- Аксиоматика: "<u>символ</u>" и "<u>множество</u>"
- <u>Алфавит</u> непустое конечное множество символов, будет обозначаться символом V
- <u>Цепочка символов в алфавите V</u> любая конечная последовательность символов этого алфавита
- Цепочка, которая не содержит ни одного символа, называется пустой цепочкой, для её обозначения используется символ є, который по предположению сам в алфавит V не входит
- <u>Длина цепочки</u> число составляющих её символов, например, если α = <u>abcdefgh</u>, то длина α равна 8 Длина цепочки α обозначается как $|\alpha|$ Длина пустой цепочки ε равна 0, то есть $|\varepsilon|$ = 0

- Если α и β цепочки, то цепочка $\alpha\beta$ (результат приписывания цепочки β в конец цепочки α) называется конкатенацией (или сцеплением) цепочек α и β
- Конкатенацию $\alpha \beta$ можно считать двуместной операцией над цепочками α и β ($\alpha \cdot \beta = \alpha \beta$), например, если $\alpha = ab$ и $\beta = cd$, то $\alpha \cdot \beta = abcd$
- Для любой цепочки α всегда $\alpha \cdot \varepsilon = \varepsilon \cdot \alpha = \alpha$
- Конкатенация <u>некоммутативна</u>, то есть $\alpha \cdot \beta \neq \beta \cdot \alpha$ Например, если $\alpha = ab$ и $\beta = cd$, имеем $\beta \cdot \alpha = cdab$
- Конкатенация цепочек <u>ассоциативна</u>, для любых цепочек α , β и γ всегда верно: $\alpha \cdot \beta \cdot \gamma = (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$

- Цепочки символов можно разбивать на подцепочки
- Цепочки символов можно заменять на другие цепочки
- В результате <u>замены</u> (<u>подстановки</u>) цепочек получаются новые цепочки символов
- Цепочку $\gamma = abcd$ можно разбить (в том числе) на три подцепочки: $\alpha = a$, $\omega = b$ и $\beta = cd$, то есть исходную цепочку можно представить как $\gamma = \alpha \omega \beta$
- Если для цепочки ω выполнить подстановку $\upsilon = aba$, получится новая цепочка $\gamma = aabacd \ (\gamma = \alpha \upsilon \beta)$
- Любая подстановка выполняется с помощью операций разбиения и конкатенации

- Обращением (реверсом) цепочки α называется цепочка, символы которой записаны в обратном порядке, обращение цепочки α обозначается как α^R
- Например, если α = abcdefgh, то α^R = hgfedcba
- Для пустой цепочки $\varepsilon = \varepsilon^R$, $\varepsilon^R = \varepsilon$
- Справедливо тождество: $\forall \alpha, \beta : (\alpha \beta)^R = \beta^R \alpha^R$
- n-ой степенью цепочки α (α^n) называется конкатенация n цепочек α (повторение этой цепочки n раз)
- Справедливо: $\forall \alpha$: $\alpha^0 = \varepsilon$; $\alpha^1 = \alpha$; $\alpha^2 = \alpha \alpha$; $\alpha^n = \alpha \alpha^{n-1} = \alpha^{n-1} \alpha$
- Для пустой цепочки: $\forall n \ge 0$: $\varepsilon^n = \varepsilon$
- <u>Число вхождений</u> символа *s* в цепочку α обозначается как $|\alpha|_s$, например: $|babb|_a = 1$, $|babb|_b = 3$, $|babb|_c = 0$

- Множество V^* , содержащее все цепочки в алфавите V, **включая** пустую цепочку *є*, называется *итерацией* множества V
- Если $V=\{0,1\}$, то $V^*=\{\varepsilon,0,1,00,11,01,10,000,001,011,...\}$
- Множество V^+ , содержащее все цепочки в алфавите V, *исключая* пустую цепочку *є*, называется *усечённой* итерацией множества V, следовательно, $V^* = V^+ \cup \{\varepsilon\}$
- Язык в алфавите V это счётное подмножество цепочек конечной длины из множества всех цепочек над алфавитом V
- Цепочку символов, принадлежащую некоторому языку, называют *предложением* языка, а множество цепочек языка – множеством предложений этого языка

- Каждый язык в алфавите V является подмножеством множества V^* , то есть выполняется отношение $L(V) \subseteq V^*$
- Язык L(V) включает в себя язык L'(V), если любая цепочка, входящая во второй язык (L'(V)), одновременно входит и в первый (L(V)):

```
\mathsf{L}'(\mathsf{V}) \subseteq \mathsf{L}(\mathsf{V}), если \forall \alpha \in \mathsf{L}'(\mathsf{V}) : \alpha \in \mathsf{L}(\mathsf{V})
```

• Два языка *L(V)* и *L'(V)* совпадают (*равны*), если каждый из них включает в себя второй язык:

$$L'(V) = L(V)$$
, если $L'(V) \subseteq L(V)$ и $L(V) \subseteq L'(V)$

• Два языка *L(V)* и *L'(V)* <u>почти совпадают</u>, если они различаются только на пустую цепочку символов:

$$L'(V) \cong L(V)$$
, если $L'(V) \cup \{\epsilon\} = L(V) \cup \{\epsilon\}$

- Язык можно определить
 - 1. Перечислением всех допустимых цепочек языка
 - 2. Выбором механизма порождения (генерации), то есть указанием способа формирования (порождения) цепочек (заданием грамматики языка)
 - 3. Выбором механизма распознавания, то есть определением метода распознавания цепочек языка
- Первый метод иллюстративный:

```
L({a,b}) = {aa, ab, ba, bb}
```

• Иногда этот метод модифицируют описанием множеств входящих в язык цепочек с помощью формул:

```
L = {\alpha \in (a, b)^+, |\alpha| = 2} (только что показанный язык) L({0,1}) = {01,0011,000111, ...} \equiv L({0,1}) = {0^n1^n, n > 0}
```

- Второй способ связан с определением правил, с помощью которых можно строить правильные цепочки языка из символов алфавита языка, в этом случае используются порождающие грамматики (грамматиками Холмского), которые представляют собой основной способ реализации механизма порождения
- Третий способ требует наличия логического устройства (распознавателя) – автомата, который, получая входную цепочку символов алфавита, на выходе выдаёт ответ, принадлежит ли заданная цепочка данному языку или нет

- Примеры распознавателей:
 - 1. Машина Тьюринга (МТ) для рекурсивноперечислимых языков
 - 2. Линейно ограниченный автомат (ЛОА) для контекстно-зависимых языков
 - 3. Автомат с магазинной (внешней) памятью (МП-автомат) для *контекстно-свободных языков*
 - 4. Конечный автомат (КА детерминированный ДКА или недетерминированный НКА) для *регулярных языков*

- При изучении языков выделяют их <u>лексику</u>, <u>синтаксис</u> и <u>семантику</u>
- <u>Лексика</u> языка это совокупность слов (словарный запас) языка
 - Слово языка или его лексическая единица (лексема) состоит из элементов алфавита языка и не содержит в себе никаких других конструкций
- <u>Синтаксис</u> определяет форму языка, задаёт набор цепочек символов, которые принадлежат этому языку, фиксирует набор правил, определяющих допустимые конструкции языка
- <u>Семантика</u> языка определяет значение (смысл) предложений языка

- <u>Грамматикой</u> языка называется способ построения предложений этого языка
- Для языков программирования используется формальное описание грамматики, построенной на основе <u>правил</u> (<u>продукций</u>)
- Правило (продукция) есть упорядоченная пара цепочек символов (α , β)
- Правила записывают в виде $\alpha \to \beta$ Читается: " α порождает β ", "из α следует β "

- <u>Декартовым произведением</u> $A \times B$ множеств A и B называется множество пар $\{(a,b) \mid a \in A, b \in B\}$
- Определение порождающей грамматики
 Порождающая грамматика G это четвёрка (T, N, P, S),
 где
- *T* алфавит <u>терминальных символов</u>
- N алфавит <u>нетерминальных символов</u> Множества N и T не пересекаются друг с другом: $N \cap T = \emptyset$
- P конечное <u>множество правил</u> подмножество множества $(T \cup N)^+ \times (T \cup N)^*$ (первый элемент произведения не может быть пустой цепочкой)
- $S \underline{\mathsf{H}} \underline{\mathsf{H$

- Множество $V = T \cup N$ называется <u>полным алфавитом</u> грамматики *G*
- Элемент (α, β) множества P называется <u>правилом вывода</u> и записывается в виде $\alpha \to \beta$, здесь $\alpha \in (T \cup N)^+ левая$ часть правила, а $\beta \in (T \cup N)^* правая часть правила$
- Левая часть любого правила из Р обязана содержать хотя бы один нетерминальный символ
- Для записи совокупности правил вывода с одинаковыми левыми частями $\alpha \to \beta_1 \quad \alpha \to \beta_2 \quad \alpha \to \beta_n$ пользуются сокращённой записью $\alpha \to \beta_1 \mid \beta_2 \mid ... \mid \beta_n$
- Каждое β_i , i=1,2,...,n называется <u>альтернативой</u> правила вывода из цепочки α

- Цепочка $\beta \in (T \cup N)^*$ непосредственно выводима из цепочки $\alpha \in (T \cup N)^+$ в грамматике G = (T, N, P, S) ($\alpha \to_G \beta$), если $\alpha = \xi_1 \gamma \xi_2$, $\beta = \xi_1 \delta \xi_2$, где ξ_1 , ξ_2 , $\delta \in (T \cup N)^*$, $\gamma \in (T \cup N)^+$ и правило вывода $\gamma \to \delta$ содержится в P
- Цепочка $\beta \in (T \cup N)^*$ выводима из цепочки $\alpha \in (T \cup N)^*$ в грамматике G = (T, N, P, S) ($\alpha \Rightarrow_G \beta$), если существуют цепочки $\gamma_0, \gamma_1, \dots, \gamma_n$ ($n \ge 0$): $\alpha = \gamma_0 \to \gamma_1 \to \dots \to \gamma_n = \beta$
- Последовательность цепочек $\gamma_0, \gamma_1, ..., \gamma_n$ называется выводом цепочки β из цепочки α длины n
- Цепочка 00A11 непосредственно выводима из 0A1 в G_1
- Цепочка 000A111 выводима из S ($S \Rightarrow 000A111$) в G_1 , так как имеется вывод $S \to 0A1 \to 00A11 \to 000A111$ (длина вывода равна S)

- Определение языка, порождаемого грамматикой Языком, порождаемым грамматикой G = (T, N, P, S), называется множество $L(G) = \{\alpha \in T^* \mid S \Rightarrow \alpha\}$
- L(G) это все цепочки в алфавите T, которые выводимы из S с помощью P. Например, $L(G_1) = \{O^n 1^n \mid n > 0\}$
- Задачи на поиск языка, порождаемого некоторой грамматикой, решаются путём последовательного применения подстановок в правилах грамматики:

```
S \to 0A1 \to (A \to \varepsilon) \ 01
S \to 0A1 \to (0A \to 00A1) \ 00A11 \to (A \to \varepsilon) \ 0011
S \to 0A1 \to (0A \to 00A1) \ 00A11 \to (0A \to 00A1) \ 000A111 \to (0A \to 00A1) \ 000A1111 \to (0A \to 00A1) \
```

- Цепочка $\alpha \in (T \cup N)^*$, для которой $S \Rightarrow \alpha$, называется сентенциальной формой в грамматике G = (T, N, P, S)
- Цепочка α ∈ T*, полученная в результате законченного вывода, называется конечной сентенциальной формой
- Язык, порождаемый грамматикой *G*, можно определить как множество конечных (терминальных) сентенциальных форм грамматики *G*
- Алфавитом языка L(G) является множество терминальных символов грамматики T

• Определение эквивалентности грамматик Грамматики G_1 и G_2 называются эквивалентными, если их

языки совпадают: $L(G_1) = L(G_2)$

• G_1 и G_2 эквивалентны, порождается язык $L = \{0^n1^n \mid n > 0\}$: $G_1 = (\{0,1\}, \{A,S\}, P_1, S)$ и $G_2 = (\{0,1\}, \{S\}, P_2, S)$ P_1 : $S \to 0$ A1 P_2 : $S \to 0$ S1 | 01 $OA \to 0$ OA1 $A \to \varepsilon$

