Model parameters

Diffusivities

* Radial and axial diffusivity of oxygen in pear tissue

$$D_{u_r} = 2.8 \times 10^{-10} \text{ m}^2/\text{s}$$
 , $D_{u_z} = 1.10 \times 10^{-9} \text{ m}^2/\text{s}$

* Radial and axial diffusivity of carbon dioxide in pear tissue

$$D_{v_r} = 2.32 \times 10^{-9} \text{ m}^2/\text{s}$$
 , $D_{v_z} = 6.97 \times 10^{-9} \text{ m}^2/\text{s}$

Respiration kinetic parameters

* Maximum oxygen consumption rate

$$V_{mu} = V_{mu,ref} \exp\left[\frac{E_{a,vmu,ref}}{R_g} \left(\frac{1}{T_{ref}} - \frac{1}{T}\right)\right]$$

with T_{ref} a reference temperature (in degree Kelvin), T the actual temperature (in degree Kelvin) and $R_g = 8.314 \text{ J/(mol K)}$ the universal gas constant.

– Maximum oxygen consumption rate at $T_{ref} = 293.15 \text{ K} (= 20^{\circ}\text{C})$:

$$V_{mu,ref}$$
: 2.39 × 10⁻⁴ mol/(m³ s).

- Activation energy for oxygen consumption:

$$E_{a,vmu,ref}$$
: 80200 J/mol.

* Maximum fermentative carbon dioxide production rate:

$$V_{mfv} = V_{mfv,ref} \exp \left[\frac{E_{a,vmfv,ref}}{R_g} \left(\frac{1}{T_{ref}} - \frac{1}{T} \right) \right].$$

- Maximum fermentative carbon dioxide production rate at $T_{ref} = 293.15$ K:

$$V_{mfv,ref}$$
: 1.61 × 10⁻⁴ mol/(m³ s).

- Activation energy for fermentative carbon dioxide production:

$$E_{a,vmfv,ref}$$
: 56700 J/mol.

- * Michaelis-Menten constants and respiration quotient.
 - Michaelis-Menten constant for oxygen consumption:

$$K_{mu}$$
: 0.4103 mol/m³.

Michaelis-Menten constant for non-competitive carbon dioxide inhibition:

$$K_{mv}$$
: 27.2438 mol/m³.

 Michaelis-Menten constant of oxygen inhibition on fermentative carbon dioxide production:

$$K_{mfu}$$
: 0.1149 mol/m³.

- The respiration quotient:

$$r_a$$
: 0.97.

Convective mass transfer coefficients

$$h_u = 7 \times 10^{-7} \text{ m/s}$$
 , $h_v = 7.5 \times 10^{-7} \text{ m/s}$.

Ambient conditions

* Atmospheric pressure

$$p_{atm} = 101300 \text{ Pa}.$$

* Temperature

$$T = T_{cel} + 273.15$$

with T the temperature in degree Kelvin (K) and T_{cel} the temperature in degree Celsius (o C).

* Ambient oxygen and carbon dioxide concentrations

$$C_{uamb} = \frac{p_{atm} \eta_u}{R_g T}$$
$$C_{vamb} = \frac{p_{atm} \eta_v}{R_g T}$$

with p_{atm} (Pa) the atmospheric pressure, η_u and η_v the fraction (percentage) oxygen and carbon dioxide in the (controlled) atmosphere, respectively; R_g the universal gas constant (J/(mol K)); and T the ambient temperature in degree Kelvin (K).

Note: $0 \le \eta_u \le 1$, $0 \le \eta_v \le 1$.

Simulations

Compute steady-state oxygen and carbon dioxide concentration profiles for the following storage conditions.

Storage description	$T_{cel}(^{o}\mathrm{C})$	η_u (%)	$\eta_v~(\%)$
Orchard	25	20.8	0.04
Shelf life	20	20.8	0
Refrigerator	7	20.8	0
Precooling	-1	20.8	0
Disorder innducing	-1	2	5
Optimal CA	-1	2	0.7

Note: To compute C_{uamb} and C_{vamb} the fractions η_u and η_v should be numbers between 0 and 1.