$9_{37} (K9a_{18})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u, \ -u^7 - 2u^3 - u^2 + 2a + u - 1, \ u^8 - u^7 + 2u^6 - 2u^5 + 4u^4 - 3u^3 + 2u^2 + 1 \rangle \\ I_2^u &= \langle -u^3 + b - 1, \ u^5 - u^3 + 2u^2 + 2a + u - 1, \ u^6 + u^4 + 2u^3 + u^2 + u + 2 \rangle \\ I_3^u &= \langle -u^3 + b - u + 1, \ -u^2 + a + u - 1, \ u^4 - u^3 + 2u^2 - 2u + 1 \rangle \\ I_4^u &= \langle b - a - u - 1, \ a^2 + 3au + 2a - 1, \ u^2 + u + 1 \rangle \\ I_5^u &= \langle b - u, \ a - u - 2, \ u^2 + u + 1 \rangle \\ I_6^u &= \langle b + u, \ a + 2u - 1, \ u^2 + 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 26 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle b-u, \ -u^7-2u^3-u^2+2a+u-1, \ u^8-u^7+2u^6-2u^5+4u^4-3u^3+2u^2+1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{3} + \frac{1}{2}u^{2} - \frac{1}{2}u + \frac{1}{2} \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{7} - u^{6} + \dots + \frac{1}{2}u + \frac{1}{2} \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{7} + u^{3} + \frac{1}{2}u^{2} - \frac{3}{2}u + \frac{1}{2} \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} - u + 1 \\ \frac{1}{2}u^{7} + u^{5} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} - u + 1 \\ \frac{1}{2}u^{7} + u^{5} + \dots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^6 + 2u^5 4u^4 + 6u^3 12u^2 + 6u$

Crossings	u-Polynomials at each crossing	
c_1, c_2, c_5 c_7	$u^8 + u^7 + 2u^6 + 2u^5 + 4u^4 + 3u^3 + 2u^2 + 1$	
c_3, c_4, c_9	$u^8 - 2u^7 + 6u^6 - 8u^5 + 10u^4 - 9u^3 + 5u^2 - 3u + 2$	
c_{6}, c_{8}	$u^8 + 3u^7 + 8u^6 + 10u^5 + 14u^4 + 11u^3 + 12u^2 + 4u + 1$	

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_5 c_7	$y^8 + 3y^7 + 8y^6 + 10y^5 + 14y^4 + 11y^3 + 12y^2 + 4y + 1$		
c_3,c_4,c_9	$y^8 + 8y^7 + 24y^6 + 30y^5 + 8y^4 - 5y^3 + 11y^2 + 11y + 4$		
c_{6}, c_{8}	$y^8 + 7y^7 + 32y^6 + 82y^5 + 146y^4 + 151y^3 + 84y^2 + 8y + 1$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.862697 + 0.615401I		
a = -0.361509 + 0.665983I	7.44069 + 0.66722I	4.81639 - 2.10627I
b = 0.862697 + 0.615401I		
u = 0.862697 - 0.615401I		
a = -0.361509 - 0.665983I	7.44069 - 0.66722I	4.81639 + 2.10627I
b = 0.862697 - 0.615401I		
u = 0.578102 + 1.055330I		
a = -1.26281 + 1.67027I	-1.73404 + 6.79402I	-3.11839 - 7.09473I
b = 0.578102 + 1.055330I		
u = 0.578102 - 1.055330I		
a = -1.26281 - 1.67027I	-1.73404 - 6.79402I	-3.11839 + 7.09473I
b = 0.578102 - 1.055330I		
u = -0.666851 + 1.155530I		
a = 0.88635 + 1.91065I	3.94193 - 10.98940I	0.47099 + 7.14773I
b = -0.666851 + 1.155530I		
u = -0.666851 - 1.155530I		
a = 0.88635 - 1.91065I	3.94193 + 10.98940I	0.47099 - 7.14773I
b = -0.666851 - 1.155530I		
u = -0.273948 + 0.520074I		
a = 0.737965 - 0.414347I	0.221012 - 1.276800I	1.83102 + 5.88514I
b = -0.273948 + 0.520074I		
u = -0.273948 - 0.520074I		
a = 0.737965 + 0.414347I	0.221012 + 1.276800I	1.83102 - 5.88514I
b = -0.273948 - 0.520074I		

