



## **Model Development Phase Template**

| Date          | 20 July 2024               |
|---------------|----------------------------|
| Team ID       | SWTID1721319573            |
| Project Title | Blueberry Yield Prediction |
| Maximum Marks | 6 Marks                    |

## **Model Selection Report**

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

## **Model Selection Report:**

| Model                    | Description                                                                                                                          | Hyperparameters                                                                                                                                                                                                                              | Performance Metric (e.g.,<br>Accuracy, F1 Score)                                             |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Linear<br>Regressio<br>n | Linear Regression is a simple model that assumes a linear relationship between the independent variables and the dependent variable. | <ul> <li>fit_intercept:         True</li> <li>normalize:         False         (deprecated in newer         versions;         normalization         is handled by         StandardScaler         if needed)</li> <li>copy_X: True</li> </ul> | Linear Regression: MAE: 97.318 MSE: 16219.955 RMSE: 127.358 R-Square: 0.992 Accuracy: 99.18% |





| Random<br>Forest<br>Regressor | Random Forest is an ensemble learning method that constructs multiple decision trees during training and outputs the mean prediction of the individual trees. | <ul> <li>n_estimato rs: 100 (default)</li> <li>criterion: 'squared_er ror' (default)</li> <li>max_depth : None (default, trees are expanded until all leaves are pure or until all leaves contain less than min_sampl es_split samples)</li> <li>min_sampl es_split: 2 (default)</li> <li>min_sampl es_leaf: 1 (default)</li> <li>max_featur es: 'auto' (default)</li> </ul> | Random Forest Regressor: MAE: 116.868 MSE: 22604.657 RMSE: 150.348 R-Square: 0.989 Accuracy: 98.86% |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Decision<br>Tree<br>Regressor | Decision Tree Regressor creates a model in the form of a tree structure, where each node represents a                                                         | <ul> <li>criterion:     'squared_er     ror'     (default)</li> <li>splitter:     'best'     (default)</li> </ul>                                                                                                                                                                                                                                                            | Decision Tree Regressor: MAE: 155.595 MSE: 42571.611 RMSE: 206.329 R-Square: 0.978 Accuracy: 97.84% |





|                      | decision based<br>on the features,<br>and the leaves<br>represent the<br>predicted values.                                                          | <ul> <li>max_depth : None (default)</li> <li>min_sampl es_split: 2 (default)</li> <li>min_sampl es_leaf: 1 (default)</li> </ul>                                                                  |                                                                                               |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| XGBoost<br>Regressor | XGBoost is an advanced gradient boosting method that optimizes the performance of boosting algorithms and is known for its accuracy and efficiency. | <ul> <li>n_estimato rs: 100 (default)</li> <li>learning_ra te: 0.3 (default)</li> <li>max_depth : 6 (default)</li> <li>subsample: 1 (default)</li> <li>colsample_bytr ee: 1 (default)</li> </ul> | XGBoost Regressor: MAE: 111.927 MSE: 20632.639 RMSE: 143.641 R-Square: 0.990 Accuracy: 98.96% |