- Грамматики G_1 и G_2 <u>почти эквивалентны</u>, если совпадают языки $L(G_1) \cup \{\varepsilon\} = L(G_2) \cup \{\varepsilon\}$
- G_1 и G_3 почти эквивалентны: $L(G_3) = \{ 0^n 1^n \mid n >= 0 \}$: $G_3 = (\{0,1\}, \{S\}, P_3, S)$ $P_3: S \to 0S1 \mid \varepsilon$

- Грамматики обладают свойством эквивалентности, если совпадают заданные ими языки, то есть, если L (G) = L (G')
- Эквивалентные грамматики должны иметь, по крайней мере, пересекающиеся (чаще совпадающие) множества терминальных символов Т ∩ T' ≠ Ø
- Множества нетерминальных символов, правила и начальный символ эквивалентных грамматик могут существенно различаться
- *Следствие*: один язык может описываться разными грамматиками, что влияет на выбор методов анализа языков в компиляторах

- Выделяют четыре входящих друг в друга категории (*типа*) языков с соответствующими входящими друг в друга грамматиками
- Грамматики классифицируются по виду их правил вывода
- Чтобы отнести грамматику к какому-либо типу, все правила этой грамматики должны относиться к этому типу
- Каждому *типу* грамматик соответствует свой *класс* языков
- Если язык порождается грамматикой типа i (для i = 0, 1, 2, 3), то он является языком типа i

• ТИП 0: Грамматика *G* = (*T*, *N*, *P*, *S*) называется *грамматикой типа 0*, если на правила вывода не накладывается никаких ограничений (кроме тех, которые указаны в определении грамматики):

$$\alpha \rightarrow \beta$$
 $\alpha \in (T \cup N)^+, \beta \in (T \cup N)^*$

- В грамматиках типа 0 можно встретить такие правила:
 - a) aAbCD \rightarrow aHD (то есть AbC \rightarrow H в контексте a ... D)
 - b) $PQ \rightarrow QP$
- Класс языков типа 0 совпадает с классом рекурсивно-перечислимых языков

• ТИП 1: Грамматика G = (T, N, P, S) называется <u>неукорачивающей грамматикой</u>, если левая часть каждого правила из P не длинее правой части, то есть каждое правило из P имеет вид:

$$\alpha \rightarrow \beta$$
, где $\alpha \in V^+$, $\beta \in V^+$ и $|\alpha| \leq |\beta|$

- В неукорачивающей грамматике допускается наличие правила 5 → ε, при условии, что 5 (начальный символ) не встречается в правых частях правил грамматики
- Грамматика с правилами $\{S \to Aaa \mid \mathcal{E}, Aa \to Sa\}$ не является неукорачивающей: Символ S встречается в правой части правила $Aa \to Sa$, и при выводе сентенциальная форма "укорачивается": $S \to Aaa \to Saa \to aa$

• ТИП 1: Грамматика G = (T, N, P, S) называется контекстно-зависимой, если каждое правило из P с непустой правой частью имеет вид:

$$\alpha \rightarrow \beta$$
, где $\alpha = \xi_1 A \xi_2$, $\beta = \xi_1 \gamma \xi_2$, $A \in \mathbb{N}$, $\gamma \in \mathbb{V}^+$, ξ_1 , $\xi_2 \in \mathbb{V}^*$

- В контекстно-зависимой грамматике допускается наличие правила \$ → ε, при условии, что \$ (начальный символ) не встречается в правых частях правил грамматики
- Цепочку ξ_1 называют *левым контекстом*, а цепочку ξ_2 называют *правым контекстом*
- Язык, порождаемый контекстно-зависимой грамматикой, называется контекстно-зависимым

- ТИП 1: Грамматика *типа 1* определяется как неукорачивающая грамматика
- ТИП 1: Грамматика *типа 1* определяется как контекстно-зависимая грамматика
- Из определений следует, что если язык, порождаемый контекстно-зависимой или неукорачивающей грамматикой G = (T, N, P, S), содержит пустую цепочку, то эта цепочка выводится в G за один шаг с помощью правила $S \to \varepsilon$
- Других выводов для цепочки *є* в грамматике *G* не существует

- Если *L* формальный язык, то такие утверждения эквивалентны:
- \exists такая контекстно-зависимая грамматика G_1 , что $L = L(G_1)$
- \exists такая неукорачивающая грамматика G_2 , что $L = L(G_2)$
- Контекстно-зависимая грамматика является неукорачивающей: в правилах контекстно-зависимых грамматик ($\xi_1 A \xi_2 \rightarrow \xi_1 \gamma \xi_2$) из сохранения контекста следует, что его длина ($|\xi_1| + |\xi_2|$) не меняется, |A| = 1, $|\gamma| > 0$, $|A| \le |\gamma|$
- Существует доказательство и обратной эквивалентности

ТИП 2: Грамматика G = (T, N, P, S) называется
 контекстно-свободной, если каждое правило из Р
имеет вид:

$$A \rightarrow \beta$$
, где $A \in N$, $\beta \in (T \cup N)^*$

- Цепочка β (правая часть правила) может быть пустой
- Грамматика *типа 2* это контекстно-свободная грамматика
- Язык, порождаемый контекстно-свободной грамматикой, называется контекстно-свободным языком

- Среди контекстно-свободных грамматик выделяют неукорачивающие контекстно-свободные грамматики
- Такие грамматики имеют только правила с непустыми правыми частями (за одним исключением: $S \to \varepsilon$), они являются частным случаем контекстно-зависимых грамматик с пустым контекстом, $|\xi_1| + |\xi_2| = 0$
- Неукорачивающие контекстно-свободные грамматики отличаются тем, что правая часть их правил всегда не короче соответствующей левой части, то есть β ∈ (T ∪ N)⁺ и |β| ≥ 1

- ТИП 3: Грамматика G = (T, N, P, S) называется праволинейной, если каждое правило из Р имеет вид: $A \to \gamma B$ либо $A \to \gamma$ где $A \in N$, $B \in N$, $\gamma \in T^*$
- ТИП 3: Грамматика G = (T, N, P, S) называется <u>леволинейной</u>, если каждое правило из Р имеет вид:
- $A \rightarrow B \gamma$ либо $A \rightarrow \gamma$ где $A \in N$, $B \in N$, $\gamma \in T^*$
- Грамматика типа 3 это праволинейная грамматика
- Множество языков, порождаемых праволинейными грамматиками, совпадает с множеством языков, порождаемых леволинейными грамматиками
- Если для некоторого формального языка существует право(лево-)линейная грамматика, то одновременно для него существует и лево(право-)линейная грамматика

- Языки, порождаемые грамматиками типа 3, называются регулярными
- Каждая грамматика типа 1 (а значит, и типа 2) может быть преобразована к грамматике типа 3, если можно избавиться от правил вида A → φAψ (где φ и ψ не пусты), в противном случае они называются грамматиками с самовставлением
- К регулярным грамматикам не относятся грамматики, в которых смешаны праволинейные и леволинейные правила, такие грамматики следует относить к классу контекстно-свободных грамматик

- Регулярные грамматики могут быть <u>неукорачивающими</u>, если в них не встречаются правила с пустой правой частью
- Среди неукорачивающих регулярных грамматик выделяются *автоматные грамматики*
- Автоматные грамматики могут быть лево- и праволинейными
- Леволинейные автоматные грамматики имеют правила видов: $A \to Bt$ или $A \to t$, где $A, B \in N, t \in T$
- Праволинейные автоматные грамматики имеют правила видов: $A \to tB$ или $A \to t$, где $A, B \in N, t \in T_{29}$

- Классы обычных и автоматных регулярных грамматик <u>почти</u> эквивалентны
- Чтобы классы этих грамматик стали полностью эквивалентными, в автоматные грамматики вводят дополнительное правило вида \$ → ε, где \$ – начальный символ грамматики
- Существует алгоритм преобразования произвольной регулярной грамматики к автоматному виду
- Для любой регулярной (автоматной) грамматики G
 существует неукорачивающая регулярная
 (автоматная) грамматика G', такая что L (G) = L (G')

Отношения между грамматиками

- Регулярные грамматики являются контекстносвободными
- Неукорачивающие контекстно-свободные грамматики являются контекстно-зависимыми
- Неукорачивающие грамматики относятся к типу О
- Иерархия типов грамматик
 - Неукорачивающие регулярные
 - Неукорачивающие контекстно-свободные
 - Контекстно-зависимые (либо неукорачивающие)
 - ⊂ тип 0
- Не все контекстно-свободные грамматики являются неукорачивающими: *тип 2* не вкладывается в *тип 1*

- Язык L (G) является <u>языком типа к</u>, если его можно описать грамматикой типа к
- Языки классифицируются в соответствии с типами грамматик, с помощью которых они описываются
- Для классификации языка выбирается грамматика с максимальным классификационным типом

 $L = L(G_1) = L(G_2) = \{0^n1^n \mid n > 0\}_{32}$

• Грамматика mи π 0 $G_1 = (\{0,1\}, \{A,S\}, P_1, S)$ и грамматика mи π 0 $G_2 = (\{0,1\}, \{S\}, P_2, S)$ где P_1 : $S \to 0$ A1 P_2 : $S \to 0$ S1 | 01 0A $\to 0$ OA1 $A \to \epsilon$ описывают контекстно-

свободный язык

- Языки с фразовой структурой (рекурсивно перечислимые множества) могут быть заданы только грамматикой типа 0
- Контекстно-зависимые языки применяются в анализе и переводе текстов на естественных языках, алгоритмы разбора контекстно-зависимых текстов имеют экспоненциальную сложность
- Современные языки программирования описываются с помощью контекстно-свободных грамматик
- *Регулярные языки* используются для лексического распознавания идентификаторов и констант

• Для языков существуют доказанные факты, которые можно использовать при их классификации:

```
языки L = \{ a^n | n \ge 1 \} регулярные языки L = \{ a^n b^n | n \ge 1 \} контекстно-свободные языки L = \{ a^n b^n c^n | n \ge 1 \} контекстно-зависимые
```

- В регулярных языках повторяется только одна последовательность символов – f (ab)ⁿc
- В контекстно-свободных языках повторяются две цепочки – а³ⁿ⁺¹bⁿ⁻²
- В контекстно-зависимых языках повторяются три цепочки

• Каждый регулярный язык является контекстносвободным языком, но существуют контекстносвободные языки, которые не являются регулярными

```
язык L = \{ a^n b^n | n > 0 \}
                                не регулярный
язык L = \{ a^n b^m | n, m > 0 \} регулярный
```

- Каждый контекстно-свободный язык является контекстно-зависимым, но существуют контекстнозависимые языки, которые не являются контекстносвободными ($L = \{a^n b^n c^n \mid n > 0\}$)
- Каждый контекстно-зависимый язык является языком типа 0, но существуют языки типа 0, которые не являются контекстно-зависимыми

• Иерархия классов языков:

```
Тип 3 (регулярные)
```

- ⊂ Тип 2 (контекстно-свободные)
- *Тип 1 (контекстно-зависимые)*

Цепочки вывода

- Цепочка принадлежит языку, порождаемому грамматикой, если существует её вывод из начального символа этой грамматики
- Процесс построения такого вывода называется разбором (нисходящим или восходящим)
- Последовательность непосредственно выводимых цепочек языка называется выводом или цепочкой вывода
- Каждый переход от одной непосредственно выводимой цепочки к следующей называется <u>шагом</u> вывода

Цепочки вывода

- Цепочка β может быть *выводима* из цепочки α ($\alpha \Rightarrow \beta$) за 0 или более шагов
- Если цепочка β непосредственно выводима из цепочки α ($\alpha \rightarrow \beta$), то имеется ровно один шаг вывода
- Если цепочка вывода из α к β содержит одну или более промежуточных цепочек, цепочка β называется нетривиально выводимой из цепочки α
- Вывод цепочки *β* называется <u>законченным</u>, если на её основе нельзя сделать ни одного шага вывода
- Законченный вывод возможен, если *конечная цепочка вывода β* пуста, или содержит только терминальные символы

Разбор по КС-грамматике

- Вывод цепочки β ∈ T* из S ∈ N в грамматике G = (T, N, P, S) называется <u>левым/левосторонним</u> (<u>правым/правосторонним</u>), если в этом выводе каждая очередная сентенциальная форма получается из предыдущей формы заменой самого левого (правого) нетерминального символа
- Разные выводы для цепочки a+b+a в грамматике
 G = ({a, b, +}, {S, T}, {S → T | T+S; T → a | b}, S)
 (1) S→T+S→T+T+S→ T+T+T→ a+T+T→ a+b+T→ a+b+a
 - (2) $S \rightarrow T+S \rightarrow a+S \rightarrow a+T+S \rightarrow a+b+S \rightarrow a+b+T \rightarrow a+b+a$
 - (3) $S \rightarrow T+S \rightarrow T+T+S \rightarrow T+T+T \rightarrow T+T+a \rightarrow T+b+a \rightarrow a+b+a$

