SCC-240 Banco de Dados

Profa. Elaine Parros Machado de Sousa

Normalização - Parte 2

Parte 2

- Formas Normais baseadas em dependências funcionais
 - baseadas em chave primária
 - 1^a FN
 - 2^a FN
 - 3^a FN
 - baseadas em chaves candidatas
 - definições genéricas de 2ª FN e 3ª FN
 - FN de Boyce-Codd (BCNF)
- Forma Normal baseada em dependências multivaloradas
 - 4^a FN

- Formas Normais baseadas em dependências funcionais
 - baseadas em chave primária
 - 1^a FN
 - 2^a FN
 - 3a FN
 - baseadas em chaves candidatas
 - definições genéricas de 2ª FN e 3ª FN
 - FN de Boyce-Codd (BCNF)
- Forma Normal baseada em dependências multivaloradas
 - 4^a FN

- Definições genéricas ⇒levam todas as chaves candidatas em consideração
 - 2ª FN genérica ⇒ todos os atributos não primários possuem dependência total, transitiva ou não, de todas as chaves (primária, secundária, ...)
 - 3ª FN genérica ⇒ todos os atributos não primários possuem dependência total, não transitiva, de todas as chaves (primária, secundária, ...)

IdProp \rightarrow Municipio, NroLote, Área, Preço Municipio, NroLote \rightarrow Área, IdProp, Preço Área \rightarrow Preço

Lotes = {<u>IdProp</u>, <u>Municipio, NroLote</u>, Área, Preço }

- Analise a relação **Lotes** considerando as definições genéricas de 2ª FN e 3ª FN
 - 2ª FN genérica?
 - 3ª FN genérica?

Aluno, Curso → Instrutor Instrutor → Curso

Treinamento = {Aluno, Curso, Instrutor}

- Analise a relação Treinamento considerando as definições genéricas de 2ª FN e 3ª FN
 - 2ª FN genérica?
 - 3ª FN genérica?

O que acontece com a DF Instrutor → Curso?

Forma Normal de Boyce - Codd (BCNF)

- BCNF ⇒ extensão da 3ª FN genérica
- uma relação R está na **BCNF** se:
 - estiver na 3ª FN genérica
 - para toda DF não-trivial X → A válida para a relação R, X é uma superchave em R

IdProp \rightarrow Municipio, NroLote, Área, Preço Municipio, NroLote \rightarrow Área, IdProp, Preço Área \rightarrow Preço

Lotes = {<u>IdProp</u>, <u>Municipio, NroLote</u>, Área, Preço }

> A relação Lotes está na BCNF?

```
IdProp \rightarrow Municipio, NroLote, Área, Preço
Municipio, NroLote \rightarrow Área, IdProp, Preço
Área \rightarrow Preço
Lotes = {IdProp, Municipio, NroLote, Área, Preço }
```

▶ Normalizando para 3ª FN Genérica e BCNF....

Lotes = {<u>IdProp</u>, <u>Municipio</u>, <u>NroLote</u>, Área}

Área = {Área, Preço}

Aluno, Curso → Instrutor Instrutor → Curso

Treinamento = {Aluno, Curso, Instrutor}

- A relação Treinamento está na BCNF?
- > Alternativas de normalização por decomposição?

Aluno, Curso → Instrutor Instrutor → Curso

Treinamento = {Aluno, Curso, Instrutor}

- Alternativas de decomposição:
 - 1) {Aluno, Instrutor} e {Aluno, Curso}
 - 2) {Curso, <u>Instrutor</u>} e {<u>Curso</u>, <u>Aluno</u>}
 - 3) {Instrutor, Aluno} e {Instrutor, Curso} (

Quais os problemas de cada alternativa? Qual a melhor opção? Por que?

Observação

- Na prática:
 - maioria das relações em 3FN genérica também está na BCNF
- Exceção:
 - quando $X \rightarrow A$ e:
 - X não é superchave
 - A é atributo primário

- Formas Normais baseadas em dependências funcionais
 - baseadas em chave primária
 - 1^a FN
 - 2^a FN
 - 3^a FN
 - baseadas em chaves candidatas
 - definições genéricas de 2ª FN e 3ª FN
 - FN de Boyce-Codd (BCNF)
- Forma Normal baseada em dependências multivaloradas
 - 4^a FN

Discussão sobre DFs

- Relembrando...
 - Dependência Funcional ⇒ mecanismo formal (fundamental) para definição de restrições e garantia de consistência em bases de dados relacionais
 - $A \rightarrow B$
 - E as restrições semânticas que não podem ser especificadas com DFs? Ex.JJJ,

Outro Exemplo

- Informação sobre empregados a ser armazenada na base de dados de uma empresa:
 - nome do empregado
 - nomes dos projetos em que trabalha
 - nomes de seus dependentes
- atributos: nome, projeto, dependente
- dependências funcionais???

Exemplo (cont.)

- atributos: nome, projeto, dependente
 - semanticamente:
 - um conjunto de valores de projeto é determinado por <u>um</u> valor de nome, e <u>somente</u> por nome
 - idem para dependente
 - projeto e dependente não têm relação alguma...

