Image Generation

Bo Kang, Thomas Demeester, Tijl De Bie

Outline

- Introduction
- A Brief History
- Stable Diffusion Walk Through
- Demo: Train Your Own LoRA Model
- References

Outline

- Introduction
- A Brief History
- Stable Diffusion Walk Through
- Demo: Train Your Own LoRA Model
- References

Introduction

- Generate or manipulate images with neural network models
- Applications
 - Unconditional generation
 - Text to image
 - Image to image
 - Inpainting
 - Many more...
- Tools
 - Commercial: OpenAl¹, Midjourney²
 - Open source: HF diffusers³, SD Webui⁴, ComfyUI⁵, Kohya SS⁶

Outline

- Introduction
- A Brief History
- Stable Diffusion Walk Through
- Demo: Train Your Own LoRA Model
- References

A Brief History

Generative Adversarial Network (GAN)

 Idea: train an image generator against a discriminator

Generative Adversarial Network (GAN)

- Idea: train an image generator against a discriminator
- Pros
 - High fidelity
 - Many years of improving, easy to use
- Cons
 - Difficult to train
 - Low diversity
 - Mathematically less elegant

Variational Auto Encoder (VAE)

- Idea: learn a distribution over a latent space
- Pros
 - Better diversity
 - Principled probabilistic modeling
- Cons
 - Blurry outputs
 - Still difficult to train

Vector Quantized VAE (VQVAE)

 Idea: learns discrete latent space using vector quantization; learns an autoregressive model for generation

Pros:

- Better sample quality
- More efficient representation

Cons:

- Generation needs extra model
- Training unstableness

DALL·E

 Idea: VQVAE with text guidance and GPT style autoregressive latent representation generation

Diffusion model

 Idea: gradually transform a distribution of random noise into a complex image data distribution through a reverse diffusion process

Pros:

- New paradigm
- Mathematically principled

Cons:

- Generation is still not good enough
- Slow

U-Net

- Idea:
 - CNN based encoder decoder architecture
 - Originally used to predict segmentation of an image
 - here predicts noise in the reverse diffusion process

GAN, 2014

CLIP: Contrastive Language-Image Pre-training

 Idea: learns image embeddings that matches relevant text embeddings

GAN, 2014

Stable Diffusion

 Idea: apply diffusion process in latent space

Outline

- Introduction
- A Brief History
- Stable Diffusion Walk Through
- Demo: Train Your Own LoRA Model
- References

Stable Diffusion Walk Through

- Idea: apply diffusion process in latent space
- Sub modules
 - Encoder
 - CLIP
 - Scheduler
 - U-Net

Outline

- Introduction
- A Brief History
- Stable Diffusion Walk Through
- Demo: Train Your Own LoRA Model
- References

Demo: LoRA Training

- Idea: finetune stable diffusion model by adapt the model weights using extra low rank parameter matrices
- Tools: Huggingface, Kohya_SS
- Training data preparation
- Train
- Usage

Outline

- Introduction
- A Brief History
- Stable Diffusion Walk Through
- Demo: Train Your Own LoRA Model
- References

References

- 1. https://openai.com/dall-e-3
- 2. https://www.midjourney.com/home
- 3. https://huggingface.co/docs/diffusers/index
- 4. https://github.com/AUTOMATIC1111/stable-diffusion-webui
- 5. https://github.com/comfyanonymous/ComfyUl
- 6. https://github.com/bmaltais/kohya_ss
- 7. [VAE] Kingma & Willing, Auto-Encoding Variational Bayes, 2013
- 8. [GAN] Goodfellow et al., Generative Adversarial Networks, 2014
- 9. [Diffusion Model] Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, 2015
- 10. [U-Net] Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015
- 11. [VQVAE] Van den Oord et al., Neural Discrete Representation Learning, 2017
- 12. [DDPM] Ho et al., Denoising Diffusion Probabilistic Models, 2020
- 13. [Improved DDPM] Nichol & Dhariwal, Improved Denoising Diffusion Probabilistic Models, 2021
- 14. [DMs Beat GAN] Dhariwal & Nichol, Diffusion Models Beat GANs on Image Synthesis, 2021]
- 15. [GLIDE] Nichol et al., GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models, 2021
- 16. [CLIP] Radford et al., Learning Transferable Visual Models From Natural Language Supervision, 2021
- 17. [DALL·E] Ramesh et al., Zero-Shot Text-to-Image Generation, 2021
- 18. [DALL·E 2] Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents, 2022
- 19. [Stable Diffusion] Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models, 2022
- 20. [Imagen] Saharia et al., Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding, 2022
- 21. [DALL·E 3] Betker et al., Improving Image Generation with Better Captions, 2023
- 22. [LoRA] Hu et al., LoRA: Low-Rank Adaptation of Large Language Models, 2021