Osservazione

$$\mathbf{v} = x \overrightarrow{\mathbf{i}} + y \overrightarrow{\mathbf{j}}$$

$$\cos(\varphi) = \frac{x}{|OP|} \qquad \sin(\varphi) = \frac{y}{|OP|}$$

Definizione di prodotto scalare tra due vettori

Siano $\mathbf{v}_1 = [\overrightarrow{OP_1}]$ e $\mathbf{v}_2 = [\overrightarrow{OP_2}]$ due vettori liberi e sia φ l'angolo compreso tra i due vettori applicati $\overrightarrow{OP_1}$ e $\overrightarrow{OP_2}$.

Si dice prodotto scalare tra i due vettori il numero reale dato da:

$$<\mathbf{v}_1,\mathbf{v}_2>\equiv |\mathit{OP}_1||\mathit{OP}_2|\cos{\varphi}$$

Il prodotto scalare tra due vettori è nullo se e solo se uno dei due vettori è nullo oppure i due vettori sono ortogonali ($\cos\varphi=0$).

Definizione di prodotto scalare tra due vettori

Siano $\mathbf{v}_1 = [\overrightarrow{OP_1}]$ e $\mathbf{v}_2 = [\overrightarrow{OP_2}]$ due vettori liberi e sia φ l'angolo compreso tra i due vettori applicati $\overrightarrow{OP_1}$ e $\overrightarrow{OP_2}$.

Si dice prodotto scalare tra i due vettori il numero reale dato da:

$$<\mathbf{v}_1,\mathbf{v}_2>\equiv |\mathit{OP}_1||\mathit{OP}_2|\cos \varphi$$

Il prodotto scalare tra due vettori è nullo se e solo se uno dei due vettori è nullo oppure i due vettori sono ortogonali ($\cos \varphi = 0$).

In un sistema di coordinate cartesiane ortogonali di origine O, se P_1 ha coordinate (x_1, y_1) e P_2 ha coordinate (x_2, y_2) , allora

$$<\mathbf{v}_{1},\mathbf{v}_{2}> \equiv |OP_{1}||OP_{2}|\cos\varphi = x_{1}x_{2} + y_{1}y_{2}$$

Infatti, se θ_1 è l'angolo tra l'asse x e $\overrightarrow{OP_1}$ e θ_2 è l'angolo tra l'asse x e $\overrightarrow{OP_2}$, allora

$$\begin{aligned} \cos(\varphi) &= \cos(\theta_2 - \theta_1) = \cos(\theta_2) \cos(\theta_1) + \sin(\theta_2) \sin(\theta_1) \\ &= \frac{x_2}{|OP_2|} \frac{x_1}{|OP_1|} + \frac{y_2}{|OP_2|} \frac{y_1}{|OP_1|} \\ &\Rightarrow x_1 x_2 + y_1 y_2 = |OP_1| |OP_2| \cos(\varphi) = \langle v_1, v_2 \rangle \end{aligned}$$

Il prodotto scalare gode delle seguenti proprietà:

 $\bullet < \mathbf{v}_1, \mathbf{v}_2 > = < \mathbf{v}_2, \mathbf{v}_1 >$, per ogni $\mathbf{v}_1, \mathbf{v}_2 \in V$ (proprietà commutativa)

- $\langle v_1, v_2 \rangle = \langle v_2, v_1 \rangle$, per ogni $v_1, v_2 \in V$ (proprietà commutativa)
- $\bullet < \mathbf{v}_1, \alpha \mathbf{v}_2 > = \alpha < \mathbf{v}_1, \mathbf{v}_2 >$, per ogni $\alpha \in \mathbb{R}$, $\mathbf{v}_1, \mathbf{v}_2 \in V$

