WORK BOOK (LOG) REF CODE MLJSIRLIVE

ASSIGMENT-1

1.	-	ositive real numb log _b a + log _a b is		nity, then the
		[]	
	A) 0 these	B) 1	C) 2	D) none of
2.	If $\log_3 x + \log_9 x^2$	+ $\log_{27} \mathbf{x}^3 = 9$, the	en x equals to	
	A) 3 these	B) 9	C) 27	D) none of
3.	If a, b, c are	positive real b	numbers, then a ¹⁰	ogb - logc . blogc -
	A) 0 these	B) 1	C) - 1	D) none of
4.	If a, b, c are	e positive real	numbers, then	the value of
	$(ab)^{\log\left(\frac{a}{b}\right)}.(bc)^{\log\left(\frac{b}{c}\right)}.(c$	$a)^{\log\left(rac{c}{a} ight)}$ is		
			[]
	these	B) -1	C) 1	D) none of
5.	If $x = \log_{2a} a$, y	= $log_{3a}^2 2a$ and z =	\log_{4a} 3a, then xyz	+ 1 =
	A) 2yz these	В) 2ху	C) 2zx	D) none of
6.	If a, b, c are posi	itive real numbers,	then $\frac{1}{\log_{ab}abc} + \frac{1}{\log}$	$\frac{1}{\log_{ca}abc} + \frac{1}{\log_{ca}abc}$
	=	[1	
	A) 0 these	B) 1	C) 2	D) none of
7.	If a, b, c	are positi	ve real num	bers, then
	1 _ 1	__ 1		
	$\frac{1}{\log_a bc + 1} + \frac{1}{\log_b ca + 1}$	$\frac{1}{1} + \frac{1}{\log_{c} ab + 1} =$	[]
	A) 0	B) 1	C) 2	D) -1
8.	If $y = a^{\frac{1}{1 - \log_a x}}$, $z = a^{\frac{1}{1 - \log_a x}}$	$\frac{1}{1-\log_a y}$ and $x = a^k$, t	then k =	
	[1		

$$A) \qquad \frac{1}{a^{1-\log_a z}}$$

$$\text{A)} \quad \frac{1}{a^{1-\log_a z}} \qquad \qquad \text{B)} \quad \frac{1}{1-\log_a z} \qquad \qquad \text{C)} \quad \frac{1}{1+\log_z a} \qquad \qquad \text{D)} \quad \frac{1}{1-\log_z a}$$

C)
$$\frac{1}{1 + \log_a a}$$

D)
$$\frac{1}{1 - \log_2 a}$$

9. If a = log2, b = log 3, c = log 7 and
$$6^x = 7^{x+4}$$
, then $x = [$

A)
$$\frac{4b}{c+a-b}$$
 B) $\frac{4c}{a+b-c}$ C) $\frac{4b}{c-a-b}$ D) $\frac{4a}{a+b-c}$

B)
$$\frac{4c}{a+b-c}$$

C)
$$\frac{4b}{c-a-b}$$

D)
$$\frac{4a}{a+b-c}$$

10. If
$$a = 1 + log_x yz$$
, $b = 1 + log_y zx$, $c = 1 + log_z xy$, then $ab + bc + ca$ = [

D)
$$a^2 + b^2 + c^2$$

1. If
$$\frac{\log x}{a^2 + ab + b^2} = \frac{\log y}{b^2 + bc + c^2} = \frac{\log z}{c^2 + ca + a^2}$$
, then x^{a-b} . y^{b-c} . $z^{c-a} = 1$

12. If
$$a^2 + b^2 - c^2 = 0$$
, then $\frac{1}{\log_{c+a} b} + \frac{1}{\log_{c-a} b} =$

$$C) - 1$$

D)
$$-2$$

13. If
$$\mathbf{x} = \log_{0.1} 0.001$$
, $\mathbf{y} = \log_9 81$, then $\sqrt{\mathbf{x} - 2\sqrt{\mathbf{y}}} =$ [

A)
$$3-2\sqrt{2}$$
 B) $\sqrt{3}-2$ C) $\sqrt{2}-1$ D) $\sqrt{2}-2$

B)
$$\sqrt{3}-2$$

C)
$$\sqrt{2}-1$$

D)
$$\sqrt{2} - 2$$

14. If
$$5^x = (0.5)^y = 1000$$
, then $\frac{1}{x} - \frac{1}{y} =$

- B) $\frac{1}{2}$ C) $\frac{1}{3}$
- D) $\frac{1}{4}$

15. If
$$x = 27$$
 and $y = log_3 4$, then x^y equals [

- A) 64
- B) 16
- C) $\frac{3}{7}$
- D) $\frac{1}{16}$

16. If log₈ 128 = [

A) $\frac{7}{3}$ B) 16 C) $\frac{3}{7}$ D) $\frac{1}{16}$

17. If $\frac{\log a}{2} = \frac{\log b}{3} = \frac{\log c}{5}$, then bc =

A) a B) a^2 C) a^3 D) a^4

18. If $4^{x} + 2^{2x-1} = 3^{x+\frac{1}{2}} + 3^{x-\frac{1}{2}}$, then x = [

A) $\frac{1}{2}$ B) $\frac{3}{2}$ C) $\frac{5}{2}$ D) 1

A) $\frac{3b^2}{2b-1}$ B) $\frac{3b}{2b-1}$ C) $\frac{b^2}{2b+1}$ D) $\frac{3b^2}{2b+1}$

