Doc. Number:

- □ Tentative Specification
- Preliminary Specification
- □ Approval Specification

Bozhe technology(HK) Limited MODEL NO: BZ101IICD1S

Cı	ıst	۸r	ne	r-
\mathbf{c}	JOL	OI.		I -

APPROVED BY SIGNATURE

Name / Title

Note

Please return 1 copy for your confirmation with your signature and comments.

Approved By	Checked By	Prepared By

CONTENTS

1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	4
1.2 GENERAL SPECIFICATIONS	4
2. MECHANICAL SPECIFICATIONS	4
3. ABSOLUTE MAXIMUM RATINGS	5
3.1 ELECTRICAL ABSOLUTE RATINGS	5
4. ELECTRICAL SPECIFICATIONS	6
4.1 FUNCTION BLOCK DIAGRAM	6
4.2. INTERFACE CONNECTIONS	6
4.3 ELECTRICAL CHARACTERISTICS	7
4.4 DISPLAY PORT INPUT SIGNAL DC SPECIFICATIONS	11
4.5 MIPI interface (Mobile Industry Processing Interface)	19
5. OPTICAL CHARACTERISTICS	22
5.1 TEST CONDITIONS	22
5.2 OPTICAL SPECIFICATIONS	22
6. RELIABILITY TEST ITEM	25
7. PACKING	26
8. PRECAUTIONS	27
8.1 HANDLING PRECAUTIONS	
8.2 STORAGE PRECAUTIONS	27
8.3 OPERATION PRECAUTIONS	27
Appendix 1. OUTLINE DRAWING	28
Appendix.2 SYSTEM COVER DESIGN GUIDANCE	29

REVISION HISTORY

Version	Date	Page	Description
1.0	August, 7, 2020	All	Spec Ver.1.0 was first issued.

Version 1.0 12 August 2020 3 / 32

1. GENERAL DESCRIPTION

1.1 OVERVIEW

BZ101IICD1S is a 10.1" (10.1" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 39 pins MIPI interface.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	10.1 diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	800 x R.G.B. x 1280	pixel	-
Pixel Pitch	0.0564 (H) x 0.1692 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	8bit color depth	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	HC-Glare	-	-
Luminance, White	350	Cd/m2	
Power Consumption	Total (2.3 W) (Max.) @ cell (0.3 W) (Max.) BL (2.0 W) (Max.)	•	(1)

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VDDI = 1.8 V, VCI= 3.3V ,fv = 60 Hz, Brightness = 350nits, I_{F_LED} = (21mA) and Ta = 25 ± 2 $^{\circ}$ C, whereas white pattern is displayed.

2. MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	142.1	142.3	142.5	mm	
Module Size	Vertical (V)	228.3	228.5	228.7	mm	(1)
Module Size	Thickness (T)	-	2.5(w/o PCBA) (w/ PCBA)	2.65 4.45	mm	(1)
Active Area	Horizontal	135.26	135.36	135.46	mm	
	Vertical	216.48	216.58	216.68	mm	
Weight		-	-	146	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: HIROSE FH26W-39S-0.3SHW(60)

3. ABSOLUTE MAXIMUM RATINGS

3.1 ELECTRICAL ABSOLUTE RATINGS

TFT LCD MODULE

Item	Symbol	Val	ue	Unit	Note	
item	Cymbol	Min.	Max.	O I II		
Power Supply Voltage	VDDI	-0.3	+3.6	V	(1)	
	VCI	-0.3	+6.6	V	(1)	

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	I/O	Description
1	NC	-	For INX internal use(7.5V for MTP)
2	NC	-	No Connection
3	NC	-	No Connection
4	LED4-	Р	Power for LED4 Cathode
5	LED3-	Р	Power for LED3 Cathode
6	LED2-	Р	Power for LED2 Cathode
7	LED1-	Р	Power for LED1 Cathode
8	NC	-	No Connection
9	LED+	Р	Power for LED Anode
10	LED+	Р	Power for LED Anode
11	LED+	Р	Power for LED Anode
12	NC	-	No Connection
13	NC	-	No Connection
14	LEDPWM_OUT	0	Output pin for PWM (Pulse Width Modulation) signal of LED driving
15	ID1	0	Hardware ID Select(Setting "L" ((0 V))
16	RESX	I	This signal will reset the device and must be applied properly to initialize the chip.

