## 6 Croissance & Convexité

### Théorème de Rolle

Soit f une fonction dérivable sur un intervalle fermé [a;b] telle que f(a)=f(b). Alors il existe un nombre c dans l'intervalle ]a;b[ tel que f'(c)=0.

#### Preuve

- 1) Si  $f(x) \equiv 0$  dans [a; b], alors f'(x) = 0 pour tout  $x \in ]a; b[$ .
- 2) Si  $f(x) \not\equiv 0$ , comme f(x) est continue, il existe, au vu du théorème de la valeur intermédiaire, des points où f(x) atteint son maximum M et son minimum m.

Comme  $f(x) \not\equiv 0$ , l'un au moins des nombres M ou m est non nul. Supposons, par exemple, que  $M \neq 0$  et f(c) = M.





(b) Si h < 0, alors  $\frac{f(c+h)-f(c)}{h} \geqslant 0$ , puisque  $f(c+h) \leqslant M = f(c)$ ; il en découle  $\lim_{\substack{h \to 0 \\ h \leqslant 0}} \frac{f(c+h)-f(c)}{h} \geqslant 0$ .

Mais, par hypothèse, f est dérivable en tout point de a; b[. Aussi la dérivée à droite (a) doit-elle égaler la dérivée à gauche (b). Ceci n'est possible que si elles valent toutes deux zéro, c'est-à-dire f'(c) = 0.

La démonstration est analogue si l'on suppose  $m \neq 0$ .

On dit qu'une fonction f admet un **maximum local** en c s'il existe un intervalle ouvert I contenant c tel que  $f(x) \leq f(c)$  pour tout  $x \in I \cap D_f$ .

On dit qu'une fonction f admet un **minimum local** en c s'il existe un intervalle ouvert I contenant c tel que  $f(x) \ge f(c)$  pour tout  $x \in I \cap D_f$ .

On appelle **extremum local** un maximum local ou un minimum local.

La preuve du théorème de Rolle a montré le corollaire suivant.

Soit f une fonction dérivable sur un intervalle fermé  $[a\,;b]$ . Si f admet un extremum local en  $c\in ]a\,;b[$ , alors f'(c)=0.

**6.1** Résoudre l'équation f'(x) = 0. La fonction f admet-elle un extremum local?

$$1) \ f(x) = x^2$$

$$2) \ f(x) = x^3$$

3) 
$$f(x) = x^3 - x^2$$

#### Théorème des accroissements finis

Si f est une fonction dérivable sur un intervalle fermé [a;b], alors il existe un nombre c dans l'intervalle ]a;b[ tel que  $f'(c)=\frac{f(b)-f(a)}{b-a}$ .

**Preuve** Posons  $g(x) = f(x) - f(a) - (x - a) \frac{f(b) - f(a)}{b - a}$ . On constate que

- 1) la fonction g est dérivable sur l'intervalle  $[a;b]:g'(x)=f'(x)-\frac{f(b)-f(a)}{b-a}$ ;
- 2)  $g(a) = f(a) f(a) (a-a) \frac{f(b)-f(a)}{b-a} = 0$
- 3)  $g(b) = f(b) f(a) (b-a) \frac{f(b)-f(a)}{b-a} = 0$ .

D'après le théorème de Rolle, il existe un nombre c dans l'intervalle ]a;b[ tel que g'(c)=0, c'est-à-dire  $f'(c)=\frac{f(b)-f(a)}{b-a}$ .

- 6.2 Soit  $f(x) = -x^2 + 4x$ . On pose a = -1 et b = 3.
  - 1) Trouver explicitement le nombre  $c \in ]a\,;b[$  tel que  $f'(c)=\frac{f(b)-f(a)}{b-a}$  .
  - 2) Représenter le graphe de f, la droite passant par les points A(a; f(a)) et B(b; f(b)), et la tangente au graphe de f en c.
  - 3) Interpréter géométriquement le théorème des accroissements finis.
- **6.3** Une fonction f est dite **croissante** sur un intervalle I si pour tout  $x_1, x_2 \in I$  avec  $x_1 < x_2$  on a  $f(x_1) \leq f(x_2)$ .

