Word 公式输入指南

qbh2020@foxmail.com

目 录

1	前言	2
	输入特殊字符	
2		
	2.1 变体英文字母	
	2.2 希腊字母	
	2.3 一元、二元运算符	
	2.4 二元关系符	4
	2.5 大型运算符	5
	2.6 数学重音	5
	2.7 宽括号	5
	2.8 箭头	5
	2.9 定界符	6
	2.10 其他符号	6
2	输入复合结构	7
J	3.1 分数	
	3.2 包裹子公式	
	3.3 角标和限标	
	3.4 根式	
	3.5 大型运算符	8
	3.6 函数	8
	3.7 数学重音、宽括号、箭头	9
	3.8 定界符	9
	3.9 多行公式、矩阵	10
	3.10 带框公式	10
	3.11 文本	10
4	公式编号	11
5	其他公式输入方法	12
	5.1 利用 Word 插件	

6	参考链接	.13
	5.3 利用 Word 对 MathML 的支持	. 13
	5.2 利用 Word 对 LATeX 的支持	. 13

1 前言

Word 2010 及以上版本可以通过插入—符号—公式或快捷键 Alt + I 插入一公式占位符。编辑公式时,可以在公式—转换中选择 Unicode 或 LaTeX 、指定以 UnicodeMath[1]或 LaTeX[2]作为公式格式 [3]。本文只对 UnicodeMath 语法进行说明,LATeX 语法仅会有所提及。

本文写作软件为 Windows 下的 Word 2021;在其他版本中会有表述或功能差异;在其他平台或 其他软件上可能有功能缺失。

Office 默认且唯一预置的公式区字体是 Cambria Math,与正文西文字体 Times New Roman 字形相差太大。本文档使用了类 Times 字形的 XITS Math[®]作为公式区字体。文档已经在公式一转换一对话框加载按钮中,设置了公式区的默认字体为 XITS Math。

已经插入的公式无法通过更改<u>公式区的默认字体</u>更改字体,但可以使用高级替换功能更改字体:在开始—编辑——替换——查找和替换窗口中点击更多;在<u>查找内容</u>输入框,点击格式——字体调出<mark>数</mark>找字体窗口,在字体中选择西文字体为 Cambria Math;在替换为输入框,同样方法选择西文字体为 XITS Math,点击全部替换即可。

推荐在文件-选项-校对-自动更正选项-数学符号自动更正中取消勾选在公式区以外使用"数学符号自动更正"规则。

有关 Word 公式的拓展阅读见[4]。

2 输入特殊字符

2

^① https://github.com/aliftype/xits/releases。

常用字符可以在公式—符号面板中点击插入。输入字符的原理为自动更正:如果一串字符(通常以反斜线\开头)在公式—转换—对话框加载按钮—公式选项窗口—数学符号自动更正—自动更正窗口—数学符号自动更正中定义了自动更正命令、并且勾选了键入时自动替换,则这串字符会在键入空格。后被替换为指定字符。字符的输入命令可以在符号面板的按钮上通过鼠标悬停查看,也可以在数学符号自动更正中定义和修改。

以下符号表给出了字符及其预置的输入命令,标有*者表示命令是手动添加的。

2.1 变体英文字母

手写体、花体、双线大小写英文字母的输入,直接在字母前加上相应前缀\script、\fraktur、\double 即可。

表 1 手写体、花体、双线英文字母(示例)

\mathscr{A}	\scriptA	U	\frakturA	A	\doubleA
---------------	----------	---	-----------	---	----------