- $\bullet < v_1, v_2 > = < v_2, v_1 >$, per ogni $v_1, v_2 \in V$ (proprietà commutativa)
- $\bullet < \mathbf{v}_1, \alpha \mathbf{v}_2 >= \alpha < \mathbf{v}_1, \mathbf{v}_2 >$, per ogni $\alpha \in \mathbb{R}$, $\mathbf{v}_1, \mathbf{v}_2 \in V$
- \bullet < ν , ν > > 0, per ogni $\nu \neq 0$ (< ν , ν >= $|\nu|^2 > 0$)

- $\bullet < v_1, v_2 > = < v_2, v_1 >$, per ogni $v_1, v_2 \in V$ (proprietà commutativa)
- $\bullet < \mathbf{v}_1, \alpha \mathbf{v}_2 >= \alpha < \mathbf{v}_1, \mathbf{v}_2 >$, per ogni $\alpha \in \mathbb{R}$, $\mathbf{v}_1, \mathbf{v}_2 \in V$
- < v, v >> 0, per ogni $v \neq 0 \ (< v, v >= |v|^2 > 0)$
- $< v_1, v_2 + v_3 > = < v_1, v_2 > + < v_1, v_3 >$, per ogni $v_1, v_2, v_3 \in V$ (proprietà distributiva)

- $\bullet < v_1, v_2 > = < v_2, v_1 >$, per ogni $v_1, v_2 \in V$ (proprietà commutativa)
- $\bullet < \mathbf{v}_1, \alpha \mathbf{v}_2 >= \alpha < \mathbf{v}_1, \mathbf{v}_2 >$, per ogni $\alpha \in \mathbb{R}$, $\mathbf{v}_1, \mathbf{v}_2 \in V$
- < v, v >> 0, per ogni $v \neq 0 \ (< v, v >= |v|^2 > 0)$
- $< v_1, v_2 + v_3 > = < v_1, v_2 > + < v_1, v_3 >$, per ogni $v_1, v_2, v_3 \in V$ (proprietà distributiva)

Il prodotto scalare gode delle seguenti proprietà:

- $\bullet < v_1, v_2 > = < v_2, v_1 >$, per ogni $v_1, v_2 \in V$ (proprietà commutativa)
- $\bullet < \mathbf{v}_1, \alpha \mathbf{v}_2 > = \alpha < \mathbf{v}_1, \mathbf{v}_2 >$, per ogni $\alpha \in \mathbb{R}$, $\mathbf{v}_1, \mathbf{v}_2 \in V$
- $\bullet < v, v >> 0$, per ogni $v \neq 0 \ (< v, v >= |v|^2 > 0)$
- $< v_1, v_2 + v_3 > = < v_1, v_2 > + < v_1, v_3 >$, per ogni $v_1, v_2, v_3 \in V$ (proprietà distributiva)

Per i versori (ortonormali) degli assi coordinati vale che

$$\langle \overrightarrow{i}, \overrightarrow{i} \rangle = 1 \quad \langle \overrightarrow{j}, \overrightarrow{j} \rangle = 1$$

 $\langle \overrightarrow{i}, \overrightarrow{j} \rangle = \langle \overrightarrow{j}, \overrightarrow{i} \rangle = 0$

Tenuto conto che i versori degli assi cartesiani sono ortogonali tra loro e che il prodotto scalare di un versore con se stesso vale 1, l'espressione del prodotto scalare in termini di coordinate cartesiane si ottiene anche nel seguente modo:

$$\langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = \langle x_{1} \overrightarrow{\mathbf{i}} + y_{1} \overrightarrow{\mathbf{j}}, x_{2} \overrightarrow{\mathbf{i}} + y_{2} \overrightarrow{\mathbf{j}} \rangle$$

$$= \langle x_{1} \overrightarrow{\mathbf{i}}, x_{2} \overrightarrow{\mathbf{i}} + y_{2} \overrightarrow{\mathbf{j}} \rangle + \langle y_{1} \overrightarrow{\mathbf{j}}, x_{2} \overrightarrow{\mathbf{i}} + y_{2} \overrightarrow{\mathbf{j}} \rangle$$

