M2Y1G64TU88D7B

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

240pin Unbuffered DDR2 SDRAM MODULE

Based on 128Mx8 DDR2 SDRAM D-die

Features

Performance:

		PC2-5300	PC2-6400	
	Speed Sort	-3C	-AC	Unit
D	IMM CAS Latency*	5	5	
f CK	Clock Frequency	333	400	MHz
t CK	Clock Cycle	3	2.5	ns
f DQ	DQ Burst Frequency	667	800	Mbps

- JEDEC Standard 240-pin Dual In-Line Memory Module
- 128Mx64 and 256Mx64 DDR2 Unbuffered DIMM based on Elixir 128Mx8 DDR2 SDRAM D-die component
- Double Data Rate architecture; two data transfer per clock cycle
- Differential bi-directional data strobe (DQS & DQS)
- DQS is edge-aligned with data for reads and is center-aligned with data for writes
- Differential clock inputs (CK & CK)
- Intended for 333MHz/400MHz applications
- Inputs and outputs are SSTL-18 compatible
- $V_{DD} = V_{DDQ} = 1.8V \pm 0.1V$
- 7.8 µs Max. Average Periodic Refresh Interval

- Programmable Operation:
- Device CAS Latency: 3, 4, 5
- Burst Length: 4, 8
- · Auto Refresh (CBR) and Self Refresh Modes
- · Automatic and controlled precharge commands
- 14/10/1 Addressing (row/column/rank) 1GB
- 14/10/2 Addressing (row/column/rank) 2GB
- Serial Presence Detect
- On Die Termination (ODT)
- OCD impedance adjustment.
- Gold contacts
- · SDRAMs in 60-ball BGA Package
- · RoHs Compliance.

Description

M2Y1G64TU88D0B, M2Y2G64TU8HD0B, M2Y1G64TU88D4B, M2Y2G64TU8HD4B, M2Y1G64TU88D5B, M2Y2G64TU8HD5B, M2Y1G64TU88D6B, M2Y2G64TU8HD6B and M2Y1G64TU88D7B are 240-Pin Double Data Rate 2 (DDR2) Synchronous DRAM Unbuffered Dual In-Line Memory Module (UDIMM), organized as one rank 128Mx64 and two ranks 256Mx64 high-speed memory array. M2Y1G64TU88D0B, M2Y1G64TU88D4B, M2Y1G64TU88D5B, M2Y1G64TU88D6B and M2Y1G64TU88D7B use eight 128Mx8 DDR2 SDRAMs and M2Y2G64TU8HD0B M2Y2G64TU8HD4B, M2Y2G64TU8HD5B and M2Y2G64TU8HD6B use sixteen 128Mx8 DDR2 SDRAMs in BGA packages. These DIMMs are manufactured using raw cards developed for broad industry use as reference designs. The use of these common design files minimizes electrical variation between suppliers. All Elixir DDR2 SDRAM DIMMs provide a high-performance, flexible 8-byte interface in a 5.25" long space-saving footprint.

The DIMM is intended for use in applications operating up to 333MHz (or 400MHz) clock speeds and achieves high-speed data transfer rates of up to 667Mbps (or 800Mbps). Prior to any access operation, the device CAS latency and burst / length /operation type must be programmed into the DIMM by address inputs A0-A13 and I/O inputs BA0, BA1 and BA2 using the mode register set cycle.

The DIMM uses serial presence-detect implemented via a serial 2,048-bit EEPROM using a standard IIC protocol. The first 128 bytes of serial PD data are programmed and locked during module assembly. The remaining 128 bytes are available for use by the customer.

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Ordering Information

Part Number	Spe	eed		Organization	Leads	Power	Note
M2Y1G64TU88D0B-3C	333MHz (3.00ns @ CL = 5)	DDR2-667	PC2-5300				
M2Y1G64TU88D0B-AC	400MHz (2.50ns @ CL = 5)	DDR2-800	PC2-6400				
M2Y1G64TU88D4B-3C	333MHz (3.00ns @ CL = 5)	DDR2-667	PC2-5300				
M2Y1G64TU88D4B-AC	400MHz (2.50ns @ CL = 5)	DDR2-800	PC2-6400				
M2Y1G64TU88D5B-3C	333MHz (3.00ns @ CL = 5)	DDR2-667	PC2-5300	128Mx64			
M2Y1G64TU88D5B-AC	400MHz (2.50ns @ CL = 5)	DDR2-800	PC2-6400				
M2Y1G64TU88D6B-3C	333MHz (3.00ns @ CL = 5)	DDR2-667	PC2-5300				
M2Y1G64TU88D6B-AC	400MHz (2.50ns @ CL = 5)	DDR2-800	PC2-6400				
M2Y1G64TU88D7B-AC	400MHz (2.50ns @ CL = 5)	DDR2-800	PC2-6400		GOLD	1.8V	
M2Y2G64TU8HD0B-3C	333MHz (3.00ns @ CL = 5)	DDR2-667	PC2-5300				
M2Y2G64TU8HD0B-AC	400MHz (2.50ns @ CL = 5)	DDR2-800	PC2-6400				
M2Y2G64TU8HD4B-3C	333MHz (3.00ns @ CL = 5)	DDR2-667	PC2-5300				
M2Y2G64TU8HD4B-AC	400MHz (2.50ns @ CL = 5)	DDR2-800	PC2-6400	05014.04			
M2Y2G64TU8HD5B-3C	333MHz (3.00ns @ CL = 5)	DDR2-667	PC2-5300	256Mx64			
M2Y2G64TU8HD5B-AC	400MHz (2.50ns @ CL = 5)	DDR2-800	PC2-6400				
M2Y2G64TU8HD6B-3C	333MHz (3.00ns @ CL = 5)	DDR2-667	PC2-5300				
M2Y2G64TU8HD6B-AC	400MHz (2.50ns @ CL = 5)	DDR2-800	PC2-6400				

