Korszerű vizsgálati módszerek labor jegyzőkönyv

Elektronmikroszkópia

Csörnyei Géza

Eötvös Loránd Tudományegyetem Fizika BSc III. évfolyam

'C' mérőcsoport

 $M\'{e}r\'{e}s$ $d\'{a}tuma$: 2018.04.11.

Mérés vezetője: Lábár János

1. Bevezető

A mérésünk során a TEM (transzmissziós elektronmikroszkóp) működési elvével és használatával ismerkedhettünk meg, valamint lehetőségünk nyílt különböző minták diffrakciós mintázatának tanulmányozására is. A készített képek alapján kiszámolhattuk a mikroszkóp kameraállandóját, majd ennek ismeretében elvégezhettük a minta diffrakciós képének kiértékelését. A mérések során egy apertúra ki illetve behelyezésével történő sötét, illetve világos látóterű képi üzemmódok használatával végeztük a beállításokat, melyek elméleti háttere, valamint lényege és a TEM működése is megtalálható [1]-ben.

2. Mérési feladatok és kiértékelés

A laborgyakorlat során egy Si és egy Ni minták diffrakciós képeit készítettük el. A Ni minta diffrakciós képe, polikristályos minta lévén különböző sugarú és intenzitású koncentrikus körökből állt, melyek sugarainak meghatározásának segítségével kalibrálni tudtuk a Si (egykristály) mintával törtnő mérésünket, valamint meg tudtuk határozni a kameraállandót is. Mivel a Ni minta ismerten köbös rács, ezért az alábbi összefüggést használhatjuk a kalibráció során:

$$R_{hkl} = \frac{L\lambda}{a} \sqrt{h^2 + k^2 + l^2},$$

ahol R_{hkl} a felvételen a direkt nyaláb pontja és a hkl indexű síksereg távolsága, L a kalibrálandó kamera hossz, λ a hullámhossz, a pedig a rácsállandó. A mikroszkópot jobban jellemzi a $L\lambda$ szorzat, melyet szokás mikroszkóp állandónak is nevezni. A mérésünk során azonban ezen képlet egy egyszerűsített alakjával dolgozhatunk, ugyanis a síktávolságok, vagyis a

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

értékek meg vannak adva hivatalos mérések alapján [2]-ben. A mérés során készített kalibrációs képet *image plate*-re készítettük, melyet elektronikus formában meg is kaptunk. A Ni mintáról készített, a kalibrációhoz is használt felvétel a 1 . ábrán látható.

2.1. Kalibráció

A kalibráció elvégzéséhez a függőleges tengely mentén felülről a 634. pixelnél vettem ki egy sort, az ezen sorban kapott intenzitásértékeket a 2. ábrán ábrázoltam.

1.ábra. A ${\tt Ni}$ minta diffrakciós képe, melyen a gyűrűs mintázat a polikristályos elrendeződés miatt alakul ki

2. ábra. A kivágott sor intenzitás eloszlása

A képen látható csúcsból a kép közepéhez legközelebbi nyolc csúcsot illesztettem meg a középső, direkt nyalábhoz tartozó folt kivételével, mivel ezen csúcsok nagy intenzitásuk miatt kicsi illesztési hibákat adtak. Az illesztett függvény

$$f(x) = A \cdot e^{-\frac{x-x_0}{2\sigma^2}} + B$$

volt, vagyis egy konstans háttérrel ellátott Gauss-görbe. Az illesztésekből számunkra csak a csúcsok helyei fontosak, hiszen csak ezek kellenek a kalibrációhoz. Az illesztésből kapott értékeket az 1 . táblázat tartalmazza.

Bal	oldal	Jobb oldal		
x_0 [pixel]	Δx_0 [pixel]	x_0 [pixel]	Δx_0 [pixel]	
577.02	0.13	931.51	0.09	
549.88	0.16	958.87	0.08	
462.00	0.09	1046.60	0.09	
410.98	0.16	1097.07	0.06	

1. táblázat. A kalibrációhoz használt csúcsok középpontjai, középről a kép széle felé haladva

Ha az egy sorban levő értékeket kivonjuk egymásból, majd vesszük a kapott érték felét, akkor megkapjuk az egyes diffrakciós gyűrűkhöz tartozó sugarakat. Az így számolt sugár értékeket a 2 . táblázat tartalmazza.

R [pixel]	ΔR [pixel]	d [Å]
177.29	0.08	2.037180
204.50	0.09	1.764250
292.30	0.06	1.247510
343.04	0.09	1.063880

2.táblázat. A számolt sugárértékek és a hozzájuk tartozó síktávolságok, melyeket a [2]-ből írtam be a táblázatba

A kapott sugárértékekre és a síktávolságok reciprokaira egy az origón átmenő egyenest illesztve megkapjuk a kívánt mikroszkóp állandó értékét. Az egyenesillesztés a 3 . ábrán látható.

3. ábra. A további számolásokhoz használt kalibrációs egyenes

Az illesztés alapján a kalibrációs egyenes meredeksége, így a mikroszkóp állandó értéke

$$L\lambda = 363.78 \pm 0.10.$$

2.2. Egykristály diffrakció

A kalibráció alapján meg tudjuk határozni a síktávolságok értékeit minden diffrakciós pont esetére, ez alapján pedig el tudjuk végezni azok indexelését. Az általam feldolgozott diffrakciós kép a 4 . ábrán látható.

