의안번호	제 1 호
제 출	2019. 10. 31.
연 월 일	(제 9 회)

수소 기술개발 로드맵(안)

과학기술관계장관회의

			과학	학기술전	성보	통신부경	상관	최기영	산업	통상자	원부기	상관	성윤모
제	출	자	환	경	부	장	관	조명래	국 토	교 통	부 정	관	김현미
			해	양 수	산	부 장	관	문성혁	특	허	청	장	박원주
제출	연	월 일						2019.	10. 31.				

수소 기술개발 로드맵(안) (요약)

① 추진개요

- (목적) 수소에너지 분야 국내 기술경쟁력 제고를 통해 수소경제 이행을 뒷받침하고자 범부처* 기술개발 로드맵 수립 추진
 - * 과기정통부(주관), 산업부, 국토부, 해수부, 환경부, 특허청
- (체계) 민·관합동 추진체계

② 추진경과

- 기술로드맵 수립 착수 및 민·관합동 추진체계 구성 ('19.2월)
- 기술분류체계 마련 (~'19.3월)
- 세부기술별 **종합 진단** (~'19.5월)
 - * 국내/외 시장·산업·정책·기술 동향 파악, 정부 투자현황 조사, 특허·논문 분석 등
- 단기/중기/장기 **기술개발 추진전략** 도출 (~'19.10월)
- 관계부처 의견수렴 ('19.10.14, 과기장관회의 실무회의), 공청회 (10.23, 10.25)

③ 기술분류체계 정립

◇ 「수소경제 활성화 로드맵」의 기본방향을 토대로 5개 대분류를 마련하고 각각의 과학기술적.산업적 특성을 고려하여 세부기술 분류

< 「수소경제 활성화 로드맵」기본방향 >

전주기 안전성 확보

중소·중견 산업생태계 조성

- (생산) 수소를 포함한 화합물로부터 수소를 제조하는 기술로,
 - 제조 원료(화석연료, 폐자원/바이오매스, 물 등) 및 제조 방법(열화학적, 생물학적, 광화학적, 전기분해 등)을 기준으로 기술 세분화
- (저장·운송) 수소를 용도에 맞게 저장하고 운송·분배·공급하는 기술로,
 - 수소의 물리적·화학적 특성과 운송수단을 고려하여 기술 세분화
- **(활용**(수송수단)**) 수소를 활용하여 발생한 전기로 모터를 구동**하는 방식으로 운행하는 교통수단으로,
 - 육상용·해상용·항공용 수송수단 각각에 대해 연료전지시스템 출력과 용도를 고려하여 기술 세분화
- (활용(발전·산업)) 수소를 활용하여 전기와 열을 생산하는 발전 시스템으로,
 - 발전 설비용량 및 활용 분야, 타 시스템과의 융·복합 등을 고려하여 기술 세분화
- (안전·환경·인프라) 수소 전 주기 기술개발을 뒷받침하기 위해 안전, 표준화/인증, 환경/경제성, 인프라 및 기술실증 등으로 분류
- ⇒ 5개 대분류 하위에 18개 중분류, 49개 소분류로 구분하였으며 전문가 설문조사, 산업계 간담회 등을 통해 분류체계 적합성 검토

4 환경분석

- (시장·산업) 수소 활용처 확대* 등에 따라 세계 수소시장 규모
 확대 예상 ('17년 1,292억 달러 → '50년 2.5조 달러 : 연평균 6% 성장)
 - * (현재) 대부분 산업용 원료로 사용 → (향후) 수송・건물・발전용으로 확대
- (해외정책) 미국・일본・유럽・호주・중국 등 세계 주요국에서도
 수소기술 개발을 위한 국가차원의 전략* 수립・추진 중
 - * (미국)「국가 수소에너지 로드맵('02)」,「수소·연료 이니셔티브('03)」 (일본)「수소·연료전지 전략 로드맵('14년 수립, '19년 개정)」,「수소기본전략('17)」 (유럽)「수소 로드맵 유럽('19.2)」
 - (호주) 「수소 로드맵('18)」, 「2030 호주 수소산업 비전('18)」, 「국가수소전략('19년 말)」 (중국) 「중국제조 2025('15)」, 「차이나 수소 이니셔티브('17)」
- (국내정책)「친환경 수소경제 마스터플랜('05)」이후 지속적으로 기술개발을 추진해 왔으며, 올해 초 세계 최고수준의 수소경제 선도국가로의 도약을 목표로「수소경제 활성화 로드맵('19.1)」발표 <'15~'19 분야별 정부R&D 투자현황(단위:억원) >

○ (특허) 일본의 출원 점유율이 30%로 가장 높고 우리나라 출원량은 일본의 1/4 수준이며, 중국이 급격히 성장 중(최근 4년간 전체의 53%)

< 수소 전 주기 분야별 특허 출원 현황 >

구분	생산	저장·운송	활용(수송)	활용(발전)	인프라	계
전체 출원(건)	67,465	14,265	27,048	41,269	11,199	159,074
한국	4,383	1,021	3,826	3,362	802	13,394
(점유율, %)	(6.5)	(7.2)	(14.1)	(8.1)	(7.2)	(8.4)

※ '99.1월~'18.12월까지 출원·공개된 수소산업 관련 한국·미국·일본·유럽·중국·WO(국제) 특허 약16만건 분석

⑤ 분야별 이슈 및 핵심기술 개발 전략

【수소 생산】

- ◇ (이슈) 수소 수요 증가에 대비해야 하나 국내 수소 공급원인 부생수소*는 생산량 확대에 한계가 있어 다양한 수소생산 기술 확보 필요
 - * 석유화학 공정에서 부신물로 발생하며 대부분 자체소비(반도체용, 의약용, 석유화학학용, 공업용)
 - 유럽·일본에서 이미 상용화된 천연가스 개질 기술은 기술 적용이 용이하며 수소량·가격 측면에서 이점이 있으나 이산화탄소를 발생
- → (전략) 수소 수요량(526만 톤/년('40)) 대응, 화석연료 수준의 가격 경쟁력(3,000원/kg('40)) 확보, 기후변화 대응(온실가스 저감)을 위한 단계별 기술 개발을 통해 친환경 수소로 점진적 전환
- ① 초기(~'25)에는 천연가스 개질 기술 개발을 통해 저가 수소 대량 생산 기술을 확보
 - (주요기술) 거점형 수소생산기지(1,000Nm²/h 이상) 및 소형 온사이트 수소충전소(300~1,000Nm²/h) 구축을 위한 중·소형 개질 수소생산 시스템
- ② '30년까지 수소 생산량 증대를 위한 고효율·대용량 수전해 시스템 (50kWh/kg-H₂, 100MW급) 기술을 개발하고, 태양광·풍력 등 다양한 재생에너지원과의 연계 실증 추진
- ☞ (주요기술) 수MW~수십MW급 고효율 알칼라인 / 고분자전해질 저온 수전해 시스템, 재생에너지 연계 P2H(잉여전력을 수소로 저장하는 기술로 대용량ㆍ장기저장 유리)
- ※ 수소 생산 분야는 특히 기술혁신을 필요로 하며 세계적으로도 연구 활동이 활발히 진행 중이므로 다양한 기술 탐색이 필요

중분류	현 수준			단	기			중	기	장	기	목표
<u>οππ</u>		~'20	'21	'22	'23	'24	'25	~'28	~'30	~'35	~'40	7#
4740	시스템 설계		소형 개 [:]	질 수소	│ 생산 시스	∸템 개발						시스템 효율
연료이용	시스템 설계, 소규모 실증			중형 개 [:]	질 수소 ·	생산 시스	∸템 개발					78%(HHV) ('30)
	1MW급		잍	칼라인	수전해 시	시스템 개	발					'30년 100MW급 시스템 개발
물분해	원천기술 및 스택기술 개발		고분	사전해질	실 수전해	시스템	개발					*시스템 효율 50kWh/kg-H ₂
	설계 단계				재생에	너지 연격	P2H フ	술 개발				재생전원 연계 수십MW급 실증('30)

【 수소 저장 · 운송 】

- ◇ (이슈) 수소는 상온(25℃ 내외)에서 부피가 크기 때문에 운송비용 절감을 위해 대량으로 저장・운송할 수 있는 기술이 뒷받침되어야 하나, 수소기체를 압축하여 저장・운송하는 방식 외*에는 개발 단계
 - * (액체수소) 수소를 영하 253°C까지 낮추어 액화. 기체 압축수소 대비 부피가 1/800 수준 (액상수소화물) 수소를 유·무기화합물과 화학적 결합. 상온저장 가능. 기솔린과 성질 유사
- → (전략) 기체저장·운송 기술을 고도화하여 수소 운송량을 증대하고, 수소를 대량으로 안정성 있게 저장·운송할 수 있는 액체수소· 액상수소화물 저장·운송 기술 개발 추진
 - 다만, 각 기술은 대규모 인프라 구축*이 수반되므로 기술 실증 전경제성·환경성 분석('25년까지 프로그램 개발 예정) 등을 추진하고, 이를 기반으로 국가 수소공급 전략 수립 후 중점기술 재정비 필요
 - * (액체수소) 수소액화 플랜트, 저장탱크, 탱크로리, 운송선(수소수입 시) (액상수소화물) 수소추출 플랜트, 운송선(수소수입 시)
- ① 차량용 저장용기 가격저감 등 기체저장·운송 기술 고도화(고압·대용량)
- (주요기술) 차량용 고압기체저장 탱크 가격저감(100 → 45만원/kg), 중/장거리 수소
 배관망(20 → 100bar), 튜브트레일러용 대용량 복합재용기(200 → 450bar · 1,500L)
- ② 독일·미국·일본에서도 활발한 연구가 진행 중인 액상유기수소화물 분야는 원천기술 확보, 상용화된 액체수소 분야는 제품화 추진
 - (주요기술) 액상수소화물 수소 저장/추출 시스템(1,000Nm²-H₂/h), 수소액화 플랜트(50톤/일), 액체수소 저장탱크(80,000m²), 액체수소 탱크로리(3.5톤), 액체수소운송선 화물창(160,000m²)

< 핵심기술 개발 전략 > ★ ■ : 정부의 집중지원이 필요한 기간

중분류	현 수준			딘	기			중	·기	장	기	목표
ਠੁਛਜ	한 구正	~'20	'21	'22	'23	'24	'25	~'28	~'30	~'35	~'40	7#
물리적	100만원/kg		고압수	소 저장시	스템 가격	격저감 기	술 개발					45만원/kg
수소저장	0.1톤/일, 3㎡/탱크1기	=	수소 액호	플랜트	및 저장	기술 개	발 					50톤/일, 80,000㎡/탱크1기
화학적 수소저장	유기수소화물 신소재 개발	앤			및 추출		발					1,000Nm²-H₂/h급 수소추출시스템
수소운송	200bar 튜브트레일러, 단거리 배관망			기체 /	비용 저김 대용량 액체	ᅨ / 수소	배관망)					1,500L · 450bar 튜브트레일러, 3.5톤급 탱크로리 등
	원천기술 개발, 기본설계			해외생신	· 수소 이승	용용 선박	기술개발		Y			160,000㎡급 액체수소운송선

기술개발 현황/보급 실적/경제성·환경성 분석 이후 ▲ 국가수소공급 전략 수립 및 기술개발 재정비

【수소 활용(수송수단)】

- ◇ (이슈) 경쟁국은 승용차 중심에서 상용차, 철도차량, 건설기계, 선박, 드론, 유인항공기로 기술을 확대*해 가는데 반해 우리는 아직 승용차 중심이며, 일부 부품(촉매, 이오노머 등)은 수입에 의존
 - * 미국은 건설기계, 유럽은 선박·철도, 일본은 상용차, 중국은 양산기술 분야에서 우위

