Desain Jaringan Komputer

Pendahuluan Desain Jaringan

Apa itu Desain Jaringan?

Desain jaringan adalah proses perencanaan dan pembuatan arsitektur jaringan yang memenuhi kebutuhan pengguna, baik dalam hal komunikasi data, keamanan, dan skala.

Pendahuluan Desain Jaringan

Menentukan Spesifikasi Jaringan Berdasarkan Kebutuhan

1. Kebutuhan Bisnis/Organisasi:

- Berapa banyak pengguna yang akan terhubung?
- Aplikasi apa yang digunakan (email, VoIP, video conference)?
- Kebutuhan keamanan dan ketersediaan data

2. Pertimbangan Teknis:

- Bandwidth: Berapa besar lalu lintas data yang harus didukung?
- Latensi: Seberapa cepat waktu respon yang diinginkan?
- Redundansi: Apakah diperlukan backup jalur atau komponen?

Prinsip-Prinsip Desain Jaringan

Skalabilitas

 Desain harus bisa berkembang sesuai dengan kebutuhan di masa mendatang.

Redundansi

 Memastikan jaringan tetap berjalan meskipun ada komponen yang gagal (failover).

Keamanan

• Implementasi firewall, VPN, dan enkripsi untuk melindungi data.

Efisiensi

• Meminimalkan latensi dan memaksimalkan kecepatan transfer data.

Manajemen

• Jaringan harus mudah dikelola dan dipantau.

Merancang Konfigurasi Jaringan

- 1. Topologi Jaringan
- 2. Alokasi IP
- 3. Pembagian Segmen Jaringan (Subnetting)
- 4. Pengaturan Routing

Bus

Dalam topologi **bus**, semua perangkat terhubung ke satu kabel utama yang berfungsi sebagai jalur komunikasi bersama. Setiap perangkat menerima sinyal yang ditransmisikan melalui kabel dan memproses data yang ditujukan untuknya.

Kelebihan:

- Mudah dan Murah untuk Implementasi
- Ideal untuk Jaringan Kecil

Kekurangan:

- Kinerja Menurun dengan Banyaknya Perangkat
- Kabel Utama adalah Titik Kegagalan
- Kemungkinan Terjadi Collisions

Penerapan:

Biasanya digunakan di jaringan kecil dan sementara, atau dalam sistem berbasis lama.

Star

topologi **star**, semua perangkat (komputer, printer, server, dll.) terhubung ke perangkat pusat seperti **switch** atau **hub**. Perangkat pusat ini berperan sebagai penghubung utama antara semua perangkat di jaringan.

Kelebihan:

- Kemudahan dalam Manajemen
- Tingkat Kegagalan Minimal
- Kecepatan Jaringan Lebih Tinggi

Kekurangan:

- Ketergantungan pada Perangkat Pusat
- Biaya Lebih Tinggi

Penerapan:

Biasa digunakan di kantor kecil, sekolah, atau jaringan rumahan dengan sedikit perangkat.

Ring

topologi **ring**, setiap perangkat terhubung ke perangkat lainnya dalam bentuk lingkaran. Data mengalir dalam satu arah (unidirectional) atau dua arah (bidirectional) di sepanjang lingkaran sampai mencapai tujuannya.

Kelebihan:

- Pengaturan Jaringan Sederhana
- Minim Konflik Data

Kekurangan:

- Jika Satu Perangkat Gagal, Jaringan Putus
- Peningkatan Jaringan Sulit

Penerapan:

Digunakan di jaringan berukuran menengah atau besar yang membutuhkan struktur aliran data yang terkontrol, seperti pada perusahaan besar.

Mesh

topologi **mesh**, setiap perangkat terhubung secara langsung ke perangkat lainnya. Ada dua jenis topologi mesh:

Full Mesh: Setiap perangkat terhubung ke semua perangkat lainnya.

Partial Mesh: Beberapa perangkat terhubung ke semua perangkat lainnya, sementara yang lainnya hanya terhubung ke beberapa.

Kelebihan:

- Redundansi Tinggi
- Tingkat Kegagalan Sangat Rendah

Kekurangan:

- Biaya Sangat Tinggi
- Pemasangan dan Pengelolaan Kompleks

Penerapan:

Digunakan pada jaringan yang memerlukan keandalan tinggi seperti di pusat data, jaringan militer, atau jaringan perusahaan besar.