20. If $\frac{\log x}{2a+3b-5c} = \frac{\log y}{2b+3c-5a} = \frac{\log z}{2c+3a-5b}$, then xyz = 1

A) 2 B) 1 C) 0 D) -1

21. If $\log x = \frac{\log y}{2} = \frac{\log z}{5}$, then $x^4y^3z^{-2} =$

A) 2 B) 10 C) 1 D) 0

2. If
$$\frac{\log 3}{x-y} = \frac{\log 5}{y-z} = \frac{\log 7}{z-x}$$
, then $3^{x+y} 5^{y+z} 7^{z+x} =$ [

- A) 0 B) 2 C) 1 D) none of these

23. If
$$\frac{\log_2 a}{2} = \frac{\log_3 b}{3} = \frac{\log_4 c}{4}$$
 and $a^{1/2}$ $b^{1/3}$ $c^{1/4} = 24$, then [

- A) a = 24 B) b = 81 C) c = 64 D) c = 256

24.
$$\frac{\log_2 a}{3} = \frac{\log_2 b}{4} = \frac{\log_2 c}{5\lambda}$$
 and $a^{-3} b^{-4} c = 1$, then $\lambda = 1$

- B) 4 C) 5 D) -5

25. If a =
$$\log_{24}12$$
, b = $\log_{36}24$ and c = $\log_{48}36$, then abc = [

- A) 2bc 1
- B) 2bc + 1 C) bc 1 D) bc + 1

- A) $\log b$ B) $\log \left(\frac{b}{2}\right)$ C) $\log (2b)$ D) 2 $\log b$

27. If
$$\frac{\log_a x}{\log_{ab} x} = 4 + k + \log_a b$$
, then $k =$

- A) 0
- B) 1
- C) -2

28. If
$$\frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b}$$
, then $a^a b^b c^c =$

A) 0

- B) 1
- C) abc
- D) none of these

9. If $x = log_abc$, $y = log_aca$, $z = log_cab$, then
[

- A) $\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = 1$
- B) $\frac{1}{x-1} + \frac{1}{y-1} + \frac{1}{z-1} = 1$
- C) xyz = x + y + z = 1

D) xyz = 1

30. log₂7 is [

A) an integer

B) a rational number

- C) an irrational number
- D) a prime number

Assigment -2

1. The value of $2^{\log_3 5} - 5^{\log_3 2}$ is [

- A) 2
- B) -1
- C) 1
- D) 0

If a, b, c are the sides of a right angled triangle in which c > a, c

- b
$$\neq$$
 1, c + b \neq 1, then the value of
$$\frac{\log_{c+b} a + \log_{c-b} a}{\log_{c+b} a \cdot \log_{c-b} a} \text{ is}$$

- A) 1
- B) 2
- C) $\frac{1}{2}$
- D) none of these

3.	If log ₃ a. log _a x =	= 4, then x is equal	ual t	:0			
	A) 64	B) 81	C)	a^2	D)	none of	these
4.	If $\log_4 5 = x$ and]	$\log_{5}6 = y$, then	log₃2	is equal to			[
	$A) \qquad \frac{1}{2x+1}$	$B) \qquad \frac{1}{2y+1}$	C)	2xy+1	D)	$\frac{1}{2xy-1}$	
5.	$ f a^2 + 4b^2 = 12a$	ab, then log(a + :	2b) =	=			
	A) $\frac{1}{2}(\log a + \log b -$	-2)			В)
	$\log\frac{a}{2} + \log\frac{b}{2} + \log 2$						
	$C) \frac{1}{2} (\log a + \log b +$	4 log 2)	D)	$\frac{1}{2}(\log a - \log b + 4)$	4 log	2)	
6.	The value of 3	$\log \frac{81}{80} + 5 \log \frac{25}{24} + 7$	$\log \frac{16}{15}$	j j			[
	-	B) log 3	C)	1	D)	0	
7.		b : log c = (b -					
	A) $a^{b} \cdot b^{c} \cdot c^{a} =$	1	B)	$a^a b^b c^c = 1$			
	C) $\sqrt[a]{a}$. $\sqrt[b]{b}$. $\sqrt[c]{c} = 1$		D)	none of these			
8.	The solution of	$5^{\log_a x} + 5 x^{\log_a 5} = 3 (a > $	· (0 ·	İs			[
	A) $2^{\log_a 5}$			$2^{-\log_5 a}$	D)	$2^{\log_5 a}$	
9.	The value of $\frac{10}{2}$	$\frac{g49\sqrt{7} + \log 25\sqrt{5} - \log 17.5}{\log 17.5}$	$g4\sqrt{2}$	is			[
	1						
	A) 5	В) 2	C)	$\frac{5}{2}$	D)	$\frac{3}{2}$	
10.	The value of $5^{\sqrt{\log n}}$	$^{\overline{g_{5}}^{7}}-7^{\sqrt{log_{7}^{5}}}$ is					[
	A) log 2	в) 1	C)	0	D)	none of	these

A)

B) 9

1. The value of
$$\frac{3 + \log 343}{2 + \frac{1}{2} \log \left(\frac{49}{4}\right) + \frac{1}{3} \log \left(\frac{1}{125}\right)}$$
 is [

A) 3 B) 2 C) 1 D) $\frac{3}{2}$

12. If $\log (a - b) = \log a - \log b$, then the value of 'a' in terms of b is [

A) $\frac{b^2}{b-1}$ B) $\frac{b^2}{b+1}$ C) $\frac{b+1}{b^2}$ D) $\frac{b-1}{b^2}$

