BÁO CÁO ĐỔ ÁN THỰC HÀNH

HỆ THỐNG THÔNG TIN PHỤC VỤ TRÍ TUỆ KINH DOANH

GVHD: ThS. Hồ Thị Hoàng Vy

ThS. Tiết Gia Hồng

Nhóm: 05

THÔNG TIN NHÓM

MSSV	Họ tên	Công việc	% Hoàn thành
21127246	Lê Minh Đức	Cài đặt OLAP, viết MDX câu 1,4,10, 11, lấy ý nghĩa dữ liệu theo các mẫu.	100%
21127609	Nguyễn Đức Vĩnh Hòa		
21127640	Huỳnh Hữu Lộc	Cài đặt OLAP, viết MDX 2,5	75%
21127641	Nguyễn Xuân Lộc	Cài đặt OLAP, viết MDX 3,6,9	100%

OLAP

Cấu trúc

Project

Data Sources

Giữ "Connection" đến database "2425.BI.DATH_DDS" (DDS data base) của dự án.

Data Source View

Database view của tất cả các bảng trong DDS.

Cubes

2425BIDATH DDS.cube

2425BIDATH DDS.cube

Sử dụng bảng FACT.[AQI DATA].

Chú thích: Thống kê các thông số liên quan tới 1 bản ghi trong ngày, theo quận thuộc bang, đo trên 1 thang đo và thuộc 1 danh mục.

HỆ THỐNG THÔNG TIN PHỤC VỤ TRÍ TUỆ KINH DOANH

2425BIDATH DDS 1.cube

2425BIDATH DDS 1.cube

Sử dụng bảng FACT.[AQI STAT 1].

Chú thích: Thống kê các thông số liên quan tới 1 bản ghi trong quý, theo quận thuộc bang, đo trên 1 thang đo.

2425BIDATH DDS 2.cube

2425BIDATH DDS 2.cube

Sử dụng bảng FACT.[AQI Stat 2]

Chú thích: Thống kê các thông số liên quan tới 1 bản ghi trong quý, theo bang, đo trên 1 thang đo.

Dimensions GEOGRAPHY

Dimension

Relationship

Browser

HỆ THỐNG THÔNG TIN PHỰC VỤ TRÍ TUỆ KINH DOANH

DATE

Dimension

Relationship

Browser

PARAMETER

Dimension

Relationship

Browser

GEOGRAPHY

Dimension

Relationship

Browser

Kết quả

MDX

1. Câu 1:

Report the min and max of AQI value for each State during each quarter of years. Analysis hints: How do the AQI values fluctuate during the year? Pay attention to the values (max, min). Are any unusually large or small?

select non empty [Measures].[Min AQI] on columns,

non empty [DATE].[QUARTER - SK].[QUARTER - SK].Members *

[GEOGRAPHY].[State SK].[State SK].Members *

[PARAMETER].[Parameter Name].Children

on rows

from [2425BIDATH DDS 2];

Phân tích trên mẫu dữ liệu bang có mã 1 - Phân tích từ kết quả trả về ban đầu:

Giá trị nhỏ nhất trong từng quý với từng thang đo phân bố khá đồng đều, không xảy ra dị thường (Outlier).

Phân tích chi tiết hơn sẽ thực hiện trên đồ thi.

2. Câu 2:

Report the mean and the standard deviation of AQI value for each State during each quarter of years. Analysis hints: How do the AQI values fluctuate during the year? Pay attention to the values (mean, std, max, min). Are any unusually large or small?

```
Means:
WITH

member [Measures].[Means] as

sum([Measures].[AQI]) / sum([Measures].[AQIDATA Count])

SELECT

[Measures].[Means] ON COLUMNS,

non empty [GEOGRAPHY].[Hierarchy].[State Name].Members *

nonempty([DATE].[Year].[Year].Members) *

nonempty([DATE].[Hierarchy].[Quarter].Members) *

nonempty([PARAMETER].[Parameter Name].[Parameter Name].Members)

ON ROWS

FROM

[2425BIDATH DDS];
```