17	ID2	0	Hardware ID Select(Setting "H" (3.3 V))
18	TE	0	Vsync signal
19	VCI	Р	3.3V for analog circuit blocks
20	VCI	Р	3.3V for analog circuit blocks
21	VCI	Р	3.3V for analog circuit blocks
22	VDDI	Р	1.8V for logic circuit blocks
23	VDDI	Р	1.8V for logic circuit blocks
24	GND	Р	Ground
25	D3+	I	MIPI differential data3 input (Positive)
26	D3-		MIPI differential data3 input (Negative)
27	GND	Р	Ground
28	D2+	ı	MIPI differential data2 input (Positive)
29	D2-	I	MIPI differential data2 input (Negative)
30	GND	Р	Ground
31	CLK+		MIPI differential clock input (Positive)
32	CLK-	ı	MIPI differential clock input (Negative)
33	GND	Р	Ground
34	D1+	ı	MIPI differential data1 input (Positive)
35	D1-		MIPI differential data1 input (Negative)
36	GND	Р	Ground
37	D0+	I	MIPI differential data0 input (Positive)
38	D0-		MIPI differential data0 input (Negative)
39	GND	Р	Ground

Note (1) The first pixel is odd as shown in the following figure.

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

			Values			
Parameter	Symbol	Min	Тур	Max	Units	Notes
Logic Operating Voltage	VDDI	1.7	1.8	1.9	V	
Analog Positive Voltage	VCI	3.1	3.3	3.5	V	
LED Input Current	I _{LED}	-	21		mA	
"H" Level Input Voltage	V _{IH}	0.7x VDDI	-	VDDI	V	

"L" Level Input Voltage	V _{IL}	0.0	-	0.3x VDDI	V		
"H" Level Output Voltage		V _{OH}	0.8x VDDI	-	VDDI	٧	
"L" Level Output Voltage		V _{OL}	0.0	-	0.2x VDDI	V	
Input high level leakage current		I _{IH}	-	-	1	μΑ	
Input low level leakage current		I IL	-1	-	-	μΑ	
	Normal	I_{VDDI}	-	-	35		
LCD Operating Current		I _{VCL}	-	-	70	mA	
	Cl	I_{VDDI}	-	-	60		(1)
	Sleep	I _{VCL}	-	-	100	uA	

Note (1) The specified power supply current is under the conditions at VCI =3.3 V, VDDI=1.8 V, Ta = 25 \pm 2°C, DC current and fv = 60 Hz, whereas a white pattern under 800x1280 60Hz is displayed.

4.3.2 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \, {}^{\circ}C$

Danamatan	Comen la a l		Value	I I a it	Niete	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
LED Light Bar Power Supply Voltage	VL	19.11	21.56	22.61	V	(1)(2)
LED Light Bar Power Supply Current	IL	83.2	84	84.4	mA	(Duty100%)
Power Consumption	PL			2 (L/B)	W	(3)
LED Life Time	L _{BL}	15000			Hrs	(4)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and IL = 20 mA(Per EA) until the brightness becomes $\leq 50\%$ of its original value.

Note (5) ILED RUSH: the maximum current when LED_VCCS is rising, ILED IS: the maximum current of the first 100ms after power-on, Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta =25 ± 2 °C, Duty = 100%.

VLED rising time is 0.5ms

Note (6) If the PWM control duty ratio is less than 10%, that is difficult to control the brightness linearity.

Note (7) If PWM control frequency is less than 1KHz, the "waterfall" phenomenon on the screen may be found.

To avoid the issue, it's a suggestion that PWM control frequency should greater than 1KHz.

Note (8) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 ± 2 °C, Duty=100%.

4.4 DISPLAY PORT INPUT SIGNAL DC SPECIFICATIONS

4.4.1 DC Electrical Characteristic

• DC Characteristics for DSI LP Mode

Doromotor	Cumbal	Canditions	S	pecificatio	n	UNI
Parameter	Symbol	Conditions	MIN	TYP	MAX	Т
Logic high level input voltage	VIHLPCD	LP-CD	450	-	1350	mV
Logic low level input voltage	VILLPCD	LP-CD	0	-	200	mV
Logic high level input voltage	VIHLPRX	LP-RX (CLK, D0, D1)	880	-	1350	mV
Logic low level input voltage	VILLPRX	LP-RX (CLK, D0, D1)	0	-	550	mV
Logic low level input voltage	VILLPRXULP	LP-RX (CLK ULP mode)	0	-	300	mV
Logic high level output voltage	VOHLPTX	LP-TX (D0)	1.1	-	1.3	V
Logic low level output voltage	VOLLPTX	LP-TX (D0)	-50	-	50	mV
Logic high level input current	Іін	LP-CD, LP-RX	-	-	10	μΑ
Logic low level input current	lıL	LP-CD, LP-RX	-10	-	-	μA
Input pulse rejection	SGD	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-	-	300	Vps

Note 1) VDDI= 1.8 V, VCI = 3.3 V, GND=0V, Ta=-30 to 70 ° C(to +85 °C no damage)

Note 2) DSI high speed is off.