Tree

tree adalah gabungan antara topologi star dan bus. Struktur jaringan ini berbentuk hierarkis di mana beberapa jaringan star dihubungkan ke jalur bus utama. Perangkat dihubungkan ke switch pusat, kemudian beberapa switch tersebut terhubung ke jaringan yang lebih besar.

Kelebihan:

- Terstruktur dan Mudah Diperluas
- Mudah Dikelola

Kekurangan:

- · Ketergantungan pada Jalur Utama
- Biaya Relatif Tinggi

Penerapan:

Umum digunakan dalam jaringan yang memerlukan pengelolaan terpusat dan hierarki yang jelas, seperti jaringan kampus universitas atau korporasi besar.

Hybrid

Topologi **hybrid** adalah gabungan dari beberapa jenis topologi (misalnya, kombinasi topologi star, ring, dan mesh) yang digunakan untuk mengakomodasi kebutuhan jaringan yang lebih kompleks. Jaringan hybrid menggabungkan keunggulan dari berbagai topologi dan mencoba meminimalkan kelemahannya.

Kelebihan:

- Fleksibilitas Tinggi
- Redundansi dan Skalabilitas

Kekurangan:

- Kompleksitas dalam Pengelolaan
- Biaya Pemasangan dan Pemeliharaan

Penerapan:

Digunakan di jaringan perusahaan besar atau organisasi yang memiliki banyak kantor cabang dengan kebutuhan jaringan yang berbeda-beda.

Internet Protocol Address

Pengalokasian Alamat IP

Alokasi IP adalah proses penentuan alamat IP (Internet Protocol) untuk setiap perangkat yang terhubung ke jaringan. Alamat IP adalah identifikasi unik yang digunakan perangkat untuk saling berkomunikasi di jaringan. Ada dua metode utama dalam alokasi IP, yaitu alokasi IP secara statis dan alokasi IP secara dinamis menggunakan DHCP (Dynamic Host Configuration Protocol). Mari kita bahas keduanya secara rinci.

Alokasi IP Statis (Manual IP Allocation)

Alokasi **IP statis** berarti bahwa alamat IP ditetapkan secara manual ke setiap perangkat di jaringan. Administrator jaringan memberikan alamat IP tertentu kepada perangkat, dan perangkat tersebut akan selalu menggunakan IP tersebut.

Kelebihan:

- Kontrol Penuh
- Ideal untuk Perangkat Penting
- Mempermudah Pemantauan

Kekurangan:

- Rentan terhadap Kesalahan Manual
- Tidak Efisien untuk Jaringan Besar
- Kurang Fleksibel

Alokasi IP Dinamis (Menggunakan DHCP)

DHCP (Dynamic Host Configuration Protocol) adalah protokol yang secara otomatis memberikan alamat IP kepada perangkat ketika mereka terhubung ke jaringan. Server DHCP bertugas untuk "meminjamkan" IP kepada perangkat selama jangka waktu tertentu (lease time). Setelah lease time berakhir, perangkat akan meminta alamat IP baru atau memperbarui yang lama.

Kelebihan:

- Mudah Dikelola
- Efisien
- Meminimalkan Konflik IP
- Fleksibilitas

Kekurangan:

- Ketergantungan pada DHCP Server
- IP Berubah-ubah

Pembagian Segmen Jaringan (Subnetting)

Tujuan Subnetting:

- Mengurangi Broadcast
 Domain
- Mempermudah
 Manajemen Jaringan
- Meningkatkan Keamanan
- Mengoptimalkan Alokasi
 IP

Contoh Subnetting Berdasarkan Departemen

Contoh Pengelompokan Subnet:

- 1. Departemen IT: 192.168.1.0/26 (62 perangkat)
- 2. Departemen HR: 192.168.1.64/26 (62 perangkat)
- 3. Departemen Keuangan: 192.168.1.128/27 (30 perangkat)
- 4. Departemen Produksi: 192.168.1.160/25 (126 perangkat)

Keuntungan:

- Broadcast Terbatas: Broadcast hanya diterima perangkat dalam subnet yang sama, mengurangi beban jaringan.
- Kontrol Akses: Setiap departemen bisa diatur aksesnya dengan aturan firewall untuk keamanan.

Pengaturan Routing

Menentukan Komponen Jaringan

1. Perangkat Keras

2. Perangkat Lunak

3. Media Transmisi

4. Komponen Keamanan

Komponen Perangkat Keras Jaringan

Jenis-Jenis Komponen Jaringan:

- 1. Router
- 2.Switch
- 3. Access Point (AP)
- 4. Modem

Komponen Perangkat Lunak Jaringan

Jenis-Jenis Komponen Perangkat Lunak Jaringan:

1. Sistem Operasi Jaringan (Network OS):

- Sistem operasi khusus yang digunakan untuk mengelola dan menjalankan perangkat jaringan, seperti router dan switch.
- 2. Contoh: Cisco IOS, MikroTik RouterOS.

