

The Introduction To Artificial Intelligence

Yuni Zeng yunizeng@zstu.edu.cn 2024-2025-1

The Introduction to Artificial Intelligence

- Part I Brief Introduction to AI & Different AI tribes
- Part II Knowledge Representation & Reasoning
- Part III AI GAMES and Searching
- Part IV Model Evaluation and Selection
- Part V Machine Learning
- Part VI Neural Networks

Neural Networks

- Brief review
- Feedforward Neural Networks
- Recurrent Neural Networks
- The Learning of Neural Networks
- Model Performance: Cost Function
- Steepest Descent Method
- Backpropagation

Brief review

☐ Artificial Neuron

Biological neural network

Artificial neural networks

Neuron model

Synaptic
Connection

Biological
Neural Networks

Learning

Build a computable mathematical model

Abstract

Weights

Neural network models

Learning algorithm

Computational Model of Neural Network

☐ Artificial Neuron

Single neuron structure

How to abstract?

- Soma, Dendrites, Axons
- Function: Collect and transmit signals
- Dendrites receive multiple inputs
- Soma superimposes input information
- Pulses are generated when information is superimposed to a certain extent
- Single output

Brief review

Artificial Neuron

Computational Model of Neural Network

■ Neural Networks

Feedforward neural network

neurons + feedforward connections

Recurrent neural network

neurons + recurrent connections

Component form
$$\begin{cases} a_i^{l+1} = f(z_i^{l+1}) \\ z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \end{cases}$$

Algorithm:

Input W^l , a^l for l = 1:L, run function: $a^{l+1} = fc(W^l, a^l)$ return

Function $fc(W^la^l)$ For i = 1: n_{l+1} $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$ $a_i^{l+1} = f(z_i^{l+1})$ end

In fact, FNN is a nonlinear mapping from R^{n_1} space to R^{n_L} space.

$$a^{L} = f(w^{L-1}a^{L-1}) = f\left(w^{L-1}f\left(w^{L-2}f\left(w^{L-3}\cdots f(w^{1}a^{1})\right)\right)\right)$$

Recurrent neural network

neurons + recurrent connections

Topology Structure

Problem: how to develop computational model of the RNNs?

RNNs – Computational Neural Networks Model:

$$a_1(t+1) = f(w_{11}a_1(t) + w_{12}a_2(t))$$
$$a_2(t+1) = f(w_{21}a_1(t) + w_{22}a_2(t))$$

Computational Model of RNNs:

$$a_i(t+1) = f\left(\sum_{j=1}^n w_{ij}a_j(t)\right)$$

Vector form:

$$a(t+1) = f(Wa(t))$$

$$W = \begin{bmatrix} w_{11} & \cdots & w_{1n} \\ \vdots & \ddots & \vdots \\ w_{n1} & \cdots & w_{nn} \end{bmatrix}, a(t) = \begin{bmatrix} a_1(t) \\ \vdots \\ a_n(t) \end{bmatrix}$$
 The time changes in discrete

manner.

This model is a discrete time dynamic system.

With expanding in time, this networks could have infinite layers.

FNNs VS. RNNs

FNNs

- Extract the spatial features of static data
- Describe spatial correlation

no recurrent connection

- Memory mechanism
- Extract spatiotemporal features of time sequence data
- Describe time correlation

with recurrent connection

Neural Networks

- Brief review
- Feedforward Neural Networks
- Recurrent Neural Networks
- The Learning of Neural Networks
- Model Performance: Cost Function
- Steepest Descent Method
- Backpropagation

- Knowledge is acquired by learning.
 - Three human learning models:

Learning with teacher

Reinforcement learning

Learning without teacher

Learning: establishment of new connections and the modification of existing connections

- Learning is to change the connections by some rules.
- Similar with the three learning model of human:

Supervised Learning: Update the network parameters according to the error between the target output and the actual network output of the training sample

Unsupervised learning: For non-label samples, the network parameters are updated by reconstructing these samples.

Reinforcement learning:

Update network parameters with the goal of maximizing rewards during interactions with the environment

Unsupervised Learning

Unsupervised learning: For nonlabel samples, the network parameters are updated by reconstructing these samples.

Supervised Learning

Feature: red, round

Feature: yellow, strip

■ Supervised Learning

Neural Networks

- Brief review
- Feedforward Neural Networks
- Recurrent Neural Networks
- The Learning of Neural Networks
- Model Performance: Cost Function
- Steepest Descent Method
- Backpropagation

Nonlinear Mapping

Problem: How to design the NN? Are there any methods to find "good" connection weights?

