EXPERIMENTAL DESIGN AND REGRESSION ANALYSIS

Erhan ŞİMŞEKER

Batuhan ALTAŞ

OBJECTIVE AND VARIABLES

Examining how brewing tea under different conditions affects its taste.

FACTORS	FACTOR LEVEL 1	FACTOR LEVEL 2
Type of Tea	Black	Green
Water Temperature	80°C	100°C
Steeping Time	3 Minutes	5 Minutes

 Output Variable: After each experiment, the tea is tasted and assigned a "Taste Score" out of 10.

EXPERIMENTS

Observation Number	Conditions	Date	Observation Value
1	Black Tea, 80°C, 3 min	19.05.2024	5
2	Black Tea, 80°C, 3 min	19.05.2024	6
3	Black Tea, 80°C, 3 min	19.05.2024	5
4	Black Tea, 80°C, 5 min	19.05.2024	4
5	Black Tea, 80°C, 5 min	19.05.2024	5
6	Black Tea, 80°C, 5 min	19.05.2024	4
7	Green Tea, 80°C, 3 min	20.05.2024	8
8	Green Tea, 80°C, 3 min	20.05.2024	7
9	Green Tea, 80°C, 3 min	20.05.2024	7
10	Green Tea, 80°C, 5 min	20.05.2024	6
11	Green Tea, 80°C, 5 min	20.05.2024	7
12	Green Tea, 80°C, 5 min	20.05.2024	8
13	Black Tea, 100°C, 3 min	21.05.2024	7
14	Black Tea, 100°C, 3 min	21.05.2024	8
15	Black Tea, 100°C, 3 min	21.05.2024	8
16	Black Tea, 100°C, 5 min	21.05.2024	6
17	Black Tea, 100°C, 5 min	21.05.2024	7
18	Black Tea, 100°C, 5 min	21.05.2024	6
19	Green Tea, 100°C, 3 min	22.05.2024	8
20	Green Tea, 100°C, 3 min	22.05.2024	9
21	Green Tea, 100°C, 3 min	22.05.2024	9
22	Green Tea, 100°C, 5 min	22.05.2024	7
23	Green Tea, 100°C, 5 min	22.05.2024	8
24	Green Tea, 100°C, 5 min	22.05.2024	7

Water Temperature (B) and Steeping Time (C)

Type of Tea (A)	3 min	5 min	3 min	5 min
	5	8	7	8
Black Tea	6	7	8	9
	5	7	8	9
	4	6	6	7
Green Tea	5	7	7	8
	4	8	6	7

HYPOTHESES

DECISION RULE

 $H_0: T_1 = T_2 = T_3 = 0$

 H_a : At least one i such that $T_i \neq 0$

 $H_0: \beta_1 = \beta_2 = \beta_3 = 0$

 H_a : At least one j such that $\beta_i \neq 0$

 $H_0: \delta_1 = \delta_2 = \delta_3 = 0$

 H_a : At least one k such that $\delta_k \neq 0$

 $H_0: (T\delta)_{ij} = 0$

 H_a : At least one ij such that $(T\delta)_{ii} \neq 0$

 $H_0: (T\delta)_{ik} = 0$

 H_a : At least one ik such that $(T\delta)_{ik} \neq 0$

 $H_0: (\beta \delta)_{ik} = 0$

 H_a : At least one jk such that $(\beta\delta)_{ik} \neq 0$

 $H_0: (T\beta\delta)_{ijk} = 0$

 H_a : At least one ijk such that $(T\beta\delta)_{ijk} \neq 0$

- ❖ If $F_0 > F_{crit}$, then H_0 is rejected.
- $F_{crit} = F_{0.05, 1, 16} = 4.49$

TOTALS

 \checkmark (y) = 170

$$\checkmark$$
 $(y_{i...}) = (90,80)$

$$\checkmark$$
 $(y_{.j..}) = (80,90)$

$$\checkmark$$
 $(y_{.k}) = (76,94) = ((35+41),(45+49))$

$$\checkmark$$
 $(y_{ij...}) = (42,48,38,42)$

$$\checkmark$$
 $(y_{i,k}) = (41,49,35,45)$

$$\checkmark$$
 $(y_{./k.}) = (35,45,41,49)$

$$\checkmark$$
 $(y_{ijk}) = (19,23,22,26,16,22,19,23) = ((6+7+6),(8+7+8),...,(6+7+6),(8+7+8))$

Water Temperature (B) and Steeping Time (C)

Type of Tea (A)	3 min	5 min	3 min	5 min	Row Sum
	5	8	7	8	90
Black Tea	6	7	8	9	
	5	7	8	9	
	4	6	6	7	80
Green Tea	5	7	7	8	
	4	8	6	7	
Column Sum	35	45	41	49	170
	80		90		

A×B Total

	y _{ij}		
	Water Temperature (B)		
Type of Tea (A)	80°C	100°C	
Black Tea	42	48	
Green Tea	38	42	

A×C Total

Уi.к.

