

Magnétisme Références

GEO1302 – Modélisation et inversion en géophysique 2 - Gravimétrie et magnétisme

Bernard Giroux (bernard.giroux@ete.inrs.ca)

Institut national de la recherche scientifique Centre Eau Terre Environnement

> Version 1.2.9 Hiver 2020

Gravimétrie

Prisme rectangulaire droit

Polyèdre Système matriciel

Magnétisme

References

Annexes

Gravimétrie

Théorie

Théorie
Prisme rectangulaire
droit
Polyèdre
Système matriciel

Référence

Δnneves

- Le potentiel gravitationnel obéit au principe de superposition: le potentiel gravitationnel d'un nombre fini de masses est la somme de l'attraction de chacune de ces masses.
 - Si les masses sont infinitésimales (dm), le potentiel U observé en P est ainsi

$$U(P) = G \int_{V} \frac{\mathrm{d}m}{r} \tag{1}$$

ou bien

$$U(P) = G \int_{V} \frac{\rho(Q)}{r} dv, \qquad (2)$$

où G est la constante gravitationnelle, V est le volume occupé par la masse totale, ρ est la densité, Q est le point d'intégration, et r est la distance entre P et Q.

Théorie

Gravimétrie Théorie

Prisme rectangulai droit Polyèdre

Magnetism

Reference

• L'attraction ${\bf g}$ causée par un volume de densité ρ est le gradient du potentiel :

$$\mathbf{g} = \nabla U$$

$$= -G \int_{V} \rho \frac{\hat{\mathbf{r}}}{r^{2}} dv. \tag{3}$$

• Dans la pratique, seule la composante verticale de **g** est mesurée, ce qui donne (en coordonnées cartésiennes)

$$g(x,y,z) = \frac{\partial U}{\partial z}$$

$$= -G \int_{z'} \int_{y'} \int_{x'} \rho(x',y',z') \frac{z-z'}{r^3} dx' dy' dz', \quad (4)$$

où
$$r = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$$
.

Théorie

Théorie
Prisme rectangulair
droit
Polyèdre

Dáfáranas

.

- Typiquement, la modélisation en gravimétrie consiste à calculer g(x, y, z) avec l'équation (4) pour toutes les cellules du modèle géologique.
- Mais dans les faits, on mesure la variation de g par rapport à un point de référence donné, pour estimer le contraste de densité (Δρ) par rapport à un encaissant;
 - On peut donc ne calculer que la réponse des corps qui ont une densité différente de celle de l'encaissant.
- La solution de l'intégrale triple dépend de la discrétisation du corps.
- Des solutions particulières ont été proposées pour des
 - prismes rectangulaires droits;
 - prismes polygonaux droits;
 - polyèdres.

Théorie - Prisme rectangulaire droit

Théorie Prisme rectangulaire droit

Système matric

Páfáronco

Annexes

• Pour un prisme rectangulaire droit défini par les limites $x_1' \le x \le x_2'$, $y_1' \le y \le y_2'$ et $z_1' \le z \le z_2'$, la composante verticale g au point d'observation O vaut

$$g = -G\rho \int_{x'_{-}}^{x'_{2}} \int_{y'_{-}}^{y'_{2}} \int_{z'_{-}}^{z'_{2}} \frac{z - z'}{r^{3}} dx' dy' dz'.$$
 (5)

Théorie - Prisme rectangulaire droit

Théorie
Prisme rectangulaire
droit
Polyèdre

Magnétism

- Plusieurs solutions ont été proposées pour le cas du prisme rectangulaire droit.
- Il est important de noter que certaines solutions ne sont pas valides si le point d'observation est sur un des coins, une des faces, ou à l'intérieur du prisme.
- Une solution valide sur les faces (excluant les arêtes) et à l'intérieur est (Li et Chouteau, 1998)

$$g = -G\rho \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \mu_{ijk}$$

$$\times \left[x_{i} \ln \left(y_{j} + r_{ijk} \right) + y_{j} \ln \left(x_{i} + r_{ijk} \right) + z_{k} \arctan \frac{z_{k} r_{ijk}}{x_{i} y_{j}} \right], \quad (6)$$

où
$$x_i = x - x'_i$$
, $y_j = y - y'_j$, $z_k = z - z'_k$,
$$r_{ijk} = \sqrt{x_i^2 + y_j^2 + z_k^2} \text{ et } \mu_{ijk} = (-1)^i (-1)^j (-1)^k.$$

Théorie - Prisme rectangulaire droit

Théorie Prisme rectangulaire droit

Système matr

magnetioni

Annexes

- Note relative à l'implémentation de l'équation (6) sous Python/MATLAB :
 - la fonction atan2 (ou arctan2 sous numpy) doit être utilisée au détriment de atan (ou arctan sous numpy).

Pourquoi?

Exercice - Prisme rectangulaire droit

Théorie Prisme rectangulaire droit

Polyèdre Système matri

Dáfáranci

- Créez un fichier Python gravi.py;
- Dans ce fichier, écrivez une fonction prd pour calculer la réponse d'un prisme rectangulaire droit;
- Votre fonction doit prendre les variables suivantes en entrée :
 - rho: densité [g/cm³]
 - x0 : coordonnées [x y z] du point d'observation [m]
 - x : coord inférieure et supérieure du prisme selon x [m]
 - y : coord inférieure et supérieure du prisme selon y [m]
 - **z** : coord inférieure et supérieure du prisme selon *z* [m] et doit retourner la réponse en mgal.
- Testez votre routine avec les valeurs rho=0.2, x=(10, 15), y=(20, 25) et z=(5, 15) pour
 - x0=(0, 0, 0)
 - x0=(12.5, 22.5, 10)

Théorie Prisme rectangu droit Polyèdre

Système matric

Magnétisme

_

Annexe

• Le polyèdre constitue la forme géométrique la plus versatile pour représenter des corps de géométrie arbitraire.

Théorie Prisme rectangula droit Polyèdre

Système matrici

Référence

Annexes

- Singh et Guptasarma (2001): En vertu du théorème de flux-divergence, l'intégrale sur le volume de l'équation (3) peut être remplacée par une intégrale de surface.
- Il est alors possible d'évaluer la composante de la gravité **g** dans la direction du vecteur unitaire **â** par

$$\mathbf{g} \cdot \hat{\mathbf{a}} = -G\rho \iint_{S} \left(\frac{1}{r}\right) \hat{\mathbf{a}} \cdot \hat{\mathbf{n}} \, \mathrm{d}s,\tag{7}$$

où r est la distance entre O et l'aire ds à la surface du corps, et $\hat{\mathbf{n}}$ est le vecteur unitaire normal à ds.

Théorie
Prisme rectangulaire
droit
Polyèdre

Magnétisme

Référence:

Páfáranca

- L'élément ds produit une attraction orientée selon \mathbf{r} mais de sens contraire, ce qui permet de remplacer $\hat{\mathbf{a}}$ par $-(\mathbf{r}/r)$.
- Une expression pratique est obtenue en définissant une densité de masse surfacique (σ') par

$$\sigma' = \rho \mathbf{r} \cdot \hat{\mathbf{n}}.\tag{8}$$

- L'attraction d'un corps est la même que l'attraction produite par un distribution fictive de σ' sur la surface du corps.
- Nous avons maintenant

$$\mathbf{g} = G\rho \iint (1/r)(\mathbf{r}/r) \cdot \hat{\mathbf{n}} \, \mathrm{d}s$$
$$= G \iint (\sigma'/r^2) \, \mathrm{d}s. \tag{9}$$

- Polvèdre

- La composante verticale *g* est obtenue en multipliant l'intégrande par le rapport (z/r).
- Dans le cas où le corps est délimité par un polyèdre, i.e. un ensemble de n_f faces planes, nous avons

$$g = G \sum_{i=1}^{n_f} \rho d_i \iint_i \left(\frac{z}{r^3}\right) ds,$$

(10)

- où $d_i = \mathbf{r} \cdot \hat{\mathbf{n}}_i$.
- Le vecteur $\hat{\mathbf{n}}_i$ peut être obtenu à partir du produit vectoriel des arêtes de la face i :
 - Soient n_s sommets $\mathbf{s}_{i,k}$ appartenant à la face i, où l'indice kdéfini l'ordre antihoraire lorsque l'objet est vu de l'extérieur;
 - le vecteur \mathbf{n}_i vaut

$$\mathbf{n}_{i} = \sum_{l=2}^{n_{s}-1} \left(\mathbf{s}_{i,l} - \mathbf{s}_{i,1} \right) \times \left(\mathbf{s}_{i,l+1} - \mathbf{s}_{i,1} \right), \tag{11}$$

et, par définition,
$$\hat{\mathbf{n}}_i = \frac{\mathbf{n}_i}{|\mathbf{n}_i|}. \tag{12}$$

Théorie Prisme rectangulaire droit Polyèdre

Système matri

-,-----

Dáfárana

Annexes

- Pour arriver à une expression utilisable numériquement,
 l'intégrale de surface est convertie en intégrale de contour.
- On peut montrer que

$$\iint_{i} \left(\frac{z}{r^{3}}\right) ds = -\left(n\Omega + mP_{i} - \ell Q_{i}\right), \tag{13}$$

où (ℓ, m, n) sont les composantes de $\hat{\mathbf{n}}_i$, Ω est l'angle solide de la face i au point O, et où P_i et Q_i sont les sommes

$$P_i = \sum_{j=1}^{n_a} P_{ij}$$
 et $Q_i = \sum_{j=1}^{n_a} Q_{ij}$, (14)

avec n_a le nombre d'arêtes sur la face i.

