Математический анализ

Харитонцев-Беглов Сергей

11 ноября 2022 г.

Содержание

1.	Тут	пропущена лекция + название главы	1
	1.1	Формула замены переменной под интегралом	3
2.	Teo	рия функции одной комплексной переменной	5
	2.1	Напоминание	5
	2.2	Аналитические функции	5
	2.3	Голоморфные функции	6
	2.4	Уравнение Коши-Римана	7
	2.5	Первообразная голоморфной функции	7
		2.5.1 Интеграл вдоль пути	7
		2.5.2 Формула Коши	10
	2.6	Принцип эргументэ	1 2

1. Тут пропущена лекция + название главы

Напомним определения с прошлого раза:

Определение 1.1. Назовем $U \subset \mathbb{R}^n$ хорошим, если

- U ограниченное,
- a_k, b_k непрерывны на $U^{(k-1)} \forall k$.
- $\forall k \in 1 : n : z \in U^{(k)} \{z\} \times (a_{k+1}(z), b_{k+1}(z)) \subset U^{(k+1)}$.

Данное определение придуманное, потому что мы не углубляемся в теорию, потому что нам нужно заспидранить интегралы для теорвера, а для того, чтобы понять подробно, нужно в 4 модуле пойти на курс JUB.

Для понимания можно попробовать почитать учебник Руденко.

Замечание. Мы не требуем, чтобы U было замкнутым или открытым.

Замечание. Определение хорошести зависит от нумерации.

Пример: повернутый на 90° логотим Котлина.

Определение 1.2. Пусть $f: U \to \mathbb{R}$ — ограниченена, непрерывно, U — хорошее.

Тогда:
$$\int_U f(x) dx \coloneqq \int_{a_1}^{b_1} \left(\int_{a^2}^{b_2} \dots \left(\int_{a_n}^{b_n} f(x) dx_n \right) \dots \right) dx_1$$

Упражнение. Абоба.

Определение 1.3. supp $f = \varphi \{x : f(x) \neq 0\}.$

$$C_0(\mathbb{R}^n)=\left\{f:\mathbb{R}^n o\mathbb{R}\begin{array}{l} f-\mbox{ непрерывна} \mbox{ supp }f-\mbox{ какое-то множество я хз} \end{array}
ight\}.$$
 Тогда $f\in C_0(\mathbb{R}^n)\implies\int_{\mathbb{R}^n}f(x)\mathrm{d}x=\int_I f(x)\mathrm{d}x,$ где $I\supset \mathrm{supp}\,f,\ I-$ ячейка.

Теорема 1.1. Пусть $U \subset \mathbb{R}^n$ — хорошее относительно двух нумераций координат.

Тогда $\int_U f(x) dx$ одинаковый в обоих нумерациях.

Замечание.
$$f \in C_0(\mathbb{R}^n)$$
, $\operatorname{supp} f \subset U \implies \int_U f(x) \mathrm{d}x = \int_{\mathbb{R}^n} f(x) \mathrm{d}x$.

Uдея доказательства теоремы. Найти последовательность $f_1, f_2, \ldots \in C_0(\mathbb{R}^n)$, supp $f_i \subset U$ и $\int_U f_i(x) \mathrm{d}x \to \int_U f(x) \mathrm{d}x$ в первой нумерации и $\int_U f_i(x) \mathrm{d}x \to \int_U f(x) \mathrm{d}x$ во второй нумерации. \square

Доказательство. Пусть $\varepsilon > 0$ фиксировано, $U_{\varepsilon} \coloneqq \{x \in U \mid \forall k \in 1 : n, a_k(x) + \varepsilon \leqslant x_k \leqslant b_k(x) - \varepsilon\}$.

Утверждение 1.2. $\forall \varepsilon > 0 : U_{\varepsilon} - \text{замкнуто}, U_{\varepsilon} \subset \text{Int } U.$

Доказательство.
$$\exists \delta = \delta(\varepsilon) > 0 \colon U_{\varepsilon} + \overline{B}(0,\delta(\varepsilon)) = \bigcup_{x \in U_{\varepsilon}} \overline{B}(x,\delta(\varepsilon)) \subset U.$$

Заметим, что для n=1 можно взять $\delta(\varepsilon)=\frac{\varepsilon}{2}$.

Для больших n воспользуемся индукционным переходом. Утверждение выполнено для $U_{\varepsilon}^{(n-1)}$: $\exists \delta_{n-1}(\varepsilon)>0$ $\bigcup_{z\in U_{\varepsilon}^{(n-1)}}\overline{B}_{n-1}(z,\delta_{n-1}(\varepsilon))\subset U^{(n-1)}.$

Тогда $\exists \delta_0 \in (0, \frac{1}{2}\delta_{n-1}(\varepsilon)) : \forall z, w \in U_{\varepsilon}^{(n-1)} + \overline{B}_{n-1}(0, \frac{1}{2}\delta_{n-1}(\varepsilon)), |z-w| \leqslant \delta_0 \implies |a_n(z) - a_n(w)| \leqslant \frac{\varepsilon}{2}$ и $|b_n(z) - b_n(w)| \leqslant \frac{\varepsilon}{2}$.

Тогда пусть $\delta = \delta(\varepsilon) \coloneqq \min(\frac{\varepsilon}{2}, \delta_0), \ x \in U_{\varepsilon}, x \in \mathbb{R}^n \colon |x - y| \leqslant \delta(\varepsilon)$. Надо понять, что $y \in U$.

Заметим, что $x=(z,x_n),y=(w,y_n);z,w\in\mathbb{R}^{n-1}.$ Тогда выполняется два свойства:

1.
$$|z-w| \leq \delta_0 \implies w \in U_{\varepsilon}^{(n-1)} + \overline{B}_{n-1}(0, \frac{\delta_{n-1}(\varepsilon)}{2})$$

2.
$$y_n \leqslant x_n + \frac{\varepsilon}{2} \leqslant b_n(z) - \varepsilon + \frac{\varepsilon}{2} = b_n(z) - \frac{\varepsilon}{2} < b_n(w)$$
. И $y_n \geqslant x_n - \frac{\varepsilon}{2} \geqslant a_n(z) + \varepsilon - \frac{\varepsilon}{2} = a_n(z) + \frac{\varepsilon}{2} > a_n(w) \implies y \in (a_n(w), b_n(w)) \implies y \in U$, потому что это определение хорошего множества.

 U_{ε} замкнуто, так как задается нестрогими неравенствами для непрерывных функций, заданных на замкнутом множестве φU_{ε} ($\varphi U_{\varepsilon} \subset U$, так как $\varphi U_{\varepsilon} \subset \bigcup_{x \in U_{\varepsilon}} \overline{B}_n(x, \delta(\varepsilon))$).

Утверждение 1.3. $f: U \to \mathbb{R}$ — непрерывна, ограничена, U — хорошее. $\exists C > 0$ зависящая только от U (но не от f), такое что

$$\forall \varepsilon > 0 : \left| \int_{U} f(x) dx - \int_{U_{\varepsilon}} f(x) dx \right| \leq \sup_{U} |f| \cdot C\varepsilon.$$

Доказательство. Упражнение. При n=1 что-то.

Следствие. U — хорошее, $f_1, \ldots, f_n, f \colon U \to \mathbb{R}$ непрерывно, $\forall i \colon \sup_{U} |f_i| \leqslant M, \sup_{U} |f| \leqslant M, \forall K \subset U$ — компакт(?).

Тогда $\int_U f_i(x) dx \xrightarrow{\varepsilon \to +\infty} \int_U f(x) dx$.

Доказательство. Зафиксируем $\varepsilon > 0,\ U_{\varepsilon}$ — компакт. $\Longrightarrow \exists N > 0 \colon \forall i \geqslant N \sup_{U_{\varepsilon}} |f_i - f| \leqslant \varepsilon$.

не успель.

