

FINAL DESIGN REPORT

FALL 2014

Design Team: Ana Gouveia, Matthew Laskey, Zach Zavalianos

TABLE OF CONTENTS

Contents

Table of Contents	3
Project Summary	2
Design Team	3
Company Information	3
Design Criteria	4
Design Criteria and Constraints	4
References and Regulations	4
Methods of Design and Analysis	5
Building Information and Requirements	5
Classifications	5
Building Layout	5
Loads	5
Lateral Load Resisting Systems	6
Floor Systems	6
Roof Systems	6
Exterior Wall Systems	6
Scope of Work	7
Overview	7
Members	7
Lateral Load Resisting Systems	8
Connections	8
Composite Deck & Roof Design	8
Schedule	8
Cost Estimate	8
Appendix A: Calculations	1
Appendix B: Drawings	2
Annendiy C. Construction Estimate	1

TABLE OF CONTENTS

Table of Contents

PROJECT SUMMARY

Project Summary

Project Riverside is a two-story, steel-framed, office building located in Lowell, MA. GLZ Design has assigned the design team composed by Structural Engineers: Matthew Laskey, Ana Gouveia and Zachary Zavalianos to perform the structural analysis, evaluation and design of this project.

Guided by local regulations, the design team used of the most up to date reference codes, associated to outstanding optimization analysis, along efficient construction practices as the project's design criteria. A more accurate overview of these values can be found in page 7 of this report. Building classifications and initial information can be found in page 8 of this report.

Riverside's design process started through a complete identification of vertical and lateral loads, which were further analyzed by the Load & Resistance Factor Design (LRFD). These initial values were used in the preliminary-sizing of project horizontal and vertical members.

In the second phase of the project, these preliminary members were further evaluated and analyzed. Final framing plans for both first and roof floor were obtained. Two different lateral load resisting systems (LLRS) were designed: a moment-frame resists longitudinal loads, and braced-frames are responsible for transverse loads. Given building risk categories, per code used, ordinary moment-frame and braced-frame were allowed in the design, reducing the project's final budget.

In the project's final phase, composite floor deck, roof joists, girders and diaphragms, and connections were designed. For quality assurance and control, all of the project's information, calculations, analysis and drawings were further back checked. The final results of this project can be found in this report. Calculations, Analysis and Drawings are referred in its respective section on the report and can also be found at this report's appendixes.

GLZ Design appreciates your business and hope to continue serving your Structural Engineering needs in the future.

Sincerely,

Ana Gouveia, EIT Matt Laskey, EIT Zac Zavalianos, EIT

GLZ Design

Always Going Farther

DESIGN TEAM

Design Team

We are pleased to introduce you Riverside's design team:

MATTHEW LASKEY, EIT STRUCTURAL ENGINEER

ANA GOUVEIA, EIT STRUCTURAL ENGINEER

ZAC ZAVALIANOS, EIT STRUCTURAL ENGINEER

m.laskey86@gmail.com

Matt continued working as a Structural Engineer at CDM Smith after his summer internship at the firm Matt has a bachelor's degree in

Matt has a bachelor's degree in Environmental and Resources Economics from UNH and a Civil Engineering degree from UMass Lowell.

acgouveia@live.com

Ana was born in Brazil where she started her college education in Civil Engineering.

As a challenge-seeker, she immigrated to Massachusetts in 2009. Since then studied at Harvard University Extension School, acquired an associate's degree in Engineering from Bunker Hill Community College, a bachelor's degree in Civil Engineering from the University of Massachusetts Lowell.

Zachary Zavalianos@student.uml.edu

Hardworking and enthusiastic structural engineer with experience in design and inspection of bridge structures. Certified in bridge inspection and proficient in inspection databases such as PONTIS and 4-D, as well as MDX and CSI-bridge analysis programs. Seeking to progress career by obtaining a masters degree and working towards a PE license through the upcoming years.

Company Information

GLZ Design
Always Going Farther

GLZ Design, LLC

1 University Ave, Lowell, MA www.glzdesign.com

DESIGN CRITERIA

Design Criteria

Design Criteria and Constraints

The following figure represents the design criteria which guided the team:

Figure A - Riverside's guiding criteria.

In order to satisfy the above criteria and constraints the following items were used:

References and Regulations

The following literature was used in reference and support of the work done in this project. Please note that names in parentheses are abbreviations commonly cited throughout this project.

- Massachusetts Building Code (CMR 780)
- 2012 International Building Code (2012 IBC)
- Minimum Design Loads for Buildings and Other Structures, (ASCE/SEI 7-10)
- 14th Edition of the Steel Construction Manual (AISC 14th)
- American Concrete Institute Manual (ACI)

DESIGN CRITERIA

- 2007 Steel Deck Institute Design Manual (2007 SDI)
- Vulcraft Joists and Girders (VJG)
- 5th Edition Structural Steel Design, McCormac & Csernak (SSD 5th)

Methods of Design and Analysis

The following methods of design and analysis were thoroughly applied to the different parts of this project.

- Loads: Load & Resistance Factor Design (LRFD) and ASCE 7-10 guidelines.
- Wind Loads: Directional Method (ASCE 7-10)
- Seismic Loads: (ASCE 7-10)
- Preliminary-Sizing: Principles of Structural Engineering Analysis
- Lateral Load Resisting Systems: Direct Analysis Method (DAM) and Effective Length Method (ELM)
- Composite Deck
- Roof Elements
- Connections

Building Information and Requirements

Classifications

- Occupancy: Group B, Office
- Construction: Type IIB
- Risk Category: II
- Seismic Site Class: C
- Environmental Exposure: C

Building Layout

- Total Area = Approx. 17,000 sf (gross)
- Floor Plan: 110 ft. x 74ft
- Column Grid: 36 ft. x 24 ft.

Loads

- The building shall be designed in accordance with 2012 IBC structural provisions and as modified by the Massachusetts Building Code (CMR780).
- Snow, wind, and seismic loads shall be calculated for the Lowell, MA location.

DESIGN CRITERIA

• Minimum Uniform Live Load shall be 100 psf.

Lateral Load Resisting Systems

- Braced Frame in one direction
- Moment Frame in opposite direction
- Rigid Floor and Roof Diaphragms

Floor Systems

- 4,000 psi concrete Floor
- Metal deck
- Composite Steel W-shaped A992 beams
- Steel Girders (W)

Roof Systems

- Single-ply 60 mil EPDM membrane
- 4" rigid insulation
- Metal deck
- Option 1: Open-web steel joists w/ steel girders (W)

Exterior Wall Systems

- Primary Support: 6" Metal stud
- Exterior cladding: 2" Exterior Insulated Finishing Systems
- Fiberglass Batt. Insulation (6")

SCOPE OF WORK

Scope of Work

Overview

In order to perform this project, GLZ Design determined the criteria and team mentioned in the previous pages.

During Phase 1 of the design process (30% Submittal), members were given the naming convention mentioned in Figures 1-4 below, load evaluations and analysis were done. Calculations can be found within appendix A, Section A-1 to A-10. Preliminary sizes were determined and are catalogued in Calculations Section A-11.

During Phase 2, preliminary sizes were used to determine the building's lateral load resisting system. New member sections were obtained, results catalogued in Calculations Section A-11, and building framing plans and elevations were drafted. Drawings S-2 to S-4 can be found within appendix B. Further, the building composite deck and roof open-web joists and girders were also designed. Calculations can be found in Section A-21 and A-22, respectively.

During Phase 3, connections and other details were designed. Calculations can be found in Sections A-23 to A-24, while final drawings can be found within appendix B.

Members

The members in the project were labeled as shown in the figures below:

Figure 1 - First Floor Plan

Figure 2 - Roof Floor Plan

SCOPE OF WORK

Figure 3 - Braced-Elevation

Figure 4 - Moment Frame - Elevation

Lateral Load Resisting Systems

The design team designed two different lateral frame systems. Longitudinally a braced frame can be found, while transversely the project uses of a moment frame. The designed connections calculations can be found within Appendix A, section A-30.

Connections

The designed connections calculations can be found within Appendix A, section A-40.

Composite Deck & Roof Design

Using a parallel panels to the girders the buildings composite floor consists of 6" of concrete poured in 18" g.a. steel sheets. Calculations are found in appendix A. Further, GLZ Design team determined and used of open-web joists and girders for the roof. Calculations are found in appendix A, section A-50 Additional Details.

