StudentName:	Zheng Li
Maynooth ID:	20123302

Student Name:	Hanlin Cai
Maynooth ID:	20122161

Laboratory 3: Source and Thevenin's Theorem

Part 1: Measuring a Battery

	100 Ω	470 Ω	1000 Ω	
Vo	3.3V	3.1V	3.20V	
V _R	2.48V	3.01V	3.11V	
Internal	28.4Ω	32.0Ω	40.3Ω	
Resistance				
I _R	27.3mA	6.3mA	3.2mA	
	4700 Ω	10 k Ω	47k Ω	100 k Ω
Vo	3.18V	3.08V	3.12V	2.91V
V _R	3.16V	3.07V	2.98V	2.90V
Internal	29.8Ω	28.8Ω	31Ω	32.8Ω
Resistance				
I _R	0.67mA	0.36mA	63µA	28.µA

Graph your results using a log scale for the X axis (ie one that goes 1,10,100,1000, 10,000). Internal Resistance 45 40.3 Internal Resistance/O 32.8 31 29.8 28.8 28.4 10000 100 470 1000 4700 47000 100000 R/Ω

Comment on the obtained results.

ANSWER: Ignore small errors, the internal resistance is 33Ω

Part 2: Theorem of Superposition

V ₁	V ₂	Voltage Across R⊤
5 V	3 V	1.900V
0 V	3 V	1.298V
5 V	0 V	0.561V

Comment on the algebraic sum of the voltages measured and compare with the original measurement.

ANSWER: Within the error range, the algebraic sum of the resistance measured when two power sources work alone is equal to the voltage when two power sources work together

V1	V2	V1 and V2 active	V1 active and V2=0	V1=0 and V2 active	V1+V2 effect
5	-2	0.923	1.328V	-0.384	0.944
5	-1	1.088	1.327V	-0.183	1,144
5	+1	1.485	1.326V	0.182	1.508
5	+2	1.680	1.332V	0.369	1.701
5	+3	1.897	1.329	0.570	1.899

Comment on your results:

ANSWER: For a linear system, the response (voltage or current) of any branch of a two-sided linear circuit containing multiple independent sources is equal to the algebraic sum of the response of each independent source acting independently, where all other independent sources are replaced by their respective impedances.

Part3: Thevenin's Theorem

Vthevenin	0.315V
Rthevenin	15873Ω

Measure the voltage flowing through the 1k resistor. Comment on the degree of similarity (or not) with the results from Part 7.

ANSWER: The voltage through 1k resistance is 0.302.

CONCIUSION: Within the error range, the data obtained by the two measurements are basically similar and conform to Thevenin s Theorem.