Undetermined coefficients: nondegenerate

Math 352 Differential Equations

March 21, 2014

The translation principle

Last time:

- If Y is a particular solution of the equation ay'' + by' + cy = g(t)
- ▶ and $c_1y_1 + c_2y_2$ is the general solution of the associated homogeneous equation

▶
$$ay'' + by' + cy = 0$$

▶ then $c_1y_1 + c_2y_2 + Y$ is the general solution of ay'' + by' + cy = g(t).

We apply the method to an example.

An exponential example

$$y'' - 2y' - 3y = 3e^{2t}$$

▶ Step 1: Find the complementary solution, that is, the general solution of the associated homogeneous equation.

An exponential example

$$y'' - 2y' - 3y = 3e^{2t}$$

- ▶ Step 1: Find the complementary solution, that is, the general solution of the associated homogeneous equation.
- ▶ The characteristic polynomial is $r^2 2r 3 = (r 3)(r + 1)$.

An exponential example

$$y'' - 2y' - 3y = 3e^{2t}$$

- ▶ Step 1: Find the complementary solution, that is, the general solution of the associated homogeneous equation.
- ▶ The characteristic polynomial is $r^2 2r 3 = (r 3)(r + 1)$.
- ► Therefore, the CS is $y_c = c_1 e^{3t} + c_2 e^{-t}$.

Example 1 Example 2

An exponential example

$$y'' - 2y' - 3y = 3e^{2t}$$

- ▶ Step 1: Find the complementary solution, that is, the general solution of the associated homogeneous equation.
- ▶ The characteristic polynomial is $r^2 2r 3 = (r 3)(r + 1)$.
- ▶ Therefore, the CS is $y_c = c_1 e^{3t} + c_2 e^{-t}$.
- ► Get in the habit of doing this step first. Trust me.

Apply undetermined coefficients

- ▶ Step 2: Look for a solution of the form $Y = Ae^{2t}$.
- ▶ Then $Y' = 2Ae^{2t}$ and $Y'' = 4Ae^{2t}$.
- Substitute:

$$3e^{2t} = Y'' - 2Y' - 3Y$$

= $4Ae^{2t} - 4Ae^{2t} - 3Ae^{2t}$
= $3Ae^{2t}$.

Evidently we obtain A = 1, so $Y = e^{2t}$ is a particular solution.

Write down the general solution

► Step 3: By the discussion surrounding the translation principle, it follows that

$$c_1e^{3t} + c_2e^{-t} + e^{2t}$$

is the general solution of the inhomogeneous differential equation $y''-2y'-3y=3e^{2t}$.

A trigonometric example

$$y'' - 2y' - 3y = 2\sin 2t.$$

▶ Step 1: the complementary solution is $c_1e^{3t} + c_2e^{-t}$ as before.

A trigonometric example

$$y'' - 2y' - 3y = 2\sin 2t.$$

- ▶ Step 1: the complementary solution is $c_1e^{3t} + c_2e^{-t}$ as before.
- ▶ Step 2: try $Y = A \sin 2t$.

A trigonometric example

$$y'' - 2y' - 3y = 2\sin 2t.$$

- ▶ Step 1: the complementary solution is $c_1e^{3t} + c_2e^{-t}$ as before.
- ▶ Step 2: try $Y = A \sin 2t$.
- ▶ Then $Y' = 2A \cos 2t$ and $Y'' = -4A \sin 2t$.

Solve for the undetermined coefficient

- ▶ We found $Y' = 2A\cos 2t$ and $Y'' = -4A\sin 2t$.
- Substitution gives

$$Y'' - 2Y' - 3Y = -4A\sin 2t - 2(2A\cos 2t) - 3(A\sin 2t)$$

= -7A\sin 2t - 4A\cos 2t.

Here, something is wrong: there is no choice of A that makes the RHS equal to $2 \sin 2t$, since $0 \neq 2/7$.

A better guess

The correct guess is $Y = A \cos 2t + B \sin 2t$.

▶ Work together to determine *A* and *B*.

A better guess

The correct guess is $Y = A \cos 2t + B \sin 2t$.

- ▶ Work together to determine A and B.
- ▶ You should find A = 8/65, B = -14/65.

Step 3

▶ The general solution is:

$$c_1e^{3t} + c_2e^{-t} + \frac{8}{65}\cos 2t - \frac{14}{65}\sin 2t$$

Example 1 Example 2

Degeneracy

- ▶ These examples are nondegenerate.
- ▶ This means the inhomogeneous term g(t) doesn't appear in the complementary solution.
- ▶ Read section 3.5 to see how to handle degeneracies.

Example 1 Example 2

Table of guesses (nondegenerate only!)

Table: Guess-o-chart

g(t)	Y(t)
t ⁿ	$A_n t^n + \cdots + A_0$
$\exp(at)$	$A \exp(at)$
$a\cos(\omega t)$	$A\cos(\omega t) + B\sin(\omega t)$
$a\sin(\omega t)$	$A\cos(\omega t) + B\sin(\omega t)$

▶ If g(t) is a linear combination of entries from the table, let Y be the corresponding linear combination.

SPRIIING BREAAK

- After the break:
 - we will discuss the degenerate cases
 - ightharpoonup and the case where g(t) is a product of table entries.