Pin Description

CK0~CK2 CK0~CK2	Differential Clock Inputs	DQ0-DQ63	Data input/output
CKE0, CKE1	Clock Enable	DQS0-DQS8	Bidirectional data strobes
RAS	Row Address Strobe	DM0-DM8	Input Data Mask
CAS	Column Address Strobe	DQS0-DQS8	Differential data strobes
WE	Write Enable	VDD	Power (1.8V)
CSO, CS1	Chip Selects	VREF	Ref. Voltage for SSTL_18 inputs
A0-A9, A0-A13	Address Inputs	VDDSPD	Serial EEPROM positive power supply
A10/AP	Column Address Input/Auto-precharge	Vss	Ground
BA0 ~ BA2	SDRAM Bank Address Inputs	SCL	Serial Presence Detect Clock Input
RESET	Reset pin	SDA	Serial Presence Detect Data input/output
ODT0, ODT1	On-die termination control lines	SA0 ~ SA2	Serial Presence Detect Address Inputs
NC	No Connect		
Note: ODT1, CKE	1 and CST are only support in 2GB module type.		

1GB: 128M x 64 / 2GB: 256M x 64 **Unbuffered DDR2 SDRAM DIMM**

Pinout

Pino	ut										
Pin	Front	Pin	Front	Pin	Front	Pin	Back	Pin	Back	Pin	Back
1	V_{REF}	42	NC	82	V _{SS}	121	V_{SS}	162	NC	202	DM4
2	V _{SS}	43	NC	83	DQS4	122	DQ4	163	V _{SS}	203	NC
3	DQ0	44	V _{SS}	84	DQS4	123	DQ5	164	NC	204	V_{SS}
4	DQ1	45	NC ⁻	85	V _{SS}	124	V _{SS}	165	NC	205	DQ38
5	V _{SS}	46	NC	86	DQ34	125	DM0	166	V_{SS}	206	DQ39
6	DQS0	47	V_{SS}	87	DQ35	126	NC	167	NC	207	V_{SS}
7	DQS0	48	NC	88	V _{SS}	127	V_{SS}	168	NC	208	DQ44
8	V _{SS}	49	NC	89	DQ40	128	DQ6	169	V_{SS}	209	DQ45
9	DQ2	50	V _{SS}	90	DQ41	129	DQ7	170	V_{DDQ}	210	V_{SS}
10	DQ3	51	V_{DDQ}	91	V _{SS}	130	V_{SS}	171	NC,CKE1	211	DM5
11	V _{SS}	52	CKE0	92	DQS5	131	DQ12	172	V_{DD}	212	NC
12	DQ8	53	V_{DD}	93	DQS5	132	DQ13	173	NC	213	V_{SS}
13	DQ9	54	BA2	94	Vss	133	Vss	174	NC	214	DQ46
14	V _{SS}	55	NC	95	DQ42	134	DM1	175	V_{DDQ}	215	DQ47
15	DQS1	56	V_{DDQ}	96	DQ43	135	NC	176	A12	216	V_{SS}
16	DQS1	57	A11	97	V_{SS}	136	V_{SS}	177	A9	217	DQ52
17	V _{SS}	58	A7	98	DQ48	137	CK1	178	V_{DD}	218	DQ53
18	NC	59	V_{DD}	99	DQ49	138	CK1	179	A8	219	Vss
19	NC	60	A5	100	V _{SS}	139	V _{SS}	180	A6	220	CK2
20	V_{SS}	61	A4	101	SA2	140	DQ14	181	V_{DDQ}	221	CK2
21	DQ10	62	V_{DDQ}	102	NC	141	DQ15	182	А3	222	V_{SS}
22	DQ11	63	A2	103	V_{SS}	142	V _{SS}	183	A1	223	DM6
23	V _{SS}	64	V_{DD}	104	DQS6	143	DQ20	184	V_{DD}	224	NC
24	DQ16		KEY	105	DQS6	144	DQ21		KEY	225	V_{SS}
25	DQ17	65	V _{SS}	106	V_{SS}	145	V_{SS}	185	CK0	226	DQ54
26	V _{SS}	66	V _{SS}	107	DQ50	146	DM2	186	CK0	227	DQ55
27	DQS2	67	VDD	108	DQ51	147	NC	187	VDD	228	V _{SS}
28	DQS2	68	NC	109	V _{SS}	148	V _{SS}	188	A0	229	DQ60
29	V _{SS}	69	VDD	110	DQ56	149	DQ22	189	V_{DD}	230	DQ61
30	DQ18	70	A10/AP	111	DQ57	150	DQ23	190	BA1	231	V_{SS}
31	DQ19	71	BA0	112	V_{SS}	151	V_{SS}	191	V_{DDQ}	232	DM7
32	V _{SS}	72	VDDQ	113	DQS7	152	DQ28	192	RAS	233	NC
33	DQ24	73	WE	114	DQS7	153	DQ29	193	CS0	234	V _{SS}
34	DQ25	74	CAS	115	V_{SS}	154	V_{SS}	194	V_{DDQ}	235	DQ62
35	V _{SS}	75	V_{DDQ}	116	DQ58	155	DM3	195	ODT0	236	DQ63
36	DQS3	76	NC, CS1	117	DQ59	156	NC	196	A13	237	V_{SS}
37	DQS3	77	NC,ODT1	118	V_{SS}	157	V _{SS}	197	V_{DD}	238	V_{DDSPD}
38	V _{SS}	78	V_{DDQ}	119	SDA	158	DQ30	198	V _{SS}	239	SA0
39	DQ26	79	V _{SS}	120	SCL	159	DQ31	199	DQ36	240	SA1
40	DQ27	80	DQ32			160	Vss	200	DQ37		
41	V _{SS}	81	DQ33			161	NC	201	V _{SS}		

1. NC = No Connect.

2. $\overline{\text{CS1}}$, ODT1 and CKE1 (Pins 76, 77 and 171) are only support in 2GB module type.

