGGGAGCTCCC
GTGGCGCTCCGCTGGCTGTGCAGGCCATGGATTCTTGC GGAAATGCTGATCTCAGT
CGCAATGCTGGCGCAGGGCTGGCTGGCTACGCCCTCGTTATCGTACCCGGAG
AGCGGCGGAAGCAGGAAATGCTAAAGGAGATGCCACTGCAGGACCAAGGAGCAGGGAGGAG
GCGGCCAGGACCCAGCAGCTATTGCTGGCCACTCTGCAGGAGGCAGCGACCACGAGGAA
CGTGGCTGGAGGAAGAACTGGATGGTGGCGGAAGGCGGCCAGCGGAGGTCACCGT
GAGACCGGACTTGCCTCCGTGGCGCCGGACCTGGCTTGGCGCAGGAATCCGAGGCAGCC
TTTCTCCTTCGTGGCCAGCGGAGAGTCCGGACCGAGATAACCATGCCAGGACTCTCCGGGG
TCCTGTGAGCTGCCGTGGGTGAGCACGTTCCCCAACCCCTGGACTGACTGCTTAAGGT
CCGCAAGGCGGGCCAGGGCCAGACCGAGTCGGATGTGGTGAAGTGAAGAACCAATAAAA
TCATGTTCTCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAA

FIGURE 88

MDSLRKMLISVAMLGAGAGVGYALLIVTPGERRKQEMLKEMPLQDPRSREEAARTQQLLLA
TLQEAAATTQENVAWRKNWMVGEGGASGRSP

Signal peptide:
amino acids 1-18

88/270

FIGURE 89

CAGGAGAGAAGGCACCGCCCCCACCCGCCCTCCAAAGCTAACCTCGGGCTTGAGGGAAAGA
GGCTGACTGTACGTTCTTCTACTCTGGCACCCTCTCCAGGCTGCCATGGGGCCCAGCACC
CCTCTCCTCATCTTGTCTTGTCTATGGTCGGGACCCCTCCAAGGACAGCAGCACCACT
TGTGGAGTACATGGAACGCCGACTAGCTGCTTAGAGGAACGGCTGGCCAGTGCCAGGACC
AGAGTAGTCGGCATGCTGCTGAGCTGCGGGACTTCAAGAACAGATGCTGCCACTGCTGGAG
GTGGCAGAGAAGGAGCGGGAGGCCTCAGAACTGAGGCCACACCATTCCGGGAGGTGGA
TCGTCTGGAGCGGGAGGTAGACTATCTGGAGACCCAGAACCCAGCTCTGCCCTGTGTAGAGT
TTGATGAGAAGGTGACTGGAGGCCCTGGGACCAAAGGCAAGGGAAAGGAATGAGAAGTAC
GATATGGTACAGACTGTGGCTACACAATCTCAAGTGAGATCAATGAAGATTCTGAAGCG
ATTTGGTGGCCAGCTGGTCTATGGACCAAGGATCCACTGGGCAAACAGAGAAGATCTACG
TGTTAGATGGACACAGAAATGACACAGCCTTGTCTTCCAAAGGCTGCGTACTTCACCCCT
GCCATGGCTGCCCGGAAAGCTTCCGAGTCCGGGTGCCCTTCCCTGGTAGGCACAGGGCA
GCTGGTATATGGTGGCTTCTTTATTTGCTGGAGGCCTCTGGAAGACCTGGTGGAGGTG
GTGAGATGGAGAACACTTGCAGCTAACAAATTCCACCTGGCAAACCGAACAGTGGTGGAC
AGCTCAGTATTCCCAGCAGAGGGCTGATCCCCCCTACGGCTGACAGCAGACACCTACAT
CGACCTGGTAGCTGATGAGGAAGGTCTTGGGCTGTCTATGCCACCCGGAGGATGACAGGC
ACTTGTGCTGGCCAAGTTAGATCCACAGACACTGGACACAGAGCAGCAGTGGACACACCA
TGTCCCAGAGAGAACGAGGCTGAGGCTGCCCTTGTCTATGTGGACCCCTATGCGTCTATAA
CACCCGTCTGCCAGTCGGGCCGCATCCAGTGCTCTTGTATGCCAGCGGCACCCCTGACCC
CTGAACGGGCAGCACTCCCTATTTCCCGAGATATGGTGCCTATGCCAGCCTCCGCTAT
AACCCCCGAGAACGCCAGCTATGCCCTGGATGATGGCTACAGATGTCTATAAGCTGGA
GATGAGGAAGAACAGGGAGGTTTGAGGAGCTAGCCTGTTTGCATCTTCACTC
CCATACATTATATTATATCCCCACTAAATTCTTGTCTCATTCTCAAATGTGGCCAG
TTGTGGCTCAAATCCTCTATATTAGCCAATGCCAATCAAATTCTTCAGCTCCTTGT
TCATACGGAACCTCAGATCCTGAGTAATCCTTGTAGGCCAGAGTCAAAACCCCTCAATG
TCCCTCCTGCTCTCCGCCCATGTCAACAAATTCTCAGGCTAACGGATGCCAGGCCAGG
GCTCTAACCTTGTATGCCAGGCCAGGGAGCAGCAGCAGTGTCTTCCCTCAGAGTG
ACTTGGGGAGGGAGAAATAGGAGGAGACGTCCAGCTCTGCTCTCTTCCACTCCTCC
TCAGTGTCTGAGGAACAGGACTTCTCCACATTGTTGTATTGCAACATTGCAATTAAA
AGGAAAAATCCACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

FIGURE 90

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64905
<subunit 1 of 1, 406 aa, 1 stop
<MW: 46038, PI: 6.50, NX(S/T): 2
MGPSTPLLILFLLSWGPLQQQHHLVEYMERRLAALEERLAQCQDQSSRHAELRDFKNKM
LPLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVVTGGPGTKGKGR
RNEKYDMVTDCGYTISQVRSMKILKRGFGPAGLWTKDPLGQTEKIVVLDGTQNDTAFVFPR
RDFTLAMAARKASRVRFPPWVGTGQLVYGGFLYFARRPPGRPGGGEMENTLQLIKFHLAN
RTVVVDSSVFAEGLIPPYGLTADTYIDLVADEEGLWAVYATREDDRHLCLAKLDPQTLDTEQ
QWDTPCPRENAEAASFVICGTLVYVYNTRPASRARIQCSFDASGTLTPERAALPYFPRRYGAH
ASLRYNPRERQLYAWDDGYQIVYKLEMRKKEEEV
```

Important features:**Signal peptide:**

amino acids 1-21

N-glycosylation sites.

amino acids 177-180, 248-251

FIGURE 91

GACAGCTGTGTCAGATGGAGTAGACTCTCAGAACAGCGCAGTTGCCCTCCGCTACGCAG
 AGCCTCTCCGGTCTCCGCACCTTGAGCATTAGGCCAGTTCTCTCTCTCTAATCCAT
 CCGTCACCTCTCTGTATCCGTTTCATGCCGTGAGGTCCATTACAGAACACATCCATGG
 CTCTCATGCTCAGTTGGTCTGAGTCTCTCAAGCTGGATCAGGCAGTGGCAGGTGTT
 GGGCCAGACAAGCCTGTCAGGCCATGAAAGTGCCTTCAGGGCCAGTTCTCTAGCGTGG
 TCCACCTCTACAGGGACGGGAAGGACAGCCATTATGCAGATGCCACAGTATCAAGGCAGG
 ACAAAACCTGGTAAGGATTCTATTGGGAGGGGCCATCTCTGAGGCTGAAACATTAC
 TGTGTTGGATCTGGCCTATGGGTGCAGGATTAGTCCCAGTCTTACTACCAGAAGGCCA
 TCTGGGAGCTACAGGTCTAGCACTGGCTCAGTCTCTCATTTCCATCACGGGATATGTT
 GATAGAGACATCCAGCTACTCTGTCACTCCTCGGGCTGGTCCCCGGCCACAGCGAAGTG
 GAAAGGTCCACAAGGACAGGATTGTCACAGACTCCAGGACAAACAGAGACATGCATGGCC
 TGTTGATCTGGAGATCTCTGACCGTCCAAGAGAACGCCGGAGCATATCTGTTCCATG
 CGGCATGCTCATCTGAGCCGAGAGGTTGAATCCAGGGTACAGATAGGAGATACTTTTCA
 GCCTATATCGGGCACCTGGCTACCAAAGTACTGGAAATACTCTGCTGTGGCTATTTTG
 GCATTGTTGGACTGAAGATTCTCTCCAAATTCCAGTGGAAATCCAGGCGGAACGGAC
 TGGAGAAGAACGACGGACAGGCAAGAATTGAGAGACGCCGGAAACACGCAGTGGAGGTGAC
 TCTGGATCCAGAGACGGCTCACCCAAAGCTCTGGTTCTGATCTGAAACACTGTAACCCATA
 GAAAAGCTCCCAGGAGGTGCCTCACTCTGAGAAGAGATTACAAGGAAGAGTGTGGTGGCT
 TCTCAGAGTTCCAAGCAGGGAAACATTACTGGAGGTGGACGGAGGACACAATAAAAGGTG
 GCGCGTGGGAGTGTGCCGGATGATGTGACAGGAGGAAGGAGTACGTGACTTTGTCTCCG
 ATCATGGGTACTGGTCTCAGACTGAATGGAGAACATTGTATTTCACATTAAATCCCCGT
 TTATCAGCGTCTTCCCAGGACCCACCTACAAAATAGGGTCTTCTGGACTATGAGTG
 TGGGACCATCTCTTCTTCAACATAATGACCGAGTCCCTTATTATACCTGACATGCGGT
 TTGAAGGCTTATTGAGGCCCTACATTGAGTATCCGCTCTATAATGAGCAAATGAAACTCCC
 ATAGTCATCTGCCAGTCACCCAGGAATCAGAGAAAGAGGCCCTTGGCAAGGGCTCTGC
 AATCCCAGAGACAAGCAAAGTGAAGTCTCTCACAGGCAACCAAGGCCCTCTCCCCAGGG
 GTGAAATGTAGGATGAATCACATCCACATTCTCTTGTGGATATTAAGGCTCTCTCCCA
 GATCCAAAGTCCCGCAGCCGGCAAGGTGGCTCCAGATGAAGGGGGACTGGCTGTC
 ACATGGGAGTCAGGTGTATGGCTGCCCTGAGCTGGAGGGAGAAGGCTGACATTACATT
 AGTTTGTCTCACTCCATCTGCTAAGTGAATGAAATACCACCTCTCAGGTGAAGAACCG
 TCAGGAATTCCCATCTCACAGGCTGTGGTAGAATTAGTAGACAAGGAATGTGAATAATGC
 TTAGATCTTATTGATGACAGAGTGTATCCTAATGGTTGTTCAATTACACTTTCAGTA
 AAAAAA

9/1278

FIGURE 92

MALMLSLVLSLLKLGSQWQVFGPDKPQVQALVGEDAASFCLSPKTNAEAMEVRFFRGQFSS
VVHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQK
AIWELQVSALGSVPPLISITGYVDRDIQLLCQSSGFPRPTAKWKGPQGQDLSTDSTNRDMH
GLFDVEISLTQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLF
FGIVGLKIFFSKFQWKIQAEQELDWRRKHGQAELRDAKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFRKSVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTL
PDHGYWVLRLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLC
RFEGLLRPYIEYPYNEQNGTPIVICPVTQESEKEASQRASAIPETSNSESSSQATTPFLP
RGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

92/270

FIGURE 93

GCGATGGTGCGCCGGTGGCGGTGGCGGCGGGTGCAGGGCTTCCTGGTCGGATTGCA
 ACGAGGAGAAGATGACTGACCAACCAGCTGGCTGAATGAATGAATGGCGAGCCGAGCGC
CATGAGGAGCCTGCGAGCCTGGCGCCTCGCCCTGTTGTGCTGCGCCGCCGCCGCC
 CGTCGCCTCAGCCGCTCGCGGGGAATGTCACCGGTGGCGGGGGCCGCCGGGCAGGTG
 GACGCGTCGCCGGGCCCCGGTTGCGGGCGAGCCCAGCCACCCCTCCCTAGGGCGACGGC
 TCCCACGGCCCAGGCCAGGACCGGGCCCCCGCGGCCACCGTCCACCGACCCCTGGCTG
 CGACTTCTCCAGCCCACTCCCGAGACCACCCCTCTTGGGCACTGCTGGACCCCTTCC
 ACCACCTTCAGGCCCGCTGGCCCTCGCGACCACCCCTCCCGCGGGCGAACGCACCTC
 GACCACCTCTAGGCCCGACCAGACCGCGCCGACCACCCCTTCGACGACCACGGCCCG
 CGCCGACCCCTGTAGCGACCAACCGTACCGGCCACGACTCCCCGGACCCCGACCCCC
 GATCTCCCAGCAGCACAGCAGCGTCCCTCCCCACCTGCCACCGAGGCCCCCTC
 TTGCGCTCTCCAGAGTATGTACTGCTGTGGTGGAAAGCTGAATGTGAATCGCT
 GCAACAGACACAGGGCAGTGTGAGTGTGCGGCCAGGTTATCAGGGCTTACTGTGAAACC
 TGCAAAGAGGGCTTTACTAAATTCAACTCTGGCTCTGTCAAGCATGTGACTGTGACTCC
 ACATGGAGCTCTAGCATACCGTCAACAGGTAAACCAACAGAGGGTGGAACTGAAGTTATT
 TTATTTAGCAAGGGAAAAAAAAGGCTGCTACTCTCAAGGACATACTGGTTAAACAAAG
 GAGGATGGGGTCATAGATTACAAAATTTATATACTTTATTCTCTTACTTTATAGT
 TATATTTAATGTCAGGATTTAAAAACATCTAATTACTGATTAGTTCTTCAAAAGCACTAG
 AGTCGCCAATTCTCTGGGATAATTCTGTAAATTCTCATGGGAAAAAAATTATTGAAGAAT
 AAATCTGCTTCTGGAAGGGTTTCAGGATGAAACCTGCTAGGAGGTTAGAAATGTTCTT
 ATGTTTATTAAATATACCAATTGGATTGAGGAATTGTTGTTGGTTTATTCTCTCTA
 ATCAAATTCTACATTGTTCTTGACATCTAAAGCTTAACTGGGGTACCTTAATT
 TTTAAACTAGTGGTAAGTAGCTGGTTTACTCTATTACAGTACATTGAGACCAAAAG
 TAGATTAAGCAGGAATTATCTTAAACTATTATGTTATTGAGGTTAGAAATCTAGTGG
 ATAATGTAAGTGTATCTAAGCATTTGCTTGTACTGCACTGAAAGTAATTATTCTT
 TATGTGAGGCACCTGGTTTTGTGGACCCAAAGTCAAAACTGAAGAGACAGTTAAAT
 AATGAAAAAAATAATGACAGGTTAACTCAGTGTAACTGGGTATAACCCAAGATCTGCTG
 CACTTACGAGCTGTGTTCTGGCAAGTAATTCTTCACTGAGCTTGTCTCTCAAG
 GTTGTGTTGAGATTAAATGAGGTTAGATATATAAAATGCTAGCACATGTCACTCAATAAA
 TTCTGGTTTTAATTCAAAGGAATTATGGACTGAAATGAGAGAACATGTTAAAGA
 ACTTTAGCTCTGACAAAGAAGTGTAACTTACTGACTAAATATTAAATGCTTTA
 TAAATGATATTAACTGTTATGGAATATTGTTATCATATTGAGTTATTAAAAATGTTAGAAG
 AGGCTGGCGCGGTGGCTACGGCTGTAATCCTAGCAGCTTGGAGGCAAGGCGGGTGGAT
 CACTTGAGGCACAGGAGTTAGATGAGGCTGGCCAGCACAGTGAACACCCGCTCTACTAAA
 AATACAAACAAATTAGCTGGCGTGGTGGCACACACCTGTAGTCCCAGCTACTCGGGAGGCT
 GAGGCAGGAGAATCGGTTGAAACCCGGAGGTGGAGGTTGCACTGAGCTGAGATCGCGCCACT
 GCACTCCAGCCTGGTGGAGAGAGGGAGACTCTGTCTTAAAAAAAAAAAAAA

FIGURE 94

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64952
><subunit 1 of 1, 258 aa, 1 stop
><MW: 25716, pI: 8.13, NX(S/T): 5
MRSLPSLGGIALLCCAAAAAAVASAASAGNVVTGGGAAGQVDASPGLRGEPSHPFFRATA
PTAQAPRTGPPRATVHRPLAATSPAQSPETTPLWATAGPSSTTFQAPLGPSPTPPAEERTS
TTSQAPTRPAPTLSTTGAPPTPVATTVPAPTPRTPTPDLPSSNSSVLPTPPATEAPS
SPPPEYVCNCVVGSLSNVNRCNQTTGQCECRPGYQGLHCETCKEGFYLNYSGLCQPCDCSP
HGALSIPCNR
```

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 30-33, 172-175, 195-198, 208-211, 235-238

EGF-like domain cysteine pattern signature.

amino acids 214-226.

94/270

FIGURE 95

TGCGGCCAGTGTAGACCTGGGAGGATGGCGGCCCTGCTGCTGGCTGCTTTCTGGCTTG
TCTCGGTGCCAGGGCCAGGCCGTGGTTGGGAAGACTGGACCTGAGCAGCTTCTGG
CCCTGGTACGTGCTTCGGTGGCCTCCGGAAAGGGCTTGCCATGGAGAAGGACATGAA
GAACGTCGGGGTGGGGTGGTGGTGAACCTCACTCCAGAAAACAACCTGCAGCTGTCCCTC
AGCACGGGCTGGGAGGGTGTGACCAGAGTGTATGGACCTGATAAAAGCGAAACTCCGGATGG
GTGTTTGAGAATCCCTCAATAGCGTGCTGGAGCTCTGGGTGCTGGCCACCAACTCAGAGA
CTATGCCATCATCTTCACTCAGCTGGAGTTGGGACGAGCCCTAACACCGTGGAGCTGT
ACAGTCTGACGGAGACAGCCAGCCAGGAGGCCATGGGCTCTCACCAAGTGGAGCAGGAGC
CTGGGCTTCTGTACAGTAGCAGGCCAGCTGCAGAAGGACCTCACCTGTGCTCACAAGAT
CCTTCTGTGAGTGCTGCGTCCCCAGTAGGGATGGGCCACAGGGCTGTGACCTCGGCCA
GTGTCCACCCACCTCGCTCAGCGCTCCGGGGCCAGCACAGCTCAGAATAAGCGATT
CACAGCA

FIGURE 96

MGGLLLAALFLALVSVPRAQAVWLGRILDPEQLLGWPYVLAVASREKGFAMEKDMKNVVGVVVT
LTPENNLRTLSSQHGLGGCDQSVMIDLIRNSGWVFENPSIGVLELWVLATNFRDYAIIFTQL
EFGDEPFNTVELYSLTETASQEAMGLFTKWSRSLGFLSQ

Signal peptide:

amino acids 1-20

FIGURE 97

AACAGACGTTCCCTCGGGCCCTGGCACCTAACCAGACATGCTGCTGCTGCTGCTGCC
CCTGCTCTGGGGAGGGAGGGCGGAAGGACAGACAAGTAAACTGCTGACGATGCAGAGTT
CCGTGACGGTGAGGAAGGCCCTGTGTCCATGTGCCCTGCTCTCCTACCCCTCGCAT
GGCTGGATTACCCCTGGCCAGTAGTCATGGCTACTGGTCCGGAAAGGGCCAATACAGA
CCAGGATGCTCCAGTGGCACAAACAACCCAGCTGGCAGTGTGGAGGAGACTCGGGACC
GATTCCACCTCCTGGGGACCCACATACCAAGAATTGACCCCTGAGCATTAGAGATGCCAGA
AGAAGTGATGGGGAGATACTCTTCGTATGGAGAAAGGAATGATAAAATGGAATTATAA
ACATCACCGGCTCTGTGAATGTGACAGCCTGACCCACAGGCCAACATCCTCATCCCAG
GCACCCCTGGAGTCCGGCTGCCCTCAGAACATCTGACCTGCTCTGTGCCCTGGCCTGTGAGCAG
GGGACACCCCCCTATGATCTCTGGATAGGACCTCCGTGTCCTGGACCCCTCCACAC
CCGCTCCTCGGTGCTCACCTCATCCACAGCCCCAGGACCATGGCACCGCTCACCTGTC
AGGTGACCTTCCCTGGGCCAGCGTGACCAAGAACAGCGTCCATCTAACGTGCTTAC
CCGCCTCAGAACTTGACCATGACTGTTCCAAGGAGACGGCACAGTATCCACAGTCTTGGG
AAATGGCTCATCTGTCACTCCAGAGGGCCAGTCTCTGCGCCTGGTCTGTGAGTTGATG
CAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGAGAGGCCCTGACCCCTGTCCCC
TCACAGCCCTCAAACCCGGGGTGTGGAGCTGCCCTGGTGCACCTGAGGGATGCAGCTGA
ATTCACCTGCAGAGCTCAGAACCCCTCTCGGCTCTCAGCAGGTCTACCTGAACGTCTCCCTGC
AGAGCAAAGCCACATCAGGAGTGACTCAGGGGGTGGTGGAGCTGGAGGCCACAGCCCTG
GTCTTCCGTCTTCTGCGTCATCTCGTTGTAGTGAGGTCTGAGGAAGAAATCGGCAAG
GCCAGCAGCGGGCGTGGGAGATA CGGCATAGAGGATGCAAACGCTGTCAGGGTTCAGCCT
CTCAGGGGCCCTGACTGAACCTTGGCAGAACAGACAGTCCCCAGACCAGCCTCCCCAGCT
TCTGCCGCTCTCAGTGGGAGAGCTCCAGTATGCATCCCTCAGCTCCAGATGGT
GAAGCCTTGGGACTCGCGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCC
ACAGATGAGAAACTGCAGAGACTCACCTGATTGAGGGATCACAGCCCTCCAGGCAAGGGA
GAAGTCAGAGGCTGATTCTGTAGAATTAAACAGCCCTAACGTGATGAGCTATGATAACACT
ATGAATTATGTGAGAGTGAAGAACACAGGCTTAGAGTCAAAGTATCTCAAACCTGAAT
CCACACTGTGCCCTCCCTTTATTTTTAACTAAAAGACAGACAAATTCTA

FIGURE 98

MLLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPSCFSYPSHGWIYPGPVVHGYWF
REGANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLISRDAARRSDAGRYFFRMEKG
SIKWNYKHHRLSVNVNTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVS
PLDPSTTRSSVLTLIPQPODHGTSLTQCVTFPGASVITNKTVHLNVSYPPQNLMTVFQGDG
TVSTVLGNGSSLSLPEGQLRLVCAVDADSNPPARLSLWRGLTLCPSQPSNPGVLELPWV
HLRDAAEFTCRAQNPLGSQQVYNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVRS
CRKKSARPAAGVGDTGIEDANAVRGASASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYA
SLSFQMVKPWDSRGQEATDTEYSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 351-370

FIGURE 99

GACGCCAGTGACCTGCCGAGGTGGCAGCACAGACTCTGGAGATGAAGACCCTGTTCTG
GGTGTACGCTCGGCCTGGCGCTGCCCTGTCCTCACCCCTGGAGGAGGAGGATATCACAGG
GACCTGGTACGTGAAGGCCATGGTGGTCGATAAGGACTTCCGGAGGACAGGAGGCCAGGA
AGGTGTCCCCAGTGAAAGGTGACAGCCCTGGCGGTGGAAGTTGGAAGCCACGTTCACCTTC
ATGAGGGAGGATCGGTGCATCCAGAAGAAAATCCTGATGCGGAAGACGGAGGAGCCTGGCAA
ATACAGCGCTATGGGGCAGGAAGCTCATGTACCTGCAGGAGCTGCCAGGAGGGACCACT
ACATCTTTACTGCAAAGACCAGCACCATGGGGCCTGCTCCACATGGAAAGCTTGTGGT
AGGAATTCTGATACCAACCAGGAGGCCCTGGAAGAATTAAAGAAATTGGTGCAGCGCAAGGG
ACTCTCGGAGGAGGACATTTCACGCCCTGCAGACGGGAAGCTGCGTCCGAACACTAGG
CAGCCCCCGGGTCTGCACCTCCAGAGCCCACCCCTACCACAGACAGAGCCGGACCACCT
GGACCTACCCCTCCAGCCATGACCCCTCCCTGCTCCACCCACCTGACTCCAATAAGTCCT
TTTCCCCAA

FIGURE 100

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65404
<subunit 1 of 1, 170 aa, .1 stop
<MW: 19457, pI: 9.10, NX(S/T): 0
MKTFLGVTLGLAAALSFITLEEEEDITGTWYVKAMVVDKDFPEDRRPRKVSPVKVTALGGGKL
EATFTFMREDRCIQKKILMRKTEEPGKYSAYGGRKLMYLQELPRRDHYIFYCKDQHHGGLLH
MGKLVGRNSDTNREALEEFKKLVQRKGLSEEDIFTPLQTGSCVPEH
```

Important features:

Signal peptide:

amino acids 1-17

100/270

FIGURE 101

GTTCCGCAGATGCAGAGGTTGAGGTGGCTGCGGGACTGGAAGTCATCGGGCAGAGGTCTCAC
AGCAGCCAAGGAACCTGGGCCGCTCTCCCCCTCCAGGCCATGAGGATTCTGCAGTTAA
TCCTGCTTGCTCTGGCAACAGGGCTTGTAGGGGAGAGACCAGGATCATCAAGGGTTGGAG
TGCAAGCCTCACTCCCAGCCCTGGCAGGCAGCCCTTGTGAGAAGACGCCGCTACTCTGTGG
GGCGACGCTCATGCCCCAGATGGCTCCTGACAGCAGCCACTGCCTCAAGCCCCGCTACA
TAGTTCACCTGGGGCAGCACAAACCTCCAGAAGGGAGGGCTGTGAGCAGACCCGGACAGCC
ACTGAGTCCTCCCCACCCGGCTTCAACAACAGCCTCCAAACAAGACACCAGCAATGA
CATCATGCTGGTGAAGATGGCATGCCAGTCTCCATCACCTGGGCTGTGCGACCCCTCACCC
TCTCCTCACGCTGTGTCAGTGCCTGACAGCTGCCCTATTCCGGCTGGGCAGCACGTCC
AGCCCCCAGTTACGCCCTGCCACACCTTGCATGCCAACATCACCATCATTGAGCACCA
GAAGTGTGAGAACGCCAACCCGGCAACATCACAGACACCAGTGTGTGCCAGCGTGCAGG
AAGGGGGCAAGGACTCCTGCCAGGGTACTCCGGGCCCTTGGTCTGTAACCAGTCTCTT
CAAGGCATTATCTCCTGGGCCAGGATCCGTGTGCGATCACCGAAAGCCTGGTCTACAC
GAAAGTGTCAAATATGTGGACTGGATCCAGGAGACGATGAAGAACAATTAGACTGGACCA
CCCCACAGCCCATCACCCCTCATTCCACTTGGTGTGTTCTGTTCACTCTGTTAAAT
AAGAAACCTAAGCCAAGACCCCTACGAACATTCTTGGCCTCTGGACTACAGGAGATG
CTGTCACTTAATAATCAACCTGGGTTGAAATCAGTGAGACCTGGATTCAAATTCTGCCCT
GAAATATTGTGACTCTGGGAATGACAACACCTGGTTGTTCTGTTGATCCCCAGCCCCA
AAGACAGCTCTGGCCATATATCAAGGTTCAATAAAATATTGCTAAATGAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

FIGURE 102

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65405
<subunit 1 of 1, 250 aa, 1 stop
<MW: 27466, pI: 8.87, NX(S/T): 4
MRILQLILLALATGLVGGETRIIKGFECKPHSQPWQAALFEKTRLGCATLIAPRWLLTAH
CLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSIW
AVRPLTLSSRCVTAGTSCLISGWGSTSSPQLRLPHTLRCANITIIIEHQKCENAYPGNITDTM
VCASVQEGGKDSCQGDGGPLVCNQSLQGIISWGQDPCAITRKPGVYTKVCKYVDWIQETMKNN
```

Important features:

Signal peptide:

amino acids 1-18

Serine proteases, trypsin family, histidine active site.

amino acids 58-63

N-glycosylation sites.

amino acids 99-102, 165-168, 181-184, 210-213

Glycosaminoglycan attachment site.

amino acids 145-148

Kringle domain proteins.

amino acids 197-209, 47-64

Serine proteases, trypsin family, histidine protein

amino acids 199-209, 47-63, 220-243

Apple domain proteins

amino acids 222-249, 189-222

FIGURE 103

GAGCAGTGTCTGCTGGAGCCGATGCAAAAACCATGCATTCTATTCA
GATTCAATTGTT
TCTTTATCTGTGGGCCCTTTACTGCTCAGAGACAAAGAAAGAGGAGAGCACC
GAAGAA
GTGAAAATAGAAGTTTGATCGTCCAGAAA
ACTGCTCTAACGACAAGCAAGAAGGGAGACCT
ACTAAATGCCATTATGACGGCTACCTGGCTAAAGACGGCTCGAAATTCTACTGCAGCC
GA
CACAAAATGAAGGCCACCCAAATGGTTGTTCTGGTGTGGCAAGTCATAAAAGGC
CTA
GACATTGCTATGACAGATATGTGCCCTGGAGAAAAGCGAAAAGTAGTTAAC
CCCCCTTCATT
TGCATACGGAAAGGAAGGCCTATGCAGAAGGCAAGATTCCACGGATGCTACATTGATTTG
AGATTGAAC
TTATGCTGTGACCAAAGGACCACGGAGCATTGAGACATTAAACAAATAGAC
ATGGACAATGACAGGCAGCTCTCTAAAGCCGAGATAAACCTCTACTTGCAAAGGAATTG
AAAAGATGAGAACGCCACGTGACAAGTCATATCAGGATGCAGTTAGAAGATATTTAAGA
AGAATGACCATGATGGTGTGGCTTCATTCTCCAAAGGAATACAATGTATA
ACCAACACGAT
GAACTAGCATATTGTATTCTACTTTTTAGCTATTACTGTACTTTATGTATA
AAACAAAGTC
ACTTTCTCCAAGTTGATTTGCTATTCTCCCTATGAGAAGATATTTGA
TCTCCCCAATACATTGATTTGGTATAAAATGTGAGGCTGTTTGCAAAC
TTAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 104

