Tutorial 3 Crypto: Message Integrity

Teodora Baluta

March 16, 2018

Message integrity: MACs

Def: **MAC** I = (S,V) defined over (K,M,T) is a pair of algs:

- S(k,m) outputs t in T
- V(k,m,t) outputs 'yes' or 'no'

MACs¹

Message Authentication Code ensures

- authenticity: the message comes from the person with the shared key
- integrity: no tampering attacks, attacker cannot modify message
- Is CRC a MAC?

MACs

Message Authentication Code ensures

- authenticity: the message comes from the person with the shared key
- integrity: no tampering attacks, attacker cannot modify message
- Is CRC a MAC?
- No! MAC requires a shared key!

Existential Forgery

Chosen message attack: for m_1 , m_2 ,..., m_q attacker get t1, t2, ..., t_q Existential Forgery: when an attacker can create a tag for another message m

What is a Secure MAC?

- Adversary model: chosen message attack $(m_1, m_2,...,m_q)$ and $t1, t2, ...,t_q)$
- The attacker has to be able to produce $(m, t) \neq (m_i, t_i)$, $i \in \{1, ..., q\}$ that "tricks" the challenger
- The MAC is secure if for all "efficient" adversaries the probability that the challenger outputs 1 is negligible

Pseudo Random Function (PRF)

- F is a PRF, $F: K \times X \to Y$, defined over (K, X, Y) if there exists an efficient algorithm to evaluate F(k, x)
- Secure PRF
 - Let Funs[X, Y] be the set of all functions from X to Y
 - $S_F = \{F(k,x) \text{ such that } k \in K \text{ and } x \in X\} \subseteq Funs[X,Y]$
 - F is a secure PRF if it is indistinguishable from a random function

Example PRFs

- AES-128: K \times X \rightarrow X where $K=X=\{0,1\}^{128}$
- DES: K \times X \rightarrow X where $X = \{0,1\}^{64}$, $K = \{0,1\}^{56}$
- 3DES: K \times X \to X where $X = \{0,1\}^{64}, K = \{0,1\}^{168}$

- We define MAC $I_F = (S_F, V_F)$ where $F : K \times X \rightarrow Y$ is a secure PRF
 - $S_F(k, m) = F(k, m)$
 - $V_F(k, m, t) = \text{yes if } t = F(k, m)$, else no
- Example: MAC constructed with $F: K \times X \to Y$ with $Y = \{0, 1\}^{16}$

- We define MAC as a pair $I_F = (S_F, V_F)$ where $F: K \times X \rightarrow Y$ is a secure PRF
 - $S_F(k, m) = F(k, m)$
 - $V_F(k, m, t) = \text{yes if } t = F(k, m)$, else no
- Bad Example: MAC constructed with $F: K \times X \to Y$ with $Y = \{0,1\}^{16}$
 - The adversary can guess the tag with probability $1/2^{16}$

(Theorem) If $F: K \times X \to Y$ is a secure PRF and |Y| is large, then $I_F = (S_F, V_F)$ is a secure MAC.

• |Y| is large, say $|Y| = 2^{80}$

(Theorem) If $F: K \times X \to Y$ is a secure PRF and |Y| is large, then $I_F = (S_F, V_F)$ is a secure MAC.

- |Y| is large, say $|Y| = 2^{80}$
- Then we can use AES-128!

Big MAC from Small MAC

- AES-128 takes as input 16-byte messages
- In practice, we want to compute tags for files (large amount of data). How do we go from small-PRF to big-PRF?

- Break the message into blocks of 16 bytes
- $S(k, m) = F(k, m_1) \parallel F(k, m_2) \parallel F(k, m_3) \parallel \parallel F(k, m_q)$
- $V(k, m, t) = V(k, m_1, t_1) \wedge V(k, m_2, t_2) \wedge ... \wedge V(k, m_q, t_q)$

Security Issues?

 swap the internal blocks of a message, to obtain a valid tag of a different message (same length)

Security Issues?

- swap the internal blocks of a message, to obtain a valid tag of a different message (same length)
 - $m = (m_1, m_2)$, I get $S(k,m) = F(k, m_1) \parallel F(k, m_2)$

Security Issues?

- swap the internal blocks of a message, to obtain a valid tag of a different message (same length)
 - $m = (m_1, m_2)$, I get $S(k,m) = F(k, m_1) \parallel F(k, m_2)$
 - ullet m' $= (m_2, m_1)$ I can construct $\mathsf{S}(\mathsf{k}, \, \mathsf{m}') = \mathsf{F}(\mathsf{k}, \, m_2) \parallel \mathsf{F}(\mathsf{k}, \, m_1)$

Security Issues?

