Scientific Calculator using Arduino

Prajwal EE24BTECH11051

 $March\ 25,\ 2025$

Contents

1	Introduction	3		
2	Components	3		
3	Functions Available 3.1 Mode-1 Button Layout	6 6 7		
4	Numerical Methods	8		
5	Expression Evaluation Logic			
6	Implementation Challenges and Solutions	9		
7	Conclusion	9		

1 Introduction

- Scientific calculator is used for mathematically functions like trignometric, logarithms, exponential and arithmetic.
- In this project we mainly try to implement the logics and computational ability of an scientific calculator using arduino board, a 16x2 LCD display and a button matrix for numericals and functions
- Following are the logics to implement the calculation of the mathematical functions efficiently and accurately
 - CORDIC algorithm for trignometric functions
 - RK4 for logorithm and exponential
 - Common math operators for arithmetic operator

2 Components

The following bullet points provides the components and their function briefly

- Arduino Uno Used as the brain of the calculator which uploads and recieves the input and and send cammands to display the expression and output in LCD display
- 16x2 LCD display displays the input and output
- Buttons Matrix Buttons are used for giving input in which we assign a character to each button.

There are two modes for each button,

- Mode 1 for numbers and basic arithmetic operations
- Mode 2 for mathematical functions trignometric, logorithmic etc

And a button to switch between the modes

- Resistors and Wires Resistor for controlling the current and wires for connections
- Potentiometer For controlling the contrast of the LCD display

Component	Arduino Pin				
Button Matrix					
Row 1	2				
Row 2	3				
Row 3	4				
Row 4	5				
Column 1	6				
Column 2	7				
Column 3	8				
Column 4	9				
Column 5	10				
Shift Button					
Shift Button	13				
GND	GND				
LCD Display (16x2, Non-I2C)					
LCD RS	A0				
LCD EN	A1				
LCD D4	A2				
LCD D5	A3				
LCD D6	A4				
LCD D7	A5				

Table 1: Circuit Connections of the Scientific Calculator

Figure 1: Circuit Diagram of the Scientific Calculator (Sheet 1)

Figure 2: Circuit Diagram of the Scientific Calculator (Sheet 2)

3 Functions Available

The calculator supports following mathematical operations.

3.1 Mode-1 Button Layout

1	2	3	/	С
4	5	6	*	D
7	8	9	-	(
	0	=	+)

Table 2: Mode-1 button layout

3.2 Mode-2 Button Layout

sin	cos	tan	x^y	С
!	π	e	x	D
log	ln	sqrt	cbrt	r
sin^{-1}	cos^{-1}	tan^{-1}	x^2	x^3

Table 3: Mode button layout

4 Numerical Methods

For accuracy and efficency the calculator uses the following numerical methods

• CORDIC Algorithm for Trignometric funtions

$$x_{i+1} = x_i - d_i \cdot y_i \cdot 2^{-i}$$
$$y_{i+1} = y_i + d_i \cdot x_i \cdot 2^{-i}$$
$$z_{i+1} = z_i - d_i \cdot \text{atan}(2^{-i})$$

where:

- -x, y represent the coordinates of the rotated vector.
- -z is the angle being processed.
- $-d_i$ is the sign of z.

It used for sin(x),cos(x) and tan(x).

• RK4 Algorithm for logarithmic and power functions

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2})$$

$$k_3 = hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2})$$

$$k_4 = hf(x_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Applications in the calculator

- Logarithms
- Exponential
- Square and Cube Roots
- Inverse Trignometric Functions

5 Expression Evaluation Logic

To handle complex expressions, the calculator uses:

- **Stack-based computation**: Uses two stacks for values and operators.
- **Operator precedence rules**: Implements precedence to ensure correct order of operations.
- **String parsing**: Extracts numbers, operators, and function names.
- **Error handling**: Handles division by zero and invalid inputs.

6 Implementation Challenges and Solutions

- **Handling Button Multiplexing**: Since the number of input pins is limited, a multiplexing technique was used to read button presses efficiently.
- **Non-I2C LCD Handling**: The LCD was operated in 4-bit mode to optimize pin usage.
- **Efficient Mathematical Computation**: Using CORDIC and RK4 improved accuracy while reducing computation time.

7 Conclusion

- This scientific calculator successfully implements a variety of mathematical functions using efficient numerical methods. The combination of CORDIC and RK4 ensures accurate and fast computations.
- The button matrix provides an intuitive interface, making it a practical and functional scientific calculator.

For codes refer

https://github.com/naraprajwal/EE1003/tree/ee654ce2686dc1c07586fa8eb6452a7e21e71Calculator/codes

Thank you