- Ориентированное упорядоченное помеченное дерево (граф) называется <u>деревом вывода</u> (или <u>деревом</u> разбора) в контекстно-свободной грамматике
 G = {T, N, P, S}, если выполнены следующие условия:
- а) каждая вершина и каждый лист дерева помечены символом из множества терминальных и нетерминальных символов $N \cup T \cup \{\varepsilon\}$, при этом корень дерева помечен начальным (нетерминальным) символом S, промежуточные вершины помечены нетерминальными символами из N, а листья символами из множества $T \cup \{\varepsilon\}$

- Ориентированное упорядоченное помеченное дерево (граф) называется <u>деревом вывода</u> (или <u>деревом</u> <u>разбора</u>) в контекстно-свободной грамматике
 G = {T, N, P, S}, если выполнены следующие условия:
- b) если вершина дерева помечена нетерминальным символом $A \in \mathbb{N}$, а её непосредственные потомки помечены перечисленными слева направо терминальными или нетерминальными символами $a_1, a_2, ..., a_n$, где каждое $a_i \in (T \cup \mathbb{N})$, то в грамматике G существует правило вывода $A \to a_1 a_2 ... a_n \in P$

- Ориентированное упорядоченное помеченное дерево (граф) называется <u>деревом вывода</u> (или <u>деревом</u> разбора) в контекстно-свободной грамматике
 G = {T, N, P, S}, если выполнены следующие условия:
- с) если вершина дерева помечена нетерминальным символом $A \in \mathbb{N}$, а её непосредственный потомок помечен символом ε , то этот потомок является листом дерева, а в грамматике G существует правило вывода $A \to \varepsilon$

• Два разных упорядоченных дерева:

• Дерево вывода для цепочки a+b+a в грамматике

$$G = (\{a, b, +\}, \{S, T\}, P, S)$$

 $P: S \rightarrow T \mid T+S$
 $T \rightarrow a \mid b$

 Грамматика G называется неоднозначной, если существует (хотя бы одна) цепочка α ∈ L (G), для которой может быть построено два или более различных деревьев вывода

очка а + а + а

- Язык, порождаемый грамматикой, называется
 <u>неоднозначным</u>, если он не может быть порождён
 никакой однозначной грамматикой
- G = ({if, then, else, a, b}, {S}, P, S)
 P: S → if b then S else S | if b then S | a

- Язык, порождаемый грамматикой, называется
 <u>неоднозначным</u>, если он не может быть порождён
 никакой однозначной грамматикой
- G = ({if, then, else, a, b}, {S}, P, S)
 P: S → if b then S else S | if b then S | a

• Неоднозначность - это свойство грамматики, а не языка: для некоторых неоднозначных грамматик существуют эквивалентные им однозначные грамматики

•
$$G = (\{+, -, *, /, (,), a, b\}, \{S\}, P, S)$$

 $P_H: S \to S + S \mid S - S \mid S * S \mid S / S \mid (S) \mid a \mid b$
 $P_O: S \to S + T \mid S - T \mid T$
 $T \to T * E \mid T / E \mid E$
 $E \to (S) \mid a \mid b$

 Грамматика, используемая для определения языка программирования, должна быть однозначной

 Для контекстно-свободных грамматик можно указать некоторые виды правил вывода, которые заведомо приводят к неоднозначности:

A
$$\rightarrow$$
 AA | α

A \rightarrow A α A | β

A \rightarrow A α A | β

A \rightarrow A α A | A β | γ

A \rightarrow A α A | α A β A | γ

 Отсутствие перечисленных правил является необходимым, но не достаточным условием однозначности

Бесплодные символы

• Символ $A \in N$ называется <u>бесплодным</u> в грамматике G = (T, N, P, S), если множество $\{ \alpha \in T^* \mid A \Rightarrow \alpha \}$ пусто

• Алгоритм удаления бесплодных символов

Bход: Грамматика G = (T, N, P, S)

Выход: Грамматика G' = (T', N', P', S')

Метод: Рекурсивно строятся множества символов N_0 , N_1 , ...

- 1. $N_0 = \emptyset$, i = 1
- 2. $N_i = N_{i-1} \cup \{A \mid (A \rightarrow \alpha) \in P, A \in N \cup \alpha \in (N_{i-1} \cup T)^*\}$
- 3. Если $N_i \neq N_{i-1}$, то i = i + 1 и переход к шагу 2
- 4. Иначе $N' = N_i$ T' = T S' = S
- Р' состоит из правил множества Р, содержащих только символы из N' \cup T'
- В грамматике G' нет бесплодных символов, L (G) = L (G')

Недостижимые символы

- Символ x ∈ (T ∪ N) называется недостижимым в грамматике G = (T, N, P, S), если он не появляется ни в одной сентенциальной форме этой грамматики
- Алгоритм удаления недостижимых символов

Bход: Грамматика G = (T, N, P, S)

Выход: Грамматика G' = (T', N', P', S')

Метод: Рекурсивно строятся множества символов $V_0, V_1, ...$

- 1. $V_0 = \{S\}, i = 1$
- 2. $V_i = V_{i-1} \cup \{x \mid x \in (T \cup N), (A \rightarrow \alpha x \beta) \in P, A \in V_{i-1}, \alpha, \beta \in (T \cup N)^*\}$
- 3. Если $V_i \neq V_{i-1}$, то i = i + 1 и переход к шагу 2
- 4. Иначе $N' = V_i \cap N$ $T' = V_i \cap T$ S' = S
- Р' состоит из правил множества Р, содержащих только символы из V_i
- В грамматике G' нет недостижимых символов, $L(G) = L(G')_{51}$

Правила с пустой правой частью

- ε -правилами называются все правила вида $A \to \varepsilon$, $A \in \mathbb{N}$
- Контекстно-свободная грамматика называется грамматикой без ε -правил, если в ней не существует правил $(A \to \varepsilon) \in P$, $A \neq S$ и существует только одно правило $(S \to \varepsilon) \in P$ в том случае, когда $\varepsilon \in L$ (G), и при этом S не встречается в правой части ни одного правила
- Существует алгоритм преобразования произвольной контекстно-свободной грамматики к виду без
 гравил, то есть её преобразования к неукорачивающей контекстно-свободной грамматике

Удаление ε -правил

• Алгоритм удаления ε -правил

Bход: Грамматика G = (T, N, P, S)

Выход: Грамматика G' = (T', N', P', S')

- 1. $X_0 = \{A: (A \to \varepsilon) \in P\}; i = 1$
- 2. $X_i = X_{i-1} \cup \{A: A \in N, (A \rightarrow \alpha) \in P, \alpha \in X_{i-1}^*\}$
- 3. Если $X_i \neq X_{i-1}$, то i = i+1 и переход к шагу 2, иначе к шагу 4 В X_i входят символы из N, из которых выводится ϵ
- 5. Если ($A \to \alpha$) \in P и в цепочку α входят символы из множества X_i , на основе этой цепочки α строится новое множество цепочек $\{\alpha'\}$ путём поочерёдного исключения из α всех возможных комбинаций вхождений символов X_i , все правила вида $A \to \alpha'$ добавляются в P'

Удаление ε -правил

Изменять Р' нужно следующим образом: для любого A ∈ X_i правило вида В →α₁Aα₂A...α_nAα_{n+1}, где α_i∈((N − {A})) ∪ Т), заменить 2ⁿ правилами, соответствующими всем возможным комбинациям вхождений А между α_i:

$$B \rightarrow \alpha_{1}\alpha_{2}...\alpha_{n}\alpha_{n+1}$$

$$B \rightarrow \alpha_{1}\alpha_{2}...\alpha_{n}A\alpha_{n+1}$$
...
$$B \rightarrow \alpha_{1}\alpha_{2}A...\alpha_{n}A\alpha_{n+1}$$

$$B \rightarrow \alpha_{1}A\alpha_{2}A...\alpha_{n}A\alpha_{n+1}$$

$$B \rightarrow \alpha_{1}A\alpha_{2}A...\alpha_{n}A\alpha_{n+1}$$

- Правила вида В $ightarrow \epsilon$ в множество Р' не включаются
 - 6. Если $S \in X_i$, значит $\epsilon \in L$ (G), в N' добавляется новый символ S', который становится начальным символом грамматики G', в P' добавляются два новых правила: S' $\to \epsilon$ | S; иначе S' = S

7.
$$G' = (T', N', P', S')$$

Циклические правила

- <u>Циклом</u> (<u>циклическим выводом</u>) в грамматике G(T, N, P, S) называется вывод вида $A \Rightarrow A$
- Циклы возможны только в том случае, если в грамматиках языков присутствуют *цепные* правила вида $A \to B$, где A, $B \in N$
- В процессе работы алгоритма цепных правил могут вновь возникать бесплодные и недостижимые символы и правила, их содержащие

Циклические правила

• Алгоритм удаления цепных правил

Bход: Грамматика G = (T, N, P, S)

Выход: Грамматика G' = (T', N', P', S')

- 1. Для всех символов X из N повторять шаги 2-4, затем переход к шагу 5
- 2. $N_0^x = \{X\}; i = 1$
- 3. $N_{i}^{x} = N_{i-1}^{x} \cup \{B: (A \rightarrow B) \in P, B \in N_{i-1}^{x}\}$
- 4. Если $N_i^x \neq N_{i-1}^x$, то i = i + 1 и переход к шагу 3, иначе установить $N_i^x = N_{i-1}^x \{X\}$ и продолжить цикл по шагу 1
- 5. N' = N; T' = T; S' = S в P' входят все правила из P, кроме правил вида $A \to B$
- 6. Для всех правил (A $\to \alpha$) \in P', если B \in N^A, B \neq A в P' добавляются правила вида В $\to \alpha$
- 7. G' = (T', N', P', S')

Приведение грамматик

- Если применить алгоритм удаления *є*-правил к регулярной (автоматной) грамматике, результатом будет неукорачивающая регулярная (автоматная) грамматика
- Контекстно-свободная грамматика называется приведённой, если в ней нет бесполезных (бесплодных и недостижимых) символов
- Алгоритм приведения контекстно-свободной грамматики
 - 1. Обнаруживаются и удаляются все бесплодные символы
 - 2. Обнаруживаются и удаляются все недостижимые символы
- Удаление символов сопровождается удалением правил вывода, содержащих эти символы

Соглашения о грамматиках

- Под регулярной грамматикой будем обычно понимать неукорачивающую <u>леволинейную</u> автоматную грамматику (в их правилах нет пустых правых частей): A → Bt или A → t где A, B ∈ N, t ∈ T
- Аналогичные праволинейные грамматики имеют правила видов: A ot B или A ot t где $A, B \in N, t \in T$
- Все анализируемые цепочки заканчиваются специальным терминальным символом
 - признаком конца цепочки

Алгоритм определения принадлежности цепочки языку

- Алгоритм определения принадлежности цепочки языку, порождаемому регулярной грамматикой:
 - 1. Первый символ исходной цепочки $a_1a_2...a_n \bot$ заменить нетерминалом A_1 , для которого в грамматике есть правило вывода $A_1 \to a_1$
 - 2. Многократно (до признака конца цепочки) выполнять шаги: полученный нетерминал A_{i-1} и очередной терминал a_i цепочки заменить нетерминалом A_i , для которого в грамматике есть правило вывода $A_i \rightarrow A_{i-1}a_i$ (i = 2, 3, ..., n)

Построение дерева разбора методом "*снизу-вверх*"

 Работа алгоритма разбора цепочки языка, порождаемого регулярной грамматикой:

а) на последнем шаге свёртка произошла к символу S: цепочка принадлежит языку ($a_1a_2...a_n \perp \in L(G)$)


```
G = (\{a, b\}, \{A, B, S\}, P, S\}
P: A \rightarrow Ab \mid Bb \mid b
    B \rightarrow Aa
    S \rightarrow A \perp
  Разбор правильной
     цепочки babb 1
 применением правил
    A \rightarrow b Aabb \perp
    B \rightarrow Aa
                      Bbb \bot
   A \rightarrow Bb Ab \perp
                      A \perp
   A \rightarrow Ab
   S \rightarrow A \perp
```

b) на последнем шаге свёртка произошла к символу, отличному от S: цепочка не принадлежит языку (a₁a₂...a₁ ∠ ∉ L(G))

