

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

- Hodgkin and Huxley model -

Dr. Anjula C. De Silva

anjulads@uom.lk

Room: EB216

Importance of Hodgkin & Huxley model

Hodgkin & Huxley

Voltage-dependent ionic

lamping methods

Hodgkin & Huxley model

nic conductances

Model predictions

- They understood;
 - The basis of neuronal communication: the electrical signal.
 - How this electrical signal is generated and propagated: both under passive and active current flow.
- They mathematically described and predicted the behaviour of these electrical signals.
 - The predictions were not verifiable at the time.
 - Ultimately verified after decades when the tools got available.

Hodgkin & Huxley

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- Allan Lloyd Hodgkin
 - 1914-1998
 - Oxfordshire
 - Trinity College, Cambridge
- Andrew Fielding Huxley
 - 1917-2012
 - London
 - Trinity College, Cambridge
- Hodgkin & Huxley partnership
 - 1935-1939
 - The Voltage Clamp (on a frog)
 - 1939-1945
 - World war II
 - 1946-1952
 - The Hodgkin-Huxley Model
 - 1952-1957
 - Sliding filament theory of muscle contraction
 - 1963
 - Nobel prize in physiology or medicine
 - 1978-1984 & 1984-1990
 - Masters of Trinity College

Andrew Huxley

Core-conductor model

Hodgkin & Huxley

Voltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

$$\begin{array}{c|cccc}
r_{i}\Delta z & I_{i}(z,t) & r_{i}\Delta z & I_{i}(z+\Delta z,t) \\
\hline
K_{m}(z,t)\Delta z & V_{m}(z,t) & V_{m}(z+\Delta z,t) \\
\hline
r_{o}\Delta z & \longrightarrow & r_{o}\Delta z & \longrightarrow & r_{o}\Delta z \\
\hline
I_{o}(z,t) & I_{o}(z+\Delta z,t)
\end{array}$$

• An infinitesimal segment along the \hat{z} direction Δz

$$\frac{\partial^2 V_m(z,t)}{\partial z^2} = (r_o + r_i) K_m(z,t) - r_o K_e(z,t)$$

Cable model

Hodgkin & Huxley

Voltage-dependent ionic urrents

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

Cable model Total variables Incremental variables $C_{m} \xrightarrow{K_{m} \Delta z} + C_{m} \xrightarrow{V_{mq}} V_{m} \xrightarrow{V_{mq}} V_{m} \xrightarrow{Ac_{m} V_{m}} \Delta c_{m} \xrightarrow{Ac_{m} V_{m}} V_{m}$

$$\frac{\partial^2 v_m(z,t)}{\partial z^2} = (r_o + r_i) \left(g_m v_m(z,t) + c_m \frac{\partial v_m}{\partial t} \right) - r_o k_e(z,t)$$

• Solution:

$$v_{m}(z,t) = \frac{\frac{\lambda r_{o}Q_{e}}{\tau}}{\sqrt{4\pi(\frac{t}{\tau})}} e^{\left(\frac{z}{\lambda}\right)^{2}/\left(\frac{4t}{\tau}\right)} e^{-t/\tau}$$

Voltage-dependent ionic currents

Hodgkin & Huxley

Voltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

H&H experiment

- Depolarization induces a capacitive current followed by a
 - Inward current → Na⁺ flow
 - Outward current → K⁺ flow
 - Persistent due to constant depolarization current

Modelling voltage-dependent ionic conductances

Hodgkin & Huxley

/oltage-dependent ionic

lamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- Separate conductances for Na⁺, K⁺ and leakage channels (Ca²⁺, Cl⁻)
- Conductances are variables of
 - Time
 - Membrane voltage (which is a function of temperature and other variables)

Finding H&H model parameters

Hodgkin & Huxley

Voltage-dependent ionic urrents

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- Voltage clamp
 - Short-circuit the membrane across axial distance (z)
 - No variation w.r.t. time and distance

$$\frac{\partial^2 v_m(z,t)}{\partial z^2} = \left(r_o + r_i\right) \left(g_m v_m(z,t) + c_m \frac{\partial v_m}{\partial t}\right) - r_o k_e(z,t)$$

Finding H&H model parameters

Hodgkin & Huxley

Voltage-dependent ionic urrents

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

Patch clamp

- To isolate individual/small populations of ionic channels
- Used neurotoxins to deactivate specific ion channels
- Determine currents caused by remaining specific ions

