V: M - C apux measure.

lem:]! pos mensure IVI s.t.

* Y pos ma fe L'(n) s.t. dv = fdy, divi= ifi du.

call IVI he total variation

Last time: Existence. $\mu = |Re(v)| + |Im(v)|$, $d|v| = \left|\frac{dv}{d\mu}\right| d\mu$ works.

We showed: if \exists pos mens $P \notin J \in L'(P)$ s. \exists . $\exists v = gdP$, then $|f|d\mu = |g|dP$. (thus shows \times holds).

This try: uniqueness. Suppose p is another measure satisfying χ .

Then |V| is a posemens. & $\frac{dV}{d|V|} \in L'(|V|)$ s.t. $dV = \frac{dV}{d|V|} d|V|$.

Moreover, $\left|\frac{dV}{d|V|}\right| = 1$ a.e. so $dp = \left|\frac{dV}{d|V|}\right| d|V| = d|V|$.

Note: we need to show that $\frac{d\nu}{d|\nu|}$ exists ($\nu \ll |\nu|$). Suppose $|\nu|(E) = 0$. Then $|\frac{d\nu}{d\mu}| = 0$ μ -a.e., so $\frac{d\nu}{d|\nu|} = 0$ μ -a.e.

Quess: $|v| = (|Re(v)|^2 + |Im(v)|^2)^{\frac{1}{2}}$ "

actually, $\frac{d|v|}{dx} = \left[\left(\frac{d|Re(v)|}{dx}\right)^2 + \left(\frac{d|Im(v)|}{dx}\right)^2\right]^{1/2}$

Observe: if
$$\nu$$
 is finite & signed then $d\nu = (\gamma_p - \gamma_{p^e}) d\nu$ where $\chi = P \mu P^e$ is Hahn decomp. $d\nu = 1 d\nu$

=> 121 agrees my old defn.

Def
$$M := M(X, M, C) := \{ complex means on (X, M) \}$$

$$M = M(X, M, R) \oplus i M(X, M, R)$$

$$\|V\|_{M_{C}} := |V|(X).$$

Claum: (Mc, IIII) is Banach

PF $\|V\|_{\epsilon} = \left[\|Re(v)\|_{R}^{2} + \|\|m(v)\|_{R}^{2}\right]^{\frac{1}{2}}$ is this true?? No, see below.

When X is LCH, RMc Me is the subspace of Radon complex measures (v.e. Re 2 Im are Radon)

Thm (Riesz Repn): If X is LCH, define $\varphi: RM_c \to C_o(X,C)^*$ by $\Psi_{\nu}(f) := \int f d\nu$. Then φ is an isometric isomorphism.

$$X = \{ \cdot \cdot \}$$

 $\|\nu\|=2$, but the other thing is $\sqrt{2}$.

Note: II vII is also not the 1-norm, etc.