13. If $9a^2 + 4b^2 = 18ab$, then $\log (3a + 2b) = \left(\frac{1}{1}\right)$ A) $\log 5 + \log 3 + \log a + \log 5b$ B) $\log 5 + \log 3 + \log 3a + \log b$ C) $\log 5 + \log 3 + \log 3b + \log 5b$ D) none of these

14. The value of $\log_5 \left(1 + \frac{1}{5}\right) + \log_5 \left(1 + \frac{1}{6}\right) + \log_5 \left(1 + \frac{1}{7}\right) + \dots + \log_5 \left(1 + \frac{1}{624}\right)$ is [

A) 5 B) 4 C) 3 D) 2

15. If $\log(x - y) - \log 5 - \frac{1}{2} \log x - \frac{1}{2} \log y = 0$, then $\frac{x}{y} + \frac{y}{x} = \frac{1}{1}$

A) $\frac{1}{2}$ B) $\frac{3}{2}$ C) 3 D) 2

16. If $2^{\log_{10} 3 \sqrt{5}} = 3^{\log_{10} 2}$, then $k = \frac{1}{1}$

A) $\frac{1}{2}$ B) $\frac{3}{2}$ C) 3 D) 2

17. If $\log_{10} 2 = 0.3010$, then $\log_5 64 = \frac{1}{1}$

A) $\frac{602}{233}$ B) $\frac{233}{602}$ C) $\frac{202}{633}$ D) $\frac{633}{202}$

18. If $4^{\log_{10} 3} + 9^{\log_{10} 4} = 10^{\log_{10} 8}$, then $x = \frac{1}{1}$

C) 83

D) 10

9. The value of $3^{\frac{4}{\log_4 9}} + 27^{\frac{1}{\log_{36} 9}} + 81^{\frac{1}{\log_5 3}}$ is

- **J** A) 890 B) 860

- C) 857
- D) none of these
- 20. The value of $\log_{\sqrt{2}} \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}$ is

[

- A) $\frac{15}{16}$ B) $\frac{7}{16}$ C) $\frac{15}{8}$ D) $\frac{31}{32}$

21. The value of $\frac{\log_a\left(\log_b a\right)}{\log_b\left(\log_a b\right)}$ is

[

- A) $\log_b a$ B) $\log_a b$ C) $-\log_a b$ D) $-\log_b a$

22. If $\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$, then x equals to

[

- A) 8 B) 4 C) 2

 23. If $\mathbf{a}^{x} = \mathbf{b}^{y} = \mathbf{c}^{z} = \mathbf{d}^{w}$, then $\log_{\mathbf{a}}(\mathbf{b}\mathbf{c}\mathbf{d})$ equals to

[

A) $\frac{1}{x} \left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w} \right)$

 $B) \quad x \left(\frac{1}{v} + \frac{1}{7} + \frac{1}{w} \right)$

C) $\frac{y+z+w}{x}$

- D) none of these
- 24. If $1.5^a = 0.15^b = 100$, then $\frac{1}{a} \frac{1}{b}$ equals to

- A) $\frac{1}{2}$ B) 1

- C) 0 D) $\frac{2}{3}$

- C) $a = \frac{32}{3}$, $b = \frac{27}{8}$, $c = \frac{2}{3}$
- D) $a = \frac{2}{3}$, $b = \frac{32}{3}$, $c = \frac{27}{8}$

5. If
$$\log_2 a + \log_4 b + \log_4 c = 2$$
, $\log_9 a + \log_3 b + \log_9 c = 2$, $\log_{16} a + \log_{16} b + \log_4 c = 2$, then

A)
$$a = \frac{2}{3}$$
, $b = \frac{27}{8}$, $c = \frac{32}{3}$

B)
$$a = \frac{27}{8}$$
, $b = \frac{2}{3}$, $c = \frac{32}{3}$

C)
$$a = \frac{32}{3}$$
, $b = \frac{27}{8}$, $c = \frac{2}{3}$

D)
$$a = \frac{2}{3}$$
, $b = \frac{32}{3}$, $c = \frac{27}{8}$

[

26. If
$$\log_{y} x = \log_{z} y = \log_{x} z$$
, then

B)
$$x > y \ge z$$

A)
$$x < y < z$$

C) $x < y \le z$

D)
$$x = y = z$$

SOLUTIONS

1. We have,
$$\left|\log_b a + \log_a b\right| = \left|\log_b a + \frac{1}{\log_b a}\right| = \left|x + \frac{1}{x}\right|$$
, where $x = \log_b a$.

We know that $x + \frac{1}{x} \ge 2$ for all x > 0 and, $x + \frac{1}{x} \le -2$ for all x < 0.

$$|x + \frac{1}{x}| \ge 2 \text{ for all } x \ne 0$$

$$\left|\log_b a + \log_a b\right| \ge 2$$

Hence, the least value of $|\log_b a + \log_a b|$ is 2.

