A Cantor dynamical system is slow if and only if it has only attracting finite orbits.

S.Gangloff, joint work with P.Oprocha

AGH, Faculty of Applied Mathematics, Kraków.

sgangloff@agh.edu.pl; silvere.gangloff@gmx.com

Problem

Cantor space: topological space X with a base of clopen sets and without isolated point.

Cantor space: topological space X with a base of clopen sets and without isolated point.

Cantor system: $f: X \to X$ continuous on X Cantor space.

Cantor space: topological space X with a base of clopen sets and without isolated point.

Cantor system: $f: X \to X$ continuous on X Cantor space.

Embedding in $\mathbb R$ with vanishing derivative : exists $\phi: X \to \mathbb R$ injective and $g: \mathbb R \to \mathbb R$ s.t. $\phi \circ f = g \circ \phi$, and $g'_{|\phi(X)|} \equiv 0$.

Problem:

What are the Cantor systems which can be embedded in \mathbb{R} with vanishing derivative?

Partial result

Result of P.Oprocha and J.Boroński:

Minimal system \equiv every orbit $\{f^n(x), n \ge 0\}$ is dense.

Result of P.Oprocha and J.Boroński:

Minimal system \equiv every orbit $\{f^n(x), n \ge 0\}$ is dense.

Theorem[Oprocha,Boroński] : Every minimal Cantor system can be embedded in \mathbb{R} with vanishing derivative.

Jarník's theorem

Theorem[Jarník]: Let $X \subset \mathbb{R}$ be a Cantor set and $f: X \to \mathbb{R}$ differentiable. There exists a differentiable function $\mathbb{R} \to \mathbb{R}$ which extends f.

Jarník's theorem

Theorem[Jarník]: Let $X \subset \mathbb{R}$ be a Cantor set and $f: X \to \mathbb{R}$ differentiable. There exists a differentiable function $\mathbb{R} \to \mathbb{R}$ which extends f.

Thus we only need to characterize the Cantor systems (X, f) with a function $\phi: X \to \mathbb{R}$ injective whose derivative is zero.

Graph coverings:

Graph morphisms:

Graph coverings:

Graph morphisms:

Graph coverings: $(G_n)_{n\geq 1}=(V_n,E_n)_{n\geq 1}$ finite simple oriented graphs and $\pi_n:G_{n+1}\to G_n$ graph morphisms.

Consider (G_n, π_n) graph coverings.

Consider (G_n, π_n) graph coverings.

Let us denote $V = \{\mathbf{u} = (u_n)_{n \geq 1} : \forall n, u_n \in G_n, \pi_n(u_{n+1}) = u_n\}.$

Consider (G_n, π_n) graph coverings.

Let us denote $V = \{ \mathbf{u} = (u_n)_{n \ge 1} : \forall n, u_n \in G_n, \pi_n(u_{n+1}) = u_n \}.$

Condition : for every $\mathbf{u} \in V$, there exists a unique \mathbf{v} such that for all $n \ge 1$, $(u_n, v_n) \in E_n$.

Consider (G_n, π_n) graph coverings.

Let us denote $V = \{\mathbf{u} = (u_n)_{n \geq 1} : \forall n, u_n \in G_n, \pi_n(u_{n+1}) = u_n\}.$

Condition : for every $\mathbf{u} \in V$, there exists a unique \mathbf{v} such that for all $n \ge 1$, $(u_n, v_n) \in E_n$.

Consider (G_n, π_n) graph coverings.

Let us denote $V = \{ \mathbf{u} = (u_n)_{n \ge 1} : \forall n, u_n \in G_n, \pi_n(u_{n+1}) = u_n \}.$

Condition : for every $\mathbf{u} \in V$, there exists a unique \mathbf{v} such that for all $n \geq 1$, $(u_n, v_n) \in E_n$.

By setting $f(\mathbf{u}) = \mathbf{v}$, we define a continuous function $V \to V$, and thus a dynamical system (V, f).

Theorem: any Cantor system (X, f) is conjugated to a graph coverings system.

Proof:

Theorem: any Cantor system (X, f) is conjugated to a graph coverings system.

Proof:

Input: sequence of clopen partitions $(\mathcal{U}_n)_{n\geq 1}$ s.t. for all n, $\mathcal{U}_{n+1} \prec \mathcal{U}_n$, and $\operatorname{mesh}(\mathcal{U}_n) \to 0$.

Theorem: any Cantor system (X, f) is conjugated to a graph coverings system.

Proof:

Input: sequence of clopen partitions $(\mathcal{U}_n)_{n\geq 1}$ s.t. for all n, $\mathcal{U}_{n+1} \prec \mathcal{U}_n$, and $\operatorname{mesh}(\mathcal{U}_n) \to 0$.

Graphs: G_n given by $V_n = \mathcal{U}_n$ and $E_n = \{(u, v) : \exists x \in u, f(x) \in v\}.$

Theorem: any Cantor system (X, f) is conjugated to a graph coverings system.

Proof:

Input: sequence of clopen partitions $(\mathcal{U}_n)_{n\geq 1}$ s.t. for all n, $\mathcal{U}_{n+1} \prec \mathcal{U}_n$, and mesh $(\mathcal{U}_n) \to 0$.

Graphs: G_n given by $V_n = \mathcal{U}_n$ and $E_n = \{(u, v) : \exists x \in u, f(x) \in v\}.$

Morphisms : $\pi_n(u) = w$ s.t. $u \subset w$.

Theorem: any Cantor system (X, f) is conjugated to a graph coverings system.

Proof:

Input: sequence of clopen partitions $(\mathcal{U}_n)_{n\geq 1}$ s.t. for all n, $\mathcal{U}_{n+1} \prec \mathcal{U}_n$, and $\operatorname{mesh}(\mathcal{U}_n) \to 0$.

