Surname	Other nam	nes
Edexcel International GCSE	Centre Number	Candidate Number
Further Pu	ire Mathe	ematics
Friday 24 May 2013 – Afte Time: 2 hours	rnoon	Paper Reference 4PM0/02

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

1

In triangle ABC, AB = 10 cm, AC = 16 cm and $\angle BAC = 35^{\circ}$, as shown in Figure 1.

(a) Find, to 3 significant figures, the area of the triangle ABC.

(2)

(b) Find, in degrees to the nearest 0.1° , the size of the angle ABC.

(5)

Question 1 continued	
	(Total for Question 1 is 7 marks)

2	Given that $2\log_4 x - \log_2 y = 3$	
	(a) show that $x = 8y$	(4)
	Given also that $\log_5(3x + y) = 4$	
	(b) find the value of x and the value of y	(3)

Question 2 continued	
	(Total for Question 2 is 7 marks)

- (a) (i) Find $\int \left(1 + 3x \frac{2}{x^2}\right) dx$
 - (ii) Hence show that $\int_{1}^{2} \left(1 + 3x \frac{2}{x^2}\right) dx = 4\frac{1}{2}$

(4)

- (b) (i) Find $\int 3\sin 2x \, dx$
 - (ii) Hence show that $\int_{0}^{\frac{\pi}{6}} 3\sin 2x \, dx = \frac{3}{4}$

(4)

Question 3 continued	
	(Total for Question 3 is 8 marks)

4	The <i>n</i> th term of a geometric series is t_n and the common ratio is r , where $r > 0$	
	Given that $t_1 = 1$ (a) write down an expression in terms of r and n for t_n	
	(a) write down an expression in terms of r and n for t_n	(1)
	Given also that $t_n + t_{n+1} = t_{n+2}$	
	(b) show that $r = \frac{1+\sqrt{5}}{2}$	(4)
	(c) find the exact value of t_4 giving your answer in the form $f + g\sqrt{h}$, where f , g and h are	(4)
	integers.	(3)

Question 4 continued	
	(Total for Question 4 is 8 marks)

Diagram **NOT** accurately drawn

Figure 2

Figure 2 shows a shape BCDEF of area A cm². In the shape, BCDF is a rectangle and DEF is a semicircle with FD as diameter.

BF = CD = y cm and BC = FD = 2x cm. The perimeter of the shape BCDEF is 30 cm.

(a) Find an expression for y in terms of x.

(2)

(b) Show that $A = 30x - 2x^2 - \frac{1}{2}\pi x^2$

(2)

(c) Find, to 2 significant figures, the maximum value of A, justifying that the value you have found is a maximum.

(7)

Question 5 continued	
	(Total for Question 5 is 11 marks)

6		
	$p(x) = 2x^3 + 13x^2 - 17x - 70$	
	(a) Show that $p(-2) = 0$	(2)
	(b) Solve the equation $p(x) = 0$	(4)
		(4)
	(Total for Question 6 is 6 mag	arks)

7 (a) Complete the table of values for $y = 5 \log_{10}(x+2) - x$, giving your answers to 2 decimal places.

х	-1	0	1	2	3	4	5
у	1	1.51	1.39				-0.77

(2)

(b) On the grid opposite, draw the graph of $y = 5\log_{10}(x+2) - x$ for $-1 \le x \le 5$

(2)

(c) Use your graph to obtain an estimate, to 1 decimal place, of the root of the equation $10\log_{10}(x+2) - 2x = 1\frac{1}{2}$ in the interval $-1 \le x \le 5$

(2)

(d) By drawing an appropriate straight line on your graph, obtain an estimate, to 1 decimal place, of the root of the equation $x = 10^{\frac{1}{2}x} - 2$ in the interval $-1 \le x \le 5$

(4)

Question 7 continued 1.5 -0.5-Turn over for a spare grid if you need to redraw your graph.

Question 7 continued	

Question 7 continued

Only use this grid if you need to redraw your graph.

(Total for Question 7 is 10 marks)

8	The equation of line l_1 is $2x + 3y + 6 = 0$	
	(a) Find the gradient of l_1	(1)
	The line l_2 is perpendicular to l_1 and passes through the point P with coordinates $(7, 2)$.	(1)
	(b) Find an equation for l_2	
		(3)
	The lines l_1 and l_2 intersect at the point Q .	
	(c) Find the coordinates of Q .	(3)
	The line l_3 is parallel to l_1 and passes through the point P .	
	(d) Find an equation for l_3	(2)
	The line l_1 crosses the x-axis at the point R .	(2)
	(e) Show that $PQ = QR$.	
		(3)
	The point S lies on l_3	
	The line PR is perpendicular to QS .	
	(f) Find the exact area of the quadrilateral <i>PQRS</i> .	(3)

Question 8 continued	

Question 8 continued	

Question 8 continued	
	(Total for Question 8 is 15 marks)

9	(a) Expand, in ascending powers of x up to and including the term in x^3 , simplifying each term as far as possible,
	(i) $(1+x)^{-1}$

Given that $\frac{2}{1-2x} + \frac{1}{1+x} = \frac{Ax+B}{(1-2x)(1+x)}$

(b) find the value of A and the value of B.

(ii) $(1-2x)^{-1}$

(2)

(4)

- (c) (i) Obtain a series expansion for $\frac{1}{(1-2x)(1+x)}$ in ascending powers of x up to and including the term in x^2
 - (ii) State the range of values of x for which this expansion is valid.

(4)

(d) Use your series expansion from part (c) to obtain an estimate, to 3 decimal places,

of
$$\int_{0.1}^{0.2} \frac{1}{(1 - 2x)(1 + x)} \, \mathrm{d}x \tag{4}$$

Question 9 continued	

Question 9 continued	

Question 9 continued	
	(Total for Question 9 is 14 marks)

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

A particle *P* is moving along a straight line. At time *t* seconds ($t \ge 0$) the displacement, *s* metres, of *P* from a fixed point *O* on the line is given by $s = \sqrt{3} \sin \frac{1}{2} t + \cos \frac{1}{2} t$

- (a) Find the exact value of s when $t = \frac{\pi}{3}$
- (b) Find the exact value of t when P first passes through O. (4)

The velocity of P at time t seconds is v m/s.

- (c) Find an expression for v in terms of t.
- (d) Show that $v = \cos\left(\frac{\pi}{6} + \frac{1}{2}t\right)$ (2)

(2)

(4)

- (e) Find the exact value of t for which $v = \frac{1}{2}$ when
 - (i) $0 \le t < 2\pi$
 - (ii) $2\pi \leqslant t < 4\pi$

Question 10 continued	

Question 10 continued	
	(T) () () () () () () () () ()
	(Total for Question 10 is 14 marks)
	TOTAL FOR PAPER IS 100 MARKS