 $G = (\{a, b\}, \{A, B, S\}, P, S\}$ $P: A \rightarrow Ab \mid Bb \mid b$ $B \rightarrow Aa$ $S \rightarrow A \perp$ Разбор неправильной цепочки bab применением правил $A \rightarrow b$ Aab $B \rightarrow Aa$ Bb $A \rightarrow Bb$ A Символ А не является целью грамматики

с) для нетерминала A_{k-1} и очередного терминала a_k не нашлось нетерминала A_k , для которого есть правило $A_k \to A_{k-1}a_k$: цепочка не принадлежит языку $(a_1a_2...a_n \bot \not\in L(G))$


```
G = (\{a, b\}, \{A, B, S\}, P, S\}
P: A \rightarrow Ab \mid Bb \mid b
   B \rightarrow Aa
   S \rightarrow A \perp
Разбор неправильной
     цепочки bbal
 применением правил
   A \rightarrow b Aba\perp
   A \rightarrow Ab Aa \perp
   B \rightarrow Aa B \perp
Правила для В⊥в
грамматике нет
```

d) в грамматике разные нетерминалы имеют правила вывода с одинаковыми правыми частями, к какому из них производить свёртку?


```
G = (\{a, b\}, \{A, B, S\}, P, S\}
P: A \rightarrow Ab \mid Bb \mid b
   B \rightarrow Aa
   S \rightarrow A \perp
   B \rightarrow Bb
   Попытка разбора
      цепочки bab в
     грамматике с
   дополнительным
   правилом B \rightarrow Bb,
   неоднозначность:
  A \rightarrow Bb B \rightarrow Bb
```

Детерминированный автомат

- <u>Детерминированный конечный автомат (ДКА)</u> это пятёрка (*K, T, δ, H, S*), где
- *K* конечное *множество состояний*
- *T* алфавит автомата, конечное множество допустимых входных символов
- *H* ∈ *K* − <u>начальное состояние</u> автомата
- $S \subseteq K$ непустое ($S \neq \emptyset$) конечное множество заключительных состояний

Детерминированный автомат (ДКА)

- Запись δ (A, t) = B означает, что из состояния A по входному символу t происходит переход автомата ДКА в состояние B
- Автомат ДКА называют <u>полностью определённым</u>, если в каждом его состоянии существует функция перехода для всех возможных входных символов, то есть $\forall a \in T$, $\forall q \in K \exists \delta (a, q) = R$, $z \partial e R \in K$
- Функция переходов может быть определена лишь для подмножества К × Т (частичная функция)
- Если значение δ (A, t) не определено, автомат не может продолжать работу и останавливается в состоянии "Ошибка"

Детерминированный автомат (ДКА)

• Конечный автомат <u>допускает</u> (<u>принимает</u>) <u>цепочку</u> символов $a_1 a_2 ... a_n$, если существуют переходы

```
\delta (H, a_1) = A_1 \delta (A_1, a_2) = A_2 ... \delta (A_{n-1}, a_n) = S где a_i \in T, i = 1, 2, ..., n — алфавит автомата A_j \in K, j = 1, 2, ..., n - 1 — состояния автомата — начальное состояние S — одно из заключительных состояний
```

- Множество цепочек, допускаемых конечным автоматом, составляет определяемый им <u>язык</u>
- Автоматы <u>эквивалентны</u>, если они задают один язык
- <u>Все конечные автоматы являются</u> распознавателями для регулярных языков

ДКА и леволинейные грамматики

• Построение ДКА по леволинейной грамматике

```
Вход: Леволинейная грамматика G = (T, N, P, S)
Выход: Конечный автомат \mathcal{L}KA = (K, V, \delta, H, C), L(G) = L(\mathcal{L}KA)
```

- Привести грамматику *G* к автоматному виду
- Установить, что $K = N \cup \{H\}$ V = T
- Для каждого правила $A \to t \in P$, где $t \in T$ и $A \in N$ в функцию перехода включается правило δ (H, t) = A
- Для каждого правила $A \to Bt \in P$, где $t \in T$ и A, $B \in N$ в функцию перехода включается правило δ (B, t) = A
- В множество конечных состояний автомата включается элемент, соответствующий цели грамматики $G: C = \{S\}$

ДКА и леволинейные грамматики

• Построение леволинейной грамматики по ДКА

```
Вход: Конечный автомат \mathcal{L}KA = (K, V, \delta, H, C)
```

Выход: Леволинейная грамматика

$$G = (T, N, P, S), L(G) = L(ДКА)$$

- $N = K \setminus \{H\}$ T = V
- Для всех возможных состояний из множества K и всех возможных входных символов из множества V:
 - Если δ (A, t) = \emptyset , где $A \in K$, $t \in V$, никаких действий не выполняется
 - Если δ (A, t) = B, где $A \in K$, $B \in K$, $t \in V$:
 - если A = H, в P включается правило $B \rightarrow t$
 - если $A \neq H$, в P включается правило $B \rightarrow At$

ДКА и леволинейные грамматики

- Построение леволинейной грамматики по ДКА
- Если множество конечных состояний C автомата ДКА содержит только одно состояние $C = \{C_0\}$, целевым символом S грамматики G становится символ множества N, соответствующий этому состоянию: $S = C_0$
- Если множество конечных состояний C автомата ДКА содержит более одного состояния $C = \{C_1, C_2, ..., C_n\}, n > 1$, в множество нетерминальных символов N грамматики G добавляется новый нетерминальный символ $S: N = N \cup \{S\}$
- В множество правил *P* грамматики *G* добавляются правила $S \to C_1 \mid C_2 \mid ... \mid C_n$
- G = (T, N, P, S)

Диаграмма состояний

- Диаграмма состояний конечного автомата это неупорядоченный ориентированный помеченный граф, который строится следующим образом:
 - вершины графа (называемые состояниями) помечаются нетерминалами грамматики
 - добавляется ещё одна вершина (называемая начальным состоянием), помечаемая символом, отличным от нетерминальных (например, *H*)
 - для каждого правила вида $W \to t$ соединяются дугой состояния от H к W, дуга помечается символом t
 - для каждого правила вида $W \to Vt$ соединяются дугой состояния от V к W, дуга помечается символом t

ДС и леволинейные грамматики

- Построение леволинейной грамматики по ДС
- Каждой дуге из начального состояния H в состояние W, помеченной символом t, соответствует правило $W \to t$
- Каждой дуге из состояния V в состояние W, помеченной символом t, соответствует правило W o Vt
- Заключительное состояние *S* объявляется начальным символом грамматики

Пример построения грамматики

• Задан ДКА $M = (\{H, A, B, S\}, \{a, b, +, -, \bot\}, \delta, H, S)$, где δ (H, a) = A δ (A, +) = B δ $(A, \bot) = S$ δ (B, a) = A δ (H, b) = A δ (A, -) = B δ (B, b) = A

• Если переход из некоторого состояния по некоторому символу невозможен, то есть δ (C, c) = \emptyset , правило для этого перехода просто не выписывается

Пример построения грамматики

- Стрелки в правила леволинейных грамматик вставляются с противоходом по отношению к стрелкам на диаграмме
- Правила начинают выписывать с заключительного состояния автомата: $S \to A \bot$
- Если для некоторого нетерминального символа имеется правило с пустой правой частью (например, $B \to \varepsilon$), соответствующее ему состояние объявляется ещё одним начальным состоянием

Пример диаграммы состояний

• Диаграмма состояний для леволинейной грамматики

$$G_{left} = (\{a, b, \bot\}, \{S, A, B, C\}, P, S)$$

$$P: S \rightarrow C \perp$$

$$C \rightarrow Ab \mid Ba$$

$$A \rightarrow a \mid Ca$$

$$B \rightarrow b / Cb$$

a

Функция

переходов:

$$\delta$$
 (H, a) = A

$$\delta$$
 (H, b) = B

$$\delta$$
 (A, b) = C

$$\delta$$
 (B, a) = C

$$\delta$$
 (C, a) = A

$$\delta$$
 (C, b) = B

$$\delta$$
 (C, \perp) = S

Пример диаграммы состояний

• Диаграмма состояний автомата, допускающего язык

 $L = \{ a^n b^n \mid 0 \ge n \ge N \}$

При любом конечном значении **N** такой язык надо рассматривать как язык регулярный

- Моделью памяти в таком автомате служат состояния этого автомата
- На диаграмме показаны начальное состояние, несколько промежуточных и

несколько заключительных состояний

ДС и леволинейные грамматики

- Построение леволинейной грамматики по ДС
- Каждой дуге из начального состояния H в состояние W, помеченной символом t, соответствует правило $W \to t$
- Каждой дуге из состояния V в состояние W, помеченной символом t, соответствует правило W o Vt
- Заключительное состояние *S* объявляется начальным символом грамматики

Алгоритм разбора цепочки по диаграмме состояний

- Текущим объявляется состояние Н
- Многократно (до тех пор, пока не прочитан признак конца цепочки) выполняются следующие шаги: читается очередной символ исходной цепочки и осуществляется переход из текущего состояния в новое состояние по дуге, помеченной прочитанным символом; новое состояние становится текущим

Алгоритм разбора цепочки по диаграмме состояний

- Прочитана вся цепочка; на каждом шаге находилась единственная дуга, помеченная очередным символом анализируемой цепочки; в результате последнего перехода достигнуто состояние S, цепочка принадлежит языку L (G)
- Прочитана вся цепочка; на каждом шаге находилась единственная дуга; в результате последнего шага достигнуто состояние, отличное от *S*, цепочка не принадлежит языку L (G)
- На некотором шаге не нашлось дуги, выходящей из текущего состояния и помеченной очередным анализируемым символом, цепочка не принадлежит языку L (G)
- На некотором шаге оказалось, что из текущего состояния есть несколько дуг, помеченных очередным символом, ведущих в разные состояния, разбор недетерминирован 79

Программа анализатора

Разбор цепочки анализатором

 При анализе цепочки abba L возникает такая последовательность переходов:

$$H \xrightarrow{a} A \xrightarrow{b} C \xrightarrow{b} B \xrightarrow{a} C \xrightarrow{f} S$$

Каждая смена состояния означает "свёртку" сентенциальной формы путём замены в ней пары "нетерминал-терминал" Nt на нетерминал L, где L → Nt есть правило вывода в грамматике

Грамматика:

$$S \rightarrow C \perp$$

 $C \rightarrow Ab \mid Ba$
 $A \rightarrow a \mid Ca$
 $B \rightarrow b \mid Cb$

• Возникает такая последовательность свёрток, соответствующая сменам состояний:

$$\underline{a}bba \perp \leftarrow \underline{A}\underline{b}ba \perp \leftarrow \underline{C}\underline{b}a \perp \leftarrow \underline{B}\underline{a} \perp \leftarrow \underline{C}\underline{\perp} \leftarrow \underline{S}$$

Недетерминированность разбора

Дана грамматика G = ({a,b, ⊥}, {S,A,B}, P, S)
 где P: S → A⊥
 A → a | Bb
 B → b | Bb

- Для этой грамматики разбор будет недетерминированным, так как у нетерминальных символов A и B есть одинаковые правые части — Bb
- Такой грамматике будет соответствовать недетерминированный конечный автомат

Недетерминированный автомат

- Недетерминированный конечный автомат (НКА) —
 это пятёрка (К, Т, δ, H, S), где
- К конечное множество состояний
- *T* конечное <u>множество допустимых входных</u> <u>символов</u> (алфавит автомата)
- $\delta \frac{\phi y H K U U R \Pi E P E X O D O B}{1}$: отображение $K \times T \to \rho$ (K) (отображение декартова произведения множеств K и T в множество подмножеств K)
- *Н С К* конечное множество начальных состояний
- S ⊂ K конечное множество заключительных состояний

Недетерминированный автомат

• Запись δ $(A, t) = \{B_1, B_2, ..., B_n\}$ означает, что из состояния A по входному символу t происходит переход автомата ДКА в любое из состояний B_i (i = 1, 2, ..., n)

Класс языков, определяемых НКА, совпадает с классом языков, определяемых ДКА

- Для языка 🕻 эквивалентны утверждения:
 - 1. L порождается регулярной грамматикой
 - 2. L допускается ДКА
 - 3. L допускается НКА

КА и леволинейные грамматики

• Построение КА по леволинейной грамматике

```
Вход: Леволинейная грамматика G = (T, N, P, S)
Выход: Конечный автомат KA = (K, V, \delta, H, C), L(G) = L(KA)
```

