

KONKURS CHEMICZNY

DLA UCZNIÓW KLAS IV-VIII SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP SZKOLNY 18 października 2019 r.

Uczennico/Uczniu:

- 1. Na rozwiązanie wszystkich zadań masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- **3.** Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- **4.** Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	40	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/ego		

<u>Uwaga:</u> w zadaniach 1.-11.1. wybierz prawidłową odpowiedź poprzez <u>wyraźne</u> podkreślenie <u>jednej z liter</u>: A, B, C lub D.

Zadanie 1. (1 pkt)

Jeżeli 24-karatowe złoto zawiera 100% masowych złota, to ile procent masowych domieszek zawiera złoto 18-karatowe? Zaznacz poprawną odpowiedź.

- A. 75%
- B. 25%
- C. 18%
- D. 82%

Zadanie 2. (1 pkt)

W poniższych równaniach **X** oznacza jedną z cząstek: p (proton), n (neutron), α , lub β^- . Które z równań przedstawia rozpad β^- ? Zaznacz poprawną odpowiedź.

- A. 263 Sg \longrightarrow 259 Rf + **X**
- B. ${}^{50}\text{V} + \mathbf{X} \longrightarrow {}^{50}\text{Ti}$
- C. ${}^{87}\text{Kr} \longrightarrow {}^{86}\text{Kr} + \mathbf{X}$
- D. ${}^{14}C \longrightarrow {}^{14}N + X$

Zadanie 3. (1 pkt)

Francuski chemik Lavoisier, żyjący w XVIII w. ogrzewał rtęć w powietrzu pod kloszem. Powstał czerwony proszek (tlenek rtęci(II)), a 1/5 objętości powietrza spod klosza została zużyta.

Jaka objętość powietrza ubyłaby pod kloszem, gdyby uczony ogrzewał dwa razy więcej rtęci? Zaznacz poprawną odpowiedź.

- A. 1/5 objętości powietrza.
- B. 2/5 objętości powietrza.
- C. 1/10 objętości powietrza.
- D. 2 razy większa objętość powietrza.

Zadanie 4. (1 pkt)

Znamy 118 pierwiastków, z których około 90 występuje w przyrodzie. Skład jakościowy oraz ilościowy pierwiastków we wszechświecie, w ciele człowieka i skorupie ziemskiej jest różny.

Spośród podanych punktów A – D wybierz i zaznacz ten, który przedstawia masową zawartość procentową pierwiastków w ciele człowieka.

- A. Fe -32%, O -30%, Si -15%, Mg -14%, inne -9%.
- B. O 46%, Si 28%, Al 8%, Fe 6%, inne 12%.
- C. O 63%, C 19%, H 9%, N 5%, inne 4%.
- D. Fe -30%, O -28%, C -15%, Si -11%, inne -16%.

Zadanie 5. (1 pkt)

Zaznacz poprawne dokończenie zdania.

Pierwiastek tellur jest umieszczony przed jodem w układzie okresowym pierwiastków ponieważ:

- A. atom telluru jest większy od atomu jodu.
- B. atom telluru ma sześć elektronów walencyjnych, a atom jodu siedem.
- C. atom tellur ma większą masę atomową od atomu jodu.
- D. atom telluru ma mniejszą liczbę protonów od atomu jodu.

Zadanie 6. (1 pkt)

W trakcie badania przebiegu dwóch reakcji chemicznych zanotowaliśmy, że:

- ścianki probówki oziębiają się, doświadczenie 1
- ścianki probówki ogrzewają się, doświadczenie 2

Wnioskujemy, że podczas badania przebiegu tych dwóch przemian zaszły (zaznacz prawidłową odpowiedź):

- A. reakcja endotermiczna (doświadczenie 1) i reakcja egzotermiczna (doświadczenie 2).
- B. reakcja egzotermiczna (doświadczenie 1) i reakcja endotermiczna (doświadczenie 2).
- C. przemiany, które mogą być zaliczone wyłącznie do reakcji egzotermicznych.
- D. przemiany, które nie mogą być zaliczone ani do reakcji egzotermicznych, ani do reakcji endotermicznych.

