Multidimensional Data Visualization Investigation of Optimization-Based Visualization

Multidimensional scaling (MDS) is a difficult global optimization problem

- ► The points representing objects should be found whose inter-point distances fit the given dissimilarities.
- ► The problem is reduced to minimization of a fitness criterion, e.g. so called *Stress* function

$$S(\mathbf{x}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \left(d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) - \delta_{ij} \right)^{2}.$$

- ► Although *Stress* function seems rather simple, it normally has many local minima.
- ▶ The problem is high dimensional: $\mathbf{x} \in \mathbb{R}^N$ and the number of variables is equal to $N = n \times m$.
- Non-differentiability normally cannot be ignored. Minkowski distances:

$$d_r(\mathbf{x}_i,\mathbf{x}_j) = \left(\sum_{k=1}^m |x_{ik} - x_{jk}|^r\right)^{1/r}.$$

Experimental investigation of algorithms for MDS

The accuracy of fit evaluated via minimum of $S(\mathbf{x})$ depends on n and δ_{ij} , $i, j = 1, \ldots, n$. To reduce this undesirable impact, a relative error is used in the presentation of the results:

$$f(\mathbf{x}) = \sqrt{S(\mathbf{x}) / \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} \delta_{ij}^{2}}.$$

- Performance is measured using
 - Time and number of quadratic programming problems solved;
 - Mean $(\overline{f^*})$ and standard deviation (s.d. f^*) of global minimum estimates;
 - ▶ Best estimate of global minimum (f^*) and percentage of runs (perc) when the estimate differs from f^* by less than 10^{-4} .
- Various data sets.

Data set: vertices of the standard simplex

► The distances between any two vertices are equal. n = dim + 1.

$$\Delta = \left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & 1 & & & 1 & 1 \\ 1 & 1 & 0 & 1 & & & 1 & 1 \\ 1 & 1 & 1 & 0 & & & 1 & 1 \\ \vdots & & & \ddots & & \vdots & \vdots \\ 1 & 1 & 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & 1 & 1 & \cdots & 1 & 0 \end{array}\right).$$

Data set: vertices of the unit simplex

$$v_{ij} = \begin{cases} 1, & i = j+1, \\ 0, & \text{otherwise,} \end{cases} | i = 1, \dots, n, j = 1, \dots, dim. \ n = \dim + 1.$$

$$\Delta^1 = \left(\begin{array}{cccc} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 2 & & 2 \\ 1 & 2 & 0 & & 2 \\ \vdots & & \ddots & \vdots \\ 1 & 2 & 2 & \cdots & 0 \end{array}\right), \; \Delta^2 = \left(\begin{array}{cccc} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & \sqrt{2} & & \sqrt{2} \\ 1 & \sqrt{2} & 0 & & \sqrt{2} \\ \vdots & & \ddots & \vdots \\ 1 & \sqrt{2} & \sqrt{2} & \cdots & 0 \end{array}\right).$$

Data set: vertices of multidimensional cube

▶ The coordinates of *i*-th vertex of a dim-dimensional cube are equal either to 0 or to 1, and they are defined by binary code of i = 0, ..., n - 1. $n = 2^{\text{dim}}$.

$$\Delta^{1} = \begin{pmatrix} 0 & 1 & 1 & 2 & \cdots & n-1 & n \\ 1 & 0 & 2 & 1 & & n & n-1 \\ 1 & 2 & 0 & 1 & & n-2 & n-1 \\ 2 & 1 & 1 & 0 & & n-1 & n-2 \\ \vdots & & & \ddots & & \vdots \\ n-1 & n & n-2 & n-1 & & 0 & 1 \\ n & n-1 & n-1 & n-2 & \cdots & 1 & 0 \end{pmatrix}$$

Data set: error-perturbed distance data

► The data generated using uniformly distributed random points in *m*-dimensional space whose pairwise dissimilarities are computed by

$$\delta_{ij} = \sum_{k=1}^{m} \left| x_{ik}^{(e)} - x_{jk}^{(e)} \right|,$$

where $x_{ik}^{(e)} = x_{ik} + N(0, e(x_{ik}))$, and N(0, e) denotes the normally distributed random variable with mean zero and standard deviation e.

