# BEST PRACTICES FOR DEMAND ESTIMATION WITH pyblp

CHRIS CONLON AND JEFF GORMAKER

NYU STERN AND NY FED

BAM!- DECEMBER 2018

# ARMSTRONG (2016): WEAK INSTRUMENTS?

Consider the limit as  $J \rightarrow \infty$ 

$$\frac{s_{jt}(\mathbf{p_t})}{\left|\frac{\partial s_{jt}(\mathbf{p_t})}{\partial p_{jt}}\right|} = \frac{1}{\alpha} \frac{1}{1 - s_{jt}} \rightarrow \frac{1}{\alpha}$$

- Hard to use markup shifting instruments to instrument for a constant.
- How close to the constant do we get in practice?
- $\blacksquare$  Average of  $x_{-i}$  seems like an especially poor choice. Why?
- Shows there may still be some power in: products per market, products per firm.
- Convergence to constant extends to mixed logits (see Gabaix and Laibson 2004).
- Evidence that you really need cost shifters.

# **OPTIMAL INSTRUMENTS**

How to construct optimal instruments in form of Chamberlain (1987)

$$E\left[\frac{\partial \xi_{jt}}{\partial \theta} | X_t, w_{jt}\right] = \left[\beta, E\left[\frac{\partial \xi_{jt}}{\partial \alpha} | X_t, w_{jt}\right], E\left[\frac{\partial \xi_{jt}}{\partial \sigma} | X_t, w_{jt}\right]\right]$$

# Some challenges:

- 1.  $p_{jt}$  depends on  $X_t, w_t, \xi_t$  in a highly nonlinear way (no explicit solution!).
- 2.  $E\left[\frac{\partial \xi_{jt}}{\partial \sigma}|X_t, w_t\right] = E\left[\left[\frac{\partial \mathbf{s_t}}{\partial \delta_t}\right]^{-1}\left[\frac{\partial \mathbf{s_t}}{\partial \sigma}\right]|X_t, w_t\right]$  (not conditioned on endogenous p!) "Feasible" Recipe:
  - 1. Fix  $\hat{\theta} = (\hat{\alpha}, \hat{\beta}, \hat{\sigma})$  and draw  $\xi_t$  from empirical density
  - 2. Solve fixed point equation for  $\hat{p_{jt}}$
  - 3. Compute necessary Jacobian
  - 4. Average over all values of  $\xi_t$ . (Lazy approach: use only  $\xi = 0$ ).

# **OPTIMAL INSTRUMENTS**

- Since any f(x,z) satisfies our orthogonality condition, we can try to choose f(x,z) as a basis to approximate optimal instruments.
- This is challenging in practice and in fact suffers from a curse of dimensionality.
- This is frequently given as a rationale behind higher order x's.
- When the dimension of x is low this may still be feasible.  $(K \le 3)$ .

# OPTIMAL INSTRUMENTS: REYNAERT VERBOVEN (2014)

• Optimal instruments are easier to work out if p = mc.

$$c = p + \underbrace{\Delta^{-1}s}_{\to o} = X\gamma_1 + W\gamma_2 + \omega$$

■ Linear cost function means linear reduced-form price function.

$$E\left[\frac{\partial \xi_{jt}}{\partial \alpha}|z_{t}\right] = E[p_{jt}|z_{t}] = x_{jt}\gamma_{1} + w_{jt}\gamma_{2}$$

$$E\left[\frac{\partial \omega_{jt}}{\partial \alpha}|z_{t}\right] = 0, \quad E\left[\frac{\partial \omega_{jt}}{\partial \sigma}|z_{t}\right] = 0$$

$$E\left[\frac{\partial \xi_{jt}}{\partial \sigma}|z_{t}\right] = E\left[\frac{\partial \delta_{jt}}{\partial \sigma}|z_{t}\right]$$

■ If we are worried about endogenous oligopoly markups is this a reasonable idea?

