

Integration of Energy Storage systems in Microgrids
Barcelona, 8 de gener de 2014

Jordi Pegueroles Queralt

INDEX

- Motivation
 - Microgrid description
 - Hierarchical Control and Management of Microgrids
- Storage integration in Microgrids
 - Low level storage management
 - Droop control
 - Power electronics interface
 - Control implementation
 - Storage technologies
 - Different technologies for different purposes
- Conclusions

The microgrid is a paradigm proposed for the large scale integration of renewable sources.

The microgrid can be thought as a small power system which can operate in two different modes:

- Grid connected and
- Islandend mode
 - Need to maintain voltage and frequency of the island
 - Low inertia → low stability margins
 - Need of robustness to achieve high power quality
 - Low level decentralized control without communications

The microgrid is a paradigm proposed for the large scale integration of renewable sources.

The goal is to **substitute** the **mechanical intertia** of synchronous generation **for virtual inertia** from electrical storage units

- Need to maintain voltage and frequency of the island
 - Low inertia → low stability margins
- Need of robustness to achieve high power quality
 - Low level decentralized control without communications

The IREC microgrid is an experimental platform ideal for the validation of new control strategies for the inegration of electrical energy storage systems

The IREC microgrid is formed by emulated and real devices

Motivation, Hierarchical Control and Management of Microgrids

Microgrid has 3 control levels

Economic Tertiary management of the whole Control microgrid Unit commitment of Secondary the distributed Control resources of the microgrid Power balance **Primary** inside the Control microgrid

Four Operational States

The transition from **Grid Connected** to **Isolation** can be motivated by:

- fault in the grid
- · economic and
- · technical reasons.

In either case, the **Isolation** is triggered by the **secondary control**

INDEX

- Hierarchical Control and Management of Microgrids
- Storage integration in Microgrids
 - Low level storage management
 - Droop control
 - Power electronics interface
 - Control implementation
 - Storage technologies
 - Different technologies for different purposes
- Conclusions

Low level storage management

In islanded mode, electrical energy storage systems acts as

a voltage sources

Interactions among paralleled units must be regulated to ensure a desired power sharing

Low level storage management

In islanded mode, electrical energy storage systems acts as a voltage sources

Distribution Network

Interactions among paralleled units must be regulated to ensure a desired power sharing

Distribution level control

DSO

Low level storage management, droop control

Droop control comparison

Low level storage management, droop control

Droop control comparison

Power electronics interface

Power electronics interface

Rated power:
10 kVA
Rated DC link:
750 Vdc
Rated AC volt.
400 Vac
Switching Freq.
20 kHz

General control scheme for energy storage systems

Long term. storage

Bad cyclability High energy stored

Io-Li Batery 5 kW & 20 kWh

Fly Wheel5 kW

Ultracaps 5 kVA & 55 Wh @ 400V

Good cyclability Low energy stored

Short term. storage

SuperCapacitors: fast power compensation, NOT for freq. restoration

SuperCapacitors: fast power compensation, NOT for freq. restoration

Microgrid

Time (s)

Li-ion batteries: slow power compensation, freq. restoration

INDEX

- Motivation
 - Microgrid description
 - Hierarchical Control and Management of Microgrids
- Storage integration in Microgrids
 - Low level storage management
 - Droop control
 - Power electronics interface
 - Control implementation
 - Storage technologies
 - Different technologies for different purposes
- Conclusions

Conclusions

- IREC has facilities for testing storage integration
- Fast storage devices can smooth variable power generation
- Li-ion batteries can be used to restore microgrid frequency when working in islanded mode
- Modified droop strategies offers good performance for the regulation of islanded microgrids.

Conclusions

Thanks for your attention!

