MI-ARI

(Computer arithmetics) winter semester 2017/18

CS. Number systems and basic operations

© Alois Pluháček Pavel Kubalík, 2017 Department of digital design Faculty of Information technology Czech Technical University in Prague

CS. Number systems and basic operations

- Number systems
- Number formats
 - Basic operation in general format
- Binary adders
- Format respecting addition
- Subtractor
- Subtractor using adder
- Signed number representation
 - Sign and magnitude
 - Radix complement
 - Diminished radix complement
 - Biased code
 - * Type 0 of biased code
 - * Type 1 of biased code

Number systems

number systems

- position number systems
 - standard
 - * decimal
 - * binary (or dyadic)
 - * octal
 - * hexadecimal
 - * ternary (or triadic) etc.
 - non-standard number systems
 - * negative radix number systems (Polish system)
 - * signed digit number systems
 - * multiple radix number systems and others.
- non-position number systems
 - so caller Roman numerals
 - residue number systems (RNS), (Czech system)
 etc.

Standard number system

Standard number system –position number system

$$A \sim a_n a_{n-1} \dots a_0, a_{-1} \dots a_{-m}$$

$$oxed{A = \sum\limits_{i=-m}^{n} a_i z^i}$$

$$z \geq 2$$

radix (or base) of system — natural number

$$a_i \in \langle 0; z \rangle$$

digits — non-negative integers

$$0 \le A \le z^{n+1} - z^{-m}$$

!!! Negative numbers can not be represented !!!

Number formats

n ... highest position -m ... lowest position

 $A \sim a_n a_{n-1} \dots a_0, a_{-1} \dots a_{-m}$ $A = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 + a_{-1} z^{-1} \ldots a_{-m} z^{-m}$ $z \dots$ radix (or base) of the number system

$$\mathcal{Z}=z^{n+1}$$
 module of the format — it is out of format $arepsilon=z^{-m}$ unit of the format — smallest positive number in the format

representable numbers
$$A$$
: $0 \leq A = k \cdot arepsilon < \mathcal{Z}$,

k is an integer

$$k=A/arepsilon=A^* \implies A=A^* ext{ of units } arepsilon$$

 A^* \bowtie digit number at notation of A ε radix point position

Basic operation in general format

Addition and subtraction

the same format of both operands and the result:

$$A = A^* \cdot \varepsilon$$
 $B = B^* \cdot \varepsilon$
 $\Rightarrow A \pm B = A^* \cdot \varepsilon \pm B^* \cdot \varepsilon = (A^* \pm B^*) \cdot \varepsilon$

Ex.: $z = 10$, $Z = 10 = 10^{n+1}$, $\varepsilon = 0, 01 = 10^{-m}$
 $n = 0$, $m = 2$ (or $-m = -2$)
 $A = 1, 23 \Rightarrow A^* = 1, 23/0, 01 = 123$
 $B = 4, 56 \Rightarrow B^* = 4, 56/0, 01 = 456$
 $A = 1, 23 + 4, 56 = (123 + 456) \cdot 0, 01 = 579 \cdot 0, 01 = 5, 79$

different formats:

transformation numbers into suitable format — zeroes adding

Ex.:
$$1,234+56,7 = 01,234+56,700 = 57,934$$

Conclusion: Addition a subtraction (in general format) can be easy transformed on addition a subtraction of integers.

Basic operation in general format ii

Multiplication:

$$\left. \begin{array}{l}
A = A^* \cdot \varepsilon_A \\
B = B^* \cdot \varepsilon_B
\end{array} \right\} \quad \Rightarrow \quad \begin{array}{l}
A \cdot B = A^* \cdot \varepsilon_A \cdot B^* \cdot \varepsilon_B = \\
= (A^* \cdot B^*) \cdot \varepsilon_A \cdot \varepsilon_B
\end{array}$$

Ex.:
$$z = 10$$

 $\mathcal{Z}_A = 10$, $\varepsilon_A = 0,01$, $n_A = 0$, $m_A = 2$
 $\mathcal{Z}_B = 100$, $\varepsilon_B = 0,1$, $n_B = 1$, $m_B = 1$
 $7,01 \cdot 80,3 = (701 \cdot 803) \cdot 0,001 =$
 $= 562\,903 \cdot 0,001 = 562,903$

Conclusion: Multiplication(in general format) can be easy transformed on addition a subtraction of integers.

