

SEQUENCE & SERIES

A sequence $\{a_n\}$ of real numbers is called an arithmetic progression (AP) if a_{n+1} - a_n is constant for all positive integers $n \geq 1$, and this constant number is called the common difference of the AP.

Arithmetic progression (AP)

Quick Look

- If $\{a_n\}$ is an AP and k is any real number, then $\{a_n+k\}$ is also an AP with same common difference and $\{k \, a_n\}$ is also an AP.
- If $\{a_n\}$ and $\{b_n\}$ are arithmetic progressions, then $\{a_n+b_n\}$ is also an AP.
- Product of two arithmetic progressions is also an AP if and only if one of them is a constant sequence
- Arithmetic means (AM's): If α , A_1 , A_2 , A_n , b are in AP, then A_1 , A_2 , A_n are called n AM's between a and b. The K th mean A_k is given by $A_k = \alpha + K \frac{\left(b-a\right)}{n+1}$ for K = 1, 2,, n
- Sum to first n terms of an AP: Let s_n be the sum to first n terms of an AP with first term 'a' and common difference 'd'. Then $s_n = \frac{n}{2} \left[2\alpha + (n-1) \ d \right]$ or $s_n = \frac{n}{2} \left[first \ term + n^{th} \ term \right]$
- If A_1 , A_2 ,, A_n are n AM's between a and b then $A_1 + A_2 + ... + A_n = \frac{n(a+b)}{2}$
- Ratio of nth terms of two AP's: Let t_n be the nth term of an AP whose first term is a and common difference d and S_n is its sum to first n terms. Let t_n, be the nth term of another AP with first term b and common difference d whose sum of first n terms is S_n. Then

$$\frac{t_n}{t_n'} = \frac{s_{2n-1}}{s_{2n-1}'}$$

- Characterization of an AP: A sequence of real numbers is an arithmetic progression if and only if its sum of the first n terms is a quadratic expression in n with constant term zero.
- · Helping points:
 - (1) Three numbers in AP can be taken as a d, a, a + d.
 - (2) Four numbers in AP can be taken as a 3d, a d, a + d, a + 3d.
 - (3) Five numbers in AP can be taken as a 2d, a d, a, a + d, a + 2d.

A sequence $\{\alpha_n\}$ of non-zero real numbers is called GP if α_n / $\alpha_{n-1} = \alpha_{n+1}$ / α_n for $n \ge 2$ 2. That is the ratio α_{n+1} / α_n is constant for $n \ge 1$ and this constant ratio is called the common ratio of the GP and is generally denoted by r.

General form

GP with first term a, ar, ar 2 whose n^{th} term is ar^{n-1}

Geometric progression
(GP)

Quick Look

- If three numbers are in GP, then they can be taken as a/r, a, ar.
- If four numbers are in GP, then they can be taken as a/r^3 , a/r ar, ar³.
- Sum to first n-terms of a GP: The sum of the first n-terms of a GP with first term 'a' and common ratio $r \ne 1$ Is $\frac{a(1-r^n)}{r}$
- Sum to infinity of a GP: If -1 < r < 1 is the common ratio of a GP whose first term is a, then $S_r = \alpha/1 r$ is called sum to infinity of the GP.
- Geometric mean and geometric means: if three numbers a, b and c are in GP, then b is called the Geometric mean (GM) between a and c and b² = ac. If x and y are positive real numbers, then x, √xy ,y are in GP. If a, g₁, g₂, gₙ are called n geometric means between a and b.
- k^{th} GM g_k is given by $g_k = a(b/a)^{k/n+1}$ for k = 1, 2, ..., n
- Product of n GM's between a and b is $\left(\sqrt{ab}\right)^{r}$

Arithmetic geometric progression (AGP):

Sequence of numbers of the form a, (a + d)r, (a + 2d)r², + ... is called AGP sum to n terms of an AGP is

 $\frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{(a+(n-1)d)r^n}{1-r}$

and $\frac{a}{1-r} + \frac{dr}{\left(1-r\right)^2}$ is the sum to infinity.

AM – GM inequality:

Let α_1 , α_2 ,, α_n be positive reals. Then $\frac{a_1+a_2+....+a_n}{n} \text{ is called AM of } \alpha_1$, α_2 ,, α_n and $(\alpha_1,\alpha_2,.....,\alpha_n)^{1/n} \text{ is called their GM. Further}$ $\frac{a_1+a_2+....+a_n}{n} \geq (\alpha_1,\alpha_2,.....,\alpha_n)^{1/n} \text{ and equality}$ holds if an only if $\alpha_1=\alpha_2=\alpha_3=....=\alpha_n$

5. Harmonic progression (HP)

A sequence of non-zero reals is said to be in HP, if their reciprocals are in AP.

General form of an HP

Sequence of real numbers

$$\frac{1}{a}$$
, $\frac{1}{a+d}$, $\frac{1}{a+2d}$ $\frac{1}{a+(n-1)d}$

can be taken as general form of an HP.

Harmonic mean & Harmonic means:

(1) If a, b, c are in HP, then b is called the Harmonic mean (HM) between a and c and in this case b = $\frac{2ac}{a+c}$.

(2) If a, h₁, h₂,,h₂,, h_n, b are in HP, then h₁, h₂,,h₂,, h_n are called HM's between a and b further

$$h_k = \frac{ab(n+1)}{b(n+1)+k(a-b)}$$
 for k = 1, 2,, n

Theorem:

Let $a_{r}a_{2^{r}}$, a_{n} be positive real and A, G be AM and GM of the given numbers. Then,

H=
$$\frac{n}{1/a_1 + 1/a_2 + ... + 1/a_1}$$

which is called harmonic mean of $a_{1'}a_{2'}$, a_n Note: $A \ge G \ge H$ and equality holds if and only if $a_1 = a_2 = a_3 = ... = a_n$

6. Some Useful Formulae

1. Telescopic Series: Suppose that we have to find the sum to n terms of a series $u_1 + u_2 + u_3 + \dots$.

$$u_k=a_k-a_{k+1} \ \text{ for all } k$$
 then $u_1+u_2+....u_n=a_1-a_{n+1}$ For example, consider $\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....$ here, we have

$$\frac{1}{K(K+1)} = \frac{1}{K} - \frac{1}{K+1} \quad \text{for all } K \ge 2$$

2. Suppose that the term u_n of a given series is the product of r successive terms of an AP beginning with the n^{th} term of the AP; such that

$$u_{_{n}}\,=\,\left[\,a+\big(\,n-1\big)d\,\right]\!\left[\,a+nd\,\right]....\left[\,a+\big(\,n+r-2\,\big)d\,\right]$$

By choosing $a_n = u_n [a+(n+r-1)d]$, we can write

$$u_n = \frac{1}{(r+1)d} \left[a_n - a_{n-1} \right]$$

so that the sum to n terms is equal to $\frac{1}{(r+1)d} (a_n - a_0)$

For example, consider

3. Suppose that the nth term of a series is the reciprocal of the nth term of the series given in II; that is,

$$u_{n} = \frac{1}{\left[a + (n-1)d\right]\left[a + nd\right]...\left[a + (n+r-2)d\right]}$$

Then, we can choose $a_n = u_n [a+(n-1)d]$

so that
$$u_n=\frac{1}{(r-1)d}(a_{n-1}-a_n)$$
 and sum to n terms is given by
$$\frac{1}{(r-1)d}(a_0-a_n)$$

For example, consider

(i)
$$\frac{1}{1.4.7} + \frac{1}{4.7.10} + \frac{1}{7.10.13} + \dots$$

(ii)
$$\frac{1}{1.3.5.7} + \frac{1}{3.5.7.9} + \frac{1}{5.7.9.11} + \dots$$