$$= x_{1}x_{2} \langle \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{i}} \rangle + x_{1}y_{2} \langle \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}} \rangle + y_{1}x_{2} \langle \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{i}} \rangle + y_{1}y_{2} \langle \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{j}} \rangle$$

$$= x_{1}x_{2} + y_{1}y_{2}$$

$$\mathsf{Da} < \mathbf{\emph{v}}_1, \mathbf{\emph{v}}_2 > \equiv |\mathit{OP}_1| |\mathit{OP}_2| \cos arphi$$
, si ha

$$\cos \varphi = \frac{\langle \mathbf{v}_1, \mathbf{v}_2 \rangle}{|OP_1||OP_2|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}}$$

Tenuto conto che i versori degli assi cartesiani sono ortogonali tra loro e che il prodotto scalare di un versore con se stesso vale 1, l'espressione del prodotto scalare in termini di coordinate cartesiane si ottiene anche nel seguente modo:

$$\langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = \langle x_{1} \overrightarrow{\mathbf{i}} + y_{1} \overrightarrow{\mathbf{j}}, x_{2} \overrightarrow{\mathbf{i}} + y_{2} \overrightarrow{\mathbf{j}} \rangle$$

$$= \langle x_{1} \overrightarrow{\mathbf{i}}, x_{2} \overrightarrow{\mathbf{i}} + y_{2} \overrightarrow{\mathbf{j}} \rangle + \langle y_{1} \overrightarrow{\mathbf{j}}, x_{2} \overrightarrow{\mathbf{i}} + y_{2} \overrightarrow{\mathbf{j}} \rangle$$

$$= x_{1}x_{2} \langle \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{i}} \rangle + x_{1}y_{2} \langle \overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}} \rangle + y_{1}x_{2} \langle \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{i}} \rangle + y_{1}y_{2} \langle \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{j}} \rangle$$

$$= x_{1}x_{2} + y_{1}y_{2}$$

 $Da < \mathbf{v}_1, \mathbf{v}_2 > \equiv |OP_1||OP_2|\cos\varphi$, si ha

$$\cos \varphi = \frac{<\mathbf{v}_1,\mathbf{v}_2>}{|OP_1||OP_2|} = \frac{x_1x_2 + y_1y_2}{\sqrt{x_1^2 + y_1^2}\sqrt{x_2^2 + y_2^2}}$$

Osservazione.

L'espressione dei coseni degli angoli θ_x, θ_y (coseni direttori) che un vettore $v \equiv (x, y)$ forma con gli assi coordinati x e y si ottiene come

$$\cos\theta_{x} = \frac{\langle \mathbf{v}, \overrightarrow{\mathbf{i}} \rangle}{|\mathbf{v}|} = \frac{x}{\sqrt{x^{2} + y^{2}}} \qquad \cos\theta_{y} = \frac{\langle \mathbf{v}, \overrightarrow{\mathbf{j}} \rangle}{|\mathbf{v}|} = \frac{y}{\sqrt{x^{2} + y^{2}}}$$

Nel caso di vettori $\mathbf{v}_1=(x_1,y_1,z_1)$ e $\mathbf{v}_2=(x_2,y_2,z_2)$ nello spazio, l'espressione in coordinate cartesiane diventa

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle x_1 \overrightarrow{\mathbf{i}} + y_1 \overrightarrow{\mathbf{j}} + z_1 \overrightarrow{\mathbf{k}}, x_2 \overrightarrow{\mathbf{i}} + y_2 \overrightarrow{\mathbf{j}} + z_2 \overrightarrow{\mathbf{k}} \rangle =$$

= $x_1 x_2 + y_1 y_2 + z_1 z_2$

Pertanto, da $<\mathbf{v}_1,\mathbf{v}_2>\equiv |OP_1||OP_2|\cos\varphi$, si ha

$$\cos \varphi = \frac{<\mathbf{v}_1,\mathbf{v}_2>}{|OP_1||OP_2|} = \frac{x_1x_2 + y_1y_2 + z_1z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2}\sqrt{x_2^2 + y_2^2 + z_2^2}}$$

Osservazione.

