Lec11 Note of Complex Analysis

Xuxuayame

日期: 2023年4月11日

设 $z_n \in \mathbb{C}$, $n = 1, 2, \dots$, 称级数 $\sum_{n=1}^{\infty} z_n$ 收敛, 如果 $\lim_{n \to \infty} s_n$ 存在有限, 其中 $s_n =$ $z_1 + z_2 + \cdots + z_n$

- $\sum_{n} z_n$ 收敛 $\Rightarrow \lim_{n \to \infty} z_n = 0$ 。 $\sum_{n=0}^{\infty} |z_n|$ 收敛 $\Rightarrow \sum_{n=0}^{\infty} a_n$ 收敛。

定义 1.2. 设 $f_n: K \to \mathbb{C}$,称函数项级数 $\sum_{n=1}^{\infty} f_n(z)$ 在 K 上一致收敛于 $f: K \to \mathbb{C}$,如果 $S_n(z) = \sum_{k=1}^n f_k(z)$ 在 K 上一致收敛于 f(z)。

一致收敛有如下性质:

Cauchy 准则 $\sum\limits_{n=1}^{\infty}f_n(z)$ 在 K 上一致收敛 \Leftrightarrow \forall $\varepsilon>0$, \exists N, $\overset{}{=}$ n>N 时 $|f_{n+1}(z)+f_{n+2}(z)+\cdots+f_{n+p}(z)|<\varepsilon,$ \forall $z\in K$ 。

Weierstrass 判别法 设 $|f_n(z)| \le a_n$, $\forall z \in k$, $\forall n$, 且 $\sum_{n=1}^{\infty} a_n < +\infty$, 则 $\sum_{n=1}^{\infty} f_n(z)$ 在 K上一致收敛。

连续性 设 $f_n: K \to \mathbb{C}$ 连续且 $\sum_{n=1}^{\infty} f_n(z)$ 在 K 上一致收敛于 f(z),则 f(z) 连续。

可积性 设 $f_n: K \to \mathbb{C}$ 连续且 $\sum_{n=1}^{\infty} f_n(z)$ 在可求长曲线 γ 上一致收敛于 f(z),则 $\int_{\gamma} f(z) dz =$ $\sum_{n=1}^{\infty} \int_{\gamma} f_n(z) \, \mathrm{d} z \, .$

可导性 (即 Weierstrass) 设 $D \subset \mathbb{C}$ 为区域, $f_n \colon D \to \mathbb{C}$ 全纯且 $\sum_{n=1}^{\infty} f_n(z)$ 在 D 中紧一致 收敛于 f(z),则

- (1) f(z) 在 D 中全纯;
- (2) $\sum_{n=1}^{\infty} f_n^{(k)}(z)$ 在 D 中紧一致收敛于 $f^{(k)}(t)$ 。

例 1.1. 定义函数:

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}, \ z = x + iy.$$

则 $|n^z| = |e^{z \log n}| = |e^{x \log n}e^{iy \log n}| = n^x$ 。由 W-判别法, $\sum_{n=1}^{\infty} \frac{1}{n^z}$ 在 $D = \{z \mid \text{Re}z > 1\}$ 中 紧一致收敛,故 $\zeta(z)$ 在D中全纯。

例 1.2. 求收敛点集:

(i)
$$\sum_{n=1}^{\infty} \frac{\cos nz}{n^2};$$

(ii)
$$\sum_{n=0}^{\infty} \frac{z^n}{1-z^n} \circ$$

解. (i) z = x + iy,若 y = 0,则 $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ 收敛。若 y > 0,

$$\frac{\cos nz}{n^2} = \frac{1}{2n^2} (e^{in(x+iy)} + e^{-in(x+iy)})$$
$$= \frac{e^{inx} \cdot e^{-ny}}{2n^2} + \frac{e^{-inx} \cdot e^{ny}}{2n^2}.$$

从而 $\sum \frac{\cos nz}{n^2}$ 发散。同理 y < 0 时也发散。

(ii) 当 $|z| \ge 1$ 时, $|\frac{z^n}{1-z^n}| \ge \frac{|z|^n}{1+|z|^n} \ge \frac{1}{2}$ 。 当 |z| < 1 时, $|\frac{z^n}{1-z^n}| \le \frac{|z|^n}{1-|z|^n} \le \frac{|z|^n}{1-\frac{1}{2}} = 2|z|^n$ 。 (n 足够大时) 而 $\sum_{n=0}^{\infty} 2|z|^n$ 收敛,故 $\sum_{n=0}^{\infty} \frac{z^n}{1-z^n}$ 收敛。

例 1.3. 设 $D \subset \mathbb{C}$ 为区域, $F(z,s): D \times [0,1] \to \mathbb{C}$ 满足:

- (1) 对 $\forall s \in [0,1], F(z,s)$ 关于 z 全纯;
- (2) F 连续。

则 $f(z) = \int_0^1 F(z,s) ds$ 为 D 上的全纯函数。

证明. $\forall z_0 \in D$,取 $\varepsilon_0 > 0$ s.t. $\overline{B(z_0, \varepsilon_0)} \subset D$ 。下证 f 在 $\Omega = B(z_0, \varepsilon_0)$ 中全纯。记 $f_n(z) = \frac{1}{n} \sum_{k=1}^n F(z, \frac{k}{n}) \to f(z) \ (n \to \infty)$ 。由于 F 在 $\overline{\Omega} \times [0, 1]$ 中一致连续,对 $\forall \varepsilon > 0$, $\exists \delta > 0$,当 $|s_1 - s_2| < \delta$ 时, $F(z, s_1) - F(z, s_2)| < \varepsilon$, $\forall z \in \overline{\Omega}$ 。那么当 $n > \frac{1}{\delta}$ 时, $\forall z \in \Omega$,

$$|f_n(z) - f(z)| = \left| \sum_{k=1}^n \int_{\frac{k-1}{n}}^{\frac{k}{n}} \left(F\left(z, \frac{k}{n}\right) - F(z, s) \right) ds \right|$$

$$< \sum_{k=1}^n \varepsilon \cdot \frac{1}{n} = \varepsilon.$$

所以 $f_n(z)$ 在 Ω 上一致收敛到 f(z), 从而 f(z) 在 Ω 中全纯。

2 幂级数

 $\sum\limits_{n=0}^{\infty}a_{n}(z-z_{0})^{n}$ 称为幂级数,这里 $a_{n}\in\mathbb{C},\ z_{0}\in\mathbb{C}$ 。

定理 2.1. 设 $\sum\limits_{n=0}^{\infty}a_nz^n$ 为幂级数,记 $R=\frac{1}{\limsup\limits_{n\to\infty}\sqrt[n]{|a_n|}}$ $(0\leq R\leq +\infty)$,则

(1) 当
$$|z| < R$$
 时, $\sum_{n=0}^{\infty} a_n z^n$ 绝对收敛;

(2) 当
$$|z| > R$$
 时, $\sum_{n=0}^{\infty} a_n z^n$ 发散。

证明. (1) 不妨设 $0 < R < +\infty$ 。设 |z| < R,取 ρ , $|z| < \rho < R$,由于

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{R} < \frac{1}{\rho}.$$

进而 $\exists N$, 当 n > N 时, $\sqrt[n]{|a_n|} < \frac{1}{\rho}$, 所以 $|a_n z^n| \le \left(\frac{|z|}{\rho}\right)^n$ 且 $\sum_{n=1}^{\infty} (\frac{|z|}{\rho})^n < +\infty$ 。

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{R} > \frac{1}{r}.$$

进而 $\exists \{n_k\} \ s.t. \ \frac{n_k}{|a_{n_k}|} > \frac{1}{r}$,那么 $|a_{n_k}z^{n_k}| \ge (\frac{|z|}{r})^{n_k} > 1$,从而 $\lim a_n z^n \ne 0$,故 $\sum_{n=0}^{\infty} a_n z^n$ 发散。

定理 2.2. Abel: 若 $\sum\limits_{n=0}^{\infty}a_nz^n$ 在 $z_0\neq 0$ 处收敛,则 $\sum\limits_{n=1}^{\infty}|a_nz^n|$ 在 $D=\{z\mid |z|<|z_0|\}$ 中紧一致收敛。

证明. 设 K 是 $\{z \mid |z| < |z_0|\}$ 的一个紧子集,取 $r < |z_0|$ s.t. $K \subset B(0,r)$,则 $\sum\limits_{n=1}^{\infty} a_n z_0^n$ 收 敛 ⇒ $\lim\limits_{n \to \infty} a_n z_0^n = 0$ ⇒ \exists M > 0 s.t. $|a_n z_0^n| \le M$, \forall $n \ge 0$ 。

当 $z \in K$ 时, $|a_n z^n| = |a_n z_0^n|(\frac{|z|}{|z_0|})^n \le M(\frac{r}{|z_0|})^n$,于是由 W-判别法, $\sum |a_n z^n|$ 在 D中紧一致收敛。

定理 2.3. 设 $\sum_{n=0}^{\infty} a_n z^n$ 的收敛半径为 R,则 $\sum_{n=0}^{\infty} a_n z^n$ 在 B(0,R) 中全纯。

证明. 由定理 2.1,当 $|z_0| < R$ 时, $\sum_{n=0}^{\infty} a_n z_0^n$ 收敛,再由定理 2.2, $\sum_{n=0}^{\infty} a_n z^n$ 在 $D = \{z \mid |z| < |z_0|\}$ 中紧一致收敛,由 W-定理, $\sum_{n=0}^{\infty} a_n z^n$ 在 D 中全纯 \Rightarrow 在 B(0,R) 中全纯。 \square

评论. 设 $f(z) = \sum_{n=0}^{\infty} a_n z^n$, |z| < R, 则

(1)
$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}, |z| < R;$$

(2)
$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(\sum_{n=0}^{\infty} a_n z^n \right) dz = \sum_{n=0}^{\infty} \int_{\gamma} a_n z^n dz.$$