HỆ THỐNG THÔNG TIN PHỤC VỤ TRÍ TUỆ KINH DOANH

				Means
Alabama	2021	1	NO2	38.5
Alabama	2021	1	Ozone	39.2758620689655
Alabama	2021	1	PM2.5	49.4117647058824
Alabama	2021	2	Ozone	44.0666666666667
Alabama	2021	2	PM2.5	53.7931034482759
Alabama	2021	3	Ozone	45.58
Alabama	2021	3	PM2.5	55.2272727272727
Alabama	2021	4	Ozone	35.5161290322581
Alabama	2021	4	PM2.5	45.1076923076923
Alabama	2022	1	NO2	40.666666666667
Alabama	2022	1	Ozone	42.28125
Alabama	2022	1	PM10	13
Alabama	2022	1	PM2.5	37.2028985507246
Alabama	2022	2	Ozone	41.9508196721311
Alabama	2022	2	PM2.5	38.4727272727273
Alabama	2022	3	Ozone	32.2325581395349
		10-	1	14 044000 1050000

				Means
Alabama	2022	3	Ozone	32.2325581395349
Alabama	2022	3	PM2.5	41.9113924050633
Alabama	2022	4	Ozone	22.6829268292683
Alabama	2022	4	PM10	41
Alabama	2022	4	PM2.5	36.3148148148148
Alabama	2023	1	Ozone	37.08
Alabama	2023	1	PM10	45.5
Alabama	2023	1	PM2.5	29.0860927152318
Alabama	2023	2	Ozone	42.5412844036697
Alabama	2023	2	PM2.5	39.0581395348837
Alabama	2023	3	Ozone	36.6551724137931
Alabama	2023	3	PM2.5	37.7280701754386
Alabama	2023	4	NO2	29
Alabama	2023	4	Ozone	35.755555555556
Alabama	2023	4	PM10	69
Alabama	2023	4	PM2.5	32.1411764705882

```
Std dev:
```

select non empty [Measures].[Std Dev] on columns,

[DATE].[QUARTER - SK].[QUARTER - SK].Members *

nonempty([GEOGRAPHY].[State SK].[State SK].Members) *

nonempty([PARAMETER].[Parameter Name].Children)

on rows

from [2425BIDATH DDS 2];

Phân tích trên mẫu dữ liệu bang có mã 2 - Alabama - Phân tích từ kết quả trả về ban đầu:

NO₂ và PM10 phân bổ khá tập trung và gần vào giá trị trung bình trong từng quý.

Ozone, PM2.5 có độ rải rác cao hơn trong từng quý.

Phân tích chi tiết hơn sẽ thực hiện trên đồ thị.

3. Câu 3:

Report the number of days, and the mean AQI value where the air quality is rated as "very unhealthy" or worse for each State and County. Analysis hint: What is the AQI limit above which air quality is "very unhealthy" or worse?

WITH

```
MEMBER [Measures].[AVERIGE AQI] AS

(sum([Measures].[AQI]) / [Measures].[AQIDATA Count])

MEMBER [Measures].[Number Of Days] as

--[Measures].[AQIDATA Count]

DistinctCount([DATE].[Full Date].Children)
```

SELECT

```
NON EMPTY {[Measures].[Number Of Days] , [Measures].[Average AQI]} ON 0,

NON EMPTY filter(crossjoin([GEOGRAPHY].[Hierarchy].[State Name].Members,

[GEOGRAPHY].[County Name].Children,

{[PARAMETER].[Parameter Name].Children}),

[Measures].[Number Of Days] > 0) ON 1
```