Graphs: G_n given by $V_n = \mathcal{U}_n$ and $E_n = \{(u, v) : \exists x \in u, f(x) \in v\}.$

Morphisms : $\pi_n(u) = w$ s.t. $u \subset w$.

Conjugacy : $x \in X$ is associated with a unique sequence (u_n) .

Gambeaudau-Martens representation of minimal systems :

If (X, f) is minimal, the graphs G_n can be taken under the following form :

Gambeaudau-Martens representation of minimal systems :

If (X, f) is minimal, the graphs G_n can be taken under the following form :

 \rightarrow used in the proof of P.Oprocha and J.Boroński.

Gambeaudau-Martens representation of minimal systems :

If (X, f) is minimal, the graphs G_n can be taken under the following form :

 \rightarrow used in the proof of P.Oprocha and J.Boroński.

We will expose this proof for particular systems : odometers.

Let us consider $X=\prod^{+\infty}\{0,1\}.$

Let us consider $X = \prod \{0, 1\}$.

Clopen basis: Cylinders $[u] = \{x \in X : x_{\llbracket 1,n \rrbracket} = u\}$, for u word on $\{0,1\}$ of length $n \geq 0$.

Let us consider $X = \prod_{i=1}^{n} \{0, 1\}$.

Clopen basis: Cylinders $[u] = \{x \in X : x_{\llbracket 1,n \rrbracket} = u\}$, for u word on $\{0,1\}$ of length $n \ge 0$.

Dynamical system : (X, f), with f(x) defined as :

Let us consider
$$X = \prod_{i=1}^{n} \{0, 1\}$$
.

Clopen basis: Cylinders $[u] = \{x \in X : x_{\llbracket 1,n \rrbracket} = u\}$, for u word on $\{0,1\}$ of length $n \ge 0$.

Dynamical system : (X, f), with f(x) defined as :

$$x:$$
 1 1 1 1 0 1 0 1 1 ... $f(x):$ 0 0 0 0 1 1 0 1 1 ...

$$G_2$$

$$G_3$$

Shrinking rate : 2^{-k} for G_k + length of intervals « space between them.

Shrinking rate : 2^{-k} for G_k + length of intervals « space between them.

Consider $k \geq 1$, **u**, **v** sufficiently close : $u_k = v_k$.

Shrinking rate : 2^{-k} for G_k + length of intervals « space between them.

Consider $k \geq 1$, **u**, **v** sufficiently close : $u_k = v_k$.

Assume that k large enough s.t. u_k and v_k are not \bullet .

Shrinking rate : 2^{-k} for G_k + length of intervals « space between them.

Consider $k \geq 1$, **u**, **v** sufficiently close : $u_k = v_k$.

Assume that k large enough s.t. u_k and v_k are not \bullet .

By definition of embedding, $d(\phi(\mathbf{u}), \phi(\mathbf{v})) \leq 2^{-k} d(\mathbf{u}, \mathbf{v})$.

Shrinking rate : 2^{-k} for G_k + length of intervals « space between them.

Consider $k \geq 1$, **u**, **v** sufficiently close : $u_k = v_k$.

Assume that k large enough s.t. u_k and v_k are not \bullet .

By definition of embedding, $d(\phi(\mathbf{u}), \phi(\mathbf{v})) \leq 2^{-k} d(\mathbf{u}, \mathbf{v})$. Since $|\phi'(\mathbf{u})| < 2^{-k}$ for all k, it is zero.

Complete characterization

Characterization result:

Theorem[Gangloff, Oprocha]: A Cantor system can be embedded in \mathbb{R} with vanishing derivative if and only if all its finite orbits are attractors.

Finite orbits and attractors in the graph coverings:

Finite orbit:

Finite orbits and attractors in the graph coverings:

Finite orbit:

Finite orbits and attractors in the graph coverings:

Finite orbit:

Attractor: closed set C such that for an open neighborhood U of C, $\bigcap_n f^n(U) = C$.

Finite orbits and attractors in the graph coverings :

Finite orbit:

Attractor: closed set C such that for an open neighborhood U of C, $\bigcap_n f^n(U) = C$.

Embeddable ⇒ attracting finite orbits :

1. If $g: \mathbb{R} \to \mathbb{R}$ is such that on a finite orbit p, $g'_{|p} \equiv 0$, $|g'| \leq 1/2$ on a neighborhood of p.

Embeddable ⇒ attracting finite orbits :

- 1. If $g:\mathbb{R}\to\mathbb{R}$ is such that on a finite orbit p, $g'_{|p}\equiv 0$, $|g'|\leq 1/2$ on a neighborhood of p.
- **2**. As a consequence p is attractor.

Embeddable ⇒ attracting finite orbits :

- 1. If $g: \mathbb{R} \to \mathbb{R}$ is such that on a finite orbit p, $g'_{|p} \equiv 0$, $|g'| \le 1/2$ on a neighborhood of p.
- **2**. As a consequence p is attractor.
- 3. This has to be true for embeddable Cantor systems.

Supercyclical partitions:

The partitions \mathcal{U}_n satisfy the following :

Supercyclical partitions:

The partitions \mathcal{U}_n satisfy the following :

It is possible to form attractors for all length n orbits with unions of elements of \mathcal{U}_n .

Supercyclical partitions:

The partitions U_n satisfy the following :

It is possible to form attractors for all length n orbits with unions of elements of \mathcal{U}_n .

Rectification of finite attractors in supercyclical partitions :

Marking and shrinking processes:

1.

2

3.

How to deal with finite attractors : distance to the orbit :

How to deal with finite attractors : choosing intervals :

