Операции в pandas

In [1]:

```
import numpy as np
import pandas as pd
import scipy.stats as sps
```

1. Простые операции

Сгенерируем DataFrame из случайных чисел

In [2]:

Out[2]:

	Α	В	С	D
0	0.098911	-1.311820	-0.498644	1.580585
1	0.664819	-0.003627	1.745190	-0.098430
2	0.879059	1.933319	-0.543434	0.269857
3	-0.073782	-0.050684	1.783527	2.475760
4	0.160128	0.251324	-0.472247	0.748638
5	0.933652	0.242252	0.766620	-1.051650
6	-0.332785	-0.145319	-0.168256	0.701769
7	-0.842948	-0.524782	-1.049934	0.177362
8	-0.319928	-1.231453	0.739019	2.052241
9	0.551910	1.470252	-0.063701	-2.340529

Выведем описательные статистики по столбцам -- количество значений, среднее, стандартное отклонение (корень из дисперсии), минимум, квантили, максимум.

In [3]:

```
1 df.describe()
```

Out[3]:

	Α	В	С	D
count	10.000000	10.000000	10.000000	10.000000
mean	0.171904	0.062946	0.223814	0.451560
std	0.583101	1.028377	0.986650	1.435704
min	-0.842948	-1.311820	-1.049934	-2.340529
25%	-0.258392	-0.429916	-0.492045	-0.029482
50%	0.129520	-0.027156	-0.115978	0.485813
75 %	0.636592	0.249056	0.759720	1.372598
max	0.933652	1.933319	1.783527	2.475760

Среднее по столбцам

In [4]:

```
1 df.mean()
```

Out[4]:

A 0.171904 B 0.062946 C 0.223814 D 0.451560

dtype: float64

Оценка матрицы корреляций значений в столбцах

In [5]:

```
1 df.corr()
```

Out[5]:

	Α	В	С	D
Α	1.000000	0.634713	0.27549	-0.507558
В	0.634713	1.000000	-0.10900	-0.616433
С	0.275490	-0.109000	1.00000	0.196100
D	-0.507558	-0.616433	0.19610	1.000000

Применение функции к данным. Для примера посчитаем разброс значений -- разница максимума и минимума.

```
In [6]:
```

```
1 df.apply(lambda x: x.max() - x.min())
```

Out[6]:

A 1.776600 B 3.245139 C 2.833462 D 4.816289 dtype: float64

2. Объединение таблиц

2.1 df.append

Добавление строк (в виде таблицы other) в таблицу df. При наличии у новых строк колонок, которых нет в таблице, они добавляются в таблицу.

df.append(other, ignore index=False, verify integrity=False, sort=None)

- df -- таблица;
- other -- добавляемые строки (в виде таблицы);
- ignore index -- сохранить индексы или определить и как 0, ..., n-1;
- verify integrity -- если True, то создает исключение в случае повторения индексов;
- sort -- сортировать ли колонки, если они (или их порядок) различаются.

Создадим новую таблицу из первых четырех строк таблицы df. В новую таблицу добавим колонку flag, в которую запишем условие, что число в столбце D положительно. Затем добавим строки из новой таблицы к старой. Полученная таблица содержит пропуски, которые отмечены как NaN.

In [7]:

```
other = df[:4].copy() # Ποπμοε κοπυροβαμμε
other['flag'] = other['D'] > 0
other['D'] = other['D'] ** 2

df.append(other, ignore_index=True, sort=False)
```

Out[7]:

	Α	В	С	D	flag
0	0.098911	-1.311820	-0.498644	1.580585	NaN
1	0.664819	-0.003627	1.745190	-0.098430	NaN
2	0.879059	1.933319	-0.543434	0.269857	NaN
3	-0.073782	-0.050684	1.783527	2.475760	NaN
4	0.160128	0.251324	-0.472247	0.748638	NaN
5	0.933652	0.242252	0.766620	-1.051650	NaN
6	-0.332785	-0.145319	-0.168256	0.701769	NaN
7	-0.842948	-0.524782	-1.049934	0.177362	NaN
8	-0.319928	-1.231453	0.739019	2.052241	NaN
9	0.551910	1.470252	-0.063701	-2.340529	NaN
10	0.098911	-1.311820	-0.498644	2.498248	True
11	0.664819	-0.003627	1.745190	0.009688	False
12	0.879059	1.933319	-0.543434	0.072823	True
13	-0.073782	-0.050684	1.783527	6.129387	True

2.2 pd.concat

Соединение таблиц вдоль выбранной оси

```
pd.concat(objs, axis=0, join='outer', ignore_index=False, copy=True, ...)
```

- objs -- объединяемые таблицы;
- axis :{О или 'index', 1 или 'columns'}--ось;
- join :{ 'inner', 'outer'} -- тип объединения (пересечение или объединение);
- ignore_index -- сохранить индексы или определить и как 0, ..., n-1;
- сору -- копировать данные или нет.

Простой пример соединения таблиц:

```
In [8]:
```

```
pd.concat([df[:5], df[5:]])
```

Out[8]:

	Α	В	С	D
0	0.098911	-1.311820	-0.498644	1.580585
1	0.664819	-0.003627	1.745190	-0.098430
2	0.879059	1.933319	-0.543434	0.269857
3	-0.073782	-0.050684	1.783527	2.475760
4	0.160128	0.251324	-0.472247	0.748638
5	0.933652	0.242252	0.766620	-1.051650
6	-0.332785	-0.145319	-0.168256	0.701769
7	-0.842948	-0.524782	-1.049934	0.177362
8	-0.319928	-1.231453	0.739019	2.052241
9	0.551910	1.470252	-0.063701	-2.340529

2.3 pd.merge и df.join

Слияние таблиц путем выполнения операций слияния баз данных в стиле SQL

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
left index=False, right index=False, suffixes=(' x', ' y'), ...)

- left и right -- объединяемые таблицы;
- how -- тип объединения:
 - left -- только по ключам из левой таблицы == SQL left outer join;
 - right -- только по ключам из правой таблицы == SQL right outer join;
 - outer -- по объединению ключей == SQL full outer join;
 - inner -- по пересечению ключей == SQL inner join;
- on -- имя (или имена) колонок, по которым будет производиться объединение (т.е. ключи). Если их несколько, то нужно передать список имен. Имена колонок в таблице должны совпадать;
- left_on и right_on -- аналогично on для случая, когда в таблицах различаются имена колонок, соответствующие ключам;
- left index и right index -- использовать ли индексы в качестве ключей;
- suffixes -- суффиксы, которые будут добавлены к тем колонкам, имена которых повторяются.

df.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False)

- df -- основная таблица. В качестве ключей используется индекс;
- other -- другая таблица;
- on -- колонка(-и) в other, соответствующая ключам, по ним происходит объедиенение. Если None, то используется индекс;
- how -- тип объединения (см. pd.merge)
- lsuffix и rsuffix -- суффиксы, которые будут добавлены к тем колонкам, имена которых повторяются.

Пример 1.

В обеих таблицах ключи повторяются

In [9]:

In [10]:

```
1 left
```

Out[10]:

	key	Ival
0	Α	1
1	Α	2

In [11]:

```
1 right
```

Out[11]:

	key	rval
0	Α	4
1	Α	5

В результате объединения получаем 4 строки -- для каждой строки из левой таблице есть две строки из правой таблицы с таким же ключом.

In [12]:

```
pd.merge(left, right, on='key')
```

Out[12]:

	key	Ival	rval
0	Α	1	4
1	Α	1	5
2	Α	2	4
3	Α	2	5

Пример 2.