- Установить, что K = N V = T
- Для каждого правила $A \to t \in P$, где $t \in T$ и $A \in N$ в функцию перехода включается правило δ (H, t) = A В таком случае установить, что $K = N \cup \{H\}$
- Для каждого правила $A \to Bt \in P$, где $t \in T$ и A, $B \in N$ в функцию перехода включается правило δ (B, t) = A
- В множество начальных состояний включаются элемент H, а также все элементы A, для которых есть правила $A \to \varepsilon$
- В множество конечных состояний автомата включается элемент, соответствующий цели грамматики $G: C = \{S\}$

КА и леволинейные грамматики

• Построение леволинейной грамматики по КА

Вход: Конечный автомат $KA = (K, V, \delta, H, C), L(G) = L(KA)$ Выход: Леволинейная грамматика G = (T, N, P, S)

- Установить, что N = K T = V
- Для каждого перехода δ (A, t) = B в грамматику включается правило $B \to At \in P$, где $t \in T$ и $A,B \in N$
- Для каждого начального состояния автомата в грамматику включается правило $B \to \varepsilon \in P$, где $B \in N$
- Начальным символом грамматики, будет нетерминал, соответствующий заключительному состоянию $G: S = \{H\}$
- К грамматике применяется алгоритм устранения *є*-правил

НКА по леволинейной грамматике

• Диаграмма состояний для леволинейной грамматики

$$G_{left} = (\{a, b\}, \{S, A, B, C\}, P, S)$$
 $P: S \to Sa$ (1) Свёртки в грамматике для цепочки aba $aba \leftarrow_4 Aba \leftarrow_3 Aa \leftarrow_2 S$
 $A \to Ab$ (3) Путь в автомате для цепочки aba $A \to \mathcal{E}$ (5) ЧКЦИЯ

Функция

переходов:

$$\delta$$
 (A, a) = S

$$\delta$$
 (A, b) = A

 δ (S, a) = S δ (H, a) = A

Автомат НКА = $({H,A,S}, {a,b}, \delta, {H,A}, S)$

• Алгоритм преобразования НКА в ДКА

Вход: Конечный автомат $HKA = (K, V, \delta, H, S)$

Выход: Конечный автомат $\mathcal{L}KA = (K', V', \delta', H', S')$

1. Множество состояний K' нового автомата M' строится из комбинаций всех состояний K старого автомата M (как множество подмножеств множества K)

Каждое состояние из K' обозначается как $[A_1A_2...A_n]$, где $A_i \in K$, $1 \le i \le n$

Всего имеется не более $2^n - 1$ состояний нового автомата M'

• Алгоритм преобразования НКА в ДКА

Вход: Конечный автомат $HKA = (K, V, \delta, H, S)$

Выход: Конечный автомат $\mathcal{L}KA = (K', V', \delta', H', S')$

2. Пусть H есть множество начальных состояний старого автомата: $\{H_1, H_2, ..., H_p\}$, в качестве исходного состояния ДКА M' при построении отображения δ' (функции переходов) берётся состояние $[A_1A_2...A_p]$, где $A_i \in H$, $1 \le i \le p$ или $[H_1H_2...H_p]$, то есть объединение всех начальных состояний НКА M Это состояние включается в множество состояний K' нового автомата (сначала оно единственное)

3. Начиная с исходного состояния $[H_1H_2...H_p]$, для каждого нового состояния $[A_1A_2...A_n]$ из K' и каждого входного символа $t \in T$ строятся переходы $\delta'([A_1A_2...A_n], t) = [B_1B_2...B_m]$, где для $\forall k: 1 \le k \le m$ $\exists i: 1 \le i \le n$ такое, что $\delta(A_i, t) = B_k$

 $\{B_1, B_2, ..., B_m\}$ — это все состояния НКА, в которые есть переходы из состояний $\{A_1, A_2, ..., A_n\}$ по символу t

В ДКА M' формируется детерминированный переход по символу t из состояния $[A_1A_2...A_n]$ в состояние $[B_1B_2...B_m]$ (если m=0, δ' ($[A_1A_2...A_n]$, t) = \emptyset)

Все <u>новые</u> состояния $[B_1B_2...B_m]$ $(m \neq 0)$ включаются в K'

- 4. Пусть конечное состояние старого автомата S есть множество состояний $\{S_1, S_2, ..., S_q\}$, тогда S' все состояния из K' вида $[..., S_r, ...]$, где $S_r \in S$ для $1 \le r \le q$
- Если S' состоит более, чем из одного элемента, изменяют входной язык, добавляя маркер '⊥' в конец каждой цепочки

Вводится новое состояние S, и для каждого состояния Q из множества S' добавляется переход δ' (Q, \bot) = S

5 объявляется единственным заключительным состоянием

ДС и праволинейные грамматики

- Если все правила праволинейной грамматики с односимвольной правой частью имеют вид
 V → ∠:
 - Состояниями ДС будут нетерминалы грамматики и одно специальное заключительное состояние S, в которое для каждого правила вида V → ✓ проводится дуга из V, помеченная признаком конца ✓
 - Для каждого правила вида $V \to tW$ проводится дуга из V в W, помеченная символом t
 - Начальным состоянием будет начальный символ *Н*

Разбор цепочки

При анализе цепочки abba имеем ту же последовательность переходов:

$$H \xrightarrow{a} A \xrightarrow{b} C \xrightarrow{b} B \xrightarrow{a} C \xrightarrow{f} S$$

 Каждая смена состояния теперь означает "свёртку" сентенциальной формы путём замены в ней нетерминала L на пару "нетерминал-терминал" tN, где L → tN правило грамматики

Грамматика:

 $H \rightarrow aA \mid bB$ $A \rightarrow bC$ $B \rightarrow aC$ $C \rightarrow aA \mid bB \mid \bot$

Возникает такая последовательность замен нетерминальных символов, соответствующая сменам состояний при построении дерева сверху вниз:

$$H \rightarrow aA \rightarrow abC \rightarrow abbB \rightarrow abbaC \rightarrow abba\bot$$

Диаграммы состояний, функции переходов, правила регулярных грамматик

правила леволинейных грамматик $\delta = \delta (H, t) = A \equiv A \rightarrow t \equiv H \rightarrow tA$

$$A \rightarrow B \equiv B \rightarrow At \equiv A \rightarrow tB$$

$$A \rightarrow C$$
 $= S = S \rightarrow At = A \rightarrow t$ πραвила праволинейных грамматик

КА и праволинейные грамматики

• Построение КА по праволинейной грамматике

Вход: Праволинейная грамматика G = (T, N, P, S)Выход: Конечный автомат $KA = (K, V, \delta, H, C), L(G) = L(KA)$

- Установить, что K = N V = T H = S В множество K может также войти состояние F, которое в таком случае объявляется заключительным
- Для каждого правила $A \to t \in P$, где $t \in T$ и $A \in N$ в функцию перехода включается правило δ (A, t) = F В таком случае установить, что $K = N \cup \{F\}$
- Для каждого правила $A \to tB \in P$, где $t \in T$ и A, $B \in N$ в функцию перехода включается правило δ (A, t) = B
- В множество конечных состояний включаются элемент F, а также все элементы A, для которых есть правила $A \to \mathcal{E}_{95}$

КА и праволинейные грамматики

• Построение праволинейной грамматики по КА

```
Вход: Конечный автомат KA = (K, V, \delta, H, C), L(G) = L(KA)
Выход: Праволинейная грамматика G = (T, N, P, S)
```

- Установить, что N = K T = V S = H
- Для каждого перехода δ (A, t) = B в грамматику включается правило $B \to At \in P$, где $t \in T$ и $A,B \in N$
- Для каждого заключительного состояния автомата в грамматику включается правило вида $B \to \varepsilon \in P$, где $B \in C$
- Начальным символом грамматики, будет нетерминал, соответствующий начальному состоянию $G: S = \{H\}$
- К грамматике применяется алгоритм устранения *&*-правил

КА по праволинейной грамматике

Диаграмма состояний для праволинейной грамматики G_{left} = ({a, b}, {S, A, B, C}, P, S)

$$P: S \rightarrow aS$$
 (1) Вывод в грамматике для цепочки abb $S \rightarrow d$ (2) $\rightarrow S \rightarrow_1 aS \rightarrow_2 abA \rightarrow_4 abbA \rightarrow_5 abb$

A otho bA (4) Путь в автомате для цепочки abb $\to S \to_1 S \to_2 A \to_4 A \to_5$

Функция

переходов:

$$\delta$$
 (A, b) = A

$$δ$$
 (S, a) = S

$$\delta$$
 (S, b) = A

$$\delta$$
 (S, d) = F

Автомат НКА = $({A,F,S}, {a,b,d}, \delta, S, {A,F})$

Выявление

недетерминированности разбора

- <u>Леволинейная грамматика</u>: в разных правилах имеются одинаковые правые части
- <u>Праволинейная грамматика</u>: в правилах для одного символа имеются альтернативы, начинающиеся с одинаковых терминальных символов
- <u>Диаграмма состояний</u>: из одной вершины выходят несколько дуг с одинаковыми надписями, либо несколько вершин являются входными
- <u>Функция переходов</u>: разные значения для одного и того же набора параметров (переход из некоторого состояния в разные состояния по одному символу), либо несколько состояний являются начальными

- В конечном автомате лексического анализатора действия отображаются с помощью диаграммы состояний: с каждым переходом из одного состояния в другое на диаграмме состояний связывается выполнение функции действия D (k, t), где k текущее состояние, а t текущий входной символ автомата
- Функция *D (k, t)* может выполнять действия:
 - размещение новой лексемы в таблице лексем
 - проверка наличия лексемы-имени в таблице имён
 - внесение новой записи в таблицу имён
 - выдача сообщений об ошибках, обнаруженных в процессе лексического анализа
 - остановка процесса компиляции

- Функция действия D (k, t) записывается на диаграмме состояний с помощью дополнительных пометок под дугами, соединяющими состояния автомата
- Каждая дуга может выглядеть так:

• t_i — символы анализируемого языка: если в состоянии A очередной анализируемый символ языка совпадает с t_i для какого-либо i=1,2,...,n, осуществляется переход в состояние B, при этом выполняются действия $D_1,D_2,...,D_m$

Дано: грамматика $G = (\{a, b, \bot\}, \{S, A, B\}, P, S)$

a

Правила грамматики:

$$P: S \to A \bot$$

$$A \to Ab \mid Bb \mid b$$

$$B \to Aa$$

Задача: подсчитать максимальное число символов 'b', следующих в анализируемой цепочке подряд

Решение: диаграмма состояний с действиями

- Для каждого нетерминального символа A ∈ N
 грамматики G (N, T, P, S) строится процедура, которая
 получает на вход цепочку символов α и текущее
 состояние указателя ввода символов из этой цепочки
- Если для символа A больше одного правила, то ищется правило вида A → a y, где y ∈ (T ∪ N)* и a ∈ T совпадает с текущим символом входной цепочки
- Если такое правило ($A \to \alpha \gamma$) найдено (либо правило $A \to \gamma$ единственное для A), то для каждого нетерминального символа из цепочки γ рекурсивно вызывается процедура разбора этого символа

• Грамматика $G = (\{a, b, c, \bot\}, \{S, A, B\}, P, S)$ и цепочка $caba\bot$

• $S \rightarrow AB \perp \rightarrow cAB \perp \rightarrow$

- Процедура каждого нетерминального символа грамматики, начиная с указанного места исходной цепочки, ищет подцепочку, которая начинается с текущего символа и выводится из этого нетерминального символа
- Пример распознавания рекурсивным спуском:
 - Процедура *GetL ()* вводит очередной символ языка
 - Процедура *S ()* начинает работу, когда первый символ уже прочитан

```
void S () { A (); B (); if (c != '\(\perp'\)' ERROR (); }

S \rightarrow AB \perp void A() { if (c == 'a') GetL (); A (); }

A \rightarrow a \mid cA else if (c == 'c') { GetL (); A (); }

B \rightarrow bA roid B() { if (c == 'b') { GetL (); A (); }

else ERROR (); }

105
```

 Метод рекурсивного спуска работоспособен, если на каждом шаге вывода выбор правила для замены левого нетерминала безошибочно принимается по первому символу из непрочитанной входной цепочки

Достаточные условия применимости метода рекурсивного спуска

Метод применим, если каждое правило грамматики имеет вид:

- либо для символа A имеется единственное правило вывода $A \to \alpha$, где $\alpha \in (T \cup N)^*$
- либо (если для символа *A* правил вывода несколько) все правила начинаются с различных терминальных символов:

$$A o a_1 \alpha_1 \mid a_2 \alpha_2 \mid \dots \mid a_n \alpha_n$$
 $a_i \in T$ для всех $i = 1, 2, \dots, n$ $a_i \neq a_j$ для $i \neq j$ $\alpha_i \in (T \cup N)^*$

• Рекурсивный спуск применим для грамматики

$$G = (\{a, b, c, \bot\}, \{S, A, B\}, P, S),$$
 где
P: $S \rightarrow AB\bot$ $A \rightarrow a \mid cA$ $B \rightarrow bA$

• Неоднозначная грамматика (метод не применим):

$$P_{H}$$
: $S \rightarrow aA \mid B \mid c$ $A \rightarrow aA \mid c$ $B \rightarrow aA \mid a$

• Однозначная грамматика с неоднозначными прогнозами:

$$P_0$$
: $S \rightarrow A \mid B$ $A \rightarrow aA \mid c$ $B \rightarrow aB \mid b$

• Наличие в грамматике правил вида $X \to \alpha$ и $X \to \beta$, из правых частей которых выводятся цепочки, начинающиеся одним и тем же терминалом a, то есть $\alpha \Rightarrow a\alpha'$ и $\beta \Rightarrow a\beta'$, делает неоднозначным прогноз по символу a, в таких случаях метод рекурсивного спуска неприменим

Применение рекурсивного спуска

- Множество first (A) это множество <u>терминальных</u> символов, которыми <u>начинаются</u> цепочки, выводимые из A в грамматике G = (T, N, P, S):
 - first (A) = {a \in T | A \Rightarrow a α , A \in (T \cup N)*, $\alpha \in$ (T \cup N)*}
 - first $(\varepsilon) = \emptyset$
 - Для альтернатив правила $S \to A \mid B$ в грамматике G_o :
 first $(A) = \{ a, c \}$, first $(B) = \{ a, b \}$ пересечение first $(A) \cap first (B) = \{ a \} \neq \emptyset$ метод рекурсивного спуска к G_o неприменим
 $A \to aA \mid c$ $A \to aB \mid b$
- Наличие в грамматике двух разных правил $X \to \alpha / \beta$, таких что *first* $(\alpha) \cap first$ $(\beta) \neq \emptyset$, делает метод рекурсивного спуска неприменимым

Применение рекурсивного спуска

- Если в грамматике для правил $X \to \alpha / \beta$ выполняются соотношения $\alpha \Rightarrow \varepsilon$ и $\beta \Rightarrow \varepsilon$, то метод рекурсивного спуска заведомо неприменим
- Для грамматики G_{pc} наличие ε -правила не приводит к невозможности использования метода рекурсивного спуска, для второй грамматики $G_{\mu pc}$ препятствие есть:

$$G_{pc}$$
: $S \rightarrow cAd \mid d$ G_{Hpc} : $S \rightarrow Bd$ $A \rightarrow aA \mid \epsilon$ $B \rightarrow cAa \mid a$

• В грамматике G_{HPC} любой вывод, содержащий A, имеет вид: $S \to Bd \to cAad \to ... \to ca...aAad$, и сделать выбор по текущему символу невозможно

109

Рекурсивный спуск для итераций

 Общий вид правил для описания синтаксиса последовательностей однотипных конструкций:

```
L \rightarrow a / a, L (в сокращённой форме: L \rightarrow a \{,a\})
```

- Условия применимости метода рекурсивного спуска для грамматик с правилами для списков не выполнены: в цепочке а,а,а,а из L могут выводиться
 - a
 - a,a
 - a,a,a,a,a
- Разбор детерминирован, если всегда выбирается самая длинная подцепочка

Рекурсивный спуск для итераций

• При анализе цепочек грамматики

```
G = (\{a,\}, \{L\}, P, L), где P = \{L \rightarrow a \mid a, L\} методом рекурсивного спуска процедура L () будет содержать оператор цикла:
```

Преобразование грамматик

- Для произвольной контекстно-свободной грамматики нельзя сказать, анализируется заданный ею язык методом рекурсивного спуска или нет
- Проблема поиска эквивалентной контекстносвободной грамматики, для которой метод рекурсивного спуска применим, есть алгоритмически неразрешимая проблема
- Для некоторых частных видов грамматик, не удовлетворяющих требованиям применимости метода рекурсивного спуска, удаются преобразования, позволяющие получить эквивалентные грамматики, пригодные для анализа этим методом

Применение рекурсивного спуска

- 1. Устранение левой рекурсии
- 2. Левая факторизация
- 3. Подстановка нетерминалов (терминализация)
- 4. Преобразования,учитывающие наличие*є*-альтернатив

Устранение левой рекурсии

• Если в грамматике для цепочек есть нетерминальные символы, правила вывода которых леворекурсивны :

$$A \to A \alpha_1 \mid ... \mid A \alpha_n \mid \beta_1 \mid ... \mid \beta_m \quad \alpha_i \in (T \cup N)^+ \ i = 1, 2, ..., n$$

 $\beta_j \in (T \cup N)^* \ j = 1, 2, ..., m$

применять метод рекурсивного спуска нельзя

- Непосредственную левую рекурсию можно заменить правой (цепочки eta_{j} { $lpha_{i}$ }): $A o eta_{1}A' \mid ... \mid eta_{m}A' \ A' o lpha_{1}A' \mid ... \mid lpha_{n}A' \mid arepsilon$
- Если для символа есть одни лишь леворекурсивные правила (альтернативы β_j отсутствуют), то символ A' не вводится, а правила для символа A становятся такими:

$$A \rightarrow \alpha_1 A \mid ... \mid \alpha_n A \mid \varepsilon$$

Устранение левой рекурсии

• Левая рекурсия может не быть непосредственной:

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid \varepsilon$

из S имеется вывод $S \to Aa \to Sda$, но эта рекурсия не является непосредственной, поэтому удаление левой рекурсии необходимо повторить

Сначала выполняется подстановка правила для S:

$$A \rightarrow Ac \mid Aad \mid bd \mid \varepsilon$$

• Далее:
$$S \to Aa \mid b$$

 $A \to bdA' \mid A'$ $\alpha_1 = c$ $\alpha_2 = ad$
 $A' \to cA' \mid adA' \mid \varepsilon$ $\beta_1 = bd$ $\beta_2 = \varepsilon$

Левая факторизация

 В грамматике есть правила, начинающиеся одинаковыми символами:

$$A o a \alpha_1 \mid a \alpha_2 \mid ... \mid a \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$
 где а $\in (T \cup N)^+$; α_i , $\beta_j \in (T \cup N)^*$, β_j не начинается с 'a'

• Можно объединить правила с общими началами в одно правило, введя новый символ *A*':

$$A \rightarrow aA' \mid \beta_1 \mid \dots \mid \beta_m$$

$$A' \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$$

• Грамматика $S \rightarrow \underline{if \ E \ then \ S} \mid \underline{if \ E \ then \ S} \ else \ S \mid a$

$$E \rightarrow b$$

преобразуется в $S \rightarrow \underline{if \ E \ then \ S} \ S' \mid a$ $S' \rightarrow \underline{else} \ S \mid \varepsilon$

$$E \rightarrow b$$

Подстановка нетерминалов

• В грамматике есть нетерминальный символ, у которого несколько правил вывода, и среди них есть правила, начинающиеся нетерминальными символами:

$$A oup B_1 lpha_1 \mid ... \mid B_n lpha_n \mid a_1 eta_1 \mid ... \mid a_m eta_m \ B_1 oup \gamma_{11} \mid ... \mid \gamma_{1k} \ ... \ B_n oup \gamma_{n1} \mid ... \mid \gamma_{np} \ B_i \in \mathbb{N} \quad a_j \in T \quad lpha_i, \, eta_j \in (T \cup \mathbb{N})^* \quad \gamma_{ij} \in (T \cup \mathbb{N})^+$$
 где

Можно заменить символы В; их правилами:

$$A \rightarrow \gamma_{11}\alpha_1 \mid \dots \mid \gamma_{1k}\alpha_1 \mid \dots \mid \gamma_{n1}\alpha_n \mid \dots \mid \gamma_{np}\alpha_n \mid a_1\beta_1 \mid \dots \mid a_m\beta_m$$

ε -правила

- Наличие ε -альтернатив ($A \to a_1 \alpha_1 \mid ... \mid a_n \alpha_n \mid \varepsilon$) не всегда препятствует применению рекурсивного спуска
- Анализатор для грамматики $G_1 = (\{a, b, \bot\}, \{S, A\}, P, S)$ $P_1: S \rightarrow bAa \perp A \rightarrow aA \mid \varepsilon$ void S () { if (c != 'b') ERROR (); GetL (); A (); if (c != 'a') ERROR (); GetL(); if (c != ' \perp ') ERROR (); void A () { if (c == 'a') { GetL (); A (); } // нет 'else' $\}$ // здесь есть проблема с анализом цепочки 'baaa \perp '

- Проблемы возникают, если подцепочка, следующая за цепочкой, выводимой из A, начинается таким же символом, как и цепочка, выводимая из A
- В противном случае проблем нет:
 для грамматики G₂ = ({a, b, c, ⊥}, {S, A}, P, S), где

$$P_2: S \rightarrow bAc \perp$$

 $A \rightarrow aA \mid \varepsilon$

удаётся построить анализатор, работающий методом рекурсивного спуска

- Проблемы возникают, если подцепочка, следующая за цепочкой, выводимой из A, начинается таким же символом, как и цепочка, выводимая из A
- В противном случае проблем нет:

Достаточные условия применимости рекурсивного спуска для грамматик с ε -правилами

• first (A) — множество $\underline{mepминальных}$ символов, которыми $\underline{начинаются}$ цепочки, выводимые из A в грамматике G = (T, N, P, S):

first (A) = {a
$$\in$$
 T | A \Rightarrow a α , A \in (T \cup N)⁺, α \in (T \cup N)^{*}}

 follow (A) – множество <u>терминальных</u> символов, которые <u>следуют за</u> цепочками, выводимыми из A:

follow (A) = {a
$$\in$$
 T | S \Rightarrow α A β , β \Rightarrow a γ , A \in N α , γ \in (T \cup N)* β \in (T \cup N)+}

- Если <u>first (A) \cap follow (A) = \varnothing </u>, метод рекурсивного спуска применим к данной грамматике
- Если <u>first (A) \cap follow (A) \neq \varnothing </u>, метод рекурсивного спуска неприменим к данной грамматике

Канонический вид грамматики и достаточные условия для метода рекурсивного спуска

- 1. либо $X \to \alpha$ и это единственное правило вывода для X
- 2. либо $X \rightarrow a_1 \alpha_1 / a_2 \alpha_2 / ... / a_n \alpha_n$
- 3. либо $X \rightarrow a_1 \alpha_1 \mid a_2 \alpha_2 \mid ... \mid a_n \alpha_n \mid \varepsilon$ и first $(X) \cap follow (X) = \emptyset$

$$a_{i} \in T$$
 для всех $i = 1, 2, ..., n$ $a_{i} \neq a_{j}$ для $i \neq j$ $\alpha, \alpha_{i} \in (T \cup N)^{*}$

Метод неприменим для грамматики

$$G_1 = (\{a, b, \bot\}, \{S, A\}, P, S)$$
, где $P_1: S \rightarrow bAa\bot$ $A \rightarrow aA \mid \varepsilon$ first $A = \{a\}$, follow $A = \{a\}$ first $A = \{a\}$ follow $A = \{a\}$

• Метод применим для грамматики

 $G_2 = (\{a, b, c, \bot\}, \{S, A\}, P, S),$ где

$$P_2: S \rightarrow bAc \perp$$
 $A \rightarrow aA \mid \varepsilon$

first $(A) = \{a\}$, follow $(A) = \{c\}$ first $(A) \cap follow (A) = \emptyset$

 Грамматику с правилом, в котором для некоторого символа А имеется ε-альтернатива, можно преобразовать, введя символ А' (А' ≡ Аβ):

ullet Из $oldsymbol{B}$ выводятся цепочки вида lpha $\{lpha_{i}\}$ $oldsymbol{eta}_{j}$ $oldsymbol{eta}_{j}$ либо lpha $\{lpha_{i}\}$ $oldsymbol{eta}$