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65406
<subunit 1 of 1, 222 aa, 1 stop
<MW: 25794, pI: 6.24, NX(S/T): 1
MPKTMHFLFRRFIVFFYLWGLFTAQRQKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDG
YLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIIPPSFAYGKEGY
AEGKIPPDATLIFEIELYAVTKGPRS IETFKQIDMDNDRQLSKAEINLYLQREFEKDEKPRD
KSYQDAVLEDIFKKNDHDGDFISPKEYNVYQHDEL
```

Important features:

Endoplasmic reticulum targeting sequence.
amino acids 219-222

N-glycosylation site.
amino acids 45-48

FKBP-type peptidyl-prolyl cis-trans isomerase
amino acids 87-223, 129-142

EF-hand calcium-binding domain proteins
amino acids 202-214, 195-214

104/1270

FIGURE 105

CAGAAATGCAGGGACCATTGCTTCTTCCAGGCCTGTGCTTGAGCCTCTTGGAGCT
GTGACTCAGAAAACCAAAACTTCCTGTGCTAAGTGCCCCCAAATGCTTCTGTGTCAATAA
CACTCACTGCACCTGCAACCATGGATATACTTCTGGATCTGGCAGAAAATTCACATTCC
CCTTGGAGACATGTAAACGCCAGGCATGGTGGCTCGGCCTGTATCCCAGTTCTTGGGAAG
CCAAGGCAGGTGGATCACCTGAGGTCAAGGAGTTGAGACCAGCCTGGCAACATAGTGAAAC
CCCGTGTCTACTAAAAATACAAAATCAGCCGGCGTGGTGGTGCATGCCTGCAATCCCAGT
TACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCTCAGGAGGCAGAAGTTGCAGTGAACCC
AGATCCTGCCATTGCACTCCAGCATGGATGACAGAGCAAGACTCCGTCTAAAAAGAAAAGA
TAGTTTCTTGTTCATTCGCGACTGCCCTCTCAGTGTTCCTGGATCCCCTCCAAATAA
AGTACTTATATTCTC

FIGURE 106

MQGPLLLPGLCFLLSLFGAVTQKTKTSCAKCPPNASCVNNNHTCTCNHGYTSGSGQKLFTFPL
ETCNARHGGSRL

Signal peptide:
amino acids 1-18

106/270

FIGURE 107

CAAGCAGGTATCCCTGGTGACCTCAAAGAGAAGCAGAGAGGGCAGAGGTGGGGCAC
AGGGAAAGGGTGAACCTCTGAGATTCCCCTTTCCCCAGACTTGGAAAGTGA~~CCCACCATGG~~
GGCTCAGCATTTTGCTCCTGTGTTCTGGCTCAGCCAGGCAGCCACACCGAAGATT
TTCAATGGCACTGAGTGGCGTAACCTCACAGCCGTGGCAGGTGGGCTGTTGAGGGCAC
CAGCCTGCGCTGCGGGGTGTCCTTATGACCACAGGTGGGTCTCACAGCGGCTCACTGCA
GCGGCAGCAGGTACTGGGTGCGCCTGGGAAACACAGCCTCAGCCAGCTGACTGGACCGAG
CAGATCCGGCACAGCGGCTCTCTGTGACCCATCCGGTACCTGGAGGCCTCGACGAGCCA
CGAGCACGACCTCCGGCTGCTGCGCCTGCCGTCCGCTAACCGAGCGTTAAC
CCCTGCCCTGCCAATGACTGTGCAACCGCTGGCACCGAGTGCCACGTCTCAGGCTGGGC
ATCACCAACCACCCACGAA~~CCC~~ATCCGGATCTGCTCCAGTGCCTAACCTCTCCATCGT
CTCCCATGCCACCTGCCATGGTGTATCCGGAGAATCACGAGCAACATGGTGTGCAG
GCGGCGTCCCCGGGCAGGATGCCAGGGTGATTCTGGGGGCCCCCTGGTGTGGGGGA
GTCCCTCAAGGTCTGGTGCCTGGGTCTGTGGGCCCTGTGACAAGATGGCATCCCTGG
AGTCTACACCTATTTGCAAGTATGTGGACTGGATCCGGATGATCATGAGGAACAA~~TGAC~~
CTGTTTCCCTCACCTCCACCCCCACCCCTAACCTGGTACCCCTCTGCCCTCAGAGCACC
AATATCTCCTCCATCACTCCCCTAGCTCCACTCTTGGCCTGGGAACCTCTGGAACTT
TAACCTGCCAGCCCTTAAGACCCACGAGCGGGGTGAGAGAAGTGTGCAATAGTCTGGA
ATAAAATATAAATGAAGGAGGGCAAAAAAAAAAAAAA

FIGURE 108

MGLSIFLLLCSVLGLSQAATPKIFNGTECGRNSQPWQVGLFEGTSLRCGGVLIDHRWVLTAAH
CSGSRYWVRLGEHSLSQLDWTEQIRHSGFSVTHPGYLGASTSHEHDLRLRLPVRVTSSV
QPLPLPNDCATAGTECHVSGWGITNHPRNPFDPDLLQCLNLSIVSHATCHGVYPGRITSNMVC
AGGVPGQDACQGDGGPLVCGGVLQGLVSWGSVGPQDGIPGVVTTYICKYVDWIRMIMRNN

Signal peptide:

amino acids 1-17

FIGURE 109

GGGGCCACACG CAGCTAGCCGGAGCCCGGACCAGGC GCGCTGTGCCTCCTCGTCCCTCGC
CGCGTCCCGCGAAGCCTGGAGGCCGGAGGCCCGCGCTCGCAATGTCGGCGAGCTCAGCA
ACAGGTTCCAAGGAGGGAAGGCGTTGGCTTGCTAAAGCCCCGAGGAGAGGAGGCTGGCC
GAGATCAACCGGGAGTTCTGTGTGACAGAAGTACAGTGATGAAGAGAACCTTCCAGAAAA
GCTCACAGCCTTCAAAGAGAAGTACATGGAGTTGACCTGAACAATGAAGGGAGATTGACC
TGATGTCITTAAGAGGATGATGGAGAAGCTGGTGTCCCCAAGACCCACCTGGAGATGAAG
AAGATGATCTCAGAGGTGACAGGGAGGGTCAGTGACACTATATCCTACCGAGACTTGTGAA
CATGATGCTGGGAAACGGTGGCTGTCCTCAAGTTAGTCATGATGTTGAAGGAAAAGCCA
ACGAGAGCAGCCCCAAGCCAGTTGGCCCCCTCCAGAGAGAGACATTGCTAGCCTGCCCTGA
GGACCCCGCTGGACTCCCCAGCCTTCCCACCCCATACCTCCCTCCGATCTGCTGCCCTT
CTTGACACACTGTGATCTCTCTCTCATTTGTTGGCATTGAGGGTTGTTGTGTTT
TCATCAATGTCITTGTAAGCACAAATTATCTGCCTTAAAGGGGCTCTGGGTGGGGAAATCC
TGAGCCTTGGGTCCCCCTCTCTTCTTCCCTCTCCCGCTCCCTGTGCAAGAAGGGCTG
ATATCAAACAAAAACTAGAGGGGCAAGGGCCAGGGCAGGGGCTTCCAGCCTGTGTTCCC
CTCACTTGGAGGAACCAGCACTCTCATCCTTCAGAAAGTCTCAAGCAAGTTCAAGGCTC
ACTGACACTGGCTCTGACGGAGGACCCAGGCCACTGTGAGAAGACCTTGGAGTAGGGACAAGG
CTGCAAGGGCCTTTCGGGTTCTGGACAGTGCCTGGTCCAGTGCTCTGGTGTCAACCC
AGGACACACCCACTGGGGCCCCGCTGCCCCAGCTGATCCCCACTCATTCACACCTCTCT
CATCCTCAGTGATGTAAGGTGGGAAGGAAAGGAGCTGGCATTGGGAGCCCTCAAGAAGG
TACCAAGGAACCCCTCCAGTCCTGCTCTGGCCACACCTGTGCAAGGAGCTGAGAGGCAAG
CGTGCAAGCCCTACTGTCCCTTACTGGGGCAGCAGAGGGCTTCGGAGGCAGAAGTGAGGCTG
GGGTTTGGGGAAAGGTAGCTCAGTCAGTGCTGTTCCACCTTTAGGGAGGATACTGAGGGAC
CAGGATGGAGAATGAGGAGTAAATGCTCACGGAAAGTCAGCAGCACTGTAAGCCAAGA
CTGAGAAATACAAGGTTGCTTGCTGACCCAACTGCTGAAAAAAAAAAAAAA

WO 00/12708

PCT/US99/20111

FIGURE 110

MSGELSNRFQGGKAFGLLKARQERRLAEINREFLCDQKYSDEENLPEKLTAKEKYMEFDLN
NEGEIDLMSLKRMMEKLGVPKTHLEMKKMISEVTGGVSDTISYRDFVNMMILGKRSAVLKLVM
MPEGKANESSPKPVGPPPEDIASLP

FIGURE 111A

CGCGCTCCCCGCGCCTCCGGGCTCCACGCGTCTTGCCCCGAGAGGAGGCCTCC
 GGAGCGGGGCCCTGCACACC~~ATGGCCCCGGGTGGCAGGGGTCGGCGCCGCGTGC~~CGCC
 CGCCTGGCGTGGCTTGGCTGGCAGCGTCTGAGTGGGCTCCAGCGTGCCTGCC
 CACCAAGTGTACCTGCTCCGCTGCCAGCGTGGACTGCCACGGCTGGCCTCCGCGGGTTC
 CTGGGGCATCCCCGCAACGCTGAGCGCCTTGACCTGGACAGAAATAATACCAAGGATC
 ACCAAGATGGACTTCGCTGGCTCAAGAACCTCGAGTCTTGACATCTGGAAAGACAACCAGGT
 CAGCGTCACTCGAGAGGCGCTTCCAGGACCTGAAGCAGCTAGAGCAGTGCCTGAACA
 AGAATAAGCTGCACTTCCAGAATTGCTTTCCAGAGCACGCCAGCTACCAGACTA
 GATTGAGTGAACCGATCCAGGGATCCCGAGGAAGGGTTCCGCGGCATACCGATGT
 GAAGAACCTGCAACTGGACAACACATCAGCTGATTGAAGATGGAGCCTCCGAGCGC
 TGCAGATTGGAGATCCTTACCCCTCAACAAACAACATCAGTGCATCTGGTACCCAGC
 TTCAACCACATGCCAAGATCGCAACTCTGCGCTCCACTCCAACACCTCTACTGCGACTG
 CCACCTGGCTCTGGCTCTGGATTGGCTGCAGCGGACAGGAGCTGGCCAGTTCAACACTCT
 GCATGGCTCTGTGCAATTGAGGGCTCAACCTGGCGATGTGAGAAGAAGGGAGTACGTG
 TGCCCAGCCCCCCTCGGAGCCCCATCTGCAATGCCACTCATCTCTGCCCTTCGCC
 CTGCACGTGCAGCAATAACATGTGACTGTGAGGAAAGGGCTTGAGGAGATTCTGCCA
 ACTTGCGGAGGGCATCGTCAAATAACGCTAGAACAGAACCTCATCAAAGCCATCCCTGCA
 GGAGCCCTCACCCAGTACAAGAAACTGAAGCAATAGACATCAGCAAGAACATCAGATATCGGA
 TATTGCTCCAGATGCCCTTCAAGGGCTGAAATCACTCACATCGTGGCTGTATGGAAACA
 AGATCACCAGAGATTGCAAGGGACTGTTGATGGGCTGGTGTCCCTACAGCTGCTCCTCC
 AATGCCAACAGATCAACTGCCCTGGGTAACACGTTCTGAGGACCTGCAGAACCTCAACTT
 GCTCTCCCTGTATGACAACAAGCTGCAGACCATCAGCAAGGGCTTCTGCCCTCTGCACT
 CCATCCAGACACTCCACTTAGCCAAAACCCATTGTGTCGACTGCCACTTGAAGTGGCTG
 GCCGACTACCTCCAGGACAACCCATCGAGACAAGCGGGGCCGTCAGCAGCCCGCG
 ACTCGCAAACAAGGCCATCAGCCAGATCAAGAGCAAGAAGTCCGCTGTCAGGCTCCGAGG
 ATTACCGCAGCAGGTTCAAGCAGCGAGTGCTCATGGACCTGTTGCCCCGAGAACGTGCG
 TGTGAGGGCACGATTGTGACTGCTCAACCAGAAGCTGGCATCCAAAGCCACCTCCC
 TGAATATGTCACCGACCTGCGACTGAATGACAATGAGGTATCTGTTCTGGAGGCCACTGGCA
 TCTTCAAGAAGTTGCCAACCTGCGAAAATAATCTGAGTAACAATAAGATCAAGGAGGTG
 CGAGAGGGAGCTTCGATGGAGCAGCCAGCGTGCAGGAGCTGATGCTGACAGGGAACAGCT
 GGAGACCGTGACGGCCGCTGTTCCGTTGCGCATCCAAACCTTGTATGCTGAGGA
 GTAACTTGTCACTGAGTAATGACACCTTGGCCCTGAGTGGTGAAGACTGCTG
 TCCCTCTATGACAATCGGATCACCACCATCACCCCTGGGCCCTCACCACGCTTGTCTCC
 GTCCACCCATAACCTCCGTCCAACCCCTCAACTGCCACTGCCACCTGGCTGGCTCGGCA
 ACTGGTTGAGGAAGAGGCCATGTCAGTGGAAACCTTAGGTGCGAGAACCCATTTC
 AAGGAGATTCCCACCCAGGATGTGGCATCCAGGACTTACCTGTATGGCAACGAGGAGAG
 TAGCTGCCAGCTGAGCCCGCCTGCCAGGAGCAGTGCACCTGTATGGAGACAGTGGTGC
 GCAGCAACAAGGGCTCCGCCCTCCCCAGAGGCATGCCAAGGATGTGACCGAGCTGAC
 CTGGAAAGGAAACCCACTAACAGCCGTGCCAGAGAGCTGTCGCCCTCGACACCTGACGCT
 TATTGACCTGAGCAACAACAGCATCAGCATGCTGACCAATTACACCTTCAAGTAACATGCTC
 ACCTCTCCACTCTGATCCTGAGCTACAACCGGCTGAGGTGCATCCCGTCCACGCCCTCAAC
 GGCTGCGGCTCCCTGCGAGTGCATAACCTCCATGCCAATGACATTTCCAGCGTCTGAAAG
 CTCCCTCAACGACCTCACATCTCTTCCATCTGGCTGGAAACCAACCCACTCCACTG
 ACTGCACTGCTCGGTGGCTGCGAGTGGTGAAGGAGGGTACAAGGAGCCTGGCATGCC
 CGCTGCAGTAGCCCTGAGGCCATGGCTGACAGGCTCTGTCACCACCCAAACCCACCGCTT
 CCAGTGCAGGAAAGGGCCAGTGGACATCAACATTGTGGCAAATGCAATGCCCTCTCCAGCC
 CGTGCAGGAAATAACGGGACATGCACCCAGGACCCCTGTGGAGCTGACCGCTGCC

111/270

FIGURE 111B

TACAGCTACAAGGGCAAGGACTGCACGTGCCATCAACACCTGCATCCAGAACCCCTGTCA
GCATGGAGGCACCTGCCACCTGAGTACAGCACAAGGATGGGTTCAAGCTGCTCTGCCCTC
TGGGCTTGAGGGCGAGCGGTGTGAGATCAACCCAGATGACTGTGAGGACAACGACTGCGAA
AACAAATGCCACCTGCGTGGACGGATCAACAACTACGTGTATCTGTCCGCTAACTACAC
AGGTGAGCTATGCGACGAGGTGATTGACCACTGTGTGCTGAGCTGAACCTGTGAGCATG
AGGCCAAGTGCATCCCCCTGGACAAAGGATTCAAGCTGCGAGTGTGCTCCCTGGCTACAGCGG
AAGCTCTGTGAGACAGACAATGATGACTGTGAGTGGCCACAAGTGCGCCACGGGGCCAGTG
CGTGGACACAATCAATGGCTACACATGCACCTGCCCAAGGGCTTCAGTGGACCCCTCTGTG
AACACCCCCACCCATGGCTTACTGCAGACCAGCCATGCGACCACTGAGCTGCGAGAAC
GGGGCCAGTGCATCGTGGTGCAGCAGGAGCCCACCTGCCGTGCCCAACAGGCTCGCCGG
CCCCAGATGCGAGAAGCTCATCACTGCAACTCGTGGCAAAGACTCCTACGTGGAACCTGG
CCTCGCCAAGGTCCGACCCAGGCCACATCTCCCTGCAGGTGGCCACTGACAAGGACAAC
GGCATCCTCTCTACAAGGAGACAATGACCCCTGGCACTGGAGCTGTACCGAGGCCACGT
GCGGCTGGCTATGACAGCCTGAGTCCCTCAACCACAGTGTACAGTGTGGAGACAGTGA
ATGATGGGCAAGTTCACAGTGTGGAGCTGGTGACGCTAAACCAAGACCCCTGAACCTAGTAGTG
GACAAAGGAACCTCAAAGAGCCTGGGAAGCTCCAGAAGCAGCCAGCTGGGATCAACAG
CCCCCTCATCTTGGAGGCATCCCCACCTCCACCGGCTCTCGCCTTGCAGGGCACGG
ACCGGCCTCTAGGCGGCTTCCACGGATGCACTGAGGTGGCATCAACACAGGCTGCAG
GACTTCAAGGCCCTCCCACACAGTCCCTGGGGGTGTCAACAGGCTGCAAGTCTGCACCGT
GTGCAAGCACGGCTGTGCCCTCGTGGAGAAGGACAGCAGCTGGTGTGAGTGGCCAGGGCAG
GCTGGACGGCCACTCTGCACCGAGGCCCCGACCCCTGCCCTGGCACAGATGCCAC
CATGGAAAATGTGTGGCACTGGGACTCATACATGTGCAAGTGTGCGGAGGGCTATGGAGG
GGACTTGTGTGACAACAAGAATGACTCTGCAATGCCCTGCTCAGCCTCAAGTGTACCATG
GGCAGTGCCACATCTCAGACCAAGGGAGCCCTACTGCCCTGTGCCAGCCGGCTTAGGGC
GAGCACTGCCAACAAAGAGAACCTGGTGGAGAGACACTTAGAGTGGCGCTGCCCTGGCAC
GAAAGGTTATGCATCATGTGCCACAGCCTCCAAGGTGCCATCATGGAAATGTGTGGGGCT
GTGGGCCCCAGTGTGCCAGCCCACCCGAGCAAGGGGGAAATACGTCTTCCAGTGCACG
GACGGCTCCTCGTTGTAGAAGAGGTGGAGAGACACTTAGAGTGGCGCTGCCCTGGGTGTT
CTAAGCCCCCTGCCCTGCCACCTCTCGGACTCCAGCTTGTGAGGTTGGGACAGCC
ATGTGGGACCCCTGGTATTGCAAGGAAATGAAGCTGGAGAGGAAGGTAAAGAAGA
AGAGAATATTAAGTATATTGAAAAATAACAAAAAATAGAACTTAAAAAAAAAAAAAAA
AAAAAA

112/270

FIGURE 112

MAPGWAGVGA AVRAR LALAL ALAS VLSGPPAVACPTKCTCSAASVDCHGLRAVPRGIPRN
AERLDLDRNNITRITKMDFAGLK NLRVLHLEDNQSVIERGAFQDLKQLERLRLNKNKLQVL
PELLFQSTPKLTRL DLSENQIQGIPRKAFRGITDVKNLQLDNNHISCIEDGAFRALRDLEIL
TLNNNNNISRLVTSFNHMPKIRTLRLHSNHLYCDCHLAWLSDWLRQRRTVGQFTLCMAPVHL
RGFNVADVQKKEYVCPAPHSEPPSCNANSISCPSPCTCSNNIVDCRGKGLMEIPANLPEGIV
EIRLEQNSIKAI PAGAFTQYKKLK RIDISK NQI S DIAPDAFQGLKSL TSLVLYGNKITEIAK
GLFDGLVSLQLLL NNANKINCLRVNTFQDLQNLNLLS LYDNKLQTI SKGLFAPLQSI QTLHL
AQNPFPVCDCHLKWLADYLQDNPIETSGARCSSPRRLANKRISQIKSKKFRCSGS EDYRSRFS
SECFMDLVCP EKCRCEGTIVDCSNQKLVRIPSHLPEYVTDLR LNDNEVS VLEATGIFKKLPN
LRKINLSNNNIKEVREGAFDGAASVQELMLTGNQLET VHGRVFRGLSGLKTLM RSNL ICSV
SNDTFAGLSSVRLLS LYDNRITTITPGAF TTLVSLSTINLLS NP FNCNCHLAWLGKWL RKR
IVSGNPRCQKPF FLKEIP IQDVAI QDFTCDGNEESSCQLSPRCPEQCTCMETVVRCSNKGLR
ALPRGM PKDVTELYLEGNHL TAVPRELSA LRHL TLIDLSNNS ISMLTN YTFNSM SHL STL IL
SYNRLRCIPVHAFNGLRSLRVLT LH GNDI SS VPEGSFNDL TSLSHL ALGTNP LHCDCS RL
SEWVKAGYKEPGI ARCSSPEPMADRL LTT PTHR FQCKGP VD INIVAKCNACLSSPCKNNGT
CTQDPVELYRCACP SYKGKDCTVPINTCIQNPCQHGGTCHLSDSHKDGFSCSCPLGFEGQR
CEINPDDCEDND CENNATCVDGINNYVCICPPNYTGELCDEVIDHCVPELNLCQHEAKCIP
DKGF SCECVPGYSGKLCETDND DCVAHKCRHG AQCVD TINGYTC P QGF SGPF CEH PPPMV
LLQTSPCDQYE CQNGAQCIVVQQEPTCRCP PGFAGPRCEKL ITVN FVGKDSY VELASAKVRP
QANISLQVATDKDNGILL YKGNDPLA LE LYQGHVRLVYDSLSSP TT VY SVETVNDQFHS
VELVTLNQTLN L VVDKGTPKSLGKLQPAVGINSPLY LGGI PTST GLS ALRQ GTDRPLGGF
HGC IHEVRINN ELQDFKALPPQSLGVSPGCKSCTVCKHGLCRSVEKDSVVCECRPGWTGPLC
DQEARDPCLGHRCHHGKVATG TS YMCKCAEGYGGDLC DNKN DSANACSAFKCHHGQCHISD
QGE PYCLCQPGFSGEHCQ QENP CLGQV VREV IR RQKGYASCATASKVPIMECRGGCGPQCCQ
PTRSKRRKYVFQCTDGSSFVEEVERHLECGCLACS

Signal peptide:

amino acids 1-27

113 / 270

FIGURE 113

GGATGCAGGACGCTCCCTGAGCTGCCGTCAACGACTAGGTGGAGCAGTGTTCCTCCGA
GACTCAACTGAGAAGTCAGCCTCTGGGCAGGCACCAGGAATCTGCCCTTCAGTTCTGTCT
CCGGCAGGCTTGAGGATGAAGGCTGGGCATTCTGACCCCTCATGGCTGCCCTGGTCACAG
GGCCCGAGTCAAATCTACACTCGTTGAAACTGGCAAAATATTCTGAGGGCTGGCCTG
GACAATTACTGGGCTTCAGCCTGGAAACTGGATCTGCATGGCATATTATGAGAGCGGCTA
CAACACACAGCCCCGACGGTCTGGATGACGGCAGCATCGACTATGGCATCTTCAGATCA
ACAGCTCGCGTGGTGCAGACGCGGAAAGCTGAAGGAGAACAAACACTGCCATGTCGCTGC
TCAGCCTTGATCACTGATGACCTCACAGATGCAATTATCTGTGCCAGGAAATTGTTAAAGA
GACACAAGGAATGAACTATTGCAAGGCTGGAAGAACATTGTGAGGGCAGAGACCTGTCCG
AGTGGAAAAAAGGCTGTGAGGTTCTAAACTGGAACTGGACCCAGGATGCTTGCAGCAAC
GCCCTAGGATTGCAGTGAATGTCAAATGCCGTGTCACTTGTCCCCTTCCAAATA
TTCTTCTCAAACCTGGAGAGGGAAAATTAAGCTATACTTTAAAGAAAATAATTCCAT
TTAAATGTC

114/1270

FIGURE 114

MKAAGILTLLIGCLVTGAESKIKYTRCKLAKIFSRAGLDNYWGFSLGNWICMAYYESGYNTTAP
TVLDDGSIDYGIFQINSFAWCRRGKLKENNHCHVACSLITDDLTAIIICARKIVKETQGMN
YWQGWKKHCEGRDLSEWKKGCEVS

Signal peptide:

amino acids 1-19

FIGURE 115

CAGGCCATTGCATCCACTGTCCTGTGTTGGAGCCAGGCCACACCGTCCCTCAGCAGTGT
CATGTGTTAAAACGCCAAGCTGAATATATCATGCCCTATTAAAACTTGACATGGCTCCC
CATTGGTTTTGGAGAAAAGTCAAGCTTTACCTGGTGTGCCTGTATCCCAGTGTTC
AGGCTGGCTAGACGGCGAAGAAGATCCTATTTACTGTCACTTCCAGATCTGCTTCTCAC
CAAGAGAGATTCTTTCTTAAACGACTATACAGGGCCCCAATTGACTGGATAGAGGAATACA
CCACAGGCATGGCAGACTGCATCTTAGTCAACAGCCAGTTCACAGCTGCTGTTTAAGGAA
ACATTCAAGTCCCTGTCTCACATAGACCTGATGCTCTATCCATCTAAATGTCACCAG
CTTGACTCAGTTGTTCTGAAAAGCTGGATGACCTAGTCCCAAGGGAAAAATTCTGC
TGCTCTCCATCAACAGATA CGAAAGGAAGAAAATCTGACTTGGCACTGGAAGGCCCTAGTA
CAGCTGCGTGGAAAGATTGACATCCAAGATTGGGAGAGGGTCATCTGATCGTGGCAGGTGG
TTATGACGAGAGAGTCCTGGAGAATGGAACATTATCAGGAATTGAAGAAAATGGTCCAAC
AGTCCGACCTTGGCCAGTATGTGACCTTCTGAGGTCTTCTCAGACAAACAGAAAATCTCC
CTCCTCCACAGCTGCACGTGTGCTTACACACCAAGCAATGAGCACTTGGCATTGTCCC
TCTGGAAGCCATGTACATGCAGTGCCAGTCATTGCTGTTAACCGGTGGACCCCTGGAGT
CCATTGACCACAGTGTACAGGGTTCTGTGTGAGCCTGACCCGGTGCACCTCTCAGAACGA
ATAGAAAAGTTCATCCGTGAACCTCCTAAAAGCCACCATGGCCTGGCTGGAAGAGCCAG
AGTGAAGGAAAATTTCCCTGAAGCATTACAGAACAGCTACCGATATGTTACCAAAC
TGCTGGTAATTCAGATTGTTTAAGATCTCCATTATGTCACTTTATGGATTGTAGACC
CAGTTTGAAACCAAAAAAGAAACCTAGAATCTAATGCAAGAGATCTTTAAAAAATAAA
CTTGAGTCTTGAATGTGAGCCACTTCCATATACCACACCTCCGTCCACTTCAAGAAA
AACCATGTCCTTATGCTATAATCATCCAAATTGCCAGTGTTAAGTACAAATGTGGTG
TCATTCCATGTTCAAGCAGAGTATTTAATTATATTCTCGGGATTATTGCTCTGTCTA
TAAATTGAAATGATACTGTGCCTTAATTGGTTTCAAGTTAAGTGTGTATCATTATCAA
AGTTGATTAATTGGCTTCAGTATAATGAGAGCAGGGCTATTGTTAGTTCCAGATTCAAT
CCACCGAAGTGTCACTGTCATCTGTTAGGAATTGTTGCTGTCTTGCCTGGATC
CATAGCGAGAGTGTCTGTATTTTTAAGATAATTGTTAGTGCACACTGAGATATAA
TAAAAGGTGTTATCATAAAAAAAAAAAAAAA

116/270

FIGURE 116

MPLLKLVHGSPLVFGEKFKLFTLVSACIPVFRLARRKKILFYCHFPDLLLTKRDSFLKRLY
RAPIDWIEEYTTGMADCILVNSQFTAASFKETFKSLSHIDPDVLYPSLNVTSDSVVPEKLD
DLVPKGKKFLLLSINRYERKKNLTLALEALVQLRGRLTSQDWERVHLIVAGGYDERVLENVE
HYQELKKMVQQSDLGQYVTFLRSFSDKQKISLLHSCTCVLYTPSNEHFGIVPLEAMYMQCPV
IAVNSGGPLESIDHSVTGFLCEPDPVHFSEAIKFIRESPLKATMGLAGRARVKEKFSPEAF
TEQLYRYVTKLLV

Signal peptide:
amino acids 1-15

117 / 270

FIGURE 117

GACTACGCCGATCCGAGACGTGGCTCCCTGGCGGCAGAACCATGTTGGACTTCGGATCTT
CGCCGTTACCTTCTTGTGGCGTTGGTGGGAGCCGTGCTCACCTCTATCCGGCTTCCAGAC
AAGCTGCAGGAATTCCAGGGATTACTCCAAC TGAAAGAAAAAGATGGTAATCTTCCAGATATT
GTGAATAGTGGAGTTGCATGAGTTCTGGTTAATTGCATGAGAGATATGGGCCTGTGGT
CTCCTCTGGTTGGCAGGCCTCGTGGTTAGTTGGCACTGTTGATGTACTGAAGCAGC
ATATCAATCCAATAAGACATCGGACCCCTTTGAAACCAGTGAACTGATTATTAAAGGTAT
CAATCTGGTGGTGGCAGTGTGAGTGAAAACCACATGAGGAAAAAATTGTATGAAAATGGTGT
GACTGATTCTCTGAAGAGTAAC TTGCCCTCTCTAAAGCTTCAGAAGAATTATTAGATA
AATGGCTCCTACCCAGAGACCCAGCACGTGCCCTCAGCAGCATATGCTTGGTTTGCT
ATGAAGTCTGTACACAGATGGTAATGGTAGTACATTGAAAGATGATCAGGAAGTCATTG
CTTCCAGAAGAATCATGGCACAGTTGGTCTGAGATTGGAAAAGGCTTCTAGATGGTCAC
TTGATAAAAACATGACTCGGAAAAACAATATGAAGATGCCCTCATGCAACTGGAGTCTGTT
TTAAGGAACATCATAAAAGAACGAAAAGGAAGGAACCTCAGTCACATATTTCTTGACTC
CTTAGTACAAGGAACTTAAATGACCAACAGATCCTAGAACAGACTATGATATTCTCTGG
CCAGTTGCATAATAACTGCAAAATTGTGTACCTGGCAATCTGTTTTAACCACCTCTGAA
GAAGTTCAAAAAAAATTATATGAAGAGATAAACCAAGTTGGAAATGGCTCTGTTACTCC
AGAGAAAATTGAGCAGCTCAGATATTGTGAGCTGTTGAAACTGTTGCAACTGCCA
AACTGACTCCAGTTCTGCCAGCTCAAGATATTGAAGGAAAATTGACCGATTATTATT
CCTAGAGAGACCCCTCGTCTTATGCCCTGGTGTGGTACTTCAGGATCTAATACTTGGCC
ATCTCCACACAAGTTGATCCAGATCGGTTGATGAAATTGATGAAATGAAAATTCTTCT
CACTTGGATTCTCAGGCACACAGGAGTGTCCAGAGTTGAGGTTGCAATATGGTGAAC
GTACTTCTTAGTGTATTGGTGAAGAGACTGCACCTACTTCTGTGGAGGGACAGGTTATTGA
AACAAAGTATGAACCTGGAACATCATCAAGGAAAGAAGCTGGATCACTGTCTCAAAGAGAT
ATTAAATTTTATACATTAAAATCATGTTAAATTGATTGAGGAAAACACCAATTAAAAA
AAATCTATGTTGAATCCTTTATAAACCAGTATCAGTTGTAATATAAACACCTATTGTAC
TTAA

118 / 270

FIGURE 118

MLDFAIFAVTFLLALVGAVLYLYPASRQAAGIPGIPTEEKDGNLPIVNSGSLHEFLVNLH
ERYGPVVSFWFGRRLVVLGTVDVLKQHINPNKTSDFETMLKSLLRYQSGGGSVSENHMRK
KLYENGVTDSLKSNFALLKLSEELLDKWLSSYPETQHVPLSQHMLGFAMKSVTQMVMGSTFE
DDQE VIRFQKNHGTWWSEIGKGFLDGSLDKNMTRKKQYEDALMQLESVLRNIKERKGRNFS
QHIFIDSLVQGNLNDQQILEDSMIFSLASCIITAKLCTWAICFLTTSEEVQKKLYEEINQVF
GNGPVTPEKIEQLRYCQHVLCEVRTAKLTPVSAQLQDIEGKIDRFIIPRETLVLYALGVVL
QDPNTWPSPHKFDPDRFDELVMKTFSSLGFSGTQECPELRFAYMVTTVLLSVLKRLHLLS
VEGQVIETKYELVTSSREEAWITVSKRY

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 271-290

119/270

FIGURE 119

CTAGATTGTGGCTTGC~~GGG~~GAGACTCAGGAGTCGCTGTCTGAAC~~T~~CAGCCTCAGA
GACCGCCGCC~~T~~TGTCCCCGAGGGCATGGGCCGGTCTCAGGGCTTGTGCC~~T~~TCGCTTC
CTGACGCTCCTGGCGCATCTGGTGGTCGT~~T~~AC~~C~~CTTATTCTGGTCCC~~G~~GA~~C~~AGCAACAT
ACAGGCCTGCCTGCCTC~~A~~CGTT~~C~~CCCCGAGGAGTATGACAAGCAGGACATT~~C~~AGCTGG
TGGCCGCGCTCTGT~~C~~ACC~~T~~GGGC~~T~~CTTG~~C~~AGTGGAGCTGGCGGTTCC~~T~~TCAGGA
GTCTCCATGTTAACAGCACCCAGAGCCTCATCTCCATTGGGCTCA~~T~~GTAGTGCATCCGT
GGCC~~C~~GT~~C~~CTTCTTCATATT~~C~~GAGC~~G~~TTGGAG~~T~~GC~~A~~CTAC~~G~~TATTGGTACATT~~T~~TGTCT
TCTGCAGTGC~~C~~CTTCCAGCTGT~~C~~ACTGAA~~A~~TGGCTTATT~~C~~GT~~C~~ACCGT~~T~~TGGGCTGAAA
AAGAAACCC~~T~~TTGATTAC~~T~~TCATGACGGAA~~C~~CTAAGGACGAAGCCTACAGGGCAAGGG
CCGCTTCGTATT~~C~~TGGAAAGAAGGAAGGCATAGGCTTGGTTTCCC~~T~~CGAA~~A~~CTGCTTC
TGCTGGAGGATATGTGTTGAATAATTACGT~~T~~TGAGTCTGGGATTATCCG~~C~~ATTGTATT~~T~~A
GTGCTTGTAA~~A~~AA~~A~~TGTTTGAGTAACATTAAGACTTATATA~~C~~AGTTTAGGGACA
ATTA~~A~~AAAA~~A~~AAAA

FIGURE 120

MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLG
LFAVELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVT
EMALFVTVFGLKKPF

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 121

TCCCGGACCTGCCGCCCTGCCACTATGTCCCCGGCTCTATGCTGCTTGCCTGGCTCTCC
CCAGCCTCCTTCGACTCGAGCGGCTCAGGAGACAGAAGACCCGGCTGCTGCAGCCCCATA
GTGCCCCGGAACGAGTGGAAAGGCCCTGGCATCAGAGTGCGCCAGCACCTGAGCCTGCCCTT
ACGCTATGTGGTGGTATCGCACACGGCGGGCAGCAGCTGCAACACCCCCGCTCGCCAGC
AGCAGGCCCGGAATGTGCAGCACTACCACATGAAGAACACTGGGCTGGTGCACGTGGCTAC
AACTTCCTGATTGGAGAAGACGGGCTCGTATACTGAGGGCCGTGGCTGGAACTTCACGGGTGC
CCACTCAGGTCACTTATGGAACCCCATGTCCATTGGCATCAGCTTCACTGGCAACTACATGG
ATCGGGTGCCACACCCCAGGCCATCGGGCAGCCCAGGGTCTACTGGCCTGCGGTGGCT
CAGGGAGCCCTGAGGTCCAATATGTGCTCAAAGGACACCGGGATGTGCAGCGTACACTCTC
TCCAGGCAACCAGCTTACCCACCTCATCCAGAATTGGCCACACTACCGCTCCCCTGAGGCC
CTGCTGATCCGACCCCATTCCCTCCCATGGCAAAAACCCACTGTCTCCTTCTCCA
ATAAAGATGTAGCTC

FIGURE 122

MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALASECAQHLSLPLRYVVVSHT
AGSSCNTPASCQQQARNVQHYHMKTLCWCDVGYNFLIGEDGLVYEGRGWNFTGAHSGHLWNP
MSIGISFMGNYMDRVPTPQAIRAAQGLLACGVAQGALRSNYVLKGHRDVQRTLSPGNQLYHL
IQNWPHYRSP

Signal peptide:
amino acids 1-20

FIGURE 123

CTGGGACCCGAAAAGAGAAGGGGAGAGCGAGGGGACGAGAGCGGAGGAAGATGCACT
GACTCGCTGCTGTTCTGTGTCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGG
ATGATGGTCCTCCGGCTCAGAGGACCTGAGCGTGTGACCACGAGGGCAGCCCCGGCC
CGGGTGCCTCGGAAGGGGGCACATCTCACCTAACGAGGCTGGGAGGCTTGGCATTCTGGCAGGCCAATTCCACTCT
CCTAGGGCTGCTGGCCCCCTGGGGAGGCTTGGGAGGCTTGGCAGCCCCCAACGGCC
CGAACACAGCCCCCACCTCAGCCAAGGTGAAGAAAATCTTGGCTGGGCGACTTCTAC
TCCAACATCAAGACGGTGCCCTGAACTGCTCGTCACAGGGAGATTGTGGACCATGGCAA
TGGGACCTTCAGCGTCCACTTCAAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCC
TCGTGCCCTTCAAGCTGTAGAGTTCCACCAGGAACAGCAGATCTCATCGAAGCCAAG
GCCTCCAAAATCTTCAACTGCCGGATGGAGTGGAGAAGGTAGAACGGGCCGGACCTC
CTGGTGCACCCAGGCCAGCAAGATCTGCTCCCAGACCACGCTCAGAGCTCAGCCACCT
GGAGCTGCTCCCAGCCCTCAAAGTCGTCGTGTCTACATGCCCTCTACAGCACGGACTAT
CGGCTGGTCCAGAAGGTGTGCCAGATTACAACATGCTAGTGTGATACCCCCCTACTACCCATC
TGGGTGACCGGGGCAGGCCACAGGCCAGGGCTGGAGGACAGGCCGGCATGC
AGGAGACCATCTGGACACCGGGCAGGGAGGGGTTGGCCTCAGGCAGGGAGGGGGTGGAG
ACGAGGAGATGCCAAGTGGGCCAGGGCAAGTCTCAAGTGGCAGAGAAAGGGTCCAAGTG
CTGGTCCCACCTGAAGCTGTGGAGTGAATAGATCACAGGAGCACTGGAGGAGGAGTGGCT
CTCTGTGCAGCCTCACAGGGTTGCCACGGAGCCACAGAGAGATGCTGGTCCCCAGGCC
TGTGGGCAGGCCATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAACGCCCTGGTT
CTTGCCATCCTGAGGAAAGATAGCAACAGGGAGGGGAGATTCTACAGTGTGGACAGCCTG
TCAACTTAGGATGGATGGCTGAGAGGGCTTCTAGGAGGCCAGTCAGCAGGGTGGGTGGGC
CAGAGGAGCTCCAGCCCTGCCCTAGTGGGCCCTGAGCCCTTGTGCTGTGAGCATG
GCATGAGGCTGAAGTGGCAACCTGGGTCTTGATGTCTTGACAGATTGACCATCTGTCTC
CAGCCAGGCCACCCCTTCCAAAATTCCCTCTTGTGCCAGTACTCCCCCTGTACCAACCCATT
GCTGATGGCACACCCATCCTTAAGCTAACAGACAGGACGATTGTGGCCTCCACACTAACGGCC
ACAGCCCATCCGCGTGTGTGTCCTCCACCCCTGCTGGCTCTCTGGAG
CATCCATGTCCGGAGAGGGGCTCTAACAGTCAGCCTCACCTGTCAAGACGGGGTTCTCC
CGGATCTGGATGGCGCCGCCCTCTCAGCAGGGCACGGGTGGGCGGGGGGGCGAGA
GCATGTGCTGGATCTGTTCTGTGTCTGTGTGGGTGGGGAGGGAGGGAGGTCTTGT
GAAACCGCTGATTGCTGACTTTGTGTGAAGAATCGTGTCTGGAGCAGGAAATAAGCTT
GCCCGGGGCA

124/270

FIGURE 124

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66521
><subunit 1 of 1, 252 aa, 1 stop
><MW: 28127, pI: 8.91, NX(S/T): 5
MQLTRCCFVFLVQGSILVLICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMAN
STLLGLLAPPGEAWGILGQPPNRPNHSPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVD
HGNNGTFSVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGR
RTSLCTHDPAKICSRDHAQSSATWSCSQPKVVVCYIAFYSTDYRLVQKVCVDNYHSDTPY
YPSG
```

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

FIGURE 125

GTGAATGTGAGGGTTGATGACTTCAAGATGTCTAGGAACCAGAGTGGGTGCAGGGGCCA
GGCAGGGCTGATTCTTGGCGGAGGAGTAGGGTAAAGGGTCTGCATGAGCTCCCTAAAG
GACAAAGGTAACAGAGCCAGCGAGAGAGCTCGAGGGGAGACTTGTACTCAAGCCACAGAAT
TGGTGGAAAGTGTGCGCGCCGCCGCCGCTCGCTCTGAGCGCTGTCGACTAGCCGCTAG
CATCTTCCCAGCACCGGGATCCCGGGTAGGAGGCGACCGGGCGAGCACCCAGCGCCAGCC
GGCTCGGGCTGCCACACGGCTCACCATGGGCTCCGGGCGGGCGCTGTCGCCGGTGC
GCCGTGCTGCTGGTCTCACGCTGCCGGGCTGCCCGTCTGGGACAGAACGACACGGAGCC
CATCGTGTGGAGGGCAAGTGTCTGGTGGTGTGCACTCGAACCCGGCACGGACTCAAAG
GCTCCTCTTCTCCCGCTGGGATATCGGTCCGGCGGCCACTCCAAGGTGCGCTTCTCG
GCGGTGCGGAGCACCAACACGAGCCATCGAGATGAGCAACAAGACGCGCATCATTACTT
CGATCAGATCTGGTGAATGTGGGTAATTTTTCACATTGGAGTCTGTCTTGTAGCACCAA
GAAAAGGAATTACAGTTCACTGGTAAAGTCTACAGAACGAGCCAAACTATCCAG
GTTAACCTGATGTTAAATGGAAAACAGTAATATCGCTTGTGGGGGACAAAGATGTTAC
TCGGTGAAGCTGCCACGAATGGTGTCTGCTCACCTAGATAAAGAGGATAAGGTTACCTAA
AACTGGAGAAAGGTAAATTGGTGGAGGCTGGCAGTATTCCACGTTCTGGCTTCTGGT
TTCCCCCTAAGGATTCAATTCTCCATGATGTTCATCCAGGTGAGGGATGACCCACTCTG
AGTTATTGGAAAGATCATTTCATGATGGATTGATGTCCTTATTGGTTCTCATGGGTG
GATATGGATTCAAGGATTCTAGGCTGCTGAACCAATACAAAATTACAGATTATTG
TGTGCTGTTCACTGATATTGGATTGGACTCTAAGCAGATAACCTATGCTTAAATGTA
ACAGTCAAAAGCTGCTGCAAGACTTATCTGAATTTCATTCTGGGATTACTGAATTAGT
TACAGATGTGAAATTATTGGTTAGTTAAAGACTGGCAACCAGGTCTAAGGATTAGA
AAACTCTAAAGTCTGACTTCAATCAAGGTTAGTGATGACTGCCAAAGAACGTATACG
TGTTAATATATTGATTATTGGTTTATTCTGGATTAGTTGTTGGTCTGTAA
AAAACCTGGATTCTTCACTGGTATTATGTTCTTCTTAAATAAGGTAATGAA
TGGCTTGGCCACAAATTACCTGACTACGATATCATGACATGACTCTCTCAAAAAAAA
GAATGCTTCATAGTTGATTAAATTGTTATGTAAGAGTCATATTTCAGTT
TTCTAAGAAGAAGAATAGATCATAAATCTGACAAGGAAAAAGTGTCTACCCAAATCTAAG
TGCTCAATCCCTGAGCCTCAGCAAAACAGCTCCCTCCGAGGGAAATCTTATACCTTATTGC
TCAACTTAAATTAAATGATTGATAATAACCACCTTATTAAACCTAAGGTTTTTT
TCCGTAGACATGACCACTTATTAACTGGTGGGGATGCTGTGTTCTAATTACCTAT
TTTCAGGCTCTGTTGATTGAAGTATCATCTGGTTGCCTTAACCTTTAAATTGTA
TATATTATCTGTTAGCTAATATTAAATTCAAATATCCCATATCTAAATTAGTGC
CTTGTCTTTGTATAGGTCTATGAATTCTAAATTATTATGTTAGTGTATAGAATAAAGA
TTAATATATGTTAAAAAAA

126 / 270

FIGURE 126

MGSRRRALSAVPAVLLVLTPGLPVWAQNDTEPIVLEGKCLVVCDSPATDSKGSSSSPLGI
SVRAANSKVAFSAVRSTNHEPSEMSNKTRIIYFDQILVNNGNFFTLESVFVAPRKGIYSFSF
HVIKVYQSQTIQVNMLNGKPVISAFAGDKDVTREAATNGVLLYLDKEDKVYLKLEKGNLVG
GWQYSTFSGFLVFPPL

Signal peptide:
amino acids 1-27

FIGURE 127

CGGTGGCCATGACTGC GGCGT GTT CTCGGCTGCGCCTTCATTGCCCTCGGGCTGCGCTC
GCCCTTATGTCTCACCATGCCATCGAGCGTTGCGTATCATCTTCCTCATGCCGGAGC
TTCTTCTGGTTGGTGTCTACTGATTTCGTCCCTGGTTATGGCAAGAGTCATTA
TTGACAACAAAGATGGACCAACACAGAAATATCTGCTGATCTTGGAGCGTTGTCCTGTC
TATATCCAAGAAATGTTCCGATTGCATATTATAAACTCTTAAAAAGCCAGTGAAGGTTT
GAAGAGTATAAACCCAGGTGAGACAGCACCCCTATGCGACTGCTGGCTATGTTCTGGCT
TGGGCTTTGGAATCATGAGTGGAGTATTTCCCTTGTGAATACCCATCTGACTCCCTGGGG
CCAGGCACAGTGGGCATTCATGGAGATTCTCCTCAATTCTCCTTATTCAAGCTTCATGAC
GCTGGTCATTATCTGCTGCATGTATTCTGGGCATTGTATTTTGATGGCTGTGAGAAGA
AAAAGTGGGCATCCTCCTTATCGTTCTCCTGACCCACCTGCTGGTGTCAAGCCCAGACCTTC
ATAAGTTCTTATTATGGAATAAACCTGGCGTCAGCATTATAATCCTGGTGTCACTGGCAC
CTGGGCATTCTTAGCTGGGGAGGCAGCTGCCGAAGCCTGAAACTCTGCCCTGCTCTGCCAAG
ACAAGAACTTCTTCTTACAACCAGCGCTCCAGATAACCTCAGGGAACCAGCACTTCCCAA
ACCGCAGACTACATCTTAGAGGAAGCACAACGTGCCTTTCTGAAAATCCCTTTCTG
GTGGAATTGAGAAAGAAATAAAACTATGCCAGATA

FIGURE 128

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66658
><subunit 1 of 1, 257 aa, 1 stop
><MW: 28472, pI: 9.33, NX(S/T): 0
MTAAVFFGCAFIAGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDN
KDGPTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGF
GIMSGVFSFVNTLSDSLGP GTVGIGHGDSPQFFLYSAFMTLVILLHVFWGIVFFDGCEKKW
GILLIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKN
FLLYNQRSR
```

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

127/270

FIGURE 129

CGGCAACCAGCCGCCACCCGGCTGCCACTGCCGCCCTGCCGGGGCCATGTTGGCTCTGGGCTTGCCCTTCT
 TGGTGCCTGGCTCGTCGAGAGCCACTGGGGGTTCTGGGGCCAAAGAAGTCCTGCAGAAAGACGCCG
 AGTTTGAAGCAGCACCTACGTGGACGAGGTCAACAGCAGCTGGCAACATCTAACCTCAACCATACTGTGACCC
 GCAACAGGACAGGAGGGCTGCTGTCTGTGAAACGTCCTGAACAAGCAGAAAGGGGGCGCCGTTGCTGTTGTGG
 TCGCCAGAAGGAGGCTGCTGTCTCCAGGTGCCCCCTAACATCTCGAGGATGTTTCAAGCAGTAACCT
 ACCAAAAAGTGGAAACGAACCTGTGACGCCCCAACAGAATGAGTCGGAGATTCAAGTCTTCTACCTGGATG
 TGTCACCCGTGACAGTCACACACACATACCAAGCTCCGGGTCAGCCGATGGAGATTGGCTCAGGACTG
 GGGAGCAGTTCAGCTCAATACACAGCAGCACAGCCCCAGTACTTCAGTCAAGTATGAGTTCCCTGAAGCGTGGACT
 CGGTAATTGTCAAGGTGACCTCCAAGGCCCTCCCCCTGCTCAGTCATCTCATTCAAGGATGTGCTGTCCTG
 TCTATGACCTGGACAACAACGTAGCCTCATGGCAGTGAACAGCAGTACAAGAAGGGCGCCATCAGGTAC
 AGCGCAAAGACTTCCCAGAACAGCTTATGGTGGTGGTGGAGAACAGGAAAGCCAGGGCTGCGGGGCT
 CCCCTCTTCTACCCCTTCAGAAGATGAAACGGCTGATCAAGGGCACCCGAGAAAACCTCTGCTGAGTGGCTGG
 TGTCAGCAGTCACGCTGAGGCATACTGCACTGGGATGCTCTTCTGGCTGGTATAATTCTCTCTTCTTAC
 TGCTGACCGTCTCTGGCTGCTGGAGAACCTGGAGGCAAGAAGAAGACCCGCTGCTGGGCCATTGACCGAG
 CCTGCCCCAGAACGGTCACCCCTGAGTCTGGTGAATTCTCTGGCTGGTATAATTGAGGGTACAACAT
 ATGGCTCTTGTGAAATGTTCTGGATCTGGGATCTGGGACTGGGACTGGGACTGGGACTCTCTCTGAG
 GTTACCAAGGGCGCTCTTGAACCTGTAAGTACTCGGCCCCGACTGGGACTCTGAGCTCTGAGGAGGATG
 ACTACGACACATTGACCGACATCGATTCCGACAAGAATGTCATTCGACCAAGAATACCTCTATGTCCTGAC
 TGGCACGGAAAGACAAGCGTGTCTGCGAAAAGTACCAAGATCTACTCTGGAACATTGCCACATTGCTGCT
 TCTATGCCCTCTGTGGTGAGCTGATCACCTACAGACGGTGGTAATGTCACAGGAATCAGGACATCT
 GCTACTACAACCTCTGCCCCAACCTGGGAACTTCAGGCAATCTCAGGCAACATCACACATCTCAGCAACCTGGGGT
 ACATCCTGCTGGGCTGCTTCTGCTCATCATCTGCAACGGGAGATCAACACACAGGGCCCTGCTGCCA
 ATGACCTCTGTGCCCTGGAATGTTGGATCCCCAAACTTGGCTTCTACGCCATGGCACAGGCCATGAGTA
 TGGAGGGCTGCTCAGTGTCTGCTATCATGTGCTGCCAAACTATACCAATTTCAGTTGACACATGTTCTGAT
 ACATGATGCCGCGACTGCTGATCTGCAACTGAGCTTACCCAGAAGGGCACCCGACATCAACGCCAGGCCATACGT
 CCTAGCCCTGCTGGCCTATGTCATCTTCTGTGCTGGCTGGTCTTGGCAAGGGAAACACGGCGTCT
 GGATGCTCTCTCCATCATCACATCGCACCCCTGCTCTGAGCAGCTCTATTACATGGCGGTGGA
 AACTGGACTGGGGATCTCCGGCCTGATCTCCGGCCTGATCTCCAGTGTCTACACAGACTGCACTGGGAGCTGAGCGGGCC
 TCTACGTTGACCGCATGGTGCTGCTGGTATGGCAACGTCATCAACTGTCGCTGGCTGCCATGGCTTATCA
 TGGCCCCCAATGATTCGCTTCTACTGGTGGGATCTGCAACTGCAACCTGCTGCCCTTACTTCGCTTCTACA
 TCATCATGAAGCTGGAGTGGGAGAGGATCAAGCTCATCCCTGCTGCACTGCTGTTGCACTCCGGTGTCT
 GGGGCTTCGCGCTCTCTCTCCAGGACTCAGCACCTGCAAGAAAACCCCTGAGAGTGGAGGAGCACA
 ACCGGGACTGCACTCCCTCGACTCTTTGACGACCACGACATCTGCACTTCTCTCCATGCCATGTTG
 GGTCTCTCTGGTGTGCACTGGATGACGACCTGGATACTGTGCACTGGGAGAAGATCTATGTCCTCTAGC
 AGGAGCTGGCTCCGCTTCAAGGGGCTGAGCTCTTGTCAAGACGGGTACTCTGTCGTGCT
 GTGGGAGTGGTCCAGCGGCTCCACACTGGATGGCAGGAGCAGGCTAGCTTAGCTTGGCTTGGCCT
 GGGACAGCCATGGGTTGGCATGGAAACCTTGCAGCTGCCCTGCTGGAGGAGCAGGCTGCTCCCCCTGGAAACCCCC
 AGATGTTGGCCAATTGTCGTTCTCAGTGTGGGGCTTCCATGGGCCCCCTGCTCTGGCTCTCCATT
 GTCCCTCTGCAAGAGGAAGGATGGAAGGGACACCCCTCCCATCTCATGCTTGCAATTGGCCCTCTCC
 ACAATGCCCAAGCTGGACCTAAGGCCCTCTTCCCTCCCATACTGCCACTCCAGGCCCCCTAGTCTGGGCTGTA
 ATCTCTGTCCTGATCACGGCCCAAGTCTCTTGGCTGCTCCCTGGCCATACTGCCCAATTCCAGTCAGCC
 AGGATGGATGGGGTATGAGATTGGGGTTGGCAGCTGGTGGCAGACTTTGGCTAAGGCCCTGCAAGGG
 CCTGGGGAGTGGCTATTCTCTCCCTGACCTGTGCTCAGGGCTGGCTTCTAGCAATGCGCTAGCCAAATT
 TGAAACGGCTCTGATTCACAGAGGCTGAATTCAAGAGGTCACTCTCATCCCATGCTCCAGACTGATGCC
 AGCACCCAGGACTGGAGGGAGAAGGGCCCTACCCCTTCTTCCCTGGCCAGGCCCCCTAGTCTGGGCTG
 AGCTGGTGGCTTCTGAGTGGCAACTGCAAGAATGTCAGGAGGAGGATGATACAGAGTTGAG
 CCCCTCTGCCCTCACAGCTGGGACCCAGTGGCTACCTTAAAGAAAAGGGCTTCAAGGAAGGGATGTCGTT
 CCCTCTACGTGCCCAGTCTAGCTCGCTCTAGGACCCAGGGCTGGCTTCTAAGTTCGCTCAGTCTCTGAGCA
 AGTCTGTGTTAGTCACACACATACCTATGAAACCTTGGAGTTTACAAGAATGCCCCAGTGTGAGGATGGGGAGGCTGAG
 CCTGGCCACCCCTGGCTTGGATCCCCCTCTGGTCCACCTGGTCCACCCAGATGTCAGGAGATGGGGAGGCTGAG
 CGGGGCTCTGCTTGGGAGTGGGAATGTTTCTCCAAACTTGTGTTTATAGCTCTGCTGTTGAAGGGCTGG
 AGATGAGGTGGGCTGGATCTTCTCAGAGCTCTCCATGCTATGGTGCATTCCGTTCTATGAATGAATT
 TGCAATTCAATAAACACCAGACTCAAAAAAAAAAAAAA

FIGURE 130

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66659
><subunit 1 of 1, 832 aa, 1 stop
><MW: 94454, pI: 6.94, NX(S/T): 12
MFALGLPFLVLLVASVESHLGVLGPKNVSQKDAEFERTYVDEVNSELVNIYTFNHTVTRNRT
EGVRVSVNVLNKQKGAPLLFVVRQKEAVVSFQVPLILRGMFQRKYLYQKVERTLCQPPTKNE
SEIQFFYVDVSTLSPVNNTYQLRVSRMDDFVLRTGEQFSNTAAQPQYFKYEFPEGVDSVI
VKVTNSNKAFPCSVISIQDVLCPVYDLDNNVAFIGMYQTMTKKAITVQRKDFPSNSFYVVVV
VKTEDQACGGSLPFYPFAEDEPVQDQGHRQKTLSQLVSQAVTSEAYVSGMLFCLGIFLSFYLL
TVLLACWENWRQKKKTLVAIDRACPESGHPRVLADSFPGSSPYEGYNYSFENVSGSTDGL
VDSAGTGDLSYGYQGRSFEPVGTRPRVDSMSSVEEDDYDTLTDIDS DKNVIRTKQYLYVADL
ARKDKRVLRKKYQIYFWNIATIAVFYALPVVQLVITYQTVVNVGTGNQDICYYNFLCAHPLGN
LSAFNNILSNLGYILLGLLFLIIQLREINHNALLRNDLCALECGIPKHGFLFYAMGTALM
MEGLLSACYHVCNPNTNFQFDTSFMYMIAGLCMLKLYQKRHPDINASAYSAYACLAIVIFPS
VLGVVFGKGNTAFWIVFSIIHIATLLLSTQLYYMGRAWKLDSGIFRRILHVLYTDCIRQCSG
PLYVDRMVLLVMGNVINWSLAAYGLIMRPNDFASYLLAIGICNLLLYFAFYIIMKLRSGERI
KLIPLLCIVCTSVVWGFALFFFQGLSTWQKTPAESREHNRDCILLDFDDHDIWHLFLSSIA
MFGSFLVLLTLDDDDLTVQRDKIYVF
```

Important features of the protein:**Signal peptide:**

amino acids 1-18

Transmembrane domains:

amino acids 292-317, 451-470, 501-520, 607-627, 751-770

Leucine zipper pattern.

amino acids 497-518

N-glycosylation sites.

amino acids 27-30, 54-57, 60-63, 123-126, 141-144, 165-168, 364-367, 476-479, 496-499, 572-575, 603-606, 699-702

131/278

FIGURE 131

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGC
 TCTCTTCTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGCGCTGGAGGGCCTGTCTTG
~~ACCATGGTCCCTGCCTGGCTGTGGCTGCTTGTGTCCTCCGCCCCAGGCTCTCCCAAGGC~~
 CCAGCCTGAGAGCTGTCTGTGGAAGTTCCAGAAAATATGGTGGAAATTCCCTTTATACC
 TGACCAAGTGCCTGCCCCGTGAGGGGCTGAAGGCCAGATCGTGCTGTCAAGGGACTCA
 GGCAAGGCAACTGAGGGCCATTGCTATGGATCCAGATTCTGGCTTCTGCTGGTGACCA
 GGCCCTGGACCGAGAGGAGCAGGAGTACCCAGCTCACGGTCAACGGTGGAGATGCAGGATG
 GACATGTCTTGTGGGTCCACAGCCTGTGCTTGACGTGAAGGATGAGAATGACCAGGTG
 CCCCCATTCCTCAAGCATCTACAGAGCTGGCTGAGCCGGGTACAGGCCCTGGCATCCC
 CTTCCTCTTCTTGAGGCTTCAGACGGGATGAGGCCAGCACAGCCAATCGGATCTTCGAT
 TCCACATCCTGAGCCAGGTCCAGCCAGCCTTCCCCAGACATGTTCCAGCTGGAGCCTCG
 CTGGGGGCTCTGGCCCTCAGCCCAAGGGGAGCACCAGCCTTGACACGCCCTGGAGAGGAC
 CTACCAAGCTGGTGTACAGGTCAAGGACATGGGTGACCAAGGCCCTCAGGCCACCAGGCACTG
 CCACCGTGGAGTCTCCATAGAGAGCACCTGGTGTCCCTAGAGCCTATCCACCTGGCA
 GAGAATCTCAAAGTCTTATACCCGACACATGGCCCAGGTACACTGGAGTGGGGGTGATGT
 GCACTATCACCTGGAGAGGACATCCCCGGGACCCCTTGAAGTGAATGCAAGAGGGAAACCTCT
 ACGTGACCAAGAGAGCTGGACAGAGAACGCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAG
 AATTCCCATGGCAGGACTATGCGCCCTCTGGAGCTGCACGGTGTGGTATGGATGAGAA
 TGACAACGTGCCCTATCTGCCCTCCCCCTGACCCACAGTCAGCATCCCTGAGCTCAGTCCAC
 CAGGTACTGAAGTGAAGTCACTGTCAGCAGAGGATGCAAGATGCCCGGCTCCCCAATTCC
 CACGGTGTGATCAGCTCTGAGCCCTGAGGATGGGTAGAGGGGAGAGCCTTCCA
 GGTGGACCCCACTTCAGGCAGTGTGACGGCTGGGTGCTCCACTCCGAGCAGGCCAGAAC
 TCCCTGCTCTGGTGTGGCATGGACCTGGCAGGGCAGAGGGTGGCTTCAGCAGCACGTGT
 GAAGTCGAAGTCGCACTGACAGATATAATGATCACGCCCTGAGTTCATCACTTCCAGAT
 TGGGCTATAAGCTCCCTGAGGATGTGGAGCCCCGGACTCTGGTGGCCATGCTAACAGCCA
 TTGATGCTGACCTCGAGCCCGCTTCGCTCATGGATTTCGCAATTGAGAGGGGAGACACA
 GAAGGGACTTTGGCCTGGATTGGAGCCAGACTCTGGGATGTTAGACTCACAGCTGCAA
 GAACCTCAGTTATGAGGCAGCTCAAGTCAGGAGTGGTGGTGGTGGTGCAGAGTGTGGCGA
 AGCTGGTGGGCCAGGCCAGGCCCTGGAGCCACGCCACGGTACTGTGCTAGTGGAGAGA
 GTGATGCCACCCCCCAAGTTGGACCAAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGGCC
 AGCCGGCTCTTCTGACCATCAGGCCCTCCGACCCCATCAGCGAACCTCAGGTTCT
 CCCTAGTCATGACTCAGAGGGCTGGCTCTGCATTGAGAAATTCTCGGGGAGGTGCACACC
 GCCCAGTCCCTGCAGGGGCCAGCCTGGGACACTACCGGTGCTTGTGGAGGCCAGGA
 TACAGCCCTGACTCTTGCCTCTGACCATCCTCTGACACCCCCGCCAAGACCATG
 GCTTGATCGTAGTGGACCCAGCAAGGACCCGATCTGGCAGTGGCACCGTCCCTACAGC
 TTACCCCTTGGTCCCAACCCACGGTCAACGGGATTGGCGCTCCAGACTCTCAATGGTTC
 CCATGCCTACCTCACCTGGCCCTGCACTGGTGGAGCCACGTAACACATAATCCCCGTGG
 TGGTCAAGCCACAATGCCAGATGTGGCAGCTCTGGTTCAGTGTGCTGCGCTGCAAC
 GTGGAGGGCAGTGCATGCGAAGGTGGCCGCATGAAGGGCATGCCACGAAGCTGTGGC
 AGTGGGATCCTTGTAGGCACCCCTGGTAGCAATAGGAATCTTCTCATCCTCATTTTACCC
 ACTGGACCATGTCAAGGAAGAAGGCCAGCTCAACCCAGCAGACAGCGTCCCCCTGAAGGG
 ACTGTCTGAATGGCCCAAGGAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAGTCCC
 CTGGGAGAGAGGCCAGCACCAAGATCCAGCAGGGGACAGGACAGAGTAGAAGCCCCCTCAT
 CTGCCCTGGGTGGAGGCCACCATCACCATCACCGGCATGTGCAAGGCCCTGGACACCAAC
 TTATGGACTGCCCATGGAGTGCTCCAAATGTCAGGGTGTGCTGGCAATAAAAGCCCCA
 GAGAAGTGGCTGGCCCTATGGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAG

FIGURE 132

MVPAWLWLLCVSVPQALPKAQPAELSVEPVENYGGNFPFLTKLPLPREGAEGQIVLSGDSG
KATEGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVP
HFSQAIYRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPD MFQLEPRL
GALALSPKGSTS LDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAE
NLKVLYPHHMAQVHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQN
SHGEDYAAPPLEHVLVMDENDNVPICP PRDPTVS IPELSPPGTEVTRLSAEDADAPGSPNSH
VVYQLLSPEPEDGVEGRAFQVDPTSGSVTLGVLPRLAGQNILLVLAMDLAGAEGGFSSTCE
VEVAVTIDINDHAPEFITSQIGPISLPEDVEPGTLVAMLTAIDADLEPAFRIMDFAIERGDTE
GTFGLDWE PD SGHVRRLCKNLSYEAPSHEVVVVQSVAKLVGPGPGP GATATVTVLVERV
MPPP KLDQESYEASVPISAPAGSFLLTIQPSDPISRTLRFSLVNDSEGWL CIEKFSGEVHTA
QSLQGAQPGDTYTVLVEAQDTALTLPVPSQYLCTPRQDHGLIVSGPSKD PDLASGHGPYSF
TLGPNPTVQRDWRLQTLNGSHAYLTALHWEPREHIIPVVVSHNAQM WQLLVRVIVCRCNV
EGQC MRKVGRMKGMPTKLSAVGILVGTLVAIGIFLILIFTWTMSRKKDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

