

计分项目	报告分数	课堂表现	总分
分值	70	30	100
得分	70	70	,01

姓名:李佳涛 学号: 191270 班级: 2 班 实验日期: 124

负反馈放大电路研究

1. 实验目的

- 掌握负反馈放大器性能指标的调节和测试方法:
- 加深负反馈对放大器放大特性影响的理解。

2. 实验原理

负反馈放大电路由主网络(即无反馈的放大器)和反馈网络组成。反馈网络 的作用是把输出信号(电压或电流)的全部或一部分反馈到信号的输入端。如果 反馈信号削弱了原输入信号,则为负反馈。负反馈的引入影响了放大电路的性能, 它降低了放大倍数,提高了放大电路的稳定性,改变了输入和输出阻抗,展宽了 通频带, 改善了输出波形。

观察放大器输出回路, 若反馈网络从输出端引出, 反馈信号正比于输出电压, 则为电压负反馈,它能降低输出电阻。若反馈网络不从输出端引出,反馈信号正 比于输出电流,而与输出电压无关,则为电流负反馈,它提高了输出电阻。观察 放大器输入回路, 若反馈网络直接并联在输入端, 则为并联负反馈(它能降低输 入电阻)。否则,为串联负反馈(它能提高输入电阻)。负反馈分为电压串联反馈、 电压并联反馈、电流串联反馈和电流并联反馈。

本实验研究电压串联负反馈,如图1所示,放大器由于引入了电压串联负反 馈, 故输入电阻增加, 输出电阻减小。

图 1 中 T1、T2 组成两级电压放大器,并以RC 方式耦合。在电路中通过R, 把输出电压 V_0 引回到输入端,加在晶体管 T1 的发射极上,在发射极电阻 $R_{\rm F1}$ 上 形成反馈电压 V_f 。类似于晶体管放大电路,负反馈放大电路也是应用晶体管的 电流放大作用来放大信号,由于两次反相,所以输出电压与输入电压同相, R_f 、 C_f 支路引入交流电压串联负反馈,用于改善放大器的性能。

图 1. 负反馈放大电路

主要性能指标

1) 闭环电压放大倍数

$$A_{vy} = \frac{A_v}{1 + A_v F_v}$$

式中 $A_V = V_O/V_V$ 为基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数; $1 + A_V F_V$ 为反馈深度,它的大小决定了负反馈对放大器性能改善的程度。

2) 反馈系数

$$F_{\scriptscriptstyle V} = \frac{R_{\scriptscriptstyle F1}}{R_{\scriptscriptstyle F1} + R_{\scriptscriptstyle f}}$$

3) 输入电阻

$$R_{if} = (1 + A_{\nu}F_{\nu})R_{i}$$

式中 R, 为基本放大器 (无反馈)的输入电阻。

4) 输出电阻

$$R_{of} = \frac{R_o}{1 + A_{VO}F_V}$$

式中 R_o 为基本放大器(无反馈)的输出电阻; A_{vo} 为基本放大器输出空载时的电压放大倍数。

3. 实验器材

序号	名 称	型号与规格	数量	备	注
1	直流稳压电源	DP1308A	1		
2	数字万用表	DM3051	1		
3	函数信号发生器	DG1022	1		
4	示波器	TDS2012C	1		
5	面包板		1		
6	电阻、电容、三极管	三极管S9013两个, 100K Ω 可调电阻1个, 20K Ω 可调电阻1个, 100K Ω 电阻1个, 51K Ω 电阻2个, 10k Ω 电阻2个, 4.7k Ω 电阻1个, 3.3k Ω 电阻1个, 2.7k Ω 电阻1个, 2k Ω 电阻2个, 1k Ω 电阻1个, 47μF 电解电容1个,	20		

4. 实验内容

1) 静态工作点的测量

接图 1 所示连接电路,开关 S 断开,使 $V_{cc}=12V$, $V_i=0$ (接地)。调节 R_{B1} 及 R_{B3} 使 $V_{C1}=9V$, $V_{C2}=9V$ 。用万用表直流电压档分别测出三极管 T1 和 T2 三个管脚对地的电压 V_{B1} 、 V_{C1} 、 V_{E1} 和 V_{B2} 、 V_{C2} 、 V_{E2} ,并计入表 1 中。