# OPTIMAL INSTRUMENTS: REYNAERT VERBOVEN (2014)

Table 2: Bias and Efficiency with Imperfect Competition

|            |      | Single Equation GMM |        |       |            |        |       |            |        |       |
|------------|------|---------------------|--------|-------|------------|--------|-------|------------|--------|-------|
|            |      | $g_{jt}^1$          |        |       | $g_{jt}^2$ |        |       | $g_{jt}^3$ |        |       |
|            | True | Bias                | St Err | RMSE  | Bias       | St Err | RMSE  | Bias       | St Err | RMSE  |
| $\beta^0$  | 2    | -0.127              | 0.899  | 0.907 | -0.155     | 0.799  | 0.814 | -0.070     | 0.514  | 0.519 |
| $\beta^1$  | 2    | -0.068              | 0.899  | 0.901 | 0.089      | 0.766  | 0.770 | -0.001     | 0.398  | 0.398 |
| $\alpha$   | -2   | 0.006               | 0.052  | 0.052 | 0.010      | 0.049  | 0.050 | 0.010      | 0.043  | 0.044 |
| $\sigma^1$ | 1    | -0.162              | 0.634  | 0.654 | -0.147     | 0.537  | 0.556 | -0.016     | 0.229  | 0.229 |
|            |      | Joint Equation GMM  |        |       |            |        |       |            |        |       |
|            |      | $g_{it}^1$          |        |       | $g_{it}^2$ |        |       | $g_{jt}^3$ |        |       |
|            | True | Bias                | St Err | RMSE  | Bias       | St Err | RMSE  | Bias       | St Err | RMSE  |
| $\beta^0$  | 2    | -0.095              | 0.714  | 0.720 | -0.103     | 0.677  | 0.685 | 0.005      | 0.459  | 0.459 |
| $\beta^1$  | 2    | 0.089               | 0.669  | 0.675 | 0.098      | 0.621  | 0.628 | -0.009     | 0.312  | 0.312 |
| $\alpha$   | -2   | 0.001               | 0.047  | 0.047 | 0.002      | 0.046  | 0.046 | -0.001     | 0.043  | 0.043 |
| $\sigma^1$ | 1    | -0.116              | 0.462  | 0.476 | -0.110     | 0.418  | 0.432 | 0.003      | 0.133  | 0.133 |
|            |      |                     |        |       |            |        |       |            |        |       |

Bias, standard errors (St Err) and root mean squared errors (RMSE) are computed from 1000 Monte Carlo replications. Estimates are based on the MPEC algorithm and Sparse Grid integration. The instruments  $g_{jt}^*$ ,  $g_{jt}^*$ , and  $g_{jt}^*$  are defined in section 2.4 and 2.5.

# DIFFERENTIATION INSTRUMENTS: GANDHI HOUDE (2016)

- Also need instruments for the  $\Sigma$  or  $\sigma$  random coefficient parameters.
- Instead of average of other characteristics  $h(x) = \frac{1}{J-1} \sum_{k \neq j} x_k$ , can transform as distance to  $x_i$ .

$$d_{jt}^k = x_k - x_j$$

 And use this transformed to construct two kinds of IV (Squared distance, and count of local competitors)

$$DIV_1 = \sum_{j \in F} d_{jt}^2, \qquad \sum_{j \notin F} d_{jt}^2$$

$$DIV_2 = \sum_{j \in F} I[d_{jt} < c] \qquad \sum_{j \notin F} I[d_{jt} < c]$$

■ They choose c to correspond to one standard deviation of x across markets.