Лемма (Главная техническая лемма). U — хорошее, $f:U\to \mathbb{R}$ — ограничена, непрерывна.

Тогда $\exists f_1, \ldots : U \to \mathbb{R}$:

- 1. $\sup_{U} |f_i| \leqslant \sup_{U} |f|,$
- 2. $\forall K \subset U$ компакт $\lim_{i \to \infty} \sup_{K} |f_i f| = 0$,
- 3. $f_i \in C_0(\mathbb{R}^n)$, supp $f_i \subset U$.

Доказательство. $\varepsilon > 0$, определим $\rho_k^{\varepsilon} \colon U \to \mathbb{R}$, где $1 \in 1 \colon n$,

$$\rho_k^{\varepsilon}(x) = \begin{cases} 0, & x_k \geqslant b_k - \frac{\varepsilon}{2} \land x_k \leqslant a_k + \frac{\varepsilon}{2} \\ 1, & x_k \in [a_k + \varepsilon, b_k - \varepsilon] \\ \frac{2}{\varepsilon} \min(x_k - a_k - \frac{\varepsilon}{2}, b_k - x_k - \frac{\varepsilon}{2}) & \text{else} \end{cases}$$

Простые свойства: $\rho^{\varepsilon}(x) = \prod_{k=1}^n \rho_k^{\varepsilon}(x), 0 \leqslant \rho^{\varepsilon}(x) \leqslant 1.$

Положим $f_i(x) := f(x) \cdot \rho^{\frac{\varepsilon}{i}}(x)$. Проверить, что такие f_i подходят.

Вернемся к теореме. Возьмем f_1, f_2, \ldots из леммы. $\int_U f(x) dx$ одинаков в любой нумерации, так как $f_i \in C_0(\mathbb{R}^n), \int_U f_i(x) dx = \int_{\mathbb{R}^n} f_i(x) dx$. Тогда по следствию выше $\int_U f_i(x) dx \xrightarrow{\varepsilon \to +\infty} \int_U f(x) dx$.

Глава #1 2 из 14 Aвтор: XБ

1.1. Формула замены переменной под интегралом

 ${\it Onpedenehue}$ 1.4. $U\subset \mathbb{R}^n$ составное, если $U=igcup_{i=1}^k U_i,\, U_i$ — хорошее, че-то еще.

Тут было что-то еще.

Замечание. $\Phi: U \subset \mathbb{R}^n \to \mathbb{R}^n$. Ф. У меня появился кофе!!!

АБОБА

Теорема 1.4. $U \subset \mathbb{R}^n$ — составное множество. $\Phi: U \to \mathbb{R}^n$ такая, что

- 1. $\Phi(U)$ составное,
- 2. $\Phi : \operatorname{Int} U \to \operatorname{Int} \Phi(U)$ гомеоморфизм,
- 3. Φ дифференцируема на $\operatorname{Int} U$. И якобиан не равен нулю в любой точке.
- 4. Якобиан Φ ограничен на ${\rm Int}\, U$.

Тогда $\forall f \colon \Phi(U) \to \mathbb{R}$ ограниченной выполняется:

$$\int_{Phi(U)} f(x) dx = \int_{U} f(\Phi(U)) |\text{Jac } \Phi(x)| dx..$$

Пример. n=1. Формула замены переменной.

Пример. $\Phi: [0; 2\pi) \times \mathbb{R}_{\geqslant 0} \to \mathbb{R}^2$. $Phi(\varphi, \varphi) = (r\cos\varphi, r\sin\varphi)$ Якобиан $= \det\begin{pmatrix} -r\sin\varphi & r\cos\varphi \\ \cos\varphi & \sin\varphi \end{pmatrix} = r$.

$$U = \{(x,y) \mid x^2 + y^2 \leqslant 1\}. \ Area(U) = \int_U 1 dx dy = \int_{[0,2\pi) \times [0,1]} r dr d\varphi = \pi$$

Теорема 1.5 (Теорема о замене переменной для $C_0(\mathbb{R}^n)$). Пусть есть открытое $U \subset \mathbb{R}^n$, $\Phi \colon U \to \mathbb{R}^n$ такая, что:

- 1. Φ биекция из U в $\Phi(U)$,
- 2. Φ непрерывно дифференцируема на U, $\operatorname{Jac}\Phi(x) \neq 0 \ \forall x \in U \implies \forall f \in C_0(\mathbb{R}^n) \operatorname{supp} f \subset \Phi(U)$ выполняется $\int_{\mathbb{R}^n} f(x) \mathrm{d}x = \int_{\mathbb{R}^n} f(\Phi(x)) |\operatorname{Jac}\Phi(y)| \, \mathrm{d}y$.

Доказательство. Если n=1, то понятно, что теорема верна.

Тогда считаем, что $n \geqslant 2$ и по индукции теорема верна для k < n. $\Phi(y) = \begin{pmatrix} \varphi_1(y) \\ \vdots \\ \varphi_n(y) \end{pmatrix}$.

Простой случай: теорема верна, если Φ — перестановка. См. теорему выше.

Теорема верна, если $\exists j \in 1..n \colon \varphi_j(y) = y_j$. Не умаляя общности считаем j=1 (иначе можно сделать перестановку). Тогда для $\forall y_1$ — fix положения. $\Psi_{y_1}(y_2,\ldots,y_n) = \begin{pmatrix} \varphi_2(y_1,\ldots,y_n) \\ \vdots \varphi_n(y_1,\ldots,y_n) \end{pmatrix} \in \mathbb{R}^{n-1}$.

$$\Phi(y) = \begin{pmatrix} y_1 \\ \Psi_{y_1}(y_2, \dots, y_n) \end{pmatrix}.$$

Заметим, что $\operatorname{Jac}\Phi(y_1,\ldots,y_n)=\operatorname{Jac}\Psi_{y_1}(y_2,\ldots,y_n)$. Тогда по индукции $\int_{\mathbb{R}^n}f(x)\mathrm{d}x=\int_{\mathbb{R}}\mathrm{d}x_1\int_{\mathbb{R}^{n-1}}f(x_1,\int_{\mathbb{R}}\mathrm{d}x_1\int f(x_1,\Psi_{x_1}(x_2,\ldots,x_n)|\operatorname{Jac}\Psi_{x_1}(y_2,\ldots,y_n)|\,\mathrm{d}y=\int_{\mathbb{R}}\mathrm{d}y_1\int_{\mathbb{R}^{n-1}}f(\Phi(y))|\operatorname{Jac}\Phi(y)|\,\mathrm{d}y_2\ldots\mathrm{d}y_n=$ то, что ну

Пусть $\Phi = \Phi_1 \circ \Phi_2$, пусть теорема верна для Φ_1 и Φ_2 , тогда теорема верна для Φ . Это следует из того, что $\operatorname{Jac} \Phi = (\operatorname{Jac} \Phi_1) \circ \Phi_2 \cdot \operatorname{Jac} \Phi_2$.

 $\forall x_0 \in U \exists r > 0$, что если $\mathrm{supp}\, f \subset \Phi(B(x_0,r))$, то теорема верна. Наивно: представить при помощи композиции:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \xrightarrow{\Phi_1} \begin{pmatrix} \varphi_1(y_1, \dots, y_n) \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \xrightarrow{\Phi_0 \Phi_1^{-1}} \begin{pmatrix} \varphi_1(y_1, \dots, y_n) \\ \vdots \\ \varphi_n(y_1, \dots, y_n) \end{pmatrix}.$$

Но! Φ_1^{-1} может не существовать.

Мы знаем, что $\nabla \varphi_1 \neq \exists j \in \{1,\ldots,n\} : \frac{\partial \varphi_1}{\partial y_i}(x_1^0,\ldots,x_n^0) \neq 0.$

Утверждение: $\exists r > 0 \colon \Psi, \Phi_1, \Phi_0 \Psi^{-1} \Phi_1$ определены при $y \in B(y^0, r)$. И правда:

- Ψ определена $\forall y$, также Ψ^{-1} ,
- Φ_1 определена $y \in U$,
- Φ_1^{-1} : Јас $\Phi_1(\Psi(y^0)) = \frac{\partial \psi_1}{\partial y_j}$ хз $\Longrightarrow \Phi_1^{-1}$ определена в $\Phi_1(\Psi(B(y^0,r)))$ для r>0 по теорема об обратной функции.