Polvèdre

Les composantes P_{ii} et Q_{ii} sont égales à

avec
$$L_x = x_2 - x_1$$
 et L

et

avec

$$= IL_{xx} \quad \text{et} \quad O_{xx} = IL_{xx}.$$

$$P_{ij} = IL_x$$
 et $Q_{ij} = IL_y$

$$L_x$$
 et $Q_{ij} = IL_y$

$$Q_{ij} = IL_y$$

où
$$(x_1, y_1, z_1)$$
 et (x_2, y_2)

(15)

avec
$$L_x = x_2 - x_1$$
 et $L_y = y_2 - y_1$ où (x_1, y_1, z_1) et (x_2, y_2, z_2) sont les coordonnées du début et de la fin du segment, et où

$$I = \frac{1}{L} \ln \left[\frac{\sqrt{L^2 + b + r_1^2 + L + \frac{b}{2L}}}{r_1 + \frac{b}{2L}} \right] \text{ si } (r_1 + b/2L) \neq 0 \quad (10)$$

$$I = \frac{1}{L} \ln \left[\frac{|L - r_1|}{r_1} \right] si (r_1 + b/2L) = 0,$$
 (17)

$$+y_1L_y+z_1L_z),$$
 (18)

$$L = \sqrt{L_x^2 + L_y^2 + L_z^2}, \ b = 2(x_1L_x + y_1L_y + z_1L_z),$$

$$r_1 = \sqrt{x_1^2 + y_1^2 + z_1^2},$$

$$r_2 = \sqrt{x_1^2 + y_1^2 + z_1^2}$$

kron - une commande numpy utile

Théorie Prisme rectangulaire droit Polyèdre

Système mai

Référence

Annexes

- À l'invite de commande python, entrez help(np.kron)
- Essayez np.kron([[1,2],[3,4]],np.ones((2,1)))
- Essayez np.kron([[1,2],[3,4]],np.ones((1,2)))
- Exercice:
 - Soient des points définis aux coordonnées
 - x = np.arange(0.0, 0.8, 0.2)
 - y = np.arange(0.1, 0.5, 0.1)
 - z = np.arange(-0.3, 0.4, 0.3)
 - Construisez une matrice npts×3 contenant les coordonnées x,y,z de chacun des points, un point par ligne
 - Faites varier d'abord la coordonnées z, ensuite la coordonnées y et finalement la coordonnée x, i.e.

$$\begin{bmatrix} x_1 & y_1 & z \\ x_1 & y_1 & z \\ x_1 & y_2 & z \\ x_1 & y_2 & z \\ x_2 & y_1 & z \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Système matriciel

Théorie
Prisme rectangulair
droit
Polyèdre
Système matriciel

Magnetism

Kelelelice

 Lorsque le problème direct est linéaire, comme en gravimétrie, ou qu'il a été linéarisé, il est fréquent en inversion de le représenter par un produit matriciel, souvent noté

$$Gm = d, (19)$$

où

- m est un vecteur M × 1 contienant les paramètres du modèle (la densité des corps en gravimétrie);
- **d** est le vecteur $N \times 1$ des données;
- **G** est l'opérateur direct (*data kernel*), de taille $N \times M$;
 - $G(n, m) \equiv g_{nm}$, la contribution du m^e corps à la n^e donnée.
- Cette approche n'est intéressante que pour les situations où:
 - le maillage ne change pas;
 - les calculs sont répétés pour différents vecteurs m.

Gravimétrie

Théorie Prisme rectangulaire

Polyèdre Système matriciel

Magnetisme

Références

Annexes

 Pour une grille régulière, constituée de prismes rectangulaires droits, on aurait

$$g_{nm} = -G \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \mu_{ijk} \left[x_i \ln \left(y_j + r_{ijk} \right) + y_j \ln \left(x_i + r_{ijk} \right) + z_k \arctan \frac{z_k r_{ijk}}{x_i y_j} \right],$$

$$où x_i = x(n) - x'_i(m), y_j = y(n) - y'_j(m), \text{ et } z_k = z(n) - z'_k(m).$$

Remarquez l'absence du terme de densité.

Théorie
Prisme rectangulair droit
Polyèdre

Système matriciel

Référence

Annexe

Implémenter la construction de la matrice **G** pour une grille régulière (prismes rectangulaires droits)

- Pour construire le système matriciel, il faut se donner une convention pour numéroter les prismes;
- Une convention possible est de faire varier
 - d'abord le numéro de ligne (indice *i* selon l'axe des *x*),
 - ensuite le numéro de colonne (indice *j* selon l'axe des *y*),
 - finalement le numéro de couche (indice k selon l'axe des z).

Python

MATLAB

Théorie
Prisme rectangulaire droit
Polyèdre
Système matriciel

Magnetisi

Référence

Annexes

- Dans votre fichier gravi.py, créez une classe Grille pour gérer des grilles régulières (prismes rectangulaires droits)
 - La taille de la grille est de $n_x \times n_y \times n_z$ prismes
- Le constructeur sera

```
class Grille:
    def __init__(self, x, y, z):
        """

Input
        x: coordonnées des noeuds selon x (nx+1 x 1)
        y: coordonnées des noeuds selon y (ny+1 x 1)
        z: coordonnées des noeuds selon z (nz+1 x 1)
        """
        self.x = x
        self.y = y
        self.z = z
```

• Définissez une méthode ind qui retourne l'indice m d'un prisme dans la grille, à partir de ses indices (i, j, k)

Théorie Prisme rectangulaire droit

Système matriciel

Pófóronco

.

 Ajoutez finalement à votre classe Grille une méthode prd_G, qui utilise votre fonction prd, pour construire la matrice G

Gravimétrie

Prisme rectangulai droit

Système matriciel

Référence

Annexes

```
    Testez votre fonction avec les commandes
```

```
g = Grille(x=np.arange(-8.5,9.0),
           y=np.arange(-10.5,11.0),
           z=np.arange(10.0))
x0 = np.array([[0.0, 0.0, 0.0],
               [1.0, 0.0, 0.0],
                [2.0, 0.0, 0.0]])
tic = time.time()
G = g.prd G(x0)
t_G = time.time() - tic
rho = np.zeros((g.nc,))
rho[g.ind(8,10,5)] = 1.0
tic = time.time()
gz = np.dot(G, rho)
t_mult = time.time() - tic
print(t G, t mult)
```


n vino étri.

Magnétisme

Équations de Maxwell Modèle linéaire

Références

Δnnexes

Magnétisme

Équations de Maxwell

Magnétisme Équations de Maxwell Modèle linéaire

Référence

Annexes

 Le problème direct en magnétisme est solutionné en partant des équations de Maxwell :

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{20}$$

$$\nabla \cdot \mathbf{D} = \rho \tag{21}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$
 (22)

$$\nabla \cdot \mathbf{B} = 0 \tag{23}$$

оù

- B est le champ d'induction;

 H est le champ magnétique:
- H est le champ magnétique;
- D est le champ de déplacement;
- E est le champ électrique;
 ρ est la densité de charge;
- J est la densité de courant électrique.

Équations constitutives

Magnétisme Équations de Maxwell Modèle linéaire

Reference

 Les grandeurs électrique D et E ainsi que les grandeurs magnétiques B et H sont liées par les équations constitutives :

$$\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P} \tag{24}$$

$$\mathbf{B} = \mu_0 \left(\mathbf{H} + \mathbf{M} \right) \tag{25}$$

$$\mathbf{J} = \sigma \mathbf{E} \tag{26}$$

οù

- ϵ_0 est la permittivité diélectrique du vide;
- μ_o est la perméabilité du vide;
- σ est la conductivité électrique;
- P est la polarisation;
- M est l'aimantation.

Équations constitutives

Magnétisme Équations de Maxwell Modèle linéaire Volumes finis

Références

Annexes

 Dans les matériaux linéaires isotropes sans pertes, P et M sont des fonctions linéaires de E et H respectivement, i.e.

$$\mathbf{D} = \epsilon \mathbf{E} = \epsilon_0 \epsilon_r \mathbf{E} \tag{27}$$

$$\mathbf{B} = \mu \mathbf{H} = \mu_0 \mu_r \mathbf{H} \tag{28}$$

avec ϵ_r la permittivité relative et μ_r la perméabilité relative.

• Si le milieu est anisotrope (et linéaire sans pertes), ϵ_r et μ_r deviennent les tenseurs $\overline{\overline{\epsilon}}_r$ et $\overline{\overline{\mu}}_r$:

$$\frac{\overline{\epsilon}}{\overline{\epsilon}_r} = \begin{bmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{yx} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \end{bmatrix}$$
(29)

$$\overline{\overline{\mu}}_{r} = \begin{bmatrix} \mu_{xx} & \mu_{xy} & \mu_{xz} \\ \mu_{yx} & \mu_{yy} & \mu_{yz} \\ \mu_{zx} & \mu_{zy} & \mu_{zz} \end{bmatrix}$$
(30)

Équations de Maxwell

Unités SI

En unités SI,

• **B** est exprimé en tesla (T) ou weber/m²; • H est exprimé en A/m;

• μ_o vaut $4\pi \times 10^{-7}$ (henry/m).

• χ est la susceptibilité (sans dimension).

• Dans le vide (ou dans l'air)

 $\mathbf{B} = \mu_o \mathbf{H}$.

Si la matière est polarisable, nous avons

 $\mathbf{B} = \mu_o(\mathbf{H} + \mathbf{M})$

 $= \mu_o(\mathbf{H} + \chi \mathbf{H})$

 $= \mu_o(1+\chi)\mathbf{H}$

(31)

(32)

(33)

(34)

(35)

(36)

 $= \mu \mathbf{H}$,

 $\mu = \mu_o(1 + \chi)$

• χ est la susceptibilité (sans dimension).