В таблицах ключи не повторяются

In [13]:

In [14]:

```
1 left
```

Out[14]:

	key	Ival
0	Α	1
1	В	2

In [15]:

```
1 right
```

Out[15]:

	key	rval
0	Α	4
1	В	5

В результате объединения получаем 2 строки -- для каждой строки из левой таблице есть только одна строка из правой таблицы с таким же ключом.

In [16]:

```
pd.merge(left, right, on='key')
```

Out[16]:

	key	Ival	rval
0	Α	1	4
1	В	2	5

Пример 3.

Посмотрим на различные типы объединения. Сооздадим и напечатаем две таблицы.

In [17]:

```
In [18]:
```

1 left

Out[18]:

	lkey	value
0	Α	0
1	В	1
2	С	2
3	Α	3

In [19]:

```
1 right
```

Out[19]:

	rkey	value
0	Α	4
1	В	5
2	D	6
3	В	7

Внешнее слияние -- используются ключи из объединения списков ключей. Иначе говоря, используются ключи, которые есть хотя бы в одной из таблиц.

In [20]:

Out[20]:

	lkey	value_x	rkey	value_y
0	Α	0.0	Α	4.0
1	Α	3.0	Α	4.0
2	В	1.0	В	5.0
3	В	1.0	В	7.0
4	С	2.0	NaN	NaN
5	NaN	NaN	D	6.0

Внутреннее слияние -- используются ключи из пересечения списков ключей. Иначе говоря, используются ключи, которые присутствуют в обеих таблицах.

In [21]:

Out[21]:

	lkey	value_x	rkey	value_y
0	Α	0	Α	4
1	Α	3	Α	4
2	В	1	В	5
3	В	1	В	7

Объединение по ключам левой таблицы. Не используются ключи, которые есть в правой таблицы, но которых нет в левой

In [22]:

```
1 v pd.merge(left, right,
2 left_on='lkey', right_on='rkey', how='left')
```

Out[22]:

	lkey	value_x	rkey	value_y
0	Α	0	Α	4.0
1	В	1	В	5.0
2	В	1	В	7.0
3	С	2	NaN	NaN
4	Α	3	Α	4.0

Объединение по ключам правой таблицы. Не используются ключи, которые есть в левой таблицы, но которых нет в правой

In [23]:

```
1 v pd.merge(left, right,
2 left_on='lkey', right_on='rkey', how='right')
```

Out[23]:

	lkey	value_x	rkey	value_y
0	Α	0.0	Α	4
1	Α	3.0	Α	4
2	В	1.0	В	5
3	В	1.0	В	7
4	NaN	NaN	D	6

Выполним внтуреннее объединение и установим ключ качестве индекса

In [24]:

Out[24]:

key value_x value_y A 0 4 A 3 4 B 1 5 B 1 7

Ту же операцию можно выполнить с помощью join

In [25]:

```
1 v left.set_index('lkey') \
2    .join(right.set_index('rkey'), rsuffix='_r')
```

Out[25]:

	value	value_r
Α	0	4.0
Α	3	4.0
В	1	5.0
В	1	7.0
С	2	NaN

value value r

3. Группировка

Этапы группировки данных:

- разбиение данных на группы по некоторым критериям;
- применение функции отдельно к каждой группе;
- комбинирование результата в структуру данных.

Группировка выполняется функцией

```
df.groupby(by=None, axis=0, level=None, sort=True, ...)
```

- df -- таблица, данные которой должны быть сгруппированы;
- by -- задает принцип группировки. Чаще всего это имя столбца, по которому нужно сгруппировать. Может так же быть функцией;
- axis -- ось (0 = группировать строки, 1 = группировать столбцы);
- level -- если ось представлена мультииндексом, то указывает на уровень мультииндекса;
- sort -- сортировка результата по индексу.