Na channel inhibitors	Tetrodotoxin
K channel inhibitors	Tetraethylammonium
Cl, Ca channel inhibitors	Chlorotoxin, Conotoxin
Inhibitors of synaptic vesicle release	Botulinum toxin, tetanus toxin
Blood brain barrier inhibitors	Aluminium, mercury
Cytoskeleton interference	Arsenic, ammonia
Ca-mediated cytotoxicity	Lead
Multiple effects	Ethanol

Derivation of the H&H equation

Hodgkin & Huxley

Voltage-dependent ionicurrents

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

Consider ionic current densities

$$J_{c} = C_{m} \partial V_{m} / \partial t \qquad J_{Na^{+}} = G_{Na^{+}} (V_{m} - V_{Na^{+}})$$

$$J_{K^{+}} = G_{K^{+}} (V_{m} - V_{K^{+}}) \qquad J_{L} = G_{L} (V_{m} - V_{L})$$

Derivation of the H&H equation

Hodgkin & Huxley

Voltage-dependent ioni

lamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

From KCL at node 1

$$J_m = J_C + J_{K^+} + J_{Na^+} + J_L - J_e$$

$$J_m = C_m \frac{\partial V_m}{\partial t} + G_{K^+}(V_m - V_{K^+}) + G_{Na^+}(V_m - V_{Na^+}) + G_L(V_m - V_L) - J_e$$

Recall core-conductor equation

$$\frac{\partial^2 V_m(z,t)}{\partial z^2} = (r_o + r_i) K_m(z,t) - r_o K_e(z,t)$$

Converting K to J

$$K(z,t) = 2\pi a J(z,t)$$

Derivation of the H&H equation

Hodgkin & Huxley

Voltage-dependent ionicurrents

Clamping methods

Hodgkin & Huxley model

onic conductances

viodei predictions

Applications

Then, the core-conductor becomes:

$$\frac{1}{2\pi a(r_o + r_i)} \frac{\partial^2 V_m(z, t)}{\partial z^2} + \frac{r_o}{(r_o + r_i)} J_e(z, t) = J_m(z, t)$$

• Substituting J_m back to KCL equation

$$\frac{1}{2\pi a(r_{o} + r_{i})} \frac{\partial^{2} V_{m}(z, t)}{\partial z^{2}} = C_{m} \frac{\partial V_{m}}{\partial t} + G_{K^{+}}(V_{m} - V_{K^{+}}) + G_{Na^{+}}(V_{m} - V_{Na^{+}}) + G_{L}(V_{m} - V_{L}) - \left(1 + \frac{r_{o}}{(r_{o} + r_{i})}\right) J_{e}(z, t)$$

- G_{K^+} and G_{Na^+} are functions of V_m and t
- G_L^n does not depend on V_m and t

Hodgkin & Huxley

Voltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

Applying voltage and patch clamps, isolate:

$$G_{K^{+}}(V_{m},t) = \overline{G_{K}}n^{4}(V_{m},t)$$

$$G_{Na^{+}}(V_{m},t) = \overline{G_{Na}}m^{3}(V_{m},t)h(V_{m},t)$$

- Where $\overline{G_K}$ is a constant
- n, m and h are in the form of:

$$x(V_m, t) = X_{\infty} - (X_{\infty} - X_0)e^{-t/\tau}$$

- where X_0 and X_∞ are values of x at present and at infinite time

- And
$$\tau = \frac{1}{\alpha + \beta}$$
 $\alpha = f_1(V_m), \quad \beta = f_2(V_m)$

Hodgkin & Huxley

Voltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

Experimentally H&H found that;

$$\tau_{n,m,h} = \frac{1}{\alpha_{n,m,h}(V_m) + \beta_{n,m,h}(V_m)}$$

Where

$$\alpha_n(V_m) = \frac{0.01(V_m - 10)}{\exp\left(\frac{V_m - 10}{10}\right) - 1} \qquad \alpha_m(V_m) = \frac{0.1(V_m - 25)}{\exp\left(\frac{V_m - 25}{10}\right) - 1} \qquad \alpha_h(V_m) = 0.07 \exp\left(\frac{V_m}{20}\right)$$
$$\beta_n(V_m) = 0.125 \exp\left(\frac{V_m}{80}\right) \qquad \beta_m(V_m) = 4 \exp\left(\frac{V_m}{18}\right) \qquad \beta_h(V_m) = \frac{1}{\exp\left(\frac{V_m - 30}{10}\right) + 1}$$

