Mathematik: Diskrete Strukturen Lösungsblatt

Anton Bubnov, Yevgen Kuzmenko

May 12, 2015

Vertiefung:

(a) Drücken Sie die Anzahl der surjektiven Funktionen $f:\{0,1\}^n \to \{0,1\}^2$ mit Hilfe der Stirling-Zahlen zweiter Art aus.

Nach Lemma 4 (Potenzregel) und Kreuzprodukt Definition es gilt entsprechend:

$$||\{0,1\}^n|| = 2^n$$

 $||\{0,1\}^2|| = 2^2 = 4$

Wir muessen 2^n Funktionsargumente auf 4 Funktionswerte abbilden. Da Stirling-Zahlen auf nicht unterscheidbare Funktionswerte aufzuteilt, sollen wir noch nit 4! multiplizieren. Folglich:

$$4! \cdot {a \brace b}$$

- (b) Kein Antwort
- (c) Kein Antwort
- (d) Für drei Mengen A,B und C gelten folgende Eigenschaften: $||A||=63, ||B||=91, ||C||=44, ||A\cap B||=25, ||A\cap C||=23, ||C\cap B||=21$. Außerdem gelte $||A\cup B\cup C||=139$. Wie groß ist $||A\cap B\cap C||$?

Nach Theorem 1.19 Beispiel es gilt:

$$||A \cup B \cup C|| = ||A|| + ||B|| + ||C|| - ||A \cap B|| - ||A \cap C|| - ||C \cap B|| + ||A \cap B \cap C||$$

$$\Rightarrow ||A \cap B \cap C|| = ||A \cup B \cup C|| - ||A|| - ||B|| - ||C|| + ||A \cap B|| + ||A \cap C|| + ||C \cap B||$$

$$\Rightarrow ||A \cap B \cap C|| = 139 - 63 - 91 - 44 + 25 + 23 + 21 = 10$$