NCERT-discrete: 10.5.3 - 2

EE23BTECH11025 - Anantha Krishnan

I. QUESTION

Find the sums given below:

(i)
$$7 + 10\frac{1}{2} + 14 \dots + 84$$

(ii)
$$34 + 3\cancel{2} + 30 \dots + 10$$

(iii)
$$-5 + -8 + -11 \dots -230$$

Solutions:

(i)
$$7 + 10\frac{1}{2} + 14 \dots + 84$$

Let $S_i(k)$ denote the sum of first k terms in the i^{th} series, $x_i(0)$ denotes its first term, d_i denotes the common difference and $u_{(k)}$ denote the unit step function.

$$S_k = \frac{ku_{(k)}}{2}(2x_i(0) + (k-1)d_i) \tag{1}$$

For number of terms, we use

$$x_i(n) = (x_i(0) + nd_i)u_n \tag{2}$$

Where $x_i(n)$ is the $(n + 1)^{th}$ term of the series. Putting the values

$$84 = 7 + \frac{7n}{2} \tag{3}$$

$$n = 22 \tag{4}$$

1) Calculating $S_1(k)$ for $x_1(n)$: We now use this result for calculating $S_1(23)$

$$S_1(23) = \frac{23}{2}(14 + (22)\frac{7}{2})$$
 (5)

Solving this yields $S_1(23) = 1046.5$ We are now required to calculate $X_1(z)$ in terms of u(n) and $x_1(n)$. Where u(n) is the unit step function.

$$x_1(n) = u_{(n)}(x_1(0) + \frac{7n}{2})$$
 (6)

2) **Z-Transform of** $x_1(n)$: By the Definition of Z-transform:

$$\sum_{n=-\infty}^{\infty} Z^{-n} x_i(n) = X_i(Z) \tag{7}$$

Graph:1 $x_1(n)$ vs n

Putting $x_1(n)$ in (7), we get

$$\sum_{n=-\infty}^{\infty} (x_1(0) + \frac{7n}{2}) u_{(n)} Z^{-n} = X_1(z)$$
 (8)

$$\sum_{n=0}^{\infty} (7 + \frac{7n}{2}) u_{(n)} Z^{-n} = X_1(z)$$
 (9)

$$7z(1-z)^{-1}$$
+

$$7z((1-z))^{-1}+$$

$$7z(2(1-z))^{-2} = X_1(z)$$
 (10)

3) Region of Convergence

$$|z| < 1 \tag{11}$$

In this bit $x_2(0) = 34$, $d_2 = -2$.

Using equation (2)

$$10 = 34 - 2n \tag{12}$$

$$n = 12 \tag{13}$$

For $x_2(n)$

$$x_2(n) = x_2(0) + nd_2 (14)$$

$$x_2(n) = x_2(0) - 2n (15)$$

Graph:2 $x_2(n)$ vs n

1) **Z-Transform of** $x_2(n)$: Using (7)

$$\sum_{n=-\infty}^{\infty} (x_2(0) - 2n)u_{(n)}Z^{-n} = X_2(z)$$
 (16)

For $X_2(z)$

$$34z(1-z)^{-1} - 34z((1-z))^{-1} - 2z((1-z))^{-2} = X_2(z)$$
 (17)

2) Calculating $S_2(k)$ of $x_2(n)$: For calculating the sum, we use (1)

$$S_2(13) = \frac{13}{2}(64 + 11(-2)) \tag{18}$$

$$S_2(13) = 286.$$
 (19)

3) Region of Convergence

$$|z| < 1 \tag{20}$$

(iii)
$$-5 + -8 + -11 \dots -230$$

Here $x_3(0) = -5$, $d_3 = -3$ From (2)
 $-230 = -5 - 3n$ (21)

$$n = 75 \tag{22}$$

Graph:3 $x_3(n)$ vs n

For $x_3(n)$

$$x_3(n) = x_3(0) + nd_3 (23)$$

$$x_{3(n)} = x_3(0) - 3n (24)$$

1) **Z-Transform of** $x_3(n)$: Putting $x_3(n)$ in (7)

$$\sum_{n=-\infty}^{\infty} (x_3(0) - 3n)u_{(n)}Z^{-n} = X_3(z)$$
 (25)

For $X_3(z)$, we use the same process as in (i) bit

$$-5z(1-z)^{-1} - 5z((1-z))^{-1} - 3z((1-z))^{-2} = X_3(z)$$
 (26)

2) Calculating $S_3(k)$ of $x_3(n)$: Using (1):

$$S_3(76) = \frac{76}{2}(-10 + (76 - 1)(-3)) \tag{27}$$

$$S_3(76) = -8930$$
 (28)

3) Region of Convergence

$$|z| < 1 \tag{29}$$

Symbols	Description	Values
d_i	Common Difference	3.5, -2, -3
$x_i(n)$	Sequence	$(x_i(0) + nd_i)u_{(k)}$
$X_i(z)$	Z-Transform of $x_i(n)$	$2x_i(0)(1-z)^{-1} + (d_i)z(1-z)^{-2}$
$S_i(k)$	Sum of k-terms in i th series	$\frac{ku_{(k)}}{2}(2x_i(0) + (k-1)d_i)$

Table 1 : Symbols ,Description and Values