Zadanie 7. (1 pkt)

Kamfora, zwana kamforą naturalną, pospolitą lub japońską, otrzymywana jest z liści bądź drewna drzewa o nazwie *Cinnamonum camphora* (cynamonowiec kamforowy). Jest to substancja o silnym zapachu. (...) Ma działanie drażniące i znieczulające oraz wzmaga wymianę gazów w pęcherzykach płucnych.

Na podstawie: A. Kołodziejczyk, "Naturalne związki organiczne", Wydawnictwo Naukowe PWN, Warszawa 2013, strony 674-675. Karta charakterystyk substancji: http://www.poch.com.pl/wysw/utworz_pdf.php?nr_karty=2085

Stosowane w języku polskim zwroty: "*ulotnić się jak kamfora*", "*zniknąć jak kamfora*", "*przepaść jak kamfora*" oznaczające zniknięcie nagłe, bez śladu, wynikają z właściwości kamfory w temperaturze pokojowej.

Zaznacz poprawne dokończenie zdania. Kamfora (*temperatura topnienia* 175-177°C, *temperatura wrzenia* 204°C), jest w temperaturze pokojowej (*temperatura* ok. 20°C):

- A. cieczą, która gwałtownie paruje wyłącznie w temperaturze pokojowej.
- B. cieczą, która paruje w szerokim zakresie temperatur.
- C. ciałem stałym, które łatwo topi się w temperaturze pokojowej.
- D. ciałem stałym, które sublimuje.

Zadanie 8. (1 pkt)

Poniżej przedstawiono schemat powstawania wiązania w pewnym związku chemicznym. Na tym schemacie: **A** oznacza **atom metalu**, **B** oznacza **atom niemetalu**. Dokonaj analizy schematu powstawania wiązania:

Zaznacz odpowiedź przedstawiającą przykładowe wzory sumaryczne związków chemicznych, w których występuje wyłącznie wiązanie powstałe według podanego schematu:

- A. H₂O, Na₂O, H₂S.
- B. BeO, MgO, MgS.
- C. CaCl₂, CaF₂, CaO.
- D. Na₂O, K₂O, K₂S.

Informacja do zadania 9.

Poniższy wykres przedstawia rozpuszczalność soli: chlorku potasu (KCl), bromku potasu (KBr), jodku potasu (KI) w wodzie w zakresie temperatur 273-353 K. Dokonaj analizy tego wykresu, rozwiąż **zadanie 9.1.**

Na podstawie: W. Mizerski, "Tablice chemiczne", Wydawnictwo Adamantan, Warszawa 2004

Zadanie 9.1. (1 pkt)

Przygotowano trzy zlewki. W temperaturze 293 K do każdej ze zlewek dodano po 25 gramów wody, a następnie: 10 gramów KCl do pierwszej zlewki, 15 gramów KBr do drugiej zlewki, 36 gramów KI do trzeciej zlewki. W której ze zlewek, po dokładnym wymieszaniu zawartości naczyń, uzyskano roztwór nienasycony? Zaznacz poprawną odpowiedź.

- A. W zlewce pierwszej.
- B. W zlewce drugiej.
- C. W zlewce trzeciej.
- D. W zlewce drugiej i trzeciej.

Zadanie 9.2. (1 pkt)

W zakresie temperatur 273-353 K największą rozpuszczalnością w wodzie odznacza się jodek potasu (KI), zaś najmniejszą rozpuszczalnością w wodzie chlorek potasu (KCl).

Wybierz poprawne dokończenie zdania: W benzynie rozpuszczalność KI i KCl:

- A. będzie taka sama jak rozpuszczalność tych soli w wodzie.
- B. będzie porównywalna z rozpuszczalnością tych soli w wodzie.
- C. będzie różniła się wyłącznie o jeden rząd wielkości w stosunku do rozpuszczalności tych soli w wodzie.
- D. nie może być równa rozpuszczalności KI i KCl w wodzie, gdyż woda jest rozpuszczalnikiem polarnym, a benzyna rozpuszczalnikiem niepolarnym.

