ANALOG ELECTRONICS PROJECT REPORT

12V DC TO 220V AC CONVERTER(INVERTER)

Submitted To: Dr Neeta Pandey

Submitted By:

Siddhant Verma(2K18/EC/167) Siddharth Rajput(2K18/EC/168) Siddharth Mehra(2K18/EC/169) Souradip Biswas(2K18/EC/170)

ACKNOWLEDGEMENT

We would like to thank our faculty in charge Dr. Neeta Pandey Ma'am who continuously guided us and without whose support it would not have been possible to complete the project successfully.

AIM

To create an inverter circuit using MOSFETs, BJTs, transformer, capacitors and resistors.

THEORY & CIRCUIT DIAGRAM

Inverters are often needed at places where it is not possible to get AC supply from the Mains. An inverter circuit is used to convert the DC power to AC power. Inverters can be of two types True/pure sine wave inverters and quasi or modified inverters. These true /pure sine wave inverters are costly, while modified or quasi inverters are inexpensive.

These modified inverters produce a square wave and these are not used to power delicate electronic equipment. A simple voltage driven inverter circuit using power transistors as switching devices is build, which converts 12V DC signal to single phase 220V AC.

Principle

The basic idea behind every inverter circuit is to produce oscillations using the given DC and apply these oscillations across the primary of the transformer by amplifying the current. This primary voltage is then stepped up to a higher voltage depending upon the number of turns in primary and secondary coils.

A 12V DC to 220 V AC converter can also be designed using simple transistors. It can be used to power lamps up to **35W** but can be made to drive more powerful loads by adding more MOSFETS.

The inverter implemented in this circuit is a square wave inverter and works with devices that do not require pure sine wave AC.

Working

The circuit can be divided into three parts: oscillator, amplifier and transformer. A 50Hz oscillator is required as the frequency of AC supply is 50Hz.

A stable multi vibrator

This can be achieved by constructing an unstable multivibrator which produces a square wave at 50Hz. In the circuit, R1, R2, R3, R4, C1, C2, Q4 and Q3 form the oscillator.

Each transistor produces inverting square waves. The values of R4, R3 and C1 (R4, R3 and R1, R2 and C2, C1 are identical) will decide the frequency. The formula for the frequency of square wave generated by the unstable multivibrator is

$$F = 1/(1.38*R4*C1)$$

The inverting signals from the oscillator are amplified by the Power MOSFETS Q1 and Q4. These amplified signals are given to the step-up transformer with its centre tap connected to 12V DC.

APPARATUS REQUIRED

> NPN transistors - 2 (2n2222a)

P2N2222A

Amplifier Transistors

NPN Silicon

Features

• These are Pb-Free Devices*

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	75	Vdc
Emitter - Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	Ic	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

MOTOROLA SC XSTRS/R F

14E D 6367254 0089709 3

MOTOROLA SEMICONDUCTOR EXECUTION IN TECHNICAL DATA

IRF840 IRF841 IRF842 IRF843

N-CHANNEL ENHANCEMENT-MODE SILICON GATE TMOS POWER FIELD EFFECT TRANSISTOR

These TMOS Power FETs are designed for high voltage, high speed power switching applications such as switching regulators, converters, solenoid and relay drivers.

- Silicon Gate for Fast Switching Speeds
- Low rDS(on) to Minimize On-Losses. Specified at Elevated Temperature
- Rugged SOA is Power Dissipation Limited
- Seurce-te-Drain Diode Characterized for Use With Inductive Loads

MAXIMUM RATINGS

		IRF				Unit
Rating	Symbol	840	841	842	843	Unit
Drain-Source Voltage	VDSS	500	450	500	450	Vdc
Drain-Gate Voltage (Rgs = 1.0 mΩ)	VDGR	500	450	500	450	Vdc
Gate-Source Voltage	VGS	≘ 20			Vdc	
Drain Current Continuous Pulsed	lp low	8.0 32		7.0 28		Ada
Total Power Dissipation © T _C = 25°C Denate above 25°C	PD	125 1.0		Watte W/°C		
Operating and Storage Temperature Range	TJ, T _{stg}	-55 to 150		°C		

THERMAL CHARACTERISTICS

Thermal Resistance Junction to Case Junction to Ambient	Rajc Raja	1.0 62.5	*C/W
Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds	TL	276	°C

See the MTP8N45 Designer's Date Sheet for a complete set of design curves for the reduct on this data sheet. The Designer's Data Sheet permits the design of most circuits entirely from the infor-

mation presented. Limit curves — representing boundaries on device characteristics— are given to facilitate "worst case" design.

