

Embedded System and Microcomputer Principle

LAB6 Pulse Width Modulation

2021 Fall wangq9@mail.sustech.edu.cn

CONTENTS

- 1 PWM Mode Description
- 2 TIM1 Registers
- How to Program
- 4 Practice

01

PWM Mode Description

-- What is PWM

- 有方科技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
- 脉冲宽度调制 (Pulse width modulation, PWM)
- 通过对一系列脉冲的宽度进行调制,等效地获得所需要的波形
- 通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化

-- What is Duty Cycle

$$V_{avg} = V_{max} \times Duty \ Cycle$$

- -- PWM working principle
- 假定定时器工作在向上计数 PWM 模式,且当 CNT<CCRx 时,输出 "0",当 CNT>=CCRx 时输出"1"
- · 当 CNT 达到 ARR 值的时候,重新 归零,再重新向上计数,依次循环

- · 改变 CCRx 的值,就可以改变 PWM 输出的占空比
- 改变 ARR 的值,就可以改变 PWM 输出的频率

- -- PWM working process
- 2个阶段
 - 数值比较
 - 控制输出
- 涉及寄存器
 - TIMx_ARR
 - TIMx_PSC
 - TIMx_CNT
 - TIMx_CCRx
 - TIMx_CCMRx
 - TIMx_CCER
 - TIMx_BDTR(TIM1、TIM8需要)

PWM working process (take channel 1 as an example)

-- PWM working process(continued)

寄存器	位	说明	例子
TIM1_CR1	DIR	0: 计数器向上计数 1: 计数器向下计数	(1) DIR = 0 -> OC1M = 110 -> TIM1_CNT < TIM1_CCR1 -> 通道1为有效电平 (OC1REF=1) -> CCIP = 0 -> OC1输出为高电平;
TIM1_CCMR1	OC1M	110: PWM模式1 111: PWM模式2	(2) DIR = 1 -> OC1M = 110 -> TIM1_CNT > TIM1_CCR1 -> 通道1为无效电平 (OC1REF=0) -> CCIP = 1 -> OC1输出为高电平;
TIM1_CCER	CCIP	0: OC1高电平有效 1: OC1低电平有效	(3) DIR = 0 -> OC1M = 111 -> TIM1_CNT < TIM1_CCR1 -> 通道1为无效电平 (OC1REF=0) -> CCIP = 0 -> OC1输出为低电平;
TIM1_CCER	CC1E	0: 关闭, OC1禁止输出 1: 开启, OC1信号输出到对应引脚	(4) DIR = 1 -> OC1M = 111 -> TIM1_CNT > TIM1_CCR1 -> 通道1为有效电平 (OC1REF=1) -> CCIP = 1 -> OC1输出为低电平;

-- PWM waveform examples

Three PWM signals from the Output Compare Channels of a general purpose timer

- -- PWM configuration steps
- 使能定时器和相关IO口时钟
- · 初始化定时器: ARR,PSC等
- 初始化输出比较参数
- 使能预装载寄存器
- 使能定时器
- · 不断改变比较值CCRx, 达到不同的占空比效果

02

TIM1 Registers

2. TIM1 Registers

- -- TIM1_CR1
- TIM1 control register 1
- 控制寄存器1

1.01	
位6:5	CMS[1:0]: 选择中央对齐模式 (Center-aligned mode selection)
	00: 边沿对齐模式。计数器依据方向位(DIR)向上或向下计数。
	01:中央对齐模式1。计数器交替地向上和向下计数。配置为输出的通道(TIMx_CCMRx寄存器中CCxS=00)的输出比较中断标志位,只在计数器向下计数时被设置。
	10:中央对齐模式2。计数器交替地向上和向下计数。配置为输出的通道(TIMx_CCMRx寄存器中CCxS=00)的输出比较中断标志位,只在计数器向上计数时被设置。
	11: 中央对齐模式3。计数器交替地向上和向下计数。配置为输出的通道(TIMx_CCMRx寄存器
	中CCxS=00)的输出比较中断标志位,在计数器向上和向下计数时均被设置。
	注: 在计数器开启时(CEN=1), 不允许从边沿对齐模式转换到中央对齐模式。
位4	DIR: 方向 (Direction)
	0: 计数器向上计数;
	1: 计数器向下计数。
	注: 当计数器配置为中央对齐模式或编码器模式时,该位为只读。

