

Taller #8 – Optimización de consultas

Bases de Datos I

I. Álgebra relacional y árbol de consulta

- 1. Presente el código SQL y la sentencia de Algebra Relacional equivalente, para realizar las siguientes consultas, considerando las tablas que se presentan abajo.
 - a. Nombres y apellidos de los estudiantes que tienen resultados del ejercicio $\mathsf{A}-\mathsf{1},$ con la cantidad de puntos que obtuvieron.
 - b. Correos de los estudiantes que tienen resultados para ejercicios del tópico SQL.

ESTUDIANTES					
CODIGO(NOMBR	APELLIDO			
PK)	ES	S	CORREO		
			pperez@ua		
101	Pedro	Perez	<u>o</u>		
			mmejia@u		
102	Monica	Mejia	<u>ao</u>		
			rgonza@ua		
103	Ramiro	Gonzalez	<u>o</u>		
			jmartin@ua		
104	Juan	Martinez	<u>o</u>		

RESULTADOS					
COD_E	CAT_EJ	NUM_EJ	PUNT		
ST	ER	ER	OS		
101	A	1	10		
101	A	2	8		
102	A	1	9		
102	A	2	9		
102	В	1	12		

EJERCICIOS						
CATEGORIA	NUMER		MAXPU			
(PK)	O (PK)	TOPICO	NT			
		Modelami				
Α	1	ento	10			
A	2	SQL	10			
В	1	SQL	15			

2. Considerando la descripción de tablas que se presenta a continuación, describa la consulta (mostrada al final) como expresión de Algebra Relacional:

AEROPUERTOS (<u>aerold</u>, aeronombre, ciudad) VUELOS (<u>vuelold</u>, fecha, compañía, **aeroorigen**, **aerodestino**) RESERVAS (**numtiquete**, nombre, nacionalidad, **numvuelor**, **silla**) SILLAS (numsilla, **numvuelo**, clase)

Observación: los campos subrayados corresponden a las llaves primarias de cada tabla, los campos en negrilla corresponden a Llaves foráneas.

SELECT nombre, silla, vuelold FROM SILLAS, VUELOS inner join AEROPUERTOS on aeroorigen = aerold, RESERVAS WHERE nacionalidad = 'Colombia' and compañia = 'Avianca' and ciduad = 'Miami' or ciudad = 'Los Angeles' and numvuelor = numvuelo and silla = numsilla and numvuelo = vuelold

3. Para la siguiente consulta, presente el árbol de consulta equivalente:

PROVEEDOR (<u>nit</u>, nombre, dirección, teléfono, paginaweb) REPUESTOS (<u>numero</u>, descripción, nomRepuesto, precio) PROYECTO (<u>código</u>, titulo, duración, presupuesto) SUMINISTRO (<u>Snit</u>, Snumero, <u>Scódigo</u>, cantidad, <u>fecha</u>)

 Π nit, nombre, nomRepuesto, precio (σ Snit = nit AND titulo = 'CRM' AND fecha > '01/06/2019' AND Snumero = numero AND precio > 100.000 AND fecha < '31/10/2019' AND Scodigo = código ($PROVEEDOR\ X$ REPUESTOS X PROYECTO X SUMINISTRO))

4. Presente el árbol de consulta equivalente a la siguiente expresión de algebra relacional :

 Π nombre, numcurso, semestre, año (σ coest = codigo (ESTUDIANTES X (REPORTE \bowtie recurso=numcurso (σ profesor='Perez' and nota > 3.8 (CURSO)))))

II. Optimización de consultas

Para las consultas que se plantean a continuación, presente:

- Árbol de consulta inicial
- Justificación de los cambios realizados en el orden de las tablas (hojas del árbol).
- Árbol de consulta optimizado

1. Considerando las siguientes tablas (los campos subrayados corresponden a llaves primarias):

Courses (<u>ID</u>, Name, Room, Time)
Exercises (<u>ID</u>, C_ID, A_ID, Room, Time)
Assistants (<u>ID</u>, Firstname, Lastname)
*En Excercises: C_ID es el ID de courses y A_ID es el Id de Assistants

Consulta:

SELECT C.Name, A.Firstname, A.Lastname, E.Room, E.Time FROM Courses C, Assistants A, Exercises E WHERE C.ID = E.C_ID AND A.ID=E.A_ID AND C.Room like '10%' AND E.Room not like 'CAB%'

T C.Name, A.Firstname, A.Lastname, E.Room, E.Time (**O** C.ID = E.C_ID AND A.ID=E.A_ID AND C.Room like '10%' AND E.Room not like 'CAB%' ((Courses C X Assistants A) X Exercises E))

2. Considerando las siguientes tablas (los campos subrayados corresponden a llaves primarias):

Applicants (<u>id</u>, mid, name, city, sid) Schools (<u>sid</u>, sname, srank) Major (<u>mid</u>, mname, age)

Consulta:

T A.name (**O** A.sid = S.sid AND A.mid=M.mid AND A.city='Seattle' AND S.rank <10 AND mname='CSE' ((School x Major) x Applicants))