Binary adders

Full-adder

a	\boldsymbol{b}	\boldsymbol{p}	$m{q}$	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s = a \oplus b \oplus p = = \overline{a}\overline{b}p + \overline{a}b\overline{p} + a\overline{b}\overline{p} + abp$$

$$egin{aligned} q &= \mathsf{M}_3(a,b,p) = \ &= ab + ap + bp = \ &= ab \oplus ap \oplus bp = \ &= ab + (ap \oplus bp) \end{aligned}$$

Binary adders ii

Half-adder

$oldsymbol{a}$	\boldsymbol{b}	$oldsymbol{q}$	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$s = a \oplus b$$
$$= \overline{a}b + a\overline{b}$$
$$q = a \cdot b$$

Binary adders iii

Ripple-carry adder

(also parallel adder)

$$n = 3$$
 $\mathcal{Z} = 16$
 $A \sim a_3 a_2 a_1 a_0$
 $B \sim b_3 b_2 b_1 b_0$
 $S \sim s_3 s_2 s_1 s_0$
 $p_{i+1} = q_i$

the same using half-adders

Format respecting addition

Output of adder: $S = A + B + p_0 - q_n \cdot \mathcal{Z}$

Let $p_0 = 0$

(or half adder is used in zero order of adder):

$$S = A + B - q_n \cdot \mathcal{Z}$$

S differ from A+B by multiple of ${\mathcal Z}$ so that $S\equiv A+B\pmod{{\mathcal Z}}$

graphic view (analogy of clock face):

$$0101 + 0100 = 01001 \rightarrow 1001$$

Format respecting addition ii

$$0101 + 1110 = 10011 \rightarrow 0011$$

passing thru \Leftrightarrow carry from the highest order $q_n = 1$

in this case (addition using unsigned numbers):

$$q_n = 1 \quad \Rightarrow \quad A + B \ge \mathcal{Z} \qquad (\mathcal{Z} = 10000_2 = 16_{10})$$

$$(\mathcal{Z} = 10000_2 = 16_{10})$$

$$q_n = 1 \implies \text{overflow} \sim \text{the result is out of format}$$

however generally: $| !!! \text{ carry } \not\equiv \text{ overflow } !!!$

Subtractor

Full adder (! How to do it in wrong way. !)

a	\boldsymbol{b}	\overline{v}	u	$oxed{r}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$egin{aligned} r &= a \oplus b \oplus v = \ &= \overline{a} \overline{b} v + \overline{a} b \overline{v} + a \overline{b} \overline{v} + a b v \ u &= &= \overline{a} b + \overline{a} v + b v \end{aligned}$$

 v_i borrow for order i

 u_i borrof from order i

etc. - similarly as for addition

Is it possible modify an adder for subtraction?

Subtractor using adder

$$A-B\equiv A+(\mathcal{Z}\!-\!B)\pmod{\mathcal{Z}}$$

Subtractor using adder ii

How to find $\mathcal{Z}-B$?

$$X = \sum\limits_{i=0}^{n} x_i z^i ~~ x_i \in \langle 0, z-1
angle$$

$$egin{aligned} X_{max} &= \sum\limits_{i=0}^{n} (z-1)z^i = \sum\limits_{j=1}^{n+1} z^j - \sum\limits_{i=0}^{n} z^i = z^{n+1} - 1 \ &= \ \mathcal{Z} - 1 \end{aligned}$$

$$z=2$$
: $X_{max}=oxed{11...11}=\mathcal{Z}-1$ $\overline{z}=oxed{11...11}+1$

$$\mathcal{Z} - B = \boxed{11...11} - B + 1$$

$$oxed{\mathcal{Z}-B=\overline{B}+1}$$

 $||\mathcal{Z} - B = \overline{B} + 1||$ \overline{B} . . . negation of all bits

 $\ldots + 1$ — so called hot one

$$\text{note.:} \ \ B=0\Rightarrow \mathcal{Z}-B=\mathcal{Z}\equiv 0 \pmod{\mathcal{Z}}$$

$$\overline{B} + 1 = \boxed{11...11} + 1 = 1\boxed{00...00}$$

Subtractor using adder iii

$$R = A + (\mathcal{Z} - B) - q_n \cdot \mathcal{Z} = A - B + (1 - q_n) \cdot \mathcal{Z}$$

