

Современные системы цифрового телевидения

Старт 2-клик Стоп - 1 клик

Практическое занятие 3

Внутрикадровое сжатие видеоинформации

ФИО преподавателя: Смирнов

Александр Витальевич

e-mail: av_smirnov@mirea.ru

Введение

Тема практического занятия 3 — выполнение примера, включающего основные операции метода внутрикадрового сжатия.

В случае проведения занятия в дистанционном режиме отчет должен быть прислан на почту преподавателя. Отчет может быть выполнен на компьютере или оформлен на бумаге, а затем отсканирован или сфотографирован. Титульный лист не требуется. Достаточно в начале отчета указать фамилию и инициалы студента, номер группы и номер работы.

Отчет должен быть оформлен в виде одного файла. Рекомендуемый формат файла .pdf. Имя файла должно содержать фамилию студента, номер группы и номер работы. При невыполнении этих требований отчет проверяться не будет.

Присылая исправленный отчет необходимо сохранять письмо преподавателя с замечаниями. При невыполнении этого требования исправленный отчет проверяться не будет.

В случае проведения занятия в очном режиме отчет может быть сдан как в электронной форме, так и на бумаге.

Выбор варианта

1. Определить свой номер варианта Nvar в соответствии с номером в списке группы Ngr.

Если $1 \le Ngr \le 15$, то Nvar = Ngr.

Если $16 \le Ngr \le 30$, то Nvar = Ngr - 15.

Если $31 \le Ngr \le 45$, то Nvar = Ngr - 30.

Теоретическая подготовка

2. Изучить раздел о внутрикадровом сжатии видеоинформации в учебном пособии и в лекциях. Записать в отчет последовательность операций, выполняемых при внутрикадровом сжатии по стандарту MPEG-2. Для операций ДКП и квантования записать соответствующие математические соотношения. Для каждой операции указать, создает ли она потери информации и уменьшает ли она объем информации.

Основы сжатия видеоинформации

Коэффициент сжатия определяется как

$$K_{\text{CX}} = V_{\text{BX}} / V_{\text{BЫX}},$$

где $V_{\rm BX}$ и $V_{\rm BMX}$ – скорости цифровых потоков на входе и выходе кодера, соответственно.

Задача сжатия может быть решена путем уменьшения избыточности информации, передаваемой в телевизионном сигнале. Возможности сжатия реальных изображений без потерь весьма ограничены.

При сжатии с потерями уменьшается *психофизическая избыточность*. Реальные изображения содержат большое количество информации, потеря которой оказывается незаметной для зрителя. Такая несущественная информация содержится в основном в мелких деталях, флуктуациях и особенностях текстур.

Дискретное косинусное преобразование

1. Поблочное дискретное косинусное преобразование (ДКП) – Разложение блока на пространственно-частотные гармоники.

$$x(m,n) = \frac{1}{\sqrt{MN}} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F(k,l) \cos\left(\frac{2m+1}{2M}\pi k\right) \cos\left(\frac{2n+1}{2N}\pi l\right).$$

F(k,l) — коэффициенты ДКП.

B MPEG-2 M, N = 8.

B H.264 M, N = 4.

В Н.265 размер блока ДКП от 4х4 до 32х32 пикселя.

В H.266 несколько вариантов ДКП и ДСП с размером блока до 64x64 пикселя.

Двумерные гармоники 8х8 пикселей

Квантование коэффициентов ДКП

2. Квантование коэффициентов ДКП с переменным шагом квантования: НЧ — точно, ВЧ — грубо.

$$F_q(m,n) = \text{Round}\left(\frac{F(m,n)\cdot 16}{f\cdot Q(m,n)}\right),$$

где m,n =0..7; F(m,n) - коэффициенты ДКП; $F_q(m,n)$ - их квантованные значения; Q(m,n) - элементы весовой матрицы квантования; f - коэффициент для регулировки степени сжатия; Round(x) - операция округления числа x до ближайшего целого значения.

3. Кодирование квантованных коэффициентов ДКП: Используется факт, что многие гармоники после квантования равны нулю.

Матрица квантования Q(m,n)

8	16	19	22	26	27	29	34	
16	16	22	24	27	29	34	37	
19	22	26	27	29	34	34	38	
22	22	26	27	29	34	37	40	
22	26	27	29	32	35	40	48	
26	27	29	32	35	40	48	58	
26	27	29	34	38	46	56	69	
27	29	35	38	46	56	69	83	

Исходные данные - блок изображения

Таблица 3.1

1									
	59	59	59	60	60	65	64	64	
	63	62	62	62	61	61	61	62	
	137	123	111	101	96	89	88	86	
	237	236	235	233	231	216	213	208	
	225	229	232	232	231	237	238	239	
	193	195	197	198	199	204	204	205	
	182	182	181	181	181	180	180	180	
	183	182	181	180	179	178	178	177	
									_

4. Изобразить примерный вид блока изображения, значения сигнала яркости элементов которого приведены в табл. 3.1. Большим значениям яркости должны соответствовать более светлые клетки.

Результат ДКП

Таблица 3.2

1249	19	3	1	1	1	0	1
-381	14	3	2	2	0	0	1
-318	-14	3	1	-1	0	1	-2
31	-45	-4	-3	-5	0	2	4
154	-7	-8	-2	-2	0	-1	0
38	20	-3	2	2	0	-2	2
-39	11	8	3	0	1	1	0
-42	3	10	1	-1	1	1	-1

Сопоставить рисунок с матрицей коэффициентов ДКП блока изображения, данной в табл. 3.2. Записать в отчет, какие зависимости можно выявить между значениями коэффициентов ДКП и особенностями изображения.

Масштабный коэффициент

5. Выписать из табл. 3.3 два значения масштабного коэффициента *f* для своего варианта.

T	Таблица 3.3														
№ Bap.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
f_1	16	14	12	10	8	7	6	5	4	3	2	9	11	13	15
f_2	104	96	88	80	72	64	56	52	48	44	40	75	85	91	99

образование в стиле hi tech

Коэффициенты ДКП F(m,n)

1249	19	3	1	1	1	0	1
-381	14	3	2	2	0	0	1
-318	-14	3	1	-1	0	1	-2
31	-45	-4	-3	-5	0	2	4
154	-7	-8	-2	-2	0	-1	0
38	20	-3	2	2	0	-2	2
-39	11	8	3	0	1	1	0
-42	3	10	1	-1	1	1	-1
Масшт	абный коэф	фициент	f=	6			
8	16	19	22	26	27	29	34
16	16	22	24	27	29	34	37
19	22	26	27	29	34	34	38
22	22	26	27	29	34	37	40
22	26	27	29	32	35	40	48
26	27	29	32	35	40	48	58
26	27	29	34	38	46	56	69
27	29	35	38	46	56	69	83
	тат квантов						
	16 3		0	0	0	0	
_	64 2		0	0	0	0	0
	45 -2		0	0	0	0	0
	4 -5		0	0	0	0	0
	19 -1	-1	0	0	0	0	0
	4 2		0	0	0	0	0
	-4 1	1	0	0	0	0	0
	-4 0	1	0	0	0	0	0

Расчет в ПР03

6. С помощью файла «Расчет в ПР03.xls» выполнить квантование коэффициентов ДКП для двух значений масштабного коэффициента *f*.

Значение f записывается в предназначенную для него ячейку, а в нижней таблице отображаются значения квантованных коэффициентов ДКП $F_{\alpha}(m,n)$.

Записать (скопировать) две полученные матрицы $F_q(m,n)$ в отчет.

online.mirea.ru

Результаты квантования при f = 20

125	1	0	0	0	0	0	0
-19	1	0	0	0	0	0	0
-13	-1	0	0	0	0	0	0
1	-2	0	0	0	0	0	0
6	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0
-1	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0

Сканирование

7. Матрицы квантованных коэффициентов ДКП, полученные в п.6, преобразовать в последовательности чисел путем зигзагообразного считывания. Порядок сканирования показан в табл. 3.6. Последовательности записать в отчет.

