Trajectory tracking double two-loop adaptive neural network control for a Quadrotor Final report

Nguyen Nhu Toan

¹Hanoi Univesity of Science and Technology Hanoi, Vietnam

Hanoi, June 2023

Table of Contents

- Introduction
- Quadrotor Dynamic Model
- Control Method
- Experimental Results
- Conclusion

Introduction

- In this paper, the development and experimental validation of a novel double two-loop nonlinear controller based on adaptive neural networks for a quadrotor are presented.
- The proposed controller has a two-loop structure: an outer loop for position control and an inner loop for attitude control
- The functionality of the proposed scheme is demonstrated experimentally, and its performance is compared with another adaptive neural-based scheme and a model-based scheme.

Quadrotor Dynamic Model

The quadrotor dynamic model in the inertial reference frame is given by:

$$m\ddot{p} + mg_z + D_p(\eta)\dot{p} = r_3(\eta)F + \delta_p(t)$$

$$M(\eta)\ddot{\eta} + C(\eta,\dot{\eta})\dot{\eta} + D_{\eta}(\eta)\dot{\eta} = \Phi(\eta)^{-T}\tau + \delta_{\eta}(t)$$
(1)

- m: Quadrotor mass
- $g_z = [0 \ 0 \ g] \in \mathbb{R}^3$: Acceleration due to gravity
- $p = [x \ y \ z] \in \mathbb{R}^3$: Quadrotor position
- $\eta = [\phi \ \theta \ \psi] \in \mathbb{R}^3$: Quadrotor attitude
- $D_p(\eta) \in \mathbb{R}^{3 \times 3}$: Aerodynamic drag matrix
- ullet $D_{\eta}(\eta)\in\mathbb{R}^{3 imes3}$: Aerodynamic damping matrix
- $r_3(\eta) \in \mathbb{R}^3$: Third column of rotation matrix $R(\eta) \in SO(3)$
- $\delta_p(t)$, $\delta_\eta(t) \in \mathbb{R}^3$: Unknown external disturbances and unmodeled dynamics $||\delta_p(t)||, ||\delta_\eta(t)|| \le \delta$ for $t \ge 0$.

Quadrotor Dynamic Model

The quadrotor has four control inputs related to the four actuators of the quadrotor $F \in \mathbb{R}$ and $\tau = \left[\tau_{\phi} \ \tau_{\theta} \ \tau_{\psi}\right] \in \mathbb{R}^{3}$, which are expressed as:

$$F = 4 \sum_{i=1}^{4} T_i,$$

$$\tau = \begin{bmatrix} I(T_2 - T_4) \\ I(T_3 - T_1) \\ k_{\tau} \sum_{i=1}^{4} (-1)^{i+1} T_i \end{bmatrix}$$

where $T = \begin{bmatrix} T_1 & T_2 & T_3 & T_4 \end{bmatrix} \in \mathbb{R}^4$ and $T_i \in \mathbb{R}$ is the thrust of the *i*-th actuator. The above relationship can be expressed in matrix form as $[F \ \tau]^T = BT$, where

$$B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -l & 0 & l \\ -l & 0 & l & 0 \\ -k_{\tau} & k_{\tau} & -k_{\tau} & k_{\tau} \end{bmatrix}.$$

Control objectives

The quadrotor control goal is to design control inputs F(t) and $\tau(t)$ such that the position and attitude errors converge to zero as t approaches infinity.

- Desired position: $p_d(t) = [x_d(t) \ y_d(t) \ z_d(t)]^T$
- Desired attitude: $\eta_d(t) = [\phi_d(t) \; \theta_d(t) \; \psi_d(t)]^T$
- ullet $\phi_d(t)$ and $heta_d(t)$ are computed by the position controller
- Assumed to be at least twice time-differentiable and bounded until its second time-derivative

Position and attitude error vectors:

$$e_p(t) = p_d(t) - p(t) \tag{2}$$

$$e_{\eta}(t) = \eta_d(t) - \eta(t) \tag{3}$$

Control goal:

$$\lim_{t o\infty}egin{bmatrix} \dot{e}_p(t) & e_p(t) & \dot{e}_\eta(t) & e_\eta(t) \end{bmatrix}=0$$

Control diagram

Figure: Control diagram

- The position and attitude controllers have each a two-loop structure and include an adaptive neural network to compensate for disturbances.
- In both cases, the outer loops generate commands to feed the inner loops where the ANNs are employed.

