Unit 4: How Chemical Change Occurs

IMPORTANT EQUATIONS:

Relation between concentrations and rates...

$$rate = -\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t} = \frac{1}{e}\frac{\Delta[E]}{\Delta t}$$

Units for k...

Overall reaction order	Units of k
Zeroth	$M \cdot s^{-1}$
First	s^{-1}
Second	$M^{-1} \cdot s^{-1}$

Michaelis Menten mechanism...

Overall...
$$S \stackrel{E}{\rightarrow} P$$

Step 1... $E + S \rightleftharpoons_{k-1}^{k_1} ES$ (fast)
Step 2... $ES \rightleftharpoons^{k_2} P + E$ (slow)
 $rate = k_2[ES]$

Michaelis Menten constant...

$$K_M = \frac{k_{-1} + k_2}{k_1} \Longrightarrow rate = \frac{[E]_{total}[S]}{K_M + [S]} \Longrightarrow rate = k_2[E]_{total}$$

Integrated rate laws...

Zeroth order	First order	Second order
$[A]_t = -kt + [A]_0$	$\ln[A]_t = -kt + \ln[A]_0$	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$

Flooding...

$$\frac{k_{obs,1}}{k_{obs,2}} = \frac{k[A]_1^m}{k[A]_2^m} = \left(\frac{[A]_1}{[A]_2}\right)^m$$

Half-life...

Zeroth order	First order	Second order
$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{\ln 2}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$

SUBMICROSCOPIC MODELS OF CHEMICAL CHANGE

Reaction mechanisms...

Reaction mechanisms	step=by-step sequences of simple reactions by which an
	overall reaction occurs
Elementary reaction	a chemical reaction that has only a single transition state
Unimolecular elementary reaction	the rearrangement of a single reactant molecule to produce
	one or more product molecules
Bimolecular elementary reaction	the collision and reaction of two molecules or atoms in an
	elementary reaction
Trimolecular elementary reaction	the simultaneous collision of three atoms or molecules
Reaction intermediate	an atom or molecule that is a product in an earlier step and
	reacts away in a later step of a reaction mechanism

Terms pertaining to Gibbs free energy...

Exergonic	Gibbs free energy of the products is larger than that of the
	reactants
Endergonic	Gibbs free energy of the reactants is larger than that of the
	products

CHEM109 FALL 2024

MEASURING REACTION RATES

Factors affecting reaction rates...

Catalyst	a substance that increases the rate of reaction by producing
	an alternate reaction pathway but is not consumed by the
	<u>reaction</u>

- → The greater the [catalyst], the more it will speed up the reaction
- → If a reaction occurs on a surface, ↑ surface area, ↑ rate

Reaction rates...

- → Instantaneous rate of reaction may be determined by...
 - If concentration changes can be measured at very short time intervals, then average rate a reasonably good approximation for initial rate
 - \circ If we plot reactant concentration vs. time, initial rate at time t is given by the *negative* slope of a straight line that is tangent to the curve
- Reaction rates on $aA + bB \rightarrow dD + eE...$
- **→** Given by 1 $mol\ A\ \left(\frac{b\ mol\ B}{a\ mol\ A}\right) = moles\ of\ B \Rightarrow \frac{b}{a}\Delta[A] = \Delta[B]$

$$rate = -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t} = \frac{1}{e} \frac{\Delta[E]}{\Delta t}$$

Effects of concentration...

Rate laws	mathematical expressions that relate the rate of a chemical
	reaction to the concentration of reactants

For any reactant...

$$rate = k[A]^m[B]^n \dots = k \prod [reactant]^{stoic\ coeff}$$

- → The overall order of the reaction is given by the sum of each individual orders
- → Rate laws must be determined experimentally and are not reliably when predicted by reaction stoichiometry
- → It is possible to determine the order of an elementary reaction solely by looking at the reaction equation
 - o This is true for all, but only, elementary reaction
 - Unimolecular elementary reaction: first order

$$A \rightarrow products, rate = k[A]$$

Bimolecular elementary reaction: second order

$$A + B \rightarrow products, rate = k[A][B]$$

$$2A \rightarrow products, rate = k[A]^2$$

Overall reaction order	Units of k
Zeroth	$M \cdot s^{-1}$
First	s^{-1}
Second	$M^{-1} \cdot s^{-1}$

Initial rates...

