РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 4

Дисциплина: Интеллектуальный анализ данных

Студент: Бармина Ольга Константиновна

Группа: НФИбд-01-19

Москва 2022

Вариант №12

- 1. Считайте из заданного набора данных репозитария UCI значения трех признаков и метки класса.
- 2. Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Если в признаках имеются пропущенные значения, то замените пропущенные значения, используя метод, указанный в индивидуальном задании. Если количество различных меток классов превышает 4, то уменьшите количество классов.
- 3. Нормализуйте признаки набора данных методом, указанным в индивидуальном задании.
- 4. Визуализируйте набор данных в виде точек трехмерного пространства с координатами, соответствующими трем признакам, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.
- 5. Используя алгоритм снижения размерности данных, указанный в индивидуальном задании, уменьшите размерность признакового пространства до двух и визуализируйте набор данных в виде точек на плоскости, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.
- 6. Используя разделение набора данных из двух признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью метода К ближайших соседей для различных значений К и определите оптимальное значение параметра К с минимальной долей ошибок.
- 7. Для найденного значения К постройте и выведите на экран отчет о классификации и матрицу ошибок.
- 8. Создайте модели классификации точек набора данных из трех признаков на базе следующих классификаторов: наивного байесовского классификатора классификатора метода К ближайших соседей для значения К, определенного в п. 6.
- 9. Используя указанный в индивидуальном задании метод валидации модели, проведите для набора данных из трех признаков оценку качества классификаторов из п. 8 относительно показателя, указанного в индивидуальном задании, и выведите на экран среднее значение и дисперсию этого показателя.

10. Определите, какой из классификаторов позволяет получить более высокое среднее значение показателя классификации, проведите классификацию точек набора данных этим классификатором и визуализируйте набор данных в виде точек трехмерного пространства с координатами, соответствующими трем признакам, отображая точки различных прогнозируемых классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

Индивидуальный вариант:

Echocardiogram Data Set

Название файла: echocardiogram.data

Ссылка: http://archive.ics.uci.edu/ml/datasets/Echocardiogram

Первый признак: fractional-shortening (столбец No 5)

(http://archive.ics.uci.edu/ml/datasets/Echocardiogram)

Второй признак: wall-motion-score (столбец No 8)

Третий признак: lvdd (столбец No 7)

Класс: still-alive (столбец No 2)

Метод обработки пропущенных значений – медиана признака

Метод нормализации признаков – нормировка по норме L1

Алгоритм снижения размерности данных – метод главных компонент (РСА)

Метод валидации модели – кросс-валидация по 10 блокам

Показатель качества модели – точность (precision)

Ввод [106]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

1. Считайте из заданного набора данных репозитария UCI значения трех признаков и метки класса.

Ввод [107]:

```
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/echocardiogram//echocardiog df = pd.read_csv(url, sep=',', header=None, on_bad_lines='skip')[[4,7,6,1]] # индексы на 1 ниже чем в задании т.к. нумерация с нуля df
```

```
4
               7
                      6
                          1
    0.260
              14
                  4.600
    0.380
              14 4.100
                          0
  2 0.260
                  3.420
    0.253
  3
              16
                  4.603
                          0
     0.160
  4
              18
                  5.750
                          1
      0.24
126
              12
                   4.72
                          1
      0.28
127
                   5.47
              11
                          0
128
      0.20 14.5
                   5.05
                          0
129
      0.14
              15
                   4.36
                          0
130
      0.15 15.5
                   4.51
                          0
```

2. Если среди меток класса имеются пропущенные значения, то удалите записи с пропущенными метками класса. Если в признаках имеются пропущенные значения, то замените пропущенные значения, используя метод, указанный в индивидуальном задании. Если количество различных меток классов превышает 4, то уменьшите количество классов.

```
Ввод [108]:
```

```
df = df.replace('?', np.NaN)
df[1] = df[1].astype(int)
df[[4,7,6]] = df[[4,7,6]].astype(float)
df.isnull().sum(axis=0)
# пустые значения в признаках присутствуют, но в метке класса отсутствуют
```

Out[108]:

```
4 7
7 3
6 10
1 0
dtype: int64
```

Ввод [109]:

```
df = df.fillna(df.median())
```

```
Ввод [110]:
```

```
df.groupby(1).count()
# βce20 2 κπαccα
```

Out[110]:

```
4 7 6
1
0 88 88 88
1 43 43 43
```

3. Нормализуйте признаки набора данных методом, указанным в индивидуальном задании.

```
Ввод [111]:
```

```
X = df[[4,7,6]]
Y = df[1]
```