7/30

Position Control, Outer-loop controller

The position outer loop defines a velocity reference signal $U_p \in \mathbb{R}^3$ given by

$$U_p = \dot{p}_d + K_p e_p \tag{4}$$

where $K_p \in \mathbb{R}^{3 \times 3}$ is a positive definite diagonal gain matrix.

Taking the time derivative of (3) and substituting the velocity reference signal in (4), the following is obtained:

$$\dot{e}_p = -K_p e_p + U_p - \dot{p} \tag{5}$$

Defining the velocity error as

$$\tilde{U}_p = U_p - \dot{p} \tag{6}$$

the position error dynamics result in:

$$\dot{e}_{p} = -K_{p}e_{p} + \tilde{U}_{p} \tag{7}$$

It can be observed that as long as $\tilde{U}_p \to 0$ is guaranteed, then $e_p \to 0$ as $t \to \infty$.

Position Control, Inner-loop controller

Taking the time derivative of the velocity error (4), substituting the position dynamics in (1) on it, one gets:

$$m\dot{\tilde{U}}_p = m\dot{U}_p + mgz + D_p(\eta)\dot{p} - \delta_p(t) - r_3(\eta)F. \tag{8}$$

Let the mass estimation error as $\tilde{m}=m-\hat{m}$, with \hat{m}_d denoting the mass estimation.

Assuming that the attitude dynamics are faster than the position dynamics, the attitude error converges to zero first, and the term $[r_3(e_{\eta}+\eta)-r_3(\eta)]F=0$, leading to:

$$m\tilde{U}_{p} = \hat{m}(\ddot{p}_{d} + gz) + \hat{m}K_{p}\dot{e}_{p} + \tilde{m}(\dot{U}_{p} + gz) + D_{p}(\eta)\dot{p} - \delta_{p}(t) - r_{3}(\eta_{d})F.$$
 (9)

Considering the time derivative of (4), it can be expressed as:

$$m\dot{\tilde{U}}_{p} = \hat{m}(\ddot{p}_{d} + g_{z}) + f_{W_{p}}(\dot{p}, \eta, \dot{U}_{p}) - r_{3}(\eta_{d})F,$$
 (10)

9/30

where $f_{W_p}(\dot{p},\eta,\dot{U}_p)=\hat{m}K_p\dot{e}_p+\tilde{m}(\dot{U}_p+gz)+D_p(\eta)\dot{p}$

Position Control, Inner-loop controller

The neural network in Figure 2 is used to estimate $f_{W_p}(\dot{p}, \eta, \dot{U}_p)$ as follows:

$$f_{W_p}(\gamma_p) = W_p^T \sigma(V_p^T \gamma_p) + \varepsilon_p, \tag{11}$$

Figure: FLNN structure

- $\gamma_p = [1 \ \dot{p}^T \ \eta^T \ \dot{U}_p^T]^T \in \mathbb{R}^{10}$: neural network extended input vector.
- $V_p^T \in \mathbb{R}^{10 \times L_p}$ and $W_p^T \in \mathbb{R}^{L_p \times 3}$: ideal weights input and output matrices, $\|V_p^T\|_F \leq V_P$ and $\|W_p^T\|_F \leq W_P$.
- $\varepsilon_p \in \mathbb{R}^3$: neural network approximation error, $0 < \|\varepsilon_p\| \le \varepsilon_P$.
- $\sigma(x)$: the neural network activation function (tanh)

Position Control, Inner-loop controller

Therefore, Eq 9 can be written as:

$$m\dot{\tilde{U}}_p = \hat{m}(\ddot{p}_d + g_z) + W_p^T \sigma_p + \epsilon_p - r_3(\eta_d)F.$$
 (12)

where $\epsilon_p = \varepsilon_p - \delta_p(t)$ is bounded as $0 < \|\varepsilon_p\| \le \varepsilon_P$. Thus, the following definition for $r_3(\eta_d)F = [f_x \ f_y \ f_z]^T$ is proposed:

$$r_3(\eta_d)F = K_{Up}\tilde{U}_p + K_{ip}\xi_p + \hat{m}(\ddot{p}_d + g_z) + \hat{W}_p^T\sigma_p + \alpha_p \text{sign}(\tilde{U}_p), \quad (13)$$

