Midsem: CS 754, Advanced Image Processing, 29th Feb

Instructions: There are 120 minutes for this exam. This exam is worth 10% of your final grade. Attempt all questions. Write brief answers. Wherever necessary, please write equations with the meaning of all terms clearly stated. You can quote results/theorems done in class directly without proving/justifying them. Each question carries 10 points.

- 1. Consider video compressive sensing using a Rice single pixel camera versus using a snapshot camera (i.e. the Hitomi architecture). List any three differences between these two architectures and/or the reconstruction procedures (note: a total of three differences). [5+5=10 points]
- 2. Consider that you wish to minimize the cost function $J(\boldsymbol{\theta}) \triangleq \|\boldsymbol{y} \boldsymbol{A}\boldsymbol{\theta}\|_2^2$ using the majorization minimization technique used in ISTA. Consider a majorizer function $M_k(\boldsymbol{\theta})$ at the k^{th} iteration. What are the criteria that M_k must satisfy? Show that $J(\boldsymbol{\theta}_{k+1}) \leq J(\boldsymbol{\theta}_k)$ where the subscripts stand for the iteration index, when you iteratively minimize the majorizer. [5+5=10 points]
- 3. State whether true or false and justify: In orthogonal matching pursuit for estimating sparse $\boldsymbol{\theta} \in \mathbb{R}^n$ from measurements of the form $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{\theta}$ where $\boldsymbol{y} \in \mathbb{R}^m$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$; $m \ll n$, the same column of the matrix \boldsymbol{A} never gets selected in more than one iteration.
- 4. Let $\boldsymbol{\theta}^{\star}$ be the result of the following minimization problem: (P1)min $\|\boldsymbol{\theta}\|_1$ such that $\|\boldsymbol{y} \boldsymbol{\Phi}\boldsymbol{\Psi}\boldsymbol{\theta}\|_2 \leq \varepsilon$, where \boldsymbol{y} is an m-element measurement vector of the form $\boldsymbol{y} = \boldsymbol{\Phi}\boldsymbol{x} + \boldsymbol{\eta}$, $\boldsymbol{\Phi}$ is a $m \times n$ measurement matrix (m < n), $\boldsymbol{\Psi}$ is a $n \times n$ orthonormal basis in which n-element signal \boldsymbol{x} has a sparse representation of the form $\boldsymbol{x} = \boldsymbol{\Psi}\boldsymbol{\theta}$. Note that ε is an upper bound on the magnitude of the noise vector $\boldsymbol{\eta}$.
 - Theorem 3 we studied in class states the following: If Φ obeys the restricted isometry property with isometry constant $\delta_{2s} < \sqrt{2} 1$, then we have $\|\boldsymbol{\theta} \boldsymbol{\theta}^{\star}\|_{2} \le C_{1}s^{-1/2}\|\boldsymbol{\theta} \boldsymbol{\theta}_{s}\|_{1} + C_{2}\varepsilon$ where C_{1} and C_{2} are functions of only δ_{2s} and where $\forall i \in \mathcal{S}, [\boldsymbol{\theta}_{s}]_{i} = \theta_{i}; \forall i \notin \mathcal{S}, [\boldsymbol{\theta}_{s}]_{i} = 0$. Here \mathcal{S} is a set containing the s largest magnitude elements of $\boldsymbol{\theta}$.

Also consider the ℓ_0 -norm minimization problem: P0 :min $\|\boldsymbol{\theta}\|_0$ such that $\|\boldsymbol{y} - \boldsymbol{\Phi}\boldsymbol{\Psi}\boldsymbol{\theta}\|_2 \leq \varepsilon$.

Answer the following questions in the case when θ is s-sparse and there is no noise in the measurements. [5+5=10 points]

- (a) Under what condition on δ_{2s} are the solutions of the P_0 and P_1 problems the same? Give a very brief justification.
- (b) Under what condition on δ_{2s} is the solution of P_0 unique? Give a very brief justification.
- 5. Refer to theorem 3 in the question above. It appears that the upper bound on $\|\boldsymbol{\theta} \boldsymbol{\theta}^{\star}\|_{2}$ becomes tighter as s increases. This seems to go against the spirit of compressed sensing which states that sparser vectors are reconstructed better. Explain how this contradiction is resolved. [10 points]
- 6. Consider that you are given the Radon projections of an image f(x, y) (defined on domain Ω), in directions $\theta_1, \theta_2, ..., \theta_K; K > 1$. Without reconstructing the image, state how you will infer the following properties of the image directly from the projections? [3+3+4=10 points]
 - (a) $\sum_{(x,y)\in\Omega} f(x,y)$
 - (b) A slice of the Fourier transform of f in direction θ_1 in the frequency plane and passing through the origin of the frequency plane
 - (c) The order-2 moments of the image. Recall that an image moment of order k is any moment $\nu_{p,k-p}$ of order (p,k-p) (where $p \leq k$) defined as $\nu_{p,k-p} = \sum_{(x,y)\in\Omega} x^p y^{k-p} f(x,y)$

7. Write down the objective function (with the meaning of each term clearly stated) for compressed sensing based, coupled tomographic reconstruction of three structurally similar 2D image slices x_1, x_2, x_3 (of equal size) from their respective tomographic measurements $y_1 = R_1x_1, y_2 = R_2x_2, y_3 = R_3x_3$ where R_1, R_2, R_3 are the respective Radon transform matrices. State the advantages of the coupled reconstruction over independent reconstruction. What would happen to the coupled reconstruction if $R_1 = R_2 = R_3$? What would happen to the coupled reconstruction if the three slices are not structurally similar? [2.5+2.5+2.5+2.5=10 points]