

# Machine Learning 0 - Intro

Jesús Prada Alonso - HORUS ML

Curso Máster en Data Analytics - Edición 4

Fecha 30/03/2023



### RESUMEN MODELOS





### COMPARACIÓN ALGORITMOS



| TYPE           | NAME                   | DESCRIPTION                                                                                                                                                                                        | ADVANTAGES                                                                                            | DISADVANTAGES                                                                                                                         |
|----------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Linear         | Linear<br>regression   | The "best fit" line through all data points. Predictions are numerical.                                                                                                                            | Easy to understand —<br>you clearly see what the<br>biggest drivers of the<br>model are.              | Sometimes too simple to capture complex relationships between variables.      Tendency for the model to "overfit".                    |
|                | Logistic<br>regression | The adaptation of linear regression to problems of classification (e.g., yes/no questions, groups, etc.)                                                                                           | Also easy to understand.                                                                              | X Sometimes too simple to capture complex relationships between variables.  X Tendency for the model to "overfit".                    |
| \\             | Decision<br>tree       | A graph that uses a branching method to match all possible outcomes of a decision.                                                                                                                 | Easy to understand and implement.                                                                     | Not often used on its own for prediction because it's also often too simple and not powerful enough for complex data.                 |
| lree-pased     | Random<br>Forest       | Takes the average of many decision trees, each of which is made with a sample of the data. Each tree is weaker than a full decision tree, but by combining them we get better overall performance. | A sort of "wisdom of the<br>crowd". Tends to result<br>in very high quality<br>models. Fast to train. | Can be slow to output predictions relative to other algorithms.      Not easy to understand predictions.                              |
| Y              | Gradient<br>Boosting   | Uses even weaker decision trees, that are increasingly focused on "hard" examples.                                                                                                                 | High-performing.                                                                                      | X A small change in the feature set or training set can create radical changes in the model.      Not easy to understand predictions. |
| Support Vector | SVM                    | Creates a hyperplane with maximum margin.                                                                                                                                                          | Can handle extremely complex tasks                                                                    | X Slow to train     Difficult to understand                                                                                           |
|                |                        |                                                                                                                                                                                                    |                                                                                                       |                                                                                                                                       |

### ÁRBOLES DE DECISIÓN



#### Definición (II)

- Cada nodo representa las variables de los datos, cada rama una decisión y cada nodo hoja un output.
- El nodo superior es el nodo raíz y representa la variable más importante.
- El árbol va aprendiendo de la división de los nodos recursivamente.
- Cuando un nuevo dato debe ser clasificado recorre el árbol desde el nodo raíz al nodo hoja, respondiendo a las
  preguntas de cada nodo en función de los atributos y el camino correcto en cada respuesta.



### COMPARACIÓN ALGORITMOS



| 7              | TYPE     | NAME                   | DESCRIPTION                                                                                                                                                                                        | ADVANTAGES                                                                                            | DISADVANTAGES                                                                                                                           |
|----------------|----------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Linear         | /        | Linear<br>regression   | The "best fit" line through all data points. Predictions are numerical.                                                                                                                            | Easy to understand —<br>you clearly see what the<br>biggest drivers of the<br>model are.              | Sometimes too simple to capture compilex relationships between variables.      Tendency for the model to "overfit".                     |
| Ε              | 7        | Logistic<br>regression | The adaptation of linear regression to problems of classification (e.g., yes/no questions, groups, etc.)                                                                                           | Also easy to understand.                                                                              | X Sometimes too simple to capture complex relationships between variables.  X Tendency for the model to "overfit".                      |
|                | W.       | Decision<br>tree       | A graph that uses a branching method to match all possible outcomes of a decision.                                                                                                                 | Easy to understand and implement.                                                                     | X Not often used on its own for prediction because it's also often too simple and not powerful enough for complex data.                 |
| Tree-based     | N/<br>MM | Random<br>Forest       | Takes the average of many decision trees, each of which is made with a sample of the data. Each tree is weaker than a full decision tree, but by combining them we get better overall performance. | A sort of "wisdom of the<br>crowd". Tends to result<br>in very high quality<br>models. Fast to train. | Can be slow to output predictions relative to other algorithms.      Not easy to understand predictions.                                |
|                | N.       | Gradient<br>Boosting   | Uses even weaker decision trees, that are increasingly focused on "hard" examples.                                                                                                                 | High-performing.                                                                                      | X A small change in the feature set or training set can create radical changes in the model.      X Not easy to understand predictions. |
| Support Vector | <br>     | SVM                    | Creates a <b>hyperplane</b> with maximum margin.                                                                                                                                                   | Can handle extremely complex tasks                                                                    | X Slow to train     Difficult to understand                                                                                             |
|                |          |                        |                                                                                                                                                                                                    |                                                                                                       |                                                                                                                                         |