Результатом группировки является объект, состоящий из пар (имя группы, подтаблица). Имя группы соответствует значению, по которому произведена группировка. К объекту-результату группировки применимы, например, следующие операции:

- for name, group in groupped: ... -- цикл по группам;
- get group(name) -- получить таблицу, соответствующую группе с именем name;
- groups -- получить все группы в виде словаря имя-подтаблица;
- count() -- количество значений в группах, исключая пропуски;
- size() -- размер групп;
- sum(), max(), min();
- mean(), median(), var(), std(), corr(), quantile(q);
- describe() -- вывод описательных статистик;
- aggregate(func) -- применение функции (или списка функций) func к группам.

Создадим таблицу для примера (ура, котики!)

In [26]:

```
df = pd.DataFrame({
 1 ▼
 2 🔻
          'Животное' : ['Котик', 'Песик', 'Котик', 'Песик',
                        'Котик', 'Песик', 'Котик', 'Песик'],
3
 4 ▼
          'Цвет шерсти' : ['белый', 'белый', 'коричневый', 'черный',
                           'коричневый', 'коричневый', 'белый', 'черный'],
5
6
         'Poct' : sps.gamma(a=12, scale=3).rvs(size=8),
7
         'Длина хвостика' : sps.gamma(a=10).rvs(size=8)
8
     })
9
10
     df
```

Out[26]:

	Животное	Цвет шерсти	Рост	Длина хвостика
0	Котик	белый	27.380391	7.488426
1	Песик	белый	24.989956	7.387730
2	Котик	коричневый	23.819317	9.193795
3	Песик	черный	35.805990	11.180022
4	Котик	коричневый	34.044305	14.427289
5	Песик	коричневый	32.002396	12.568725
6	Котик	белый	54.752458	9.349173
7	Песик	черный	30.974410	8.463583

Пример 1.

Если все котики встанут друг на друга, то какой их суммарный рост? А у песиков? А какова суммарная длинна хвостиков у котиков и у песиков?

Группировка по одной колонке и последующее применение операции суммирования:

In [27]:

```
1 df.groupby('Животное').sum()
```

Out[27]:

	Рост	Длина хвостика
Животное		
Котик	139.996471	40.458683
Песик	123.772752	39.600060

Посчитаем описательные статистики для каждого животного

In [28]:

```
1 df.groupby('Животное').describe()
```

Out[28]:

	Рост							
	count	mean	std	min	25%	50%	75%	max
Животное								
Котик	4.0	34.999118	13.834005	23.819317	26.490123	30.712348	39.221343	54.752458
Песик	4.0	30.943188	4.479982	24.989956	29.478296	31.488403	32.953294	35.805990
4								>

Пример 2.

Теперь предположим, что котики и песики встают только на представителей своего вида и своего цвета шерсти. Что тогда будет?

Группировка по двум колонкам и последующее применение операции суммирования

In [29]:

```
1 df.groupby(['Животное', 'Цвет шерсти']).sum()
```

Out[29]:

	Рост	Длина хвостика
Цвет шерсти		
белый	82.132850	16.837599
коричневый	57.863622	23.621084
белый	24.989956	7.387730
коричневый	32.002396	12.568725
черный	66.780400	19.643605
	белый коричневый белый коричневый коричневый	Цвет шерсти 82.132850 коричневый 57.863622 белый 24.989956 коричневый 32.002396

Полученная таблица имеет мультииндекс

```
In [30]:
```

```
1 df.groupby(['Животное', 'Цвет шерсти']).sum().index
```

Out[30]:

4. Таблицы сопряженности (Crosstab) и сводные таблицы (Pivot table)

Задача. В медицинской клинике информацию о приемах записывают в таблицу со следующими полями:

- время приема
- врач
- пациент
- поставленный диагноз
- назначение
- другие поля

Требуется посчитать, сколько раз за предыдущий месяц каждый врач ставил какой-либо диагноз. Результаты представить в виде таблицы, в которой посчитать также суммы по строкам и столбцам, т.е. сколько врач сделал приемов за месяц и сколько раз конкретный диагноз поставлен всеми врачами.

Как решать?