$$R = A - B + \overline{q_n} \cdot \mathcal{Z}$$
 $0 \le R < \mathcal{Z}$

$$q_n = 1 \quad \Rightarrow \quad R = A - B \ge 0$$

 $q_n = 0 \quad \Rightarrow \quad R = A - B + \mathcal{Z} < \mathcal{Z} \quad \Rightarrow A - B < 0$

$$q_n = 1 \Rightarrow A \ge B \qquad R = A - B$$

 $q_n = 0 \Rightarrow A < B \qquad R = \mathcal{Z} - (B - A)$

Subtractor using adder iv

complementary pseudocode

If it is
$$q_n = 0$$
, it means $B > A$, then

$$R = \mathcal{Z} - (B - A)$$
 \Rightarrow $B - A = \mathcal{Z} - R$ \Rightarrow $B - A = \overline{R} + 1$

Signed number representation

5 ways to represent negative (as well as non-negative) number X:

1. sign and magnitude

 $\dots \mathcal{P}(X)$

2. radix complement

 $\dots \mathcal{D}(X)$

2's complement -z=2

10's complement - z=10

- 3. diminished radix complement
- $\dots \mathcal{I}(X)$

1's complement - z=2

9's complement - z=10

4. biased code (or excess K) ... $\mathcal{A}(X)$

a. type 0

 $\ldots \mathcal{A}_{\mathbf{0}}(X)$ $\ldots \mathcal{A}_{\mathbf{1}}(X)$

b. type 1

Sign and magnitude

sign & abs value (magnitude):

$$z=2: \qquad \frac{n \quad n-1}{+ \quad a_{n-1}} - \frac{1}{a_1} \quad 0$$

$$abs$$

$$\mathsf{sign}\;\mathsf{bit} = \begin{cases} 0 & \mathsf{for}\; X \geq 0 \\ 1 & \mathsf{for}\; X \leq 0 \end{cases}$$

$$\mathcal{P}(X) = \left\{ egin{array}{ll} X & ext{for } X \geq 0 \\ 2^n + |X| & ext{for } X \leq 0 \end{array}
ight.$$

$$-rac{1}{2}\mathcal{Z} < X < rac{1}{2}\mathcal{Z}$$
 symmetric range

2 zero representation: $\begin{cases} \text{so called "positive zero"} & 0 \ 0 \dots 0 \\ \text{so called "negative zero"} & 1 \ 0 \dots 0 \end{cases}$

Sign and magnitude ii

\boldsymbol{X}	$\mathcal{P}(X)$		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
-0	1000		
-1	1001		
-2	1010		
-3	1011		
-4	1100		
-5	1101		
-6	1110		
-7	1111		

Sign and magnitude iii

addition:

$$(zA,aA)+(zB,aB) o (zC,aC)$$
 ,

where zA, zB and zC are the sign bits and aA, aB and aC are the magnitudes

$$\begin{array}{ll} \text{if (zA=zB)} & \left\{aA+aB\rightarrow aC; \\ zA\rightarrow zC; \\ \text{if (q = 1) overflow;} \right\} \\ \text{else} & \left\{aA+\overline{aB}+1\rightarrow aC; \\ zA\rightarrow zC; \\ \text{if (q = 0)} & \left\{\overline{aC}+1\rightarrow aC; \\ \overline{zC}\rightarrow zC; \right\} \right\} \end{array}$$

q carry-out from higher order

Sign and magnitude iv

sign change:

$$\mathcal{P}(-X) o \mathcal{P}(X) \quad \Longleftrightarrow \quad \overline{\mathsf{MSB}} o \mathsf{MSB}$$

MSB - bit in higher order (first from left)

- Most Significant Bit

subtraction:

$$A - B = A + (-B)$$

to swap zB by zB

else alike the addition

absolute value:

$$\mathcal{P}(X)
ightarrow \mathcal{P}(\,|X|\,) \quad \Longleftrightarrow \quad \mathbf{0}
ightarrow \mathsf{MSB}$$

Radix complement

 ${\rm radix\ complement\ } \begin{cases} {\rm 2's\ complement\ for\ } z=2 \\ {\rm 10's\ complement\ for\ } z=10 \end{cases}$

$$\mathcal{D}(X) = egin{cases} X & \mathsf{pro}\ X \geq 0 \ \mathcal{Z} + X = \mathcal{Z} - |X| & \mathsf{pro}\ X < 0 \end{cases}$$

$$-rac{1}{2}\mathcal{Z} \leq X < rac{1}{2}\mathcal{Z}$$
 asymmetric range

$$\begin{aligned} \mathsf{MSB} &= \mathbf{0} &\iff X \geq \mathbf{0} \\ \mathsf{MSB} &= \mathbf{1} &\iff X < \mathbf{0} \end{aligned}$$

$$\mathsf{MSB} = 1 \quad \Longleftrightarrow \quad X < 0$$

$$\mathcal{D}(X) \equiv X \pmod{\mathcal{Z}}$$

Radix complement ii

z=2:

X	$\mathcal{D}(X)$
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

Radix complement iii

addition:
$$\mathcal{D}(A+B) \equiv A+B \equiv \mathcal{D}(A) + \mathcal{D}(B) \pmod{\mathcal{Z}}$$

add up $\mathcal{D}(A) + \mathcal{D}(B)$ and ignore carry q_n from higher order

 $\textbf{subtraction: } \mathcal{D}(A\!-\!B) \equiv A - B \equiv \mathcal{D}(A) \!-\! \mathcal{D}(B) \ \, (\mathsf{mod} \,\, \mathcal{Z})$

subtract $\mathcal{D}(B)$ from $\mathcal{D}(A)$ and

ignore borrow v_n from higher order

or

convert subtraction on addition, that is add up $\mathcal{D}(A)+\overline{\mathcal{D}(B)}+1$ and ignore carry q_n from higher order

Carry (eventually borrow) is ignored.

? How to detect overflow? $(\text{that is } A+B \geq \frac{1}{2}\mathcal{Z} \text{ or } A+B < -\frac{1}{2}\mathcal{Z})$

Radix complement iv

overflow during addition in 2's complement code:

- 1. A < 0 a $B \ge 0 \Rightarrow A \le A + B < B$ B < 0 a $A \ge 0 \Rightarrow B \le A + B < A$! in this case overflow can not occur!
- 2. $A \geq 0$ a $B \geq 0$ overflow: $A + B \geq \frac{1}{2}\mathcal{Z}$ result has opposite sign see example $5 + 4 \rightarrow -7$

3. A<0 a B<0 overflow: $A+B<-\frac{1}{2}\mathcal{Z}$ result has oposite sign see example $(-5)+(-5)\to 6$

Radix complement v

overflow during addition: same sign of both operands and opposite sign of result

overflow during addition:

subtraction converted on addition

 \Rightarrow There is nothing to solve.

will be referred to: $\mathcal{D}(A) + \mathcal{D}(B) - q_n \cdot \mathcal{Z} = S$ $\mathcal{D}(A) \sim a_n^{\mathcal{D}} a_{n-1}^{\mathcal{D}} \dots a_1^{\mathcal{D}} a_0^{\mathcal{D}}$ $\mathcal{D}(B) \sim b_n^{\mathcal{D}} b_{n-1}^{\mathcal{D}} \dots b_1^{\mathcal{D}} b_0^{\mathcal{D}}$ $S \sim s_n^{\mathcal{D}} s_{n-1}^{\mathcal{D}} \dots s_1^{\mathcal{D}} s_0^{\mathcal{D}}$ over — overflow

Radix complement vi

detection of overflow:

$$egin{aligned} oldsymbol{1} & a_n^{\mathcal{D}} = b_n^{\mathcal{D}} = 0 & \mathsf{a} & s_n^{\mathcal{D}} = 1 \ & a_n^{\mathcal{D}} = b_n^{\mathcal{D}} = 1 & \mathsf{a} & s_n^{\mathcal{D}} = 0 \end{aligned}$$
 or

$$over = \overline{a_n^{\mathcal{D}}} \cdot \overline{b_n^{\mathcal{D}}} \cdot s_n^{\mathcal{D}} + a_n^{\mathcal{D}} \cdot b_n^{\mathcal{D}} \cdot \overline{s_n^{\mathcal{D}}}$$