Soit f une fonction dérivable sur un intervalle I. À l'aide du théorème des accroissements finis, montrer que les affirmations suivantes sont équivalentes :

- 1)  $f'(x) \ge 0$  pour tout  $x \in I$ .
- 2) f est croissante sur I.
- **6.4** Une fonction f est dite **décroissante** sur un intervalle I si pour tout  $x_1, x_2 \in I$  avec  $x_1 < x_2$  on a  $f(x_1) \ge f(x_2)$ .

Soit f une fonction dérivable sur un intervalle I. À l'aide du théorème des accroissements finis, montrer que les affirmations suivantes sont équivalentes :

- 1)  $f'(x) \leq 0$  pour tout  $x \in I$ .
- 2) f est décroissante sur I.

Étudier la croissance d'une fonction dérivable f revient à étudier le signe de sa dérivée f' :

- 1) si f'(x) > 0, alors f est strictement croissante;
- 2) si f'(x) < 0, alors f est strictement décroissante;
- 3) si f'(c) = 0, alors f admet un point critique en c:
  - (a) si f'(x) passe du + au lorsque x passe de x < c à x > c, alors (c; f(c)) est un maximum local de f;
  - (b) si f'(x) passe du au + lorsque x passe de x < c à x > c, alors (c; f(c)) est un minimum local de f;
  - (c) si f'(x) ne change pas de signe lorsque x passe de x < c à x > c, alors (c; f(c)) est un replat.

**Exemple** Étudions la croissance de la fonction  $f(x) = (x+1)^2 (x-1)^3$ .

On calcule que 
$$f'(x) = ((x+1)^2)'(x-1)^3 + (x+1)^2((x-1)^3)'$$
  
 $= 2(x+1)\underbrace{(x+1)'}_1(x-1)^3 + (x+1)^2 3(x-1)^2\underbrace{(x-1)'}_1$   
 $= (x+1)(x-1)^2(2(x-1)+3(x+1))$   
 $= (x+1)(x-1)^2(5x+1)$ 

|           | $-1$ $-\frac{1}{5}$ 1 |        |                    |        |
|-----------|-----------------------|--------|--------------------|--------|
| x+1       | - (                   | +      | +                  | +      |
| $(x-1)^2$ | +                     | +      | + (                | ) +    |
| 5x + 1    | _                     | - (    | ) +                | +      |
| f'        | + (                   | ) – (  | ) + (              | ) +    |
| f         | → m                   | ax 🔪 m | $\gamma_{\rm rep}$ | olat 7 |



f(-1) = 0: le point (-1; 0) est un maximum local.

 $f(-\frac{1}{5}) = -\frac{3456}{3125}$ : le point  $(-\frac{1}{5}; -\frac{3456}{3125})$  est un minimum local.

f(1) = 0: le point (1;0) est un replat.

Étudier la croissance des fonctions suivantes : 6.5

1) 
$$f(x) = x^2 + 5x + 1$$

2) 
$$f(x) = x^3 + 3x$$

3) 
$$f(x) = \frac{1}{3}x^3 + \frac{5}{2}x^2 + 6x + 1$$
 4)  $f(x) = 2x^4 - 9x^2$ 

4) 
$$f(x) = 2x^4 - 9x^2$$

5) 
$$f(x) = \frac{4x+5}{2x-3}$$

6) 
$$f(x) = (x-1)^5 (2x+1)^4$$

7) 
$$f(x) = x^5 - 5x^4 + 5x^3 + 1$$
 8)  $f(x) = x^3 + \frac{3}{x^3}$ 

8) 
$$f(x) = x^3 + \frac{3}{x}$$

6.6 Quelle est la plus grande et quelle est la plus petite valeur possible de f(x), lorsque x est dans l'intervalle donné :

1) 
$$f(x) = 4 - x^2$$
,  $x \in [-2; 1]$ 

2) 
$$f(x) = 4 - x^2$$
,  $x \in [1; 2]$ 

3) 
$$f(x) = \frac{1}{x^2}$$
,  $x \in [-1; 2]$ 

3) 
$$f(x) = \frac{1}{x^2}$$
,  $x \in [-1; 2]$  4)  $f(x) = (x+3)^3 (3x-1)^2$ ,  $x \in [-2; 1]$ 

- Quel est le plus grand nombre :  $\frac{1,000000000003}{1+1,000000000003^2}$  ou  $\frac{1,000000000004}{1+1,000000000004^2}$ ? 6.7
- Déterminer k de telle sorte que la fonction  $f(x) = \frac{x^2}{x+k}$  admette un minimum 6.8 dont l'ordonnée est égale à 8.

