A frequência ouvida por uma pessoa	parada para o	som emitido	por uma	fonte sonora	em movimento	$ \acute{e} 1200 Hz, $
quando a fonte se aproxima, e 800 ${\cal H}$	Hz, quando a f	ionte se afasta.	Sendo :	$320 \ m/s$ a ve	locidade do sor	n no ar nas
condições da questão, determine:						

A) a velocidade da fonte sonora; B) a frequência emitida pela fonte.

Resolução:

Chamando de f a frequência da fonte, f_p a frequência aparente de aproximação, f_a a frequência aparente de afastamento, e v_F a velocidade da fonte, as equações para os efeitos Doppler descritos no problema são:

Dividindo [1] por [2], membro a membro, teremos:

$$\frac{f_p}{f_a} = \frac{320 + v_F}{320 - v_F}$$

Substituindo os valores, teremos:

$$\frac{1200}{800} = \frac{320 + v_F}{320 - v_F}$$

Resolvendo:

$$v_F = 64 \ m/s$$

Substituindo v_F em [1]:

$$1200 \ = \ f \ \cdot \tfrac{320}{320-64} \ \Rightarrow \ f \ = \ 960 \ Hz$$

Documento compilado em Wednesday 12th March, 2025, 21:53, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licença de uso: $\bigcup_{\mathsf{BV}} \bigotimes_{\mathsf{NC}} \bigcirc_{\mathsf{SA}}$

 ${\it Atribuição-Não Comercial-Compartilha Igual~(CC~BY-NC-SA)}.$