Note 3) Peak interference amplitude max. 200mV and interference frequency min. 450MHz.

• DC Characteristics for DSI HS Mode

Downwater	Cumabal	Conditions	S	pecificatio	n	UNI
Parameter	Symbol	Conditions	MIN	TYP	MAX	Т
Input voltage common mode range	VCMCLK VCMDATA	DSI-CLK+/-, DSI-Dn+/- (Note2, 3)	70	ı	330	mV
Input voltage common mode variation (≤ 450MHz)	VCMRCLKL VCMRDATA L	DSI-CLK+/-, DSI-Dn+/- (Note 4)	-50	-	50	mV
Input voltage common mode variation (≥ 450MHz)	VCMRCLKM VCMRDATA M	DSI-CLK+/-, DSI-Dn+/-	-	-	100	mV
Low-level differential input voltage threshold	VTHLCLK VTHLDATA	DSI-CLK+/-, DSI-Dn+/-	-70	-	-	mV
High-level differential input voltage threshold	VTHHCLK VTHHDATA	DSI-CLK+/-, DSI-Dn+/-	-	-	70	mV
Single-ended input low voltage	VILHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-40	-	-	mV
Single-ended input high voltage	VIHHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-	-	460	mV
Differential input termination resistor	RTERM	DSI-CLK+/-, DSI-Dn+/-	80	100	125	Ω
Single-ended threshold voltage for termination enable	VTERM-EN	DSI-CLK+/-, DSI-Dn+/-	-	-	450	mV
Termination capacitor	Стекм	DSI-CLK+/-, DSI-Dn+/-	-	-	60	pF

Note 1) VDDI= 1.8 V, VCI = 3.3 V, GND=0V, Ta=-30 to 70 $^{\circ}$ C

Note 2) Includes 50mV (-50mV to 50mV) ground difference.

Note 3) Without VCMRCLKM450 / VCMRDATAM450 .

Note 4) Without 50mV (-50mV to 50mV) ground difference.

Note 5) Dn=D0, D1, D2 and D3.

Note 6) For higher bit rates, a 14pF capacitor will be needed to meet the common-mode return loss specification.

Differential voltage range, termination resistor and Common mode voltage

4.4.2 AC Electrical Characteristic

• MIPI DSI Timing Characteristics
High Speed Mode

(VDDI= 1.8 V, VCI = 3.3 V, GND=0V, Ta=-30 to 70° C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI-CLK+/-	2xUI _{INST}	Double UI instantaneous	Note2	ı	25	ns	4 Lane (Note 2)
DSI-CLK+/-	UIINSTA UIINSTB	UI instantaneous halfs (UI = UIINSTA = UIINSTB)	Note2	ı	12.5	ns	4 Lane (Note 2)
DSI-Dn+/-	tos	Data to clock setup time	0.15xUI	-	-	ps	
DSI-Dn+/-	tон	Data to clock hold time	0.15xUI	-	-	ps	

DSI-CLK+/-	t DRTCLK	Differential rise time for clock	150	-	0.3xUI	ps	
DSI-Dn+/-	t DRTDATA	Differential rise time for data	150	-	0.3xUI	ps	
DSI-CLK+/-	t DFTCLK	Differential fall time for clock	150	-	0.3xUI	ps	
DSI-Dn+/-	t DFTDATA	Differential fall time for data	150	-	0.3xUI	ps	

Note 1) UI=UIInsta=UIInstb.

Note 2) Define the minimun vallue, see Table :Limited Clock Channel Speed.

Data type	Two Lanes speed	Three Lanes speed	Four Lanes speed
Data Type = 001110(0Eh),RGB 565, 16 UI per Pixel	566Mbps	466Mbps	366Mbps
Data Type = 011110(1Eh),RGB 666, 18 UI per Pixel	637Mbps	525Mbps	412Mbps
Data Type = 101110(2Eh),RGB 666 Loosely ,24 UI per Pixel	850Mbps	700Mbps	550Mbps
Data Type = 111110(3Eh),RGB 888 ,24 UI per Pixel	850Mbps	700Mbps	550Mbps