▶ Eight problems defined by all combinations of the parameters (n = 10, 20; m = 2, 3, e(x) = 0.15x, 0.3x) have been generated and they are referred as 'ghm'.

Empirical data sets

- A frequently used test problem for MDS algorithms is based on experimental testing of n = 10 soft drinks, where dissimilarities were measured by means of psychological experiment. This problem is referred as 'cola'.
- ► Another frequently used test problem is confusion data for (n = 36) Morse codes. This problem is referred as 'morsecodes'.

Pharmacological binding affinity data

- Binding affinity data is represented through a matrix, one dimension formed by different ligands tested in a series of experiments while the other represents different proteins.
- Receptor proteins can be from different types or subtypes, or from different species, or engineered mutants of these.
- Ligands can be natural neurotransmitters or pharmacological drugs, an agonist activates, an antagonist blocks the receptor.
- Dissimilarities are computed as distances between vectors of the log₁₀-transformed binding affinities.
 - Three human and five zebrafish α_2 -adrenoceptor proteins, and 20 ligands (Ruuskanen et al., 2005);
 - human, rat, guinea pig and pig proteins (Uhlen et al., 1998);
 - wild type and mutant proteins (Hwa et al., 1995).

Pharmacological data

Ligand	$h\alpha_{2A}$	$z\alpha_{2A}$	$h\alpha_{2B}$	$z\alpha_{2B}$	$h\alpha_{2C}$	$z\alpha_{2C}$	$z\alpha_{2Da}$	$z\alpha_{2Db}$
Atipamezole	1.6	13	1.5	5.0	4.3	2.1	5.1	6.9
2. Clonidine	10	89	44	250	110	55	120	150
Dexmedetomidine	1.3	2.2	4.7	7.6	6.5	12	4.1	3.7
Idazoxan	17	85	24	40	17	17	52	94
Oxymetazoline	2.1	5.1	1100	1200	130	1300	1100	440
6. UK14,304	32	40	320	1200	190	700	260	280
7. L657.743	0.8	6.9	0.7	1.2	0.09	1.0	1.6	1.3
8. Rauwolscine	1.9	1.0	1.1	1.4	0.2	0.5	2.3	2.3
9. Yohimbine	5.9	5.2	7.5	9.3	4.6	3.4	6.4	4.0
Chlorpromazine	990	110	43	1.1	330	83	18	19
11. Clozapine	32	3.3	12	9.3	2.1	3.2	12	24
12. ARC239	2100	1800	9.6	36	66	280	55	44
13. Prazosin	1030	330	66	300	31	100	68	64
Spiperone	540	45	12	51	11	63	15	18
Spiroxatrine	320	150	2.4	93	3.1	35	11	11
16. WB-4101	5.4	11	60	51	1.9	19	31	16
17. 2-Amino-1-	1300	5400	4200	9400	8100	5100	3700	4000
phenylethanol								
18. Dopamine	2000	790	6300	4400	1200	3900	1300	1700
19. (-)-Adrenaline	150	140	710	910	130	1080	500	470
20. (–)-Noradrenaline	110	260	680	647	250	580	380	510

Experimental testing of soft drinks

Soft drinks	1	2	3	4	5	6	7	8	9	10
1. Pepsi	0	127	169	204	309	320	286	317	321	238
2. Coke	127	0	143	235	318	322	256	318	318	231
Classic Coke	169	143	0	243	326	327	258	318	318	242
Diet Pepsi	204	235	243	0	285	288	259	312	317	194
Diet Slice	309	318	326	285	0	155	312	131	170	285
6. Diet 7-Up	320	322	327	288	155	0	306	164	136	281
7. Dr Pepper	286	256	258	259	312	306	0	300	295	256
8. Slice	317	318	318	312	131	164	300	0	132	291
9. 7-Up	321	318	318	317	170	136	295	132	0	297
10. Tab	238	231	242	194	285	281	256	291	297	0

