Set 0: Overview

Kyle A. Gallivan Department of Mathematics

Florida State University

Foundations of Computational Math 1
Fall 2017

- Numerical Considerations
 - Finite representation of numbers
 - Finite precision arithmetic
 - Numerical stability: effects of discretization, algorithm design, and finite precision on the relationship between the computed solution and the true solution
- Basic Problems
 - Interpolation of a function
 - Approximation of a function

Overview

- Application of Techniques
 - Numerical differentiation of a function
 - Numerical quadrature (evaluation of a definite integral)
 - Numerical integration (solution of an ODE or PDE as IVP or BVP)
- Analysis of efficiency and effectiveness of algorithms
 - computational cost
 - storage cost
 - numerical robustness

Interpolation and Approximation

- Given a function f(x) in some form:
 - symbolically/analytically
 - discrete values of f and possibly some of its derivatives
- Given assumptions about f(x)
 - smooth, number of continuous derivatives, periodic etc.
 - bounds on certain derivatives
- \bullet Given a class of functions S and a parameterization.
- Find $g \in \mathcal{S}$ that satisfies some constraints, e.g.,
 - g agrees with f and/or its derivatives at specified points
 - -g is closest to f using some metric

Discrete Function Values

For some problems the starting point data comprises discrete values (x_i, y_i) for $0 \le i \le n$ where both are known or just x_i are known.

- 1. Tables of functions: each y_i is the result of extensive computations
- 2. Sampled functions: $y_i = f(x_i)$
 - x_i dictated by someone else, e.g., financial market reporting
 - x_i chosen relative to knowledge or assumptions about f(x), e.g., sampling of images or time-varying signals
- 3. x_i may be known and y_i an unknown: assumptions on f(x) are used to generate relationships between several y_i to integrate ODEs or PDEs.

Discrete Values

Some questions given discrete values (x_i, y_i) for $0 \le i \le n$

- 1. Can values of y be approximated for values of x not in the table?
- 2. Can the quality of the approximation for values of x not in the table be characterized and/or estimated?
- 3. Can derivatives or integrals of f(x) be approximated from the data in the table?
- 4. What is the conditioning of the problem?
- 5. Can these tasks be done efficiently and stably?

Approximation

- A class of functions must be selected for the "approximating function" p(x)
- A class of functions must be selected for the "approximated function" f(x) in order to analyze the accuracy achieved and achievable by any given technique.
- Typical approximating function classes:
 - polynomials of degree n or less, \mathbb{P}_n
 - rational functions p(x) = N(x)/D(x)
 - real exponentials, e.g., for a parameterized probability distribution
 - trigonometric or complex exponential, e.g., Fourier approximation

Approximation

- The approximation p(x) will have a parameterization in terms of some number of parameters k.
- Fundamental problems:
 - 1. Exact data, $y_i = f(x_i)$ and $k = n \rightarrow$ interpolation
 - 2. Exact data, $y_i = f(x_i)$ and $k < n \rightarrow$ approximation via optimization
 - 3. Inexact data, $y_i = f(x_i) + \epsilon_i \rightarrow \text{approximation via optimization}$
- interpolation finds n parameters of p(x) given n constraints, e.g., $y_i = p(x_i)$
- approximation finds n parameters of p(x) by solving an optimization problem for a cost function and possibly constraints, both expressed in terms of (x_i, y_i) , e.g., projection on to a subspace of functions.

Interpolation and Approximation

Interpolation and Approximation

- black line is f(x)
- red points are $f(x_i)$ for known x_i
- blue line is an interpolating polynomial of degree 10 constructed using red points
- green line is an approximating constant function
- ullet note the approximating function may interpolate f(x) but the points are not necessarily known