• Преобразовать грамматику $G_1 = (\{a, b, \bot\}, \{S, A\}, P, S)$ для применения метода рекурсивного спуска:

$$P_1: S \rightarrow bAa \perp$$

 $A \rightarrow aA \mid \varepsilon$

• Для удаления ε -правила вводится правило $A' \to Aa \bot$:

$$S \rightarrow bA'$$

$$S \rightarrow bA'$$
 $A' \rightarrow aA' \mid a \perp$ $A \rightarrow aA \mid \varepsilon$

$$A \rightarrow aA \mid \varepsilon$$

Правило для A удаляется (символ A бесполезен):

$$S \rightarrow bA'$$

$$S \rightarrow bA'$$
 $A' \rightarrow aA' \mid a \perp$

• Объединяются общие начала альтернатив:

$$S \rightarrow bA'$$

$$A' \rightarrow aA''$$

$$S \rightarrow bA'$$
 $A' \rightarrow aA''$ $A'' \rightarrow A' / \bot$

Проводится терминализация правила для символа A":

$$S \rightarrow bA'$$

$$S \rightarrow bA'$$
 $A' \rightarrow aA''$

$$A'' \rightarrow aA'' \mid \bot$$

• Грамматика содержит пустые правые части в двух правилах: $S \to aA$

$$A \to BC \mid B$$

$$C \to b \mid \varepsilon$$

$$B \to \varepsilon$$

• Для нетерминала *A* из обеих альтернатив выводится пустая цепочка:

$$BC \Rightarrow \varepsilon$$
 и $B \rightarrow \varepsilon$

• Для цепочки "а" строятся два различных дерева вывода: $S \to aA \to aB \to a\varepsilon \equiv a$

$$S \rightarrow aA \rightarrow aBC \rightarrow a\varepsilon C \rightarrow a\varepsilon \varepsilon \equiv a$$

• Грамматика содержит пустую правую часть в

```
одном правиле: S 	othe Bd
B 	othe a \mid cAa
A 	othe aA \mid \varepsilon
first (a) = \{a\} first (cAa) = \{c\}
first (a) 	ounderded first (cAa) = \emptyset
```

• Любой вывод, содержащий А, имеет вид:

$$S \rightarrow Bd \rightarrow cAad \rightarrow ... \rightarrow ca...aAad$$

Критерий применимости метода рекурсивного спуска

- Метод рекурсивного спуска применим к контекстно-свободной грамматике *G*, <u>если и</u> только если для любых двух её правил X → α | β выполняются условия:
 - 1. $first(\alpha) \cap first(\beta) = \emptyset$
 - 2. Справедливо не более, чем одно из двух соотношений: $\alpha \Rightarrow \varepsilon$, $\beta \Rightarrow \varepsilon$
 - 3. Если $\beta \Rightarrow \varepsilon$, то $first(X) \cap follow(X) = \emptyset$

Преобразование итераций

 Грамматика со списком элементов, ограниченных символом, совпадающим с внутренним разделителем элементов списка, как пример итерации в правилах:

$$S \rightarrow LB$$

 $L \rightarrow a \{, a\}$
 $B \rightarrow , b$
 $S \rightarrow LB$
 $L \rightarrow a \mid a, L$
 $B \rightarrow , b$

Вводится дополнительный нетерминальный символ L':

Преобразование итераций

• Подправляется правило для L' (L' o ,a $L' \mid \varepsilon$):

$$S \rightarrow LB$$
 $L'' \rightarrow ,aL'' \mid \varepsilon$
 $L \rightarrow aL''$
 $B \rightarrow ,b$
 $L' \rightarrow ,aL' \mid \varepsilon$

из исходных правил:

L (B):
$$\alpha = a$$
 $\beta = \varepsilon$
L' (A): $\alpha_1 = a$ $\beta_i = \varepsilon$

недостижимое правило

Очередное поколение правил в точности повторяет предыдущее, поэтому преобразования по показанным методикам не могут привести к получению грамматики, которые методом рекурсивного спуска смогут обрабатывать подобные списки

Грамматики с действиями

 В тела процедур вставляются вызовы дополнительных "семантических" процедур:

 Процедура рекурсивного спуска, выполняющая синтаксический анализ и дополнительные действия:

Примеры грамматик

• Грамматики, которые позволяют распознавать цепочки языка

```
L = \{ \alpha \in (0,1)^+ \bot \mid \alpha \text{ содержит равное количество } 0 \text{ и } 1 \}:
G_1 = (\{0,1\},\{A,S\},P_1,S) G_2 = (\{0,1\},\{S\},P_2,S)
P_1: S \to 0A1 \mid 1A0 P_2: S \to 0S1 \mid 1S0 \mid 01 \mid 10
0A \to 00A1
1A \to 11A0
A \to \varepsilon
```

• Грамматика с действиями, дающая тот же результат:

```
S \rightarrow \langle k0 = 0; k1 = 0 \rangle A \bot

A \rightarrow 0 \langle k0 +++ \rangle A \mid 1 \langle k1 +++ \rangle A \mid

0 \langle k0 +++ \rangle C = 0 \langle k1 \rangle C = 0 \langle k
```

• Разбор выражения:

```
x * y + 5 > x
int * int
    int + int
    int > int
    bool
```

Изменённая цепочка:

```
x > 5 * y
int > int
bool * int
oшибка
```

• Разбор выражения:

```
x * y + 5 > x
int * int
    int + int
    int > int
    bool
```

Изменённая цепочка:

```
x > 5 * y
    int * int
int > int
bool
```

• Простейшая грамматика для выражений:

$$G_1: E \rightarrow E + E \mid E * E \mid (E) \mid I$$

Разные деревья вывода для выражения / + / * /:

Однозначная правоассоциативная грамматика
 G₂, не отражающая старшинство операций:

$$G_2: E \rightarrow T + E \mid T * E \mid T$$

$$T \rightarrow I \mid (E)$$

• Симметричная грамматике G_2 однозначная левоассоциативная грамматика G_3 :

$$G_3: E \rightarrow E + T \mid E * T \mid T$$

$$T \rightarrow I \mid (E)$$

$$I + I * I$$

• Правоассоциативная, учитывающая старшинство операций грамматика G_4 :

$$G_4$$
: $E \rightarrow T \mid T + E$
 $T \rightarrow F \mid F * T$
 $F \rightarrow I \mid (E)$

Левоассоциативная грамматика G₅:

$$G_5: E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

рекурсивный спуск неприменим

• Грамматика G_6 (рекурсия заменена итерацией):

$$G_6: E \rightarrow T\{+T\}$$

$$T \rightarrow F\{*F\}$$

$$F \rightarrow I \mid (E)$$

• Семантические проверки:

$$E \rightarrow T \{ + T < D_T > \}$$

$$T \rightarrow F \{ * F < D_F > \}$$

$$F \rightarrow I < D_I > | (E)$$

- *D*, проверка одиночного операнда
- D_{τ} проверка совместимости слагаемых
- D_F проверка совместимости множителей

Основные свойства языков внутреннего представления

- Способность фиксации синтаксической структуры исходной программы
- Возможность автоматической генерации текста на языках внутреннего представления во время синтаксического анализа
- Относительная простота трансляции в объектный код, либо достаточная эффективность интерпретации конструкций языков внутреннего представления

Способы внутреннего представления программ

- а) связные списочные структуры, представляющие синтаксическое дерево
- b) многоадресный код с явно именуемыми результатами (тетрады)
- с) многоадресный код с неявно именуемыми результатами (триады)
- d) инфиксная запись
- е) префиксная запись
- f) постфиксная запись
- g) язык ассемблера целевой машины

Связные списочные структуры

Многоадресный код с явно именуемым результатом

 Тетрады представляют собой запись операций в форме четырёх составляющих: операции, двух операндов и результата операции:

```
<операция> (<операнд1>, <операнд2>, <результат>)
```

Представление выражения A := B * C + D - B * 10 в виде тетрад, составляющих линейную последовательность

```
команд: 1 * B C T1
2 + T1 D T2
3 * B 10 T3
4 - T2 T3 T4
5 := T4 Ø A
```

Многоадресный код с неявно именуемым результатом

 Триады представляют собой запись операций в форме трёх составляющих: операции и двух операндов, один из которых является и результатом операции:

```
<операция> (<операнд1>, <операнд2>)
```

Представление выражения A := B * C + D - B * 10 в виде триад, составляющих линейную последовательность

```
команд: 1 * B C
2 + ^1 D
3 * B 10
4 - ^2 ^3
5 := A ^4
```

Другие виды внутреннего представления

- Инфиксная запись: A := B * C + D B * 10
- Префиксная (прямая польская) запись:

$$:= A - + *BCD*B10$$

- Постфиксная (обратная или инверсная польская)
 запись (ПОЛИЗ):

 A B C * D + B 10 * :=
- Свойства ПОЛИЗ:
 - Операнды следуют в том же порядке, в каком они следуют в инфиксной записи
 - Операции следуют в том порядке, в каком они должны вычисляться (слева направо)
 - Операции следуют непосредственно за своими операндами

Определение ПОЛИЗ

- 1. Если E является единственным операндом, то ПОЛИЗ выражения E есть этот операнд
- 2. ПОЛИЗ выражения $E_1 \theta E_2$, где θ знак бинарной операции, а E_1 и E_2 операнды для θ , есть запись $\underline{E}_1 \underline{E}_2 \theta$, где \underline{E}_1 и \underline{E}_2 ПОЛИЗ выражений E_1 и E_2 соответственно
- 3. ПОЛИЗ выражения θE , где $\theta -$ знак унарной операции, а E операнд операции θ , есть запись $\underline{E}\theta$, где \underline{E} ПОЛИЗ выражения E
- 4. ПОЛИЗ выражения (E) есть ПОЛИЗ выражения E

ПОЛИЗ выражений

- *Простым* называется выражение, состоящее из одной константы или имени переменной
- Границы подвыражений сложных выражений могут явно ограничиваться скобками: в выражении (a b) + c' левым операндом операции '+' является подвыражение 'a b', а правым простое выражение 'c'
- Когда скобки явно не расставлены, учитывается приоритет операций, а также ассоциативность операций одинакового приоритета

ПОЛИЗ выражений

- В выражении 'a + b * c' операнд 'b' относится к операции умножения, и эквивалентное выражение со скобками будет таким: 'a + (b * c)'
- В выражении 'a b + c' операнд 'b' относится к левой операции (к "минусу", а не к "плюсу") и эквивалентное выражение со скобками будет таким: '(a b) + c'
- Левоассоциативные операции группируются с помощью скобок слева направо: a b + c d' эквивалентно ((a b) + c) d'

Алгоритм Дейкстры

- Пока есть ещё символы для чтения:
 - Читается очередной символ
 - Если символ <u>операнд</u>, он добавляется к выходной строке
 - Если символ <u>имя функции</u>, он помещается в стек
 - Если символ есть разделитель параметров функции:
 - До тех пор, пока верхним элементом стека не станет открывающая скобка, выталкиваются элементы из стека в выходную строку. Если открывающей скобки нет, значит, в выражении не согласованы скобки, либо неверно поставлен разделитель. Сам разделитель помещается в стек в виде открывающей скобки

Алгоритм Дейкстры

- Если символ есть <u>операция</u> (*o1*), то:
 - **1**. пока...
 - ...(если операция o1 правоассоциативна)
 приоритет o1 меньше (<) приоритета
 операции, находящейся на вершине стека...
 - …(иначе) приоритет о1 не больше (≤)
 приоритета операции, находящей на вершине стека…

...верхние элементы стека выталкиваются в выходную строку

2. операция *о*1 помещается в стек

Алгоритм Дейкстры

- Если символ есть <u>открывающая скобка</u>, он помещается в стек
- Если символ есть <u>закрывающая скобка</u>, элементы из стека выталкиваются в выходную строку до тех пор, пока на вершине стека не окажется открывающая скобка. Открывающая скобка удаляется из стека, но в выходную строку не добавляется. Если после этого шага на вершине стека оказывается имя функции, оно добавляется к выходной строке
- Когда входная строка заканчивается, все символы из стека выталкиваются в выходную строку

Алгоритм Дейкстры (сортировочная станция)

$$A B C * D + B 10 * - := A := B * C + D - B * 10$$

Ассоциативность в ПОЛИЗ

 Сложение есть левоассоциативная операция, следующие друг за другом операции с таким же приоритетом выполняются слева направо:

$$a + b + c + E$$
 $((a + b) + c) + E$ $ab + c + E + C$

 Операция присваивания Си++ есть операция правоассоциативная, в операциях множественного присваивания операции выполняются справа налево:

$$a = b = c = E$$
 $a = (b = (c = E))$ $a b c E = = =$

Алгоритм интерпретации ПОЛИЗ

- Выражение в ПОЛИЗ при вычислении просматривается слева направо, при этом если очередной элемент ПОЛИЗ это:
 - операнд его значение заносится в стек
 - знак *n*-местной операции из стека извлекаются нужные операнды, выполняется операция, результат заносится в стек
- В конце вычислений в стеке остаётся один элемент – значение всего выражения
- Для интерпретации необходима информация, хранящаяся в таблицах

