Université de Rennes 1 Licence de mathématiques Module Anneaux et Arithmétique

Contrôle continu n°1

Mercredi 19 février 2020, 16h15 – 17h30

Exercice 1

Soit A l'anneau d'ensemble sous-jacent $\mathbf{C} \times \mathbf{C}$, muni des lois + et \times définies par :

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbf{C}^2, \quad (x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$

$$\forall (x_1, y_1), (x_2, y_2) \in \mathbb{C}^2, \quad (x_1, y_1) \times (x_2, y_2) := (x_1 x_2, x_1 y_2 + x_2 y_1).$$

On admettra que ces lois définissent bien une structure d'anneau sur A.

- 1. Donner les éléments neutres pour les lois + et \times sur A (aucune justification n'est demandée). Correction : L'élément neutre pour la loi + est (0,0) et l'élément neutre pour la loi \times est (1,0)
- 2. Montrer que l'application $f: \mathbf{C} \to A, x \mapsto (x,0)$ est un morphisme d'anneaux et en déduire que A possède un sous-anneau isomorphe à \mathbf{C} .

Correction: Soit $x_1, x_2 \in \mathbb{C}$. On a, par définition de f et de la loi + sur A,

$$f(x_1 + x_2) = (x_1, 0) + (x_2, 0) = (x_1 + x_2, 0 + 0) = (x_1 + x_2, 0) = f(x_1) + f(x_2).$$

On a, par définition de f et de la loi \times sur A,

$$f(x_1 \times x_2) = (x_1, 0) + (x_2, 0) = (x_1 x_2, x_1.0 + x_2.0) = (x_1 x_2, 0) = f(x_1) \times f(x_2).$$

Par ailleurs $f(1) = (1,0) = 1_A$ (cf. question précédente). Ainsi f est bien un morphisme d'anneaux.

Par ailleurs f est une application injective. En effet, pour $x_1, x_2 \in \mathbb{C}$, l'égalité $f(x_1) = f(x_2)$, autrement dit $(x_1, 0) = (x_2, 0)$ entraîne bien $x_1 = x_2$.

On en déduit que f induit un morphisme d'anneaux bijectif (et donc un isomorphisme d'anneaux) de \mathbf{C} sur le sous-anneau $f(\mathbf{C})$ de A. Donc $f(\mathbf{C})$ est un sous-anneau de A isomorphe à \mathbf{C} .

3. Montrer que $A^{\times} = \{(x, y) \in A, x \neq 0\}$. Pour tout élément de A^{\times} , expliciter son inverse. Correction: Rappelons tout d'abord que \mathbb{C} étant un corps, on a $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$.

Montrons l'inclusion $A^{\times} \subset \{(x,y) \in A, x \neq 0\}$. Soit $(x,y) \in A^{\times}$. Il existe donc $(x',y') \in A$ tel que $(x,y) \times (x',y') = (1,0)$, soit (xx',xy'+x'y) = (1,0). On a donc en particulier xx' = 1, donc $x \in \mathbf{C}^{\times} = \mathbf{C} \setminus \{0\}$.

Montrons à présent l'inclusion $\{(x,y)\in A, x\neq 0\}\subset A^{\times}$. Soit $(x,y)\in A$ avec $x\neq 0$. En particulier $x\in \mathbf{C}^{\times}$. Mais on a

$$(x,y) \times (x^{-1}, -x^{-2}y) = (x \cdot x^{-1}, -x \cdot x^{-2}y + x^{-1}y) = (1, -x^{-1}y + x^{-1}y) = (1,0) = 1_A.$$

Donc $(x,y) \in A^{\times}$, et l'inverse de (x,y) dans A est $(x^{-1}, -x^{-2}y)$.

4. Pour $y \in \mathbf{C}$ et $n \in \mathbf{N} \setminus \{0\}$, calculer $(0, y)^n$. L'anneau A est-il intègre? Correction : On a $(0, y)^1 = (0, y)$. Par ailleurs

$$(0,y)^2 = (0,y) \times (0,y) = (0.0,0.y + 0.y) = (0,0) = 0_A$$

Pour $n \ge 2$, on a alors

$$(0,y)^n = (0,y)^2 \times (0,y)^{n-2} = 0_A \times (0,y)^{n-2} = 0_A.$$

Au final on a $(0, y)^1 = (0, y)$ et, pour tout $n \ge 2$, $(0, y)^n = 0_A$.

En particulier, on a $(0,1) \times (0,1) = 0_A$. Comme $(0,1) \neq 0_A$, ceci montre que A n'est pas intègre.

