MATH 200, Fall Semester, 2017 - Final - Gregg

Name:	Score:
Instructions: Write answers carefully and in co are legible. Be sure to sign the honor code on the	emplete sentences, making sure that all work and answers e last page.
(1) (3 points) Give the definition of the inter	esection of sets X and Y .
(2) (6 points) Let $A = \{n \in \mathbb{N} \mid n < 8\}, B =$ universal set, take $U = \mathbb{N}$. Complete the f	$\{n \in \mathbb{N} \mid n > 4\}$, and $C = \{n \in \mathbb{N} \mid 4 \le n \le 10\}$. For the following:
(a) $A \cup B = $	(d) $B^C = $
(b) $A \cap B = $	(e) $ \mathcal{P}(A) = $
(c) $A \setminus B = $	(f) $A \times C$ contains ordered pairs.
(3) (10 points) Show that if $A \cap B = A$, then	$B \subseteq A$.
(4) (3 points) Give the definition of a function	on.
	elation on \mathbb{N}^2 . (A) Match each with its description. Then in the right-hand column which is left blank.
(a) $\{(m,n) \in \mathbb{N}^2 \mid n \le m\}$	(i) a relation which is not a function
(b) $\{(m,n) \in \mathbb{N}^2 \mid n-m=5\}$	(ii) $\underline{\hspace{1cm}}$ a function which is one-to-one and onto $\mathbb N$
(c) $\{(m,n) \in \mathbb{N}^2 \mid n = m-5 \}$	(iii) a function which is neither one-to-one nor onto $\mathbb N$
(d) $\{(m,n) \in \mathbb{N}^2 \mid n=m\}$	(iv) a function which is onto \mathbb{N} , but not one-to-one \mathbb{N}
(e)	(v) $\underline{\hspace{1cm}}$ a function which is one-to-one, but not onto
(6) (3 points) What are the domain and rang	ge of the relation $R = \{(m, n) \in \mathbb{N}^2 \mid m < 4, n = m^2 + 3\}$
(7) (10 points) Prove that the sets $S = \{5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10$	$\{7,\ldots\}$ and $T=\{7,14,21,28,\ldots\}$ have the same cardinality.
(8) (3 points) Give the definition of the conv	rerse of a relation R .
(9) (3 points) Complete the following definition	on: A set S is countably infinite if
(10) (3 points) Give an example of a set which	ı is
(a) finite:	
(b) countably infinite:	
(c) uncountably infinite:	

- (11) (6 points) Recall that we defined a relation \sim on the set \mathbb{N}^2 by $(m,n) \sim (p,q)$ if and only if m+q=n+p. Complete the following:
 - (a) $(7,13) \sim (13, ____)$
 - (b) $[(1,4)] \times [(2,8)] =$
 - (c) The \sim equivalence class _____ acts as the additive identity element.
- (12) (3 points) Give the definition of an equivalence relation.
- (13) (3 points) Consider the relation $R = \{(a, b) \in \mathbb{N}^2 \mid a \leq b\}$. Complete the following by filling in the blanks:

- (14) (10 points) Recall that we defined a relation \sim on the set \mathbb{N}^2 by $(m,n) \sim (p,q)$ if and only if m+q=n+p. Prove that \sim is an equivalence relation.
- (15) (3 points) Give the definition of a **group**.
- (16) (3 points) Give an example of a set which is a semi-group, but not a group. Explain briefly why it fails to be a group.
- (17) (3 points) Recall that we defined an equivalence relation \approx on $\mathbb{Z} \times \mathbb{Z} \setminus \{0\} =: \mathbb{Z}^{II}$ by $(m,n) \approx (p,q)$ if and only if mq = np. We subsequently defined addition of these \approx equivalence classes by [(m,n)] + [(p,q)] = [(mq + np, nq)]. Complete the following:
 - (a) $(a, a + 2) = (3a, ___)$
 - (b) $[(2,3)] + \underline{\hspace{1cm}} = [(1,1)]$
 - (c) $[(3,6)] < [(9, ___)]$
- (18) (10 points) Prove (a) there is an identity element for addition on the \approx equivalence classes, and that (b) each \approx equivalence class has an additive inverse.
- (19) (6 points) Sketch the line through the point (-1,0) which has slope $m = \frac{1}{5}$. Find the equation of the line and the point of intersection of the line with the unit circle which lies in the first quadrant.

- (20) (6 points) Use the interval bisection to find an approximation of $\sqrt{10}$ with error less than $\frac{1}{8}$.
- (21) (6 points) Calculate the first two approximations of $\sqrt{10}$ by Newton's method. That is, let $x_0 = 4$, then compute x_1 and x_2 by setting $x_{n+1} = x_n f(x_n)/f'(x_n)$. Is this approximation more or less accurate than the one you found in Problem 20.