Informacja do zadania 10.

Poniższy wykres przedstawia rozpuszczalność pewnej gazowej substancji X w wodzie.

Na podstawie: W. Mizerski, "Tablice chemiczne", Wydawnictwo Adamantan, Warszawa 2004

Zadanie 10. (1 pkt)

Podając stężenie procentowe roztworu (C_p) substancji X możemy określić, jaki procent masy roztworu (m_r) stanowi masa substancji rozpuszczonej X (m_s) w tym roztworze.

Oblicz stężenie procentowe nasyconego wodnego roztworu substancji w temperaturze 313 K. Wynik podaj z dokładnością do dwóch miejsc po przecinku. Zaznacz poprawną odpowiedź:

- A. 0,01%.
- B. 0,10%.
- C. 1,00%.
- D. 10,00%.

Informacja do zadania 11.

Na poniższym schemacie znajduje się fragment szeregu promieniotwórczego. Cyfrą 1 oznaczono nuklid promieniotwórczy rozpoczynający ten szereg, cyframi 2-6 kolejne nuklidy promieniotwórcze. Skorzystaj z: podanego schematu oraz układu okresowego pierwiastków chemicznych. Rozwiąż zadania 11.1.-11.3.

Na podstawie: W. Mizerski, "Tablice chemiczne", Wydawnictwo Adamantan, Warszawa 2004

Zadanie 11.1. (1 pkt)

Zaznacz odpowiedź, w której prawidłowo podano skład **jądra atomu** pierwiastka oznaczonego **cyfrą 1**. Jądro tego atomu zawiera:

- A. 92 protony, 92 elektrony, 146 neutronów.
- B. 92 protony, 146 neutronów.
- C. 92 protony, 92 elektrony, 143 neutrony.
- D. 92 protony, 143 neutrony.

Zadanie 11.2. (1 pkt)

Ułóż równanie przemiany, w wyniku której z nuklidu promieniotwórczego oznaczonego **cyfrą 5** powstaje nuklid promieniotwórczy oznaczony **cyfrą 6**. Zastosuj zapis typu ^A_ZE.

.....

Zadanie 11.3. (2 pkt)

Oceń prawdziwość poniższych zdań. **Zakreśl** literę **P**, gdy zdanie jest prawdziwe lub literę **F**, gdy zdanie jest fałszywe.

1.	Przemiana uranu-238 w tor-230 jest możliwa, gdy zajdą dwie przemiany α i dwie przemiany β^- .	P	F
2.	Nuklid promieniotwórczy oznaczony cyfrą 6 ulega przemianie <i>α</i> . Na podstawie analizy fragmentu szeregu mogę stwierdzić, że w wyniku przemiany <i>α</i> nuklidu 6 powstanie radon-222.	P	F
3.	W podanym fragmencie szeregu można zidentyfikować dwa izotopy uranu: uran-238 i uran-234 oraz dwa izotopy toru: tor-234 i tor-230.	P	F

Zadanie 12. (2 pkt)

Układ okresowy pierwiastków można wykorzystać w celu porównania aktywności chemicznej metali i niemetali. Należy się przy tym kierować regułami:

- aktywność metali 1. i 2. grupy układu okresowego rośnie w grupie ze wzrostem liczby atomowej,
- aktywność niemetali 17. grupy maleje w grupie ze wzrostem liczby atomowej.

Wykorzystaj podane informacje. Uzupełnij tabelę. Wpisz **nazwy** odpowiednich pierwiastków.

$\mathbf{L}_{\mathbf{l}}$	p.	Polecenie	Odpowiedź
1.		Podaj nazwę najmniej aktywnego metalu 2. grupy.	
2.		Podaj nazwę najbardziej aktywnego niemetalu grupy 17.	