2.2 希腊字母

一些希腊字母和对应英文字母字型相同,却有着不同的编码,不过实际使用中没有必要分辨。

表 2 希腊字母

α	\alpha	ν	<u>\nu</u>	A	\Alpha	N	<u>\Nu</u>
β	\beta	ξ	<u>\xi</u>	В	<u>\Beta</u>	Ξ	<u>\Xi</u>
γ	\gamma	0	<u>\o</u>	Γ	\Gamma	O	<u>/0</u>
δ	\delta	π	<u>\pi</u>	Δ	\Delta	П	<u>\Pi</u>
ϵ	\epsilon	ρ	<u>\rho</u>	E	\Epsilon	P	<u>\Rho</u>
ζ	\zeta	σ	\sigma	Z	<u>\Zeta</u>	Σ	\Sigma
η	<u>\eta</u>	τ	<u>\tau</u>	Н	<u>\Eta</u>	T	<u>\Tau</u>
θ	\theta	v	\upsilon	Θ	\Theta	Υ	\Upsilon
ı	\iota	ϕ	\phi	I	\ <u>lota</u>	Φ	<u>\Phi</u>
K	\kappa	χ	<u>\chi</u>	K	\Kappa	X	<u>\Chi</u>
λ	\lambda	Ψ	<u>\psi</u>	Λ	\Lambda	Ψ	<u>\Psi</u>
μ	<u>\mu</u>	ω	\omega	M	<u>\Mu</u>	Ω	<u>\Omega</u>
ε	\varepsilon	Q	\varrho				
θ	\vartheta	ς	\varsigma				
\overline{w}	<u>\varpi</u>	φ	\varphi				

2.3 一元、二元运算符

表 3 一元、二元运算符

+	<u>+</u>	_	=	U	\cup	Λ	\cap
±	<u>+-, \pm</u>		<u>-+, \mp</u>	Ц	\sqcup	П	\sqcap
×	\times		\cdot	٧	<u>\vee</u>	٨	<u>\wedge</u>
÷	\div	:	<u>:</u> , <u>\ratio</u>	⊎	\uplus	⊍	\udot*
\	\setminus	С	\complement*	0	\odot	\oplus	\oplus
1	<u>\mid</u>	ł	\nmid*	\otimes	\otimes	$\overline{\cdot}$	\boxdot
*	<u>*</u> , <u>\ast</u>	۰	\circ	\blacksquare	\boxplus	\Box	\boxminus
•	\bullet	3	<u>\wr</u>	¬	\neg	!!	<u>!!</u>

2.4 二元关系符

表 4 二元关系符

<	<u>≤</u>	>	<u>></u>	€	<u>\in</u>	∋	<u>\ni</u>
≤	<=, <u>\le</u> , <u>\leq</u>	<u>></u>	<u>>=, \ge, \geq</u>	∉	\notin, \notelement	∌	\notcontain
\leq	\legslant*	≽	\geqslant*	\subset	\subset	\supset	\superset
«	<u><<, ∖II</u>	>>	<u>>>, \gg</u>	⊆	\subseteq	⊇	\superseteq
=	Ξ	=	<u>\equiv</u>	<	\prec	>	\succ
~	\sim	\simeq	\simeq	\leq	\preceq	≽	\succeq
\approx	\approx	\cong	<u>~=</u> , <u>\cong</u>	⊏	\sqsubset*	⊐	\sqsuperset*
:=	<u>:=</u>	≐	\doteq	⊑	\sqsubseteq	⊒	\sqsuperseteq
≜	\Deltaeq	def	\defeq	Α	\forall	3	\ <u>exists</u>
\propto	\propto	::	<u>::</u>		\parallel	Τ	\bot, \perp
\smile	\smile		\frown	Т	\top	⊢	<u>\vdash</u>
\cong	\asymp	\bowtie	\bowtie	⊣	\dashv	⊨	\models
≮	<u>/<</u>	*	<u>/></u>	∉	<u> </u>	∌	<u> </u>
≰	$\Lambda \log, \Lambda \log$	≱	<u> </u>	⊄	<u> </u>	$ ot \supset$	<u> </u>
\neq	<u>/=, \neq, \ne</u>	≢	<u> </u>	⊈	<u> </u>	⊉	<u> </u>
≁	<u> </u>	≄	∆simeq	⊀	<u> </u>	*	<u> </u>
≉	<u> </u>	≇	∆cong	≰	<u> </u>	≱	<u> </u>
*	<u> </u>	∄	<u> </u>	⊭	<u> </u>	⊉	<u> </u>