II. $I_2^u = \langle -u^3 + b - 1, \ u^5 - u^3 + 2u^2 + 2a + u - 1, \ u^6 + u^4 + 2u^3 + u^2 + u + 2 \rangle$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{5} + \frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u + \frac{1}{2} \\ u^{3} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{5} - u^{4} + \dots - \frac{3}{2}u - \frac{1}{2} \\ -u^{4} - u^{2} - u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{5} - \frac{1}{2}u^{3} - u^{2} - \frac{1}{2}u - \frac{1}{2} \\ u^{3} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{5} + \frac{1}{2}u^{3} + \frac{1}{2}u + \frac{3}{2} \\ -u^{5} - u^{3} - 2u^{2} - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{5} + \frac{1}{2}u^{3} + \frac{1}{2}u + \frac{3}{2} \\ -u^{5} - u^{3} - 2u^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^4 4u^3 8u 6$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_7	$u^6 + u^4 - 2u^3 + u^2 - u + 2$
c_3, c_4, c_9	$(u^3 + 2u - 1)^2$
c_{6}, c_{8}	$u^6 + 2u^5 + 3u^4 + 2u^3 + u^2 + 3u + 4$

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_5 c_7	$y^6 + 2y^5 + 3y^4 + 2y^3 + y^2 + 3y + 4$	
c_3, c_4, c_9	$(y^3 + 4y^2 + 4y - 1)^2$	
c_{6}, c_{8}	$y^6 + 2y^5 + 3y^4 - 2y^3 + 13y^2 - y + 16$	

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.931903 + 0.428993I		
a = -0.180233 + 0.631115I	6.15087 + 5.13794I	3.31793 - 3.20902I
b = 0.705204 + 1.038720I		
u = -0.931903 - 0.428993I		
a = -0.180233 - 0.631115I	6.15087 - 5.13794I	3.31793 + 3.20902I
b = 0.705204 - 1.038720I		
u = 0.226699 + 1.074330I		
a = 0.41474 - 1.96546I	-4.07707	-8.63587 + 0.I
b = 0.226699 - 1.074330I		
u = 0.226699 - 1.074330I		
a = 0.41474 + 1.96546I	-4.07707	-8.63587 + 0.I
b = 0.226699 + 1.074330I		
u = 0.705204 + 1.038720I		
a = -0.484509 - 0.229988I	6.15087 + 5.13794I	3.31793 - 3.20902I
b = -0.931903 + 0.428993I		
u = 0.705204 - 1.038720I		
a = -0.484509 + 0.229988I	6.15087 - 5.13794I	3.31793 + 3.20902I
b = -0.931903 - 0.428993I		

III. $I_3^u = \langle -u^3 + b - u + 1, \ -u^2 + a + u - 1, \ u^4 - u^3 + 2u^2 - 2u + 1 \rangle$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} - u + 1 \\ u^{3} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} + u^{2} - 2u + 2 \\ u^{3} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ u^{3} - 2u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ u^{3} - 2u^{2} + 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^3 + 4u 2$

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^2 - u + 1)^2$
$c_2, c_3, c_4 \ c_7, c_9$	$u^4 + u^3 + 2u^2 + 2u + 1$
c_6	$(u^2+u+1)^2$
<i>C</i> ₈	$u^4 + 3u^3 + 2u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6	$(y^2+y+1)^2$
c_2, c_3, c_4 c_7, c_9	$y^4 + 3y^3 + 2y^2 + 1$
c ₈	$y^4 - 5y^3 + 6y^2 + 4y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.621744 + 0.440597I		
a = 0.570696 + 0.107280I	-2.02988I	0. + 3.46410I
b = -0.500000 + 0.866025I		
u = 0.621744 - 0.440597I		
a = 0.570696 - 0.107280I	2.02988I	0 3.46410I
b = -0.500000 - 0.866025I		
u = -0.121744 + 1.306620I		
a = -0.57070 - 1.62477I	2.02988I	0 3.46410I
b = -0.500000 - 0.866025I		
u = -0.121744 - 1.306620I		
a = -0.57070 + 1.62477I	-2.02988I	0. + 3.46410I
b = -0.500000 + 0.866025I		

IV.
$$I_4^u = \langle b - a - u - 1, \ a^2 + 3au + 2a - 1, \ u^2 + u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a \\ a+u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2au-a+2 \\ -au+u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u-1 \\ a+u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ a+u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ a+u+1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u + 2

Crossings	u-Polynomials at each crossing	
c_1, c_3, c_4 c_5, c_9	$u^4 + u^3 + 2u^2 + 2u + 1$	
c_2, c_7	$(u^2 - u + 1)^2$	
c_6	$u^4 + 3u^3 + 2u^2 + 1$	
c ₈	$(u^2+u+1)^2$	