133 / 270

FIGURE 133

CCGGGGACATGAGGTGGATACTGTTCATGGGCCCTTATTGGGTCCAGCACTGTGGCAA
 GAAAAATTTTGGGACAAGTTGAGGATTAATGTCAAGAAATGGAGACGAGATCAGCAA
 ATTGAGTCACACTAGTGAATTCAAACACTGAAGCTCAATTCTGAAATCTCCCTCCT
 TCAATCGGCCGTGGATGCTGGTCCCATCTGTCAGTCTGCAGGCATTAAATCCTTCCT
 AGATCCCAGGGCTTAGAGTACGCAGTCACAATTGAGGACCTGCAGGCCCTTTAGACAAATGA
 AGATGATGAAATGCAACACAATGAAGGCAAGAACGGAGCAGTAATAACTCAACTACGGG
 CTTACCATTCCCTGGAAGCTATTACACAGAGATGGACAACATTGCCAGACTTTCTGAC
 CTGGCGAGGAGGGTGAAGATTGGACATTGTTGAAAACGGCCGATGTATGACTGAAGTT
 CAGCACTGGGAAAGGCCTGAGGCGGCCGTTGGCTGAATGCAGGCATCCATTCCGAG
 AGTGGATCTCCAGGCCACTGCAATCTGGACGGCAAGGAAGATGTATCTGATTACAGAGG
 GATCCAGCTATCACCTCATCTTGAGAAAATGGATATTTCTGTCCTGTGGCAAATCC
 TGATGGATATGTGTATACTCAAACCTCAAACCGATTATGGAGGAAGACGCCGCTCCGAAATC
 CTGGAAGCTCTGCATTGGTGTGACCCAAATAGAAAATGGAACGCTAGTTGAGGAAAG
 GGAGCCAGCGACAACCTTGCTCGAAGTGTACCATGGACCCACGCCAATCGGAAGTGG
 GGTGAAATCAGTGGTAGATTTCATCAAAACATGGAATTTCAGGGCTTCATGCCACTGC
 ACAGCTACTCGCAGCTGCTGATGTATCCATATGGTACTCAGTCAAAAGGCCAGATGCC
 GAGGAACCTCGACAAGGTGGCAGGCTTGCGGCCAAGCTCTGGCTCTGTGTCGGGACTGA
 GTACCAAGTGGTCCCCACTGCCACACTGCTATCAGCTAGCGGGAGCAGCATCGACTGG
 CGTATGACAACGGCATCAAATTGCACTTCACATTGAGTTGAGGAGATACCGGACCTATGCC
 TTCTCTGCCAGCTAACAGATCATCCCCACTGCAAGAGGAGACGTGGCTGGGCTGAAGAC
 CATCATGGAGCATGTGCGGGAAACCTCTACTAGGGCATGGCTCTGCTCTGCTACATTAT
 TTGTAACCCACGTGCAAGCACTGAGGCCATTGTTAAAGGAGCTCTTCTAACCTGTGAG
 TCAGAGCCCTGGGTTGTGGAGCACACAGGCCCTGCCCTCCAGCCAGCTCCGGAGT
 CGTGTGCTGGCGGTGCTCTGCAAGAACCTGGTCTGCCAGCTGCTCAATTGGCTCTG
 CTGTTTTGATGAGCCTTGTCTGTTCTCCCTCACCTGCTGGCTGGGCTGCACTC
 AGCATCACCCCTCTGGTGGCATGTCCTCTCACCTCATTTTAAAGGAGCTCTTCTAAC
 TGAGATGATTCTCACCCCATCCACATCTAGCCAAGCCAGTGACCTTGCTGGGACT
 GTGGGAGACACCCTTGCTTTAGGTGGGCTCAAAGATGATGAGATTCTTAAATT
 TCGCAGTCCTCTGGAAAATTTCTTGAGCAGCAAATCTGTAGGGATATCAGTGAAG
 GTCTCTCCCTCCCTCTCTGTGTTTTTTGAGACAGAGTTTGCTCTTGTG
 CAGGCTGGAGTGTGATGGCTGATCTGGCTCACCAACCTCTGCCCTGGGTTCAAGCA
 ATTCTCTGCCCTAGCCTTGTAGTAGCTGGTTATAGGCGATGCCACCATGCCCTGGCTA
 ATTGTTGTTTTAGTAGAGACAGGGTTCTCCATGTTGGTCAGGCTGGCTCAAACCTCCA
 ACCTCAGGTGATGCCCTCTTGCCCTCCAGTGCTGGGATTACAGGTGTGAGCCACTG
 TGCCGGGCCCCCTCTGGCTGAATAACAAAGTAGAGATCACCTTCTTCAC
 TGTGCTGAGAATTCTAGATACTACAGTTACTCCCTCTTCTGGTTATTCACTGTG
 ACCAGGATGGGGGAGGGATCTGTGCACTGTAGGTACTGTGCCAGGAAGGCTGGGTGAA
 GTGACCATCTAAATTGAGGATGGTGAATTATCCCCATCTGTCTAATGGGCTTACCTCT
 CTGGCTTGTGAACTCACCTCAAAGATCTAGGCCATCTTACAGGTCTAAATCACTCAT
 CTGGCTGGATAATCTCACGCCCTGGCACATTCCCATTTGTGCTGTGGTGTATCTGTGTT
 TCTCTGCTCTGGTTGTGTTGTGTTGTGTTGTGTTGTGTTGTGTTGTGTT
 TCTGTCTATTGTTGATCTGGACCACAAGTTCTAAGTAGAGCAAGAATTCAACCAAGCT
 GCCTCTGTTCTGTTCTAACCTCAGCACGTACCATCTGCTCTTGTGTTGTGTT
 TTGTTTTTGTGTTTACCAAACATGTCTGTAATCTTAACCTCTGCCAGGATTGTACA
 GCATCTGGTGTGCTTATAAGCCAATAAAATTCAATGTGAAAAA

134/270

FIGURE 134

MRWILFIGALIGSSICGQEKKFFGDQVLRINVRNGDEISKLSQLVNSNNLKLNFWKSPSSFNR
PVDVLVPSVSLQAFKSFLRSQGLEYAVTIEDLQALLDNEDEMHQHNEGQERSNNFNYGAYH
SLEAIYHEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKVRRPAVWLNAJHSREWI
SQATAIWARKIVSDYQRDPAITSILEKMDIFLLPVANPDGYVYTQTQNRLWRKTRSRNPGS
SCIGADPNRNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDFIQKHGNFKGFIDLHSY
SQLLMYPYGVSVKKAPDAEELDKVARLAAKALASVSGTEYQVGPTCTTVYPASGSSIDWAYD
NGIKFAFTFELRDTGTYGFLLPANQIIPTAEETWLGLKTIMEHVRDNLY

Signal peptide:

amino acids 1-16

FIGURE 135

CAACCATGCAAGGCACAGGGCAGGAGAAGAGGAACCTGCAAAGACATATTTGTTCCAAAATG
 GCATCTTACCTTTATGGAGTACTCTTGCTGTTGGCCTCTGTGCTCCAATCTACTGTGTGTC
 CCGGGCCAATGCCCCAGTGCATACCCCCGCCCTCCTCCACAAAGAGCACCCCTGCCTCAC
 AGGTGTATTCCCTCAACACCGACTTTGCCTCCGCCTATACCGCAGGCTGGTTGGAGACC
 CCGAGTCAGAACATCTTCTCCCGCTGTGAGTGTCTCCACTTCCCTGGCATGCTCTCCCT
 TGGGGCCCACTCAGTCACCAAGACCCAGATTCTCCAGGGCCTGGGCTCAACCTCACACACA
 CACCAAGAGTCTGCCATCCACCAGGGCTTCCAGCACCTGGTTCACTCACTGACTGTTCCCAGC
 AAAGACCTGACCTTGAAGATGGGAAGTGCCTCTCGTCAAGAAGGAGCTGCAGCTGCAGGC
 AAATTCTTGGCAATGTCAGAGGGCTGTATGAAGCAGAACATTTCTACAGATTCTCCA
 ACCCCCTCCATTGCCAGGGCAGGATCAACAGCCATGTGAAAAAGAAGACCCAAAGSGAAGGTT
 GTAGACATAATCCAAGGCCTTGACCTCTGACGCCATGGTTCTGGTAATCACATTTCTT
 TAAAGCCAAGTGGGAGAAGGCCCTTCACCTTGAATATACAAGAAAGAACCTTCCATTCTGG
 TGGCGAGCAGGTCACTGTCAAGTCCCCATGATGCACCAGAAAGAGCAGTCGCTTTGGG
 GTGGATAACAGAGCTGAAGTCTTGCTGCAGATGGATTACAAGGGAGATGCCGTGGCCTT
 CTTCCTCCCTAGCAAGGGCAAGATGAGGCACTGGAACAGGCCCTGTCAAGCCAGAACAC
 TGATAAAAGTGGAGCCACTCACTCCAGAAAAGGTGGATAGAGGTGTTCATCCCCAGATTTCC
 ATTTCTGCCCTCTACAATCTGAAACCATCCTCCGAAGATGGCATCCAAATGCCCTTGA
 CAAAAATGCTGATTTCTGGAATTGCAAAGAGAGACTCCCTGCAGGTTCTAAAGCAACCC
 ACAAGGCTGTGCTGGATGTCAGTGAAGAGGGCACTGAGGCCACAGCAGCTACCACCAAG
 TTCATAGTCCGATCGAAGGATGGCCCTCTTACTTCAGTCTCCCTCAATAGGACCTTCC
 GATGATGATTACAATAAGCCACAGCGGTATTCTCTTCTAGGGAAAGTGGAAATCCCA
 CTAATCCTAGGTGGAAATGGCCTGTTACTGATGGCACATTGCTAATGCAAAAGAAATAA
 CAAACCACATCCCTTTCTGTTCTGAGGGTGCATTGACCCAGTGGAGCTGGATTGCTG
 GCAGGGATGCCACTTCCAAGGCTCAATCACCAACCATCACAGGGACCCAGTCACAAGCC
 AACACCCATTAAACCCAGTCAGTGCCCTTCCACAAATTCTCCAGGTAACTAGCTTCTG
 GGATGTTGCTGGTTACCATATTCATTCCCTGGGCTCCAGGAATGGAAATACGCCAAC
 CCAGGTTAGGCACCTCTATTGAGAATTACAATAACACATTCAATAAAACTAAAATATGAAT
 TCAAA
 AAAAAAA

FIGURE 136

MASYLYGVLFAVGLCAPIYCVSPANAPSAYPRPSSTKSTPASQVYSLNTDFAFRLYRRLVLE
TPSQNIFSPVSVSTSAMLGAHSVTKTQILQGLGFNLTHTPESAIHQGFQHLVHSLTVP
SKDLTLKMGSALFVKKELOLQLQANFLGNVKRLYEAEVFSTDFSNPSIAQARINSHVKKKTQGK
VVVDIIQGLDLILTAMVLVNHIFFKAKWEKPFHLEYTRKNFPFLVGEQVTVQVPMMHQKEQFAF
GVDTELNCFVLQMDYKGDAVAFFVLPSPKGKMRQLEQALSARTLIKWSHSLQKRWIEVFIPRF
SISASYNLETILPKMGIQNAFDKNADFGIAKRDSLQVSKATHKAVLDVSEEGTEATAATT
KFIVRSKDGP SYFTV SFNRTFLMMITNKATDGILFLGKVENPTKS

Signal peptide:
amino acids 1-20

1371270

FIGURE 137

GGCTGACCGTGCTACATTGCTGGAGGAAGCCTAACGGAAACCCAGGCATCCAGCTGCCACCC
CTGAGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCAGCTCCTGGAAGCACCAAG
CCTTTATCTCTTCACCTTCAAGTCCCCTTCTCAAGAATCCTCTGTTCTTGCCCTCTAAAG
TCTTGGTACATCTAGGACCCAGGCATCTGCTTCCAGCCACAAAGAGACAGATGAAGATGC
AGAAAGGAAATGTTCTCCTTATGTTGGTCTACTATTGCAATTAGAAGCTGCAACAAATTCC
AATGAGACTAGCACCTCTGCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACAGC
CACCAACTCTGGGTCCAGTGTGACCTCCAGTGGGTCAAGCACAGCCACCATCTCAGGGTCCA
GCGTGCACCTCCAATGGGTCAAGCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGG
ATCAGCACAGCCACCAACTCTGAGTTCAAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAA
CTCTGAGTCCAGCACAACTCCAGTGGGCCAGCACAGCCACCAACTCTGAGTCCAGCACAC
CCTCCAGTGGGCCAGCACAGTCACCAACTCTGGTCCAGTGTGACCTCCAGTGGAGCCAGC
ACTGCCACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCAGCACTGCCACCAACTCTGA
GTCTAGCACACTCTCAGTGGGCCAGCACAGCCACCAACTCTGACTCCAGCACACCTCCA
GTGGGGTAGCACAGCCACCAACTCTGAGTCCAGCACAACTCCAGTGGGCCAGCACAGCC
ACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCAGCACTGCCACCAACTCTGAGTCCAG
CACAACTCTCAGTGGGCCAGCACAGCCACCAACTCTGAGTCCAGAACGACCTCCAATGGG
CTGGCACAGCCACCAACTCTGAGTCCACCACGACAGCTCCAGTGGGCCAGCACAGCCACCAAC
TCTGACTCCAGCACAGTGTCCAGTGGGCCAGCACAGTGTCCACCACACTCTGAGTCCAGCACAGC
CTCCAGTGGGCCAGCACAGCCACCAACTCTGAGTCCAGCACAGCCACCAACTCTGAGTCCAG
CACAGCCACCAACTCTGAGTCCAGTAGGACCTCCAGTGGGCCAAACACAGCC
TCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCCTCCAG
TGGGCCAACACAGCCACCAACTCTGAGTCCAGTAGGACCTCCAGTGGGCCAAACACAGCC
CCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCAGCACTGCCACCAACTCTGAGTCCAG
ACAACCTCCAGTGGGTCAAGCACAGCCACCAACTCTGAGTCCAGCACACCCCTCCAGTGGG
TAGCACAGCCACCAACTCTGACTCCAGCACACACCTCCAGTGGGCCAGCACAGCCACCAACT
CTGAGTCTAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCC
TCCAGTGGGCCAACACAGCCACCAACTCTGGTCCAGTGTGACCTCTGCAGGCCTCTGGAAC
AGCAGCTCTGACTGGAATGCACACAACCTCCCATAGTCATCTACTGCAGTGTGAGGCAA
AGCCTGGTGGTCCCTGGTCCGGTGGAAATCTTCTCATCACCCCTGGTCTGGTTGTGGCG
GCCGTGGGCCCTTTGCTGGCTCTTCTGTGTGAGAAACAGCCTGTCCTGAGAAACAC
CTTAAACACAGCTGTCTACCACCCATGGCCTAACCATGGCTTGGTCCAGGCCCTGGAG
GGAATCATGGAGCCCCACAGGCCAGGTGGAGTCTTAACCTGTTCTGGAGGAGACCAGTA
TCATCGATGCCATGGAGATGAGCGGGAGGAACAGCGGGCCCTGAGCAGCCCCGGAAGCAA
TCCGGCATTCTTCAGGAAGGAAGAGACCTGGCACCAAGACCTGGTTCTTCTTCAATTCTC
CCAGGAGACCCCTCCAGCTTGAGATCTGAAAATCTGAGAAGGTATTCTTCTCACC
TTTCTTGCCCTTACAGACACTGGAAAGAGAATACTATATTGCTCATTAGCTAAGAAATAA
ATACATCTCATCTAACACACAGCAAAAGAGAAGCTGTGCTGGCCGGGTGGTATCTAG
CTCTGAGATGAACTCAGTTATAGGAGAAACCTCATGCTGGACTCCATCTGGCATTCAAAA
TCTCCACAGTAAAATCCAAAGACCTCAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

1381270

FIGURE 138

MKMQKGNVLLMFGLLHLLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATI
SGSSVTSNGVSIVNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSE
SSTPSSGASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSS
TTSSGASTATNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTT
SNGAGTATNSESSTTSSGASTATNSDSTS TVSSGASTATNSESSTTSSGASTATNSESSTTSS
GASTATNSDSTS TTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGA
NTATNSESSTVSSGASTATNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEAST
ATNSESSTVSSGISTVTNSESSTTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAV
SEAKPGGSLVPWEIFLITLVSVVAAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGP
GPGGNHGAPHPRPRWSPNWFWRPVSSIAMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 139

GGGAGAGAGGATAAAATAGCAGCGTGGCTCCCTGGCTCTCTGCATCCTCCCGACCTTC
CCAGCAATATGCATCTTGCACGTCTGGCTGGCTCTGCTCCCTCTGCTACTGGGGCC
CTGTCTGGATGGCGGCCAGCGATGACCCCATTGAGAAGGTATTGAAGGGATCAACCGAGG
GCTGAGCAATGCAGAGAGAGAGGTGGCAAGGCCCTGGATGGCATCAACAGTGGAAATCACGC
ATGCCGGAAGGGAAGTGGAGAAGGTTTCAACGGACTTAGCAACATGGGAGCCACCCGGC
AAGGAGTTGGACAAAGGCGTCCAGGGCTCAACCACGGCATGGACAAGGTTGCCATGAGAT
CAACCATGGTATTGGACAAGCAGGAAAGGAAGCAGAGAAGCTGGCCATGGGTCAACAACG
CTGCTGGACAGGCCGGGAAGGAAGCAGACAAAGCGGTCCAAGGGTTCCACACTGGGTCCAC
CAGGCTGGGAAGGAAGCAGAGAAACTTGGCCAAGGGTCAACCATGCTGCTGACCAGGCTGG
AAAGGAAGTGGAGAAGCTTGGCCAAGGTGCCACCATGCTGCTGGCCAGGCCGGGAAGGAGC
TGCAGAATGCTCATATGGGTCAACCAAGCCAGCAAGGAGGCCAACAGCTGCTGAATGGC
AACCATCAAAGCGGATCTTCCAGCCATCAAGGAGGGCCACAACCACGCCCTAGCCTCTGG
GGCCTCAGTCAACACGCCCTTCATCAACCTTCCGCCCTGTGGAGGAGCGTCGCCAACATCA
TGCCCTAAACTGGCATCCGGCTTGCTGGAGAATAATGTCGCCGTTGTACATCAGCTGAC
ATGACCTGGAGGGTTGGGGGTGGGGACAGGTTCTGAAATCCCTGAAGGGGGTTGACTG
GGATTTGTGAATAAACTTGATACACCA

140/270

FIGURE 140

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66675
><subunit 1 of 1, 247 aa, 1 stop
><MW: 25335, pI: 7.00, NX(S/T): 0
MHLARLVGSCSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITAG
REVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVNNAAG
QAGKEADKAVQGFHTGVHQAGKEAEKLQQGVNHAADQAGKEVEKLQQGAHAAAGQAGKELQN
AHNGVNQASKEANQLLNGNHQSGSSSHQGGATTPLASGASVNTPFINLPALWRSVANIMP
```

Important features of the protein:

Signal peptide:

amino acids 1-25

Homologous region to circumsporozoite (CS) repeats:

amino acids 35-225

141/1270

FIGURE 141

142/270

FIGURE 142

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA67962  
><subunit 1 of 1, 837 aa, 1 stop  
><MW: 92750, pI: 7.04, NX(S/T): 6  
MLRTAMGLRSWLAAPWGALPPRPLLILLILLLQPPPPTWALSPRISLPLGSEERPFLRF  
EAEHISNYTALLSRDGRTLYVGAREALFALSSNLSQLPGGEYQELLWGADAEEKQQCSFKG  
KDPQRDCQNYIKILLPLSGSHLFTCGTAAFSPMCTYINMENFTLARDEKGNVILLEDGKGRCP  
FDPNFKSTALVVDGELYTGTVSSFQGNDPAISRQLRPTKTESSLNWLQDPAFVASAYIPE  
SLGSLQGDDDKIYFFFSETGQEFEFFENTIVSRIARIICKGDEGGERVLQQRWTSFLKAQLLC  
SRPDDGFPFNVLQDVFTLSPSPQDWRTLFYGVFTSQWHRGTTEGSACVFTMKDVQRVFSG  
LYKEVNRETQQWYTWTVPVPTPRPGACITNSARERKINSSLQLPDRVLNFLKDHFMDGQVR  
SRMLLLQPQARYQRVAVHRVPGLHHTYDVLFLGTGDGRHLKAVSVGPRVHIIEELQIFSSGQ  
PVQNLLLDTHRGGLYAASHGVVQVPMANCSLYRSCGDCLLARDPYCAWSGSSCKHVSLYQP  
QLATRPWIQDIEGASAKDLCASSVVSFSFVPTGEKPCEQVQFQPNTVNTLACPLLSNLATR  
LWLRNGAPVNASASCHVLPPTGDLLLVTQQLGEFQCSLEEGFQQLVASYCPEVVEDGVADQ  
TDEGGSVPVII1STSRVSAAPAGKASWGADRSYWKEFLVMCTLFVLAVLLPVLFLLYRHNSM  
KVFLKQGECASVHPKTCPVVLPPETRPLNGLGPPSTPLDHRYQSLSDSPPGARVFTESKR  
PLSIQDSFVEVSPVCPRPRVRLGSEIRDSSV
```

Transmembrane domains:

amino acids 23-46 (type II), 718-738

143/270

FIGURE 143A

CTAAGCCGGAGGATGTGCAGCTGCCGCGGCCGCGCCGGCTACGAAGAGGACGGGACAGGGCCGTGCGAACCGA
 GCCCAGCCAGCGGAGGACGCCGGCAGGGCGGGACGGGAGCGGGACTCGTCTGCAGCCGGCTCGCCGCGCTCG
 TGGCGCCCCCGCTCCCGCGCGAGCGGGAGGACGCCGGCACCTCGCGCCSAGCCCGCTAGCGCGCG
 CGGGCATGGTCCCCTTAAAGGCGCAGGCCCGGCCGGCGGGGGCGGGGTGCGGAACAAAGGCCGGCGGG
 CCTGCCGGCGGCTCGGGGCCGCGATGGCGGCCGGCGGCCGGCGCGCTGCCCGGGCGCTGCCCGGGCGCTCG
 CGCGCTAGGGCGGCCGCGCTGGGCCGAGCGGGCTGAGGGCGGCCGAGGCGCTGCCCGGGCGCTGCCCGGGCG
 GCGCGCGCGGCCGGCGGGCGAGCGGGCTGCGCGGCCGGCGCTGCCCGGGCGCTGCCCGGGCGCTGCCCGGGCG
 TGCTCGGGCTCGTCTGGCTTCGCTGGCTCGCGCTCGCTCGCCGGCTCGAGCTGAAGCGAGCG
 GCCCACGGCGCCGCCAGCCCCAGGGCTGCCGGCGAGCGGGCGCTGCCCGGGCGCTGCCCGGGCG
 GCGATGCGCGGGGCCAGCTCTGCCGCCGGCTGGACCCAGATGGCGGCCGCCGACAGGAACATTCTCT
 TCGTGGGACTCATGACGCCAGAAATACCTGCAGACTCGGGCGTGGCCCTACAGAACATGGTCCAAGAACAA
 TTCCCTGGAAAGTCTCAGTGGGGTTCTGACACATCTGACATGGCTTCTGACATGGCTTCTGACACTACCGG
 GTGTGGACGACTCTCCATCCGCCAGAAGAATCTGATGCTCAAGTACATGACAGAACACTATTGGACA
 AGTATGAATGGTTATGAGAGCAGATGATGACGTGATCATCAAAGGAGACCGCTGGAGAACTTCTGAGGAGT
 TGAACAGCACGAGCCCCCTTCTGGGAGACAGGCCCTGGCACCCAGAACATGGAAAGAATGGAAACTGGCCCTGG
 AGCCCTGGAGAACCTCTGCATGGGGGGCTGGCTGATCATGACGCCGGAGGTCTGGAGAACATGGTCCCG
 ACATTGGCAAGTGTCTGGGAGATGACACCAACCCATGAGGACGCTGGAGGGTGGAGGTGTCGGAGGTTTG
 CAGGGGGTAGTGTCTGGTCTTGAGATGCGCAGCTTTTATGAGAACATGGAGAACAAAAGGGGT
 ACATTAGAGATCTCCATAACAGTAAATTACACAAGCTATCACATTACACCCAAACAAAACCCACCTACAGT
 ACAGCTCCACAGTACATGCTGAGCGCAAGATATCCGAGCTCCGCATCGACAATACAGCTGACCGCGAA
 TTGTCCTGATGAGCAAATACAGCACACAGAACATGAGAACATTCTGAGGAGGACCTCCAGCTGGAAATCCCTCCCTCTCA
 TGAGGTTTCTAGCCCGCCAGCAGAGGAGATTCTGAGGAGATGGACTCCGGCCAGGGAGCTGGAGAACATTGGCAG
 TTGACGGCCAGCCCCCTGAGAGAACATGGACTCCGGCCAGGGAGCTGGAGCACATTGTCTGAGGTC
 TGGAGATGATCAATGCCAACGCCAGACCAAGAGGGCGCATATTGACTTCAAAGAGATCCAGTACGGTACCC
 GGGTGAACCCCATGATGGGCTGAGTACATCTGGACCTGCTGCTTCTGACAAAAGCACAAAGGGAAAGAAAA
 TGACGGTCCCTGAGGAGGCCAGCTTACAGCAGACTCTGAGCAAATTCAGCAGATTGAGGAGCTTGTGAGCAGTGGAGC
 TGAGATGACAAGAGTGGCCAAGAGAACATCTGAGGAGATTCTGAGGAGATGGACTCTGAGGAGCTTGTGAGCAG
 AGCTGTCCTCTTCTAGCTCCCTGGCTGAGAGTGGAGAACAGAACAAAGAACATGAGAACACAAAGAACATACTGA
 TTCTCTTGCTGGCTTCTGACATGTTGAGATTATGGAAACTTGTGAGAACAGCTGCTTATCCCAATC
 AGAACGTCAGGCTCTGGTTCTGCTTCAATTCTGACTTCAAACCTGACAAAGGCAACAGTGAACATTGATGA
 GAGATTACCGCAITAAGTACCCCTAAAGCCGACATGAGGAGATTGAGGAGCTTGTGAGGAGATTTCAGCAGGCCCTGG
 CCCTGGAAAGTAGGAGATCTCCAGTTAACATGAGGAGATTCTTGCTTCTCTGAGGAGCTGGACCTCTGCTGTTACTA
 CAGAATTCTTCAGGATGTCGAGAACATACAGTCTGGCCAAACAAATATTCTCAATCATCTCAGCCAGT
 ATGACCCAAAGATGTTATGAGGAAAGTCCAGTGCACAAACCATTTGCTTCTACTCAGAAAACCTGGCT
 GGAGAAAATATGGTTCTGGCATCTGTTAAGGGAGATCTGTCGAGTGGGGCTTGTGATTTCA
 TCCAGGGCTGGGGCTGGAGGATGAGGACCTTCAACAGGTTCTGAGGAGCTGGAGGAGTTAGGAGCC
 AGGAAGTAGGAGTAGTCCAGCTCCACCTCTGAGGAGATCTGACCCAAACAGTACAAAATGT
 GCTGGGGTCCAAGCATGACCTGGTACATGGGCTCACCAGCTGGCTGAGGAGTGGCTGGAAAAGACGTT
 GTTACAGTAAAGCAGCAATAATATGGCTAGTGGAGAACGCTTGTGAGGAGCTTGTGAGGAGCT
 TAATTATCTAATTATTTTCAAAATTTTGTATGATGAGTTTGAGTGGCTCGTACAGGATATTTTAC
 AAGGGTTTCTTACATGGAGACTCTTAAAGGAGTTCTGAGGAGCTTGTGAGGAGCTTGTGAGGAGCTTGTGAG
 CACATCTTCTGCTGAGAACATTATGAGCAGACTCTGCTTAACTTGTGAGGAGCTTGTGAGGAGCTTGTGAG
 TTTAAAAAAATGTTTCTTTGAGACCTTCTGCTCAGTCTGAGGAGCTTGTGAGGAGCTTGTGAGGAGCTTGTGAG
 TATTGTAACAAAACACTGTAACTCTGGTAAATGTTGTTGATTGTTAACATTCCACAGATCTACCTTTGT
 GTTTGTTTCTTTTACAAATTGTTTAAAGCCATTTCATGTTCTGAGTGTGAGATAAGGAAATGTGATAATA
 GCTGTTTCTGAGGAGCTTGTGAGGAGCTTGTGAGGAGCTTGTGAGGAGCTTGTGAGGAGCTTGTGAG
 CACCTGGTGGAGGAGCTTGTGAGGAGCTTGTGAGGAGCTTGTGAGGAGCTTGTGAGGAGCTTGTGAG
 CAGTGGCGCAATTCTGGCTCAGTTAACCTCCAGCTGGCTGAGGAGCTTGTGAGGAGCTTGTGAG
 AGCTGGGAACTACAGGACACACACCACGCCAGNTAGTTTTGTTGTTAGTGTAGAGAACGGGTTTCA
 GCAGGCCAGCTGGCCAGTAGGTTTAAAGCAAGGGCGCTGAGAACAGGACAGTGGAGTATGTGCTGTTCTG
 TGAGTTCTGGGCTAAATAGACCTGGCATAAATTTCAAGAACAGGATTTGGCATTCTCTCTGAGGAGCTT
 CTCTTAAAGGGAAATTAATGTTGAGAACAGAACAGTAAATTACAAATTTCTGAGTGTACACAGACT
 GAAACATACACACATACACCCCTAAACAGTGGGGAAAATGTTGTTGTTGTTCTTCTGAGTGTACACAGACT
 TGTTATGTTGAGGAGATGGTTTCAATTCTTCTGAGTACCTGTTGTTGTTGTTGTTGTTGAGTGT
 TTATTTAATATCTGTTGAGGAGCTGGCTTCTGAGTACCTGTTGTTGTTGTTGTTGTTGTTGTTG
 GAGTGTGTTGAGTGTGTTTATTGAGTAAACCGATCTCCAAAGAACATTGTTGGAAACGCTTTCCCTCC

144/270

FIGURE 143B

TTAATTTTATACTCCTTACTGTTTACTAAATATTAAGTGTCTTGGACAAATTGGTGCCTCATGTGTTTGGG
GACAAAAGTGAAATGAATCTGTCATTATACCAAGAAAGTTAAATTCTCAGATCAAATGCGCTTAATAAAATTGTT
TTCACTTAGATTCAAACAGTGATAGACTTGCCTATTAAATACACGTCAATTGGAGGGCTGCCTATTGTAAATAG
CCTGATGCTCATTTGGAAAAATAACCAGTGAAACAATATTTCTATTGACTTTCGAACCATTTGCTCATT
ATTCCCTGTTAGCTGAAGAATTGATTACATTGGAGAGTAAAAACTTAAACACGAAAAAA

145/270

FIGURE 144

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68836
><subunit 1 of 1, 802 aa, 1 stop
><MW: 91812, pI: 9.52, NX(S/T): 3
MAARGRRRAWLSVLLGLVLGFVLASRLVLPRASELKРАGPRRRASPEGCRSGQAAASQAGGAR
GDARGAQLWPPGSDPDGGPRDRNLFVGVMTAQKYLQTRAVAAYRTWSKTI PGKVQFFSSEG
SDTSVP IPVVPLRGVDDSYPPQKKSFMMLKYMHDHYLDKYEWFMRAADDVYIKGDRLENFLR
SLNSSEPLFLGQTGLGTTEEMGKLALEPGENFCMGGPGVIMSREVLRRMVPHIGKCLREMYT
THEDVEVGRCVRRFAGVQCVWSYEMQLFYENYEQNKKGYIRDLHNSKIHQAITLHPNKNPP
YQYRLHSYMLSRSRKISELRHRTIQLHREIVLMSKYSNTEIHKEDELQLGIPPSFMRFQPRQREE
ILEWEFLTGKYLYSAVDGQPQRRGMDSAQREALDDIVMQVMEMINANAKTRGRIIDFKEIQY
GYRRVNPMYGAEYILDLLLYKKHKGKMTVPVRRHAYLQOTFSKIQFVEHEELDAQELAKR
INQESGSLSFLSNLKKLVPFQLPGSKSEHKEPKDKKINILIPLSGRFDMFVRFMGNFEKTC
LIPNQNQVKLVVLLFNSDSNPDKAKQVELRDYRIKYPKADMQILPVSGEFSRALALEVGSSQ
FNNESLLFFCDVDLVFTTEFLQRCRANTVLGQQIYFPPIIFSQYDPKIVYSGKVPSDNHFAFT
QKTGFWRNYGFGITCIYKGDLVRVGGFDVSIQGWGLEDVDLFNKVVQAGLKTFRSQEVGVVH
VHHPVFCDPNLDPKQYKMCLGSKASTYGSTQQLAEMWLEKNDPSYSKSSNNNGSVTA
```

Signal peptide:

amino acids 1-23

146/270

FIGURE 145

GGACAACCGTTGCTGGGTCTCCAGGGCCTGAGGCAGGACGGTACTCCGCTGACACCTTCCC
TTTCGGCCTTGAGGTTCCCAGCCTGGTGGCCCCAGGAAGCTCCGGTCGCATGGCAGAGTGCT
ACGGACGACGCCTATGAAGCCTTAGTCCTCTAGTTGCGCTTTGCTATGCCCTCGTCTG
TGCCGGCTTATCCGAGCATAACTGTGACACCTGATGAAGAGCAAAACTTGAATCATTATATA
CAAGTTTAGAGAACCTAGTACGAAGTGTCCCTCTGGGGAGCCAGGTCGTGAGAAAAAATC
TAACCTCTCCAAAACATGTTATTCTATAGCATCAAAGGGATCAAATTTAAGGAGCTAGTTA
CACATGGAGACGCTTCAACTGAGAATGATGTTAACCAATCCTATCAGTGAAGAAACTACA
ACTTTCCCTACAGGAGGCTTCACACCGGAATAGGAAAGAAAAACACCGGAAAGTACCCC
ATTCTGGTCGATCAAACCAAACATGTTCCATTGTTTCATGCAGAGGAACCTTATATTG
AAAATGAAGAGGCCAGAGCCAGAGCCGGAGCCAGCTGCAAAACAAACTGAGGCACCAAGAATG
TTGCCAGTTGTTACTGAATCATCTACAAGTCCATATGTTACCTCATACAAGTCACCTGTCA
CACTTTAGATAAGAGCACTGGCATTGAGATCTCTACAGAATCAGAAGATGTTCCCTAGCTCT
CAGGTGAAACTGCGATAGAAAAACCGAAGAGTTGGAAAGCACCCAGAGAGTTGGAATAAT
GATGACATTGAAAAAAATTTAGATATTAAATTCAAAGTGCACAGGCACCTCTTAGTGA
CACCAAGCAACCCAGCATATAGAGAAGATTGAAGCCTCTAAAGATCACCTAAAAGAAGCC
TTGCTCTACCAGCAGCAGCAGAACATAAAATTAAAAACATGTATAAGTCCCAGTTATTGCCA
GTAAGGACAAAGTAATAAAATTGATGACATCGAAACTGTTATTACATGCTGTGAATT
TAGATCTAAACTCTATGAATATTAGATATTAAATGTTCCACCAGAGATGAGAGAAAAAG
CTGCTACAGTATTCAATACATTAAAAAATATGTTAGATCAAGGAGAGTCACAGCCTTATTA
AAAGTTTATTAAACAATAATATAAAAATTAAACCTACTTGATATTCCATAACAAAGCTGA
TTAAGCAAACACTGCATTTTCACAGGAGAAATAATCATATTGTAATTCAAAGTTGTAT
AAAAATTTCTATTGTTAGTCAAATGTGCCAACATCTTATGTGTATGTGTTATGAACA
ATTTTCATATGCACTAAAACCTAATTAAAATAAATTGGITCAGGAAAAAA

1471270

FIGURE 146

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68864
><subunit 1 of 1, 350 aa, 1 stop
><MW: 39003, pI: 5.59, NX(S/T): 1
MKPLVILLVALLWPSSVPAYPSITVTPDEEQNLNHYIQVLENLVRSPSGEPGREKKSNSPK
HVYSIASKGSKFKEVLVTHGDASTENDVLTNPISEETTFPTGGFTPEIGKKKHTESTPFWSI
KPNNVSIVLHAEEPYIENEEPEPEPEPAAKQTEAPRMLPVVTESSSTSPYVTSYKSPVTTLDK
STGIEISTESEDVPQLSGETAIEKPEFGKHPESWNNDILKKILDINSVQQALLSDTSNP
AYREDIEASKDHLKRSLALAAAEEHKLKTMYKSQLLPVGRTSNKIDDIETVINMLCNSRSKL
YEYLDIKCVPPEMREKAATVFNTLKNMCRSRRVTALLKVY
```

Signal peptide:
amino acids 1-19

148/270

FIGURE 147

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCTGGCCCTGAGACAGCTGGCTG
 ACCTCCAAATCATCCATCCACCCCTGTGTCACTGTTTCATAGTGTGAGATCAACCCACA
 GGAATATCCATGGCTTTGTGCTCATTTGGTTCTCAGTTCTACGAGCTGGTGTCAGGACA
 GTGGCAAGTCACTGGACCGGGCAAGTTGTCCAGGCCTGGGGGGAGGACGCCGTGTTCT
 CCTGCTCCCTCTTCTGAGACCAGTGCAGAGGCTATGGAAGTGGGTTCTCAGGAATCAG
 TTCCATGCTGGTCCACCTCTACAGAGATGGGAAGACTGGGAATCTAAGCAGATGCCACA
 GTATCGAGGGAGAACTGAGTTGTGAAGGACTCCATTGCAAGGGGGCGTCTCTAAGGC
 TAAAAAAACATCACTCCCTCGGACATCGGCTGTATGGGTGCTGGTTCAGTCCCAGATTAC
 GATGAGGAGGCCACCTGGGAGCTGCGGGTGGCAGCACTGGGCTCACTCCCTCATTTCCAT
 CGTGGGATAATGTTGACGGAGGTATCCAGTTACTCTGCCCTGCTCAGGCTGGTCCCCAGC
 CCACAGCCAAGTGGAAAGGTCCACAAGGACAGGATTGTCTCAGACTCCAGAGCAAATGCA
 GATGGGTACAGCCTGTATGATGTGGAGATCTCATTATAGTCCAGGAAAATGCTGGGAGCAT
 ATTGTTCCATCCACCTGCTGAGCAGAGTCATGAGGTGGAATCCAAGGTATTGATAGGAG
 AGACGTTTCCAGCCTCACCTGGCGCTGGCTTCTATTTACTCGGGTTACTCTGTGGT
 GCCCTGTTGGTGTGTCATGGGATGATAATTGTTCTCAATCCAAGGGAAAATCCA
 GGCGGAACTGGACTGGAGAAGAAAGCACGGACAGGAGAATTGAGAGACGCCGGAAACAGC
 CAGTGGAGGTACTCTGGATCCAGAGACGGCTACCCGAAGCTTGCGTTCTGATCTGAAA
 ACTGTAACCCATAGAAAAGCTCCCCAGGGAGCTGGCTCACTCTGAGAAGAGATTACAAGGAA
 GAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGGAGACATTACTGGGAGGTGGACGTGGAC
 AAAATGAGGGTGGTATGGGAGTGTGTCGGGATGACGTAGACAGGGGGAGAACAAATGTG
 ACTTTGTCCTCCAAATGGGTATTGGGTCTCAGACTGACAACAGAACATTGTATTTCAC
 ATTCAATCCCCATTATCAGCCTCCCCCAGCACCCCTCTCACAGGAGTAGGGGCTTCC
 TGGACTATGAGGGTGGGACCATCTCCTCTCAATACAAATGACAGTCCCTTATTATAACC
 CTGCTGACATGTCAGTTGAAGGCTTGTGAGACCTATATCCAGCATGCGATGTGACGA
 GGAAAAGGGGACTCCCATTCAATATGTCAGTGTCTGGGATTGAGACAGAGAACCCCTG
 CTTAAAGGGCCCCACACCAACAGACCCAGACACAGGCAAGGGAGAGTGCTCCGACAGTG
 CCCAGCTTCTCTCCGGAGCCTGCGCACAGAGACTCACGCCCCCCTCTCCTTAGGGAGC
 TGAGGTTCTCTGCCCTGAGCCCTGCGAGCAGCGGAGTCACAGCTTCCAGATGAGGGGGAT
 TGGCCTGACCTGTGGGAGTCAGAAGCCATGGCTGCCCTGAAGTGGGAGCGAAATAGCTCA
 CATTAGTTTAGTTGTGAAAACCCATCCAGCTAACGATCTGAAACAAGTCACAACCTCC
 CAGGCTCTCATTGCTAGTCAGGACAGTGATTCTGCCCTCACAGGTGAAGATTAAAGAGA
 CAACGAATGTGAATCATGCTGAGGTTGAGGGACAGTGTGCTAATGATGTGTTTTA
 TATTATAACATTITCCCACATAAAACTCTGTTGCTTATTCCACATTAATTACTTTCTCTA
 TACCAAATCACCATGGAATAGTTATTGAAACACCTGCTTGTGAGGCTCAAAGAATAAAGAG
 GAGGTAGGATTTCACTGATTCTATAAGCCAGCATTACCTGATAACAAACAGGCAAAG
 AAAACAGAAGAAGAGGAAGGAAACTACAGGTCCATATCCCTCATTAACACAGACACAAAAA
 TTCTAAATAAAATTAAACAAATTAAACTAAACAAATATTTAAAGATGATATAACTACT
 CAGTGTGGTTGTCCCACAAATGCAAGAGTTGGTTAATATTTAAATATCAACCAAGTGTAA
 CAGCACATTAATAAGTAAAAAGAAAACCATAAAAAAAAAAAAAA

149/270

FIGURE 148

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68866
><subunit 1 of 1, 466 aa, 1 stop
><MW: 52279, pI: 6.16, NX(S/T): 2
MAFVLILVLSFYELVSGQWQVTGPGKFKVQALVGEDAVFCSCLFPETSAEAMEVRFFRNQFHA
VVHLYRDGEDWESKQMPQYRGRTEFKVDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDDEE
ATWELRVAAL GSLPLISIVGYVDGGIQLLCLSSGWFQOPTAKWKGPGQGDLSRANADGY
SLYDVEISIIVQENAGSILCSIHLAEQSHEVESKVVLIGETFFQPSPWRLASILLGLLCALC
GVVMGMIIIVFFKSKGKIQAEQELDWRRKHGQAEELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKS VVASQGFQAGRHYWEVDVGQNVGWWVGVCRDDVDRGKNNVTLS
PNNGYWVRLTTEHLYFTFNPHFISLPPSTPPTRGVFLDYEGGTISPPNTNDQSLIYTLLT
CQFEGLLRPYIQHAMYDEEKGTPIFICPVSWG
```

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

150 / 276

FIGURE 149

CCTTCACAGGACTCTCATTGCTGGTGGCAATGATGTATGGCCAGATGTGGTGAGGGCTA
GGAAAAGAGTTGGGACCCCTGGGTATCGGCCCTCGTCATCTTCATATCCCTGATTGTC
CTGGCAGTGTGCATTGGACTCACTGTCATTATGTGAGATATAATCAAAGAACCTACAA
TTACTATAGCACATTGTCAATTACAACGTGACAAACTATATGCTGAGTTGGCAGAGAGGCTT
CTAACAAATTACAGAAATGAGCCAGAGACTTGAATCAATGGTAAAAATGCATTTATAAA
TCTCCATTAAAGGAAGAATTGTCAAGTCTCAGGTATCAAGTCAGTCACAGAACAGCATGG
AGTGTTGGCTCATATGCTGTTGATTGATTTCACTCTACTGAGGATCTGAAACTGTAG
ATAAAATTGTCACATTGTTTACATGAAAAGCTGCAAGATGCTGAGGACCCCTAAAGTA
GATCCTCACTCAGTTAAATTAAAAATCAACAAAGACAGAAACAGACAGCTATCTAAACCA
TTGCTGCGGAACACCGAACAGTAAACTCTAGGTCAAGGCTCAGGATCGTTGGTGGGACAG
AAAGTAGAAGAGGGTGAATGGCCCTGGCAGGCTAGGCTGAGTGGGATGGGAGTCATCGCTGT
GGAGCAACCTTAATTAAATGCCACATGGCTTGAGTGTGCTACTGTTTACAACATATAA
GAACCCCTGCCAGATGGACTGCTTCTGGAGTACAATAAAACCTTCGAAAATGAAACGGG
GTCTCCGGAGAATAATTGTCATGAAAATACAAACACCCATCACATGACTATGATATTCT
CTTGCAAGAGCTTCTAGCCCTGTTCCCTACACAAATGCACTAGAGTTGTCTCCCTGA
TGCATCCTATGAGTTCAACCAGGTGATGTGATGTTGACAGGATTGGAGGCACTGAAA
ATGATGGTTACAGTCAAAATCATCTTCGACAAGCAGGTGACTCTCATAGACGCTACAAC
TGCAATGAACCTCAAGCTTACAATGACGCCATAACTCTAGAAATTGTTATGTGCTGGCTCTT
AGAAGGAAAACAGATGCATGCCAGGGTACTCTGGAGGACCACTGGTAGTTCAAGATGCTA
GAGATATCTGGTACCTTGTGGAATAGTGAGCTGGGAGATGAATGTGCAAAACCCAACAAG
CCTGGTGTATACTAGAGTTACGCCCTGGGGACTGGATTACTCAAAAACGTGTTATCTA
AGAGACAAAAGCCTCATGGAACAGATAACATTTTTTGTTTGGGTGTGGAGGCCATT
TTTAGAGATACAGAATTGGAGAAGACTTGCACAAACAGCTAGATTGACTGATCTCAATAAAC
TGTTTGCTGATGCATGATTTCTTCCCAGCTGTGCTCGCACGTAAGCATCTGCTTCTG
CCAGATCAACTCTGTCATCTGAGCAATAGTGAACACTTATGTCATAGAGAAATAGATA
ATACAATATTACATTACAGCCTGTATTCAATTGTTCTAGAAGTTGTGAGAATTGAC
TTGTTGACATAATTGTAATGCATATATAACATTGAAAGCCTCCTTCAGTTCCTC
AGCTCCTCTCATTTCAGCAAATATCCATTTCAGGTGAGAACAGGAGTGAAAGAAAATA
TAAGAAGAAAAAAATCCCTACATTATTGGCACAGAAAAGTATTAGGTGTTTCTTAGT
GGAATATTAGAAATGATCATATTCAATTGAAAGGTCAAGCAAAGACAGCAGAAATACCAATC
ACTTCATCATTAGGAAGTATGGGAACTAAGTTAAGGAAGTCCAGAAAGAACGCAAGATA
TCCTTATTTCAATTCCAAACAACACTATGATAAAATGTGAAAGAAGATTCTGTTTTTG
ACCTATAATAATTACAAACCTCATGCAATGACTTGTCTAGCAAATTAAAGCAAATAT
TTATTAAACATTGTTACTGAGGATGTCAACATATAACAATAAAATAAATCACCCA

151/276

FIGURE 150

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68871
><subunit 1 of 1, 423 aa, 1. stop
><MW: 47696, pI: 8.96, NX(S/T): 3
MMYRPDVVRARKRVCWEPWVIGLVI FISLIVLAVCIGLT VHYVRYNQKKT NYYSTLSFTTD
KLYAEFGREASNNFTEMSQRLESMVKN AFYKSPLREEFVK SQVIKF SQQKHGVLAHMLLICR
FHSTEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTL
GQSLRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFG
VTIKPSKMKRGLRR II IVHEKYKHP SHDYDISLAELSSPV PYTNA VRVCLPDAS YEF QPGDV
MFVTGFGALKNDGYSQNHLRQAQVTLIDATT CNEPQAYNDAITPRMLCAGSLEGKTDACQGD
SGGPLVSSDARDIWYLAGIVSWGDEC A KPNKPGVYTRVTALRDWITSKTGI
```

Transmembrane domain:

amino acids 21-40 (type II)

152/278

FIGURE 151

GTGCAAGGTTATAAAAGCTTCCAGCAAACGGCATTAAGTTGAAGATACAACCTGACAGCA
CAGCCTGAGATCTTGGGATCCCTCAGCTAACACCCACAGACGTAGCTGGTGGATTCCCG
CTGCATCAAGGCCAACCCACTGTCTCCATGCTGGCTCTCCCTGCCTCTGTGGCTCTGGC
CGTGACCTTCTTGGTCCCAGAGCTCAGCCCTGGCCCTCAAGACTTGAAGAAGAGGAGG
CAGATGAGACTGAGACGGCGTGGCCGCTTGCCCCGTCTCCCTGCGACTACGACCACGTG
CGACACCTGCAGGTGCCCTGCAAGGAGCTACAGAGGTGGGGCGGCCTGCCTGTGCC
AGGACTCTCCAGCCCCGCCAGCCGCCGACCCGCCGCATGGAGAAGTGCCTGCATTGCC
CCGAAGAGGGCCGCGCAGTGGTCCACTGGTGTGCCCTTCTCCCGTCCTCCACTACTGG
CTGCTGCTTGGACGGCAGCGAGGCTGCGCAGAAGGGCCCCGCTGAACGCTACGGTCCG
CAGACCGAACTGAAGGGCTGAAGCCAGGGGCAATTATGTCGTTGCGTAGTGGCCGCTA
ACGAGGCCGGGCAAGCCGCGTCCCCAGGCTGGAGGAGAGGGCCTCGAGGGGCCGACATC
CCTGCCCTCGGGCCTTGCAGCCCTTGCCTGGGCGCCAAACCCCGCACTCTGGTCCACGC
GCCCGTCGGGTGGCACGGCCCTGGCCCTGCTAACGCTGTGCCGCCCTGGTGTGGCACTTCT
GCCCTGCCGATCGCTGGGCTGCCCGCCGAGCCGCCGAGCCGAGGGCGCTTGA
AAGGGGCTGGGGCATCTCGGGCACAGACAGCCCCACCTGGGCGCTCAGCCCTGGCCCCCG
GGAAAGAGGAAAACCGCTGCCCTCAGGGAGGGCTGGACGGCGAGCTGGAGGCCAGCCCCAG
GCTCCAGGGCACGGCGAGTCATGGTCTCAGGACTGAGCGCTGTTAGGTCCGGTACTT
GGCGCTTGTTCCTGGCTGAGGTCTGGAAAGGAATAGAAAGGGCCCCAATTTTTTTA
AGCGGCCAGATAATAAATGTAACCTTGCGGTTAAAAAAAAAAAAAA

FIGURE 152

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68874
><subunit 1 of 1, 238 aa, 1 stop
><MW: 25262, pI: 6.44, NX(S/T): 1
MLGSPCLLWLLAVTFLVPRAQPLAPQDFEEEEADETETAWPPLPAVPCDYDHCRHLQVPCKE
LQRVGPAACLCPGLSSPAQPPDPPRMGEVRIAAEEGRAVVHWCAPFSPVLHYWLLLWDGSEA
AQKGPPLNATVRRAELKGLKPGBIYVVCVVAANEAGASRVPQAGGEGLEGADIPAFGPCSRL
AVPPNPNRTLVIHAVGVGTALALLSCAALVWHFCLRDRWGCPRRAAAARAAGAL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 194-220