对于一些二元关系符,正向命令前加斜线/即表示反向命令。

2.5 大型运算符

			表 5 ブ	大型运算符			
$\sum \Box$	<u>\sum</u>	Π	\prod	U	\bigcup	\bigcap	\bigcap
	\coprod, \amalg	$\int \Box$	\ <u>int</u>		\bigsqcup		\bigsqcap*
$\iint \Box$	\iint	$\iiint \Box$	\iiint	$\bigvee \Box$	\bigvee	$\bigwedge \Box$	\bigwedge
∭ □	\iiiint	$\oint \Box$	\oint	+	\biguplus	$\bigcup \Box$	\bigudot*
$\oint\!$	<u>\oiint</u>	∰□	<u>\oiiint</u>	\oplus	\bigoplus	\odot	\bigodot
$\oint \Box$	\coint	$\oint \Box$	\aoint	\otimes	\bigotimes		
2.6 数	文学重音						
			表 6	数学重音			
	\acute		\grave		\hvec, \rhvec		\lhvec
	\hat	Ď	\check		<u>\vec</u>		\ <u>lvec</u>
	\breve	$\widetilde{\square}$	\tilde		\tvec		\dot
	\bar, \overbar		<u>\Bar</u>		\ddot		\dddot
	<u>\ubar</u>		<u>\Ubar</u>				
需要给 i 或 j 加数学重音时,为了避免字母的点对重音显示造成影响,可以用 i (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
			表 7	宽括号			
	\overparen		\underparen		\overbrace		\underbrace
	<u>\overbar,</u> \overline		\underbar		\overshell		

2.8 箭头

表 8 箭头

←	\leftarrow, \gets	\rightarrow	->, \rightarrow, \to	^	\nwarrow	7	\nearrow
↑	\uparrow	\downarrow	\downarrow	1	\swarrow	7	\searrow
\leftrightarrow	\leftrightarrow	1	\updownarrow	_	\leftharpoonup	_	\rightharpoonup
\(=	\Leftarrow	\Rightarrow	\Rightarrow	_	\leftharpoondown	-	\rightharpoondow n
\uparrow	\Uparrow	\Downarrow	\Downarrow	\leftrightharpoons	\ <u>\lrhar</u>	\rightleftharpoons	\rlhar*
\Leftrightarrow	\Leftrightarrow	\$	\Updownarrow	\leftarrow	\hookleftarrow	\hookrightarrow	\hookrightarrow
\mapsto	\mapsto	Ų	<u>\break</u>				

2.9 定界符

表 9 定界符

(1)	1	ſ	\lceil	1	\rceil
[[, \lbrack]], \rbrack	L	\lfloor	J	\rfloor
	\Lbrack*		\Rbrack	<	\bra, \langle	\rangle	\ket, \rangle
{	{, \lbrace	}	}, \rbrace	«	\Langle*	>>	\Rangle
-	<u> </u>		<u>\Vert</u> , <u>\norm</u>				

2.10 其他符号

表 10 其他符号

,	<u>'</u> , <u>\prime</u>	"	<u>", \pprime</u>	ħ	\hbar	∞	\infty
9	\partial	∇	<u>\nabla</u>	\mathfrak{R}	<u>\Re</u>	\mathfrak{F}	<u>\Im</u>
Δ	<u>\inc</u>	∠	\angle	×	\aleph	ב	\bet, \beth
Ø	\emptyset		\vbar	٦	\gimel	7	\dalet, \daleth
	\overbracket		\underbracket	ℓ	<u>\ell</u>	80	<u>\wp</u>
:	\because	:.	\therefore	ı	\imath	J	<u>\jmath</u>
	, \cdots	:	\vdots	0	\degree	Å	\ang
٠.	\ddots	.•	\rddots	$^{\circ}\!$	\degc	°F	\degf
•••	\ldots, \dots						

更多字符可以在插入—符号——其他符号中,选择字体为当前公式区字体,即可插入字体 集中的字符。 不认识的符号可以通过手写识别符号网站 ©识别对应的 LATEX 命令,再以 LATEX 或其他方式输入。

3 输入复合结构

常用复合结构可以在公式—结构中点击使用。定义了特定命令的一串字符会在键入空格_后自动更正为特殊字符,类似地,具有特定结构的特殊字符会在键入空格_后构建为对应复合结构。

3.1 分数

分数结构由除法符号/构建。

例 1: 在公式编辑区输入 a/b , 得到竖式分式

 $\frac{a}{b}$.

