Logistic Regression using BMI, age, gender, and hbA1C to predict the presence of heart disease

• • •

Kristina Rivera

The Analyst

Kristie Rivera, M.Ed., MSDA

I am an analyst with over a decade of experience gathering, processing, and presenting data. I am a research analyst specializing in optimizing employee health to drive business profitability and reduce healthcare costs. My focus is on studying and implementing strategies that promote employee well-being, enhance productivity, and mitigate the financial burden associated with healthcare expenses. By conducting thorough analyses and identifying effective interventions, I aim to contribute to the development of evidence-based solutions that benefit both employees and the overall success of the business.

Overview-The Problem

- Impacts of heart disease on businesses include:
 - Increased healthcare costs
 - Increased insurance premiums
 - Increased claims to be paid
 - Lost productivity
 - Employee absenteeism
 - Paying benefits to employees out on medical leave
 - Paying temporary employees to cover the absent
- Estimated to cost \$600 billion USD in 2023

Hypothesis:

Gender, BMI, HbA1C, and age will statistically significantly predict the presence of heart disease

Understanding the data

Logistic Regression Model

- Provides the PROBABILITY of an outcome (0-1)
 - An employee's probability of developing heart disease at some point
 - Uses historical data to make a prediction of heart disease
 - Will be able to identify those in need of wellness initiatives to prevent heart disease
 - A cut-off value will need to be established to determine the eligible employees

df.head(25)

	gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes
0	Female	80.0	0	1	never	25.19	6.6	140	0
1	Female	54.0	0	0	No Info	27.32	6.6	80	0
2	Male	28.0	0	0	never	27.32	5.7	158	0
3	Female	36.0	0	0	current	23.45	5.0	155	0
4	Male	76.0	1	1	current	20.14	4.8	155	0
5	Female	20.0	0	0	never	27.32	6.6	85	0
6	Female	44.0	0	0	never	19.31	6.5	200	1
7	Female	79.0	0	0	No Info	23.86	5.7	85	0
8	Male	42.0	0	0	never	33.64	4.8	145	0
9	Female	32.0	0	0	never	27.32	5.0	100	0

Understanding the variables

Gender (AAB)

Men are at higher risk of heart disease, important to know the sex of the employee for accurate predictions

Age

- Heart disease risk increases with age
- Avg 41.9
- Range 0-80

Smoking History

Current smokers have a greater risk than former smokers have a greater risk than non smokers

Understanding the variables

BMI

- Ratio of height and body weight but can be misleading in highly muscular people
- Range 10-95.69
- Not Useful for children

HbA1C

- Gives overall view of last three months of blood sugar levels, levels above 7 can point towards a heart disease diagnosis, present or future
- How much sugar is bound to blood cells

Data Processing

Encode all variables to numerical

 Logistic regression requires all variables to be numeric

Normalize data

- Puts all data in same scale, usually 0-1
- BMI larger values than HbA1C can skew the results
- American Cancer Society says normal BMI is 18.5-24.9, avg here is 27.3
 - o Max is 95.69

Findings:

Men are at highest risk Age is the most important variable HbA1C least important Stopping smoking reduces risk

Limitations of the Techniques Used

Assumes linear relationships between data points and outcome Logistic Regression Ex: The older the employee the higher the risk Assumes each variable is as equally important Normalizing the Data as the others Accurate model requires accurate data Data Quality Representative Sample

What Now?

Run the model on employee data, setting a Identify candidate pool threshold to identify the candidate pool Work with medical professionals to increase Create Wellness physical activity, decrease smoking and BMI **Initiatives** Regularly follow up with targeted employees to ensure compliance Follow Up Run data yearly to identify new candidates

Expected Outcomes

Save Money

- \$53 per employee,
 per year the
 employee is in the
 lowest risk category
- 26% reduction in health care costs

Absenteeism

- 28% reduction in sick leave days
- 30% reduction in workers compensation and disability claims

Recruitment

Recruit and retain high-quality employees

Expected Outcomes

Employee Benefit

Happier, healthier
 people are more
 productive and have
 higher energy levels

Employee/Employer Benefit

- Foster employee engagement
- Workplace cooperation