N-glycosylation site.

amino acids 132-135

FIGURE 153

AGAGAAAAGAACGCTCCAGCTGAAGCCAATGCAGCCCCCTCCGGCTCTCCGCCAAGAAAGTTCC
 CTGCCCCGATGAGCCCCCGCCGTGCGTCCCCGACTATCCCCAGGGGGCGTGGGGCACCGGG
 CCCAGCGCCGACGATCGCTGCCGTTTGCCCTGGGAGTAGGATGTGGTGAAGGATGGGC
TTCTCCCTTAACGGGGCTCACAAATGCCAGAGAAGATTCCGTGAAGTGTCTGCGCTGCCTGCT
 CTACGCCCTCAATCTGCTTTGGTTAATGTCATCAGTGTGGCAGTTCTGCTTGG
 TGAGGGACTACCTAAATAATGTTCTCACTTTAACAGCAGAAACAGGGTAGAGGAAGCAGTC
 ATTTTGACTTACTTTCTGTGGTCATCCGGTCATGATTGCTGTTGCTGTTCTGCATGGTACT
 TGTGGGGATGTTAGGATATTGTTGAAACGGTAAAAAGAAATCTGTTGCTTCTGCATGGTACT
 TTGGAAGTTGCTTGTCTTGTAGAACTGGCTTGTGGCTTGGACATATGAACAG
 GAACATTATGGTCCAGTACAATGGTCAGATATGGTCACTTTGAAAGGCCAGGATGACAAATTA
 TGGATTACCTAGATATGGTGGCTTACTCATGCTTGAATTTCAGAGAGAGTTTAAGT
 GCTGTGGAGTAGTATATTCACTGACTGGTTGAAATGACAGAGATGGACTGGCCCCCAGAT
 TCCCTGCTGTGTTAGAGAATTCCCAGGATGTTCAAACAGGCCACCAGGAAGATCTCAGTGA
 CCTTTATCAACAGGGTTGTTGGAAAGAAAATGATTCTTTTGAGAGGAACCAAACACTGC
 AGGTGCTGAGGTTCTGGGAATCTCCATTGGGTGACACAACTCTGGCCATGAATTCTCACC
 ATTACTCTGCTCTGGCTCTGTATTATGATAGAAGGGAGCCTGGACAGACCAATGATGTC
 CTTGAAGAATGACAACACTTCAGCACCTGTATGTCCTCAGTAGAACTGTTGAAACCAAGCC
 TGTCAAGAATCTTGAACACACATCCATGGCAAACAGCTTAAATACACACTTTGAGATGGAG
 GAGTTAAAAGAAAATGTCACAGAAAGAAAACCACAAACTTGTTTATTGGACTTTGTGAATT
 TTTGAGTACATACATGTGTTTCAAGAAATATGTTAGGAAATAAAATGTTGCCATAAAATAACA
 CCTAACGATATACTATTCTATGCTTTAAATGAGGATGGAAAAGTTCATGTCATAACTCAC
 CACCTGGACATAATTGATGCCCTTAAATGCTGAAGACAGATGTATACCCACTGTGTAGC
 CTGTGTATGACTTTACTGAACACAGTTGTTGAGGAGCAGCATGGTTGATTAGCATTT
 CGCATCCATGCAAACGAGTCACATATGGTGGACTGGAGCCATAGTAAAGGTTGATTACTT
 CTACCAACTAGTATATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATA
 ACTTTTATTACTCAGCGATCTATTCTCTGTGCTAAATAATTATATCAGAAAACCTTC
 AATATTGGTGAACACTAAATGTGATTGGCTGGTTACTAAATATTCTTACCACTTTAAA
 GAGCAAGCTAACACATTGTCTTAAGCTGATCAGGGATTGGTATATAAGTCTGTGTTAAA
 TCTGTATAATTCACTGCAATTGCTGATTTGCTGATAATGTTAAGAATAACCATTATGAAAAGAAA
 ATTGTCTGTATAGCATATTATTTAGCCTTCTGTTAATAAGCTTACTATTCTGT
 CCTGGGCTTATATTACACATATAACTGTTATTAAACTTAACCACTAATTGAAAATTA
 CCAGTGTGATACATAGGAATCATTATTCAAGATGTAGTCTGGTCTTCTAGGAAGTATTAATAA
 GAAAATTGCACTAAACTTAGTTGATTAGAAGGACTTGTATGCTGTTCTCCCAAATG
 AAGACTCTTTGACACTAAACACTTTAAAAGCTTATCTTGCTGCTTCTCCAAACAGAA
 GCAATAGTCTCAAGTCATATAAAATTCTACAGAAAATAGTGTCTTTCTCCAGAAAAT
 GCTTGAGAATCATTAAACATGTGACAATTAGAGATTCTTGTTTATTTCACTGATTA
 ATATACTGTGGCAAATTACACAGATTATTAATTTTACAAGAGTATAGTATATTATTT
 GAAATGGGAAAAGTGCATTACTGTATTTGTGTTATTTCTCAGAATATGGAA
 AGAAAATTAAATGTGTCATAAAATATTCTAGAGAGTAA

155/270

FIGURE 154

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68880
><subunit 1 of 1, 305 aa, 1 stop
><MW: 35383, pI: 5.99, NX(S/T): 0
MAREDSVKCLRCLLYALNLLFWLMSISVLAWSAWMRDYLNNVLTLTAETRVEEAVILTYFPV
VHPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWVTYEQELMVPVQ
WSDMVTLKARMNTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREF
PGCSKQAHQEDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWAL
YYDRREPGBTQMMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL
```

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

156/1270

FIGURE 155

GAGAGAGGCAGCAGCTTGCTAGCGGACAAGGATGCTGGCGTGAGGGACCAAGGCCTGCC
TGCACTCGGCTCCTCCAGCCAGTGTGACCAGGGACTCTGACCTGCTGCCAGCCAGGA
CTTGTGTGGGAGGCCCTCTGCTCTGGGGTACAATCTCAGCTCCAGGCTACAGGGAG
ACCGGGAGGATCACAGAGCCAGCATGTTACAGGATCCTGACACTGATCAACCTCTGAACAGC
CTCGATGTCAAACCCCTGCGAAACCCGTATCCCCATGGAGACCTTCAGAAAGGTGGGAT
CCCCATCATCATAGCACTACTGAGCCTGGCAGTATCATCATTGTGGTTGCTCATCAAGG
TGATTCTGGATAAATACTACTTCTCTGCGGGCAGCCTCTCCACTTCATCCGAGGAAGCAG
CTGTGTGAGGGAGGACTGGACTGTCCTGGGGAGGACGAGGAGACTGTGTCAGAGCTT
CCCCGAAGGGCCTGCACTGGCAGTCCGCTCTCAAGGACCGATCCACACTGCAAGGTGCTGG
ACTCGGCCAACAGGAACGGTTCTGCTGCTGACAACCTCACAGAAGCTCGCTGAG
ACAGCCTGTAAGCAGATGGCTACAGCAGAGCTGTGGAGATTGGCCAGACCAGGATCTGA
TGTGTTGAAATCACAGAAAACAGCAGGAGACTCGCATGCGGAACCTCAAGTGGCCCTGTC
TCTCAGGCTCCTGGTCTCCCTGCACTGTCTTGCTGTGGAAAGGCCTGAAGACCCCCG
GTGGTGGGTGGGAGGGAGGCCCTGTGGATTCTGGCTTGGCAGGTCAAGCATCCAGTACGA
CAAACAGCACGTCTGTGGAGGAGCATCTGGACCCCCACTGGTCTCACGGCAGGCCACT
GCTTCAGGAAACATACCGATGTCAACTGGAAGGTGCGGGCAGGCTCAGACAAAATGGC
AGCTTCCCACCTCTGGCTGGCCAAGGATCATCATCATTGAATCAACCCATGTACCCCA
AGACAATGACATGCCCTCATGAAGCTGCACTTCCACTCACTTCTCAGGCACAGTCAGGC
CCATCTGCTGCCCTTCTTGATGAGGAGCTCACTCAGGCCACCCACTCTGGATCATGG
TGGGGCTTACGAAGCAGAATGGAGGGAGATGTGACATACTGCTGCAGCGTCAGTCCA
GGTCATTGACAGCACACGGTCAATGCAAGCAGTGCAGGAGTCACTGGGAAAGTCACCGAGAAGA
TGATGTGTGCAAGGCATCCCGAACGGGGTGTGGACACCTGCCAGGGTACAGTGGTGGG
CTGATGTACCAATCTGACCAGTGGCATGTGGTGGCATCGTTAGCTGGGCTATGGCTGG
GGGCCCCAGCACCCAGGAGTACACCAAGGTCTCAGCCTACTCAACTGGATCTACAATG
TCTGGAAGGCTGAGCTGTAATGCTGCTGCCCTTGCACTGCTGGAGGCCCTTGGTACACCC
CCCTGCCACCTGGGATCCCCAAAGTCAGACACAGAGCAAGAGTCCCTGGTACACCC
CTCTGCCACGCCCTCAGCATTCTGGAGCAGCAAAGGGCTCAATTCTGTAAGAGACCC
TCGCAGGCCAGGGGCCAGAGGAAGTCAGCAGGCCACTCTGGCCACACTTGGTCTCCC
AGCATCCCAGGGAGAGACACAGGCCACTGAACAAGGTCTCAGGGTATTGCTAAGCCAAGAA
GGAACCTTCCACACTACTGAATGGAAGCAGGCTGTCTGTAAGGCCAGATCACTGTGG
CTGGAGAGGAAGGAAAGGGCTGGCCAGCCCTGCGTCTCACCCATCCCAAGCCTA
CTAGAGCAAGAAAACCAGTGTAAATATAAAATGCACTGCCACTGTGGTATGACTACC
ACCTACTGTGTATTGTTATTACAGCTATGCCACTATTATAAGAGCTGTGAACATCT
CTGGCAAAAAAA

FIGURE 156

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68885
><subunit 1 of 1, 432 aa, 1 stop
><MW: 47644, pI: 5.18, NX(S/T): 2
MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYFY
LCGQPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPPEGPAVAVRLSKDRSTLQVLDSATGNWF
SACFDNFTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELMRNRSSGPCLSGSLVSL
HCLACGKSLKTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDV
FNWKVRAGSDKLGSFPPSLAVAKIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLFFF
EELTPATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE
GGVDTQCQGDGGPLMYQSDQWHVVGIVSWGYZGCZGPSTPGVYTKVSAYLNWIYNWKAEL
```

Transmembrane domain:

amino acids 32-53 (typeII)

158/270

FIGURE 157

GGGCTGAGGCAC TGAGAGACCGGAAGCCTGGCATCCAGAGGGAGGGAAACGCAGCGGCATCCCAGGCTCAG
 AGCTCCCTGGTGACAGTCTGTGCTGAGCATGGCCCTCCACGCCCTGGGCTGGACCCCTGGAGGCTCTGGGC
 TTTCTCTCTCAACTGCTTCAGCTGCTGCGACGACGCCGGGGGGAGGCGGGCAGGGGCCATGCCA
 GGGTCAGATACTATGCAAGGGGATGAAGCTAGGGCACTTAGCTCTCCACCAAAGGGCTCCAGGATTGGACA
 CTCCTGCTCTGAGTGGTGTGGAAATACTCTCTACGTGGGGCTCGAGAACGCAITCTGGCCTTGGATATCCAGG
 ATCCAGGGTCCCAAGGCTAAAAGAACATGATAACCGTGGCCAGCCAGTGACAGAAAAAGAGTGAATGTGCCCTTA
 AGAAGAAGAGCAATGAGACACAGTGTTCACCTCATCGTGTCTGGTTTCAATGTCACCCATCTACA
 CCTGGGGCACCTTCGCTTCAGCCCTGTTGACCTTCACTGAACTTCAGAATTCCTACCTGTTGCCCATCTCGG
 AGGACAAGGTCAATGGGGAAAGGCCAACGGCCCTACAAGCATAACGGCTGTCTGGTGGATG
 GGATGCTCTATTCTGTTACTATGAAACATTCCTGGGCACTCTGATGCGCACACTGGGATCCCAAGC
 CTGCTCTCAAGACCGACAATCTCTCCGCTGGTGCATCATGACGCCATCTTGTGGCAGCCATCTTCCGACCC
 AGGTGCTACTCTCTCGAGGGAGACAGCCAGGAGTTGACTCTTGAGAGGCTCCACACATCGGGGTGG
 CTAGAGTCGCAAGAATGACGCTGGGGCGGCAAAGAGCTGCTGAGAAGAGTGGACCCCTCTGAAGGCCAGC
 TGCTCTGACCCAGCGGGGAGCTGGCTACCGCCACGGCTCTGCTCCCCGGCAGATTCTCCA
 CAGGCTCCCAACATCTACGCTCTCACCTCCAGTGGCAGGGGGACAGGAGCTCTGGGTTGTGCT
 TCTCTCTTGGACATTGAGCTGTCTTAAAGGGAAATAAAAGAGTAAACAAAGAAACTTCAGCTGGACTA
 CTTATAGGGGCCCTGAGACCAACCCCGGGCAGGCACTGGCTCATGGGCCCTCTCTGATAAGGCCCTGACCT
 TCATGAAGGACCAATTCTGATGGATGAGCAAGTGGGGACGCCCTGCTGGTGAATCTGGCTGGAGTATA
 CACGGCTTGAGTGGAGACAGCCAGGGCTTGATGGCAGGCCATCTGTCATGTAACCTGGAAACCAACAG
 GTGCTCTCAAGGCTGGTAAGTGGGAGCAGCTGCTCATCTGGTGAAGAGATTCACTGTTCCCTGACC
 CTGAACCTCTGGCAACCTGAGCTGGCCCCAACCCAGGGTGCAGTGTGTGAGCTTCTCAGGGAGGTGCTGGA
 GGGTCCCCGAGCCAACGTAGTGTCTATGAGAGCTGTGTGAGCTGTCTTCTGGGACCCCACTGTGCC
 GGGACCCCTGAGTCCGAACCTGTTGCTCTGCTGCCCTGAGCTGGGACAGGACATGGAGCGGG
 GGAACCCAGAGTGGGAGCAGTGGCAGTGGCCCCCTAGAGCAGGAGCTTCCGGCTCAGAGGCCGGCAAATCATTA
 AAGAAGTCTGGCTCCACCTCATCTGGAGCTTCCCTGGCCCCACCTGTCAGCCTTGGCTCTTATTATT
 GGAGTCATGGCCACAGCAGCTCCAGAACGCTCTTCACTGTCTACATGGCTCTCTGTGATACTGCAAG
 ATGGAGTTGGGGCTCTACAGTGTGGCAACTGAGAATGGCTTTCATACCTGTATCTCTACTGGGTTG
 ACAGCCAGGACCAACCTGGCCCTGGATCTGAACGGCAGCATCCCCGGGAGCATGTGAAGGTCCGGTTGA
 CCAGGGTCAGTGTGGGGCCCTGGCTCCAGCAGTCTACTGGGCCACTTGTCACTGTCACTGCTCT
 TTGCTTACTGTCTTCAAGGAGCCCTCATCATCTGGCTGGCTCCCTGAGAGCAGTGGCTCAGGGCTGGGCAAGG
 TTCAGGGCTGTGAGACCCCTGCGCCCTGGGAGAAGGCCCTTAAGCAGAGGAACACCTCAAGTCTCCCAAGG
 AATGCAAGGACCTGTCCAGTGAGCTGGACGCTGACAACAACGTGCTAGGCAGGTAGCTAAACTTAGGCA
 CAGGCCGGGGCTGGGTGAGGACCTGGCCATGTGGCTGGGCCAGCACAGCCCTGACTAGGATGACAG
 CAGCACAAAAGACCACTTCTCCCTGAGAGGAGCTTGTCACTCTGCACTGAGCTGACACTCAGCAGGGTG
 ATGCAACAGCTGCTCTCCCTGAGACTCCCTCTACCAAGCACATGAGCTCTTAACAGGGTGGGGCTAC
 CCCCAGACCTGCTCTACACTGATATTGAAGAACCTGGAGAGGATCTCAGGTTGGCATTCCAGGGACCTC
 CAGAAACACAGTGTTCAGAGACCTAAAAAACCTGCTGCTCCAGGACCTATGGTAATGAACACAAAATC
 TAAACAATCATATGTAACATGCCACTCTGGAAACTCCACTCTGAAAGCTGCCCTTGGACACCAACACTCC
 TCTCCAGGGTCATGCAAGGGATCTGCTCCCTCTCTTCCCTACAGTGTGACCTCCAGGAAGTC
 TTCTGAAAGTGTGACCCACTTCTCTGCTTCACTGAGTGGGGCAGACTCTGATCCCTGTGCCCCCTGGCAGAATGG
 CAGGGTAATCTGAGCCTCTTCACTCCCTACCTGACCCCTTCACTCTCCCTTCTGCCCCCTGGCAGAATGG
 TTGGGATTCAAGAAAATGCTGTGAGAGACTGTTATTTTATTAAAAATAAGGCTTAAAAAA

FIGURE 158

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71166
><subunit 1 of 1, 761 aa, 1 stop
><MW: 83574, pI: 6.78, NX(S/T): 4
MALPALGLDPWSLLGLFLFQLLQLLPPTTAGGGGQGPMPRVRYYAGDERRALSFFHQKGLQ
DFDTLLSGDGNTLYVGAREAILALDIQDPGVPRLKKNMIPWPASDRKKSECAFKKKSNETQC
FNFIRVLVSYNVTHLYTCGTFAFPACTFIELQDSYLLPISEDKVMEGKGQSPFDPAHKHTA
VLVDGMLYSGMTMNNFLGSEPILMRTLGSQPVLKTDNFLRWLHHDASFVAAIPSTQVYYFFFE
ETASEFDFFERLHTSRVARVCKNDVGGEKLLQKKWTTFLKAQLLCTQPGQLPFNVIRHAVLL
PADSPTAPHIYAVFTSQWQVGGTRSSAVCAFSLLDIERVFKGKYKELNKETSRWTTYRGPET
NPRPGSCSVGPSSDKALTFRMKDHFLMDEQVVGTPLLKVSGVEYTRLAVETAQGLQGHSHLVM
YLGTTGSLHKAVVSGDSSAHLVEEIQLFDPPEPVRLQLAPTQGAVFVGFSGGVWRVPRAN
CSVYESCVDCVLARDPHCAWDPESTCCLLSAPNLNSWKQDMERGNPEWACASGPMSRSLRP
QSRPQIIKEVILAVPNSILELPCPHLSALASYYWSHGPAAVPEASSTVYNGSLLLIVQDGVGG
LYQCWATENGFSYPVISYWVDSQDQTIALDPELAGIPREHVVKVPLTRVSGGAALAAQQSYWP
HFVTVTVLFALVLSGALIILVASPLRALRARGKVQGCETLRPGEKAPLSREQHLQSPKECRT
SASDVADNNCLGTEVA
```

Signal peptide:

amino acids 1-30

Transmembrane domains:

amino acids 136-156, 222-247, 474-490, 685-704

FIGURE 159

AGGGTCCCTAGCCGGCGCAGGGCGCAGCCCAGGCTGAGATCCGGGCTTCCGTAGAAG
 TGAGCATGGCTGGCAGCGAGTCCTCTAGTGGCTTCTCTCCCTGGGTCTGCTC
 TCAGAGGCTGAAAATCTGACAATATCTACAGTAGGTGAAGCATTATCTACTGATGGA
 CCGGGTTCTCAGATTCTCAAGATCACGGTCAATAATGTCACCAGCTTAACCACAAAAGAG
 GTCCTTTATGCCAGATTTAAAAGGAAGAAAATCATATCAAGTTATCAGTTGGCTTGC
 CCTGAAGATCATCAAAGAGAATTAAAAAGAGTTGATTCTTCTGGAAGAAACTTTAGG
 TGGCAGAGGAAAATTGAAAACCTTAAATGTTAGAATACTTGGCGTTGCAGTGCACTC
 ATTTTTAAATAGAAAGGATATCATGGATTCTTAAAGAATGAGAACCTCGACATGGTATA
 GTTGAACACTTTGACTACTGCTTCTGATTGCTGAGAAGCTGGGAAGCCATTGTGGC
 CATTCTTCACTTCACTGGCTCTTGGAAATTGGCTACCAATCCCTGTCTTATGTC
 CAGTATTCCGTTCTTGACTGATCACATGGACTCTGGGGCGAGTGAAGAATTCTG
 ATGTTCTTCTGAGCTCTGCAAGGAGGCAACAGCACATGCACTACATTGACAACACCA
 GGAACATTTCACAGAAGGCTAGGCAGTTTGCTCATCTTCACTGAAAGCAGAGTTG
 GGTCATTAACCTGACTTTGCTGATTTGCTGACCTGCTTCCAAACACTGTTAT
 GTTGGAGGCTTGATGAAAACCTTAAACAGTACCAAGACTTGAGAACATTGTC
 CAAGTTGGGACTCTGTTTGTGACCTGGCTCATGGTGAACACCTGTCAGA
 ATCCGAAATCTCAAGGAGATGAAACATGCCCTGGCTCACCTACCCAAAGGGTGAATGG
 AAGTGTCACTGTTCTCATGGCCAAGATGTCACCTGGCTGAAATGTAAGAATTGTA
 CTGGCTTCTCAGAGTGAACCTGGCTCACCAAGCATCCGCTGTTGTCACCCACGGCG
 GCGAGAAATAGCATATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGATCCCTCT
 GGAGACCAAGCTGAAAACATGGTCCGAGTAGAAGCCAAAAGTTGGTGTCTATTGAGT
 AAAGAAGCTCAAGGCAAGAGACATTGGCTTAAAGTGAAGAACAAATCATGGAAAGACAAGAGAT
 ACAAGTCGGCGGCAGTGGCTGCCAGTGTCACTCTGCGCTCCACCGCTCAGCCCCACACAG
 CGGCTGGTGGGCTGGATTGACCACGTCCTCCAGACAGGGGGCGCAGCACCTCAAGCC
 TGCTTCTCAGCAGCCCTGGCATGAGCACTACCTGTCAGCTTGTGTTCTGCTGGG
 TCACTCTGGGACTCTATGGCTTGTGGAGCTGCTGGCATGGCTGCTGGCTGCGT
 GGGGCCAGAAAGGTGAAGGAGACATAAGGCCAGTGCAGCCTGGGGGCTGTTGGGG
 GCGATGTCACCATTTCTAGGGAGCTTCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTC
 TAGTTATCTCTGTTTCTTGAAGAACAGGAAAATGGCAAAATCATCCTTCACTTGC
 TAATTTGCTACAAATTCATCCTTACTAGCTCTGCTGCTAGCAGAAATCTTCACT
 CTGTCCTCTTGTGTCAGCAAGGGCTATGCTGTGATTCTGCTCTGAGTGACTTG
 GACCACTGACCCCTCAGATTCCAGCCTAAAATCCACCTCTCATGCGCTCTCCGAA
 TCACACCCCTGACTCTCCAGCCTCCATGTCAGACACTAGTCAGCCTCTCACTCTGCCCC
 TACTATCATGGAAATAACATCCAAGAAAGACACCTTGCATATTCTTCAGTTCTGTT
 TGTCTCCACATACTCTCTCAATGTCAGGAAGCCTGCCCTGTGCTTGAGAGTTCA
 CGGACACAGGCTCACAGGTCTCCACATGGTCCCTGTCTCTGGTGCCACAGTGAGCTC
 TCTGGCTGAGCAGGATGGAGACTGTAGGTTCCAGATTCTGAAAATAAAAGTTACA
 GCGTTATCTCTCCCCAACCTCACTAA

161/270

FIGURE 160

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71169
><subunit 1 of 1, 523 aa, 1 stop
><MW: 59581, pI: 8.68, NX(S/T): 1
MAGQRVLLLGVFLLPGVLLSEAAKILTISTVGGSYLLMDRVSQILQDHGHNVTMLNHKRGP
FMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFFLEETLGGRGKFENLLNVLEYLALQCSHF
LNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIPLSYVPV
FRSLLTDHMDFWGRVKNFLMFFSFCCRQQHMQSTFDNTIKEHTTEGSRPVLSHLLLKAELWF
INSDFAFDFAFPPLLPTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNP
EIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHP SIRLFVTHGGQ
NSIMEAIQHGVPVMVGIPPLFGDQPENMRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYK
SAAVAASVILRSHPLSPTQRLLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLGLT
LGTLWLCGKLLGMAVWWLRGARKVKET
```

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 483-504

162/270

FIGURE 161

GGGCTGTTGATTGTGGGGATTTGAAGAGAGGAGGAATAGGAGGAAGGGGTTGAGGGGCT
 GCCTCTGCATATGCACACACTCACACATTCTGTACACACCGTCACACACATACCATGTT
 CTCCATCCCCCAGGTCCAGCCTCAGTGTCTCCATCCAGCAGGGCTACCTCTGAAGCTCT
 GGCTGCAGCCCTCCCGTCCAGTGGGCAAGGGGGACTGCAGTGACAGCAGGAGTAAGAGT
 CGGAGGCAGGACAGAGCTGGACACAGGTATGGAGAGGGGTTCAGCGAGCCTAGAGAGGGC
 AGACTATCAGGGTGCAGGGCGGTGAGAACTCAGGGAGAGGAGCGAAACAGAAAGAGGGCAGA
 AGACCGGGGCACTTGTTGAGAGCCCCTCAGGCATGTTGGGAGCCAAGCCACACTGGC
 TACCAGGTCCCTACACAGTCCCAGGCTGCCCTGTTCTGGTCTGGTCTTCTGGGCTGGGGCC
 GGGTGGGCCAGGAGGGTCAGAGCCCCTCTGCTGGAGGGGAGTGCCTGGTCTGTGA
 GCCTGGCGAGCTGTCAGGGGCCGGGAGCAGCCCTGGGAGAGGCACCCCTGGC
 GAGTGGCATTGTCAGGGTCCAGGCCACCCATGAGCCAGCAGGGAAACGGCAATGGC
 ACCAGTGGGGCATCTACTTCGACCAAGGTCTGGTGAACGAGGGCGTGGTTGACCGGGC
 CTCTGGCTCTCGTAGCCCCCTGTCGGGGTGTACAGCTCCGTTCCATGTTGGAAGG
 TGTACAACCGCAAACGTCCAGGTGAGCCTGATGCTGAACACCTGGCTGTCACTCGAGCC
 TTGCAATGATCCTGACCTGAGGGAGGCAGCCACCCAGCTGTGCTACTGCCCTTGA
 CCTGGGGACCGAGTGTCTCGCCTGGCTCGGGGAATCTACTGGGTGGTTGAAATACT
 CAAGTTCTCTGGCTTCCTCATCTCCCTCTGAGGACCCAACCTTCAAGCACAAGAAT
 CCAGCCCTGACAACCTTCTGCCCCCTCTGGCCAGAAAACAGCAGAGGAGGGAGAG
 ACTCCCTCTGGCTCCATCCACCTCTTGCACTGGACCCCTGCAACACCCAAAGTTAA
 GAGAAGAGTAGAGCTGTGCATCTCCAGACCAGGCTTCCACCCACCCACCCAGTTACC
 CTCCCAGCCACCTGCTGCATCTGTTCTGCTGCAGCCCTAGGATCAGGGCAAGGTTGGA
 AGAAGGAAGATCTGCACTACTTGGCCCTCTGCTCTCCGGTCCCCACCCAGCTTCT
 GCTCAATGCTGATCAGGGACAGGTGGCGCAGGTGAGCCTGACAGGCCCCACAGGAGCCAG
 ATGGACAAGCCTCAGCGTACCCCTGCAAGGCTCTCTCTGTGAGGAAAGCCAGCATCACGGATC
 TCAGCCAGCAGGCTCAGAACGCTGAGCCAGCACCGTATGGCTAGGGTGGAGGCTCAGGCCAC
 AGGCAGAAGGGTGGGAAGGGCTGGAGTCTGTGGCTGGTGGAGGAAGGAAGGAGGGTGTATTG
 TCTAGACTGAACATGGTACACATTCTGCATGTATAGCAGAGCAGCCAGCAGGTAGCAATCCT
 GGCTGTCCTCTATGCTGGATCCAGATGGACTCTGGCCCTTACCTCCCCACTGAGATTAG
 GGTGAGTGTGTTGCTCTGGTGAAGAGCAGAGCTGAGAGCAGGTATAAGAGCTGGAAGTGG
 ACCATGGAAAACATCGATAACCATGCATCCTTGTGTTGCCACCTCTGAAACTGCTCCAC
 CTTTGAAGTTGAACATTAGTCCTCCACACTCTGACTGTCCTCCCTCCCTCCAGCTCTC
 TCACTGAGTTATCTTCACTGTAACCTGTCAGCATATCCCCACTATCTCTTTCTCTGAT
 CTGTGCTGTTATTCTCTCCCTAGGCTCTTACCTGGGATTCCATGATTCAITCCTT
 CAGACCCCTCTGCGCAGTATGCTAAACCCCTCCCTCTCTTTCTTACCTGGGATTCCATGATT
 GGCCCAAGCCTGGATGAATCTATCAATAAAACAACTAGAGAATGGTGGTCAGTGAGACACTAT
 AGAATTACTAAGGAGAAGATGCCTCTGGAGTTGGATCGGGTGTACAGGTACAAGTAGGTA
 TGTTGCAGAGGAAAATAATATCAAACGTATACTAAAATTAAAAA

1631270

FIGURE 162

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71180
><subunit 1 of 1, 205 aa, 1 stop
><MW: 21521, pI: 7.07, NX(S/T): 1
MLGAKPHWLPGPLHSPGLPLVLVLLALGAGWAQEGSEPVLEGECLVVCEPGRAAAGGPAGA
ALGEAPPGRVAFAAVRSHHHHEPAGETGNGTSGAIYFDQVLVNEMGGGFDRASGSFVAPVRGVY
SFRFHVVVKVYNRQTVQVSLMLNTWPVISAFAANDPDVTREAATSSVLLPLDPGDRVSLRLRRG
NLLGGWKYSSFSGFLIFPL
```

Signal peptide:

amino acids 1-32

164/270

FIGURE 163

GCTGTTCTCGGCCACCACTGGCCGCCGGCCAGCTCCAGGTGTCTAGCCGCCAGC
CTCGACGCCGTCCCAGGACCCCTGTGCTCTGCCGAAGCCCTGGCCCCGGGGCCGGGCAT
GGGCCAGGGCGGGGTGAAGCGGCTTCCCGGGGGCGTGACTGGCGGGCTTCAGCCAT
GAAGACCCCTCATAGCCGCTACTCCGGGTCTGCCCGAGCGTCAGGCCGAGGCTGACC
GGAGCCAGCGCTCTCACGGAGGACCTCGCCTGCGCTGAGGGGTCTGGAGATGGGCAC
GGATCCAGCATCCTCTCCGCCCTCCAGGACCTCTCTGTACCTGGCTCAATAGGTCAA
GGTGGAAAAGCAGCTACAGGTCACTCAGTGTCCAGTGGGTCTGTCTTCTGTACTGG
GAGTGGCCTGCAGTGCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTG
CTCTACTTCACTTGGCTGGTGTGTTGACTGAAACACACCAAGAAAGGTGGCAGGAGGTACA
GTGGTCCGAAACTGGCTGTGGCCTACTTTGAGACTACTTCCCACAGCTGGTGA
AGACACACAAACCTGCTGACCACCAGGAACATATCTTGGATACCACCCCATGGTATCATG
GGCCTGGGTGCCCTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGG
CATACGGCCTAACCTGGCTACACTGGCAGGCAACTCCGAATGCCGTGTTGAGGGAGTACC
TGATGTCGGAGGTATCTGCCCTGTCAGCCGGACACCATAGACTATTGCTTCAAAGAAT
GGGAGTGGCAATGCTATCATCATCGTGGTGGGGTGGCGCTGAGTCTCTGAGCTCCATGCC
TGGCAAGAATGCACTGACCTGCGAACCGCAAGGGCTTGTGAAACTGGCCCTGCGTCATG
GAGCTGACCTGGTCCCACACTCCTTGAGAGAAATGAAGTGTACAAGCAGGTGATCTC
GAGGAGGGCTCCTGGGGCCGATGGGTCAGAAGAAGTTCCAGAAATACATTGGTTGCC
ATGCATCTTCATGGTCGAGGCCTTCTCTCCGACACCTGGGGCTGGTGCCTACTCCA
AGCCCATCACCACGTGTTGGAGAGGCCATCACCATCCCCAGCTGGAGCACCCACCCAG
CAAGACATGACCTGTACACACCATGTACATGGAGGCCCTGGTAAGCTTCTGACAAGCA
CAAGACCAAGTTGGCCTCCGGAGACTGAGGTCTGGAGGTGAACTGAGCCAGCCTCGGG
GCCAATTCCCTGGAGGAACCAGCTGCAAATCACTTTTGCTCTGTAAATTGGAAGTGTCA
TGGGTGTCTGTGGGTTATTAAAAGAAATTATAACAATTGCTAAACCAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

FIGURE 164

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71184
><subunit 1 of 1, 388 aa, 1 stop
><MW: 43831, pI: 9.64, NX(S/T): 3
MKTLLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWTGSSILSALQDLFSVTWLNR
KVEKQLQVISVLQWVLSFLVLGVACSAIMYIFCTDCWLIAVLYFTWLVFDWNTPKKGR
QWVRNWAVWRWFYFRDYFPIQLVKTHNLLTRNYIFGYHPHGIMGLGAFCNFSTEATEVSK
GIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAAIIIVVGGAAESL
PGKNAVTLRNRKGFVKLALRHGADLVPPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIG
PCIFHGRGLFSSDTWGLVPYSKPITTVVGEPIITPKLEHPTQQDIDLYHTMYMEALVKLFD
HKTKFGLPETEVLEV
```

Important features of the protein:**Transmembrane domain:**

amino acids 76-97

N-glycosylation sites.

amino acids 60-63, 173-176, 228-231

N-myristoylation sites.

amino acids 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-245, 318-323, 378-383

166/270

FIGURE 165

GGCGGGGGATGGGGCCGGGGCGGGCGCCGCACTCGCTGAGGCCCGACGCAGGGCCGGGGCC
 GGGCGAGGAGCGCGGCGGAGCGGGCGGGAGCGGGCGGGAGCGCGGGAGCGCCGCGCACGAGCAGGG
 CGGGCTGAGCTTGTCCAGCGGAAGCCCTGAGGGCAGCTGTTCCCCTGCTGACCTTGCTGCCCTTGA
 CGGCTGTCCTCAGCGAGGGCCGTGACCCGCTCAGGACAGCGCATGGCCTGCTGCCCTTCTGAAGACCCA
 GTTCGTCTGCACCTGCTGGCTGGCTTGTCTCGTGGTGAAGCTGGTCAACTCGTCCAGCTGTGAC
 GCTGGCGCTGCCGCTCAGCAAGCAGCTAACGCCGCTCAACTGCCCTGCCCTACTCACTCTGGAGCCA
 ACTGGTCATGCTGCTGGAGTGGTGGCTGCAGGAGTGTACACTGTTCAAGGACAGGGCACGGTAGAGCGTT
 TGGGAAGGAGCACGCACTCATCATCTCAACCACAACCTCGAGATCGACTCTCTGTGGTGGACATGTGTA
 GCGCTTCGGAGTGTGGGACTCCAGGCTCGCTAAGAAGGGACTGCTACAGTGGCCCTCATCGCTGGAC
 GTGGTACTTCTGGAGATTGTCTGCAAGCGGAAGTGGGAGGAGGACCGGGACAGCTGGTCAAGGGCTGAG
 GCGCTGTCGACTACCCGAGTACATGTGTTCTCTGTACTCGAGGGACGGCTCACGGAGACCAAGCA
 CCGCGTTAGCATGGAGTGGCGCTGCTAAGGGCTTCCCTGCTCTCAAGTACACCTGCTGCCGGACCAAGGG
 CTTCACCCACCGCAGTCAGTCAGTCCTCCGGGGACAGTCGCGAGCTGTCTATGATGTAACCCCTGAACCTCGAGAAA
 CAAGAACCCGCTCTGCTGGGATCTCTCAAGGAAAGAAGTCAGGAGGACATGTGCGTGAAGGAGATTTCTCT
 GGAAGACATCCGGCTGGATGAAAAGGAAGCAGCTCAGTGGCTCATAAACTGAGGAGAACGGACGGCTCCA
 GGAGATATAATCAGAAGGGCATGTTTCAAGGGGACAGTTAACGCTGCCGGAGGCGTGGACCTCTGAA
 CTTCTGTCCTGGGACCATTCTCTGCTCCCTCTCAGTTTGTCTGGGCTTGGCCAGCGGATCACC
 TCTCTGATCTGACTTTCTGGGTTTGTGGGAGCAGCTCTTGGAGTTCGAGACTGATAGGAGAACGCT
 TGAACCTGGGAGGTGAGATGAGCTGAGATGGCATACTGACTCTCAGGCTAGGCAACAGAGCAAGACT
 CAGTCTCAAAAAAAACAAAAACCCCCAGAAAATTCTGGAGATTGAGACTGAGGAGATGACATGAAA
 ATTCAACTAGGGCTAACAGCAGATTGAGCAGGAGAAAAAATCAGCAGATGAGGAGATGGTACCTTGAGATT
 TTTCAGGCTAATGAAAAGAATGAGGAAAATTAAACAGCTCAGAGACCCATGGTGCACCGTACACAAATCAA
 CATATGCTATGAGAGTCCCGAGGAGAGGAGAAAAGGGTCAGAAAGAATGGCACAGCTGATGAAAACA
 GTAACCTACCCACTCAGGAACCTCACTGAACTTCAATGAGGATGAAATCAGAGATCCACACTAGATATTCT
 AATCAAGTGTCAATGACAAGAACAGCAAGAGATGAGGAACTTCAATGAGGATGAACTTCAAGGATCTTG
 ATCAGATTAAACAGCTCATTCTCTCAGAAATCATGGAGCCAGGAGATGGGATGAAACACTGTTGAAGGCA
 AACCTCAACTGTAATTATTGGACTTTGAGCTTAGATGCTCTGACCTCTTGTCTCAGGGACAGTTTCA
 ATTAAATCCCTAATAACAATTAGTCAGGCTCTGACCTGAGGAAGGCTGCTTTAGGCCGGCACAGTGGC
 TTACACCTGTAATCCAGCAGCTGGGAGGCCAGACGGGTGAGCTATTGGGCTCAGGCTGATCTCAAACCTCT
 GAGTTCAAGGTGATCTGCCGCTCAGCTCCAAAGTGTGGTGAAGGCTGAGGCACTGCCCTGGCCCGA
 ATTCTTTAAAGGCTGAATGATGGGGCCAGGCAAGGATGGCTCAGGCTGTGATCCCAGTACTTGGATTGTA
 AACATGCACCAACATGCCGCTAATTGTATTTGATTTGAGACTGTTGAGCTGACCTGGCTGGCTGATCTCT
 GACCTCAAGTGACCAACCTGCCCTCAGCTCCAAAGTACTGGGATTACAGGGCTGAGCCACTGTGCCCTGGCTTGA
 GCATCTTGTGATGTGCTTATGGCCATTGCTATCTCTCTTGGGAAATGTCGTTCAAGTCCCTTGA
 CCTTTAAATTATTATTATTATTATTATTGAGACAGGGCTTGTGGCCAGGCTGGAGTA
 CAGTGGCACAGCTTGGCTACTGCAGGCTCAGCTCCCTGGGCTGAGTCTCCCACCTCAGCCCTCTG
 AGCTGTTATTGATTTGATTTGAGCTGAGTTGTTGATTTGAGACAGGATTTCAACATG
 TGCCCAAGGCTGGCTTGAACCTGAGCTCAAGTGAATCTGCCCTCAGGCTCCAAAGTGTGGGATTACAGA
 CATGAGCCACTGCACCTGGAAACCTCCAAAATTCAACACACACACACACACACACACACACACACACAC
 GAGGGGCCGGGTGTGGCCCAACTACCAAGGGAGACTGAAGTGGGAGGATGCTGGGATGAGAAGTCGAGGCTG
 CAGTGAAGTCGAGGTTGTGGGACTGCATTCCAGCTGGACAAACAGTGAAGACCTGTC

1671270

FIGURE 166

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71213
><subunit 1 of 1, 368 aa, 1 stop
><MW: 42550, pI: 9.11, NX(S/T): 1
MGLLAFLKTQFVLHLLVGVFVVSGLVINFVQLCTLALWPVSKQLYRRRNCRLAYSLWSQLV
MLLEWWSCTECTLFTDQATVERFGKEHAVIILNHNFIDEFLCGWTMCERFGVLGSSKVLAKK
ELLYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKHR
VSMEVAAAKGLPVLYHLLPRTKGFTTAVKCLRGTVAAVDVTLNFRGNKNPSLLGILYGGKK
YEADMVCVRFPLEDIPLDEKEAAQWLHKLYQEKDALQEIYNQKGMFPGEQFKPARRPWTLN
FLSWATILLSPLFSFVLGVFASGSPLLILTFLGFVGAASFGVRLIGESLEPGRWRLQ
```

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 307-323, 335-352

Tyrosine kinase phosphorylation sites.

amino acids 160-168, 161-169

168/270

FIGURE 167

GATATTCTTATTTTAAGAATCTGAAGTACTATGCATCACTCCCTCAATGTCCTGGGCA
GCCACCAGGCATATTCATCTTGCTGTGTTCTTTGCTTAGCACTGGGCACTTCTT
GCTTATTCTTGCTAGGAAAGGGCTCAGTTGTCTTGTGGGTTGGCAGGCAGGCCG
GCTTACGCCTGATACGCCCTGGGTAGAAGGGAAAGGAAAGATAAAACTTTATCAAATGGG
GATAGCTGGGTCTGAGACCTGCTCCTCAGTAAAATTCTGGATCTGCCTATACCTTCTT
TTCTCTAACCTGGCATCCCTGCTTAAAGCCTCTCAGGCTCTCTGTCTTAGGATCAA
AGTATTTAGAGCTACAAGAGCCCTCATGGTCTGGCCCTGCCAGCTTCATTGT
ACATGTGGTCTCTTGCTTAATGTGGTATGCCATGGGTCTTGCACAAGCCT
TTCCTCTTGCTGGACACTGTTCCCTGCCCTCCACTCTCTACTTAATATGTAGTC
ATCCTGCAGATTCAATTCTAACATCATTCTCCAGGGATCTGGCCTGACAGAATCTCAT
CTTGTGTTAATGCTCTCATAAAGACCACTTGTTCCCTTGCAGCACTTGCCACTCAGTTGA
TCTTTATGTGCCTTGTGTTGTGTTGTATGGTTGTCTGTTCCCAGAATGCCAGCTTGAGC
TGCGTGAGGGTCAAGGGCATTGCTGTGCCTGCCAGGTATGTGCCACTATGTTGGGTGCT
CATGTTTAGAGACTAAATGGAGGAGGAGATGAGGAAAGATTGAAATCTCTCAGTTCACCA
GATGGTGTAGGGCCCAGCATTGTAAATTTCACACGGTACTGTGCTGTGAATTATCTGGGA
TGCAGGTCCTGATTCACTAGGCCCAGGTTGGCATCTTAACAAACTCCCACGTGATGCTGA
TGCGTGGCCTATGAACTATACTAAATAGAATCTATGGAGCCAGGCTGGCATGGTGGC
TCACACCTATGATCCCAGCACTTGGGAGGCTGAGGCTGATCACCTGGAGTCAGGATT
TCAAGACTAGGCTGGCCAACATGGTGGAAACCCACTGTACTAAAATACAAATTAGCTG
GGCATGGTGGCACATGCCTGAGCTACTTGGGAGGCTGAAGCAAGAGAATCGCTTG
AACCTGGGAGGCGGAGGTGCAGTGAGCCGAGATCAGGCCACTGTATTCCAACCAGGGTGAC
AGAGTGAGACTCTATGTCCAAAAAAAAAAAAAA

169/1270

FIGURE 168

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71234
><subunit 1 of 1, 143 aa, 1 stop
><MW: 15624, pI: 9.58, NX(S/T): 0
MHSLQCPGAATRHIHLCVCFSFALALGHFLLISIVGKGLSLSGVGGRQAGLRLIRPWRR
EGKINFYTNGDSWGLRPASSVKFLGSAYTFFSLTWHTLLKASQGFSLFLGSKYLELQEPEWS
GPCPPGQLHCTCGVLLSFL
```

Important features of the protein:

Signal peptide:

amino acids 1-28

170 '270

FIGURE 169

GGCTGGACTGGAACCTCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGA
TTATAGGTGTAAGCCACCGTGTCTGGCCTCTGAAACAACTTTTCAGCAACTAAAAAGCCAC
AGGAGTTGAACGTGACTAGGATTCTGACTATGCTGTGGCTAGTGCCTACTCCTACCTAC
ATTAAAATCTGTTTTGTTCTTGTAACTAGCCTTACCTTCCTAACACAGAGGATCTGT
CACTGTGGCTCTGGCCCAAACCTGACCTTCACTCTGAAACGAGAACAGAGGTTCTACCCAC
ACCGTCCCCTCGAAGCCGGGACAGCCTCACCTGCTGGCCTCTCGCTGGAGCAGTGCCTC
ACCAACTGTCTCACGTCTGGAGGCACTGACTCGGCAGTCAGGTAGCTGAGCCTTGGTA
GCTGCGCTTCAAGGTGGGCCCTGCCCCGGCTAGAAGGGATTGACAAGGCCGAAGATT
CATAGGCGATGGCTCCACTGCCAGGCATCAGCCTTGTGATGCAATCACTGCCCTGGG
CCAGGACGGCCGTGGACACCTGCTCAGAAGCAGTGGGTGAGACATCAGCCTGCCGCCAT
CTAACCTTTTATGTCCTGCACATCACCTGATCCATGGCTAACTGAACACTGTCCCAAGG
AACCCAGAGCTTGAGTGAAGCTGTGGCTCAGACCCAGAAGGGCTGCTTAGACCACCTGGT
TATGTGACAGGACTTGCAATTCTCCTGAAACATGAGGAAACGCCGGAGGAAAGCAAAGTGGCA
GGGAAGGAACCTGTGCCAATTATGGTCAGAAAAGATGGAGGTGTTGGTTATCACAAGGC
ATCGAGTCTCTGCATTCACTGAGACATGTGGGGAAAGGGCTGCCGATGGCGCATGACACACT
CGGGACTCACCTCTGGGCCATCAGACAGCCCTTCGGCCCCGATCCACGTACAGCTGCTG
AAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCAGCAAAATCTGCGATCACCAG
CCAGGGCAGCGTCTGGAGGCAAGCAAAGTGACCATTTCTCTCCCCCTTCCCTC
TGAGAGGCCCTCTATGTCCTACTAAAGCCACCGAAGACATAGCTGACAGGGCTTAATG
GCTCAGTGTGGCCCAAGGAGGTCAAGCACAGGCTGCAAATCCCCAGGCAAAGGACTGTG
AACACGGAAATGCTCCAGTAAGCACAGGCTGCAAATCCCCAGGCAAAGGACTGTG
CAATTAAATCATGTTCTAGTAATTGGAGCTGCCCCAAGACCAAAGGAGCTAGAGCTTGGT
TCAAATGATCTCCAAGGGCCCTTATAACCCAGGAGACTTTGATTGATTGAAATTGAAACCCAAA
TCCAAACCTAAGAACCGAGGTCAATTAAAGAATCAAGTATTGCCGGGTGTGGCCCTGAAATG
CCAACATTTGGAGGCCAGGCGGGTAGATCACCTGAGGTCAAGACAGGACTGTG
GCCAACATGGTGAACACCCCTGTCTACTAAAAATACAAAAAAACTAGCCAGGATGGTGT
GTGTGCCTGTATCCCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAAACCTGGAGGT
GAAGGAGGCTGAGACAGGAGAATCACTCAGCCTGAGCAACACAGCGAGACTCTGTCTCAGA
AAAAATAAAAAAGAATTATGGTTATTGTAA

