Cluster Algorithm Analysis

Iris.py

Code Overview:

This Python script performs clustering analysis on the Iris dataset using five different algorithms and visualizes the results.

Key Components:

1. Data Preparation:

- o Imports the Iris dataset (ID 53) from UCI repository
- Standardizes features using StandardScaler

2. Clustering Algorithms:

o Hierarchical Clustering:

- Uses Ward linkage method
- Visualizes with dendrogram and scatter plot

• Spectral Clustering:

- Uses RBF kernel with gamma=1.0
- Shows results in scatter plot

o K-Means:

- Creates 3 clusters
- Plots data points and centroids

o Gaussian Mixture Model (EM):

- Implements Expectation-Maximization
- Displays probabilistic clustering

o DBSCAN:

- Uses eps=0.5 and min_samples=5
- Prints clustering labels

3. Visualization:

- Each algorithm's results are shown in separate matplotlib figures
- All plots use the viridis colormap and standardized axes

Wine_Quality.py

This python script is much like the former iris.py, performs comparative clustering analysis on the Wine Quality dataset using five algorithms:

1. Hierarchical Clustering

2. Spectral Clustering

3. K-Means

4. Gaussian Mixture Model (EM)

5. DBSCAN

Key Features

- Data Preprocessing: Automatic feature standardization and PCA visualization
- Algorithm Optimizations:
 - o Memory-efficient hierarchical clustering
 - Nearest-neighbor spectral clustering
 - Automated DBSCAN parameter tuning
- Evaluation: Silhouette scores and runtime metrics
- Visualization: Consistent 2D plots with cluster highlighting