Unités SI

Magnétisme Équations de Maxwell Modèle linéaire

Références

Annexes

- Si la matière possède une aimantation rémanente, elle s'ajoute à l'aimantation induite.
- L'aimantation totale M vaut

$$\mathbf{M} = \mathbf{M}_i + \mathbf{M}_r \tag{37}$$

$$= \chi \mathbf{H} + \mathbf{M}_r \tag{38}$$

- où l'aimantation induite est \mathbf{M}_i et l'aimantation rémanente est \mathbf{M}_r .
- Le tableau du lien suivant présente les unités en magnétisme : http://www.ieeemagnetics.org/index.php? option=com_content&view=article&id=118&Itemid=107

Théorie - Modèle linéaire

Magnétisme Équations de Maxwel Modèle linéaire Volumes finis

Référence Annexes Une approche simple et rapide consiste à considérer qu'un corps aimanté peut être représenté par une somme de moments dipolaires m_i. i.e.

$$\mathbf{M} = \frac{1}{V} \sum_{i} \mathbf{m}_{i}.$$
 (39)

- Cette approche suppose que les moments magnétiques sont faibles et n'interagissent pas entre eux.
- Le potentiel magnétique d'un moment dipolaire est

$$V = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \cdot \hat{\mathbf{r}}}{r^2}.$$

Théorie - Modèle linéaire

Magnétisme Équations de Maxwe Modèle linéaire Volumes finis

 Le champ magnétique d'un corps aimanté de volume V, observé au point P est

$$\mathbf{B} = -\nabla V = -\frac{\mu_0}{4\pi} \nabla \int_V \mathbf{M} \cdot \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0|} dv, \tag{41}$$

où μ_0 est la perméabilité magnétique du vide, ${\bf M}$ est l'aimantation du corps, et ${\bf r}_0$ est la position de l'élément de volume dv.

Théorie - Modèle linéaire

Gravimetrie

Équations de Mas Modèle linéaire

Reference

Annexes

 L'aimantation du corps peut être considérée selon différents modèles

Théorie - Volume d'aimantation

Magnétisme Équations de Maxwel Modèle linéaire Volumes finis

Référence:

- Le modèle du volume d'aimantation s'avère pratique si on peut décomposer le corps en éléments de volume de faibles dimensions (comparativement à la distance au pt d'observation).
 - ullet Un i^e élément de volume V_i peut être vu comme un dipôle de moment magnétique

$$\mathbf{m}_i = V_i \chi_m \mathbf{H},\tag{42}$$

- où χ_m est sa susceptibillité magnétique et ${\bf H}$ est le champ magnétique terrestre.
- Comme on a vu, l'aimantation du corps vaut

$$\mathbf{M} = \frac{1}{V} \sum_{i} \mathbf{m}_{i}.$$

Théorie - Volume d'aimantation

Magnétisme Équations de Maxwel Modèle linéaire Volumes finis

Annexes

• Le champ magnétique d'un dipôle \mathbf{m}_i à une distance \mathbf{r}_i du point d'observation est

$$\mathbf{B}_{i} = \frac{\mu_{0}}{4\pi} \left[\frac{3 \left(\mathbf{m}_{i} \cdot \mathbf{r}_{i} \right) \mathbf{r}_{i}}{r_{i}^{5}} - \frac{\mathbf{m}_{i}}{r_{i}^{3}} \right]. \tag{43}$$

Le champ mesuré à ce point d'observation est

$$\mathbf{B} = \sum_{i=1}^{N} \mathbf{B}_i + \mu_0 \mathbf{H},\tag{44}$$

où N est le nombre de dipôles.

Exemple - Volume d'aimantation

Modèle linéaire

- Guo *et al.* (2015) ont utilisé l'approche du volume d'aimantation pour modéliser la réponse de conduits ferreux.
- Le conduit est discrétisé de sections cylindriques divisées en éléments:

Exemple - Volume d'aimantation

Gravimetrie

Magnétisme Équations de Maxwe Modèle linéaire

Référence

- La démagnétisation est prise en compte en ajustant la susceptibilité en fonction d'un facteur de démagnétisation (voir en annexe) choisi de façon *ad hoc*.
- La réponse d'un conduit réel a pu être reproduite :

Théorie - Charges surfaciques & volumiques

Magnétisme Équations de Maxwe Modèle linéaire

Référence

• En utilisant l'identité $\nabla \cdot (\phi \mathbf{A}) = \nabla \phi \cdot \mathbf{A} + \phi \nabla \cdot \mathbf{A}$ et le théorème de divergence, on a pour le potentiel magnétique

$$V = \frac{\mu_0}{4\pi} \int_V \mathbf{M} \cdot \nabla \frac{1}{|\mathbf{r} - \mathbf{r}_0|} dv$$

$$= \frac{\mu_0}{4\pi} \int_S \frac{\mathbf{M} \cdot \hat{\mathbf{n}}}{|\mathbf{r} - \mathbf{r}_0|} ds - \frac{\mu_0}{4\pi} \int_V \frac{\nabla \cdot \mathbf{M}}{|\mathbf{r} - \mathbf{r}_0|} dv$$

$$= \frac{\mu_0}{4\pi} \int_S \frac{Q_s}{|\mathbf{r} - \mathbf{r}_0|} ds - \frac{\mu_0}{4\pi} \int_V \frac{Q_v}{|\mathbf{r} - \mathbf{r}_0|} dv. \tag{45}$$

- Si l'aimantation est uniforme, la 2^e intégrale est nulle.
- Les équations de Singh et Guptasarma (2001) peuvent être utilisées.

Théorie - Charges surfaciques & volumiques

Modèle linéaire

Pour un polyèdre d'aimantation M ayant n_f faces, les composantes du champ magnétique sont

$$B_x = -\sum_{i=1}^{n_f} \sigma_i \iint_i \left(\frac{x}{r^3}\right) ds, \tag{46}$$

$$B_{y} = -\sum_{i=1}^{n_{f}} \sigma_{i} \iint_{i} \left(\frac{y}{r^{3}}\right) ds, \tag{47}$$

$$B_z = -\sum_{i=1}^{n_f} \sigma_i \iint_i \left(\frac{z}{r^3}\right) ds, \tag{48}$$

où
$$\sigma_i \equiv Q_{si} = \mathbf{M} \cdot \hat{\mathbf{n}}_i$$
.

Théorie - Charges surfaciques & volumiques

Modèle linéaire

En transformant l'intégrale de surface en intégrale de contour, nous avons

$$B_y =$$

$$B_{y} = \sigma_{i} \left(m\Omega + \ell R_{i} - nP_{i} \right), \tag{50}$$

$$B_z =$$

(51)

(49)

avec $R_i = \sum_{i=1}^{n_a} R_{ij}$, où pour chacune des n_a arête $R_{ij} = IL_z$.

 $B_{r} = \sigma_{i} (\ell \Omega + nO_{i} - mR_{i})$

 $B_{z} = \sigma_{i} (n\Omega + mP_{i} - \ell O_{i})$

Gravimetrie

Équations de Ma Modèle linéaire Volumes finis

Anneves

- Le modèle du corps aimanté vu précédemment suppose que le champ induit est faible par rapport au champ primaire.
- Cette approximation n'est pas valide lorsque la susceptibilité est élevée, en particulier en présence de démagnétisation.
- Une solution basée sur les équations de Maxwell permet de tenir compte adéquatement des champs induits.
- La méthode des volumes finis (VF) permet de résoudre les équations de Maxwell pour le problème magnétostatique :
 - En l'absence de charges libres et de source de courant électrique et lorsqu'il n'y a pas de variation temporelle des champs, nous avons

$$\nabla \times \mathbf{H} = 0 \tag{52}$$

$$\nabla \cdot \mathbf{B} = 0. \tag{53}$$

• La relation $\mathbf{B} = \mu \mathbf{H}$ est toujours valide.

Magnétisme

Équations de Maxw Modèle linéaire Volumes finis

Appayor

• Avec la méthode des VF, le domaine est discrétisé en voxels à l'intérieur desquels la perméabilité μ est constante, mais où μ varie d'un voxel à l'autre.

• À l'interface entre deux voxels, la composante tangentielle du champ **H** est continue :

$$\mathbf{H}_1 \times \hat{\mathbf{n}} = \mathbf{H}_2 \times \hat{\mathbf{n}}$$
 ce qui implique $\mu_1^{-1} \mathbf{B}_1 \times \hat{\mathbf{n}} = \mu_2^{-1} \mathbf{B}_2 \times \hat{\mathbf{n}}$ (54)

• La composante normale de l'induction **B** est également continue :

$$\mathbf{B}_1 \cdot \hat{\mathbf{n}} = \mathbf{B}_2 \cdot \hat{\mathbf{n}}$$
 ce qui implique $\mu_1 \mathbf{H}_1 \cdot \hat{\mathbf{n}} = \mu_2 \mathbf{H}_2 \cdot \hat{\mathbf{n}}$ (55)

Magnétisme Équations de Maxwe Modèle linéaire

Références Annexes • L'équation (52) permet d'exprimer le champ magnétique en fonction d'un potentiel scalaire ϕ , par

$$\mathbf{H} = \nabla \phi. \tag{56}$$

• L'équation (56), exprimée en terme de **B** et μ ,

$$\mathbf{B} = \mu \nabla \phi \tag{57}$$

- ainsi que les équations (53) et (55) seront discrétisées pour construire le système numérique à résoudre.
- L'approche présentée dans la suite est tirée de Lelièvre (2003).

Magnátismo

Magnétisme Équations de Maxwell

Volumes finis Références

Annovos

- Le système discret repose sur une grille décalée :
 - les composantes du champ sont situées aux centres des faces du voxels;
 - le potentiel scalaire est localisé au centre du voxel.
- Ce schéma permet de respecter les conditions de continuités aux interfaces et de calculer la dérivée de ϕ avec un opérateur de différence finie centrée.

Gravimetr

Magnétisme

Modèle linéaire Volumes finis

Référence

Annexes

- Le domaine est divisé en $nc = nx \times ny \times nz$ voxels.
- Les coordonnées de noeuds sont

$$x_i: x_1, x_2, x_3, \dots, x_{nx+1}$$
 (58)

$$y_i: y_1, y_2, y_3, \dots, y_{ny+1}$$
 (59)

$$z_k: z_1, z_2, z_3, \dots, x_{nz+1}$$
 (60)

Magnétisme Équations de Maxwel

Volumes finis Références

- Sur la face x_i , les indices sont décalés en y et z pour le champ B^x ;
- Un jeu similaire survient pour B^y et B^z .

Volumes finis

La longueur des côtés des voxels est

$$hx_i: hx_1, hx_2, \dots, hx_n$$
; $hx_i = x_{i+1} - x_i$

$$hy_j : hy_1, hy_2, \dots, hy_{ny}$$
 ; $hy_j = y_{j+1} - y_j$ (62)

$$hz_k: hz_1, hz_2, \dots, hz_{nz}$$
 ; $hz_k = z_{k+1} - z_k$ (63)

Les coordonnées des centres des voxels sont

$$x_{i+1/2}: x_{1+1/2}, x_{2+1/2}, \dots, x_{nx+1/2}$$
 (64)

$$y_{j+1/2}: y_{1+1/2}, y_{2+1/2}, \dots, y_{ny+1/2}$$
 (65)

$$z_{k+1/2}: z_{1+1/2}, z_{2+1/2}, \dots, z_{nz+1/2}$$
 (66)

La distance entre les centres des voxels est

$$\Delta x_i : \Delta x_1, \Delta x_2, ..., \Delta x_{n_{X-1}}$$
; $\Delta x_i = x_{i+3/2} - x_{i+1/2} = (hx_i + hx_{i+1})/2$

$$\Delta y_{j}: \Delta y_{1}, \Delta y_{2}, \dots, \Delta y_{ny-1} \quad ; \quad \Delta y_{j} = y_{j+3/2} - y_{j+1/2} = (hy_{j} + hy_{j+1})/2$$
(67)

$$\Delta z_k : \Delta z_1, \Delta z_2, \dots, \Delta z_{nz-1} \quad ; \quad \Delta z_k = z_{k+3/2} - z_{k+1/2} = (hz_k + hz_{k+1})/2$$

(61)

Volumes finis

- La solution du problème est obtenue en déterminant les valeurs de ϕ et **B** sur tout le domaine.
 - φ doit être évalué aux nc voxels;
 - B^x doit être évalué aux $(nx + 1) \times ny \times nz$ faces avec un vecteur normal selon x:
 - B^y doit être évalué aux $nx \times (ny + 1) \times nz$ faces avec un vecteur normal selon y;
 - B^z doit être évalué aux $nx \times ny \times (nz + 1)$ faces avec un vecteur normal selon z
- Conditions aux frontières pratiques : poser que **B** aux limites du domaine est égal au champ terrestre ambiant;
 - Il faut dans ce cas définir une zone tampon autour du domaine où χ est égal à zéro, de façon à ce que le champ induit soit négligeable aux frontières.
 - Les valeurs de **B** doivent alors être déterminées seulement sur les faces intérieures
 - Le nombre total d'inconnues pour **B** est ainsi

$$nf = \underbrace{(nx-1) \times ny \times nz}_{nfx} + \underbrace{nx \times (ny-1) \times nz}_{nfy} + \underbrace{nx \times ny \times (nz-1)}_{nfz}.$$
(70)

Magnétisme

Modèle linéaire Volumes finis

Annexes

- Créez une classe GrilleVF en vous basant sur votre classe Grille
- Ajoutez les attributs suivants
 - hx, hy, hz contenant les longueurs des côtés des voxels;
 - xc,yc,zc contenant les coordonnées des centres des voxels;
 - dx,dy,dz contenant les distances entre les centres des voxels;
 - Ajoutez aussi des attributs pour nx, ny, nz, nc, nf x, nf y, nf z, nf
- Modifiez finalement la méthode ind pour que i, j et k puisse contenir chacun plusieurs indices.
 - Les indices retournés doivent être classés en ordre croissant;
 - Vérifiez que les indices sont à l'intérieur de la grille.

Magnétisme

Equations de Ma Modèle linéaire Volumes finis

Anneyes

- Une discrétisation par volumes finis est une discrétisation de la formulation faible de l'équation aux dérivées partielles.
 - Qu'est-ce qu'une formulation faible implique?
- Avec cette discrétisation, l'espace est décomposé en petits "volumes finis", qui correspondent aux voxels de la grille.
- Sur ces volumes, les équations devant être discrétisées sont

$$\int_{V} \nabla \cdot \mathbf{B} \, \mathrm{d}v = 0 \tag{71}$$

$$\int_{V} \mathbf{B} \, dv = \int_{V} \mu \nabla \phi \, dv \quad \text{ou} \quad \int_{V} \mu^{-1} \mathbf{B} \, dv = \int_{V} \nabla \phi \, dv. \quad (72)$$

Magnétisme Équations de Maxwe Modèle linéaire Volumes finis

Référence Annexes L'approximation discrète de l'équation (71) est obtenue par le théorème de divergence

$$\int_{V} \nabla \cdot \mathbf{B} \, \mathrm{d}v = \int_{S} \mathbf{B} \cdot \hat{\mathbf{n}} \, \mathrm{d}s = 0$$

• En posant un flux sortant positif, la forme discrète de l'intégrale de surface devient, pour le voxel (i,j,k)

$$\int_{S} \mathbf{B} \cdot \hat{\mathbf{n}} \, \mathrm{d}s \approx \left(B_{i,j+1/2,k+1/2}^{x} - B_{i-1,j+1/2,k+1/2}^{x} \right) h y_{j} h z_{k}
+ \left(B_{i+1/2,j,k+1/2}^{y} - B_{i+1/2,j-1,k+1/2}^{y} \right) h x_{i} h z_{k}
+ \left(B_{i+1/2,j+1/2,k}^{z} - B_{i+1/2,j+1/2,k-1}^{z} \right) h x_{i} h y_{j} = 0$$
(73)

Gravimetri

Magnétisme Équations de Maxw Modèle linéaire Volumes finis

Référence

Anneyes

 On divisant (73) par le volume du voxel, on obtient nc équations de la forme

$$\left(B_{i,j+1/2,k+1/2}^{x} - B_{i-1,j+1/2,k+1/2}^{x}\right) / hx_{i}
+ \left(B_{i+1/2,j,k+1/2}^{y} - B_{i+1/2,j-1,k+1/2}^{y}\right) / hy_{j}
+ \left(B_{i+1/2,j+1/2,k}^{z} - B_{i+1/2,j+1/2,k-1}^{z}\right) / hz_{k} = 0$$
(74)

- Les conditions aux limites complètent la discrétisation.
- On pose que partout aux limites du domaine le champ vaut $\mathbf{B}_0 = (B_0^x, B_0^y, B_0^z)$.

Magnétisme

Modèle linéaire Volumes finis

Annexes

• Pour un voxel sur une face où i = 1, nous avons une équation de la forme

$$B_{1,j+1/2,k+1/2}^{x}/hx_{1} + \left(B_{i+1/2,j+1,k+1/2}^{y} - B_{i+1/2,j,k+1/2}^{y}\right)/hy_{j} + \left(B_{i+1/2,j+1/2,k+1}^{z} - B_{i+1/2,j+1/2,k}^{z}\right)/hz_{k} = \frac{B_{0}^{x}}{h}x_{1}.$$
 (75)

• Pour un voxel sur une face où i = nx, nous avons

$$\begin{split} &-B_{nx-1,j+1/2,k+1/2}^{x}/hx_{nx} \\ &+ \left(B_{i+1/2,j+1,k+1/2}^{y} - B_{i+1/2,j,k+1/2}^{y}\right)/hy_{j} \\ &+ \left(B_{i+1/2,j+1/2,k+1}^{z} - B_{i+1/2,j+1/2,k}^{z}\right)/hz_{k} = -B_{0}^{x}/hx_{nx}. \end{split} \tag{76}$$

Magnétisme Équations de Maxwel Modèle linéaire Volumes finis

Référence

• Sur une arête (e.g. où i = 1 et j = 1), nous avons une expression de la forme

$$B_{i,j+1/2,k+1/2}^{x}/hx_{i} + B_{i+1/2,j,k+1/2}^{y}/hy_{j} + \left(B_{i+1/2,j+1/2,k+1}^{z} - B_{i+1/2,j+1/2,k}^{z}\right)/hz_{k} = B_{0}^{x}/hx_{i} + B_{0}^{y}/hy_{j}.$$
 (77)

• Sur un coin (e.g. i = 1, j = 1 et k = 1), nous avons une équation de la forme

$$B_{i,j+1/2,k+1/2}^{x}/hx_{i} + B_{i+1/2,j,k+1/2}^{y}/hy_{j} + B_{i+1/2,j+1/2,k}^{z}/hz_{k} = B_{0}^{x}/hx_{i} + B_{0}^{y}/hy_{j} + B_{0}^{z}/hz_{k}.$$
 (78)

Magnétisme Équations de M

Modèle linéaire Volumes finis

Références

 En combinant les équations précédentes, il est possible de construire le système matriciel

$$\mathbf{DB} = \mathbf{q} \tag{79}$$

où **D** est de taille $nc \times nf$, **B** de taille $nf \times 1$ et où **q** est de taille $nc \times 1$ et contient les termes provenant des conditions aux frontières.