171/270

FIGURE 170

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71277
><subunit 1 of 1, 109 aa, 1 stop
><MW: 11822, pI: 8.63, NX(S/T): 0
MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDELSLWLWPKPDLHSGTRTEVSTHTVPSKPGTA
SPCWPLAGAVPSPTVSRLÉALTRAVQVAEPLGSCGFQGGPCPGRRD
```

Signal peptide:
amino acids 1-15

172/270

FIGURE 171

GCGGGCCCGAGTCCGAGACCTGTCCAGGAGCTCCAGTCACGTGACCTGTCACTGCC
CCGCCGCCTCCTGCCCGGCCATGACCCAGCCGGTCCCCGGCTCTCCGTGCCGCGCT
GCCCTGGGCTCAGCCGACTGGCGCCCTTCGCCACTGGCTCTTCCCTGGGAGGCGGT
GCCCATGGCGAGGCGAGAGCAGTGCTGCTTCCCCCGAGGACAGCCGCTGTGG
CAGTATCTCTGAGCCGCTCCATGCCGGAGCACCCGGCGCTCGAAGCCTGAGGCTGTGAC
CCTGGAGCAGCCGAGGGGATTCTATGATGACCTGCGAGCAGGCCAGCTTGGCCAACC
TGGCGCGCTCATCCAGGCAAGAAGGCCTGGACCTGGCACCTTCACGGCTACTCCGCC
CTGGCCCTGGCCCTGGCGCTGCCCGGGACGGCGCTGGTACCTGCGAGGTGGACGCC
GCCCGGAGCTGGACGCCCTGTGGAGGCAGGCCGAGGCGAGCACAGATGACCTCC
GGCTGAAGCCGCTTGGAGACCCCTGGACAGCTGCTGGCGGGCGAGGCCGACCTTC
GACGTGGCGTGGATGCGACAAGGAGAACTGCTCCGCCTACTACGAGCCTGCTGCA
GCTGCTGCGACCCGGAGGCATCCTCGCCGTCCAGAGTCCTGTGGCGCGGGAAAGGTGCTGC
AACCTCCGAAAGGGGACGTGGCGCCAGTGTGCGAAACCTAAACGAACGCATCCGGCG
GACGTCAAGGTCTACATCAGCCTCTGCCCTGGCGATGGACTCACCTGGCTTCAAGAT
CTAGGGCTGGCCCTAGTGAGTGGCTCGAGGGAGGGTTGCCTGGAAACCCAGGAATTGAC
CCTGAGTTAAATTGAAAATAAAGTGGGCTGGGACACAAAAAAA

FIGURE 172

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71282
><subunit 1 of 1, 262 aa, 1 stop
><MW: 28809, pI: 8.80, NX(S/T): 1
MTQPVPRLSVAALALGAAATGLFLGRRCPPWRGRREQCLLPPEDSRLWQYLLSRS
MREHPALRSLRLLTLEQPQGDSSMMTCEQAQLLANLARLIQAKKALDLGTFTGYSALALAL
PADGRVVTCEVDAQPPPELGRPLWRQAEAEHKIDLRLKPALETLDDELLAAGEAGTFDVAVVDA
DKENCSAYYERCLQLLRPGGILAVLRLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYIS
LLPLGDGLTLAFKI
```

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 8-30, 109-130

N-glycosylation site.

amino acids 190-193

Tyrosine kinase phosphorylation site.

amino acids 238-246

N-myristoylation sites.

amino acids 22-27, 28-33, 110-115, 205-210, 255-260

Amidation sites.

amino acids 31-34, 39-42

174/270

FIGURE 173

CCGCCGCCGAGCCGCTACCGCCGCTGCAGCCGCTTCCGCGGCCTGGCCTCTCGCCGTCA
 GCATGCCACACGCCCTCAAGCCGGGACTTGGTTCGCTAAGATGAAGGGCTACCCCTCAC
 TGGCCTGCCAGGATCGACGACATCGGGATGGCGCGTGAAGCCCCCACCACAAAGTACCC
 CATTTTTCTTGGCACACCGAACAGCCTCTGGGACCCAAGGACCTGTTCCCCTACG
 ACAAAATGTAAGACAAGTACGGGAAGCCAACAAGAGGAAAGGCTTAATGAAGGGCTGTGG
 GAGATCCAGAACACCCCCACGCCAGCTACAGCGCCCTCCGCCAGTGAGCTCCTCCGACAG
 CGAGGCCCCCGAGGCCAACCCGCCAGGAGCTGACGCTGACGAGGACGATGAGGACCGGG
 GGGTCATGGCGTCACAGCGTAACCGCCACAGCTGCCAGCGACAGGATGGAGAGCGACTCA
 GACTCAGACAAGAGTAGCGACAACAGTGGCTGAAGAGGAAGACGCCCTGCCCTAAAGATGTC
 GGTCTCGAACAGAGCCGAAAGGCCCTCAGCGACCTGGATCAGGCCAGCGTGTCCCCATCCG
 AAGAGGAGAACTCGGAAGCTCATCTGAGTCGGAGAACGACAGCGACCAGGACTTCACACCT
 GAGAAGAAAAGCAGCGGCCGGGCGCACGGAGGGCCCTCTGGGGGGACGGAAAAAAAGAA
 GGCGCCGTCAAGCTCCGACTCCGACTCCAAGGCCATTGGACGGGCCAACCTGAGCCGG
 TGGCCATGGCGGGTCCGCTCTCTCTCTCTCTCTCTCTCTCTCCGACTCCGATGTG
 TCTGTGAAGAACGCTCCGGGGAGGAAGCCAGGGAGAACGGCTCTCCGAGCGCGAGG
 GCGGAAACCGAACGCTGAACGGCCTCGTCCAGCTCAGCAGTGAACAGCGACAGCGAGG
 TGGACCGCATCAGTGAGTGGAGCGGGGGACGAGGGCGCGAGCTGGAGGCGCG
 CGCGGGCGAGAGCAGGAGGAGCTGGGGCCCTGGGGAGCAGGAGAAGGAGGAGAAGGA
 GCGGAGGCGGAGCGGGGAGCGCGGGAGGCTGAGCGGGGAGCGGGCGAGCAGCGGGG
 ACGAGCTCAGGGAGGACCATGAGCCCGTCAAGAACGGGGAGCCAGGAGAGGGCCGGGG
 CCCCCGTCTCTCTGACTCCGAGCCCGAGGCCAGCTGGAGAGAGAGGGCAAGAAATCAGC
 GAAGAACGCCAGTCCTCAAGCACAGAGGCCAGAACCTGGCCAGAACGGAGAACGAG
 TGCGGCCGAGGAGAACGAAACAAGCCAAGCCGTGAAGGTGGAGCGGACCCGAAGCGGTCC
 GAGGGCTTCTCGATGGACAGGAAGGTAGAGAACGAGAACGGCCCTCGTGGAGGAGAAGCT
 GCAGAACGCTGACAGTGAGATCAAGTTGCCCCAAGGTGCAAGCCGGACGTGAAGAGGT
 GCCTGAATGCCCTAGAGGAGCTGGGAAACCTGCAAGGTGACCTCTCAGATCTCCAGAAC
 ACAGACGTGGTGGCACCTGAAGAACGTTACAAAGCGAACAGGACGTAATGGA
 GAAGGCAGCAGAACGAGTCTATAACCGCTCAAGTCGCGGGTCTCGGCCAAAGATCGAGGGGG
 TGCAGAAAGTGAACAAAGGCTGGGATGGAGAAGGAGAACGGCGAGGAGAACGCTGGCCGGGGAG
 GAGCTGGGGGGAGGAGGCCAGGAGAACGGGGAGGACAAGGCCAGCACCGATCTC
 AGCCCCAGTGAATGGCGAGGCCACATCACAGAACGGGGAGGGCAGAGGACAAGGAGCACG
 AGGAGGGTGGGACTCGGAGGAGGGGCAAGGTGAGCTCTGAGAACCTGCACGACAGC
 GTACGGGAGGGTCCCAGCTGGACAGGCCCTGGAGGAGGCCAGGAGCGCGAGAGGGCAGC
 GGGGGACTCGGAGGCCCTGGACAGGAGAGCTGAGCCGGGGCAGCCAGGCCAGCCCCCGC
 CCGAGCTCAGGCTGCCCCCTCTCTCCCCGGCTCGCAGGAGAGCAGAGCAGAGAACGAG
 GAACGCTGTGCTGTTGATTTGTTCTGGGTTTTTTCTGCCTAATTCCTGTGATT
 TCCAACCAACATGAAATGACTATAAACGGTTTTAATGA

FIGURE 174

```
>/usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71286
><subunit 1 of 1, 671 aa, 1 stop
><MW: 74317, pI: 7.61, NX(S/T): 0
MPHAFKPGDLVFAKMKGYPHWPARIDDIADGAVKPPPNKYPPIFFFTHETAFLGPKDLPYD
KCKDKYGPKNRKGFNEGLWEIQNNPHASYSAPPVSSSDSEAPEANPADGSDADEDDEDRG
VMAVTAVTATAASDRMESDSDKSSDNSGLKRKTPALKMSVSKRARKASSLDQASVPSE
EENSESSSESEKTSDQDFPEKKAAVRAPRRGPLGGRKKKAPSASDSDSKADSDGAKPEPV
AMARSASSSSSSSSSDSVVKPPGRKPAEKPLPKPRGRKP PERPPSSSSSDSDSDEV
DRISEWKRRDEARRRELEARRREQEEELRLREQEKEEKERRERADRGEAERGGSGSSGD
ELREDDEPVKKRGRKGRGRGPPSSSDSEPEAELEREAKKSAKKPQSSSTE PARKPGQKEKRV
RPEEKQQAKPVKVERTRKSEGFSMDRKVEKKEPSVEEKLQKLHSEIKFALKVDS PDVKRC
LNALEELGTLQVTSQILQNTDVVATLKKIRRYKANKDVMEMKAAEVYTRLKSRVLGPKIEAV
QKVNKAGMEKEKAEEKLAGEELAGEEEAPQEKKAEDKPSTDLSAPVNGEATSQKGESAEDKEHE
EGRDSEEGPRCGSSEDLHDSVREGPDLDLPGSDRQERERARGDSEALDEES
```

Signal peptide:
amino acids 1-13

FIGURE 175

GTTGGTTCTCTGGATCTCACCTTACCAACTGCAAGATCTGGGACTCATCAGCCTCAATAATTATTAATTAA
 ACACCATTTGAAAGAGAACATTGTTTCATCATGAATGCTAATAAAAGATGAAAGACTTAAACCCAGAAGCCAAGA
 TTTCACCTTTCTCTGCTTGTATGATGCTAAGCATGACCAGTGTGTTCTCCAGTCAGTGCCTTGAAGCA
 AAATTCAGACTCAAGCTAACCTACAAAAGACTTGTCTGTTCAAATAGCTGTTATTCCTTTGGGTTCATC
 AGAAGGACTGGATTTCAACTCTCTTAGATGAGGAAGAGGCCAGGCTCTGGGAGCCAAGACCCACAT
 CTTCAGTCTGGTCAACTAAACAAAATTAAAGAAGATTTCATGGCTCTGCAAAAGGAACGGGTGGA
 ATTATGTAATTAGCTGGAAAGATGCAACATAGAATGTCATACTCAGACTTCAAGCTTAAACAA
 AACTCACATATATGTGTGAACTGGAGCATTCATCCAATATGTTGGGATATTGATCTGGAGTCTACAAGGA
 GGATATTATTCAGAACTAGACACACATAATTGGAGTCTGGCAGACTGAAGATGTCCTTCGATCCTCAGCAGCC
 TTTGCTCTGAGTAATGACAGATGAGTACTCTGAACTGGGAGCCAAGATACTGCAATT
 CACTCGATCCCTGGCCACTCTGACCAACTACATGAGAACTGACATTCTAGAGCACTACTGGCTCAATGG
 AGCAAAATTATGGAACTTCTCATACAGACACCTACAACTCAGATGATGATAAAATATAATTCTCTTG
 TGAAATCATCTCAAGAAGGCAGTACCTCGATAAAACCATCTCTGAGTTGGAGAGTTGTAAGAATGATGT
 AGGAGGACAACGCGCAGCTGATAAAAGCTGAGCAGACTTCTTAAGGCCAGACTGATTGCTCAATTCTGGAAAG
 TGATGGGAGATCTTACTTACTAACACAGCTCATCTCAAAAGGCTCTGCTTGTGTATAGCATGGCTGACAT
 CAGAGCAGTTTAATGGCCATATGCTCATAGGAAAGTGCAGACCATCTGGGTGAGTATGATGGGAGAAT
 TCCTTATCCAGGCCCTGGTACATGTCAGCAGAAACCTATGACCCACTGATAAGTCCACCCAGGATTTCAGA
 TGATGTCATCAGTTCTAAAGCCAGACTCTGATGTTGATAAGTCCGTATAACCCAGTTGCGAGGACCAAGGTT
 CAAGAGAATCAATGTTGAGTACAGACTGACACAGATAGTGGGAGTATGTCATTGAGAAGATGGAAAGAAATCCGT
 TGTAATGTTCTGGACAGACATGGAACTGTGCTTAAAGTTGAGTATGGGAGTATGTCATTCAAGGAAAATGGAAATGG
 AGAGGTAGTGTGGAGGAGTGTGAGATACTCAAGCACTCATCAATCATCTGAAACATGAAATTGCTCTGAAAGCA
 GCAACAATTGTCATTTGGTCCCGAGATGGATTAGTTGAGCTCTCTGACAGATGCGCACACTTATGGGAAAGC
 TTGCGCAGACTGTTGCTTGCAGAGCAGGACTCTGCTGGGATGAAATGCTGCTCTGATATGCTCTAC
 TTCTAAAGGAGAGCTAGAGCAGAAGATGTAATTATGGCAGGACTCAGGAGGACATCAGGAGGAGAAGACAG
 CATTAGTCATGAAACTGCTGATGAAAGGAGTATTGGCATTGAAATTTCACCTCTGGAAATGTTAC
 TAATCCCAACAGCAACTTAAATGGTATATCCAGAGGTGAGGAGCATGAGGAGTGTGAAAGCCCGA
 TGAAAGAATCATCAAACGGAAATGGGCTACTGAAAGTTGAGCTGAGAAGAAGGATTCTGGGATGTTACTG
 CAAAGCCCAGGAGCACACTTCTCCACACCATAGTGAAGCTGACTTTGAATGTCATTGAGAATGAAACAGATGG
 AAATACCCAGGGAGAGCATGAGGGGGCAAGGATCTGGCTGAGTCACGGTTGAGAATACAAGA
 CTACATCCAATCTTAGCAGCCAAACTCAGCCCTGACCCAGTACTGGCAACAGATGTCACAGGGAGAACG
 GAGACAGAGAACAGGGGGCCAAAGTGGAGCAGACATGCAAGGAAATGAGAACAGAACATGAAACACATCA
 CAGAGACCTGAGTGAACCTCTGAGCTGTAGCTTCTACTTAAATTAAAGAAAAGAATTCTTAC
 TATAAAAACATTGCTCTGTTGATATCTCTTAACTGAAATGTCATGAAATGAAAGGAGGTTGAGTGTAAAC
 CACAAGACAATAATGAAATAAGACAATATGTAATGAAATGAAAGGAGGTTAAGGAGGTTACAGTTGAAATGTT
 CCAAGAACAAATCTGCAACAGCAAAAGTAAAGAATTCTCTAAATTAGGGGTTACAGTTGAAATGTT
 TGTTTGAGTTGAAATTATGTCATGAAATAGTTGAGCTAAGCAAGCCCGAATTGATAGTGTATAAGGT
 GCTTATTCTCTGCAATGTCATTAAGCATGGAATTTACATGAGCTGTGCTATGTTCTATGAAACAGATAT
 CATTCTATTGAGAACGACTCTGTTGAGGAAATAGGAGTCAAGACACAAATTAAAGACAACCTCCATTATC
 AACAGGAACCTCTCAGTGCACCTCTGGAGAATGGTATAGGAATTGGAGGGTGCATTATCTTCT
 TGCCACTGGGTTAAATTAGTGTACTACACATTGAGTTACTGAGGGCAACTATGTTCCCCAGGATTCT
 ATTGACTAGTCAGGAGTAACAGGTTCACAGAGAGAAGTGGGCTTAGTTATGTTTTAGAGTATATACTAA
 GCTCTACAGGGACAGAACATGCTTAATAAAACTTTAATAAGATATGGGAAATTTAAATAAAACAGGAAAC
 TAATGATGTTATAATGCACTCTGAGGGAAAGCAAGATGGGATTGTTAGAAGACAGAAGGAAAGACAGCCAT
 AAATTCTGGCTTGGGAAACCTCATATCCCCTGAGAAAGGAGAACACAAATAAAAGTGGAGACTATGAA
 TGAGCTTTCACTAGGGTATAAGTGTACTGCCAATTGTAATTCTCATCTGTTAAAAAAATCTAGATTATAACA
 AACTGCTAGAACATGAGGAAACATAAACTCTGAGAATCATGAGAACAGTGTAAATTGTTAACTTAA
 ATGATATTTCAGTATATTTCTCTTTAAATTATTTATCATACTCTGTTATATTCTTTACTGC
 CTTTATTCTCTGTTGAGTATTGGGTTGAGTATATTGAGTGTAAAGGAGAAAACAAATATAACACACAGA
 GAATTAAAGGAAATGACATTCTGGGAGTGGGAGTATATTGTTGAGTAAACAGAACGAGTGTAAATTAAAC
 AACGGAAAGGGTTAAATTAACTCTTGCATCTCACTACCTTCTCATGAGTTAATCTGTTGAAATT
 GTAGTATTGTTGTAATTAAACAATAAAAGCTGCTACATGT

177/270

FIGURE 176

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71883
><subunit 1 of 1; 777 aa, 1 stop
><MW: 89651, pI: 7.97, NX(S/T): 3
MNANKDERLKARSQDFHLFPALMMLSMTMLFLPVGTLKQNIPLKLTYKDLLLSNSCIPFL
GSSEGLDFQTLLLDEERGRLLLGAHDHIFLSSLVDLNKNFKKIYWPAAKERVELCKLAGKDA
NTECANFIRVLQPYNKTHIYVCGTGAFHPICGYIDLGVYKEDIIFKLDTHNLESGRLKCPFD
PQQPFASVMTDEYLYSGTASDFLGKDTAFTRSLGPPTHDHHYIRTDISEHYWLNGAKFIGTFF
IPDTYNPDDDKIYFFFRESSQEGSTSDFKTLISRVGRVCKNDVGGQRSLINKWTTFLKARLIC
SIPGSDGADTYFDELQDIYLLPTRDERNPVVYGVFTTSSIFKGSAVCVYSMADIRAVFNGP
YAHKESADHRWVQYDGRIPYPRPGTCPSKTYDPLIKSTRDFPDVISFIKRHSVMYKSVYPV
AGGPTFKRINVVDYRLQIVVDHVIAEDGQYDVMFLGTDIGTVLKVVSIKEKWNMEEVLEEL
LQIFKHSSIILNMELSLKQQQLYIGSRDGLVQLSLHRCDTYGKACADCCLARDPYCAWDGNA
CSRYAPTSKRRARRQDVYGDPITCWQDIEDSISHETADEKVIFGIEFNSTFLECIPKSQQA
TIKWYIQRSGDEHREELKPDERIIKTEYGLLIRSLQKKDSGMYYCKAQEHTFIHTIVKLTLN
VIENEQMENTQRAEHEEGQVKDLAESAERLRYKDYIQILSSPNFSLDQYCEQMWHREKRRQRN
KGGPKWKHMQEMKKRNRRHDLDELPRAVAT
```

Important features of the protein:

Signal peptide:

amino acids 1-36

N-glycosylation sites.

amino acids 139-142, 607-610, 724-727

Tyrosine kinase phosphorylation site.

amino acids 571-576

Gram-positive coccidi surface proteins 'anchoring' hexapeptide.

amino acids 32-37

178/270

FIGURE 177

CCCTGACCTCCCTGAGCCACACTGAGCTGGAGCCAGGGTCATCCTGGAGCATGCCACCCGGGGAGCAGA
 CAACCTCCCAGGTAAGCTGGAGCAAGACCTGAAGCTGTCTTCTCAGGACCTGGTGTATTTCCCCACCCAC
 CTCAGCAGTTCAGCCAGCAGGACTGATCAGGTGTGTCTGGAGTGGGAGCAGAAGGGCTGGCTGGAAGA
 GTGGCTGGAGAAAGAGGTTAGCGCTTACCCAGCGAGCTGCCGTACTAACAGATCCAGAACCATGGGCATC
 GGGTAGGGTGGGGGCAAGGTGTCACTGTGACCTTCTGTCTCAGCAAGAAGAGCTGAGAGAGGGATCTGG
 AGCCATTGAGGGTGTCACTGGAGCTACAGGGGGAGGAAAGGTATTAAAGGTAACAGTGCCACAAATAGTAA
 GAGCACAGTTTGAGGCTAGACCACATAGGTTCAAATTCTCTCTGTGCTTCTAGTTCTGTAGCCCCAGGT
 AAGGGAGGTGACTTAACCTCTCTGGACTTCATTTCTCATCACTAAAGTAGGGCCAATAATAGCACCCACCTCAT
 AGGGAAAGTAAATGACATAATGTGATECAACTGCAAAGTACCAAGTCCCATAGTAAGTCATGCCACAG
 TATTCACCCACCCCTGTTCTGCCCTTCAACCCAGGTACTGCAACAGCTGGAGAGGGGGCAGCAGGCTT
 CAGAGCGGGAGGCTCAAGCATAGAACAGGGTACAGGAAGTGGAGAGAGCAGGCGGGCACAGGTGAGCC
 AGGTGAAGGGGCTGCCCGCTGGCCCTGTCAGGGGGCTGGCTTATAGTGTGAGGCTGGCTGAAGCCAGCCA
 TGACCCAGGCCAGGATGAGGTGGAGCAGGAGCGGCCCTCAGTGGCTGGCTGTCCCAGGGACCTCTCTC
 CAACCGCTGAGGTGCTGAGCTTCTGACTTCTGAGGAATGTGAGGAGACGGAGAGCTTGTAGGGAGCCTGCC
 CCCAAGCCCTGGCACGGGGCTTCCCTGGCTGACACGGTGTATTCTGCTATCAGGAGGGCTGAGGATG
 AGCTGACAATCACGGAGGGTGTAGTGGCTGGAGGTATAGAGGAGGAGATGTCAGGAATGGCTCAAGGCTGG
 ACCAGCACGGCAGGGTAGGCTTGTGCTGACCGATACTCAACTTCCGGACTCTCCCTCCAGAGAGCACCC
 AACAGACTGACAATCCCTGCGGGCAGAGCCCACAGCATTCTGGCACAGGGCTGTACAGTACACGGGACAGA
 GTGCAGAGGGCTGAGCTTCTGAGGGGCACTTCAGGCTGCTGCCCCGGGCAAGATGGAGTAGATGACG
 GCTTCTGGAGGGAGAATTGGGGCTGGCTGGGGCTTCTCCCTCTGCTGTGGAGAGCTGGCTGGGGCCCC
 CAGGGCACCTGAACTCTGACACAGATGTCCTGGCTTCTCCCTCAGTCTCCCTCCAGTCTCCCAACTTGAC
 CTACCTCTGTGTGGATGGGCCCCCTGACACCTGCTGGGACAAGGGCTGGACTTCCCTGGGTTCTGG
 ACATGATGGCACCTCGACTCAGGCCGATGCGTCCACCACCTCCCCGCCGCTAAAGCCCCGATCTGGGACCC
 CAGATCCCTCACTGAGGCCAGGGAGGCACTGGGCTGGGAATCAGGAGCTGGAGGCCAGGATGCGAACAG
 CCACACCATCAATGATCCAGAGAACAGCAAAGCTGGAATGCCCTATTTCCACCCCTCACCTCAAGGGT
 GGAAACTTGGCCCTTCCCTTCTAGAGCTGGAAACCCACTCTTTTCTCCATTGTTCTATCATCTCTAGGACC
 GGAACACTACCTCTCTCTGTCACTGACCCCTATCTAGGGTGTGAAATGCTGAAATCTCTGGGCTGGAAACC
 ATCCCATCAAGGCTCTAGTAGTCTGGCCCACCTCTTCCCACCTGGCTCATGACCCACCCACTCTGGATG
 CCAGGGTCACTGGGCTGGGCTGGGAGAGGACAGGGCTGGGAATCAGGAGCTGGAGGCCAGGATGCGAACAG
 CTGTAATGCTGAGGGATTATTGACAATGAAATAGGGCACGAAGGCCAGGGCTGGGCTGGGCTTGTG
 CTAAGAGGGCACGGGGCTACGGGTGTATTGCTTAGGGGCCACCAAGGGCTGGCTCCAGTGGCAC
 GCTCTATCATATGGAGCAGGGTGTGGGAAGGGGGCAGGCCAGCTGTCAGGCCAGGGGAGGAGAACAG
 TGAGGGCTGTCACCTCTGAGGCCACCTGGCTGAGACTCTGCAACTCCAGGTGGAAGTAGAGCTGGCTCTC
 AGCTGGGGGGCACTGTCACCTGGGAGGGGCTTGTGCTGGCCACCCCTGGCCCTGGCAGCTGGTAG
 TCCATCAGCACATGAAGGAGACTGGAGAGGAGAAATAACACTGTGCTTCTGTCAGCTGTGTCAGC
 TTTCCCTGGGCTCAGGACCTCCCTACCTCCACCAACCAAGGGATTATAGCAAGGCTAACCTGC
 AGTTTACTCTGGGGTTCAGGGAGCGAAAGGCTTAAATAGTTAACTAGGTGATGGGAAGATGAGATTACCTCA
 TTAGGGCTCAGGCAGACTCACTCACATCTCCCTGCTCCCTGTGGTAGAGACACCTGAGAGAACAGGGAGGG
 TCAACATGAGAGACCCAGGAGTGGCTCATGTCAGGCCCCCAGAGTAGAGGCAATAAGAGCCCCAGCCAGTGC
 AGTCCGGCTGTGTTCTACTCTGCTGATCAGAAGTGTCTGGCTGGCTGGCCATTGGCTTCTGAGTGG
 GCAGGCCCCTGGGCTGGGCCCCCTCCGGCCCTCAGTGTGGCTCTGCAGAGCTCTGGGTTCTCCCTCAAGTG
 CACGAGGGGTTAGGCTGCTGCTCTGAGTCCTCAITCTGTACTGGGGCTGGCTAGGGACCTGGGCTGG
 TCTCAGGGGCTGCCCTCTCCATGGCAGGCATCCCTGCCTGGCTGCCCTCCCCAGACCCCTGACCACCCCTG
 GGTCTGCCCCACCCAGAGGCCAGCTCCCTGTCTGGGGAGGGACTACGGTGTGCTGAGTCCATAGCGCT
 TCTCAATGTTGTCACCCGGAACCTGGAGGGGGAGGGAAACACTGGGGTTAGGACCAACTCAGAGGCTGCTT
 GCCCTCCCTCTGACCAAGGGACATCTGAGTTGGCTACTTCCCTCTGCCCTAAGGTAGGGAGGGCTTCTC
 AGATTGTTGAGGACATTTGTTGAGCTGACTCTGCTGGAGCTCCAGTCCAGGAGAACAGGCAAGGCCACCT
 TTGGGATCAGGCTGCTGATCACTGGGCCCCCTACCTCAGCCCCCTTCTGGAGCACCTGCCACCTGCC
 CAGAGAACACAGCTGGTCTCCCTGTCCGGGGGGCTTCTGGAGCGTCCCTGACGGACAAGTGGAG
 GCCTCTGCTGGGGCTGCAATGGATGCAAGGGGGCTGAGAGGCCAGGGCTGACTGTGATGATGGGAGGGGCTC
 CGTCTGCAAGGCTGGAGGTGGCATCCACACTGGACAGCAGGGAGGGAGTGAAGGGTAACATTCCATT
 TCATGTTTGTCTTCTACGTTCTCAGCATGCTCTTAAACCCAGAAGGCCCAATTCCCCAAGGCCCAATT
 TTCTGCTTATCTAATAACCAATATTAAAG

179 / 270

FIGURE 178

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73401
><subunit 1 of 1, 370 aa, 1 stop
><MW: 40685, pI: 4.53, NX(S/T): 0
MQLAKYQSHSKCPTVFPPTPVLCPLNQVLQRLEQRRQQASEREAPSIEQRLQEVRESIRRA
QVSQVKGAARLALLQGAGLDVERWLKPAMTQAQDEVEQERRLSEARLSQRDLSPTAEDAELS
DFEECEETGELFEEPAPQALATRALPCPAHVVFRYQAGREDELTITEGEWLEVIEEGDADEW
VKARNQHGEVGFVPERYLNFPDLSLPESSQDSNDNPCGAEPTAFLAQALYSYTGQSAEELSFP
EGALIRLLPRAQDGVDGFWRGEFGGRGVVFPSLLVEELLGPPGPELSDPEQMLPSPSPPS
FSPPAPTSVLDGPPAPVLPGDKALDFPGFLDMMAPRLRPMRPPPPPAKAPDPGHPDPLT
```

180/270

FIGURE 179A

CACAGGGAGACCCACAGACACATATGCACGAGAGACAGAGGGAAAGAGACAGAGACAAGGCACAGCGAA
 GAAGGCAGAGACAGGGCAGCAAGAACGGCCCCAGACAGAGTCTCACAGAGGGAGGGCCAGAGACTGCAGA
 AGACACAGGCAGGGAGAGACAAAGATCCAGGAAGGGGGCTCAGGAGGAGATTGGAGAACCCAGACCCCTGG
 GCACCTCTCCAAAGCCAAGGACTAAGTTTCTCATTTCTTAACGGTCTCAGCCCTTCAGAAAAGCTTGC
 TCTGACCTTGGCAGGAGTCCAGGCCAGGAGACAGAGGGAGTTCCAAAGCTAGGGTGTGGAGGACTTGGT
 GCCCCTAGACGGCTCAGCTCTCCAGCTCAGTACACAGTCAGCTCCAGACAGGCTCGCATCCGGGGAGGG
 CTTGGCAGGGCTGGCTGGAGGCCAACCTGCTCTCTCCATTGTGCCCTCTCCGGCTGGTG
 GCTGCTTCTGCTACTGCTGGCTCTCTCTGGCCCTCAGCCGGCTGGCTGGCCAGGCCCCCTCCCCGGAGGAGAT
 CTGTTTCAGGAAGCTCAACGGCAGCGCTCTGGCTGGCCAGGGCTGGCTGGAGGAGAT
 GGCTTGGGGAGACGCTGCTACTAGGCTGGAGCAGGACTCTGGTGTGCAAGGCTGAGGGCTGACAGTGCAGTA
 CCTGGGGAGGGCTGGCTGGAGCTGGGGAGGGCTGGAGGAGCTGGCAGGACCTGCAATGGAGATCC
 GGAGTCGGTGGCATCTGCACTGGGATGGGGAGGCCCTGTTAGGCTGTTAACATATGGGGGCTGAACCTCA
 CCTCCAGCCCCCTGGAGGGAGGCCCTAACACTCTGCTGGGGACCTGGGCTCACATCTCACGGCCAGAGCTCC
 TCCAGGGCTCAAGGCTTACAGGCTGCAAGGCTCTTGGAGGCCCCAGACCCGAAGGCCAA
 GGCTTGGCTTACTGAGTAGATTGGAGACACTGGTGTGGAGATCAAGAAGATGGCCGATTCACGGTGC
 GGGCTAAAGCCATACCTGCTAACAGTGTGCAAGCAGCAGGAGGCTTCAAGGACCCAAAGCATTGGCAATCC
 TGTCACTGGTGGTACTCGCTAGTGTATCTGGGGTCAAGGAGGGGCTTCAAGGACCCCTGAGTGTGCTGC
 CCAGACCTCTGCGCAGCTCTGCTGGCAGGGGGCTCACACCCCTGAGGACTCGGGCTTCAACACTTGA
 CAACAGGCTTGGTACCTGGTGGAGGACTGTGAGTGTGGAGCTTGGCTGGGCTTGGCTGATGTGG
 CACCGTCTGTGACCCGGCTGGAGCTGGCATGGGAGACTGGCTGGGAGGATGAGTGGCTCAGCTGCTGCTCA
 TGAACCTGGGCTATGTCATGTCATGTCATGTCATGTCATGTCATGTCATGTCATGTCATGTCATGTC
 CTCTGCCATGTCATGCCCTGTGATGGCTCATGGATCTGGAGGCCCCCTGAGTGGCCCTT
 CATCACTGACTTCTGGACAATGGCTATGGGACTGTCTTACAAACAGGACTCTGGCTTCAATGTCATGTC
 GACTCTGGCTGGCAAGGACTATGATGTCAGGCCAGTGGCTGACCTTGGCTGGGCTGACTCACGCCATTGTC
 ACAGCTGCCGCGCCCTGTGCTGCCCTGTGCTGCCCTGTGCTGCCCTGTGCTGCCCTGAGGACCA
 CTGGCCCTGGCCGATGCCACCCCTGCCAGGCCAGGCTGGCTGCTGCCCTGCCATGGGCTGAGTGGCC
 GCTCCAGGACTTCAATTCCACAGGCTGGCTGGGCTTGGGAGCATGGGACTTGGGACTGCTCTGGACCTG
 TGGGGTGGTGTCCAGTCTCTCCCGAGACTGCAGGCCAGTGTGCTGGGGAGGGGGACTGGTGTGAGGG
 CGGCCGCTACCCGCTTGTGCAACACTGGTGGAGACTGCCAACCTGGCTGACCTTCCGGAGGAGCA
 GTGTGCTGCCCTACACCAGGCCAACCGGACCTCTGGGAGGACTGGGACTTGGGCTTCTGCTACAC
 AGGGCTGGCCCCCAGGACAGTGCACACTAACCTGCCAGGCCAGGCTGGCTACTACTATGGCTGGAGCC
 ACGGGTGGTAGATGGGACCCCTGTTCCCGAGACTCTGGCTGTGCTCAGGGCGATGCACTGGCTGG
 CTGGTATGTCATCTGGCTTCAAGAAGAATTGACAAGTGTGATGGTGTGGGAGGGACTGGTGTGAG
 CAAGCAGTCAGGCTCTGGAAACTCAGGTAACGACATGGTGTGACTATGGCTGGGAGGACTGGCT
 CATTCTGGCCGAGGGAAACCCCTGGGACCCGGGACTGGGACTTGGCTGAGGCTGGCTGAGATGGCTCTA
 TGCCCTCAATGGTAAACAGCTGATGGCTTCCCTGGGAGGACTGGCTGGGAGGGACTGGCTGGCT
 CAGGGGGCAACTGCAGGCTCAGAGACACTGTCAAGGCACTGGGACTGGCCAGCTTGTGACACTGCAAGTCT
 AGTGGCTGCCAACCCCAGGACACAGCCTGGGATACAGCTTCTTGTGCTGGGGGAGGGGGACTGGCT
 CCCACTCCCAGGACTGGCTGCCAACGGAGACAGGACTTGGGAGATCTTGGGAGGGGGGGGGGGGGGGGG
 GAAATAACCTCACTACCCGGCTGCCCTTGGGACCCGGGGCTGGGACTGGGAGGGGGGGGGGGGGGGGG
 CTGGTGTGCTCATGTCATGTCAGACTGGGAGGGGGCTGGGCTGGGAGGACTGGGGGGGGGGGGGGGGGG
 GCGCAGGCTGGCCCTGCCCTGGGTTCTGGCTGGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 AGGCTCCATCTAAACTGCCCCCTGCCCCGGGCTACAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 CAGTTGATTTAGTTAGTTTACTTTTATTTAGGACCCAGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 CCTGACCCCTGACCCCTCATGGGCTGGGGCTAGGAAATCTGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGG
 TGTTGATGGGTGTGTGTGTTGAAATGTGTGCTTGTGTTGAGGTAACACCTGCTTCTGCTTCTC
 TTGCTGAATTATTTTTGGGAAAGAAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
 TTTTTTTCT
 GCACAAATCTGGCTCAGTCACGCTCTCCGCTCCGGGTTCAACTGATTCTCATGCCCTCAGGCCCTCTGAGTAGCTG
 GGATTACAGGCTCTGCCACGCCAGCTAAATTGTTGTTGTTGGAGACAGAGTCTGCTATTGTC
 ACCAGGGCTGGAAATGATTCTAGCTACTGCCAACCTGCCACCTGGGTTCCAGGAACTTCTGCCCTCAGGCC
 CGAGTAGCTGGAGGTTAGGGCACCTACGCCACGCCAGGGCTAAATTGTTGTTGTTGGAGACAGAGTCTGCTATTGTC
 CAGTTGGCCAGGCTGGTCTGAACTCTGACCTTGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
 ACAGGGCTGGAGGCCACGGCTGGCCACGCCAACTAAATTGTTGTTGTTGGAGACAGAGTCTGCTATTGTC
 TGCCAGGCTGCTCTGAAACTCTGACCTCAGGTAATGCCACCTGCCCTGGGCTCCAAAGTGTGCTGGGATTACAGG
 TGAGGCCACCCGGTACATTTTAAATTGAAATTCTACTATTATGATCTTGGAGTCAGACAG

181/270

FIGURE 179B

ATGTGGTTGCATCCTAACTCCATGTCCTGAGCATTAGATTTCTCATTTGCCAATAATAACCTCCCTTAGAAG
TTTGTGTGAGGATTAAATAATGTAATAAAGAACTAGCATAACACTCAAAAAAAAAAAAAAAAAGGAAA
AAAAAAAAAAAAAAAAAAAAAAAAGGAAA

182/270

FIGURE 180

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73492
><subunit 1 of 1, 837 aa, 1 stop
><MW: 90167, pI: 8.39, NX(S/T): 1
MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLASSLPSARLASPLPREEEIV
FPEKLNGSVPGSGAPARLLCRLQAFGETLLELEQDSGVQVEGLTVQYLGQAPELLGGAEPE
GTYLTTGTINGDPESVASLHWDDGALLGVLQYRGAEHLHQPLEGGTPNSAGGPGAHILRRKSP
ASGQGPMCNVKAPLGSPPRPRRAKRFAASLSRFVETLVVADDKMAAFHGAGLKRYLLTVMAA
AAKAKFHPSIRNPVSLVVTRLVLIGSGEQPQVGPSAAQTLRSFCAWQRGLNTPEDSGPDHF
DTAILFTRQDLCGVSTCDTLMADVGTCDPARSCAIVEDDGLQSAPTAAHELGHVFNMLHD
NSKPCISLNGPLSTSRRHMAPVMAHVDPPEPWSPCSARFITDFLDNGYGHCLLDKPEAPLHL
PVTFPGKDYDADRCQLTFCGPDSRHCPCQLPPPACAALWCSGHLNGHAMCQTKHSPWADGTPCG
PAQACMGGRCILHMDQLQDFNIPQAGGWGPWGPWGDCSRTCAGGGVQFSSRDCTRPPRNGGKY
CEGRRTRFRSCNTEDCPTGSALTFREEQCAAYNHRTDLFKSFPGPMDWVPRYTGVAPQDQCK
LTCQARALGYYYYVLEPRVVDGTPCPDSSSVCVQGRCIHAGCDRIIGSKKKFDKCMVCGGDG
SGCSKQSGSFRKFRYGYNNVTIPAGATHILVRQQGNPGHRSIYLAALKPDGSYALNGEYTL
MPSPTDVVLPGAVSLRYSGATAASETLSGHGPLAQPLTLQVLVAGNPQDTRLRYSFFVPRPT
PSTPRPTPQDWLHRRAQILEILRRRPWAGRK
```

Important features of the protein:

Signal peptide:

amino acids 1-48

N-glycosylation site.

amino acids 68-71

Glycosaminoglycan attachment site

amino acids 188-191, 772-775

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 182-185

Tyrosine kinase phosphorylation site.

amino acids 730-736

N-myristoylation sites.

amino acids 5-10, 19-24, 121-126, 125-130, 130-135, 147-152, 167-172, 168-173, 174-179, 323-328, 352-357, 539-544, 555-560, 577-582, 679-684, 682-687, 763-768

Amidation sites.

amino acids 560-563, 834-837

Leucine zipper pattern.

amino acids 17-38, 24-45

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 358-367

183/270

FIGURE 181

CAGCAGTGGTCTCTCAGTCCTCAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACCATGG
CAAAGAATCCTCCAGAGAATTGTGAAGACTGTACATTCTAAATGCAGAAGCTTTAAATCC
AAGAAAATATGTAAATCACTTAAGATTGTGGACTGGTGTGGTATCCTGGCCCTAACTCT
AATTGTCTGTGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAGCCTATGACA
TGGAGCACACTTCTACAGCAATGGAGAGAAGAAGAAGATTACATGGAAATTGATCCTGTG
ACCAAGAACGTAAATATTCAAGAGCGGAAATGGCACTGATGAAACATTGAAAGTGCACGACTT
TAAAAACGGATACACTGGCATCTACTTCGTGGTCTCAAAAATGTTTATCAAAACTCAGA
TTAAAGTGATCTGAATTTCGAACACAGAAGAGGAAATAGATGAGAATGAAGAAATTAC
ACAAACTTTCTTGAAACAGTCAGTGATTGGTCCCAGCAGAAAGCCTATTGAAAACCGAGA
TTTCTTAAAAATTCCAAATTCTGGAGATTGTGATAACGTGACCATGTATTGGATCAATC
CCACTCTAATATCAGTTCTGAGTTACAAGACTTTGAGGAGGGAGAAGATCTTCACTTT
CCTGCCAACGAAAAAAAGGGATTGAACAAATGAAACAGTGGTGGTCCCTCAAGTGAAAGT
AGAGAACCCCCTCACGCCAGACAAGCAAGTGAGGAAGAACCTCCAATAATGACTATACTG
AAAATGGAATGAAATTGATCCCATGCTGGATGAGAGAGGTTATTGTTGATTACTGCCGT
CGAGGCAACCGCTATTGCCGCCGCTGTGAACCTTACTAGGCTACTACCCATATCCATA
CTGCTACCAAGGAGGACGAGTCATCTGCGTGTACATGCCCTGTAACTGGTGGTGGCCC

GCATGCTGGGAGGGTCTAAATAGGAGGTTGAGCTCAAATGCTTAAACTGCTGGCAACATAT
AATAAATGCATGCTATTCAATGAATTCTGCCTATGAGGCATCTGGCCCTGGTAGCCAGCT
CTCCAGAATTACTGTAGGTAATTCTCTTCAATTAAACTTCTACATTATCACC
AAAAAAAAAAAAAAAAAA

161/270

FIGURE 182

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73727  
><subunit 1 of 1, 317 aa, 1 stop  
><MW: 37130, pI: 5.18, NX(S/T): 3  
MAKNPPENCEDCHILNAEAFSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAY  
DMEHTFYSGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKT  
QIKVIPEFSEPEEEEIDENEETTTFFEQSVIWVPAEKPIENRDFLKNKILEICDNVTMYWI  
NPTLISVSELQDFEEEGEDLHF PAN EKKGIEQNEQWVVPQVKVEKTRHARQASEEEPLINDY  
TENGIEFDPMMLDERGYCCIYCRRGNRYCRRVCEPLLGYYPYCYQGGRVICRVIMPCNWWV  
ARMLGRV
```

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-
242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 183

GCGGAACCTGGCTCCGGCTGGCACCTGAGGAGCGGGGTGACCCCGAGGGCCAGGGAGCTGCC
CGGCTGGCCTAGGCAGGCACCGAACCATGGCCAGCACGGCCGTGCAAGCTTCTGGCTTCCT
GCTCAGCTTCCTGGGATGGTGGCACGTTGATCACCACCATCCTGCCGACTGGCGGAGGA
CAGCGCACGTGGCACCAACATCCTCACGGCGTGTCTACCTGAAAGGGCTCTGGATGGAG
TGTGTGTGGCACAGCACAGGCATCTACCGATCTACCGATCCCTGCTGGCGCTGCC
CCAAGACCTCAGGCTGCCCGCCCTCATGGTCATCTCCTGCCGTCTCGGGCATAGCCT
GCGCCTGCGCCGTATGGGATGAAGTGCACCGCTGCCAAGGGCACACCCGCAAGACC
ACCTTGCCATCCTCGCGGCCCTTCTCATCCTGCCGGCCTCTGTGCATGGTGGCCGT
CTCCTGGACCACCAACGACGTGGTCAGAACCTCTACAACCCGCTGTGCCAGGGCATGA
AGTTTGAGATTGGCCAGGCCCTGTACCTGGCTTCATCTCCTCGTCCCTCTCGCTATTGGT
GGCACCCCTGCTTGCCCTGCTGCCAGGACGAGGCACCCCTACAGGCCCTACCAGGCCCGCC
CAGGGCCACCACGACCACTGCAAACACCGCACCTGCCACAGGCCACAGCTGCCCTACAAAG
ACAATGGGCCCCCTCAGTGACCTGCCACGCACAGCGGGTACAGGCTGAACGACTACGTG
TGAGTCCCCACAGCCTGCTTCTCCCTGGCTGCTGTGGCTGGGTCCCCGGGGACTGTC
AATGGAGGCAGGGTTCCAGCACAAAGTTACTTCTGGCAATTGTATCCAAGGAAATA
ATGTGAATGCGAGGAATGTCTTAGAGCACAGGGACAGAGGGAAATAAGAGGAGGAGAA
AGCTCTCTATACCAAGACTGAAAAAAATCCTGCTGTTTGATTTATATATATAT
TTATGTGGGTGATTGATAACAAGTTAATATAAAGTGACTTGGAGTTGGTCAGTGGGT
TGGTTGTGATCCAGGAATAAACCTGCGGATGTGGCTGTTATGAAAAAA

FIGURE 184

MASTAVQLLGFILLSFLGMVGTLITTLPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTGIY
QCQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTFAILGGTL
FILAGLLCMVAVSWTTNDVVQNFYNPPLLPSGMKFEIGQALYLGFISSSLSLIGGTLCLSCQ
DEAPYRPYQAPPRATTTANTAPAYQPPAAYKDNRAPSCTSATHSGYRLNDYV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-103, 115-141, 160-182

187/270

FIGURE 185

GAGCTCCCTCAGGAGCGCGTTAGCTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCG
 CAGGCGGCAGGGCGGGCGGCAGGATCATGTCCACCACATGCCAAGTGGTGGCGTTCT
 CCTGTCCATCTGGGCTGCCGGCTGCATCGCGGCACCGGGATGGACATGTGGAGCACCC
 AGGACCTGTACGACAACCCGTACCTCGTGTCCAGTACGAAGGGCTCTGGAGGAGCTGC
 GTGAGGCAGAGTTCAAGGTTACCGAATGCAGGCCATTTCACCATCTGGACTTCCAGC
 CATGCTGCAGGCAGTGCGAGCCCTGATGATCGTAGGCATCGCTGGGTGCCATTGGCCTCC
 TGGTATCCATCTTGCCCTGAAATGCATCGCATTGCAGCATGGAGGACTCTGCCAAAGCC
 AACATGACACTGACCTCCGGGATCATGTCAATTGTCTCAGGTCTTGTCAATTGCTGGAGT
 GTCTGTGTTGCCAACATGCTGGTACTAACTTCTGATGTCCACAGCTAACATGTACACCG
 GCATGGGTGGGATGGTGCAGACTGTTCAAGACCAGGTACACATTGGTGCAGCTGTTCTG
 GGCTGGGTGCGTGGAGGCCCTACACTAAATTGGGGGTGTGATGATGTGCATCGCTGCCGGG
 CCTGGCACCAGAAGAACCAACTACAAAGCCGTTCTTATCATGCCCTCAGGCCACAGTGTG
 CCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTTGGTCCAACACCAAAACAAGAAG
 ATATACGATGGAGGTGCCCGCACAGGAGGACTGGTACAATCTTATCCTTCAAGCAGCACTA
 TGTGTAATGCTCTAACACCTCTCAGCACGGCGGAAGAAACTCCCGAGAGCTCACCCAAA
 AACAAAGGAGATCCCCTAGATTCTCTGCTTGTGACTCACAGCTGGAAAGTTAGAAAAGC
 CTCGATTCTCTTGAGGAGGCCAAATTGCTTAGGCTCAGTCTGTCTCAAATATTCC
 ACCATAAAACAGCTGAGTTATTATGAATTAGAGGCTATAGCTCACATTCAATCCTCTAT
 TTCTTTTTAAATATAACTTCTACTCTGATGAGAGAAATGTGTTTAATCTCTCTCAC
 ATTGATGATTAGACAGACTCCCCCTTCTCTCTAGTCAATAACCCATTGATGATCTA
 TTTCCCAGCTTATCCCCAAGAAAACTTTGAAAGGAAGAGTAGACCCAAAGATGTTATT
 CTGCTTTGATGTTGAATTGCTCCACCTGGCTAGTAATAACACTTACTGAAGAA
 GAAGCAATAAGAGAAAGATATTGTAATCTCTCCAGGCCATGATCTGGTTCTTACACTG
 TGATCTTAAAGTACCAACCAAAGTCATTTCAGTTGAGGCAACCAACCTTCTACTG
 CTGTTGACATCTCTTATTACAGCAACACCATTCTAGGAGTTCTGAGCTCTCCACTGGAG
 TCCTCTTCTGCGGGCTCAGAAATTGCTCTAGATGAAATGAGAAAATTATTTTTAAT
 TTAAGTCTAAATATAGTTAAATAAATATGTTTAGTAAATGATAACACTATCTCTGTGA
 AATAGCCTCACCCCTACATGTGGATAGAAGGAAATGAAAAAATAATTGCTTGACATTGTCT
 ATATGGTACTTTGTAAGTCATGCTTAAGTACAATTCATGAAAGCTCACACCTGTAATC
 CTAGCACTTGGAGGCTGAGGAGGAAGGATCACTTGAGGCCAGAAGTTGAGACTAGCCTG
 GGCAACATGGAGAAGGCCCTGCTCTACAAAATACAGAGGAAAAATCAGCCAGTCATGGTG
 GCATACACCTGTAGTCCCAGCATTCCGGAGGCTGAGGTGGGAGGATCACTTGAGGCCAGGG
 AGGTTGGGCTGAGTGCAGGCATGATCACACCACTGCACTCCAGGCCAGGTGACATAGCGAGA
 TCCGTCTAAAAAAATAAAATAATGAAACACAGCAAGTCTAGGAAGTAGGTTAAA
 ACTAATTCTTTAA

