Step-1

Given that \mathbf{P}_0 is the plane through (0,0,0) parallel to the plane \mathbf{P} where the equation for \mathbf{P} is x+y-2z=4.

We have to find the equation for P_0 and two vectors in P_0 such that their sum is in P_0 .

Step-2

We have **P** is the plane equation such that $\vec{r} \cdot \vec{n} = \mathbf{P}$, where **P** is the perpendicular distance from origin to plane $\vec{n} = \vec{i} + \vec{j} - 2\vec{k}$

Now \mathbf{P}_0 is the plane through (0,0,0) parallel to the plane \mathbf{P}

Therefore $\vec{r} \cdot \vec{n} = 0$ where $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ $(x, y, z) \in \mathbf{P}_0$

Therefore,
$$(x\vec{i} + y\vec{j} + z\vec{k}) \cdot (\vec{i} + \vec{j} - 2\vec{k}) = 0$$

$$\Rightarrow x + y - 2z = 0$$

Therefore, the equation of the plane P_0 is x + y - 2z = 0

Step-3

Let
$$(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathbf{P}_0$$

Now
$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

Already we have,

$$x_1 + y_1 - 2z_1 = 0$$

$$x_2 + y_2 - 2z_2 = 0$$

$$\Rightarrow x_1 + y_1 - 2z_1 + x_2 + y_2 - 2z_2 = 0$$

$$\Rightarrow$$
 $(x_1 + x_2) + (y_1 + y_2) - 2(z_1 + z_2) = 0$

Therefore,
$$(x_1 + y_1, x_2 + y_2, x_3 + y_3) \in \mathbf{P}_0$$

Step-4

Hence the sum of the vectors in \mathbf{P}_0 is also belongs to \mathbf{P}_0

Now $(1,1,1),(2,0,1) \in \mathbf{P}_0$ and then sum is

$$(1,1,1)+(2,0,1)=(3,1,2) \in \mathbf{P}_0$$

Also
$$k(x_1, y_1, z_1) = (kx_1, ky_1, kz_1) \in \mathbf{P}_{0, \text{where}}(x_1, y_1, z_1) \in \mathbf{P}_{0}$$

Therefore, P_0 is a vector space