Chapter 11

Homework 谭焱

11.1 第十一次作业

Problem 11.1. $f: \mathring{D}^n \to \mathring{D}^n$ 连续映射, 举例说明 f 不一定有不动点.

$$\mathring{D}^n = \{ (x_1, x_2, \dots, x_n) \mid x_1^n + x_2^2 + \dots + x_n^2 < 1 \}.$$

Solution. 定义 $f: \mathring{D}^n \to \mathring{D}^n, \forall (x_1, x_2, \dots, x_n) \in \mathring{D}^n$,

$$f(x_1, x_2, \dots, x_n) = (x_1/2, x_2/2, \dots, x_{n-1}/2, (x_n + 1)/2)$$

已知 $\sum_{i=1}^n x_i^2 < 1, x_n < 1$. 所以 $(x_1/2)^2 + (x_2/2)^2 + \cdots + (x_{n-1}/2)^2 + ((x_n+1)/2)^2 = \frac{1}{4}(\sum_{i=1}^n x_i^2 + 2x_n + 1) < \frac{1}{4}(1+2+1) = 1$, 连续性由定义易得. 所以 f 是将 \mathring{D}^n 映射到 \mathring{D}^n 上. 并且若有不动点 x, f(x) = x 等价于

$$\begin{cases} x_i = x_i/2 & i = 1, 2, \dots, n-1 \\ x_n = (x_n + 1)/2 & \end{cases}$$

解得 $x = (0,0,\ldots,0,1) \notin \mathring{D}^n$. 即 f 没有不动点. 即连续函数不一定有不动点.

Problem 11.2. 设 X 是拓扑空间,将 $X \times I$ 空间中 $X \times \{0\}$ 等置为一点 S, 又将 $X \times \{1\}$ 等置为一点 N, 所得商空间记 SX, 证明: $H_n(SX) \cong \tilde{H}_{n-1}(X)$

Solution. 设 $X_1 = SX - \{S\}, X_2 = SX - \{N\},$ 则 $SX = \mathring{X}_1 \cup \mathring{X}_2, X \times (0,1) = X_1 \cap X_2.$ 且 X_1, X_2 等价于 X 上的圆锥体内部点不妨都写为 $\mathring{CX} = X \times (0,1) \cup \{NS\}$

定义 $F: \r{C}X \times I \to \r{C}X$ 为 F([x,t],s) = [x,(1-s)t+s], 连续性显然. 可以验证 $F([x,t],0) = [x,t] = Id_{\r{C}X}, F([x,t],1) = [x,1] = NS$. 所以 $1_{\r{C}X}$ 是零伦的, 由定义 $\r{C}X$ 是可缩的. 我们有 $H_n(X_1) = H_n(X_2) = 0$.

定义 $f: X \to X \times (0,1), g: X \times (0,1) \to X$ 为 f(x) = [x,1/2], g([x,t]) = x. 则有 $(g \circ f)(x) = x, (f \circ g)(x,t) = (x,1/2)$. 显然 $(g \circ f) \simeq 1_X$, 定义 $G: (X \times (0,1)) \times I \to (X \times (0,1))$ 为 G([x,t],i) = [x,(t-1/2)i+1/2], 连续性显然. 可以验证 $G([x,t],0) = [x,1/2] = (f \circ g)(x,t), G([x,t],1) = [x,t] = 1_{X \times (0,1)}$, 即 $f \circ g \simeq 1_{X_1 \cap X_2}$. 所以 $X_1 \cap X_2, X$ 有相同同伦类型, 所以 $\tilde{H}_n(X_1 \cap X_2) = \tilde{H}_n(X)$

通过 (Mayer-Vietoris for Reduced Homology) 和 $X_1, X_2, SX, X_1 \cap X_2$ 之间的正合序列

$$\cdots \to \tilde{H}_n(X_1 \cap X_2) \to \tilde{H}_n(X_1) \oplus \tilde{H}_n(X_2) \to \tilde{H}_n(SX) \to \tilde{H}_{n-1}(X_1 \cap X_2) \to \cdots$$

和
$$\tilde{H}_n(X_1) = \tilde{H}_n(X_2) = 0$$
. 可知 $H_n(SX) = \tilde{H}_n(SX) \cong \tilde{H}_{n-1}(X_1 \cap X_2) \cong \tilde{H}_{n-1}(X)(n > 0)$.

11.2 第十二次作业

Problem 11.3. 定义 $f: S^2 \to S^2$ 连续映射为

$$(x_0, x_1, x_2) \mapsto (x_0 \cos 5 + x_1 \sin 5, x_0 \sin 5 - x_1 \cos 5, x_3)$$

求 d(f).

