Machine Learning – A – January 20, 2020

Time limit: 2 hours.

Last N	ame	First Name	Matricola
·	9	e exam for ML 2019/20, write be attend the course). Please speci	•

EXERCISE A1

Assume the following data about an online shop have been collected:

- Customers are: 25% young men (class YM); 45% young women (YW); 30% neither of the above (O).
- Young men buy: Shoes 30%; Trousers 50%; Shirts 20%.
- Young women buy: Shoes 50%; Trousers 30%; Shirts 20%.
- Other customers buy: Shoes 30%; Trousers 30%; Shirts 40%.
- 1. If you receive an order for trousers, which is the most probable class the customer who issued the order belongs to? Why?
- 2. Which is, and how do you compute, the likelihood that an order is for trousers?

EXERCISE A2

- 1. Explain when a dataset is linearly separable
- 2. Draw an example of a linearly separable dataset in a 2D setting, with two classes $C = \{+, -\}$
- 3. Draw an example of a non linearly separable dataset in a 2D setting, with two classes $C = \{+, -\}$
- 4. For each dataset shown above, draw a possible solution based on SVM and explain how it can be obtained.

EXERCISE B1

Consider the following data $\mathbf{x}_1, \dots, \mathbf{x}_N$ where the intrinsic dimensions are described in terms of a 2D translation and rotation (3 parameters) and the set of principal components $\mathbf{u}_1, \dots, \mathbf{u}_M$ recovered from this data.

- How can these points be expressed in the basis defined by the principal components? Provide the relative formula.
- Is PCA able to recover a 3 dimensional space that fully describes the data (apart from noise)? Explain your answer.

EXERCISE B2

Consider the following Convolutional Neural Network acting on images of dimension $32 \times 32 \times 3$:

conv1	5×5 kernel and 16 feature maps with padding 2 and stride 1
relu1	acting on 'conv1'
pool1	2×2 max pooling with stride 2 acting on 'relu1'
conv2	3×3 kernel and 32 feature maps with padding 0 and stride 1 acting on 'pool1'
relu2	acting on 'conv2'
pool2	2×2 max pooling with stride 2 acting on 'relu2'
conv3	5×3 kernel and 64 feature maps with padding 0 and stride 2 acting on 'pool2'
relu3	acting on 'conv3'
fc1	with 200 units acting on (flattened) 'relu3'
fc2	with 10 units acting on 'fc1'
output	softmax acting on 'fc2'

- 1. Compute the number of trainable parameters for each layer of the network.
- 2. What is a suitable loss function to train the network defined above?

EXERCISE C1

Consider the dataset $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$ where each tuple (\mathbf{x}_n, t_n) corresponds to an input value $\mathbf{x}_i \in \mathbb{R}^3$ and the corresponding target value $t_i \in \mathbb{R}$.

- 1. Provide the definition of a linear regression model (in its most general form) with parameters **w** that can be used for estimating a non-linear function y such that $t \approx y(\mathbf{x}, \mathbf{w})$.
- 2. Provide a suitable loss function and sketch an algorithm for estimating the parameters of the model.

EXERCISE C2

Consider the following data set for binary classification (white vs black circles).

- 1. Draw in each of the diagrams below a possible solution for a method based on Perceptron with very small learning rate and a possible solution for a method based on SVM.
- 2. Describe the difference between the two solutions and briefly explain how these are obtained with the two methods.
- 3. Discuss which solution would you prefer and why.

