Chapitre 12

Fonctions et expressions algébriques

I. Fonction polynôme de degré 2

1) Étude préliminaire

La fonction $x \mapsto a(x-\alpha)^2 + \beta$ avec $a \neq 0$

Remarque:

La fonction est définie sur \mathbb{R} par l'enchaînement :

$$x \to (x-\alpha) \to (x-\alpha)^2 \to a(x-\alpha)^2 \to a(x-\alpha)^2 + \beta$$

La **fonction carré** est un cas particulier de la famille des fonctions f de la forme $x \mapsto a(x-\alpha)^2 + \beta$ (a=1, $\alpha=0$, $\beta=0$).

Définition:

La courbe représentative de f dans un repère orthogonal (O ; I, J) est appelé **parabole**, notée \mathcal{P} .

Propriétés:

- Si a > 0: f est alors strictement décroissante puis strictement croissante.
- Si a < 0: f est alors strictement croissante puis strictement décroissante.

Exemple:

La fonction carré est décroissante (sur $]-\infty$; 0]) puis croissante (sur $[0; +\infty[)$.

Remarque:

Une parabole possède un point correspondant à l'extremum de la fonction.

Ce point s'appelle le **sommet** *S* de la parabole.

On montre que $S(\alpha; \beta)$. En effet,

 $f(x) - f(\alpha) = a(x - \alpha)^2$ et l'extremum de f est atteint pour $x_0 = \alpha$ et vaut $f(x_0) = f(\alpha) = \beta$.

Propriété:

Soit x_0 l'abscisse du sommet de f.

La courbe représentative de f est symétrique par rapport à la droite d'équation $x = x_0$.

Remarque:

On montre que $x_0 = \alpha$. En effet,

 $f(x-\alpha)=f(x+\alpha)$, ce qui prouve que la droite d'équation $x=\alpha$ est axe de symétrie de \mathscr{P} .

Tableau de synthèse pour $f(x) = a(x-\alpha)^2 + \beta$

2) Fonction polynôme de degré 2

Définition:

Soient a, b et c trois nombres réels avec a non nul.

On appelle fonction polynôme de degré 2 (ou trinôme) toute fonction f qui à chaque réel x, associe le réel $ax^2 + bx + c$.

Exemples:

- $f(x)=-3x^2+x$ (a=-3, b=1, c=0).
- h(x)=3(x-2)(x-3) est un trinôme car en développant, on obtient : $h(x)=(3x-6)(x-3)=3x^2-9x-6x+18=3x^2-15x+18$.
- $k(x)=(2x-1)^2+3$ est un trinôme, car $k(x)=4x^2-4x+1+3=4x^2-4x+4$.
- La fonction carré est la plus simple des fonctions trinôme (a=1, b=0, c=0).
- g(x)=-4x n'est pas une fonction polynôme de second degré.

Propriété:

Toute fonction polynôme de degré 2, $f(x)=ax^2+bx+c$ peut se mettre sous la forme $f(x)=a(x-\alpha)^2+\beta$.

Démonstration :

$$f(x) = a(x-\alpha)^2 + \beta = a(x^2 - 2\alpha x + \alpha^2) + \beta = ax^2 - 2\alpha x + \alpha\alpha^2 + \beta$$
.

On pose alors $\alpha = -\frac{b}{2a}$ (on sait que $a \neq 0$) et $\beta = -a \alpha^2 + c$.

On obtient alors $f(x) = ax^2 - 2a \times \left(-\frac{b}{2a}\right)x + a\alpha^2 + (-a\alpha^2 + c) = ax^2 + bx + c$.

Remarques:

- $ax^2 + bx + c$ est la forme développée de f(x).
- $a(x-\alpha)^2 + \beta$ est la forme canonique de f(x).
- Il est parfois possible de factoriser f(x). On obtient alors $f(x)=a(x-x_1)(x-x_2)$. $a(x-x_1)(x-x_2)$ est la **forme factorisée** de f(x).

En utilisant les résultats précédents on a donc :

3) Équation produit

Propriété:

Soient m, n, p et q quatre nombres réels avec m et n non nuls.

L'équation produit (mx+p)(nx+q)=0 possède deux solutions réelles $x_1=-\frac{p}{m}$ et $x_2=-\frac{q}{n}$.

Exemple:

L'équation (2x+1)(-5x+4)=0 admet pour solutions $x_1=-\frac{1}{2}$ et $x_2=\frac{4}{5}$.

Remarques:

- Les deux solutions peuvent éventuellement être confondues.
- Si une fonction polynôme du second degré peut se mettre sous cette forme factorisée, c'est qu'elle peut s'annuler, donc couper l'axe des abscisses en 1 ou 2 points.

Exemples:

La solution de $3(x-2)^2=0$ est x=2.