# DIFFERENTIATION INSTRUMENTS: GANDHI HOUDE (2016)

Figure 4: Distribution of parameter estimates in small and large samples



# DIFFERENTIATION INSTRUMENTS: GANDHI HOUDE (2016)

Table 5: Monte-Carlo simulations with endogenous prices.

|            |         | IV: Sum of charact. |         | IV: Local competitors |         |  |
|------------|---------|---------------------|---------|-----------------------|---------|--|
|            |         | w/o cost            | w/ cost | w/o cost              | w/ cost |  |
| $\beta_p$  |         |                     |         |                       |         |  |
|            | Average | 0.46                | 1.08    | 1.00                  | 1.02    |  |
|            | RMSE    | 2.19                | 1.32    | 0.22                  | 0.18    |  |
| $\sigma_p$ |         |                     |         |                       |         |  |
|            | Average | 13.24               | 17.47   | 19.10                 | 19.68   |  |
|            | RMSE    | 10.84               | 7.95    | 3.93                  | 1.51    |  |
|            | 1.      | Monley              | D:ff    | stiction TVo          |         |  |

<sup>(</sup>a) Market versus Differentiation IVs

|            |         | IV: Sum of | charact. | IV: Local competitors |         |  |
|------------|---------|------------|----------|-----------------------|---------|--|
|            |         | Market IV  | Opt. IV  | Diff. IV              | Opt. IV |  |
| $\beta_p$  |         |            |          |                       |         |  |
|            | Average | 0.46       | 1.29     | 1.00                  | 1.16    |  |
|            | RMSE    | 2.19       | 0.93     | 0.22                  | 0.45    |  |
| $\sigma_p$ |         |            |          |                       |         |  |
|            | Average | 13.24      | 16.61    | 19.10                 | 17.28   |  |
|            | RMSE    | 10.84      | 28.23    | 3.93                  | 19.07   |  |

<sup>(</sup>b) Optimal IV approximation without cost shifter

# AN ONGOING PROJECT...

#### What do we have so far?

- Available on PyPI pip install pyblp
- Extensive documentation: https://pyblp.readthedocs.io/en/stable/
- Long list of features
- 6k downloads: who are these people?

#### SOME SETUP

We can break up the parameter space into three parts:

- $\blacksquare$   $\theta_1$ : linear exogenous demand parameters,
- $\blacksquare$   $\theta_2$ : nonlinear endogenous parameters including price and random coefficients
- $\blacksquare$   $\theta_3$ : linear exogenous supply parameters.

#### THE BASIC SETUP

- (a) For each market t: solve  $S_{jt} = s_{jt}(\delta_{t}, \theta_{2})$  for  $\widehat{\delta}_{t}(\theta_{2})$ .
- (b) For each market t: use  $\widehat{\delta}_{\cdot t}(\theta_2)$  to construct  $\eta_{\cdot t}(\mathbf{q_t}, \mathbf{p_t}, \widehat{\delta}_{\cdot t}(\theta_2), \theta_2)$
- (c) For each market t: Recover  $\widehat{\mathit{mc}}_{it}(\widehat{\delta}_{\cdot t}(\theta_2), \theta_2) = p_{it} \eta_{it}(\widehat{\delta}_{\cdot t}(\theta_2), \theta_2)$
- (d) Stack up  $\widehat{\delta}_t(\theta_2)$  and  $\widehat{mc}_{it}(\widehat{\delta}_t(\theta_2), \theta_2)$  and use linear IV-GMM to recover  $[\widehat{\theta}_1(\theta_2), \widehat{\theta}_3(\theta_2)]$  following the recipe in Appendix
- (e) Construct the residuals:

$$\begin{split} \widehat{\xi_{jt}}(\theta_2) &= \widehat{\delta_{jt}}(\theta_2) - x_{jt}\widehat{\beta}(\theta_2) + \alpha p_{jt} \\ \widehat{\omega}_{jt}(\theta_2) &= \widehat{mc}_{jt}(\theta_2) - [x_{jt} \, w_{jt}] \, \widehat{\gamma}(\theta_2) \end{split}$$