Zadanie 13. (2 pkt)

Przygotowano pięć identycznych balonów. Pierwszy balon napełniono całkowicie **neonem**, drugi **kryptonem**, trzeci **helem**, czwarty **ksenonem**, zaś piąty balon **argonem**. Po ich napełnieniu postanowiono sprawdzić, jak zachowa się każdy z balonów podczas ich wypuszczenia w przestrzeń powietrzną. Jakie są Twoje przewidywania odnośnie zachowania się balonów? Do opisu swoich przewidywań wykorzystaj zdania a – e. Rozwiąż zadanie, umieszczając w tabeli odpowiednią literę.

Przyjmij, że średnia masa molowa powietrza jest równa 29 g/mol. Masy molowe helowców odszukaj w układzie okresowym pierwiastków chemicznych. Są one **liczbowo** równe masom atomowym poszczególnych helowców.

- a. Opada szybko.
- b. Bardzo szybko opada.
- c. Szybko unosi się.
- d. Powoli opada.
- e. Unosi się powoli.

Lp	Nazwa gazu szlachetnego	Balon wypełniony gazem
1.	Neon	
2.	Krypton	
3.	Hel	
4.	Ksenon	
5.	Argon	

Zadanie 14. (2 pkt) (II/9,10)

Uzupełnij poniższe zdanie. Przekreśl niewłaściwe określenie.

Z dwóch substancji, azotu i chloru, których cząsteczki są (*polarne* / *niepolarne*), cząsteczki azotu są (*mniej / bardziej*) lotne, ponieważ mają (*mniejszą / większą*) masę cząsteczkową.

Zadanie 15. (2 pkt)

Pierwiastek **X** leży w 3. okresie i 16. grupie układu okresowego. W stanie stałym pierwiastek ten występuje w postaci kryształu barwy żółtej zbudowanego z cząsteczek. Jedna cząsteczka zawiera osiem atomów pierwiastka X.

Pierwiastek Y również leży w 3. okresie, lecz w 15. grupie układu okresowego. Pewna odmiana tego pierwiastka to miękkie ciało stałe barwy białej. W stanie stałym odmiana ta zbudowana jest z cząsteczek zawierających cztery atomy pierwiastka Y.

Napisz wzory oraz oblicz masy cząsteczkowe wymienionych w treści zadania pojedynczych cząsteczek pierwiastków X i Y. Uzupełnij tabelę.

Symbol pierwiastka	Wzór cząsteczki	Masa cząsteczkowa
X		
Y		

Zadanie 16. (3 pkt)

Poniżej przedstawiono przykładowe kreskowe wzory elektronowe pojedynczych cząsteczek:

W tych wzorach **X** oznacza atom zbudowany z jednego protonu i jednego elektronu.

Ponadto:

- Y oznacza atom pierwiastka położonego w 2. okresie i 15. grupie układu okresowego,
- W oznacza atom pierwiastka o liczbie masowej 32 i liczbie atomowej 16.

Oceń prawdziwość podanych zdań. Podkreśl literę \mathbf{P} – jeśli zdanie jest prawdziwe lub literę \mathbf{F} – jeśli zdanie jest fałszywe.

1.	Cząsteczka zbudowana z atomów pierwiastków X i Y ma wzór sumaryczny NH ₃ .	P	F
2.	Cząsteczka zbudowana wyłącznie z atomów pierwiastka Y ma wzór sumaryczny N ₂ .	P	F
3.	Związek chemiczny, którego cząsteczki są zbudowane z atomów X i W, ma nazwę systematyczną monotlenek diwodoru.	P	F

Zadanie 17. (2 pkt)

Trzech uczniów postanowiło opisać wybrane właściwości oraz zastosowanie substancji lub przedmiotów często spotykanych i stosowanych w codziennym życiu chemika. Spośród szeregu substancji i przedmiotów, których nazwy podano niżej:

chlorek sodu cukier (sacharoza) mąka ziemniaczana woda węgiel szklana bagietka folia aluminiowa

Każdy z uczniów wybrał losowo jedną substancję / przedmiot. Informacje uzyskane przez trzech uczniów zostały zestawione w tabeli.

