NAIRR Pilot

Introduction to Artificial Intelligence (AI)

Dr. Nabeel Alzahrani Ph.D. in Computer Science

Adjunct Professor of Computer Science & Engineering Consultant in Identity, Security & Enterprise Technology California State University, San Bernardino (CSUSB) alzahran@csusb.edu

AI in the News

- Two 2024 Nobel Prizes for Al
 - Physics: Artificial neural networks
 - Chemistry: Al solved protein folding

Outline

Image credit: Google

Artificial Intelligence (AI)

1940s-1 950s

Foundations of Al

In the 1940s, the first artificial neurons were conceptualised. The 1950s introduced us to the Turing Test and the term "Artificial Intelligence.

80-Year Al History Overview

2000s

The Genesis of Generative Al

Geoffrey Hinton propelled deep learning into the limelight, steering Al toward relentless growth and innovation.

80-Year Al History Overview

Al Types

Narrow Al Now

Image credit: Google

Al Techniques

Top 4 Techniques of Artificial Intelligence

Machine Learning

Machine Learning (ML)

Computer Program (Program or Code or "Algorithm")

Input	Program	Output
1, 2	Perform calculation 1+2=	3

V V	f(x, y) = x+y	f(x, y)
X, y	I(X, V) = X+V	I(X, V)
, ,		(,) ,

Machine Learning

f(3, 4) = 7
Output

Machine Learning (ML)

Machine Learning (ML)

Underfit (high bias)

High training error High test error

Machine Learning (ML) Types

Binary Classification Performance

Sensitivity =
$$TP\% = \frac{TP}{TP + FN}$$

Specificity =
$$TN\% = \frac{TN}{TN + FP}$$

Machine Learning Algorithm Cheat Sheet

This cheat sheet helps you choose the best machine learning algorithm for your predictive analytics solution. Your decision is driven by both the nature of your data and the goal you want to achieve with your data.

Deep Learning (DL)

Biological vs Artificial Neuron

Biological neuron

Learning: Biological vs Artificial Neural Network

Artificial Neural Network (ANN)

Simple Neural Network

Transformer Architecture Generated Pre-Trained Transformer (GPT)

Image credit: Google

Generative AI (genAI or gAI)

Generative AI tool: ChatGPT

5.8 years 2.5 years 2 months

Image credit: Google

Generative AI tools

CATEGORY	TOOLS					
Al Bot	ChatGPT	Google Bard	Bing AI	Claude		
Video Creation	Runway	HeyGen	V Veed.io	Pictory		
Images	Midjourney	DALL-E 3	Leonardo.ai	Firefly		
Presentation	Tome	Slides.ai	Decktopus	Beautiful.ai		
Research	Harpa	常 Perplexity	Glasp	ChatPDF		
Prompt Writing	G-Prompter	A OctiAI	Snack Prompt	PromptPal		
Productivity	Taskade	Q Audio Pen	Notion Al	Xembly		
Writing	EssayService.al	Grammarly	Jasper Al	Wordtune		

Image credit: Google

Generative AI tool: ChatGPT

GENIUS VS AI (FEB/2024)

	S. Avenera		William James	GPT-4	Gemini
	Average human	Terence Tao	Sidis	GP1-4	1.0 and 1.5
IQ percentile	50 th	> 99.9 th	>99.9 th	> 99.9 th	> 99.9 th
Languages	2	2	25+	90+	200+
Books read	700	700+	700+	4,000,000+	10,000,000+
Working memory	7 words	9+ words	9+ words	128,000 words	7,000,000 words
Long-term memory	74TB	74TB	74TB	40TB	80ТВ
SAT score	1050 (50 th)	~1460 (97 th)	<u>-</u>	1410 (94 th)	

Sources; Working memory extrapolated from Miler, 1956, and Cowan, 2000, https://doi.org/10.1017/50140525X01003922, Long-term memory extrapolated from Stanford, 2010, https://pubmed.ncbi.nlm.nih.gov/21092855/. Alan D. Thompson, Sep/2023, Feb/2024, https://lifearchitect.ai/jo-testing-a

LLM Size

Small models (<= 100b parameters) Megatron-LM ELMo GPT-1 BERT Transformer ELMo GPT-2 LLaMA RoBERTa 8.3B 808 100B 100B 94M 117M 340M 465M 1.58 658 354M DVIDIA Ai2 DeepMind Yandex Bai a BR Ai2 @OpenAI Google ∞ Meta Meta @OpenAI

LLM Cost

Fusion Energy

Fusion Energy

Computer Science Researchers Receive U.S. Department of Energy Grant

Author: Dr. Wes Bethel

February 19, 2024

Enhancing LLMs

Trains model from scratch

Retrieval Augmented Generation(RAG)

Retrieval Augmented Generation(RAG)

Without RAG: LLM model has to be the only source of knowledge

Without RAG

Ungrounded hallucination

Old information

No idea what that means

Not my data

Image credit: Google

High-Performance Computing (HPC)

Al and High-Performance Computing (HPC)

Al Ethical Considerations

Al Summary

Essential Al Skills to Accelerate Research

- ChatGPT: Solve problems, reason, and code
- Jupyter: Interactive coding on PC & HPC
- PyTorch: GPU-powered deep learning
 - 🖋 AI & HPC Workshops
 - - \ \ Al Magic with Jupyter!
 - III Visualize Al Data!
 - Simple ML Model
 - Quantification
 - Introduction to LLMs
 - ELLM + RAG
 - Q Ethical Al & Future Trends
 - Image: Performance Computing (HPC)
 - Al Magic with Jupyter!
 - Visualize Al Data!
 - Simple ML Model
 - Quantification
 - ☐ Introduction to LLMs
 - ELLM + RAG
 - Q Ethical AI & Future Trends

https://github.com/DrAlzahrani/HPC-AI-Resources/wiki

Essential Al Skills to Accelerate Research

- ChatGPT: Solve problems, reason, and code
- Jupyter: Interactive coding on PC & HPC
- **PyTorch:** GPU-powered deep learning

https://github.com/DrAlzahrani/HPC-Al-Resources/wiki

My Al Research

- 1. Accelerating Academic Research Using Al and HPC
- 2. Al-Based Cancer Detection
- 3. Al-Driven Academically At-Risk Student Detection
- 4. Al-Powered Support Systems
- 5. Al Deep Neural Networks (DNN or Deep Learning, DL) and Large Language Models (LLMs)
 - 1. Overfitting
 - 2. Bias
 - 3. Explainability
 - 4. Scalability
 - 5. Adversarial Attacks
- 6. Al for Scientists
- 7. Al for Everyone
- 8. Al-Based System to Defend Against Moving Threats (Military)
- 9. Al-Based System to Detect Suspects (Law Enforcement)
- 10. Al-Based System to Detect Interactions (Scientific and Entertainment)
- 11. Al-Based Software Vulnerability Detection
- 12. Al-Based Cyber Threat Detection

<u>Dr. Nabeel Alzahrani, Ph.D. in Computer Science</u> alzahran@csusb.edu https://www.csusb.edu/profile/alzahran