FIGURE 186

```
>/usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73734
><subunit 1 of 1, 261 aa, 1 stop
><MW: 27856, pI: 8.50, NX(S/T): 1
MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTE
CRPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIM
FIVSGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTL
IGGVMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFCASTGFGSNTKNKKIYDGGARTE
DEVQSYP SKHDYV
```

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

189/270

FIGURE 187

GGAAAAACTGTTCTCTCTGGCACAGAGAACCCGCTTCAAAGCAGAAGTAGCAGTTCCG
GAGTCCAGCTGGCTAAAACATCCCAGAGGATA~~ATGGCAACCCATGCCTAGAAATCGCTG~~
GGCTGTTCTGGTGGTGGGAATGGTGGCACAGTGGCTGTACTGCATGCCAGTGG
AGAGTGTGGCCTTCATTGAAAACAACATCGTGGTTTGAAAACCTCTGGGAAGGACTGTG
GATGAATTGCGTGAGGAGGCTAACATCAGGATGCAGTCAGGAAATCTATGATTCCCTGCTGG
CTCTTCTCCGACCTACAGGCAGCCAGGAGCTGATGTGTGCTTCCGTGATGTCCTTC
TTGGCTTCTCATGATGGCCATCCTGGCATGAAATGCACCAGGTGACGGGGACAATGAGAA
GGTGAAGGCTCACATTCTGCTGACGGCTGGAAATCATCTTCATCATCACGGGATGGTGGTGC
TCATCCCCTGTGAGCTGGGTTGCCAATGCATCATCAGAGATTTCTATAACTCAATAGTGAAT
GTTGCCAAAAACGTGAGCTGGAGAAGCTCTACTTAGGATGGACCCACGGCACTGGTGC
GATTGTTGGAGGAGCTGCTGCGTTTTGTTGCAACGAAAAGAGCAGTAGCTACA
GATACTCGATAACCTTCCATCGCACAAACCAAAAAAGTTATCACACCGGAAAGTCACCG
AGCGTCTACTCCAGAAGTCAGTATGTG~~TAG~~TTGTATGTTTTTAACTTACTATATAAGC
CATGCAAATGACAAAAATCTATATTACTTCTCAAATGGACCCAAAGAAACTTTGATT
CTGTTCTTAACTGCCTAATCTTAATTACAGGAACTGTGCATCAGCTATTATGATTCTATAA
GCTATTTCAGCAGAATGAGATATTAAACCAATGCTTGTGTTAGAAAGTATAGTAAT
TTGTTTCTAAGGTGGTCAAGCATCTACTTTTATCATTTACTTCAAAATGACATTGCT
AAAGACTGCAATTATTTACTACTGTAATTCTCCACGACATAGCATTATGTACATAGATGAG
TGTAACATTATATCTCACATAGAGACATGCTTATATGTTTATTAAATGAAATGCCAG
TCCATTACACTGAATAAATAGAACTCAACTATTGCTTCAAGGGAAATCATGGATAGGGTG
AAGAAGGTTACTATTAAATTGTTAAAACAGCTTAGGGATTAATGCTCCATTATAATGA
AGATTAAAATGAAGGCTTAATCAGCATTGTAAGGAAATTGAATGGTTCTGATATGCTG
TTTTTAGCCTAGGAGTTAGAAATCTAACTTCTTATCCTCTCCAGAGGCTTTTT
TTCTGTGTTAAATTAAACATTAAACGAGATATTGCTCAAGGGGCTTGCAATTCA
AACTGTTTCCAGGGCTACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAGTGTG
GTTTTAGGAAAGTGAAAATATTGTTTTGTATTGAGAAGAATGATGCATTGACAA
GAAATCATATATGTATGATATATTAAATAAGTATTGAGTACAGACTTGGAGGTTTCATC
AATATAAAAGAGCAGAAAAATATGCTTGGTTTCAATTGCTTACCAAAAAACAACA
ACAAAAAAAGTTGCTTGGAGAACTTCACCTGCTCTATGTGGTACCTGAGTCAAAATTG
TCATTGTTGTTGAAATACTGTATTCTGTTATTCCAAATTGATGAAACTGACAATCCAATTG
AAGTTGTTGTCGACGTGCTAGCTTAATGAATGTGTTCTATTGCTTATACATTATA
TTAATAAAATTGTCATTTCTAATT

190/270

FIGURE 188

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73735
><subunit 1 of 1, 225 aa, 1 stop
><MW: 24845, pI: 9.07, NX(S/T): 0
MATHALEIAGLFLLGGVGMVGTVAVTVMPQWRVSIFIENNIVVFENFWEGLWMNCVRQANIRM
QCKIYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRGTGDNEKVKAHILLTAGI
IFIITGMVVLIPVSWVANAIIRDFYNSTVNVAQKRELGEALYLGWTTALVLIVGGALFCCVF
CCNEKSSSYRYSIPSHRTTQKSYHTGKKSPSVYRSQYV
```

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

191/270

FIGURE 189

TCGCCATGGCCTCTGCCGAATGCAGATCCTGGGAGTCGTCTGACACTGCTGGCTGGTGA
AATGGCCTGGCTCCTGTGCCCTGCCATGTGGAAGGTGACCGCTTCATCGGAAACAGCAT
CGTGGTGGCCCAAGGTGGTGGGAGGGCCTGTGGATGTCCTGCGTGGTGCAGAGCACCGGC
AGATGCAGTGAAGGTGTACGACTCACTGCTGGCCTGCCACAGGACCTGCAGGCTGCACGT
GCCCTCTGTGTCATGCCCTCTTGCCCTGTTGGCTTGTGGTCACTTGCTGGG
CAAGTGTACCACCTGTGTGGAGGAGAAGGATTCCAAGGCCGCTGGTGCACCTCTGGGA
TTGTCTTGTCATCTCAGGGTCCCTGACGCTAATCCCCGTGTGCTGGACGGCGATGCCATC
ATCCGGGACTCTATAACCCCTGGTGGCTGAGGCCAAAAGCGGGAGCTGGGGCCTCCCT
CTACTTGGGCTGGCGGCCCTAGGCCCTTGTGCTGGTGGGGTTGCTGTGCTGCACTT
GCCCTCGGGGGGCCCCAGGGCCCAAGGCCATTACATGGCCGCTACTCAACATCTGCCCT
GCCATCTCTCGGGGGCCCTTGAGTACCCCTACCAAGAATTACGTTGACGTGGAGGGAAATG
GGGCTCCGCTGGCGTAGAGCCATCCAGAAGTGGCAGTGCCAAAGCCTTGGATGGGTT
CGTACCTTTGTTCTGCTCCTGCTATTTCTTTGACTGAGGATATTAAAATTCAATT
GAAAATGAGCCAAGGTGTTGACTCAGACTCTCACTTAGGCTCTGCTGTTCTCACCTTG
ATGATGGAGCAAAGAGGGATGCTTGAGATTCTGGATCTTGACATGCCCATTTAGAAC
CAGTCAGCTATGAACTAATGCGGAGGCTGCTTGCTGGCTTGCAACAAGACAGAC
TGTCCCCAAGAGTTCTGCTGCTGGCTGGGGCTGGCTCCCTAGATGTCAGTGACAGCTG
CCCCCATCCTACTCAGGTCTCTGGAGCTCTCTTACCCCTGGAAAAACAAATCATCTG
TTAACAAAGGACTGCCACCTCCGGAACTTCTGACCTCTGTTCTCCGTCTGATAAGAGC
TCCACCCCCCAGGGCCAGGTCCCAGCTATGTAGACCCCCGCCACCTCCAAACACTGCACC
CTTCTGCCCTGCCCCCTCGTCTCACCCCTTACACTCACATTATCAAATAAGCATG
TTTGTTAGTGCA

192/270

FIGURE 190

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73736
><subunit 1 of 1, 220 aa, 1 stop
><MW: 23292, pI: 8.43, NX(S/T): 0
MASAGMQILGVVLTLLGWVNGLVSCALPMWKVTAFIGNSIVVAQVVWEGLWMSCVVQSTGQM
QCKVYDSSLALPQDLQAARALCVIALVALFGLLVYLAGAKCTTCVEEKDSKARLVLTSIV
FVISGVTLIIPVCWTAHAIIRDFYNPLVAEAQKRELGASLYLGWAASGLLLLGGGLLCCTCP
SCGSQGPSPHYMARYSTSAPAISRGPSEYPTKNYV
```

Transmembrane domains:

amino acids 8-30 (type II), 82-102, 121-140, 166-186

193/270

FIGURE 191

GCCAAGGAGAACATCATCAAAGACTTCTAGACTCAAAAGGCTTCCACGTTACATCTTG
AGCATCTTCTACCACCTCGAATTGAACCAGTCITCAAAGTAAGGCAATGGCATTATCCC
TTGCAAATTGCTGGCTGGTCTGGTCTGGCATGGTGGGACTCTTGCACAAACCT
TCTGCCTCAGTGGTGGAGTACAGCTTGTGGCAGCAACATTATTGTCTTGAGAGGCTC
TGGGAAGGGCTCTGGATGAATTGCATCCGACAAGCCAGGGTCCGGTCAATGCAAGTTCTA
TAGCTCCTGTTGGCTCTCCGCCCTGGAAACAGCCGGGCCCTCATGTGTGTGGCTG
TTGCTCTCCTGATGCCCTGCTTATTGGCATCTGTGGCATGAAGCAGGTCCAGTGAC
GGCTCTAACGAGAGGGCCAAAGCATACCTCTGGAACTTCAGGAGTCCTCATCCTGAC
GGGTATCTCGTTCTGATTCCGGTGGACAGCCAATATAATCATCAGAGATTCTACA
ACCCAGCCATCCACATAGGTCAAAAAGAGAGCTGGAGCAGCACCTTCCGGCTGGCA
AGCGCTGCTGTCCTCTTCATTGGAGGGGTCTGCTTGTGGATTTGCTGCTGCAACAGAAA
GAAGCAAGGGTACAGATATCCAGTGCCTGGTACCGTGTGCCACACAGATAAGCGAAGAA
ATACGACAATGCTTAGTAAGACCTCCACAGTTATGTCTATGCCTCCTTGGCTCCAAGT
ATGGACTATGGTCAATGTTTATAAAGTCCTGCTAGAAAATGTAAGTATGTGAGGCAGGA
GAACCTGCTTATGTCTAGATTACATTGATACGAAAGTTCAATTGTTACTGGTGGTAGG
AATGAAAATGACTTACTGGACATTCTGACTTCAGGTGTATTAAATGCATTGACTATTGTTG
GACCCAATCGCTGCTCAATTTCATATTCTAAATTCAAGTATAACCCATAATCATTAGCAAG
TGTACAATGATGGACTACTTATTACTTTGACCATCATGTATTATCTGATAAGAATCTAAA
GTTGAAATTGATATTCTATAACAATAAAACATACCTATTCTA

FIGURE 192

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73737
><subunit 1 of 1, 173 aa, 1 stop
><MW: 18938, pI: 9.99, NX(S/T): 1
MNCIRQARVRLQCKFYSSLLALPPALETARALMCVAVALSLIALLIGICGMKQVQCTGSNER
AKAYLLGTSGVLFILTGIFVLIPVSWTANIIIRDYNPAlHIGQKRELGAALFLGWASAAVL
FIGGGLLCGFCCCNRKKQGYRYPVPGYRVPHDKRRNTTMLSKTSTSYY
```

Important features of the protein:

Transmembrane domains:

amino acids 31-51, 71-90, 112-133

N-glycosylation site.

amino acids 161-164

FIGURE 193

AGTGACAATCTCAGAGCAGCTTCTACACCACAGCCATTCCAGCATAAGAGATCACTGGGGGT
CTCCTTCTGCTCTGTACAGTGGTCTATTCTGTAGCAGCTCAGAAGCTGTAGTCTGTCTCC
AAAAAAAGTGGACTGCAGCATTACAAGAAGTATCCAGTGGTGGCCATCCCCTGCCCATCA
CATACCTACCAGTTGTGGTCTGACTACATCACCTATGGGAATGAATGTCACTTGTGTACC
GAGAGCTTGAAAAGTAATGGAAGAGTTCAGAGTTCTTCACGATGGAAGTTGCTAATTCTCCA
TGGACATAGAGAGAAAGGAATGATATTCTCATCATCATCTTCATCATCCCAGGCTCTGACTG
AGTTTCTTCAGTTTACTGATGTTCTGGTGGGGACAGAGCCAGATTCAGAGATAATCTTG
ACTGAATGGAGAAAGTTCTGTGCTACCCCTACAAACCCATGCCTCAGACAGACCAGCAT
TTTTTTTTAACACGTCAATAAAAAAATAATCTCCCAGA

FIGURE 194

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73739
><subunit 1 of 1, 85 aa, 1 stop
><MW: 9232, pI: 7.94, NX(S/T): 0
MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSIYKKYPVVAIPCPITYLPVCGSDYITYGN
ECHLCTESLKSNGRVQFLHDGSC
```

Signal peptide:
amino acids 1-19

FIGURE 195

CCCGCGCCCGGTTCTCCCTCGCAGCACCTCGAAGTGCGCCCTGCCCTCTGCTCGCGCCC
CGCCGCCATGGCTGCCTCCCCCGCGCGGCCCTGCTGTCTGGCCCTGACCGGGCTGGCGCTGC
TCCTGCTCCTGTGCTGGGGCCAGGTGGCATAAGTGGAAATAACTCAAGCTGATGCTCAA
AAACGAGAAGCACCTGTTCCAACTAAGACTAAAGTGGCGTTGATGAGAATAAGCAAAGA
ATTCCCTTGGCAGCCTGAAGGCCAGAACGGCAGCTGTGGGACGGACTCGGCCCGAGGTGC
AGCAGTGGTACCCAGCAGTTCTACATGGCTTGATGAAGCAAATTGAAGATGACATC
ACCTATTGGCTTAACAGAGATCGAAATGACATGAATACTATGGCATTACTACCAACGTCA
CTATGATGAAGACTCTGCAATTGGTCCCCGGAGCCCTACGGCTTAGGCATGGAGCCAGCG
TCAACTACGATGACTAACCATGACTTGCCACACGCTGTACAAGCAAATAGCGATT
TCTTCATGTATCTCCTAACGCTTACACTACTTGGTTCTGATTTGCTCTATTCAAGCAGAT
CTTTCTACCTACTTGTGATCAAAAAGAAGAGTTAAAACAACATGTAATGCCCTT
TGATTTCATGGGAATGCCCTCTCATTAAAAATAGAAATAAGCATTGTTAAAAGA

FIGURE 196

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73742
><subunit 1 of 1, 148 aa, 1 stop
><MW: 17183, pI: 8.77, NX(S/T): 0
MAASPARPAVLALTGLALLLLCWGP GGISGNKLKMLQKREAPVPTKTAVDENKAKEFL
GSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEYYGDYYQRHYD
EDSAIGPRSPYGRHGASVNYYDDY

Signal peptide:
amino acids 1-30

FIGURE 197

CGGCTCGAGCCGCCCGGAAGTGGCCAGGGGCCGATGGAGCTGGGGAGCCGGCGCTC
GGTAGCGCGCGGGCAAGGCAGGCCTGACCCTGATTGAAGGGTGGGTGATGAGGTGAC
CGTCCTTTCTCGGTGCTTGCCCTGCTGGTGCTGCCCTGCTGGCTGGCTCAACGCACA
CCGCTGAGGGCGGGGACCCACTGCCCCAGCGTCAGGGACCCAAACGCCATCCCAGCCCAGC
GCAGCCATGGCAGCTACCGACAGCATGAGAGGGGAGGCCAGGGGAGAGACCCCCAGCCT
GAGACACAGAGGTCAAGCTGACAGCCAGGCCAGCACGGGTTACAGCAACCCGCCAG
CCCCGGACTCCCCGCAGGAGCCCTCGTCTACGGCTGAAATTCTCAATGATTAGCAGAGCAG
GTGGCCAGGGCCTGGCCCAACGACACCATTGGCTCCTTGAAAAGGACCCAGTTCCGGCCG
GGAACAGCAGGTGCGACTCATCTACCAAGGGCAGCTGCTAGGCAGACACCCAGACCCCTGG
GCAGCCTTCACCTCCCTCCAACCTGCGTTCTCCACTGCCACGTGTCACGAGAGTCGGTCCC
CCAAATCCCCCTGCCGCCGGGTCCAGGCCGGCCCTCCGGCTGGAAATGGCAGCCT
GCTGCTGCCCTGCTGCTCTGCTGCTGCTGCTCTGGTACTGCCAGATCCAGTACCGGC
CCTCTTCCCTGACCGCCACTCTGGGCTGGCCGGCTTACCCCTGCTCCTCAGTCTCCTG
GCCTTGCCATGTACCGCCGTAGTGCCCTCGCGGGCGCTTGGCAGCGTCGCCGGCCCTCC
GGACCTTGCTCCCCCGGCCGGGGAGCTGCTGCTGCCAGGCCGCCCTCCGGCCTG
CCTCTTCCCGCTGCCCTGGAGCCAGCCCTGCCGCCAGAGGACTCCGGACTGGCGGAGG
CCCCGCCCTGCCACCGCCGGGCTCGGGGCCACCTCCGGGCTGCTGAACCTCAGCCCGCA
CTGGGAGTGGGCTCCTCGGGCTGGGAGCTGCTGCTGCCCTGGCCGGAGGACCCAGCC
GGCCGCCCGGGGGCCCGTCTAGTGTCTGCCGGAGGACCCAGCCGCCCTCAATCCCTGAC
AGCTCCTTGGGCTGAGTTGGGACGCCAGGTGGTGGAGGCTGGTGAAGGGAGCCGGAG
GGCAGAGGAGTTCCCCGGAACCCGTGCAGATTAAAGTAACGTGAAGTTAAAAAAAAA
AAAAAAA

200/270

FIGURE 198

MTLIEGVGDEVTVLFSVLACLLVLALAWSTHTAEGGDPLPQPSGTPTPSQPSAAMAATDSM
RGEAPGAETPSLRHRGQAAQPEPSTGFTATPPAPDSPQEPLVRLKFLNDSEQVARAWPHDT
IGSLKRTQFPGREQQVRLIYQQQLLGDDTQTLGSLHLPPNCVLHCHVSTRVGPPNPPCPPGS
EPGPSGLEIGSLLLPLLLLLLWYCQIQYRPFFPLTATLGLAGFTLLSLLAFAMYRP

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 195-217

201/270

FIGURE 199

GAGATTGGAAACAGCCAGGTTGGAGCAGTGAGTGAGTAAGGAAACCTGGCTGCCCTCTCCAG
ATTCCCCAGGCCTCTCAGAGAAGATCAGCAGAAAGTCGCAAGACCCCTAAGAACCATCAGCCC
TCAGCTGCACCTCCTCCCTCCAAGGATGACAAAAGGGCGTACTCATCTATTTGGTCAGCAGC
TTCTTGCCTAAATCAGGCCAGCCTCATCAGTCGCTGTGACTTGGCCCAGGTGCTGCAGCT
GGAGGACTTGGATGGGTTACTCCCTGAGTGACTGGCTGTGCCTGGCTTTGTGG
AAAGCAAGTTCAACATATCAAAGATAAATGAAAATGCGGATGGAAGCTTGACTATGGCCTC
TTCCAGATCAACAGCCACTACTGGTGCAACGATTATAAGAGTTACTCGGAAAACCTTGCCA
CGTAGACTGTCAAGATCTGCTGAATCCAACCTTCTTGAGGATCCACTGCGAAAAAGGA
TTGTGTCCGGAGCACGGGGATGAACAACGGTAGAATGGAGGTTGCACTGTTCAAGGCCGG
CCACTCTCCTACTGGCTGACAGGATGCCGCTGAGATGAAACAGGGTGCAGGGTGCACCGTGG
AGTCATTCCAAGACTCCTGCTCCTCACTCAGGGATTCTTCATTCTTCTCCTACTGCCTCCA
CTTCATGTTATTTCTTCCCTCCATTACAACAAACTGACCAGAGCCCCAGGAATAAA
TGGTTTCTTGGCTTCCCTCTTACTCCCATCTGGACCCAGTCCCCTGGTCTGTCTGTTAT
TTGTAAACTGAGGACCACAATAAGAAATCTTATATTTATCG

202/270

FIGURE 200

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73746
><subunit 1 of 1, 148 aa, 1 stop
><MW: 16896, pI: 6.05, NX(S/T): 1
MTKALLIYLVSSFLALNQASLISRCDLAQVLQLEDLDGFEGYSLSDWLCLAFVESKFNISKI
NENADGSFDYGLFQINSHYWCNDYKSYSENLCHVDCQDLLNPNLLAGIHCAKRIVSGARGMN
NWVEWRLHCSGRPLSYWLTGCRLR
```

Signal peptide:
amino acids 1-18

FIGURE 201

TCTGACCTGACTTGGAAAGCGTCCAAAGAGGGACGGCTGTCA
 GCGCTGCTTGAATGAGAACCCA
 CCAGCTCATCCCAGACACCTCATAGCAACCTATTATACAAAGGGGAAAGAAACACCTGAG
 CAGAATGGAATCATTATTTTCCCAGGAGAAAACCGGGTAAAGGGAGGGAAAGCAATT
 AATTGAAGTCCTGTGAATGGCTTCAGAAGGCATTAAAGAAATCCACTCAGAGAGGAC
 TTGGGGTAAACCTGGTCTGTGATTGTAAGTGGAAAGCAGGTCTGCACACGC
 TGTGGCAAATGTCAGGACAGGTTAAGTGACTGGCAGAAAACCTCCAGGTGAAACAAGCA
 ACCATGTTCTGCTGCAAGCTTGAAGGGCCTGGAGCGGGAGAAAGCTAACATTGAAACATGAC
 CTGTTGCAATTGGCAAGTCTAGAACATGCTCTAAGGAAGCGATAACAGGCACAGACATG
 CAGACTCCAGTCTCTCTGCTCCTGATGCTGGGATGCGTCTGTATGATGGTGGCAGTGT
 TGCAACCTCCCCACCACCCCTGCACAGACTGTCAAGCCCAAGCCAGCAAGCACAGCCCT
 GAAGCCAGGTACCGCCTGGAATTGGGAAATCCCAGGATTGGGTACTGGAAGCTGAGGATGA
 GGGTGAAGAGTACAGCCCTCTGGAGGCCCTGCCACCTTATCTACTGCGGGAGGATCAGC
 TGCTGGTGGCCCTGGCCCTTACCCCAAGGAGGACAGGAGGCCAGGGCAGGAGAGGTGGG
 AGCTACCGCCTCATCAAGCAGCCAAGGGCAGGATAAGGAAGCCCCAAAGAGGGACTGGGG
 GGCTGATGAGGACGGGGAGGTGTGAAGAAGAGGAGTTGACCCCTTCAGCCCTGGACCCAC
 GTGCCCTCAGGAGGCACTCAGTGGCCCTGCAAGGGCTCTGCCAGGGCTCTGCCAGGTGCGG
 CACCAACTGTGTCAGCAGCACCTCAGGACAGCCTGCCACAGCCAGGCTCATCCTCTG
 TTCCATGATGAGGCTGGTCCACTCTCTCGGGACTGTACACAGCATCCTGACACAGTGC
 CCAGGGCCTTCTGAAGGAGATCATCCTCTGGACGACCTCAGGAGCAAGGACAACCTCAAG
 TCTGCTCTCAGGAATATGTGCCAGGCTGGAGGGGGTGAAGTTACTCAGGAGCAACAAGAG
 GCTGGGTGCCATCAGGGCCCGATGCTGGGGGCCACAGAGCCACGGGATGTGCTGCT
 TCATGGATGCCACTCGCAGTGGCACCCAGGCTGGCTGGAGCCCCCTCAGCAGAATAGCT
 GGTGACAGGAGCCAGTGGTATCTCCGGTGTAGATGTAATGACTGGAAGACTTTCCAGTA
 TTACCCCTCAAAGGACCTGCAAGCTGGCTGGGGTGTGGACTGGAAGCTGGATTCCACTGGGAAC
 CTTGCCAGAGCATGTGAGGAAGGCCCTCAGTCCCCATAAGCCCCATCAGGAGCCCTGTG
 GTGCCCGAGAGGTGGTGGCCATGGACAGACATTACTCCAAAACACTGGAGCGTATGACTC
 TCTTATGTCGCTGCAAGGGTGTGAAACCTGAACTGTCTTCAAGGCTGGCTCTGTGGTG
 GCTCTGTTGAATCCTCCCTGCTCTGGTAGGACACATCTACCAAAATCAGGATTCCCAT
 TCCCCCTGACCAGGAGGCCACCTCAGGAACAGGTTGCAATTGAGACTGGCTGGG
 GTCAATTCAAAGAAACCTTCTACAAGCATGCCAGAGGCCCTCTCTGAGCAAGGCTGAGA
 AGCCAGACTGCAATGAAACGCTTGCAGCTGCAAAGGAGACTGGGTTGCGACATTCCACTGG
 TTTCTGGCTAATGTCACCTCTGAGCTGTACCCATCTGAACCCAGGCCCCAGTTCTCTGGAAA
 GCTCCACAAACACTGGACTTGGCTCTGCAAGACTGCCAGGAGAAGGGGACATCCTGGGCT
 GTCCCAGTGGTGTGGCTCTGCACTGCAAGGCCACAGCACCTGTGCTTGCTGAGGAGCAGG
 AGGAAGGAGATTCACTTGGCAGGCCACAGCACCTGTGCTTGCTGAGGAGCAGG
 GATTCTTCAAGACTGCAAGGAGAAGGCCATCCACAGCAGCACTGGGACTTCCAGG
 AGAATGGGATGATTGTCACCTGCTCTGTGATGAAAGCCGCCAGCACTGGGATTTGACCA
 AATAAAGATTGTCACCTGCTCTGTGATGAAAGCCGCCAGCACTGGGATTTGACCA
 GATAAAATGCTGTGGATGAAAGATGAAATGTCATGCAAGGAAAGAGAATTGGCCATC
 AAAATCCAGCTCAAGTGAACTGAAAGAGCTTATATATTTCATGAAAGCTGATCCTTTGTGT
 GTGTGCTCTTGTGTTAGGAGAGAAAAAGCTCTATGAAAGAATATAGGAAGTTCTCCTT
 TCACACCTTATTCACTGACTGCTGGCTGCTTA

204'270

FIGURE 202

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73760
><subunit 1 of 1, 639 aa, 1 stop
><MW: 73063, pI: 6.84, NX(S/T): 2
MLLRKRYRHRPCRLQFLLLLMLGCVLMVAMLHPPHHTLHQTVTAQASKHSPEARYRLDFG
ESQDWVLEAEDEGEEYSPLEGLPPFISLREDQLLVAVALPQARRNQSQGRGGSYRLIKQPR
RQDKEAPKRDWGADEDGEVSEEEELTPFSLDPRGLQEALSARIPLQRALPEVRHPLCLQQHP
QDSLPTASVILCFHDEAWSTLLRTVHSILDTVPRAFLKEIILVDDLSQQGQLKSALSEYVAR
LEGVKLLRSNKRLGAIRARMLGATRATGDVLVFMDAHCECHPGWLEPLLSRIAGDRSRVVSP
VIDVIDWKTFQYYPSKDLQRGVLDWKLDFHWEPLPEHVRKALQSPISPISPVVPGEVVAMD
RHYFQNTGAYDSLMSLRGGENLELSFKAWLCGGSVEILPCSRVGHIFYQNQDSHSPLDQEATL
RNRRVRIAETWLGSFKETFYKHSPEAFSLSKAEKPDCMERLQLQRRLGCRTFWFLANVPEL
YPSEPRPSFSGKLHNTGLGLCADCQAEGDILGCPMVILAPCSDSRQQQYLQHTSRKEIHFGSP
QHLCFAVRQEQQVILQNCTEEGLAIHQHQHDFQENGIVHILSGKCMEAVVQENNKDLYLRPC
DGKARQQWRFDQINAVDER
```

Signal peptide:
amino acids 1-28

205/270

FIGURE 203

CGCCAAGCATGCAGTAAAGGCTGAAAATCTGGGTCAAGCTGAGGAAGACCTCAGACATGGA
 GTCCAGGATGTGGCCTGCCGTGCTGCTGCCCACCTCCTCCCTCTGGCACTGCTGTTGC
 TGCCCCCTCCCACCGCCTGCTCAGGGCTCTTCATCCTCCCTCGAACCCCCACAGCCCCAGCC
 CGCCCCCCCCTGTGCCAGGGAGGGCCCTCGGCCCCACGTCAATGTGCGTGTGGAGCGAGC
 ACCTCCACCAAGCCGATCTCTCGGTCCAAGATCACGTCGGCAAGTCCTGCCACTGGCACTG
 CACCCCCAGCCACCCCATCAGGCTTGAGGGAGGGCCGCCCCATCCAATACCCCTGGGCT
 ATCGTGTGGGGTCCCACCGTGTCTCGAGAGGATGGAGGGGACCCAATCTGCAATCCCG
 ATTCTGGACTATGGTTTGAGCCCTCATGGGCTGCAACCCCCACACCCCAACTCAGACT
 CCATGCGAGGTGATGGAGATGGGTTATCCTGGAGAGGCACCTGCCACCTGCCGCGCATT
 CTGTTGGGGGGCGTGGGAAGGTGTGGACCCCCAGCTATGTCACAATTACCATCTCCAT
 CATCATTGTTCTCGTGGCACTGGCATCATCTCAAGTTCTGCTGGGACCGCAGCCAGAAGC
 GACGCAGACCCCTCAGGGCAGCAAGGTGCCCTGAGGCAGGAGGAGGCCAGCAGCCACTGACA
 GACTGTCCCCGGCTGGAGTCAGTGCTGGGGCCTTCGGGGACTCACCTACCCCCACCC
 TGACCATGAGGAGCCCCGAGGGGGACCCCCCGCTGGATGCCACCCCCAAGGGGGCTCCAG
 CCTTCCAGTTGAACCGGTGAGGGCAGGGCAATGGGATGGGAGGGCAAAGAGGAAGGCAAC
 TTAGGTCTTCAGAGCTGGGGTGGGGTCCCTCTGGATGGGTAGTGAGGAGGCAGGCGTGGC
 CTCCCACAGCCCCCTGGCCCTCCAAAGGGGCTGGACAGCTCTCTCTGGGAGGCACCCCTTC
 CTTCTCCCAGTCTCTCAGGATCTGTCTCATGCAACCTTGCTAAGACAATCTGCCCTTAACCTTGATTCCC
 CCTCTTTGTCTGAACCTCCCCCTCATGCAACCTTGCTAAGACAATCTGCCCTTAACCTTGATTCCC
 TCCCTCTCCTCTCAGGATCCCCCTGGTGAATCTGTGATGCCCAATGTTGGGGTGCAGCC
 AACAGGAGGCCAAGGGCCGGCACAGCCCCATCCACTGAGGGTGGGGCAGCTGTGGGA
 GCTGGGGCACAGGGCTCTGGCTCTGGCACACCACCGGAACACTCCCCAGCC
 CCACGGGCAATCTATCTGCTGCCCTCTGCAGGTGGGGCCTCACATATCTGACTTCG
 GGTCCTGTCCCCACCCCTGTGCACTCACATGAAAGCCTTGCAACTCACCTCCACCTTCAC
 AGGCCATTGCAACGCTCTGCACCCCTCTCCCGTCCATACCGCTCCGCTCAGCTGACTCT
 CATGTTCTCTCGTCTCACATTGCACTCTCCTTCCACATTCTGTGCTCAGCTCACTCAG
 TGGTCAGCGTTCTGCACACTTACCTCTCATGTGCGTTCCCGGCTGATGTTGTTGG
 TGTGCGGGCGTGCTCACTCTCCCTCATGAACACCCACCCACCTCGTTCCGAGCCCTGC
 GTGCTGCTCCAGAGGTGGGGAGGTGAGCTGGGGCTCCTGGGCCATCGGTATGG
 TCTCGTCCCATTCCACACCATTGTTCTCTGTCTCCCATCTACTCCAAGGATGCCGGCA
 TCACCCCTGAGGGCTCCCCCTGGGAATGGGTAGTGAGGCCAGACTTCACCCCCAGCCCA
 CTGCTAAAATCTGTTCTGACAGATGGTTTGGGAGTCGCTGCTGCACTACATGAGAA
 AGGACTCCCATTGCCCTCCCTCTACAGTCCCTTGTCTGCTGCTGCTGGCTG
 TCTGTGTGTCGCCATTCTGGACTTCAGAGCCCCCTGAGCCAGTCCTCCCTCCAGCCT
 CCCCTGGGCTCCCTAACTCCACCTAGGCTGCCAGGGACGGAGTCAGCTGGGTCAGGC
 ATCGGGAGCTCTGCCCTCAAGTCTACCCCTCCCTCCCGACTCCCTCTGCTCCCTCC
 CCTCCCTCTCCCTTCACTCTCTTGTCTGCTCCCTCCCTCCCTGAGGT
 CTTCCTCTCCCTTCACTGTTTCCACCTCTCCCTCCCTCCCTGAGGT
 GTGATATATATTTGTATTATCTCTTCTTGTGATCATCTTGAATTACTGTG
 GGATGTAAGTTCAAATAAGCCTTGCAAGATAA

FIGURE 204

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393
><subunit 1 of 1, 243 aa, 1 stop
><MW: 26266, pI: 8.43, NX(S/T): 1
MRPQGPAAASPQRLRGLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV
PGRDGSPGANVIPGTPGIPGRDGFKEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA
ECTFTKMRNSNALRVLFGSGLRLKCRNACCQRWYFTFNGAECSGPLPIEAIYLDQGSPEMN
STINIHTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIIEELPK
```

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

207/270

FIGURE 205

GTAAACCAGCGCAGTCCTCCGTGCGTCCGCCCGCCGCTGCCCTCACTCCCAGGATGG
CATCCTGTCGGCCCTGCGCATGGCGCTGCTGCTGGTCTCCGGGTTCTGGCCCTGCGGTG
CTCACAGACGATGTTCCACAGGAGCCCGTCCCCACGCTGTGGAACGAGCCGGCCGAGCTGCC
GTCGGGAGAAGGCCCCGTGGAGAGCACCAAGCCCCGGCCGGAGCCCGTGGACACCGTCCCC
CAGCCCCCACCGTCGCGCCAGGACCCGAGGACAGCACCGCGCAGGAGCGGCTGGACCAGGGC
GGCGGGTCGCTGGGGCCCGCGCTATCGCGGCCATCGTATCGCCGCCCCCTGCTGGCCACCTG
CGTGGTGCCTGGCGCTCGTGGTCGTGCGCTGAGAAAGTTTCTGCTCCTGAAGCGAATAAA
GGGGCCCGCCCCGGCCGCGACTCGGCAAAAAAAAAAAAAAA

FIGURE 206

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76398
><subunit 1 of 1, 121 aa, 1 stop
><MW: 12073, pI: 4.11, NX(S/T): 0
MASCLALRMALLLVSGVLAPAVLTDDVPQEPVPTLWNEPAELPSGEGPVESTSPGREPVDTG
PPAPTVAPGPEDSTAQERLDQGGGSLPGAIAAIVIAALLATCVVLALVVVALRKFSAS
```

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 91-110

Glycosaminoglycan attachment site.

amino acids 44-47

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 116-119

N-myristylation site.

amino acids 91-96

FIGURE 207

GGCGCGTTGGTTGGTGC~~GCGG~~CTGAAGGGTGTGGCGCAGCAGCTGTTGGTGGCCGGCG
CGGGCCGGGACGGG~~CATGG~~CCCTGCTGCTGTGCGCTGGCTGACGGCGGCTGGCCA
CGGCTGTCTGCACTGCCACAGCAACTCTCCAAGAAGTTCTCCTTCTACCGCACCATGTGA
ACTTCAAGTCCTGGTGGGTGGCGACATCCCCGTGTCAAGGGCGCTGCTACCGACTGGAGC
GACGACACGATGAAGGAGCTGCACCTGGCATCCCCCAAGATCACCCGGAGAAGCTGGA
CCAAGTGGCGACAGCAGTGTACCAAGATGATGGATCAGCTGTACCAAGGGAAAGATGTACTTCC
CCGGGTATTCCCACAGCTGCAAAACATCTTCCGGAGCAGGTGCACCTCATCCAGAAC
GCCATCATCGAAAGGCACCTGGCACCGAGCAGCTGGGAGGAGGGAGCTCTCAGGGAGGG
ACCCAGCCTAGCACCTGAAGGATCAATGCCATCCCCCGGGGACCTCCCCAAGTAGCCC
CCAGAGGCGCTGGAGTGTGTTGCCACCGCCCTCCCCCTGAAGTTGCTCCATCTCACGCTGGGG
GTCAACCTGGGACCCCTTCCCTCCGGGCCATGGACACACATAGAAAACCAGGCCGCAT
CGACTGTCAGCACCGCTGTCATCTTCAGTACGAGACCATCTCTGCAACAACTGCACAG
ACTCGCACGTCGCTGCTTGGCTATAACTGCGAGTAGGGCTCAGGCATCACACCCACCCGT
GCCAGGGCCCTACTGTCCCTGGGTCCAGGCTCTCTGGAGGGGCTCCCCGCTTCCAC
CTGGCTGTCACTGGGTAGGGCGGGCGTGGGTTCAAGGGCGCACACTTCCAAGCCTGTGT
CCCACAGGTCTCGCGCAGTGGAGTCAGCTGTCCAGGGCTCTGAACACTACATAAAC
TGGCACAAAGTAAGTCCCCTCTCAAACCAACACAGGCAGTGTGTATGTGAGCACCTCGTG
GGTAGGTATGTGTGGGGCACAGGCTGGCTCCCTCAGCTCCCACGTCTAGAGGGCTCCGA
GGAGGTGGAACCTCAACCCAGCTCTGCGCAGGAGGGCTGAGTCTTTCTCCCTCAAAG
GTCTCCGACCCCTCAGCTGGAGGGGGCATCTTCTAAAGGGTCCCCATAGGGTCTGGTTCC
ACCCCATCCCAGGTCTGTTCAAGGCCTGGGAGGGTCTCAGATGGTAGGGGTGCCCC
ATGGAGGGGCTACTGCCACATTGCCCTTCAGACAGGACACGAGCATGGTAAGGCCGC
CCTGACCTGGACTTCAGGGGAGGGGGTAAAGGGAGAGAGGGAGGGGGCTAGGGGGCTCT
AGATCAGTGGGGCACTGCAGGTGGGGCTCTCCCTATACTGGGACACCTGCTGGATGTAC
CTCTGCAACCACACCCATGTGGTGGTTTCACTGAACAGACACCAGCTCTGCCCTCT
CCTGGGACACACAGAGCCACCCGGCTGTGAGTGACCCAGAGAAGGGAGGCCTCGGGAGA
AGGGGTGCTGTAAGCCAACACCAGCGTGCAGGGCTGCACACCTTGGACATCCAGGC
ACGAGGGTGTGGATGTGCCACACA TAGGACCAACAGTCCCAGCTGGAGAGAGGGCT
GGGGCCCCCAGGGAGGGAGGCAGGGGGTGGGGACATGGAGAGCTGAGGCAGCCTCGTCTCC
CCGAGCCCTGGTATGCCAGCTTAAGGTGTCTGGAGCCCCACACTTGGCCAACCTGACCT
TGGAAGATGCTGCTGAGTCTCAAGCAGCACTGACAGCAGCTGGCCTGCCAGGGCAAC
GTGGGGGGGGAGACTCAGCTGGACAGCCCCCTGCCCTGCACTCTGGAGCTGGCTGCTGC
CTCAGGACCCCCCTCTCGACAGGGAGAGCTGAGCTGGCCAGGGCAGGAGGGGGAGG
GAGGGAAATGGGGTGGGTGCGGCAGCATCAGGCCCTGGGAGGTCCGCAGAGCTGCCGGGA
TGTGATTAAAGTCCCTGATGTTCTC

2/0 1270

FIGURE 208

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76399
><subunit 1 of 1, 157 aa, 1 stop
><MW: 17681, pI: 7.65, NX(S/T): 1
MALLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDIPVSGALLTDWSDDTMK
ELHLIAIPAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRNIFREQVHLIQNAIIER
HLAPGSWGGGQLSREGPSLAPEGSMPSPRGDLP

Signal peptide:
amino acids 1-15

211/270

FIGURE 209

AGCAGGAGCAGGAGAGGGACAATGGAAGCTGCCCGTCCAGGTTCATGTTCTCTTATTCT
CCTCACGTGTGAGCTGGCTGCAGAAGTTGCTGCAGAAGTTGAGAAATCCTCAGATGGTCTG
GTGCTGCCAGGAACCCACGTGGCTCACAGATGTCCAGCTGCCATGGAATTATTGCTGCC
ACTGAGGTGGCTGTCATAGGCTTCTTCAGGATTTAGAAATACCAGCAGTGCCAATCTCCA
TAGCATGGTGCAAAAATTCCCAGGCGTGTCAATTGGGATCAGCACTGATTCTGAGGTTCTGA
CACACTACAACATCACTGGGAACACCCTGCCTCTTCGCTGGTAGACAATGAACAACTG
AATTTAGAGGACGAAGACATTGAAAGCATTGATGCCACCAAATTGAGCCGTTTATTGAGAT
CAACAGCCTCCACATGGTGACAGACTACAACCCCTGTGACTGTGATTGGGTTATTCAACAGCG
TAATTCAAGATTCACTCCTCCTGATAATGAACAAAGCCCTCCCCAGACTATGAAGAGAACATG
CACAGATACCAGAAGGCAGCCAAGCTCTCAGGGGAAGATTCTTTTATTCTGGTGGACAG
TGGTATGAAAGAAAATGGGAAGGTGATATCATTTCAAACTAAAGGAGTCTCAACTGCCAG
CTTGGCAATTACCAAGACTCTAGATGAGGAGTGGGATAACTGCCACAGCAGAAGTTCC
GTAGAGCATGTGCAAAACTTTGTGATGGATTCTTAAGTGGAAAATTGTTGAAAGAAAATCG
TGAATCAGAAGGAAAGACTCCAAAGGTGGAACTCTGACTTCTCCTTGGAACTACATATGGCC
AAAGTATCTACTTTATGCAAAGTAAAAGGCACAACTCAAATCTCAGAGACACTAAACACAG
GATCACTAGGCCTGCCAACACACACACAGCACGTGCACACAGCACGCACCGTGCACAC
ACACACGCGCACACACACACACAGAGCTTCATTCTGTCTTAAATCTGTTTCTC
TTCTCCTTCTTTAAATTTCATATCCTCACTCCCTATCCAATTCTCTTATCGTCATT
CATACTCTGTAAGCCCCATCTGTAACACACACTAGATCAAGGTTAAAGAGACTCACTGTGATG
CCTCTATGAAAGAGAGGCATTCTAGAGAAAGATTGTTCCAATTGTCATTAAATATCAAGT
TTGTATACTGCACATGACTTACACACACATAGTTCTGCTCTTTAAGGTTACCTAAGGGT
TGAAAACTCTACCTTCTTCATAAGCACATGTCCTCTGACTCAGGATCAAAACCAAAGG
ATGGTTTAAACACCTTGTGAAATTGTCCTTGCAGAAGTTAAAGGCTGTCTCCAAGTC
CCTGAACTCAGCAGAAATAGACCATGTGAAAATCCATGCTTGGTTAGCATCTCCAACTCCC
TATGTAATCAACAAACCTGCATAATAAAAAGGCAATCATGTTATA

212/270

FIGURE 210

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76401
><subunit 1 of 1, 273 aa, 1 stop
><MW: 30480, pI: 4.60, NX(S/T): 1
MEAAPSRFMFLFLLTCELAAEVAEVEKSSDGPAAQEPWTLDVPAAMEFIAATEVAVIG
FFQDLEIPAVPILHSMVQKFPGVSGFISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDI
ESIDATKLSRFIEINSLHMVTEYNPVTIVIGLFNSVIQIHLLLIMNKASPEYEENMHRYQKAA
KLFQGKILFILVDGMKENGKVISFFKLKESQLPALAIYQTLDEWDTLPTAEVSVEHVQNF
CDGFLSGKLLKENRESEGKTPKVEL

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 143-162

213/270

FIGURE 211

GGAGAGCCCGCGCTGGGACCGGAGTGGGAGCGCGGCGTGGAGGTGCCACCCGGCGGGTG
GCGGAGAGATCAGAAGCCTTCCCAGCCAGCCAACCTCAGGGGACCCGGCTCAGG
GACCGGGCGGCGGCGGCAGCTGCAGTGGCTGGACGATGGCAGCGTCCGCGGAGCCGG
CCGGTATTGCAAGCCCCAGACAGCGCGCTGGCTGTGGTCGGTGTGGCGGCGCTTGG
GCTCTTGACAGCTGGAGTATCAGCCTTGAAGTATAACGCCAAAGAAATCTCGTGGCAA
ATGGTACACAAGGGAAGCTGACCTGCAAGTTCAAGTCTACTAGTACGACTGGCGGGTGACC
TCAGTCTCCTGGAGCTTCCAGCCAGGGGGCCGACACTACTGTGTCGTTTCCACTACTC
CCAAGGGCAAGTGTACCTGGGAATTATCCACCATTAAGACAGAACATCAGCTGGCTGGAG
ACCTTGACAAGAAAGATGCATCAATCAACATAGAAAATATGCAGTTTATACACATGGCACC
TATATCTGTGATGTCAAAACCCCTCCTGACATCGTTGTCAGCCTGGACACATTAGGCTCTA
TGTGCTAGAAAAAGAGAATTGCGCTGTGTTCCAGTTGGTAGTGGTGGGCATAGTTACTG
CTGTTGGCTAGGTCTCACTCTGCTCATCAGCATGATTCTGGCTGTCCCTATAGAAGGAAA
AACTCTAAACGGGATTACACTGGCTGCAGACATCAGAGAGTTGTCAACAGTTAAC
TCCTCGGAAGTCCCCCTCCGACACTGAGGGCTTGTAAAGAGTCTGCCTTCTGGATCTCAC
AGGGCCCAGTCATATATGCACAGTTAGGACACTCCGGCGGACATCACAGTGACAAGGATTAAC
AAGTCAGAGTCTGTGGTGTATCGGGATACTCGAAAGAATTAGAGAATACCTAGAACATATC
CTCAGCAAGAAACAAAACCAACTGGACTCTGCGAGAAATGTAGCCATTACACATGT
AGCCTTGGAGACCCAGGCAAGGACAAGTACACGTACTCACAGAGGGAGAGAAAGATGTGT
ACAAAGGATATGTATAAATATTCTATTAGTCATCTGATATGAGGGAGCCAGTGTGATGA
TGAAAAGATGGTATGATTCTACATATGTACCCATTGTCTTGTCTGTTTGTACTTTCTTTTC
AGGTCAATTACAATTGGGAGATTCAGAAACATTCCCTTCACCATCATTTAGAAATGGTTTG
CCTTAATGGAGACAATAGCAGATCTGTAGTATTTCACTGAGACATGCCCTTTAATCTAAG
GGCTTAAGACTGATTAGTCTTAGCATTACTGTAGTTGGAGGATGGAGATGCTATGATGGAA
GCATACCCAGGGTGGCCTTCTGACAGTACAGTACCTTATTGTCTGCCGCTTTAAAA
AATACCCATTGGCTATGCCACTTGAAAACAATTGAGAAGTTTTTGAAAGTTTTCTCACT
AAAATATGGGCAATTGTTAGCCTACATGTTGTAGACTTACTTTAAGTTGCACCCCTG
AAATGTGTCAATATCAATTCTGGATTCAAAATAGCAAGATTAGCAAAGGATAATGCCGAAG
GTCACTTCATTCTGGACACAGTTGGATCAAAACTGTGATTAAGTAGAAAATCCAAGCTTGCTT
GAGAACTTTGTAACGTGGAGAGTAAAAGTATCGGTTT

