1 Kodaira Vanishing Revisited

1.1 Classical Kodaira Vanishing

Theorem 1.1.1. Let X/\mathbb{C} be smooth projective $d = \dim X$ and $\mathcal{L} \in \text{Pic}(X)$ ample. Then,

$$H^{< d}(X, \mathcal{L}^{\otimes -1}) = 0$$

or equivalently,

$$H^{>0}(X,\Omega_X\otimes\mathcal{L})=0$$

Remark. There is a version for \mathcal{L} big and nef (Kawamata-Viehweg). Useful because big + nef is stable under pullback along proper birational maps unlike ampleness (e.g. consider blowups).

1.2 Applications

Say $H = V(s) \subset X$ with $\mathcal{L} = \mathcal{O}_X(H)$ is a hyperplane section. Then,

$$H^0(X, \omega_X(2H)) \to H^0(H, \omega_H(H))$$

is surjective.

Proof. There is an exact sequence,

$$0 \longrightarrow \omega_X \longrightarrow \omega_X(H) \longrightarrow \omega_H \longrightarrow 0$$

and then tensor by $\mathcal{O}_X(H)$ and apply Kodaira vanishing to get $H^1(X,\omega_X(H))=0$.

1.3 Proof of Kodaira Vanishing

Say $\mathcal{L} = \mathcal{O}_X(H)$ for $H \subset X$ meaning \mathcal{L} is effective. We want to show that $H^{< d}(X, \mathcal{L}^{\otimes -1}) = 0$. Hodge theory,

$$H^{< d}(X, \mathcal{L}^{\otimes -1}) \subset_{\operatorname{summand}} H_c^{< d}(X \backslash H, \mathbb{C}) \cong H^{> d}(X \backslash H, \mathbb{C})^{\vee} = 0$$

using Poincare duality and Artin vanishing because $X \setminus H$ is affine.

1.4 What Happens over \mathbb{F}_p or \mathbb{Z}

- (a) False in general over \mathbb{F}_p
 - (a) Mumford (singular surface over \mathbb{F}_p)
 - (b) Raynaud (over \mathbb{F}_p)
 - (c) Totaro (over \mathbb{Z})
- (b) Deligne-Illusie: it is true in $\dim < p$ in the liftable case.

Salvage: work up to finite covers. (In characteristic zero, vanishing after a finite cover implies vanishing but not in positive characteristic).

Example 1.4.1. $X = S^1$ and $H^1(S^1, \mathbb{F}_p) = \mathbb{F}_p$ but $[p]: S^1 \to S^1$ annhilates this class,

$$[p]^*: H^1(S^1, \mathbb{F}_p) \to H^1(S^1, \mathbb{F}_p)$$

is zero.

2 Kodaira Vanishing in Mixed Characteristic

Theorem 2.0.1. Say X/\mathbb{Z}_p is proper flat variety of relative dimension d and $\mathcal{L} \in \text{Pic}(X)$ is semiample and big. Then there exist a finite surjective map $\pi: Y \to X$ such that,

$$\pi^*: H^{\bullet}(X, \mathcal{L}^{\otimes a})_{\mathrm{tors}} \to H^{\bullet}(Y, \pi^* \mathcal{L}^{\otimes a})_{\mathrm{tors}}$$

is 0 for $a \in \{-1, 0, 1\}$.

Remark. Analog over \mathbb{F}_p is also true (Hochster-Huneke Smith 90s) for $H^{< d}(X, \mathcal{L}^{\otimes -1})$ and $H^{> 0}(X, \mathcal{L}^{\otimes a})$ for $a \in \{0, 1\}$.

Example 2.0.2. X = E elliptic curve over \mathbb{F}_p and $H^1(X, \mathcal{O}_X) = \mathbb{F}_p$ then $[p] : E \to E$ does the job.

Remark. In positive characteristic, the \mathcal{L} in positive degrees case is easy because we can take, $H^i(X, (\operatorname{Frob}_n^n)^*\mathcal{L}) = H^i(X, \mathcal{L}^{\otimes p^n}) = 0$ by Serre vanishing.

Remark. Ramification is necessary (ex consider K3 surface).

Remark. There is a relative varient over complete noetherian local domains (R, \mathfrak{m}) with $p \in \mathfrak{m}$.

Remark. Try to prove the following: say X/\mathbb{Z}_p is a relative curve. Then there exists $\pi: Y \to X$ finite cover such that $H^1(X, \mathcal{O}_X) \to H^1(X, \mathcal{O}_Y)$ is divisible by p.

2.1 Application

Theorem 2.1.1 (BMPSTWW, TY). One can run the MMP for arithmetic 3-folds (relative dimension 2) over $\mathbb{Z}[30^{-2}]$.

2.2 Local Kodaira Vanishing

Let $X \subset \mathbb{P}^n$ be a projective variety then the affine cone C(X) preserves nice properties of X.

Principle: projective geometry of $X \subset \mathbb{P}^n$ is equivalent to local geometry of Cone at 0.

Theorem 2.2.1 (Local Kodaira). Let (R, \mathfrak{m}) be an excellent noetherian local domain. Let R^+ be the absolute integral closure (integral closure of R in $\overline{\operatorname{Frac}(R)}$). Then R^+/p is a Cohen-Macalay module over R/p.

Remark. Say we have $\mathbb{Z}_p[[x_1,\ldots,x_n]] \hookrightarrow R$ is finite. Then there exists a finite extension $R \hookrightarrow S$ with the following feature. Any relation $\sum a_i x_i = 0$ in R/p is trivial in S/p.

Remark. This thm implies "homological conjectures" in commutative algebra (e.g. direct summand conjecture). Easy to deduce the direct summand conjecture from CM theorem.

2.3 What Goes Into the Proof?

p-adic Riemann-Hilbert correspondences (joint with Lurie)

Theorem 2.3.1. Say C/\mathbb{Q}_p is complete and algebraically closed and X/\mathcal{O}_C is proper flat scheme. There exists a natural exact functor,

$$RH: D(X_C, \mathbb{F}_p) \to D_{qc}(X_{p=0})$$

such that perverse \mathbb{F}_p -sheaves are taken to almost CM complexes.

Why is this useful. Say X/\mathcal{O}_C as before and consdier the absolute integral closure $\pi: X^+ \to X$. Fact,

$$RH(\pi_*\mathbb{F}_p|_{X_C}) = \pi_*\mathcal{O}_{X^+}/p$$

Using this, can "almost" prove theorem via:

Lemma 2.3.2. Y/\mathbb{C} any variety of dim Y=d and $\pi:Y^+\to Y$ absolute integral closure. Then $\pi_*\mathbb{F}_p[d]$ is perverse.

To go to honest statement (not almost) use prismatic cohomology.

2.4 Question

Say (R, \mathfrak{m}) is a p-adically complete excellent domain.

Definition 2.4.1. The test ideal is,

$$\tau(\omega_R) = \bigcap_{R \hookrightarrow S \hookrightarrow R^+} \operatorname{im} \left(\operatorname{tr} : \omega_S \to \omega_R \right) \subset \omega_R$$

with $R \hookrightarrow S$ finite.

Question: Does $R \mapsto \tau(\omega_R)$ commute with localization?

Evidence:

- (a) True if p = 0 in R (Smith)
- (b) True "up to *p*-perturbation".

Corollary 2.4.2. $\tau(\omega_R)[p^{-1}]$ is the Grauert-Riemenschneider sheaf in $\omega_{R[p^{-1}]}$.

Remark. Spec (\mathcal{O}_C) has two points with residue fields C and $\overline{\mathbb{F}}_p$ respectively.