$$\dot{\xi}_p = \tilde{U}_p. \tag{14}$$

11/30

The output weights adaptation law is given by:

$$\hat{\tilde{W}}_{p} = -N_{p}(\sigma_{p}\tilde{U}_{p}^{T} - \kappa_{p} \|\tilde{U}_{p}\|\hat{W}_{p}), \tag{15}$$

where $\tilde{W}_p = W_p - \hat{W}_p$ is the output weight matrix estimation error, and $\operatorname{sign}(\tilde{U}_p) = [\operatorname{sign}(\tilde{U}_p^1) \ \operatorname{sign}(\tilde{U}_p^2) \ \operatorname{sign}(\tilde{U}p^3)]^T \in \mathbb{R}^3$. \hat{W}_p is an estimation of the output weight matrix W_p , and $\alpha_p, \kappa_p, K_{Up}, K_{ip}, N_p > 0$

Position Control, Inner-loop controller

The total thrust and desired roll and pitch angles can be obtained as follows:

$$F(t) = \frac{f_z}{\cos(\phi)\cos(\theta)} \tag{16}$$

$$\phi_d(t) = \tan^{-1} \left[\frac{1}{f_z} \left(\cos(\theta_d) (\sin(\psi_d) \cos(\phi_d) - \cos(\psi_d) \sin(\phi_d)) \right) \right]$$
 (17)

$$\theta_d(t) = \tan^{-1} \left[\frac{1}{f_z} \left(\cos(\psi_d) \cos(\phi_d) + f_z \sin(\psi_d) \sin(\phi_d) \right) \right]$$
 (18)

The velocity error dynamics 10 with the controller 13–16 results in the following closed-loop system:

$$\dot{\tilde{U}}_{p} = -K_{U_{p}}\tilde{U}_{p} - K_{ip}\xi_{p} + \tilde{W}_{p}^{T}\sigma_{p} + \varepsilon_{p} - \alpha_{p}\operatorname{sign}(\tilde{U}_{p}). \tag{19}$$

Then, the following Lyapunov function is defined:

$$V_{p} = \frac{\beta_{p}}{2} e_{p}^{T} e_{p} + \frac{m}{2} \tilde{U}_{p}^{T} \tilde{U}_{p} + \frac{1}{2} \xi_{p}^{T} K_{ip} \xi_{p} + \frac{1}{2} \text{Tr} \{ \tilde{W}_{p}^{T} N_{p}^{-1} \tilde{W}_{p} \}$$
 (20)

Proposition 1

Assume gain matrices K_p , K_{Up} , and N_p to be positive definite diagonal matrices and positive constants α_p and κ_p satisfying the condition $\alpha_p \geq \kappa_p W_P^2 + \varepsilon_P$. Then, for all initial conditions starting as some compact set, the solutions $e_p(t)$, $\dot{e}_p(t)$, and $\tilde{U}_p(t)$ of the overall closed-loop system in (7), (15), and (19) converge to zero as time goes to infinity, i.e., $e_p(t)$, $\dot{e}_p(t)$, $\tilde{U}_p(t) \rightarrow 0$ while $t \rightarrow \infty$. Furthermore, the state variable $\xi_p(t)$ and the output weight matrix estimation error $\tilde{W}_p(t)$ remain bounded for all time $t \geq 0$.

4 D > 4 B > 4 E > 4 E

Nonlinear control

Attitude Control, Outer-loop controller

The attitude outer-loop defines an Euler angles change rate reference signal $U_\eta \in \mathbb{R}^3$ given by

$$U_{\eta} = \dot{\eta}_{d} + K_{\eta} e_{\eta} \tag{21}$$

where $K_{\eta} \in \mathbb{R}^{3 \times 3}$ is a positive definite diagonal gain matrix. Considering the attitude error in (3), taking its time derivative and substituting the Euler angles change rate reference signal in (21), the following is obtained:

$$\dot{e}_{\eta} = -K_{\eta}e_{\eta} + U_{\eta} - \dot{\eta} \tag{22}$$

Defining the Euler angles change rate error as $\tilde{U}_{\eta}=U_{\eta}-\dot{\eta}$, the attitude error dynamics (22) results in

$$\dot{e}_{\eta} = -K_{\eta}e_{\eta} + \tilde{U}_{\eta} \tag{23}$$

where it can be observed that as long as $\tilde{U}_{\eta} \to 0$ is guaranteed, then $e_{\eta} \to 0$ while $t \to \infty$.

