Real Analysis

Baire's theorem

August 16, 2021

Definition 1 (Nowhere dense set) A subset A of a metric space (X, d) is nowhere dense or rare if $(\overline{A})^o = \emptyset$.

In other words, A is rare iff it is contained in a closed set with empty interior. In fact, if A is rare then A is contained in $F = \overline{A}$ which has empty interior. Conversely if A is contained in closed F with $F^o = \emptyset$ then $(\overline{A})^o \subseteq (\overline{F})^o = F^o = \emptyset$.

We recall what dense means.

Definition 2 (Dense set) A subset A of a metric space (X, d) is said to be <u>dense</u> if $\overline{A} = X$.

In case of subsets of \mathbb{R} , we can equivalently say that A is dense iff $\forall x \in \mathbb{R}, r > 0, \exists a \in A$ such that $a \in \mathcal{B}_r(x)$.

We might guess, from the terminology, that the complement of a nowhere dense set might be dense. This is true, as we shall see in the next paragraph. One might get more bold and claim that A is rare iff A^c is dense. Well, not quite. Think about $A = \mathbb{R} \setminus \mathbb{Q}$ which is dense in \mathbb{R} . But the closure of $A^c = \mathbb{Q}$ has nonempty interior, hence not rare.

It turns out that A is rare iff $(\overline{A})^c$ is dense. Indeed recall that $\overline{S} = ((S^c)^o)^c$ for any set S. Take $S = (\overline{A})^c$. This gives $(S^c)^o = (\overline{A})^o = \emptyset \iff \overline{S} = ((S^c)^o)^c = X \iff S$ is dense $\iff (\overline{A})^c$ is dense.

Clearly $A \subseteq \overline{A} \iff (\overline{A})^c \subseteq A^c$. It thus stands that A is rare $\iff X = (\overline{A})^c \subseteq \overline{A^c} \implies \overline{A^c} = X \iff A^c$ is dense.

Proposition 3 (a) Any subset of a rare set is rare.

- (b) A finite union rare sets is rare.
- (c) The closure of a nowhere dense set is nowhere dense.

PROOF (a) Let $A \subseteq B$ where B is rare. Then $\overline{A} \subseteq \overline{B}$ whence $(\overline{A})^o \subseteq (\overline{B})^o = \emptyset$.

- (b) Let A, B be rare sets. Equivalently, $(\overline{A})^c$, $(\overline{B})^c$ are dense. Let $S := A \cup B$. Let $T \neq \emptyset$ be open. $(\overline{A})^c$ dense $\Longrightarrow T \cap (\overline{A})^c \neq \emptyset$. Further, $T \cap (\overline{A})^c$ is a nonempty open set whence $\emptyset \neq T \cap (\overline{A})^c \cap (\overline{B})^c = T \cap (\overline{A} \cup \overline{B})^c = T \cap (\overline{A} \cup \overline{B})^c$ whence S is rare.
- (c) $A \text{ rare } \iff (\overline{A})^o = \emptyset \implies (\overline{(\overline{A})})^o = (\overline{A})^o = \emptyset.$

Exercise Let A, B be closed sets such that $(A \cup B)^o \neq \emptyset$. Show that either $A^o \neq \emptyset$ or $B^o \neq \emptyset$.

Exercise Give examples of two sets $A, B \subseteq \mathbb{R}$ such that $(A \cup B)^o \neq \emptyset$ but $A^o = B^o = \emptyset$.

Exercise Show that either \mathbb{Q} can be written as a countable union of rare sets in \mathbb{R} .

The above proposition must ring a bell in your mind and raise a question like "What about the *countable* union of rare sets?" One recalls the example that $\mathbb Q$ is a countable union of rare sets in $\mathbb R$ but $\mathbb Q$ is not itself rare $\overline{\mathbb Q} = \mathbb R$ whence $(\overline{\mathbb Q})^{\sigma} = \mathbb R$. Such countable unions are not dense and mathematicians gave a name for it

Definition 4 Let A be a subset of a metric space (X, d).

A is said to be meagre or of the first category if A can be written as a countable union of rare sets in X. If A is not meagre, it is said to be nonmeagre or of the second category.

A is said to be residual if its complement is meagre.

We further see another small, but useful result.

Proposition 5 The following are equivalent for a metric space (X, d). Note that we are not yet claiming about their truth or falsity.

- (a) A meagre set has empty interior.
- (b) A countable intersection of open dense sets is dense.
- (c) A residual set is dense.

PROOF We prove them in a circular way as follows.