L'espressione dei coseni degli angoli $\theta_x, \theta_y, \theta_z$ che un vettore $v \equiv (x, y, z)$ forma con gli assi coordinati x, y, z (coseni direttori) si ottiene come

$$\cos \theta_{x} = \frac{\langle \mathbf{v}, \overrightarrow{\mathbf{i}} \rangle}{|\mathbf{v}|} = \frac{x}{\sqrt{x^{2} + y^{2} + z^{2}}}$$

$$\cos \theta_{y} = \frac{\langle \mathbf{v}, \overrightarrow{\mathbf{j}} \rangle}{|\mathbf{v}|} = \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}$$

$$\cos \theta_{z} = \frac{\langle \mathbf{v}, \overrightarrow{\mathbf{k}} \rangle}{|\mathbf{v}|} = \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}$$

Esempio

Siano
$$\mathbf{u} = \overrightarrow{\mathbf{i}} - 2\overrightarrow{\mathbf{j}} + 3\overrightarrow{\mathbf{k}}, \ \mathbf{v} = -3\overrightarrow{\mathbf{j}}.$$

•
$$|\mathbf{u}| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle} = \sqrt{1+4+9} = \sqrt{14}, |\mathbf{v}| = \sqrt{9} = 3$$

- $\bullet < u, v > = 1.0 2.(-3) + 3.0 = 6$
- i coseni direttori di ${\pmb u}$ sono $\frac{<{\pmb u}, \overrightarrow{{\pmb i}}>}{|{\pmb u}|} = \frac{1}{\sqrt{14}}, \frac{<{\pmb u}, \overrightarrow{{\pmb j}}>}{|{\pmb u}|} = \frac{-2}{\sqrt{14}}, \frac{<{\pmb u}, \overrightarrow{{\pmb k}}>}{|{\pmb u}|} = \frac{3}{\sqrt{14}}$
- i coseni direttori di \emph{v} sono $\frac{<\emph{v},\overrightarrow{\emph{f}}>}{|\emph{v}|}=0, \frac{<\emph{v},\overrightarrow{\emph{f}}>}{|\emph{v}|}=\frac{-3}{3}=-1, \frac{<\emph{v},\overrightarrow{\emph{k}}>}{|\emph{v}|}=0$
- \bullet i due vettori formano un angolo il cui coseno vale $\cos\varphi=\frac{6}{3\sqrt{14}}$

Una applicazione: proiezione ortogonale di un vettore su una retta

Sia $\mathbf{v} \equiv [\overrightarrow{OQ}]$ un vettore e r una retta passante per O di $\mathbf{versore}~\mathbf{u}~(|\mathbf{u}|=1)$, tale che retta e vettore formano un angolo φ .

La proiezione ortogonale del vettore ν nella direzione della retta è il vettore $\nu'\equiv [\overrightarrow{OQ'}]$, ove Q' è la proiezione ortogonale del punto Q su r. Si osserva che

$$|\langle \mathbf{v}, \mathbf{u} \rangle = |\mathbf{v}| |\mathbf{u}| \cos \varphi = |OQ| \cos \varphi = |OQ'|$$

Pertanto il vettore \mathbf{v}' è dato da

$$\mathbf{v}' = |OQ'|\mathbf{u} = <\mathbf{v}, \mathbf{u} > \mathbf{u}$$

Se non si conosce u, ma si conosce un vettore w parallelo alla retta, allora $u=\frac{w}{|w|}$:

$$\mathbf{v}' = |OQ'| \frac{\mathbf{w}}{|\mathbf{w}|} = \langle \mathbf{v}, \frac{\mathbf{w}}{|\mathbf{w}|} \rangle \frac{\mathbf{w}}{|\mathbf{w}|} = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}$$

Il Teorema di Pitagora

Se u e v sono due vettori ortogonali, allora

$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2$$

Come provarlo?

$$|u + v|^2 = \langle u + v, u + v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$

= $|u|^2 + 0 + 0 + |v|^2 = |u|^2 + |v|^2$

Definizione di prodotto vettoriale tra due vettori

Siano $\mathbf{v}_1 = [\overrightarrow{OP_1}]$ e $\mathbf{v}_2 = [\overrightarrow{OP_2}]$ due vettori liberi e sia φ l'angolo compreso tra i due vettori applicati $\overrightarrow{OP_1}$ e $\overrightarrow{OP_2}$.