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Input/Output Functional Description

Symbol	Type	Polarity	Function
CK0, CK1, CK2	(SSTL)	Positive Edge	The positive line of the differential pair of system clock inputs which drives the input to the on-DIMM PLL. All the DDR2 SDRAM address and control inputs are sampled on the rising edge of their associated clocks.
$\overline{\text{CK0}}$, $\overline{\text{CK1}}$, $\overline{\text{CK2}}$	(SSTL)	Negative Edge	The negative line of the differential pair of system clock inputs which drives the input to the on-DIMM PLL.
CKE0, CKE1	(SSTL)	Active High	Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self Refresh mode. CKE1 apply on 2GB UDIMM only.
CSO, CS1	(SSTL)	Active Low	Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. $\overline{\text{CS1}}$ apply on 2GB UDIMM only.
RAS, CAS, WE	(SSTL)	Active Low	When sampled at the positive rising edge of the clock, \overline{RAS} , \overline{CAS} , \overline{WE} define the operation to be executed by the SDRAM.
VREF	Supply		Reference voltage for SSTL-18 inputs
VDDQ	Supply		Isolated power supply for the DDR SDRAM output buffers to provide improved noise immunity
ODT0, ODT1	Input	Active High	On-Die Termination control signals. ODT1 apply on 2GB UDIMM only.
BA0 – BA2	(SSTL)	-	Selects which SDRAM bank is to be active.
A0 - A9 A10/AP A11 - A13	(SSTL)	-	During a Bank Activate command cycle, A0-A13 defines the row address (RA0-RA13) when sampled at the rising clock edge. During a Read or Write command cycle, A0-A9 defines the column address (CA0-CA9) when sampled at the rising clock edge. In addition to the column address, AP is used to invoke "Autoprecharge" operation at the end of the Burst Read or Write cycle. If AP is high, Autoprecharge's selected and BA0/BA1 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0/BA1 to control which bank(s) to precharge. If AP is high all 4 banks will be precharged regardless of the state of BA0/BA1. If AP is low, then BA0/BA1 are used to define which bank to pre-charge.
DQ0 - DQ63	(SSTL)	Active High	Data and Check Bit Input /Output pins.
VDD, VSS	Supply		Power and ground for the DDR2 SDRAM input buffers and core logic
DQS0 - DQS8 DQS0 - DQS8	(SSTL)	Negative and Positive Edge	Data strobe for input and output data
DM0 – DM8	Input	Active High	The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect. DM8 is associated with check bits CB0-CB7, and is not used on x64 modules.
SA0 – SA2		-	Address inputs. Connected to either VDD or VSS on the system board to configure the Serial Presence Detect EEPROM address.
SDA		-	This bi-directional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to V DD to act as a pull-up.
SCL		-	This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to V DD to act as a pull-up.
V DDSPD	Supply		Serial EEPROM positive power supply.

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Functional Block Diagram (1GB, 1 Rank, 128Mx8 DDR2 SDRAMs)

► SDA

D0-D7

SCL

Vss

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Functional Block Diagram (2GB, 2 Ranks, 128Mx8 DDR2 SDRAMs)

BA0-BA2—W→ BA0-BA2: SDRAMs D0-D15
A0-A13—W→ A0-A13: SDRAMs D0-D15
RAS —W→RAS: SDRAMs D0-D15
CAS —W→CAS: SDRAMs D0-D15
WE —W→WE: SDRAMs D0-D15
CKE0 — CKE: SDRAMS D0-D7
CKE1 — → CKE: SDRAMS D0-D7
ODT1 — → ODT: SDRAMS D0-D7
ODT1 — ODT: SDRAMS D0-D7

(elixir

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Serial Presence Detect -- Part 1 of 2 (1GB)

128Mx64 1 RANK UNBUFFERED DDR2 SDRAM DIMM based on 128Mx8, 8Banks, 8K Refresh, 1.8V DDR2 SDRAMs with SPD