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_4 \ c_5, c_9$	$y^4 + 3y^3 + 2y^2 + 1$
c_2, c_7, c_8	$(y^2+y+1)^2$
c_6	$y^4 - 5y^3 + 6y^2 + 4y + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.121744 - 0.425428I	-2.02988I	0. + 3.46410I
b = 0.621744 + 0.440597I		
u = -0.500000 + 0.866025I		
a = -0.62174 - 2.17265I	-2.02988I	0. + 3.46410I
b = -0.121744 - 1.306620I		
u = -0.500000 - 0.866025I		
a = 0.121744 + 0.425428I	2.02988I	0 3.46410I
b = 0.621744 - 0.440597I		
u = -0.500000 - 0.866025I		
a = -0.62174 + 2.17265I	2.02988I	0 3.46410I
b = -0.121744 + 1.306620I		

V.
$$I_5^u = \langle b - u, \ a - u - 2, \ u^2 + u + 1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u + 2 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u-1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u + 2 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u + 2 \\ u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u + 2

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_7 c_9	$u^2 - u + 1$
c_{6}, c_{8}	$u^2 + u + 1$

Crossings		Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9	$y^2 + y + 1$	

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 1.50000 + 0.86603I	-2.02988I	0. + 3.46410I
b = -0.500000 + 0.866025I		
u = -0.500000 - 0.866025I		
a = 1.50000 - 0.86603I	2.02988I	0 3.46410I
b = -0.500000 - 0.866025I		

VI.
$$I_6^u = \langle b + u, \ a + 2u - 1, \ u^2 + 1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u+1 \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u-1 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u+1 \\ -u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u - 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u+1 \\ -u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u+2\\ -u+1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u+2\\ -u+1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u+2 \\ -u+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_7 c_9	$u^2 + 1$
c_{6}, c_{8}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_7 c_9	$(y+1)^2$	
c_{6}, c_{8}	$(y-1)^2$	

	Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	1.00000 - 2.00000I	-1.64493	-4.00000
b =	-1.000000I		
u =	-1.000000I		
a =	1.00000 + 2.00000I	-1.64493	-4.00000
b =	1.000000I		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_2, c_5 c_7	$(u^{2}+1)(u^{2}-u+1)^{3}(u^{4}+u^{3}+\cdots+2u+1)(u^{6}+u^{4}+\cdots-u+2)$ $\cdot (u^{8}+u^{7}+2u^{6}+2u^{5}+4u^{4}+3u^{3}+2u^{2}+1)$	
c_3, c_4, c_9	$(u^{2}+1)(u^{2}-u+1)(u^{3}+2u-1)^{2}(u^{4}+u^{3}+2u^{2}+2u+1)^{2}$ $\cdot (u^{8}-2u^{7}+6u^{6}-8u^{5}+10u^{4}-9u^{3}+5u^{2}-3u+2)$	
c_6, c_8	$(u+1)^{2}(u^{2}+u+1)^{3}(u^{4}+3u^{3}+2u^{2}+1)$ $\cdot (u^{6}+2u^{5}+3u^{4}+2u^{3}+u^{2}+3u+4)$ $\cdot (u^{8}+3u^{7}+8u^{6}+10u^{5}+14u^{4}+11u^{3}+12u^{2}+4u+1)$	

VIII. Riley Polynomials

Crossings	gs Riley Polynomials at each crossing	
c_1, c_2, c_5 c_7	$(y+1)^{2}(y^{2}+y+1)^{3}(y^{4}+3y^{3}+2y^{2}+1)$ $\cdot (y^{6}+2y^{5}+3y^{4}+2y^{3}+y^{2}+3y+4)$ $\cdot (y^{8}+3y^{7}+8y^{6}+10y^{5}+14y^{4}+11y^{3}+12y^{2}+4y+1)$	
c_3,c_4,c_9	$(y+1)^{2}(y^{2}+y+1)(y^{3}+4y^{2}+4y-1)^{2}(y^{4}+3y^{3}+2y^{2}+1)^{2}$ $\cdot (y^{8}+8y^{7}+24y^{6}+30y^{5}+8y^{4}-5y^{3}+11y^{2}+11y+4)$	
c_6, c_8	$(y-1)^{2}(y^{2}+y+1)^{3}(y^{4}-5y^{3}+6y^{2}+4y+1)$ $\cdot (y^{6}+2y^{5}+3y^{4}-2y^{3}+13y^{2}-y+16)$ $\cdot (y^{8}+7y^{7}+32y^{6}+82y^{5}+146y^{4}+151y^{3}+84y^{2}+8y+1)$	