姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>单三晚 M</u> 座位号<u>9</u>

1.实验名称

准稳态法测不良导体的导热系数和比热

2.实验目的

- 1. 了解准稳态法测量不良导体的导热系数和比热原理,并通过快速测量学习掌握该方法。
- 2. 掌握使用热电偶测量温度的方法。

3.数据处理(数据整理、计算、作图、不确定度分析、实验结果等)

1. 万用表使用练习

测量任务	测量值	万用表	精度(%读	不确定度	完整测量结果				
		量程	数+%量程)						
电阻 R	10.9704kΩ	20kΩ	0.020+0.004	$10.9704k \times 0.020\%$	(10.9704				
				$+20k \times 0.004\% = 3.0\Omega$	$\pm 0.0030)$ k Ω				
电容 C	0.936μF	2μF	1+0.5	$0.936\mu \times 1\% + 2\mu$	(0.936				
				$\times 0.5\% = 0.019 \mu F$	± 0.019)μF				
交流电压	0.37643V	2V	0.2+0.05	$0.37643 \times 0.2\% + 2$	(0.3764				
U				$\times 0.05\% = 1.8$ mV	± 0.0018)V				
交流信号	1.000kHz	20Hz-2k	0.01+0.003	$1.000k \times 0.01\% + 2 \times$	(1.000				
f		Hz		0.003% = 16Hz	± 0.016)kHz				
二极管导	0.5684V								
通电压									

2. 实验准备、器件检查

(1) 热电偶检查

中心面热电偶阻值= 3.435Ω

加热面热电偶阻值= 3.082Ω

中心面冷端热电偶阻值= 3.430Ω

加热面冷端热电偶阻值= 3.470Ω

均小于 10Ω, 热电偶完好。

- (2) 两个相同电加热薄膜并联后的阻值= 55.090Ω 约等于 55Ω ,加热器完好。
- (3) 冷端水温t_c = 20.1℃

(4) 直流电源电压

加热前: 17.9947V 加热后: 17.9953V

3. 数据整理

τ/分钟	0	1	2	3	4	5	6	7	8
$U_2(t_1,t_c)/$ mV	0.011	0.012	0.021	0.038	0.059	0.083	0.108	0.133	0.159

姓名 刘若涵 学号 2020011126 班级 自 05 组号 单三晚 M 座位号 9

$\begin{array}{ c c }\hline U_1(t_2,t_1)/\\ mV\end{array}$	0.007	0.133	0.158	0.170	0.175	0.177	0.177	0.177	0.176
τ/分钟	9	10	11	12	13	14	15	16	17
$U_2(t_1,t_c)/$ mV	0.185	0.210	0.236	0.263	0.288	0.313	0.339	0.363	0.388
$U_1(t_2,t_1)/$ mV	0.176	0.175	0.174	0.174	0.174	0.173	0.173	0.173	0.173
τ/分钟	18	19	20	21	22	23	24	25	
$ \begin{array}{ c c }\hline U_2(t_1,t_c)/\\ mV \end{array}$	0.412	0.437	0.461	0.486	0.510	0.532	0.555	0.578	
$\begin{array}{ c c }\hline U_1(t_2,t_1)/\\ mV\end{array}$	0.174	0.174	0.174	0.174	0.175	0.175	0.176	0.176	

4. 曲线分析

记加热面与中心面温差为 $\Delta_{t1} = t_2 - t_1$,则 $U_1 = K_1 \Delta_t$,其中 $K_1 = 40 \mu V/^{\circ}$ C。由 U1(t2,t1)~ τ 曲线可知,起始时样品加热面与中心面的温差约等于 0,当 $\tau < 5$ min 时,温差随时间的增加而快速增加,未进入准稳态,5min 之后,温差基本保持不变化,维持稳定,进入准稳态,此时

U1=0.177mV, $\Delta_{t1}=\frac{U_1}{K_1}=\frac{0.177mV}{40\mu V/^{\circ}\text{C}}=4.425^{\circ}\text{C}$,考虑到 $\tau=0$ 时,U1=0.007mV, $\Delta_{t1}=0.175^{\circ}\text{C}$,将其当作系统误差对结果进行修订,则 $\Delta_{t1}=4.425-0.175=4.250^{\circ}\text{C}$ 。

