

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Pakiety informatyczne w mechanice i budowie maszyn

SPRAWOZDANIE Z ĆWICZENIA PROJEKTOWEGO

Prowadzący:

Grzegorz Czerwiński, mgr inż.

Data wykonania sprawozdania: 10.06.2021

Grupa projektowa nr: 03

Wykonawca: Paweł Bryzek

1. Opisz krótko cel ćwiczenia:

Porównanie w programie ANSYS CFX modelu przepływu ciepła wykonanego analitycznie z symulacją.

2. Model geometryczny:

3. Siatka numeryczna oraz wskazania jakości siatki w oparciu o parametr ortogonalności oraz skośności:

parametr ortogonalności

parametr skośności

4. Zdefiniowana domena oraz warunki brzegowe:

Domena:

Domena wykorzystana "Ideal Gas" Gęstość w temperaturze odniesienia:

Location and Type						
Location	SOLID	<u> </u>				
Domain Type	Fluid Domain	•				
Coordinate Frame	Coord 0	▼				
Fluid and Particle Defi	nitions	⊟				
Fluid 1		EW A				
		×				
Fluid 1						
Option	Material Library ▼					
Material	Air Ideal Gas					
Morphology		8				
Option	Continuous Fluid ▼					
Minimum Volu	me Fraction	⊞				
Domain Models						
Pressure		⊟⊟				
Reference Pressure	1 [atm]					
Buoyancy Model		==				
Option	Buoyant ▼	•				
Gravity X Dirn.	0 [m s^-2]		Basic Settings	Fluid Models	Initialization	Solv ◀:▶
Gravity Y Dirn.	-9.81 [m s^-2]	7	Heat Transfer			
Gravity Z Dirn.	0 [m s^-2]	- 	Option	Therma	Energy	•
·			Incl. Viscous	Dissipation		
Buoy, Ref. Density Ref. Location	1.1767 [kg m^-3]		Turbulence			
Option	Automatic ~		Option	None (L	aminar)	▼
	Automatic		Combustion			⊟
Domain Motion			Option	None		•
Option	Stationary •		Thermal Radiation	on		⊟
Mesh Deformation			Option	None		•
Option	None ▼		☐ Electromagn	netic Model		+

Warunki brzegowe:

Symetrii:

Boundary Type	Symmetry •	
Location	front, back	

Temperatury zewnętrznej $T_o = 280 \text{ K}$

Temperatury wewnętrznej $T_i = 320 \text{ K}$

5. Wykresy rezyduów:

6. Wyniki w postaci rozkładu temperatury i wektorowego pola prędkości:

Jak widać transport ciepła zachodzi w konwekcji naturalnej dzięki przyjętym parametrom ciśnienia, temperatury oraz gęstości w temperaturze. Ciepłe powietrze dzięki uwzględnieniu grawitacji schodzi się do góry modelu.

Wewnątrz modelu dolne powietrze podgrzewa się i wędruje do góry. Na zewnątrz modelu powietrze górne jest schładzane i opada w dół.

7. Obliczenia wartości całkowitego strumienia ciepła na ścianie wewnętrznej oraz zewnętrznej:

Obliczenia dla ściany wewnętrznej:

Dane:

$$\begin{array}{lll} k := 0\,,\,0272 \; \frac{\mathrm{W}}{\mathrm{m}\;\mathrm{K}} & T_i := 320\;\mathrm{K} & \mu := 19\,,\,6\cdot 10^{\,-\,6}\; \frac{\mathrm{N}\;\mathrm{s}}{\mathrm{m}^2} & D_i := 200\;\mathrm{mm} \\ P_r := 0\,,\,698 & D_o := 300\;\mathrm{mm} \\ R_a := 9\,,\,52\cdot 10^{\,5} & T_o := 280\;\mathrm{K} & \rho := 1\,,\,093\; \frac{\mathrm{kg}}{\mathrm{m}^3} & \\ \beta := \frac{1}{300}\cdot \frac{1}{\mathrm{K}} & L_c := \frac{\left(D_o - D_i\right)}{2} = 50\;\mathrm{mm} \\ g := 9\,,\,81\; \frac{\mathrm{m}}{\mathrm{s}^2} & \end{array}$$

Geometric factor for concentric cylinders:

$$F_{cyl} := \frac{\left(\ln\left(\frac{D_o}{D_i}\right)\right)^4}{L_c^3 \cdot \left(D_i\left(-\frac{3}{5}\right)_{+D_o}\left(-\frac{3}{5}\right)\right)^5} = 0,0957$$

$$R_{a} := \frac{g \cdot \beta \cdot \left(T_{i} - T_{o}\right) \cdot L_{c}^{3}}{\left(\frac{\mu}{\rho}\right)^{2}} \cdot P_{r} = 3,549 \cdot 10^{5}$$

$$k_{\text{eef}} := 0,386 \cdot \left(\frac{P_r}{0,861 + P_r}\right)^{\frac{1}{4}} \cdot \left(F_{\text{cyl}} \cdot R_a\right)^{\frac{1}{4}} \cdot k = 0,1166 \frac{W}{m \text{ K}}$$

$$Q := \frac{2 \cdot \mathbf{m} \cdot k_{\text{eef}}}{\ln \left(\frac{D_o}{D_i}\right)} \cdot \left(T_i - T_o\right) = 72,2702 \frac{\mathbf{W}}{\mathbf{m}}$$

$$Q \cdot 1 \text{ mm} = 0,0723 \text{ W}$$

Obliczenia dla ściany zewnętrznej:

Dane:

$$F_{cy2} := \frac{\left(\ln\left(\frac{D_o}{D_i}\right)\right)^4}{L_c^3 \cdot \left(D_i^3 - \frac{3}{5}\right) + D_o^3 - \left(-\frac{3}{5}\right)\right)^5} = 0,0957$$

$$k_{eef} := 0,386 \cdot \left(\frac{P_{r2}}{0,861 + P_{r2}}\right)^{\frac{1}{4}} \cdot \left(F_{cy2} \cdot R_{a2}\right)^{\frac{1}{4}} \cdot k = 0,134 \frac{W}{m \text{ K}}$$

$$2 \cdot \mathbf{n} \cdot k_{eef}$$

$$Q := \frac{2 \cdot \mathbf{m} \cdot k_{\text{eef}}}{\ln \left(\frac{D_o}{D_i}\right)} \cdot \left(T_i - T_o\right) = 83,0828 \frac{\mathbf{W}}{\mathbf{m}}$$

$Q \cdot 1 \text{ mm} = 0,0831 \text{ W}$

Porównanie analitycznych obliczeń oraz wyników w ANSYS:

	Wewnętrzna ściana [W]	Zewnętrzna ściana [W]
ANSYS	0.0916	0.0454
Analitycznie	0.0723	0.0831