Homework 7 Advanced Algebra I

Homework 7

Aleck Zhao

October 29, 2016

Section 2.10: The Isomorphism Theorem

22. Show that $\mathbb{R}^*/\{1,-1\} \cong \mathbb{R}^+$.

29. Let
$$G = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \middle| a, b, c \in \mathbb{R} \right\}.$$

- (a) Show that G is a subgroup of $M_3(\mathbb{R})^*$ and that $Z(G) \cong \mathbb{R}$.
- (b) Show that $G/Z(G) \cong \mathbb{R} \times \mathbb{R}$.

Section 8.2: Cauchy's Theorem

- 7. If H and K are conjugate subgroups in G, show that N(H) and N(K) are conjugate.
- 14. Let $D_3 = \{1, a, a^2, b, ba, ba^2\}$ where o(a) = 3, o(b) = 2, aba = b. If $H = \{1, b\}$, show that N(H) = H.
- 23. Let G^{ω} be the group of sequences $[g_i) = (g_0, g_1, \cdots)$ from a group G with component-wise multiplication $[g_i) \cdot [h_i) = [g_i h_i)$. Show that if $G \neq \{1\}$ is a finite p-group, then G^{ω} is an infinite p-group.
- 26. Let G be a non-abelian group of order p^3 where p is a prime. Show that
 - (a) Z(G) = G' and this is the unique normal subgroup of G of order p.
 - (b) G has exactly $p^2 + p 1$ distinct conjugacy classes.

Section 8.3: Group Actions

- 3. If p and q are primes, show that no group of order pq is simple.
- 13. Let $G = (\mathbb{R}, +)$ and define $a \cdot z = e^{ia}z$ for all $z \in \mathbb{C}$ and $a \in G$. Show that \mathbb{C} is a G-set, describe the action geometrically, and find all orbits and stabilizers.
- 21. If H is a subgroup of G, find a G-set X and an element $x \in X$ such that H = S(x).
- 23. Let X be a G-set and let x and y denote elements of X.
 - (a) Show that S(X) is a subgroup of G.
 - (b) If $x \in X$ and $b \in G$, show that $S(b \cdot x) = bS(x)b^{-1}$.
 - (c) If S(x) and S(y) are conjugate subgroups, show that $|G \cdot x| = |G \cdot y|$.