2. We have,
$$\log_3 x + \log_3 x^2 + \log_{27} x^3 = 9$$

$$\Rightarrow \log_3 x + \log_{3^2} x^2 + \log_{3^3} x^3 = 9$$

$$\Rightarrow \log_3 x + \frac{2}{2} \log_3 x + \frac{3}{3} \log_3 x = 9$$

$$\Rightarrow$$
 3 log₃x = 9 \Rightarrow log₃x = 3 \Rightarrow x = 3³ = 27

3. We have,
$$log\{ a^{logb - logc} \cdot b^{logc - loga} \cdot c^{loga - logb} \}$$

$$\therefore a^{\log b - \log c}. b^{\log c - \log a}. c^{\log a - \log b} = 1$$

4. We have,
$$\log \left\{ \left(a\,b\right)^{\log\left(\frac{a}{b}\right)}.\left(b\,c\right)^{\log\left(\frac{b}{c}\right)}.\left(c\,a\right)^{\log\left(\frac{c}{a}\right)} \right\}$$

$$= \log\left(\frac{a}{b}\right)\log(ab) + \log\left(\frac{b}{c}\right)\log(bc) + \log\left(\frac{c}{a}\right)\log(ca)$$

=
$$(\log a - \log b) (\log a + \log b) + (\log b - \log c) (\log b + \log c) + (\log c - \log a) (\log c + \log a) = 0$$

$$\therefore \quad \left(a\,b\,\right)^{log\left(\frac{a}{b}\right)}.\left(b\,c\,\right)^{log\left(\frac{b}{c}\right)}.\left(c\,a\,\right)^{log\left(\frac{c}{a}\right)} = 1$$

. We have,
$$xyz + 1 = log_{2a}a.log_{3a}2a.log_{4a}3a + 1$$

$$= \log_{4a} a + 1 = \log_{4a} a + \log_{4a} 4a$$

$$= \log_{40} (2a)^2 = 2 \log_{40} 2a$$

$$= 2 \log_{3a} 2a. \log_{4a} 3a = 2yz.$$

6. We have,
$$\frac{1}{\log_{ab} abc} + \frac{1}{\log_{bc} abc} + \frac{1}{\log_{ca} abc}$$

$$= \log_{abc} ab + \log_{abc} bc + \log_{abc} ca$$

=
$$\log_{abc}$$
 (ab.bc.ca) = \log_{abc} (abc)² = $2\log_{abc}$ abc = 2.

7. We have,
$$\frac{1}{\log_a bc + 1} + \frac{1}{\log_b ca + 1} + \frac{1}{\log_a ab + 1}$$

$$= \frac{1}{\log_a b c + \log_a a} + \frac{1}{\log_b c a + \log_b b} + \frac{1}{\log_c a b + \log_c c}$$

$$= \frac{1}{\log_a abc} + \frac{1}{\log_b abc} + \frac{1}{\log_c abc}$$

=
$$\log_{abc}a + \log_{abc}b + \log_{abc}c = \log_{abc}abc = 1$$
.

8. We have,
$$v = a^{\frac{1}{1 - \log_a x}}$$
 and $z = a^{\frac{1}{1 - \log_a y}}$

$$\Rightarrow \log_a y = \frac{1}{1 - \log_a x} \text{ and } \log_a z = \frac{1}{1 - \log_a y}$$

$$\Rightarrow \log_a x = \frac{\log_a y - 1}{\log_a y} \text{ and } 1 - \log_a z = \frac{\log_a y}{\log_a y - 1}$$

$$\Rightarrow \log_a x = \frac{1}{1 - \log_a z} \Rightarrow k = \frac{1}{1 - \log_a z} \quad \left[Q \ x = a^k, \ Q \ \log_a x = k \right]$$

9. We have,
$$6^{x} = 7^{x+4}$$

$$\Rightarrow$$
 x log 6 = (x + 4) log 7

$$\Rightarrow$$
 x(log 2 + log 3) = (x + 4) log 7

$$\Rightarrow$$
 x(a + b) = (x + 4)c

$$\Rightarrow \quad x = \frac{4c}{a + b - c}$$

0. We have,
$$a = 1 + \log_x yz = \log_x x + \log_x yz = \log_x xyz$$

$$b = 1 + \log_y zx = \log_y y + \log_y zx = \log_y xyz$$
and, $c = 1 + \log_z xy = \log_z z + \log_z xy = \log_z xyz$

$$\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \log_{xyz} x + \log_{xyz} y + \log_{xyz} z = \log_{xyz} xyz = 1$$

$$\Rightarrow ab + bc + ca = abc.$$

1. We have,
$$\frac{\log x}{a^2 + ab + b^2} = \frac{\log y}{b^2 + bc + c^2} = \frac{\log z}{c^2 + ca + a^2} = \lambda(say)$$

$$\Rightarrow \frac{(a - b)\log x}{a^3 - b^3} = \frac{(b - c)\log y}{b^3 - c^3} = \frac{(c - a)\log z}{c^3 - a^3} = \lambda$$

$$\Rightarrow \frac{\log x^{a - b}}{a^3 - b^3} = \frac{\log y^{b - c}}{b^3 - c^3} = \frac{\log z^{c - a}}{c^3 - a^3} = \lambda$$

$$\Rightarrow \log x^{a - b} = \lambda (a^3 - b^3), \quad \log y^{b - c} = \lambda (b^3 - c^3), \quad \log z^{c - a} = \lambda (c^3 - a^3)$$

$$\Rightarrow \log (x^{a - b}, y^{b - c}, z^{c - a}) = 0.$$

$$\Rightarrow x^{a - b}, y^{b - c}, z^{c - a} = 1.$$

12. We have,
$$\frac{1}{\log_{c+a} b} + \frac{1}{\log_{c-a} b}$$

$$= \log_b (c + a) + \log_b (c - a) = \log_b (c^2 - a^2)$$

$$= \log_b b^2 \qquad [Q \quad c^2 - a^2 = b^2]$$

$$= 2 \log_b b = 2.$$

13. We have,
$$x = \log_{0.1} 0.001$$
 and $y = \log_9 81$

$$\Rightarrow x = \log_{0.1} (0.1)^3 \text{ and } y = \log_9 9^2$$

$$\Rightarrow x = 3 \text{ and } y = 2$$

$$\therefore \sqrt{x - 2\sqrt{y}} = \sqrt{3 - 2\sqrt{2}} = \sqrt{(\sqrt{2} - 1)^2} = \sqrt{2} - 1$$