FROM [2425BIDATH DDS]

where [CATEGORY].[Category SK].&[6];

```
56
       ⊟WITH
           MEMBER [Measures].[Average AQI] AS
    57
    58
             (sum([Measures].[AQI]) / [Measures].[AQIDATA Count])
    59
             MEMBER [Measures].[Number Of Days] as
             --[Measures].[AQIDATA Count]
    60
             DistinctCount([DATE].[Full Date].Children)
    61
         SELECT
    62
             NON EMPTY {[Measures].[Number Of Days] , [Measures].[Average AQI]} ON 0,
    63
             NON EMPTY bottomcount(filter(crossjoin([GEOGRAPHY].[Hierarchy].[State Name].Members,
             [GEOGRAPHY].[County Name].Children,
    65
             {[PARAMETER].[Parameter Name].&[PM2.5]}),
    66
    67
             [Measures].[Number Of Days] > 0),
    68
             [Measures].[Average AQI]) ON 1
    69
         FROM [2425BIDATH DDS]
    70
    71
         where [CATEGORY].[Category SK].&[6];
    72
.00 % 🔻 🖣 🗏
■ Messages ■ Results
                                Number Of Days Average AQI
Alaska Fairbanks North Star
                       PM2.5
                                                 25
```

HỆ THỐNG THÔNG TIN PHỤC VỤ TRÍ TUỆ KINH DOANH

California Mono PM10	Number Of Days	Average AQI 31
Georgia Harris Ozone	Number Of Days	Average AQI 23

Với các thang đo, có các giới hạn tại các giá trị AQI mà khi vượt ngưỡng, không khí trở nên cực tệ:

PM2.5: Giới hạn 25.

PM10: Giới hạn 31.

- Ozone: Giới han 23.

4. Câu 4:

For the four following states: Hawaii, Alaska, Illinois and Delaware, count the number of days in each air quality Category (Good, Moderate, etc.) by County. Analysis hints: Comparing the data of the states and counties, focus on the distribution of the harmful air condition. What could you conclude about the differences?)

```
with member [Measures].[Count] as

DistinctCount(

[DATE].[Full Date].Children)

select non empty [Measures].[Count] on columns,

non empty{

[GEOGRAPHY].[Hierarchy].[State Name].&[Hawaii],

[GEOGRAPHY].[Hierarchy].[State Name].&[Alaska],

[GEOGRAPHY].[Hierarchy].[State Name].&[Illinois],

[GEOGRAPHY].[Hierarchy].[State Name].&[Delaware]

} * [GEOGRAPHY].[County Name].Members *

nonempty([CATEGORY].[Category Name].[Category Name].Members)

on rows

from [2425BIDATH DDS];
```

			Count
Hawaii	All	Good	1091
Hawaii	All	Hazardous	0
Hawaii	All	Moderate	123
Hawaii	All	Unhealthy	1
Hawaii	All	Unhealthy for Sensitive Groups	1
Hawaii	All	Very Unhealthy	0
Hawaii	Hawaii	Good	993
Hawaii	Hawaii	Hazardous	0
Hawaii	Hawaii	Moderate	95
Hawaii	Hawaii	Unhealthy	0
Hawaii	Hawaii	Unhealthy for Sensitive Groups	0
Hawaii	Hawaii	Very Unhealthy	0
Hawaii	Honolulu	Good	1057
Hawaii	Honolulu	Hazardous	0
Hawaii	Honolulu	Moderate	37
Hawaii	Honolulu	Unhealthy	0
Hawaii	Honolulu	Unhealthy for Sensitive Groups	1
Hawaii	Honolulu	Very Unhealthy	0
Hawaii	Kalawao	Good	0
Hawaii	Kalawao	Hazardous	0
Hawaii	Kalawao	Moderate	0
Hawaii	Kalawao	Unhealthy	0
Hawaii	Kalawao	Unhealthy for Sensitive Groups	0
Hawaii	Kalawao	Very Unhealthy	0
Hawaii	Kauai	Good	454
Hawaii	Kauai	Hazardous	0
Hawaii	Kauai	Moderate	0
Hawaii	Kauai	Unhealthy	0
Hawaii	Kauai	Unhealthy for Sensitive Groups	0
Hawaii	Kauai	Very Unhealthy	0
Hawaii	Maui	Good	
Hawaii	Maui	Hazardous	
Hawaii	Maui	Moderate	8
Hawaii	Maui	Unhealthy	

