Nome	Cognome	Numero di matricola	

Primo Appello di Fisica del 17/05/2023.

Istruzioni per la consegna: Consegnare il presente foglio compilato, marcando le risposte corrette; per lo svolgimento, usare solo fogli bianchi forniti dai docenti; scrivere solo su un lato di ogni foglio; scrivere il proprio nome su ogni foglio consegnato; indicare chiaramente a quale domanda si riferisce ogni parte dello svolgimento; motivare i passaggi svolti.

Costanti numeriche: intensità dell'accelerazione gravitazionale in prossimità della superficie terrestre: $g = 10.0 \text{ m/s}^2$.

Problema 1: Un cannone di massa M spara un proiettile di massa m con una velocità iniziale di modulo v_0 e angolo α rispetto al suolo, il quale colpisce un bersaglio posto ad una quota h rispetto al cannone stesso durante il proprio moto discendente. Si utilizzino i seguenti valori numerici: M=660 kg, m=0.920 kg, $v_0=110$ m/s, $\alpha=1.40$ rad, h=330 m.

Determinare:

1.1)) l'intervallo di tempo Δt impiegato dal proiettile a raggiungere il bersaglio;									
ŕ	Δt [s] =	X 18.0	B 22.7	C 42.8	D 37.0	E 48.0				
1.2)	2) la distanza Δx tra cannone e bersaglio sul piano orizzontale;									
,	Δx [m] =	A 373	B 547	C 920	D 584	X 337				
1.3)	3) la massima quota h_{max} raggiunta dal proiettile;									
,		A 1.23	X 0.588	C 1.29	D 0.816	E 1.52				
1.4)	la componente orizzont	ale $\mathcal J$ della reazione	e vincolare impulsiv	a esercitata sul car	none, se quest'ulti	mo è vincolato al piano;				
,	$\mathcal{J}\left[Ns ight]=$	A 41.3	X 17.2	C 24.7	D 15.7	E 27.0				
15)	l'energia cinetica F del	cannone subito do	no lo sparo, se il ca	annone è libero di r	muoversi orizzontal	mente sul piano				

Problema 2: Agli estremi di un'asta di massa M e lunghezza L sono vincolati due punti materiali di masse m e 2m. L'asta, inzialmente ferma, inizia a ruotare attorno ad un asse passante per l'asta ed ortogonale ad essa, distante L/3 dall'estremo dove si trova la massa più leggera, con una accelerazione angolare costante α . Si consideri il moto dell'asta dopo un tempo Δt . Si utilizzino i seguenti valori numerici: M=1.20 kg, L=1.60 kg, m=0.270 kg, m=0.450 rad/s², m=0.450 rad/s².

C 0.316

D 0.157

E 0.143

Determinare:

E[J] =

B 0.193

X 0.224