14. We have,
$$5^{x} = (0.5)^{y} = 1000$$
.
 $\Rightarrow x = \log_{5} 1000 \text{ and } y = \log_{0.5} 1000$
 $\Rightarrow \frac{1}{x} - \frac{1}{y} = \log_{1000} 5 - \log_{1000} 0.5$

5. We have,
$$x = 27$$
 and $y = \log_3 4$

$$\therefore x^{y} = 27^{\log_3 4} = (3^{3})^{\log_3 4} = 3^{\log_3 4^{3}} = 4^{3} = 64$$

16. We have,
$$\log_8 128 = \log_{2^3} 2^7 = \frac{7}{3} \log_2 2 = \frac{7}{3}$$

17. We have,
$$\frac{\log a}{2} = \frac{\log b}{3} = \frac{\log c}{5} = \lambda (say)$$

$$\Rightarrow$$
 log a = 2λ , log b = 3λ , log c = 5λ

$$\Rightarrow$$
 $a = 10^{2\lambda}$, $b = 10^{3\lambda}$, $c = 10^{5\lambda}$ \Rightarrow $bc = 10^{8\lambda} = (10^{2\lambda})^4 = a^4$

18. We have,
$$4^{x} + 2^{2x-1} = 3^{x+\frac{1}{2}} + 3^{x-\frac{1}{2}}$$

$$\Rightarrow 2 \times 2^{2x-1} + 2^{2x-1} = 3^{x-\frac{1}{2}} \times 3 + 3^{x-\frac{1}{2}}$$

$$\Rightarrow 2^{2x-1}(2+1) = 3^{x-\frac{1}{2}}(3+1)$$

$$\Rightarrow 2^{2x-1} \times 3 = 3^{x-\frac{1}{2}} \times 4$$

$$\Rightarrow 2^{2x-3} = 3^{x-\frac{3}{2}} \Rightarrow (2^2)^{x-\frac{3}{2}} = 3^{x-\frac{3}{2}}$$

$$\Rightarrow 4^{x-\frac{3}{2}} = 3^{x-\frac{3}{2}}$$

$$\Rightarrow \quad x - \frac{3}{2} = 0 \qquad \Rightarrow x = \frac{3}{2}$$

19. We have,
$$log(2a - 3b) = loga - logb$$

$$\Rightarrow$$
 log (2a - 3b) = $\log\left(\frac{a}{b}\right)$ \Rightarrow 2a - 3b = $\frac{a}{b}$

$$\Rightarrow$$
 2ab - 3b² = a \Rightarrow a = $\frac{3b^2}{2b-1}$

20. We have,
$$\frac{\log x}{2a+3b-5c} = \frac{\log y}{2b+3c-5a} = \frac{\log z}{2c+3a-5b}$$

$$\Rightarrow \frac{\log x}{2a+3b-5c} = \frac{\log y}{2b+3c-5a} = \frac{\log z}{2c+3a-5b} = \frac{\log x + \log y + \log z}{0}$$

$$\Rightarrow$$
 log x + log y + log z = 0

$$\Rightarrow$$
 log (xyz) = 0 \Rightarrow xyz = 1

21. We have,
$$\frac{\log x}{1} = \frac{\log y}{2} = \frac{\log z}{5}$$

$$\Rightarrow \frac{\log x}{1} = \frac{\log y}{2} = \frac{\log z}{5} = \frac{4 \log x + 3 \log y - 2 \log z}{4 + 6 - 10}$$

$$\Rightarrow$$
 4 logx + 3 logy - 2 logz = 0

$$\Rightarrow$$
 log(x⁴ y³ z⁻²) = 0

$$\Rightarrow$$
 $x^4 y^3 z^{-2} = 1$.

22. We have,
$$\frac{\log 3}{x-y} = \frac{\log 5}{y-z} = \frac{\log 7}{z-x} = \lambda \text{ (say)}$$

$$\Rightarrow$$
 log 3 = λ (x - y), log 5 = λ (y - z), log 7 = λ (z - x)

$$\Rightarrow$$
 3^{x + y}. 5^{y + z}. 7^{z + x} = 10^{\(\lambda(x^2 - y^2)\)}. 10^{\(\lambda(y^2 - z^2)\)}. 10^{\(\lambda(z^2 - x^2)\)}

$$\Rightarrow$$
 3^{x + y}. 5^{y + z}. 7^{y + x} = $10^{\lambda(x^2-y^2+y^2-z^2+z^2-x^2)}$ = 10⁰ = 1

23. We have,
$$\frac{\log_2 a}{2} = \frac{\log_3 b}{3} = \frac{\log_4 c}{4} = \lambda (say)$$

$$\Rightarrow$$
 a = $2^{2\lambda}$, b = $3^{3\lambda}$, c = $4^{4\lambda}$

Now,
$$a^{1/2} b^{1/3} c^{1/4} = 24$$

$$\Rightarrow$$
 $2^{\lambda}.3^{\lambda}.4^{\lambda} = 24$

$$\Rightarrow$$
 $2^{\lambda}.3^{\lambda}.4^{\lambda} = 2 \times 3 \times 4 \Rightarrow \lambda = 1$

Hence,
$$a = 2^2 = 4$$
, $b = 3^3 = 27$ and $c = 4^4 = 256$.