<참고> 수소차 핵심 소재·부품 기술개발 현황

- ∘ (막전극접합체) '15년에 국산화 성공, 핵심소재인 촉매·전해질·이오노머는 수입(소수 기업) 의존
- ∘(기체확산층) 최근 국산화 완료
- ∘ (고압용기) '15년에 국산화 성공, 핵심소재인 탄소섬유는 수입(일본) 의존
- ⇒ (전략) 수송수단에 모두 연료전지시스템이 적용되므로 타 분야로의 확장성이 큰 연료전지시스템을 전략적으로 활용하여 중복투자 방지 및 가격 저감을 유도하고, 독점성이 높은 부품은 국산화 추진
- ① 승용차/상용차용 연료전지시스템을 기반으로 플랫폼 기술을 개발· 응용하여 다양한 수송수단에 적용*하고, 각 제품의 상이한 운영 화경에 따른 성능을 구현하기 위한 기술 개발 추진
 - * 승용차 연료전지시스템 → 상용차 연료전지시스템 → 건설기계 적용(승용차용 확장) → 연안선박 적용(상용차용 모듈화) → 유인항공기 적용(승용차용 경량화)
 - ※ 내연기관에서 전력기반으로 전환하는데 따른 전기동력 추진체 기술 개발 병행
 - ☞ (주요기술) 철도차량·건설기계·선박용 연료전지 파워팩, 드론 연료전지시스템
- ② 소수 기업 의존도가 높은 연료전지 스택 소재(촉매, 이오노머 등), 상용차용 전장장치는 국산화 및 성능개량(고효율, 저가, 장수명)

< 핵심기술 개발 전략 > ★ ■ : 정부의 집중지원이 필요한 기간

중분류	현 수준	단기 중기 장기							기	목표		
ошπ		~'20	~'20 '21 '22 '23 '24 '25 ~'28 ~'30 ~'35							~'40	7#	
육상용	국내 개발 및 실증 단계		연료전지시스템 모듈화 및 전장장치 개발								(철도) 내구 25년 (건설기계) 내구 2만시간	
400	실증 단계			(수소열차용	용 / 중대형	건설기계)		(고속철	털도용) 		2만시간
해상용	R&D		수소선박 연료전지시스템 개발								시스템 가격 50만원/kW, 내구 20년	
୴ଌ୕ୄ	(대양선박은 기초연구)		(:	소형선박용	})			(대양심	선박용)			50년원/KW, 내구 20년
±1.7.0	핵심 부품기술			수소드	론 시스틱	넴 개발						시스템 출력밀도
항 공용	핵심 부품기술 해외 의존	(일반 및 특	투수목적용	})	(대형	형물류 운영	송용)				0.6kW/kg ('30)

【 **수소 활용**(발전 · 산업) 】

- ◇ (이슈) 발전을 위한 연료전지시스템 제작・운영 기술은 세계 최고 수준이나 핵심 소재・부품의 수입 의존도가 높고 경제성이 부족*
 - * 가정·건물용 연료전지 설치비: 2,700만원/kW(일본 1,100만원/kW)

<참고> 발전용 연료전지 핵심 소재·부품 기술개발 현황

- ∘(셀스택(가격비중 30%)) 전국·촉매 국내 기술개발 중, '19~'22년 중 확보 가능
- ∘ (연료변환기(가격비중 35%)) 촉매 전량 수입, 작은 시장규모로 국내기업 미진출
- ⇒ (전략) 발전용 연료전지시스템(가정·건물용, 분산 발전용, 대규모 발전용)의 경제성 확보를 통해 설치비와 발전단가를 절감*하고, 수입 의존도가 높은 주요 소재・부품의 국산화 및 고도화 추진
 - * (가정·건물용 설치비) 2,700만원/kW(현재) → 800만원/kW('30) → 600만원/kW('40) (대규모 발전용 발전단가) 241원/kWh(현재) → 141원/kWh('30) → 131원/kWh('40)
- ① 연료전지시스템 핵심부품 모듈화, 양산화, 시스템 효율 향상 및 내구성 향상을 위한 기술 개발
 - ☞ (주요기술) 마이크로열병합(가정·건물용) 소형 고효율 연료처리장치 및 연료전지시스템 분산 발전용 고효율·고신뢰성 시스템 모듈화 및 캐스케이딩 대규모 발전용 연료전지시스템 대용량 스택 및 시스템 개발
- ② 연료전지시스템 스택 소재(전국, 촉매) 및 주변장치(연료변환기, 기계적 구성장치)를 국산화하고, 이후 상용화 단계 진입 시 품질·가격 등 장애요인 극복을 위한 엔지니어링 기술* 개발('30년까지 선진국 수준)
 - * 괸리비 절감을 위한 운영 최적화, 신뢰성 향상을 위한 품질괸리, 부품ㆍ시스템 설계 최적화

< 핵심기술 개발 전략 > ★ ■ : 정부의 집중지원이 필요한 기간

중분류	현 수준		단기					중기		장기		목표
ᇰᇎᅲ	한 구분	~'20	'21	'22	'23	′24	'25	~'28	~'30	~'35	~'40	7#
	시스템 가격 2,700만원/kW (PEMFC 기준)		마이크	H로열병협	할 소형회	・제품	다양화					시스템 가격 800만원/kW ('30)
고정형 연료전지	효율 약 75%		분산	발전용		고신뢰성	연료전지	시스템	개발			효율 90%('30)
	발전단가 241원/kWh					대규모 박	발전용 연	료전지시:	스템 개발			발전단가 141원/kWh (′30)

【수소 전 주기 안전·환경·인프라】

- ◇ (이슈) 다른 분야와 비교하여 연구개발이 많이 진행되지 않아 유럽・ 일본・미국 대비 추격 단계에 있으며 해외 의존도가 높은 편*
 - * (안전) 수소사고 예방과 안전성 평가를 위한 데이터베이스 구축률 선진국 대비 10% (수소충전소) 부품 국산화율 약40%, 압축기는 국내·외 제품 혼용, 고압부품은 해외 의존

<참고> 수소충전설비 부품 국산화 비율

- ∘ (250kg/일급 수소충전소) 약 53% (국내 압축기 적용 시, 건설비 제외, 가격비중 기준) 약 33% (해외 압축기 적용 시, 건설비 제외, 가격비중 기준)
- ∘ (500kg/일급 수소충전소) 약 28% (건설비 제외, 가격비중 기준)
- ⇒ (전략) 수소 전 주기 기술개발을 위한 기반이므로 '30년까지 완비 추진
- ① 안전성 확보를 위한 실증 데이터베이스 구축 및 평가시스템 도입, 국내 기술의 국제표준 전략적 선점과 더불어 국내 인증품목 확대
- ② 해외 의존도가 높은 **수소충전소 기자재 국산화** 및 수소추진선박 운항에 필요한 **벙커링**(선박·항만설비에 수소 공급) **기술** 개발
- ③ 수소 생산, 저장·운송, 활용 각 분야에서 개발된 제품을 실증지에 적용
- ☞ (주요기술) 안전 / 표준·인증 / 환경·경제성 / 충전설비 / 도시·클러스터 기반의 실증

< 핵심기술 개발 전략 > * 📉 : 정부의 집중지원이 필요한 기간

중분류	현 수준			단	기			중	·기	장	기	목표
οшπ	C TE	~'20	′21	'22	'23	'24	'25	~'28	~'30	~'35	~'40	7#
	선진국 의존		소재, -	부품, 시 <i>스</i>	느템 안전	평가 기	술 개발	DB-	구축			DB구축 100%
안전기술	안전성평가 기술수준 78%		전주기 '	설치, 안?	전 및 사. 전·	니 고예방 기 주기 안전			리			안전성평가 기술수준 98%
	품질 표준/장비 개발 2건		품질	및 측정	기술(시험							품질 표준/장비 개발 누적 10건
표준화 및	국제표준 미흡,		5	2빌리티,	에너지	및 공급/	계량 등	표준 개	발			국제표준 15건
인증기술	시험 인증 기준/장비 3건			소재/부	·품/제품	시험 평	가 및 인	증 개발				시험 인증 기준/장비 10건
환경 및 경제성 평가	인벤토리 · 환경성 평가 기준 없음 수소분야 적용				성 분석 포			환경 · 경 분석 프로	및 보완 제성 통합 그램 개발			수소 전 주기 통합 환경성 · 경제성 평가 프로그램 구축
ਰ ਾ	경제성 평가 프로그램 없음		전주기 경	경제성 분석	석 프로그	램 · 비즈 <u>·</u>			및 보완) 전략 수립	네에 활 용		3/1======
수소 공급	국산화율 40%			수소 *	충전 기술	· 개발		평가 5	및 실증			국산화 <u>율</u> 100%
인프라	유사연료 벙커링 터미널 기초설계			수소 병	커링 기	술 개발		검증 및	항만실증			63,000㎡/주 방거링 터미널 설계
수소사회	사례 없음		수소 전	주기 분	야별 집적	텔 텍 클러스	:터 실증					밸류체인별 구축
기반 구축	소규모 실증 진행 중				전 주기			영시스템	ll 실증	상왕·	해진출	도시 단위 건물/교통/기반실증

6 기술개발 최종 목표

세계 최고수준 기술력 확보로 수소경제 선도국으로 도약

1. 저가 수소 대량 생산 기술 상용화 및 그린수소 생산 기술 개발

2. 다양한 저장 · 운송 핵심기술 확보 및 전략적 운송 인프라 구축

차량용 탱크 가격 '30년 45만원/kg (현재 100만원/kg)

충전소용 탱크 용기 '30년 type 4 복합소재 (현재 type 1 금속소재) **트레일러 운송비** '40년 700원/kg (off-site 기준)

배관망 구축 비용 '40년 4억원/km, 100bar (현재 10억원/km, 20bar)

3. 연료전지시스템 기반의 수송수단 저변 확대

4. 발전용 연료전지시스템 고효율 · 저가화 기술 확보

5. 수소 안전ㆍ제도 완비/표준 선점/보급 기반 확대

안전 확보를 위한 데이터베이스 구축률 '30년 100%

국제표준 제안 '30년 15건

충전소 구축비용 '30년 300만원/kg

7 향후 계획

- ◇ 기술로드맵의 이행력 강화를 위해 '범부처 수소 R&D 협의체'를 기반 으로 주기적으로 현행화하고 기술개발 사업 추진 및 성과로 연계
- '범부처 수소 R&D 협의체' 운영
 - (구성) 과기정통부(주관), 산업부, 국토부, 해수부, 환경부, 특허청 등 6개 부처 및 소관 연구관리전문기관*
 - * 연구재단, 에너지기술평가원, 국토교통과학기술진흥원, 해양수산과학기술진흥원, 환경산업기술원, 특허전략개발원 등 6개 기관
 - (역할) 부처별 R&D 추진현황 및 성과 공유, 신규 R&D 투자 수요 검토, 개발된 기술의 조기 적용을 위한 규제 개선사항 발굴 등
- 기술로드맵 관리 및 활용
 - '범부처 수소 R&D 협의체'를 중심으로 국내·외 기술개발 동향 및 기술 적용, IP R&D, 보급 현황 등을 상시 검토하고,
 - ·이를 토대로 5년을 주기로 기술로드맵 상의 기술개발 전략 재검토
 - * ('25) 수소 생산, 저장·운송 분야는 경제성·환경성 분석을 통해 기술개발 전략 재정비 필요 < 기술로드맵 개정 시 추진계획 >

현황 업데이트		기술로드맵 현행화(안) 마련		조
연구관리전문기관	>	범부처 수소 R&D 협의체 민간전문가	•	범부처 수

 조정·확정

 범부처 수소 R&D 협의체

- 기술로드맵에 제시된 중장기 기술개발 전략 및 중점 투자분야를 기반으로 **범부처 R&D 사업 기획**
- · 수소 전 주기(생산, 저장·운송, 활용)·연구개발 전 단계(기초·원천, 실증, 상용화) 간 유기적 연계를 통해 가시적 성과 창출 가속화
- 그 외 각 부처가 필요로 하는 기술개발 사업 및 국제 공동연구 과제 발굴, 후속과제 필요성 판단 등에 활용

과학기술관계장관회의 회 차 2019 - 09 (1호)

수소 기술개발 로드맵(안)

2019. 10. 31.