Теперь можно все скомпилировать: $\forall y \in U \exists r_y > 0$. Теорема верна, если $\operatorname{supp} f \subset \Phi(B(y, 2r_y))$.

Зафиксируем $f \subset C_0(\mathbb{R}^n)$, $\operatorname{supp} f \subset \Phi(U)$. Так как это компакт, то $\exists y_1, \dots, y_k \colon \bigcup_{i=1}^k \Phi(B(y_i, r_{y_i})) \supset \sup f$. $\forall i$ положим $\beta_i(y) = \begin{cases} \min(1, \frac{2r_{y_i} - |y - y_i|}{r_{y_i}}) & |y - y_i| \leqslant 2r_{y_i} \\ 0 & \operatorname{else} \end{cases}$ $\alpha_1(x) = \beta_1(\Phi^{-1}(x)), \ \alpha_2(x) = (1 - \beta_1(\Phi^{-1}(x))) \cdot \beta_2(\Psi^{-1}(x)), \ \ldots, \ \alpha_k(x) = (1 - \beta_1(\Phi^{-1}(x)) \cdot \ldots \cdot (1 - \beta_{k-1}(\Phi^{-1}(x))).$

Тогда $x \in \operatorname{supp} f \implies \exists j : x \in \Phi(B(y_i, r_{y_i})) \implies (\alpha_1 + \ldots + \alpha_k)(x) = 1 \implies \sum \alpha_i \cdot f \equiv f$, по определению $\operatorname{supp}(\alpha_j \cdot f) \subset \Phi(B(y_j, 2r_{y_j}))$. Тогда $\int_{\mathbb{R}^n} f(x) \mathrm{d}x = \sum_{j=1}^k \int_{\mathbb{R}^n} f_j(x) \alpha_j(x) \mathrm{d}x = \int_{\mathbb{R}^n} f(\Phi(y)) \alpha_j(\Phi(y)) |\operatorname{Jac} \Phi(y)| \, \mathrm{d}x$

2. Теория функции одной комплексной переменной

2.1. Напоминание

Говорим про комплексные числа: $\mathbb{C} \approx \mathbb{R}^2$: $(x,y) \in \mathbb{R}^2 \leadsto z = x + iy. i \in \mathbb{C}, i^2 = -1, i \leadsto (0,1), z = x + iy, w = a + ib, z \cdot w = xa - yb + i(xb + ya).$

Coourmea. 1. $|z| = \sqrt{x^2 + y^2}, \overline{z} := x - iy, z \cdot \overline{z} = |z|^2$.

- 2. $\operatorname{Re} z = x$ вещественная часть,
- 3. $\operatorname{Im} z = y$ мнимая часть,
- 4. Re $z = \frac{1}{2}(z + \overline{z})$, Im $z = \frac{1}{2i}(z \overline{z})$.

Определение 2.1. Полярная запись комлексного числа $z = r(\cos \varphi + i \sin \varphi) = e \cdot e^{i\varphi}$. Умножение: $r_1 r_2(\cos(\varphi + \psi) + i \sin(\varphi + \psi))$

2.2. Аналитические функции

 ${\it Onpedenehue}$ 2.2. Степенной ряд — это ряд вида $\sum\limits_{n\geq 0}a_nz^n,a_n\in\mathbb{C}.$

Радиус сходимости $\sum\limits_{n\geqslant 0}a_nz^n$ — это $R\in [0,+\infty]\colon R^{-1}=\limsup\limits_{n\to \infty}|a_n|^{\frac{1}{n}}.$

$$R = \sup \{r \colon |a_n r^n|\}.$$

Утверждение 2.1.

1. $\sum_{n \geq 0} a_n z^n$ — сходится абсолютно при |z| < R и расходится при |z| > R.

2.
$$r < R$$
, $\sup_{|z| \le r} \left| \sum_{n \ge 0} z_n z^n \right| < \infty$.

Доказательство. Смотри конспект прошлого года.

Утверждение 2.2.

1. Пусть R — радиус сходимости $\sum\limits_{n\geqslant 0}a_nz^n,$ тогда R — радиус сходимости и для ряда $\sum\limits_{n\geqslant 1}na_nz^{n-1}.$

2.
$$\sum_{n\geqslant 0}a_nz^n\cdot\sum_{m\geqslant 0}b_nz^n=\sum_{k\geqslant 0}\sum_{n+m=k}a_nb_m\cdot z^k$$
. Верно $\forall z\colon |z|< R$.

Пример. $\exp(z) = \sum_{n>0} \frac{z^n}{n!}, R = +\infty.$

Пример.
$$\frac{1}{1-z} = \sum_{n>0} z^n, R=1.$$

Определение 2.3. $\Omega \subset \mathbb{C}$ — открытое, $f:\Omega \to \mathbb{C}$ аналитична, если $\forall z_0 \in \Omega \exists r > 0 \colon \forall z, |z-z_0| < r \implies f(z) = \sum_{n \geqslant 0} a_n (z-z_0)^n$.

Утверждение 2.3. f, g — аналитические функции на Ω , то f + g — аналитическая.

Доказательство. Очевидно.

Пример. 1. $f \in \mathbb{C}[z] \implies f$ — аналитическая на $\Omega = \mathbb{C}$.

2. Рациональные функции аналитичны там, где они определены.

Замечание. $\mathcal{A}(\Omega)=\{f\colon\Omega\to\mathbb{C}\mid f$ — аналитическая $\}$, тогда \mathcal{A} — кольцо.

2.3. Голоморфные функции

 $Onpedenehue \ 2.4. \ \Omega \in \mathbb{C}$ — область, если Ω — открытое, непустое, связное.

Определение 2.5. $f: \Omega \in \mathbb{C}$, тогда f имеет в $z_0 \in \Omega \iff \exists \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} \eqqcolon f'(z_0) \iff \exists \alpha \in \mathbb{C}: f(z_0 + h) = f(z_0) + \alpha \cdot h + o(|h|), h \to 0.$

Oпределение 2.6. $f: \Omega \to \mathbb{C}$ — голоморфная, если $\exists f'(z) \ \forall z \in \Omega$.

Свойства. 1. f,g — голомофрные функции на $\Omega,$ то $f+g,f\cdot g$ — голомофрные, $\frac{f}{g}$ — голомофорна там, где $g\neq 0.$

Пример. 1. $f \in \mathbb{C}[z] \implies f$ — голоморфна. Достаточно проверить для f = 1, f = z. $f = 1 \implies f' = 0, f = z \implies f' = 1$.