24. We have,
$$\frac{\log_2 a}{3} = \frac{\log_2 b}{4} = \frac{\log_2 c}{5\lambda} = k (say)$$

$$\Rightarrow$$
 a = 2^{3k}, b = 2^{4k} and c = 2^{5 λk}

∴
$$a^{-3} b^{-4} c = 1$$
 \Rightarrow $2^{-9k} \times 2^{-16k} \times 2^{5k} = 1$

$$\Rightarrow 2^{5\lambda k - 25k} = 2^0 \Rightarrow 5\lambda k - 25k = 0$$

$$\Rightarrow \lambda = 5$$
.

5. We have,
$$a = \log_{24} 12$$
, $b = \log_{36} 24$ and $c = \log_{48} 36$

$$\Rightarrow$$
 abc = $\log_{48}12$ and bc = $\log_{48}24$

$$\Rightarrow$$
 abc - 2bc = \log_{48} 12 - 2 \log_{48} 24

$$\Rightarrow$$
 abc - 2bc = $\log_{48}12 - \log_{48}24^2$

$$\Rightarrow$$
 abc - 2bc = $\log_{48} \left(\frac{12}{24^2} \right) = \log_{48} \left(\frac{1}{48} \right) = -1$

$$\Rightarrow$$
 abc = 2bc - 1

$$a = b - 1$$
, $c = b + 1$

Now,
$$\log (1 + ca) = \log [1 + (b - 1) (b + 1)] = \log (1 + b^2 - 1) = \log b^2 = 2 \log b$$

27. We have,
$$\frac{\log_a x}{\log_{ab} x} = \frac{\log_x ab}{\log_x a} = \log_a ab = \log_a a + \log_a b = 1 + \log_a b$$

$$\frac{\log_a x}{\log_{ab} x} = 4 + k + \log_a b$$

$$\Rightarrow$$
 1 + log_b = 4 + k + log_b

$$\Rightarrow$$
 1 = 4 + k \Rightarrow k = -3

28. We have,
$$\frac{\log a}{h-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b} = \lambda (say)$$

$$\Rightarrow$$
 a = $10^{\lambda(b-c)}$, b = $10^{\lambda(c-a)}$, c = $10^{\lambda(a-b)}$

•
$$a^a b^b c^c = 10^{\lambda a(b-c)}.10^{\lambda b(c-a)}.10^{\lambda c(a-b)}$$

$$\Rightarrow$$
 $a^a b^b c^c = 10^{\lambda[a(b-c)+b(c-a)+c(a-b)]} = 10^{\lambda \times 0} = 10^0 = 1$

29. We have,
$$x = log_a bc$$
, $y = log_b ca$, $z = log_c ab$

$$\Rightarrow$$
 x + 1 = log_a bc + log_a a, y + 1 = log_b ca + log_b b, z + 1 = log_c ab + log_c

$$\Rightarrow$$
 x + 1 = log_a abc, y + 1 = log_b abc, z + 1 = log_c abc

$$\Rightarrow \frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = \log_{abc} a + \log_{abc} b + \log_{abc} c$$

$$\Rightarrow \frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = \log_{abc} abc = 1.$$

30. Let $\log_2 7$ be a rational number equal to $\frac{m}{n}$, where $m,n\in N$ and they do not have a common factor. Then,

$$\log_2 7 = \frac{m}{n} \qquad \Rightarrow \qquad 7 = 2^{m/n} \quad \Rightarrow \qquad 7^n = 2^m$$

Clearly, this is impossible, because $7^{\rm n}$ is an odd natural number and $2^{\rm m}$ is an even natural number.

Hence, $\log_2 7$ is an irrational number.

. We have,
$$2^{\log_3 5} - 5^{\log_3 2} = 5^{\log_3 2} - 5^{\log_3 2} = 0$$

$$\left[Q \ x^{\log_a y} = y^{\log_a x} \right]$$

$$\therefore \ 2^{\log_3 5} - 5^{\log_3 2} = 0$$

2. Since a, b, c are the sides of a right angled triangle with c as the largest side i.e., hypotenuse. Therefore, $c^2 = a^2 + b^2$

Now,
$$\frac{\log_{c+b} a + \log_{c-b} a}{\log_{c+b} a \cdot \log_{c-b} a} = \frac{1}{\log_{(c-b)} a} + \frac{1}{\log_{(c+b)} a} = \log_a (c-b) + \log_a (c+b)$$
$$= \log_a (c^2 - b^2) = \log_a a^2 = 2 \log_a a = 2.$$

3. We have, $\log_3 a \times \log_3 x = 4$

$$\Rightarrow \log_3 x = 4$$

$$\Rightarrow$$
 x = 3⁴ = 81.

. We have, $log_45 = x$ and $log_56 = y$

$$\Rightarrow$$
 5= 4^x and 6 = 5^y \Rightarrow 6 = (4^x)^y \Rightarrow 6 = 4^{xy}

$$\Rightarrow$$
 2 × 3 = 2^{2xy} \Rightarrow 3 = 2^{2xy - 1}

$$\Rightarrow 3^{\frac{1}{2xy-1}} = 2 \Rightarrow \log_3 2 = \frac{1}{2xy-1}$$

5. We have, $a^2 + 4b^2 = 12ab$

$$\Rightarrow$$
 (a + 2b)² = 16ab \Rightarrow 2 log(a + 2b) = log 16ab

$$\Rightarrow$$
 2 log(a + 2b) = log a + log b + 4 log2

$$\Rightarrow \log(a + 2b) = \frac{1}{2} (\log a + \log b + 4 \log 2)$$

6. We have, $3\log\frac{81}{80} + 5\log\frac{25}{24} + 7\log\frac{16}{15}$

$$= 3 \log \left(\frac{3^4}{2^4 \times 5} \right) + 5 \log \left(\frac{5^2}{2^3 \times 3} \right) + 7 \log \left(\frac{2^4}{3 \times 5} \right)$$

$$= \log \left\{ \left(\frac{3^4}{2^4 \times 5} \right)^3 \times \left(\frac{5^2}{2^3 \times 3} \right)^5 \times \left(\frac{2^4}{3 \times 5} \right)^7 \right\} = \log \left\{ \frac{3^{12}}{2^{12} \times 5^3} \times \frac{5^{10}}{2^{15} \times 3^5} \times \frac{2^{28}}{3^7 \times 5^7} \right\} = \log 2.$$