2. TIM1 Registers

- -- TIM1_CCRx
- TIM1 capture/compare register (x = 1/2/3/4)
- 捕获/比较寄存器
- 该寄存器总共有 4 个, 对应 4 个输通道 CH1~4
- 在输出模式下,该寄存器的值与 CNT 的值比较,根据比较结果产生相应动作。利用这点,我们通过修改这个寄存器的值,就可以控制 PWM 的输出脉宽了。

2. TIM1 Registers -- TIM1_CCR1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CCR1[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
	12	215:0	若CC CCR 如果 存器 当前 若CC	1包含了 在TIMX 中。否则 捕获/比: 1通道	_CCMR 则只有当 较寄存器	出: 前捕获/ 1寄存器 更新事 器参与同	比较1寄 (OC1P 件发生8 计数器	寸, 此形	未选择剂 装载值 NT的比	页装载特 才传输3 较,并	至当前捕在OC1站	获/比较	直会立即 (1寄存器 生输出	中。	当前者

2. TIM1 Registers

- -- TIM1_CCMR1/2
- TIM1 capture/compare mode register 1/2
- 捕获/比较模式寄存器
- TIM1_CCMR1控制CH1和2, 而TIM1_CCMR2控制CH3和4
- 通道可用于输入(捕获模式)或输出(比较模式),通道的方向由相应的CCxS位定义。该寄存器其它位的作用在输入和输出模式下不同。
- OCxx描述了通道在输出模式下的功能,ICxx描述了通道在输入模式下的功能。因此必须注意,同一个位在输出模式和输入模式下的功能是不同的。

2. TIM1 Registers -- TIM1_CCMR1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OC2CE	0	C2M[2:0]	OC2PE	OC2FE	ccoc	OC1CE OC1CE		OC1M[2:0]			OC1PE	OC1FE	0010[1.0]	
IC2F[3:0]				IC2PS0	C[1:0]	CC2S[1:0]		IC1F[3:0]			IC1PS	C[1:0]	CC1S[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

输出比较模式:

位15	OC2CE: 输出比较2清0使能 (Output Compare 2 clear enable)
位14:12	OC2M[2:0]: 输出比较2模式 (Output Compare 2 mode)
位11	OC2PE: 输出比较2预装载使能 (Output Compare 2 preload enable)
位10	OC2FE: 输出比较2快速使能 (Output Compare 2 fast enable)
位9:8	CC2S[1:0]: 捕获/比较2选择。(Capture/Compare 2 selection) 该位定义通道的方向(输入/输出),及输入脚的选择: 00: CC2通道被配置为输出; 01: CC2通道被配置为输入,IC2映射在TI2上; 10: CC2通道被配置为输入,IC2映射在TI1上; 11: CC2通道被配置为输入,IC2映射在TRC上。此模式仅工作在内部触发器输入被选中时(由TIMx_SMCR寄存器的TS位选择)。 注: CC2S仅在通道关闭时(TIMx_CCER寄存器的CC2E=0)才是可写的。