- 2. $f(z) = \overline{z}$, тогда f не голоморфна. Посмотрим в нуле: $f'(0) = \lim_{h \to 0} \frac{f(h) f(0)}{h} = \frac{\overline{h}}{h}$. $h = \varepsilon \in \mathbb{R}$. Тогда предел 1, при $h = i\varepsilon$ получаем предел —1.
- 3. $f(z) = \sum\limits_{n\geqslant 0} a_n z^n, \ R$ радиус сходимости, R>0, тогда f голоморфна в $\Omega=D_R=\{z\colon |z|< R\},$ причем $f'(z)=\sum\limits_{n\geqslant 1} na_n z^{n-1}.$

Доказательство. 1. TODO.

$$\left| \frac{(z+h)^n - z^n}{n} - nz^{n-1} \right| \leqslant n(n-1)(|z| + |h|)^{n-2} \cdot |h|, n \geqslant 2.$$

$$\left| \frac{(z+h)^n - z^n}{h} - n \cdot z^{n-1} \right| = |(z+h)^{n-1} + \ldots + z^{n-1} - nz^{n-1}| = |(z+h)^{n-1} - z^{n-1} + (z+h)^{n-2}z - z^{n-1} + \ldots + \sum_{k=0}^{n-1} |z|^k \cdot |(z+h)^{n-1-k} - z^{n-1-k}| \leqslant n(n-1)(|z| + |h|)^{n-2}|h|.$$

Покажем, что $f'(z) = \sum_{n \ge 1} n a_n z^{n-1}$:

$$\left| \frac{f(z+h) - f(z)}{h} - \sum_{n \geqslant 1} n a_n \cdot a^{n-1} \right| = \left| \sum_{n \geqslant 2} a_n \left(\frac{(z+h)^n - z^n}{h} - n z^{n-1} \right) \right| \leqslant$$

$$\leqslant \left(\sum_{n \geqslant 2} |a_n| n(n-1) (|z| + |h|)^{n-2} \right) |h| \xrightarrow{h \to 0} 0.$$

Следствие. Аналитические функции — голоморфны. Обратное утверждение тоже верно.

Глава #2 6 из 14 Автор: XБ

2.4. Уравнение Коши-Римана

Рассмотрим $f(z) = u(z) + i \cdot v(z), u, v \in \mathbb{R}, u = \text{Re } f, v = \text{Im } f$. Можно посмотреть на f как на $f: \Omega \to \mathbb{R}^2, (x,y) \mapsto (u(x,y),v(x,y))$

Утверждение 2.4. $f:\Omega\to\mathbb{C}$ — голоморфная, тогда f дифференцируема как функция из \mathbb{R}^2 в \mathbb{R}^2 , и матрица Якоби f имеет вид $\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$

Доказательство. $z = x + iy, h = h_1 + ih_2$. $f(z+h) = f(x+h, i(y+h_2)) = f(z) + f'(z) \cdot (h_1 + ih_2) + o(|h|)$, $h + ih_2 \mapsto f'(z) \cdot (h_1 + ih_2) -$ линейное отображение $\mathbb{R}^2 \to \mathbb{R}^2$.

 $f:\Omega\in\mathbb{C}$ — голоморфная, $z\in\Omega, \varepsilon\in\mathbb{R}.$ $f'(z)=\lim_{arepsilon o 0}rac{f(z+arepsilon)-f(z)}{arepsilon}=\lim_{arepsilon o 0}rac{f(z+iarepsilon)-f(z)}{iz}.$ Тогда, если $z=x+iy,\lim_{arepsilon o 0}rac{f(x+arepsilon+iy)-f(x+iy)}{arepsilon}=rac{\partial f}{\partial x}(z).$ По y получается предел $-irac{\partial f}{\partial y}(z).$

To есть
$$\frac{\partial f}{\partial x}(z) = -i\frac{\partial f}{\partial y}(z) \iff \begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \dots \end{cases}$$

Определение 2.7. $\frac{\partial f}{\partial x} = \frac{1}{\varepsilon} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$. Что-то.

Лемма. $f:\Omega\to\mathbb{C},\Omega$ — область. f голоморфна $\iff f$ дифференцируема и $\frac{\partial f}{\partial \overline{z}}=0$.

Доказательство. • ⇒ проверили выше.

 $\bullet \Leftarrow z = x + iy, h = h_1 + ih_2, f = u + iv.$

$$f(z+h) = f(x+h_1+i(y+h_2)) = f(x+iy) + \frac{\partial f}{\partial x}(z)h_1 + \frac{\partial f}{\partial y}(z) \cdot h_2 + o(|h|) = f(z) + (u_x+iv_x)h_1 + (u_x+iv_x)h_2 + o(|h|) = f(z) + (u_x+iv_x)h_1 + o(|h|) = f(z) + o(|h|) = f$$

2.5. Первообразная голоморфной функции

Определение 2.8. Ω — область, $f:\Omega\to\mathbb{C}$, тогда $F:\Omega\to\mathbb{C}$ — первообразная f, если F'(z)=f(z) $\forall z\in\Omega$.

В частности, F — голоморфна.

2.5.1. Интеграл вдоль пути

Определение **2.9.** Путь — непрерывное отображение $z:[a,b]\to\mathbb{C}$.

Определение 2.10. Путь гладкий, если $\forall t \in (a,b) \exists z'(t)$ непрерывно ограничена Кусочно гладкий, если $\exists t_1, \dots, t_n \in (a,b) \colon z'(t)$, если $t \neq t_i$.

Определение 2.11. Пути $z_1:[a,b]\to \mathbb{C}, z_2:[c,d]\to C$ эквиваленты, если они отличаются заменой параметризации, то есть $\exists \varphi\colon [a,b]\to [c,d]$ биекция.

Oпределение **2.12.** Контур — класс эквивалентности путей.

Определение 2.13. Пусть γ — контур, заданный путем $z:[a,b] \to \mathbb{C}$, тогда контур C обратной ориентации — это контур, заданный путем $\widetilde{z}:[-b,-a] \to CC, \widetilde{z}(t)=z(-t)$.

Определение 2.14. Длина пути, это $\int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} dt$

 $egin{aligned} & \textit{Определение 2.15.} & f \colon \Omega \to \mathbb{C} - \text{непрерывна, тогда интеграл вдоль пути } \gamma, \ \text{заданный } z \colon [a,b] \to \mathbb{C}, \ \text{это} \int\limits_{\mathbb{R}} f(z) \mathrm{d}z = \int\limits_{a}^{b} f(z(t))z'(t) \mathrm{d}t. \end{aligned}$

Утверждение 2.5. $\int\limits_{\gamma} f(z) \mathrm{d}z$ не зависит от выбора пути γ .

Доказательство. $\varphi \colon [c,d] \to [a,b], z_1 \colon [c,d] \to \mathbb{C}, z_1(t) = z(\varphi(t)), z_1'(t) = z'(\varphi(t))\varphi'(t).$ $\int_{-1}^{d} f(z_1(t))z_1'(t)\mathrm{d}t = \int_{-1}^{d} f(z(\varphi(t))z'(\varphi(t))\varphi'(t)\mathrm{d}t \stackrel{s=\varphi(t)}{=} \int_{-1}^{b} f(z(s))z'(s)\mathrm{d}s.$

Следствие. γ — контур, то $\int_{\gamma}(z)\mathrm{d}z$ можно определить как интеграл по пути, параметризующим этот контур.

Пример. $f(z)=z^n$. Путь $z\colon [0,2\pi]\to \mathbb{C}, z(t)=e^{it}$. Соответствует контуру γ — окружность.

$$\int\limits_{\gamma} z^n \mathrm{d}z = \int\limits_{0}^{2\pi} e^{int} \cdot i e^{it} \mathrm{d}t = i \int\limits_{0}^{2\pi} e^{i(nt)^t} \mathrm{d}t = i \int\limits_{0}^{2\pi} (\cos((n+1)t) + i \sin((n+1)t)) \, \mathrm{d}t = \begin{cases} 2\pi i, n = -1 \\ 0, n \neq -1 \end{cases}$$

Утверждение 2.6. γ — контур, $\widetilde{\gamma}$ — контур с обратной ориентацией, тогда $\int\limits_{\gamma} f(z) \mathrm{d}z = -\int\limits_{\widetilde{\gamma}} f(z) \mathrm{d}z$

Доказательство. $z\colon [a,b] \to \mathbb{C}$ — это параметризация $\gamma,\ \widetilde{z}: [-b,-a] \to \mathbb{C}$ параметризация $\widetilde{\gamma}.$

$$\int_{a}^{b} f(z(t))z'(t)dt \stackrel{s=-t}{=} f(z(-s))z'(-s)(-ds) = -\int_{a}^{b} f(\widetilde{z}(s))\widetilde{z}(s)ds = \dots$$

Утверждение 2.7. γ — контур, тогда $\left|\int\limits_{\gamma}f(z)\mathrm{d}z\right|\leqslant length(\gamma)\max_{z\in\gamma}|f(z)|.$

Доказательство. Расписать интеграл, ограничить f(z) максимумом.