5.	5	SPD Ent	ry Value		Data Entry ecimal)	Note
Byte	Description	PC2-5300 -3C	PC2-6400 -AC	PC2-5300 -3C	PC2-6400 -AC	
0	Number of Serial PD Bytes Written during Production	12	8	8	80	
1	Total Number of Bytes in Serial PD device	25	6	0	08	
2	Fundamental Memory Type	DD	R2	0	8	
3	Number of Row Addresses on Assembly	14	4	0	E	
4	Number of Column Addresses on Assembly	10)	0	A	
5	Number of DIMM Ranks	1 rank, Hei	ght=30mm	6	0	
6	Data Width of Assembly	X6	_	4	.0	
7	Reserved	Unde	fined	0	0	
8	Voltage Interface Level of this Assembly	SSTL	1.8V	0	5	
9	DDR2 SDRAM Device Cycle Time at CL=X	3ns	2.5ns	30	25	
10	DDR2 SDRAM Device Access Time from Clock at CL=X	0.45ns	0.4ns	45	40	
11	DIMM Configuration Type	Non pari	ity/ECC		0	
12	Refresh Rate/Type	7.8		8	2	
13	Primary DDR2 SDRAM Width	X			8	
14	Error Checking DDR2 SDRAM Device Width	Unde	-			
15	Reserved	Unde		00		
16	DDR2 SDRAM Device Attributes: Burst Length Supported	4,		00 0C		
17	DDR2 SDRAM Device Attributes: Number of Device Banks	.,		08		
	DDR2 SDRAM Device Attributes: CAS Latencies			00		
18	Supported	3,4	,5	38		
19	DIMM Mechanical Characteristics	x ≤ 4.10) (mm)	0	1	
20	DDR2 SDRAM DIMM Type Information	UDIMM (1:	33.35mm)	0	2	
21	DDR2 SDRAM Module Attributes:	Normal	DIMM	0	0	
22	DDR2 SDRAM Device Attributes: General	Support we 50Ω ODT,	eak driver, and PASR	0	7	
23	Minimum Clock Cycle at CL=X-1	3.75	īns	3	D	
24	Maximum Data Access Time from Clock at CL=X-1	0.5	ns	5	0	
25	Minimum Clock Cycle Time at CL=X-2	5.0	ns	5	0	
26	Maximum Data Access Time from Clock at CL=X-2	0.6	ns	6	0	
27	Minimum Row Precharge Time (t _{RP})	15ns	12.5ns	3C	32	
28	Minimum Row Active to Row Active delay (t _{RRD})	7.5	ns	1	E	
29	Minimum RAS to CAS delay (t _{RCD})	15ns	12.5ns	3C	32	
30	Minimum RAS Pulse Width (t _{RAS})	451	าร	2	D	
31	Module Bank Density	1G	iB	0	1	
32	Address and Command Setup Time Before Clock (t _{is})	0.20ns	0.17ns	20 17		
33	Address and Command Hold Time After Clock (t _{IH})	0.27ns 0.25ns 27 25		25		
34	Data Input Setup Time Before Clock (t _{DS})	0.10ns	0.05ns	10	05	
35	Data Input Hold Time After Clock (t _{DH})	0.17ns	0.12ns	17	12	
36	Write Recovery Time (twR)	15.0		3	С	
37	Internal Write to Read Command delay (t _{WTR})	7.5			E	
38	Internal Read to Precharge delay (t _{RTP})	7.5			E	
39	Reserved	Unde			0	+

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Serial Presence Detect -- Part 2 of 2 (1GB)

128Mx64 1 RANK UNBUFFERED DDR2 SDRAM DIMM based on 128Mx8, 8Banks, 8K Refresh, 1.8V DDR2 SDRAMs with SPD

Byte	Description	SPD Entr	y Value	Serial PD D (Hexade		Note
Byte	Description	PC2-5300 -3C	PC2-6400 -AC	PC2-5300 -3C	PC2-6400 -AC	Note
40	Extension of Byte 41 t_{RC} and Byte 42 t_{RFC}	The number below a decimal point of tRC and tRFC are 0, tRFC is less than 256ns.		06	36	
41	Minimum Core Cycle Time (t _{RC})	60.0ns	57.5ns	3C	39	
42	Min. Auto Refresh Command Cycle Time (t _{RFC})	127.	5ns	7F	=	
43	Maximum Clock Cycle Time (tck)	8.0	ns	80)	
44	Max. DQS-DQ Skew Factor (t _{DQS})	0.24ns 0.20ns		18	14	
45	Read Data Hold Skew Factor (t _{QHS})	0.34ns	0.30ns	22	1E	
46	PLL Relock Time	Undefined 00)		
46-61	Reserved	Undef	ined	00)	
62	SPD Revision	1.3	3	13	3	
63	Checksum for bytes 0-62	Checksu	m Data	17	FD	
64-71	Manufacture's JEDEC ID Code	NAN	IYA	7F7F7F0B0	0000000	
72	Module Manufacturing Location	Manufacturing Code				
73-91	Module Part number	Module Part Number in ASCII				1
92-255	Reserved	Undef	ined			

Note 1:

M2Y1G64TU88D0B-3C → 4D325931473634545538384430422D33432020

M2Y1G64TU88D0B-AC → 4D325931473634545538384430422D41432020

M2Y1G64TU88D4B-3C → 4D325931473634545538384434422D33432020

M2Y1G64TU88D4B-AC → 4D325931473634545538384434422D41432020

M2Y1G64TU88D5B-3C → 4D325931473634545538384435422D33432020

M2Y1G64TU88D5B-AC → 4D325931473634545538384435422D41432020

 $\texttt{M2Y1G64TU88D6B-3C} \rightarrow \texttt{4D325931473634545538384436422D33432020}$

M2Y1G64TU88D6B-AC → 4D325931473634545538384436422D41432020

M2Y1G64TU88D7B-AC → 4D325931473634545538384437422D41432020

(elixir

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Serial Presence Detect -- Part 1 of 2 (2GB)

256Mx64 2 RANKs UNBUFFERED DDR2 SDRAM DIMM based on 128Mx8, 8Banks, 8K Refresh, 1.8V DDR2 SDRAMs with SPD

