## \_\_ 4 \_\_

# Limites de fonctions

## I. Limite d'une fonction à l'infini

#### 1. Limite finie à l'infini

#### Définition 1

On dit que la fonction f admet pour limite l en  $+\infty$  si tout intervalle ouvert contenant l contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note :

$$\lim_{x \to +\infty} f(x) = l \quad \text{ou} \quad f(x) \xrightarrow[x \to +\infty]{} l$$

## Exemple :

La fonction définie par  $f(x) = 2 + \frac{1}{x}$  a pour limite 2 lorsque x tend vers  $+\infty$ .



Intuitivement, dire que  $\lim_{x\to +\infty} f(x)=2$  revient à dire que les valeurs de f(x) se rapprochent de 2 lorsque x devient grand. Ainsi, la distance MN tend vers 0.

Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand.

Année 2024/2025 Page 1/7

#### Définition 2

Si  $\lim_{x\to +\infty} f(x) = l$  (ou  $\lim_{x\to -\infty} f(x) = l$ ), alors la droite d'équation y=l est une asymptote horizontale à la courbe représentative de la fonction f en  $+\infty$  (ou  $-\infty$ ).

## 2. Limite infinie à l'infini

#### Définition 3

- On dit que la fonction f admet pour limite  $+\infty$  en  $+\infty$  si tout intervalle  $]a; +\infty|$ ,  $a \in \mathbb{R}$ , contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note :  $\lim_{x \to +\infty} f(x) = +\infty$  ou  $f(x) \xrightarrow[x \to +\infty]{} +\infty$
- On dit que la fonction f admet pour limite  $-\infty$  en  $+\infty$  si tout intervalle  $]-\infty; b[$ ,  $b \in \mathbb{R}$ , contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note :  $\lim_{x \to +\infty} f(x) = -\infty$  ou  $f(x) \xrightarrow[x \to +\infty]{} -\infty$

## ! Remarque :

- On a une définition similaire pour les limites infinies en  $-\infty$  en considérant les x comme « suffisamment petit ».
- Une fonction qui tend vers  $+\infty$  en  $+\infty$  n'est pas nécessairement croissante :



• Il existe des fonctions qui ne possèdent pas de limite infinie :



Année 2024/2025 Page 2/7

## 3. Limites usuelles

## Propriété 1 : Admise

Soit n un entier naturel non nul.

$$\lim_{x \to +\infty} x^n = +\infty \qquad \qquad \lim_{x \to +\infty} \frac{1}{x^n} = 0$$

Si n est pair,

$$\lim_{x \to -\infty} x^n = +\infty \qquad \qquad \lim_{x \to -\infty} \frac{1}{x^n} = 0^+$$

Si n est impair,

$$\lim_{x \to -\infty} x^n = -\infty \qquad \qquad \lim_{x \to -\infty} \frac{1}{x^n} = 0^-$$

Enfin,

$$\lim_{x \to +\infty} \sqrt{x} = +\infty \qquad \qquad \lim_{x \to +\infty} e^x = +\infty \qquad \qquad \lim_{x \to -\infty} e^x = 0$$

Afin de pouvoir bien retenir les limites usuelles, le plus simple est de bien connaître les courbes représentatives des fonctions suivantes :

 $x \mapsto x^n$ , n pair



 $x \mapsto x^n$ , n impair



 $x \mapsto \frac{1}{x^n}$ , n pair



 $x \mapsto \frac{1}{x^n}$ , n impair



 $x \mapsto e^x$ 



 $x\mapsto \sqrt{x}$ 



#### II. Limite en un point

## Exemple :

La fonction représentée ci-dessous a pour limite  $+\infty$  lorsque x tend vers a.



En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment proche de a.

Si on prend un réel M>0 quelconque, l'intervalle  $M,+\infty$  contient toutes les valeurs de la fonction dès que x est suffisamment proche de a.