7. We have,
$$\frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b} = \lambda (say)$$

$$\Rightarrow$$
 $a = 10^{\lambda(b-c)}$, $b = 10^{\lambda(c-a)}$, $c = 10^{\lambda(a-b)}$

$$\therefore \qquad \text{aa bb cc = } 10^{\,\lambda a\,(b-c)+\,\lambda b\,(c-a)\,+\,\lambda c\,(a-b)} \,= \!\!10^{\,0} \,= \!1$$

8. We have,
$$5^{\log_a x} + 5 x^{\log_a 5} = 3$$

$$\Rightarrow \quad x^{\log_a 5} + 5 \quad x^{\log_a 5} = 3 \qquad \left[Q \ x^{\log_a y} = y^{\log_a x} \right]$$

$$\Rightarrow \quad 6. \ x^{\log_a 5} = 3 \qquad \qquad \Rightarrow \quad x^{\log_a 5} = \frac{1}{2} \qquad \Rightarrow \quad x = \left(2^{-1}\right)^{\log_5 a} = 2^{-\log_5 a}$$

9. We have,
$$\frac{\log 49\sqrt{7} + \log 25\sqrt{5} - \log 4\sqrt{2}}{\log 17.5} = \frac{\log \left(\frac{7^{5/2} \times 5^{5/2}}{2^{5/2}}\right)}{\log 17.5} = \frac{\frac{5}{2} \log 17.5}{\log 17.5} = \frac{5}{2}$$

10. We have,
$$5^{\sqrt{\log_5 7}} - 7^{\sqrt{\log_7 5}} = 5^x - 7^{\frac{1}{x}}$$
, where $x = \sqrt{\log_5 7}$

$$= 5^{x} - \left(5^{x^{2}}\right)^{\frac{1}{x}} \qquad [Q \quad x = \sqrt{\log_{5} 7} \implies x^{2} = \log_{5} 7 \implies 7 = 5^{x^{2}}]$$

$$= 5^{x} - 5^{x} = 0$$

1. We have,
$$\frac{3 + \log 343}{2 + \frac{1}{2} \log \left(\frac{49}{4}\right) + \frac{1}{3} \log \left(\frac{1}{125}\right)} = \frac{3 + \log 7^3}{2 + \frac{1}{2} \left(\log 7^2 - \log 2^2\right) + \frac{1}{3} \log 5^{-3}}$$

$$= \frac{3+3\log 7}{2+(\log 7-\log 2)-\log 5} = \frac{3(1+\log 7)}{2+\log 7-(\log 2+\log 5)} = \frac{3(1+\log 7)}{1+\log 7} = 3$$

12. Given log(a - b) = log a - log b

$$\Rightarrow$$
a - b = a/b $\Rightarrow \frac{a(b-1)}{b} = b \Rightarrow a = \frac{b^2}{b-1}$

13. We have, $9a^2 + 4b^2 = 18ab$

$$\Rightarrow$$
 9a² + 12ab + 4b² = 30ab

$$\Rightarrow$$
 (3a + 2b)² = 30ab

$$\Rightarrow$$
 2 log (3a + 2b) = log (5a × 3b × 2)

$$\Rightarrow \log (3a + 2b) = \frac{1}{2} \{ \log 5a + \log 3b + \log 2 \}$$

14. We have,
$$\log_5\left(1+\frac{1}{5}\right) + \log_5\left(1+\frac{1}{6}\right) + \log_5\left(1+\frac{1}{7}\right) + \dots + \log_5\left(1+\frac{1}{624}\right)$$

$$= \log_5\left(\frac{6}{5} \times \frac{7}{6} \times \frac{8}{7} \times \dots \times \frac{625}{624}\right) = \log_5\left(\frac{625}{5}\right) = \log_5 5^3 = 3$$

15. We have,
$$\log(x - y) - \log 5 - \frac{1}{2} \log x - \frac{1}{2} \log y = 0$$

$$\Rightarrow$$
 2 log(x - y) - 2 log 5 - log x - log y = 0

$$\Rightarrow \frac{(x-y)^2}{25xy} = 1 \qquad \Rightarrow x^2 + y^2 - 2xy = 25xy \Rightarrow \frac{x}{y} + \frac{y}{x} - 2 = 25$$

$$\frac{x}{y} + \frac{y}{x} = 27$$

16. We have,
$$2^{\log_{10} 3\sqrt{3}} = 3^{k \log_{10} 2}$$

$$\Rightarrow \left(3\sqrt{3}\right)^{\log_{10} 2} = 3^{k \log_{10} 2} \qquad \left[Q \ x^{\log_a y} = y^{\log_a x}\right]$$

$$\Rightarrow 3^{\frac{3}{2}\log_{10}2} = 3^{k\log_{10}2} \Rightarrow k = \frac{3}{2}$$

