Exploring IoT with RTI DDS

giorgio.zoppi@gmail.com

Global Business in IoT

Industial IoT: All about system

COAP

- COnstrained Application Protocol
- Web of Things
 - REST model for small devices
- Pull model
- RFC7252
- http://coap.technology/

Source: openmobilealliance.org

AMQP

- Advanced Message Queuing Protocol
- Wire-level protocol
 - Multiple Interfaces
- One to One and One To Many
- Broker based
- Message centric
- Implementations:
 - RabbitMQ, ActiveMQ, Apache QPid

MQTT: Collect Device Data

- Brokered
- Lightweight
- Wire protocol
- Implementations:
 - 。 paho, mosquitto, ...

Message Queuing Telemetry Transport (MQTT)

	AMQP	JMS	MQTT	DDS	
Architecture	Broker	Broker	Broker	Descentralized	
Туре	Topic	Topic	Topic	Content/Type	
Standard API	N	Y	N	Υ	
Standard Wire	Υ	N	Y	Υ	
Transport	TCP	TCP	TCP	UDP*	
QoS	Y(3)	Y(4)	Y(3)	Y (20*)	
Standard Payload Format	N	N	N	CDR	
Filtering	Content	Content	N	Content/Time	

So many protocols...

Which should we use?

No Silver Bullet...

Choose AMPQ if:

- * Distributing work, not information?
- * Just send from A to B?
- * Speed & CPU use are not important?
- * Can't loose anything?

3 or 4 Yes, than choose AMPQ.

Choose MTTQ if:

- * Think the thing as collection?
- * Little device to device communication?
- * Large number of devices?
- * Very small number of devices?

3 or 4 Yes, than choose MTTQ.

Choose REST if:

- * Always connected?
- * Few connectivity points in large space?
- * Use the word "my"?
- * Speed & CPU use not important?

3 or 4 Yes, than choose REST.

Choose DDS if:

- * Disaster if offline for 5 minutes (Real time development)?
- * Measure performance in ms or us? Or scale >100+ applications? Or 10k+ data values?

1 or 2 choose DDS.

DDS: The main idea

VIRTUALISED DATA SPACE

Applications can autonomously and asynchronously read and write data enjoying spatial and temporal decoupling

DDS Ideas

TOPIC

A domain-wide information's class A **Topic** defined by means of a <name, type, qos>

DDS Ideas

DYNAMIC DISCOVERY

Built-in dynamic discovery isolates applications from network topology and connectivity details

DDS Ideas

ADAPTIVE CONNECTIVITY

Connectivity is **dynamically adapted** to chose the most effective way of sharing data

The communication between the DataWriter and matching DataReaders can be "brokered" but still exploiting UDP/IP (Unicast and Multicast)or TCP/IP

RTI DDS Hands on

* Quick example generation in Modern CPP:

rtiddsgen -language C++11 -example universal Foo.idl

Use Case: Vehicle Tracking

RTI Connext DDS is the core communication infrastructure in a variety of vehicle tracking and radar systems – from air traffic management to area defense systems.

We want minimize the latency in those case.

Use Case: Vehicle Tracking

Vehicle Tracking

Vehicle Tracking

Scale to the WAN

Scale to the Cloud.

