問題点解析の過程で横橋修論で測定したミラーのパラメータを使っていた

- \rightarrow ・今回使用したミラーのパラメータ α , m, Wを知りたい
 - ・パラメータの値が不明の場合、Rup=1/2と固定して解析をやり直すべきか

parameter $(0.11 < q_c < 0.15), (1 < m_2 < 10), (Fix W = 2.5 × 10^{-3}), (Fix \alpha = 0.28), (Fix m = 5.2), (Fix R_0 = 1)$

fit function

when $q < q_c$

$$y = R_0$$

when $q_c < q < q_{c,Ni}$

$$R_{\rm up} = R_0$$

 $R_{\text{down}} = \text{Spline Function}$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

when $q > q_{c,Ni}$

α, m, Wに横橋修論の値を使っている

$$R_{\rm up} = \frac{1}{2}R_0(1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$$

 $R_{\text{down}} = \text{Spline Function}$

$$R = \frac{1}{2}R_{\rm up} + \frac{1}{2}R_{\rm down}$$

今回の実験に用いていた偏極ミラー

- ・今回使用したミラーのパラメータ α, m, W を知りたい
- ・パラメータの値が不明の場合、Rup=1/2と固定して解析をやり直すべきか

偏極ミラーのパラメータ $R_{\text{up}} = \frac{1}{2}R_0(1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$

図 1.4.5: 中性子スーパーミラー(m=2.24)の反射率(Swiss Neutronics 提供)

なぜパラメータ (α, m, W) が必要か

→図1(運動量移行と反射率の関係)から図2(運動量移行と偏極度の関係)を求めるため

0.2885 0.1271

Std Dev

図1実験データ

このグラフは、spin up 50%, spin down 50%が混ざっているた め、aが求められない?

図2 求めたい偏極度

オレンジ部分の傾きαが知りたい

 $R_{\text{up}} = \frac{1}{2}R_0(1 - \tanh((q - mq_c)/W))(1 - \alpha(q - q_c))$ Rupを使わないと偏極度が出せない

ポテンシャル差という書き方で問題ないか 300neVでどの程度の偏極度が保証される? あとでパラメータ出したらやり直し 300neV→q~0.24

Rup=0.999

Rdown=0.0151

偏極度 (0.999 - 0.0151)/(0.999 + 0.0151) = 0.97

XRR 解析レポート

プロジェクト

パス: 未保存

DBでの共有レベル: 共有

解析条件

波長(nm): 0.1540593

点数: 1501

20(*):開始 = 0.500, 終了 = 6.000

ステップ = 0.004 オフセット = 0.000e+000 フィッティング手法: Nelder-Mead データ間隔:1点ごとにフィッティング

残差タイプ: |Δ(LogI)| 最大反復数: 10000 許容誤差: 1.00e-015 ローレンツ関数の比率: 0.00 ローレンツ福: 1.00e-002 ガウス福: 9.27e-003

装置関数: 擬Voigt関数

結果

プロファイルブロット

使用	層番号 ▼	材料	膜厚(nm)		密度(g/cm³) <d></d>		粗さ(nm) <rgh></rgh>	
✓	L4	Fe2O3	1.03	4 Const	3.45725	Const	0.877	Con
			±0.014	精密化	±0.03	精密化	±0.006	精密化
✓	L3	Fe 2O3	2.22	7 Const	5.47228	Const	0.100	Con
			±0.006	精密化	±0.019	精密化	±0.009最小一	精密化
V	L2	Fe Fe	89.06	66 Const	7.87400	Const	0.402	Con
~			± 18	精密化	±0.019 -	-最大 精密化	±0.006	精密化
>	L1	Fe	1.06	1 Const	4.03305	Const	1.500	Con
			±0.015	精密化	±0.04 個小	精密化	±0.04 -	·最大精密化
V	基板	. Si	00		2.32924	Const	0.300	Con

J

疑問点

• t0によって凹んでいるところは、t0でダイレクトが大きくなっているため?

疑問点

- nEDMの大きさは、素粒子標準模型では\$10^{-30}\sim10^{-32} \,\rm e\cdot cm \$と予想されている。
- どのような参考文献を用いるべきか
- 他のモチベーションというのは、 SUSY以外の理論を上げるということ?

疑問点

・図の分量は減らすべきか

ポテンシャル差という書き方で問題ないか 300neVでどの程度の偏極度が保証される? あとでパラメータ出したらやり直し 300neV→q~0.24

Rup=0.999

Rdown=0.0151

偏極度 (0.999 - 0.0151)/(0.999 + 0.0151) = 0.97

M1M2設置時の反射率

Insufficient modeling

If the modeling is good, we may be able to fit better.

Details are still under analysis.