Diet 7-Up 7-UpSlice

Tab

Dr. Pepper

Coke Classic Cd&Psi Classic Coke
Coke
Pepsi

Diet Pepsi

Tab

Diet 7-Up
Diet Slice
Slice

MDS with Euclidean and city-block distances

The best known estimates of global minimum

datasets		n	min f^* , $m = 2$	$\min f^*, m = 3$
standard		8	0.2825	0.1250
simplices		12	0.3300	0.2013
		16	0.3525	0.2321
		20	0.3657	0.2508
unit		8	0.2569	0.0992
simplices		12	0.3167	0.1874
		16	0.3439	0.2243
		20	0.3595	0.2459
cubes		8	0.2245	0.00
		16	0.2965	0.1590
		32	0.3313	0.2078
	e%			
ghm	15	10	0.1293	0.0906
	30	10	0.2711	0.1298
	15	20	0.1868	0.1610
	30	20	0.2966	0.2284
cola		10	0.1647	0.0659
morsecodes	3	36	0.2944	0.1962

Reduced search space of problems exposing symmetries

- If exchange of some objects does not change dissimilarity data, exchange of points representing these objects does not change the value of *Stress* function.
- In continuous optimization: constrain sequence of first coordinate values of image points of symmetric objects.
- In combinatorial optimization: allow only some of permutations of first coordinate **p**₁.
- For geometric data sets
 - ▶ standard simplex: $x_{11} \le x_{21} \le ... \le x_{n1}$; $\mathbf{p}_1 = (1, 2, ..., n)$.
 - unit simplex: $x_{21} \le x_{31} \le ... \le x_{n1}$; $\mathbf{p}_1 = (I, 1, 2, ..., I 1, I + 1, ..., n)$.
 - ▶ hyper-cube: $x_{11} \le x_{i1}, i = 2, ...n; p_{11} = 1.$

Explicit enumeration: standard simplices

	m = 1		m = 2		m = 3	
n	t, s (NQP)	f*	t, s (NQP)	f*	t, s (NQP)	f*
3	0.00 (3)	0.3333	0.00 (6)	0.00	0.00 (10)	0.00
4	0.00 (12)	0.4082	0.00 (78)	0.00	0.01 (364)	0.00
5	0.00 (60)	0.4472	0.03 (1830)	0.1907	1.79 (37820)	0.00
6	0.00 (360)	0.4714	1.71 (64980)	0.2309	589.72 (7840920)	0.00
7	0.03 (2520)	0.4879	118.59 (3176460)	0.2621	(,	
8	0.21 (20160)	0.5000	10229.00 (203222880)	0.2825		
9	2.24 (181440)	0.5092	,			
10	26.63 (1814400)	0.5164				
11	351.09 (19958400)	0.5222				
12	4702.00 (239500800)	0.5270				
3	0.00 (1)	0.3333	0.00 (3)	0.00	0.00 (6)	0.00
4	0.00 (1)	0.4082	0.00 (12)	0.00	0.00 (78)	0.00
5	0.00 (1)	0.4472	0.00 (60)	0.1907	0.09 (1830)	0.00
6	0.00(1)	0.4714	0.01 (360)	0.2309	5.01 (64980)	0.00
7	0.00 (1)	0.4879	0.10 (2520)	0.2621	379.88 (3176460)	0.0945
8	0.00 (1)	0.5000	1.01 (20160)	0.2825	31681.00 (203222880)	0.1250
9	0.00 (1)	0.5092	11.89 (181440)	0.2991		
10	0.00 (1)	0.5164	153.88 (1814400)	0.3115		
11	0.00 (1)	0.5222	2121.56 (19958400)	0.3217		
12	0.00 (1)	0.5270	31170.00 (239500800)	0.3300		