5. Déteminer l'ensemble des solutions de l'équation $a^2 = 0$, $a \in A$.

Correction : Soit $a \in A$ tel que $a^2 = 0_A$. Si $a \in A^{\times}$, on en déduit en multipliant par a^{-1} que a = 0 ce qui est absurde (A n'est pas l'anneau nul). Donc $a \notin A^{\times}$, et d'après la question 3 il existe $y \in \mathbf{C}$ tel que a = (0, y). Mais d'après la question précédente, pour tout $y \in \mathbf{C}$, on a $(0, y)^2 = 0_A$. Ceci montre que l'ensemble de solutions cherché est

$$\{(0,y), \quad y \in \mathbf{C}\}.$$

- 6. Donner un exemple d'un élément de $A[X]^{\times}$ qui est de degré 1. Correction : Considérons les éléments P = (1,0) + (0,1)X et Q = (1,0) - (1,0)X. On a $P.Q = (1,0)^2 - (0,1)^2X^2 = 1_A - 0_A.X^2 = 1_A$. Ainsi P est un élément inversible de A[X], d'inverse Q.
- 7. Montrer que l'anneau A possède exactement 3 idéaux que l'on explicitera, et que parmi eux un seul est premier.

Correction : A n'est pas l'anneau nul et possède donc au moins deux idéaux distincts à savoir A et $\{0_A\}$. Soit $\mathcal{I} = \{(0,y), y \in \mathbf{C}\}$. Notons que $\mathcal{I} \notin \{\{0_A\}, A\}$. D'après la question 3, on a $A \setminus \mathcal{I} = A^{\times}$, donc tout idéal propre de A est inclus dans \mathcal{I} . Montrons que \mathcal{I} est un idéal de A et que tout idéal non nul de A contenu dans \mathcal{I} est égal à \mathcal{I} . Ceci permettra de conclure que A possède exactement 3 idéaux, à savoir A, $\{0_A\}$ et \mathcal{I} .

En prenant y = 0, on voit que $0_A = (0,0) \in \mathcal{I}$. Soit $y_1, y_2 \in \mathbb{C}$. On a $(0,y_1) + (0,y_2) = (0,y_1+y_2) \in \mathcal{I}$ et $-(0,y_1) = (0,-y_1) \in \mathcal{I}$. Enfin soit $(x,y) \in A$. On a

$$(x,y) \times (0,y_1) = (x.0, x.y_1 + 0.y) = (0, x.y_1) \in \mathcal{I}.$$

Ce qui précède montre bien que \mathcal{I} est un idéal de A. On pouvait aussi par exemple montrer que l'application $A \to \mathbf{C}$, $(x,y) \mapsto x$ est un morphisme d'anneaux et constater que \mathcal{I} est son noyau.

Soit \mathcal{J} un idéal de A non nul contenu dans \mathcal{I} . Montrons que $\mathcal{J} = \mathcal{I}$. Comme \mathcal{J} est non nul, il existe $z \in \mathbf{C}^{\times}$ tel que $(0,z) \in \mathcal{J}$. Soit $y \in \mathbf{C}$. On a alors $(yz^{-1},0) \times (0,z) \in \mathcal{J}$, or $(yz^{-1},0) \times (0,z) = (0,yz^{-1}z) = (0,y)$. Ceci montre qu'on a $\mathcal{I} \subset \mathcal{J}$ et donc $\mathcal{I} = \mathcal{J}$ par double inclusion.

L'idéal A n'est pas propre et n'est donc pas premier. Comme A n'est pas intègre (question 4), $\{0\}$ n'est pas non plus un idéal premier.

Il reste à montrer que $\mathcal I$ est premier. Ceci peut se voir de plusieurs façons :

- (a) Comme A n'est pas l'anneau nul, A possède au moins un idéal premier. Comme A et $\{0_A\}$ ne sont pas premiers, le troisième idéal de A, à savoir \mathcal{I} , est nécessairement premier.
- (b) On peut montrer directement que si un produit d'éléments de A est dans \mathcal{I} , alors l'un des deux facteurs est dans \mathcal{I} (NB : \mathcal{I} est un idéal propre).
- (c) Comme les seuls idéaux de A sont $\{0\}$, \mathcal{I} et A, et \mathcal{I} est un idéal propre, \mathcal{I} est nécessairement un idéal maximal, donc un idéal premier.

- (d) On peut également exploiter le fait que \mathcal{I} est le noyau du morphisme $A \to \mathbf{C}$, $(x, y) \mapsto x$ évoqué ci-dessus. Ainsi A/\mathcal{I} est isomorphe à un sous-anneau de l'anneau intègre \mathbf{C} , donc A/\mathcal{I} est intègre et \mathcal{I} est premier. Bien sûr, il est facile de voir que le morphisme ci-dessus est en fait surjectif. Comme \mathbf{C} est un corps, on retrouve ainsi directement le fait que \mathcal{I} est maximal (donc premier).
- 8. Un anneau B est dit réduit si pour tout b ∈ B et tout entier strictement positif n, la relation bⁿ = 0 entraîne b = 0. L'anneau A étudié précédemment est-il réduit? Montrer que le produit de deux anneaux réduits est encore réduit. On admettra par la suite qu'un produit quelconque d'anneaux réduits est encore réduit.
 Correction: On a vu par exemple que (0, 1) ≠ 0,4 et (0, 1)² = 0,4. Donc A n'est pas réduit.

