4장 Panel Data 분석

Definition

- Panel data: Panel data contain observations on multiple phenomena observed over multiple time periods for the same entities (countries, firms, or individuals)
- Example)

country	year	Y	Х1	X2	хз
1	2000	6.0	7.8	5.8	1.3
1	2001	4.6	0.6	7.9	7.8
1	2002	9.4	2.1	5.4	1.1
2	2000	9.1	1.3	6.7	4.1
2	2001	8.3	0.9	6.6	5.0
2	2002	0.6	9.8	0.4	7.2
3	2000	9.1	0.2	2.6	6.4
3	2001	4.8	5.9	3.2	6.4
3	2002	9.1	5.2	6.9	2.1

Model

General linear panel model

$$y_{it} = \beta_{it} x_{it} + \alpha_{it} + u_{it}$$

 \Rightarrow Some restriction: $\beta_{it} = \beta$ and $\alpha_{it} = \alpha_i$

$$y_{it} = \beta x_{it} + \alpha_i + u_{it}$$
 with $Cov(x_{it}, u_{it}) = 0$ and $Cov(\alpha_i, u_{it}) = 0$
 u_{it} : idiosyncratic error, usually $u_{it} \sim ind \ N(0, \sigma_u^2)$

 α_i : time-invariant individual-specific component individual heterogeneity

• Example) $crime_{it} = \beta \cdot unemp_{it} + \alpha_i + u_{it}$ $HP_{it} = \beta_1 \cdot crime_{it} + \beta_2 \cdot unemp_{it} + \alpha_i + u_{it}$

POLS (pooled OLS)

Disregard heterogeneity ($\alpha_i = \alpha$), and run OLS

If $Cov(\alpha_i, x_{it}) = 0$, Pols is consistent.

 \Rightarrow Even if Pols is consistent, it is still inefficient in case of autocorrelation on u_{it} .

LSDV (least square w/ dummy variable)

Put α_i as dummy variables, and run OLS

FD (first difference)

Make the first difference in time (remove α_i from the model), and run OLS

$$\Delta y_{it} = \beta \Delta x_{it} + \Delta u_{it},$$
with $\Delta y_{it} = y_{it} - y_{i,t-1}, \ \Delta x_{it} = x_{it} - x_{i,t-1}$

Example) $\Delta crime_{it} = \beta \cdot \Delta unemp_{it} + \Delta u_{it}$

FE (fixed effect)

 $Cov(\alpha_i, X_{it}) \neq 0 \implies \text{transform the model to remove } \alpha_i \text{ from the model}$

Example)
$$crime_{it} - \overline{crime}_{i} = \beta \cdot (unemp_{it} - \overline{unemp}_{i}) + (u_{it} - \overline{u}_{i})$$

$$HP_{it} - \overline{HP}_{i} = \beta_{1} \cdot (crime_{it} - \overline{crime}_{i}) + \beta_{2} \cdot (unemp_{it} - \overline{unemp}_{i}) + (u_{it} - \overline{u}_{i})$$

$$\overrightarrow{HP}_{it} = \beta_{1} \cdot \overline{crime}_{it} + \beta_{2} \cdot \overline{unemp}_{it} + \overrightarrow{u}_{it}$$

$$\hat{\alpha}_{i} = \overline{HP}_{i} - \hat{\beta}_{1} \cdot \overline{crime}_{i} + \hat{\beta}_{2} \cdot \overline{unemp}_{i}$$

FE (fixed effect)

Note 1) FE vs. FD: parameter estimates are identical if time period is two. FE vs. LSDV

Note 2) All time-constant (invariant) effects are removed

- ⇒ Fixed-effect models are designed to study the causes of changes within a person (entity). Time invariant characteristic can not cause such a change because it is constant for each person.
- ⇒ Since it throws away information, FE estimator is inefficient.

RE (random effect)

$$Cov(\alpha_i, X_{it}) = 0$$

Error components model:

$$y_{it} = \beta x_{it} + \alpha_i + u_{it}$$
, with $\alpha_i \sim N(0, \sigma_\alpha^2)$. Thus, $\alpha_i + u_{it} = \eta_{it}$

- Note 1) you can include time invariant variable as a predictor in the RE model.
- Note 2) RE estimation is <u>more efficient</u> than FE or Pols.
- Note 3) FGLS (feasible GLS) estimation is applied (based on quasi-demeaning framework).