Les solutions de 3(x-2)(x-3)=0 sont : $x_1=2$ et $x_2=3$

```
# On importe les bibliothèques nécessaires au tracé
import matplotlib.pyplot as plt
import numpy as np
# Fonction annexe pour calculer les images par la fonction
def fonction polynome(a, b, c, x):
    """ retourne la valeur de f(x)
    avec f(x) = a * x^2 + b * x + c"""
    return a * x ** 2 + b * x + c
def polynome(a, b, c):
    """ Paramètres : les coefficients a, b, c de la fonction polynôme :
    f(x) = a * x^2 + b * x + c avec a \neq 0
    Retourne les paramètres a, \alpha, \beta de la forme canonique : f(x) = a * (x - \alpha)^2 + \beta"""
    # Vérification des paramètres
    if a == 0:
        print("Fonction affine")
        return None
    # On imprime la fonction polynôme
    print("f(x) =", a, "x^2 +", b, "x +", c)
    # Calcul des coefficients de la forme canonique
    \alpha = -b / (2 * a)
    \beta = fonction_polynome(a, b, c, \alpha)
    # Variations de f
    if a > 0:
        print("f est strictement décroissante sur ]-\infty;", \alpha,"[")
        print ("f est strictement croissante sur ]", \alpha,"; +\infty[")
    else:
        print("f est strictement croissante sur ]-\infty;", \alpha,"[")
        print ("f est strictement décroissante sur ]", \alpha,"; +\infty[")
    # Sommet et forme canonique
    print("Son sommet est le point : (", \alpha,";", \beta, ")")
    print("forme canonique: f(x) = ", a, "* (x - ", \alpha, ")^2 +", \beta)
    # Tracé de la courbe
    x = np.linspace(-5, 5, 100)
    plt.plot(x, fonction polynome(a, b, c, x))
    plt.plot(\alpha, \beta, 'ro')
    plt.grid()
    plt.ylabel("f(x)")
    plt.xlabel("x")
    plt.title("f(x) = " + str(a) + " x^2 + " + str(b) + " x + " + str(c))
    plt.show()
    # Retourne les paramètres
    return (a, \alpha, \beta)
```


II. Fonctions homographiques

1) Étude préliminaire

La fonction
$$x \mapsto \frac{\lambda}{x-\alpha} + \beta$$

Remarque:

La fonction est définie sur \mathbb{R} - $\{\alpha\}$ par l'enchainement :

$$x \to x - \alpha \to \frac{1}{x - \alpha} \to \frac{\lambda}{x - \alpha} \to \frac{\lambda}{x - \alpha} + \beta$$

La **fonction inverse** est un cas particulier de la famille des fonctions f de la forme $x \mapsto \frac{\lambda}{x-\alpha} + \beta$ ($\lambda = 1$, $\alpha = 0$, $\beta = 0$).

Propriétés:

- Si $\lambda > 0$: f est alors strictement décroissante sur $]-\infty;\alpha[$ et sur $]\alpha;+\infty[$.
- Si $\lambda < 0$: f est alors strictement croissante sur $]-\infty,\alpha[$ et sur $]\alpha,+\infty[$.

Remarque:

Une hyperbole possède un **centre de symétrie** $M(\alpha;\beta)$.

En effet:

$$f(\alpha+h)-\beta=\left(\frac{\lambda}{(\alpha+h)-\alpha}+\beta\right)-\beta=\frac{\lambda}{h}=-\left(-\frac{\lambda}{h}\right)=-\left(\frac{\lambda}{(\alpha-h)-\alpha}+\beta\right)+\beta=-f(\alpha-h)+\beta$$

La courbe représentative de f est **symétrique** par rapport au point de coordonnées $(\alpha; \beta)$.

Tableau de synthèse pour $f(x) = \frac{\lambda}{x - \alpha} + \beta$

2) Fonction homographique

Définition:

Soient a, b, c et d quatre nombres réels (avec c et ad - bc non nuls).

On appelle **fonction homographique** toute fonction f qui, à chaque réel x n'annulant pas le dénominateur, associe le réel $\frac{ax+b}{cx+d}$.

Exemples:

- $f(x) = \frac{2x+1}{x-3}$ (a=2, b=1, c=1, d=-3).
- La **fonction inverse** est la plus simple des fonctions homographiques (a=0, b=1, c=1, d=0).

Remarque:

L'ensemble de définition de
$$f(x) = \frac{ax+b}{cx+d}$$
 est $D_f = \left[-\infty; -\frac{d}{c}\right] \cup \left[-\frac{d}{c}; +\infty\right] = \mathbb{R} - \left\{-\frac{d}{c}\right\}$

Exemple:

$$f(x) = \frac{4x-1}{2x-3}$$
. $D_f = \left| -\infty; \frac{3}{2} \right| \cup \left| \frac{3}{2}; +\infty \right|$ car $2x-3 \neq 0 \iff x \neq \frac{3}{2}$.

Remarque:

Dans le cas $c \neq 0$ et ad - bc = 0, f n'est pas homographique mais une fonction constante.

Exemple:

Si
$$a=2$$
, $b=2$, $c=1$, $d=1$, alors $ad-bc=2-2=0$ et $f(x)=\frac{2x+2}{x+1}=\frac{2(x+1)}{x+1}$.

Ainsi, pour tout $x \neq -1$, f(x)=2

Propriété:

Toute fonction homographique peut s'écrire sous la forme $x \mapsto \frac{\lambda}{x-\alpha} + \beta$.