Утверждение 2.8. $f:\Omega\to\mathbb{C},$ пусть $\exists F:\Omega\to\mathbb{C}$ — первообразная f. Тогда если $z:[a,b]\to\Omega$ — путь, задающий контур $\gamma,$ то

$$\int_{\gamma} f(z) dz = F(z(b)) - F(z(a)).$$

Доказательство. $\frac{\mathrm{d}}{\mathrm{d}t}F(z(t))=F'(z(t))\cdot z'(t),$ и правда: $\varepsilon>0,$ $F(z(t+\varepsilon))=F(z(t)+z'(t)\varepsilon+o(\varepsilon))=F(z(t))+F'(z(t))(z(t)\varepsilon+o(\varepsilon))+o(\varepsilon)=F(z(t))F'(z(t))\cdot z'(t)\varepsilon+o(\varepsilon).$

$$\int\limits_{\gamma} f(z) \mathrm{d}z = \int\limits_{a}^{b} f(z(t))z'(t) \mathrm{d}t = \int\limits_{a}^{b} F'(z(t)) \cdot z'(t) \mathrm{d}t = \int\limits_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t} F(z(t)) \mathrm{d}t = \int\limits_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Re} F(z(t)) \mathrm{d}t + i \int\limits_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Im} F(z(t)) \mathrm{d}t = F(z(b)) - F(z(a)).$$

Теорема 2.9. Ω — область, $f:\Omega\to\mathbb{C}$ — голоморфная функция. $T\subset\Omega$ — контур, совпадающий с границей треугольника, лежащего в Γ . Тогда $\int_T f(z)\mathrm{d}z=0$.

Глава **#2** 8 из 14 Автор: XБ

Доказательство. Картинка!
$$\int_T f(z) dz = \int_{T_1^{(1)}} f(z) dz + \int_{T_2^{(1)}} f(z) dz = \int_{T_3^{(1)}} .$$

Картинка про аддитивность.

Тогда по индукции определим $T_i^{(k)}$, для каждого $k\geqslant 1$ $\left|\int\limits_T f(z)\mathrm{d}z\right|=\left|\sum\limits_{j=1}^{4^n}\pm\int\limits_{T_i^{(k)}}f(z)\mathrm{d}z\right|\leqslant$

$$4^k \cdot \max_j \left| \int\limits_{T_j^{(k)}} f(z) \mathrm{d}z \right|$$

$$f(z) = f(z_0) + f'(z_0) \cdot (z - z_0) + o(z - z_0)$$
. Тогда $\int_{T_j^{(k)}} f(z) dz = \int_{T_j^{(k)}} f(z_0) dz + \int_{T_j^{(k)}} f'(z_0) (z - z_0) dz + \int_{T_j^{(k)}} o(z - z_0) dz$

$$|z_0| dz \implies \left| \int_{T_j^{(k)}} f(z) dz \right| \leqslant \max_{z \in T_j(k)} |f(z) - f(z_0) - f'(z_0)(z - z_0)| \cdot Perim(T_j^{(k)}) \leqslant o(2^{-k} diam(T)) \cdot 2^{-k} Perimtetr(T) = o(4^{-k}).$$

А значит, интеграл по контуру равен 0.

Определение 2.16. Ω называется односвязной, если $\forall \gamma$ — замкнутый (такого, что $\gamma \subset \Omega$), ограниченная компонента связности $\mathbb{C} \setminus \gamma$ тоже содержится в Γ .

Теорема 2.10. Ω — односвязная область, $f:\Omega\to\mathbb{C}$ — голоморфная функция, тогда $\exists F\colon\Omega\to\mathbb{C}$ — первообразная $f,\,F'(z)=f(z)\;\forall z\in\Omega.$

Доказательство. $w_0 \in \Omega$ — фиксирована. $\forall w$ построим путь γ_w из w_0 в w, который движется либо вертикально, либо горизонтально, а также не самопересекается.

$$F(w)\coloneqq\int\limits_{\gamma_w}f(z)\mathrm{d}z.$$
 А дальше в следующей серии!

 $\pmb{Cnedembue}$. Если γ — замкнутый контур, f — голоморфная функция в односвязной области $\Omega,\ \gamma\subset\Omega\implies\int\limits_{\gamma}f(z)\mathrm{d}z=0.$

Определение 2.17. Петля — непрерывный образ окружности, то есть отображение вида z: $[a,b] \to \mathbb{C} \ z(a) = z(b)$.

Определение 2.18. Петля простая, если она не самопересекается, то есть $\forall x \in [a, b], y \in (x, y)$: $z(x) \neq z(y)$.

Теорема 2.11 (Теорема Жордана). Плоскость разбивается простой петлей ($\gamma \in \mathbb{C}$) на ограниченное связное множество Ω_1 и неограниченное связное множество Ω_2 .

Определение 2.19. Ω_1 — это жорданова область, $\partial\Omega_1\coloneqq\gamma$, ориентированная против часовой стрелки.

Теорема 2.12 (Гурса). T — треугольник, $f\colon\Omega\to\mathbb{C}$ — голоморфная, $T\subset\Omega$. Тогда $\int\limits_{\partial T}f(z)\mathrm{d}z=0$.

Определение **2.20.** γ — координатный путь (петля), если γ составлена из конечно числа вертикальных и горизонтальных отрезков.

Лемма. Пусть Ω — односвязная область, $\gamma \subset \Omega$ — координатная петля, $f: \Omega \to \mathbb{C}$ — голоморф-

ная. Тогда:

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

Доказательство. Упражнение. Можно разбить наш контур на прямоугольники. Каждый прямоугольник — на треугольники (построить триангуляцию). Дальше теорема Гурса.

Теорема 2.13. Ω — односвязная область, $f:\Omega\to\mathbb{C}$ — голоморфная, то \exists первообразная f, то есть $F:\Omega\to\mathbb{C}$: F'f=f.

Доказательство. Возьмем $w_0 \in \Omega$. $\forall w \exists$ координатный путь γ_w , соединяющий w_0 и $w, \gamma_w \subset \Omega$. Тогда возьмем $F(w) \coloneqq \int_{\gamma_w} f(z) \mathrm{d}z$.

- 1. F(w) не зависит от выбора γ_w . Если γ_w^1, γ_w^2 два координатных пути, соединяющих w_0 и w, то $\gamma = \gamma_w^1 \cup \gamma_w^2$ координатная петля \implies разность интегралов равна нулю.
- 2. Проверим, что F'(w) = f(w). $F'(w) = \lim_{h \to 0} \frac{F(w+h) F(w)}{h}$. $F(w+h) = \int_{\gamma_{w+h}} f(z) dz = \int_{\gamma_w} f(z) dz + \int_{\gamma_h} f(z) dz = F(w) + \int_{\gamma_h} f(z) dz$. $\int_{\gamma_h} f(z) dz = F(w) + \int_{\gamma_h} f(z) dz.$ $\int_{\gamma_h} f(z) dz = \int_{\gamma_h} f(z) d$

 $h^{-1}(F(w+h) - F(w)) = h^{-1} \int_{\gamma_h} f(z) dz = h^{-1} \int_{0}^{1} f(w+th) h dt = \int_{0}^{1} f(w+th) dt \xrightarrow{h \to 0} f(w).$

2.5.2. Формула Коши

Теорема 2.14. $\Omega\subset\mathbb{C}$ — область, $f:\Omega\to\mathbb{C}$ — голоморфная функция. Пусть $w_0\in\Omega, r>0$: $\overline{B}(w_o,r)\subset\Omega.$ Тогда:

$$\forall z \in B(w_0, r) = f(z) = \frac{1}{2\pi} \int_{\substack{|w-w_0|=r}} \frac{f(w)}{w-z} dw.$$

Окружность против часовой стрелки ориентирована!

Доказательство. Картинка! $\int\limits_{\gamma} \frac{f(w)}{w-z} \mathrm{d}w = 0$, так как γ замкнутый, а $\frac{f(w)}{w-z}$ — это голоморфная функция по w.

$$\int\limits_{\gamma} \frac{f(w)}{w-z} \mathrm{d}w = \int\limits_{l} \frac{f(w)}{w-z} \mathrm{d}w - \int\limits_{|w-z|=\varepsilon} \frac{f(w)}{w-z} \mathrm{d}w - \int\limits_{l} \frac{f(w)}{w-z} \mathrm{d}w + \int\limits_{|w-w_0|=r} \frac{f(w)}{w-z} \mathrm{d}w.$$
 Что понятно равно
$$\int\limits_{|w-w_0|=r} \frac{f(w) \mathrm{d}w}{w-z} = \int\limits_{|w-z|=\varepsilon} \frac{f(z)+f(w)-f(z)}{w-z} \mathrm{d}w = f(z) \int\limits_{|w-z|=\varepsilon} \frac{\mathrm{d}w}{w-z} + \int\limits_{|w-z|=\varepsilon} \frac{f(w)-f(z)}{|w-z|=\varepsilon} \mathrm{d}w.$$
 Первое слагаемое
$$f(z) \cdot 2\pi i, \text{ а второе можно оценить } |\circ| \leqslant \max_{|w-z|=\varepsilon} \left| \frac{f(w)-f(z)}{w-z} \right| 2\pi \varepsilon \leqslant (|f'(z)|+1)2\pi \varepsilon \qquad \square$$

 $egin{aligned} C \ \emph{nedcmeue.} \end{aligned}$ 1. Голоморфные функции — аналитичны! Пусть $f! \ \Omega
ightarrow \mathbb{C}$ — голоморфная, $\overline{B}(w_0,r) \subset \Omega, z \in B(w_0,r).$ Тогда $f(z) = \frac{1}{2\pi i} \int\limits_{|w-w_0|=r} \frac{f(w)}{w-z} \mathrm{d}w = \frac{1}{2\pi i} \int\limits_{|w-w_0|=r} \frac{f(w)\mathrm{d}w}{w-w_0-(z-w_0)} = \frac{1}{2\pi i} \int\limits_{|w-w_0|=r} f(w) \sum\limits_{n\geqslant 0} \frac{(z-w_0)^n}{(w-w_0)^{n+1}} \mathrm{d}w = \sum\limits_{n\geqslant 0} (z-w_0)^n \frac{1}{2\pi i} \int_{|w-w_0|=r} \frac{f(w)\mathrm{d}w}{(w-w_0)^{n+1}}. \end{aligned}$

To есть $\forall z \in B(w_0, r) \ f(z) = \sum_{n \ge 0} a_n (z - w_0)^n$.

Теорема Луивилля: $f: \mathbb{C} \to \mathbb{C}$ — голоморфная и ограниченная. Тогда $f \equiv const.$

Доказательство. Заметим, что $f'(z) = \frac{1}{2\pi i} \int\limits_{|w-z|=R} \frac{f(w)}{(w-z)^2} \mathrm{d}z$. Тогда если $|f(w)| \leqslant C \forall w$. Тогда $|f'(z)| \leqslant \frac{1}{2\pi} \cdot \frac{C}{R^2} 2\pi R \dots$

Основная теорема алгебры: $P \in \mathbb{C}[z], \deg P = n$, тогда P имеет n корней в \mathbb{C} .

Доказательство. Докажем, что при $n\geqslant 1$ есть хотя бы один корень. Пусть $P(z)=\sum\limits_{i=0}^{n}a_{i}z^{i}$. Тогда если взять $|f(z)|=\frac{1}{z^{n}(a_{n}+a_{n-1}\frac{1}{z}+...+a_{0}\frac{1}{zn})}$

Теорема единственности. $f: \Omega \to \mathbb{C}$ — голоморфная, Ω — область, $f \not\equiv 0$. Тогда $\{z \in \Omega \mid f(z) = 0\}$ дискретно (то есть не имеет точек сгущения в Ω .

Доказательство. Пусть $z_0, z_1, z_2, \ldots \in \Omega$, такое что $f(z_k) = 0 \ \forall k \geqslant 0, \ z_k \to z_0, z_k \neq z_0, \forall k \geqslant 1$. Пусть $r > 0 : \overline{B}(z_0, r) \subset \Omega, f(z) = \sum_{n \geq 0} a_n (z - z_0)^n, \exists d : a_d \neq 0$.

$$f(z) = (z-z_0)^d \sum_{n \geqslant d} a_n (z-z_0)^{n-d} = (z-z_0)^d \, g(z). \,\, g \,-\, \text{голоморфная в } B(z_0,r), g(z_0) \neq 0 \implies \exists N \forall n \geqslant N \,\, g(z_n) \neq 0 \implies f(z_n) \neq 0 ?!$$

Определение 2.21. Ω — односвязное область, $\partial\Omega$ — кусочно гладкий путь. $f:\partial\Omega\to\mathbb{C}$ непрерывна, голоморфна в Ω .

Тогда
$$\int_{\partial\Omega}f(z)\mathrm{d}z=0.$$

Пояснение: $r_n\colon [0,1]\to \Omega$ — кусочно гладкий замкнутый путь $\gamma_n.\ r_n\to r\implies 0=\int\limits_{\gamma_n}f(z)\mathrm{d}z\to \int\limits_{\partial\Omega}f(z)\mathrm{d}z=0$

Определение 2.22. Ω — односвязная область, $\partial\Omega$ — кусочно гладкий путь, $z_1,\ldots,z_n\in\Omega$, $\varepsilon>0$: $\overline{B}(z_k,\varepsilon)\subset\Omega$ $\forall k=1..n,$ $C_\varepsilon(z_k)=\{z\colon |z-z_k|=\varepsilon\}$ \Longrightarrow \exists кусочно гладкий путь $r_k\colon [0,1]\to\mathbb{C}\colon r_k(0)\in C_\varepsilon(z_k), r_k((0,1))\subset\Omega\setminus\bigcup\overline{B}(z_k,\varepsilon), r_k([0,1])\cap r_j([0,1])=\varnothing$ $k\neq j$

Определение 2.23. Ω — область, $z_0 \in \Omega$, $f: \Omega \setminus \{z_0\}$ → \mathbb{C} голоморфная. Тогда z_0 — особенность f. Различают 3 типа особенностей:

- Устранимая $\iff f$ ограничена в $B(z_0, \varepsilon) \setminus \{z_0\}$ для некоторого $\varepsilon > 0$.
- Полюс $\iff h(z) = \frac{1}{f(z)}$ определена и голомофрна в $B(z_0,\varepsilon)$ для некоторого $\varepsilon > 0$.
- \bullet Существенная \iff не 1 или 2.

Теорема 2.15 (Об устранимой особенности). Пусть Ω — область, $z_0 \in \Omega$, $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ — голоморфна и z_0 — устранимая особенность f. Тогда $\exists \lim_{z \to z_0} f(z) = f(z_0)$ и f является голоморфной в Ω .

Доказательство. Возьмем $\varepsilon>0$: $\overline{B}(z_0,\varepsilon)\subset\Omega$. Рассмотрим $F(z)=\frac{1}{2\pi i}\int\limits_{|\xi-z_0|=\varepsilon}\frac{f(\xi)\mathrm{d}\xi}{\xi-z}$.