D. I.	Description	SPD Ent	ry Value	Serial PD D (Hexade		Note
Byte	Description	PC2-5300 -3C	PC2-6400 -AC	PC2-5300 -3C	PC2-6400 -AC	
0	Number of Serial PD Bytes Written during Production	12	8	80)	
1	Total Number of Bytes in Serial PD device	25	6	08	}	
2	Fundamental Memory Type	DD	R2	30	}	
3	Number of Row Addresses on Assembly	14	4	OE		
4	Number of Column Addresses on Assembly	10)	0.4	\	
5	Number of DIMM Ranks	2 ranks, He	ight=30mm	61		
6	Data Width of Assembly	X6	i4	40)	
7	Reserved	Unde	fined	00		
8	Voltage Interface Level of this Assembly	SSTL	_1.8V	05	j	
9	DDR2 SDRAM Device Cycle Time at CL=X	3ns	2.5ns	30	25	
10	DDR2 SDRAM Device Access Time from Clock at CL=X	0.45ns	0.4ns	45	40	
11	DIMM Configuration Type	Non par	ty/ECC	00)	
12	Refresh Rate/Type	7.8		82)	
13	Primary DDR2 SDRAM Width	X		08	}	
14	Error Checking DDR2 SDRAM Device Width	Unde	fined	00	1	
15	Reserved	Unde		00		
16	DDR2 SDRAM Device Attributes: Burst Length Supported	4,8		0C		
17	DDR2 SDRAM Device Attributes: Number of Device Banks			08		
18	DDR2 SDRAM Device Attributes: CAS Latencies Supported	3,4,5		38		
19	DIMM Mechanical Characteristics	x ≤ 4.1() (mm)	01		
20	DDR2 SDRAM DIMM Type Information	UDIMM (1:	,	02	<u> </u>	
21	DDR2 SDRAM Module Attributes:	Normal	•	00)	
22	DDR2 SDRAM Device Attributes: General	Support we 50Ω ODT,		07	,	
23	Minimum Clock Cycle at CL=X-1	3.75		30)	
24	Maximum Data Access Time from Clock at CL=X-1	0.5	ns	50)	
25	Minimum Clock Cycle Time at CL=X-2	5.0	ns	50)	
26	Maximum Data Access Time from Clock at CL=X-2	0.6	ns	60)	
	Minimum Row Precharge Time (t _{RP})	15ns	12.5ns	3C	32	
28	Minimum Row Active to Row Active delay (t _{RRD})	7.5		1E		
29	Minimum RAS to CAS delay (t _{RCD})	15ns	12.5ns	3C	32	
30	Minimum RAS Pulse Width (t _{RAS})	451		20		
31	Module Bank Density	1G		01		
32	Address and Command Setup Time Before Clock (t _{IS})	0.20ns	0.17ns	20	17	
33	Address and Command Hold Time After Clock (t _{IH})	0.27ns	0.25ns	27	25	
34	Data Input Setup Time Before Clock (t _{DS})	0.10ns	0.05ns	10	05	
35	Data Input Hold Time After Clock (t _{DH})	0.17ns	0.12ns	17	12	
36	Write Recovery Time (t _{WR})	15.0		30		
37	Internal Write to Read Command delay (t _{WTR})	7.5		1E		
38	Internal Read to Precharge delay (t _{RTP})	7.5		1E		
-55			fined	00		

1GB: 128M x 64 / 2GB: 256M x 64 **Unbuffered DDR2 SDRAM DIMM**

Serial Presence Detect -- Part 2 of 2 (2GB)

256Mx64 2 RANKs UNBUFFERED DDR2 SDRAM DIMM based on 128Mx8, 8Banks, 8K Refresh, 1.8V DDR2 SDRAMs with SPD

Duto	Description	SPD Enti	y Value	Serial PD [(Hexade	,	Note		
Byte	Description	PC2-5300 -3C	PC2-6400 -AC	PC2-5300 -3C	PC2-6400 -AC	Note		
40	Extension of Byte 41 tRC and Byte 42 tRFC	The number belo point of tRC and tRFC is less than	tRFC are 0,	06	36			
41	Minimum Core Cycle Time (tRC)	60.0ns	57.5ns	3C	39			
42	Min. Auto Refresh Command Cycle Time (tRFC)	127.	5ns	7F	=			
43	Maximum Clock Cycle Time (tCK)	8.0ns		80)			
44	Max. DQS-DQ Skew Factor (tQHS)	0.24ns	0.20ns	18	14			
45	Read Data Hold Skew Factor (tQHS)	0.34ns	0.30ns	22	1E			
46	PLL Relock Time	Undefined		00)			
46-61	Reserved	Undefined		00)			
62	SPD Revision	1.3	3	13	3			
63	Checksum for bytes 0-62	Checksu	m Data	18	FE			
64-71	Manufacture's JEDEC ID Code	NANYA		7F7F7F0B	00000000			
72	Module Manufacturing Location	Manufacturing Code						
73-91	Module Part number	Module Part Number in ASCII		Module Part Number in ASCII				1
92-255	Reserved	Undef	ined					

Note 1:

M2Y2G64TU8HD0B-3C → 4D325932473634545538484430422D33432020 M2Y2G64TU8HD0B-AC → 4D325932473634545538484430422D41432020

M2Y2G64TU8HD4B-3C → 4D325932473634545538484434422D33432020 M2Y2G64TU8HD4B-AC → 4D325932473634545538484434422D41432020

M2Y2G64TU8HD5B-3C → 4D325932473634545538484435422D33432020

M2Y2G64TU8HD5B-AC → 4D325932473634545538484435422D41432020

M2Y2G64TU8HD6B-3C → 4D325932473634545538484436422D33432020

M2Y2G64TU8HD6B-AC → 4D325932473634545538484436422D41432020

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{IN} , V _{OUT}	Voltage on any pin relative to Vss	-0.5 to 2.3	V
V_{DDQ}	Voltage on V _{DDQ} supply relative to Vss	-0.5 to 2.3	V
V_{DDQL}	Voltage on V _{DDQL} supply relative to Vss	-0.5 to 2.3	V
V_{DD}	Voltage on VDD supply relative to Vss	-1.0 to +2.3	V

