Dimensionality Reduction

Ali Akbar Septiandri

December 15, 2017

untuk Astra Graphia IT

Daftar Isi

- 1. Model Sistem Rekomendasi
- 2. Rekomendasi Berbasis Konten
- 3. Collaborative Filtering
- 4. Dimensionality Reduction
- 5. The NetFlix Challenge

Bahan Bacaan

- 1. Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014). *Mining of massive datasets*. Cambridge University Press. (Chapter 9)
- Wibisono, O. (10 July 2016). "The Many-Faces of Recommender System".

```
https://tentangdata.wordpress.com/2016/07/10/the-many-faces-of-recommender-system/
```

Model Sistem Rekomendasi

Contoh Sistem Rekomendasi

 Menawarkan artikel untuk dibaca secara daring berdasarkan prediksi topik yang diminati

Contoh Sistem Rekomendasi

- Menawarkan artikel untuk dibaca secara daring berdasarkan prediksi topik yang diminati
- Menawarkan saran untuk barang yang akan dibeli melalui situs
 e-commerce berdasarkan riwayat belanja atau pencarian

Contoh Sistem Rekomendasi

- Menawarkan artikel untuk dibaca secara daring berdasarkan prediksi topik yang diminati
- Menawarkan saran untuk barang yang akan dibeli melalui situs
 e-commerce berdasarkan riwayat belanja atau pencarian
- ...apa lagi?

Teknologi Sistem Rekomendasi

Secara umum, dibagi dua kategori besar:

- Sistem berbasis konten
- Collaborative filtering

Utility Matrix

- Terdapat dua entitas utama: pengguna (users) dan barang (items)
- Matriks yang dibentuk merupakan preferensi pengguna terhadap barang yang ada
- Hasilnya kemungkinan besar adalah *sparse matrix*

Contoh Utility Matrix

	HP1	HP2	HP3	TW	SW1	SW2	SW3
Α	4			5	1		
В	5	5	4				
C				2	4	5	
D		3					3

Tabel 1: *Utility matrix* yang merepresentasikan peringkat film dalam skala 1-5 [Leskovec et al., 2014, p. 308]

Tugas utama kita bukanlah untuk mengisi semua bagian yang masih kosong!

The Long Tail Phenomenon

Toko konvensional terbatas karena:

- 1. Sumber daya yang terbatas dari ruang, e.g. toko buku punya rak terbatas
- 2. Tidak bisa menyimpan preferensi setiap pembeli
- 3. Sangat tergantung pada popularitas!

The Long Tail Phenomenon

Gambar 1: Frekuensi jumlah ulasan suatu bisnis di Yelp

The Long Tail Phenomenon

Gambar 2: Frekuensi jumlah ulasan suatu bisnis di Yelp

Mengisi Utility Matrix

Pembuatan sistem rekomendasi dengan utility matrix bukan tanpa masalah

Mengisi Utility Matrix

- Pembuatan sistem rekomendasi dengan utility matrix bukan tanpa masalah
- Tidak semua orang mau mengisi rating

Mengisi Utility Matrix

- Pembuatan sistem rekomendasi dengan utility matrix bukan tanpa masalah
- Tidak semua orang mau mengisi rating
- Solusi: Anggap pembelian, konsumsi, atau bahkan pencarian sebagai bentuk "suka" terhadap produk tersebut

Rekomendasi Berbasis Konten

Dalam rekomendasi berbasis konten, yang harus kita lakukan adalah membentuk *profil* untuk setiap barang atau pengguna.

Contoh Profil Barang

Untuk kasus film, beberapa fitur yang bisa digunakan antara lain:

- aktor
- sutradara
- tahun pembuatan
- genre

• Tidak semua fitur sudah langsung tersedia seperti kasus film atau buku

- Tidak semua fitur sudah langsung tersedia seperti kasus film atau buku
- Bagaimana dengan kasus dokumen?

- Tidak semua fitur sudah langsung tersedia seperti kasus film atau buku
- Bagaimana dengan kasus dokumen?
- Bagaimana dengan gambar, e.g. rekomendasi dalam Instagram?

- Tidak semua fitur sudah langsung tersedia seperti kasus film atau buku
- Bagaimana dengan kasus dokumen?
- Bagaimana dengan gambar, e.g. rekomendasi dalam Instagram?
- Penting untuk merepresentasikan fitur non-boolean dengan benar!

Profil Pengguna

Selain bisa membentuk profil barang, kita juga dapat membentuk profil pengguna berdasarkan barang yang ada.

Profil Pengguna

Selain bisa membentuk profil barang, kita juga dapat membentuk profil pengguna berdasarkan barang yang ada.

Example

Misalnya, jika dari seluruh film yang ditonton pengguna U terdapat 20% yang aktrisnya adalah Julia Roberts, maka profil pengguna U akan memiliki nilai 0.2 untuk komponen Julia Roberts.

Contoh: Rekomendasi Film

Dua pendekatan yang bisa digunakan:

- Film apa yang mirip dengan salah satu film yang disukai pengguna U?
- Berdasarkan preferensi pengguna *U*, apakah film baru yang akan direkomendasikan ini cocok?

Gunakan cosine similarity dan LSH!