(f) Construct sample moments

$$g_n^D(\theta_2) = \frac{1}{N} \sum_{jt} Z_{jt}^{D'} \widehat{\xi}_{jt}(\theta_2)$$
$$g_n^S(\theta_2) = \frac{1}{N} \sum_{it} Z_{jt}^{S'} \widehat{\omega}_{jt}(\theta_2)$$

(g) Construct GMM objective  $Q_n(\theta_2) = \begin{bmatrix} g_n^d(\theta_2) \\ g_n^d(\theta_2) \end{bmatrix}' W \begin{bmatrix} g_n^d(\theta_2) \\ g_n^d(\theta_2) \end{bmatrix}$ 

#### ADDITIONAL DETAILS

Some different definitions:

$$y_{jt}^{D} := \widehat{\delta}_{jt}(\theta_{2}) + \alpha p_{jt} = x_{jt}'\beta + \xi_{t} =: x_{jt}^{D'}\beta + \xi_{jt}$$

$$y_{jt}^{S} := \widehat{mc}_{jt}(\theta_{2}) = (x_{jt} \ w_{jt})'\gamma + \omega_{t} =: x_{jt}^{S'}\gamma + \omega_{jt}$$
(1)

Stacking the system across observations yields:1

$$\begin{bmatrix} y_D \\ y_S \end{bmatrix} = \begin{bmatrix} X_D & O \\ O & X_S \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \end{bmatrix} + \begin{bmatrix} \xi \\ \omega \end{bmatrix}$$
(2)

<sup>&</sup>lt;sup>1</sup>Note: we cannot perform independent regressions unless we are willing to assume that  $Cov(\xi_{it}, \omega_{it}) = 0.$ 



#### **#1: SOLVING THE CONTRACTION**

BLP also propose a fixed-point approach to solve the  $J_t \times J_t$  system of equations for shares. They show that the following is a contraction mapping  $f(\delta) = \delta$ :

$$f: \delta_{:t}^{h+1} \leftrightarrow \delta_{:t}^{h} + \ln \mathcal{S}_{:t} - \ln \mathbf{s}_{:t}(\delta_{:t}^{h}, \theta_{2})$$
(3)

- This kind of contraction mapping is linearly convergent where the rate of convergence is proportional to  $\frac{L(\theta_2)}{1-L(\theta_2)}$  where  $L(\theta_2)$  is the Lipschitz constant.
- Because (3) is a contraction, we know that  $L(\theta_2) < 1$ .
- DFS2012 show that for the BLP contraction the Lipschitz constant is defined as  $L(\theta_2) = \max_{\delta \in \Delta} \left\| \mathbf{I}_{J_t} \frac{\partial \log \mathbf{s}_{\cdot t}}{\partial \delta_{\cdot t}} (\delta_{\cdot t}, \theta_2) \right\|_{\infty}$ .

# #1: Accelerating the Contraction (Newton's Method)

$$\delta_{\cdot t}^{h+1} \leftrightarrow \delta_{\cdot t}^{h} - \lambda J_{\textbf{s}}^{-1}(\delta_{\cdot t}^{h}, \theta_{2}) \cdot \textbf{S}_{\textbf{t}}(\delta_{\cdot t}^{h}, \theta_{2})$$

- Each Newton-Raphson iteration would require computation of:
  - ▶  $J_t$  vector of marketshares  $\mathbf{s_t}(\delta_{t}^h, \theta_2)$ , the  $J_t \times J_t$
  - ▶ Jacobian matrix  $J_{\mathbf{s}}(\delta_{\cdot t}^{h}, \theta_{2}) = \frac{\partial \mathbf{s}_{\cdot t}}{\partial \delta_{\cdot t}}(\delta_{\cdot t}^{h}, \theta_{2})$
  - as well as its inverse  $J_{\mathbf{s}}^{-1}(\delta_{\cdot t}^h)$ .
- Inverse Jacobian can be costly when  $J_t$  is large (and requires integration).
- Can speed up using Anderson or Aitken Acceleration.