有分析技义等 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY 模拟电路实验报告

and an	while when your \$2. In \$2. annually \$1. and annually	
200. 1	静态工作点的调整与测量	
40C 1.	副型がて 1 	
	BY INCIDENT TO THE STATE OF THE	

	V _B / V	V_c/V	v,/v
三极管 T1	2.903	8.99	12.288
三极管 T2	2.302	9.087	1.686

2) 负反馈对电压放大倍数的影响

在输入端 B 点加入 f=10kHz , $V_{ip-p}=100mV$ (峰-峰值为 100 毫伏) 的正弦 信号, 断开开关S, 成为无反馈的基本放大器, 用示波器观察输出电压信号, 在 保证输出信号不失真的条件下,用万用表交流电压档测出输出信号的有效值,计 算电压放大倍数 (注意需要将输入的峰-峰值换算成有效值)。然后闭合开关 S, 得到电压串联负反馈放大电路,在输入信号不变、输出信号不失真的情况下,用 万用表交流电压档测出输出信号的有效值,并计算此时的电压放大倍数。将结果 填入表2中。

表 2. 负反馈对电压放大倍数的影响

- Arrest	V_{ip-p} / mV	V_o / mV	A _V
无反馈	100	945	/26.73
有反馈	100	¥3\	7-16

3) 负反馈对电路输入电阻的影响

在输入端串联 $R_s = 10k\Omega$ 的电阻,断开开关 S,成为无反馈的基本放大器, 加大输入信号 V_s 使 V_o 等于未加入 R_s 时的值(表 2 中第一行的值),记录下信号 源 V。的峰峰值,用万用表交流电压档测出此时输入端的信号 V. 的值,计算输入 电阻 R_i 。然后闭合开关S,得到电压串联负反馈放大电路,加大输入信号 V_s 使 V_o 等于未加入 R_s 时的值(表2中第二行的值),记录下信号源 V_s 的峰峰值,用万用表交流电压档测出此时输入端的信号V的值,计算输入电阻R。将结果填入表 3

中。(提示:
$$R_i = \frac{V_i}{V_s - V_i} R_s$$
)

	表 3. 负反馈双	甘輸入电阻的影响	
	V_S / mV_{p-p}	V_i/mV	$R_{s}/k\Omega$
无反馈	192.5	37.03	11.93
有反馈	170.7	35.76	14.54

4) 负反馈对电路输出电阻的影响

在输入端 B 点加入 f=10kHz , $V_{ip-p}=100mV$ (峰-峰值为 100 毫伏) 的正弦信号,断开负载 R_L 的连接。

断开开关 S,成为无反馈的基本放大器,用**万用表交流电压档**测出输出信号的有效值 V_{oc} ,再在输出端恢复负载 $R_L=4.7k\Omega$ 的连接,测出此时输出电压有效值 V_{oL} ,并计算输出电阻 R_o 。

闭合开关 S,得到电压串联负反馈放大电路,用**万用表交流电压档**测出输出信号的有效值 V_{oc} ,再在输出端恢复负载 $R_L=4.7k\Omega$ 的连接,测出输出电压有效

值 V_{ol} ,并计算此时输出电阻 R_o 。将结果填入表 4 中。(提示: $R_o = \frac{V_{oc} - V_{ol}}{V_{ol}} R_L$)

表 4. 负反馈对输出电阻的影响

	V _{oc} / mV	V _{OL} / mV	$R_o / k\Omega$
无反馈	1612	914	3,589
有反馈	261-8	250.9	0.214

5) 负反馈对输出波形失真的影响(带负载)

断开开关 S,成为无反馈的基本放大器,在 B 点增大输入信号的幅度并调节静态工作点,直至输出波形同时产生饱和失真和截止失真,用示波器观测最大的输出电压峰-峰值 $V_{On-nmax} = -5.04V$

闭合开关 S,得到电压串联负反馈放大电路,同样在 B 点增大输入信号的幅度并调节静态工作点,直至输出波形同时产生饱和失真和截止失真,用示波器观测最大的输出电压峰-峰值 $V_{Op-p_{\max}} = 2-00 \text{ V}$