Phân tích trên mẫu dữ liệu bang Hawaii và các quận của nó - Phân tích từ kết quả trả về ban đầu:

- Đa số các ngày tại các quận ở Hawaii trong 3 năm mức không khí thuộc loại tốt.
- Vẫn có tỉ lệ nhỏ ngày mà không khí tại các quận ở Hawaii sẽ rơi xuống mức trung bình. Nhưng hầu như không trở nên tệ.

Phân tích chi tiết hơn thực hiện trên đồ thị

HỆ THỐNG THÔNG TIN PHỤC VỤ TRÍ TUỆ KINH DOANH

5. Câu 5:

For the four following states: Hawaii, Alaska, Illinois and Delaware, compute the mean AQI value by quarters. Analysis hints: Comparing the data of the states over the year. What could you conclude about the fluctuations?

```
WITH

MEMBER [Measures].[Average AQI] AS

sum([Measures].[AQI]) / sum([Measures].[AQIDATA Count])

SELECT

{[Measures].[Average AQI]} ON COLUMNS,

non empty{[Geography].[State Name].&[Hawaii],

[Geography].[State Name].&[Alaska],

[Geography].[State Name].&[Illinois],

[Geography].[State Name].&[Delaware]} *

nonempty([DATE].[Hierarchy].[Year].Members) *

nonempty([DATE].[Quarter].[Quarter].Members) *

nonempty([PARAMETER].[Parameter Name].Children)

ON ROWS

FROM
```

[2425BIDATH DDS];

				Average AQI
Hawaii	2021	1	NO2	4.7
Hawaii	2021	1	Ozone	33.089552238806
Hawaii	2021	1	PM2.5	28.1201413427562
Hawaii	2021	2	NO2	10.6
Hawaii	2021	2	Ozone	27.3461538461538
Hawaii	2021	2	PM10	22
Hawaii	2021	2	PM2.5	20.8714285714286
Hawaii	2021	3	СО	23
Hawaii	2021	3	Ozone	22.7586206896552
Hawaii	2021	3	PM10	28.6
Hawaii	2021	3	PM2.5	20.2467105263158
Hawaii	2021	4	NO2	5.54545454545455
Hawaii	2021	4	Ozone	30.90625
Hawaii	2021	4	PM10	11
Hawaii	2021	4	PM2.5	24.726618705036
Hawaii	2022	1	NO2	19.5714285714286
Hawaii	2022	1	Ozone	32.655737704918
Hawaii	2022	1	PM2.5	25.4136690647482
Hawaii	2022	2	Ozone	28.3235294117647
Hawaii	2022	2	PM2.5	23.1380753138075
Hawaii	2022	3	NO2	11
Hawaii	2022	3	Ozone	25.8
Hawaii	2022	3	PM2.5	18.3770491803279
Hawaii	2022	4	NO2	28
Hawaii	2022	4	Ozone	26.1923076923077
Hawaii	2022	4	PM10	27
Hawaii	2022	4	PM2.5	30.7579908675799
Hawaii	2023	1	Ozone	20.448275862069
Hawaii	2023	1	PM2.5	25.7100840336134
Hawaii	2023	2	Ozone	17.8823529411765
Hawaii	2023	2	PM2.5	20.5094339622642
Hawaii	2023	3	Ozone	14.0769230769231
Hawaii	2023	2	PM2.5	20.5094339622642
Hawaii	2023	3	Ozone	14.0769230769231
Hawaii	2023	3	PM10	11.25
Hawaii	2023	3	PM2.5	18.8847736625514
Hawaii	2023	4	Ozone	23.3382352941176
Hawaii	2023	4	PM2.5	23.2098765432099