#### #1: ACCELERATED FIXED POINTS

Most of these methods use information from mutliple iterations  $(\delta^h, \delta^{h+1}, \delta^{h+2}, f(\delta^h), f(f(\delta^h)))$  to approximate  $J_s$  or  $J_s^{-1}$ :

$$\delta_{\cdot t}^{h+1} = \delta_{\cdot t}^{h} - 2\alpha^{h} r^{h} + (\alpha^{h})^{2} v^{h}, \quad \alpha^{h} = \frac{(v^{h})' r^{h}}{(v^{h})' v^{h}}$$

$$r^{h} = f(\delta_{\cdot t}^{h}) - \delta_{\cdot t}^{h}, \quad v^{h} = f(f(\delta_{\cdot t}^{h})) - 2f(\delta_{\cdot t}^{h}) + \delta_{\cdot t}^{h}$$

$$(4)$$

- This particular algorithm is known as SQUAREM used in biostats for EM algorithms.
- Applied to BLP by Reynaerts, Varadhan, Nash (2012).
- Iterations are more costly but much more accurate (almost a Newton step).
- Speedup is 2-12x.

#### #2: HIGH DIMENSIONAL FIXED EFFECTS

- Suppose I want to incorporate store-upc and store-week FE using Nielsen Data.
  - ► Around 500 weeks since 2006.
  - ► Around 3000+ UPCs in a category like distilled spirits or breakfast cereal.
  - ► Can easily find ourselves estimating 50,000+ fixed effects in a single dimension and several thousand in the other.

# #2: HIGH DIMENSIONAL FIXED EFFECTS

There are several differencing algorithms for removing the fixed effects. For simplicitly let's assume there are two dimensions of fixed effects N and T where N >> T:

$$\begin{split} \widetilde{y}_{it} &= y_{it} - \overline{y}_{i.} - \overline{y}_{.t} \\ \widetilde{x}_{it} &= x_{it} - \overline{x}_{i.} - \overline{x}_{.t} \end{split}$$

- Could do *iterative demeaning*: easy if  $Cov(\bar{x}_{t}, \bar{x}_{i}) = o$ . Otherwise hard.
- LSDV requires inverting the  $(N + T) \times (N + T)$  matrix which can be difficult to impossible.
- reghdfe like Correia (2016) does iterative projection of x on y and never inverts the matrix but FE always depend on both (y,x).

# #2: HIGH DIMENSIONAL FIXED EFFECTS: SOMAINI WOLAK (2016)

#### Adapt Method of Somaini Wolak (2016):

- Use FLW theorem and only invert the  $(T \times T)$  matrix.
- The key is that we can demean x once and never again.
- Speedup is big. Memory usage is limited.
- Can get into trouble when both dimensions are very large.

# **#3: SOLVING PRICING EQUILIBRIA**

Recall the multi-product Bertrand FOCs:

$$\begin{split} \arg\max_{p \in \mathcal{J}_f} \pi_f(\mathbf{p}) &= \sum_{j \in \mathcal{J}_f} (p_j - c_j) \cdot q_j(\mathbf{p}) \\ \to \mathsf{O} &= q_j(\mathbf{p}) + \sum_{k \in \mathcal{J}_f} (p_k - c_k) \frac{\partial q_k}{\partial p_j}(\mathbf{p}) \end{split}$$

It is helpful to define the matrix  $\Omega$  with entries:

$$\Omega_{(j,k)}(\mathbf{p}) = \left\{ \begin{array}{ll} -\frac{\partial q_j}{\partial p_k}(\mathbf{p}) & \text{for } (j,k) \in \mathcal{J}_f \\ \text{O} & \text{for } (j,k) \notin \mathcal{J}_f \end{array} \right\}$$

We can re-write the FOC in matrix form:

$$q(\mathbf{p}) = \Omega(\mathbf{p}) \cdot (\mathbf{p} - \mathbf{mc})$$

# **#3: SOLVING PRICING EQUILIBRIA**

■ Can we iterate on the price relation until we converge to a new equilibrium?

$$\mathbf{p} \leftarrow \widehat{\mathbf{mc}} - \Omega(\mathbf{p})^{-1}q(\mathbf{p})$$

- While tempting, this doesn't work. (It is **not** a contraction).
- There is a modification that is a contraction for logit type models.
- You can always get lucky(!)