Explicit enumeration: unit simplices

	m = 1		m = 2		m = 3	
n	t, s (NQP)	f*	t, s (NQP)	f*	t, s (NQP)	f^*
3	0.00 (3)	0.00	0.00 (6)	0.00	0.00 (10)	0.00
4	0.00 (12)	0.3651	0.00 (78)	0.00	0.01 (364)	0.00
5	0.00 (60)	0.4140	0.04 (1830)	0.00	2.02 (37820)	0.00
6	0.01 (360)	0.4554	2.05 (64980)	0.1869	661.11 (7840920)	0.00
7	0.02 (2520)	0.4745	137.12 (3176460)	0.2247		
8	0.23 (20160)	0.4917	11662.00 (203222880)	0.2569		
9	2.51 (181440)	0.5018				
10	29.78 (1814400)	0.5113				
11	378.45 (19958400)	0.5176				
12	5265.00 (239500800)	0.5236				
3	0.00 (2)	0.00	0.00 (4)	0.00	0.00 (7)	0.00
4	0.00 (2)	0.3651	0.00 (18)	0.00	0.01 (99)	0.00
5	0.00(3)	0.4140	0.01 (108)	0.00	0.14 (2574)	0.00
6	0.00(3)	0.4554	0.02 (720)	0.1869	8.49 (101160)	0.00
7	0.00 (4)	0.4745	0.25 (5760)	0.2247	695.19 (5446080)	0.00
8	0.00 (4)	0.4917	2.90 (50400)	0.2569	66686.00 (381049200)	0.0992
9	0.00 (5)	0.5018	37.16 (504000)	0.2759		
10	0.00 (5)	0.5113	560.84 (5443200)	0.2936		
11	0.00 (6)	0.5176	7813.00 (65318400)	0.3058		
12	0.00 (6)	0.5236	122360.00 (838252800)	0.3167		

Explicit enumeration: hyper-cubes

	m = 1		m = 2	m = 2		
n	t, s (NQP)	f*	t, s (NQP)	f*	t, s (NQP)	f^*
4	0.00 (12)	0.4082	0.00 (78)	0.00	0.02 (364)	0.00
8	0.24 (20160)	0.4787	12572.00 (203222880)	0.2245		
4	0.00 (6)	0.4082	0.00 (57)	0.00	0.01 (308)	0.00
_ 8	0.06 (5040)	0.4787	5483.00 (88908120)	0.2245		

Explicit enumeration on SUN Fire E15k parallel computer: simplices, n = 7, m = 2

		standard simplex			unit simplex	
р	<i>t</i> , s	s_p	e_p	<i>t</i> , s	s_p	e_p
1	1037	1.00	1.00	1299	1.00	1.00
2	518	2.00	1.00	650	2.00	1.00
3	349	2.97	0.99	438	2.97	0.99
4	261	3.97	0.99	327	3.97	0.99
5	210	4.95	0.99	262	4.95	0.99
6	175	5.91	0.98	219	5.93	0.99
7	151	6.88	0.98	188	6.89	0.98
8	134	7.73	0.97	168	7.75	0.97
9	118	8.80	0.98	147	8.85	0.98
10	107	9.71	0.97	134	9.66	0.97
11	97	10.72	0.97	120	10.78	0.98
12	90	11.58	0.96	111	11.69	0.97
13	82	12.62	0.97	102	12.68	0.98
14	77	13.54	0.97	95	13.62	0.97
15	72	14.39	0.96	89	14.55	0.97
16	67	15.44	0.97	84	15.54	0.97
17	64	16.12	0.95	79	16.47	0.97
18	60	17.23	0.96	76	17.18	0.95
19	58	17.90	0.94	72	18.03	0.95
20	55	18.95	0.95	68	19.17	0.96
21	52	19.96	0.95	65	19.96	0.95
22	49	20.95	0.95	62	20.85	0.95
23	48	21.81	0.95	59	22.06	0.96
24	46	22.50	0.94	57	22.60	0.94