## INTUICIÓN



Bagging. Esquema



### COMPARACIÓN ALGORITMOS



| NAME                   | DESCRIPTION                                                                                                                                                                                        | ADVANTAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DISADVANTAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear<br>regression   | The "best fit" line through all data points. Predictions are numerical.                                                                                                                            | Easy to understand —<br>you clearly see what the<br>biggest drivers of the<br>model are.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sometimes too simple to capture complex relationships between variables.      Tendency for the model to "overfit".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Logistic<br>regression | The adaptation of linear regression to problems of classification (e.g., yes/no questions, groups, etc.)                                                                                           | Also easy to understand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sometimes too simple to capture complex relationships between variables.      Tendency for the model to "overfit".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Decision<br>tree       | A graph that uses a branching method to match all possible outcomes of a decision.                                                                                                                 | Easy to understand and implement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X Not often used on its own for<br>prediction because it's also often<br>too simple and not powerful<br>enough for complex data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Random<br>Forest       | Takes the average of many decision trees, each of which is made with a sample of the data. Each tree is weaker than a full decision tree, but by combining them we get better overall performance. | A sort of "wisdom of the crowd". Tends to result in very high quality models. Fast to train.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X Can be slow to output predictions relative to other algorithms.  X Not easy to understand predictions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gradient<br>Boosting   | Uses even weaker decision trees, that are increasingly focused on "hard" examples.                                                                                                                 | High-performing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A small change in the feature set or training set can create radical changes in the model.      Not easy to understand predictions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| svm                    | Creates a hyperplane with maximum margin.                                                                                                                                                          | Can handle extremely complex tasks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X Slow to train  X Difficult to understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Linear regression  Logistic regression  Decision tree  Random Forest  Gradient Boosting                                                                                                            | Linear regression The "best fit" line through all data points. Predictions are numerical.  Logistic regression The adaptation of linear regression to problems of classification (e.g., yes/no questions, groups, etc.)  A graph that uses a branching method to match all possible outcomes of a decision.  Takes the average of many decision tree, each of which is made with a sample of the data. Each tree is weaker than a full decision tree, but by combining them we get better overall performance.  Gradient Boosting Uses even weaker decision trees, that are increasingly focused on "hard" examples.  Creates a hyperplane with | Linear regression  The "best fit" line through all data points. Predictions are numerical.  Logistic regression  The adaptation of linear regression to problems of classification (e.g., yest/no questions, groups, etc.)  A graph that uses a branching method to match all possible outcomes of a decision.  Easy to understand.  Easy to understand and implement.  Easy to understand and implement.  Fakes the average of many decision tree, each of which is made with a sample of the data. Each tree is weaker than a full decision tree, but by combining them we get better overall performance.  Gradient Boosting  Uses even weaker decision trees, that are increasingly focused on "hard" examples.  Creates a hyperplane with  Can handle extremely complex tasks |

### INTUICIÓN



### Boosting. Esquema



# DEFINICIÓN (V)



Gradient Boosting. Representación visual



### HIPERPARÁMETROS (XI)



### Resumen

| Hiperparámetro        | Efecto                                                   | Rango | Valor por defecto |
|-----------------------|----------------------------------------------------------|-------|-------------------|
| nrounds               | Número de iteraciones de boosting a realizar             | [1,∞] | 100               |
| eta                   | Inversamente relacionado con el step size.               | [0,1] | 0,3               |
| gamma                 | Mínima mejora en la loss function requerida.             | [0,∞] | 0                 |
| max_depth             | Profundidad máxima de cada árbol.                        | [1,∞] | 6                 |
| min_child_weight      | Suma mínima de pesos necesaria en un nodo hijo.          | [0,∞] | 1                 |
| subsample             | Ratio de submuestreo de las instancias de entrenamiento. | (0,1] | 1                 |
| colsample_bytree      | Ratio de submuestreo de las columnas del dataset.        | (0,1] | 1                 |
| num_parallel_tree     | Número de árboles calculados en cada iteración.          | [1,∞] | 1                 |
| lambda                | Controla la regularización L2.                           | [0,∞] | 1                 |
| alpha                 | Controla la regularización L1.                           | [0,∞] | 0                 |
| early_stopping_rounds | Numero de iteraciones sin mejora permitidas.             | [1,∞] | None              |

### RESUMEN



#### **Ventajas**

- Una de las familias de modelos de mayor potencial predictivo.
- Cada modelo individual es muy poco costoso computacionalmente.
- Poco gasto de memoria.
- El elevado número de hiperparámetros permite su ajuste a problemas muy variados.
- La implementación oficial está paralelizada internamente.
- Permite reducir el preprocesado (scaling, valores no informados, variables categóricas).

#### Desventajas

- Modelo complejo → Poco interpretable de forma directa.
- Muchos hiperparámetros a probar, por lo que las búsquedas en rejilla pueden ser extensas y costosas.
- Sensible a la elección de hiperparámetros.



### VARIACIONES XGBOOST (I)



### LightGBM



- LightGBM es otro framework de gradient boosting que utiliza modelos basados en árboles.
- En XGBoost, los árboles crecen en profundidad, mientras que en LightGBM lo hacen en hojas (anchura).
- A nivel de ajuste predictivo, está en una escala similar a XGBoost.
- Ventajas:
  - Mayor velocidad de entrenamiento.
  - Menor uso de memoria.
- Desventajas:
  - No integrado en framework scikit-learn.
  - Menos directo de instalar y usar.
  - Desarrollo menos estable.
  - Menos documentación.

### VARIACIONES XGBOOST (II)



### CatBoost



- CatBoost también es un framework de gradient boosting que utiliza modelos basados en árboles.
- Optimizado para datasets con variables categóricas con muchas categorías.
- Su nivel de ajuste predictivo es normalmente peor que en XGBoost salvo en el caso anterior.
- Ventajas:
  - Buenos resultados empleando los hiperparámetros por defecto.
  - Mejores predicciones si tenemos muchas categorías.
- Desventajas:
  - Desarrollo menos estable.
  - Menos documentación.
  - Normalmente peores resultados que en XGBoost en muchas situaciones.



Jesús Prada Alonso jesus.prada@horusml.com