Steeping Time (C)

Type of Tea (A)	3 min	5 min
Black Tea	41	49
Green Tea	35	45

TEST STATISTICS

•
$$SS_A = \frac{1}{12}(90^2 + 80^2) - \frac{170^2}{24} = 4,1666666667$$

•
$$SS_B = \frac{1}{12}(80^2 + 90^2) - \frac{170^2}{24} = 4,1666666667$$

•
$$SS_C = \frac{1}{12}(76^2 + 94^2) - \frac{170^2}{24} = 13.5$$

•
$$SS_{AB} = \frac{1}{6}(42^2 + 48^2 + 38^2 + 42^2) - 4,166666667 - 4,166666667 = 0,166666667$$

•
$$SS_{AC} = \frac{1}{6}(41^2 + 49^2 + 35^2 + 45^2) - 4,1666666667 - 13,5 = 0,166666667$$

•
$$SS_{BC} = \frac{1}{6}(35^2 + 45^2 + 41^2 + 49^2) - 4,1666666667 - 13,5 = 0,1666666667$$

•
$$SS_{ABC} = \frac{1}{3}(19^2 + 23^2 + 22^2 + \dots + 19^2 + 23^2) - 4,166666667 - 4,166666667 - 13,5 - 0,166666667 - 0,166666667 - 0,166666667 = 0,166666667$$

•
$$SS_T = (6^2 + 8^2 + 7^2 + 9^2 + 7^2 + \dots + 7^2 + 6^2 + 8^2 = 27,833333333$$

•
$$SS_E = SS_T - SS_{Subtotals} = 27,83333333 - (4,166666667 + 4,166666667 + 13,5 + 0,166666667 + 0,166666667 + 0,166666667 + 0,166666667 + 0,166666667 = 5,3333333333$$

Analysis of Variance Table (ANOVA)

Source of Variation	Degrees of Freedom (df)	Sum of Squares (SS)	Mean Square (MS)	F ₀
Tea Type (A)	1	4.1667	4.1667	12.5
Water Temp. (B)	1	4,1667	4.1667	12.5
Steep. Time (C)	1	13.5	13.5	40.5
AxB	1	0.1667	0.1667	0.5
AxC	1	0.1667	0.1667	0.5
BxC	1	0.1667	0.1667	0.5
AxBxC	1	0.1667	0.1667	0.5
Error	16	5.3333	0.3333	
Total	23	27.8333		

CONCLUSION

Source of Variation	F_0	Decision
Tea Type (A)	12.5	Reject H ₀
Water Temperature (B)	12.5	Reject H ₀
Steeping Time (C)	40.5	Reject H ₀
A×B (Tea × Temp)	0.5	Fail to Reject <i>H</i> ₀
A×C (Tea × Steep)	0.5	Fail to Reject <i>H</i> ₀
B×C (Temp × Steep)	0.5	Fail to Reject <i>H</i> ₀
A×B×C (Tea × Temp × Steep)	0.5	Fail to Reject <i>H</i> ₀

According to the obtained analysis of variance table, all three factors affect the taste of tea at the 5% significance level. However, the interactions among these factors are not statistically significant.

MAIN EFFECTS GRAPHS

INTERACTION CHARTS

TUKEY TEST

❖ Tukey value:
$$T_{\alpha} = q_{0.05}(2, 16) \sqrt{\frac{0.333333333}{12}} = 0.4997$$

- Tukey's Test for Factor A:
- Black Tea: $\bar{y}_{1..} = \frac{90}{12} = 7.5$
- Green Tea: $\bar{y}_{2..} = \frac{80}{12} = 6.6667$
- $|\bar{y}_{1..} \bar{y}_{2..}| = 0.833$

Since 0.833 > 0.4997, the difference between the mean scores of Black Tea and Green Tea is statistically significant.

- ❖ Tukey's Test for Factor B:
- 80°C: \bar{y}_1 . = $\frac{80}{12}$ = 6.6667
- 100°C: \bar{y}_2 . = $\frac{90}{12}$ = 7.5
- $|\bar{y}_1 \bar{y}_2| = 0.833$

Since 0.833 > 0.4997, the difference between the mean scores at 80 °C and 100 °C is statistically significant.

- Tukey's Test for Factor C:
- 3 min: $\bar{y}_{.1.} = \frac{76}{12} = 6.3333$
- 5 min: $\bar{y}_{.2.} = \frac{94}{12} = 7.8333$
- $|\bar{y}_{.1.} \bar{y}_{.2.}| = 1.5$

Since 1.5 > 0.4997, the difference between the mean scores at 3 min and 5 min steeping times is statistically significant.

CONCLUSIONS AND RECOMMENDATIONS

- Since Tea Type (A), Water Temperature (B) and Steeping Time (C) are important main effects, it is recommended to carefully select the levels of these factors.
- Specific levels should be chosen according to the desired outcome (e.g., taste, strength, aroma).
- Generally, more information about the preferred levels of these factors is requiredor previous experience may guide these selections.
- Since interactions between factors do not have a significant effect on the outcome, focusing individually on the optimal levels of A, B and C is sufficient, and these interactions do not have statistically significant effects on the taste score.
- For more detailed recommendations regarding factor levels, more detailed information about the levels tested for each factor is needed.