2. TIM1 Registers-- TIM1_CCMR1(continued)

位7	OC1CE:输出比较1清'0'使能 (Output Compare 1 clear enable) 0: OC1REF 不受ETRF输入的影响; 1: 一旦检测到ETRF输入高电平,清除OC1REF=0。	位3	OC1PE:输出比较1预装载使能 (Output Compare 1 preload enable) 0:禁止TIMx_CCR1寄存器的预装载功能,可随时写入TIMx_CCR1寄存器,并且新写入的数值立即起作用。
位6:4	OC1M[2:0]:输出比较1模式 (Output Compare 1 mode) 该3位定义了输出参考信号OC1REF的动作,而OC1REF决定了OC1、OC1N的值。OC1REF是高电平有效,而OC1、OC1N的有效电平取决于CC1P、CC1NP位。 000: 冻结。输出比较寄存器TIMx_CCR1与计数器TIMx_CNT间的比较对OC1REF不起作用; 001: 匹配时设置通道1为有效电平。当计数器TIMx_CNT的值与捕获/比较寄存器1 (TIMx_CCR1)相同时,强制OC1REF为高。 010: 匹配时设置通道1为无效电平。当计数器TIMx_CNT的值与捕获/比较寄存器1 (TIMx_CCR1)相同时,强制OC1REF为低。 011: 翻转。当TIMx_CCR1=TIMx_CNT时,翻转OC1REF的电平。 100: 强制为无效电平。强制OC1REF为低。 101: 强制为有效电平。强制OC1REF为低。 101: 强制为有效电平。强制OC1REF为高。	位2	1: 开启TIMx_CCR1寄存器的预装载功能,读写操作仅对预装载寄存器操作,TIMx_CCR1的预装载值在更新事件到来时被加载至当前寄存器中。 注1: 一旦LOCK级别设为3(TIMx_BDTR寄存器中的LOCK位)并且CC1S=00(该通道配置成输出)则该位不能被修改。 注2: 仅在单脉冲模式下(TIMx_CR1寄存器的OPM=1),可以在未确认预装载寄存器情况下使用PWM模式,否则其动作不确定。 OC1FE: 输出比较1 快速使能 (Output Compare 1 fast enable)该位用于加快CC输出对触发输入事件的响应。 0: 根据计数器与CCR1的值,CC1正常操作,即使触发器是打开的。当触发器的输入有一个有效沿时,激活CC1输出的最小延时为5个时钟周期。 1: 输入到触发器的有效沿的作用就象发生了一次比较匹配。因此,OC被设置为比较电平而与比较结果无关。采样触发器的有效沿和CC1输出间的延时被缩短为3个时钟周期。 OCFE只在通道被配置成PWM1或PWM2模式时起作用。
	无效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。 111: PWM模式2— 在向上计数时,一旦TIMx_CNT <timx_ccr1时通道1为无效电平,否则为有效电平;在向下计数时,一旦timx_cnt>TIMx_CCR1时通道1为有效电平,否则为无效电平。 注1: 一旦LOCK级别设为3(TIMx_BDTR寄存器中的LOCK位)并且CC1S=00(该通道配置成输出)则该位不能被修改。 注2: 在PWM模式1或PWM模式2中,只有当比较结果改变了或在输出比较模式中从冻结模式切换到PWM模式时,OC1REF电平才改变。</timx_ccr1时通道1为无效电平,否则为有效电平;在向下计数时,一旦timx_cnt>	位1:0	CC1S[1:0]: 捕获/比较1 选择。(Capture/Compare 1 selection) 这2位定义通道的方向(输入/输出),及输入脚的选择: 00: CC1通道被配置为输出; 01: CC1通道被配置为输入,IC1映射在TI1上; 10: CC1通道被配置为输入,IC1映射在TI2上; 11: CC1通道被配置为输入,IC1映射在TRC上。此模式仅工作在内部触发器输入被选中时(由TIMx_SMCR寄存器的TS位选择)。 注: CC1S仅在通道关闭时(TIMx_CCER寄存器的CC1E=0)才是可写的。

2. TIM1 Registers

- -- TIM1_CCER
- TIM1 capture/compare enable register
- 捕获/比较使能寄存器
- 该寄存器控制着各个输入输出通道的开关