- swap the internal blocks of a message, to obtain a valid tag of a different message (same length)
 - $m = (m_1, m_2)$, I get $S(k,m) = F(k, m_1) \parallel F(k, m_2)$
 - ullet m' $= (m_2, m_1)$ I can construct $\mathsf{S}(\mathsf{k}, \, \mathsf{m}') = \mathsf{F}(\mathsf{k}, \, m_2) \parallel \mathsf{F}(\mathsf{k}, \, m_1)$
- length extension attack: can construct $S(k, m_1 \parallel m_2)$ from tags for m1 and m_2

Raw CBC

- Split the message in blocks $m_1, m_2, ..., m_q$
- $\bullet \ c_i = E(k, m_i \oplus c_{i-1})$
- Raw CBC is secure for fixed-length messages

Length Extension Attack

• Adversary gets pairs (m, t) and (m', t')

Length Extension Attack

- Adversary gets pairs (m, t) and (m', t')
- Existential forgery attack: let $m'' = m \parallel m'$

Length Extension Attack

- Adversary gets pairs (m, t) and (m', t')
- Existential forgery attack: let $m'' = m \parallel m'$
- Replace first block of m' (m'_1) with $m'_1 \oplus t \implies m'' = m \parallel (m'_1 \oplus t) \parallel m'_2 \parallel ...m'_q$

Length Extension Attack

- Adversary gets pairs (m, t) and (m', t')
- Existential forgery attack: let $m'' = m \parallel m'$
- Replace first block of m' (m'_1) with $m'_1 \oplus t \implies m'' = m \parallel (m'_1 \oplus t) \parallel m'_2 \parallel ...m'_q$
- rawCBC= $E(k, m'') = E(k, m \parallel (m'_1 \oplus t) \parallel m'_2 \parallel ...m'_q) = E(k, t \oplus (m'_1 \oplus t) \parallel m'_2 \parallel ...m'_q) = E(k, m'_1 \parallel m'_2 \parallel ...m'_q) = t'$

CBC-MAC

ullet To fix this, encrypt the last step with $k_2
eq k_1$

CBC-MAC vs CBC for encryption

Figure: CBC-MAC Encrypt Last Block (ECBC)

Why is IV set to 0?

- Say we use a randomly chosen IV for CBC-MAC
- Let $M_1 = P_1|P_2|...$ with IV_1 chosen randomly \implies produces (M_1, T_1)
- First block of MAC is $E_k(IV_1 \oplus P_1)$
- Attacker produces $M_2 = P_1'|P_2|...$ and IV_1' such that $E_k(P_1' \oplus IV_1') = E_k(P_1 \oplus IV_1) \implies$ attacker gets tag T_1 for M_2
 - for every bit in $P_1' \neq \text{bit in } P_1$ flip that bit in IV_1'
 - $\bullet \ P_1 \oplus IV_1 = P_1' \oplus IV_1'$

Hash Functions

A function H, $H: \{0,1\}^m \to \{0,1\}^n$ is a hash function if:

- Efficient to compute H(x)
- ② Computationally infeasible to find x from given H(x) = y
- 3 It is collision resistant

First 2 define a one-way function

Constructions from Hash Functions (just an idea)

- "small MAC to big MAC"
- \bullet I = (S, V) a MAC for short messages (e.g. AES)
- Use $H: M^{big} \to M$ to define $I^{big} = (S^{big}, V^{big})$
 - $S^{big}(k, m) = S(k, H(m))$
 - $V^{big}(k, m, t) = V(k, H(m), t)$
- If I is a secure MAC and H is collision resistant then I^{big} is a secure MAC.
- Example: $S(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$
- CR is useful because if I have $m_0 \neq m_1$ and $H(m_0) = H(m_1)$
- ullet Adversary asks for tag of m_0 and uses that as forgery for m_1

Digital Signatures

Alice and Bob do not share a key but each have a pair of (K_{pub}, K_{priv})

- Signing algorithm: $S(K_{priv}, m) = \text{signature}$
- ullet Verification algorithm: $V(K_{pub}, m, \text{signature}) = \text{yes/no}$
- Example: Textbook RSA

Asymmetric Encryption vs Digital Signatures

- Both rely on a pair of public and private keys
- Alice wants to send to Bob an encrypted message
 - Alice encrypts the message with Bob's public key (anyone can send Bob messages)
 - Bob decrypts with his private key
- Alice wants to testify the message has not been tampered with and she is the source
 - Alice signs the message with Alice's private key = signature, attaches the signature to the message
 - Bob or anyone else can verify the signature using Alice's public key

Example GnuPGP

PGP stands for Pretty Good Privacy

- symmetric ciphers
- digital signatures
- DEMO...

Backup Slides

Pseudo Random Permutation (PRP)

- E is a PRP, $E: K \times X \to X$, defined over (K, X) such that
 - There exists "efficient" algorithm to evaluate E(k,x)
 - E is a one-to-one function
 - There exists "efficient" inversion algorithm D(k,x)
- Secure PRP
 - Let Perms[X] be the set of all one-to-one functions from X to X
 - $S_E = \{E(k, x) \text{ such that } k \in K \text{ and } x \in X\} \subseteq Perms[X]$
 - E is a secure PRP if it is indistinguishable from a random function

PRF and PRG

Any PRP is also a PRF

- A PRP is a PRF where X=Y and is efficiently invertible
- A PRP is sometimes called a block cipher