#### Définition 4

- On dit que la fonction f admet pour limite  $+\infty$  en a si tout intervalle M;  $+\infty$ [,  $M \in \mathbb{R}$ , contient toutes les valeurs de f(x) dès que x est suffisamment proche de a et on note :  $\lim_{x\to a} f(x) = +\infty$
- On dit que la fonction f admet pour limite  $-\infty$  en a si tout intervalle  $]-\infty; m[$ ,  $m \in \mathbb{R}$ , contient toutes les valeurs de f(x) dès que x est suffisamment proche de a et on note :  $\lim_{x \to a} f(x) = -\infty$

#### Définition 5

La droite d'équation x = A est asymptote verticale à la courbe représentative de la function f si:

$$\lim_{x \to A} f(x) = +\infty \text{ ou } \lim_{x \to A} f(x) = -\infty$$

## ! Remarque :

Certaines fonctions admettent des limites différentes en un réel A selon x > A ou x < A.

Page 4/7 Année 2024/2025

Page 5/7

Considérons la fonction inverse définie sur  $\mathbb{R}^*$  par  $f(x) = \frac{1}{x}$ .

• Si x < 0, alors f(x) tend vers  $-\infty$  et on note :

$$\lim_{x \to 0^{-}} f(x) = -\infty$$

• Si x > 0, alors f(x) tend vers  $+\infty$  et on note :

$$\lim_{x \to 0^+} f(x) = +\infty$$

On parle de limite à gauche en 0 et de limite à droite en 0.



## III. Opération sur les limites

 $\alpha$  peut désigner un réel quelconque ou  $\pm \infty$ .

#### 1. Limites d'une somme

| $\lim_{x \to \alpha} f(x)$                       | l      | l         | l         | $+\infty$ | $-\infty$ | $+\infty$ |
|--------------------------------------------------|--------|-----------|-----------|-----------|-----------|-----------|
| $\lim_{x \to \alpha} g(x)$                       | l'     | $+\infty$ | $-\infty$ | $+\infty$ | $-\infty$ | $-\infty$ |
| $\lim_{x \to \alpha} \left( f(x) + g(x) \right)$ | l + l' | $+\infty$ | $-\infty$ | $+\infty$ | $-\infty$ | F.I.      |

## 2. Limites d'un produit

| $\lim_{x \to \alpha} f(x)$                            | l             | $l \neq 0$                       | $\pm\infty$                      | 0            |
|-------------------------------------------------------|---------------|----------------------------------|----------------------------------|--------------|
| $\lim_{x \to \alpha} g(x)$                            | l'            | $\pm\infty$                      | $\pm\infty$                      | $\pm \infty$ |
| $\lim_{x \to \alpha} \left( f(x) \times g(x) \right)$ | $l \times l'$ | $\pm \infty$ suivant les signes  | $\pm \infty$ suivant les signes  | F.I.         |
|                                                       |               | de $f$ et $g$ autour de $\alpha$ | de $f$ et $g$ autour de $\alpha$ |              |

## 3. Limites d'un quotient

| $\lim_{x \to \alpha} f(x)$                             | l              | l            | $l \neq 0$                       | 0    | $\pm\infty$                      | $\pm \infty$ |
|--------------------------------------------------------|----------------|--------------|----------------------------------|------|----------------------------------|--------------|
|                                                        |                |              | ou ±∞                            |      |                                  |              |
| $\lim_{x \to \alpha} g(x)$                             | $l' \neq 0$    | $\pm \infty$ | 0                                | 0    | l'                               | $\pm \infty$ |
| $\lim_{x \to \alpha} \left( \frac{f(x)}{g(x)} \right)$ | $\frac{l}{l'}$ | 0            | $\pm \infty$ suivant les signes  | F.I. | $\pm \infty$ suivant les signes  | F.I.         |
|                                                        |                |              | de $f$ et $g$ autour de $\alpha$ |      | de $f$ et $g$ autour de $\alpha$ |              |

Année 2024/2025

## 4. Composition de limites

## Propriété 2 : Admise

Soient a, b et c des réels ou  $\pm \infty$ . Soient u et v des fonctions définies sur  $\mathbb{R}$ .

Si 
$$\lim_{x\to a} u(x) = b$$
 et  $\lim_{x\to b} v(x) = c$ , alors  $\lim_{x\to a} v(u(x)) = c$ .

## // Exemple :

Soit la fonction f définie sur  $\left[\frac{1}{2}; +\infty\right]$  par  $f(x) = \sqrt{2 - \frac{1}{x}}$ . On souhaite calculer la limite de la fonction f en  $+\infty$ .

