

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 20

Формирование и модификация списков на Prolog

Дисциплина Функциональное и логическое программирование

Студент Сиденко А.Г.

Группа ИУ7-63Б

Преподаватель Толпинская Н.Б., Строганов Ю.В.

Задание

Используя хвостовую рекурсию, разработать, комментируя аргументы, эффективную программу, позволяющую:

- 1. Сформировать список из элементов числового списка, больших заданного значения;
- 2. Сформировать список из элементов, стоящих на нечетных позициях исходного списка (нумерация от 0);
- 3. Удалить заданный элемент из списка (один или все вхождения);
- 4. Преобразовать список в множество (можно использовать ранее разработанные процедуры).

Убедиться в правильности результатов.

Для одного из вариантов вопроса и 1-ого задания составить таблицу, отражающую конкретный порядок работы системы

Программа

```
domains
1
     list = integer*
2
3
     num = integer
   predicates
4
     over number(list, num, list).
5
     odd list(list, list).
6
     delete number(list, num, list).
7
     member (num, list).
8
     multi list (list, list).
9
   clauses
10
     over_number([], _, []):-!.
11
     over_number([X|Tail], Num, [X|List]):-
12
13
       X > Num,
       over number (Tail, Num, List),!.
14
     over number ([ | Tail], Num, List):-
15
       over number (Tail, Num, List).
16
17
     odd_list([], []):-!.
18
     odd_list([_], []):-!.
19
     odd_list([_, Second|Tail], [Second|OddTail]):-
20
       odd_list(Tail, OddTail).
21
22
     delete number ([], , []): -!.
23
     delete_number([Num|Tail], Num, List):-
24
```

```
delete number (Tail, Num, List),!.
25
     delete number ([X| Tail], Num, [X| List]): -
26
27
       delete_number(Tail, Num, List).
28
29
     member(Num, [Num]_]): -!.
     member (Num, [_| Tail]): -
30
       member (Num, Tail).
31
32
     multi list([], []):-!.
33
     multi_list([Num|Tail], List):-
34
       member(Num, Tail),
35
       multi_list(Tail, List),!.
36
     multi list ([Num| Tail], [Num| List]): -
37
       multi_list(Tail, List).
38
```

Приведем таблицу для задания 1.

```
1 goal
2 over_number([5,1,2,3], 2, List).
```

$N_{\overline{0}}$	Состояние резольвен-	Сравниваемые термы; ре-	Дальнейшие действия:
ша-	• ТЫ	зультат; подстановка, если	прямой ход или откат
га		есть	
1	$over_number([5,1,2,3],$	\square over_number([5,1,2,3],	Определение от-
	2, List)	2, List)) ищется системой	ношения найдено,
		определение отношения	заносится в стек
		(по имени предиката и	$over_number([5,1,2,3], 2,$
		списку (числу) аргумен-	List), прямой ход
		тов)	
2	5 > 2,	Начинает «раскрываться»	Прямой ход
	$over_number([1,2,3],$	правило, т.е. доказы-	
	2, List)	вается каждое целевое	
		утверждение в теле пра-	
		вила последовательно	
		слева направо X > Num,	
		over_number(Tail, Num,	
		List)	
3	$over_number([1,2,3],$	5>2	Успешная унификация,
	2, List)		переход к следующему
			целевому утверждению

4	over_number([1,2,3], 2, List)	По over_number([1,2,3], 2, List)) ищется системой определение отношения (по имени предиката и списку (числу) аргументов)	ношения найдено, заносится в стек $over_number([1,2,3], 2, List)$, прямой ход
5	1 > 2, over_number([2,3], 2, List)	Начинает «раскрываться» правило, т.е. доказывается каждое целевое утверждение в теле правила последовательно слева направо X > Num, over_number(Tail, Num, List)	Прямой ход
6	$over_number([2,3], 2, List)$	1>2	Неуспешная унификация, переход к следующему определению с таким именем
7	over_number([2,3], 2, List)	Начинает «раскрываться» правило, т.е. доказывается каждое целевое утверждение в теле правила последовательно слева направо over_number(Tail, Num, List)	Прямой ход
8	over_number([2,3], 2, List)	По over_number([2,3], 2, List)) ищется системой определение отношения (по имени предиката и списку (числу) аргументов)	найдено, заносится в стек $over_number([2,3],$
9	2 > 2, over_number([3], 2, List)	Начинает «раскрываться» правило, т.е. доказывается каждое целевое утверждение в теле правила последовательно слева направо $X > Num$, $over_number(Tail, Num, List)$	Прямой ход

10	over_number([3], 2, List)	2>2	Неуспешная унифика- ция, переход к следу- ющему определению с таким именем
11	over_number([3], 2, List)	Начинает «раскрываться» правило, т.е. доказывается каждое целевое утверждение в теле правила последовательно слева направо over_number(Tail, Num, List)	Прямой ход
12	over_number([3], 2, List)	По over_number([3], 2, List)) ищется системой определение отношения (по имени предиката и списку (числу) аргументов)	найдено, заносится в стек $over_number([3], 2,$
13	$3 > 2$, $over_number([], 2$, List)	Начинает «раскрываться» правило, т.е. доказывается каждое целевое утверждение в теле правила последовательно слева направо X > Num, over_number(Tail, Num, List)	Прямой ход
14	$over_number([], 2, List)$	2>2	Успешная унификация, переход к следующему целевому утверждению
15	over_number([], 2, List)	По over_number([], 2, List)) ищется системой определение отношения (по имени предиката и списку (числу) аргументов)	найдено, заносится в стек $over_number([], 2, List)$, прямой ход
16		Унификация over_number([], 2, List) с over_number([], _, [])	Унификация успеш- на, List=[], отсече- ние, возврат из стека $over_number([], 2, List)$
17	Резольента пуста	Поочередно достаем из сте- ка и подставляем X, List	List =[3], достаем из сте- ка over_number([3], 2, List), откат

18	Резольента пуста	Поочередно достаем из сте-	List = [3], достаем из сте-
		ка и подставляем X, List	ка $over_number([2,3], 2,$
			List), откат
19	Резольента пуста	Поочередно достаем из сте-	List = [3], достаем из сте-
		ка и подставляем X, List	ка $over_number([1,2,3],$
			2, List), откат
20	Резольента пуста	Поочередно достаем из сте-	List = [5,3], до-
		ка и подставляем X, List	стаем из стека
			$over_number([5,1,2,3], 2,$
			List), откат
21	Резольента пуста		Стек пуст. Вывод резуль-
			тата. Завершение про-
			граммы.

Вывод

Эффективный способ организации рекурсии – хвостовая рекурсия. Эффективность рекурсивной процедуры повышается благодаря отсечению неперспективных путей поиска решения. Используя «!» – отсечение. Которое сократит количество выполняемых унификаций для достижения максимальной эффективности работы системы.

Ответы на вопросы

1. Как организуется хвостовая рекурсия в Prolog?

Хвостовая рекурсия: Для ее осуществления рекурсивный вызов определяемого предиката должен быть последней подцелью в теле рекурсивного правила и к моменту рекурсивного вызова не должно остаться точек возврата (непроверенных альтернатив).

- 2. Какое первое состояние резольвенты? Вопрос.
- 3. Каким способом можно разделить список на части, какие, требования к частям?

В Prolog существует более общий способ доступа к элементам списка. Для этого используется метод разбиения списка на начало и остаток. Для этого используется вертикальная черта (|) за последним элементом начала.

Начало списка — это группа первых элементов, не менее одного. Остаток списка — обязательно список (может быть пустой), всегда один.

4. Как выделить за один шаг первые два подряд идущих элемента списка? Как выделить 1-й и 3-й элемент за один шаг?

Два подряд идущих:

```
1 [First, Second | Tail]
```

1-й и 3-й:

5. Как формируется новое состояние резольвенты?

Резольвента - текущая цель, существующая на любой стадии вычислений. Резольвенты порождаются целью и каким-либо правилом или фактом, которые просматриваются последовательно сверху вниз. Если резольвента существует при наиболее общей унификации, она вычисляется. Если пустая резольвента с помощью такой стратегии не найдена, то ответ на вопрос отрицателен.

6. Когда останавливается работа системы? Как это определяется на формальном уровне?

Когда стек пуст.