관계부처 합동

순 서

I . 추진개요 ············· 1
1. 추진배경 및 목적 1
2. 추진체계
3. 추진경과 2
Ⅱ. 기술분류체계 정립 3
Ⅲ. 현황 및 시사점5
1. 환경분석 5
2. 이슈 및 시사점 16
** III
Ⅳ. 비전 및 목표 ··································
Ⅳ. 미선 및 목표 ··································
V. 추진전략 ······ 20
V. 추진전략 20 1. 중점 추진전략 20

Ⅰ. 추진개요

1 추진배경 및 목적

- □ 정부, 「수소경제 활성화 로드맵('19.1)」을 통해 세계 최고 수준의 수소경제 선도국가로의 도약을 위한 전략 제시
 - 우리나라가 강점이 있는 '수소차'와 '연료전지'를 양대 축으로 수소
 경제를 선도할 수 있는 산업생태계 구축
 - 경제적·안정적인 수소 생산 및 공급시스템 조성
 - 국민이 안심하고 신뢰할 수 있는 수소경제 이행 기반 마련
- ⇒ 수소에너지 분야 국내 기술경쟁력 제고를 통해 수소경제 이행을 당받침하고자 범부처* 기술개발 로드맵 수립 추진
 - * 과기정통부(주관), 산업부, 국토부, 해수부, 환경부, 특허청

2 추진체계 : 민 관합동 추진체계

3 추진경과

- □「수소 기술개발 로드맵」수립 준비
 - 6개 부처*, 기술로드맵 수립 착수 및 민·관합동 추진체계 구성('19.2)
 - * 과기정통부(주관), 산업부, 국토부, 해수부, 환경부, 특허청
- □「수소 기술개발 로드맵」수립 추진
 - 기술분류체계 마련('19.3)
 - **제1차 민・관합동 전체회의**(3.22) : 분과별 기술분류체계 논의
 - 전문가 1차 설문조사(4월초) : 기술분류체계 적합성 검토
 - 세부기술 **종합 진단**(~'19.5)
 - 시장/산업ㆍ정책ㆍ기술 동향 : 분과별 조사
 - 정부R&D 투자 : 각 부처 연구관리전문기관 등* 전수조사
 - * 한국연구재단, 한국에너지기술평가원, 국토교통과학기술진흥원, 해양수산과학기술진흥원, 한국환경 산업기술원, 한국산업기술진흥원, 한국산업기술평가관리원
 - ∘ 특허/논문 : 특허전략개발원 / 한국과학기술정보연구원 조사·분석
 - 기술개발 최종목표 도출(~'19.5)
 - ∘ 산업계 1차 간담회(5.31) : 기술분류체계 및 기술개발 최종목표 의견수렴
 - 단기/중기/장기 기술개발 추진전략 도출(~'19.10)
 - 제2차 민·관합동 전체회의(7.4) : 분과별 도출 기술개발 전략 공유
 - 산업계 2차 간담회(7.25) : 분과별 기술개발 전략 의견수렴
 - 전문가 2차 설문조사(8월말) : 기술개발 전략 및 중점추진분야 의견수렴
 - 관계부처 및 전문가 워크숍(8.26~27) : 분과별 기술개발 전략 정합성 제고
 - 관계부처 및 전문가 최종 검토(10.10~11) : 기술개발 전략 종합검토
 - ○「수소 기술개발 로드맵(안)」의견수렴('19.10)
 - **공청회**(10.23 / 10.25) : 수소 기술개발 로드맵 의견수렴

Ⅱ. 기술분류체계 정립

□ 「수소경제 활성화 로드맵」의 기본방향을 토대로 5개 대분류를 마련하고 각각의 과학기술적·산업적 특성을 고려하여 세부기술 분류

- (생산) 수소를 포함한 화합물로부터 수소를 제조하는 기술로,
 - 제조 원료(화석연료, 폐자원/바이오매스, 물 등) 및 제조 방법(열화학적, 생물학적, 광화학적, 전기분해 등)을 기준으로 기술 세분화
- (저장·운송) 수소를 용도에 맞게 저장하고 운송·분배·공급하는 기술로,
 - 수소의 물리적·화학적 특성과 운송수단을 고려하여 기술 세분화
- **(활용**(수송수단)**) 수소를 활용하여 발생한 전기로 모터를 구동**하는 방식으로 운행하는 교통수단으로,
 - 육상용·해상용·항공용 수송수단 각각에 대해 연료전지시스템 출력과 용도를 고려하여 기술 세분화
- (활용(발전·산업)) 수소를 활용하여 전기와 열을 생산하는 발전 시스템으로,
 - 발전 설비용량 및 활용 분야, 타 시스템과의 융·복합 등을 고려하여 기술 세분화
- (안전·환경·인프라) 수소 전 주기 기술개발을 뒷받침하기 위해 안전, 표준화/인증, 환경/경제성, 인프라 및 기술실증 등으로 분류
- ⇒ 5개 대분류 하위에 18개 중분류, 49개 소분류로 구분하였으며 전문가 설문조사, 산업계 간담회 등을 통해 분류체계 적합성 검토

< 수소 전 주기 기술분류체계(안) >

대분류	중분류	소분류
-11 E TT	O L 11	1-1-1. 개질 반응
	1-1. 연료 이용 수소생산	1-1-2. 가스화 반응
	1	1-1-3. 생물학적 전환 반응
		1-2-1. 가연성 폐자원 가스화
	1-2. 폐자원/바이오매스 이용 수소생산	1-2-1. 기년등 체시면 기교되 1-2-2. 생물학적 발효
1. 생산		1-2-3. 바이오매스 가스화
		1-3-1. 전기 분해
		1-3-2. 광 분해
	1-3. 물분해 수소생산	1-3-3. 열 분해
		1-3-4. 초고온가스로
-		2-1-1. 기체 수소저장
	2-1. 물리적 수소저장	
		2-1-3. 물리흡착 수소저장
2. 저장 ·		2-2-1. 액상 수소화물 저장
운송	2-2. 화학적 수소저장	2-2-2. 금속 및 무기 수소화물 저장
		2-3-1. 육상 수소 운송
	2-3. 수소 운송	2-3-2. 해상 수소 운송
-		3-1-1. 승용차
		3-1-2. 상용차
	3-1. 육상용 수송수단	3-1-3. 철도차량
a 취유		3-1-4. 건설기계
3. 활용 (수송수단)		3-1-5. 개인이동
(+6+1)	3-2. 해상용 수송수단	3-2-1. 연안선박
	J-2. 4166 T6TL	3-2-2. 대양선박
	 3-3. 항공용 수송수단	3-3-1. 드론
	3 3. 8 6 6 7 6 7 2	3-3-2. 유인항공기
	4-1. 수소활용 공통기술	4-1-1. 연료전지 소재
	,	4-1-2. 연료전지 엔지니어링
		4-2-1. 마이크로열병합
4. 활용	4-2. 고정형 연료전지	4-2-2. 분산발전용
(발전·산업)		4-2-3. 대용량 발전용
	4-3. 융·복합 발전	4-3-1. 융합(연계) 플랫폼 기술
		4-3-2. 연료전지 네트워크
	4-4. 수소터빈	4-4-1. 중대형 발전용 4-4-2. 소형 발전용
		1-4-2. 도당 글인당 5-1-1. 소재·부품·시스템 안전
		5-1-1.
	5-1. 안전기술	5-1-2. 서울 옷 울시 년년 5-1-3. 사고 예방 기술
		5-1-3. 서도 예상 기술 5-1-4. 품질 및 측정 기술
		5-2-1. 수소 모빌리티 표준화
		5-2-2. 수소 에너지 표준화
5. 안전ㆍ	5-2. 표준화 및 인증 기술	5-2-3. 수소 공급 및 계량 표준화
환경ㆍ		5-2-4. 시험인증 기술 표준화
인프라		5-3-1. 환경성 평가
	5-3. 환경 및 경제성	5-3-2. 경제성 평가
	5 4 A A 7 7 O 7 7	5-4-1. 수소충전기술
	5-4. 수소 공급 인프라	5-4-2. 수소벙커링
	ㄷㄷ ᄉ씨ᆈᇸ ᄀᄟᅠᄀᅕ	5-5-1. 수소 클러스터
	5-5. 수소사회 기반 구축	5-5-2. 수소도시 실증

Ⅲ. 현황 및 시사점

1 환경분석

1. 시장 및 산업 동향

- 세계 수소시장 규모는 '17년 1,292억 달러에서 연평균 6% 성장하여 '50년 2.5조 달러 매출, 누적 3천만 개 일자리 창출 전망(맥킨지, '17)
 - 현재 수소의 대부분은 산업용 원료로 사용되고 있으나 수송·건물· 발전용으로 활용처가 점차 확대되어 '50년 수요는 546백만 톤 예상
 - 수소차·연료전지 분야 기업 간 기술경쟁이 치열하고, 개별국가의 기술적·지리적 한계를 극복하기 위한 글로벌 협력*이 활발
 - * (생산) 아사히 카세이(일본) + 헤르텐 시(독일) : 풍력발전을 통한 수소 생산 (활용) 잘츠기터(독일) + 알스톰(프랑스) : 여객용 수소연료전지 열차 개발·실증
- 국내 수소시장 또한 지속 성장하여 '50년 70조원 매출, 누적 60만 개의 일자리 창출 전망(맥킨지, '18)
 - 현재 수소의 대부분이 산업용 원료로 사용되고 있으나 향후 활용처가 광범위하게 확대되어 '50년 17백만 톤 수요 예상
 - 수소관련 기업은 **441**개이며, 부문별로는 부품・설비(34.7%), 연료전지 (29.9%), 수소 생산(8.2%), 수소 저장·운송(5.4%)임(한국수소산업협회, '16)

① 수소 생산

- ◈ (세계) 수소 생산 시장은 '17년 1,032억 달러에서 '26년 2,075억 달러로 연평균 약 8%성장 전망(마켓앤마켓, '18)
- **세계 수소 수요는 약 7천만톤**(*18)이며, 이 중 **76%는 천연가스**, **23%는 석탄**으로부터 생산 (국제에너지기구, '19)
- 일본, 독일, 미국, 호주 등을 중심으로 수소 생산·수소충전소 업체들이 등장하는 추세
- ◈ (국내) 부생수소 및 개질 기반의 수소생산 산업 위주로 형성
- 약 **164만 톤**('17) 생산량 중 대부분은 석유· 화학업체가 자체 소비, 약 23만 톤을 외부 유통

② 수소 저장·운송

- ◈ (세계) 수소저장시스템 시장은 '16년 4.7억 달러에서 '26년 10.1억 달러로 연평균 약8% 성장 전망(마켓앤마켓, '17)
- **기체수소 저장·운송 외 타 방식**의 수소 저장·운송은 **산업저변이 넓지 않은 상황**
- ◈ (국내) 수소 운송 및 대규모 저장 관련 산업 여건은 매우 취약
- 석유화학단지를 중심으로 수소배관망이 집중 형성되어 있으며,
- **외부 유통 수소**(약 23만 톤)는 **수소배관망** (약93%)과 **튜브트레일러**(약7%)를 통해 **공급**

③ **수소 활용**(수송수단)

- ◈ (세계) 육상용의 경우 승용차를 중심으로 초기시장이 형성되어 있으나, 해상・항공용 은 연구개발 및 실증 단계
- '18년까지 **승용차 1만여 대, 지게차 2만여 대**가 판매되었으며(누적 집계), **이외 육상용 수송 수단은 '25년 이내 시장 형성** 전망(IPHE, '19)
- **해상용**의 경우 **소형 선박은 '20년부터**, **중·대형 선박은 '30년 이후** 시장 진입 전망 (수소위원회, '17)
- ◆ (국내) 육상용 중 승용차 분야만 시장이 형성 (누적 3,436대, '19.9)
- 해상용은 기술개발 단계에 있고, 항공용은 수소드론이 초기시장 진입을 준비 중

4 **수소 활용**(발전·산업)

- ◈ (세계) 수소발전 시장은 '17년 11억 달러에서 '30년 115억 달러로 성장 전망(후지경제, '18)
- **가정·건물용**(kW급) 분야는 **한국과 일본**을 중심으로, **발전용**(MW급) 분야는 **한국과 미국**을 중심으로 양분되어 성장
- ◈ (국내) 신재생에너지공급의무화제도(RPS), 가정・건물용 설치 보조금 지원 등으로 보급 확대 추세*에 있어 시장 확대 전망
- * (가정·건물용 보급량) 9MW('19.9) → 2.1GW('40) (발전용 보급량) 370MW('19.9) → 15GW('40, 수출 포함)
- **수소 이용 50MW 연료전지 발전단지**를 구축 중 이며, **도심형 연료전지 분산발전** 보급 확대 중

⑤ 수소 전 주기 안전·환경·인프라

◆ (세계)

