АиСД, задача 2.5 стр. 1 из 2

Условие

Турниром называется ориентированный граф, в котором каждая пара вершин соединена ребром (в одну или другую сторону). Докажите, что в сильно связном турнире есть гамильтонов цикл.

Решение

 $\triangleleft n = 2$

Очевидно этот граф — не турнир.

 $\triangleleft n > 2$

Докажем по индукции, что в сильно связном турнире с n вершинами есть простые циклы длин $3,4\dots n$.

База

Докажем, что в любом сильно связном турнире есть простой цикл длины 3.

В каждом турнире есть король (вершина, из которой достижимы все вершины за ≤ 2 шага), пусть в рассматриваемом графе это вершина v. Т.к. G — турнир, все вершины делятся на 3 непустых множества:

- 1. $A: \forall u \in A \exists u \to v$
- 2. $B: \forall u \in B \exists v \to u$
- 3. $\{v\}$

B — тоже турнир, поэтому там есть король w. По определению существует путь $w \leadsto v$ длины ≤ 2 , но очевидно длина этого пути не может быть равна 1, т.к. тогда существовало бы ребро $w \to v$, что противоречит построению. Итого $\exists w \leadsto v$ длины 2 и $\exists v \to w$ — это цикл длины 3.

Также можно использовать суждение, аналогичное суждению из 2 случая (см. ниже)

Переход

Пусть в G есть цикл S с вершинами $s_1 \dots s_l, l < n$, докажем что \exists цикл длины l+1.

Первый случай

Пусть $\exists v \notin S : \exists i, j : i \neq j, \exists s_i \to v, v \to s_j$:

Михайлов Максим М3237

АиСД, задача 2.5 стр. 2 из 2

Тогда пойдем индексом k от i до j. Когда мы встретим k такое, что $\exists v \to s_k$, то $s_k \dots s_l s_1 \dots s_{k-1} v s_k$ — цикл, т.к. для всех предыдущих $k \not\exists v \to s_k$. Такое k очевидно существует.

Рис. 1: Котик осуждает формулу над ним, которая вылезла за отступ

Длина этого цикла l+1, этот случай окончен.

Второй случай

Пусть условие первого случая не выполнилось. Тогда для каждой вершины v либо все ребра до вершин $\in S$ исходящие, либо входящие. Поделим $G\setminus S$ на два множества A и B по этому признаку. Очевидно эти множества непустые, иначе граф не сильно связен (из КСС S нет входящих или исходящих ребер):

Очевидно $\exists v \to w, v \in B, w \in A$, иначе нарушена связность. Но $\forall i \ \exists s_i \to v, w \to s_i$ по построению. Таким образом, $s_0 \dots s_l vws_l$ — цикл длины > l. \square

Михайлов Максим М3237