Dependência Multivalorada

Dependência Multivalorada

 Dependência Multivalorada (DM): restrição entre dois conjuntos de atributos

 A multidetermina B (ou B é multidependente de A) ⇒ o conjunto de valores de B é determinado pelo valor de A, e somente pelo valor de A

Empregado = {Nome, Projeto, Dependente}

Nome ->> Projeto
Nome ->> Dependente

- Dados:
 - Carlos trabalha no projeto Museu Virtual e tem 2 dependentes: Mário e Joana;
 - Ana trabalha nos projetos Museu Virtual e Cidadania, e tem 2 dependentes: Paulo e Sônia;
- Como armazenar os dados na relação Empregado de maneira a manter a semântica?

Exemplo (cont.)

- Carlos trabalha no projeto Museu Virtual e tem 2 dependentes: Mário e Joana;
- Ana trabalha nos projetos Museu Virtual e Cidadania, e tem 2 dependentes: Paulo e Sônia;

Empregado = {Nome, Projeto, Dependente}

Anomalia?

{<Carlos, Museu Virtual, Mário>,

<Carlos, Museu Virtual, Joana>,

<Ana, Cidadania, Paulo>,

<Ana, Museu Virtual, Sônia>}

Empregado = {Nome, Projeto, Dependente}

Dependências Multivaloradas na relação Empregado

Dependência Multivalorada

- Dependência Multivalorada X-»Y definida para uma relação R:
 - se existe t₁[X] = t₂[X], então também existem:

$$t_3[X] = t_4[X] = t_1[X] = t_2[X]$$

•
$$t_3[Y] = t_1[Y] e t_4[Y] = t_2[Y]$$

•
$$t_3[Z] = t_2[Z] e t_4[Z] = t_1[Z]$$
,

•
$$Z = R - (X \cup Y)$$

Dependência Multivalorada

Dependências Multivaloradas

- cenário típico: quando atributos multivalorados são desmembrados em múltiplas ocorrências de tuplas por causa da 1º FN
- identificadas pelo projetista da base de dados

Empregado = {Nome, Projeto, Dependente}

- {<Carlos, Museu Virtual, Mário>,
 - <Carlos, Museu Virtual, Joana>,
 - <Ana, Cidadania, Paulo>,
 - < Ana, Cidadania, Sônia>,
 - <Ana, Museu Virtual, Paulo>,
 - <Ana, Museu Virtual, Sônia>}
- ⇒ Empregado atende às DMs....
- ⇒ Mas... qual é o PROBLEMA???

Dependência Multivalorada

- Dada uma DM X -» Y em R
 - se:
 - (a) Y ⊆ X ou
 - **(b)** X U Y = R

Dependência Multivalorada Trivial

• caso contrário

Dependência Multivalorada Não-Trivial

DM Trivial (DMT)

Nome -» Projeto Empregado={Nome, Projeto}

DM Não-Trivial (DMNT)

Nome -» Projeto

Nome -» Dependente

Empregado={Nome, Projeto, Dependente}

Dependência Multivalorada

- Problema da DM Não-Trivial:
 - requer redundância nas tuplas
 - o como garantir consistência?
 - Exemplo:
 - Empregado={Nome, Projeto, Dependente}
 - está na BCNF, mas ainda vulnerável a inconsistências....

- Relação R está na 4ª Forma Normal se:
 - > todas as dependências multivaloradas são **triviais** ou

- Exemplos...
 - Empregado={Nome, Dependente}Nome ->> Dependente

Empregado={Nome, Projeto, Dependente}
 Nome -» Projeto
 Não!!

Nome -» Dependente

Intuição:

Nome -» Projeto

Nome -» Dependente

Empregado={Nome, Projeto, Dependente}

Dependentes ={Nome, Dependente}

Projetos = {Nome, Projeto}

- Normalizando a relação para a 4ª FN....
 - dada uma DMNT A -» B na relação R, substitui-se R por:
 - **A** ∪ **B** e
 - R B

Nome -» Programa

Nome -» Orientado

Professor = {Nome, Programa, Orientado}

considerando: Nome -» Programa

Programa = {Nome, Programa}

Orientação = {Nome, Orientado}

- Evita redundância nas tuplas ⇒ evita inconsistências causadas por inclusão/remoção/alteração de novas tuplas
 - lembrando: não violar uma DMNT significa replicar informação, mas redundância pode gerar outras inconsistências...

- Normalização para 4ªFN é aplicada quando atributos multivalorados independentes são misturados na mesma relação (DMNT)
- Reduz espaço de armazenamento
- Mais restrita que BCNF
- Propriedade desejada: decomposição sem perda de junção

Observação

- Mapeamento ME-R → Modelo Relacional
 - atributos multivalorados definem novas relações
 - sem redundância e sem anomalias

Orientação = {Nome, Orientado} Programa = {Nome, Programa}

Considerações Finais quanto à Normalização

- 1^aFN, 2^a FN, 3^a FN, BCNF e 4^a FN são consideradas para cada relação
 - base de dados é considerada normalizada para uma determinada FN quando todas as suas relações estiverem nessa FN
- Normalização ⇒ decomposição de relações
 - aumenta consistência
 - reduz desempenho ⇒ operações de junção

Sugestão de Leitura

- ELMASRI, R; NAVATHE, S.B. Sistemas de Banco de Dados, Addison Wesley, 4^a Edição.
 - Capítulo 10 Dependência Funcional e normalização em um banco de dados relacional
 - Capítulo 11 Algoritmos para Projeto de Banco de Dados Relacional e Demais Dependências