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Operating Conditions

Symbol	Parameter	Rating	Units	Note
T _{CASE}	Operating Temperature (Ambient)	0 to 95	°C	1,2,3
T _{STG}	Storage Temperature (Plastic)	-55 to 100	°C	
Ι <u>L</u>	Short Circuit Output Current	-5 to 5	Ма	

Note:

- 1. Case temperature is measured at top and center side of any DRAMs.
- 2. t_{CASE} > 85°C → t_{REFI} = 3.9 µs
- 3. All DRAM specification only support 0°C < t_{CASE} < 85°C

DC Electrical Characteristics and Operating Conditions

 $(T_{CASE} = 0 \, ^{\circ}C \sim 85 \, ^{\circ}C; V_{DDQ} = 1.8V \pm 0.1V; V_{DD} = 1.8V \pm 0.1V, See AC Characteristics)$

Symbol	Parameter	Min	Max	Units	Notes
VDD	Supply Voltage	1.7	1.9	V	1
Vddq	Supply Voltage for Output	1.7	1.9	V	1, 3
VDDL	Supply Voltage for VDDQL	1.7	1.9	V	3
VREF	Input Reference Voltage	0.49Vddq	0.51Vddq	Mv	2
VTT	Termination Voltage	VREF - 0.04	VREF + 0.04	V	4
VIH (DC)	Input High (Logic1) Voltage	VREF + 0.125	VDDQ + 0.3	V	
VIL (DC)	Input Low (Logic0) Voltage	-0.3	VREF - 0.125	V	

Note:

- 1. Inputs are not recognized as valid until VREF stabilizes.
- 2. VREF is expected to be equal to 0.5 V DDQ of the transmitting device, and to track variations in the DC level of the same. Peak-to-peak noise on VREF may not exceed 2% of the DC value.
- VDDQ tracks with VDD, VDDL tracks with VDD.
- 4. VTT of transmitting device track VREF of receiving device.

Environmental Parameters

Symbol	Parameter	Rating	Units	Note
T _{OPR}	Module Operating Temperature Range (ambient)	0 to 55	°C	3
H _{OPR}	Operating Humidity (relative)	10 to 90	%	
T _{STG}	Storage Temperature (Plastic)	-55 to 100	°C	1
H _{STG}	Storage Humidity (without condensation)	5 to 95		1
P _{BAR}	Barometric Pressure (operating & storage)	105 to 69	K Pascal	1,2

Note:

- Stresses greater than those listed may cause permanent damage to the device. This is a tress rating only and device
 functional operation at or above the conditions indicated is not implied. Exposure to absolute maximum rating conditions for
 extended periods may affect reliability.
- 2. Up to 9850 ft.
- The component maximum case temperature shall not exceed the value specified in the component spec.

(elixir

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Operating, Standby, and Refresh Currents

 $T_{CASE} = 0$ °C ~ 85 °C; $V_{DDQ} = V_{DD} = 1.8V \pm 0.1V$ (1GB, 1 Rank, 128Mx8 DDR2 SDRAMs)

Symbol	Parameter/Condition	PC2-5300	PC2-6400	Unit	
I DD0	Operating Current: one bank; active/precharge; Trc = Trc (MIN); Tck = Tck (MIN); DQ, DM, and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle	880	1012	Ма	
l DD1	Operating Current: one bank; active/read/precharge; Burst = 2; $Trc = Trc (MIN)$; $CL=2.5$; $Tck = Tck (MIN)$; $IOUT = OMa$; address and control inputs changing once per clock cycle	792	924	Ма	
I DD2P	Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE \leq VIL (MAX); Tck = Tck (MIN)	88	88	Ма	
l dd2n	Idle Standby Current: CS \geq VIH (MIN); all banks idle; CKE \geq VIH (MIN); Tck = Tck (MIN); address and control inputs changing once per clock cycle	572	660	Ма	
l dd2Q	Precharge Quiet Standby Current: All banks idle; \overline{CS} is HIGH; CKE is HIGH; $t_{CK} = t_{CK \; (MIN)}$; Other control and address inputs are stable, Data bus inputs are floating.	440	484	Ма	
I DD3PF	Active Power-Down Current: All banks open; Tck = Tck (MIN), CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are floating. MRS A12 bit is set to low (Fast Power-down Exit).	246	264	Ма	
I DD3PS	Active Power-Down Current: All banks open; $T_{ck} = T_{ck}$ (MIN), CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are floating. MRS A12 bit is set to high (Slow Power-down Exit).	97	97	Ма	
I dd3n	Active Standby Current: one bank; active/precharge; $CS \ge VIH$ (MIN); $CKE \ge VIH$ (MIN); $Trc = Tras$ (MAX); $Tck = Tck$ (MIN); DQ , DM , and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle	528	616	Ма	
l DD4W	Operating Current: one bank; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; DQ and DQS inputs changing twice per clock cycle; CL=2.5; Tck = Tck (MIN)	924	1056	Ма	
l dd4r	Operating Current: one bank; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; DQ and DQS outputs changing twice per clock cycle; CL = 2.5; Tck = Tck (MIN); IOUT = 0Ma	1056	1188	Ма	
l dd5	Auto-Refresh Current: Trc = Trfc (MIN)	1408	1540	Ма	
I DD6	Self-Refresh Current: CKE ≤ 0.2V	97	97	Ма	
l dd7	Operating Current: four bank; four bank interleaving with BL = 4, address and control inputs randomly changing; 50% of data changing at every transfer; Trc = Trc (min); IOUT = 0Ma.	1628	1804	Ма	
Note: Module IDD was calculated from component IDD. It may differ from the actual measurement.					