Uczeń	Opis właściwości, zastosowania lub otrzymywania substancji (albo przedmiotu)	
Uczeń 1.	Substancja ta podczas krzepnięcia zwiększa swoją objętość, co w naturze prowadzi między innymi do wietrzenia fizycznego skał. W ciekłym stanie skupienia jest popularnym rozpuszczalnikiem substancji polarnych lub wielu kryształów jonowych. Maksymalna gęstość tej substancji w stanie ciekłym wynosi 1 g/cm³ (w temperaturze 4°C i pod ciśnieniem 1013,25 hPa).	
Uczeń 2.	Ta krystaliczna substancja bardzo dobrze rozpuszcza się w wodzie i topi się w temperaturze 801°C. Substancja znalazła zastosowanie jako środek konserwujący oraz produkt spożywczy. Może być wydobywana w kopalni lub pozyskiwana z wodnego roztworu poprzez odparowanie rozpuszczalnika bądź krystalizację.	
Uczeń 3.	Przedmiot ten powstaje podczas przechłodzenia mieszaniny stopionych związków. Przechłodzeniu nie towarzyszy krystalizacja składników. Badany przedmiot nie odznacza się uporządkowaną strukturą wewnętrzną. Podczas ogrzewania stopniowo mięknie oraz robi się plastyczny. W wyniku gwałtownego chłodzenia powstają naprężenia, powodujące pęknięcie ogrzewanego przedmiotu.	

Na podstawie: J. Sobczak, K. M. Pazdro, Z. Dobkowska, "Słownik szkolny. Chemia", Wydawnictwa Szkolne i Pedagogiczne, Warszawa 1993, https://encyklopedia.pwn.pl/haslo/szklo;3983073.html, I. Maciejewska, A. Warchoł, "Świat chemii", Wydawnictwo ZamKor, Kraków 2012

Dokonaj analizy zgromadzonych informacji. Podaj nazwy substancji lub przedmiotów badanych przez poszczególnych uczniów.

Uczeń i	1. badał właściwości
Uczeń 2	2. badał właściwości
Uczeń :	3. badał właściwości

Zadanie 18. (1pkt)

Gęstość wody zależy od jej temperatury. Poniżej przedstawiono tę zależność w tabeli. Przeanalizuj dane liczbowe i rozwiąż zadanie.

Temperatura (°C)	Gęstość (g/cm ³)
0	0,99984
2	0,99994
5	0,99997
10	0,99970
15	0,99910
20	0,99821

Na podstawie: W. Mizerski, "Tablice chemiczne", Wydawnictwo Adamantan, Warszawa 2003

Uzupełnij poniższe zdania 1 i 2, podkreślając literę A lub B, które oznaczają:

A – będzie opadać na dno.

B – utrzyma się na powierzchni.

Zdanie 1.

Gdy wlejemy 250 cm 3 wody o temperaturze 2°C do pięciolitrowego pojemnika zawierającego wodę o temperaturze 5°C, to woda o temperaturze 2°C ($\bf A / \bf B$).

Zdanie 2.

Gdy wlejemy 250 cm³ wody o temperaturze 5°C do dziesięciolitrowego pojemnika zawierającego wodę o temperaturze 15°C, to woda o temperaturze 5°C (\mathbf{A} / \mathbf{B}).

Zadanie 19. (2 pkt)

Poniżej podano sześć równań przedstawiających przemiany fizyczne i chemiczne.

A.
$$I_{2(s)} \longrightarrow I_{2(g)}$$

B.
$$I_{2(g)} \longrightarrow I_{2(s)}$$

C.
$$2H_{(g)} \longrightarrow H_{2(g)}$$

D.
$$C_{12}H_{22}O_{11(s)} \longrightarrow C_{12}H_{22}O_{11(aq)}$$

E.
$$I_{2(g)} \longrightarrow 2I_{(g)}$$

F.
$$C_{12}H_{22}O_{11(aq)} \longrightarrow C_{12}H_{22}O_{11(s)}$$

Oznaczenia do powyższych przemian są następujące:

s – ciało stałe, c – ciecz, g – gaz, aq – roztwór wodny,
$$C_{12}H_{22}O_{11}$$
 – sacharoza (cukier).