Si dice **prodotto vettoriale** dei due vettori il vettore v_3 :

$$\mathbf{v}_1 \times \mathbf{v}_2 \equiv \mathbf{v}_3 = [\overrightarrow{OP_3}]$$

così definito:

- **modulo**: $|v_3| = |v_1||v_2|\sin \varphi$; (area del parallelogramma di cui i due vettori sono lati)
- **direzione** perpendicolare al piano che contiene $\overrightarrow{OP_1}$ e $\overrightarrow{OP_2}$;
- **verso** dato dalla **regola delle tre dita della mano destra**: sovrapposti $\overrightarrow{OP_1}$ e $\overrightarrow{OP_2}$ al pollice e indice della mano destra, il verso di $\overrightarrow{OP_3}$ è quello indicato dal medio (verso dell'osservatore che vede avvenire la rotazione di $\overrightarrow{OP_1}$ su $\overrightarrow{OP_2}$ in senso antiorario)

Se $\overrightarrow{OP_1}$ è parallelo a $\overrightarrow{OP_2}$ (sin $\varphi=0$) oppure uno dei due vettori è nullo il prodotto vettoriale è nullo.

Il modulo di v_3 è l'area del parallelogramma costruito sui vettori v_1 e v_2 ; infatti se v_1 è la base, $v_2 \sin(\varphi)$ è l'altezza.

In un sistema di coordinate cartesiane ortogonali di origine O (con gli assi orientati in modo da rispettare la regola della mano destra), si ha che:

$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k} \quad \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i} \quad \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}$$

$$-\overrightarrow{j} \times \overrightarrow{i} = \overrightarrow{k} \quad -\overrightarrow{k} \times \overrightarrow{j} = \overrightarrow{i} \quad -\overrightarrow{i} \times \overrightarrow{k} = \overrightarrow{j}$$

$$\overrightarrow{i} \times \overrightarrow{i} = 0 \quad \overrightarrow{j} \times \overrightarrow{j} = 0 \quad \overrightarrow{k} \times \overrightarrow{k} = 0$$

In un sistema di coordinate cartesiane ortogonali di origine ${\it O}$ (con gli assi orientati in modo da rispettare la regola della mano destra), si ha che:

$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k} \quad \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i} \quad \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}$$

$$-\overrightarrow{j} \times \overrightarrow{i} = \overrightarrow{k} \quad -\overrightarrow{k} \times \overrightarrow{j} = \overrightarrow{i} \quad -\overrightarrow{i} \times \overrightarrow{k} = \overrightarrow{j}$$

$$\overrightarrow{i} \times \overrightarrow{i} = 0 \quad \overrightarrow{j} \times \overrightarrow{j} = 0 \quad \overrightarrow{k} \times \overrightarrow{k} = 0$$

Il prodotto vettoriale gode delle seguenti proprietà:

- $\mathbf{v}_1 \times \mathbf{v}_2 = -\mathbf{v}_2 \times \mathbf{v}_1$, per ogni $\mathbf{v}_1, \mathbf{v}_2 \in V$ (proprietà anticommutativa)
- $\alpha \mathbf{v}_1 \times \mathbf{v}_2 = \alpha(\mathbf{v}_1 \times \mathbf{v}_2) = \mathbf{v}_1 \times \alpha \mathbf{v}_2$, per ogni $\alpha \in \mathbb{R}$, $\mathbf{v}_1, \mathbf{v}_2 \in V$
- $(v_1 + v_2) \times v_3 = v_1 \times v_3 + v_2 \times v_3$, per ogni $v_1, v_2, v_3 \in V$ (proprietà distributiva)