RE (random effect)

Example)

$$\mathit{HP}_{it} - \theta \overline{\mathit{HP}}_i = \beta_0 (1 - \theta) + \beta_1 \cdot (\mathit{crime}_{it} - \theta \overline{\mathit{crime}}_i) + \beta_2 \cdot (\mathit{unemp}_{it} - \theta \overline{\mathit{unemp}}_i) + (\eta_{it} - \theta \overline{\eta}_i)$$

, where
$$\theta = 1 - \left(\frac{\sigma_u^2}{\sigma_u^2 + T\sigma_\alpha^2}\right)^{1/2}$$

If
$$\sigma_{\alpha}^2 = 0 \Rightarrow \theta = 0$$
, RE \approx OLS

If
$$T\sigma_{\alpha}^2 = \infty \Rightarrow \theta = 1$$
, RE \approx FE

If $0 < \theta < 1$, RE may not be OLS or FE

 \Rightarrow Estimate θ first, then run OLS.

Test

Hausman test

$$Y_{it} = \beta_0 + \beta_1 \cdot X_{it} + \alpha_i + u_{it}$$
, where α_i : between-entity error, u_{it} : within-entity error

$$H_0: Cov(\alpha_i, X_{it}) = 0$$
: use random effect model

$$H_1: Cov(\alpha_i, X_{it}) \neq 0$$
: use fixed effect model

If
$$Cov(\alpha_i, X_{it}) = 0$$
, both $\hat{\beta}_{RE}$ and $\hat{\beta}_{FE}$ are consistent. $se(\hat{\beta}_{RE}) < se(\hat{\beta}_{FE})$ (efficiency)

If $Cov(\alpha_i, X_{it}) \neq 0$, only $\hat{\beta}_{FE}$ is consistent

$$W = \frac{\left(\hat{\beta}_{FE} - \hat{\beta}_{RE}\right)^2}{\sqrt{V(\hat{\beta}_{FE}) - V(\hat{\beta}_{RE})}} \sim \chi_1^2$$

```
library(foreign)
```

 $\label{eq:panel} Panel <-read.dta("http://dss.princeton.edu/training/Panel101.dta") \\ coplot(y \sim year|country, type="l", data=Panel) \# Lines \\ coplot(y \sim year|country, type="b", data=Panel) \# Points and lines \\ Panel[1:10,]$

	country year	у у	bin	x1	x2	x3	opinion
1	A 1990	1342787840	1	0.27790365	-1.1079559	0.28255358	Str agree
2	A 1991	-1899660544	0	0.32068470	-0.9487200	0.49253848	Disag
3	A 1992	-11234363	0	0.36346573	-0.7894840	0.70252335	Disag
4	A 1993	2645775360	1	0.24614404	-0.8855330	-0.09439092	Disag
5	A 1994	3008334848	1	0.42462304	-0.7297683	0.94613063	Disag
6	A 1995	3229574144	1	0.47721413	-0.7232460	1.02968037	Str agree
7	A 1996	2756754176	1	0.49980500	-0.7815716	1.09228814	Disag
8	A 1997	2771810560	1	0.05162839	-0.7048455	1.41590083	Str agree
9	A 1998	3397338880	1	0.36641079	-0.6983712	1.54872274	Disag
10	A 1999	39770336	1	0.39584252	-0.6431540	1.79419804	Str disag

library(gplots)
plotmeans(y ~ country, main="Heterogeineityacross countries", data=Panel)
plotmeansdraw a 95% confidence interval around the means

POLS

```
ols<-lm(y \sim x1, data=Panel)
summary(ols)
```

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.524e+09 6.211e+08 2.454 0.0167 *

x1 4.950e+08 7.789e+08 0.636 0.5272
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 3.028e+09 on 68 degrees of freedom

Multiple R-squared: 0.005905, Adjusted R-squared: -0.008714

F-statistic: 0.4039 on 1 and 68 DF, p-value: 0.5272

```
yhat <-ols$fitted
plot(Panel$x1, Panel$y, pch=19, xlab="x1", ylab="y")
abline(lm(Panel$y~Panel$x1),lwd=3, col="red")
```



```
#LSDV
```

```
fixed.dum <-lm(y \sim x1 + factor(country) -1, data=Panel) summary(fixed.dum)
```