HỆ THỐNG THÔNG TIN PHỤC VỤ TRÍ TUỆ KINH DOANH

Phân tích trên mẫu dữ liệu bang Hawaii qua từng quý trong các năm- Phân tích từ kết quả trả về ban đầu:

- NO₂ cho chất lượng không khí không theo 1 xu hướng nhất định.
- CO, PM10 quá ít dữ kiện thể hiện 1 xu hướng.
- Ozone và PM2.5 cho thấy chất lượng không khí tệ khi vào các quý đầu năm và có xu hướng giảm dần vào các quý giữa, sau đó tăng trở lại khi bước sang năm mới.

Phân tích chi tiết hơn thực hiện trên đồ thị.

6. Câu 6:

Design a report to demonstrate the AQI fluctuation trends over the year for the four following states: Hawaii, Alaska, Illinois and California. Analysis hint: Give your opinion about the fluctuations of AQI value.

```
WITH

MEMBER [Measures].[Yearly AQI] AS

sum([Measures].[AQI]) / (sum ([Measures].[AQIDATA Count]))

SELECT

NON EMPTY { [Measures].[Yearly AQI]} ON 0,

NON EMPTY

CROSSJOIN( [DATE].[Year]. Children,

{[GEOGRAPHY].[State Name].&[Hawaii],

[GEOGRAPHY].[State Name].&[Alaska],

[GEOGRAPHY].[State Name].&[Illinois],

[GEOGRAPHY].[State Name].&[California]},

[PARAMETER].[Parameter Name].Children) ON 1
```

FROM [2425BIDATH DDS];

			Yearly AQI
Hawaii	2021	СО	23
Hawaii	2021	NO2	6
Hawaii	2021	Ozone	28.6441947565543
Hawaii	2021	PM10	25.1428571428571
Hawaii	2021	PM2.5	23.4331877729258
Hawaii	2022	NO2	19.5625
Hawaii	2022	Ozone	28.7627118644068
Hawaii	2022	PM10	27
Hawaii	2022	PM2.5	24.3010204081633
Hawaii	2023	Ozone	19.8735632183908
Hawaii	2023	PM10	11.25
Hawaii	2023	PM2.5	22.0070175438597

Phân tích trên mẫu dữ liệu bang Hawaii qua từng quý trong các năm- Phân tích từ kết quả trả về ban đầu:

- CO, NO₂ thiếu dữ kiện phân tích.
- Ozone, PM10, PM2.5 có xu hướng giữ nguyên từ 2021 sang 2022, giảm vào năm 2023.
 Đặc biệt Ozone, PM10 giảm mạnh.

Phân tích chi tiết hơn thực hiện trên đồ thị.

7. Câu 9:

Report the mean, the standard deviation, min and max of AQI value group by State and County during each quarter of the year. Analysis hints: Pay attention to the values (mean, std, max, min). Are any unusually large or small? Compare the standard deviation values between question 1 and 2, explain.

Means:

With

MEMBER [Measures].[Mean] AS

SUM([Measures].[AQI]) / sum([Measures].[AQIDATA Count])

select non empty {[Measures].[Mean]} on 0,

non empty [GEOGRAPHY].[Hierarchy].[State Name].Members *

[GEOGRAPHY].[County Name].Children*

[DATE].[Hierarchy].[Year].Members *

[DATE].[Quarter].Children *

Nonempty([PARAMETER].[Parameter Name].Children)

on 1

from [2425BIDATH DDS];