- 일본·미국·유럽은 소재·부품 안전성 확보를 위한 지원센터를 구축하고 관련 법/제도를 운영 중이며, 국제표준화기구(ISO) 등은 수소 활용·공급 분야의 국제표준 37종을 제정
- 미국은 정부출연연구소를 중심으로 전 과정 평가(LCA) **툴 개발** 및 지속적인 평가 진행
- 육상용 수소충전소는 24개국에서 402기*를 운영 중이며, 해상용 충전시설(벙커링) 시장은 형성 전이나 국제해사기구(IMO)의 환경규제 강화에 따라 '30년 전후로 시장 형성 전망
- * 일본 110기, 독일 78기, 미국 69기, 프랑스 20기, 영국 17기, 중국 17기 등('19.7월 기준)

◈ (국내)

- **수소를 포함한 고압가스용 제품·부품에 대한 안전특성 평가**를 위한 지원센터를 운영 중이며, 수소 활용·공급 분야의 **국제표준에 부합하는 국가표준(KS) 19종**을 제정
- 전 과정 평가에 대해 연구한 바 있으나 데이터베이스 부족 및 실제 기술개발과의 연계 미흡
- 육상용 수소충전소 31기를 운영 중이며('19.10월 기준), 해상용 충전시설(벙커링)은 전무

2. 정책 동향

- (미국) 연방정부 차원의 국가 로드맵(「국가 수소에너지 로드맵('02)」, 「수소·연료 이니셔티브('03)」) 발표 이래로 관련 정책 지속 추진
 - 에너지부(DOE)와 주정부, 민간 등이 민·관 파트너십을 구축하고 저비용 수소를 대량으로 생산하기 위한 R&D 지원
 - 수소차, 발전용 연료전지 확대를 위한 보조금 및 세제 지원
 - ※ 무공해차 의무판매를 추진 중이며 캘리포니아 등 10개 주는 수소차 세제 혜택 지원
- (**일본**) '02년 수소차 · 연료전지 실용화 발표 후, 「**수소 · 연료전지 전략 로드맵**('14년 수립, '19년 개정)」및 「**수소기본전략**('17)」수립
 - 신에너지개발기구(NEDO)를 중심으로 국제 수소공급망 구축, 지역 자원 활용 확대, 재생에너지 전력의 수소화 확대를 위한 R&D 지원
 - 수소차 확대를 위한 보조금 및 세제 지원
 - ※ 수소차에 최대 202만 엔 보조금 지원, 취득세/중량세 면제, 자동차세 75% 감면
- (유럽) 「수소 로드맵 유럽('19.2, 민·관 파트너십 FCH JU)」수립
 - 재생에너지 잉여 전력을 이용한 수전해 수소 생산, 수전해 수소 기반 메탄가스 공급 프로젝트 등 R&D 지원
 - 수소차, 발전용 연료전지 확대를 위한 보조금 및 세제 지원
 - ※ (수소차) 판매가의 30% 한도(최대 1만유로) 보조금 지원, 차량 등록세 면제 또는 감면 (발전용) 독일의 경우 마이크로열병합 시스템 가격의 최대 40%(7,050~8,200 유로) 지원
- (호주)「수소 로드맵('18)」,「2030 호주 수소산업 비전('18)」 및 아시아 수소 수출 전략 구체화를 위한「국가수소전략('19.말)」수립
 - 수소 수출시장 개척 및 주요 교역국 대상 투자유치, 가스망 내수소가스 사용(P2G) 실증과 수소차 충전소 구축 예비조사 추진
 - 호주재생에너지청(ARENA), 17개 프로그램을 통해 수소에너지 생산· 공급망 구축 R&D 집중 지원

- (중국) 신에너지자동차를 핵심 사업으로 선정(「중국제조 2025('15)」) 하고, 국제 연료전지차 대회를 통해 「차이나 수소 이니셔티브('17)」 선언
 - '30년까지 목표 : 수소차 100만대, 수소충전소 1,000개소
 - 신재생에너지, 원자력, 메탄 개질 등을 이용한 수조 제조기술 중점 개발
- (국내) 「친환경 수소경제 구현을 위한 마스터 플랜('05)」 발표 이후 지속적인 R&D 지원을 통해 세계 최고수준의 수소차・연료전지 기술을 확보하였으며,
 - 이를 기반으로 수소경제 선도국가로 도약하기 위한 「**수소경제** 활성화 로드맵('19.1)」 발표

── < 참고.『수소경제 활성화 로드맵』비전 및 목표 > ─

◇ 비전 : 세계 최고수준의 수소경제 선도국가로 도약

◇ 목표

▶ 수소 모빌리티 및 에너지

		2018년	2022년	2040년
수소차		1.8천대	8.1만대	620만대
(수출 / 내수)		(0.9천대 / 0.9천대)	(1.4만대 / 6.7만대)	(330만대 / 290만대)
연료	발전용	307MW	1.5GW	15GW
	(내수)	(전체)	(1GW)	(8GW)
전지	가정·건물용	7MW	50MW	2.1GW

▶ 수소 공급 및 가격

	2018년	2022년	2030년	2040년
공급량	13만톤/연	47만톤/연	194만톤/연	526만톤/연 이상
공급 방식	① 부생수소(1%) ② 추출수소(99%)	① 부생수소 ② 추출수소 ③ 수전해	① 부생수소 ② 추출수소 ③ 수전해 ④ 해외생산 ※ ①+ ③ + ④:50% ② :50%	① 부생수소 ② 추출수소 ③ 수전해 ④ 해외생산 ※ ①+ ③ + ④: 70% ② : 30%
수소 가격*	- (정책가격)	6,000원/kg (시장화 초기가격)	4,000원/kg	3,000원/kg
* 츠저스	ュユルカ			

* 충전소 공급가격

3. 기술 동향

① 수소 생산

- (연료 이용) 유럽 · 일본을 중심으로 중 · 소형 개질 시스템 상용화 및 대형 가스화 플랜트 실증이 진행되고 있으며,
 - 국내는 소형 개질 시스템 국산화 추진 중
- (폐자원 /바이오매스) 유럽 · 미국 · 일본은 가스화 및 발효 공정을 통해 생산된 수소의 경제성 확보를 위해 합성가스 고부가가치화, 타 발효 공정과의 연계 등 상용화 기술 개발을 추진하고 있으며,
 - 국내는 가스화 공정은 파일럿 개발 단계, 발효 공정은 핵심 요소 기술 개발 중
- (물분해) 유럽을 중심으로 수전해 시스템 효율 향상 및 P2G 실증 연구가 활발히 진행 중*이며, 고온 수전해・열 분해・광 분해 등 차세대 그린수소 생산은 기초・워천 연구 단계
 - * (독일 E.ON) 풍력 연계 2MW급 수소 생산 플랜트 상업 운전 중
 - 국내는 저온 수전해 시스템 제작 기술을 보유하고 있으나, 그 외 기술은 학계·연구계 중심의 기초·원천 연구 단계

[2] 수소 저장·운송

- (물리적 저장) 미국·일본·유럽이 고압기체 저장용기 및 수소액화 플랜트*를 상용 판매·운영 중
 - * (일본 JSW) 900bar Type1 충전소 용기 상용화, (미국 Air products) 34톤급 액화플랜트 운영
 - 국내는 복합재고압용기(>900bar)를 개발 중이며 액화 플랜트급 개발 착수
- (화학적 저장) 독일·미국·일본이 액상수소화물 및 고체수소화물 저장에 대한 소규모 실증을 추진 중이며,
 - 국내는 액상수소화물 및 고체수소화물 저장 모두 기초·원천 연구 단계

- (수소 운송) 미국·유럽에서는 육상 운송을 위한 튜브트레일러· 배관망·탱크로리가 상용화되어 있으며, 해상 운송의 경우 일본이 다양한 액체수소 및 액상수소화물 운송 실증 추진
 - 국내는 육상 운송의 경우 튜브트레일러·배관망의 운송량 증대를 위한 기술개발을 추진 중이며, 해상 운송은 기술개발 초기 단계

③ **수소 활용**(수송수단)

- (육상용) 미국·유럽·일본은 승용차 중심에서 상용차·철도차량· 건설기계 등으로 확대* 중이며,
 - * (미국·유럽) 버스·트럭·지게차·철도. (일본) 버스·트럭
 - 국내는 승용차 부문 기술력은 세계 우위를 점하고 있으나, 그 외 부문은 기술개발 단계
- (해상용) 육상용으로 기 개발된 연료전지시스템을 소형 상선에 적용하거나 선종별 크기에 따라 종류별로 적용하는 연구가 진행
 - 장거리 항해가 필요한 선박 특성에 따라 기체수소 대비 밀도가 높은 액체수소 연료의 운송·저장에 대한 연구도 추진
 - * (유럽) '00년부터 노르웨이, 덴마크, 독일 등을 중심으로 국가 주도 실증 프로젝트 진행
- (항공용) 소형 무인기(수소 드론)의 경우 한국과 중국을 중심으로 상업화 초기 단계이며, 대형 유・무인기는 유럽과 미국이 주도

[4] **수소 활용**(발전 · 산업)

- (고정형 연료전지) 일본·미국·독일은 신뢰성 향상, 원가 절감, 내구성 향상 등을 해결하기 위한 기술개발을 중점적으로 추진
 - 국내는 가격저감을 위한 부품 소재 국산화 및 양산기술 확보에 집중하고 있으며, 수요자 맞춤형 모델도 개발 중
- (융·복합 발전) 미국은 열/전기/수소를 생산하는 삼중발전 연료 전지 시스템을 수소충전소와 연계하여 실증 중이며, 일본은 연료 전지/가스터빈 복합발전 시스템 실증 완료
 - 국내는 삼중발전 연료전지 시스템 개발에 착수하였으며, 연료전지/ 가스엔진 복합발전 시스템 기술 개발 중
- (수소터빈) 미국·독일·일본은 가스터빈 연소기를 개조하여 수소 혼소·전소 터빈기술 개발 및 실증 진행 중
 - 국내는 수소 혼소용 연소기 개발 추진 예정 (D社)

[5] 수소 전 주기 안전·환경·인프라

- (안전) 유럽・일본・미국은 수소사고 예방과 안전성 평가를 위해 폭넓은 DB를 구축하고 이를 토대로 수소 안전기준 개발 연계
- (표준・인증) 국제표준화기구(ISO), 국제전기기술위원회(IEC), 기업 건소시엄 중심으로 국제표준화가 진행 중*이며 미국・일본・유럽이 주도
 - 37종이 제정되고 17종 개발이 진행 중이며, 수소충전소·가정용 연료전지에서 수전해·드론·철도 등으로 응용범위 확대 중
 - * (ISO) P2G·액체수소 설비 등 차세대 모빌리티·수소공급 분야 표준 논의 중 (IEC) 드론·선박 등 신수요 분야와 하이브리드 시스템 등 융합 분야 표준 논의 중 (수소상용차 연합(H社 참여)) 고압(700bar) 대용량 충전 부품 개발 논의 중
 - 국내는 국가기술표준원과 기업(H社)을 중심으로 국제표준을 제안 하고 국제표준 완료 기술 중 19종을 KS인증으로 도입

- (환경・경제성) 일본은 온실가스 배출 전 과정 평가(LCA) 가이드 라인을 제시하고 있고 미국은 수소 공급(생산 및 저장·운송) 측면에서 다양한 경제성 평가 툴(H2A, HDSAM, H2FAST, HRSAM)을 개발
 - 국내는 국내환경 맞춤형 환경·경제성 평가 방법 기초연구 단계
- (공급 인프라) 미국・일본・유럽을 중심으로 수소충전소 가격저감 및 소형화를 위한 기술개발이 진행 중이며 수소벙커링 시스템 개발 착수
 - 국내는 수소충전소 충전설비의 일본·미국 등 해외제품 의존도가 높고 수소벙커링 시스템 기술개발 경험이 취약
- (기반 구축) 유럽 · 일본은 국가 주도 하에 산업생태계 조성을 위한 수소산업 클러스터(기관·기업·연구소 등을 집적시킨 거점) 및 개발한 기술을 도시 단위로 적용 · 검증하는 수소도시를 추진
 - **수소산업 클러스터**의 경우 독일(노르트라인베스트팔렌주)·캐나다(브리티시 컬럼비아주)·일본(후쿠오카현)이 연료전지 클러스터를 구축·운영
 - 수소도시의 경우 유럽은 재생에너지 이용 수전해 기술을 실증하는 수소도시 사업을 추진 중이며, 일본은 '05년 수소타운 실증을 시작 으로 현재 8개 지역에 수소도시 사업을 추진
 - 국내는 울산시에 실증타운을 추진한 바 있음
 - ※ '13~'18, 가정·건물용 연료전지 설치 및 부생수소를 전용 배관으로 이송