其中<u>a</u>和<u>b</u>是普通字符,/指定竖式分式结构,_从除号构建竖式分式结构。 ■ 欲输入普通字符形式的/,需要输入\/进行转义。

例 2: 分别输入 <u>a\ldiv_b_</u>、<u>a\sdiv_b_</u>、<u>a\atop_b</u>,得到横式分式、斜式分式、无分数线竖式分式

$$a/b$$
, a/b , a/b .

其中第一个_将<u>\ldiv</u>、\<u>sdiv</u>、\<u>atop</u>自动更正为除法符号,第二个_从除法符号构建指定结构的分数。

分数的右键菜单也可以直接改变分数的格式。

例 3: 如果要获得更自由的编辑模式,可以直接输入/_ 先构建包含占位符的分数,得到

然后再对占位符进行编辑。

先构建包含占位符的复合结构、再对占位符进行编辑的方法在其他处同样适用。

3.2 包裹子公式

圆括号()除了作为普通定界符字符以外,还起到包裹子公式的作用。

例 4: 分别输入(a)/(b)_、a+b/c_、ab/c_、(a+b)/c_,得到

$$\frac{a}{b}$$
, $a + \frac{b}{c}$, $\frac{ab}{c}$, $\frac{a+b}{c}$.

也可以用\begin 和\end 代替圆括号包裹子公式。

① http://detexify.kirelabs.org/classify.html。

3.3 角标和限标

上下标结构由扬抑符^和下划线 构建。

例 5: 分别输入 <u>a^b_</u>、<u>a_b_</u>,得到

$$a^b, a_b$$

分别输入<u>^b_a_、_b_a</u>,得到

$$^{b}a$$
, $_{b}a$.

角标的右键菜单可以改变角标相对于基线字符的前后、删除角标。

欲输入普通字符形式的^、_, 需要输入\^、/_进行转义。

^和 用于构建基线字符侧方的角标,基线字符正上下方的限标则由\above 和\below 构建。

例 6: 分别输入 a\above_b_、a\below_b_, 得到

限标的右键菜单同样可以改变限标相对于基线字符的上下、删除限标。

3.4 根式

常用根式可由平方根\sqrt、立方根\cbrt、四次方根\qdrt 构建; <u>a</u> 的 <u>n</u>次方根的命令为\sqrt(n&a)。**例 7:** 分别输入\sqrt_a_、\cbrt_a_、\qdrt_a_、\sqrt(n&a)_,

$$\sqrt{a}$$
, $\sqrt[3]{a}$, $\sqrt[4]{a}$, $\sqrt[n]{a}$.

根式的右键菜单可以删除根式。

3.5 大型运算符

大型运算符由^和 构建限标。

例 8: 输入\sum_ (n=1)^\infty_1/n^2_→=\pi_^2/6_,得到

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

这里用到了右方向键→改变光标所在的输入区域。

例 9: 输入\int_0^\infty_e^-x^2_dx→=\sqrt_\pi_/2_,得到

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

大型运算符的右键菜单可以改变限标位置、运算符尺寸。限标的默认位置也可以在公式选项窗口中更改。

3.6 函数

公式选项窗口—可识别的函数—可识别的数学函数窗口中给出了常用的函数,可以手动添加或删除。使用函数时,需要在输入函数命令后输入_以构建函数结构,从而使函数名称保持直体、函数名称后出现占位符、且自动留出间距。

例 10: 输入 sin x, 得到

 $\sin x$,

这与直接输入 sinx 意义和显示格式均不同。

例 11:输入微分算子 dx 时,不应直接输入 <u>dx</u>、然后将 <u>d</u>更改为直体;应当先在 可识别的数学 函数窗口中新建函数 <u>d</u>,然后输入 <u>d</u>x,即可得到dx。

3.7 数学重音、宽括号、箭头

例 12: 输入(AB)\bar_,,得到

AB.

数学重音控制的字符需要放在数学重音命令之前。

例 13: 输入\overbrace_(a+b+c)_, 得到

$$a+b+c$$
.