2. TIM1 Registers-- TIM1_CCER(continued)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
保	留	CC4P	CC4E	CC3NP	CC3NE	CC3P	CC3E	CC2NP	CC2NE	CC2P	CC2E	CC1NP	CC1NE	CC1P	CC1E
		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
	1	立15:14	保留	,始终请	卖为0。										
	1	<u></u> 13		P:输入 CC1P的		俞出极性	E (Capti	ure/Com	npare 4	output p	oolarity)				
	1	立12		E:输入 CC1E 的		俞出使能	₺ (Capti	ure/Com	npare 4	output 6	enable)				
	1	<u>立</u> 11	1		入/捕获; 的描述。	3互补输	出极性	(Captur	e/Comp	are 3 c	omplem	nentary o	output p	olarity)	
	位10 CC3NE: 输入/捕获3互补输出使能 (Capture/Compare 3 complementary output enable) 参考CC1NE的描述。														
	位9 CC3P: 输入/捕获3输出极性 (Capture/Compare 3 output polarity) 参考CC1P的描述。														

位8	CC3E: 输入/捕获3输出使能 (Capture/Compare 3 output enable) 参考CC1E 的描述。
位7	CC2NP: 输入/捕获2互补输出极性 (Capture/Compare 2 complementary output polarity) 参考CC1NP的描述。
位6	CC2NE: 输入/捕获2互补输出使能 (Capture/Compare 2 complementary output enable) 参考CC1NE的描述。
位5	CC2P: 输入/捕获2输出极性 (Capture/Compare 2 output polarity) 参考CC1P的描述。
位4	CC2E: 输入/捕获2输出使能 (Capture/Compare 2 output enable) 参考CC1E的描述。
位3	CC1NP: 输入/捕获1互补输出极性 (Capture/Compare 1 complementary output polarity) 0: OC1N高电平有效; 1: OC1N低电平有效。 注: 一旦LOCK级别(TIMx_BDTR寄存器中的LOCK位)设为3或2且CC1S=00(通道配置为输出)则该位不能被修改。
位2	CC1NE: 输入/捕获1互补输出使能 (Capture/Compare 1 complementary output enable) 0: 关闭 — OC1N禁止输出,因此OC1N的电平依赖于MOE、OSSI、OSSR、OIS1、OIS1N和CC1E位的值。 1: 开启 — OC1N信号输出到对应的输出引脚,其输出电平依赖于MOE、OSSI、OSSR、OIS1、OIS1N和CC1E位的值。

位1	CC1P: 输入/捕获1输出极性 (Capture/Compare 1 output polarity)
	CC1通道配置为输出:
	0: OC1高电平有效;
	1: OC1低电平有效。
	CC1通道配置为输入:
	该位选择是IC1还是IC1的反相信号作为触发或捕获信号。
	0:不反相:捕获发生在IC1的上升沿;当用作外部触发器时,IC1不反相。
	1: 反相: 捕获发生在IC1的下降沿; 当用作外部触发器时, IC1反相。
	注:一旦LOCK级别(TIMx_BDTR寄存器中的LOCK位)设为3或2,则该位不能被修改。
位0	CC1E: 输入/捕获1输出使能 (Capture/Compare 1 output enable)
	CC1通道配置为输出:
	0: 关闭 — OC1禁止输出,因此OC1的输出电平依赖于MOE、OSSI、OSSR、OIS1、OIS1N和CC1NE位的值。
	1: 开启 - OC1信号输出到对应的输出引脚,其输出电平依赖于MOE、OSSI、OSSR、OIS1、OIS1N和CC1NE位的值。
	CC1通道配置为输入:
	该位决定了计数器的值是否能捕获入TIMx_CCR1寄存器。
	0: 捕获禁止;
	0: 捕获使能。

2. TIM1 Registers

- -- TIM1_BDTR
- TIM1 break and dead-time register
- 刹车和死区寄存器
- 如果使用通用定时器,则无须配置该寄存器
- 如果使用高级定时器,则需要配置该寄存器

2. TIM1 Registers

-- TIM1_BDTR(continued)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
L	MOE	AOE	BKP	BKE	OSSR	0SSI	LOCK[[1:0]				DTG[7:0]			
r	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