Schedule

The project was completed within schedule.

Cost Estimate

Attached in Appendix C.

APPENDIX A: CALCULATIONS

Appendix A: Calculations

- 1.1 Project Information
- 1.2 Project Loads & Combinations
- 1.3 Load Analysis: Dead, Snow and Seismic Weight
- 1.4 Wind Load Analysis: Moment and Braced Frame
- 1.5 Seismic Load Analysis: Moment-Frame
- 1.6 Seismic Load Analysis: Braced-Frame
- 1.7 Moment-Frame Internal Forces: Wind Load
- 1.8 Moment-Frame Internal Forces: Seismic Load
- 1.9 Brace-Frame Internal Forces: Wind Load
- 1.10 Brace-Frame Internal Forces: Seismic Load
- 1.11 Preliminary Sizing Summary

A-30 Lateral Load Resisting System:

- 1.12 Lateral Load Resisting System Analysis
- 1.13 Lateral Load Resisting System Analysis: Braced-Frame
- 1.14 Lateral Load Resisting System Analysis: Moment-Frame

A-40 Connections:

- 1.15 Connections: Base Plate Design
- 1.16 Connections: Gusset Plate Design
- 1.17 Connections: Full Restrained-Moment-Connection Design
- 1.18 Connections: Shear-Connections Design
- 1.19 Member: Hanger Design
- 1.20 Connections: Hanger Connections Design

A-50 Structural Analysis:

- 1.21 Composite Deck Design
- 1.22 Floor Vibration
- 1.23 Roof Joists & Girders Design

Project Information

Designed by: ARGouveia **Checked by:** Matt Laskey

1. BUILDING SPECIFICATIONS:

A. CLASSIFICATIONS:

Occupancy: B Office
Construction Type: II B

Risk Category:

Seismic Site Class: C
Environmental Exposure: C

Importance Factor:

B. BUILDING LAYOUT

Number Columns: 3 End Clearance: in ft^2 Total Area: 8140 Floor Plan: 110 ft ft 74 Х Column Grid: 36 24 ft ft Total Height: 30 ft Finish Floor to Fin. Floor Height: 15 ft # Stories:

Structural Allowance: 4 ft

C. LATERAL LOAD RESISTING SYSTEMS:

D. FLOOR SYSTEMS:

Concrete Floor Strength: 4 ksi $\gamma =$ 0.15 kcf

Concrete Floor Thickness: 6 in

Metal Deck

Composite Steel Beams: W Type: A992

Steel Girders:

E. ROOF SYSTEM

Single-ply 60 mil EPDM membrane

Rigid Insulation Thickness: 4 in

Metal Deck

Option 1: Open-web steel joists w/ steel girders (W)

W

F. EXTERNAL WALL SYSTEM

Primary Suport:Metal StudThickness:4inInsulation:Fiberglass Batt. InsulationThickness:6inExterior Cladding:Ex. Insulated Finishing SystemsThickness:2in

Designed by: ARGouveia **Checked by:** ZZavalianos

1. BUILDING LOADS AS REQUIRED BY CODE:

Loads are in accordance to: 2012 IBC

Modified by: Massachusetts Building Code (CMR780)

Snow Lowell MA
Wind Lowell MA
Seismic Lowell MA

Construction Live Load: 20 psf Uniform Live Load: 100 psf

2.1 BUILDING VERTICAL LOADS:

	Ro	of	1	st Floor
2.1. Dead Load (D)	26.0	psf	128	psf
2.2. Live Load (L)		psf	100	psf
2.3. Roof Live Load (Lr)	20.0	psf		psf
2.4. Snow Load (S)	41.0	psf		psf
2.5. Rain Load (R)		psf		psf
2.6. Seismic Load (E)		psf		psf
2.7. Wind Load (W)	-23.0	psf		psf

Total / Service Load: 64.0 psf 228 psf

2.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

	R	oof	1st Floor
1. 1.4D	36.4	psf	179.2 psf
2. 1.2D + 1.6L + .5(Lr or S or R)	51.7	psf	313.6 psf
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	85.2	psf	253.6 psf
4. 1.2D + 1.0W + L + .5(Lr or S or R)	28.7	psf	153.6 psf
5. 1.2D + 1.0E + L + .2S	39.4	psf	253.6 psf
6. 0.9D + 1.0W	0.4	psf	115.2 psf
7. 0.9D + 1.0E	23.4	psf	115.2 psf
•			