On considère les fonctions u et v définie par :  $u(x) = 2 - \frac{1}{x}$  et  $v(x) = \sqrt{x}$ .

Donc 
$$f(x) = v(u(x))$$
. Or,  $\lim_{x \to +\infty} \frac{1}{x} = 0$  donc  $\lim_{x \to +\infty} u(x) = 2$ .

Donc 
$$\lim_{x \to +\infty} \sqrt{2 - \frac{1}{x}} = \lim_{x \to +\infty} \sqrt{u(x)} = \lim_{X \to 2} \sqrt{X} = \sqrt{2}$$
. D'où  $\lim_{x \to +\infty} f(x) = \sqrt{2}$ .

## IV. Comparaison de limites

## Théorème 1 : Théorème de comparaison

Soient I un intervalle et a un élément de cet intervalle ou l'une de ces bornes. Soient f et g deux fonctions définies sur I.

- Si, pour tout  $x \in I$ ,  $f(x) \ge g(x)$  et  $\lim_{x \to a} g(x) = +\infty$ , alors  $\lim_{x \to a} f(x) = +\infty$ .
- Si, pour tout  $x \in I$ ,  $f(x) \leq g(x)$  et  $\lim_{x \to a} g(x) = -\infty$ , alors  $\lim_{x \to a} f(x) = -\infty$ .

## // Exemple :

On souhaite montrer que  $\lim_{x\to +\infty} e^x = +\infty$ .

Pour tout réel x, on pose  $f(x) = e^x - x$ . f est dérivable sur  $\mathbb{R}$  et, pour tout réel x,  $f'(x) = e^x - 1$ . Ainsi,  $f'(x) \leq 0 \Leftrightarrow x \leq 0$ . On construit alors le tableau de signes de f' et le tableau de variations de f.

| x     | $-\infty$ | 0 | $+\infty$ |
|-------|-----------|---|-----------|
| f'(x) | _         | 0 | +         |
| f     |           | 1 |           |

On s'aperçoit alors que, pour tout réel x,  $f(x) \ge 1$ , et donc que  $e^x \ge 1 + x$ . Or,  $\lim_{x \to +\infty} (1 + x) = +\infty$ . D'après le théorème de comparaison, on a donc que  $\lim_{x \to +\infty} e^x = +\infty$ .

Année 2024/2025 Page 6/7

#### Théorème 2 : Théorème d'encadrement

Soient I un intervalle et a un élément de cet intervalle ou l'une de ces bornes. Soient  $f,\,g$  et h trois fonctions définies sur I.

Si, pour tout  $x \in I$ ,  $f(x) \leq g(x) \leq h(x)$  et si  $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$ , alors g admet également une limite finie en a et  $\lim_{x \to a} g(x) = l$ .

## Exemple :

Pour tout réel non nul x, on pose  $f(x) = \frac{\cos(x)}{x}$ .

On a alors, pour tout x > 0,  $-\frac{1}{x} \leqslant f(x) \leqslant \frac{1}{x}$ .

Or, 
$$\lim_{x \to +\infty} \left(\frac{1}{x}\right) = \lim_{x \to +\infty} \left(-\frac{1}{x}\right) = 0.$$

Or,  $\lim_{x\to +\infty} \left(\frac{1}{x}\right) = \lim_{x\to +\infty} \left(-\frac{1}{x}\right) = 0.$  Ainsi, d'après le théorème d'encadrement,  $\lim_{x\to +\infty} f(x) = 0.$ 

## Croissances comparées

## Propriété 3 : Croissances comparées

Pour tout entier naturel n, on a:

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \qquad \text{et} \qquad \lim_{x \to -\infty} x^n e^x = 0$$

## Exemple :

Pour tout réel x, on pose  $f(x) = \frac{e^x - x}{e^x}$ . On a alors  $f(x) = \frac{e^x}{e^x} - \frac{x}{e^x} = 1 - \frac{x}{e^x}$ .

Or, puisque  $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$ , on a alors  $\lim_{x\to +\infty} \frac{x}{e^x} = 0$ . Ainsi,  $\lim_{x\to +\infty} f(x) = 1$ .