Универзитет у Нишу. Електронски факултет Катедра за микроелектронику ЕЛЕКТРОНСКЕ КОМПОНЕНТЕ 10.6.2022.

ИСПИТ

1. (10 поена) Шта је потенциометар? Израчунати могући опсег еквивалентне отпорности кола са слике 1, ако је $R=R_P=1\,\mathrm{k}\Omega.$

2. (20 поена) Које врсте термистора постоје и по чему се разликују? Ако је на собној температури (25 °C) отпорност термистора у колу са слике 2 $R_T=10\,\mathrm{k}\Omega$. одредити положај клизача потенциометра да би на $T=45\,^\circ\mathrm{C}$ излазни напон био $V_{OUT}=4\,\mathrm{V}$. Познато је $\beta=4000\,\mathrm{K}$, $V_{IN}=12\,\mathrm{V}$. Укупна отпорност потенциометра је $10\,\mathrm{k}\Omega$. Дата је релација:

$$R_T = R_{\infty} e^{\beta/T}. (1)$$

Слика 2

Слика 3

3. (15 поена) Кондензатор канацитивности $C=10\,\mathrm{pF}$ се пуни преко отпорника R_1 чија је отпорност $1\,\mathrm{k}\Omega$, а празни преко отпорника R_2 (слика 3). Напон на који је кондензатор повезан при пуњењу је 5 V. Ако је кондензатор празан, одредити вредности напона V_1 до које ће се напушти кондензатор ако је време пуњења једнако временској константи кондензатора. Када напон на кондензатору достигне вредност V_1 почиње његово пражњење. Колика је вредност отпорности отпорника R_2 ако је напон на кондензатору пакон истог времена као у случају пуњења једнак половини напона V_1 . Процес пуњења кондензатора описан је реладијом:

$$v_c = V_S(1 - e^{-\frac{1}{\tau}}), \tag{2}$$

док се пражњење описује једначином:

$$v_c = V_S e^{-\frac{t}{2}}$$
. (3)

4.~(5~noena) Израчунати временску константу калема индуктивности $47~\mathrm{nH}$ који је редно везан са отпорником отпорности $2.2~\mathrm{k}\Omega.$ После ког времена од тренутка прикључења на напон ће калем бити у стационарном стању?

- 5. (10 посиа) Мрежни трансформатор ($V_1=230\,\mathrm{V},\,f_1=50\,\mathrm{Hz}$) има однос броја памотаја $N_1:N_2=25:1.$ Ако је па трансформатор чији је коефицијент корисног дејства 89%, прикључено оптерећење од 8 Ω одредити снагу губитака. Колика је фреквенција сигнала на секундарду трансформатора?
- 6. (10 поена) У колу на слици 4 D_1 је стандардна силицијумска диода.
 - а) Колика струја тече кроз потрошач R_L када је прекидач P затворен, а колика када је отворен?
 - δ) Који тип диоде је диода D_2 ?

Познато је: $V_S=9\,\mathrm{V},\,V_{BAT}=5\,\mathrm{V},\,R_L=4.3\,\mathrm{k}\Omega,\,V_{D2}=0.3\,\mathrm{V},$

Слика 4

Слика 5

Слика 6

- 7. (15 поена) Одредити вредност отпорности R_C у колу са слике 5, тако да струја кроз LED буде 20 mA. Познато је: $V_{CC}=12\,\mathrm{V},~V_{LED}=1.8\,\mathrm{V},~V_{BE}=0.7\,\mathrm{V},~V_{CE}=V_{CEsat}=0.2\,\mathrm{V},~\beta=100,~R_B=33\,\mathrm{k}\Omega.$
- 8. (15 поена) Дефинисати напон прага MOS транзистора. Одредити снагу која се дисипира на транзистору у колу на слици 6. Напон прага овог транзистора је $V_T=3.6\,\mathrm{V}$, док при напону на гејту $V_{GS}'=5\,\mathrm{V}$ струја дрејна у засићењу износи $I_D'=50\,\mathrm{mA}$. Познато је: $V_{DD}=12\,\mathrm{V}$, $R_1=1\,\mathrm{M}\Omega$, $R_2=500\,\mathrm{k}\Omega$ и $R_D=220\,\Omega$. Дата је релација:

$$I_D = k(V_{GS} - V_T)^2. (4)$$

Предметни наставници