- D est appelée matrice de divergence.
- Le système matriciel peut être séparé de telle sorte que

$$\mathbf{DB} = \mathbf{q} \tag{80}$$

$$\begin{bmatrix} \mathbf{D}_{\mathbf{x}} & \mathbf{D}_{\mathbf{y}} & \mathbf{D}_{\mathbf{z}} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{\mathbf{x}} \\ \mathbf{B}_{\mathbf{y}} \\ \mathbf{B}_{\mathbf{z}} \end{bmatrix} = \mathbf{q}$$
 (81)

$$\mathbf{D}_{\mathbf{x}}\mathbf{B}_{\mathbf{x}} + \mathbf{D}_{\mathbf{y}}\mathbf{B}_{\mathbf{y}} + \mathbf{D}_{\mathbf{z}}\mathbf{B}_{\mathbf{z}} = \mathbf{q}. \tag{82}$$

Volumes finis

• La matrice **D**_v est construite selon

$$\widetilde{D}_{x} \simeq$$

 $D_{x} = \begin{bmatrix} D_{x} & & & \\ & \widetilde{D}_{x} & & \\ & & \ddots & \\ & & & \widetilde{D} \end{bmatrix}$

(83)

οù

$$\widetilde{\mathbf{D}}_{\mathbf{x}} = \begin{bmatrix} hx_1^{-1} \\ -hx_2^{-1} & hx_2^{-1} \\ & \ddots & \ddots \\ & & -hx_{nx-1}^{-1} & hx_{nx-1}^{-1} \\ & & -hx_{nx}^{-1} \end{bmatrix}$$

La diagonale principale et la -1^e diagonale de $\widetilde{\mathbf{D}}_{\mathbf{x}}$ sont remplies. $\widetilde{\mathbf{D}}_{\mathbf{x}}$ est de taille $n\mathbf{x} \times (n\mathbf{x} - 1)$, et est répétée $n\mathbf{y} \times n\mathbf{z}$ fois pour créer D_{v} .

a v ii i i c ci i c

Magnétisme Équations de Maxw Modèle linéaire Volumes finis

Δnneves

- Ajoutez une méthode fabrique_D à la classe GrilleVF, pour construire la matrice D_x.
- D_x devra être une matrice *creuse*.
 - Consultez la documentation du module sparse de la librairie scipy;
 - La forme la plus simple à utiliser est coo_matrix;

Magnétisme

Équations de Ma Modèle linéaire Volumes finis

Reference

• D_y est construite de façon similaire avec

$$\widetilde{\mathbf{D}}_{\mathbf{y}} = \begin{bmatrix} hy_{1}^{-1} & & & & & & \\ 0 & hy_{1}^{-1} & & & & \\ \vdots & & \ddots & & & & \\ 0 & & hy_{1}^{-1} & & & & \\ -hy_{2}^{-1} & & & hy_{2}^{-1} & & & \\ & \ddots & & & \ddots & & \\ & & -hy_{ny-1}^{-1} & & & hy_{ny-1}^{-1} \\ & & & -hy_{ny}^{-1} & & & \\ & & & \ddots & & \\ & & & & -hy_{ny}^{-1} \end{bmatrix}$$
(85)

• La diagonale principale et la $-nx^e$ diagonale sont remplies. $\widetilde{\mathbf{D}}_{\mathbf{y}}$ est de taille $nx*ny \times nx*(ny-1)$, et est répétée nz fois pour créer $\mathbf{D}_{\mathbf{y}}$.

Équations de Maxw Modèle linéaire Volumes finis Références

• Ajoutez la construction de la matrice $\mathbf{D}_{\mathbf{y}}$ à votre méthode

fabrique_D.D_v devra également être une matrice creuse.

Magnétisme Équations de Maxwe Modèle linéaire Volumes finis

Référence

• D_z contient des éléments sur la diagonale principale et la $-nx * ny^e$ diagonale :

$$\mathbf{D_{z}} = \begin{bmatrix} hz_{1}^{-1} & & & & & & \\ 0 & hz_{1}^{-1} & & & & & \\ \vdots & & \ddots & & & & \\ -hz_{2}^{-1} & & & hz_{2}^{-1} & & & \\ & \ddots & & & \ddots & & \\ & & -hz_{nz-1}^{-1} & & & hz_{nz-1}^{-1} \\ & & & & -hz_{nz}^{-1} & & \\ & & & & -hz_{nz}^{-1} \end{bmatrix}$$
(86)

Magnétisme Équations de Maxwel Modèle linéaire Volumes finis

Référence

- Ajoutez finalement la construction de D_z (creuse) à votre méthode fabrique_D et assemblez la matrice D
- fabrique_D doit retourner D.
- Ajoutez également une méthode fabrique_q pour construire le vecteur q;
 - Cette méthode doit avoir pour argument B0 (un vecteur contenant les trois composantes du champ ambiant.

Gravimétrie

Modèle linéaire

Volumes finis

Référence

Testez votre code avec :

• Vous devriez obtenir :

Volumes finis

- Pour discrétiser l'équation (72), il est nécessaire de connaître u (ou u^{-1}) sur les faces des voxels.
- En interpolant μ , on obtient sa moyenne arithmétique alors qu'en interpolant μ^{-1} on obtient la movenne harmonique de μ.
 - La moyenne harmonique est plus représentative de la perméabilité effective;
 - Pour des cellules de tailles différentes, la moyenne harmonique μ_m selon x vaut

$$\mu_m = 2\Delta x \left(\frac{hx_1}{\mu_1} + \frac{hx_2}{\mu_2}\right)^{-1}.$$

• On discrétise donc $\mu^{-1}\mathbf{B} = \nabla \phi$, qui est séparé en trois parties:

$$\mu^{-1}B_{r} = \nabla_{r}\phi \tag{88}$$

$$\mu^{-1}B_{y} = \nabla_{y}\phi \tag{89}$$

$$u^{-1}B_z = \nabla_z \phi. \tag{90}$$

(87)

Gravimetri

Magnetisme Équations de Maxw Modèle linéaire Volumes finis

Reference

Anneves

• Le volume d'intégration couvre une face du voxel de sorte que l'induction *B* est au centre du volume, i.e. en *x*

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \int_{y_j}^{y_{j+1}} \int_{z_k}^{z_{k+1}} \frac{B_x}{\mu} dx dy dz = \int_{x_{i-1/2}}^{x_{i+1/2}} \int_{y_j}^{y_{j+1}} \int_{z_k}^{z_{k+1}} \nabla_x \phi dx dy dz$$
(91)

- Si on assume que B_x ne varie pas à l'intérieur du volume d'intégration, on peut le sortir de l'intégrale triple.
- La forme discrète, après avoir divisé par le volume d'intégration, est

$$\frac{B_{i,j+1/2,k+1/2}^{x}}{2\Delta x_{i}} \left(\frac{hx_{i}}{\mu_{i+1/2,j+1/2,k+1/2}} + \frac{hx_{i-1}}{\mu_{i-1/2,j+1/2,k+1/2}} \right) = \frac{\phi_{i+1/2,j+1/2,k+1/2} - \phi_{i-1/2,j+1/2,k+1/2}}{\Delta x_{i}} \tag{92}$$

Volumes finis

La notation est allégée en posant

$$\eta_{i,j+1/2,k+1/2}^{x} = 2\Delta x_i \left(\frac{hx_i}{\mu_{i+1/2,j+1/2,k+1/2}} + \frac{hx_{i-1}}{\mu_{i-1/2,j+1/2,k+1/2}} \right)^{-1}$$
(93)

ce qui donne

$$\frac{B_{i,j+1/2,k+1/2}^{x}}{\eta_{i,j+1/2,k+1/2}^{x}} = \frac{\phi_{i+1/2,j+1/2,k+1/2} - \phi_{i-1/2,j+1/2,k+1/2}}{\Delta x_{i}}$$
(94)

On peut maintenant construire une système matriciel de la forme

$$\mathbf{M}_{\mathbf{x}}^{-1}\mathbf{B}_{\mathbf{x}} = \mathbf{G}_{\mathbf{x}}\boldsymbol{\phi} \quad \text{ou} \quad \mathbf{B}_{\mathbf{x}} = \mathbf{M}_{\mathbf{x}}\mathbf{G}_{\mathbf{x}}\boldsymbol{\phi} \tag{95}$$

où M_x est une matrice diagonale contenant les coefficients $\eta_{i,i+1/2,k+1/2}^{x}$.

Magnétisme Équations de Maxw Modèle linéaire Volumes finis

• En procédant de façon similaire selon y et z, on arrive à un système

$$\begin{bmatrix} \mathbf{B}_{\mathbf{x}} \\ \mathbf{B}_{\mathbf{y}} \\ \mathbf{B}_{\mathbf{z}} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{\mathbf{x}} & 0 & 0 \\ 0 & \mathbf{M}_{\mathbf{y}} & 0 \\ 0 & 0 & \mathbf{M}_{\mathbf{z}} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{\mathbf{x}} \\ \mathbf{G}_{\mathbf{y}} \\ \mathbf{G}_{\mathbf{z}} \end{bmatrix} \boldsymbol{\phi}$$

$$\mathbf{B} = \mathbf{M} \qquad \mathbf{G} \quad \boldsymbol{\phi}$$
(96)

- **G** est appelée matrice de gradient (de taille $nf \times nc$);
- **M** est appelée matrice des perméabilité (de taille $nf \times nf$);
- ϕ est le vecteur du potentiel magnétique (de taille $nc \times 1$).

Gravimetric

gnétisme lations de Maxwe

Volumes finis Références

Appoyos

• M est construite suivant

 $\begin{bmatrix} \eta_1^x & & & \\ & \eta_2^x & & \\ & & \ddots & \\ & & & \ddots & \\ \end{bmatrix}$

 $\eta^x_{(nx-1)ny\,nz}$

 η_1^y .

 η_1^z ...

 $\eta^z_{nx\,ny(nz-1)}$

 $\eta^y_{nx(ny-1)nz}$

Gravimetrie

Magnétisme Équations de Maxwell Modèle linéaire Volumes finis

Reference

Annexes

Construction des matrices $\mathbf{M}_{\mathbf{x}'}$ $\mathbf{M}_{\mathbf{y}}$ et $\mathbf{M}_{\mathbf{z}}$

 Il faut choisir soigneusement les indices des voxels

Magnétisme Équations de Maxwel Modèle linéaire Volumes finis

Référence

- Créez une méthode fabrique_M pour construire la matrice M contenant les valeurs de la moyenne harmonique de μ .
- Votre méthode aura pour argument mu, un vecteur de *nc* éléments contenant les valeurs de perméabilité des voxels.
- Notez que **M** est également une matrice creuse.

Gravimetrie

Magnétisme Équations de Maxwe

Volumes finis

.....

Testez votre code avec :

```
chi = np.zeros((gvf.nc,))
chi[gvf.ind(2,2,3)] = 1.0
mu0 = 4 * math.pi * 1.e-7;
mu = mu0 * (1.+chi)
M = gvf.fabrique_M(mu)
```

Vous devriez obtenir :

Volumes finis

Par ailleurs,

$$\mathbf{G}_{\mathbf{x}} = \begin{bmatrix} \mathbf{G}_{\mathbf{x}} & & & & \\ & \widetilde{\mathbf{G}}_{\mathbf{x}} & & & \\ & & \ddots & & \\ & & \widetilde{\mathbf{G}}_{\mathbf{x}} \end{bmatrix}$$

$$\widetilde{\mathbf{G}}_{\mathbf{x}} = \begin{bmatrix} -\Delta x_1^{-1} & \Delta x_1^{-1} & & & \\ & -\Delta x_2^{-1} & \Delta x_2^{-1} & & & \\ & & \ddots & \ddots & & \\ & & -\Delta x_{nx-1}^{-1} & \Delta x_{nx-1}^{-1} \end{bmatrix}$$

$$(98)$$

- La diagonale principale et la première diagonale sont remplies.
- $\widetilde{\mathbf{G}}_{\star}$ est de taille $(nx-1) \times nx$ et répétée ny * nz fois, ce qui fait que G_x est de taille $nfx \times nc$.

Volumes finis

Également,

$$\widetilde{\mathbf{G}}_{\mathbf{y}} = \begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$$

$$-\Delta y_{ny-1}^{-1}$$

(100)

- La diagonale principale et la nx^e diagonale sont remplies.
- $\widetilde{\mathbf{G}}_{\mathbf{v}}$ est de taille $nx * (ny 1) \times nx * ny$ et répétée nz fois, ce qui fait que G_v est de taille $nfy \times nc$.

Volumes finis

Finalement,

La diagonale principale et la $(nx * ny)^e$ diagonale sont remplies, et G_z est de taille $nfz \times nc$.

Volumes finis

- Écrivez finalement une méthode fabrique_G pour construire la matrice G contenant les opérateurs du gradient de ϕ .
- Comme pour les matrices D et M, G doit être creuse.

Volumes finis

Testez votre code avec:

• Vous devriez obtenir:

Magnétisme Équations de Maxwe

Volumes finis

Référence Annexes • Les équations vues jusqu'à présent permettent de calculer le champ total **B**.

Nous avons les équations (79)

$$DB = q$$

et (96)

$$B = MG\phi$$

• On résoud le système pour ϕ en insérant les conditions aux limites, i.e.

$$\underbrace{DMG}_{A}\underbrace{\phi}_{x}=\underbrace{q}_{b}$$

• On utilise (96) pour finalement calculer **B**.

Magnétisme Équations de Maxwe Modèle linéaire

Référence Annexes

- Il est souvent souhaitable de ne modéliser que le champ induit (ou secondaire) par la présence de corps magnétisables, i.e. de calculer l'anomalie magnétique (notée $B_{\rm s}$).
- Il est possible d'extraire l'anomalie du champ total en soustrayant à ce dernier la valeur du champ ambiant B₀, i.e.

$$\mathbf{B_s} = \mathbf{B} - \mathbf{B_0}.\tag{103}$$

• Cette approche peut être sujette aux erreurs d'arrondi car le champ secondaire est souvent plus faible que B_0 par plusieurs ordres de grandeur.

et de limiter les erreurs d'arrondi.

Magnétisme Équations de Maxwel Modèle linéaire Volumes finis

Références

• Il suffit de décomposer les équations (79) et (96) selon

• Il est possible de calculer directement le champ secondaire

$$D\left(B_0 + B_s\right) = f + g \tag{104}$$

$$\mathbf{M}^{-1} (\mathbf{B_0} + \mathbf{B_s}) = \mathbf{G} (\phi_0 + \phi_s). \tag{105}$$

- Le vecteur f est équivalent au vecteur q de l'équation (79),
 i.e. il est calculé à partir de B₀ sur le pourtour du domaine.
- Le vecteur \mathbf{g} est similaire à \mathbf{f} , mais est dû au champ induit $\mathbf{B}_{\mathbf{s}}$ plutôt que $\mathbf{B}_{\mathbf{0}}$.
 - Si les corps magnétiques sont loin des bords du domaine, on peut assumer que B_s sera très faible au pourtour du domaine et donc que $g\approx 0$.

Magnétisme Équations de M

Modèle linéaire Volumes finis

Reference

• Pour le champ primaire, nous avons ainsi

$$DB_0 = f$$
 et $M_0^{-1}B_0 = G\phi_0$. (106)

- $\mathbf{M_0}$ a des éléments non-nuls seulement sur la diagonale principale et $\eta_0 = \mu_0$, ce qui fait que $\mathbf{M_0} = \mu_0 \mathbf{I}$.
- Pour le champ secondaire, nous avons alors

$$DB_{s} = g$$

$$M^{-1}B_{s} = -M^{-1}B_{0} + G\phi_{0} + G\phi_{s}$$

$$= -M^{-1}B_{0} + M_{0}^{-1}B_{0} + G\phi_{s}$$

$$= (\mu_{0}^{-1}I - M^{-1})B_{0} + G\phi_{s}.$$
(108)

Magnétisme Équations de Maxw

Volumes finis Références

Annexes

• On a finalement que

$$\mathbf{B_s} = \left(\mu_0^{-1} \mathbf{M} - \mathbf{I}\right) \mathbf{B_0} + \mathbf{MG} \boldsymbol{\phi_s},\tag{109}$$

où $\phi_{
m s}$ est obtenu en solutionnant

$$\underbrace{\mathbf{DMG}}_{\mathbf{A}} \underbrace{\boldsymbol{\phi}_{\mathbf{s}}}_{\mathbf{x}} = \underbrace{\mathbf{g} - \mathbf{D} \left(\mu_0^{-1} \mathbf{M} - \mathbf{I}\right) \mathbf{B}_{\mathbf{0}}}_{\mathbf{b}} \tag{110}$$

avec B_0 un vecteur de la taille de B contenant les valeurs du champ ambiant.

• La méthode du gradient biconjugué stabilisé peut être utilisée pour résoudre ce système.

Magnétisr

• Comment calculer g alors que B_s est inconnu?

Modèle linéaire Volumes finis Références

- Lelièvre (2003) propose d'approximer les matériaux magnétiques dans le domaine par une sphère de susceptibilité égale à la moyenne volumique des susceptibilités des voxels;
 - on peut ensuite calculer analytiquement la réponse de cette sphère au pourtour du domaine.
 - La moyenne volumique ξ est

$$V = \sum_{i=0, \gamma_i \neq 0}^{nc-1} v_i$$
 (111)

$$\xi = \frac{1}{V} \sum_{i=0}^{nc-1} \chi_i v_i \tag{112}$$

où v_i est le volume du i^e voxel et χ_i est la susceptibilité de ce voxel.

Magnétisme

Magnétisme Équations de Maxwe Modèle linéaire Volumes finis

Référence Annexes

- Pour une sphère de susceptibilité ξ , les facteurs de démagnétisation sont 1/3;
- Le moment dipolaire de la sphère est ainsi

$$\mathbf{m} = \frac{\mathbf{B_0}}{\mu_0} \frac{\xi V}{1 + \frac{\xi}{3}},\tag{113}$$

avec une magnitude m et une direction unitaire $\hat{\mathbf{m}}$.

• Le champ secondaire à un point *P* au pourtour du domaine est donc

$$\mathbf{B_s}(P) = \frac{\mu_0}{4\pi} \frac{m}{r^3} \left[3(\hat{\mathbf{m}} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - \hat{\mathbf{m}} \right], \tag{114}$$

où le vecteur pointe du centre de la sphère vers P.

Magnétisme Équations de Maxwe Modèle linéaire

Volumes finis Références

• Le centre de la sphère est placé au "centre de susceptibilité" (x_c, y_c, z_c) , calculé de façon similaire au centre de gravité, i.e.

$$x_{c} = \frac{\sum^{nc} \chi_{i} x_{i}}{\sum^{nc} \chi_{i}}$$

$$y_{c} = \frac{\sum^{nc} \chi_{i} y_{i}}{\sum^{nc} \chi_{i}}$$

$$z_{c} = \frac{\sum^{nc} \chi_{i} z_{i}}{\sum^{nc} \chi_{i}}$$
(115)

Volumes finis

- La discrétisation du milieu en volumes finis entraîne une erreur.
- Pour évaluer l'ordre de grandeur cette erreur, partons de la série de Taylor à la surface d'un voxel en posant que les voxels sont cubiques de côté *h* :

$$\phi_{i+1/2,j+1/2,k+1/2} = \phi_{i,j+1/2,k+1/2} + \frac{h}{2}\phi'_{i,j+1/2,k+1/2} + \frac{h^2}{8}\phi''_{i,j+1/2,k+1/2} + \mathcal{O}(h^3)$$
 (116)

$$\phi_{i-1/2,j+1/2,k+1/2} = \phi_{i,j+1/2,k+1/2} - \frac{h}{2} \phi'_{i,j+1/2,k+1/2} + \frac{h^2}{8} \phi''_{i,j+1/2,k+1/2} - O(h^3)$$
 (117)

Magnétisme Équations de Max

Volumes finis Références

Annexes

• En soustrayant les équations (116) et (117), on arrive à l'expression de l'opérateur de dérivé centrée suivant :

$$\frac{\phi_{i+1/2,j+1/2,k+1/2} - \phi_{i-1/2,j+1/2,k+1/2}}{h} = \phi'_{i,j+1/2,k+1/2} + O(h^2)$$
 (118)

• Or, **B** est évalué à partir du potentiel ϕ , i.e.

$$B_{i,j+1/2,k+1/2}^{x} = \eta_{i,j+1/2,k+1/2} \left(\frac{\phi_{i+1/2,j+1/2,k+1/2} - \phi_{i-1/2,j+1/2,k+1/2}}{h} \right), \tag{119}$$

où $\eta_{i,j+1/2,k+1/2}$ est la moyenne harmonique des valeurs de perméabilité des voxels voisins à l'interface.

- La précision sur le calcul de **B** est donc de l'ordre de $O(\eta_{\text{harm}}h^2)$.
 - L'erreur est donc proportionnelle à la perméabilité en plus de la taille des voxels au carré.

Magnétisme Équations de Maxwe Modèle linéaire Volumes finis

Référenc

- Créez une méthode fabrique_cf à partir de votre méthode fabrique_q et ajoutez-y la construction du vecteur **g**
- Suivez pour ce faire l'approche proposée par Lelièvre à la section 4.2 de son mémoire (disponible à http://circle.ubc.ca/handle/2429/13931)
- Cette méthode aura pour arguments B0 et chi

Magnétisme Équations de Maxwe

Volumes finis Références

- ullet Implémentez finalement une méthode pour modéliser la réponse magnétique pour une distribution spatiale donnée de la susceptibilité χ
 - Définissez la méthode selon def magmod(self, chi, B0, xo, usecl, chtot) où
 - xo: points d'observation (ndarray de taille N×3)
 - usecl permet de préciser si g doit être considéré (booléen)
 - chtot indique s'il faut calculer le champ total ou B_s (booléen)
- La méthode doit retourner les valeurs de B_x , B_y et B_z interpolées aux points d'observation xo

Magnétisme Équations de Maxwe Modèle linéaire Volumes finis

Référence

- Calculez l'anomalie causée par un cube de 1 m³, de susceptibilité $\chi = 0.01$, et situé au centre d'une grille de $33 \times 33 \times 33$ voxels (tous de 1 m³ de volume), pour un champ ambiant $\mathbf{B}_0 = [0,0,10000]$ T.
 - Le centre du cube aimanté est à la coordonnée (0,0,0).
 - Utilisez le solveur bicgstab avec les paramètres par défaut.
 - Tracez un profil de B_x et un profil de B_z pour les points ayant pour coordonnées xp=np.arange(-15.0,15.1) yp=0 zp=10

Magnétisme Équations de Maxwel Modèle linéaire

Volumes finis Références

• Comparaison avec la solution analytique pour une sphère de volume égal à celui du cube.

Volumes finis

• Influence du choix des paramètres de convergence de bicgstab

Gravime

Magnétisme

Modèle linéaire Volumes finis

Référence

Annovos

• Influence de la taille des voxels

Références

Magnétisme Références

- Blakely, R. J. (1995). Potential Theory in Gravity and Magnetic Applications. Cambridge University Press
- Guo, Z.-Y., Liu, D.-J., Pan, Q., and Zhang, Y.-Y. (2015).
 Forward modeling of total magnetic anomaly over a pseudo-2D underground ferromagnetic pipeline. *Journal of Applied Geophysics*, 113:14 30
- Lelièvre, P. G. (2003). Forward modeling and inversion of geophysical magnetic data. Master's thesis, University of British Columbia

Références

Magnétisme Références

- Li, X. and Chouteau, M. (1998). Three-dimentional gravity modeling in all space. *Surveys in Geophysics*, 19:339–368
- Plouff, D. (1976). Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. *Geophysics*, 41:727–741
- Singh, B. and Guptasarma, D. (2001). New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra. *Geophysics*, 66(2):521–526

Magnétisme

Annexes

Annexes

Densité ρ

Magnétisme

Références

Densité des roches

Propriétés magnétiques roches
Aimantation rémaner

Susceptibilités Démagnétisation

- C'est la masse par unité de volume;
- Unité habituelle : g/cm³;
- Strictement parlant : masse volumique.
- Pour un milieu poreux saturé, la densité du mélange est

$$\rho_m = (1 - \phi) \, \rho_h + \phi \rho_f$$

- φ est la porosité;
- ρ_h la densité de la matrice hôte;
- ρ_f est la densité du fluide.

Densité ρ

Annexes

Densité des roches

Propriétés magnétiques des roches

Magnátism

Reference

Densité des roches Propriétés magnétiques des roches

Démagnétisation

- Les roches sont un agencement de minéraux qui présentent des propriétés magnétiques différentes;
- Les différents phénomènes en compétition :
 - diamagnétisme;
 - paramagnétisme;
 - ferromagnétisme;
 - antiferromagnétisme;
 - ferrimagnétisme.

L'atome

Ordvillictric

Magnétisme

Reference

Densité des roches Propriétés magnétiques des roches

Susceptibilités Démagnétisation

- Toutes les substances sont magnétiques à l'échelle de l'atome.
- Un atome se comporte comme un dipôle :
 - spin des électrons;
 - orbite des électrons autour du noyau.
- Physique quantique : max. deux électrons par niveau si les spins sont opposés.
 - Si on a deux électrons par niveau (paire), les moments s'annulent.

Diamagnétisme

Manadaine

Référence

.....

Densité des roches Propriétés magnétiques des roches

Démagnétisatio

- Matière pour laquelle tout les niveaux atomiques sont remplis de paires d'électrons.
- Si on applique un champ **H**:
 - la rotation des électrons s'oppose à H;
 - la susceptibilité χ est ainsi négative;
 - cet effet est de faible magnitude.
- $\bullet \quad \text{Cette matière offre une "résistance"} \text{ au champ magnétique}.$

Diamagnétisme

Magnótismo

Reference

Annexes

Propriétés magnétiques des roches

Aimantation rémane

Susceptibilités Démagnétisation • Diamagnétisme parfait : le champ est nul à l'intérieur de l'objet.

Diamagnétisme

Gravimetrie

Référence

Densité des roches
Propriétés magnétiques

des roches

Démagnétisation

- Quelques roches & matériaux diamagnétiques :
 - graphite;
 - gypse;
 - quartz;
 - sel;
 - cuivre;
 - diamant.

Paramagnétisme

Gravimetre

Magnétisme

Référence

Densité des roches Propriétés magnétiques des roches

Susceptibilités Démagnétisation

- Les niveaux ne sont pas tous remplis :
 - un champ magnétique résulte du spin des électrons solitaires.
- Si on applique un champ H:
 - les dipôles des électrons solitaires s'alignent avec H;
 - la susceptibilité χ est positive;
 - cette effet est de faible magnitude.

Paramagnétisme

Ordvillictric

NA------

Referen

Densité des roches

Propriétés magnétiques des roches

Susceptibilités

Démagnétisation

- La température T influence le comportement de la matière.
- Une température élevée excite les atomes :
 - limite l'effet du champ H.

Paramagnétisme

Gravimetrie

Reference

des roches

Annexes

Densité des roches

Propriétés magnétiques

Aimantation rémaner Susceptibilités

Démagnétisation

- Exemples de substances paramagnétiques :
 - la plupart des métaux;
 - gneiss;
 - dolomie;
 - pegmatite;
 - syénite.

Magnática

Références

Annexes

Densité des roches

Propriétés magnétiques des roches

Démagnétisation

- Existe si, dans certains cristaux paramagnétiques, les moments atomiques sont alignés dans la même direction.
- Occurrence spontanée.
- Les régions où les moments sont alignés sont nommés domaines.
- Les limites entre les domaines sont nommées parois.
- Distribution aléatoire.

Gravimetrie

M----

Référenc

Annexes

Propriétés magnétiques

des roches

Susceptibilités

• Si H nul, la somme des moments est nulle.

Gravimetric

Magnétisme

Référence

Densité des roches
Propriétés magnétiques
des roches

Susceptibilités Démagnétisation

- Sous l'effet d'un H externe, les parois se déplacent;
 - les domaines orientés selon H croissent;
 - il y a augmentation de la magnétisation.
- Si l'intensité augmente, il y a rotation des domaines;
 - augmentation accrue de la magnétisation.
- Donne lieu a des χ élevés.