Attitude Control, Inner-loop controller

Taking the time derivative of (21) and substituting the attitude dynamics (1) on it yields:

$$\dot{\tilde{U}}_{\eta} = \dot{U}_{\eta} - M(\eta)^{-1} [\Phi(\eta)^T + \delta_{\eta}(t) - (C(\eta, \dot{\eta}) + D_{\eta}(\eta))\dot{\eta}] \qquad (24)$$

Based on (24), assume the existence of $\tau_{MB}(t)$, an external disturbances and exact model compensator given by

$$\tau_{MB} = \Phi(\eta)^{T} [f_{\eta}(\eta, \dot{\eta}, \dot{U}_{\eta}) - \delta_{\eta}(t)]$$
 (25)

where $f_{\eta}(\eta, \dot{\eta}, \dot{U}_{\eta}) = M(\eta)\dot{U}_{\eta} + (C(\eta, \dot{\eta}) + D_{\eta}(\eta))\dot{\eta}$. Finally, the model compensator can be approximated with a neural network as follows:

$$\tau_{MB} = \Phi(\eta)^{T} [W_{\eta}^{T} \sigma_{\eta} (V_{\eta}^{T} \gamma_{\eta}) + \epsilon_{\eta} - \delta_{\eta}(t)]$$
 (26)

where $\gamma_{\eta} = [1, \eta^T, \dot{\eta}^T, \dot{U}_{\eta}^T]^T \in \mathbb{R}^{10}$, $V_{\eta} \in \mathbb{R}^{10 \times L_{\eta}}$ and $W_{\eta} \in \mathbb{R}^{L_{\eta} \times 3}$, $\|V_{\eta}\|_F \leq V$ and $\|W_{\eta}\|_F \leq W$, $\epsilon_{\eta} \in \mathbb{R}^3$, $0 < \|\epsilon_{\eta}\| \leq \epsilon$, $L_{\eta} \in \mathbb{N}$, and $\sigma(x) \forall x \in \mathbb{R}^n$.

Attitude Control, Inner-loop controller

Based on Eqs. (25), (27), the following neural network-based controller is proposed:

$$\tau = \Phi(\eta)^{T} [K_{U_{\eta}} \tilde{U}_{\eta} + K_{i\eta} \xi_{\eta} + \hat{W}_{\eta}^{T} \sigma_{\eta} + \alpha_{\eta} \operatorname{sign}(\tilde{U}_{\eta})]$$
 (27)

$$\dot{\xi}_{\eta} = \tilde{U}_{\eta} \tag{28}$$

where $K_{U_{\eta}}, K_{i\eta} \in \mathbb{R}^{3\times 3}, \alpha_{\eta} \in \mathbb{R} > 0$, \hat{W}_{η} is an estimation of the output weight matrix W_{η} with

$$\tilde{W}_{\eta} = -N_{\eta}(\sigma_{\eta}\tilde{U}_{\eta}^{T} - \kappa_{\eta} \|\tilde{U}_{\eta}\|\hat{W}_{\eta})$$
 (29)

where the output weight matrix estimation error $\tilde{W}_{\eta}=W_{\eta}-\hat{W}_{\eta}$. $N_{\eta}\in\mathbb{R}^{3\times3}>0$ is the neural network adaptation gains, and $\kappa_{\eta}\in\mathbb{R}>0$.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

Based on Eq (25), the controller (27) can be rewritten as

$$\tau = \Phi(\eta)^{T} \left[K_{U_{\eta}} \tilde{U}_{\eta} + K_{i\eta} \xi_{\eta} + M(\eta) \dot{U}_{\eta} + (C(\eta, \dot{\eta}) + D_{\eta}(\eta)) \dot{\eta} - \delta_{\eta}(t) - \epsilon_{\eta} - \tilde{W}_{\eta}^{T} \sigma_{\eta} + \alpha_{\eta} \text{sign}(\tilde{U}_{\eta}) \right],$$
(30)

which in closed-loop with the angular velocity error dynamics (24), results in the following:

$$M(\eta)\tilde{U}_{\eta} = -K_{U_{\eta}}\tilde{U}_{\eta} - K_{i\eta}\xi_{\eta} + \tilde{W}_{\eta}^{\mathsf{T}}\sigma_{\eta} + \epsilon_{\eta} - \alpha_{\eta}\operatorname{sign}(\tilde{U}_{\eta}), \tag{31}$$

where $\epsilon_{\eta} = \epsilon_{\eta} - \delta_{\eta}(t)$ is bounded as $0 < \|\epsilon_{\eta}\| \le \epsilon$.