Controlling Load: 85.2 psf 313.6 psf

3.1 BUILDING LATERAL LOAD ON LONGITUDINAL DIRECTION: BRACED-FRAME

	Ro	oof	1	st Floor
2.1. Dead Load (D)		psf		psf
2.2. Live Load (L)		psf		psf
2.3. Roof Live Load (Lr)		psf		psf
2.4. Snow Load (S)		psf		psf
2.5. Rain Load (R)		psf		psf
2.6. Seismic Load (E)	20.8	psf	20.4	psf
2.7. Wind Load (W)	6.4	psf	12.9	psf
Total / Service Load:	27.2	psf	33.3	psf

Designed by: ARGouveia **Checked by:** ZZavalianos

3.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

	R	oof	_	:	1st Floor
1. 1.4D	0.0	psf	-	0.0	psf
2. 1.2D + 1.6L + .5(Lr or S or R)	0.0	psf		0.0	psf
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	3.2	psf		6.4	psf
4. 1.2D + 1.0W + L + .5(Lr or S or R)	6.4	psf		12.9	psf
5. 1.2D + 1.0E + L + .2S	20.8	psf		20.4	psf
6. 0.9D + 1.0W	6.4	psf		12.9	psf
7. 0.9D + 1.0E	20.8	psf	_	20.4	psf
			-		
Controlling Load:	20.8	psf		20.4	psf

4.1 BUILDING LATERAL LOAD ON TRANSVERSE DIRECTION: MOMENT-FRAME

	Ro	oof	1	st Floor
2.1. Dead Load (D)		psf		psf
2.2. Live Load (L)		psf		psf
2.3. Roof Live Load (Lr)		psf		psf
2.4. Snow Load (S)		psf		psf
2.5. Rain Load (R)		psf		psf
2.6. Seismic Load (E)	17.6	psf	17.0	psf
2.7. Wind Load (W)	9.8	psf	19.6	psf

Total / Service Load: 27.3 psf 36.6 psf

4.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

	R	oof	:	1st Floor	
1. 1.4D	0.0	psf	0.0	psf	
2. 1.2D + 1.6L + .5(Lr or S or R)	0.0	psf	0.0	psf	
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	4.9	psf	9.8	psf	
4. 1.2D + 1.0W + L + .5(Lr or S or R)	9.8	psf	19.6	psf	
5. 1.2D + 1.0E + L + .2S	17.6	psf	17.0	psf	
6. 0.9D + 1.0W	9.8	psf	19.6	psf	
7. 0.9D + 1.0E	17.6	psf	17.0	psf	
Cantuallina Lagali	47 C	r	10.0		

Controlling Load: 17.6 psf 19.6 psf

Designed by: ARGouveia Checked by: ZZavalianos

7-10 Eq/Fig/Table/Notes ASCE Reference: Section DEAD LOAD

Floor:			Roof					2nd		
	ltem	Quantity	Units	Unit Weight	Weight	ltem	Quantity	Units	Unit Weight	Weight
		(Area)		(ksf or klf)	(kip)		(Area)		(ksf or klf)	(kip)
						Concrete Slab	2776	sf	0.075	583
	Metal Deck	2777	sf	0.014	109	Metal Deck 18 g.a	2776	sf	0.014	109
	EPDM Membrane	7776	sf	0.001	∞	Cladding	7776	sf	0.01	78
	Insulation	2777	sf	900.0	47	Partitions	2776	sf	0.01	78
	Mechanical Equipment	7776	sf	0.005	39	Mechanical Equipment	7776	sf	0.007	54
						Steel Structure	2776	sf	0.012	93
Subtotal	202			0.026	202	366			0.128	995
Cummulative	202				202	1198				1198

