Assignment-2

AC Circuits

Question 1:

(a) [4 marks] The input $v_{in}(t)$ and output $v_{out}(t)$ voltage waveforms of a two terminal ac circuit are plotted as a function of time below. **Determine** mathematically the phase difference between the two and specify which one is leading.

Question 2:

The following figure shows a sinusoidal voltage v(t), plotted as a function of time t.

(a) [2 marks] Determine the parameters listed in the following table with appropriate units^{††}.

Parameter	Value	Unit
Amplitude or peak voltage		
Time period		
Natural frequency		
Angular frequency		

- (b) [3 marks] Determine the initial phase (in degree units) of the sinusoidal voltage with appropriate \pm sign.
- (c) [1 mark] Write an expression for v(t) of the form $A_m \cos(\omega t + \phi) V$ or $A_m \sin(\omega t + \phi) V$.

Question 3:

For the sinusoidal voltage v(t) and current i(t) expressed as a function of time t below, determine which one is leading and by how much?

$$v(t) = -20 \sin(25\pi t + 55^{\circ}) V$$

 $i(t) = 4 \cos(25\pi t - 25^{\circ}) A$

Question 4:

Which one of the following voltages leads and by how much?

$$v_1(t) = 4\sin(5t - 30^\circ) \text{ V}$$

$$v_1(t) = -10\cos(5t + 25^\circ) \text{ V}$$