τ τ τ τ

THE WALL STREET STREET STREET STREET STREET STREET STREET STREET STREET

FIG.3

	$P_{0,0}^{kxk}$ $P_{1,0}^{kxk}$	$oldsymbol{P_{0,1}^{kxk}} \ oldsymbol{P_{1,1}^{kxk}}$	•				$egin{array}{c} P_{0,N-1}^{kxk} \ P_{1,N-1}^{kxk} \end{array}$
				•		•	
$P^{kxk} =$:	•		$P_{i,j}^{kxk}$:
		•		•	•	•	•
		•		•	•		
	$P_{M-1,0}^{kxk}$	$P_{M-1,1}^{kxk}$		•••	•		$P_{M-1,N-1}^{kxk}$

In the first first

	s _{0,0}	S _{0,1}	•	•••	•	•	$s_{0,N-1}$
	s _{1,0}	•		•	•	٠	$s_{1,N-1}$
	•	•	$s_{i-1,j-1}$	$s_{i-1,j}$	$S_{i-1,j+1}$	•	•
S =	:	•	$s_{i,j-1}$	$s_{i,j}$	$s_{i,j+1}$	٠	:
		•	$s_{i+1,j-1}$	$s_{i+1,j}$	$\boldsymbol{S}_{i+1,j+1}$	•	
	•	•	•	•	•	•	
	$S_{M-1,0}$	$s_{M-1,1}$	•	•••		•	$s_{M-1,N-1}$

$$F_{ksk} = \begin{bmatrix} 1 \\ 2 \\ \frac{k-1}{2} \\ \vdots \\ 3 \\ 2 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 3 & \cdots & \frac{k-1}{2} & 4 & 3 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & \cdots & \frac{k-1}{2} & \cdots & 3 & 2 & 1 \\ 2 & 4 & 6 & \cdots & \frac{2(k-1)}{2} & \cdots & 6 & 4 & 2 \\ 3 & 6 & 9 & \cdots & \frac{3(k-1)}{2} & \cdots & 9 & 6 & 3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{k-1}{2} & \frac{2(k-1)}{2} & \frac{3(k-1)}{2} & \cdots & \frac{(k-1)*(k-1)}{4} & \cdots & \frac{3(k-1)}{2} & \frac{2(k-1)}{2} & \frac{k-1}{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 3 & 6 & 9 & \cdots & \frac{3(k-1)}{2} & \cdots & 9 & 6 & 3 \\ 2 & 4 & 6 & \cdots & \frac{2(k-1)}{2} & \cdots & 6 & 4 & 2 \\ 1 & 2 & 3 & \cdots & \frac{k-1}{2} & \cdots & 3 & 2 & 1 \end{bmatrix}$$

FIG. 6

$$F_{9x9} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 4 & 3 & 2 & 1 \\ 2 & 4 & 6 & 8 & 10 & 8 & 6 & 4 & 2 \\ 3 & 6 & 9 & 12 & 15 & 12 & 9 & 6 & 3 \\ 4 & 8 & 12 & 16 & 20 & 16 & 12 & 8 & 4 \\ 5 & 10 & 15 & 20 & 25 & 20 & 15 & 10 & 5 \\ 4 & 8 & 12 & 16 & 20 & 16 & 12 & 8 & 4 \\ 3 & 6 & 9 & 12 & 15 & 12 & 9 & 6 & 3 \\ 2 & 4 & 6 & 8 & 10 & 8 & 6 & 4 & 2 \\ 1 & 2 & 3 & 4 & 5 & 4 & 3 & 2 & 1 \end{bmatrix}$$

FIG. 7

FIG. 8

FIG. 9