線形代数学・同演習 B

11 月 15 日分 演習問題*1

- 1. $A=\left(egin{array}{cccc} -1 & 0 & 2 \\ 1 & 1 & -1 \end{array}
 ight)$ とする.このとき,以下の基底に関する T_A の表現行列をそれぞれ求めよ.
 - (1) R^2 の基底は $\left[\begin{pmatrix} 7 \\ 5 \end{pmatrix}, \begin{pmatrix} -3 \\ -2 \end{pmatrix} \right]$, \mathbb{R}^3 の基底は $\left[\begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ -4 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} \right]$
 - (2) R^2 の基底は $\left[\begin{pmatrix}4\\-5\end{pmatrix},\begin{pmatrix}-2\\3\end{pmatrix}\right]$, \mathbb{R}^3 の基底は $\left[\begin{pmatrix}1\\0\\4\end{pmatrix},\begin{pmatrix}0\\4\\-2\end{pmatrix},\begin{pmatrix}1\\-1\\-1\end{pmatrix}\right]$
- 2^{\dagger} $A=\left(egin{smallmatrix}2&1&-1\\-1&0&1\\-1&-1&2\end{smallmatrix}
 ight)$ とする. \mathbb{R}^3 の基底をいずれも次のものとするとき,この基底に関する T_A の表現行列をそれぞれ求めよ *2 .

$$(1) \left[\begin{pmatrix} -1\\-2\\2 \end{pmatrix}, \begin{pmatrix} -1\\2\\-1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\1 \end{pmatrix} \right] \qquad (2) \left[\begin{pmatrix} -1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right]$$

- 3^{\dagger} $U=\mathbb{R}[x]_3,\,V=\mathbb{R}[x]_2$ とし,写像 $T\colon U\to V$ を $T\colon p(x)\mapsto p'(2x+1)$ で定める *3 .
 - (1) T は線形写像となることを示せ.
 - (2) U,V の標準基底 $([x^2,x,1]$ および [x,1]) に関しての表現行列を求めよ.
 - (3) U, V の基底をそれぞれ $[(x+1)^2, x+1, 1], [x+1, 1]$ としたときの表現行列を求めよ.
- 4* 線形写像 $T:U \to V$ が全射・単射および全単射であることを以下のように定義する:

T が全射 $\stackrel{\mathrm{def}}{\longleftrightarrow}$ 任意の V の元 $oldsymbol{v}$ に対して $T(oldsymbol{u}) = oldsymbol{v}$ となる $oldsymbol{u} \in U$ が存在する .

T が単射 $\stackrel{\operatorname{def}}{\longleftrightarrow} U$ の任意の二元 $oldsymbol{u},oldsymbol{u}'$ に対して $T(oldsymbol{u}) = T(oldsymbol{u}')$ ならば $oldsymbol{u} = oldsymbol{u}'$ となる .

T が全単射 $\stackrel{\mathrm{def}}{\longleftrightarrow} T$ が全射かつ単射

また T が全単射であるとき U と V は同型であるという.以下を示せ.

- (1) T が全射 \Leftrightarrow dim $\operatorname{Im} T = \dim V$ (2) T が単射 \Leftrightarrow ker $T = \{0\}$
- (3) 任意の n 次元実ベクトル空間 U は , n 次元数ベクトル空間 \mathbb{R}^n と同型になる .
- ・以下は旧課程における大学入試問題です、講義の記号に合わせて文章を変えています、
- 5* (2009 年京都大学 (理系・前期) より)

 $A=\left(egin{array}{c} a & b \ c & d \end{array}
ight)\in M(2,\mathbb{R})$ を $\det A=1$ を満たす行列とする.自然数 n に対して平面上の点 $m{x}_n\in\mathbb{R}^2$ を $m{x}_n=A^n\left(egin{array}{c} 1 \ c \end{array}
ight)$ により定める. $||m{x}_1||=||m{x}_2||=1$ であるとき,すべての n に対して $||m{x}_n||=1$ であることを示せ. $||m{x}_n||=1$ であることを示せ. $||m{x}_n||=1$

6.* (2008年大阪大学(理系・前期)より)

O を 2 次の零行列 , E を 2 次の単位行列とする.また 2 次の正方行列 A_i $(i=0,1,2,\dots)$ を

$$A_0 := O, \quad A_n := B + A_{n-1}C \quad (n = 1, 2, 3, \dots)$$

で定める.ただし,BとCは2次の正方行列である.

- (1) $A_n(E-C)$ を B と C を用いて表わせ.
- (2) $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix}$ とするとき , A_{3n} を求めよ .

^{*1} 凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題.

 $^{^{*2}}$ つまり , $T_A\colon U \to V$ としたとき , U=V なので , その基底として同じものをとる .

 $^{^{*3}}$ p(x) を微分した p'(x) において , $x\mapsto 2x+1$ としたもの .

 $^{^{*4}}$ ヒント:回転行列と Cayley-Hamilton の定理.ここで $m{x}={}^t(x,y)$ に対して $||m{x}||:=\sqrt{x^2+y^2}$ である.