W poniższej tabeli podano nazwy kilku przemian. W odpowiednim miejscu w tabeli przyporządkuj podanym nazwom przemian jedną literę spośród liter A – F przedstawiających zapis przemiany za pomocą symboli i wzorów. **Pamiętaj, że każdej przemianie odpowiada tylko jedno równanie**. Jedno równanie nie pasuje do żadnej przemiany.

Nazwa przemiany	Litera opisująca przemianę
Analiza	
Rozpuszczanie	
Resublimacja	
Synteza	
Krystalizacja	

Zadanie 20. (3 pkt)
Pewien tlenek wanadu ma masę cząsteczkową 166 u i zawiera sześć atomów w cząsteczce Wykonaj obliczenia i podaj wzór sumaryczny tego tlenku wanadu. Przyjmij, że mas atomowa wanadu jest równa 51 u.
Obliczenia:

Wzór sumaryczny tlenku wanadu:

Zadanie 21. (2 pkt)

Masa cząsteczkowa tlenku nieznanego pierwiastka E o wzorze sumarycznym E₂O₃ jest 2,533 razy większa od masy cząsteczkowej drugiego tlenku tego samego pierwiastka E, w którym pierwiastek E przyjmuje wartościowość równą II. Wykonaj obliczenia i ustal: masę atomową pierwiastka E oraz nazwy systematyczne dwóch tlenków pierwiastka E. Wyniki obliczeń pośrednich podawaj z dokładnością do trzeciego miejsca po przecinku, a masę atomową pierwiastka E podaj z dokładnością do jednego miejsca po przecinku.

Obliczenia:

Masa atomowa pierwiastka E:	
Nazwa systematyczna tlenku E ₂ O ₃ :	
Nazwa systematyczna drugiego tlenku:	

Zadanie 22. (1 pkt)
Tlenek nieznanego pierwiastka E o wzorze sumarycznym E ₂ O ₃ ogrzewano z glinem. Otrzymano dwa produkty: tlenek glinu oraz pierwiastek E. Ułóż równanie opisanej przemiany. Podaj zapis cząsteczkowy.
Zadanie 23. (3 pkt)
Pustą kolbę miarową o masie 101,25 g i o pojemności 30,00 cm³ wypełniono do kreski alkoholem i zważono. Masa całego układu wynosiła 124,95 g. Następnie kolbę opróżniono, wysuszono, dodano do niej kulki wolframowe o masie 241,25 g i ponownie uzupełniono do kreski tym samym alkoholem, a następnie zważono. Masa tego całego układu wynosiła 356,325 g. Oblicz gęstość wolframu w g/cm³. Wynik podaj z dokładnością do jednego miejsca po przecinku.
Obliczenia:
Gęstość wolframu:

