MAASAI MARA UNIVERSITY

THIRD YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF SCIENCE IN ECONOMICS AND STATISTICS

THEORY OF ESTIMATION

APRIL 2020 TIME: 2 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY THREE QUESTIONS.

SECTION A (25 MARKS)

QUESTION ONE

a) Derive the distribution of $\bar{x} = \frac{I}{n} \sum_{i=1}^{n} x_i$ if $x \sim N(\mu_1 \sigma^2)$ (2 marks)

b) Given the uniform distribution $f(x, a, b) = \begin{cases} \frac{1}{b-a}, a \le x \le b \\ o, elsewhere \end{cases}$

Obtain moment estimator of the parameters A and D if the Uniform distribution is on the interval. (A, A + D) (3 marks)

c) Find the maximum likelihood estimate of the parameter θ for the population those

Probability function.
$$f(x, \theta) = \begin{cases} \theta^x & (-\theta)^{1-x} \\ 0 & elsewhere \end{cases}, x = 0,1$$
 (3 marks)

- d) Let $x_1 x_2 \dots x_n$ be a random samples from a population with mean θ and variance θ^2 , define the sample mean $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ and examine it for unbiasedness. (5 marks)
- e) Suppose that X_1, X_2, X_n from a random sample for size n from a normal population, having mean μ and variance σ^2 . Let $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ and $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{x})^2$ be the sample mean variance respectively, show that:

 \bar{x}_n ; n=1,2,3,...} and S_n ; n=1,2,3...... MSE consistent estimate of μ and σ^2 respectively. (6 marks)

f) Suppose that there is a random sample X_1X_2 X_n from a Poisson distribution with parameters verify that $T_1 = \bar{x}$ and $T_2 = \sum_{i=1}^n (xi - \bar{x})^2$ Are jointly sufficient for μ and σ^2 (6 marks)

SECTION B

QUESTION TWO [15 MARKS]

a) Suppose that the proportion θ of detecting item in a large manufacturer lot is unknown and that the Prior distribution of θ is a uniform distribution in the interval [0,1]. Suppose that a random sample is taken from this lot. Determine the posterior distribution of θ given the sampling is done in such a way that for

$$x_i = \begin{cases} 1 & if \text{ the item is detective} \\ 0 & if \text{ the item is not detective} \end{cases}$$
 (8 marks)

b) State and proof the Raw-Blackwell-Theory. (7 marks)

QUESTION THREE [15 MARKS]

- a) Let X_1X_2 X_n be a random sample from a Bernoulli distribution with probability of success θ . Let $T = \sum_{1^2=1}^n x_i$ Whereas x_i is to be unbiased for θ , use this information to construct a better estimator for θ . (7 marks)
- b) Let X_1X_2 X_n be a random sample from a Bernoulli distribution with parameter θ , find the unique UMVUE of

(i) θ (2 marks)

(ii) $\theta(1-\theta)$ (6 marks)

QUESTION FOUR [15 MARKS]

a) Define the term "Pivotal quantity" [2 marks]

b) The following data are the income per year in million shillings for 30 companies selected within a given city.

14.7 13.0 14.9 12.9 16.0 15.2 15.3 15.1 12.6 14.8 14.9 15.1

15.3 12.4 17.2 16.0 12.5 14.3

Assuming normality with unknown parameters;

- i. Construct a 90% confidence interval for the true population mean. [6 marks]
- ii. Construct a 99% confidence interval for the true population variance. [7 marks]

QUESTION FIVE [15 MARKS]

a) Let $X_1, X_2, ..., X_n$ be i.i.d random sample from a population with p.d.f

$$f(x,\theta) = \begin{vmatrix} \frac{1}{\theta} & 0 < x < \theta \\ 0 & elsewhere \end{vmatrix}$$

Suppose T is an estimator of the parameter θ and T has a density;

$$g(t) = \begin{cases} \frac{nt^{n-1}}{\theta^n} & 0 < t < \theta \\ 0 & elsewhere \end{cases}$$

- i. Investigate unbiasness of T for the parameter θ . (5 marks)
- ii. Find the cramer-Rao lower bound for the variance of unbiased estimator of the parameter θ . (5 marks)
- b) $X \sim N(u, \sigma^2)$ where u is known. Let $x_1, x_2 \dots x_n$ be a random sample from x. Find a minimum variance best unbiased estimator of the variance σ^2 . (5 marks)