4. 정부 R&D 투자 현황

- 5개 부처*의 수소 R&D 투자규모는 **469억원**('15)에서 **936억원**('19)으로 약 2배 확대되었으며, 인프라를 제외한 전 분야 투자가 꾸준히 확대
 - * 과기정통부, 산업부, 국토부, 해수부, 환경부

< 수소 분야별 연간 R&D 투자 추이(단위:억원) >

- (생산) 물분해 생산 분야가 크게 증가하였고 연료 이용 생산 분야는 큰 변동이 없으며, 폐자원/바이오매스 이용 생산 분야는 감소

구분	물분해	연료 이용	폐자원/바이오매스 이용		
'19 예산('15년 대비 증감율)	184억원 (457.9%)	45억원 (20.1%)	- (순감)		

- (저장·운송) 물리적 저장 분야와 화학적 저장 분야 모두 꾸준한 증가 추세에 있고, 수소 운송 분야는 최근('18)부터 투자

구분	물리적 저장	화학적 저장	수소 운송	
'19 예산('15년 대비 증감율)	55억원 (1,285%)	37억원 (152.4%)	50억원 (순증)	

- (활용(수송수단)) 육상용 수송수단에 투자가 편중되어 있고 해상용 수송수단 및 항공용 수송수단 투자규모는 적은 편

구분	육상용	해상용	항공용	
'19 예산('15년 대비 증감율)	209억원 (193.0%)	17억원 (순증)	9억원 (순증)	

- (활용(발전·산업)) 최근 5년 간 소재 국산화 누적 투자(693억원)가 가장 많고, 고정형 연료전지 및 융·복합 발전 투자규모는 감소 추세

구분	소재 국산화	고정형 연료전지	융·복합 발전	수소터빈
'19 예산('15년 대비 증감율)	169억원 (84.8%)	88억원 (△15.6%)	9억원 (△66.9%)	- (-)

- (안전·환경·인프라) 수소 충전 설비(53억원(19)) 외에는 투자 미미

5. 특허 분석

◇ '99.1월 ~ '18.12월까지 출원·공개된 수소산업 관련 한국·미국·일본· 유럽·중국·WO(국제) 특허 약 16만건 조사·분석

< 분야별 특허 출원 현황 >

구분	생산	저장·운송	활용(수송)	활용(발전)	인프라	계
전체 출원(건)	67,465	14,265	27,048	41,269	11,199	159,074
한국	4,383	1,021	3,826	3,362	802	13,394
(점유율, %)	(6.5)	(7.2)	(14.1)	(8.1)	(7.2)	(8.4)

- (주요국) 일본의 출원 점유율이 30%로 가장 높으나 '04년 이후 감소 추세이며, 중국이 최근 4년간 전체 출원의 53%를 차지하며 급격히 성장 중
 - 특허피인용도*로 본 기술영향력은 캐나다·미국·호주가 높고 우리나라는 중국과 더불어 하위권
 - * 미국에 등록된 전체 특허의 피인용 비율에 대한 해당 국가 특허의 피인용 비율

< 출원인 국적별 출원동향 >

< 국가별 특허영향력 비교 >

- (국내) 특허 출원량은 일본의 1/4 수준으로 양적 경쟁력이 부족한 편이며 출원된 특허 중 수송・발전용 연료전지가 많은 부분을 차지
 - 수소발전, 수송·발전용 연료전지 이외 인프라·저장·생산 분야는 국내에 출원된 외국인 특허 비중이 40% 이상으로 비교적 높은 편

< 주요국 부문별 특허출원 현황 >

< 한국특허청 내·외국인 비중 >

6. 논문 분석

- ◇ '99년~'18년까지 Scopus 데이터베이스에 등재된 수소기술 관련 국내・외 논문 약 9만건 조사・분석
- (주요국) 수소 전 주기 분야에서 미국·중국의 논문 발표건수가 압도적이며 중국은 2010년대부터 급증

_	군가병	. 부야병	노무	박표	점유율 >
_	カノコ	$\cdot \pi \circ r =$	τ	$=$ \pm	

분야	생산	저장·운송	활용(수송수단)	활용(발전·산업)	안전·환경·인프라
	중국(19%, 1위)	미국(21%, 1위)	미국(24%, 1위)	미국(19%, 1위)	중국(20%, 1위)
국가	미국(14%, 2위)	중국(15%, 2위)	중국(11%, 2위)	중국(10%, 2위)	미국(17%, 2위)
(점유율,	일본(6%, 3위)	일본(7%, 3위)	일본(8%, 3위)	일본(6%, 3위)	일본(17%, 3위)
순위)	한국(5%, 4위)	독일(7%, 4위)	독일(7%, 4위)	독일(6%, 4위)	독일(5%, 4위)
	독일(4%, 5위)	한국(3%, 10위)	한국(4%, 8위)	한국(5%, 5위)	한국(3%, 9위)

- (국내) 논문 발표건수로는 전 분야에서 세계 10위권에 진입하였으나,
 - 높은 연구개발 활동도(AI*)를 보이는 생산 및 발전·산업 분야에서 질적 지표(Q-index**)가 선진국 대비 미흡
 - * Activity Index: 모든 기술 분이에서 해당 국가의 점유율 대비 특정 기술 분이에서 해당 국가의 논문 점유율
 - ** Q-index: 특정 기술분야 전체 논문의 평균 피인용수에 대한 특정 연구주체 발표 논문의 평균 피인용수의 비

< 주요국 연구개발 활동도 및 품질지수(AI, Q-index) >

분야	미국	중국	독일	일본	한국
생산	0.6, 1.2	1.5, 1.0	0.6, 1.2	1.1, 1.2	1.9, 0.8
저장·운송	0.8, 1.2	1.2, 0.7	1.1, 1.1	1.3, 0.9	1.0, 1.1
활용(수송수단)	0.9, 1.2	0.8, 0.7	1.0, 1.0	1.2, 0.8	1.4, 1.1
활용(발전·산업)	0.8, 1.5	0.8, 0.8	0.9, 1.2	1.2, 0.9	2.2, 0.7
안전·환경·인프라	0.7, 1.2	1.6, 0.7	0.8, 1.8	1.3, 0.9	1.4, 1.1

- 국내 부문별 주력분야는 물분해 수소생산, 화학적 저장, 육상용 수송수단, 수소활용 기반기술, 수소 인프라 부문으로 나타남
 - < 한국의 세부분류별 논문 점유율 >

2 이슈 및 시사점

- □ (생산) 국내 수소공급의 대부분을 차지하는 부생수소는 생산량 확대에 한계가 있어 대량 수소생산 기술의 확보가 필요하고 궁극적으로 친환경적인 그린수소생산 기술의 개발이 필요
 - 천연가스 개질은 **유럽과 일본**에서 이미 **상용화된 기술로** 전 세계 수소공급량의 76%를 차지하고 있어, **단기 기술 개발 및 적용 가능**
 - 그린수소의 확대를 위한 재생에너지와 연계한 수전해, 열 분해 등 그린수소생산 기술의 개발 필요
 - □ 국내 현실에 적합한 중·소형 개질 수소생산 기술을 확보하여 단기 수요에 대응하고, 경제성 확보 및 대량 생산이 가능한 친환경 수소생산 기술 개발을 통해 그린수소로의 점진적 전환 추진
- □ (저장・운송) 다양한 수소 저장・운송 방식이 개발되고 있으나 기체 저장・운송 이외에는 아직 개발단계에 있으며, 각 국은 각각의 환경 및 조건에 적합한 저장・공급 방식을 중점적으로 개발
 - 수소 저장·운송 방식은 기체, 액체·액상, 고체 등 다양한 방법이 개발되고 있으며 특성에 따라 다른 분야에 응용될 수 있고, 대부분 대규모 인프라 구축*이 필요
 - * 액체수소 및 액상 수소화물 기술은 대형 생산 플랜트 필요
 - 효율적인 인프라 구축을 위해서는 저장·운송 인프라의 전략적 시나리오의 수립이 선행되어야 하고 핵심기술의 선택·집중 개발 필요
 - □ 수소 대량 저장·공급을 위한 핵심기술을 개발 필요. 단, 각각의 기술은 대규모 인프라를 수반하게 되므로 국내 현실에 적합한 전략적 수소공급 시나리오 수립 선행 필요

- □ (활용(수송수단)) 승용차 분야는 기술 우위를 점하고 있으나 그 외 분야는 해외 대비 기술력 및 제품화가 늦어 기술확보 필요
 - 경쟁국은 승용차 중심 기술에서 **상용차**, 철도차량, 건설기계, 선박, 드론, 유인항공기 등으로 기술의 지평을 확대
 - * 미국은 건설기계, 유럽은 선박·철도, 일본은 상용차, 중국은 양산기술 분이에서 우위
 - □ 기술 우위에 있는 승용차 연료전지시스템과, 경쟁력이 있는 상용차 연료전지 시스템을 전략적으로 활용하여 이외 수송용 분야의 기술격차를 최소화하고, 내연기관에서 전력기반으로 전환하는데 따른 전기동력 추진체 기술도 개발 병행
- □ (활용(발전·산업)) 연료전지시스템 제작 및 운영 기술은 세계 최고 수준이나 핵심 소재·부품의 해외의존도가 높고 경제성이 부족
 - 가정·건물용 및 발전용 중심으로 보급 중이며, 높은 초기투자비와 유지비, 외산 고효율 제품 도입으로 국산 제품 보급이 위축
 - □ 경제성 확보 및 성능 향상을 통해 설치비·발전단가를 절감하고 고효율 제품을 개발하여 국산 제품 보급 확대에 기여
- □ (안전·환경·인프라) 수소 전 주기 지원을 위한 기반 구축 필요
 - 안전 및 표준 관련 기술은 수소경제 이행을 위해 시급하나 국내 기술개발은 초기 단계이므로, 기반 구축과 함께 지속적인 개발
 - 경제성·환경성 평가는 전략적 투자방향 설정을 위해 실제 기술 개발과 연계하는 것이 중요
 - o 다양한 수송수단 확산을 위한 수소 충전기술 등 공급 인프라 확충
 - 수소 전 주기 기술 적용을 위한 수소산업 클러스터 및 도시실증 필요
 - □ 수소 전 주기 지원을 위한 안전성 확보 기준 마련, 국가 주도의 기술 표준화 프로세스 구축, 경제성·환경성 분석 연구, 실증을 통한 기반구축 및 개발된 기술·제품의 적용 추진