- (a) \Longrightarrow (b): Note that the complement of an open dense set is a closed rare set. Let $\mathscr U$ be a countable collection of open dense sets in X and consider $S \coloneqq \bigcap_{U \in \mathscr U} U$. Then $S^c \coloneqq \bigcup_{U \in \mathscr U} U^c$ is a countable union of closed rare sets. By definition, S^c is meagre, whence by hypothesis, $(S^c)^o = \varnothing$. But $(S^c)^o = (\overline{S})^c$ so that $\overline{S} = X$.
- $(b) \Longrightarrow (c)$: By definition, a residual set is the complement of a meagre set whence it is a countable intersection of some sets with dense interiors. In other words, a rare set contains a countable intersection of open dense sets, which is dense by hypothesis. Since any superset of a dense set must be dense, conclude that a residual set is dense.
- $(c) \Longrightarrow (a)$: Let S be meagre. Then S^c is residual. By hypothesis, $\overline{S^c} = X \Longrightarrow S^o = \left(\overline{S^c}\right)^c = \emptyset$.

We have built up to an important result known as the Baire category theorem.

Theorem 6 (Baire category theorem) Let (X, d) be a complete metric space. A countable intersection of open dense sets in a complete metric space (X, d) is dense.

PROOF Let $\mathscr{U} = \{U_n : n \in \mathbb{N}\}$ be a countable collection of open dense sets in X. Let $V \neq \emptyset$ be any open set. Clearly $V \cap U_1 \neq \emptyset$. Pick a closed disc $\overline{\mathscr{B}_{r_1}(x_1)} \subset V \cap U_1$ with $r_1 < 1$. Since U_2 is dense, $\mathscr{B}_{r_1}(x_1) \cap U_2 \neq \emptyset$ (also open). So pick a closed disc $\overline{\mathscr{B}_{r_2}(x_2)} \subset \mathscr{B}_{r_1}(x_1) \cap U_2$ such that $r_2 < \frac{1}{2}$. Continuing this process will give us a decreasing sequence of closed balls $\mathscr{B}_{r_n}(x_n)$ with $0 < r_n < \frac{1}{n}$. Further notice that the sequence (x_n) is Cauchy in X: for any $n \in \mathbb{N}$, we can pick N = n so that $p \geq q \geq N \implies d(x_p, x_q) \leq \frac{1}{q} \leq \frac{1}{n}$. By completeness, X converges to a point, say x, in X. By definition, for any $n \in \mathbb{N}$, $\exists N \geq n \in \mathbb{N}$ such that $x \in \mathscr{B}_{\frac{1}{n}}(x_k) \forall k \geq N$; but

 $k \geq N \geq n \implies x \in \mathcal{B}_{\frac{1}{n}}(x_k) \subseteq \overline{\mathcal{B}_{\frac{1}{n}}(x_n)} \subseteq V \cap \left(\bigcap_{i=1}^n U_i\right). \text{ This means } x \in U_i \forall i \text{ and } x \in V \text{ whence } V \cap \left(\bigcap_{i \in \mathbb{N}} U_i\right) \neq \emptyset.$

Since V was an arbitrary open set to start with, we conclude that $\bigcap_{i=1}^{N-1} U_i$ is dense in X.

Corollary 7 One cannot write a complete metric space (X,d) as a countable union of rare sets. In other words, a complete metric space (X,d) is not meagre.

Corollary 8 A residual set in a complete metric space (X, d) is not meagre.

PROOF We can note that a countable union of meagre sets is meagre (: a countable union of countable sets is countable). Let $A \subseteq X$ be residual, whence A^c is meagre. If A were meagre, so would be $X = A \cup A^c$. But A^c is meagre, so that X is meagre which is clearly false.

Corollary 9 $\mathbb{R} \setminus \mathbb{Q}$ is not meagre in \mathbb{R} .

PROOF \mathbb{Q} is meagre $\Longrightarrow \mathbb{R} \setminus \mathbb{Q}$ is residual and thus, by the previous corollary, not meagre.

Corollary 10 \mathbb{Q} cannot be written as the intersection of countably many open sets in \mathbb{R} .

PROOF Say $\mathbb{Q} = \bigcap_{n \in \mathbb{N}} U_n$ for some collection of open sets $\mathscr{U} = \{U_n : n \in \mathbb{N}\}$ in \mathbb{R} . Note that $U_n \supseteq \mathbb{Q} \implies \overline{U_n} = \overline{\mathbb{Q}} = \mathbb{R} \forall n$ whence each U_n is an open dense set in \mathbb{R} . Also note that $\mathscr{V} = \{\mathbb{R} \setminus \{q\} : q \in \mathbb{Q}\}$ is a countable collection of open dense sets in \mathbb{R} . Further $\bigcap_{V \in \mathscr{V}} V = \emptyset$ whence $\bigcap_{S \in \mathscr{U} \cup \mathscr{V}} S = \emptyset$ which contradicts theorem 6.