Obliczenia Naukowe lista 1

Mateusz Tofil 5 listopada 2021

1 ZADANIE 1 1

1 Zadanie 1

1.1 Opis zadania

Jest to powtórka zadania z listy poprzedniej - listy 1 zadania 5. Jedyna różnica jaka występuje, to usunięcie z x_4 ostatniej cyfry tj. 9. i z x_5 usunąc ostatnią 7.

1.2 Metoda rozwiązania

Metoda niczym się nie różni od wcześniejszego zdaniaz wcześniejszej liczby. Dane wejśćiowe są tylko inne - a dokładniej tylko x_4 i x_5 . Rozwiązanie znajduję się w pliku ${\tt zad1.j1}$ i jest dokłądną duplikacją kodu z zadania 5 z poprzedniej listy ze zmienionymi danymi wejściowymi.

1.3 Otrzymane wyniki

Tabele poniżej przedstawiając sumy obliczone tak jak w zadaniu 5 z listy 1, natomiast lekko zmienionymi wartościami na wejśćiu. Wyniki przedstawione dla arytmetyki Float64 i Float32.

podpunkt	sumy z listy 2	sumy z listy 1
a	-0.004296342739891585	1.0251881368296672e-10
b	-0.004296342998713953	-1.5643308870494366e-10
c	-0.004296342842280865	0.0
d	-0.004296342842280865	0.0

Tablica 1: Porównanie sum z poprzedniej listy i obecnej dla Float64

podpunkt	suma z listy 2	suma z listy 1
a	-0.3472038161889941	-0.3472038161853561
b	-0.3472038162872195	-0.3472038162872195
c	-0.5	-0.5
d	-0.5	-0.5

Tablica 2: Wyniki dla Float32

1.4 Wnioski

Zmiana wartości liczby, rzędu nawet 2^{-10} wpływa znacząco na wyniki ostateczny. Niewielkie zmiany spowodowały duże względne odkształcenia wyników, zatem możemy stwierdzić, że zadanie jest źle uwarunkowane.

2 ZADANIE 2 2

2 Zadanie 2

2.1 Opis zadania

Należało narysować funckję $f(x) = e^x ln(1 + e^{-x})$ w conajmniej dwóch rożnych program do rysowania wykresu, zbadać faktyczną granicę funkcji i porównać z otrzymanymi wykresami.

2.2 Metoda rozwiązania

Funkcje f(x) wpisać do programu umożliwiającego rysowanie wykresów. Programy, które wybrałem do narysowania funkcji f(x) to: WolframAplha, Grapher oraz postanowiłem napisać programy przedstawiający wykresy w języku programowania Python z wykorzystaniem biblioteki matplotlib in numpy

2.3 Otrzymane wyniki

W programie Grapher należało wpisać funkcję w wyznaczone miejsce. Następnie przeskalować oś x, wykonując następujące czynności: Viev > Frame Limit ... i zmienić skalowanie.Na stronie WolframAplha należało wpisać plot <funkcja> from -5 to 40. Program napisany w pythonie znajduję się w pliku o ścieżce ./zad2/plotpython.py

Obliczmy teraz granicę funkcji:

$$\lim_{x \to \infty} e^x \ln(e^{-x} + 1) = \lim_{x \to \infty} \frac{e^x \ln(e^{-x} + 1)e^{-x}}{e^{-x}} = \lim_{x \to \infty} \frac{\ln(e^{-x} + 1)}{e^{-x}} \stackrel{H}{=} \lim_{x \to \infty} \frac{\frac{d}{dx} \ln(e^{-x} + 1)}{\frac{d}{dx}e^{-x}} = \lim_{x \to \infty} \frac{-\frac{e^{-x}}{e^{-x} + 1}}{-e^{-x}} = \lim_{x \to \infty} \frac{1}{e^{-x} + 1} = 1 \quad (1)$$

Jak łatwo zauważyć, granica funkcji, którą obliczyliśmy powyżej nie pokrywa się z granicą funkcji odczytując ją z wykresu. Na wykresie granica funkcji dąży do 0 natomiast z matematycznego punktu widzenia dąży do 1. Powyżej argumnetów powyżej 30 obserwujemy, że wykresy zaczynają pokazywać nieprawidłowe wyniki.

2.4 Wnioski

Wartości e^{-x} dla każdego następnego argumentu zbliżając się do epsilona maszynowego, po przekroczeniu epsilona, funkcja spada do zera. Przed przekroczeniem epsilona maszynowego, funkcja dąży do jedynki, tak jak powinna.

2 ZADANIE 2 3

Rysunek 1: Wykres funkcji $f(\boldsymbol{x})$ w programie Grapher

Rysunek 2: Wykres funkcji $f(\boldsymbol{x})$ w programie Wolfram
Aplha

2 ZADANIE 2 4

Rysunek 3: Wykres funkcji $f(\boldsymbol{x})$ w języku Python z wykorzystamiem biblioteki matplotlib

wykładnik	exp(wykladnik)	exp(wykladnik) - epsilon
30	9.357622968840175e-14	9.335418508347672e-14
31	3.442477108469977e-14	3.4202726479774736e-14
32	1.2664165549094176e-14	1.2442120944169144e-14
33	4.658886145103398e-15	4.4368415401783664e-15
34	1.713908431542013e-15	1.4918638266169817e-15
35	6.305116760146989e-16	4.084670710896676e-16
36	2.319522830243569e-16	9.907678099325606e-18
37	8.533047625744066e-17	-1.3671412866759066e-16
38	3.1391327920480296e-17	-1.90653277004551e-16
39	1.1548224173015786e-17	-2.104963807520155e-16
40	4.248354255291589e-18	-2.1779625066973972e-16

Tablica 3: Wartości $\exp()$ dla kolejnych argumentów porównanie z epsilonem maszynowym