Cost Function

Good performance! The mother knows correct answer.

5

Two important factors:

- 1. There must be a measure to measure the correctness between correct answer and the girl's real output. ----Performance function (性能函数).
- 2. There must be a mechanism to change the knowledge system of the girl. ---- Learning algorithm (学习算法).

Cost Function

The goal of Learning:

Network output ≈ Target output

Training

Cost Function $J(a^L, y^L)$:

dataset with labels.

- describe the distance between network output a^L and target output y^L
- $J(a^L, y^L)$ is a function related to (w^1, \dots, w^{L-1}) $J = J(w^1, \dots, w^{L-1})$

Cost Function

Target Output Network Output
$$y^L = \begin{bmatrix} y_1^L \\ \vdots \\ y_{n_L}^L \end{bmatrix} \qquad a^L = \begin{bmatrix} a_1^L \\ \vdots \\ a_{n_L}^L \end{bmatrix}$$

- The cost function describes the performance of the network. The smaller *J* is, the closer the network output is to the target output, and the better the network performance is.
- $J(a^L, y^L)$ is a function related to (w^1, \dots, w^{L-1}) , to get a good performance is to find a good (w^1, \dots, w^{L-1}) .
- To find the good (w^1, \dots, w^{L-1}) is the learning of neural network.

Cost Function

Learning is a process such that a^L is close to y^L , i.e., the cost function *J* reaches minimum.

A cost function $J = J(w^1, \dots, w^{L-1})$ is a function with variables $w^l (l = 1, \dots, L - 1)$, thus the network learning is to looking for some $w^l(l =$ $1, \dots, L-1$) such that $w^l (l=1, \dots, L-1)$ is a minimum point of I.

Target Output Network Output

$$\mathbf{y}^{L} = \begin{bmatrix} \mathbf{y}_{1}^{L} \\ \vdots \\ \mathbf{y}_{n_{L}}^{L} \end{bmatrix} \qquad a^{L} = \begin{bmatrix} a_{1}^{L} \\ \vdots \\ a_{n_{L}}^{L} \end{bmatrix}$$

A frequently used cost function:

Problem: How to find out the minimum points of
$$J$$
? $J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = J(w^1, \dots, w^{L-1})$

J is a function of w^1, \dots, w^{L-1} .

Learning = Looking for minimum points of *J*

Neural Networks

- Brief review
- Feedforward Neural Networks
- Recurrent Neural Networks
- The Learning of Neural Networks
- Model Performance: Cost Function
- Steepest Descent Method
- Backpropagation

■ Minimum Points

General Nonlinear function $F(x), x \in \mathbb{R}^n$ x^* is a minimum point if $F(x^*) \leq F(x)$ for any x that very close to x^* .

$$F_1(w) = (w_2 - w_1)^4 + 8w_1w_2 - w_1 + w_2 + 3$$

$$F_2(w) = (w_1^2 - 1.5w_1w_2 + 2w_2^2)w_1^2$$

Iteration Methods:

- 1. Setting a starting point x_0
- 2. Finding a minimum point step by step:

$$w^{k+1} = w^k + \alpha_k \cdot p_k,$$

 p_k : is called searching direction

 α_k : is leaning rate at step k

Problem: how to get the searching direction p_k .

Steepest descent direction

Steepest Descent Algorithm:

$$w^{k+1} = w^k - \alpha_k \cdot \frac{\partial F}{\partial w} \bigg|_{w^k}$$

 y_{n_L}

Target output

Deep learning

Target Output Network Output

$$y^{L} = \begin{bmatrix} y_{1}^{L} \\ \vdots \\ y_{n_{L}}^{L} \end{bmatrix} \qquad a^{L} = \begin{bmatrix} a_{1}^{L} \\ \vdots \\ a_{n_{L}}^{L} \end{bmatrix}$$

Steepest Descent Method

$$J = \frac{1}{2} \sum_{j=1}^{n_L} e_j^2 = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

$$a^{L} = f(W^{L-1}a^{L-1}) = f\left(W^{L-1}f\left(W^{L-2}f(W^{L-3}\cdots f(W^{1}a^{1}))\right)\right)$$

1. Computing

$$\frac{\partial J}{\partial w_{ji}^l}$$

2. Iterating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ii}^l}$$

Problem: How to compute $\frac{\partial J}{\partial w_{ji}^l}$?

Answer:

Using the well-known BP method.

