Adversarial Examples

A new evil has announced its arrival...

Sewade Ogun

AMMI, AIMS Ghana

December 6, 2019

Objectives

- 1. To show the effect and effectiveness of adversarial examples in machine learning predictions
- 2. To understand the adversary, and determine how to combat it.
- 3. To enlighten the audience on machine learning security.

Outlines

Objectives

Introduction

Properties of Counterfactual Instance

Examples

Techniques

Gradient based optimization approach

Fast gradient sign method

1-pixel attack

Adversarial Patch

Robust adversarial examples

Black Box Attacks

Coding Session

Combating adversarial examples

Conclusion

Introduction

- An adversarial example is an instance with small, intentional feature perturbations that cause a machine learning model to make a false prediction.¹
- A type of counterfactual example

Figure: Causal relationships between inputs of a machine learning model and the predictions

¹https://christophm.github.io/interpretable-ml-book/adversarial.html

A counterfactual should;

o be as **similar** as possible to the instance regarding feature values

A counterfactual should;

- be as similar as possible to the instance regarding feature values
- o change as **few** features as possible.

A counterfactual should;

- o be as **similar** as possible to the instance regarding feature values
- o change as **few** features as possible.
- o have feature values that are likely.

A counterfactual should;

- be as similar as possible to the instance regarding feature values
- o change as **few** features as possible.
- have feature values that are likely.
- o produce the predefined prediction as **closely** as possible.

1. You submit your details for an offer in such a way that the machine classify you as eligible.

- 1. You submit your details for an offer in such a way that the machine classify you as eligible.
- 2. A spam detector by-passed

- 1. You submit your details for an offer in such a way that the machine classify you as eligible.
- 2. A spam detector by-passed
- 3. Object counterfeit knife as umbrella

- 1. You submit your details for an offer in such a way that the machine classify you as eligible.
- 2. A spam detector by-passed
- 3. Object counterfeit knife as umbrella
- 4. Self-driving cars can be deceived by images to misclassify stop-signs.

1. Minimize a distance between the adversarial example generated and the instance to be manipulated

- 1. Minimize a distance between the adversarial example generated and the instance to be manipulated
- 2. Perturb the example using the gradients of the model,

- 1. Minimize a distance between the adversarial example generated and the instance to be manipulated
- 2. Perturb the example using the gradients of the model,
- 3. Use the prediction function to train a model to generate new examples,

- 1. Minimize a distance between the adversarial example generated and the instance to be manipulated
- 2. Perturb the example using the gradients of the model,
- 3. Use the prediction function to train a model to generate new examples,

Our focus will be on how adversarial examples affect image classifiers with deep neural networks.

Gradient based optimization approach

$$\min loss(f(x+p), y_{adv}) + c.|p|$$

where x is an image, p is the changes to the pixels to create an adversarial image, y_{adv} is the desired outcome class, and the parameter c is a balancing factor.

Figure: Examples generated on Alexnet using GB²

Fast gradient sign method

$$x_{adv} = x + \epsilon Sign(\nabla_x J(\theta, x, y))$$

where x is the gradient of the models loss function with respect to the original input pixel vector x, y is the true label vector for x and θ is the model parameter vector.

Figure: NN predicts Gibbon for a perturbed panda image³

 $^{^3}$ Goodfellow et al. "Explaining and harnessing adversarial examples." (2014) $\Rightarrow * 69 \Rightarrow * 39 \Rightarrow * 3$

Changing a single pixel

Uses **differential evolution** to find out which pixel is to be changed and how.

Figure: Changing a single pixel (marked with circles) to deceive a NN to predict the wrong class instead of the original class.⁵

Adversarial Patch

Replaces a part of the image with a patch that can take on any shape.

Figure: Changing a single pixel (marked with circles) to deceive an NN to predict the wrong class instead of the original class.⁷

Robust adversarial examples

- Adversarial over transformations (rotation, zoom in) unlike other methods such as FGM.
- o Expectation Over Transformation (EOT) algorithm.

Figure: 3D-printed turtle that was designed to look like a rifle to a deep NN^9

⁹Athalye, Anish, and Ilya Sutskever. "Synthesizing robust adversarial examples." (2017) 🔻 🗦 🔻 📱 🔻 🔍 🤇 🤈

 No internal model information required and no access to the training data.

- No internal model information required and no access to the training data.
- Zero access to model gradient

- No internal model information required and no access to the training data.
- Zero access to model gradient
- A surrogate model is trained to approximate the decision boundaries of the black box model,

- No internal model information required and no access to the training data.
- Zero access to model gradient
- A surrogate model is trained to approximate the decision boundaries of the black box model,
- Can be used to attack machine learning models on cloud platforms with open api access¹⁰

- No internal model information required and no access to the training data.
- Zero access to model gradient
- A surrogate model is trained to approximate the decision boundaries of the black box model,
- Can be used to attack machine learning models on cloud platforms with open api access¹⁰
- o Although, Knowledge of domain of input is required

- No internal model information required and no access to the training data.
- Zero access to model gradient
- A surrogate model is trained to approximate the decision boundaries of the black box model,
- Can be used to attack machine learning models on cloud platforms with open api access¹⁰
- o Although, Knowledge of domain of input is required

//just let me code

AEs can be Model-agnostic.

Methods used to combat adversarial examples include¹¹;

1 Adversarial training - iterative retraining of the classifier with adversarial examples

AEs can be Model-agnostic.

Methods used to combat adversarial examples include¹¹;

- 1 Adversarial training iterative retraining of the classifier with adversarial examples
- 2 Learning invariant transformations of the features or robust optimization (regularization)

 $^{^{11} {\}rm https://christophm.github.io/interpretable-ml-book/adversarial.html} \quad < \square \ \ \, < \varnothing \ \ \, > \ \ \, > \ \ \, > \ \ \, > \ \ \, > \ \ \, \geq \ \ \, > \ \ \, \geq \ \ \, > \ \ \, \geq \ \ \, > \ \ \, \sim \ \, > \ \ \, > \ \ \, > \ \ \, > \ \ \, > \ \ \, > \ \ \, \sim \ \, > \ \ \, > \ \ \, \sim \ \,$

AEs can be Model-agnostic.

Methods used to combat adversarial examples include¹¹;

- 1 Adversarial training iterative retraining of the classifier with adversarial examples
- 2 Learning invariant transformations of the features or robust optimization (regularization)
- 3 Use of multiple classifiers instead of just one and have them vote the prediction (ensemble)

AEs can be Model-agnostic.

Methods used to combat adversarial examples include¹¹;

- 1 Adversarial training iterative retraining of the classifier with adversarial examples
- 2 Learning invariant transformations of the features or robust optimization (regularization)
- 3 Use of multiple classifiers instead of just one and have them vote the prediction (ensemble)

Lot's of research ongoing in this field of Adversarial and ML security.

Conclusion

- The threats of adversarial examples are real and potent.
- These attacks are not limited to computer-vision but span other areas of ML such as NLP, Reinforcement Learning, Speech Recognition e.t.c.
- Increasing development in this field (but with equivalent sophistication in attack methods).

Think of the many different types of spam emails that are constantly evolving (image spam, header masking etc).

tHANK yOU

for staying awake