Correction: On a vu par exemple que $(0,1) \neq 0_A$ et $(0,1)^2 = 0_A$. Donc A n'est pas réduit. Soit B_1, B_2 deux anneaux réduits. Montrons que l'anneau produit $B_1 \times B_2$ est réduit. Soit n un entier strictement positif et $(b_1, b_2) \in B_1 \times B_2$ tel que $(b_1, b_2)^n = 0_{B_1 \times B_2} = (0_{B_1}, 0_{B_2})$. Par définition de la structure d'anneau produit, on a donc $b_1^n = 0_{B_1}$ et $b_2^n = 0_{B_2}$. Comme B_1 et B_2 sont réduits, on en déduit $b_1 = 0_{B_1}$ et $b_2 = 0_{B_2}$, soit $(b_1, b_2) = 0_{B_1 \times B_2}$. Ainsi l'anneau $B_1 \times B_2$ est bien réduit.

- 9. Combien l'équation $x^2 = 1$, $x \in \mathbf{Z}$ a-t-elle de solutions? Correction: L'équation se réécrit (x-1)(x+1) = 0. Comme \mathbf{Z} est intègre, cette dernière relation équivaut à x = 1 ou x = -1, et comme $1 \neq -1$ dans \mathbf{Z} , ceci montre que l'ensemble des solutions de cette équation, soit $\{1, -1\}$, est de cardinal 2.
- 10. Soit $n \ge 2$ un entier. Soit B un anneau réduit tel que l'équation $x^2 = 1_B, \quad x \in B$ a exactement 2^n solutions. L'anneau B peut-il être intègre? Donner un exemple d'un tel anneau B.

Correction : Le polynôme $X^2 - 1_B$ est de degré 2. Si B est intègre, ce polynôme a donc au plus 2 racines dans B. Comme $n \ge 2$, on a $2^n > 2$. Donc B ne peut pas être intègre.

Prenons par exemple $B := \mathbf{Z}^n$ (muni de la structure d'anneau produit). Comme \mathbf{Z} est intègre, \mathbf{Z} est réduit et donc B est réduit d'après le résultat admis de la question 8.

Par définition de l'anneau produit et la question précédente, l'ensemble des solutions de l'équation $x^2=1_B, \quad x\in B$ est $\{-1,1\}^n$, qui est de cardinal 2^n . NB : si on prend $B:=\mathbf{Z^N}$, on a un exemple d'anneau réduit B tel que l'équation $x^2=1_B, \quad x\in B$ possède une infinité de solutions.

11. (bonus, hors barême) Identifier l'anneau A ci-dessus à un quotient de $\mathbb{C}[X]$. Retrouver le résultat de la question 7.

Correction : Soit $P = \sum_{n \in \mathbb{N}} a_n X^n$ un élément de $\mathbf{C}[X]$. Posons $\pi(P) := (a_0, a_1) \in \mathbf{C} \times \mathbf{C}$. On vérifie que π est un morphisme d'anneaux surjectif de $\mathbf{C}[X]$ vers A, de noyau $\langle X^2 \rangle$. Ainsi A est isomorphe à $\mathbf{C}[X]/\langle X^2 \rangle$. Rappelons que $\mathcal{I} \mapsto \pi(\mathcal{I})$ induit une bijection de l'ensemble des idéaux de $\mathbf{C}[X]$ contenant $\ker(\pi) = \langle X^2 \rangle$ sur l'ensemble des idéaux de A, qui induit à son tour une bijection de l'ensemble des idéaux premiers de $\mathbf{C}[X]$ contenant $\langle X^2 \rangle$ sur l'ensemble des idéaux premiers de A. Or on a une correspondance entre les idéaux de $\mathbf{C}[X]$ contenant $\langle X^2 \rangle$ et les diviseurs unitaires du polynôme X^2 . Ainsi les idéaux de $\mathbf{C}[X]$ contenant $\langle X^2 \rangle$ sont $\langle 1 \rangle = \mathbf{C}[X]$, $\langle X \rangle$ et $\langle X^2 \rangle$. Parmi ces idéaux, les idéaux premiers sont ceux engendrés par un polynômes irréductible. Ainsi seul $\langle X \rangle$ est premier. On retrouve ainsi le résultat de la question 7; noter que $\pi(\mathbf{C}[X]) = A$, $\pi(\langle X^2 \rangle) = \pi(\ker(\pi)) = \{0_A\}$ et $\pi(\langle X \rangle) = \pi(\{aX\}_{a \in \mathbf{C}}) = \{(0,a)\}_{a \in \mathbf{C}} = \mathcal{I}$.