2. Firewall Perangkat Lunak:

- 1. Melindungi jaringan dengan memfilter lalu lintas yang masuk dan keluar berdasarkan aturan keamanan.
- 2. Contoh: pfSense, IPTables.

3. Protokol Jaringan:

- 1. Sekumpulan aturan yang mengatur komunikasi antarperangkat di jaringan.
- 2. Contoh: TCP/IP, DHCP, DNS.

4. Monitoring Tools (Alat Pemantauan):

- Software untuk memantau performa jaringan dan mendiagnosis masalah.
- 2. Contoh: Nagios, Wireshark.

Komponen Media Transmisi

1. Media Kabel:

Kabel Twisted Pair (UTP/STP):

 Paling umum digunakan untuk jaringan lokal (LAN).

Contoh: Kabel Cat5e, Cat6.

Kabel Fiber Optik:

- Menggunakan cahaya untuk mentransfer data dengan kecepatan sangat tinggi dan jarak jauh.
- Lebih cepat dan stabil dibandingkan kabel tembaga.

Kabel Coaxial:

 Sering digunakan dalam jaringan TV kabel dan beberapa jaringan lama.

Kabel Twisted Pair (UTP/STP):

Category	Transmission Speed	Transmission Distance	Bandwidth	Shielding Type	Application
Cat5	100Mbps	100m (328ft.)	100MHz	Unshielded	100BaseT Ethernet
Cat5e	1Gbps	100m (328ft.)	100MHz	Shield/Unshield	Gigabit Ethernet, residential homes
Cat6	1/10Gbps	100m (328ft.) 10Gb at 37-55m (121ft.)	250MHz	Shield/Unshield	Gigabit Ethernet, commercial buildings
Cat6a	10Gbps	100m (328ft.)	500MHz	Shield/Unshield	Gigabit Ethernet, data centers, and commercial buildings
Cat7	10Gbps	100m (328ft.)	600MHz	Shield	10Gbps core infrastructure
Cat8	25/40Gbps	30m (98ft.)	2000MHz	Shield	25/40Gbps core infrastructure

Jaringan Hirarki

Jaringan Flat Switched

Komponen Keamanan

• 1. Firewall:

- Perangkat keras atau perangkat lunak yang memantau dan memfilter lalu lintas data yang masuk dan keluar dari jaringan berdasarkan aturan keamanan.
- · Contoh: pfSense, Cisco ASA.

• 2. Antivirus/Anti-malware:

- Perangkat lunak yang mendeteksi dan menghapus malware seperti virus, worm, dan spyware dari jaringan dan perangkat.
- · Contoh: Norton, Kaspersky.

• 3. Intrusion Detection System (IDS) / Intrusion Prevention System (IPS):

- IDS: Mengidentifikasi serangan jaringan dan memperingatkan administrator.
- IPS: Secara otomatis mencegah atau memblokir serangan setelah terdeteksi.
- · Contoh: Snort, Suricata.

• 4. Virtual Private Network (VPN):

- Menyediakan **koneksi aman** antara pengguna atau kantor cabang dengan jaringan perusahaan melalui jalur terenkripsi.
- Contoh: OpenVPN, Cisco AnyConnect.

Contoh Kasus Desain Jaringan

Studi Kasus: Desain Jaringan untuk Kantor dengan 100 Pengguna

Spesifikasi:

- 100 pengguna
- Aplikasi: VoIP, email, cloud storage
- Kebutuhan keamanan tinggi (VPN, firewall)

Desain:

- Topologi Star
- 2 Switch untuk redundansi
- Router yang mendukung VPN dan firewall
- Bandwidth minimal 1 Gbps

Kesimpulan

Poin Utama:

- Desain jaringan harus disesuaikan dengan kebutuhan spesifik organisasi.
- Prinsip-prinsip seperti skalabilitas, keamanan, dan efisiensi adalah pilar utama desain jaringan.
- Pemilihan topologi dan perangkat keras sangat mempengaruhi performa dan stabilitas jaringan.

Tugas:

Buatlah desain jaringan sederhana untuk sebuah perusahaan kecil dengan 50 pengguna, mencakup spesifikasi jaringan, topologi, dan komponen yang terlibat.