Week 9_LI, Junkai

2019年12月2日

Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Ans:

Il tempo oggi in Piacenza Lunedi, 02 Dicembre 2019													
	13:00	14:00	16:00	18:00	20:00	21:00	22:00						
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud						
Temperatura effettiva	10°C	10°C	9°C	6°C	7°C	7°C	8°C						
Temperatura percepita	10°C	10°C	8°C	5°C	7°C	6°C	7°C						
Precipitazioni	0 mm												
Umidità	79 %	77 %	89 %	90 %	90 %	92 %	91 %						
Pressione atmosferica	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa						

The time now is 20:00, from the data given in the website https://www.meteo-oggi.it/italia/regione-emilia-romagna/tempo-piacenza/

umidità: 90%, i.e., the relative humidity ϕ =90%;

pressione atmosferica: 1019 hPa, i.e., the total air pressure P = 101.9 kPa;

temperatura effttiva: $7 \, ^{\circ}$ C, i.e., the temperature in Kelvin temperature scale T =230 K

Utilize the psychrometric chart, we can see,

the humidity ratio, i.e., the absolute humidity ω = 0.0055

the web-bulb temperature $T_{wb} = 6 \, ^{\circ}C$

$$\because \omega = \frac{0.622 P_v}{P_a} = \frac{0.622 P_v}{P - P_v} = 0.0055, introduce P$$

= 101.9 kPa into this equation, and solve it,

$$P_v \approx 0.893 \, kPa$$

autem,
$$\phi = \frac{m_v}{m_g} = 90\% \dots (1)$$

for any ideal gas,
$$m=\frac{PV}{R_{sp,T}}$$
 , during the class we were told that for water vapour, $R_{sp.}=0.4615$

introduce the pressure of water vapor $P_v = 0.893~kPa$, and define the volume of aula A is V, here we have:

$$m_v = \frac{_{0.893V}}{_{0.4615*230}} \approx 8.41 \times 10^{-3} V$$

subodinate this value to equotion (1), calculate the maximum water vapour m_a ,

$$m_g = \frac{m_v}{90\%} \approx 9.34 \times 10^{-3} V$$

Task 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry (height of 2.5 m, considering two occupants and one bed room calculate, and a conditioned floor area of $200 \, m^2$ and wall area is $144 \, m^2$, calculate the internal gains, infiltration, and ventilation loads) as that of the example which is located in Brindisi, Italy.

		BRINDISI, Italy												WMO#:	163200		
	Lat	40.65N	Long:	17.95E	Elev	10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	ating and H	lumidificat	ion Design C	onditions												
					Hun	nidification D	DAMCDD and	UD		Coldest month WS/MCDB MCWS/F						ı	
	Coldest Heating DB			Humidification DP/MCDB and HR 99.6% 99%				0.4% 1%					to 99.6% DB				
	Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	ws	MCDB	MCWS	PCWD		
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	'	
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	oling, Deh	umidificatio	on, and Enth	alpy Design	n Condition	s										
						DB/MCWB											
	Hottest	Hottest			Evaporation WB/MCDB					MCWS/PCWD to 0.4% DB							
	Month DB Range DB MCWB		1% 2% DB MCWB DB MCWB		0.4% 1% WB MCDB WB MCD		% MCDB	2% WB MCDB		MCWS	% DB PCWD						
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
(2)			32.0													(2)	
		0.4%		Dehumidific	Dehumidification DP/MCDB and HR 1% 2%						Enthalpy/MCDB 0.4% 1%				%	Hours 8 to 4 &	
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
Extreme Annual Design Conditions																	
Extreme Extreme Annual DB n-Year Return Period Values of Extreme DB																	
	Extreme Annual WS Extreme Max				Extreme Annual DB Mean Standard deviation							0 years n=50 years					
	1%			Max	Min	Max	Min	Max	Min	Max	Min	Max					
	(0)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Ans:

Internal gains,

Calculate the sensibile cooling load from internal gains,

$$q_{ia.s} = 136 + 2.2A_{cf} + 22N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$

Calculate the latent cooling load from internal gains,

$$q_{ig,l} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

Infiltration,

for a house with a good construction quality, unit leakage area $A_{ul}=1.4cm^2/m^2$

and the exposed surface
$$A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{ m}^2$$

thus,
$$A_L = A_{es} * A_{ul} = 344 * 1.4 = 481.6 cm^2$$

Define the cooling temperature $T_{cooling}$ =24 °C, and heating temperature $T_{heating}$ =20 °C

in Brindisi,

$$\Delta T_{cooling} = 31.1 \,^{\circ}C - 24 \,^{\circ}C = 7.1 \,^{\circ}C = 7.1 \,^{K}$$

$$\Delta\,T_{heating} = 20\,^{\circ}C\,-(-4.1\,^{\circ}C) = 24.1\,^{\circ}C = 24.1\,K$$

$$DR = 7.1 \,^{\circ}C = 7.1 \, K$$

Given that $IDF_{heating} = 0.073 \frac{L}{s * cm^2}$,

$$IDF_{cooling} = 0.033 \frac{L}{s * cm^2},$$

Calculate infiltration airflow rate,

$$Q_{i,heating} = A_L * IDF_{heating} = 481.6 * 0.073 \approx 35.157 \frac{L}{s}$$

$$Q_{i,cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 \approx 15.893 \frac{L}{s}$$

The required miminum whole-building vetilation rate is

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 * 200 + 3.5 * (1 + 1) = 17\frac{L}{s}$$

thus,

$$Q_{i-v,heating} = Q_{i,heating} + Q_v \approx 35.157 + 17 = 52.157 \frac{L}{s}$$

$$Q_{i-v,cooling} = Q_{i,cooling} + Q_v \approx 15.893 + 17 = 32.893 \frac{L}{s}$$

Given that $C_{sensible}=1.23$, $C_{latent}=3010$, $\Delta\omega_{Cooling}=0.0039$

 $\dot{q}_{inf-ventilation_{cooling_{sensible}}} = C_{sensible}Q_{i-v,cooling} \ \Delta T_{Cooling} \approx 1.23 * 32.893 * 7.1 \approx 287.25 \, W$

 $\dot{q}_{inf-ventilation_{cooling_{latent}}} = C_{latent}Q_{i-v,cooling} \ \Delta\omega_{cooling} \approx 3010 * 32.893 * 0.0039 \approx 386.13 \, W$

 $\dot{q}_{inf-ventilation_{heatingg_{sensible}}} = C_{sensible}Q_{i-v,heating} \quad \Delta T_{heating} \approx 1.23 * 52.157 * 24.1$ $\approx 1546.09 \, W$