Worst case results of branch and bound: simplices, m = 1

	n	f*	Enumeration: t, s (NQPP)	Branch and bound: t, s (NQPP)
standard	3	0.3333	0.00 (3)	0.00 (3)
simplices	4	0.4082	0.00 (12)	0.00 (14)
	5	0.4472	0.00 (60)	0.00 (73)
	6	0.4714	0.01 (360)	0.01 (432)
	7	0.4879	0.02 (2520)	0.05 (2951)
	8	0.5000	0.21 (20160)	0.24 (23110)
	9	0.5092	2.22 (181440)	2.47 (204549)
	10	0.5164	27.39 (1814400)	28.33 (2018948)
	11	0.5222	334.30 (19958400)	361.60 (21977347)
	12	0.5270	4687.0 (239500800)	4970.0 (261478146)
	13	0.5311	68762 (3113510400)	73714 (3374988545)
unit	3	0.00	0.00 (3)	0.00 (3)
simplices	4	0.3651	0.00 (12)	0.00 (14)
	5	0.4140	0.00 (60)	0.00 (73)
	6	0.4554	0.00 (360)	0.01 (432)
	7	0.4745	0.04 (2520)	0.03 (2951)
	8	0.4917	0.24 (20160)	0.32 (23110)
	9	0.5018	2.48 (181440)	2.77 (204549)
	10	0.5113	33.16 (1814400)	31.67 (2018948)
	11	0.5176	372.59 (19958400)	404.64 (21977347)
	12	0.5236	5208.0 (239500800)	5545.0 (261478146)
	13	0.5279	78579 (3113510400)	86436 (3374988545)

Pessimistic results of branch and bound: simplices, m > 1

	m	n	f*	Enumeration: t, s (NQPP)	Branch and bound: t, s (NQPP)
standard	2	4	0.00	0.01 (78)	0.00 (63)
simplices	2	5	0.1907	0.05 (1830)	0.03 (1322)
•	2	6	0.2309	1.73 (64980)	0.85 (27255)
	2	7	0.2621	113.77 (3176460)	59.61 (1655631)
	2	8	0.2825	10183 (203222880)	5107.0 (102073658)
	2	9	0.2991		502844 (3574743410)
	3	4	0.00	0.02 (364)	0.01 (133)
	3	5	0.00	1.79 (37820)	1.12 (23017)
	3	6	0.00	580.87 (7840920)	25.49 (335771)
	3	7	0.0945	301860 (2670344040)	11111 (92710201)
unit	2	4	0.00	0.00 (78)	0.00 (73)
simplices	2	5	0.00	0.05 (1830)	0.03 (662)
	2	6	0.1869	2.02 (64980)	0.51 (16076)
	2	7	0.2247	133.28 (3176460)	17.65 (422940)
	2	8	0.2569	11631 (203222880)	1675.0 (29943080)
	2	9	0.2759		134281 (1905072549)
	3	4	0.00	0.02 (364)	0.02 (313)
	3	5	0.00	2.02 (37820)	0.49 (9837)
	3	6	0.00	653.91 (7840920)	46.67 (578691)
	3	7	0.00	334788 (2670344040)	2652.0 (20674563)

Realistic results of branch and bound: cubes and empirical datasets

	m	n	f*	Enumeration: t, s (NQPP)	Branch and bound: t, s (NQPP)
cubes	1	4	0.4082	0.00 (12)	0.00 (14)
	1	8	0.4787	0.23 (20160)	0.12 (11260)
	2	4	0.00	0.00 (78)	0.00 (73)
	2	8	0.2245	12518 (203222880)	124.68 (2157090)
	3	4	0.00	0.02 (364)	0.02 (353)
	3	8	0.00		6189 (35216122)
ruusk	usk 1	8	0.2975	0.25 (20160)	0.02 (665)
	2	8	0.1096	12183 (203222880)	3.85 (82617)
	3	8	0.0188		838.68 (6381457)
hwa12	1	9	0.0107	3.06 (181440)	0.02 (2217)
	2	9	0.00	, , ,	203.25 (2344833)
cola	1	10	0.3688	27.47 (1814400)	1.46 (65642)
	2	10	0.1647		14136 (163235214)
uhlen	1	12	0.2112	6413.0 (239500800)	0.62 (36559)
	2	12	0.0825	· · · · · · · · · · · · · · · · · · ·	35951 (312924750)
hwa21	1	12	0.1790	6648.0 (239500800)	1.49 (71748)

