

- ★ Super Low Gate Charge
- ★ Green Device Available
- ★ Excellent Cdv/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	RDSON	ID
100V	185mΩ	4A

Description

The XR4N10S is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

The XR4N10S meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V _G S	Gate-Source Voltage	±20	V
I _D @T _A =25°C	Continuous Drain Current	4	Α
I _D @T _A =70°C	Continuous Drain Current	2	Α
I _{DM}	Pulsed Drain Current ²	12	А
P _D @T _A =25°C	Total Power Dissipation ³	1.6	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур. Мах.		Unit	
R _{θJA}	Thermal Resistance Junction-ambient ¹		78	°C/W	
Rejc	Thermal Resistance Junction-Case ¹			°C/W	

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V	
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C	
D	Static Drain-Source On-Resistance ²	V_{GS} =10V , I_D =1.5A		185	240		
R _{DS(ON)}	Static Dialii-Source On-Resistance	V_{GS} =4.5V , I_D =1A	V _{GS} =4.5V , I _D =1A		250	mΩ	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} . In =250uA	1.2	1.6	2.2	V	
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} -V _{DS} , I _D -250uA				mV/°C	
	Drain Source Leakage Current	V _{DS} =100V , V _{GS} =0V , T _J =25°C			1		
I _{DSS}	Drain-Source Leakage Current	V _{DS} =100V, V _{GS} =0V , T _J =100°C			100	uA	
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA	
gfs	Forward Transconductance	V _{DS} =50V , I _D =2A		-		S	
Rg	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		2		Ω	
Qg	Total Gate Charge			13.8			
Q _{gs}	Gate-Source Charge	arge V_{DS} =50V , V_{GS} =10V , I_D =2A		2.1		nC	
Q _{gd}	Gate-Drain Charge			2.9			
T _{d(on)}	Turn-On Delay Time			6			
Tr	Rise Time	VGS=10V, VDD=50V,		10			
T _{d(off)}	Turn-Off Delay Time	RG=1Ω, ID=2A		12		ns	
T _f	Fall Time			8			
C _{iss}	Input Capacitance			436			
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , f=1MHz		18		pF	
C _{rss}	Reverse Transfer Capacitance			16			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			4	А
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V

Note:

 $\label{eq:final_policy} F \dot{\underline{\textbf{H}}} \text{ The } \dot{\underline{\textbf{A}}} \text{ tata } \dot{\underline{\textbf{A}}} \text{ ested } \dot{\underline{\textbf{A}}} \text{ by } \dot{\underline{\textbf{A}}} \text{ surface } \dot{\underline{\textbf{A}}} \text{ nounted } \dot{\underline{\textbf{A}}} \text{ on } \dot{\underline{\textbf{A}}} \dot{\underline{\textbf{A}}} \text{ in } \dot{\underline{\textbf{A}}} \text{ ested } \dot{\underline{\textbf{A}}} \text{ or } \dot{\underline{\textbf{A}}} \text{ or } \dot{\underline{\textbf{A}}} \text{ ested } \dot{\underline{\textbf{$

dissipation.

CÈ he Átata Átested Áby Ápulsed Ápulse Ávidth Ás 300 us Áduty Átycle Ás 2% 3 È he Ábower Átissipation Ás Áimited Áby Átotal Ápower Átissipation Ás Áimited Áby Átotal Ápower Á È he Átata Ás Áheoretically Áhe Ásame Ás s Ápand Ápa Án Áteal Áspplications Ás hould Ábe Áimited Áby Átotal Ápower Á

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

N-Ch 100V Fast Switching MOSFETs

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

SOP-8 Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	