Penggunaan Algoritma Klasifikasi

• Buat model untuk setiap pengguna

Penggunaan Algoritma Klasifikasi

- Buat model untuk setiap pengguna
- Prediksi rating untuk barang baru yang akan direkomendasikan

Penggunaan Algoritma Klasifikasi

- Buat model untuk setiap pengguna
- Prediksi rating untuk barang baru yang akan direkomendasikan
- Metrics yang akan digunakan mungkin bukan akurasi

Collaborative Filtering

Tidak perlu membuat profil, langung saja gunakan utility matrix!

Jaccard Similarity

Berapa nilai Jaccard similarity untuk A & B? A & C?

	HP1	HP2	HP3	TW	SW1	SW2	SW3
Α	4			5	1		
В	5	5	4				
C				2	4	5	
D		3					3

Tabel 2: *Utility matrix* yang merepresentasikan peringkat film dalam skala 1-5 [Leskovec et al., 2014, p. 308]

Bagaimana jika kita menggunakan cosine similarity?

Prapemrosesan

Dua pendekatan agar kemiripan yang dihasilkan lebih mengikuti intuisi:

- Pembulatan peringkat
- Normalisasi peringkat

Pembulatan Peringkat

	HP1	HP2	HP3	TW	SW1	SW2	SW3
Α	1			1			
В	1	1	1				
C					1	1	
D		1					1

Tabel 3: *Utility matrix* dengan pembulatan peringkat [Leskovec et al., 2014, p. 323]

Normalisasi Peringkat

	HP1	HP2	HP3	TW	SW1	SW2	SW3
Α	2/3			5/3	-7/3		
В	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0					0

Tabel 4: *Utility matrix* yang merepresentasikan peringkat film setelah dinormalisasi [Leskovec et al., 2014, p. 324]

A dan C jadi sangat jauh =-0.559, sedangkan A dan B tidak terlalu dekat =0.092

Menggunakan Utility Matrix

- Nilai kemiripan yang kita hitung sebelumnya bisa dilakukan untuk pengguna maupun barang
- Masing-masing punya kelebihan dan kekurangan
- Kasus: Dalam rekomendasi musik, mungkin ada orang yang suka berbagai genre

Perbandingan Pendekatan

Pengguna

- Hanya perlu diproses sekali untuk tiap pengguna
- Ada kemungkinan ketertarikan dari genre yang berbeda

Barang

- Informasi kemiripan antarbarang lebih reliable
- Perhitungannya bisa sangat lama

Yang jelas, hitung kemiripan terlebih dahulu!

Masalah Lain

- Meski dua barang (e.g. musik atau film) ada dalam genre yang sama, hanya sedikit yang membeli keduanya
- Meski dua pengguna menyukai genre yang sama, mungkin sedikit barang yang sama yang dibeli
- Solusi: clustering!

Clustering

- ullet Alih-alih pengguna vs barang o pengguna vs klaster
- Nilai yang kosong diganti dengan nilai rata-rata untuk klaster tersebut

Contoh Clustering

- Ganti nilai 3, 4, dan 5 menjadi 1; dan 1, 2, dan kosong menjadi 0
- 2. Hitung nilai Jaccard distance, buat klaster secara hierarki
- Buat kembali matrix awal, lalu isi bagian kosong dengan rata-rata dari elemen yang tidak kosong dalam satu klaster

Dimensionality Reduction

 Kita bisa melihat utility matrix M sebagai produk dari dua matriks U dan V

- Kita bisa melihat utility matrix M sebagai produk dari dua matriks U dan V
- Maka, matriks 5×5 direpresentasikan sebagai produk dari matriks U dan V dengan dimensi 5×2 dan 2×5

- Kita bisa melihat utility matrix M sebagai produk dari dua matriks U dan V
- Maka, matriks 5×5 direpresentasikan sebagai produk dari matriks U dan V dengan dimensi 5×2 dan 2×5
- Matriks terbaik didapatkan saat RMSE UV dengan M sekecil mungkin

- Kita bisa melihat utility matrix M sebagai produk dari dua matriks U dan V
- Maka, matriks 5×5 direpresentasikan sebagai produk dari matriks U dan V dengan dimensi 5×2 dan 2×5
- Matriks terbaik didapatkan saat RMSE UV dengan M sekecil mungkin
- Matriks dengan dimensi kecil tersebut digunakan untuk aproksimasi nilai

Optimasi

- Proses optimasi untuk pencarian UV-decomposition menggunakan gradient descent
- Mungkin terjebak optimal lokal
- Mungkin terjadi overfitting

Lihat [Leskovec et al., 2014, pp. 330-336]

The NetFlix Challenge

NETFLIX

Hadiah \$1,000,000 untuk yang bisa mengalahkan algoritma CineMatch sebesar 10% (RMSE)

The NetFlix Challenge

Beberapa pengetahuan dari tantangan yang dimenangkan bulan September 2009 ini:

- Pemenangnya menggunakan gabungan beberapa algoritma
- Pendekatan machine learning tidak membutuhkan genre
- Waktu pemberian peringkat berguna, karena jika seseorang sangat menyukai suatu film, akan segera diberi peringkat

Referensi

Leskovec, J., Rajaraman, A., & Ullman, J. D. (2014)

Mining of Massive Datasets

Cambridge University Press

Terima kasih