

OpenHarmony 基础外设开发----NFC

目录

CONTENTS

01 什么是NFC

NFC工作原理

03 NFC接口

04 如何控制NFC

01 什么是NFC

近场通信(Near Field Communication,简称NFC),是一种新兴的技术,使用了NFC技术的设备(例如移动电话)可以在彼此靠近的情况下进行数据交换,是由非接触式射频识别(RFID)及互连互通技术整合演变而来的,通过在单一芯片上集成感应式读卡器、感应式卡片和点对点通信的功能,利用移动终端实现移动支付、电子票务、门禁、移动身份识别、防伪等应用。

02 NFC工作原理

NFC是一种短距高频的无线电技术,NFCIP-1标准规定NFC的通信距离为10厘米以内,运行频率13.56MHz,传输速度有106Kbit/s、212Kbit/s或者424Kbit/s三种。NFCIP-1标准详细规定NFC设备的传输速度、编解码方法、调制方案以及射频接口的帧格式,此标准中还定义了NFC的传输协议,其中包括启动协议和数据交换方法等。

NFC接口的头文件

/vendor/lockzhiner/rk2206/samples/b0_nfc/include/**nfc.h** OpenHarmony基础外设开发NFC接口主要有:

- (1) 初始化和注销NFC;
- (2)控制NFC。

NFC接口

功能分类	接口名	功能描述
初始化、销毁NFC	nfc_init	NFC模块初始化
	nfc_deinit	NFC模块注销
控制NFC	nfc_store_uri_http	向NFC写入URI信息
	nfc_store_text	向NFC写入txt信息

unsigned int nfc_init(void);

该函数主要功能是初始化NFC模块。 返回0为成功,其余为失败。

unsigned int nfc_deinit(void);

该函数主要功能是NFC模块注销。 返回0为成功,其余则失败。

bool nfc_store_uri_http(RecordPosEnu position, uint8_t *http);

该函数主要功能是向NFC写入URI信息。

- ■参数position: 信息标识;
- □参数http: 需要写入的网络地址字符串。

返回true为成功, false则失败。

bool nfc_store_text(RecordPosEnu position, uint8_t *text);

该函数主要功能是向NFC写入TXT信息。

- ■参数position: 信息标识;
- □参数text: 需要写入的TXT字符串。

返回true为成功, false则失败。

04

如何控制NFC

1、打开sdk下面路径的文件

vendor/lockzhiner/rk2206/samples/b2_nfc/nfc_example.c

2、创建任务

在nfc_example函数中,通过LOS_TaskCreate函数创建nfc_process任务。

task.pfnTaskEntry = (TSK_ENTRY_FUNC)nfc_process;

task.uwStackSize = 10240;

task.pcName = "nfc process";

task.usTaskPrio = 24;

ret = LOS_TaskCreate(&thread_id, &task);


```
ret = nfc_store_text(NDEFFirstPos, (uint8_t *)TEXT);
                                                          if (ret != 1) {
void nfc_process(void)
                                                             printf("NFC Write Text Failed: %d\n", ret);
  unsigned int ret = 0;
                                                          ret = nfc_store_uri_http(NDEFLastPos, (uint8_t
                                                        *)WEB);
  /* 初始化NFC设备 */
                                                          if (ret != 1) {
  nfc_init();
                                                             printf("NFC Write Url Failed: %d\n", ret);
```


如何控制NFC

3、修改编译脚本

修改 vendor/lockzhiner/rk2206/sample 路径下 BUILD.gn 文件, 指定 nfc_example 参与编译。

"./b2_nfc:nfc_example",

修改 device/lockzhiner/rk2206/sdk_liteos 路径下 Makefile 文件,添加 -Infc_example 参与编译。

hardware_LIBS = -Ihal_iothardware -Ihardware -Infc_example

4、编译固件

hb set -root.

hb set

hb build -f

如何控制NFC

- 5、烧写固件
- 6、通过串口查看结果

运行结果

==========NFC Example===========

Please use the mobile phone with NFC function close to the development board!

.

谢谢聆听

单击此处添加副标题内容