→ Select two sets of data where all concentrations but one are the same and set up a ratio for the two rate laws

MULTISTEP REACTIONS

Multistep reactions...

- → Valid mechanism for a multistep reaction has these characteristics...
 - Should consist of a series of unimolecular and bimolecular elementary reaction steps that are plausible based on our knowledge of chemical bonding and interactions between molecules
 - If a step has a 3 reactant species → extremely unlikely to be a an elementary step
 - If a reaction step involvers breaking a very strong bond, its unlikely to have a small enough activation energy fast enough t make the mechanism work
 - Sum of reaction steps should agree with the overall balanced reaction
 - o Mechanisms must agree with experimentally observed values

Rate-determining step <u>slowest step in the mechanism</u>

Equilibrium approximation...

- → When the rate-determining step is not the first step, the rate law of the overall reaction can still be approximated as the rate law of the rate-determining step
- → Cannot just express rate-determining step; its necessary to express relative steps as well

Intro to catalysts...

Catalyst increases the rate of reaction by altering the mechanism

- \rightarrow Allows reaction to proceed via a pathway with a lower E_a than for the uncatalyzed mechanism
- → Catalyzed reaction must involve at least two steps (can be more than two)
 - o One where the catalyst interacts with a reactant to form an intermediate substance
 - One where the intermediate reacts to regenerate the original catalyst and form products
- → The catalyst is *not* consumed by the reaction

Autocatalytic when a product catalyzes a reaction

- Autocatalytic reactions can be dangerous because the reaction can speed up significantly as a product is formed
- → Since reactants and products included in both reactions are exactly the same, they are the same at the same energies (reaction coordinate diagram) → a catalyst has no effect on the relative energies of the reactants and products

 $k_{catalyzed} > k_{uncatalyzed}$

Types of catalysts (to be cont.)...

Homogenous catalyst present in the same phase as the reactants

CHEM109 FALL 2024

CATALYSTS

Heterogeneous catalysts...

Heterogeneous catalysts	present in different phase from the reaction
-------------------------	--

- Heterogeneous catalyst reactions have at least four steps in the reaction mechanism...
 - (1) Absorption of the reactants onto the surface of the catalyst
 - (2) Activation of the absorbed reactants
 - (3) Reaction of the absorbed reactants
 - (4) Diffusion of the products from the surface into the gas/liquid phase
- → Used in the Haber-Bosch process
 - Used to increase the rate of reaction and allow opportunities at reasonable temperatures
 - Takes advantage of boiling points

Enzymes...

Enzymes	biological catalysts; significantly accelerates reactions
Substrates	the reactants with which the enzyme connects in an
	enzyme-catalyzed reaction

- → Enzymes interactions with substrate molecules are often partially/entirely noncovalent
 - o Interacts through hydrogen bonding, ionic attraction, and/or dipole-dipole moment

Active site	only part of the large enzyme molecule interacts with a
	substance

- → Induced-fit model...
 - As a substrate interacts with an enzyme, the substrate is distorted (atoms are shifted, bonds are stretched) to
 a structure closer to the transition state of the reaction. This lowers the energy of the transition state
 accelerating the reaction
 - Only molecules with correct functional groups in correct configurations are able to be induced to fit the active site of the enzyme

Enzyme kinetics and the Michaelis Menten mechanism...