 $lm(formula = y \sim x1 + factor(country) - 1, data = Panel)$

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 2.476e+09 1.107e+09 2.237 0.02889 *
factor(country)A 8.805e+08 9.618e+08 0.916 0.36347
```

```
factor(country)B -1.058e+09 1.051e+09 -1.006 0.31811 factor(country)C -1.723e+09 1.632e+09 -1.056 0.29508 factor(country)D 3.163e+09 9.095e+08 3.478 0.00093 *** factor(country)E -6.026e+08 1.064e+09 -0.566 0.57329 factor(country)F 2.011e+09 1.123e+09 1.791 0.07821 . factor(country)G -9.847e+08 1.493e+09 -0.660 0.51190
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 2.796e+09 on 62 degrees of freedom Multiple R-squared: 0.4402, Adjusted R-squared: 0.368

F-statistic: 6.095 on 8 and 62 DF, p-value: 8.892e-06

yhat<-fixed.dum\$fitted library(car)

 $scatterplot(yhat \sim Panel x1|Panel country, boxplots = FALSE, xlab = "x1", ylab = "yhat", smooth = FALSE) \\ abline(lm(Panel y\sim Panel x1), lwd = 3, col = "red")$

#POLS vs. LSDV

library(apsrtable)

apsrtable(ols,fixed.dum, model.names= c("OLS", "OLS_DUM")) # Displays a table in Latex form

%	& OLS	& OLS_DUM	
(Intercept)	& 1524319070.05 ^*	&	\\
	& (621072623.86)	&	\\
x1	& 494988913.90	& 2475617827.10 ^*\	\
	& (778861260.95)	& (1106675593.60) \	

```
# FE
```

```
library(plm) \\ fixed <-plm(y \sim x1, data=Panel, index=c("country", "year"), model="within") \\ summary(fixed)
```

```
plm(formula = y \sim x1, data = Panel, model = "within", index = c("country", "year"))
Balanced Panel: n=7, T=10, N=70
```

Estimate Std. Error t-value Pr(>|t|)
x1 2475617827 1106675594 2.237 0.02889 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Total Sum of Squares: 5.2364e+20 Residual Sum of Squares: 4.8454e+20

R-Squared: 0.074684

Adj. R-Squared: 0.066148

F-statistic: 5.00411 on 1 and 62 DF, p-value: 0.028892

fixef(fixed) # Display the fixed effects (constants for each country)

В

C

D

E

F

G

880542404 -1057858363 -1722810755 3162826897 -602622000 2010731793 -984717493

pFtest(fixed, ols) # Testing for fixed effects, null: OLS better than fixed

F test for individual effects

data: $y \sim x1$

F = 2.9655, df1 = 6, df2 = 62, p-value = 0.01307

alternative hypothesis: significant effects

```
#RE
```

x1

random <-plm(y \sim x1, data=Panel, index=c("country", "year"), model="random") summary(random)

```
Oneway (individual) effect Random Effect Model
(Swamy-Arora's transformation)
```

 $plm(formula = y \sim x1, data = Panel, model = "random", index = c("country", "year")) \\ Balanced Panel: n=7, T=10, N=70$

	var	sta.dev	snare	
idiosyncratic	7.815e+18	2.796e+09	0.873	
individual	1.133e+18	1.065e+09	0.127	
theta:	0.3611			
	Estimate	Std. Error	t-value	Pr(> t)
(Intercept)	1037014284	790626206	1.3116	0.1941

1247001782 902145601 1.3823

Total Sum of Squares: 5.6595e+20 Residual Sum of Squares: 5.5048e+20

R-Squared: 0.02733 Adj. R-Squared: 0.026549

F-statistic: 1.91065 on 1 and 68 DF, p-value: 0.17141

0.1714

```
# Setting as panel data (an alternative way to run the above model) Panel.set<-plm.data(Panel, index = c("country", "year")) # Random effects using panel setting (same output as above) random.set<-plm(y \sim x1, data = Panel.set, model="random") summary(random.set)
```

#FE or RE?

