Intuitive Physics in Virtual Reality

Yu-Yu Chen
American University
Data Science Practicum Project
Adviser: Dr. Bei Xiao

When playing Jenga...

All the players are trying to make the tower stay stable...

But how do we know?

This Study

- Human Intuitions about Tower Stability in VR
 - Evaluate various tower designs in an immersive virtual reality environment
- Predictive Modeling
 - Image-based models to predict whether towers will fall or not

Experiment Design

- 50 unique tower design
- For each tower:
 - Rate stability on 1 7 scale
 - Predict likely fall direction
- 3 evaluation rounds, 150 total trials

Demo

Human Behavior Results

Observers rely on well-developed intuitive skills and knowledge of physical principles rather than simple guessing.

Tower Difficulty

The portion of participants that correctly judged the towers' falling direction

Easiest

(> 90% correct)

Medium

(~70%)

Hardest (< 40%)

Image-based models Performance

Dataset: Images of different viewing angles of 50 towers, total 164 unstable & 144 stable towers' photo

Over 95% accuracy

- Precision drop from training:
 - Potential overfitting
 - Sensitivity to variations

	ResNet50		InceptionV3	
	Training	Testing	Training	Testing
Accuracy	95.98	95.45	96.43	95.45
Precision	95.45	85.71	95.49	85.71
Recall	97.67	100.00	98.45	100.00
F1 Score	96.55	92.31	96.95	92.31

Model Explainability

ResNet50

Focuses on top/bottom

InceptionV3

Considers full structure

Spectrum from warm to cool.

Red =

Areas that contribute most to the decision making process

Blue =

Areas that
contribute least to
the decision
making process

Interesting Case

Same tower, different viewing angles

Human: Stable (38%)

ResNet50: Stable

ResNet50: Unstable

InceptionV3: Stable

InceptionV3: Unstable

Summary

Humans show robust intuitive grasp of physical principles with high accuracy (71%) and significant consistency (78%)

Deep learning models show the potential to reach human capabilities but more work is needed to understand the gap between human and machines' intuitive physics

Thanks!

Dr. Bei Xiao Jesse Schwartz (Lab alumni) Michael Reinisch (MS student) Chenxi Liao (PhD student)

Yu-Yu Chen, MS candidate in Data Science yc0688a@american.edu

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

Interesting Case

Same tower, different viewing angles

Human: Stable (96%)

ResNet50: Stable

ResNet50: Stable

InceptionV3: Stable

InceptionV3: Unstable