Universidad Politecnica de la Zona Metropoilitana de Guadalajara

EV_ 2_8 Calcular los parametros de circuitos de activación de transistores de potencia.

Nombre: Perez de Alba Santiago Eduardo. Carrera: Ingeniería en Mecatronica.

Materia: Sistemas Electrónicos de Interfaz.

Curso: Septiembre-Noviembre del 2019.

Docente: Moran Garabito Carlos Enrique.

29 de Octubre del 2019

1. Transistor de potencia como Interruptor:

El funcionamiento y utilizacion de los transistores de potencia es identico al de los transistores normales, teniendo como caracteristicas especiales las altas tensiones e intensidades que tiene que soportar las altas potencias a disipar.

Existen tres tipos de transistores de potencia:

- Bipolar
- Unipolar o FET(Transistor de Efecto de Campo)
- IGBT

Estos tipos de transistores pueden operar como un interruptor mecanico, con limitaciones respecto a un conmutador ideal. Estas limitaciones, restricciones para algunas aplicaciones por lo que debemos conocer las caracteristicas y especificaciones de estos dispositivos para su adecuacion al uso que se le va a dar.

Un transistor se usa para cambiar la operacion de apertura o cierre de un circuito. Este tipo de conmutacion de estado solido ofrece una fiabilidad significativa. Los transistores NPN y PNP se pueden usar como conmutadores.

2. Cálculos:

2.1. TIP41C:

Transistor NPN

■ *I_c* max: 6A

• I_c pico max: 10A (t_p ;5ms)

I_B max: 3AP_{TOT}: 65W

■ V_{CEO} : 100V, V_{CBO} : 100V, V_{EBO} : 5V ■ h_{FE} : 15 a 75 (@ I_C =3A, V_{CE} =4V)

Alta velocidad de switcheo

■ Encapsulado: TO-220

$$R = \frac{V}{Ib}$$

$$Ib = \frac{Ic}{h_{FE}(min)}$$

$$Ib = \frac{6A}{15} = 0.4Ib$$

$$12 - 0.7 = 11.3V$$

$$R = \frac{11,3}{0,4} = 285,25$$

2.2. Ejemplo:

- Rb=30kohm
- Rc=0.7k ohm
- V_{CC} = 12V
- β =125
- V_i=0v y 5v

cuando VCE= 0

$$I_c = \frac{V_{CC}}{R_C}$$

$$I_c = \frac{12V}{0.7kohm}$$

$$I_c = 17.1mA$$

$$Ib = \frac{Ic}{\beta}$$

$$Ib = \frac{17.1mA}{125}$$

$$Ib = 0.1368A$$

Considerando que el voltaje de entrada aplicado es de 12V, la corriente base puede determinarse aplicando la ley de voltaje de Kirchhoff.

$$Ib = \frac{Vi - Vbe}{Rb}$$

Para el transistor de silicio Vbe=0.7v Por lo tanto, $Ib=\frac{12V-0.7V}{30kohm}=0.000376A$