Ввод [112]:

```
from sklearn.preprocessing import Normalizer

scaler = Normalizer(norm='l1').fit(X)
normalizedX = scaler.transform(X)

print(normalizedX[0:5,:])
```

```
[[0.01378579 0.74231177 0.24390244]
[0.02056277 0.75757576 0.22186147]
[0.01470588 0.7918552 0.19343891]
[0.0121308 0.76716532 0.22070387]
[0.00669176 0.75282309 0.24048515]]
```

4. Визуализируйте набор данных в виде точек трехмерного пространства с координатами, соответствующими трем признакам, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

Ввод [113]:

```
from mpl_toolkits import mplot3d

fig = plt.figure(figsize=(12,10))
ax = plt.axes(projection='3d')

xs = X[4]
ys = X[7]
zs = X[6]
scatter = ax.scatter( xs, ys, zs, c=Y,s=100 )
ax.set_xlabel('fractional-shortening')
ax.set_ylabel('wall-motion-score')
ax.set_zlabel('lvdd')
ax.set_zlabel('lvdd')
ax.set_title('data visualization')
legend1 = ax.legend(*scatter.legend_elements(), title="Classes")
ax.add_artist(legend1)

ax.view_init( azim=-120, elev=25 );
```

data visualization

5. Используя алгоритм снижения размерности данных, указанный в индивидуальном задании, уменьшите размерность признакового пространства до двух и визуализируйте набор данных в виде точек на плоскости, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

Ввод [114]:

```
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
PCA_X = pca.fit_transform(X)
PCA_X
Out[114]:
array([[-4.31440818e-01, 1.47048400e-01],
       [-4.42532933e-01, 6.51738869e-01],
       [-4.56715019e-01, 1.32562585e+00],
       [ 1.56817677e+00, 1.86820687e-01],
       [ 3.59257176e+00, -9.19821370e-01],
       [-2.43718328e+00, 3.93621348e-01],
       [ 8.08443926e+00, -5.00195172e-01],
       [-4.17741835e-01, -4.99080270e-01],
       [ 1.57833027e+00, -2.95754611e-01],
       [ 1.06623408e+00, 2.83930630e-01],
       [ 3.56011084e+00, 5.97022888e-01],
       [ 1.54606542e+00, 1.19730126e+00],
       [-4.44515353e-01, 7.49412796e-01],
       [-4.49724372e-01, 1.01114743e+00],
       [-2.73474537e+00, -1.10786562e+00],
       [-4.38048758e-01, 4.56233577e-01],
       [ 3.56869214e+00, 1.83263564e-01],
       [ 9.57967146e+00. -2.45222022e-01].
```

Ввод [115]:

```
fig, ax = plt.subplots(figsize=(12,10))
scatter = ax.scatter(PCA_X[:,0], PCA_X[:,1], s=100, c=Y, cmap=plt.cm.Dark2_r);
ax.set_xlabel("1")
ax.set_ylabel("2")
ax.set_title("Визуализация изменённого набора данных")

legend1 = ax.legend(*scatter.legend_elements(), title="Classes")
ax.add_artist(legend1)
```

Out[115]:

<matplotlib.legend.Legend at 0x1d8c2875af0>

6. Используя разделение набора данных из двух признаков на обучающую и тестовую выборки в соотношении 75% на 25%, проведите классификацию тестовой выборки с помощью метода К ближайших соседей для различных значений К и определите оптимальное значение параметра К с минимальной долей ошибок.

Ввод [116]:

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(PCA_X, Y, test_size=0.25, random_state=

X_train.shape, y_train.shape, X_test.shape, y_test.shape
```

Out[116]:

```
((98, 2), (98,), (33, 2), (33,))
```

Ввод [117]:

```
from sklearn.neighbors import KNeighborsClassifier

# k = 5
kNN_clf5 = KNeighborsClassifier(n_neighbors=5)
kNN_clf5.fit(X_train, y_train)
y_pred5 = kNN_clf5.predict(X_test)
sum(y_pred5 == y_test) / len(y_test)
```

Out[117]:

0.6060606060606061

Ввод [118]:

```
# k = 7
kNN_clf7 = KNeighborsClassifier(n_neighbors=7)
kNN_clf7.fit(X_train, y_train)
y_pred7 = kNN_clf7.predict(X_test)
sum(y_pred7 == y_test) / len(y_test)
```

Out[118]:

0.5757575757575758

Ввод [119]:

```
# k = 3
kNN_clf3 = KNeighborsClassifier(n_neighbors=3)
kNN_clf3.fit(X_train, y_train)
y_pred3 = kNN_clf3.predict(X_test)
sum(y_pred3 == y_test) / len(y_test)
```

Out[119]:

0.6363636363636364

Ввод [120]:

```
# k = 2
kNN_clf2 = KNeighborsClassifier(n_neighbors=2)
kNN_clf2.fit(X_train, y_train)
y_pred2 = kNN_clf2.predict(X_test)
sum(y_pred2 == y_test) / len(y_test)
```

Out[120]:

0.66666666666666

Ввод [121]:

```
# k = 1
kNN_clf1 = KNeighborsClassifier(n_neighbors=1)
kNN_clf1.fit(X_train, y_train)
y_pred1 = kNN_clf1.predict(X_test)
sum(y_pred1 == y_test) / len(y_test)
# получаем, что оптимальное значение k - 2
```

Out[121]:

- 0.5454545454545454
 - 7. Для найденного значения K постройте и выведите на экран отчет о классификации и матрицу ошибок.

Ввод [128]:

```
from sklearn.metrics import classification_report,confusion_matrix
print(classification_report(y_test,y_pred2))
```

	precision	recall	f1-score	support
0	0.68	0.91	0.78	23
1	0.00	0.00	0.00	10
accuracy			0.64	33
macro avg	0.34	0.46	0.39	33
weighted avg	0.47	0.64	0.54	33

Ввод [123]:

```
conf_mat=confusion_matrix(y_test,y_pred2)
print(conf_mat)
```

```
[[22 2]
[ 9 0]]
```

8. Создайте модели классификации точек набора данных из трех признаков на базе следующих классификаторов: • наивного байесовского классификатора • классификатора метода К ближайших соседей для значения К, определенного в п. 6.

Ввод [124]:

```
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25)
X_train.shape, y_train.shape, X_test.shape, y_test.shape
```

Out[124]:

```
((98, 3), (98,), (33, 3), (33,))
```

Ввод [131]:

```
from sklearn.naive_bayes import GaussianNB

nbc = GaussianNB()
nbc.fit(X_train,y_train)
y_pred_gaus = nbc.predict(X_test)
print(classification_report(y_test,y_pred_gaus))
```

	precision	recall	f1-score	support
0	0.80	0.70	0.74	23
1	0.46	0.60	0.52	10
accuracy			0.67	33
macro avg	0.63	0.65	0.63	33
weighted avg	0.70	0.67	0.68	33

Ввод [130]:

```
kNN_clf_3d = KNeighborsClassifier(n_neighbors=2)
kNN_clf_3d.fit(X_train, y_train)
y_pred_3d = kNN_clf_3d.predict(X_test)
print(classification_report(y_test,y_pred_3d))
```

precision	recall	f1-score	support
0.71	0.87	0.78	23
0.40	0.20	0.27	10
		0.67	33
0.56	0.53	0.53	33
0.62	0.67	0.63	33
	0.71 0.40 0.56	0.71 0.87 0.40 0.20 0.56 0.53	0.71 0.87 0.78 0.40 0.20 0.27 0.56 0.53 0.53

9. Используя указанный в индивидуальном задании метод валидации модели, проведите для набора данных из трех признаков оценку качества классификаторов из п. 8 относительно показателя, указанного в индивидуальном задании, и выведите на экран среднее значение и дисперсию этого показателя.

Ввод [158]:

Среднее значение для наивного байесовского классификатора: 48.17%, дисперси я: 8.75%

Ввод [159]:

Среднее значение для К ближайших соседей: 33.33%, дисперсия: 20.00%

D:\anaconda3\lib\site-packages\sklearn\metrics_classification.py:1318: Unde finedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, msg_start, len(result))

10. Определите, какой из классификаторов позволяет получить более высокое среднее значение показателя классификации, проведите классификацию точек набора данных этим классификатором и визуализируйте набор данных в виде точек трехмерного пространства с координатами, соответствующими трем признакам, отображая точки различных прогнозируемых классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.

Ввод [149]:

```
# более высокое среднее значение достигает наивный байесовский классификатор

# классификация была выполнена в n.9

fig = plt.figure(figsize=(12,10))

ax = plt.axes(projection='3d')

xs = X_test[4]

ys = X_test[6]

scatter = ax.scatter(xs, ys, zs, c=y_pred_gaus,s=100)

ax.set_xlabel('fractional-shortening')

ax.set_ylabel('wall-motion-score')

ax.set_zlabel('lvdd')

ax.set_title('data visualization')

legend1 = ax.legend(*scatter.legend_elements(), title="Classes")

ax.add_artist(legend1)

ax.view_init(azim=-120, elev=25);
```

data visualization