In un sistema di coordinate cartesiane ortogonali di origine ${\it O}$ (con gli assi orientati in modo da rispettare la regola della mano destra), si ha che:

$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k} \quad \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i} \quad \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}$$

$$-\overrightarrow{j} \times \overrightarrow{i} = \overrightarrow{k} \quad -\overrightarrow{k} \times \overrightarrow{j} = \overrightarrow{i} \quad -\overrightarrow{i} \times \overrightarrow{k} = \overrightarrow{j}$$

$$\overrightarrow{i} \times \overrightarrow{i} = 0 \quad \overrightarrow{j} \times \overrightarrow{j} = 0 \quad \overrightarrow{k} \times \overrightarrow{k} = 0$$

Il prodotto vettoriale gode delle seguenti proprietà:

- $\mathbf{v}_1 \times \mathbf{v}_2 = -\mathbf{v}_2 \times \mathbf{v}_1$, per ogni $\mathbf{v}_1, \mathbf{v}_2 \in V$ (proprietà anticommutativa)
- $\alpha \mathbf{v}_1 \times \mathbf{v}_2 = \alpha(\mathbf{v}_1 \times \mathbf{v}_2) = \mathbf{v}_1 \times \alpha \mathbf{v}_2$, per ogni $\alpha \in \mathbb{R}$, $\mathbf{v}_1, \mathbf{v}_2 \in V$
- $(v_1 + v_2) \times v_3 = v_1 \times v_3 + v_2 \times v_3$, per ogni $v_1, v_2, v_3 \in V$ (proprietà distributiva)

ATTENZIONE!! Non vale la proprietà associativa. Un controesempio:

$$(\overrightarrow{i} \times \overrightarrow{i}) \times \overrightarrow{k} = 0$$

$$\overrightarrow{i} \times ((\overrightarrow{i} \times \overrightarrow{k})) = -\overrightarrow{k}$$

Dalle proprietà segue che se P_1 ha coordinate (x_1, y_1, z_1) e P_2 ha coordinate (x_2, y_2, z_2) , allora

$$v_{1} \times v_{2} = (x_{1} \overrightarrow{i} + y_{1} \overrightarrow{j} + z_{1} \overrightarrow{k}) \times (x_{2} \overrightarrow{i} + y_{2} \overrightarrow{j} + z_{2} \overrightarrow{k}) =$$

$$= x_{1} y_{2} (\overrightarrow{i} \times \overrightarrow{j}) + x_{1} z_{2} (\overrightarrow{i} \times \overrightarrow{k}) + y_{1} x_{2} (\overrightarrow{j} \times \overrightarrow{i}) +$$

$$+ y_{1} z_{2} (\overrightarrow{j} \times \overrightarrow{k}) + z_{1} x_{2} (\overrightarrow{k} \times \overrightarrow{i}) + z_{1} y_{2} (\overrightarrow{k} \times \overrightarrow{j}) =$$

$$= x_{1} y_{2} \overrightarrow{k} - x_{1} z_{2} \overrightarrow{j} - y_{1} x_{2} \overrightarrow{k} + y_{1} z_{2} \overrightarrow{i} + z_{1} x_{2} \overrightarrow{j} - z_{1} y_{2} \overrightarrow{i} =$$

$$= (y_{1} z_{2} - y_{2} z_{1}) \overrightarrow{i} + (x_{2} z_{1} - x_{1} z_{2}) \overrightarrow{j} + (x_{1} y_{2} - x_{2} y_{1}) \overrightarrow{k}$$

