CS/ECE 5381/7381 Computer Architecture Spring 2023

Dr. Manikas

Computer Science

Lecture 23: Apr. 21, 2023

(EXTRA LECTURE – RECORDED ONLY

Assignments

- Quiz 10 due Mon, Apr. 24 (11:59 pm)
 - Covers concepts from Module 11
 - Including extra lecture of Friday

Quiz 10 Details

- The quiz is open book and open notes.
- You are allowed 90 minutes to take this quiz.
- You are allowed 2 attempts to take this quiz your highest score will be kept.
 - Note that some questions (e.g., fill in the blank)
 will need to be graded manually
- Quiz answers will be made available 24 hours after the quiz due date.

Domain-Specific Architectures

(Chapter 7, Hennessy and Patterson)

Note: some course slides adopted from publisher-provided material

Outline

- 7.1 Introduction
- 7.2 Guidelines for DSAs
- 7.3 Example Domain: Deep Neural Networks
- 7.4 Google's Tensor Processing Unit

Introduction

- The computer architecture concepts described in previous lectures took advantage of "Moore's Law"
 - Gordon Moore (Fairchild, later cofounder of Intel)
 - 1960's: prediction
 - Number of transistors per chip will grow exponentially over time

What did Moore's Law enable?

- Deep memory hierarchy
- Pipelines
- Branch prediction
- Out-of-order execution
- Multithreading
- Multiprocessing

Limitations of Modern Designs

- Physical limitations of current designs ending Moore's Law
- In order to continue improvements in computer performance, need to develop DSAs (Domain-Specific Architectures)
- As opposed to general core machines (which we studied previously), these are machines that are developed for specific applications (domains)

Outline

- 7.1 Introduction
- 7.2 Guidelines for DSAs
- 7.3 Example Domain: Deep Neural Networks
- 7.4 Google's Tensor Processing Unit

Guidelines for DSA Design

- Use dedicated memories to minimize data movement
- Invest resources into more arithmetic units or larger memories
- Use the easiest form of parallelism that matches the domain
- Reduce data size and type to the simplest needed for the domain
- Use a domain-specific programming language

Outline

- 7.1 Introduction
- 7.2 Guidelines for DSAs
- 7.3 Example Domain: Deep Neural Networks
- 7.4 Google's Tensor Processing Unit

Deep Neural Networks

Background

Some materials provided by

https://www.webpages.uidaho.edu/vakanski/Courses/Adversarial Machine Learning/Fall 2021/Lecture 2 Deep Learning Overview.pptx

Machine Learning Basics

Machine Learning Basics

• Artificial Intelligence (AI) is a scientific field concerned with the development of algorithms that allow computers to learn without being explicitly programmed

• *Machine Learning (ML)* is a branch of Artificial Intelligence, which focuses on methods that learn from data and make predictions on unseen

data

Machine Learning Strategies

- Supervised Learning: training set contains data and the correct output of a given task with that data
- Unsupervised Learning: the training set contains data, but no solutions

Examples of Supervised Learning

- Classification Algorithms: training set is dataset and class of each piece of data
 - computer learns how to classify new data
- Regression Algorithms: predict a value of an entity's attribute

Examples of Unsupervised Learning

- Clustering Algorithms: training set is dataset covering various dimensions
 - data are partitioned into clusters based on specified criteria.
- Dimensionality Reduction Algorithms: training set is also dataset covering various dimensions
 - algorithm projects the data to fewer dimensions
 - Goal: attempt to better capture the fundamental aspects of the original data

Neural Networks

- Neural Networks (NNs) can be applied to all the basic machine learning algorithms
- NNs consist of basic computational units (neurons) that are organized in layers
 - Synaptic weights connect neurons of adjacent layers
 - Each neuron computes a transfer function, which is a weighted sum of outputs generated by the previous layer, then applies an activation function

Elements of Neural Networks (NNs)

Introduction to Neural Networks

- NNs consist of hidden layers with neurons (i.e., computational units)
- A single neuron maps a set of inputs into an output number, or $f: \mathbb{R}^K \to \mathbb{R}$

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Training Neural Networks

- Common training method: backpropagation
 - 1. Forward Propagation: feed forward patterns using connection weights, then compare the output of the last layer with the expected value to compute the training error.
 - 2. Backward Propagation: feed the training error back to the network to adjust the synaptic weights of the neurons.
 - 3. Repeat Steps 1 and 2 until a specified stopping criterion is satisfied.
- One iteration cycle (Steps 1 and 2) is called an epoch.