注释: 根据锁定设置,AOE、BKP、BKE、OSSI、OSSR和DTG[7:0]位均可被写保护,有必要在第一次写入TIMx_BDTR寄存器时对它们进行配置。

	· · · · · · · · · · · · · · · · · · ·
位15	MOE: 主输出使能 (Main output enable) 一旦刹车输入有效,该位被硬件异步清'0'。根据AOE位的设置值,该位可以由软件清'0'或被自动置1。它仅对配置为输出的通道有效。 0: 禁止OC和OCN输出或强制为空闲状态; 1: 如果设置了相应的使能位(TIMx_CCER寄存器的CCxE、CCxNE位),则开启OC和OCN输出。 有关OC/OCN使能的细节,参见13.4.9节,TIM1和TIM8捕获/比较使能寄存器(TIMx_CCER)。
位14	AOE: 自动输出使能 (Automatic output enable) 0: MOE只能被软件置'1'; 1: MOE能被软件置'1'或在下一个更新事件被自动置'1'(如果刹车输入无效)。 注: 一旦LOCK级别(TIMx_BDTR寄存器中的LOCK位)设为'1',则该位不能被修改。
位13	BKP: 刹车输入极性 (Break polarity) 0: 刹车输入低电平有效; 1: 刹车输入高电平有效。 注: 一旦LOCK级别(TIMx_BDTR寄存器中的LOCK位)设为'1',则该位不能被修改。 注: 任何对该位的写操作都需要一个APB时钟的延迟以后才能起作用。

2. TIM1 Registers-- TIM1_BDTR(continued)

位12	BKE: 刹车功能使能 (Break enable)
	0: 禁止刹车输入(BRK及CCS时钟失效事件);
	1: 开启刹车输入(BRK及CCS时钟失效事件)。
	注: 当设置了LOCK级别1时(TIMx_BDTR寄存器中的LOCK位),该位不能被修改。
	注:任何对该位的写操作都需要一个APB时钟的延迟以后才能起作用。
位11	OSSR: 运行模式下"关闭状态"选择 (Off-state selection for Run mode)
	该位用于当MOE=1且通道为互补输出时。没有互补输出的定时器中不存在OSSR位。
	参考OC/OCN使能的详细说明(13.4.9节,TIM1和TIM8捕获/比较使能寄存器(TIMx_CCER))。
	0: 当定时器不工作时,禁止OC/OCN输出(OC/OCN使能输出信号=0);
	1: 当定时器不工作时,一旦CCxE=1或CCxNE=1,首先开启OC/OCN并输出无效电平,然后置OC/OCN使能输出信号=1。
	注: 一旦LOCK级别(TIMx_BDTR寄存器中的LOCK位)设为2,则该位不能被修改。
位10	OSSI: 空闲模式下"关闭状态"选择 (Off-state selection for Idle mode)
	该位用于当MOE=0且通道设为输出时。
	参考OC/OCN使能的详细说明(13.4.9节,TIM1和TIM8捕获/比较使能寄存器(TIMx_CCER))。
	0: 当定时器不工作时,禁止OC/OCN输出(OC/OCN使能输出信号=0);
	1: 当定时器不工作时,一旦CCxE=1或CCxNE=1,OC/OCN首先输出其空闲电平,然后OC/OCN使能输出信号=1。
	注: 一旦LOCK级别(TIMx_BDTR寄存器中的LOCK位)设为2,则该位不能被修改。
1 2 2 1 12 2 2 2	THE PROPERTY OF THE PROPERTY O