Démonstration :

On sait que $a \neq 0$ et $c \neq 0$. Donc,

$$f(x) = \frac{ax+b}{cx+d} = \frac{a\left(x+\frac{b}{a}\right)}{c\left(x+\frac{d}{c}\right)} = \frac{a}{c} \times \frac{x+\frac{b}{a}}{x+\frac{d}{c}} = \frac{a}{c} \times \frac{x+\frac{d}{c}-\frac{d}{c}+\frac{b}{a}}{x+\frac{d}{c}} = \frac{a}{c} \times \left(\frac{x+\frac{d}{c}+\frac{b}{a}-\frac{d}{c}}{x+\frac{d}{c}+\frac{d}{c}}\right) = \frac{a}{c} \times \left(1+\frac{bc-ad}{ac}\right)$$

8

On a donc:

$$f(x) = \frac{a}{c} + \frac{\frac{a}{c} \times \frac{bc - ad}{ac}}{x + \frac{d}{c}} = \frac{a}{c} + \frac{\frac{bc - ad}{c^2}}{x + \frac{d}{c}}.$$

En posant
$$\alpha = -\frac{d}{c}$$
, $\beta = \frac{a}{c}$, $\lambda = \frac{bc - ad}{c^2}$, on a bien $f(x) = \frac{\lambda}{x - \alpha} + \beta$.

En utilisant les résultats précédents on a donc :

En utilisant les resultats precedents on a donc.							
bc-ad > 0				bc-ad < 0			
x	-∞	$-\frac{d}{c}$	+∞	x	-∞	$-\frac{d}{c}$	+∞
f(x)				f(x)	1	/	*
(-)	$ \frac{d}{d}: \frac{a}{c}: \frac{a}{c}) $	× d a (; -)	×		$\times \frac{d}{(-\frac{1}{c}, \frac{1}{c})}$	y	$(-\frac{d}{c}, \frac{a}{c})$

3) Équation quotient

Propriété :

Soient a,b,c et d quatre nombres réels avec a, c et bc-ad non nuls.

L'équation quotient $\frac{ax+b}{cx+d} = 0$ n'a de sens que pour $x \neq -\frac{d}{c}$ et admet pour unique solution $-\frac{b}{a}$.

Exemple:

L'équation $\frac{3x-8}{5x+1} = 0$ est définie pour $x \neq -\frac{1}{5}$ et admet pour unique solution $x = \frac{8}{3}$.


```
# On importe les bibliothèques nécessaires au tracé
import matplotlib.pyplot as plt
import numpy as np
# Fonction annexe pour calculer les images par la fonction
def fonction homographique(a, b, c, d, x):
    """ retourne la valeur de f(x)
    avec f(x) = a * x^2 + b * x + c"""
    return (a * x + b) / (c * x + d)
def homographique(a, b, c, d):
    """ Paramètres : les coefficients a, b, c, d de la fonction homographique :
    f(x) = (a * x + b) / (c * x + d) avec c \neq 0 et ad - bc \neq 0
    Retourne les paramètres \lambda, \alpha, \beta de la forme :
    f(x) = \lambda / (x - \alpha) + \beta'''''
    # Vérification des paramètres
    if c == 0:
        print("Fonction affine")
        return None
    if a * d - b * c == 0:
        print('Fonction "presque" constante')
        return None
    # On imprime la fonction polynôme
    print("f(x) = (", a, "x + ", b, ") / (", c, "x + ", d, ")")
    # Calcul des coefficients de la forme canonique
    \alpha = -d / c
    \beta = a / c
    \lambda = (b * c - a * d) / (c * 2)
    # Variations de f
    if \lambda > 0:
        print("f est strictement décroissante sur ]-\infty;", \alpha,"[")
        print("f est strictement croissante sur ]", \alpha,"; +\infty[")
        print("f est strictement croissante sur ]-\infty;", \alpha,"[")
        print("f est strictement décroissante sur ]", \alpha,"; +\infty[")
    # Sommet et forme simplifiée
    print("Son centre de symétrie est le point : (", \alpha,";", \beta, ")")
    print("f(x) = ", \lambda, "/ (x -", \alpha, ") +", \beta)
    # Tracé de la courbe
    x = np.linspace(-5, 5, 100)
    plt.plot(x, fonction_homographique(a, b, c, d, x))
    plt.plot(\alpha, \beta, 'ro')
    plt.grid()
    plt.ylabel("f(x)")
    plt.xlabel("x")
    plt.title("f(x) = ("+str(a) + "x + "+str(b) + ") / ("+str(c) + "x + "+str(d) + ") ")
    plt.show()
    # Retourne les paramètres
    return (\lambda, \alpha, \beta)
```

```
>>> homographique(3,-5,2,1) f(x) = (3 x + -5) / (2 x + 1) f est strictement croissante sur ]-\infty; -0.5 [ f est strictement décroissante sur ] -0.5; +\infty[ Son centre de symétrie est le point : (-0.5; 1.5) f(x) = -3.25 / (x - -0.5) + 1.5
```