][][Mean
Alabama	Dallas	2021	1	NO2	38.5
Alabama	Dallas	2021	1	Ozone	46
Alabama	Dallas	2021	1	PM2.5	48
Alabama	Dallas	2021	2	Ozone	49.1538461538462
Alabama	Dallas	2021	2	PM2.5	45
Alabama	Dallas	2021	3	Ozone	64.555555555556
Alabama	Dallas	2021	3	PM2.5	49
Alabama	Dallas	2021	4	Ozone	50
Alabama	Dallas	2021	4	PM2.5	48.3636363636364
Alabama	Dallas	2022	1	NO2	40.666666666667
Alabama	Dallas	2022	1	Ozone	53.5
Alabama	Dallas	2022	1	PM2.5	35.55555555556
Alabama	Dallas	2022	2	Ozone	36.5
Alabama	Dallas	2022	2	PM2.5	36.6875
Alabama	Dallas	2022	3	Ozone	46.6
Alabama	Dallas	2022	3	PM2.5	42.8181818181818
Alabama	Dallas	2022	4	Ozone	32.8571428571429
Alabama	Dallas	2022	4	PM2.5	41.3571428571429
Alabama	Dallas	2023	1	Ozone	59
Alabama	Dallas	2023	1	PM2.5	47.4
Alabama	Dallas	2023	2	Ozone	37
Alabama	Dallas	2023	2	PM2.5	41.13333333333333
Alabama	Dallas	2023	3	Ozone	35.6666666666667
Alabama	Dallas	2023	3	PM2.5	40.25
Alabama	Dallas	2023	4	NO2	29
Alabama	Dallas	2023	4	Ozone	47.7142857142857
Alabama	Dallas	2023	4	PM2.5	44.4

Min, Max, Std dev:

Phân tích thực hiện trên mẫu bang Alabama, quận Dallas - Mã 24 với trung bình qua từng quý. Kết hợp thử nghiệm câu 1, 2:

- Có sự xuất hiện dị thường min (PM25 = 17, trong khi phổ dữ liệu khác trải đều trong khoảng [21-35]...), max(Ozone = 143, với các quý khác lại tập trung vào 2 cụm 90-100 và 60-70...) (Outliers).
- Giá trị trung bình có độ lệch so với khi đo trên bang Alabama (Cao nhất khoảng 20 đơn vị).
- Độ lệch chuẩn có thể tăng lên hoặc giảm xuống 10 đơn vị.
- Điều này thể hiện độ phân phối trong từng quận và trên toàn bang có sự khác nhau nhất định. Dữ liệu từng quận có thể phân bố thưa hơn và tập trung vào 1 giá trị khác hơn so với dữ liệu trên toàn bang.

Phân tích chi tiết hơn thực hiện trên đồ thị.

HỆ THỐNG THÔNG TIN PHỤC VỤ TRÍ TUỆ KINH DOANH

8. Câu 10:

Create a new attribute, DayLightSaving, in a suitable table. DayLightSaving may have two values: True: Between March 12, 2023, and November 5, 2023 False: Otherwise Report the mean AQI value by State, Category, DayLightSaving over years. Analysis hint: Is there any notable difference on the air quality during the Daylight Saving period compared to the other?

WITH

MEMBER [Measures].[Average AQI] AS

sum([Measures].[AQI]) / sum([Measures].[AQIDATA Count])

SELECT [Measures].[Average AQI] ON COLUMNS,

non empty [GEOGRAPHY].[State Name].Members *

[DATE].[Year].Members *

[DATE].[Is Day Light Saving].Members *

[CATEGORY].[Category Name].Members *

[PARAMETER].[Parameter Name].[Parameter Name].Members

ON ROWS

from [2425BIDATH DDS];

Phân tích dữ liệu trên toàn bộ bang vào năm 2023, giữa các thời điểm có và không có sự kiện tiết kiệm điện:

- · Nhìn chung với các thang đo, xu hướng tiết kiêm điện thể hiện một kết quả tích cực.
- Việc tăng nhẹ độ ô nhiễm không khí trên NO₂ có thể do sự ảnh hưởng từ yếu tố khác trong giai đoạn này hoặc phân bố dữ liệu của thời điểm không tiết kiệm điện thưa hơn, thiên hướng "skew" về phía giá trị min.

