Hempoxy - A Sustainable Bio-Nano-CompositeSystem (Synthesis)

Credits/Authorship: Marie Seshat Landry (Human-In-The-Loop, AI models used include ChatGPT and Gemini)

Hempoxy is a novel, fully hemp-derived composite developed under the "Seshat's Bones" research initiative by Marie Seshat Landry. Designed to replace conventional, petroleum-based epoxies, it's a high-performance material with a focus on sustainability and circular economy principles.

Core Formulation: The Hempoxy Recipe

The Universal Hempoxy Materials Standard (UHMS) outlines the open-source formulation, detailing its components and their functions. The recipe is a multi-part system that ensures both structural integrity and environmental responsibility.

Component	Function	Approximate % (by weight)	Justification/Commen
Enovidized Hemp Oil	Primary Resin System		The main bio-based
·	Filliary Resili System	00-70%	
(EHO)			polymer matrix, derived
			from cold-pressed
			hemp seed oil. It
			provides the essential
			cross-linkable
			backbone.
Furfuryl Glycidyl	Reactive Diluent	10-15%	A bio-based compound
Ether (FGE)			that lowers the resin's
			viscosity, improving its
			workability and allowing
			for high filler
			concentrations.
Maleic	Natural Crosslinker &	5-10%	Enhances the bond
Anhydride-Modified	Bonding Agent		between the resin and
Hemp Lignin			the hemp-derived
(MA-Lignin)			fillers, significantly
			improving the
			composite's
			mechanical properties.
Azelaic Anhydride	Bio-based Curing	5-10%	The hardener that
	Agent		cures the liquid resin
			mixture into a solid

			material. It's a
			bio-based ingredient,
			aligning with the
			project's sustainability
			goals.
Carboxylated	Nano-Reinforcement &	3-8%	A key filler that boosts
Hemp-Derived Carbon	Conductivity		the composite's
Nanosheets (HDCNS)			strength and electrical
			conductivity, acting as a
			sustainable alternative
			to graphene.
Pyrolyzed Hemp	Micro-Filler & Stiffness	5-15%	An affordable filler that
Biochar			adds stiffness and
			reduces the overall
			density of the material,
			contributing to a strong,
			lightweight product.
Waste-Derived	Waste Sequestration	1-10%	An optional component
Functional Fillers	(Optional)		that allows for the
(WDF)			encapsulation of
			industrial waste, such
			as microplastics, to
			help reduce
			environmental pollution.

Key Performance and Sustainability Benchmarks

Hempoxy is engineered to be a high-performance material that stands up to conventional composites. Its target specifications highlight both its physical strength and its environmental benefits:

Tensile Strength: 110-150 MPa
Flexural Modulus: ≥3000 MPa
Impact Resistance: ≥60 J/m

• Electrical Conductivity: ≥100 S/m (for HDCNS-loaded composites)

• Fire Resistance: Meets UL94 V-0 Standard

The system is designed for a circular lifecycle, with a target **embodied carbon reduction** of over 80% and a **component recyclability rate** of over 90%. The material can also be triggered for controlled degradation, for example, using UV light or specific pH adjustments.

References

1. Landry, M. S. (2025). "Seshat's Bones Roadmap To Hempoxy". *Scribd*. Retrieved from https://www.scribd.com/document/894834827/Seshat-s-Bones-Roadmap-to-Hempoxy

- 2. Landry, M. S. (2025). "Hempoxy Material Standard". *Scribd*. Retrieved from https://www.scribd.com/document/897029488/Hempoxy-Material-Standard
- 3. Landry, M. S. (2025). "Scientific Research Proposal: HEMPOXY (Seshat's Bones v1.4)". *Scribd*. Retrieved from https://www.scribd.com/document/886416983/Scientific-Research-Proposal-HEMPOXY-Seshat-s-Bones-v1-4

Related Additional Readings

- Hemp as a sustainable resource for bio-composites
- Bio-based Epoxy Resins from Renewable Resources