Histograms of levels of solutions

Results of parallel algorithm

_	1	1 × 1	1	I × 4		2 × 4		4 × 4
1	t, s	NQP	t, s	NQP	t, s	NQP	t, s	NQP
0	2.28	82617		ruusk1, n	= 8, m = 2			
4	2.28	83630	1.41	180637	1.41	288547	1.07	475328
5	3.36	142800	1.38	191839	0.83	240849	3.56	302056
0	479.41	6381457		ruusk1, n	= 8, m = 3	1		
4	479.69	6403810	218.62	10085145	172.68	14201943	132.61	21415601
5	840.87	13887913	291.15	16040461	179.02	18143183	105.64	20847563
0	120.95	2344833		hwa12, n :	= 9, m = 2			
4	120.84	2346237	79.52	5138135	64.96	6986355	52.61	10742968
5	121.89	2407591	47.64	3135785	30.55	3699097	20.79	5014227
6	216.78	5488888	57.66	5565997	30.95	5842364	18.04	6199196
7							612.00	208871963
0	9032	204022569		cola, n =	10, m = 2			
4	9011	204022487	3212	229324265	2108	270022713	1349	326420931
5	8991	204037437	2391	212954615	1466	226026528	792	244647590
6	8999	206189960	2405	212379122	1380	224377631	761	241643940
7	15189	396725753	4607	410841540	2700	433396504	1388	438645561
0	20515	312924750		uhlen1, n =	= 12, m = 2	2		
4	20494	312925348	10754	556642796	21847	1278648079	18532	2149661364
5	20428	312960596	7579	386113225	5054	508285836	4516	751368922
6	20522	315503838	6360	363849948	4721	461364157	3302	570468417
7	27674	506947703	17241	947746934	47190	2370684051	28521	3044562204

Speedup

$$s_p = rac{t_1}{t_p},$$

 t_p is the time used by the algorithm implemented on p cores, t_1 is the shortest time on one process.

Efficiency of parallelization

Results of explicit enumeration and branch and bound

Random search, multistart and evolutionary algorithms: m = 2, $t_c = 10$ s

datasets			random	search	multis	tart	evolutio	onary
		n	f*	s.d. f*	<u>f*</u>	s.d. <i>f</i> *	f*	s.d. f*
standard		8	0.2825	0.0000	0.2825	0.0000	0.2825	0.0000
simplices	3	12	0.3326	0.0008	0.3310	0.0004	0.3301	0.0002
		16	0.3575	0.0009	0.3550	0.0005	0.3530	0.0004
		20	0.3720	0.0011	0.3686	0.0004	0.3663	0.0003
unit		8	0.2569	0.0000	0.2569	0.0000	0.2569	0.0000
simplices	3	12	0.3218	0.0015	0.3168	0.0002	0.3167	0.0000
		16	0.3527	0.0016	0.3463	0.0006	0.3440	0.0002
		20	0.3701	0.0019	0.3627	0.0005	0.3597	0.0002
cubes		8	0.2304	0.0091	0.2245	0.0000	0.2245	0.0000
		16	0.3857	0.0095	0.3012	0.0021	0.2966	0.0002
		32	0.4753	0.0056	0.3508	0.0060	0.3346	0.0021
	e%							
ghm	15	10	0.1695	0.0083	0.1293	0.0000	0.1293	0.0000
	30	10	0.3084	0.0084	0.2711	0.0000	0.2711	0.0000
	15	20	0.3708	0.0166	0.1872	0.0005	0.1868	0.0000
	30	20	0.4282	0.0085	0.3034	0.0025	0.2967	0.0005
cola		10	0.1983	0.0074	0.1667	0.0012	0.1648	0.0003
morseco	des	36	0.4073	0.0040	0.3329	0.0063	0.3125	0.0048

