

ESC201: Introduction to Electronics Module 6: Digital Circuits

Dr. Shubham Sahay,
Associate Professor,
Department of Electrical Engineering,
IIT Kanpur

Design Flow

Representation of a Digital System

Description in words

y = 1 when x_1 is 0 and x_2 is 1

Truth Table

Indicates when response y is 'true'

X ₁	X_2	У
0	0	0
0	1	1
1	0	0
1	1	0

Boolean expression

$$y = \overline{x_1} \cdot x_2$$

SoP Form With Min Terms for Two Inputs

A min term is a product (AND) that contains all the variables used in a function

The function is the sum (OR) of min terms for which output function is 'True'

MSB X	LSB	min term
0	0	<u>x</u> . y m0
0	1	x. <u>y</u> m1
1	0	x.y m2
1	1	x.ym3

$$f_2 = \sum (0,2,3) = ?$$
 $f_2 = \overline{x}.\overline{y} + x.\overline{y} + x.y$

Min Terms for Three Inputs

$$f_2 = \sum (1, 4, 7) = ?$$

$$f_2 = x \cdot y \cdot z + x \cdot y \cdot z + x \cdot y \cdot z$$

PoS Form With Max Terms for Two Inputs

A max term is a sum (OR) that contains all the variables used in a function
The function is the product (AND) of max terms for which output function is 'False'

MSB X	LSB Y	Max term
0	0	x + <u>y</u> M0 x + y M1
0	1	x + y M1
1	0	x + y M2
1	1	$\sqrt{x} + \sqrt{y} = M3$

Example

$$egin{array}{c|ccccc} x & y & f_1 & f_1 & = \Pi(0,3) \\ \hline 0 & 0 & 0 & f_1 & f_1 & = M_0.M_3 \\ 1 & 0 & 1 & f_1 & = (x+y).(\overline{x}+\overline{y}) \\ 1 & 1 & 0 & f_1 & f_2 & f_3 & f_4 & f_4 & f_5 \\ \hline \end{array}$$

$$f_2 = \Pi(1,2) = ?$$

$$f_2 = (x + \overline{y}).(\overline{x} + y)$$

Max Terms for Three Variables

MSB X y Z Max. terms

0 0 0 0
$$x + y + z$$
 M0
0 0 1 $x + y + z$ M1
0 1 0 $x + y + z$ M2
0 1 1 $x + y + z$ M3
1 0 0 $x + y + z$ M4
1 0 1 $x + y + z$ M4
1 0 1 $x + y + z$ M5
1 1 0 $x + y + z$ M6
1 1 1 $x + y + z$ M7

$$f_1 = \Pi(1,5,7) = ?$$

$$f_1 = \Pi(1,5,7) = ?$$
 $f_1 = (x + y + \overline{z}).(\overline{x} + y + \overline{z}).(\overline{x} + \overline{y} + \overline{z})$

Product of Sum form of function for three input variables

But Can We Simplify Final Expression?

Term No.	Min term	Max term	<u>X</u> ₁	X ₂	X ₃	у			
0.	$\overline{x_1}.\overline{x_2}.\overline{x_3}$	$x_1 + x_2 + x_3$	0	0	0	0			
1.	$\overline{x_1}.\overline{x_2}.x_3$	$x_1 + x_2 + \overline{x_3}$	0	0	1	1	By inspection		
2.	$\overline{x_1}$. x_2 . $\overline{x_3}$	$x_1 + \overline{x_3} + x_3$	0	1	0	0			
3.	$\overline{x_1}$. x_2 . x_3	$x_1 + \overline{x_2} + \overline{x_3}$	0	1	1	1	x_1 and x_2 are "don't cares"		
4.	$x_1.\overline{x_2}.\overline{x_3}$	$\overline{x_1} + x_2 + x_3$	1	0	0	0			
5.	$x_1.\overline{x_2}.x_3$	$\overline{x_1} + x_2 + \overline{x_3}$	1	0	1	1	Typical simplifications are		
6.	$x_1.x_2.\overline{x_3}$	$\overline{x_1} + \overline{x_2} + x_3$	1	1	0	0	not always so obvious!		
7.	x_1, x_2, x_3	$\overline{x_1} + \overline{x_2} + \overline{x_3}$	1	1	1	1			
SOP form: $y = \sum_{1}^{3} (1,3,5,7) = \overline{x_1}.\overline{x_2}.x_3 + \overline{x_1}.x_2.x_3 + x_1.\overline{x_2}.x_3 + x_1.\overline{x_2}.x_3$									