Phân tích chi tiết hơn sẽ thực hiện trên đồ thị.

9. Câu 11:

Count the number of days by State, Category in each month. Be caution: The Category in the data set is calculated for each County, not State.

WITH

MEMBER [Measures].[Number Of Days] as

--[Measures].[AQIDATA Count]

DistinctCount([DATE].[Full Date].Children)

SELECT

NON EMPTY {[Measures].[Number Of Days]} ON 0,

NON EMPTY filter(crossjoin([GEOGRAPHY].[Hierarchy].[State Name].Members,

[CATEGORY].[Category Name].Children),

[Measures].[Number Of Days] > 0) ON 1

FROM [2425BIDATH DDS];

		Number Of Days
Delaware	Good	646
Delaware	Moderate	531
Delaware	Unhealthy	2
Delaware	Unhealthy for Sensitive Groups	10
Delaware	Very Unhealthy	2
Florida	Good	510
Florida	Moderate	292
Florida	Unhealthy	2
Florida	Unhealthy for Sensitive Groups	13
Georgia	Good	688
Georgia	Moderate	718
Georgia	Unhealthy	20
Georgia	Unhealthy for Sensitive Groups	69
Georgia	Very Unhealthy	2
Hawaii	Good	1091
Hawaii	Moderate	123
Hawaii	Unhealthy	1
Hawaii	Unhealthy for Sensitive Groups	1
ldaho	Good	495
Idaho	Moderate	410
ldaho	Unhealthy	6
Idaho	Unhealthy for Sensitive Groups	14
Idaho	Very Unhealthy	2
Illinoie	Good	1067

WITH

MEMBER [Measures].[Number Of Days] as

--[Measures].[AQIDATA Count]

DistinctCount([DATE].[Full Date].Children)

SELECT

NON EMPTY {[Measures].[Number Of Days]} ON 0,

NON EMPTY crossjoin([PARAMETER].[Parameter Name].Children,

[CATEGORY].[Category Name].Children) ON 1

FROM [2425BIDATH DDS];

		Number Of Days
СО	Good	208
CO	Hazardous	0
CO	Moderate	2
CO	Unhealthy	0
CO	Unhealthy for Sensitive Groups	0
СО	Very Unhealthy	0
NO2	Good	1092
NO2	Hazardous	0
NO2	Moderate	81
NO2	Unhealthy	0
NO2	Unhealthy for Sensitive Groups	9
NO2	Very Unhealthy	0
Ozone	Good	1095
Ozone	Hazardous	0
Ozone	Moderate	771
Ozone	Unhealthy	299
Ozone	Unhealthy for Sensitive Groups	568
Ozone	Very Unhealthy	103
PM10	Good	1095
PM10	Hazardous	49
PM10	Moderate	784
PM10	Unhealthy	59
PM10	Unhealthy for Sensitive Groups	205
PM10	Very Unhealthy	26
PM2.5	Good	1095
PM2.5	Hazardous	30
PM2.5	Moderate	1095
PM2.5	Unhealthy	209
PM2.5	Unhealthy for Sensitive Groups	412
PM2.5	Very Unhealthy	64

Phân tích:

- CO đo vào lượng ít các ngày và luôn cho thấy chất lượng không khí tốt khi đo.
- NO₂ cho ra kết quả tích cực khi được đo.
- Ozone, PM10, PM2.5 thể hiện mức độ ô nhiễm rải rác trên từng khu vực trong các ngày.
- Mỹ nên tập trung kiểm soát độ ô nhiễm về Ozone, PM10, PM2.5 trên các khu vực có các độ đo này mang thiên hướng tệ. Đồng thời, tiến hành đo thêm dữ liệu về CO để có cái nhìn chính xác hơn về ô nhiễm không khí theo đơn vị này.

Toàn bộ truy vấn lưu tại: 05.zip/ MDXQuery.mdx

Tài liệu tham khảo: