

Projekt "Uruchomienie unikatowego kierunku studiów Informatyka Stosowana odpowiedzią na zapotrzebowanie rynku pracy" (POKL.04.01.01-00-011/09-00) jest współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Analiza matematyczna i algebra liniowa

Materiały pomocnicze dla studentów – do wykładów

Rachunek różniczkowy funkcji wielu zmiennych.

- Pochodne cząstkowe i ich interpretacja ekonomiczna.
- Ekstrema lokalne.
- Metoda najmniejszych kwadratów.
- Ekstrema warunkowe.

Temat 3: Rachunek różniczkowy funkcji wielu zmiennych

Zaprezentowana zostanie koncepcja, według której rachunek różniczkowy funkcji wielu zmiennych sprowadza się w pewnym sensie do rachunku różniczkowego funkcji jednej zmiennej. Pozwala to na wykorzystanie w tej sytuacji wcześniej poznanych reguł i wzorów rachunku różniczkowego funkcji jednej zmiennej.

1. Definicja funkcji wielu zmiennych oraz dziedzina.

Definicja.

Funkcją f wielu zmiennych $x=(x_1,...,x_n)$ określoną w zbiorze $D\subset \mathbf{R}^n$ o wartościach w zbiorze \mathbf{R} nazywamy przyporządkowanie każdemu punktowi $x=(x_1,...,x_n)$ ze zbioru D dokładniej jednej liczby rzeczywistej.

2. Pochodne cząstkowe.

Rozważamy funkcję n zmiennych $f: \mathbf{R}^n \supset D \to \mathbf{R}$ określoną w dziedzinie D. Punkty przestrzeni \mathbf{R}^n oznaczać będziemy symbolem $x = (x_1, ..., x_n)$, a ustalony punkt $x_0 = (x_1^0, ..., x_n^0)$.

Zakładamy, że $x_0 \in \text{int} D$.

Jeżeli ustalimy wszystkie zmienne za wyjątkiem zmiennej x_k , to otrzymujemy funkcję jednej zmiennej x_k postaci $g(x_k) = f(x_1^0,...,x_k,...,x_n^0)$

Definicia

Pochodną funkcji g w punkcie x_k^0 nazywamy pochodną cząstkową funkcji f względem zmiennej x_k w punkcie $\left(x_1^0,...,x_k^0,...,x_n^0\right)$ i oznaczamy symbolem $f_{x_k}^{'}\left(x_1^0,...,x_k^0,...,x_n^0\right)$.

Materiały pomocnicze dla studentów Analiza matematyczna i algebra liniowa

Twierdzenie.

Jeżeli pochodne cząstkowe są ciągłe w zbiorze otwartym oraz różnią się tylko kolejnością różniczkowania, to są równe.

3. Interpretacja ekonomiczna pochodnych cząstkowych.

- wartość krańcowa cząstkowa względem x_k
- elastyczność cząstkowa względem x_k

4. (*) Pochodna i różniczka funkcji.

Elementem rachunku różniczkowego funkcji wielu zmiennych jest również pojęcie pochodnych. Ze względu na ograniczone ramy wykładu przedstawiona zostanie tylko reprezentacja macierzowa pochodnych.

Pochodną pierwszego rzędu nazywamy macierz jednowierszową, której elementami są pochodne cząstkowe pierwszego rzędu, czyli

$$f' = [f'_{x_1}, ..., f'_{x_n}],$$

$$f'(x_1^0, ..., x_n^0) = [f'_{x_1}(x_1^0, ..., x_n^0), ..., f'_{x_n}(x_1^0, ..., x_n^0)].$$

Wektor $f'(x_1^0,...,x_n^0)$, nazywany także gradientem, wskazuje kierunek najszybszego wzrostu wartości funkcji f, jeżeli startować będziemy z punktu $(x_1^0,...,x_n^0)$.

Pochodną drugiego rzędu nazywamy macierz kwadratową, której elementami są pochodne cząstkowe drugiego rzędu, czyli

$$f'' = \begin{bmatrix} f_{x_{1}x_{1}}^{"} & f_{x_{1}x_{2}}^{"} & \dots & f_{x_{1}x_{n}}^{"} \\ f_{x_{2}x_{1}}^{"} & f_{x_{2}x_{2}}^{"} & \dots & f_{x_{2}x_{n}}^{"} \\ \dots & \dots & \dots & \dots \\ f_{x_{n}x_{1}}^{"} & f_{x_{n}x_{2}}^{"} & \dots & f_{x_{n}x_{n}}^{"} \end{bmatrix},$$

$$f''(x_{1}^{0},...,x_{n}^{0}) = \begin{bmatrix} f_{x_{1}x_{1}}^{"}(x_{1}^{0},...,x_{n}^{0}) & f_{x_{1}x_{2}}^{"}(x_{1}^{0},...,x_{n}^{0}) & \dots & f_{x_{1}x_{n}}^{"}(x_{1}^{0},...,x_{n}^{0}) \\ f_{x_{2}x_{1}}^{"}(x_{1}^{0},...,x_{n}^{0}) & f_{x_{2}x_{2}}^{"}(x_{1}^{0},...,x_{n}^{0}) & \dots & f_{x_{2}x_{n}}^{"}(x_{1}^{0},...,x_{n}^{0}) \\ \dots & \dots & \dots & \dots & \dots \\ f_{x_{n}x_{n}}^{"}(x_{1}^{0},...,x_{n}^{0}) & f_{x_{n}x_{2}}^{"}(x_{1}^{0},...,x_{n}^{0}) & \dots & f_{x_{n}x_{n}}^{"}(x_{1}^{0},...,x_{n}^{0}) \end{bmatrix}$$

Materiały pomocnicze dla studentów Analiza matematyczna i algebra liniowa

Pochodne trzeciego i wyższych rzędów wymagają posługiwania się macierzami przestrzennymi. Dla sformułowania odpowiednich warunków istnienia ekstremów funkcji wielu zmiennych wystarczają pochodne pierwszego i drugiego rzędu.