# **#3: SOLVING PRICING EQUILIBRIA**

■ For the logit (and variants) we can factor  $\frac{\partial q_j}{\partial p_k}$  into two parts.

$$\Omega_{jk}(\mathbf{p}) = \underbrace{\alpha \cdot I[j=k] \cdot s_j(\mathbf{p})}_{\Lambda(\mathbf{p})} - \underbrace{\alpha \cdot s_j(\mathbf{p}) s_k(\mathbf{p})}_{\Gamma(\mathbf{p})}$$

- $\Gamma(\mathbf{p})$  and  $\Lambda(\mathbf{p})$  are  $J \times J$  matrices and  $\Lambda(\mathbf{p})$  is diagonal and (j, k) is nonzero in  $\Gamma(\mathbf{p})$  only if (j, k) share an owner.
- After factoring we can rescale by  $\Lambda^{-1}(\mathbf{p})$

$$(\mathbf{p} - \mathbf{mc}) \leftrightarrow \Lambda^{-1}(\mathbf{p}) \cdot \Gamma(\mathbf{p}) \cdot (\mathbf{p} - \mathbf{mc}) - \Lambda^{-1}(\mathbf{p}) \cdot s(\mathbf{p})$$

- This alternative fixed point is in fact a contraction.
- Moreover the rate of convergence is generally fast and stable (much more than Gauss-Seidel or Gauss-Jacobi).

# **#4: OPTIMAL INSTRUMENTS**

Chamberlain (1987) tells us the optimal instruments for this supply-demand system of  $G\Omega^{-1}$  where for a given observation n,

$$G_n := \underbrace{\begin{bmatrix} \frac{\partial \xi}{\partial \beta} & \frac{\partial \omega}{\partial \beta} \\ \frac{\partial \xi}{\partial \xi} & \frac{\partial \omega}{\partial \alpha} \\ \frac{\partial \zeta}{\partial \sigma} & \frac{\partial \omega}{\partial \gamma} \\ \frac{\partial \xi}{\partial \gamma} & \frac{\partial \omega}{\partial \gamma} \end{bmatrix}_n}_{(K_1 + K_2 + K_3) \times 2} = \begin{bmatrix} -x & o \\ \xi_{\alpha} & \omega_{\alpha} \\ \xi_{\sigma} & \omega_{\sigma} \\ o & -x \\ o & -w \end{bmatrix}_n \qquad \Omega := \underbrace{\begin{bmatrix} v_{\xi}^2 & v_{\xi\omega} \\ v_{\xi\omega} & v_{\omega}^2 \\ v_{\xi\omega} & v_{\omega}^2 \end{bmatrix}}_{2 \times 2}$$

# **#4: OPTIMAL INSTRUMENTS**

$$G_{n}\Omega^{-1} = \frac{1}{v_{\xi}^{2}v_{\omega}^{2} - (v_{\xi\omega})^{2}} \times \begin{bmatrix} -v_{\omega}^{2}x & v_{\xi\omega}x \\ v_{\omega}^{2}\xi_{\alpha} - v_{\xi\omega}\omega_{\alpha} & v_{\xi}^{2}\omega_{\alpha} - v_{\xi\omega}\xi_{\alpha} \\ v_{\omega}^{2}\xi_{\sigma} - v_{\xi\omega}\omega_{\sigma} & v_{\xi}^{2}\omega_{\sigma} - v_{\xi\omega}\xi_{\sigma} \\ v_{\xi\omega}x & -v_{\xi}^{2}x \\ v_{\xi\omega}w & -v_{\xi}^{2}w \end{bmatrix}_{n}$$

Clearly rows 1 and 4 are co-linear.

