机器学习第7次实验报告

李宜霖、苏家兴、窦志成 2021 年 06 月 16 日

目录

1	概述	•		3	
2	BP	P 算法推导			
	2.1	全连接	神经网络	3	
		2.1.1	权重调整	3	
		2.1.2	阈值调整	4	
	2.2	卷积神	9经网络	4	
		2.2.1	交叉熵损失函数	5	
		2.2.2	softmax 激活函数	5	
		2.2.3	全连接层	5	
		2.2.4	池化层	6	
		2.2.5	sigmoid 激活函数	6	
		2.2.6	卷积层	6	

1 概述

这里是概述

- 第一条
- 第二条
- 第三条

Code 1: 这里是代码标题

```
def convolution_forward(X, W, b, stride = 1, pad = 0):
    cal_X = im2col_forward(X, 5, 5, stride, pad)
    result = np.dot(cal_X[0], W)
    result += b
    result = sigmoid(result)
    return result
```

2 BP 算法推导

反向传播算法使用梯度下降策略对神经网络参数进行调整。

2.1 全连接神经网络

以如图1的三层全连接神经网络为例:

- 1. 含有 d 个神经元的输入层
- 2. 含有 q 个神经元的隐层
- 3. 含有 l 个神经元的输出层

假设网络的激活函数都是 Sigmoid 函数,即 $f(x)=\frac{1}{1+e^{-x}}$,每个神经元接受的输入如图1所示,定义误差函数为 $E=\frac{\sum_{i=1}^l (\hat{y_i}-y_i)^2}{2}$,即均方误差函数。以隐层到输出层的参数调整为例。

2.1.1 权重调整

权重 w_{ij} 的调整方式如公式1。

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$$

$$= -\eta \frac{\partial E}{\partial \hat{y}_{j}} \frac{\partial \hat{y}_{j}}{\partial \hat{\beta}_{i}} \frac{\partial \hat{\beta}_{j}}{\partial w_{ij}}$$
(1)

由于 $\frac{\partial E}{\partial \hat{y_j}} = \hat{y_j} - y_j$, Sigmoid 函数满足 f'(x) = f(x)(1 - f(x)), $\frac{\partial \hat{\beta_j}}{\partial w_{ij}} = b_i$ 。因此公式1可以变换为如公式2形式。

图 1: 含有单层隐含层的三层神经网络

$$\Delta w_{ij} = -\eta(\hat{y}_j - y_j)(\hat{y}_j(1 - \hat{y}_j))(b_i)$$

= $-\eta b_i \hat{y}_j(\hat{y}_j - y_j)(1 - \hat{y}_j)$ (2)

2.1.2 阈值调整

类似于权重调整, 也对 E 求阈值 θ 的导数。

$$\Delta\theta_j = -\eta \frac{\partial E}{\partial \hat{y_j}} \frac{\partial \hat{y_j}}{\partial \theta_i} \tag{3}$$

由于 Sigmoid 函数满足 f'(x) = f(x)(1 - f(x)), 因此公式3可以变换为如公式4形式。

$$\Delta\theta_{j} = -\eta(\hat{y}_{j} - y_{j})(-1)(\hat{y}_{j}(1 - \hat{y}_{j}))$$

$$= \eta\hat{y}_{j}(\hat{y}_{j} - y_{j})(1 - \hat{y}_{j})$$
(4)

每次训练后, 朝误差减少的方向调整参数。其中 η 是学习率。

2.2 卷积神经网络

以 28*28 的输入图像,一层卷积、一层池化、一层全连接的神经网络为例,如图??。CNN 的模型 参数只有卷积层的权值矩阵和偏置,全连接层的权值矩阵和偏置。因此求导顺序如下:

- 1. 交叉熵损失函数
- 2. softmax 激活函数
- 3. 全连接层
- 4. 池化层
- 5. sigmoid 激活函数

6. 卷积层

2.2.1 交叉熵损失函数

交叉熵定义为 $CELF = -(\sum_{k=1}^{n} y_k log(\hat{y_k}))$, 因此其导数定义如公式5。

$$\frac{\Delta CELF}{\Delta \hat{y_k}} = -\frac{y_k}{\hat{y_k}} \tag{5}$$

2.2.2 softmax 激活函数

softmax 激活函数定义为 $y_i = \frac{e^{x_i}}{\sum_{k=1}^n x_k}$,其导函数定义如公式6。

$$\frac{\partial y_i}{\partial x_j} = \begin{cases}
\frac{e^{x_j} (\sum_{k=1}^n e^{x_k} - e^{x_j})}{(\sum_{k=1}^n e^{x_k})^2} = y_i (1 - y_i), & i == j \\
\frac{0 - e^{x_i} e^{x_j}}{(\sum_{k=1}^n e^{x_k})^2} = -y_i y_j, & i != j
\end{cases}$$
(6)

求 softmax 激活函数的输入 x_i 对于 CELF 的导数如公式7。

$$\frac{\partial CELF}{\partial x_i} = \sum_{k=1}^n \frac{\partial CELF}{\partial y_k} \frac{\partial y_k}{x_i}
= -\frac{y_i}{\hat{y_i}} \hat{y_i} (1 - \hat{y_i}) + \sum_{k \neq i} \frac{y_k}{\hat{y_k}} \hat{y_i} \hat{y_k}
= y_i \hat{y_i} + \sum_{k \neq i} y_k \hat{y_i} - y_i
= \hat{y_i} \sum_{k=1}^n y_k - y_i
= \hat{y_i} - y_i$$
(7)

2.2.3 全连接层

全连接层可以由 $y = \sum_{k=1}^n x_k w_k + b$, 其中 w_k 是第 k 个输入 x_k 的权重。因此其对 w_k 和 b 的导数定义为如公式8。

$$\frac{\Delta y}{\Delta w_i} = x_i
\frac{\Delta y}{\Delta b} = 1$$
(8)

由此得到 CELF 对权重 w_k 和偏置 b 的导数如公式9。其中 x_i 为 softmax 激活函数的输入, w_j 为全连接层第 j 输入 a_j 的权重

$$\frac{\partial CELF}{\partial w_j} = \frac{\partial CELF}{\partial x_i} \frac{\partial x_i}{\partial w_j}
= (\hat{y}_i - y_i)a_j
\frac{\partial CELF}{\partial b} = \frac{\partial CELF}{\partial x_i} \frac{\partial x_i}{\partial b}
= (\hat{y}_i - y_i)$$
(9)

由于下面的卷积层仍然需要用到全连接层对输入的导数,因此求出 CELF 对输入 a_j 的导数如公式10。

$$\frac{\partial CELF}{\partial a_j} = \frac{\partial CELF}{\partial x_i} \frac{\partial x_i}{\partial a_j}
= (\hat{y}_i - y_i)w_j$$
(10)

2.2.4 池化层

池化层对全连接层的输入进行了重新排列组合并加权平均。池化层的输入和输出分别是 $[c_1, c_2, \ldots, c_{2n^2}]$ 和 $[a_1, a_2, \ldots, a_{n^2}]$,其对应关系可以用公式11描述。

$$a_{i} = \frac{c_{2\left[\frac{i}{n}\right] \times 2n + 2\left(i\%n\right)} + c_{2\left[\frac{i}{n}\right] \times 2n + 2\left(i\%n + 1\right)} + c_{2\left(\left[\frac{i}{n}\right] + 1\right) \times 2n + 2\left(i\%n\right)} + c_{2\left(\left[\frac{i}{n}\right] + 1\right) \times 2n + 2\left(i\%n + 1\right)}}{4}$$
(11)

池化层的导数恒为 ¼, 因此对于梯度下降并没有影响。

2.2.5 sigmoid 激活函数

sigmoid 激活函数定义为 $c = \frac{1}{1+e^{-d}}$, sigmoid 的导函数如公式12。

$$\frac{\partial c}{\partial d} = c(1 - c) \tag{12}$$

2.2.6 卷积层

卷积层对输入的图像执行了卷积操作,可以用如公式13描述卷积层执行的操作。

$$\begin{bmatrix} d_1 \\ d_2 \\ \dots \\ d_m \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ u_{21} & u_{22} & \dots & u_{2n} \\ \dots & \dots & \dots & \dots \\ u_{m1} & u_{m2} & \dots & u_{mn} \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \\ \dots \\ v_n \end{bmatrix} + \begin{bmatrix} q \\ q \\ \dots \\ q \end{bmatrix}$$

$$(13)$$

因此, 卷积层的导数如公式14。

$$\frac{\partial d_i}{\partial v_j} = u_{ij}
\frac{\partial d_i}{\partial q} = 1$$
(14)

最终推出 CELF 对权重 v_k 和偏置 q 的导数公式如公式15, 其中 $\frac{\partial CELF}{\partial a_j}$ 是 CELF 对全连接层输入 a_j 的导数, $\frac{\partial a_j}{\partial c_l}\frac{\partial c_l}{\partial d_l}$ 是 a_j 对卷积层输出 d_l 的导数, $\frac{\partial d_l}{\partial v_k}$ 是卷积层输出 d_l 对权重 v_k 的导数。

$$\frac{\partial CELF}{\partial v_k} = \sum_{j} \frac{\partial CELF}{\partial a_j} \sum_{l} \frac{\partial a_j}{\partial c_l} \frac{\partial c_l}{\partial d_l} \frac{\partial d_l}{\partial v_k}
= \sum_{j} (\hat{y}_i - y_i) w_j \sum_{l} \frac{1}{4} c_l (1 - c_l) u_{lk}
\frac{\partial CELF}{\partial b} = \sum_{j} \frac{\partial CELF}{\partial a_j} \sum_{l} \frac{\partial a_j}{\partial c_l} \frac{\partial c_l}{\partial d_l} \frac{\partial d_l}{\partial b}
= \sum_{j} (\hat{y}_i - y_i) w_j \sum_{l} \frac{1}{4} c_l (1 - c_l)$$
(15)