"수소산업 핵심 소재·부품" 관련 이슈 및 시사점

- ◆ (수소차) 부품기술은 해외 대비 동등 또는 이상이나, 소재기술은 미흡한 편
 - 핵심부품은 **연료전지시스템**(스택 + 수소 공급장치 및 공기 공급장치 + 열관리장치), 수소저장장치, 전장장치로 구성되어 있으며,
 - 이 중 스택의 요소부품인 '**막전극접합체**'와 '**기체확산층**', 수소저장장치의 요소부품인 '**고압용기**'의 기술수준이 **경쟁국 대비 미흡**
 - 특히 **상기 요소부품**의 경우 국내 기술을 확보하여 **국산화에는 성공**하였으나, 핵심소재는 아직 수입에 의존하고 있는 상황
 - ◇ 수소차 핵심 소재·부품 기술개발 현황
 - ∘ (막전극접합체) '15년에 국산화 성공, 핵심소재인 촉매·전해질·이오노머는 수입(소수 기업) 의존
 - ∘(기체확산층) 최근 국산화 완료
 - ∘ (고압용기) '15년에 국산화 성공, 핵심소재인 탄소섬유는 수입(일본) 의존
- ◆ (발전용 연료전지) 시스템 제작 및 운영기술은 해외 대비 동등 수준이나, 부품・소재기술은 미흡한 편
 - 핵심부품은 **셀스택**, **운전장치(연료변환기** + 공기 공급장치 + 열관리장치), **전자장치** 로 구성되어 있으며,
 - 이 중 셀스택과 연료변환기를 구성하는 핵심소재의 수입 의존도가 높음
 - ◇ 발전용 연료전지 핵심 소재·부품 기술개발 현황
 - (셀스택(가격비중 30%)) 전국·촉매 국내 기술개발 중, '19~'22년 중 확보 가능
 - (연료변환기(가격비중 35%)) 촉매 전량 수입, 작은 시장규모로 국내기업 미진출
 - ◆ (수소충전설비) 부품 국산화율이 약40%로 해외 제품 의존도가 높은 편
 - 핵심부품은 **압축장치**(연료밸브 + 체크밸브 + 압축기 + 연료필터 + 압력계 + 배관/피팅), 저장장치, 충전장치, 제어장치로 구성되어 있으며,
 - 밸브, 저장용기 등 **저압부품 및 압력계는 국산화가 완료**되었으며 압축기 등은 국내·외 제품을 혼용 중이나 대부분의 고압부품은 해외부품에 의존
 - ◇ 수소충전설비 부품 국산화 비율
 - · (250kg/일급 수소충전소) 약 53% (국내 압축기 적용 시, 건설비 제외, 가격비중 기준) 약 33% (해외 압축기 적용 시, 건설비 제외, 가격비중 기준)
 - 。(500kg/일급 수소충전소) 약 28%(건설비 제외, 가격비중 기준)
- ☞ 핵심 소재·부품 국산화를 통해 상생 협력 기반의 산업생태계 구축 및 기술자립도 제고 필요

Ⅳ. 비전 및 목표

세계 최고수준 기술력 확보로 수소경제 선도국으로 도약

1. 저가 수소 대량 생산 기술 상용화 및 그린수소 생산 기술 개발

2. 다양한 저장 · 운송 핵심기술 확보 및 전략적 운송 인프라 구축

차량용 탱크 가격 '30년 45만원/kg (현재 100만원/kg)

충전소용 탱크 용기 '30년 type 4 복합소재 (현재 type 1 금속소재) **트레일러 운송비** '40년 700원/kg (off-site 기준)

배관망 구축 비용 '40년 4억원/km, 100bar (현재 10억원/km, 20bar)

3. 연료전지시스템 기반의 수송수단 저변 확대

4. 발전용 연료전지시스템 고효율 · 저가화 기술 확보

5. 수소 안전ㆍ제도 완비/표준 선점/보급 기반 확대

안전 확보를 위한 데이터베이스 구축률 '30년 100%

국제표준 제안 '30년 15건

충전소 구축비용 '30년 300만원/kg

Ⅴ. 추진전략

1 중점 추진전략

- ◆ 수소 전 주기(생산-저장・운송-활용-인프라) 분야별 목표 달성을 위해 필요한 핵심기술 개발 추진
 - ▶ 국내 기술 경쟁력, 기술 실현 가능성 및 적용 시기, 경제성 및 환경성 향상 가능성 등을 고려하여 핵심기술 분야를 도출하고,
 - 선진국과 초기 경쟁선 상에 있는 분야 ⇒ 원천기술 확보 주력
 - **빠른 시장진입**이 필요한 분야 ⇒ **시스템 개발 및 제품 완성** 주력
- ※ '30년까지 수소산업 핵심 소재·부품의 기술자립도 제고
- 미래시장 개척 및 글로벌 시장 선도를 위한 미래 유망기술 개발 및 시장 확대형 기술개발 추진

① 수소 전 주기 목표 달성을 위한 핵심기술 개발

수소 수요량 대응, **화석연료 수준의 가격경쟁력** 확보, **기후변화** 생산 대응을 위한 단계별 기술 개발을 통해 친환경 수소로 점진적 전환*

- * 수소생산 목표 산정 시 천연가스 이용 개질형 연료전지에서 생산되는 수소량은 제외
- ① 초기(~'25)에는 천연가스 개질 기술 개발을 통해 저가 수소 대량 생산 기술을 확보
 - ☞ (주요기술) 거점형 수소생산기지(1,000N㎡/h 이상) 및 소형 온사이트 수소충전소(300~1,000N㎡/h) 구축을 위한 중·소형 개질 수소생산 시스템
- ② '30년까지 수소 생산량 증대를 위한 고효율·대용량 수전해 시스템 (50kWh/kg-H₂, 100MW급) 기술을 개발하고, 태양광·풍력 등 다양한 재생에너지원과의 연계 실증 추진
- ☞ (주요기술) 수MW~수십MW급 고효율 알칼라인 / 고분자전해질 저온 수전해 시스템, 재생에너지 연계 P2H(잉여전력을 수소로 저장하는 기술로 대용량・장기저장 유리)
- ※ 수소 생산 분야는 특히 기술혁신을 필요로 하며 세계적으로도 연구 활동이 활발히 진행 중이므로 다양한 기술 탐색이 필요

저장 · 운송 기체저장·운송 기술을 고도화하여 수소 운송량을 증대하고, 수소를 대량으로 안정성 있게 저장·운송할 수 있는 액체수소· 액상수소화물 저장·운송 기술 개발 추진

- 다만, 각 기술은 대규모 인프라 구축*이 수반되므로 기술 실증 전경제성·환경성 분석('25년까지 프로그램 개발 예정) 등을 추진하고, 이를 기반으로 국가 수소공급 전략 수립 후 중점기술 재정비 필요
 - * (액체수소) 수소액화 플랜트, 저장탱크, 탱크로리, 운송선(수소수입 시) (액상수소화물) 수소추출 플랜트, 운송선(수소수입 시)
- ① 차량용 저장용기 가격저감 등 기체저장·운송 기술 고도화(고압·대용량)
 - (주요기술) 차량용 고압기체저장 탱크 가격저감(100→45만원/kg), 중/장거리 수소배관망(20→100bar), 튜브트레일러용 대용량 복합재용기(200→450bar · 1,500L)
- ② 독일·미국·일본에서도 활발한 연구가 진행 중인 액상유기수소화물 분야는 원천기술 확보, 상용화된 액체수소 분야는 제품화 추진
- (주요기술) 액상수소화물 수소 저장/추출 시스템(1,000Nm²-H₂/h), 수소액화 플랜트(50톤/일), 액체수소 저장탱크(80,000m²), 액체수소 탱크로리(3.5톤), 액체수소운송선 화물창(160,000m²)

참고. 생산ㆍ저장 분야 중장기 전략 도출 시 고려사항* * 국내 수소 생산, 해외 수소 수입 시 필요한 인프라 모두 고려 생산 • 운송 소비 국내 수소 생산 KON 천연가스 배관망 on-site 충전소 개질 천연가스 거점형 튜브트레일러, 탱크로리 수소생산기지 off-site 충전소 🔓 수소배관망 🚃 튜브트레일러 석유화하단지 부생 off-site 충전소 (부생수소) · 수소배관망 등 튜브트레일러 수전해 수전해 off-site 충전소 수소 → 수전해 on-site 충전소 수소 해외수소생산 탱크로리 (0) ♦ 액체수소 해상운송(운송선) · off-site 충전소 → 수소 수소배관망, 튜브트레일러 액상수소화물 ^{해상운송(운송선)} off-site 충전소 → 수소

수송수단에 모두 연료전지시스템이 적용되므로 타 분야로의 확장성이 큰 연료전지시스템을 전략적으로 활용하여 중복 투자 방지 및 가격 저감 유도

- ① 승용차/상용차용 연료전지시스템을 기반으로 플랫폼 기술을 개발· 응용하여 다양한 수송수단에 적용*하고, 각 제품의 상이한 운영 환경에 따른 성능을 구현하기 위한 기술 개발 추진
 - * 승용차 연료전지시스템 → 상용차 연료전지시스템 → 건설기계 적용(승용차용 확장) → 연안선박 적용(상용차용 모듈화) → 유인항공기 적용(승용차용 경량화)
 - ※ 내연기관에서 전력기반으로 전환하는데 따른 전기동력 추진체 기술 개발 병행
- ☞ (주요기술) 철도차량·건설기계·선박용 연료전지 파워팩, 드론 연료전지시스템

활<mark>용</mark> (발전·산업)

발전용 연료전지시스템(가정.건물용, 분산 발전용, 대규모 발전용)의 경제성 확보를 통해 설치비와 발전단가를 절감

- ① 연료전지시스템 핵심부품 모듈화, 양산화, 시스템 효율 향상 및 내구성 향상을 위한 기술 개발
 - ☞ (주요기술) 마이크로열병합(가정·건물용) 소형 고효율 연료처리장치 및 연료전지시스템 분산 발전용 고효율・고신뢰성 시스템 모듈화 및 캐스케이딩 대규모 발전용 연료전지시스템 대용량 스택 및 시스템 개발

안전 · 환경 · 인프라

수소 전 주기 기술개발을 위한 기반이므로 '30년까지 완비 추진

- ① 안전성 확보를 위한 실증 데이터베이스 구축 및 평가시스템 도입, 국내 기술의 국제표준 전략적 선점과 더불어 국내 인증품목 확대
- ② 해외 의존도가 높은 **수소충전소 기자재 국산화** 및 수소추진선박 운항에 필요한 **벙커링**(선박·항만설비에 수소 공급) **기술** 개발
- ③ 수소 생산, 저장·운송, 활용 **각 분야에서 개발된 제품을 실증지에 적용***
 - * 도시('수소 시범도시'를 실증지로 우선 검토), 수소산업 집적 클러스터, 농촌 등
- ☞ (주요기술) 안전 / 표준·인증 / 환경·경제성 / 충전설비 / 도시·클러스터 기반의 실증

< 핵심기술 개발 전략 > ★ ■ : 정부의 집중지원이 필요한 기간

대분류	중분류	현 수준			단	기			중	기	장기		목표
네正ㅠ	ठटम	한 구판	~'20	'21	'22	'23	′24	'25	~'28	~'30	~'35	~'40	7#
	연료이용	시스템 설계, 소규모 실증		소형 개	질 수소 ·								시스템 효율 78%(HHV) ('30)
수소 생산		ΣΠ <u>Τ</u> 20			중형 개절	질 수소	생산 시스	스템 개발					, ,,,
		1MW급 원천기술 및 스택기술 개발		잍	<u>칼라인</u>	수전해 /	시스템 가	발					'30년 100MW급 시스템 개발
	물분해	스택기술 개발		고분	사전해질	실 수전해	시스템	개발					*시스템 효율 50kWh/kg-H₂
		설계 단계				재생에	너지 연계	P2H 기	술 개발				재생전원 연계 수십MW급 실증('30)
		100FL914											AFTILOI (I
	물리적 수소저장	100만원/kg 0.1톤/일						술 개발					45만원/kg 50톤/일,
		0.1톤/일, 3㎡/탱크1기		수소 액호	├플랜트 '	및 저상	기술 개						80,000㎡/탱크1기
저장 운송	화학적 수소저장	유기수소화물 신소재 개발	앤		물 저장 수소화물 /			발					1,000N㎡-H ₂ /h급 수소추출시스템
운송	T-1/16												
	수소운송	200bar 튜브트레일러, 단거리 배관망			상 운송 ^t : 기체 / 대								1,500L · 450bar 튜브트레일러, 3.5톤급 탱크로리 등
	1-20	원천기술 개발, 기본설계			해외생산	수소 이	송용 선박	기술개발					160,000㎡급 액체수소운송선
			기술기	발 현황/	보급 실적	/ 경제성 ·	환경성 분	·석 이후 4	국가수소	공급 전략	추립 및	기술기	개발 재정비
	육상용	국내 개발 및 실증 단계			연료전지 (수소열차용			및 전장장)	치 개발	(고속철	도용)		(철도) 내구 25년 (건설기계) 내구 2만시간
활용 (수송 수단)	해상용	R&D (대양선박은 기초연구)		(수 소형선박용		변료전지 <i>.</i>	시스템 개	발 (대양선	박용)			시스템 가격 50만원/kW, 내구 20년
+∟)	항공용	핵심 부품기술 해외 의존		(일반 및	수소드 특수목적용	론 시스 ^투)		형물류 운송	(용)				시스템 출력밀도 0.6kW/kg ('30)
활용		시스템 가격 2,700만원/kW		마이를	크로열병협	할 소형호	・제품	다양화					시스템 가격 800만원/kW ('30)
ළ (발전· 산업)	고정형 연료전지	(PEMFC 기준) 효율 약 75%		분신	발전용		고신뢰성	연료전지	시스템 7	개발			효율 90%('30)
산업)		발전단가 241원/kWh					대규모 법	발전용 연호	로전지시스	:템 개발			발전단가
													141원/kWh ('30)
		선진국 의존		소재, 투	^보 품, 시스	템 안전	평가 기술	할 개발	DB구	축			DB구축 100%
	안전기술	안전성평가 기술수준 78%		전주기 선	설치, 안전			술 개발 ! 모니터 ?	U 및 관리				안전성평가 기술수준 98%
		품질 표준/장비 개발 2건		품질	및 측정기								품질 표준/장비
	ᅲᄌᅿᇚ	그레ㅠ즈 미층		Ģ	빌리티	에너지	및 공근/2	계량 등 표	주 개박				개발 누적 10건 국제표준 15건
	표준화 및 인증기술	시험 인증 기준/장비 3건						가 및 인증					시험 인증
안전.		인벤토리·						*					기준/장비 10건
환경· 인프라	환경 및	환경성 평가 기준 없음		전주기	기 환경성	분석 프	[로그램		검증 및 환경·경제				수소 전 주기 통합
인프니	경제성 평가	수소분야 적용 경제성 평가		저즈기 겨	제선 보서	1 파르기리	ᅢᆞ비ᄌᄗ		분석 프로그	램 개발			환경성 · 경제성 평가 프로그램 구축
		프로그램 없음		LT/I O	에 이 판 =	1 = = = 1	a · • —_		저장운송		불용		
	수소 공급	국산화율 40%	ļ			·전 기술			평가 및				국산화율 100% 63,000㎡/주
	인프라	유사연료 벙커링 터미널 기초설계			수소 병	커링 기술	술 개발	7	성증 및 형	만실증			방생 태별설계
	수소사회	사례 없음		수소 전	주기 분이	야별 집적	클러스	터 실증					밸류체인별 구축
	기반 구축	소규모 실증 진행 중		도시기	반 수소	전 주기	기술 및	최적 운영	경시스템	실증	상용화·해	全型	도시 단위 건물/교통/기반실증
											'		

