Machine Learning in Robotics Lecture 2: Regression

Prof. Dongheui Lee

Human-centered Assistive Robotics Technische Universität München

dhlee@tum.de

Regression problems

- The goal is to make quantitative (real valued) predictions on the basis of a vector of features or attributes
- Examples: house prices, stock values, survival time, fuel efficiency of cars, etc.
- Questions: What can we assume about the problem? how do we formalize the regression problem? how do we evaluate predictions?

Linear Regression

Linear regression assumes that expected value of the output given an input is linear.

$$y^{(i)} = wx^{(i)} + \epsilon \tag{1}$$

input x	output y	
1	1	
2	2	
3	2.2	
4	3.1	
1.5	1.9	

 $x^{(i)}$: i-th input $v^{(i)}$: i-th output

Linear Least Squares Regression : Single Parameter

- Which value of w makes the output values most likely?
- One that minimizes sum of squares of residuals.

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - wx^{(i)})^{2}$$

$$w =$$

We can use it for prediction.

Introduction

Linear Least Squares Regression : Single Parameter

- Which value of w makes the output values most likely?
- One that minimizes sum of squares of residuals.

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - wx^{(i)})^{2}$$

$$w = \frac{\sum_{i=1}^{n} x^{(i)}y^{(i)}}{\sum_{i=1}^{n} x^{(i)}^{2}}$$

We can use it for prediction.

Linear Least Squares Regression

We need to define a class of functions (types of predictions we will try to make) such as linear predictions:

$$f(x) = w_0 + w_1 x \tag{2}$$

where w_0 and w_1 are the parameters we need to set.

We need an estimation criterion so as to be able to select appropriate values for our parameters (w_0 and w_1) based on the training set $\{(x^{(i)}, y^{(i)}), \dots, (x^{(n)}, y^{(n)})\}$

For example, we can use the empirical loss:

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}))^2$$
 (3)

Estimating the parameters

· We minimize the empirical squared loss

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}))^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - w_{0} - w_{1}x^{(i)})^{2}$$
(4)

 By setting the derivatives with respect to w₀ and w₁ to zero we get necessary conditions for the optimal parameter values

$$\frac{\partial}{\partial w_0} E = 0$$

$$\frac{\partial}{\partial w_1} E = 0$$
(5)

Estimating the parameters

• By setting the derivatives with respect to w_0 and w_1 to zero

$$\frac{\partial}{\partial w_0} E = 0$$

$$\frac{\partial}{\partial w_1} E = 0$$
(6)

we get necessary conditions for the optimal parameter values

$$w_{0} = \frac{\sum y^{(i)} \sum x^{(i)^{2}} - \sum x^{(i)} \sum x^{(i)} y^{(i)}}{n \sum x^{(i)^{2}} - (\sum x^{(i)})^{2}}$$

$$w_{1} = \frac{n \sum x^{(i)} y^{(i)} - \sum x^{(i)} \sum y^{(i)}}{n \sum x^{(i)^{2}} - (\sum x^{(i)})^{2}}$$
(7)

Linear regression problem with multiple variables

We can express the solution a bit more generally by resorting to a matrix notation

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \vdots \\ \mathbf{x}^{(n)} \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \cdots & x_m^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & \cdots & x_m^{(2)} \\ & \vdots & & & \\ 1 & x_1^{(n)} & x_2^{(n)} & \cdots & x_m^{(n)} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \\ \vdots \\ \mathbf{y}^{(n)} \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_m \end{bmatrix}$$

so that f(x) = Xw.

The result becomes

$$\mathbf{w}^{\star} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Solving Linear regression in matrix notation

Our empirical loss becomes $E = \frac{1}{n} ||y - Xw||^2$.

By setting the derivatives of E with respect to w to zero, we get the same optimality conditions as before, now expressed in a matrix form

$$\frac{\partial}{\partial \mathbf{w}} E = \frac{1}{n} \frac{\partial}{\partial \mathbf{w}} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})$$

$$= \frac{1}{n} \frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{y}^T \mathbf{y})$$

$$= \frac{1}{n} (\frac{\partial \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w}}{\partial \mathbf{w}} - 2 \mathbf{y}^T \mathbf{X})$$

$$= \frac{1}{n} (2 \mathbf{w}^T \mathbf{X}^T \mathbf{X} - 2 \mathbf{y}^T \mathbf{X}) = 0$$

which yields

$$\mathbf{w}^{\star} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Gradient Descent

- Another way to minimize E(w)
- Start with an initial value of w, keep changing w to reduce E(w)

$$w_j := w_j - \alpha \frac{\partial}{\partial w_j} E(\mathbf{w})$$

$$w_j := w_j - 2\alpha (f(\mathbf{x}) - y) x_j$$

- Batch Gradient Descent
 - All training data is taken into account

$$w_j := w_j - \frac{\alpha}{n} \sum_{i=1}^n (f(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$$

· Incremental (Stochastic) Gradient Descent

$$w_j :=$$

Gradient Descent

- Another way to minimize E(w)
- Start with an initial value of w, keep changing w to reduce E(w)

$$w_j := w_j - \alpha \frac{\partial}{\partial w_j} E(\mathbf{w})$$

$$w_j := w_j - 2\alpha (f(\mathbf{x}) - y) x_j$$

- Batch Gradient Descent
 - All training data is taken into account

$$w_j := w_j - \frac{\alpha}{n} \sum_{i=1}^n (f(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$$

Incremental (Stochastic) Gradient Descent

$$w_j := w_j - \alpha(f(\mathbf{x}^{(i)}) - y^{(i)})x_j^{(i)}, \text{ for } i = 1 \text{ to } n$$

Probabilistic approach

Assume

$$\begin{split} y^{(i)} &= \mathbf{x}^{(i)} \mathbf{w} + \epsilon^{(i)} \\ \epsilon^{(i)} &\sim \mathcal{N}(0, \sigma^2) \\ p(y^{(i)} | \mathbf{x}^{(i)}; \mathbf{w}) &= \frac{1}{\sqrt{2\pi}\sigma} \exp{(-\frac{(y^{(i)} - \mathbf{x}^{(i)} \mathbf{w})^2}{2\sigma^2})} \end{split}$$

Likelihood

Introduction

$$L(\mathbf{w}) = \prod_{i=1}^{n} p(y^{(i)}|\mathbf{x}^{(i)};\mathbf{w})$$
$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \mathbf{x}^{(i)}\mathbf{w})^{2}}{2\sigma^{2}}\right)$$

Choose parameters to maximize the likelihood = same as minimizing LMS

Beyond linear regression

• The linear regression functions

$$f(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_m x_m$$

are convenient because they are linear in the parameters, not necessarily in the input \boldsymbol{x}

 We can easily generalize these classes of functions to be non-linear functions of the inputs x but still linear in the parameters w. For example: mth order polynomial prediction

$$f(\mathbf{x}) = w_0 + w_1 x + w_2 x^2 + \dots + w_m x^m$$

Quadratic Regression

$$f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_1 x_2 + w_5 x_2^2$$

Polynomial Curve Fitting

$$f(\mathbf{x}) = w_0 + w_1 x + w_2 x^2 + \dots + w_m x^m$$

Minimize the empirical error

$$E = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}))$$

Least Mean Square

Polynomial Curve Fitting with different orders

Polynomial Curve Fitting

Root-mean-square error & Polynomial coefficients

Introduction

	m=0	m = 1	m = 3	m = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Polynomial Curve Fitting

9th order polynomials by increasing the training data, n=15 and n=100

Regularization

Penalize large coefficient values

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (f(x^{(i)}, \mathbf{w}) - y^{(i)})^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Introduction

Regularization

Root-mean-square error & Polynomial coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Application

Least Mean Square

Robotics Applications: Odometry calibration

Estimate the pose (x, y, θ) of a mobile robot given the angular velocity of each wheel (ω_L, ω_R)

Odometry calibration consists in estimating W

Introduction

Robotics Applications: Odometry calibration

$$\begin{aligned}
x_{t+1} &= x_t + v cos(\theta) \Delta T \\
y_{t+1} &= y_t + v sin(\theta) \Delta T \\
\theta_{t+1} &= \theta_t + \omega \Delta T
\end{aligned}
\Longrightarrow
\begin{vmatrix}
x_N - x_0 \\
y_N - y_0
\end{vmatrix} = \mathbf{X}(\omega_R, \omega_L) \begin{bmatrix} w_{11} \\ w_{12} \end{bmatrix} \\
\theta_N - \theta_0 &= \mathbf{Z}(\omega_R, \omega_L) \begin{bmatrix} w_{21} \\ w_{22} \end{bmatrix}$$

Executing M trajectories the parameters $(w_{11}, w_{12}, w_{21}, w_{22})$ can be identified using Linear Regression

Antonelli G., Chiaverini S., and Fusco G. A Calibration Method for Odometry of Mobile Robots Based on the Least-Squares Technique: Theory and Experimental Validation, Transactions on Robotics, 2005.

Robotics Applications: Identification of robotic system

Equations of motion

$$ml^2\ddot{q} - mglsin(q) = \tau$$

Identification model

$$au = \left[\ddot{q} - \sin(q)\right] \begin{bmatrix} ml^2 \\ mgl \end{bmatrix} = Y(q, \dot{q}, \ddot{q})p$$

Robotics Applications: Obstacle avoidance

Assign an attractive potential (u_{att}) to the goal position and repulsive potentials (u_{rep}) to the obstacles

$$u = u_{att} + u_{rep} \rightarrow f_j = \frac{\partial}{\partial p_j} u_{att} + \frac{\partial}{\partial p_j} u_{rep}$$

Introduction

Robotics Applications: Obstacle avoidance

A collision-free trajectory is generated using Gradient Descent

$$\boldsymbol{p}^{(i+1)} = \boldsymbol{p}^{(i)} - \alpha \frac{\boldsymbol{f}^{(i)}}{\|\boldsymbol{f}\|}$$

Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 1986.

Reference

- Bishop, Pattern Recognition and Machine Learning Chap. 1.1, 3, 6.4.1, 6.4.2
- Mitchell, Machine Learning Chap. 4.4.3, 8.3

Introduction