2

$egin{aligned} a_n^{\mathcal{D}} \ egin{aligned} egin{aligned} a_n^{\mathcal{D}} \ egin{aligned} \end{array}$	$egin{array}{c} b_n^{\mathcal{D}} \ \hline oldsymbol{0} \end{array}$	$p_n^{\mathcal{D}}$	$\mid q_n^{\mathcal{D}} \mid$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$
0	0	0	0	0
0	0 1	$egin{array}{c} p_n^{\mathcal{D}} \ 0 \ 1 \ 0 \end{array}$	$egin{array}{c} q_n^{\mathcal{D}} \ 0 \ 0 \end{array}$	1 1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	$egin{array}{c c} 0 \\ 1 \\ 1 \\ 1 \end{array}$	$\left egin{array}{c} 0 \\ 1 \end{array} \right $
1	1	1	1	1

$$q_n=p_n$$

$$q_n \neq p_n$$

$$q_n = p_n$$

$$q_n = p_n$$

$$q_n = p_n$$

$$q_n = p_n$$

$$q_n \neq p_n$$

$$q_n = p_n$$

$$over = q_n \oplus p_n$$

Radix complement z=2: addition: $\mathcal{D}(A+B) \equiv \mathcal{D}(A) + \mathcal{D}(B) \pmod{\mathcal{Z}}$ $a_3^D b_3^D a_2^D b_2^D a_1^D b_1^D a_0^D b_0^D$ 1 over $a_3^D b_3^D \qquad a_2^D b_2^D \qquad a_1^D b_1^D \qquad a_0^D b_0^D$ over -

Radix complement viii

z=2:

sign change:

$$\mathcal{D}(-X) \equiv \overline{\mathcal{D}(X)}$$
 +1 (mod \mathcal{Z})

subtraction: A - B = A + (-B)

Diminished radix complement

 $\begin{array}{l} {\rm radix\ complement\ } \begin{cases} {\rm 1's\ complement\ for\ } z=2 \\ {\rm 9's\ complement\ for\ } z=10 \\ \end{array}$

$$\mathcal{I}(X) = egin{cases} X & ext{for } X \geq 0 \ \hline |X| & ext{for } X \leq 0 \end{cases}$$

$$-rac{1}{2}\mathcal{Z} < X < rac{1}{2}\mathcal{Z}$$
 symmetric range

two zero representation: $\begin{cases} \text{so called "positive zero"} & 0 \ 0 \dots 0 \\ \text{so called "negative zero"} & 1 \ 1 \dots 1 \end{cases}$

$$\begin{array}{cccc} \mathsf{MSB} = \mathbf{0} & \Longrightarrow & X \geq \mathbf{0} \\ \mathsf{MSB} = \mathbf{1} & \Longrightarrow & X \leq \mathbf{0} \end{array}$$

$$T + \overline{T} = 11...11 = \mathcal{Z}-1$$
 $\boxed{\mathcal{I}(X) \equiv X \pmod{\mathcal{Z}-1}}$

Diminished radix complement ii

-1 0 0 1 2	15 0 1
-2/ 3	13/3
-3\frac{1}{2} - \frac{1}{2} + \frac{1}{2} 4 -	12 4
-4 6	11 5
-6 -7 7	9 8 7

X	$\mathcal{I}(X)$
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
- 0	1111

MIE-ARI 2017/18

CS - 30

Diminished radix complement iii

addition:
$$\mathcal{I}(A+B) \equiv \mathcal{I}(A) + \mathcal{I}(B) \pmod{\mathcal{Z}-1}$$

$$\mathcal{I}(A)+\mathcal{I}(B)\geq\mathcal{Z}\Rightarrow q{=}1$$
 necessary to subtract \mathcal{Z} and add $1\Longrightarrow$ circular Carry

feedback sequential circuit solution: correction K on input carry into lower order K=1, in a case, when carry go over all orders

Diminished radix complement iv

z=2:

sign change:

$$\mathcal{I}(-X) \equiv \overline{\mathcal{I}(X)}$$

subtraction: A - B = A + (-B)

unsigned numbers + adder for radix complement code radix complement pseudo-code (comparison with 2's complement pseudo-code)

Biased code

$$\mathcal{A}(X) = X + K$$
,

where K is "suitable" constant

"suitable" constants:

$$\frac{1}{2}\mathcal{Z}$$
 \bowtie $\mathcal{A}_0(X)$... biased code type 0 $\frac{1}{2}\mathcal{Z}-1$ \bowtie $\mathcal{A}_1(X)$... biased code type 1

Code is monotonous — growing.

addition:
$$A(A+B) = A(A) + A(B) - K$$

subtraction:
$$A(A - B) = A(A) - A(B) + K$$

It is true (of course) iff overflow doesn't occurs!