Brudnopis

1 1H Wodór 1,01 2,1 3Li Lit	2 4Be Beryl			liczba ato	omowa	—1H— Wodór 1,01— 2,1 _	masa a	chemiczny tomowa, u ujemność	y pierwiastk	a	ĵ	13 5B Bor	14 6C Wegiel	15 7N Azot	16 gO Tlen	17 9F Fluor	18 2He Hel 4,00 10Ne Neon
6,94 1,0 11Na Sód 23,00 0,9	9,01 1,5 12Mg Magnez 24,31 1,2	3	4	5	6	7	8	9	10	11	12	10,81 2,0 13A1 Glin 26,98 1,5	12,01 2,5 14Si Krzem 28,09 1,8	14,01 3,0 15P Fosfor 30,97 2,1	16,00 3,5 16S Siarka 32,07 2,5	19,00 4,0 17CI Chlor 35,45 3,0	20,18 18Ar Argon 39,95
19K Potas 39,10 0,9	20Ca Wapú 40,08 1,0	21Sc Skand 44,96 1,3	22Ti Tytan 47,87 1,5	23V Wanad 50,94 1,7	24Cr Chrom 52,00 1,9	25Mn Mangan 54,94 1,7	26Fe Zelazo 55,85 1,9	27Co Kobalt 58,93 2,0	28Ni Nikiel 58,69 2,0	29Cu Miedź 63,55 1,9	30Zn Cynk 65,39 1,6	31Ga Gal 69,72 1,6	32Ge German 72,61 1,8	33As Arsen 74,92 2,0	34Se Selen 78,96 2,4	35Br Brom 79,90 2,8	36Kr Krypton 83,80
37Rb Rubid 85,47 0,8	38Sr Stront 87,62 1,0	39 Y Itr 88,91 1,3	40Zf Cyrkon 91,22 1,4	41Nb Niob 92,91 1,6	42Mo Molibden 95,94 2,0	43Tc Technet 97,91 1,9	44Ru Ruten 101,07 2,2	45Rh Rod 102,91 2,2	46Pd Pallad 106,42 2,2	47Ag Srebro 107,87 1,9	48Cd Kadm 112,41 1,7	49In Ind 114,82 1,7	50Sn Cyna 118,71 1,8	51Sb Antymon 121,76 1,9	52Te Tellur 127,60 2,1	53I Jod 126,90 2,5	54Xe Ksenon 131,29
55Cs Cez 132,91 0,7	56Ba Bar 137,33 0,9	57La* Lantan 138,91 1,1	72 Hf Hafn 178,49 1,3	73 Ta Tantal 180,95 1,5	74W Wolfram 183,84 2,0	75Re Ren 186,21 1,9	76Os Osm 190,23 2,2	77 Ir Iryd 192,22 2,2	78Pt Platyna 195,08 2,2	79Au Zloto 196,97 2,4	80Hg Rred 200,59 1,9	81 T1 Tal 204,38 1,8	82Pb Olów 207,20 1,8	83Bi Bizmut 208,98 1,9	84Po Polon 208,98 2,0	85At Astat 209,99 2,2	86Rn Radon 222,02
87Fr Frans 223,02 0,7	88Ra Rad 226,03 0,9	89Ac** Aktyn 227,03	104Rf Rutherford 261,11	105Db Dubn 263,11	106Sg Sesborg 265,12	107Bh Bohr 264,10	108Hs Has 269,10	109Mt Meitner 268,10	110Ds Darmstadt 281,10	111Uuu Ununun 280	112Uub Ununbi 285	113 Uut Ununtri 284	114Uuq Ummkwad 289	115Uup Ununpent 288	116 Uuh Ununheks 292	117Uus Ununsept	118Uus Ununek 294
		*)	58Ce Cer 140,12	59Pr Prazeodym 140,91	60Nd Neodym 144,24	61Pm Promet 144,91	62Sm Samar 150,36	63Eu Europ 151,96	64Gd Gadolin 157,25	65 Tb Terb 158,93	66Dy Dysproz 162,50	67Ho Holm 164,93	68Er Erb 167,26	69 Tm Tul 168,93	70 Yb Iterb 173,04	71Lu Lutet 174,97	
		**)	90 Th Tor 232,04	91Pa Protsktyn 231,04	92U Uran 238,03	93Np Neptun 237,05	94Pu Pluton 244,06	95Am Ameryk 243,06	96Cm Kiur 247,07	97Bk Berkel 247,07	98Cf Kaliforn 251,08	99Es Einstein 252,09	100Fm Ferm 257,10	101Md Mendelew 258,10	102No Nobel 259,10	103Lr Lorens 262,11	

Źródło: W. Mizerski, "Tablice chemiczne", Wydawnictwo Adamantan, Warszawa 2004. Masy atomowe podano z dokładnością do dwóch miejsc po przecinku.