Day5

2023年8月11日

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	string	angrybirds	sakyamuni	sequence
英文题目名称	string	angrybirds	sakyamuni	sequence
可执行文件名	string	angrybirds	sakyamuni	sequence
输入文件名	string.in	angrybirds.in	sakyamuni.in	sequence.in
输出文件名	string.out	angrybirds.out	sakyamuni.out	sequence.out
每个测试点时	1 F/h	1 秒	1 秒	1秒
限	1 秒	1 179	1 1/2	1 12
测试点数目	10	20	20	10
每个测试点分	10	5	5	10
值	10			
附加样例文件	有	有	有	有
题目类型	传统	传统	传统	传统

二、提交源程序文件名

对于 pascal 语 言	string.pas	angrybirds.pas	sakyamuni.pas	sequence.pas
对于 C 语言	string.c	angrybirds.c	sakyamuni.c	sequence.c
对于 C++语言	string.cpp	angrybirds.cpp	sakyamuni.cpp	sequence.cpp

三、编译命令(开启 O2 优化)

对于 pascal 语	fne string nos	fpc	fpc	fpc
言	fpc string.pas	angrybirds.pas	sakyamuni.pas	sequence.pas
对于 C 语言	gcc -o string string.c -lm -O2	gcc -o angrybirds angrybirds.c -lm -O2	gcc -o sakyamuni sakyamuni.c -lm -O2	gcc -o sequence sequence.c -lm - O2
对于 C++语言	g++ -o string string.cpp -lm - O2	g++ -o angrybirds angrybirds.cpp - Im -O2	g++ -0 sakyamuni sakyamuni.cpp - Im -O2	g++ -o sequence sequence.cpp - Im -O2

四、运行内存限制

太左上限	128M	128M	128M	128M
内仔上限	128101	128IVI	128IVI	128IVI

五、注意事项

- 1、文件名(程序名和输入输出文件名)必须使用小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。

- 3、全国统一评测时采用的机器配置为: CPU 1.9GHz,内存 1G,上述时限以此配置为准。
- 4、 <u>考试结束前半个小时停止 FTP 的下载服务,之后请名字为你的名字的文件夹上传至 FTP 上,请勿上传压缩包,每个源程序不需要新建文件夹。</u>

1. string(string)

【题目描述】

给定三个串 s_1, s_2, s_3 ,问同时包含这三个子串的最短字符串长度是多少?

【输入格式】

输入共三行,每行一个字符串,表示 s_1, s_2, s_3

【输出格式】

包含这三个子串的最短字符串长度

【样例输入】

ab

bc

 cd

【样例输出】

4

【样例输入2】

abacaba

abaaba

Х

【样例输出 2】

11

【数据范围与约定】

30%数据满足: $1 \le |s_1|, |s_2|, |s_3| \le 10^3$

100%数据满足:字符串内仅包含小写字母, $1 \le |s_1|, |s_2|, |s_3| \le 10^5$

2. angrybirds (angrybirds)

【题目描述】

Kiana 最近沉迷于一款神奇的游戏无法自拔。 简单来说,这款游戏是在一个平面上进行的。有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只小鸟,小鸟们的飞行轨迹均为形如 $y = ax^2 + bx$ 的曲线,其中a,b 是 Kiana 指定的参数,且必须满足a < 0。当小鸟落回地面(即 x 轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有 n 只猪,其中第 i 只猪所在的坐标为 (x_i,y_i) 。如果某只小鸟的飞行轨迹经过了 (x_i,y_i) ,那么第 i 只猪就会被消灭掉,同时小 鸟将会沿着原先的轨迹继续飞行;如果一只小鸟的飞行轨迹没有经过 (x_i,y_i) ,那么这只小 鸟飞行的全过程就不会对第 i 只猪产生任何影响。

例如,若两只猪分别位于 (1,3) 和 (3,3),Kiana 可以选择发射一只飞行轨迹为 $y = -x^2 + 4x$ 的小鸟,这样两只猪就会被这只小鸟一起消灭。 而这个游戏的目的,就是通过发射小鸟消灭所有的猪。

这款神奇游戏的每个关卡对来说都很难,所以 Kiana 还输入了一些<u>神秘的指令</u>,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有 T 个关卡,现在 Kiana 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的猪。由于她不会算,所以希望由你告诉她。