宽括号控制的字符需要放在上下括号命令之后。

在宽括号上下方插入文字可以用 $_{n}$,也可以用 $_{above}$ 和 $_{below}$,在箭头上下方插入文字则只能用 $_{above}$ 和 $_{below}$ 。

例 14: 分别输入 <u>\overbrace_(a+b+c)_^3__</u>、 <u>\underbrace_(x+y+z)_\below_>0__</u>、 <u>a\rightarrow_\above_convert_b</u>,得到

$$\overbrace{a+b+c}^{3}$$
, $\underbrace{x+y+z}_{>0}$, $\underbrace{a}^{convert}_{>0}b$.

大部分数学重音、宽括号、箭头都可以自动匹配字符宽度和高度。

3.8 定界符

定界符可以根据子公式高度自动调整大小,需要在左右定界符闭合后再输入,构建。

例 15: 输入(n\atop_k_), , 得到

$$\binom{n}{k}$$
.

如果不最后输入,,则圆括号只能保持原高度。

定界符的右键菜单可以删除左右定界符、调整定界符高度。

只有单侧定界符时,缺失的左右定界符由<u>\open</u>或<u>\left</u>、<u>\close</u>或<u>\right</u>代替,使左右定界符闭合。

例 16: 输入 | x | _={\eqarray_(x,&x>=0@-x,&x<0)_\close__,得到

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

多行公式输入见下文。

3.9 多行公式、矩阵

多行公式由<u>\eqarray</u>命令和对齐符号<u>&</u>、换行符号<u>@</u>构建,其中<u>\eqarray</u>后以<u>()</u>包裹多行公式, @用于公式换行,各行公式在&处左对齐。

例 17: 输入\eqarray_(p=&\hbar_k@E=&\hbar\omega_)_, 得到

$$p = \hbar k$$
 $E = \hbar \omega$

多行公式的右键菜单可以更方便地插入、删除、分解公式或者改变公式的排版。

除<u>\eqarray</u>外,在公式区内可以通过快捷键 Shift + Enter 进行软换行,然后在各行公式的对齐 点处右键选择 在此字符处对齐。这种方法的缺陷是每行只能插入一个对齐点。

矩阵的构建与多行公式类似,只需把\eqarray 换为\matrix。

例 18: 输入[\matrix(a 11&a 12&\cdots&a 1n@a 21&a 22&\cdots&a 2n@\vdots&\vdots&\ddots &\vdots@a n1&a n2&\cdots&a nn),], 得到

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

内置命令中只有<u>\matrix</u>、<u>\pmatrix</u>和<u>\Vmatrix</u>命令可供生成自带不同定界符的矩阵,三者的定界符分别为无定界符、圆括号()和双竖线 || || 。

矩阵的右键菜单可以更方便地插入行列、改变矩阵间距、改变矩阵元素对齐方式。

例 19: 输入[\matrix(&&&@@@)], 得到由占位符组成的 4×4 矩阵

3.10 带框公式

带框公式由\rect 构建。

例 20: 输入\rect (E=mc^2), , 得到

$$E = mc^2$$

带框公式的右键菜单可以调整边框属性。

3.11 文本

普通文本由引号""包裹并构建。公式-转换-文本 也可以将公式区的文字在数学文本和普通文本 之间转换。

例 21: 输入"E=mc^2", 得到

 $E=mc^2$.

注意命令不再自动构建,并且保持直体,同时公式一转换一文本已按下。

如果选择普通文本格式的文字,取消按下 文本 ,则文字会恢复自动调整为直体或斜体,并且可以正常构建。普通文本的右键菜单也可以选择转换为数学文本。

公式区的普通文本可以任意调整字体。

4 公式编号

手动编号只需在公式编辑区的结尾输入#编号,略不同的是需要用处进行构建。

例 22: 以例 8 公式为例,在原有公式后输入#(4-1)→^①,得到

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.\tag{4-1}$$

公式的自动编号可以借助于 Word 题注功能。

例 23: 在公式编辑区的结尾输入#()并回车、留出公式编号占位符。把光标移出公式编辑区,通过引用-题注-插入题注 调出题注窗口: 选择标签为公式(如果没有该标签名则需点击新建标签新建),勾选从题注中排除标签;点击编号调出题注编号窗口,选择格式为阿拉伯数字,勾选包含章节号,选择章节起始样式为标题 1,使用分隔符为-(连字符),确定即可插入公式编号。最后移动公式编号至编号占位符内。效果如下所示。

