

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

thereby. Now in elementary geometry it is proved that angles at the center are proportional to the intercepted arcs.

Let s[L], r[L], and θ be the arc, radius, and center angle, s and r being measured in the same length-unit, the angle unit being at present undetermined. Then $s[L]=kr[L]\theta$. Let us now assume $\theta=1$, the unit angle, when s=r. Hence, k=1, under this assumption. We thus have as our unit angle, $[\Theta]$, the angle at the center of a circle, which intercepts an arc equal in length to the radius of the circle. Hence, we have the general relation s[L]=r[L] θ $[\Theta]$ and θ $[\Theta]=s/r$. This unit angle, $[\Theta]$, is called a radian. In terms of the fundamental units of length, mass, and time, it is of zero dimensions, since $[\Theta]=\frac{s[L]}{r[L]}[M^{\circ}][T^{\circ}]=L^{\circ}M^{\circ}T^{\circ}$, s being equal to r. From this we see that the great advantage of this unit of angular measure over that of any other is that it avoids, as remarked by Mr. Schmall, the introduction of a coefficient of variation different from unity.

PROBLEMS FOR SOLUTION.

ALGEBRA.

329. Proposed by C. N. SCHMALL, 604 East 5th Street, New York City.

Between the quantities a and b there are inserted n arithmetical and n harmonical means, and a series of n terms is formed by dividing each arithmetical by the corresponding harmonical mean. Show that the sum of the series is, $n \left[1 + \frac{n+2}{n+1} \cdot \frac{(a-b)^2}{6ab} \right]$.

330. Proposed by R. D. CARMICHAEL, Princeton, N. J.

An important function in the Theory of Numbers is one defined thus: f(x)=1 when x>0, f(x)=0 when x=0, f(x)=-1 when x<0. Two analytic expressions for f(x) are the following:

$$f(x) = \lim_{n = -\infty}^{\text{lim.}} x^{1/(2n-1)}, \ n = 1, 2, ...; \ f(x) = \lim_{n = -\infty}^{\text{lim.}} \frac{(x+1)^n - (x+1)^{-n}}{(x+1)^n + (x+1)^{-n}}, \ x > -1.$$

It is required to find other non-trigonometric analytic expressions for this function. (There are several representations of f(x) by means of trigonometric functions.)

GEOMETRY.

357. Proposed by E. R. HOYT, St. Louis, Mo.

A room is 30 feet long, 12 feet wide, and 12 feet high. At one end of the room, 3 feet from the floor, and midway from the sides, is a spider. At the other end, 9 feet from the floor, and midway from the sides, is a fly. Determine the shortest path by way of the floor, ends, sides, and ceiling, the spider can take to capture the fly.