# **#4: OPTIMAL INSTRUMENTS**

$$(G_n\Omega^{-1})\circ\Theta = \frac{1}{V_\xi^2V_\omega^2 - (V_{\xi\omega})^2} \times \begin{bmatrix} -V_\omega^2X & O \\ V_\omega^2\xi_\alpha - V_{\xi\omega}\omega_\alpha & V_\xi^2\omega_\alpha - V_{\xi\omega}\xi_\alpha \\ V_\omega^2\xi_\sigma - V_{\xi\omega}\omega_\sigma & V_\xi^2\omega_\sigma - V_{\xi\omega}\xi_\sigma \\ O & -V_\xi^2X \\ V_{\xi\omega}W & -V_\xi^2W \end{bmatrix}_n$$

Now we can partition our instrument set by column into "demand" and "supply" instruments as

$$z_{nD} := (G_n \Omega^{-1} \circ \Theta)_{\cdot 1}$$
$$z_{nS} := (G_n \Omega^{-1} \circ \Theta)_{\cdot 2}$$

# ASIDE: WHAT DOES SUPPLY TELL US ABOUT DEMAND?

$$\partial \alpha : \mathbf{V}_{\omega}^{2} \xi_{\alpha} - \mathbf{V}_{\xi \omega} \omega_{\alpha} \quad \mathbf{V}_{\xi}^{2} \omega_{\alpha} - \mathbf{V}_{\xi \omega} \xi_{\alpha}$$
$$\partial \sigma : \mathbf{V}_{\omega}^{2} \xi_{\sigma} - \mathbf{V}_{\xi \omega} \omega_{\sigma} \quad \mathbf{V}_{\xi}^{2} \omega_{\sigma} - \mathbf{V}_{\xi \omega} \xi_{\sigma}$$

- Under optimal IV these are overidentifying restrictions
- Maybe cases where one part of these instruments is trivial.



# DEMO

# **TESTING FOR CONDUCT**

# **TESTING FOR CONDUCT**

- General challenge is that if you give a me a vector of prices, I can always deliver a vector of marginal costs which rationalizes
- Estimation is either simultaneous supply and demand or sequential estimating demand first and then estimating supply separately. We can label the two sets of moment restrictions:

$$\begin{split} g^d(\theta_1,\theta_2) : E[\xi_{jt} \times [x_{jt},z_{jt},\eta_{jt}^d]] &= O \\ g^s(\theta_3,\kappa) : E[\omega_{jt} \times [x_{jt},z_{jt},\eta_{jt}^s]] &= O \end{split}$$

- We could estimate simultaneously under two different conduct assumptions and compare GMM objectives.
  - But the weighting matrix changes, and the scale of y<sup>s</sup> may not be the same.
  - ▶ Usually we have to test pairwise A rejects B and B rejects A.



# **EMPIRICAL LIKELIHOOD**

# Another way to estimate using moment restrictions

■ Re-weight my data so that my moments hold exactly

$$\sum_{i} \pi_{i} g(x_{i}, \theta) = 0 \qquad \sum_{i} \pi_{i} = 1 \quad \pi_{i} \geq 0$$

■ Choose the set of weights as close as possible to  $\frac{1}{N}$  empirical weights.

$$l_{EL}(\pi, \theta) = \sum_{i} \log \pi_{i}$$
  $l_{CUE}(\pi, \theta) = -\sum_{i} \pi_{i}^{2}$ 

# **EMPIRICAL LIKELIHOOD**

# Another way to estimate using moment restrictions

■ Re-weight my data so that my moments hold exactly

$$\sum_{i} \pi_{i} g(x_{i}, \theta) = 0 \qquad \sum_{i} \pi_{i} = 1 \quad \pi_{i} \geq 0$$

