YZV 311E "Data Mining" Term Project

E-Mail Spam Classification

Group 8

- Abdullah Bilici, 150200330
- Bora Boyacıoğlu, 150200310

Growing Importance & Key Limitations

Importance

- Scams: Individuals
- Malware: Compaines
- Lots of Junk

Limitations

- Hard to distinguish
- Ineffective Algorithms
- False Categorising

Highlights

- Filtering the punctuations, stopwords, etc. after vectorising
- Using different models and comparing them for the model
- Hyperparameter tuning
- Experimenting on a special BERT model

PREPROCESSING

MODEL EVALUATION

BERT

Related Studies

There are important researches and competitive works around for this task.

- Big companies like Google, Apple and Microsoft for personal addresses
- Smaller companies for their business related services
- Kaggle competition in 2011
- Our dataset's model: Harsh Sinha

System Architecture: Pre-Processing

Tokenising

- Removing stop words and punctuations
- Lowercasing
- Lemmatisation

Feature Modelling

- TF-IDF
 - Term Frequency
 - Inverse Document Frequency
- Feature Reduction

System Architecture: Model Creation

Models

- Multinomial Naive Bayes
 - A: 0.86, P: 1.00, R: 0.40, F1: 0.58
- Support Vector Machines
 - A: 0.95, P: 0.99, R: 0.80, F1: 0.89
- Random Forest
 - A: 0.98, P: 0.98, R: 0.93, F1: 0.96
- Logistic Regression
 - A: 0.90, P: 1.00, R: 0.58, F1: 0.74

Hyperparameter Tuning

- Random Forest
 - n estimators: 400
 - min_samples_split: 2
 - min samples leaf: 1
 - max features: Square Root

System Architecture: BERT

Model Creation

- Creation
- Training
- Loop

Evaluation

- Accuracy: 0.98
- Precision: 0.96
- Recall: 0.94
- F1 Score: 0.95

Dataset

- Our dataset consists of two columns: text and spam, which contains the email content and an indicator for spam/ham.
- There are 5695 rows.
- %76 of them are ham, the rest are categorised as spam.

Experimental Results

Random Forest

After hyperparameter tuning, the results are:

```
    Accuracy: 0.97
    Precision: 0.97
    Recall: 0.94
    F1 Score: 0.95
```

Using the following properties:

```
n_estimators: 400
min_samples_split: 2
min_samples_leaf: 1
max features: Square Root
```

BERT

 With 20 epochs and 0.0002 learning rate, the results are:

```
Accuracy: 0.98Precision: 0.96Recall: 0.94
```

F1 Score : 0.95

Conclusions & Thanks

- We got pretty high results, which seems to be the maximum with our limitations.
- There are of course more ways to improve these, with much complex models.
- Thank you for listening to our presentation.