

Advanced transcriptomics inference (II)

Charlotte Soneson

Friedrich Miescher Institute for Biomedical Research & SIB Swiss Institute of Bioinformatics

CSAMA 2024

Differential analysis types for scRNA-seq

Marker gene detection

- Which genes are differentially expressed between cell types A and B?
- Which genes are specifically expressed in cell type A?

What do we mean by a "marker gene"?

A gene that is

• upregulated in cell type A compared to all other cell types?

- upregulated in cell type A compared to at least one other cell type?
- upregulated in cell type A compared to "most" other cell types?
- upregulated in cell type A compared to the complement of cell type A?
- only ever seen in cell type A?
- ...?

Marker gene detection for a specific cell type is strongly influenced by which other cells are present in your data set, as well as by the cluster resolution!

Double-dipping

• Typically, cell types/clusters are first inferred from the data, after which expression values in each pair of clusters are compared to find marker genes (using the *same* data that was used to define the clusters).

- This approach is prone to overestimating the significance of cell type expression differences.
- Try it yourselves generate random expression values, cluster cells into two clusters, see if you can find any genes that are significantly DE between these clusters!

Double-dipping - remedies

- Be careful when interpreting marker gene p-values.
- Infer cell types using independent data, or a subset of the genes (that are not tested afterwards). Note that splitting the cells into a training and a test set does not help the 'test' cells still need to be assigned to a cluster based on their expression profiles.
- Approaches have been proposed to test for mean differences between clusters, conditional on the clusters having been found in the data (see e.g. https://arxiv.org/abs/2203.15267, https://www.lucylgao.com/clusterpval/).

Differential analysis types for scRNA-seq

Differential abundance analysis

- Are some cell types more/less abundant in one condition compared to another?

Cell type frequencies

	U1	U2	T1	T2
A	142	187	153	160
В	163	215	15	34
С	118	130	132	124
D	78	90	75	68

Differential abundance analysis - methods

- Conventional count-based methods (edgeR, DESeq2).
 See e.g. diffcyt (https://www.nature.com/articles/s42003-019-0415-5) or OSCA (http://bioconductor.org/books/3.15/OSCA.multisample/differential-abundance.html)
- Transformation + linear model. See e.g. propeller (https://academic.oup.com/bioinformatics/article/ 38/20/4720/6675456)

Cell type frequencies

	U1	U2	T 1	T2
A	142	187	153	160
В	163	215	15	34
С	118	130	132	124
D	78	90	75	68

Differential analysis types for scRNA-seq

Differential state analysis

- Are any genes differentially expressed between conditions within a given cell type?

Cells from the same individual are more highly correlated than cells from different individuals

Differential state analysis - methods

- Perform a regular statistical test between all treated cells and all untreated cells.
 - Not recommended the individual cells are not true biological replicates/ experimental units, and significance will be inflated!
- Mixed-effects model (random effect for individuals), accounting for the hierarchical correlation structure.
 - Can work well, but is computationally demanding.
- Pseudobulk creation + "regular" differential expression analysis.
 - Computationally efficient, ameliorates the sparsity in the single-cell data, masks within-sample heterogeneity.

Pseudobulk generation

- For each cell type/cluster, and each sample, sum the count vectors for the individual cells to create a single aggregated count vector -> gene x cell type-sample count matrix.
- Subsequent differential expression analysis is typically performed separately for each cell type.
- Remove columns generated from too few cells -> some comparisons may not be possible (e.g., if the treated samples don't contain a given cell type).
- From this point onwards, it's essentially a bulk differential analysis we have leveraged the single-cell data to generate "pure" samples.

Going beyond comparisons of means

- "Classical" methods (e.g. Kolmogorov-Smirnov test) do not accommodate replicates.
- A generalization was proposed in the distinct package, by defining a test statistic from the difference between two groups of eCDFs at each point in a fine grid, and running a permutation test.

References

- http://bioconductor.org/books/3.17/OSCA.multisample/multi-sample-comparisons.html
- https://www.nature.com/articles/s41467-021-25960-2
- https://www.nature.com/articles/s41467-020-19894-4
- https://www.nature.com/articles/s41467-021-21038-1
 - https://www.nature.com/articles/s41467-022-35519-4
 - https://www.nature.com/articles/s41467-022-35520-x