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q (*)

Then, define the following Lyapunov function:

$$V_{\eta} = \frac{\beta_{\eta}}{2} e_{\eta}^{T} e_{\eta} + \frac{1}{2} \tilde{U}_{\eta}^{T} M(\eta) \tilde{U}_{\eta} + \frac{1}{2} \xi_{\eta}^{T} K_{i\eta} \xi_{\eta} + \frac{1}{2} \text{Tr} \{ \tilde{W}_{\eta}^{T} N_{\eta}^{-1} \tilde{W}_{\eta} \}$$
 (32)

Proposition 2

Assume gain matrices K_{η} , $K_{U_{\eta}}$, and N_{η} to be positive definite diagonal matrices and positive constants α_{η} and κ_{η} satisfying the condition $\alpha_{\eta} \geq \kappa_{\eta} \|W\|^2 \frac{\epsilon}{4}$. Then, for all initial conditions starting as some compact set, the solutions $e_{\eta}(t)$, $\dot{e}_{\eta}(t)$, and $\tilde{U}_{\eta}(t)$ of the overall closed-loop system in (23), (28), (29), and (31) converge to zero as time goes to infinity, i.e., $e_{\eta}(t)$, $\dot{e}_{\eta}(t)$, $\tilde{U}_{\eta}(t) \rightarrow 0$ while $t \rightarrow \infty$. Furthermore, the state variable $\xi_{\eta}(t)$ and the output weight matrix estimation error $\tilde{W}_{\eta}(t)$ remain bounded for all time t > 0.

The parameters of the QBall2 quadrotor used in the experimental tests are listed in Fig 3. During the implementation, the mass of the quadrotor was estimated to be 70% of its nominal value.

QBall	2	quadrotor	parameters.
-------	---	-----------	-------------

Parameter	Description	Value	Units
g	Gravitational acceleration constant	9.81	m/s ²
m	Quadrotor mass	1.79	kg
I_{xx}	Inertia moment with respect to the axis x	0.03	kg m ²
I_{yy}	Inertia moment with respect to the axis y	0.03	kg m ²
\vec{I}_{zz}	Inertia moment with respect to the axis z	0.04	kg m ²
$D_p(\eta)$	Aerodynamic drag coefficient matrix	diag{0.002, 0.002, 0.004}	kg/s
$D_{\eta}(\eta)$	Aerodynamic damping coefficient matrix	diag{0.002, 0.002, 0.004}	kg m ² /s

Figure: Qball2 quarotor paramters

The proposed controller will be referred to as DTLANNC (Double Two-Loop Adaptive Neural Network-Based Controller). It is compared with model base controller (TLMBC), and adaptive neural network controller (NNSMC). The DTLANNC gains were determined through a trial and error process.

The trajectory tracking task was evaluated using a tracking Lemniscate path. The desired signals for the path were defined as follows:

$$x_d(t) = 0.5 \sin(2\pi \cdot 4t) \text{ [m]},$$
 $y_d(t) = \cos(2\pi \cdot 8t) \text{ [m]},$ $z_d(t) = \begin{cases} 1 - 0.7e^{-0.1t^3} \text{ [m]}, & \text{if } t \leq 5\\ 1 \text{ [m]}, & \text{if } t > 5 \end{cases}$ $\psi_d(t) = 0.0 \text{ [°]}$

It is important to note that the TLMBC, NNSMC, and DTLANNC controllers were implemented with an estimated mass value of $\hat{m}=1.253\,[\mathrm{kg}]$, which corresponds to 70% of the nominal mass of the quadrotor mentioned in 3. The mass value is critical for takeoff and hovering, as it directly affects the thrust generated by the quadrotor's actuators.