ML vs. Deep Learning

Introduction to Deep Learning

- Conventional machine learning methods rely on human-designed feature representations
 - ML becomes just optimizing weights to best make a final prediction

ML vs. Deep Learning

Introduction to Deep Learning

- **Deep learning** (DL) is a machine learning subfield that uses multiple layers for learning data representations
 - DL is exceptionally effective at learning patterns

Machine Learning

ML vs. Deep Learning

Introduction to Deep Learning

- DL applies a multi-layer process for learning rich hierarchical features (i.e., data representations)
 - Input image pixels \rightarrow Edges \rightarrow Textures \rightarrow Parts \rightarrow Objects

Why is DL Useful?

Introduction to Deep Learning

- DL provides a flexible, learnable framework for representing visual, text, linguistic information
 - Can learn in supervised and unsupervised manner
- DL represents an effective end-to-end learning system
- Requires large amounts of training data
- Since about 2010, DL has outperformed other ML techniques
 - First in vision and speech, then NLP (Natural Language Processing), and other applications

Elements of Deep Neural Networks (DNN)

Introduction to Neural Networks

- Deep NNs have many hidden layers
 - Fully-connected (dense) layers (a.k.a. Multi-Layer Perceptron or MLP)
 - Each neuron is connected to all neurons in the succeeding layer

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Deep vs Shallow Networks

Deep vs Shallow Networks

• Deeper networks perform better than shallow networks

 But only up to some limit: after a certain number of layers, the performance of deeper networks plateaus

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Example: Convolutional Neural Networks

- Convolutional Neural Network (CNN) is an NN with the following layers:
 - Convolution Layer: allows local properties in the data to be discovered
 - 2. Local Contrast Normalization (LCN) Layer: limits the effects of intensity variations over various feature maps
 - 3. Pooling/Subsampling Layer: adds robustness to small shifts of input data by looking at groups of input neurons
 - **4. Fully Connected Layer**: last layer in CNN. This is the common NN layer where every input neuron is connected to each layer neuron. Acts as a classifier by separating the input data space.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks

- *Convolutional neural networks* (CNNs) were primarily designed for image data
- CNNs use a convolutional operator for extracting data features
 - Allows parameter sharing
 - Efficient to train
 - Have less parameters than NNs with fully-connected layers
- CNNs are robust to spatial translations of objects in images
- A convolutional filter slides (i.e., convolves) across the image

CNN Applications

- CNN's are often applied to pattern-recognition problems, where vectors are used to represent real signals
 - For images, the vector becomes a matrix
 - CNN's are able to capture local properties of pixel groups within the matrix

Outline

- 7.1 Introduction
- 7.2 Guidelines for DSAs
- 7.3 Example Domain: Deep Neural Networks
- 7.4 Google's Tensor Processing Unit

Tensor Processing Unit (TPU)

- Google's DNN ASIC
 - Chip to implement Deep Neural Networks
- 256 x 256 8-bit matrix multiply unit
 - Recall: CNNs use vectors and matrices to represent their data

TPU ISA

Local Unified Buffer: data storage

Matrix multiply unit: Performs a matrix-matrix or vector-matrix multiply from the Unified Buffer into the accumulators

 takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces a B*256 output, taking B pipelined cycles to complete

TPU ISA Operation

- Read_Host_Memory
 - Reads memory from the CPU memory into the unified buffer
- Read_Weights
 - Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit
- MatrixMatrixMultiply/Convolve
 - takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces a B*256 output, taking B pipelined cycles to complete
- Activate
 - Computes activation function
- Write_Host_Memory
 - Writes data from unified buffer into host memory