Advanced Power Bl Modeling Techniques

by Martin Schoombee

THANK YOU, SPONSORS!

Rockstar Sponsors!

THANK YOU, SPONSORS!

Gold Sponsors

Breakfast Sponsor

THANK YOU, SPONSORS!

Silver Sponsors

Bronze Sponsors

About Me

"I help people make sense of their data"

My blog: martinschoombee.com

My company: 28twelve.consulting

Tweet me: @sqlmartin

Agenda

- Measure Tables
- Dynamic Currency Conversions
- Role-Playing Dimensions

Measure Table?

Qty	Ext Price	Profit
2,624,338	\$53,407,430.60	\$21,929,432.50
525,778	\$11,849,641.64	\$6,071,706.15
5,696,347	\$115,763,819.96	\$51,663,616.75
104,165	\$17,022,547.25	\$6,064,425.50
8,950,628	\$198,043,439.45	\$85,729,180.90
	2,624,338 525,778 5,696,347 104,165	2,624,338 \$53,407,430.60 525,778 \$11,849,641.64 5,696,347 \$115,763,819.96

Measure Name	Clothing Supplier	Novelty Goods Supplier	Packaging Supplier	Toy Supplier	Total
Qty	2,624,338	525,778	5,696,347	104,165	8,950,628
Ext Price	53,407,431	11,849,642	115,763,820	17,022,547	198,043,439
Profit	21,929,433	6,071,706	51,663,617	6,064,426	85,729,181

Clothing Supplier			Novelty Goods Supplier			
Qty	Ext Price	Profit	Qty	Ext Price	Profit	
2,624,338	\$53,407,430.60	\$21,929,432.50	525,778	\$11,849,641.64	\$6,071,706.15	

Create a calculated table

ROW DAX Function (Table manipulation)

```
    ≡ Syntax | Return values | Examples | Articles
```

Returns a single row table with new columns specified by the DAX expressions.

Syntax

PARAMETER	ATTRIBUTES	DESCRIPTION
Name	Repeatable	Name of the new column.
Expression	Repeatable	The expression for the column.

Return values

TABLE An entire table or a table with one or more columns.

A single row table.

UNION DAX Function (Table manipulation)

≡ Syntax | Return values | Remarks | Related

Returns the union of the two tables whose columns match.

Syntax

UNION (<Table> [, <Table> [, ...]])

PARAMETER	ATTRIBUTES	DESCRIPTION
Table	Repeatable	A table that will participate in the crossjoin union.

Return values

TABLE An entire table or a table with one or more columns.

A table that contains all the rows from each of the table expressions.

```
My Measures =
UNION
(
    ROW("Measure Name", "Qty", "Sort Order", 1)
, ROW("Measure Name", "Ext Price", "Sort Order", 2)
, ROW("Measure Name", "Profit", "Sort Order", 3)
)
```

DATATABLE DAX Function (Table manipulation)

≡ Syntax | Return values | Remarks | Examples | Articles

Returns a table with data defined inline.

Syntax

DATATABLE (<name>, <type> [, <name>, <type> [, ...]], <data>)

PARAMETER	ATTRIBUTES	DESCRIPTION
name	Repeatable	A column name to be defined.
type	Repeatable	A type name to be associated with the column.
data		The data for the table.

Return values

TABLE An entire table or a table with one or more columns.

A table declaring an inline set of values.

```
My Measures =
DATATABLE
       "Measure Name", STRING
"Sort Order", INTEGER
             {"Qty", 1}
{"Ext Price", 2}
{"Profit", 3}
```

Table Constructor

```
12/09/2018 • 2 minutes to read • Contributors \land 🔰
```

Returns a table of one or more columns.

Syntax

```
DAX

{ <scalarExpr1>, <scalarExpr2>, ... }
{ ( <scalarExpr1>, <scalarExpr2>, ... ), ( <scalarExpr1>, <scalarExpr2>, ... ), ... }
```

Parameters

Term	Definition
scalarExprN	Any DAX expression that returns a scalar value.

Return value

A table of one or more columns. When there is only one column, the name of the column is Value. When there are N columns where N > 1, the names of the columns from left to right are Value1, Value2, ..., ValueN.

```
Measures =
 ("Qty", 1)
("Ext Price",
 ("Profit", 3)
```

Define a measure

```
Value =
SWITCH
    FIRSTNONBLANK('My Measures'[Measure Name])
    "Qty", [Qty]
"Ext Price", [Ext Price]
    "Profit", [Profit]
    BLANK()
```

Supplier Category	Qty	Ext Price	Profit
Clothing Supplier	2,624,338	\$53,407,430.60	\$21,929,432.50
Novelty Goods Supplier	525,778	\$11,849,641.64	\$6,071,706.15
Packaging Supplier	5,696,347	\$115,763,819.96	\$51,663,616.75
Toy Supplier	104,165	\$17,022,547.25	\$6,064,425.50
Total	8,950,628	\$198,043,439.45	\$85,729,180.90

Measure Name	Clothing Supplier	Novelty Goods Supplier	Packaging Supplier	Toy Supplier	Total
Qty	2,624,338	525,778	5,696,347	104,165	8,950,628
Ext Price	53,407,431	11,849,642	115,763,820	17,022,547	198,043,439
Profit	21,929,433	6,071,706	51,663,617	6,064,426	85,729,181

Dynamic Currency Conversion

Demo Time

Create a filter dimension

Create a bridge table

Add a relationship to the Date entity

Create the measures

```
Exchange Rate = MAX('Currency Exchange Rate'[Exchange Rate])
```

```
New Ext Price =
ΙF
    HASONEVALUE('Currency'[Destination Currency])
    SUMX
        Sales
        [Ext Price] * [Exchange Rate]
    CALCULATE
        SUMX
            sales
            [Ext Price] * [Exchange Rate]
        'Currency'[Destination Currency] = "USD"
```

Demo Time

Role-Playing Dimensions

Role-Playing What?


```
Ext Price by Delivery Date =
CALCULATE
    [Ext Price]
    USERELATIONSHIP(Sales[Delivery Date], 'Date'[Date])
Ext Price by Invoice Date =
CALCULATE
    [Ext Price]
    USERELATIONSHIP(Sales[Invoice Date], 'Date'[Date])
```

Demo Time

Create a filter dimension

Create a measure that's "Date aware"

```
Ext Price - Date Aware =
VAR
    SelectedDate = SELECTEDVALUE('Date Filter'[Date To Filter], "Invoice Date")
VAR
    UseInvoiceDate =
                        CALCULATE
                             [Ext Price]
                             USERELATIONSHIP(Sales[Invoice Date], 'Date'[Date])
VAR
    UseDeliveryDate =
                        CALCULATE
                             [Ext Price]
                             USERELATIONSHIP(Sales[Delivery Date], 'Date'[Date])
RETURN
    SWITCH
        SelectedDate
        "Invoice Date"
        UseInvoiceDate
        "Delivery Date"
        UseDeliveryDate
        UseInvoiceDate
```

About Me

"I help people make sense of their data"

My blog: martinschoombee.com

My company: 28twelve.consulting

Tweet me: @sqlmartin