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Operating, Standby, and Refresh Currents

 $T_{CASE} = 0$ °C ~ 85 °C; $V_{DDQ} = V_{DD} = 1.8V \pm 0.1V$ (2GB, 2 Ranks, 128Mx8 DDR2 SDRAMs)

Symbol	Parameter/Condition	PC2-5300	PC2-6400	Unit	
I DD0	Operating Current: one bank; active/precharge; Trc = Trc (MIN); Tck = Tck (MIN); DQ, DM, and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle	1408	1628	Ma	
l DD1	Operating Current: one bank; active/read/precharge; Burst = 2; Trc = Trc (MIN); CL=2.5; Tck = Tck (MIN); IOUT = 0Ma; address and control inputs changing once per clock cycle	1320	1540	Ма	
I DD2P	Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE ≤ VIL (MAX); Tck = Tck (MIN)	176	176	Ма	
I DD2N	Idle Standby Current: $CS \ge VIH$ (MIN); all banks idle; $CKE \ge VIH$ (MIN); $T_{Ck} = T_{Ck}$ (MIN); address and control inputs changing once per clock cycle	1144	1320	Ма	
I DD2Q	Precharge Quiet Standby Current: All banks idle; $\overline{\text{CS}}$ is HIGH; CKE is HIGH; $t_{\text{CK}} = t_{\text{CK (MIN)}}$; Other control and address inputs are stable, Data bus inputs are floating.	880	968	Ma	
l dd3pf	Active Power-Down Current: All banks open; Tck = Tck (MIN), CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are floating. MRS A12 bit is set to low (Fast Power-down Exit).	493	528	Ma	
I DD3PS	Active Power-Down Current: All banks open; Tck = Tck (MIN), CKE is LOW; Other control and address inputs are STABLE, Data bus inputs are floating. MRS A12 bit is set to high (Slow Power-down Exit).	194	194	Ma	
I DD3N	Active Standby Current: one bank; active/precharge; CS \geq VIH (MIN); CKE \geq VIH (MIN); Trc = Tras (MAX); Tck = Tck (MIN); DQ, DM, and DQS inputs changing twice per clock cycle; address and control inputs changing once per clock cycle	1056	1232	Ma	
I DD4W	Operating Current: one bank; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; DQ and DQS inputs changing twice per clock cycle; CL=2.5; Tck = Tck (MIN)	1452	1672	Ма	
I DD4R	Operating Current: one bank; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; DQ and DQS outputs changing twice per clock cycle; CL = 2.5; Tck = Tck (MIN); IOUT = 0Ma	1584	1804	Ма	
l dd5	Auto-Refresh Current: Trc = Trfc (MIN)	1936	2156	Ма	
I DD6	Self-Refresh Current: CKE ≤ 0.2V	194	194	Ма	
l dd7	Operating Current: four bank; four bank interleaving with BL = 4, address and control inputs randomly changing; 50% of data changing at every transfer; Trc = Trc (min); IOUT = 0Ma.	2156	2420	Ma	
Note: Module IDD was calculated from component IDD. It may differ from the actual measurement.					

Note: Module IDD was calculated from component IDD. It may differ from the actual measurement.

(elixir

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

AC Timing Specifications for DDR2 SDRAM Devices Used on Module

 $(T_{CASE} = 0 \text{ °C} \sim 85 \text{ °C}; V_{DDQ} = 1.8V \pm 0.1V; V_{DD} = 1.8V \pm 0.1V, See AC Characteristics)$ (Part 1 of 2)

