Problemsett 4, grublegruppe MAT1100 høst 2009

- 1. Vi sier at en mengde M er lukka under addisjon hvis $\alpha, \beta \in M \Rightarrow \alpha + \beta \in M$ og lukka under multiplikasjon hvis $\alpha, \beta \in M \Rightarrow \alpha \cdot \beta \in M$.
 - a) Er Q lukka under addisjon og/eller multiplikasjon?
 - b) Er $\mathbb{R} \setminus \mathbb{Q}$ (de irrasjonale talla) lukka under addisjon og/eller multiplikasjon?
 - c) Hvis $\alpha \in \mathbb{Q}$ og $\beta \in \mathbb{R} \setminus \mathbb{Q}$, hva kan man si om $\alpha + \beta$ og $\alpha \cdot \beta$?
- 2. La d(x) betegne desimaldelen til x; for eksempel er $d(0)=0, d(-\frac{4}{3})=d(\frac{2}{3})=\frac{2}{3}$. Betrakt mengden $M=\{d(\sqrt{2}),d(2\sqrt{2}),\dots,d(2009\sqrt{2})\}$. Vis at det finnes forskjellige elementer x og y i M slik at $|x-y|<\frac{1}{2008}$. (Hint: Hvis du skal løse 366 matematikkoppgaver i løpet av 2009, må det være en dag du gjør minst 2 oppgaver.)
- 3. Anta at $\lim_{x\to a} f(x) = \infty$, $\lim_{x\to a} g(x) = -\infty$ og $\lim_{x\to a} h(x) = 0$. Vis at grenseverdiene $\lim_{x\to a} [f(x) + g(x)]$ og $\lim_{x\to a} f(x)h(x)$ kan ta hvilken som helst verdi i $\mathbb{R} \cup \{\pm \infty\}$.
- 4. En funksjon $f: I \to \mathbb{R}$ der I er et intervall kalles *Lipschitz-kontinuerlig* hvis det eksisterer en $K \geq 0$ slik at $|f(x) f(y)| \leq K|x y|$ for alle $x, y \in D$. Vis at en Lipschitz-kontinuerlig funksjon også er kontinuerlig, men at det motsatte ikke nødvendigvis gjelder. Vis også at en Lipschitz-kontinuerlig funksjon ikke trenger å være deriverbar.
- 5. Vi sier at en funksjon $f: \mathbb{R} \to \mathbb{R}$ er periodisk med periode p > 0 hvis f(x+p) = f(x) for alle $x \in \mathbb{R}$. For eksempel har cosinusfunksjonen periode 2π (eller for den saks skyld 42π) siden $\cos(x+2\pi) = \cos(x) (= \cos(x+42\pi))$ for alle x.
 - a) La f og g være periodiske funksjoner med periode p. Vis at f + g er periodisk.
 - b) Vis at hvis f er periodisk med periode p, er f(x + np) = f(x) for alle heltall n.
 - c) Anta at f er periodisk og at $\lim_{x\to\infty} f(x) = F \in \mathbb{R}$. Vis at f er konstant.
 - d) La f og g være ikke-konstante kontinuerlige periodiske funksjoner med periode henholdsvis 1 og p. Når er f + g periodisk?
 - e) Fins det periodiske funksjoner f og g slik at f(x) + g(x) = x for alle $x \in \mathbb{R}$?
- 6. La $f: \mathbb{R} \to \mathbb{R}$. Vi definerer bildet Im(f) til f til å være alle verdier f tar:

$$\operatorname{Im}(f) = \{y | f(x) = y \text{ for noen } x \in \mathbb{R}\}$$

Hvilke av følgende påstander er sanne? Kom med et bevis eller gi et moteksempel.

- a) Hvis f er kontinuerlig og $Im(f) = \mathbb{R}$, er f monoton.
- b) Hvis f er kontinuerlig og monoton, er $\text{Im}(f) = \mathbb{R}$.
- c) Hvis f er monoton og $Im(f) = \mathbb{R}$, er f kontinuerlig.
- 7. Finn alle deriverbare funksjoner $f: \mathbb{R} \to \mathbb{R}^+$ som tilfredsstiller f'(x) = f(f(x)).