Solution. 取点 x_0 为 $(\frac{1}{\sqrt{2(1-\cos 5)}}\sin 5, \frac{1}{\sqrt{2(1-\cos 5)}}(1-\cos 5), 0)$,可以验证 $x_0 \in S^2$,将 x_0 代入 f 计算得

$$f(x_0) = \left(\frac{1}{\sqrt{2(1-\cos 5)}}(\sin 5 \times \cos 5 + (1-\cos 5) \times \sin 5), \frac{1}{\sqrt{2(1-\cos 5)}}(\sin 5 \times \sin 5 - (1-\cos 5) \times \cos 5), 0\right)$$

$$= \left(\frac{1}{\sqrt{2(1-\cos 5)}}\sin 5, \frac{1}{\sqrt{2(1-\cos 5)}}(1-\cos 5), 0\right)$$

$$= x_0.$$

即 x_0 是 f 的不动点. 所以 $d(f) \neq -1$ 又因为

$$f(x) = x \begin{bmatrix} \cos 5 & \sin 5 & 0 \\ \sin 5 & -\cos 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} =: xA$$

中 A 是可逆矩阵且因为 $\det A = -1 \Longrightarrow \forall x \in S^2, xA^{-1} \in S^2$, 所以 f 是双射, 即 f 是同伦等价的. 即 $d(f) = \pm 1$, 由上有 $d(f) \neq -1$ 所以 d(f) = 1.

Problem 11.4. 作 S^{2n+1} 上一个非零切向量场.

Solution. $\rightleftarrows \ensuremath{\mbox{\vee}} f : S^{2n+1} \to \mathbb{R}^{2n+2}$.

$$f(x_0, x_2, \dots, x_{2n+1}) \mapsto (x_1, -x_0, x_3, -x_2, \dots, x_{2n+1}, -x_{2n}).$$

显然 f 是非零的, 由 $x \in S^{2n+1}$. 并且满足

$$\langle x, f(x) \rangle = \sum_{i=1}^{n+1} (x_{2i-1}x_{2i} + x_{2i}(-x_{2i-1}))$$

= 0.

所以 f 是一个非零切向量场.

Problem 11.5. 若 $g: S^1 \to S^1$ 连续且保对经, 即 $a^1 \circ g = g \circ a^1$, 证明 d(g) 奇.

Solution. 若 g 没有不动点, 则 g 与 a^1 同伦, 所以 d(g) = 1 是奇数.

若 g 有不动点,不妨设不动点为 (1,0). 因此 $g((-1,0)) = (g \circ a^1)((1,0)) = (a^1 \circ g)((1,0)) = -g((1,0)) = (-1,0)$, 即 (-1,0) 也是 g 的不动点,定义路径 $\sigma, \tau \colon I \to S^2$ 为

$$\sigma(t) = (1 - 2t, 4t - 4t^2) \qquad \tau(t) = (1 - 2t, 4t^2 - 4t).$$

 $(g \circ \sigma)((1,0)) = (1,0), (g \circ \sigma)((-1,0)) = (-1,0)$ 所以 $g \circ \sigma = k(\sigma-\tau) + \sigma = k(\sigma-\tau) + \tau$, $k \in \mathbb{Z}$ 定端同伦,不妨设与 $k(\sigma-\tau) + \sigma$ 定端同伦,而且保对经可知 $\forall x \in \sigma, -x \in \tau, g(-x) = -g(x)$,所以路径 $g \circ \tau = g \circ a^1 \circ \sigma = a^1 \circ g \circ \sigma$ 与 $a^1 \circ (k(\sigma-\tau) + \sigma) = k(\tau-\sigma) + \tau$ 定端同伦,合并起来得路径 $(g \circ (\sigma-\tau))$ 与 $(2k+1)(\sigma-\tau)$ 定端同伦,另一方面,因为 $cls(\sigma-\tau)$ 是 $H_1(S^1)$ 的生成元,结合 d(g) 的定义可知 $g_*(cls(\sigma-\tau)) = d(g)(cls(\sigma-\tau))$. 所以 $d(g) = \deg g = 2k+1$ 是奇数.

Problem 11.6. 若 $g: S^2 \to S^2$ 连续, 且 $\forall x \in S^2, g(x) \neq g(-x)$, 则 g 满映射.

Solution. 若 g 不是满映射. 不妨设 $\exists x_0 \in S^2, s.t.$ $\exists x \in S^2, g(x) = x_0$. 设 g 的值域为 G, 则从点 x_0 出发作射线可以定义一个单射 $f: G \to \mathbb{R}^2$. 所以 $f \circ g: S^2 \to \mathbb{R}^2$, 并且因为 f 是单射和 $\forall x \in S^2, g(x) \neq g(-x)$ 可知 $\forall x \in S^2, (f \circ g)(x) \neq (f \circ g)(-x)$. 因此可以定义一个函数 $h: S^2 \to S^1$ 为

$$g(x) = ((f \circ g)(x) - (f \circ g)(-x)) / \|(f \circ g)(x) - (f \circ g)(-x)\|.$$

显然 h 是一个保对经映射, 这与当 m > 1 时不存在保对经映射 $h: S^m \to S^1$ 矛盾.