Icollado

Inicia

Intro

IRange

GenomeGrapl
v biomaRt

chipse

Curso de Métodos Estadísticos y Analíticos de Datos Genómicos

Leonardo Collado Torres lcollado@ibt.unam.mx y lcollado@wintermexico.com Lic. en Ciencias Genómicas

www.lcg.unam.mx/~lcollado/

Winter Genomics (WG) e Instituto de Biotecnología (IBT) de la UNAM

21 de Enero de 2010

Icollado

Inicio

_ _

y biomaRt

chips

Bioconductor para Datos de Secuenciación Masiva II

- Intro
- 2 IRanges
- 3 GenomeGraphs y biomaRt
- 4 chipseq

Icollado

Inicia

Intro

IRango

GenomeGrap v biomaRt

chipse

 Una nueva compañía de servicios bioinformáticos con datos de secuenciación masiva.

Icollado

Inicia

Intro

IRanges

GenomeGrap y biomaRt

chipse

Es la base oculta

- Creado por: Hervé Pages, Patrick Aboyoun y Michael Lawrence.
- IRanges es el paquete de bajo nivel que nos permite manejar este tipo de datos en R.
- Es muy útil para representar información a lo largo de posiciones en el genoma.
- Tiene una serie de funciones para hacer *operaciones en intervalos*.

Icollado

Inicio

IRanges

GenomeGraph v biomaRt

chipse

Datos por intervalos

- Es muy útil para manejar información por posición en el genoma: el gen, su posición de inicio, de fin, la cadena, ...
- Aquí va un ejemplo con 3 genes. La forma clásica para almacenar esta info con R sería un data frame:

```
1 chr1 + 3 5
2 chr1 - 7 20
3 chr2 + 100 200
```

Datos por intervalos

IRanges

Pero con IRanges podemos hacerlo así:

```
> library(IRanges)
> RD <- RangedData(ranges = IRanges(start = start
      end = end), strand = strand,
      space = chr)
> RD
RangedData with 3 rows and 1 value column across 5
```

```
ranges |
     space
                             strand
<character> <IRanges> | <character>
      chr1 [ 3,
                   51 I
      chr1 [ 7, 20] |
      chr2 [100, 200] |
```

 La diferencia radica en la habilidad de agrupar los datos por el espacio. En el ejemplo, por el cromosoma.

Icollado

Inicia

Intro

IRanges

GenomeGrap y biomaRt

chipse

```
Datos por intervalos
```

```
> range(ranges(RD))
CompressedIRangesList of length 2
$chr1
IRanges of length 1
    start end width
[1]    3    20    18
$chr2
```

IRanges of length 1 start end width

[1] 100 200 101

Inicia

Intro

IRanges

GenomeGraph y biomaRt

chipse

Operaciones

Hay toda una gama y a continuación muestro algunas.¹

```
> ir <- IRanges(c(1, 8, 14, 15, 19,
+     34, 40), width = c(12, 6, 6,
+     15, 6, 2, 7))
> strand <- rep(c("+", "-"), c(4,
+     3))
> rd <- RangedData(ranges = ir, strand = strand,
+     space = "chr1")</pre>
```

 Ya creado el objeto RangedData podemos usar funciones para accesar la información:

```
> start(rd)
```

> end(rd)

[1] 12 13 19 29 24 35 46

Icollado

Inicia

.....

IRanges

GenomeGraph y biomaRt

chipse

> width(rd)

[1] 12 6 6 15 6 2 7

¹Siempre pueden checar help(package = IRanges)

Icollado

Inicia

Intro

IRanges

GenomeGrap y biomaRt

chipse

Un subconjunto

```
> rd[2:5, ]
```

RangedData with 4 rows and 1 value column across

> ranges(rd[2:5,])

Icollado

Inicia

IIILIO

IRanges

GenomeGrap y biomaRt

chipse

Un subconjunto

```
SimpleRangesList of length 1
$chr1
IRanges of length 4
    start end width
[1]
                  6
        8
         13
[2]
       14
           19
                  6
[3]
       15 29
                 15
[4]
       19
           24
                  6
```

Mover horizontalmente

Inicio

Intro

IRanges

GenomeGrap y biomaRt

chipse

```
> rd2 <- rd
> ranges(rd2) <- shift(ranges(rd2),
+ 2)
> rd2[2:5, ]
```

RangedData with 4 rows and 1 value column across

strand		nges	rai	space	
<character></character>		ges>	<irang< td=""><td><character></character></td><td></td></irang<>	<character></character>	
+		15]	[10,	chr1	1
+	-	21]	[16,	chr1	2
+		31]	[17,	chr1	3
_	1	26]	[21,	chr1	4

Icollado

Inicia

Intro

IRanges

GenomeGraph y biomaRt

chipse

O aumentar el tamaño

• ¿A alguien se le ocurre para qué quisieramos hacer esto?