*Unit Weights per ASCE 7-10

GAO I MONO				Reference: Section	ASCE 7-10 Eq/Fig/Table/Notes	7-10 Notes
SNOW LOAD				,		
Exposure Factor	ا ا	06.0			Table	7-2
Thermal Factor	ٿ	1.00			Table	7-3
Importance Factor	<u> </u>	1.00			Table	1.5-2
Ground Snow Load	p _g =	65.00	psf		CMR	780
Flat Roof Snow Load	$\rho_f =$	$\rho_f = 40.95$	psf		Ед	7.3-1
				Reference:	ASCE	7-10

Load Calculations

Designed by: ARGouveia Checked by: ZZavalianos

SEISMIC LOAD

Section

Eq/Fig/Table/Notes

12

Number of Floors:

Floor:			Roof					2nd		
	Item	Quantity	Units	Unit Weight	Weight	ltem	Quantity	Units	Unit Weight	Weight
		(Area)		(ksf or klf)	(kip)		(Area)		(ksf or klf)	(kip)
						Concrete Slab	9///	sf	0.075	583
	Metal Deck	7776	sf	0.014	109	Metal Deck	7776	sf	0.014	109
	EPDM Membrane	7776	sf	0.001	8	Cladding	7776	sf	0.01	78
	Insulation	7776	sf	900.0	47	Partitions	27776	sf	0.01	78
	Mechanical Equipment	7776	sf	0.005	39	Mechanical Equipment	7776	sf	0.007	54
	Snow	2776	sf	0.04095	318	Steel Structure	9///	sf	0.012	93
Subtotal	521				521	566				995
Cummulative	521				521	1516				1516
Mass (kip*s^2/ft)					107					58

Wind Load Analysis Moment and Braced-Frame

Designed by: ZZavalianos

Checked by: ARGouveia

WIND LOAD ANALYSIS

1. BUILDING INFORMATIO	N RELATED TO WI	ND LOAE	O ANALYSIS	Reference: Section 26/27/28	ASCE Eq/Fig/Table,	7-10 ⁄Notes
Mean roof height	H _{roof} =	30	ft	Heiaht of heiah	nest level of structui	·e
Floor-Floor Height	h _n =	15	ft	ricigiic oj ricigi		
Building Length	 L =	112	ft			
Building Width	W =	76	ft			
Number of Braces/Level		2				
Number of Moment Frame	es/ Level	2				
2. WIND EXPOSURE, ROUG	GHNESS AND OCCU	JPANCY (CATEGORY	26.4		
Occupancy Category:		В			Table	1-1
Ground Surface Roughness	5:	В				26.7.2
Exposure Category:		С				26.7.2
3. ENVIRONMENTAL CHAR	RACTERISTICS AND	FACTOR	S	26.5		
Wind Speed	V =	120	mph	26.5	Figure	26.5-1A
Zone A	P _{s30} =	22.8	psf		Figure	28.6-1
Zone C	P _{s30} =	15.1	psf		Figure	28.6-1
	a ₁ =	7.6	ft	.1*W	_	
	a ₂ =	12	ft	.4*H _{roof}		
	a =	7.6	ft	Min Value		
	2.a =	15.2	ft			
Weighted Average for P _{s30}	:					
Longitudinal		16.1	psf			
Transverse		16.6	psf			
4. DESIGN WIND PRESSUR	E			26.8		
Adjustment Factor	λ =	1.4			Figure	28.6-1
•	K _{zt} =	1		26.8	, and the second	
Design wind pressure,	P _{s-longitudinal} =	22.6	kip			
Design wind pressure,	P _{s-transverse} =	23.3	kip			
5. LOAD APPLIED TO EACH	LLEVEL			26.8		
S. LOAD ATTELD TO LACT	V L L			20.0		
Roof	$F_{u-longitudinal} =$	12.9	kip		Figure	28.6-1
	$F_{u-transverse} =$	19.6	kip	26.8		

Wind Load Analysis Moment and Braced-Frame

Designed by: ZZavalianos **Checked by:** ARGouveia

28.6-1

28.6-1

28.6-1

28.6-1

Figure

Figure

Figure

Figure

Level 1

$F_{u-longitudinal} =$	25.8	kip
F _{u-transverse} =	39.1	kip

6. LATERAL LOAD APPLIED TO BRACED AND MOMENT FRAME

		Roof	Level 1	
Braced Frame	(Longitudinal)	6.44	12.88	kip
Moment Frame	(Transverse)	9.78	19.57	kip