C: male al	Developeday	PC2-	5300	PC2-6	PC2-6400	
Symbol	Parameter	Min.	Max.	Min.	Max.	
Tck	Clock Cycle Time (Average)	3000	8000	2500	8000	ps
Tch	CK high-level width (Average)	0.48	8 0.52 0.48		0.52	Tck
Tcl	CK low-level width (Average)	0.48	0.52	0.48	0.52	Tck
WL	Write command to DQS associated clock edge	RL	1	RL	-1	Nck
Tdqss	Write command to 1st DQS latching transition	-0.25	0.25	-0.25	0.25	Tck
Tdss	DQS falling edge to CK setup time (write cycle)	0.2	-	0.2	-	Tck
Tdsh	DQS falling edge hold time from CK (write cycle)	0.2	-	0.2	-	Tck
Tdqsl,(H)	DQS input low (high) pulse width (write cycle)	0.35	-	0.35	-	Tck
Twpre	Write preamble	0.35	-	0.35	-	Tck
Twpst	Write postamble	0.4	0.6	0.4	0.6	Tck
Tis	Address and control input setup time	200	-	175	-	ps
Tih	Address and control input hold time	275	-	250	-	ps
Tipw	Input pulse width	0.6	-	0.6	-	Tck
Tds	DQ and DM input setup time (differential data strobe)	100	-	50	-	ps
Tdh	DQ and DM input hold time(differential data strobe)	175	-	125	-	ps
Tdipw	DQ and DM input pulse width (each input)	0.35	-	0.35	-	Tck
Tac	DQ output access time from CK/CK	-450	450	-400	400	ps
Tdqsck	DQS output access time from CK/CK	-400	400	-350	350	ps
Thz	Data-out high-impedance time from CK/CK	-	t _{AC} max	-	tACmax	ps
Tiz(DQS)	DQS low-impedance time from CK/CK	t _{AC} min	t _{AC} max	tACmin	tACmax	ps
TIz(DQ)	DQ low-impedance time from CK/CK	2t _{AC} min	t _{AC} max	2t _{AC} min	t _{AC} max	ps
Tdqsq	DQS-DQ skew (DQS & associated DQ signals)	-	240	-	200	ps
Thp	Minimum half clk period for any given cycle; defined by clk high (Tch) or clk low (Tcl) time	Min(Tch(abs), Tcl(abs))	-	Min(Tch(abs), Tcl(abs))	-	ps
Tqhs	Data hold Skew Factor	-	340	-	300	ps
Tqh	Data output hold time from DQS	t _{HP} – t _{QHS}	-	Thp - Tqhs	-	ps
Trpre	Read preamble	0.9	1.1	0.9	1.1	Tck
Trpst	Read postamble	0.4	0.6	0.4	0.6	Tck
Trrd	Active bank A to Active bank B command	7.5	-	7.5	-	ns
Tfaw	Four Activate Window for 1KB page size products	37.5	-	35	-	ns
Tccd	CAS to CAS	2		2		Nck
Twr	Write recovery time without Auto-Precharge	15	-	15	-	ns
Tdal	Auto precharge write recovery + precharge time	WR+tnRP	-	WR+tnRP	-	Nck
Twtr	Internal write to read command delay	7.5	-	7.5	-	ns
Trtp	Internal read to precharge command delay	7.5		7.5		ns
Tcke	CKE minimum pulse width	3		3		Nck
Txsnr	Exit self refresh to a Non-read command	Trfc+10	-	Trfc+10		ns
Txsrd	Exit self refresh to a Read command	200	-	200		Nck
Тхр	Exit precharge power down to any Non- read command	2	-	2	-	Nck

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

AC Timing Specifications for DDR2 SDRAM Devices Used on Module

 $(T_{CASE} = 0~^{\circ}C \sim 85~^{\circ}C; V_{DDQ} = 1.8V \pm 0.1V; V_{DD} = 1.8V \pm 0.1V, See AC Characteristics) (Part 2 of 2)$

Cumbal	Parameter	PC2-5	5300	PC2-6	l lait		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
Txard	Exit active power down to read command	2	-	2	-	Nck	
Txards	Exit active power down to read command	7-AL		8-AL		Nck	
Taond	ODT turn-on delay	2	2	2	2	Nck	
Taon	ODT turn-on	Tac (min)	Tac (max)+0.7	Tac (min)	Tac (max)+0.7	ns	
Taonpd	ODT turn-on (Power down mode)	Tac (min) +2	Tac (min) +2 2Tck + Tac(max) +1		2Tck + Tac(max) +1	ns	
Taofd	ODT turn-off delay	2.5	2.5	2.5	2.5	Nck	
Taof	ODT turn-off	Tac(min) Tac(max) +0.6		Tac(min)	Tac(max) +0.6	ns	
Taofpd	ODT turn-off (Power down mode)	Tac (min)+2	Tac (min)+2 2.5Tck + Tac(max) +1		2.5Tck + Tac(max) +1	ns	
Tanpd	ODT to power down entry latency	3	3 -		-	Nck	
Taxpd	ODT power down exit latency	8		8		Nck	
Tmrd	Mode register set command cycle time	2	-	2	-	Nck	
Tmod	MRS command to ODT update delay	0	12	0	12	ns	
Toit	OCD drive mode output delay	0	12	0	12	ns	
tDelay	Minimum time clocks remains ON after CKE asynchronously drops Low Tis + Tck + Tih		-	Tis + Tck + Tih	-	ns	
Trfc	Refresh to active/Refresh command time	127.5		127.5		ns	
Trefi	Average Periodic Refresh Interval (85°C < T _{CASE} ≤ 95°C)	3.9	9	3.9	9	μs	
ren	Average Periodic Refresh Interval (0°C ≤ T _{CASE} ≤ 85°C)		7.8		3	μs	

Speed Grade Definition

Symbol	Parameter	PC2-5300		PC2-6400		Unit
Syllibol		Min	Max	Min	Max	Ullit
Tras	Row Active Time	45	70,000	45	70,000	ns
Trc	Row Cycle Time	60	-	57.5	-	ns
Trcd	RAS to CAS delay	15	-	12.5	-	ns
Trp	Row Precharge Time	15	-	12.5	-	ns

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Package Dimensions

(1GB, 1 Rank, 128Mx8 DDR2 SDRAMs)

Note: All dimensions are typical with tolerances of+/- 0. 15(0. 006) unless otherwise stated Units: Millimeters (Inches)

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Package Dimensions

(2GB, 2 Ranks, 128Mx8 DDR2 SDRAMs)

Note: All dimensions are typical with tolerances of+/- 0.15(0.006) unless otherwise stated Units: Millimeters (Inches)

1GB: 128M x 64 / 2GB: 256M x 64 Unbuffered DDR2 SDRAM DIMM

Revision Log

Rev	Date	Modification
0.1	03/2008	Preliminary Edition
1.0	04/2008	Official Release
1.1	07/2008	Revision update
1.2	10/2008	Add new part number