Dalle proprietà segue che se P_1 ha coordinate (x_1, y_1, z_1) e P_2 ha coordinate (x_2, y_2, z_2) , allora

$$v_{1} \times v_{2} = (x_{1}\overrightarrow{i} + y_{1}\overrightarrow{j} + z_{1}\overrightarrow{k}) \times (x_{2}\overrightarrow{i} + y_{2}\overrightarrow{j} + z_{2}\overrightarrow{k}) =$$

$$= x_{1}y_{2}(\overrightarrow{i} \times \overrightarrow{j}) + x_{1}z_{2}(\overrightarrow{i} \times \overrightarrow{k}) + y_{1}x_{2}(\overrightarrow{j} \times \overrightarrow{i}) +$$

$$+ y_{1}z_{2}(\overrightarrow{j} \times \overrightarrow{k}) + z_{1}x_{2}(\overrightarrow{k} \times \overrightarrow{i}) + z_{1}y_{2}(\overrightarrow{k} \times \overrightarrow{j}) =$$

$$= x_{1}y_{2}\overrightarrow{k} - x_{1}z_{2}\overrightarrow{j} - y_{1}x_{2}\overrightarrow{k} + y_{1}z_{2}\overrightarrow{i} + z_{1}x_{2}\overrightarrow{j} - z_{1}y_{2}\overrightarrow{i} =$$

$$= (y_{1}z_{2} - y_{2}z_{1})\overrightarrow{i} + (x_{2}z_{1} - x_{1}z_{2})\overrightarrow{j} + (x_{1}y_{2} - x_{2}y_{1})\overrightarrow{k}$$

L'espressione si ottiene dallo sviluppo del determinante simbolico rispetto alla prima riga:

$$\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

Una applicazione: proiezione ortogonale di un vettore su un piano

Sia $\mathbf{v} \equiv [\overrightarrow{OP}]$ un vettore e π un piano passante per O al quale appartengono i due vettori \mathbf{u}_1 e \mathbf{u}_2 .

La proiezione di \overrightarrow{OP} su π è il vettore $\mathbf{v}' = [\overrightarrow{OP'}]$ ove P' è la proiezione ortogonale di P sul piano.

Detto $\mathbf{w} = [\overrightarrow{P'P}]$, allora

$$\mathbf{v} = \mathbf{w} + \mathbf{v}'$$
 e dunque $\mathbf{v}' = \mathbf{v} - \mathbf{w}$

Come determinare w? Questo vettore è la proiezione di v lungo la retta ortogonale al piano e passante per O. Poichè u_1 e u_2 appartengono al piano, $u_1 \times u_2$ è un vettore ortogonale al piano. Un versore u ortogonale al piano è dato da

$$u = \frac{u_1 \times u_2}{|u_1 \times u_2|}$$

Pertanto il vettore \boldsymbol{w} , proiezione di \boldsymbol{v} nella direzione di \boldsymbol{u} , vale

$$\mathbf{w} = \langle \mathbf{v}, \mathbf{u} \rangle \mathbf{u} = \left\langle \mathbf{v}, \frac{\mathbf{u}_1 \times \mathbf{u}_2}{|\mathbf{u}_1 \times \mathbf{u}_2|} \right\rangle \frac{\mathbf{u}_1 \times \mathbf{u}_2}{|\mathbf{u}_1 \times \mathbf{u}_2|}$$

Infine, si ha

$$\mathbf{v}' = \mathbf{v} - \mathbf{w} = \mathbf{v} - \left\langle \mathbf{v}, \frac{\mathbf{u}_1 \times \mathbf{u}_2}{|\mathbf{u}_1 \times \mathbf{u}_2|} \right\rangle \frac{\mathbf{u}_1 \times \mathbf{u}_2}{|\mathbf{u}_1 \times \mathbf{u}_2|}$$

Esempio

Sia $\mathbf{v} = 2\overrightarrow{\mathbf{i}} - \overrightarrow{\mathbf{j}} + 3\overrightarrow{\mathbf{k}}$; determinare la proiezione \mathbf{v}' sul piano coordinato xy.

$$w = \langle v, \frac{\overrightarrow{i} \times \overrightarrow{j}}{|\overrightarrow{i} \times \overrightarrow{j}|} \rangle \frac{\overrightarrow{i} \times \overrightarrow{j}}{|\overrightarrow{i} \times \overrightarrow{j}|} = \langle v, \overrightarrow{k} \rangle \overrightarrow{k} = 3 \overrightarrow{k}$$

