Basic Electronics Circuits, IIIT Chittoor.

Design of waveform generators using Operational Amplifier

Aim: To design Sinusoidal, Triangular and Square waveform generators using op-amps for different frequencies and amplitudes and compare the experimental values with theoretical values.

A. Wein Bridge RC (Sinusoidal) Oscillator

1. The Wein bridge RC oscillator is shown in Fig. 6.1. Connect the circuit as shown in the Fig. 6.1 to generate a sinusoidal waveform with a frequency depends on the values. The expression for the frequency of the oscillator is given by Eqn. (6.1).

Fig 6.1: Wein Bridge Oscillator

$$f = \frac{1}{2\pi R1C1}$$
 Eqn. (6.1)

B. Square Waveform Generator

1. The square wave generator is shown in Fig. 6.2. Connect the circuit as shown in the Fig. 6.2 to generate a square waveform with a frequency depends on the RC values. The expression for the frequency of the square waveform is given by Eqn. (6.2).

Fig 6.2 : Square Wave Generator

$$f = \frac{1}{2.19RC}$$
 Eqn. (6.2)

C. Triangular Waveform Generator

1. The triangular wave generator is shown in Fig. 6.3. Connect the circuit as shown in the Fig. 6.3 to generate a triangular waveform with a frequency depends on the values. The expression for the frequency of the triangular waveform is given by Eqn. (6.3).

Fig 6.3: Triangular Wave Generator

$$f = \frac{R3}{4R1C1R2}$$
 Eqn. (6.3)

Note: Plot all the waveforms on a graph sheet