On dit qu'une fonction dérivable f est **convexe** sur un intervalle I si  $f(x) \ge f(a) + (x-a) f'(a)$  pour tout  $x, a \in I$ .

On dit qu'une fonction dérivable f est **concave** sur un intervalle I si  $f(x) \leq f(a) + (x - a) f'(a)$  pour tout  $x, a \in I$ .

Vu que y = f(a) + (x - a) f'(a) est l'équation de la tangente au graphe de f en a, cela signifie qu'une fonction est convexe, respectivement concave, lorsque son graphe se situe au-dessus, respectivement en-dessous, de ses tangentes.

Soit f une fonction dérivable. Si f' est à son tour dérivable, alors on appelle **dérivée seconde** de f la fonction f'' définie par f''(x) = (f'(x))'.

**Proposition** Soit f une fonction admettant une dérivée seconde sur un intervalle I. Si  $f''(x) \ge 0$  pour tout  $x \in I$ , alors la fonction f est convexe sur I.

**Preuve** Soient  $x, a \in I$ .

- 1) Supposons x = a.  $f(a) + (x - a) f'(a) = f(a) + 0 \cdot f'(a) = f(a) = f(x) \le f(x).$
- 2) Supposons x > a.

Le théorème des accroissements finis garantit l'existence de  $c \in ]a;x[$  tel que  $f'(c) = \frac{f(x) - f(a)}{x - a}$ 

Par hypothèse, f'' > 0 sur I, si bien que la fonction f' est croissante sur I. Ainsi c > a implique  $f'(c) \ge f'(a)$ .

On obtient donc  $\frac{f(x)-f(a)}{x-a} \geqslant f'(a)$ , c'est-à-dire  $f(x) \geqslant f(a)+(x-a)$  f'(a).

3) Supposons x < a.

De même, il existe  $c \in ]x$ ; a[ tel que  $f'(c) = \frac{f(a) - f(x)}{a - x}$ . Comme f' est croissante sur I, c < a implique  $f'(c) \leqslant f'(a)$ . Par conséquent  $\frac{f(a)-f(x)}{a-x} \leqslant f'(a)$ , ce qui donne  $f(a)-f(x) \leqslant (a-x) f'(a)$ , puis en multipliant par  $-1: f(x) - f(a) \ge (x-a) f'(a)$ . On conclut finalement que  $f(x) \ge f(a) + (x - a) f'(a)$ .

6.9 Soit f une fonction admettant une dérivée seconde sur un intervalle I. Montrer que si  $f''(x) \leq 0$  pour tout  $x \in I$ , alors la fonction f est concave sur I.

> Étudier la convexité d'une fonction f admettant une dérivée seconde revient à étudier le signe de sa dérivée seconde f'':

- 1) si f''(x) > 0, alors f est convexe;
- 2) si f''(x) < 0, alors f est concave;
- 3) si f''(c) = 0 et que f'' change de signe au voisinage du point c, alors le point (c; f(c)) est un **point d'inflexion**.

**Exemple** Étudions la convexité de la fonction  $f(x) = 2x^4 - 3x^2 + 1$ .

$$f'(x) = 8x^3 - 6x$$
 et  $f''(x) = 24x^2 - 6 = 6(4x^2 - 1) = 6(2x + 1)(2x - 1)$ .





 $f(-\frac{1}{2})=f(\frac{1}{2})=\frac{3}{8}$ : les points  $(-\frac{1}{2};\frac{3}{8})$  et  $(\frac{1}{2};\frac{3}{8})$  sont des points d'inflexion.

Étudier la convexité des fonctions suivantes : 6.10

1) 
$$f(x) = x^3$$

2) 
$$f(x) = \frac{x^3 - 8}{x}$$

3) 
$$f(x) = x^3 - 3x^2 - 9x + 9$$

4) 
$$f(x) = \frac{x}{x^2 + 3}$$

6.11 Étudier le signe, la croissance et la convexité des fonctions suivantes. Esquisser leur graphe.

1) 
$$f(x) = \frac{1}{4}x^2 + x + 1$$

2) 
$$f(x) = -x^2 + x + 2$$

3) 
$$f(x) = x^3 - 3x$$

4) 
$$f(x) = 3x^4 + 4x^3$$

5) 
$$f(x) = -\frac{1}{9}(x^2 - 2x + 1)(2x + 7)$$
 6)  $f(x) = \frac{1}{6}(2x^3 - 3x^2 - 12x + 18)$ 

6) 
$$f(x) = \frac{1}{6} (2x^3 - 3x^2 - 12x + 18)$$

7) 
$$f(x) = -\frac{1}{4}(x^4 - 6x^2 + 8)$$
 8)  $f(x) = 4x^3 - 3x + 1$ 

8) 
$$f(x) = 4x^3 - 3x + 1$$

9) 
$$f(x) = (x-1)^3 (x+1)^3$$

9) 
$$f(x) = (x-1)^3 (x+1)$$
 10)  $f(x) = \frac{1}{8} (x^4 - 6x^3 + 12x^2)$ 

Déterminer les paramètres a, b, c tels que  $f(x) = ax^4 + bx^3 + cx^2$  admette 6.12 en x = 1 un point d'inflexion en lequel la tangente au graphe soit la droite d'équation y = 16 x - 5.

# Réponses

- 6.1 1) minimum absolu en 0
- 2) point critique en 0
- 3) maximum local en 0 minimum local en  $\frac{2}{3}$

- 6.2 1) c = 1
- 3) La tangente au graphe de f en c est parallèle à la corde AB.
- 6.5

  - 1) f'(x) = 2x + 5  $-\frac{-\frac{5}{2}}{+}$   $(-\frac{5}{2}; -\frac{21}{4})$  minimum

  - 2)  $f'(x) = 3x^2 + 3$  + -3 -2 + -3 -2 +

3) 
$$f'(x) = x^2 + 5x + 6$$

 $(-3; -\frac{7}{2})$  maximum  $(-2; -\frac{11}{3})$  minimum

5) 
$$f'(x) = \frac{-22}{(2x-3)^2}$$
  $-\frac{\frac{3}{2}}{\| - \|}$ 

6) 
$$f'(x) = 3(x-1)^4 (2x+1)^3 (6x-1)$$

$$+ \frac{-\frac{1}{2}}{-\frac{1}{6}} + \frac{1}{6} + \frac{1}{4} +$$

7) 
$$f'(x) = 5x^4 - 20x^3 + 15x^2$$
  $+$  0 + 1 - 3 +  $+$  (0;1) replat (1;2) maximum (3;-26) mininum

8) 
$$f'(x) = \frac{3x^4 - 3}{x^2}$$
  $+ \frac{-1}{x^2}$   $-\frac{1}{x^2}$   $+ \frac{-1}{x^2}$   $+ \frac{-1$ 

