

Contador Ascendente-Descendente, Binario-Gray

- Descendente, que realice la cuenta en códigos Gray y Binario Puro, por medio de señales de control, X1X0, respondiendo a las siguientes condiciones:
 - ❖ Si la señal de entrada X0 es 1, el contador será en código Gray. Si X0 es 0, el contador será código Binario Puro.
 - ❖Si la señal de entrada X1 es 1, el contador será tipo Ascendente. Si X1 es 0, el contador será tipo Descendente.
 - ❖ Maquina de Estados Tipo Moore, utilizando FFD.

Diagrama de Estados

X1	X0	Count
0	0	B↓
0	1	G↓
1	0	B↑
1	1	G↑

Tabla de Estados

IN		EP		PE		Z	
X1	X0	Q1 ⁿ	Q0 ⁿ	Q1n+1	Q0n+1	Z 1	Z0
0	0	0	0	1	1	0	0
0	1	0	0	1	0	0	0
1	0	0	0	0	1	0	0
1	1	0	0	0	1	0	0
0	0	0	1	0	0	0	1
0	1	0	1	0	0	0	1
1	0	0	1	1	0	0	1
1	1	0	1	1	1	0	1
0	0	1	0	0	1	1	0
0	1	1	0	1	1	1	0
1	0	1	0	1	1	1	0
1	1	1	0	0	0	1	0
0	0	1	1	1	0	1	1
0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1
1	1	1	1	1	0	1	1

Las Variables de Próximo
Estado hacen referencia a
las entradas de los
Flip-Flops D. Así mismo, el
Estado Presente hace
referencia a las salidas del
Sistema Z1Z0

CODIFICACION DE						
ESTADOS						
0	0	S0				
0	1	S 1				
1	0	S2				
1	1	S3				

 \rightarrow D0

Mapas de Karnaugh

Para las señales de Salida Z1Z0 no hay necesidad de hacer Mapas de Karnaugh, pues corresponden a las mismas variables de Estado Presente

$$\mathbf{D0} = \overline{\mathbf{Q0}}\overline{\mathbf{X0}} + \overline{\mathbf{X1}}\mathbf{X0}\mathbf{Q1} + \mathbf{X1}\mathbf{X0}\overline{\mathbf{Q1}}$$

 $\textbf{D1} = X1\overline{Q1}Q0 + X1X0Q0 + \overline{X1}X0\overline{Q0} + \overline{X1}\overline{Q1}\overline{Q0} + \overline{X1}\overline{X0}Q1Q0 + X1\overline{X0}Q1\overline{Q0}$

Simulation Model: Timing