Hodgkin & Huxley

Voltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

$$G_{K^{+}}(V_{m},t) = \overline{G_{K}}n^{4}(V_{m},t)$$

Hodgkin & Huxley

Voltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

$$G_{Na^{+}}(V_{m},t) = \overline{G_{Na}}m^{3}(V_{m},t)h(V_{m},t)$$

Hodgkin & Huxley

Voltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

Typical values of constants associated with the H&H equation

$$\overline{G_{Na^+}} = 120 \ mS \ cm^{-2}, \overline{G_{K^+}} = 36 \ mS \ cm^{-2}, \overline{G_L} = 0.3 \ mS \ cm^{-2}$$

$$V_{Na^+} = 55 \, mV$$
, $V_{K^+} = -72 \, mV$, $V_L = -49.4 \, mV$, $C = 1 \mu F cm^{-2}$

Graphical summary of the H&H equation

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

H&H model predictions for unknown stimuli

Hodgkin & Huxley

/oltage-dependent ionic urrents

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- The importance of H&H model is due to the accurate prediction it could make on neuronal behaviour.
- Stimulations are made by varying $k_e(z,t)$
- Predictions:
 - 1. Equilibrium points
 - 2. Frequency coding
 - 3. Refractory periods
 - 4. Spatio-temporal integration
 - 5. Accommodation
 - 6. Anode-break excitation
 - 7. Subthreshold oscillations
 - 8. Temperature dependence

Prediction 1: Equilibrium points

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- Stable points
 - -80 mV: resting membrane potential for K⁺
 - Small perturbations of V_m from this point will cause K⁺ currents flow and return back to resting potential
 - +40 mV: peak membrane potential
 - Small perturbations of V_m from this point will cause K⁺ and Na⁺ currents flow and return back to the peak potential
- Unstable point
 - -15 mV: threshold voltage
 - Dominated by voltage gated Na⁺ currents

Prediction 1: Equilibrium points

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Prediction 2: Frequency coding

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- PSPs are amplitude modulated.
- APs are all or nothing (not amplitude modulated)
 - Can detect light from no light (visual sensory neurons)
 - How to detect bright light from dim light?
- For a given short excitatory PSC, the rate of firing APs change (frequency coded).
 - Limited by only absolute refractory period.

Prediction 2: Frequency coding

Rate of APs

Hodgkin & Huxley

Voltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

REM: Rapid Eye Movement W: Wake m: movement

0.5 Sec

Prediction 3: Refractory periods

Hodgkin & Huxley

Voltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Applications

• Information in neurons are frequency coded. However, it's not a linear frequency coding due to these two refractory periods.

Prediction 4: Spatio-temporal integration

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

Prediction 4: Spatio-temporal integration

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- Explains complex processors of the brain
 - Retinal bipolar cells: limited information of a rod/corn cell
 - Cortical pyramidal cells: wider sensory information processing (EEG)
 - Cerebellar Purkinje cells: more complex smooth motor coordination activity

Prediction 5: Accommodation

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- Desensitise for long duration constant stimuli.
- In other words, neurons are sensitive to change
 - Hearing: silent room a/c on/off
 - Visual: edges are visible than constant colour/intensity spaces
 - Smell: adaptation

Prediction 6: Anode-break excitation

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- Neurons will fire to an inhibitory post synaptic potential!
 - As a result of reducing the threshold voltage
- Essential for rhythm generator circuits in the brain.

Prediction 7: Subthreshold oscillations

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- This oscillatory behaviour could be modelled with the resonant behaviour of an inductor between two infinitesimal segments.
- Even though H&H model predicted this behaviour, it was not practically measured at the time.
- This could be electrical resonance or intracellular communication???

Prediction 8: Temperature dependence

Hodgkin & Huxley

/oltage-dependent ionic

Clamping methods

Hodgkin & Huxley model

onic conductances

Model predictions

- I_{Na} transient inward current
- I_K delayed outward current
 - This delay in opening K⁺ channels is caused by the temperature
- Nernst potential is temperature dependent

$$E_{mV} = \frac{RT}{zF} \ln \left(\frac{concentration\ outside}{concentration\ inside} \right)$$

- Membrane potential (V_m) is a function of the Nernst potential.
- The delay reduces as the temperature 1 causing the amplitude of the AP to be reduced.
- If the maximum amplitude falls below the V_{th} , AP will not generate at the next Ranvier node. (purpose of the cell communication is lost)
- Giant squid experiments were done in 20° C but AP could not be seen at 37° C (typical temperature of mammalian cells).
- It is found out anatomically, density of K⁺ channels is much less in mammalian cells than in cold blooded animals.