■ Choose the set of weights as close as possible to  $\frac{1}{N}$  empirical weights.

$$l_{EL}(\pi, \theta) = \sum_{i} \log \pi_{i}$$
  $l_{CUE}(\pi, \theta) = -\sum_{i} \pi_{i}^{2}$ 

# EMPIRICAL LIKELIHOOD

Full Problem

$$EL(\theta, \kappa) = \max_{\theta_1, \theta_2, \theta_3, \pi} \sum_{jt}^{N} \log \pi_{jt} \quad \text{s.t. } \sum_{jt}^{N} \pi_{jt} \omega_{jt}(\kappa) \times [x_{jt}, z_{jt}, \eta_{jt}^s]] = 0$$

$$\sum_{jt}^{N} \pi_{jt} \xi_{jt} \times [x_{jt}, z_{jt}, \eta_{jt}^d]] = 0$$

$$S_{jt}(\theta) = S_{jt}$$

Restricted Problem

$$EL(\theta_3, \kappa) = \max_{\theta_3, \pi} \sum_{jt}^{N} \log \pi_{jt} \quad \text{s.t. } \sum_{jt}^{N} \pi_{jt} \omega_{jt}(\kappa) \times [x_{jt}, z_{jt}, \eta_{jt}^s]] = 0$$

$$\sum_{jt}^{N} \pi_{jt} \widehat{\xi}_{jt} \times [x_{jt}, z_{jt}, \eta_{jt}^d]] = 0$$

We cheat a little bit and fix the demand parameters  $\widehat{\theta}_1$ ,  $\widehat{\theta}_2$  but still utilize the demand moments. This lets us estimate sequentially but still utilize the restrictions from the

#### **TEST STATISTICS**

#### Likelihood Ratio Test

It is clear that we can just compare using a likelihood ratio test because we have the same number of parameters and restrictions in each model:

$$\mathbf{2} * \big[ \mathit{EL}(\widehat{\theta}_3, \kappa) - \mathit{EL}(\widetilde{\theta}_3, \kappa = \mathbf{0}) \big] \sim \chi_{\mathbf{0}}^2$$

# **Overidentifying Restrictions**

Add another instrument so that  $\eta \to \widetilde{\eta}$ .

$$\mathbf{2} * \left[ \mathit{EL}(\widehat{\theta}_3, \kappa = \mathbf{0}, \eta) - \mathit{EL}(\widetilde{\theta}_3, \kappa = \mathbf{0}, \widetilde{\eta}) \right] \sim \chi_1^2$$

# How to APPLY?

- 1. Cost shifters for other products:  $z_{kt}$  for  $p_{it}$ . (Cost of Rice for Corn Flakes, Cost of Corn for Rice Krispies).
- 2. Strongest instrument should be the markup shifter  $\kappa_{fg} \sum_{k \in \mathcal{J}_g} (p_k c_k) \cdot D_{jk}$  or  $\sum_{k \in \mathcal{J}_g} (p_k c_k) \cdot D_{jk}$ . Is this valid?
- 3. What belongs in  $x_{it}\beta$ : FE or not? We can also consider higher order polynomials for  $\omega$  moments.
- 4. The validity for many of these tests will often depend on how well we explain marginal costs (lower variance of  $\omega$ ) rather than specific exclusion restrictions. I think this makes me want to test the overidentifying restriction directly rather than goodness of fit type GMM or LR objective tests.
- 5. Test Bertrand against an arbitrary alternative by testing exclusion of diversion weighted markups to g's products. Under the null of Bertrand  $\lambda = 0$ . We can include this measure for each competitor's product:

$$\lambda_{jg} \sum_{k \in \mathcal{J}_g} (p_k - c_k) \cdot D_{jk}$$