7. VERTICAL UPLIFT PRESSURES ON ROOF

Zone E P _{s30}	-27.4	psf
Zone F P _{s30}	-15.6	psf
Zone G P _{s30}	-19.1	psi
Zone H P _{s30}	-12.1	psf
Design wind pressure Zone E, P _s	-38.36	psf
Design wind pressure Zone F, P _s	-21.84	psf
Design wind pressure Zone G, P _s	-26.74	ps
Design wind pressure Zone H, P _s	-16.94	psf

7. UPLIFT PRESSURE (TRANSVERSE LOADING)

Area, Zone E	577.6	ft ²
Area, Zone F	577.6	ft ²
Area, Zone G	3678.4	ft ²
Area, Zone H	3678.4	ft ²
Total Roof Area	8512	ft ²

Transverse

Weighted Uplift Pressure from Transverse -22.96 psf

Wind Load

Wind Load Analysis Moment and Braced-Frame

Designed by: ZZavalianos **Checked by:** ARGouveia

8. UPLIFT PRESSURE (LONGITUDINAL LOADING)

Area, Zone E 851.2 ft² Area, Zone F 851.2 ft² Area, Zone G 3404.8 ft² Area, Zone H 3404.8 ft² Total Roof Area 8512 ft²

Weighted Uplift Pressure from Longitudinal -23.49

Wind Load

9. MAXIMUM UPLIFT PRESSURE

Controlling Uplift Pressure

-23.49 psf

psf

Largest Absolute Value

Seismic Load Analysis Moment-Frame

Designed by: ARGouveia **Checked by:** Matt Laskey

ASSUMPTIONS:

Building Frame System: Steel moment-resisting frame

1. SEISMIC GROUD MOTION VALUES			Reference: Section 11.4	ASCE 7-10 Eq/Fig/Table/Notes		
Seismic Site Class:	С	_	11.4.2	Soil Properties / Ch. 20		
Maximum Considered Earthqua		Response:	44.44	F:-	22.4./22.4	
$S_s =$	0.250		11.4.1	Fig 	22-1 / 22-4	
S ₁ =	0.077		11.4.1	Fig	22-1 / 22-4	
Adjusted MCE Spectral Respons			44.4.2	Table	11 1 1	
F _a =	1.200		11.4.3	Table	11.4-1	
$F_{v} =$			11.4.3	Table	11.4-2	
$S_{MS} = F_a S_s =$			11.4.3	Eq	11.4-1	
$S_{M1} = F_v S_1 =$			11.4.3	Eq	11.4-2	
Design Spectral Response Accel		imeters:				
$S_{DS} = 2/3 S_{MS} =$	0.2		11.4.4	Eq	11.4-3	
$S_{D1} = 2/3 S_{M1} =$	0.087		11.4.4	Eq	11.4-4	
Design Response Spectrum:						
$T_0 = 0.2 S_{D1}/S_{DS} =$		S	11.4.5			
$T_S = S_{D1}/S_{DS} =$	0.436	S	11.4.5			
Long Period Transition $T_L=$	6	S	11.4.5	Fig	22-15	
T =	0.60	S	Fundamental Perio	Period of Structure		
$S_a = if T < T_O : S_{DS}(0.4+0.6T/T_O) =$			11.4.5	Eq	11.4-5	
if $T_O < T < T_S : S_{DS} =$			11.4.5			
if $T_S < T < T_L : S_{D1}/T =$	0.147		11.4.5	Eq	11.4-6	
if T > T_L : $S_{D1} * T_L / T^2 =$			11.4.5	Eq	11.4-7	
2. IMPORTANCE FACTOR AND OCCUPANCY CATEGORY 11.5						
Occupancy Category:	II			Table	1-1	
Importance Factor:	1			Table	11.5-1	
3. SEISMIC DESIGN CATEGORY			11.6			
SDC based on short period:	В			Table	11.6-1	
SDS based on 1-s period:	В			Table	11.6-2	
SDC =	В		Maximum from va	lues above		
4. EQUIVALENT LATERAL FORCE	PROCEDUR	E	12.8			
R =	8		12.8.1	Table	12.2-1	
Ω_0 =	3		12.8.1	Table	12.2-1	
$C_D =$	3		12.8.1	Table	12.2-1	