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.\tag{4-1}$$

[®] 编号数字间的连接符是不间断连字符(non-breaking hyphen, U+2011)、而非减号(hyphen-minus, U+002D)或短划线 (en dash, U+2013),通过 Ctrl + Shift + □或插入-符号- 符号 - 其他符号 - 特殊字符 输入。

此外还可以通过无框线表格排版公式和题注编号。

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$
 (4-2)

如果需要重复使用这种方式排版公式,则可以选择表格,通过插入——文本——文档部件——将所选内 容保存到文档部件库,在<u>新建构建基块窗口</u>中设置<u>类别为常规,选项为仅插入内容</u>,修改<u>保存位置</u>、 <u>名称、库和说明</u>后保存即可,此后即可在插入——文本——文档部件下拉菜单中快捷插入表格。

使用制表位排版公式与编号,会使行间公式变为行内公式,排版格式由显示格式变为内嵌格式,为适配行高而自动缩小字符、改变排版等,故不使用。基于这一原因,也应尽可能避免在行内插入高度较大的公式。

选择公式编号并按 F9 刷新即可自动更新编号。题注编号、交叉引用项等文档元素的本质都是域。域是 Word 文档中的特殊字段,以固定的域代码显示可变化的域结果,在划选域结果时会以深色底纹标识域。 F9 可以更新选定域, Shift + F9 对选定域在域代码和域结果之间切换,域的右键菜单中也能找到上述功能; Ctrl + F11 用于锁定域、阻止域更新, Ctrl + Shift + F11 则用于解除锁定。

5 其他公式输入方法

以下是若干不使用 Word 公式编辑器、或无需手动输入 Word 公式的方法。

5.1 利用 Word 插件

代表性的 Word 插件如 Mathtype^①。输入方式简单友好,支持 LAT_EX 代码的导入和多种格式的导出,可以在 Mathtype 内输入公式并复制至 Word,也可以通过 Mathtype 的 Word 插件直接插入公式。

又如 AxMath[®],功能类似 Mathtype,具有富文本编辑器,可以复制公式至 Word,也可以通过 Word 插件输入。

¹ https://www.mathtype.cn.

^② https://www.amyxun.com。

5.2 利用 Word 对 LATEX 的支持

Word 公式支持较简单的 LATEX 语法,只需在公式一转换中选择 LaTEX ,并在输入完公式后点击公式一转换一转换 以从 LATEX 代码生成 Word 公式。可以结合能实时渲染 LATEX 公式的软件(如 Typora[®])或网页 ^{②®}、或者对公式 OCR 生成 LATEX 代码的软件(如 Mathpix[®])使用。

5.3 利用 Word 对 MathML 的支持

Word 公式区可以将 MathML 代码转换为公式。Typora 可以将公式复制为 MathML、甚至直接 复制到 Word,网页[©]可以将公式导出为 MathML。

6 参考链接

- [1] Unicodemath, A Nearly Plain-Text Encoding Of Mathematics (Version 3.1). https://www.unicode.org/notes/tn28/UTN28-PlainTextMath-v3.1.pdf.
- [2] 一份(不太)简短的 LATEX2ε 介绍——或 111 分钟了解 LATEX2ε. https://mirrors.tuna.tsinghua.edu.cn/CTAN/info/lshort/chinese/lshort-zh-cn.pdf.
- [3] Linear format equations using UnicodeMath and LaTeX in Word. https://support.microsoft.com/en-us/office/linear-format-equations-using-unicodemath-and-latex-in-word-2e00618d-b1fd-49d8-8cb4-8d17f25754f8.
- [4] OfficeMath. https://learn.microsoft.com/en-us/archive/blogs/murrays/officemath.

¹ https://typoraio.cn.

² <u>https://www.latexlive.com</u>.

https://www.mathcha.io/editor。

⁴ https://mathpix.com.