$$\begin{array}{l} y = x\beta + \epsilon \\ \hat{\beta} = (X^{'}X)^{-1}X^{'}y \\ \hat{y} = X\hat{\beta} = Hy \\ H = X(X^{'}X)^{-1}X^{'} \quad Hy = \hat{y} \\ M = C(X^{'}X)^{-1}C^{'} \\ \hat{\epsilon} = y - \hat{y} = y - Hy = (1 - Hy) \\ \hat{\theta} = C\hat{\beta} \\ \hat{V}ar(\hat{\beta}) = \hat{\sigma^{2}}(X^{'}X)^{-1} \\ \hat{V}ar(\hat{\theta}) = \hat{\sigma^{2}}(C(X^{'}X)^{-1}C^{'}) \\ SSH = (\hat{\theta} - \theta_{0})^{'}M^{-1}(\hat{\theta} - \theta_{0}) \\ SSE = (y - \hat{y})^{'}(y - \hat{y}) = y^{'}[I - H]y = \epsilon^{\prime}\epsilon \\ \text{Use MSE for } \hat{\sigma^{2}}, \text{ use diag} \\ se = \sqrt{\hat{Var}} \quad MS* = SS*/DF* \\ F = MST/MSE \quad df_{total} = n - 1 \\ \text{t-value} = \hat{\beta}/se \quad \text{p-value} = F(df_{model}, df_{error}) \\ 95\% \text{ CI } \hat{\theta} \pm 1.96\sqrt{MSE(M)} \\ 95\% \text{ PI } \hat{y_h} \pm t(\alpha/2, n - r)se(\hat{y_h}) \\ F_{obs} = \frac{(\hat{\theta} - \theta_{0})^{'}M^{-1}(\hat{\theta} - \theta_{0})/a}{\hat{\sigma^{2}}} \quad a = rank(C) \\ \mathbf{Matrix} \\ (X_{n \times p})^{'}(X_{n \times p})\hat{\beta} = (X_{n \times p})^{'}y_{n \times 1} \\ (AB)^{'} = B^{'}A^{'} \quad A^{-1}A = AA^{-1} = I \\ (AB)^{-1} = B^{-1}A^{-1} \quad (A^{'})^{-1} = (A^{-1})^{'} \\ |A^{-1}| = \frac{1}{|A|} \quad \frac{1}{|A|} \begin{vmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{vmatrix} \end{array}$$

 $\det(\text{inv}) = \text{inv}(\det)$ evector $Ax = \lambda x$ e val= λ $\begin{array}{l} \text{char eqn } (|A-\lambda I|=0) = \det \left| \begin{smallmatrix} a_{11}-\lambda & a_{12} \\ a_{21} & a_{22}-\lambda \end{smallmatrix} \right. \\ \text{full rank} \Leftrightarrow \text{no } \lambda = 0 \quad \det = 0 \Leftrightarrow \geq 1 \ \lambda = 0 \end{array}$

posdef \Leftrightarrow diagval> 0, det all UL sq submat > 0 semiposdef same but > 0

cov mats are nonneg def

X full rank for $\hat{\beta}$ unique

posdef if $min(\lambda_i) > 0$

E(rand mat)=mat of E

$$Cov(Y) = E[(Y - \mu)(Y - \mu)'] = \Sigma$$

$$\begin{vmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{n1} & \cdots & \cdots & \sigma_{nn} \end{vmatrix}$$

where $\sigma_{ij} = E[(Y_i - \mu_i)(Y_j - \mu_j)']$ $Cov(AY + b) = ACov(Y)A' = A\Sigma A'$

 $Cov(W, Y) = E[(W - \gamma)(Y - \mu)']$

 $MVN \Sigma pos def$

1) lin trans of mvn yields mvn.

If $X \sim N_n(\mu, \Sigma)$ and Y = AX + b

with $A_{r\times n}$ matrix of constants and $b_{r\times 1}$ vector of constants.

Then $Y \sim N_r(A\mu + b, A\Sigma A')$

2) **lin combin** of ind mvns is mvn

 X_1, \ldots, X_k iid $X_i \sim N_n(\mu_i, \Sigma_i)$

Let $Y = a_1 X_1 + \cdots + a_k X_k$

Then $Y \sim N(\mu^*, \Sigma^*)$ where $\mu^* = \sum_{i=1}^k a_i \mu_i$ and $\Sigma^* = \sum_{i=1}^k a_i^2 \Sigma_i$

3) Marginals of mvn are mvn

If $X \sim N_n(\mu, \Sigma)$

Partition: $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ where X_1 is $r \times 1$ and X_2

 $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ where μ_1 is $r \times 1$ and μ_2 is $(n-r) \times 1$ $\Sigma = \begin{vmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{vmatrix}$

where Σ_{11} is $r \times r$, Σ_{21} is $(n-r) \times r$ and Σ_{22} is $(n-r) \times (n-r)$

Marginals: $X_1 \sim N_r(\mu_1, \Sigma_{11})$

 $X_2 \sim N_{(n-r)}(\mu_2, \Sigma_{22})$

4) Conditionals of mvn are mvn. Suppose $X \sim N_n(\mu, \Sigma)$

Partition same way

 $X_1|X_2 = x_2 \sim N_r(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma^*)$

where $\Sigma^* = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}^{-1}$

Estimable, Testable

If X is full rank, any (nonzero) C gives estimable $\boldsymbol{\theta}$

rank(X) = rank(X'X) = number of estimableparameters, and for $\hat{\theta} = C\beta$, check estimability.