Evolutionary algorithm: m = 2, $t_c = 10$ s, $n_p = 60$

			$N_{init} = 60$		N _{init} =	100	$N_{init} = 100$		
datasets			$p_{mut} = 0.00$		p _{mut} =	0.00	$p_{mut} = 0.01$		
		n	<u>f*</u>	s.d. f*	<u>f*</u>	s.d. f*	<u>f*</u>	s.d. f*	
standard		8	0.2825	0.0000	0.2825	0.0000	0.2825	0.0000	
simplices		12	0.3301	0.0002	0.3300	0.0002	0.3300	0.0001	
		16	0.3530	0.0004	0.3529	0.0004	0.3527	0.0003	
		20	0.3663	0.0003	0.3661	0.0002	0.3661	0.0003	
unit		8	0.2569	0.0000	0.2569	0.0000	0.2569	0.0000	
simplices		12	0.3167	0.0000	0.3167	0.0000	0.3167	0.0000	
		16	0.3440	0.0002	0.3440	0.0001	0.3440	0.0001	
		20	0.3597	0.0002	0.3596	0.0002	0.3596	0.0002	
cubes		8	0.2245	0.0000	0.2245	0.0000	0.2245	0.0000	
		16	0.2966	0.0002	0.2966	0.0002	0.2966	0.0001	
		32	0.3346	0.0021	0.3354	0.0029	0.3355	0.0028	
	e%								
ghm	15	10	0.1293	0.0000	0.1293	0.0000	0.1293	0.0000	
	30	10	0.2711	0.0000	0.2711	0.0000	0.2711	0.0000	
	15	20	0.1868	0.0000	0.1868	0.0000	0.1868	0.0000	
	30	20	0.2967	0.0005	0.2968	0.0008	0.2970	0.0012	
cola		10	0.1648	0.0003	0.1651	0.0006	0.1651	0.0006	
morsecodes		36	0.3125	0.0048	0.3061	0.0027	0.3057	0.0028	

Evolutionary algorithm and distance smoothing

dataset	S			evolutiona	ry algorithm	distance smoothing		
<i>e</i> %		n	m	$\overline{f^*}$	s.d. <i>f</i> *	$\overline{f^*}$	s.d. <i>f</i> *	
ghm	15	10	2	0.1293	0.0000	0.1457	0.0150	
30 15		10	2	0.2711	0.0000	0.2878	0.0113	
		20	2	0.1868	0.0000	0.2071	0.0130	
	30	20	2	0.2970	0.0012	0.3093	0.0076	
cola 10		10	2	0.1651	0.0006	0.1823	0.0136	
morsecodes		36	2	0.3057	0.0028	0.3106	0.0966	
ghm 15 30 15		10	3	0.0906	0.0000	0.1116	0.0146	
		10	3	0.1298	0.0000	0.1486	0.0086	
		20	3	0.1629	0.0016	0.1761	0.0065	
30		20	3	0.2394	0.0031	0.2454	0.0063	
cola 10		3	0.0673	0.0013	0.0914	0.0087		
morsecodes 36		3	0.2231	0.0055	0.2045	0.0062		

Comparison of evolutionary algorithm with simulated annealing: morsecodes, m = 2

min $\mathcal{S}^*/2$	max $\mathcal{S}^*/2$	time (s)						
evolutionary algorithm								
153.5395	154.5550	1000						
153.1380	154.0815	2000						
153.0355	153.9175	10000						
simulated annealing								
153.2583	155.2006	1142						
153.2411	155.5416	2309						