Докажем, что $F(z) = f(z) \ \forall z \in B(z_0, \varepsilon) \setminus \{z_0\}$ γ — контур $\partial \left(B(z_0, \varepsilon) \setminus \left(\overline{B}(z_0, \delta) \cup \overline{B}(z, \delta) \cup l_1 \cup l_2\right)\right)$. Тогда $\int\limits_{\gamma} \frac{f(\xi) \mathrm{d}\xi}{\xi - z} = 0 = \int\limits_{|\xi - z_0| = \varepsilon} \frac{f(\xi) \mathrm{d}\xi}{\xi - z} - \int\limits_{|\xi - z_0| = \delta} \frac{f(\xi) \mathrm{d}\xi}{\xi - z}$.

Тогда
$$\int\limits_{|\xi-z|=\delta} \frac{f(\xi)\mathrm{d}\xi}{\xi-z} = 2\pi i f(z)$$
. Тогда оценим $\left|\int\limits_{|\xi-z_0|=\delta} \frac{f(\xi)\mathrm{d}x}{\xi-z}\right| \leqslant 2\pi \delta \sup|f(\xi)|$.

Лемма. $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ — голоморфная, z_0 — полюс. Тогда $\exists \varepsilon > 0, \ \varphi: B(z_0, \varepsilon) \to \mathbb{C}$ — голоморфная, $\varphi(z_0) \neq 0, \ f(z) = (z - z_0)^{-d} \cdot \varphi(z), d \in \mathbb{N}$.

Доказательство.
$$h(z) = \frac{1}{f(z)}, h(z_0) = 0 \implies h(z) = (z - z_0)^d \cdot g(z), g(z_0) \neq 0.$$
 $f(z) = \frac{1}{h(z)} = (z - z_0)^{-d} \frac{1}{g(z)} = \varphi(z).$

Следствие. f — как в лемме, то $\exists \varepsilon > 0 : \forall z \in B(z_0, \varepsilon)$.

$$f(z) = \sum_{n \geqslant -d} a_n (z-z_0)^n = a_{-d} (z-z_0)^{-d} + a_{-d+1} (z-z_0)^{-d+1} + \ldots + a_{-1} (z-z_0)^{-1} + \psi(z),$$
 где $\psi(z)$ — голоморфная.

f называется рядом Лорана. Все, что не ψ — главная часть ряда Лорана.

Доказательство.
$$f(z) = \frac{\varphi(z)}{(z-z_0)^d} = (z-z_0)^{-d} \sum_{n\geqslant 0} b_n (z-z_0)^n$$

 ${\it Onpedenehue}$ 2.24. $f\colon \Omega\setminus\{z_0\} o \mathbb{C}$ голоморфная, z_0 — полюс, $f(z)=\sum\limits_{n\geqslant -d}a_n(z-z_0)^n$.

Тогда вычет f в $z_0 - a_{-1}$, обозначение $\mathrm{Res}_{z_0} f = a_{-1}$.

Лемма. Omega — область, $z_0 \in \Omega$, $f: \Omega \setminus \{z_0\} \to \mathbb{C}$ — голоморфная, z_0 — полюс, тогда, если $\varepsilon > 0$ достаточно мало, то $\int\limits_{|z-z_0|=\varepsilon} f(z) \, \mathrm{d}z = 2\pi i \operatorname{Res}_{z_0} f$.

Доказательство. $f(z) = \sum_{n=-d}^{-1} a_n (z-z_0)^n + \psi(z), z \in B(z_0, \alpha \varepsilon).$

Тогда
$$\int_{|z-z_0|=\varepsilon} f(z) dz = \sum_{n=-d}^{-1} \int_{|z-z_0|=\varepsilon} a_n (z-z_0)^n dz + \int_{|z-z_0|=\varepsilon} \psi(z) dz = 2\pi i a_{-1}$$

Лемма. $f \colon \Omega \setminus \{z_0\}$ — голоморфная, z_0 — полюс порядка k. Тогда:

$$\operatorname{Res}_{z_0} f = \lim_{z \to z_0} \frac{1}{(k-1)!} \left(\frac{\mathrm{d}}{\mathrm{d}z} \right)^{k-1} \left((z-z_0)^k f(z) \right).$$

Доказательство. $f(z) = \sum_{n \ge -k} a_n (z-z_0)^n \implies (z-z_0)^k f(z) = \sum_{n \ge 0} a_{n-k} (z-z_0)^n \implies (z-z_0)^k f(z)$ голоморфна в $B(z_0,\varepsilon)$ в том числе в z_0 и формула выше — формула для коэффициентов ряда Тейлора.

Определение 2.25. Пусть $\{z_1,\ldots\}\subset\Omega$ — дискретное подмножество Ω . Тогда $f\colon\Omega\setminus\{z_i\}\to\mathbb{C}$ называется мероморфной функцией в Ω , если

- f голоморфной,
- $\forall k, z_k$ полюс f.

Лемма. $f,g\colon \Omega \to \mathbb{C}$ — голоморфная, $g\not\equiv 0$, тогда $\frac{f}{g}$ — мероморфна в $\Omega.$

Доказательство. Пусть $\{z_1, z_2, \ldots\} \subset \Omega$ — нули g, тогда $\{z_1, z_2, \ldots\}$ — дискретное множество $\Longrightarrow h = \frac{f}{g}$ задана и голомофорна в $\Omega \setminus \{z_1, \ldots\}$.

 z_k — ноль порядка d для g, тогда

ullet если $f(z_k) \neq 0$, то локально $h(z) = \frac{1}{g(z)/f(z)} \implies \frac{1}{h(z)} = \frac{g(z)}{f(z)}$ голоморфна в z_0 и равна нулю.

• $f(z_k)0$, то пусть \tilde{d} — порядок нуля f в z_k . Тогда локально $g(z) = (z-z_k)^d \varphi(z), f(z) = (z-z_k)^{\tilde{d}} \widetilde{\varphi}(z)$. $\frac{f(z)}{g(z)} = (z-z_k)^{\tilde{d}-d} = \frac{\varphi(z)}{\widetilde{\varphi}(z)}$ — голоморфная в z_0 .

Теорема 2.16. Любая мероморфная функция имеет вид $\frac{f}{g}, f, g$ — голоморфная.

Теорема 2.17 (Теорема о вычетах). Пусть Ω — область, $z_1, \ldots, z_n \in \Omega$. $f: \operatorname{Cl}\Omega \setminus \{z_1, \ldots, z_n\} \to \mathbb{C}$ — непрерывная, голоморфная в $\Omega \setminus \{z_1, \ldots, z_n\}$.

Пусть f имеет полюса в z_1,\ldots,z_n или устранимые особенности. Тогда

$$\int_{\partial\Omega} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z_k} f.$$

Замечание. $\frac{f(\xi)}{\xi-z}$ — меромофрна в $B(z_0,\varepsilon) \implies \int\limits_{|\xi-z_0|} \frac{f(\xi)\mathrm{d}\xi}{\xi-z} = 2\pi i \operatorname{Res}(\dots) \implies$ формула Коши.

Доказательство. Картинка. $\Omega_{\varepsilon} = \Omega \setminus \left(\bigcup_{k=1}^{n} \overline{B}(z_{k}, \varepsilon) l_{k}\right), f$ — голоморфная в Ω_{ε} . $0 = \int_{\partial \Omega_{\varepsilon}} f(z) dz = \int_{\partial \Omega_{\varepsilon}} f(z) dz$

$$\int_{\partial\Omega} f(z) dz - \sum_{k=1}^{n} \int_{|z-z_k|=\varepsilon} f(z) dz \implies \int_{\partial\Omega} f(z) dz = \sum_{k=1}^{n} \int_{|z-z_k|=\varepsilon} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}_{z_k} f.$$

2.6. Принцип аргумента

Пусть $z=re^{i\theta}, r, \theta \in \mathbb{R}, r>0$, тогда $\theta=\arg z$. $\arg z$ определен с точностью до 2π .