仔细观察后发现,进入准稳态后,温差仍有微小的变化,7~14min 内 U1 下降了 0.004mV,17~25min 又上升了 0.003mV,由于变化较小,可以忽略,考虑是室温变化或是仪器保温效果欠佳造成的影响。

姓名 刘若涵 学号 2020011126 班级 自 05 组号 单三晚 M 座位号 9

记中心面与冷端的温差为 $\Delta_{t2}=t_1-t_c$,则 $\Delta_{t2}=\frac{U_2}{K_1}$ 。观察 U2(t1,tc)~ τ 曲线可知,起始时样品加热面与中心面的温差约等于 0, $\tau<5$ min 时,中心面与冷端的温差随时间缓慢上升,但与时间不成线性关系,表明此时系统未进入准稳态。5min 之后,温差随时间近似线性增长,可视为系统进入准稳态。起始时 U2=0.011mV,约 5min 处,进入准稳态时,U2=0.083mV, $\Delta_{t2}=\frac{(0.083-0.011)\text{mV}}{40\mu V/^{\circ}\text{C}}=1.8^{\circ}\text{C}$,中心面温度 $t_1=\Delta_{t2}+t_c=21.9^{\circ}\text{C}$ 。

为求得准稳态下的温升速率,取 5min 之后的点进行线性拟合,得到如下曲线:

由线性拟合结果得,直线斜率 b=0.0249,截距 a=-0.0385,拟合系数 R=0.9998,拟合度 很高,5min 后 U2(t1,tc) 对 τ 呈线性变化, $U_2=0.0249\tau-0.0385$,其中 U2 单位为 mV, τ 的单位为 min,则 $\Delta_{t2}=\frac{U_2}{K_1}=\frac{0.0249}{60\times0.040}\tau-\frac{0.0385}{0.040}=0.01037\tau-0.9625$,其中 Δ_{t2} 的单位为°C, τ 的单位为 s。

因此,温升速率 $\frac{dt}{d\tau} = 0.01037 \, ^{\circ}\text{C/s}$ 。

姓名 刘若涵 学号 2020011126 班级 自 05 组号 单三晚 M 座位号 9

5. 导热数据的计算

加热电压
$$U = \frac{U_{\hat{n}} - U_{\hat{n}}}{2} = 17.9950 \text{ V}$$

单个加热器电阻 $r = 55.090 \times 2 = 110.180 \Omega$

平板面积 $F = 0.09^2 = 0.0081 \text{ m}^2$

平板厚度的一半 R = 0.010 m

有机玻璃密度 $\rho = 1196 \, kg/m^3$

温差 $\Delta_{t1} = 4.250$ ℃

温升速率 $\frac{dt}{d\tau} = 0.01037$ °C/s

则热流密度 $q_c = \frac{U^2}{2Fr} = 181.420 J/m^2$

导热系数 $\lambda = \frac{q_c R}{2\Delta_{t1}} = 0.2134 \text{ W/(m·°C)}$

比热
$$c = \frac{q_c}{\rho R_{d\tau}^{dt}} = 1463 J/(kg \cdot ^{\circ}C)$$

如果考虑薄膜加热器的热容、边缘绝热条件没满足等,热流密度按电功率的 85%来修正,重新计算该条件下的导热系数与比热得

热流密度 q_c ' = 85% q_c = 154.21 J/m^2

导热系数λ' = 85%λ = 0.1814 W/(m·°C)

比热 $c' = 85\%c = 1244 I/(kg \cdot ^{\circ}C)$

4.实验小结(据实分析,不写虚)

本次实验我学会了用数字万用表测量电容、电阻、电压、频率等参数的方法,熟悉了根据技术指标给出完整测量结果的过程。了解了准稳态法测量不良导体的导热系数和比热原理,掌握了热电偶测量温度的方法,熟练了样品台装置、直流稳压电源、数字万用表、双刀双掷开关等仪器的搭接与使用。

思考题:

1. 本实验中准稳态会无限保持下去吗?

答:不会。在进入准稳态一段时间后,系统会脱离准稳态而进入稳态。随着温度的升高,由于系统绝热不完全,各处散热不均匀的现象会导致样品各处的温升速率发生变化,打破准稳态。

2. 热电偶冷端温度对实验的影响是怎样的?