② 수소산업 핵심 소재 부품 기술자립도 제고

○ 수입 의존도가 높은 소재·부품 중 독점성이 강하고 가격 비중이 높은 핵심 소재·부품에 대해 국산화 및 성능개량(고효율·저가·장수명) 추진

대상 소재·부품	목표
① 고압기체수소 복합재 저장용기	'28년까지 상용화
② 수소차·발전용 연료전지 공용 소재 (촉매, 전해질, 집전체 등)	'30년까지 국산화율 100% 달성 * 백금 등 원자재 제외
③ 수소충전소 기자재	'30년까지 국산화율 100% 달성
④ 소형 개질 시스템	'30년까지 국산화 추진
⑤ 상용차용 전장, 전기동력 및 전달장치	'25년까지 국산화 추진
⑥ 발전용 연료전지 주변장치	(SOFC) 10년 내 100% 상용화 (PAFC, MCFC) 5년 내 수입대체

○ 소재·부품·장치 국산화를 통해 제품 개발 후 상용화 단계에 진입 시, 내구성·품질·가격 등의 장애요인 극복을 위한 엔지니어링 기술 개발

대상 기술	목표
① 운영 및 관리비 절감을 위한 내구성 향상 및 운전 최적화	/2014771T1
② 시스템 신뢰성 향상을 위한 품질 관리	'30년까지 선진국 수준 달성
③ 부품 및 시스템 설계 최적화 등	

③ 미래시장 개척 및 글로벌 시장 선도를 위한 기술 개발

- 세계적으로 기술 성숙도가 낮아 시장은 형성되지 않았으나 성장 가능성이 있는 장기 유망분야*에 대해 원천기술 확보 추진
 - * 예 기연성 폐지원 기스화/ 광전기회학 수소생산 고체흡착 소재·저장, 유인항공기, 수소터빈 등
- 기술적 완성도가 높은 **수송・발전용 연료전지** 분야^{*}는 **가격저감** 및 **고부가가치화** 등 기술 고도화를 통해 **경쟁국과의 초격차 유지**
 - * 예 상용차·특장차용 연료전지시스템, 전기·열·수소 동시생산 시스템 등
- 국내 현실보다 해외에 적합하고 우리가 개발 경험을 가지고 있는 분야*는 기술 고도화를 통해 해외 수출시장 및 틈새시장 공략
 - * 예 펫코크・석탄 가스화 플랜트 등

2 부문별 추진전략

1. 수소 생산

□ 정의

○ 화석연료, 폐자원·바이오매스, 물 등의 원료로부터 열화학적, 생물학적, 전기분해 등의 방법으로 수소를 생산

<세부기술 정의>

연료이용 수소생산	폐지원/바이오매스 이용 수소생산	물분해 수소생산
 화석연료 기반 연료로부터 개질·가스화 반응을 통해 수소 생산 화석연료에서 유래한 CO를 함유하는 혼합가스로부터 미생물의 수성가스전환 반응을 통해 수소 생산 	합성가스 생산 후, 수성가스 전환 반응을 통해 수소 생산 • 바이오매스 및 바이오매스 유래의 유기화합물로부터	물을 분해하여 수소 생산 물분해에 필요한 외부에너 지원(재생에너지 전력, 초고온 열에너지 등)을 생산 활용하는데

□ 기술개발 필요성

○ 안정적·경제적인 수소공급시스템 확충을 위해 저가수소 대량 생산 및 그린수소 비중 확대 필요

마일스톤* * 정부 집중지원 기간을 의미하며, 종료시점의 최종 산출물에 따라 "시제품 개발"과 "원천기술 확보"로 구분

				_							
중분류			단.	기			중	기	장	기	목표
ошπ	~'20	′21	'22	'23	'24	'25	~'28	~'30	~'35	~'40	7#
최종목표	▶ 수	소경제	활성	함를 위	한 저	가 수	소 대량 생	산 기술 상	용화 및	Į 그린	수소 생산 기술 개발
연료 이용	① 소형										[수소 생산 단가] ■ ('30년) 3,500원/kg-H ₂ ,
수소생산	(U) <u></u> - <u> </u>	1	1	<mark>스화 수소</mark> 용 CO	1		소 대량생산	기술 개발			개질시스템 효율 78%(HHV) ■ ('40년) 2,500원/kg-H ₂
레TL의 /	① 가연	성 폐자	원 가스호	나 수소생	산 플랜	트 실증					[수소 생산 규모]
폐자원/ 바이오매스				발효 기 년 기술 기		오수소					 ('30년) 가연성 폐자원 기반 16톤/일급 플랜트 실증
이용 수소생산		① 바	 이오매=	 스 가스: -	 화 수소	생산	플랜트 실증				• ('40년) 1톤/일급 바이오 수소 생산기술 개발
	① 수~	수십 M	ſW 수전	년해 시: -	스템 개	발					[수소 생산 단가]
물분해	(P) 고온			생산 :							• ('30년) 3,500원/kg-H₂ 수전해 효율
 수소생산		(F) 광분	분해 수	소 생신	<u></u> 기술	개발					50 kWh/kg-H ₂
1-02		(F) 고 3	효율 열호	화학사0	l클 기술	날 개발					• ('40년) 2,500원/kg-H₂ 수전해 효율
		F 초	고온 시 	험로 기	술 개	<u>발</u>					43 kWh/kg-H ₂
											
범례	데품 개발	원:	천기술	확보			① 타경	[형 ①	기술고.	도화형	(F) 미래형

* 국내 현황: 개질기 효율 70%, 수전해 60 kWh/kg-H₂

▲ 생산 분야 미래형 기술들은 2025년에 국내·외 동향, 국내 기술 수준 등을 고려하여 기술개발 재정비

2. 수소 저장 운송

□ 정의

○ 국내·외에서 다양하게 생산된 수소를 **물리적·화학적** 방법으로 단위체적 당 높은 밀도를 유지하면서 **안전하게 저장**하고 **운송**

<세부기술 정의>

물리적 수소 저장	화학적 수소 저장	수소운송
■ 대량의 수소를 기체, 액체 상태 또는 물리 흡착법을		•(육상) 내륙 지역 간 차량 또는 배관망을 기반으로 운송
이용하여 저장	통해 상온·상압 수준에서 저장 * 액상유기화합물(LOHC), 메탄올, 개미산 ** 암모니아, 금속·무기 수소화물	(416) 7417 76 7617

□ 기술개발 필요성

- 수소의 저장·운송은 **활용수단 및 수소가격에 있어 높은 비중**을 차지하므로 **효율적·경제적인 저장·운송**을 위한 기술개발 필요
- □ 마일스톤* * 정부 집중지원 기간을 의미하며, 종료시점의 최종 산출물에 따라 "시제품 개발"과 "원천기술 확보"로 구분

	딘		중	기	장	기	P 17				
중분류	~'20	'21	'22	'23	'24	'25	~'28	~'30	~'35	~'40	목표
최종목표		소 모빝 상/육상		-	=		-	-	-	술을	확보하고 대규모
물리적 수소 저장 기술	① 수 -	기술 는 액화플 ⁱ	: 개발 랜트 및								 (25년) 이동형 수소 저장시스템 가격 45만원/kgH₂ 수소약화 에너지 효율 (28년) 10 kWh/kgH; (40년) 8 kWh/kgH₂
화학적 수소 저장 기술		 상 유기수 		및 저장	 기술 개빌			템 개발			(25년) 300 Nm³-H₂/h 급 (28년) 1,000 Nm³-H₂/h 급 (25년) 300 Nm³-H₂/h 급 (28년) 1,000 Nm³-H₂/h 급 (28년) 1,000 Nm³-H₂/h 급 고체수소저장 소재가격 6.5USD/kg
수소운송 기술		· 대용링 · 대용링	고압기액체수서리 수소① 해외	체 소 는 배관밍 생산 수	기술 개 : -소 이송용 BOG 처리	용 선박 기					 1톤급 기체 수소 수송, 3.5톤급 나나, 이송 탱크로리 및 중/장거리 수소 배관망 구축 16만 ㎡급 이상 수소운송선 개발
금데	시제품 개발		기술 확.		7시 티니		타겟형) 기술 .		형 (P) 미래형 급 기술개발 재정비

3. 활용[수송수단]

□ 정의

○ 수소를 활용하여 연료전지시스템에서 발생한 전기로 모터를 구동하여 유행하는 모든 교통수단을 범위로 함

<세부기술 정의>

육상용 수송수단	해상용 수송수단	항공용 수송수단
•(도로) 자동차 및 개인이동	■ 선박안전법 제2조제1항에	■ 항공기의 드론, 비행기, 헬
수단, 건설기계, 비도로형	따른 선박	리콥터, 비행선과 수소를
산업기계 등이 포함	▪ 선박 사용목적에 의해 상선,	이용하는 우주비행체 등이
▪(철도) 고속철도차량, 일반	특수작업선, 군사용함정,	포함
철도차량, 도심철도차량,	어선, 부유식 해상구조물	
특수차 등이 포함	등을 포함	

□ 기술개발 필요성

- 온실가스 및 미세먼지 저감형 **친환경 수송수단 확대를 위한** 연료전지시스템 기술 개발 및 수소 모빌리티 가격경쟁력 확보 필요
- 마일스톤* * 정부 집중지원 기간을 의미하며, 종료시점의 최종 산출물에 따라 "**시제품 개발**"과 "**원천기술 확보**"로 구분