Part Number	Voss	fDS(on)	Ip		
IRF840	500 V	0.85 Ω	8.0 A		
IRF841	450 V	0.85 Ω	8.0 A		
IRF842	500 V	1.10 Ω	7.0 A		
IRF843	450 V	1.10 Ω	7.0 A		

MOTOROLA SC' XSTRS/R F 7-39-/3 14E D 6367254 0089710 T

Character	(T _C = 25°C unless otherwise noted) istic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage (VGS = 0, I _D = 0.25 mA)	IRF841, IRF843 IRF840, IRF842	Vienioss	450 500	=	Vdc	
Zero Gate Voltage Drain Current (Vps = Rated Vpss, Vqs = 0) (Vps = 0.8 Rated Vpss, Vgs = 0, TJ = 12	25°C)	loss	=_	0.25 1.00	mAde	
Gate-Body Leakage Current, Forward (Vost = 20 Vdc, Vps = 0)		IGSSF	-	500	nAdo	
Gate-Body Leakage Currons, Reverse (VGSR = 20 Vdc, VDS = 0)		IGSSR		500	nAdo	
ON CHARACTERISTICS*						
Gate Threshold Voltage (Vpg = Vgg, Ip = 0.25 mA)		V _{GS(th)}	2.0	4.0	Vdo	
Static Drain-Source On-Resistance (VGS = 10 Vds, I _D = 4.0 Add)	IRF840, IRF841 IRF842, IRF843	*DS(on)	=	0.85 1.0	Ohen	
On-State Drain Current (VGS = 10 V) (VGS > 6 8 Vdc) (VGS > 7.0 Vdc)	IRF840, IRF841 IRF842, IRF843	ID(an)	8.0 7.0		Ade	
Forward Transconductance (Vps > 6.8 V. lp = 4.0 A) (Vps > 7.0 V. lp = 4.0 A)	IRF840, IRF841 IRF842, IRF843	9FS	4.0 4.0	=	mhos	
DYNAMIC CHARACTERISTICS					_	
Input Capacitance	(V _{DS} = 25 V, V _{GS} = 0,	Cias		1600	pF	
Output Capacitance	f = 1.0 MHz)	Coss		360		
Reverse Transfer Capacitance		Cres		150		
SWITCHING CHARACTERISTICS*						
Turn-On Delay Time		td(on)		35	ns	
Rise Time	(V _{DO} ~ 200 V, I _D = 4.0 Apk,	l _r		15		
Turn-Off Delay Time	R _{gen} = 4.7 (hms)	td(aff)		90	l	
Fall Time		4		30		
Total Gate Charge	(VGS = 10 V, VDS = 0.8 ×	0.9	40 (Typ)	60	nC.	
Gate-Source Charge	Rated VDSS, Ip = Rated Ip)	Ogs	20 (Typ)		-	
Gate-Drain Charge		Q _{pd}	20 (Typ)			
SOURCE DRAIN DIODE CHARACTERIS	TICS*					
Forward On-Voltage	(is - Rated ip,	VsD		1.9 (1)	Vdc	
Forward Turn-On Time	V _{GS} = 0)	ton		stray inducts		
Reverse Recovery Time		%r	600 (Typ)		ns	
INTERNAL PACKAGE INDUCTANCE (T	0-220)					
Internal Drain Inductance (Measured from the contact screw o (Measured from the drain lead 0.25"	n tab to center of die) from package to center of die)	Ld	3.5 (Typ) 4.5 (Typ)	=	nH	
Internal Source Inductance	5" from package to source bond pad)	Lg	7.5 (Typ)	-		

(Measured from the source lead 0.25" from package to so *Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%. (1) Add 0.1 V for IRF040 and IRF841.

➤ Perforated board – 1

➤ Resistors of values: 3.3k Ohm x2, 470-ohm x2, 1.2k ohm.

> 12-0-12 transformer 3 amp

➤ Capacitor: 4.7 uF /25 Vx2

- ➤ LED
- ➤ Connecting wires
- ➤ 12v battery
- ➤ Solder alloy
- ➤ Soldering iron

PROCEDURE

The circuit is assembled as shown in the circuit diagram.

PSpice Simulation Circuit

CALCULATIONS

For a frequency of 50Hz F=50

So, by using the above-mentioned formula

F = 1/(1.38*R4*C1)

R4*C1=0.0144

Taking the value of capacitor as 4.7uF we find out that the resistor required is of 3083-ohm i.e. near about 3k ohm so we can use 3.3k ohm resistor to form the required unstable multivibrator.

RESULT

220v ac output at 50Hz is obtained.

In this way an inverter (is made for devices like Bulb, CFL, LED etc.) was designed.

LIMITATIONS

The devices which are very sensitive to ac voltage or require pure sinusoidal ac voltage cannot be driven using this circuit because square wave is used as an approximate of sinusoidal ac voltage.