Hausman test (H0: random effect model, H1: fixed effect model)
phtest(fixed, random)

Hausman Test

data: $y \sim x1$ chisq = 3.674, df = 1, p-value = 0.05527 alternative hypothesis: one model is inconsistent

Test for time fixed effect

library(plm)

 $fixed <-plm(y \sim x1, data=Panel, index=c("country", "year"), model="within")$

fixed.time<-plm($y \sim x1 + factor(year)$, data=Panel, index=c("country", "year"), model="within") summary(fixed.time)

	Estimate	Std. Error	t-value	Pr(> t)
x1	1389050354	1319849567	1.0524	0.29738
factor(year)1991	296381559	1503368528	0.1971	0.84447
factor(year)1992	145369666 1547226	548 0.0940	0.92550	
factor(year)1993	2874386795 15038625	54 1.9113	0.06138 .	
factor(year)1994	2848156288 16614989	27 1.7142	0.09233 .	
factor(year)1995	973941306 1567245	748 0.6214	0.53698	
factor(year)1996	1672812557 16315392	54 1.0253	0.30988	
factor(year)1997	2991770063 16270620	32 1.8388	0.07156.	
factor(year)1998	367463593 1587924	445 0.2314	0.81789	
factor(year)1999	1258751933 15123976	0.8323	0.40898	

Testing time-fixed effects. The null is that no time-fixed effects needed pFtest(fixed.time, fixed)

F test for individual effects

data: $y \sim x1 + factor(year)$

F = 1.209, df1 = 9, df2 = 53, p-value = 0.3094

alternative hypothesis: significant effects

plmtest(fixed, c("time"), type=("bp"))

Lagrange Multiplier Test - time effects (Breusch-Pagan)

data: $y \sim x1$

chisq = 0.16532, df = 1, p-value = 0.6843

alternative hypothesis: significant effects

Testing for random effects: Breusch-Pagan Lagrange multiplier (LM)

Regular OLS (pooling model) using plm pool <-plm(y \sim x1, data=Panel, index=c("country", "year"), model="pooling") summary(pool)

```
plm(formula = y \sim x1, \, data = Panel, \, model = "pooling", \, index = c("country", \, "year"))
```

Balanced Panel: n=7, T=10, N=70

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 1524319070 621072624 2.4543 0.01668 *

x1 494988914 778861261 0.6355 0.52722

Total Sum of Squares: 6.2729e+20

Residual Sum of Squares: 6.2359e+20

R-Squared: 0.0059046

Adj. R-Squared: 0.0057359

F-statistic: 0.403897 on 1 and 68 DF, p-value: 0.52722

Breusch-Pagan Lagrange Multiplier for random effects. Null is no panel effect (i.e. OLS better). plmtest(pool, type=c("bp"))

```
Lagrange Multiplier Test - (Breusch-Pagan)
```

data: $y \sim x1$

chisq = 2.6692, df = 1, p-value = 0.1023

alternative hypothesis: significant effects

#The LM test helps you decide between a random effects regression and a simple OLS regression.

The null hypothesis in the LM test is that variances across entities is zero. This is, no evidence of

significant difference across units (i.e. no panel effect)

Testing for cross-sectional dependence/contemporaneous correlation:

using Breusch-Pagan LM test of independence and Pasaran CD tes

$$\label{eq:country} \begin{split} &\text{fixed} < \text{-plm}(y \sim x1, \text{ data=Panel, index=c("country", "year"), model="within")} \\ &\text{pcdtest}(&\text{fixed, test=c("lm")}) \end{split}$$

Breusch-Pagan LM test for cross-sectional dependence in panels

data: formula

chisq = 28.914, df = 21, p-value = 0.1161

alternative hypothesis: cross-sectional dependence

pcdtest(fixed, test = c("cd"))

Pesaran CD test for cross-sectional dependence in panels

data: formula

z = 1.1554, p-value = 0.2479

alternative hypothesis: cross-sectional dependence

- # The null hypothesis in the B-P/LM and Pasaran CD tests of independence is that residuals across
- # entities are not correlated. B-P/LM and Pasaran CD (cross-sectional dependence) tests are used to
- # test whether the residuals are correlated across entities*. Cross-sectional dependence can lead to
- # bias in tests results (also called contemporaneous correlation).

Testing for serial correlation

pbgtest(fixed)

Breusch-Godfrey/Wooldridge test for serial correlation in panel models

data: $y \sim x1$

chisq = 14.137, df = 10, p-value = 0.1668

alternative hypothesis: serial correlation in idiosyncratic errors

The null is that there is not serial correlation