SOP form:
$$y = \sum (1,3,5,7) = \overline{x_1}.\overline{x_2}.x_3 + \overline{x_1}.x_2.x_3 + x_1.\overline{x_2}.x_3 + x_1.\overline{x_2}.x_3 + x_1.x_2.x_3$$

POS form: $y = \Pi(0,2,4,6) = (x_1 + x_2 + x_3).(x_1 + \overline{x_2} + x_3).(\overline{x_1} + x_2 + x_3).(\overline{x_1} + \overline{x_2} + x_3)$

On simplification, $y = x_3$ How to arrive at simplified form efficiently?

A Case for Simplified Expression

Truth Table Boolean $y = \overline{x_1}.\overline{x_2}.x_3 + \overline{x_1}.x_2.x_3 + x_1.\overline{x_2}.x_3 + x_1.\overline{x_2}.x_3$

Truth Table					
X ₁	X_2	X ₃	У		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	0		
1	1	1	1		

$$y = \overline{x_1}.\overline{x_2}.x_3 + \overline{x_1}.x_2.x_3 + x_1.\overline{x_2}.x_3 + x_1.x_2.x_3$$

= $(x_1 + x_2 + x_3).(x_1 + \overline{x_2} + x_3).(\overline{x_1} + x_2 + x_3).(\overline{x_1} + \overline{x_2} + x_3)$

Simplified **Boolean Expression:**

$$y = x_3$$

The actual hardware required x_3

Goal of Simplification

- 1. Minimize number of product (or sum) terms
- 2. Minimize number of literals in each term

Simplification \Rightarrow Minimization

If nothing is known about the digital design, the above is a good thumb-rule.

There may some exceptions for some design constraints.

Minimization

$$y = \overline{x_1} \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + x_1 \cdot x_2 \cdot x_3$$

$$y = \overline{x_1} \cdot x_3 \cdot (\overline{x_2} + x_2) + x_1 \cdot x_3 \cdot (\overline{x_2} + x_2)$$

$$y = \overline{x_1} \cdot x_3 + x_1 \cdot x_3$$

$$y = (\overline{x_1} + x_1).x_3$$

$$y = x_3$$

Principle used:
$$x + \overline{x} = 1$$

$$f = \overline{x}. \overline{y} + \overline{x}. y + x. \overline{y}$$

Apply the Principle: $x + \overline{x} = 1$ to simplify

$$f = \overline{x}.(\overline{y} + y) + x.\overline{y}$$

$$f = \overline{x} + x.\overline{y}$$

How do we simplify further?

Principle used :
$$x + x = x$$
 $-$

$$f = x. \ y + x. \ y + x. \ y = x. \ y + x. \ y + x. \ y + x. \ y$$

$$f = x. \ y + x. \ y + x. \ y + x. \ y$$

$$= x. \ (y + y) + (x + x). \ y = x + y$$

Example

Simplify

Simplification of Boolean Expressions

Principle:
$$x + \overline{x} = 1$$
 and $x + x = x$

But factorising appropriately is a challenge!