LOOK[1:0]: 锁定设置 (Lock configuration)
该位为防止软件错误而提供写保护。
00: 锁定关闭,寄存器无写保护;
01:锁定级别1,不能写入TIMx_BDTR寄存器的DTG、BKE、BKP、AOE位和TIMx_CR2寄存器的OISx/OISxN位;
10:锁定级别2,不能写入锁定级别1中的各位,也不能写入CC极性位(一旦相关通道通过CCxS位设为输出,CC极性位是TIMx_CCER寄存器的CCxP/CCNxP位)以及OSSR/OSSI位;
11: 锁定级别3,不能写入锁定级别2中的各位,也不能写入CC控制位(一旦相关通道通过CCxS位设为输出,CC控制位是TIMx_CCMRx寄存器的OCxM/OCxPE位);
注:在系统复位后,只能写一次LOCK位,一旦写入TIMx_BDTR寄存器,则其内容冻结直至复位。
UTG[7:0]: 死区发生器设置 (Dead-time generator setup)
这些位定义了插入互补输出之间的死区持续时间。假设DT表示其持续时间:
$DTG[7:5]=0xx \Rightarrow DT=DTG[7:0] \times T_{dtg}, T_{dtg} = T_{DTS};$
DTG[7:5]=10x => DT=(64+DTG[5:0]) \times T _{dtg} , T _{dtg} = 2 \times T _{DTS} ;
DTG[7:5]=110 => DT=(32+DTG[4:0]) \times T _{dtg} , T _{dtg} = 8 \times T _{DTS} ;
DTG[7:5]=111 => DT=(32+DTG[4:0]) \times T _{dtg} , T _{dtg} = 16 \times T _{DTS} ;
例:若T _{DTS} = 125ns(8MHZ),可能的死区时间为:
0到15875ns, 若步长时间为125ns;
16us到31750ns,若步长时间为250ns;
32us到63us,若步长时间为1us;
64us到126us,若步长时间为2us;
注:一旦LOCK级别(TIMx_BDTR寄存器中的LOCK位)设为1、2或3,则不能修改这些位。

03

How to Program

- Our Goal
 - Use PWM signal to change the brightness of LED0
 - If we change the duty cycle of the PWM signal, we can change the average voltage, so as to change the brightness of the LED0

- Choose the TIMER
 - Since LED0 is connected to TIM1_CH1, we should enable TIM1 and configure the channel 1 of TIM1 as PWM Generation CH1
 - Set the CH Polarity as low, because the LED is on only when the voltage is low

PA10/U1 RX/TIM1 CH3	45	PAIU	UI KAD
	42	PA9	U1 TXD
PA9/U1 TX/TIM1 CH2	41	PA8	LED0
PA8 TIM1 CH1 MCO	40	PC9	LCD CS
PC9/TIM8 CH4/SDIO D1	20	DOG	TOP DO

Configure TIM1

- Configure GPIO
 - PA8 is set as TIM1_CH1

- Some functions we used
 - Call HAL_TIM_PWM_Start() function to start the PWM signal generation in main.c (after the initialization of TIM1)
 - Change CCR1 value to change the duty cycle of TIM1_CH1 output

HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)

- Run the demo, the LED0 will gradually brighten and darken periodically
- The maximum duty cycle is set to 33% is because the relationship of brightness and voltage is not linear and when the duty cycle is 33%, the LED is bright enough.


```
int main(void)
 /* MCU Configuration --
 /* Reset of all peripherals, Initializes the
 HAL Init();
 /* Configure the system clock */
 SystemClock Config();
  /* Initialize all configured peripherals */
 MX_GPIO_Init();
 MX_TIM1_Init();
 /* USER CODE BEGIN 2 */
 HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
 int mode = 1;
 int pulse = 0;
  /* USER CODE END 2 */
 /* Infinite loop */
 while (1)
   /* USER CODE BEGIN 3 */
   HAL Delay(10);
   if (mode) {
     pulse++;
    } else {
      pulse--;
   if (pulse > 300) {
     mode = 0;
   if (pulse <= 0) {
     mode = 1:
   TIM1->CCR1 = pulse;
    USER CODE END 3 */
```


04

Practice

4. Practice

- Run the demo on MiniSTM32 board
- Complete the quiz on Sakai site
- Complete the assignment on Sakai site and submit the whole project before DDL