Замечание. $z\colon [a,b] \to \mathbb{C}\setminus \{\theta\}$ — непрерывна, то $\exists r,\theta\colon [a,b] \to \mathbb{R}$ непрерывна и $r(t)>0 \forall t\in [a,b],$ $z(t)=r(t)e^{i\theta(t)}.$

Пример. Если z параметризует окружность, то можно положить $z(t)=e^{2\pi}, z:[0,2\pi]\to \mathbb{C}, \theta(t)=t.$

 $U\subset\mathbb{C}\setminus\{0\}$ — односвязное, $z_0=r_0e^{i\theta_0}\in U$, тогда $\exists\log:U\to\mathbb{C}$, такой что $\log(z_0)=\log r_0+i\theta_0, \frac{\mathrm{d}}{\mathrm{d}z}\log z=\frac{1}{z}.$

Определение 2.26. Ω — любая область, $f:\Omega\to\mathbb{C}$ голоморфная, $f\not\equiv 0$, тогда логарифмическая производная то $(\log f(z))'\coloneqq \frac{f'(z)}{f(z)}.$

Утверждение 2.18. $(\log f)'$ — это мероморфная функция в Ω , все полюсы $(\log f)'$ простые и соответствуют нулям f. Если $f(z_0) = 0$, то $\mathrm{Res}_{z_0}(\log f)' = \mathrm{ord}_{z_0} f$ — порядок нуля.

Доказательство. Пусть $f(z_0) \neq 0 \implies \frac{f'(z)}{f(z)}$ — голоморфная в окрестности $z_0 \implies (\log f)'$ голоморфна в $\Omega \setminus \{z : f(z) = 0\}$.

Пусть
$$f(z_0)=0$$
, напишем $f(z)=(z-z_0)^dg(z)$, где $d=\operatorname{ord}_{z_0}f, g(z_0)\neq 0$.

Теорема 2.19 (Принцип аргумента). Ω — односвязное, ограниченное, $\partial\Omega$ — кусочно гладкая, f — голоморфная в окрестности $\mathrm{Cl}\,\Omega$ (то есть $\exists\Omega'\supset\mathrm{Cl}\,\Omega$ и $f:\Omega'\to\mathbb{C}$ — голомофорная) и $f(z)\neq 0\,\forall z\in\partial\Omega$. Тогда

$$\int\limits_{\partial\Omega}\left(\log f(z)\right)'\mathrm{d}z]=2\pi i\sum_{z\in\Omega f(z)=0}\mathrm{ord}_z\,f=:2\pi i\#\text{ нулей в }f\text{ с учетом кратности}.$$

Глава #2 13 из 14 Aвтор: XБ

Доказательство.
$$\int_{\partial\Omega} (\log f(z))' dz = 2\pi i \sum_{z-\text{полюс}} \text{Res}_z (\log f)' = 2\pi i \sum_{z f(z) = 0} \text{ord}_z f$$

Пусть $z\colon [a,b]\to \mathbb{C}$ — параметризация $\partial\Omega$, пусть также $f(\Omega')=\mathrm{Cl.}$ Тогда $\mathrm{Log}\, f(z)$ корректно определена, $(\log f(z))'=\frac{\mathrm{d}}{\mathrm{d}z}\,\mathrm{Log}\, f(z).$

$$\int\limits_{\partial\Omega} (\log f(z))' \mathrm{d}z = \int\limits_{\partial\Omega} \frac{\mathrm{d}}{\mathrm{d}z} \log f(z) \mathrm{d}z = \int\limits_a^b \frac{\mathrm{d}}{\mathrm{d}z} \log f(z(t)) z'(t) \mathrm{d}t = \int\limits_c^b \frac{\mathrm{d}}{\mathrm{d}t} \left(\log f(z(t)) \right) \mathrm{d}t = \int\limits_a^b \frac{\mathrm{d}}{\mathrm{d}t} \left(\log |f(z(t))| + i \log |f(z($$

Пример.
$$\Omega = \mathbb{D}, f(z) = z^n, z \colon [0, 2\pi] \to \mathbb{C}, z(t) = e^{it}$$
. Тогда $f(z(t)) = e^{int}, \theta(t) = nt$ $\int_{\partial \Omega} (\log f(z))' dz = i(\theta(2\pi) - \theta(0)) = n2\pi i$.

Теорема 2.20 (Теорема Руше). Пусть Ω — односвязная область, ограниченная $\partial\Omega$ — кусочно гладкий путь. f,g — голоморфная в окрестности $\operatorname{Cl}\Omega, \forall z \in \partial\Omega \quad |f(z)| > |g(z)|$.

Тогда # нулей f в Ω с учетом кратности равно количеству нулей f+g в Ω с учетом кратности.

Доказательство.
$$t \in [0,1]$$
. Рассмотрим $\Phi(t) = \frac{1}{2\pi i} \int\limits_{\partial\Omega} (\log(f+tg)(z))' \mathrm{d}z = \frac{1}{2\pi i} \int\limits_{\partial\Omega} \frac{f'(z)+tg'(z)}{f(z)+tg(z)} \mathrm{d}z$.

- 1. $\Psi(z,t): \partial\Omega \times [0,1] \to \mathbb{C}.$ $\Psi(z,t)=\frac{f'(z)+tg'(z)}{f(z)+tg(z)}$ непрерывна $\implies \Phi(t)=\frac{1}{2\pi i}\int\limits_{\partial\Omega}\Psi(z,t)\mathrm{d}z$ непрерывна.
- 2. $\forall t \in [0,1], \Phi(t) \in \mathbb{Z}$ по теореме выше.

Из 1 и 2 следует, что $\Phi(t) \equiv n, n \in Z$. Но $\Phi(0) =$ количество нулей f в Ω с учетом кратности, а $\Phi(1)$ — количество нулей f+g в Ω с учетом кратности.

Теорема 2.21. Ω — область, $f:\Omega\to\mathbb{C}$ — голоморфная непостоянная, тогда $\forall z_0\in\Omega,\delta>0$: $\overline{B}(z_0,r)\subset\Omega\exists\delta>0$: $f(B(z_0,r))\supset B(f(z_0),\delta)$.

Доказательство. Немного уменьшив r мы можем добиться того, чтобы $|f(z) - f(z_0)| \neq 0 \quad \forall z: |z - z_0| = r > 0$.

Возьмем $\delta = \min_{z \in C_r(z_0)} |f(z) - f(z_0)| > 0$. Пусть $\lambda \in B(f(z_0), \delta)$, тогда по теореме Руше. $1 \leqslant$ количество нулей $f(z) - f(z_0)$ в $B(z_0, r)$ с учетом кратности и это равно числу нулей $f(z) - f(z_0) - \lambda$ в том же шаре.

Тогда $\exists z \in B(z_0,r): f(z) = f(z_0) + \lambda$, такая что $\lambda \in B(0,\delta)$ произв., имеем $f(B(z_0,r)) \supset B(z_0,\delta)$.

Следствие. Пусть Ω — ограниченная область, $f:\operatorname{Cl}\Omega\to\mathbb{C}$ непрерывна, f голоморфная в Ω . Тогда

- 1. $\sup_{z \in \Omega} |f(z)| = \max_{z \in \Omega} |f(z)| = \max_{z \in \partial\Omega} |f(z)|$
- 2. Если $\exists z_0 \in \Omega \colon |f(z_0)| = \sup_{z \in \Omega} |f(z)| \implies f \equiv const.$

Доказательство. Пусть f не постоянна, $z_0 \in \Omega, r > 0$: $\overline{B}(z_0, r) \subset \Omega$. Тогда $\exists \delta > 0$: $f(B(z_0, r)) \supset B(f(z_0), \delta) \implies \exists z \in B(z_0, r) \colon |f(z)| > |f(z_0)| \implies |f(z_0)| < \sup_{z \in B(z_0, r)} |f(z_0)| > 2$.

Чтобы увидеть 1, заметим, что $\exists z_0 \leftarrow \operatorname{Cl}\Omega \colon |f(z_0)| = \max_{z \in \operatorname{Cl}\Omega} |f(z)|$. Если $z_0 \in \Omega$, то ?! с рассуждениями выше.