【输入格式】

第一行包含一个正整数 T,表示游戏的关卡总数。

下面依次输入这 T 个关卡的信息。每个关卡第一行包含两个非负整数n, m,分别表示该关卡中的猪数量和 Kiana 输入的神秘指令类型。

接下来的 n 行中,第 i 行包含两个正实数 x_i, y_i ,表示第 i 只猪坐标为 (x_i, y_i) 。数据保证同一个关卡中不存在两只坐标完全相同的猪。

如果 m=0,表示 Kiana 输入了一个没有任何作用的指令。

如果 m=1,则这个关卡将会满足:至多用 $\frac{n}{3}+1$ 只小鸟即可消灭所有猪。

如果 m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 $\frac{n}{3}$ 只猪。

保证 $1 \le n \le 18,0 \le m \le 2,0 \le x_i, y_i < 10$

输入中的实数均保留到小数点后两位。

【输出格式】

对每个关卡依次输出一行答案。输出的每一行包含一个正整数,表示相应的关卡中,消灭所有猪最少需要的小鸟数量。

【输入输出样例】

输入1:

2

20

1.00 3.00

3.00 3.00

5 2

1.00 5.00

2.00 8.00

```
3.00 9.00
```

4.00 8.00

5.00 5.00

输出 1:

1

1

第一个关卡,
$$y = -x^2 + 4x$$

第二个关卡, $y = -x^2 + 6x$

输入 2:

3

20

1.41 2.00

1.73 3.00

3 0

1.11 1.41

2.34 1.79

2.98 1.49

50

2.72 2.72

2.72 3.14

3.14 2.72

3.14 3.14

5.00 5.00

输出 2:

2

2

3

输入3:

3

2 0

1.41 2.00

1.73 3.00

3 0

1.11 1.41

2.34 1.79

2.98 1.49

5 0

2.72 2.72

2.72 3.14

3. 14 2. 72

3.14 3.14

5.00 5.00

输出 3:

6

【数据范围】

测试点 $1\sim14$: $2\leq n\leq12, 1\leq T\leq30$ 测试点 $15\sim20$: $2\leq n\leq18, 1\leq T\leq5$

测试点编号	n	m	T
1	- 2		≤ 10
2	≤ 2		≤ 30
3			≤ 10
4	≤ 3		≤ 30
5			≤ 10
6	≤ 4		≤ 30
7	≤ 5	= 0	
8	≤ 6		_ 10
9	≤ 7		≤ 10
10	≤ 8		
11	≤ 9		
12	≤ 10		- 30
13		= 1	≤ 30
14	≤ 12	= 2	
15	≤ 15	= 0	
16		= 1	≤ 15
17		= 2	
18		= 0	
19	≤ 18	= 1	≤ 5
20		http ≥ 2blog. c	sdn. net/g19zwk

3. sakyamuni (sakyamuni)

【题目描述】

对于二叉树是美丽的定义: 二叉树的每个节点 x,其左子树的高度L和右子树的高度R均满足 $|L-R| \le 1$ 。规定叶子节点的子树高度为0。

你的任务是求有N个节点的美丽的二叉树的数目。

【输入格式】

每个测试点包含若干个测试数据。

每个测试数据占一行,包含一个整数N。

输入文件以0结尾。

【输出格式】

对于每个测试数据,在单独的一行内输出结果。由于结果可能会很大,你只需要输出答案取模10°

【样例输入】

2

3

5

30

0

【样例输出】

2

1

6

11307920

【数据范围与约定】

对于30%的测试点, $N \leq 100$

对于70%的测试点, $N \leq 1000$

对于100%的测试点, $1 \le N \le 3000$

4. sequence (sequence)

【题目描述】

给你一个数字序列,可以选择它的某个前缀和某个后缀(可能是空的)中的每个数字都乘以 -1。前缀和后缀可以交叉也可以为空。问能得到的最大序列和是多少。

【输入格式】

第一行包含一个整数n表示序列长度

接下来一行n个数表示序列元素

【输出格式】

第一行应包含最小尾 0 的个数,第二行打印出相应的字典序最小的路径

【样例输入1】

3

-1 -2 -3

【样例输出1】

6

【样例输入2】

5

-1 10 -5 10 -2

【样例输出2】

18

【数据范围与约定】

30%数据满足: $1 \le n \le 1000$

100%数据满足: $1 \le n \le 10^5$, $-10^4 \le a_{i,j} \le 10^4$