Da cui si ha

$$\mathbf{v}' = (2\overrightarrow{\mathbf{i}} - \overrightarrow{\mathbf{j}} + 3\overrightarrow{\mathbf{k}}) - 3\overrightarrow{\mathbf{k}} = 2\overrightarrow{\mathbf{i}} - \overrightarrow{\mathbf{j}}$$

Prodotto misto

Prodotto misto di tre vettori

Dati tre vettori v_1 , v_2 e v_3 si dice **prodotto misto** dei tre vettori il numero reale

$$<\mathbf{v}_1,\mathbf{v}_2\times\mathbf{v}_3>$$

Prodotto misto di tre vettori

Dati tre vettori v_1 , v_2 e v_3 si dice **prodotto misto** dei tre vettori il numero reale

$$<\mathbf{v}_1,\mathbf{v}_2\times\mathbf{v}_3>$$

In un sistema di coordinate cartesiane ortogonali di origine O, se $\mathbf{v}_i = [\overrightarrow{OP_i}]$ e P_i sono punti di coordinate (x_i, y_i, z_i) , i = 1, 2, 3, si ha che

Prodotto misto di tre vettori

Dati tre vettori v_1 , v_2 e v_3 si dice **prodotto misto** dei tre vettori il numero reale

$$<\mathbf{v}_1,\mathbf{v}_2\times\mathbf{v}_3>$$

In un sistema di coordinate cartesiane ortogonali di origine O, se $\mathbf{v}_i = [\overrightarrow{OP_i}]$ e P_i sono punti di coordinate (x_i, y_i, z_i) , i = 1, 2, 3, si ha che

$$< \mathbf{v}_{1}, \mathbf{v}_{2} \times \mathbf{v}_{3}> = < \mathbf{v}_{1}, \begin{vmatrix} \overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \end{vmatrix}> =$$

$$= x_{1}(\mathbf{v}_{2} \times \mathbf{v}_{3})_{x} + y_{1}(\mathbf{v}_{2} \times \mathbf{v}_{3})_{y} + z_{1}(\mathbf{v}_{2} \times \mathbf{v}_{3})_{z} =$$

$$= \begin{vmatrix} x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \\ x_{3} & y_{3} & z_{3} \end{vmatrix}$$

Il prodotto misto si annulla quando uno dei tre vettori è nullo oppure, se i tre vettori non sono nulli, se e solo se sono complanari.

Volume del parallelepipedo

Il valore assoluto del prodotto misto è uguale al volume del parallelepipedo avente per spigoli i tre vettori v_1, v_2, v_3 .

Infatti $|\mathbf{v}_2 \times \mathbf{v}_3|$ è l'area del parallelogramma alla base del parallelepipedo. Poichè il volume vale l'area di base per l'altezza h, è sufficiente osservare che l'altezza è il valore assoluto della proiezione del terzo spigolo lungo la normale al piano individuata da $\mathbf{v}_2 \times \mathbf{v}_3$, per cui:

$$h = |\langle \mathbf{v}_1, \frac{\mathbf{v}_2 \times \mathbf{v}_3}{|\mathbf{v}_2 \times \mathbf{v}_3|} \rangle| \Rightarrow V = |\mathbf{v}_2 \times \mathbf{v}_3| h = |\langle \mathbf{v}_1, \mathbf{v}_2 \times \mathbf{v}_3 \rangle|$$

Esempio

Determinare il volume del parallelepipedo avente per spigoli i vettori $\overrightarrow{i} + \overrightarrow{j}$, \overrightarrow{k} , $-\overrightarrow{i} + \overrightarrow{k}$.

$$V = \left| egin{array}{cccc} 1 & 1 & 0 & 0 \ 0 & 0 & 1 \ -1 & 0 & 1 \end{array}
ight| = 1$$