17. We have,
$$\log_5 64 = \log_5 2^6 = 6 \log_5 2 = \frac{6}{\log_2 5} = \frac{6}{\log_2 \left(\frac{10}{2}\right)}$$

$$= \frac{6}{\log_2 10 - \log_2 2} = \frac{6}{\frac{1}{\log_{10} 2} - 1} = \frac{6}{\frac{1}{0.3010} - 1} = \frac{6 \times 0.3010}{1 - 0.3010}$$

$$= \frac{1.8060}{0.699} = \frac{1806}{699} = \frac{602}{233}$$

18. We have,
$$4^{\log_9 3} + 9^{\log_2 4} = 10^{\log_x 83}$$

$$\Rightarrow \quad 4^{\log_{3^2} 3} + 9^{\log_2 2^2} = 10^{\log_x 83} \quad \Rightarrow \quad 4^{1/2} + 9^2 = 10^{\log_x 83}$$

$$\Rightarrow$$
 83 = 10 $^{\log_x 83}$ \Rightarrow \log_{10} 83 = \log_x 83

$$\Rightarrow$$
 x = 10

19. We have,
$$3^{\frac{4}{\log_4 9}} + 27^{\frac{1}{\log_{36} 9}} + 81^{\frac{1}{\log_5 3}} = 3^{\frac{4}{\log_2 3}} + 27^{\frac{1}{\log_6 3}} + 81^{\frac{1}{\log_5 3}}$$

$$= 3^{4 \log_3 2} + 27^{\log_3 6} + 81^{\log_3 5} = 3^{\log_3 2^4} + \left(3^3\right)^{\log_3 6} + \left(3^4\right)^{\log_3 5}$$

$$= 3^{\log_3 16} + \left(3^3\right)^{\log_3 6} + \left(3^4\right)^{\log_3 5} = 3^{\log_3 16} + 3^{\log_3 6^3} + 3^{\log_3 5^4}$$

$$= 16 + 6^3 + 5^4 = 16 + 216 + 625 = 857$$

20. We have,
$$\log_{\sqrt{2}} \sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}} = \log_{\sqrt{2}} \left(2^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}}\right) = \log_{\sqrt{2}} 2^{\frac{15}{16}} = \frac{\frac{15}{16}}{\frac{1}{2}} \log_2 2 = \frac{15}{8}$$

21. We have,
$$\frac{\log_a (\log_b a)}{\log_b (\log_a b)} = \frac{\log (\log_b a)}{\log a} \times \frac{\log b}{\log (\log_a b)}$$

$$= \frac{\log \left(\frac{\log a}{\log b}\right)}{\log a} \times \frac{\log b}{\log \left(\frac{\log b}{\log a}\right)} = \frac{\log \left(\log a\right) - \log \left(\log b\right)}{\log a} \times \frac{\log b}{\log \left(\log b\right) - \log \left(\log a\right)}$$

$$= -\frac{\log b}{\log a} = -\log_a b.$$

22. We have,
$$\log_2 x + \log_4 x + \log_{16} x = \frac{21}{4}$$

$$\Rightarrow \log_2 x + \frac{1}{2} \log_2 x + \frac{1}{4} \log_2 x = \frac{21}{4}$$

$$\Rightarrow \frac{7}{4}\log_2 x = \frac{21}{4} \Rightarrow \log_2 x = 3 \Rightarrow x = 2^3 = 8$$

23. We have,
$$a^{x} = b^{y} = c^{z} = d^{w}$$

$$\Rightarrow$$
 $a^x = b^y$, $a^x = c^z$ and $a^x = d^w$

$$\Rightarrow$$
 x log a = y log b, x log a = z log c and x log a = w log d

$$\Rightarrow \frac{x}{v} = \log_a b, \frac{x}{z} = \log_a c \text{ and } \frac{x}{w} = \log_a d$$

$$\Rightarrow \frac{x}{y} + \frac{x}{z} + \frac{x}{w} = \log_a b + \log_a c + \log_a d$$

$$\Rightarrow x\left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w}\right) = \log_a bcd$$

24. We have
$$1.5^a = 0.15^b = 100$$

$$\Rightarrow$$
 a = $\log_{1.5} 100$ and b = $\log_{0.15} 100$

$$\Rightarrow \frac{1}{a} - \frac{1}{b} = \log_{100} 1.5 - \log_{100} 0.15$$

$$\Rightarrow \frac{1}{a} - \frac{1}{b} = \log_{100} \left(\frac{1.5}{0.15} \right) = \log_{100} 10 = \frac{1}{2}$$

25. We have,
$$\log_2 a + \log_4 b + \log_4 c = 2$$

$$log_9 a + log_3 b + log_9 c = 2$$

$$\log_{16} a + \log_{16} b + \log_{4} c = 2$$

$$\Rightarrow \log_2 a + \frac{1}{2}\log_2 b + \frac{1}{2}\log_2 c = 2$$

$$\Rightarrow \frac{1}{2}\log_3 a + \log_3 b + \frac{1}{2}\log_3 c = 2$$

$$\Rightarrow \frac{1}{2}\log_4 a + \frac{1}{2}\log_4 b + \log_4 c = 2$$

$$\Rightarrow \log_2 (a^2bc) = 4$$
, $\log_3 (ab^2c) = 4$, $\log_4 (abc^2) = 4$

$$\Rightarrow$$
 (a²bc) = 2⁴, ab²c = 3⁴ and abc² = 4⁴

$$\Rightarrow$$
 (abc)⁴ = (2 × 3 × 4)⁴

$$\Rightarrow$$
 abc = 24