20 / 30

Figure: The paths traced by the quadrotor during the experimental tests, implementing the TLMBC, NNSMC, and DTLANNC schemes while tracking the trajectory

Figure: The paths traced by the quadrotor during the experimental tests, implementing the TLMBC, NNSMC, and DTLANNC schemes while tracking the trajectory

Figure: The time evolution of the position vector $p(t) = [x(t), y(t), z(t)]^T$ and the yaw angle $\psi(t)$ by implementing the TLMBC, NNSMC, and DTLANNC schemes in real-time experiments for performing the trajectory tracking task

Figure: The time evolution of the position vector $p(t) = [x(t), y(t), z(t)]^T$ and the yaw angle $\psi(t)$ by implementing the TLMBC, NNSMC, and DTLANNC Toan, Nguyen Nhu (HUST) Quadrotor Nonlinear control 24/30

Figure: The time evolution of the position error $e_p(t) = [e_x(t) \ e_y(t) \ e_z(t)]^T$ by implementing the TLMBC, NNSMC, and DTLANNC schemes in real-time experiments for performing the trajectory tracking task

Figure: The time evolution of the position error $e_p(t) = [e_x(t) \ e_y(t) \ e_z(t)]^T$ by implementing the TLMBC, NNSMC, and DTLANNC schemes in real-time

26 / 30

Figure: The time evolution of the control actions F(t) and $\tau(t) = [\tau_{\phi}(t) \ \tau_{\theta}(t) \ \tau_{\psi}(t)]^T$ computed by the TLMBC, NNSMC, and DTLANNC schemes in real-time experiments performing the trajectory tracking task

◆ロト ◆卸 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

RMS values of position and attitude errors $e_p(t)$ and $e_{\eta}(t)$ obtained by implementing the TLMBC, NNSMC and DTLANNC schemes during the trajectory tracking task in the experimental tests.

Signal	TLMBC	NNSMC	P _{imp} %	DTLANNC	P _{imp} %
e _x [m]	0.0842	0.0731	13.18	0.0448	46.79
e_v [m]	0.0687	0.0580	15.57	0.0216	68.56
e_z [m]	0.0282	0.0342	-21.28	0.0238	15.60
eo [°]	1.4972	1.2835	14.27	1.1505	23.16
e _θ [°]	1.2705	1.3375	-5.27	1.1638	8.40
e _ψ [°]	0.3655	0.7915	-116.55	0.2834	22.46

Figure: The Root Mean Square (RMS) values of the position error $e_p(t)$ and attitude error $e_\eta(t) = [e_\phi(t) \ e_\theta(t) \ e_\psi(t)]^T$ obtained by implementing the TLMBC, NNSMC, and DTLANNC schemes during the trajectory tracking task.

• The relative percentage improvement is computed as $P_{\rm imp}(\zeta) = \frac{{\rm RMS}({\rm TLMBC}) - {\rm RMS}(\zeta)}{{\rm RMS}({\rm TLMBC})} \times 100\%, \ {\rm where} \ \zeta \ {\rm represents} \ {\rm the} \ {\rm RMS} \ {\rm values} \ {\rm obtained} \ {\rm with} \ {\rm the} \ {\rm NNSMC} \ {\rm or} \ {\rm the} \ {\rm DTLANNC} \ {\rm schemes} \ {\rm as} \ {\rm corresponds}.$

Conclusion

Advantages

- Adaptability: The controller incorporates adaptive neural networks, allowing it to adapt to uncertain and varying quadrotor dynamics and disturbances.
- Trajectory tracking accuracy: The experimental results demonstrate that the proposed controller achieves accurate trajectory tracking in comparision with Model based control method and Adaptive neural network controller.
- Robustness to parameter uncertainties: The controller shows robustness to parametric uncertainties, as it performs well even when the mass estimate of the quadrotor is set to 70% of the nominal value.
- Fast convergence: The proposed scheme exhibits fast convergence of position and attitude errors, leading to quick stabilization of the quadrotor.

Conclusion

Disadvantages

- Computational complexity: The utilization of adaptive neural networks in the controller adds computational complexity to the control system.
- Training and tuning requirements: The design of the adaptive neural networks involves a trial-and-error process to determine the appropriate network gains and parameters.
- Lack of interpretability: Neural networks are often considered as black-box models, meaning that the inner workings of the network are not easily interpretable.
- Requirement of smooth reference path: The controller's performance relies on having a smooth reference trajectory for the quadrotor to track (first and second derivatives of reference path). Sudden or highly dynamic changes in the reference path may deteriorate the controller's performance.