Neural Networks

- Brief review
- Feedforward Neural Networks
- Recurrent Neural Networks
- The Learning of Neural Networks
- Model Performance: Cost Function
- Steepest Descent Method
- Backpropagation

Problem: What's the relation between δ_i^l and $\frac{\partial J}{\partial w_{ji}^l}$?

$$a_i^l = f(z_i^l)$$
define $\delta_i^l = \frac{\partial J}{\partial z_i^l}$

 $J(W^1,\cdots,W^{L-1})$

Relation between
$$\delta_i^l$$
 and $\frac{\partial J}{\partial w_{ji}^l}$

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$
Why?
$$\frac{\partial J}{\partial w_{ji}^l} = \frac{\partial J}{\partial z_j^{l+1}} \cdot \frac{\partial z_j^{l+1}}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

Updating weights

Construct cost function

$$J = \frac{1}{2} \sum_{j=1}^{n_L} (y_j - a_j^L)^2$$

Updating weights

$$|w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}| \qquad \qquad \frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

$$\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$$

$$\delta_i^{l+1} = \frac{\partial J}{\partial z_i^{l+1}}$$

Problem:

How to compute δ_i^l ?

Because, it's easy to compute $\delta_i^L = \frac{\partial J}{\partial z_i^L}$,

What's the relation between δ_i^l and δ_i^{l+1} ?

Updating weights

The relation between δ_i^l and δ_i^{l+1}

$$\delta_{i}^{l} = \frac{\partial J}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \frac{\partial J}{\partial z_{j}^{l+1}} \cdot \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \left[\frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} \right] = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot w_{ji}^{l} \dot{f}(z_{i}^{l}) = \dot{f}(z_{i}^{l}) \cdot \left(\sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot w_{ji}^{l} \right)$$

Updating weights

$$\delta_{i}^{l} = \frac{\partial J}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \frac{\partial J}{\partial z_{j}^{l+1}} \cdot \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot w_{ji}^{l} \dot{f}(z_{i}^{l}) = \dot{f}(z_{i}^{l}) \cdot \left(\sum_{j=1}^{n_{l+1}} \delta_{j}^{l+1} \cdot w_{ji}^{l}\right)$$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$

Updating weights

Relation between δ_i^l and δ_i^{l+1}

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} \delta_j^{l+1} \cdot w_{ji}^l\right)$$

$$\delta_i^L = \frac{\partial J}{\partial z_i^L}$$

If

$$J = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

then,

$$\delta_i^L = \frac{\partial J}{\partial z_i^L} = \left(a_i^L - y_i^L\right) \cdot \frac{\partial a_j^L}{\partial z_i^L}$$
$$= \left(a_i^L - y_i^L\right) \cdot \dot{f}(z_i^L)$$

Conclusion: BP for FNN

Forward computing: $y = f(\sum_{i=1}^{n} w_i x_i)$

Define cost function: $J = J(w^1, \dots, w^{L-1})$

Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$

Define δ : $\delta_i^l = \frac{\partial J}{\partial z_i^l}$

Find the relation: $\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$

Back propagation: $\delta_i^L = \frac{\partial J}{\partial z_i^L} = (a_i^L - y_i^L) \cdot \dot{f}(z_i^L)$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} \delta_j^{l+1} \cdot w_{ji}^l\right)$$

Conclusion: BP for FNN

■ Algorithm

The training data set $D = \{(x, y) | m \text{ samples} \}$

x: input sample y: target output

There are two ways to train the network.

1. Online training: For each sample $(x, y) \in D$, define a cost function, for example, as

$$J(x,y) = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$

2. Batch training: Define cost function as

$$J = \frac{1}{m} \sum_{(x,y) \in D} J(x,y)$$

Algorithm

Batch BP Algorithm:

Step 1. Input the training data set $D = \{(x, y)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. For all m samples
$$(x, y) \in D$$
, set $a^1 = x$

for
$$l = 1: L - 1$$

 $a^{l+1} \leftarrow fc(w^l, a^l)$

end

$$\delta^L \leftarrow \frac{\partial J}{\partial z^L}$$

for
$$l = L - 1:1$$

$$\delta^l \leftarrow bc(w^l, \delta^{l+1})$$

end

$$\frac{\partial J}{\partial w_{ii}^l} \leftarrow \frac{\partial J}{\partial w_{ii}^l} + \frac{1}{m} \delta_j^{l+1} \cdot a_i^l$$

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$$

Step 5. Return to Step 3 until each w^l converge.

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$
 $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$
 $a_i^{l+1} = f(z_i^{l+1})$
 end

$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

function
$$bc(w^l, \delta^{l+1})$$

$$for i = 1: n_l$$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$

end