Таблица 3.6

0	1	5	6	14	15	27	28
2	4	7	13	16	26	29	42
3	8	12	17	25	30	41	43
9	11	18	24	31	40	44	53
10	19	23	32	3 9	45	52	54
20	22	33	38	46	51	55	60
21	34	37	47	50	56	59	61
35	36	48	49	57	58	62	63

Результат сканирования

125	1	0	0	0	0	0	0
-19	1	0	0	0	0	0	0
-13	-1	0	0	0	0	0	0
1	-2	0	0	0	0	0	0
6	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0
-1	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0

Кодирование RLC

8. Полученные последовательности закодировать методом RLC. Идущий первым коэффициент $F_q(0,0)$ записывается без изменений. Остальная последовательность представляется в виде пар чисел (run, slevel), где run - число нулей, идущих подряд перед отличным от нуля коэффициентом, slevel - значение этого ненулевого коэффициента с учетом знака. После последнего ненулевого коэффициента блока записывается ЕОВ (конец блока). Кодированные последовательности записать в отчет.

125 0 1 0 -19 0 -13 0 1 3 -1 0 1 0 6 0 -2 8 1 0 -1 0 1 12 -1 EOB

Расчет коэффициента сжатия

Рассчитать ориентировочную оценку сжатия блока изображения для обоих случаев по формуле

$$K_{\text{CM}} \approx 64/N_{\text{DK}},$$
 (3.1)

где 64 — количество элементов в матрице до сжатия, $N_{\text{пк}}$ — количество членов, включая $F_q(0,0)$ и ЕОВ, в кодированной последовательности.

$$K_{\text{CM}} \approx 64 / 26 = 2,46.$$

Деквантование

10. Для случая сильного сжатия ($f = f_2$) выполнить деквантование в соответствии с равенством (3.2). Обратите внимание, что использовать файл «Расчет в ПР03.xls» без существенной доработки нельзя, так как это приведет к неправильным результатам.

$$F(m,n) = \text{Round}\left(\frac{F_q(m,n) \cdot f \cdot Q(m,n)}{16}\right). \tag{3.2}$$

Записать таблицу деквантованных коэффициентов ДКП в отчет.

Пример деквантования

125	1	0	0	0	0	0	0
-19	1	0	0	0	0	0	0
-13	-1	0	0	0	0	0	0
1	-2	0	0	0	0	0	0
6	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0
-1	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0

8	16	19	22	26	27	29	34
16	16	22	24	27	29	34	37
19	22	26	27	29	34	34	38
22	22	26	27	29	34	37	40
22	26	27	29	32	35	40	48
26	27	29	32	35	40	48	58
26	27	29	34	38	46	56	69
27	29	35	38	46	56	69	83

$$f = 20$$

1250	20	0	0	0	0	0	0
-380	20	0	0	0	0	0	0
-309	-28	0	0	0	0	0	0
28	-65	0	0	0	0	0	0
165	0	0	0	0	0	0	0
33	34	0	0	0	0	0	0
-33	0	0	0	0	0	0	0
-34	0	0	0	0	0	0	0

Сравнение с исходными данными

Приблизительно оценить изменения (в процентах) по сравнению с исходными значениями этих коэффициентов. Результаты оценки записать в отчет.

1249	19	3	1	1	1	0	1
-381	14	3	2	2	0	0	1
-318	-14	3	1	-1	0	1	-2
31	-45	-4	-3	-5	0	2	4
154	-7	-8	-2	-2	0	-1	0
38	20	-3	2	2	0	-2	2
-39	11	8	3	0	1	1	0
-42	3	10	1	-1	1	1	-1

1250	20	0	0	0	0	0	0
-380	20	0	0	0	0	0	0
-309	-28	0	0	0	0	0	0
28	-65	0	0	0	0	0	0
165	0	0	0	0	0	0	0
33	34	0	0	0	0	0	0
-33	0	0	0	0	0	0	0
-34	0	0	0	0	0	0	0

Ответить на вопросы

11. Дать ответы на вопросы. Почему при внутрикадровом сжатии ухудшается четкость изображения? Почему при внутрикадровом сжатии может проявиться блочный эффект?

Спасибо за внимание!