Dla funkcji wielu zmiennych definiuje się **różniczkę zupełną** w punkcie $(x_1^0,...,x_n^0)$ odpowiadającą przyrostom argumentów $\Delta x_1,...,\Delta x_n$ wzorem:

$$df(x_1^0,...,x_n^0;\Delta x_1,...,\Delta x_n) = f_{x_1}(x_1^0,...,x_n^0) \cdot \Delta x_1 + ... + f_{x_n}(x_1^0,...,x_n^0) \cdot \Delta x_n.$$

Poszczególne składniki tej sumy nazywamy różniczkami cząstkowymi.

5. Ekstrema lokalne – definicje i twierdzenia.

Niech $f: \mathbf{R}^n \supset D \to \mathbf{R}$ będzie funkcją n zmiennych określoną w zbiorze otwartym D oraz $\mathbf{x}_0 = (\mathbf{x}_1^0, ..., \mathbf{x}_n^0)$ niech będzie punktem dziedziny D.

Definicja.

Mówimy, że funkcja f ma w punkcie x_0 maksimum (właściwe maksimum, minimum, właściwe minimum) lokalne, jeżeli dla każdego x należącego do pewnego sąsiedztwa punktu x_0 spełniona jest nierówność:

$$f(x) \le f(x_0)$$
 (odpowiednio $<, \ge, >$).

Warunek konieczny:

Jeżeli funkcja f ma w punkcie x_0 pochodne cząstkowe pierwszego rzędu oraz x_0 jest jej punktem ekstremalnym, to $f''(x_0) = (0,...,0)$, czyli $f_{x_0}(x_0) = 0$ dla k = 1,...,n.

Warunek wystarczający:

Jeżeli w pewnym otoczeniu punktu x_0 funkcja f jest klasy C^2 , $f''(x_0) = (0,...,0)$ oraz $(-1)^k w_k > 0$ ($w_k > 0$) dla k = 1,...,n, to funkcja f ma w punkcie x_0 właściwe maksimum lokalne (właściwe minimum lokalne).

6. Metoda najmniejszych kwadratów.

Załóżmy, że należy ustalić w oparciu o obserwacje statystyczne zależność między dwoma wielkościami X i Y, np. między ceną a popytem. Niech $x_1,...,x_n$ będą zaobserwowanymi wartościami zmiennej X, a $y_1,...,y_n$ – zaobserwowanymi w tych samych momentach wartościami zmiennej Y. Punkty $\left(x_k,y_k\right)$ mogą wskazywać tendencję do układania się wzdłuż pewnej krzywej danej równaniem y=f(x), która zależy od pewnej ilości parametrów. Istota metody najmniejszych kwadratów polega na takim określeniu parametrów krzywej y=f(x), aby suma kwadratów odchyleń, czyli

$$S = \sum_{k=1}^{n} [y_k - f(x_k)]^2$$

osiągała wartość najmniejszą.

7. Ekstrema warunkowe.

Niech dane będą dwie funkcje: $f: \mathbf{R}^n \supset D_1 \to \mathbf{R}$ oraz $g: \mathbf{R}^n \supset D_2 \to \mathbf{R}$ oraz niech $E = \{x \in D_1 \cap D_2 : g(x) = 0\}.$

Definicja.

Mówimy, że funkcja f ma w punkcie x_0 należącym do zbioru E maksimum (maksimum właściwe, minimum, minimum właściwe) lokalne przy warunku g(x)=0, jeżeli dla każdego $x \in S(x_0,r) \cap E$ spełniona jest nierówność:

$$f(x) \le 0$$
 (odpowiednio $<, \ge, >$).

Warunek konieczny:

Jeżeli funkcje f i g są klasy C^1 w pewnym otoczeniu punktu x_0 , $g'(x_0) \neq (0,...,0)$ oraz funkcja f ma w punkcie x_0 ekstremum przy warunku g(x) = 0, to istnieje liczba m, tzw. mnożnik Lagrange'a, taka, że:

$$F'(x_0) = (0,...,0),$$

gdzie F = f + mg.

Warunek wystarczający:

Niech (x_0,y_0) i m są tak dobrane, aby spełniony był warunek konieczny. Jeżeli funkcja F=f+mg jest klasy C^2 w pewnym otoczeniu punktu (x_0,y_0) , $F'(x_0,y_0)=(0,0)$ oraz $\Delta < 0$ (<), to f ma w punkcie (x_0,y_0) właściwe maksimum (minimum) warunkowe.

Pytania kontrolne:

- 1. Ile pochodnych cząstkowych I, II i III rzędu ma funkcja czterech zmiennych?
- 2. Ile równych pochodnych cząstkowych III rzędu może mieć funkcja czterech zmiennych?
- 3. Czy pochodna drugiego rzędu f' zawsze jest macierzą symetryczną?
- 4. Czy ekstrema lokalne muszą pokrywać się z ekstremami warunkowymi?