

*The Terminal Value is a simple way to capture the value of cash flows which occur beyond the time frame of a DCF Model

- *There are two approaches:
 - * Perpetual Growth
 - *Exit Multiple

- *The Perpetual Growth method is a more academic approach
- *The Exit Multiple method is more appropriate to real world situations

- *As a DCF model normally covers 3-5 years, exceptionally 10, the Terminal Value can make up a significant part of the total valuation
- *For this reason it is important to understand both approaches

*The Perpetual Model assumes that the company will continue to generate cash flow in perpetuity at a sustainable growth rate

- *The formula for the Perpetual Growth Terminal Value is:
- *TV = Terminal Value
- *FCF = Free Cash Flow
- *n = Year 1 of terminal value or final year of model
- *g = perpetual growth rate of FCF
- *WACC = Weighted Average Cost fo Capital

```
*TV= (FCFn x
(1+g) / (WACC -
g)
```

- *The Perpetual Growth rate may actually vary depending on the position of the company in its lifecycle
 - * Expansion
 - * Maturity
 - * Decline
 - *It is possible to construct a multi-stage perpetual growth rate model if this is regarded as having a significant impact on the Terminal Value

- *The Exit Multiple approach assumes that a sale has taken place at a multiple of a financial metric
- *The most often cited metric is EBITDA
- *The Multiple can be any multiple that seems reasonable to the market and appropriate to the company comparable transactions can give guidance to this

- *In practice, you can calulate your model on both bases to establish the range of values generated between them
- *You can also use the Perpetual
 Method to derive a comparable
 Multiple and vice versa, to act
 as a reality check on your model