214/270

FIGURE 212

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76510
><subunit 1 of 1, 269 aa, 1 stop
><MW: 29082, pI: 9.02, NX(S/T): 3
MAASAGAGAVIAAPDSRRWLWSVLAAALGLTAGVSALEVYTPKEIFVANGTQGKLTCKFKS
TSTTGGLTSVWSFQPEGADTTVSFFHYSQGQVYLGNYPPFKDRISWAGDLDKKDASINIE
MQFIHNGTYICDVKNPPDIVVQPGHIRLYVVEKENLPVFPVVVGIVTAVVLGLTLLISM
LAVLYRRKNSKRDYTGCSTSESLSPVKQAPRKSPSDTEGLVKSLSHGPVYIYAQLDHSG
GHHSOKINKSESVVYADIRKN
```

Signal peptide:

amino acids 1-37

Transmembrane domain:

amino acids 161-183

215/270

FIGURE 213

GCCGGCTGTGAGAGACGCCATGTACCGGCTCCTGTCAAGCAGTGA
CCCCGGGGCTTGGCCTCAAGCTCGGACGACGCCGGGTCCATCAGCGCGCCGGCTGCCGCC
TCTCGGCCACGGCTGGGTGGGGCCTCGGGCTGGGTGGCGCTCGGGTGAAGC
TGGCAGGTGGCTGAGGGCGCCGGCCCCGGCGAGTC
TCGCCTCTGGCGAGCGCCACAGGAGCAGTC
GCCGCCTGCTCCAGGTGCTTCAGAGCCATCGAGAGCAGCCGACCTGCTGCACAGGA
TCAAGGATGAGGTGGGCCACCGGCATAGTGGTTGGAGTTCTGTAGATGGAAAAGAAGTC
TGGTCAGAAGGTTAGGTTAGCTGATGTTGAGAACCGTGTACCATGTAAACCAGAGACAGT
TATGCGAATTGCTAGCATCACCAAAAGTCTCACCATGGTGCTTGC
CAGGGAAACTGGATCTTGATATTCCAGTACAACATTATGTTCCGAATTCCCAGAAAAAGAA
TATGAAGGTGAAAAGGTTCTGTACAACAAGATTACTGATTCCCATTAAAGTGGATTG
TCATTATGAAAAGGACATAAAAGGTGAAAGAAGAGAAAGCTTAAAGCCTTGAAGATGA
TGAAAGAGAATGTTGCATTGAGCAAGAAAAAGAAGGCAAAAGTAATGAAAAGAATGATT
ACTAAATTAAAACAGAGCAGGAGAATGAAGCCAATGCCGAATTCAAACCTGGCAAGAA
AAAGAATGATTTGAACAAGCGAATTATATTGAGAGAAAAGTTGAAAATTCAATTGAAT
CCCTAACGATTATTTAAAATGATCCTTGTCTTCAACCTGGTAGTCAGTTTGATTCA
ACTTTGGCTATAACCTACTGGCAGCCATAGTAGAGAGAGCTTCAGGATGTA
CTATATGCAGAAAATATTCCATGACTGGATATGCTGACGACTGTGCAGGAAGAAAACGAGC
CAGTGATTTACAATAGAGCAAGGTAATGAATACTTCTGCTGTCTAGCTATATCGCATC
TTAACACTATTATTAAATTAAAAGTCAAATTTCATTGTTCCATTCAAATCAACCTGC
CACATTGGAGCTTCTACATGCTGTTCTCATCTGAAAGTGAAGGAAGTAAAACA
TGTTTATAAACTAAAAAA

FIGURE 214

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76522
><subunit 1 of 1, 373 aa, 1 stop
><MW: 41221, pI: 8.54, NX(S/T): 0
MYRLLSAVTARAAAAGGLASSCGRRGVHQAGLPPLGHGWVGGLGLGLALGVKLAGGLRG
AAPAQSPAAPDPEASPLAEPQEQSLAPWSPQTPAPPSCRCFARAIESSRDLHRIKDEVGA
PGIVVGVSVDGKEVWSEGLGYADVENRPCKPETVMRIASISKSITMVALAKIWEAGKLDLD
IPVQHYVPEFPEKEYEGEKVSVTTRLLISHLSGIRHYEKDIKKVKEEKAYKALKMMKENVAF
EQEGKSNNEKNDFTKFKTEQENEAKCRNSKPGKKNDFEQGELYLREKFENSIESLRLFKN
DPLFFKPGSQFLYSTFGYTLLAAIVERASGCKYLDYMQKIFHDLMTTVQEENEPVIYNRAR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 39-60

217/270

FIGURE 215

GTGACACTATAGAAGAGCTATGACGTCGATGCACCGTACGTAAGCTCGGAATTGGCTCG
AGGCTGGTGGAAAGAAGCCGAGATGGCGCAGCCAGCGCTGGGCAACCCGGCTGCTCCTGC
TCTTGCTGATGGCGGTAGCAGCGCCAGTCGAGCCCCGGGAGCGGCTGTGGCACGGTGGGCTGCT
GGTGCAGGAGGGCTGGGCGGAAGGTGAGAGGGCGAGGCCTGTGGCACGGTGGGCTGCT
GCTGGAGCACTCAATTGAGATCGATGACAGTCCAACCTCCGGAAAGCAGGGCTCACTGCTCT
GAAACCAGCAGGATGGTACCTTGTCCCTGTACAGCGGAGCTCAGCGAGGAGGAGCGGGC
CGACTCCGGATGTGGCAGCCCTGAATGGCCTGTACCGGGTCCGGATCCAAAGGCACCCGG
GGCCCTGGATGCCCTGGAAGCTGGTGGTATGTCTCCTCTTGTCCCTGCGTGCTCCCTGG
TGGAGTCGACCTGTCGGACCAGCTGACCCCTGCACGTGGATGTGCCGGAACGTGGTGGC
GTGTCGGTGGTACGCACCCGGGGCTGCCGGGCATGAGGTGGAGGACGTGGACCTGGA
GCTGTTAACACACTCGGTGCAGCTGCAGCCGCCACACAGCCCCAGGCCCTGAGACGGCG
CCTTCATTGAGCGCCTGGAGATGGAACAGGCCAGAAGCCAAGAACCCCAGGAGCAGAAC
TCCTTCTCGCAAATACTGGATGTACATCATTCCCGTCGTCCTGTTCTCATGATGTCAGG
AGCGCCAGACACCGGGGCCAGGGTGGGGTGGGGTGGTGGTGGGGTAGTGGCC
TTGCTGTGTGCCACCCCTCCTAAAGTCTATTAAAAACATCGACGATACTGAAATGTG
TGAACGTTTGAAAAGCTACAGCTTCCAGCAGCCAAAGCAACTGTTGTTGGCAAGACGG
TCCTGATGTACAAGCTTGTGATTGAAATTCACTGCTCACTGATACTGTTATTCA
GAATGGCTGTCCCCATCCTCATGTGGCTGTGGAGCTCAGCTGTGTTGTGGCAGTTAT
TAAACTGTCCCCAGATCGACACGCAAAAAAAAAA

FIGURE 216

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76529
><subunit 1 of 1, 269 aa, 1 stop
><MW: 28004, pI: 5.80, NX(S/T): 1
MAAASAGATRLLLLLMAVAAPSRARGSGCRA GTGARGAGAEGREGEACGTVGLLL EH SFEI
DDSANFRKRGSSLWNQQDGTLSQRQLSEEERGRLRDVAALNGLYRVRI PRRPGALDGLEA
GGYVSSFVPACSLVESHLSDQLTLHVDVAGNVVGVS VVTHPGGCRGHEVEDVDLELFNTSVQ
LQPPTTAPGPETAAFIERLEMEQAQKAKNPQEOKSF FAKYWMYII PVVLFLMM MSGAPDTGGQ
GGGGGGGGGGGGSGLCCVPPSL
```

Signal peptide:
amino acids 1-24

Transmembrane domain:
amino acids 226-243

FIGURE 217

GGAGCGCTGCTGGAACCCGAGCCGGAGCCACAGCGGGGAGGGTGGCCTGGCGGCCT
GGAGCCGGACGTGTCCGGGGGTCCCCGAGACCGGGGAGCAGGTCGTCCGGGGGCCACC
ATGCTGGTGACTGCCTACCTGCTTTGTAGGCCTCCGGCCTCTGCCTGGGCTGGAAC
GTCAAGATGCCGGCTAAACCCCTGGAAGGGCTGCAGCAATCCCTCCCTCGTTTC
AACTGGACTTCTATCAGGTCTACTTCCCTGGCCCTGGCAGCTGATTGGCTTCAGGCCCCCTAC
CTCTATAAACTCTACCAGCATTACTACTTCCCTGGAAGGTCAAATTGCCATCCTCTATGTCTG
TGGCCTTGCCTCTACAGTCTCTGGCCTAGTGGCCTCCCTCCCTGTGGATTGGCTGGTC
GCAAGAATTCTTGTGTCCCTCTCCCTGACTTACTCACTATGCTGCTTAACCAAACCTCT
CAAGACTACTTGTGCTGCTAGTGGGGCGAGCACTTGGTGGCTGTCACAGCCCTGCTCT
CTCAGCCTTCGAGGCCTGGTATATCCATGAGCACGTGGAACGGCATGACTTCCCTGCTGAGT
GGATCCCAGCTACCTTGCTCGAGCTGCCCTGGAACCATGTGCTGGCTGTAGTGGCAGGT
GTGGCAGCTGAGGCTGTAGGCAGCTGGATAGGGCTGGGCTGTAGGCCCTTGTGGCTGC
CATCCCTCTCCTGGCTCTGGCAGGGGCTTGGCCCTTCGAAACTGGGGGAGAACTATGACC
GGCAGCGTGCCTCTCAAGGACCTGTGCTGGAGGCCTGCGCTGCCCTGTCGGACGCCGC
GTGCTGCTGGCACCATAAGCTCTATTGAGAGTGTATCTTCATCTTGTCTTCC
CTGGACACCTGTGCTGGACCCACACGGGGCCCTCTGGCATTATCTTCTCCAGCTTCATGG
CAGCCAGCCTGCTGGCTTCCCTGTACCGTATGCCACCTCAAGAGGTACCCCTCAG
CCCATGCACCTGTGCTCCCTGCTGTGCTCATCGTGTCTCTCTCTCATGTTGACTTT
CTCTACCAGCCCAGGCCAGGAGAGTCCGGTGGAGTCCTCATAGCCTTCTACTTATTGAGT
TGGCTTGTGGATTATACTTCCACGATGAGCTTCCATGGAGAAAGGTATCCCTGAGACA
GAGCAGGCTGGTGTACTCAACTGGTCCGGTACCTCTGCACTCACTGGCTTAGGGCT
CCTTGTCCCTCATGACAGTGA~~C~~CGAAAAACAGGCACTCGGAAATATGTTGAGCATTGCTCTG
CTGTCATGGTGTGGCTCTGGCAGTGGTGGACTCTTCAACCGTGGTAAGGCATGATGCT
GAGCTGCGGGTACCTTACCTACTGAGGAGCCATGCCCCGTAGCTGTA**AACCCACTCCAG**
GACAAGATAGCTGGACAGACTCTGAATTCCAGCTATCCGGATTGTACAGATCTCTGT
GACTGACTTTGTGACTGTCTGTGGTTCTCCTGCCATTGCTTGTGTTGGAGGACATGA
TGGGGGTATGGACTGGAAAAGAAGGTGCCAAAAGTCCCTCTGTGTTACTCCCATTAGAAA
ATAAACACTTTAAATGATCAAAAAAAAAAA

FIGURE 218

MLVTAYLAFVGLLASCLGLELSRCRAKPPGRACSNPSFLRFQLDFYQVYFLALAADWLQAPY
LYKLYQHYYFLEGQIAILYVCGLASTVLFGLVASSLVWDWLGRKNSCVLFSLTYSLCCLTKLS
QDYFVLLVGRALGGLSTALLSAFEAWYIHEHVERHDFPAEWIPATFARAAFWNHVLAVVAG
VAAEAVASWIGLGPVAPFVAAIPLLALAGALALRNWGENYDRQRAFSRTCAGGLRCLLSDRR
VLLLGTIQALFESVIFIFVFLWTPVLDPHGAPLGIIIFSSFMAASLLGSSLYRIATSKRYHLQ
PMHLLSLAVLIVVFSLFMLTFSTSPGQESPVESFIAFLLIELACGLYFPSMSLRRKVIPE
EQAGVLNWFRVPLHSLACLGLLVLHDSDRKTGTRNMFSICSAVMVMALLAVVGLFTVVRHDA
ELRVPSPTEEPYAPEL

Signal peptide:
amino acids 1-18

Transmembrane domain:
amino acids 41-55, 75-94, 127-143, 191-213, 249-270, 278-299,
314-330, 343-359, 379-394, 410-430

221/270

FIGURE 219

GCGACGCGCGGGGGCGGCAGAGGAAACGCGGCCGGCCGGCCGGCCCTGGAGATG
GTCCCCGGCGCCGCGGGCTGGTGTCTCGTCTGGCTCCCCCGTGCCTGGCCCA
CGGCTTCCGTATCCATGATTATTGTACTTTCAAGTGCTGAGTCCTGGGACATTGATACA
TCTTCACAGCCACACCTGCCAAGGACTTTGGTGGTATCTTCACACAAGGTATGAGCAGATT
CACCTTGTCCCCGCTGAACCTCCAGAGGCCCTGCCGGGAACCTCAGCAACGGTTCTTCATCCA
GGACCAGATTGCTCTGGTGGAGAGGGGGCTGCTCTTCCTCTCCAAGACTCGGGTGGTCC
AGGAGCACGGGGGGGGGGGTGATCATCTCTGACAACGCAGTTGACAATGACAGCTTCTAC
GTGGAGATGATCCAGGACAGTACCCAGCGCACAGCTGACATCCCCGCCCTTCCTGCTCG
CCGAGACGGCTACATGATCCGCCCTCTGGAACAGCATGGGCTGCCATGGGCATCATTT
CCATCCCAGTCATGTCAACAGCATCCCCACCTTGAGCTGCTGCAACCGCCCTGGACCTTC
TGGTAGAAGAGTTGTCCCACATTCCAGCCATAAGTGACTCTGAGCTGGAAAGGGAAACCC
AGGAATTTGCTACTTGGAAATTGGAGATAGCATCTGGGACAAGTGGAGCCAGGTAGAGGA
AAAGGGTTTGGCGTTGCTAGGCTGAAAGGGAGCCACACCAACTGGCCTCCCTCCCCAGG
GCCCAAGGGTGTCTCATGCTACAAGAAGAGGCAAGAGACAGGCCCCAGGGCTTCTGGCTA
GAACCCGAAACAAAAGGAGCTGAAGGCAGGTGGCCTGAGAGGCCATCTGTGACCTGTACACT
CACCTGGCTCCAGCCTCCCCACCCAGGGCTCTGCACAGTGACCTTCACAGCAGTTGTTGG
AGTGGTTAAAGAGCTGGTGTGGGACTCAATAACCCCTCACTGACTTTAGCAATAAA
GCTTCTCATCAGGGTTGCAAAAAAAAAAAAAAA

FIGURE 220

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76532
><subunit 1 of 1, 188 aa, 1 stop
><MW: 21042, pI: 5.36, NX(S/T): 2
MVPGAAGWCCLVLWLPACVAAHGFRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRYEQ
IHLVPAEPPEACGELSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNADVNDNF
YVEMIQDSTQRTADIPALFLLGRDGYMIRRSLEQHGLPWAIISIPVNVTSIPTFELLQPPWTFW

Signal peptide:

amino acids 1-20

FIGURE 221

TCTGCCTCCACTGCTCTGTGCTGGATCATGGAACTTGCACTGCTGTGGGCTGGTGGTGA
TGGCTGGTGTGATTCCAATCCAGGGCGGGATCCTGAACCTGAACAAGATGGTCAAGCAAGTG
ACTGGGAAAATGCCCATCCTCTCCTACTGGCCCTACGGCTGTCACTGCGGACTAGGTGGCAG
AGGCCAACCAAAGATGCCACGGACTGGTGTGCCAGACCCATGACTGCTGCTATGACCACC
TGAAGACCCAGGGTGCAGCATCTACAAGGACAACAACAAAGCAGCATACTGTATGGAT
TTATCTCAACGCTATTGTTAATGGCTGTGTTAATGTGATCTATCTGGAAAATGAGGACTC
CGAATAAAAGCTATTACTAWTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA

FIGURE 222

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76538
><subunit 1 of 1, 116 aa, 1 stop
><MW: 12910, pI: 6.41, NX(S/T): 1
MELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPILSYWPYGCCHCGLGGRGQPKDATDW
CCQTHDCCYDHLKTQGCGIYKDNNKSSIHCMDLSQRYCLMAVFNVYIYLENDSE
```

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 1-24

N-glycosylation site.

amino acids 86-89

N-myristoylation sites.

amino acids 20-25, 45-50

Phospholipase A2 histidine active site.

amino acids 63-70

FIGURE 223

CTCGCTTCTCCCTGGATGGGGCCCAGGGGCCAGGAGAGTATAAAGGCATGTGGAG
GGTCCCCGACAACCAAGACGCCAGTCACAGCGAGAGCCCTGGGATGCACCGGCCAGAGG
CCATGCTGCTGCTCACGCTTGCCCTCTGGGGGCCACCTGGCAGGGAAAGATGTAT
GCCCTGGAGGGAGGCAAGTATTCAGCACCCTGAAGACTACGACCATGAAATCACAGGGCT
GCGGGTGTCTGTAGGTCTCTCCTGGTAAAAGTGTCCAGGTGAAACTTGGAGACTCCTGG
ACGTGAAAACTGGGAGCCTAGGTGGGAATACCCAGGAAGTCACCCCTGCAGCCAGGCAATAC
ATCACAAAAGTCTTGTGCCTTCCAAGCTTCCTCCGGGTATGGTCATGTACACCAGCAA
GGACCGCTATTCTATTTGGGAAAGCTTGTGGCCAGATCTCCTGCCTACCCAGCCAAG
AGGGGCAGGTGCTGGTGGCATCTATGCCAGTATCAACTCCTGGCATCAAGAGCATTGGC
TTTGAATGGAATTATCCACTAGAGGAGCCGACCCTGAGCCACCAGTTAACATC
AGCAAACTCACCGTGGTCGCTAGGGTGGGTATGGGCATCCGAGCTGAGGCCATCTGT
GTGGTGGTGGCTGATGGTACTGGAGTAACTGAGTCGGACGCTGAATCTGAATCCACCAATA
AATAAAGCTTCTGCAGAAAA

FIGURE 224

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76541
><subunit 1 of 1, 178 aa, 1 stop
><MW: 19600, pI: 5.89, NX(S/T): 1
MHRPEAMLLLTLALLGGPTWAGKMYGPGGGKYFSTTEDYDHEITGLRVSGLLLKVSVQVK
LGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLRGMVMYTSKDRYFYFGKLDGQISS
AYPSQEGQVLVGIYQQYQLLGIKSIGFEWNYPLEEPTTEPPVNLTYSANSPVGR
```

Signal peptide:
amino acids 1-22

FIGURE 225

GCTGAGCGTGTGCCGGTACGGGCTCCCTGCCCTGGGCTCCAACGCAGCTCTGTGGCT
 GAACTGGGTCTCATCACGGAACTGCTGGCTATGGAATACAGATGTGGCAGCTCAGGTAG
 CCCCCAATTGCTGGAAAGAACATCATGTTTCGATAAGAAGAAATTGTTAGGATCCAGTT
 TTTTTTTAACCGCCCCCTCCCCACCCCAAAAAACTGTAAGATGCAAAAACGTAATAT
 CCATGAAGATCCTATTACCTAGGAAGATTTGATCTTGCTGCGAATGCGGTGTTGGGATT
 TATTGTTCTGGAGTGTCTGCGTGGCTGGAAAGAACATGTTCCAAAATCGGTCCATCT
 CCCAAGGGGCTCAATTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCGAGCTG
 ACAGGGGCTGTCATGCAACTGGCCCTAAGCCAAGCAAAGACCTAAGGACGACCTTGAA
 CAATACAAGGATGGGTTCAATGTAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTT
 ATAGCCCCACTGTTACTGACAATGCTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTG
 TAGGTGTGAAGGCAAAATGGTATATTGTGAATCTCAGAAATTACAGGAGATAACCTCAAGTA
 TATCTGCTGGTTGCTTAGGTTGTCCTTCGCTATAACAGCCTTCAAAAACCTTAAGTATAAT
 CAATTAAAGGGCTCAACCAGCTCACCTGGCTATACCTTGACCATAAACCATATCAGCAATAT
 TGACGAAAATGCTTTAATGGAATACCGACTCAAGAGCTGATTCTTAGTTCAATAGAA
 TCTCCTATTTCTTAAACAATACCTCAGACCTGTGACAATTTACGGAACCTGGATCTGTCC
 TATAATCAGCTGCATTCTGGGATCTAACAGTTGGGCTTGCGGAAGCTGCTGAGTTT
 ACATTTACGGCTTAACCTCTGAGAACCATCCCTGTGCGAATATTCAAGACTGCCAAC
 TGGAACTTTGGACCTGGGATATAACCGGATCCGAAGTTAGCCAGGAATGCTTTGCTGGC
 ATGATCAGACTCAAAGAACCTCACCTGGAGCACAATCAATTTCAGCTCAACCTGGCCT
 TTTTCAAGGGTGGTCAGCCTCAGAACCTTACTGCACTGGAAATAAAATCAGTGTCAAG
 GACAGACCATGTCCTGGACCTGGAGCTCTAACAAAGGCTTGATTATCAGGCAATGAGATC
 GAAGCTTCAGTGGACCCAGTGTCTTCAGTGTGTCCTCGAATCTGCAGCGCTCAACCTGG
 TTCCAACAAGCTCACATTATTGGTCAAGAGATTGGATCTGGATATCCCTCAATGACA
 TCAGTCTTGCTGGGAATATGGGAATGCAAGAACATTTGCTCCCTGTAAACTGGCTG
 AAAAGTTTAAAGGTCTAAGGGAGAACAAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGG
 AGTAAATGTGATCGATGCAAGAACACTACAGCATCTGTGGCAAAGTACTACAGAGAGT
 TTGATCTGGCAGGGCTCTCCAAAGGGACGTTAAAGCCCAAGCTCCCCAGGCGAAGCAT
 GAGAGCAAACCCCCCTTGGGGGGACGGTGGGAGCAGACAGGCCCCCAGAGACCGATGC
 TGACGGCGAGCACATCTCTTCCATAAAATCATCGGGGAGCGGTGGCTTTCTGTCCG
 TGCTGTCATCTGCTGGTTATCTACCTGTGTCAGGAGGGTACCCCTGCGAGCATGAAGCAG
 CTGCAAGCAGCTCCCTCATGCGAAGGCACAGGAAAAGAACAGTCCCTAAAGCAAAT
 GACTCCCAGCACCCAGGAATTATGTAGATTATAACCCACCAACAGGAGACCAGCGAGA
 TGCTGTCATGGGACGGGACCCCTGCACCTATAACAAATGGGCTCCAGGGAGTGTGAGGTA
TGAACCATTGTGATAAAAAGAGCTTAAAGCTGGAAATAAGTGGCTTTATTGAAC
 TGCTGACTATCAAGGGAACCGCATGCCCTCCCTCCCTCTCCCTCATCTCAGTTGGGG
 CAAGATCCTTCTGTCCGTTTACTGCAATTATAACTGGTCAATTCTCATACATA
 ATCAACCCATTGAAATTAAACCAACATCAATGTGAAGCTGAACTCCGGTTAATATAA
 TACCTATTGTATAAGACCCATTACTGATTCCATTAAATGTCGCAATTGTTAAGATAAAACT
 TCTTCATAGGTAAAAAAAAAA

FIGURE 226

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77301
><subunit 1 of 1, 513 aa, 1 stop
><MW: 58266, pI: 9.84, NX(S/T): 4
MGFNVIRLLSGSAVALVIAPTVLTLSSAERGCPKGCRCEGKMYCESQKLQEIPSSISAG
CLGLSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYF
LNNTFRPVTLRNLDSYNQLHSLGSEQFRGLRKLLSLHRSNSLRТИPVRIFQDCRNLELL
DLGYNRIRSLARNVFGAMIRLKEHLHEHNQFSKLNLAFLPRLVSLQONLYLQWNKISVIGQTM
SWTWSSLQRDLDSGNEIEAFSGPSVFQCVPNLQRLNLDNSNKLFIGQEILDWSWISLNDisLA
GNIWECSRNICSLVNWLKSFKGLRENTIIICASPKELQGVNVIDAVKNYSICGKSTTERFDLA
RALPKPTFKPKLPRPKHESKPPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVI
LIVIYVSWKRYPASMKQLQQRSLMRRRKQQSLKQMTPSTQEFYVDYKPTNTETSEMLLN
GTGPCTYNKSGSRECEV
```

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

229/270

FIGURE 227

AGTTCTGAGAAAAGAAGGAAATAAACACAGGCACCAAACCACTATCCTAAGTTGACTGTCCCTT
TAAATATGTCAAGATCCAGACTTTCACTGTCACCTCAGCGATCTCAACGATAGGGATCTTG
TGGTTGCCGCTATTCCAGTTGGTGCTCTCGGACCTACCATGCGAAGAAGATGAAATGTGTGT
AAATTATAATGACCAACACCCCTAATGGCTGGTATATCTGGATCCTCCTGCTGCTGGTTTGG
TGGCAGCTCTCTGTGGAGCTGTGGTCTCTGCCCTCCAGTGCCTGGCTGAGGAGACCCGA
ATTGATTCTCACAGGGCACCATGGCAGTTTTGCTGGAGACTGGACTCTATTATGG
GACAGAAGCAGCTGTGAGTCCAATGTTGGAATTCACCTCAAACCTCAAACCCCTGACCTAT
ATCCTGTTCCATGGCCCTTAGGCTCCCCACCTCCATATGAAGAAATTGTA
AAAACAACTGATTAGGTGTGGATTATCAATTAAACTATTACGACATCTGTAATTCCA
AAACATCAAATTAGGAATAGTTATTCAGTTGGAAATGTCCAGAGATCTATTATATA
GTCTGAGGAAGGACAATTGACAAAAGAATGGATGTTGGAAAAATTGGTCATGGAGATG
TTTAAATAGTAAAGTAGCAGGCTTTGATGTGTCACTGCTGTATCATACTTTATGCTACAC
AACCAAATTAAATGCTTCCACTAGTATCCAAACAGGCAACAATTAGGTGCTGGAAAGTAGTT
TCCATCACATTAGGACTCCACTGCAGTATACAGCACACCATTCTGCTTAAACTCTTC
CTAGCATGGGTCCATAAAATTATTATAATTAAACATAGCCAAGCCGAGAATCCAACAT
GTCCAGAACAGAACAGAAAGATAGTATTGAATGAAGGTGAGGGGAGAGAGTAGGAAAAA
GAAAAGTTGGAGTTGAAGGGTAAAGGATAATGAAGAGGAAAAGAAAAGATTACAAGTCT
CAGCAAAACAAGAGGTTTATGCCCAACCTGAAGAGGAAGAAATTGTAGATAGAAGGTGA
AGGAGATTGCTGAAGATATAGAGCACATATAATGCCAACACGGGAGAAAAGAAAATTCCC
CTTTTACAGTAATGAATGTGGCCTCCATAGTCCATAGTGTGTTCTGGAGCCTAGGGCTTG
GCATTTATTGCAGCATCATGCTAAGAACCTCGGCATAGGTATCTGTTCCATGAGGACTGC
AGAAGTAGCAATGAGACATCTTCAAGTGGCATTGGCAGTGGCCATCAGCAGGGGACAGA
CAAAACATCCATCACAGATGACATATGATCTCAGCTGACAAATTGTTGAACAAAACAAT
AAACATCAATAGATATCTAAAAA

FIGURE 228

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77303
><subunit 1 of 1, 146 aa, 1 stop
><MW: 16116, pI: 4.99, NX(S/T): 0
MSRSRLFSVTSAISTIGILCLPLFQLVLSLPCEEDEMCVNNDQHPNGWYIWILLLVVA
ALLCGAVVLCLQCWLRRRIDSHRRTMAVFAVGDLDSIYGTEAAVSPPTVGIGHLQTQTPDLYP
VPAPCFGPLGSPPPYEEIVKTT
```

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 52-70

FIGURE 229

GAGCGGGAGTAAATCTCCACAAGCTGGGACAAACCTCGTCCCAACTCCCACCCACCGGCGT
 TTCTCCAGCTCGATCTGGAGGCTGCTTCGCCAGTGTGGGACGCAGCTGACGCCGTTATT
 GCTCTCGCTCGCTGCCCGGCTCAGAAGCTCCGTTGGCGGCCGACCGTGACGAGAACCC
 ACGGCCAGCTCAGTTCTCTACTTTGGAGAGAGAGAAAGTCAGATGCCCTTTAACT
 CCTCTTCAAAACTCATCTCCTGGGTACTGAGTTAATAGAGTGGATAACACCTTGCTGAAG
 ATGAAGAATATACAATATTGAGGATATTTTTCTTTTTCAAGTCTTGATTGTGGC
 TTACCTCAAGTTACCATTTCTCAGTCAGTCTGTTGTTGCTCTCAGAAATGTTTTA
 CAATCTCAAGAAAAATATGTCCCAGAAAATTGAGTTACTGTTGCTTGATTGGACTCATT
 TGGGATTGATGTTACTGCACTATACTTTCAACAAACCAAGACATCAAAGCAGTGTCAAGTT
 ACTGAGCAAATACTAGACTTAAGCAGAAAGATATGTTAAAGCTCTAGCAGAGGAAATAAGA
 ACACAGTGGATGTGAGAACGGTGTCTATGCCAGGATATGCCGATCTGAAAAGAACAAATT
 GCTGTCCTCTGGATGACATTTGCAAGCTGGTGAAGCTGGAGAACAAAGTTGACTATAT
 TGTTGTGAATGGCTCAGCAGCCAACACCAATGTTACTAGTGGGATTGGTCCAGTAA
 CCACAAATAAAAAGAACGAATGTCCTGGCAGTATCAGATAGCAGTTGAAATCACCTTGTC
 TGCTCCATCCACTGTGGATTATATCCTATGCCAGAAAAGCTTATAATTGCTGGCTTAGGAC
 AGAGCAACTTACAATAAAAGCTCTACACATTTCAGGAGTATGCTGGATTATGGAAC
 TCTAATTCTGTACATAAAATTAAAGTTATTTGTTGCTTCAAGGAACTGTTCAATG
 CTGTTACTATGTCCTTAAAGAGAATTTGGAACTTGGTTGATGTTGAAAGCAGATAGGTGAGT
 TTTGTTAAATCTTTGTTGAGATCAAGCTGAAATGAAACACTGAAAACATGGATTC
 ATTCTATAACACATTATTAAAGTATATAACACGTTTTGGACAAGTGAAGAATGTTAA
 TCATTCTGTCAATTGTTCTCAATAGATGTAACCTGTTAGACTACGGCTATTGAAAAATGTG
 CTTATTGTTACTATATTGTTATTCCAATTATGAGCAGAGAAAGGAAATAATGTTGAAA
 TAATGTTTGAATCATGACCCAAAGAATGTTAGTGTACTCCTTCAGAATAACTGA
 AGGTTAATTATTGTATATTAAAATTACACTTATAAGAGTATAATTGAAATGGGTAG
 CAGCCACTGTCCTTACCTATCGTAAACATTGGGCAATTAAACAGCATTAAAGTT
 GTAAACTCTAATCTTAACTTATTGAAAGATAAAAGATATTGTTATGAGAGTAACAATA
 AAGTATTCTGATTTTCACACATGAAATGTCATTAAAGTTAATCCTTGAGTGTCT
 ATGCTATCAGGAAAGCACATTATTCCATATTGGGTTAATTGCTTTATTATATTGGTC
 TAGGAGGAAGGGACTTTGGAGATGGAACCTTGAGGACTTTAGCCAGGTGTATAATAAA
 GGACTTTGTCGCTGATTAAATTGCTGGAAAGTGTAAACATTATATTATAAGAGTATC
 CTTTATGAAATTGTAACAGATGCATTAGATATTCAATTATATAATGGCCAC
 TTAAAATAAGAACATTAAATAAACTATGAAGATTGACTATCTTTCAGGAAAAAGCT
 GTATATGACAGGGACCTTAATCTGGGTAACTCTAGTATAAAACAAATTATACTTTAT
 TAAATTTCCCTGTTAGCAAATCTAATTGCCACATGGTGCCTATATTCTAGTATT
 CTCTATAGTAACTGCTTAAGTGCAGCTAGCTTAGATTAGACTATAGAATTAGATAT
 TGTTAGTGTGTCATTATAATATGCTACCACATGTTAGCAATAATTACAATATTAA
 TAAATATGTTGAAATATTGTTCATGAAAGACAGATTCCAAATCTCTCTTCTCTGTA
 CTGTCACCTTATGTTGAAAGAAATTAAATTATGCAATTGGCAGGT

232/270

FIGURE 230

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77648
><subunit 1 of 1, 140 aa, 1 stop.
><MW: 15668, pI: 10.14, NX(S/T): 5
MFFTISRKNMSQKLSLLLLVFGCLIWGLMLHYTFQQPRHQSSVKLREQILDLSKRYVKALAE
ENKNTVDVENGASMAGYADLKRTIAVLLDDILQRLVKLENKVDYIVVNGSAANTTNGTSGNL
VPVTTNKRTNVSGSIR
```

Important features of the protein:

Signal peptide:

amino acids 1-26

FIGURE 231

CGCGGGCCGGGCCGCGGGGTGAGCGTGCAGGCGGCTGTGGCGCAGGCTTCCAGCCCCCAC
CATGCGTGGCCCTGCTGCTGCTGGCCGTGAGTGGGGCCCAGACAACCGGCCATGCT
 TCCCCGGGTGCCAATGCGAGGTGGAGACCTTCGGCCCTTTGACAGCTTCAGCCTGACTCGG
 GTGGATTGTAGCGGCTGGGCCCACTCATGCCGTGCCATCCCTCTGGACACAGCCA
 CTTGGACCTGCTCCAAACCGGCTGGAGATGGTGAATGAGTCGGTGTGGGGGGCGGGCT
 ACACGAGCTGGCTGGCTGGATCTCAGCCACAACCTGCTCACCAGCATCTACCCACTGCC
 TTCTCCGCCCCCTGCTACCTGGAGTCGCTTGACCTCAGGCCAACATGGCCTGACAGCCCTGCC
 AGCCGAGAGCTTACCCAGCTCACCCCTGAGCGACGTGAACCTAGCCACAACCAGCTCGGG
 AGGTCTCAGTGTCTGCCTCAGCAGCACAGTCAGGGCCGGCACTACACGTGGACCTCTCC
 ACAACCTCATTCAACGGCTCTGTGCCCAACCCACGAGGGCCGCTGCCCTGCGGCCACCAT
 TCAGAGCCTGAAACCTGGCTGGAACCCGGCTCATGCCGTGCCAACCTCCGAGACTTGCCCC
 TGCCTACCTGAGCCTGGATGGAACCCCTAGCTGATTTGGTCCGGGTGCCCTGCGGGGG
 CTGGGAGGGCCCTAACACACTGTCTGGCCAGGCTGCCAGAGGCTCCCTGAGCTGGCGCCAG
 TGGCTTCGGTGAACCTGGCTGGAACCCCTGAGCTGGGCAACCCCAAGCTTAACCT
 GGGCAGGAGCTGAGGTGTTTCAAGGCTGAGCTCCCTGCAGGGACTGGACCTTCGGGCACC
 AACCTGGTGGCCCTGCTGAGGGCGTGTCTCCACCTCCGGCACTGAGAGCCTGGCGT
 GGGCAAGGATGTGGTGGCCGGCGCTGGTGGGGAGGGCACCTACCCCGGAGGGCTGGCT
 CCAGCCCCAAGGTGCCCCCTGCACTGGTAGACACCCGGAACTGTGCTGCCAGGGCCCCACC
ATCTTGAGCAAATGGTGGGCCAGGGCACATAACAGACTGCTGTCTGGCTGCCCTCAG
 GTCCCGAGTAACCTATGTCATGTGCAACACCAAGTGGGAGCCGCAGGCCATGTGGCA
 GCGTCACCACAGGAGTTGTGGGCTAGGAGAGGCTTGGACCTGGAGGCCACACCTAGGAGC
 AAAGTCTCACCCCTTGCTACGTTGCTCCCAAACCATGAGCAGAGGGACTTCGATGCCA
 AACCAAGACTGGGTCCCCCTGCTTCCCTCCACTTATCCCCCAAGTGCCCTCCCTCAT
 GCCTGGGCCGCTGACCCGAATGGCAGAGGGTGGGACCCCCCTGCTGCAGGGCAGA
 GTTCAGGTCACTGGCTGAGTGTCCCCGGCCATGGCCAGTCACTCAGGGCGAGTT
 TCTTTCTAACATAGCCCTTCTTGCCATGAGGCCATGAGGCCGCTTCATCCTTTCTAT
 TTCCCTAGAACCTTAATGGTAGAAGGAATTGCAAAGAACATCAAGTCCACCCCTCTCATGTGAC
 AGATGGGAAACTGAGGCCTTGAGAAGGAAAAGGCTAATCTAAGTCCCTGCGGGCAGTGGC
 ATGACTGGAGCACAGCCTCTGCCCTCCAGCCGGACCAATGCACTTCTGTCTCCCTA
 ATAAGCCCCACCCCTCCCCGCCTGGCTCCCTGCTGCCCTGCTGTTCCCCATTAGCACA
 GGAGTAGCAGCAGCAGGAAGGCAAGAGCCTCACAAAGTGGACTCTGGCCTCTGACCAGCT
 GTGGCGCATGGCTAAGTCACTGCTGCCCTCGGAGGCTCTGGAGCTTAGGGCAGATTGGTT
 CCAGCCTAGCCAGTTCTCACCTGGTGGGCTCCCCCAGCATCCAGACTGGAAACCTACC
 CATTTCCTGAGCATCTCTAGATGCTGCCCAAGGAGTTGCTGCAAGTCTGGAGCCTCA
 TCTGGCTGGGATCTCCAAGGGCCCTGGATTGAGCTGGCCACTGGCCCTGAGCACGACAGC
 CCTTCTTACCTCCCAGGAATGCCGTGAAAGGAGACAAGGCTGCCCCGACCCATGTCTATGC
 TCTACCCCAAGGGCAGCATCTCAGCTGGCAACCCCTGGCTTCTTAGTCTTCAATTAA
 TAAAAGTTGCTGCTTTTAACGGAGTGTCACTTCAACCCGCTCCCTACCCCTGCTGGC
 CGGGGATGGAGACATGTCAATTGAAAGCAGAAAAAGGTTGCAATTGTTCACTTTGTAAT
 ATTGTCTGGCCCTGTGTTGGGGAGCTGGCAGTCAGTGGCACATGGGCATC
 AGGGGCTGGCCCCACAGAGACCCACAGGGCACTGAGCTGCTGCTTCCCCACCTGCCAGC
 CCATCATCTAACCAGTCTGATTTAATAAAACACTATAAAAGGTTAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAA

234/270

FIGURE 232

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77652
><subunit 1 of 1, 353 aa, 1 stop
><MW: 37847, pI: 6.80, NX(S/T): 2
MPWPLLLLAVSGAQTTRPCFPGCQCEVETFGLFDSFSLTRVDCSGLGPIMPVPIPLDTAH
LDLSSNRLEMVNESVLAGPGYTTLAGLDLSHNLLTSISPTAFSRLRYLESLDLSHNGLTALP
AESFTSSPLSDVNLSHNQLREVSVSAFTTHSQGRALHVDSLHNLIHRLVPHPTRAGLPAPTI
QSLNLAWNRLHAVPNLRDPLRLYLSLDGNPLAVIGPGAFAGLGGLTHLSSLASLQRLPELAPS
GFRELPGLQVLDLSGNPKLNWAGAEVFSGLSSLQELDLSGTNLVPLPEALLLHLPALQSVSV
GQDVRCRRLVREGTYPRRGSSPKVPLHCVDTRESAARGPTIL
```

Signal peptide:
amino acids 1-16

Transmembrane domains:
amino acids 215-232, 287-304

235/270

FIGURE 233

GATGGCGCAGCCACAGCTCTGTGAGATTGATTTCTCCCAGTTCCCTGTGGGTCTGAGG
GCACCAGAAGGGTGAGCTACGTTGGCTTCTGGAAGGGGAGGCTATATGCGTCAATTCCCCA
AAACAAGTTTGACATTCCCCTGAAATGTCAATTCTCATCTATTCACTGCAAGTGCCTGCT
GTTCCAGGCCCTACCTGCTGGCACTAACGGCGGAGCCAGGATGGGACAGAATAAAGGAGC
CACGACCTGTGCCACCAACTCGCACTCAGACTCTGAACCTCAGACCTGAAATCTCTTCAC
GGGAGGCTTGGCAGTTTCTTACTCCTGTTCTCCAGATTCAAGGCTAAGATGAAAGCC
TCTAGTCTGCCTTCAGCCTCTCTGCTGCGTTTATCTCTATGGACTCCTTCCACTGG
ACTGAAGACACTCAATTGGAGCTGTGATGCCAACAAACCTCAGGAAATACGAAATG
GATTTCTGAGATACTGGGCAGTGTGCAAGCCAAAGATGAAACATTGACATCAGAATCTTA
AGGAGGACTGAGTCTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCCTGCCATT
GCTAAGACTCTATCTGGAACGGGTATTAAAAACTACCAGACCCCTGACCATTATACTCTCC
GGAAGATCAGCAGCCTGCCAATTCTTCTTACCATCAAGAAGGACCTCCGGCTCTCTCAT
GCCACATGACATGCCATTGTGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCA
CTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGCTTGGGAACTAGACATTCTC
TGCAATGGATGGAGGAGACAGAATAGGAGGAAAGTGATGCTGCTGCTAAGAATATTGAGGT
CAAGAGCTCCAGTCTCAATACCTGCAGAGGAGGATGACCCCAAACCACCATCTCTTACT
GTACTAGTCTTGTGCTGGTACAGTGATCTTATTATGCAATTACTGCTTCTTGATGAT
TGTCTTATGCATCCCCATCTTATTGAGACCATACTTGATGCTAAGATTTTGCTATTAAATGTATT
TCTGCTATTGGATATATTATTAGTTAATATATTATTATTGCTATTAAATGTATT
ATTTTTTACTTGGACATGAAACTTTAAAAAAATTCAACAGATTATTTATAACCTGACTAG
AGCAGGTGATGTTATTGATTTTACAGTAAAAAAAAACCTGTAAATTCTAGAAGAGTGGCT
AGGGGGTTATTCAACTAAGGACATATTACTCATGCTGATGCTGTGAGA
TATTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTGATGTGGAATT
GCACATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCATAATTGTGTAT
CTTCCAGGCCAGGAATCCTACACGGCCAGCATGTATTCTACAAATAAAGTTTCTTGCATA
CCAAAAAA

FIGURE 234

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83500
><subunit 1 of 1, 261 aa, 1 stop
><MW: 29667, pI: 8.76, NX(S/T): 0
MRQFPKTSFDISPEMSFSIYSLQVPAVGLTCWALTAEPGWGQNKGATTCAATNSHSDSELRP
EIFSSREAWQFFLLLWSPDFRPKMASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNL
QEIRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRAFKNYQTP
DHYTLRKISSLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALG
ELDILLQWMEETE
```

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites.
amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 235

CCGTTATCGTCTTGCCTACTGCTGAATGTCCGTCGGAGGAGGAGGAGGCTTTGCCG
CTGACCCAGAGATGGCCCCGAGCGAGCAAATTCTACTGTCCGGCTGCGCGCTACCGTGGC
CGAGCTAGCAACCTTCCCTGGATCTCACAAAACCTGACTCCAATGCAAGGAGAACAG
CTCTTGCTCGTTGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGAAATGGTGCAC
GCCCTAGGGATCATTGAAGAGGAAGGCTTCTAAAGCTTGGCAAGGAGTGACACCCGCCAT
TTACAGACACGTAGTGTATTCTGGAGGTCGAATGGTCACATATGAACATCTCGAGAGGTTG
TGTGGCAAAGTGAAGATGAGCATTATCCCCTTGGAAATCAGTCATTGGAGGGATGATG
GCTGGTGTATTGGCAGTTTAGCCAATCCAACGTGACCTAGTGAAGGTTAGATGCAAAT
GGAAGGAAAAGGAAACTGGAAGGAAACCATTGCGATTCGTGGTGTACATCATGCATTG
CAAAATCTTAGCTGAAGGAGGAATACGAGGGCTTGGGCAGGCTGGTACCCAATATAACAA
AGAGCAGCACTGGTGAATATGGAGATTAAACCACCTATGATACTGAAACACTACTTGGT
ATTGAATACACCACTTGAGGACAATATCATGACTCACGGTTATCAAGTTATGTTCTGGAC
TGGTAGCTTCTATTCTGGAAACACCAGCGATGTCATCAAAGCAGAATAATGAATCAACCA
CGAGATAAACAGGAAGGGACTTTGTATAAATCATGACTGACTGCTGATTAGGCTGT
TCAAGGTGAAGGATTATGAGTCTATATAAGGCTTTTACCATCTTGGCTGAGAATGACCC
CTTGGTCAATGGTGTCTGGCTTACTTATGAAAAAATCAGAGAGATGAGTGGAGTCAGTCCA
TTTTAA

FIGURE 236

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77568  
><subunit 1 of 1, 323 aa, 1 stop  
><MW: 36064, pI: 9.33, NX(S/T): 1  
MSVPEEEEERILLPLTQRWPRAASKFLLSGCAATVAELATFPLDLTKTRLQMGEAALARLGDGA  
RESAPYRGMVRTALGIIEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEH  
YPLWKSVIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGI  
RGLWAGWVPNIQRAALVNMGDLTTYDTVKHYLVNLNTPLEDNIMTHGLSSLCSGLVASILGTP  
ADVIKSRI MNQPRDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLTYEKIREMSGVSPF
```

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 237

CGGACGCGTGGCGCGGGACGCCGGCAGGGTGTGGCGCAGCAGTCCTCCCTGCAGCGCG
GCCTGAAGTCGGCGTGGCGTTGAGGAAGCTGGATAACAGCATTAATGAAAAATTATGC
TTAAGAAGTAAAATGGCAGGCTTCCTAGATAATTTCTGTTGCCAGAATGTGAATGTATTG
ACTGGACTGAGAGAAGAAATGCTGTGGCATCTGTTGCGCAGGTATATTGTTTTACAGGC
TGGTGGATAATGATTGATGCAGCTGTTGTATCCAAGCCAGAACAGTGAACCAGCCTT
TCACACATGTTGTATTTCCACATTGGCTTCTCATGATAATGCTGTATCCAATGTC
AGGTGAGAGGTGATAGCTATGAAAGCGGCTGTTAGGAAGAACAGGTGCTCGAGTTGGCTT
TTCATTGGTTTCATGTTGATGTTGGGTCACTTATTGCTTCCATGTTGATTCTTTGGTGC
ATATGTTACCCAAAATCTGATGTTATCCGGGACTAGCTGTGTTTTCAAAATGCACTTA
TATTTTTAGCACTCTGATCTACAAATTGGAAGAACCGAACAGACTATGGACCTGAGATCAC
TTCTTAAGTCACATTTCTTTGTTATATTCTGTTGAGATAGGTTTTATCTCTCACT
ACACATTGCCAAATGGAGTAGATTGATCTACATTAAATGTTTGTTCATTGCAAGACTGTTAATATGTA
TGAGTTTGAAATAGTTTATGAAATTCTTTATTTTCAATTGCAAGACTGTTAATATGTA
TATAATACAAGACTATATGAAATTGGATAATGAGTATCAGTTTTTATTCTGAGATTAGAA
CTTGATCTACTCCCTGAGCCAGGGTACATCATCTGTCATTAGAAGTAACCACTCTGT
CTCTCTGGCTGGGCACGGTGGCTATGCCGTAAATCCCAGCAGCTGGGAGGCCAGGG
CCGATTGCTTGAGGTCAAGTGTGAGACCGCCTGGCCAACATGGCAGACCCATCTACT
AAAAATACAAAATTAGCCAGGCATGGTGGTGGTGCCTGTAATCCCAGCTACCTGGGAGGC
TGAGGCAGGAGAATGCTGAAACCCGGGGGCAGAGGTTGAGCTGAGCTGAGTTGCGCCAC
TGCACCTAGCCTGGGGAGAAAGTGAACACTCCCTCTCAAAAAAAAGACCACTCTCAGTATC
TCTGATTTCTGAAGATGTACAAAAAAATAGCTTCATATATCTGGAATGAGCACTGAGCCA
AAAAAGGTTTCAGCAAGTTGTAATTGAAAGAAGTGTACTTTATATAATGATTTTAAATGCC
AAAAATTTGTTCTTATGTATTGAAAGAAGTGTACTTTATATAATGATTTTAAATGCC
AAAGGACTAGTTGAAAGCTTCTTTAAAAAGAATTCCCTTAATATGACTTTATGTGAGAA

240/270

FIGURE 238

MAGFLDNFRWPECECIDWSERRNAVASVVAGILFFTGWWIMIDAAVVYPKPEQLNHAFHTCG
VFSTL AFFMINAVSNAQVRGDSYESGCLGRTGARVWLFIGFMLMFGSLIASMWILFGAYVTQ
NTDVYPGLAVFFQNALIFFSTLIYKFGRTEELWT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 23-42 (type II), 60-80, 97-117, 128-148

