

PROBABILITY AND STATISTICS CALCULATORS MATRICES EXPERIMENTAL DESIGN CALCULUS BASED STATISTICS

THE PRACTICALLY CHEATING STATISTICS HANDBOOK

Multinomial Distribution: Definition, Examples

Share on

Probability Distributions > Multinomial Distribution

The multinomial distribution is used to find probabilities in experiments where there are more than two outcomes.

Binomial vs. Multinomial Experiments

The first type of experiment introduced in elementary statistics is usually the binomial experiment, which has the following properties:

- Fixed number of n trials.
- Each trial is an independent event.
- Only two outcomes are possible (Success and Failure).
- Probability of success (p) for each trial is constant.
- A random variable Y= the number of successes.

A multinomial experiment is almost identical with one main difference: a binomial experiment can have two outcomes, while a multinomial experiment can have multiple outcomes.

Example: You roll a die ten times to see what number you roll. There are 6 possibilities (1, 2, 3, 4, 5, 6), so this is a multinomial experiment. If you rolled the die ten times to see how many times you roll a three, that would be a binomial experiment (3 = success, 1, 2, 4, 5, 6 = failure).

A binomial experiment will have a binomial distribution. A multinomial experiment will have a multinomial distribution.

Multinomial Distribution Example

Three card players play a series of matches. The probability that player A will win any game is 20%, the probability that player B will win is 30%, and the probability player C will win is 50%. If they play 6 games, what is the probability that player A will win 1 game, player B will win 2 games, and player C will win 3?

Use the following formula to calculate the odds (Need help? Check out our tutoring page!):

$$P = \frac{n!}{(n_1!)(n_2!)...(n_x!)} P_1 n_1 P_2 n_2 ... P_x n_x$$

where:

- n = number of events
- n₁ = number of outcomes, event 1
- n₂ = number of outcomes, event 2
- n₃ = number of outcomes, event x
- p₁ = probability event 1 happens
- p₂ = probability event 2 happens p_x = probability event x happens

Using the data from the question, we get:

- n = 12 (6 games total).
- n₁ = 1 (Player A wins).
- n₂ = 2 (Player B wins).
- n₃ = 3 (Player C wins).
- p₁ = 0.20 (probability that Player A wins).
- p₂ = 0.30 (probability that Player B wins).
- p₃ = 0.50 (probability that Player C wins).

Putting this into the formula, we get:

$$Pr(A = 1, B = 2, C = 3) = \frac{6!}{1!2!3!}(0.2^1)(0.3^2)(0.5^3) = 0.135$$

Check out our YouTube channel for hundreds of statistics help videos!

References

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 532, 1987. Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, 1984.

CITE THIS AS:

Stephanie Glen. "Multinomial Distribution: Definition, Examples" From StatisticsHowTo.com: Elementary Statistics for the rest of us! https://www.statisticshowto.com/multinomial-distribution/

Need help with a homework or test question? With Chegg Study, you can get step-by-step solutions to your

Comments? Need to post a correction? Please post a comment on our Facebook page.

questions from an expert in the field. Your first 30 minutes with a Chegg tutor is free!

By Stephanie | May 10, 2015 | Statistics How To | ← Extraneous Variable Simple Definition Typical Case Sampling →

Find an article

Search

Statistics Handbook Prorticelly Cheating

Feel like "cheating" at Statistics? Check out the gradeincreasing book that's recommended reading at top universities!

NEED HELP NOW with a homework problem? CLICK HERE!

Probability and Statistics Topic Indexes

Basic Statistics.

Bayesian Statistics and Probability Descriptive Statistics: Charts, Graphs and Plots.

Probability.

Binomial Theorem. Definitions for Common Statistics Terms.

Critical Values.

Hypothesis Testing. Normal Distributions.

T-Distributions.

Central Limit Theorem.

Confidence Intervals. Chebyshev's Theorem.

Sampling and Finding Sample Sizes.

Chi Square.

Online Tables (z-table, chi-square, t-dist etc.). Regression Analysis / Linear Regression. Non Normal Distributions.