Quick Review

More on independence:

- · A,B independent P[A\B] = P[A]P[B]

 P[A\B] = P[A]
- $A_1, ..., A_K$ are <u>mutually independent</u> if for all subsets $I \subseteq \{1, ..., K\}$,

$$P \left[\bigcap_{i \in I} A_i \right] = \prod_{i \in I} P \left[A_i \right]$$

. Equivalently, mutually independent if for all $B_i \in \{A_i, \overline{A_i}\}$ i = 1, ..., K,

- . MI is much stronger than pairwise independence Lo PWI: $O(n^2)$ constraints, vs.
 - Lo MI: O(2") constraints.

Union Bound:

$$P[\bigcup_{i} A_{i}] \leq \sum_{i} P[A_{i}]$$

Useful Things

· P[A N B] = P[A I B] P[B] = P[B | A] P[A]

- · (Total Prob.) P[A] = P[A NB] + P[A NB]
- · Start w/ what you want, transform into what you have.
- · Tum expressions into words and vice versa
- · Draw a picture (esp. useful in Bayes' problems)
- J. Some tips for this:
 - Los If you only have terms involving A,B (e.g. P[A NB]) but want to isolate, think total probability.
 - L> If you want to swap order of conditionals

 (e.g. P[AIB] -> P[BIA]), think Bayes'
 - Lo see an inequality -> Union Bound.