Propriétés magnétiques

des roches

• L'alignement des domaines donne lieu à une magnétisation importante (susceptibilité élevée).

н∤

Démagnétisé

Croissance préférentielle du domaine

Rotation subite des domaines

Saturation

Annexes

Propriétés magnétiques

des roches

Ferromagnétisme

O.G. III.

agnétism

Référence

Densité des roches
Propriétés magnétiques
des roches

Susceptibilités

• Parmi les substances ferromagnétiques :

- fer;
- cobalt;
- nickel.

• Si la température de la matière dépasse le point de Curie, celle-ci passe à l'état paramagnétique.

Antiferromagnétisme

Magnétisme

Referei

Annexes

Propriétés magnétiques des roches

Susceptibilités

 Survient lorsque les dipôles au sein d'un cristal sont antiparallèles.

Ferromagnétisme

Antiferromagnétisme

- La susceptibilité χ est très faible.
- L'hématite (Fe₂O₃) : exemple d'antiferromagnétisme.

Ferrimagnétisme

Gravimetric

lagnétism

Référence

Densité des roches
Propriétés magnétiques
des roches

Aimantation rém Susceptibilités

Démagnétisatio

- Les dipôles sont antiparallèles, mais de magnitude différente;
 - le moment net est non nul.
 - magnétite (Fe₃O₄), ilménite (FeTiO₃), titanomagnétite, oxydes de fer ou de fer et titane.
- Donne lieu a des χ élevés.

Ferrimagnétisme

Ferrimagnétisme

Propriétés magnétiques

des roches

- Existe également si le nombre de dipôles d'une direction est supérieur au nombre dans l'autre direction;
 - cas de la pyrrhotite.

Aimantation rémanente

- Une aimantation qui subsiste en l'absence de H est dite rémanente.
- Peut être causée par plusieurs mécanismes :
 - thermorémanence;
 - aimantation dépositionnelle ou détritique;
 - aimantation isotherme;
 - aimantation visqueuse;
 - aimantation chimique.

Magnétisme

Reference

Densité des roches

des roches

Aimantation rémanente

Démagnétisati

• Thermorémanence :

- Une roche chauffée au dessus de son point de Curie;
- Ses dipôles vont s'aligner dans le sens du H ambiant en refroidissant;
 - mémoire magnétique.
 - Une magnétisation subsiste à T ambiante;
 - proportionnelle à H au refroidissement.

Gravimetric

Magnétism

Reference

Densité des roches Propriétés magnétique

Aimantation rémanente

Démagnétisatio

- Aimantation détritique :
 - lors de la dépositions des sédiments;
 - les minéraux magnétiques s'alignent avec le H ambiant.
- Aimantation isotherme:
 - due aux H exceptionnellement élevés (foudre).
- Aimantation visqueuse;
 - lent déplacement des domaines sous l'effet du H ambiant, à T ambiante.
- Aimantation chimique:
 - peut survenir lors d'une transformation cristalline, ou causée par diagénèse ou métamorphisme.

Gravimetrie

1agnétism

Reference

Densité des roches Propriétés magnétique

Aimantation rémanente

Démagnétisatio

- L'intensité de l'aimantation rémanente M_r peut dépasser l'aimantation induite M_i;
- Le rapport de Königsberger est défini comme $Q = \mathbf{M}_r/\mathbf{M}_i = \mathbf{M}_r/\chi(\mathbf{H}/\mu_0)$;
- ullet La direction de $oldsymbol{\mathbf{M}}_r$ n'est pas nécessairement la même que celle de $oldsymbol{\mathbf{M}}_i$
 - La résultante n'est plus alignée dans le champ **H** ambiant.

O G G W III C G I C

Magnetism

Reference

Densité des roches

des roches

Aimantation rémanente

Susceptibilités

- Le rapport Q peut valoir
 - ≈ 1 pour les roches ignées (cristallisation lente);
 - ≈ 10 pour les roches volcaniques;
 - \approx 30-50 pour les roches basaltiques (cristallisation rapide);
 - < 1 pour les roches sédimentaires et métamorphique, sauf si Fe présent.

Magnétisme des roches

Susceptibilités

- La plupart des minéraux ont une χ faible;
 - La nature magnétique d'une roche est due à une petite quantité de minéraux magnétiques;
- Deux groupes géochimiques :
 - oxydes de fer (les plus courants);
 - magnétite, hématite...
 - sulfures de fer :
 - pyrrhotite.

Susceptibilités

Annexes

Susceptibilités

Roche/minéral	Plage	Moyenne
Dolomite	0 - 0.0009	0.0001
Calcaire	0 - 0.003	0.0003
Grès	0 - 0.02	0.0004
Schiste argileux	0.00001 - 0.015	0.0006
Amphibolite		0.0007
Schiste	0.0003 - 0.003	0.0014
Phyllite		0.0015
Gneiss	0.0001 - 0.025	
Quartzite		0.004
Sperpentine	0.003 - 0.017	
Ardoise	0 - 0.035	0.006

Ordvillictile

Magnétisme

Reference

Annexes

Propriétés magnétique

Aimantation rémanen

Susceptibilités

D 1 / 1 / 1	D1	3.6
Roche/minéral	Plage	Moyenne
Granite	0 - 0.05	0.0025
Rhyolite	0.0002 - 0.035	
Dolorite	0.001 - 0.035	0.017
Augite-syenite	0.03 - 0.04	
Olivine		0.025
Diabase	0.001 - 0.16	0.055
Porphyre	0.0003 - 0.2	0.060
Gabbro	0.001 - 0.09	0.07
Basaltes	0.0002 - 0.175	0.07
Diorite	0.0006 - 0.12	0.085
Pyroxénite		0.125
Péridotite	0.09 - 0.2	0.15
Andésite		0.16

Annexes

Susceptibilités

Roche/minéral	Plage	Moyenne
Graphite		1×10^{-4}
Quartz		-1×10^{-5}
Anhydrite, gypse		-1×10^{-5}
Calcite	$-1 \times 10^{-6}1 \times 10^{-5}$	
Charbon		2×10^{-5}
Argiles		2×10^{-4}
Chalcopyrite		4×10^{-4}
Sphalérite		7×10^{-4}
Cassitérite		9×10^{-4}
Sidérite	$1 \times 10^{-3} - 4 \times 10^{-3}$	
Pyrite	$5 \times 10^{-5} - 5 \times 10^{-3}$	1.5×10^{-3}
Limonite		2.5×10^{-3}
Arsénopyrite		3×10^{-3}

Annexes

Susceptibilités

Roche/minéral	Plage	Moyenne
Hématite	$5 \times 10^{-5} - 0.035$	6.5×10^{-3}
Chromite	0.003 - 0.11	7×10^{-3}
Franklinite		0.43
Pyrrhotite	0.001 - 6.0	1.5
Ilménite	0.3 - 3.5	1.8
Magnétite	1.2 – 19.2	6.0

Cause de la démagnétisation

Magnáticm

magnetisn

Annexe

Densité des roches Propriétés magnétique des roches Aimantation rémanent

Démagnétisation

 Un objet magnétique placé dans un champ H ambiant aura des «pôles» aux extrémités;

ullet Ces pôles génèrent un champ de démagnétisation interne $\mathbf{H}_d.$

Observations

magnetism

Reference

Densité des roches Propriétés magnétique

Aimantation rémar

Démagnétisation

- Plus les pôles sont rapprochés, plus H_d est élevé;
 - Le champ H_d a pour effet de réduire l'effet de H sur la magnétisation du corps;
- Le champ \mathbf{H}_d est proportionnel à \mathbf{M} ;
- Le facteur de démagnétisation *N* est la constante de proportionnalité

$$\mathbf{H}_d = N\mathbf{M}.\tag{120}$$

Susceptibilité apparente

Démagnétisation

Le champ interne, dans l'objet, est

$$\mathbf{H}_i = \mathbf{H} - \mathbf{H}_d = \mathbf{H} - N\mathbf{M};$$

• La susceptibilité apparente k_a se distingue de la susceptibilité intrinsèque k en raison du facteur de démagnétisation:

$$k = \frac{\mathbf{M}}{\mathbf{H}_{i}};$$

$$k_{a} = \frac{\mathbf{M}}{\mathbf{H}};$$

$$\mathbf{M} = k\mathbf{H}_{i} = k_{a} (\mathbf{H}_{i} + Nk\mathbf{H}_{i});$$

$$k_{a} = \frac{k}{1 + Nk}.$$
(121)

Le facteur de démagnétisation

Démagnétisation

- Le facteur *N* dépend de la forme du corps;
- Règle générale : $N_x + N_y + N_z = 1$;
- Pour une sphère : $N_x = N_y = N_z = \frac{1}{3}$;
- Pour une tige infinie :
 - Perpendiculaire à l'axe : $N_{\perp} = \frac{1}{2}$;
 - Parallèle à l'axe : $N_{\parallel} = 0$;
- Pour une feuille mince infinie :
 - Perpendiculaire au plan : $N_{\perp} = 1$;
 - Parallèle au plan : $N_{\parallel} = 0$;
- On observe donc une anisotropie pour les corps ayant une dimension plus petite que les autres, causée par la démagnétisation;
 - cette anisotropie provoque une déviation de la magnétisation M par rapport au champ H.

Influence effective

Démagnétisation

- La démagnétisation produit un effet notable si k > 0.01;
 - En général, significatif pour
 - pyrrhotite massive;
 - roche avec plus de 5-10% de magnétite.
- Pour un corps donné, le facteur *N* est constant si la magnétisation est uniforme.