3) aucune 
$$\mid \frac{1}{4}$$

6.7 
$$\frac{1,0000000000003}{1+1,000000000003^2}$$

6.8 
$$k = -2$$

**6.10** 1) 
$$f''(x) = 6x$$
  $-\frac{0}{100} + \frac{1}{100} + \frac{1}{100} = 6x$  (0;0) point d'inflexion

2) 
$$f''(x) = \frac{2(x^3 - 8)}{x^3} + 0 - 2 + (2;0)$$
 point d'inflexion

3) 
$$f''(x) = 6x - 6$$
  $-\frac{1}{x^2 + x^2}$   $(1; -2)$  point d'inflexion

 $(-3; -\frac{1}{4}), (0; 0)$  et  $(3; \frac{1}{4})$  points d'inflexion

6.11 1) 
$$f(x) = \frac{1}{4}(x+2)^2$$

$$+ \frac{-2}{+} + \longrightarrow$$

$$f'(x) = \frac{1}{2}(x+2)$$

$$- \frac{-2}{+} + \longrightarrow$$

$$(-2;0) \text{ minimum}$$





2) 
$$f(x) = -(x+1)(x-2)$$

$$f'(x) = -2x + 1$$

$$+ \frac{\frac{1}{2}}{1} - \longrightarrow$$

 $(\frac{1}{2};\frac{9}{4})$  maximum

$$f''(x) = -2$$



$$f'(x) = 3(x+1)(x-1)$$
+ -1 - 1 +

$$(-1;2)$$
 maximum

(1;-2) minimum

(0;0) point d'inflexion





(-1;-1) minimum

 $(0\,;0)$  tangente horizontale

$$f''(x) = 12 x (3 x + 2)$$

$$+ \frac{-\frac{2}{3}}{3} - \frac{0}{3} + \longrightarrow$$

 $(-\frac{2}{3}\,;-\frac{16}{27})$  et  $(0\,;0)$  points d'inflexion



5) 
$$f(x) = -\frac{1}{9} (x - 1)^2 (2x + 7)$$

$$+ \frac{-\frac{7}{2}}{1} - \frac{1}{1} - \longrightarrow$$

$$f'(x) = -\frac{2}{3} (x + 2) (x - 1)$$

$$f'(x) = -\frac{1}{3}(x+2)(x-1)$$

$$-\frac{-2}{3} + \frac{1}{3} - \frac{1}{3}$$

(-2; -3) minimum (1; 0) maximum

$$f''(x) = -\frac{2}{3}(2x+1) + \frac{-\frac{1}{2}}{1} - \longrightarrow$$

 $\left(-\frac{1}{2}; -\frac{3}{2}\right)$  point d'inflexion





$$f'(x) = (x+1)(x-2)$$
+ -1 - 2 +

 $(-1;\frac{25}{6})$  maximum  $(2;-\frac{1}{3})$  minimum

$$f''(x) = 2x - 1 \\ - \frac{\frac{1}{2}}{1} + \cdots$$

 $(\frac{1}{2}; \frac{23}{12})$  point d'inflexion





$$f'(x) = x (3 - x^{2})$$

$$+ \frac{-\sqrt{3}}{|} - \frac{0}{|} + \frac{\sqrt{3}}{|} - \longrightarrow$$

 $(-\sqrt{3};\frac{1}{4})$  et  $(\sqrt{3};\frac{1}{4})$  maxima (0;-2) minimum

$$f''(x) = 3(1+x)(1-x)$$
-\frac{-1}{1} + \frac{1}{1} - \frac{-}{1}

 $(-1; -\frac{3}{4})$  et  $(1; -\frac{3}{4})$  points d'inflexion



8) 
$$f(x) = (x+1)(2x-1)^2$$

$$f'(x) = 3(2x+1)(2x-1) + \frac{-\frac{1}{2}}{2} + \frac{1}{2} +$$

 $\left(-\frac{1}{2};2\right)$  maximum;  $\left(\frac{1}{2};0\right)$  minimum

(0;1) point d'inflexion



9) 
$$f(x) = (x-1)^3 (x+1)$$
  
 $+ \frac{-1}{x} - \frac{1}{x} + \frac{1}{x}$ 

$$f'(x) = 2(x-1)^{2}(2x+1)$$

$$-\frac{1}{2} + \frac{1}{1} + \longrightarrow$$

 $(-\frac{1}{2}; -\frac{27}{16})$  minimum

(1;0) tangente horizontale

$$f''(x) = 12 x (x - 1)$$
+ 0 - 1 +

(0;-1) et (1;0) points d'inflexion



10) 
$$f(x) = \frac{1}{8}x^2(x^2 - 6x + 12)$$
 $+ 0$ 
 $+ \longrightarrow$ 

$$f'(x) = \frac{1}{4} x (2 x^2 - 9 x + 12)$$

(0;0) minimum

$$f''(x) = \frac{3}{2}(x-1)(x-2)$$
+ \frac{1}{2} + \frac{2}{2} +

 $(1;\frac{7}{8})$  et (2;2) points d'inflexion



**6.12** 
$$f(x) = x^4 - 8x^3 + 18x^2$$