Biased code - type 0

$$\mathcal{A}_0(X) = X + \frac{1}{2}\mathcal{Z}$$

$$-rac{1}{2}\mathcal{Z} \leq X < rac{1}{2}\mathcal{Z}$$
 asymmetric range

$$MSB = 1 \iff X > 0$$

$$\begin{aligned} \mathsf{MSB} &= 1 &\iff X \geq 0 \\ \mathsf{MSB} &= 0 &\iff X < 0 \end{aligned}$$

$$\mathcal{A}_{\mathbf{0}}(X) \equiv \mathcal{D}(X) \pmod{\frac{1}{2}\mathcal{Z}}$$

! $\mathcal{A}_{\mathbf{0}}(X)$ and $\mathcal{D}(X)$ differ in the MSB only !

$$MSB(A_0(X)) = \overline{MSB(D(X))}$$

⇒ **operations** (addition, subtraction, sign change etc.):

$$\mathcal{A}_0(operands) \rightarrow \mathcal{D}(operands)$$

$$\mathcal{D}(\mathit{result}) o \mathcal{A}_0(\mathit{result})$$

Biased code - type 0 ii

z=2:

6, 7, -8, -7, -6	14 15 0 1
$\frac{5}{4} \left(+ \right) - \frac{5}{4} - \frac{1}{4} - \frac{1}{4$	$\begin{array}{c} 13 \\ \end{array}$
$\begin{array}{c c} 3 & & & & & & & & & & & & & & & & & & &$	10 9 8 7 6

X	$\mathcal{A}_{0}(X)$
-8	0000
-7	0001
-6	0010
-5	0011
-4	0100
-3	0101
-2	0110
-1	0111
0	1000
1	1001
2	1010
3	1011
4	1100
5	1101
6	1110
7	1111

MIE-ARI 2017/18

CS - 36

Biased code - type 1

$$\mathcal{A}_1(X) = X + \tfrac{1}{2}\mathcal{Z} - 1$$

$$-\tfrac{1}{2}\mathcal{Z} < X \le \tfrac{1}{2}\mathcal{Z} \quad \text{asymmetric range}$$

$$\mathsf{MSB} = 1 \iff X > 0$$

$$\begin{aligned} \mathsf{MSB} &= 1 &\iff X > 0 \\ \mathsf{MSB} &= 0 &\iff X \leq 0 \end{aligned}$$

Biased code - type 1 ii

z=2:

\boldsymbol{X}	$\mathcal{A}(1)X$
-7	0000
-6	0001
-5	0010
-4	0011
-3	0100
-2	0101
-1	0110
0	0111
1	1000
2	1001
3	1010
4	1011
5	1100
6	1101
7	1110
8	1111

MIE-ARI 2017/18

CS - 38

Biased code - type 1 iii

addition and subtraction:

$$\mathcal{A}(A+B) = \mathcal{A}(A) + \mathcal{A}(B) - K$$

 $\mathcal{A}(A-B) = \mathcal{A}(A) - \mathcal{A}(B) + K$

$$\mathcal{A}(A+B) = \mathcal{A}(A) + \mathcal{A}(B) - \frac{1}{2}\mathcal{Z} + 1$$

 $\mathcal{A}(A-B) = \mathcal{A}(A) - \mathcal{A}(B) + \frac{1}{2}\mathcal{Z} - 1$

$$-rac{1}{2}\mathcal{Z}\equiv +rac{1}{2}\mathcal{Z}\pmod{\mathcal{Z}} \qquad rac{1}{2}\mathcal{Z}\sim \boxed{100.\dots00}$$

$$-\frac{1}{2}\mathcal{Z}\equiv +\frac{1}{2}\mathcal{Z}\pmod{\mathcal{Z}} imes \mathsf{negation}$$
 of bit in higher order

overflow:

addition: same sign of addend

and different sign of result

subtraction: sign of minuend and subtrahend are different

signs of minuend and result are different

(derivation is analogous as in 2's complement code)

Biased code - type 1 iv

z=2:

adder / subtractor

sign change: -X = 0 - X

$$-X$$

$$0-X$$

Biased code - type 1 v

overflow detection

a_n	b_n	p_n	q_n	s_n		
0	0	0	0	0	$q_n = s_n$	
0	0	1	0	1		$q_n \neq s_n$
0	1	0	0	1		$q_n \neq s_n$
0	1	1	1	0		$q_n \neq s_n$
1	0	0	0	1		$q_n \neq s_n$
1	0	1	1	0		$q_n \neq s_n$
1	1	0	1	0		$q_n \neq s_n$
1	1	1	1	1	$q_n = s_n$	

$$over = \overline{q_n \oplus s_n}$$