Evolutionary algorithm on SUN Fire E15k: unit simplices, m = 2, $t_c = 10$ s

		1 proce	essor	8 processors					
n	f*min	f*mean	f*max	perc	f*min	f*mean	f*	perc	
6	0.1869	0.1869	0.1869	100	0.1869	0.1869	0.1869	100	
7	0.2247	0.2247	0.2247	100	0.2247	0.2247	0.2247	100	
8	0.2569	0.2569	0.2569	100	0.2569	0.2569	0.2569	100	
9	0.2759	0.2759	0.2759	100	0.2759	0.2759	0.2759	100	
10	0.2936	0.2936	0.2936	100	0.2936	0.2936	0.2936	100	
11	0.3058	0.3058	0.3058	100	0.3058	0.3058	0.3058	100	
12	0.3167	0.3167	0.3167	100	0.3167	0.3167	0.3167	100	
13	0.3249	0.3249	0.3249	100	0.3249	0.3249	0.3249	100	
14	0.3325	0.3325	0.3330	93	0.3325	0.3325	0.3325	100	
15	0.3384	0.3386	0.3391	70	0.3384	0.3384	0.3384	100	
16	0.3439	0.3443	0.3448	25	0.3439	0.3439	0.3443	94	
17	0.3484	0.3490	0.3497	8	0.3484	0.3486	0.3490	56	
18	0.3526	0.3532	0.3538	3	0.3526	0.3529	0.3531	17	
19	0.3562	0.3568	0.3575	2	0.3562	0.3565	0.3568	5	
20	0.3597	0.3602	0.3607	4	0.3595	0.3599	0.3602	2	
21	0.3625	0.3630	0.3636	4	0.3623	0.3627	0.3631	2	

Evolutionary algorithm on SUN Fire E15k: $t_c = 30 \text{s}/p$

	p = 1		p = 4		p = 8		p = 12		p = 16	
n	perc ·	f*	perc	f*	perc	f*	perc [°]	f*	perc	f*
				S	tandard si	mplices				
5	100	0.1907	100	0.1907	100	0.1907	100	0.1907	100	0.1907
6	100	0.2309	100	0.2309	100	0.2309	100	0.2309	100	0.2309
7	100	0.2621	100	0.2621	100	0.2621	100	0.2621	100	0.262
8	100	0.2825	100	0.2825	100	0.2825	100	0.2825	100	0.282
9	100	0.2991	100	0.2991	100	0.2991	100	0.2991	100	0.2991
10	99	0.3115	100	0.3115	100	0.3115	100	0.3115	100	0.3115
11	95	0.3217	100	0.3217	100	0.3217	100	0.3217	100	0.3217
12	79	0.3300	100	0.3300	100	0.3300	100	0.3300	98	0.3300
13	60	0.3371	95	0.3371	86	0.3371	52	0.3371	29	0.337
14	45	0.3429	87	0.3429	34	0.3429	6	0.3429	1	0.3429
15	35	0.3481	20	0.3481	2	0.3481	1	0.3481	1	0.348
16	26	0.3525	7	0.3525	1	0.3527	1	0.3527	1	0.352
					unit simp	lices				
6	100	0.1869	100	0.1869	100	0.1869	100	0.1869	100	0.1869
7	100	0.2247	100	0.2247	100	0.2247	100	0.2247	100	0.224
8	100	0.2569	100	0.2569	100	0.2569	100	0.2569	100	0.2569
9	100	0.2759	100	0.2759	100	0.2759	100	0.2759	100	0.2759
10	100	0.2936	100	0.2936	100	0.2936	100	0.2936	100	0.293
11	100	0.3058	100	0.3058	100	0.3058	100	0.3058	100	0.305
12	100	0.3167	100	0.3167	100	0.3167	100	0.3167	100	0.316
13	91	0.3249	100	0.3249	100	0.3249	77	0.3249	62	0.324
14	92	0.3325	100	0.3325	49	0.3325	20	0.3325	13	0.332
15	69	0.3384	61	0.3384	4	0.3384	3	0.3384	2	0.338
16	64	0.3439	8	0.3439	1	0.3439	1	0.3443	3	0.3443
					cube					
8	100	0.2245	100	0.2245	100	0.2245	100	0.2245	100	0.224
16	35	0.2965	1	0.2965	1	0.2965	1	0.2974	1	0.3009