Способ 1

- 1. Группировка по врачам.
- 2. Для каждого врача группировка по диагнозам.
- 3. В каждой группе вычисление суммы.
- 4. Соединение в одну таблицу.
- 5. Вычисление суммы по столбцам и по строкам.

Оцените количество строк кода и время работы.

Способ 2

- 1. Создать пустую таблицу.
- 2. Циклом [:)))] по всем записям исходной таблицы считать суммы.
- 3. Вычисление суммы по столбцам и по строкам.

Оцените количество строк кода и время работы.

Способ 3

Применить умную функцию из pandas, которая сделает все сама!

4.1 pd.crosstab

Эксель-подобные таблицы сопряженности

pd.crosstab(index, columns, values=None, rownames=None, colnames=None,
aggfunc=None, margins=False, margins_name='All', dropna=True, normalize=False)

- index -- значения для группировки по строкам;
- columns -- значения для группировки по столбцам;
- values -- аггригируемый столбец (или столбцы), его значения непосредственно определяют значения таблицы сопряженности;
- aggfunc -- функция, которая будет применена к каждой группе значений values, сгруппированным по значениям index и columns. Значения этой функции и есть значения сводной таблицы;
- rownames и colnames -- имена строк и столбцов таблицы сопряженности;
- margins -- добавляет результирующий столбец/строку;
- margins name -- имя результирующего столбец/строку;
- dropna -- не включать столбцы, которые состоят только из NaN;
- normalize: boolean, { 'all', 'index', 'columns' } -- нормировка всей таблицы (или только по строкам/столбцам).

В примере выше:

```
pd.crosstab(df['Врач'], df['Диагноз'], margins=True)
```

4.2 pd.pivot table

Эксель-подобные сводные таблицы

pd.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean',
fill value=None, margins=False, dropna=True, margins name='All')

- data -- исходная таблица;
- values -- аггригируемый столбец, его значения непосредственно определяют значения сводной таблицы;
- index -- ключи для группировки, относятся к индексам сводной таблицы;
- columns -- ключи для группировки, относятся к столбцам сводной таблицы;
- aggfunc -- функция, которая будет применена к каждой группе значений values,
 сгруппированным по значениям index и columns. Значения этой функции и есть значения
 сводной таблицы. Если передается список функций, то сводная таблица имеет иерархические имена колонок, верхние значения которых -- имена функций;
- fill value -- значения для замены пропусков;
- dropna -- не включать столбцы, которые состоят только из NaN;
- margins -- добавляет результирующий столбец/строку;
- margins name -- имя результирующего столбец/строку.

В примере выше:

```
pd.pivot_table(df, index='врач', columns='диагноз', margins=True)
```

In [31]:

```
1 ▼ df = pd.DataFrame({
             'Специальность' : ['Ветеринар', 'Ветеринар', 'Психолог', 'Психолог'] * 6, 'Врач' : ['Андрей', 'Сергей', 'Ирина'] * 8,
 2 ▼
 3
 4
             'Диагноз': ['Простуда', 'Простуда', 'Простуда', 'Волнения', 'Волнения', 'Простуда'] * 4,
 5 ▼
 6
             'Доза' : sps.randint(low=1, high=6).rvs(size=24),
 7
             'Продолжительность' : sps.randint(low=1, high=6).rvs(size=24)
 8
 9
       })
10
11
       df
```

Out[31]:

	Специальность	Врач	Диагноз	Доза	Продолжительность
0	Ветеринар	Андрей	Простуда	1	5
1	Ветеринар	Сергей	Простуда	5	5
2	Психолог	Ирина	Простуда	2	2
3	Психолог	Андрей	Волнения	4	4
4	Ветеринар	Сергей	Волнения	3	1
5	Ветеринар	Ирина	Простуда	3	4
6	Психолог	Андрей	Простуда	5	3
7	Психолог	Сергей	Простуда	4	5
8	Ветеринар	Ирина	Простуда	3	3
9	Ветеринар	Андрей	Волнения	2	3
10	Психолог	Сергей	Волнения	1	4
11	Психолог	Ирина	Простуда	1	3
12	Ветеринар	Андрей	Простуда	5	1
13	Ветеринар	Сергей	Простуда	3	1
14	Психолог	Ирина	Простуда	3	3
15	Психолог	Андрей	Волнения	5	2
16	Ветеринар	Сергей	Волнения	2	2
17	Ветеринар	Ирина	Простуда	4	4
18	Психолог	Андрей	Простуда	4	5
19	Психолог	Сергей	Простуда	3	3
20	Ветеринар	Ирина	Простуда	4	2
21	Ветеринар	Андрей	Волнения	5	4
22	Психолог	Сергей	Волнения	4	2
23	Психолог	Ирина	Простуда	5	1

Посчитаем, сколько раз какой врач ставил каждый из диагнозов, а также суммы по строкам и столбцам

In [32]:

```
pd.crosstab(df['Врач'], df['Диагноз'], margins=True)
```

Out[32]:

Диагноз	Волнения	Простуда	All
Врач			
Андрей	4	4	8
Ирина	0	8	8
Сергей	4	4	8
All	8	16	24

Посчитаем, какую среднюю дозу какой врач назначал по каждому из диагнозов

In [33]:

```
1 ▼ pd.crosstab(df['Врач'], df['Диагноз'],
2 values=df['Доза'], aggfunc=np.mean)
```

Out[33]:

Диагноз		Волнения	Простуда		
	Врач				
•	Андрей	4.0	3.750		
	Ирина	NaN	3.125		
	Сергей	2.5	3.750		

Простейший вариант сводной таблицы -- среднее в группах, определяемых столбцом. Посчитаем средние по каждому врачу

In [34]:

```
pd.pivot_table(df, index=['Bpay'])
```

Out[34]:

Доза Продолжительность

Врач		
Андрей	3.875	3.375
Ирина	3.125	2.750
Сергей	3.125	2.875

Посчитаем, сколько раз врач и в какой специальности ставил тот или иной диагноз

In [35]:

Out[35]:

	Диагноз	Волнения	Простуда
Специальность	Врач		
Ветеринар	Андрей	7.0	6.0
	Ирина	NaN	14.0
	Сергей	5.0	8.0
Психолог	Андрей	9.0	9.0
	Ирина	NaN	11.0
	Сергей	5.0	7.0

Добавим строчку, являющейся суммой столбцов, и столбец, являющийся суммой строк

In [36]:

Out[36]:

	Диагноз	Волнения	Простуда	All
Специальность	Врач			
Ветеринар	Андрей	7.0	6.0	13
	Ирина	NaN	14.0	14
	Сергей	5.0	8.0	13
Психолог	Андрей	9.0	9.0	18
	Ирина	NaN	11.0	11
	Сергей	5.0	7.0	12
All		26.0	55.0	81

Применим несколько функций и несколько столбцов со значениями

In [37]:

Out[37]:

		amin						mean	
		Доза			Продолжит	Доза			
	Диагноз	Волнения	Простуда	All	Волнения	Простуда	AII	Волнения	Пр
Специальность	Врач								
Ветеринар	Андрей	2.0	1.0	1	3.0	1.0	1	3.50	
	Ирина	NaN	3.0	3	NaN	2.0	2	NaN	
	Сергей	2.0	3.0	2	1.0	1.0	1	2.50	
Психолог	Андрей	4.0	4.0	4	2.0	3.0	2	4.50	
	Ирина	NaN	1.0	1	NaN	1.0	1	NaN	
	Сергей	1.0	3.0	1	2.0	3.0	2	2.50	
All		1.0	1.0	1	1.0	1.0	1	3.25	
4									•

Введение в анализ данных, 2020

Никита Волков

https://mipt-stats.gitlab.io/ (https://mipt-stats.gitlab.io/)