If X full rank then θ is testable \Leftrightarrow C is full rank a or M is full rank a (because any θ is estimable)

T-tests

One-sided Test (only for scalar hypothesis) $F_{obs}(1, n-r) = tval^2(n-r)$ $H_A: \theta < \theta_0 \text{ Uses } \alpha H_A: \theta > \theta_0 \text{ uses } (1-\alpha)$ Two-sided $H_A: \theta \neq \theta_0$ uses $\alpha/2$ and $(1-\alpha/2)$ In all cases reject H_0 if |test stat| > |crit value|

F-tests

Reject H_0 if $f_{obs} > f_{crit}$ Two-sided uses α crit value One-sided $\theta < \theta_0$ uses 2α and requires appropriate sign of difference All linear model GLH tests correspond to

comparing two models, the "full" model, $y = X\beta + \epsilon$ and a reduced model defined by

constraints For a single coefficient β_i we can test

 $H_0: \beta_j = 0$ if β_j is estimable

$$t = \frac{\hat{\beta}_j - 0}{\sqrt{var(\hat{\beta}_j)}}$$

Obtain estimate $\hat{\sigma}^2 = MSE$

if know σ^2 then $t \sim N(0,1)$

if estimate σ^2 from data then $t \sim t_{dfE}$

Sum of Squares Decomp

 $USS(total) = y'y = \sum_{i=1}^{n} y_i^2$ $USS(model) = y'X(X'X)^{-1}X'y$ $= y' H y = \sum_{i=1}^{n} \hat{y}_i^2$

USS(total) = USS(model) + SSECSS(total) = USS(total) - SSI

 $=\sum_{i=1}^{n}(y_i-\bar{y})^2$ CSS(total) = CSS(model) + SSE

R squared,Corr $R_{adj}^2 = 1 - \frac{SSE/(n-r)}{CSS(Total)/(n-1)}$

adjusted for the df. It will only increase on adding a variable to the model if the variable reduces the mean square for error

 $\rho = Corr(X, Y) = \frac{Cov(x, y)}{\sqrt{var(x)var(y)}}$ estimate ρ using pearsons coef of corr $\sum_{i=1}^{n} (X_i - \bar{X}) Y_i - \bar{Y}$

 $\sqrt{(\sum_{i=1}^{n}(X_i-\bar{X})^2)(\sum_{i=1}^{n}(Y_i-\bar{Y})^2)}$ $(X'X)^{-1} = \begin{vmatrix} .308 & -.06 & -.017 \\ -.06 & -.025 & -.004 \\ -.017 & -.004 & .006 \end{vmatrix} X'y = \begin{vmatrix} 405 \\ 1402 \\ 2350 \end{vmatrix}$

Source DF SS MS Fval P > F
 Model
 2
 79
 239.5
 349.6
 < .001</th>

 Error
 97
 11
 .113

 Ctotal 99 90

param	est	se	tval	p > t
x0	.67	.187	3.58	.009
x1	1.35	.053	25.47	< .001
x2	1.61	.026	61.81	< .001

2) c) Test $H_0: \beta_1 = 1$

t-test= $\frac{\hat{\beta}_1-1}{se(\hat{\beta}_1)}=6.6 \sim t_{97} \ 6.6 > 1.96 \text{ reject } H_0$

d) Test $H_0: \beta_1 = \beta_2 = 1$ $B_1 = 1$ $B_2 = 1$ $C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \theta_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} H_0 : C\theta = \theta_0 \ \hat{\theta} = \begin{bmatrix} 1.35 \\ 1.61 \end{bmatrix}$ $calc \ M \quad calc \ M^{-1}$ $F-test = \frac{43.83}{113} = 387.8 \sim F_{2,97}$ $e) 95\% \ CI \ of \ \beta_1 + \beta_2 \ (\theta)$

 $\hat{\theta} = \hat{\beta}_1 + \hat{\beta}_2 = 2.96 \ C = [0, 1, 1]$

 $se(\hat{\theta}) = \hat{\sigma}_{\hat{\theta}}^2 = \sqrt{.0026}$ $2.96 \pm 1.96\sqrt{.0026} = [2.86, 3.06]$

f) Transform x_1, x_2 to $z_1 = x_1 - 2, z_2 = x_2 - 4$ Refit with $y^* = \beta_0^* + \beta_1^* z_1 + \beta_2^* z_2$ $= (\beta_0^* - 2\beta_1^* - 4\beta_2^*) + \bar{\beta}_1^* x_1 + \bar{\beta}_2^* x_2$ $\beta_0^* = \beta_0^* + 2\beta_1^* + 4\beta_2^* = 9.8 \ C = [1, 2, 4]$

 $\sigma^2 = \hat{\sigma}^2 C(X'X)^{-1}C^{-1} = .085 \ t = 115.3$

3) f) is $H_0: \beta_0 - \beta_2 = 0$ and $\beta_1 + 2\beta_2 = 2$ and $2\beta_0 + \beta_1 = 2$ testable? Reduce to ETH?