Icollado

Inicia

IRanges

GenomeGran

y biomaRt

chipse

O aumentar el tamaño

Intro

IRanges

GenomeGraph y biomaRt

chipse

Delimitar

```
> ranges(rd3) <- restrict(ranges(rd3),</pre>
      1)
> rd3[2:5, ]
RangedData with 4 rows and 1 value column across
        space ranges |
                               strand
  <character> <IRanges> | <character>
         chr1 [8, 127] |
         chr1 [14, 133] |
         chr1 [15, 134] |
         chr1 [ 1, 24] |
```

IRanges

GenomeGraph y biomaRt

chipse

Funciones para resumir info

 Ya sea todo lo que está cubierto alguna vez, ninguna o donde no hay cambios.

```
> reduce(ranges(rd))
```

SimpleRangesList of length 1 \$chr1

IRanges of length 3 start end width

[1] 1 29 29 [2] 34 35 2

[3] 40 46

> gaps(ranges(rd))

IRanges

GenomeGraph

chipse

```
Funciones para resumir info
```

```
SimpleRangesList of length 1
$chr1
IRanges of length 2
    start end width
Г1]
       30 33
[2]
      36 39
> disjoin(ranges(rd))
SimpleRangesList of length 1
$chr1
IRanges of length 10
     start end width
Г1]
           7
[2]
        8 12
                  5
[3]
        13 13
[4]
        14 14
```

Icollado

. . .

. .

IRanges

GenomeGraph y biomaRt

chipse

Funciones para resumir info

[5]	15	18	4
[6]	19	19	1
[7]	20	24	5
[8]	25	29	5
[9]	34	35	2
[10]	40	46	7

Icollado

Inicia

Intro

IRanges

GenomeGraph y biomaRt

chipse

```
Aún más interesante: sobrelapes y cobertura
```

Icollado

Inicia

Intro

IRanges

GenomeGraph v biomaRt

chipse

Aún más interesante: sobrelapes y cobertura

```
SimpleRleList of length 1
$chr1
'integer' Rle of length 46 with 11 runs
Lengths: 7 5 2 4 1 5 5 4 2 4 ...
Values: 1 2 1 2 3 2 1 0 1 0 ...
```

Icollado

Inicia

Intro

IRanges

GenomeGrap y biomaRt

chipse

Más info

- Para genomas es recomendable usar objetos tipo Rle (Run Length Encoding) porque son mucho más eficientes.
- IRanges también te permite generar *vistas*. Básicamente asocia una secuencia de ADN con un objeto *Ranges*.
- Referencia: http://www.bioconductor.org/ workshops/2009/SeattleNov09/IRanges/

Icollado

Inicia

Intro

Range

GenomeGraphs y biomaRt

chipse

Intro

- Fueron creados por James Bullard y Steffen Durinck.
- El objetivo detrás de GenomeGraphs es poder visualizar tus datos rápidamente en la misma sesión de R en la que los estás analizando.
- biomaRt por otro lado te permite bajar información de una gama de bases de datos y tenerlos disponibles en R.

Icollado

14141

Intro

Range

GenomeGraphs y biomaRt

chipsed

GenomeGraphs

Table 1: Overview of classes representing drawable genomic datasets

Class	Description			
gdObject	the root class of the system, never directly instantiated			
DisplayPars	class managing various plotting parameters			
Gene	class representing a gene			
GeneRegion	class defining a region of a chromosome, generally a set of genetic elements (genes)			
Transcript	class defining a transcript			
TranscriptRegion	class defining a region of a chromosome, generally a set of genetic elements (transcripts			
Ideogram	class representing an ideogram			
Title	class to draw a title			
Legend	class to draw a legend			
GenomeAxis	class to draw an axis			
AnnotationTrack	class used to represent custom annotation			
Overlay	root class for overlays, never directly instantiated			
RectangleOverlay	class to represent rectangular regions of interest			
TextOverlay	class to draw text on plots			
Segmentation	class to draw horizontal lines in various sets of data			
GenericArray	class to draw data from microarrays.			
ExonArray	class to draw data from exon microarrays.			
GeneModel	class to draw custom gene models (intron-exon structures)			
BaseTrack	class to draw arbitrary data at a given base			
MappedRead	class to plot sequencing reads that are mapped to the genome			

Icollado

Inicia

Range

GenomeGraphs y biomaRt

chipsed

La más sencilla: makeBaseTrack

Icollado

lateta.