DSI clock channel timing

Rising and fall time on clock and data channel

• Low Power Mode

 $(VDDI = 1.8 \text{ V}, VCI = 3.3 \text{ V}, GND=0V, Ta=-30 to 70^{\circ}C)$

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI-D0+/-	Тьрхм	Length of LP-00, LP-01, LP-10 or LP-11 periods MPU → Display Module	50	•	75	ns	Input
DSI-D0+/-	Tlpxd	Length of LP-00, LP-01, LP-10 or LP-11 periods Display Module → MPU	50	,	75	ns	Output
DSI-D0+/-	TTA-SURED	Time-out before the MPU start driving	TLPXD	ı	2xTlpxd	ns	Output
DSI-D0+/-	Tta-getd	Time to drive LP-00 by display module	5xTlpxd	-	-	ns	Input
DSI-D0+/-	Tta-god	Time to drive LP-00 after turnaround request - MPU	4xTLPXD	ı	-	ns	Output

Bus Turnaround (BAT) from MPU to display module Timing

Bus Turnaround (BAT) from display module to MPU Timing

DSI Bursts

(VDDI= 1.8 V, VCI = 3.3 V, GND=0V, Ta=-30 to 70°C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description	
	Low Power Mode to High Speed Mode Timing							
DSI-Dn+/-	TLPX	Length of any low power state period	50	1	-	ns	Input	
DSI-Dn+/-	Ths-prepare	Time to drive LP-00 to prepare for HS transmission	40+4xUI	ı	85+6xUI	ns	Input	
DSI-Dn+/-	Ths-term-en	Time to enable data receiver line termination measured from when Dn crosses VILMAX	,	ı	35+4xUI	ns	Input	
		High Speed Mode to Low Power M	lode Timing					
DSI-Dn+/-	Ths-skip	Time-out at display module to ignore transition period of EoT	40	-	55+4xUI	ns	Input	
DSI-Dn+/-	Ths-exit	Time to drive LP-11 after HS burst	100	-	-	ns	Input	
DSI-Dn+/-	Ths-trail	Time to drive flipped differential state after last payload data bit of a HS transmission burst	Max(8*UI ,60+4xUI	-	-	ns	Input	
		High Speed Mode to/from Low Power	Mode Timin	g				
DSI-CLK+/-	Tclk-pos	Time that the MPU shall continue sending HS clock after the last associated data lane has transition to LP mode	60+52xUI	-	-	ns	Input	
DSI-CLK+/-	Tclk-trail	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	1	-	ns	Input	
DSI-CLK+/-	Ths-exit	Time to drive LP-11 after HS burst	100	-	-	ns	Input	
DSI-CLK+/-	Tclk-prepare	Time to drive LP-00 to prepare for HS transmission	38	1	95	ns	Input	
DSI-CLK+/-	Tclk-term-en	Time-out at clock lane display module to enable HS transmission	-	-	38	ns	Input	
DSI-CLK+/-	Tclk-prepare+ Tclk-zero	Minimum lead HS-0 drive period before starting clock	300	-	-	ns	Input	
DSI-CLK+/-	TCLK-PRE	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8xUI	-	-	ns	Input	

Note 1) Dn = D0, D1, D2 and D3.

Note 2) Two HS transmission can be sent with a break as short as THS-EXIT from each other in continuous clock mode. In discontinuous mode, the break is longer which account TCLK-POS, TCLK-TRAIL and THS-EXIT, before activity in clock and data lanes again.

Data lanes-Low Power Mode to/from High Speed Mode Timing

Clock lanes- High Speed Mode to/from Low Power Mode Timing

Reset Input Timing

Reset input timing

(VDDI= 1.8 V, VCI = 3.3 V, GND=0V, Ta=-30 to 70°C)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit
	tresw	Reset Pulse duration	10	-	-	μs
RESX	t	Decet complete time (Nets 0)	-	-	5(note1,5)	ms
	t REST	Reset complete time (Note 2)	-	-	120(note1,6,7)	ms

Note 1) The reset cancel also includes required time for loading ID bytes, VCOM setting and other settings from EEPR-OM to registers. This loading is done every time when there is H/W reset cancel time (tRT) within 5 ms after a rising edge of RESX.

Note 2) Spike due to an electronstatic discharge on RESX line does not cause irregular system rest according to the Table.

RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 10µs	Reset
Between 5µs and 10µs	Reset Start

Note 3) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In–mode) and then return to Default condition for H/W reset.

Note 4) Spike Rejection also applies during a valid reset pulse as shown below:

Note 5) When Reset applied during Sleep In Mode.

Note 6) When Reset applied during Sleep Out Mode.

Note 7)It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

4.5 MIPI interface (Mobile Industry Processing Interface)

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards.

DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode.

Note: The product only supports Video Mode operation.