Вызов функции в ПОЛИЗ

 ПОЛИЗ вызова функции представляет собой последовательность фактических параметров в ПОЛИЗ, за которой следует имя функции

$$f(p, s) => p s f()$$

 Для функций с переменным числом параметров перед именем функции в ПОЛИЗ вставляется дополнительный параметр — количество настоящих фактических параметров

printf (fmt, ...) => <u>fmt</u> ... num_par printf()

Оператор-выражение в ПОЛИЗ

- В некоторых языках программирования присваивание является операцией, а не оператором, поэтому при интерпретации ПОЛИЗ присвоенное значение сохраняется в стеке (как результат операции)
- Для удаления ненужного значения с вершины стека для корректной интерпретации ПОЛИЗ этих языков используется специальная операция ';' с единственным побочным эффектом удаления текущего элемента из стека

Оператор присваивания

• *Оператор присваивания* является двухместным:

I := E

• Оператор присваивания в ПОЛИЗ:

&I <u>E</u> := ;

ИЛИ

- Операнды двухместной операции присваивания ':='
 - адрес переменной / (обозначается как &/ или <u>/</u>) и
 - ПОЛИЗ выражения Е (обозначается как Е)
- Операция ';' удаляет ненужный результат

Унарный минус в ПОЛИЗ

- Способы устранения неоднозначности с унарным и бинарным минусом:
 - замена унарной операции на бинарную, считая, что '-a' означает '(0-a)':

$$a^*(-x+10^*y-123)+b => a 0x-10y^*+123-*b+$$

 введение специального знака для обозначения унарной операции (замена '–a' на '@a'):

$$a^*(-x+10^*y-123)+b => a \times @ 10 y^* + 123 - * b +$$

Унарные операции увеличения и уменьшения Си++

- Запись ++ x эквивалентна x = x + 1 правильный перевод: $&x \times x \times 1 + x = 0$
- Рекомендуемый вариант: &x +# &x -#

- Запись x ++ эквивалентна y = x, x = x + 1, y
 правильный перевод: &y x := ; &x x 1 + := ; y
- Рекомендуемый вариант: <u>&x #+</u> <u>&x #-</u>

Безусловные переходы в ПОЛИЗ

- Технически ПОЛИЗ представляется контейнером с итератором произвольного доступа
- В предположении, что ПОЛИЗ оператора, помеченного меткой L_0 , начинается с номера p_0 , оператор перехода $goto\ L_0$ записывается как

$$p_0$$
!

где p_0 ! есть одноместная операция выбора элемента ПОЛИЗ, номер которого равен p_0 , и предшествующий ей её операнд

Условные переходы в ПОЛИЗ

 Для перевода в ПОЛИЗ условных операторов и операторов цикла используется бинарная операция условного перехода "по лжи" с семантикой

$$if(!(B_1))gotoL_1$$

• ПОЛИЗ операции условного перехода:

$$\underline{\underline{B}}_1$$
 p_1 !F

- $B_1 \Pi O \Pi U 3$ условного выражения B_1
- p_1 номер элемента, с которого начинается ПОЛИЗ оператора, помеченного меткой L_1
- *!F* − знак операции

Условный оператор

Семантика условного оператора

```
if B_2 then S_1 else S_2
if (!(B_2)) goto L_2; S_1; goto L_3; L_2: S_2; L_3: ...
```

ПОЛИЗ условного оператора:

$$\underline{\underline{B}}_2$$
 p_2 !F $\underline{\underline{S}}_1$ p_3 ! $\underline{\underline{S}}_2$... где

 p_i — номер элемента, с которого начинается ПОЛИЗ оператора с меткой L_i , i=2, 3

Условный оператор языка Си++

• Условный оператор

$$if(x > 0) x = x + 1; else x = 5; y = x;$$

• ПОЛИЗ условного оператора:

Для реализации других операторов языков программирования могут потребоваться другие дополнения к операциям ПОЛИЗ. Например, для реализации переключателя языка Си++ (switch-case-...-case) требуется операция дублирования верхнего элемента стека.

Оператор цикла с предусловием

• Семантика оператора цикла с предусловием

while
$$B_3$$
 do S_3
 L_4 : if $(!(B_3))$ goto L_5 ; S_3 ; goto L_4 ; L_5 : ...

• ПОЛИЗ оператора цикла с предусловием:

$$\underline{\underline{B}}_{3}$$
 p_{5} !F $\underline{\underline{S}}_{3}$ p_{4} ! ... где

 p_i — номер элемента, с которого начинается ПОЛИЗ оператора с меткой L_i , i = 4, 5

Оператор цикла с постусловием

Семантика оператора цикла с постусловием

```
do S while (E)
L_1: S; if (!(E)) goto L_2; goto L_1; L_2: ...
```

• ПОЛИЗ оператора цикла с постусловием:

$$\underline{\underline{SEp_2!Fp_1}!...}$$
где

 p_i — номер элемента, с которого начинается ПОЛИЗ оператора с меткой L_i , i=1, 2

Пример оператора цикла

• Оператор цикла с постусловием:

do
$$S$$
 while $(x > 0)$;

• ПОЛИЗ оператора цикла с постусловием:

• Ошибочный перевод ($repeat S until x \le 0$):

$$5 x 0 \leq 1 !F$$
1 2 3 4 5 6

Оператор цикла языка Си++

• Семантика оператора цикла с пересчётом

for
$$(E_1; E_2; E_3) S$$

 $E_1; L_1: if (!(E_2)) goto L_4; goto L_3;$
 $L_2: E_3; goto L_1; L_3: S; goto L_2; L_4: ...$

• ПОЛИЗ оператора цикла с пересчётом:

$$\underline{\underline{E}}_1$$
 $\underline{\underline{E}}_2$ p_4 !F p_3 ! $\underline{\underline{E}}_3$ p_1 ! $\underline{\underline{S}}$ p_2 !... где

 p_i — номер элемента с меткой L_i , i = 2, 3

Пример оператора цикла

• Семантика оператора цикла с пересчётом:

• ПОЛИЗ оператора цикла с пересчётом:

• Ошибочная трактовка:

$$E_1$$
; L_1 : **if** (! (E_2)) goto L_2 ; S ; E_3 ; goto L_1 ; L_2 : ...

Условное выражение

• Семантика условного выражения:

$$E_1$$
? E_2 : E_3
if $(!(E_1))$ **goto** L_1 ; E_2 ; **goto** L_2 ; L_1 : E_3 ; L_2 : ...

• ПОЛИЗ условного выражения:

$$\underline{\underline{E}}_1 p_1 ! F \underline{\underline{E}}_2 p_2 ! \underline{\underline{E}}_3 ...$$
 где

 p_{i} — номер элемента с меткой L_{i} , i = 1, 2

• Неверный перевод:

$$\underline{\underline{E}}_1$$
 $\underline{\underline{E}}_2$ $\underline{\underline{E}}_3$?

Ошибочные трактовки

- Оператор: if(a > b) a = a b неверно переводится
 - a b > & a a b = ; if
- Объясняющие примеры: x < y ? x ++ : x -**if** (x < y) x ++; **else** x --;
- Не допускается размножение операций:

$$z = x < y ? x - a : x + a$$

- Условное выражение иногда трактуется неверно x < y ? z = x - a : z = x + a
- Правильно так: $\&z \times y < p_1 !F \times a p_2 ! \times a + =$

Пустой оператор

• Оператор:

```
while(c++ < y); //while(c++ < y){}
x=x+1;</pre>
```

переводится так:

```
\&c #+ y < 9 !F 1 ! \&x x 1 + = ;
1 2 3 4 5 6 7 8 9 10 11 12 13 14
```

• Так же выглядит постфиксная запись оператора

```
do; while(c++ < y);
x=x+1;</pre>
```

Логические операции

Разные подходы, принятые в языках Паскаль и Си к реализации логических операций а && b и a // b, приводят к разному представлению этих операций в ПОЛИЗ:

```
<u>а b</u> && <u>a b | | </u>

ПОЛИЗ операций && и | | в языке Паскаль

<u>а</u> ? <u>b</u> ? 1 : 0 : 0

<u>а</u> ? 1 : <u>b</u> ? 1 : 0

Семантика операции | | в языках Си, Си++

Семантика операции | | в языках Си, Си++
```

• ПОЛИЗ операции && в языках Си, Си++

```
a 13 !F b 10 !F 1 14 ! 0 14 ! 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
```

• ПОЛИЗ операции | в языках Си, Си++

Синтаксически управляемый перевод

- Синтаксис и семантика языков взаимосвязаны
- При синтаксически управляемом переводе в соответствии с семантикой входных и выходных правил каждому правилу входного языка сопоставляются правила выходного языка
- С каждой вершиной дерева синтаксического разбора N связывается цепочка C (N)
- Образ вершины N строится путём сцепления в определённом порядке последовательности C (N) и последовательностей цепочек, связанных со всеми вершинами, являющимися прямыми потомками вершины N
- Процесс перевода продолжается снизу вверх в порядке, управляемом структурой дерева
- Перевод программы состоит в поиске образа корня дерева 172

Формальный перевод

• Формальный перевод τ — это подмножество множества всевозможных пар цепочек (α, β) в алфавитах T_1 и T_2 : $\tau \subseteq (T_1^* \times T_2^*)$ где $\alpha \in T_1^*$, $\beta \in T_2^*$

• Входной язык перевода *т*:

$$L_{\alpha x} = \{ \alpha \mid \exists \beta : (\alpha, \beta) \in \tau \}$$

• Целевой (выходной) язык перевода *т*:

$$L_{u} = \{\beta \mid \exists \alpha : (\alpha, \beta) \in \tau\}$$

• Перевод т *неоднозначен,* если для некоторых

$$\alpha \in T_1^*, \beta, \gamma \in T_2^*, \beta \neq \gamma$$
 $(\alpha, \beta) \in \tau$ и $(\alpha, \gamma) \in \tau$

Синтаксически управляемый перевод

- С помощью грамматики с действиями выполнить перевод цепочек языка $L_1 = \{0^n 1^m \mid n \ge 0, m > 0\}$ в цепочки языка $L_2 = \{a^m b^n \mid n \ge 0, m > 0\}$
- Определение перевода τ : для любых $n \ge 0$, m > 0 цепочке $0^n 1^m \in L_1$ соответствует цепочка $a^m b^n \in L_2$, $\tau = \{ (0^n 1^m, a^m b^n) \mid n \ge 0, m > 0 \}$, $L_{gx}(\tau) = L_1$, $L_{u}(\tau) = L_2$
- Грамматика языка L_1 : $S o OS \mid 1A$ $A o 1A \mid \varepsilon$
- Действия по переводу цепочек " 0^n1^m " в цепочки " a^mb^n ": $S \to 0S < Put ('b') > | 1 < Put ('a') > A$ $A \to 1 < Put ('a') > A | <math>\varepsilon$

Синтаксически управляемый перевод

- Перевести цепочки языка L₁ = {ancmbn | n, m ≥ 0} в цепочки языка L₂ = {0m1n+m | n, m ≥ 0}
- Цепочку "aacccbb" (n = 2, m = 3) перевести в цепочку "00011111" (m = 3, n + m = 5)
- Грамматика языка L_1 : $S o aSb \mid A$ $A o cA \mid \varepsilon$
- Вычисление множеств first(A) и follow(A): $first(A) = \{c\}$ $follow(A) = \{b\}$
- Действия по переводу цепочек " $a^nc^mb^n$ " в цепочки " 0^m1^{n+m} ": $S \to aSb < cout << '1'> | A$ $A \to c < cout << '0'> A < cout << '1'> | <math>\varepsilon$

Преобразование в ПОЛИЗ

• Генератор, совмещённый с синтаксическим анализатором:

```
void E () { T (); while (c == '+') { GetS (); T (); Put ('+'); } }
void T () { F (); while (c == '*') { GetS (); F (); Put ('*'); } }
void F () { if (c == 'a') { GetS (); Put ('a'); } }
else if (c == 'b') { GetS (); Put ('b'); }
else if (c == '(') { GetS (); E (); if (c == ')') GetS (); else Error (); }
else Error ();
}
```