Intro

Range

GenomeGraphs y biomaRt

chipsed

Ahora con 2 makeBaseTrack

Icollado

Inicia

Intro

Range

GenomeGraphs y biomaRt

chipsed

Ahora con 2 makeBaseTrack y un makeGenomeAxis

Icollado

Inicia

Intro

IKanges

GenomeGraphs y biomaRt

cnipse

Un ejemplo con biomaRt

- Encontremos los genes de Bacillus subtilus de la posición 12 mil a la 20 mil.
- Cargamos la base y ahora buscamos el nombre del cromosoma.

```
> bsub <- useMart("bacterial_mart_3",
+ dataset = "bac_6_gene")</pre>
```

- > head(listAttributes(bsub))
- Luego obtenemos la info para los genes en la cadena positiva.

```
> pos <- makeGeneRegion(12000, 20000,
+ chromosome = "Chromosome",
+ strand = "+", biomart = bsub)
```

 Luego obtenemos la info para la cadena menos y graficamos usando gdPlot:

Icollado

Inicia

Intro

IRange

GenomeGraphs y biomaRt

chipse

Un ejemplo con biomaRt

```
> neg <- makeGeneRegion(12000, 20000,
+ chromosome = "Chromosome",
+ strand = "-", biomart = bsub)
> gdPlot(list(`+` = pos, `-` = neg,
+ Bsub = makeGenomeAxis()))
```

Icollado

.....

Intro

IRanges

GenomeGraphs y biomaRt

chipsed

Obtenemos:

Icollado

Inicia

Intro

Range

GenomeGraphs y biomaRt

chipsed

Datos de microarreglos - makeGenericArray

Icollado

Inicia

D....

GenomeGraphs y biomaRt

chipsed

Más complicado

Icollado

Latera.

. .

Dance

GenomeGraphs v biomaRt

chipse

Modelos de genes eucariontes - makeTranscript

Icollado

Inicia

Intro

Range

GenomeGraphs y biomaRt

chipse

makeExonArray junto a makeGeneModel

Icollado

Inicio

Rango

GenomeGraphs y biomaRt

chipse

Finalmente

Icollado

Inicia

Intro

IRange:

GenomeGraphs y biomaRt

chipse

Más info

- biomaRt
- GenomeGraphs
- Artículo GenomeGraphs
- http://www.bioconductor.org/packages/devel/ bioc/html/GenomeGraphs.html

Icollado

Inicia

Intro

Range

GenomeGrap y biomaRt

chipseq

Breve intro

- Fue diseñado para trabajar con datos de ChIP-seq.
- Entre otros, utiliza los paquetes IRanges, ShortRead y lattice.
- Creado por Deepayan Sarkar, Robert Gentleman, Michael Lawrence y Zizhen Yao

Icollado

.....

Labora

Range

GenomeGraphs

chipseq

Profundidad de la islas

Icollado

Inicia

Intro

IRange

GenomeGrap v biomaRt

chipseq

Buscamos. . .

- Islas y picos!
- Una isla es una región del genoma con cobertura contínua por nuestras secuencias.
- Un pico es una isla con altos valores de cobertura. Es decir, muchas secuencias.

Icollado

Lateta.

....

Dance

GenomeGraph

chipseq

Frec. de n de secs por isla

Icollado

ludata.

. .

Dance

GenomeGraph

chipseq

Profundidad de la islas

Icollado

lateta.

....

Range

GenomeGraph:

chipseq

Coverageplot pico 1

Icollado

Inicio

Intro

Range

GenomeGraph v biomaRt

chipseq

Coverageplot pico 2

Icollado

10000

Landana

Dames

GenomeGraph

chipseq

Alternativamente graficamos la densidad

Icollado

Inicio

Intro

IRango

GenomeGraph v biomaRt

chipseq

O por cadena

Icollado

Inicia

Intro

Range

GenomeGraph y biomaRt

chipseq

Más info

- Paquete chipseq
- Lab de chipseq en el BioC 2009
- Kharchenko et al, 2008

Icollado

Inicia

Intro

IRange

GenomeGraph y biomaRt

chipseq

Otros paquetes que no vimos

- snpMatrix
- baySeq, DEGseq, edgeR
- ChIPpeakAnno, ChIPseqR
- Rsamtools
- Rolexa
- ChIPsim
- rtracklayer
- HilbertVis, HilbertVisGUI
- genomeIntervals
- Les recomendamos el curso http://www.bioconductor. org/workshops/2009/SeattleNov09

Icollado

Inicia

IIILIO

Range:

GenomeGraph y biomaRt

chipseq

sessionInfo

Información de mi sesión:

```
> sessionInfo()
```

R version 2.10.0 (2009-10-26) i386-pc-mingw32

locale:

- [1] LC_COLLATE=English_United States.1252
- [2] LC_CTYPE=English_United States.1252
- [3] LC_MONETARY=English_United States.1252
- [4] LC_NUMERIC=C
- [5] LC_TIME=English_United States.1252

attached base packages:

- [1] stats graphics grDevices
- [4] utils datasets methods
- [7] base

other attached packages:

[1] IRanges_1.4.9