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

4.5.1 MIPI Lane Configuration

	MCU (Master) Display Module (Slave)				
	Unidirectional Lane				
Clock Lane+/-	■ Clock Only				
	■ Escape Mode(ULPS Only)				
	Bi-directional Lane				
Data Lane0+/-	■ Forward High-Speed				
Data Laneu+/-	■ Bi-directional Escape Mode				
	■ Bi-directional LPDT				
Data Lane1+/-	Unidirectional				
Data Lane 1+/-	■ Forward High speed				
Data Lane2+/-	Unidirectional				
Data Lanez+/-	■ Forward High speed				
Data Lane3+/-	Unidirectional				
Data Laffes+/-	■ Forward High speed				

The connection between host device and display module is as reference.

Note: Usually, we suggest host can use non-continuous clock mode & non-burst mode with sync events to transmit the video stream to enhance ESD ability.

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

a. Power on Timing Sequence:

VDDI=VCCD=IOVCC=VCCH=1.8V, VCI=VCIP=3.3V

Case A:

Case B:

Symbol	Characteristics	Min.	Typ.	Max.	Units
T _{VDDLRISE}	VDDI Rise time	10	-	-	us
-	Case A: VCI Rise time	130		-	us
T _{VCI_RISE}	Case B: VCI Rise time	40	_		
T _{PS_RES}	VDDI/VCI on to Reset high	5	-	-	ms
T _{RES_PULSE}	Reset low pulse time	10	-	-	us
T _{FS_CMD}	Reset to first command	10	-	-	ms

b. Power off Timing Sequence:

VDDI=VCCD=IOVCC=VCCH=1.8V, VCI=VCIP=3.3V

Uncontrolled Power Off

The uncontrolled power off means a situation when a battery is removed without the controlled power off sequence. There will not be any damages for the display module, or the display module will not cause any damages for the host or lines of the interface. At an uncontrolled power off event, the ILI9881C will force the display to become blank and will not have any abnormal visible effects within 1 second on the display and remains blank until the Power On Sequence powers it up.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V_{CC}	3.3	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
LED Light Bar Input Current	Ι _L	84	mA			

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

Item		Symbol	Condition	Min.	Тур.	Max.	Unit.	Note
Contrast Ratio		CR		800	1000		-	(2), (5),(7)
Response Time		$T_{R+}T_{F}$			25	30	ms	(3) ,(7)
CP Luminance of White		Lcp		300	350		Cd/m ²	(4), (6),(7)
Color Chromaticity	Red	Rx	θ_x =0°, θ_Y =0° Viewing Normal Angle	-0.03	0.620	+0.03	-0.03	(1),(7)
		Ry			0.356			
	Green	Gx			0.328			
		Gy			0.582			
	Blue	Bx			0.148			
		Ву			0.062			
	White	Wx			0.295			
		Wy			0.315			
Viewing Angle	Horizontal	θ_x +	CR≥10	80			0	
		θ_{x} -		80			٥	(1),(5) , (7)
	Vertical	θ _Y +		80			۰	
		θ _Y -		80			۰	
White Variation of 13 Points		δW13p	θx=0°, θY =0°	75	80		75	(5),(6) , (7)

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Center Point Luminance of White (L_{CP}):

Measure the luminance of gray level 255 at center point

$$L_{CP} = L(1)$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 10 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 10 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 13 points

$$\delta W_{13p} = \{ \text{Minimum [L (1)} \sim \text{L (13)}] / \text{Maximum [L (1)} \sim \text{L (13)}] \}^* 100\%$$

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

6. RELIABILITY TEST ITEM

ABSOLUTE RATINGS OF ENVIRONMENT

Item	Test Conditions	Remark	
High Temperature Storage	T= 60°C,240hours	(1) (2)	
Low Temperature Storage	T= -20°C ,240hours	(1) (2)	
High Temperature Operation	T = 50°C,240hours	(1) (2)	
Low Temperature Operation	T = -10°C ,240hours	(1) (2)	
Operate at High Temperature and Humidity	40°C, 90%RH,240hours	(1) (2)	
Thermal Shock	[(-20°C,30min)→(60°C,30min)],100cycle	(1) (2)	

Note:

(1)The test samples have recovery time need more than 2 hours at room temperature before the function check. In the standard conditions, there is no abnormal display function occurred.

(2)After the reliability test, the product only guarantees operational function, but don't guarantee all of the cosmetic specification.

7. Packing Description

The stacked tray per a carton: 18 pcs tray (LCM 34 pcs/1 carton)

NO.	Description	Material
1	LCM	LCM
2	Packing Tray	PET
3	Bag	LDPE
4	Carton Box	Corrugated cardboard

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
 - The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit

Appendix 1. OUTLINE DRAWING

Appendix.2 SYSTEM COVER DESIGN GUIDANCE