Need a systematic and simpler method for applying these two principles

Karnaugh Map (K map) is a popular technique for carrying out simplification

It represents the information in problem in such a way that the two principles become easy to apply

K-map Representation of Truth Table

X	У	min term
0	0	<u>x</u> . y m0
0	1	x. <u>y</u> m1
1	0	x . y m2
1	1	$1 \times 10^{\circ} \text{ m}$

$$f_2 = \sum (1,2,3)$$

$$0 \quad 0 \quad 1$$

$$1 \quad 1 \quad 1$$

3-variable K-map representation

X	У	Z	min terms	-
0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	x.y.z x.y.z x.y.z x.y.z x.y.z x.y.z x.y.z x.y.z	m0 m1 m2 m3 m4 m5 m6

XXX	00	01	_11_	10_
0	m_0	m ₁	m_3	m_2
1	m ₄	m_5	m ₇	m_6

x y z 0 0 0	f O	XXX	00	01	11	10_
0 0 1 0 1 0	0	0	0	1	1	0
0 1 1 1 0 0 1 0 1	0	1	0	1	1	0
1 1 0	0	•				

$$f = x.y.z + x.y.z + x.y.z + x.y.z$$

Please give it a try to find the simplest expression from the K-map.

4-variable K-map representation

W	X	У	Z	min terms	_	VZ	00	01	11	10_
0	0	0	0	m_0		WX)	m_0	m_1	m_3	m_2
0	0	0	1	$m_{\scriptscriptstyle{1}}$		00	U	1	3	2
0	0	1	0	m_2		01	m_4	m_5	m ₇	m ₆
0	0	1	1	m ₃	•	11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
1	1	1	0	m ₁₄		10	m ₈	m ₉	m ₁₁	m ₁₀
1	1	1	1	l m ₁₅			· ·	3	11	10

WX VZ	00	01	11	10
00	1	0	1	0
01	0	1	1	0
11	1	0	0	1
10	1	0	0	0

$$f = \overline{w.x.y.z} + \overline{w.x.y.z}$$

Minimisation using K-map

Example

$$f_2 = \sum (2,3)$$

$$f = x. y + x. y$$

$$f = x.(\bar{y} + y)$$

$$f = x$$

Combine terms which differ in only one bit position. As a result, whatever is common remains.

$$f = \bar{x}. y + x. y$$

$$f = (\overline{x} + x).y$$

$$\Rightarrow$$
 f = y

Example

$$\Rightarrow f = \overline{y}$$

$$\Rightarrow$$
 f = \bar{x}

$$f_2 = \sum (1,2,3)$$

$$f = x.\overline{y} + x.y + \overline{x}.y$$

$$f = x.(\overline{y} + y) + \overline{x}.y$$

$$= x + \overline{x}.y$$

$$f = x + \overline{x}.y + x.y$$

$$= x + (\overline{x} + x).y$$

$$= x + y$$

The idea is to cover all the 1's with as few terms as possible

3-variable Minimisation

$$f = \overline{x}.\overline{y}.\overline{z} + y.z + x.z$$

 $f = x \cdot z + x \cdot z$

Remember the K-map folds around!

$$f = (x.y.z + x.y.z + x.y.z + x.y.z)$$

$$f = x. y + x. y$$

$$f = x.(\bar{y} + y) = x$$

Example

Example

$$f = x + \overline{z}$$

Can We Group 3 Min Terms?

Can we do this?

Note that each encirclement should represent a single product term.

In this case it does not represent a single product term.

$$f = x.\overline{y}.\overline{z} + x.\overline{y}.z + x.y.z$$
$$= x.\overline{y} + x.z$$

We do not get a single product term.

Grouping in 3 terms will not help in minimization of terms in function.

Reordering of Numbering not Beneficial for Simplification

Can we use K-map with the following ordering of variables?

XXZ	,	0.4	10	
X	00	01	10	11
0	0	0	0	0
1	0	1	1	0

NOT A GOOD IDEA!

Can we combine these two terms into a single term?

$$f = x.y.z + x.y.z$$

$$= x.(y.z + y.z)$$

Note that no simplification is possible here.

K-map requires variable to change one bit between adjacent cells

- Continued -

These two terms can be combined into a single term but it is not easy to show that on the diagram.

$$f = x.y.z + x.y.z$$

= $x.(y+y).z = x.z$

Kmap requires information to be represented in such a way that it is easy to apply the principle x+x=1