Michaelis Menten mechanism	a two-step reaction that applies to many enzyme-catalyzed
	reaction

→ An enzyme *E* combines with a substrate *S* to from an enzyme substrate complex *ES*, which then separates to give the product *P* and *regenerate* the enzyme

Overall...
$$S \stackrel{E}{\rightarrow} P$$

Step 1...
$$E + S \rightleftharpoons_{k_{-1}}^{k_1} ES$$
 (fast)

Step 2...
$$ES \rightleftharpoons^{k_2} P + E$$
 (slow)

$$rate = k_2[ES]$$

Steady-state approximate	once the reactive intermediate ES forms, its concentration
	remains approximately constant through the course of the
	<u>reaction</u>

 \rightarrow The Michaelis Menten constant K_M is given by...

$$K_M = \frac{k_{-1} + k_2}{k_1} \Longrightarrow rate = \frac{[E]_{total}[S]}{K_M + [S]} \Longrightarrow rate = k_2[E]_{total}$$

Relating to [S] vs. rate graphs...

- \rightarrow If [S] is very low
 - First order in [S]

$$[S] \ll K_{M}$$

$$[S] + K_{M} \approx K_{M}$$

$$rate = \frac{k_{2}}{K_{M}}[S][E]_{total}$$

- \rightarrow If [S] is very high
 - Zeroth order in [S]
 - \circ [S] is constant

$$[S] \gg K_M$$
$$[S] + K_M \approx [S]$$
$$rate = k_2[E]_{total}$$

 \rightarrow If $[S] = K_M$

$$rate = \frac{k_2[S][E]_{total}}{2[S]}$$

$$rate = \frac{1}{2}k_2[E]_{total} = \frac{1}{2}V_{max}$$

Enzyme denaturation and inhibitors...

Denaturation	process in which proteins lose their quaternary, tertiary, and
	secondary structure
Inhibitor	interacts with enzyme to decrease the enzymes catalytic
	efficiency
Irreversible inhibition	covalently binds to the enzymes active site producing a
	permanent loss in catalytic efficiency
Reversible inhibition	forms a noncovalent complex with the enzyme resulting in a
	temporary decrease in catalytic efficiency

→ Reducing concentration returns catalytic efficiency to normal

Types of reversible inhibition...

Ī	Competitive inhibition	the substrate and inhibitor compete for the same active site
		on the enzyme

- → Substrate cannot bind to a enzyme-inhibitor EI complex
- → Concentration of enzyme available to from ES is lower and enzyme-catalyzed reaction is lower

Uncompetitive inh	ibition	the inhibitor binds to the ES complex, but not the active site
		forming ESI complex

→ Formation of enzyme-substrate-inhibitor *ESI* complex decreases catalytic efficiency because it reduce the concentration of *ES*, which reduces the rate of rate-limiting step

Ī	Noncompetitive inhibition	the inhibitor binds to both the enzyme itself and the ES
		complex at the active site

→ Forms inactive ESI complex and reduces concentration of ES

CHEM109 FALL 2024

PREDICTING TIMING OF CHEMICAL/PHYSICAL PREOCESSES

Intro to integrated rate law...

Integrated rate law	relates the concentration of a reactant or product to the
	elapsed time of the reaction

ightharpoonup For $A o products \Rightarrow \int_{[A]_0}^{[A]_t} \frac{1}{[A]^m} d[A] = -kt$: $m = reaction \ order$

Applications of integrated rate laws...

 \rightarrow For each reaction order $m = \{0,1,2\}$, notice how they take form y = mx + b

Zeroth order	First order	Second order
$[A]_t = -kt + [A]_0$	$\ln[A]_t = -kt + \ln[A]_0$	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$

Flooding method...

Flooding	running a reaction that involves two or more reactants with a	
	large excess of all but on reactant	
Pseudo-order	order obtained under flooding conditions and is not	
	necessarily the overall order of the reaction	

- \rightarrow For $A + B \rightarrow products$
 - (1) Make $[A]_0 \gg [B]_0$
 - \circ [A]₀ is essentially constant
 - o $rate = k[A]^m[B]^n$ becomes $rate \approx k_{obs}[B]^n$: $slope = \pm k_{obs}$
 - (2) Run at a different high $[A]_0$ to find m, k

$$\frac{k_{obs,1}}{k_{obs,2}} = \frac{k[A]_1^m}{k[A]_2^m} = \left(\frac{[A]_1}{[A]_2}\right)^m$$

Half-life...

Zeroth order	First order	Second order
$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{\ln 2}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$