중분류	단기	중기	장기	목표
ठटπ	~'20 '21 '22 '23 '24	′25 ~′28 ~′30	~'35 ~'40	7#
+170-	▶ 수소에너지를 사용하	는 연료전지시스템	기반 육상/히	상/항공용 수송
최종목표	수단 저변확대 및 기·		, .	,
		ᄅᆣᅩ		
	① 승용 연료전지시스템 가격저감 기술 개발 ②	수소택시		■시스템 가격
		○ ETIHI		- 5만원/kWsys.
	○ 상용 연료전지시스템 및 전장장치 기술 개발	(II) 특장차,중대형트럭		(승용, 80만대/년)
육상용		548=4		■시스템 효율
수송수단	① 수소열차용 파워팩 및 시스템 기술 개발	① 고속철도용 파워팩 및 시스템	넴 개발	- 70%(LHV, 승용차)
TOTE	① 중대형 건설기계 파워팩 및 전동장치 ①) 대형 건설기계		- 65%(LHV, 상용차, 철도)
	개발 (중형 건설기계 적용)	기 대형 인글기계 적용		■시스템 국산화 - 22년 100%(승용)
				- 30년 100%(상용)
	③ 웨어러블 로봇용 연료전지시스템	및 전력제어시스템 기술 개발		302 100/0(33)
-				■시스템 가격
해상용	① 소형선박용 파워팩 및 시스템 기술 개발	연안선박용 시스템 기술 개발		- 50만원/kWsys.
수송수단) 대양선박용 연료전지모듈 및 시스템	기숙 개박	■시스템 내구
'0'-) 118C18 CHC1122 X 11-8	12112	- 20년
-		3 000 0153		
\$170		류 운 송용 수 <u>소드</u> 론 기비		■출력밀도
항공용	시스템 개발 시스템	' 112		- 1kW/kg.sys(드론)
수송수단	① 1~2인승 유인항공기 원천기술		(F) 경량화	- 2kW/kg.sys(유인기)
	개발	제어기술 개발	. Jo <u>-</u> i	
범례	제품 개발 원천기술 확보	① 타겟형	① 기술고도화형	⑤ 미래형
- II		U 1 X 8	○ 15	<u> </u>

4. 활용(발전 · 산업)

□ 정의

○ 수소를 활용하여 열과 전기를 생산하는 고효율 발전 시스템 으로 가정·건물용 및 발전용 연료전지, 수소터빈 발전 기술과 이를 이용한 고부가가치 시스템을 포함

<세부기술 정의>

고정형 연료전지	융·복합 발전	수소터빈
• 수소, LNG, 바이오가스 등의 연료와 공기의 전기화학반응에 의해 전기와 열을 생산하여 가정·건물 등 다양한 수요처에 공급하는 기술	미르 에디지 기미디디에 필요한 열 전기, 수소 등을	(체적기준 수소 50% 이상) 또는

□ 기술개발 필요성

- 연료전지는 향후 발전 및 산업 분야의 주 에너지공급원으로 활용될 것으로 예상되나 높은 설치비로 인해 시장 확산 지연
- 재생에너지 확대에 따라 재생에너지의 간헐성 및 변동성을
 보완하는 수소터빈의 필요성이 증대
- 마일스톤* * 정부 집중지원 기간을 의미하며, 종료시점의 최종 산출물에 따라 "**시제품 개발**"과 "**원천기술 확보**"로 구분

중분류			단	기			중	기	장	기	목표
ਠੁੱਧ	~'20	′21	'22	'23	'24	'25	~'28	~'30	~'35	~'40	ᆿᄑ
최종목표	▶ 수	소빌	<u></u> 전 신	<u></u> 업 :	글로벌	! 경장	ļ력 강화를	를 위한 고	l효율·저	가화 시:	스템 기술 확보
수소활용 공통기술	개	질기 등) 국산화	및 고5	전해질, E화 엔지니어		: 개발				■ 핵심 소재 국산화율 100%, 가격저감 및 수명향상 달성
고정형 연료전지					그부가가 시스템 <u>!</u> ① 대용	모듈화	백 및 시스템	개발			■ 연료전지 발전단가 - ('30년) 141원/kWh - ('40년) 131원/kWh
융·복합 발전		① 연호			소 동시 사발전소	I	스템 개발				■ 상용화 기술 개발 및 실증
수소터빈							「기술 개발 및 중대형 GT 기				• 수소 혼소 및 전소 가스터빈 기술개발 및 실증
범례 시7	범례 시제품 개발 원천기술 확보 ① 타겟형 ① 기술고도화형 ③ 미래형										

5. 안전 환경 인프라

□ 정의

○ 안전기술, 표준화 및 인증기술, 환경 및 경제성 평가, 수소 공급 인프라, 수소사회 기반구축 등 **수소 전 주기**(생산~활용) **기반 마련 및 기술 검증** <세부기술 정의>

안전기술	 ● (소재・부품 및 시스템 안전) 수소 생산부터 활용까지 적용되는 소재, 부품 및 시스템에 대한 안전을 확보하는 기술 ● (시설 및 설치 안전) 수소설비 안전성 확보를 위해 시설기준 및 기술 기준을 마련하는 기술 ● (사고예방) 부품・시설의 생애주기 내 건전성 확보를 위한 감시・평가・위험 예측기술, 수소 공급 및 사용 중 화재나 폭발 사고예방을 위한 안전기술 ● (품질 및 측정) 수소 순도 및 유량 측정을 위한 정밀 측정・표준물질의 개발・보급 기술
표준화 및 인증기술	 ● (수소 모빌리티 표준) 수소차・충전소・선박・열차・드론・기계 등이 해당되며 건설기계, 드론・선박 등 분야의 표준화 ● (수소 에너지 표준) 연료전지・수소가스터빈 등이 해당되며 에너지저장 시스템 등 연료전지 모듈 응용 분야의 표준화 ● (수소 공급 및 계량 표준) 수소공급・생산, 수소계량 등이 해당되며, 수소품질・저장・운송 및 수소충전량 측정을 위한 계량 분야 표준화 ● (시험인증 기술 표준) 충전소・열차・선박・드론・기계・발전용・가정용・건물용 등 시장 창출형 수소기술・연료전지 제품 시험인증 기술 표준화
환경 및 경제성 평가	 (환경성 평가) 전과정 환경 평가를 통해 수소 생산부터 활용까지 환경에 미치는 영향을 정량적으로 분석하는 기술 (경제성 평가) 합리적인 수소 가격 목표에 도달하기 위한 전 주기 경제성 분석 툴을 개발하는 기술
수소 공급 인프라	 (수소 충전 기술) 수소를 차량에 일정한 시간 이내 안전하게 압축, 저장 및 충전하는 기술 (수소 벙커링) 항만 및 외해에서 수소를 저장하면서 선박과 항만설비등에 수소를 공급하는 기술
수소사회 기반 구축	 (수소 클러스터) 수소 생산, 저장・운송, 수송, 발전・산업의 전 밸류체인 관련 기관・기업・연구소가 집적된 클러스터 실증 및 육성 (수소도시) 수소를 도시의 주요 에너지원으로 활용하는데 필요한 기술의 성능과 안전성을 확인하고 기술적 제약사항을 해소하기 위한 도시차원의 기술 검증

□ 기술개발 필요성

- 수소경제 이행과 확산을 위해 수소 전 주기에서 필요한 설비 및
 인프라의 (1)안전, 표준, 경제, 환경 등 지침 마련을 통한 관리체계
 /제도 구축과 (2)실증을 통한 기술 검증 필요
- 마일스톤* * 정부 집중지원 기간을 의미하며, 종료시점의 최종 산출물에 따라 "시제품 개발"과 "원천기술 확보"로 구분

중분류			단	기			Ę	§기	장	기	목표	
ठटम	~'20	′21	'22	'23	′24	'25	~'28	~'30	~'35	~'40	ㅋ프	
최종목표											I준 선점/실증 및 기반 수소경제 활성화 이행	
					· 남평가 기술		DE	3구축			데이터베이스 구축률: 100% 수소인프라 생애주기내 안전성	
안전기술		전주기	설치, 연	1	고예방 기술 안전 모		및 관리	실증			평가 기술수준 선진국 대비 98% 이상 달성 • 측정표준/장비 개발 : 10건(누적)	
		품질 및	및 측정기	기술(시험	험법/장비) 개발					10 E(1 7)	
표준화 및 인증기술							표준 개발				■ 수소 국제 표준 15건 이상 및 KS 인증 30 건 개발 ■ 소재/부품/제품 시험 평가 및	
		소재/	부품/제품	품 시험	평가 및	인증	개발				인증 10건 이상 개발	
					프로그램		검증	및 보완			• 수소 전주기 환경성 및 경제성	
환경 및 경제성 평가			경제성 스 모델		프로그램	및 	검증	및 보완			평가 프로그램 개발 및 체계 구축 실측 데이터 기반 환경·경제성 통합 분석 프로그램 개발 및	
								경경제성 통합 그램 개발			수정·보완	
수소 공급		수소 중	충전 기 :	 술 개발 			평가	및 실증			■ 수소 충전 기자재 국산화 (100%) 및 수출 ■ 충전소 구축비용: 300만원/kg	
인프라		수소벙	커링 기	술 개발	발		검증 및	항만실증			• 수소벙커링 해상터미널 설계 5 벙커링 선박 설계/항만실증/운영	
			 반 건물 운영시스			활용·공	유 기술	및	상용화 해외시	및 장 진출	도시 온실가스 및 미세먼지 발생 저감	
수소사회 기반구축			 반 수소 운영시스		기 인프리 증	라 구축	및		상용화 해외시	및 장 진출	국내 수소경제 활성화 달성 등 해외 수소도시 건설시장 선점	
					발전·산업 클러스티						클러스터 내 산업 인프라 구축, 관련 기업 유치, 육성 5 관련 산학연 N/W 구축	
범례 시제	품 개발	원:	천기술	확보			T E	 }겟형	① 기술	고도화	형 🕝 미래형	

▲ 경제성·환경성 분석으로 도출된 시나리오를 활용하여 국가수소공급 전략수립 및 수소공급 기술개발 재정비

VI. 향후 추진계획

◇ 기술로드맵의 이행력 강화를 위해 '범부처 수소 R&D 협의체'를 기반 으로 주기적으로 현행화하고 기술개발 사업 추진 및 성과로 연계

□ '범부처 수소 R&D 협의체' 운영

- (구성) 과기정통부(주관), 산업부, 국토부, 해수부, 환경부, 특허청 등 6개 부처 및 소관 연구관리전문기관*
 - * 연구재단, 에너지기술평가원, 국토교통과학기술진흥원, 해양수산과학기술진흥원, 환경산업기술원, 특허전략개발원 등 6개 기관
- (역할) 부처별 R&D 추진현황 및 성과 공유, 신규 R&D 투자 수요 검토, 개발된 기술의 조기 적용을 위한 규제 개선사항 발굴 등

□ 기술로드맵 관리 및 활용

- '범부처 수소 R&D 협의체'를 중심으로 국내·외 기술개발 동향 및 기술 적용, IP R&D, 보급 현황 등을 상시 검토하고,
 - 이를 토대로 5년을 주기*로 로드맵 상의 기술개발 전략 재검토
 - * ('25) 수소 생산 저장·운송 분야는 경제성·환경성 분석을 통해 기술개발 전략 재정비 필요

현황 업데이트		로드맵 현행화(안) 마련		조정 · 확정
연구관리전문기관	•	범부처 수소 R&D 협의체 민간전문가	•	범부처 수소 R&D 협의체

- 기술로드맵에 제시된 중장기 기술개발 전략 및 중점 투자분야를 기반으로 **범부처 R&D 사업 기획**
 - 수소 전 주기(생산, 저장·운송, 활용)·연구개발 전 단계(기초·원천, 실증, 상용화) 간 유기적 연계를 통해 가시적 성과 창출 가속화
- 그 외 각 부처가 필요로 하는 기술개발 사업 및 국제 공동연구 과제 발굴, 후속과제 필요성 판단 등에 활용

과학기술정보통신부		
기후환경대응팀		
담당자	손효진 사무관	
연락처	전 화: 044-202-4543 E-mail: sonhj@korea.kr	

산업통상자원부		
신에너지산업과		
담당자	이승원 사무관	
연락처	전 화: 044-203-5395 E-mail: apluslife41@korea.kr	

국토교통부		
도시활력지원과		
담당자	송규상 사무관	
연락처	전 화: 044-201-3733 E-mail: sbringe@korea.kr	

해양수산부		
해양수산과학기술정책과		
담당자	최영인 사무관	
연락처	전 화: 044-200-6221 E-mail: yngiin@korea.kr	

환경부		
폐자원에너지과		
담당자	나욱종 사무관	
연락처	전 화: 044-201-7408 E-mail: eddyzone@korea.kr	

특허청		
산업재산창출전략팀		
담당자	정형수 사무관	
연락처	전 화: 042-481-5406 E-mail: jeonghyungsu@korea.kr	