答: 从理论上来讲,由于后续计算只需要用到温升速率 $\frac{dt}{d\tau} = \frac{d(t2-tc)}{d\tau}$,冷端温度作为常数会被消去,冷端温度的大小对实验结果并没有影响。但是需要注意的是,冷端温度在实验过程中必须保持不变,如果冷端温度改变会造成对 Δ_{t2} 的测量不准确,进而导致导致温升速率 $\frac{dt}{d\tau}$ 不准确,最终使得计算结果与真实值之间存在较大误差。

3. 对准稳态曲线走势进行分析。

答:由 U1(t2,t1)~ τ 曲线可知,当 τ <5min 时,加热面与中心面温差随时间的增加而快速增加,5min 之后,温差基本保持不变化,维持稳定。由 U2(t1,tc)~ τ 曲线可知, τ <5min 时,中心面与冷端的温差随时间缓慢上升,但与时间不成线性关系。5min 之后,温差随时间近似线性增长。

姓名 刘若涵 学号 2020011126 班级 自 05 组号 单三晚 M 座位号 9

这是由于当加热时间 τ 使得 $F_0 = \frac{\alpha \tau}{R^2} > 0.5$ 后, $t(x,\tau) - t_0 = \frac{q_c R}{\lambda} (\frac{\alpha \tau}{R^2} + \frac{x^2}{2R^2} - \frac{1}{6})$,任一时刻样品各点温度随 x 按抛物线变化,样品内各点的温升速率相同并保持不变,样品内两点间温差恒定,进入准稳态。但仔细观察后发现,进入准稳态后,U1(t2,t1)~ τ 曲线仍有微小的变化,7~14min 时 U1 下降了 0.004mV,17~25min 又上升了 0.003mV,由于变化较小,可以忽略,考虑是室温变化或是仪器保温效果欠佳造成的影响。U2(t1,tc)~ τ 曲线拟合系数 R=0.9998,不为 1,U2 与 τ 的线性关系有微小偏差,但同样可以忽略,考虑是室温变化或是冷槽水温变化造成的影响。

附原始数据记录(有教师签字)图表等

零、万用表使用练习:

测量任务	测量值	万用表量程	不确定度计算公式及计算结果	完整测量结果
电阻 R	10.9704 Kr	20KJ		
电容 C	0.936MF	1MF		
交流电压 U	0.37.643V	27		
交流信号 f		2HZ-2KHZ		
二极管导 通电压	0.5684			

- 一、热导实验准备、器件检查:
- 1、接线前检测热电偶是否完好:
- 中心面热电偶阻值=3.435(应小于10欧)
- 加热面热电偶阻值= 3.082(应小于 10 欧)
- 中心面冷端热电偶阻值=3.43454(应小于10欧)
- 加热面冷端热电偶阻值=3.4% 几(应小于10欧)
- 2、两个相同电加热薄膜并联后的阻值= 55.0% 元
- 3、冷端水温(近似以室温替代) te= 20.1°c
- 4、直流电源设定加热电压(15~20V), 并测量(加热前后各测一次): 17.9947 V | 17.9953 V

(R 8/12

二、实验接线,通电前记录 $\tau=0$ 时的数据(U_1 应小于 10 微伏),通电加热起开始计时、按时记录数据:

τ(分钟)	0	1	2	3	4	5	6	7	8
$U_2(t_1,t_c)$	0,011	0.012	0.02	0.038	0.059	0.083	4.108	a.133	0.159
$U_1(t_2,t_1)$	0.00	0.133	0.158	0.170	0.175	0.177	0.177	0.177	0.176
τ(分钟)	9	10	11	12	13	14	15	16	17
$U_2(t_1,t_c)$	0.185	0.20	0.236	0.263	0.288	0.313	0.339	0.363	0.388
$U_1(t_2,t_1)$	0.176	0.175	0.174	0.174	0.174	0.173	0.173	0.173	0.173
τ(分钟)	18	19	20	21	22	23	24	25	
$U_2(t_1,t_c)$	0.412	0.437	0.461	0.486	0.510	0.532	0.535	0.578	
$U_1(t_2,t_1)$	0.174	0.174	0.174	0.174	0.175	0.175	0.176	0.176	