

# Laboratorios Electrónica de Potencia Rectificador Onda Completa

Prof. Jesús Peña-Rodríguez

#### Introducción

Un circuito rectificador de onda completa tiene como fin convertir una señal de voltaje AC en una señal de voltaje DC. Un rectificador de onda completa puede ser de puente o con transformador de toma media. El primero es recomendado para aplicaciones de alta tensión y el segundo de baja tensión. En este laboratorio abordaremos el rectificador de puente [1].

# **Objetivos**

- Comprender el funcionamiento del rectificador de onda completa
- Implementar un filtro C a la salida del rectificador
- Comparar los valores teóricos estimados con los resultados experimentales para el circuito implementado

#### Materiales

- Osciloscopio
- Multímetro
- Protoboard
- Transformador  $(110V_{AC}/5-14V_{AC})$
- Puente rectificador
- $\blacksquare$  Condensadores electrolíticos de 470  $\mu F/50\,\mathrm{V}$  y 100  $\mu F/50\,\mathrm{V}$  y
- Resistencia  $1 k\Omega y 2 k\Omega$

## 1. Montaje

El montaje del puente rectificador se basa en el esquema mostrado en la Fig. 1. El primario  $L_1$  del transformador va conectado a la red eléctrica ( $V_s = 110 \, \mathrm{V}_{AC}/60 \, \mathrm{Hz}$ ), el secundario  $L_2$  alimenta el puente rectificador de diodos. El puente se compone de los diodos  $D_1$ ,  $D_2$ ,  $D_3$ , y  $D_4$ . A la salida el puente rectificador tiene una carga resistiva  $R_1$  y un filtro capacitivo  $C_1$ .



Figura 1: Esquemático del puente rectificador de onda completa.

### 2. Actividades

- Medir los parámetros  $V_m$ ,  $\omega$  y  $V_{out}$  e  $I_{out}$  del circuito rectificador sin conectar el filtro de salida  $C_1$  para una carga  $R_1 = 1 k\Omega$ . Graficar  $V_s$ ,  $V_{D1,D2}$ ,  $V_{D3,D4}$  y  $V_{out}$ .
- Conectar el filtro de salida  $C_1 = 100 \,\mu F$  y medir los parámetros  $V_m$ ,  $\omega$  y  $V_{out}$  e  $I_{out}$  del circuito rectificador. Graficar  $V_s$  y  $V_{out}$ .
- Medir el rizado de salida  $\Delta V_o$  y el ángulo del voltaje mínimo del rizado  $\alpha$  para la carga  $R_1 = 1 k\Omega$ . Graficar  $V_{out}$  y ubicar  $\alpha$ .
- Conectar el filtro de salida  $C_1 = 470 \,\mu F$  y medir los parámetros  $V_m$ ,  $\omega$  y  $V_{out}$  e  $I_{out}$  del circuito rectificador. Graficar  $V_s$  y  $V_{out}$ .
- Medir el rizado de salida  $\Delta V_o$  y el ángulo del voltaje mínimo del rizado  $\alpha$  para la carga  $R_1 = 1 k\Omega$ . Graficar  $V_{out}$  y ubicar  $\alpha$ .
- Estimar los valores teóricos de los parámetros medidos en cada uno de los casos anteriores y calcular el error (excepto para los valores de  $\alpha$ ).
- \*\*Realizar el informe de laboratorio que contenga: introducción, metodología, resultados, discusión y conclusiones.

#### Referencias

[1] P.D. Daniel W. Hart. Power Electronics. McGraw-Hill Education, 2010.