241/270

FIGURE 239

GTGATGGCAAACCTCCTCAAAGGAGGGCAGAGCCTGCGCAGGGCAGGAGCAGCTGGCCA
CTGGCGGCCCGAACACTCCGTCTCACCCCTGGGCCACTGCATCTAGAGGAGGGCCGTCT
GTGAGGCCACTACCCCTCAGCAACTGGGAGGTGGACTGTCAGAAGCTGGCCAGGGTGGT
GGTCAGCTGGGTAGGGACCTACGGCACCTGCTGGACCACCTCGCCTCTCCATCGAAGCAG
GGAAGTGGGAGCCTCGAGCCCTCGGTGGAAGCTGACCCCAAGCCACCCCTCACCTGGACAG
GATGAGAGTGTCAAGGTGTCTCGCTCCCTGGCCCTCATCTTGCCATAGTCACGACATGGA
TGTGTTATTGAAGCTACATGAGCTTCAGCATGAAAACCATCCGCTGCCACGCTGGCTGGCA
GCCTCGCCACCAAGGAGATCCAGGTTAAAAAGTACAAGTGTGGCTCATCAAGCCCTGCC
AGCCAACTAACCTGGCTTAAAATCTGCACTGGGCCACGCTGTGGCCACTATGTT
GCTTGAAGACCGCATGATCATGAGTCTGTGAAAAAACAAATGTGGCAGAGCCCTAAACATC
GCCCTGGTGAATGGAACCACGGAGCTGTGCTGGACAGAAGGACATTGACATGACTCTGG
AGATGTTATGACCTAGTGAAATTCTTAAAGAAATTCCGGGGGTGCACTGGTGTGGTGG
CCTCCTACGACGATCCAGGGACAAATGAACGATGAAAGCAGGAAACTCTCTGACTTG
GGGAGTTCTACGCAAAACAACTGGCTTCCGGACAGCTGGTCTTCATAGGAGCCAAAGA
CCTCAGGGTAAAAGCCCCCTTGAGCAGTTCTAAAGAACAGCCCAGACACAAACAAATACG
AGGGATGGCCAGAGCTGCTGGAGATGGAGGGCTGCATGCCCGAAGCCATTAGGGTGGC
TGTGGCTCTCCTCAGCCAGGGCCTGAAGAAGCTCCTGCCTGACTTAGGAGTCAGAGCCCG
GCAGGGCTGAGGAGGAGCAGGGGTGCTGCGTGGAGGTGCTGCAGGTCTGCACGC
TGTGTCGCGCCTCTCCTCGGAAACAGAACCCCTCCACAGCACATCCTACCCGGAAAGACC
AGCCTCAGAGGGTCTTCTGGAACCAAGCTGTCTGGAGAGAAATGGGTGCTTCGTCAAGG
ACTGCTGACGGCTGGTCTGAGGAAGGACAAACTGCCAGACTTGAGCCAAATTAAATTAA
TTTTGCTGGTTTGAAAAAAAAAAAAAAAAAAAAAA

FIGURE 240

```
</usr/seqdb2/sst/DNA/Dnaseqs.minc/ss.DNA59814
<subunit 1 of 1, 224 aa, 1 stop
<MW: 24963, pI: 9.64, NX(S/T): 1
MRVSGVLRLALIFAIVTWMMFIRSYMSFSMKTIRLPRWLAASPTKEIQVKKYKCGLIKPCP
ANYFAFKICSGAANVVGPTMCFEDRMIMSPVKNNVGRGLNIALVNGTTGAVLGQKAFDMYSG
DVMHLVKFLKEIPGGALVLVASYDDPGTKMNDESRKLFSDLGSYYAKQLGFRDSWVFIGAKD
LRGKSPFEQFLKNSPDTNKYEGWPELLEMEGCMPPKPF
```

Important features:

Signal peptide:

amino acids 1-15

ATP/GTP-binding site motif A (P-loop).
amino acids 184-191

N-glycosylation site.
amino acids 107-110

FIGURE 241

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGAGCAAGAGAGATTGTCCCTGGGAT
CCAGAAACCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACA
GCAAGAGAACAGAGATAAATACACTCACGCCAGGAGCTCGCTCGCTCTCTCTCTCTC
TCACTCCCTCCCTCCCTCTCTCTGCTGCTAGTCCTAGTCCTCAAATTCCCAGTCCC
CTGCACCCCTCCCTGGGACACTATGTTGTTCTCCGCCCTCTGCTGGAGGTGATTGGATCC
TGGCTGCAGATGGGGTCAACACTGGACGTATGAGGGCCACATGGTCAGGACCAATTGCCA
GCCCTTACCCCTGAGTGTGAAACAATGCCAGTCGCCATCGATATTCAAGACAGACAGTGT
GACATTTGACCCCTGATTGCTCTGCTGAGCCCCACGGATATGACCAGCCTGGACCGAGC
CTTGGACCTGCACAACAATGGCCACACAGTCAACTCTCTGCCCTCACCCCTGATCTG
GGTGGACTTCCCCGAAAATATGTAAGTGCCTCCACCTGCACTGGGTCAAGAAAGGATC
CCCAGGGGGTCAGAACACCAAGATCAACAGTGAAGGCCACATTGCAAGAGCTCCACATTGTAC
ATTATGACTCTGATTCTATGACAGCTGAGTGAGGCTGCTGAGAGGCTCAGGGCCTGGCT
GTCCCTGGGCATCCTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACATTCTGAG
TCACCTTGCACTGAAGTCAGGCATAAAGATCAGAACACTCAGTGCCCTCCCTCACCTAACAGAG
AGCTGCTCCCCAACAGCTGGGCAGTACTTCCGCTACAATGGCTCGCTCACAACTCCCCCT
TGCTACCAGAGTGTGCTCTGGACAGTTTTTATAGAAGGTCCAGATTCAATGGAACAGCT
GGAAAAGCTTCAGGGGACATTGTTCCACAGAAGAGGAGCCCTTAAGCTTCTGGTACAGA
ACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGCTTGTCTTCAAGCAGGA
TCCTCGTATACCACAGGTGAAATGCTGAGTCTAGGTGAGGAATCTGGTTGGCTGTCTG
CCTTCTCCTGGCTGTTATTCATTGCTAGAAAGATTGGAAGAAGAGGCTGGAAAACCGAA
AGAGTGTGGTCTTCACCTCAGCACAAAGCCACGACTGAGGCATAAATTCTCTCAGATAACCA
TGGATGTGGATGACTTCCCTCATGCCTATCAGGAAGCCTCTAAATGGGTGAGGATCTG
GCCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCCTGGACATCTCTTAGAGAG
GAATGGACCCAGGCTGTCATTCCAGGAAGAAACTGCAGAGCCTTCAGCCTCTCAAACATGTA
GGAGGAAATGAGGAATCGCTGTTGTAATGCAGAGANCAAACCTGTTAGTTGAGGG
GAAGTTGGATATACCCCAAAGTCCTACCCCCCTACTTTATGCCCTTCCCTAGATA
TACTGCAGGGATCTCTCTTAGGATAAAAGAGTTGCTGTTGAAGTTGATATTTTGTCAATA
TATTTGGAAATTAAAGTTCTGACTTT

244 / 276

FIGURE 242

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62812
><subunit 1 of 1, 337 aa, 1 stop
><MW: 37668, pI: 6.27, NX(S/T): 1
MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYP ECGNNAQSPIDIQTDSVTFPDLP
ALQPHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPCGSEHQ
INSEATFAELHIVHYDSDSYDSLSEAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRH
KDQKTSVPPFNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTFYRRSQISM EQLEKLQGTL
FSTEEEPSKLLVQNYRALQPLNQRMVFASF IQAGSSYT GEMLSLGVGILVGCLCLLLAVYF
IARKIRKKRLENRKSVVFTSAQATTEA
```

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 243

AATTTTCAACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTGCCTC
GTGGACCCAAAGGTAGCAATCTGAAACATGAGGAGTACGATTCTACTGTTTGTCTTAGG
ATCAACTCGGTCAATTACCAACAGCTAAACCTGCTTGGACTCCCTCCCACAAAACTGGCTC
CGGATCAGGGAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTCCTTAAAGTCTG
ATACCATTAAACACAGATGTCACACTGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGG
AATGACACCTGGTACCCAGACCCACCCATTGACCTGGAGGGTGAATGTACAACAGCAAC
TGCACCCACATGTGTTACCAATTTCGTACACAACTGGAGCCAGGGCACTATCCTAAGC
TCAGAGGAATTGCCACAAATCTCACCGAGCCTCATCATCCATTCTGTTCCGGGAGGCAT
CCTGCCACCAAGTCAGGCAGGGCTAATCCAGATGTCAGGATGGAAGCCTCCAGCAGGAG
GAGCAGGTGTAATCCTGCCACCCAGGGAACCCAGCAGGCCGCTCCAACTCCCAGTGGC
ACAGATGACGACTTGCAGTGACCACCCCTGCAGGCATCCAAGGAGCACACATGCCATCGA
GGAAGCCACACAGAATCAGCAAATGAATTCAAGGCTGTTCAAATTTCAACTAAG
CTGCCTCGAATTGGTGTACATGTGAATCTTATCATTGATTATATTGAAATAGATTGA
GACACATTGGATAGTCTAGAAGAAATTAAATTCTTAATTACCTGAAAATATTCTGAAATT
TCAGAAAATATGTTATGTAGAGAATCCAACTTTAAAAACAAATAATTCAATGGATAAAAT
CTGTCTTGAAATATAACATTATGCTGCCTGGATGATATGCATATTAAAACATATTGGAAA
ACTGGAA
AAAAAAAAAAAAAAAAAAAAAA

FIGURE 244

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSL~~S~~LIPLTQM
LTLGPD~~L~~HLLNPAAGMTPGTQTHPLTLGGLNVQQQLH~~P~~HVLPIFVTQLGAQGT~~I~~LSSEE
LPQI~~F~~TSLIIHSLFP~~G~~GILPTSQAGANPDVQDGSLPAGGAGVNPA~~T~~QGTPAGRLPTPSG
TDDDFAVTT~~P~~AGIQRSTHAIEEATTE~~S~~ANGIQ

Signal peptide:

amino acids 1-16

247/270

FIGURE 245

GGAGAGAGGCGCGCGGGTGAAGGCAGTGATGCAGCCTGCGCGGCCTCGAGCGCGCG
GAGCCAGACGCTGACCACGTTCCCTCCTCGGTCTCCGCCCTCCAGCTCCGCGCTGCCCG
GCAGCCGGAGCCATGCGACCCCAGGGCCCGCCGCTCCCCGAGCGGCTCGCGGCCCTCC
TGCTGCTCCTGCTGCTGCAGCTGCCCGCCGTCAGCGCCTCTGAGATCCCCAAGGGAAAG
CAAAAGGCGCAGCTCCGGCAGAGGGAGGTGGACCTGTATAATGGAATGTGCTTACAAGG
GCCAGCAGGAGTGCCTGGTCAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTG
GGATCCCAGGTGGGATGGATTCAAAGGAGAAAAGGGGAATGTCAGGGAAAGCTTGAG
GAGTCCTGGACACCCAACTACAAGCAGTGTTCATGGAGTTCAATTGAAATTAGCATAGATCT
TGGAAAATTGGAGGTGATTTACAAAGATGGCTCAAATAGTGCTCTAACAGTTTGT
TCAGTGGCTCACTTCGGCTAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTACATTC
AATGGAGCTGAATGTTAGGACCTCTCCATTGAAGCTATAATTATTGGACCAAGGAAG
CCCTGAAATGAATTCAACAATTAAATTCATCGCACTCTCTGTGGAAGGACTTGTGAAG
GAATTGGTGTGGATTAGTGGATGTTGCTATCTGGGTGGCACTTGTTCAGATTACCCAAAA
GGAGATGCTTCACTGGATGGAATTCAAGTTCTGCATCATTATTGAAGAACTACCCAAAATA
AATGCTTAATTTCATTGCTACCTTTTTATTATGCCTGGAAATGGTCACTTAAAT
GACATTAAATAAGTTATGTATACTGAATGAAAGCAAAGCTAAATATGTTACAGA
CCAAAGTGTGATTCACACTGTTTAAATCTAGCATTATTGCTTCATCAACCTA
GGTTTCAATATTTTTAGTTGGTTAGAATACTTCTTCATAGTCACATTCTCAACCTA
TAATTGGAAATTGTTGTGGCTTTGTTCTTAGTATAGCATTAAAAAAATA
TAAAAGCTACCAATCTTGACAATTGTAAGAATTTTTTATATCTGTTAAAT
AAAAATTATTCCAACA

FIGURE 246

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393
><subunit 1 of 1, 243 aa, 1 stop
><MW: 26266, pI: 8.43, NX(S/T): 1
MRPQGPAAASPQRRLRGLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV
PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA
ECTFTKMRNSNALRVLFSGLSLRKCRNACCQRWYFTFNGAECGPLPIEAIYLDQGSPEMN
STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIIEELPK
```

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

2491270

FIGURE 247A

PRO	XXXXXXXXXXXXXXXXXX	(Length = 15 amino acids)
Comparison Protein	XXXXXYYYYYYY	(Length = 12 amino acids)

% amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) =

5 divided by 15 = 33.3%

FIGURE 247B

PRO	XXXXXXXXXX	(Length = 10 amino acids)
Comparison Protein	XXXXXXXXYYYYYYZZYZ	(Length = 15 amino acids)

% amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) =

5 divided by 10 = 50%

251/270

FIGURE 247C

PRO-DNA NNNNNNNNNNNNNNN (Length = 14 nucleotides)
Comparison DNA NNNNNNNLLL LLLL LLL (Length = 16 nucleotides)

% nucleic acid sequence identity =

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) =

6 divided by 14 = 42.9%

252/270

FIGURE 247D

PRO-DNA

NNNNNNNNNNNNN

(Length = 12 nucleotides)

Comparison DNA

NNNNLLLVV

(Length = 9 nucleotides)

% nucleic acid sequence identity =

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) =

4 divided by 12 = 33.3%

FIGURE 248A

254/270

FIGURE 248B

```

/*
 */
#include <stdio.h>
#include <ctype.h>

#define MAXJMP 16 /* max jumps in a diag */
#define MAXGAP 24 /* don't continue to penalize gaps larger than this */
#define J MPS 1024 /* max jmps in a path */
#define MX 4 /* save if there's at least MX-1 bases since last jmp */

#define DMAT 3 /* value of matching bases */
#define DMIS 0 /* penalty for mismatched bases */
#define DINS0 8 /* penalty for a gap */
#define DINS1 1 /* penalty per base */
#define PINS0 8 /* penalty for a gap */
#define PINS1 4 /* penalty per residue */

struct jmp {
    short n[MAXJMP]; /* size of jmp (neg for delay) */
    unsigned short x[MAXJMP]; /* base no. of jmp in seq x */
};

struct diag {
    int score; /* score at last jmp */
    long offset; /* offset of prev block */
    short ijmp; /* current jmp index */
    struct jmp jp; /* list of jmps */
};

struct path {
    int spc; /* number of leading spaces */
    short n[J MPS]; /* size of jmp (gap) */
    int x[J MPS]; /* loc of jmp (last elem before gap) */
};

char *ofile; /* output file name */
char *name[2]; /* seq names: getseqs() */
char *prog; /* prog name for err msgs */
char *seqs[2]; /* seqs: getseqs() */
int dmax; /* best diag: nw() */
int dmax0; /* final diag */
int dna; /* set if dna: main() */
int endgaps; /* set if penalizing end gaps */
int gapx, gapy; /* total gaps in seqs */
int len0, len1; /* seq lens */
int ngapx, ngapy; /* total size of gaps */
int smax; /* max score: nw() */
int *xbm; /* bitmap for matching */
long offset; /* current offset in jmp file */
struct diag *dx; /* holds diagonals */
struct path pp[2]; /* holds path for seqs */

char *calloc(), *malloc(), *index0, *strcpy();
char *getseqs(), *g_malloc();

```

255/270

FIGURE 248C

```

/* Needleman-Wunsch alignment program
 *
 * usage: progs file1 file2
 * where file1 and file2 are two dna or two protein sequences.
 * The sequences can be in upper- or lower-case and may contain ambiguity
 * Any lines beginning with ';' or '>' or '<' are ignored
 * Max file length is 65535 (limited by unsigned short x in the jmp struct)
 * A sequence with 1/3 or more of its elements ACGTU is assumed to be DNA
 * Output is in the file "align.out"
 *
 * The program may create a tmp file in /tmp to hold info about traceback.
 * Original version developed under BSD 4.3 on a vax 8650
 */
#include "nw.h"
#include "day.h"

static _dbval[26] = {
    1,14,2,13,0,0,4,11,0,0,12,0,3,15,0,0,0,5,6,8,8,7,9,0,10,0
};

static _pbval[26] = {
    1, 2|(1 < < ('D'-'A'))|(1 < < ('N'-'A')), 4, 8, 16, 32, 64,
    128, 256, 0xFFFFFFFF, 1 < < 10, 1 < < 11, 1 < < 12, 1 < < 13, 1 < < 14,
    1 < < 15, 1 < < 16, 1 < < 17, 1 < < 18, 1 < < 19, 1 < < 20, 1 < < 21, 1 < < 22,
    1 < < 23, 1 < < 24, 1 < < 25|(1 < < ('E'-'A'))|(1 < < ('Q'-'A'))
};

main(ac, av)
    int ac;
    char *av[];
{
    prog = av[0];
    if (ac != 3) {
        fprintf(stderr, "usage: %s file1 file2\n", prog);
        fprintf(stderr, "where file1 and file2 are two dna or two protein sequences.\n");
        fprintf(stderr, "The sequences can be in upper- or lower-case\n");
        fprintf(stderr, "Any lines beginning with ';' or '<' are ignored\n");
        fprintf(stderr, "Output is in the file \"align.out\"\n");
        exit(1);
    }
    namex[0] = av[1];
    namex[1] = av[2];
    seqx[0] = getseq(namex[0], &len0);
    seqx[1] = getseq(namex[1], &len1);
    xbm = (dnat)? _dbval : _pbval;

    endgaps = 0; /* 1 to penalize endgaps */
    ofile = "align.out"; /* output file */

    nw(); /* fill in the matrix, get the possible jmps */
    readjmps(); /* get the actual jmps */
    print(); /* print stats, alignment */
    cleanup(); /* unlink any tmp files */
}

```

FIGURE 248D

```

/* do the alignment, return best score: main()
 * dna: values in Fitch and Smith, PNAS, 80, 1382-1386, 1983
 * pro: PAM 250 values
 * When scores are equal, we prefer mismatches to any gap, prefer
 * a new gap to extending an ongoing gap, and prefer a gap in seqx
 * to a gap in seq y.
 */
nw()
{
    char      *px, *py;      /* seqs and ptrs */
    int       *ndely, *dely;  /* keep track of dely */
    int       ndelx, delx;   /* keep track of delx */
    int       *tmp;
    int       mis;           /* score for each type */
    int       ins0, ins1;    /* insertion penalties */
    register  id;           /* diagonal index */
    register  ij;           /* jmp index */
    register  *col0, *coll;  /* score for curr, last row */
    register  xx, yy;       /* index into seqs */

    dx = (struct diag *)g_malloc("to get diags", len0+len1+1, sizeof(struct diag));
    ndely = (int *)g_malloc("to get ndely", len1+1, sizeof(int));
    dely = (int *)g_malloc("to get dely", len1+1, sizeof(int));
    col0 = (int *)g_malloc("to get col0", len1+1, sizeof(int));
    coll = (int *)g_malloc("to get coll", len1+1, sizeof(int));
    ins0 = (dnx)? DINS0 : PINS0;
    ins1 = (dnx)? DINS1 : PINS1;

    smax = -10000;
    if (endgaps) {
        for (col0[0] = dely[0] = -ins0, yy = 1; yy <= len1; yy++) {
            col0[yy] = dely[yy] = col0[yy-1] - ins1;
            ndely[yy] = yy;
        }
        col0[0] = 0;          /* Waterman Bull Math Biol 84 */
    }
    else
        for (yy = 1; yy <= len1; yy++)
            dely[yy] = -ins0;

    /* fill in match matrix
     */
    for (px = seqx[0], xx = 1; xx <= len0; px++, xx++) {
        /* initialize first entry in col
         */
        if (endgaps) {
            if (xx == 1)
                coll[0] = delx = -(ins0+ins1);
            else
                coll[0] = delx = col0[0] - ins1;
            ndelx = xx;
        }
        else {
            coll[0] = 0;
            delx = -ins0;
            ndelx = 0;
        }
    }
}

```

FIGURE 248E

```

...NW

for (py = seqx[1], yy = 1; yy <= len1; py++, yy++) {
    mis = col0[yy-1];
    if (dma)
        mis += (xbm[*px-'A']&xbm[*py-'A'])? DMAT : DMIS;
    else
        mis += _day[*px-'A'][*py-'A'];

    /* update penalty for del in x seq;
     * favor new del over ongoing del
     * ignore MAXGAP if weighting endgaps
     */
    if (endgaps || ndely[yy] < MAXGAP) {
        if (col0[yy] - ins0 >= dely[yy]) {
            dely[yy] = col0[yy] - (ins0+ins1);
            ndely[yy] = 1;
        } else {
            dely[yy] -= ins1;
            ndely[yy]++;
        }
    } else {
        if (col0[yy] - (ins0+ins1) >= dely[yy]) {
            dely[yy] = col0[yy] - (ins0+ins1);
            ndely[yy] = 1;
        } else
            ndely[yy]++;
    }

    /* update penalty for del in y seq;
     * favor new del over ongoing del
     */
    if (endgaps || ndelx < MAXGAP) {
        if (coll[yy-1] - ins0 >= delx) {
            delx = coll[yy-1] - (ins0+ins1);
            ndelx = 1;
        } else {
            delx -= ins1;
            ndelx++;
        }
    } else {
        if (coll[yy-1] - (ins0+ins1) >= delx) {
            delx = coll[yy-1] - (ins0+ins1);
            ndelx = 1;
        } else
            ndelx++;
    }

    /* pick the maximum score; we're favoring
     * mis over any dei and delx over dely
     */
}

```

FIGURE 248F

```
...nw
```

```

id = xx - yy + len1 - 1;
if (mis >= delx && mis >= dely[yy])
    col1[yy] = mis;
else if (delx >= dely[yy]) {
    col1[yy] = delx;
    ij = dx[id].ijmp;
    if (dx[id].jp.n[0] && (!dnx || (ndelx >= MAXJMP
&& xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)) {
        dx[id].ijmp++;
        if (++ij >= MAXJMP) {
            writejmps(id);
            ij = dx[id].ijmp = 0;
            dx[id].offset = offset;
            offset += sizeof(struct jmp) + sizeof(offset);
        }
    }
    dx[id].jp.n[ij] = ndelx;
    dx[id].jp.x[ij] = xx;
    dx[id].score = delx;
}
else {
    col1[yy] = dely[yy];
    ij = dx[id].ijmp;

if (dx[id].jp.n[0] && (!dnx || (ndely[yy] >= MAXJMP
&& xx > dx[id].jp.x[ij]+MX) || mis > dx[id].score+DINS0)) {
        dx[id].ijmp++;
        if (++ij >= MAXJMP) {
            writejmps(id);
            ij = dx[id].ijmp = 0;
            dx[id].offset = offset;
            offset += sizeof(struct jmp) + sizeof(offset);
        }
    }
    dx[id].jp.n[ij] = -ndely[yy];
    dx[id].jp.x[ij] = xx;
    dx[id].score = dely[yy];
}
if (xx == len0 && yy < len1) {
    /* last col */
    /*
    if (endgaps)
        col1[yy] -= ins0+ins1*(len1-yy);
    if (col1[yy] > smax) {
        smax = col1[yy];
        dmax = id;
    }
}
if (endgaps && xx < len0)
    col1[yy-1] -= ins0+ins1*(len0-xx);
if (col1[yy-1] > smax) {
    smax = col1[yy-1];
    dmax = id;
}
tmp = col0; col0 = col1; col1 = tmp;
}
(void) free((char *)ndely);
(void) free((char *)dely);
(void) free((char *)col0);
(void) free((char *)col1);
}

```

259/270

FIGURE 248G

```

/*
 *
 * print() - only routine visible outside this module
 *
 * static:
 * getmat() - trace back best path, count matches: print()
 * pr_align() - print alignment of described in array p[]: print()
 * dumpblock() - dump a block of lines with numbers, stars: pr_align()
 * numso() - put out a number line: dumpblock()
 * putline() - put out a line (name, [num], seq, [num]): dumpblock()
 * stars() - put a line of stars: dumpblock()
 * stripname() - strip any path and prefix from a seqname
 */

#include "nw.h"

#define SPC      3
#define P_LINE   256      /* maximum output line */
#define P_SPC    3         /* space between name or num and seq */

extern _day[26][26];
int olen;           /* set output line length */
FILE *fx;           /* output file */

print()
{
    int ix, ly, firstgap, lastgap; /* overlap */

    if ((fx = fopen(ofile, "w")) == 0) {
        fprintf(stderr, "%s: can't write %s\n", prog, ofile);
        cleanup(1);
    }
    sprintf(fx, "<first sequence: %s (length = %d)\n", namex[0], len0);
    sprintf(fx, "<second sequence: %s (length = %d)\n", namex[1], len1);
    olen = 60;
    ix = len0;
    ly = len1;
    firstgap = lastgap = 0;
    if (dmax < len1 - 1) { /* leading gap in x */
        pp[0].spc = firstgap = len1 - dmax - 1;
        ly -= pp[0].spc;
    }
    else if (dmax > len1 - 1) { /* leading gap in y */
        pp[1].spc = firstgap = dmax - (len1 - 1);
        ix -= pp[1].spc;
    }
    if (dmax0 < len0 - 1) { /* trailing gap in x */
        lastgap = len0 - dmax0 - 1;
        ix -= lastgap;
    }
    else if (dmax0 > len0 - 1) { /* trailing gap in y */
        lastgap = dmax0 - (len0 - 1);
        ly -= lastgap;
    }
    getmat(ix, ly, firstgap, lastgap);
    pr_align();
}
print

```

260/270

FIGURE 248H

```

/*
 * trace back the best path, count matches
 */
static
getmat(ix, ly, firstgap, lastgap)
    int      ix, ly;          /* "core" (minus endgaps) */
    int      firstgap, lastgap; /* leading/trailing overlap */
{
    int      nm, i0, i1, siz0, siz1;
    char     outx[32];
    double   pct;
    register int n0, n1;
    register char *p0, *p1;

    /* get total matches, score
    */
    i0 = i1 = siz0 = siz1 = 0;
    p0 = seqx[0] + pp[1].spc;
    p1 = seqx[1] + pp[0].spc;
    n0 = pp[1].spc + 1;
    n1 = pp[0].spc + 1;

    nm = 0;
    while (*p0 && *p1) {
        if (siz0) {
            p1++;
            n1++;
            siz0--;
        }
        else if (siz1) {
            p0++;
            n0++;
            siz1--;
        }
        else {
            if (xbm[*p0-'A']&xm[*p1-'A'])
                nm++;
            if (n0++ == pp[0].x[i0])
                siz0 = pp[0].n[i0++];
            if (n1++ == pp[1].x[i1])
                siz1 = pp[1].n[i1++];
            p0++;
            p1++;
        }
    }

    /* pct homology:
     * if penalizing endgaps, base is the shorter seq
     * else, knock off overhangs and take shorter core
     */
    if (endgaps)
        ix = (len0 < len1)? len0 : len1;
    else
        ix = (ix < ly)? ix : ly;
    pct = 100.*(double)nm/(double)ix;
    fprintf(fx, "\n");
    fprintf(fx, "< %d match%s in an overlap of %d: %.2f percent similarity\n",
            nm, (nm == 1)? "" : "es", ix, pct);
}
getmat

```

261/270

FIGURE 248I

```

fprintf(fx, "< gaps in first sequence: %d", gapx); ...getmat
if (gapx) {
    (void) sprintf(outx, " (%d %s%s)",
                  ngapx, (dnx)? "base": "residue", (ngapx == 1)? ":" : "s");
    fprintf(fx, "%s", outx);
}
if (gapy) {
    (void) sprintf(outx, " (%d %s%s",
                  ngapy, (dnx)? "base": "residue", (ngapy == 1)? ":" : "s");
    fprintf(fx, "%s", outx);
}
if (dnx)
    fprintf(fx,
            "\n< score: %d (match = %d, mismatch = %d, gap penalty = %d + %d per base)\n",
            smax, DMAT, DMIS, DINSO, DINIS);
else
    fprintf(fx,
            "\n< score: %d (Dayhoff PAM 250 matrix, gap penalty = %d + %d per residue)\n",
            smax, PINS0, PINS1);
if (endgaps)
    fprintf(fx,
            "< endgaps penalized. left endgap: %d %s%s, right endgap: %d %s%s\n",
            firstgap, (dnx)? "base" : "residue", (firstgap == 1)? ":" : "s",
            lastgap, (dnx)? "base" : "residue", (lastgap == 1)? ":" : "s");
else
    fprintf(fx, "< endgaps not penalized\n");
}

static      nn;          /* matches in core -- for checking */
static      lmax;        /* lengths of stripped file names */
static      ij[2];       /* jmp index for a path */
static      nc[2];       /* number at start of current line */
static      ni[2];       /* current elem number -- for gapping */
static      siz[2];
static      *ps[2];       /* ptr to current element */
static      *po[2];       /* ptr to next output char slot */
static      char  out[2][P_LINE]; /* output line */
static      star[P_LINE]; /* set by stars() */

/*
 * print alignment of described in struct path pp[]
 */
static
pr_align0
{
    int      nn;          /* char count */
    int      more;
    register i;
    for (i = 0, lmax = 0; i < 2; i++) {
        nn = stripname(namex[i]);
        if (nn > lmax)
            lmax = nn;

        nc[i] = 1;
        ni[i] = 1;
        siz[i] = ij[i] = 0;
        ps[i] = seqx[i];
        po[i] = out[i];
    }
}

```

262/270

FIGURE 248J

```

for (nn = nm = 0, more = 1; more; ) {
    for (i = more = 0; i < 2; i++) {
        /*
         * do we have more of this sequence?
         */
        if (!(*ps[i]))
            continue;

        more++;

        if (pp[i].spc) { /* leading space */
            *po[i]++ = ' ';
            pp[i].spc--;
        }
        else if (siz[i]) { /* in a gap */
            *po[i]++ = '.';
            siz[i]--;
        }
        else { /* we're putting a seq element
                 */
            *po[i] = *ps[i];
            if (islower(*ps[i]))
                *ps[i] = toupper(*ps[i]);
            po[i]++;
            ps[i]++;

            /*
             * are we at next gap for this seq?
             */
            if (ni[i] == pp[i].x[i][i]) {
                /*
                 * we need to merge all gaps
                 * at this location
                 */
                siz[i] = pp[i].n[i][i]++;
                while (ni[i] == pp[i].x[i][i])
                    siz[i] += pp[i].n[i][i]++;
            }
            ni[i]++;
        }
    }
    if (++nn == olen || !more && nn) {
        dumpblock();
        for (i = 0; i < 2; i++)
            po[i] = out[i];
        nn = 0;
    }
}
/*
 * dump a block of lines, including numbers, stars: pr_align()
 */
static
dumpblock()
{
    register i;
    for (i = 0; i < 2; i++)
        *po[i]-- = '\0';
}

```

263 / 270

FIGURE 248K

```

...dumpblock
(void) putc('\n', fx);
for (i = 0; i < 2; i++) {
    if (*out[i] && (*out[i] != ' ' || *(po[i]) != ' ')) {
        if (i == 0)
            nums(i);
        if (i == 0 && *out[1])
            stars();
        putline(i);
        if (i == 0 && *out[1])
            fprintf(fx, star);
        if (i == 1)
            nums(i);
    }
}
/*
 * put out a number line: dumpblock()
 */
static
nums(ix)
int ix; /* index in out[] holding seq line */
{
    char nline[P_LINE];
    register i, j;
    register char *pn, *px, *py;
    for (pn = nline, i = 0; i < lmax + P_SPC; i++, pn++)
        *pn = ' ';
    for (i = nc[ix], py = out[ix]; *py; py++, pn++) {
        if (*py == ' ' || *py == '-')
            *pn = ' ';
        else {
            if (i%10 == 0 || (i == 1 && nc[ix] != 1)) {
                j = (i < 0)? -i: i;
                for (px = pn; j; j /= 10, px--)
                    *px = j%10 + '0';
                if (i < 0)
                    *px = '-';
            }
            else
                *pn = ' ';
        }
        i++;
    }
    *pn = '\0';
    nc[ix] = i;
    for (pn = nline; *pn; pn++)
        (void) putc(*pn, fx);
    (void) putc('\n', fx);
}
/*
 * put out a line (name, [num], seq, [num]): dumpblock()
 */
static
putline(ix)
int ix;
{

```

264/270

FIGURE 248L

```

...putline

int          i;
register char *px;

for (px = namex[ix], i = 0; *px && *px != ':'; px++, i++)
    (void) putc(*px, fx);
for (; i < lmax+P_SPC; i++)
    (void) putc(' ', fx);

/* these count from 1:
 * ni[] is current element (from 1)
 * nc[] is number at start of current line
 */
for (px = out[ix]; *px; px++)
    (void) putc(*px&0x7F, fx);
(void) putc('\n', fx);
}

/*
 * put a line of stars (seqs always in out[0], out[1]): dumpblock()
 */
static
stars()
{
    int          i;
    register char *p0, *p1, cx, *px;

    if (!*out[0] || (*out[0] == ' ' && *(p0[0]) == ' ') ||
        !*out[1] || (*out[1] == ' ' && *(p0[1]) == ' '))
        return;
    px = star;
    for (i = lmax+P_SPC; i--) {
        *px++ = ' ';
    }

    for (p0 = out[0], p1 = out[1]; *p0 && *p1; p0++, p1++) {
        if (isalpha(*p0) && isalpha(*p1)) {
            if (xbm[*p0-'A']&xbm[*p1-'A']) {
                cx = '*';
                nm++;
            }
            else if (!dma && _day[*p0-'A'][*p1-'A'] > 0)
                cx = '.';
            else
                cx = ' ';
        }
        else
            cx = ' ';
        *px++ = cx;
    }
    *px++ = '\n';
    *px = '\0';
}

```

FIGURE 248M

```
/*
 * strip path or prefix from pn, return len: pr_align()
 */
static
stripname(pn)
    char    *pn;    /* file name (may be path) */
{
    register char    *px, *py;

    py = 0;
    for (px = pn; *px; px++)
        if (*px == '/')
            py = px + 1;
    if (py)
        (void) strcpy(pn, py);
    return(strlen(pn));
}
```

FIGURE 248N

```

/*
 * cleanup() -- cleanup any tmp file
 * getseq() -- read in seq, set dna, len, maxlen
 * g_malloc() -- calloc() with error checkin
 * readjmps() -- get the good jmps, from tmp file if necessary
 * writejmps() -- write a filled array of jmps to a tmp file: nw()
 */
#include "nw.h"
#include <sys/file.h>

char *jname = "/tmp/homgXXXXXX";           /* tmp file for jmps */
FILE *fj;

int cleanup();                                /* cleanup tmp file */

/*
 * remove any tmp file if we blow
 */
cleanup(i)
{
    int i;
{
    if (i)
        (void) unlink(jname);
    exit(i);
}

/*
 * read, return ptr to seq, set dna, len, maxlen
 * skip lines starting with ';', '<', or '>'
 * seq in upper or lower case
 */
char *
getseq(file, len)
{
    char *file; /* file name */
    int *len; /* seq len */
{
    char line[1024], *pseq;
    register char *px, *py;
    int natgc, tlen;
    FILE *fp;

    if ((fp = fopen(file, "r")) == 0) {
        fprintf(stderr, "%s: can't read %s\n", prog, file);
        exit(1);
    }
    tlen = natgc = 0;
    while (fgets(line, 1024, fp)) {
        if (*line == ';' || *line == '<' || *line == '>')
            continue;
        for (px = line; *px != '\n'; px++)
            if (isupper(*px) || islower(*px))
                tlen++;
    }
    if ((pseq = malloc((unsigned)(tlen+6))) == 0) {
        fprintf(stderr, "%s: malloc() failed to get %d bytes for %s\n", prog, tlen+6, file);
        exit(1);
    }
    pseq[0] = pseq[1] = pseq[2] = pseq[3] = '\0';
}

```

FIGURE 248O

```

py = pseq + 4;
*len = tlen;
rewind(fp);

while (fgets(line, 1024, fp)) {
    if (*line == ';' || *line == '<' || *line == '>')
        continue;
    for (px = line; *px != '\n'; px++) {
        if (isupper(*px))
            *py++ = *px;
        else if (islower(*px))
            *py++ = toupper(*px);
        if (index("ATGCU", *(py-1)))
            nbase++;
    }
    *py++ = '\0';
    *py = '\0';
    (void) fclose(fp);
    dna = nbase > (tlen/3);
    return(pseq+4);
}

char *
g_calloc(msg, nx, sz)
    char   *msg;           /* program, calling routine */
    int    nx, sz;          /* number and size of elements */
{
    char   *px, *calloc();
    if ((px = calloc((unsigned)nx, (unsigned)sz)) == 0) {
        if (*msg) {
            fprintf(stderr, "%s: g_calloc() failed %s (n=%d, sz=%d)\n", prog, msg, nx, sz);
            exit(1);
        }
    }
    return(px);
}

/*
 * get final jmps from dx[] or tmp file, set pp[], reset dmax: main()
 */
readjmps()
{
    int      fd = -1;
    int      siz, i0, il;
    register i, j, xx;

    if (fj) {
        (void) fclose(fj);
        if ((fd = open(jname, O_RDONLY, 0)) < 0) {
            fprintf(stderr, "%s: can't open() %s\n", prog, jname);
            cleanup(1);
        }
    }
    for (i = i0 = il = 0, dmax0 = dmax, xx = len0; ; i++) {
        while (1) {
            for (j = dx[dmax].jmp; j >= 0 && dx[dmax].jp.x[j] >= xx; j--)
                ;
    }
}

```

...getseq

g_calloc

readjmps

FIGURE 248P

...readjmps

```

if (j < 0 && dx[dmax].offset && f) {
    (void) lseek(fd, dx[dmax].offset, 0);
    (void) read(fd, (char *)&dx[dmax].jp, sizeof(struct jmp));
    (void) read(fd, (char *)&dx[dmax].offset, sizeof(dx[dmax].offset));
    dx[dmax].ijmp = MAXJMP-1;
}
else
    break;
}
if (i >= Jmps) {
    fprintf(stderr, "%s: too many gaps in alignment\n", prog);
    cleanup(1);
}
if (j >= 0) {
    siz = dx[dmax].jp.n[j];
    xx = dx[dmax].jp.x[j];
    dmax += siz;
    if (siz < 0) { /* gap in second seq */
        pp[1].n[i1] = -siz;
        xx += siz;

        /* id = xx - yy + len1 - 1
        */
        pp[1].x[i1] = xx - dmax + len1 - 1;
        gapy++;
        ngapx -= siz;
    }
    /* ignore MAXGAP when doing endgaps */
    siz = (-siz < MAXGAP || endgaps)? -siz : MAXGAP;
    i1++;
}
else if (siz > 0) { /* gap in first seq */
    pp[0].n[i0] = siz;
    pp[0].x[i0] = xx;
    gapx++;
    ngapx += siz;
}
/* ignore MAXGAP when doing endgaps */
siz = (siz < MAXGAP || endgaps)? siz : MAXGAP;
i0++;

}
else
    break;
}

/* reverse the order of jmps
*/
for (j = 0, i0--; j < i0; j++, i0--) {
    i = pp[0].n[j]; pp[0].n[j] = pp[0].n[i0]; pp[0].n[i0] = i;
    i = pp[0].x[j]; pp[0].x[j] = pp[0].x[i0]; pp[0].x[i0] = i;
}
for (j = 0, i1--; j < i1; j++, i1--) {
    i = pp[1].n[j]; pp[1].n[j] = pp[1].n[i1]; pp[1].n[i1] = i;
    i = pp[1].x[j]; pp[1].x[j] = pp[1].x[i1]; pp[1].x[i1] = i;
}
if (fd >= 0)
    (void) close(fd);
if (f) {
    (void) unlink(jname);
    f1 = 0;
    offset = 0;
}
}

```

269/270

FIGURE 248Q

```
/*
 * write a filled jmp struct offset of the prev one (if any): nw()
 */
writejmps(ix)
    int      ix;
{
    char    *mktemp();
    if (!fj) {
        if (mktemp(jname) < 0) {
            fprintf(stderr, "%s: can't mktemp() %s\n", prog, jname);
            cleanup(1);
        }
        if ((fj = fopen(jname, "w")) == 0) {
            fprintf(stderr, "%s: can't write %s\n", prog, jname);
            exit(1);
        }
        (void) fwrite((char *)&dx[ix].jp, sizeof(struct jmp), 1, fj);
        (void) fwrite((char *)&dx[ix].offset, sizeof(dx[ix].offset), 1, fj);
    }
}
```

PCT/US99/2011

(30) 60/099,642	9 Sep/sep 1998 (09.09.1998)	US	(30) 60/101,472	23 Sep/sep 1998 (23.09.1998)	US	(30) 60/103,396	7 Oct/oct 1998 (07.10.1998)	US
(30) 60/099,741	10 Sep/sep 1998 (10.09.1998)	US	(30) 60/101,474	23 Sep/sep 1998 (23.09.1998)	US	(30) 60/103,401	7 Oct/oct 1998 (07.10.1998)	US
(30) 60/099,754	10 Sep/sep 1998 (10.09.1998)	US	(30) 60/101,475	23 Sep/sep 1998 (23.09.1998)	US	(30) 60/103,633	8 Oct/oct 1998 (08.10.1998)	US
(30) 60/099,763	10 Sep/sep 1998 (10.09.1998)	US	(30) 60/101,476	23 Sep/sep 1998 (23.09.1998)	US	(30) 60/103,678	8 Oct/oct 1998 (08.10.1998)	US
(30) 60/099,792	10 Sep/sep 1998 (10.09.1998)	US	(30) 60/101,477	23 Sep/sep 1998 (23.09.1998)	US	(30) 60/103,679	8 Oct/oct 1998 (08.10.1998)	US
(30) 60/099,808	10 Sep/sep 1998 (10.09.1998)	US	(30) 60/101,479	23 Sep/sep 1998 (23.09.1998)	US	(30) 60/103,711	8 Oct/oct 1998 (08.10.1998)	US
(30) 60/099,812	10 Sep/sep 1998 (10.09.1998)	US	(30) 60/101,738	24 Sep/sep 1998 (24.09.1998)	US	(30) 60/104,257	14 Oct/oct 1998 (14.10.1998)	US
(30) 60/099,815	10 Sep/sep 1998 (10.09.1998)	US	(30) 60/101,741	24 Sep/sep 1998 (24.09.1998)	US	(30) 60/104,987	20 Oct/oct 1998 (20.10.1998)	US
(30) 60/099,816	10 Sep/sep 1998 (10.09.1998)	US	(30) 60/101,743	24 Sep/sep 1998 (24.09.1998)	US	(30) 60/105,000	20 Oct/oct 1998 (20.10.1998)	US
(30) 60/100,385	15 Sep/sep 1998 (15.09.1998)	US	(30) 60/101,915	24 Sep/sep 1998 (24.09.1998)	US	(30) 60/105,002	20 Oct/oct 1998 (20.10.1998)	US
(30) 60/100,388	15 Sep/sep 1998 (15.09.1998)	US	(30) 60/101,916	24 Sep/sep 1998 (24.09.1998)	US	(30) 60/105,104	21 Oct/oct 1998 (21.10.1998)	US
(30) 60/100,390	15 Sep/sep 1998 (15.09.1998)	US	(30) 60/102,207	29 Sep/sep 1998 (29.09.1998)	US	(30) 60/105,169	22 Oct/oct 1998 (22.10.1998)	US
(30) 60/100,584	16 Sep/sep 1998 (16.09.1998)	US	(30) 60/102,240	29 Sep/sep 1998 (29.09.1998)	US	(30) 60/105,266	22 Oct/oct 1998 (22.10.1998)	US
(30) 60/100,627	16 Sep/sep 1998 (16.09.1998)	US	(30) 60/102,307	29 Sep/sep 1998 (29.09.1998)	US	(30) 60/105,693	26 Oct/oct 1998 (26.10.1998)	US
(30) 60/100,661	16 Sep/sep 1998 (16.09.1998)	US	(30) 60/102,330	29 Sep/sep 1998 (29.09.1998)	US	(30) 60/105,694	26 Oct/oct 1998 (26.10.1998)	US
(30) 60/100,662	16 Sep/sep 1998 (16.09.1998)	US	(30) 60/102,331	29 Sep/sep 1998 (29.09.1998)	US	(30) 60/105,807	27 Oct/oct 1998 (27.10.1998)	US
(30) 60/100,664	16 Sep/sep 1998 (16.09.1998)	US	(30) 60/102,484	30 Sep/sep 1998 (30.09.1998)	US	(30) 60/105,881	27 Oct/oct 1998 (27.10.1998)	US
(30) 60/100,683	17 Sep/sep 1998 (17.09.1998)	US	(30) 60/102,487	30 Sep/sep 1998 (30.09.1998)	US	(30) 60/105,882	27 Oct/oct 1998 (27.10.1998)	US
(30) 60/100,684	17 Sep/sep 1998 (17.09.1998)	US	(30) 60/102,570	30 Sep/sep 1998 (30.09.1998)	US	(30) 60/106,062	27 Oct/oct 1998 (27.10.1998)	US
(30) 60/100,710	17 Sep/sep 1998 (17.09.1998)	US	(30) 60/102,571	30 Sep/sep 1998 (30.09.1998)	US	(30) 60/106,023	28 Oct/oct 1998 (28.10.1998)	US
(30) 60/100,711	17 Sep/sep 1998 (17.09.1998)	US	(30) 60/102,684	1 Oct/oct 1998 (01.10.1998)	US	(30) 60/106,029	28 Oct/oct 1998 (28.10.1998)	US
(30) 60/100,919	17 Sep/sep 1998 (17.09.1998)	US	(30) 60/102,687	1 Oct/oct 1998 (01.10.1998)	US	(30) 60/106,030	28 Oct/oct 1998 (28.10.1998)	US
(30) 60/100,930	17 Sep/sep 1998 (17.09.1998)	US	(30) 60/102,965	2 Oct/oct 1998 (02.10.1998)	US	(30) 60/106,032	28 Oct/oct 1998 (28.10.1998)	US
(30) 60/100,848	18 Sep/sep 1998 (18.09.1998)	US	(30) 60/103,258	6 Oct/oct 1998 (06.10.1998)	US	(30) 60/106,033	28 Oct/oct 1998 (28.10.1998)	US
(30) 60/100,849	18 Sep/sep 1998 (18.09.1998)	US	(30) 60/103,449	6 Oct/oct 1998 (06.10.1998)	US	(30) 60/106,178	28 Oct/oct 1998 (28.10.1998)	US
(30) 60/101,014	18 Sep/sep 1998 (18.09.1998)	US	(30) 60/103,314	7 Oct/oct 1998 (07.10.1998)	US	(30) 60/106,248	29 Oct/oct 1998 (29.10.1998)	US
(30) 60/101,068	18 Sep/sep 1998 (18.09.1998)	US	(30) 60/103,315	7 Oct/oct 1998 (07.10.1998)	US	(30) 60/106,384	29 Oct/oct 1998 (29.10.1998)	US
(30) 60/101,071	18 Sep/sep 1998 (18.09.1998)	US	(30) 60/103,328	7 Oct/oct 1998 (07.10.1998)	US	(30) 60/108,500	29 Oct/oct 1998 (29.10.1998)	US
(30) 60/101,279	22 Sep/sep 1998 (22.09.1998)	US	(30) 60/103,395	7 Oct/oct 1998 (07.10.1998)	US	(30) 60/106,464	30 Oct/oct 1998 (30.10.1998)	US
(30) 60/101,471	23 Sep/sep 1998 (23.09.1998)	US	(30) 60/103,395	7 Oct/oct 1998 (07.10.1998)	US	(30) 60/106,856	3 Nov/nov 1998 (03.11.1998)	US

(30) 60/106,902	3 Nov/nov 1998 (03.11.1998)	US	(30) 60/108,806	17 Nov/nov 1998 (17.11.1998)	US
(30) 60/106,905	3 Nov/nov 1998 (03.11.1998)	US	(30) 60/108,807	17 Nov/nov 1998 (17.11.1998)	US
(30) 60/106,919	3 Nov/nov 1998 (03.11.1998)	US	(30) 60/108,867	17 Nov/nov 1998 (17.11.1998)	US
(30) 60/106,932	3 Nov/nov 1998 (03.11.1998)	US	(30) 60/108,925	17 Nov/nov 1998 (17.11.1998)	US
(30) 60/106,934	3 Nov/nov 1998 (03.11.1998)	US	(30) 60/108,848	18 Nov/nov 1998 (18.11.1998)	US
(30) 60/107,783	10 Nov/nov 1998 (10.11.1998)	US	(30) 60/108,849	18 Nov/nov 1998 (18.11.1998)	US
(30) 60/108,775	17 Nov/nov 1998 (17.11.1998)	US	(30) 60/108,850	18 Nov/nov 1998 (18.11.1998)	US
(30) 60/108,779	17 Nov/nov 1998 (17.11.1998)	US	(30) 60/108,851	18 Nov/nov 1998 (18.11.1998)	US
(30) 60/108,787	17 Nov/nov 1998 (17.11.1998)	US	(30) 60/108,852	18 Nov/nov 1998 (18.11.1998)	US
(30) 60/108,788	17 Nov/nov 1998 (17.11.1998)	US	(30) 60/108,858	18 Nov/nov 1998 (18.11.1998)	US
(30) 60/108,801	17 Nov/nov 1998 (17.11.1998)	US	(30) 60/108,904	18 Nov/nov 1998 (18.11.1998)	US
(30) 60/108,802	17 Nov/nov 1998 (17.11.1998)	US			