Kinematics and Dynamics of Robots

Module 8

Step 1: Locate and label the joint axes z_0 , ..., z_{n-1} .

Step 2: Establish the base frame. Set the origin anywhere on the z_0 -axis. The x_0 and y_0 axes are chosen conveniently to form a right-handed frame.

- **For** i = 1, ..., n 1 perform Steps 3 to 5.
- **Step 3:** Locate the origin o_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate o_i at this intersection. If z_i and z_{i-1} are parallel, locate o_i in any convenient position along z_i .
- **Step 4:** Establish x_i along the common normal between z_{i-1} and z_i through o_i , or in the direction normal to the $z_{i-1} z_i$ plane if z_{i-1} and z_i intersect.
- **Step 5:** Establish y_i to complete a right-handed frame.
- **Step 6:** Establish the end-effector frame $o_n x_n y_n z_n$. Assuming the n^{th} joint is revolute, set $z_n = a$ parallel to z_{n-1} . Establish the origin o_n conveniently along z_n , preferably at the center of the gripper or at the tip of any tool that the manipulator may be carrying. Set $y_n = s$ in the direction of the gripper closure and set $x_n = n$ as $s \times a$. If the tool is not a simple gripper set x_n and y_n conveniently to form a right-handed frame.
- **Step 7:** Create a table of DH parameters a_i , d_i , a_i , θ_i .

a _i	= distance along x_i from the intersection of the x_i and z_{i-1} axes to o_i .					
d_i	=	= distance along z_{i-1} from o_{i-1} to the intersection of the x_i and z_{i-1} axes. If joint i is prismatic, d_i is variable.				
α_i	=	the angle from z_{i-1} to z_i measured about x_i .				
θ_i	=	the angle from x_{i-1} to x_i measured about z_{i-1} . If joint i is revolute, θ_i is variable.				

- Step 8: Form the homogeneous transformation matrices A_i by substituting the above parameters into Equation 6.1.
- **Step 9:** Form $T_n^0 = A_1 \dots A_n$. This then gives the position and orientation of the tool frame expressed in base coordinates.

81	a _i	=	distance along x_i from the intersection of the x_i and z_{i-1} axes to o_i .
	d _i	=	distance along z_{i-1} from o_{i-1} to the intersection of the x_i and z_{i-1} axes. If joint i is prismatic, d_i is variable.
	α_i	=	the angle from z_{i-1} to z_i measured about x_i .
	θ_{i}	=	the angle from x_{i-1} to x_i measured about z_{i-1} . If joint i is revolute, θ_i is variable.

	1		X)		d
0->/	0	θ_1	90	0	an
1>2	2	Dz	0	92	0
		1	1		1

Number of rows
=3-1-22
froms
II INVINUS

$$H_{2}^{0} = H_{1}^{0} H_{2}^{1}$$

$$H = \begin{bmatrix}
c_{\theta_i} & -s_{\theta_i} c_{\alpha_i} & s_{\theta_i} s_{\alpha_i} & a_i c_{\theta_i} \\
s_{\theta_i} & c_{\theta_i} c_{\alpha_i} & -c_{\theta_i} s_{\alpha_i} & a_i s_{\theta_i} \\
0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$H_{1}^{g} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} Plygin H_{1} A_{1} = 90$$

$$H_{2}^{I} := \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_2' = \begin{bmatrix} c_{\theta_i} & -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_ic_{\theta_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_is_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ plyin } \theta_{2z}\theta_2 \text{ } \alpha_{2z}0 \text{ } \gamma_{2z}\alpha_2 \text{ } \alpha_{2z}0$$

1	0	d	r	<u>d</u> 1	
0→\	01	0	92	91	
1-10 2 2	2	180	93	95	-
$2\rightarrow 3\overline{3}$		0	0	014-10	3
		1		•	-