4.ábra. Az egykristály diffrakció vizsgálata során készített diffrakciós kép a ${\tt Si}$ mintáról

A kapott képen az egyes diffrakciós pontokat indexeltem, hogy a későbbiekben azonosítani lehessen őket, majd kiszámoltam a direkt nyalábtól vett távolságukat. A direkt nyaláb helyzetét a képen (734, 626)-nek olvastam le. Az egyes diffrakciós pontok indexelése a 5 . ábrán látható.

5. ábra. A megindexelt diffrakciós kép

Az egyes diffrakciós pontok helyzetei és a kalibráció által számolt síktávolságok, valamint a számolt indexek a 3 . táblázatban láthatók.

Pont	x [pixel]	y [pixel]	$ \Delta x $ [pixel]	$ \Delta y $ [pixel]	$ \Delta $ [pixel]	d [Å]	Index
1	600	652	134	26	136.50	2.665	$\{0\overline{2}0\}$
2	866	594	132	32	135.82	2.678	{020}
3	840	820	106	194	221.07	1.646	{311}
4	710	846	24	220	221.31	1.644	$\{3\overline{1}1\}$
5	622	428	112	198	227.48	1.599	$\{\overline{311}\}$
6	752	394	18	232	232.70	1.563	$\{\overline{3}1\overline{1}\}$
7	992	568	258	58	264.44	1.376	{040}
8	470	680	264	56	269.87	1.348	$\{0\overline{4}0\}$
9	974	794	240	168	292.96	1.242	{331}
10	580	872	154	246	290.23	1.253	$\{3\overline{3}1\}$
11	494	454	240	172	295.27	1.232	$\{\overline{331}\}$
12	886	368	152	258	299.45	1.215	$\{\overline{3}3\overline{1}\}$
13	1102	760	368	134	391.64	0.929	{351}
14	948	1010	214	384	439.60	0.828	$\{622\}$
15	816	1042	82	416	424.00	0.858	{602}
16	684	1068	50	442	444.82	0.818	$\{6\overline{2}2\}$
17	446	904	288	278	400.28	0.909	$\{3\overline{5}1\}$
18	336	704	398	78	405.57	0.897	$\{0\overline{6}0\}$
19	358	482	376	144	402.63	0.904	${\overline{351}}$
20	638	200	96	426	436.68	0.833	$\{\overline{6}0\overline{2}\}$
21	1010	340	276	286	397.46	0.915	$\{\overline{3}5\overline{1}\}$
22	1118	536	384	90	394.41	0.922	{060}

3. táblázat. A számolt síktávolságok és Miller-indexek táblázata. Pirossal kiemeltem azon indexeket, melyekhez tartozó diffrakciós pontok vélhetően tiltott reflexiók, ugyanis vagy nem szerepel a hozzájuk tartozó síktávolság érték a táblázatban, vagy nem az az érték szerepel, mely a számolt indexeihez tartozna. A 20. diffrakciós csúcs esetében bár a síktávolság nem felelt meg a táblázatban levőknek, a 15. azonban igen, és geometriailag a kettő ellentétes Miller-indexekkel kell rendelkezzen.

Az indexelés során a következőképpen jártam el: kiválasztottam a 3. pontot (mivel az első kettő síktávolság értéke nem szerepelt a táblázatban), majd ezen ponthoz a táblázatban szereplő indexeket rendeltem. A következő pont esetében, amennyiben az nem volt átellenben az előző ponttal, még szabadon választhattam a síktávolságok által adott indexekből, azonban ennek választásával már megadtam, hogy milyennek kell lennie a többi pont indexeinek. A továbbiakban már csak megtekintettem a síktávolságok által adott lehetséges indexeket a pontokhoz, majd összevetettem ezt azzal, hogy minek kellene kijönnie az adott pontra a korábbiak indexeléséből származó lineárkombinációk alapján. A tiltott reflexiók esetében nem voltak megadva a lehetséges indexek, ott csak a lineárkombinációk alapján számoltam.

A kapott adatok alapján kiszámíthatjuk a zónatengelyek irányait is, melyek a síkseregek által képzett metszésvonalak. Ezen irányokat két, nem egy egyenesre eső diffrakciós pont indexeinek vektoriális szorzataként állíthatjuk elő, esetünkben például a 3. és 4. diffrakciós pontra:

$$\{311\} \times \{3\overline{1}1\} = \{20\overline{6}\}$$

Mivel számunkra csak az irány megadása a fontos, ezért ezen két vektorhoz tartozó zónatengely iránya $\frac{1}{\sqrt{10}}\{10\overline{3}\}$.

3. Diszkusszió

Mérésünk során betekintettünk a transzmissziós elektronmikroszkóp működésébe, valamint az azzal végzett mérések alapján sikerült meghatároznunk a műszer mikroszkóp állandóját, valamint indexeltük egy egykristályos mintáról készített felvételen látható diffrakciós pontokat.