1. Importing necessary Modules

```
In [1]:
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np
```

2. Uploading the given Dataset

```
In [2]: data=pd.read_csv("abalone.csv")
data.head()

Out[2]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings
```

Out[2]:		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
	4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

```
In [3]: data.shape
```

Out[3]: (4177, 9)

```
        Out [4]:
        Sex
        Length
        Diameter
        Height
        Whole_weight
        Shucked_weight
        Viscera_weight
        Shell_weight
        Age

        0
        M
        0.455
        0.365
        0.095
        0.5140
        0.2245
        0.1010
        0.150
        16.5

        1
        M
        0.350
        0.265
        0.090
        0.2255
        0.0995
        0.0485
        0.070
        8.5

        2
        F
        0.530
        0.420
        0.135
        0.6770
        0.2565
        0.1415
        0.210
        10.5

        3
        M
        0.440
        0.365
        0.125
        0.5160
        0.2155
        0.1140
        0.155
        11.5

        4
        I
        0.330
        0.255
        0.080
        0.2050
        0.0895
        0.0395
        0.055
        8.5
```

```
In [5]: data.info()
```

<class 'pandas.core.frame.DataFrame'>

3. Performing various Visualizations

Univariate Analysis

```
In [6]: sns.histplot(data["Age"],color='blue')
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5db9fa2690>

In [7]: sns.displot(data["Age"],color='yellow')

Out[7]: <seaborn.axisgrid.FacetGrid at 0x7f5db9e01a10>

In [8]: sns.boxplot(data["Age"],color='red')

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretatio ne only valid positional argument will be 'data', and pas n.
FutureWarning
Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5db70117d0>

Bivariate Analysis

In [9]: sns.barplot(data["Height"],data["Whole_weight"])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.1 2, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpreta tion.

FutureWarning
Out[9]:

In [10]: sns.lineplot(data["Height"],data["Whole_weight"], color='blue')

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.1 2, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpreta tion.

FutureWarning
Out[10]:
Out[10]:

 $\verb|sns.scatterplot(x=data.Height,y=data.Whole_weight,color='green')|\\$

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5db6d38110>

In [12]: sns.regplot(data['Height'],data['Whole_weight'],color='pink')

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.1 2, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f5db6d5f9d0>

Out[12]:

Multivariate Analysis

In [13]: sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weight","Shucked_weight","Viscera_weight","Shell_weight"]])

4. Performing descriptive statistics on the dataset.

14]:	data.describe(include='all')									
14]:		Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
	count	4177	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
· ·	unique	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	top	М	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	freq	1528	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
	std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
	min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
	25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
	50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
	75%	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
	max	NaN	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

5. Checking for Missing values

6. Finding the outliers and replacing them outliers

```
Out[16]: 
| Continue |
```


7. Checking for Categorical columns and perform Encoding

In [19]:	data.head()									
Out[19]:		Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
	4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

8. Split the data into dependent and independent variables

9. Scaling the values

In [24]:
 from sklearn.preprocessing import scale
 X_Scaled = pd.DataFrame(scale(x), columns=x.columns)
 X_Scaled.head()

t[24]:		Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
	0	-0.574558	-0.432149	-1.064424	-0.641898	-0.607685	-0.726212	-0.638217	1.577830
	1	-1.448986	-1.439929	-1.183978	-1.230277	-1.170910	-1.205221	-1.212987	-0.919022
	2	0.050033	0.122130	-0.107991	-0.309469	-0.463500	-0.356690	-0.207139	-0.294809
	3	-0.699476	-0.432149	-0.347099	-0.637819	-0.648238	-0.607600	-0.602294	0.017298
	4	-1.615544	-1.540707	-1.423087	-1,272086	-1.215968	-1.287337	-1.320757	-0.919022

```
10. Split the data into training and testing
          from sklearn.model_selection import train_test_split
X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_Scaled, y, test_size=0.2, random_state=0)
In [26]: X_Train.shape,X_Test.shape
Out[26]: ((3341, 8), (836, 8))
In [27]: Y_Train.shape,Y_Test.shape
Out[27]: ((3341,), (836,))
In [28]: X_Train.head()
Out[28]: Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight
        3141 -2.864726 -2.750043 -1.423087
                                           -1.622870
                                                         -1.553902
                                                                     -1.583867
                                                                               -1.644065 -1.543234
        3521 -2.573250 -2.598876 -2.020857 -1.606554 -1.551650 -1.565619 -1.626104 -1.387181
          883 1.132658 1.230689 0.728888
                                           1.145672
                                                                     0.286552
                                                                                1.538726 1.577830
         3627 1.590691 1.180300 1.446213 2.164373 2.661269 2.330326 1.377072 0.017298
        2106 0.591345 0.474853 0.370226 0.432887 0.255175 0.272866 0.906479 1.265723
In [29]: X_Test.head()
Out[29]: Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age
                                                                      668 0.216591 0.172519 0.370226
                                            0.181016
                                                         -0.368878
        1580 -0.199803 -0.079426 -0.466653 -0.433875 -0.443224 -0.343004 -0.325685 -0.606915
         3784 0.799543 0.726798 0.370226
                                           0.870348
                                                         0.755318
                                                                      1.764639 0.565209 0.329404
         463 -2.531611 -2.447709 -2.020857
                                          -1.579022
                                                        -1.522362 -1.538247 -1.572219 -1.543234
        2615 1.007740 0.928354 0.848442
                                                         1.415417 1.778325 0.996287 0.641511
                                          1.390405
In [30]: Y_Train.head()
Out[30]: 3141
         3521
         883
         3627
         Name: Sex, dtype: int64
In [31]: Y_Test.head()
Out[31]:
         3784
         2615
         Name: Sex, dtype: int64
         11. Build the Model
          from sklearn.ensemble import RandomForestClassifier
          model = RandomForestClassifier(n_estimators=10,criterion='entropy')
In [33]: model.fit(X_Train,Y_Train)
Out[33]: RandomForestClassifier(criterion='entropy', n_estimators=10)
In [34]: y_predict = model.predict(X_Test)
In [35]: y_predict_train = model.predict(X_Train)
         12. Train the Model
In [36]: from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
In [37]: print('Training accuracy: ',accuracy_score(Y_Train,y_predict_train))
```

Training accuracy: 0.9811433702484286

13.Test the Model

```
In [38]: print('Testing accuracy: ',accuracy_score(Y_Test,y_predict))

Testing accuracy: 0.5526315789473685
```

14. Measure the performance using Metrics

In [40]: print(classification_report(Y_Test	,y_predict))	
---	--------------	--

	precision	recall	T1-score	support
0	0.44	0.45	0.44	249
1	0.70	0.73	0.71	291
2	0.50	0.47	0.48	296
accuracy			0.55	836
macro avg	0.55	0.55	0.55	836
weighted avg	0.55	0.55	0.55	836