 $y = \begin{bmatrix} 0 & 1 & 2 & \text{testable.} & \text{Reduce to } BTM \\ y = \begin{bmatrix} 0 & 1 \\ 3 & X = \begin{bmatrix} 1 & 6 & 11 \\ 1 & 7 & 13 \\ 6 & 1 & 8 & 15 \\ 1 & 9 & 17 \end{bmatrix} & \beta = \begin{bmatrix} \beta_1 \\ \beta_1 \\ \beta_2 \end{bmatrix} \\ C = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{bmatrix} \text{ reduces } \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \text{ 2pivots } \theta_0 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} \\ \text{not FR, not testable, reduces to } C^* \text{ testable}$

 $C^* = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{vmatrix} \theta_0^* = \begin{vmatrix} 0 \\ 2 \end{vmatrix} H_0 : \begin{vmatrix} \beta_0 - \beta_2 = 0 \\ \beta_1 + 2\beta_2 = 2 \end{vmatrix}$ **1) a)** $x = \begin{vmatrix} x_1 \\ x_3 \end{vmatrix} \sim N(0, \Sigma) \Sigma = \begin{vmatrix} 1 & 0 & 6 \\ 0 & 1 & .5 \\ .6 & .5 & 1 \end{vmatrix}$

 $2x_1 + x_2 - x_3 \sim N(c\mu, c\Sigma c') = N(0, 2.6)$ **b)** $Cov(x_1 - x_2, 2x_2 + x_3) = c_1\Sigma c_2' = -1.9$

 $c_1 = |1 - 10| c_2 = |021|$

Definition Sample average of x Sample average of y SXX $\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (x_i - \overline{x}) x_i$ Sum of squares for the xs Sample variance of the xs SXX/(n-1) $\sqrt{\text{SXX}/(n-1)}$ Sample standard deviation of the $\sum_{i} (y_i - \overline{y})^2 = \sum_{i} (y_i - \overline{y}) y_i$ Sum of squares for the ys SYY/(n-1)Sample variance of the vs Sample standard deviation of the $\sum_{i} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i} (x_i - \overline{x})y_i$ Sum of cross-products $s_{xy}/(SD_xSD_y)$

"In each equation, the symbol Σ means to add over all n values or pairs of values in the data

Source of Variation		ation	df	SS		MS		F_{obs}	
Intercept		1	SSI	SSI		SS	SSI/MSE		
Model(uncorrected)		q	USS(model)	USSM/q		(USS	(USSM/q)/MSE		
Model(corrected)		q-1	CSS(model)				(CSSM/q-1)/MSE		
Error(residual)			N-q	SSE	SSE/(N-q)=MSE		E	-	
Total(uncorrected)		N	USS(total)	-			-		
Total(correcte	ed)	N-1	CSS(total)		-		-	-
Paramet	er F	Estimat	e	SE	t-v	alue	p-value		
Intercep	t	$\hat{\beta}_1$	√.	$\hat{\sigma}^{2}\{(X'X)_{1,1}^{-1}\}$	Estim	ate/SE	Р		
x_1		$\hat{\beta}_2$	- √·	$\hat{\sigma}^{2}\{(X'X)_{2,2}^{-1}\}$	Estim	ate/SE	P		
x_2		$\hat{\beta}_3$	- √·	$\hat{\sigma}^{2}\{(X'X)_{3,3}^{-1}\}$	Estim	ate/SE	p		
Source	DF	Typ	e I SS	MS	3	F-	-value	p-value	
x1	1	Тур	e I SS	T1SS/df =	= T1SS	MS/M	SE(model)	p-value	
x2	1		e I SS	T1SS/df =			SE(model)	p-value	
x3	1	Typ	e I SS	T1SS/df =	= T1SS	MS/M	SE(model)	p-value	
		$=\Sigma_{i=1}^{q-}$	$T1SS_s$	r _i					
Source			Formula		Alternate				
CSS(M	odel)	$\Sigma_{i=1}^{N}$	$\hat{y}_i^2 - N$	$I\bar{y}^2 = \sum_{i=1}^{N} (\hat{y}_i)$ $I\bar{y}^2 = \sum_{i=1}^{N} (y_i)$	$-\bar{y}^2$		USS(Moo	lel) - SSI	
CSS(T	otal)	Σ_{i}^{N}	$y_i^2 - N$	$I\bar{y}^2 = \Sigma_{i=1}^N (y_i)$	$-\bar{y}^2$	USS(Tot	al) - SSI &	CSS(Model)	+ SSI